Содержание

1	Инт	геграл ступенчатой функции	16
	1.1	Свойства	16
2	Инт	геграл неотрицательной измеримой функции	17
	2.1	Свойства	17
3	Сум	ммируемая функция	18
	3.1	Свойство	18
4	Инт	геграл суммируемой функции	19
	4.1	Свойства	19
5	Про	остейшие свойства интеграла Лебега	20
	5.1	Доказательство	20
	5.2	Доказательство	20
	5.3	Доказательство	20
	5.4	Доказательство	20
	5.5	Доказательство	21
	5.6	Доказательство	21
6	Сче	етная аддитивность интеграла (по множеству)	22
	6.1	Лемма	22
		6.1.1 Доказательство	22
	6.2	Теорема	22
		6.2.1 Показатальство	22

	6.3	Следствие	23
	6.4	Следствие 2	23
7	Teo	рема Леви	24
	7.1	Доказательство	24
8	Лин	нейность интеграла Лебега	25
	8.1	Доказательство	25
	8.2	Следствие	25
		8.2.1 Доказательство	25
9	Teo	рема об интегрировании положительных рядов	26
	9.1	Доказательство	26
	9.2	Следствие	26
		9.2.1 Доказательство	26
10	Абс	олютная непрерывность интеграла	27
	10.1	Доказательство	27
	10.2	Следствие	27
11	Teo	рема Лебега о мажорированной сходимости	28
	11.1	Определение	28
	11.2	Формулировка теоремы	28
	11.3	Доказательство	28
		11.3.1 Доказательство	28
	11 4	И к теореме	29

12 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде	30
12.1 Доказательство	30
13 Теорема Фату	31
13.1 Замечание	31
13.2 Доказательство	31
13.3 Следствие	31
13.4 Следствие 2	31
13.4.1 Доказательство	31
14 Произведение мер	32
15 Теорема о произведении мер	33
15.1 Доказательство	33
15.2 Замечание	33
15.3 Дополнительная теорема (без доказательства)	33
16 Сечения множества	34
17 Принцип Кавальери	35
17.1 Доказательство	35
17.2 Следствие	36
18 Совпадение определенного интеграла и интеграла Лебега	37
18.1 Доказательство	37
18.2 Замечание	37
19 Теорема Тонелли	38

	19.1 Доказательство	38
20	Теорема Фубини	39
	20.0.1 Следствие	39
21	Образ меры при отображении	40
	21.1 Замечание 1	40
	21.2 Замечание 2	40
22	Взвешенный образ меры	41
23	Теорема о вычислении интеграла по взвешенному образу меры	42
	23.1 Доказательство	42
	23.2 Следствие	42
24	Плотность одной меры по отношению к другой	43
	24.1 Замечание	43
25	Критерий плотности	44
	25.0.1 Доказательство	44
26	Единственность плотности	45
	26.0.1 Доказательство	45
	26.1 Следствие	45
27	Лемма об образе малых кубических ячеек	46
	27.0.1 Доказательство	46
28	Теорема об образе меры Лебега при диффеоморфизме	47

	28.1 Лемма	47
	28.2 Теорема	47
	28.2.1 Доказательство	47
29	Теорема о гладкой замене переменной в интеграле Лебега	48
	29.1 Доказательство	48
30	Сферические координаты в \mathbb{R}^m	49
31	Формула для Бета-функции	50
	31.0.1 Доказательство	50
32	Объем шара в \mathbb{R}^m	51
33	Теорема о вычислении интеграла по мере Бореля—Стилтьеса (с леммой)	52
	33.1 Определение	52
	33.2 Лемма	52
	33.2.1 Доказательство	52
	33.3 Теорема	52
	33.3.1 Доказательство	53
	33.3.2 Следствие	53
34	Интегральные неравенства Гельдера и Минковского	54
35	Интеграл комплекснозначной функции	55
	35.1 Вывод	55
36	Пространство $L^p(E,\mu)$	56

37 Существенный супремум	57
37.1 Свойства	57
37.1.1 Доказательство	57
38 Пространство $L^{\infty}(E,\mu)$	58
38.1 Замечание	58
39 Теорема о вложении пространств \mathcal{L}^p	59
39.1 Доказательство	59
39.2 Следствие	59
39.2.1 Доказательство	59
40 Измеримое множество на простом гладком двумерном многообразии в \mathbb{R}^3	60
41 Мера Лебега на простом гладком двумерном многообразии в \mathbb{R}^3	61
42 Поверхностный интеграл первого рода	62
43 Кусочно-гладкая поверхность в \mathbb{R}^3	63
44 Теорема о сходимости в пространствах L^p и по мере	64
44.1 Доказательство	64
45 Фундаментальная последовательность, полное пространство	65
46 Полнота L^p	66
46.0.1 Доказательство	66
47 Плотное множество	67

48	Плотность в L^p множества ступенчатых функций	68
	48.1 Замечание	68
	48.2 Доказательство	68
49	Лемма Урысона	69
	49.1 Определение	69
	49.2 Лемма Урысона	69
	49.3 Доказательство	69
50	Финитная функция	71
51	Сторона поверхности	72
52	Задание стороны поверхности с помощью касательных реперов	73
53	Интеграл II рода	74
	53.0.1 Замечания	74
54	Плотность в L^p множества финитных непрерывных функций	7 5
	54.1 Доказательство	75
	54.2 Замечание	75
55	Теорема о непрерывности сдвига	76
	55.1 Необходимое определение	76
	55.2 Формулировка теоремы	76
	55.3 Доказательство	76
56	Формула Грина	77

	56.1 Теорема	77
	56.2 Доказательство	77
57	Формула Стокса	78
	57.1 Доказательство	78
58	Формула Гаусса-Остроградского	79
	58.1 Доказательство	79
	58.2 Следствие	79
5 9	Ротор, дивиргенция векторного поля	80
	59.1 Дивергенция	80
	59.2 Ротор	80
60	Соленоидальное векторное поле	81
	Соленоидальное векторное поле Соленоидальность бездивергентного векторного поля	81 82
	Соленоидальность бездивергентного векторного поля	82
	Соленоидальность бездивергентного векторного поля 61.1 Вспомогательная теорема	82
61	Соленоидальность бездивергентного векторного поля 61.1 Вспомогательная теорема 61.2 Теорема	82 82 82
62	Соленоидальность бездивергентного векторного поля 61.1 Вспомогательная теорема 61.2 Теорема 61.2.1 Доказательство	82 82 82
61 62	Соленоидальность бездивергентного векторного поля 61.1 Вспомогательная теорема 61.2 Теорема 61.2.1 Доказательство Бескоординатное определение дивергенции	82 82 82 82
61 62	Соленоидальность бездивергентного векторного поля 61.1 Вспомогательная теорема 61.2 Теорема 61.2.1 Доказательство Бескоординатное определение дивергенции Гильбертово пространство	82 82 82 83 84

66	Ортонормированная система	87
	66.1 Замечание	87
67	Теорема о коэффициентах разложения по ортогональной системе	88
	67.1 Доказательство	88
68	Коэффициенты Фурье	89
69	Ряд Фурье в Гильбертовом пространстве	90
70	Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя	91
	70.1 Доказательство	91
	70.2 Неравенство Бесселя	91
71	Теорема Рисса — Фишера о сумме ряда Фурье. Равенство Парсеваля	92
	71.1 Доказательство	92
72	Вазис, полная, замкнутая ОС	93
7 3	в Теорема о характеристике базиса	94
	73.1 Доказательство	94
74	Предельный переход под знаком интеграла при наличии равномерной сходимости	95
	74.1 Доказательство	95
7 5	Теорема Лебега о непрерывности интеграла по параметру	96
	75.1 определение	96
	75.2 Теорема	96
	75.2.1. Доказательство	96

	75.2.2 Следствие	96
7 6	3 Правило Лейбница	97
	76.1 Доказательство	97
Ι	Тригонометрические ряды Фурье	98
	76.2 Тригонометрический полином порядка n	98
77	7 Лемма о вычислении коэффициентов тригонометрического ряда	99
7 8	3 Доказательство	99
	78.1 Определение	100
	78.1.1 Замечание	100
	78.1.2 Еще шаманство	100
7 9	Э Теорема Римана-Лебега	101
	79.1 Следствие	101
	79.2 Доказательство	101
	79.3 Модуль непрерывности	102
	79.4 Теорема	102
	79.4.1 Доказательство	102
II	05.05.2020	103
	79.5 Равномерно сходящийся интеграл	103
	79.6 Что-то похожее на признак Вейерштрасса	103
	79.7 Ложное воспоминание Констранина Петровича	103

	79.8 Теорема	104
	79.8.1 Доказательство	104
	79.8.2 Следствие	104
	79.9 Определение	104
	79.9.1 Пример	105
	79.10Следствие	105
	79.11Утверждение	105
	79.12Следствие	105
	79.13Ядро Дирихле	105
	79.14Ядро Фейера	105
	79.15Свойства	106
	79.15.1 Доказательство	106
	79.16Интеграл Дирихле	106
80) Принцип локализации Римана	107
	80.1 Доказательство	107
	80.2 Замечания	107
81	До свидания, теория меры	109
	81.1 Теорема об интегрировании по параметру	109
	81.1.1 Доказательство	109
	81.2 Правило Лейбница для несобственный интегралов	110
	81.2.1 Локазательство	110

11	II 11.05.2020	111
	81.3 Признак Дины	. 111
	81.3.1 Доказательство	. 111
	81.4 Замечания	112
	81.5 Следствие	112
	81.6 Следствие 2	. 112
	81.6.1 Доказательство	112
	81.7 Пример	113
	81.8 Конфетка	. 113
	81.8.1 Доказательство	113
I		115
	81.9 Определение	. 115
	81.10Корректность определения	115
	81.11Коэффициент Фурье свёртки	115
	81.12Ещё одно свойство	. 116
	81.12.1 Доказательство	. 116
T 7		- -
V	18.05.2020	117
	81.13Теорема	. 117
	81.14Определение	. 117
	81.14.1Замечание	. 118
	81.14.2 Суррогатная аксиома 3	118

	81.14.3 Вывод	118
	81.14.4Замечание	118
	81.15Свойства аппроксимативной единицы	118
	81.15.1 Доказательство	118
	81.15.2 Следствие	119
	81.16Теорема Фейера	120
	81.16.1 Доказательство	120
V	Преобразование Фурье	120
	81.17Определение	120
	81.18Свойства	121
	81.19Теорема	121
	81.20Пример	122
	81.21Теорема	122
V	TII 25.05.2020	123
	81.22 Теорема Фейера	123
	81.22.1 Следствие	123
	81.23Следствие 2	123
	81.23.1 Доказательство	123
	81.23.2 Следствие следствия 1	123
	81.23.3 Следствие следствия 2	124
	81.23.4 Следствие следствия 3	124

8	1.24Следствие 3 (теорема Вейерштрасса)	124
	81.24.1 Доказательство	124
83	1.25Замечание	124
VII	I Интегрирование рядов Фурье	125
8	1.26Лемма	125
	81.26.1 Доказательство	125
83	1.27Интегрирование рядов Фурье	125
	81.27.1 Замечание	125
	81.27.2 Доказательство	126
	81.27.3 Замечание	126
8	1.28Лемма	126
	81.28.1 Доказательство	126
8	1.29Теорема	126
	81.29.1 Доказательство	127
	81.29.2 Следствие	127
8	1.30Формула обращения	127
8	1.31Интеграл Фурье	127
8	1.32Лемма о ядре Дирихле	128
	81.32.1 Доказательство	128
	81.32.2 Следствие	128
	81.32.3 Замечание	128
8	1.33Теорема о равносходимости ряда Фурье и интеграла Фурье	128

IX	X 01.06.2020	129
	81.34Следствие	. 129
	81.35Обобщенные функции	. 129
	81.36Лемма	130
	81.36.1 Доказательство	130
	81.37Теорема	130
	81.38Лемма (обобщенное равенство Парсеваля)	131
	81.39Теорема Котельникова (формула отчётов)	131
	81.39.1 Доказательство	131
	81.40 Теорема о равносходимости ряда Фурье и интеграла Фурьера	132
	81.40.1 Доказательство	. 132
	81.41Признак Абеля-Дирихле равномерной сходимости	132
	81.42Гладкие пути	. 133
	81.43Признак Дирихле-Жордана	133
	81.43.1 Замечание	133
	81 43 2 Показатаньство	124

1 Интеграл ступенчатой функции

 $f = \sum_{k=1}^{n} \lambda_k \cdot \mathcal{X}_{E_k}, \ f \geqslant 0$, где $E_k \in \mathcal{A}$ — допустимое разбиение, тогда интеграл ступенчатой функции f на множестве X есть:

$$\int\limits_X f d\mu = \int\limits_X f(x) d\mu(x) = \sum_{k=1}^n \lambda_k \mu E_k$$

Дополнительно будем считать, что $0 \cdot \infty = \infty \cdot 0 = 0$.

1.1 Свойства

• Интеграл не зависит от допустимого разбиения:

$$f = \sum \alpha_j \mathcal{X}_{F_j} = \sum_{k,j} \lambda_k \mathcal{X}_{E_k \cap F_j}$$
, тогда $\int F = \sum \lambda_k \mu E_k = \sum_k \lambda_k \sum_j \mu(E_k \cap F_j) = \sum \alpha_j \mu F_j = \int F$;

•
$$f \leqslant g$$
, to $\int\limits_X f d\mu \leqslant \int\limits_X g d\mu$.

$$\int\limits_X f = \sum \lambda_k \mu(E_k) = \sum_{k,j} \lambda_k \mu(E_k \bigcap F_j) \leqslant \sum_{k,j} \alpha_j \mu(E_k \bigcap F_j) = \sum \alpha_j \mu(F_j) = \int g.$$

2 Интеграл неотрицательной измеримой функции

 $f\geqslant 0$, измерима, тогда интеграл неотрицательной измеримой функции f есть

$$\int\limits_X f d\mu = \sup_{\substack{g \text{--} \text{ctypi.} \\ 0 \leqslant g \leqslant f}} \Biggl(\int\limits_X g d\mu \Biggr).$$

2.1 Свойства

- Для ступенчатой функции f (при $f\geqslant 0$) это определение даёт тот же интеграл ступенчатой функции;
- $0 \leqslant \int_X f \leqslant +\infty;$
- $0 \leqslant g \leqslant f, \ g$ ступенчатая, f измеримая, тогда $\int\limits_X g \leqslant \int\limits_X f.$

3 Суммируемая функция

f — измеримая, f_+ и f_- — срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ — конечен, то тогда интеграл суммируемой функции есть:

$$\int\limits_X f d\mu = \int\limits_X f_+ - \int\limits_X f_-$$

.

Если $\int\limits_X f \neq \pm \infty$, то говорят, что f-cуммируемая, а также $\int |f|$ — конечен $(|f| = f_+ + f_-)$.

3.1 Свойство

Если $f\geqslant 0$ — измерима, то это определение даёт тот же интеграл неотрицательной измеримой функции.

4 Интеграл суммируемой функции

 $E \subset X$ — измеримое множество, f — измеримо на X, тогда интеграл f по множеству E есть

$$\int\limits_E f d\mu \coloneqq \int\limits_X f \mathcal{X}_E d\mu$$

.

f — суммируемая на E если $\int\limits_E f_+$ и $\int\limits_E f_-$ — конечны одновременно.

4.1 Свойства

•
$$f = \sum \lambda_k \mathcal{X}_{E_k}$$
, to $\int_E f = \sum \lambda_k \mu(E_k \cap E)$;

•
$$f \geqslant 0$$
 — измерима, тогда $\int\limits_E f d\mu = \sup_{\substack{g \ -\text{ ступ.} \\ 0 \leqslant g \leqslant f}} \Biggl(\int\limits_X g d\mu \Biggr).$

5 Простейшие свойства интеграла Лебега

1. Монотонность:

$$f \leqslant g \Rightarrow \int\limits_E f \leqslant \int\limits_E g.$$

5.1 Доказательство

$$\bullet \sup_{\substack{\widetilde{f} \text{ - ctyn.} \\ 0 \leqslant \widetilde{f} \leqslant f}} \left(\int_{X} \widetilde{f} d\mu \right) \leqslant \sup_{\substack{\widetilde{g} \text{ - ctyn.} \\ 0 \leqslant \widetilde{g} \leqslant g}} \left(\int_{X} \widetilde{g} d\mu \right);$$

• f и g — произвольные, то работаем со срезками, и $f_+ \leqslant g_+$, а $f_- \geqslant g_-$, тогда очевидно и для интегралов.

$$2. \int\limits_{E} 1 \cdot d\mu = \mu E, \int\limits_{E} 0 \cdot d\mu = 0.$$

5.2 Доказательство

По определению.

3.
$$\mu E$$
 = 0, f — измерима, тогда $\int\limits_{E}f$ = 0.

5.3 Доказательство

- f ступенчатая, то по определению интеграла для ступенчатых функций получаем 0;
- $f \ge 0$ измеримая, то по определению интеграла для измеримых неотрицательных функций также получаем 0;
- f любая, то разбиваем на срезки f_+ и f_- и снова получаем 0.

4. (a)
$$\int -f = -\int f$$
;
(b) $\forall c > 0$: $\int cf = c \int f$.

5.4 Доказательство

•
$$(-f)_+ = f_- \text{ if } (-f)_= f_+ \text{ if } \int_- f = f_- - f_+ = -\int_- f$$
.

•
$$f\geqslant 0$$
 — очевидно, $\sup_{\substack{g\text{ - cryn.}\\0\leqslant q\leqslant cf}}\left(\int g\right)=c\sup_{\substack{g\text{ - cryn.}\\0\leqslant q\leqslant f}}\left(\int g\right).$

5. Пусть существует
$$\int\limits_E f d\mu$$
, тогда $\left|\int\limits_E f\right| \leqslant \int\limits_E |f|.$

5.5 Доказательство

$$\begin{aligned} -|f| &\leqslant f \leqslant |f|, \\ -\int_E |f| &\leqslant \int_E f \leqslant \int_E |f|. \end{aligned}$$

6.
$$f$$
 — измерима на E , $\mu E < +\infty$, $\forall x \in E: a \leqslant f(x) \leqslant b$. Тогда
$$a\mu E \leqslant \int\limits_E f \leqslant b\mu E.$$

5.6 Доказательство

$$\int\limits_{E}a\leqslant\int\limits_{E}f\leqslant\int\limits_{E}b,$$

$$a\mu E\leqslant\int\limits_{E}f\leqslant b\mu E.$$

6 Счетная аддитивность интеграла (по множеству)

6.1 Лемма

A = $\bigsqcup A_i,$ где A, A_i — измеримы, $g\geqslant 0$ — ступенчатые. Тогда:

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu$$

.

6.1.1 Доказательство

$$g = \sum \lambda_k \mathcal{X}_{E_k}, \int_A g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_k \lambda_k \sum_i \mu(A_i \cap E_k) = \sum_i \left(\sum_k \lambda_k \mu(A_i \cap E_k)\right) = \sum_i \int_{A_i} g d\mu.$$

6.2 Теорема

 $f:C o\overline{\mathbb{R}},\,f\geqslant 0$ — измеримая на $A,\,A$ — измерима, A = $\bigsqcup A_i,\,$ все A_i — измеримы. Тогда:

$$\int\limits_A f d\mu = \sum\limits_i \int\limits_{A_i} f d\mu$$

22

6.2.1 Доказательство

• ≥

$$A = A_1 \sqcup A_2, \ g_1 \leqslant f \mathcal{X}_{A_1}, \ g_2 \leqslant f \mathcal{X}_{A_2}, \ g_1 + g_2 \leqslant f \cdot \mathcal{X}_A$$

$$\int\limits_{A_1} g_1 + \int\limits_{A_2} g_2 = \int\limits_{A} g_1 + g_2.$$
 переходим к sup g_1 и g_2
$$\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_{A} f$$

По индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\ A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где $B_n=\bigsqcup_{i\geqslant n+1}A_i,$ тогда $\int\limits_A\geqslant\sum_{i=1}^n\int\limits_{A_i}f+\int\limits_Bf\geqslant\sum_{i=1}^n\int\limits_{A_i}f\Rightarrow\int\limits_Af\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_i}f$

6.3 Следствие

$$f\geqslant 0$$
 — измеримая, $\nu:\mathcal{A} o\overline{\mathbb{R}}_+,\ \nu E=\int\limits_E fd\mu.$ Тогда u — мера.

6.4 Следствие 2

$$A=\bigsqcup_{i=1}^{+\infty}A_i,\ f$$
 — суммируемая на $A,$ тогда

$$\int\limits_A f = \sum\limits_i \int\limits_{A_i} f.$$

7 Теорема Леви

 f_n — измерима, $\forall n: 0 \leq f_n(x) \leq f_{n+1}(x)$ при почти всех x.

$$f(x) = \lim_{n \to +\infty} f_n(x)$$
 при почти всех x . Тогда $\lim_{n \to +\infty} \int\limits_X f_n(x) d\mu = \int\limits_X f d\mu$.

7.1 Доказательство

f — измерима как предел измеримых функций.

- \leqslant $f_n(x) \leqslant f(x)$ почти везде, тогда $\forall n: \int\limits_X f_n(x) d\mu \leqslant \int\limits_X f d\mu$, откуда следует, что и предел интегралов не превосходит интеграл предела.
- \geqslant Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно: $\lim_X f_n\geqslant \int_X g$. Достаточно доказать, что $\forall c\in (0,1)$ верно: $\lim_X f_n\geqslant c\int_X g$. $E_n:=X\left(f_n\geqslant cg\right),\ E_n\subset E_{n+1}\subset\dots$ $\bigcup E_n=X,\ \text{т.к.}\ c<1,\ \text{то}\ cg(x)< f(x),\ f_n(x)\to f(x)\Rightarrow f_n\ \text{попадёт в "зазор"}\ cg(x)< f(x).$ $\int_X f_n\geqslant \int_{E_n} f_n\geqslant \int_{E_n} cg=c\int_{E_n} g,$ $\lim_{n\to+\infty}\int_Y f_n\geqslant \lim_{n\to+\infty}c\int_E g=c\int_Y g,\ \text{потому что это непрерывность снизу меры }A\longmapsto \int_A g.$

8 Линейность интеграла Лебега

Пусть $f,\,g$ — измеримы на $E,\,f\geqslant 0,\,g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n: 0 \le f_n \le f_{n+1} \le \ldots \le f$, и $g_n: 0 \le g_n \le g_{n+1} \le \ldots \le g$, и $f_n(x) \to f(x)$ и $g_n(x) \to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_E f+\int\limits_E g$$

8.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.2.1 Доказательство

$$(f+q)_{+} \leq |f+q| \leq |f| + |q|.$$

$$h \coloneqq f + g,$$

$$h_+ - h_- = f_+ - f_- + g_+ - g_-,$$

$$h_+ + f_- + g_- = h_- + f_+ + g_+,$$

$$\int h_{+} + \int f_{-} + \int g_{-} = \int h_{-} + \int f_{+} \int g_{+},$$

$$\int h_{+} - \int h_{-} = \int f_{+} - \int f_{-} + \int g_{+} - \int g_{-}, \text{ тогда}$$

$$\int h = \int f + \int g.$$

9 Теорема об интегрировании положительных рядов

 $u_n \geqslant 0$ почти везде, измеримы на E. Тогда

$$\int\limits_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{n=1}^{+\infty} \int\limits_{E} u_n d\mu$$

.

