第 33 届全国部分地区大学生物理竞赛试卷

北京物理学会编印

2016年12月11日

北京物理学会对本试卷享有版权,未经允许,不得翻印出版或用本试卷进行商业活动,违者必究。

题号					
	1 ~ 10	11	12	13	14
分数					
阅卷人					
题号	=				
	15	16	17	总分	
分数				· · · · · · · · · · · · · · · · · · ·	
阅卷人					,

答题说明:前14题是必做题,满分是120分;文管组和农林医组只做必做题;除必做题外,非物理B组限做15题,满分140分;非物理A组限做15、16题,满分160分;物理组限做15、17题,满分160分。请同学们自觉填上与准考证上一致的考生类别,若两者不符,按废卷处理。请各组考生按上述要求做题,多做者不加分,少做者按规定扣分。

一、填空题(必做,共10题,每题2空,每空3分,共60分)

1. 如图所示,高H、倾角 30°的光滑斜面顶端A处 有两个质点。质点 1 以初速度 v_1 水平朝左抛出,质点 2 同时以初速度 v_2 沿斜面下滑。设质点 1、2 同时到达斜面底端 B 处,则 $v_1 = ______$, $v_2 = ______$

2. 质量 $m = 0.5 \, \text{mg}$ (毫克)的跳蚤,腿长 $l = 0.4 \, \text{mm}$ 。开始时身体和腿都贴在地面上,起跳的过

程中腿向上伸展,最终以v=1 m/s 竖直向上的速度离开地面。过程中跳蚤整体向上加速度处理为常量,过程所经时间为_____s (秒),过程中腿的平均输出功率为

W(瓦)。(答案均取1位有效数字)

3. 质量 m、长度 2l 的匀质细杆 OAB,开始时如图所示,处于水平静止状态。将细杆自由释放后,细杆可绕着通过 A 端的水平光滑固定转轴摆动。细杆 B 端刚到达最低处时,转轴提供的向上支持力 N=____。若 B 端到达最低位置后瞬间,细杆中央 A 处突然断开,杆的下半段继续运动,转过 180° 后 A 端恰好着地,则转轴 O 距水平地面高度力 h=____。

4. 参考多普勒效应示意图,波源 S 的振动频率为 ν_0 。 S 朝着接收者 B 运动,在介质参考系中速度大小为 ν_S : 机械波在介质中的传播速度为u,接收者 B 朝着 S 运动在介质参考系中速度大小为 ν_B 。则当 $u>\nu_S>0$, $\nu_B=0$ 时,B 的接

女频率 $\nu_{_1}=$
. 理想气体平衡态的麦克斯韦速度分布函数 $f_M(\vec{v})$ 和速率分布函数 $F_M(v)$ 分别
b。设大气温度处处为T,将地
面大气压强记为 p_0 ,则距地面高度为 h 处大气压强 $p(h) =$
. 热力学第二定律的克劳修斯表述为
· · · · · · · · · · · · · · · · · · ·
到有匀强磁场,磁感应强度方向垂直图平面朝里,大小为 B。一
下比荷(电量与质量之比)为 γ 的带正电光滑球 P ,绕着 S 在此 \times
P面做半径为 R_0 的逆时针方向匀速圆周运动,则运动速率 v_0 取 $\begin{pmatrix} S & R_0 \end{pmatrix}$ $\begin{pmatrix} S & R_0 \end{pmatrix}$
直的可能范围为。取消磁场 \vec{B} , 若 P 仍可以相同 \times \times \times
imes $ imes$ $ im$
功,则 <i>R</i> =。
. 如图所示,每边长为 a 的等边三角形区域内有匀
虽磁场,磁感应强度 B 的方向垂直图平面朝外。每
Δ 长为 α 的等边三角形导体框架 ABC ,在 $t=0$ 时
合好与磁场区的边界重合,而后以周期 T 绕其中心 $a = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$ $a = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$
品顺时针方向匀速旋转,于是在框架 ABC 中有感应
自流。规定电流按A−B−C−A方向流动时电流
虽度取为正,反向流动时取为负。设框架 ABC 的总
自阻为 R ,则从 $t=0$ 到 $t_1=T/6$ 时间内平均电流 B a
虽度 $\overline{I}_1 = \underline{\hspace{1cm}}; \; \mathcal{M} \; t = 0 \; \mathfrak{I} \; t_2 = T/2$
可问内平均电流强度 $\overline{I}_2 = $ 。
. 如图 1 所示,三条边长各为 l_1 、 l_2 、 l_3 的均匀长方体电阻 l_2
\mathbf{k} ,电流从左侧表面 \mathbf{k} 均匀流到右侧表面 \mathbf{k} ,已测得其电阻为 \mathbf{k}
$R_{AB}=10\Omega$ 。若将其各边长都增大一倍,则此时相应的电阻 图 1
R _{AB1} =。如图 2 所示,每边长为 l 的匀质正方形
电阻薄平板,已测得 A' 、 B' 两端间电阻 $R'_{AB}=5\Omega$ 。若将每边 B' I
\leq 都增为 $2l$,质材不变,则此时相应的电阻 $\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
$R'_{AB2} = \underline{}$
0. 如图所示,一艘无人飞船和一颗彗星相对地面参考系,分 A' A'
别以 $0.6c$ 和 $0.8c$ 的速度面对面地运动。地面系时钟读数 $t_s=$
时,恰好飞船时钟读数也为 $t=0$ 。地面系认为 $t_s=$
$S_{\rm S}$ ($S_{\rm S}$ 表示秒)时,飞船会与彗星相撞。飞船则认为 $t=$ 飞船 $0.6c$ $0.8c$ 彗星
$_{}$ s时,自己会与彗星相撞,而且飞船在 $t=0$ 时 \longrightarrow \longleftrightarrow \longleftrightarrow
人为彗星与它相距cs(光秒)。

地面

考场

二、计算题(必做,共4题,每题15分,共60分)

11. (15 分) 如图所示,两块相同的平面镜之间的夹角为 $\pi - 2\alpha$,其中 α 为每一块平面镜与空间 σ 平面之间的夹角。在两个平面镜夹角的角平分面上放置单色线光源S,它与两平面镜交线的距离为d=20cm。图中屏幕M与平面 σ 平行且被放置在足够远处(解答时处理为无穷远),设 $\alpha=0.1$ rad,光源S发出的光线不能直射到M上,试问平面镜宽度 α 最小为多少时,在M上必能有干涉图样?(结果保留一位有效数字)

- 12. (15 分)某单原子分子理想气体的压缩过程如图中左下方的过程曲线所示。将此过程每一个状态的压强量朝上平移 p_0 量,保持体积不变,平移所得曲线恰好是温度为 T_0 的等温压缩线。
- (1) 试导出左下方过程曲线内含的吸热区域(定义为其中每一个无穷小过程都是吸热过程的区域)和放热区域(其中每一个无穷小过程都是放热的区域),要求这两类区域均取坐标量 p 的取值范围来界定。
- (2)将吸、放热区域的转换点记为A,它在 T_0 等温 U 线上对应的点已在图中记为B。从A点朝右作等压线,后者与 T_0 等温线交于图中C点,试 求图中热循环过程 ABCA 的效率 η_{ABCA} 。(取 $\ln \frac{5}{3} = 0.51$,答案取 1 位有效数值)

