Diszkrét matematika 1

4. előadás Komplex számok I.

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2024 tavasz

$$(\cos t + i \cdot \sin t)^n = \cos(n \cdot t) + i \cdot \sin(n \cdot t)$$

•
$$\sqrt{-1}$$
, $\sqrt{-5}$, $\sqrt{-117}$, $3 + \sqrt{-1}$...

$$\bullet$$
 $\sqrt{-1}$, $\sqrt{-5}$, $\sqrt{-117}$, $3 + \sqrt{-1}$...

Komplex számok használata

 egyenletek megoldása (harmadfokú megoldó képlet)

$$\bullet$$
 $\sqrt{-1}$, $\sqrt{-5}$, $\sqrt{-117}$, $3 + \sqrt{-1}$...

- egyenletek megoldása (harmadfokú megoldó képlet)
- 2D grafika

$$\bullet$$
 $\sqrt{-1}$, $\sqrt{-5}$, $\sqrt{-117}$, $3 + \sqrt{-1}$...

- egyenletek megoldása (harmadfokú megoldó képlet)
- 2D grafika
- jelfeldolgozás

$$\bullet$$
 $\sqrt{-1}$, $\sqrt{-5}$, $\sqrt{-117}$, $3 + \sqrt{-1}$...

- egyenletek megoldása (harmadfokú megoldó képlet)
- 2D grafika
- jelfeldolgozás
- fizika (áramlástan, elektromosság)

 \bullet $\sqrt{-1}$, $\sqrt{-5}$, $\sqrt{-117}$, $3 + \sqrt{-1}$...

- egyenletek megoldása (harmadfokú megoldó képlet)
- 2D grafika
- jelfeldolgozás
- fizika (áramlástan, elektromosság)
- kvantummechanika, kvantumszámítógépek

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

• z valós része Re(z) = a

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

- z valós része Re(z) = a
- z képzetes része Im(z) = b

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

- z valós része Re(z) = a
- z képzetes része Im(z) = b
- z abszolút értéke $|z| = \sqrt{a^2 + b^2}$.

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

- z valós része Re(z) = a
- z képzetes része Im(z) = b
- z abszolút értéke $|z| = \sqrt{a^2 + b^2}$.

Műveletek:

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

- z valós része Re(z) = a
- z képzetes része Im(z) = b
- z abszolút értéke $|z| = \sqrt{a^2 + b^2}$.

Műveletek:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

• az $i \in \mathbb{C}$: $i^2 = -1$ számmal szimbolikus számolási szabályokkal

Definíció

A komplex számok halmaza a

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Legyen $z = a + bi \in \mathbb{C}$. Ekkor

- z valós része Re(z) = a
- z képzetes része Im(z) = b
- z abszolút értéke $|z| = \sqrt{a^2 + b^2}$.

Műveletek:

- (a+bi) + (c+di) = (a+c) + (b+d)i
- $\bullet (a+bi) \cdot (c+di) = ac + (ad+bc)i + bdi^2 = (ac-bd) + (ad+bc)i$

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

 $\frac{1}{z}$

$$\frac{1}{z} = \frac{1}{a + bi}$$

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi}$$

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)}$$

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2}$$

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

Definíció

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

Definíció

• Egy $z = a + bi \in \mathbb{C}$ szám konjugáltja: $\overline{z} = \overline{a + bi} = a - bi$.

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

Definíció

- Egy $z = a + bi \in \mathbb{C}$ szám konjugáltja: $\overline{z} = \overline{a + bi} = a bi$.
- Ezzel $z \neq 0$ esetén $1/z = \overline{z}/|z|^2$.

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

Definíció

- Egy $z = a + bi \in \mathbb{C}$ szám konjugáltja: $\overline{z} = \overline{a + bi} = a bi$.
- Ezzel $z \neq 0$ esetén $1/z = \overline{z}/|z|^2$.

Példa

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

Definíció

- Egy $z = a + bi \in \mathbb{C}$ szám konjugáltja: $\overline{z} = \overline{a + bi} = a bi$.
- Ezzel $z \neq 0$ esetén $1/z = \overline{z}/|z|^2$.

Példa

• z = i. Ekkor $\overline{i} = -1$, |i| = 1, így 1/i = -i.

