中国科学院大学网络空间安全学院专业核心课

2022-2023学年秋季学期

课程名称: 信息安全数学基础

英文名称: Mathematical Foundations

for Information Security

授课团队: 胡磊、许军、王丽萍、王鹏

助 教:郭一

2022-2023秋 课程编码: 083900M01003H 课程名称: 信息安全数学基础 授课团队: 胡磊、许军、王丽萍

中国科学院大学网络空间安全学院专业核心课

信息安全数学基础

Mathematical Foundations for Information Security

[第 5 次课] 二次同余式与平方剩余

授课教师: 胡磊

授课时间: 2022年9月28日

2022-2023秋 课程编码: 083900M01003H 课程名称: 信息安全数学基础 授课团队: 胡磊、许军、王丽萍

中国科学院大学网络空间安全学院专业核心课

概要

- 一般二次同余式
- 平方剩余与平方非剩余
- 勒让德符号
- 二次互反律的证明
- 雅可比符号
- 开平方根算法

一般二次同余式

二次同余式的一般形式是
$$ax^2 + bx + c \equiv 0 \pmod{m}$$
 (1)
$$m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$$

$$ax^2 + bx + c \equiv 0 \pmod{m} \iff \begin{cases} ax^2 + bx + c \equiv 0 \pmod{p_1^{\alpha_1}} \\ \cdots \\ ax^2 + bx + c \equiv 0 \pmod{p_k^{\alpha_k}} \end{cases}$$

故只需讨论模为 p^{α} 同余式: $ax^2 + bx + c \equiv 0 \pmod{p^{\alpha}}$, (2)

p=2的情形: 2进制幂级数方法

讨论模为 p^{α} 同余式: $ax^2 + bx + c \equiv 0 \pmod{p^{\alpha}}$, (2)

p为奇素数的情形: 幂级数方法

当p整除a的时候: 幂级数方法

当p不整除a的时候:幂级数方法:起始步骤:模p开平方

$$4a^2x^2 + 4abx + 4ac \equiv 0 \pmod{p^{\alpha}} \qquad (2ax + b)^2 \equiv b^2 - 4ac \pmod{p^{\alpha}}$$
$$y = 2ax + b \qquad \qquad y^2 \equiv b^2 - 4ac \pmod{p^{\alpha}}$$

特别地, 当 p 是奇素数时, (p,2a) = 1. 上述同余式等价于 (2).

Rabin体制

• N=pq 是RSA模数。加密:将消息适当填充,填充后作运算:

$$c = m^2 \pmod{n}$$

- •解密:用CRT,化成模p和模q,分别开平方,由填充规则确定是哪一个平方根。
- 不知道p和q无法开平方。

模p开平方的问题

定义 1 若同余式 $x^2 \equiv a \pmod{m}$, (a, m) = 1 (3) 有解,则 a 叫做模 m 的 **平方剩余**(或 **二次剩余**);

否则, a 叫做 模 m 的 **平方非剩余** (或 **二次非剩余**).

例 1 1 是模 4 平方剩余, -1 是模 4 平方非剩余. **例 2** 1, 2, 4 是模 7 平方剩余, -1, 3, 5 是模 7 平方非剩余. 因为 $1^2 \equiv 1$, $2^2 \equiv 4$, $3^2 \equiv 2$, $4^2 \equiv 2$, $5^2 \equiv 4$, $6^2 \equiv 1 \pmod{7}$.

模p既约剩余系中有一半的元素为平方元

定理 2 设 p 是奇素数. 则模 p 的简化剩余系中平方剩余与平方非剩余的个数各为 (p-1)/2, 且 (p-1)/2 个平方剩余与序列: $1^2, 2^2, \ldots, (\frac{p-1}{2})^2$ (4) 中的一个数同余,且仅与一个数同余.

证 由定理 1, 平方剩余的个数等于同余式 $x^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ 的解数.

