Experiment 2 Sequential Synthesis and FPGA Device Programming

Kamyar Rahmani

810199422

Mohammad Mashreghi

810199492

Abstract—In this document we are going to design a serial transmitter and after that we are going to use quartus and then use FPGA and uplode in it.

Keywords— Serial Transmitter, Concepts of state machines and Sequence detectors, Huffman coding style, Design simulation, Synthesis, FPGA, Onepulser Seven Segment Display

I. INTRODUCTION

In this document we are going to design a serial transmitter circuit that search on its serin input and when it find a sequence of 1011 and when it found the sequence, it starts to pass whatever is in serin input to serOut for 10 clock cycles and then go to the first state and try to find the sequence again.

Fig. 1 Serial transmitter

II. SEGUENTIAL SYNTHESIS AND FPGA DEVICE PROGRAMMING

A. Onepulser

Fig. 2 State machine of onepulser

In this Expriment, we use FPGA and its frequency of the clock signal is about 50 MHz that is too high and we can't control it, for example if set Serin on 1 and push the botton the duration is too long that FPGA sends a lot of cycle and all of them works with 1 that it's not what we want so if use only FPGA clk we can't control our serial transmitter so we use one pulser.

One pulser converts our long pulse to a single pulse that we call it clk_en and its duration is only one cycle.

So in this way when we push the botton our serial transmitter works only with one rising edge clk and not anymore:).

Fig. 3 Input and ouput waveforms of onepulser

Fig. 4 Simulation of onepulser

B. Orthogonal Finite State Machine

Fig. 5 State diagram of the sequence detector

As we can in state diagram (Fig. 5) when we see 1011 in Serin, the FPGA starts to count.

Fig. 6 Serial transmitter simulation

Well as you can see in the pic (Fig. 6), when the sequence detector dected 1011 the counter starts to count.

C. Seven Segment Display

In this part, the output of the SSD module is hex, and we have 4-bit counter and we must convert it to 7-bit somehow that the specific LED of SS light up and show us the number

	Inputs					Segments							
	Α	В	С	D		а	b	С	d	е	f	g	
	0	0	0	0		1	1	1	1	1	1	0	For display 0
	0	0	0	1		0	1	1	0	0	0	0	For display 1
	0	0	1	0		1	1	0	1	1	0	1	For display 2
	0	0	1	1		1	1	1	1	0	0	1	For display 3
	0	1	0	0		0	1	1	0	0	1	1	For display 4
Ī	0	1	0	1		1	0	1	1	0	1	1	For display 5
	0	1	1	0		1	0	1	1	1	1	1	For display 6
	0	1	1	1		1	1	1	0	0	0	0	For display 7
	1	0	0	0		1	1	1	1	1	1	1	For display 8
	1	0	0	1		1	1	1	1	0	1	1	For display 9
Ī	1	0	1	0		1	1	1	0	1	1	1	For display A
Ī	1	0	1	1		0	0	1	1	1	1	1	For display b
	1	1	0	0		1	0	0	1	1	1	0	For display C For display d
Ī	1	1	0	1		0	1	1	1	1	0	1	For display 6
Ī	1	1	1	0		1	0	0	1	1	1	1	For display F
Ī	1	1	1	1	1	1	0	0	0	1	1	1	Tor display I

Fig. 7 Table

Fig. 8 positions of segments and Examples

III. SEGUENTIAL SYNTHESIS AND FPGA DEVICE PROGRAMMING

In this part, we simulated in Quartus II and after that we implemented it on FPGA.

In this part, we two LEDs for SerOut & SerOutValid and we use 3 push botton for clk_PB , reset, SerIn and a SSD for counter.

And finally we connect our clk signal to the FPGA clk.

Fig. 6 Flow Summary

Fig. 7 RTL viewer

Fig. 8 Chip Planner

Fig. 9 Pin planner

Node	Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Differ
S Output	SSD[13]	Output	PIN_D1	2	B2_N0	PIN_D1	3.3-V Lefault)		24mA (default)	
95 Output	SSD[12]	Output	PIN_D2	2	B2_N0	PIN_D2	3.3-V Lefault)		24mA (default)	
S Output	SSD[11]	Output	PIN_G3	2	B2_N0	PIN_G3	3.3-V Lefault)		24mA (default)	
SS Output	550[10]	Output	PIN_H4	2	B2_N0	P2N_H4	3.3-V Lefault)		24mA (default)	
SIL Output !	SSD[9]	Output	PIN_H5	2	B2_N0	PIN_HS	3.3-V Lefoult)		24mA (default)	
Output	SSD(8)	Output	PIN_H6	2	B2_N0	PBI_H6	3.3-V Lefault)		24mA (default)	
95 Output	SSD[7]	Output	PIN E1	2	82_N1	PIN E1	3.3-V Lefault)		24mA (default)	
9% Output_!	SSD(6)	Output	PIN_E2	2	B2_N1	PIN_E2	3.3-V Lefault)		24mA (default)	
Output !	550(5)	Output	PIN_F1	2	B2_N1	PIN_F1	3.3-V Lefault)		24mA (default)	
Output_	SSD[4]	Output	PIN_F2	2	B2_N1	PDI_F2	3.3-V Lefault)		24mA (default)	
Output_	550[3]	Output	PIN_H1	2	B2_N1	PIN_H1	3.3-V Lefoult)		24mA (default)	
Output_	550(2)	Output	PIN_H2	2	B2_N1	PIN_H2	3.3-V Lefault)		24mA (default)	
Output	SSD[1]	Output	PIN_31	2	B2_N1	PIN_31	3.3-V Lefault)		24mA (default)	
Output!	SSD[0]	Output	PIN_32	2	B2_N1	PIN_32	3.3-V Lefault)		24mA (default)	
. SerIn		Input	PIN_L21	5	B5_N1	PIN_L21	3.3-V Lefault)		24mA (default)	
SerOut		Output	PIN_R19	6	86_N0	PIN_R19	3.3-V Lefault)		24mA (default)	
SerOutV	alid	Output	PIN_U19	6	86_N1	PIN_U19	3.3-V Lefault)		24mA (default)	
_ clk		Input	PIN D12	3	B3_N0	PIN D12	3.3-V Lefault)		24mA (default)	
- clkPB		Input	PIN_M22	6	86_N0	PIN_M22	3.3-V Lefault)		24mA (default)	
. rst		Input	PIN_L22	5	B5_N1	PIN_L22	3.3-V Lefault)		24mA (default)	
< <new node<="" td=""><td>2>></td><td></td><td>1 70000 7775</td><td></td><td>77700000</td><td></td><td></td><td></td><td></td><td></td></new>	2>>		1 70000 7775		77700000					

Fig. 10 Pin Connection

Fig. 11 FPGA before start

Fig. 12 FPGA detected the sequence

Fig. 12 FPGA while counting bits

Fig. 12 FPGA when counting is finished

IV. CONCLUSION

In this experiment, we programmed a FPGA with modelsim and quartus II and we designed onepulser, SSD, Counter, sequence detectore and combine them all together.