

Estrutura de Dados I Conjuntos disjuntos

Bruno Prado

Departamento de Computação / UFS

- O que é um conjunto?
 - É uma coleção de elementos distintos
 - Podem ser ilustrados através do diagrama de Venn

- Operação de união de conjuntos
 - ▶ Notação ∪

- Operação de interseção de conjuntos
 - ► Notação ∩

- O que são conjuntos disjuntos?
 - São coleções de elementos que não possuem interseção entre si

- Operações básicas em conjuntos disjuntos
 - Criação do conjunto (make-set)
 - União de conjuntos (union)
 - Busca de conjunto (find-set)

Devido a estas operações principais, esta estrutura de dados também é conhecida como conjunto union-find

- Definição da estrutura de conjuntos disjuntos
 - ▶ Coleção de conjuntos disjuntos $S = \{S_1, S_2, \dots, S_n\}$
 - Cada conjunto é identificado por um representante
 - Este representante é algum elemento do conjunto
 - Não importa qual é o elemento
 - Só precisa ser o mesmo em todas as operações
- Estruturas de armazenamento
 - Listas encadeadas
 - Árvores

- Criação de um conjunto disjunto (make set)
 - É feita a criação de um conjunto *i* com exatamente um elemento $S_i = \{x\}$
 - ➤ O elemento x é o representante do conjunto, só existindo neste conjunto disjunto
 - Este novo conjunto criado é adicionado a coleção de conjuntos disjuntos S = S ∪ S_i

Cada elemento é inserido através desta operação, sendo realizadas *n* operações para criação dos conjuntos disjuntos

- União de dois conjuntos disjuntos (union)
 - Assumindo dois conjuntos $S_i = \{x\}$ e $S_j = \{y\}$, é necessário escolher um novo representante de S_i ou S_j
 - É feita a remoção dos conjuntos S_i e S_j dos conjuntos disjuntos $S = S S_i S_j$
 - A operação de união cria um novo conjunto $S_k = S_i \cup S_j$ que é incorporado à coleção $S = S \cup S_k$

Cada operação de união reduz a quantidade de conjuntos disjuntos por 1, realizando no máximo n-1 uniões até que reste apenas um conjunto

- Busca por um conjunto disjunto (find-set)
 - É retornado o conjunto que contém o elemento x, através da referência do conjunto
 - Esta referência contém o representante do conjunto que contém o elemento x

- Representação por lista encadeada
 - Cada conjunto é uma lista encadeada, com ponteiros para cabeça e para cauda da lista
 - Os elementos apontam para o próximo elemento e para cabeça da lista que é o representante

- Representação por lista encadeada
 - Criando um conjunto para o elemento a
 - ▶ A criação da lista possui custo O(1)

- Representação por lista encadeada
 - Unindo dois conjuntos disjuntos
 - Para realizar a união dos elementos a, b e c é necessário ajustar os ponteiros

- Representação por lista encadeada
 - Unindo dois conjuntos disjuntos
 - ightharpoonup O ajuste dos ponteiros tem custo O(n)

- Representação por lista encadeada
 - Buscando o conjunto do elemento c
 - ▶ O custo desta operação é O(1)

- Representação por lista encadeada
 - ▶ Considerando os conjuntos disjuntos $S = \{S_1, S_2, ..., S_n\}$
 - ightharpoonup Realizando n criações e n-1 uniões de conjuntos

Operação	Número de Atualizações
Criação(S_1)	1
Criação(S ₂)	1
:	1
Criação(Sn)	1
União(S_1 , S_2)	1
União(S ₂ , S ₃)	2
:	:
União(S_{n-1}, S_n)	n – 1

$$O(n + \sum_{i=1}^{n-1} i) = O(n + n^2) = O(n^2)$$

- Representação por lista encadeada
 - Para tornar a estrutura mais eficiente, é aplicada uma heurística de união ponderada
 - É feita a união do conjunto de menor tamanho com o que possui maior tamanho, atualizando no pior caso metade das referências da lista

