Physics-L2

Electromagnetism:

LC: 24 hours approx

EX: 24 hours approx

Teachers: Yannick Hinschberger and Gulyaz Najafova

Exams: 1 midterm (coeff: 1.5), 1 final (coeff: 2.5)

Practical Works

PW: 21 hours

Teachers: Yannick Hinschberger, Gulyaz Najafova and Alihuseyn Dovlatov

Exams: 1 report and 1 lab evaluation (coeff: 2)

Physics-L2 Electromagnetism

Chapter 1: Electrostatics

Chapter 2: Magnetostatics

Chapter 3: Time-dependent regime-Induction phenomena

Chapter 4: Maxwell equations

Chapter 5: Dielectric media and applications

Chapter 6: Conducting media and applications

Chapter 7: Magnetic media and applications

Physics-L2 Electromagnetism Approximative program

Chap 1: Electrostatics

Chap 2: Magnetostatics

Chap 3: Time-dependent regime-Induction phenomena

Chap 4: Maxwell equations

Chap 5: Dielectric media and applications

Chap 6: Conducting media and applications

Chap 7: Magnetic media and applications

week	Magistral lectures
1	Electrostatics
2	Electrostatics
3	Electrostatics
4	Electrostatics
5	Magnetostatics
6	Magnetostatics
7	Induction
8	Induction
9	Maxwell equations
10	Maxwell equations
11	Dielectric media
12	Dielectric / Metallic media
13	Metallic Media
14	Magnetic media

About Practical Works

week	Practical Work (SP2)
1	
2	
3	
4	Discovery of Oscilloscope
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

PW0: Oscilloscope

Same PW for all groups

PW1: Coaxial cable

PW2: Transformator

PW3: Sound Wave

PW4: Interference sound waves

PW5: Interference Optics

PW6: Electron canon

Lectures Physics L2 Electromagnetism

Electromagnetism

Static Electricity

Thales 625-547 *BC*

Amber From ancient greek: ἤλεκτρον elektron:

Electrisation by friction

After rubing amber with, it can attract light objects

Brief historical overview

Electricity

Static Electricity

Thales 625-547 BC

Amber From ancient greek: ἤλεκτρον elektron:

Electrisation by friction

After rubing amber with, it can attract light objects

Two types of electricity Electricity is seen as a fluid

Charles Du Fay 1698-1739

Resineous electricity: obtained after friction with amber

Vitreous electricity: obtained after <u>friction with glass</u>

Two types of electricity Electricity is seen as a fluid

Charles Du Fay 1698-1739

Resineous electricity: obtained after friction with amber

Vitreous electricity: obtained after friction with glass

2 pendulums rubbed with amber

REPULSION

2 pendulums rubbed with glass **REPULSION**

1 pendulum rubbed with glass and 1 pendulum rubbed with amber ATTRACTION

Propagation of electricity: conductor-insulator

Stephen Gray 1666-1736

The electric fluid propagates until the sphere because it attracts little papers

- One can propagate electricity
- existence of materials that propagate electric fluids and others not.

Electrisation by contact with a glass stick

Eletrostatic devices

1706
Electrisation by contact with a rotating sulfur sphere

Eletrostatic devices

1706
Electrisation by contact with a rotating sulfur sphere

1746: University of Leiden
Pieter van Musschenbroek (1692-1761)

Leiden Jar (bottle)....first capacitor
Deliver electric discharge

Eletrostatic devices

1706
Electrisation by contact with a rotating sulfur sphere

Jean-Antoine Nollet 1700-1770

1746: University of Leiden Pieter van Musschenbroek (1692-1761)

Leiden Jar (bottle)....first capacitor Deliver electric discharge

Fig. 213. LEYDEN JAR WITH DISCHARGER.

Benjamin Franklin 1706-1790

Negative and Postive charges

Benjamin Franklin 1706-1790

Negative and Postive charges

Benjamin Franklin 1706-1790

Negative and Postive charges

Lightning rod

Benjamin Franklin 1706-1790

Negative and Postive charges

Lightning rod

- Charge conservation
- Phenomena acting at distance
- Explanation of Leiden jar phenomena

Interpretation of Leyden Jar

Metallic Chain propagates electric perturbation to the internal foil

Interpretation of Leyden Jar

Metallic Chain propagates electric perturbation to the internal foil

• Possibility to close the circuit and to induce an electric discharge!!

