MC348-Fundamentos Matemáticos da Computação Prof. Ricardo Dahab - Turma B

Segunda Prova - 14/4/2009

- 1. (2,5) Quais dos seguintes conjuntos são contáveis (enumeráveis)? Justifique sua resposta.
 - (a) números inteiros múltiplos de 3 mas não de 6.
 - (b) números reais cuja representação decimal consista de sequências de 5s somente.
- 2. (2,5) Sejam R_1 e R_2 relações de equivalência num conjunto S. Prove ou disprove cada uma das questões abaixo:
 - (a) $R_1 \cup R_2$ é relação de equivalência em S.
 - (b) $R_1 \cap R_2$ é relação de equivalência em S.
- 3. (2,5) Seja uma relação R simétrica e transitiva em um conjunto A. Então, se aRb temos bRa por simetria; e daí temos também, por transitividade, que aRa. Logo R é também reflexiva. Logo, provamos que se R é simétrica e transitiva então R é também reflexiva. Você concorda? Justifique sua resposta.
- 4. (2,5) Sejam A e B conjuntos, com |A| = n e |B| = m. Quantas funções sobrejetoras distintas de A em B podem existir? Quantas bijeções? Justifique suas respostas.

1. Esboço da solução.

- (a) O conjunto X dos números inteiros múltiplos de 3 mas não de 6 é um subconjunto dos inteiros, que é contável. Portanto, X também é contável.
- (b) Os números reais cuja representação decimal consiste de sequências de 5s somente são números da forma

$$\pm 55 \dots 5, 55 \dots 5.$$

Isto é, são números com x 5s antes da vírgula e y 5s após a vírgula, para todo $x \ge 0, y \ge 0$. Desta forma, esses números podem ser representados pelos pares $(\pm x, y)$ que são elementos de $Z \times N$. Esse conjunto é contável, já que é o produto cartesiano de dois conjuntos contáveis (veja transparências do curso). Portanto, o conjunto dos números cuja representação decimal consista de sequências de 5s somente é também contável.

2. Esboço da solução.

(a) A relação $R = R_1 \cup R_2$ não é relação de equivalência em S. Veja o seguinte contraexemplo:

$$S = \{a, b, c\};$$

$$R_1 = \{(a, a), (b, b), (c, c), (a, b), (b, a)\};$$

$$R_2 = \{(a, a), (b, b), (c, c), (b, c), (c, b)\};$$

$$R_1 \cup R_2 = \{(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}.$$

Por que $R_1 \cup R_2$ não é de equivalência?

- (b) A relação $R = R_1 \cap R_2$ <u>é</u> relação de equivalência em S. Temos que mostrar que R é reflexiva, simétrica e transitiva.
 - Reflexividade. Seja $a \in S$. Como R_1, R_2 são de equivalência, $(a, a) \in R_i$, para i = 1, 2. Portanto $(a, a) \in R$.
 - Simetria. Seja $(a,b) \in R$; então $(a,b) \in R_1$ e $(a,b) \in R_2$. Como R_1, R_2 são de equivalência, $(b,a) \in R_i$, para i=1,2. Portanto $(b,a) \in R$.
 - Transitividade. Sejam $\{(a,b),(b,c)\}\subseteq R$; então $\{(a,b),(b,c)\}\subseteq R_1$ e $\{(a,b),(b,c)\}\subseteq R_2$. Como R_1,R_2 são de equivalência, $(a,c)\in R_i$, para i=1,2. Portanto $(a,c)\in R$.

3. Esboço da solução.

A conclusão é falsa. Veja o seguinte contra-exemplo:

$$A = \{x, y, z\};$$

$$R = \{(x, x), (y, y), (x, y), (y, x)\}.$$

Você consegue ver que R é simétrica e transitiva mas não é reflexiva?

4. Esboço da solução. Parte dessa questão é fácil: o número de funções bijetoras de A em B quando n ≠ m é zero. Quando n = m é n!. A parte sobre o número de funções bijetoras é bem mais difícil e sua solução está fora do contexto deste curso. Por isso, a correção desta questão levou em conta este fato.