wq: Exploring water quality monitoring data (version 0.3-1)

Alan D. Jassby and James E. Cloern January 29, 2011

Contents

1	Introduction	1				
2	Preparing data from an external file					
3	3 The WqData class					
4	4 Creating a WqData object					
5	Reshaping					
6	Analyzing6.1 Trends6.2 Empirical Orthogonal Functions6.3 Time series decomposition6.4 Phenological parameters6.5 Miscellaneous plotting functions	10 10 15 20 24 28				
7	Concluding Remarks	29				

1 Introduction

This package contains functions to assist in the processing and exploration of data from monitoring programs for aquatic ecosystems. The name wq stands for water quality and reflects a focus on time series data for physical and chemical properties of water, as well as the plankton. The package is intended for programs that sample approximately monthly at discrete stations, a feature of many legacy data sets. Although our emphasis is mainly estuarine and nearshore coastal ecosystems, most

functions should be applicable for a wide range of systems, from freshwater to open ocean.

The approach used here involves transformation of external data files into a standard format that existing functions can then handle easily. A conceptualization of this sequence is illustrated in Figure 1. Water quality monitoring programs maintain their data in a wide variety of formats, and the first step is to read data from an external file and store it in a data frame. Often, the external data are stored or at least transmitted in a comma- or tab-delimited format and can be easily handled with read.table or one of its variants. Some *cleaning* or manipulation of the data set may take place during the import process, but more substantive ones are often undertaken immediately after. Typical modifications include renaming variables, dropping unnecessary variables and observations, and coercing variables to different classes. These modifications are chosen with regard to ease of use and the intended analysis, but also in order to facilitate construction of an object with a standardized format. Before constructing this object, though, we may want to derive new variables from the original ones (e.g., salinity from conductivity). Next, we *qenerate* the standardized "wq data" object, which is a member of the WqData class defined in this package. We can then reshape into various forms—matrix, list, time series vector, data frame, etc.—depending on the analysis. At this point, the data are finally in a form that we can analyze and visualize. Some functions may be able to explore a WqData object directly without any additional reshaping.

This package is intended to facilitate all of these activities. We will illustrate some of the steps in Figure 1 using the accompanying data set sfbay. The exercise should demonstrate most of the current capability of the package and make its use more clear.

> library(wq)

2 Preparing data from an external file

Our starting point is a comma-delimited file downloaded on 2009-11-17 from the U.S. Geological Survey's water quality data set for San Francisco Bay (http://sfbay.wr.usgs.gov/access/wqdata). The downloaded file, sfbay.csv, starts with a row of variable names followed by a row of units, so the first two lines are skipped during import and simpler variable names are substituted for the originals. Also, only a subset of stations and years is used in order to keep sfbay.csv small:

Figure 1: A typical sequence of data analysis. Example functions from the package are listed underneath the corresponding processes in the sequence.

```
> sfbay <- subset(sfbay, stn %in% c(21, 24, 27, 30, 32, 36) & substring(date,
+ 7, 10) %in% 1985:2004)</pre>
```

The resulting data frame sfbay is provided as part of the package, and its contents are explained in the accompanying help file.

> head(sfbay)

```
date time stn depth chl dox spm ext
                                                    sal temp nox nhx
6835
      1/23/1985 1120
                       21
                               1 5.6
                                      NA
                                           17 1.6 28.15
                                                           NA
                                                               NA
                                                                   NA
                               2 3.4
6836 1/23/1985 1120
                                          17 1.6 28.58
                       21
                                      NA
                                                          NA
                                                               NA
                                                                   NA
6837
      1/23/1985 1120
                               6 3.1
                                      NA
                                          18 1.6 28.91
                                                               NA
                       21
                                                          NA
                                                                   NA
6838
      1/23/1985 1120
                              12 3.4
                                          21 1.9 29.36
                       21
                                      NA
                                                          NA
                                                               NA
                                                                   NA
6841 1/23/1985 1222
                       24
                               1 6.2
                                          17 1.6 27.42
                                      NA
                                                           NA
                                                               NA
                                                                   NA
6842
      1/23/1985 1222
                       24
                               2 5.6
                                      NA
                                          18 1.6 27.42
                                                          NA
                                                               NA
                                                                   NA
```

The next step is to add any necessary derived variables to the data frame. An initial data set will sometimes contain conductivity rather than salinity data, and we might want to use ec2pss to derive the latter. That's not the case here, but let's assume that we want dissolved oxygen as percent saturation rather than in concentration units. Using oxySol and the convention of expressing percent saturation with respect to surface pressure:

```
> x <- sample(1:nrow(sfbay), 10)
> sfbay[x, "dox"]
 [1]
      9.6
                     8.4
                            NΑ
                                  NA 10.4
                                            NA 7.2
            NA
                  NΑ
                                                       NΑ
> sfbay1 <- transform(sfbay, dox = round(100 * dox/oxySol(sal,</pre>
      temp), 1))
> sfbay1[x, "dox"]
 [1] 144.0
               NA
                     NA 115.5
                                  NA
                                        NA 126.7
                                                     NA 106.9
                                                                  NA
```

Aside from ec2pss and oxySol, the function ammFrac is available for estimating the fraction of total ammonium in the un-ionized form.

