

# FINAL PRESENTATION

**TEAM EXPONENTIAL** 

Borislav Pavlov, Kim Young Oh, Park Geo Ryang, Kim Min Jae

### **OBJECTIVE**

Stock-loss Prevention: Mobile Application with CNN-LSTM Model for Predicting Sharp Rises and Falls in Stock Price

#### MOTIVATION



Bought some Dogecoin for Iil X, so he can be a toddler hodler

12:08 ч. пр.об. · 11.02.2021 г. · Twitter for iPhone

57,4 хил. ретуита 9 249 Туитове с цитат 538,5 хил. харесвания

# PROJECT PROGRESS

# **SCHFDIIIF**

| JCITEDOLL                     |                                           |       |        |   |   |   |    |   |   |    |   |   |   |   |
|-------------------------------|-------------------------------------------|-------|--------|---|---|---|----|---|---|----|---|---|---|---|
| PART                          | CONTENT                                   | MONTH | H 9 10 |   |   |   | 11 |   |   | 12 |   |   |   |   |
|                               |                                           | WEEK  | 4      | 1 | 2 | 3 | 4  | 1 | 2 | 3  | 4 | 1 | 2 | 3 |
|                               | Research on thesis                        |       |        |   |   |   |    |   |   |    |   |   |   |   |
|                               | Use and modification of the AI model code |       |        |   |   |   |    |   |   |    |   |   |   |   |
| Al                            | Apply explainable AI, GradCAM             |       |        |   |   |   |    |   |   |    |   |   |   |   |
|                               | performance improvement                   |       |        |   |   |   |    |   |   |    |   |   |   |   |
|                               | Research a framework                      |       |        |   |   |   |    |   |   |    |   |   |   |   |
| Mobile Application - Research | Research a Websocket                      |       |        |   |   |   |    |   |   |    |   |   |   |   |

Create initial wireframes for the mobile application

Implement the initial design view of the application and state management

Implement WebSocket service

Refactoring

Research

Implementation

Testing

& Design

Mobile Application -Implementation & Testing

**Backend API** 

## **TEAM ROLES**

- ► Team Lead: Borislav Pavlov
- Al Algorithms:
  - ▶ Main Kim Young Oh, Kim Min Jae
  - Supported Borislav Pavlov, Park Geo Ryang
- Mobile Application + Additional Services
  - Main Borislav Pavlov, Park Geo Ryang
  - ▶ Supported Kim Young Oh, Kim Min Jae



## INITIAL DESIGN





# FINAL IMPLEMENTATION

i hooks FINAL IMPLEMENTATION redux MOBILE APPLICATION

ııı 🗢 💷 23:04 Tesla SURGE TSLA EXPECTED RESULTS Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. 50 100 150 200 250 100 150 200 250 ge detected above 30.0% 8 Notifications Settings



#### Identity

/api/identity/registration

/api/identity/login

/api/identity/token/refresh

#### **Schemas**

UserRegistrationInputModel >

UserLoginInputModel >



Connected Services

ma solution racinity to or a projectly

- .: Dependencies
- ▶ a p Properties
- a Controllers
  - appsettings.Development.json
  - appsettings.json
- 🚄 🖀 🛅 Dockerfile
- FINAL IMPLEMENTATION IDENTITY SERVICE









- ▶ a Models
- ▶ a C<sup>®</sup> ApplicationDbContext.cs
- ▲ a C<sup>III</sup> Identity.Service
  - .:: Dependencies
  - DTO
  - Interfaces
  - ▶ a m Models





### **CHALLENGES**

#### MOBILE APPLICATION

- ▶ Refactoring because of unnecessary socket implementation
- Integration of notifications ejecting expo project because expo notifications does not support emulators
- Initial state management setup

#### ALERTS CHECKER SERVICE

- Persisting AI Model heatmap images to external storage provider
- Sending notifications
- Performance optimization

#### AI MODEL

Even though the original author's code was used as it is, the loss is large, so we are thinking about whether to find another model or use it as it is.

