

수치해석 (2019학년도 1학기)

[11주/1차시 학습내용]:Histogram을 그리는 방법에 대해 알아본다. PDF와 CDF의 의미를 이해한다.

Measures of Spread (확장, 퍼짐 정도의 측정)

- $Unit\ of\ Avg = [v]$
- Unit of Variance = $[v^2]$
- in oder to get the same unit with avg
- variance has been used as $\sqrt{\text{variance}}$
- which is called as standard deviation = $\sqrt{variance}$

$$Avg = \frac{80 + 70 + 60 + 90}{4} = 75 [v]$$

$$variance = \frac{(80 - 75)^2 + (70 - 75)^2 + (60 - 75)^2 + (90 - 75)^2}{4} = \frac{500}{4}$$

$$= 125[v^2]$$

Mean()

```
import numpy as np
import matplotlib.pyplot as plt
mid=np.array([80, 70, 60, 90])
avg=mid.mean()
var=mid.var()
sd=np.sqrt(var)
var1=((mid[0]-avg)**2+(mid[1]-avg)**2+(mid[2]-avg)**2+(mid[3]-avg)**2)/4
np.sqrt(mid.var())
np.sqrt(var1)
```

Distribution (분포)의 특징은 평균과 편차

80, 70, 60, 90 [v]: voltage

$$Avg = \mu = \frac{80 + 70 + 60 + 90}{4} = 75 [v]$$

 $deviation = \sigma = \sqrt{variance} = \sqrt{125} = 11.18[v]$

국민대학교 소프트웨어학부

Normal Distribution (정규 분포): $N(\mu, \sigma)$

- 정규분포는 2개의 매개 변수 평균 μ 와 표준편차 σ 에 대해 모양이 결정되고, 이때의 분포를 $N(\mu, \sigma^2)$ 로 표기한다.
- 특히, 평균이 0이고 표준편차가 1인 정규분포 N(0,1) 을 표준 정규 분포(standard normal distribution)라고 한다.

정규분포 (Randn())와 균등분포 (Uniform())

- 정규분포는 1이상의 값과 -1이하의 값이 발생된다.
- 균등분포는 1과 -1 사이에서만 값이 발생된다.

```
plt.figure(1)
n1=np.random.randn(10)
u=np.random.uniform(-1, 1, 10)
plt.plot(n1,'o:')
plt.plot(u, '*:')
```


정규분포 (N(0,1)) 데이터 시각화

- n1=np.random.randn(10000)
 c1=np.size(np.where((n1>=-1) & (n1<=1)))
 - 평균이 0이고, 편차가 1 인 정규 분포
 - [-1, 1]@68%
- plt.hist(n1, 100, normed=1)
 - 빈의 수가 100개인 막대그래프
 - 파란 색분포

정규분포 (N(0,2)) 데이터 시각화

- n2=np.random.randn(10000)*2
 c2=np.size(np.where((n2>=-2) & (n2<=2)))
 - 평균이 0이고, 편차가 2인 정규 분포
 - [-2, 2]@68%
- plt.hist(n2, 100, normed=1)
 - 빈의 수가 100개인 막대그래프
 - 주황 색 분포
- N(0,2)의 폭 비교
 - -N(0,1)의 폭보다 더 넓다.
- N(0,2)의 높이 비교
 - -N(0,1)의 높이보다 더 낮다.

정규분포 (N(0,1))+2 데이터 시각화

- n3=np.random.randn(10000)+2
 c3=np.size(np.where((n3>=1) & (n3<=3)))
 - 평균이 2이고, 편차가 1인 정규 분포
 - [1, 3]@68%
- plt.hist(n3, 100, normed=1)
 - 빈의 수가 100개인 막대그래프
- N(0,1) +2 의 평균 이동
 - 평균 2 만큼 우측 이동.
 - 초록 색 분포

정규분포 2*(N(0,1))+2 데이터 시각화

- n4=2*np.random.randn(10000)+2 c4=np.size(np.where((n4>=0) & (n4<=4)))
 - 평균이 2이고, 편차가 2인 정규 분포 사이인
 - [0, 4]@68%
- plt.hist(n4, 100, normed=1)
 - 빈의 수가 100개인 막대그래프
- 2*N(0,1)+2의 평균 이동
 - 평균 2 만큼 우측 이동.
 - _ 편차는 2
 - _ 붉은 색 분포

