```
Q1
```

```
import numpy as np
def bisection(f,a,b,tol,L,H,C ocean,C land):
    if f(a,L,H,C_ocean,C_land)*f(b,L,H,C_ocean,C_land) >= 0:
        print("Bisection method fails.")
        return None
    a n = a
    b n = b
    error metric = f(a,L,H,C \text{ ocean},C \text{ land}) - f(b,L,H,C \text{ ocean},C \text{ land})
    while error metric<=tol:</pre>
        m n = (a n + b_n)/2
        f m n = f(m n, L, H, C ocean, C land)
        if f(a_n,L,H,C_{ocean},C_{land})*f m n < 0:
             a n = a n
             b n = m n
        elif f(b_n,L,H,C_ocean,C_land)*f_m_n < 0:</pre>
             a n = m n
             b n = b n
        elif f m n == 0:
             print("Found exact solution.")
             return m n
        else:
             print("Bisection method fails.")
             return None
        error_metric = f(a_n,L,H,C_ocean,C_land) -
f(b n,L,H,C ocean,C_land)
    return (a n + b n)/2
def func(x,L,H,C_ocean,C_land):
  p1 = np.sqrt(H^{**}2+x^{**}2)
  p2 = L-x
  total_cost = p1*C_ocean + p2*C_land
  return total cost
def my pipe builder(C ocean, C land, L, H):
  a = 0
  b= L
  tol = 1e-6
  print("Soltuion ", bisection(func,a,b,tol,L,H,C ocean,C land))
# Test case
my_pipe_builder(2, -1.5, 1, 0.5)
Found exact solution.
Soltuion 0.2529042306098583
```

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
TOL = 1.e-8
def newton(z0, f, fprime, MAX IT=1000):
    """The Newton-Raphson method applied to f(z).
    Returns the root found, starting with an initial guess, z0, or
False
    if no convergence to tolerance TOL was reached within MAX IT
iterations.
    0.00
    z = z0
    for i in range(MAX IT):
        dz = f(z)/fprime(z)
        if abs(dz) < T0L:
            return z
        z -= dz
    return False
def get root index(roots, r):
    """Get the index of r in the list roots.
    If r is not in roots, append it to the list.
    0.00
    try:
        return np.where(np.isclose(roots, r, atol=TOL))[0][0]
    except IndexError:
        roots.append(r)
        return len(roots) - 1
def newton fractal(f, fprime, n=200, domain=(-1, 1, -1, 1)):
    """Plot a Newton Fractal by finding the roots of f(z).
    The domain used for the fractal image is the region of the complex
plane
    (xmin, xmax, ymin, ymax) where z = x + iy, discretized into n
values along
    each axis.
    0.000
    roots = []
    m = np.zeros((n, n))
```

```
xmin, xmax, ymin, ymax = domain
    for ix, x in enumerate(np.linspace(xmin, xmax, n)):
        for iy, y in enumerate(np.linspace(ymin, ymax, n)):
            z0 = x + y*1j
            r = newton(z0, f, fprime)
            if r is not False:
                ir = get root index(roots, r)
                m[iv, ix] = ir
    nroots = len(roots)
    for i in range(len(roots)):
      print("Root_"+str(i+1)+" : ", roots[i])
    # return forth root
    return roots[3]
def f(z):
  return z^{**4-1}
def fprime(z):
  return 4*z**3
iterations = 250
newton fractal(f, fprime, n=iterations)
Root 1 : (-3.2665559226941115e-13+1.0000000000003602j)
Root 2: (1.000000000000022+1.955133178273462e-15j)
Root 3: (3.256421917228081e-09-0.999999997807702j)
Root 4:
          (-0.999999999999997-6.198137121753741e-16j)
(-0.999999999999997-6.198137121753741e-16j)
Q3
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import lagrange
def langarange (x, y, x p):
 yp = 0
  # Implementing Lagrange Interpolation
  for i in range(len(x)):
      p = 1
      for j in range(len(y)):
          if i != j:
              p = p * (x_p - x[j])/(x[i] - x[j])
      yp = yp + p * y[i]
  return yp
```

