

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

STATISTICALLY BASED DECOMPRESSION TABLES III: COMPARATIVE RISK USING U.S. NAVY, BRITISH, AND CANADIAN STANDARD AIR SCHEDULES.

P. K. Weathersby

S. S. Survanshi

J. R. Hays

and

M. E. MacCallum

Approved for public release; distribution is unlimited

OIR THE COL

AD-A177 719

Naval Medical Research and Development Command Bethesda, Maryland 20814-5044

Department of the Navy Naval Medical Command Washington, D.C. 20372-5210

NOTICES

The opinions and assertions contained herein are the private ones of the writer and are not to be construed as official or reflecting the views of the naval service at large.

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Naval Medical Research Institute. Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145

TECHNICAL REVIEW AND APPROVAL NMRI 86-50

This technical report has been reviewed by the NMRI scientific and public affairs staff and is approved for publication. It is releasable to the National Technical Information Service where it will be available to the general public, including foreign nations.

O. P. DAILY, CAPT, MSC, USN

Commanding Officer

Naval Medical Research Institute

UNCLASSIFIED

AD-A177719

SECURITY CLASSIFICATION OF THIS PAGE	REPORT DOCUM	ENTATION I	PAGE			
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE MARKINGS				
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY O	F REPORT		
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	re		for public tion is unl			
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION R	EPORT NUMBER(S)	
NMRI 86-50						
6a. NAME OF PERFORMING ORGANIZATION Naval Medical Research	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO				
Institute		7b. ADDRESS (Cit	dical Comma			
6c. ADDRESS (City, State, and ZIP Code) Bethesda, Maryland 20814-50	155		ent of the N			
bethesua, marylanu 20014-30	,,,,		on, D. C.			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Naval Medical	8b. OFFICE SYMBOL (if applicable)	9. PROCUREMENT	I INSTRUMENT ID	ENTIFICATION NU	MBER	
Research & Development Command	<u> </u>					
8c. ADDRESS (City, State, and ZIP Code) Bethesda, Maryland 20814-50	744	10. SOURCE OF F	PROJECT	TASK	WORK UNIT	
betnesda, maryland 20014-50	744	ELEMENT NO.	NO.	NO. MO099.01A	ACCESSION NO. DN177792	
11. TITLE (Include Security Classification) (U)		63713N	M0099			
Mary E. Mac(14. DATE OF REPO			23	
17. COSATI CODES	18. SUBJECT TERMS (C		_			
FIELD GROUP SUB-GROUP	Diving; Decom Diving; Mather					
	Inert gas kin	etics • 🗲			,	
19. ABSTRACT (Continue on reverse if necessary						
The first report of this series used probabilistic models to analyze the decompression safety of approximately 2000 single compressed air dives. The most successful model used in Report II generated new equal-risk decompression tables and was applied here to estimate the risk of bends using any of the current U.S. Navy, (U.K.) Royal Navy, and Canadian Forces standard air decompression tables. The range of risk went from less than 1% for short duration dives at most depths, to over 20% for exceptionally long exposures. The new Canadian schedules are generally safest because of their long decompression times, followed by British and then American schedules.						
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT DUNCLASSIFIED/UNLIMITED SAME AS	RPT. DTIC USERS		ECURITY CLASSIFIC			
22a. NAME OF RESPONSIBLE INDIVIDUAL Rosemary Coskey, Information S	ervices Branch	بصب المساورة والمراجعة		ISB/Admin		

All other editions are obsolete.

UNCLASSIFIED RECURITY CLASSIFICATION OF THIS PAGE		
•		
	•	
•		
·		
	•	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

The second second seconds and second second

TABLE OF CONTENTS

Page Number

Abstract
Acknowledgements
Background
Decompression Schedules Analyzed
Results
Conclusion
References
Appendix
LIST OF FIGURES
Fig. 1. Map of predicted safety for using U.S. Navy standard air schedules to the limit
Fig. 2. Map of predicted safety for using Royal Navy standard air schedules to the limit
Fig. 3. Map of predicted safety for using Canadian Forces standard air schedules to the limit 6

Accesio	Accesion For							
NTIS	NTIS CRA&I							
DTIC								
Unannounced 🔲								
Justific	ation							
By Distrib:	By Distributio /							
Α.	vailability	Codes						
Dist	Avail a Speci							
A-1								

ACKNOWLEDGEMENTS

This study was supported by the Naval Medical Research and Development Command, Work Unit No. M0099PN.01A.0005. The views, opinions, and/or assertions herein are those of the authors and should not be construed as official or reflecting the views, policy, or decision of the Navy Department or the naval service at large. The authors thank D. Temple for editorial assistance.

BACKGROUND

The question, "How safe is this decompression schedule?" has almost never had a satisfactory answer. The occurrence of decompression sickness (DCS) is a binary, yes or no event. Very large numbers of binary events are required to reliably estimate the underlying incidence of DCS. For example, if no cases were seen in a trial with 10 divers, the 95% confidence limits still allows an actual incidence of 31% DCS. A single case in a 30 man trial could come from 0.1 to 17% underlying incidence. Hundreds of replicated dives are needed for greater precision.

