2016 高教社杯全国大学生数学建模竞赛

承 诺 书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反 竞赛规则的行为,我们将受到严肃处理。

找们参赛选择的题号是(从 A/B/C/D 甲选择一坝填与):
我们的参赛报名号为(如果赛区设置报名号的话):
所属学校(请填写完整的全名):
参赛队员 (打印并签名): 1
2
3
指导教师或指导教师组负责人(打印并签名):
1H 4 4X/ F-X41H 4 4X/ F-XE-X/
日期: 年 月 日
口別:

赛区评阅编号(由赛区组委会评阅前进行编号):

2016 高教社杯全国大学生数学建模竞赛

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

赛区评阅记录(可供赛区评阅时使用):

	 7 1 1 1 1 1 1 1 C	 	 , -		
评阅人					
评分					
备注					

全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

电池剩余放电时间预测

摘要

近年来,我国相继颁布多项有关铅酸电池行业的发展政策规范,调整产业结构,淘汰落后产能企业,提高行业的准入门槛,加强对行业污染的整治力度,建立大企业主导的行业格局。本文通过建立合理的假设,对铅酸电池放电时间与电压,电流等因素进行了相关分析,并经建立了多项式回归模型对电压与时间的关系进行了定量分析,得到了较为合理的结论。考虑到在开始的时间内电压不稳定,在多项式回归模型的基础上,引进指数回归模型进行推广。

针对问题一,我们对已给样本数据进行整理分析,利用 Matlab 软件画出 9 种电流下的放电曲线的散点图,通过 Excel 软件对进行三阶多项式进行拟合,各电流情况下的放电曲线,并进行了一定的定量分析。通过选取 231 个样本并利用定义和所拟合的曲线方程求出 MRE。对我们所获得的数学模型,当 $u_0 = 9.8v$ 时,得出电池的放电时间分别是

	电流强度/A	30	40	50	60	70
乘	引余放电时间	602	439	332	278	250
	/t(min)	002	432	332	210	250

针对问题二,根据问题一中9个多项式的参数进行分析,我们利用 Matlab 的 cftool 工具,分析电流变化和多项式模型参数值的关系,采用了指数类函数进行拟合,同时我们通过 Matlab 编程易得出电压与电流时间的二元函数关系模型和 MRE 的值,经过与问题一中 MRE 的值进行比较与评估,所建立的函数模型建立较为合理。

针对问题三,我们对附件2所给样本数据进行统计分析,考虑到开始放电时所给的数规律性较差,所以我们从30 min后的数据进行处理分析;对于全新电池和已给的两个衰减状态数据进行处理,并进行误差分析,拟合情况较好,故得出衰减状态3的放电曲线方程,从而得出衰减状态3的剩余放电时间约为211 min。

【关键字】 电池 放电曲线 Matlab 回归分析 预测

一、 问题重述

蓄电池是一种直流电源,是化学能转变为电能的一种装置。1860年法国普兰特发明铅酸蓄电池,经过一百多年生产应用得到了不断改进,开始应用于工业、农业、交通运输、邮电通讯科研等领域。随着汽车、摩托车、电动车、邮电通讯和计算机事业迅速发展,铅酸蓄电池的需求量逐年增加。自铅酸蓄电池被发明以来,因其价格低廉、原料易得、性能可靠、容易回收和适于大电流放电等特点,已成为世界上产量最大、用途最广泛的蓄电池品种,被广泛用于工业、军事、日常生活中。在铅酸电池以恒定电流强度放电过程中,电压随放电时间单调下降,直到额定的最低保护电压(Um,本文中为9V)。从充满电开始放电,电压随时间变化的关系称为放电曲线。电池在当前负荷下还能供电多长时间(即以当前电流强度放电到 Um 的剩余放电时间)是我们研究的对象。电池通过较长时间使用或放置,充满电后的荷电状态会发生衰减。

采样数据来源于同一生产批次电池出厂时以不同电流强度放电测试,及同一电池在不同衰减状态下以同一电流强度从充满电开始放电的记录。请你们根据题目提供的数据,回答以下问题:

- 1. 根据同一生产批次放电测试信息,构建放电曲线,再运用所构建的放电曲线模型计算当电压为 9.8 伏时,以 30A,40A,50A,60A 和 70A 的电流强度放电,所对应的电池剩余放电时间分别是多少。
- 2. 建立以 20A 到 100A 之间任一恒定电流强度放电时的放电曲线的数学模型,并用 MRE 评估模型的精度。用表格和图形给出电流强度为 55A 时的放电曲线。
- 3. 根据同一电池在不同衰减状态下以同一电流强度从充满电开始放电的记录,预测电池衰减状态 3 的剩余放电时间。

二、 符号说明及名词定义

т	
符号	符号说明
MRE	平均相对误差
t	放电时间
a_i	参数
t_i	模型估计已放电时间
$t_{i}^{'}$	采样已放电时间
N	提取样本点数量
$T_{\scriptscriptstyle S}$	剩余放电时间
b_{i}	参数
A	自变量
U	电压
T	放电时间
u	电压
C_{t}	残差绝对值与实际值的百分比
$e_{_t}$	衰减状态残差
S_{t}	各衰减状态的实际值
\hat{y}_i	实际放电时间
	模型估计放电时间
\mathcal{Y}_i	
$T_{_m}$	最低保护电压对应的放点时间
T_{u_0}	电池电压为 u_0 时的时间
k_i	参数

三、 基本假设

- 1. 假设搜集的数据信息真实有效;
- 2. 假设湿度、温度、气压等外部因素均不影响电流强度放电测试;
- 3. 假设铅酸电池在试验过程中内阻变化不影响电流强度放电测试;
- 4. 假设铅酸电池在放电过程中电流强度不会发生变化;
- 5. 假设同一生产批次电池出场时都合格,电动势的大小均接近于相同的稳定值。

四、 问题分析

4.1 背景分析

铅酸电池就是靠电解液和铅板来做成的电池,可以反复的充电和放电,直到里面的电解液浓度低到不能蓄电。在电源发生故障时,需要后备蓄电池进行供电,但是由于未能及时发现失效蓄电池,导致后备电源无法起到其相应的作用或剩余放电时间预估不准确,无法合理进行油机调度或管理,那都将造成重大的甚至是灾难性的事故或经济损失。因此,蓄电池健康状况的检测一直是后备用电池领域重点关注的内容之一,蓄电池健康与否是系统可靠性依赖的最后一个环节,同时也是可靠性最薄弱环节。

4.2 问题一分析

根据附件 1,本文抽取同一生产批次电池出厂时以不同电流强度放电的采样数据,进行分析整理,构建出放电曲线模型,对放电情况做出一些简单的分析和总结,并分别求出各放电曲线的平均相对误差 (MRE)。根据我们获得的放电曲线模型,在电压都为9.8 伏时,推算不同电流强度的放电剩余时间。

4.3 问题二分析

为了更准确的研究放电时间规律,我们根据问题一所得9种模型关系,初步得出了时间与电压电流的相关关系,逐步得出以20A到100A之间任一恒定电流强度放电时的放电曲线模型。并用MRE评估模型的精度,以达到获得更为精准的数据。55A时的放电曲线。进一步提高模型的拟合度,完善模型。

4.4问题三分析

本文抽取同一电池在不同衰减状态下以同一电流强度从充满电开始放电的记录数据,根据附件2的资料,先画一条电压曲线,可以看出一定的规律,因为开始一段的电压并不稳定,因此我们研究30min以后的情况,根据它们的规律,我们便可以预测出附件2中电池衰减状态3的剩余放电时间。

五、 模型的建立与求解

5.1 问题一模型的建立与求解

在电源发生故障时,需要后备蓄电池进行供电,但是由于未能及时发现失效蓄电池,导致后备电源无法起到其相应的作用,或剩余放电时间预估不准确,无法合理进行油机调度或管理,那都将造成重大的甚至是灾难性的事故或经济损失。因此,蓄电池健康状况的检测一直是后备用电池领域所重点关注的内容之一,蓄电池健康与否是系统可靠性依赖的最后一个环节,同时也是可靠性最薄弱环节。

