Superficies de Riemann (tarea 2)

Eduardo León (梁遠光)

Junio 2020

Ejercicio 1. (Espacio proyectivo complejo, curvas algebraicas proyectivas)

- a) Muestre en detalle que \mathbb{CP}^n es una variedad diferenciable: exhiba las cartas explícitamente y muestre que los cambios de coordenadas son diferenciables. Muestre que, con la topología inducida por estas cartas, el espacio proyectivo \mathbb{CP}^n es compacto.
- b) La cuártica de Klein es el curva proyectiva plana

$$\bar{X} = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 : p(z_0, z_1, z_2) = z_0^3 z_1 + z_1^3 z_2 + z_2^3 z_0 = 0 \}$$

En clase mostramos que los conjuntos de este tipo son superficies de Riemann suaves/regulares de manera genérica. Con lujo de detalle haga lo mismo para \bar{X} .

- \blacksquare Determine la relación entre el conjunto X de ceros de la deshomogenización de p y \bar{X} .
- Halle las cartas de \bar{X} .
- Muestre que la compatibilidad arroja un cambio de coordenadas holomorfo.
- Argumente por qué la superficie de Riemann hallada es suave/regular.

Solución.

a) Sea U el espacio vectorial \mathbb{C}^{n+1} agujereado en el origen. El espacio proyectivo \mathbb{CP}^n se define como el espacio de órbitas de la acción de \mathbb{C}^* sobre U vía reescalamientos. Denotaremos por $\pi:U\to\mathbb{CP}^n$ la aplicación proyección y $[z_0:\cdots:z_n]=\pi(z_0,\ldots,z_n)$.

Para construir un atlas sobre \mathbb{CP}^n , generalizaremos el procedimiento utilizado en el ejercicio 2 de la tarea anterior. Tomemos

- Un sistema lineal de coordenadas $z_0, \ldots, z_n : \mathbb{C}^{n+1} \to \mathbb{C}$.
- El conjunto $V = \mathbb{C}^* \times \mathbb{C}^n$, identificado con el abierto $z_0 \neq 0$ de \mathbb{C}^{n+1} .
- El automorfismo $\psi: V \to V$ dado por $\psi(z_0, z_1, \dots, z_n) = (z_0, w_1, \dots, w_n)$, donde $w_i = z_i/z_0$.
- La proyección $\rho: V \to \mathbb{C}^n$ que descarta la coordenada $z_0 \in \mathbb{C}^*$.

Por construcción, ψ envía las órbitas de la proyección "complicada" $\pi: V \to \pi(V)$ a las órbitas de la proyección "más sencilla, imposible" $\rho: V \to \mathbb{C}^n$. Entonces existe un homeomorfismo $\varphi: \pi(V) \to \mathbb{C}^n$ que completa el siguiente diagrama conmutativo:

$$V \xrightarrow{\psi} V$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\rho}$$

$$\pi(V) \xrightarrow{-\cdots} \mathbb{C}^{n}$$

Por supuesto, $\varphi([z_0:\cdots:z_n])=(w_1,\ldots,w_n)$. Utilizando todas las elecciones posibles de z_0,\ldots,z_n , hemos construido una cobertura abierta de \mathbb{CP}^n por copias de \mathbb{C}^n . Por ende, \mathbb{CP}^n es localmente homeomorfo a \mathbb{C}^n .

Los cambios de coordenadas de este atlas se construyen tomando dos sistemas de referencia z_i, z'_i y calculando la matriz de cambio de base que los relaciona:

$$\begin{bmatrix} z_0' \\ \vdots \\ z_n' \end{bmatrix} = \begin{bmatrix} a_{00} & \dots & a_{0n} \\ \vdots & \ddots & \vdots \\ a_{n0} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} z_0 \\ \vdots \\ z_n \end{bmatrix}$$

Entonces la aplicación de transición entre las vecindades coordenadas $\pi(V)$ y $\pi(V')$ es

$$w_i' = \frac{a_{i0} + a_{i1}w_1 + \dots + a_{in}w_n}{a_{00} + a_{01}w_1 + \dots + a_{0n}w_n}$$

Esta aplicación es claramente holomorfa. Por ende, el atlas es holomorfo.