```
# def lagrange_main():
x= list(range(0,40,4))
y=[-0.021373, -0.024578,-0.023914, -0.018227,-
0.00781,0.005602,0.019264, 0.030235, 0.036059, 0.035334]
predict = []
for xp in x:
    predict.append(langarange_(x, y, xp))

plt.plot(x,y, 'ro', label='Real Data')
plt.plot(x,predict, '--b', label='Lagrange polynomial')
plt.xlabel("Time (ms)")
plt.ylabel("Shot")
plt.legend()
```

<matplotlib.legend.Legend at 0x7f18231d6210>


```
Q4
import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
#pip install PyPolynomial
from pypoly import Polynomial
N=100
X=np.linspace(np.pi/2, np.pi, N)
y = X**2*np.cos(X)

y_out = []
```

```
for order in [1, 2,3,4,5]: # reuired order of equation
  equations = np.array([[po ** order] for po in X])
  coefficients =linalg.lstsq(equations, y)
  p = Polynomial(*coefficients)
  out = []
  for x in X:
    out.append(p(x))
  y_out.append(out)
len(y out)
plt.plot(X,y, 'ro', label='Original function')
plt.plot(X,y_out[0], '--b', label='Lagrange interpolating polynomial
of degree=1')
plt.plot(X,y_out[1], '--r', label='Lagrange interpolating polynomial
of degree=2')
plt.plot(X,y out[2], '--g', label='Lagrange interpolating polynomial
of degree=3')
plt.plot(X,y_out[3], '--y', label='Lagrange interpolating polynomial
of degree=4')
plt.plot(X,y out[4], '--', label='Lagrange interpolating polynomial of
dearee=5')
plt.xlabel("X")
plt.ylabel("Y")
plt.legend()
<matplotlib.legend.Legend at 0x7f1817a6a6d0>
```



```
Q5
```

```
import numpy as np
import matplotlib.pyplot as plt
def Gaussian Func dot dot(x,std, mean):
  fx = 1/(np.sqrt(2*np.pi)*std)
  fx = fx * (x-mean)**2/(std**2) - 1/(std**2)
  fx = fx * np.exp(-(x-mean)**2/x*std)
  return fx
def Gaussian Func(x,std, mean):
  fx = 1/(np.sqrt(2*np.pi)*std)
  fx = fx * np.exp(-(x-mean)**2/x*std)
  return fx
def Gaussain three points(x,std, mean,dx):
  # f(x+dx) - 2f(x) + f(x-dx) / dx2
  return (Gaussian Func(x+dx,std, mean)-2*Gaussian Func(x,std, mean)
+Gaussian Func(x-dx,std, mean))/ dx**2
# intialization
mu, sigma = 0, 0.1 \# mean and standard deviation
x = np.random.normal(mu, sigma, 100)
dx=1e-6
y dot = Gaussian Func dot dot(x,s, mu)
y_3P = Gaussain_three_points(x,s, mu,dx)
plt.plot(list(range(len(x))),y dot, 'ro', label='f(x) dot dot ')
plt.plot(list(range(len(x))),y_3P, '--b', label='f(x) three points')
plt.legend()
```

<matplotlib.legend.Legend at 0x7f4fcb9e9cd0>


```
#Q6
def f(x):
  return 1/(1+(x-np.pi)**2)
def midpoint(f, a, b, n):
    h = float(b-a)/n
    result = 0
    for i in range(n):
        result += f((a + h/2.0) + i*h)
    result *= h
    return result
def trapz(f,a,b,N=50):
    x = np.linspace(a,b,N+1) # N+1 points make N subintervals
    y = f(x)
    y right = y[1:] # right endpoints
    y_left = y[:-1] # left endpoints
    dx = (b - a)/N
    T = (dx/2) * np.sum(y_right + y_left)
    return T
def simps(f,a,b,N=50):
    if N % 2 == 1:
        raise ValueError("N must be an even integer.")
    dx = (b-a)/N
    x = np.linspace(a,b,N+1)
    y = f(x)
    S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
    return S
def Composite simps(f,a,b,N, tol):
  exactValue = np.arctan(5-np.pi)+np.arctan(np.pi)
  absError = 0
  for n in range(2, N, 2):
      h = (b-a)/n
      xI0 = f(a) + f(b)
      xI1 = 0
      xI2 = 0
      # Use simpsons composite ruls to eventually approximate the
integral
      for i in range(1,n):
          x = a + i*h
          if i%2 == 0: #even
              xI2 = xI2 + f(x)
          else:
              xI1 = xI1 + f(x)
      xI = h*(xI0 + 2*xI2 + 4*xI1)/3 # our approximation
      absError = abs(xI - exactValue)
      if absError < tol:</pre>
          break
```

