University of Toronto Faculty of Arts and Science

MAT237 Multivariable Calculus with Proofs Term Test 1

T. Janisse, C. Jonker, and A. Zaman Friday October 29, 2021

Duration: 110 minutes No aids permitted

Instructions

- Do not open the exam until you are instructed to do so. Failure to comply is an academic offence.
- No aids are permitted on this examination. Examples of illegal aids include but are not limited to text-books, notes, calculators, cellphones, or any electronic device.
- Once the exam begins, check that you have all pages. This exam contains 12 pages including this cover page, and is printed double-sided on 6 sheets of paper. There are 9 problems.
- Show your work and justify your steps on every question, unless otherwise indicated.
- Organize your work in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- If you need more space, use the blank pages at the end of the exam and clearly indicate on the question page when you have done this. Do not tear any pages off this exam.

Academic integrity statement

Full Name: Dace	Vicklin Allowery	
UToronto email:	j. 2110w24	@mail.utoronto.ca
Student number:	1006940802	

I confirm that:

- I have not used or been in possession of an unauthorized aid while writing this exam.
- I have not looked at another student's exam and I have not allowed another student to look at my exam.
- · I immediately stopped writing when an invigilator announced the exam was over.
- I understand the consequences of violating the University's academic integrity policies as outlined in the Code of Behaviour on Academic Matters. I have not violated them while writing this assessment.

By signing this document, I agree that the statements above are true.

Signature: Ouestion: 1 2 3 5 6 7 8 9 Total Points: 4 3 3 7 5 5 2 5 6 40 Score:

Do not tear this page off. This page is a formula sheet and will not be graded under any circumstances. It can be used for rough work only.

$$\begin{split} \sin\frac{\pi}{6} &= \cos\frac{\pi}{3} = \frac{1}{2} & \sin\frac{\pi}{3} = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2} & \sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} & \sin(-\theta) = -\sin\theta & \cos(-\theta) = \cos\theta \\ \tan\theta &= \frac{\sin\theta}{\cos\theta} & \sec\theta = \frac{1}{\cos\theta} & \cot\theta = \frac{\cos\theta}{\sin\theta} = \frac{1}{\tan\theta} & \csc\theta = \frac{1}{\sin\theta} \\ & \sin^2\theta + \cos^2\theta = 1 & 1 + \tan^2\theta = \sec^2\theta & 1 + \cot^2\theta = \csc^2\theta \\ \cos^2\theta &= \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta & \sin2\theta = 2\sin\theta\cos\theta & \tan2\theta = \frac{2\tan\theta}{1 - \tan^2\theta} \\ \cos^2\theta &= \frac{1 + \cos2\theta}{2} & \sin^2\theta = \frac{1 - \cos2\theta}{2} & \tan^2\theta = \frac{1 - \cos2\theta}{1 + \cos2\theta} \\ \sin A\sin\theta &= \frac{1}{2}(\cos(A - B) - \cos(A + B)) & \sin(A + B) = \sin A\cos\theta + \cos A\sin\theta \\ \cos A\cos\theta &= \frac{1}{2}(\sin(A + B) + \sin(A - B)) & \tan(A + B) = \frac{\tan A + \tan\theta}{1 - \tan A \tan\theta} \\ \sin A\cos\theta &= \frac{1}{2}(\sin(A + B) + \sin(A - B)) & \tan(A + B) = \frac{\tan A + \tan\theta}{1 - \tan A \tan\theta} \\ c^2 &= a^2 + b^2 - 2ab\cos\theta & \frac{1}{a} & \frac{\sin\theta}{a} & \frac{\sin\theta}{b} & \frac{\sin\theta}{b} \\ \frac{d}{dx}(x^a) &= ax^{a-1} & \frac{d}{dx}(a^x) = a^x \ln a & \frac{d}{dx} \ln x = \frac{1}{x} \\ \frac{d}{dx} \sin x &= \cos x & \frac{d}{dx} \cos x = -\sin x & \frac{d}{dx} \tan x = \sec^2 x & \frac{d}{dx} \sec x = \sec x \tan x \\ \frac{d}{dx} \arcsin\theta &= \frac{1}{1 - x^2} & \frac{d}{dx} \arccos x &= \frac{1}{1 - x^2} & \frac{d}{dx} \arctan x = \frac{1}{1 + x^2} \\ \frac{d}{dx} (f(x)g(x)) &= f'(x)g(x) + f(x)g'(x) & \frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) & \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} & \frac{d}{dx} f(g(x)) = f'(g(x))g'(x) \\ -\frac{1}{1 - x} &= \sum_{n=0}^{\infty} x^n & e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} & \ln(1 - x) = \sum_{n=1}^{\infty} \frac{x^n}{n} & \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} & \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \\ det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc & \det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{23} & a_{33} \end{bmatrix} = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{23} & a_{23} \end{bmatrix} - a_{21} \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix} + a_{31} \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix} \\ |a \cdot b| \leq |a| ||b|| & ||a + b|| \leq |a| + ||b|| & (AB)^T = B^T A^T & (AB)^{-1} = B^{-1} A^{-1} \\ (x, y, x) = (r\cos\theta, r\sin\theta, x) = (\rho\cos\theta\sin\phi, \rho\sin\theta, \rho\cos\phi) \end{aligned}$$