El atlas que hemos construido es mucho más grande que lo estrictamente necesario para cubrir \mathbb{CP}^n , pero este esfuerzo adicional tiene un propósito. Dados dos puntos distintos $\pi(p), \pi(q) \in \mathbb{CP}^n$, existe algún hiperplano $L \subset \mathbb{C}^{n+1}$ que no contiene a p,q. Tomando un sistema de referencia en el cual L es el hiperplano $z_0 = 0$, obtenemos una vecindad coordenada $\pi(V) \cong \mathbb{C}^n$ en la que $\pi(p), \pi(q)$ se pueden separar por abiertos usando métodos ya conocidos. Así pues, \mathbb{CP}^n es un espacio Hausdorff.

Consideremos ahora los n+1 sistemas de referencia en los que z_i es una permutación cíclica de las coordenadas estándares de \mathbb{C}^{n+1} . En cada caso, V es el complemento de un hiperplano coordenado distinto. Puesto que dichos hiperplanos se intersecan únicamente en el origen, las n+1 vecindades coordenadas inducidas $\pi(V) \cong \mathbb{C}^n$ cubren \mathbb{CP}^n . Por ende, \mathbb{CP}^n es segundo enumerable.

Observemos que todo vector no nulo $v \in U$ se representa de manera única como el producto de un escalar positivo $\lambda > 0$ con un vector unitario $u \in S^{2n+1}$. Además, tanto $\lambda = ||v||$ como $u = v/\lambda$ son funciones continuas de v. Esto implica que, topológicamente, $U = \mathbb{R}^+ \times S^{2n+1}$. Por la misma razón, tenemos $\mathbb{C}^* = \mathbb{R}^+ \times S^1$. Esta última factorización también respeta la estructura de grupo.

Entonces la acción de \mathbb{C}^* sobre U se descompone en dos acciones consecutivas:

- Reescalamiento en módulo, con espacio de órbitas $U/\mathbb{R}^+ = S^{2n+1}$. La aplicación cociente es la normalización de vectores $v \mapsto v/\|v\|$.
- Rotación de cada componente, con espacio de órbitas $S^{2n+1}/S^1 = \mathbb{CP}^n$. La aplicación cociente puede verse como una generalización de la fibración de Hopf.

Sabemos que la esfera S^{2n+1} es compacta, ya sea por el ejercicio 1 de la tarea anterior o por análisis real elemental. Entonces \mathbb{CP}^n , que es cociente de S^{2n+1} , también es compacto.

b) Puesto que $p(z_0, z_1, z_2) = p(z_1, z_2, z_0) = p(z_2, z_0, z_1)$, las partes de \bar{X} en los abiertos afines canónicos son isomorfas. Entonces podemos estudiar sólo una parte afín X, digamos,

$$f(z, w) = p(1, z, w) = z + z^3 w + w^3 = 0$$

y replicar nuestros hallazgos en las otras dos partes.

Debemos verificar que, en cada punto de X, alguna de las coordenadas z, w se puede expresar como función holomorfa de la otra. La condición necesaria y suficiente para ello es que el diferencial

$$df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial w} dw = (1 + 3z^2 w) dz + (z^3 + 3w^2) dw$$

no se anule en ningún punto de X. El siguiente programa calcula el ideal de $\mathbb{C}[z,w]$ que se anula en los puntos singulares de X:

```
f = z + z^3 w + w^3;
fz = D[f, z];
fw = D[f, w];
GroebnerBasis[{f, fz, fw}, {z, w}]
```

El significado de la respuesta de Mathematica

es que el polinomio 1 se anula en los puntos singulares de X. Por supuesto, 1 no se anula en ningún sitio, así que X no tiene puntos singulares, i.e., X es una superficie de Riemann suave.

El teorema de la función implícita nos permite construir un atlas sobre X únicamente con cartas de los dos siguientes tipos:

- Funciones holomorfas w = g(z) que satisfacen f(z, g(z)) = 0.
- Funciones holomorfas z = g(w) que satisfacen f(g(w), w) = 0.

Para verificar la compatibilidad de las cartas, tomemos dos cartas y restrinjamos sus dominios a las partes que cubren la misma porción de X. Tenemos dos posibles casos:

- Si las cartas son del mismo tipo, digamos w = g(z) y w = h(z), entonces g(z) = h(z). Por ende, la función de transición es la identidad, que es obviamente holomorfa.
- Si las cartas son de tipos "contrarios", digamos w = g(z) y z = h(w), entonces las funciones de transición en ambas direcciones son las mismas cartas g, h, holomorfas por hipótesis.

