Lezione 11 Algebra 1

Federico De Sisti2025-04-14

0.1 Boh

Obiettivo

Dare un teorema di struttura per i moduli finitamente generati su R PID

Lemma 1 (Esercizio)

R PID, $N \subseteq \mathbb{R}^n$ sottomodulo. Supponiamo che esista un elemento $m \in \mathbb{N}$

tale che
$$m = \begin{pmatrix} d \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 di lunghezza minimale in N

allora l(m) è di lunghezza minima in N

Ricordiamo la definizione di lunghezza minimale:

$$l(m) \in R/\approx, l(m) = [d]\ l(m)$$
 è un elemento minimale nell'insieme $\{l(m') \in R/\approx \mid m' \in N\}$

Dimostrazione

$$Sia \ a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in N \subseteq R$$

Dimostriamo che
$$d \mid a_j \ \forall j \in \{1, \dots, n\}$$

(se vero, allora $d \mid MCD(a_1, \dots, a_n)$ quindi $[d] \leq l(a)$)

Procediamo in due passi:

I. Step $d \mid a_1$ a priori abbiamo $d_1 = MCD(d,a_1)$ la tesi diventa $d_1 = d$ Per l'identità di Bezout, $\exists h, k \in R : d_1 = hd + ka_1$

 $b := hm + ka \in N$ (combinazione lineare di elementi in N)

$$b = \begin{pmatrix} hd + ka_1 \\ ka_2 \\ \vdots \\ ka_n \end{pmatrix} = \begin{pmatrix} d_1 \\ ka_2 \\ \vdots \\ ka_n \end{pmatrix} \in N$$

$$Ouindi: b \in N \text{ soddisfa}$$

$$l(b) \leq [d_1] \leq [d] = l(m).$$

Per la minimalità di m in $N \Rightarrow l(b) = l(m) \Rightarrow [d_1] = [d] \Rightarrow d \mid a_1$

II. step
$$d \mid a_j \quad \forall j \in \{1, \dots, n\}$$

Dato che $d \mid a_1 \quad \exists h \in R \text{ tale che } a_1 = hd$

$$c := (1 - h)m + a \in N$$

 $Osserviamo\ che$

$$c = \begin{pmatrix} (1-h)d + a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} d \\ a_2 \\ \vdots \\ a_n \end{pmatrix}.$$

Quindi
$$c \in N$$
 soddisfa $l(c) \leq [d] = l(m)$
Per minimalità di m in N $l(c) = [d]$
Allora $d \mid a_j \quad \forall j \in \{2, \dots, n\}$

Lemma 2 (Esercizio)

Sia R PID $N \subseteq R \oplus R^{n+1} = R \oplus R^n$ sottomodulo di R^n , Supponiamo che esista un elemento di lunghezza minimale $m = \begin{pmatrix} d \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ Allora esiste un R-sottomodulo $N' \subseteq R^n$ tale che $N = (d) \oplus N'$

Dimostrazione

Consideriamo $N' = \{ \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n \mid \begin{pmatrix} 0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{N} \}$

Consideriamo la doppia inclusione:

• $(d) \oplus N' \subseteq N$ infatti

$$r_1 \begin{pmatrix} d_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} \in N.$$

poich'e combinazione di elementi in N

• Viceversa, verifichiamo $N \subseteq (d) \oplus N'$

$$Sia\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} \in N$$

$$abbiamo\ dimostr$$

abbiamo dimostrato nel lemma precedente che d $\mid a_0 \Rightarrow a_0 = hf$

$$\Rightarrow \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = h \begin{pmatrix} d \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} \in (d) \oplus N$$

Teorema 1 (Struttura dei sottomoduli di moduli liberi di rango finito)

R PID, $N \subseteq R^n$ sottomodulo

Allora esistono $d_1, \ldots, d_n \in R$:

1.
$$d_1 = \min\{l(m') \mid m' \in N\}$$

2.
$$d_i | d_{i+1} \quad \forall i \in \{1, \dots, n-1\}$$

3. esiste un isomorfismo di R-moduli,
$$\phi: R \to R^n$$
 tale che $\phi(N) = (d_1) \oplus \ldots \oplus (d_n)$

Dimostrazione

Per induzione su n

- n = 1 allora $N \subseteq R$ è un ideale, quindi R $PID \Rightarrow N = (d_1)$
- n>1 assumiamo l'enunciato per sottomoduli di \mathbb{R}^n e dimostriamolo per sottomoduli di \mathbb{R}^{n+1}

 $Sia\ N \subseteq R^{n+1}\ R$ -sottomodulo

e sia $m \in N$ un elemento di lunghezza minimale in N (sappiamo che esiste!)

