Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

	1	2	3	4	Запас
					Ы
1	2	6	5	3	12
2	2	5	2	5	16
3	7	4	7	4	11
Потре	14	7	10	8	
бност					
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum a = 12 + 16 + 11 = 39$$

$$\sum b = 14 + 7 + 10 + 8 = 39$$

Занесем исходные данные в распределительную таблицу.

				- 75	
	1	2	3	4	Запас
					Ы
1	2	6	5	3	12
2	2	5	2	5	16
3	7	4	7	4	11
Потре	14	7	10	8	
бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	2[12]	6	5	3	12
2	2[2]	5	2[10]	5[4]	16
3	7	4[7]	7	4[4]	11
Потре	14	7	10	8	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 2*12 + 2*2 + 2*10 + 5*4 + 4*7 + 4*4 = 112$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1=2$	$v_2 = 5$	$v_3 = 2$	$v_4 = 5$
$u_1 = 0$	2[12]	6	5	3

$u_2 = 0$	2[2]	5	2[10]	5[4]
$u_3 = -1$	7	4[7]	7	4[4]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (1;4): 3

Для этого в перспективную клетку (1;4) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

green shakii « ", « ", « ".						
	1	2	3	4	Запас	
					Ы	
1	2[12][-	6	5	3[+]	12	
]					
2	2[2][+	5	2[10]	5[4][-]	16	
]					
3	7	4[7]	7	4[4]	11	
Потре	14	7	10	8		
бност						
И						

Цикл приведен в таблице (1,4; 1,1; 2,1; 2,4;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(2, 4) = 4. Прибавляем 4 к объемам грузов, стоящих в плюсовых клетках и вычитаем 4 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

vibimi v ilevij ilili ilebbili ellepibili ilvimi.						
	1	2	3	4	Запас	
					Ы	
1	2[8]	6	5	3[4]	12	
2	2[6]	5	2[10]	5	16	
3	7	4[7]	7	4[4]	11	
Потре	14	7	10	8		
бност						
И						

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ij}$, полагая, что $u_1 = 0$.

_	$v_1 = 2$	$v_2 = 3$	v ₃ =2	v ₄ =3
$u_1 = 0$	2[8]	6	5	3[4]
$u_2 = 0$	2[6]	5	2[10]	5
$u_3=1$	7	4[7]	7	4[4]

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_i <= c_{ii}$.

Минимальные затраты составят:

$$F(x) = 2*8 + 3*4 + 2*6 + 2*10 + 4*7 + 4*4 = 104$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.