As will be seen below, much of the manipulation work needed to form the WqData object is taken care of by a generating function in the package, and there is really nothing more that needs to be done. In fact, not even the renaming of the variables was necessary: only the initial read.csv function was required. This is partly due to the way the original data were formatted in the downloaded file and more work may be needed in other cases.

3 The WqData class

We define a standardized format for water quality data by creating a formal (S4) class, the WqData class, that enforces the standards, and an accompanying generating function wqData. The generating function acts on the suitably-modified data frame and constructs a WqData object. The WqData object is just a simple extension or subset of the data.frame and can be treated as such. The only restrictions it makes is in the column names and classes.

We decided to accommodate two types of sampling time, namely, the date either with or without the time of day. The former are converted to the POSIXct class and the latter to the Date class. A special class DateTime is created, which is the union of these two time classes. This was done because the use of classes that combine date and time of day require an additional level of care with respect to time zone (Grothendieck and Petzoldt 2004). Almost all analyses of these low-frequency sampling programs are concerned only with the date, and this additional burden and possible source of error seems unwarranted when not necessary.

Surface location is specified by a site code, as the intention is to handle discrete monitoring programs as opposed to continuous transects. Latitude-longitude and distances from a fixed point are implicit in the site code and can be recorded in a separate table (see sfbayVars). The depth is specified separately as a number. Other information that may not be depth-specific, such as the mean vertical extinction coefficient in the near-surface layer, can be coded by a negative depth number. The last two fields in the data portion of a WqData object are the variable code and the value. The variables are given as character strings and the values as numbers. As in the case of the sampling site, additional information related to the variable code can be maintained in a separate table (see sfbayVars).

4 Creating a WqData object

Like all S4 classes, WqData has a generating function called new automatically created along with the class. This function, however, requires that its data frame argument already have a fairly restricted form of structure. In order to decrease the manipulation required of the imported data, a separate, less restrictive generating function called wqData is available. This function is more forgiving of field names and classes and does a few other "cleanup" tasks with the data before calling new. Perhaps most useful, it converts data from a "wide" format with one field per variable into the "long" format used by the WqData class. For example, sfbay can be converted to a WqData object with a single command:

```
> sfb \leftarrow wqData(sfbay, c(1, 3:4), 5:12, site.order = TRUE, type = "wide", time.format = "%m/%d/%Y") > head(sfb)
```

	time	site	depth	variable	value
1	1985-01-23	s21	1	chl	5.6
2	1985-01-23	s21	2	chl	3.4
3	1985-01-23	s21	6	chl	3.1
4	1985-01-23	s21	12	chl	3.4
5	1985-01-23	s24	1	chl	6.2
6	1985-01-23	s24	2	chl	5.6

There is a summary method for this class that tabulates the number of observations by site and variable, as well as the mean and quartiles for individual variables:

> summary(sfb)

date range: 1985-01-23 to 2004-12-14

\$observations

	chl	dox	spm	ext	sal	temp	nox	nhx
s21	5164	3673	3903	159	5379	5385	135	135
s24	3340	2246	2405	146	3485	3480	123	123
s27	3927	2676	2848	150	4119	4118	142	142
s30	4496	2922	3106	147	4725	4720	165	164
s32	3560	2608	2763	129	3786	3777	141	141
s36	1576	1380	1438	23	1678	1676	101	101

\$quartiles

```
Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
chl
     0.10
            2.100
                     3.70
                           7.479
                                    7.600 221.20
dox
     4.10
            7.200
                     8.00
                            8.140
                                    8.800
                                            15.90
                    20.00 34.050
                                   35.000 983.00
spm
    1.00
           11.000
     0.20
            1.200
                            1.762
                                    1.900
                                            12.70
ext
                     1.50
                                            32.59
     3.80
           22.330
                    26.78 25.330
                                   29.570
sal
temp 7.24
           12.890
                    15.12 15.500
                                   17.890
                                            24.61
nox
     0.01
           12.380
                    22.69 28.550
                                   39.220 247.80
nhx
     0.01
            2.252
                     5.14 5.525
                                    8.398
                                            20.78
```

Plotting a "WqData" object produces a page for each variable specified, each page containing a strip plot of the values for each site (Figure 2). If no variables are specified, then the first 10 will be plotted:

```
> plot(sfb, vars = c("chl", "dox", "spm"), num.col = 2)
```

Apart from summary and plot, existing methods for data frames will produce an object of class "data.frame" rather than one of class "WqData".

Figure 2: Plotting specific variables of a "WqData" object, in this case chlorophyll-a, dissolved oxygen, and suspended particulate matter.

5 Reshaping

Historical water quality data are often suitable for analyzing as monthly time series, which permits the use of many existing time series functions. tsMake is a function for WqData objects that creates monthly time series for all variables at a single site or for a single variable at all sites, when the option type = "ts.mon". All replicates are first averaged and then the mean is found for the depth layers of interest. If no layers are specified, all depths will be used. The layer argument allows for flexibility in specifying depths, including negative depths used as codes for, say, "near botton" or "entire water column". The default time series plot is convenient for a quick look at the series (Figure 3):

```
> y <- tsMake(sfb, focus = "chl", layer = c(0, 5))
> y[1:6, ]
```

	s21	s24	s27	s 30	s32	s36
[1,]	4.500000	5.900000	NaN	1.300000	2.650000	6.250
[2,]	NaN	NaN	NaN	1.600000	5.550000	NaN
[3,]	5.858333	10.654167	12.291667	12.787500	11.866667	40.100
[4,]	4.638889	5.916667	8.133333	8.388889	11.455556	4.525
[5,]	2.575000	2.058333	1.566667	1.183333	1.725000	NaN
[6,]	3.025000	1.875000	1.441667	1.133333	1.641667	3.000

Chlorophyll in San Francisco Bay

Figure 3: Monthly mean chlorophyll ($\mu g L^{-1}$) in 0-5 m layer of San Francisco Bay.

