DSA 5103

Intelligent Data Analytics

Homework #1

Library Commands:

library(tidyverse)

library(plyr)

library(datasets)

Problem 1:

1(a)

Creating a vector with 10 numbers (3, 12, 6, -5, 0, 8, 15, 1, -10, 7) and assigning it to \boldsymbol{x}

Code:

$$x <- c(3, 12, 6, -5, 0, 8, 15, 1, -10, 7)$$

Χ

Output:

[1] 3 12 6 -5 0 8 15 1 -10 7

1(b)

Creating a new vector y with 10 elements ranging from the minimum value of x to the maximum value of x

Code:

```
y <- seq(min(x),max(x),length.out=10)
```

У

Output:

```
[1] -10.000000 -7.222222 -4.444444 -1.666667
```

[5] 1.111111 3.888889 6.666667 9.444444

1(c)

Computing the sum, mean, standard deviation, variance, mean absolute deviation, quartiles, and quintiles
Code:
#Sum of elements of x
sum(x)
Output:
[1] 37
Code:
#Mean of elements in x
mean(x)
Output
[1] 3.7
Code:
#Standard Deviation of x
sd(x)
Output:
[1] 7.572611
Code:
#Variance of x
var(x)
Output:
[1] 57.34444
Code:
#Mean Absolute Deviation od x


```
sd(y)
Output:
[1] 8.41014
Code:
#Variance of y
var(y)
Output:
[1] 70.73045
Code:
#Mean Absolute Deviation of y
mad(y)
Output:
[1] 10.29583
Code:
#Quartiles for x
quantile(y,c(0.25, 0.5, 0.75,1))
Output:
25% 50% 75% 100%
-3.75 2.50 8.75 15.00
Code:
#Quantiles for x
quantile(y,c(.20,.40,.60,.80,1))
Output:
20%
         40%
                  60%
                            80%
-5.000000e+00 -1.665335e-15 5.000000e+00 1.000000e+01
    100%
1.500000e+01
```

```
1(d)
```

Using sample() to create a new 7 element vector z by to randomly sample from x with replacement

Code:

```
sample(x,7,replace=TRUE)
```

Output:

```
[1] 0 6 15 -10 -10 15 3
```

1(e)

The differences in mean are not significant.

Computing a statistical test for differences in means between the vectors x and y

Code:

t.test(x,y)

Output:

Welch Two Sample t-test

```
data: x and y
```

```
t = 0.33531, df = 17.805, p-value = 0.7413
```

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-6.324578 8.724578

sample estimates:

mean of x mean of y

3.7 2.5

```
Sorting the vector x and re-run the t-test as a paired t-test
Code:
x[order(x)]
t.test(x,y,paired=TRUE)
       Paired t-test
data: x and y
t = 0.30858, df = 9, p-value = 0.7647
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-7.596943 9.996943
sample estimates:
mean difference
      1.2
1(g)
Creating a logical vector that identifies which numbers in x are negative
Code:
z <- x<0
Z
Output:
[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[9] TRUE FALSE
1(h)
Removing all entries with negative numbers from x
Code:
```

```
x[x>=0]
Output:
[1] 3 12 6 0 8 15 1 7
Problem 2:
2(a)
Displaying all rows in X with missing values
Code:
col1 <- c(1,2,3,NA,5)
col2 <- c(4,5,6,89,101)
col3 <- c(45,NA,66,121,201)
col4 <- c(14,NA,13,NA,27)
X <- data.frame(rbind (col1,col2,col3,col4))
#displaying all rows in X with missing values
X[!complete.cases(X),]
Output:
  X1 X2 X3 X4 X5
col1 1 2 3 NA 5
col3 45 NA 66 121 201
col4 14 NA 13 NA 27
2(b)(i)
Replacing any 99's in the vector y with 'NA'
Code:
y <- c(3,12,99,99,7,99,21)
y[y==99]<-NA
У
Output:
[1] 3 12 NA NA 7 NA 21
```

2(b)(ii)

Counting the number of missing values in y

Code:

sum(is.na(y))

Output:

[1] 3

Problem 3:

3(a)

Using the read.csv() function to read the data into a data frame and calling the data frame college.

