INTRODUCTION TO GRAPH THEORY

Graph Theory - History

Leonhard Euler's paper on "Seven Bridges of Königsberg", published in 1736.

Famous problems

- "The traveling salesman problem"
 - A traveling salesman is to visit a number of cities; how to plan the trip so every city is visited once and just once and the whole trip is as short as possible?

Famous problems

In 1852 Francis Guthrie posed the "four color problem" which asks if it is possible to color, using only four colors, any map of countries in such a way as to prevent two bordering countries from having the same color.

This problem, which was only solved a century later in 1976 by Kenneth Appel and Wolfgang Haken, can be considered the birth of graph theory.

Examples

- Cost of wiring electronic components
- Shortest route between two cities.
- Shortest distance between all pairs of cities in a road atlas.
- Matching / Resource Allocation
- Task scheduling
- Visibility / Coverage

Examples

- Flow of material
 - liquid flowing through pipes
 - current through electrical networks
 - information through communication networks
 - parts through an assembly line
- In Operating systems to model resource handling (deadlock problems)
- In compilers for parsing and optimizing the code.

BASICS

What is a Graph?

 Informally a graph is a set of nodes joined by a set of lines or arrows.

Definition: Graph

- G is an ordered triple G:=(V, E, f)
 - V is a set of nodes, points, or vertices.
 - E is a set, whose elements are known as edges or lines.
 - f is a function
 - maps each element of E
 - to an unordered pair of vertices in V.

Definitions

- Vertex
 - Basic Element
 - Drawn as a node or a dot.
 - Vertex set of G is usually denoted by V(G), or V
- Edge
 - A set of two elements
 - Drawn as a line connecting two vertices, called end vertices, or endpoints.
 - The edge set of G is usually denoted by E(G), or E.

Example

- V:={1,2,3,4,5,6}
- $E:=\{\{1,2\},\{1,5\},\{2,3\},\{2,5\},\{3,4\},\{4,5\},\{4,6\}\}\}$

Simple Graphs

Simple graphs are graphs without multiple edges or self-loops.

Path

- A path is a sequence of vertices such that there is an edge from each vertex to its successor.
- A path is simple if each vertex is distinct.

Simple path from 1 to 5 = [1, 2, 4, 5] Our text's alternates the vertices and edges.

If there is path p from u to v then we say v is reachable from u via p.

Cycle

- A path from a vertex to itself is called a cycle.
- A graph is called cyclic if it contains a cycle;
 - otherwise it is called acyclic

Connectivity

- is connected if
 - you can get from any node to any other by following a sequence of edges OR
 - any two nodes are connected by a path.
- A directed graph is strongly connected if there is a directed path from any node to any other node.

Sparse/Dense

- A graph is *sparse* if | *E* | ≈ | *V* |
- A graph is **dense** if $|E| \approx |V|^{2}$.

A weighted graph

 is a graph for which each edge has an associated weight, usually given by a weight function w: E → R.

Directed Graph (digraph)

- Edges have directions
 - An edge is an ordered pair of nodes

Bipartite graph

- V can be partitioned into 2 sets V_1 and V_2 such that $(u,v) \in E$ implies
 - either $u \in V_1$ and $v \in V_2$
 - OR $v \in V_1$ and $u \in V_2$.

Special Types

- Empty Graph / Edgeless graph
 - No edge
- Null graph
 - No nodes
 - Obviously no edge

Complete Graph

- Denoted K_n
- Every pair of vertices are adjacent
- Has n(n-1) edges

Complete Bipartite Graph

- Bipartite Variation of Complete Graph
- Every node of one set is connected to every other node on the other set

Planar Graph

- Can be drawn on a plane such that no two edges intersect
- K₄ is the largest complete graph that is planar

Dual Graph

- Faces are considered as nodes
- Edges denote face adjacency
- Dual of dual is the original graph

Tree

Connected Acyclic Graph

Two nodes have exactly one path between them

Generalization: Hypergraph

- Generalization of a graph,
 - edges can connect any number of vertices.
- Formally, an hypergraph is a pair (X,E) where
 - X is a set of elements, called nodes or vertices, and
 - E is a set of subsets of X, called hyperedges.
- Hyperedges are arbitrary sets of nodes,
 - contain an arbitrary number of nodes.

