Rev.A01

66-Channel GPS Module with MTK Chipset

GP3906-TLP

Low power consumption version

www.adh-tech.com.tw sales@a

sales@adh-tech.com.tw

Rev.A01

History				
Date	Rev.	Description		
2014/06/20	A00	First Release		
2014/07/02	A01	Pin configuration and definition corrected		

Rev.A01

Description

The GP3906-TLP is a POT (Patch on Top) GPS module which is special designed for ultra low power consumption purpose environment. It is a GPS receiver providing a solution that high position and speed accuracy performances as well as high sensitivity and tracking capabilities in urban conditions. The GPS chipsets inside the module are designed by **MediaTek Inc.**, which is the world's leading digital media solution provider and largest fab-less IC company in Taiwan. The module can support up to **66 channels**. The GPS solution enables small form factor devices. They deliver major advancements in GPS performances, accuracy, integration, computing power and flexibility. They are designed to simplify the embedded system integration process.

Features

- Based on MediaTek Single Chip Architecture (MT3339).
- ARM7 based application processor
- High sensitivity: -165dBm tracking
- L1 frequency, C/A code
- Channels: 66 acquisition, 22 simultaneous tracking
- Low power consumption: 26mA @ acquisition, 20mA @ tracking
- Cold/Warm/Hot start time: <35/<33/<1 seconds
- Maximum update rate up to 10Hz
- GPS data interface: TTL level serial port
- Support NMEA 0183 standard V3.01 and backward compliance
- Support SBAS WAAS, EGNOS, GAGAN and MSAS
- Dimension: 16mm x 16mm x 6.7mm
- RoHS compliant
- Advanced software features
 - AlwaysLocateTM advanced location awareness technology
 - EPOTM orbit prediction
 - Supports logger function (LOCUS)

Rev.A01

Chipset Characteristics

General			
Chipset	MTK MT3339		
Frequency	L1, 1575.42MHz		
C/A Code	1.023 MHz		
Channels	66 channels		
SBAS	WAAS, EGNOS, GAGAN,MSAS Supported		
Datum	WGS84(Default), Tokyo-M, Tokyo-A, User Define		
CPU	ARM7EJ-S		
Dimensions			
Length/Width/Height	16*16*6.7 mm		
Weight	6 g		
Performance Characteristics			
	Without aid: 3.0m 2D-RMS		
Position Accuracy	< 3m CEP (50%) without SA (horizontal)		
	DGPS (SBAS (WAAS, EGNOS, MSAS)): 2.5m		
Valacity Accuracy	Without aid: 0.1 m/s		
Velocity Accuracy	DGPS (SBAS (WAAS, EGNOS, MSAS)): 0.05m/s		
Accoloration Acquirecy	Without aid: 0.1 m/s ²		
Acceleration Accuracy	DGPS (SBAS (WAAS, EGNOS, MSAS)): 0.05m/s ²		
Timing Accuracy 10 ns RMS			
	Acquisition:-148dBm (Cold Start)		
Sensitivity	Reacquisition: -163dBm		
	Tracking: -165dBm		
Maximum Update Rate	Up to 10Hz(Default: 1Hz)		
Acquisition (Open sky, static	onary)		
Reacquisition Time	Less than 1 second		
Hot start	1.0s (Typical)		
Warm start	33s (Typical)		
Cold start	35s (Typical)		
Dynamic			

Rev.A01

	Nev.Au1			
Altitude	Maximum 18,000m			
Velocity	Maximum 515m/s			
Acceleration	Maximum 4G			
Power				
Input Voltage	DC 3.3V ±5%			
Davier Consumentian @ 2.21/	Acquisition: 30mA Typical			
Power Consumption @ 3.3V	Tracking: 24mA Typical			
VBACKUP	DC 3 to 4.3V			
I/O				
Signal Output	UART, 8 data bits, no parity, 1 stop bit			
Available Baud Rates	4800/9600/38400/57600/115200 bps(Default: 9600)			
	NMEA 0183 v3.01 (Default: GGA,GSA,GSV,RMC,VTG)			
Protocols	MTK NMEA Command			
	Network Assistance Messages			
Data output Interface				
Protocol messages	9600 bps/8/N/1 (Default)			
Outrout former	GGA(1sec),GSA(1sec),RMC(1sec),VTG(1sec),			
Output format	GSV(5sec) (Default)			
Environment				
Operating Temperature	-30 °C to 85 °C			
Storage Temperature	-40 °C to 125 °C			
Operating Humidity	5% to 95% (no condensing)			

Rev.A01

Outline Dimension

Rev.A01

Recommended PCB Layout

Note.