- 1. (4 points) The parts of this question are unrelated. No justification is necessary for any part. Fill in EXACTLY ONE circle. (unfilled filled ●)
 - (1a) Belal has a whirlpool and drops a rubber ducky on the edge of the whirlpool. It spins around the centre once every minute and takes 5 minutes to reach its centre. Let $\gamma : [0,5] \to \mathbb{R}^2$ be the path of Belal's ducky (viewed from above) with the origin (0,0) as the centre of the whirlpool.

Which of the following relations could γ realistically obey? Select the best answer.

- $\bigcap \gamma(t+1) = \gamma(t) \text{ for } 0 \le t \le 5$
- $\bigcap \gamma(t) = \left(t\cos(\frac{2\pi t}{5}), t\sin(\frac{2\pi t}{5})\right) \text{ for } 0 \le t \le 5.$
- The real-valued function $||\gamma(t)||$ is decreasing on $0 \le t \le 5$.
- \bigcirc The derivative $\gamma'(t)$ is constant for all $0 \le t \le 5$.
- O The unit tangent T(t) points towards the origin for all $0 \le t \le 5$.
- (1b) Let $f(x, y) = xe^y$, $A = \{(x, xe^2) : x \in \mathbb{R}\}$, and $B = \{(x, y) \in \mathbb{R}^2 : xe^y = 3\}$. Which statement is TRUE?
 - \bigcirc A is an x-slice of the graph of f and B is a contour of f.
 - \bigcirc A is a y-slice of the graph of f and B is a contour of f.
 - \bigcirc A is a contour of f and B is a x-slice of the graph of f.
 - \bigcirc A is a contour of f and B is a y-slice of the graph of f.
 - O None of the above statements are true.
- (1c) Let S be the unit sphere in \mathbb{R}^3 centered at the origin. Consider the sets

$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} \qquad B = \{(\rho, \theta, \phi) \in \mathbb{R}^3 : \rho = 1\} \qquad C = \{(r, \theta, z) \in \mathbb{R}^3 : r^2 + z^2 = 1\}$$

Which of the following statements is TRUE? Select only one.

