Free Space Propagation Model

Line of Sight (far field)

$$P_R = rac{P_T G_T G_R \lambda^2}{(4\pi)^2 d^2 L}$$
 -> received power density

$$(\frac{P_t(d)}{P_r})_{dB} = -10\log(\frac{G_TG_R\lambda^2}{(4\pi)^2d^2L})$$
-> path loss

Where:

P_R: receiver power

 G_R : receiver antenna gain P_T : transmitter power G_T transmitter antenna gain

 $\lambda = c/f_0$: carrier wave length c: speed of light (3x10⁸ m/s)

f₀: carrier frequency

d: distance between receiver and transmitter L: loss exponent (transmitter or receiver) [4] Path Loss: the difference between transmitted and received power

Free Space Path Loss in dB:

$$FSPL = 20 \log_{10}(d) + \log_{10}(f) - 145.55$$

d: distance in km

f: carrier frequency in Megahertz