Problemsheet 7

November 1, 2019

1 7.1

Prove two elementary function \rightarrow and \neg are universal.

We know that the functions $\land \lor \neg$ are universal functions.

If \to and \neg can express any of the above boolean functions, (mainly \land and $\lor)$ it is universal.

Truth table for $A \to B$:

A	В	$A \rightarrow B$	$A \wedge B$	$A \vee B$
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

for \wedge : $\neg(A \to \neg B)$ gives the same result in the truth table.

for \vee : $\neg B \to A$ gives the same result in the truth table.

Since \wedge and \vee can both be expressed by \rightarrow and \neg

2 2

Boolean Expression:

$$\varphi(P, Q, R, S) = (\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P)$$

2.1 a

 φ gives 1 when $(\neg P\vee Q)$, $(\neg Q\vee R),$ $(\neg R\vee S),$ $(\neg S\vee P)$ The only conditions for which this is true are:

$$P = 0, Q = 0, R = 0, S = 0$$

$$P = 1, Q = 1, R = 1, S = 1$$

2.2 b

From the cases where the expression is true, we can drive the DNF as: $(\neg P \land \neg Q \land \neg R \land \neg S) \lor (P \land Q \land R \land S)$

2.3 c

Given CNF:

$$(\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P)$$

For
$$(\neg P \lor Q) \land (\neg Q \lor R)$$

$$\neg P \wedge (\neg Q \vee R) \vee Q \wedge (\neg Q \vee R)$$

$$(\neg P \land \neg Q) \lor (\neg P \land R) \lor (Q \land R)$$

For
$$(\neg R \lor S) \land (\neg S \lor P)$$

$$\neg R \land (\neg S \lor P) \lor S \land (\neg S \lor P)$$

$$(\neg R \land \neg S) \lor (\neg R \land P) \lor (S \land P)$$

Equating both of the equations:

$$\{(\neg P \land \neg Q) \lor (\neg P \land R) \lor (Q \land R)\} \land \{(\neg R \land \neg S) \lor (\neg R \land P) \lor (S \land P)\}$$

For
$$(\neg P \land \neg Q) \land \{(\neg R \land \neg S) \lor (\neg R \land P) \lor (S \land P)\}$$

$$\{(\neg P \land \neg Q) \land (\neg R \land \neg S)\} \lor \{(\neg P \land \neg Q) \land (\neg R \land P)\} \lor \{(\neg P \land \neg Q) \land (S \land P)\}$$

$$(\neg P \land \neg Q \land \neg R \land \neg S)$$

For
$$(\neg P \land R) \land \{(\neg R \land \neg S) \lor (\neg R \land P) \lor (S \land P)\}$$

$$\{(\neg P \land R) \land (\neg R \land \neg S)\} \lor \{(\neg P \land R) \land (\neg R \land P)\} \lor \{(\neg P \land R) \land (S \land P)\}$$

 $0 \lor 0 \lor 0$

0

For
$$(Q \wedge R) \wedge \{(\neg R \wedge \neg S) \vee (\neg R \wedge P) \vee (S \wedge P)\}$$

$$\{(Q \land R) \land (\neg R \land \neg S)\} \lor \{(Q \land R) \land (\neg R \land P)\} \lor \{(Q \land R) \land (S \land P)\}$$

$$0 \vee 0 \vee (P \wedge Q \wedge R \wedge S)$$

$$(P \wedge Q \wedge R \wedge S)$$

Equating all:

$$(\neg P \land \neg Q \land \neg R \land \neg S) \lor 0 \lor (P \land Q \land R \land S)$$

$$(\neg P \wedge \neg Q \wedge \neg R \wedge \neg S) \vee (P \wedge Q \wedge R \wedge S)$$