Рк1: типы задач, а также особенности их решения и формализации

Тип задач 1.

Общее

Для них характерен у-доверительный интервал (вероятность).

Таблица:

Как решать:

- 1. Пусть X случайная величина, принимающая значения, равные ...
- 2. Записать формулу центральной статистики (выбираем с учетом того, что хотим найти)
- 3. Ищем Альфу = (1 y) / 2 = ...
- 4. Рисуем график (Стьюдент и Нормальное распределение по центру, X-распределение справа) Ось х и ось fN
- 5. Пишем Р{квантиль < статистика < квантиль} В случае статистики (2n)будет <=
- 6. Выводим Р{одно-сюда < то, что нужно найти < другое-туда} = у
- 7. Находим одно-сюда, другое-туда

Виды графиков:

Конкретные примеры

Задача 3. Для определения поражающей способности x зенитно-ракетного комплекса было проведено n=10 испытаний, в результате которых получено, что $\bar{x}_n=0,85$, $\sum_{k=1}^n (x_k-\bar{x}_n)^2=22,5\cdot 10^{-3}$. Для $\gamma=0,9$ построить γ -доверительные интервалы для среднего значения и среднеквадратического отклонения рассматриваемой вероятности. Распределение контролируемого признака считать нормальным.

Двухэтапное решение: сначала ищем m, затем б.

Задача 3. Для определения кучности стрельбы из некоторого оружия было проведено n=50 выстрелов по плоской мишени. Построить γ -доверительный интервал для среднеквадратичного отклонения расстояния от места попадания пули до центра мишени, если $\bar{x}=4$ см. Принять $\gamma=0,9$, распределение контролируемого признака считать экспоненциальным.

от номинального не более чем на 2г.

3. Для определения глубины озера в данном месте было проведено n=10 измерений с пспользованием эхолота, в результате чего получево $\bar{x}_n = 7.12$ м. Принимая распределение контролируемого признака нормальным, построить доверительный интервал уровня $\gamma = 0.9$ для глубины озера в данном месте, если известно, что среднеквадратичное отклонение показаний $_{0 \times 0.70707}$ составляет $\sigma = 10$ см.

Немного длиннее формализация:

Е - сл вел, принимающая значения, равные ошибке измерения эхолота

 $E \sim N (0, 6^2), где 6 = 0.1$

X = a + E - сл вел, принимающая значения, равные показателям эхолота

 $X \sim N \text{ (mx, бx}^2)$, где G = 0.1, где M = M[a+E] = a, $G = D[a+E] = G^2$

гервала для скалярного параметра.

Подсказка: когда вы видите фразу про ошибку, пытайтесь сделать так, чтобы основная формулировка в итоге совпадала с параметрами ошибки или была к ним близка

15 лет составляет 61.1%. Какое число дутей указанной группы с такой анома- Для определения давления, создаваемого ядерным изрыком определенной мощности на ОССИ. расстояния R от эпицентра, в эпоху, предпествовавшую появлению дамповых ЭВМ в СССР. советские физики использовали следующий прием. На окружности радиуса R, описанной около эпицентра взрыва, расставлялись кирпичи, а после взрыва по дальности их отдета рассчитывалось искомое давление. Сколько нужно взять кирпичей для эксперимента, чтобы с вероятностью $\gamma = 0.95$ вычисленное среднее расстояние отлета отличалось от теоретического не более, чем на 0.1σ , если σ — среднеквадратичное отклонение этого расстояния? Распределение контролируемого признака считать нормальным.

- 3. Для определения напряжения в электросети поселка N было проведено n=50 измерений, в результате которых получено $\bar{x}_n = 192 \text{ B}, S^2(\bar{x}_n) = 400 \text{ B}^2$. Считая распределение контролируемого признака нормальным, построить доверительный интервал уровня $\gamma = 0.9$ для среднего значения напряжения в сети.
- Средняя насыпная плотность картофеля при температуре 20°С составляет 670 кг/м³ при среднеквадратичном отклонении $4\ \mathrm{kr/m^3}$, а объем багажника седана Volkswagen Polo (модельного ряда 2014 года) равен 460 л. В каких пределах с вероятностью 0.9 заключена масса картофеля, который можно загрузить в 100 таких седанов?