13. (15 分)施特恩-盖拉赫实验装置如图所示,炉中的银蒸汽经准直缝后形成银原子细束,经过一个抽成真空的不均匀磁场区域,磁场沿垂直于原子束的 z 轴方向,最后到达照相底片形成两条对称的分立痕迹. 银原子由原子核与内层电子所形成的"原子实"和最外层的一个价电子组

成,炉中银蒸汽中的银原子处于基态,原子实是球对称的,价电子绕核运动的轨道角动量等于0,对磁矩没有贡献,因此银原子的磁矩就是价电子的自旋磁矩 $\bar{\mu}$,实验结果表明:电子自旋磁矩在z轴方向上的分量只有两个值 $\pm \mu_B$,其中 μ_B 被称为玻尔磁子。

设实验中炉温恒为 T,银原子以该温度下的平均速率通过准直缝,沿银原子束方向的 磁极长度为 L,横向(即图中 z 轴方向)不均匀磁场梯度的大小最大为 G. 忽略重力, <u>不计</u> **照相底片与磁铁间的距离**,求银原子到达照相底片上的痕迹偏离中心的最大距离.

- 14.(15分)请按顺序解答下面两个问题。
- (1) 质量为M、半径为R、厚度可忽略的圆盘,沿着它的某一直径开成一条很窄的光滑通道。假设通道中的一个自由质点能够仅在圆盘万有引力作用下作简谐振动,且振动中心即为圆心,试给出圆盘的一种面密度分布。
- (2) 保留(1) 中原圆盘通道,但使质量面密度增加 1 倍成为质量等于 2M 的新圆盘,再将新圆盘割分为半径为 R' 的小圆盘与内、外半径分别为 R' 、R 的圆环,使得两者质量均为 M 。引入三个时间量如下:
- T_1 : 自由质点从(1)中原圆盘直径通道的一个端点自静止出发形成的振动周期;
- T_2 :自由质点从新圆盘直径通道位置的一个端点自静止出发,在取走圆环后,即仅在小圆盘万有引力作用下形成的振动的周期;
- T_3 :自由质点从新圆盘直径通道位置的一个端点自静止出发,在取走小圆盘后,即仅在圆环的万有引力作用下形成的振动周期。
- 请分析地用等号或不等号建立 $T_1 \, , \, T_2 \, , \, T_3$ 间的大小关系。
- (做数值判断时,可用如下近似: $\sqrt[3]{4} \approx 1.59$, $\sqrt{10} \approx 3.16$)

三、限做题(根据考生类别选做)

15. (20 分)如图所示,有一半径 R=0.128 m 的玻璃半球,在其主光轴放一长 l=0.20 m 的条形物 A_1A_2 。只考虑近轴光线成像,在图中主光轴上可同时观察到 A_1A_2 的两个像,它们分别是经玻璃半球的平面和凹球面反射而得。并且,当条形物的 A_2 端与半球面中心 O 相距 $\overline{OA_2}=0.020$ m 时,两个像恰好无重叠地连接在一起,试求玻璃半球的折射率。(答案取 1 位有效数字。)

解题时,只可取用下述在近轴条件下成立的球面反射和球面折射成像公式:

球面反射成像: $\frac{1}{u} + \frac{1}{v} = \begin{cases} \frac{2}{R} \text{ 凹球面} \\ \frac{2}{R} \text{ 凸球面} \end{cases}$ R: 球面半径、u: 物距、v: 像距

球面折射成像: $\frac{n_u}{u} + \frac{n_v}{v} = \begin{cases} \frac{n_v - n_u}{R} \text{ 凸球面} & n_u : 物光所在空间介质折射率} \\ \frac{n_v - n_u}{-R} \text{ 凹球面} & n_v : 像光所在空间介质折射率} \end{cases}$

16. (20 分)系统如图所示,MN 和 PQ 是两根固定光滑竖直平行直杆,两者相距 l ,轻绳长 L>l ,上端固定在 M 点,绳穿过光滑小环 A 后连接在小环 B 上,环 A 、B 质量同为 m 。图中两段绳长 l_1 、 l_2 与 L 的关系为 $L=l_1+l_2$,图中 α 为 l_2 绳段与 PQ 杆间的夹角。

(1) 取 $L > \frac{2}{\sqrt{3}}I$,假设系统仅在重力、绳的张力和直杆提供的水

平方向支持力作用下,处于图示 α 角位置时为平衡态,试求 α 值,并判定该平衡态的稳定性。为提升阅卷效率,本题全部设问中一致规定,绳段伸直且 $I_1=0$ 时系统所处状态的重力势能取为零值。

- (2) 设 L>l ,只讨论 A 在 B 的上方朝下运动, B 在 A 的下方朝上运动的过程。再设此过程中仅在重力、绳的张力和直杆提供的水平方向支持力作用下,绳段 MA 和 AB 始终会处于伸直状态,即 $L=l_1+l_2$ 始终成立。
- (2.1) 确定 /, 可取值范围;
- (2.2)将 α 角对应的 A 下行速度、加速度分别记为 v_A 、 a_A ,试求此时 B 的上行速度、加速度 v_B 、 a_B ,答案用 l、 α 、 v_A 、 a_A 表述。
- (3) 取 L=2l , 开始时 $l_i=0$, A 、 B 静止,系统自由释放后,假设系统过程能如(2)问所述。
- (3.1)试求系统自由释放后瞬间的 v_A 、 v_B , a_A 、 a_B 和绳中张力T, 答案用l、g 和m 表述:
- (3.2) 试求 α 第一次达到 60° 时的 v_A 、 v_B , a_A 、 a_B 和绳中张力 T , 答案用 l 、 g 和 m 表述:
- (3.3) 再求 α 第一次无限接近 90^{o} 时的 v_{A} 、 v_{B} , a_{A} 、 a_{B} 和绳中张力T,答案用l、g 和m 表述;

17. (20分)

引言: 如图 1 所示,某竖直平面上有水平朝内的 匀强磁场 \overline{B} ,匀质金属矩形框架 ABCD 以 AB 边取 水平状态在该竖直平面内自由下落。略去空气阻力,试问框架下落加速度是否仍为 g ?

