Eine Woche, ein Beispiel 11.19. Basic sheaf calculation

Goal. Motivate f*, f*, f!, f', by connecting them with (co) homology theory

```
After story: 

calculation of Perva(CIP')

generalize Morse theory

Characteristic classes/cycles

index theorem
```

Minor advantages from my talk:

- offers examples for derived category.

(more geometrical compared with examples about quiver reps)

- the first step toward 6-fctor formalism.

· formal nonsense: adjointness, open-closed, SES(triangles)

· application. Riemann-Roch, Serre duality, index theorem (guess) ~> understand cpt RS, Weil conj,...

· glue: open-closed, cellular fibration, Morse theory, ...
covering: (étale) descent, ramification, ...

Three types closed immersion, submersion, covering.

```
Usual setting: X \in Top

Ob(Sh(X)) = { sheaves of abelian gps}

e.p. Sh(\Re) = Abel

Q : M \to Q
```

```
0. sheaf
1. fx, skyscraper sheaf & global sections
2. f*, constant sheaf & stalks
3. Rfx
4. f!
5. Rf:
6. f'
-\omega-
Hom (-,-)

8. global sections with cpt supp
$\omega$ cohomology with cpt supp
$\omega$ homology
$\omega$ product structure on cohomology
$\omega$ Poincaré duality.
```

O. Sheaf

https://mathoverflow.net/questions/4214/equivalence-of-grothendieck-style-versus-cech-style-sheaf-cohomology If X is paracompact and Hausdorff, Cech cohomology coincides with Grothendieck cohomology for ALL SHEAVES

Recall examples of sheaves:

complicated
$$S$$
 · C_X : sheaf of cont fcts on X

· O_X : structure sheaf on X

• C_X : constant sheaf on C_X

• C_X : constant sheaf on C_X

• C_X : constant sheaf of C_X

• C_X : $C_$

$$E_{\times}$$
 For $X = \mathbb{C}$ as cpl× mfld, $x = 0$, compute
$$(\underline{\mathcal{Q}}_{X})_{\times} \subseteq (\mathcal{O}_{X})_{x} \subseteq (\mathcal{C}_{X})_{\times} \qquad \& (sky_{P}(\mathbb{Q}))_{x}.$$

1. f*, skyscraper sheaf & global sections

Setting $X, Y \in Top$, $F \in Sh(Y)$, $f: Y \longrightarrow X$ cont

Def.
$$f_*F \in Sh(X)$$
 is given by $f_*F(U) = F(f^-(U))$
This defines a fctor $f_*: Sh(Y) \longrightarrow Sh(X)$

E.g. For
$$p \in X$$
, $p: p \ni \longrightarrow X$, $p * Q : p \ni = sky_p Q$
For $\pi: Y \longrightarrow i * \ni$, $\pi_* \mathcal{F} = \mathcal{F}(Y) = \Gamma(Y; \mathcal{F})$

 $E_{\mathbf{X}}$ (hard?) For $j: \mathbb{C} \longrightarrow \mathbb{CP}^1$, compute $j_*\underline{\mathbb{Q}}_{\mathbb{C}}$.

- \bigcirc It is a constant sheaf on $\mathbb{CP}^1.$
- \bigcirc It is not a constant sheaf on \mathbb{CP}^1 , and $(j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=\mathbb{Q}$.
- igcup It is not a constant sheaf on \mathbb{CP}^1 , and $(j_* \underline{\mathbb{Q}}_{\mathbb{C}})_{\infty} = 0$.
- All the above is wrong.
- O I don't know, but I don't want to make a wrong choice.

2. f^* , constant sheaf & stalks In [Vakil, Chapter 2], it is f^{-1} , the inverse image functor.

Setting $X, Y \in Top$, $F \in Sh(X)$, $f: Y \longrightarrow X$ cont

Def.
$$f^*F \in Sh(Y)$$
 is given by sheafification of $f^*F \in Sh(Y)$ is given by sheafification of $f^*F \in F$. This defines a fctor $f^*F : Sh(Y) \longrightarrow Sh(Y)$

Recall:

$$\mathcal{F}^{sh}(\mathcal{U}) = \begin{cases}
(x_p)_p \in \overline{\prod} \mathcal{F}_p \\
s \in \mathcal{F}(\mathcal{U}) \text{ s.t.} \\
s_p = x_p \\
V_{niversal} \text{ property:}
\end{cases}$$

By definition $(\mathcal{F}^{sh})_p = \mathcal{F}_p$.

Universal property:

 $\mathcal{F}^{sh} = \mathcal{F}_p = \mathcal{F}_p$

Shall $\mathcal{F}^{sh} \in \mathcal{M}_{or} = \mathcal{F}_{sh}$
 $\mathcal{F}^{sh} \in \mathcal{M}_{or} = \mathcal{F}_{sh}$
 $\mathcal{F}^{sh} \in \mathcal{M}_{or} = \mathcal{F}_{sh}$

Figure $\mathcal{F}^{sh} \in \mathcal{M}_{or} = \mathcal{K}_{sh}$

Figure $\mathcal{F}^{sh} \in \mathcal{M}_{or} = \mathcal{F}_{sh}$

For $\pi:\mathbb{C}\longrightarrow \{*\}, U=B_1(0)\cup B_1(3)$, which one is correct:

$$(\pi^{*,\operatorname{pre}}\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}, \qquad (\pi^*\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}.$$

$$(\pi^{*,\operatorname{pre}}\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}^2, \qquad (\pi^*\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}.$$

$$(\pi^{*,\operatorname{pre}}\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}, \qquad (\pi^*\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}^2.$$

$$(\pi^{*,\operatorname{pre}}\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}^2, \qquad (\pi^*\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}^2.$$

$$(\pi^{*,\operatorname{pre}}\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}^2, \qquad (\pi^*\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}^2.$$

$$(\pi^*\operatorname{Dist}_{\{*\}})(U)=\mathbb{Q}^2, \qquad (\pi^*\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}^2.$$

$$(\pi^*\operatorname{Dist}_{\{*\}})(U)=\mathbb{Q}^2, \qquad (\pi^*\underline{\mathbb{Q}}_{\{*\}})(U)=\mathbb{Q}^2.$$

