Probability & Statistics: Assignment 4

Due on October 28, 2018 at 8:30am

Prof. D. Eynard

A. Romanelli / A. Vicini

Problem 1

We let n be the number of steps taken and draw the Pascal's Triangle:

- a) There's no possible way with a random walk of odd length to return to the origin.
- **b**) $\binom{6}{4} \cdot \frac{1}{2^6} = \frac{15}{64}$
- c) There's no random walk which reaches a distance of 6 in only 4 steps.
- **d**) $\binom{5}{3} \cdot \frac{1}{2^5} = \frac{5}{16}$
- e) In the considered set of possible steps, our prime numbers are: $\{2,3,5\}$, thus our chance is:

$$P_{S_6}(\text{primes}) = P_{S_6}(2\text{D4U}) + P_{S_6}(3\text{D3U}) + P_{S_6}(5\text{D1U}) =$$

$$P_{S_6}(2) = P_{S_6}(2) + P_{S_6}(0) + P_{S_6}(-4) = \frac{1}{64} \cdot \binom{6}{1} + \frac{1}{64} \cdot \binom{6}{3} + \frac{1}{64} \cdot \binom{6}{4} = \frac{6}{64} + \frac{20}{64} + \frac{15}{64} = \frac{41}{64} \cdot \binom{6}{1} + \frac{1}{64} \cdot \binom{6}{1} + \frac{6}{1} \cdot \binom{6}{1} + \frac{6}{1} \cdot \binom{6}{1} + \frac{6}{1} \cdot \binom{6}{1} + \frac{6}{1} \cdot \binom{6}{1} + \frac{6}{1$$

f) Out of all the possible 64 combinations, we want to calculate what is the chance of having two upward movements in a row and then compute its complement. If we have less than two moves down, then we know for sure that the path will contain at least two upward movement in a row, we compute how many combinations:

$$2^6 \cdot P(0D6U) = \binom{6}{6} = 1, \qquad 2^6 \cdot P(1D5U) = \binom{6}{5} = 6, \qquad 2^6 \cdot P(2D4U) = \binom{6}{4} = 15$$

In the case of P(3D3U) we'll need to enumerate the cases in which we DON'T have two upward movements in a row:

- UDUDUD
- DUDUDU
- UDDUDU
- UDUDDU

Thus we take these four cases out of our calculations:

$$2^{6} \cdot P(3D3U) - 4 = {6 \choose 3} - 4 = 20 - 4 = 16$$

In the last scenario of P(4D2U) we only have five possible chances:

- UUDDDD
- DUUDDD
- DDUUDD
- DDDUUD

• DDDDUU

We can finally sum all of the possible outcomes which involve a sequence of two upward movements in a row that we computed so far: $2^6 \cdot P(2U \text{ in a row}) = 1 + 6 + 15 + 16 + 5 = 43 \text{ Now we calculate the complement of what we just computed: } 1 - \frac{43}{64} = \frac{21}{64} = P(\text{not } 2U \text{ in a row})$

Problem 2

Initially, out of all the possible scenarios, only $\frac{3}{4}$ will end with at least one of the two teams successfully completing their project. Thus we get the following table:

	A = S	A = F	P(B)
B = S			$\frac{1}{2}$
B = F		$\frac{1}{4}$	_
$\overline{P(A)}$	$\frac{2}{3}$		

With our partially filled table, we can still deduce some additional data, considering the fact that the marginals must sum up to 1: Moreover, we can deduce P(A = F, B = S) = P(A = F) - P(A = F, B = F):

	A = S	A = F	P(B)
B = S			$\frac{1}{2}$
B = F		$\frac{1}{4}$	$\frac{\overline{1}}{2}$
P(A)	$\frac{2}{3}$	$\frac{1}{3}$	

	A = S	A = F	P(B)
B = S	$\frac{5}{12}$	$\frac{1}{12}$	$\frac{1}{2}$
B = F	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$
P(A)	$\frac{2}{3}$	$\frac{1}{3}$	

This table now allows us to look up the probability of the considered event $P(A=F,B=S)=\frac{1}{12}$

But if we now know for a fact that only one team did succeed and we must compute the chance of team B being the one successful, then we need to consider how many scenarios were having only one team being successful (in the pie chart yellow+blue).

We can use the formula to compute the conditional probability:

$$P(B=S|1 \text{ team won}) = \frac{P((B=S) \cap (\text{only 1 team won}))}{P(\text{only 1 team won})} = \frac{P(A=F,B=S)}{P(A=F,B=S) + P(A=S,B=F)} = \frac{\frac{1}{12}}{\frac{1}{3}} = \frac{3}{12} = \frac{1}{4}$$

Which is the probability that, given that one team has won, B was the one being successful.

