PHY 1120 - Dr. Rowley

Chapter 21 - Circuits

Physics!

Parker Ormonde

As your friendly neighborhood physics major, I decided to calculate this with a few assumptions.

The formula for converting between kinetic energy and thermal energy is 1/2mv^2=mcT

The average human hand weighs about 0.4kg, the average slap has a velocity of 11m/s (25mph), an average rotisserie chicken weighs 1kg (2lbs), has a specific heat capacity of 2720 J/kg*c, and let's assume the chicken has to reach a temperature of 205C (400F) for us to consider it cooked. The chicken will start off frozen, so 0C (32F)

1 average slap would generate a temperature increase of 0.0089 degrees Celsius. It would take 23,034 average slaps to cook the chicken.

To cook the chicken in one slap, you would have to slap it with a velocity of 1665.65 m/s or 3725.95 mph.

Just now Like Reply

EMF

- EMF Electomotive "Force"
 - Electrical action produced by a non-electric source
 - In the case of batteries it is produced by chemical reactions within the battery cel. The size of the EMF is based on the electrochemistry of the cathode, ande, and electrolyte.

Batteries - Structure

Batteries - Series

Batteries - Parallel

Ohm's Law, Revisited

$$V = (I)(R)$$

$$I = \frac{V}{R}$$

$$I = \frac{1.5 \text{ V}}{92 \Omega}$$

$$I = 0.0163 \text{ A}$$

EMF

$$V=(I)(R)$$

$$V = EMF - (I)(r)$$

$$EMF - (I)(r) = (I)(R)$$

$$EMF = (I)(R) + (I)(r)$$

EMF

$$EMF = (I)(R) + (I)(r)$$

$$EMF = (I)(R+r)$$

$$(I) = \frac{EMF}{(R+r)}$$

$$(I) = \frac{1.5 \text{ V}}{(92 \Omega + 3.2 \Omega)} = 0.0158 \text{ A}$$

Series - No path choice

$$R_{eq} = \sum R_{i}$$

$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

Series - No path choice

$$R_{eq} = 10 \Omega + 20 \Omega + 30 \Omega$$

$$R_{eq} = 60 \Omega$$

Parallel - Multiple paths for electricity to flow

$$\frac{1}{R_{eq}} = \sum \frac{1}{R_i}$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Parallel - Multiple paths for electricity to flow

$$\frac{1}{R_{eq}} = \frac{1}{10 \Omega} + \frac{1}{20 \Omega} + \frac{1}{30 \Omega}$$

$$\frac{1}{R_{eq}} = \frac{6}{60 \Omega} + \frac{3}{60 \Omega} + \frac{2}{60 \Omega} = \frac{11}{60 \Omega}$$

$$R_{eq} = \frac{60 \Omega}{11} = 5.45 \Omega$$

$$\frac{1}{R_{eq_1}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{20 \Omega} + \frac{1}{30 \Omega}$$

$$\frac{1}{R_{eq_1}} = \frac{5}{60 \ \Omega}$$

$$R_{eq_1} = 12 \Omega$$

$$R_{eq_2} = 10 \ \Omega + 12 \ \Omega$$

$$R_{eq_2} = 22 \Omega$$

$$R_{eq_1} = 10 \Omega + 20 \Omega$$

$$R_{eq_1} = 30 \Omega$$

$$\frac{1}{R_{eq_2}} = \frac{1}{30 \Omega} + \frac{1}{30 \Omega}$$

$$\frac{1}{R_{eq_2}} = \frac{2}{30 \Omega}$$

$$R_{eq_2} = 15 \Omega$$

Current

- * In Series: $I_{total} = I_1 = I_2 = I_3 = ...$
- * In Parallel: $I_{total} = I_1 + I_2 + I_3 + \dots$

Voltage

* In Series:
$$V_{total} = V_1 + V_2 + V_3 + ...$$

* In Parallel:
$$V_{total} = V_1 = V_2 = V_3 = ...$$

Series

Find Req

$$R_{eq} = 60 \Omega$$

$$I = \frac{V}{R} = \frac{12 \text{ V}}{60 \Omega} = \boxed{0.2 \text{ A}}$$

Series

❖ Find V₁, V₂, V₃

$$\begin{split} V_1 &= I_1 R_1 & V_1 &= I_1 R_1 & V_1 &= \left(0.2A\right) \left(10\Omega\right) & V_1 &= 2 \text{ V} \\ V_2 &= I_2 R_2 & V_2 &= I_2 R_2 & V_2 &= \left(0.2A\right) \left(20\Omega\right) & V_2 &= 4 \text{ V} \\ V_3 &= I_3 R_3 & V_3 &= I_3 R_3 & V_3 &= \left(0.2A\right) \left(30\Omega\right) & V_3 &= 6 \text{ V} \\ \text{but...} & I_{total} &= I_1 &= I_2 &= I_3 &= \dots & \boxed{V_{total}} &= 12 \text{ V} \text{!} \end{split}$$

Parallel

Find Req

$$R_{eq} = 5.45 \Omega$$

$$I = \frac{V}{R} = \frac{12 \text{ V}}{5.45 \Omega} = \boxed{2.20 \text{ A}}$$

Parallel

❖ Find V₁, V₂, V₃

$$V_{total} = V_1 = V_2 = V_3 = \dots$$

so...
$$V_1 = V_2 = V_3 = \boxed{12 \text{ V}}$$

* Find I₁, I₂, I₃

$$I_1 = \frac{V_1}{R_1}$$

$$I_2 = \frac{V_2}{R_2}$$

$$I_3 = \frac{V_3}{R_3}$$

$$I_1 = \frac{12 \text{ V}}{10 \Omega}$$

$$I_2 = \frac{12 \text{ V}}{20 \Omega}$$

$$I_3 = \frac{12 \text{ V}}{30 \Omega}$$

$$I_1 = 1.2 \text{ A}$$

$$I_2 = 0.6 \text{ A}$$

$$I_3 = 0.4 \text{ A}$$

Parallel

$$I_{total} = I_1 + I_2 + I_3 + \dots$$
 and...

