Коллоквиум по Математическому анализу-2, семестр 2

Виноградова Дарья, Залялов Александр, Миронов Алексей, Стрельцов Артём, Т

Содержание

1	Пространство кусочно-непрерывных функций на отрезке как пример евклидова пространства. Неравенство Коши-Буняковского на этом пространстве (б.д.). Ортогональные и ортонормированные системы в евклидовом пространстве. Главный пример: $C([-\pi;\pi])$	2
2	Задача о наилучшем приближении элемента евклидова пространства элементом конечномерного пространства (б.д.). Ряд Фурье по произвольной ортонормированной системе. Ряд Фурье по тригонометрической системе.	2
3	Неравенство Бесселя (идея доказательства). Определения замкнутой и полной ортонормированных систем (OHC). Тождество Парсеваля для замкнутой OHC.	3
4	Бывают ли замкнутые ортонормированные системы, но не полные?	3
5	Дайте определение свертки двух функций $f,g:\mathbb{R}^n \to \mathbb{R}$. Докажите, что операция свертки коммутативна. Дайте определение свертки двух 2π периодических функций $f,g:\mathbb{R} \to \mathbb{R}$.	3
6	Дайте определения ядра Дирихле и ядра Фейера. Какой смысл у свертки произвольной периодической функции с этими ядрами? (б.д.)	4
7	Сформулируйте (б.д.) теоремы о приближении 2π периодической функции тригонометрическими многочленами: о сходимости ядра Фурье в точке, и о приближении функции тригонометрическими многочленами в различных функциональных метриках.	4

Пространство кусочно-непрерывных функций на отрезке как пример евклидова пространства. Неравенство Коши-Буняковского на этом пространстве (б.д.). Ортогональные и ортонормированные системы в евклидовом пространстве. Главный пример: $C([-\pi;\pi])$

Напомним, что евклидово пространство - это векторное пространство над полем вещественных чисел со скалярным произведением.

Свойства скалярного произведения:

1.
$$\langle u, v \rangle = \langle v, u \rangle$$

2.
$$\langle \lambda_1 u_1 + \lambda_2 u_2, v \rangle = \lambda_1 \langle u_1, v \rangle + \lambda_2 \langle u_1, v \rangle$$

3.
$$\langle v,v\rangle \geq 0$$

3'.
$$\langle v, v \rangle = 0 \Rightarrow v = 0$$

Рассмотрим векторное пространство $V = \hat{C}([a;b])$ - множество кусочно-непрерывных функций на [a;b] (имеющих конечное число точек разрыва первого рода), обладающих также следующим свойством:

$$f(c) = \frac{1}{2} (\lim_{x \to c-0} f(x) + \lim_{x \to c+0} f(x))$$

Определим на \hat{C} скалярное произведение $\langle f,g \rangle = \int\limits_{a}^{b} f(x)g(x)dx$ и проверим свойства, чтобы показать его корректность.

1-3 очевидны. З' сначала рассмотрим для непрерывной на отрезке функции. От противного: пусть на отрезке существует какая-то точка c, в которой функция принимает ненулевое значение. Тогда $f^2(c)>0$. В силу непрерывности есть такая окрестность $(c - \delta; c + \delta)$, в которой $f^2(x) \ge \epsilon > 0$.

$$\int_{a}^{b} f^{2}(x) \ge \int_{c-\delta}^{c+\delta} f(x) \ge 2\delta\epsilon > 0$$

Для \hat{C} отрезок разваливается на конечное число отрезков непрерывности, применим к ним предыдущее.

Теорема. (неравенство Коши-Буняковского) $\langle f,g \rangle^2 \leq \langle f,f \rangle \cdot \langle g,g \rangle$

Для нашего пространства оно имеет вид
$$\int\limits_a^b f(x)g(x)dx \leq \int\limits_a^b f^2(x)dx \int\limits_a^b g^2(x)dx$$

Определение. Множество элементов $\psi_i \in V$ называется *ортогональной* системой, если для любой пары $\langle \psi_i, \psi_j \rangle =$ 0. Если при этом $\|\psi_i\| = 1 \ \forall i$, то система *отронормирована*.