细致地分析,框架下落过程中,内部自由电子和正离子分别受到朝左和朝右的磁场力。整体所受水平力可以抵消,但自由电子必定会朝左运动,形成电流。此电流所受磁场安培力朝上,使框架下落加速度因此稍小于g。自由电子的迁移,在四根杆的左侧面累积负电荷,右侧面累积正电荷,框架内出现电场,进而影响电子的迁移速度和电流。框架下落速度的变化也会影响自由电子的迁移速度、侧面电荷的累

积以及框架内的电场结构。定量讨论框架下落加速度和速度的变化,困难较大。为对框架下落加速度必定会小于g的定性结论作简单的量化讨论,特用长方导体块取代图1中的框架,设置题目如下。

题文: 如图 2 所示,质量密度为 ρ_m 、电阻率为 ρ 的长方导体块 ABCD, t=0 时刻以 AB 面处于水平方位的静止状态自由释放,空间有垂直于导体块前后表面朝内的匀强磁场 \vec{B} 。略去空气阻力,不考虑导体块落地的可能性。再设导体块的 AD 面和 CD 面足够大,在讨论的时间范围内 ρ 可处理为常量,导体块内的电场可处理为随时间变化的匀强电场。略去导体块内电流的磁场、略去电场变化激发起的磁场。

(1) 导出可解的关于 BC 面上电荷面密度 $\sigma = \sigma(t)$ 的 微分方程。

(2) 引入简化参量

$$\alpha = \frac{1}{\rho} \left(\frac{1}{\varepsilon_0} + \frac{B^2}{\rho_m} \right)$$

- (2.1) 求解 $\sigma = \sigma(t)$ 函数,答案中只可出现参量 $g \times B \times \alpha \times t$;
- (2.2) 求解导体块下落加速度和速度随t变化的函数:

$$a = a(t)$$
, $v = v(t)$

答案中只可出现参量g、B、 α 、t。

第 33 届全国部分地区大学生物理竞赛

参考答案

2016.12

1.
$$\sqrt{\frac{3}{2}}\sqrt{gH}$$
, $\frac{3}{2\sqrt{2}}\sqrt{gH}$.

2. 8×10^{-4} , 3×10^{-4} .

3.
$$\frac{5}{2}mg$$
, $\left(2+\frac{\pi^2}{3}\right)l$.

4. $\frac{u}{u-v_0}v_0$, $\frac{u+v_B}{u}v_0$.

5.
$$\left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} \neq 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT}$$
, $p_0 e^{-mgh/kT}$

6. 不可能使热量从低温物体自发地传到高温物体而不产生任何其他影响,不可能从单一热源吸收热量使之完全转化为有用功而不产生任何其他影响。

7.
$$v_0 > \gamma B R_0$$
, $\frac{v_0}{v_0 - \gamma R_0 B} R_0$.

 $8.\sqrt{3}Ba^2/2RT$, $Ba^2/2\sqrt{3}RT$.

 9.5Ω , 5Ω .

10. 4, $\frac{140}{37}$.

11. (15分)

解:参考题解图, S 发出的光经两块平面镜反射后形成两支相干光束。这两支光束可等效为

题解图

由 S 的两个虚像 S_1 、 S_2 发出,将 S_1 、 S_2 视为两个线光源,则问题转化为杨氏双缝干涉。考虑到反射机制, S_1 发出的光束由题解图中的射线 S_1P_1 和射线 S_1Q_1 界定, S_2 发出的光束由射线 S_2P_2 和射线 S_2Q_2 界定。由于屏幕足够远,为使这两支光束在 M 上能相遇形成相干叠加,便要求 S_1P_1 不能与两平面镜夹角的角平分线 OO' 向下相交成锐角。同理, S_2P_2 不能与 OO' 向上相交成锐角。即取 S_1P_1 、 S_2P_2 分别与 OO' 平行(即夹角分别为零)时,可保证在 很远的屏幕 M 上必有干涉图样,而且平面镜的宽度 a 又可取为最小,其值为

$$a_{\min} = 2 \left[d \cos \left(\frac{\pi}{2} - \alpha \right) \right] = 2d \cdot \sin \alpha \tag{5 }$$

因 α 为小角度,故

$$a_{\min} = 2d \cdot \sin \alpha \approx 2d\alpha = 4cm$$
 (2 $\%$)

12. (15 分)

解: (1) 无穷小过程

$$dQ = pdV + \frac{3}{2}\nu RdT, \qquad dp > 0, \qquad dV < 0$$

过程方程

$$(p + p_0)V = \nu RT_0, \quad pV = \nu RT$$

 $\Rightarrow \nu RT = \nu RT_0 - p_0V \Rightarrow \nu RdT = -p_0dV$

代入上式,得

$$dQ = pdV + \frac{3}{2}(-p_0dV) = \left(p - \frac{3}{2}p_0\right)dV$$

结论:

$$p > \frac{3}{2}p_0$$
 ; $dV < 0$, $dQ < 0$ 放热区域
$$p = \frac{3}{2}p_0$$
 ; $dV < 0$, $dQ = 0$ 吸、放热区域转换点 $0 ; $dV < 0$, $dQ > 0$ 吸热区域 (7分)$

2) A点:

$$p_A = \frac{3}{2}p_0$$
, $\boxplus (p_A + p_0)V_A = \nu RT_0 \implies V_A = \frac{2}{5}\nu R\frac{T_0}{p_0}$

B 点:

C 点:

$$T_C = T_0$$
, $p_C = p_A = \frac{3}{2}p_0$, $\boxplus p_C V_C = \nu R T_C \implies V_C = \frac{2}{3}\nu R \frac{T_0}{p_0}$

ABCA 过程效率: η_{ABCA}

$$Q_{AB} = \frac{3}{2} \nu R (T_B - T_A) = \frac{3}{5} \nu R T_0$$

$$Q_{BC} = \nu R T_0 \ln \frac{V_C}{V_B} = \nu R T_0 \ln \frac{5}{3}$$

$$Q_{CA} = -\frac{5}{2} \nu R (T_C - T_A) = -\nu R T_0$$

$$\Rightarrow \eta_{ABCA} = 1 - \frac{-Q_{CA}}{Q_{AB} + Q_{BC}} = 1 - \frac{1}{\frac{3}{5} + \ln \frac{5}{3}} = 1 - \frac{1}{0.6 + 0.51} \approx 10\%$$
(8 \(\frac{\frac{1}{2}}{2}\))

13. (15分)

解:银原子自旋磁矩在磁场中的势能:
$$W = -\vec{\mu} \cdot \vec{B} = -\mu \cdot B$$
 (3分)

z 轴方向受力:
$$f_z = -\frac{\partial W}{\partial z} = \mu_z \frac{\partial B}{\partial z} = G\mu_z = \pm G\mu_B$$
 (5分)

设银原子的质量为
$$m$$
, z 轴方向加速度: $a = \frac{f_z}{m} = \pm \frac{G\mu_B}{m}$ (2分)

通过磁极的时间:
$$t = \frac{L}{\sqrt{8kT/\pi m}}$$
 (2分)

痕迹偏离中心的距离:
$$h = \frac{1}{2}at^2 = \frac{\pi G \mu_B L^2}{16kT}$$
 (3 分)

14. (15分)

解:(1)质量均匀分布的圆环在其中央轴线上的万有引力场 强,可等效为将环质量平分给环上两个对径点(如题解图1 中A、B点)后在原轴线上的场强。

质量M均匀分布、半径R的球体,其质量体密度为

$$\rho = 3M/4\pi R^3$$

如题解图 2 所示,建立 0-xy 平面,原点 0 位于球心,在 O - xy 平面上取 $\{r, \theta\}$ 位置附近小面元 dS 。将此小面元 绕 y 轴旋转一周形成一细环体,它所含质量为

$$dM = \rho(2\pi r \cos\theta \cdot dS)$$

细环体上质量均匀分布,它在中央轴,即 y 轴 上的引力场强等效为将 dM 等分给两个小面元 后在y轴上的引力场强。两个小面元上的质量 面密度同为

$$\sigma = \frac{1}{2} \frac{dM}{dS} = 3Mr \cos \theta / 4R^3$$

用这种方法将球体质量集中在xy平面上的R 半径圆面上,则球与圆面在 γ 轴直径通道上的 场强分布一致,故自由质点在该通道上均作简 谐振动。因此,

$$\sigma(r, \theta) = \begin{cases} 3Mr\cos\theta/4R^3 & -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ \sigma(r, \pi - \theta) & \frac{\pi}{2} \le \theta \le \frac{3}{2}\pi \end{cases}$$