Esiste anche un isomorfismo di R-moduli $\phi_1: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$

tale che
$$\phi(m) = \begin{pmatrix} d_1 \\ 0 \\ \vdots \\ \dot{0} \end{pmatrix}$$

Ora $\phi(m)$ è di lunghezza minima in $\phi(N)$

Quindi esiste un complementare $N' \subseteq \mathbb{R}^n$ tale che

$$\phi_1(N) \cong (d_1) \oplus N'$$

Per ipotesi induttiva a meno di un isomorfismo $\phi_2: \mathbb{R}^n \to \mathbb{R}^n$ abbiamo $\phi_2(N) = (d_2) \oplus \ldots \oplus (d_{n+1})$

Abbiamo:

$$N \xrightarrow{\phi_1} (d_1) \oplus N' \xrightarrow{id \oplus \phi_2} (d) \oplus \phi_2(N') = (d_1) \oplus \ldots \oplus (d_{n+1})$$

Teorema 2 (Struttura dei moduli finitamente generati su PID)

R PID M R-modulo finitamente generato

Allora esistono $d_1, \ldots d_n \in R$ tali che

- $d_j \mid d_{j+1} \ j \in \{1, \dots, n-1\}$
- $M \cong R/(d_1) \oplus \ldots \oplus R/(d_n)$

Dimostrazione

Siano $\{m_1, \ldots, m_n\}$ generatori di M.

 $Allora\ consideriamo\ l'omomorfismo\ suriettivo\ di\ R\text{-}moduli$

$$R^n \to M$$

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \to \sum_n^{j=1} a_j m_j.$$

Dal primo teorema di isomorfismo segue

$$M \cong \mathbb{R}^n/\ker(\phi).$$

Dato che $ker(\phi)$ è un R-sottomodulo di \mathbb{R}^n esistono $d_1, \ldots, d_n \in \mathbb{R}$ tali che

- 1. $d_i \mid d_{i+1} \ \forall j \in \{1, \dots, n-1\}$
- 2. $ker(\phi) \cong (d_1) \oplus \ldots \oplus (d_n)$

$$\Rightarrow M \cong R^n/ker(\phi) \cong R/((d) \oplus \ldots \oplus (d_n)) \cong R/(d_1) \oplus \ldots \oplus R/(d_n)$$
 Osservazione:

- 1. Alcuni d_i possono essere nulli o anche ripetersi.
- 2. La scelta dei d_j è "unica" (esercizio)
- 3. Un gruppo abeliano G ha un'unica possibile struttura di \mathbb{Z} -modulo. Quindi i concetti di gruppo abeliano e di \mathbb{Z} -modulo sono equivalenti.

Corollario 1

G gruppo abeliano, Allora esistono $d_1, \ldots, d_n \in \mathbb{Z}$ tali che

- 1. $d_j \mid d_{j+1} \ \forall j \in \{1, \dots, n-1\}$
- 2. $G \cong \mathbb{Z}/(d_1) \oplus \ldots \oplus \mathbb{Z}/(d_n)$

Dimostrazione

Seque dal teorema con $R = \mathbb{Z}$

Osservazione

 ${\cal G}$ gruppo abeliano

$$\mathbb{Z} \times G \to G$$

 $(n, g) \to g + \ldots + g(n \text{ volte})$.

Successioni esatte corte 1

Su R anello

Definizione 1

Una successione esatta corta di R-moduli è una coppia di omeomorfismi

$$M' \xrightarrow{i} M \xrightarrow{\pi} M''$$
.

 $tali\ che$

- 1. i iniettiva
- 2. π suriettiva
- 3. $ker(\pi) = im(i)$

Esercizio

Dimostrare che

- 1. M finitamente generato $\Rightarrow M''$ finitamente generato.
- 2. M', M'' finitamente generati $\Rightarrow M$ finitamente generato.

Soluzione

 $1)\{m_1,\ldots,m_n\}$ generatori di M

Allora dato che π è suriettiva

 $\{\pi(m_1),\ldots,\pi(m_n)\}$ sono generatori di M''.

 $\{m'_1,\ldots,m'_h\}$ generatori di M'

 $\{m_1'',\ldots,m_k''\}$ generatori di M''

Considero $\{m_1, \ldots, m_k\} \subseteq M$ tali che $\pi(m_j) = m_j'' \quad \forall j \in \{1, \ldots, k\}$

$$\pi(m_i) = m''_i \quad \forall i \in \{1, \ldots, k\}$$

Dimostriamo che

$$\{i(m_1'),\ldots,i(m_h'),m_1,\ldots,m_k\}.$$

sono generatori di M

$$\Rightarrow \pi(m) = \sum_{j=1}^{k} r_j m_j'' \in M'' = \pi(\sum_{j=1}^{k} r_j m_j)$$

$$\Rightarrow m - \sum_{j=1}^{k} r_j m_j \in \ker(\pi) = im(i)$$
, che è generata da $\{i(m'_1), \dots, i(m'_n)\}$