UNIVERSITY NAME (IN BLOCK CAPITALS)

Weather Classification

by Junjie Zhang

A thesis submitted in partial fulfillment for the degree of Master $% \left(1\right) =\left(1\right) \left(1\right)$

in the Chunhua Shen School of Computer Science

October 2015

Declaration of Authorship

I, Junjie Zhang, declare that this thesis titled, 'Weather Classification' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signea:			
Date:			

Abstract

Scene classification is an important field in computer vision. For similar weather condition, there are some obstacles for extracting features from outdoor images. In this paper, we present a novel approach to classify cloudy and sunny weather. Inspired by recent study of deep multi-layer neural network and spatial pyramid polling, generate a model based on imagenet dataset. Starting with parameters trained from more than 1 million images, we fine-tune the parameters. Experiment demonstrates that our classifier can achieve the state of the art accuracy.

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor...

Contents

De	aration of Authorship	i
Ac	nowledgements	iii
Lis	of Figures	v
Lis	of Tables	\mathbf{vi}
Ab	reviations	vii
Ph	ical Constants	viii
$\mathbf{S}\mathbf{y}$	bols	ix
1	troduction 1 Overview 2 Statistical Pattern Recognization 3 Artificial Neural Networks 4 Weather Classification	1 1 2 2 2
2	troduction 1 Basics of Artificial Neural Networks	4 4 5 5 5
A	ppendix Title Here	7
Bil	${f ography}$	8

List of Figures

ດ 1	D'	perceptron
フェ	Luagram of 9	nercentron
<i>-</i>	Diagram or c	DCICCDUIOII

List of Tables

Abbreviations

LAH List Abbreviations Here

Physical Constants

Speed of Light $c = 2.997 924 58 \times 10^8 \text{ ms}^{-8} \text{ (exact)}$

Symbols

a distance m

P power W (Js⁻¹)

 ω angular frequency rads⁻¹

For/Dedicated to/To my...

Chapter 1

Introduction

1.1 Overview

Computer is one of the most significant inventions in history. It provides huge power in data processing field, like scientific computation. Also, computer system can aid human being in daily life, for example driverless vehicles. However, human brain still has compelling advantage in some fields, like identifying our keys in our pocket by feel. The complex processes of taking in raw data and taking action based on the pattern are regarded as pattern recognition. Pattern recognition has been important for people daily life for a long period and human brain has developed an advanced neural and cognitive system for such tasks.

Weather classification is one of the most important pattern recognition tasks which relates our work and lives. There are several major kinds of weather conditions, like sunny, cloudy, rainy. And people can classify them easily through eyes. However, it is not a easy job for machines, especially in computer vision literacy.

In this thesis, I describe an approach to this problem of weather classification based upon the new big trend in machine learning, and more precisely, deep learning. It differs with feature detectors method that extracts features manually and training a model to do classification.

Compared to shadow learning which includes decision trees, SVM and naive bayes, deep learning passes input data through several non-linearities functions to generate features and does classification based on the features. It generates a mapping and finds a optimist solution.

1.2 Statistical Pattern Recognization

In the statistical approach, the pattern is represented in terms of d dimensional feature vector and each element of the vector describes some subjects of the example. In brief, three components are essential to do statistical pattern recognization. First is a representation of the model. Second is an objective function used to evaluating the accuracy of the model. Third is an optimization method for learning a model with minimum errors.

1.3 Artificial Neural Networks

Artificial neural networks (ANNs) were proposed in the mid-20th century. The term is inspired by the structure of neural networks in the brain. It is one of the most successful statistical learning models used to approximate functions. Learning with ANNs yields an effective learning paradigm and has achieved cutting-edge performance in computer vision.

The single-layer perceptron has shown great success for a simple model. For increasing complex models and applications, multi-layer perceptron has exhibited the power of features learning. With hardware developing At the same time, the demanding of more efficient optimizing and model evoluation methods is needed for BIG DATA.