(5分)

(2) 分步讨论

R' 的确定:

新圆盘面密度增加一倍,质量便为 2M , R' 小圆盘与外环质量均为 M , 对小圆盘有 $\sigma'(r, \theta) = 3Mr\cos\theta/4R^{3}$, $2\sigma(r, \theta) = 6Mr\cos\theta/4R^{3}$

即得

$$R' = R/\sqrt[3]{2}$$

T_1 的计算:

则受力

$$F_{y}(1) = -GM_{y}m/y^{2}$$
, $M_{y} = \rho \frac{4}{2}\pi y$

即为线性恢复力

$$F_y(1) = -GM_y m/y^2 \Rightarrow$$
简谐振动
$$\begin{cases} \omega = \sqrt{GM/R^3} \\ T_1 = 2\pi R \sqrt{R/GM} \end{cases}$$
 (4分)

 T_2 与 T_1 的大小比较:

题解图1

题解图2

 $R' = R/\sqrt[3]{2}$

$$R' = R/\sqrt[3]{v}$$

同于质量为M、半径为R匀质球直径隧道中的振动周期。如题 解图 3 所示,自由质点m处于y位置时,将圆盘还原为匀质球,

 $F_y(1) = -GM_y m/y^2$, $M_y = \rho \frac{4}{3}\pi y^3$

$$F_y(1) = -GM_y m/y^2 \Rightarrow 简谐振动 \begin{cases} \omega = \sqrt{GM/R^3} \\ T_1 = 2\pi R \sqrt{R/GM} \end{cases}$$
 (4 分

题解图3

参考题解图 4, 自由质点在 $R' \le y \le R$ 处受力

$$F_{\nu}(2) = -GMm/y^2 \Longrightarrow |F_{\nu}(2)| \ge |F_{\nu}(1)|$$

而在 $0 \le y \le R'$ 处受力

$$F_{\nu}(2) = -GMmy/{R'}^{3} \Longrightarrow |F_{\nu}(2)| > |F_{\nu}(1)|$$

自由质点从y = R处静止出发后,处处受力变大,加速度值也变 大,速度值也处处变大。考虑到经过 $|\Delta v|$ 所需时间 $\Delta t =$ $|\Delta y|/|v|$, 故必有 $\Delta t(2) < \Delta t(1)$, 对 y = R 到 y = 0 的四分之一 周期有

$$T_2/4 < T_1/4$$
 (3分)

即得

$$T_2 < T_1$$

 T_3 与 T_1 的大小比较:

自由质点在环内 $R' \le y \le R$ 处受力可算得为

$$F_{y}(3) = -2 GMmy/R^3 + GMm/y^2$$

不再为线性恢复力, 故其运动时间较难计算。但它在空洞内匀速 运动, 往返时间 t 较易求得, 且有

$$T_3 > t$$

质点在 y = R 处所具势能为

$$E_P(R) = -GM_{\text{FL}}m/R = -GMm/R$$

在 y = R' 处所具势能为

$$E_P(R') = \sum_{n=1}^{R} (-G\Delta M \cdot m/r)$$

其中 ΔM 为被还原的 $r \rightarrow r + \Delta r$ 球壳质量

$$\Delta M = \rho' 4\pi r^2 \Delta r = 6Mr^2 \Delta r / R^3$$

由此可算得(或借所学电学知识直接写出)

$$E_P(R') = (-3GMm/R) \left(1 - \frac{{R'}^2}{R^2}\right)$$

质点 R' 在处动能及速度大小为

$$E_K(R') = E_P(R) - E_P(R') = (GMm/R) \left(2 - \frac{3R'^2}{R^2}\right)$$

$$v(R') = \sqrt{2E_K(R')/m} = \sqrt{2(GM/R) \left(2 - \frac{3}{\sqrt[3]{4}}\right)}$$

故空洞内匀速运动往返时间为

$$t = 4R'/v(R') = \left(2\sqrt{2}/\sqrt{2\sqrt[3]{4} - 3}\right)R\sqrt{R/GM} > T_1 = 2\pi R\sqrt{R/GM}$$
 (2 \(\frac{1}{2}\))

附注:

$$\frac{2\sqrt{2}}{\sqrt{2\sqrt[3]{4}-3}} \approx \frac{2\sqrt{2}}{\sqrt{2\times1.59-3}} = \frac{2\sqrt{2}}{\sqrt{0.18}} > 2\sqrt{10} > 2\pi$$

因此

$$T_2 > T_2$$

据上述讨论最后 $T_1 \, \cdot \, T_2 \, \cdot \, T_3$ 间大小关系为

$$T_3 > T_1 > T_2$$
 (1 分)

题解图 4

15. (20分)

1

解: I: 平面反射成像

取 $R \rightarrow \infty$, 即成平面反射成像

$$\frac{1}{1} + \frac{1}{1} = 0 \Longrightarrow v = -u$$
 虚像

如 颇解图所示,有

虚像 $A_1'A_2'$: $\overline{OA_2'} = \overline{OA_2} = 0.020$ m

$$\overline{A_2'A_1'} = l = 0.20$$
m (5 β)

II: 平面折射----球面反射----平面折射

成像

A点(A_1 点或 A_2 点)平面折射成像

 $R \to \infty$,即成平面折射成像

$$\frac{1}{u_1} + \frac{n}{v_1} = 0 \Longrightarrow v_1 = -nu_1 \qquad (3 \%)$$

题解图

凹球面反射成像

$$\frac{1}{u_2} + \frac{1}{v_2} = \frac{2}{R}$$
, $u_2 = R - v_1 = R + nu_1$, $v_2 = \frac{R(R + nu_1)}{R + 2nu_1}$ (3 分)

平面折射成像

$$\frac{n}{u_3} + \frac{1}{v_3} = 0$$
, $u_3 = R - v_2 = \frac{Rnu_1}{R + 2nu_1}$, $v_3 = -\frac{Ru_1}{R + 2nu_1}$ (3 $\frac{4}{2}$)

A₁ 点成像点 A1″

$$u_1 = \overline{OA_1} = \overline{OA_2} + l = 0.22 \text{m}$$
, $v_3 = -\frac{0.128 \times 0.22}{0.128 + 2n \times 0.22} \text{m} < 0$
 $\Rightarrow A_1''$ 点在 0 点右侧 (3 分)

A2点成像点 A2

$$u_1 = \overline{OA_2} = 0.02 \text{m}$$
, $v_3 = -\frac{0.128 \times 0.02}{0.128 + 2n \times 0.02} \text{m} < 0$
 $\Rightarrow A_2''$ 点在 O 点右侧,且 A_1'' 点在 A_2'' 点右侧