Fig. 213. LEYDEN JAR WITH DISCHARGER,

Quick Modern description: Principle of a capacitor

• Can accumulate and stock electric charges:

Quick Modern description: Principle of a capacitor

• Can accumulate and stock electric charges:

• Described by its Capacitance C (or capacity) in Farad (Coulomb/Volt):

$$q = Cu_C$$

$$C = \frac{\epsilon_0 S}{d}$$
 (if insulating part is the vaccum)

• Relation between current and voltage

$$i = \frac{dq}{dt} = C\frac{du_C}{dt}$$

C: from µF to pF

Wimshurst Machine (1882)

Wimshurst Machine (1882)

- Two wheels rotating in opposite direction in contact with metallic brushes.
- Creation of negative charge induces apparition of a a positive charge on the other side of the brush
- By the weels rotation, charges are transported and collected

When electric charges become to high: lightning

You Might watch https://www.youtube.com/watch?v=Zilvl9tS0Og

Charles Coulomb 1736-1806

Parameters that influence the electric force

Coulomb balance: device composed with a torsion balance able to measure weak electric forces.

$$F \approx \frac{q_1 q_2}{r^2}$$

Repulsion of two spheres after electrisation of neutral sphere A by charged sphere B.

Coulomb: unit of electric charge

Alessandro Volta 1745-1827

First Generator

1800: <u>Volta Battery:</u> can deliver electricity <u>without interuption</u>, not only by a discharge.

Unit of electric tension: Volt

Alessandro Volta 1745-1827

First Generator

1800: <u>Volta Battery:</u> can deliver electricity <u>without interuption</u>, not only by a discharge.

Unit of electric tension: Volt

Brief historical overview

Electricity

Alessandro Volta 1745-1827

First Generator

1800: <u>Volta Battery:</u> can deliver electricity <u>without interuption</u>, not only by a discharge.

Unit of electric tension: Volt

Exemple of voltaic battery (cell)

Chemical explanation: redox reactions

A famous pedagogic example: Daniell Cell (1836)

Field of Electrochemistry

Further development: birth of electric circuits...and electric civilisation

Notion of electric current Voltage –Tension

Georg Ohm 1789-1854

André-M. Ampère 1775-1836

Gustav Kirchhoff 1824-1887

Resistance

Nikola Tesla 1856-1943

Use of alternative current After discovery of induction...

Thomas Edison 1847-1931

Incandescent light bulb

Magnet

Magnetite (Iron oxide) has attractive or Repulsive properties (known since antiquity)

Magnet

Magnetite (Iron oxide) has attractive or Repulsive properties (known since antiqity)

Defining poles: North and South poles

Magnet

Magnetite (Iron oxide) has attractive or Repulsive properties (known since antiquity)

Defining poles: North and South poles

Existence of a natural geographic orientation....North

Who invented the magnetic compass?

Each civilization pretends to did it...

Magnetism

Magnetic orientation

With small iron filings near magnets one can see... lines...

Magnetism

Magnetic orientation

With small iron filings near magnets one can see... lines...

Earth Magnetism

William Gilbert 1544-1603

The magnetic compass should react in the same way than with a magnet

Geographic North is a magnetic south

1819: A Link between electricity and magnetism

Hans. C Oersted 1777-1851

1819: A Link between electricity and magnetism

Electricity induces motion of magnetic compass

Hans. C Oersted 1777-1851

- 1. No conduction: initial orientation of magnetic compass
- 2. Circulation of electricity modifies the orientation of magnetic compass.

1819: A Link between electricity and magnetism

Electricity induces motion of magnetic compass

Hans. C Oersted 1777-1851

- 1. No conduction: initial orientation of magnetic compass
- 2. Circulation of electricity modifies the orientation of magnetic compass.

Electricity can have similar action than a natural magnet

Eletrodynamic theory

André-M. Ampère 1775-1836

Interpretation of Oersted Experiment Electric current creates magnetic action

- Notion of electric current I: motion of microscopic electric charges
- Direction of the current I influences direction of magnetic compass

Magnetic permeability

Further discovered phenomena

Interaction between two electric currents

Initial position

Or I₁<0 and I₂>0
ATTRACTION

Definition of Ampere: Unit of electric current:

1 A= current needed to have a lineic force of 2*10⁷ N/m between two infinite wires separated from one meter.

Further discovered phenomena

Interaction between two electric currents

Initial position

Or I₁<0 and I₂>0
ATTRACTION

Definition of Ampere: Unit of electric current:

1 A= current needed to have a lineic force of 2*10⁷ N/m between two infinite wires separated from one meter.

$$I_1>0$$
 and $I_2>0$
Or $I_1<0$ and $I_2<0$
REPULSION

Further discovered phenomena Important device: Solenoid- or self or magnetic coil

Many loops of current

Fig. 3

Similar properties than Ones given by natural magnet

1831: Magnetism can induce electricity

Important contribution

- Chemistry (electrolysis)
- Notion of vectors fields
- Electromagnetic Induction

Michael Faraday 1791-1867

1831: Magnetism can induce electricity

Important contribution

- Chemistry (electrolysis)
- Notion of vectors fields
- Electromagnetic Induction

Michael Faraday 1791-1867

A magnetic coil that produces a magnetic field

A magnetic coil related to a voltmeter.

1831: Magnetism can induce electricity

Important contribution

- Chemistry (electrolysis)
- Notion of vectors fields
- Electromagnetic Induction

Michael Faraday 1791-1867

We move the first coil close to the second and a voltage appears during the motion!