- Do not place any pad, via or high current power line within the area under this module.
- ➤ Place a R=1.2 to 2mm N-PTH hole under this module for the antenna pad.

Rev.A01

Pin Configuration

Pin Definition

Pin	Name	I/O	Description	
1	DC_IN	Р	3.3V ± 5% DC Power Supply Input	
2	NC			
3	GND	I	Ground	
4	VBACKUP	Р	RTC Backup Power Input	
5	3D_FIX	0	3D_Fix Indicator	
6	NC			
7	NC			
8	GND	Р	Ground	
9	Tx	0	Serial data Output	
10	Rx	I	Serial Data Input	
11	GND	Р	Ground	
12	1PPS	0	1 pulse-per-second GPS time reference	
13	RESET	I	System Reset. Low Active	
14	NC			
15	NC			
16	NC			
17	NC			
18	NC			
19	NC			
20	GND	Р	Ground	

Description of I/O Pin

DC_IN (Pin1)

Rev.A01

 $3.3V \pm 5\%$ DC power supply input.

GND (Pin3, Pin8, Pin11,20)

The ground of the module.

VBACKUP (Pin4)

This is the backup power for GPS chipset to keep RTC running when main power is removed. For normal operation, the input voltage must be kept from 2.0V to 4.3V.

3D_FIX (Pin5)

The fix flag output. If not used, keep this pin floating and do not put this pin in high level when the module starting up.

Before 2D Fix

The 3D_FIX should continuously output one-second high-level with one-second low-level signal.

The 3D_FIX should continuously output high-level signal.

Tx (Pin9)

This is the UART transmitter of the module. It outputs the GPS information for application.

Rx (Pin10)

This is the UART receiver of the module. It is used to receive software commands and firmware update.

Rev.A01

1PPS (Pin12)

1 pulse-per-second GPS time reference output

RESET (Pin13)

With a low level, it causes the module to reset. If not used, keep floating.

Rev.A01

NMEA Output Sentence

Table-1 lists each of the NMEA output sentences specifically developed and defined by MTK for use within MTK products

NMEA Output Sentence Table			
Option	Description		
GGA	Time, position and fix type data.		
GSA	GPS receiver operating mode, active satellites		
	used in the position solution, and DOP values.		
GSV	The number of GPS satellites in view satellite ID		
	numbers, elevation, azimuth, and SNR values.		
RMC	Time, date, position, course and speed data.		
	Recommended Minimum Navigation Information.		
VTG	Course and speed information relative to the		
	ground.		

Rev.A01

GGA—Global Positioning System Fixed Data. Time, Position and fix related data for a GPS receiver

Table-2 contains the values for the following example:

\$GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.95,39.9,M,17.8,M,,*65

GGA Data Format Table-2			
Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	064951.000		hhmmss.sss
Latitude	2307.1256		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12016.4438		dddmm.mmmm
E/W Indicator	E		E=east or W=west
Position Fix	1		See Table-3
Indicator			
Satellites Used	8		Range 0 to 14
HDOP	0.95		Horizontal Dilution of
			Precision
MSL Altitude	39.9	meters	Antenna Altitude above/below
			mean-sae-level
Units	М	meters	Units of antenna altitude
Geoidal	17.8	meters	
Separation			
Units	М	meters	Units of geoidal separation
Age of Diff. Corr.		second	Null fields when DGPS is not
			used
Checksum	*65		
<cr> <lf></lf></cr>			End of message termination

Position Fix Indicator		Table-3
Value	Description	
0	Fix not available	
1	GPS fix	
2	Differential GPS fix	

