Statistiques pour les sciences (MAT-4681)

Arthur Charpentier

13 - Loi multinomiale et tableaux croisés

été 2022

Tableau de comptage

X peut prendre les modalités $\{x_1, \dots, x_I\}$. On appelle tableau de comptage le vecteur \mathbf{n} de taille J $\mathbf{n} = [n_i] = (n_1, \dots, n_I)$ où n_i est le nombre d'individus dont la modalité est x_i .

Example Considérons l'exemple où X désigne la couleur des yeux, de la base HairEyeColor,

```
1 > data(HairEyeColor)
 > n = apply(HairEyeColor[,,Sex="Female"],1,sum)
3 > n
4 Black Brown Red Blond
 52
        143 37
                     81
```

Si
$$n$$
 est l'effectif total, $n = \sum_{i=1}^{n} \mathbf{1}_{j} x_{i}$
La fréquence est $\mathbf{f} = \frac{1}{n} \mathbf{n} = \left[\frac{n_{j}}{n}\right]$

- > barplot(n)
- f = n/sum(n)
- 3 > barplot(f)

On suppose que $\{X_1, \dots, X_n\}$ est une collection de variables catégorielles indépendantes, de loi $\mathbf{p} = (p_1, \dots, p_I)$

La variable $Y_{j:i} = \mathbf{1}_{j}(X_{i})$ suit une loi de Bernoulli $\mathcal{B}(p_{i})$, où

$$p_j = \mathbb{E}[Y_j] = \mathbb{E}(\mathbf{1}_j(X)) = \mathbb{P}[X = x_j]$$

La variable
$$N_j = \sum_{i=1}^n \mathbf{1}_j(X_i) = \sum_{i=1}^n Y_{j:i}$$
 suit une loi binomiale $\mathcal{B}(n, p_j)$

Espérance, variance et covariance

$$E(N_i) = np_i \quad \text{var}(N_i) = np_i(1 - p_i)$$
$$cov(N_i, N_j) = -np_ip_j$$

(admis)

Les variables N_i et N_j ne sont pas indépendantes, car $\sum_{i=1}^{n} N_j = n$

On peut simuler une loi prenant les valeurs $\{1, 2, 3\}$, uniforme $(\mathbf{p} = (1/3, 1/3, 1/3)), n = 30 \text{ fois.}$

> N = table(X)[as.character(1:3)]

On peut montrer que

Loi multinomiale

$$\mathbb{P}(N_1 = n_1, \dots N_j = n_J) = \frac{n!}{n_1! \dots n_m!} p_1^{n_1} \dots p_J^{n_J}$$
pour tout $\mathbf{n} = (n_1, \dots, n_J)$ tel que $n_1 + \dots + n_J = n$.

En particulier si J=2, on retrouve la loi binomiale,

$$\mathbb{P}(N_1 = n_1, N_2 = n_2) = \frac{n!}{n_1! n_2!} p_1^{n_1} p_2^{n_2}$$

pour n_1 et n_2 tels que $n_1 + n_2 = n$, ou

$$\mathbb{P}(N_1 = n_1, N_2 = n - n_1) = \frac{n!}{n_1!(n - n_1)!} p_1^{n_1} (1 - p_1)^{n - n_1}$$

On peut montrer que

Loi multinomiale, approximation

Si $\{x_1, \dots, x_n\}$ est une collection de variables catégorielles indépendantes, de probabilités $\mathbf{p} = (p_1, \dots, p_J)$, et si n_i est le nombre d'observations de la modalité *i*,

$$\frac{N_j - np_j}{\sqrt{np_j(1-p_j)}} \approx \mathcal{N}(0,1)$$

et

$$\sum_{j=1}^{J} \frac{(N_j - np_j)^2}{np_j} \approx \chi^2(J - 1)$$

(le résultat sera admis ici)

Test

Cette dernière propriété permet de proposer un test de fréquence

Loi multinomiale, test $H_0: \mathbf{p} = \mathbf{p}_0$ contre $H_1: \mathbf{p} \neq \mathbf{p}_0$