Because hundreds of trials are never performed on a single schedule, much less on an entire table, another means of establishing safety must be sought. One means is a mathematical model that operates on the diver's pressure—time history and predicts the probability of an injury, p(DCS). Prospective models can then be subject to a parameter estimation, or "fitting", procedure with a large number of dives of known history and outcome (Weathersby, Homer, Flynn, 1984). This "Maximum Likelihood" was applied to about 2,000 air dives from various sources and a large degree of agreement was found between prediction and outcome in Report I (Weathersby et al, 1985a). Successful models from that analysis were then used to predict air decompression schedules with a uniform and low degree of p(DCS) in Report II (Weathersby et al, 1985b).

A model that describes well the safety of a large number of dives can be used with confidence to predict the safety of similar dives. Previous analyses are used here to predict the safety of 3 air tables currently in use.

A decompression schedule is the rule for controlling the return to the surface for a diver after a single specified pressure exposure. A collection of schedules for various depths and times of possible dives is termed a decompression table.

DECOMPRESSION SCHEDULES ANALYZED

The first schedules examined were developed 30 years ago (des Grange, 1957) but are currently in force in the U.S. Navy Diving Manual (1985). Prior to issuance, about ½ of the schedules were tested with up to 10 exposures per schedule. The longer schedules termed "exceptional exposures" were tested and issued almost simultaneously (Workman, 1957) despite test results of nearly 50% DCS symptoms. More recent attempts to measure safety by reliance on the U.S. Navy Safety Center (e.g. Berghage and Durman, 1980) have not been successful, as discussed in Report I.

CONTRACTOR DESCRIPTION

Next examined are the tables in force in the British Navy (Royal Navy, 1985), which apparently date from 1957 (Crocker, 1957). Although many experimental decompressions were examined during that era, it appears that the final tables were only tested on 1/6 of the schedules with 1 to 24 trials on each schedule. Each depth has schedules separated by a "limiting line" separating short dives from long dives with the longer dives expected to be more hazardous. Schedules lower than the "limiting lines" were not tested.

The third set of tables has recently been issued to Canadian Forces divers (Lauckner and Nishi, 1985) following calculations by Nishi (Nishi and Lauckner, 1984). The air-only procedures were tested by up to 11 divers per schedule on 7 of the schedules (Lauckner, Nishi, Eatock, 1984a, 1984b). Tests were not conducted on the dives past a limiting line that defined an expected operational envelope. Several hundred additional dives were reported for "no decompression" exposures (Nishi et al, 1982, Nishi and Lauckner, 1984b).

For each schedule examined, the exposure was considered "to the limit", as to the full depth and for the full time allowed in the table. Common conservative use of any schedule (e.g. a dive to 115 fsw for 22 min followed by the decompression tabulated for a 120 fsw 30 min exposure) can be expected

to reduce the risk substantially (by more than half in some of the cases we examined).

Timing rules were as specified in the tables used: time to descend - at maximum allowable rate - is included in bottom time of the dive. Ascent time is included in time at a decompression stop in the British and Canadian tables, but not in the U.S. Navy schedules. All calculations used the same model as that used in Report II, which corresponds to Model 5, parameter set ABCD from Report I (Other predictions for use of USN tables appear in Report I but not those using this particular model and set of diving data).

The Appendix tabulates p(DCS) for U.S. Navy, Royal Navy and Canadian

Forces schedules in all 3 tables in ascending depth and time. When each table
has a schedule for the same dive, results are on the same line for easy
comparison. The first bottom time entry for each depth is the maximum
"no-decompression" time allowed in the schedule for direct surfacing without
decompression stops. Graphical presentation of the same information is
presented in Figs. 1-3 where all schedules correspond to one location on a
"map" of bottom time against depth. Each symbol on the "map" is the percent
bends expected by this calculation. Uncertainty in the results arises from
many sources. In all of these results, the prediction reliability is 10-50%
of the stated value based on only the statistical manipulations (errors from
data examined and from model failures add separately to poor predictability,
as discussed in Report I). The location of Royal Navy and Canadian Forces
limiting lines and USN exceptional exposures are also shown.

Several general features are evident with all 3 tables. The risk of DCS increases drastically with longer bottom time dives. An increase in risk is also seen as dives get deeper, but the effect is not nearly as great as with

Fig. 1. Map of predicted safety for using U.S. Navy standard air schedules to the limit. Maximum bottom time is read on the vertical scale and maximum depth on the horizontal scale. Numbers on map are approximately the predicted percent of DCS. Line going through map separates exceptional and extreme (above line) exposures.

Fig. 2. Map of predicted safety for using Royal Navy standard air schedules to the limit. Maximum bottom time is read on the vertical scale and maximum depth on the horizontal scale. Numbers on map are approximately the predicted percent of DCS. Line going through map is the limiting line.

PREDICTED p(DCS) - Canadian Forces Air Decompression 9 15 18 8 13 11 15 18 14 17 10 13 16 12 15 7 11 14 17 6 10 13 15 9 12 14 8 11 13 12 14 8 10 12 14 15 13 15 1 3 8 11 12 14 15 10 12 13 14 11 12 13 14 15 11 12 13 15 9 11 12 13 14 14 8 10 11 12 13 13 8 10 11 12 12 13 14 9 10 11 12 13 9 10 10 11 12 12 ı 9 10 11 11 12 10 11 11 12 10 10 i I i l 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Fig. 3. Map of predicted safety for using Canadian Forces standard air schedules to the limit. Maximum bottom time is read on the vertical scale and maximum depth on the horizontal scale. Numbers on map are approximately the predicted percent of DCS. Line going through map is the limiting line.