结论: 为使条形物 A_1A_2 的两个像恰无重叠地连接在一起,要求 A_1'' 与 A_2' 重合,即要求

$$-\frac{0.128 \times 0.22}{0.128 + 2n \times 0.22} \text{m} = -\overline{OA_2'} = -0.02 \text{m}$$

即可求得

$$n = 2.91 \approx 3$$
 (3分)

16. (20分)

解: (1) 绳段 MA、AB 若不是伸直状态,两环受力不会平衡。因此,平衡态只需讨论两个绳段均处于伸直状态时系统的重力势能值与角 α 之间的函数关系。

将 $l_1 = 0$ 时系统所处状态的势能定为零值。 $l_1 > 0$ 时,有

$$l_1 = L - l_2 = L - \frac{l}{\sin \alpha} > 0$$

参考题解图 1, 系统重力势能为

$$E_{p} = -mgl_{1} + mg\left(\sqrt{L^{2} - l^{2}} - l_{1} - l\cot\alpha\right)$$

$$= mg\left[\sqrt{L^{2} - l^{2}} - 2\left(L - \frac{l}{\sin\alpha}\right) - l\cot\alpha\right]$$

$$= mg\left(\sqrt{L^{2} - l^{2}} - 2L + \frac{2 - \cos\alpha}{\sin\alpha}l\right)$$

题解图1

 E_{ρ} 对 α 求微商,得

$$\frac{dE_P}{d\alpha} = mgl \frac{\sin^2 \alpha - (2 - \cos \alpha)\cos \alpha}{\sin^2 \alpha} = \frac{1 - 2\cos \alpha}{\sin^2 \alpha} mgl$$

系统处于平衡位置时,有

$$\frac{dE_p}{d\alpha} = 0 \implies 1 - 2\cos\alpha = 0 \implies \alpha = 60^{\circ}$$

为判定该平衡态的稳定性,作下述运算:

$$\frac{d^{2}E_{p}}{d\alpha^{2}} = \frac{2\sin\alpha \cdot \sin^{2}\alpha - (1 - 2\cos\alpha) \cdot 2\sin\alpha \cos\alpha}{\sin^{4}\alpha} mgl$$

$$= 2\left[\frac{1}{\sin\alpha} - \frac{(1 - 2\cos\alpha)\cos\alpha}{\sin^{3}\alpha}\right] mgl$$

$$\alpha = 60^{\circ} \text{ 时}, \quad \frac{d^{2}E_{p}}{d\alpha^{2}} = 2mgl/\sin 60^{\circ} > 0 \quad \text{(此时 } l_{2} = \frac{2}{\sqrt{3}}l < L\text{)} \quad \text{(4分)}$$

故为稳定平衡态。

(2)

(2.1)参考题解图 2,为使 A 在 B 的上方可以朝下运动,B 在 A 的下方可以朝上运动,要求 $\alpha < 90^\circ$,故 l_1 可取范围为 $l_1 < L - l$ (1分)

· (2.2)参考题解图 2,有

$$v_A dt + \overline{A'B'} = l_2,$$

 $\overline{A'B'} = l_2 - v_A dt \cos \alpha - v_B dt \cos \alpha$

即得
$$v_{B} = \frac{1 - \cos \alpha}{\cos \alpha} v_{A}$$
 (1)

微商可得

$$v_{B} = \frac{dv_{B}}{dt}$$

$$= \frac{\sin \alpha \cos \alpha - (1 - \cos \alpha)(-\sin \alpha)}{\cos^{2} \alpha} \frac{d\alpha}{dt} v_{A}$$

$$+ \frac{1 - \cos \alpha}{\cos \alpha} \frac{dv_{A}}{dt}$$

$$= \frac{\sin \alpha}{\cos^{2} \alpha} \frac{d\alpha}{dt} v_{A} + \frac{1 - \cos \alpha}{\cos \alpha} a_{A}$$

$$= \frac{1}{\cos^{2} \alpha} \frac{d\alpha}{dt} v_{A} + \frac{1 - \cos \alpha}{\cos \alpha} a_{A}$$

又因
$$l_1 = L - \frac{l}{\sin \alpha} \Rightarrow v_A = \frac{dl_1}{dt} = \frac{l \cos \alpha}{\sin^2 \alpha} \frac{d\alpha}{dt} \Rightarrow \frac{d\alpha}{dt} = \frac{\sin^2 \alpha}{l \cos \alpha} v_A$$
可得 $a_B = \frac{\sin^3 \alpha}{\cos^3 \alpha} \frac{v_A^2}{l} + \frac{1 - \cos \alpha}{\cos \alpha} a_A$ (2) (3分)

(3) L=2l 时,初态和过程态中系统重力势能分别为

$$\alpha_0 = 30^{\circ}$$
, $E_{P0} = 0$, $\alpha \Rightarrow E_P(\alpha) = \left(\sqrt{3} - 4 + \frac{2 - \cos \alpha}{\sin \alpha}\right) mgl$

题解图2

(3.1) 初态
$$v_A = v_B = 0$$
, $a_B = \frac{1 - \cos \alpha}{\cos \alpha} a_A$

由动力学方程得

$$\begin{cases} mg + T\cos\alpha - T = ma_A \\ T\cos\alpha - mg = ma_B = \frac{1 - \cos\alpha}{\cos\alpha} ma_A \end{cases} \Rightarrow \begin{cases} mg + \left(\frac{\sqrt{3}}{2} - 1\right)T = ma_A \\ \frac{\sqrt{3}}{2}T - mg = \frac{2 - \sqrt{3}}{\sqrt{3}} ma_A \end{cases}$$
$$\Rightarrow \frac{\sqrt{3}}{2}T - mg = \frac{2 - \sqrt{3}}{\sqrt{3}} \left[mg + \left(\frac{\sqrt{3}}{2} - 1\right)T\right]$$

解得
$$T = \frac{2}{5 - 2\sqrt{3}} mg = 1.302 mg$$

再由
$$ma_A = mg + \left(\frac{\sqrt{3}}{2} - 1\right) \frac{2}{5 - 2\sqrt{3}} mg = \frac{3 - \sqrt{3}}{5 - 2\sqrt{3}} mg$$

得
$$a_A = \frac{3-\sqrt{3}}{5-2\sqrt{3}}g = 0.826g$$
, $a_B = \frac{1-\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}a_A = \frac{9-5\sqrt{3}}{5\sqrt{3}-6}g = 0.128g$ (3分)

(3.2)
$$\alpha = 60^{\circ}$$
 时

$$E_{P}(60^{o}) = \left(\sqrt{3} - 4 + \frac{2 - \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) mgl = 2(\sqrt{3} - 2) mgl < 0, \quad v_{B} = \frac{1 - \frac{1}{2}}{\frac{1}{2}} v_{A} = v_{A}$$

结合能量守恒方程,得

$$\frac{1}{2}mv_A^2 + \frac{1}{2}mv_B^2 = -E_P \Rightarrow mv_A^2 = 2\left(2 - \sqrt{3}\right)mgl$$
$$\Rightarrow v_B = v_A = \sqrt{2\left(2 - \sqrt{3}\right)gl} = 0.732\sqrt{gl}$$