5.1.1 模型一:基于放电曲线建立多项式回归模型

对于附件 1 所提供的数据,本文通过提取放电时间随电流强度的相关数据,做出放电时间与电流强度对应关系表,结果如下图表 1,

表 1 放电时间随电流强度变化表

电流强度 /A	20	30	40	50	60	70	80	90	100
放电时间 /t(min)	3764	2454	1724	1308	1044	862	730	620	538

根据上述表格相关数据得出放电时间随电流强度变化散点图如图 1,

放电时间/t(min) 放电时间随不同电流强度散点图 4000 3500 3000 2500 2000 ◆ 放电时间/t(min) • 1500 1000 500 0 120 电流强度/A 0 20 40 80 100

图 1 放电时间随电流强度变化散点图

根据图 1 得到当电流强度逐渐增大时放电时间呈现单调下降,通过对题目的附件 1 中所提供的同一生产批次电池出厂时不同电流强度放电测试数据,因为开始的一段电压并不稳定,因此我们研究 20min 后的电压情况,利用三次函数进行拟合,将数据导入 Excel 表格中,得相关曲线及参数如图 2。

图 2 不同电流下电压随时间变化曲线图

观察易知随着放电时间的增加,电压也逐渐接近额定的最低保护电压(U_m ,本题中为 9v)且呈现单调下降,根据图 2,可拟合电压 U 与放电时间 t 的多项式回归模型

$$U(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0, (1)$$

其中, a_i (i=0, 1, 2, 3) 为相关系数。

根据图 2 不同电流下电压随时间变化曲线图拟合的多项式回归方程分别如下表 2: 表 2 不同电流强度值下的拟合曲线方程

电流强度/A	拟合曲线方程	R^2
20	$U(t) = -2E - 11t^{3} + 6E - 08t^{2} - 0.0003t + 10.627$	$R^2 = 0.995$
30	$U(t) = -1E - 10t^{3} + 3E - 07t^{2} - 0.0006t + 10.669$	$R^2 = 0.995$
40	$U(t) = -3E - 10t^{3} + 5E - 07t^{2} - 0.0008t + 10.623$	$R^2 = 0.996$
50	$U(t) = -8E - 10t^{3} + 9E - 07t^{2} - 0.001t + 10.578$	$R^2 = 0.996$
60	$U(t) = -6E - 09t^{3} + 7E - 06t^{2} - 0.0021t + 10.562$	$R^2 = 0.996$
70	$U(t) = -1E - 09t^3 + 1E - 06t^2 - 0.0012t + 10.54$	$R^2 = 0.996$
80	$U(t) = -4E - 09t^{3} + 3E - 06t^{2} - 0.0016t + 10.443$	$R^2 = 0.997$
90	$U(t) = -7E - 09t^{3} + 4E - 06t^{2} - 0.0019t + 10.411$	$R^2 = 0.997$
100	$U(t) = -1E - 08t^{3} + 5E - 06t^{2} - 0.0021t + 10.378$	$R^2 = 0.997$

5.1.2 模型二: 平均相对误差(MRE)

由平均相对误差的定义可建立 MRE 模型为:

$$MRE = \frac{1}{N} \sum_{i=1}^{N} \frac{\left| t_{i} - t_{i}^{'} \right|}{t_{i}}$$
 (2)

通过观察放电预测电池容量,根据定义知放电时间的精度取决于放电曲线在低压段的质量,但是放电曲线等时间间隔采样在低压段的采样点稀疏,基于这个事实原题附件 1 中从 U_m 开始按不超过 0.005V 的最大间隔,提取 231 个电压样本点。

当I = 80A,根据公式(1)可知,时间T关于电压u的多项式模型,即

$$T(u) = k_3 u^3 + k_2 u^2 + k_1 u + k_0 \tag{3}$$

其中 k_i , i 取 0, 1, 2, 3, 为相关系数, u 为电压

得到当电流强度为 80A 时所对应的 T-u 的函数关系式为

$$T(u) = -74.472u^3 + 1792.9u^2 - 14241u + 37962$$
 $R^2 = 0.9999$

根据 U_m 开始按不超过 0.005V 的最大间隔,提取 231 个电压样本点即令N=231,见附件 1,当I=80A时,平均相对误差 MRE=0.006505.

同理可知其他相关电流强度所对应的 MRE 值见下表 3,

表 3 对应电流强度的 MRE 的值

电流强度	/A 20	30	40	50	60	70	80	90	100
MRE	0. 00483	0.00614	0.00463	0.0024	0.00426	0. 00978	0.00651	0. 01893	0. 04488

5.1.3 模型三

由模型二可知,时间 T 关于电压 u 的多项式模型,即 $T(u) = k_3 u^3 + k_2 u^2 + k_1 u + k_0$,(其中 k_i , i 取 0,1,2,3,为相关系数,u 为电压),当以一恒定电压时,求解剩余放电时间在不同电流强度的下的值,建立模型如下

$$T_S = T_m - T_{u_0} \tag{4}$$

在新电池使用中电压一定,即 u=9.8v,

以电流强度为 70A 时为例,此时 $T(u) = -70.391u^3 + 1621.8u^2 - 12132u + 29999$ $R^2 = 0.9999$,将电压 u=9v 和 u=9. 8v 分别代入求解后利用公式(3)解得

$$T_{\rm s} = 250 \, {\rm min}$$

同理可知,其他电流强度值在电压均为 9.8v 所对应的剩余放电时间如下:

表 4 同电压下不同电流强度对应的剩余放电时间

电流强度/A	30	40	50	60	70
剩余放电时间 /t(min)	602	432	332	278	250

5.2 问题二模型的建立与求解

根据 9 个不同电流下的 3 次多项式的参数进行分析,我们利用 Matlab 的 cftool 工具分析电流 I 和多项式模型参数值的关系,发现安培数每增加 10,参数值下降一个数量级(同样需要单调),因此,采用了指数函数,可以发现拟合效果较好, 故建立模型

$$U = a_0 e^{b_0 A} + a_1 e^{b_1 A} t + a_2 e^{b_2 A} t^2 + a_3 e^{b_3 A} t^3$$
(5)

其中 a_i, b_i 为参数, i = 0,1,2,3, A,t为自变量。

将 EXCEL 的数据处理导入 Matlab 软件中,并建立求解参数相关的程序如图 3 和散点图如图 4

图 3 参数求解程序图

```
load data4
for ii=1:9
    for jj=1:10
        pp{jj}(ii)=p{ii}(jj);
    end
end
AA=20:10:100;
for jj=1:9
    cftool(AA,pp{jj});
end
save('data5')
```

图4 电流散点图

得到模型参数为下表5:

表5 模型各参数值

a3	-1.61E-09	b3	0.08772
a2	5. 93E-07	b2	0.07116
a1	-0.000395	b1	0.04087
a0	10.64	b0	-0.0001

利用已得到的模型,容易获得55A的放电曲线和表格,编辑Matlab程序见附件2,得到如下放电曲线图:

图5 电流强度为55A时的放电曲线

且放电曲线散点的表格见附件 3 对于在已建立的数学模型中编程,程序见附件可得到 MRE 如下表6:

表 6 不同电流强度下的 MRE 值

电流强度/A	20	30	40	50	60	70	80	90	100
MRE	0. 00376	0. 00630	0.00325	0. 00364	0.00365	0. 00896	0.00674	0. 00989	0. 03304

5.3 问题三模型的建立与求解

根据附件 2 所提供的数据预测衰减状态 3 的剩余放电时间,先将数据放到 matlab 的 cftool 工具里面拟合,首先,这个函数肯定是单调递减的。可以发现用 3 次函数拟合,故建立模型

$$T = b_3 u^3 + b_2 u^2 + b_1 u + b_0 (6)$$

将 EXCEL 的数据处理导入 Matlab 软件中,并建立求解参数相关的程序和散点图,因为开始一段的电压并不规律,因此我们研究 30min 以后的情况,同样用 3 次函数进行