但 $x^{\frac{p-1}{2}} - 1|x^{p-1} - 1$. 此同余式的解数是 $\frac{p-1}{2}$,

故平方剩余的个数是 $\frac{p-1}{2}$, 而平方非剩余个数是 $p-1-\frac{p-1}{2}=\frac{p-1}{2}$.

再证明定理的第二部分: 若有两个数模 p 同余, 即存在 $k_1 \neq k_2$ 使得 $k_1^2 \equiv k_2^2 \pmod{p}$, $(k_1 + k_2)(k_1 - k_2) \equiv 0 \pmod{p}$ 因此, $p|k_1 + k_2$ 或 $p|k_1 - k_2$. 但 $1 \leq k_1$, $k_2 \leq (p-1)/2$,

 $2 \le k_1 + k_2 \le p - 1 < p$, $|k_1 - k_2| \le p - 1 < p$.

从而, $k_1 = k_2$. 矛盾.

椭圆曲线点的嵌入和点的个数

例 4 求满足方程 $E: y^2 = x^3 + x + 1 \pmod{7}$ 的所有点. 解 对 x = 0, 1, 2, 3, 4, 5, 6, 分别求出 y $x = 0, y^2 = 1 \pmod{7}, y = 1, 6 \pmod{7}, x = 1, y^2 = 3 \pmod{7}, 无解, x = 2, y^2 = 4 \pmod{7}, y = 2, 5 \pmod{7},$

$$x = 3$$
, $y^2 = 3 \pmod{7}$, 无解,
 $x = 4$, $y^2 = 6 \pmod{7}$, 无解,
 $x = 5$, $y^2 = 5 \pmod{7}$, 无解,
 $x = 6$, $y^2 = 6 \pmod{7}$, 无解.

模为奇素数的平方剩余与平方非剩余

讨论模为素数 p 的二次同余式 $x^2 \equiv a \pmod{p}$, (a, p) = 1. **定理 1**(欧拉判别条件) 设 p 是奇素数, (a, p) = 1. 则

- (i) a 是模 p 的平方剩余 $\Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p};$

并且当 a 是模 p 的平方剩余时, 同余式 (1) 恰有二解.

证: (i) => 由欧拉定理, $a^{(p-1)/2} = x^{p-1} = 1 \pmod{p}$

<= (p-1)/2

等于模p平方剩余的个数

小于等于方程 $x^{(p-1)/2} = 1 \pmod{p}$ 的解数

小于等于方程的次数(p-1)/2

所以,全部取等号,模p平方剩余的集合等于方程 $x^{(p-1)/2} = 1 \pmod{p}$ 的解集合

定理 1 (欧拉判别条件) 设 p 是奇素数, (a, p) = 1. 则

- (i) a 是模 p 的平方剩余 $\Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p};$

并且当 a 是模 p 的平方剩余时, 同余式 (1) 恰有二解.

证 (ii) 因为 p 是奇素数, (a, p) = 1, 根据欧拉定理, 有 $(a^{\frac{p-1}{2}} + 1)(a^{\frac{p-1}{2}} - 1) = a^{p-1} - 1 \equiv 0 \pmod{p}.$

有 $p|a^{\frac{p-1}{2}}-1$ 或 $p|a^{\frac{p-1}{2}}+1$.

a 是模 p 的平方非剩余的充要条件是 $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.

定理 1 (欧拉判别条件) 设 p 是奇素数, (a, p) = 1. 则

- (i) a 是模 p 的平方剩余 $\Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p};$
- (ii) a 是模 p 的平方非剩余 $\rightleftharpoons a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$.

并且当 a 是模 p 的平方剩余时,同余式(1)恰有二解.

推论 设 p 是奇素数, $(a_1,p)=1, (a_2,p)=1.$ 则

- (i) 若 a₁, a₂ 是模 p 的平方剩余, 则 a₁a₂ 是模 p 的平方剩余;
- (ii) 若 a_1 , a_2 是模 p 的平方非剩余,则 a_1a_2 是模 p 的平方剩余;
- (iii) 如 a_1 是模 p 平方剩余, a_2 模 p 平方非剩余,则 a_1a_2 是模 p 的 平方非剩余.

