Temat zadania:

Analiza sprzedaży produktów w sklepie internetowym.

1. Ekstrakcja [2 pkt]:

- Dane dotyczące sprzedaży są przechowywane w bazie danych sklepu internetowego:
- Wyeksportuj dane sprzedaży do pliku CSV lub txt [znajdź na portalu https://www.kaggle.com/interesujący zbiór danych oparty o pliki CSV]

- Zaprezentuj surowe dane wejściowe (strukturę pliku, liczbę wierszy, nazwy i typy kolumn). Wykonaj szybki przegląd (Preview, Column Quality), wskaż kolumny zawierające duplikaty, wartości odstające lub nietypowe

Liczba wierszy:

W dolnym lewym rogu widać: Tabela: car_prices

Nazwy kolumn:

Widoczne w nagłówkach tabeli: year, make, model,

(wiersze: 550 298) – pokazuje liczbę rekordów. trim, itd.
 Typy danych:W panelu po prawej stronie (Dane) obok niektórych kolumn są symbole:
 ∑ – liczby (np. condition, odometer, mmr, sellingprice)
 tekstowe (np. make, model, state, vin, seller, interior)

Wykonaj szybki przegląd (Preview, Column Quality), wskaż kolumny zawierające duplikaty, wartości odstające lub nietypowe

vin – unikalny identyfikator pojazdu – powinien być unikalny, ale zawiera duplikaty.	seller – wiele powtarzających się wartości, co jest oczekiwane (np. "ford motor credit company llc" pojawia się wielokrotnie)
condition i odometer – zawierają pojedyncze null	mmr – zawiera braki danych
Odometer: Wartości typu 10, 200000, itp. mogą być odstające względem średniej	Condition : Jeśli zakres np. od 1 do 50, a pojawi się 0 albo 100, będą to wartości odstające
Sellingprice: Zbyt niska cena np. 1, 100, może oznaczać błąd (np. nieprawidłowo wprowadzony rekord).	Year : Pojazdy z np. roku 1900 lub 2050 to wartości nietypowe – w tym zbiorze powinno być raczej 2000–2017.

2. Transformacja [9 pkt]:

Wczytaj dane z pliku CSV do narzędzia ETL (np. Power Query w Power BI). Przeprowadź następujące transformacje danych:

A). Usuń niepotrzebne kolumny i wiersze, Nulle i Errory [3 pkt].

Kolumna	Powód usunięcia
vin	Zawiera długie, unikalne identyfikatory – trudne do analizy.
interior	Często pokrywa się z kolorem zewnętrznym.
seller	Duplikujące się wartości, nie wnosi analitycznej wartości.
trim	Szczegół techniczny mało użyteczny dla ogólnej analizy.

Usunięcie wierszy z pustymi wartościami (null)

condition, odometer, mmr

GODZINA POBRANIA PODGLADU: 14:31

B). Wykonaj operacje: pivot lub unpivot [1 pkt]

Dane są "rozciągnięte w dół" — czyli typowy

kolumn (condition, year, make, model, body,

Lewa kolumna: **Atrybut** – zawiera nazwy dawnych

rezultat Unpivot.

jednego samochodu.

Prawa kolumna: Wartość – zawiera wartości z tych

kolumn (np. 5, 2015, Kia, Sorento, itd.).

transmission, state, color, saledate).

Każda para Atrybut – Wartość tworzy nowy wiersz.

C). Wykonaj operacje: grupowanie [1 pkt]

Nazwa kolumny grupującej (Grupuj według)	make (marka samochodu)
Nowa kolumna	Liczba / Średnia cena

Operacja	Średnia (Average)
Kolumna:	sellingprice

D). Koniecznie stwórz tabelę danych/faktów i minimum 5 tabel wymiarów/opisowe/słownikowe

prawy przycisk myszy na	car_prices
Wybierz	Odwołanie
W nowej tabeli	car prices $(2) \rightarrow \dim \max$

Klucze główne (PK) i obce (FK) w Twoim modelu:

1. Tabela faktów: car prices

To tabela faktów i **zawiera klucze obce** do tabel wymiarów.

Klucze obce w car prices:

- make → klucz obcy do dim make[make]
- model → klucz obcy do dim model[model]
- year → klucz obcy do dim_year[year]
- state → klucz obcy do dim state[state]
- transmission → klucz obcy do dim transmission[transmission]

Zidentyfikowane relacje JOIN w modelu

Wszystkie widoczne relacje mają:

- **symbol** "1" po jednej stronie (np. dim_make)
- oraz "*" (gwiazdkę) po stronie drugiej (np. car prices)

LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN?

W Power BI domyślnie używany jest INNER JOIN przez relacje 1:N. Jeśli chcesz:

- **LEFT JOIN** musisz użyć np. funkcji DAX RELATED() (czyli pobranie danych z tabeli podrzędnej nawet jeśli nie ma dopasowania np. wyświetlanie wszystkich z car_prices, nawet jeśli brak powiązania w dim model).
- RIGHT JOIN / FULL OUTER JOIN Power BI nie wspiera tego bezpośrednio. Musisz użyć:
 - MERGE w Power Query z opcją Full Outer
 - lub skonstruować złożony DAX (UNION, EXCEPT, INTERSECT)

Z Twojego modelu:

- wszystkie relacje to INNER JOIN (1:N) wykluczają wiersze bez dopasowania.
- brak LEFT, RIGHT, FULL OUTER JOIN ale możesz je zasymulować w Power Query lub DAX.

