Chapter 3

Data Link Layer

Data Link Layer Design Issues

- Services Provided to the Network Layer
- Framing
- Error Control
- Flow Control

Functions of the Data Link Layer

- Provide service interface to the network layer
- Dealing with transmission errors
- Regulating data flow
 - Slow receivers not swamped by fast senders

Relationship between packets and frames.

Service Provided to the Network Layer

- Transmission of network layer packets to destination
- Type of data transmission
 - No Ack No Connection
 - No reliability
 - Ack but No Connection
 - Reliable but duplication of packets
 - Ack and Connection
 - Reliable data transmission and the no duplication
 - Three phases of data transmission

- (a) Virtual communication.
- (b) Actual communication.

Placement of the data link protocol.

Framing

- Frame is the Basic unit of data streams
- Packets are broken into frames
- Frame size depends on the layer below DLL
- Checksum is computed and appended in the frame
- Generally used
 - Hybrid of Character count plus any one

End of Frame Detection

- Character count
 - Count can be garbled by a transmission error
- Starting and ending character with character stuffing
 - DLE STX for starting DLE ETX for ending
 - This sequences might be in floating point data
 - Character stuffing by two DLE for an actual DLE
- Starting and Ending flags, with bit stuffing
 - 01111110
 - When five 1s a 0 is stuffed
- Physical layer coding violations
 - Applicable when physical medium contains some redundancy

A character stream. (a) Without errors. (b) With one error.

- (a) A frame delimited by flag bytes.
- (b) Four examples of byte sequences before and after stuffing.

- (a) 011011111111111111110010
- (b) 01101111101111101010 Stuffed bits
- (c) 011011111111111111110010

Bit stuffing

- (a) The original data.
- (b) The data as they appear on the line.
- (c) The data as they are stored in receiver's memory after destuffing.

Error Control

- Ack is the solution
- A frame is sent and sender waits for Ack
- If Ack is not back within the deadline
 - Retransmission occurs
 - Not an infinite number of transmission
 - Detection of Receiver problem
- Sequence numbers for preventing duplications

Flow Control

- Sender is faster than Receiver
- Flow control to throttle the sender
- Sender must know whether the receiver is ready
- May be some receiver window of particular size

Error Detection and Correction

Hopefully Already Studied in other Courses

Elementary Data Link Protocols

- DLL accepts a packet from the network layer
- Frames are created
 - By adding header and trailer
 - Header : frame_kind, seq_nr, ack
- Frame is sent to the destination by calling to_physical_layer()

Elementary Data Link Protocols

- wait_for_event() is waiting in the receiver of DLL for the frames
- from_physical_layer() extracts the frame
- Checksum is computed
- The frame is sent to the Network layer of receiver
- An Ack is sent to the sender of DLL

Elementary Data Link Protocols

- Sender waits for Ack from receiver
- Retransmits the frame
 - If time out occurs
- The Seq number
 - 0 to MAX_SEQ (inclusive)
 - Incremented after each frame transmission

Sliding Window Protocols

- Features
 - Piggybacking
 - Sequence Number for each frame
 - Windows for sender and receiver
- Examples
 - A One-Bit Sliding Window Protocol
 - A Protocol Using Go Back N
 - A Protocol Using Selective Repeat

Piggybacking

- ACK frames consume lots of BW
- ACK frame gets a free ride on the data frames
- Takes time if receiver has no data frames
 - Causes lots of retransmission
 - Should not wait for free ride

Windows

- Seq number 0 to 2ⁿ-1
- If n=1 then two Seq Number 0 and 1
 - Called Stop and Wait Protocol
- Sending Window
 - The frames are being sent
 - Needs buffer to hold frames
- Receiving Window
 - permitted frames to accept

Example of Sliding Window Protocols

A sliding window of size 1, with a 3-bit sequence number.

- (a) Initially.
- (b) After the first frame has been sent.
- (c) After the first frame has been received.
- (d) After the first acknowledgement has been received.

Why Window?

- Prevents Duplication of packets in the network Layer
- ACK can be destroyed
- Frames will be retransmitted
- The Receiver must discard those duplication

One Bit Sliding Window Protocol

- Stop and Wait Protocol
- Sender Window
 - Next frame to send (A variable)
 - Initially 0
- Receiver Window
 - Frame expected (A variable)
 - Initially 0

One Bit Sliding Window Protocol

- Seq = Next_frame_to_send
- *Ack = Inverse* (*frame_expected*), I.e., previous received frame without error
- incoming frame is accepted if
 - $Seq = = frame_expected$
 - frame_expected is incremented
- New Frame is Sent if
 - $Ack = Next_frame_to_send$
 - Next_frame_to_send is incremented
 - New frame is brought from Network Layer

Scenario of One Bit Sliding Window Protocol

- When Sender and Receiver starts simultaneously
 - Initially seq=0 and ack=1
- Peculiar situation if both side sends initial packet
 - Duplication of each frame
 - Does not make any disaster

Scenario One-Bit Sliding Window Protocol (2)

Two scenarios for protocol (a) Normal case. (b) Abnormal case. The notation is (seq, ack, packet number). An asterisk indicates where a network layer accepts a packet.

Larger Window Size

- One bit Sliding Window is costly
 - When large propagation delay
 - Sender window should be bigger
- Pipelining technology should be used
 - 50% efficiency can be achieved
 - 50% loss for Acks
 - Two Approaches when error occurs

Go Back n

- Consecutive frames are discarded
- Timeout occurs
- Retransmission of all the frames from the lost frame
- Channel bandwidth is not utilized

A Protocol Using Go Back N

Pipelining and error recovery. Effect on an error when

- (a) Receiver's window size is 1.
- (b) Receiver's window size is large.

