

Hyperbola

Definition of Hyperbola

A hyperbola is the particular case of the conic $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

When, $abc + 2fgh - af^2 - bg^2 - ch^2 \neq 0$ i.e., $\Delta \neq 0$ and $h^2 > ab$

Auxiliary Circle of Hyperbola

centre C and segment A'A as a diameter is called auxiliary circle of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Equation of the auxiliary circle is $x^2 + y^2 = a^2$.

Let $\angle QCN = \phi$

Here, P and Q are the corresponding points on the hyperbola and the auxiliary circle $(0 \le \phi < 2\pi)$.

Note: Here ϕ is called eccentric angle of point ${\it P}$.

Parametric equations of hyperbola

The equations $x = a \sec \phi$ and $y = b \tan \phi$ are known as the parametric equations of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

This $(a \sec \phi, b \tan \phi)$ lies on the hyperbola for all values of ϕ .

Position of points Q on auxiliary circle and the corresponding point P which describes the hyperbola and $0 \le \phi \le 2\pi$

ϕ varies from	$Q(a\ co\ \phi \not p\ sin\ \phi)$	$P(a \ sec \phi, b \ tan \phi)$
0 to $\frac{\pi}{2}$	I	I
$\frac{\pi}{2}$ to π	II	III
$\pi \ to \frac{3\pi}{2}$	III	II
$\frac{3\pi}{2}$ to 2π	IV	IV

Hyperbola

Hyperbola Fundamentals	Hyperbola	CONJUGATE HYPERBOLA
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ or}$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$
Centre	(0,0)	(0,0)
Length of transverse axis	2a	2 <i>b</i>
Length of conjugate axis	2 <i>b</i>	2 <i>a</i>
Foci	$(\pm ae,0)$	$ig(0,\pm beig)$
Equation of directrices	$x = \pm a / e$	$y = \pm b / e$
Eccentricity	$e = \sqrt{\left(\frac{a^2 + b^2}{a^2}\right)}$	$e = \sqrt{\left(\frac{a^2 + b^2}{b^2}\right)}$
Length of latus rectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
Parametric co-ordinates	$(a \sec \phi, b \tan \phi),$ $0 \le \phi < 2\pi$	$(b \sec \phi, a \tan \phi),$ $0 \le \phi < 2\pi$
Focal radii	$SP = ex_1 - a \text{ and}$ $S'P = ex_1 + a$	$SP = ey_1 - b$ and $S'P = ey_1 + b$
Difference of focal radii $\left(S'P-SP\right)$	2 <i>a</i>	2 <i>b</i>
Tangents at the vertices	x = -a, x = a	$y = -b, \ y = b$
Equation of the transverse axis	y = 0	x = 0
Equation of the conjugate axis	x = 0	y = 0

- If e and e' are the eccentricities of a hyperbola and its conjugate, then $\frac{1}{\rho^2} + \frac{1}{\rho'^2} = 1$.
- The foci of a hyperbola and its conjugate are concyclic.

Position of a Point with Respect to a Hyperbola

Let the hyperbola be $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Then, $P(x_1, y_1)$ will lie inside, on or outside the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ according as } \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1 \text{ is positive, zero or negative.}$$

The equation of the chord joining the points P ($a \sec \phi_1$, $b \tan \phi_1$) and $(a \sec \phi_2, b \tan \phi_2)$

$$y - b \tan \phi_1 = \frac{b \tan \phi_2 - b \tan \phi_1}{a \sec \phi_2 - a \sec \phi_1} \left(x - a \sec \phi_1 \right) \quad \frac{x}{a} \cos \left(\frac{\phi_1 - \phi_2}{2} \right) - \frac{y}{b} \sin \left(\frac{\phi_1 + \phi_2}{2} \right) = \cos \left(\frac{\phi_1 + \phi_2}{2} \right)$$

The straight line y = mx + c will cut the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ in two points may be real, coincident

or imaginary according as $c^2 >$, = $\langle a^2m^2 - b^2 \rangle$.

• If the chord joining two points ($a \sec \phi_1$, $b \tan \phi_1$) and ($a \sec \phi_2$, $b \tan \phi_2$) passes through

the focus of the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, then $\tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2} = \frac{1-e}{1+e}$ or $\frac{1+e}{1-e}$.

Intersection of a Line

and a Hyperbola

If straight line y = mx + c touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $c^2 = a^2m^2 - b^2$.