```
return absError
n = 50
a = 0
b = 5
exactValue = np.arctan(5-np.pi)+np.arctan(np.pi)
f midpoint= midpoint(f, a, b, n)
f trapz = trapz(f,a,b,n)
f simps = simps(f,a,b,n)
tol = 1e-4
f c simp error =Composite simps(f,a,b,n, tol)
print("Mid Point Rule error : ", abs(exactValue-f_midpoint))
print("Trapzoid rule error : ", abs(exactValue-f_trapz))
print("Simpson rule error : ", abs(exactValue-f_simps))
print("Composite simpson rule error : ",f_c_simp_error )
Mid Point Rule error : 0.0001001957355359906
Trapzoid rule error : 0.00020042542611919956
Simpson rule error : 1.809228722393641e-07
Composite simpson rule error : 3.7766006237838212e-06
Q7
import math
from matplotlib import pyplot as plt
def step one(t, p):
       M = mean anomaly
       M = 2pi * t
        return (2 * math.pi * t) / p
def step two(m, e):
       M = mean anomaly
       E = eccentric anomaly
        e = eccentricity
        M = E - esinE
        def M(E): return E - (e * math.sin(E))
        E = 0
        while m > M(E):
                E += 1
        while M(E) > m:
                E = 0.00001
        return E
```

```
def step_three(e, E):
     (1 - e) tan^2(theta/2) = (1 + e) tan^2(E/2)
     e = eccentricity
     theta = true anomaly
     E = eccentric anomaly
     def l(theta): return (1-e)*(math.tan(theta/2))**2
     r = (1+e)*(math.tan(E/2))**2
     theta = 0
     while l(theta) < r:</pre>
           theta += 0.1
     while r < l(theta):</pre>
           theta -= 0.00001
     return [theta, 2*(math.pi - theta) + theta]
def step_four(a, e, E):
     a = semi-major axis
     e = eccentricity
     E = eccentric anomaly
     r = a(1 - ecosE)
     return a * (1 - (e * math.cos(E)))
def calculate(e, t, p, a):
     M = step_one(t, p)
     E = step two(M, e)
     if list(math.modf(float(t) / p))[0] > 0.5:
           theta = step three(e, E)[1]
     if list(math.modf(float(t) / p))[0] < 0.5:
           theta = step three(e, E)[0]
     r = step four(a, e, E)
     return [theta, r]
e_{theta}, e_{r} = [], []
m_{theta}, m_{r} = [], []
for x in range (0, 365):
     e coords = calculate(0.0167, x, 365, 1.496E8)
     e theta.append(e coords[0])
     e r.append(e coords[1])
     m coords = calculate(0.0935, x, 687, 2.2792E8)
     m theta.append(m coords[0])
     m r.append(m coords[1])
plt.polar(e_theta, e_r)
plt.polar(m_theta, m_r, 'r')
plt.show()
```


Q8:

from scipy.special import fresnel
from scipy import linspace
import matplotlib.pyplot as plt

```
t = linspace(-8, 8, 1000)
s, c = fresnel(t)

plt.plot(s, c)
plt.axes().set_aspect("equal")
plt.show()
# S is smoother
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: DeprecationWarning: scipy.linspace is deprecated and will be removed in SciPy 2.0.0, use numpy.linspace instead

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:9: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance.

```
if __name__ == '__main__':
```



```
Q9
from scipy.optimize import curve fit
from matplotlib import pyplot
from numpy import arange
def objective(strain, a,b):
 # integral of given form: stress = (a*strain)/(1-b*strain)
  return a*strain/(1-b*strain)
x = [0,
0.05 ,
0.10 ,
0.15 ,
0.20 .
0.25 .
0.30 ,
0.35 .
0.40
0.45
0.50
y=[0, 0.252, 0.531, 0.840, 1.184, 1.558, 1.975, 2.444, 2.943, 3.500, 4.115]
popt, _ = curve_fit(objective, x, y)
# summarize the parameter values
a, b= popt
print('y = %.5f * x + %.5f' % (a, b))
# plot input vs output
pyplot.scatter(x, y)
# define a sequence of inputs between the smallest and largest known
```

```
inputs
x_line = arange(min(x), max(x), 1)
# calculate the output for the range
y_line = objective(x_line, a, b)
# create a line plot for the mapping function
pyplot.plot(x_line, y_line, '--', color='red')
pyplot.show()
y = 5.03745 * x + 0.78037
```