证因为 $(a_1a_2)^{\frac{p-1}{2}} = a_1^{\frac{p-1}{2}} \cdot a_2^{\frac{p-1}{2}}$ 所以由定理 1 即得结论.

例 1 判断 137 是否为模 227 平方剩余.

解 根据定理 1, 我们要计算: $137^{(227-1)/2} = 137^{113} \pmod{227}$. 运用模重复平方法.

$$137^{(227-1)/2} = 137^{113} = -1 \pmod{227}$$

因此, 137 为模 227 平方非剩余.

勒让德符号

定义 1 设 p 是素数.定义 勒让得 (Legendre) 符号 如下:

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases}
1, \quad \text{若 } a \text{ 是模 } p \text{ 的平方剩余;} \\
-1, \quad \text{若 } a \text{ 是模 } p \text{ 的平方非剩余;} \\
0, \quad \text{若 } p|a.
\end{cases}$$

定理 1 (欧拉判别法则) 对任意整数 a, $\binom{a}{p} \equiv a^{\frac{p-1}{2}} \pmod{p}$.

推论 1 设
$$p$$
 是奇素数,则 (1) $\left(\frac{1}{p}\right) = 1;$ (2) $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}.$

证若
$$p \equiv 1 \pmod{4}$$
, 则 $p = 4k + 1$, $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^{2k} = 1$.

$$p \equiv 3 \pmod{4}$$
, $\mathbb{N} p = 4k + 3$, $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^{2k+1} = -1$.

定理 2 设
$$p$$
 是奇素数,则 (i) $\left(\frac{a+p}{p}\right) = \left(\frac{a}{p}\right)$;

(ii)
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right);$$
 (iii) 设 $(a,p) = 1$, 则 $\left(\frac{a^2}{p}\right) = 1$.

证 (i)
$$x^2 \equiv a + p \pmod{p}$$
 $\iff x^2 \equiv a \pmod{p}$ 所以 $\left(\frac{a+p}{p}\right) = \left(\frac{a}{p}\right)$.

(ii) 根据欧拉判别法则,

$$\left(\frac{ab}{p}\right) \equiv (ab)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \pmod{p}.$$

因为勒让得符号取值 ± 1 , 且 p 是奇素数, 所以有 $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.

推论 设
$$p$$
 是奇素数. 若 $a \equiv b \pmod{p}$, 则 $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.

证 根据定理2的(i)即得。

引理 (Gauss) 设 p 奇素数. (a,p) = 1. 若 $a \cdot 1, a \cdot 2, \ldots, a \cdot \frac{p-1}{2}$ 中 模 p 的最小正剩余大于 $\frac{p}{2}$ 的个数是 m, 则 $\left(\frac{a}{p}\right) = (-1)^m$. 证 设 a_1, \ldots, a_t 是 $a \cdot 1, a \cdot 2, \ldots, a \cdot \frac{p-1}{2}$ 模 p 的小于 $\frac{p}{2}$ 的最小正 剩余, b_1, \ldots, b_m 是这些整数模 p 的大于 $\frac{p}{2}$ 的最小正剩余,则 $a^{\frac{p-1}{2}}(\frac{p-1}{2})! = \prod_{k=1}^{\frac{p-1}{2}} ak \equiv \prod_{i=1}^{t} a_i \prod_{j=1}^{m} b_j \equiv (-1)^m \prod_{i=1}^{t} a_i \prod_{j=1}^{m} (p-b_j) \pmod{p}.$ 易知 $a_1, \ldots, a_t, p - b_1, \ldots, p - b_m$ 是模 p 两两不同余的. 否则, $ak_i \equiv p - ak_i$, 或 $ak_i + ak_i \equiv 0 \pmod{p}$.

