NET201

aws invent

Creating Your Virtual Data Center: VPC Fundamentals and Connectivity

Gina Morris, Engineering Manager, EC2 Networking

November 28, 2017

Amazon Virtual Private Cloud (Amazon VPC)

What to expect from this session

- Get familiar with VPC concepts
- Walk through a basic VPC setup
- Learn about the ways in which you can tailor your virtual network to meet your needs

Walkthrough: Setting up an Internet-connected VPC

Creating an Internet-connected VPC: Steps

Choosing an address range

Create subnets in Availability Zones

Creating a route to the Internet

Authorizing traffic to/from the VPC

Choosing an IP address range

CIDR notation review

CIDR range example:

172.31.0.0/16

NET202 - IPv6 in the Cloud: Protocol and AWS Service Overview

Choosing an IP address range for your VPC

Avoid ranges that overlap with other networks to which you might connect.

172.31.0.0/16

Recommended: RFC1918 range

Recommended: /16 (65,536 addresses)

Subnets

VPC subnets and Availability Zones

VPC subnet recommendations

- At least /24 subnets (251 addresses)
- Use multiple Availability Zones per VPC through multiple subnets

Route to the Internet

Routing in your VPC

- Route tables contain rules for which packets go where
- Your VPC has a default route table
- But, you can assign different route tables to different subnets

Internet gateway

Network security in your VPC: Security groups

Security groups follow application structure Allow only "MyWebServers"

Security groups example: Web servers

Rule descriptions

Security groups example: Backends

Security groups in VPC: Additional notes

- Follow the "principle of least privilege"
- VPC allows creation of egress as well as ingress security group rules

Connectivity options for VPCs

Beyond Internet connectivity

Restricting Internet access

Connecting to other VPCs

Connecting to your corporate network

Restricting Internet access: Routing by subnet

Routing by subnet

Outbound-only internet access: NAT gateway

Security group pattern for SSH bastion

Inter-VPC connectivity: VPC peering

Example VPC peering use: Shared services VPC

Common/core services

- Authentication/directory
- Monitoring
- Logging
- Remote administration
- Scanning

Security groups across peered VPCs

Establish a VPC peering: Initiate request

Establish a VPC peering: Accept request

Establish a VPC peering: Create a route

Traffic destined for the peered VPC should go to the peering

Connecting to on-premises networks: AWS Virtual Private Network and AWS Direct Connect

Extend an on-premises network into your VPC

AWS VPN basics

AWS VPN and AWS Direct Connect

- Both allow secure connections between your network and your VPC
- VPN is a pair of IPSec tunnels over the Internet
- AWS Direct Connect is a dedicated line with lower per-GB data transfer rates
- For highest availability: Use both

VPC and the rest of AWS

VPC and the rest of AWS

VPC DNS options

Amazon Route 53 private hosted zones

AWS Services in your VPC

Example: Amazon RDS Database in your VPC

Example: Application Load Balancer in your VPC

VPC Endpoints for AWS Services

Amazon S3 and your VPC

Gateway VPC Endpoints

VPC Endpoints: An

DestinationTargetStatusPropagated172.31.0.0/16localActiveNopl-68a54001 (com.amazonaws.us-west-2.s3)vpce-3a14fc53ActiveNo

Route S3-bound traffic to the VPC endpoint

S3 bucket

IAM policy for VPC Endpoints

Interface VPC Endpoints

AWS PrivateLink for AWS Services

VPC Flow Logs: VPC traffic metadata in Amazon CloudWatch Logs

VPC Flow Logs

- Visibility into effects of security group rules
- Troubleshooting network connectivity
- Ability to analyze traffic

VPC Flow Logs: Setup

VPC Flow Logs data in CloudWatch Logs

F	ilter events			all	30s	5m	1h	6
	Time (UTC -04:00)	Message						
	2016-	Who's this?	7 56934 8080 6 5 373 1474750017 147475	50073	ACCE	EPT C	 K	
)	16:48 # dig +sh 16:48 internetp	ort -x 109.236.86.32 olice.co.	0 8080 47928 6 5 650 1474750081 147475 0 8080 47954)K)K	
)	16:48 16:48:01	2 280328680831 eni-1s 17 10.0.0.10	0 8080 47946 UDP Port 53 = 00 8080 47938 00 00 00 00 00 00 00 00 00 00 00 00 00	,0 ,00	٨٠٠١)K)K	
)	16:48:01 16:48:01 16:48:01	2 280328680831 eni-19116c .239 10.0.0.1	17 47954 8080 6 5 373 0081 147475 17 56978 8080 6 5 373 50081 147475 39 8080 56950 6 5 650 1 750081 147475	0133	ACCE	ΕPΤ	RE	EJ
<u> </u>	16:48:01		39 8080 56970 6 5 650 14 4750081 147475				12	
F	16:48:01	2 280328680831 eni-19116c47 109.236.86.32 10.0	11-41920-0000-0-0-0-14141-0000-14141-1	00100	ACCE	FIC	/IX	K
)	16:48:01 16:48:01		17 47946 8080 6 5 373 1474750081 147475 17 56950 8080 6 5 373 1474750081 147475	,,,,,,	,,,,,,,,			

VPC: Your Private Network in AWS

The VPC Network

VPC Network Security

VPC Connectivity **VPC**

Related Sessions

- NET202 IPv6 in the Cloud: Protocol and AWS Service Overview
- NET303 A Day in the Life of a Cloud Network Engineer at Netflix
- NET305 Advanced VPC Design and New Capabilities for Amazon VPC
- NET308 VPC Design Scenarios for Real-Life Use Cases
- NET309 Best Practices for Securing an Amazon VPC
- NET403 Deep Dive: AWS Direct Connect and VPNs
- NET405 Another Day, Another Billion Flows

aws invent

Thank you!