Xштриx = V * p

Далее по формуле:

Тип задач 2.

Общее

1. Записать теорему Муавра-Лапласа (в скобках успех конкретной задачи)

Конкретные примеры

Задача 3. Веровтность того, что случайно выбранный студент факультета сдаст сессию без троек", равна 0,1. Оценить вероятность того, что среди n=100 наудачу выбранных студентов того факультета доля хорошистов будет заключена в интервале (0,05;0,2).

Нужно найти промежутки k1 и k2. 100x0,05, 100x0,2 = 5, 20

3. Вероятность p того, что при одном выстреле боец попадет в "десятку", равна 0.7. Оценить вероятность того, что в серии из n=30 выстрелов частота попадания этим бойцом в "десятку" отклонится от p не более чем на $\varepsilon=0.15$.

Х - ...количеству детей с зубочелюстными аномалиями

X/n - ...частоте зубочелюстных аномалий у детей среди n пациентов

Hужно найти MX = np и DX = npq.

Базовый Муавро-Лаплас

Выразить частоту = x/n

Убираем модуль, приводим к двухстороннему виду, находим значения

Тип задач 3.

Обшее

! Очень часто мелькают фразы про "ошибку" в условии. Фразы про ошибку характерны для задач первых трех типов, но здесь встречается наиболее часто.

! В этом типе задач левая часть вероятности почти всегда <= правой части. Если это не так, то необходимо написать следующее:

X - сл вел., принимающая значения, равное среднему арифметическому независимых одинаково распределенных случайных величин Yi,i=1,n

Тогда MX = m, $DX = 6^2$

X - линейная комбинация независимых одинаково распределенных сл величин Yi, i=1,n, то X имеет такое же распределение, следовательно:

$$MYi = m$$
, $DYi = 6^2 = ...$

Е понятно из условия, либо его требуется найти

- 1. Пишем про разницу между величинами, которая меньше либо равна отклонению
- 2. Домножаем на /б/Vn
- 3. Для последовательности выполняется ЦПТ
- 4. Заменяем левую часть вероятности на Zn
- 5. т.к выполняется ЦПТ, то Zn -> T \sim N(0,1)
- 6. T.K $n >> 1 => Zn \sim N(0,1)$
- 7. 2Ф0(правая часть вероятности)

Конкретные примеры

Задача 3. Случайная величина является средним арифметическим независимых одинаково распределенных случайных величин, дисперсия каждой из которых равна 5. Сколько нужно взять таких величин, чтобы случайная величина с вероятностью, не меньшей 0,9973, отклонялась от своего математического ожидания не более чем на 0,01?

см выше

Задача 3. Для контроля работы вакуумной электропечи используют вакуумыетр, светематическая ошибка которого ранна нулю, а среднеквадратичное отклонение составляет $0.5 \cdot 10^{-3}$ Па. Считая, что ошибки измерителя распределены по нормальному закону, вайти гочность измерения величины вакуума, полученного на основании n=500 замеров, гарантированную с вероятностью (надежностью) p=0,95.

Y - ... величине ошибке измерения

$$MY = my = 0, DY = 6^2 = (...)^2$$

X = Y + a - ... результатам измерений

$$MX = M[Y+a] = MY + a = 0 + a = a = mx$$

$$DX = D[Y+a] = DY = (...)^2 = 6x^2$$

Хі - ...результату і-ого измерения

Подсказка: Так или иначе стараемся привести к сумме величин, чтобы в итоге она удовлетворяла ЦПТ

Задача 3.