因而 $k_i + k_j \equiv 0 \pmod{p}$, 这不可能, 因为 $1 \le k_i + k_j \le \frac{p-1}{2} + \frac{p-1}{2} < p$. 这样, $a_1, \ldots, a_t, p-b_1, \ldots, p-b_m$ 是 $1, \ldots, \frac{p-1}{2}$ 的一个排列, $a^{\frac{p-1}{2}}(\frac{p-1}{2})! \equiv (-1)^m \prod_{i=1}^t a_i \prod_{j=1}^m (p-b_j) = (-1)^m (\frac{p-1}{2})! \pmod{p}$. 因而, $a^{\frac{p-1}{2}} \equiv (-1)^m \pmod{p}$. $\left(\frac{a}{p}\right) = (-1)^m$.

定理 3 (i) $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$. (ii) 若 (a,2p) = 1, 则 $\left(\frac{a}{p}\right) = (-1)^{\sum_{k=1}^{(p-1)/2} \left[\frac{ak}{p}\right]}$.

证: 因 $ak = p\left[\frac{ak}{p}\right] + r_k$, $0 < r_k < p$, 对 $k = 1, \ldots, \frac{p-1}{2}$ 求和,

$$a\frac{p^{2}-1}{8} = p\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{ak}{p}\right] + \sum_{i=1}^{t} a_{i} + \sum_{j=1}^{m} b_{j}$$

$$= p\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{ak}{p}\right] + \sum_{i=1}^{t} a_{i} + \sum_{j=1}^{m} (p - b_{j}) + 2\sum_{j=1}^{m} b_{j} - mp$$

$$= p\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{ak}{p}\right] + \frac{p^{2}-1}{8} - mp + 2\sum_{j=1}^{m} b_{j},$$

故 $(a-1)^{\frac{p^2-1}{8}} \equiv \sum_{k=1}^{\frac{p-1}{2}} \left[\frac{ak}{p} \right] + m \pmod{2}$.

若 a = 2, 则 $0 \le \left[\frac{ak}{p}\right] \le \left[\frac{p-1}{p}\right] = 0$, 因而 $m \equiv \frac{p^2-1}{8} \pmod{2}$;

若 a 为奇数,则 $m \equiv \sum_{k=1}^{\frac{p-1}{2}} \left[\frac{ak}{p}\right] \pmod{2}$.

定理 3 (i) $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$. (ii) 若 (a,2p) = 1, 则 $\left(\frac{a}{p}\right) = (-1)^{\sum_{k=1}^{(p-1)/2} \left[\frac{ak}{p}\right]}$.

推论设 p 是奇素数,那么

证根据定理3(i),我们有

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}.$$

若 $p \equiv \pm 1 \pmod{8}$, 则存在正整数 k 使得 $p = 8k \pm 1$. 从而

$$\binom{2}{p} = (-1)^{\frac{p^2-1}{8}} = (-1)^{2(4k^2 \pm k)} = 1.$$

若 $p \equiv \pm 3 \pmod{8}$, 则存在正整数 k 使得 $p = 8k \pm 3$. 从而 $\left(\frac{2}{n}\right) = (-1)^{\frac{p^2-1}{8}} = (-1)^{2(4k^2\pm 3k)+1} = -1.$

定理 4 (二次互反律) 若 p, q 是互素奇素数,则

$$\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right) \tag{9}$$

例 3 2 是模 17 平方剩余; 3 是模 17 平方非剩余.

解
$$\left(\frac{2}{17}\right) = (-1)^{\frac{17^2 - 1}{8}} = (-1)^{2 \cdot 18} = 1.$$

因此, 2是模17平方剩余.

$$\left(\frac{3}{17}\right) = (-1)^{\frac{3-1}{2} \cdot \frac{17-1}{2}} \left(\frac{17}{3}\right)$$

$$\left(\frac{17}{3}\right) = \left(\frac{-1}{3}\right) = (-1)^{\frac{3-1}{2}} = -1$$

因此, $\left(\frac{3}{17}\right) = -1, 3$ 是模 17 平方非剩余.

例 4 判断同余式 $x^2 \equiv 137 \pmod{227}$ 是否有解.

