SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

ZADANIE 2 : ANALÝZA DÁT A REGRESORY SEMINÁRNA PRÁCA

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

ZADANIE 2 : ANALÝZA DÁT A REGRESORY SEMINÁRNA PRÁCA

Študijný program: Aplikovaná informatika

Predmet: I-SUNS – Strojové učenie a neurónové siete

Prednášajúci: prof. Dr. Ing. Miloš Oravec Cvičiaci: Ing. Zuzana Bukovčiková

Ing. Vanesa Andicsová

Ing. Dominik Sopiak, PhD.

Obsah

Ú	vod		1
1	Pou	žité technológie	4
	1.1	Pandas	. 4
	1.2	Matplotlib	. 4
	1.3	Seaborn	. 4
	1.4	Scikit-Learn	. 4
	1.5	TensorFlow	. 4
	1.6	Keras	. 4
2	Imp	lementácia	5
	2.1	Chýbajúce Údaje (Missing Data)	. 5
	2.2	Prieskumná Analýza Údajov (Exploratory Data Analysis)	. 13
	2.3	Neurónová Sieť (Neural Network)	. 26
	2.4	Náhodný Les Regressor (Random Forest Regressor)	. 26
	2.5	Mechanizmus podporných vektorov (Support Vector Machine)	. 29
		2.5.1 Predvolené nastavenia	. 29
		2.5.2 Grid Search	. 30
		2.5.3 Súborové učenie	. 30
		2.5.3.1 Bagging	. 31
		2.5.3.2 Boosting	. 32
Zá	iver		33
Zo	oznai	n použitej literatúry	34
Pı	ríloh	7	I
\mathbf{A}	Štr	ıktúra projektu	II
\mathbf{R}	Por	žívateľská príručka	\mathbf{V}

Zoznam obrázkov a tabuliek

Obrázok 1	Stĺpec Artist Followers v Trénovacích Dátach so znázorneným	
	vulgarizmu pred škálovaním	13
Obrázok 2	Stĺpec Duration (ms) v Trénovacích Dátach so znázorneným	
	vulgarizmu pred škálovaním	14
Obrázok 3	Stĺpec Popularity v Trénovacích Dátach so znázorneným vulga-	
	rizmu pred škálovaním	14
Obrázok 4	Stĺpec Release Date (Year) v Trénovacích Dátach so znázorne-	
	ným vulgarizmu pred škálovaním	15
Obrázok 5	Stĺpec Speechiness v Trénovacích Dátach so znázorneným vulga-	
	rizmu pred škálovaním	15
Obrázok 6	Stĺpec Tempo v Trénovacích Dátach so znázorneným vulgarizmu	
	pred škálovaním	16
Obrázok 7	Stĺpec Artist Followers v Testovacích Dátach so znázorneným	
	vulgarizmu pred škálovaním	16
Obrázok 8	Stĺpec Release Date (Year) v Testovacích Dátach so znázorne-	
	ným vulgarizmu pred škálovaním	17
Obrázok 9	Stĺpec Tempo v Testovacích Dátach so znázorneným vulgarizmu	
	pred škálovaním	17
Obrázok 10	Heatmap pre naše dáta	18
Obrázok 11	Žánre v trénovacích dátach	22
Obrázok 12	Žánre v testovacích dátach	22
Obrázok 13	Word Cloud pre trénovacie dáta	23
Obrázok 14	Word Cloud pre testovacie dáta	23
Obrázok 15	Najpopulárnejšie skladby v Trénovacích Dátach	24
Obrázok 16	Najpopulárnejšie skladby v Testovacích Dátach	24
Obrázok 17	Dostupnosť najpopulárnejšej pesničky z trénovacích dát	25
Obrázok 18	Dostupnosť najpopulárnejšej pesničky z testovacích dát	25
Obrázok 19	Priebeh trénovania	26
Obrázok 20	Sila vstupných príznakov	27
Obrázok 21	Reziduály pre Náhodný Les Regressor	28
Obrázok 22	Reziduály pre Mechanizmus podporných vektorov	29

Tabuľka 2	Neškálovaný výstup metódy describe().transpose() na tréno-	
	vacích dátach	20
Tabuľka 3	Neškálovaný výstup metódy describe().transpose() na testo-	
	vacích dátach	21
Tabuľka 4	Škálovaný výstup metódy describe().transpose() na trénova-	
	cích dátach	21
Tabuľka 5	Škálovaný výstup metódy describe().transpose() na testova-	
	cích dátach	21
Tabuľka 6	Výstup metódy SupportVectorMachine.grid_search	30

Zoznam skratiek

API Application Programming Interface

ML Machine Learning

NaN Not a Number

NS Neurónová Siet

Úvod

Hlavným cieľom tohto zadania je predpovedanie hlasitosti piesne pomocou rôznych regresných modelov. Na vypracovanie zadania sme použili poskytnuté dátové súbory, ktoré sú rozdelené na trénovacie a testovacie dáta. Trénovacie dáta použijeme na natrénovanie našich regresných modelov a v prípade potreby môžeme z nich vybrať aj validačné dáta, ktoré môžeme používať na monitorovanie úspešnosti na predtým nevidených dát počas fázy trénovania.

Dáta sú uložené v CSV súboroch. Trénovacie (spotify_train.csv) aj testovacie (spotify_test.csv) dáta majú 27 stĺpcov, pričom jednotlivé stĺpce reprezentujú jednotlivé vlastnosti piesne na streamovacej službe Spotify, ktoré sú nasledovné:

- 1. ID : ID služby Spotify pre skladbu.
- 2. ID Umelca (angl.: artist_id): ID služby Spotify pre umelca.
- 3. Umelec (angl.: artist): Meno umelca.
- 4. Názov (angl.: name) : Názov skladby.
- 5. Popularita (angl.: popularity) : Popularita skladby je hodnota medzi 0 a 100, pričom 100 je najpopulárnejšia. Obľúbenosť sa vypočítava pomocou algoritmu a z väčšej časti sa zakladá na celkovom počte prehrávaní skladby a na tom, ako nedávno sa tieto prehrávania uskutočnili. Vo všeobecnosti platí, že skladby, ktoré sa teraz veľa hrajú, budú mať vyššiu popularitu ako skladby, ktoré sa veľa hrali v minulosti. Duplicitné skladby (napr. tá istá skladba zo singla a albumu) sa hodnotia nezávisle. Popularita interpretov a albumov sa odvodzuje matematicky od popularity skladieb. Poznámka: hodnota popularity môže zaostávať za skutočnou popularitou o niekoľko dní: hodnota sa neaktualizuje v reálnom čase.
- 6. Dátum vydania (angl.: release date): Dátum prvého vydania albumu.
- 7. Trvanie v milisekundách (angl.: duration_ms): Trvanie skladby v milisekundách.
- 8. Explicitné (angl.: explicit) : Či skladba obsahuje alebo neobsahuje explicitný text (true = áno, obsahuje; false = nie, neobsahuje alebo neznáme).
- 9. Tanečnosť (angl.: danceability) : Tanečnosť opisuje vhodnosť skladby na tanec na základe kombinácie hudobných prvkov vrátane tempa, stability rytmu, sily rytmu a celkovej pravidelnosti. Hodnota 0,0 je najmenej tanečná a 1,0 je najviac tanečná.