Problem 3

a)
$$P_Y(Y = 16) = 0.08 + 0.28 + 0.04 = 0.4$$

b)
$$P_X = \{0.12 + 0.08, 0.42 + 0.28, 0.06 + 0.04\} \Rightarrow P_X = \{0.2, 0.7, 0.1\}$$

c) According to **Definition 12**, $P_X(130)$ and $P_Y(16)$ are statistically independent because:

$$P(P(X=130) \cap P(Y=16)) = P_X(130) \cdot P_Y(16)$$

 $0.28 = 0.7 \cdot 0.4 \implies \mathbf{true}$

d) We can show that X and Y are independent if we show what we demonstrated at point c) for each event.

				X	
			0.2	0.7 130	0.1
			129	130	131
Y	0.6	15	$0.2 \cdot 0.6$	$0.7 \cdot 0.6$	$0.1 \cdot 0.6$
	0.4	16	$0.2 \cdot 0.6 \\ 0.2 \cdot 0.4$	$0.7 \cdot 0.4$	$0.1 \cdot 0.4$

			X	
			130	
Y	15	0.12	0.42 0.28	0.06
	16	0.08	0.28	0.04

Problem 4

d)

We apply Bayes' Theorem to compute the following probabilities:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A|B) \cdot P(B) + P(A|B^{C})(1 - P(B))}$$

a)
$$\begin{split} P(\text{SPAM}|\text{shoes}) &= \frac{P(\text{SPAM}) \cdot P(\text{shoes}|\text{SPAM})}{P(\text{shoes}|\text{SPAM}) \cdot P(\text{SPAM}) + P(\text{shoes}|\text{SPAM}^C)(1 - P(\text{SPAM}))} = \\ &= \frac{\frac{1}{2} \cdot \frac{1}{16}}{\frac{1}{16} \cdot \frac{1}{2} + \frac{2}{14} \cdot \frac{1}{2}} = \frac{\frac{1}{32}}{\frac{1}{32} + \frac{1}{14}} = \frac{\frac{1}{32}}{\frac{23}{224}} = \frac{224}{736} = \frac{7}{23} \end{split}$$

b)
$$\begin{split} P(\text{SPAM}|\text{walk} \cup \text{zoo}) &= \frac{P(\text{SPAM}) \cdot P(\text{SPAM}|\text{walk} \cup \text{zoo})}{P(\text{walk} \cup \text{zoo}|\text{SPAM}) \cdot P(\text{SPAM}) + P(\text{walk} \cup \text{zoo}|\text{SPAM}^C)(1 - P(\text{SPAM}))} = \\ &= \frac{\frac{1}{2} \cdot \frac{0}{16}}{\frac{0}{16} \cdot \frac{1}{2} + \frac{4}{14} \cdot \frac{1}{2}} = 0 \end{split}$$

c)
$$P(\text{SPAM}|\text{free} \cap \text{deal}) = \frac{P(\text{SPAM}) \cdot P(\text{SPAM}|\text{free} \cap \text{deal})}{P(\text{free} \cap \text{deal}|\text{SPAM}) \cdot P(\text{SPAM}) + P(\text{free} \cap \text{deal}|\text{SPAM}^C)(1 - P(\text{SPAM}))} = \\ = \frac{\frac{1}{2} \cdot \frac{2}{16}}{\frac{2}{16} \cdot \frac{1}{2} + \frac{0}{14} \cdot \frac{1}{2}} = \frac{\frac{1}{16}}{\frac{1}{16}} = 1$$

$$\begin{split} P(\text{SPAM}|\text{puma}\cup\text{giraffe}) &= \frac{P(\text{SPAM})\cdot P(\text{SPAM}|\text{puma}\cup\text{giraffe})}{P(\text{puma}\cup\text{giraffe}|\text{SPAM})\cdot P(\text{SPAM}) + P(\text{puma}\cup\text{giraffe}|\text{SPAM}^C)(1-P(\text{SPAM}))} = \\ &= \frac{\frac{1}{2}\cdot\frac{1}{16}}{\frac{1}{16}\cdot\frac{1}{2}+\frac{3}{14}\cdot\frac{1}{2}} = \frac{\frac{1}{32}}{\frac{32}{32}+\frac{3}{28}} = \frac{\frac{1}{32}}{\frac{31}{224}} = \frac{224}{992} = \frac{7}{31} \end{split}$$

Optional Problem