El atlas de \bar{X} es la unión de los atlases de las tres copias de X. Sabemos que

- Las cartas de la misma copia se pegan de manera "internamente" compatible.
- \blacksquare Existen automorfismos obvios de \bar{X} que rotan las tres copias de X.

Entonces sólo tenemos que verificar que dos copias de X se peguen de manera "externamente" compatible. Utilizaremos el original X y la réplica X' definida por

$$p(t, s, 1) = t^3 s + s^3 + t = 0$$

Tomemos una carta en X, otra en X' y restrinjamos sus dominios a las partes que cubren la misma porción de \bar{X} . Recordemos que, si $[1:z:w] \in X$, $[t:s:1] \in X'$ son el mismo punto de \bar{X} , entonces sus coordenadas están relacionadas por $(t,s) = \varphi(z,w) = (1/w,z/w)$, donde φ es una aplicación de transición de \mathbb{CP}^2 y, por ende, es un biholomorfismo. Luego,

• Si w = g(z) es la carta en X, entonces proyectando

$$(t,s) = \varphi(z,w) = \varphi(z,q(z))$$

a la coordenada local de X', tenemos una función holomorfa de z.

 $\bullet\,$ Si z=g(w) es la carta en X, entonces proyectando

$$(t,s) = \varphi(z,w) = \varphi(g(w),w)$$

a la coordenada local de X', tenemos una función holomorfa de w.

• Si s = g(t) es la carta en X', entonces proyectando

$$(z, w) = \varphi^{-1}(t, s) = \varphi^{-1}(t, g(t))$$

a la coordenada local de X, tenemos una función holomorfa de t.

• Si t = g(s) es la carta en X', entonces proyectando

$$(z, w) = \varphi^{-1}(t, s) = \varphi^{-1}(g(s), s)$$

a la coordenada local de X, tenemos una función holomorfa de s.

Por ende, X tiene funciones de transición holomorfas y es una superficie de Riemann suave.

Ejercicio 2. (Automorfismos)

a) Muestre que los biholomorfismos $f: \mathbb{C} \to \mathbb{C}$ son polinomios lineales, i.e.,

$$\operatorname{Aut}(\mathbb{C}) = \{ f : \mathbb{C} \to \mathbb{C} \mid f(z) = ax + b, (a, b) \in \mathbb{C}^* \times \mathbb{C} \}$$

con la operación de grupo dada por la composición.

b) Muestre que Aut(C) es isomorfo al grupo

$$\operatorname{Aff}(\mathbb{C}) = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : (a, b) \in \mathbb{C}^* \times \mathbb{C} \right\}$$

donde la operación es la multiplicación de matrices.

c) Muestre que los biholomorfismos $f: \mathbb{C}^* \to \mathbb{C}^*$ son

$$\operatorname{Aut}(\mathbb{C}^{\star}) = \{ f : \mathbb{C} \to \mathbb{C} \mid f(z) = az \lor f(z) = a/z, a \in \mathbb{C}^{\star} \}$$

d) Muestre que el grupo de biholomorfismos $\operatorname{Aut}(\widehat{\mathbb{C}})$ es isomorfo a

$$\operatorname{PSL}(2,\mathbb{C}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad - bc = 1 \right\} / \{ \pm \operatorname{Id} \}$$

- e) Halle los grupos de automorfismos de los siguientes espacios:
 - El plano \mathbb{C} agujereado en $\{0,1\}$.
 - El plano \mathbb{C} agujereado en $\{0, 1, 2-2i\}$.
- f) Muestre que toda acción transitiva de un grupo G sobre un conjunto X es equivalente a la acción de G sobre el conjunto de clases laterales G/H de algún subgrupo $H \subset G$. Concluya que $X \cong G/H$. En particular, si uno fija un elemento $x \in X$ y considera el estabilizador $H = G_x$, entonces la aplicación $\varphi : G/H \to X$ definida por $\varphi(gH) = g(x)$ es una biyección.
- g) Muestre que $\operatorname{Aut}(\mathbb{D})$ actúa transitivamente sobre \mathbb{D} . Por tanto, \mathbb{D} es un espacio homogéneo. Use este hecho para justificar que sólo basta estudiar el estabilizador de $0 \in \mathbb{D}$ en $\operatorname{Aut}(\mathbb{D})$ en la prueba de la proposición 4 de la sección 3.2.3 del libro de texto.

