Mathematics 700 Test 1

- 1. (20 points) Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the linear map T(x,y) = (2x 3y, x 2y).
 - (a) Find the matrix of T in the standard basis.
 - (b) Find the matrix of T in the ordered basis (0,3), (1,-1).
 - (c) Find the inverse of T. (The answer should be expressed in the same form as T and not as a matrix.)
 - (d) Find a basis for both the range and null space of the linear transformation T-I.
 - (e) Find T^2 .
 - (f) Find T^{1995}
- 2. (10 points) Give an example of linear maps $T: \mathbf{R}^2 \to \mathbf{R}^4$ and $S: \mathbf{R}^4 \to \mathbf{R}^2$ so that ST is invertible.
- 3. (10 points) Let $T: \mathbf{R}^4 \to \mathbf{R}^2$ and $S: \mathbf{R}^2 \to \mathbf{R}^4$ be linear maps. Show nullity $(ST) \geq 2$.
- 4. (10 points) If u, v, w are linearly independent vectors in the vector space V show that u, u + v and u + v + w are also linearly independent.
- 5. (10 points) Let $v_1 = (1,0,0)$, $v_2 = (2,1,0)$, $v_3 = (3,2,1)$. Then v_1, v_2, v_3 is a basis of \mathbf{R}^3 . Find the basis of \mathbf{R}^{3*} dual to v_1, v_2, v_3 .
- 6. (10 points) Let U and W be subspaces of the finite dimensional vector space V. Assume that $\dim U + \dim W = \dim V$ and U + W = V. Then show $V = U \oplus W$.
- 7. (10 points) Let $\mathbf{C} = \{x + iy : x, y \in \mathbf{R}\}$ be the complex numbers. Then \mathbf{C} is a two dimensional vector space over the real numbers \mathbf{R} . Let $T : \mathbf{C} \to \mathbf{C}$ be multiplication by a + bi, that is Tz = (a + bi)z Then find the matrix of T in basis 1, i of \mathbf{C} .
- 8. (10 points) Find explicitly a linear map $S: \mathbf{R}^2 \to \mathbf{R}^3$ so that S(2,3)=(1,2,3) and S(1,2)=(4,5,6).
- 9. (10 points) Gives examples of
 - (a) Matrices A and B with $AB \neq BA$.
 - (b) A matrix with $A^3 = 0$ but $A^2 \neq 0$.

Mathematics 700 Test 1

This is to be done in three hours in one setting. I would prefer that it is closed book, but if you feel that you have to look up a something write me a note like "I looked up the definition of rank and used it in problems numbers 2 and 5". I will then take a little off on these problems, say 20%. This is due in class next Tuesday. Good luck.