

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχανικών Υπολογιστών Εργαστήριο Υπολογιστικών Συστημάτων

Παρουσίαση 1ης Άσκησης:

Ανάπτυξη παράλληλου κώδικα σε πολυπύρηνες αρχιτεκτονικές κοινής μνήμης

Ακ. Έτος 2020-2021

Συστήματα Παράλληλης Επεξεργασίας 9° Εξάμηνο

Conway's Game Of Life

- To Conway's Game of Life είναι παράδειγμα ενός κυψελικού αυτόματου (cellular automaton)
 - Σε ένα ορθογώνιο ταμπλώ, κάθε κελί έχει δύο πιθανές καταστάσεις: μπορεί να είναι *ζωντανό* ή *νεκρό*
 - Σε κάθε χρονικό βήμα/γενιά κάθε κελί εξετάζει τους γείτονές του και ενημερώνει την κατάστασή του:
 - Ένα ζωντανό κελί πεθαίνει από μοναξιά αν έχει λιγότερους από 2 ζωντανούς γείτονες
 - Ένα ζωντανό κελί επιβιώνει αν έχει 2 ή 3 ζωντανούς γείτονες
 - Ένα ζωντανό κελί πεθαίνει από υπερπληθυσμό (ή αγοραφοβία
 αν έχει περισσότερους από 3 ζωντανούς γείτονες
 - Ένα νεκρό κελί με ακριβώς 3 ζωντανούς γείτονες γίνεται ζωντανό λόγω αναπαραγωγής

Conway's Game Of Life

- Εξαρτήσεις από τις τιμές των 8 γειτονικών κελιών, κατά την προηγούμενη χρονική στιγμή
- Ζητούμενα:
 - Ο Παραλληλοποίηση αλγορίθμου στο OpenMP
 - Ο Μέτρηση χρόνου εκτέλεσης σε 1, 2, 4, 6, 8 πυρήνες

Αλγόριθμος Floyd-Warshall (FW)

Εύρεση ελάχιστου μονοπατιού ανάμεσα σε οποιοδήποτε ζεύγος κόμβων ενός κατευθυνόμενου γράφου (τα βάρη των ακμών μπορούν να είναι και αρνητικά).

```
for (k=0; k<N; k++)
  for (i=0; i<N; i++)
  for (j=0; j<N; j++)
     A[i][j] = min(A[i][j], A[i][k]+A[k][j]);</pre>
```

- Για κάθε χρονικό βήμα k υπολογίζει για κάθε ζεύγος κόμβων i-j αν υπάρχει συντομότερο μονοπάτι από τον i προς τον j περνώντας από το κόμβο k
- Ν: αριθμός κόμβων του γράφου
- Α: πίνακας διπλανών κορυφών (αν i,j δεν συνδέονται τότε A[i][j] = ∞ αρχικά)
- Πολυπλοκότητα: Θ(n³)

Παράδειγμα: γράφος 8 κόμβων

A[i][j] = min(A[i][j], A[i][0] + A[0][j])

Παράδειγμα: γράφος 8 κόμβων

A[i][j] = min(A[i][j], A[i][1] + A[1][j])

Παράδειγμα: γράφος 8 κόμβων

A[i][j] = min(A[i][j], A[i][6] + A[6][j])

FW Task graph

k=0

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₀	A ₁₁	A ₁₂	A ₁₃
A ₂₀	A ₂₁	A ₂₂	A ₂₃
A ₃₀	A ₃₁	A ₃₂	A ₃₃

k=1

A ₀₀	A ₀₁	A ₀₂	A ₀₃
A ₁₀	A ₁₁	A ₁₂	A ₁₃
A ₂₀	A ₂₁	A ₂₂	A ₂₃
A ₃₀	A ₃₁	A ₃₂	A ₃₃

Σειριακή και παράλληλη εκτέλεση

- Για μεγάλα N (ο A δεν χωράει στην cache), ο FW είναι memory bound:
 - Ο πίνακας Α πρέπει να μεταφέρεται από την κύρια μνήμη σε κάθε επανάληψη k
 - Οι πράξεις που γίνονται είναι πολύ απλές (σύγκριση / πρόσθεση) σε ακέραιους ή πραγματικούς απλής ακρίβειας
- Παράλληλη εκτέλεση:
 - Ο Τα loops i, j είναι παράλληλα
 - Ο αλγόριθμος δεν κλιμακώνει καλά σε αρχιτεκτονικές κοινής μνήμης