Solución.

a) Sea $f: \mathbb{C} \to \mathbb{C}$ un automorfismo del plano. Entonces f tiene una singularidad aislada en $z = \infty$, que no puede ser esencial: si lo fuese, entonces la imagen de la región |z| > r sería densa en el plano, por el teorema de Casorati-Weierstrass, pero entonces no habría sitio suficiente en el resto del plano para encajar la imagen de |z| < r.

Puesto que la singularidad de f en el infinito es un polo¹, f es un polinomio. Si este polinomio es de grado m, entonces la ecuación f(z) = b tiene de manera genérica m soluciones. Como el único valor aceptable es m = 1, deducimos que f es un un polinomio de grado exactamente 1.

b) Representemos el número $z \in \mathbb{C}$ como el vector columna $(z,1)^T \in \mathbb{C}^2$ y la transformación lineal afín $f: \mathbb{C} \to \mathbb{C}$ definida por f(z) = az + b como la matriz

$$\varphi(f) = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$$

Entonces la evaluación de f en z se representa como el producto

$$\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} az + b \\ 1 \end{bmatrix}$$

Esto implica que $\varphi(g \circ f) = \varphi(g) \cdot \varphi(f)$ para todo $f, g \in \operatorname{Aut}(\mathbb{C})$. Por ende, $\varphi : \operatorname{Aut}(\mathbb{C}) \to \operatorname{Aff}(\mathbb{C})$ no sólo es una biyección, sino también un isomorfismo de grupos.

 $^{^{1}}$ Una singularidad removible es un polo de orden cero.

c) Sea $f: \mathbb{C}^* \to \mathbb{C}^*$ un automorfismo del plano agujereado. Nuevamente, f tiene singularidades aisladas en cero y en el infinito, que no pueden ser esenciales por el teorema de Casorati-Weierstrass. Por lo tanto, f = p/q es una función racional que fija o permuta los agujeros.

Reescribamos la ecuación f(z) = b como p(z) = bq(z). Si m es el máximo de los grados de p,q, esta ecuación tiene de manera genérica m soluciones. Como el único valor aceptable es m = 1, deducimos que f es una transformación de Möbius.

Recordemos que una transformación de Möbius está completamente determinada por su efecto sobre tres puntos de la esfera. Tenemos dos casos:

- Si f fija los agujeros, entonces f(z) = az, donde a = f(1).
- Si f permuta los agujeros, entonces f(z) = a/z, donde a = f(1).

Éstos son los casos estipulados en el enunciado.

d) Sea $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ un automorfismo de la esfera. Tomemos una transformación de Möbius $g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ tal que $h=g\circ f$ fija el punto en el infinito. Entonces h es también un automorfismo del plano, i.e., una transformación lineal afín. Por ende, $f=g^{-1}\circ h$ es una transformación de Möbius. Esto es, no hay más automorfismos de la esfera que las transformaciones de Möbius.

Representemos $z \in \mathbb{C}$ como la recta generada por $(z,1)^T \in \mathbb{C}^2$, el punto en el infinito como la recta generada por $(1,0)^T \in \mathbb{C}^2$ y la transformación de Möbius $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ definida por

$$f(z) = \frac{az+b}{cz+d}$$

como la recta en el espacio de matrices generada por

$$\varphi(f) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Entonces la evaluación de f en $z \in \mathbb{C}$ se representa como la recta generada por

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} az + b \\ cz + d \end{bmatrix}$$

mientras que la evaluación de f en $z=\infty$ se representa como la recta generada por

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ c \end{bmatrix}$$

Esto implica que $\varphi(g \circ f) = \varphi(g) \cdot \varphi(f)$ para todo $f, g \in \operatorname{Aut}(\widehat{\mathbb{C}})$. Por ende, $\varphi : \operatorname{Aut}(\widehat{\mathbb{C}}) \to \operatorname{PGL}(2, \mathbb{C})$ no sólo es una biyección, sino también un isomorfismo de grupos.

Finalmente, puesto que \mathbb{C} es algebraicamente cerrado, los grupos proyectivos general y especial son isomorfos. Por ende, $\operatorname{Aut}(\widehat{\mathbb{C}}) \cong \operatorname{PGL}(2,\mathbb{C}) \cong \operatorname{PSL}(2,\mathbb{C})$.

