PRACTICAL-13

Euler Method

Prachi Mittal{20211061}

Ques-1

```
in[70]:= EulerMethod[a0_, b0_, n0_, f_, alpha_] :=
        Module [ \{ a = a0, b = b0, n = n0, h, ti \}, 
         h = (b - a) / n;
         ti = Table[a + (j-1) h, {j, 1, n+1}];
         ui = Table[0, {n + 1}];
         ui[1] = alpha;
         OutputDetails = {{0, ti[1], alpha}};
         For [i = 1, i \le n, i++,
          ui[[i + 1]] = ui[[i]] + h * f[ti[[i]], ui[[i]]];
          OutputDetails = Append[OutputDetails,
             {i, N[ti[i+1]], N[ui[i+1]]}}];];
         Print[NumberForm[
           TableForm[OutputDetails, TableHeadings → {None, {"i", "ti", "ui"}}], 6]];
         Print["Subinterval size h used= ", h];
        ];
     f[t_{, w_{]}} := 1 + w/t;
     a = 1; b = 6; n = 10; alpha = 1;
     EulerMethod[a, b, 10, f, alpha];
           ti
                   ui
           1.5
           2. 3.166672.5 4.45833
           3. 5.85
3.5 7.325
4. 8.87143
          4.
          4.5 10.4804
                 12.1448
     9
          5.5 13.8593
                  15.6193
     Subinterval size h used= \frac{1}{2}
```

Subinterval size n used= 2

Euler Method with h

Ques-2

Subinterval size h used= 0.2

```
In[60]:= EulerMethodwithH[a0_, b0_, h0_, f_, alpha_] :=
       Module [a = a0, b = b0, h = h0, n, ti],
         n = (b - a) / h;
         ti = Table[a + (j - 1) h, {j, 1, n + 1}];
         ui = Table[0, {n + 1}];
         ui[1] = alpha;
         OutputDetails = {{0, ti[1], alpha}};
         For [i = 1, i \le n, i++,
          ui[i + 1] = ui[i] + h * f[ti[i], ui[i]];
          OutputDetails = Append[OutputDetails,
             {i, N[ti[i+1]]], N[ui[i+1]]}}];];
         Print[NumberForm[
           TableForm[OutputDetails, TableHeadings → {None, {"i", "ti", "ui"}}], 6]];
        Print["Subinterval size h used= ", h];
       ];
     g[t_{, w_{]}} := 1 + w/t;
     a = 1; b = 6; h = .2; alpha = 1;
     EulerMethodwithH[a, b, h, g, alpha];
     i
           ti
                  ui
     0
           1.
                  1
                  1.4
           1.2
     1
     2
                  1.83333
           1.4
           1.6
                  2.29524
                  2.78214
     4
           1.8
           2.
                  3.29127
     6
           2.2
                  3.8204
     7
           2.4
                  4.36771
     8
           2.6
                  4.93168
     9
           2.8
                  5.51104
     10
                  6.10469
           3.
           3.2
     11
                  6.71167
     12
           3.4
                  7.33115
     13
           3.6
                  7.96239
           3.8
                  8.60474
     14
     15
           4.
                  9.25763
     16
           4.2
                  9.92051
                  10.5929
     17
           4.4
     18
           4.6
                  11.2744
     19
           4.8
                  11.9646
     20
                  12.6631
           5.2
                  13.3696
     21
     22
           5.4
                  14.0839
     23
                  14.8055
           5.6
     24
           5.8
                  15.5343
           6.
                  16.2699
     Subinterval size h used= 0.2
     Ques-3
ln[64]:= f[t_, x_] := x;
     h = 0.2;
     EulerMethodwithH[0, 0.4, h, f, 1];
          ti
                 ui
     0
          0.
                 1
     1
          0.2
                 1.2
          0.4
                 1.44
```

Ques-4

1.44 Subinterval size h used= 0.2

Ques-5

Out[80]= **0.0518247**

0.4

$$\label{eq:local_$$