> tsp(y)

[1] 1985.000 2004.917 12.000

> plot(y, main = "Chlorophyll in San Francisco Bay")

If the option type = "zoo", then tsMake produces an object of class "zoo" containing values by date of observation, rather than a monthly time series.

> head(tsMake(sfb, focus = "chl", layer = c(0, 5), type = "zoo"))

s21 s24 s27 s30 s32 s36 1985-01-23 4.500 5.90000 ${\tt NaN}$ 1.300000 2.650000 6.25 1985-02-27 1.600000 5.550000 NaN NaN NaN NaN

```
4.800
                   3.90000
1985-03-07
                            5.200000
                                      5.033333
                                                 5.166667
                                                            NaN
1985-03-13
           2.600
                            7.066667
                   9.35000
                                      5.066667
                                                4.500000
                                                            NaN
1985-03-21
              NaN
                   7.70000 13.300000 10.200000
                                                4.700000
                                                            NaN
1985-03-29 10.175 21.66667 23.600000 30.850000 33.100000 40.10
```

There are several functions for further reshaping of time series, which prepare them for use in specific analyses. ts2df converts a monthly time series vector to a year × month data frame. Leading and trailing empty rows are removed, additional rows with missing data are optionally removed, and the data frame can be reconfigured to represent a local "water year":

```
> tsp(ch127)
[1] 1978.000 2009.583
                       12.000
> chl27 <- round(chl27, 1)
> head(ts2df(ch127))
    Jan Feb Mar
                     May Jun Jul Aug Sep Oct Nov Dec
                 Apr
1978 1.1 2.8 5.5
                 2.7
                      3.4 1.9 1.6 NA 1.7 2.1 2.2 1.7
1979 1.9 1.8 2.4
                 3.8
                      2.3 4.8 1.6 3.9 2.1 1.2 1.1 NA
1980 1.3 1.9 2.1 10.2
                      3.4 2.1 1.1 1.4 1.6 1.4 1.7 1.3
1981 NA 1.7 2.0
                 9.1
                       NA NA
                              NA
                                   NA NA NA
1982 2.8 4.5 6.5
                 9.3 8.2 3.4 1.4
                                   NA 2.1 1.8 1.7 1.0
     NA 1.4 7.0 16.4 16.6 5.4 1.4 1.7 2.0 1.5 1.5 1.4
```

> ch127 <- sfbayChla[, "s27"]</pre>

Another example of its use is shown in Section 6.2 below. Another similar reshaping function is mts2ts, which converts a matrix time series to a vector time series for various analyses. It first aggregates the multivariate matrix time series by year, then converts it to a vector time series in which the "seasons" correspond to these annualized values for the original variables. The seas parameter enables focusing the subsequent analysis on seasons of special interest, or to ignore seasons where there are too many missing data. The function can be used in conjunction with seaKen to conduct a Regional Kendall trend analysis, as described in Section 6.1 below:

```
> y \leftarrow window(sfbayChla, s = 2005, end = c(2009, 12))
> mts2ts(y, seas = 2:4)
Time Series:
Start = c(2005, 1)
End = c(2009, 16)
Frequency = 16
[1] 5.830000 4.726667 6.013333 4.576667 5.543333 5.606667 5.873333
```

```
6.453333
                          7.633333
                                    7.463333
                                              7.810833
                                                        8.453333
     6.286667
                                                                   8.766667
Г15Т
     8.030000
               8.410000 18.064444
                                    9.764444 11.970000 12.451111 12.804444
[22] 16.178889 18.130000 20.582222 22.477778 26.878889 26.354444 29.867778
[29] 31.061111 33.715556 32.142222 33.153333
                                              7.884444
                                                        6.583333
                                                                   7.786667
[36]
     7.880000
               7.878889
                          9.237778 10.136667 10.234444 10.537778 11.924444
[43] 12.008889 12.078889 13.150000 12.951667 13.016667 15.060000 15.074444
[50] 10.948889 12.485556 13.802222 14.096667 14.777778 15.935556 16.969444
[57] 16.746667 20.165556 21.036667 21.838889 22.320000 23.547222 23.382222
[64] 24.001111
               4.661111
                          4.491111
                                    4.640000
                                              4.671111
                                                        4.672222
                                                                   4.434444
[71]
     4.634444
               5.232222
                          5.393333
                                    5.983333
                                              6.820000 7.706667
                                                                   8.453333
[78]
     9.126667
               8.067778
                          8.104444
```