Si $\{x_1, \dots, x_n\}$ est une collection de variables catégorielles indépendantes, de probabilités $\mathbf{p} = (p_1, \dots, p_I)$, pour tester $H_0: \boldsymbol{p} = \boldsymbol{p}_0$ contre $H_1: \boldsymbol{p} \neq \boldsymbol{p}_0$ la statistique de test est

$$Q = \sum_{j=1}^{J} \frac{\left(N\hat{p}_{j} - Np_{0,j}\right)^{2}}{Np_{0,j}} = \sum_{j=1}^{J} \frac{\left(n_{j} - Np_{0,j}\right)^{2}}{Np_{0,j}}$$

Si $H_0: \boldsymbol{p} = \boldsymbol{p}_0$ est vraie, $Q \sim \chi^2(J-1)$. Et donc

 \blacktriangleright on rejette H_0 si $q > Q_{l-1}^{-1}(1-\alpha)$

où Q_{ν} est la fonction de répartition de la loi du chi-deux, $\gamma^2(\nu)$.

Loi multinomiale, test

On a lancé n = 600 fois un dé, est-il biaisé ?

$$q = \frac{(88 - 100)^2}{100} + \frac{(109 - 100)^2}{100} + \frac{(107 - 100)^2}{100} + \frac{(94 - 100)^2}{100} + \frac{(105 - 100)^2}{100}$$

```
1 > sum((table(X1)-100)^2/100)
2 [1] 3.44
```

or le quantile à 95% d'une loi $\chi^2(6-1)$ est 11.07

```
1 > qchisq(.95,6-1)
2 [1] 11.0705
```

et la *p*-value vaut 36.7%

```
> 1-pchisq(3.44,6-1)
```

Loi multinomiale, test

On a lancé n = 600 fois un (autre) dé, est-il biaisé ?

$$q = \frac{(89 - 100)^2}{100} + \frac{(131 - 100)^2}{100} + \frac{(93 - 100)^2}{100} + \frac{(92 - 100)^2}{100} + \frac{(104 - 100)^2}{100}$$

qui dépasse le quantile à 95% d'une loi $\chi^2(6-1)$ est 11.07

```
_{1} > qchisq(.95,6-1)
2 [1] 11.0705
 et la p-value vaut 36.7%
```

 $_{1} > 1-pchisq(12.92,6-1)$ 2 [1] 0.0241401

Tests multiples ★★★

On a ponctuellement des intervalles de confidance, sur les probabilités

$$\left[\widehat{p}_j \pm u_{1-\alpha} \cdot \sqrt{\frac{\widehat{p}_j(1-\widehat{p}_j)}{n}} \right] \text{ où } \widehat{p}_j = \frac{n_j}{n},$$

et sur les fréquences

$$\left[n_j \pm u_{1-\alpha} \cdot \sqrt{\frac{n_j(n-n_j)}{n}} \right]$$

Tests multiples ★★★

Ces intervalles de confiance sont associés à 6 tests simples

On peut refuser un test simple (un sur les six)

```
> table(X)
   78 116 99 104 103 100
 > prop.test(table(X)[1],600,1/6)
5
6
   1-sample proportions test with continuity correction
7
8 data: table(X)[1] out of 600, null probability 1/6
9 \text{ X-squared} = 5.547, df = 1, p-value = 0.01851
10 alternative hypothesis: true p is not equal to
     0.1666667
11 95 percent confidence interval:
0.1046716 0.1601808
```

Tests multiples ★★★

et on peut accepter le test multiple (p-value de 17.6%)

Car ici, on regarde un test multiple, $H_0: p_1 = \cdots = p_6$.

```
1 > 1-pchisq(sum((table(X)-100)^2/100),6-1)
2 [1] 0.175996
```

i.e.

```
chisq.test(table(X), p = rep(1/6,6))

Chi-squared test for given probabilities

data: table(X)
X-squared = 7.66, df = 5, p-value = 0.176
```

La formule de base repose sur

$$Z_j = \frac{\text{comptage observ\'e} - \text{comptage attendu sous } H_0}{\sqrt{\text{comptage attendu}}} = \frac{O_j - E_j}{\sqrt{E_j}}$$

