

#### Bibliografia básica:

Arango HG. Bioestatística: teórica e computacional. 3ªed. Rio de Janeiro: Guanabara Koogan; 2011.

SPIEGEL, Murray Ralph; FARIA, Alfredo Alves De Probabilidade e estatística. São Paulo, SP: McGraw-Hill, 1978.



#### **TESTE DE HIPÓTESES**

Inferência estatística é um ramo da Estatística cujo objetivo é fazer afirmações a partir de um conjunto de valores representativo (amostra) sobre um universo (população), assume-se que a população é muito maior do que o conjunto de dados observados, a amostra. Tal tipo de afirmação deve sempre acompanhada de uma medida de precisão sobre sua veracidade. Para realizar este trabalho, o estatístico coleta informações de dois tipos, experimentais (as amostras) e aquelas que obtém na literatura.

Teste de Hipóteses trata-se de uma técnica para se fazer a inferência estatística sobre uma população a partir de uma amostra



## **CONCEITOS BÁSICOS**

Hipótese: é uma pressuposição a respeito de um determinado problema.

O mecanismo de comprovação (verificação) é denominado teste de hipóteses. Assim, testar uma hipótese quer dizer verificar se um pressuposto é verdadeiro ou não.

A veracidade ou não do pressuposto é chamada de **conclusão**.



#### POR EXEMPLO:

Níveis elevados de bilirrubina em recém-nascidos afetam a capacidade auditiva deles?

Para se chegar a uma conclusão sobre essa questão é necessário formular uma hipótese e testá-la.

A formulação da hipótese está relacionada com a forma de conduzir a experiência (desenho experimental).



Neste exemplo, poderia ser selecionada uma amostra de *n* recém-nascidos e:

- Efetuar uma dosagem dos níveis de bilirrubina.
- Aferição da capacidade auditiva (quantitativa).

A partir dos dados, seriam constituídos dois grupos:

- A = taxa de bilirrubina normal
- B = taxa de bilirrubina elevada

Seriam então comparadas as capacidades auditivas médias dos grupos A e B.



#### Construção das Hipóteses

- A = taxa de bilirrubina normal
- B = taxa de bilirrubina elevada

| Hipótese de Nulidade → H <sub>o</sub> | Igualdade entre os grupos       |
|---------------------------------------|---------------------------------|
| $H_o \rightarrow \mu_A = \mu_B$       |                                 |
| Hipótese Alternativa → H <sub>1</sub> | Diferença (não igualdade) entre |
| $H_1 \rightarrow \mu_A \neq \mu_B$    | os grupos                       |

Média da capacidade auditiva do grupo A

Média da capacidade auditiva do grupo B



#### Assim:

Aceitar Ho ou dizer que ela é verdadeira por meio de um teste significa afirmar que níveis de bilirrubina não estão relacionados com a perda da capacidade auditiva.

Rejeitar Ho ou dizer que ela é falsa, implica comprovar que os níveis de bilirrubina afetam a capacidade auditiva.

Naturalmente, aceitar H<sub>1</sub> implica rejeitar H<sub>0</sub> e vice-versa.

Hipótese de Nulidade → H<sub>o</sub>

$$H_o \rightarrow \mu_A = \mu_B$$

Hipótese Alternativa → H<sub>1</sub>

$$H_1 \rightarrow \mu_A \neq \mu_B$$



As hipóteses devem ser binárias e excludentes.

Permitem que apenas uma das hipóteses seja testada para se obter uma conclusão consistente.



Por convenção, testa-se sempre Ho. Dessa forma, aceitar Ho implica comprovar a igualdade (nulidade das diferenças); rejeitar Ho significa comprovar a diferença entre os grupos testados.



#### Regra de decisão

É um procedimento estatístico para se decidir entre aceitar ou rejeitar a hipótese de nulidade  $(H_0)$ .

Normalmente, formula-se a regra de decisão para testar uma hipótese a partir do resultado de um teste estatístico.

Ao se tomar uma decisão sobre se a hipótese de nulidade deve ser aceita ou não, existirá a possibilidade de se estar cometendo um <u>erro</u>. Por esse motivo, as regras de decisão são construídas seguindo <u>critérios</u> que permitam reduzir os erros a elas associados.