Code:

#Reading the data into a data frame in R

college <- read.csv("college.csv")</pre>

#Calling the data frame college

college

3(b)

Code:

rownames (college) <- college [,1] View (college)

#Eliminate the first column in the data where the names are stored

college <- college [,-1]

Output:

*	x	Private [‡]	Apps [‡]	Accept [‡]	Enroll [‡]	Top10perc [‡]	Top25perc [‡]	F.Undergrad
Abilene Christian University	Abilene Christian University	Yes	1660	1232	721	23	52	288
Adelphi University	Adelphi University	Yes	2186	1924	512	16	29	268
Adrian College	Adrian College	Yes	1428	1097	336	22	50	103
Agnes Scott College	Agnes Scott College	Yes	417	349	137	60	89	51
Alaska Pacific University	Alaska Pacific University	Yes	193	146	55	16	44	24

3(c)(i)

Using the summary() function to produce a numerical summary of the variables in the data set

Code:

summary(college)

Output:

Private Apps Accept

Length: 777 Min.: 81 Min.: 72

Class: character 1st Qu.: 776 1st Qu.: 604

Mode :character Median : 1558 Median : 1110

Mean: 3002 Mean: 2019

3rd Qu.: 3624 3rd Qu.: 2424

Max. :48094 Max. :26330

Enroll Top10perc Top25perc F.Undergrad

Min.: 35 Min.: 1.00 Min.: 9.0 Min.: 139

1st Qu.: 242 1st Qu.:15.00 1st Qu.: 41.0 1st Qu.: 992

Median: 434 Median: 23.00 Median: 54.0 Median: 1707

Mean: 780 Mean: 27.56 Mean: 55.8 Mean: 3700

3rd Qu.: 902 3rd Qu.: 35.00 3rd Qu.: 69.0 3rd Qu.: 4005

Max. :6392 Max. :96.00 Max. :100.0 Max. :31643

P.Undergrad Outstate Room.Board

Min.: 1.0 Min.: 2340 Min.: 1780

1st Qu.: 95.0 1st Qu.: 7320 1st Qu.: 3597

Median: 353.0 Median: 9990 Median: 4200

Mean: 855.3 Mean: 10441 Mean: 4358

3rd Qu.: 967.0 3rd Qu.:12925 3rd Qu.:5050

Max. :21836.0 Max. :21700 Max. :8124

Books Personal PhD

Min.: 96.0 Min.: 250 Min.: 8.00

1st Qu.: 470.0 1st Qu.: 850 1st Qu.: 62.00

Median: 500.0 Median: 1200 Median: 75.00

Mean: 549.4 Mean: 1341 Mean: 72.66

3rd Qu.: 600.0 3rd Qu.:1700 3rd Qu.: 85.00

Max. :2340.0 Max. :6800 Max. :103.00

Terminal S.F.Ratio perc.alumni

Min.: 24.0 Min.: 2.50 Min.: 0.00

1st Qu.: 71.0 1st Qu.:11.50 1st Qu.:13.00

Median: 82.0 Median: 13.60 Median: 21.00

Mean: 79.7 Mean: 14.09 Mean: 22.74

3rd Qu.: 92.0 3rd Qu.:16.50 3rd Qu.:31.00

Max. :100.0 Max. :39.80 Max. :64.00

Expend Grad.Rate

Min.: 3186 Min.: 10.00

1st Qu.: 6751 1st Qu.: 53.00

Median: 8377 Median: 65.00

Mean: 9660 Mean: 65.46

3rd Qu.:10830 3rd Qu.: 78.00

Max. :56233 Max. :118.00

3(c)(ii)

Accessing help for the pairs function and then using pairs to produce a scatterplot matrix of the first ten columns

Code:

help("pairs")

college[,1] = as.numeric(factor(college[,1]))

pairs(college[,1:10])

