PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

H04L 1/00

A1

(11) International Publication Number: WO 99/27674

(43) International Publication Date: 3 June 1999 (03.06.99)

(21) International Application Number:

PCT/US98/21603

(22) International Filing Date:

9 October 1998 (09.10.98)

(30) Priority Data:

08/974,965

20 November 1997 (20.11.97) US

- (71) Applicant: ERICSSON, INC. [US/US]; 7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC 27709 (US).
- (72) Inventors: PETTY, Jack, S.; 374 Wesley Court, Chapel Hill, NC 27516 (US). IRVIN, David, Rand; 1546 Iredell Drive, Raleigh, NC 27608 (US).
- (74) Agents: HATFIELD, Scott, C. et al.; Myers, Bigel, Sibley & Sajovec, P.A., P.O. Box 37428, Raleigh, NC 27627 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHOD AND APPARATUS USING PARITY STATUS FOR SIGNALING

(57) Abstract

A communications system for communicating a serial bit stream and parity is disclosed which enables the use of the parity bit for signaling between the transmitter and receiver by selectively inducing parity errors. The system includes a first parity generator used to generate a first parity bit on the data to be communicated. The first parity and the data are transmitted in a communication medium by a data transmitter to a data receiver. A second parity generator generates a second parity bit using the communicated data. A comparator then compares the first parity bit with the second parity bit and a parser parses the received data in response to the comparison.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•						•
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHOD AND APPARATUS USING PARITY STATUS FOR SIGNALING

Field of the Invention

The present invention relates to communication systems and methods, in particular, to serial communications systems and methods.

Background of the Invention

Typically, serial communication systems use parity to safeguard data integrity during transmission from a transmitter to a receiver. Communications standards are used to ensure compatibility between different systems and to facilitate software development and portability. Hardware has also been developed that incorporates these standards. One such standard specifies that parity may accompany each transmission of serial data. The transmitted parity bit can then be used by the receiver to check data integrity of the serial data. This technique, however, may require additional time or

5

10

bandwidth for data transmission because a parity bit must be added to the stream of data.

Data integrity, however, has become less of a problem in some situations. Specifically, low noise cables, system enclosures and interconnects reduce the frequency of such errors to a very low level. In other words, in some circumstances errors do not happen as frequently as had been assumed when the standards arose. Moreover, the level of protection afforded by simple parity checking generally has become inadequate for many situations that require error protection. Despite these developments, hardware and software produced today still support the standard referenced above. Parity checking, therefore, is sometimes unnecessary and goes unused in systems that support it. Consequently, the time or bandwidth allocated for transmitting the parity bit is frequently wasted.

A related problem is the need for the exchange of control messages between two asynchronous entities. For example, when a personal computer is communicating with a modem through a EIA232/V.24 cable, sometimes one entity must instruct the other entity to stop or resume sending data. This is commonly referred to as flow control. Flow control may be implemented in two ways: hardware flow control and software flow control. Hardware flow control is typically accomplished by adding wires to the cable. The additional wires carry signals dedicated to flow control. Consequently, hardware flow control may add complexity to the sending and receiving entities and the cable.

5

10

15

20

25

Software flow control is usually accomplished by inserting special characters into the data stream at the transmitting entity. The receiving entity is then responsible for recognizing the special character and distinguishing it from normal data that happens to be equal to a special character. Consequently, software flow control may require additional significant software complexity on the part of the receiver.

Summary of the Invention

It is the object of the present invention to provide communications systems and methods that more efficiently utilize the bandwidth normally associated with parity checking.

It is another object of the present invention to provide communications systems and methods that exchange control messages using standard asynchronous communications hardware without significant added complexity.

Moreover, it is an object of the invention to provide communications systems and methods that use standard hardware to generate the parity bit for purposes other than checking for errors in data transmission.

These and other objects, features and advantages are provided according to the present invention by communications systems and methods which use the parity generation and checking functions typically found in standard asynchronous communications hardware to signal how transmitted data should be processed. Parity errors are forced on data transmissions that contain data that

5

is to be processed in a predetermined way by a receiver if the receiver determines that a parity error exists.

Because some communication links are highly reliable and provide a very low noise environment, parity errors caused by disturbances on such links are very unlikely. Consequently, protection offered by parity often times The present invention uses the parity bit goes unused. as a signal making better use of the otherwise wasted bandwidth allocated to the parity bit in a standard serial communication system. Moreover, the meaning of the signal can be defined by the communication system employing the invention. For example, a communication system may define the parity bit as a signal to the receiver that the associated data is part of a secondary data channel or a distinct data stream. The present invention can also be practiced using commonly available components such as UARTs.

In particular, according to the present invention, a bit stream and an associated parity bit are generated.

