13.10.24

≔ Rodzaj	Wykład
■ Data	@October 3, 2024
■ Kolos	@December 5, 2024
a: Nauka	Nie zaczęte
☑ Notatki do nauki	

Notatki

Algorytmy

- jednoznaczna metoda obliczenia w skończonym czasie na podstawie danych wejściowych (input) do danych wynikowych (output).
- Algorytmy służą do obliczeń, przetwarzania danych. Są jak przepis na ciasto (mają dane oraz listę kroków

Przykłady algorytmów

- Ciąg Fibonacciego: 1,1,2,3,5,8,13,... dodawanie do siebie dwóch poprzednich liczb
- Algorytmem Euklidesa: służy do znajdowania największego wspólnego dzielnika (NWD) dwóch liczb, rekurencja

```
int nwd(int a, int b) {
    while (b != 0) {
        int r = a % b; // Obliczanie reszty
        a = b; // Zamiana a na b
        b = r; // Zamiana b na resztę
    }
return a; // Zwracanie NWD, gdy reszta wynosi 0
}
```

• Maszyna Turinga:

13.10.24

Maszyna Turinga to abstrakcyjny model obliczeniowy, który służy do symulacji procesów obliczeniowych. Składa się z nieskończonej taśmy podzielonej na pola, głowicy odczytującej i zapisującej symbole na taśmie oraz skończonej liczby stanów. Głowica porusza się w lewo lub prawo, a jej działania są kierowane przez tablicę przejść – zbiór reguł opisujących, co zrobić na podstawie aktualnego stanu i symbolu na taśmie.

Maszyna Turinga działa, wykonując obliczenia poprzez zmiany stanów i symboli na taśmie. Choć to teoretyczny model, stanowi podstawę współczesnej informatyki i zrozumienia pojęcia algorytmu.

Hierarchia poziomów komputera

Level	Nazwa	Opis
6	Application user	Programy użytkownika, takie jak edytory tekstu czy przeglądarki internetowe, które korzystają z wyższych poziomów abstrakcji.
5	High-Level Language	Języki programowania wysokiego poziomu, takie jak C++, Python, które są zrozumiałe dla ludzi i muszą być przetłumaczone na niższe poziomy.
4	Assembly Language	Język niskiego poziomu, który bezpośrednio odzwierciedla instrukcje wykonywane przez procesor, ale jest bardziej czytelny dla programistów niż język maszynowy.
3	Operating System system software	Warstwa zarządzająca zasobami sprzętowymi i zapewniająca interfejs między oprogramowaniem a sprzętem.
2	Instruction Set Architecture machine	Zbiór instrukcji rozumianych przez procesor, definiujący, jak wykonywane są operacje na poziomie sprzętowym.
1	Microarchitecture	Sposób, w jaki procesor fizycznie realizuje instrukcje, w tym organizacja jego elementów,

13.10.24

	control	takich jak rejestry, ALU itp.
0	Digital Logic	Najniższy poziom, który dotyczy podstawowych operacji logicznych i obwodów cyfrowych, stanowiących fundament działania sprzętu.

Pytania kontrolne

- ▼ Jakie kąty ma wielokąt foremny? ma wszystkie kąty wewnętrzne równe
- ▼ Jakie boki ma wielokąt foremny?
 ma wszystkie boki równej długości

13.10.24