- \bigcirc Only A is equal to S.
- \bigcirc Only B is equal to S.
- \bigcirc Only C is equal to S.
- \bigcirc Only A and B are equal to S.
- \bigcirc A, B, and C are all equal to S.
- (1d) Husky Pup Pet Store sells two competing brands of dog food: Fido Food and Canine Cuisine. Let F(x, y) be the number of bags of Fido Food sold per week, where x is the price (in dollars) of each bag of Fido Food and y is the price (in dollars) of each bag of Canine Cuisine. Please select the statement below that is both correct and well-justified.
 - \bigcirc $\frac{\partial F}{\partial y}$ is usually positive, because an increase in the price of Canine Cuisine will result in a decrease in the demand for Canine Cuisine and an increase in the demand for Fido food.
 - \bigcirc $\frac{\partial F}{\partial y}$ is usually positive, because an increase in the price of Canine Cuisine will result in an increase in the price of Fido Food.
 - $\bigcirc \frac{\partial F}{\partial y}$ is usually negative, because if the demand for Canine Cuisine increases, the demand for Fido food will decrease.
 - $\bigcirc \frac{\partial F}{\partial y}$ is usually negative, because an increase in the price for Fido Food will result in a decrease in the demand for Fido Food.
 - O None of the above are both correct and well-justified.

2.	(3 points) The parts of this question are unre Fill in EXACTLY ONE circle. (unfilled O filled		
	(2a) Let $A \subseteq \mathbb{R}^n$ and let $f: A \to \mathbb{R}^m$. Let a be a Which of the following is EQUIVALENT to		
		$= \begin{cases} < \delta \\ < \delta \\ = \end{cases} $	$\Rightarrow f(x) - b < \varepsilon$ $\delta \Rightarrow f(x) - b < \varepsilon$ $f(a)$
	(2b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous. Which states $\bigcap f$ has a maximum and a minim $\bigcap f$ has a maximum and a minim $\bigcap \text{If } \lim_{\ x\ \to\infty} f(x) = 0 \text{ then } f \text{ has a } $ $\bigcap \text{If } \lim_{\ x\ \to\infty} f(x) = \infty \text{ then } f \text{ has } $ $\bigcirc None of these are necessarily transformed in the maximum of the maximum of$	um um ma a m	on $(0, 237)^n$. ximum.
	 (2c) Let S be a compact set in ℝⁿ. Which of the Every sequence in S converges. ○ Every subsequence of a sequence of the set S is path-connected. ○ The set S is not open. ○ None of the above are necessar 	ce ii	n S converges.
3.	(3 points) For each set S , determine whether No justification is necessary. Fill in ALL boxes (3a) $\mathbb{R}^{237} \setminus \overline{B_{137}(0)}$		atisfies each of the 4 listed properties. at apply. If none apply, leave it blank. (unfilled □ filled ■)
	open -		path-connected
	□ compact		closed
	(3b) $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1 \text{ and } $	x :	≠ 0}
	□ open	,	path-connected
	□ compact		closed
	(3c) $S = \{(xy^3, e^{xy}, x^3, \sin y) : x, y \in [0, 1]\}$		a de la companya de l
	□ open	p]	path-connected
	compact		closed

- 4. The parts of this question are unrelated.
 - (4a) (3 points) Let $A = \{(x, y) \in \mathbb{R}^2 : y > x^2\}$. Draw a "picture proof" that (1, 1) is a boundary point of A. Label your picture with quantities according to how a proof would be written. Do not write a proof.

For 2 point
$$(x,y) \in \mathbb{R}^2$$
, $E = \|(x,y) - (1,1)\|$

$$B_{\varepsilon}((1,1)) \wedge A \neq \emptyset$$
 and $B_{\varepsilon}((1,1)) \wedge A' \neq \emptyset$.

(4b) (4 points) Show that
$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$$
 does not exist.

Choose two sequences
$$S_K = \frac{1}{K}$$
, and $t_K = \frac{1}{K^3}$.

By definition,
$$\lim_{K\to\infty} S_K = 0$$
 and $\lim_{K\to\infty} t_K = 0$.