The bit stream and an associated parity bit are communicated to a receiving entity. The receiving entity performs a parity error analysis on the communicated bit stream and associated parity bit. The receiving entity then parses the communicated bit stream according to the parity error analysis.

According to another aspect of the invention, a first parity generator is used to generate a first parity bit on the data to be communicated. The first parity and the data are transmitted in a communications medium by a data transmitter to a data receiver. A second parity

30

10

generator generates a second parity bit using the communicated data. A comparator then compares the first parity bit with the second parity bit. A parser then processes the communicated data according to the results of the comparison of the first and second parity bits.

A communications system for communicating a serial bit stream and parity according to an embodiment of the present invention includes means for generating a serial bit stream and generating associated parity. Means are provided, responsive to the parity generation means, for manipulating the generated parity. Means are provided, responsive to the manipulating means and the serial data means, for communicating the serial bit stream to the receiving entity. Means are provided, responsive to the means for communicating, for analyzing the serial bit stream and the manipulated parity for the presence of a parity error. Means are provided, responsive to the analyzing means, for parsing the communicated bit stream according to a parsing process selected based on the parity analysis. Improved data communications are thereby provided.

Brief Description of the Drawings

Some of the objects and advantages of the present invention having been stated, others will be more fully understood from the detailed description that follows and by reference to the accompanying drawings in which:

5

10

15

Figure 1 illustrates a timing diagram for a serial
communication system;

Figure 2 illustrates a high level block diagram showing the components in the present invention;

Figure 3 illustrates a flowchart of the operation of the present invention;

Figure 4 illustrates a flowchart of an embodiment of the present invention transmitting two logical data streams using one physical transmission link;

Figure 5A and 5B, and 5C illustrate a flowchart of an embodiment of the present invention transmitting N+l bits using an N bit physical transmission link;

Figure 6A and 6B illustrate a flowchart of a preferred embodiment of the present invention switching from normal to expanded mode; and

Figure. 7A and 7B illustrate a flowchart of a preferred embodiment of the present invention switching from expanded to normal mode.

Detailed Description of Preferred Embodiments

The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which a preferred embodiment of the invention is shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.

5

10

15

20

25

In general, parity ensures that the number of data bits in the logical one state transmitted across a serial transmission link is always an odd or even number, depending on how the parity generation is configured. Transmission is accomplished by merging the data to be transmitted and the proper parity into a serial bit stream and transmitting each bit for a period of time until all bits, including the parity, have been transmitted. The serial bit stream and parity are then transmitted by a transmitting entity to a receiving 10 entity. A transmitting entity refers to the portion of the system responsible for transmitting the data. Similarly, a receiving entity refers to the portion of the system responsible for receiving the transmitted serial bit stream and parity. Those skilled in the art 15 will appreciate that transmitting and receiving entities can be implemented in combinations of hardware and software.

Such a transmission is illustrated in Figure 1.

20 Serial transmission begins with a low going pulse 71 asserted for a time t_b, representing the time used to transmit a single bit. The low going pulse 71 is used to signal the receiving entity that a stream of data will follow. Following the generation of the low going pulse 71, the transmitting entity transmits the stream of single bits represented by Data 72. The transmitter then transmits parity. Each data bit and the parity bit transmitted is allocated a time slot t_b. Finally, the transmitter transmits a number of high going stop bits 74 to signal the receiver that transmission is complete.

The transmitter is then free to initiate a new transfer by transmitting a new low going pulse 75.

A system for performing information transfers according to embodiments of the present invention is shown in Figure 2. Although the invention is described in terms of an eight bit serial link, the invention may also be utilized for other types of data links (e.g., a parallel data link) and different size data words (e.g., a seven bit data word). The The Data 5 is loaded into a Data Transmitter 10 and into a Parity Generator 20. 10 Parity Generator 20 generates Transmitted Parity 25 in accordance with Transmitter Parity Sense 21. If Transmitter Parity Sense 21 indicates odd parity, parity Generator 20 generates odd parity. Otherwise, Parity Generator 20 generates even parity. Furthermore, if a 15 Parity Error 65 is induced, Transmitter Parity Sense 21 will indicate the opposite parity as indicated by Receiver Parity Sense 52. Once Transmitted Parity 25 is generated, Data Transmitter 10 merges Data 5 and Transmitted Parity 25 into a single serial bit stream 20 Serial Data 15. Serial Data 15 is then transmitted across a Transmission Link 30 according to the timing relationship described in Figure 1.

The portion of Serial Data 15 that represents Data 5
is loaded into a Data Receiver 40 and a Parity Generator
50. The portion of Serial Data 15 that represents
Transmitted Parity 25 is loaded into a Comparator 60.
Parity Generator 50 generates Generated Parity 55 on that
portion of Serial Data 15 that represents Data 5.