6 Analyzing

6.1 Trends

The function mannKen does a Mann-Kendall test of trend on a time series and provides the corresponding nonparametric slope estimate. Because of serial correlation for most monthly time series, the significance of such a trend is often overstated and mannKen is better suited for annual series, such as this one for Nile River flow:

```
> mannKen(Nile)
$sen.slope
[1] -2.6
$sen.slope.pct
[1] -0.2828085
$p.value
[1] 3.658263e-05
$$
[1] -1387
$varS
[1] 112728.3
$miss
[1] 0
```

mannKen can also handle matrix time series, with options for plotting trends in the original units per year, as percent per year, or as Kendall's tau. The first option is

suitable when time series are all in the same units, such as chlorophyll-a measurements from different stations. The second makes sense with variables of different units but is not suitable for variables that can span zero (e.g., sea level, or temperature in $^{\circ}$ C). The last option can always be used but measures the strength of the correlation with time rather than the trend level. Plotted variables can be ordered by the size of their trends, and both statistical significance and excessive missing data are mapped to point colour and shape (see discussion of **seasonTrend** below). When aggregating monthly series to produce an annual series for trend testing, there is a utility function **tsSub** that allows subsetting the months beforehand. It can be useful for avoiding months with many missing data, or to focus attention on a particular time of year (Figure 4):

```
> y <- sfbayChla
> y1 <- tsSub(y, seas = c(1:7, 9:11))
> y2 <- aggregate(y1, 1, mean, na.rm = FALSE)
> mannKen(y)
     sen.slope sen.slope.pct
                                  p.value
                                               S
                                                      varS
                                                            miss
s21 0.09190635
                    2.226021 3.452421e-15 14638 3456081.3 0.355 0.2978775
s22 0.07876923
                    2.117911 5.211146e-14 13993 3455981.7 0.355 0.2847520
s23 0.09500000
                    2.278672 9.760948e-17 13359 2585387.7 0.229 0.3300964
                    2.226759 2.568569e-18 17562 4047306.7 0.204 0.3215600
s24 0.08837838
                    1.866458 6.861539e-15 15103 3761212.3 0.229 0.2904256
s25 0.08608696
s26 0.09054219
                    1.751421 8.957084e-12 11202 2695548.7 0.204 0.2691753
                    1.936613 6.308045e-16 16116 3974588.7 0.204 0.2986878
s27 0.09766450
s28 0.09857143
                    1.761713 1.549608e-12 11190 2504648.0 0.236 0.2824260
s29 0.09471782
                    1.694002 1.947846e-13 14326 3796116.7 0.204 0.2737836
s30 0.11876543
                    1.910050 3.524414e-16 16257 3974652.3 0.204 0.3013011
s31 0.13363636
                    1.767366 2.822022e-11
                                           9221 1919071.7 0.377 0.2781347
s32 0.14047619
                    1.817045 7.665073e-14 12917 2984859.0 0.343 0.2899374
s33 0.15735099
                    1.697400 1.664931e-08
                                           4986
                                                  780210.7 0.539 0.2747864
s34 0.15866621
                    1.721436 5.774792e-10
                                           7135 1325498.3 0.551 0.2757168
s35 0.14066225
                    1.398234 8.246916e-07
                                           3821
                                                  600527.7 0.617 0.2509688
s36 0.14956522
                    1.577695 1.049397e-08 6204 1174965.3 0.589 0.2598969
```

> mannKen(y, plot = TRUE, type = "pct", order = TRUE)

A main role for mannKen in this package is as a support function for the Seasonal Kendall test of trend (Hirsch et al. 1982, Helsel and Hirsch 2002). The Seasonal Kendall test combines information about trends for individual months (or some other subdivision of the year such as quarters) and produces an overall test of trend for a series. mannKen collects certain information on the pattern of missing data that is

Figure 4: Chlorophyll-a ($\mu g L^{-1} year^{-1}$) trends in San Francisco Bay.

then used to determine if a Seasonal Kendall test is warranted. In particular, there is an option to report a result only if more than half the seasons are each missing less than half the possible comparisons between the first and last 20% of the years (Schertz et al. 1991):

```
> ch127 <- sfbayChla[, "s27"]
> seaKen(ch127)

$sen.slope
[1] 0.1083333

$sen.slope.pct
[1] 2.148168

$p.value
[1] 1.117981e-25

$miss
    1    2    3    4    5    6    7    8    9   10   11   12
0.286 0.000 0.000 0.000 0.265 0.265 0.265 0.429 0.143 0.143 0.286 0.429
```

An important role, in turn, for seaKen in this package is as a support function for seaRoll, which applies the Seasonal Kendall test to a rolling window of years, such as a decadal window. There is an option to plot the results of seaRoll. seaKen is

subject to distortion by correlation among months, but the relatively small number of years per window in typical use does not allow for an accurate correction:

> seaRoll(chl27, w = 10)

	sen.slope	sen.slope.pct	p.value
1987	0.0000	0.000	1.000
1988	0.0258	0.760	0.357
1989	NA	NA	NA
1990	NA	NA	NA
1991	NA	NA	NA
1992	0.0400	1.090	0.078
1993	NA	NA	NA
1994	NA	NA	NA
1995	0.0400	1.010	0.126
1996	-0.0217	-0.567	0.525
1997	-0.0364	-0.900	0.305
1998	NA	NA	NA
1999	NA	NA	NA
2000	0.1380	2.720	0.006
2001	NA	NA	NA
2002	NA	NA	NA
2003	0.2700	4.440	0.000
2004	0.2870	4.570	0.000
2005	0.3160	5.120	0.000
2006	0.2600	3.800	0.000
2007	0.3160	4.380	0.000
2008	0.3090	4.160	0.000
2009	NA	NA	NA