9.1 Доказательство

Очевидно по теореме Леви.

$$S(x) = \sum_{n=1}^{+\infty} u_n(x)$$
 и $0 \le S_N \le S_{N+1} \le \dots$ и $S_N \to S(X)$.

$$\lim_{n\to+\infty}\int\limits_E S_N=\int\limits_E S,$$

$$\lim_{n\to+\infty}\sum_{k=1}^n\int_E u_k(x)=\int_E S(x)d\mu.$$

9.2 Следствие

 u_n — измеримая функция, $\sum_{n=1}^{+\infty} \int\limits_{E} |u_n| < +\infty$. Тогда $\sum u_n$ — абсолютно сходится почти везде на E.

9.2.1 Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_E S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty, \text{ значит } S(x) \text{ конечна почти всюду}.$$

10 Абсолютная непрерывность интеграла

$$f — суммируемая функция, тогда \ \forall \varepsilon > 0: \exists \delta > 0: \forall E \in \mathcal{A}: \mu E < \delta: \left| \int\limits_E f \right| < \varepsilon.$$

10.1 Доказательство

$$X_n = X (f \geqslant n), X_n \supset X_{n+1} \supset \dots$$
 и $\mu \left(\bigcap_{n=1}^{+\infty} X_n\right) = 0.$

Тогда
$$\forall \varepsilon > 0 : \exists n_{\varepsilon} : \int\limits_{X_{n_{\varepsilon}}} |f| < \frac{\varepsilon}{2} \ (A \mapsto \int\limits_{A} |f|$$
 — мера, тогда $\int\limits_{\bigcap X_{n}} |f|$ = 0 и по непрерывности меры сверху).

$$\delta \coloneqq \frac{\varepsilon}{2n_{\varepsilon}}$$
, берём $E : \mu E < \delta$.

$$\left| \int\limits_{E} f \right| \leqslant \int\limits_{E} |f| = \int\limits_{E \cap X_{n_{\varepsilon}}} |f| + \int\limits_{E \smallsetminus X_{n_{\varepsilon}}} |f| \leqslant \int\limits_{X_{n_{\varepsilon}}} |f| + n_{\varepsilon} \mu E < \frac{\varepsilon}{2} + n_{\varepsilon} \frac{\varepsilon}{2n_{\varepsilon}} = \varepsilon.$$

10.2 Следствие

$$e_n$$
 — измеримое множество, $\mu e_n \to 0, \, f$ — суммируемая. Тогда $\int\limits_{e_n} f \to 0.$

11 Теорема Лебега о мажорированной сходимости

11.1 Определение

 $f_n \Rightarrow f$ по мере (будем ещё писать $f_n \underset{\mu}{\Longrightarrow} f$) то же самое, что и $\mu X(|f_n - f| \geqslant \varepsilon) \to 0$.

Сходимость по интегралы: $\int\limits_{Y}|f_n-f|d\mu \to 0.$

Если сходится по интегралу, то сходится и по мере, в обратную сторону не работает.

11.2 Формулировка теоремы

 $f_n,\, f$ — измеримые, почти везде конечные функции. $f_n \underset{\mu}{\Longrightarrow} f.$ Также существует g, что:

- 1. $\forall n : |f_n| \leqslant g$ почти везде;
- 2. g суммируема на X (g мажоранта).

Тогда
$$\int\limits_{Y}|f_n-f|d\mu\to 0$$
, и тем более $\int\limits_{Y}f_n\to \int\limits_{Y}f$.

11.3 Доказательство

 f_n — суммируема в силу первого утверждения про g, f — суммируема по следствию теоремы Рисса. Тем более $\left|\int\limits_{Y} f_n - \int\limits_{Y} f \right| \leqslant \left|\int\limits_{Y} f_n - f \right| \leqslant \int\limits_{Y} |f_n - f|.$

1. $\mu X < +\infty$. Фиксируем $\varepsilon > 0$. $X_n \coloneqq X(|f_n - f| \ge \varepsilon), \ \mu X_n \to 0$.

$$\int\limits_X |f_n-f| = \int\limits_{X_n} + \int\limits_{X_n^c} \leqslant \int\limits_{X_n} 2g + \int\limits_{X_n^c} \varepsilon_0 \leqslant \int\limits_{X_n} 2g + \int\limits_X \varepsilon < \varepsilon (1+\mu X). \ (\text{при больших } n \text{ выражение} \int\limits_{X_n} 2g \leqslant \varepsilon).$$

2. $\mu X = +\infty$, $\varepsilon > 0$.

Утверждение:
 $\exists A$ — измеримое, μA — конечное,
 $\int\limits_{X \smallsetminus A} g < \varepsilon.$

11.3.1 Доказательство

$$\int\,g=\sup\left\{\int\,h:h-\text{суммируема}\right\}$$

$$\exists h_0: \int\limits_X g - \int\limits_X h_0 < \varepsilon, \ A \coloneqq \mathrm{supp} \ h_0.$$
 (где supp — носитель ($\mathrm{support}$)), т.е. множество x , что $h_0(x) \neq 0$.
$$\int\limits_{X \smallsetminus A} g + \int\limits_A g - h_0 < \varepsilon.$$

11.4 Ик теореме

$$\int\limits_X |f_n-f| = \int\limits_A + \int\limits_{X \smallsetminus A} \leqslant \int\limits_A |f_n-f| + 2\varepsilon < 3\varepsilon$$
при больших $n.$

12 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде

 $(X, \mathcal{A}, \mu), f_n, f$ — измеримые, $f_n \to f$ — почти везде.

Существует такая g, что:

- 1. $|f_n| \le g$ почти везде;
- 2. g суммируема.

Тогда f_n, f — суммируемые (как в прошлой теореме), и $\int |f_n - f| d\mu \to 0$.

12.1 Доказательство

 $h_n\coloneqq \sup(|f_n-f|,|f_{n+1}-f|,\ldots),\; h_n$ убывает. $0\leqslant h_n\leqslant 2g.$

 $\lim_{n \to +\infty} h_n(x) = \overline{\lim} |f_n - f| = 0$ почти везде.

 $2g-h\geqslant 0$, возрастают, тогда по теореме Леви $\int\limits_X 2g-h o \int\limits_X 2g$, значит $\int\limits_X h_n o 0$, тогда $\int\limits_X |f_n-f|\leqslant \int\limits_X h_n o 0$.

13 Теорема Фату

 $f_n\geqslant 0$ — измеримые, $f_n\rightarrow f$ почти везде. Если $\exists C>0,$ что $\forall n:\int\limits_X f_n\leqslant C,$ то $\int\limits_X f\leqslant C.$

13.1 Замечание

Вообще говоря $\int\limits_X f_n \not \to \int\limits_X f$.

13.2 Доказательство

$$g_n = \inf(f_n, f_{n+1}, \ldots).$$

 g_n возрастает, $g_n \to f$ почти везде. $\lim g_n$ = $\underline{\lim} f_n$ = f почти везде.

$$\int\limits_X g_n \leqslant \int\limits_X f_n \leqslant C, \text{ тогда } \int\limits_X f \leqslant C.$$

13.3 Следствие

$$f_n \underset{\mu}{\Longrightarrow} f \ (f_{n_k} \to f).$$

13.4 Следствие 2

 $f_n\geqslant 0,$ измеримая. Тогда $\int\limits_X \underline{\lim} f_n\leqslant \underline{\lim} \int\limits_X f_n.$

13.4.1 Доказательство

$$\int\limits_X g_n \leqslant \int\limits_X f_n \leqslant C.$$

Берём n_k

$$\underline{\lim} \left(\int_X f_n \right) = \lim_{k \to +\infty} \left(\int_X f_{n_k} \right).$$

$$\int\limits_X f_{n_k} \to \lim \left(\int\limits_X f_n\right), \text{ a } \int\limits_X g_n \to \int\limits_X \underline{\lim} f_n.$$

14 Произведение мер

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) — пространства с мерой.

 $\mathcal{A} \times \mathcal{B} = \{A \times B, A \in \mathcal{A}, B \in \mathcal{B}\}$ — семейство подмножеств в $X \times Y$.

 \mathcal{A}, \mathcal{B} — полукольца, значит и $\mathcal{A} \times \mathcal{B}$ — полукольцо.

 $\mathcal{A} \times \mathcal{B}$ — полукольцо *измеримых прямоугольников* (на самом деле это не всегда так).

Тогда введём меру на $A \times B - \mu_0(A \times B) = \mu(A) \cdot \nu(B)$.

Обозначим $(X \times Y, A \otimes B, \mu \times \nu)$ как произведение пространств с мерой.

15 Теорема о произведении мер

- 1. μ_0 мера на полукольце $\mathcal{A} \times \mathcal{B}$;
- 2. $\mu, \nu \sigma$ -конечное, значит $\mu_0 \sigma$ -конечное.

15.1 Доказательство

1. Проверим счётную аддитивность μ_0 . $\mathcal{X}_{A\times B}(x,y) = \mathcal{X}_A(x) \cdot \mathcal{X}_B(y)$, $(x,y) \in X \times Y$.

$$P = \bigsqcup_{\text{сч.}} P_k$$
 — измеримые прямоугольники. $P = A \times B$ и $P_k = A_k \times B_k$, $\mathcal{X}_P = \sum \mathcal{X}_{P_k}$.

$$\mathcal{X}_A(x)\mathcal{X}_B(y) = \sum_k \mathcal{X}_{A_k}(x)\mathcal{X}_{B_k}(y)$$
. Интегрируем по ν (по пространству Y).

$$\mathcal{X}_A(x) \cdot \nu(B) = \sum \mathcal{X}_{A_k}(x) \nu(B_k)$$
. Интегрируем по μ .

$$\mu A \cdot \nu B = \sum \mu A_k \cdot \nu B_k.$$

2. $X=\bigcup X_k,\,Y=\bigcup Y_j,$ где μX_k и νY_j — конечные, $X\times Y=\bigcup_{k,j}X_k\times Y_j.$

$$(\mathbb{R}^m,\mathcal{M}^m,\lambda_m)$$
 и $(\mathbb{R}^n,\mathcal{M}^n,\lambda_n)$.

$$(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu_0)$$
, где $\mathcal{A} \times \mathcal{B}$ — полукольцо.

Запускаем теорему о продолжении меры.

$$ightarrow$$
 $(X imes Y, \mathcal{A} \otimes \mathcal{B}, \mu)$, где $\mathcal{A} imes \mathcal{B} - \sigma$ -алгебра.

 $\mu, \nu - \sigma$ -конечная, следовательно продолжение определено однозначно.

15.2 Замечание

Произведение мер ассоциативно.

15.3 Дополнительная теорема (без доказательства)

 λ_{m+n} есть произведение мер λ_m и λ_n .

16 Сечения множества

Пусть заданы X, Y, и $C \subset X \times Y,$ $C_x = \{y \in Y : (x,y) \in C\} \subset Y$ — сечение множества C, аналогично определим $C^y = \{x \in X : (x,y) \in C\}.$

Допустимы объедения, пересечения и т.п.

17 Принцип Кавальери

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) , а также $\mu, \nu - \sigma$ -конечные и полные, $m = \mu \times \nu, C \in \mathcal{A} \otimes \mathcal{B}$. Тогда:

- 1. при почти всех $x \in X$ сечение $C_x \in \mathcal{B}$;
- 2. $x \mapsto \nu(C_x)$ измеримо (почти везде) на X;
- 3. $mC = \int_{Y} \nu(C_x) d\mu(x)$.

17.1 Доказательство

D — класс множеств $X \times Y$, для который принцип Кавальери верен.

1.
$$D \times \mathcal{B} \subset D$$
, $C = A \times B$, $C_x = \begin{cases} B & x \in A \\ \varnothing & x \notin A \end{cases}$

$$x \longmapsto C_x : \nu B \cdot \mathcal{X}_A(x).$$

$$\int_{X} \nu B \mathcal{X}_{A}(x) d\mu(x) = \mu A \cdot \nu B = mC.$$

2. E_i — дизъюнктные, $E_i \in D$. Тогда $\bigsqcup E_i \in D$.

 $(E_i)_x$ — измеримые при почти всех x.

При почти всех x все сечения $(E_i)_x$, $i = 1, 2, \ldots$ измеримые.

$$E_x = \bigsqcup (E_i)_x$$
 — измеримые при почти всех x .

$$u E_x$$
 = $\sum
u (E_i)_x$, значит $x \mapsto
u E_x$ измеримая функция.

$$\int_{X} \nu E_x d\mu = \int_{X} \sum_{i} \nu(E_i)_x d\mu = \sum_{i} \int_{X} \nu(E_i)_x d\mu = \sum_{i} mE_i = mE$$

3.
$$E_i \in D, \ldots \supset E_i \supset E_{i+1} \supset \ldots, E = \bigcap_{i=1}^{+\infty} E_i, mE_i < +\infty.$$
 Тогда $E \in D$.

$$\int\limits_{V}
u(E_i)_x d\mu$$
 = mE_i < + ∞ \Rightarrow $u(E_i)_x$ — почти везде конечны.

$$(E_i)_x \supset (E_{i+1})_x \supset \ldots, E_x = \bigcap_{i=1}^{+\infty} (E_i)_x \Rightarrow E_x$$
— измеримое при почти всех x .

При почти всех x (для тех x, для который $\nu(E_i)_x$ — конечные сразу все i или при i = 1), поэтому можно утверждать, что $\nu E_x = \lim_{i \to +\infty} \nu(E_i)_x \Rightarrow x \mapsto \nu E_X$ — измерима.

 $\int\limits_X \nu E_x d\mu = \int\limits_X \lim (\nu E_i)_x = \lim_{i \to +\infty} \int\limits_X \nu(E_i)_x d\mu = \lim m E_i = m E \text{ (по непрерывности сверху меры } m\text{)}.$

Перестановка пределов доказывается из теоремы Лебега, которую ещё не доказывали $|\nu(E_i)_x| \le \nu(E_1)_x$ — суммируемая функция.

Мы доказали, что если $A_{ij} \in \mathcal{A} \times \mathcal{B}$, то $\bigcap_{j} \left(\bigcup_{i} A_{ij}\right) \in D$. $mE = \inf\left(\sum mP_{k}, \ E \subset \bigcup P_{k}\right)$.

- 4. $mE = 0 \Rightarrow E \in D$. $H = \bigcap_{j} \bigcup_{i} P_{ij}$, mH = 0 ($P_{ij} \in \mathcal{A} \times \mathcal{B}$), тогда $E \subset H$ ($H \in D$). $0 = mH = \int_{X} \nu H_{x} d\mu \Rightarrow \nu H_{x} = 0$ при почти всех x, но $E_{x} \subset H_{x} \Rightarrow$ при почти всех x $\nu E_{x} = 0$, значит и $\int \nu E_{x} = 0 = mE$.
- 5. $C \in \mathcal{A} \otimes \mathcal{B}, mC < +\infty \Rightarrow C \in D.$

Для множества C существует множество e, что me=0 и $H=\bigcap\bigcup P_{ij}$ и $C=H\smallsetminus e$, $C_x=H_x\smallsetminus e_x$ и mC=mH.

 νe_x = 0 при почти всех x, значит νC_x = νH_x – νe_x при почти всех x.

$$\int\limits_X \nu C_x d\mu = \int\limits_X \nu H_x - \nu e_x = \int\limits_X \nu H_x - \int\limits_X \nu e_x = mH = mC.$$

6. C — произвольное, m-измеримое множество, $X = \bigsqcup X_k$ и $Y = \bigsqcup Y_j$, тогда $C = \bigsqcup_{i,j} (C \bigcap (X_i \times Y_j)) \in D$ по пункту 2. $(\mu X_k, \, \mu Y_j$ — конечные).

17.2 Следствие

$$C \in Q \otimes B, P_1(C) \coloneqq \{x : C_x \neq \varnothing\}$$
, тогда если $P_1(C)$ — измеримое в X , тогда $mC = \int\limits_{P_1(C)} \nu C_x d\mu x$.

18 Совпадение определенного интеграла и интеграла Лебега

$$f:[a,b] \to \mathbb{R}$$
, непрерывное. Тогда $\int\limits_a^b f(x)dx = \int\limits_{[a,b]} fd\lambda_1.$

18.1 Доказательство

Достаточно доказать для $f \geqslant 0$.

$$f$$
 — непрерывно \Rightarrow C = $\Pi\Gamma(f,[a,b])$ измеримо в \mathbb{R}^2 (почти очевидно).

$$C_x$$
 = $[0, f(x)]$ (или \varnothing) \Rightarrow измеримость $\lambda_1 C_x$ = $f(x)$.

$$\int_{a}^{b} f(x)dx = \lambda_{2} \left(\Pi\Gamma \left(f, [a, b] \right) \right) = \int_{[a, b]} f(x)d\lambda_{1}(x).$$

18.2 Замечание

$$f\geqslant 0$$
 измеримое, значит $\lambda_2\Pi\Gamma(f,[a,b])=\int\limits_{[a,b]}f(x)d\lambda_2(x).$

19 Теорема Тонелли

 $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ и $\mu, \nu - \sigma$ -конечные и полные, а также $m = \mu \times \nu$.

 $f: X \times Y \to \overline{\mathbb{R}}, \ f \geqslant 0$, измеримая. Тогда (при почти всех и почти везде)

- 1. при почти всех x функция f_x измерима почти везде на Y (аналогично при почти всех y функция f^y также измерима на X);
- 2. $x \mapsto \varphi(x) = \int_{Y} f_{x}(y) d\nu(y) = \int_{Y} f(x,y) d\nu(y)$ измерима почти везде на X (аналогично $y \mapsto \psi(y) = \int_{X} f(x,y) d\mu(x)$ измерима почти везде на Y);

3.
$$\int_{X\times Y} f(x,y)dm = \int_{Y} \left(\int_{X} f(x,y)d\mu(x)\right) d\nu(y) = \int_{X} \left(\int_{Y} f(x,y)d\nu(y)\right) d\mu(x).$$

19.1 Доказательство

1. $f = \mathcal{X}_C$, $C \subset X \times Y$, измеримая. $f_x = \mathcal{X}_{C_x}(y)$. C_x — измеримое при почти всех $x \Rightarrow f_x$ — измеримая при почти всех x.

$$\varphi(x) = \int\limits_{Y} \mathcal{X}_{C_x}(y) d\nu(y) = \nu(C_x) \ (x \mapsto \nu C_x$$
 — измерима по принципу Кавальери).

$$\int_{X} \varphi(x) = \int_{X} \nu C_X = mC = \int_{X \setminus V} \mathcal{X}_C dm.$$

2. $f = \sum_{\text{KOH.}} a_k \mathcal{X}_{C_k}, \ f \ge 0, \ f_x = \sum_{x \in \mathcal{X}_{(C_k)_x}} a_k \mathcal{X}_{(C_k)_x}(y).$

 $x \mapsto \int f_x(y) d\nu(y) = \sum a_k \nu(C_k)_x$ — измеримая (отдельные слагаемые — измеримые, значит и вся сумма измеримая).

$$\int_{X} \left(\int_{Y} f_{x}(y) d\nu \right) d\mu = \sum_{k} a_{k} \int_{X} \nu(C_{k})_{x} d\mu = \sum_{k} a_{k} m C_{k} = \int_{X \times Y} f dm$$

3. $f \geqslant 0, g_n$ — ступенчатые, что ... $\leqslant g_n \leqslant g_{n+1} \leqslant \ldots, \lim_{n \to +\infty} g_n = f$.

 $f_x = \lim_{n \to \infty} (g_n)_x$ — измерима как предел измеримых функций.

 $\varphi(x)=\int\limits_Y f_x(y)d\nu(y)=\lim_{n\to +\infty}\int\limits_Y g_nd\nu=\lim_{n\to +\infty} \varphi_n(x),$ значит $\varphi(x)$ измерима из-за измеримости φ_n (Теорема Леви).

$$g_n \leqslant g_{n+1} \leqslant \ldots \Rightarrow \varphi_n(x) \leqslant \varphi_{n+1}(x) \leqslant \ldots$$

$$\int\limits_X \varphi(x) = \lim_{n \to +\infty} \int\limits_X \varphi_n(x) = \lim_{n \to } \int\limits_{X \times Y} g_n dm = \int\limits_{X \times Y} f dm \ (\text{по теореме Леви})$$

20 Теорема Фубини

 $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ и $\mu, \nu - \sigma$ -конечные и полные.

 $f: X \times Y \to \overline{\mathbb{R}}$, суммируемая. Тогда

- 1. при почти всех x функция f_x суммируемая почти везде на Y (аналогично при почти всех y функция f^y также измерима на X).
- 2. $x \mapsto \varphi(x) = \int\limits_Y f_x(y) d\nu(y) = \int\limits_Y f(x,y) d\nu(y)$ суммируемая почти везде на X (аналогично $y \mapsto \psi(y) = \int\limits_X f(x,y) d\mu(x)$ суммируемая почти везде на Y).

3.
$$\int_{X\times Y} f(x,y)d\mu = \int_{Y} \left(\int_{X} f(x,y)d\mu(x)\right) d\nu(y) = \int_{X} \left(\int_{Y} f(x,y)d\nu(y)\right) d\mu(x)$$

20.0.1 Следствие

$$\int\limits_C f = \int\limits_{X \times Y} f \mathcal{X}_C = \int\limits_X \left(\int\limits_Y f \cdot \mathcal{X}_C \right) d\mu = \int\limits_{P_1(C)} \left(\int\limits_{C_x} f(x,y) d\nu(y) \right) d\mu(x).$$

 $P_1(C)$ — проекция, измеримая, $\{x: C_x \neq \emptyset\}$.

21 Образ меры при отображении

 (X, \mathcal{A}, μ) и $(Y, \mathcal{B},)$ (пространство и алгебру изобрели, а меру нет).

$$\Phi: X \to Y, \ \forall B \in \mathcal{B}: \Phi^{-1}(B)$$
 — измеримо ($\in \mathcal{A}$).

 $\nu: \mathcal{B} \to \overline{\mathbb{R}}, E \in \mathcal{B}, \nu E \coloneqq \mu(\Phi^{-1}(E))$ — это мера на \mathcal{B} , а также образ меры μ при отображении Φ .