Comparator 60 then compares Generated Parity 55 with that

portion of Serial Data 15 that represents Transmitted
Parity 25 and generates a Parity Error 65. If Generated
Parity 55 and Transmitted Parity 25 are the same, Parity
Error 65 indicates no parity error. Otherwise Parity
Error 65 indicates the presence of a parity error.

Parity Error 65 indicates how Data 45 is to be parsed. A
Parser 66 processes the Data 45 according to the Parity
Error 65. If the Parity Error 65 indicates a parity
error, Parser 66 processes the Data 45 according to a
predetermined method, producing a processed data stream
67. If the Parity Error 65 indicates the absence of a
parity error, the Parser 66 processes the Data 45
according to an alternative method.

Figures 3-7A and 7B are flowchart illustrations of methods and apparatus for signaling with forced parity 15 errors using commonly used hardware and communication interfaces. Those skilled in the art will understand that each block of the flowchart illustrations, and combinations of blocks in the flowchart illustrations, may be implemented with various commonly used 20 communication system components. It will also be understood that portions of the operations described in the flowchart illustrations may be executed as computer program instructions loaded into a computer or other data processing apparatus, thus producing a machine which 25 provides means for implementing the functions specified in the flowchart blocks and combinations thereof. The computer program may cause operational steps to be performed on the computer or data processing apparatus to produce a computer-implemented process such that the 30

instructions which execute on the computer or data processing apparatus provide steps for implementing the functions of the flowchart blocks or combinations thereof. Accordingly, blocks of the flowchart illustrations support combinations of means for performing the specified functions.

In general, the means depicted in Figures 3-7A and 7B may be implemented with special purpose hardware or software or firmware running on a data processing apparatus or combinations thereof. For example, the means depicted in Figures 3-7A and 7B may be implemented with industry standard Universal Asynchronous Receiver Transmiter (UART) devices. Specifically, UARTs such as ones manufactured by Western Digital and others with the identification numbers 8250, 16450, and 16550 are widely available.

transferring information according to method aspects of the present invention. The process begins with the generation of a serial bit stream including parity (Block 10). The serial bit stream is created by separating the data bits that comprise a larger unit of data and processing each data bit individually. For example, data stored in a byte format is comprised of eight individual bits. The byte, therefore, would create a bit stream of eight bits. The parity is generated by calculating how many individual bits of the bit stream are logical ones and generating a parity bit in accordance with the parity sense being used. The invention uses the parity

10

15

20

25

be parsed. The signal comes in the form of a parity error selectively induced at transmission by manipulating the parity generated for the bit stream. For example, if the bit stream data is such that it should be parsed in a particular way, the parity bit is intentionally configured to be incorrect for the associated bit stream. Consequently, a parity error will be detected at the receiving entity and the bit stream will be parsed accordingly. On the other hand, if the bit stream data is such that it should be parsed in yet a different manner, no parity error may be induced. Consequently, no parity error will be detected and the bit stream will be parsed differently.

The generated bit stream and parity are then communicated to the receiving entity (Block 20). The communicated bit stream and parity are used to determine whether an error has occurred during communication (Block 30). The communicated bit stream is parsed according to a predetermined process if a parity error is detected (Block 40). If no parity error is detected, a different parsing process is used.

Figure 4, in conjunction with Figure 2, illustrates the operation of the present invention in a particular embodiment used for transmitting two separate data streams over a transmission link (Block 100). Use of this embodiment makes it possible to maintain two logical data streams using one physical Transmission Link 30 (Block 110). For example, a first data stream carrying control information could be identified by forcing a parity eror to occur on each transmission associated with that

10

15

20

25

particular data stream. This can be done by using
Transmitter Parity Sense 21 to configure the Parity
Generator 20 for the opposite parity as the Parity
Generator 50 (Block 130). Similarly, a second data
stream carrying digitally encoded text could be
identified by associating the occurrence of no parity
error with all data associated with that data stream.
This can be done by configuring the Parity Generator 20
to use the same parity as the Parity Generator 50 (Block
120). In this way, the parity associated with each data
transmission is used as a signal as to how the data
should be parsed.

Once the parity is configured, the data and parity are transmitted as Serial Data 15 to the receiving entity (Block 140). Serial Data 15 is loaded into the Parity 15 Generator 50 which then generates the Generated Parity The Comparator 60 determines whether a parity error exists by comparing the Transmitted Parity 25 to the Generated Parity 55 (Block 160). If a parity error is detected, the received data is parsed as part of the 20 first data stream by the Parser 66 (Block 170). If no parity error is detected the data is parsed by the Parser 66 as part of the second data stream. The receiving entity is then ready for a new data transmission (Block 190). 25

Figures. 5A, 5B, 5C, 6A, 6B, 7A and 7B, in conjunction with Figure 2, illustrate operations for transmitting additional data as part of a bit stream transmitted across a transmission link according to a method aspect of the present invention. This aspect uses