В $C([-\pi;\pi])$ следующая система является ортонормированной: $\{\frac{1}{\sqrt{2\pi}},\frac{1}{\sqrt{\pi}}\cos x,\frac{1}{\sqrt{\pi}}\sin x,\frac{1}{\sqrt{\pi}}\cos 2x,\cdots\}$

$$\|\frac{1}{\sqrt{\pi}}\cos kx\| = \frac{1}{\sqrt{\pi}}\sqrt{\int\limits_{-\pi}^{\pi}\cos^2(kx)dx} = \frac{1}{\sqrt{2\pi}}\sqrt{\int\limits_{-\pi}^{\pi}\cos(2kx)+1} = \frac{1}{\sqrt{2\pi}}\sqrt{2\pi} = 1$$
 Любая функция с cos ортогональна любой с sin в силу нечетности. Проверим ортогональность двух функций

$$\langle \frac{1}{\sqrt{\pi}} \cos(kx), \frac{1}{\sqrt{\pi}} \cos(lx) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) \cos(lx) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\cos((k+l)x) + \cos((k-l)x)) dx = 0$$

Остальное оставим в качестве упражнения для пытливого читателя.

Задача о наилучшем приближении элемента евклидова пространства 2 элементом конечномерного пространства (б.д.). Ряд Фурье по произвольной ортонормированной системе. Ряд Фурье по тригонометрической системе.

Пусть имеется ортонормированная система $\{\psi_i\}$ в векторном пространстве V. Хотим найти наилучшее приближение элемента f этого пространства вида $\sum c_k \psi_k$ (т.е. $||f - \sum c_k \psi_k|| \to min$). Утверждается, что $c_k = \langle f, \psi_k \rangle$.

Определение. Ряд Фурье по произвольной ортонормированной системе $\{\psi_i\}$ - это сумма вида $\sum c_k \psi_k$

Определение. Ряд Фурье по тригонометрической системе - это сумма вида $\frac{f_0}{\sqrt{2\pi}} + \sum \frac{f_k}{\sqrt{\pi}} cos(kx) + \frac{\hat{f}_k}{\sqrt{\pi}} sin(kx)$, где $f_0 = \frac{1}{\sqrt{2\pi}} \int\limits_{-\pi}^{\pi} f(x) dx$, $f_k = \frac{1}{\sqrt{\pi}} \int\limits_{-\pi}^{\pi} f(x) cos(kx)$, $\hat{f}_k = \frac{1}{\sqrt{\pi}} \int\limits_{-\pi}^{\pi} f(x) cos(kx) dx$

Обычно ряд Фурье записывают как $\frac{a_0}{2}+\sum a_k cos(kx)+b_k sin(kx),$ где $a_0=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)dx,~a_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)cos(kx),b_k=\frac{1}{\pi}\int\limits_{-\pi}^{\pi}f(x)cos(kx)dx$

3 Неравенство Бесселя (идея доказательства). Определения замкнутой и полной ортонормированных систем (ОНС). Тождество Парсеваля для замкнутой ОНС.

Теорема. (неравенство Бесселя) $\sum_{i=1}^{\infty} f_k^2 \le \|f\|^2$, где f - элемент векторного пространства V c ортонормированной системой $\{\psi_i\}$, $f_i = \langle f, \psi_i \rangle$

Доказатель ство.
$$0 \le \|f - \sum_{i=1}^n f_i \psi_i\|^2 = \|f\|^2 - \sum_{i=1}^n \|\langle f, \psi_i \rangle\|^2 = \|f\|^2 - \sum_{i=1}^n f_i^2$$
 ограничена сверху \Rightarrow сходится. Переходим к пределу, получаем требуемое.

Определение. Ортонормированная система замкнута, если $\forall \epsilon > 0 \ \exists n \in \mathbb{N} \ \exists c1, \cdots, c_n \ \|f - \sum_{i=1}^n c_k \psi_k\| < \epsilon$

Определение. Ортонормированная система *полна*, если [$\forall k \in \mathbb{N} \ \Rightarrow f \perp \psi_k$] $\Rightarrow f \equiv 0$

Теорема. (тождество Парсеваля) Для замкнутой ОНС $\sum_{i=1}^{\infty} f_k^2 = \|f\|^2$