If motion is faster, voltage In the second coil is higher!

1831: Magnetism can induce electricity

Michael Faraday 1791-1867

Important contribution

- Chemistry (electrolysis)
- Notion of vectors fields
- Electromagnetic Induction

It works also with a magnet

Motion of magnet inside the self...

...generates electric tension !!!

1831: Magnetism can induce electricity

Michael Faraday 1791-1867

Important contribution

- Chemistry (electrolysis)
- Notion of vectors fields
- Electromagnetic Induction

It works also with a magnet

Motion of magnet inside the self...

...generates electric tension !!!

Electromagnetic Induction

Induction:

Time-dependent
modification of magnetic
field through the loop
surface generates a voltage

Brief historical overview

Electromagnetism

Examples or applications

1832: Self-induction (Henry):

induction created by the magnetic field created by the current it self

$$U = L \frac{di}{dt}$$

Brief historical overview

Electromagnetism

Examples or applications

Continous current motor

1832: Self-induction (Henry):

induction created by the magnetic field created by the current it self

$$U = L \frac{di}{dt}$$

Transformator: modifying voltage

The synthesis: 1855-1864

James C. Maxwell 1831-1879

- •Mathemathical description (vectorial theory) that explains all the electromagnetic phenomena.
- •Dynamic theory that makes the relations between <u>the fields</u> (electric and magnetic fields) and <u>the sources</u> (charges and currents)
- Electric and magnetic fields are <u>waves</u> <u>propagating at the</u> <u>speed of the light c</u> (connexion with optics).

The synthesis: 1855-1864

James C. Maxwell 1831-1879

- •Mathemathical description (vectorial theory) that explains all the electromagnetic phenomena.
- •Dynamic theory that makes the relations between <u>the fields</u> (electric and magnetic fields) and <u>the sources</u> (charges and current)
- Electric and magnetic fields are <u>waves</u> <u>propagating at the</u> <u>speed of the light c</u> (connexion with optics).

This theory is known today as Maxwell's equations

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \frac{\rho}{\epsilon_0} \qquad \overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$$

$$\overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \qquad \overrightarrow{\nabla} \wedge \overrightarrow{B} = \mu_0 \overrightarrow{j} + \mu_0 \epsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$$

Will be seen in two years during Electromagnetic lectures

The synthesis: 1855-1864

Maxwell-Faraday

Induction phenomena

1831-1879

Each equation traduces <u>a vectorial situation</u> $\overrightarrow{\nabla} \cdot \overrightarrow{E} = \frac{\rho}{\epsilon_0} \qquad \overrightarrow{\nabla} \cdot \overrightarrow{B}$

$$\overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

$$E = -\Delta V$$

The synthesis: 1855-1864

Connection with Optics? Light is known to be a wave.

Maxwell predicted that Electric and Magnetic field are waves propagating at the speed of the light c!

James C. Maxwell *1831-1879*

$$\overrightarrow{
abla} \wedge \overrightarrow{E} = -rac{\partial \overrightarrow{B}}{\partial t}$$

$$\overrightarrow{\nabla} \wedge \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \qquad \overrightarrow{\nabla} \wedge \overrightarrow{B} = \mu_0 \overrightarrow{j} + \mu_0 \epsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$$

From Maxwell equations one can obtain a 3D wave equation Propagation of E-M waves (in the vaccum)

$$\Delta \overrightarrow{E} - \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E}}{\partial t^2} = 0 \qquad c^2 = \frac{1}{\epsilon_0 \mu_0}$$

$$c^2 = \frac{1}{\epsilon_0 \mu_0}$$

Optics: geometric optics and wave optics

 $n_1 \sin\theta 1 = n_2 \sin\theta 2$

Optics: geometric optics and wave optics

DIFFRACTION!!!!!

Interferences

Polarisation

n₁sinθ1=n₂sinθ2

Institut de Physique et Ingénierie

Further key-events

1887: Experimental Proof of Maxwell Theory by Heinrich Rudolf Hertz. Emission and reception of electromagnetic waves!

Heinrich. R Hertz 1857-1894

Further key-events

1887: Experimental Proof of Maxwell Theory by Heinrich Rudolf

Hertz. Emission and reception of electromagnetic waves!

Heinrich. R Hertz 1857-1894

Institut de Physique et Ingénierie

Further key-events

1897: Discovery of the electron by Thompson (1856-1940)

1905: Albert Einstein explains photoelectric effect (discovered by Hertz). Light is **also a particule**: photon of energy E=hv where is the frequency of the light.

Further key-events

1897: Discovery of the electron by Thompson (1856-1940)

1905: Albert Einstein explains photoelectric effect (discovered by Hertz). Light is **also a particule**: photon of energy E=hv where is the frequency of the light.

E=hv

1911: Discovery of the nucleus by Ernest