- 10. Energia (angl.: energy) : Energia je miera od 0,0 do 1,0 a predstavuje vnímanie intenzity a aktivity. Energické skladby sú zvyčajne rýchle, hlasné a hlučné. Napríklad death metal má vysokú energiu, zatiaľ čo Bachovo prelúdium má na stupnici nízke skóre. Medzi percepčné vlastnosti, ktoré prispievajú k tomuto atribútu, patria dynamický rozsah, vnímaná hlasitosť, farba zvuku, rýchlosť nástupu a všeobecná entropia.
- 11. Kľúč (angl.: key) : Kľúč, v ktorom sa skladba nachádza. Celé čísla sa mapujú na výšky tónov pomocou štandardnej notácie Pitch Class. Napr. 0 = C, 1 = C#, 2 = D atď.
- 12. Hlasitosť (angl.: loudness): Celková hlasitosť skladby v decibeloch (dB). Hodnoty hlasitosti sú spriemerované pre celú stopu a sú užitočné na porovnanie relatívnej hlasitosti stôp. Hlasitosť je kvalita zvuku, ktorá je primárnym psychologickým korelátom fyzickej sily (amplitúdy). Hodnoty sa zvyčajne pohybujú v rozmedzí od -60 do 0 db. Zisťuje prítomnosť publika v nahrávke. Vyššie hodnoty živosti predstavujú zvýšenú pravdepodobnosť, že skladba bola vykonaná naživo. Hodnota nad 0,8 poskytuje veľkú pravdepodobnosť, že skladba je živá.
- 13. Mód / Režim (angl.: mode) : Mód označuje modalitu (dur alebo mol) skladby, typ stupnice, z ktorej je odvodený jej melodický obsah. Dúr je reprezentovaný hodnotou 1 a mol je 0.
- 14. Rečnosť (angl.: speechiness): Funkcia Speechiness zisťuje prítomnosť hovorených slov v skladbe. Čím viac sa nahrávka podobá výlučne reči (napr. talk show, zvuková kniha, poézia), tým bližšie k hodnote 1,0 je hodnota atribútu. Hodnoty nad 0,66 opisujú skladby, ktoré sú pravdepodobne zložené výlučne z hovorených slov. Hodnoty medzi 0,33 a 0,66 opisujú skladby, ktoré môžu obsahovať hudbu aj reč, a to buď v častiach, alebo vrstve, vrátane takých prípadov, ako je rap. Hodnoty pod 0,33 s najväčšou pravdepodobnosťou predstavujú hudbu a iné skladby, ktoré nie sú podobné reči.
- 15. Akustickosť (angl.: acousticness) : Miera spoľahlivosti od 0,0 do 1,0, či je stopa akustická. Hodnota 1,0 predstavuje vysokú istotu, že stopa je akustická.
- 16. Inštrumentálnosť (angl.: instrumentalness) : Predpovedá, či skladba neobsahuje vokály. Zvuky 'Ooh' a 'Aah' sa v tomto kontexte považujú za inštrumentálne. Rapové skladby alebo skladby s hovoreným slovom sú jednoznačne 'vokálne'. Čím bližšie je

- hodnota inštrumentálnosti k hodnote 1,0, tým väčšia je pravdepodobnosť, že skladba neobsahuje vokálny obsah. Hodnoty nad 0,5 majú predstavovať inštrumentálne skladby, ale dôvera je vyššia, keď sa hodnota blíži k 1,0.
- 17. Živosť (angl.: liveness) : Zisťuje prítomnosť publika v nahrávke. Vyššie hodnoty živosti predstavujú zvýšenú pravdepodobnosť, že skladba bola vykonaná naživo. Hodnota nad 0,8 poskytuje veľkú pravdepodobnosť, že skladba je živá.
- 18. Valencia (angl.: valence) : Miera od 0,0 do 1,0, ktorá opisuje hudobnú pozitívnosť skladby. Skladby s vysokou valenciou znejú pozitívnejšie (napr. šťastné, veselé, euforické), zatiaľ čo skladby s nízkou valenciou znejú negatívnejšie (napr. smutné, depresívne, nahnevané).
- 19. Tempo: Celkové odhadované tempo skladby v úderoch za minútu (BPM). V hudobnej terminológii je tempo rýchlosť alebo tempo danej skladby a odvodzuje sa priamo od priemerného trvania úderov.
- 20. Žánre Umelca (angl.: artist_genres) : Zoznam žánrov, s ktorými je umelec spojený. Ak ešte nie je zaradený, pole je prázdne.
- 21. Nasledovníci Umelca (angl.: artist_followers): Informácie o nasledovníkoch umelca.
- 22. URL: URI služby Spotify pre skladbu.
- 23. ID Zoznamu Skladieb (angl.: playlist id): ID služby Spotify zoznamu skladieb.
- 24. Popis Zoznamu Skladieb (angl.: playlist_description) : Hodnota pre popis zoznamu skladieb, ako sa zobrazuje v klientoch Spotify a vo webovom rozhraní API.
- 25. Názov Zoznamu Skladieb (angl.: playlist_name): Názov Zoznamu Skladieb.
- 26. URL Zoznamu Skladieb (angl.: playlist_url): URL Zoznamu Skladieb.
- 27. Dotaz (angl.: query) : Vyhľadávací dotaz.

1 Použité technológie

1.1 Pandas

Pandas je rýchly, výkonný, flexibilný a ľahko použiteľný open source nástroj na analýzu a manipuláciu s údajmi, postavený na programovacom jazyku Python [1].

1.2 Matplotlib

Matplotlib je komplexná knižnica na vytváranie statických, animovaných a interaktívnych vizualizácií v jazyku Python [2].

1.3 Seaborn

Seaborn je knižnica na vizualizáciu údajov v jazyku Python založená na matplotlib. Poskytuje vysokoúrovňové rozhranie na kreslenie atraktívnej a informatívnej štatistickej grafiky [3].

1.4 Scikit-Learn

- Jednoduché a efektívne nástroje na prediktívnu analýzu údajov
- Prístupné pre každého a opakovane použiteľné v rôznych kontextoch
- Postavené na NumPy, SciPy a matplotlib
- Open Source, komerčne použiteľný licencia BSD [4]

1.5 TensorFlow

TensorFlow je komplexná open source platforma pre strojové učenie (angl.: Machine Learning - ML). Má komplexný, flexibilný ekosystém nástrojov, knižníc a komunitných zdrojov, ktorý umožňuje výskumníkom posúvať najnovšie poznatky v oblasti ML a vývojárom ľahko vytvárať a nasadzovať aplikácie využívajúce ML [5].

1.6 Keras

Keras je API určené pre ľudí, nie pre stroje. Keras sa riadi osvedčenými postupmi na zníženie kognitívnej záťaže: ponúka konzistentné a jednoduché API, minimalizuje počet činností používateľa potrebných pre bežné prípady použitia a poskytuje jasné a použiteľné chybové hlásenia. Má tiež rozsiahlu dokumentáciu a príručky pre vývojárov [6].

2 Implementácia

2.1 Chýbajúce Údaje (Missing Data)

Riešenie tohto zadania začneme načítaním vopred nachystaných trénovacích aj testovacích dát pomocou metódy **read_csv** [7], ktorý nám ukladá načítané dáta do Pandas DataFrame-u.