Для исследования теоретического значения высоты подъема воздушного фонарика было закуплено n=100 фонариков. Считая распределение высоты подъема фонарика нормальной случайно величиной, определить с какой вероятностью средняя высота подъема будет больше своего теоретического значения на величину более 0,5 , если - среднеквадратичное отклонение высоты подъема?

Инвертированный знак у вероятности (см! выше)

- Сформулировать и доказать первое неравенетво Чебыщева.
- Согласно стандарту в 100г цельного коровьего молока должно содержаться 88г поды. Считая, что среднеквалратичное отклонение содержания воды в молоке составляет 5г, найти вероятность того, что после проверки 225 образнов среднее содержание воды будет отдачаться от поминального не более чем на 2г.

аналогично второму конкретному примеру

- 1. Сформулировать и доказать второе перавелеть
- 2. ГОСТ 29322-2014 устанавливает, что сетевое напряжение в электических системах в странах-членах МЭК должно составлять $230\mathrm{B} \pm 10\%$. Считая, что закон распределения напряжения одинаков для всех источников и имеет среднеквадратичное отклонение 15 В, найти вероятность того, что после проверки величины напряжения в 100 независимых источниках на территориии России его наблюденное среднее значение окажется в допустимых границах. по плотности $f(x) = Cx^{7\theta}, x \in [0, 1], где$

Тип задач 4.

Общее

ЦЕЛЬ - СТАТИСТИКА ЯЙЦА

а - какое-то полученное значение. Обычно в нем содержится С, которое мы заменяем на значение из условия.

Конкретные примеры

территориии России его наблюденное среднее значение окажется в допустимых грама. 3. Непрерывная случайная величина X имеет функцию плотности $f(x) = Cx^{7\theta}$, $x \in [0, 1]$, где $C = 7\theta + 1$. C использованием метода моментов построить точечную оценку параметра θ .

2. Вероятность того, что сдучайво выоранных n=100 наудачу выорания 2. Вероятность того, что среди n=100 наудачу выорания развин 0.1. Оценить вероятность того, что среди n=100 наудачу выорания (0.05, 0.2). Факультета доля хорошистов будет заключена в интервале (0.05, 0.2). 4. Непрерывная случайная величина X имеет функцию плотности $f(x) = Cx^{20}$, $x \in [0, 3]$, гле (0.05, 0.2). 3. Непрерывная случайная величина (0.05, 0.2) поченку нараметра (0.05, 0.2). С использованием метода моментов построить точечкую оценку нараметра (0.05, 0.2).

3. Непрерывная случайная величина X имеет функцию плотности $f(x) = \theta^{2-x} \ln \theta, \ x \geqslant 2$. С использованием метода моментов построить точечную оценку параметра θ .

Тут интегрирование по частям. И это все различия.

Тип задач 5.

2. Пусть X — случайная величина, для которой MX=3, DX=4. С использованием второго неравенства Чебышева оценить вероятности событий $\{X\geqslant 7\}$ и $\{0< X< 9\}.$

Записать неравенство Чебышева

Подгоняем к Чебышеву-2

Тип задач 6.

1. Найдем функцию правдоподобия (Умножим **n** раз)

2. Прологарифмируем (каждый компонент полученной ф-ии правдопобия)

Обязательно написать сумму Xi и привести их к Xn штрих.

3. Необходимое условие экстремума (Дописать дифференциал, дифференцировать по О)

Далее система уравнений

Выражаем О. Записываем статистику О

4. Достаточное условие (двойной дифференциал)

3. Непрерывная случайная величина X имеет функцию плотности $f(x)=Cx^{7\theta},\,x\in[0,\,1],$ где $C=7\theta+1.$ Построить для параметра θ оценку максимального правдоподобия.

которын можно загрузить в 100 таких седанов?

3. Непрерывная случайная величина X имеет функцию плотности $f(x) = \theta^{5-x} \ln \theta, \ x \geqslant 5.$ Построить для параметра θ оценку максимального правдоподобия.