Hardware

3. Programovatelné logické obvody 3. ročník

Vstupní blok:

- Vyrovnávací paměť
- Vstupní budiče
- Logika pro programové povolení vstupů

Výstupní blok:

- Makro-buňka
- Registry
- Invertory

3. Programovatelné logické obvody

- Číslicové obvody, které lze konfigurací naprogramovat
 - Vytváření/přerušování propojek nebo zápis do paměť ových buněk
- Nahrazují kombinační a sekvenční LO
 - Sestaveny z obvodů střední inteligence
 - Hradla, čítače, registry, ...
- Prostředek pro návrh/realizaci kombinačních. a sekvenčních obvodů
 - Díky vývojovým prostředkům, které lze pro práci s nimi použít, umožňují podstatným způsobem usnadnit práci vývojáře/návrháře

- Jakákoliv logická funkce, jakékoliv logické rovnice, lze vyjádřit pomocí součtu součinů booleovských proměnných
 - Disjunktivní forma
 - · Implementace formou vhodného zapojení hradel
- Výhody:
 - Zpřehlednění a snížení počtu pinů
 - Zvýšení spolehlivosti
 - Snadná modifikace
 - Velmi výkonné
- Nevýhody:
 - Nutná znalost programovacího jazyka pro PLD
 - Při poruše (většinou) nutno vyměnit jako celek
 - Cena

- Programovatelné hradlové pole
 - Číslicový obvod, který má na čipu určité množství elementárních logických prvků, umístěných do maticové struktury
- Prvky lze vzájemně propojit pomocí konfigurovatelné propojovací sítě
 - Požadovaná funkce
- Několik desítek vertikal. a horizontal. vodičů
 - Konfigurace pomocí programovatelných propojek v místě křížení vodičů

- Výrobci:
 - Xilinx
 - Lattice
 - Altera (Intel)

- Programovací jazyk:
 - ABEL HDL
 - VHDL
 - Verilog

PLD – rozdělení

1. SPLD

- Simple PLD
- · Spíše pro kombinační logiku
- a) PAL
- b) PLA

2. CPLD

- Complex PLD
- Charakteristické počtem makro-buňek

3. FPGA

- Field Programmable Gate Array
- Místo makro-buněk mají logické bloky

PLD - metodika návrhu

1. Formální zápis neboli zadání

Určení vstupů a výstupů

Popis problému

- a) Funkční a přechodové tabulky
- b) Booleovské rovnice
- c) Orientovaný graf
- d) Časové průběhy
- e) Minimalizace
- f) Schéma zapojení

3. Simulace

Velmi důležitá – odhalení řady chyb (lazení/debuging)

4. Realizace

PLD kompilátor

- Vývojové systémy/prostředí umožní definovat návrh číslicového obvodu bez ohledu na konkrétní typ PLD, jež bude nakonec použit
 - Zápis programu ve vyšším programovacím jazyce
- Převádí definice log. funkcí do implementačního prostředí konkrétního PLD
- Dříve výstupem soubor .jedec dnes .bit
 - Programuje se do konkrétního PLD (přes LPT, USB)
- Transformace zápisu včetně minimalizace
 - Zjednodušení návrhu
 - Doplněno optimalizací pro konkrétní PLD
 - Minimalizace vstupů, výstupů, vnitřních termů a makro-buňek

SPLD - PAL

Výstupní termy pro Px a fx?

SPLD - PLA

Výstupní termy pro Px a fx?

SPLD - GAL

Makro-buňka

- Output Logic Macro Cell
- Možno vytvářet SLO
 - Moore vs. Mealy
- Základní částí je DKO
 - Doplněný o pomocná hradla
 - Bez DKO pouze jako KLO

Complex PLD

Complex PLD

- Komplexnější než SPLD
- Větší množství logiky na jednom čipu
 - Několik obvodů patřících do SPLD
- Počet makro-buněk řádově v 10ky až 100ky
 - SPLD v řádu jednotek
- Většina pinů je univerzálních
 - Pár speciálních (CLK, programování, ...)

CPLD - CoolRunner II

Field Programmable Gate Array

Field Programmable Gate Array

- Nejsložitější, ale zároveň nejobecnější PLD
- Místo makro-buňek obsahují logické bloky
 - Samotná programovatelná logika
- IOB přísluší každému IO pinu a mohou obsahovat registr, budič, multiplexer a ochranné obvody
- Jednotlivé LO jsou propojeny GIM/AIM
 - Signály sousedních LO mohou být propojeny přímo
 - Rychlejší, realizace např. čítaček, násobiček

Field Programmable Gate Array

- Většina FPGA obsahuje také paměť
 - Synchronous Static Random Access Memory (SSRAM)
- Také mohou obsahovat speciální bloky
 - HW násobičky; PLL, DLL (práce s CLK)
- Využití externí EEPROM
 - Automatické přečtení po zapnutí -> SSRAM

FPGA

FPGA - architektura

1. **IOB**

- Vstupně/výstupní bloky
- Standardy
- Řídí tok dat mezi I/O pinem a vnitřní logikou
- Možno zařadit zpožďovací obvod, paměť ový člen, ...

2. CLB

- Configurable Logic Block
- Paměť ové členy; tabulky log. funkcí (look-up-table) na principu RAM
- Přidána logika pro zřetězení se sousedními CLB

3. Block RAM

4. Multiplier

Násobičky

5. DCM

- Digital Clock Manager
- Auto-kalibrace
- Rozvod CLK ke všem CLB
- Dále distribuce zpoždění, násobení, dělení, fázový posun

KONEC

Zdroje

- https://seekvectorlogo.net/xilinx-vectorlogo-svg/ [30. 3. 2020]
- https://www.latticesemi.com/ [30. 3. 2020]
- https://www.researchgate.net/figure/Design -phase-in-ISE-WebPack_fig11_224184472 [30. 3. 2020]
- https://en.wikipedia.org/wiki/Complex_progr ammable_logic_device [30. 3. 2020]