RAC ZUZU

الموضوع رقم 80

النمرين رقع01

التحول الكيميائي الحادث بين معدن الألمنيوم (Al)(s) و محلول حمض كلور الهيدروجين (Al)(s) عددن الألمنيوم تحول تام و بطيء.

ندحل في اللحظة t=0 تلة قدرها $m_0=270mg$ من معدن الألمنيوم في بيشر يحتوي على حجم قدره t=0 ندحل في اللحظة t=0 تلتابعة الزمنية لهذا التحول مكنتنا من V=100mL من محلول حمض كلور الهيدروجين تركيزه المولي C_0 . المتابعة الزمنية لهذا التحول مكنتنا من V=100mL

.2. و الشكل 1 و $V(H_2) = g(x)$ و $n(Al^{3+}) = f(t)$ المبينين في الشكل 1. و الشكل 2.

1ـ أكتب معادلة التفاعل المنمذجة للتحول الكيميائي الحادث.

 x_{max} عدول تقدم التفاعل، ثم حدد قيمة التقدم الاعظمي 2

 C_0 علور الهيدروجين. C_0 علول حمض كلور الهيدروجين.

. دين أنه عند اللحظة
$$t_{1/2}$$
 : $t=t_{1/2}$: من نصف التفاعل . $n_{Al^{3+}}(t_{1/2})=\frac{n_f\left(A\,l^{3+}\right)}{2}$: $t=t_{1/2}$ زمن نصف التفاعل . 4- بين أنه عند اللحظة والماء الماء ال

5ـأـ حدد سلما لمحور فواصل الشكل-2.

ب أثبت أن حجم غاز ثنائي الهيدروجين (H_2) عند اللحظة t يعطى بالعلاقة: $V_{H_2}(t)=3V_M$ ثم جد قيمة $V_{H_2}(t)=3V_M$ الحجم المولى للغازات .

. وين أن عبارة السرعة الحجمية للتفاعل هي: $\frac{1}{2V} \frac{dn_{Al^{3+}}(t)}{dt}$: ثم أحسب قيمتها الأعظمية. $V_{vol}(t) = \frac{1}{2V} \frac{dn_{Al^{3+}}(t)}{dt}$

ر نعيد نفس التجربة السابقة، ولكن نغير فقط في قيمة التركيز المولي لحمض كلور الهيدروجين . $C_1 = 9 \times 10^{-2} \, mol \, . L^{-1}$

. أرسم مع بيان الشكل - 2 المنحنى $V\left(H_{2}\right)=h\left(x\right)$ المتحصل عليه في هذه التجربة. مع التعليل.

المعطيات:

 $\left(A\,l^{\,3+}\!/\!A\,l^{\,}\right)$ و $\left(H_{\,3}\!O^{\,+}\!/\!H_{\,2}\right)$. الثنائيتان الداخلتان في التفاعل هما

 $M(Al) = 27 g.mol^{-1}$: الكتلة المولية الذرية للألمنيوم

النَّمرين رقع 02

الرادون 222 غاز خامل أحادي الذرة عديم اللون و الرائحة ،نواته $\binom{222}{Rn}$ مشعة تتفكك تلقائيا وفق النمط α وتنتج نواة البولونيوم $\binom{A}{84}$ أكثر استقرار.

1_عرف النواة المشعم.

2 أ أذكر قانونا الانحفاظ لصودي.

. Z و A من A و قيمة كل للتحول النووي التلقائي الحادث مع تحديد قيمة كل من

 $\left(\begin{smallmatrix} A \\ 84 \end{smallmatrix} Po \right)$ و $\left(\begin{smallmatrix} 222 \\ Z \end{smallmatrix} Rn \right)$ و النواتين $\left(\begin{smallmatrix} A \\ 22 \end{smallmatrix} Rn \right)$ و $\left(\begin{smallmatrix} A \\ 22 \end{smallmatrix} \right)$

(N,Z)ب على مخطط سقري (N,Z)، حدد موضع النواتين (N,Z) و ب على مخطط سقري

u بوحدة $m\left(\frac{222}{Z}Rn\right)$ بوحدة 4.

ي الشرطين من $V=2\,cm^3$ حجمه $V=2\,cm^3$ على عينة من غاز الرادون V=0 حجمه V=0 في الشرطين من $\frac{A(t)}{A}=f(t)$ الموضح في ضغط P=0 ودرجة حرارة θ ، الدراسة النظرية مكنتنا من رسم المنحنى البياني P=0 الموضح في

الشكل_3.

