Билет 53

Теорема о производной константы. Теорема о производной монотонной и строго монотонной функции. Достаточный признак монотонности функции.

Теорема

f — дифференцируема на промежутке X

$$(\forall x \in X) \ f(x) = const \Leftrightarrow (\forall x \in X) \ f'(x) = 0$$

Необходимость

$$(\forall x \in X) \ f(x) = c \Rightarrow \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0 \Rightarrow f'(x) = 0 \square.$$

Достаточность

f непрерывна и дифференцируема на промежутке X, применим теорему Лагранжа:

$$(\forall a, b \in \mathbb{R}) \ \exists \gamma \in (a; b) : f(b) - f(a) = f'(\gamma)(b - a) = 0 \Rightarrow f(b) = f(a) \Rightarrow f(x) = \text{const } \square.$$

Теорема

f — дифференцируема на промежутке X

 $(\forall x \in X \ f'(x) \ge 0 \Leftrightarrow f$ — монотонно возрастающая на X

 $(\forall x \in X) \ f'(x) \leq 0 \Leftrightarrow f$ — монотонно убывающая на X

Необходимость

Без ограничения общности пусть $f'(x) \ge 0$

Возьмём $x_1, x_2 \in X$:

$$\exists x_1 < x_2 \Rightarrow \exists \gamma \in (x_1, x_2) : f(x_2) - f(x_1) = f'(\gamma)(x_2 - x_1) \ge 0 \Rightarrow f(x_2) \ge f(x_1) \square.$$

Достаточность

Без ограничения общности пусть f — монотонно возрастающая на X

$$\begin{cases} f(x+h) \geq f(x) & \text{ при } h > 0 \\ f(x+h) \leq f(x) & \text{ при } h < 0 \end{cases} \Rightarrow \frac{f(x+h) - f(x)}{h} \geq 0 \Rightarrow$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \geq 0 \; \square.$$

Теорема

f — дифференцируема на промежутке X

 $(\forall x \in X) \; f'(x) > 0 \Rightarrow f$ — строго монотонно возрастающая на X

 $(\forall x \in X) \; f'(x) < 0 \Rightarrow f$ — строго монотонно убывающая на X

Доказательство

Без ограничения общности пусть f'(x) > 0

Возьмём $x_1, x_2 \in X$:

$$\exists x_1 < x_2 \Rightarrow \exists \gamma \in (x_1, x_2) : f(x_2) - f(x_1) = f'(\gamma)(x_2 - x_1) > 0 \Rightarrow f(x_2) > f(x_1) \square.$$

Теорема

f — непрерывна на промежутке X

f — дифференцируема на $X \setminus A$, где $A \subset X$ — конечное и крайние точки $X \notin A$

 $(\forall x \in X \setminus A) \ f'(x) \ge 0 \Leftrightarrow f$ — монотонно возрастающая на X

 $(\forall x \in X \setminus A) \ f'(x) \leq 0 \Leftrightarrow f$ — монотонно убывающая на X

Доказательство

A — конечно и n := |A|, пронумеруем его элементы по возрастанию:

$$a_i \in A, i = \overline{1, n}$$

$$a_i < a_{i+1}, \ i = \overline{1, n-1}$$

 $\mathit{Индукция} \colon P(n)$ — верность теоремы для |A|=n

- 1. P(0) предыдущие теоремы
- 2. $P(n) \Rightarrow P(n+1)$

Разделим X элементом a_{n+1} :

$$X_L := \{x \in X \mid x < a_{n+1}\}$$
 $X_R := \{x \in X \mid x > a_{n+1}\}$ $X_L \cup \{a_{n+1}\} \cup X_R = X$

Необходимость

Без ограничения общности пусть $f'(x) \ge 0$

f— непрерывна на X_L и дифференцируема на $X_L\setminus (A\setminus \{a_{n+1}\}),$ тогда по P(n) f— монотонно возрастающая на X_L

f — дифференцируема на $X_R \Rightarrow f$ — монотонно возрастающая на X_R

Возьмём $x_1 \in X_L, x_2 \in (x_1; a_{n+1})$:

$$x_1 < x_2 \land x_1, x_2 \in X_L \Rightarrow f(x_1) \le f(x_2)$$

Возьмём $\lim_{x_2 \to a_{n+1} = 0}$ по обоим частям неравенства $f(x_1) \le f(x_2)$, тогда по непрерывности:

$$\lim_{x_2 \to a_{n+1} - 0} f(x_1) \le \lim_{x_2 \to a_{n+1} - 0} f(x_2) \Rightarrow (\forall x_1 \in X_L) \ f(x_1) \le f(a_{n+1})$$