解 因为 227 是素数,

$$\left(\frac{137}{227}\right) = \left(\frac{-90}{227}\right) = \left(\frac{-1}{227}\right) \left(\frac{2 \cdot 3^2 \cdot 5}{227}\right) = -\left(\frac{2}{227}\right) \left(\frac{5}{227}\right)$$

$$\left(\frac{2}{227}\right) = (-1)^{\frac{227^2 - 1}{8}} = (-1)^{\frac{226 \cdot 228}{8}} = -1$$

$$\left(\frac{5}{227}\right) = (-1)^{\frac{5-1}{2}\frac{227-1}{2}} \left(\frac{227}{5}\right) = \left(\frac{2}{5}\right) = (-1)^{\frac{5^2-1}{8}} = -1$$

因此, $\left(\frac{137}{227}\right) = -1$. 同余式 $x^2 \equiv 137 \pmod{227}$ 无解.

例 5 判断 $x^2 \equiv -1 \pmod{365}$ 是否有解, 有解时, 求出其解数.

解 365 = 5 · 73 不是素数,原同余式等价于:

$$\begin{cases} x^2 \equiv -1 \pmod{5}, \\ x^2 \equiv -1 \pmod{73}. \end{cases}$$

因为 $\left(\frac{-1}{5}\right) = \left(\frac{-1}{73}\right) = 1$, 故同余式组有解. 原同余式有解, 解数为 4.

例 6 判断 $x^2 \equiv 2 \pmod{3599}$ 是否有解,有解时求出其解数.

解 3599 = 59·61 不是素数,原同余式等价于:

$$\begin{cases} x^2 \equiv 2 \pmod{59}, \\ x^2 \equiv 2 \pmod{61}. \end{cases}$$

因为 $\left(\frac{2}{59}\right) = (-1)^{(59^2-1)/8} = -1$, 故同余式组无解. 原同余式无解.

定理 3 (i)
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$
. (ii) 若 $(a,2p) = 1$, 则 $\left(\frac{a}{p}\right) = (-1)^{\sum_{k=1}^{(p-1)/2} \left[\frac{ak}{p}\right]}$.

推论设 p 是奇素数,那么

$$\binom{2}{p} = \begin{cases} 1, \quad \text{若 } p \equiv \pm 1 \pmod{8}; \\ -1, \quad \text{若 } p \equiv \pm 3 \pmod{8}. \end{cases}$$

定理 4 (二次互反律) 若 p, q 是互素奇素数,则

$$\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right) \tag{9}$$

 \mathbf{M} 1 求所有奇素数 p, 它以 3 为其二次剩余.

解 即要求所有奇素数 p, 使得 $\left(\frac{3}{p}\right) = 1$.

根据二次互反律, $\left(\frac{3}{p}\right) = (-1)^{(p-1)/2} \left(\frac{p}{3}\right)$.

$$(-1)^{(p-1)/2} = \left\{ \begin{array}{ll} 1, & \text{ \footnotemark $ g \equiv 1 $} \pmod 4; \\ -1, & \text{ \footnotemark $ g \equiv -1 $} \pmod 4, \end{array} \right. \ \, \text{以及} \left(\frac{p}{3} \right) = \left\{ \begin{array}{ll} \left(\frac{1}{3} \right) = 1, & \text{ \footnotemark $ g \equiv 1 $} \pmod 6; \\ \left(\frac{-1}{3} \right) = -1, & \text{ \footnotemark $ g \equiv -1 $} \pmod 6; \end{array} \right.$$

故
$$\left(\frac{3}{p}\right) = 1$$
 \iff
$$\begin{cases} p \equiv 1 \pmod{4} \\ p \equiv 1 \pmod{6} \end{cases}$$
 或
$$\begin{cases} p \equiv -1 \pmod{4} \\ p \equiv -1 \pmod{6} \end{cases}$$

这分别等价于 $p \equiv 1 \pmod{12}$, 或 $p \equiv -1 \pmod{12}$.

因此, 3 是模 p 二次剩余的充分必要条件是 $p \equiv \pm 1 \pmod{12}$.

