Wk 5: Tidying and Transforming Data

Dirk Hartog

2023-10-01

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
library(tidyverse)
## -- Attaching core tidyverse packages ------ tidyverse 2.0.0 --
## v forcats 1.0.0 v readr
                                   2.1.4
## v ggplot2 3.4.3
                    v stringr 1.5.0
## v lubridate 1.9.2
                       v tibble
                                   3.2.1
## v purrr
              1.0.1
                        v tidyr
                                   1.3.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

Assignment – Tidying and Transforming Data

1. Created a .CSV file in Google sheets and uploaded it into a Github repository to be laoded into Rstudio

2a Read the information from the .CSV file into R

```
url <- "https://raw.githubusercontent.com/D-hartog/DATA607/main/airline_status.csv"
airline_info <- read_csv(url)</pre>
```

```
## New names:
## Rows: 5 Columns: 7
## -- Column specification
## ------ Delimiter: "," chr
## (2): ...1, ...2 dbl (5): Los Angeles, Phoenix, San Diego, San Francisco,
## Seattle
## i Use 'spec()' to retrieve the full column specification for this data. i
## Specify the column types or set 'show_col_types = FALSE' to quiet this message.
## * '' -> '...1'
## * '' -> '...2'
glimpse(airline_info)
## Rows: 5
## Columns: 7
## $ ...1
                   <chr> "ALASKA", NA, NA, "AM WEST", NA
## $ ...2
                  <chr> "on_time", "delayed", NA, "on_time", "delayed"
## $ 'Los Angeles' <dbl> 497, 62, NA, 694, 117
                   <dbl> 221, 12, NA, 4840, 415
## $ Phoenix
## $ 'San Diego'
                 <dbl> 212, 20, NA, 383, 65
## $ 'San Francisco' <dbl> 503, 102, NA, 320, 129
## $ Seattle
                   <dbl> 1841, 305, NA, 201, 61
```

2b. Used tidyr and dplyr as needed to tidy the data

2c. Transformed table

```
# pivot the table into a longer format by moving the city columns to value and creating a new count col
airline_info <- airline_info %>%
  pivot_longer(
    cols = Los_Angeles:Seattle,
```

```
names_to = "dest",
    values_to = "count"
)

# Then pivot the status column into two new columns using the respective count values as values
airline_info <- airline_info %>%
    pivot_wider(
    names_from = status,
    values_from = count
)

airline_info
```

```
## # A tibble: 10 x 4
##
     airline dest
                           on_time delayed
##
     <chr> <chr>
                           <dbl>
                                    <dbl>
## 1 ALASKA Los Angeles
                              497
                                       62
## 2 ALASKA Phoenix
                              221
                                       12
## 3 ALASKA San_Diego
                              212
                                       20
## 4 ALASKA San_Francisco
                              503
                                      102
## 5 ALASKA Seattle
                             1841
                                      305
## 6 AM WEST Los_Angeles
                              694
                                      117
## 7 AM WEST Phoenix
                             4840
                                      415
                                      65
## 8 AM WEST San_Diego
                              383
## 9 AM WEST San_Francisco
                              320
                                      129
## 10 AM WEST Seattle
                              201
                                       61
```

3. Perform analysis to compare the arrival delays for the two airlines.

Descriptive statistics of delays

```
airline info %>%
  group_by(airline) %>%
  summarise(Mean = mean(delayed),
            Median = median(delayed),
            IQR = IQR(delayed),
            Maximum = max(delayed),
            Minimum = min(delayed))
## # A tibble: 2 x 6
     airline Mean Median
                            IQR Maximum Minimum
                                          <dbl>
     <chr> <dbl> <dbl> <dbl>
                                  <dbl>
## 1 ALASKA
              100.
                      62
                             82
                                    305
                                             12
## 2 AM WEST 157.
                      117
                             64
                                    415
                                             61
airline_info %>%
  group_by(dest) %>%
  summarise(Average = mean(delayed),
           Maximum = max(delayed),
            Minimum = min(delayed))
```

```
## # A tibble: 5 x 4
##
    dest
                  Average Maximum Minimum
##
     <chr>
                    <dbl>
                             <dbl>
                                     <dbl>
                                        62
## 1 Los_Angeles
                      89.5
                               117
## 2 Phoenix
                     214.
                               415
                                        12
## 3 San Diego
                                        20
                      42.5
                                65
## 4 San Francisco
                                       102
                     116.
                               129
## 5 Seattle
                               305
                                        61
                     183
```

Compare the average proportion of delayed flights between the two airlines

```
# Find the proportion of delays from each airline and the destination
airline_info <- airline_info %>%
  mutate(pct_delayed = (delayed/(delayed + on_time)))
```

It might be interesting to track this overtime to see any trends in the delays overtime

Summarizing the average number of flights and average percent of delays by airline

```
airline_info %>%
  group_by(airline) %>%
  summarize(Avg_delyed_flights = mean(delayed),
            Avg_percent_delayed = mean(pct_delayed))
## # A tibble: 2 x 3
     airline Avg_delyed_flights Avg_percent_delayed
##
     <chr>>
                           <dbl>
                                               <dbl>
## 1 ALASKA
                           100.
                                               0.112
## 2 AM WEST
                           157.
                                               0.178
```

4. Visualizations

Visualization of the distribution of the data via box plot of number of flights on time and the delayed flights

Distribution Of Delays

Bar plot of the counts based on airline and destination

