

# Estimating and Simulating a SIRD Model of COVID-19

Jesús Fernández-Villaverde and Chad Jones

April 13, 2020 (Very preliminary and incomplete)

#### **Outline**

- Basic model
  - Social distancing via a time-varying  $\beta$
- Estimation and simulation
  - Different countries and states
  - Robustness to parameters
  - "Forecasts" from each of the last 7 days
  - Standard errors coming soon
- How much can we relax social distancing?



## **Basic Model**

#### **Notation**

Number of people who are (stocks):

S = Susceptible

I = Infective

R = Recovered

D = Dead

Constant population size is N

$$S_t + I_t + R_t + D_t = N$$

#### **SIRD Model: Overview**

• Susceptible get infected at rate  $\beta I_t/N$ 

New infections = 
$$\beta I_t/N \cdot S_t$$

- Infections resolve at Poisson rate  $\gamma$ , so the average number of days until resolution is  $1/\gamma$  so  $\gamma=.2\Rightarrow 5$  days.
- Resolution happens in one of two ways:
  - $\circ$  Death: fraction  $\delta$
  - $\circ$  Recovery: fraction  $1-\delta$

#### **SIRD Model: Laws of Motion**

$$\Delta S_{t+1} = \underbrace{-\beta S_t I_t/N}_{\text{new infections}}$$
 
$$\Delta I_{t+1} = \underbrace{\beta S_t I_t/N}_{\text{new infections}} - \underbrace{\gamma I_t}_{\text{resolving infections}}$$
 
$$\Delta R_{t+1} = \underbrace{(1-\delta)\gamma I_t}_{\text{recover}}$$
 
$$\Delta D_{t+1} = \underbrace{\delta \gamma I_t}_{\text{die}}$$
 
$$R_0 = D_0 = 0$$

#### New notation (terrible) $R_0$ : Initial infection rate

- Let  $s_0 \equiv S_0/N$  = fraction susceptible
- Terrible recycled notation: "Reproduction number"  $R_0 \equiv \beta/\gamma$ 
  - $\circ$   $\beta$  = rate at which you get the virus from one infective person
  - $\circ$  1/ $\gamma$  = average time infected
  - So  $R_0$  = expected number of infections generated by one sick person when no herd immunity ( $s_0 \approx 1$ )

#### **Basic Properties of Differential System (Hethcote 2000)**

- If  $R_0s_0 > 1$ , the disease spreads, otherwise declines immediately
- Initial exponential growth rate is  $\beta \gamma$
- As  $t \to \infty$ , the total fraction of people ever infected,  $e^*$ , solves (assuming  $s_0 \approx 1$ )

$$e^* = -\frac{1}{R_0} \log(1 - e^*)$$

Long run is pinned down by  $R_0$  (and death rate),  $\gamma$  affects timing

## **Social Distancing**

- What about a time-varying infection rate  $\beta_t$ ?
  - Disease characteristics fixed, homogeneous
  - Regional characteristics (NYC vs Montana) fixed, heterogeneous
  - Social distancing varies over time and space
- Model: assume two key parameters  $\beta_0$  and  $\beta^*$
- Economy decays exponentially from  $\beta_0$  to  $\beta^*$  at rate  $\lambda$ :

$$\beta_t = \beta_0 e^{-\lambda t} + \beta^* (1 - e^{-\lambda t})$$

$$\Rightarrow$$
 can think about initial  $R_0 = \beta_0/\gamma$  and final  $R_0^* = \beta^*/\gamma$ 



## **Estimates and Simulations**

#### **Estimation: Countries and States**

- Parameters that are fixed and homogeneous
  - $\circ \ \gamma = 0.2$ : average duration is 5 days (or  $\gamma = 0.1$ )
  - $\delta = 0.003$  (Heinsberg, Germany random sampling)
  - $\lambda = 7\%$ :  $\beta_t$  falls halfway to new value each 10 days
- Parameters that vary across countries/states
  - $\beta_0$  and  $\beta^*$
  - I₀: initial number of infections (gets timing right)
- Objective function:
  - Equally weighted SSR for Cumulative deaths (logs) and Daily deaths (logs)

#### **Guide to Graphs**

- 7 days of forecasts: ROY-G-BIV (old to new, low to high)
  - Black=current
  - Red = oldest, Orange = second oldest, Yellow = third oldest...
  - Violet (purple) = one day earlier
- For robustness graphs, same idea
  - Black = baseline (e.g.  $\delta = .003$ )
  - Red = lowest parameter value (e.g.  $\delta = .001$ )
  - $\circ$  Green = highest parameter value (e.g.  $\delta = .005$ )

#### New York: Cumulative Deaths per Million People ( $\delta = .003/.001/.005$ )



#### New York: Daily Deaths per Million People ( $\delta = .003/.001/.005$ )



#### New York: Cumulative Deaths per Million (Future, $\delta = .003/.001/.005$ )



#### Italy: Cumulative Deaths per Million People ( $\lambda = .07/.05/.10$ )



## Italy: Daily Deaths per Million People ( $\lambda = .07/.05/.10$ )



#### Italy: Cumulative Deaths per Million (Future, $\lambda = .07/.05/.10$ )



#### **Spain: Cumulative Deaths per Million People (** $\gamma = .2/.1$ **)**



## Spain: Daily Deaths per Million People ( $\gamma = .2/.1$ )



#### Spain: Cumulative Deaths per Million (Future, $\gamma = .2/.1$ )





# Repeated "Forecasts" from the past 7 days of data

- After peak, forecasts settle down.
- Before that, very noisy!

