```
سوال يک
                                                                                                         الف)
\forall x \quad food(x) \Rightarrow loves(Amir, x)
\forall x \quad \neg food(x) \quad \lor \quad loves(Amir, x)
-> \neg food(x) \lor loves(Amir, x)
                                                                                                          ب)
\forall x \quad Apple(x) \Rightarrow food(x)
\forall x \quad \neg Apple(x) \lor food(x)
-> \neg Apple(x) \lor food(x)
                                                                                                           ج)
\forall x
       chicken(x) \Rightarrow food(x)
\forall x
     \neg chicken(x) \lor food(x)
-> \neg chicken(x) \lor food(x)
                                                                                                           (7
    [ \forall y \ eat(y,x) \land \neg die(y) ] \Rightarrow food(x)
     [\neg \forall y \ eat(y,x) \land \neg die(y)] \lor food(x)
     [ \exists y \neg eat(y,x) \lor die(y) ] \lor food(x)
    [ \neg eat(f(x), x) \lor die(f(x)) ] \lor food(x)
\forall x
-> \neg eat(f(x),x) \lor die(f(x)) \lor food(x)
                                                                                                           (٥
eat(saber, almons) \land \neg die(saber)
-eat(saber, almons)
- \neg die(saber)
                                                                                                      سوال دو
                                      باید عبارت امیر بادام نمیخورد را به پایگاه دانش اضافه کنیم و به رشته ی تهی برسیم.
```

مهسا امینی ۹۸۱۷۸۲۳

همچنین باید این عبارت را به پایگاه دانش اضافه کنیم تا به نتیجه برسیم:

امیر هر چیزی را دوست داشته باشد انگاه آن را میخورد.

$\neg love(Amir, x) \lor eat(Amir, x)$

1-eat(saber, almons)

 $2 - \neg eat(f(x), x) \lor die(f(x)) \lor food(x)$

 $1,2 \rightarrow die(saber) \lor food(almons)$

 $3 - \neg die(saber)$

1, 2, 3 = food(almons)

 $4 - \neg food(x) \lor loves(Amir, x)$

1, 2, 3, 4 = loves(Amir, almons)

 $5 - \neg loves(Amir, x) \lor eat(Amir, x)$

1, 2, 3, 4, 5 = eat(Amir, almons)

 $6 = \neg eat(Amir, almons)$

 $1,2,3,4,5,6 \rightarrow \emptyset$

سوال سه قسمت الف)

از قانون بيز استفاده ميكنيم:

$$p(b \mid a) = \frac{p(a \mid b)p(b)}{p(a)}$$

برای سکه ی a داریم:

$$p(coin_a \mid khat_1sar_2) = \frac{p(khat_1sar_2 \mid coin_a)p(coin_a)}{p(khat_1sar_2)}$$

چون احتمال انتخاب هر یک از سکه ها از کیسه برابر است پس داریم:

$$p(coin_a) = \frac{1}{3}$$

$$p(khat_1sar_2) = \frac{1}{3}(0.2*0.2*0.8) + \frac{1}{3}(0.6*0.6*0.4) + \frac{1}{3}(0.8*0.8*0.2) = 0.101$$

$$p(khat_1sar_2 \mid coin_a) = 0.2*0.2*0.8 = 0.032$$

$$p(coin_a \mid khat_1 sar_2) = \frac{\frac{1}{3} * 0.032}{0.101} = 0.106$$

برای سکه ی b داریم:

$$p(coin_b \mid khat_1sar_2) = \frac{p(khat_1sar_2 \mid coin_b)p(coin_b)}{p(khat_1sar_2)}$$
$$p(coin_b) = \frac{1}{3}$$

$$p(khat_1sar_2) = \frac{1}{3}(0.2*0.2*0.8) + \frac{1}{3}(0.6*0.6*0.4) + \frac{1}{3}(0.8*0.8*0.2) = 0.101$$

$$p(khat_1sar_2 \mid coin_b) = 0.6*0.6*0.4 = 0.144$$

$$p(coin_a \mid khat_1 sar_2) = \frac{\frac{1}{3} * 0.144}{0.101} = 0.475$$

برای سکه ی c داریم:

$$p(coin_{c} | khat_{1}sar_{2}) = \frac{p(khat_{1}sar_{2} | coin_{c})p(coin_{c})}{p(khat_{1}sar_{2})}$$

$$p(coin_{c}) = \frac{1}{3}$$

$$p(khat_{1}sar_{2}) = \frac{1}{3}(0.2*0.2*0.8) + \frac{1}{3}(0.6*0.6*0.4) + \frac{1}{3}(0.8*0.8*0.2) = 0.101$$

$$p(khat_{1}sar_{2} | coin_{c}) = 0.8*0.8*0.2 = 0.128$$

$$p(coin_{a} | khat_{1}sar_{2}) = \frac{\frac{1}{3}*0.128}{0.101} = 0.422$$

همان طور که میبینیم میزان احتمال سکه ی b بیشتر شد.

سوال چهار قسمت الف)

بله اگر دلیلی مشاهده نشود این دو از هم مستقل هستند.

	earthquake		Not earthquake	
	burglar	Not burglar	burglar	Not burglar
alarm	0.0000019	0.00057942	0.00093812	0.000997002
Not alarm	0.000001	0.00141858	0.00005988	0.996005000

دو متغیر مستقل هستند اگر و تنها اگر:

$$p(A,B) = p(A)p(B)$$

طبق جدول بالا p(E,B) برابر است با:

$$p(E,B) = 0.0000019 + 0.0000001 = 0.000002$$

همچنین داریم:

$$p(E).p(B) = 0.001*0.002 = 0.000002$$

که همان طور که می بینیم برابر هستند پس مستقل است.

سوال چهار قسمت ب) مستقل است اگر رابطه ی زیر برقرار باشد:

$$p(E, B | A) = p(E | A) * p(B | A)$$

$$p(E, B \mid A) = 0.0000019$$

$$p(E \mid A) = 0.0000019 + 0.00057942 = 0.00057961$$

 $p(B \mid A) = 0.0000019 + 0.00093812 = 0.00093831$
 $p(E, B \mid A)! = p(E \mid A) * p(B \mid A)$