拟合,可以得到如图曲线,

图 6 不同状态下的放电曲线图

由图像可知,放电时间在前30分钟时,电压不稳定,对后面数据模型的研究存在误差影响,不能具有代表性。

将附件 2 中的相关数据通过 Excel 处理导入 Matlab 软件中利用 matlab 的 cftool 工具里面拟合,得到全新电池状态下拟合函数

$$T(u) = -231.63u^3 + 6037u^2 - 52485u + 153509$$
 $R^2 = 0.999$

当电压为 9V 时,代入此公式求得剩余放电时间为 1282.7min. 与采样新电池放电状态下的时间 1281.1min 吻合度达到 99%以上。同理可判断衰减状态 1、衰减状态 2 电压为 9V 时的放电时间。

现对拟合函数进行误差分析,根据公式(3),利用附件2中的前三个电池状态中各个自变量的数据进行预测,通过预测得到的数据与实际数据进行比较,计算出回归方程的误差,本文通过残差进行检验,残差的计算公式为:

$$e_i = y_i - y_i \tag{7}$$

计算的得到的预测值和残差如下表7

表 7: 预测值及残差

状态	9V 实际放电 时间	9V 模型估计 放电时间	残差 e_i
新电池状态	1281. 1	1282. 7	1.60
衰减状态 1	1104.8	1105.2	0.40
衰减状态 2	979	972.2	-6.80

根据表7中各衰减状态的残差值,分别计算出残差绝对值与实际数据的比值,公式

$$C_t = \frac{|e_t|}{S_t} \times 100\%$$
 $i = 1,2,3$ (8)

式中, C_t 表示残差绝对值与实际值的百分比, $|e_t|$ 各衰减状态残差绝对值, S_t 表示各衰减状态的实际值。

理想的即误差较小的函数残差跟实际数据的比值百分比比较小。通过计算得到如下结果

衣 8: 戏 左 绝 对 值 与 头									
状态	新电池状态	衰减状态 1	衰减状态 2						
比值	0. 12%	0. 04%	0. 69%						

表 8: 残差绝对值与实际值的百分比

通过上表的数据可以看出每个月份残差绝对值与实际值的百分比都低于 1%, 拟合程度高。故可以预测衰减状态 3 的剩余放电时间。

因为 30min 前电压状态不稳定,通过 Excel 处理讲衰减状态 3 数据导入 Matlab 软件中利用 matlab 的 cftool 工具里面拟合得到散点图如图 7

图 7 30min 后衰减状态 3 的放电曲线图

根据图7拟合得到曲线方程

$$T(u) = -127.66u^3 + 3301.5u^2 - 28506u + 83004$$
 $R^2 = 0.9999$

求得当电压值为 9.0v 的放电时间 807.4min,从而得出衰减状态 3 的剩余放电时间 约为 211min。

七、模型的推广

- 1、本文在模型的建立与求解过程中,详细的说明并绘制出相应的图表,分析了有关铅酸电池放电预测的各类信息。在核算过程中,考虑了铅酸电池在不同环境条件下,对其放电时间的影响,但在解决其问题的思路和模型运用方面具有普遍性。
- 2、本文通过国家近年来对铅酸电池行业发展的政策和规范,以各种约束条件,对预测放电时间进行数据分析,研究其项目的可行情况。
- 3、本文所建立的模型不仅仅局限于解决如何提高铅酸电池的利用率问题,对其他新型 能源的开发和研究具有借鉴作用。
- 4、在 G20 杭州峰会上,新型能源作为在新技术的基础上加以开发利用的可再生能源,各国领导人致力于制定新能源战略,推动可再生能源的运用,促进可再生能源生产和利用领域投资的便利化。而这种资源的节约采集和合理利用,为今后的中国经济发展给出了新的战略定位,对我国经济的又一进步起到重要作用。

八、模型的评价

优点

- 1、本文对问题一,进行全面分析,我们采用三次函数进行研究,当电流越大,放电时间越小,三次函数相比其他函数较为精确。
- 2、原创性很强,本文中所有的模型都是自行推导建立的。
- 3、本文在正确,清楚地分析了题意的基础上,建立了模型,更精确的预测了电池放电时间,得到了合理化的设计。
- 4、模型的计算采用专业的 matlab 软件,准确度较高,可信度较高。

缺点

- 1、数据具有局限性, 当阶数越高, 精确度越高。
- 2、在某些参数的确定上,由于缺乏数据,不免有主观成分的存在。
- 3、当拟合的数值不同时,精确度也不同。

九、参考文献

- [1]李德宜,李明. 数学建模. 北京:科学出版社, 2009.
- [2]陈东彦, 李冬梅, 王树忠. 数学建模. 北京: 科学出版社, 2007.
- [3] 颜文勇. 数学建模. 北京: 高等教育出版社, 2011. 6.
- [4]严喜祖,宋中民,毕春加.数学建模及其实验.北京:科学出版社,2009.
- [5]周品,赵新芬. MATLAB 数学建模与仿真. 北京: 国防工业出版社,2009.
- [6]叶其孝. 大学生数学建模竞赛辅导教材(一). 长沙: 湖南教育出版社, 1993.
- [7] 杨启帆,边馥萍.数学模型.杭州:浙江大学出版社,1990.
- [8] Mark M M. 数学建模方法与分析. 刘来福, 杨淳, 黄海洋译. 北京: 机械工业出版社, 2005.
- [9]寿纪麟. 数学建模方法与范例. 西安: 西安交通大学出版社, 1993.
- [10]李大潜.中国大学生数学建模竞赛(第二版).北京:高等教育出版社,2001.
- [11] 齐欢. 数学模型方法. 武汉: 华中理工大学出版社, 1996.
- [12]何晓群,刘文卿.应用回归分析。北京:中国人民大学出版社,2001.
- [13]方开泰,金辉,陈庆云.实用回归分析.北京:科学出版社,1988.