30

parity status to signal the transmission of data that has not been explicitly transmitted as part of the serial bit stream. In other words, the parity analysis is used as a signal to the receiving entity to alter or to add data to the bit stream received. For example, referring now to Figure 1, if the transmitting entity transmits eight bits of data as Data 72, a ninth bit can be added to the transmission by selectively inducing a parity error which, by prior agreement, serves as a signal to the receiver. This can be done by generating Parity 73 to cause a mismatch with the parity generated by the receiver. The resulting parity error is interpreted by the receiver as a signal to add a ninth bit, a logical one for example, to Data 72. Similarly, a transmission that results in no parity error can also be used, as a signal to add a logical zero as the ninth bit.

Figure 5A, 5B, and 5C, in conjunction with Figure 1 and Figure 2, illustrate operations according to a second method aspect for transmitting additional data as part of a bit stream transmitted across the Transmission Link 30. In the present embodiment, the invention operates in two modes. In a normal mode N bits are transmitted as Data 72 along with Parity 73. In this mode, the parity is used to protect data integrity. In an expanded mode, N+1 bits are transmitted where N bits are transmitted as Data 72 and Parity 73 is used to signal the value of the N+1 bit.

Furthermore, the present embodiment switches or toggles between normal and expanded modes. The present embodiment uses a predetermined toggle flag to signal the

10

15

20

25

receiver to switch modes. To switch modes, the toggle flag is transmitted by the transmitting entity to the receiving entity. The receiving entity examines all received data to determine whether the data being received is a signal to switch modes or data of the expanded data stream.

Referring now to Figure 5A, the transmitting entity transmits data depending upon which mode is presently active (Block 210). If expanded mode is active, N+1 bits are processed for transmission and the parity bit is manipuluated to signal the value of the Nth+1 (Block 220). If normal mode is active, N bits are processed for transmission and the parity bit is used as protection for the bit stream (Block 260). Each mode of operation will now be described in detail.

In the normal mode, N bits are loaded into the Data Transmitter 10 (Block 260) and the Parity Generator 20 (Block 270). The Parity Generator 20 generates

Transmitted Parity 25 using Transmitter Parity Sense 21.

The N bits and Transmitted Parity 25 are then transmitted across the Transmission Link 30 (Block 280). Referring now to Figure 5B, the receiver checks the received data for parity error (Block 320). Parity Generator 50 generates Generated Parity 55, which Comparator 60 compares with Transmitted Parity 25. If Transmitted Parity 25 matches Generated Parity 55, neither a parity error nor a toggle flag is detected, and the receiver is ready for new data (Block 329).

Otherwise (i.e., if Transmitted Parity 25 does not match Generated Parity 55), the receiver checks to see if

10

15

20

the received data matches the toggle flag, which in the preferred embodiment is deliberately chosen to have a parity violation (for example, bit pattern 011011010 in a normal mode system operating with even parity). If the received data does not match the toggle flag (Block 325), or if a majority of the M blocks following the first instance of the toggle flag do not match the toggle flag (Block 327), then an error is presumed to have occurred, and appropriate error-recovery procedures outside the scope of the present invention are initiated (Block 360). Otherwise, if the received data matches the toggle flag, and a majority of the next M blocks of the received data also match the toggle flag, the first instance of the toggle flag and the subsequent M blocks are discarded, operation shifts to expanded mode (Block 328), and the receiver is ready for new data (Block 329).

Now referring back to Block 220 in Figure 5A, in expanded mode, N+1 bits are accepted for transmission and the parity bit is used to signal the receiver as to the value of the Nth+1 bit. The Nth+1 bit is examined (Block 230). If the Nth+1 bit is a logical zero, the Transmitter Parity Sense 21 is used to configure the Parity Generator 20 to use the same parity as the Parity Generator 50 (Block 250). If the Nth+1 bit is a logical one, the Transmitter Parity Sense 21 is used to configure the Parity Generator 20 to use the opposite parity as the Parity Generator 50 (Block 240). The N bits and the Transmitted Parity 25 are then transmitted across the Transmission Link 30 to the receiving entity (Block 242).

10

15

20

Referring now to Figure 5C, if the N+l bits happen to equal the predetermined toggle flag, the transmitting entity must transmit otherwise redundant information, enabling the receiving entity to avoid interpreting the data as a toggle flag (Block 290). The transmitting entity avoids this misinterpretation by adding one additional data transmission of the toggle flag when the data happens to include one or more instance of the toggle flag (Block 310). For example, when the toggle flag appears once in the text, the transmitter sends it twice; when the toggle flag appears R consecutive times in the text, the transmitter sends it R+1 times. repetition allows the receiving entity to assume that all data that equals the toggle flag will occur more than once in the data stream. Conversely, if the transmitting entity wishes to switch modes, the toggle flag is transmitted once (Block 300).

