选择题

1.	设 α 是 n 维非零实列向量,矩阵 $A = E + \alpha \alpha^{\prime}$, $n \ge 3$,则				
	(A) A至少有n-1个特征值为1; (B) A只有1个特征值为1;				
	(C) A 恰有 $n-1$ 个特征值为 1; (D) A 没有 1 个特征值为 1。				
2.	设 α , β 是非齐次线性方程组 $(\lambda E-A)x=b$ 的两个不同的解,则以下选项中一定是 A 对				
应	特征值 2 的特征向量为 ()				
	(A) $\alpha + \beta$; (B) $\alpha - \beta$; (C) α ; (D) β .				
3.	已知 n 阶方阵 A 、 B 满足 $AB=BA$, α 是 A 对应特征值 λ 的一个特征向量,				
	且 $lpha$ 与 $Blpha$ 线性无关。则 λ 的重数 k 必定有()				
	(A) $k = 2$; (B) $k \neq 2$; (C) $k \geq 2$; (D) $k > 2$.				
4.	设 n 维向量 $\alpha=(1,1,\cdots,1)$, $n\geq 2$, 矩阵 $A=E-\alpha^T\alpha$, 则 A^{-1} 为 ()				
	(A) $E - (n-1)\alpha^T \alpha$; (B) $E - \frac{1}{n-1}\alpha^T \alpha$; (C) $E - n\alpha^T \alpha$; (D) $E - \frac{1}{n}\alpha^T \alpha$.				
5.	设 A , B 为 n 阶方阵, 且 $A^2 = A$, $B^2 = B$ 。则(
	(A) $r(A) = r(B)$ 时, A , B 不相似; (B) $r(A) \neq r(B)$ 时, A , B 相似;				
	(C) $r(A) = r(B)$ 时, A , B 相似; (D) 以上都有可能				
6.	设 A 为 n 阶反对称矩阵 ,则()				
	(A) r(A+E) = 0; $(B) r(A+E) = n$; $(C) 0 < r(A+E) < n$; (D) 以上都有可能。				
7. 已知矩阵 $A_{2\times 2}$,满足 $ A <0$, $4A^2=E$ 。则 $\lim_{n\to +\infty}A^n$ ()					
	(A) $\begin{pmatrix} -1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$; (B) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$; (C) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$; (D) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.				
8.	设 $A ext{ } m imes n$ 实矩阵, $r(A) = n$,则				
	(A) A^TA 必合同于 n 阶单位矩阵; (B) AA^T 必等价于 m 阶单位矩阵;				
	(C) A^TA 必相似于 n 阶单位矩阵; (D) AA^T 是 m 阶单位矩阵。				