21.1 Замечание 1

$$\nu E = \int_{\Phi^{-1}(E)} 1d\mu.$$

$$\nu\left(\bigsqcup B_i\right) = \mu\left(\Phi^{-1}\left(\bigsqcup B_i\right)\right) = \mu\left(\bigsqcup\Phi^{-1}(B_i)\right) = \sum \mu\Phi^{-1}(B_i) = \sum \nu B_i.$$

21.2 Замечание 2

f — измерима относительна $\mathcal{B},$ тогда $f\circ\Phi$ — измерима относительна $\mathcal{A}.$

$$X\left(f\left(\Phi(x)\right) < a\right) = \Phi^{-1}\left(Y(f < a)\right).$$

22 Взвешенный образ меры

 $\omega:X o\overline{\mathbb{R}},\,\omega\geqslant0,$ измеримая.

Тогда $\nu(B)\coloneqq\int\limits_{\Phi^{-1}(B)}\omega d\mu$ — мера, которая назначает *взвешенный образ меры* μ , где ω — её вес.

23 Теорема о вычислении интеграла по взвешенному образу меры

 $\Phi: X \to Y$ — измеримое отображение, $\omega: X \to \overline{\mathbb{R}}, \ \omega \geqslant 0$ —измеримая на $X.\ \nu$ — взвешенный образ меры μ (ω — её вес). Тогда

 $\forall f\geqslant 0$ — измеримой на Y верно, что $f\circ\Phi$ — измерима на X и выполняется следующее свойство:

$$\int\limits_{Y} f(y) d\nu(y) = \int\limits_{X} f(\Phi(x)) \omega(x) d\mu(x)$$

.

23.1 Доказательство

1. $f = \mathcal{X}_B, \ B \in \mathcal{B}$. Тогда $(f \circ \Phi)(x) = \begin{cases} 1 & \Phi(x) \in B \\ 0 & \Phi(x) \notin B \end{cases} = \mathcal{X}_{\Phi^{-1}(B)}.$ Доказывать нечего $\mathfrak{D} : \nu B = \int_{\Phi^{-1}(B)} \omega d\mu;$

- $2. \ f$ ступенчатая, для каждой ступеньки правда, и по линейности интеграла получаем результат;
- 3. $f \geqslant 0$ измеримая. Теорема об аппроксимизации измеримых функций ступенчатыми плюс предельный переход по теореме Леви;
- 4. f измеримая, значит |f| всё верно.

23.2 Следствие

$$f$$
 — суммируема на Y , $B \in \mathcal{B}$, $\int_{B} f d\nu(y) = \int_{\Phi^{-1}(B)} (f \circ \Phi) w d\mu$.

24 Плотность одной меры по отношению к другой

$$u B = \int\limits_{B} \omega(x) d\mu(x),$$
 тогда ω — плотность меры ν относительно меры μ .

24.1 Замечание

$$\int\limits_X f(x)d\nu(x) = \int\limits_X f(x)\omega(x)d\mu(x).$$

25 Критерий плотности

 $(X,\mathcal{A},\mu),\ \nu-\text{ещё одна мера на }\mathcal{A},\ \omega\geqslant 0-\text{измеримая. Тогда}$ $\omega-\text{плотность }\nu\text{ относительно }\mu\Longleftrightarrow\forall A\in\mathcal{A}\text{ верно: }\inf_{A}\omega\cdot\mu A\leqslant\nu A\leqslant\sup_{A}\omega\cdot\mu A\ (0\cdot\infty=0).$

25.0.1 Доказательство

- \Rightarrow Очевидно (интеграл μA обладает этими свойствами из-за плотностей);

Устремим $q \to 1$ и получим доказательство равенства.

26 Единственность плотности

 $f,\,g$ — суммируемые на $X,\,\forall A$ — измеримых верно: $\int\limits_A f=\int\limits_A g.$ Тогда f = g почти везде.

26.0.1 Доказательство

$$h=f-g,\ \forall A$$
 — измеримых, $\int_A h=0.$ $A_+=X(h\geqslant 0),\ A_-=X(h<0),\ A_+\bigcap A_-=\varnothing.$ $\int_{A_+} |h|=\int_{A_+} h=0.$ $\int_{A_-} |h|=-\int_{A_-} h=0.$ $X=A_+\bigsqcup A_-,\ \int_X |h|=0,\ \text{тогда}\ h=0.$

26.1 Следствие

Плотность ν относительно μ определена однозначно с точностью до равенства почти везде.

27 Лемма об образе малых кубических ячеек

 $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m, a \in O.$ Φ — дифференцируема G в окрестности точки $a, \det \Phi'(a) \neq 0.$ Пусть $c > |\det \Phi'(a)|.$

Тогда существует такое $\delta > 0$, что для любого куба $Q \subset B(a, \delta)$, $a \in Q$ верно, что $c \cdot \lambda Q > \lambda \Phi(Q)$.

27.0.1 Доказательство

 $L\coloneqq \Phi'(a)$ — обратимое линейное отображение.

$$\Phi(x) = \Phi(a) + L(x-a) + o(x-a).$$

 $a + L^{-1}(\Phi(x) - \Phi(a)) = x + o(x - a)$ (увеличили в константу, поэтому о маленькое остаётся о маленьким).

 $\forall \varepsilon > 0$ можно записать шар $B_{\varepsilon}(a)$, что при $x \in B_{\varepsilon}(a) |\psi(x) - x| < \frac{\varepsilon}{\sqrt{m}} |x - a|$.

 $Q \subset B_{\varepsilon}, \ a \in Q$ — куб со стороной h, при $x \in Q : |\psi(x) - x| < \varepsilon h. \ |x_i - a_i| \leqslant h.$

 $x, y \in Q$, тогда $|\psi(x)_i - \psi(y)_i| = |\psi(x)_i - x_i| + |\psi(y)_i - y_i| + |x_i - y_i| \le |\psi(x) - x| + |\psi(y) - y| + h < (1 + 2\varepsilon)h$.

 $\psi(Q)$ — содержится в кубе со стороной $(1+2\varepsilon)h$, тогда $\lambda\psi(Q)\leqslant (1+2\varepsilon)^m\lambda Q$.

 $\lambda \Phi(Q) \leq (1 + 2\varepsilon)^m |\det L| \lambda Q < C\lambda Q.$

Берём $\varepsilon: (1+2\varepsilon)|\det L| < C$, где δ — радиус $B_{\varepsilon}(a)$.

 $\lambda A = \inf_{G \text{ - открытое}, A \subset G} \lambda G$

28 Теорема об образе меры Лебега при диффеоморфизме

28.1 Лемма

 $f: \underset{\text{откр.}}{O} \subset \mathbb{R}^m \to \mathbb{R},$ — непрерывное. A — измеримое, $A \subset Q \subset \overline{Q} \subset O$.

Тогда
$$\int\limits_{\substack{A \subset G \\ G \text{ - открытое}}} \left(\lambda(G) \sup_G f\right) = \lambda A \sup_A f.$$

Без доказательства.

28.2 Теорема

$$\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m$$
— диффеоморфизм. $A\in\mathcal{M}^m,\,A\subset O.$ Тогда $\lambda\Phi(A)=\int\limits_A|\det\Phi'(a)|\,d\lambda.$

28.2.1 Доказательство

 $\nu A \coloneqq \lambda \Phi(A)$. Верно ли, что $J_{\Phi}(x) \coloneqq |\det \Phi'(x)|$ — это плотность ν по отношению к μ .

Достаточно проверить, что $\forall A$ верно: $\inf_A J_{\Phi} \cdot \lambda A \leqslant \nu A \leqslant \sup_A J_{\Phi} \cdot \lambda A$.

Достаточно проверить правое неравенство. Левое — правое для Φ^{-1} и \widetilde{A} = $\Phi(A)$.

- 1. A кубическая ячейка, $\overline{A} \subset O$. От противного: пусть оказалось, что $\lambda Q \sup J_{\Phi} < \nu Q$. Возьмём $c > \sup J_{\Phi}$, так, что $\lambda Q \cdot c < \nu Q$. Значит существует такая часть Q_i , что $\lambda Q_i \cdot c < \nu Q_i$. $\lambda Q_n \cdot c < \nu Q_n$, $a = \bigcap \overline{Q_n}$, накроем точку a этим кубиков. $c > |\det \Phi'(a)|$, тогда $\nu Q_n = \lambda \Phi(Q_n)$. Получили, что $\lambda \Phi(Q_n) > c\lambda Q_n$, а по лемме нужно наоборот.
- 2. Оценка $\nu A \leqslant \sup J_{\Phi} \lambda A$, верна для случая, когда A открытое множество.

$$\nu Q \leqslant \sup_{A} J_{\Phi} \lambda Q.$$

Суммируя по $Q: \nu A \leqslant \sup_{A} J_{\Phi} \lambda A.$

Что было в лемме (и что мы потеряли):

$$\inf_{A \subset G} \left(\lambda G \cdot \sup_{G} f \right) = \lambda A \cdot \sup_{A} f.$$

G — открытое, тогда

$$\nu G \leqslant \sup_G J_\Phi \cdot \lambda G \text{ и } \nu A \leqslant \nu G \leqslant \lambda A \sup_A f.$$

29 Теорема о гладкой замене переменной в интеграле Лебега

$$\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$$
 — диффеоморфизм, f — измеримое, $f \geqslant 0$, $\mathcal{O} = \Phi(O)$. Тогда

$$\int_{\mathcal{O}} f(y)dy = \int_{\mathcal{O}} f(\Phi(x)) |\det \Phi'(x)| dx.$$

То же верно для суммируемой функции f.

29.1 Доказательство

Следует из теоремы об образе меры Лебега.

30 Сферические координаты в \mathbb{R}^m

```
r — расстояние от центра до точки
  \varphi_1, \varphi_2, ..., \varphi_{m-1} — соответствующие углы, определяются по индукции на меньшие подпространства.
 x_1 = r \cos \varphi_1;
  x_2 = r \sin \varphi_1 \cos \varphi_2;
  x_m = r \sin \varphi_1 \sin \varphi_2 \dots \sin \varphi_{m-1}.
 x_1, \dots, x_m. Выразим последние две переменные через угол \varphi_{m-1} и какое-то расстояние \rho_{m-1}.
 x_1,\ldots,x_{m-2},\, 
ho_{m-1},\, arphi_{m-1},\, 	ext{тогда}
 x_{m-1} = \rho_{m-1} \cos \varphi_{m-1}, a x_m = \rho_{m-1} \sin \varphi_{m-1}.
 x_{m-2} = \rho_{m-2}\cos\varphi_{m-2}.
  Пусть осталось только x_1, тогда x_1 = r \cos \varphi_1 и \rho_2 = r \sin \varphi_1, т.е. \rho_1 = r.
  \int dx_1 \dots dx_m = \int \rho_{m-1} dx_1 \dots dx_{m-2} d\rho_{m-1} d\varphi_{m-1} = \int \rho_{m-2}^2 \sin \varphi_{m-2} dx_1 \dots dx_{m-3} d\rho_{m-2} d\varphi_{m-2} d\varphi_{m-1} = \int \rho_{m-2}^2 \sin \varphi_{m-2} dx_1 \dots dx_{m-3} d\rho_{m-2} d\varphi_{m-2} d\varphi_{m-1} = \int \rho_{m-2}^2 \sin \varphi_{m-2} dx_1 \dots dx_{m-3} d\rho_{m-2} d\varphi_{m-2} d\varphi_{m-1} = \int \rho_{m-2}^2 \sin \varphi_{m-2} dx_1 \dots dx_{m-3} d\varphi_{m-2} d\varphi_{m-2} d\varphi_{m-1} = \int \rho_{m-2}^2 \sin \varphi_{m-2} dx_1 \dots dx_{m-3} d\varphi_{m-2} d\varphi_{m-2} d\varphi_{m-1} = \int \rho_{m-2}^2 \sin \varphi_{m-2} d\varphi_{m-2} d\varphi_{m
= \int \rho_{m-3}^3 \sin^2 \varphi_{m-3} \sin \varphi_{m-2} dx_1 \dots = \int r^{m-1} \sin^{m-2} \varphi_1 \sin^{m-3} \varphi_2 \dots \sin \varphi_{m-2} \dots
r^{m-1}sin^{m-2}\varphi_1\sin^{m-3}\varphi_2\ldots\sin\varphi_{m-2}— это Якобиан.
```

31 Формула для Бета-функции

$$B(s,t) = \int_{0}^{1} x^{s-1} (1-x)^{t-1} dx = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}.$$

31.0.1 Доказательство

По определению гаммы-функции:

$$\Gamma(s)\Gamma(t) = \int_{0}^{+\infty} x^{s-1}e^{-x} \left(\int_{0}^{+\infty} y^{t-1}e^{-y}dy \right) dx = \int_{0}^{+\infty} x^{s-1}e^{-x} \int_{X} (u-x)^{t-1}e^{-u+x}du dx, \text{ где } y = u-x,$$

$$\int_{0}^{+\infty} du \int_{0}^{u} dx x^{s-1} (u-x)^{t-1} e^{-u}, \text{ заменим } x = uv \text{ и получим}$$

$$\int_{0}^{+\infty} du \int_{0}^{1} dv u^{s-1} v^{s-1} u^{t-1} (1-v)^{t-1} u e^{-u} = \int_{0}^{+\infty} du u^{s+t-1} e^{-u} \int_{0}^{1} v^{s-1} (1-v)^{t-1} dv = \Gamma(s+t) B(s,t).$$

Объем шара в \mathbb{R}^m

$$\lambda_m B\big(0,R\big) = \int\limits_{x_1^2+\ldots+x_m^2=R^2} 1 dx,$$
 введём сферические координаты.

$$\int\limits_0^R dr \int\limits_0^\pi d\varphi_1 \dots \int\limits_0^\pi d\varphi_{m-2} \int\limits_0^{2\pi} d\varphi_{m-1} r^{m-1} \sin^{m-2}\varphi_1 \sin^{m-3}\varphi_2 \dots \sin\varphi_{m-2}, \text{ а дальше воспользуемся бетой-функцией}.$$

Пример как вычислять sin в какой-то степени:

$$\int_{0}^{\pi} (\sin \varphi_{k})^{m-1-k} = 2 \int_{0}^{\pi/2} t^{\frac{m-1-k}{2} - \frac{1}{2}} (1-t)^{-0.5} dt = B\left(\frac{m-k}{2}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{m-k}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m-k}{2} + \frac{1}{2}\right)}.$$

33 Теорема о вычислении интеграла по мере Бореля—Стилтьеса (с леммой)

33.1 Определение

 $(X, \mathcal{O}, \mu), h: X \to \overline{\mathbb{R}}$ — измеримая, пространство конечное.

Пусть $\forall t \in \mathbb{R}, \, \mu X(h < t) < +\infty.$

 $H(t) \coloneqq \mu X(h < t)$ — функция распределения функции h по μ $(H : \mathbb{R} \to \mathbb{R})$.

Очевидно, что H возрастает, $h: X \to \overline{\mathbb{R}}$, $\nu \coloneqq h(\mu)$, $\nu(A) = \mu(h^{-1}(A))$.

Пусть h — измеримая, тогда $\forall B \in \mathcal{B}(\mathbb{R}), h^{-1}(\mathcal{B})$ — измеримая.

 $\mu_H[a,b) = H(b-0) - H(a-0)$ — мера Бореля-Стилтьеса.

33.2 Лемма

 $h:X o\overline{\mathbb{R}}$ — измеримая, почти везде конечная.

H — функция распределения (корректно заданная), $\forall t \ \mu X(h < t) < +\infty$.

Тогда на \mathcal{B} , μ_H совпадает с $h(\mu)$.

33.2.1 Доказательство

 $\mu_h[a,b) = H(b-0) - H(a-0) = H(b) - H(a)$ — непрерывность меры снизу.

$$H(b) - H(a) = \mu X(a \le h < b) = \mu (h^{-1}[a,b]) = \nu [a,b]$$
, где $\nu = h(\mu)$

Значит μ_H = ν на \mathcal{B} .

33.3 Теорема

 $f: \mathbb{R} \to \mathbb{R}, \geq 0$, измеримое по Борелю.

 $h:X\to\overline{\mathbb{R}},$ измеримая, почти везде конечная, с функцией распределения H.

 μ_H — мера Бореля-Стилтьеса. Тогда

$$\int\limits_X f\left(h(x)\right)d\mu(x) = \int\limits_{\mathbb{R}} f(t)d\mu_H(t).$$

33.3.1 Доказательство

По теореме о взвешенном образе меры:

$$(X, \mathcal{A}, \mu), (Y = \mathbb{R}, \mathcal{B}, h(\mu)),$$

$$\Phi = h : X \to Y, \ \omega = 1.$$

$$\int\limits_{Y}f(y)d\nu=\int\limits_{X}f(\Phi(x))1d\mu(x).$$

Путь $f \geqslant 0$, измеримая, $\mathbb{R} \to \mathbb{R}$.

$$\int\limits_{\mathbb{R}^m} f(|x|) d\lambda_m = \int\limits_0^{+\infty} f(t) d\mu_H \text{ при } h(x) = |x|, \text{ где } H(r) = \mu \mathbb{R}^m (|x| < r) = \alpha_m r^m.$$

$$\mu_H[a,b) = H(b) - H(a) = \int_a^b H'(t)dt = \int_a^b m\alpha_m t^{m-1}dt.$$

$$\mu_H$$
 и мера $\nu: \nu(A) = \int\limits_A m \alpha_m t^{m-1} dt,$ значит μ_h = ν на $\mathcal{B}.$

$$\int_{0}^{+\infty} f(t) m \alpha_m t^{m-1} dt.$$

33.3.2 Следствие

Мы проверили, что g возрастает, $g \in C^1(\mathbb{R})$ и $M_g(A) = \int\limits_A g'(x) dx.$

34 Интегральные неравенства Гельдера и Минковского

1. Неравенство Гёльдера:

$$p,\ q > 1,\ \frac{1}{p} + \frac{1}{q} = 1,$$
 заданы почти везде, измеримы.

$$(X, \mathcal{A}, \mu), f, g: X \to \mathbb{C} (\mathbb{R})$$
. Тогда

$$\int\limits_X |fg| d\mu \leqslant \left(\int\limits_X |f|^p\right)^{1/p} \left(\int\limits_X |g|^q\right)^{1/q}$$

2. Неравенство Минковского

$$(X,\mathcal{A},\mu),\,f,\,g:X\to\mathbb{C}$$
— измерима почти везде, конечна, $1\leqslant p<+\infty.$ Тогда

$$\left(\int\limits_X |f+g|^p\right)^{1/p} \leqslant \left(\int\limits_X |f|^p\right)^{1/p} + \left(\int\limits_X |g|^p\right)^{1/p}$$

35 Интеграл комплекснозначной функции

$$(X, \mathcal{A}, \mu), f: X \to \mathbb{C}, f(x) = g(x) + ih(x).$$

f — измерима $\Longleftrightarrow g$ = $\mathrm{Re}f$ и h = $\mathrm{Im}f$ — измеримые.

f — суммируемая \iff g = $\operatorname{Re} f$ и h = $\operatorname{Im} f$ — суммируемые.

$$\int\limits_X f = \int\limits_X g + i \int\limits_X h.$$

35.1 Вывод

$$\left| \int\limits_X f d\mu \right| \leqslant \int\limits_X |f| d\mu.$$

36 Пространство $L^p(E,\mu)$

$$L^p(X,\mu), 1 \le p < \infty$$

$$\mathcal{L}^p(X,\mu)$$
 = $\left\{f:X \xrightarrow[\Pi.B.]{} \overline{\mathbb{R}}(\overline{\mathbb{C}}), f$ — измерима, $\int\limits_X |f|^p d\mu < +\infty \right\}$

- $\mathcal{L}^p(X,\mu)$ линейное пространство по н. Минковского;
- Введём норму $\|f\| = \left(\int\limits_X |f|^p\right)^{1/p};$
- f эквивалентно g если f(x) = g(x) при почти всех x

 L^p — уберём из $\mathcal L$ все одинаковые функции, оставив только одного представителя из каждого класса эквивалентности.

37 Существенный супремум

$$f: X \xrightarrow[\Pi.B.]{} \overline{\mathbb{R}}, \text{ ess sup } f = \inf \big\{ A \in \overline{\mathbb{R}} : f(x) \leqslant A \text{ $\Pi.B.$} \big\}.$$

37.1 Свойства

- 1. $\operatorname{ess\,sup} f \leq \operatorname{sup} f$;
- 2. $f(x) \leq \operatorname{ess\,sup} f$ при почти всех x;

3.
$$\left| \int_X fg \right| \le \operatorname{ess\,sup} |f| \cdot \int_X |g|$$
.

37.1.1 Доказательство

- 1. Очевидно
- 2. $M = \operatorname{ess\,sup} f$ $\forall n \in \mathbb{N} \text{ верно } f(x) \leqslant M + \frac{1}{n} \text{ почти везде}.$
- 3. Очевидно $\left|\int\limits_X fg\right|\leqslant \int\limits_X |fg|,$ $|fg|\leqslant M|g|$ почти везде.

38 Пространство $L^{\infty}(E,\mu)$

$$\mathcal{L}^{\infty}(X,\mu) = \left\{ f: X \xrightarrow[\text{п.в.}]{} \mathbb{R}(\mathbb{C}), f - \text{измерима, ess sup } |f| < +\infty \right\}$$
 $f, g \in \mathcal{L}^{\infty} \Rightarrow f + g \in \mathcal{L}^{\infty}.$
 т.е. \mathcal{L}^{∞} — линейное пространство, норма $\|f\|_{\infty} = \text{ess sup } |f|.$ ess sup $|f + g| \leqslant \text{ess sup } |f| + \text{ess sup } |g|.$

38.1 Замечание

 $\|fg\|_1 \leqslant \|f\|_p \|g\|_q$ — неравенство Гёльдера (можно брать p = 1 и q = + ∞).

 $f \in \mathcal{L}^p(X,\mu), \ 1 \leqslant p \leqslant +\infty, \Rightarrow f$ — почти всюду конечно \Rightarrow можно считать, что f задана почти всюду на X и всюду конечна.

39 Теорема о вложении пространств L^p

$$X, \mu X < +\infty, 1 \leqslant s < r \leqslant +\infty$$
. Тогда

1.
$$L^r(X,\mu) \subset L^s(x,\mu)$$
;

2.
$$||f||_s \le (\mu X)^{\frac{1}{s} - \frac{1}{r}} ||f||_r$$

39.1 Доказательство

- 1. следует из 2;
- 2. $r = \infty$ очевидно

r — конечно, тогда:

$$||f||_{s} = \left(\int_{X} |f|^{s}\right)^{\frac{1}{s}} \le \left(\int_{X} ||f||_{\infty}^{s}\right)^{\frac{1}{s}}$$

$$|f| \le \operatorname{ess\,sup} f = ||f||_{\infty} = ||f||_{\infty} \mu X^{1/s}$$

$$\|f\|_s^s = \int\limits_X |f|^s 1 d\mu$$
 по Гёльдеру получаем неравенство

$$\left(\int_{X} (|f|^{s})^{r/s}\right)^{s/r} \left(\int_{X} 1\right)^{\frac{r-s}{r}} = \left(\int_{x} |f|^{r}\right)^{s/r} (\mu X)^{1-\frac{s}{r}}.$$

39.2 Следствие

$$\mu E < +\infty$$
, $1 \le s < r \le +\infty$.

$$f_n, f \in L^s, f_n \to f$$
 на L^r . Тогда $f_n \to f$ на L^s .

