904 LOGIC

5.89 contains_sboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [338]

Constraint contains_sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym contains.

Types VARIABLES : collection(v-dvar)

INTEGERS : collection(v-int)
POSITIVES : collection(v-int)

Arguments K : int

DIMS : sint

 $\begin{array}{lll} \text{OBJECTS} & : & \text{collection}(\text{oid-int}, \text{sid-dvar}, \text{x} - \text{VARIABLES}) \\ \text{SBOXES} & : & \text{collection}(\text{sid-int}, \text{t} - \text{INTEGERS}, \text{1} - \text{POSITIVES}) \\ \end{array}$

Restrictions

```
|VARIABLES| \ge 1
|\mathtt{INTEGERS}| \geq 1
|\mathtt{POSITIVES}| \geq 1
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(POSITIVES, v)
|POSITIVES| = K
{\tt POSITIVES.v}>0
K > 0
\mathtt{DIMS} \geq 0
{\tt DIMS} < {\tt K}
increasing_seq(OBJECTS,[oid])
required(OBJECTS, [oid, sid, x])
{\tt OBJECTS.oid} \geq 1
OBJECTS.oid \leq |OBJECTS|
{\tt OBJECTS.sid} \geq 1
\texttt{OBJECTS.sid} \leq |\texttt{SBOXES}|
|\mathtt{SBOXES}| \geq 1
required(SBOXES, [sid, t, 1])
{\tt SBOXES.sid} \geq 1
\mathtt{SBOXES.sid} \leq |\mathtt{SBOXES}|
do_not_overlap(SBOXES)
```

20070622 905

Holds if, for each pair of objects (O_i, O_j) , i < j, O_i contains O_j with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a shifted box is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An object is an entity defined by its unique object identifier oid, shape id sid and origin x.

An object O_i contains an object O_j with respect to a set of dimensions depicted by DIMS if and only if, for all shifted boxes s_i associated with O_i , there exists a shifted box s_i of O_i such that s_i contains s_j . A shifted box s_i contains a shifted box s_j if and only if, for all dimensions $d \in DIMS$, (1) the start of s_i in dimension d is strictly less than the start of s_j in dimension d and (2) the end of s_j in dimension d is strictly less than the end of s_i in dimension d.

```
2, \{0, 1\},
                                                                     \operatorname{oid} - 3 \quad \operatorname{sid} - 3
Example
                                                                     \operatorname{sid} - 1 t -\langle 0, 0 \rangle
```

Figure 5.217 shows the objects of the example. Since O_1 contains both O_2 and O_3 , and since O_2 contains O_3 , the contains_sboxes constraint holds.

Typical

 $|\mathtt{OBJECTS}| > 1$

Symmetries

- Items of SBOXES are permutable.
- Items of OBJECTS.x, SBOXES.t and SBOXES.1 are permutable (same permutation used).

Arg. properties

Suffix-contractible wrt. OBJECTS.

Remark

One of the eight relations of the Region Connection Calculus [338]. The constraint contains_sboxes is a restriction of the original relation since it requires that each shifted box of an object is contained by one shifted box of the other object.

See also

common keyword: coveredby_sboxes, covers_sboxes, disjoint_sboxes, equal_sboxes, inside_sboxes, meet_sboxes(rcc8), non_overlap_sboxes (geometrical constraint, logic), overlap_sboxes (rcc8).

Keywords

constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.

Purpose

906 LOGIC

Figure 5.217: (D) the three nested objects O_1 , O_2 , O_3 of the **Example** slot respectively assigned shapes S_1 , S_2 , S_3 ; (A), (B), (C) shapes S_1 , S_2 and S_3 are made up from a single shifted box.

Logic

```
\bullet \; \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1}.\mathtt{x}(\mathtt{D}) + \mathtt{S1}.\mathtt{t}(\mathtt{D})
• end(01,S1,D) \stackrel{\text{def}}{=} 01.x(D) + S1.t(D) + S1.1(D)
• contains_sboxes(Dims, 01, S1, 02, S2) \stackrel{\text{def}}{=}
        \forall \mathtt{D} \in \mathtt{Dims}
               origin(01,S1,D) < origin(02,S2,D) , end(02,S2,D) < end(01,S1,D)
• contains_objects(Dims, O1, O2) \stackrel{'}{=}
       \forall \mathtt{S1} \in \mathtt{sboxes}([\mathtt{01.sid}])
          \exists S2 \in sboxes ( [ 02.sid ] )
                                             / Dims,
                                              01,
          contains_sboxes
                                              S1,
                                              02,
• all_contains(Dims, OIDS) \stackrel{\text{def}}{=}
        \forall \texttt{O1} \in \texttt{objects}(\texttt{OIDS})
         \forall \texttt{O2} \in \texttt{objects}(\texttt{OIDS})
              {\tt O1.oid} < \ \Rightarrow
              02.oid
            contains_objects
• all_contains(DIMENSIONS, OIDS)
```