

Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

Uday Hegde

National Center for Space Exploration Research

Michael Hicks

NASA John H. Glenn Research Center

Motivation and Application

Precursor study to the investigation of supercritical water oxidation (SCWO)

Dissolve inorganic precipitates generated during SCWO in a subcritical shroud

Objectives

- Characterize the hydrodynamics of supercritical water jets
- Identify the jet injection conditions leading to laminar and turbulent regimes
- Assess the effects of buoyancy on the jet behavior

$Re \sim \text{Momentum}/\text{Viscous}$

$$Re = \frac{\rho U d}{\mu}$$

$F \sim \text{Momentum}/\text{Buoyancy}$

$$F = \frac{U}{(\frac{\Delta \rho}{\rho} g d)^{1/2}}$$

$Gr \sim \text{Buoyancy}/\text{Viscous}$

$$Gr = (\frac{Re}{F})^2$$

SUPERCritical WATER TEST CELL

Experimental Conditions

Supercritical Jet Injected into Supercritical Water

Re = 448
F = 1.37

Re = 1330
F = 3.81

Re = 1780
F = 5.03

Re = 2680
F = 7.31

As Re increases, jet transitions from mostly laminar to turbulent

Classical Reynolds number transition to turbulence of jets

Supercritical Jet Injected into Subcritical Water

Re = 471
F = 0.5

Re = 943
F = 1.0

Re = 1890
F = 2.0

Re = 2830
F = 3.0

Transition appears to be from turbulent buoyant plume to turbulent buoyant jet

Jet Comparison

Supercritical into supercritical

$Re = 448$

$F = 1.37$

Supercritical into subcritical

$Re = 471$

$F = 0.5$

For similar Reynolds and Froude numbers the character of the two jets is strikingly different.

Property Variations near Critical Point

Figure from Piero and Mokry, www.intechopen.com

Influence of compressibility, C_p , λ ?

Vorticity Equation

Consider azimuthal vorticity equation for axisymmetric, variable density with buoyancy flow.

Viscous effects not shown

$$\begin{aligned} V &= \nabla \times \psi + \nabla \varphi \\ \omega &= \nabla \times V = \nabla \times (\nabla \times \psi) \\ \nabla \cdot V &= \nabla^2 \varphi \end{aligned}$$

$$\frac{D\omega}{Dt} - \omega \frac{v_r}{r} + \omega(\nabla \cdot V) = \frac{1}{\rho^2} \left(\frac{\partial \rho}{\partial r} \frac{\partial p}{\partial x} - \frac{\partial p}{\partial r} \frac{\partial \rho}{\partial x} \right) - \frac{g}{\rho} \frac{\partial \rho}{\partial r}$$

↓ ↓ ↓ ↓
 Vortex Compressibility Baroclinic Buoyancy
 Stretching $\sim M^2$ $\sim \text{Pr}$ $\sim \text{Pr}/F^2$

- Prandtl number ($\text{Pr} = \mu C_p / \lambda = \delta_v / \delta_T$) comes in because thermal mixing layer thickness can be much different (thinner) than velocity shear layer
Note $\text{Pr}/F^2 \sim \text{Ra}/\text{Re}^2$
- $M^2 \ll 1$ for the conditions of the experiment. It can be large very close to the critical point (speed of sound $\rightarrow 0$)

Supercritical Jet Injected into Supercritical Water

Transition from Buoyant Laminar Jet to Buoyant Turbulent Jet

Re = 448
 $\text{Pr}/F^2 = 1.4$

Re = 1330
 $\text{Pr}/F^2 = 0.2$

Re = 1780
 $\text{Pr}/F^2 = 0.11$

Re = 2680
 $\text{Pr}/F^2 = 0.05$

Supercritical Jet into Subcritical Water

Transition from Buoyant Turbulent Plume to Buoyant Turbulent Jet

Re = 471
 $\text{Pr}/F^2 = 56$

Re = 943
 $\text{Pr}/F^2 = 14$

Re = 1890
 $\text{Pr}/F^2 = 3.5$

Re = 2830
 $\text{Pr}/F^2 = 1.6$

Findings

$Re = 471$
 $Pr/F^2 = 56$

$Re = 448$
 $Pr/F^2 = 1.4$

At low Reynolds number, the parameter Pr/F^2 controls the laminar/turbulent nature of the jet . For values of the parameter $\gg 1$, the jet is turbulent due to strong buoyancy effect.

Findings (contd)

$Re = 943$
 $Pr/F^2 = 14$

$Re = 1330$
 $Pr/F^2 = 0.2$

At intermediate Reynolds number the situation is similar to the low Reynolds number case.

Findings (contd 2)

$Re = 2830$
 $Pr/F^2 = 1.6$

$Re = 2680$
 $Pr/F^2 = 0.05$

At large Reynolds numbers (> 2000), the jet is turbulent.

Supercritical Jet (~ 450 C) Injected into Transcritical Water (~ 380 C)

$Re = 466$
 $Pr/F^2 = 7$

$Re = 935$
 $Pr/F^2 = 1.2$

$Re = 1400$
 $Pr/F^2 = 0.6$

$Re = 1880$
 $Pr/F^2 = 0.4$

Note appearance of laminar length as flow transitions from plume to jet behavior

Summary

- Behavior of supercritical water jets injected into subcritical and supercritical was studied
- The laminar/turbulent nature of the jet under gravitational conditions depends upon the Reynolds number of injection and the parameter Prandtl number/(Froude number)²
- Compressibility may be important near the critical point but it is not clear it can be separated from gravity effects on the ground

Acknowledgments

- U. Hegde was supported under NASA Contract NNC08BA08B with NCSER
- D. Gotti, J. Owens, and W. Yanis of NCSER contributed to the design and development of the apparatus and experimental testing