정규분포 데이터 시각화

- [-1, 1] @ 68%
- ([-1, 1] @ 68%)*2= [-2, 2] @ 68%
- ([-1, 1] @ 68%)+2= [-1, 3] @ 68%
- ([-1, 1] @ 68%)*2+2= ([-2, 2] @ 68%)+2

=([0,4] @ 68%)

```
n1=np.random.randn(10000)
c1=np.size(np.where((n1>=-1) & (n1<=1) ))
n2=np.random.randn(10000)*2
c2=np.size(np.where((n2>=-2) & (n2<=2) ))
n3=np.random.randn(10000)+2
c3=np.size(np.where((n3>=1) & (n3<=3) ))
n4=2*np.random.randn(10000)+2
c4=np.size(np.where((n4>=0) & (n4<=4) ))

plt.hist(n1, 100, normed=1)
plt.hist(n2, 100, normed=1)
plt.hist(n3, 100, normed=1)
plt.hist(n4, 100, normed=1)
```


히스토그램 데이터 시각화

- plt.hist() : plt에서 제공하는 histogram 메소드
- np.histogram() : np에서 제공하는 histogram 메소드
- 정규분포와 균등분포의 Histogram 그리기

```
import numpy as np
import matplotlib.pyplot as plt
nd=np.random.randn(10)
ud=np.random.uniform(-1, 1, 10)
plt.figure(1)
plt.subplot(2, 1, 1)
plt.hist(nd, 4)
plt.title('Normal and Uniform')
plt.ylabel('Normal')
plt.grid()
plt.subplot(2, 1, 2)
plt.hist(ud, 4)
plt.ylabel('Uniform')
plt.grid()
plt.sylabel('Uniform')
```


국민대학교 소프트웨어학부

plt.hist() 와 np.histogram()

- plt.hist() 와 np.histogram() 의 공통점은 두 메서드 모두 리턴 값으로 hist 높이와 bin_left를 리턴해준다.
- 다른 점은 plt.hist() 는 실제로 히스토그램을 시각화한다.

```
import numpy as np
import matplotlib.pyplot as plt
nd=np.random.randn(10)
ud=np.random.uniform(-1, 1, 10)
count, bin_left=np.histogram(nd, 4)
count1, bin_left1=np.histogram(nd, 4)
count
array([3, 5, 0, 2], dtype=int64)
bin left
array([-0.93461143, -0.17046795, 0.59367554, 1.35781902, 2.1219625])
count1
array([3, 5, 0, 2], dtype=int64)
bin left1
array([-0.93461143, -0.17046795, 0.59367554, 1.35781902, 2.1219625])
```

plt.hist(): Histogram

• plt.hist() 메소드로 histogram 그래프를 시각화할 수 있다

```
nd=np.random.randn(10000)
ud=np.random.uniform(-1, 1, 10000)
plt.figure(1)
plt.subplot(2, 1, 1)
plt.hist(nd, 4)
plt.title('2 subplots')
plt.ylabel('Normal')
plt.grid()
plt.subplot(2, 1, 2)
plt.hist(ud, 4)
plt.ylabel('Uniform')
plt.grid()
plt.show()
```


plt.bar() 메소드를 이용한 히스 토그램 시각화

[11주/2차시 학습내용]: plt.bar () 메소드를 이용하여 히스 토그램을 시각화하여 보자 .

plt.bar() 메소드를 이용한 히스토그램 시각화

- plt.bar() 메소드를 이용한 히스토그램 그리기
- bin 수를 5개, 4개 다르게 해서 히스토그램 그리기

```
s=np.random.uniform(6,7,25)

plt.figure(4), plt.hist(s,5)
plt.figure(5), plt.hist(s,4, color='g')
```


국민대학교 소프트웨어학부

bin Height 계산: np.where()