 $.m_0$ الكتلة قيمة الكتلة N_0 ، ثم استنتج قيمة الكتلة -1

A(t)1_اكتب قانون النشاط الإشعاعي 2

$$A\left(t\right)$$
 بدلالة الزمن $\frac{A\left(t\right)}{A_{0}}$ بدلالة الزمن

جـعرف زمن نصف العمر $t_{1/2}$ ، جد قيمته بيانيا.

د ـ استنتج قيمة ثابت النشاط الإشعاعي λ لنواة الرادون 222 .

 A_0 أ_احسب قيمة النشاط الابتدائي A_0

. $t_1=2$ $t_{1/2}$ للعينة عند النشاط الإشعاعي $A\left(t_1\right)$ للعينة عند اللحظة t التي يتبقى $25^0/_0$ من النشاط الإشعاعي الانتدائي للرادون 222 .

المسعطيات:

1j = 86400s, $1u = 931,5 \text{MeV/c}^2$, $\frac{E_l(^{222}Rn)}{A} = 7,69 \text{MeV / nucl}$ $m(_{1}^{1}P) = 1,0073u$, $m(_{0}^{1}n) = 1,0087u$, $M(^{222}Rn) = 222g \text{/ mol}$

 $V_{M}=25L/mol$: الحجم المولى للغازات في شرطى التجربة

النَّمرين رقع 03

وجد أستاذ العلوم الفيزيائية مكثفة تحمل المعلومة التالية: $C=1000\mu F$ ، وللتأكد من سعة المكثفة السابقة قدم للتلاميذ العناصر و الوسائل الكهربائية التالية:

_مولد توتر قوته المحركة الكهربائية E.

. $R=20k\,\Omega$ ناقل أومى مقاومته

المالاك توصيل قاطعة كهربائية K

_جهاز الفولط متر الرقمي.

ـ بعد التأكد من أن المكثفة غير مشحونة ،قام التلاميذ بربط المكثفة السابقة مع العناصر الكهربائية
 السابقة وحققوا بذلك دارة كهربائية .

أ_أ_ارسم مخطط الدارة الكهربائية التي قام التلاميذ بتحقيقها مع رسم جهة التوتر ات الكهربائية بسهم بين طرفى المولد والمستقبلات وتحديد جهة التيار الكهربائى i .

ب_عند اللحظة t=0 غلق أحد التلاميذ القاطعة وبقراءة جيدة على جهاز الفولط متر الرقمي تم تسجيل قيمة التوتر الكهربائي بين طرفي المكثفة $u_{c}(t)$ خلال مدة زمنية معينة، والنتائج مدونة في الجدول التالي:

	0		20	40	60		100		
$u_{C}(V)$	0,00	4,72	7,56	10,37	11,40	11,78	11,92	12	12

 $\rightarrow t(s)$

2_أ_حدد الظاهرة المدروسة،مع تفسيرها مجهربا.

 $u_{C}\left(t
ight)$ ب المعادلة التفاضلية التي يحققها التوتر الكهربائي بين طرفي المكثفة

جــحدد العبارة الزمنية للحل التحليلي للمعادلة التفاضلية من العبارات التالية:

. ثابت الزمن.
$$u_{C}\left(t\right)=-E\left(e^{-\frac{t}{\tau}}-1\right)$$
 ، $u_{C}\left(t\right)=E\left(1-e^{\frac{t}{\tau}}\right)$ ، $u_{C}\left(t\right)=E\left(1+e^{-\frac{t}{\tau}}\right)$

جــاكتب العبارة الزمنية للتوتر الكهربائي $u_R\left(t\right)$ بين طرفي الناقل الأومي.

 $u_C = f(t)$ اعتمادا على سلم رسم مناسب،ارسم المنحنى البياني 3

 e^{-1} عند اعلى البيان جد قيمة كل من: E

علاه $^{\circ}$ وهل توافق القيمة أعلاه $^{\circ}$.

. أ_اكتب العبارة اللحظية للطاقة المخزنة $E_{C}\left(t
ight)$ في المكثفة .

التمادا على النتائج السابقة قام تلميذان برسم المنحنى

البياني
$$\frac{u_C}{u_R} = g(t)$$
 ڪما هو موضح في الشڪل 4:

$$u_{C}\left(t\right)$$
 بدلالة $u_{C}\left(t\right)$ بدلالة $u_{R}\left(t\right)$ بدلالة و 1

2 حدد أي المنحنيين (1) أو (2) صحيح مع التعليل.