$$\frac{(0)^{6} + (\frac{1}{k})^{2}}{(0)^{6} + (\frac{1}{k})^{2}} = \frac{1}{0} = 0.$$

$$\frac{\lim_{\kappa \to \infty} \frac{\left(\frac{1}{\kappa}\right)^3 \left(\frac{1}{\kappa^3}\right)}{\left(\frac{1}{\kappa}\right)^6 + \left(\frac{1}{\kappa^3}\right)^2} = \lim_{\kappa \to \infty} \frac{\frac{1}{\kappa^6}}{\frac{1}{\kappa^6} + \frac{1}{\kappa^6}} = \lim_{\kappa \to \infty} \frac{1}{\frac{1}{\kappa^6}}$$

$$=\lim_{K\to\infty}\frac{1}{2}=\frac{1}{2}.$$

The limits along the line (0,1) is different from the limit along the (1,1) line, silve $0 \neq \frac{1}{2}$. lim (0, sic) = lim (tic, sic) = $0 \neq \frac{1}{2}$. Know (1,1)

Therefore since the limit of sequences along each line computers two different values 25 the sequences approach (0,0) the limit does MAT237 Term Test 1 - Page 5 of 12 October 29, 2021 wat

5. (5 points) Prove that f(x, y) = 3x + 2y is continuous at (1,5) using the ε - δ definition.

Rayh Werk
$$\lim_{(x,y)\to(1,5)} f(x_{i}y) = f(1,5) = 13$$
 $0 \le \|(x_{i})-(x_{i})\| \le \Rightarrow \|f(x_{i}y)-13\| \le \xi$
 $\sqrt{(x_{i}-1)^{2}+(y_{i}-5)^{2}} \qquad |13x_{i}+2y_{i}-13|| \le \xi$
 $(x_{i})-(x_{i})^{2}+(y_{i}-5)^{2} \qquad |13x_{i}+2y_{i}-13|| \le \xi$
 $(x_{i})-(x_{i})^{2}+(y_{i}-5)^{2} \qquad |13x_{i}+2y_{i}-13|| \le \xi$
 $(x_{i})-(x_{i})^{2}+(y_{i}-5)^{2} \qquad |x_{i}|^{2} \le \xi$
 $(x_{i})-(x_{i})^{2}+(x_{i}-5)^{2} \qquad |x_{i}|^{2} \le \xi$
 $(x_{i})-(x_{i})-(x_{i})^{2}+(x_{i}-5)^{2} \qquad |x_{i}|^{2} \le \xi$
 $(x_{i})-(x_{i})-(x_{i})^{2}+(x_{i})^{2} = \xi$
 $(x_{i})-(x_{i})-(x_{i})^{2} = \xi$
 $($

=> 11f(x,4)-f(1,5)11 = 11f(x,4)-1311 < 5.

proof!

• Choose
$$\delta = \frac{\varepsilon}{5}$$
.

$$= 5\left(\frac{\varepsilon}{5}\right)$$

6. (5 points) A contour plot of a differentiable function $g : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ is provided below. Four points P,Q,R, and S are labelled. Use this diagram for every part below. No justification is necessary.

Fill in ALL boxes that apply. If none apply, leave it blank.

(unfilled □ filled ■)

- (6a) At which of these 4 points is g_x negative?
 - \square P
- **■** Q
- $\square R \qquad \square S$
- (6b) At which of these 4 points is $D_{(1,1)}g$ approximately zero?
 - \Box P
- \square Q
- $\square R$
- m S
- (6c) Choose the minimum of these 4 real numbers. If several choices apply, select them all.
 - \square $D_{(1,1)}g(P)$
- $\Box D_{(1,1)}g(Q)$
- \square $D_{(1,1)}g(R)$
- \square $D_{(1,1)}g(S)$

(6d) Sketch the gradient vector field of g.

7. (2 points) Let $g: \mathbb{R}^2 \to \mathbb{R}$ be given by $g(x,y) = xy^2$. No justification is necessary for any part below. (7a) Calculate $\nabla g(-1,2)$.

$$\nabla g(-1,2) = \left(\Box, - \Box \right)$$

(7b) For which **unit** vector $u \in \mathbb{R}^2$ is the quantity $D_u g(-1, 2)$ maximized?

$$u = \sqrt{\frac{1}{32}} \left(\downarrow \downarrow, - \downarrow \downarrow \right)$$

8. (5 points) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be differentiable and fix $p = (1,2) \in \mathbb{R}^2$. Suppose

$$f(p) = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$$
 and $Df(p) = \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$.