Equations of Tangent in Different Forms

01

Point form: The equation of the tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ at } (x_1, y_1) \text{ is } \frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1.$$

02

Parametric form: The equation of tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

at
$$(a \sec \phi_1, b \tan \phi_1)$$
 is $\frac{x}{a} \sec \phi - \frac{y}{b} \tan \phi = 1$

Note

Point of intersection of tangents drawn at point on $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$ is

$$\left(\frac{a\cos\left(\frac{\theta-\phi}{2}\right)}{\cos\left(\frac{\theta+\phi}{2}\right)}, \frac{b\sin\left(\frac{\theta+\phi}{2}\right)}{\cos\left(\frac{\theta+\phi}{2}\right)}\right).$$

Slope form : The equations of tangents of slope m to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ are } y = mx \pm \sqrt{a^2 m^2 - b^2} \text{ and the co-ordinates of points}$$

of contacts are
$$\left(-\frac{a^2m}{c}, -\frac{b^2}{c}\right)$$
 where $c^2 = a^2m^2 - b^2$.

Clearly for the existence of tangent with slope m to the hyperbola $\left| m \right| > \frac{b}{a} (where \ a, \ b > 0).$

Note

• If the straight line lx + my + n = 0 touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $a^2l^2 - b^2m^2 = n^2$.

• If the straight line $x \cos \alpha + y \sin \alpha = p$ touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $a^2 \cos^2 \alpha - b^2 \sin^2 \alpha = p^2$. • Two tangents can be drawn from an outside point to a hyperbola.

Equation of Pair of Tangents

If $P(x_1, y_1)$ be any point outside the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then a pair of tangents PQ, PR can be drawn to it from P. The equation of pair of tangents PQ and PR is $SS_1 = T^2$, where,

$$S = \frac{x^2}{a^2} - \frac{y^2}{b^2} - 1, \ S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1, \ T = \frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1.$$

Director circle: The director circle is the locus of points from which perpendicular tangents are drawn to the given hyperbola. The equation of the director circle of the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is } x^2 + y^2 = a^2 - b^2.$$

Equations of Normal in Different Forms

01

Point form : The equation of normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ at } (x_1, y_1) \text{ is}$$

$$\frac{a^2 x}{x_1} + \frac{b^2}{y_1} = a^2 + b^2.$$

02

Parametric form : The equation of normal at

 $(a \sec \theta, b \tan \theta)$, to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is}$$

$$ax \cos\theta + by \cot\theta = a^2 + b^2.$$

03

Slope form: The equation of the normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ in terms of the slope } m \text{ of}$$

$$y = mx \mp \frac{m(a^2 + b^2)}{\sqrt{a^2 - b^2 m^2}}$$

04

Condition of normality : If

$$y = mx + c$$
 is the normal of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $c = \mp \frac{m(a^2 + b^2)}{\sqrt{a^2 - m^2}b^2}$ or

$$c = \frac{m^2 (a^2 + b^2)^2}{(a^2 - m^2 b^2)},$$
 which is condition of normality.

12

Important Tips

01

In general, four normals can be drawn to a hyperbola from any point and if $\alpha, \beta, \gamma, \delta$ be the eccentric angles of these four co-normal points, then $\alpha + \beta + \gamma + \delta$ is an odd multiple of π .

02

if α, β, γ are the eccentric angles of three points on the hyperbola.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, at which the normals are concurrent, then

$$\sin(\alpha + \beta) + \sin(\beta + \gamma) + \sin(\gamma + \alpha) = 0.$$

03

If the normal at P meets the transverse axis in G, then SG = e.SP.

Also the tangent and normal bisect the angle between the focal distances of P 04

If the normal at P meets the transverse axis in G and conjugate axis at g, then

$$PG: Pg = b^2: a^2.$$

13

Equation of Chord of Contact of Tangents drawn from a Point to a Hyperbola

Let *PQ* and *PR* be tangents to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ drawn from any external point $P(x_1, y_1)$.

Then equation of chord of contact QR is or $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$ or T = 0 (At x_1, y_1)

Equation of the Chord of the Hyperbola whose Mid-point (x_1, y_1) is given

Equation of the chord of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, bisected at the given point (x_1, y_1) is

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1$$
, i.e., $T = S_1$.

The length of chord cut off by hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ from the line

$$y = mx + c \text{ is } \frac{2ab\sqrt{\left[c^2 - \left(a^2m^2 - b^2\right)\right]\left(1 + m\right)^2}}{\left(b^2 - a^2m^2\right)}.$$

Reflection Property of the Hyperbola

If an incoming light ray passing through one focus (S) strike convex side of the hyperbola, then it will get reflected towards other focus (S'). $\angle TPS' = \angle LPM = \alpha$

Note

Hyperbola and ellipse are called orthogonal curves to each other iff they are confocal (i.e., they have the same foci).

Asymptotes of a Hyperbola

The equations of two asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are

$$y = \pm \frac{b}{a}x$$
 or $\frac{x}{a} \pm \frac{y}{b} = 0$.

Important Tips

The product of length of perpendiculars drawn from any point on the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 to the asymptotes is $\frac{a^2b^2}{a^2 + b^2}$.