十、附 录

附件1

日本	bill L			1					1	
2 10.2929 122 118.0375 0.0325 118 10.0214 354 354,291 0.0008 3 10.2914 124 119.5397 0.036 119 10.0186 356 356.369 0.001 4 10.2886 126 122.3378 0.0291 120 10.0186 356 356.369 0.001 5 10.2871 128 123.8335 0.0326 121 10.0136 360 360.064 0.0005 6 10.2850 130 125.9237 0.0314 122 10.0107 362 362.196 0.0005 7 10.2829 132 128.0094 0.0302 123 10.0079 364 364.248 0.0007 8 10.2814 134 129.4965 0.0336 124 10.0050 366 366.366 0.001 9 10.2786 136 132.2663 0.0275 125 10.0020 368 367.895 0.0003 10 10.2764	序号	样本点		模型估计值	相对误差	序号	样本点		模型估计值	相对误差
3 10.2914 124 119.5397 0.036 119 10.0186 356 356.369 0.001 4 10.2886 126 122.3378 0.0291 120 10.0164 358 357.998 7E-06 5 10.2871 128 123.8335 0.0326 121 10.0136 360 360.064 0.0002 6 10.2850 130 125.9237 0.0314 122 10.0107 362 362.196 0.0005 7 10.2829 132 128.0094 0.0302 123 10.0079 364 364.248 0.0007 8 10.2814 134 129.4965 0.0336 124 10.0050 366 366.366 0.001 9 10.2786 136 132.2663 0.0275 125 10.000 366 367.895 0.0003 10 10.2764 138 134.4371 0.0258 126 10.0000 370 370 0 11 10.2750	1	10.2943	120	116.6333	0.0281	117	10.0243	352	352.131	0.0004
4 10.2886 126 122.3378 0.0291 120 10.0164 358 357.998 7E-06 5 10.2871 128 123.8335 0.0326 121 10.0136 360 360.064 0.0002 6 10.2850 130 125.9237 0.0314 122 10.0107 362 362.196 0.0005 7 10.2829 132 128.0094 0.0302 123 10.0079 364 364.248 0.0007 8 10.2814 134 129.4965 0.0336 124 10.0050 366 366.366 0.001 9 10.2786 136 132.2663 0.0275 125 10.0029 368 367.895 0.001 10 10.2764 138 134.4371 0.0258 126 10.0000 370 370 0 11 10.2750 140 135.8159 0.0299 127 9.9911 372 372.098 0.003 12 10.2729	2	10.2929	122	118.0375	0.0325	118	10.0214	354	354.291	0.0008
5 10.2871 128 123.8335 0.0326 121 10.0136 360 360.064 0.0002 6 10.2850 130 125.9237 0.0314 122 10.0107 362 362.196 0.0005 7 10.2829 132 128.0094 0.0302 123 10.0079 364 364.248 0.0007 8 10.2814 134 129.4965 0.0336 124 10.0050 366 366.366 0.001 9 10.2764 138 134.4371 0.0258 126 10.0000 370 370 370 370 372.098 0.0003 11 10.2750 140 135.8159 0.029 128 9.9943 374 374.116 0.0003 12 10.2729 142 137.8805 0.029 128 9.9943 374 374.116 0.003 13 10.2779 144 140.0387 0.0275 129 9.9914 376 376.199 0.0005<	3	10.2914	124	119.5397	0.036	119	10.0186	356	356.369	0.001
6 10.2850 130 125.9237 0.0314 122 10.0107 362 362.196 0.0005 7 10.2829 132 128.0094 0.0302 123 10.0079 364 364.248 0.0007 8 10.2814 134 129.4965 0.0336 124 10.0050 366 366.366 0.001 9 10.2786 136 132.2663 0.0275 125 10.0029 368 367.895 0.0003 10 10.2764 138 134.4371 0.0258 126 10.0000 370 370 0 11 10.2750 140 135.8159 0.0299 127 9.9971 372 372.098 0.0003 12 10.2729 142 137.8805 0.029 128 9.9943 374 374.116 0.0003 14 10.2664 148 144.2428 0.0254 131 9.9886 378 378.203 0.0005 15 10.2664	4	10.2886	126	122.3378	0.0291	120	10.0164	358	357.998	7E-06
7 10.2829 132 128.0094 0.0302 123 10.0079 364 364.248 0.0007 8 10.2814 134 129.4965 0.0336 124 10.0050 366 366.366 0.001 9 10.2786 136 132.2663 0.0275 125 10.0029 368 367.895 0.0003 10 10.2764 138 134.4371 0.0258 126 10.0000 370 370 0 11 10.2750 140 135.8159 0.0299 127 9.9971 372 372.098 0.0003 12 10.2729 142 137.8805 0.029 128 9.9943 374 374.116 0.0003 13 10.2707 144 140.0387 0.0275 129 9.9914 376 376.199 0.0005 14 10.2664 148 144.2428 0.0254 131 9.9857 380 380.272 0.0007 16 10.2650	5	10.2871	128	123.8335	0.0326	121	10.0136	360	360.064	0.0002
8 10.2814 134 129.4965 0.0336 124 10.0050 366 366.366 0.001 9 10.2786 136 132.2663 0.0275 125 10.0029 368 367.895 0.0003 10 10.2764 138 134.4371 0.0258 126 10.0000 370 370 0 11 10.2750 140 135.8159 0.0299 127 9.9971 372 372.098 0.0003 12 10.2729 142 137.8805 0.029 128 9.9943 374 374.116 0.0003 13 10.2707 144 140.0387 0.0275 129 9.9914 376 376.199 0.0005 14 10.2666 146 142.0942 0.0268 130 9.9886 378 378.203 0.0005 15 10.2660 150 145.6076 0.0293 132 9.9829 382 382.262 0.0007 17 10.2650	6	10.2850	130	125.9237	0.0314	122	10.0107	362	362.196	0.0005
9 10.2786 136 132.2663 0.0275 125 10.0029 368 367.895 0.0003 10 10.2764 138 134.4371 0.0258 126 10.0000 370 370 0 11 10.2750 140 135.8159 0.0299 127 9.9971 372 372.098 0.0003 12 10.2729 142 137.8805 0.029 128 9.9943 374 374.116 0.0003 13 10.2707 144 140.0387 0.0275 129 9.9914 376 376.199 0.0005 14 10.2686 146 142.0942 0.0268 130 9.9886 378 378.203 0.0005 15 10.2664 148 144.2428 0.0254 131 9.9857 380 382.262 0.0007 16 10.2650 152 147.6511 0.0264 133 9.9800 384 384.316 0.0008 18 10.2679	7	10.2829	132	128.0094	0.0302	123	10.0079	364	364.248	0.0007
10 10.2764 138 134.4371 0.0258 126 10.0000 370 370 0 11 10.2750 140 135.8159 0.0299 127 9.9971 372 372.098 0.0003 12 10.2729 142 137.8805 0.029 128 9.9943 374 374.116 0.0003 13 10.2707 144 140.0387 0.0275 129 9.9914 376 376.199 0.0005 14 10.2686 146 142.0942 0.0268 130 9.9886 378 378.203 0.0005 15 10.2664 148 144.2428 0.0254 131 9.9857 380 380.272 0.0007 16 10.2650 150 145.6076 0.0293 132 9.9829 382 382.262 0.0007 17 10.2629 152 147.6511 0.0286 133 9.9800 384 384.316 0.0005 18 10.2607	8	10.2814	134	129.4965	0.0336	124	10.0050	366	366.366	0.001
11 10.2750 140 135.8159 0.0299 127 9.9971 372 372.098 0.0003 12 10.2729 142 137.8805 0.029 128 9.9943 374 374.116 0.0003 13 10.2707 144 140.0387 0.0275 129 9.9914 376 376.199 0.0005 14 10.2686 146 142.0942 0.0268 130 9.9886 378 378.203 0.0005 15 10.2664 148 144.2428 0.0254 131 9.9857 380 380.272 0.0007 16 10.2650 150 145.6076 0.0293 132 9.9829 382 382.262 0.0007 17 10.2629 152 147.6511 0.0286 133 9.9800 384 384.316 0.0008 18 10.2607 154 149.7872 0.0274 134 9.9779 386 385.799 0.0005 19 10.2	9	10.2786	136	132.2663	0.0275	125	10.0029	368	367.895	0.0003
12 10.2729 142 137.8805 0.029 128 9.9943 374 374.116 0.0003 13 10.2707 144 140.0387 0.0275 129 9.9914 376 376.199 0.0005 14 10.2686 146 142.0942 0.0268 130 9.9886 378 378.203 0.0005 15 10.2664 148 144.2428 0.0254 131 9.9857 380 380.272 0.0007 16 10.2650 150 145.6076 0.0293 132 9.9829 382 382.262 0.0007 17 10.2629 152 147.6511 0.0286 133 9.9800 384 384.316 0.0008 18 10.2607 154 149.7872 0.0274 134 9.9779 386 385.799 0.0005 19 10.2579 156 152.4989 0.0224 135 9.9743 388 388.332 0.0009 20 10.2	10	10.2764	138	134.4371	0.0258	126	10.0000	370	370	0
13 10.2707 144 140.0387 0.0275 129 9.9914 376 376.199 0.0005 14 10.2686 146 142.0942 0.0268 130 9.9886 378 378.203 0.0005 15 10.2664 148 144.2428 0.0254 131 9.9857 380 380.272 0.0007 16 10.2650 150 145.6076 0.0293 132 9.9829 382 382.262 0.0007 17 10.2629 152 147.6511 0.0286 133 9.9800 384 384.316 0.0008 18 10.2607 154 149.7872 0.0274 134 9.9779 386 385.799 0.0005 19 10.2579 156 152.4989 0.0224 135 9.9743 388 388.332 0.0009 20 10.2564 158 153.9484 0.0256 136 9.9714 390 392.32 0.0009 21 10.2	11	10.2750	140	135.8159	0.0299	127	9.9971	372	372.098	0.0003
14 10.2686 146 142.0942 0.0268 130 9.9886 378 378.203 0.0005 15 10.2664 148 144.2428 0.0254 131 9.9857 380 380.272 0.0007 16 10.2650 150 145.6076 0.0293 132 9.9829 382 382.262 0.0007 17 10.2629 152 147.6511 0.0286 133 9.9800 384 384.316 0.0008 18 10.2607 154 149.7872 0.0274 134 9.9779 386 385.799 0.0005 19 10.2579 156 152.4989 0.0224 135 9.9743 388 388.332 0.0009 20 10.2564 158 153.9484 0.0256 136 9.9714 390 390.364 0.0009 21 10.2543 160 155.9739 0.0252 137 9.9686 392 392.32 0.0008 22 10.2	12	10.2729	142	137.8805	0.029	128	9.9943	374	374.116	0.0003
15 10.2664 148 144.2428 0.0254 131 9.9857 380 380.272 0.0007 16 10.2650 150 145.6076 0.0293 132 9.9829 382 382.262 0.0007 17 10.2629 152 147.6511 0.0286 133 9.9800 384 384.316 0.0008 18 10.2607 154 149.7872 0.0274 134 9.9779 386 385.799 0.0005 19 10.2579 156 152.4989 0.0224 135 9.9714 390 390.364 0.0009 20 10.2564 158 153.9484 0.0256 136 9.9714 390 390.364 0.0009 21 10.2543 160 155.9739 0.0252 137 9.9686 392 392.32 0.0008 22 10.2521 162 158.0911 0.0241 138 9.9664 394 393.851 0.0004 23 10.2	13	10.2707	144	140.0387	0.0275	129	9.9914	376	376.199	0.0005
16 10.2650 150 145.6076 0.0293 132 9.9829 382 382.262 0.0007 17 10.2629 152 147.6511 0.0286 133 9.9800 384 384.316 0.0008 18 10.2607 154 149.7872 0.0274 134 9.9779 386 385.799 0.0005 19 10.2579 156 152.4989 0.0224 135 9.9743 388 388.332 0.0009 20 10.2564 158 153.9484 0.0256 136 9.9714 390 390.364 0.0009 21 10.2543 160 155.9739 0.0252 137 9.9686 392 392.32 0.0008 22 10.2521 162 158.0911 0.0241 138 9.9664 394 393.851 0.0004 23 10.2500 164 160.1076 0.0237 139 9.9629 396 396.279 0.0007 24 10.2	14	10.2686	146	142.0942	0.0268	130	9.9886	378	378.203	0.0005
17 10.2629 152 147.6511 0.0286 133 9.9800 384 384.316 0.0008 18 10.2607 154 149.7872 0.0274 134 9.9779 386 385.799 0.0005 19 10.2579 156 152.4989 0.0224 135 9.9743 388 388.332 0.0009 20 10.2564 158 153.9484 0.0256 136 9.9714 390 390.364 0.0009 21 10.2543 160 155.9739 0.0252 137 9.9686 392 392.32 0.0008 22 10.2521 162 158.0911 0.0241 138 9.9664 394 393.851 0.0004 23 10.2500 164 160.1076 0.0237 139 9.9629 396 396.279 0.0007 24 10.2479 166 162.1197 0.0234 140 9.9600 398 398.283 0.0007 25 10.2	15	10.2664	148	144.2428	0.0254	131	9.9857	380	380.272	0.0007
18 10.2607 154 149.7872 0.0274 134 9.9779 386 385.799 0.0005 19 10.2579 156 152.4989 0.0224 135 9.9743 388 388.332 0.0009 20 10.2564 158 153.9484 0.0256 136 9.9714 390 390.364 0.0009 21 10.2543 160 155.9739 0.0252 137 9.9686 392 392.32 0.0008 22 10.2521 162 158.0911 0.0241 138 9.9664 394 393.851 0.0004 23 10.2500 164 160.1076 0.0237 139 9.9629 396 396.279 0.0007 24 10.2479 166 162.1197 0.0234 140 9.9600 398 398.283 0.0007 25 10.2457 168 164.223 0.0225 141 9.9571 400 402.2 0.0005 27 10.2414	16	10.2650	150	145.6076	0.0293	132	9.9829	382	382.262	0.0007
