STATS 404 FINAL PROJECT

PRESENTOR: Huilin Tang

DATE: 3/6/2019

BUSINESS QUESTIONS

- Competitive Companies are eager to woo and vie for elite college graduates' attention; however, companies have not figured out a way to improve recruitment effectiveness.
- What are the most important components to boost recruitment effectiveness?
- What is more important to recruitment effectiveness: work life balance or company culture?

OVERVIEW OF DATA SET

Over 67k employee reviews for Google, Amazon, Facebook, Apple, and Microsoft

We have a total of 16 variables, 7 of which are NUMERICAL and 9 that are STRING

OUTCOME VARIABLE:

OVERALL RATING

NUMERICAL 1- 5

DETAILS

VARIABLE	DESCRIPTION	TYPE		
Index	index	numerical		
company	Company name	string		
Date Posted	in the following format MM DD, YYYY	string		
Job-Title	This string will also include whether the reviewer is a 'Current' or 'Former' Employee at the time of the review	string		
Summary	Short summary of employee review	string		
Pros	pros	string		
Cons	cons	string		

DETAILS (CON'T)

VARIABLE	DESCRIPTION	TYPE	
Overall Rating	1-5	numerical	
Work/Life Balance Rating	1-5	numerical	
Culture and Values Rating	1-5	numerical	
Career Opportunities Rating	1-5	numerical	
Comp & Benefits Rating	1-5	numerical	
Senior Management Rating	1-5	numerical	
Helpful Review Count	A count of how many people found the review to be helpful	numerical	

EXPLORATORY DATA ANALYSIS - OVERALL RATING

EXPLORATORY DATA ANALYSIS - OVERALL RATING

Histogram Of
All companies'
"Overall-rating"
as comparison

EDA (CON'T) - PREDICTORS

```
df['culture-values-stars'].value_counts(sort=True)
                                                                           Counts of
5.0
        21536
                                                                   "culture_values_stars"
4.0
        13685
        13546
none
3.0
         9192
1.0
         4840
2.0
         4730
Name: culture-values-stars, dtype: int64
                                                        df['work-balance-stars'].value_counts(sort=True)
                                                        4.0
                                                                15167
                                                        5.0
                                                                14205
                                                                13914
                                                        3.0
                     Counts of
                                                        2.0
                                                                 7898
                                                                 7160
                                                        none
              "work-balance-stars"
                                                        1.0
                                                                 7057
                                                        3.5
                                                                  785
                                                        4.5
                                                                  711
                                                        2.5
                                                                  457
                                                        1.5
                                                                  175
                                                        Name: work-balance-stars, dtype: int64
```

HOW I HANDLE MISSING DATA

Snapshot Of missing data

[28]:		work-balance-stars	culture-values-stars
_	0	4.0	5.0
	1	2.0	3.0
	2	5.0	4.0
	3	2.0	5.0
	4	5.0	5.0
	5	4.0	4.0
	6	5.0	4.0
	7	5.0	5.0
	8	5.0	5.0
	9	5.0	5.0
	10	4.0	5.0
	11	5.0	5.0
	12	5.0	5.0
	13	5.0	5.0
	14	4.0	5.0
	15	none	none
	16	4.0	5.0
	17	none	none
	18	5.0	5.0

HOW TO HANDLE MISSING DATA (CON'T)

Introducing
dummy variables

```
X1 = pd.get dummies(features)
X1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 67529 entries, 0 to 67528
Data columns (total 16 columns):
work-balance-stars 1.0
                             67529 non-null uint8
work-balance-stars 1.5
                             67529 non-null uint8
work-balance-stars 2.0
                             67529 non-null uint8
work-balance-stars 2.5
                             67529 non-null uint8
work-balance-stars 3.0
                             67529 non-null uint8
work-balance-stars 3.5
                             67529 non-null uint8
work-balance-stars 4.0
                             67529 non-null uint8
work-balance-stars 4.5
                             67529 non-null uint8
work-balance-stars 5.0
                             67529 non-null uint8
work-balance-stars_none
                             67529 non-null uint8
culture-values-stars 1.0
                             67529 non-null uint8
culture-values-stars 2.0
                             67529 non-null uint8
culture-values-stars 3.0
                             67529 non-null uint8
culture-values-stars 4.0
                             67529 non-null uint8
culture-values-stars_5.0
                             67529 non-null uint8
culture-values-stars_none
                             67529 non-null uint8
dtypes: uint8(16)
memory usage: 1.0 MB
```