- e) En ambos casos, tenemos el espacio U formado agujereando el plano en un número finito de puntos. Debemos considerar este espacio como la esfera con todos los agujeros dados más uno adicional en el infinito. Sea A este conjunto extendido de agujeros. Entonces, el grupo $\operatorname{Aut}(U)$ está conformado por las transformaciones de Möbius que permutan A de alguna manera.
 - En el primer caso, $A = \{0, 1, \infty\}$. Puesto que A tiene sólo tres puntos, todas las permutaciones de A se extienden de manera única a una transformación de Möbius que fija U. Por lo tanto, el grupo de automorfismos $\operatorname{Aut}(U)$ es isomorfo a S_3 .
 - En el segundo caso, $A = \{0, 1, \alpha, \infty\}$, donde $\alpha = 2 2i$. Puesto que A tiene cuatro puntos, una permutación de $\sigma : A \to A$ se extiende a una transformación de Möbius si y sólo si preserva la razón anarmónica $(z_1 : z_2 : z_3 : z_4) = (\sigma(z_1) : \sigma(z_2) : \sigma(z_3) : \sigma(z_4))$ para todo $z_1, z_2, z_3, z_4 \in A$.

Para determinar las permutaciones válidas, escribí el siguiente programa:

```
p[a_, b_, c_, d_] := (a - b) (c - d);
q[a_, b_, c_, d_] := p[a, c, b, d] / p[a, b, c, d];
r[xs_] := Limit[q[a, b, c, d], {a, b, c, d} -> xs];
c[xs_] := r[xs] == 2 - 2I;
xs = {0, 1, 2 - 2I, Infinity};
xss = Permutations[xs];
Select[xss, c]
```

La respuesta de Mathematica es

```
Out[7]= {{0, 1, 2 - 2 I, Infinity}, {1, 0, Infinity, 2 - 2 I}, > {2 - 2 I, Infinity, 0, 1}, {Infinity, 2 - 2 I, 1, 0}}
```

Entonces las permutaciones válidas son

- id(0) = 0, id(1) = 1, $id(\alpha) = \alpha$, $id(\infty) = \infty$
- $\lambda(0) = 1, \lambda(1) = 0, \lambda(\alpha) = \infty, \lambda(\infty) = \alpha$
- $\mu(0) = \alpha, \ \mu(1) = \infty, \ \mu(\alpha) = 0, \ \mu(\infty) = 1$
- $\nu(0) = \infty$, $\nu(1) = \alpha$, $\nu(\alpha) = 1$, $\nu(\infty) = 0$

Todas ellas satisfacen $\sigma^2 = \mathrm{id}$, así que $\mathrm{Aut}(U) = \{\mathrm{id}, \lambda, \mu, \nu\}$ es isomorfo al grupo de Klein.

- f) Fijemos un punto de referencia $x \in X$ y pensemos en cada elemento $g \in G$ como un camino desde x hasta algún otro punto g(x). Las siguientes proposiciones son equivalentes:
 - Dos caminos $g, h \in G$ conducen al mismo punto g(x) = h(x).
 - \blacksquare La composición de ida y vuelta $g^{-1}h \in G_x$ es un "lazo" que regresa a x.
 - g, h pertenecen a la misma clase lateral izquierda $gG_x = hG_x$ del estabilizador.

Sea G/H el conjunto de clases laterales izquierdas del estabilizador $H = G_x$ y sea $\varphi : G/H \to X$ la aplicación del enunciado $\varphi(gH) = g(x)$. Entonces,

- φ está bien definida, porque todo $h \in qH$ también conduce a q(x).
- \bullet φ es invectiva, porque todo $h \notin gH$ conduce a un punto distinto de g(x).
- φ es sobreyectiva, porque todo $y \in X$ es el destino de algún $g \in G$.

Por ende, φ es una biyección.

g) Sea $\alpha \in \mathbb{D}$ un elemento arbitrario. Observemos que la transformación de Möbius

$$\varphi(z) = \frac{z - \alpha}{1 - \bar{\alpha}z}$$

fija el círculo unitario. Explícitamente, si |z|=1, entonces

$$|\varphi(z)| = \frac{|z-\alpha|}{|1-\bar{\alpha}z|} = \frac{|z-\alpha|}{|\bar{z}-\bar{\alpha}|} = 1$$

Además, hemos construido φ específicamente para que $\varphi(\alpha) = 0$. Entonces $\varphi \in \operatorname{Aut}(\mathbb{D})$ y todo $\alpha \in \mathbb{D}$ pertenece a la órbita de cero. Por ende, $\operatorname{Aut}(\mathbb{D})$ actúa transitivamente sobre \mathbb{D} .