. أـ جد بيانيا قيمة ثابت الزمن au مع التعليل.

ب_ تأكد من سعم المكثفم C التي تحصل عليها سابقا.

تصميح الموضوع رقم80

النمرين رقع 01

المعادلة التفاعل المنمذجة للتحول الكيميائي الحادث. $2\times \left(Al=Al^{3+}+3e^{-}\right)$ المعادلة النصفية للأكسدة: $3\times \left(2H_3O^++2e^-=H_2+2H_2O\right)$ المعادلة النصفية للإرجاع: $3\times \left(2H_3O^++2e^-=H_2+2H_2O\right)$

 $2Al + 6H_3O^+ = 2Al^{3+} + 3H_2 + 6H_2O$ معادلة التفاعل: 2. حدول تقدم التفاعل:

معادلة التفاعل	$2Al + 6H_3O^+ = 2Al^{3+} + 3H_2 + 6H_2O$						
الحالة الابتدائية	n_{01}	n_{02}	0	0	بالزيادة		
الحالة الانتقالية	$n_{01} - 2x$	$n_{02} - 6x$	2x	3 <i>x</i>	بالزيادة		
الحالة النهائية	$n_{01} - 2x_{\text{max}}$	$n_{02}-6x_{\max}$	$2x_{\text{max}}$	$3x_{\text{max}}$	بالزيادة		

عيمة التقدم الاعظمي : x max

 $x_{
m max} = rac{n_f\left(A\,l^{\,3+}
ight)}{2}$: ومنه: $n_f\left(A\,l^{\,3+}
ight) = 2\,x_{
m max}$ الدينا من جدول تقدم التفاعل و في الحالة النهائية:

 $x_{\text{max}} = \frac{2 \times 10^{-3}}{2} = 10^{-3} mol$: وعليه $n_f \left(A l^{3+} \right) = 2m \ mol = 2 \times 10^{-3} mol$ نجد : $n \left(A l^{3+} \right) = f \left(t \right)$ من البيان ($n \left(A l^{3+} \right) = 10^{-3} mol$ نجد : $n \left(A l^{3+} \right) = 10^{-3} mol$

 C_0 علور الهيدروجين. C_0 علول الهيدروجين.

 $n_f~Al~=n_{01}-2x_{
m max}=rac{m_0}{M}-2x_{
m max}$ لدينا من جدول التقدم و في الحالة النهائية:

ومنه: $n_f \ (Al) \neq 0$ التفاعل تام فإن المتفاعل $n_f \ Al = \frac{270 \times 10^{-3}}{27} - 2 \times 10^{-3} = 8 \times 10^{-3} mol$ المحد هو: (H_3O^+) .

$$C_0 = \frac{6 \times 10^{-3}}{100 \times 10^{-3}} = 0,06 mol. L^{-1}$$
 وعليه: $C_0 = \frac{6x_{\max}}{V}$ وعليه: $n_f \left(H_3 O^+ \right) = C_0 V - 6x_{\max} = 0$ إذن:

$$: n_{Al^{3+}}(t_{1/2}) = \frac{n_f(Al^{3+})}{2} : t = t_{1/2}$$
 عند اللحظة 4-

 $n_{_{AI}^{3+}}(t)=2\,x\,(t):t$ من جدول تقدم التفاعل و عند اللحظة

 $x_{\text{max}} = \frac{n_f \left(A l^{3+}\right)}{2}$: عند اللحظة يا التقدم عند نهاية التفاعل $n_{Al^{3+}}(t_{1/2}) = 2 \, x \, \left(t_{1/2}\right) = 2 \, \frac{x_{\text{max}}}{2} \, : t = t_{1/2}$ عند اللحظة يا التقدم عند نهاية التفاعل التفاعل التقدم عند نهاية التفاعل التقدم عند نهاية التفاعل التقدم عند نهاية التفاعل التفاعل

$$n_{Al^{3+}}(t_{1/2}) = 2 \times \frac{n_f(Al^{3+})}{4} = \frac{n_f(Al^{3+})}{2}$$
 وعليه:

: قيمة $t_{1/2}$ زمن نصف التفاعل

$$n_{Al^{3+}}\left(t_{1/2}\right)=rac{n_{f}\left(A\,l^{\,3+}
ight)}{2}=1m\ mol:$$
من البيان $n\left(A\,l^{\,3+}
ight)=f\left(t
ight)$ نجد نجد: $t_{1/2}=10\,\mathrm{min}$

لوضوع رقم 08 — الصفحة 04

5أـ تحديد سلما لمحور فواصل الشكل ـ 2.