Tabele wymiarów (dimension tables):

Każda z tych tabel zawiera **klucz główny (PK)**, który jest jednoelementowym atrybutem, wykorzystywanym jako klucz obcy w car prices.

Tabela wymiarów	Klucz główny	Powiązanie w car_prices (klucz obcy)
dim_make	make	car_prices[make]
dim_model	model	car_prices[model]
dim_year	year	car_prices[year]
dim_state	state	car_prices[state]
dim transmission	transmission	car_prices[transmission]

Tabela car_prices ma 5 kluczy obcych: make, model, year, state, transmission

Każda tabela wymiarów (dim_*) zawiera klucz główny, który jest połączony z odpowiednim kluczem obcym w car prices.

E). Oblicz wartości zamówienia [1 pkt].

W zakładce 'Narzędzia główne' klik -> 'Nowa miara'


```
AVERAGE(car prices[sellingprice])
fx RoznicaVsMMR =
                                                       1 fx_RoznicaVsMMR = SUM(car_prices[sellingprice]) - SUM(car_prices[mmr])
SUM(car prices[sellingprice]) -
SUM(car_prices[mmr])
fx RoznicaProcentowaVsMMR =
                                                       1 fx_RoznicaProcentowaVsMMR = DIVIDE(
DIVIDE(
                                                             SUM(car_prices[sellingprice]) - SUM(car_prices[mmr]),
SUM(car prices[sellingprice]) - SUM(car prices[mmr]),
                                                             SUM(car_prices[mmr])
SUM(car prices[mmr])
fx LiczbaZamowien =
                                                        1 fx LiczbaZamowien = COUNTROWS(car prices)
COUNTROWS(car prices)
                                                         ☐ ☐ fx_LiczbaZamowien
                                                            fx RoznicaProcent...

☐ fx_RoznicaVsMMR

                                                            fx_SredniaWartos...

☐ fx_WartoscZamow...
```


F). Dodaj kolumny pomocnicze, takie jak rok, miesiąc, dzień tygodnia itp., które ułatwią analizę danych [1 pkt].

KwartałSprzedazy =	Date.QuarterOfYear([saledate])
MiesiacSprzedazy =	Date.Month([saledate])
DzienTygodnia =	Date.ToText(Date.From([saledate]), "dddd", "pl-PL")

3. Relacje i wizualizacja [10 pkt]

Załaduj przetworzone dane do raportu w Power BI.

Stwórz relacje między tabelami, aby uzyskać pełne informacje o sprzedanych produktach [4pkt]. Omów rodzaj połączenia i kierunek przepływu danych.

Zarządzanie relacjami

- Rodzaj relacji: Wiele do jednego (*:1)
- Źródło danych (tabela faktów): car prices
- Cel danych (tabela wymiarów): np. dim make
- W car_prices wiele rekordów (np. samochodów) może mieć tę samą markę (make), model (model), rok (year) itd.
- W tabeli wymiarów (dim_*) każda wartość występuje tylko raz (unikalna lista np. marek, modeli, lat itp.).

X

- Kierunek propagacji filtra: z tabeli wymiarów do tabeli faktów
- Oznacza to, że wybór/filtr w np. dim_model powoduje ograniczenie rekordów tylko w car_prices, ale nie odwrotnie.
- Taki kierunek jest typowy i zalecany w układzie modelu gwiazdy, ponieważ:
- Tabela wymiarów to źródło "opisu" (np. nazwy marek, modele),
- Tabela faktów to źródło "liczb" (np. sprzedaż, przebieg).

3. A) Stwórz wizualizacje takie jak: ArcGIS for Power BI/ mapa [1 pkt],

Interaktywna mapa, która: pokazuje, gdzie sprzedano najwięcej aut, ile sztuk sprzedano w danym stanie, jaką wartość miała sprzedaż w danym regionie

3. B). Stwórz wizualizacje takie jak: kartogram [1 pkt],

3. C). Stwórz wizualizacje takie jak: karta z wierszami [1 pkt]

 $\textbf{fx_LiczbaZamowien} - \text{ilość wierszy/zamówień}$

Suma elementów sellingprice – łączna wartość sprzedaży

fx_ŚredniaWartoscZamowienia – przeciągnij z listy po prawej

fx_RoznicaVsMMR – różnica ceny sprzedaży względem wartości rynkowej

fx_RoznicaProcentowaVsMMR – ta sama różnica w %

3. D). Stwórz wizualizacje takie jak: fragmentator [1 pkt]

3. E). Stwórz wizualizacje takie jak: filtry [1 pkt]

3. F). Stwórz wizualizacje takie jak: wykresy [1 pkt]

Wykresy prezentują:

- Kto najwięcej sprzedał (producent, stan)
- W którym czasie wystąpiła największa sprzedaż
- Jaki typ nadwozia generuje największe przychody
- Ile było zamówień w poszczególnych kategoriach

3. G). Stwórz wizualizacje takie jak: wykresy [1 pkt]

Rozmiar prostokąta odzwierciedla sumę wartości (np. łączną sprzedaż) dla danej grupy.