雅可比符号

定义 1 设 $m = p_1 \cdots p_r$ 是奇素数 p_i 的乘积. 对任意整数 a_i 定义 雅可比 (Jacobi) 符号 为

$$\left(\frac{a}{m}\right) = \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_r}\right).$$

雅可比符号形式上是勒让得符号的推广,但所蕴含的意义已经不同.雅可比符号为-1,可判断 a 是模 m 平方非剩余;但雅可比符号为1,却不能判断 a 是模 m 平方剩余.例如,3 是模 119 平方非剩余,但

$$\left(\frac{3}{119}\right) = \left(\frac{3}{7}\right)\left(\frac{3}{17}\right) = (-1)(-1) = 1.$$

定理 1 设 m 是正奇数. 则 (i) $\left(\frac{a+m}{m}\right) = \left(\frac{a}{m}\right)$; (ii) $\left(\frac{ab}{m}\right) = \left(\frac{a}{m}\right) \left(\frac{b}{m}\right)$; (iii) 设 (a,m) = 1, 则 $\left(\frac{a^2}{m}\right) = 1$.

证设 $m = p_1 \cdots p_r$,其中 p_i 为奇素数.根据定义,

(i)
$$\left(\frac{a+m}{m}\right) = \left(\frac{a+m}{p_1}\right) \cdots \left(\frac{a+m}{p_r}\right) = \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_r}\right) = \left(\frac{a}{m}\right)$$
.

$$(ii) \quad \left(\frac{ab}{m}\right) = \left(\frac{ab}{p_1}\right) \cdots \left(\frac{ab}{p_r}\right) = \left(\frac{a}{p_1}\right) \left(\frac{b}{p_1}\right) \cdots \left(\frac{a}{p_r}\right) \left(\frac{b}{p_r}\right)$$
$$= \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_r}\right) \left(\frac{b}{p_1}\right) \cdots \left(\frac{b}{p_r}\right) = \left(\frac{a}{m}\right) \left(\frac{b}{m}\right).$$

(iii)
$$\left(\frac{a^2}{m}\right) = \left(\frac{a^2}{p_1}\right) \cdots \left(\frac{a^2}{p_r}\right) = 1.$$

引理: 设 $m = p_1 \cdots p_r$ 是奇数. 则

$$\frac{m-1}{2} \equiv \frac{p_1-1}{2} + \dots + \frac{p_r-1}{2} \pmod{2};$$
$$\frac{m^2-1}{8} \equiv \frac{p_1^2-1}{8} + \dots + \frac{p_r^2-1}{8} \pmod{2}.$$

证

$$m \equiv (1 + 2 \cdot \frac{p_1 - 1}{2}) \cdots (1 + 2 \cdot \frac{p_r - 1}{2}) \equiv 1 + 2 \cdot \left(\frac{p_1 - 1}{2} + \cdots + \frac{p_r - 1}{2}\right) \pmod{4};$$

$$m^2 \equiv (1 + 8 \cdot \frac{p_1^2 - 1}{2}) \cdots (1 + 8 \cdot \frac{p_r^2 - 1}{2}) \equiv 1 + 8 \cdot \left(\frac{p_1^2 - 1}{2} + \cdots + \frac{p_r^2 - 1}{2}\right) \pmod{4}.$$

所以引理成立. 证毕.

定理 2 设 m 是奇数. 则 (i) $\left(\frac{1}{m}\right) = 1$;

(ii)
$$\left(\frac{-1}{m}\right) = (-1)^{\frac{m-1}{2}};$$
 (iii) $\left(\frac{2}{m}\right) \equiv (-1)^{\frac{m^2-1}{8}};$

证 因为 $m = p_1 \cdots p_r$ 是奇数, 其中 p_i 是奇素数.