Si on a assez d'observations, $Z_i \approx \mathcal{N}(0,1)$ et

$$Q = Z_1^2 + Z_2^2 + \dots + Z_{J-1}^2 + Z_J^2 \approx \chi^2(J-1)$$

que l'on notera aussi

$$Q = \sum_{j=1}^{J} \frac{(O_j - E_j)^2}{E_j} \approx \chi^2 (J - 1)$$

De manière générale, la statistique de test est

$$q = \sum_{j=1}^{J} \frac{\left(N\hat{p}_{0,j} - Np_{0,j}\right)^2}{Np_{0,j}} = \sum_{j=1}^{J} \frac{\left(n_j - Np_{0,j}\right)^2}{Np_{0,j}}$$

la p-value est

$$p = \mathbb{P}[Q > q | Q \sim \chi^2(J-1)]$$

mais on peut passer par la région de rejet

- \triangleright si $q > Q_{l-1}^{-1}(1-\alpha)$ on rejette H_0
- ightharpoonup si $q < Q_{l-1}^{-1}(1-\alpha)$ on ne rejette pas H_0

Test d'ajustement I

On a vu (partie 11) que le test de Komogorov Smirnov pouvait être utilisé comme test d'ajustement pour une loi continue. Pour des lois discrètes, on peut parfois utiliser un test du chi-deux.

Test d'ajustement II

Example 1: Pendant la second guerre mondiale, les impacts de bombes V1 et V2 tombées dans une zone de 144 km² dans le sud de Londres. Il divisa cette zone en 576 zones de 0.25 km² et compta le nombre d'impact dans chacune des zones.

No. of flying bombs per square	Expected no. of squares (Poisson)	Actual no. of squares
٥	226.74	229
I	211.39	211
2	98.54	93
3	30.62	35
4	7.14	7
5 and over	1.57	I
	576.00	576

On a le comptage complet

```
> (n=c(229,211,93,35,7,0,0,1))
[1] 229 211 93 35
```

Test d'ajustement III

L'estimateur de la méthode des moments est $\hat{\lambda} = \overline{y}$

```
1 > (lambda = sum(n*((0:7))/sum(n))
2 [1] 0.9322917
y = rep(0:7, n)
4 > mean(y)
5 [1] 0.9322917
```

L'estimateur du maximum de vraisemblance aussi

```
> fitdistr(y,"poisson")
      lambda
2
 0.93229167
4 (0.04023135)
5 > logvrais = function(L){sum(log(dpois(y,L)))}
6 > optim(1,function(t) -logvrais(t))
7 $par
8 [1] 0.9322266
```

donc $\hat{\lambda} = 0.932$.

Test d'ajustement IV

L'estimateur de la méthode des moments est $\hat{\lambda} = \overline{y}$

```
> (GF = goodfit(y,type="poisson"))
2
   count observed
                      fitted pearson residual
3
             229 226.7427226
                                 0.14990574
4
             211
                 211.3903507
                               -0.02684803
5
              93 98.5387312
                              -0.55796481
      3
              35 30.6222793
                                0.79109619
7
               7 7.1372240
                              -0.05136476
8
      5
               0 1.3307949 -1.15360083
9
      6
               0 0.2067815 -0.45473234
10
                 0.0275401
                                5.49264136
11
   summary (GF)
13
    Goodness-of-fit test for poisson distribution
14
15
                       X^2 df P(> X^2)
16
 Likelihood Ratio 9.262686 4 0.05485867
```

Test d'ajustement V

L'estimateur de la méthode des moments est $\hat{\lambda} = \overline{y}$

On peut tenter 6 classes $\{0, 1, 2, 3, 4, 5+\}$, comme dans l'article

```
1 > observed <- c(n[1:5], sum(n[6:8]))
2 > names(observed) = c(0:4,"5+")
3 > observed
4 0 1 2 3 4 5+
5 229 211 93 35 7 1
6 > expected = c(dpois(0:4,lambda),1-ppois(4,lambda))
7 > names(expected) = names(observed)
8 > expected
9 0 1 2 3 4 5+
10 0.39 0.37 0.17 0.05 0.01 0.00
11 > chisq.test(x=observed, p=expected)
12
    Chi-squared test for given probabilities
13
14
15 data: observed
16 \text{ X-squared} = 1.1692, df = 5, p-value = 0.9478
```