The Seasonal Kendall test is not informative when trends for different months differ in sign. The function seasonTrend enables visualization of individual monthly trends and can be helpful for, among other things, deciding on the appropriateness of the Seasonal Kendall test. The Theil-Sen slopes are shown along with an indication, using dot colour, of the Mann-Kendall test of significance. The dot shape (filled or empty) indicates whether the proportion of missing values in the first and last fifths of the data is < 0.5 or not (Figure 5).

```
> x <- sfbayChla
> seasonTrend(x, plot = TRUE, ncol = 4, scales = "free_y")
```

The function trendHomog can also be used to test directly for the homogeneity of seasonal trends (van Belle and Hughes 1984):

Figure 5: Mann-Kendall tests of chlorophyll trends for individual months at stations in San Francisco Bay. Trends are expressed in original units per year, in this case μg L⁻¹ year⁻¹.

```
> x <- sfbayChla[, "s27"]
> trendHomog(x)

$chi2.trend
[1] 118.4498

$chi2.homog
[1] 10.31347

$p.value
[1] 0.5024304
```

A Regional Kendall test is similar to a Seasonal Kendall test, with annual data for multiple sites instead of annual data for multiple seasons (Helsel and Frans 2006). The function mts2ts (Section 5) facilitates transforming an annual matrix time series into the required vector time series for seaKen, with stations playing the role of seasons. As with seasons, correlation among sites can inflate the apparent statistical significance, so the test is best used with stations from different subregions that are not too closely related, unlike the following example:

```
> chl <- sfbayChla[, 1:12]</pre>
> seaKen(mts2ts(chl, 2:4))
$sen.slope
[1] 0.2155
$sen.slope.pct
[1] 2.379796
$p.value
[1] 4.539847e-24
$miss
          2
                 3
                                           7
    1
                              5
                                    6
                                                              10
                                                                    11
                                                                           12
0.286 0.286 0.143 0.000 0.286 0.000 0.000 0.000 0.000 0.000 0.286 0.286
```

6.2 Empirical Orthogonal Functions

Empirical Orthogonal Function (EOF) analysis is a term used primarily in the earth sciences for principal component analysis applied to simultaneous time series at different spatial locations. Hannachi et al. (2007) provides a recent comprehensive summary. The function eof in this package, based on prcomp in the stats package, scales the time series and applies a promax rotation to the EOFs.

Figure 6: Interpolation of a monthly time series (interpolated data in red).

eof does not permit NAs and some kind of data imputation or omission will usually be required. The function interpTs is handy for small data gaps. Here, we use it to bridge gaps of up to three months. The interpolated series is then plotted in red and the original series overplotted in blue (Figure 6).

```
> ch127 <- sfbayChla[, "s27"]
> ch127a <- interpTs(ch127, gap = 3)
> plot(ch127a, col = "red", lwd = 0.5, xlab = "")
> lines(ch127, col = "blue", lwd = 1.5)
```

eof requires an estimate of the number of EOFs to retain for rotation. eofNum provides a guide to this number by plotting the eigenvalues and their confidence intervals in a "scree" plot. The significance of each eigenvalue is also assessed using rule N, which repeatedly computes eigenvalues of the correlation matrix for an appropriately-sized random variable matrix and returns the 0.95 quantiles. Here, we apply eofNum to annualized San Francisco Bay chlorophyll data and retain the stations with no missing data, namely, the first 12 stations.

```
> chla1 <- aggregate(sfbayChla, 1, mean, na.rm = TRUE)
> chla1 <- chla1[, 1:12]
> eofNum(chla1, distr = "lognormal", reps = 2000)
```


Figure 7: Eigenvalues of the San Francisco Bay chlorophyll time series matrix.

These stations have similar coefficients for the first EOF and appear to act as one with respect to chlorophyll variability on the annual scale (Figure 7). It suggests that further exploration of the interannual variability of these stations can be simplified by using a single time series, namely, the first EOF.

```
> e1 <- eof(chla1, n = 1)
> e1
$REOF
    id
            EOF1
   s21 0.2984840
   s22 0.2875436
   s23 0.3074099
4
   s24 0.3038324
5
   s25 0.3013699
   s26 0.2686399
6
7
   s27 0.3116476
   s28 0.2791966
   s29 0.3042674
10 s30 0.2931426
11 s31 0.2549798
12 s32 0.2445793
```

```
$amplitude
     id
               EOF1
  1978 -3.71779761
  1979 -3.31653011
  1980 -3.66943342
  1981 -2.94304599
5
  1982 -2.72889938
6
  1983 0.05732382
7
  1984 -2.02038749
8
  1985 -1.89260439
  1986 -0.30543129
10 1987 -4.18310354
11 1988 -2.38621346
12 1989 -1.07971835
13 1990 -0.90950909
14 1991 -3.05696910
15 1992 -2.71675623
16 1993 -0.64605278
17 1994 -2.17668147
18 1995 2.32949446
19 1996 -2.59126388
20 1997
        0.86074181
21 1998
        3.36503739
22 1999
        2.70185298
23 2000
        3.23687896
24 2001
         2.78555990
25 2002
        1.53489367
26 2003
        5.42194986
27 2004
        1.40560267
28 2005
        0.58759133
29 2006
        6.27913918
30 2007
         3.92929848
31 2008
        5.84503308
$eigen.pct
 [1] 78.4 8.1 7.0 3.5 1.4 0.5 0.3 0.3 0.2 0.2 0.1 0.1
$variance
```

The function eofPlot produces a graph of either the EOFs or their accompanying time series. In this case, with n=1, there is only one plot for each such graph (Figure 8).

