Lecture 2 - Lexical Analysis - Introduction Compiler Design (CS 3007)

Sumanta Pyne

Assistant Professor Computer Science and Engineering Department National Institute of Technology Rourkela pynes@nitrkl.ac.in

July 30, 2024

Function of lexical analyzer

- Read source program, one character at a time
- Translate a sequence of charaters to tokens (keywords, identifiers, constants, operators)
- Symbol table entry for new identifiers
- Forward tokens to parser
- Report errors like invalid identifier, undefined identifier, multiple declaration, invalid operators, keyword declared as identifier, etc

Function of lexical analyzer

Input Buffering

Input buffer M * eof C * * 2 eof First half Second half token beginning lookahead pointer (la_ptr) $la_ptr \leftarrow la_ptr + 1$: if $la_ptr = \mathbf{eof}$ then begin if $la_{-}ptr$ at the end of first half **then begin** reload second half: $la_ptr \leftarrow la_ptr + 1$: end else if la_ptr at the end of second half then begin reload first half: move forward $la_{-}ptr$ to the beginning of first half end else *eof within a buffer signifying end of input*/ terminate lexical analysis end if

Lookahead code with sentinels

- Lexical analyzer read characters from input buffer
- A pointer marks beginning of token being discovered
- la ptr scans from beginning until the token is discovered Aut'23, Compiler Design (CS 3007), Lect. 2

4 / 27

A simple lexical analyzer for identifier

Transition diagram for identifier

```
state 0: C ← GETCHAR();
    if LETTER(C) then goto state 1;
    else FAIL();
state 1: C ← GETCHAR();
    if LETTER(C) or DIGIT(C) then goto state 1;
    else if DELIMITER(C) then goto state 2;
else FAIL();
state 2: C ← RETRACT();
    return (id, INSTALL());
```

Code for each state in the transition diagram

- GETCHAR() advances the lookahead pointer and returns the next character
- LETTER(C) returns **true** if C is a letter
- DIGIT(C) returns true if C is a digit
- DILIMITER(C) returns true if C is a character that can follow an identifier
- INSTALL() returns a value that is a pointer to the symbol table
- FAIL() returns error for invalid iput
- RETRACT() retracts delimiter from the identifier

Designing a lexical analyzer

Token	Code	Value
begin	1	_
end	2	_
\mathbf{if}	3	_
${f then}$	4	_
${f else}$	5	_
identifier	6	Pointer to symbol table
constant	7	Pointer to symbol table
<	8	1
< <= =	8	2
=	8	3
<>> >	8	4
>	8	5
>=	8	6

Tokens recognized

- Defining a token set
- Encoding each class of tokens

Mapping values to tokens of same class

July 30, 2024

Transition diagrams for token recognizers blank

Transition diagrams for token recognizers

Combining the token recognizers

- Union of FSMs for identifiers, keywords, constants and relops
- A complex task
- Non-determinism may exist in the combined FSMs
- New transistions to be included
- Follow a proper procedure simpler and error free
- Combine the token recognizers as an non-dertiministic FSM
- Then obain the equivalent dertiministic FSM
- Minimize the states
- Add actions

Implementation of Lexical Analyzer

Lexical Specification and Regular Expressions

- ullet An alphabet Σ is a finite set of symbols
- A string w is a finite sequence symbols, i.e. $w \in \Sigma^*$
- A language L is a set of strings over alphabet Σ , i.e. $L = \{w | w \in \Sigma^*\}$
- Regular expressions (REs) over alphabet Σ
 - **1** ϵ is a RE denoting language $L = {\epsilon}$, where ϵ is an empty string.
 - ② For each $a \in \Sigma$, a is a RE denoting language $L = \{a\}$.
 - \odot If R and S are REs denoting languages L_R and L_S , respectively, then
 - (R)|(S) is a RE denoting $L_R \cup L_S$.
 - (R) \cdot (S) is a RE denoting $L_R \cdot L_S$.
 - $(R)^*$ is a RE denoting L_R^* .
- Example: following tokens are described by REs
 - keyword = BEGIN | END | IF | THEN | ELSE
 - identifier = letter (letter | digit)*
 - constant = digit⁺
 - relop = < | <= | = | <> | > | >=

Finite Automata

- A recognizer for a language L.
- Produces YES if an input string $w \in L$, otherwise NO.
- Consider a language $L = \{w | w \in \{a, b\}^* \land w \text{ ends with } abb\}$
- Regular expression for L is $R = R_1 \cdot R_2 = (a|b)^*abb$
- A simple recognizer for L is non-deterministic finite automata (NFA)

- Non-determinism cannot be implemented
- Convert NFA to deterministic finite automata (DFA)

