Análise e Projeto de Algoritmos

Meta-heurísticas

Prof. Bruno Bruck

Meta-heurísticas

 Algoritmos que visam encontrar uma solução de qualidade, e eventualmente até mesmo a solução ótima

- Diferentemente de heurísticas convencionais, meta-heurísticas possuem caráter geral
 - Podem ser aplicadas a qualquer problema de otimização
 - Possuem mecanismos para sair de ótimos locais

Meta-heurísticas

- Se dividem em duas categorias
 - Baseadas em busca local
 - Exemplos:
 - GRASP
 - Iterated Local Search (ILS)
 - Busca Tabu
 - Simulated Annealing
 - Baseadas em busca populacional
 - Exemplos:
 - Algoritmos Genéticos
 - Colônia de Formigas
 - Otimização por Enxame de Partículas

- GRASP (Greedy Randomized Adaptative Search Procedure)
 - ou Procedimento de Busca Adaptativa Gulosa e Randômica em Português
- Consiste em duas fases
 - 1) Fase de construção
 - 2) Fase de busca local

□ 1) Na fase de construção

- Uma solução é iterativamente gerada elemento por elemento
- A cada iteração, os elementos candidatos a "entrarem" para a solução são colocados em uma lista de candidatos
 - Ordenados por meio de um critério guloso que especifica o benefício de se adicionar cada candidato à solução
 - Essa lista é chamada de Lista de Candidatos Restrita (LCR)

□ 1) Na fase de construção

```
procedimento Construcao(g(.), \alpha, s);
   s \leftarrow \emptyset;
   Inicialize o conjunto C de candidatos;
   enquanto (C \neq \emptyset) faça
       g(t_{min}) = \min\{g(t) \mid t \in C\};
        g(t_{max}) = \max\{g(t) \mid t \in C\};
        LCR = \{t \in C \mid g(t) \leq g(t_{min}) + \alpha(g(t_{max}) - g(t_{min}))\};
        Selecione, aleatoriamente, um elemento t \in LCR;
        s \leftarrow s \cup \{t\};
        Atualize o conjunto C de candidatos;
9
10 fim-enquanto;
11 Retorne s;
fim Construcao;
```

- □ 1) Na fase de construção
 - Um candidato é escolhido aleatoriamente dentre os melhores candidatos da LCR

- \square O parâmetro α controla o grau de aleatoriedade do algoritmo e é um valor no intervalo [0, 1]
 - $\alpha = 0$ faz com que o algoritmo seja puramente guloso, ou seja, o melhor candidato sempre é escolhido
 - $\alpha = 1$ faz com que o algoritmo se torne puramente aleatório, ou seja, qualquer candidato pode ser escolhido

- 2) Na fase de busca local
 - Heurísticas construtivas geralmente não levam a ótimos locais

- Dai a importância de uma fase de busca local para tentar melhorar a solução encontrada
- Nessa fase qualquer algoritmo de busca local pode ser utilizado
 - Exemplo: VND

```
procedimento GRASP(f(.),g(.),N(.),GRASPmax,s)
    f^{\star} \leftarrow \infty;
    para (Iter = 1, 2, ..., GRASPmax) faça
3
          Construcao(g(.), \alpha, s);
          BuscaLocal(f(.), N(.), s);
5
          \underline{\operatorname{se}} (f(s) < f^{\star}) \underline{\operatorname{ent}} \underline{\operatorname{ao}}
               s^{\star} \leftarrow s;
                f^{\star} \leftarrow f(s);
           fim-se;
     fim-para;
10 s \leftarrow s^*;
11 Retorne s;
\mathbf{fim}\ GRASP
```

ILS

ILS

- ILS (Iterated Local Search)
 - Meta-heurística que se baseia na ideia de que um procedimento de busca local pode ser melhorado gerando novas soluções de partida
 - Obtidas por meio de perturbações na solução ótima local

ILS

```
\begin{array}{ll} \textbf{procedimento} \ ILS \\ 1 & s_0 \leftarrow GeraSolucaoInicial(); \\ 2 & s \leftarrow BuscaLocal(s_0); \\ 3 & \underline{enquanto} \ (\text{os critérios de parada não estiverem satisfeitos}) \ \underline{faça} \\ 4 & s' \leftarrow Perturbacao(\text{histórico}, s); \\ 5 & s'' \leftarrow BuscaLocal(s'); \\ 6 & s \leftarrow CriterioAceitacao(s, s'', \text{histórico}); \\ 8 & \underline{\text{fim-enquanto}}; \\ \mathbf{fim} \ \overline{ILS}; \end{array}
```