CprE 530

Lecture 13

General countermeasures

- Since IP is so ingrained in the Internet it is hard to provide security. There are a few general countermeasures.
 - IP Filtering
 - Network Address Translation (NAT)
 - Virtual Private Network (VPN)
 - Encrypted IPV4 & IPV6 (IPSec)

IP Filtering

- Routers can be configured to filter out packets based on:
 - IP Address (black listing)
 - Hard to keep list current
 - Hard to get off the list (DOS)
 - Port numbers
 - Rogue protocols use multiple ports
 - Protocol types (TCP, UDP, ICMP)
 - Course grain filtering

Network Address Translation

Figure 6.30 Private Network

Network Address Translation

- Used to extend the address space
 - Internal address ranges
 - 10/8 10.0.0.0
 - 172.16/12 172.16.0.0 (16 class B networks)
 - 192.168/16 192.168.0.0 (class B network)
- Static NAT
- Dynamic NAT

NAT

- Not really designed as a security device
- Does not provide security and is often coupled with a firewall

Static NAT

- One to one mapping of external addresses to internal addresses
- Used when a small number of machines need Internet access.
- NAT looks like a router to the inside machines and the destination to outside machines

Static NAT

Public	Port	Private	Port
129.186.5.100	80	192.168.20.30	80
129.186.5.150	25	192.168.20.50	80

Dynamic NAT

- More machines on the inside than IP addresses on the outside.
- Used for outgoing access
- Can use tunnels for servers or combine with static NAT
- Inside can have same address range as a valid outside network (overlapping)

Dynamic NAT (Port mapping)

129.186.5.3

NAT

192.168.0.10

8357

Figure 6.31 Sample Private Network

Public servers

- Servers need a public address
 - Two networks
 - Tunneling

Public & Private Networks

Figure 6.32 Public Servers and a Private Network

Tunneling through a NAT

Tunneling through a NAT

Packet	IP		Ports	
racket	SRC	DST	SRC	DST
1A	Internet	207.5.2.8	8357	100
1B	Internet	192.168.0.30	8357	80
2A	Internet	207.5.2.8	7384	80
2B	Internet	192.168.0.20	7384	80
3A	Internet	207.5.2.7	2345	80
3B	Internet	192.168.0.10	2345	80
4A	Internet	207.5.2.7	2554	25
4B	Internet	192.168.0.10	2554	25
5A	Internet	207.5.2.7	6623	22

Pass-by NAT

Physical Configuration

Logical Configuration

Virtual Private Network

- Used to created encrypted tunnels between devices
- Uses many different protocols
 - -SSH
 - IPSEC
 - Proprietary

Network to network VPN

VPN only when talking to target network Other traffic goes directly to destination

Remote Network

Network to network VPN

Always uses VPN All traffic is routed through target network

Remote Subnet

Client to client VPN

Figure 6.36 Client to Client VPN

Client to Network

Always uses VPN All traffic is routed through target network

Remote Access

Client to network

Always uses VPN
All traffic is routed through target network

Remote Subnet

IPSEC

- Two Purposes
 - Authentication: sender & receiver (prevents IP spoofing)
 - Encryption: data privacy
- IPSEC is not end-to-end

IPSEC

- AH = Authentication Header Not used much)
- ESP = Encapsulating Security Payload
- Not Specified in IPSEC Policy
 - Encryption Algorithms
 - Key Management
 - Domain of Interpretation

IPSEC Services

AH	ESP	BOTH	IPSEC Service
X	X	X	Access Control
X			Connectionless Integrity
X			Data Origin Authentication
X	X	X	Reject of Replay
	X		Confidentiality
	X		Limited Traffic Flow Confidentiality

AH

Size	Field
8 bits	Next
8 bits	Length of Header
16 bits	Reserved
32 bits	Security Parameters
32 bits	Sequence Number
Variable	Authentication Data

Authentication Data: MD5 (1-way Hash)

AH Use: End-to-End or End-to-Intermediate Node

IPv4 Use of AH in IPSEC

Original IPv4 Packet

IP Hdr	TCP Hdr	Data
--------	---------	------

Transport Mode IPv6 Packet

Tunnel Mode IPv6 Packet

New IP Hdr AH IP Hdr TCP Hdr Data

<----->

ESP

- Encapsulating Security Payload
 - Security Parameters: help identify the encryption algorithm (eg: DES, blowfish)
 - Sequence number: an ever increasing number used for replay
 - Authentication data: a hash of everything, proves non-alteration
 - Data, Padding, Length, and Next fields are all encrypted

Encapsulating Security Payload

Encapsulating Security Payload

- There are two ways encryption can be handled:
 - Transport Level (end-to-end)
 - Tunnel mode (also referred to as VPN)
- Packet format for IPv4:

Encapsulating Security Payload

• Packet format for IPv6:

• Tunneling mode:

