Precipitação

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

As reações de precipitação

- 1. Eletrólitos fortes e fracos.
- 2. Precipitados.
- 3. Reações Iônicas.
- 4. Íons espectadores.

Aplicações da precipitação.

- 1. Titulação de precipitação.

() Compostos insolúveis	Exceções solúveis
() Carbonatos (CO ₃ ²⁻), fosfatos (PO ₄ ³⁻), cromatos (CrO ₄ ²⁻), sulfetos (S ²⁻)	Metais alcalinos e amônio
Hidróxidos (OH ⁻)	Cátions de metais alcalinos, amônio e Ba ²⁺

PROBLEMA 2.3

3E03

A constante de velocidade da reação de segunda ordem:

$$2HI_{(g)} \to H_{2(g)} + I_{2(g)}$$

- \mathbf{A} 158 kJ mol⁻¹
- \mathbf{B} 167 kJ mol⁻¹
- $176 \, \text{kJ} \, \text{mol}^{-1}$
- **D** $185 \, \text{kJ} \, \text{mol}^{-1}$
- \mathbf{E} 194 kJ mol $^{-1}$

2.0.1 Habilidades

 $\overline{0}$

 a. Calcular a quantidade de uma substância por titulação de precipitação.

Nível I

PROBLEMA 2.1

3E01

O processo físico de transformação do milho em pipoca pode ser modelado como uma reação química.

Assinale a alternativa com a ordem desse processo.

- \mathbf{A} -1
- **B** 0
- **C** 1
- **D** 2
- **E** pseudozero

3E02

A constante de velocidade da reação de primeira ordem:

$$2N_2O_{(g)}\to 2N_{2(g)}+O_{2(g)}$$

é 0,76 s^{−1} a 1000 K e 0,87 s^{−1} a 1030 K.

Assinale a alternativa que mais se aproxima da energia de ativação para essa reação.

- \mathbf{A} 10 kJ mol⁻¹
- $\mathbf{B} \quad 20 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{C} 30 kJ mol⁻¹
- \mathbf{D} 40 kJ mol⁻¹
- \mathbf{E} 50 kJ mol⁻¹

A constante de velocidade da reação de segunda ordem entre bromo-etano e íons hidróxido em água formando etanol foi medida em várias temperaturas, com os seguintes resultados:

Assinale a alternativa que mais se aproxima da energia de ativação para essa reação.

- \mathbf{A} 50 kJ mol⁻¹
- \mathbf{B} 60 kJ mol⁻¹
- \mathbf{C} 70 kJ mol $^{-1}$
- \mathbf{D} 80 kJ mol⁻¹
- \mathbf{E} 90 kJ mol⁻¹

A constante de velocidade da conversão de ciclopropano em propeno foi medida em várias temperaturas, com os seguintes resultados:

Assinale a alternativa que mais se aproxima da constante cinética da reação a 600 °C.

- **A** $7.5 \times 10^{-3} \, \text{s}^{-1}$
- **B** $8.0 \times 10^{-3} \, \text{s}^{-1}$
- $8,5 \times 10^{-3} \, \text{s}^{-1}$
- $9.0 \times 10^{-3} \, \text{s}^{-1}$
- **E** $9.5 \times 10^{-3} \, \text{s}^{-1}$

3E06

Considere as proposições a respeito da cinética de reações bimoleculares.

- **1.** A constante cinética é proporcional à frequência de colisões entre as moléculas dos reagentes.
- **2.** A constante cinética é proporcional à velocidade média das moléculas.
- A constante cinética é proporcional à seção transversal de colisão, a área que uma molécula mostra como alvo durante a colisão.
- **4.** A constante cinética é proporcional ao número de moléculas cuja energia cinética relativa é maior ou igual à energia de ativação da reação.

Assinale a alternativa que relaciona as proposições corretas.

- A 1, 2 e 3
- **B** 1, 2 e 4
- **c** 1, 3 e 4
- D 2,3e4
- **E** 1, 2, 3 e 4

Considere a reação catalisada descrita pelo mecanismo:

$$\begin{array}{c} \textbf{A} + \textbf{B}\textbf{C} \, \rightarrow \textbf{A}\textbf{C} + \textbf{B} \\ \textbf{A}\textbf{C} + \textbf{D} \, \rightarrow \textbf{A} + \textbf{C}\textbf{D} \end{array}$$

O perfil energético é:

Progresso da reação

Assinale a alternativa correta.

