Exact Derivative Propagation Method to compute the Generalized Compliance Matrix for Continuum Robots: Application to Concentric Tubes Continuum Robots

Variable mapping between the MMT article and the Matlab code

Variable in the paper	Variable in the code
ϵ	simulation_param.opt_tol
nbT	ctcr_carac.nbT
kx_i	ctcr_carac.stiff(i)
R_{ci}	ctcr_carac.Rc(i)
L_{ri}	ctcr_carac.Lr(i)
L_{ci}	ctcr_carac.Lc(i)
L_i	ctcr_carac.L(i)
N	ctcr_construc.nbP
S	ctcr_construc.vect_z
0_i	ctcr_construc.vect_z(ctcr_construc.vect_ind_iT(i,1))
$\beta_{ci} - L_{ci}$	ctcr_construc.vect_z(ctcr_construc.vect_ind_iT(i,2))
eta_{ci}	ctcr_construc.vect_z(ctcr_construc.vect_ind_iT(i,3))
0	ctcr_construc.vect_z(ctcr_construc.ind_origin)
$\Delta(s)$	ctcr_construc.vect_res
K_i	ctcr_construc.K(1:3,1:3,i)
$\dot{ au}_0(s)$	ctcr_construc.vect_tau_dist
$\dot{f}_0(s)$	ctcr_construc.vect_f_dist
u_i^*	ctcr_construc.ui_init
$ au_0(L_0)$	ctcr_load.tau_tip
$f_0(L_0)$	ctcr_load.f_tip
$\left[l_{min},l_{max}\right]$	ctcr_load.load_lim_1/2
$ au_0(s_0)$	ctcr_load.tau_dist_1/2
$f_0(s_0)$	ctcr_load.f_dist_1/2
$\overline{ heta_{ci}}$	ctcr_act.theta_c(i)
eta_{ci}	ctcr_act.beta_c(i)
b	bvp_prop.vect_tol
$\ b\ $	bvp_prop.norm_tol
$B_{y_u(0)}$	bvp_prop.Bu

Variable in the paper	Variable in the code
y(s)	mem_bvp.mem_y
$\dot{y}(s)$	mem_bvp.mem_ys
$u_i _{x,y}(s)$	mem_bvp.mem_uixy
$u_0(s)$	mem_bvp.mem_u0
$T_0(s)$	mem_bvp.mem_T
$\frac{\partial u_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_du0
$\frac{\partial m_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dm0
$\frac{\partial \dot{m}_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dm0_ds
$\frac{\partial n_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dn0
$rac{\partial \dot{n}_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dn0_ds
$\frac{\partial \theta_i}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dti
$rac{\partial \dot{ heta}_i}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dti_ds
$\frac{\partial u_i _z}{\partial \chi}(s)$	mem_deriv_propag_low.mem_duzi
$\frac{\partial \dot{u}_i _z}{\partial \chi}(s)$	mem_deriv_propag_low.mem_duzi_ds
$rac{\partial R_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dR0
$rac{\partial \dot{R}_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dRO_ds
$\frac{\partial p_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dP0
$\frac{\partial \dot{p}_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dPO_ds
$\frac{\partial T_0}{\partial \chi}(s)$	mem_deriv_propag_low.mem_dT0
B_{χ} with $\chi \in \{y_u(0), q\}$	mem_deriv_propag_high.mem_B
B_{χ} with $\chi \in \{w_0(s_0)\}$	mem_deriv_propag_high.mem_Bws0
E_{χ} with $\chi \in \{y_u(0), q\}$	mem_deriv_propag_high.mem_E
E_{χ} with $\chi \in \{w_0(s_0)\}$	mem_deriv_propag_high.mem_Ews0
$C_{s_0}(s)$	mem_CJ.mem_Cs0
J(s)	mem_CJ.mem_J