## Spain (7 days): Daily Deaths per Million People



## Italy (7 days): Daily Deaths per Million People



## New York (7 days): Daily Deaths per Million People



### New York (7 days): Cumulative Deaths per Million (Future)



## California (7 days): Cumulative Deaths per Million



### California (7 days): Daily Deaths per Million People



#### California (7 days): Cumulative Deaths per Million (Future)



## U.K. (7 days): Cumulative Deaths per Million



#### U.K. (7 days): Daily Deaths per Million People



### U.K. (7 days): Cumulative Deaths per Million (Future)



### Sweden (7 days): Daily Deaths per Million People



## France (7 days): Daily Deaths per Million People



## **Cumulative Deaths per Million, Log Scale**



### Hubei, China (7 days): Daily Deaths per Million People



#### S. Korea (7 days): Daily Deaths per Million People



## Washington (7 days): Daily Deaths per Million People



## Louisiana (7 days): Daily Deaths per Million People



## Florida (7 days): Daily Deaths per Million People



## Michigan (7 days): Daily Deaths per Million People



## Massachusetts (7 days): Daily Deaths per Million People





# **Assessing Uncertainty**

## **How Do We Evaluate Uncertainty?**

- Basic SIRD model is deterministic
  - There is an implicit appeal to a law of large numbers holding in populations.
  - How do we map it into data?
  - Measurement error (huge undercount of deaths in Italy and Spain, massive under-reporting of infections). However, unlikely to be classical measurement error.
  - Un-modeled shocks (we have not specified them explicitely).
- Thus, assessing uncertainty is not straightforward.

## **Our Approach**

- A simple empirical Bayesian method
  - Specify a prior on  $\beta$ ,  $\gamma$ , and  $\delta$  centered around our point estimates and having a variance based on plausibility/our reading of the medical literature.
  - You sample from the prior and forecast the future behavior of the model based on the sampled parameter values.
  - Informative about the properties of the model and range of likely outcomes
- We tried to compute standard errors.
  - We got numerically unstable values.
  - However, our provisional values are within the range of our priors (if anything, our computed standard errors feel "too small").

























## We can plot joint draws





# **Policy Counterfactuals**

## Reducing $R_0$ has a huge impact...



## Reducing $R_0$ has a huge impact...



## Reducing $R_0$ has a huge impact...



#### ...but it has a decreasing marginal effects on cumulate deaths



#### ...but it has a decreasing marginal effects on cumulate deaths



#### ...but it has a decreasing marginal effects on cumulate deaths





# Reopening and Herd Immunity

## Percent Ever Infected would be very informative

|               | — Percent Ever Infected (today) — |                 |                 |  |  |
|---------------|-----------------------------------|-----------------|-----------------|--|--|
|               | $\delta = .001$                   | $\delta = .003$ | $\delta = .005$ |  |  |
| New York      | 58                                | 21              | 13              |  |  |
| California    | 2                                 | 1               | 0               |  |  |
| Italy         | 35                                | 12              | 7               |  |  |
| Spain         | 40                                | 14              | 8               |  |  |
| U.K.          | 22                                | 8               | 5               |  |  |
| France        | 34                                | 13              | 8               |  |  |
| Hubei, China  | 5                                 | 2               | 1               |  |  |
| S. Korea      | 0                                 | 0               | 0               |  |  |
| Sweden        | 14                                | 5               | 3               |  |  |
| Louisiana     | 22                                | 7               | 4               |  |  |
| Florida       | 3                                 | 1               | 1               |  |  |
| Washington    | 8                                 | 3               | 2               |  |  |
| Michigan      | 19                                | 6               | 4               |  |  |
| Massachusetts | 15                                | 5               | 3               |  |  |

## **Herd Immunity**

- How far can we relax social distancing?
- Let s(t) = S(t)/N = the fraction still susceptible
  - The disease will die out as long as

$$R_0(t)s(t) < 1$$

- That is, if the "new"  $R_0$  is smaller than 1/s(t)
- Today's infected people infect fewer than 1 person on average
- We can relax social distancing to raise  $R_0(t)$  to 1/s(t)

## **Herd Immunity and Opening the Economy?**

|               | $R_0$ | $R_0^*$ | Percent<br>Susceptible<br>t+30 | $R_0$ (t+30) with no outbreak | Percent<br>way back<br>to normal |
|---------------|-------|---------|--------------------------------|-------------------------------|----------------------------------|
| New York      | 4.2   | 0.9     | 57.7                           | 1.7                           | 26.0                             |
| California    | 4.0   | 1.0     | 96.9                           | 1.0                           | -0.3                             |
| Hubei, China  | 2.5   | 0.5     | 98.2                           | 1.0                           | 25.0                             |
| Italy         | 5.3   | 0.7     | 85.3                           | 1.2                           | 10.0                             |
| Spain         | 5.9   | 0.3     | 84.1                           | 1.2                           | 15.3                             |
| U.K.          | 3.6   | 1.5     | 49.1                           | 2.0                           | 25.8                             |
| France        | 4.4   | 1.7     | 34.3                           | 2.9                           | 45.0                             |
| S. Korea      | 1.8   | 0.9     | 99.8                           | 1.0                           | 11.0                             |
| Sweden        | 3.2   | 1.3     | 68.5                           | 1.5                           | 8.8                              |
| Louisiana     | 3.5   | 0.6     | 87.0                           | 1.1                           | 18.7                             |
| Florida       | 4.0   | 1.3     | 89.1                           | 1.1                           | -5.3                             |
| Washington    | 1.4   | 1.4     | 81.3                           | 1.2                           | -456.2                           |
| Michigan      | 3.7   | 0.5     | 86.7                           | 1.2                           | 19.8                             |
| Massachusetts | 2.4   | 1.6     | 44.7                           | 2.2                           | 76.7                             |

## Conclusion

# Thanks!