If the receiver determines that the data is not equal to the toggle flag (Block 312), the data is processed in expanded mode, following which the receiver is ready for new data (Block 370). Otherwise (i.e., the received data is equal to the toggle flag), the receiver waits for additional data before taking action. If the next data is not another toggle flag (Block 313), operation switches from expanded mode to normal mode, the data is processed in normal mode, the earlier-received toggle flag is discarded (Block 316), and the receiver is ready for new data (Block 370). On the other hand, if R subsequent data blocks are equal to the toggle flag (Block 313), then the earlier-received instance of the

5

10

15

20

25

toggle flag is discarded (Block 314), and the R data blocks, which are themselves toggle flags only by chance, are processed in expanded mode.

In expanded-mode processing, the parity of the data is examined (Block 330). If a parity error is not evident, the N+1 bit is set to logical zero (Block 350); if a parity error is evident, the N+1 bit is set to logical one (Block 360).

As described above, data transmission may toggle between normal and expanded modes. The transmitting and 10 receiving entity make a prior agreement that a particular flag will serve as the toggle flag. In the preferred embodiment, the toggle flag is constructed so as to induce a parity error in the receiver; more particularly the data word 011011010 is used. When the toggle flag is 15 received, the receiving entity switches from its present mode of operation to the other mode as explained below. For example, if the receiver is in normal mode and receives a toggle flag, the receiver switches to expanded mode. Similarly, if the receiver receives the toggle 20 flag while in expanded mode, the receiver will switch to normal mode.

Figures 6A and 6B, in conjunction with Figure 2, further illustrate operations for switching from normal to expanded mode according to the toggling aspect (Block 400). Referring now to Figure 6A, the switch from normal to expanded mode begins when the transmitting entity configures the Parity Generator 20 for the opposite parity as the Parity Generator 50 (Block 430). The transmitting entity sends the toggle flag to the Data

25

30

Transmitter $10 \, \text{M+1}$ consecutive times (Block 440). The Receiver then detects the parity errors associated with the toggle flag (Block 450).

Referring now to Figure 6B, the receiving entity determines whether the data received is equal to the 5 toggle flag (Block 460). If the received data is not equal to the toggle flag, the data is treated as part of the data stream that experienced a parity error (Block If the receiving entity so provides, it may perform some level of error recovery in this case (Block 10 If the received data is equal to the toggle flag, the receiving entity accepts the next M data transmissions (Block 470) and determines whether a majority of the M data transmissions received are equal to the toggle flag (Block 480). If a majority of the M 15 data transmission are not equal to the toggle flag (Block 480), the receiving entity concludes that the data transmissions are part of a data stream that experienced a parity error (Block 490). If a majority of the M data transmissions are equal to the toggle flag, the receiving 20 entity concludes that the data transmissions are a toggle flag and the receiving entity switches to expanded mode (Block 500). The receiving entity then begins parsing received data streams in expanded mode (Block 510).

Figures 7A and 7B, in conjunction with Figure 2, illustrate operations for switching from expanded to normal mode according to the toggling aspect (Block 600). Referring now to Figure 7A, switching from expanded to normal mode begins with the transmission of one toggle flag (Block 640). In the preferred embodiment, the toggle

25

flag, as described above, should be selected to cause a parity error at the receiving entity. The error may be induced by mismatching the Transmitter Parity Sense 21 and the Receiver Parity Sense 52. Mismatching the parity will ensure that a parity error will be detected, enabling the receiving entity to easily identify the switch to normal mode. The parity mismatch, however, is not a requirement to practice the invention. The toggle flag is sent once to enable the receiving entity to distinguish the toggle flag from data.

Referring now to Figure 7B, the receiving entity detects a parity error (Block 650) and determines that the data received is equal to the toggle flag (Block The receiving entity waits to receive the second data transmission (Block 670). When the second data arrives, the receiving entity determines whether the data also equals the toggle flag (Block 690). As described above, the transmitting entity transmits toggle flags only once, while an additional instance of the toggle flag is sent when a run of data happens to equal the toggle flag. The different treatment of toggle flags and data enables the receiving entity to distinguish between a toggle flag and data that happens to equal the flag. If the second data equals the toggle flag, the data is part of a data stream. This means that the receiving entity will receive a total of R+1 toggle flag transmissions where R is equal to the number of times the toggle flag occurs in the data stream (Block 700). For example, if the data stream contains five consecutive occurrences of data equal to the toggle flag, the

10

15

20

25

transmitting entity will transmit the toggle flag six times. In this example, R is equal to five After receiving the initial data, the receiving entity will receive five, or R, additional occurrences.

