Advanced fMRI data analysis

Karolina Finc

Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Toruń

COURSE #7: Machine learning on fMRI data | 5th June 2020

Functional Study plan connectivity fMRI data preprocessing AFTER Open science & neuroimaging Machine Learning General on fMRI data Linear Model fMRI data manipulation **BEFORE** in python

What's machine learning?

Machine learning - the art and science of giving computers the ability to learn to make decisions from data, without being explicitly programmed.

Supervised learning - predicting the target variable, given the predictor variables (labeled data)

Supervised learning - predicting the target variable, given the predictor variables (labeled data)

• **Classification** - target variable consists of categories (for example automating diagnosis)

Supervised learning - predicting the target variable, given the predictor variables (labeled data)

- **Classification** target variable consists of categories (for example automating diagnosis)
- Regression target variable is continuous (for example predicting brain activity)

Supervised learning - predicting the target variable, given the predictor variables (labeled data)

- **Classification** target variable consists of categories (for example automating diagnosis)
- Regression target variable is continuous (for example predicting brain activity)

Unsupervised learning - uncovering hidden structures and patterns (unlabeled data)

Supervised learning - predicting the target variable, given the predictor variables (labeled data)

- **Classification** target variable consists of categories (for example automating diagnosis)
- **Regression** target variable is continuous (for example predicting brain activity)

Unsupervised learning - uncovering hidden structures and patterns (unlabeled data)

 Clustering - grouping data points into distinct categories (for example fMRI time-series into distinct brain states)

Other use-cases

Feature selection

Training & test set

Nilearn tutorials

Show stimuli of Haxby et al. dataset

SpaceNet on Jimura et al "mixed gambles" dataset.

Decoding with SpaceNet: face vs house object recognition

Voxel-Based Morphometry on Oasis dataset with Space-Net prior

The haxby dataset: different multi-class strategies

Searchlight analysis of face vs house recognition

Setting a parameter by cross-validation

Decoding with ANOVA + SVM: face vs house in the Haxby dataset

ROI-based decoding analysis in Haxby et al. dataset

Voxel-Based Morphometry on Oasis dataset

Example of pattern recognition on simulated data

Encoding models for visual stimuli from Miyawaki et al. 2008

8.1.4. A introduction tutorial to fMRI decoding

Here is a simple tutorial on decoding with nilearn. It reproduces the Haxby 2001 study on a face vs cat discrimination task in a mask of the ventral stream.

This tutorial is meant as an introduction to the various steps of a decoding analysis.

It is not a minimalistic example, as it strives to be didactic. It is not meant to be copied to analyze new data: many of the steps are unecessary.

Contents

- Retrieve and load the fMRI data from the Haxby study
- · Decoding with an SVM
- · Measuring prediction scores using cross-validation
- · Inspecting the model weights
- Further reading

Sklearn cheat sheet

Poster for extra points!

Rules:

Be visual: use less text, more pictures

Follow a good design rules and avoid clutter

https://material.io/design