Q10

Eurler forward method

```
import numpy as np
import matplotlib.pyplot as plt

plt.style.use('seaborn-poster')
%matplotlib inline

# Define parameters
f = lambda y, t: 0.2*y- 0.01*y*2 + np.sin(2*np.pi*t) # ODE
h = 0.2 # Step size
t = np.arange(2000, 2020, h) # Numerical grid
s0 = 6 # Initial Condition

# Explicit Euler Method
s = np.zeros(len(t))
s[0] = s0
```

```
for i in range(0, len(t) - 1):
    s[i + 1] = s[i] + h*f(s[i], t[i])

plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, f(s,t), 'g', label='Exact')
plt.title('Approximate and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()
```


Euler Backward

```
def backgward_euler(f_prime, y_0, endpoints, h):
    n = int((endpoints[-1] - endpoints[0])/h)
    x = endpoints[0]
    y = y_0
    x_out, y_out = np.array([x]), np.array([y])
    for i in range(n):
        y_prime = f_prime(x, y)/(1 + h * 8)
        y += h * y_prime
        x += h
        x out = np.append(x out, x)
```

```
y out = np.append(y out, y)
    return x_out, y_out
f = lambda y, t: 0.\overline{2}*y - 0.01*y*2 + np.sin(2*np.pi*t) # ODE
h = 0.2 \# Step size
t = np.arange(2000, 2020, h) # Numerical grid
s0 = 6 # Initial Condition
t, s = backgward euler(f, s0, [2000, 2020], h)
plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, f(s,t), 'g', label='Exact')
plt.title('Approximate by backward euler and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()
```



```
4th Order Runge Kutta Method
def rk4(f,x0,y0,xn,n):
   n = int((xn-x0)/h)
   x = []
   y=[]
   print('\n-----')
   print('----')
   print('x0\ty0\tyn')
   print('----')
   for i in range(n):
       x.append(x0)
       y.append(y0)
       k1 = h * (f(x0, y0))
       k2 = h * (f((x0+h/2), (y0+k1/2)))
       k3 = h * (f((x0+h/2), (y0+k2/2)))
       k4 = h * (f((x0+h), (y0+k3)))
       k = (k1+2*k2+2*k3+k4)/6
       yn = y0 + k
       print('%.4f\t%.4f\t%.4f'% (x0,y0,yn) )
       print('----')
       y0 = yn
       x0 = x0+h
   return x,y
f = lambda y, t: 0.2*y - 0.01*y*2 + np.sin(2*np.pi*t) # ODE
h = 0.2 \# Step size
t = np.arange(2000, 2020, h) # Numerical grid
s0 = 6 # Initial Condition
t, s = rk4(f,2000,6,2020,h)
plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.title('Approximate by 4th Order Runge Kutta Method and Exact
Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
plt.legend(loc='lower right')
plt.show()
-----SOLUTION-----
_____
x0 y0 yn
2000.0000 6.0000 78.0056
```

2000.2000	78.0056	150.0391
2000.4000	150.0391	222.1586
	222.1586	294.3670
	294.3670	366.4768
2001.0000	366.4768	438.5154
2001.2000	438.5154	510.5312
2001.4000	510.5312	582.5402
2001.6000	582.5402	654.5471
	654.5471	726.5534
	726.5534	798.5595
2002.2000	798.5595	870.5657
2002.4000	870.5657	942.5719
2002.6000	942.5719	1014.5782
2002.8000	1014.5782	1086.5847
2003.0000	1086.5847	1158.5913
2003.2000	1158.5913	1230.5980
2003.4000	1230.5980	1302.6050
2003.6000	1302.6050	1374.6121
2003.8000	1374.6121	1446.6195
	1446.6195	
2004.2000	1518.6272	1590.6352
2004.4000	1590.6352	1662.6436
	1662.6436	
2004.8000	1734.6525	1806.6620
2005.0000	1806.6620	1878.6722