Legyen $z = a + bi \neq 0$. Ekkor 1/z kiszámolása a nevező gyöktelenítésével:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{a-bi} \cdot \frac{1}{a+bi} = \frac{a-bi}{(a-bi)(a+bi)} = \frac{a-bi}{a^2-i^2b^2} = \frac{a-bi}{a^2+b^2}$$

Definíció

- Egy $z = a + bi \in \mathbb{C}$ szám konjugáltja: $\overline{z} = \overline{a + bi} = a bi$.
- Ezzel $z \neq 0$ esetén $1/z = \overline{z}/|z|^2$.

Példa

- z = i. Ekkor $\overline{i} = -1$, |i| = 1, így 1/i = -i.
- z = 2. Ekkor $\overline{2} = 2$, |2| = 2, így 1/2 = 2/4 = 2.

Hasznos összefüggések:

Legyen $z = a + bi \in \mathbb{C}$ és $w = c + di \in \mathbb{C}$. Ekkor

Hasznos összefüggések:

Legyen
$$z = a + bi \in \mathbb{C}$$
 és $w = c + di \in \mathbb{C}$. Ekkor

$$\bullet \ z \cdot \overline{z} = a^2 + b^2 = |z|^2$$

Hasznos összefüggések:

Legyen $z = a + bi \in \mathbb{C}$ és $w = c + di \in \mathbb{C}$. Ekkor

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

Hasznos összefüggések:

Legyen $z = a + bi \in \mathbb{C}$ és $w = c + di \in \mathbb{C}$. Ekkor

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\bullet$$
 $\overline{z \cdot w}$

Hasznos összefüggések:

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\bullet \ \overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i}$$

Hasznos összefüggések:

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\bullet \ \overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i$$

Hasznos összefüggések:

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i = (ac - (-b)(-d)) + (a(-d) + (-b)c)i$$

Hasznos összefüggések:

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i = (ac - (-b)(-d)) + (a(-d) + (-b)c)i = \overline{z} \cdot \overline{w}$$

Hasznos összefüggések:

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i = (ac - (-b)(-d)) + (a(-d) + (-b)c)i = \overline{z} \cdot \overline{w}$$

Hasznos összefüggések:

Legyen $z = a + bi \in \mathbb{C}$ és $w = c + di \in \mathbb{C}$. Ekkor

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i = (ac - (-b)(-d)) + (a(-d) + (-b)c)i = \overline{z} \cdot \overline{w}$$

$$\bullet |z \cdot w|^2 = (z \cdot w) \cdot \overline{z \cdot w} = (z \cdot w) \cdot \overline{z} \cdot \overline{w} = |z|^2 |w|^2$$

• speciálisan $|z \cdot w| = |z| \cdot |w|$

Hasznos összefüggések:

Legyen $z = a + bi \in \mathbb{C}$ és $w = c + di \in \mathbb{C}$. Ekkor

•
$$z \cdot \bar{z} = a^2 + b^2 = |z|^2$$

$$\bullet \ \frac{w}{z} = w \cdot \frac{1}{z} = w \cdot \frac{\overline{z}}{|z|^2} = \frac{w \cdot \overline{z}}{|z|^2}$$

$$\overline{z \cdot w} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i = (ac - (-b)(-d)) + (a(-d) + (-b)c)i = \overline{z} \cdot \overline{w}$$

•
$$|z \cdot w|^2 = (z \cdot w) \cdot \overline{z \cdot w} = (z \cdot w) \cdot \overline{z} \cdot \overline{w} = |z|^2 |w|^2$$

• speciálisan
$$|z \cdot w| = |z| \cdot |w|$$

• ...

(További hasznos összefüggéseket ld. a kiegészítésben.)

Természetes számok: $\mathbb{N} = \{0, 1, 2, \dots\}$

• Nincs olyan $x \in \mathbb{N}$ természetes szám, hogy x + 2 = 1.

Természetes számok: $\mathbb{N} = \{0, 1, 2, \dots\}$

• Nincs olyan $x \in \mathbb{N}$ természetes szám, hogy x + 2 = 1.

Egész számok: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

- Kivonás elvégezhető.
- Egész számok: (a,b) rendezett párok ekvivalenciaosztályai, ahol $(a,b)\sim (c,d)$, ha a+d=c+b.
- Nincs olyan $x \in \mathbb{Z}$ egész szám, hogy $2 \cdot x = 1$.

Természetes számok: $\mathbb{N} = \{0, 1, 2, \dots\}$

• Nincs olyan $x \in \mathbb{N}$ természetes szám, hogy x + 2 = 1.

