If a Butterfly's flapping of wings can create a tornado, it can also prevent one.

Edward Lorenz

Lorenz Equations

Ekansh Somani Gali Sunny Narla Karthikeya Shanmukhi Ganesh Sai Zeeshan Snehil Bhagat

Introduction

Introducing Lorentz equation, and some of its applications.

Equation and Chaos.

More details about the equation. Its uses in various environments. And the predictability of Weather. And Chaos.

Numerical Methods

Brief details about the used methods and code.

Observation

The graphs, their intricacies, and the conclusions drawn from them.

Summary

The overall learnings, and conclusions drawn from the project.

Content

Introduction

- Lorenz Equations are a set of ordinary differential equations which gives chaotic solutions for certain parameter values and initial conditions.
- The equations have three variable parameters along with initial conditions.
- They were first developed and studied by Edward Lorenz in 1963.

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y$$

$$\frac{dz}{dt} = xy - \beta z,$$

Equations, Predictions, And Chaos

The Equations

1. Lorentz used the equations to describe the properties of a twodimensional fluid layer which is:

uniformly warmed from below and uniformly cooled from above where,

 $x \rightarrow Rate of Convection$

 $y \rightarrow$ Horizontal Temperature Variation

 $z \rightarrow Vertical Temperature Variation$

sigma, pho, and beta → System parameter proportional to Prandtl number, Rayleigh Number, and physical dimensions of layer

He took the values, $\sigma=10, \beta=\frac{8}{3}, \rho=28$, famously known as Lorentz Attractor Values.

- 2. They also arise in simplified models for lasers, dynamos, thermosyphons, brushless DC motors, Electric Circuits, Chemical Reactions and Forward Osmosis
- 3. They are non-linear, aperiodic, three-dimensional, and deterministic in nature.

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y$$

$$\frac{dz}{dt} = xy - \beta z,$$

Prediction And Chaos

- 1. Lorentz equations diverge away over time for very small changes in initial values.
- 2. You need to measure the initial value to a high degree of precision and accuracy to be able to predict the weather for a few days.
- 3. This diversion is called Chaos.

Numerical Methods

Methods of Iterative Guesses

Euler Method

Extrapolates linearly over an arbitrary step size h using the slope (first derivative of y).

$$egin{aligned} rac{dy}{dx} &= f(x,y) \ y_{i+1} &= y_i + f(x_i,y_i)h \end{aligned}$$

Runge-Kutta Method

- Runge Kutta Methods try to achieve the accuracy of the Taylor series approach without solving the higher derivatives.
- 2. The Runge Kutta Method is derived for norders by comparing two equations obtained (1) from Taylor expansion of y_{i+1} in terms of y_i from Taylor method and (2) the straight replacing of k's in ϕ , then replacement of ϕ in y_{i+1} , and doing Taylor expansion of f.
- 3. Classical Runge-Kutta Method is a fourth order method.

$$\frac{dy}{dx} = f(x,y)$$

$$y_{i+1} = y_i + \phi(x_i, y_i, h)h$$

$$\phi = \sum_{j=0}^{n} a_j k_j$$

$$k_j = f(x_i + p_{j-1}h, y_i + q_{j-1,1}k_1h + q_{j-2,2}k_2h + \dots + q_{1,j-1}k_{j-1}h)$$

$$y_{n+1} = y_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$$

$$t_{n+1} = t_n + h$$

$$k_1 = f(t_n, y_n)$$
for $n = 1, 2, 3...$, using equation
$$k_2 = f\left(t_n + \frac{h}{2}, y_n + h\frac{k_1}{2}\right),$$

$$k_3 = f\left(t_n + \frac{h}{2}, y_n + h\frac{k_2}{2}\right),$$

$$k_4 = f(t_n + h, y_n + hk_3)$$

Runge-Kutta Gil Method

1. The Runge-Kutta-Gill method is a variant of the classical Runge-Kutta method being used for approximating the solution of the differential equation given by, Y'(t) = f(t, Y)

$$y_{n+1} = y_n + \frac{1}{6}[k_1 + (2 - (\sqrt{2})k_2) + ((2 + \sqrt{2})k_3 + k_4] + O(h^5)$$

where

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$

$$k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}(-1 + \sqrt{2})k_1 + (1 - \frac{1}{2}\sqrt{2})k_2]$$

$$k_4 = hf[x_n + h, y_n - \frac{1}{2}\sqrt{2}k_2 + (1 + \frac{1}{2}\sqrt{2}k_3]$$

Observations

Subtitle

Euler Method

Results from Runge Kutta Method

Runge-Kutta Gill Method

Lorenz System for distinct values of ho

$$\sigma = 10$$
 $\rho = 17$
 $\beta = 8/3$

$$\sigma = 10$$
 $\rho = 20$
 $\beta = 8/3$

$$\sigma = 10$$

$$\rho = 25$$

$$\beta = 8/3$$

Different Initial Conditions

$$X_0 = 1$$

 $Y_0 = 1$
 $Z_0 = 1$

$$X_0 = 5$$

 $Y_0 = 5$
 $Z_0 = 15$

$$X_0 = 15$$

 $Y_0 = 25$
 $Z_0 = 50$

Sensitivity

Convergence

Summary

- Lorenz equations hide within themselves a butterfly like structure, which reveals itself when the ρ is high enough for the graph to not collapse to the two critical points.
- For small changes in the initial values, the resultant graphs trace out completely different paths eventually.
- In fine, the numerical methods can be used to solve the Lorenz Equation.
- The accuracy of the solution remains in doubt without verification from real world data.

Thank you

Zeeshan, Ganesh, Sunny, Karthikeya, and Ekansh.

