KalmanNet 线性模型测试

1 数学模型

在本次实验中,所选取的模型为线性常加速度模型,状态定义为[p,v,a]或[p,v],最终跟踪[p]。

2 算法流程

图 1、算法流程

3 实验结果

3.1 参数设置

本次实验相关参数如下:

- args.N_E = 1000 # 训练集大小
 args.N_CV = 200 # 验证集大小
 args.N_T = 200 # 测试集大小
 offset = 0 ### Init condition of dataset
 args.randomInit_train = True
 args.randomInit_cv = True
 args.randomInit_test = True
 args.randomInit_test = True
 args.T = 20 # 训练集序列长度
 args.T_test = 100 # 测试集序列长度
 ### training parameters
- 11. KnownRandInit_train = True # if true: use known random init for train
 ing, else: model is agnostic to random init
- 12. KnownRandInit_cv = True

```
13. KnownRandInit_test = True
14. args.use_cuda = True # use GPU or not
15. args.n_steps = 2000
16. args.n_batch = 100
17. args.lr = 1e-4
18. args.wd = 1e-4
```

3.2 状态为p, v, a

3.2.1 预处理 delt_t=0.01

选择训练集中 10 个序列进行可视化如图 2,图 2 指出当 R=1 时,状态的频繁估计导致测量值(input value)失真过大,导致 KalmanNet 通过训练集进行训练时网络难以收敛。

可以通过增大 delt_t 以减小状态估计频率或者减小 R 解决 KalmanNet 难以收敛的问题。

3.2.2 修改参数 delt_t 、R=1

分别将 delt_t 增大为 0.05、0.1 进行 KalmanNet 网络训练,并与 Kalman filter 进行对比测试。

实验一: delt_t=0.05。选择训练集中 10 个序列进行可视化如图 3。

对 Kalman Filter 和 KalmanNet 的滤波性能进行评估。**训练集:** 序列长度 T=20 初始状态[2,2,2]。**测试集:** 序列长度 T=50、100、200 初始状态[1,1,1]、[2,2,2]、[3,3,3]。随机抽取一个测试序列进行可视化追踪效果。

序列长度对滤波效果的影响:测试集选择初始状态[2,2,2],T=50,100,200,对p的追踪效果如下:

图 5、T=100

100

20

Kalman Filter 和 KalmanNet 的 MSE LOSS、STD、Inference Time 如下表:

表一、T=50

	MSE LOSS	STD	Inference Time		
Kalman Filter	-11.1741	2.5266	1.6388		
KalmanNet	-6.6984	1.3349	0.1437		
	表二、T=	=100			
	MSE LOSS	STD	Inference Time		
Kalman Filter	-9.5538	1.8257	1.4305		
KalmanNet	-6.4214	1.0450	0.2828		
表三、T=200					
	MSE LOSS	STD	Inference Time		
Kalman Filter	-8.8721	1.3162	1.4786		
KalmanNet	-6.0422	0.7502	0.4372		

初始状态对滤波效果的影响:测试集选择初始状态为[1,1,1]、[2,2,2]、[3,3,3],T=100,对p的追踪效果如下:

图 7、初始状态为[1,1,1]

图 8、初始状态为[2, 2, 2]

图 9、初始状态为[3, 3, 3]

Kalman Filter 和 KalmanNet 的 MSE LOSS、STD、Inference Time 如下表: 表四、初始状态为[1, 1, 1]

	MSE LOSS	STD	Inference Time	
Kalman Filter	-9.7368	1.5969	1.4624	
KalmanNet	-6.5767	0.9962	0.2440	
	表五、初始状态	为[2, 2, 2]		
	MSE LOSS	SS STD Infere		
Kalman Filter	-9.5538	1.8257	1.4305	
KalmanNet	-6.4214	1.0450	0.2828	
	表六、初始状态	为[3, 3, 3]		
	MSE LOSS	STD Inference Ti		
Kalman Filter	-9.4060	1.7784	1.4462	
KalmanNet	-6.1314	0.9845	0.3890	

当 delt_t=0.05 R=1 时,通过对上述图表分析可以得到以下结论:

结论 1: Kalman Filter 的滤波效果较 KalmanNet 更好(3dB),但是 KalmanNet 稳定性强于 Kalman Filter。

结论 2: 当测试序列长度发生改变时,KalmanNet 的适应性强于 Kalman Filter。

结论 3: 初始状态发生改变基本不影响 KalmanNet 和 Kalman Filter 的滤波性能。

结论 4: KalmanNet 时间消耗明显少于 Kalman Filter。

实验二: delt_t=0.1。选择训练集中 10 个序列进行可视化如图 10。

对 Kalman Filter 和 KalmanNet 的滤波性能进行评估。**训练集**: 序列长度 T=20 初始状态[2,2,2]。**测试集**: 序列长度 T=50、100、200 初始状态[1,1,1]、[2,2,2]、[3,3,3]。

序列长度对滤波效果的影响:测试集选择初始状态[2,2,2],T=50,100,200,对p的追踪效果如下:

Kalman Filter 和 KalmanNet 的 MSE LOSS、STD、Inference Time 如下表:

表七、T=50

	, , <u> </u>			
	MSE LOSS	STD	Inference Time	
Kalman Filter	-7.2849	1.8994	1.4022	
KalmanNet	-5.9059	2.2661	0.1748	
	表八、T=	-100		
	MSE LOSS	STD	Inference Time	
Kalman Filter	-6.7115	1.3303	1.4271	
KalmanNet	-5.5873	1.6630	0.2849	
	表九、T=	-200		
	MSE LOSS	STD	Inference Time	
Kalman Filter	-6.3705	0.9068	1.5352	
KalmanNet	-5.3945	1.1261	0.3118	

初始状态对滤波效果的影响:测试集选择初始状态为[1,1,1]、[2,2,2]、[3,3,3],T=100,对p的追踪效果如下:

图 14、初始状态为[1, 1, 1]

图 15、初始状态为[2, 2, 2]

图 16、初始状态为[3, 3, 3]

Kalman Filter 和 KalmanNet 的 MSE LOSS、STD、Inference Time 如下表:

表十、初始状态为[1,1,1]

	MSE LOSS	STD	Inference Time	
Kalman Filter	-6.5611	1.3601	1.4742	
KalmanNet	-5.3068	1.6357	0.3171	
	表十一、初始状	态为[2, 2, 2]		
	MSE LOSS	STD	Inference Time	
Kalman Filter	-6.7115	1.3303	1.4271	
KalmanNet	-5.5873	1.6630	0.2849	
	表十二、初始状	态为[3, 3, 3]		
	MSE LOSS	STD	Inference Time	
Kalman Filter	-6.4303	1.2772	1.5914	
KalmanNet	-5.6039	1.5281	0.3415	

当 delt_t=0.1、 R=1 时,通过对上述图表分析可以得到以下结论:

结论 1: KalmanNet 基本达到了 Kalman Filter 的滤波效果,但是 Kalman Filter 稳定性更强。

结论 2: 当测试序列长度发生改变时,KalmanNet 的适应性强于 Kalman Filter。

结论 3: 初始状态发生改变基本不影响 KalmanNet 和 Kalman Filter 的滤波

性能。

结论 4: KalmanNet 时间消耗明显少于 Kalman Filter。

3.2.3 修改参数 R、delt_t=0.01

实验三: R=0.1。选择训练集中 10 个序列进行可视化如图。

图 17、R=0.1

对 Kalman Filter 和 KalmanNet 的滤波性能进行评估。训练集: 序列长度 T=20 初始状态[2,2,2]。**测试集:** 序列长度 T=50、100、200 初始状态[1,1,1]、 [2,2,2], [3,3,3].

序列长度对滤波效果的影响:测试集选择初始状态[2,2,2],T=50,100, 200,对p的追踪效果如下:

Kalman Filter 和 KalmanNet 的 MSE LOSS、STD、Inference Time 如下表:

表十三、T=50

X1=1.7.13						
	MSE LOSS	STD	Inference Time			
Kalman Filter	-28.8141	3.4638	1.6682			
KalmanNet	-24.8414	1.0006	0.1950			
表十四、T=100						
MSE LOSS STD Inference Ti						
Kalman Filter	-29.7786	3.5944	2.3148			
KalmanNet	-24.7258	0.7435	0.1561			