- A Os intermediários de reação são representados por 2 e 3 e equivalem, respectivamente, aos compostos BC e AC.
- B Os reagentes, representados por 1, são os compostos A e D
- C O complexo ativado representado por 4 tem estrutura A...C...D.
- **D** O produto, representado por **5**, é único e equivale ao composto **CD**.
- **E** A presença do catalisador **A** torna a reação exotérmica.

Considere as ações em um reator onde é conduzida a dimerização do NO_2 em fase gasosa.

- 1. Condução da reação em um solvente orgânico.
- 2. Redução do volume do recipiente.
- **3.** Aumento da temperatura.
- 4. Adição de catalisador.

Assinale a alternativa que relaciona as ações que resultariam na mudança da constante cinética da reação.

- A 1 e 3
- **B** 1 e 4
- **C** 3 e 4
- **D** 1, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 2.9

3E09

Considere as proposições.

- Uma reação química realizada com a adição de um catalisador é denominada heterogênea se existir uma superfície de contato visível entre os reagentes e o catalisador.
- A ordem de qualquer reação química em relação à concentração do catalisador é zero.
- A energia livre de uma reação química realizada com a adição de um catalisador é menor que a da reação não catalisada.
- **4.** Um dos produtos de uma reação química pode ser o catalisador dessa mesma reação.

Assinale a alternativa que relaciona as proposições corretas.

- A 1
- B 4
- C 1 e 4
- **D** 1, 2 e 4
- **E** 1, 3 e 4

PROBLEMA 2.10 3E10

A da energia de ativação para a decomposição do iodeto de hidrogênio formando gás hidrogênio e o iodo molecular em meio homogêneo é 183,9 kJ em meio homogêneo, e 96,2 kJ mol^{-1} quando ocorre na superfície de um fio de ouro.

Assinale a alternativa *correta*.

- A velocidade da reação no meio homogêneo é igual a da mesma reação realizada no meio heterogêneo.
- B A velocidade da reação no meio homogêneo diminui com o aumento da temperatura.
- A velocidade da reação no meio heterogêneo independe da concentração inicial de iodeto de hidrogênio.
- **D** A velocidade da reação na superfície do ouro aumenta com o aumento a área superficial do ouro.
- A constante de velocidade da reação realizada no meio homogêneo é igual a da mesma reação realizada no meio heterogêneo.

3E12

Considere o perfil energético de uma reação na presença e ausência de catalisador.

Assinale a alternativa *correta*.

- A curva A representa a reação catalisada, que ocorre com absorção de calor.
- **B** A curva **B** representa a reação catalisada, que ocorre com absorção de calor.
- **C** A curva **A** representa a reação catalisada com energia de ativação dada por $E_1 + E_2$.
- **D** A curva **B** representa a reação não catalisada, que ocorre com liberação de calor e a sua energia de ativação é dada por E₃ + E₁.
- A curva **A** representa a reação catalisada, que ocorre com liberação de calor e a sua energia de ativação é dada por E₂.

A energia de ativação da decomposição do peróxido de hidrogênio em $25\,^{\circ}\text{C}$ é $75,3\,\text{kJ}\,\text{mol}^{-1}$. Na presença de um catalisador óxido de ferro, a energia de ativação da decomposição foi $32,8\,\text{kJ}\,\text{mol}^{-1}$.

Assinale a alternativa que mais se aproxima de quanto aumenta a velocidade de decomposição na presença do catalisador se os outros parâmetros do processo se mantêm inalterados.

- **A** 2.8×10^3
- **B** 2.8×10^4
- $2,8 \times 10^5$
- **D** 2.8×10^6
- **E** 2.8×10^7

PROBLEMA 2.13

3E14

A velocidade de uma reação aumenta por um fator de 1000 na presença de um catalisador em $25\,^{\circ}$ C. A energia de ativação do percurso original é $98\,\rm kJ\,mol^{-1}$.

Assinale a alternativa que mais se aproxima da energia de ativação da reação catalisada.

- \mathbf{A} 54 kJ mol⁻¹
- \mathbf{B} 63 kJ mol⁻¹
- \mathbf{c} 72 kJ mol⁻¹
- \mathbf{D} 81 kJ mol⁻¹
- \mathbf{E} 90 kJ mol⁻¹

Nível II

PROBLEMA 2.14

3E15

O DNA é o carregador primário da informação genética em organismos vivos. O DNA perde a sua atividade pelo desenrolamento da sua estrutura de dupla hélice. Esse é um processo de primeira ordem com energia de ativação de $400\,\mathrm{kJ}\,\mathrm{mol}^{-1}$, integralmente utilizada rompimento de ligações de hidrogênio, de $5\,\mathrm{kJ}\,\mathrm{mol}^{-1}$. Na temperatura fisiológica, $37\,^\circ\mathrm{C}$, a meia-vida do desenrolamento é de $1045\,\mathrm{min}$.