4 cm من البيان الشكل. $x_{\text{max}} = 1 m \ mol$ لدينا:

 $.1cm \rightarrow 0,25 m \ mol$.

ومنه: t به بالعلاقة (H_2) عند اللحظة t يعطى بالعلاقة (H_2) عند اللحظة t يعطى بالعلاقة (H_2)

$$:V_{H_2}(t) = 3V_M x(t)$$

 $n_{H_2}\left(t\right)=3\,x\left(t\right):t$ لدينا من جدول تقدم التفاعل و عند اللحظة

$$\frac{V_{H_2}(t)}{V_M} = 3x(t)$$
 ونعلم أن: $n_{H_2}(t) = \frac{V_{H_2}(t)}{V_M}$

$$V_{H_2}(t) = 3V_M x(t)....(1)$$
 وعليه:

عيمة V_M الحجم المولي للغازات:

البيان عبارة عن خط مستقيم يمر من المبدأ معادلة من الشكل: (2) عبارة عن خط مستقيم يمر من المبدأ معادلة من الشكل: (2)

$$a = 3V_M = \frac{18 \times 10^{-3} - 0}{0.25 \times 10^{-3} - 0} = 72L. \, mol^{-1}$$
 بالمطابقة بين العلاقة (2) و (2) نجد

$$V_M = \frac{72}{3} = 24L. \, mol^{-1}$$
 ومنه: $3V_M = 72L. \, mol^{-1}$

$$:V_{vol}\left(t\right)=rac{1}{2V}rac{dn_{Al^{3+}}\left(t
ight)}{dt}:$$
 و. تبيان أن عبارة السرعة الحجمية للتفاعل هي 6

 $n_{_{Al}^{3+}}(t)=2\,x\left(t\right):t$ عبارة السرعة التفاعل و عند اللحظة $v_{_{vol}}(t)=rac{1}{V}\,rac{dx\left(t\right)}{dt}$ عبارة السرعة الحجمية لتفاعل:

$$v_{vol}\left(t\right)=rac{1}{V}rac{d\left(rac{n_{Al}^{3+}\left(t
ight)}{2}
ight)}{dt}$$
: ومنه: $x\left(t
ight)=rac{n_{Al}^{3+}\left(t
ight)}{2}$ ومنه: $x\left(t
ight)=rac{n_{Al}^{3+}\left(t
ight)}{2}$

$$v_{vol}(t) = \frac{1}{2V} \frac{dn_{Al^{3+}}(t)}{dt}$$
: وعليه

t=0عند اللحظة الدين الدين

$$v_{vol}\left(t\right) = \frac{1}{2 \times 10^{-1}} \times \frac{2 \times 10^{-3} - 0}{15 - 0} = 6,65 \times 10^{-4} mol. L^{-1}. min : \underbrace{v_{vol}\left(t\right) = \frac{1}{2V} \frac{dn_{Al}^{3+}\left(t\right)}{dt}}_{vol} \right|_{t=0}$$

7- نعيد نفس التجربة السابقة، ولكن نغير فقط في قيمة التركيز المولي لحمض كلور الهيدروجين $V(H_2) = h(x)$ المتحصل عليه في هذه التجربة. $C_1 = 9 \times 10^{-2} \, mol \, L^{-1}$ حساب التقدم الاعظمى الجديد $x'_{\rm max}$:

معادلةالتفاعل	$2Al + 6H_3O^+ = 2Al^{3+} + 3H_2 + 6H_2O$						
الحالة النهائية	$n_{01}-2x'_{\text{max}}$	$C_1V - 6x'_{\text{max}}$	$2x'_{\text{max}}$	3 x ' _{max}	بالزيادة		

$$x'_{\text{max}} = \frac{m_0}{2M} = \frac{270 \times 10^{-3}}{2 \times 27} = 5 \times 10^{-3} \text{mol}$$
 ومنه: $n_{01} - 2x'_{\text{max}} = \frac{m_0}{M} - 2x'_{\text{max}} = 0$

$$x'_{\text{max}} = \frac{C_1 V}{6} = \frac{9 \times 10^{-2} \times 10^{-1}}{6} = 1,5 \times 10^{-3} \text{mol}$$
 ومنه: $C_1 V - 6x'_{\text{max}} = 0$