Následne si môžeme zobraziť jednoduché informácie o trénovacích a testovacích dátach pomocou metódy **info** [8]. Táto metóda nám vráti nasledujúce výsledky:

Information about the Training Data Set

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 44776 entries, 0 to 44775
Data columns (total 27 columns):

Data	columns (total 2/	columns):
#	Column	Non-Null Count Dtype
0	id	44776 non-null object
1	artist_id	44776 non-null object
2	artist	44776 non-null object
3	name	44776 non-null object
4	popularity	44776 non-null int64
5	release_date	44776 non-null object
6	duration_ms	44776 non-null int64
7	explicit	44776 non-null bool
8	danceability	44776 non-null float64
9	energy	44776 non-null float64
10	key	44776 non-null int64
11	loudness	44776 non-null float64
12	mode	44776 non-null int64
13	speechiness	44776 non-null float64
14	acousticness	44776 non-null float64
15	instrumentalness	44776 non-null float64
16	liveness	44776 non-null float64
17	valence	44776 non-null float64
18	tempo	44776 non-null float64
19	artist_genres	44776 non-null object
20	artist_followers	44775 non-null float64
21	url	44776 non-null object
22	playlist_id	44776 non-null object
23	playlist_description	on 30974 non-null object
24	playlist_name	44755 non-null object
25	playlist_url	44776 non-null object
26	query	44776 non-null object
dtyp	es: bool(1), float6	4(10), int64(4), object(12
memo	ry usage: 8.9+ MB	
None		

Information about the Testing Data Set

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8893 entries, 0 to 8892 Data columns (total 27 columns):

Data	ta columns (total 27 columns):							
#	Column	Non-Null Count	Dtype					
0	id	8893 non-null	object					
1	artist_id	8893 non-null	object					
2	artist	8893 non-null	object					
3	name	8893 non-null	object					
4	popularity	8893 non-null	int64					
5	release_date	8893 non-null	object					
6	duration_ms	8893 non-null	int64					
7	explicit	8893 non-null	bool					
8	danceability	8893 non-null	float64					
9	energy	8893 non-null	float64					
10	key	8893 non-null	int64					
11	loudness	8893 non-null	float64					
12	mode	8893 non-null	int64					
13	speechiness	8893 non-null	float64					
14	acousticness	8893 non-null	float64					
15	${\tt instrumentalness}$	8893 non-null	float64					
16	liveness	8893 non-null	float64					
17	valence	8893 non-null	float64					
18	tempo	8893 non-null	float64					
19	artist_genres	8893 non-null	object					
20	artist_followers	8893 non-null	float64					
21	url	8893 non-null	object					
22	playlist_id	8893 non-null	object					
23	playlist_description	n 6176 non-null	object					
24	playlist_name	8888 non-null	object					
25	playlist_url	8893 non-null	object					
26	query	8893 non-null	object					
dtyp	<pre>dtypes: bool(1), float64(10), int64(4), object(12)</pre>							
memo	ry usage: 1.8+ MB							
None								

Z týchto údajov vidíme, že niektoré stĺpce/riadky obsahujú prázdne hodnoty tzv. NaN alebo Null Value. Môžeme vypísať aj to, že aké percento tvoria NaN hodnoty v jednotlivých stĺpcoch. Jednoduchý príkaz nám vráti nasledujúce údaje:

Number of NaN Values in the Training Data Set before dealing with NaN Values

```
Column id has 0 (0.0 %) NaN value(s)
Column artist_id has 0 (0.0 %) NaN value(s)
Column artist has 0 (0.0 %) NaN value(s)
Column name has 0 (0.0 %) NaN value(s)
Column popularity has 0 (0.0 %) NaN value(s)
Column release_date has 0 (0.0 %) NaN value(s)
Column duration_ms has 0 (0.0 %) NaN value(s)
Column explicit has 0 (0.0 %) NaN value(s)
Column danceability has 0 (0.0 %) NaN value(s)
Column energy has 0 (0.0 %) NaN value(s)
Column key has 0 (0.0 %) NaN value(s)
Column loudness has 0 (0.0 %) NaN value(s)
Column mode has 0 (0.0 %) NaN value(s)
Column speechiness has 0 (0.0 %) NaN value(s)
Column acousticness has 0 (0.0 %) NaN value(s)
Column instrumentalness has 0 (0.0 %) NaN value(s)
Column liveness has 0 (0.0 %) NaN value(s)
Column valence has 0 (0.0 %) NaN value(s)
Column tempo has 0 (0.0 %) NaN value(s)
Column artist_genres has 0 (0.0 %) NaN value(s)
Column artist followers has 1 (0.002 %) NaN value(s)
Column url has 0 (0.0 %) NaN value(s)
Column playlist_id has 0 (0.0 %) NaN value(s)
Column playlist_description has 13802 (30.825 %) NaN value(s)
Column playlist_name has 21 (0.047 %) NaN value(s)
Column playlist_url has 0 (0.0 %) NaN value(s)
Column query has 0 (0.0 %) NaN value(s)
```

Number of NaN Values in the Testing Data Set before dealing with NaN Values

```
Column id has 0 (0.0 %) NaN value(s)
Column artist_id has 0 (0.0 %) NaN value(s)
Column artist has 0 (0.0 %) NaN value(s)
Column name has 0 (0.0 %) NaN value(s)
Column popularity has 0 (0.0 %) NaN value(s)
Column release_date has 0 (0.0 %) NaN value(s)
Column duration_ms has 0 (0.0 %) NaN value(s)
Column explicit has 0 (0.0 %) NaN value(s)
Column danceability has 0 (0.0 %) NaN value(s)
Column energy has 0 (0.0 %) NaN value(s)
Column key has 0 (0.0 %) NaN value(s)
Column loudness has 0 (0.0 %) NaN value(s)
Column mode has 0 (0.0 %) NaN value(s)
Column speechiness has 0 (0.0 %) NaN value(s)
Column acousticness has 0 (0.0 %) NaN value(s)
Column instrumentalness has 0 (0.0 %) NaN value(s)
Column liveness has 0 (0.0 %) NaN value(s)
Column valence has 0 (0.0 %) NaN value(s)
Column tempo has 0 (0.0 %) NaN value(s)
Column artist_genres has 0 (0.0 %) NaN value(s)
```

```
Column artist_followers has 0 (0.0 %) NaN value(s)
Column url has 0 (0.0 %) NaN value(s)
Column playlist_id has 0 (0.0 %) NaN value(s)
Column playlist_description has 2717 (30.552 %) NaN value(s)
Column playlist_name has 5 (0.056 %) NaN value(s)
Column playlist_url has 0 (0.0 %) NaN value(s)
Column query has 0 (0.0 %) NaN value(s)
```

Teraz nastáva otázka, čo by sme mali robiť s chýbajúcimi dátami. Existujú rôzne stratégie pre túto situáciu. Môžeme jednoducho vymazať / ignorovať tie vzorky (riadky), ktoré obsahujú NaN hodnotu. Druhá možnosť je, že vymažeme / ignorujeme príznaky (stĺpce), ktoré obsahujú príliš veľa prázdnych hodnôt a moc neovplyvňujú náš výsledok. V tomto zadaní, sme sa rozhodli riešiť túto situáciu druhou možnosťou. Vynechali sme všetky ID-čka, a stĺpce, ktoré sa týkajú zoznamu skladieb, pretože vo viacerých prípadoch používatelia nevyplnili popis toho zoznamu, ako vidíme v trénovacích aj testovacích dátach skoro jedna tretina toho stĺpca je prázdna.