El libro de texto demuestra explícitamente que, para todo subgrupo discreto $\Gamma \subset \operatorname{Aut}(\mathbb{D})$ que actúa libremente sobre \mathbb{D} , se cumplen las siguientes proposiciones (parafraseadas):

- Existe una vecindad $U \subset \mathbb{D}$ del origen tal que $\Gamma(U)$ es la unión disjunta de $|\Gamma|$ copias de U, las cuales son permutadas libremente por Γ .
- Todo $\beta \in \mathbb{D}$ distinto del origen es separado del origen por vecindades Γ -invariantes.

El subgrupo conjugado $\Lambda = \varphi \circ \Gamma \circ \varphi^{-1}$ también satisface estas condiciones:

- Existe una vecindad $\varphi(U) \in \mathbb{D}$ del origen tal que $\Lambda \circ \varphi(U)$ es la unión disjunta de $|\Lambda|$ copias de $\varphi(U)$, las cuales son permutadas libremente por Λ .
- Todo $\varphi(\beta) \in \mathbb{D}$ distinto del origen es separado del origen por vecindades Λ -invariantes.

Puesto que $\Gamma = \varphi^{-1} \circ \Lambda \circ \varphi$, tenemos los siguientes resultados:

- Existe una vecindad $U \in \mathbb{D}$ de $\alpha = \varphi^{-1}(0)$ tal que $\Gamma(U)$ es la unión disjunta de $|\Gamma|$ copias de U, las cuales son libremente permutadas por Γ .
- Todo $\beta \in \mathbb{D}$ distinto de α es separado de α por vecindades Γ -invariantes.

Ejercicio 3. (Capítulo 3 del libro de texto)

- a) Muestre que, para todo subgrupo discreto $\Gamma \subset \operatorname{Aut}(\mathbb{H}),$ son equivalentes:
 - \blacksquare Γ actúa libremente sobre \mathbb{H} .
 - \blacksquare Γ es libre de torsión.
- b) Muestre que Γ_p actúa libremente sobre \mathbb{H} para todo número primo p.
- c) Muestre que $X = \{(z, w) \in \mathbb{C}^2 \mid w^2 = \sin z\}$ es una superficie de Riemann.
- d) Pruebe la fórmula de Euler.
- e) El conjunto de ceros de un polinomio homogéneo $f \in \mathbb{C}[z_0, z_1, z_2]$ se denota

$$V(f) = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid f(z_0, z_1, z_2) = 0 \}$$

Muestre que toda matriz $A \in GL(3,\mathbb{C})$ induce un automorfismo $\varphi_A : \mathbb{CP}^2 \to \mathbb{CP}^2$ tal que, para todo polinomio homogéneo $f \in \mathbb{C}[z_0, z_1, z_2]$, existe algún otro polinomio homogéneo $f_A \in \mathbb{C}[z_0, z_1, z_2]$ tal que $\varphi_A \circ V(f) = V(f_A)$.

f) Sea $f \in \mathbb{C}[z_0, z_1, z_2]$ un polinomio homogéneo de grado 2, considerado como forma cuadrática en \mathbb{C}^3 . Muestre que el criterio que determina si V(f) es una curva regular plana se cumple si y sólo si esta forma es no degenerada.

Solución.

- a) Tomemos un elemento torsión $\varphi \in \operatorname{Aut}(\mathbb{H})$ con representación matricial $A \in \operatorname{SL}(2,\mathbb{R})$. Entonces A es diagonalizable y sus autovalores son raíces de la unidad. Tenemos dos casos:
 - Si los autovalores son reales, entonces $A = \pm I$, por ende $\varphi = \mathrm{id}$.
 - Si los autovalores son complejos conjugados $\lambda, \bar{\lambda} \in \mathbb{C}$, entonces sus autoespacios asociados son generados por autovectores conjugados $v, \bar{v} \in \mathbb{C}^2$. Exactamente uno de los dos corresponde a un punto fijo de φ en el semiplano \mathbb{H} .

Por ende, todo subgrupo de $Aut(\mathbb{H})$ que actúa libremente sobre \mathbb{H} es libre de torsión.

Tomemos ahora un elemento de $\operatorname{Aut}(\mathbb{H})$ con un punto fijo. Mediante una transformación de Möbius, identifiquemos este elemento con algún $\varphi \in \operatorname{Aut}(\mathbb{D})$ que fija el origen. El lema de Schwarz garantiza que φ es una rotación. Tenemos dos casos:

- Si φ es una rotación racional, digamos, una fracción m/n de vuelta, entonces $\varphi^n = \mathrm{id}$.
- Si φ es una rotación irracional, entonces φ genera un subgrupo denso en el círculo $S^1 \subset \operatorname{Aut}(\mathbb{D})$ conformado por todas las rotaciones.

