امضاهای دیجیتالی

- فرآیند امضای پیام درستیسنجی امضا

امضاهای دیجیتالی

پروتکل پایه

Basic Digital Signature Protocol Alice

Bob

 $k_{pub,B}$

generate $k_{pr,B}$, $k_{pub,B}$

publish public key

sign message: $s = sig_{k_{pr}}(x)$

(x,s)

send message + signature

verify signature:

$$\operatorname{ver}_{k_{pr,B}}(x,s) = \operatorname{true/false}$$

- تولید کلید
- هر کاربریک زوج کلید خصوصی اعمومی تولید میکند
 - انتخاب دو عدد اول بزرگ p و pبه صورت تصادفی lacktream
 - n=pq محاسبه
 - $\varphi(n) = (p-1)(q-1) \quad \bullet$
- 1 < e < arphi(n) و $\gcd(arphi(n),e) = 1$ انتخاب کلید رمزگذاری e به گونهای که e
 - $d\equiv e^{-1}\ (\mathrm{mod}\ arphi(n))$ محاسبه کلید رمزگشایی d به گونهای که \bullet
 - الگوريتم گسترش يافته اقليدس
 - کلید خصوصی
 - PR = d
 - کلید عمومی
 - PU = (e,n) •

پروتکل امضای دیجیتالی پایه

Bob

Basic RSA Digital Signature Protocol

Alice

 $k_{pr} = d, k_{pub} = (n, e)$

compute signature:

 $s = \operatorname{sig}_{k_{pr}}(x) \equiv x^d \bmod n$

verify: $\operatorname{ver}_{k_{pub}}(x,s)$ $x' \equiv s^e \mod n$ $x' \begin{cases} \equiv x \mod n \implies \text{valid signature} \\ \not\equiv x \mod n \implies \text{invalid signature} \end{cases}$

مثار

Alice

Bob

1. choose
$$p = 3$$
 and $q = 11$

2.
$$n = p \cdot q = 33$$

3.
$$\Phi(n) = (3-1)(11-1) = 20$$

4. choose
$$e = 3$$

5.
$$d \equiv e^{-1} \equiv 7 \mod 20$$

$$(n,e)=(33,3)$$

(x,s)=(4,16)

compute signature for message

$$x = 4$$
:

$$s = x^d \equiv 4^7 \equiv 16 \mod 33$$

verify:

$$x' = s^e \equiv 16^3 \equiv 4 \mod 33$$

$$x' \equiv x \mod 33 \Longrightarrow \text{valid signature}$$

- انواع حملهها
- حملههای الگوریتمی
- \mathbf{q} و \mathbf{p} تجزیه پیمانه \mathbf{n} به عوامل اول
 - **Existential Forgery** •
- تولید یک امضای معتبر برای یک پیام تصادفی x

Existential Forgery

Existential Forgery Attack Against RSA Digital Signature

Alice Oscar Bob $k_{pr} = d$ $k_{pub} = (n, e)$ (n,e)(n,e)1. choose signature: $s \in \mathbb{Z}_n$ 2. compute message: $x \equiv s^e \mod n$ (x,s)verification: $s^e \equiv x' \mod n$ since x' = x \Longrightarrow valid signature!

طرح امضای RSA-PSS