DEPTH (IN 10'S OF FEET)

ANGER STEER STANDARD STANDARD

time. In particular, no schedule from any source seems very safe for dives of 3 hours or longer duration: the chance of bends is about 10% to nearly 50%. On the other hand, short duration dives appear quite safe by any of the procedures. The band of less than 2% p(DCS) extends up to 200 fsw for 30 minutes or less. Intermediate depth and time dives have intermediate risk, in the 2-15% range. As a general observation, decompression schedules in the intermediate range are rather similar in predicted safety for all 3 sources.

Although there are particular dives where each table appears safest, a general trend in safety is evident. Overall, the U.S. Navy schedules are predicted to produce the most cases of DCS, with the Royal Navy procedures having somewhat greater safety, and the Canadian Forces procedures providing the greatest safety. In the latter two, "limiting lines" do indeed isolate schedules of increased risk, though not to a uniform degree. For example, the Royal Navy procedures for sub-limiting dives to 90 min bottom time or shorter have a p(DCS) less than 5%, but the allowed 50 fsw/190 min dive runs an estimated 11% risk. The Canadian table calls for appreciably greater decompression time than either of the other two. Although generally producing greater safety, it sometimes appears as though the time is wasted. For example, 160 fsw for 30 min requires 49 min by U.S. Navy, 45 min by Royal Navy, and 67 min by Canadian tables, yet all 3 schedules have a 1.9% expected DCS rate. By our calculations, extra decompression time spent at deep decompression stops is counterproductive because the gas exchange function increases.

Are all of these predictions accurate? None of the acceptance/validation testing of the tables gives a test schedule outcome confidence band that excludes the tabulated predictions in the Appendix. As discussed before, such tests are not very powerful because the small number of test dives precludes precise outcome determination.

Since the various table were released, almost no statistically useful information on performance was published. The limitations of U.S. Navy Safety Center records were discussed in Report I. The U.S.N. Table predictions of the Appendix are sometimes higher than the apparent DCS incidence summarized in Table 9 of Report I. This disagreement can be real or it can be simply a result of conservative use of the tables. More disturbing is a report of British Table performance (Leitch, 1982). They recorded a total of 87 dives to 180 fsw for 19 or 20 min with 7 cases of DCS. The 95% confidence band on that incidence is 3-16%, significantly higher than the 0.3% prediction in the Appendix of this report. We have no explanation for this disagreement.

Analysis of air diving by probalistic models was shown in Report I to be an accurate and useful tool. Because standard air dives using various schedules are similar to the data examined in Report I, predictions should be fairly close to the actual outcome. Predictions of safety from each of the 3 tables shows a fair similarity with short duration exposures being much safer than long dives. No schedule examined appears safe for dives much longer than 2 hours. The Canadian Forces table, and to a lesser extent Royal Navy Table 11, achieve somewhat greater safety by extending decompression time.

Operational Navy missions can now be planned with an estimate of decompression sickness risk.

REFERENCES

- Berghage, TE, D Durman. U.S. Navy Air Decompression Schedule Risk Analysis Report (NMRI 80-1). Bethesda, MD: Naval Medical Research Institute, 1980.
- Crocker, WE. Investigation into the decompression tables. IX. Revised
 Tables. Royal Navy Physiological Laboratory Report No. 58/902. London:
 Her Majesty's Stationers Office; Dec 1957.
- 3. des Granges, M. Standard air decompression table. Navy Experimental Diving Unit Report 5-57, 1956.
- 4. Lauckner, GR, RY Nishi, and BC Eatock. Evaluation of the DCIEM

 1983 decompression model for compressed air diving (Series A-F). Defence
 and Civil Institute of Environmental Medicine Report No. 84-R-72.

 Downsview, Ontario, Canada: Defence and Civil Institute of Environmental
 Medicine; 1984a.
- 5. Lauckner, GR, RY Nishi, and BC Eatock. Evaluation of the DCIEM
 1983 decompression model for compressed air diving (Series G-K). Defence
 and Civil Institute of Environmental Medicine Report No. 84-R-73.

 Downsview, Ontario, Canada: Defence and Civil Institute of Environmental
 Medicine; Nov 1984b.
- 6. Lauckner, GR and RY Nishi. Canadian forces air decompression tables.
 Defence and Civil Institute of Environmental Medicine Report No. 85-R-03.
 Downsview, Ontario, Canada: Defence and Civil Institute of Environmental Medicine, Jan 1985.
- 7. Leitch, DR, EEP Barnard. Observations on no-stop and repetitive air and oxynitrogen diving. Undersea Bio Med 9:113-129, 1982.

- 8. Nishi, RY, BC Eatock, IP Buckingham, and BA Ridgewell. Assessment of decompression profiles by ultrasonic monitoring. Defence and Civil Institute of Environmental Medicine Report No. 82-R-38. Downsview, Ontario, Canada: Defence and Civil Institute of Environmental Medicine, Aug 1982.
- 9. Royal Navy, Diving Manual. B.R. 2806. Change 6. Ministry of Defence.