 $x'_{\max} = 1.5 \times 10^{-3} mol = 1.5 m mol$ المتفاعل المحد هو نفسه أي $\left(H_3 O^+\right)$ و قيمة التقدم الأعظمي الجديد:

 $a=3V_{M}$ مما سبق لدينا: $V_{H_{2}}(t)=3V_{M}$ معامل توجيه البيان لم يتغير لأنه يمثل المقدار $V_{H_{2}}(t)=3V_{M}$ معامل البيان لم يتغير لأنه يمثل المقدار . - حساب $V_{H_{2}}(t)=3V_{M}$

$$V_{f}(H_{2}) = 3 \times 24 \times 1,5 = 108 \ mL$$
 . وعليه: $V_{f}(H_{2}) = 3V_{M} \ x_{max}^{'}$

$$a = 3V_M = 72 L. mol^{-1} = 72 mL. m mol$$
 $V'_f(H_2) = 0,108 L = 108 mL$ $x'_{max} = 1,5 \times 10^{-3} mol = 1,5 m mol$

النمرين رقع02

ي 1_تعريف النواة المشعم:I

 (α, β, γ) المعاهدي : (α, β, γ)

- إنحفاظ الرقم الذري (Z) أي العدد الذري للمتفاعلات = العدد الذري للنواتج.

- إنحفاظ العدد الكتلي (A) أي العدد الكتلي للمتفاعلات = العدد الكتلي للنواتج.

Z ب Δ تابة معادلة التفكك للتحول النووي التلقائي الحادث مع تحديد قيمة كل من

الموضوع رقم 08 _____ الصفحة 6

 $\left(\begin{smallmatrix} A \\ 84 \end{smallmatrix} Po \right)$ و $\left(\begin{smallmatrix} 222 \\ Z \end{smallmatrix} Rn \right)$ النواتين $\left(\begin{smallmatrix} N \\ Z \end{smallmatrix} \right)$ و بالنوايين و بالنواتين و

u يوحدة $m\left({\frac{{222}}{Z}Rn} \right)$ يوحدة يا. $E_{I}\left(\frac{222}{86}Rn\right) = \left(Zm_{P} + (A-N)m_{n} - m\left(\frac{222}{86}Rn\right)\right) \times 931,5$ دينا $m\binom{222}{86}Rn = Zm_P + (A-N)m_n - \frac{E_I(\frac{222}{86}Rn)}{2215}$: ومنه $E_{l}\left(\frac{222}{86}Rn\right) = 7,69 \times A = 7,69 \times 222 = 1707.18 MeV$ لدينا: $m\left(\frac{222}{86}Rn\right) = 221,97u$ ت. ج

 m_0 ثم استنتاج قيمة الكتلة، m_0 ثم استنتاج قيمة الكتلة: m_0 :

: دينا
$$n_0 = \frac{N_0}{N_A} = \frac{V_{(Rn)}}{V_M}$$
 دينا $n_0 = \frac{V_{(Rn)}}{V_M}$ دينا $n_0 = \frac{N_0}{N_A}$ ومنه $n_0 = \frac{N_0}{N_A}$

$$.N_0 = \frac{6.02 \times 10^{23} \times 2 \times 10^{-3}}{25} = 4.8 \times 10^{19}$$
 ي. ج $N_0 = \frac{N_A V_{(Rn)}}{V_M}$

 m_0 استنتاج قیمت .

0

$$\frac{A\left(t_{1/2}\right)}{A_{0}} = \frac{1}{2}$$
: عند اللحظة $t = t_{1/2}$ عند اللحظة وين $t = t_{1/2}$ عند اللحظة وين منا عند اللحظة وين من عند اللحظة وين منا عند اللحظة وين عند اللحظة وين منا عند اللحظة وين عند اللحظة

 λ د استنتاج قيمة ثابت النشاط الإشعاعي λ لنواة الرادون 222.

$$\lambda = \frac{\ln 2}{3,8 \times 24 \times 3600} = 2,11 \times 10^{-6} \, s^{-1}$$
: ق.خ. $\lambda = \frac{\ln 2}{t_{_{1/2}}}$ ومنه $\lambda = \frac{\ln 2}{t_{_{1/2}}}$