2005.2000	1878.6722	1950.6833
	1950.6833	
2005.6000	2022.6957	
2005.8000	2094.7098	2166.7263
2006.0000	2166.7263	2238.7468
2006.2000	2238.7468	2310.7743
2006.4000	2310.7743	2382.8162
	2382.8162	2454.8985
2006.8000	2454.8985	2527.1370
	2527.1370	
2007.2000	2599.5172	2671.6655
2007.4000	2671.6655	2743.7448
2007.6000	2743.7448	2815.8288
2007.8000	2815.8288	2888.0001
2008.0000	2888.0001	2960.4123
2008.2000	2960.4123	3032.6541
2008.4000	3032.6541	3104.7694
2008.6000	3104.7694	3176.9155
2008.8000	3176.9155	3249.2923
	3249.2923	3321.6292
2009.2000	3321.6292	3393.7781
	3393.7781	3465.9780
2009.6000	3465.9780	3538.4340
2009.8000	3538.4340	3610.7035
2010.0000	3610.7035	3682.8817

2010.2000	3682.8817	3755.2845
2010.4000	3755.2845	3827.6615
2010.6000	3827.6615	3899.8581
2010.8000	3899.8581	3972.2618
2011.0000	3972.2618	4044.6672
2011.2000	4044.6672	4116.8903
2011.4000	4116.8903	4189.3538
2011.6000	4189.3538	4261.7230
2011.8000	4261.7230	4334.0062
2012.0000	4334.0062	4406.5458
2012.2000	4406.5458	4478.8242
2012.4000	4478.8242	4551.2681
2012.6000	4551.2681	4623.7136
2012.8000	4623.7136	4696.0460
2013.0000	4696.0460	4768.6084
2013.2000	4768.6084	4840.9126
2013.4000	4840.9126	4913.4675
2013.6000	4913.4675	4985.8278
2013.8000	4985.8278	5058.3395
2014.0000	5058.3395	5130.7862
	5130.7862	5203.2803
2014.4000	5203.2803	5275.7713
2014.6000	5275.7713	5348.2713
2014.8000	5348.2713	5420.7787
2015.0000	5420.7787	5493.3046

2015.2000	5493.3046	5565.8065
2015.4000	5565.8065	5638.3692
2015.6000	5638.3692	5710.8467
2015.8000	5710.8467	5783.4511
	5783.4511	5855.8993
2016.2000	5855.8993	5928.5512
2016.4000	5928.5512	6000.9956
2016.6000	6000.9956	6073.6690
2016.8000	6073.6690	6146.1959
2017.0000	6146.1959	6218.8036
	6218.8036	
	6291.4365	
2017.6000	6363.9404	6436.6498
2017.8000	6436.6498	6509.2187
2018.0000	6509.2187	6581.8475
2018.2000	6581.8475	6654.5501
2018.4000	6654.5501	6727.0944
2018.6000	6727.0944	6799.7888
2018.8000	6799.7888	6872.4787
2019.0000	6872.4787	6945.0399
2019.2000	6945.0399	7017.7716
2019.4000	7017.7716	7090.4765
2019.6000	7090.4765	7163.0656
2019.8000	7163.0656	7235.8054
		*

Trapezoidal

```
def trapz(f,a,b,t,N=50):
    x = np.linspace(a,b,N) # N+1 points make N subintervals
    y = f(x,t)
    y right = y[1:] # right endpoints
    y_left = y[:-1] # left endpoints
    dx = (b - a)/N
    T = (dx/2) * np.sum(y_right + y_left)
    return x,y
f = lambda y, t: 0.2*y - 0.01*y*2 + np.sin(2*np.pi*t) # ODE
h = 0.2 \# Step size
t = np.arange(2000, 2020, h) # Numerical grid
s0 = 6 # Initial Condition
t, s = trapz(f, 2000, 2020, t, int((2020-2000)/h))
plt.figure(figsize = (12, 8))
plt.plot(t, s, 'bo--', label='Approximate')
plt.plot(t, f(s,t), 'g', label='Exact')
plt.title('Approximate by trapezoid and Exact Solution \
for Simple ODE')
plt.xlabel('t')
plt.ylabel('f(t)')
plt.grid()
```

plt.legend(loc='lower right')
plt.show()