 London: Her Majesty's Stationers Office. July 1985.
- 10. U.S. Navy. Diving Manual. Washington, DC: NAVSEA, 1985.
- 11. Weathersby, PK, SS Survanshi, LD Homer, BL Hart, RY Nishi, ET Flynn, and ME Bradley. Statistically based decompression tables I. Analysis of standard air dives: 1950-1970. Naval Medical Research Institute Technical Report No. 85-16, Naval Medical Research Institute, Bethesda, Maryland, 1985a.
- 12. Weathersby, PK, JR Hays, SS Survanshi, LD Homer, BL Hart, ET Flynn, and ME Bradley. Statistically based decompression tables II. Equal risk air diving decompression schedules. Naval Medical Research Institute Technical Report No. 85-17, Naval Medical Research Institute, Bethesda, Maryland 1985b.
- 13. PK Weathersby, LD Homer, and ET Flynn. On the likelihood of decompression sickness. J Appl Physiol Respir Exercise Physiol 1984; 57:815-825.
- 14. Workman, RD Calculation of air saturation decompression tables. Navy Environmental Diving Unit Report No. 11-57, June 1957.

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
30	380					0.5	0.102
30	390					7.2	0.097
30	400					10.2	0.099
30	420					14.2	0.103
30	450					19.2	0.109
30	480					23.2	0.115
35	310	0.6	0.125		•		
40	135			0.7	0.020		
40	165			5.2	0.037		
40	175					0.7	0.054
40	190					10.2	0.057
40	195			10.2	0.062		
40	200	0.7	0.079			14.2	0.064
40	210	2.7	0.086			18.2	0.071
40	220					22.2	0.078
40	225			15.2	0.088		
40	230	7.7	0.100			20.0	
40	240	11 7	0 116			28.2	0.093
40 40	·250 255	11.7	0.116	20.2	0.113		
40	270	15.7	0.131	20.2	0.113	38.2	0.111
40	300	19.7	0.154			48.2	0.126
40	330	131,	0.134	25.2	0.173	57.2	0.139
40	360	23.7	0.198			66.2	0.150
40	390	-500	0,170	30.2	0.211	0012	01150
40	480	41.7	0.249				
40	660			35.2	0.317		
40	720	69.7	0.293				
50	75					0.8	0.011
50	85			0.8	0.014		
50	100	0.8	0.022			6.2	0.013
50	105			5.2	0.018		
50	110	3.8	0.025				•
50	120	5.8	0.034	10.2	0.031	12.2	0.030
50	130					18.2	0.040
50	135	10.0	0.050	15.2	0.048	0.4	
50	140	10.8	0.059	20. 2	0.000	24.2	0.051
50	145			20.2	0.060		
50	150					29.2	0.062
50	160	21.8	0.082	25.2	0.079	33.2	0.074
						·	

Estimated Risk of Standard Air Decompression Schedules

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)		Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
50	170			30.2	. 0.090	38.2	0.085
50 50	180 190	29.8	0.106	35.2	0.114	43.2	0.095
50	200	35.8	0.129			53.2	0.114
50	220	40.8	0.152			63.2	0.130
50	240	47.8	0.172	50.2	0.169	74.2	0.145
50	260		001/4	3312	***************************************	86.2	0.158
50	280					97.2	0.171
50	360			70.2	0.283	71.6	0.171
50	450			75.2	0.340		
60	50					1.0	0.011
60	60	1.0	0.013	1.0	0.013	5.2	0.005
60	70	3.0	0.012	5.2	0.008	7.1 2	0,003
60	. 80	8.0	0.012	10.2	0.011	10.2	0.011
60	90	0.0	0.013	15.2	0.020	19.2	0.020
60	100	15.0	0.037	20.2	0.020	26.2	0.033
60	110	13.0	0.037	25.2	0.049	32.2	0.047
60	120	27.0	0.068	30.2	0.065	39.2	0.060
60	130			35.2	0.081	45.2	0.075
	_						
60	140	40.0	0.099	40.2	0.098	52.2	0.088
60	150			50.2	0.109	58.2	0.101
60	160	49.0	0.130	55.2	0.125	66.2	0.112
60	170					74.2	0.123
60	180	57.0	0.160	60.3	0.184	82.2	0.132
60	190					90.2	0.143
60	200	71.0	0.184	75.2	0.188	101.2	0.150
60	210					111.2	0.158
60	220					121.2	0.166
60	230					131.2	0.173
60	240	82.0	0.249			141.2	0.180
60	255		-	90.2	0.265		
60	325			105.2	0.337		
60	360	140.0	0.346	• -			
60	480	193.0	0.384				
60	495		••••	120.2	0.449		
60	720	266.0	0.401		01,		
70	35					1.2	0.011
70	40			1.2	0.012	5.2	0.004
70	50	1.2	0.016	* 1 *	V, V12	10.2	0.003
70	55	1.2	0.010	5.2	0.009	10.2	0.003