Test d'ajustement VI

On peut tenter 5 classes $\{0, 1, 2, 3, 4+\}$,

```
1 > observed <- c(n[1:4], sum(n[5:8]))
2 > names(observed) = c(0:3,"4+")
3 > observed
4 0 1 2 3 4+
5 229 211 93 35 8
6 > expected = c(dpois(0:3,lambda),1-ppois(3,lambda))
7 > \text{names}(\text{expected}) = c(0:3,"4+")
8 > expected
9 0 1 2 3 4+
10 0.39 0.37 0.17 0.05 0.02
11 > chisq.test(x=observed, p=expected)
12
    Chi-squared test for given probabilities
13
14
15 data: observed
X-squared = 1.0176, df = 4, p-value = 0.9071
```

Test d'ajustement VII

Example 2: Sur trois coupes du monde de soccer, on analyse le nombre de buts par match. A-t-on des lois de Poisson?

```
> soccer1982 = read.table("http://freakonometrics.free
     .fr/soccer1982")
_{2} > S82 = (soccer1982$V1+soccer1982$V2)
3 > soccer1998 = read.table("http://freakonometrics.free
     .fr/soccer1998")
4 > S98 = (soccer1998$V1+soccer1998$V2)
5 > soccer2010 = read.table("http://freakonometrics.free
     .fr/soccer2010")
```

On notera $\mathbf{x} = \{x_1, \dots, x_{52}\}, \ \mathbf{y} = \{y_1, \dots, y_{70}\}, \ \mathbf{z} = \{z_1, \dots, z_{64}\}$ les trois échantillons

6 > S10 = (soccer2010\$V1+soccer2010\$V3)

Test d'ajustement VIII

- boxplot(S82,S98,S10,horizontal=TRUE)
- 2 > hist(S82,breaks=0:11)

Test d'ajustement IX

En 2010, on ne rejette pas l'hypothèse (H_0) que le nombre de buts par match suit une loi de Poisson,

```
> GF10
2
 Observed and fitted values for poisson distribution
 with parameters estimated by 'ML'
5
   count observed
                     fitted pearson residual
6
               7 6.6409703
                                 0.1393204
              17 15.0459484
                                  0.5037630
8
              13 17.0442384
                                -0.9795981
9
              14 12.8719508
                                 0.3144169
10
               7 7.2907534
                               -0.1076809
      5
               5 3.3036226
                                 0.9333129
12
      6
               0 1.2474617
                               -1.1168982
13
               1 0.4037543
                                  0.5972266
14
```

Mais pour 1982, on la rejette

Test d'ajustement X

```
> GF82=goodfit(S82,type="poisson")
2 > summary(GF82)
3
    Goodness-of-fit test for poisson distribution
4
5
                     X^2 df P(> X^2)
6
7 Likelihood Ratio 17.397 7 0.01500801
 > GF82
9
10 Observed and fitted values for poisson distribution
  with parameters estimated by 'ML'
12
   count observed
                       fitted pearson residual
13
             7 3.137892546
                                2.18024510
14
         9 8.810236764 0.06393200
15
      2
            11 12.368216995 -0.38904643
16
              7 11.575382572 -1.34480631
17
    . . .
18
     11
               1 0.006719346
                                10.61881076
19
```

Tableau de contingence

X peut prendre les modalités $\{x_1, \dots, x_l\}$ et Y les modalités $\{y_1, \dots, y_I\}$. On appelle tableau de contingence la matrice $N, I \times J, N = [n_{i,j}]$ où $n_{i,j}$ est le nombre d'individus dont les modalités sont x_i et y_i . On parle parfois aussi de tri-croisé.

Example Considérons l'exemple où X désigne la couleur des cheveux, et Y la couleur des yeux, de la base HairEyeColor,

```
> data(HairEyeColor)
 > HairEyeColor[,,Sex="Female"]
      Eve
4 Hair Brown Blue Hazel Green
  Black 36 9 5
 Brown 66 34 29 14
  Red 16 7 7 7
7
  Blond 4
             64
                       8
```

Effets marginaux

Les effets marginaux sont notés

$$n_{i,.} = \sum_{j} n_{i,j}$$
 et $n_{.,j} = \sum_{i} n_{i,j}$

L'effectif total de la population est alors

$$n=\sum_i n_{i,\cdot}=\sum_j n_{\cdot,j}=\sum_{i,j} n_{i,j}$$

```
> apply(HairEyeColor[,,Sex="Female"],2,sum)
2 Brown Blue Hazel Green
   122 114
               46 31
4 > apply(HairEyeColor[,,Sex="Female"],1,sum)
5 Black Brown Red Blond
    52 143
               37
                     81
```

On pose alors
$$F = \frac{1}{n}N = [f_{i,j}]$$
, où $f_{i,j} = \frac{n_{i,j}}{n}$.

