Universidad Industrial de Santander - Escuela de Física

Introducción a la Física (Asorey-Sarmiento-Pinilla)

Parcial Integrador 2014

Lea atenta y cuidadosamente todos los problemas antes de proceder al cálculo de los mismos. Numere y ponga su nombre en todas las páginas que entrega.

1) Guia 04a: Cinemática

Un auto parte del reposo con una aceleración de $|\vec{a}| = 1 \,\mathrm{m\,s^{-2}}$, la cuál se mantiene constante durante 1 s. Transcurrido ese tiempo, se apaga el motor y el auto desacelera, debido a la fricción, durante 10 s con una desaceleración promedio $|\vec{a}| = 5 \,\mathrm{cm\,s^{-2}}$. Entonces se aplican los frenos y el auto se detiene luego de otros 5 s adicionales. Calcular la distancia total recorrida por el auto. Hacer los gráficos de x(t), v(t) y a(t) como función del tiempo t

2) Guia 04b: Energía

El Principito ($m=40\,\mathrm{kg}$) vive en un planeta pequeño, el asteroide B612. Supongamos que posee un radio $R=1\,\mathrm{km}$ con una densidad igual a la de la Tierra ($d=5,5\,\mathrm{g\,cm^{-3}}$). Con esto, la masa del asteroide queda $M=2,3\times10^13\,\mathrm{kg}$. Calcule:

- 1) el valor de g y el peso del Principito en B612;
- 2) la velocidad máxima a la cual el Principito puede caminar sin riesgo de abandonar el planeta para siempre (velocidad de escape).

3) Guia 5: Energía

Imagine dos cuerpos de masas m_1 y $m_2=3m_1$ que se encuentran en reposo ($u_1=u_2=0$). Ambos cuerpos están unidos por un resorte de masa despreciable y cuya constante elástica vale $k=1000\,\mathrm{N}\,\mathrm{m}^{-1}$. El resorte está comprimido $\Delta x=0,5\,\mathrm{m}$ respecto de su posición de equilibrio. Una vez liberado el resorte, encuentre la relación entre las velocidades \vec{v}_1 y \vec{v}_2 de cada cuerpo. Luego calcule dichas velocidades y, proponiendo algún valor para la masa m_1 , calcule la energía cinética de cada cuerpo.

4) Guia 5: Kepler

Un nuevo cometa de masa $m=10^{12}$ kg fue descubierto en el sistema solar. Luego de algunas mediciones, se supo que su órbita es elíptica y el perihelio está situado a sólo 10^6 km del Sol.

- 1) Calcule la distancia al Sol del afelio sabiendo que el período es de 10 años.
- 2) ¿Cuáles es el valor de la energía potencial en el perihelio y en el afelio?
- 3) Usando la segunda ley de Kepler, calcule la relación entre las energías cinéticas en el afelio y en el perihelio (ayuda: suponga que las áreas barridas son triangulares, $A = \frac{1}{2}b \times h$).

5) Guia 6: Electrostática

Trabajemos con el sistema Tierra-Luna. Suponiendo que transferimos a la Tierra y a la Luna la misma cantidad de carga positiva Q, calcule el valor de Q para que la fuerza de repulsión eléctrica entre ambos cuerpos iguale a la fuerza de atracción gravitatoria entre los mismos. Sabiendo que la carga de un protón es $p=1,602\times 10^{-19}\,\mathrm{C}$ y que el número de Avogadro es $N_A=6,022\times 10^{23}$, diga cuantos moles de protones son necesarios para alcanzar el valor de Q.

6) Guia 6: Electrostática - Opcional

En el plano z=0, dibuje el campo eléctrico producido por una carga puntual situada en el orígen