Теорема

Если последовательность сходится и ее предел ненулевой, то начиная с некоторого номера N она знак членов последовательности сохраняется.

Доказательство

(для положительного предела, для отрицательного — аналогично)

Предел положителен $\lim_{n\to\infty} x_n = a, \ a>0$.

По определению предела последовательности:

$$\lim_{n\to\infty} x_n = a \Leftrightarrow \forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \ \forall n > N \ |x_n - a| < \varepsilon$$

Возьмем $\varepsilon < a$, тогда, начиная с некоторого номера N:

$$|x_n - a| < \varepsilon < a$$

Если
$$x_n - a > 0$$
, то $x_n > a > 0$, т.е. $x_n > 0$

Если
$$x_n - a < 0$$
, то $a - x_n < a$, т.е. $x_n > 0$

Таким образом, доказано, что начиная с некоторого номера N знак членов последовательности сохраняется