An introduction to architectural modeling

Software Engineering
Jose María Álvarez Rodríguez

First questions

Notion of architecture (Oxford dictionary)

1

The art or practice of designing and constructing buildings.

2

The style in which a building is designed and constructed, especially with regard to a specific period, place, or culture.

3

The complex or carefully designed structure of something.

Domains:

- Civil architecture
- Military architecture
- Hydraulic architecture
- Naval architecture
- Sacred architecture
- ..

Software Engineering-Systems and Software architecture

Architecture and architects

What is the role of an architect?

Stakeholders Design an infrastructure · Person, group or entity Needs User, client or affected by Legal framework • Security, economical, etc. restrictions Art, Science and Engineering Holistic/complete view Use cases All elements Exploitation • All relationships Enjoy All interactions

Definition of software architecture

"<system> fundamental concepts or properties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolution."

Source: ISO/IEC/IEEE 42010:2011 Systems and software engineering —Architecture description

A complex software system: Smart cars

Who are the stakeholders?

Which are their goals?

How goals are reached?

On-going example: Github

Learn more: https://github.com/

A software architecture as a System of Systems

System of Systems (SoS)

A system of systems (SoS) brings together a set of systems for a task that none of the systems can accomplish on its own. Each constituent system keeps its own management, goals, and resources while coordinating within the SoS and adapting to meet SoS goals.

Fuente: ISO 15288:2015

- Data management
 Representation, storage and
 access.
 - Social network
 Relationships
- Repository management
 Git protocl
- Software distribution Release management

- Authentication
 User management
- Graphical user interface
 Depending on functionality
 and end-user

System Life Cycle Processes

Agreement Processes

Acquisition Process (Clause 6.1.1)

Supply Process (Clause 6.1.2)

Organizational Project-Enabling Processes

Life Cycle Model Management Process (Clause 6.2.1)

Infrastructure
Management Process
(Clause 6.2.2)

Process (Clause 6.2.3)

Technical Management Processes

Project Planning Process (Clause 6.3.1)

Project Assessment and Control Process (Clause 6.3.2)

Decisión Management Process (Clause 6.3.3)

Risk Management Process (Clause 6.3.4

Configuration
Management Process
(Clause 6.3.5)

Information Management Process (Clause 6.3.6)

Measurement Process (Clause 6.3.7)

Technical Processes

Bussiness or Mission Analysis Process (Clause 6.4.1)

Stakeholder Needs & Requirements Definition Process (Clause 6.4.2)

System Requirements
Definition Process
(Clause 6.4.3)

Architecture Definition Process (Clause 6.4.4)

Design Definition Process (Clause 6.4.5)

System Analysis Process (Clause 6.4.6)

Implentation Process (Clause 6.4.7)

Principles of a software architecture

Business

- Maximize benefits
- Corporate commitment and business continuity
- Responsibility, law and ethics

Technical

- Requirements and change management
- Interoperability, performance, etc

Data management

- Shared and accessible asset
- Common vocabulary
- Security

Applications

- Technological-neutral approach
- Ease to use

Definitions

Any software system has an architecture even if it is unknown or not documented...

See original definition in [1].

Description of a software architecture

Stakeholder

A stakeholder in a software architecture is a person, group, or entity with an interest in or concerns about the realization of the architecture.

View

A view is a representation of one or more structural aspects of an architecture that illustrates how the architecture addresses one or more concerns held by one or more of its stakeholders

Model

An abstract representation of a process, activity o physical reality.

Concern

A concern about an architecture is a requirement, an objective, an intention, or an aspiration a stakeholder has for that architecture.

Viewpoint

A viewpoint is a collection of patterns, templates, and conventions for constructing one type of view.

See original definitions in [1].

Description of a software architecture

See original model in [1].

Documenting a software architecture: the 4+1 view model by Krutchen [2]

See original document in [2].

