FinFET

Reza Molavi
Dept. of ECE
University of British Columbia
reza@ece.ubc.ca

Slides Courtesy: Dr. Hormoz Djahanshahi (Microchip)

Evolution of MOSFET devices

- Evolution of MOSFET: From Planar MOSFET to Tri-Gate FET/FinFET, to Nanowires and Vertically Stacked FinFETs (VFET)

Motivation

· I-V relation of the MOSFET in Subthreshold is exponential

$$I_{\text{D(sub-th)}} \, \cong \, \, I_{\text{D0}}\!\!\left(\!\frac{W}{L}\!\right) \! e^{(\text{qV}_{\text{eff}}/\text{nkT})}$$

$$V_{eff} = V_{GS} - V_{t}$$

- · We want a steep slope for I-V curve in sub-threshold
 - i.e. a large ION/IOFF ratio
- . What determines the subthreshold slope is 1/n
 - n = (Cox+Cj0)/Cox ≈ 1.5 ... (in Planar MOSFET)
- · Planar channel is not completely under Gate's control
 - o Smaller Cj0 means smaller n and steeper slope
 - Better electrostatic control on the channel, higher ION/IOFF
- FinFET geometry reduces Cj0 relative to Cox, hence reduces n
 - Improves subthreshold slope: higher ION/IOFF ratio
 - o Reduces Body Effect
 - Modulation of Vth by Bulk voltage
 - o Reduces DIBL (Drain-Induced Barrier Lowering)
 - Modulation (reduction) of Vth at high VDS

Courtesy of Tony C. Carusone, Univ. of Toronto, CMC Workshop, Toronto, Canada, December 2018

Planar MOSFET

FinFET

Planar vs. FinFET

 Solutions for better Electrostatic control of MOSFET channel

FinFET Evolution

- FinFET Evolution - GAA (Gate All-Around): Horizontal Nanowire/Nanosheet, Stacked Nanowire/Nanosheet, Vertical Nanowire

- GAA: Superior electrostatic control over channel
 - Lower DIBL (ΔV_{TH}/ΔV_{DS} ≤ 80 mV/V)
 - Improved Subthreshold Swing (SS)
 - Lower Ips,off

.

- GEOMOD selects the gate-channel geometry
- BULKMOD selects the substrate (SOI or Bulk)
- ASYMMOD enables an asymmetric I-V

Interconnect Challenge

- Interconnect Scaling: The struggle to keep scaling BEOL, and what we can do next [IEDM*16 Tutorial 1, by GF]
 - Scaling the metallization, a.k.a. Back-End Of Line BEOL, limiting the circuit performance
 - o Interconnect RC dominates vs. transistor or gate delay ... (old prediction comes true)
 - Physics limitations: Narrower wire has more R; tightly spaced/stacked wires have more C
 - o What we do to improve C tends to degrade Reliability; what we do to improve R tends to worsen EM

Source: Gordon Moore, Chairman Emeritus, Intel Corp.

- FinFET's 2.5D structure creates/augments many parasitic capacitance components
 - o e.g. ~2-3x gate capacitance and output capacitance compared to planar

Fabrication Technology

- Patterning Technology Towards N5

[IEDM'16 Short Course: Technology Options at 5 nm Node, Pt. 1, Tokyo Electron]

- 1931: Existing Immersion Lithography (enhanced in water)
 - $\rightarrow \lambda = 193$ nm used since 0.13 µm node
 - → 193 i (immersion) since ~45 nm node
 - → Double- or Quad-Patterning since ~22nm
- EUV: Ultraviolet w/ Extreme (short) wavelength
 - $\rightarrow \lambda = 13.5 \, \text{nm}$, single patterning
 - → Multi-patterning and layout coloring goes away

- Dimensional Scaling under pressure since ~22nm node
- · EUV lithography replacing 193i Self-Aligned Double/Quad Patterning
 - → 7nm production with EUV in 2019
 - TSMC and Samsung
 - → 5nm is expected to be in early production in 2020
 - → "3nm" projected to use EUV Double patterning