- 히스토그램은 각 bin의 높이부터 계산하여야 한다
- np.where() 함수를 이용하여 bin 저장소의 높이를 계산할 수 있다

```
smin=s.min()
smax=s.max()
width=smax-smin
bin_width=width/4
first_height=np.size(np.where((s>=smin) & (s< (smin+bin_width))))
second_height=np.size(np.where((s>=(smin+bin_width)) & (s< (smin+bin_width*2))))
third_height=np.size(np.where((s>=(smin+bin_width*2)) & (s< (smin+bin_width*3))))
fourth_height=np.size(np.where((s>=(smin+bin_width*3))) & (s<= (smin+bin_width*4))))</pre>
```

bin 시작점 Left 계산

- 히스토그램은 다음 단계로 각 bin 저장소의 좌측 시작점과 우 측 시작점을 파악한다.
- bin 저장소의 좌측 시작점을 계산한다

```
left=np.array([ smin, (smin+bin_width) , (smin+bin_width*2),
  (smin+bin_width*3)])
height=np.array([first_height, second_height, third_height,
  fourth_height])
plt.figure(6)
plt.plot(left, height, 'ro')
plt.figure(7)
plt.figure(7)
plt.bar(left, height, bin_width)
plt.figure(8)
plt.bar(left, height, bin_width-bin_width/10)
```

bin 너비의 100% 시각화

- bin의 left와 bin의 높이를 계산하였으면, plt.bar() 메소드를 이용해서 히스토그램을 시각화할 수 있다.
- bin 너비의 100% 그리기 plt.bar(left, height, bin_width)

국민대학교 소프트웨어학부

bin 너비의 90%만 시각화

• bin 너비의 90% 시각화

plt.bar(left, height, bin_width-bin_width/10)

국민대학교 소프트웨어학부

plt.bar()와 plt.hist()를 이용한 히스토그램

• plt.bar()와 plt.hist()를 이용한 히스토그램

```
plt.figure(10)
plt.subplot(2, 1, 1)
plt.bar(left, height, bin_width)
plt.title('Bar')
plt.ylabel('Count')
plt.grid()
plt.subplot(2, 1, 2)
plt.hist(s, bins=4, color='c', alpha=0.75)
plt.title('Histrogram')
plt.ylabel('Count')
plt.grid()
```

plt.bar()와 plt.hist()로 그린 히스토그램

Probability Density Function (확률밀도함수)

- 확률밀도함수는 히스토그램의 높이를 전체 개수로 나눈 값을 의미한다.
- pdf=height/np.size(s)

```
pdf=height/np.size(s)
plt.figure(11)
plt.subplot(2, 1, 1)
plt.hist(s, bins=4, color='c', alpha=0.75)
plt.title('Histrogram')
plt.ylabel('Count')
plt.grid()
plt.subplot(2, 1, 2)
plt.bar(left, pdf, bin_width)
plt.title('Bar')
plt.ylabel('pdf')
plt.grid()
```

Probability Density Function (확률밀도함수)

• 히스토그램의 높이와 확률밀도함수의 확률은 서로 연관되어 있다.

국민대학교 소프트웨어학부

Probability Density Function (확률밀도함수)

• 확률밀도함수를 np.plot으로 그려 보기

```
plt.figure(12)
plt.plot(left, pdf, 'b*-')
plt.title('pdf')
plt.xlabel('s')
plt.ylabel('pdf')
plt.grid()
plt.show()
```

Probability Density Function

Cumulative Density Function (누적 분포함수)

- 누적 분포 함수(cumulative distribution function, cdf)는 어떤 확률 분포에 대해서, 확률 변수가 특정 값보다 작거나 같은 확률을 나타낸다.
- 수식으로 나타내면, 실수 범위를 가지는 확률 변수 X 의 누적 분포 함수는
- $F_X(x) = P(X \le x)$

pdf=hist/np.size(nd)
cdf=np.cumsum(pdf)

Cumulative Density Function (누적 분포함수)

• 누적 분포함수를 np.plot으로 그려 보기

```
cdf=np.cumsum(pdf)
plt.figure(13)
#plt.subplot(1, 2, 2)
plt.plot(left, cdf, 'ro-')
plt.title('cdf')
plt.xlabel('s')
plt.ylabel('cdf')
plt.grid()
plt.show()
```

Cumulative Density Function (누적 분포함수)

Probability Density Function (확률 밀도 함수)