Information about the Training Data Set after ignoring unnecessary columns

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 44776 entries, 0 to 44775
Data columns (total 19 columns):
# Column
                Non-Null Count Dtype
---
                  _____
0
   artist
                  44776 non-null object
1 name
                 44776 non-null object
                 44776 non-null int64
2 popularity
3 release_date 44776 non-null object
   duration_ms
                  44776 non-null int64
   explicit
                  44776 non-null bool
6 danceability 44776 non-null float64
7
                44776 non-null float64
   energy
                  44776 non-null int64
8
   kev
   loudness
                 44776 non-null float64
9
10 mode
                  44776 non-null int64
                  44776 non-null float64
11 speechiness
12 acousticness
                 44776 non-null float64
13 instrumentalness 44776 non-null float64
14 liveness
                 44776 non-null float64
                  44776 non-null float64
15 valence
16 tempo
                  44776 non-null float64
17 artist_genres 44776 non-null object
18 artist_followers 44775 non-null float64
dtypes: bool(1), float64(10), int64(4), object(4)
memory usage: 6.2+ MB
None
```

RangeIndex: 8893 entries, 0 to 8892 Data columns (total 19 columns): # Column Non-Null Count Dtype -----8893 non-null object 0 artist 8893 non-null object 8893 non-null int64 2 popularity 3 release_date 8893 non-null object 4 duration_ms 8893 non-null int64 5 explicit 8893 non-null bool 6 danceability 8893 non-null float64 7 8893 non-null float64 energy 8893 non-null int64 8 key 9 loudness 8893 non-null float64 10 mode 8893 non-null int64 11 speechiness 8893 non-null float64 12 acousticness 8893 non-null float64 13 instrumentalness 8893 non-null float64 8893 non-null float64 14 liveness 8893 non-null float64 15 valence 16 tempo 8893 non-null float64 17 artist_genres 8893 non-null object 18 artist_followers 8893 non-null float64 dtypes: bool(1), float64(10), int64(4), object(4) memory usage: 1.2+ MB None

<class 'pandas.core.frame.DataFrame'>

Number of NaN Values in the Training Data Set after dealing with NaN Values

```
Column artist has 0 (0.0 %) NaN value(s)
Column name has 0 (0.0 %) NaN value(s)
Column popularity has 0 (0.0 %) NaN value(s)
Column release_date has 0 (0.0 %) NaN value(s)
Column duration_ms has 0 (0.0 %) NaN value(s)
Column explicit has 0 (0.0 %) NaN value(s)
Column danceability has 0 (0.0 %) NaN value(s)
Column energy has 0 (0.0 %) NaN value(s)
Column key has 0 (0.0 %) NaN value(s)
Column loudness has 0 (0.0 %) NaN value(s)
Column mode has 0 (0.0 %) NaN value(s)
Column speechiness has 0 (0.0 %) NaN value(s)
Column acousticness has 0 (0.0 %) NaN value(s)
Column instrumentalness has 0 (0.0 %) NaN value(s)
Column liveness has 0 (0.0 %) NaN value(s)
Column valence has 0 (0.0 %) NaN value(s)
Column tempo has 0 (0.0 %) NaN value(s)
Column artist_genres has 0 (0.0 %) NaN value(s)
Column artist_followers has 1 (0.002 %) NaN value(s)
```

Number of NaN Values in the Testing Data Set after dealing with NaN Values

```
Column artist has 0 (0.0 %) NaN value(s)
Column name has 0 (0.0 %) NaN value(s)
Column popularity has 0 (0.0 %) NaN value(s)
Column release_date has 0 (0.0 %) NaN value(s)
Column duration_ms has 0 (0.0 %) NaN value(s)
Column explicit has 0 (0.0 %) NaN value(s)
Column danceability has 0 (0.0 %) NaN value(s)
Column energy has 0 (0.0 %) NaN value(s)
Column key has 0 (0.0 %) NaN value(s)
Column loudness has 0 (0.0 %) NaN value(s)
Column mode has 0 (0.0 %) NaN value(s)
Column speechiness has 0 (0.0 %) NaN value(s)
Column acousticness has 0 (0.0 %) NaN value(s)
Column instrumentalness has 0 (0.0 %) NaN value(s)
Column liveness has 0 (0.0 %) NaN value(s)
Column valence has 0 (0.0 %) NaN value(s)
Column tempo has 0 (0.0 %) NaN value(s)
Column artist_genres has 0 (0.0 %) NaN value(s)
Column artist_followers has 0 (0.0 %) NaN value(s)
```

Po vynechaní týchto stĺpcov jediná prázdna hodnota bude v trénovacích dátach v stĺpci artist_followers. Keď nad tým logicky zamýšľame, tak je zrejmé, že ak daný umelec nemá uvedený počet fanúšikov, tak to môže znamenať len to, že zatiaľ nemá žiadnych fanúšikov a tým pádom môžeme túto prázdnu hodnotu nahradiť nulou. Po odstránení prázdnych hodnôt môžeme prejsť na duplicitné hodnoty. V tomto zadaní, sme nemohli len jednoducho ignorovať duplicitné hodnoty, lebo sme zistili, že niektorí umelci majú rôzne verzie toho istého piesňa s rôznymi atribútmi, a kvôli tomu sme sa rozhodli, že v tomto zadaní za duplicitných hodnôt budeme považovať vzorky, ktoré majú identické meno, umelca a rok vydania. Pre túto operáciu, sme museli prerobiť formát dátumu vydania, aby sme mohli s jednotlivými atribútmi pracovať ako číselnými hodnotami. Preto sme rozdelili dátum na 3 stĺpce (deň, mesiac, rok). Po vykonaní týchto funkcií sme dosiahli nasledujúce výsledky.

Information about the Training Data Set after ignoring Duplicate Values

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 43084 entries, 0 to 43083
Data columns (total 21 columns):

#	Column	Non-Null Count Dtype						
0	artist	43084 non-null object						
1	name	43084 non-null object						
2	popularity	43084 non-null int64						
3	duration_ms	43084 non-null int64						
4	explicit	43084 non-null bool						
5	danceability	43084 non-null float64						
6	energy	43084 non-null float64						
7	key	43084 non-null int64						
8	loudness	43084 non-null float64						
9	mode	43084 non-null int64						
10	speechiness	43084 non-null float64						
11	acousticness	43084 non-null float64						
12	${\tt instrumentalness}$	43084 non-null float64						
13	liveness	43084 non-null float64						
14	valence	43084 non-null float64						
15	tempo	43084 non-null float64						
16	artist_genres	43084 non-null object						
17	$artist_followers$	43084 non-null float64						
18	release_date_year	43084 non-null int64						
19	release_date_mont	h 43084 non-null int64						
20	release_date_day	43084 non-null int64						
dtypes: bool(1), float64(10), int64(7), object(3)								
memo	ory usage: 6.6+ MB							
None								

11

Information about the Testing Data Set after ignoring Duplicate Values

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8825 entries, 0 to 8824 Data columns (total 21 columns): # Column Non-Null Count Dtype -----8825 non-null object 0 artist 1 8825 non-null object 2 popularity 8825 non-null int64
3 duration_ms 8825 non-null int64
4 explicit 8825 non-null bool
5 danceability 8825 non-null float64 6 energy 8825 non-null float64

 7
 key
 8825 non-null int64

 8
 loudness
 8825 non-null float64

 9
 mode
 8825 non-null int64

 10
 speechiness
 8825 non-null float64

 11
 acousticness
 8825 non-null float64

 12 instrumentalness 8825 non-null float64 13 liveness 8825 non-null float64 8825 non-null float64 14 valence 15 tempo 8825 non-null float64 16 artist_genres 8825 non-null object 17 artist_followers 8825 non-null float64 18 release_date_year 8825 non-null int64 19 release_date_month 8825 non-null int64 20 release_date_day 8825 non-null int64 dtypes: bool(1), float64(10), int64(7), object(3) memory usage: 1.4+ MB None

Už máme skoro vyčistené dáta, jediné čo nám ostalo, je odstránenie outlier hodnôt. Pre lepšiu vizualizáciu to budeme riešiť na začiatku EDA.

2.2 Prieskumná Analýza Údajov (Exploratory Data Analysis)

V tejto sekcií prejdeme niektoré vlastnosti trénovacích aj testovacích dát. Ako sme už spomínali, začneme s odstránením outlier hodnôt. EDA začneme zobrazením **Pair plotu** [9] (ktorá nám bohužiaľ nezmestila do tejto dokumentácie kvôli nadmernej veľkosti, ale samotný plot Vám vygeneruje program). Na tomto grafe sme boli schopný identifikovať niektoré problematické stĺpce, ktoré v sebe zahŕňajú potencionálnych outlier hodnôt. Pre lepšie znázornenie sme sa rozhodli vykresľovať histogramy pomocou metódy **histplot** [10].

Obr. 1: Stĺpec Artist Followers v Trénovacích Dátach so znázorneným vulgarizmu pred škálovaním

Obr. 2: Stĺpec Duration (ms) v Trénovacích Dátach so znázorneným vulgarizmu pred škálovaním

Obr. 3: Stĺpec Popularity v Trénovacích Dátach so znázorneným vulgarizmu pred škálovaním

Obr. 4: Stĺpec Release Date (Year) v Trénovacích Dátach so znázorneným vulgarizmu pred škálovaním

Obr. 5: Stĺpec Speechiness v Trénovacích Dátach so znázorneným vulgarizmu pred škálovaním

Obr. 6: Stĺpec Tempo v Trénovacích Dátach so znázorneným vulgarizmu pred škálovaním

Obr. 7: Stĺpec Artist Followers v Testovacích Dátach so znázorneným vulgarizmu pred škálovaním

Obr. 8: Stĺpec Release Date (Year) v Testovacích Dátach so znázorneným vulgarizmu pred škálovaním

Obr. 9: Stĺpec Tempo v Testovacích Dátach so znázorneným vulgarizmu pred škálovaním

Na vyššie uvedených obrázkoch vidíte rozloženie dát v jednotlivých stĺpcoch. Vo viacerých prípadoch si môžete všimnúť, že na pravej alebo ľavej strane existuje malá množina vzoriek, ktoré sú ďaleko od ostatných vzoriek, tieto hodnoty nazývame outlier hodnoty, ktoré nám môžu znižovať úspešnosť predikcie. Preto je odporúčané ich ignorovať, alebo v niektorých prípadoch odstrániť. Na odstránenie týchto hodnôt na základe odporúčania [11, 12] sme vybrali technológiu **IsolationForest** [13]. Táto funkcia po natrénovaní vráti hodnoty 1 (riadok obsahuje inlier hodnoty) a -1 (riadok obsahuje outlier hodnoty). Na základe týchto hodnôt sme boli schopní ignorovať riadky, ktoré obsahujú outlier hodnoty.

Po vynechaní outlier hodnôt sme vygenerovali korelačnú maticu a podobne sme zobrazili aj korelačné hodnoty pre stĺpec Loudness. Túto stratégiu sme si vybrali z toho dôvodu, aby sme znížili čas trénovania našich modelov. Ako vidíte v korelačných hodnotách pre stĺpec Loudness naše dáta obsahujú stĺpec, ktoré sú slabo korelované s hlasitosťou, preto sme sa rozhodli ich vynechať. Vynechali sme hodnoty < -0.15, 0.15 >. Tým pádom sme vynechali stĺpce Duration (ms), Mode, Key, Release Date - Month, Release Date - Day a Artist Followers.

Obr. 10: Heatmap pre naše dáta

Correlation for Loudness

acousticness	-0.724899			
${\tt instrumentalness}$	-0.511669			
duration_ms	-0.150212			
mode	-0.039109			
key	0.027298			
release_date_month	0.070068			
release_date_day	0.104378			
artist_followers	0.120839			
liveness	0.155252			
speechiness	0.164955			
explicit	0.168268			
release_date_year	0.171954			
popularity	0.189633			
tempo	0.264097			
valence	0.365620			
danceability	0.417483			
energy	0.838364			
loudness	1.000000			
Name: loudness, dt	ype: float64			

Po vynechaní outlier hodnôt a menej relevantných stĺpcov naše dáta vyzerali nasledovne.

Information about the Training Data Set after ignoring Outlier Values and Not Strongly Correlated Columns

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 38775 entries, 0 to 38774
Data columns (total 12 columns):
```