Consequently, the receiver will disregard one of the occurrences R+1 (Block 720) which competes the transmission (Block 730). If the second data received is not equal to the toggle flag, however, the toggle flag was intentional and the receiver switches to normal mode (Block 710). The receiver then disregards the toggle flag which completes the switch from expanded to normal mode.

In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

THAT WHICH IS CLAIMED:

1. A method of communicating information between a transmitting entity and a receiving entity, each of which are operative to communicate a bit stream that includes a parity bit for detecting errors in the bit stream, the method comprising the steps of:

generating a bit stream from the information, the bit stream including a parity bit;

communicating the generated bit stream from the transmitting entity to the receiving entity;

performing a parity error analysis on said communicated bit stream; and

parsing the communicated bit stream according to a parsing process selected based on said parity error analysis.

2. A method according to Claim 1, wherein said step of parsing comprises the steps of:

selecting a parsing process from a plurality of

20 predetermined parsing processes based on the parity error

analysis; and

parsing the communicated bit stream according to said selected parsing process.

3. A method according to Claim 2, wherein one of said parsing processes is operative to produce information from said bit stream formatted according to a bit stream format, and wherein said step of selecting a parsing process comprises the step of detecting the

5

presence of a parity error in said communicated bit stream; and

wherein said step of parsing comprises the step of parsing the communicated bit stream according to said one parsing process in response to detection of a parity error in the communicated bit stream.

- A method according to Claim 3, wherein said step of parsing comprises the step of interpreting said
 communicated bit stream as a control command, in response to detection of said parity error in said communicated bit stream.
- 5. A method according to Claim 3, wherein said step
 15 of parsing comprises generating an additional data bit in
 response to detection of said parity error in said
 communicated bit stream.
- A method according to Claim 5, wherein said
 additional data bit comprises a single data bit per data word.
 - 7. A method according to Claim 3, wherein said parity bit is configured to produce said parity error at said receiving entity wherein said step of detecting is preceded by the step of configuring the transmitting entity and the receiving entity to operate with opposite parity.

25

8. A method according to Claim 3, wherein said parity bit is configured to produce said parity error at said receiving entity wherein said step of detecting is preceded by the steps of:

configuring the transmitting entity and the receiving entity to operate with identical parity; and inverting said parity bit generated by said transmitting entity.

9. A method according to Claim 2, wherein one of

10 said parsing processes is operative to produce
information from said bit stream formatted according to a
bit stream format, and wherein said step of selecting a
parsing process comprises the step of detecting the
absence of a parity error in said communicated bit

15 stream; and

wherein said step of parsing comprises the step of parsing said communicated bit stream according to said one parsing process in response to said detection of the absence of a parity error in said communicated bit stream.

10. A method according to Claim 9, wherein said step of parsing comprises the step of interpreting said communicated bit stream as clear text data.

25

20

5

11. A method according to Claim 9 wherein said step of parsing comprises the step of generating an additional data bit in response to detection of the absence of said parity error in said communicated bit stream so as to

expand the amount of data that may be transmitted in said communicated bit stream.

- 12. A method according to Claim 11, wherein said5 additional data bit comprises a single bit per data word.
 - 13. A method according to Claim 2, wherein said step of parsing comprises the step of separating said communicated bit stream into two data streams based on said parity error analysis of said communicated bit stream for the presence of said parity error.
 - 14. A method according to Claim 1, wherein said step of parsing comprises the steps of:
- parsing said communicated bit stream using a first parsing process selected from said plurality of predetermined parsing processes based on said parity error analysis performed on said communicated bit stream;

detecting a toggle flag within said communicated bit 20 stream; and

parsing a subsequent communicated bit stream using a second parsing process selected from said plurality of predetermined parsing processes based on said parity error analysis performed on said subsequent communicated bit stream.

15. A method according to Claim 14, wherein said step of detecting comprises the steps of:

determining whether said toggle flag is followed by 30 an additional toggle flag; and

10

switching said receiving entity to an expanded mode if said toggle flag is not followed by said additional toggle flag.

- step of switching comprises the step of changing said parsing process in response to detecting said toggle flag so as to identify more than one logical channel.
- 17. A method according to Claim 16, wherein said toggle flag is configured to cause a parity error to be detected by said receiving entity.
- 18. A method according to Claim 1 wherein said

 15 communicating step comprises the step of communicating

 said generated bit stream from said transmitting entity

 to said receiving entity asynchronously.
- 19. A method according to Claim 1 wherein said step 20 of generating comprises generating said bit stream from the information, said bit stream including eight data bits and a parity.
- 20. An apparatus for signaling between a plurality
 25 of communicating entities, comprising

means for generating a bit stream and parity associated with said bit stream;

means, responsive to said means for generating a bit stream, for manipulating said associated parity;

means, responsive to said means for generating said bit stream, for communicating said bit stream and said manipulated associated parity from a transmitting entity to a receiving entity;