No justification is necessary for any part below.

(8a) Compute $\partial_2 f(p)$.

$$\partial_2 f(p) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

(8b) Compute $D_{\nu}f(p)$ where $\nu = (0.5, -0.5)$.

$$D_{\nu}f(p) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(8c) Give an explicit formula for the differential of f at p.

$$g(h) = \begin{bmatrix} 0 & 5 \\ 3 & -1 \end{bmatrix} h$$
, $h \in \mathbb{R}^2$.

(8d) Linearly approximate f(1.5, 1.5).

$$f(1.5,1.5) \approx \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

9. (6 points) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$. Using the limit definition of differentiability, prove that the function f + g is differentiable at a and

 $d(f+g)_a = df_a + dg_a$. Frant to prove that Zim (fig(2+4)-(fig)(2) -d(fig)2(h)=0. SEE PAGE f: Rh-spin and g: Rh-spin are differentiable. Then, their differentials do and dga exist likear maps approximating the derivatives of f definition, we have 9(2+4)- 9(2) - dysth) = By the linearity of limits, [insert textbook theorem here], f(2+h) - f(2) / dfe(h) + lim g(2+h) - g(2) - dge(h) = $\lim_{h\to 0} \left\{ \frac{f(a+h)-f(a)-df_2(h)}{||h||} \right\} = 0$. = lim [f(2+h)+g(2+h)-f(2)-g(2)-df_1(h)+dg_2(h)]

lim (f+g)(2+h)-(f+g)(2)-d(f+g)_2(h)

h>0. · Therefore the function fry is differentiable at 2, and the differentials (linear maps) are dfa(h) +dga(h) = d(fty)a(h), which implies that d(fty) = dfa + dga, which is what I wanted to show. **MAT237** Term Test 1 - Page 9 of 12 October 29, 2021

Do not tear this page off. This page is for additional work and will not be graded, unless you clearly indicate it on the original question page.

Do not tear this page off. This page is for additional work and will not be graded, unless you clearly indicate it on the original question page.

> 103. 103 2x212+2x2x2 48 10 32-64 -(x2+1,2) + (

Do not tear this page off. This page is for additional work and will not be graded, unless you clearly indicate it on the original question page.

To prove try is differentiable, it suffices to prove that for one Component f:: RM > R and g:: RM > R, for i f(1,..., m), if fi and gi are differentiable, then fitgi is differentiable and the differential linear map office + dgie is 2 mx1 matrix. broot

-Assume of and y are differentiable at a. Then each of their components fi, gi for i ∈ (1, ..., u) de differentiable at a.

· By definition, $\lim_{h \to 0} \frac{fi(2ih_i) - fi(2i) - df_2^i(h_i)}{h_i} = 0$ $\lim_{h \to 0} \frac{g^i(2ith_i) - f^i(2i) - dg_2^i(h_i)}{h_i} = 0.$

· By the linearity addition of limits. lim f'(2;+h;)-fi(2;)-dfi(h;) + lim g'(2;+h;)-g(2;)-dgi(h;) = lim (f+y)'(2;+hi) - (f+y)'(2;) - d(f+g)'2(hi) =0.

2nd thus (ftgl'(2) is differentiable for all if (1, -, m).

- · Furthermore, dfi (hi) + dgi(hi) = d(ftg)ilhi), which is a row vector which implies that df2 + dg2 = d(F+y)a.
- · The matrix [d(fry)] is the differential of fry, honce

Since $df_0 + dg_0 = d(f_1g)_0$, for $g(1) = (1, \dots, m)$, then $df_0 + dg_0 = \begin{bmatrix} df_0 \\ df_0 \end{bmatrix} + \begin{bmatrix} dg_0 \\ dg_0 \end{bmatrix} = \begin{bmatrix} d(f_1g)_0 \\ df_0 \end{bmatrix} = d(f_1g)_0$.

To differentiable and df2+dg2 = d(f4y)2, as desired

Term Test 1 - Page 12 of 12

October 29, 202: