Data Mining & Machine Learning

Yong Zheng

Illinois Institute of Technology Chicago, IL, 60616, USA

College of Computing

Schedule

- Ensemble Methods
- Multi-Label Classifications

Schedule

- Ensemble Methods
- Multi-Label Classifications

- **Basic idea** is to learn a set of models and to allow them to vote.
- Advantage: improvement in predictive accuracy.
- **Disadvantage:** it is difficult to understand an ensemble of models.
- Note: these ensemble methods can be used for both classifications and regressions

- Bagging
- Boosting
 - -AdaBoosting
 - -Gradient Boosting
 - -XGBoost (eXtreme Gradient Boosting)

- Bagging
- Boosting
 - -AdaBoosting
 - -Gradient Boosting
 - -XGBoost (eXtreme Gradient Boosting)

Bagging

- Process in bagging:
 - Define the size for training set, n
 - Sample several training sets of size n (instead of just having one training set of size n)
 - Build a classifier for each training set
 - Combine the classifier's predictions by voting or averaging.
 - Note: you can use a same classification algorithm to build a classifier (e.g., KNN only) for each training set. Or, you can use different algorithms (e.g., KNN, Decision Tree, SVM, etc.) to build a classifier for each training set

Bagging

Sample Training sets Build individual models

Voting or Averaging

Voting and Averaging

- Voting is used for classifications, and averaging is used for regressions
- Voting: Hard and Soft voting

Hard voting

Predictions:

Classifier 1 predicts class A

Classifier 2 predicts class B

Classifier 3 predicts class B

2/3 classifiers predict class B, so class B is the ensemble decision.

Soft voting

Predictions (identical to the earlier example, but now in terms of probabilities. Shown only for class A here because the problem is binary):

Classifier 1 predicts class A with probability 99%

Classifier 2 predicts class A with probability 49%

Classifier 3 predicts class A with probability 49%

The average probability of belonging to class A across the classifiers is (99 + 49 + 49) / 3 = 65.67%. Therefore, class A is the ensemble decision.

Example: Random Forest

 Random Forest is a bagging method where you utilize decision tree as classifiers

Training sets

Build individual Voting or

Trees

Averaging

Why does bagging work?

- Bagging reduces variance by voting/ averaging, thus reducing the overall expected error
 - In the case of classification there are pathological situations where the overall error might increase
 - Usually, the more classifiers the better

- Bagging
- Boosting
 - -AdaBoosting
 - -Gradient Boosting
 - -XGBoost (eXtreme Gradient Boosting)

Boosting

- No models is always the best learner. There are always weak learners — models which may have large classification errors
- General Ideas in Boosting
 - Learn a base model
 - Adjust training set based on the previous base model, and train the next model
 - Repeat the process above to get T models
 - Finally use all T models together to make predictions

- Bagging
- Boosting
 - AdaBoosting
 - -Gradient Boosting
 - -XGBoost (eXtreme Gradient Boosting)

Rough Idea

- 1) Assign equal weights to all instances in training set
- 2) Train a base model
- 3) Adjust weights of instances in training set based on the previous model, e.g., assign more weights to the misclassified instances
- 4) Train another model
- 5) Repeat 3)-4) to get T models
- 6) Combine all T models to make predictions

- 1. Initialize the data weighting coefficients {w_n} by setting w_n⁽¹⁾ = 1/N for n = 1,...,N
- 2. For m = 1,...,M:
- (a) Fit a classifier y_m(x) to the training data by minimizing the weighted error function

$$J_{m} = \sum_{n=1}^{N} w_{n}^{(m)} I(y_{m}(x_{n}) \neq t_{n})$$

• Where $I(y_m(x_n) \neq t_n)$ is the indicator function and equals 1 when $y_m(x_n) \neq t_n$ and 0 otherwise.

(b) Evaluate the quantities

$$\varepsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(y_m(x_n) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

and then use these to evaluate

$$\alpha_m = \ln\{\frac{1-\varepsilon_m}{\varepsilon_m}\}$$

(c) Update the data weighting coefficients

$$W_n^{(m+1)} = W_n^{(m)} \exp\{\alpha_m I(y_m(x_n) \neq t_n)\}$$

 3. Make predictions using the final model, which is given by

$$Y_{M}(x) = sign(\sum_{m=1}^{M} \alpha_{m} y_{m}(x))$$

Round 1: Three "plus" points are not correctly classified; They are given higher weights.

Round 2: Three "minuse" points are not correctly classified; They are given higher weights.

Round 3: One "minuse" and two "plus" points are not correctly classified;

They are given higher weights.

Final Classifier: integrate the three "weak" classifiers and obtain a final strong classifier.

- Bagging
- Boosting
 - -AdaBoosting
 - -Gradient Boosting
 - -XGBoost (eXtreme Gradient Boosting)

Gradient Boosting

- Rough Idea
 - GB is still a boosting method
 - GB = Gradient Descent + Boosting
 - AdaBoosting vs GB
 - Both of them tried to improve weak learners iteratively
 - AdaBoosting tried to change the weights of misclassified instances. GB tried to take advantage of gradient descent of the loss functions (e.g., loss in SVM)
 - Both of them cane be used for classification and regressions, but GB is more powerful for regressions

Gradient Boosting

Gradient Boosting

- ▶ Fit an additive model (ensemble) $\sum_t \rho_t h_t(x)$ in a forward stage-wise manner.
- In each stage, introduce a weak learner to compensate the shortcomings of existing weak learners.
- In Gradient Boosting, "shortcomings" are identified by gradients. [negative gradients]
- Recall that, in Adaboost, "shortcomings" are identified by high-weight data points.
- Both high-weight data points and gradients tell us how to improve our model.

- Bagging
- Boosting
 - -AdaBoosting
 - -Gradient Boosting
 - -XGBoost (eXtreme Gradient Boosting)

More variants

- Gradient Boosting is much more powerful, and there are different variants of gradient boosting
 - -GBDT (Gradient Boosting Decision Tree)
 - -XGBoost (eXtreme Gradient Boosting)
 - -LightGBM (Light Gradient Boosting Machine)
 - –CatBoost (Categorical Boosting)

XGBoost (eXtreme Gradient Boosting)

- Gradient Boosting vs XGBoost
 - -XGBoost is an improvement over GB
 - -XGBoost supports distributed computing
 - -XGBoost have several solutions to alleviate overfitting, e.g., L1, L2 regularization terms
 - -XGBoost supports column subsampling which can improve performance
 - -Many many more

Schedule

- Ensemble Methods
- Multi-Label Classifications

Classification

Binary classification: Is this a picture of the sea?

$$\in \{ \mathtt{yes}, \mathtt{no} \}$$

Classification

Multi-class classification: What is this a picture of?

 $\in \{ sea, sunset, trees, people, mountain, urban \}$

Classification

Multi-label classification: Which labels are relevant to this picture?

 $\subseteq \{ sea, sunset, trees, people, mountain, urban \}$

i.e., multiple labels per instance instead of a single label!

For example, the news ...

For example, the IMDb dataset: Textual movie plot summaries associated with genres (labels).

Images are labelled to indicate

- multiple concepts
- multiple objects
- multiple people

e.g., Scene data with concept labels

 \subseteq {beach, sunset, foliage, field, mountain, urban}

Labelling music/tracks with genres / voices, concepts, etc.

e.g., Music dataset, audio tracks labelled with different moods, among: {

- amazed-surprised,
- happy-pleased,
- relaxing-calm,
- quiet-still,
- sad-lonely,
- angry-aggressive

Multi-Label Classification: Applications

EYEWITNESS REPORT: Arrested FIFA officials dove to the ground and pretended to be injured. #FIFAarrests #FIFAgate

5:52 AM - 28 May 2015 · Cambridge, MA, United States

138 ★ 151

Multi-Label Classification: Example

Difference in data sets

Table: Single-label $Y \in \{0, 1\}$

X_1	X_2	X_3	X_4	X_5	Y
1	0.1	3	1	0	0
0	0.9	1	0	1	1
0	0.0	1	1	0	0
1	8.0	2	0	1	1
1	0.0	2	0	1	0
0	0.0	3	1	1	?

Table: Multi-label $Y \subseteq \{\lambda_1, \ldots, \lambda_L\}$

X_1	X_2	X_3	X_4	X_5	Y
1	0.1	3	1	0	$\{\lambda_2,\lambda_3\}$
0	0.9	1	0	1	$\{\lambda_1\}$
0	0.0	1	1	0	$\{\lambda_2\}$
1	8.0	2	0	1	$\{\lambda_1,\lambda_4\}$
1	0.0	2	0	1	$\{\lambda_4\}$
0	0.0	3	1	1	?

Multi-Label Classification: Example

We usually convert labels to binary labels

Table: Single-label $Y \in \{0, 1\}$

X_1	X_2	X_3	X_4	X_5	Y
1	0.1	3	1	0	0
0	0.9	1	0	1	1
0	0.0	1	1	0	0
1	8.0	2	0	1	1
1	0.0	2	0	1	0
0	0.0	3	1	1	?

Table: Multi-label $[Y_1, \ldots, Y_L] \in 2^L$

X_1	X_2	X_3	X_4	X_5	Y_1	Y_2	Y_3	Y_4
1	0.1	3	1	0	0	1	1	0
0	0.9	1	0	1	1	0	0	0
0	0.0	1	1	0	0	1	0	0
1	8.0	2	0	1	1	0	0	1
1	0.0	2	0	1	0	0	0	1
0	0.0	3	1	1	?	?	?	?

Solutions

- Transformation Based Methods
 Transform the task to binary/multi-class classifications
- Adaptation Based Methods
 Develop new algorithms to solve the problem

- Transformation Based Methods
 - Binary Relevance
 - Classifier Chains
 - Label Powerset

Binary Relevance
 If there are N labels, we have N binary classifications

X	Y_1	Y_2	Y_3	Y_4	X	Y_1	X	Y_2	X	<i>Y</i> ₃	X	Y_4
$\mathbf{x}^{(1)}$	0	1	1	0	$\mathbf{x}^{(1)}$	0	$\mathbf{x}^{(1)}$	1	$\mathbf{x}^{(1)}$	1	$\mathbf{x}^{(1)}$	0
$\mathbf{x}^{(2)}$	1	0	0	0	$\mathbf{x}^{(2)}$	1	$\mathbf{x}^{(2)}$	0	$\mathbf{x}^{(2)}$	0	$\mathbf{x}^{(2)}$	0
$\mathbf{x}^{(3)}$	0	1	0	0	$\mathbf{x}^{(3)}$	0	$\mathbf{x}^{(3)}$	1	$\mathbf{x}^{(3)}$	0	$\mathbf{x}^{(3)}$	0
$\mathbf{x}^{(4)}$					$\mathbf{x}^{(4)}$	1	$\mathbf{x}^{(4)}$	0	$\mathbf{x}^{(4)}$	0	$\mathbf{x}^{(4)}$	1
$\mathbf{x}^{(5)}$	0	0	0	1	$\mathbf{x}^{(5)}$	0	$\mathbf{x}^{(5)}$	0	$\mathbf{x}^{(5)}$	0	$\mathbf{x}^{(5)}$	1

Drawback: it ignores the label dependence

Classifier Chains

- Classifier Chains build the model in a chain by taking label correlations into consideration
- It uses the feature to perform binary classification on 1st label, the prediction on 1st label will be reused as the features into the 2nd step to predict the 2nd label
- Repeat the process above until all of the labels are predicted

Classifier Chains

Use previous prediction results as new features

- Drawbacks in Classifier Chains
 - Difficult to define the sequence in the chain, though there are some methods (e.g., info gain)
 - If the previous predictions are incorrect, the following predictions may not be right too.

- Label Powerset
 - Each subset of the label set will be a single label
 - Assign binary classification or multi-class classification to them
 - Find a way to aggregate the results

Label Powerset

Transform dataset ...

Trainstorin datas										
X		Y_2	Y_3	Y_4						
$\mathbf{x}^{(1)}$	0	1	1	0						
$\mathbf{x}^{(2)}$	1	0	0	0						
$\mathbf{x}^{(3)}$	0	1	1	0						
$\mathbf{x}^{(4)}$	1	0	0	1						
$\mathbf{x}^{(5)}$	0	0	0	1						

...into a multi-class problem, taking 2^L possible values:

```
egin{array}{ccccc} \mathbf{X} & Y \in 2^L \ \mathbf{x}^{(1)} & 0110 \ \mathbf{x}^{(2)} & 1000 \ \mathbf{x}^{(3)} & 0110 \ \mathbf{x}^{(4)} & 1001 \ \mathbf{x}^{(5)} & 0001 \ \end{array}
```

2 ... and train any off-the-shelf multi-class classifier.

- Drawbacks in Label Powerset
 - Too many subsets if there are several labels
 - Highly possible to have imbalance issue
 - Overfitting: how to predict new values/labels?

- Solutions
 - Transformation Based Methods
 Transform the task to binary/multi-class classifications
 - Adaptation Based Methods
 Develop new algorithms to solve the problem

Algorithm adaptation techniques

- MLkNN. For each test instance:
 - Retrieve the top-k nearest neighbors to each instance
 - Compute the frequency of occurrence of each label
 - Assign a probability to each label and select the labels by using a probability cut-off value

Notes

- Both transformation and adaptation methods are the methods to solve MLC problem
- They are not classification algorithms
- For each method, you can use any traditional binary/multi-class classification algorithms to produce the predictions

Evaluation of multilabel learning

- There are multiple labels in the MLC problem
- Traditional evaluation metrics in the classification may not work for MLC
- We need to develop new evaluation metrics

Hamming Loss

Example

$$egin{array}{c|cccc} & \mathbf{y}^{(i)} & \hat{\mathbf{y}}^{(i)} \\ & \mathbf{\tilde{x}}^{(1)} & [1\ 0\ 1\ 0] & [1\ 0\ 0\ 1] \\ & \mathbf{\tilde{x}}^{(2)} & [0\ 1\ 0\ 1] & [0\ 1\ 0\ 1] \\ & \mathbf{\tilde{x}}^{(3)} & [1\ 0\ 0\ 1] & [1\ 0\ 0\ 1] \\ & \mathbf{\tilde{x}}^{(4)} & [0\ 1\ 1\ 0] & [0\ 1\ 0\ 0] \\ & \mathbf{\tilde{x}}^{(5)} & [1\ 0\ 0\ 0] & [1\ 0\ 0\ 1] \\ \end{array}$$

Consider the misclassification in each bit

HAMMING LOSS =
$$\frac{1}{NL} \sum_{i=1}^{N} \sum_{j=1}^{L} \mathbb{I}[\hat{y}_j^{(i)} \neq y_j^{(i)}] = 4/(4*5)$$

$$= 0.20$$

$$N = \text{\# of labels}$$

$$L = \text{\# of data rows}$$

0/1 Loss

 $\mathbf{\tilde{x}}^{(5)}$ [1 0 0 0] [1 0 0 1]

Consider the misclassification in the whole label set

$$0/1 \text{ LOSS} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(\mathbf{\hat{y}}^{(i)} \neq \mathbf{y}^{(i)}) = 3/5$$
 $= 0.60$

Other Metrics

- JACCARD INDEX often called multi-label ACCURACY
- RANK LOSS average fraction of pairs not correctly ordered
- ONE ERROR if top ranked label is not in set of true labels
- COVERAGE average "depth" to cover all true labels
- LOG LOSS i.e., cross entropy
- PRECISION predicted positive labels that are relevant
- RECALL relevant labels which were predicted
- PRECISION vs. RECALL curves
- F-MEASURE
 - *micro-averaged* ('global' view)
 - *macro-averaged* by label (ordinary averaging of a binary measure, changes in infrequent labels have a big impact)
 - macro-averaged by example (one example at a time, average across examples)

Multi-Label Classification Tools

- Mulan
 - Java Based
 - Reuse Weka library
 - No UI
 - http://mulan.sourceforge.net/
- Meka
 - Similar to Weka
 - Java Based
 - With UI
 - http://meka.sourceforge.net/

References

- G Tsoumakas, I Katakis, I Vlahavas, Mining multi-label data
- G Tsoumakas, I Katakis , Multi-label classification: An overview
- G Tsoumakas, E Spyromitros-Xioufis, J Vilce, Mulan: A java library for multi-label learning