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)		Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
70	60	9.2	0.007	10.2	0.005	13.2	0.005
70	70	15.2	0.015	15.2	0.013	22.2	0.011
70	75			20.2	0.019		
70	80	19.2	0.030			31.2	0.024
70	85			25.2	0.036		
70	90	24.2	0.050	30.2	0.044	39.2	0.040
70	95			35.2	0.056		
70	100	34.2	0.068			47.2	0.058
70	105			45.2	0.073		
70	110	44.2	0.083			55.2	0.075
70	120	52.2	0.100	55.2	0.103	64.2	0.091
70	130	59.2	0.118	33.2	***************************************	74.2	0.105
70	135	37.02	*****	70.2	0.129		
70	140	65.2	0.137	, , , ,		85.2	0.118
70	150	71.2	0.155	80.2	0.157	98.2	0.130
70	160	86.2	0.166			111.2	0.142
70	165			90.2	0.186		
70	170	99.2	0.178	•		125.2	0.153
70	180			100.2	0.215	138.2	0.163
70	190					151.2	0.172
70	200					164.2	0.179
70	210	•		115.2	0.266		
70	240			125.2	0.313		
80	25					1.3	0.011
80	30			1.3	0.013	6.2	0.003
80	40	1.3	0.017	5.2	0.007	12.2	0.002
80	50	11.3	0.007	10.2	0.005	16.2	0.003
80	55			15.2	0.006	22.2	0.005
80	60	18.3	0.015	20.2	0.011	28.2	0.010
80	65					34.2	0.017
80	70	24.3	0.033	25.2	0.030	39.2	0.026
80	75			30.2	0.040	44.2	0.035
80	80	34.3	0.052	40.2	0.051	49.2	0.045
80	85					54.2	0.055
80	90	47.3	0.072	50.2	0.074	59.2	0.065
80	95	· -			-	64.2	0.075
80	100	58.3	0.093			70.2	0.084
80	105			65.2	0.108		
80	110	67.3	0.114			83.2	0.102
80	120	74.3	0.138	85.2	0.143	99.2	0.116

<u> Valedi essisisi espisisisi eskasasa essista essista essista essista essista essista espisata espisat</u>

Estimated Risk of Standard Air Decompression Schedules

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
80	130	83.3	0.159			115.2	0.130
80	140	96.3	0.179	100.2	0.191	132.2	0.143
80	150	110.3	0.195			149.2	0.154
80	160			130.2	0.235	166.2	0.165
80	180	121.3	0.270				
80	240	179.3	0.345				
80	360	280.2	0.417				
80	480	354.2	0.441				
80	720	455.2	0.408				
90	20					1.5	0.013
90	25			1.5	0.014	8.2	0.003
90	30	1.5	0.016	5.2	0.007	12.2	0.001
90	40	8.5	0.008	10.2	0.003	17.2	0.001
90	· 45			15.2	0.004	23.2	0.003
90	50	19.5	0.012	20.2	0.008	30.2	0.007
90	55			25.2	0.015	37.2	0.014
90	60	26.5	0.031	30.2	0.027	43.2	0.023
90	65			35.2	0.039	49.2	0.034
90	70	38.5	0.051	45.2	0.051	55.2	0.045
90	75			50.2	0.065	61.2	0.056
90	80	54.5	0.075	60.2	0.077	68.2	0.067
90	8 5					75.2	0.078
90	90	67.5	0.100	70.2	0.103	83.2	0.089
90	95					92.2	0.098
90	100	76.5	0.127	80.2	0.129	101.2	0.108
90	110	86.5	0.152	100.2	0.161	121.2	0.122
90	120	101.5	0.175	110.2	0.188	142.2	0.136
90	130	116.5	0.196				
90	135			125.2	0.234		
90	150			140.2	0.273		
100	15					1.7	0.013
100	20			1.7	0.015	8.2	0.003
100	25	1.7	0.018	5.2	0.008	13.2	0.001
100	30	4.7	0.012	10.2	0.002	16.2	0.001
100	35			15.2	0.002	19.2	0.001
100	40	16.7	0.009	20.2	0.004	27.2	0.003
100	45			25.2	0.008	36.2	0.007
100	50	27.7	0.020	30.2	0.018	43.2	0.016
100	55			35.2	0.030	51.2	0.027

			U.S	Navy	Royal N	al Navy Canadian		Forces	
i	epth Esw	Bottom Time(min)	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS	
	100	60	38.7	0.045	45.2	0.044	58.2	0.039	
	100 100	65 70	57.7	0.073	60.2	0.074	65.2 73.2	0.052 0.064	
	100	75	37.67	0.075	70.2	0.091	82.2	0.007	
	100	80	72.7	0.102	80.2	0.106	92.2	0.088	
	100	85	74.7	0.102	00.2	0.100	103.2	0.099	
	100	90	84.7	0.128	95.2	0.138	114.2	0.108	
	100	95	04.7	0.120	73.2	0.130	127.2	0.116	
	100	100	97.7	0.158			139.2	0.124	
	100	105	77.07	0.130	115.2	0.186	155.2	0.129	
	100	110	117.7	0.183	113.2	0.100	164.2	0.138	
	100	120	132.7	0.209	135.2	0.240	104.2	0.130	
		120			133.2	0.240			
1	100	180	202.7	0.345					
	100	240	283.7	0.404					
	100	360	416.7	0.450					
	100	480	503.7	0.450					
	100	720	613.7	0.400					
1	110	12					1.8	0.014	
	110	15					5.2	0.007	
	110	17			1.8	0.017	• • •		
	110	20	1.8	0.018	5.2	0.009	12.2	0.001	
	110	25	4.8	0.013	10.2	0.002	16.2	0.001	
	110	30	8.8	0.009	15.2	0.002	20.2	0.001	
	110	35			20.2	0.003	30.2	0.002	
	110	40	24.8	0.010	25.2	0.008	39.2	0.007	
	110	45			30.2	0.018	48.2	0.016	
	110	50	35.8	0.032	40.2	0.022	56.3	0.000	
	110	55	33.0	0.032	50.2	0.032 0.047	56.2	0.029	
	110))			50.2	0.047	64.2	0.042	
1	110	60	55.8	0.064	60.2	0.063	74.2	0.057	
	110	65			70.2	0.083	85.2	0.071	
1	110	70	73.8	0.094	80.2	0.100	96.2	0.084	
1	110	75			90.2	0.119	109.2	0.095	
•	110	80	88.8	0.126	100.2	0.137	122.2	0.105	
:	110	85					137.2	013	
	110	90	107.8	0.158	115.2	0.177	151.2	0.121	
	110	95					167.2	0.128	
	110	100	125.8	0.189	130.2	0.215	181.2	0.136	
	110	105					196.2	0.145	
	110	110			150.2	0.249	210.2	0.153	
'	110	120			170.2	0.284			

