from google.colab import drive

drive.mount('/content/drive')

Mounted at /content/drive

import pandas as pd

data = pd.read_csv('/content/drive/MyDrive/SalaryData_Train(1).csv')
data

	age	workclass	education	educationno	maritalstatus	occupation	relationship
0	39	State-gov	Bachelors	13	Never-married	Adm-clerical	Not-in-family
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife
30156	27	Private	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife
30157	40	Private	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband
30158	58	Private	HS-grad	9	Widowed	Adm-clerical	Unmarried
30159	22	Private	HS-grad	9	Never-married	Adm-clerical	Own-child
30160	52	Self-emp- inc	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife

30161 rows × 14 columns

data.shape

(30161, 14)

```
data.isna().sum()
```

age 0 workclass 0 0 education educationno 0 maritalstatus 0 occupation 0 relationship 0 0 race 0 sex capitalgain 0 capitalloss 0 hoursperweek 0 native 0 Salary 0 dtype: int64

data.dtypes

int64 age workclass object education object educationno int64 maritalstatus object occupation object relationship object race object object sex capitalgain int64 capitalloss int64 hoursperweek int64 native object Salary object

dtype: object

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

```
data['workclass']=le.fit_transform(data['workclass'])
data['education']=le.fit_transform(data['education'])
data['maritalstatus']=le.fit_transform(data['maritalstatus'])
data['occupation']=le.fit_transform(data['occupation'])
data['relationship']=le.fit_transform(data['relationship'])
data['race']=le.fit_transform(data['race'])
data['sex']=le.fit_transform(data['sex'])
data['native']=le.fit_transform(data['native'])
data['Salary']=le.fit_transform(data['Salary'])
data
```

	age	workclass	education	educationno	maritalstatus	occupation	relationship
0	39	5	9	13	4	0	1
1	50	4	9	13	2	3	0
2	38	2	11	9	0	5	1
3	53	2	1	7	2	5	0
4	28	2	9	13	2	9	5
•••							
30156	27	2	7	12	2	12	5
30157	40	2	11	9	2	6	0
30158	58	2	11	9	6	0	4
30159	22	2	11	9	4	0	3
30160	52	3	11	9	2	3	5

data.dtypes

age	int64
workclass	int64
education	int64
educationno	int64
maritalstatus	int64
occupation	int64
relationship	int64
race	int64
sex	int64
capitalgain	int64
capitalloss	int64
hoursperweek	int64
native	int64
Salary	int64
dtype: object	

X=data.drop(['Salary'], axis=1)
y=data['Salary']

Χ

	age	workclass	education	educationno	maritalstatus	occupation	relation
0	39	5	9	13	4	0	
1	50	4	9	13	2	3	
2	38	2	11	9	0	5	
3	53	2	1	7	2	5	
4	28	2	9	13	2	9	
•••				•••			
30156	27	2	7	12	2	12	
20457	40	၁	11	0	2	۵	

У

```
0
           0
1
           0
2
           0
3
           0
4
           0
30156
30157
           1
30158
           0
30159
           0
30160
```

Name: Salary, Length: 30161, dtype: int64

```
import matplotlib.pyplot as plt
plt.scatter(data['age'], y, s=40, alpha=1)
plt.show()
```


from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,plot_confusion_matrix,accuracy_score

```
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.20,random_state=20)
```

from sklearn.svm import SVC

```
rbf_classifier = SVC(kernel='rbf', C=0.01, gamma=0.1)
rbf_classifier
rbf_classifier.fit(X_train,y_train)
y_test_pred=rbf_classifier.predict(X_test)
```

y_test_pred

```
array([0, 0, 0, ..., 0, 0, 0])
```

accuracy_score(y_test,y_test_pred)

0.7578319244157136

confusion matrix(y test, y test pred)

```
array([[4572, 0], [1461, 0]])
```

```
plot_confusion_matrix(rbf_classifier,X_test,y_test, cmap='plasma')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarn warnings.warn(msg, category=FutureWarning)


```
classifier=SVC(kernel='linear', C=0.01, gamma=0.1)
classifier.fit(X_train, y_train)
y_test_pred=classifier.predict(X_test)
```

accuracy_score(y_test,y_test_pred)

0.8145201392342118

confusion_matrix(y_test,y_test_pred)

plot_confusion_matrix(classifier,X_test,y_test, cmap='plasma')
plt.show()

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarn
warnings.warn(msg, category=FutureWarning)

×