Solutions

1. Sphere at fixed potential:

(a) Since the potential on the surface is azimuthally symmetric, we can assume that the solution for the potential will also be azimuthally symmetric. Thus, we have

$$\phi(r,\theta,\varphi) = \sum_{l} \left(A_l r^l + B_l r^{-(l+1)} \right) P_l(\cos\theta) . \tag{1}$$

As $r \to \infty$, we must have $\phi \to 0$, so $A_l = 0$ for all l. To find the B_l , we use

$$\phi_0 \sin^2 \theta = \sum_l B_l R^{-(l+1)} P_l(\cos \theta) . \tag{2}$$

We could take the integral over $\cos \theta$ of both sides of this equation with the Legendre Polynomials, $P_l(\cos \theta)$; however, it is easier to note that

$$\phi_0 \sin^2 \theta = \phi_0 \left[1 - \cos^2 \theta \right] = \phi_0 \left[\frac{2}{3} - \frac{2}{3} \left(\frac{3}{2} \cos^2 \theta - \frac{1}{2} \right) \right]$$

$$= \frac{2\phi_0}{3} P_0(\cos \theta) - \frac{2\phi_0}{3} P_2(\cos \theta) , \qquad (3)$$

where $P_0(\cos \theta) = 1$ and $P_2(\cos \theta) = (3\cos^2 \theta - 1)/2$. Thus, we obtain $B_l = 0$ for $l \neq 0, 2$, and

$$B_0 = \frac{2\phi_0 R}{3} \tag{4}$$

$$B_2 = -\frac{2\phi_0 R^3}{3} \,, \tag{5}$$

and the electrostatic potential outside the sphere is

$$\phi(r,\theta,\varphi) = \frac{2\phi_0}{3} \left(\frac{R}{r} - \frac{R^3}{r^3} P_2(\cos\theta) \right)$$
 (6)

(b) The electric field is obtained from

$$\vec{E} = -\vec{\nabla}\phi = -\frac{\partial\phi}{\partial r}\hat{r} - \frac{1}{r}\frac{\partial\phi}{\partial\theta}\hat{\theta} - \frac{1}{r\sin\theta}\frac{\partial\phi}{\partial\varphi}\hat{\varphi}$$

$$= \frac{2\phi_0}{3}\left(\frac{R}{r^2} - \frac{3R^3}{r^4}P_2(\cos\theta)\right)\hat{r} - \phi_0\sin(2\theta)\frac{R^3}{r^4}\hat{\theta}.$$
(7)

(c) Our solution is a special case of a spherical multipole expansion with m=0 due to the azimuthal symmetry:

$$\phi = \frac{1}{4\pi\epsilon_0} \sum_{l=0}^{\infty} \frac{4\pi}{2l+1} \frac{q_{l0}}{r^{l+1}} Y_{l0}(\theta, \varphi)$$
 (8)

$$= \frac{1}{4\pi\epsilon_0} \sum_{l=0}^{\infty} \sqrt{\frac{4\pi}{2l+1}} \frac{q_{l0}}{r^{l+1}} P_l(\cos\theta)$$
 (9)

(where we used $Y_{l0}(\theta, \varphi) = P_l(\cos \theta)\sqrt{2l+1}/\sqrt{4\pi}$). We see that the potential is the sum of a monopole and a quadrupole potential, while moments for the dipole and multipoles higher than the quadrupole vanish. We have

$$q_{00} = \sqrt{4\pi}\epsilon_0 2\phi_0 R/3$$
 $\Rightarrow Q_{\text{tot}} = q_{00}\sqrt{4\pi} = (4\pi\epsilon_0) 2\phi_0 R/3,$ (10)

$$q_{20} = -\sqrt{4\pi}\epsilon_0\sqrt{5} \,2\phi_0 R^3/3, \quad \Rightarrow Q_{zz} = q_{20} \,2\sqrt{4\pi}/\sqrt{5} = -(4\pi\epsilon_0) \,4\phi_0 R^3/3$$
(11)

$$q_{lm} = 0 \text{ else}$$
 $\Rightarrow Q_{xx} = Q_{yy} = -Q_{zz}/2,$ (12)

$$Q_{ij} = 0 \text{ for } i \neq j \tag{13}$$

In these equation, we have also translated the spherical results to Cartesian multipoles in order to make a connection to the previously discussed Cartesian expansion. In the Cartesian formulation, we have for the monopole and the quadrupole contributions