[1] 78.4

Figure 8: Time series for the first EOF of the San Francisco Bay chlorophyll time series matrix.

> eofPlot(e1, type = "amp")

Principal component analysis can also be useful in studying the way different seasonal "modes" of variability contribute to overall year-to-year variability of a single time series (Jassby 1999). The basic approach is to consider each month as determining a separate annual time series and then to calculate the eigenvalues for the resulting $12 \times n$ years time series matrix. The function ts2df is useful for expressing a monthly time series in the form needed by eof. For example, the following code converts the monthly chlorophyll time series for Station 27 in San Francisco Bay to the appropriate data frame with October, the first month of the local "water year", in the first column, and years with missing data omitted:

```
> chl27b <- interpTs(sfbayChla[, "s27"], gap = 3)</pre>
> chl27b <- ts2df(chl27b, mon1 = 10, addYr = TRUE, omit = TRUE)
> head(round(ch127b, 1))
     Oct Nov Dec Jan Feb Mar
                                   May Jun Jul Aug Sep
                              Apr
1979 2.1 2.2 1.7 1.9 1.8 2.4
                              3.8
                                   2.3 4.8 1.6 3.9 2.1
1980 1.2 1.1 1.2 1.3 1.9 2.1 10.2
                                   3.4 2.1 1.1 1.4 1.6
1983 1.8 1.7 1.0 1.2 1.4 7.0 16.4 16.6 5.4 1.4 1.7 2.0
1984 1.5 1.5 1.4 1.9 2.8 3.0
                                   3.5 1.2 1.7 2.3 2.9
                              9.8
1986 1.5 1.1 1.2 1.2 1.2 4.0 25.5
                                   4.0 1.5 1.5 1.4 1.4
1987 1.3 1.2 1.1 1.4 1.4 5.1 5.9
                                   5.1 2.9 1.7 2.0 2.0
```

The following example plots the EOFs from an analysis of this month \times year data frame for Station 27 chlorophyll. eofNum (not shown) suggested retaining up to

Figure 9: Rotated EOFs for the San Francisco Bay Station 27 month \times year chlorophyll time series.

two EOFs. The resulting rotated EOFs imply two separate modes of variability for further exploration, the first operating during May-Sep and the other during Nov-Jan (Figure 9). The red lines represent an approximate range of thresholds for statistical significance when sufficient data are used:

```
> e2 <- eof(ch127b, n = 2)
> eofPlot(e2, type = "coef")
```

6.3 Time series decomposition

An analysis of chlorophyll a time series from many coastal and estuarine sites around the world demonstrates that the standard deviation of chlorophyll is approximately proportional to the mean, both among and within sites, as well as at different time scales (Cloern and Jassby 2010). One consequence is that these monthly time series are well described by a multiplicative seasonal model: $c_{ij} = Cy_i m_j \epsilon_{ij}$, where c_{ij} is chlorophyll concentration in year i and month j; C is the long-term mean; y_i is the annual effect; m_j is the average seasonal (in this case monthly) effect; and ϵ_{ij} is the residual series, which we sometimes refer to as the "events" component. The annual effect is simply the annual mean $Y_i = (1/12) \sum_{j=1}^{12} c_{ij}$ divided by the long-term mean: $y_i = Y_i/C$. The average monthly effect is given by $m_j = (1/N) \sum_{i=1}^N M_{ij}/Y_i$, where

 M_{ij} is the value for month j in year i, and N is the total number of years. The events component is then obtained by $\epsilon_{ij} = c_{ij}/Cy_im_j$. This simple approach is motivated partly by the observation that many important events for estuaries (e.g., persistent dry periods, species invasions) start or stop suddenly. Smoothing to extract the annualized term, which can disguise the timing of these events and make analysis of them unnecessarily difficult, is not used.

The decompTs listed here accomplishes this multiplicative decomposition (an option allows additive decomposition as an alternative). It requires input of a time series matrix in which the columns are monthly time series. It allows missing data, but it is up to the user to decide how many data are sufficient and if the pattern of missing data will lead to bias in the results. If so, it would be advisable to eliminate problem years beforehand by setting all month values to NA for those years. There are two cases of interest here: one in which the seasonal effect is held constant from year to year, and another in which it is allowed to vary by not distinguishing a separate events component. The choice is made by setting event = TRUE or event = FALSE, respectively, in the input. If no specific starting or ending year is given, the input data will be extended to cover January of the earliest or December of the latest year, respectively. The output of this function is a matrix time series containing the original time series and its multiplicative model components.