Probability Density Function

```
x3=np.random.randn(10000)

plt.figure(20)
plt.subplot(2, 1, 1)
n3, bins3, patches3 = plt.hist(x3, bins=50, color='b', alpha=0.75)
plt.title('Histrogram')
plt.ylabel('Count')

plt.subplot(2, 1, 2)
n4, bins4, patches4 = plt.hist(x3, 50, normed=1, facecolor='b', alpha=0.75)
plt.xlabel('Probability Density Function')
plt.ylabel('Probability')
```

Probability Density Function

plt.hist() with normed=1

pdf와 cdf 그리기

```
nd=np.random.randn(10000)
ra=np.int(np.floor(np.min(nd)))
rb=np.int(np.ceil(np.max(nd)))
hist, bin_left=np.histogram(nd, bins=np.arange(ra, rb+1, 1))
bin_width=(rb-ra)/np.size(bin_left)
pdf=hist/np.size(nd)
cdf=np.cumsum(pdf)
plt.figure(100)
                                                    Bar()특성상 n개-1 까지만
plt.subplot(1, 2, 1)
plt.bar(bin_edges[:-1], pdf, bin_width)
plt.title('pdf')
plt.xlabel('normal distribution')
plt.ylabel('pdf')
plt.show()
plt.subplot(1, 2, 2)
plt.bar(bin_edges[:-1], cdf, bin_width, facecolor='m')
plt.title('cdf')
plt.xlabel('normal distribution')
plt.ylabel('cdf')
plt.show()
```

pdf와 cdf 그리기

국민대학교 소프트웨어학부

np.plot()으로 cdf 그리기

• np.plot()으로 cdf 그리기

```
plt.figure(103)
#plt.subplot(1, 2, 2)
plt.plot(bin_edges[:-1], cdf, 'ro-')
plt.title('cdf')
plt.xlabel('normal distribution')
plt.ylabel('cdf')
plt.grid()
plt.show()
```

np.plot()으로 cdf 그리기

np.semilopy()으로 cdf 그리기

- np.semilogy()으로 pdf 그리기
- cdf 값은 $0.1 (10^{-1})$ 부터 $0.01 (10^{-2})$, $0.001 (10^{-3})$, $0.0001 (10^{-4})$ 이하의 아주 작은 수들을 가지고 있다.
- 이러한 아주 작은 숫자들을 그래프에 명확히 나타내고 싶을 때, y축 스케일을 로그 스케일로 나타낸다.

```
cdf
array([7.000e-04, 2.220e-02, 1.553e-01, 5.076e-01, 8.419e-01, 9.782e-01,
9.995e-01, 1.000e+00])
```

```
plt.figure(104)
#plt.subplot(1, 2, 2)
plt.semilogy(bin_edges[:-1], cdf, 'b*-')
plt.title('cdf')
plt.xlabel('normal distribution')
plt.ylabel('cdf')
plt.grid()
plt.show()
```

np.semilopy()으로 cdf 그리기

 semilogy는 y축에 대해 로그 스케일을 사용하여 데이터를 플로 팅한다. semilogy(Y)는 y축에 대해 밑이 10인 로그 스케일을 사용하고 x축에 대해 선형 스케일을 사용하여 플롯을 만든다.

국민대학교 소프트웨어학부

비트코인의 일반 스케일 그래프

- 장점: 2018년 1월에 300B\$ 급등한 것을 알 수 있다.
- 단점: 2018년 1월까지 작은 1B\$에서 10B\$까지의 세심한 변화를 보기 어렵다.

국민대학교 소프트웨어학부

비트코인의 로그 스케일 그래프

- 장점: 2018년 1월까지 작은 1B\$에서 10B\$까지의 세심한 변화를 볼 수 있다.
- 단점: 2018년 1월에 300B\$ 급등한 부분을 쉽게 찾을 수 없다.

국민대학교 소프트웨어학부

로그 스케일 그래프

- 일반 스케일은 10, 100, 1000의 간격으로 시각화를 하기 때문에 10과 1000사이의 차이가 두드러져 나게 된다.
- 로그 스케일은 10, 20, 30의 간격으로 시각화를 하기 때문에, 일반 스케일에서 나타나는 10과 1000사이의 차이만큼, 10과 30의 차이가 두드러져 나지 않는다.