GSA—GNSS DOP and Active Satellites

Table-4 contains the values for the following example: \$GPGSA,A,3,29,21,26,15,18,09,06,10,,,,,2.32,0.95,2.11*00

Rev.A01

GSA Data Format Table-			
Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	Α		See Table-5
Mode 2	3		See Table-6
Satellite Used	29		SV on Channel 1
Satellite Used	21		SV on Channel 2
Satellite Used			SV on Channel 12
PDOP	2.32		Position Dilution of Precision
HDOP	0.95		Horizontal Dilution of Precision
VDOP	2.11		Vertical Dilution of Precision
Checksum	*00		
<cr> <lf></lf></cr>			End of message termination

Mode 1	Table-5
Value	Description
M	Manual—forced to operate in 2D or 3D mode
Α	2D Automatic—allowed to automatically switch 2D/3D

Mode 2		Table-6
Value	Description	
1	Fix not available	
2	2D (<4 SVs used)	
3	3D (≧4 SVs used)	

Rev.A01

GSV—GNSS Satellites in View

Table-7 contains the values for the following example: \$GPGSV,3,1,09,29,36,029,42,21,46,314,43,26,44,020,43,15,21,321,39*7D \$GPGSV,3,2,09,18,26,314,40,09,57,170,44,06,20,229,37,10,26,084,37*77 \$GPGSV,3,3,09,07,,,26*73

GSV Data Format Table-7			
Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of	3		Range 1 to 3
Messages			(Depending on the number of
			satellites tracked, multiple
			messages of GSV data may be
			required.)
Message Number1	1		Range 1 to 3
Satellites in View	09		
Satellite ID	29		Channel 1 (Range 1 to 32)
Elevation	36	degrees	Channel 1 (Maximum 90)
Azimuth	029	degrees	Channel 1 (True, Range 0 to
			359)
SNR (C/No)	42	dBHz	Range 0 to 99,
			(null when not tracking)
Satellite ID	15		Channel 4 (Range 1 to 32)
Elevation	21	degrees	Channel 4 (Maximum 90)
Azimuth	321	degrees	Channel 4 (True, Range 0 to
			359)
SNR (C/No)	39	dBHz	Range 0 to 99,
			(null when not tracking)
Checksum	*7D		
<cr> <lf></lf></cr>			End of message termination

Rev.A01

RMC—Recommended Minimum Navigation Information

Table-8 contains the values for the following example:

\$GPRMC,064951.000,A,2307.1256,N,12016.4438,E,0.03,165.48,260406,,,A*55

RMC Data Format Table-8				
Name	Example	Units	Description	
Message ID	\$GPRMC		RMC protocol header	
UTC Time	064951.000		hhmmss.sss	
Status	A		A=data valid or V=data not	
			valid	
Latitude	2307.1256		ddmm.mmmm	
N/S Indicator	N		N=north or S=south	
Longitude	12016.4438		dddmm.mmmm	
E/W Indicator	E		E=east or W=west	
Speed Over	0.03	knots		
Ground				
Course Over	165.48	degrees	True	
Ground				
Date	260406		ddmmyy	
Magnetic Variation		degrees	E=east or W=west	
			(MTK does not support	
			magnetic declination)	
Mode	Α		A= Autonomous mode	
			D= Differential mode	
			E= Estimated mode	
Checksum	*65			
<cr> <lf></lf></cr>			End of message termination	

Rev.A01

VTG—Course and speed information relative to the ground.

Table-9 contains the values for the following example :

\$GPVTG,165.48,T,,M,0.03,N,0.06,K,A*37

VTG Data Format			Table-9
Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	165.48	degrees	Measured heading
Reference	Т		True
Course		degrees	Measured heading
Reference	М		Magnetic
			(MTK does not support
			magnetic declination.)
Speed	0.03	knots	Measured horizontal speed
Units	N		Knots
Speed	0.06	km/hr	Measured horizontal speed
Units	K		Kilometers per hour
Mode	Α		A= Autonomous mode
			D= Differential mode
			E= Estimated mode
Checksum	*06		
<cr> <lf></lf></cr>			End of message termination