- a. Determine o número de ligações de hidrogênio que devem ser rompidas para desativar o DNA.
- b. **Determine** a meia-vida para o desenrolamento a 44 °C.

Considere a reação elementar de decomposição do dióxido de nitrogênio gasoso:

$$2\,NO_2(g) \longrightarrow 2\,NO\,(g) + O_2(g)$$

A reação possui energia de ativação de 110 kJ.mol-1 e constante de velocidade 2,8 \times $10^{12}\, L\, mol^{-1}\, s^{-1}$ a 273 K. Em um experimento, 2,5 atm de dióxido de nitrogênio são adicionados em um recipiente a 500 K.

- a. **Determine** a contante de velocidade para a decomposição do dióxido de nitrogênio a 500 K.
- b. **Determine** o tempo necessário para que a pressão total do recipiente aumente para 3 atm.

PROBLEMA 2.16

3E17

3E18

A constante de velocidade da reação de decomposição de um composto ${\bf A}$ foi medida em várias temperaturas, com os seguintes resultados:

0 T/°C	25	45	55	65
() k/s ⁻¹	3,2 × 10 ⁻⁵	5,1 × 10 ⁻⁴	$1,7 \times 10^{-3}$	5,2 × 10 ⁻³
0				

Uma solução contendo 0,02 mol.L- 1 de $\mathbf A$ foi adicionada a um reator em temperatura $\mathsf T$, e a concentração de $\mathbf A$ foi monitorada.

- a. Determine a energia de ativação da reação.
- b. **Determine** a ordem da reação.
- c. Determine a constante cinética em temperatura T.

O estudo da cinética da reação

$$SO_2(g) + O_3(g) \longrightarrow SO_3(g) + O_2(g)$$

forneceu os dados:

() #	T/K	[SO ₂] /mM	$[O_3]/mM$	$/(\text{mM s}^{-1})$
0	250	250	400	118
1 2	250	250	200	118
3	250	750	200	1062
4	400	500	300	1425
()				

- a. **Determine** a lei de velocidade da reação.
- b. **Determine** a energia de ativação dessa reação.

3E16

A constante de velocidade de uma reação foi medida em várias temperaturas, com os seguintes resultados:

Considere as proposições.

- 1. O trecho P-Q é referente a reação direta, enquanto o trecho Q-R se refere à reação inversa.
- 2. Para temperaturas menores que T_a , o mecanismo controlador da reação em questão difere daquele para temperaturas maiores que T_a .
- **3.** A energia de ativação da reação no trecho P-Q é menor que a no trecho Q-R.
- **4.** A energia de ativação da reação direta é menor que a da reação inversa.

Assinale a alternativa que relaciona as proposições corretas.

- A 2
- B 3
- **C** 2 e 3
- **D** 1, 2 e 3
- **E** 2, 3 e 4

Considere a distribuição de velocidades para os reagentes de uma reação em duas temperaturas.

Considere as proposições.

- 1. A constante de equilíbrio da reação é igual em T_1 e em T_2 .
- **2.** A velocidade da reação é menor em T_1 do que em T_2 .
- 3. A constante de velocidade da reação é igual em T_1 e em T_2 .
- **4.** Em T_1 , há menos moléculas com energia suficiente para a reação do que em T_2 .

Assinale a alternativa que relaciona as proposições corretas.

- A 2
- B 4
- **C** 2 e 4
- D 1, 2 e 4
- **E** 2, 3 e 4

Em sistemas envolvendo reações paralelas, a seletividade é definida como a razão entre as taxas de geração dos produtos de interesse e dos secundários. Considere um sistema onde uma mesma substância pode reagir formando um produto de interesse ou um produto secundário.

- A seletividade independe da concentração inicial de reagente.
- **B** A seletividade independe da ordem das reações de formação do produto de interesse e dos secundários.
- A seletividade é maior no início da reação quando a ordem da reação de formação dos produtos de interesse é igual à do secundário.
- A seletividade é menor no fim da reação quando a ordem da reação de formação dos produtos de interesse é menor que a do secundário.
- A seletividade é maior no início da reação quando a ordem da reação de formação dos produtos de interesse é maior que a do secundário.