Selective Repeat

- Only the corrupted frame is discarded
- Good frames are accepted and buffered but not sent to network layer
- Only the last frame accepted by Net Layer is Acknowledged
- Timeout and retransmission of the faulty packet only

Scenario of A Sliding Window Protocol Using Selective Repeat

- (a) Initial situation with a window size seven.
- (b) After seven frames sent and received, but not acknowledged.
- (c) Initial situation with a window size of four.
- (d) After four frames sent and received, but not acknowledged.

Problem in Selective Repeat

- Maximum window size: MAX_SEQ
- Seq Numbers : 0 to MAX_SEQ
- A Faulty Scenario
 - Sender send 0 to 7
 - Gets all Acks, Again sends 0 7
 - Gets an Ack of 7
 - Which 7 is it? Might be for the first batch if all frames are lost
- Should be from 0 to 6

More Problems

- Problems for Non Sequential Receipt of frames
 - Sender Sends 0 to 6
 - Receiver gets everything
 - Receiver is ready to get 7,0....5
 - All acks lost
 - Retransmission of 0 frame of first batch
 - Will be accepted as 0 frame of 2nd batch

Solutions

- Should not be any overlapping
- Window Size (MAX_SEQ+1)/2
- Windows are
 - -0 to (MAX_SEQ+1)/2-1
 - (MAX_SEQ+1)/2 to MAX_SEQ

Negative Ack

- Notifies the incorrect frames
- Retransmission if NO_ACK is received
- Saves Channel Bandwidth
 - As the sender does not wait for retransmission

Example Data Link Protocols

- HDLC High-Level Data Link Control
- The Data Link Layer in the Internet
 –PPP

High-Level Data Link Control

Frame format for bit-oriented protocols.

Bits	8	8	8	≥ 0 16		8	
	01111110	Address	Control	Data	Checksum	01111110	

Fields of HDLC protocol

- The frame is started and delimited by 011111110.
 - Bit stuffing is used if the sequence is present in the payload
- Address field is not desired as it is a protocol between two single connected entities
 - Required when several terminals are connected with the server
- Control field
 - Seq number, type and ack
- Data field may contain any number of bytes
 - Large data means degraded performance of checksum (CRC coding)

Control Frame of HDLC

Control field of

- (a) An information frame.
- (b) A supervisory frame.
- (c) An unnumbered frame.

Details of Control Fields

- Sequence number is 3 bit
- Next field is the acknowledgement
 - May be piggybacked or not
 - May be the last frame number received
 - Or, the frame expected
- P/F bit is for polling the other party for sending information
 - The computer is polling the terminal by setting P/F as P
 - The terminal will send back the required data
 - The terminal data frame will be with F set.
 - Other frames will contain P/F set as P.

Supervisory frame

- Use of P/F bit when the sender requires Ack
 - Receiver will not wait for reverse traffic
 - The receiver will send a supervisory frame
- 4 Types of Supervisory frame
 - Type 0, Ack frame without any data, Called Receive Ready
 - Type 1, negative Ack for transmission error
 - Type 2, Receive not ready, Acks all but not including Next.
 - Asks not to send any more frame
 - Type 3, Selective reject
 - Some frames have been discarded from buffer for sudden shortage of buffer

Unnumbered Frames

- Used for Control purpose
- Can carry data for unreliable connections
- 5 bits available, but not all are used
- Some of the examples are as follows
 - For allowing Disconnection
 - The notification for being live
 - Notification of frame rejection for unknown format
- Control frames can be lost
 - Ack is essential
 - No buffering

Motivation to Point to Point lines in the Internet

- Sometime the routers are interconnected by LAN, not PP
- Connection to the outside world
 - Through point to point leased lines
 - Communication subnet is built over the PP leased lines
- Dialing up the ISP for the Internet
 - Through modem

The Data Link Layer in the Internet

A home personal computer acting as an internet host.

Point to Point Protocol (PPP)

- Three features
 - Framing method
 - Link control protocol (LCP) for bringing lines
 - up
 - testing
 - Negotiating
 - Down
 - Way to negotiate network layer option
 - NCP (Network Control Protocol)
- The last two are the higher layer functionality

PPP scenario

- PC calls the providers router via modem
- Provider's modem answered and physical connection established
 - Exchanges of LCP packets
 - Selecting PPP parameters
- Now NCP packets are exchanged for setting IP addresses
 - The provider might have pool of IP adresses
- NCP tears down the connection and frees up IP address
- LCP shuts down the DLL connection
- Computer tells the modem to hang up.

PPP farme format

The PPP full frame format for unnumbered mode operation.

Bytes	1	1	1	1 or 2	Variable	2 or 4	1
	Flag 01111110	Address 11111111	Control 00000011	Protocol	Payload	Checksum	Flag 01111110
	01111110	11111111	00000011		<u> </u>		011111

PPP frame details

- Little different from HDLC
 - Not bit oriented, character oriented
 - Byte stuffing if the starting and ending is in the data
 - Modem can send integral number of bytes
 - Fractional numbers are not allowed
- Address is always 1111111, this is for compatibility with HDLC
 - Indicates all stations will accept the data

PPP frame details (Cont.)

- Control field is the same as HDLC
 - But by default it is unnumbered, no reliable communication
 - For reliable transmission the same seq number and ack is used
- Protocol field specifies the type of payload
 - LCP, NCP, IP, IPX etc
- The length of Protocol and checksum can be negotiated down

PPP – Point to Point Protocol (2)

A simplified phase diagram for bring a line up and down.