LOW NOISE GENERAL PURPOSE AUDIO AMPLIFIERS

The BC 107, BC 108 and BC 109 are silicon planar epitaxial NPN transistors in TO-18 metal case. They are suitable for use in driver stages, low noise input stages and signal processing circuits of television receivers.

The complementary PNP types are respectively the BC 177, BC 178 and BC 179.

ABSC	LUTE MAXIMUM RATINGS	BC 107	BC 108	BC 109
V _{CBO}	Collector-base voltage $(I_E = 0)$	50 V	30 V	30 V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$. 45 V	20 V	20 V
VEBO	Emitter-base voltage $(I_c = 0)$	6 V	5 V ·	5 V
lc	Collector current		100 mA	
P _{tot}	Total power dissipation at T _{amb} ≤ 25 °C		0.3 W	
	at T _{case} ≤ 25 °C		0.75 W	
T _{stg}	Storage temperature		-55 to 175 °C	
T,	Junction temperature	175 °C		

MECHANICAL DATA

Dimensions in mm

(sim. to TO-18)

THERMAL DATA

R _{th j-case}	Thermal resistance junction-case	max	200 °C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	500 °C/W

ELECTRICAL CHARACTERISTICS $(T_{amb} = 25 \, {}^{\circ}\text{C} \text{ unless otherwise specified})$

Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO} Collector cutoff current (I _E = 0)	for BC 107 V _{CB} = 40 V V _{CB} = 40 V T _{amb} = 150 °C for BC 108 - BC 109 V _{CB} = 20 V V _{CB} = 20 V T _{amb} = 150 °C			15 15 15	nA μΑ nA Αμ
V _{(ER)CBO} Collector-base breakdown voltage (I _E = 0)	l _C = 10 μA for BC 107 for BC 108 for BC 109	50 30 30			V V
V _{(BR)CEO} *Collector-emitter breakdown voltage (I _B = 0)	I _C = 10 mA for BC 107 for BC 108 for BC 109	45 20 20			V V V
V _{(BR)EBO} Emitter-base breakdown voltage (I _C = 0)	I _E = 10 μA for BC 107 for BC 108 for BC 109	6 5 5			>>>
V _{CE(sat)*} Collector-emitter saturation voltage	$I_{C} = 10 \text{ mA} I_{B} = 0.5 \text{ mA}$ $I_{C} = 100 \text{ mA} I_{B} = 5 \text{ mA}$		70 200	250 600	mV mV
V _{BE} * Base-emitt er voltage	$\begin{array}{lll} I_C &= 2 \text{ mA} & V_{CE} = 5 \text{ V} \\ I_C &= 10 \text{ mA} & V_{CE} = 5 \text{ V} \end{array}$	550	650 700	700 770	í
V _{BE (sat)} . Base-emitter saturation voltage	$I_{C} = 10 \text{ mA} I_{B} = 0.5 \text{ mA}$ $I_{C} = 100 \text{ mA} I_{B} = 5 \text{ mA}$		750 900		m∨ m∨

Parameter	Test conditions	Min. Typ. Ma	x. Unit
h _{FE} * DC current gain	$I_C = 2 \text{ mA} V_{CE} = 5 \text{ V}$		-
	for BC 107	110 230 4	50
·		110 180 2	20 —
	I I	200 290 4	50 —
		110 350 80	00 —
	for BC 108 Gr. A		20 —
			50 —
	for BC 108 Gr. C		00 —
		200 350 80	2 1
	for BC 109 Gr. B		50 —
	for BC 109 Gr. C	420 520 80	ю <u> </u>
·	$I_C = 10 \mu\text{A} V_{CE} = 5 \text{V}$	4==	
	for BC 107 for BC 107 Gr. A	120	-
	for BC 107 Gr. A	90 40 150	-
·	for BC 108		-
	for BC 108 Gr. A	120 90	
	for BC 108 Gr. B	40 150	
	for BC 108 Gr. C		
	for BC 109	70 210	
	for BC 109 Gr. B	40 150	
	for BC 109 Gr. C		-
h _{te} Small signal			+1
current gain	$I_C = 2 \text{ mA} V_{CE} = 5 \text{ V}$		1 1
_	f = 1 kHz		
•	for BC 107	250	_
	for BC 107 Gr. A	190	1-1
	for BC 107 Gr. B	300	-
	for BC 108	370	
	for BC 108 Gr. A	190	
	for BC 108 Gr. B	300	1-1
	for BC 108 Gr. C	500	-
	for BC 109	370	1-1
	for BC 109 Gr. B	300	-
	for BC 109 Gr. C	550	
	$I_{\rm C} = 10 \rm mA V_{\rm CE} = 10 \rm V$	_	
	f = 100 MHz	2	1=1
C _{CBO} Collector-base			
capa citance	$I_E = 0$ $V_{CB} = 10 \text{ V}$		1/1
	f = 1 MHz	4 (pF

^{*} Pulsed: pulse duration = 300 μs, duty factor = 1%.

Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{EBO} Emitter-base capacitance	I _C = 0 V _{EB} = 0.5 V f = 1 MHz		11.5		pF
NF Noise figure	$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
	for BC 107 for BC 108 for BC 109		2 2 1.5	10 10 4	
	$I_{c} = 0.2 \text{ mA} V_{cE} = 5 \text{ V}$ $R_{g} = 2 \text{ k}\Omega$ $f = 10 \text{ Hz to } 10 \text{ kHz}$ $R_{g} = 15.7 \text{ kHz}$				
	for BC 109		1.5	4	dB
h _{ie} Input impedance	$I_C = 2 \text{ mA}$ $V_{CE} = 5 \text{ V}$ f = 1 kHz			-	
	for BC 107 for BC 107 Gr. A for BC 107 Gr. B		4 3 4.8		kΩ kΩ
	for BC 108 for BC 108 Gr. A for BC 108 Gr. B		5.5 3 4.8		κΩ κΩ
	for BC 108 Gr. C for BC 109 for BC 109 Gr. B		7 5.5 4.8		kΩ kΩ kΩ
h, Reverse voltage ratio	for BC 109 Gr. C $I_C = 2 \text{ mA} V_{CF} = 5 \text{ V}$		7		kΩ
	f = 1 kHz for BC 107 for BC 107 Gr. A for BC 107 Gr. B	1.	.2 x 10 .7 x 10 .7 x 10	.4	_
	for BC 108 for BC 108 Gr. A for BC 108 Gr. B for BC 108 Gr. C	1. 2.	1 x 10 7 x 10 7 x 10 8 x 10	.4 .	
	for BC 109 for BC 109 Gr. B for BC 109 Gr. C	3.	1 x 10 7 x 10 8 x 10	.4	<u> </u>

Parameter			Test conditions		Min. Typ. Max	. Unit
. h _{oe}	Output admittance		I _C = 2 mA f = 1 kHz	V _{CE} = 5 V		
		4		BC 107	20	μs
				BC 107 Gr.		μS
			for	BC 107 Gr.	B 26	μS
)	for	BC 108	30	μS
			for	BC 108 Gr.	A 13	μS
	•		for	BC 108 Gr. 1	3 26	μS
			for	BC 108 Gr. (34	μS
			for	BC 109	30	μς
			for	BC 109 Gr. I		μS
			for	BC 109 Gr. (34	μS

38- K.

Typical output characteristics (for BC 107 only)

Typical output characteristics (for BC 108 only)

Typical output characteristics (for BC 109 only)

DC transconductance

DC normalized current gain

Collector-emitter saturation voltage

Collector-base capacitance

Transition frequency

Noise figure (for BC 109 only)

Noise figure (for BC 109 only)

Noise figure (for BC 109 only)

Power rating chart

BC 107 (Caratteristiche rilevate presso l'Istituto di Elettronica)

BC 109 (Caratteristiche rilevate presso l'Istituto di Elettronica) -

LOW NOISE GENERAL PURPOSE AUDIO AMPLIFIERS

The BC 177, BC 178 and BC 179 are silicon planar epitaxial PNP transistors in TO-18 metal case. They are suitable for use in driver audio stages, low noise input audio stages and as low power, high gain general purpose transistors. The complementary NPN types are respectively the BC 107, BC 108, BC 109.

ABSC	DLUTE MAXIMUM RATINGS	BC 177	BC 178	BC 179
V _{CBO}	Collector-base voltage (I _E = 0)	~-50 V	-30 V	-25 V
$\rightarrow V_{CES}$	Collector-emitter voltage (V _{BE} = 0)	-45 V	-25 V	-20 V
V_{CEO}	Collector-emitter voltage (I _B = 0)	-45 V	-25 V	-20 V
V_{EBO}	Emitter-base voltage $(I_c = 0)$		-5 V	
→ I _{EM}	Emitter peak current		200 mA	
l _c	Collector current		-100 mA	\
$\rightarrow I_{CM}$	Collector peak current		-200 mA	
P_{tot}	Total power dissipation at T _{amb} ≤ 25 °C		300 mW	
	at T _{case} ≤ 115 °C		300 mW	
T_{stg}	Storage temperature	-65	to 175	°C
T _i	Junction temperature		175 °C	