#	Column	Non-Null Count Dtype
0	popularity	38775 non-null object
1	explicit	38775 non-null object
2	danceability	38775 non-null object
3	energy	38775 non-null object
4	speechiness	38775 non-null object
5	acousticness	38775 non-null object
6	${\tt instrumentalness}$	38775 non-null object
7	liveness	38775 non-null object
8	valence	38775 non-null object
9	tempo	38775 non-null object
10	artist_genres	38775 non-null object
11	release_date_year	38775 non-null object
	4	

dtypes: object(12)
memory usage: 3.6+ MB

None

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7942 entries, 0 to 7941
Data columns (total 12 columns):
# Column Non-Null Count Dtype
                 -----
                 7942 non-null object
0 popularity
                 7942 non-null object
   explicit
2 danceability 7942 non-null object
3 energy
                 7942 non-null object
4 speechiness
                 7942 non-null object
5 acousticness 7942 non-null object
   instrumentalness 7942 non-null object
                7942 non-null object
   liveness
8 valence
                 7942 non-null object
                7942 non-null object
9 tempo
10 artist_genres 7942 non-null object
11 release_date_year 7942 non-null object
dtypes: object(12)
memory usage: 744.7+ KB
None
```

Následne môžeme zobraziť aj popis dát. Popis dát môžeme vygenerovať pomocou metódy **describe** [14]. Tento popis obsahuje informácie o jednotlivých stĺpcoch, hlavne čo sa týka minimálnej/maximálnej hodnoty, priemernej hodnoty a štandardnej odchýlky. Pre lepšie grafické znázornenie si transponujeme popis pomocou metódy **transpose** [15]. Po spustení príkazu dostaneme nasledujúci výpis pre trénovacie dáta:

	count mean		std	min	25%	50%	75%	max
popularity 3877		36.069529335912314	23.334149952439876	0.0	17.0	39.0	54.0	100.0
explicit	38775.0	0.11901998710509348	0.3238162040653917	0.0	0.0	0.0	0.0	1.0
danceability	38775.0	0.56122178207608	0.18117987087854423	0.0	0.442	0.573	0.696	0.988
energy	38775.0	0.6063431720696326	0.2679868955872795	0.000355	0.434	0.658	0.827	1.0
speechiness	38775.0	0.0796450986460348	0.08011013213956729	0.0	0.0359	0.0473	0.0818	0.935
acousticness	38775.0	0.3069316460451321	0.3423029834422245	1.13e-06	0.0163	0.145	0.563	0.996
instrumentalness	38775.0	0.17109631016840746	0.3174206370710301	0.0	0.0	0.000188	0.11	0.997
liveness	38775.0	0.17236773178594458	0.13573121330246407	0.0104	0.0929	0.119	0.207	1.0
valence	38775.0	0.4537296840747905	0.2594408321306317	0.0	0.236	0.44	0.659	0.999
tempo	38775.0	121.00477462282399	29.74707714339013	0.0	97.0965	120.047	139.966	220.099
artist_genres	38775.0	30.89036750483559	9.211802215267499	0.0	26.0	33.0	37.0	47.0
release_date_year	38775.0	2009.4830174081237	12.851012263455063	1933.0	2004.0	2014.0	2019.0	2021.0

Tabuľka 2: Neškálovaný výstup metódy describe().transpose() na trénovacích dátach

	count	mean	std	min	25%	50%	75%	max
popularity 794		35.72777637874591	22.190085188804897	0.0	19.0	39.0	53.0	79.0
explicit	7942.0	0.07088894485016368	0.25665540415158083	0.0	0.0	0.0	0.0	1.0
danceability	7942.0	0.5486039410727777	0.17739583741290213	0.0593	0.433	0.561	0.679	0.968
energy	7942.0	0.5993172297909846	0.27589363094906316	0.000634	0.413	0.655	0.83	1.0
speechiness	7942.0	0.06178475195164945	0.045219335400928526	0.0224	0.0351	0.0445	0.0679	0.299
acousticness	7942.0	0.3202791207668093	0.35303894325986784	2.23e-06	0.0151	0.15	0.616	0.996
instrumentalness	7942.0	0.1958129268660287	0.3378053064912411	0.0	1.08e-06	0.000468	0.23175	0.995
liveness	7942.0	0.1523109166456812	0.09309202461901556	0.0172	0.091	0.115	0.186	0.498
valence	7942.0	0.4539270838579703	0.2651700218997727	0.0	0.233	0.437	0.669	1.0
tempo	7942.0	121.14611231427854	29.162198358622515	51.737	98.00425	120.0645	139.58275	215.993
artist_genres	7942.0	30.656509695290858	9.66388253604179	0.0	26.0	33.0	39.0	47.0
release_date_year	7942.0	2009.4007806597833	12.826083344024164	1956.0	2004.25	2014.0	2019.0	2021.0

Tabuľka 3: Neškálovaný výstup metódy describe().transpose() na testovacích dátach

Teraz nasleduje škálovanie dát, na čo použijeme **StandardScaler** [16]. Po škálovaní si spustíme tie isté príkazy a pozrieme sa na dáta.

	count	mean	std	min	25%	50%	75%	max
popularity	38775.0	2.428031269844314e-17	1.000012895155856	-1.5407967654099024	-0.8106945322778186	0.13414365177546622	0.7783515045390695	2.7539222530141196
explicit	38775.0	-3.2984575741281244e-17	1.0000128951557192	-0.34301694299322577	-0.34301694299322577	-0.34301694299322577	-0.34301694299322577	2.9153078890896573
danceability	38775.0	-2.2026366689455587e-16	1.0000128951559335	-3.0704260132659646	-0.6478125741274328	0.06407155719117884	0.742844798681018	2.3818338452052643
energy	38775.0	-6.192304352496533e-15	1.0000128951559162	-2.2423154627313	-0.6560605168725286	0.19707382948371815	0.8276513898339879	1.4656475097177901
speechiness	38775.0	-1.38168722827367e-15	1.000012895155932	-1.0246873735129653	-0.5458043183159481	-0.3986614801269205	0.03607872361338836	11.616220089089863
acousticness	38775.0	4.348649816201918e-15	1.0000128951559395	-0.9054454536484993	-0.8569946529149279	-0.47023245057518465	0.7802889988503918	1.9843873782276875
instrumentalness	38775.0	-7.817344450683655e-16	1.0000128951560192	-0.5461344846488055	-0.5461344846488055	-0.545504126676337	-0.15798302376894374	2.549761567328972