$$I_1 = 1.2 \text{ A}$$

$$I_2 = 0.6 \text{ A}$$

$$I_3 = 0.4 \text{ A}$$

and...
$$I_{total} = 1.2 \text{ A} + 0.6 \text{ A} + 0.4 \text{ A}$$

$$I_{total} = 2.2 \text{ A}!$$

Find Req

$$R_{eq} = 22 \Omega$$

$$I = \frac{V}{R} = \frac{12 \text{ V}}{22 \Omega} = 0.5455 \text{ A}$$

Find Req

$$R_{eq} = 15 \Omega$$

$$I = \frac{V}{R} = \frac{12 \text{ V}}{15 \Omega} = \boxed{0.80 \text{ A}}$$

Find Req

$$R_{eq} = 22 \Omega$$

Find Ibattery

$$I = \frac{V}{R} = \frac{12 \text{ V}}{22 \Omega} = 0.5454 \text{ A}$$

Keep more decimals than needed so you can minimize rounding errors!

Find I₁

$$I_1 = 0.5454 \text{ A}$$

 \dots because I_1 has the full current from the battery passing through it

Find V₁

$$V = IR = (0.5454 \text{ A})(10 \Omega) = 5.454 \text{ V}$$

Find V₂

$$V_2 = V_{battery} - V_1 = 12 \text{ V} - 5.454 \text{ V} = 6.546 \text{ V}$$

Find V₃

$$V_3 = V_2 = 6.546 \text{ V}$$

... because R₂ and R₃ are in parallel they have the same voltage drop.

Find I₂

$$I_2 = \frac{V_2}{R_2} = \frac{6.546 \text{ V}}{20 \Omega} = 0.3273 \text{ A}$$

Find I₃

$$I_3 = \frac{V_3}{R_3} = \frac{6.546 \text{ V}}{30 \Omega} = 0.2182 \text{ A}$$

... because R₂ and R₃ are in parallel they have the same voltage drop.

	Resistance	Voltage	Current
R_1	10 Ω	5.454 V	0.545 A
R_2	20 Ω	6.546 V	0.327 A
R ₃	30 Ω	6.546 V	0.218 A

* Note:

* V_1+V_2 or V_1+V_3 equals 12V

 $I_1 = I_2 + I_3$

Find Req

$$R_{eq} = 15 \Omega$$

Find Ibattery

$$I = \frac{V}{R} = \frac{12 \text{ V}}{15 \Omega} = 0.80 \text{ A}$$

Keep more decimals than needed so you can minimize rounding errors!

Find I₃

$$I_1 = \frac{12 \text{ V}}{30 \Omega} = 0.4 \text{ A}$$

... because R₃ has the full voltage from the battery across it

❖ Find I₂ & I₃

$$I_2 = I_{battery} - I_3 = 0.8 \text{ A} - 0.4 \text{ A} = 0.4 \text{ A}$$

Find V₁

$$V_1 = I * R = 0.4 \text{ A} * 10 \Omega = 4 \text{ V}$$

Find V₂

$$V_1 = I * R = 0.4 \text{ A} * 20 \Omega = 8 \text{ V}$$

	Resistance	Voltage	Current
R_1	10 Ω	4 V	0.4 A
R_2	20 Ω	8 V	0.4 A
R ₃	30 Ω	12 V	0.4 A

Note:

$$V_1+V_2=V_3$$
 equals 12V

*
$$I_1=I_2 \& I_1 + I_3 = I_{battery}$$

Kirchoff's Laws

Loop Rule:

- Any closed loop in a circuit will have a net potential change of zero.
- Junction Rule:
 - For any Junction, the total current into the junction must equal the current out of the junction

Conservation of Matter & Charge!

Kirchoff's Examples

Kirchoff's Example

Loop #1

$$V_{battery} - I_1 R_1 - I_2 R_2 - I_3 R_3 = 0$$
 ... but
$$I_1 = I_2 = I_3$$
 ... then
$$V_{battery} - I(R_1 + R_2 + R_3) = 0$$

Junction #1 - There are no junctions

Kirchoff's Example

Solve

$$V_{battery} - I(R_1 + R_2 + R_3) = 0$$

$$12 \text{ V} - I(10 \Omega + 20 \Omega + 30 \Omega) = 0$$

$$I(60 \Omega) = 12 \text{ V}$$

$$I = \frac{12 \text{ V}}{60 \Omega}$$

$$I = 0.200 \text{ A}$$

Solve

$$V_{R_1} = IR_1$$

$$V_{R_1} = (0.2 \text{ A})10 \Omega$$

$$V_{R_1} = 2 \text{ V}$$

$$V_{R_2} = IR_2$$

$$V_{R_2} = (0.2 \text{ A})20 \Omega$$

$$V_{R_2} = 4 \text{ V}$$

$$V_{total} = V_1 + V_2 + V_3 = 2 \text{ V} + 4 \text{ V} + 6 \text{ V}$$

$$V_{R_3} = IR_3$$

$$V_{R_3} = (0.2 \text{ A})30 \Omega$$

$$V_{R_3} = 6 \text{ V}$$

$$V_{total} = 12 \text{ V}!$$

Kirchoff's Examples

