Full Name:	SOLUTIONS

MATHEMATICS METHODS

Test 1 – Trigonometry
Chapters 11, 12 and 13

Semester 1 2019

Section One - Calculator Free

Time allowed for this section

Working time for this section: 20 minutes
Marks available: 22 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items: Nil

Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

1. (2 marks)

Convert the following to radians, giving exact values.

a)

b) 300°

$$300 \times \frac{11}{180} = \frac{511}{3} /$$

2. (2 marks)

Convert the following radians to degrees.

a)
$$\frac{\pi}{6}$$
 $\frac{\pi}{11} \times \frac{180}{11} = 30^{\circ}$

b)
$$\frac{5\pi}{4}$$
 $\frac{5\pi}{4} \times \frac{180}{11} = 225^{\circ}$

3. (3 marks)

State which quadrant each of the following angles are in.

c) $-\frac{13\pi}{4}$ 2 nd

4. (4 marks)

Use the unit circle shown below to determine each of the following, giving your answers in terms of either a, b, c or d.

a) sin 23°

b) cos 51°

c) cos 157°

d) sin 203°

5. (2 marks)

For the line 3x+3y=12 determine the angle of inclination the line makes with the x-axis.

Argle of inclination is 1350

Q (c, d)

23⁰

P (a, b)

 39^{0}

6. (9 marks)

In the circle of radius 5 cm with centre 0 drawn below, $\angle OAB = 30^{\circ}$

a) Find the exact dimensions of triangle OAB. Show your reasoning for each dimension. [4]

В

[3]

$$OA = OB = 5$$
 (radii) V
 $LA = LB = 30^{\circ}$ (isoceles)
 $LO = 120^{\circ}$ (agle sum Δ)
 $AB^2 = 5^2 + 5^2 - 2 \times 5 \times 5 \times \cos 120$

b) Find the exact area of the minor segment formed by the chord AB.

[2]

c) Find the exact perimeter of the minor segment formed by the chord AB.

$$Arc = \frac{120}{360} \times 2 \times T \times 5$$

$$= \frac{1000}{3}$$

End of Section One

Full Name: SOLUTIONS

MATHEMATICS METHODS

Test 1 – Trigonometry Chapters 11, 12 and 13

Semester 1 2019

Section Two - Calculator Assumed

Time allowed for this section

Working time for this section: 30 minutes
Marks available: 31 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items:

pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items:

drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators satisfying the conditions set by the Curriculum

Council for this course.

Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

1. (6 marks)

Evaluate x correct to one decimal place.

a) 4.7 m 121° 3.4 m [3] $7 = 4.7^{2} + 3.4^{2} - 2(4-7)(3.4) \cos 121 \sqrt{2}$ 7 = 7.1 m

b) $\frac{23^{\circ}}{12.5 \text{ cm}} = \frac{12.5}{5 \cdot 110}$ $\chi = 5.2 \text{ cm}$

2. (3 marks)

Calculate the smallest possible length of AB in the triangle shown below.

(The triangle is not drawn to scale).

 $38.8^{2} = 62.2^{2} + x^{2} - 2x(62.2) \cos 33.8$ $0 = x^{2} - 103.37x + 2363.4$ x = 34.13 or x = 69.24 Smallest length of AB is 34.13cm /

* must show justification.

3. (9 marks)

Two circles, one of radius 8cm and the other of radius 18cm, with a common tangent, touch each other as shown in the diagram.

a) Calculate the perimeter of the shaded region.

[5]

[4]

$$\cos A = \frac{10}{26}$$
 $\sin B = \frac{10}{26}$
 $A = 1.176$ $B = 0.395$

$$arc_1 = 18 \times 1.176$$

= 21.168 \land P = $24 + 21.168 + 15.7725$
= 15.725 \land = 60.893 \land

b) Calculate the area of the shaded region.

$$A_{trap} = (18+8) \times 24 \div 2$$

= 312 /
Sector A = 0.5 × 18² × 1.176
= 190.517 /
Sector B = 0.5 × 8³ × 1.966
= 62.912 / Ashaded = 58.576 cm²

4. (3 marks)

In the diagram below (not to scale), the line AC intersects the line BD at O. The angle AOB=35°, and the lengths OB=14cm, OD=26cm and AC=30cm. If the area of triangle ODC is twice that of triangle OAB, determine the length OA.

5. (4 marks)

In the quadrilateral ABCD, AB = 6cm, BC = 7cm, AD = 12cm, and ABC = 120 $^{\circ}$, angle ACD = 70 $^{\circ}$. Calculate the size of angle ADC. Give your answer to 2 decimals.

6. (3 marks)

The diagram shows a sector of a circle with centre O. The radius of the circle is 8 cm. PRS is an arc of the circle. PS is a chord of the circle. Angle POS = $\frac{2\pi}{9}$ radians

Calculate the area of the shaded segment. Give your answer correct to 3 significant figures.

$$A = \frac{1}{2} \Gamma^{2} \left(\Theta - \sin \Theta \right) /$$

$$= \frac{1}{2} \times 8^{2} \times \left(\frac{2\pi}{9} - \sin \frac{2\pi}{9} \right) /$$

$$= 1.77 \text{ cm}^{2}$$

7. (3 marks)

The diagram shows a sector of a circle with centre O. The radius of the circle is 6 cm and angle AOB = 120°. Find the arc length AB in terms of π .

$$Arc = r\theta$$

$$= 6 \times 2\pi \sqrt{3}$$

$$= 4\pi \sqrt{3}$$