- means, responsive to said means for communicating said bit stream and said manipulated parity, for analyzing said communicated bit stream and manipulated associated parity for the presence of a parity error by said receiving entity;
- means, responsive to said means for analyzing, for parsing said communicated bit stream according to a parsing process selected based on the parity error analysis.
- 15 21. The apparatus of claim 20, wherein said means for generating a bit stream and parity associated with said bit stream comprises:

means for serializing data words stored in a
computer memory;

- means, responsive to said means for serializing, for performing odd and even parity calculations on said stored data words; and
 - means, responsive to said means for performing odd and even parity calculations on said stored data words and said means for serializing data words stored in a computer memory, for combining said serialized data words and said odd or even parity into a serialized bit stream.
- 22. The apparatus of Claim 20, wherein said means 30 for manipulating comprises:

means for storing a flag indicating that said associated parity is to be manipulated; and

means, responsive to said flag, for inverting said associated parity responsive to said flag indicating that said associated parity is to be manipulated.

- 23. The apparatus of Claim 20, wherein said means for manipulating comprises said transmitting entity and said receiving entity configured to generate opposite parity.
- 24. The apparatus of Claim 20, wherein said transmitting entity comprises a universal asynchronous receiver transmitter.

15

- 25. The apparatus of Claim 20, wherein said receiving entity comprises a universal asynchronous receiver transmitter.
- 20 26. The apparatus of Claim 20, wherein said means for parsing comprises:
 - a parity flag indicating the detection of a parity error within said communicated bit stream; and
- a means, responsive to said parity flag, for
 introducing additional data into said communicated bit
 stream.
- 27. An apparatus for communicating data comprising: a first parity generator configured to generate a
 30 first parity bit;

a data transmitter, responsive to said first parity generator, configured to produce a bit stream including said parity bit in a communications medium;

- a data receiver, responsive to said communications medium, configured to receive a bit stream;
 - a second parity generator, responsive to said data transmitter, configured to generate a second parity bit from said received bit stream;
- a comparator, responsive to said second parity bit

 10 and said first parity bit, configured to compare said

 first parity bit with said second parity bit; and
 - a parser, responsive to said data receiver and said comparator, configured to parse said received bit stream in accord with the comparison of said first and second parity bits.
 - 28. The apparatus of Claim 27, wherein said first parity generator may be configured independently of said second parity generator.

20

15

- 29. The apparatus of Claim 27, wherein said data transmitter comprises a universal asynchronous transmitter receiver.
- 25 30. The apparatus of Claim 27, wherein said transmitter and said receiver comprise a EIA232/V.24 interface.
- 31. The apparatus of claim 20, wherein said means 30 for communicating said bit stream and said parity from

said transmitting entity to said receiving entity asynchronously.

32. The apparatus of claim 20, wherein said means for generating a bit stream and parity associated with said bit stream comprises means for serializing data words stored in a computer memory into eight data bits and one parity bit.

1/8

FIG. 1

FIG. 3

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

7/8

FIG. 6A

400

SUBSTITUTE SHEET (RULE 26)

8/8

FIG. 7A

INTERNATIONAL SEARCH REPORT

I. rational Application No PCT/US 98/21603

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER H04L1/00		
According to	o International Patent Classification (IPC) or to both national classifica	tion and IPC	
	SEARCHED cumentation searched (classification system followed by classification	n everbelet	
IPC 6	H04L	n symbols)	
P -			
Documentat	lion searched other than minimum documentation to the extent that so	uch documents are included in the fields se	arched
Electronic d	ata base consulted during the international search (name of data bas	e and, where practical, search terms used	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category ³	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
х	GB 2 116 403 A (BRITISH BROADCAST	ING CORP)	1,18-21,
	21 September 1983	÷	24,25, 27,29-32
	see abstract		27,29-32
	see page 1, left-hand column, lin line 12	e 4 -	
	see page 1, left-hand column, lin	e 23 -	
	line 34		
	see page 1, left-hand column, lin right-hand column, line 83		
	see page 2, left-hand column, lin line 40	e 31 -	
	see figures 1A,1B		
		/ ·	
		/	
	``		
X Furti	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
		"T" later document published after the inte or priority date and not in conflict with	mational filing date
consid	ent defining the general state of the art which is not lered to be of particular relevance	cited to understand the principle or the invention	
filing d	E earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to		
which	int which may throw doubts on pnority claim(s) or is cited to establish the publication date of another n or other special reason (as specified)	involve an inventive step when the do "Y" document of particular relevance; the c cannot be considered to involve an in-	laimed invention
	ent referring to an oral disclosure, use, exhibition or	document is combined with one or mo ments, such combination being obvious	re other such docu-
	ent published prior to the international filing date but nan the priority date claimed	in the art. "&" document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report
1	2 February 1999	22/02/1999	
Name and r	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040,Tx31 651 epo nl,	W 11 C	
	Fax: (+31-70) 340-2040, 1x.31 651 epo ni,	Koukourlis, S	•