19	设A和B都是n阶实	对称阵, 现有下述四/	个命题:			
	(1) A与B相似当且仅当A与B特征多项式相同;					
)二次型 x^TAx 与 x^TBx 有相同规范形当且仅当 A 与 B 特征多项式相同;					
	3)若A与B相似,则A与B合同;					
	(4) 若A与B合同,则A	A与B相似.				
	其中正确的是:					
	(A) (1)和(2);	(B) (2)和(3);	(C) (1)和(3);	(D) (1) 和(4).		
20	设线性空间 R^n 中向	7 量组 α_1 , α_2 , α_3 线性	无关,则 R^n 的下列	生成子空间中,维	数为3的	
	生成子空间是					
	(A). L($\alpha_1 + \alpha_2$, α	$(\alpha_2 + \alpha_3, \alpha_3 - \alpha_1);$	(B). L($\alpha_1 + \alpha_2$, $\alpha_2 - \alpha_3$, $\alpha_3 + \alpha_1$);	
	(C). L ($\alpha_1 - \alpha_2$, α_2	$(\alpha_2 + \alpha_3, \alpha_3 + \alpha_1);$	(D). L ($\alpha_1 + \alpha_2$	α_1 , $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$	$(\iota_1)_{\circ}$	
21	设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 为	n 维列向量组,矩阵 /	$A = (a_{ij})_{m \times n}$,下列	选项中正确的是 _		
	(A).					
	(B). 若 α_1 , α_2 ,…, α_s 线性相关,则 $A\alpha_1$, $A\alpha_2$,…, $A\alpha_s$ 线性相关;					
	(C). 若 α_1 , α_2 ,…, α_s 线性无关,则 $A\alpha_1$, $A\alpha_2$,…, $A\alpha_s$ 线性无关;					
	(D). 若 $lpha_1$, $lpha_2$,…, $lpha_s$ 线性无关,则 $Alpha_1$, $Alpha_2$,…, $Alpha_s$ 线性相关。					
22	设 α_1 , α_2 , α_3 是线性空间 R^3 的基, $\alpha=\alpha_1+2\alpha_2+3\alpha_3$ 。则 α 在以下 R^3 的哪个基下					
	的坐标为 $(1,1,1)^T$			()	
	(A) $\beta_1 = \alpha_1 + \alpha_2$	$, \beta_2 = \alpha_2 + \alpha_3 , \beta_3 =$	$=\alpha_3+\alpha_1$;			
	(B) $\beta_1 = \alpha_1 - \alpha_2$	$, \beta_2 = \alpha_2 - \alpha_3 , \beta_3 =$	$=\alpha_3$;			
	(C) $\beta_1 = \alpha_1 + \alpha_2$	$+\alpha_3$, $\beta_2 = \alpha_2 + \alpha_3$	$,\beta_3=\alpha_3;$			
	(D) $\beta_1 = \alpha_1 + \alpha_2$	$-\alpha_3$, $\beta_2 = \alpha_2 + 2\alpha_3$	β_3 , $\beta_3 = 3\alpha_3$.			

填空题

- 1. 已知A,B为n阶方阵, $\lambda = \pm 1$ 不是B的特征值,且AB A B = E,则 $A^{-1} =$ 。
- 2. 若三阶方阵 A 有特征值 1, 1, 2 ,则行列式 $\left|A^{-1} + 2A^*\right| =$ ______。
- 3. 设 3 阶方阵 A 的特征值为 1, 2, 3, 且 A 相似于 B, 则行列式 $|B^2 + E| =$ 。
- 5. 设 4 阶矩阵 A 满足行列式|2E+A|=0 , $AA^T=3E$,|A|<0 ,则其伴随矩阵 A^* 必有 一个特征值为
- 6. 已知矩阵 $\begin{pmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{pmatrix}$ 相似于对角阵 $\begin{pmatrix} 0 & & & \\ & 1 & & \\ & & 2 \end{pmatrix}$, 则 $a = \underline{\qquad}$, $b = \underline{\qquad}$.
- 7. 列向量 $\alpha = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的对应特征值 λ 的一个特征向量.

则 $\lambda=$ ______, a=_____, b=_____。

8. 设 n 阶 向 量 $\alpha = (x, 0, \dots, 0, x)^T$, x < 0 ; 矩阵 $A = E - \alpha \alpha^T$,

且
$$A^{-1} = E + \frac{1}{x} \alpha \alpha^T$$
,则 $x =$ _____。

- 9. 设 $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$, $\alpha = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$, 已知向量 $A\alpha$ 与 α 线性相关,则 $a = \underline{\hspace{1cm}}$ 。
- 10. 设矩阵 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & x \\ -3 & -3 & 5 \end{pmatrix}$ 有特征值 6, 2, 2, 1 租 能相似于对角阵,则 $x = \underline{\hspace{1cm}}$ 。
- 11. 设A为 3 阶矩阵,且行列式|A-2E|=0,|3A+E|=0,|A+2E|=0,则行列式 $|A^2+A|=$ 。
- 12. 设 $A = (a_{ij})_{3\times 3}$ 满 足 $A^2 7A + 12E = 0$, 且 迹 $tr(A) = \sum_{i=1}^3 a_{ii} = 10$ 。 则

| *A* |= ______。

13. 设矩阵
$$A = \begin{pmatrix} -2 & 0 & 0 \\ 2 & x & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
与矩阵 $B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似,则 $x = \underline{\hspace{1cm}}$, $y = \underline{\hspace{1cm}}$;