表十五、T=200

	MSE LOSS	STD	Inference Time
Kalman Filter	-28.8751	2.3894	1.5914
KalmanNet	-24.6268	0.5741	0.4084

初始状态对滤波效果的影响:测试集选择初始状态为[1,1,1]、[2,2,2]、[3,3,3],T=100,对p的追踪效果如下:

图 21、初始状态为[1, 1, 1]

图 22、初始状态为[2, 2, 2]

图 23、初始状态为[3, 3, 3]

Kalman Filter 和 KalmanNet 的 MSE LOSS、STD、Inference Time 如下表:

表十六、初始状态为[1,1,1]

W 17 (1774 M.C. 75 (
	MSE LOSS	STD	Inference Time	
Kalman Filter	-28.9468	3.5461	1.3933	
KalmanNet	-24.5646	0.8109	0.2497	
	表十七、初始状	态为[2, 2, 2]		
	MSE LOSS	STD	Inference Time	
Kalman Filter	-29.7786	3.5944	2.3148	
KalmanNet	-24.7258	0.7435	0.1561	
	表十八、初始状	态为[3, 3, 3]		
	MSE LOSS	STD	Inference Time	
Kalman Filter	-29.5617	3.7315	1.5130	
KalmanNet	-24.8484	0.8871	0.2496	

当 delt_t=0.01、 R=0.1 时,通过对上述图表分析可以得到以下结论:

- **结论 1:** Kalman Filter 的滤波效果较 KalmanNet 更好(5dB), 但是 KalmanNet 稳定性更强。
- **结论 2:** 当测试序列长度发生改变时,KalmanNet 的适应性强于 Kalman Filter。
- **结论 3:** 初始状态发生改变基本不影响 KalmanNet 和 Kalman Filter 的滤波性能。

对 Kalman Filter 和 KalmanNet 的滤波性能进行评估。**训练集:** 序列长度 T=20 初始状态[2,2,2]。**测试集:** 序列长度 T=50、100、200 初始状态[1,1,1]、[2,2,2]、[3,3,3]。

序列长度对滤波效果的影响:测试集选择初始状态[2,2,2],T=50,100,200,对p的追踪效果如下:

图 25、T=50

图 26、T=100

图 27、T=200

Kalman Filter 和 KalmanNet 的 MSE LOSS、STD、Inference Time 如下表:

表十九、T=50

77.5				
	MSE LOSS	STD	Inference Time	
Kalman Filter	-39.8073	3.6535	1.5750	
KalmanNet	-43.7011	1.8446	0.1854	
	表二十、	T=100		
	MSE LOSS	STD	Inference Time	
Kalman Filter	-38.5126	3 .1179	1.3995	
KalmanNet	-41.9026	2.9248	0.1797	
	表二十一	-、T=200		
	MSE LOSS	STD	Inference Time	
Kalman Filter	-38.2809	2.2873	1.7464	
KalmanNet	-37.6411	3.8116	0.4507	

初始状态对滤波效果的影响:测试集选择初始状态为[1,1,1]、[2,2,2]、[3,3,3],T=100,对p的追踪效果如下:

图 28、初始状态为[1, 1, 1]

图 29、初始状态为[2, 2, 2]

图 30、初始状态为[3, 3, 3]

Kalman Filter 和 KalmanNet 的 MSE LOSS、STD、Inference Time 如下表:

表二十二、初始状态为[1,1,1]

	MSE LOSS	STD	Inference Time			
Kalman Filter	-38.4828	3.4348	1.5382			
KalmanNet	-42.0819	3.0684	0.2510			
表二十三、初始状态为[2, 2, 2]						
	MSE LOSS	MSE LOSS STD Inference T				
Kalman Filter	-38.5126	3 .1179	1.3995			
KalmanNet	-41.9026	2.9248	0.1797			
KalmanNet	-41.9026	2.9248	0.1797			

表二十四、初始状态为[3, 3, 3]

	MSE LOSS	STD	Inference Time
Kalman Filter	-38.8923	2.9381	1.5371
KalmanNet	-41.6325	2.6088	0.2786

当 delt t=0.01、R=0.01时,通过对上述图表分析可以得到以下结论:

结论 1: KalmanNet 达到了 Kalman Filter 的滤波效果甚至更好,但是 KalmanNet 稳定性更强。

结论 2: 当测试序列长度发生改变时,Kalman Filter 的适应性强于KalmanNet。

结论 3: 初始状态发生改变基本不影响 KalmanNet 和 Kalman Filter 的滤波性能。

结论 4: KalmanNet 时间消耗明显少于 Kalman Filter。

3.3 状态为p, v

通过对 3.2 中生成的数据集进行切片操作,重复上述实验。(具体实验结果见附件,与 3.2 模型相比,状态为p, v时,对p,的滤波效果更好)。

部分结果如下:

表、delt_t=0.1、R=1 初始状态[2,2,2] T=100

	MSE LOSS	STD	Inference Time	
Kalman Filter	-0.6656 2.7135 1.446			
KalmanNet	-2.7112	2.5722 0.1539		
	表、delt_t=0.01、	R=0.1 初始状态[2,2,2]	T=100	
	MSE LOSS	STD	Inference Time	
Kalman Filter	-24.0954	2.7486 1.55		
KalmanNet	-26.0248	1.0515	0.1625	

结论: KalmanNet 的滤波效果、稳定性、时间损耗都优于 Kalman Filter。

KalmanNet——Synthetic Non-Linear Model

1 数学模型

1.1 模型— Non-linear toy problem

$$f(x) = \alpha \sin(\beta x + \phi) + \delta \quad x \in \mathbb{R}^2$$
$$h(x) = a(bx + c)^2 \qquad y \in \mathbb{R}^2$$

1.2 模型二 Lorenz Attractor

$$\frac{dX}{dt} = p(Y - X)$$

$$\frac{dY}{dt} = X(r - Z) - Y$$

$$\frac{dZ}{dt} = XY - bZ$$

2 实验结果

本实验主要测试上述两种模型下 KalmanNet 的滤波性能,并与 EKF、UKF、PF 进行对比。(表格仅列出 KalmanNet-MSE, KalmanNet- STD、 Inference Time 见附件)。本次实验 UKF、PF 结果暂不讨论。

2.1 模型一

实验目标: 对比 KalmanNet 和 EKF、UKF、PF 在该模型下 full information 和 partial information 的滤波性能。(T=T_test=100)

表一: Non-linear toy problem parameters

	α	β	φ	δ	а	b	С
Full	0.9	1.1	0.1π	0.01	1	1	0
partial	1	1	0	0	1	1	0

full information:

表二:	Synthetic non-	linear SS mo	odel; full in	formation

$1/r^2[dB]$	-12.04	-6.02	0	20	40
EKF	-7.2638	-13.2737	-19.1439	-39.1460	-59.1163
UKF	-7.1135	-12.9039	-18.4075	-28.2201	-28.6289
PF	-7.2196	-13.0058	-18.2905	-25.0167	-24.6793
KNet	-7.2282	-13.2250	-19.1927	-39.1458	-59.1325

partial information:

表三: Synthetic non-linear SS model; partial information

$1/r^2[dB]$	-12.04	-6.02	0	20	40
EKF	-6.1986	-10.7214	-13.3603	-14.8752	-14.8911
UKF	-6.0716	-9.9938	-12.1653	-13.3409	-13.3540
PF	-6.4593	-10.6139	-12.8735	-13.6486	-13.2250
KNet	-6.8544	-12.3536	-17.1553	-35.3858	-51.5622

结论 1: full information 下,KNet 与最优的常见非线性 Kalman Filter 滤波器性能 (EKF)相当,但是在 partial information 下,滤波器所使用的动态演化参数与真实模型略有不同,导致系统性能明显下降,但是 KNet 能够很好克服这种不匹配情况,在 partial information 下的滤波性能与 full information 下差距很小。(实验结果与论文结果基本一致,partial information 下 EKF 结果标红处与论文[-22.67,-36.55]存在差异)

2.2 模型二

实验目标: 该模型在五种情况下(KalmanNet、EKF、UKF、PF)进行了滤波性能的对比测试。

full information: Noisy state observations, noisy non-linear observations.

partial information: State-evolution mismatch|, State-observation rotation mismatch, State-observations sampling mismatch.