19 10.2579 156 152.4989 0.0224 135 9.9743 388 388.332 0.0009 20 10.2564 158 153.9484 0.0256 136 9.9714 390 390.364 0.0009 21 10.2543 160 155.9739 0.0252 137 9.9686 392 392.32 0.0008 22 10.2521 162 158.0911 0.0241 138 9.9664 394 393.851 0.0004 23 10.2500 164 160.1076 0.0237 139 9.9629 396 396.279 0.0007 24 10.2479 166 162.1197 0.0234 140 9.9600 398 398.283 0.0007 25 10.2457 168 164.223 0.0225 141 9.9571 400 400.279 0.0007 26 10.2436 170 166.2261 0.0222 142 9.9543 402 402.2 0.0005 27 10.2414	17	10.2629	152	147.6511	0.0286	133	9.9800	384	384.316	0.0008
20 10.2564 158 153.9484 0.0256 136 9.9714 390 390.364 0.0009 21 10.2543 160 155.9739 0.0252 137 9.9686 392 392.32 0.0008 22 10.2521 162 158.0911 0.0241 138 9.9664 394 393.851 0.0004 23 10.2500 164 160.1076 0.0237 139 9.9629 396 396.279 0.0007 24 10.2479 166 162.1197 0.0234 140 9.9600 398 398.283 0.0007 25 10.2457 168 164.223 0.0225 141 9.9571 400 400.279 0.0007 26 10.2436 170 166.2261 0.0222 142 9.9543 402 402.2 0.0005 27 10.2414 172 168.32 0.0214 143 9.9514 404 404.182 0.0005 28 10.2400 </td <td>18</td> <td>10.2607</td> <td>154</td> <td>149.7872</td> <td>0.0274</td> <td>134</td> <td>9.9779</td> <td>386</td> <td>385.799</td> <td>0.0005</td>	18	10.2607	154	149.7872	0.0274	134	9.9779	386	385.799	0.0005
21 10.2543 160 155.9739 0.0252 137 9.9686 392 392.32 0.0008 22 10.2521 162 158.0911 0.0241 138 9.9664 394 393.851 0.0004 23 10.2500 164 160.1076 0.0237 139 9.9629 396 396.279 0.0007 24 10.2479 166 162.1197 0.0234 140 9.9600 398 398.283 0.0007 25 10.2457 168 164.223 0.0225 141 9.9571 400 400.279 0.0007 26 10.2436 170 166.2261 0.0222 142 9.9543 402 402.2 0.0005 27 10.2414 172 168.32 0.0214 143 9.9514 404 404.182 0.0005 28 10.2400 174 169.6499 0.025 144 9.9486 406 406.089 0.0002 29 10.2371 <td>19</td> <td>10.2579</td> <td>156</td> <td>152.4989</td> <td>0.0224</td> <td>135</td> <td>9.9743</td> <td>388</td> <td>388.332</td> <td>0.0009</td>	19	10.2579	156	152.4989	0.0224	135	9.9743	388	388.332	0.0009
22 10.2521 162 158.0911 0.0241 138 9.9664 394 393.851 0.0004 23 10.2500 164 160.1076 0.0237 139 9.9629 396 396.279 0.0007 24 10.2479 166 162.1197 0.0234 140 9.9600 398 398.283 0.0007 25 10.2457 168 164.223 0.0225 141 9.9571 400 400.279 0.0007 26 10.2436 170 166.2261 0.0222 142 9.9543 402 402.2 0.0005 27 10.2414 172 168.32 0.0214 143 9.9514 404 404.182 0.0005 28 10.2400 174 169.6499 0.025 144 9.9486 406 406.089 0.0002 29 10.2371 176 172.3987 0.0205 145 9.9450 408 408.531 0.0013 30 10.2350 </td <td>20</td> <td>10.2564</td> <td>158</td> <td>153.9484</td> <td>0.0256</td> <td>136</td> <td>9.9714</td> <td>390</td> <td>390.364</td> <td>0.0009</td>	20	10.2564	158	153.9484	0.0256	136	9.9714	390	390.364	0.0009
23 10.2500 164 160.1076 0.0237 139 9.9629 396 396.279 0.0007 24 10.2479 166 162.1197 0.0234 140 9.9600 398 398.283 0.0007 25 10.2457 168 164.223 0.0225 141 9.9571 400 400.279 0.0007 26 10.2436 170 166.2261 0.0222 142 9.9543 402 402.2 0.0005 27 10.2414 172 168.32 0.0214 143 9.9514 404 404.182 0.0005 28 10.2400 174 169.6499 0.025 144 9.9486 406 406.089 0.0002 29 10.2371 176 172.3987 0.0205 145 9.9450 408 408.531 0.0013 30 10.2350 178 174.3839 0.0203 146 9.9421 410 410.49 0.0012 31 10.2329 <td>21</td> <td>10.2543</td> <td>160</td> <td>155.9739</td> <td>0.0252</td> <td>137</td> <td>9.9686</td> <td>392</td> <td>392.32</td> <td>0.0008</td>	21	10.2543	160	155.9739	0.0252	137	9.9686	392	392.32	0.0008
24 10.2479 166 162.1197 0.0234 140 9.9600 398 398.283 0.0007 25 10.2457 168 164.223 0.0225 141 9.9571 400 400.279 0.0007 26 10.2436 170 166.2261 0.0222 142 9.9543 402 402.2 0.0005 27 10.2414 172 168.32 0.0214 143 9.9514 404 404.182 0.0005 28 10.2400 174 169.6499 0.025 144 9.9486 406 406.089 0.0002 29 10.2371 176 172.3987 0.0205 145 9.9450 408 408.531 0.0013 30 10.2350 178 174.3839 0.0203 146 9.9421 410 410.49 0.0012 31 10.2329 180 176.3648 0.0202 147 9.9400 412 411.904 0.0002 32 10.2307 <td>22</td> <td>10.2521</td> <td>162</td> <td>158.0911</td> <td>0.0241</td> <td>138</td> <td>9.9664</td> <td>394</td> <td>393.851</td> <td>0.0004</td>	22	10.2521	162	158.0911	0.0241	138	9.9664	394	393.851	0.0004
25 10.2457 168 164.223 0.0225 141 9.9571 400 400.279 0.0007 26 10.2436 170 166.2261 0.0222 142 9.9543 402 402.2 0.0005 27 10.2414 172 168.32 0.0214 143 9.9514 404 404.182 0.0005 28 10.2400 174 169.6499 0.025 144 9.9486 406 406.089 0.0002 29 10.2371 176 172.3987 0.0205 145 9.9450 408 408.531 0.0013 30 10.2350 178 174.3839 0.0203 146 9.9421 410 410.49 0.0012 31 10.2329 180 176.3648 0.0202 147 9.9400 412 411.904 0.0002 32 10.2307 182 178.4354 0.0196 148 9.9364 414 414.319 0.0008 34 10.2286 <td>23</td> <td>10.2500</td> <td>164</td> <td>160.1076</td> <td>0.0237</td> <td>139</td> <td>9.9629</td> <td>396</td> <td>396.279</td> <td>0.0007</td>	23	10.2500	164	160.1076	0.0237	139	9.9629	396	396.279	0.0007
26 10.2436 170 166.2261 0.0222 142 9.9543 402 402.2 0.0005 27 10.2414 172 168.32 0.0214 143 9.9514 404 404.182 0.0005 28 10.2400 174 169.6499 0.025 144 9.9486 406 406.089 0.0002 29 10.2371 176 172.3987 0.0205 145 9.9450 408 408.531 0.0013 30 10.2350 178 174.3839 0.0203 146 9.9421 410 410.49 0.0012 31 10.2329 180 176.3648 0.0202 147 9.9400 412 411.904 0.0002 32 10.2307 182 178.4354 0.0196 148 9.9364 414 414.319 0.0008 33 10.2286 184 180.4074 0.0195 149 9.9336 416 416.19 0.0003 35 10.2236 <td>24</td> <td>10.2479</td> <td>166</td> <td>162.1197</td> <td>0.0234</td> <td>140</td> <td>9.9600</td> <td>398</td> <td>398.283</td> <td>0.0007</td>	24	10.2479	166	162.1197	0.0234	140	9.9600	398	398.283	0.0007
27 10.2414 172 168.32 0.0214 143 9.9514 404 404.182 0.0005 28 10.2400 174 169.6499 0.025 144 9.9486 406 406.089 0.0002 29 10.2371 176 172.3987 0.0205 145 9.9450 408 408.531 0.0013 30 10.2350 178 174.3839 0.0203 146 9.9421 410 410.49 0.0012 31 10.2329 180 176.3648 0.0202 147 9.9400 412 411.904 0.0002 32 10.2307 182 178.4354 0.0196 148 9.9364 414 414.319 0.0008 33 10.2286 184 180.4074 0.0195 149 9.9336 416 416.19 0.0003 34 10.2257 186 183.1236 0.0155 150 9.9307 418 418.12 0.0003 35 10.2236 </td <td>25</td> <td>10.2457</td> <td>168</td> <td>164.223</td> <td>0.0225</td> <td>141</td> <td>9.9571</td> <td>400</td> <td>400.279</td> <td>0.0007</td>	25	10.2457	168	164.223	0.0225	141	9.9571	400	400.279	0.0007
28 10.2400 174 169.6499 0.025 144 9.9486 406 406.089 0.0002 29 10.2371 176 172.3987 0.0205 145 9.9450 408 408.531 0.0013 30 10.2350 178 174.3839 0.0203 146 9.9421 410 410.49 0.0012 31 10.2329 180 176.3648 0.0202 147 9.9400 412 411.904 0.0002 32 10.2307 182 178.4354 0.0196 148 9.9364 414 414.319 0.0008 33 10.2286 184 180.4074 0.0195 149 9.9336 416 416.19 0.0005 34 10.2257 186 183.1236 0.0155 150 9.9307 418 418.12 0.0003 35 10.2236 188 185.0852 0.0155 151 9.9279 420 419.978 5E-05 36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356	26	10.2436	170	166.2261	0.0222	142	9.9543	402	402.2	0.0005
29 10.2371 176 172.3987 0.0205 145 9.9450 408 408.531 0.0013 30 10.2350 178 174.3839 0.0203 146 9.9421 410 410.49 0.0012 31 10.2329 180 176.3648 0.0202 147 9.9400 412 411.904 0.0002 32 10.2307 182 178.4354 0.0196 148 9.9364 414 414.319 0.0008 33 10.2286 184 180.4074 0.0195 149 9.9336 416 416.19 0.0005 34 10.2257 186 183.1236 0.0155 150 9.9307 418 418.12 0.0003 35 10.2236 188 185.0852 0.0155 151 9.9279 420 419.978 5E-05 36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356 0.0008	27	10.2414	172	168.32	0.0214	143	9.9514	404	404.182	0.0005
30 10.2350 178 174.3839 0.0203 146 9.9421 410 410.49 0.0012 31 10.2329 180 176.3648 0.0202 147 9.9400 412 411.904 0.0002 32 10.2307 182 178.4354 0.0196 148 9.9364 414 414.319 0.0008 33 10.2286 184 180.4074 0.0195 149 9.9336 416 416.19 0.0005 34 10.2257 186 183.1236 0.0155 150 9.9307 418 418.12 0.0003 35 10.2236 188 185.0852 0.0155 151 9.9279 420 419.978 5E-05 36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356 0.0008	28	10.2400	174	169.6499	0.025	144	9.9486	406	406.089	0.0002
31 10.2329 180 176.3648 0.0202 147 9.9400 412 411.904 0.0002 32 10.2307 182 178.4354 0.0196 148 9.9364 414 414.319 0.0008 33 10.2286 184 180.4074 0.0195 149 9.9336 416 416.19 0.0005 34 10.2257 186 183.1236 0.0155 150 9.9307 418 418.12 0.0003 35 10.2236 188 185.0852 0.0155 151 9.9279 420 419.978 5E-05 36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356 0.0008	29	10.2371	176	172.3987	0.0205	145	9.9450	408	408.531	0.0013
32 10.2307 182 178.4354 0.0196 148 9.9364 414 414.319 0.0008 33 10.2286 184 180.4074 0.0195 149 9.9336 416 416.19 0.0005 34 10.2257 186 183.1236 0.0155 150 9.9307 418 418.12 0.0003 35 10.2236 188 185.0852 0.0155 151 9.9279 420 419.978 5E-05 36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356 0.0008	30	10.2350	178	174.3839	0.0203	146	9.9421	410	410.49	0.0012
33 10.2286 184 180.4074 0.0195 149 9.9336 416 416.19 0.0005 34 10.2257 186 183.1236 0.0155 150 9.9307 418 418.12 0.0003 35 10.2236 188 185.0852 0.0155 151 9.9279 420 419.978 5E-05 36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356 0.0008	31	10.2329	180	176.3648	0.0202	147	9.9400	412	411.904	0.0002
34 10.2257 186 183.1236 0.0155 150 9.9307 418 418.12 0.0003 35 10.2236 188 185.0852 0.0155 151 9.9279 420 419.978 5E-05 36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356 0.0008	32	10.2307	182	178.4354	0.0196	148	9.9364	414	414.319	0.0008
35 10.2236 188 185.0852 0.0155 151 9.9279 420 419.978 5E-05 36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356 0.0008	33	10.2286	184	180.4074	0.0195	149	9.9336	416	416.19	0.0005
36 10.2221 190 186.4838 0.0185 152 9.9243 422 422.356 0.0008	34	10.2257	186	183.1236	0.0155	150	9.9307	418	418.12	0.0003
	35	10.2236	188	185.0852	0.0155	151	9.9279	420	419.978	5E-05
37 10.2200 192 188.438 0.0186 153 9.9221 424 423.804 0.0005	36	10.2221	190	186.4838	0.0185	152	9.9243	422	422.356	0.0008
	37	10.2200	192	188.438	0.0186	153	9.9221	424	423.804	0.0005

