- State transition table is basically a truth table showing the functionality of a circuit based on a given present state.
  - · Present state are like a truth table's inputs
    ond Next state are similar to a truth table's outputs
  - · A state transition diagram is a web-like diagram that shows how states proceed from one to the next



A state machine needs two elements to function.

A memory element to hold current state and some way to determine the next state. With Flip-Flops we have xno such elements.

Lurrent state
8 set of static

rogic gates

- Registers are constructed using one or more Elip-Flops that share common signal (such as clock)
- . Reg is used for updated alway outputs

|      | Table 1: Pre-Lab Transition Table |   |   |                                        |                      |                                         |       |  |  |  |  |
|------|-----------------------------------|---|---|----------------------------------------|----------------------|-----------------------------------------|-------|--|--|--|--|
|      | PRESENT STATE (Inputs)            |   |   |                                        | NEXT STATE (Outputs) |                                         |       |  |  |  |  |
|      | A                                 | В | C |                                        | NextA                | NextB                                   | NextC |  |  |  |  |
|      | 0                                 | 0 | 0 |                                        | 1                    | 0                                       | 0     |  |  |  |  |
|      | 0                                 | 0 | 1 |                                        | 1                    | 0                                       | 0     |  |  |  |  |
|      | 0                                 | 1 | 0 |                                        | 1                    | 0                                       | 1     |  |  |  |  |
| - 6  | 0                                 | 1 | 1 |                                        | 0                    | 0                                       | 1     |  |  |  |  |
| 2    | 1                                 | 0 | 0 |                                        | 1/1/1/1              | 1                                       | 0     |  |  |  |  |
|      | 1                                 | 0 | 1 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 1/////1/////         | 1                                       | . 0   |  |  |  |  |
|      | 1                                 | 1 | 0 | MIIII                                  | 1                    | 111111111111111111111111111111111111111 | 1     |  |  |  |  |
|      | 1                                 | 1 | 1 |                                        | 0                    | 1                                       | 1     |  |  |  |  |
| 3) D |                                   |   |   |                                        |                      |                                         | -     |  |  |  |  |

Q - J Q'+h' Q Transition Diagram

Next A 2-map &m (0,1,2,4,5,6) 00 F=B+C  $B \ k-map \ Em(4,5,6,7)$ Next

 $\leq m(2,3,6,7)$ Next C k-map Combination Logic Design FNB FNC

Schematic





Explain what huppening CLR ARARATA RESET! 1 All is Zeco

whenever Chr Giscs that is when if sends a signal to A, then B then