39.2.1 Доказательство

очевидно, потому что $||f||_s \leqslant \mu E^{\frac{1}{s} - \frac{1}{r}} ||f||_r$.

40 Измеримое множество на простом гладком двумерном многообразии в \mathbb{R}^3

M — просто гладкое двумерное многообразие в $\mathbb{R}^3,\,\varphi:\mathop{O}_{\text{откр.}}\subset\mathbb{R}^2\to\mathbb{R}^3$ — параметризация.

 $E \subset M$ — измеримое (по Лебегу), если $\varphi^{-1}(E)$ — измерим в \mathbb{R}^2 .

41 Мера Лебега на простом гладком двумерном многообразии в \mathbb{R}^3

$$\mathcal{A}_M$$
 = $\{E \in M, E$ — изм. $\}$ — σ -алгебра.

Мера Лебега на
$$\mathcal{A}_M$$
: $S(E) = \iint_{\varphi^{-1}(E)} |\varphi'_u \times \varphi'_v| du dv$.

42 Поверхностный интеграл первого рода

M — простое двумерное гладкое многообразие, φ — гладкая параметризация, $f:M\to\overline{\mathbb{R}},\,f\geqslant0,$ измеримая.

Тогда

$$\iint\limits_{M}fds$$
— Поверхностный интеграл I рода и вычисляется следующим образом:

$$\iint\limits_{M}fds=\iint\limits_{\varphi^{-1}(M)}f(x(u,v),y(u,v),z(u,v))|\varphi'_{u}\times\varphi'_{v}|dvdu.$$

43 Кусочно-гладкая поверхность в \mathbb{R}^3

 $M \subset \mathbb{R}^3$ — кусочно-гладкое многообразие в \mathbb{R}^3

M — объекты конечного числа элементов:

- Простые двумерные гладкие многообразия;
- Гладкие кривые простые k-мерные многообразия в \mathbb{R}^3 ;
- Точки.

$$M = \bigsqcup M_i \bigsqcup l_i \bigsqcup p_i$$
.

$$S(E) = \sum S(E \cap M_i).$$

44 Теорема о сходимости в пространствах L^p и по мере

 $1 \le p < +\infty, \ f_n, \ f \in L^p(X,\mu)$. Тогда верны следующие утверждения:

- 1. $f_n \to f$ в L^p , тогда $f_n \rightrightarrows f$ по мере μ .
- 2. $f_n \Rightarrow f$ по мере μ (либо $f_n \to f$ почти везде).

Если $\exists g \in L^p : |f_n| \leqslant g$. Тогда $f_n \to f$ в L^p .

44.1 Доказательство

1. $X_n(\varepsilon) := X(|f_n - f| \ge \varepsilon)$.

$$\mu X_n(\varepsilon) = \int\limits_{X_n(\varepsilon)} 1 \leqslant \frac{1}{\varepsilon^p} \int\limits_{X_n(\varepsilon)} |f_n - f|^p d\mu \leqslant \frac{1}{\varepsilon^p} ||f_n - f||_p^p \to 0.$$

2. $f_n \Rightarrow f$, тогда $f_{n_k} \to f$ п.в.. Тогда $|f| \leqslant g$ п.в. $|f_n - f|^p \leqslant (2g)^p$, $||f_n - f||_p^p = \int\limits_X |f_n - f|^p d\mu \to 0$ по теореме Лебега.

45 Фундаментальная последовательность, полное пространство

Пусть X — метрическое пространство, последовательность $x_n \in X$ называется фундаментальной, если:

$$\forall \varepsilon > 0: \exists N: \forall n_1, n_2 > N: |x_{n_1} - x_{n_2}| < \varepsilon$$

.

Пространство, в котором любая фундаментальная последовательность сходится к элементу этого же пространства, называется nonhom.

46 Полнота L^p

$$L^{P}(X,\mu), 1 \le p < +\infty$$
 — полное.

46.0.1 Доказательство

 f_n — фундаментальная.

Для
$$\varepsilon = \frac{1}{2} \ \exists N_1$$
 при $n = n_1 > N_1, \ \forall k > n_1 \ \|f_{n_1} - f_k\| < \frac{1}{2}.$

Для
$$\varepsilon = \frac{1}{4} \ \exists N_2 > n1$$
 при $n = n_2 > N_2, \ \forall k > n_2 \ \|f_{n_2} - f_k\| < \frac{1}{4}.$

$$\varepsilon = \frac{1}{2^m} \ \exists N_m > n_m \ \text{при} \ n = n_m > N_m, \ \forall k > n_m \ \|f_{n_m} - f_k\| < \frac{1}{2^m}.$$

Таким образом, $\sum_{k=1}^{+\infty} \|f_{n_{k+1}} - f_{n_k}\|_p < 1$.

Рассмотрим
$$S(x) = \sum_{k=1}^{+\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)| \in [0, +\infty].$$

$$S_n, \|S_n\|_p \le \sum \|f_{n_{k+1}} - f_{n_k}\|$$

$$S_n, \|S_n\|_p \le \sum_{k=1}^N \|f_{n_{k+1}} - f_{n_k}\|_p < 1.$$

$$\int\limits_X S_n^p \leqslant 1,$$
 по т. Фату $\int S^p \leqslant 1,$ тогда S^p — сходится, значит S конечно почти везде, тогда

$$\sum (f_{n_{k+1}} - f_{n_k})$$
 — сходится почти везде.

$$f(x)\coloneqq f_{n_1}+\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}-f_{n_k}\right)$$
 — сходится с потрам

$$f_{n_1} + \sum_{k=1}^{m-1} (f_{n_{k+1}} - f_{n_k}) = f_{n_m}.$$

$$f_{n_m} \to f$$
 почти везде.

Проверим, что $||f_n - f||_p \to 0$.

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ \|f_n - f_m\|_p < \varepsilon$$

$$\|f_n-f_{n_k}\|_p^p=\int\limits_X|f_n-f_{n_k}|^pd\mu верно при всех больших $k.$$$

Тогда по теорему Фату:
$$\int\limits_X |f_n-f|^p d\mu < \varepsilon^P,$$
 т.е. $\|f_n-f\|_p < \varepsilon,$ т.е. $f_n \to f$ в $L^p.$

47 Плотное множество

Y — множество, $\mathcal{A} \subset Y$ — (всюду) плотное множество, если $\forall y \in Y : \forall U(y)$ верно: $U(y) \bigcap \mathcal{A} \neq \emptyset$.

Пример: $\mathcal{A} = \mathbb{Q} \subset Y = \mathbb{R}$.

48 Плотность в L^p множества ступенчатых функций

$$(X, \mathcal{A}, \mu), 1 \leq p \leq +\infty$$

Тогда $\{f \in L^p : f - \text{ступ.}\}$ — плотно L^p .

48.1 Замечание

 $p<+\infty,\ \varphi\in L^p$ — ступенчатая, тогда $\mu X(\varphi\neq 0)<+\infty.$

48.2 Доказательство

1. $p = +\infty, f \in L^{\infty}$, подменим f на множество меры $0: |f| \leq ||f||_{\infty}$ всюду.

$$\exists$$
 ступ. $\varphi_n \Rightarrow f_+, \ \psi_m \Rightarrow f_-, \ \text{т.e.} \ \|\varphi_n - f_+\|_{\infty} \to 0, \ \varphi_n \to f_+ \ \text{в } C^{\infty}, \ \psi_m \to f_-.$

2. $p < +\infty, \ f \geqslant 0, \ \exists \varphi_n$ — ступенчатая, $\varphi_n \to f$ всюду.

$$\|\varphi_n - f\|_p^p = \int_Y |\varphi_n - f|^p d\mu \to 0, |\varphi - f|^p \le |f|^p.$$

49 Лемма Урысона

49.1 Определение

X- топологическое пространство, если $\forall F_1, F_2-$ замкнутых подмножеств, верно: $F_1 \cap F_2 = \emptyset$.

Если \exists открытые $U(F_1), U(F_2)$, которые не пересекаются, то это свойство X называются нормальностью. (дополнительно требуется, чтобы $\forall y \in X : \{y\}$ — замкнутое).

49.2 Лемма Урысона

$$X$$
 — норм, F_0 , F_1 — замкнуты, $F_0 \cap F_1 = \emptyset$.

Тогда $\exists f: X \to \mathbb{R}, \ 0 \leqslant f \leqslant 1$, непрерывное.

$$f|_{F_0} = 0, f|_{F_1} = 1.$$

49.3 Доказательство

Переформулируем нормальность:

 $\forall F_1$ — замкнутого, $\subset G$ — открытого, $\exists U(F_1)$ — открытое, что выполняется $F_1 \subset U(F_1) \subset \overline{U(F_1)} \subset G$.

- 1. $F_0 \subset U(F_0) \subset \overline{U(F_1)} \subset F_1^C$
- 2. $\overline{G_0} \subset U(\overline{G_0}) \subset G_1$
- 3. $\overline{G_0} \subset U'(\overline{G_0}) \subset \overline{U'(\overline{G_0})} \subset G_{1/2}$ $G_{1/2} \subset U(\overline{G_{1/2}}) \subset \overline{U} \subset G_1, \text{ где } U(\overline{G_{1/2}}) = G_{3/4}.$

f — непрерывна, значит $f^{-1}(a,b)$ — открыто. Достаточно проверить, что:

- 1. $f^{-1}(-\infty, s)$ открыто;
- 2. $f^{-1}(-\infty, s)$ замкнуто.

$$f^{-1}(a,b)=f^{-1}(-\infty,b)\smallsetminus f^{-1}(-\infty,a).$$

1. $\forall s: f^{-1}(-\infty, s) = \bigcup_{q \in s, q \text{-дв. рац.}} G_q$ — открыто. $\subset f(y) < S$, где $f(y) = \inf \{q: x \in G_q\}$. $\supset x \in \Pi\Psi, f(x) = S_0 < q_1 < S, x \in G_{q_1}$.

50 Финитная функция

 Φ инитная функция — функция, равная ${f 0}$ вне некоторого шара, и непрерывная в $C_0\left(\mathbb{R}^m\right)$.

Очевидно, что $\forall p \in [1, +\infty) : C_0(\mathbb{R}^m) \subset L^p(\mathbb{R}^m, \lambda_m).$

51 Сторона поверхности

Поверхность — простое гладкое двумерное многообразие.

Сторона поверхности (гладкой) — непрерывное векторное поле единичных нормалей.

Если не существует непрерывного поля единичных нормалей, то такая поверхность — односторонняя.

52 Задание стороны поверхности с помощью касательных реперов

Penep — Пара ЛНЗ касательных векторов.

Способ задания стороны — задать поле касательных реперов.

53 Интеграл II рода

 Ω — двусторонняя поверхность в $\mathbb{R}^3,\,F:\Omega \to \mathbb{R}^3.$

 n_0 — сторона поверхности.

Тогда интегралом II рода (поля F на Ω) называют:

$$\int_{\Omega} \langle F, n_0 \rangle ds.$$

53.0.1 Замечания

- 1. поменяем сторону поменяем знак;
- 2. Не зависит от параметризации;
- 3. Обозначения: F = (P, Q, R)

$$\int_{\Omega} = \int_{\Omega} Pdydz + Qdzdx + Rdxdy.$$

$$x(u,v), y(u,v), z(u,v),$$
 тогда

$$(x'_u, y'_u, z'_u) \times (x'_v, y'_v, z'_v) = \vec{n}$$

$$dydz = (y_u'du + y_v'dv) \wedge (z_u'du + z_v'dv) = du \wedge dv(y_u'z_v' - y_v'z_u')$$

∧ — косо-коммутативная операция

$$da \wedge db = -db \wedge da$$

$$da \wedge da = -da \wedge da = 0.$$

54 Плотность в L^p множества финитных непрерывных функций

$$(\mathbb{R}^m, \mathcal{M}^m, \lambda_m), E \subset \mathbb{R}^m$$
 — измеримая.

Тогда множество финитных функций (непрерывных) плотно в $L^{p}\left(E,\lambda_{m}\right)$

54.1 Доказательство

$$g \in L^p(E,\mu)$$

$$\forall \varepsilon > 0: \exists f \in C_0\left(\mathbb{R}^m\right), \ \|g - f\big|_E\|_p < \varepsilon. \ \text{Пусть} \ g = 0 \ \text{вне} \ E, \ \text{то} \ \|g - f\big|E\|_{2^p(E,\mu)} \leqslant \|g - f\| < \varepsilon \ \text{в} \ L^p\left(\mathbb{R}^m\right).$$

$$g=g^+-g^-,\;g^+$$
 — приблизим ступенчатыми, \exists ступ. $h:\|g^+-h\|<\varepsilon.$

 $h = \sum c_k \chi_{a_k}.$ Каждую χ_{A_k} приблизим финитной непрерывной функцией:

$$\forall \varepsilon > 0 : \exists \text{ замкнутая } F_k \subset A_k \subset G_k(\text{откр.}), \ \lambda_m\left(G_k \setminus F_k\right) < \left(\frac{\varepsilon}{|c_k| \cdot q}\right).$$

По лемме Урысона $\exists f_k : 0 \leqslant f_k \leqslant 1, \ f = 1$ на $F_k, \ f = 0$ на $\mathbb{R}^m \setminus G_k$.

$$\|g^{+} - \sum c_{k} f_{k}\|_{p} \leqslant \|g^{+} - h\|_{p} + \|h - \sum c_{k} f_{k}\| \leqslant \varepsilon + \sum |c_{k}| \cdot \|\chi_{A_{k}} - f_{k}\| \leqslant \int |\chi_{A_{k}} - f_{k}|^{p} \leqslant \varepsilon + \sum \frac{\varepsilon}{q} = 2\varepsilon$$

$$\int\limits_{G_k \smallsetminus F_k} 1^p < \left(\frac{\varepsilon}{|c_k|q}\right)^p.$$

 $1 \le p < +\infty$.

54.2 Замечание

- 1. В $L^{\infty}(\mathbb{R}^m)$ этот факт не работает.
 - $L^{\infty}\left([0,2]\right)$ функцию $\chi_{[0,1]}$ не приблизить непрерывной.
- 2. В $L^p(E, \lambda_m)$ плотны:
 - Линейная комбинация характеристических функций ячеек;
 - Гладкие финитные функции;
 - Рациональные линейные комбинации рациональных ячеек;
 - Просто непрерывные функции.

55 Теорема о непрерывности сдвига

55.1 Необходимое определение

 $L^p[0,T],\,T\in\mathbb{R},$ можем понимать как пространство T-периодических функций $(\mathbb{R}\to\mathbb{R}),\,\int\limits_0^Tf=\int\limits_a^{a+T}f.$

C[0,T] — пространство непрерывных функций, $\|f\| = \max_{x \in [0,T]} |f(x)|$.

 $\widetilde{C}[0,T]$ — пространство непрерывных T-пер. функций.

 $f \in \widetilde{C}[0,T] \Rightarrow f$ — равномерно непрерывные.

 $\widetilde{C}[0,T]$ плотно в $L^P[0,T], p < +\infty$.

55.2 Формулировка теоремы

$$f_h(x) \coloneqq f(x+h).$$

- 1. f равномерно непрерывная на $\mathbb{R}^m \Rightarrow \|f_h f\| \to 0$ при $n \Rightarrow 0$;
- 2. $1 \le p < +\infty, f \in L^p(\mathbb{R}^m) \Rightarrow ||f_n f||_p \to 0$ при $n \to 0$;
- 3. $f \in \widetilde{C}[0,T] \Rightarrow ||f_n|f||_{+\infty} \to 0;$
- 4. $1 \le p < +\infty$ $f \in L^p[0,T] \Rightarrow ||f_n f||_p \to 0$.

55.3 Доказательство

1 и 3 очевидные утверждения по определению равномерной непрерывности.

$$\forall \varepsilon > 0 : \exists \delta : \forall x, x' : |x - x'| < \delta |f(x) - f(x')| < \varepsilon$$

$$\forall |h| < \delta : ||f_h - f||_{\infty} \le \varepsilon.$$

g — финитно непрерывная: $\|f - g\|_p < \frac{\varepsilon}{3}$.

$$||f_h - f||_p \le ||f_h - g_h||_p + ||g_h - g||_p + ||g - f||_p \le \frac{2\varepsilon}{3} + ||g_h - g||_p$$

g = 0 вне B(0,r), пусть |h|<1, тогда $\|g_h-g\|_p=\|g_h-g\|_{L^p(B(0,r+1))}\leqslant \|g_h-g\|_{+\infty}\cdot \lambda B^{1/p}$

и 4)
$$\|g_h - g\|_p \le \|g_h - g\|_{\infty} T^{1/p}$$

56 Формула Грина

D — компактное, связное, односвязное, множество в \mathbb{R}^2 , ограниченное кусочно-гладкой кривой.

На ∂D направление "против часовой стрелки".

56.1 Теорема

 $D \subset \mathbb{R}^2$ — см выше.

P, Q — векторные поля, гладкие в U(D). Тогда

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int\limits_{\partial D} P dx + Q dy.$$

56.2 Доказательство

D — кривая 4-угольника относительно OX, а также относительно OY.

Рассмотрим поле $(P, \mathbf{0})$ (для $(\mathbf{0}, Q)$ аналогично).

$$\Pi \mathbf{H} : - \iint_{D_b} \frac{\partial P}{\partial y} dx dy = \int_{\partial D} P dx + \mathbf{0} dy$$

$$\text{JI4:} - \int_{a}^{b} d \int_{f_{1}(x)}^{f_{2}(x)} \frac{\partial P}{\partial y} dy = - \int_{a}^{b} P(x,y) \Big|_{y=f_{1}}^{y=f_{2}} dx = \int_{a}^{b} P(x,f_{1}(x)) dx - \int_{a}^{b} P(x,f_{2}(x)) dx.$$

$$\Pi \mathbf{H}: \int_{\gamma_{1}} + \int_{\gamma_{2}} + \int_{\gamma_{3}} + \int_{\gamma_{4}} \int_{\gamma_{1}} = \int_{a}^{b} P(x, f(x)) \cdot 1 + 0 \cdot f'(x) dx, \int_{\gamma_{2}} = \int_{\gamma_{4}} = 0, \int_{\gamma_{3}} = \int_{b}^{a} P(x, f(x)) dx.$$

57 Формула Стокса

 Ω — двусторонняя, гладкая поверхность, $\overline{n_0}$ — сторона.

 $\partial\Omega$ — кусочно-гладкая кривая с согласованной ориентацией.

(P,Q,R) — гладкое векторное поле в $U(\Omega)$. Тогда

$$\int\limits_{\partial\Omega}Pdx+Qdy+Rdz=\int\limits_{\Omega}(R'_y-Q'_z)dydz+(P'_z-R'_x)dzdx+(Q'_x-P'_y)dxdy.$$

57.1 Доказательство

Считаем, что поверхность C^r -гладкая.

Достаточно проверить для (P, 0, 0).

$$\int\limits_{\partial\Omega}Pdx=\int\int P_z'dzdx-P_y'dxdy.$$

$$\int\limits_{\partial\Omega}Pdx=\int\limits_{\partial\Omega}P(x(u,v),y(u,v),z(u,v))\left(\frac{\partial x}{\partial u}du+\frac{\partial x}{\partial v}dv\right)$$
и по формуле Грина получаем

$$\int\limits_{L} Px'_u du + Px'_v dv = \iint\limits_{G} \frac{\partial}{\partial u} (Px'_v) - \frac{\partial}{\partial v} (Px'_u) du dv = \iint\limits_{G} \left(P'_x x'_u + P'_y y'_u + P'_z z'_u \right) x'_v + Px''_v v - \left(P'_x x'_v + P'_y y'_v + P'_y z'_v \right) x'_u - Px''_u v du dv = \iint\limits_{G} P'_x \mathbf{0} + P'_y (x'_v y'_u - x'_u y'_v) + P'_z (x'_v z'_u - x'_u z'_v) = \iint\limits_{G} P'_z dz dx - P'_y dx dy$$

Получили что хотели.

58 Формула Гаусса-Остроградского

$$V = \{(x, y, z) : (x, y) \in \Omega \text{ и } f(x, y) \leq z \leq F(x, y)\}$$

$$\Omega$$
 с $\mathbb{R}^{2},$ $\partial\Omega$ — кусочно-гладкая кривая, $f,$ F \in $C^{1}\left(\Omega\right)$.

$$R: U(V) \to \mathbb{R}, R \in C^1$$
. Тогда

$$\iiint\limits_V \frac{\partial R}{\partial z} dx dy dz = \iint\limits_{\partial V^+} R dx dy.$$

58.1 Доказательство

$$\iiint\limits_V \frac{\partial R}{\partial z} dx dy dz = \iint\limits_\Omega dx dy \int\limits_{f(x,y)}^{F(x,y)} \frac{\partial R}{\partial z} dz = \iint\limits_\Omega R(x,y,F(x,y)) - \iint\limits_\Omega R(x,yf(x,y)) dx dy = \iint\limits_{\text{график F (верх)}} R dx dy + \iint\limits_{\text{график f (низ)}} R dx dy.$$

$$0 = \iint\limits_{\text{цил. }\partial V} R dx dy.$$

58.2 Следствие

$$\iint\limits_V \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx dy dz = \iint\limits_{\partial V^+} P dy dz + Q dz dx + R dx dy.$$

59 Ротор, дивиргенция векторного поля

59.1 Дивергенция

$$\mathrm{div}A - \mathtt{это}\ \mathrm{функция}\ \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

59.2 Ротор

$$(P,Q,R) \in C^1$$
.

$$rot A = (R'_y - Q'_z, P'_z - R'_x, Q'_x - P'_y).$$

60 Соленоидальное векторное поле

Поле V-conehoudanьное в Ω если существует векторный потенциал, т.е. существует такое векторное поле B, что $\mathrm{rot}B$ = V.

61 Соленоидальность бездивергентного векторного поля

61.1 Вспомогательная теорема

V — поле. Если ${
m rot}V$ = 0 и область односвязная, то поле гладкое.

 rot = 0 — дифференциальный критерий потенциальности \Leftrightarrow поле локально-потенциальное $\Leftrightarrow V$ — потенциальное.

61.2 Теорема

 Ω — параллелепипед, $(A_1, A_2, A_3) = A$ — соленоид в $\Omega \Leftrightarrow \operatorname{div} A = 0$ в Ω .

61.2.1 Доказательство

 \Rightarrow Тривиально divrotB = 0 — упражнение.

 \Leftarrow div A=0. Ищем векторный потенциал B: rot B=A.

$$B = (P, Q, R), R'_y - Q'_z = A_1, P'_z - R'_x = A_2, Q'_z - P'_y = A_3.$$

Забавный факт: можем подменить B на $B_1,$ что $\mathrm{B}-\mathrm{B}_1$ = 0 и B – b_1 — потенциал f .

