2.2 Techniques of Integration

The integration technique corresponds to the integral version of the product rule.

In integral form this becomes:

$$\int udv = uv - \int vdu$$

Note that $\frac{dv}{dx} = dv$, $\frac{du}{dx}dx = du$ and the constant is ignored. In this method, we break up the integral into a product of two parts: u and dv, where dv is easily integrated and the integral $\int v du$ on the RHS is simpler than the original integral $\int u dv$.

Example

1. $\int xe^x dx$.

Let $u = x, dv = e^x dx$, then $du = dx, v = e^x$

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C$$

2. Evaluate $\int x^2 \sin x dx$. Let $u = x^2$, $dv = \sin x dx$, then du = 2x dx, $v = -\cos x$,

$$\int x^2 \sin x dx = -x^2 \cos x + 2 \int x \cos x dx$$

We can apply IBP again which yields: $u = x, dv = \cos x dx$ then $du = dx, v = \sin x$.

$$\int x \cos x dx = x \sin x - \int \sin x dx = x \sin x + \cos x + C$$

Hence,

$$\int x^2 \sin x dx = -x^2 \cos x + 2[x \sin x + \cos x + C]$$
$$= -x^2 \cos x + 2x \sin x + 2 \cos x + K, K = 2C$$

to consider two cases: $\tan \theta > 0$, $\tan \theta < 0$.

Remark

For integrands of the form $x^n\{\sin(ax),\cos(ax),e^{ax}\}$ with n a positive number, choose u= $x^n + dv = \{\sin(ax), \cos(ax), e^{ax}\}dx$

Example

1. $\int \ln x dx$. Let $u = \ln x, dv = dx$, then $du = \frac{dx}{x}, v = x$.

$$\ln x dx = x \ln x - \int dx = x \ln x - x + C$$

Remark: For integrals involving $\ln x$, try $u = \ln x$.

2. Evaluate $\int x \tan^{-1} x dx$. Let $u = \tan^{-1} x$, dv = x dx, then $du = \frac{dx}{1+x^2}$, $v = \frac{1}{2}x^2$.

$$\int x \tan^{-1} x dx = \frac{1}{2} x^2 \tan_{-1} x - \frac{1}{2} \int \frac{x^2 dx}{1 + x^2}$$

$$= \frac{1}{2} x^2 \tan^{-1} - \frac{1}{2} \int [1 - \frac{1}{1 + x^2}] dx \text{ by long division}$$

$$= \frac{1}{2} x^2 \tan^{-1} - \frac{1}{2} x + \frac{1}{2} \tan^{-1} x + C$$

3. Evaluate $\int_1^e x \ln x dx$. Let $u = \ln x, dv = x dx$, then $du = \frac{dx}{x}, v = \frac{1}{2}x^2$.

$$\int_{1}^{e} \ln x dx = \frac{1}{2} x^{2} \ln x \Big|_{1}^{e} - \frac{1}{2} \int_{1}^{e} x dx$$
$$= \frac{1}{2} e^{2} - \frac{1}{4} x^{2} \Big|_{1}^{e^{1}} = \frac{1}{4} (e^{2} + 1)$$

4. Evaluate $\int e^{ax} \cos(bx) dx$. Can either pick $u = e^{ax} + dx = \cos(bx) dx$ or $u = \cos(bx) + dv = e^{ax} dx$

Let's use $u = e^{ax}$, $dv = \cos(bx)dx$, then $du = ae^{ax}dx$, $v = \frac{1}{b}\sin(bx)$.

$$\int e^{ax}\cos(bx)dx = \frac{1}{b}e^{ax}\sin(bx) - \frac{a}{b}\int e^{ax}\sin(bx)dx$$

We apply IBP again so: $u = e^{ax}, dv = \sin(bx)dx$, then $du = ae^{ax}dx, v = -\frac{1}{b}\cos(bx)$.

$$\int e^{ax}\cos(bx)dx = \frac{1}{b}e^{ax}\sin(bx) - \frac{a}{b}\left[-\frac{1}{b}e^{ax}\cos(bx) + \frac{a}{b}\int e^{ax}\cos(bx)dx\right]$$

We can combine both these integrals:

$$\rightarrow (1 + \frac{a^2}{b^2} \int e^{ax} \cos(bx) dx = \frac{1}{b} e^{ax} \sin(bx) + \frac{a}{b^2} e^{ax} \cos(bx)$$