On-going example: Github scenarios

The 4+1 view model by Krutchen: logical view

On-going example: a class diagram for Github

On-going example: a component diagram for Github

The 4+1 view model by Krutchen: process view

On-going example: a sequence diagram for Github

The 4+1 view model by Krutchen: physical view

On-going example: a deployment diagram for Github

The 4+1 view model by Krutchen: development view

The 4+1 view model by Krutchen: summary

	Logical (conceptual)	Process (runtime)	Development (implementation)	Physical (deployment)
Stakholders	Information model	Concurrency, synchronization Interaction	Software organization in the development environment	Mapping software- hardware
Concern	End-users	System integrators	Developers	IT engineers
Requirements	Functional	Performance Availability Reliability Concurrency Distribution Security	Software management Reuse Portability Maintainability Platform and technological restrictions	Performance Availability Reliability Scalability Topology Communications
Notation	Class and/or component diagram in UML	Sequence diagram in UML	Component and/or package diagram in UML	Deployment diagram in UML

Other view models: Rozanski & Woods [1]

Main risks of a multiple view model

Wrong views

- It is necessary to make a decision of which view are more adequate
- Dependencies among the different system concerns
- In general, a good architecture depends on experience and skills

Fragmentation

- Kruchten 4-1 and Rozanski-Woods 6
- A view → creation and maintenance costs (consistency)
- Join view for the shake of simplicity

Inconsistency

- All views must be consistent, they represent the same system
- Maintenance costs to keep consistency
 - An scenario → process → components → classes
- Establish the proper dependencies to calculate the impact of a change.

Description of a software architecture

Some questions to think about...

Known-problems in a software architecture

Software architecture re-definition

A good enough software architecture...

It shall meet the needs of the stakeholders.

It shall communicate the relevant concerns to the proper stakeholders.

All functional and non-functional requirements cannot be specified in just one iteration.

A good enough software architecture...

Cohesion

A measure of the strength of association of the elements within a module. (ISO/IEC/IEEE 24765)

-Intra-module functionality

Preferred value: high

Coupling

A measure of the interdependence among modules in a computer program. (ISO/IEC/IEEE 24765)

-Inter-module dependencies

Preferred value: low

First questions: any answer?

Task

Objective

- •Make a description of an existing software system
- E.g.: Twitter, Instagram, Linkedin, etc.

Method

- Work in groups
- 2-3 people
- 20 minutes

Outcome

• Use case, class and component diagrams

Evaluation

- Presentation and discussion
- 2 groups (volunteers?)
- 10 minutes

1-minute quizz questions (Aulaglobal)

Q1:A definition of "software architecture"...

- a) Architecture is defined by the recommended practice as the fundamental organization of a system, embodied in its components, their relationships to each other and the environment, and the principles governing its design and evolution.
- b) Architecture is defined by the recommended practice as the functional organization of a system.
- c) Architecture is defined by the recommended practice as the fundamental organization of a system.
- d) None of the answers is correct.

Q2: In the 4+1 model, the development view...

- a) Represents the system from the developer perspective with a class diagram.
- b) Represents the system from the developer perspective with a component or package diagram.
- c) Represents the interactions between system components through a component diagram.
- d) a) and b) are correct.

Q3: Which is an issue of having multiple views of an system?

- a) Fragmentation
- b) Inconsistencies
- c) Too much views
- d) All of them are problems.

"<system> fundamental concepts or properties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolution." Source: ISO/IEC/IEEE 42010-2011 Systems and software engineering — Architecture description High-level view of an infrastructure Subsystems and components Intractions (Dynamic) Intractions (Dynamic) Intractions (Dynamic) Reactions (Dynamic) Stakeholders Provision Products and services to a domain Stakeholders Complexity Management

Software Engineering-Systems and Software architecture

Summary

References and specific resources

- [1] N. Rozanski and E. Woods, *Software systems architecture: working with stakeholders using viewpoints and perspectives*, 2nd ed. Upper Saddle River, NJ: Addison-Wesley, 2012.
- [2] P. B. Kruchten, "The 4+1 View Model of architecture," *IEEE Softw.*, vol. 12, no. 6, pp. 42–50, Nov. 1995.

- -Section "6.1 Architectural design decisions" from "Software Engineering 10th Edition", I. Sommerville, 2016.
- -Section "6.2 Architectural views" from "Software Engineering 10th Edition", I. Sommerville, 2016.