# Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Чисельні методи в інформатиці

Лабораторна робота №1

"Розв'язок нелінійного рівняння"

Варіант №7

Виконала студентка групи ІПС-31

Сенечко Дана Володимирівна

## Постановка задачі

Знайти розв'язок рівняння вказаним методом з точністю  $\epsilon=10^{-3}$ . Дати можливість користувачу ввести іншу точність. Номер варіанту – 7.

Знайти розв'язок  $x^3 + x^2 - 4x - 4 = 0$  методом Ньютона.

Знайти розв'язок  $x^3 - 4x^2 - 4x + 16 = 0$  методом простої ітерації.

Програма має виконувати потрібну кількість ітерацій за вказаним методом, перед цим розрахувавши їх апріорно необхідну кількість, в програмі також можна додати перевірку умов теореми або допоміжні розрахунки для звіту. Графіки рівнянь:



# Теоретичні відомості

Метод Ньютона (дотичних).

Ітераційна формула: 
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
.

Достатні умови збіжності: f(a)f(b) < 0, f''(x) – знакостала на проміжку,  $f'(x) \neq 0$ . Якщо  $f(x_0)f''(x_0) > 0$ , то вибір початкового наближення правильний.

Метод простої ітерації.

$$x = \varphi(x) = x + \Psi(x)f(x), x_{n+1} = \varphi(x_n).$$

Умова збіжності:  $max|\varphi'(x)| \le q < 1$  на інтервалі.

Обґрунтування вибору проміжку:

Якщо f(a)f(b) < 0 (значення на кінцях різних знаків), то за ознакою наявності кореня на відрізку існує хоча б один корінь на проміжку [a;b]. Вибрані проміжки задовольняють цю умову.

Апріорна кількість ітерацій.

Використовується метод ділення навпіл (дихотомія):  $n \ge [\log_2 \frac{b-a}{\epsilon}]$ .

При [1; 3] та 
$$\varepsilon = 0.001$$
:  $n > log_2 \frac{2}{0.001} = log_2(2000) \approx 10.97 \Rightarrow n = 11.$ 

При [1; 4] та тій самій точності: 
$$n > log_2 \frac{3}{0.001} \approx 11.55 \Rightarrow n = 12.$$

Пам'ятаємо, що апріорна оцінка – не апостеріорна, тобто реальна кількість кроків для обох алгоритмів буде меншою, адже дані методи збігаються швидше.

## Хід роботи

Мова програмування — Python; використані бібліотеки: numpy (робота з масивами, векторизовані обчислення многочлена, прості перетворення), math (для розрахунку апріорної кількості ітерацій), matplotlib (для побудови графіків рівнянь).

Отримані таблиці результатів ітерацій:

```
dunnaya@MacBook-Air-Dana lab1 % python3 lab1v7.py

Newton Method:
Enter interval (1, 3) (format a,b) or press enter:
Enter desired accuracy 0.001 or press enter:

Solving -4 + -4x + 1x^2 + 1x^3 using Newton with accuracy 0.001 Interval: (1, 3)
Initial guess: 2.000
Step Approximation Function Value
0 2.000 0.000
Solution found: 2.000 with accuracy 0.001
```

Метод Ньютона. Початкове наближення  $x_0 = 2$ . Вже на першій ітерації отримуємо точний корінь x = 2, бо f(2) = 0. Повторно запустимо програму, ввівши інший проміжок – [1. 5; 5]:

```
dunnaya@MacBook-Air-Dana lab1 % python3 lab1v7.py
 Newton Method:
Enter interval (1, 3) (format a,b) or press enter: 1.5,5
Enter desired accuracy 0.001 or press enter:
Solving -4 + -4x + 1x^2 + 1x^3 using Newton with accuracy 0.001
Interval: (1.5, 5.0)
Initial guess: 3.250
                         Function Value
Step
        Approximation
        2.434
0
1
2
3
4
                         6.612
        2.080
                         1.000
        2.003
                         0.041
        2.000
                         0.000
        2.000
                         0.000
Solution found: 2.000 with accuracy 0.001
```

Тут початкове наближення  $x_0 = 3.25$ , за 4 ітерації знаходимо корінь x = 2.

```
Simple Iteration Method:
Enter interval (1, 4) (format a,b) or press enter: Enter desired accuracy 0.001 or press enter:
Solving 16 + -4x + -4x^2 + 1x^3 using simple iteration with accuracy 0.001 Interval: (1, 4)
Initial guess: 2.500
          Approximation
Step
                             Function Value
                             -4.710
0
1
2
3
4
          2.837
          3.308
                             -4.803
          3.789
                             -2.187
          4.007
                             0.090
          3.998
                             -0.019
5
         4.000
                             0.004
         4.000
                             -0.001
Solution found: 4.000 with accuracy 0.001
```

Метод простої ітерації. Початкове наближення  $x_0 = 2.5$ . Отримано корінь  $x \approx 4$  при  $f(x) \approx 0$ .

#### Висновки

Теоретичні оцінки кількості ітерації співпали з практичними – реальна кількість кроків виявилась значно меншою за очікувану.

Код та згенеровані графіки можна переглянути на моєму <u>GitHub</u>.