Пусть
$$R$$
 = 0, тогда $-Q_z'$ = A_1 , P_z' = A_2 и Q_x' - P_y' = A_3 . $P(x,y,z)$ = $\int\limits_{z_0}^{z} A_2(x,y,z) dt$

$$Q(x,y,z) = -\int_{z_0}^{z} A_1 dz + \varphi(x,y).$$

$$I(y) = \int_{a}^{b} f(x,y)dx, I'_{(y)} = \int_{a}^{b} f'_{y}(x,y)dx.$$

$$\varphi'_x - \int_{z_0}^z \frac{\partial A_1}{\partial x} - \int_{z_0}^z \frac{\partial A_2}{\partial y} = A_3.$$

 $\mathrm{div}=0 \text{ по условию, тогда } \varphi_x'+\int\limits_{z_0}^z\frac{\partial A_3}{\partial z}dz=A_3.$

$$\varphi'_x(x,y) + A_3(x,y,z) - A_3(x,y,z_0) = A_3, \ \varphi'_x(x,y) = A_3(x,y,z_0) \text{ if } \varphi = \int_{x_0}^x A_3(x,y,z_0) dx + g(y).$$

62 Бескоординатное определение дивергенции

$$\operatorname{div} A(a) = \lim_{r \to 0} \frac{1}{\lambda_3 B} \iiint_{B(a,r)} \operatorname{div} A \ dx dy dz = \lim_{r \to 0} \frac{1}{\lambda_3 B} \iint_{S(a,r)} \langle (P,Q,R), n_0 \rangle dS.$$

63 Гильбертово пространство

 Γ ильбертово пространство \mathcal{H} — линейное пространство со скалярным произведением (и соответствующей нормой), полное (как линейное нормированное пространство).

64 Теорема о свойствах сходимости в Гильбертовом пространстве

Пусть x, y лежат в Гильбертовом пространстве. Тогда верны следующие свойства:

- 1. $x_n \to x_0, y_n \to y_0$. Тогда $\langle x_n, y_n \rangle \to \langle x_0, y_0 \rangle$.
- 2. $\sum x_k$ сходится. Тогда $\forall y \in \mathcal{H} : \langle \sum_{k=1}^{+\infty} x_k, y \rangle = \sum_{k=1}^{+\infty} \langle x_k, y \rangle$.
- 3. $\sum x_k$ ортогональный ряд. Тогда $\sum x_k$ сходится $\Longleftrightarrow \sum \|x_k\|^2 < +\infty$ и при этом $\|\sum x_k\|^2 = \sum \|x_k\|^2$.

64.1 Доказательство

- 1. $|\langle x_n, y_n \rangle \langle x_0, y_0 \rangle| = |\langle x_n, y_n \rangle \langle x_n, y_0 \rangle + \langle x_n, y_0 \rangle \langle x_0, y_0 \rangle| \le |\langle x_n, y_n y_0 \rangle| + |\langle x_n x_0, y_0 \rangle| \le ||x_0|| ||y_0|| + ||x_n x_0|| ||y_0|| \to 0$ при $n \to +\infty$.
- 2. $S_N = \sum_{k=1}^N x_k$, тогда $\langle \sum_{k=1}^N x_k, y \rangle = \sum_{k=1}^N \langle x_n, y \rangle$. При устремлении к бесконечности получаем необходимое равенство.
- 3. $S_N = \sum_{k=1}^N x_k$, $||S_N||^2 = \langle \sum_{k=1}^N x_k, \sum_{k=1}^N x_k \rangle = \sum \langle x_k, x_l \rangle = \sum_{k=1}^n \langle x_k, x_k \rangle = \sum_{k=1}^N ||x_k||^2 = \sum_N \sum_N ||x_k||^2 = \sum_N ||x_k||$

Аналогично
$$||S_N - S_M||^2 = \left|\sum_N - \sum_M\right|$$

 S_n и \sum_N — фундаментальны одновременно.

65 Ортогональная система (семейство) векторов

 $\{e_k\}$ — ортогональная система (семейство) векторов, если e_k \in \mathcal{H} , что $\forall i,j: i \neq j: e_i \perp e_j, \ e_k \neq 0.$

66 Ортонормированная система

Если ортогональная система $\{e_k\}$, для которой $\forall k: \|e_k\|$ = 1 — ортонормированная система векторов.

66.1 Замечание

Если $\{e_k\}$ — ортогональная система, то $\left\{\frac{e_k}{\|e_k\|}\right\}$ — ортонормированная система.

67 Теорема о коэффициентах разложения по ортогональной системе

$$\{e_k\}$$
 — ортонормированная система в $\mathcal{H},\ x\in\mathcal{H},\ \sum_{k=1}^{+\infty}c_ke_k$ = $x.$ Тогда

1. ортонормированная система — ЛНЗ;

$$2. \ c_k = \frac{\langle x, e_k \rangle}{\|e_k\|^2};$$

3. $c_k e_k$ — ортогональная проекция x на прямую $\{te_k|t\in\mathbb{R}\}$, т.е. $x=c_k e_k+z$, где $z\perp e_k$.

67.1 Доказательство

$$1. \sum_{k=1}^{N} \alpha_k e_k = 0.$$

Умножим
$$e_j$$
 $1 \leqslant j \leqslant N$, $(\sum_{k=1}^N \alpha_k e_k, e_j) = \sum \alpha_k \langle p_k, p_j \rangle \Rightarrow \alpha_j = 0$.

2.
$$\langle x, e_m \rangle = \langle \sum_{k=1}^{+\infty} c_k e_k, e_m \rangle = \sum_{k=1}^{+\infty} c_k \langle e_k, e_m \rangle = c_m \langle e_m, e_m \rangle$$
.

3.
$$\langle x - c_k e_k, e_k \rangle = \langle x, e_k \rangle - c_k ||e_k||^2 = 0$$
.

68 Коэффициенты Фурье

 $\{e_k\}$ — ортонормированная система векторов в $\mathcal{H}, x \in \mathcal{H}.$

$$c_k(x)\coloneqq rac{\langle x,e_k
angle}{\|e_k\|^2}$$
 — коэффициенты Фурье вектора x по системе $\{e_k\}.$

 $\sum c_k(x)e_k$ — ряд Фурье в выражениях x. При перенормировке $\{e_k\}$ ряд Фурье не меняется.

69 Ряд Фурье в Гильбертовом пространстве

 $\sum c_k(x) \cdot e_k$ называется рядом Фурье вектора x по ортогональной системе $\{e_k\}$.

70 Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя

$$\{e_k\}$$
 — ортонормированная система $\mathcal{H}, x \in \mathcal{H}, n \in \mathbb{N}. S_n \coloneqq \sum_{k=1}^n c_k(x)e_k, \mathcal{L} \coloneqq \text{Lin } (e_1, \dots, e_n).$

Тогда верны следующие свойства:

- 1. S_n проекция x на S. $x = S_n + z$, где $z \perp \mathcal{L}$.
- 2. S_n элемент наилучшего приближения для x в \mathcal{L} .

$$||x - S_n|| = \min_{y \in \mathcal{L}} ||x - y||.$$

3. $||S_n|| \le ||x||$.

70.1 Доказательство

$$z \coloneqq x - S_n, \ \langle x, e_k \rangle = \langle x, e_k \rangle - \langle S_n, e_k \rangle = \langle x, e_k \rangle - \langle \sum_{i=1}^n c_i(x)e_i, a_k \rangle = \langle x_i, e_k \rangle - \sum_i c_i(x)\langle e_i, e_k \rangle = 0$$

$$x = S_n + z, z \perp \mathcal{L}.$$

$$y \in \mathcal{L}, \|x - y\|^2 = \|S_n - y + z\|^2 = \|S_n - y\|^2 + \|z\|^2 \ge \|z\|^2 = \|S_n - x\|^2$$

$$||x||^2 = ||S_n||^2 + ||z||^2 \ge ||S_n||^2.$$

70.2 Неравенство Бесселя

В условиях теоремы выполняется следующее равенство:

$$\sum_{k=1}^{+\infty} |C_k(x)|^2 \|e_k\|^2 \le \|x\|^2.$$

из 3 свойства следует $\|x\|^2 \geqslant \sum_{k=1}^n \left| c_k(x) \right|^2 \|e_k\|^2$ для любого n.

71 Теорема Рисса — Фишера о сумме ряда Фурье. Равенство Парсеваля

 $\{e_k\}$ — ортогональная система в $\mathcal{H}, \, x \in \mathcal{H}.$ Тогда выполняеются следующие утверждения:

1. Ряд Фурье x сходится в \mathcal{H} .

2.
$$x = \sum_{k=1}^{+\infty} c_k(x)e_k + z$$
, где $\forall k : z \perp e_k$.

3.
$$x = \sum_{k=1}^{+\infty} c_k(x) e_k \iff \sum |c_k(x)|^2 \|e_k\|^2 = \|x\|^2$$
 (равенство Парсеваля).

71.1 Доказательство

 $\sum x_k$ — ортогональный — сх $\Longleftrightarrow \sum \|x_k\|$ — сходится.

Р.Ф. — сходится $\iff \sum \left|c_k(x)\right|^2 \|e_k\|^2$ — сходится — это всё верно по неравенству Бесселя.

$$z: x - \sum c_k e_k, \ \langle z, e_n \rangle = \langle x, e_n \rangle - \sum = \langle x, e_n \rangle - c_n \langle e_n, e_n \rangle.$$

⇒ — очевидно из предыдущей теоремы пункта 3.

$$\Leftarrow ||x||^2 = ||\sum c_k(x)p_k||^2 + ||z||^2 = \sum |c_k(x)|^2 ||e_k||^2 + ||z||^2 \Rightarrow z = 0$$

72 Базис, полная, замкнутая ОС

- 1. ортогональная система векторов базис, если $\forall x \in \mathcal{H} : x = \sum c_k(x)e_k$.
- 2. ортогональная система векторов *полная*, если не $\exists z:z\perp\{e_k\}.$
- 3. ортогональная система векторов *замкнутая* если $\forall x \in \mathcal{H}$ выполняется уравнение замкнутости, т.е. $\sum \left|c_k(x)\right|^2 \|e_k\|^2 = \|x\|^2.$

73 Теорема о характеристике базиса

 $\{e_k\}$ — ортогональная система векторов, тогда эквивалентны следующие утверждения:

- 1. $\{e_k\}$ базис.
- 2. $\forall x, y \in \mathcal{H}$ выполняется обобщающее уравнение замкнутости:

$$\langle x, y \rangle = \sum_{k=1}^{+\infty} c_k(x) \overline{c_k(y)} \|e_k\|^2.$$

- 3. $\{e_k\}$ замкнутая ортогональная система.
- 4. $\{e_k\}$ полная ортогональная система.
- 5. Lin $(e_1, e_2, e_3, ...)$ плотное в пространстве \mathcal{H} .

73.1 Доказательство

• 1
$$\Rightarrow$$
 2) $x = \sum c_k(x)P_k$, $\frac{\langle y, e_k \rangle}{\|e_k\|^2} = c_k(y)$. $\langle x, y \rangle = \sum c_k(x)\langle e_k, y \rangle = \sum c_k(x)\overline{c_k(y)}\|e_k\|^2$

- $2 \Rightarrow 3$) y := x.
- $3 \Rightarrow 4$) $z \perp e_k : \forall k, c_k(z) = 0$.

Уравнение замкнутой системы: $\|z\|^2 = \sum |c_k(z)|^2 \|e_k\|^2 = 0$.

- 4 \Rightarrow 1) По теореме Рисса-Фишера $x = \sum_{k=1}^{+\infty} c_k(x)e_k + z, \ z \perp e_k \forall k$, то по условию z = 0, значит это и есть базис.
- $4 \Rightarrow 5$) $\mathcal{L} = Cl(\text{Lin } (e_1, e_2, \ldots))? = \mathcal{H}.$

Если \neq , то $\exists x \in \mathcal{H} \setminus \mathcal{L}$, тогда $x = \sum c_k(x)e_k + z$, $z \perp e_k \forall k \Rightarrow z = 0 \Rightarrow x \in \mathcal{L}$.

• $5 \Rightarrow 4$) $y \perp e_k \forall k, \ y \perp \mathcal{L} = \mathcal{H}, \ y \perp y, \$ что значит $\langle y, y \rangle = 0.$

74 Предельный переход под знаком интеграла при наличии равномерной сходимости

$$\mu X < +\infty, \ \varphi : X \to \mathbb{R}, \ f(x,y) \Rrightarrow \varphi$$
 при $y \to y_0 \ (y_0 \in Y_0$ или y_0 — предельная точка $Y)$. Тогда
$$\varphi - \text{суммируемая на } X, \ \lim_{y \to y_0} \int\limits_X f(x,y) d\mu = \int\limits_X \varphi d\mu.$$

74.1 Доказательство

По Гейне выбираем $y_n \to y_0$ при больших $n: \forall x: |f(x,y) - \varphi(x)| < 1 \Rightarrow \varphi$ — суммируемая.

$$\left| \int\limits_X F(x,y) d\mu - \int\limits_X \varphi d\mu \right| \leqslant \int\limits_X |f - \varphi| d\mu \leqslant \sup_{x \in X} |f(x,y_0) - \varphi(x)| \, \mu X \xrightarrow[n \to +\infty]{} 0.$$

75 Теорема Лебега о непрерывности интеграла по параметру

75.1 определение

$$f: X \times Y \to \overline{\mathbb{R}}.$$

 $y_0 \in Y, f-y$ довлетворяет условию $L_{\mathrm{loc}}(y_0),$ если $\exists g: X \to \overline{\mathbb{R}}$ — суммируемая, а также существует $U(y_0),$ что для почти всех $x \in X$ и $\forall y \in Y(y_0): |f(x,y)| \leq g(x).$

75.2 Теорема

 $f: X \times Y \to \overline{\mathbb{R}}, \ \varphi: X \to \overline{\mathbb{R}}, \$ что $\lim_{y \to y_0} f(x,y) = \varphi(x)$ при почти всех $x, \ f$ — удовлетворяет $L_{\mathrm{loc}}(y_0)$. Тогда φ — суммируемая, $\lim_{y \to y_0} \int\limits_X f(x,y) d\mu = \int\limits_X \varphi d\mu$.

75.2.1 Доказательство

Из теоремы Лебега по Гейне $y_n \to y_0$, при почти всех x, при $y \in U(y_0)$ верное $|f(x,y)| \le g(x)$, для больших n получаем $|f(x,y_n)| \le g(x)$, при $n \to +\infty$ $|\varphi(x)| \le g(x) \Rightarrow \varphi$ — суммируемая.

$$\int\limits_{V} f(x,y_n) d\mu \xrightarrow[n \to +\infty]{} \int\limits_{V} \varphi d\mu.$$

75.2.2 Следствие

f — при почти всех x — непрерывно по y в точке y_0, f — удовлетворяет $L_{\mathrm{loc}}(y_0)$. Тогда $J(y)\coloneqq \int\limits_X f(x,y)d\mu(x)$ — непрерывна в $y_0.$ $\varphi\leftarrow -f(x,y_0).$

76 Правило Лейбница

 $Y \subset \mathbb{R}$ — промежуток.

 $f: X \times Y \to \overline{\mathbb{R}}, \ \forall y: f(\cdot, y)$ — суммируемая на X.

Пусть:

- 1. для почти всех x и $\forall y \in Y : \exists f_y'(x, y)$.
- 2. f'_y удовлетворяет $L_{loc}(y_0)$.

$$J(y) = \int\limits_X f(x,y) d\mu(x)$$
. Тогда

$$J(y)$$
 — дифференцируемая в y_0 и $J'(y)$ = $\int\limits_X f_y'(x,y)d\mu(x).$

76.1 Доказательство

$$F(x,h) := \frac{f(x,y_0+h) - f(x,y_0)}{h} \xrightarrow[h \to 0]{} f'_y(x,y_0).$$

$$\frac{J(y_0+h)-J(y_0)}{h}=\int\limits_{Y}F(x,h)d\mu\xrightarrow[h\to 0]{}\int\limits_{Y}f_y'(x_0,y_0)d\mu.$$

 $L_{\rm loc}(h=0), |F(x,h)| = \left|f_y'(x,y_0 \to \theta h)\right|$ по теорема Лагранжа, и $\left|f_y'(x,y_0 \to \partial h)\right| \leqslant g(x)$ по условию $L_{\rm loc}(y_0)$ для f_y' из 2 пункта.

76.2 Тригонометрический полином порядка n

$$T_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx - m$$
ригонометрический полином не выше n .

$$\frac{a_0}{2} + \sum_{k=1}^{+\infty} a_k \cos kx + b_k \sin kx$$
— тригонометрический ряд.

$$\cos kx = \frac{e^{ikx} + e^{-ikx}}{2}, \ \sin kx = \frac{e^{ikx} - e^{-ikx}}{2i}.$$

$$S_n = \sum_{k=-n}^n c_k e^{ikx}$$
 — тригонометрический полином в экспоненциальной форме.

$$\sum_{k\in\mathbb{Z}}c_ke^{ikx}$$
 = $\lim S_n(x)$ — тригонометрический ряд в экспоненциальной форме.

$$e^{ikx} = \cos nx + i\sin nx.$$

77 Лемма о вычислении коэффициентов тригонометрического ряда

Дан тригонометрический ряд (вещественный или комлексный), S_n , также известно, что $S_n \to f$ в $L^1[-\pi,\pi]$.

Тогда

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt dt$$
 (работает и при $k = 0$).

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt dt.$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt}dt.$$

78 Доказательство

Докажем только формулу 1, остальные доказываются аналогично.

Возьмём
$$n > k$$
, тогда $\int_{-\pi}^{\pi} S_n(t) \cos kt = \int_{-\pi}^{\pi} \left(\frac{a_0}{2} + \sum a_l \cos lt + b_l \sin lt \right) \cdot \cos kt dt = \int_{-\pi}^{\pi} a_l \cos^2 kt = \pi a_k$.

$$\left| \int_{-\pi}^{\pi} S_n(t) \cos kt - \int_{-\pi}^{\pi} f(t) \cos kt \right| \leq \int_{-\pi}^{\pi} |S_n(t) - f(t)| \left| \cos kt \right| dt \leq \int_{-\pi}^{\pi} |S_n(t) - f(t)| dt = \|S_n - f\|_1 \xrightarrow[n \to +\infty]{} 0.$$

78.1 Определение

 $f \in L^1[-\pi,\pi], \ a_k(f), \ b_k(f), \ c_k(f), \$ полученные по формуле из леммы — это назначенные коэффициенты Фурье функции f.

Ряд
$$\frac{a_0(f)}{2} + \sum_{k=1}^{+\infty} a_k(f) \cos kx + b_k(f) \sin kx - pяд$$
 Фурье функции f .

Также можно рассматривать $\sum\limits_{k\in\mathbb{Z}}c_k(f)c^{ikx}$ — тоже ряд Фурье.

78.1.1 Замечание

$$f \in L_1 = L^1[-\pi,\pi]$$
 — чётна.

$$b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin ktt dt = 0.$$

$$a_k(f) = \frac{2}{\pi} \int_0^{\pi} f(t) \cos ktt dt.$$

если f — нечётная, то меняем местами a и b $(a_k = 0, b_k(f) = \frac{2}{\pi}...).$

78.1.2 Еще шаманство

Для $f \in L^1[0,\pi]$ можно считать ряд Фурье по синусам или по косинусам.

$$f \sim \frac{a_0}{2} + \sum a_k \cos kx, \ f \sim \sum b_k(f) \sin kx.$$

79 Теорема Римана-Лебега

$$E \subset \mathbb{R}, \ f \in L^1(E,\lambda_1)$$
. Тогда
$$\int\limits_E f(t)e^{i\lambda t}dt \xrightarrow[\lambda \to +\infty]{} 0.$$

$$\int\limits_E f(t)\cos t \xrightarrow[\lambda \to +\infty]{} 0 \ (\text{аналогично для sin}).$$

79.1 Следствие

$$a_k(f), b_k(f), c_k(f) \xrightarrow[k \to +\infty]{} 0.$$

79.2 Доказательство

Пусть f = 0 вне $E, f \in L^1(\mathbb{R})$.

$$\int_{\mathbb{R}} f(t)e^{i\lambda t}dt \text{ при } t = \tau + \frac{\pi}{\lambda} \text{ равно } \int_{\mathbb{R}} f\left(\tau + \frac{\pi}{\lambda}\right)e^{i\lambda \tau + i\pi}d\tau = -\int_{\mathbb{R}} f\left(t + \frac{\pi}{\lambda}\right)e^{i\lambda t}dt.$$

$$2\int_{\mathbb{R}} f(t)e^{i\lambda t} = \int_{\mathbb{R}} \left(f(t) - f(t + \frac{\pi}{\lambda})\right)e^{i\lambda t}dt$$

$$\left|\int_{\mathbb{R}} f(t)e^{i\lambda t}\right| \leqslant \frac{1}{2}\int_{\mathbb{R}} \left|f(t) - f(t + \frac{\pi}{\lambda}) \cdot \left|e^{i\lambda t}\right|dt = \frac{1}{2}\|f - f_{\pi/\lambda}\| \xrightarrow[h \to 0]{} 0.$$

79.3 Модуль непрерывности

$$w(f,h) = \sum_{x,y \in E, |x-y| < h} |f(x) - f(y)|$$
 — модуль непрерывности.

Пусть f — дифференцируема на [a,b], тогда $|w(f,h)| \le \max |f'|h$.

79.4 Теорема

1.
$$f \in \widetilde{C}[-\pi, \pi]$$
. Тогда $|a_k(f)|, |b_k(f)|, 2|c_k(f)| \leq w(f, \frac{\pi}{k})$.

79.4.1 Доказательство

Как в теореме Римана-Лебега делаем рассуждение $[-\pi,\pi]$.

$$\int\limits_{-\pi}^{\pi}f(t)\cos ktdt=-\int\limits_{-\pi}^{\pi}f(\tau+\frac{\pi}{k})\cos kt$$
 (сделали замену), тогда $\pi w(f,\frac{\pi}{k})$.

Часть I

05.05.2020

79.5 Равномерно сходящийся интеграл

$$J(y)=\int\limits_a^{\to b}f(x,y)d\mu(x),\;f:\langle a,b\rangle imes Y o\overline{\mathbb{R}},$$
 локально суммируемая.

Интеграл J(y) равномерно сходится на $Y \Longleftrightarrow \int\limits_{a}^{t} f(x,y) dx \Rightarrow J(y)$ при $t \to b-0$.

$$\left| \int_{a}^{t} f(x,y) dx - J(y) \right| \xrightarrow[t \to b-0]{} 0.$$

$$\sup_{y} \left| \int_{a}^{b} f(x,y) dx \right| \xrightarrow[t \to b-0]{} 0.$$

79.6 Что-то похожее на признак Вейерштрасса

$$|f(x,y)| \le g(x)$$
 и $\int\limits_a^b g(x)$ конечен, тогда интеграл $\int\limits_a^{\to b} g(x) dx$ — равномерно сходится.