3. H). Możesz dodać inne, wybrane przez siebie wizualizacje [2 pkt]

Skumulowany wykres kolumnowy

Porównanie wartości sprzedaży (sellingprice) w czasie — wg miesięcy Legenda: make l – aby rozbić sprzedaż wg marek

Wykres liniowy

Analiza trendu sprzedaży w czasie

3. I). Dodaj filtry, które umożliwią interaktywną analizę danych, np. filtry na datę, kategorię produktu itp. [1 pkt].

- 1. Filtr na datę sprzedaży (saledate)
- 2. Filtr na kategorię produktu np. make (marka)
- 3. Filtr na model
- 4. Filtr przedziału wartości (sellingprice)

W raporcie przedstaw np:

- najlepiej i najgorzej sprzedawane produkty w miastach/regionach; w których kwartałach/miesiącach
- najlepszy/najgorszy sprzedawca, co sprzedał i za jaki zysk wygenerował
- które wymiary (np. kategoria, miasto) najsilniej wpływają na wzrost sprzedaży
- wymusić w raporcie możliwość drill-down (hierarchia danych) z poziomu rocznego do miesięcznego, tygodniowego
- przygotuj prosty storyboard z 2–3 zakładkami (np. Overview \to Regiony \to Produkty), wykorzystaj przyciski do nawigacji między nimi.

Zakładka "Regiony" – analiza geograficzna sprzedaży

Kartogram lub mapa ArcGIS:

Pole lokalizacji: state (ze słownika dim state).

Rozmiar bańki / kolor: Suma sellingprice.

 $Tooltipy: fx_LiczbaZamowien, fx_SredniaWartoscZamowienia.$

Tabela lub słupkowy wykres porównujący regiony:

Oś X: state, Y: fx_WartoscZamowienia.

Koloruj stan wg wartości sprzedaży (najlepsze/najgorsze stany).

Fragmentatory:

Rok, kwartał, miesiąc (RokSprzedazy, KwartalSprzedazy, MiesiacSprzedazy).

Marka (make), model (model) – dla zawężenia do konkretnych grup.

Treemap (drzewo prostokątne): pokazuje fx_LiczbaZamowien według make – bardzo dobrze do identyfikacji najlepiej sprzedających się marek.

Tabela modeli: przedstawia make, model, fx_LiczbaZamowien – idealna do szczegółów.

KPI (liczba 1 447 900): pokazuje Suma elementów sellingprice – działa jako wskaźnik ogólny.

Drugi KPI (94): liczba zamówień (fx_LiczbaZamowien) – świetnie jako metryka pomocnicza.

Fragmentatory: według RokSprzedazy, MiesiacSprzedazy, make, model – umożliwiają bardzo dobre filtrowanie.

1. Suma elementów sellingprice

Jest to łączna wartość sprzedaży (czyli przychód brutto) ze wszystkich zarejestrowanych zamówień w zestawie danych. Oznacza to, że produkty o różnej marce i modelu zostały sprzedane łącznie za prawie 2 miliony jednostek waluty (np. PLN).

Ten wskaźnik pokazuje całkowity zasięg finansowy działalności.

2. fx LiczbaZamowien

Wskazuje łączną **liczbę zamówień** (czyli przypadków sprzedaży). Każde zamówienie odpowiada jednej transakcji – niezależnie od wartości sprzedaży.

Może być użyteczny do obliczania średniej wartości zamówienia lub porównania intensywności sprzedaży między regionami

3. fx SredniaWartoscZamowienia

Pokazuje średnią wartość sprzedaży na jedno zamówienie.

Jest to wyliczenie: Suma(sellingprice) / LiczbaZamowien, czyli przeciętny koszt pojedynczej transakcji.

Pozwala ocenić wartość przeciętnego klienta — przydatne do planowania działań marketingowych i rabatowych.

4. fx RoznicaVsMMR

To różnica między ceną sprzedaży a wartością referencyjną MMR (Market Mean Retail). Ujemna wartość oznacza, że pojazdy były sprzedawane poniżej ceny rynkowej.

Może wskazywać na wyprzedaże, nadwyżki magazynowe lub agresyjną politykę cenową.

5. fx RoznicaProcentowaVsMMR

Wskaźnik pokazuje średnią procentową różnicę względem ceny MMR.

Wartość -0,04 oznacza, że sprzedaż była średnio o 4% niższa niż referencyjna cena rynkowa.

Pokazuje efektywność cenową – przydatny wskaźnik rentowności i atrakcyjności oferty.

https://app.powerbi.com/groups/me/lineage?actions=highlight%2Cimpact&artifactId=777e9a9e-593c-451e-b7bf-c4d5c21f8e22&src=Desktop&experience=power-bi