The average seasonal pattern may not resemble observed seasonality in a given year. Patterns that are highly variable from year to year will result in an average seasonal pattern of relatively low amplitude (i.e., low range of monthly values) compared to the amplitudes in individual years. An average seasonal pattern with high amplitude therefore indicates both high amplitude and a recurring pattern for individual years. The default time series plot again provides a quick illustration of the result (Figure 10):

```
> chl27 <- sfbayChla[, "s27"]
> d1 <- decompTs(chl27)
> plot(d1, nc = 1, main = "Station 27 Chl-a decomposition")
```

The average seasonal pattern does not provide any information about potential secular trends in the pattern. A solution is to apply the decomposition to a moving time window. The window should be big enough to yield a meaningful average of interannual variability but short enough to allow a trend to manifest. This may be different for different systems, but a decadal window can be used as a starting point. A more convenient, albeit restrictive, way to examine changing seasonality is with the dedicated function plotSeason. It divides the time period into equal intervals and plots a composite of the seasonal pattern in each interval. It also warns of months that may not be represented by enough data by colouring them red (Figure 11). plotSeason is an easy way to decide on the value for the event option in decompTs.

Station 27 Chl-a decomposition

Figure 10: Multiplicative decomposition of chlorophyll at Station 27 in San Francisco Bay.

Figure 11: Composites of seasonal pattern in ch127 for three multi-year intervals in different plots.

```
> plotSeason(chl27, num = 3, same.plot = FALSE, ylab = "Stn 27 Chl-a")
```

The same boxplots can also be combined in one plot, with boxplots for the same month grouped together (Figure 12):

```
> plotSeason(ch127, num = 3, same.plot = TRUE, ylab = "Stn 27 Ch1-a")
```

plotSeason also has an option to plot all individual months separately for the entire record (Figure 13).

```
> plotSeason(chl27, "by.month", ylab = "Stn 27 Chl-a", scales = "free_y")
```

With all types of seasonal plots, it is often helpful to adjust the device aspect ratio and size manually to get the clearest information.

6.4 Phenological parameters

phenoPhase and phenoAmp act on monthly time series or dated observations ("zoo" objects) and produce measures of the phase and amplitude, respectively, for each year. phenoPhase finds the month containing the maximum value, the *fulcrum* or center of gravity, and the weighted mean month. phenoAmp finds the range, the range divided by mean, and the coefficient of variation. Both functions can be confined to only part of the year, for example, the months containing the spring phytoplankton bloom. This feature can also be used to avoid months with chronic missing-data problems.

Illustrating once again with chlorophyll observations from Station 27 in San Francisco Bay:

```
> ch127 <- sfbayCh1a[, "s27"]
> p1 <- phenoPhase(ch127)
> head(p1)
```

```
year max.time fulcrum mean.wt
1 1978
              NA
                       NA
                                 NA
2 1979
              NA
                       NA
                                 NA
3 1980
               4
                     4.52
                              5.54
4 1981
              NA
                       NA
                                 NA
5 1982
              NA
                       NA
                                 NA
6 1983
              NA
                       NA
                                 NA
```

```
> p2 <- phenoPhase(ch127, c(1, 6))
```

> head(p2)

Figure 12: Composites of seasonal pattern in ch127 for three multi-year intervals in one plot.

Figure 13: Changing seasonal pattern in chl27 described by the time series for individual months.

```
year max.time fulcrum mean.wt
1 1978
              3
                   3.37
                            3.58
2 1979
              6
                   3.94
                            4.01
3 1980
              4
                   3.99
                            3.90
4 1981
                     NA
                              NA
             NA
5 1982
              4
                   3.86
                            3.75
6 1983
             NA
                     NA
                              NA
> p3 \leftarrow phenoAmp(ch127, c(1, 6))
> head(p3)
  year
          range range.mean
                  1.530086 0.5228641
1 1978 4.450000
2 1979 3.033333
                  1.074803 0.4260272
                  2.538827 0.9578382
3 1980 8.900000
4 1981
                         NA
             NA
5 1982 6.509444
                  1.122560 0.4564730
6 1983
             NA
                         NA
                                   NA
   Using the actual dated observations:
> zchl <- tsMake(sfb, focus = "chl", layer = c(0, 5), type = "zoo")
> head(zchl)
              s21
                        s24
                                  s27
                                            s30
                                                       s32
                                                             s36
1985-01-23 4.500 5.90000
                                       1.300000 2.650000 6.25
                                  {	t NaN}
1985-02-27
              NaN
                        NaN
                                  {\tt NaN}
                                       1.600000 5.550000
                                                             NaN
1985-03-07 4.800
                  3.90000
                             5.200000
                                       5.033333
                                                 5.166667
                                                             NaN
1985-03-13 2.600 9.35000
                             7.066667
                                       5.066667
                                                  4.500000
                                                             NaN
              NaN 7.70000 13.300000 10.200000
1985-03-21
                                                 4.700000
1985-03-29 10.175 21.66667 23.600000 30.850000 33.100000 40.10
> zch127 <- zch1[, 3]
> head(phenoPhase(zch127))
         max.time
                     fulcrum
                                 mean.wt
1 1985 1985-03-29 1985-03-31 1985-04-19 17
2 1986 1986-04-29 1986-04-25 1986-04-27 21
3 1987 1987-04-16 1987-05-13 1987-05-18 20
4 1988 1988-04-14 1988-04-27 1988-06-09 16
5 1989 1989-03-01 1989-04-12 1989-04-12 25
6 1990 1990-04-12 1990-04-30 1990-04-21 13
```