 A_0 أـحساب قيمة النشاط الاشعاعي الابتدائي.

$$A_0 = 2,11 \times 10^{-6} \times 4,8 \times 10^{19} = 10,13 \times 10^{13} Bq$$
 . ق. ج. $A_0 = \lambda N_0$: لدينا

 $A\left(t_{1}
ight)$ ب تحديد النشاط الإشعاعي $A\left(t_{1}
ight)$ للعينة عند اللحظة

$$t_1 = 2t_{1/2} = 2 \times 3,8 = 7,6 jours$$
 . لدينا

$$\frac{A(t_1)}{A_0} = 0.25$$
 : الدينا $t_1 = 7.6 jours$ من البيان عند اللحظة

$$A(t_1) = 0.25 \times A_0 = 0.25 \times 10.13 \times 10^{13} = 2.53 \times 10^{13} Bq$$
 ومنه:

.
$$r = \frac{A_0 - A\left(t_1\right)}{A_0}$$
: جـايجاد قيمة التغير النسبي للنشاط الإشعاعي جـايجاد

$$r = \frac{(10,13-2.56)\times10^{13}}{10,13\times10^{13}} = 0,747(74,7\%)$$

د. ايجاد اللحظة ' t التي يتبقى 25% من النشاط الإشعاعي الابتدائي للرادون 222.

$$A\left(t'
ight)=rac{A_{0}}{4}$$
 عند اللحظة ' $\frac{1}{4}$ يكون قد تبقى $\frac{1}{4}$ النشاط الإشعاعي للرادون 222 أي t

$$t_1 = t' = 2t_{1/2} = 7,6 jours$$
 إذن: $\frac{A(t')}{A_0} = \frac{1}{4} = 2t_{1/2} = 2t_{1/2}$

النمرين رقح30

ب_نتائج التجربة:

t(s)			20	40	60		100		
$u_{C}(V)$	0,00	4,72	7,56	10,37	11,40	11,78	11,92	12	12

2 أ الظاهرة المدروسة هي: شحن مكثفة .

التفسير المجهري: يحدث المولد اختلالا في توازن المكثفة وذلك بإخضاع الالكترونات بالانتقال من قطب المكثفة الموسول بالقطب المولد. الموسول بالقطب المولد عبر أسلاك التوصيل إلى القطب الآخر للمكثفة المربوطة بالقطب السالب للمولد.

 $u_C(t)$ ب المعادلة التفاضلية التي يحققها التوتر الكهربائي بين طرفي المكثفة التوتر ال

$$u_C(t) + u_R(t) = E$$
 حسب قانون جمع التوترات نجد:

$$\begin{split} u_R(t) &= RC \, \frac{du_C(t)}{dt} : \text{ and } \begin{cases} u_R(t) = Ri(t) \\ i(t) &= \frac{dq(t)}{dt} = C \, \frac{du_C(t)}{dt} : \text{ and } i = C \, \frac{du_C(t)}{dt} :$$

. $u_{C}(o)=0$. t=0 العبارة الزمنية الصحيحة للحل التحليلي للمعادلة التفاضلية : لدينا من الجدول لم

$u_C(t) = -E\left(e^{\frac{-t}{\tau}} - 1\right)$	$u_C(t) = E\left(1 - e^{\frac{t}{\tau}}\right)$	$u_C(t) = E\left(1 + e^{\frac{-t}{\tau}}\right)$	عبارة الحل
$u_C(o) = 0$	$u_C(o) = 0$	$u_C(o) = 2E$ مرفوض)	$u_C(o)$
$\frac{du_C(t)}{dt} = \frac{E}{\tau}e^{\frac{-t}{\tau}}$	$\frac{du_C(t)}{dt} = -\frac{E}{\tau}e^{\frac{t}{\tau}}$		مشتق الحل بالنسبة للزمن
مقبول	مرفوض		التعويض في
			المعادلة (1)

. (1) حل تحليلي لمعادلة التفاصلية
$$u_{C}(t)=-E\left(e^{\frac{-t}{\tau}}-1\right)$$
 على العبارة الزمنية:

جـ العبارة الزمنية للتوتر الكهربائي $u_R(t)$ بين طرفي الناقل الأومي:

$$u_R(t)=E+E\!\!\left(e^{rac{-t}{ au}}-1
ight)$$
 ومنه: $u_R(t)=E-u_C(t)$ عن قانون جمع التوترات نجد:

$$u_R(t)=Ee^{rac{-t}{ au}}$$
اي: $u_R(t)=E+Ee^{rac{-t}{ au}}-E$ ومنه:

. E=12V . ومن البيان وفي النظام الدائم نجد $u_C(\infty)=E$. ومن البيان وفي النظام الدائم نجد . E=12V . عبمة ثابت الزمن au_C

E=12V عم المستقيم الماس للمنحنى $u_C=f(t)$ مع المستقيم المقارب au=0 وبالاسقاط نجد: au=20s .