liveness	38775.0	1.6705221631814894e-14	1.0000128951559186	-1.1344248118224103	-0.5728442141788127	-0.39696830754073326	0.24134579377121562	5.58552874837232
valence	38775.0	1.4652481534849157e-15	1.0000128951559388	-1.7387063537483334	-0.8387892204651556	-0.05424607862853876	0.7879840589313594	2.1032475614221577
tempo	38775.0	6.5811558509576375e-15	1.0000128951559355	-4.056777814702577	-0.798858461114727	-0.03194900273723467	0.6360898358341314	3.3165095535588014
artist_genres	38775.0	-3.880726959783242e-16	1.0000128951559824	-3.6750736468563163	0.09633550846305466	0.2106206343818235	0.7820462639756676	1.6963272713258182
release_date_year	38775.0	5.46444471447226e-15	1.0000128951558909	-7.2144213086881885	-0.383713296069379	0.3669139580645561	0.7422275851315236	0.8923530359583107

Tabuľka 4: Škálovaný výstup metódy describe().transpose() na trénovacích dátach

	count	mean	std	min	25%	50%	75%	max
popularity	7942.0	-0.004577611104956143	0.9598015246829911	-1.5407967654099024	-0.7570105445475184	0.13414365177546622	0.7354043143548293	1.8520312591450752
explicit	7942.0	-0.0755241464031931	0.8944980556501224	-0.34301694299322577	-0.34301694299322577	-0.34301694299322577	-0.34301694299322577	2.9153078890896573
danceability	7942.0	-0.00367221720070985	0.9567724951625346	-2.727728303538168	-0.6478125741274328	0.04199763063866372	0.6986969455759878	2.2714642124426887
energy	7942.0	0.004949259527988197	1.0054888293848034	-2.2412805736763715	-0.6671883561728276	0.202637749133868	0.8461977886678194	1.4656475097177901
speechiness	7942.0	-0.17763815584848788	0.6314701396527233	-0.7250510484734908	-0.5551679534734317	-0.42407706126866157	-0.09501216859138156	2.9615458792443285
acousticness	7942.0	0.0009339632452177142	1.0133032635134087	-0.9054422620624335	-0.8641757215630215	-0.4905425437213077	0.8180077432646204	1.9843873782276875
instrumentalness	7942.0	0.0313088158099567	1.0259538501456913	-0.5461344846488055	-0.5461344846488055	-0.5448986103973641	-0.0003935306517198785	2.5435511439548946
liveness	7942.0	-0.16040994703913591	0.6395575531046509	-1.088248898110482	-0.585067250161382	-0.4173400341783493	0.0783719806702918	2.169869248798806
valence	7942.0	0.03125715739970195	1.0059122645134075	-1.6521758601634124	-0.796485423601416	-0.02732548062434067	0.84567105465464	2.1070933611370437
tempo	7942.0	0.023482704287044572	0.9687759474407661	-2.1291527601914866	-0.7375295084933792	-0.01754922952369423	0.6356958955890588	3.1847826409720708
artist_genres	7942.0	-0.04576542561499145	1.041658900226797	-3.6750736468563163	-0.2465198692932518	0.09633550846305466	0.7820462639756676	1.6963272713258182
release_date_year	7942.0	0.018895867511549865	0.9628825513626175	-3.9867241159122675	-0.383713296069379	0.3669139580645561	0.7422275851315236	0.8923530359583107

Tabuľka 5: Škálovaný výstup metódy **describe().transpose()** na testovacích dátach

V kóde vidíme, že na trénovacích dátach sme použili fit + transform (alebo fit_transform) a na testovacích len transform. Nemôžeme používať fit na testovacích dátach, aby náhodou nenastal Data Leakage [17], aby nám program nevedel dopredu aké sú presné dáta.

Následne sme vykreslili rôzne grafy, z ktorých sme dozvedeli rôzne informácie o naších dátach.

Najprv sme zistili rozloženie rôznych zakódovaných žánrov v trénovacích a testovacích dátach. Na túto úlohu sme používali **Count Plot** [18].

Obr. 11: Žánre v trénovacích dátach

Obr. 12: Žánre v testovacích dátach

Potom nás zaujímalo, ktoré sú najčastejšie použité slová v názvu skladieb. Na túto úlohu sme používali **Word Cloud** [19, 20].

Obr. 13: Word Cloud pre trénovacie dáta

Obr. 14: Word Cloud pre testovacie dáta

Boli sme zvedaví, ktoré sú najpopulárnejšie skladby, kvôli tomu sme usporiadali dáta podľa popularity a následne na základe počtu fanúšikov daného umelca. Na túto úlohu sme použili **Bar Plot** [21].

Obr. 15: Najpopulárnejšie skladby v Trénovacích Dátach

Obr. 16: Najpopulárnejšie skladby v Testovacích Dátach

Po zobrazení najpopulárnejších skladieb nás zaujalo, kde všade je dostupná najpopulárnejšia skladba z trénovacích a testovacích dát. Kvôli tomu pomocou balíčka **Spotipy** [22]

sme stiahli príslušné informácie. Dosiahnuté informácie sme preformátovali na štandardu ISO 3166-1 alpha-3, čo je vlastne reprezentácia krajín tromi písmenami. Následne tieto údaje sme zobrazili na Choropleth Mape [23].

Obr. 17: Dostupnosť najpopulárnejšej pesničky z trénovacích dát

Obr. 18: Dostupnosť najpopulárnejšej pesničky z testovacích dát

Tým pádom sme spoznali naše dáta a môžeme prejsť na rôzne modely strojového učenia a môžeme predpovedať hlasitosť skladieb.

2.3 Neurónová Sieť (Neural Network)

Z prvého zadania už máme skúsenosti s Neurónovými sietami, takže aj v tomto prípade sme ich vyskúšali. Ale v tomto zadaní, sem ich používali na regresnú úlohu, takže menili sme aktivačné a evaluačné funkcie. Na túto úlohu, sme používali nasledujúcu štruktúru.

Learning Rate	Activation Function	Layers	Neurons	Batch Size	Patience
0.001	Relu	3	64	1024	25

Na nižšie uvedenom obrázku vidíte priebeh trénovania. Keďže sme mali regresnú úlohu, úspešnosť sme ani nemerali, totiž úspešnosť sa počíta len pri klasifikačných úlohách.

Obr. 19: Priebeh trénovania

Dosiahli sme nasledujúce výsledky.

