MATH 2554: Cheat Sheet (No, you can't bring me to the exam)

Nifty rules

Derivation

1.
$$\frac{d}{dx}c = 0$$

5. $\frac{d}{dx}cf(x) = cf'(x)$

2. $\frac{d}{dx}f(x) + g(x) = f'(x) + g'(x)$

6. $\frac{d}{dx}f(x) - g(x) = f'(x) - g'(x)$

7. $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$

4. $\frac{d}{dx}x^n = xn^{n-1}$

8. $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$

The above show the following rules: constant rule (1), constant multiple rule (5), sum rule (2 & 6), product rule (3), quotient rule (7), power rule (4), chain rule (8)

Integration

1.
$$\int \frac{1}{x} = \ln|x| + C$$

2. $\int f(g(x))g'(x)dx = \int f(u)du$
3. $\int x^n dx = \frac{x^{n-1}}{n-1} + C$
4. $\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$

The above show the following rules: power rule (3), an exception to the power rule (1), substitution rule (2 & 4)

Intermediate Value Theorem: Suppose f is continuous on the interval [a, b] and L is a number strictly between f(a) and f(b). Then there exists at least one number c in (a, b) satisfying f(c) = L

Definition of the Derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Mean Value Theorem : If f is continuous on the closed interval [a, b], then there is at least one point c in a, b such that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Note that **Rolle's Theorm** is a special case of MVT where f(a) = f(b)

Linear Approximation to f at a : Suppose f is differentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

$$L(x) = f(a) + f'(a)(x - a)$$

L'Hopital's Rule : Suppose f and g are differentiable on an open interval I containing a with $g'(x) \neq 0$ when $x \neq a$. If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Fundamental Theorem of Calculus: If f is continuous on [a, b] and F is any antiderivative of f on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Basic derivative forms

Trig derivatives:

$$1. \ \frac{d}{dx}\sin x = \cos x$$

$$2. \ \frac{d}{dx}\cos x = -\sin x$$

$$3. \ \frac{d}{dx}\tan x = \sec^2 x$$

4.
$$\frac{d}{dx} \cot x = -\csc^2 x$$

$$5. \ \frac{d}{dx}\sec x = \sec x \tan x$$

6.
$$\frac{d}{dx}\csc x = -\csc x \cot x$$

Exponential/Log derivatives:

$$1. \ \frac{d}{dx}e^x = e^x$$

$$2. \ \frac{d}{dx} \ln|x| = \frac{1}{x}$$

3.
$$\frac{d}{dx}b^x = b^x \ln b$$

$$4. \ \frac{d}{dx}\log_b|x| = \frac{1}{x\ln b}$$

...And for integrals, all these backwards!

Other

Limits

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$2. \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

Deriving Antiderivatives:

1.
$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

2.
$$\frac{d}{dx} \int_{a}^{g(x)} f(t)dt = f(g(x))g'(x)$$

3.
$$\frac{d}{dx} \int_{x}^{b} f(t)dt = -f(x)$$

4.
$$\frac{d}{dx} \int_{h(x)}^{g(x)} f(t)dt = f(g(x))g'(x) - f(h(x))h'(x)$$

Common integrals utilizing substitution

$$1. \int \cos ax dx = \frac{1}{a} \sin ax + C$$

2.
$$\int \sec^2 ax dx = \frac{1}{a} \tan ax + C$$

3.
$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax + C$$

4.
$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

$$5. \int \sin ax dx = -\frac{1}{a}\cos ax + C$$

6.
$$\int \csc^2 ax dx = -\frac{1}{a} \cot ax + C$$

7.
$$\int \csc ax \cot ax dx = -\frac{1}{a} \csc ax + C$$

$$8. \int b^x dx = \frac{1}{\ln b} b^x + C$$