Decomposition tree for $(a|b)^*abb$

For
$$R_5 = R_4^*, N_5 =$$

For
$$R_6 = a$$
, $N_6 = 7$

For
$$R_7 = R_5 \cdot R_6, N_6 =$$

For
$$R_8 = a$$
, $N_8 = 8$

For
$$R_9 = R_7 \cdot R_8, N_9 =$$

For
$$R_{10} = b$$
, $N_{10} = 9$

For $R_{11} = R_9 \cdot R_{10}, N_{11} =$

July 30, 2024

Constructing DFA from NFA

$$A = \epsilon - CLOSURE(\{0\}) = \{0, 1, 2, 4, 7\}$$

$$B = \delta(A,a) = \epsilon - CLOSURE(\{3\}) \cup \epsilon - CLOSURE(\{8\}) = \{1,2,3,4,6,7,8\}$$
 $C = \delta(A,b) = \epsilon - CLOSURE(\{5\}) = \{1,2,4,5,6,7\}$

$$\begin{array}{l} \delta(B,a) = \epsilon - CLOSURE(\{3\}) \cup \epsilon - CLOSURE(\{8\}) = \{1,2,3,4,6,7,8\} = B \\ D = \delta(B,b) = \epsilon - CLOSURE(\{5\}) \cup \epsilon - CLOSURE(\{9\}) = \{1,2,4,5,6,7,9\} \end{array}$$

$$\begin{aligned} & \delta(C,a) = \epsilon - CLOSURE(\{3\}) \cup \epsilon - CLOSURE(\{8\}) = \{1,2,3,4,6,7,8\} = B \\ & \delta(C,b) = \epsilon - CLOSURE(\{5\}) = \{1,2,4,5,6,7\} = C \end{aligned}$$

$$\delta(D,a) = \epsilon - CLOSURE(\{3\}) \cup \epsilon - CLOSURE(\{8\}) = \{1,2,3,4,6,7,8\} = B$$

$$E = \delta(D,b) = \epsilon - CLOSURE(\{5\}) \cup \epsilon - CLOSURE(\{9\}) = \{1,2,4,5,6,7,10\}$$

$$\begin{aligned} \delta(E,a) &= \epsilon - CLOSURE(\{3\}) \cup \epsilon - CLOSURE(\{8\}) = B \\ \delta(E,b) &= \epsilon - CLOSURE(\{5\}) = C \end{aligned}$$

Constructing DFA from NFA

		DFA			$\stackrel{a}{\bigcirc}$ $\stackrel{a}{\bigcirc}$
	NFA State	DFA State	Input h	START	(B)
Start Accept	$ \begin{cases} 0, 1, 2, 4, 7 \\ 1, 2, 3, 4, 6, 7, 8 \\ 1, 2, 4, 5, 6, 7 \\ 1, 2, 4, 5, 6, 7, 9 \\ 1, 2, 4, 5, 6, 7, 10 \end{cases} $	A B C D E	B C B D B C B E B C	$\rightarrow A_{l}$	
p.	(-, -, -, 0, 0, 1, 10)	2 '	2 0		b

Transition table

Transition diagram

Minimizing number of states in DFA

DIT				DIA
	State	Inp	ut	numb
		a^{-}	<u>b</u> _	
Start	Α	B	\overline{C}	
	\overline{B}	\bar{B}	\check{D}	Start
	\overline{C}	\overline{B}	\overline{C}	Start
	\check{D}	\tilde{R}	\widetilde{E}	
Accept	_	$\stackrel{D}{B}$	\tilde{C}	Accep

DFA with minimum

DITI WIGH HIHIMINGHI				
number	of sta	tes		
State		Input		
		a	_b_	
Start	A	B	A	
	B	B	D	
	D	B	E	
Accept	E	B	A	
		$A = \{$	$\{A,C\}$	

 Π_i : partition of set of states at step i

$$\Pi_0 = \{\{A, B, C, D\}, \{E\}\}\$$
, final and non-final states

$$\delta(A,a) = \delta(B,a) = \delta(C,a) = \delta(D,a) = B \in \{A,B,C,D\}$$

$$\delta(A,b),\delta(B,b),\delta(C,b)\in\{A,B,C,D\}$$
 and $\delta(D,b)\in\{E\}$

$$\Pi_1 = \{ \{A, B, C\}, \{D\}, \{E\} \}$$

$$\delta(A, a) = \delta(C, a) = B$$
 and $\delta(A, b) = \delta(C, b) = C$

$$\delta(B, a) = B$$
 and $\delta(B, b) = D$

$$\Pi_2 = \{\{A, C\}, \{B\}, \{D\}, \{E\}\}\}$$
, final partition

Combined NFA for tokens

Combined DFA for tokens

Thank you