MECHANICAL DATA

Dimensions in mm

(sim. to TO-18)

THERMAL DATA

	Thermal resistance junction-case	max	200	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	500	°C/W

ELECTRICAL CHARACTERISTICS $(T_{amb} = 25 \, {}^{\circ}\text{C} \text{ unless otherwise specified})$

Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES} Collector cutoff current (V _{BE} = 0)	V _{CE} = -20 V		-1	-100	nA
V _{(BR) CEO} Collector-emitter breakdown voltage (I _B = 0)	I _C = -2 mA for BC 177 for BC 178 for BC 179	-45 -25 -20			>>>
V _{(BR) CES} Collector-emitter breakdown voltage (V _{BE} = 0)	l _C = -10 μA for BC 177 for BC 178 for BC 179	-50 -30 -25			>>>
V _{(BR) EBO} Emitter-base breakdown voltage (I _C = 0)	l _E = -10 μΑ	-5			٧
V _{CE (sat)} Collector-emitter saturation voltage	I _C = -10 mA I _B = -0.5 mA I _C = -100 mA I _B = -5 mA		-75 -200	-250	mV mV
V _{BE} Base-emitter voltage	$I_C = -2 \text{ mA} V_{CE} = -5 \text{ V}$	-600	-640	-750	mV
V _{BE (sat)} Base-emitter saturation voltage	I _C = -10 mA I _B = -0.5 mA I _C = -100 mA I _B = -5 mA		-720 -860	1	mV mV
h _{FE} DC current gain	$I_{C} = -10 \mu\text{A} V_{CE} = -5 \text{V}$	30			

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
h _{fe}	Small signal current gain	I _C = -2 mA V _{CE} = -5 V f = 1 kHz				
		for BC 177 Gr. 6 for BC 177 Gr. A	75 125		150 260	
		for BC 178 Gr. 6 for BC 178 Gr. A for BC 178 Gr. B	75 125 240		150 260 500	_
		for BC 179 Gr. A. for BC 179 Gr. B	125 240		260 500	
f _T	Transition frequency	$I_{C} = -10 \text{ mA } V_{CE} = -5 \text{ V}$		200		MHz
С _{СВО}	Collector-base capacitance	$I_E = 0$ $V_{CB} = -10 \text{ V}$		5.5		pF
NF	Noise figure	$I_{C} = -0.2 \text{ mA } V_{CE} = -5 \text{ V}$ $R_{g} = 2 \text{ k}\Omega f = 1 \text{ kHz}$ $B = 200 \text{ Hz}$				
	<u> </u>	for BC 177 for BC 178 for BC 179		2 2 1.2	10 10 4	dB dB dB
h _{ie}	Input impedance	$I_C = -2 \text{ mA} V_{CE} = -5 \text{ V}$ $f = 1 \text{ kHz}$				
		for BC 177 Gr. 6 for BC 177 Gr. A		1.5 2.7		kΩ kΩ
		for BC 178 Gr. 6 for BC 178 Gr. A for BC 178 Gr. B		1.5 2.7 5.2		kΩ kΩ kΩ
		for BC 179 Gr. A for BC 179 Gr. B		2.7 5.2		kΩ kΩ
h _{re}	Reverse voltage ratio	$I_C = -2 \text{ mA} V_{CE} = -5 \text{ V}$ $f = 1 \text{ kHz}$	-			
		for BC 177 Gr. 6 for BC 177 Gr. A		x 10 ⁻⁴ x 10 ⁻⁴		_
		for BC 178 Gr. 6 for BC 178 Gr. A for BC 178 Gr. B	2.7	x 10 ⁻⁴ x 10 ⁻⁴ x 10 ⁻⁴		= = =
		for BC 179 Gr. A for BC 179 Gr. B	2.7	c 10 ⁻⁴ c 10 ⁻⁴		<u> </u>

'n	Parameter	Test conditions	Min. Typ. Max.	Unit
h _{oe}	Output admittance	I _C = -2 mA V _{CE} = -5 V f. = 1 kHz for BC 177 Gr. 6 for BC 177 Gr. A for BC 178 Gr. 6 for BC 178 Gr. A for BC 178 Gr. B	20 25 20 25 35 25	μS μS μS μS μS
		for BC 179 Gr. A for BC 179 Gr. B	35	μS

Typical output characteristics (for BC 177 only)

Typical output characteristics (for BC 178 only)

Typical output characteristics (for BC 179 only)

Typical output characteristics (for BC 177 only)

Typical output characteristics (for BC 178 only)

Typical output characteristics (for BC 179 only)

DC transconductance

DC normalized current gain

Collector-emitter saturation voltage

Typical normalized h parameters

Typical normalized h parameters

Collector-base capacitance

Transition frequency

Power rating chart

N-CHANNEL SILICON FIELD EFFECT TRANSISTORS

N-channel silicon epitaxial planar junction field effect transistors in a TO-72 metal envelope with the shield lead connected to the case.

