History of Option Pricing Theory After Black-Scholes' Work

Tao Luo, Deng Pan and Wenchao Zhang

South University of Science and Technology of China

14 Apr 2014

B-S-M Model

- The modern theory of option pricing: Black–Scholes–Merton model;
- Merton's improved work[Mer73] (rational BS model) has been discussed by Tao Luo before;
- BS equation setablished in 1973[BS73].

Five Assumptions of B-S-M Model

- 1. Competitive markets (Trades have no impact on the market price)
- 2. Frictionless markets (No transaction costs nor trade restrictions)
- 3. Geometric Brownian motion (The stock price is lognormally distributed with a constant volatility)
- 4. Deterministic Interest Rates
- 5. No Credit Risk

The first two assumptions are the mainstay of finance.

Extensions of the Black-Scholes-Merton model

- Relaxing GBM assumption: Jump and Jump-diffusion processes [CR76][Mer76]
- Option pricing with stochastic volatility in incomplete markets[HW87][Hes93]
- Levy processes was introduced by Madan and Milne [MM91] into option pricing and generalized by Carr et al.[CGMY03]
 - i. Known characteristic function;
 - ii. Using fast Fourier transforms.
- The relaxation of the FM assumption [Lel85][HJ87]
- The relaxation of the CM assumption[Jar92]
- Exotic Options[GK83] (Ammerican, Asian, Russian, Binary, Digital, Barrier, Parisian)

Interest Rate Derivatives

This deterministic interest rates assumption limits its usefulness in two ways.

- 1. It cannot be used for long-dated contracts;
- 2. For short dated contracts, if the underlying asset's price process is highly correlated with interest rate movements, then interest rate risk will affect hedging, and therefore valuation.

Interest Rate Derivatives

Spot rate models

- A class of interest rate pricing models were developed by Vasicek[Vas77], Brennan and Schwartz[BS79], and Cox et al.(CIR)[CIR85]
- Depended on the market price of interest rate risk.
- These models could not easily match the initial yield curve.

HJM model[HJM92]

- Key Tchniques: no drift estimation is needed.
- Based on modeling the forward rates.

Instantaneous forward rate $f(t,T), t \leq T$ is the continuous compounding rate defined by

$$f(t,T) = -\frac{1}{P(t,T)} \frac{\partial}{\partial T} P(t,T) = -\frac{\partial \log P(t,T)}{\partial T}$$

Basic relation between the rates and the bond prices:

$$P(t,T) = e^{-\int_0^T f(t,s) \, \mathrm{d}s}$$

HJM model

The assumption of the HJM model is that the forward rates f(t,T) satisfy for any T:

$$df(t,T) = \mu(t,T)dt + \sigma(t,T)dW_t$$

To be compatible with assumption of the existence of martingale measures,

$$\frac{\mathrm{d}P(t,T)}{P(t,T)} = [r(t) - \alpha(t,T)\theta(t)]\mathrm{d}t + \alpha(t,T)\mathrm{d}W_t$$

No-arbitrage condition in the HJM model:

$$\mu(t,T) = \sigma(t,T) \left(\int_{t}^{T} \sigma(t,s) ds - \theta(t) \right)$$

Under the martingale probability measure, $\theta = 0$

$$df(t,T) = \sigma(t,T) \left(\int_{t}^{T} \sigma(t,s) \ ds \right) dt + \sigma(t,T) d\tilde{W}$$

BUT instantaneous forward rate is not observed directly. The Application of HJM Model is not good. The solution[MSS97] was to use a simple interest rate, compounded discretely, for the London Interbank Offer Rate (LIBOR).

Credit risk derivative pricing models

Structural approach (first model for studying credit risk)[Mer74]

- that default occurs smoothly
- the firm's assets are neither traded nor observable

Address the absence of a jump at default include that by Zhou[Zho01]

Jarrow and Turnbull[JT95] developed an alternative credit risk model that overcame the second shortcoming.

Bibliography

- [BS73] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. *The journal of political economy*, :637–654, 1973.
- [BS79] Michael J Brennan and Eduardo S Schwartz. A continuous time approach to the pricing of bonds. Journal of Banking & Finance, 3(2):133–155, 1979.
- [CGMY03] Peter Carr, Hélyette Geman, Dilip B Madan and Marc Yor. Stochastic volatility for lévy processes. Mathematical Finance, 13(3):345–382, 2003.
- [CIR85] John C Cox, Jonathan E Ingersoll Jr and Stephen A Ross. A theory of the term structure of interest rates. *Econometrica: Journal of the Econometric Society*, :385–407, 1985.
- [CR76] John C Cox and Stephen A Ross. The valuation of options for alternative stochastic processes. *Journal of financial economics*, 3(1):145–166, 1976.
- [GK83] Mark B Garman and Steven W Kohlhagen. Foreign currency option values. *Journal of International Money and Finance*, 2(3):231–237, 1983.
- [Hes93] Steven L Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. *Review of financial studies*, 6(2):327–343, 1993.
- [HJ87] David C Heath and Robert A Jarrow. Arbitrage, continuous trading, and margin requirements. *The Journal of Finance*, 42(5):1129–1142, 1987.
- [HJM92] David Heath, Robert Jarrow and Andrew Morton. Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. *Econometrica: Journal of the Econometric Society*, :77–105, 1992.
- [HW87] John Hull and Alan White. The pricing of options on assets with stochastic volatilities. *The journal of finance*, 42(2):281–300, 1987.
- [Jar92] Robert A Jarrow. Market manipulation, bubbles, corners, and short squeezes. *Journal of financial and Quantitative Analysis*, 27(03):311–336, 1992.
- [JT95] Robert A Jarrow and Stuart M Turnbull. Pricing derivatives on financial securities subject to credit risk. *The journal of finance*, 50(1):53–85, 1995.

- [Lel85] Hayne E Leland. Option pricing and replication with transactions costs. *The journal of finance*, 40(5):1283–1301, 1985.
- [Mer73] Robert C Merton. Theory of rational option pricing. *Bell Journal of Economics and Management Science*, 4:141–183, 1973.
- [Mer74] Robert C Merton. On the pricing of corporate debt: the risk structure of interest rates*. *The Journal of Finance*, 29(2):449–470, 1974.
- [Mer76] Robert C Merton. Option pricing when underlying stock returns are discontinuous. *Journal of financial economics*, 3(1):125–144, 1976.
- [MM91] Dilip B Madan and Frank Milne. Option pricing with vg martingale components. *Mathematical finance*, 1(4):39–55, 1991.
- [MSS97] Kristian R Miltersen, Klaus Sandmann and Dieter Sondermann. Closed form solutions for term structure derivatives with log-normal interest rates. *The Journal of Finance*, 52(1):409–430, 1997.
- [Vas77] Oldrich Vasicek. An equilibrium characterization of the term structure. *Journal of financial economics*, 5(2):177–188, 1977.
- [Zho01] Chunsheng Zhou. The term structure of credit spreads with jump risk. *Journal of Banking & Finance*, 25(11):2015–2040, 2001.

Thank You!