79.7 Ложное воспоминание Констранина Петровича

 $f:T\times Y\to\mathbb{R},\,T\subset\widetilde{T},\,Y\subset\widetilde{Y}$ — метрические пространства (метризуемые)

 t_0 — предельная точка $T,\,y_0$ — предельная точка Y. Пусть

- 1. $\forall t \in T : \exists \text{ KoH. } L(t) = \lim_{y \to y_0} f(t, y).$
- 2. $\forall y \in Y : \exists \text{ Koh. } J(y) = \lim_{t \to t_0} f(t, y).$
- 3. Хотя бы один из пределов равномерный.

Тогда существует конечный $\lim_{t \to t_0} L(t) = \lim_{y \to y_0} J(y)$.

$$f_n(x), \lim_{x \to x_0} f_n(x) = a_n, \ f_n(x) \Rightarrow S(x), \ \text{тогда} \ \exists \ \text{кон.} \ \lim_{x \to x_0} S(x) = \lim_{n \to +\infty} a_n.$$

79.8 Теорема

 $f: X \times Y \to \overline{\mathbb{R}}, (X, \mathcal{A}, \mu)$ — пространство с мерой.

 $Y \subset \widetilde{Y}$ — метрическое пространство (или Y— м.п., или \widetilde{Y} — метризуемое)

$$Y_0 \in \widetilde{Y} - \pi$$
. T. Y .

- 1. при почти всех $x : \exists f_0(x) = \lim_{y \to y_0} f(x, y)$.
- 2. f локально суммируемая, т.е. суммируемая на каждом (a,t): t < b. $\int_{a}^{t} f(x,y) \to \int_{a}^{t} f_0(x)$.
- 3. $|forally: \exists J(y) = \int_{a}^{\rightarrow b} f(x,y)d\mu(x)$ равномерно сходится на Y.

Тогда
$$\int_{a}^{b} f(x,y) d\mu(x) \xrightarrow{y \to y_0} \int_{a}^{b} f_0(x) d\mu(x).$$

79.8.1 Доказательство

Это ложное вспоминание с точностью до обозначений.

$$T = (a, b), T_0 = \overline{\mathbb{R}}, t_0 = b.$$

$$f(t,y) = \int_{-t}^{t} f(x,y)d\mu(x), L(t) = \int_{-t}^{t} f_0(x)d\mu(x).$$

Переход конечный ↔ интеграл равномерно сходится.

79.8.2 Следствие

 $1 \leftrightarrow 1'$ при почти всех $x \ y \mapsto f(x,y)$, непрерывна в точке y_0 .

Тогда заключение: J(y) непрерывен в точке y_0 .

79.9 Определение

$$E = \langle a, b \rangle, M \in \mathbb{R}, \alpha \in (0, 1).$$

$$\mathrm{Lip}_M(\alpha)$$
 = $\{f:E \to \mathbb{R}: \forall x,y \in E: |f(x)-f(y)| \leqslant M|x-y|\}$ — класс Липшеца.

79.9.1 Пример

f — дифференцируема, $\forall x: |f'(x)| \leq M, f \in \text{Lip}_M(1)$.

$$|f(x) - f(y)| = |f'(X)|x - y| \le M|x - y|.$$

79.10 Следствие

 $0\alpha \leqslant 1, \ f \in \mathrm{Lip}_M(\alpha)$. Тогда при $k \neq 0$

$$|a_k(f)|, |b_k(f)|, 2|c_k(f)| \le \frac{M\pi^{\alpha}}{k^{\alpha}}.$$

79.11 Утверждение

 $f \in \widetilde{C}^1[a,b]$. Тогда

$$a_k(f') = kb_k(f), b_k(f') - ka_k(f), c_k(f') = ikc_k(f).$$

$$2\pi C_k(f') = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(x)e^{-ikx} = f(x)e^{-ikx} \Big|_{-\pi}^{\pi} + ik \int_{-\pi}^{\pi} f(x)e^{-ikx}$$

79.12 Следствие

1.
$$f \in \widetilde{C}^{(r)}[-\pi,\pi]$$
. Тогда $|a_k(f)|, |b_k(f)|, |c_k(f)| \leq \frac{\text{const}}{|k|^2}$.

2.
$$f \in \widetilde{C}^{(r)}, f^{(r)} \in \operatorname{Lip}_M(\alpha)$$
. Тогда . . . $\leq \frac{\operatorname{const}}{|k|^{r+\alpha}}$.

$$a_k(f) = \frac{1}{k^r} a_k \left(f^{(r)} \right)$$

79.13 Ядро Дирихле

$$D_n(t) = \frac{1}{\pi} \left(\frac{1}{2} + \sum_{k=1}^n \cos kt \right) -$$
ядро Дирихле, $n = 0, 1, \dots$

79.14 Ядро Фейера

$$\Phi_n(t) = \frac{1}{n+1} \sum_{k=0}^n D_k(t).$$

79.15 Свойства

1.
$$D_n(t) = df rac \sin\left(\left(n + \frac{1}{2}\right)t\right) 2\pi \sin t/2.$$

2.
$$\Phi_n(t) = \frac{1}{2\pi(n+1)} \cdot \frac{\sin^2\left(\frac{n+1}{2}t\right)}{\sin^2 t/2}$$
.

3.
$$D_n, \, \Phi_n$$
 — чётные, $\Phi_n \geqslant 0, \, \int\limits_{-\pi}^{\pi} D_n = 1, \, \int\limits_{-\pi}^{\pi} \Phi_n = 1.$

4.
$$f \in L^1[-\pi, \pi]$$
, тогда $S_n(f, x) = \int_{-\pi}^{\pi} f(x+t)D_n(t)dt$.

79.15.1 Доказательство

$$2\sin\frac{\pi}{2}\cos kt = \sin\left(k + \frac{1}{2}\right)t - \sin\left(K - \frac{1}{2}\right)t.$$

$$2\sin\frac{t}{2}D_n = \frac{1}{\pi}\left(\sin\frac{\pi}{2} + \sum\sin\left(k + \frac{1}{2}\right)t - \sin\left(k - \frac{1}{2}\right)t\right)$$

$$2\pi(n+1)\Phi_n = \sum_{k=0}^n \frac{\sin\left(k+\frac{1}{2}\right)t}{\sin t/2} = \frac{\sin^2\frac{n+1}{2}t}{\sin^2\frac{t}{2}}.$$

$$2\sum_{k=0}^{n}\sin\frac{t}{2}\sin\left(k+\frac{1}{2}\right)t = 2\sum\cos kt - \cos\left(k+1\right)t = (1-\cos(n+1)t) = 2\sin^{2}\left(\frac{n+1}{2}t\right)$$

$$A_k(f,x)\frac{1}{\pi}\int_{-\pi}^{\pi}f(x+t)\cos ktdt$$

79.16 Интеграл Дирихле

$$\int\limits_{-\pi}^{\pi}f(x+t)Dn(t)dt$$
 — интеграл Дирихле.

80 Принцип локализации Римана

$$f, g \in L_1, x_0 \in \mathbb{R}, \delta > 0.$$
 $f(x) = g(x)$ на $(x_0 - \delta, x_0 + \delta)$. Тогда

ряды Фурье f и g ведут себя одинаково, т.е. $S_n(f,x_0)$ – $S_n(g,x_0) \xrightarrow[n \to +\infty]{} 0$.

80.1 Доказательство

 $h \coloneqq f - g, \ h = 0$ в $(x_0 - \delta, x_0 + \delta), \ S_n(h, x_0),$ проверим, что $S_n(h, x_0) \to 0$.

$$S_n(h, x_0) = \int_{-\pi}^{\pi} h(x_0 + t) D_n(t).$$

$$\frac{\sin\left(n+\frac{1}{2}\right)t}{\sin\frac{t}{2}} = \operatorname{ctg}\frac{t}{2}\sin t + \cos nt.$$

$$S_n(h,x_0) = \frac{1}{\pi} \int_{-\pi}^{\pi} h(x_0+t) \operatorname{ctg} \frac{t}{2} \sin nt + h(x_0+t) \cos nt dt = b_n(h_1) + a_n(h_2) \xrightarrow[h \to +\infty]{} 0$$
. по теореме Римана-Лебега.

Равенство выполняется в случае $h_1, h_2 \in L_1, h_2 \in L_1$ — очевидно.

$$\int_{-\pi}^{\pi} |h_2| = \int_{-\pi}^{\pi} |h(x_0 + t)| dt.$$

$$h(x_0+t)$$
ctg $\frac{t}{2}$ при $|t| < \delta : h_1 = 0.$

$$|t| > \delta : |h_1| \le |h(x_0 + t)| \cdot \operatorname{ctg} \frac{\delta}{2}.$$

80.2 Замечания

1. В условиях теоремы пусть $[a,b] \subset (x_0 - \delta, x_0 + \delta)$. Тогда

$$S_n(h,x) \ni 0$$
 при $n \to +\infty$ на $[a,b]$.

- 2. x_0 , δ . Для определения ряда Фурье нужен весь $[-\pi,\pi]$. A для "поведения" ряда Фурье существенна лишь окрестность x_0 .
- 3. $f \in L^1[0,\pi],$

$$f \sim \sum b_k(f) \sin kx$$
.

$$\sim \sum a_k(f)\cos kx.$$

Эти различия ведут себя одинаково на $[0,\pi].$

81 До свидания, теория меры

(a,b)

Cymm. (a,t)

$$\lim_{t \to b-0} \int_{a}^{t} f(x) d\mu(x).$$

$$\int\limits_{a}^{\to b} f(x,y) d\mu(x) - \text{равномерно сходится, если } \int\limits_{a}^{t} \Rightarrow \int\limits_{a}^{\to b}, \text{ если } \sup\limits_{y \in Y} \left| \int\limits_{t}^{\to b} f(x,y) d\mu(x) \right| \xrightarrow[t \to b \to 0]{} 0.$$

81.1 Теорема об интегрировании по параметру

 $f:(a,b) imes Y o \overline{\mathbb{R}}$ — суммируемая по мере $\lambda_1 imes \mu$ на каждом множестве вида (a,t) imes Y, где a< t< b. $\mu Y<+\infty$. Пусть $J(y)=\int\limits_a^{\to b}f(x,y)dx$ — равномерно сходится на Y. Тогда

1. J(y) — суммируемая на Y.

2.
$$\int\limits_a^b \Biggl(\int\limits_Y f(x,y) d\mu(y)\Biggr) dx$$
 — сходится.

3.
$$\int\limits_{Y} \int\limits_{a}^{\rightarrow b} f(x,y) d\mu(x) = \int\limits_{a}^{\rightarrow b} \left(\int\limits_{Y} f(x,y) dy \right).$$

81.1.1 Доказательство

Проверим свойство 1.

$$J_t(y) = \int\limits_a^t f(x,y) dx, \ a < t < b, \ y \in Y$$
 — суммируемая на Y по теореме Фубини.

$$|J(y) - J_t(y)| = \int\limits_t = \left|\int\limits_t^{\to b} f(x,y) dx\right| \le 1 \,\, \forall y \,\, \text{при} \,\, t \,\,$$
близких к $b \,\,$ (следует из равномерной сходимости), значит $J(y)$ — суммируемая (поскольку $\mu Y < +\infty$).

Остальные свойства сами собой получаются.

$$x\mapsto\int\limits_{Y}f(x,y)d\mu(y)$$
 — суммируемая по x на промежутке (a,t) (по теореме Фубини).

По теореме Фубини
$$\int\limits_a^t \left(\int\limits_Y f(x,y)d\mu(y)\right)dx = \int\limits_Y \int\limits_u^t f = \int\limits_Y \int \left(\int\limits_a^{\to b} f dx\right)d\mu(y) - \int\limits_Y \left(\int\limits_t^{\to b} f dx\right)d\mu(Y).$$

$$\left| \int\limits_a^t \left(\int\limits_Y f \right) - \int\limits_Y \left(\int\limits_a^{\to b} f \right) \right| \leqslant \left| \int\limits_Y \left(\int\limits_t^{\to b} f dx \right) dy \right| \leqslant \int\limits_Y \left| \int\limits_t^{\to b} f dx \right| dy \leqslant \mu Y \sup_{y \in Y} \left| \int\limits_t^{\to b} f(x,y) dx \right| \xrightarrow[t \to b \to 0]{} 0.$$

81.2 Правило Лейбница для несобственный интегралов

 $f:[a,b)\times\langle c,d\rangle\to\mathbb{R}$ — непрерывная.

$$\forall y: J(y) = \int_{a}^{b} f(x,y)dx$$
 — еходится.

Пусть $\forall x: \forall y: \exists f_y'(x,y)$ — непрерывная функция, $[a,b) \times \langle c,d \rangle$.

Пусть $I(y) = \int_{a}^{b} f'_{y}(x,y)dx$ — равномерно сходится на $\langle c,d \rangle$. Тогда

1.
$$J(y) \in C^1(c,d)$$
.

2.
$$J'(y) = I(y)$$
, T.E. $\frac{d}{dy} \left(\int_a^b f(x,y) dx \right) = \int_a^b f'_y(x,y) dx$

81.2.1 Доказательство

I — непрерывно зависит от y (по теореме о непрерывности несобственного интеграла).

$$s_0, s \in \langle c, d \rangle, \int_{s_0}^s I(y) dy = \int_{s_0}^s \left(\int_a^{\to b} f'_y dx \right) dy.$$

$$[x,y) \in [a,t] \times [s_0,s], f'_y$$

По предыдущей теореме меняем порядок и получаем

$$\int\limits_a^b \left(\int\limits_{s_0}^s f_y'(x,y)dy\right) dx = \int\limits_a^b f(x,s) - f(x,s_0) dx = J(s) - J(s_0) \Rightarrow J(s) - \text{дифференцируема, по теореме Барроу} \\ J'(S) = I(S).$$

Часть II

11.05.2020

$$D_n \coloneqq \frac{1}{\pi} \left(\frac{1}{2} + \sum_{k=1}^n \cos kx \right)$$

$$S_n(f,x) = \int_{-\pi}^{\pi} f(x+t)D_n(t)dt.$$

81.3 Признак Дины

 $f \in L_1, x_0 \in \mathbb{R}, S \in \mathbb{R}(\mathbb{C}).$

$$\int\limits_{0}^{\pi} \frac{|f(x_{0}+t)-2S+f(x_{0}-t)|}{t} dt < +\infty.$$
 Тогда

ряд Фурье в x_0 сходится к S, или $S_n(f,x_0) \xrightarrow[n \to +\infty]{} S$.

81.3.1 Доказательство

Обозначим $\varphi(t) = f(x_0 + t) - 2S + f(x_0 - t)$.

Если D_n — четный, то $\int\limits_{-\pi}^{\pi} D_n$ = 1.

 $S_n(f,x_0) - S = \int_{-\pi}^{\pi} f(x_0 + t) D_n(t) - \int_{-\pi}^{\pi} SD_n(t) dt = \int_{-\pi}^{\pi} (f(x + t) - S) D_n(t) dt = \int_{-\pi}^{0} + \int_{0}^{\pi} \int_{0}^{\pi} \varphi(t) D_n(t) dt, \text{ для}$

$$\int_{0}^{\pi} \varphi(t) D_n(t) dt = \frac{1}{n} \int_{0}^{\pi} \frac{\varphi(t)}{2} \left(\operatorname{ctg} \frac{t}{2} \sin nt + \cos nt \right) = b_n(h_1) + a_n \left(\frac{\varphi(t)}{2} \right)$$
 (в кавычках).

$$h_1(t) = \frac{\varphi(t)}{2} \cdot \operatorname{ctg} \frac{t}{2}.$$

$$h_1(t)$$
 =, $\frac{\varphi(t)}{2}$ ctg $\frac{t}{2}$ для $t \in (0,\pi)$ или 0 , если $t \in (-\pi,0)$.

в кавычках $\frac{\varphi(t)}{2}=\frac{\varphi(t)}{2}$ для $t\in(0,\pi)$ и 0 в противном случае.

Теперь проблема с $h_1 \in L_1$.

$$h_1, \frac{\varphi}{2} \in L_1$$
 (в кавычках).

в кавычках $\frac{\varphi}{2} \in L_1$ — очевидно.

$$\left| \frac{\varphi(t)}{2} \operatorname{ctg} \frac{t}{2} \right| \le \frac{|\varphi(t)|}{2 \cdot t/2} = \frac{|\varphi(t)|}{t}$$

 $| \operatorname{tg} x | > |x|$ при $x \in (0, \pi/2)$, a $\operatorname{ctg} x < x$.

81.4 Замечания

$$1. * \Leftrightarrow \forall \delta > 0: \int_{0}^{\delta} \frac{|\varphi(t)|}{t} dt < +\infty \leqslant \int_{\delta}^{\pi} \frac{|f(x_0 + t)| + |f(x_0 - t)| + 2S}{t} \leqslant \frac{1}{\delta} (\|f\| + \|f\| + 2S\pi).$$

2.
$$f(x) = \frac{1}{\ln |x|}$$
 — непрерывна в 0.

$$x_0$$
 = 0, S := 0, то $\int \frac{|f(t)+f(-t)-2S|}{t} dt$,тогда $-\int_0^\pi \frac{2}{t \ln t} dt$ — расходится.

81.5 Следствие

 $f \in L_1, x_0 \in [-\pi, \pi]$. Пусть существуют 4 предела: $f(x_0 \pm 0), \alpha_{\pm} \coloneqq \lim_{t \to \pm 0} \frac{f(x_0 + t) - f(x_0 \pm 0)}{t}$. (односторонняя производная). Тогда

$$S_n(f,x_0) \to \frac{1}{2} (f(x_0+0)+f(x_0-0)).$$

Берём
$$S = \frac{1}{2} (f(x_0 + 0) + f(x_0 - 0)).$$

$$(*): \int_{0}^{\pi} \frac{f(x_0+t)+f(x_0-t)-f(x_0+0)-f(x_0-0)}{t} \xrightarrow[t\to 0]{} \alpha_+ + \alpha_-.$$

т.е. интеграл (*) не является несобственном в нуле.

81.6 Следствие 2

 $f \in L_1, f$ — непрерывна в x_0 , а также $\exists f'_{\pm}(x_0)$. Тогда

$$S_n(f,x_0) \to f(x_0).$$

81.6.1 Доказательство

$$f(x_0 \pm 0) = f(x_0, \alpha_{\pm} = f'_{\pm}(x_0).$$

81.7 Пример

f(x) = x на $[-\pi,\pi]$, она нечётная, тогда $a_k(f)$ = 0.

$$b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin kx = \frac{2}{\pi} \int_{0}^{\pi} = x \frac{-\cos kx}{k} \Big|_{0}^{\pi} + \frac{2}{\pi k} \int_{0}^{\pi} \cos kx dx = \frac{2}{k} (-1)^{k-1}.$$

Ряд Фурье: $S(f,x) = \sum_{k=0}^{\infty} \frac{2}{k} (-1)^k \sin kx$.

$$x = \frac{\pi}{2}, \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots\right) = \frac{\pi}{4}.$$

x = $\pi,$ \sum = 0 (полусумма π и $-\pi$ равна 0 по признаку Дини).

$$\sum \|\frac{2}{k}(-1)^k \sin kx\|_2^2 = \|x\|_2^2.$$

$$\frac{4}{k^2} \int_{-\pi}^{\pi} \sin^2 kx dx.$$

$$\int_{-\pi}^{\pi} x^2 dx = \frac{x^3}{3} \Big|_{-\pi}^{\pi} = \frac{2\pi^3}{3}.$$

$$\sum \frac{4\pi}{k^2} = \frac{2\pi^3}{3}, \ \sum \frac{1}{k^2} = \frac{\pi^2}{6}.$$

81.8 Конфетка

Пусть $f \in L_1$, тогда:

1. Четная.

$$2. \int_{-\pi}^{\pi} f = 0.$$

3. $\forall q \in \mathbb{Q} : f = 0$ в окрестности точки πq .

4.
$$0 < \int_{-\pi}^{\pi} |f|^2 dx < +\infty \Rightarrow f \in L_2, f \neq 0 \Rightarrow$$
 ряд Фурье f нетривиальный.

 $a_k = a_k(f)$. Тогда

$$\forall m \in \mathbb{N} : s \sum_{k=0}^{+\infty} a_{km} = 0.$$

81.8.1 Доказательство

$$\sum a_k \cos kx \leftrightarrow f.$$

 $x_0 \coloneqq \frac{2\pi}{n}i;$ в окрестности x_0 f = 0 удовлетворяет признаку Дини.

$$\sum a_k \cos \frac{2\pi}{n} ik = 0, i = 0, 1, 2, \dots, n - 1.$$

Сложим по
$$i:\sum a_k\left(\sum_{i=0}^{n-1}\cos\left(\frac{2\pi}{n}kj\right)\right)$$
 = 0.

$$\cos 2\pi \frac{0k}{n} + \cos 2\pi \frac{k}{n} + \cos 2\pi \frac{2k}{n} + \cos 2\pi \frac{3k}{n} + \dots + \cos 2\pi \frac{(n-1)k}{n}.$$

Это сумма x координат и векторов, и она не меняется при повороте на $\frac{2\pi k}{n}$ \Rightarrow сумма векторов равна 0, значит и сумма x координат равна 0. (рассуждение содержательно только при k не делящемся на n).

При k делящемся на n сумма равна n.

Часть III

Свёртки и аппроксимативные единицы

81.9 Определение

Свёртка двух функций из $L^1[-\pi,\pi],\,f,\,K\in L_1,$

$$(f * K)(x) = \int_{-\pi}^{\pi} f(t)K(x-t)dt = \int_{-\pi}^{\pi} f(x-t)K(t)dt.$$

81.10 Корректность определения

g(x,t) = f(x-t)K(t). Проверим, что функция — измеримая $\mathbb{R}^2 \to \overline{\mathbb{R}}$.

Давайте рассмотрим функции попроще, т.е. $\varphi(x,t) = f(x-t)$ — измеримая ли она? $\mathbb{R}^2 \to \overline{\mathbb{R}}$.

 $\mathbb{R}^2(\varphi < a), E_a \coloneqq \mathbb{R}(f(x) < a)$ — измеримая по Лебегу в \mathbb{R} .

$$f(x-t) < a.$$

$$(x,t)\mapsto (x-t,t).$$

$$\mathbb{R}^2(\varphi < a) \mapsto E_a \times \mathbb{R}.$$

 φ — измеримая, $K(t): \mathbb{R}^2 \to \overline{\mathbb{R}}$ — измеримо, $(t,x) \mapsto K(t)$.

$$\iint_{T-\pi,\pi} |g(x,t)| dxdt = \int_{-\pi}^{\pi} dt \left(|K(t)| \int_{-\pi}^{\pi} |f(x-t)| dx \right) = \int_{-\pi}^{\pi} f(x-t)K(t)dt.$$

Таким образом, свёртка определена при почти всех x, и результат свёртки также лежит в L^1 (всё это следует из теоремы Фубини).

