Assignment 1

21/10/2022

Francesco Refolli 865955

1 Esercizio 1

$$max x_1 + x_2 (1)$$

$$x_1 + x_2 \le 2 \tag{2}$$

$$2x_1 - x_2 \le 0 \tag{3}$$

$$x_1, x_2 \ge 0 \tag{4}$$

Costruisco il grafico con le equazioni dei vincoli lungo l'asse $x_1 \times x_2$. Riscrivo per comodita' i primi due vincoli in forma equivalente:

$$x_1 \le 2 - x_2 \tag{5}$$

$$x_1 \le \frac{x_2}{2} \tag{6}$$

Quindi disegno il gradiente della funzione obiettivo g e la funzione obiettivo.

Il vettore del gradiente della funzione obiettivo g=<1,1>, composto dalle derivate parziali delle componenti della funzione obiettivo, e' perpedincolare al vincolo $x_1 \leq 2-x_2$. Il problema ha **Infinite Soluzioni Ottime**. Le soluzioni sono tutte le coppie $< x_1, x_2>$ che risiedono nello spigolo della regione obiettivo su cui si poggia il vincolo $x_1 \leq 2-x_2$. Per calcolare il segmento e' sufficiente calcolare l'intersezione dei vincoli $x_1 \leq 2-x_2$ e $x_2 \geq 0$. Il risultato sono i punti: $(0,2), (\frac{2}{3},\frac{4}{3})$. Le soluzioni sono tutti i punti compresi nel segmento delimitato da essi.

2 Esercizio 2

$$max x_1 + x_2 \tag{7}$$

$$x_1 + x_2 - x_3 = 2 (8)$$

$$2x_1 - x_2 \le 0 \tag{9}$$

$$x_1, x_2 \ge 0 \tag{10}$$

$$x_3 \le 0 \tag{11}$$

Conversione in forma aumentata

 ${f 1}$ La forma aumentata non prevede vincoli di non positivita', quindi inverto il segno di x_3 in tutti i vincoli:

$$max x_1 + x_2 (12)$$

$$x_1 + x_2 + x_3 = 2 (13)$$

$$2x_1 - x_2 \le 0 \tag{14}$$

$$x_1, x_2, x_3 \ge 0 \tag{15}$$

 ${\bf 2}$ Aggiungo una variabile di slack x_4 per portare il vincolo \leq in vincolo –

$$max x_1 + x_2 (16)$$

$$x_1 + x_2 + x_3 = 2 (17)$$

$$2x_1 - x_2 + x_4 = 0 (18)$$

$$x_1, x_2, x_3, x_4 \ge 0 \tag{19}$$

3 Quindi esporto la funzione obiettivo f(x) in un vincolo Z - f(x) = 0.

$$max Z$$
 (20)

$$Z - x_1 - x_2 = 0 (21)$$

$$x_1 + x_2 + x_3 = 2 (22)$$

$$2x_1 - x_2 + x_4 = 0 (23)$$

$$x_1, x_2, x_3, x_4 \ge 0 \tag{24}$$

Risoluzione con tableau Riempio la forma tabellare con i coefficienti delle variabili nei vincoli e nella funzione obiettivo. La tabella risulta:

base	Z	x_1	x_2	x_3	x_4	b
Z	1	-1	-1	0	0	0
3	0	1	1	1	0	2
4	0	2	-1	0	1	0

La base e' formata da 2 variabili, perche' il numero di vincoli e' proprio 2. Inserisco nella base le variabili x_3 , x_4 . Fuori base rimangono x_1 , x_2 . La soluzione di base corrente $\langle x_1, x_2, x_3, x_4 \rangle = \langle 0, 0, 2, 0 \rangle$ e' ammissibile. Quindi procedo con l'algoritmo del simplesso.

iterazione 1 Non esiste un coefficiente in prima riga negativo piu' basso di tutti gli altri. Scelgo la colonna 1 con coefficiente -1. La riga 2 ha il rapporto minimo, diventa la riga pivot. Il valore pivot e' 2, moltiplico tutta la riga 2 per $\frac{1}{2}$ per ridurre il valore pivot a 1. Quindi applico l'algoritmo per ricalcolare la tabella. Questa iterazione ha l'effetto di scambiare x_4 della base con x_1 .

base	Z	x_1	x_2	x_3	x_4	b
Z	1	0	$-\frac{3}{2}$	0	$\frac{1}{2}$	0
3	0	0	$\frac{3}{2}$	1	$-\frac{1}{2}$	2
1	0	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	0

iterazione 2 Scelgo la colonna 2 perche' possiede il coefficiente in prima riga negativo piu' basso, ovvero $-\frac{3}{2}$. La riga 1 ha il rapporto minimo, diventa la riga pivot. Il valore pivot e' $\frac{3}{2}$, moltiplico tutta la riga 2 per $\frac{2}{3}$ per ridurre il valore pivot a 1. Applico l'algoritmo per ricalcolare la tabella. Questo ha l'effetto di scambiare x_3 della base con x_2 .

base	Z	x_1	x_2	x_3	x_4	b
Z	1	0	0	1	0	2
2	0	0	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{4}{3}$
1	0	1	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$

iterazione 3 La prima riga non contiene piu' valori negativi, l'algoritmo del simplesso si arresta.

La soluzione di base corrente e' $< x_1, x_2, x_3, x_4 > = < \frac{2}{3}, \frac{4}{3}, 0, 0 >$ Quindi una soluzione al problema PL e' $< x_1, x_2 > = < \frac{2}{3}, \frac{4}{3} >$ Ad ogni modo, siccome una delle variabili non di base ha coefficiente 0 in prima posizione e' possibile continuare con le iterazioni per individuare una ulteriore soluzione ottimale al problema PL.

Selezionando la colonna x_4 , l'unica riga con coefficiente positivo e' la riga 2. Quindi moltiplico la stessa per l'inverso del numero pivot: $(\frac{1}{3})^{-1} = 3$. Successivamente ricalcolo le altre righe di conseguenza.

Risulta:

base	Z	x_1	x_2	x_3	x_4	b
Z	1	0	0	1	0	2
2	0	1	1	1	0	2
4	0	3	0	1	1	2

iterazione 4 La prima riga non contiene valori negativi, l'algoritmo del simplesso si arresta.

La soluzione di base corrente e' $< x_1, x_2, x_3, x_4 > = < 0, 2, 0, 2 >$ Quindi un'altra soluzione al problema PL e' $< x_1, x_2 > = < 0, 2 >$

Essendoci due soluzioni ottimali di base, tutte le soluzioni ottimali sono una combinazione convessa delle due precedentemente ottenute:

$$<\!x_1,x_2,x_3,x_4> = w_1\cdot<\!rac{2}{3},\!rac{4}{3},\!0,\!0> + w_2\cdot<\!0,2,0,2>$$