Аналогично: $(\forall x_1 \in X_R) \ f(a_{n+1}) \le f(x_1)$

Возьмём $x_1, x_2 \in X : x_1 < x_2$ и рассмотрим, где они могут лежать

(a)
$$x_1, x_2 \in X_L \Rightarrow f(x_1) \le f(x_2)$$

(b)
$$x_1 \in X_L, x_2 = a_{n+1} \Rightarrow f(x_1) \le f(x_2)$$

(c)
$$x_1 \in X_L, x_2 \in X_R \Rightarrow f(x_1) \le f(a_{n+1}) \le f(x_2) \Rightarrow f(x_1) \le f(x_2)$$

(d)
$$x_1 = a_{n+1}, x_2 \in X_R \Rightarrow f(x_1) \le f(x_2)$$

(e)
$$x_1, x_2 \in X_R \Rightarrow f(x_1) \le f(x_2)$$

Можно прийти к следущему выводу:

$$(\forall x_1, x_2 \in X) \ x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \ \Box.$$

Достаточность

Без ограничения общности пусть f — монотонно возрастающая

f — монотонно возрастающая на $X\Rightarrow f$ — монотонно возрастающая на $X_L\subset X$ и $X_R\subset X$

f — непрерывна на X_L и дифференцируема на $X_L\setminus (A\setminus \{a_{n+1}\})$, тогда по P(n) ($\forall x\in X_L\setminus (A\setminus \{a_{n+1}\})$) $f'(x)\geq 0$

f — дифференцируема на $X_R \Rightarrow (\forall x \in X_R) \ f'(x) \geq 0$

$$X_L \setminus (A \setminus \{a_{n+1}\}) \cup X_R = X_L \setminus A \cup X_R \setminus A = (X_L \cup X_R) \setminus A = X \setminus a_{n+1} \setminus A = X \setminus A \Rightarrow (\forall x \in X \setminus A) f'(x) \ge 0 \square.$$

Теорема

f — непрерывна на промежутке X

f — дифференцируема на $X \setminus A$, где $A \subset X$ — конечное и крайние точки $X \notin A$

 $(\forall x \in X \setminus A) \ f'(x) > 0 \Rightarrow f$ — строго монотонно возрастающая на X

 $(\forall x \in X \setminus A) \ f'(x) < 0 \Rightarrow f$ — строго монотонно убывающая на X

Доказательство

Без ограничения общности пусть f'(x) > 0

A — конечно и n := |A|, пронумеруем его элементы по возрастанию:

$$a_i \in A, i = \overline{1, n}$$

$$a_i < a_{i+1}, i = \overline{1, n-1}$$

Индукция: P(n) — верность теоремы для |A| = n

- 1. P(0) предыдущие теоремы
- 2. $P(n) \Rightarrow P(n+1)$

Разделим X элементом a_{n+1} :

$$X_L := \{x \in X \mid x < a_{n+1}\}$$
 $X_R := \{x \in X \mid x > a_{n+1}\}$ $X_L \cup \{a_{n+1}\} \cup X_R = X$

f— непрерывна на X_L и дифференцируема на $X_L\setminus (A\setminus \{a_{n+1}\}),$ тогда по P(n) f— строго монотонно возрастающая на X_L

f — дифференцируема на $X_R \Rightarrow f$ — строго монотонно возрастающая на X_R

Возьмём $x_1 \in X_L, x_2 \in (x_1; a)$ и $x_3 \in (x_2; a)$:

$$x_1 < x_2 < x_3 \land x_1, x_2, x_3 \in X_L \Rightarrow f(x_1) < f(x_2) < f(x_3)$$

Возьмём $\lim_{x_3 \to a_{n+1} = 0}$ по обоим частям неравенства $f(x_2) < f(x_3)$, тогда по непрерывности:

$$\lim_{x_3 \to a_{n+1} \to 0} f(x_2) \le \lim_{x_3 \to a_{n+1} \to 0} f(x_3) \Rightarrow f(x_2) \le f(a_{n+1}) \Rightarrow$$
$$\Rightarrow f(x_1) < f(x_2) \le f(a_{n+1}) \Rightarrow (\forall x_1 \in X_L) \ f(x_1) < f(a_{n+1})$$

Аналогично: $(\forall x_1 \in X_R) \ f(a_{n+1}) < f(x_1)$

Возьмём $x_1, x_2 \in X : x_1 < x_2$ и рассмотрим, где они могут лежать

(a)
$$x_1, x_2 \in X_L \Rightarrow f(x_1) < f(x_2)$$

(b)
$$x_1 \in X_L, x_2 = a_{n+1} \Rightarrow f(x_1) < f(x_2)$$

(c)
$$x_1 \in X_L, x_2 \in X_R \Rightarrow f(x_1) < f(a_{n+1}) < f(x_2) \Rightarrow f(x_1) < f(x_2)$$

(d)
$$x_1 = a_{n+1}, x_2 \in X_R \Rightarrow f(x_1) < f(x_2)$$

(e)
$$x_1, x_2 \in X_R \Rightarrow f(x_1) < f(x_2)$$

Можно прийти к следущему выводу:

$$(\forall x_1, x_2 \in X) \ x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \ \Box.$$