## **DATASET**



- YFINANCE
  - ► To retrieve stock price information
- Corpus
  - ► The input dataset consisted of 1744 CNNs and LSTMs
  - ▶ The ratio of train:validation:test was 0.81: 0.09: 0.1



## **MODEL DESCRIPTION**

- CNN
  - Resnet structure
  - ▶ 1 convolutional layer + 16 Resnet block + 1 convolution layer



### **MODEL DESCRIPTION**

- ► LSTM
  - 2 Layer

CNN

- Concatenation
  - CNN and LSTM join FNN through Flattern and produce predictions



#### MODEL DESCRIPTION

Schematic diagram



## INPUT AND OUTPUT

- ► INPUT
  - ► CNN
    - ► Candlestick chart that contains information on close, open, high, low stock prices
    - ▶ Stock chart image is converted into a numpy array
  - **▶** LSTM
    - Closing price data
    - ▶ Use log10 value





| ٦. |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1  | 251 | 251 | 255 | 233 | 182 | 179 | 224 | 254 | 251 | 250 |
|    | 250 | 255 | 229 | 120 | 66  | 56  | 96  | 215 | 255 | 249 |
|    | 253 | 254 | 144 | 47  | 29  | 31  | 32  | 122 | 248 | 255 |
|    | 255 | 229 | 113 | 65  | 56  | 62  | 68  | 106 | 204 | 255 |
|    | 255 | 203 | 102 | 106 | 82  | 78  | 118 | 108 | 178 | 255 |
|    | 254 | 199 | 109 | 154 | 95  | 78  | 158 | 120 | 179 | 255 |
|    | 255 | 196 | 156 | 207 | 98  | 77  | 173 | 181 | 179 | 255 |
|    | 254 | 241 | 163 | 67  | 76  | 90  | 25  | 135 | 230 | 255 |
|    | 251 | 254 | 190 | 72  | 72  | 72  | 59  | 164 | 255 | 252 |
| ١. | 249 | 253 | 251 | 193 | 127 | 115 | 179 | 250 | 254 | 249 |
|    |     |     |     |     |     |     |     |     |     |     |

## INPUT AND OUTPUT

- OUTPUT
  - ▶ Gradient CAM Heat Map



▶ Processing about log10 and correction are performed on the finally derived prediction

Stock price's ratio is: -33.45 < X < -17.05

## **EVALUATION METRICS**

#### Evaluation Metrics for ML

► Epoch: 20~30

▶ loss(mse): 0.1524

▶ mape: 11.9957

rmse: 0.3904

val\_loss: 0.0050

val\_mape: 2.3413

val\_rmse: 0.0706

## MAIN HYPERPARAMETERS

- Batch size
  - **32**
- Epoch
  - ▶ It was set to 26 due to overfitting and underfitting
- Value correction
  - ▶ When the forecast is low
    - Multiply by gap\_avg \* (1+Standard Deviation)
  - ▶ When the forecast is higher
    - Devide by gap\_avg \* (1-Standard Deviation)

## MAIN HYPERPARAMETERS

Result of value correction





#### LIMITATIONS

#### MOBILE APPLICATION

Not entirely native

#### ALERTS CHECKER SERVICE

► Each check must wait the previous to finish, and it can be slowly sometimes if there are many users subscribed to the same alert because the sending of notifications is included in the service

#### AI MODEL

- Overfitting & underfitting case
- Approximate and consistent errors between stock price predictions and actual values

#### **EVALUATION**

- Meet the objective of the project
  - Application users can set alerts and receive notifications for set stock items
- Reasons for low predictive rate
  - Uncertain fluctuations in stock prices
  - Difference in layer depth between CNN and LSTM
  - ► Fast overfitting due to sequential input dataset
  - ► Low learning rate due to small epoch value
  - ▶ 1 hour data used in train process, but 15 minute data used in evaluate