A união de n elementos tem custo de O(n log₂n)

- Análise de complexidade
 - Considerando que o custo para realização de m operações constantes para criação e busca de conjuntos disjuntos é O(m)
 - ► Espaço Θ(n)
 - ▶ Tempo $O(m + n \log_2 n)$

Exemplo

- Realize a criação de conjuntos para os elementos 1, 2, 3, 4, 5, 6, ilustrando as estruturas de lista a medida que as operações abaixo são executadas
 - ▶ União(1, 2)
 - ▶ União(3, 4)
 - União(5, 6)
 - União(1,6)
 - Busca(5)
 - União(3, 5)

- Representação por árvore
 - Cada conjunto é representado por uma árvore enraizada criando uma floresta de conjuntos disjuntos
 - Na implementação das referências o nó possui uma referência para o elemento pai, referenciando a si mesmo quando for raiz da árvore

- Representação por árvore
 - Criando um conjunto para o elemento a
 - ► A criação da árvore possui custo O(1)

- Representação por árvore
 - Unindo dois conjuntos disjuntos
 - ▶ O ajuste dos ponteiros tem custo O(1)

- Representação por árvore
 - Buscando o conjunto do elemento c
 - ▶ O custo desta operação é O(h)

- Representação por árvore
 - ▶ Considerando os conjuntos disjuntos $S = \{S_1, S_2, ..., S_n\}$
 - ightharpoonup Realizando n criações e n-1 uniões de conjuntos
 - No pior caso $O(n^2)$, a árvore é uma lista encadeada

- Representação por árvore
 - Para melhorar a eficiência da estrutura é aplicada a heurística de união por classificação
 - Nesta heurística de união, cada árvore é classificada pelo número de nós que possui e a árvore com menor número de nós fará referência para a árvore com major número de nós
 - Considerando m operações de criação e de união de conjuntos, esta heurística tem custo O(mlog₂ n)

- Representação por árvore
 - A heurística de compressão de caminhos permite tornar a estrutura ainda mais eficiente, fazendo que os nós referenciem diretamente a raiz da árvore
 - Não é alterada a quantidade de nós de cada árvore

- Implementação em C
 - Na criação de um conjunto, o nó referencia a si mesmo e possui altura nula

```
void make-set(node* x) {
    x->p = x;
    x->rank = 0;
}
```

- Implementação em C
 - A união de dois conjuntos é feita pela aplicação da heurística de união por classificação

```
void union(node* x, node* y) {
    node^* rx = find-set(x):
    node* ry = find-set(y);
    if(rx->rank > ry->rank)
         ry - p = rx;
    else {
         rx - p = ry;
         if(rx->rank == ry->rank)
             ry->rank++:
```

- ▶ Implementação em C
 - Na busca pelo conjunto é feita a aplicação da heurística de compressão de caminhos

```
node* find-set(node* x) {
    if(x != x->p)
        x->p = find-set(x->p);
    return x->p;
}
```

- Análise de complexidade
 - ▶ Aplicando as duas heurísticas de união por classificação e de compressão de caminhos é obtido um tempo de execução $O(m\alpha(n))$, a função $\alpha(n)$ possui um crescimento muito lento e utilizando valores práticos de n a função $\alpha(n) \le 4$
 - Espaço Θ(n)
 - ▶ Tempo O(m)

Exemplo

- Realize a criação de conjuntos para os elementos 1, 2, 3, 4, 5, 6, ilustrando as estruturas de árvore a medida que as operações abaixo são executadas
 - ▶ União(1, 2)
 - ▶ União(3, 4)
 - União(5, 6)
 - União(1,6)
 - ▶ Busca(5)
 - União(3, 5)

Aplicações

- Árvore de extensão mínima (Kruskal)
- Particionamento de conjuntos
- Verificar conectividade dos nós de uma rede
- **>**