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

I. .ational Application No
PCT/US 98/21603

Category Culation of document, with redicalistic where appropriate, or the relevant passages Petervant to claim No.			PC1/US 98/216U3
US 5 425 033 A (JESSOP ANTHONY ET AL)	C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
13 June 1995 see abstract see column 1, line 14 - line 66 see column 2, line 11 - line 20 see column 2, line 36 - line 51 see column 3, line 48 - line 60 see column 4, line 52 - line 59 see claim 1 X US 5 258 999 A (WERNIMONT THOMAS L ET AL) 2 November 1993 see abstract see column 9, line 60 - column 10, line 23 see column 15, line 28 - column 16, line 16 see claim 4 X US 4 633 464 A (ANDERSON CLEO D) 30 December 1986 see abstract see column 1, line 36 - line 45 see column 2, line 26 - line 63 see column 5, line 45 - column 6, line 20 X US 5 453 999 A (MICHAELSON WAYNE A ET AL) 26 September 1995 see column 4, line 51 - column 5, line 4; figure 1 A US 4 949 333 A (GULICK DALE E ET AL) 18.24, 14 August 1990 see abstract US 5 633 890 A (AHMED ALLAM Z) 27 May 1997 30	Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
2 November 1993 see abstract see column 9, line 60 - column 10, line 23 see column 15, line 28 - column 16, line 16 see claim 4 X US 4 633 464 A (ANDERSON CLEO D) 30 December 1986 see abstract see column 1, line 36 - line 45 see column 2, line 26 - line 63 see column 5, line 45 - column 6, line 20 X US 5 453 999 A (MICHAELSON WAYNE A ET AL) 26 September 1995 see column 4, line 51 - column 5, line 4; figure 1 A US 4 949 333 A (GULICK DALE E ET AL) 14 August 1990 see abstract A US 5 633 890 A (AHMED ALLAM Z) 27 May 1997 30	X	13 June 1995 see abstract see column 1, line 14 - line 66 see column 2, line 11 - line 20 see column 2, line 36 - line 51 see column 3, line 48 - line 60 see column 4, line 52 - line 59	
30 December 1986 see abstract see column 1, line 36 - line 45 see column 2, line 26 - line 63 see column 5, line 45 - column 6, line 20 X US 5 453 999 A (MICHAELSON WAYNE A ET AL) 26 September 1995 see column 4, line 51 - column 5, line 4; figure 1 A US 4 949 333 A (GULICK DALE E ET AL) 14 August 1990 see abstract A US 5 633 890 A (AHMED ALLAM Z) 27 May 1997 30	X	2 November 1993 see abstract see column 9, line 60 - column 10, line 23 see column 15, line 28 - column 16, line 16	
26 September 1995 see column 4, line 51 - column 5, line 4; figure 1 A US 4 949 333 A (GULICK DALE E ET AL) 14 August 1990 see abstract A US 5 633 890 A (AHMED ALLAM Z) 27 May 1997 30	X	30 December 1986 see abstract see column 1, line 36 - line 45 see column 2, line 26 - line 63	
14 August 1990 see abstract A US 5 633 890 A (AHMED ALLAM Z) 27 May 1997 30	X	26 September 1995 see column 4, line 51 - column 5, line 4;	27,29,30
,, , , , , , , , , , , , , , , , , , , ,	Α	14 August 1990	
	A		30

INTERNATIONAL SEARCH REPORT

information on patent family members

national Application No PCT/US 98/21603

Patent document cited in search report		Publication date	Patent family member(S)	Publication date	
GB	2116403	Α	21-09-1983	HK 60290 A	17-08-1990
US	5425033	Α	13-06-1995	GB 2263849 A FR 2687876 A JP 6029954 A	04-08-1993 27-08-1993 04-02-1994
US	5258999	A	02-11-1993	JP 5219141 A	27-08-1993
US	4633464	A	30-12-1986	CA 1240013 A EP 0151616 A JP 5022418 B JP 60501982 T WO 8500945 A	02-08-1988 21-08-1985 29-03-1993 14-11-1985 28-02-1985
US	5453999	Α	26-09-1995	NONE	
US	4949333	Α	14-08-1990	DE 3885136 D DE 3885136 T EP 0285334 A JP 2724322 B JP 63258140 A	02-12-1993 19-05-1994 05-10-1988 09-03-1998 25-10-1988
US	5633890	Α	27-05-1997	NONE	

Form PCT/ISA/210 (patent family annex) (July 1992)