$$E_k = \frac{1}{4\pi\epsilon_0} \left(\frac{Q_{\text{tot}}\hat{r}_k}{r^2} + \frac{Q_{ij}(\delta_{ik}\hat{r}_j + \delta_{jk}\hat{r}_i - 5(\hat{r}_i\hat{r}_j)\hat{r}_k}{2!\,r^4} \right)$$
 (14)

$$= \frac{1}{4\pi\epsilon_0} \left(\frac{Q_{\text{tot}}\hat{r}_k}{r^2} + \frac{2Q_{kk}\hat{r}_k - 5\hat{r}_k Q_{xx}(1 - 3\hat{r}_z^2)}{2r^4} \right)$$
 (15)

and therefore

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left(\frac{Q_{\text{tot}}\hat{r}}{r^2} + \frac{Q_{xx}(\hat{r} - 3\hat{r}_z\hat{z} + 5\hat{r}P_2(\cos\theta))}{r^4} \right)$$
(16)

$$= \frac{1}{4\pi\epsilon_0} \left(\frac{Q_{\text{tot}}\hat{r}}{r^2} + \frac{3Q_{xx}(\hat{r}P_2(\cos\theta) + \sin\theta\cos\theta\,\hat{\theta})}{r^4} \right) \tag{17}$$

$$= \frac{2\phi_0}{3} \left(\frac{R}{r^2} - \frac{3R^3}{r^4} P_2(\cos \theta) \right) \hat{r} - \phi_0 \sin(2\theta) \frac{R^3}{r^4} \hat{\theta} . \tag{18}$$

in agreement with the result above. In the derivation $\hat{z} = \cos\theta \,\hat{r} - \sin\theta \,\hat{\theta}$ was used.

2. Spherical multipole moments of discrete charges:

- (a) Let us consider two different charge distributions:
 - i. A charge -q at (-a/2, a/2, 0), a charge +q at (a/2, a/2, 0), a charge +q at (-a/2, -a/2, 0), a charge -q at (a/2, -a/2, 0).
 - ii. A charge +q at (-a/2, a/2, 0), a charge +q at (a/2, a/2, 0), a charge -q at (-a/2, -a/2, 0), a charge -q at (a/2, -a/2, 0).

The problem asked only for the multipole expansion of charge distribution (i), but it is interesting to compare it to the case (ii). The spherical multipole moments are given by

$$q_{lm} = \int d^3r' Y_{lm}^*(\varphi, \theta) r'^l \rho(\vec{r}')$$
(19)

$$= \int d^3r' \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(\cos\theta) e^{-im\varphi} r'^l \rho(\vec{r}')$$
 (20)

For the first set of charges we have

$$\rho^{(i)}(\vec{r}) = q[-\delta(x - (-a/2))\,\delta(y - a/2)\delta(z) + \delta(x - a/2)\delta(y - a/2)\delta(z) + \delta(x - (-a/2))\delta(y - (-a/2))\,\delta(z) - \delta(x - a/2)\delta(y - (-a/2))\delta(z)]$$
(21)

and for the second set of charges

$$\rho^{(ii)}(\vec{r}) = q[+\delta(x - (-a/2))\,\delta(y - a/2)\delta(z) + \delta(x - a/2)\delta(y - a/2)\delta(z) - \delta(x - (-a/2))\delta(y - (-a/2))\,\delta(z) - \delta(x - a/2)\delta(y - (-a/2))\delta(z)]$$
(22)

We therefore have

$$q_{lm}^{(i)} = q \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(0) (a/\sqrt{2})^l$$

$$\times (-e^{-im3\pi/4} + e^{-im\pi/4} + e^{im3\pi/4} - e^{im\pi/4})$$

$$= \begin{cases} q \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(0) (a/\sqrt{2})^l 4i^{m+1} \sin\left(\frac{m\pi}{4}\right) & \text{if } l \text{ and } m \text{ even} \\ 0 & \text{if } l \text{ or } m \text{ odd} \end{cases}$$
(23)

and

$$q_{lm}^{(ii)} = q \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(0) (a/\sqrt{2})^l \times (e^{-im3\pi/4} + e^{-im\pi/4} - e^{im3\pi/4} - e^{im\pi/4})$$
(25)

