第6章 分子结构和晶体结构

第 6 章习题 1、2、5 、7、9 、10 、11

1. 解:

化合物名称	中心原子杂化轨道类 型	分子空间构型	分子偶极矩
① SiH4	sp ³ 等性杂化	正四面体	m=0
② BBr ₃	sp ² 等性杂化	平面三角形	m=0
③ BeH ₂	sp 等性杂化	直线型	m=0
④ PH ₃	sp ³ 不等性杂化	三角锥形	m≠0
⑤ H ₂ S	sp ³ 不等性杂化	V 型	m≠0

- 2. 答: 因为 H₂O 中 O 是 sp³ 不等性杂化, BeCl₂ 中 Be 是 sp 等性杂化。
- 5. \mathbf{M} : ① \mathbf{H}_2 分子间; (非极性分子间)只有色散力
 - ② H₂O 分子间; (极性分子间)取向力,诱导力,色散力,氢键
 - ③ H₂O-O₂分子间;诱导力和色散力
 - ④ HCl-H₂O 分子间;色散力,取向力,诱导力
 - ⑤ CH₃Cl 分子间。取向力, 诱导力, 色散力
- 7. 解: ① MgO>NaCl ($Z_+ \bullet Z_-$ MgO>NaCl)
 - ② CaO>BaO $(r_+ \bullet r_- BaO>CaO)$
 - ③ SiC>SiH₄ (SiC 原子晶体 SiH₄ 分子晶体)
 - ④ NH₃>PH₃ (NH₃ 分子间氢键 PH₃ 无分子间氢键)
- 9. 解: ① 因为从 CH₄、CCl₄ 到 CI₄ 分子量增大,色散力逐渐增大,分子间作用力增大;所以室温下 CH₄ 为气体, CCl₄ 为液体;而 CI₄ 为固体。② 因为 H₂O 分子间存在氢键,所以其沸点高于 H₂S; CH₄ 和 SiH₄ 分子间都不存在氢键,只有正常分子间作用力。SiH₄ 因其分子量大,分子间色散力强,所以其沸点高于 CH₄。
- 10. 解:熔点由高到低的顺序为:
- ② SiO_2 ; > ④ CaO; > ① KCl; >③ HCl

晶体类型: ②原子晶体: ④离子晶体: ①离子晶体: ③分子晶体。

晶格结点上微粒间作用力: ②共价键; ④离子键; ①离子键; ③分子间力。

11. 解: 乙醇和二甲醚为同分异构体,同属极性分子,但乙醇分子间因存在氢键而使其沸点高于二甲醚。