1 > HairEyeColor[,,Sex="Female"]/sum(HairEyeColor[,,Sex="Female"])

Eye

3 Hair Brown Blue Hazel Green

4 Black 0.11501597 0.02875399 0.01597444 0.006389776

Brown 0.21086262 0.10862620 0.09265176 0.044728435

Red 0.05111821 0.02236422 0.02236422 0.022364217

Blond 0.01277955 0.20447284 0.01597444 0.025559105

De la même manière, on peut définir les effets marginaux

$$f_{i,\cdot} = \sum_{j} f_{i,j}$$
 et $f_{\cdot,j} = \sum_{i} f_{i,j}$

Probabilités conditionnelles

	brown	hazel	green	blue	
black	63.0%	13.9%	4.6%	18.5%	100.0%
brown	41.6%	18.9%	10.1%	29.4%	100.0%
red	36.6%	19.7%	19.7%	23.9%	100.0%
blond	5.5%	7.9%	12.6%	74.0%	100.0%
	37.2%	15.7%	10.8%	36.3%	

	brown	hazel	green	blue	
black	30.9%	16.1%	7.8%	9.3%	18.2%
brown	54.1%	58.1%	45.3%	39.1%	48.3%
red	11.8%	15.1%	21.9%	7.9%	12.0%
blond	3.2%	10.8%	25.0%	43.7%	21.5%
	100.0%	100.0%	100.0%	100.0%	
	•				

Test d'indépendance I

Indépendance $X \perp \!\!\! \perp Y$

Soit X et Y deux variables discrètes, X et Y sont indépendantes - noté $X \perp \!\!\!\perp Y$ - si

$$\mathbb{P}[X=x,Y=y]=\mathbb{P}[X=x]\cdot\mathbb{P}[Y=y],\ \forall x,y.$$

Compte tenu des notations précédentes.

- on estime $\mathbb{P}[X = x_i, Y = y_i]$ par $\hat{p}_{i,j} = f_{i,j} = \frac{n_{i,j}}{n}$
- \blacktriangleright on estime $\mathbb{P}[X = x_i]$ par $\widehat{p}_{i,\cdot} = f_{i,\cdot} = \frac{n_{i,\cdot}}{n}$
- ▶ on estime $\mathbb{P}[Y = y_j]$ par $\hat{p}_{\cdot,j} = f_{\cdot,j} = \frac{n_{\cdot,j}}{p}$

Test d'indépendance II

Indépendance empirique x 111 y

Soit $(\mathbf{x}, \mathbf{y}) = \{(x_1, y_1), \dots, (x_n, y_n)\}\$ des couples de variables catégorielles appareillées. Si $[n_{i,j}]$ est le tableau de contingence associé, on dira que x et y sont empiriquement indépendant - noté x ⊥⊥ y - si

$$\widehat{p}_{i,j} = \widehat{p}_{i,\cdot}\widehat{p}_{\cdot,j}$$
 ou $\frac{n_{i,j}}{n} = \frac{n_{i,\cdot}}{n} \frac{n_{\cdot,j}}{n}$, $\forall i$ et j ou $n_{i,j} = \frac{n_{i,\cdot}n_{\cdot,j}}{n}$, $\forall i$ et j

On pourra noter $\hat{p}_{i,j}^{\perp} = \hat{p}_{i,\cdot}\hat{p}_{\cdot,j}$, et on aura indépendance si $\boldsymbol{p} = \boldsymbol{p}^{\perp}$ Un test naturel sera un test du chi-deux.