Egész számok: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

- Kivonás elvégezhető.
- Egész számok: (a,b) rendezett párok ekvivalenciaosztályai, ahol $(a,b)\sim (c,d)$, ha a+d=c+b.
- Nincs olyan $x \in \mathbb{Z}$ egész szám, hogy $2 \cdot x = 1$.

Racionális számok: $\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, b \neq 0\}$

- Az osztás elvégezhető.
- Racionális számok: (a,b) rendezett párok ekvivalenciaosztályai, ahol $(a,b) \sim (c,d)$, ha $a \cdot d = c \cdot b$.
- Nincs olyan $x \in \mathbb{Q}$ egész szám, hogy $x^2 = 2$.

Valós számok: $\mathbb{R} = \{1, 2, \dots\}$

- Gyökvonás nem-negatív számból elvégezhető.
- Valós számok: Cauchy sorozatok ekvivalenciaosztályai.
- Nincs olyan $x \in \mathbb{R}$ egész szám, hogy $x^2 = -1$.

```
Valós számok: \mathbb{R} = \{1, 2, \dots\}
```

- Gyökvonás nem-negatív számból elvégezhető.
- Valós számok: Cauchy sorozatok ekvivalenciaosztályai.
- Nincs olyan $x \in \mathbb{R}$ egész szám, hogy $x^2 = -1$.

Komplex számok: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$

• Az $x^2 = -1$ egyenlet megoldható.

```
Valós számok: \mathbb{R} = \{1, 2, \dots\}
```

- Gyökvonás nem-negatív számból elvégezhető.
- Valós számok: Cauchy sorozatok ekvivalenciaosztályai.
- Nincs olyan $x \in \mathbb{R}$ egész szám, hogy $x^2 = -1$.

Komplex számok: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$

• Az $x^2 = -1$ egyenlet megoldható.

A komplex számoknál nem kell tovább menni:

Valós számok: $\mathbb{R} = \{1, 2, \dots\}$

- Gyökvonás nem-negatív számból elvégezhető.
- Valós számok: Cauchy sorozatok ekvivalenciaosztályai.
- Nincs olyan $x \in \mathbb{R}$ egész szám, hogy $x^2 = -1$.

Komplex számok: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$

• Az $x^2 = -1$ egyenlet megoldható.

A komplex számoknál nem kell tovább menni:

Tétel (Algebra alaptétele, biz.: NB)

Adott $c_0, c_1, \ldots, c_n \in \mathbb{R}, n \geq 1, c_n \neq 0$, a

$$c_n z^n + \dots + c_1 z + c_0 = 0, \quad z \in \mathbb{C}$$

egyenlet mindig megoldható.

Legyen $z = a + bi \in \mathbb{C} \setminus \{0\}$.

Legyen $z = a + bi \in \mathbb{C} \setminus \{0\}$.

• Az r = |z| az $(a, b) \in \mathbb{R}^2$ vektor hossza.

Legyen $z = a + bi \in \mathbb{C} \setminus \{0\}$.

- Az r = |z| az $(a, b) \in \mathbb{R}^2$ vektor hossza.
- A $\varphi = \arg(z) \in [0, 2\pi)$ az (a, b) vektor irányszöge, az z argumentuma.

Legyen $z = a + bi \in \mathbb{C} \setminus \{0\}$.

- Az r = |z| az $(a, b) \in \mathbb{R}^2$ vektor hossza.
- A $\varphi = \arg(z) \in [0, 2\pi)$ az (a, b) vektor irányszöge, az z argumentuma.
- Ekkor $a = r \cos \varphi$ és $b = \sin \varphi$, így $z = r(\cos \varphi + i \sin \varphi)$

Legyen $z = a + bi \in \mathbb{C} \setminus \{0\}$.

- Az r = |z| az $(a, b) \in \mathbb{R}^2$ vektor hossza.
- A $\varphi = \arg(z) \in [0, 2\pi)$ az (a, b) vektor irányszöge, az z argumentuma.
- Ekkor $a = r \cos \varphi$ és $b = \sin \varphi$, így $z = r(\cos \varphi + i \sin \varphi)$