• J.-S. Park, M. Penner, and V. K. Prasanna, "Optimizing Graph Algorithms for Improved Cache Performance," IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2004.

```
FWR (A, B, C)

if (base case)

FWI (A, B, C)

else

FWR (A<sub>11</sub>, B<sub>11</sub>, C<sub>11</sub>);

FWR (A<sub>12</sub>, B<sub>11</sub>, C<sub>12</sub>);

FWR (A<sub>21</sub>, B<sub>21</sub>, C<sub>11</sub>);

FWR (A<sub>22</sub>, B<sub>21</sub>, C<sub>12</sub>);

FWR (A<sub>22</sub>, B<sub>21</sub>, C<sub>12</sub>);

FWR (A<sub>21</sub>, B<sub>21</sub>, C<sub>11</sub>);

FWR (A<sub>12</sub>, B<sub>21</sub>, C<sub>11</sub>);

FWR (A<sub>12</sub>, B<sub>11</sub>, C<sub>12</sub>);

FWR (A<sub>11</sub>, B<sub>11</sub>, C<sub>12</sub>);
```

Καλείται ως: FWR(A, A, A);

```
FWI (A, B, C)
for (k=0; k<N; k++)
  for (i=0; i<N; i++)
    for (j=0; j<N; j++)
        A[i][j] = min(A[i][j], B[i][k]+C[k][j]);</pre>
```



```
FWR (A, B, C)
   if (base case)
       FWI (A, B, C)
   else
       FWR (A_{\theta\theta}, B_{\theta\theta}, C_{\theta\theta});
      FWR (A_{01}, B_{00}, C_{01});
      FWR (A_{10}, B_{10}, C_{00});
                                                   3
      FWR (A_{11}, B_{10}, C_{01});
      FWR (A_{11}, B_{10}, C_{01});
                                                   4
      FWR (A_{10}, B_{10}, C_{00});
                                                   5
      FWR (A_{01}, B_{00}, C_{01});
                                                   6
      FWR (A_{00}, B_{00}, C_{00});
```

Παραλληλία

Εναλλακτικές υλοποιήσεις: tiled

1	2	2	2
2	3	3	3
2	3	3	3
2	3	3	3

6	5	6	6
5	4	5	5
6	5	6	6
6	5	6	6

9	9	8	9
9	9	8	9
8	8	7	8
9	9	8	9

12	12	12	11
12	12	12	11
12	12	12	11
11	11	11	10

Περιβάλλον εκτέλεσης

- sandman: 4 x Intel Xeon E5-4620 (Sandy Bridge)
 - Ο Συνολικά 32 πυρήνες (και 64 threads)

Οδηγίες

- Για χρήση του sandman:
 - \$ qsub -q serial -l nodes=sandman:ppn=64 <script>
- ΠΡΟΣΟΧΗ: Χρησιμοποιείτε τα μηχανήματα της ουράς parlab για ανάπτυξη προγραμμάτων/έλεγχο ορθής λειτουργίας/εκσφαλμάτωση
- Μπορείτε να χρησιμοποιήσετε OpenMP ή TBBs για την εκπόνηση της άσκησης
- Μπορείτε να χρησιμοποιείτε τα μηχανήματα της ουράς parlab για την ανάπτυξη του παράλληλου κώδικα
- Θα βρείτε τον κώδικα της άσκησης στον scirouter στο path:
 - /home/parallel/pps/2020-2021/a1/FW-serial
- Θα βρείτε παραδείγματα και οδηγίες μεταγλώττισης/εκτέλεσης για τα TBBs στον scirouter στο path:
 - /home/parallel/pps/2020-2021/a1/tbb-workspace