Test d'indépendance III

Test $H_0: X \perp\!\!\!\perp Y$ contre $H_1: X \perp\!\!\!\perp Y$

Soit $(\mathbf{x}, \mathbf{y}) = \{(x_1, y_1), \dots, (x_n, y_n)\}\$ des couples de variables catégorielles appareillées. Si $[n_{i,j}]$ est le tableau de contingence associé, pour tester $H_0: X \perp\!\!\!\perp Y$ contre $H_1: X \perp\!\!\!\perp Y$ la statistique de test est

$$Q = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n\hat{p}_{i,j} - n\hat{p}_{i,}.\hat{p}_{\cdot,j})^{2}}{n\hat{p}_{i,}.\hat{p}_{\cdot,j}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{i,j} - n_{i,}.n_{\cdot,j})^{2}}{n_{i,}.n_{\cdot,j}}$$

Si $H_0: X \perp \!\!\!\perp Y$ est vraie, $Q \sim \chi^2((I-1)(J-1))$. Et donc

• on rejette H_0 si $q > Q_{(I-1)((I-1))}^{-1}(1-\alpha)$

où Q_{ν} est la fonction de répartition de la loi du chi-deux, $\chi^2(\nu)$.

Test d'indépendance IV

Notons qu'on peut aussi écrire la statistique de test sur les probabilités, et pas les comptages

$$Q = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n\hat{p}_{i,j} - n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}\right)^{2}}{n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}} = n \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(\hat{p}_{i,j} - \hat{p}_{i,\cdot}\hat{p}_{\cdot,j}\right)^{2}}{\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}}$$

On peut également écrire

$$Q = \sum_{i=1}^{I} \sum_{j=1}^{J} \epsilon_{i,j}^2 \text{ où } \epsilon_{i,j} = \frac{(n\hat{p}_{i,j} - n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j})}{\sqrt{n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}}}$$

où, si $H_0: X \perp \!\!\!\perp Y$ est vraie, $\epsilon_{i,i} \approx \mathcal{N}(0,1)$.

 $\epsilon_{i,i}^2$ est appelée contribution au test du chi-deux

Test d'indépendance V

```
1 > N = HairEyeColor[,,Sex="Female"]+HairEyeColor[,,Sex
    ="Male"]
2 > (Q = chisq.test(N))
3
   Pearson's Chi-squared test
5
6 data:
7 X-squared = 138.29, df = 9, p-value < 2.2e-16
8 > Q$observed
       Eve
10 Hair Brown Blue Hazel Green
  Black 68 20
                  15
 Brown 119 84 54 29
12
 Red 26 17 14 14
13
14 Blond 7 94 10 16
```

Test d'indépendance VI

```
1 > Q$expected
       Eye
3 Hair Brown Blue Hazel Green
4 Black 40.13514 39.22297 16.96622 11.675676
5 Brown 106.28378 103.86824 44.92905 30.918919
Red 26.38514 25.78547 11.15372 7.675676
7 Blond 47.19595 46.12331 19.95101 13.729730
```

Comme attendu, on notera que $n_{\cdot,j}^{\perp} = n_{\cdot,j}$ pour tout j

```
1 > apply(Q$observed,2,sum)
2 Brown Blue Hazel Green
3 220 215 93 64
4 > apply(Q$expected,2,sum)
5 Brown Blue Hazel Green
6 220 215 93 64
```

(et on vérifiera que $n_{\cdot,j}^{\perp} = n_{\cdot,j}$ pour tout j)

Test d'indépendance VII

```
1 > Q
2
   Pearson's Chi-squared test
 data:
6 \text{ X-squared} = 138.29, df = 9, p-value < 2.2e-16
```

On rejette ici $H_0: X \perp \!\!\!\perp Y$ car q dépasse le quantile à 95% d'une loi du $\chi^2(3 \times 3)$.

```
_{1} > qchisq(.95,3*3)
2 [1] 16.91898
```

avec une p-value inférieure à 10^{-16} .