14. 设n 阶可逆矩阵A 的各行元素的和都等于k, 且 $8A^2+A^{-1}$ 的各行元素的和都等于零,

则 k= 。

- 15. 已知实二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 2x_3^2 + 2ax_1x_2 + 2x_2x_3$ 正定,则常数a 的取值范围为_____。
- 16. 设A 为n 阶实矩阵,且 $A^T = A^{-1}$,|A| < 0,则行列式 |A + E| =。
- 17. 已知 3 阶实对称矩阵 A 的秩 r(A) = 2 ,且 $A^2 + 2A = O$,若矩阵 B = A + aE 是正定矩阵,则常数 a 的取值范围为_____。

- 20. 若实二次型 $f(x_1,x_2,x_3)=x_1^2+2\lambda x_1x_2-2x_1x_3+4x_2^2+4x_2x_3+4x_3^2$ 为正定二次型,则 λ 的取值范围为 ______。
- 21. 设 A 是实对称可逆矩阵,则将 $f=X^TAX$ 化为 $f=Y^TA^{-1}Y$ 的线性变换为
- 22. 已知 $\alpha \neq 0$ 是n 维实列向量,矩阵 $A = E k\alpha\alpha^T$,k 为非零常数,则A 为正交矩阵的充分必要条件为k =_____。
- 23. 若实二次型 $f(x_1, x_2, x_3) = x_1^2 + 2\lambda x_1 x_2 + 2x_2^2 + 4x_3^2$ 为正定二次型,则 λ 的取值范围为 ______。

24. 已知
$$A = \begin{pmatrix} 2 & 0 & k \\ 0 & 3 & 0 \\ k & 0 & 2 \end{pmatrix}$$
为正定矩阵,则常数 k 的取值为_____。

- 25. 已知二次型 $f(x_1,x_2,x_3)=t(x_1^2+x_2^2+x_3^2)+2x_1x_2+2x_1x_3-2x_2x_3$ 是正定的,则常数t的取值范围 __。
- 26. 已知实二次型

$$f(x_1,x_2,x_3) = (1+\lambda)x_1^2 + (1+\lambda)x_2^2 + (1+\lambda)x_3^2 + 2\lambda x_1 x_2 + 2\lambda x_1 x_3 + 2\lambda x_2 x_3$$
 是正定二次型,则常数 λ 的取值为

- 27. 设A是实对称可逆矩阵,则线性变换y = Ax将二次型 $f = x^T Ax$ 化为 二次型____。
- 28. 已知 $A = \begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}$ 为正定矩阵,则实常数a的取值范围为_____。
- 29. 设A是秩为 1, 迹为 0 的 3 阶方阵, 则 A 的 Jordan 标准形为 .
- 30. 二次型 $f = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2$ 的规范形为______.
- 31.设 $A = \begin{pmatrix} B & -\frac{1}{2}B \\ O & \frac{1}{2}B \end{pmatrix}$,其中方阵B有最小多项式(x-2)(x-4),则矩阵A最小多项式为_____.
- 32. 设 V 为 线 性 空 间 , $\alpha_i \in V$,i=1,2,3,4 , V 的 子 空 间 $W_1=L(\alpha_1\,,\alpha_2)$, $W_2=L(\alpha_1\,,\alpha_2\,,\alpha_3)\,,\,\,W_3=L(\alpha_1\,,\alpha_2\,,\alpha_1+\alpha_2+\alpha_3+\alpha_4)\,,\,\,$ 的维数分别为 2,2,和 3。则V 的子空间 $W_4=L(\alpha_1\,,\alpha_2\,,\alpha_3\,,\alpha_4)$ 的维数为 ______。
- 33. 设向量组 $\alpha_1 = (1,2,-1,0)^T$, $\alpha_2 = (1,1,0,2)^T$, $\alpha_3 = (2,1,1,k)^T$ 。 已知由 α_1 , α_2 , α_3 生成的子空间的维数为 2, 则常数k =______。