Entonces φ genera un subgrupo discreto de $\operatorname{Aut}(\mathbb{D})$ si y sólo si es torsión. Por ende, todo subgrupo discreto libre de torsión de $\operatorname{Aut}(\mathbb{H})$ actúa libremente sobre \mathbb{H} .

b) Tomemos un elemento $\varphi \in \Gamma_p$ con representación matricial

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \tilde{\Gamma}_p$$

Puesto que $A = I \pmod{p}$, tenemos

- $a = d = 1 \pmod{p}$, lo cual implica que $a + d = 1 + ad \pmod{p^2}$.
- $b = c = 0 \pmod{p}$, lo cual implica que $0 = bc \pmod{p^2}$.

Entonces $a + d = 1 + (ad - bc) = 2 \pmod{p^2}$. Ahora tenemos dos casos:

- Si $p \ge 3$, entonces |a+d| se minimiza tomando a+d=2.
- Si p=2, entonces |a+d| se minimiza tomando $a+d=\pm 2$.

El libro de texto demuestra explícitamente que $\varphi \in \operatorname{Aut}(\mathbb{H})$ tiene puntos fijos si y sólo si $\varphi = \operatorname{id}$ o la matriz asociada $A \in \operatorname{SL}(2,\mathbb{R})$ satisface |a+d| < 2. Lo último es imposible para $\varphi \in \Gamma_p$, por ende, Γ_p actúa libremente sobre \mathbb{H} .

c) Debemos verificar que, en cada punto de X, alguna de las coordenadas z, w se puede expresar como función holomorfa de la otra. Por definición, X es la curva de nivel $f^{-1}(0)$ para la función

$$f(z, w) = w^2 - \sin z$$

Por el teorema de la función implícita, la condición necesaria y suficiente para que una variable sea función holomorfa de la otra en una vecindad de $(z, w) \in X$ es que el diferencial

$$df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial w} dw = -\cos z dz + 2w dw$$

no se anule en este punto. Puesto que dz, dw forman una base de $T^*\mathbb{C}^2$, tenemos

$$df = 0 \iff w = \cos z = 0$$

lo cual es imposible sobre X, porque w=0 implica $\cos^2 z=1-\sin^2 z=1-w^4=1$. Por ende, X es una superficie de Riemann suave.

d) Sea P_m el espacio de polinomios homogéneos de grado m. La identidad de Euler es

$$z_1 \frac{\partial f}{\partial z_1} + \dots + z_n \frac{\partial f}{\partial z_n} = mf$$

para todo $f \in P_m$. El miembro izquierdo es una evaluación del operador lineal

$$z_1 \frac{\partial}{\partial z_1} + \dots + z_n \frac{\partial}{\partial z_n}$$

mientras que el miembro derecho es un reescalamiento por una constante, lo cual obviamente es una transformación lineal. Esta observación nos permite verificar la identidad en una base de P_m y luego extender el resultado a todo P_m por linealidad.

Por supuesto, la base de P_m más conveniente para esta situación está conformada por los monomios de grado total m. Sea $f=x_1^{m_1}\cdots x_n^{m_n}$ uno de estos monomios. Para cada $i=1,\ldots n$, tenemos

$$z_i \frac{\partial f}{\partial z_i} = z_i \frac{\partial}{\partial z_i} (x_1^{m_1} \cdots x_n^{m_n})$$

$$= (z_1^{m_1} \cdots \widehat{z_i^{m_i}} \cdots z_n^{m_n}) \cdot z_i \frac{\partial}{\partial z_i} (z_i^{m_i})$$

$$= (z_1^{m_1} \cdots \widehat{z_i^{m_i}} \cdots z_n^{m_n}) \cdot m_i z_i^{m_i}$$

$$= m_i \cdot z_1^{m_1} \cdots z_i^{m_i} \cdots z_n^{m_n}$$

$$= m_i f$$

Sumando sobre todos los índices i, tenemos

$$z_1 \frac{\partial f}{\partial z_1} + \dots + z_n \frac{\partial f}{\partial z_n} = (m_1 + \dots + m_n)f = mf$$

e) No hay ninguna buena razón para limitarnos al caso bidimensional, así que no lo haremos. Sea U el espacio vectorial \mathbb{C}^{n+1} agujereado en el origen y sea $\pi: U \to \mathbb{CP}^n$ la proyección natural.