Output:

3(c)(iii)

Use the plot() function to produce side-by-side boxplots of Outstate versus Private

Code

college\$Private<-as.factor(college\$Private)</pre>

plot(college\$Private,college\$Outstate,main= "boxplots of Outstate versus Private",xlab='Private',ylab='Outstate')

Output

boxplots of Outstate versus Private

3(c)(iv)

#Making all the values to "No" using rep function

Elite <- rep ("No", nrow(college))</pre>

#If the Top10perc variable is greater than 50 then we make it Yes

Elite [college\$Top10perc >50] <- "Yes"

#Used to change the character to factor

Elite <- as.factor (Elite)

#Joining the elite column to college

college <- data.frame(college ,Elite)</pre>

3(c)(v)

Using the summary() function to see how many elite universities are there.

Code:

summary(college\$Elite[college\$Elite=="Yes"])

Output:

No Yes

0 78

3(c)(vi)

Producing side-by-side boxplots of Outstate versus Elite

Code

college\$Elite<-as.factor(college\$Elite)</pre>

plot(college\$Elite,college\$Outstate,main="boxplots of Outstate versus Private",xlab='Elite',ylab='Outstate')

Output

3(c)(vii)

Dividing the print window into 4 screens and using the hist() function to produce histograms.

Code

hist(college\$Top10perc,breaks = 10)

hist(college\$Top25perc, breaks = 7)

hist(college\$Accept,breaks = 5)

hist(college\$PhD,breaks = 3)

Output:

Problem 4:

4(a)

Code:

#Loading the data frame baseball in the plyr package

install.packages("plyr")

library(plyr)

#Getting information about the data set and definitions for the variables

?baseball

baseball

4(b)

Code

#Setting sf to 0 for players before 1954

baseball\$sf[baseball\$year<1954] <- 0

```
#Setting missing values in hbp to 0
baseball$hbp[is.na(baseball$hbp)] <- 0
#Exclude all player records with fewer than 50 ab
baseball <- subset(baseball,subset=ab>=50)
baseball
```

4(c)

Making all the values to 0 using rep function and Computing on base percentage in the variable obp then adding the column to data frame

```
Code

obp<- rep(0, nrow(baseball))

obp<-(baseball$h + baseball$bb + baseball$hbp)/ (baseball$ab + baseball$bb + baseball$hbp +baseball$sf)

baseball<-data.frame(baseball,obp)

baseball
```

4(d)

Sorting the data based on the computed obp and printing the year, player name, and on base percentage for the top five records based on this value.

```
Code

b_obp<-baseball[order(-baseball$obp),]

b_obp

b_obp[1:5,c("year","id","obp")]

Output

year id obp

84983 2004 bondsba01 0.6094003
```

82594 2002 bondsba01 0.5816993

29489 1941 willite01 0.5528053

7772 1899 mcgrajo01 0.5474860

19883 1923 ruthba01 0.5445402

Problem 5:

5(a)

Loading the quakes data from the datasets package

Code

install.packages("datasets")

library(datasets)

quakes

5(b)

Plotting the recorded earthquake magnitude against the earthquake depth

Code

plot(quakes\$depth, quakes\$mag,)

Output

5(c)

Using aggregate to compute the average earthquake depth for each magnitude level and storing these results in a new data frame named quakeAvgDepth

Code

quakeAvgDepth <- data.frame(aggregate(quakes\$depth,by = list(quakes\$mag),FUN= mean))

5(d)

Changing column name in quakeAvgDepth

Code

names(quakeAvgDepth)[names(quakeAvgDepth) == 'Group.1'] <- 'AgMag'
names(quakeAvgDepth)[names(quakeAvgDepth) == 'x'] <- 'AgDep'</pre>

5(e)

Plotting between average depth to magnitude

Code

plot(quakeAvgDepth\$AgDep, quakeAvgDepth\$AgMag)

Output

5(f)

In the first plot high and low depths have more magnitude. In the second plot we can say that depth and magnitude were inversely proportional