Report on the status of SBGN ER and proposed modifications/extensions

Entity Relationships can be viewed as rules

If A exists, the assignment of the value P to the state variable T of B is increased

Entity Relationships can be viewed as rules

If A exists, the assignment of the value P to the state variable T of B is increased

(A stimulates the phosphorylation of B on the threonine)

Entity Relationships can be viewed as rules

If A exists, the assignment of the value P to the state variable T of B is increased

If P is assigned to the state variable T of B, the assignment of the value P to the state variable S of C is decreased

Multi-state and combinatorial explosion

Process Descriptions: "once a state variable value, always a state variable value"

2¹² = 4096 states (i.e. EPN glyphs) for EGFR and 4096 complexes between EGFR and targets

Entity Relationships L1 V1.2 reference card

Entity Nodes

Relationship Nodes

Entity Relationships L1 V1 syntax

symbols \ Arc	assignment	interaction	modulation	stimulation	inhibition	necessary stimulation	absolute stimulation	absolute inhibition	logic arc
entity		IO	Ι	Ι	I	Ι	Ι	Ι	Ι
outcome		I(1)O(1)	I(1)	I(1)	I(1)	I(1)	I(1)	I(1)	I(1)
and			I(1)	I(1)	I(1)	I(1)	I(1)	I(1)	I(1)O
or			I(1)	I(1)	I(1)	I(1)	I(1)	I(1)	I(1)O
not			I(1)	I(1)	I(1)	I(1)	I(1)	I(1)	I(1)O(1)
delay			I(1)	I(1)	I(1)	I(1)	I(1)	I(1)	I(1)O(1)
perturbing agent			I	I	I	I	I	I	I
unit of information		IO							
state variable	I(1)O(1)								
modulation				0	О	0	О	О	
stimulation				0	О	0	О	О	
inhibition				0	О	0	О	О	
necessary stimulation				О	О	О	О	О	
absolute stimulation				0	О	0	0	О	
absolute inhibition				0	О	0	О	О	
assignment				О	О	0	0	О	
interaction				0	О	0	О	О	
phenotype				О	О	О	О	О	

Example of Entity Relationships L1 V1 semantics

3.4.2 Influences

A modulation (Section 2.4.3.1) linking an entity node E and a relationship R means: "If E exists then R is either reinforced or weakened".

A stimulation (Section 2.4.3.2) linking an entity node E and a relationship R means: "If E exists then R is reinforced" or "If E exists then the probability of R is increased".

An absolute stimulation (Section 2.4.3.6) linking an entity node E and a relationship R means: "If E exists then R always takes place".

A necessary stimulation (Section 2.4.3.4) linking an entity node E and a relationship R means: "R only takes place if E exists.

An *inhibition* (Section 2.4.3.3) linking an *entity node* E and a relationship R means: "If E exists then R is weakened" or "If E exists then the probability of R is lowered".

An absolute inhibition (Section 2.4.3.5) linking an entity node E and a relationship R means: "If E exists then R never takes place".

ER map of calcium-regulated synaptic plasticity

increases synaptic weight decreases synaptic weight

Entity Relationships L1 V2 nested entities

A and B are part of X

X interacts with Y

A of X interacts with Y

Translocation of X in the nucleus

degradation of X

insertion of B of X in the membrane

degradation of domain A of X

Real example: CaMKII

Real example: CaMKII

Issues pending in HARMONY

- 1) Possibility to identify groups of entities and statements, for instance defining pathways [NLN]
- 2) Differentiating Entities (and outcomes) representing continuants and occurrents. Proposal is to follow PD and AF guidelines (round corners for continuants and acute ones for occurrents) [AL and NLN]
- 3) Outcomes on influences. Purpose is to differentiate the actualisation of an influence from the the effect of the influence [NLN]

Vote on groups

Question 1. Are-you in favour of introducing a "group" feature in SBGN languages?

Choice	Votes	Fraction
Yes	10	90.9%
No	1	9.1%
I do not know	0	0%.

Question 2: Should-we specify the way a group is displayed?

Choice	Votes	Fraction
Yes	7	63.6%
No	4	36.4%
I do not know	0	0%

Question 3: If we were to advise a way to represent groups, what should it be (multiple answers possible)?

Choice	Votes	Fraction
A spatial grouping	4	36.4%
A contour	7	63.6%
A background	8	72.7%
Highlighting glyps	4	36.4%
Unsure	2	18.2%
None of the above	0	0%

Vote on groups

Question 1. Are-you in favour of introducing a "group" feature in SBGN languages?

Choice	Votes	Fraction
Yes	10	90.9%
No	1	9.1%
I do not know	0	0%.

Question 2: Should-we specify the way a group is displayed?

Choice	Votes	Fraction		
Yes	7	63.6%		
No	4	36.4%		
I do not know	0	0%		

Question 3: If we were to advise a way to represent groups, what should it be (multiple answers possible)?

Choice	Votes	Fraction
A spatial grouping	4	36.4%
A contour	7	63.6%
A background	8	72.7%
Highlighting glyphs	4	36.4%
Unsure	2	18.2%
None of the above	0	0%

Continuant Vs occurrent outcomes

Continuant Vs occurrent outcomes

Continuant Vs occurrent outcomes

Continuant Vs occurrent entities

Outcome on influences

Any other issue you want to discuss?