On peut aussi calculer les résidus $\epsilon_{i,j} = \frac{(n\hat{p}_{i,j} - n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j})}{\sqrt{n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}}}$

Test d'indépendance VIII

Les résidus sont
$$\epsilon_{i,j} = \frac{(n\hat{p}_{i,j} - n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j})}{\sqrt{n\hat{p}_{i,\cdot}\hat{p}_{\cdot,j}}}$$

```
1 > Q$residuals
       Eve
3 Hair Brown Blue Hazel Green
   Black 4.3984 -3.0694 -0.4774 -1.9537
  Brown 1.2335 -1.9495 1.3533 -0.3451
   Red -0.0750 -1.7301 0.8523 2.2827
7
   Blond -5.8510 7.0496 -2.2278 0.6127
```

On rejette H_0 car on a

- trop de personnes aux cheveux Black ayant les yeux Brown
- trop de personnes aux cheveux Blond ayant les yeux Blue
- pas assez de personnes Black ayant les yeux Blue
- pas assez de personnes Blond ayant les yeux Brown

Test d'indépendance IX

	brown	hazel	green	blue	
black	68	15	5	20	108
brown	119	54	29	84	286
red	26	14	14	17	71
blond	7	10	16	94	127
	220	93	64	215	

	brown	hazel	green	blue	
black	40	17	12	39	108
brown	106	45	31	104	286
red	26	11	8	26	71
blond	47	20	14	46	127
	220	93	64	215	

on compare $n_{i,j}$ et $n_{i,j}^{\perp}$

$$n_{i,j}^{\perp} = \frac{n_{i,\cdot} \cdot n_{\cdot,j}}{n}$$

Test d'indépendance I

Example 3: En analysant les données relatives à la peine de mort pour les condamnées pour meurtre en Floride 1976-1987, on a les statistiques suivantes

- meurtrier de "race blanche" et victime de "race blanche": 53 condamnés à mort, 414 non condamnés à mort
- meurtrier de "race blanche" et victime de "race noire": 0 condamné à mort. 16 non condamnés à mort
- meurtrier de "race noire" et victime de "race blanche": 11 condamnés à mort. 37 non condamnés à mort
- meurtrier de "race noire" et victime de "race noire": 4 condamnés à mort, 139 non condamnés à mort

Que peut-on dire (statistiquement) sur la base de ces statistiques ?

Test d'indépendance II

Indépendance entre la "race" de la victime et la condamnation

```
> N = matrix(c(53+11,0+4,414+37,139+16),2,2)
2 > rownames(N) = c("blanc", "noir")
3 > colnames(N) = c("a mort", "pas a mort")
4 > Q = chisq.test(N)
5 > Q$observed
a mort pas a mort
7 blanc 64 451
8 noir 4
             155
9 > Q$expected
a mort pas a mort
11 blanc 51.95846 463.0415
noir 16.04154 142.9585
13 > Q$residuals
a mort pas a mort
15 blanc 1.670529 -0.5595929
16 noir -3.006485 1.0071107
17 > Q
X-squared = 12.087, df = 1, p-value = 0.0005077
```

Test d'indépendance III

Indépendance entre la "race" de l'accusé(e) et la condamnation

```
> N = matrix(c(53+0,11+4,414+16,139+37),2,2)
2 > rownames(N) = c("blanc", "noir")
3 > colnames(N) = c("a mort", "pas a mort")
4 > Q = chisq.test(N)
5 > Q$observed
a mort pas a mort
7 blanc 53 430
8 noir 15 176
9 > Q$expected
a mort pas a mort
11 blanc 48.72997 434.27
12 noir 19.27003 171.73
13 > Q$residuals
a mort pas a mort
15 blanc 0.6116920 -0.2049042
16 noir -0.9727242 0.3258426
17 > Q
X-squared = 1.1447, df = 1, p-value = 0.2847
```

Test d'indépendance IV

Indépendance entre la "race" de la victime et l'accusé(e)

```
> N = matrix(c(53+114,0+16,11+37,139+4),2,2)
2 > rownames(N) = c("blanc", "noir")
3 > colnames(N) = c("blanc", "blanc")
4 > Q = chisq.test(N)
5 > Q$observed
6 blanc blanc
7 blanc 167 48
8 noir 16 143
9 > Q$expected
10 blanc blanc
11 blanc 105,20053 109,79947
12 noir 77.79947 81.20053
13 > Q$residuals
 blanc blanc
14
15 blanc 6.025259 -5.897726
16 noir -7.006424 6.858123
17 > Q
X-squared = 164.52, df = 1, p-value < 2.2e-16
```