38	10.2171	194	191.1297	0.0148	154	9.9186	426	426.099	0.0002
39	10.2150	196	193.0736	0.0149	155	9.9164	428	427.536	0.0011
40	10.2129	198	195.0133	0.0151	156	9.9121	430	430.334	0.0008
41	10.2107	200	197.0407	0.0148	157	9.9093	432	432.147	0.0003
42	10.2086	202	198.9715	0.015	158	9.9064	434	434.018	4E-05
43	10.2057	204	201.6308	0.0116	159	9.9036	436	435.818	0.0004
44	10.2043	206	202.9117	0.015	160	9.9007	438	437.675	0.0007
45	10.2014	208	205.5588	0.0117	161	9.8971	440	439.97	7E-05
46	10.2000	210	206.8338	0.0151	162	9.8943	442	441.748	0.0006
47	10.1979	212	208.7428	0.0154	163	9.8907	444	444.025	6E-05
48	10.1950	214	211.3719	0.0123	164	9.8879	446	445.788	0.0005
49	10.1929	216	213.2706	0.0126	165	9.8850	448	447.607	0.0009
50	10.1907	218	215.2552	0.0126	166	9.8814	450	449.855	0.0003
51	10.1886	220	217.1452	0.013	167	9.8779	452	452.031	7E-05
52	10.1857	222	219.7483	0.0101	168	9.8750	454	453.826	0.0004
53	10.1836	224	221.6281	0.0106	169	9.8714	456	456.044	1E-04
54	10.1814	226	223.5929	0.0107	170	9.8686	458	457.763	0.0005
55	10.1793	228	225.4641	0.0111	171	9.8650	460	459.962	8E-05
56	10.1764	230	228.0411	0.0085	172	9.8621	462	461.726	0.0006
57	10.1743	232	229.9022	0.009	173	9.8586	464	463.846	0.0003
58	10.1721	234	231.8473	0.0092	174	9.8557	466	465.595	0.0009
59	10.1693	236	234.3162	0.0071	175	9.8521	468	467.757	0.0005
60	10.1671	238	236.2508	0.0073	176	9.8493	470	469.431	0.0012
61	10.1650	240	238.0932	0.0079	177	9.8457	472	471.574	0.0009
62	10.1629	242	239.9313	0.0085	178	9.8421	474	473.706	0.0006
63	10.1607	244	241.8524	0.0088	179	9.8386	476	475.769	0.0005
64	10.1579	246	244.2908	0.0069	180	9.8357	478	477.47	0.0011
65	10.1557	248	246.2014	0.0073	181	9.8314	480	479.981	4E-05
66	10.1529	250	248.6265	0.0055	182	9.8286	482	481.608	0.0008
67	10.1507	252	250.5267	0.0058	183	9.8250	484	483.691	0.0006
68	10.1486	254	252.3362	0.0066	184	9.8214	486	485.763	0.0005
69	10.1457	256	254.8282	0.0046	185	9.8186	488	487.367	0.0013
70	10.1436	258	256.6277	0.0053	186	9.8150	490	489.42	0.0012
71	10.1414	260	258.5085	0.0057	187	9.8114	492	491.464	0.0011
72	10.1386	262	260.8956	0.0042	188	9.8079	494	493.44	0.0011
73	10.1364	264	262.7659	0.0047	189	9.8043	496	495.463	0.0011
74	10.1343	266	264.547	0.0055	190	9.8007	498	497.475	0.0011
75	10.1321	268	266.4085	0.0059	191	9.7971	500	499.477	0.001
76	10.1293	270	268.771	0.0046	192	9.7936	502	501.414	0.0012
77	10.1271	272	270.6221	0.0051	193	9.7907	504	503.012	0.002
78	10.1243	274	272.9715	0.0038	194	9.7864	506	505.368	0.0012
79	10.1221	276	274.8123	0.0043	195	9.7836	508	506.894	0.0022
	10.1193	278	277.1485	0.0031	196	9.7793	510	509.227	0.0015