Recent development in ANNs approaches have giantly advanced the performance of state-of-the-art visual recognition systems. With implementing deep convolutional neural networks, it achieves top accuracy in ImageNet Challenge. The model has been used in related fields and succeeds in competition.

1.4 Weather Classification

Weather classification is an important job in daily life. In this thesis, we are focused on two class weather conditions, sunny and cloudy.

There are some obstacles in front of weather classification. First, because inputting pixels are independent and high dimension, say a 500x500 RPG image means 750000 pixels, computation is huge. Second, some simple middle level image characters are difficult to machines, like light, shading, sun shine. It is still not easy to detect these characters with high accuracy. Thirdly, there are no decisive features, for example brightness and

lightness, to classify scene. For example, sun shine can be both found in sunny and cloudy weather. Last but not least, outdoor images are various background.

Chapter 2

Introduction

2.1 Basics of Artificial Neural Networks

Artificial neurons were introduced as information processing devices more than fifty years ago[?]. Following the early work, perceptrons were deployed in layers to do pattern recognition job. A lot of resource was invested in researching capability of learning perceptrons theoretically and experimentally. As shown in Figure 2.1, a perceptron computes a weighted summation of its n inputs and then thresholds the result to give a binary output y. We can treat n input as an vector with n elements, and represent the vector as either class A(for output +1) or class B(for output -1).

Each output is updated according to the equation:

$$y_i = g(h_i) = g\left(\sum_j w_{ij} x_j\right) \tag{2.1}$$

FIGURE 2.1: Diagram of a perceptron

where y_i is the *i*th output, h_i is the net input into node *i*, The weight w_{ij} connects the *i*th output and the *j*th input, and x_j is the *j*th input. The function g(h) is the activation function and

2.2 Statistical Pattern Recognization

In the statistical approach, the pattern is represented in terms of d dimensional feature vector and each element of the vector describes some subjects of the example. In brief, three components are essential to do statistical pattern recognization. First is a representation of the model. Second is an objective function used to evaluating the accuracy of the model. Third is an optimization method for learning a model with minimum errors.

2.3 Artificial Neural Networks

Artificial neural networks (ANNs) were proposed in the mid-20th century. The term is inspired by the structure of neural networks in the brain. It is one of the most successful statistical learning models used to approximate functions. Learning with ANNs yields an effective learning paradigm and has achieved cutting-edge performance in computer vision.

The single-layer perceptron has shown great success for a simple model. For increasing complex models and applications, multi-layer perceptron has exhibited the power of features learning. With hardware developing At the same time, the demanding of more efficient optimizing and model evoluation methods is needed for BIG DATA.

Recent development in ANNs approaches have giantly advanced the performance of state-of-the-art visual recognition systems. With implementing deep convolutional neural networks, it achieves top accuracy in ImageNet Challenge. The model has been used in related fields and succeeds in competition.

2.4 Weather Classification

Weather classification is an important job in daily life. In this thesis, we are focused on two class weather conditions, sunny and cloudy.

There are some obstacles in front of weather classification. First, because inputting pixels are independent and high dimension, say a 500x500 RPG image means 750000 pixels,

computation is huge. Second, some simple middle level image characters are difficult to machines, like light, shading, sun shine. It is still not easy to detect these characters with high accuracy. Thirdly, there are no decisive features, for example brightness and lightness, to classify scene. For example, sun shine can be both found in sunny and cloudy weather. Last but not least, outdoor images are various background.

Appendix A

Appendix Title Here

Write your Appendix content here.

Bibliography

- [1] A. S. Arnold, J. S. Wilson, and M. G. Boshier. A simple extended-cavity diode laser. Review of Scientific Instruments, 69(3):1236–1239, March 1998.
- [2] C. J. Hawthorn, K. P. Weber, and R. E. Scholten. Littrow configuration tunable external cavity diode laser with fixed direction output beam. *Review of Scientific Instruments*, 72(12):4477–4479, December 2001.
- [3] C. E. Wieman and L. Hollberg. Using diode lasers for atomic physics. *Review of Scientific Instruments*, 62(1):1–20, January 1991.
- [4] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013.