Definíció

Az $z = a + bi \in \mathbb{C} \setminus \{0\}$ komplex szám trigonometrikus alakja:

$$z = r(\cos \varphi + i \sin \varphi)$$
, ahol $a = \text{Re}(z) = r \cos \varphi$ és $b = \text{Im}(z) = r \sin \varphi$

$$z = 1$$
: $|z| = 1$, $\arg(z) = 0$
 $\implies z = 1(\cos 0 + i \sin 0)$

$$z = 1$$
: $|z| = 1$, $\arg(z) = 0$
 $\implies z = 1(\cos 0 + i \sin 0)$

$$z = i$$
: $|z| = 1$, $\arg(z) = \pi/2$
 $\Rightarrow z = 1(\cos(\pi/2) + i\sin(\pi/2))$

$$z = 1$$
: $|z| = 1$, $\arg(z) = 0$
 $\implies z = 1(\cos 0 + i \sin 0)$

$$z = 1 + i$$
: $|z| = \sqrt{2}$, $\arg(z) = \pi/4$
 $\Rightarrow z = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$

$$z = i$$
: $|z| = 1$, $\arg(z) = \pi/2$
 $\implies z = 1(\cos(\pi/2) + i\sin(\pi/2))$

Példa

$$z = 1$$
: $|z| = 1$, $arg(z) = 0$
 $\implies z = 1(\cos 0 + i \sin 0)$

 $\implies z = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$

$$z = -1 - i. |z| = \sqrt{2}, \arg(z) = 3\pi/4$$
$$\implies z = \sqrt{2}(\cos(5\pi/4) + i\sin(5\pi/4))$$

Legyen
$$z,w\in\mathbb{C}\setminus\{0\}$$
 nem-nulla komplex számok: $z=|z|(\cos\varphi+i\sin\varphi),\quad w=|w|(\cos\psi+i\sin\psi)$

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

A szorzatuk:

zw =

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

A szorzatuk:

$$zw = |z|(\cos\varphi + i\sin\varphi) \cdot |w|(\cos\psi + i\sin\psi)$$

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

A szorzatuk:

$$zw = |z|(\cos\varphi + i\sin\varphi) \cdot |w|(\cos\psi + i\sin\psi)$$

= |z||w|(\cos\varphi\cos\psi - \sin\varphi\sin\psi + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi))

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

A szorzatuk:

$$zw = |z|(\cos\varphi + i\sin\varphi) \cdot |w|(\cos\psi + i\sin\psi)$$

= |z||w|(\cos\varphi\cos\psi \cos\psi - \sin\varphi + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi))

Addíciós képletek:

$$\cos(\varphi + \psi) = \cos\varphi\cos\psi - \sin\varphi\sin\psi \quad \sin(\varphi + \psi) = \cos\varphi\sin\psi + \sin\varphi\cos\psi$$

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

A szorzatuk:

$$zw = |z|(\cos\varphi + i\sin\varphi) \cdot |w|(\cos\psi + i\sin\psi)$$

= |z||w|(\cos\varphi\cos\psi \cos\psi - \sin\varphi + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi))

Addíciós képletek:

$$\cos(\varphi+\psi)=\cos\varphi\cos\psi-\sin\varphi\sin\psi\quad\sin(\varphi+\psi)=\cos\varphi\sin\psi+\sin\varphi\cos\psi$$
 Így

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

A szorzatuk:

$$zw = |z|(\cos\varphi + i\sin\varphi) \cdot |w|(\cos\psi + i\sin\psi)$$
$$= |z||w|(\cos\varphi\cos\psi - \sin\varphi\sin\psi + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi))$$

Addíciós képletek:

$$\cos(\varphi+\psi)=\cos\varphi\cos\psi-\sin\varphi\sin\psi\quad\sin(\varphi+\psi)=\cos\varphi\sin\psi+\sin\varphi\cos\psi$$
 Így

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Tétel (Biz: Id fent)

Legyenek $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

Ekkor $zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

• A szorzat abszolút értéke: |zw| = |z||w|.

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin,\cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin,\cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin,\cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

$$(1+i)^2 = 1 + 2i + i^2 = 2i$$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin,\cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- $(1+i)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 2i$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin,\cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- $(1+i)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 2i$
- $(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin,\cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

Példa

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- $(1+i)^3 = 1+3i+3i^2+i^3 = -2+2i$
- $(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin,\cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

Példa

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- $(1+i)^3 = 1+3i+3i^2+i^3 = -2+2i$
- $(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$

•
$$z = 1 + i$$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin,\cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

Példa

$$(1+i)^2 = 1 + 2i + i^2 = 2i$$

•
$$(1+i)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 2i$$

$$(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$$

•
$$z = 1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin, \cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

Példa

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- $(1+i)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 2i$
- \bullet $(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$