81.11 Коэффициент Фурье свёртки

$$c_k(f * K) = 2\pi c_k(f)c_k(K).$$

$$2\pi c_k(f*k) = \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} f(x-t)K(t)dt \right) e^{-ikx} dx, \ f(x-t)K(t)e^{-ikx} - \text{суммируемая на } [-\pi,\pi] \times [-\pi,\pi], \text{ тогда}$$

$$\iint_{[-\pi,\pi]\times[-\pi,\pi]} f(x-t)K(t)e^{-ik(x-t)}e^{-ikt}dxdt = \int_{-\pi}^{\pi} dt \left(\int_{\pi}^{\pi} K(t)e^{-ikt} \int_{-\pi}^{\pi} f(x-t)e^{-ik(x-t)}dx\right) = (2\pi)^{2}c_{k}(K)c_{k}(f).$$

$$\widetilde{c}_{k}(f*K) = \widetilde{c}_{k}(f)\widetilde{c}_{k}(K).$$

$$L^{1}[-\pi,\pi] \xrightarrow{\widetilde{c}}.$$

$$f \mapsto (\ldots, \widetilde{c_{-2}(f)}, \widetilde{c_{-1}(f)}, \widetilde{c_0}(f), \widetilde{c_1}(f), \ldots).$$

$$f * g \mapsto (\ldots, \widetilde{c_{-1}(f)}, \widetilde{c_{-1}(g)}, \widetilde{c_0(f)} \widetilde{c_0(g)}, \widetilde{c_1}, \ldots).$$

81.12 Ещё одно свойство

$$f \in L^p[-\pi,\pi], \ K \in L^q[-\pi,\pi]. \ 1 \leqslant p \leqslant +\infty, \ \frac{1}{p} + \frac{1}{q} = 1.$$
 Тогда
$$f * K \text{ непрерывна, } \|f * K\|_{\infty} \leqslant \|f\|_p \cdot \|K\|_q \ (*).$$

81.12.1 Доказательство

Неравенство (*) — неравенство Гёльдера.

$$\int_{-\pi}^{\pi} f(x-t)K(t)dt \le \left(\int_{-\pi}^{\pi} |f|^p\right)^{1/p} \left(\int_{-\pi}^{\pi} |K|^q\right)^{1/q}.$$

$$p = 1, +\infty,$$

 $q = +\infty, 1.$

 $|(f*K)(x+h)-(f*K)(x)|=\left|\int_{-\pi}^{\pi}\left(f(x+h-t)-f(x-t)\right)\right|\leqslant \|k\|_{q}\cdot\|f_{h}-f\|_{p}\xrightarrow[h\to 0]{}0$ (по теореме о непрерывности сдвига, но с оговоркой, что теореме о непрерывности сдвига не работает для случая $p=+\infty$, если $p=+\infty$, то поменяем p и q местами, работает из-за симметричности свёртки).

Часть IV

18.05.2020

$$(f * K)(x) = \int_{-\pi}^{\pi} f(x-t)K(t)dt.$$

81.13 Теорема

$$f \in L^p[-\pi,\pi](1 \le p \le +\infty), K \in L_1$$
. Тогда $f * K \in L^p$.

$$||f * K||_P \le ||K||_1 ||f||_p$$
.

При $p = +\infty$ тоже очевидно.

Докажем при $1 . Возьмём <math>\frac{1}{p} + \frac{1}{q} = 1$.

$$\left|\int\limits_{-\pi}^{\pi}f(x-t)k(t)dt\right|^{p}\leqslant\left(\int\limits_{-\pi}^{\pi}\left|f(x-t)\right|\left|K(t)\right|^{1/p}\left|K(t)\right|^{1/q}\right).$$
 и это не превосходит по Гёльдеру

$$\left(\int_{-\pi}^{\pi} |f(x-t)|^p |K(t)| dt\right) \left(\int_{-\pi}^{\pi} |K(t)| dt\right)^{p/q} = ||K||_1^{p/q}.$$

$$||f * K||_{p}^{p} = \int_{-\pi}^{\pi} \left| \int_{-\pi}^{\pi} f(x-t)K(t)dt \right|^{p} dx \le ||K_{1}||^{p/q} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(x-t)|^{p} |K(t)| dt dx = ||K||_{1}^{p/q+1} ||f||_{p}^{p} = ||K||_{1}^{p} ||f||_{p}^{p}.$$

81.14 Определение

$$E_{\delta} := [-\pi, \pi] \setminus (-\delta, \delta), \ 0 \leq \delta < \pi.$$

 $D \in \mathbb{R}, h_0 \in \overline{\mathbb{R}}$ — предельная точка D.

Семейство функций $\{K_h\}_{h\in D}$ — аппроксимативная единица, если выполнены следующие аксиомы:

1.
$$\forall h \in D : K_h \in L^1([-\pi, \pi]), \int_{-\pi}^{\pi} K_h = 1.$$

2.
$$\exists M > 0 : \forall h \in D : ||K_h||_1 \leq m$$
.

3.
$$\forall \delta in(0,\pi): \int_{E_{\delta}} |K_h| dt \to 0, h \to h_0.$$

81.14.1 Замечание

Если $K_n \geqslant 0$, то из аксиомы 1 следует аксиома 2 (M=1).

81.14.2 Суррогатная аксиома 3

$$K_h \in L^{\infty}[-\pi,\pi]$$
 и $\forall \delta \in (0,\pi) : \operatorname{ess \ sup}_{x \in E_{\delta}} |K_h(t)| \xrightarrow[h \to h_0]{} 0.$

Очевидно, из суррогатной аксиомы 3 следует обычная аксиома 3.

81.14.3 Вывод

Сочетание аксиом 1, 2 и суррогатной 3 — усиленная аппроксимативная единица.

81.14.4 Замечание

 K_h — аппроксимативная единица, $\left\{\frac{|K_h|}{\|K_h\|_1}\right\}_{h\in D}$ — тоже аппроксимативная единица (из аксиомы 1 K_h \Rightarrow $\|K_h\|_1\geqslant 1$).

81.15 Свойства аппроксимативной единицы

 K_h — аппроксимативная единица. Тогда

1.
$$f \in \overline{C}[-\pi, \pi] \Rightarrow f * K_h \Rightarrow f, h \to h_0$$
.

2.
$$f \in L_1 \Rightarrow f * K_h \xrightarrow{\mathbb{B}} f$$
, r.e. $||f * K_h - f||_1 \xrightarrow{h \to h_0} 0$.

3. K_h — усиленная аппроксимативная единица, $f \in L_1$ — непрерывно в точке x. Тогда $f * K_h$ непрерывна в точке x, $(f * K_h)(x) \xrightarrow[h \to h_0]{} f(x)$.

81.15.1 Доказательство

$$f * K_h^{(n)} - f(x) = \int_{-\pi}^{\pi} (f(x-t) - f(x)) K_h(t) dt$$
 (аксиома 1).

1 пункт

$$f$$
 — равномерно-непрерывная: $\forall \varepsilon > 0 : \exists \delta > 0 : \forall t : |t| < \delta : \forall x : |f(x-t) - f(x)| < \frac{\varepsilon}{2M}$ (аксиома 2).

Фиксируем ε :

$$f * K_h(x) - f(x) = \int_{-\delta}^{\delta} + \int_{E_{\delta}} = I_1 + I_2.$$

$$|I_1| \leqslant \int_{-\delta}^{\delta} |f(x-t) - f(x)| |K_h(t)| dt \leqslant \frac{\varepsilon}{2m} \cdot \int_{-\delta}^{\delta} |K_h(t)| \leqslant \frac{\varepsilon}{2M} \cdot ||K_h||_1 \leqslant \frac{\varepsilon}{2}$$

$$|I_2| \leqslant \int_{E_{\delta}} |\dots| \leqslant 2||f||_{\infty} \cdot \int_{E_{\delta}} |k_h| dt \to 0 \text{ (по аксиоме 3), т.е. } \exists U(h_0) : \forall L \in U(h_0) : |I_p| < \frac{\varepsilon}{2}.$$

$$|f * K_h - f| \leqslant |I_1| + |I_2| < \varepsilon.$$

• 3 пункт

 $f * K_h$ — непрерывен по свойству свёртки.

$$f$$
 — равномерно-непрерывная: $\forall \varepsilon > 0 : \exists \delta > 0 : \forall t : |t| < \delta : |f(x-t) - f(x)| < \frac{\varepsilon}{2M}$ (аксиома 2).

$$|I_1| \leqslant \int_{-\delta}^{\delta} |f(x-t) - f(x)| |K_h(t)| dt \leqslant \frac{\varepsilon}{2m} \cdot \int_{-\delta}^{\delta} |K_h(t)| \leqslant \frac{\varepsilon}{2M} \cdot ||K_h||_1 \leqslant \frac{\varepsilon}{2}$$

$$|I_2| \leqslant \int_{E_{\delta}} |\dots| \leqslant \operatorname{essup}|K_h| \int_{E_{\delta}} |f(x-t)| * |f(x)| dt \leqslant \operatorname{essup}|K_h| (||f||_1 + 2\pi |f(x)|)$$

$$|f * K_h - f| \leq |I_1| + |I_2| < \varepsilon.$$

2 пункт

$$||f * K_h(x) - f(x)||_1 = \int_{-\pi}^{\pi} \left| \int_{-\pi}^{\pi} (f(x-t) - f(x)) K_h(t) dt \right| dx \le \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(x-t) - f(x)| \cdot |K_h| dt dx.$$

$$g(t) \coloneqq \int_{-\pi}^{\pi} |f(x+t) - f(x)| dx = \int_{-\pi}^{\pi} |K_h(t)| g(-t) dt = ||K_h||_1 \cdot \int_{-\pi}^{\pi} g(-t) \frac{|K_h(t)|}{||K_h||_1} dt$$

g(t) — непрерывная по теореме о непрерывности сдвига, $\|K_h\|_1 \leqslant M$ по аксиоме 2.

$$\left| \int_{-\pi}^{\pi} |f(x_0+t) - f(x)| - |f(x_0+t_0) - f(x)| \right| \le \int_{-\pi}^{\pi} |f(x_0+t) - f(x+t_0)| dt.$$

81.15.2 Следствие

$$f \in L_p \Rightarrow f * K_h \xrightarrow{L_p} f$$
, r.e. $||f * K_h - f||_p \to 0$.

$$\|f * K_h(x) - f(x)\|_p^p = \int_{-\pi}^{\pi} \left| \int_{-\pi}^{\pi} (f(x-t) - f(x)) K_h(t) dt \right| dx \le \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |f(x-t) - f(x)| |K_h(t)|^{1/p} |K_h(t)|^{1/q} dt \right)^p dx \le \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |f(x-t) - f(x)|^p \cdot |K_h(t)| \right) \cdot \|K_h\|_1^{p/q} dx = \|K_h\|_1^{p/q} \int_{-\pi}^{\pi} g(-t) \frac{|K_h(t)|}{\|K_h\|_1} dt, \text{ рде } g(t) = \int_{-\pi}^{\pi} |f(x+t) - f(x)|^p.$$

$$f \in L_1, S_n(f,x), \sigma_n(f)(x) = \frac{1}{n+1} \sum_{k=0}^n S_k(f,x)$$
 — сумма Фейера.

$$\sigma_n(f,x) = \int\limits_{-\pi}^{\pi} f(x+t) \Phi_n(t) dt$$
 — через ядро Фейера.

$$\Phi_n$$
 — четная, поэтому $\sigma_n(f,x) = \int_{-\pi}^{\pi} f(x-t)\Phi_n(t)dt$ (оказывается, это свёртка).

81.16 Теорема Фейера

- 1. $f \in \overline{C}[-\pi,\pi]$. Тогда $\sigma_n(f) \Rightarrow f, n \to +\infty$ на $[-\pi,\pi]$.
- 2. $f \in L^p[-\pi,\pi], q \leq p < +\infty$. Тогда $\|\sigma_n(f) f\|_p \to 0, n \to +\infty$.
- 3. $f \in L^1[-\pi,\pi]$, непрерывно в x_0 , $\sigma_n(f)(x) \xrightarrow[n \to +\infty]{} f(x)$.

81.16.1 Доказательство

 $\{\Phi_n\}$ — усиленная аппроксимативная единица. Проверим все свойства аппроксимативной единицы.

- 1. Φ_n непрерывна $\Rightarrow \Phi_n \in L^1, L^\infty, \int_{-\pi}^{\pi} \Phi_n = 1.$
- 2. $\Phi_n \ge 0$, следует из аксиомы 1.
- 3. $\operatorname{ess sup}_{x \in E_{\delta}} |\Phi_n(x)| = \sup_{x \in E_{\delta}} \frac{1}{2\pi(n+1)} \cdot \frac{\sin^2 \frac{n+1}{2}x}{\sin^2 \frac{x}{2}} \leqslant \frac{\frac{1}{2\pi} \cdot \frac{1}{\sin^2 \frac{\delta}{2}}}{n+1}$

Часть V

Преобразование Фурье

81.17 Определение

$$f \in L^1(\mathbb{R}^m, \lambda_m)$$

$$\overline{f}(y) = \int_{\mathbb{R}^m} f(x)e^{-2\pi i \langle y, x \rangle} dx, \ y \in \mathbb{R}^m.$$

81.18 Свойства

- 1. \overline{f} непрерывна на \mathbb{R}^m по теореме Лебега при $y \in U(y_0) \left| f(x) e^{-2\pi i \langle y, x \rangle} \right| \leq |f(x)|$ суммируемая, и очевидно $|\overline{f}(y)| \leq \|f\|_1$.
- 2. $f_h(x) = f(x h), \overline{f}_h(y) = e^{-2\pi i \langle y, h \rangle} \overline{f}(y) \ (h \in \mathbb{R}^m).$

$$f(x), a \in \mathbb{R}, a \neq 0.$$

$$g(x) = f(ax).$$

$$\overline{g}(y) = \int\limits_{\mathbb{R}^m} f(ax)e^{-2\pi\langle x,y\rangle}dx = \frac{1}{|a|^m}\int\limits_{\mathbb{R}^m} f(\overline{x})e^{-2\pi i\langle y,\frac{\overline{x}}{a}\rangle}dx,$$
 где \overline{x} = ax или $x = \frac{\overline{x}}{a}$.
$$= \frac{1}{|a|^m}\overline{f}\Big(\frac{y}{a}\Big).$$

3. $f(y) \to 0$ при $|y| \to +\infty$ по теореме Римана-Лебега $E \subset \mathbb{R}^m, \ f \in L^1(E)$. Тогда

$$I(y) = \int_{E} f(x)e^{-\pi i \langle y, x \rangle} dx \xrightarrow[|y| \to +\infty]{} 0.$$

$$h \coloneqq \frac{y}{2|y|^2}, \ \overline{f}_n(y) = -\overline{f}(y).$$

4.
$$f, g \in L^1(\mathbb{R}^m), (f * g)(x) = \int_{\mathbb{R}^m} f(x - u)g(u)du.$$

Корректность свёртки как в теме ряды Фурье.

81.19 Теорема

$$f, g \in L^1(\mathbb{R}^m)$$
. Тогда

1.
$$\overline{f * g}(y) = (f * g)hy = \overline{f}(x)\overline{f}(y) \cdot \overline{g}(y)$$

2.
$$\int_{\mathbb{R}^m} \overline{f}(y)g(y)dy = \int_{\mathbb{R}^m} f(y)\overline{g}(y)dy.$$

$$(f * g)`(y) = \int\limits_{\mathbb{R}^m} \left(\int\limits_{\mathbb{R}^m} f(x - u)g(u)du \right) e^{-2\pi i \langle y, x \rangle} dx = \int\limits_{\mathbb{R}^m} dug(u)e^{-\pi i \langle y, u \rangle} \int\limits_{\mathbb{R}^m} f(x, u)e^{-2\pi i \langle y, x - u \rangle} dx.$$

$$\int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^m} f(x) e^{-2\pi i \langle x, y \rangle} dx \right) g(y) dy.$$

$$(x,y) \mapsto f(x)g(y)e^{-2\pi i \langle x,y \rangle}$$
 — суммируемая на $\mathbb{R}^m \times \mathbb{R}^m$.

$$\int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^m} f(x) e^{-2\pi i \langle x, y \rangle} dx \right) g(y) dy = \int_{\mathbb{R}^m} f(x) \int_{\mathbb{R}^m} g(y) e^{-2\pi i \langle x, y \rangle} dy dx = \int_{\mathbb{R}^m} f(x) \overline{g}(x) dx$$

81.20 Пример

1.
$$m = 1, f = \chi_{[-1,1]}$$

$$\overline{f}(y) = \int_{\mathbb{D}} f e^{-2piixy} dx = \frac{1}{2\pi i y} e^{-2\pi i x y} \Big|_{x=-1}^{x=1} = \frac{e^{2\pi i y} - e^{-2\pi i y}}{2i\pi y} = \frac{\sin 2\pi y}{\pi y}$$

Кстати, $\overline{f}(y)$ — не суммируемая!.

2.
$$f_{a}(x) = e^{-\pi a^{2}x^{2}}$$
, $(a \in \mathbb{R}, a > 0)$, $m = 1$.
$$\overline{f}_{m} = \int_{-\infty}^{+\infty} e^{-\pi a^{2}x^{2}} e^{-2\pi i \langle x, y \rangle} dx = \int_{0}^{+\infty} + \int_{-\infty}^{0} = \int_{0}^{+\infty} e^{-\pi a^{2}x^{2}} (e^{-2\pi i xy} + e^{2\pi i xy}) dx = 2 \int_{0}^{+\infty} e^{-\pi a^{2}x^{2}} \cos(2\pi xy) dx = \dots = \frac{1}{a} f_{1/a}(y).$$

81.21 Теорема

 $m = 1, f \in C^1$, дифференцируема, пусть она будет хорошая (оптимизм).

$$\overline{f'}(y) = \int\limits_{-\infty}^{+\infty} f'(x)e^{-2\pi ixy}dx$$
 = интегрируем по частям и получаем

$$= f(x)e^{-2\pi ixy}\bigg|_{x=-\infty}^{x=+\infty} + \int_{-\infty}^{+\infty} f(x)2\pi iye^{-2\pi ixy}dx = 2\pi iy\int_{-\infty}^{+\infty} f(x)e^{-2\pi ixy}dx = 2\pi iy\overline{f}.$$

$$f' = \underset{n}{\longrightarrow} 2\pi i y \overline{f} = \overline{f}.$$

$$f' = f + e^{-\pi x^2}, \ \overline{f} = \frac{e^{-\pi y^2}}{1 + 2\pi i y} \to f =$$

Часть VI

25.05.2020

81.22 Теорема Фейера

- 1. $f \in \widetilde{C}$, $\sigma_n(f) \Rightarrow f$.
- 2. $f \in L^p[-\pi, \pi], \|\sigma_n(f) f\|_p \to 0.$
- 3. $f \in L^1[-\pi, \pi]$ непрерывна в $x, \sigma_n(f, x) \to f(x)$.

81.22.1 Следствие

 $f \in L^1[-\pi,\pi], f$ — непрерывна в x. Если ряд Фейера сходится в точке x, то $S_n(f,x) \xrightarrow[n \to +\infty]{} f(x)$. $\sigma_n(f)$ — вычисляет сумму ряда Фейера методом среднего арифметического.

81.23 Следствие 2

- 1. Тригонометрическая система полна в $L^{2}[-\pi,\pi].$
- 2. $f \in L_1 : \forall k : a_k(f) = 0, \ b_k(f) = 0.$ Тогда f = 0 почти везде (или если $c_k(f) \equiv 0$).

81.23.1 Доказательство

1 следует из 2.

$$a_k(f)$$
 = 0, $b_k(f)$ = 0 \Rightarrow $\forall n: S_n(f,x)$ = 0 \Rightarrow $\sigma_n(f,x)$ \equiv = 0, но $\sigma_n(f)$ \rightarrow f в L_1 \Rightarrow f \rightarrow 0 почти везде

81.23.2 Следствие следствия 1

Коэффициенты Фуре $f \in L^1[0,\pi]$ и по косинусам или по синусам равна 0, значит и f = 0 почти везде.

81.23.3 Следствие следствия 2

 $f \in L^2[-\pi,\pi]$. Тогда $S_n(f,x) \to f$ в L^2 .

81.23.4 Следствие следствия 3

Равенство Парсеваля: $f, g \in L^p[-\pi, \pi]$.

1.
$$\int_{-\pi}^{\pi} f(x)\overline{g}(x)dx = 2\pi \sum_{k \in \mathbb{Z}} c_k(f)\overline{c_k(g)}.$$

2.
$$\int_{-\pi}^{\pi} |f|^2 dx = 2\pi \sum_{k \in \mathbb{Z}} |c_k(f)|^2$$
.

3.
$$\int_{-\pi}^{\pi} f(x)g(x)dx = \pi \left(\frac{a_0(f)a_0(g)}{2} + \sum_{k=1}^{+\infty} a_k(f)a_k(g) + b_k(f)b_k(g)\right).$$

4.
$$\int_{-\pi}^{\pi} f^2 dx = \pi \left(\frac{a_0^2(f)}{2} + \sum_{k=1}^{+\infty} a_k(f)^2 + b_k(f)^2 \right).$$

81.24 Следствие 3 (теорема Вейерштрасса)

Тригонометрические полиномы плотны в $\widetilde{C}[-\pi,\pi]$ и в $L^p[-\pi,\pi]$ $(1\leqslant p<+\infty).$

81.24.1 Доказательство

 $f \in \widetilde{C}, \ \sigma_n(f)$ — тригонометрический полином. $\sigma_n(f) \Rightarrow f, \ \rho(\sigma_n(f), f) \to 0.$

81.25 Замечание

В C[a,b] обычные полиномы плотны в $L^p[a,b]$.

Часть VII

Интегрирование рядов Фурье

81.26 Лемма

1. $D_n(t) = \frac{\sin nt}{\pi t} + \frac{1}{2\pi} (\cos nt + \sin nt \cdot h(t))$, где h(t) не зависит от n, а также $|h(t)| \le 1$, $t \in [-\pi, \pi]$.