OVERVIEW OF MODELING

BASELINE: LOGISTIC REGRESSION

Step 1: Create an Outcome Variable

```
df['projected_count'] = df[['overall-ratings']].apply(
    lambda row: projected_count(row[0]),
    axis=1)
df[['overall-ratings', 'projected_count']].head()
```

OVERVIEW OF MODELING

Result

When a binary outcome variable is modeled using logistic regression, it is assumed that the logit transformation of the outcome variable has a linear relationship with the predictor variables. This makes the interpretation of the regression coefficients somewhat tricky.

	feature_name	coef_est
0	work-balance-stars_1.0	-1.43722
1	work-balance-stars_1.5	-1.77424
2	work-balance-stars_2.0	-0.58292
3	work-balance-stars_2.5	-1.07997
4	work-balance-stars_3.0	0.0938
5	work-balance-stars_3.5	0.04074
6	work-balance-stars_4.0	0.84142
7	work-balance-stars_4.5	1.41994
8	work-balance-stars_5.0	1.4786
9	work-balance-stars_none	0.99488
10	culture-values-stars_1.0	-2.41749
11	culture-values-stars_2.0	-1.43167
12	culture-values-stars_3.0	-0.09193
13	culture-values-stars_4.0	1.36002
14	culture-values-stars_5.0	2.49703
15	culture-values-stars_none	0.07906
0	intercept	-0.845605

INTERPRETATION

	0	1	2	3	4	5	6	7	8	9	10
feature_name	work- balance- stars_1.0	work- balance- stars_1.5	work- balance- stars_2.0	work- balance- stars_2.5	work- balance- stars_3.0	work- balance- stars_3.5	work- balance- stars_4.0	work- balance- stars_4.5	work- balance- stars_5.0	work- balance- stars_none	culture- values- stars_1.0
coef_est	-1.43722	-1.77424	-0.58292	-1.07997	0.0938	0.04074	0.84142	1.41994	1.4786	0.99488	-2.41749
odds	0.24	0.17	0.56	0.34	1.1	1.04	2.32	4.14	4.39	2.7	0.09
prob_delay	0.09	0.07	0.19	0.13	0.32	0.31	0.5	0.64	0.65	0.54	0.04
prob_apply	0.09	0.07	0.19	0.13	0.32	0.31	0.5	0.64	0.65	0.54	0.04

Result after logit transformation

11	12	13	14	15	0
culture- values- stars_2.0	culture- values- stars_3.0	culture- values- stars_4.0	culture- values- stars_5.0	culture- values- stars_none	intercept
-1.43167	-0.09193	1.36002	2.49703	0.07906	-0.845605
0.24	0.91	3.9	12.15	1.08	0.43
0.09	0.28	0.63	0.84	0.32	0.3
0.09	0.28	0.63	0.84	0.32	0.3

KEY FINDINGS & RECOMMENDATION

- Employees are prone to value company culture more than work-balance feature, when they apply for a company.

_

HOW WOULD BUSINESS USE THE MODEL?

Regression models can be used to rank the relative importance of quantitative factors impacting any process. This information can be used to target those variables that are key, focusing decision-making.

In other words, regression models could help business to identify the prominent features that impact on the subject they care the most about.

POTENTIAL STEPS & RECOMMENDATIONS

- Comparison between companies
- Adding more features
- Text analysis

QUESTIONS

Thank you!