81	10.1171	280	278.979	0.0036	197	9.7757	512	511.168	0.0016
82	10.1150	282	280.7221	0.0045	198	9.7721	514	513.1	0.0018
83	10.1121	284	283.1224	0.0031	199	9.7686	516	514.967	0.002
84	10.1100	286	284.8556	0.004	200	9.7643	518	517.249	0.0014
85	10.1071	288	287.2424	0.0026	201	9.7607	520	519.149	0.0016
86	10.1043	290	289.5395	0.0016	202	9.7571	522	521.038	0.0018
87	10.1021	292	291.3392	0.0023	203	9.7536	524	522.865	0.0022
88	10.1000	294	293.0529	0.0032	204	9.7493	526	525.097	0.0017
89	10.0971	296	295.4128	0.002	205	9.7457	528	526.955	0.002
90	10.0943	298	297.6839	0.0011	206	9.7414	530	529.161	0.0016
91	10.0921	300	299.4632	0.0018	207	9.7379	532	530.946	0.002
92	10.0893	302	301.7214	0.0009	208	9.7343	534	532.772	0.0023
93	10.0871	304	303.4906	0.0017	209	9.7300	536	534.94	0.002
94	10.0843	306	305.7358	0.0009	210	9.7257	538	537.094	0.0017
95	10.0821	308	307.4949	0.0016	211	9.7221	540	538.887	0.0021
96	10.0793	310	309.7272	0.0009	212	9.7186	542	540.62	0.0025
97	10.0771	312	311.4762	0.0017	213	9.7143	544	542.737	0.0023
98	10.0743	314	313.6957	0.001	214	9.7100	546	544.84	0.0021
99	10.0714	316	315.9869	4E-05	215	9.7064	548	546.59	0.0026
100	10.0693	318	317.6413	0.0011	216	9.7021	550	548.668	0.0024
101	10.0664	320	319.9193	0.0003	217	9.6971	552	551.066	0.0017
102	10.0636	322	322.1114	0.0003	218	9.6936	554	552.734	0.0023
103	10.0607	324	324.3743	0.0012	219	9.6893	556	554.77	0.0022
104	10.0586	326	326.0082	3E-05	220	9.6850	558	556.793	0.0022
105	10.0564	328	327.7156	0.0009	221	9.6807	560	558.802	0.0021
106	10.0536	330	329.8822	0.0004	222	9.6771	562	560.473	0.0027
107	10.0507	332	332.1188	0.0004	223	9.6729	564	562.411	0.0028
108	10.0479	334	334.271	0.0008	224	9.6686	566	564.381	0.0029
109	10.0457	336	335.9571	0.0001	225	9.6636	568	566.655	0.0024
110	10.0429	338	338.0967	0.0003	226	9.6593	570	568.596	0.0025
111	10.0400	340	340.3052	0.0009	227	9.6550	572	570.524	0.0026
112	10.0379	342	341.8998	0.0003	228	9.6507	574	572.438	0.0027
113	10.0350	344	344.0953	0.0003	229	9.6457	576	574.647	0.0023
114	10.0321	346	346.2832	0.0008	230	9.6414	578	576.532	0.0025
115	10.0293	348	348.3885	0.0011	231	9.6371	580	578.404	0.0028
116	10.0271	350	350.0378	0.0001	MRE=0.006505				