2.
$$\forall x: |x| < 2\pi, \left| \int_0^x D_n(t) dt \right| < 2.$$

81.26.1 Доказательство

$$D_n(t) = \frac{1}{2\pi} \frac{\sin\left(n + \frac{1}{2}\right)t}{\sin\frac{t}{2}} = \frac{\sin nt}{2\pi \operatorname{tg} t/2} + \frac{1}{2\pi} \cos nt = \frac{\sin nt}{\pi t} + \frac{1}{2\pi} \left(\cos nt + \sin nt \left(\frac{1}{\operatorname{tg} t/2} - \frac{1}{t/2}\right)\right),$$
 давайте возьмём в качетсве $h(t) = \frac{1}{\operatorname{tg} t/2} - \frac{1}{t/2}, \ h(t)$ убывает на $[-\pi, \pi]$ и $h(t) < |h(\pi)| = \frac{2}{\pi} < 1.$

$$\forall x: |x| < 2\pi, \left| \int_0^x D_n(t) dt \right| < 2, \ D_n - \text{чётная, можно считать, что } x > 0. \ x \in (0,\pi). \left| \int_0^x D_n(t) dt - \int_0^x \frac{\sin nt}{\pi t} \right| = \left| \frac{1}{2\pi} \int_0^x \cos nt + \sin nt \cdot h(t) dt \right| \leqslant \frac{1}{2\pi} \int_0^x 2 dx \leqslant 1.$$

$$\int_{0}^{x} \frac{\sin nt}{\pi t} dt = \int_{0}^{nx} \frac{\sin v}{\pi v} dv \in (0,1), \text{ если это так, то } \int_{0}^{x} D_{n} \in [-1,2]. \text{ max } \int_{0}^{nx} \frac{\sin v}{\pi v} dv - \text{достигается при } nx = \pi,$$
 тогда $0 < \int_{0}^{\pi} \frac{\sin v}{\pi v} < \frac{1}{\pi} \int_{0}^{\pi} 1 = 1.$

$$x \in [\pi, 2\pi], \int_{0}^{x} D_n = \int_{0}^{2\pi} - \int_{\pi}^{2\pi} = 1 - \int_{0}^{2\pi - x} D_n(t) c_n(t) \in [-1, 2].$$

81.27 Интегрирование рядов Фурье

$$f \in L_1$$
. Тогда $\forall a, b \in \mathbb{R}, \int\limits_a^b f dx = \sum\limits_{k \in \mathbb{Z}} c_k(f) \int\limits_a^b e^{ikx} dx.$

81.27.1 Замечание

Не предполагается сходимость ряда Фурье.

81.27.2 Доказательство

Достаточно рассмотреть $-\pi \leqslant a < b \leqslant \pi, \; \Xi \coloneqq \Xi_{[a,b]}.$

$$\sum_{k=-n}^{n} c_{k} \int_{a}^{b} e^{ikx} = \sum_{k=-n}^{n} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx C_{-k}(\Xi) - 2\pi = \int_{-\pi}^{\pi} f(x) \sum_{k=-n}^{n} C_{k}(\Xi)e^{-ikx} dx = \int_{-\pi}^{\pi} f(x)S_{n}(\Xi, x) dx =$$

$$S_n(\Xi, x) = \int_{-\pi}^{\pi} \Xi(t) D_n(x - t) dt = \int_{a}^{b} D_n(x - t) dt = \left| -\int_{x-a}^{x-b} D_n(\tau) d\tau \right| = \left| \int_{0}^{x-a} D_n(t) - \int_{0}^{x-b} D_n(t) \right| \le 4.$$

81.27.3 Замечание

Проверим, что суммы Фурье функции Ξ — равномерно ограниченны. Пусть $f \in \widetilde{C}^1[-\pi,\pi] \Rightarrow$ суммы ряда фурье равномерно ограничены, т.е. $\exists C : \forall n : \forall x : |S_n(f,x)| \leq C$.

$$S_n(f,x) = \int_{-\pi}^{\pi} f(x-t)D_n(t)dt = f(x-t)H_n(t)\Big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} f'(x-t)H_n(t)dt \le C.$$

81.28 Лемма

 $f \in L^1(\mathbb{R}^m)$ — всюду дифференцируема. $\frac{\partial f}{\partial x_m}$ — непрерывна и суммируемая на \mathbb{R}^m . Тогда для почти всех $(x_1,\ldots,x_{m-1}) \in \mathbb{R}^{m-1}$ существует $\lim_{t \to +\infty}$ или $\lim_{t \to -\infty}$ от функции $f(x_1,\ldots,x_{m-1},t) = 0$.

81.28.1 Доказательство

 $(x_1,\ldots,x_m)=u\in\mathbb{R}^{m-1},\ f(u,t).\ f(u,t)-f(u,0)=\int\limits_0^t\frac{\partial f}{\partial x_m}(u,\tau)d\tau.$ по теореме Фубини при почти всех u это суммируемая функция по t на $\mathbb{R}.$

81.29 Теорема

$$f \in L^1(\mathbb{R}^m).$$

1.
$$\exists k \in \{1,\dots,m\},\ g=\frac{\partial f}{\partial x_k}$$
 — непрерывная, суммируемая в \mathbb{R}^m . Тогда
$$\widetilde{g}(y)=2\pi i y_k \widetilde{f}(y).$$

2. Пусть $|x|\cdot f(x)$ — суммируемая. Тогда $\widetilde{f}\in C^1(\mathbb{R}) \text{ и } \forall y\in \mathbb{R}^m \text{ и } \forall k\in\{1,\ldots,m\} \text{ и } \frac{\partial\widetilde{f}}{\partial y_k}(y)=2\pi i \left(x_k f(x)\right)^{\epsilon}.$

81.29.1 Доказательство

1. СЧИТАЕМ, ЧТО k = m, $(x_1, \dots, x_{m-1}) = u \in \mathbb{R}^m$. $f(x) \leftrightarrow f(u, t)$. $\int_{-\infty}^{+\infty} g(u, t) e^{-2\pi i y_m t} dt = f(u, t) e^{-2\pi i y t} \Big|_{t=-\infty}^{t=+\infty} + \int_{-\infty}^{+\infty} f(u, t) 2\pi i y_m e^{-2\pi y_m t} dt$ $\int_{\mathbb{R}^m} g(x) e^{-2\pi i (y, x)} dx = \int_{\mathbb{R}^{m-1}} \left(\int_{\mathbb{R}} g(u, t) e^{-2\pi i y_m t} dt \right) e^{-2\pi i y_m} dt.$ 2. $\widetilde{f}(y) = \int_{\mathbb{R}^m} f(x) e^{-2\pi i (y, x)} dx$. $\frac{\partial \widetilde{f}}{\partial y_k} = -\int_{\mathbb{R}^m} 2\pi i x_k f(x) e^{-2\pi i (y, x)} dx.$ $L_{loc}(y) |2\pi i x_k f(x) e^{-2\pi i (y, x)}| \leq 2\pi |x| |f(x)|.$

81.29.2 Следствие

- 1. $f \in L^1(\mathbb{R}^m)$, финитная (равна 0 вне какого-то шара). Тогда $\widetilde{F} \in C^\infty(\mathbb{R}^m).$
- 2. $f \in C_0^{=\infty}$, финитная, бесконечно гладкая. Тогда $\forall p>0: |y|^p \widetilde{f}(y) = \text{суммируемая в } \mathbb{R}^m.$

81.30 Формула обращения

 $m=1, f(x)=\int\limits_{-\infty}^{+\infty}\widetilde{f}(y)\cdot e^{2\pi iyx}dy.$ Хотим такую формулу.

81.31 Интеграл Фурье

$$\int\limits_{-\infty}^{+\infty}\widetilde{f}(y)\cdot e^{2\pi iyx}dy$$
— в смысле главного значения.

$$\lim_{A\to +\infty} \int_{-A}^{A} \text{получаем } I_A(f,x) = \int_{-A}^{A} \widetilde{f}(y) e^{2\pi i y x} dy.$$

81.32 Лемма о ядре Дирихле

$$finL^1(\mathbb{R}) < x \in \mathbb{R}$$
. Тогда

$$\forall A > 0$$
 верно $I_A(f,x) = \int_{-A}^{A} \widetilde{f}(f)(y)e^{2\pi iyx}dx = \int_{-\infty}^{+\infty} f(x-t)\frac{\sin 2\pi At}{\pi t}dt.$

81.32.1 Доказательство

Пусть
$$\Xi_a = \Xi[-A, A], I_A(f, x) = \int_{-\infty}^{+\infty} \widetilde{f}(y) \left(\Xi_a e^{2\pi i x y}\right) dy = \int_{-\infty}^{+\infty} f(y) \left(\Xi_a e^{2\pi i x y}\right) dy = \int_{-\infty}^{+\infty} f(y) \widetilde{\Xi_A}(y-x) dy = \int_{-\infty}^{+\infty} f(y) \frac{\sin 2\pi A(y-x)}{\pi(y-x)} dy$$

81.32.2 Следствие

$$\forall \delta > 0: I_a(f, x) = \int_{-\delta}^{\delta} f(x - t) \frac{\sin 2\pi At}{\pi t} dt + Q(1), A \to +\infty.$$

$$\int\limits_{|t| \geqslant \delta} f(x-t) \frac{\sin 2\pi At}{\pi t} dt \to 0$$
 по теореме Римана-Лебега.

$$D_n = \frac{\sin nt}{\pi t} + \frac{1}{2\pi} (\cos nt + \sin nt + h(t)).$$

$$S_n(f,x) = \int_{-\pi}^{\pi} f(x,t) D_n(t) = \int_{-\pi}^{\pi} f(x-t) \frac{\sin nt}{\pi t} + o(1)$$
 при $n \to +\infty$.

$$=\int_{-\delta}^{\delta}f(x-t)\frac{\sin nt}{\pi t}+o(1).$$

81.32.3 Замечание

Для интеграла Фурье верен принцип локализации.

81.33 Теорема о равносходимости ряда Фурье и интеграла Фурье

$$f\in L^1\left(\mathbb{R}\right),\ f_0\in L^1\left[-\pi,\pi\right].\ x\in\mathbb{R},\ f=f_0$$
 в $U(a).$ Тогда

сходимость в точке x интеграла Фурье $I_A(f,x)$ равносильна сходимости в точке x сумм Фурье, т.е. $S_n(f_0,x)$, и в случае сходимости они равны.

$$\int_{-\infty}^{+\infty} \widetilde{f}(y)e^{2\pi iyx}dy = \sum_{n\in\mathbb{Z}} c_n(f_0)e^{inx}.$$

Часть VIII

01.06.2020

81.34 Следствие

$$f \in L_1$$
. Тогда

$$\sum \frac{b_n(f)}{n}$$
 — сходится.

$$u \in (-\pi, \pi), \int_{0}^{\pi} f(x)dx = \sum_{n} c_{k}(f) \int_{0}^{\pi} e^{ikx} = \int_{-\pi}^{\pi} f(x)S_{n}(\Xi x)d\mu$$

$$\int_{-\pi}^{\pi} \left(\int_{b}^{a} f(x) dx \right) dn = \int_{-\pi}^{\pi} \left(\sum_{n} c_{k}(f) \int_{0}^{n} e^{ikx} dx \right) dn = \sum_{n} c_{k}(f) \int_{-\pi}^{\pi} \left(\int_{0}^{n} e^{ikx} dx \right) du.$$

$$\int_{-\pi}^{\pi} \sum_{n=0}^{\infty} c_k(f) \int_{0}^{\pi} e^{ikx} \xrightarrow[n \to +\infty]{\pi} \int_{-\pi}^{\pi} \int_{0}^{\pi} f(x) dx dn.$$

$$\left| \sum_{n=0}^{n} c_k(f) \int_{0}^{n} e^{ikx} \right| \leq \int_{-\pi}^{\pi} |f| |S_n(\Xi, x)| dx \leq 4 ||f||_1.$$

$$\int_{0}^{n} e^{ikx} dx = \frac{1}{ik} e^{ikx} \Big|_{x=0}^{x=n} = \frac{1}{ik} (e^{ikn} - 1).$$

$$\int_{-\pi}^{\pi} \frac{1}{ik} (e^{ikn} - 1) = -\frac{2\pi}{ik}.$$

$$\sum c_k(f) \int\limits_{-\pi}^{\pi} \left(\int\limits_{0}^{n} e^{ikx} dx \right) dn = \sum_{k \in \mathbb{Z}} c_k(f) \cdot \frac{-2\pi}{ik} = \sum \frac{-b_k(f)}{k}, \text{ из-за чего ряд сходится.}$$

$$-i(c_k(f) - c_{-k}(f)) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left(\frac{e^{-ikx} - e^{ikx}}{2i} \right) = -b_k(f).$$

считаем u = n, если где-то я не заменил.

81.35 Обобщенные функции

$$\int\limits_{-\pi}^{\pi}f(x)h(x)dx, функция f и $h\in C^{\infty}[-\pi,\pi], h\mapsto \int\limits_{-\pi}^{\pi}f(x)h(x)dx.$$$

$$f \in C^1, \ \forall h \in C^{\infty}, \int_{-\pi}^{\pi} f(x)h(x)dx = 0.$$

 $f_n \to f$ как обобщенные функции.

$$\forall h \in C^{\infty}[-\pi, \pi] \Longleftrightarrow \int_{-\pi}^{\pi} f_n h \to \int_{-\pi}^{\pi} f h.$$

81.36 Лемма

 $f \in L_1$. Тогда

 $S_n(f,x) \to f$ в смысле обобщенных функций.

$$\forall h \in \widetilde{C}^{\infty}[-\pi, \pi] : \int_{-\pi}^{\pi} S_n(f, x) \cdot h \xrightarrow[n \to +\infty]{} \int_{-\pi}^{\pi} f(x)h(x)dx.$$

81.36.1 Доказательство

1. $f \in L_1, h \in C^{\infty} \subset L^{\infty}(-\pi,\pi].$ f * h — непрерывна и гладкая

$$\frac{d}{dx}(f*h)(x) = \frac{d}{dx}\int_{-\pi}^{\pi} f(t)h(x-t)dt = \int_{-\pi}^{\pi} f(t)h'_x(x-t)dt.$$

$$h(x) = h(-x).$$

$$\int_{-\pi}^{\pi} S_n(f,x)h(x)dx = \sum_{-n}^{n} c_k(f) \int_{-\pi}^{\pi} e^{ikx}h(x)dx = \sum_{-n}^{n} c_k(f)2\pi c_k(h(-x)) = \sum_{-n}^{n} c_k(f*\underline{h}) = \sum_{-n}^{n} c_k(f*\underline{h})e^{ikx}\Big|_{x=0} \xrightarrow[n\to+\infty]{}$$

$$f * \underline{h}(0) = \int_{-\pi}^{\pi} f(t)\underline{h}(-t)dt.$$

81.37 Теорема

 $f \in \widetilde{C}^1 \Rightarrow$ частичные суммы ряда Фурье — ограничены.

$$\exists C: \forall n: \forall x: |S_n(f,x)| \leqslant C.$$

$$|S_n(f,x)| = \left| \int_{-\pi}^{\pi} f(x-u) D_n(u) du \right|.$$

$$f(x-u)H_n(u)\Big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} f'(x-u)H_n(u)du$$

$$H(x) = \int_{0}^{x} D_{n}$$
, всё по модулю меньше константы.

81.38 Лемма (обобщенное равенство Парсеваля)

 $f \in L^1[-\pi,\pi], g$ — измеримая, периодическая, ограниченная, и такая, что $\exists C : \forall n : \forall x : |S_n(g,x)| \leqslant C$. Тогда

$$\int_{-\pi}^{\pi} f(x)\overline{g(x)}dx = 2\pi \sum_{n} c_n(f)\overline{c_n(g)} = \sum_{n} \hat{f}(n)\hat{g}(n).$$

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x)e^{inx} = \frac{1}{2\pi} \hat{f}(n).$$

g — ограниченная, следовательно $g \in L^1[-\pi,\pi]$

$$\int_{-\pi}^{\pi} f(x)\overline{S_n(g,x)}dx = \int f(x < \sum_{-n}^{n} \overline{c_k(g)}e^{-ikx} = \sum_{-n}^{n} 2\pi c_k(f)\overline{c_k(g)}$$

$$\overline{S_n(g)} \Rightarrow \overline{g} \Rightarrow f(x)\overline{S_n(g,x)} \Rightarrow f(x)\overline{g(x)}$$

По теореме Лебега: $\left| f(x) \overline{S_n(g,x)} \right| \le$

81.39 Теорема Котельникова (формула отчётов)

$$f \in L^{1}(\mathbb{R}), f \equiv 0$$
 вне $[-\pi, \pi]. F(t) = \hat{f}\left(\frac{t}{2\pi}\right)$. Тогда

$$F(t) = \frac{\sin \pi t}{\pi} \sum_{n \in \mathbb{Z}} \frac{(-1)^n F(n)}{t - n}$$

81.39.1 Доказательство

$$f_0 = f \bigg|_{[-\pi,\pi]}, c_n(f_0) = \frac{1}{2\pi} \hat{f}\left(\frac{n}{2\pi}\right), n \in \mathbb{Z}.$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f_n(x) e^{-inx} dx,$$

$$\frac{1}{2\pi}\hat{f}\left(\frac{n}{2\pi}\right) = \frac{1}{2\pi} \int_{\mathbb{R}} f(x)e^{2\pi ix \cdot \frac{n}{2\pi}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}.$$

$$\hat{f}\left(\frac{t}{2\pi}\right) = \int_{-\pi}^{\pi} f(x)\overline{g(x)}dx = \int_{-\pi}^{\pi} f_n(x)\overline{g(x)}dx,$$

$$g(x) = e^{inx}, c_n(g) = \frac{1}{28} \int_{-\pi}^{\pi} e^{i(t-n)x} = \frac{1}{2\pi} \frac{1}{i(t-n)e^{i(t-n)x}} \Big|_{x=-\pi}^{x=\pi} = \frac{\sin(t-n)\pi}{\pi(t-n)}.$$

 $|S_n(g,x)| \leq const.$

$$\sum 2pic_n(f)\overline{c_n(g)} = \sum \hat{f}\left(\frac{n}{2\pi}\right) \frac{\sin(t-n)\pi}{\pi(t-n)} = \frac{\sin \pi t}{\pi} \sum \frac{(-1)^n F(n)}{t-n}.$$

81.40 Теорема о равносходимости ряда Фурье и интеграла Фурьера

$$f \in L^1(\mathbb{R}), f_0 \in \widetilde{L_1}[-\pi, \pi], x \in \mathbb{R}.$$

 $\exists U(x): f \equiv f_0$. Тогда сходимость ряда Фурье и сходимость интеграла эквивалентна.

$$\int_{-\infty}^{+\infty} \hat{f}(u)e^{2\pi ixy}dy = \sum_{-\infty}^{+\infty} c_n(f_0)e^{inx}.$$

81.40.1 Доказательство

$$I_a(f,x) - S_{[2\pi a]}(f,x) \xrightarrow[A \to +\infty]{} 0.$$

$$U(x) - (x - \delta, x + \delta), 0 < \delta < \pi.$$

$$I_a(f,x) = \int_{-\delta}^{\delta} f(x-t) \frac{\sin 2\pi At}{\pi t} dt + o(1).$$

$$S_n(f,x) = \int_{s}^{\delta} f(x-t) \cdot \frac{\sin nt}{\pi t} dt + o(1).$$

$$2\pi A = n \in \mathbb{N} \Rightarrow \text{OK}.$$

$$2\pi A$$
 — нецелое, $n := [2\pi A]$.

$$I_A - I_{\frac{n}{2\pi}}$$

$$I_A(f,x) - \int_{-A}^{A} \hat{g}(y)e^{2\pi ixy}dy.$$

$$|I_A - I_{\frac{n}{2\pi}}| \le \int_{A - \frac{1}{2\pi}}^A + \int_{-A}^{-A + \frac{1}{2\pi}} |\hat{f}(y)| dy \le 2 \frac{1}{\pi} \max_{|y| > A - \frac{1}{2\pi}} |\hat{f}(y)|.$$

81.41 Признак Абеля-Дирихле равномерной сходимости

$$\int\limits_{a}^{+\infty}f(x,t)g(x,t)dx.\ f(x,t)$$
 — непрерывна на $(a,+\infty) imes[c,d].$

 $\exists g_x(x,t)$ — непрерывна на том же промежутке.

1.
$$\exists C : \forall B > a : \forall t : \left| \int_{a}^{B} f(x, t) \right| \leq C$$
.

2. $\forall t \in [c,d], x \mapsto g(x,t)$ — монотонна, $g(x,t) \Rightarrow 0$ при $x \to +\infty$ на [c,d].

или

1.
$$\int_{a}^{+\infty} f(x,t)dx$$
 — равномерно сходится, $t \in [c,d]$.

2. g — монотонна, $\exists C : \forall x \in (a, +\infty) : \forall t \in [c, d] : |g(x, t)| \leq C$.

Тогда

81.42 Гладкие пути

$$\gamma : [a, b] \to \mathbb{R}^m, \ a = t_0 < t_1 < \dots < t_n = b.$$

$$\sup_{\tau} \sum_{i=1}^{n} \rho(\gamma(t_m), \gamma(t_i)).$$

$$\int_{a}^{b} |f'| dx,$$

 $f:[a,b] o \mathbb{R}$ — не обязательно непрерывное.

$$\operatorname{Var}_a^b f = \sup_{\tau} \sum |f(t_1) - f(t)|.$$

81.43 Признак Дирихле-Жордана

 $f \in L^1(\mathbb{R}), f \in L^1[-\pi,\pi], f$ — имеет ограниченную вариацию в окрестности точки $x \in \mathbb{R}$. Тогда

$$S_n(f,x) \to \frac{f(x+0) + f(x-0)}{2}, I_a(f,x) \to \frac{f(x+0) + f(x-0)}{2}.$$

81.43.1 Замечание

Для $[-\pi,\pi]$ f имеет ограниченную вариацию $[-\pi,\pi]$.

Тогда
$$\forall x \in [-\pi, \pi] : S_n(f, x) \to \frac{f(x+0) + f(x-0)}{2}$$
.

81.43.2 Доказательство

$$S_n(f,x) = \int_{s}^{\delta} f(x-t) \frac{\sin nt}{\pi t} dt + o(1) = \int_{s}^{\delta} \varphi(t) \frac{\sin nt}{\pi t} dt + o(1),$$
 где $\varphi(u) = f(x-u) + f(x+u).$

 φ имеет ограниченную вариацию, можно считать разностью двух неотрицательных убывающий функций.

$$\Phi(n) = \varphi(n) \cdot \Xi_{[0,\delta]}, n \in \mathbb{R}.$$

$$I_n = \int_0^{+\infty} \Phi(n) \frac{\sin nu}{\pi u} du = \int_0^{+\infty} \Phi\left(\frac{t}{u}\right) \frac{\sin t}{\pi t} dt \xrightarrow[n \to +\infty]{} \int_0^{+\infty} \Phi(+0) \frac{\sin t}{\pi t} = \frac{\Phi(+0)}{2}.$$

$$\int_{a}^{b} f(x,t)dt \xrightarrow[t\to t_0]{} \int_{a}^{b} f(x,t0)dt.$$

$$f = \frac{\sin t}{\pi t}.$$

$$\int\limits_{0}^{+\infty} \frac{\sin t}{\pi t} - \text{равномерно сходится, } n \in \mathbb{N}.$$

$$|\Phi(t,n)| \leqslant \Phi(+0), \Phi$$
 — монотонная.