### Announcements



- Back to the grind: WebWorK due on Wednesday
- I should be able to hand tests back on Wednesday or Friday
- No lab this week!
  - If you have a lab to make-up, this is the week to do it!
  - Email me with what lab you want to be making up please!
- Poll: rembold-class.ddns.net

### In the Sky



- Moon in waning gibbous
- Jupiter and Mercury hanging out together just after sunset
  - Should be able to see them both in the same field-of-view when using binoculars
- Saturn and Mars still up through much of the night
- Iridium Flare: Oct 30 at 6:00:36pm towards the West (mag=-7)
- ISS crossings:
  - Oct 30 at 7:07am (mag=-3.3)
  - Oct 31 at 6:17am (mag=-3.8)
- 0 sunspots on the Sun currently!

### Review Question!



It takes energy thousands of years to travel from the interior of the Sun to Earth because:

- A. The Earth is a really long way away
- B. Neutrino's interfere with the gamma rays, slowing them down
- C. Lots of collisions with charged particles slow and scatter the gamma rays
- D. Neutrino's carry the bulk of the energy and travel much slower than light

### Review Question!



It takes energy thousands of years to travel from the interior of the Sun to Earth because:

- A. The Earth is a really long way away
- B. Neutrino's interfere with the gamma rays, slowing them down
- C. Lots of collisions with charged particles slow and scatter the gamma rays
- D. Neutrino's carry the bulk of the energy and travel much slower than light



# What can we directly observe?



- The light from the stars tells us:
  - Their location in the sky
  - The intensity of their light
  - Their spectrum
- From these, we can determine:
  - Surface Temperature
  - Motion
  - Distance (sometimes)
  - Size (in a way)
  - Power output (Luminosity)
  - Mass (also sometimes)

# A note on Angular Size



- Recall that the angular size of the Sun is about 0.5°
  - Angular sizes of stars much, much smaller
  - Generally smaller than can be resolved with any telescope
- Main exception: Betelgeuse
  - HST measured an angular size of 0.07 arcseconds
  - Equal to 20 millionth of a degree



## Truly Stellar Spectra!





- Stars come in a wide variety of colors
- These colors correspond to surface temperatures of  $\approx 3000\,\mathrm{K}$  to  $50\,000\,\mathrm{K}$ 
  - Wien's Law
  - Stefan-Boltzmann Law

## Just Not My Type



- Stars were originally classified by the strength of their Hydrogen lines
- The strongest were type A, all the way down to Type O



### Scrambling the System



- As more star spectra observed, H lines were inadequate
- Annie Cannon
  - Classified some 350,000 stars (yeesh)
  - A new order based on Balmer lines, not alphabetical this time
  - Some classes overlapped and could be eliminated
- Mnenomics
  - Oh, Be A Fine Girl/Guy, Kiss Me
  - Only Boring Astronomers Find Gratification Knowing Mnemonics



# It is Apparent!



- Apparent Brightness is the intensity of radiation from the star
  - As measured from the Earth's surface
  - Units of Watts/m<sup>2</sup>
- For the Sun  $B \approx 1400 \, \text{W/m}^2$
- This is much, much less for other stars
- The traditional unit of apparent brightness is apparent magnitude



# The Apparent Magnitude



- System introduced around 150 BC
- Hipparchus divided stars into six groups:
  - Brightest were "1st magnitude"
  - Faintest (that he could see) were "6th magnitude"
- These days we are much more precise:
  - 1st magnitude about 2.5 times brighter than 2nd
  - 2nd is about 2.5 times brighter than 3rd
  - Happens with a logarithmic scale!
    - A factor of 100 in brightness is a difference of 5 in magnitude

$$m = -2.5 \log \left( \frac{B_{obj}}{B_{Vega}} \right)$$

### Making Sense of Magnitudes



- Smaller numbers mean brighter stars
- Numbers can be negative
- Smaller differences in magnitude correspond to larger differences in brightness



You are all so bright! October 29, 2018 Jed Rembold 12

### Magnitude Example



### Example

I measure a nearby star to be 500 times brighter than the star Vega. What is the apparent magnitude of said star?

## Flipping the Tables



- What if you want to go the other direction?
- Know two magnitudes and want to figure out how much brighter one object is than the other

$$\frac{B_1}{B_2} = 10^{0.4 \times (m_2 - m_1)}$$

### Reverse Example



### Example

One of the Iridium Flares for tomorrow is to have an apparent magnitude of -7.0. How many times dimmer is this than the brightness of the full moon?

### Luminosity



- We measure the apparent brightness B
- Brightness falls off with distance:

$$B = \frac{L}{4\pi d^2}$$

Thus the luminosity is

$$L = 4\pi d^2 \times B$$

- Range of stellar luminosities is large:
  - $L_{Sun} = 4 \times 10^{26} \, \text{W}$
  - Dimmest at 0.000001L<sub>Sun</sub>
  - Brightest at 100000L<sub>Sun</sub>



### Refresher



### We wanted to be able to find:

- Surface Temperature
- Motion
- Distance (sometimes)
- Size (in a way)
- Power output (Luminosity)
- Mass (also sometimes)

### Refresher



#### We wanted to be able to find:

- Surface Temperature
- Motion
- Distance (sometimes)
- Size (in a way)
- Power output (Luminosity)
- Mass (also sometimes)

### Refresher



### We wanted to be able to find:

- Surface Temperature
- Motion
- Distance (sometimes)
- Size (in a way)
- Power output (Luminosity)
- Mass (also sometimes)