(i)
$$\left(\frac{1}{m}\right) = \left(\frac{1}{p_1}\right) \cdots \left(\frac{1}{p_r}\right) = 1.$$

(ii)
$$\left(\frac{-1}{m}\right) = \left(\frac{-1}{p_1}\right) \cdot \cdot \cdot \left(\frac{-1}{p_r}\right) = (-1)^{\frac{p_1-1}{2} + \dots + \frac{p_r-1}{2}} = (-1)^{\frac{m-1}{2}}.$$

(iii)
$$\left(\frac{2}{m}\right) = \left(\frac{2}{p_1}\right) \cdots \left(\frac{2}{p_r}\right) = (-1)^{\frac{p_1^2 - 1}{8} + \cdots + \frac{p_r^2 - 1}{8}} = (-1)^{\frac{m^2 - 1}{8}}.$$

定理 3 设 m, n 都是奇数. 则 $\left(\frac{n}{m}\right) = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}} \left(\frac{m}{n}\right)$.

证设 $m = p_1 \cdots p_r, n = q_1 \cdots q_s.$

如果 (m,n) > 1, 则 $(\frac{n}{m}) = (\frac{m}{n}) = 0$. 结论成立.

因此,可设 (m,n)=1.

$$\left(\frac{n}{m}\right)\left(\frac{m}{n}\right) = \prod_{i=1}^{r} \left(\frac{n}{p_i}\right) \prod_{j=1}^{s} \left(\frac{m}{q_j}\right) = \prod_{i=1}^{r} \prod_{j=1}^{s} \left(\frac{q_j}{p_i}\right) \left(\frac{p_i}{q_j}\right) = (-1)^{\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{p_i - 1}{2} \cdot \frac{q_j - 1}{2}}.$$

$$\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{p_i - 1}{2} \cdot \frac{q_j - 1}{2} \equiv \sum_{i=1}^{r} \frac{p_i - 1}{2} \sum_{j=1}^{s} \frac{q_j - 1}{2} \equiv \frac{m - 1}{2} \cdot \frac{n - 1}{2} \pmod{2}.$$

因此, 定理成立. 证毕.

例 1 判断同余式

$$x^2 \equiv 286 \pmod{563}$$

是否有解.

解不用考虑 563 是否为素数,直接计算雅可比符号.

$$\left(\frac{286}{563}\right) = \left(\frac{2}{563}\right)\left(\frac{143}{563}\right) = (-1)^{\frac{563^2 - 1}{8}}(-1)^{\frac{143 - 1}{2} \cdot \frac{563 - 1}{2}}\left(\frac{563}{143}\right) = \left(\frac{-9}{143}\right) = \left(\frac{-1}{143}\right) = -1$$

所以原同余式无解.

没有多项式的二次互反律:

没有类似绝对值最小的剩余系: b换成p-b

分数取整, 直角坐标系中坐标为分数的点

开平方根算法

设p为奇素数.对任意给定的整数a,应用高斯二次互反律 (§4.3 定理 4) 可以快速地判断a是否为模p平方剩余,即二次同余式

$$x^2 \equiv a \pmod{p}$$

是否有解,也就是说解的存在性.

现在在有解的情况下,即 a满足

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \equiv 1 \pmod{p}$$

的情况下,考虑二次同余式的具体求解.

```
n B片行行配配上开平方军污
△ 当n是奇较时,没G={g,g*, ..., g**, g*=1}, 对 Vosi≤n-1, 令
                                               2i'\equiv i\pmod{n}, C_{i'}=\int_{\frac{1}{2}}^{\frac{1}{2}}i\hbar, C_{i'}=\int_{\frac{1}{2}}^{\frac{1}
          △ 当内是伪数对,没 n=2m, gi是平元(=> i是1为数.
                                            夜牙是等于乘法无零国子的环的车店弱的子辞,由(gm+1)(gm)=gm=1=0,
                                           たの gm=-1. 有 gi 是年かえ ← (gi) m=1
                 第15垫话:
                                                                试图寻找奇数k,使 ak=1,则(± a型)=a.但不是存在如此的k.
                                                                     放宽, 寻找奇级 k. (为数 2), 清 B \in G, S.t. B \overset{\circ}{a} \overset{\circ}{
                        質言言家: 了るn=2^{5}t, S\geq 1, t的奇数. 取 b\in G, b^{\frac{1}{2}}=-1. 2^{1}B=b^{1}, A=a^{\frac{1}{2}}.
                                                                                                                                                                                  B^{2^{5-1}} = b^{2^{5-1}} = b^{\frac{15}{5}} = -1, C_1 = A^{2^{5-1}} = a^{2^{5-1}} = a^{\frac{15}{5}} = 1 \quad (i \le a \le 75).
                    △岩5≥2, 计算C=A252, 它等于1年-1 (国为它Go平于=9254=1). 全
                                                                                                                                                                                                                                                                       B^{2^{5+1}}, A^{2^{5+1}} = (B^{2^{5+1}})^{\beta_1}. A^{2^{5+2}} = (A)^{\beta_1}. A^{2^{5+2}} = 1
```