The transistors are designed for broad band amplifiers (0 to 300 MHz).

Their very low noise at low frequencies makes these devices very suitable for differential amplifiers, electro-medical and nuclear detector pre-amplifiers.

	CA		
±V _{DS}	max. 3	0 V	
-V _{GSO}	max. 3	0 V	
P _{tot}	max. 30	0 mW	
	BFW10	BFW11	
I _{DSS}	> 8		mA mA
-V(P)GS	< 8		V
•	< 0.75	0.75	pF
Yfs	> 3.2	3.2	$m\Omega^{-1}$
F	< 2.5	2.5	dB
v_n/\sqrt{B}	< 75	75	nV/√Hz
	-VGSO Ptot IDSS -V(P)GS -Crs Yfs F	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

MECHANICAL DATA

TO-72 Insulated electrodes

Dimensions in mm

1)=shield lead(connected to case)

Accessories available: 56246, 56263.

BFW10 BFW11

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

► Voltages		•		
Drain-source voltage	$\pm v_{DS}$	max.	30	V
Drain-gate voltage (open source)	v_{DGO}	max.	30	V
Gate-source voltage (open drain)	-V _{GSO}	max.	30	V
Currents				
Drain current	I_{D}	max.	20	mA
Gate current	$I_{\mathbf{G}}$	max.	10	mA
Power dissipation				
Total power dissipation up to T_{amb} = 25 ${}^{o}C$	P_{tot}	max.	300	mW
Temperatures				
Storage temperature	T_{stg}	-65 to +200		°C
Junction temperature	$T_{\mathbf{j}}$	max.	200	°C
THERMAL RESISTANCE				
From junction to ambient	R _{th j-a}	=	0.59	^o C/mW

CHARACTERISTICS	T _j = 25 °C unless otherwise specified						
Gate cut-off current	BFW10 BFW11						
$-V_{GS} = 20 \text{ V}; V_{DS} = 0$	-IGSS	<	0.5	0.5 nA			
$-V_{GS} = 20 \text{ V}; V_{DS} = 0; T_j = 150 \text{ °C}$	-I _{GSS}	<	0.5	0.5 μΑ			
Drain current 1)							
$V_{DS} = 15 V; V_{GS} = 0$	I _{DSS}	> <	8 20	4 mA 10 mA			
Gate-source voltage			-	10 liik			
$I_D = 400 \mu A; V_{DS} = 15 V$	-v _{GS}	> <	2.0 7.5	v v			
$I_D = 50 \mu\text{A}; V_{DS} = 15 V$	-v _{GS}	> <		1.25 V 4.0 V			
Gate-source cut-off voltage				1.0 (
$I_D = 0.5 \text{ nA}; V_{DS} = 15 \text{ V}$	-V _{(P)GS}	<	8	6 V			
y parameters							
$V_{DS} = 15 \text{ V}; V_{GS} = 0; T_{amb} = 25 ^{\circ}\text{C}$							
f = 1 kHz Transfer admittance	y _{fs}	> <	3.5 6.5	3.0 $m\Omega^{-1}$ 6.5 $m\Omega^{-1}$	-		
Output admittance	Yos	<	85	50 μΩ-1			
f = 1 MHz Input capacitance	Cis	typ.	4 5	4 pF 5 pF			
Feedback capacitance	-C _{rs}	typ.	0.6	0.6 pF 0.75 pF			
f = 200 MHz Transfer admittance	Yfs	>	3.2	$3.2 \text{ m}\Omega^{-1}$			
Input conductance	gis	<	800	800 $\mu\Omega^{-1}$			
Output conductance	gos	<	200	$100 \mu\Omega^{-1}$			
Noise figure at $f = 100 \text{ MHz}$; $R_G = 1 \text{ k}\Omega$							
V _{DS} = 15 V; V _{GS} = 0; T _{amb} = 25 °C input tuned to minimum noise	F	<	2.5	2.5 dB	-		
Equivalent noise voltage							
$V_{DS} = 15 \text{ V}; V_{GS} = 0; T_{amb} = 25 \text{ oC}$					-		
f = 10 Hz	v_n/\sqrt{B}	< ,	75	75 nV/√Hz			

¹⁾ Measured under pulsed conditions.