Доказатель ство. Зафиксируем ϵ . Из определения замкнутости $\exists n \in \mathbb{N} \ \exists c1, \cdots, c_n \ \|f - \sum_{i=1}^n c_k \psi_k\| < \epsilon$. Из неравенства Бесселя $\|f\|^2 - \sum_{i=1}^n f_i^2 \le \|f - \sum_{i=1}^n c_k \psi_k\|^2 \le \epsilon^2$. Тогда для $m \ge n$ и подавно $\|f\|^2 - \sum_{i=1}^m f_i^2 \le \|f - \sum_{i=1}^n c_k \psi_k\|^2 \le \epsilon^2$ Значит, $\forall \epsilon > 0 \ \exists n \in \mathbb{N} \ \forall m \ge n \ \|f\|^2 - \sum_{i=1}^m f_i^2 \le \epsilon^2$, и из этого и следует равенство в пределе.

4 Бывают ли замкнутые ортонормированные системы, но не полные?

Не бывает. Пусть $\forall i \ f \perp \psi_i$. Значит, $f_i=0$. В силу замкнутости справедливо тождество Парсеваля. то есть $\|f\|^2=\sum_{i=1}^\infty f_i=0$

5 Дайте определение свертки двух функций $f,g:\mathbb{R}^n \to \mathbb{R}$. Докажите, что операция свертки коммутативна. Дайте определение свертки двух 2π -периодических функций $f,g:\mathbb{R} \to \mathbb{R}$.

Определение. $Ceepm \kappa o \ddot{u}$ функций $f,g:\mathbb{R}^n \to \mathbb{R}$ называется $(f*g)(t) = \int\limits_{\mathbb{R}^n} f(x)g(t-x)dx$

Теорема. $(f * g) \equiv (g * f)$

Доказатель ство. Положим $\tau=t-x$. $\int\limits_{\mathbb{R}^n} f(x)g(t-x)dx = -\int\limits_{\mathbb{R}^n} f(\tau-t)g(\tau)d\tau = \int\limits_{\mathbb{R}^n} f(t-\tau)g(\tau)d\tau$

Определение. Сверткой 2π -периодических функций $f,g:\mathbb{R}\to\mathbb{R}$ называется $(f*g)(t)=\int\limits_{-\pi}^{\pi}f(x)g(t-x)dx$

6 Дайте определения ядра Дирихле и ядра Фейера. Какой смысл у свертки произвольной периодической функции с этими ядрами? (б.д.)

Определение. Ядром Дирихле называется $D_n(t) = \frac{\sin[(n+\frac{1}{2})t]}{2\sin\frac{t}{2}}$

Обозначим $S_n(x,f) = \frac{a_0}{2} + \sum_{k=1}^n a_k cos(kx) + b_k sin(kx)$, где f - 2π -периодическая и интегрируемая на $[-\pi;\pi]$. Тогда справедливо $S_n(x,f) = \frac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x+t) D_n(t) dt$ - то есть свертка с ядром Дирихле дает нам n-ю частичную сумму ряда Фурье.

Определение. \mathcal{A} дром Φ ейера называется $\Phi_n(t)=rac{\sin^2(rac{t_n}{2})}{2\sin^2rac{t}{2}}$

Обозначим $\sigma_n(x,f)=\frac{S_0(x,f)+\cdots+S_{n-1}(x,f)}{n}$ - среднее арифметическое ряда Фурье. Для f с теми же свойствами будет верно $\sigma_n(x,f)=\frac{1}{n\pi}\int\limits_{-\pi}^{\pi}f(x+t)\Phi_n(t)dt$

7 Сформулируйте (б.д.) теоремы о приближении 2π периодической функции тригонометрическими многочленами: о сходимости ядра Фурье в точке, и о приближении функции тригонометрическими многочленами в различных функциональных метриках.

Теорема. Если 2π -периодическая функция имеет в точке производную слева и справа, то ряд Фурье в ней сходится к среднему арифметическому этих производных.

Заметим, что в условиях данной теоремы функция может быть разрывной.

Еще раз напомним, что $\sigma_n(x,f) = \frac{S_0(x,f) + \dots + S_{n-1}(x,f)}{n}$

Теорема. Пусть f - непрерывная 2π -периодическая функция. Тогда $\sigma_n \to f$ на $[-\pi,\pi]$ в смысле метрики d_∞

Теорема. Пусть f - кусочно-непрерывная. Тогда ее можно приблизить тригонометрическим многочленом в смысле метрики d_2 .