ط2: نعوض في الحل التحليلي لما $au_C(au)=0.63E=0.63 imes12=7.56V$ وبالاسقاط نجد: au=0.63E=0.63

$$C = \frac{20}{20 \times 10^3} = 10^{-3} F$$
 تـع: $C = \frac{\tau}{R}$ ومنه: $\tau = RC$ استنتاج سعة المكثفة $C = \frac{20}{10^3} = 10^{-3} F$ ومنه: $C = \frac{\tau}{R}$

ونعلم أن $F=10^{-6}$ أي E=1000 أي E=1000 ، نعم القيمة المحسوبة توافق القيمة المدونة على المكثفة

وعليه سعة المكثفة صحيحة.

. أ_ العبارة اللحظية للطاقة المخزنة $E_{C}(t)$ في المكثفة 6

$$u_{C}(t) = -E\left(e^{\frac{-t}{\tau}} - 1\right)$$
: ومنه $E_{C}(t) = \frac{1}{2}C\left(u_{C}(t)\right)^{2}$ ومنه

$$E_C(t) = \frac{1}{2}CE^2\left(e^{\frac{-t}{\tau}} - 1\right)^2$$

 $t_1=10s$ و $t_1=10s$ و $t_2=10s$ و .

$$E_C(t_1) = \frac{1000 \times 10^{-6} (4,72)^2}{2} = 11,1 mJ$$

$$E_C(t_2) = \frac{1000 \times 10^{-6} (11,78)^2}{2} = 69,4 \text{mJ}$$

$$u_{C}(t)$$
 بدلالت $au_{D}(t)$ بدلالت $au_{D}(II)$ بدلالت بارة النسبة بارة النسبة بدلالت بارة النسبة بارة النسب

$$\frac{u_C(t)}{u_R(t)} = \left(1 - e^{\frac{-t}{\tau}}\right) e^{\frac{t}{\tau}} \quad \text{oais} \quad \frac{u_C(t)}{u_R(t)} = \frac{1 - e^{\frac{-t}{\tau}}}{e^{\frac{-t}{\tau}}} \quad \text{oais} \quad \frac{u_C(t)}{u_R(t)} = \frac{-E\left(e^{\frac{-t}{\tau}} - 1\right)}{e^{\frac{-t}{\tau}}} \cdot \frac{1}{u_R(t)} = \frac{-E\left(e^{\frac{-t}{\tau}} - 1\right)}{e^{\frac{-t}{\tau}}} \cdot \frac{1}{u_R(t)} = \frac{e^{\frac{-t}{\tau}} - 1}{e^{\frac{-t}{\tau}}} \cdot \frac{1}{u_R$$

$$\lfloor \frac{e^{rac{0}{ au}}-1=1-1=0}{u_R}$$
 هو المنحنى البياني الصحيح لتمثيل $\frac{u_C}{u_R}=g(t)$ هو المنحنى البياني الصحيح لتمثيل 2

$$\frac{u_C(\tau)}{u_R(\tau)} = e^{\frac{\tau}{\tau}} - 1 = e^1 - 1 = 1,72$$
 نجد: $t = \tau$ لا

وعليه τ يمثل فاصلة الترتيبة 1,72 وبالاسقاط نجد: $\tau = 20s$. $\tau = 20s$ وعليه τ يمثل فاصلة الترتيبة τ ثم قارنها مع القيمة أعلاه:

$$1\mu F=10^{-6}F$$
 ونعلم أن: $C=\frac{20}{20\times 10^3}=10^{-3}F$ ونعلم أن: $C=\frac{\tau}{R}$ ونعلم أن: $C=\frac{1000}{R}$ أي: $C=\frac{1000}{R}$ الدينا: $C=\frac{\tau}{R}$ وعليه القيمة توافق القيمة التي تحصل عليها سابقا.