2.2.1 Noisy state observations(T=100,T test=2000,v=-20dB)

丰皿	T	-444	:41.		-4-4-	observations	
77 V4 •	Lorenz	attractor	with	noisv	state	onservations	

$1/r^2[dB]$	0	10	20	30	40
EKF	-10.3642	-20.4102	-30.3726	-40.2716	-49.9020
UKF					
PF					
KNet	-9.3863	-18.9256	-29.3419	-38.1881	-45.1282

结论 2: Noisy state observations 下,KNet 与 EKF 滤波性能相当。

2.2.2 noisy non-linear observations(T=T_test=20,v=-0dB)

表五: Lorenz attractor with non-linear observations

$1/r^2[dB]$	-10	0	10	20	30
EKF	nan	nan	nan	31.7123	31.5218
UKF	nan	nan	nan	nan	nan
PF	29.4233	27.3157	25.2306	15.1649	3.9805
KNet	13.2830	6.0234	-4.7157	-10.6565	-14.4138

注: KNet 在该条件下是震荡收敛,且幅度较大,实验结果略优于论文结果。(main 分支存在单独的代码,但是生成数据采用的参数有待商榷)

结论 3: noisy non-linear observations 下,KNet 的滤波性能远远优于常见的非线性 Kalman Filter。

2.2.3 State-evolution mismatch($T = 100, T_{test} = 2000, v=-20dB$)

表六: Lorenz attractor with state-evolution mismatch J = 2.

$1/r^{2}[dB]$	10	20	30	40
EKF	-19.5333	-25.4125	-26.8325	-28.6127
UKF				
PF				
KNet	-19.0504	-26.4003	-34.4143	-41.2624

结论 4: State-evolution mismatch 下,KNet 能够很好的克服这种不匹配,滤波性能与 full information 下差距很小。EKF 在 $1/r^2$ 为 10-20 时同样具备克服这种不匹配的能力,但是当 $1/r^2$ 为 30-40 时,克服不匹配的能力下降严重。(与论文结果存在差异)

2.2.4 State-observation rotation mismatch(T = 100, T = 100, V = -20dB)

表七: Lorenz attractor with observation rotation($\theta = 1^{\circ}$)

$1/r^2[dB]$	0	10	20	30
EKF	-9.5291	-15.3676	-16.8803	-16.8965
UKF				
PF				
KNet	-9.5543	-19.2013	-28.1989	-33.2600

结论 5: State-observation rotation mismatch 下,KNet 在 $1/r^2$ 为 0-20 能够很好的 克服这种不匹配,滤波性能与 full information 下差距很小, $1/r^2$ 为 30 时,克服 这种不匹配的能力出现一定程度的下降。EKF 在 $1/r^2$ 为 0-10 时同样具备克服这种不匹配的能力,但是当 $1/r^2$ 为 20-30 时,克服不匹配的能力下降严重。(与论文结果存在差异)

2.2.5 State-observations sampling mismatch(T=100,T test=3000,r=1)

3 偶然发现

表四: Lorenz attractor with noisy state observations(T test=100)

EKF	-10.4857	-20.4624	-30.3060	-40.3979	-50.4674
UKF	11.6340	11.7884	11.7654	11.7629	11.7045
PF	-6.2559	1.2743	4.8099	6.4258	7.1391
KNet	-9.3863	-18.9256	-28.8368	-38.1881	-45.1282

表六: Lorenz attractor with state-evolution mismatch J = 2. (T_test=100)

$1/r^2[dB]$	10	20	30	40
EKF	-16.7504	-18.8561	-19.2677	-21.1618
UKF	11.0435	11.0301	10.9115	9.4214
PF	-1.8780	3.7510	5.8433	6.6237
KNet	-19.0504	-26.4003	-34.4143	-41.2624

表七: Lorenz attractor with observation rotation($\theta = 1^{\circ}$) (T_test=100)

$1/r^2[dB]$	0	10	20	30
EKF	-9.3018	-15.0419	-16.2884	-16.2972
UKF	10.9156	10.9839	10.9847	10.8714
PF	-8.0212	-0.8162	4.4594	6.3673
KNet	-9.5543	-19.2013	-28.1989	-33.2600

 $T_{\text{test}}=100$ 时 UKF、PF的结果是有点灵异。 $T_{\text{test}}=2000$ 时 UKF、PF运行时间太长,不知道能否得到论文的结果。