

DBMS 01 | Introduction Of RDBMS | CS & IT | GATE 2024 FastTrack Batch

Generated on October 19, 2024

Summary

Al Notes	Al Slides	Text Notes	Screenshots
₩ 0		₽ 0	22

▷ 17:39

▷ 23:23

▷ 31:40

▷ 35:04

Relation Schema and Instance

- · A₁, A₂, ..., An are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema

Example:

instructor = (ID, name, dept_name, salary)

Formally, given sets D₁, D₂, D_n a relation r is a subset of

$$D_1 \times D_2 \times ... \times D_n$$

Thus, a relation is a set of n-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$

- The current values (relation instance) of a relation are specified by a table.
- An element t of r is a tuple, represented by a row in a table.

Relation Schema and Instance

🖳 🗠 父 🔲 🖃

- A relation schema R, denoted by $R(A_1, A_2, A_n)$, is made up of a relation name R, a list of attributes, A_1, A_2, A_n & Each attribute A_i domain D. D is called the domain of A_i and is denoted by $dom(A_i)$.
- The <u>degree</u> (or arity) of a relation is the number of attributes n of its relation schema.
- STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)
- A relation of degree seven, which stores information about university students, would contain seven attributes describing each student as follows:

Using the data type of each attribute, the definition is sometimes written as:

DENT(Name: string, Ssn: string, Home_phone: string, Address: string, Office_phone: string, Age: integer, Gpa: real)

▷ 54:25

▷ 1:01:31

Why this model is called Relational Model..

图 🏲 🎖 🔲 🖹

- This product of cardinalities of all domains represents the total number of possible instances or tuples that can ever exist in any relation state r(R).
- Out Of all these possible combinations, a relation state at a given time-the current relation state-reflects only the valid tuples that represent a particular state of the real world.
- In general, as the state of the real world changes, so does the relation state, by being transformed into another relation state.

9 4

▷ 1:04:11

D 1:13:28

▷ 1:21:58

▷ 1:23:55

▷ 1:26:35

▷ 1:30:07

▷ 1:33:33

▷ 1:36:04

▷ 2:08:25

▷ 2:16:12

▷ 2:20:37

▷ 2:28:21