参考题解图 3,有

$$\begin{cases} mg + T\cos\alpha - T = ma_A \\ T\cos\alpha - mg = ma_B \end{cases} \Rightarrow \begin{cases} mg - \frac{T}{2} = ma_A \\ \frac{T}{2} - mg = ma_B \end{cases}$$
$$\Rightarrow a_B = -a_A$$

得

$$\frac{T}{2} - mg = ma_B = m \frac{\sin^3 \alpha}{\cos^3 \alpha} \frac{v_A^2}{l} + m \frac{1 - \cos \alpha}{\cos \alpha} a_A$$

 $\alpha = 60^{\circ}$

将
$$v_A^2 = 2(2-\sqrt{3})gl$$
, $ma_A = mg - \frac{T}{2}$ 代入, 解得

$$T = 4(3\sqrt{3} - 4)mg = 4.78mg$$

再代入
$$ma_A = mg - \frac{T}{2} \pi a_B = -a_A$$

可得

$$a_A = -3(2\sqrt{3} - 3)g = -1.39g$$
, $a_B = 3(2\sqrt{3} - 3)g = 1.39g$ (4 $\%$)

(3.3) 据(2.1) 问解答可知,在L = 2l 时, l_1 可取为

$$l_1 < L - l = l$$

 $\alpha \to 90^\circ$ 时,A 的下行速度必趋于零,此时A 的向下加速度已改变为向上加速度,即有 $a_A < 0 \,, \, v_A \to 0$

随着 A 下行变慢,B 上行也有变慢趋势,故在 $\alpha \to 90^\circ$ 时,B 的向上加速度也改变为向下加速度。其实此时绳对 B 的拉力水平无竖直分量,在 B 的重力作用下必有

$$a_{\scriptscriptstyle B} \to -g$$

又因能量守恒, $v_{\star} \rightarrow 0$, 必有

$$v_R \neq 0$$

若 $v_B < 0$,则从开始时的 $v_B \ge 0$ 到 $\alpha \to 90^\circ$ 时的 $v_B < 0$ 过程中,必定会出现某个 $\alpha_0 > 30^\circ$ 对应 $v_B = 0$ 。因 $v_B = \frac{1 - \cos \alpha}{\cos \alpha} v_A$,在 $90^\circ > \alpha > 30^\circ$ 时必有 $\frac{1 - \cos \alpha}{\cos \alpha} > 0$ (除

去
$$\alpha
ightarrow 90^{\circ}$$
 外) , $v_{\scriptscriptstyle B}=0$ 时 必 对 应 $v_{\scriptscriptstyle A}=0$ 使 $\alpha_{\scriptscriptstyle 0}$ 对 应 的

$$E_P(\alpha_0) = \left(\sqrt{3} - 4 + \frac{2 - \cos \alpha_0}{\sin \alpha_0}\right) mgl = 0 \cdot \text{ } \pm \text{ }$$

$$\frac{dE_p}{d\alpha} = \frac{1 - 2\cos\alpha}{\sin^2\alpha} mgl \begin{cases} < 0 & 60^{\circ} > \alpha > 30^{\circ} \\ > 0 & 90^{\circ} > \alpha > 60^{\circ} \end{cases}, \quad E_p(30^{\circ}) = 0, E_p(90^{\circ}) < 0$$

可知,不存在 $90^\circ > \alpha_0 > 30^\circ$ 可使 $E_p(\alpha_0) = 0$ 。据此可判定 $v_R < 0$ 不可取,应为

$$v_R > 0$$

 $\alpha \rightarrow 90^{\circ}$ 时,极限意义下有

$$E_{P}(90^{\circ}) = \left(\sqrt{3} - 4 + \frac{2 - \cos 90^{\circ}}{\sin 90^{\circ}}\right) mgl = \left(\sqrt{3} - 2\right) mgl \neq 0$$

据 $v_B = \frac{1 - \cos \alpha}{\cos \alpha} v_A$,因 $\cos \alpha \to 0$, $v_A \to 0$, v_B 值未必为零。由能量守恒可得

$$\frac{1}{2}mv_B^2 = -E_P(90^\circ) \implies v_B = \sqrt{2(2-\sqrt{3})gl} = 0.732\sqrt{gl}$$

$$a_B = -g \quad \text{和} \quad T = mg - ma_A$$

求 a_A ,直接利用(2.2)问所得(2)式

$$a_B = \frac{\sin^3 \alpha}{\cos^3 \alpha} \frac{v_A^2}{l} + \frac{1 - \cos \alpha}{\cos \alpha} a_A \qquad (2)$$

不妥。因为从动力学考虑 a_A 不可能是发散量,(2)式等号右边两项都是发散量,其代数和得有限量 $a_B=-g$,涉及发散量,数学上不易从该式反解出 a_A 。因此,为求解 a_A ,将

$$v_B = \frac{1 - \cos \alpha}{\cos \alpha} v_A \Rightarrow v_A = \frac{\cos \alpha}{1 - \cos \alpha} v_B$$

代入(2)式,得

$$\frac{\cos \alpha}{1 - \cos \alpha} a_B = \frac{\cos \alpha}{1 - \cos \alpha} \left[\frac{\sin^3 \alpha}{\cos^3 \alpha} \left(\frac{\cos \alpha}{1 - \cos \alpha} v_B \right)^2 \frac{1}{l} \right] + a_A = \frac{\sin^3 \alpha}{\left(1 - \cos \alpha \right)^3} \frac{v_B^2}{l} + a_A$$

$$\Rightarrow a_A = -\frac{\sin^3 \alpha}{\left(1 - \cos \alpha \right)^3} \frac{v_B^2}{l} + \frac{\cos \alpha}{1 - \cos \alpha} a_B \qquad (2)'$$

等号右边两项都不是发散量,而且 v_B 和 a_B 都是已知的有限量。由(2)'式,在 $\alpha \to 90$ °时

解得
$$a_A = -\frac{v_B^2}{l} = -2\left(2 - \sqrt{3}\right)g = -0.536g$$
 将其代入 $T = mg - ma_A$,得
$$T = \left(5 - 2\sqrt{3}\right)mg = 1.54mg \qquad (5\,\%)$$

附注 1: 对于一般角度 $90^{\circ} > \alpha \ge 30^{\circ}$ 的解 取 L = 2l , $90^{\circ} > \alpha \ge 30^{\circ}$ 对应的势能

$$E_{P}(\alpha) = \left(\sqrt{3} - 4 + \frac{2 - \cos \alpha}{\sin \alpha}\right) mgl$$

为求解对应的 5 个未知量: v_A 、 v_B , a_A 、 a_B 和T, 引用前面解答中相关公式,可得

$$v_{B} = \frac{1 - \cos \alpha}{\cos \alpha} v_{A} \qquad (1)$$

$$a_{B} = \frac{\sin^{3} \alpha}{\cos^{3} \alpha} \frac{v_{A}^{2}}{l} + \frac{1 - \cos \alpha}{\cos \alpha} a_{A} \qquad (2)$$

$$\frac{1}{2} m \left(v_{A}^{2} + v_{B}^{2}\right) = \left(4 - \sqrt{3} - \frac{2 - \cos \alpha}{\sin \alpha}\right) mgl \qquad (3)$$