附件 2:

load data5

aa=[1.06E-18

-2.02E-15

2.34E-12

-1.61E-09

```
5.93E-07
-0.000395
10.64
];
bb = [0.1046]
0.08772
0.07116
0.04087
-0.0001048
];
for jj=1:10
   B(jj) = aa(jj) * exp(bb(jj) * 55);
end
t55=0:2:4000;
V55=polyval(B,t55);
xx = find(V55 < 8.9);
t55(xx) = [];
V55(xx) = [];
plot(t55, V55);
ee=length(v55);
求解 MER 程序如下:
load data5
aa=[ -1.61E-09
   5.93E-07
   -0.000395
   10.64
   ];
bb = [0.1046]
   0.08772
   0.07116
   0.04087
   -0.0001048
   ];
for jj=1:10
   B(jj) = aa(jj) * exp(bb(jj) * 55);
end
t55=0:2:4000;
V55=polyval(B,t55);
xx = find(V55 < 8.9);
t55(xx) = [];
V55(xx) = [];
```

```
plot(t55,V55);
for ii=1:9
    for jj=1:10
        B(jj)=aa(jj)*exp(bb(jj)*AA(ii));
    end
    VVV=polyval(B,A{ii}(:,1));
    ee=length(VVV);
    mre{ii}=mean(abs(VVV(ee-231+1:ee)-A{ii}(ee-231+1:ee,2)));
end
```

附件 3:

电流(A)	/电压 (V)	电流(A)	/电压 (V)	电流(A)	/电压 (V)
放电时间 (min)	55A	放电时间 (min)	55A	放电时间 (min)	55A
0	10.57885	212	10.17424	424	9.747905
2	10.57149	214	10.17058	426	9.743292
4	10.56435	216	10.16691	428	9.738657
6	10.55744	218	10.16322	430	9.733998
8	10.55073	220	10.15953	432	9.729316
10	10.54423	222	10.15583	434	9.724609
12	10.53792	224	10.15212	436	9.719878
14	10.53179	226	10.1484	438	9.715121
16	10.52584	228	10.14468	440	9.710338
18	10.52006	230	10.14094	442	9.705529
20	10.51445	232	10.1372	444	9.700693
22	10.50898	234	10.13345	446	9.69583
24	10.50367	236	10.12969	448	9.690938
26	10.49849	238	10.12593	450	9.686018
28	10.49345	240	10.12216	452	9.681068
30	10.48854	242	10.11838	454	9.676088
32	10.48375	244	10.11459	456	9.671078
34	10.47907	246	10.1108	458	9.666037
36	10.47451	248	10.107	460	9.660964
38	10.47005	250	10.1032	462	9.655859
40	10.46569	252	10.09939	464	9.650721
42	10.46142	254	10.09558	466	9.64555

44	10.45724	256	10.09176	468	9.640344
46	10.45315	258	10.08793	470	9.635103
48	10.44914	260	10.0841	472	9.629827
50	10.4452	262	10.08026	474	9.624514
52	10.44133	264	10.07642	476	9.619165
54	10.43753	266	10.07257	478	9.613778
56	10.43379	268	10.06872	480	9.608353
58	10.43011	270	10.06486	482	9.602889
60	10.42649	272	10.061	484	9.597386
62	10.42292	274	10.05713	486	9.591842
64	10.41939	276	10.05326	488	9.586257
66	10.41592	278	10.04939	490	9.58063
68	10.41248	280	10.04551	492	9.574961
70	10.40908	282	10.04162	494	9.569248
72	10.40572	284	10.03773	496	9.563491
74	10.40239	286	10.03384	498	9.55769
76	10.39909	288	10.02994	500	9.551843
78	10.39581	290	10.02604	502	9.54595
80	10.39257	292	10.02213	504	9.54001
82	10.38934	294	10.01822	506	9.534021
84	10.38614	296	10.01431	508	9.527984
86	10.38295	298	10.01039	510	9.521897
88	10.37978	300	10.00647	512	9.51576
90	10.37663	302	10.00254	514	9.509572
92	10.37349	304	9.998608	516	9.503332
94	10.37035	306	9.994672	518	9.497038
96	10.36723	308	9.990731	520	9.490691
98	10.36412	310	9.986785	522	9.484289
100	10.36101	312	9.982835	524	9.477831
102	10.3579	314	9.97888	526	9.471317
104	10.3548	316	9.97492	528	9.464746
106	10.3517	318	9.970955	530	9.458116
108	10.3486	320	9.966985	532	9.451427
110	10.3455	322	9.96301	534	9.444677

112	10.3424	324	9.959029	536	9.437866
114	10.33929	326	9.955043	538	9.430993
116	10.33618	328	9.951051	540	9.424057
118	10.33307	330	9.947053	542	9.417056
120	10.32995	332	9.94305	544	9.40999
122	10.32682	334	9.93904	546	9.402858
124	10.32369	336	9.935024	548	9.395659
126	10.32055	338	9.931001	550	9.388391
128	10.3174	340	9.926972	552	9.381053
130	10.31424	342	9.922936	554	9.373645
132	10.31107	344	9.918893	556	9.366165
134	10.3079	346	9.914842	558	9.358613
136	10.30471	348	9.910784	560	9.350986
138	10.30151	350	9.906717	562	9.343284
140	10.2983	352	9.902643	564	9.335506
142	10.29508	354	9.898561	566	9.327651
144	10.29184	356	9.894469	568	9.319716
146	10.28859	358	9.890369	570	9.311702
148	10.28534	360	9.88626	572	9.303607
150	10.28206	362	9.882142	574	9.295429
152	10.27878	364	9.878013	576	9.287168
154	10.27548	366	9.873875	578	9.278821
156	10.27217	368	9.869726	580	9.270388
158	10.26885	370	9.865567	582	9.261868
160	10.26551	372	9.861397	584	9.253258
162	10.26216	374	9.857215	586	9.244559
164	10.25879	376	9.853022	588	9.235767
166	10.25542	378	9.848817	590	9.226882
168	10.25202	380	9.844599	592	9.217903
170	10.24862	382	9.840369	594	9.208828
172	10.2452	384	9.836126	596	9.199655
174	10.24177	386	9.831869	598	9.190383
176	10.23833	388	9.827599	600	9.181011
178	10.23487	390	9.823314	602	9.171536

180	10.2314	392	9.819015	604	9.161958
182	10.22792	394	9.814701	606	9.152275
184	10.22442	396	9.810372	608	9.142485
186	10.22091	398	9.806026	610	9.132587
188	10.21739	400	9.801665	612	9.122578
190	10.21386	402	9.797287	614	9.112458
192	10.21031	404	9.792892	616	9.102224
194	10.20676	406	9.788479	618	9.091876
196	10.20319	408	9.784049	620	9.08141
198	10.19961	410	9.7796	622	9.070825
200	10.19602	412	9.775133	624	9.060121
202	10.19241	414	9.770646	626	9.049293
204	10.1888	416	9.766139	628	9.038342
206	10.18518	418	9.761612	630	9.027265
208	10.18154	420	9.757064	632	9.016059
210	10.1779	422	9.752496	634	9.004724