Estimated Risk of Standard Air Decompression Schedules

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)		Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
120	10				•	2.0	0.014
120	14			2.0	0.017		• • • • • • • • • • • • • • • • • • • •
120	15	2.0	0.018			10.2	0.004
120	20	4.0	0.015	5.2	0.012	15.2	0.001
120	25	8.0	0.010	10.2	0.003	20.2	0.001
120	30	16.0	0.009	20.2	0.003	29.2	0.002
120	35			25.2	0.007	40.2	0.005
120	40	32.0	0.016	35.2	0.014	50.2	0.014
120	45			40.2	0.030	60.2	0.028
120	50	48.0	0.049	50.2	0.047	70.2	0.042
120	55			65.2	0.068	81.2	0.059
120	60	71.0	0.081	80.2	0.087	94.2	0.074
120	65	71.0	0.001	00.2	0.007	108.2	0.087
120	70	89.0	0.118	100.2	0.126	123.2	0.097
120	75	07.0	0.110	110.2	0.151	140.2	0.107
120	80	107.0	0.156	120.2	0.176	158.2	0.115
120	85	107.0	0.150	120.2	0.170	175.2	0.124
120	90	132.0	0.186	140.2	0.214	192.2	0.133
120	95	132.0	0.100	140.2	0.214	210.2	0.141
120	100	150.0	0.220	160.2	0.257	226.2	0.141
120	110	130.0	0.220	180.2	0.297	220.2	0.149
120	120	176.0	0.289	190.2	0.331		
120	180	284.0	0.404	190.2	0.331		
120	240	396.0	0.443				
120	360	551.0	0.447				
120	480	654.0	0.417				
120	720	773.0	0.353				
130	8					2.2	0.013
130	10	2.2	0.016			5.2	0.013
130	11	2.2	0.010	2.2	0.017	3.2	0.008
130	15	3.2	0.017	5.2	0.012	13.2	0.001
130	20	6.2	0.017	10.2	0.003	18.2	0.001
130	25	12.2	0.013	15.2	0.003	24.2	0.001
130	30	23.2	0.006	25.2	0.006	38.2	0.001
130	35	23.2	0.000	30.2	0.011	50.2	0.011
120	40	17 2	0.029	40.2	0.025	61.2	0.027
130 130	40 45	37.2	0.028	40.2	0.025	61.2	0.024
1 30	43			55.2	0.047	73.2	0.040
130	50	63.2	0.064	65.2	0.067	86.2	0.058
130	55			80.2	0.087	101.2	0.074

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)		Probability of DCS	Decompression Time (min).	Probability of DCS	Decompression Time (min)	Probability of DCS
130	60	86.2	0.102	95.2	0.107	118.2	0.087
130	65					136.2	0.098
130	70	103.2	0.144	115.2	0.159	156.2	0.106
130	75			135.2	0.179	176.2	0.115
130	80	131.2	0.179	150.2	0.202	197.2	0.125
130	85					215.2	0.134
130	90	154.2	0.217	170.2	0.251	234.2	0.144
130	100			190.2	0.303		
130	110			210.2	0.342		
130	120			230.2	0.376		
140	7					2.3	0.014
140	9			2.3	0.017	- 1 -	
140	10	2.3	0.018	5.2	0.010	7.2	0.006
140	15	4.3	0.017	10.2	0.002	15.2	0.001
140	20	8.3	0.012	15.2	0.003	22.2	0.001
140	25	18.3	0.007	20.2	0.005	34.2	0.001
140	30	28.3	0.008	30.2	0.006	48.2	0.006
140	35			40.2	0.018	61.2	0.019
140	40	46.3	0.040	55.2	0.040	73.2	0.035
140	45			65.2	0.063	89.2	0.054
140	50	76.3	0.080	80.2	0.086	105.2	0.072
140	55			95.2	0.112	125.2	0.085
140	60	97.3	0.125	110.2	0.135	145.2	0.096
140	65			125.2	0.161	168.2	0.105
140	70	125.3	0.166	140.2	0.185	191.2	0.115
140	75			155.2	0.216	214.2	0.126
140	80	155.3	0.206	165.2	0.243	235.2	0.135
140	85			180.2	0.268	255.2	0.145
140	90	166.3	0.256			273.2	0.153
140	95	100.5	0.250	200.2	0.318	2,3.2	0.133
140	105			220.2	0.361		
140	115			240.2	0.398		
140	120	240.3	0.345	240.2	0.390		
140	180	386.2	0.431				
140							
	240	511.2	0.450				
140	360	684.2	0.421				
140	480	801.2	0.367				
140	720	924.2	0.306				
150	5	2.5	0.012				
150	5 7					2.5	0.015