 $mg + T\cos\alpha - T = ma_A \Rightarrow \frac{1 - \cos\alpha}{\cos\alpha} mg - \frac{1 - \cos\alpha}{\cos\alpha} (1 - \cos\alpha) T = \frac{1 - \cos\alpha}{\cos\alpha} ma_A$

$$T\cos\alpha - mg = ma_B = m\frac{\sin^3\alpha}{\cos^3\alpha}\frac{v_A^2}{l} + m\frac{1-\cos\alpha}{\cos\alpha}a_A$$

下式减上式,得

$$T\cos\alpha - mg - \frac{1 - \cos\alpha}{\cos\alpha} mg + \frac{\left(1 - \cos\alpha\right)^2}{\cos\alpha} T = m \frac{\sin^3\alpha}{\cos^3\alpha} \frac{v_A^2}{l}$$

$$\Rightarrow \left(1 - 2\cos\alpha + 2\cos^2\alpha\right) T = mg + m \frac{\sin^3\alpha}{\cos^2\alpha} \frac{v_A^2}{l} \tag{4}$$

$$ma_B = T\cos\alpha - mg \tag{5}$$

由(1)至(5)式求解 v_A 、 v_B , a_A 、 a_B 和T, 如下所述。

 v_A 、 v_B 的求解:

联立 (1)、(3) 式,可得

$$v_A = \sqrt{\frac{2\cos^2\alpha}{1 - 2\cos\alpha + 2\cos^2\alpha} \left(4 - \sqrt{3} - \frac{2 - \cos\alpha}{\sin\alpha}\right) gl}$$
 (6)

$$v_B = \sqrt{\frac{2(1-\cos\alpha)^2}{1-2\cos\alpha + 2\cos^2\alpha} \left(4-\sqrt{3}-\frac{2-\cos\alpha}{\sin\alpha}\right)gl}$$
 (7)

验证:

$$\alpha = 30^{\circ}: \quad v_{A} = 0 \qquad v_{B} = 0$$

$$\alpha = 60^{\circ}: \quad v_{A} = \sqrt{2(2-\sqrt{3})gl} \qquad v_{B} = \sqrt{2(2-\sqrt{3})gl}$$

$$\alpha = 90^{\circ}: \quad v_{A} = 0 \qquad v_{B} = \sqrt{2(2-\sqrt{3})gl}$$

与前面所得结果一致。

 $T \, \cdot \, a_B$ 的求解:

联立 (4)、(6) 式可得

$$T = \frac{1}{1 - 2\cos\alpha + 2\cos^2\alpha} \left[1 + \frac{2\sin^3\alpha}{1 - 2\cos\alpha + 2\cos^2\alpha} \left(4 - \sqrt{3} - \frac{2 - \cos\alpha}{\sin\alpha} \right) \right] mg \quad (8)$$

$$a_{B} = \left\{ \frac{\cos \alpha}{1 - 2\cos \alpha + 2\cos^{2} \alpha} \left[1 + \frac{2\sin^{3} \alpha}{1 - 2\cos \alpha + 2\cos^{2} \alpha} \left(4 - \sqrt{3} - \frac{2 - \cos \alpha}{\sin \alpha} \right) \right] - 1 \right\} g$$
(9)

· 验证:

$$\alpha = 30^{\circ}: T = \frac{2}{5 - 2\sqrt{3}} mg \qquad a_{B} = \frac{3\sqrt{3} - 5}{5 - 2\sqrt{3}} g \quad (\text{sg} \frac{9 - 5\sqrt{3}}{5\sqrt{3} - 6} g)$$

$$\alpha = 60^{\circ}: T = 4(3\sqrt{3} - 4) mg \qquad a_{B} = 3\sqrt{3}(2 - \sqrt{3})g \quad (\text{sg} 3(2\sqrt{3} - 3)g)$$

$$\alpha = 90^{\circ}: T = (5 - 2\sqrt{3}) mg \qquad a_{B} = -g$$

与前面所得结果一致。

 a_{λ} 的求解:

联立 (2)、(6)、(9) 式可得

$$a_{A} = \frac{1}{1 - \cos \alpha} \left[\frac{\cos^{2} \alpha}{1 - 2\cos \alpha + 2\cos^{2} \alpha} - \frac{2\sin^{3} \alpha \left(1 - 2\cos \alpha + \cos^{2} \alpha\right)}{\left(1 - 2\cos \alpha + 2\cos^{2} \alpha\right)^{2}} \left(4 - \sqrt{3} - \frac{2 - \cos \alpha}{\sin \alpha}\right) - \cos \alpha \right] g$$

$$(10)$$

验证:

$$\alpha = 30^{\circ}: \ a_{A} = \frac{9 - 5\sqrt{3}}{16 - 9\sqrt{3}}g \ (\vec{x} \frac{3 - \sqrt{3}}{5 - 2\sqrt{3}}g)$$

9/13

$$\alpha = 60^{\circ}: \quad a_A = -3(2\sqrt{3} - 3)g$$

 $\alpha = 90^{\circ}: \quad a_A = -2(2 - \sqrt{3})g$

与前面所得结果一致。

由(8)式可见,在 $90^{\circ} > \alpha \ge 30^{\circ}$ 范围内T恒为正,表明绳始终处于拉直状态。

附注 2:

 $\mathbf{F} \mathbf{A} \setminus \mathbf{B}$ 和绳构成的系统, 在绳始终处于伸直状态的过程中, 天花板在 \mathbf{M} 处为系统提 供的竖直向上的拉力,其大小即为绳中拉力大小T。系统质心竖直向上的加速度为

$$a_C = \frac{ma_B - ma_A}{2m} = \frac{1}{2} (a_B - a_A)$$

合外力T-2mg为质心提供此加速度,应有

$$T = 2mg + ma_C = 2mg + m(a_B - a_A)$$

 $\alpha = 30^{\circ}$ 时,

$$a_{B} - a_{A} = \left(\frac{3\sqrt{3} - 5}{5 - 2\sqrt{3}} - \frac{3 - \sqrt{3}}{5 - 2\sqrt{3}}\right)g = \frac{4\sqrt{3} - 8}{5 - 2\sqrt{3}}g$$

$$T = 2mg + m(a_{B} - a_{A}) = \frac{2}{5 - 2\sqrt{3}}mg \qquad \text{5} \text{fi} \text{ in} \text{ if } \text{4} \text{ H} = -\infty.$$

 $\alpha = 60^{\circ}$ 时

$$a_B - a_A = \left[3(2\sqrt{3} - 3) + 3(2\sqrt{3} - 3) \right] g = 6(2\sqrt{3} - 3) g$$

$$T = 2mg + m(a_B - a_A) = 4(3\sqrt{3} - 4) mg$$
 与前面所得结果一致。

 $\alpha = 90^{\circ}$ 时

$$a_{B} - a_{A} = \left[-1 + 2\left(2 - \sqrt{3}\right) \right] g = \left(3 - 2\sqrt{3}\right) g$$

$$T = 2mg + m\left(a_{B} - a_{A}\right) = \left(5 - 2\sqrt{3}\right) mg$$
 与前面所得结果一致。