- $z = 1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$
- Így $(1+i)^4 = \sqrt{2}^4 (\cos(4 \cdot \pi/4) + i\sin(4 \cdot \pi/4))$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin, \cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

Példa

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- $(1+i)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 2i$
- \bullet $(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$

- $z = 1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$
- Így $(1+i)^4 = \sqrt{2}^4 (\cos(4 \cdot \pi/4) + i\sin(4 \cdot \pi/4)) = 4(\cos \pi + i\sin \pi)$

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin, \cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

Példa

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- $(1+i)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 2i$
- \bullet $(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$

- $z = 1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$
- Így $(1+i)^4 = \sqrt{2}^4(\cos(4 \cdot \pi/4) + i\sin(4 \cdot \pi/4)) = 4(\cos \pi + i\sin \pi) = -4$

Tétel (Biz: HF)

Legyen $z,w\in\mathbb{C}\setminus\{0\}$ nem-nulla komplex számok:

```
Tétel (Biz: HF) 
 Legyen z,w\in\mathbb{C}\setminus\{0\} nem-nulla komplex számok: z=|z|(\cos\varphi+i\sin\varphi),\,w=|w|(\cos\psi+i\sin\psi), és legyen n\in\mathbb{N}. Ekkor
```

Tétel (Biz: HF)

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), w = |w|(\cos \psi + i \sin \psi),$$

és legyen $n \in \mathbb{N}$. Ekkor

- $zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$
- $\frac{z}{w} = \frac{|z|}{|w|}(\cos(\varphi \psi) + i\sin(\varphi \psi))$

Tétel (Biz: HF)

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), w = |w|(\cos \psi + i \sin \psi),$$

és legyen $n \in \mathbb{N}$. Ekkor

- $zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$
- $\frac{z}{w} = \frac{|z|}{|w|}(\cos(\varphi \psi) + i\sin(\varphi \psi))$
- $z^n = |z|^n (\cos n\varphi + i \sin n\varphi)$

Tétel (Biz: HF)

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok: $z = |z|(\cos \varphi + i \sin \varphi), w = |w|(\cos \psi + i \sin \psi),$

és legyen $n \in \mathbb{N}$. Ekkor

- $zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$
- $\frac{z}{w} = \frac{|z|}{|w|}(\cos(\varphi \psi) + i\sin(\varphi \psi))$
- $z^n = |z|^n (\cos n\varphi + i \sin n\varphi)$

A szögek rendre összeadódnak, kivonódnak, szórzódnak. Az argumentumot ezek után redukcióval kapjuk!

Példa

Legyen $z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$. Ekkor z hatványai:

Legyen
$$z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$$
. Ekkor z hatványai:

•
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

Legyen
$$z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$$
. Ekkor z hatványai:

•
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

•
$$z^3 = \cos(3\pi/6) + i\sin(3\pi/6) = i$$

Legyen
$$z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$$
. Ekkor z hatványai:

•
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

•
$$z^3 = \cos(3\pi/6) + i\sin(3\pi/6) = i$$

•
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

Legyen
$$z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$$
. Ekkor z hatványai:

•
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

•
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

•
$$z^5 = \cos(5\pi/6) + i\sin(5\pi/6)$$

Legyen
$$z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$$
. Ekkor z hatványai:

•
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

•
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

•
$$z^5 = \cos(5\pi/6) + i\sin(5\pi/6)$$

•
$$z^6 = \cos(6\pi/6) + i\sin(6\pi/6) = -1$$

Példa

Legyen $z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$. Ekkor z hatványai:

•
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

•
$$z^3 = \cos(3\pi/6) + i\sin(3\pi/6) = i$$

•
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

•
$$z^5 = \cos(5\pi/6) + i\sin(5\pi/6)$$

$$z^6 = \cos(6\pi/6) + i\sin(6\pi/6) = -1$$

• ..

Példa

Legyen $z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$. Ekkor z hatványai:

$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

•
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

•
$$z^5 = \cos(5\pi/6) + i\sin(5\pi/6)$$

$$z^6 = \cos(6\pi/6) + i\sin(6\pi/6) = -1$$

Példa

Legyen $z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$. Ekkor z hatványai:

$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

•
$$z^3 = \cos(3\pi/6) + i\sin(3\pi/6) = i$$

•
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

•
$$z^5 = \cos(5\pi/6) + i\sin(5\pi/6)$$

$$z^6 = \cos(6\pi/6) + i\sin(6\pi/6) = -1$$

...

