Technische Universität Dresden Fachrichtung Mathematik

Institut für Mathematische Stochastik

Fractional Brownian Motion and its Application in Financial Mathematics

Diplomarbeit

zur Erlangung des ersten akademischen Grades

Diplommathematiker

(Wirtschaftsmathematik)

vorgelegt von

Name: Zhu Vorname: Ke

geboren am: 03.12.1985 in: Wuhan

Tag der Einreichung: 01.03.2015

Betreuer: Prof. Dr. rer. nat. Martin Keller-Ressel

Thesen

blahblah

${\bf Contents}$

1	Introduction	1
2	Gaussian Process and Brownian Motion	2
	2.1 Definition of Probability Space and Stochastic Process	2
	2.2 Gaussian Process	2
3	Fractional Brownian Motion	3
4	Fractional Ornstein Uhlenbeck Process Model	4
5	Applications in Financial Mathematics	5
6	Conclusion	6
\mathbf{R}_{0}	eferences	7

1 Introduction

2 Gaussian Process and Brownian Motion

In this section we start off from the general concept of probability spaces and stochastic processes. Of this, a most important case we then discribe, is Gaussian process. It bring us to introduce the Brownian Motion as a fine example.

2.1 Definition of Probability Space and Stochastic Process

DEFINITION 2.1. Let \mathscr{A} be a collection of subsets of a set Ω . \mathscr{A} is then a σ - Algebra on Ω if it satisfies the following conditions:

- (i) $\Omega \in \mathscr{A}$.
- (ii) For any set $F \in \mathcal{A}$, its complement $F^c \in \mathcal{A}$.
- (iii) If a serie $\{F_n\}_{n\in\mathbb{N}}\subseteq\mathscr{A}$, then $\cup_{n\in\mathbb{N}}F_n\in\mathscr{A}$.

DEFINITION 2.2. A mapping \mathcal{P} is said to be a *probability measure* from \mathscr{A} to $\mathscr{B}(\mathbb{R}^n)$, if $\mathcal{P}\left[\sum_{n=1}^{\infty}F_n\right]=\sum_{n=1}^{\infty}\mathcal{P}\left[F_n\right]$ for any $\{F_n\}_{n\in\mathbb{N}}$ disjoint in \mathscr{A} satisfying $\sum_{n=1}^{\infty}F_n\in\mathscr{A}$.

DEFINITION 2.3. A probability space is defined as a triple $(\Omega, \mathscr{A}, \mathcal{P})$ of a set Ω , a σ -Algebra \mathscr{A} of Ω and a measure \mathcal{P} from \mathscr{A} to $\mathscr{B}(\mathbb{R}^n)$.

The σ - Algebra generated of all open sets on \mathbb{R}^n is called the *Borel* σ - Algebra which we denote as usual by $\mathscr{B}(\mathbb{R}^n)$. Let μ be a probability measure on \mathbb{R}^n . Indeed, $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n), \mu)$ can define a probability space on \mathbb{R}^n . A function f mapping from $(\mathcal{D}, \mathcal{D}, \mu)$ into $(\mathcal{E}, \mathcal{E}, \nu)$ is measurable if its collection of the inverse image of \mathcal{E} is a subset of \mathcal{D} . A random variable is a real-valued measurable function on some probability space. Let \mathcal{P} represent a probability measure, recall that in probability theory, for $B \in \mathscr{B}(\mathbb{R}^n)$ we call $\mathcal{P}[\{X \in B\}]$ the distribution of X.

DEFINITION 2.4. Let $(\Omega, \mathcal{A}, \mathcal{P})$ be a probability space. A *n*-dimensional *stochastic* process (X_t) is a family of random variable such that $X_t(\omega): \Omega \longrightarrow \mathbb{R}^n, \forall t \in T$, where T denotes the set of Index of Time.

DEFINITION 2.5. A stochastic process $(X_t)_{t\in T}$ is said to be *stationary*, if

$$\mathcal{P}\left[X_{t}\right] = \mathcal{P}\left[X_{t+s}\right]$$

for any $t + s \in T$.

2.2 Gaussian Process

3 Fractional Brownian Motion

4 Fractional Ornstein Uhlenbeck Process Model

5 Applications in Financial Mathematics

6 Conclusion

References

[1]