Estimated Risk of Standard Air Decompression Schedules

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)		Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
150	8			2.5	0.017		
150	10	3.5	0.017	5.2	0.012	9.2	0.006
150	15	5.5	0.016	10.2	0.004	18.2	0.001
150	20	11.5	0.007	20.2	0.004	25.2	0.001
150	25	23.5	0.006	30.2	0.002	43.2	0.003
150	30	34.5	0.013	40.2	0.010	57.2	0.012
150	35	34.5	0.015	50.2	0.030	71.2	0.012
150	40	59.5	0.052	65.2	0.054	88.2	0.048
150	45			80.2	0.078	107.2	0.067
150	50	88.5	0.097	95.2	0.106	128.2	0.082
150	55	0013	0.037	115.2	0.131	152.2	0.093
150	60	112.5	0.145	130.2	0.160	178.2	0.104
150	65	11013	002.0	145.2	0.193	203.2	0.114
150	·70	146.5	0.190	160.2	0.223	228.2	0.124
150	75	2.000	***************************************	175.2	0.253	250.2	0.134
150	80	173.5	0.233	195.2	0.284	271.2	0.143
150	85	17545	00230	210.2	0.312		3,1,3
150	90			230.2	0.334		
160	5	2.7	0.013				
160	6					2.7	0.014
160	10	3.7	0.019	10.2	0.002	12.2	0.004
160	15	7.7	0.012	15.2	0.003	21.2	0.001
160	20	16.7	0.006	25.2	0.001	32.2	0.001
160	25	29.7	0.007	35.2	0.004	51.2	0.005
160	30	40.7	0.019	45.2	0.019	67.2	0.019
160	35			60.2	0.043	84.2	0.038
160	40	71.7	0.065	60.2	0.072	104.2	0.060
160	45			95.2	0.096	127.2	0.077
160	50	98.7	0.116	110.2	0.128	153.2	0.089
160	55			130.2	0.157	183.2	0.099
160	60	132.7	0.165	145.2	0.192	211.2	0.110
160	65			165.2	0.221	238.2	0.121
160	70	166.7	0.214	180.2	0.252	263.2	0.132
160	75			195.2	0.288		
160	80			210.2	0.318		
160	85			230.2	0.340		
170	5	2.8	0.014			2.8	0.013
170	10	4.8	0.017	10.2	0.003	14.2	0.002

Estimated Risk of Standard Air Decompression Schedules

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
170 170	15 20	9.8 21.8	0.009 0.006	15.2 25.2	0.005 0.002	23.2 41.2	0.001 0.001
170	25	34.8	0.008	40.2	0.007	59.2	0.009
170	30	45.8	0.028	55.2	0.027	77.2	0.027
170	35			70.2	0.053	98.2	0.049
170	40	81.8	0.078	85.2	0.090	122.2	0.069
170	45			105.2	0.121	152.2	0.083
170	50	109.8	0.134	125.2	0.154	183.2	0.094
170	55			145.2	0.182	214.2	0.106
170	60	152.8	0.189	165.2	0.216	244.2	0.117
170	65			180.2	0.259	271.2	0.128
170	70	183.8	0.238	190.2	0.296	296.2	0.139
170	75			215.2	0.318		
170	80			235.2	0.352		
170	90	246.8	0.331				
170	120	356.7	0.399				
170	180	535.7	0.451				
170	240	681.7	0.434				
170	360	873.7	0.369				
170	480	1007.7	0.301				
180	5	3.0	0.015			3.0	0.014
180	10	6.0	0.017	10.2	0.004	16.2	0.001
180	15	12.0	0.007	20.2	0.001	26.2	0.001
180	20	26.0	0.005	30.2	0.003	48.2	0.002
180	25	40.0	0.013	45.2	0.013	67.2	0.014
180	30	53.0	0.039	65.2	0.036	89.2	0.036
180	35			85.2	0.070	114.2	0.059
180	40	93.0	0.093	105.2	0.103	144.2	0.077
180	45			125.2	0.140	179.2	0.088
180	50	128.0	0.153	145.2	0.169	213.2	0.100
180	55			165.2	0.207	245.2	0.111
180	60	168.0	0.208	185.2	0.250	276.2	0.121
180	65			200.2	0.288		
180	70			220.2	0.318		
180	75			240.2	0.353		
100	_	2.2	0.014				
190	5	3.2	0.016		0.000	3.2	0.015
190	10	7.2	0.014	10.2	0.006	18.2	0.002