解:(1)参照题解图,导体块左、右表面积同记为S, 面间距记为 l。t 时刻导体块下落加速度和速度分别记 为 \vec{a} 、 \vec{v} ,内部电场强度记为 \vec{E} ,自由电子受水平方向 电磁作用场力为

$$\vec{f} = -e(\vec{v} \times \vec{B} + \vec{E})$$

或可表述为

$$\vec{f} = -e\vec{E}^*$$
, $\vec{E}^* = \vec{v} \times \vec{B} + \vec{E} \begin{cases}$ 方向朝右为正
大小 $E^* = vB - E$

此力可与直流电路中自由电子受静电场 Ё。作用力

$$\vec{f}_0 = -e\vec{E}_0$$

 $ec{f_0}=-eec{E_0}$ 类比。直流电路中 $ec{f_0}$ 使自由电子逆着 $ec{E_0}$ 方向运动,形 成电流密度

$$\vec{J}_0 = \vec{E}_0/\rho$$

同理, 此处导体块中自由电子受电磁作用力 -eĒ*, 使

题解图

自由电子逆着 产*方向运动,形成电流密度

$$\vec{j} = \vec{E}^*/\rho$$
 {方向朝右为正
大小 $j = E^*/\rho = (vB - E)/\rho$

导体中7形成的从左到右方向的电流为

$$I = jS$$

受安培力

$$\vec{F}$$
 { 方向朝上
大小 $F = IBl = jB(Sl)$

$$(\rho_m Sl)a = (\rho_m Sl)\frac{dv}{dt} = (\rho_m Sl)g - jBSl$$

$$a = \frac{dv}{dt} = g - \frac{jB}{\rho_m}$$

可为未知量j、v、E、 σ 建立下述方程组

$$\begin{cases} j = (vB - E)/\rho \\ j = d\sigma/dt \end{cases} vB - E = \rho \frac{d\sigma}{dt}$$

$$\begin{cases} E = \sigma/\varepsilon_0 \\ \frac{dv}{dt} = g - \frac{jB}{\rho_m} \end{cases}$$

消去 $E \times j$,得

$$\begin{cases} vB - \frac{\sigma}{\varepsilon_0} = \rho \frac{d\sigma}{dt} \Longrightarrow B \frac{dv}{dt} - \frac{1}{\varepsilon_0} \frac{d\sigma}{dt} = \rho \frac{d^2\sigma}{dt^2} \\ \frac{dv}{dt} = g - \frac{B}{\rho_m} \frac{d\sigma}{dt} \end{cases}$$

消去 dv/dt , 得

$$gB - \frac{B^2}{\rho_m} \frac{d\sigma}{dt} - \frac{1}{\varepsilon_0} \frac{d\sigma}{dt} = \rho \frac{d^2\sigma}{dt^2}$$

或简书为

$$\ddot{\sigma} + \frac{1}{\rho} \left(\frac{1}{\epsilon_0} + \frac{\beta^2}{\rho_m} \right) \frac{d\sigma}{dt} = gB/\rho \tag{10 }$$

(2)

(2.1) 方程可改述为以 6 作为待求函数的一阶微分方程

$$\frac{d\dot{\sigma}}{dt} + \alpha\dot{\sigma} = gB/\rho$$
 , $\alpha = \frac{1}{\rho} \left(\frac{1}{\varepsilon_0} + \frac{B^2}{\rho_m} \right)$

它的齐次通解和非齐次特解分别为

$$\dot{\sigma}_0 = Ce^{-\alpha t} \Re \dot{\sigma}^* = gB/\alpha \rho$$

原非齐次通解便为

$$\dot{\sigma} = \dot{\sigma}_0 + \dot{\sigma}^* = Ce^{-\alpha t} + \frac{gB}{\alpha a}$$

利用初条件

$$t=0$$
 时 $\dot{\sigma}=i=0$

$$C = -gB/\alpha\rho \Longrightarrow \dot{\sigma} = \frac{gB}{\alpha\rho}(1 - e^{-\alpha t})$$

积分

$$\int_0^\sigma d\sigma = \int_0^t \frac{gB}{\alpha\rho} (1 - e^{-\alpha t}) dt$$

$$\sigma = \frac{gB}{\alpha\rho} \left[t + \frac{1}{\alpha} (e^{-\alpha t} - 1) \right]$$
 (5 分)

得

11 / 13

$$j = \dot{\sigma} = \frac{gB}{\alpha\rho} (1 - e^{-\alpha t})$$
, $\alpha = g - \frac{jB}{\rho_m}$

徱

$$a = g - \frac{gB^2}{\alpha\rho\rho_m} (1 - e^{-\alpha t}) \tag{3 \%}$$

继而得

$$v = \int_0^v dv = \int_0^t a dt = \int_0^t \left[g - \frac{gB^2}{\alpha \rho \rho_m} (1 - e^{-\alpha t}) \right] dt$$

$$\Rightarrow v = gt \left(1 - \frac{B^2}{\alpha \rho \rho_m} \right) + \frac{gB^2}{\alpha^2 \rho \rho_m} (1 - e^{-\alpha t})$$
 (2 \(\frac{a}{\text{\psi}}\))

附注:

也可由

$$j = (vB - E)/\rho \Longrightarrow vB - E = \rho\dot{\sigma}$$
, $E = \sigma/\varepsilon_0$

得

$$v = \frac{1}{B} \left(\frac{\sigma}{\varepsilon_0} + \rho \dot{\sigma} \right) \begin{cases} \dot{\sigma} = \frac{gB}{\alpha \rho} (1 - e^{-\alpha t}) \\ \sigma = \frac{gB}{\alpha \rho} \left[t + \frac{1}{\alpha} (e^{-\alpha t} - 1) \right] \end{cases}$$

$$\Rightarrow v = \frac{g}{\alpha \varepsilon_0 \rho} t + \frac{g}{\alpha} \left(1 - \frac{1}{\alpha \varepsilon_0 \rho} \right) (1 - e^{-\alpha t})$$

利用

$$\alpha = \frac{1}{\rho} \left(\frac{1}{\varepsilon_0} + \frac{B^2}{\rho_m} \right) \Longrightarrow \frac{1}{\varepsilon_0} = \alpha \rho - \frac{B^2}{\rho_m}$$

可得

$$\frac{g}{\alpha\varepsilon_{0}\rho}t = \frac{g}{\alpha\rho}\left(\alpha\rho - \frac{B^{2}}{\rho_{m}}\right)t = gt\left(1 - \frac{B^{2}}{\alpha\rho\rho_{m}}\right)$$

$$\frac{g}{\alpha}\left(1 - \frac{1}{\alpha\varepsilon_{0}\rho}\right)(1 - e^{-\alpha t}) = \frac{g}{\alpha}\left[1 - \frac{1}{\alpha\rho}\left(\alpha\rho - \frac{B^{2}}{\rho_{m}}\right)\right](1 - e^{-\alpha t})$$

$$= \frac{g}{\alpha}\left[1 - 1 + \frac{B^{2}}{\alpha\rho\rho_{m}}\right](1 - e^{-\alpha t})$$

$$= \frac{gB^{2}}{\alpha^{2}\rho\rho_{m}}(1 - e^{-\alpha t})$$
(t) \(\frac{\pi}{\pi}\) \(\frac{\pi}{\pi}\) \(\frac{\pi}{\pi}\)

与前面所得v(t)表达式一致。