为 5=3. OK.

为 5=3. OK.

B²⁵⁺¹L+2⁵⁻²l₁A²⁵⁺中的所有指数为物,且B的指数的2量次比A高。

经保上主言8字,直呈A的指数为奇数。

注: 对 G=15*, S=1 (p=3 (mod4), 衛传送代一方.

例 1 应用上述算法求解同余式 $x^2 \equiv 186 \pmod{401}$.

解 因为 $a = 186 = 2 \cdot 3 \cdot 31$

$$\left(\frac{2}{401}\right) = (-1)^{(401^2 - 1)/8} = 1, \quad \left(\frac{3}{401}\right) = (-1)^{\frac{3 - 1}{2} \frac{401 - 1}{2}} \left(\frac{401}{3}\right) = \left(\frac{-1}{3}\right) = -1$$

$$\left(\frac{31}{401}\right) = (-1)^{\frac{31-1}{2}\frac{401-1}{2}} \left(\frac{401}{31}\right) = \left(\frac{-2}{31}\right) = \left(\frac{-1}{31}\right) \left(\frac{2}{31}\right) = (-1)^{\frac{31-1}{2}} (-1)^{\frac{31^2-1}{8}} = -1$$

所以
$$\left(\frac{186}{401}\right) = \left(\frac{2}{401}\right)\left(\frac{3}{401}\right)\left(\frac{31}{401}\right) = 1 \cdot (-1) \cdot (-1) = 1.$$

故原同余式有解.

例 2 设 p 是形为 4k + 3 的素数. 如果 $x^2 \equiv a \pmod{p}$ 有解,则其解是 $x \equiv \pm a^{(p+1)/4} \pmod{p}$.

解 因为 p 是形为 4k+3 的素数, 所以存在奇数 q 使得 p-1=2q. 如果 $x^2 \equiv a \pmod{p}$ 有解,则 $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$,

或者
$$a^q \equiv 1 \pmod{p}$$

两端同时乘以 a, 得到

$$a^{q+1} \equiv a \pmod{p}$$
.

因此, 同余式的解为

$$x \equiv \pm a^{\frac{q+1}{2}} \equiv \pm a^{(p+1)/4} \pmod{p}.$$

例 3 设 p, q 是形为 4k+3 的不同素数. 如果整数 a 满足 $\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = 1$, 求解同余式 $x^2 \equiv a \pmod{pq}$.

解因为 $x^2 \equiv a \pmod{pq}$ 等价于同余式组 $\begin{cases} x^2 \equiv a \pmod{p} \\ x^2 \equiv a \pmod{q}, \end{cases}$

而同余式 $x^2 \equiv a \pmod{p}$ 的解为 $x \equiv \pm a^{(p+1)/4} \pmod{p}$, 同余式 $x^2 \equiv a \pmod{q}$ 的解为 $x \equiv \pm a^{(q+1)/4} \pmod{q}$, 原同余式的解为

$$x \equiv \pm (a^{\frac{p+1}{4}} \pmod{p}) uq \pm (a^{\frac{q+1}{4}} \pmod{q}) vp \pmod{pq}$$

其中整数 u, v 分别满足

$$uq \equiv 1 \pmod{p}, \quad vp \equiv 1 \pmod{q}.$$