```
Neural Network - Mean Absolute Error (MAE):

1.6577391135526884

Neural Network - Mean Squared Error (MSE):

5.076282240881297

Neural Network - Root Mean Square Error (RMSE):

2.253060638527356

Neural Network - R2 Score:

0.8748374898282059
```

2.4 Náhodný Les Regressor (Random Forest Regressor)

V tejto časti zadania sme vyskúšali prácu s Náhodným Les Regressorom. Na túto úlohu sme použili RandomForestRegressor [24]. Vlastnosť n_estimators (čo je počet

stromov v danom lese) sme nastavili na 100. Po vytvorení a natrénovaní sme si vybrali jeden strom, ktorý sme potom exportovali do svg súboru (ktorá nám tiež kvôli veľkosti sa nezmestí do dokumentácie, ale program Vám to vygeneruje). Dosiahli sme nasledujúce výsledky.

```
Random Forest Regressor - Mean Squared Error (MSE) from Cross Validation:
[4.17396339 4.27635781 4.33212575 4.37007134 4.4098394 ]

Random Forest Regressor - R2 Score from Cross Validation:
[0.88963626 0.87576482 0.88051305 0.87967785 0.87945343]

Random Forest Regressor - Error Values for Predicted Values:

Mean Absolute Error (MAE):
1.5618058587257617

Mean Squared Error (MSE):
4.4612442852317935

Root Mean Square Error (RMSE):
2.112165780716986

R2 Score:
0.889030182732353
```

Po exporte sme boli zvedaví, že ktorá vlastnosť našich dát je najsilnejšia v tejto časti zadania. Na nižšie uvedenom obrázku vidíte výsledky.

Obr. 20: Sila vstupných príznakov

Random Forest Regressor Feature Importance:

Feature energy: 0.8338375191705992

Feature instrumentalness: 0.03529426358218532
Feature release_date_year: 0.026503656515352844

Feature danceability: 0.015750342350729668
Feature speechiness: 0.015243671765562142
Feature valence: 0.014848327887322148

Feature acousticness: 0.014362140266718719

Feature tempo: 0.01320078253366416

Feature liveness: 0.01223401589071116

Feature popularity: 0.010373246846301113

Feature artist_genres: 0.008003874431146328

Feature explicit: 0.0003481587597071529

Obr. 21: Reziduály pre Náhodný Les Regressor

2.5 Mechanizmus podporných vektorov (Support Vector Machine)

2.5.1 Predvolené nastavenia

Na začiatku sme vyskúšali zo zaujímavosti, že bez nastavovania aké hodnoty môžeme dosiahnuť. Teda všetky hodnoty sú defaultné, s ktorými sme dosiahli nasledujúce výsledky.

```
Mean Squared Error (MSE) from Cross Validation:
[5.10440214 5.13760479 5.2198723 5.06404368 5.17586937]

R2 Score from Cross Validation:
[0.86503453 0.85074418 0.85602758 0.86057055 0.85851337]

Error Values for Predicted Values:

Mean Absolute Error (MAE) :
1.6775507309368922

Mean Squared Error (MSE) :
5.469948907128103

Root Mean Square Error (RMSE) :
2.338792189812533

R2 Score :
0.863939476998213
```


Obr. 22: Reziduály pre Mechanizmus podporných vektorov

2.5.2 Grid Search

Grid Search je metóda, ktorá sa používa na vyhľadanie najoptimálnejších nastavení pre modely. V tomto zadaní, sme využili už vopred vytvorenú metódu **GridSearchCV** [25]. Použili sme nasledujúce parametre.

```
'C': [0.1, 1, 100]
'gamma': [0.1, 0.01, 'scale']
'epsilon': [0.1, 0.01, 0.001]

Grid Search Completed in: 5:29:12.299380
```

Potom pomocou tejto metódy sme našli konfiguráciu, s ktorým sme dosiahli 0.875 R2 Score. Upravený výpis celého procesu nájdete v súbore **grid_search_output.txt**.

\mathbf{C}	gamma	epsilon	
100	'scale'	0.1	

Tabuľka 6: Výstup metódy SupportVectorMachine.grid_search

Podrobnejšie výsledky nájdete nižšie.

```
Mean Squared Error (MSE) from Cross Validation:
[4.7869756 4.81861617 4.78283611 4.76204603 4.99659337]

R2 Score from Cross Validation:
[0.87342761 0.86001132 0.86808174 0.86888552 0.86341403]

Error Values for Predicted Values:

Mean Absolute Error (MAE) :
1.6386806462472463

Mean Squared Error (MSE) :
5.012881014241868

Root Mean Square Error (RMSE) :
2.238946407183939

R2 Score :
0.8753086684859772
```

2.5.3 Súborové učenie

Na konci tohto zadania sme vyskúšali rôzne formy súborového učenia. Vyskúšali sme metódy Bagging a Boosting.

2.5.3.1 Bagging

Pre túto podúlohu sme používali **BaggingRegressor** [26]. Používali sme predvolené nastavenia, s ktorými sme dosiahli nasledujúce výsledky.

Bagging Regression Completed in: 0:01:51.206870

```
Support Vector Machine Bagging - Mean Squared Error (MSE) from Cross Validation:

[5.1114392 5.13021003 5.21567702 5.07464629 5.18232111]

Support Vector Machine Bagging - R2 Score from Cross Validation:

[0.86484847 0.85095901 0.85614329 0.86027863 0.85833701]

Support Vector Machine Bagging - Error Values for Predicted Values:

Mean Absolute Error (MAE):

1.678529484387738

Mean Squared Error (MSE):

5.471103727304714

Root Mean Square Error (RMSE):

2.339039060662458

R2 Score:

0.8639107517870875
```

2.5.3.2 Boosting

Pre túto podúlohu sme používali **AdaBoostRegressor** [27]. Používali sme predvolené nastavenia, s ktorými sme dosiahli nasledujúce výsledky.

Boosting Regression Completed in: 2:01:05.449453

Support Vector Machine Boosting - Mean Squared Error (MSE) from Cross Validation:

[5.15004508 5.53150892 5.43760894 5.6269076 5.35181158]

Support Vector Machine Boosting - R2 Score from Cross Validation:

[0.86382769 0.83930063 0.85002205 0.8450731 0.85370385]

Support Vector Machine Boosting - Error Values for Predicted Values:

Mean Absolute Error (MAE):

1.7885010064546343

Mean Squared Error (MSE):

5.728641134946084

Root Mean Square Error (RMSE):

2.3934579868771637

R2 Score:

0.857504718573405

Záver

V tomto zadaní sme sa snažili dosiahnuť čo najlepšie výsledky s rôznymi spôsobmi. Snažili sme sa dosiahnuť čo najnižšiu MSE hodnotu a naopak čo najvyššiu R2 hodnotu. Nižšie v tabuľke vidíte sumár dosiahnutých výsledkov. Na základe týchto hodnôt vieme povedať, že zo všetkých možností Náhodný Les Regressor bol najúspešnejší model zo všetkých.

Model	Mean Squared Error	R2 Score	
Neural Network	5.076282240881297	0.8748374898282059	
Random Forest Regressor	4.4612442852317935	0.889030182732353	
Support Vector Machine (Default Settings)	5.469948907128103	0.863939476998213	
Support Vector Machine (Grid Search)	5.012881014241868	0.8753086684859772	
Support Vector Machine (Bagging)	5.471103727304714	0.8639107517870875	
Support Vector Machine (Boosting)	5.728641134946084	0.857504718573405	

Zoznam použitej literatúry

- 1. pandas [online] [cit. 2021-11-17]. Dostupné z : https://pandas.pydata.org/.
- 2. Matplotlib [online] [cit. 2021-11-17]. Dostupné z : https://matplotlib.org/.
- 3. Seaborn Statistical Data Visualization [online] [cit. 2021-11-17]. Dostupné z : https://seaborn.pydata.org/.
- 4. scikit-learn [online] [cit. 2021-11-17]. Dostupné z : https://scikit-learn.org/stable/.
- 5. Tensorflow [online] [cit. 2021-11-17]. Dostupné z : https://www.tensorflow.org/.
- 6. Keras Simple. Flexible. Powerful. Dostupné tiež z: https://keras.io/.
- 7. pandas.read_csv [online] [cit. 2021-11-17]. Dostupné z : https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html.
- 8. pandas.DataFrame.info [online] [cit. 2021-11-17]. Dostupné z : https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.info.html.
- 9. seaborn.pairplot [online] [cit. 2021-11-17]. Dostupné z : https://seaborn.pydata.org/generated/seaborn.pairplot.html.
- 10. seaborn.histplot [online] [cit. 2021-11-17]. Dostupné z : https://seaborn.pydata.org/generated/seaborn.histplot.html.
- 11. BROWNLEE, Jason. 4 automatic outlier detection algorithms in Python [online]. 2020-08-17 [cit. 2021-11-17]. Dostupné z: https://machinelearningmastery.com/model-based-outlier-detection-and-removal-in-python/.
- 12. BADR, Will. 5 ways to detect outliers that every data scientist should know (python code) [online]. Towards Data Science, 2019-03-05 [cit. 2021-11-17]. Dostupné z: https://towardsdatascience.com/5-ways-to-detect-outliers-that-every-data-scientist-should-know-python-code-70a54335a623.
- 13. sklearn.ensemble.IsolationForest [online] [cit. 2021-11-17]. Dostupné z : https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html.
- 14. pandas.DataFrame.describe [online] [cit. 2021-11-17]. Dostupné z : https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.describe.html.
- 15. pandas.DataFrame.transpose [online] [cit. 2021-11-17]. Dostupné z : https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.transpose.html.

- 16. sklearn.preprocessing.StandardScaler [online] [cit. 2021-11-17]. Dostupné z : https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. StandardScaler.html.
- 17. BROWNLEE, Jason. Data Leakage in Machine Learning [online]. 2020-08-15 [cit. 2021-11-17]. Dostupné z : https://machinelearningmastery.com/data-leakage-machine-learning/.
- 18. Seaborn.countplot [online] [cit. 2021-11-17]. Dostupné z : https://seaborn.pydata.org/generated/seaborn.countplot.html.
- 19. Wordcloud [online] [cit. 2021-11-17]. Dostupné z : https://pypi.org/project/wordcloud/.
- 20. Python word clouds: How to create a word cloud [online] [cit. 2021-11-17]. Dostupné z:https://www.datacamp.com/community/tutorials/wordcloud-python.
- 21. Seaborn.barplot [online] [cit. 2021-11-17]. Dostupné z : https://seaborn.pydata.org/generated/seaborn.barplot.html.
- 22. Welcome to spotipy! [Online] [cit. 2021-11-17]. Dostupné z : https://spotipy.readthedocs.io/en/2.19.0/.
- 23. PLOTLYGRAPHS. *Choropleth maps* [online]. plotlygraphs [cit. 2021-11-17]. Dostupné z:https://plotly.com/python/choropleth-maps/.
- 24. sklearn.ensemble.RandomForestRegressor [online] [cit. 2021-11-17]. Dostupné z : https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. RandomForestRegressor.html.
- 25. sklearn.model_selection.GridSearchCV [online] [cit. 2021-11-17]. Dostupné z : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html.
- 26. sklearn.ensemble.BaggingRegressor [online] [cit. 2021-11-17]. Dostupné z : https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html.
- 27. sklearn.ensemble.AdaBoostRegressor [online] [cit. 2021-11-17]. Dostupné z: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html.

28. KARAGIANNAKOS, Sergios. Best practices to write Deep learning code: Project structure, OOP, type checking and documentation [online]. Sergios Karagiannakos, 2020-06-17 [cit. 2021-11-17]. Dostupné z: https://theaisummer.com/best-practices-deep-learning-code/.

Prílohy

A	Štruktúra projektu	II
В	Používateľská príručka	V

A Štruktúra projektu

Inšpiráciu pre projektovú štruktúru sme našli na webovej stránke AI Summer [28].

configs

```
\cdotKonfiguračné súbory
```

```
/config.py
```

· Hlavný konfiguračný súbor

data

```
· Dátové súbory
```

```
/spotify_test.csv
```

· Testovacie dáta

```
/spotify_train.csv
```

· Trénovacie dáta

dataloader

· Čítač dát

/dataloader.py

· Čítač dát

executor

· Spúšťač

```
/support_vector_machine_project.py
```

· Spúšťač zadania

models

· Modely Strojového Učenia

```
/neural\_network.py
```

· Neurónová Siet

```
/support_vector_machine.py
```

· Mechanizmus podporných vektorov

ops

· Operácie

```
/api_caller.py
```

· Zavolávač API

```
/evaluator.py
     · Evaluátor
  /plotter.py
     · Vykresľovač grafov
output
  · Výstupy
  /plots
     \cdot Grafy
     /bar_plots
       · Stĺpcové Grafy
     /choropleth
        · Choropleth Mapy
     /count_plots
        · Count Ploty
     /decision_trees
        · Rozhodovacie Stromy
     /heatmaps
        \cdot Heatmapy
     /histograms
        \cdot Histogramy
     /neural_network
        · Neurónové Siete
     /pair_plots
        · Pair Ploty
     /residual
        · Reziduály
     /word_clouds
        · Word Cloudy
  /processing_steps
     · Pomocné tabuľky
  /grid_search_output.txt
     · Výstup funkcie Grid Search
```

```
utils
```

```
· Utilitné funkcie
/setup.py
· Setup metódy

/I-SUNS__-_Support_Vector_Machine_Project.pdf
· Dokumentácia - tento dokument

/main.py
· Hlavný program

/Support_Vector_Machine_Project
· Bash Script

/Support_Vector_Machine_Project.ps1
· PowerShell Script

/requirements.txt
· Zoznam požiadnaých balíčkov
```

B Používateľská príručka

V tejto časti práce prejdeme spôsoby, ktoré nám umožňujú spúšťať túto aplikáciu. Treba špecifikovať, ktorý skript chceme spustiť na základe operačného systému.

Linux

\$./Support_Vector_Machine_Project

Windows

> .\Support_Vector_Machine_Project.ps1

Po behu týchto skriptov by som Vám odporúčal projekt spúšťať v PyCharme s vygenerovaným virtuálnym prostredím a nastaveným Spotify Client ID-m a Secretom.