Degree

Number of edges incident on a node

Degree (Directed Graphs)

- In degree: Number of edges entering
- Out degree: Number of edges leaving
- Degree = indegree + outdegree

Degree: Simple Facts

If G is a digraph with m edges, then

$$\sum$$
 indeg(v) = \sum outdeg(v) = $m = |E|$

If G is a graph with m edges, then

$$\sum \deg(v) = 2m = 2|E|$$

Number of Odd degree Nodes is even

SUBGRAPHS

Subgraph

- Vertex and edge sets are subsets of those of G
 - a supergraph of a graph G is a graph that contains G as a subgraph.
- A graph G contains another graph H if some subgraph of G
 - is H or
 - is isomorphic to H.
- H is a proper subgraph if H!=G

Spanning subgraph

- Subgraph H has the same vertex set as G.
 - Possibly not all the edges
 - "H spans G".

Induced Subgraph

- For any pair of vertices x and y of H, xy is an edge of H if and only if xy is an edge of G.
 - H has the most edges that appear in G over the same vertex set.

Induced Subgraph (2)

- If H is chosen based on a vertex subset S of V(G), then H can be written as G[S]
 - "induced by S"
- A graph that does not contain H as an induced subgraph is said to be H-free

Component

Maximum Connected sub graph

ISOMORPHISM

Isomorphism

Bijection, i.e., a one-to-one mapping:

$$f: V(G) \rightarrow V(H)$$

- u and v from G are adjacent if and only if f(u) and f(v) are adjacent in H.
- If an isomorphism can be constructed between two graphs, then we say those graphs are *isomorphic*.

Isomorphism Problem

- Determining whether two graphs are isomorphic
- Although these graphs look very different, they are isomorphic; one isomorphism between them is

$$f(a) = 1$$
 $f(b) = 6$ $f(c) = 8$ $f(d) = 3$
 $f(g) = 5$ $f(h) = 2$ $f(i) = 4$ $f(j) = 7$

GRAPH ABSTRACT DATA TYPE

Graph ADT

- In computer science, a graph is an abstract data type (ADT)
- that consists of
 - a set of nodes and
 - a set of edges
 - establish relationships (connections) between the nodes.
- The graph ADT follows directly from the graph concept from mathematics.

Representation (Matrix)

- Incidence Matrix
 - E x V
 - [edge, vertex] contains the edge's data
- Adjacency Matrix
 - V x V
 - Boolean values (adjacent or not)
 - Or Edge Weights

Representation (List)

- Edge List
 - pairs (ordered if directed) of vertices
 - Optionally weight and other data
- Adjacency List

Implementation of a Graph.

- Adjacency-list representation
 - an array of |V| lists, one for each vertex in V.
 - For each $u \in V$, ADJ[u] points to all its adjacent vertices.

Adjacency-list representation for a directed graph.

Variation: Can keep a second list of edges coming into a vertex.

Adjacency lists

- Advantage:
 - Saves space for sparse graphs. Most graphs are sparse.
 - Traverse all the edges that start at v, in $\theta(\text{degree}(v))$
- Disadvantage:
 - Check for existence of an edge (v, u) in worst case time θ(degree(v))

Adjacency List

- Storage
 - For a directed graph the number of items are

$$\sum_{v \in V} (\text{out-degree } (v)) = |E|$$
So we need $\Theta(V + E)$

For undirected graph the number of items are

$$\sum_{v \in V} (\text{degree } (v)) = 2 \mid E \mid$$
Also $\Theta(V + E)$

Easy to modify to handle weighted graphs.
 How?

Adjacency matrix representation

 $\cdot |V| \times |V|$ matrix $A = (a_{ij})$ such that

 $a_{ij} = 1$ if $(i, j) \in E$ and 0 otherwise.

We arbitrarily uniquely assign the numbers $1, 2, \ldots, |V|$ to each vertex.

Adjacency Matrix Representation for a Directed Graph

Adjacency Matrix Representation

- Advantage:
 - Saves space for:
 - Dense graphs.
 - Small unweighted graphs using 1 bit per edge.
 - Check for existence of an edge in $\theta(1)$
- Disadvantage:
 - Traverse all the edges that start at v, in $\theta(|V|)$

Adjacency Matrix Representation

- Storage
 - $\Theta(|V|^2)$ (We usually just write, $\Theta(V^2)$)
 - For undirected graphs you can save storage (only 1/2(V²)) by noticing the adjacency matrix of an undirected graph is symmetric. How?
- Easy to handle weighted graphs. How?

GRAPH ALGORITHMS

Graph Algorithms

- Shortest Path
 - Single Source
 - All pairs (Ex. Floyd Warshall)
- Network Flow
- Matching
 - Bipartite
 - Weighted
- Topological Ordering
- Strongly Connected

Graph Algorithms

- Biconnected Component / Articulation Point
- Bridge
- Graph Coloring
- Euler Tour
- Hamiltonian Tour
- Clique
- Isomorphism
- Edge Cover
- Vertex Cover
- Visibility

THANK YOU