7-nm Technology

- 7nm Technology debuted in 2 "Late-News" papers from TSMC and GlobalFoundries at IEDM'16 (Dec. 2016)
- IEDM'16 Paper 2.6: A 7nm CMOS Platform Technology Featuring 4th Generation FinFET Transistors ..., by TSMC (32 co-authors)
 - 12-level metal stack: m0-m4 (1X), m5-m9 (1.9X), m10+ (thick metal)
 - <u>EUV</u> lithography "under development" at TSMC
 - 7N process avaiable in 2017 still using 193i lithograhpy
 - 7N+ to use EUV later in 2019
 - Comparison made vs TSMC's 16nm node 16FF+:
 - 40% faster –or– 65% lower power
 - Transistor mismatch improved by 25% (NMOS) and 35% (PMOS)
 - Reliability parameters very similar to 16nm

FinFET Evolution

→ FinFET scaling

- Narrower, taller, and fewer fins
- Improved electrostatics demands fin width reduction
- Note physical channel length is now bigger than the nominal/node's marketing name!

- Two taller narrower fins in 14nm are equivalent to 3 fins in older 22nm >>
- Fin pitch reduction further reduces area (e.g. 42 nm pitch in 14nm node)

	22nm	14/16nm	10nm	7nm	
Channel length	25	22	19	16	L/W ratio -2.5
Fin width	10	9	8	7	
Fin height	34	42	~50	50+	
Aspect ratio	3:1	5 1	6:1	7:1	
				-	

22 nm Process

14 nm Process

Idea Courtesy of Dr. Djahanshahi (Microchip)

THE UNIVERSITY OF BRITISH COLUMBIA

FinFET Advantages - I

- FinFET Scaling: Smaller Fin pitch and metal pitch, fewer but taller Fins

Y-Scaling: Cell Height Scaling - "Fin De-population with Taller Fins"

- FinFET Advantages

- FinFET improves <u>Subthreshold Swing/Slope</u> (SS) vs the planar FET, thanks to the better electrostatic control over the channel
- For the same reason, FinFET has much less Body Effect, higher output impedance rds, and higher intrinsic gain (gm*rds)
- Gate-All-Around (GAA) or Nanowire has the best electrostatic
- Si Nanowire: Reaches the limit of MOSFET SS → End of FinFET scaling
- Need new transistor devices to lower SS beyond MOSFET limit (e.g. TFET, or Negative-Cgate FET) – more on this later

FinFET Advantages - II

Channel material and stress engineering for advanced FinFETs

- Simple MOS scaling is not enough, e.g. increases loff
- Explore FinFET stress engineering & high-mobility channel materials
 - Mechanical strain ("good stress") increases the channel mobility of the MOS transistor

$$I_{on} \approx \frac{1}{2} \mu C_{OX} \frac{W}{L} (V_{GS} - V_T)^2$$

- Compared to planar, in FinFET: μ_P improves and μ_N degrades due to surface orientations
 - FinFET S/D "stressors" increase the mobility by ~2x
 - Si S/D stressor for NMOS
 - SiGe S/D stressor for PMOS
 - Substrate "stressor": Si on Si_{1-x}Ge_x substrate buffer
 - S/D & substrate stressors help scaling down to 5nm

p-FinFET with SiGe channel stressor has higher mobility and improved reliability (NBTI)

FinFET Problems

- FinFET's Problem: Self-Heating Effect (SH or SHE): Joules heat generation vs. heat dissipation
 - Issue in FinFET: More power dissipation per volume in Fins and less dissipation path to substrate
 - Thermal conduction and heat transfer from FET channel to Si substrate worsens as we move from planar to FinFET to Gate-All-Around Nanowire (GAA NW)
 - o SH complicates reliability analysis, i.e. extrapolation of other degradation mechanisms to locally heated operating condition

- · Foundry's spice-like models (e.g. TSMC, GF) support SHE flow:
 - 1st simulation run creates AT for every individual transistor
 - If ∆T ≤ 5°C or so, we can igonre the SHE
 - Else,
 \(\Delta \) T from SHE can be factored in with a 2nd simulation run
- SHE tips for design (choice of transistor finger & Fins) and layout (add heat sink structures)
 - o Design
 - ✓ Lower current per fin
 - √ Fewer # of fins per OD
 - Fewer # of fingers per OD
 - ✓ Longer channel length

- Layout Use heat sinks:
 - ✓ Wide Guard Rings: "cold OD" w/ dummy MOS on top.
 - ✓ Metal stacks at D/S
 - ✓ Dummy metal gates inserted within Active/hot OD
 - ✓ Resistors in proximity to hot FinFET (e.g. for CML)