Estimated Risk of Standard Air Decompression Schedules

		U.S. Navy		Royal Navy		Canadian Forces	
	Bottom Time(min)		Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
190 190	15 20	14.2 31.2	0.006 0.005	25.2 35.2	0.001	30.2 55.2	0.001 0.004
190 190 190 190	25 30 35 40	44.2 63.2 103.2	0.020 0.048 0.109	50.2 75.2 100.2 120.2	0.019 0.050 0.078 0.122	76.2 101.2 132.2 169.2	0.020 0.045 0.067 0.081
190 190 190 190	45 50 55 60	147.2 183.2	0.170	140.2 160.2 180.2 200.2 220.2	0.153 0.194 0.242 0.281 0.316	207.2 242.2 276.2	0.092 0.105 0.118
190 190	65 70	*******		240.2	0.352		
200 200 200	5 10 15	4.3 8.3 18.3	0.015 0.013 0.004	15.2 25.2	0.005 0.002	4.2 20.2 37.2	0.014 0.001 0.001
200 200 200 200	20 25 30 35	40.3 49.3 73.3	0.006 0.029 0.058	40.2 60.2 85.2 110.2	0.005 0.027 0.060 0.096	69.2 87.2 117.2 153.2	0.007 0.028 0.054 0.072
200 200 200 200 200	40 45 50 55	112.3 161.3	0.124	135.2 160.2 180.2 200.2	0.138 0.175 0.227 0.269	195.2 234.2 272.2	0.085 0.098 0.111
200 200 200 200	60 65 90 120 180	199.3 324.2 473.2 685.2	0.251 0.399 0.438 0.440	220.2 240.2	0.308 0.346		
200 200 200	240 360	842.2 1058.3	0.401				
210 210 210 210	5 10 15 20	4.5 9.5 22.5 40.5	0.016 0.011 0.004 0.010			6.2 22.2 43.2	0.010 0.001 0.001
210 210 210 210	25 30 35 40	56.5 81.5 124.5	0.036 0.068 0.139			97.2 134.2 176.2 222.2	0.035 0.060 0.077 0.088

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)		Probability of DCS	Decompression Time (min)		Decompression Time (min)	Probability of DCS
210 210	45 50	174.5	0.207			262.2 301.2	0.102 0.116
220 220 220 220 220 220	5 10 15 20 25 30	5.7 10.7 26.7 42.7 66.7 91.7	0.014 0.011 0.004 0.013 0.044 0.079			7.2 24.2 50.2 77.2 110.2 152.2	0.009 0.001 0.001 0.015 0.043 0.066
220 220 220	35 40 50	140.7 190.7	0.154 0.223			200.2 247.2	0.080 0.092
230 230 230 230 230 230 230 230 230	5 10 15 20 25 30 35 40 50	5.8 12.8 30.8 48.8 74.8 99.8	0.015 0.006 0.004 0.018 0.052 0.091 0.167 0.242			8.2 26.2 56.2 85.2 124.2 173.2 226.2 272.2	0.008 0.001 0.002 0.020 0.050 0.069 0.082 0.097
240 240 240 240 240 240 240 240 240	5 10 15 20 25 30 35 40 50	6.0 14.0 35.0 53.0 82.0 109.0	0.016 0.006 0.005 0.025 0.061 0.103			9.2 28.2 61.2 96.2 139.2 195.2 249.2	0.008 0.001 0.003 0.027 0.055 0.072 0.085 0.102
250 250 250 250 250 250 250 250	5 10 15 20 25 30 40	7.2 16.2 38.2 59.2 92.2 116.2 178.2 298.2	0.012 0.005 0.005 0.033 0.071 0.114 0.200 0.355				

Estimated Risk of Air Decompression Schedules

		U.S. Navy		Royal Navy		Canadian Forces	
Depth fsw	Bottom Time(min)		Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
250	90	514.2	0.440				
250	120	684.2	0.442		•		
250	180	931.2	0.382				
250	240	1109.1	0.315				
260	5	7.3	0.013				
260	10	19.3	0.003				
260	15	42.3	0.006				
260	20	67.3	0.038				
260	25	99.3	0.080				
260	30	126.3	0.127				
260	40	190.3	0.213				
270	5	8.5	0.012				
270	10	22.5	0.003				
270	15	46.5	0.009				
270	20	74.5	0.045				
270	25	106.5	0.091				
270	30	138.5	0.140				
270	40	204.5	0.230				
280	5	8.7	0.011				
280	10	25.7	0.002				
280	15	49.7	0.011				
280	20	81.7	0.052				
280	25	113.7	0.101				
280	30	150.7	0.150				
280	40	218.7	0.245				
290	5	9.8	0.009				
290	10	29.8	0.002				
290	15	52.8	0.015				
290	20	89.8	0.060				
290	25	120.8	0.110				
290	30	162.8	0.161				
290	40	228.8	0.261				
300	e	11.0	0.007				
300	5 10	32.0	0.007				
300	15	57.0	0.002				
		J1 + U	0.021				

Depth fsw	Bottom Time(min)	U.S. Navy		Royal Navy		Canadian Forces	
		Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS	Decompression Time (min)	Probability of DCS
300	15	57.0	0.021		•		
300	20	97.0	0.068				
300	25	129.0	0.122				
300	30	172.0	0.172				
300	40	231.0	0.287				
300	60	460.0	0.392				
300	90	693.0	0.441				

EMD