E.g. For
$$p \in X$$
, $p: p \to X$,

Q: For UCX open, how to express F(U) by fctors?

$$U \stackrel{lu}{\longrightarrow} X$$
 $\pi_u \downarrow \pi_x$

$$F(U) = \pi_{u,*} (\overset{*}{u}F)$$

Prop. One has the adjunction $f^* \to f_*$, i.e., $Y \xrightarrow{f} X$ $Mor_{Sh(Y)} (f^*F, G) \cong Mor_{Sh(X)} (F, f_*G) + naturality$

Hint. [Vakil, 2.7.B] Show that both side give the same information, i.e.,

 $\phi_{UV} \in Mor_{Ab}(\mathcal{F}(U), \mathcal{G}(V))$ for each pair (V, U) s.t. $f(V) \subset U$ + compatability

Cor. f* is right adjoint, f* is left adjoint.

Rmk. f^* is an exact functor. Hint: exactness can be checked on stalks! ∇ After "polished" (because of the structure sheaf), f^* is again only right adjoint.

3. Rf. & cohomology

Recall that cohomology is usually a derived object:

- SES induces LES for
$$0 \longrightarrow F \longrightarrow G \longrightarrow H \longrightarrow 0$$

one has

$$0 \longrightarrow H^{\circ}(X; \mathcal{F}) \longrightarrow H^{\circ}(X; \mathcal{G}) \longrightarrow H^{\circ}(X; \mathcal{H})$$

$$- \text{ can be viewed as right derived fctor of}$$

$$H^{\circ}(X, -) = \Gamma(X, -) = \pi_{*}$$

one gets

$$H^n(X,-) = R^n \Gamma(X,-) = R^n \pi_*$$

We denote the complex (before the Ker/Im procedure) as

$$R\Gamma(X,-) = R\pi_*$$

up to homotopy equiv & quasi-iso, i.e., in the derived category of [*].

$$D(X) = D(Sh(X)) =$$
 "derived category of sheaves over X"
= "complexes of sheaves over X, up to ..."
= $\{ ... \rightarrow F \rightarrow F \rightarrow F \rightarrow ... \} = \{F'\}$

Setting $X, Y \in Top$, $F \in Sh(Y)$, $f, Y \longrightarrow X$ cont

Def.
$$Rf_*F =$$
 "derived pushforward of F "
$$= f_*I'$$
Here, I' is the injective resolution of F .
$$0 \to F \to I' \to I' \to I' \to I'$$

$$(\Rightarrow F \xrightarrow{\text{quari-iso}} I')$$
This defines a fctor
$$Rf_*: \mathcal{D}(Y) \longrightarrow \mathcal{D}(X)$$

The devived pushforward is hard to compute. just like cohomology, and even worse, since we need more information Luckily, the following proposition helps us to cheat a little bit.

Prop. [Vakil, 18.8, p497]

$$R^n f_* \mathcal{F}$$
 is given by the sheafification of

 $(R^n f_*^{pre} \mathcal{F})(\mathcal{U}) = H^n(f^{-1}(\mathcal{U}), \mathcal{F}|_{f^{-1}(\mathcal{U})})$

sometimes omit

e.p. one can compute the stalk
$$(R^n f_* \mathcal{F})_x = \lim_{x \in \mathcal{U}} H^n (f^{-1}(u), \mathcal{F}|_{f^{-1}(u)})$$

Cov For
$$\pi: X \to \{*\}$$
,
 $R^n \pi_* \mathcal{F} = H^n(X; \mathcal{F})$

E.g. For $\pi: C[P] \longrightarrow \{*\}$,

$$R^n \pi_* \underline{\mathcal{Q}}_{CP'} = H^n(\mathbb{CP}; \mathcal{Q}) = \begin{cases} \mathcal{Q} & n = 0, 2\\ 0 & \text{otherwise}. \end{cases}$$

Therefore, [all objects in D(*) are proj, we work over Q]

$$R \pi_* \underline{Q}_{CP'} = Q \oplus Q[-2]$$

$$= \left[\circ \to \cdots \to Q \to \circ \to Q \to \circ \to \cdots \right]$$

Ex.

For $j:\mathbb{C}\longrightarrow\mathbb{CP}^1$, what is true about $Rj_*\underline{\mathbb{Q}}_\mathbb{C}$?

 $\bigcirc \ (R^1j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=0, \qquad (R^2j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=\mathbb{Q}.$

 $\bigcirc \ \ (R^1j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=\mathbb{Q}, \qquad (R^2j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=0.$

 $\bigcirc \ \ (R^1j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=0, \qquad (R^2j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=0.$

 $\bigcirc \ (R^1j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=\mathbb{Q}, \qquad (R^2j_*\underline{\mathbb{Q}}_{\mathbb{C}})_{\infty}=\mathbb{Q}.$

O What the hell is that?

In fact, $(R_{j*}\underline{Q}_{\mathbb{C}})_{\infty} = Q \oplus Q[-1]$.

i: Pa] - ap' is exact, so Rix = ix.