ĐỀ ÔN TẬP CUỐI KỲ MÔN ĐẠI SỐ TUYẾN TÍNH

<u>Đề 1</u>

Câu 1: Trên \mathbb{R}^6 cho tập hợp $W = \left\{ (x_1, x_2, x_3, x_4, x_5, x_6) \middle| \begin{array}{l} x_5 + 4x_6 - 10x_3 + x_2 - 2x_1 = 0 \\ 11x_3 - x_4 + 3x_1 = 0 \\ x_4 - 3x_6 - 2x_2 + 2x_1 = 0 \end{array} \right\}.$

- a) Hãy chứng minh rằng W là không gian vector con của \mathbb{R}^6 .
- b) Hãy tìm hệ sinh, cơ sở và số chiều của W.

Câu 2: Trên \mathbb{R}^3 cho các tập hợp $a = \{ \alpha_1 = (1,0,0), \alpha_2 = (-1,1,0), \alpha_3 = (2,2,1) \}$ và

$$\beta = \{ \beta_1 = (-1, 1, -2), \beta_2 = (0, -1, 1), \beta_3 = (1, 0, 2) \}.$$

- a) Chứng minh rằng a và β là cơ sở của \mathbb{R}^3 .
- b) Cho vector $\alpha = (12,1,2) \in \mathbb{R}^3$. Hãy tìm tọa độ của α theo cơ sở a.
- c) Gọi $\beta_0 = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$ là cơ sở chính tắc của \mathbb{R}^3 .

Hãy tìm các ma trận chuyển cơ sở:

$$P = P_{\beta_0 \to a}; Q = P_{\beta_0 \to \beta}; S = P_{a \to \beta}.$$

Câu 3: Trong không gian \mathbb{R}^3 cho tích vô hướng:

$$\forall x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3, \langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Hãy trực chuẩn hóa hệ $S = \{u_1 = (1,1,1), u_2 = (-1,1,1), u_3 = (1,2,1)\}$.

Câu 4: Cho ma trận thực $A = \begin{pmatrix} 7 & 9 \\ -2 & -4 \end{pmatrix}$.

Hãy chéo hóa A, rồi sau đó tìm A^m ; $\forall m \in \mathbb{Z}, m \ge 0$.

Câu 5: Cho dạng toàn phương $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$,

và $\beta_0 = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$ là cơ sở chính tắc của \mathbb{R}^3 sao cho:

$$\forall X \in \mathbb{R}^3$$
, ta có $[X]_{\beta_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ và $f(X, X) = 4x_1x_2 - 2x_1x_3 + 18x_2x_3$.

- a) Hãy chính tắc hóa dạng toàn phương $\,f\,.$
- b) Hãy chỉ ra một cơ sở β ứng với dạng chính tắc tìm được ở câu a.

Đề 2:

Câu 1: Trên không gian R6, cho tập hợp:

$$W = \left\{ (x_1, x_2, x_3, x_4, x_5, x_6) \middle| \begin{array}{l} 2x_2 - x_3 + x_1 - 4x_5 = 0 \\ 4x_3 + 5x_4 - 2x_1 + 3x_2 - 6x_6 = 0 \\ x_4 - x_1 + 2x_6 + 3x_5 + 2x_3 = 0 \end{array} \right\}$$

a/ Chứng minh rằng W là không gian vector con của R⁶.

b/ Hãy tìm cơ sở và số chiều cho W.

c/ Cho vector $\gamma = (a,b,c,d,e,f) \in \mathbb{R}^6$. Tìm điều kiện để $\gamma \in W$.

Câu 2. Trên \mathbb{R}^3 cho các tập hợp $a = \{ \alpha_1 = (2, -1, 4), \alpha_2 = (-6, 2, -5), \alpha_3 = (1, -1, 6) \}$ và $\beta = \{ \beta_1 = (4, -3, 1), \beta_2 = (-7, 2, -8), \beta_3 = (-1, 4, -5) \}.$

- a) Chứng minh rằng a và β là cơ sở của \mathbb{R}^3 .
- b) Hãy tìm ma trận chuyển cơ sở $S = P_{a \to \beta}$.
- c) Cho vector $\alpha \in \mathbb{R}^3$ có tọa độ theo cơ sở β là $(\alpha)_{\beta} = (-4,1,3)$. Hãy tìm tọa độ của α theo cơ sở α .

Câu 3: Trong không gian \mathbb{R}^3 cho tích vô hướng:

$$\forall x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3, \langle x \mid y \rangle = x_1 y_1 + x_2 y_2 + 3x_3 y_3.$$

Hãy trực chuẩn hóa hệ $S = \{u_1 = (1,1,1), u_2 = (1,1,0), u_3 = (1,0,0)\}.$

Câu 4: Cho ma trận thực $A = \begin{pmatrix} -3 & -2 \\ 8 & 7 \end{pmatrix}$.

Hãy chéo hóa A, rồi sau đó tìm A^{2021} .

Câu 5: Cho dạng toàn phương $f: \mathbb{R}^3 \to \mathbb{R}$, với

$$f(x_1, x_2, x_3) = 2x_1^2 - 3x_2^2 + 4x_3^2 - 2x_1x_2 - 18x_2x_3$$

a/ Hãy đưa dạng toàn phương về dạng chính tắc.

b/ Hãy tìm một cơ sở ứng với dạng chính tắc đó,