PROBLEMA 2.21

3E23

Considere a reação reversível, em uma etapa:

$$A + A \Longrightarrow B + C$$

A constante de velocidade da reação direta de formação de B é $265\,\mathrm{L\,mol}^{-1}\,\mathrm{min}^{-1}$, e a constante da velocidade da reação inversa é $392\,\mathrm{L\,mol}^{-1}\,\mathrm{min}^{-1}$. A energia de ativação da reação direta é $39.7\,\mathrm{kJ\,mol}^{-1}$ e a da reação inversa é $25.4\,\mathrm{kJ\,mol}^{-1}$.

- a. **Determine** a constante de equilíbrio para essa reação.
- b. Classifique a reação como endotérmica ou exotérmica.
- Determine o efeito da temperatura nas constantes de velocidade e na constante de equilíbrio.

PROBLEMA 2.22

3E24

Considere a reação reversível, em uma etapa:

$$A + B \rightleftharpoons C + D$$

A constante de velocidade da reação direta é $52,4 \,\mathrm{L\,mol}^{-1}\,\mathrm{min}^{-1}$, e a constante da velocidade da reação inversa é $32,1 \,\mathrm{L\,mol}^{-1}\,\mathrm{min}^{-1}$ A energia de ativação da reação direta é $35,2 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ e a da reação inversa é $44 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$.

- a. **Determine** a constante de equilíbrio para essa reação.
- b. Classifique a reação como endotérmica ou exotérmica.
- c. **Determine** o efeito da temperatura nas constantes de velocidade e na constante de equilíbrio.

Considere a reação reversível, em uma etapa:

$$2\mathbf{A} + \mathbf{B} \Longrightarrow 3\mathbf{C}$$

Essa reação possui energia de ativação $25 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ e fator de frequência $5,5 \times 10^{10}\,\mathrm{L}^2\,\mathrm{mol}^{-2}\,\mathrm{s}^{-1}$. Um experimento foi realizado a $300 \,\mathrm{K}\,\mathrm{com}\,0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ de \mathbf{A} e $0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ de \mathbf{B} . O equilíbrio é atingido quando a concentração de \mathbf{C} passa a $0,15\,\mathrm{mol}\,\mathrm{L}^{-1}$.

- a. **Determine** a constante de velocidade da reação inversa.
- b. **Determine** a velocidade da reação direta no equilíbrio.

PROBLEMA 2.24

3E26

Considere a reação reversível, em uma etapa:

$$A + B \rightleftharpoons C$$

A constante de equilíbrio da reação direta é K=4. A reação reversa possui energia de ativação $2,5\,\mathrm{kJ\,mol}^{-1}$ e fator de frequência $2,72\times10^5\,\mathrm{L^2\,mol}^{-1}\,\mathrm{s}^{-1}$. Um experimento foi realizado a 300 K. No equilíbrio 25% da quantidade inicial de **A** foi convertida e a concentração de **C** é $0,5\,\mathrm{mol}\,\mathrm{L}^{-1}$

- a. **Determine** a constante de velocidade da reação inversa.
- b. **Determine** a velocidade da reação direta no equilíbrio.

PROBLEMA 2.25

3E20

Considere a reação

$$I_2(g) + H_2(g) \Longrightarrow 2 HI(g)$$

Essa reação é conduzida em um reator na presença e ausência de catalisador.

- a. Esboce o gráfico da velocidade da reação direta e inversa em função do tempo na presença e ausência do catalisador.
- b. **Esboce** o gráfico das concentrações dos reagentes e produtos na presença e ausência do catalisar.

Gabarito

Nível I

- 1 C
- 2 [
- 7 (
- 4
- 5. C
- 6 F
- 7 (
- 8 [
- 9 (
- 10. D
- 11. I
- 12. E
- 13. I

Nível II

- **1.** a. 80
 - b. 34 min
- 2. -
- **3.** a. $100 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
 - b. Primeira ordem
 - c. 55 °C
- $\textbf{4.} \quad \text{a.} \quad \nu = k[SO_2]^2$
 - b. $6 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- 5. C
- 6. C
- 7. E
- **8.** a. 0,676
 - b. Endotérmica
 - c. A constante de equilíbrio, assim como as constantes de velocidade, aumenta com a temperatura.
- **9.** a. 1,63
 - b. Exotérmica.
 - c. A constante de equilíbrio, diferente das constantes de velocidade, diminui com a temperatura.
- **10.** a. $11 L^2 \text{ mol}^{-2} \text{ s}^{-1}$
 - b. $0,037 \, mol \, L^{-1} \, s^{-1}$
- **11.** a. $4 \times 10^5 \, L \, \text{mol}^{-1} \, \text{s}^{-1}$
 - b. $9 \times 10^5 \, mol \, L^{-1} \, s^{-1}$
- 12. a. Esboço
 - b. Esboço