• ..

Példa

Legyen $z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$. Ekkor z hatványai:

•
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

$$z^3 = \cos(3\pi/6) + i\sin(3\pi/6) = i$$

•
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

•
$$z^5 = \cos(5\pi/6) + i\sin(5\pi/6)$$

$$z^6 = \cos(6\pi/6) + i\sin(6\pi/6) = -1$$

•
$$z^{12} = \cos(12\pi/6) + i\sin(12\pi/6) = 1 = z^0$$

Gyökvonás

Legyen
$$z = |z|(\cos \varphi + i \sin \varphi)$$
, $w = |w|(\cos \psi + i \sin \psi)$. Ekkor $z = w \iff |z| = |w| \text{ és } \varphi = \psi + 2k\pi, \ k \in \mathbb{Z}$

Adott $w \in \mathbb{C}$ számra keressük a $z^n = w$ egyenlet megoldásait. Ekkor $z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)) = |w| (\cos\psi + i\sin\psi) = w$

ĺgy

$$|z| = |w|^{1/n}$$
 és $n\varphi = \psi + 2k\pi$ $\left(\Longrightarrow \varphi = \frac{\psi}{n} + \frac{2k\pi}{n}\right)$

Hány lényegesen különböző megoldás van:

$$\frac{\psi}{n}$$
, $\frac{\psi}{n} + \frac{2\pi}{n}$, $\frac{\psi}{n} + \frac{4\pi}{n}$, ..., $\frac{\psi}{n} + \frac{2(n-1)\pi}{n}$

De
$$\sin\left(\frac{\psi}{n}\right) = \sin\left(\frac{\psi}{n} + \frac{2n\pi}{n}\right)$$
 és $\cos\left(\frac{\psi}{n}\right) = \cos\left(\frac{\psi}{n} + \frac{2n\pi}{n}\right)$,

így pontosan *n* különböző megoldás lesz: $\frac{\psi}{n} + \frac{2k\pi}{n}$ ($k = 0, 1, \dots, n-1$).

Komplex számok gyökei

Tétel (Biz.: ld. fönt)

Legyen $w\in\mathbb{C}\setminus\{0\}$ komplex szám $w=|w|(\cos\psi+i\sin\psi)$ trigonometrikus alakkal. Ekkor a $z^n=w,\,z\in\mathbb{C}$ egyenlet megoldásai

$$z_k = |w|^{1/n}(\cos\varphi_k + i\sin\varphi_k): \quad \varphi_k = \frac{\psi}{n} + \frac{2k\pi}{n}, \quad k = 0, 1, \dots, n-1$$

- Mi lesz $z^2 = 1$ egyenlet megoldása (spoiler: ± 1).
 - $w = 1 = 1 \cdot (\cos 0 + i \sin 0)$.
 - |z| = 1
 - $z^2 = \cos 2\varphi + i \sin 2\varphi = \cos 0 + i \sin 0 = 1$
 - $2\varphi = 0 + 2k\pi \Longrightarrow \varphi = 0 + k\pi \ (k = 0, 1).$
 - $z_0 = \cos 0 + i \sin 0 = 1$, $z_1 = \cos \pi + i \sin \pi = -1$

Komplex számok gyökei

$$w=|w|(\cos\psi+i\sin\psi)\in\mathbb{C}\setminus\{0\}$$
. Ekkor a $z^n=w$, $z\in\mathbb{C}$ egyenlet megoldásai $z_k=|w|^{1/n}(\cos\varphi_k+i\sin\varphi_k): \quad \varphi_k=rac{\psi}{n}+rac{2k\pi}{n}, \quad k=0,1,\ldots,n-1$

Példa

Keressük a $z^4 = -4$ egyenlet megoldásait.

$$-4 = 4(\cos \pi + i \sin \pi)$$

•
$$|z| = 4^{1/4} = \sqrt{2}$$

•
$$4\varphi = \pi + 2k\pi \Longrightarrow \varphi = \frac{\pi}{4} + k \cdot \frac{\pi}{2}, \ (k = 0, \dots, 3)$$

Számolás komplex számokkal – kiegészítés

Tétel

- $2 \overline{z+w} = \overline{z} + \overline{w};$

- $z \neq 0$ esetén $z^{-1} = \overline{z}/|z|^2$;
- |0| = 0 és $z \neq 0$ esetén |z| > 0;

- $|z+w| \le |z| + |w|$ (háromszög egyenlőtlenség).