> head(phenoPhase(zchl27, c(1, 6), out = "doy"))

```
year max.time fulcrum mean.wt
1 1985
                       85
              88
                                94 11
2 1986
             119
                      111
                               109 15
3 1987
             106
                      107
                               107 12
4 1988
             105
                       84
                                98
                                     7
5 1989
              60
                       86
                                87 18
6 1990
             102
                      106
                                98 10
```

> head(phenoPhase(zch127, c(1, 6), out = "julian"))

```
year max.time fulcrum mean.wt
1 1985
            5566
                     5563
                              5572 11
2 1986
            5962
                     5954
                              5952 15
3 1987
            6314
                     6315
                              6315 12
4 1988
            6678
                     6657
                              6671
                                    7
5 1989
            6999
                     7025
                              7026 18
6 1990
            7406
                     7410
                              7402 10
```

6.5 Miscellaneous plotting functions

plotTsTile plots a monthly time series as a month \times year grid of tiles, with color representing magnitude. The data can be binned in either of two ways. The first is simply by deciles. The second, which is intended for log-anomaly data, is by four categories: Positive numbers higher or lower than the mean positive value, and negative numbers higher or lower than the mean negative value. In this version of plotTsTile, the anomalies are calculated with respect to the overall mean month.

```
> chl27 <- sfbayChla[, "s27"]
> plotTsTile(chl27)
```

This plot shows clearly the change in autumn-winter chlorophyll magnitude after 1999 (Figure 14).

The layOut function is a convenient way to create a graph consisting of two or more plots produced by the ggplot2 package. The position of each plot is determined by the beginning row and column numbers. The relative size of each plot is determined by the sequence lengths of row and column numbers. The total grid size of the graph is determined automatically by the grid numbers used for individual plots. Manual adjustment of the graphics window may be useful to get proper aspect ratios and prevent text from overlapping (Figure 15):

```
> ch127 = sfbayChla[, "s27"]
> g1 <- plotTsTile(ch127, legend.title = "Ch1 log-anomaly", square = FALSE)</pre>
```


Figure 14: Image plot of monthly log-anomaly time series for Station 27 chlorophyll.

7 Concluding Remarks

In the near future, this package will remain focused on typical data sets that have accumulated in long-term coastal water quality monitoring programs, namely, those collected at a frequency of about 10^1 to 10^2 times per year at 10^1 to 10^2 sites. Aside from incremental revision and addition of specific functions, the main structural change envisioned is in the class definition for data objects.

In this regard, it is helpful to examine what constitutes a water quality observation, i.e., the essential components of this class. The minimum information typically needed is of four kinds: the location, the time, the analyte and the observed value. As discussed in Section 3, additional information about the location and the analytical method is inherent in the unique codes used for each location and analyte. Sometimes, however, it may be more convenient to include additional information explicitly with the actual observations, such as censoring limits that may change throughout a project. Other complications are introduced by the different ways in which location, time, and even observed values can be recorded. For example, surface location information can come in the form of site names, latitude-longitude coordinates or distance

Figure 15: Example of use of layOut function for the chlorophyll-a monthly time series at station 27 in San Francisco

NULL

along the axis of a channel from some fixed point. Observed values may be numbers, numeric ranges or discrete classifications. Ideally, one wants each of the basic four kinds of information to accommodate all forms in common use.

An obvious extension of the WqData object would be to include additional slots for site and variable metadata, so that there is no ambiguity about the availability of this information. A more significant change would be to define classes for the fields described above as superclasses of basic classes, as already done for time (the "Date-Time" class). For example, a site class could accommodate factors, numeric vectors or matrices. Location could then be given by discrete site name, x position as distance from a fixed point, or x and y positions as latitude and longitude. Similarly, depth could accommodate factors or numeric vectors, the former as names of depth layers ("top 5 m") or as non-numeric depths ("just below surface" or "bottom"). Currently, non-numeric depths can be coded as negative numbers.

Ultimately, the package direction will be driven by the needs of people actually using it. Suggestions for revisions and additions are therefore welcome.

References

- CLOERN, J. E., AND A. D. JASSBY. 2010. Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuaries and Coasts 33: 230–241.
- GROTHENDIECK, G., AND T. PETZOLDT. 2004. R help desk: Date and time classes in R. R News 4: 29–32.
- Hannachi, A., I. T. Jolliffe, and D. B. Stephenson. 2007. Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology 27: 1119–1152.
- Helsel, D., and L. Frans. 2006. Regional Kendall test for trend. Environmental Science and Technology 40: 4066–4073.
- Helsel, D., and R. Hirsch. 2002. Statistical methods in water resources, Techniques of Water-Resources Investigations of the United States Geological Survey. Book 4, Hydrologic Analysis and Interpretation. Chapter A3. U.S. Geological Survey.
- HIRSCH, R., J. SLACK, AND R. SMITH. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107–121.
- Jassby, A. D. 1999. Uncovering mechanisms of interannual variability in ecological time series, pp. 285–306. *In* K. Scow, G. Fogg, D. Hinton, and M. Johnson [eds.], Integrated assessment of ecosystem health. CRC Press.

- SCHERTZ, T. L., R. B. ALEXANDER, AND D. J. OHE. 1991. The computer program EStimate TREND (ESTREND), a system for the detection of trends in water-quality data. Water-Resources Investigations Report 91-4040, U.S. Geological Survey.
- VAN BELLE, G., AND J. P. HUGHES. 1984. Nonparametric tests for trend in water quality. Water Resources Research **20**: 127–136.