$$= \begin{cases} 0 & \text{if } l \text{ or } m \text{ even} \\ q\sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(0)(a/\sqrt{2})^l(-4)i\sin\left(\frac{m\pi}{4}\right) & \text{if } l \text{ and } m \text{ odd} \end{cases}$$
(26)

where the integration (over Cartesian coordinates) collapsed due to the delta functions. Here we used that $P_l^m(0) = 0$ if l+m odd. For the first couple of l we obtain

$$q_{0,0}^{(i)} = 0, (27)$$

$$q_{1,m}^{(i)} = (0,0,0),$$
 (28)

$$q_{2,m}^{(i)} = \left(iqa^2\sqrt{\frac{15}{8\pi}}, 0, 0, 0, -iqa^2\sqrt{\frac{15}{8\pi}}\right),\tag{29}$$

$$q_{3,m}^{(i)} = (0,0,0,0,0,0,0), \tag{30}$$

$$q_{4,m}^{(i)} = \left(0, 0, -iqa^4\sqrt{\frac{45}{128\pi}}, 0, 0, 0, iqa^4\sqrt{\frac{45}{128\pi}}, 0, 0\right)$$
(31)

and

$$q_{0,0}^{(ii)} = 0, (32)$$

$$q_{1,m}^{(ii)} = \left(iqa\sqrt{\frac{3}{2\pi}}, 0, iqa\sqrt{\frac{3}{2\pi}}\right),$$
 (33)

$$q_{2,m}^{(ii)} = (0,0,0,0,0), \tag{34}$$

$$q_{3,m}^{(ii)} = \left(iqa^3\sqrt{\frac{35}{64\pi}}, 0, -iqa^3\sqrt{\frac{21}{64\pi}}, 0, -iqa^3\sqrt{\frac{21}{64\pi}}, 0, iqa^3\sqrt{\frac{35}{64\pi}}\right). \tag{35}$$

(b) The leading term of charges (i) is the quadrupole moment. In Cartesian coordinates we obtain from the relations discussed in the lecture and the results for $q_{2,m}$ above

$$Q_{12} = Q_{21} = 3a^2q, \quad Q_{ij} = 0 \text{ else.}$$
 (36)

This reproduces the usual Cartesian quadrupole moments.

(c) We have $p_x = p_z = 0$ and $p_y = 2aq$ and thus

$$\phi^{(ii)} = \frac{1}{4\pi\epsilon_0} \frac{2aqy}{r^3} + \dots \tag{37}$$

We want to plot the exact potential (obtained from the Coulomb potentials of the point charges) and the multipole expansion up to some maximal value of l. For higher l it is convenient to use a computer algebra system which has the spherical harmonics built in. In this way we obtain for x = z = 0 along the positive y axis the following graphs of approximations up to different l:

It is clearly visible that adding more terms improves the approximation at larger distances. One can also see clear hints that the series does not converge inside the charge distribution.

3. Spherical multipole moments of a charged ring:

(a) The multipole moments are

$$q_{lm} = \int s \, ds \, d\varphi \, dz \, \rho(\vec{r}) Y_{lm}^*(\theta, \varphi) \sqrt{s^2 + z^2}^l$$
(38)

$$= R^{l+1} \lambda_0 \left(\int_0^{\pi} d\varphi \, Y_{lm}^*(\pi/2, \varphi) - \int_{\pi}^{2\pi} d\varphi \, Y_{lm}^*(\pi/2, \varphi) \right)$$
 (39)

$$=2R^{l+1}\lambda_0 \int_0^{\pi} d\varphi \, Y_{lm}^*(\pi/2,\varphi) \,. \tag{40}$$

The charge is clearly zero and for the dipole moments we obtain

$$q_{1m} = 2R^2 \lambda_0(i\sqrt{3/(2\pi)}, 0, i\sqrt{3/(2\pi)}). \tag{41}$$

- (b) If m is even, the integration of $e^{-im\varphi}$ over $[0,\pi]$ leads to a zero multipole moment. If m is odd and l is even $P_l^m(0)=0$ and we have a zero multipole moment. In other words, only if m and l is odd, there can be multipole moments. There is no reason that all of the higher moments beyond the dipole should vanish and indeed a quick explicit check with a computer algebra system reveals that e.g. l=3 has non-zero contribution.
- (c) For the alternative charge density we find

$$q_{1m} = R^2 \lambda_0(i\sqrt{3/(8\pi)}, 0, i\sqrt{3/(8\pi)}). \tag{42}$$