Recordemos que los reescalamientos \mathbb{C}^* son el centro del grupo lineal $\mathrm{GL}(n+1,\mathbb{C})$. Entonces, toda matriz invertible $A \in \mathrm{GL}(n+1,\mathbb{C})$, interpretada como un automorfismo lineal $\tilde{\varphi}_A : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$, deja invariantes las órbitas de la acción de \mathbb{C}^* sobre U. Por ende, existe un morfismo de variedades algebraicas $\varphi_A : \mathbb{CP}^n \to \mathbb{CP}^n$ que completa el siguiente diagrama conmutativo:

$$U \xrightarrow{\tilde{\varphi}_A} U$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$\mathbb{CP}^n \xrightarrow{--\varphi_A} \mathbb{CP}^n$$

Eligiendo correctamente las coordenadas locales en las copias de \mathbb{CP}^n que fungen de dominio y codominio, podemos conseguir que la representación coordenada de φ_A sea la aplicación identidad. (Ésta es otra de las virtudes del atlas construido en el ejercicio 1.) Por ende, φ_A es un biholomorfismo.

Recordemos que un polinomio homogéneo $f \in \mathbb{C}[z_0, \dots, z_n]$ puede ser interpretado como una función $f : \mathbb{CP}^n \to \Sigma$, donde $\Sigma = \{0, 1\}$ es el espacio de Sierpiński. Para cada $\pi(p) \in \mathbb{CP}^n$, tenemos

$$f \circ \pi(p) = \begin{cases} 0, & \text{si } f(p) = 0 \\ 1, & \text{si } f(p) \neq 0 \end{cases}$$

Entonces los subconjuntos algebraicos proyectivos de \mathbb{CP}^n se expresan como

$$V(f_1,\ldots,f_k) = f_1^{-1}(0) \cap \ldots f_k^{-1}(0)$$

Pongamos $g_i = f_i \circ \varphi_A^{-1}$. Es inmediato que

- g_i es un polinomio homogéneo.
- g_i tiene el mismo grado que f_i .
- g_i se anula en $p \in \mathbb{CP}^n$ si y sólo si f_i se anula en $\varphi_A(p)$.

Entonces φ_A envía conjuntos algebraicos a conjuntos algebraicos:

$$\varphi_{A} \circ V(f_{1}, \dots, f_{k}) = \varphi_{A}(f_{1}^{-1}(0) \cap \dots \cap f_{k}^{-1}(0))$$

$$= \varphi_{A} \circ f_{1}^{-1}(0) \cap \dots \cap \varphi_{A} \circ f_{k}^{-1}(0)$$

$$= g_{1}^{-1}(0) \cap \dots g_{k}^{-1}(0)$$

$$= V(g_{1}, \dots, g_{k})$$

La restricción de φ a cualquier subconjunto algebraico

$$\varphi_A:V(f_1,\ldots,f_k)\to V(g_1,\ldots,g_k)$$

es un isomorfismo de variedades algebraicas. Además, son equivalentes:

- $V(f_1,\ldots,f_k)$ es una variedad compleja suave.
- $V(g_1, \ldots, g_k)$ es una variedad compleja suave.
- φ_A es un biholomorfismo entre ellas dos.

f) Extendamos la forma cuadrática $f \in \mathbb{C}[z_0,z_1,z_2]$ a la forma bilineal simétrica

$$\tilde{f}(v,w) = \frac{f(v+w) - f(v) - f(w)}{2}$$

Sea $A \in \text{Mat}(3,\mathbb{C})$ la matriz simétrica que representa a \tilde{f} . Por construcción,

$$f(p) = \tilde{f}(p, p) = p^t A p$$

Entonces las siguientes proposiciones son equivalentes:

- $df = 2p^t A dp$ sólo se anula en el origen de \mathbb{C}^3 .
- $p^t A$ no se anula para ningún $p \in \mathbb{C}^3$ distinto de cero.
- Ap no se anula para ningún $p \in \mathbb{C}^3$ distinto de cero.
- $A \in GL(3, \mathbb{C})$ es una matriz invertible.
- \bullet fes una forma cuadrática no degenerada.

El libro de texto demuestra que cualquiera de estas condiciones es suficiente para que V(f) sea una superficie de Riemann compacta.