#### Erros de decisão

| Erro tipo I → EI   | Rejeitar H₀ quando ela é verdadeira |
|--------------------|-------------------------------------|
| Erro tipo II → EII | Aceitar H₀ quando ela é falsa       |

Hipótese de Nulidade 
$$\rightarrow$$
 Ho 
$$H_o \rightarrow \mu_A = \mu_B$$
 Hipótese Alternativa  $\rightarrow$  H1 
$$H_1 \rightarrow \mu_A \neq \mu_B$$

Nível de significância (α) -> probabilidade de cometer El

Portanto EI: Erro ao se afirmar que existem diferenças entre os grupos que estão sendo comparados



#### Erros de decisão

| Erro tipo I → EI   | Rejeitar H₀ quando ela é verdadeira |
|--------------------|-------------------------------------|
| Erro tipo II → EII | Aceitar H₀ quando ela é falsa       |

|         |               | Fato                 |                      |
|---------|---------------|----------------------|----------------------|
|         |               | Verdadeiro(+)        | Falso(-)             |
| Decisão | Aceitação (+) | Decisão Correta(+,+) | Erro II              |
| Doorogo | Rejeição (-)  | Erro I               | Decisão correta(-,-) |



Suponha que a proporção da população com mais de 60 anos afetada pela doença de Alzheimer seja, segundo a literatura, de 20%.

Se um pesquisador efetuasse um levantamento de dados na região onde ele trabalha e verificasse que, dentre 50 pessoas na faixa etária considerada, os portadores da síndrome seria de 16.



Como a proporção por ele encontrada na experiência (16/50 = 32%) difere da proporção citada na literatura, o pesquisador pode imaginar que, por alguma razão, a proporção de indivíduos afetados pela síndrome na sua região de atuação é diferente/maior que a da população em geral.

Contudo, essa diferença pode ser apenas <u>casual</u>, decorrente do fato de se estar trabalhando com uma amostra. Isto é, pode tratar-se de um erro de amostragem, o que levaria a tirar uma conclusão errada, fazer uma afirmação errada.



O problema é decidir:

A partir de que valor é razoável começar a pensar que as taxas sejam diferentes.



Na amostra com 50 indivíduos, com base na literatura, o valor esperado de doentes de Alzheimer é de 10 indivíduos.

$$\mu = E = n.p = 50 \times 0, 2 = 10$$

Podemos criar uma regra que aceite H<sub>0</sub> quando o número de indivíduos com a síndrome esteja entre 8 e 12 inclusive, porém não é um critério de referência (conhecido).

| RR<br>Região de<br>rejeição |         | RA<br>Região de<br>aceitação | RR<br>Região de<br>rejeição |    |
|-----------------------------|---------|------------------------------|-----------------------------|----|
| <b>-</b>                    |         |                              |                             |    |
| 0                           | 1 2 7 8 | 3 9 10 11 12                 | 2 13 14                     | 50 |



Na prática, define-se o erro máximo tolerado.



Por exemplo: se for definido um nível de significância (probabilidade de cometer EI) de 5%, a decisão tomada aceitará um erro tipo I de no máximo 5% e a confiança (grau de confiança) desta decisão será de 95%.

No exemplo dos portadores de Alzheimer, quais seriam os limites de aceitação da hipótese de nulidade ao nível de significância de 5%?



## **Exemplo:** Nível de significância $\alpha = 5\%$

#### Admitir que a distribuição amostral das médias é Gaussiana



$$5\% = 0.05$$
  
 $0.05/2 = 0.025$ 





No exemplo dos portadores de Alzheimer, quais seriam os limites de aceitação da hipótese de nulidade ao nível de significância de 5%?

$$5\% = 0.05$$
  
 $0.05/2 = 0.025$ 

Na tabela padronizada, para A = 0.025, tem-se z = -1.96

$$z = \frac{x - \mu}{\sigma}$$
  $\mu = n.p = 50.0, 2 = 10$   $\sigma = \sqrt{n.p.q} = 2,8284$ 

$$q = 1-p = 1-0,2 = 0,8$$



$$5\% = 0.05$$
  
 $0.05/2 = 0.025$ 

Na tabela, para A = 0.025, tem-se z = -1.96

$$z = \frac{x - \mu}{\sigma}$$

$$\pm 1,96 = \frac{x - 10}{2,8284}$$

$$\mu = \text{n.p} = 50.0, 2 = 10$$

$$\sigma = \sqrt{\text{n.p.q}} = 2,8284$$

$$4,46 \le x \le 15,54$$

$$5\% = 0.05$$
  
 $0.05/2 = 0.025$ 

Na tabela, para A = 0.025, tem-se z = -1.96

$$z = \frac{x - \mu}{\sigma}$$

$$\pm 1,96 = \frac{x - 10}{2,8284}$$

$$\mu = \text{n.p} = 50.0, 2 = 10$$

$$\sigma = \sqrt{\text{n.p.q}} = 2,8284$$

$$4,46 \le x \le 15,54$$

# 16 ≠ 10, rejeito H<sub>0</sub>

#### Conclusão:

Para nível de significância de 5%,  $H_o$  deve ser aceita para  $5 \le x \le 15$ 



# Rosimara Salgado

Professora Coordenadora do NEaD

rosimara@inatel.br