- The tangent at any point P on hyperbola if meet its asymptotes at Q and R, then :
- (i) the midpoint of QR is always P,

(ii) area of triangle *QCR* is always "ab" where *C* is the of hyperbola and 2a= lengthof transverse axis, 2b= length of conjugate axis of hyperbola.

Rectangular or Equilateral Hyperbola

(i) Definition: A hyperbola whose asymptotes are at right angles to each other is called a rectangular hyperbola. The eccentricity of rectangular hyperbola is always $\sqrt{2}$. The general equation of second degree represents a rectangular hyperbola if $\Delta \neq 0$, $h^2 > ab$ and coefficient of x^2 + coefficient of $y^2 = 0$.

Parametric coordinates of a point ton he hyperbola $xy = c^2$

If t is non-zero variable, the coordinates of any point on the rectangular hyperbola $xy = c^2$ can be written as $\left(ct, \frac{c}{t}\right)$. The point

on the hyperbola $xy = c^2$ is generally referred as the point 't'.

For rectangular hyperbola the coordinates of foci are $(\pm a\sqrt{2}, 0)$ and directrices are $x = \pm a \sqrt{2}$.

For rectangular hyperbola $xy = c^2$, the coordinates of foci are $(\pm c\sqrt{2}, \pm c\sqrt{2})$ and directrices are $x + y = \pm c\sqrt{2}$.

Equation of the chord joining points t, and t,

The equation of the chord joining two points $\left(ct_1,\frac{c}{t_1}\right)$ and $\left(ct_2,\frac{c}{t_2}\right)$ on the

hyperbola
$$xy = c^2$$
 is $y - \frac{c}{t_1} = \frac{\frac{c}{t_2} - \frac{c}{t_1}}{ct_2 - ct_1} (x - ct_1)$

$$\Rightarrow x + yt_1t_2 = c(t_1 + t_2)$$

Equation of tangent in different forms

at (x, y) to the hyperbola $xy = c^2$ is $xy_1 + yx_1 = 2c^2 \text{ or } \frac{x}{x_1} + \frac{y}{y_1} = 2.$

(i)Point form: The equation of tangent (ii) Parametric form: The equation of the tangent at $\left(ct, \frac{c}{t}\right)$ to the hyperbola $xy = c^2$ is $\frac{x}{t} + yt = 2c$ On replacing x_1 by ct and y_1 by $\frac{c}{t}$ on the equation of the tangent at (x_1, y_1) , i.e., $xy_1 + yx_1 = 2c^2$, we get $\frac{x}{t} + yt = 2c$.

Point of intersection of tangents at 't₁' and 't₂' is $\left(\frac{2ct_1t_2}{t_1+t_2}, \frac{2c}{t_1+t_2}\right)$.

Intersection of a Circle and a Rectangular Hyperbola

If a circle $x^2 + y^2 + 2gx + 2fy + k=0$ cuts a rectangular hyperbola $xy = c^2$ in A, B, C and D and the parameters of these four points t, t, t, and t₄ respectively, then:

Equation of the chord joining points t, and t,

- (i) Point form: The equation of the normal at (x_1, y_1) to the hyperbola xy = c^2 is $xx_1 - yy_1 = x_1^2 - y_1^2$.
- (ii) Parametric form: The equation of the normal at $\left(ct,\frac{c}{t}\right)$ to the hyperbola $xy = c^2$ is $xt^3 - yt - ct^4 + c = 0$.

- The equation of the normal at $\left(ct,\frac{c}{t}\right)$ is a fourth degree in t. So, in general,
- If the normal at $\left(ct, \frac{c}{t}\right)$ on the curve $xy = c^2$ meets the curve again in 't' then $t' = -\frac{1}{t^3}$.
- Point of intersection of normals at 't₁' and 't₂'is

$$\left| \frac{c\left\{t_{1}t_{2}\left(t_{1}^{2}+t_{1}t_{2}+t_{2}^{2}\right)-1\right\}}{t_{1}t_{2}\left(t_{1}+t_{2}\right)}, \frac{c\left\{t_{1}^{3}t_{2}^{3}+\left(t_{1}^{2}+t_{1}t_{2}+t_{2}^{2}\right)\right\}}{t_{1}t_{2}\left(t_{1}+t_{2}\right)} \right|.$$

- A triangle has its vertices on a rectangular hyperbola; then the orthocentre of the triangle also lies on the same hyperbola
- All conics passing through the intersection of two rectangular hyperbolas are themselves rectangular hyperbolas.

(ii)
$$\sum t_1 t_2 = \frac{k}{c^2}$$

(iii)
$$\sum t_1 t_2 t_3 = \frac{-2f}{c}$$

(iv)
$$t_1 t_2 t_3 t_4 = 1$$

$$\sum \frac{1}{t_1} = -\frac{2f}{c}$$