MATH 424 HW5 Dilys Wu

Dilys Wu

February 28, 2024

1 Q1

Prove that there is no surjective continuous function from [0, 1] to \mathbb{R} . Hint: there is a short solution.

Proof:

Suppose by contradiction that such a function $f:[0,1] \to \mathbb{R}$ exists. Since [0,1] is closed and bounded, it is compact. Since f is continuous, its image f[0,1] is compact. Since f is subjective, $f[0,1] = \mathbb{R}$ is compact, which is a contradiction.

2 Q2

Let $(S_1, d_1), (S_2, d_2)$ be two metric spaces. Prove that the function

$$d: (S_1 \times S_2) \times (S_1 \times S_2) \to [0, \infty), \ d((x_1, y_1), (x_2, y_2)) := d_1(x_1, x_2) + d_2(y_1, y_2)$$

for all $(x_1, y_1), (x_2, y_2) \in S_1 \times S_2$, is a metric on the product $S_1 \times S_2$. Here d_1, d_2 may have nothing to do with the norms on \mathbb{R}^n ; 1 and 2 are just

indices. Proof:

- (1) $d((x_1, y_1), (x_1, y_1)) = d_1(x_1, x_1) + d_2(y_1, y_1) = 0 + 0 = 0$ since d_1, d_2 are metrics. Conversely, if $d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2) = 0$, then $d_1(x_1, x_2) = d_2(y_1, y_2) = 0$ since $d_1(x, y), d_2(x, y) \ge 0$. Thus $x_1 = x_2, y_1 = y_2$, which gives $(x_1, y_1) = (x_2, y_2)$, i.e. if $d((x_1, y_1), (x_2, y_2)) = 0$ then $(x_1, y_1) = (x_2, y_2)$.
- (2) Since d_1, d_2 are metrics, $d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2) = d_1(x_2, x_1) + d_2(y_2, y_1) = d((x_2, y_2), (x_1, y_1)).$
- (3) $d((x_1, y_1), (x_3, y_3)) = d_1(x_1, x_3) + d_2(y_1, y_3) \le (d_1(x_1, x_2) + d_1(x_2, x_3)) + d_2(y_1, y_3) \le (d_1(x_1, x_2) + d_1(x_2, x_3)) + (d_2(y_1, y_2) + d_2(y_2, y_3)) = (d_1(x_1, x_2) + d_2(y_1, y_2)) + (d_1(x_2, x_3) + d_2(y_2, y_3)) = d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3))$

3 Q3

Let $(S_1, d_1), (S_2, d_2)$ be two metric spaces and let d be the metric on the product $S_1 \times S_2$ constructed in problem 2 above.

- (a) Prove that the function $p: S_1 \times S_2 \to S_1$ given by p(x,y) = x is continuous.
- (b) Is p uniformly continuous? Explain.

Proof:

- (a) Let $(x, y), (x', y') \in S_1 \times S_2$. Take $\delta = \varepsilon$. Suppose that $d((x, y), (x', y')) = d((x, x'), (y, y')) < \delta$, then $d_1(x, x') < \delta = \varepsilon$. Since the points are arbitrary, p is continuous.
- (b) It is uniformly continuous since $\forall \varepsilon$, we can always choose $\delta = \varepsilon$ s.t. if $d((x,y),(x',y')<\delta$, then $d'((x,y),(x',y'))=d_1(x,y)<\delta=\varepsilon$.

4 Q4

Let (E, d) be a metric space. Then by problem 2 the product $E \times E$ is also a metric space with the metric d given by $d((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + d(y_1, y_2)$.

(a) Prove that the function $d:(E\times E,d)\to[0,\infty)$ is continuous.

Hint: you need to show that for any $(x_0, y_0) \in E \times E$, any $\varepsilon > 0$, there is $\delta > 0$ so that if $d((x_0, y_0), (x, y)) < \delta$ then $|d(x_0, y_0) - d(x, y)| < \varepsilon$.

(b) Is the function d uniformly continuous? Explain.

Proof:

- (a) Let $(x_0, y_0), (x, y) \in E, \varepsilon > 0$ be arbitrary. We choose $\delta = \varepsilon$. Suppose that $d((x_0, y_0), (x, y)) = d(x_0, x) + d(y_0, y) < \delta = \varepsilon$, then $|d(x_0, y_0) d(x, y)| = |d(x_0, x) + d(y_0, y)| < \varepsilon$.
- (b) Yes. Since $\forall \varepsilon$, we can always choose $\delta = \varepsilon$ s.t. if $d((x_0, y_0), (x, y)) < \delta$ then $|d(x_0, y_0) d(x, y)| = |d(x_0, x) + d(y_0, y)| < \varepsilon$ by (a).

5 Q5

- (a) Prove that the function $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = x + y is continuous.
- (b) Let E be a metric space, $g, h: E \to \mathbb{R}$ two continuous functions. Use part
- (a) to give another proof that $g + h : E \to \mathbb{R}$ is continuous.

Proof

- (a) Let $(x,y) \in \mathbb{R}^2$, we construct two convergent sequences $\{x_n\}, \{y_n\}$ with $x_n \to x, y_n \to y$, then we have $x_n + y_n \to x + y$. Now $f(x_n, y_n) \to x + y = f(x, y)$, and thus it is pointwise continuous at (x,y). Since (x,y) is arbitrary, f is continuous.
- (b) Consider the function $p: E \to \mathbb{R}p(x) = f(g(x), (h(x))) = g(x) + h(x)$. Since f is continuous by (a), g, h are continuous, p(x) = f(g(x) + h(x)) = g(x) + h(x) is continuous.

6 Q6

Let (E,d), (E',d') be two metric spaces and $\{f_n : E \to E'\}_{n \in \mathbb{N}}$ a sequence of functions converging uniformly to a function f. Prove that if f_n 's are all bounded then so is f.

Proof:

Suppose that f_n 's are bounded, then $\exists M$ s.t. $\forall n, f_n \leq M$. Since f_n 's converge uniformly to f, $\exists N$ s.t. $\forall \varepsilon > 0$, $d(f_n(x), f(x)) < \varepsilon$ for n > N. We now want to show that $\exists M'$ s.t. $|f(x)| \leq M'$. To see this, let $\varepsilon = 1$, then for n > N,

$$d(f_n(x), f(x)) < 1$$

|f(x)| < 1 + f_n(x) \le 1 + M

So we choose any $M' \ge 1 + M$ and that it will be a bound of f(x), since for n > N, $|f(x)| < 1 + M \le M'$.

7 Q7

Let (E,d),(E,d') be two metric spaces, $f,g:E\to E'$ two bounded functions.

- (a) Prove that the set $\{d'(f(x), g(x))|x \in E\}$ is bounded in E'.
- (b) As in lecture 14, let C(E, E') denote the set of all bounded continuous functions from E to E'. Prove that the function

$$D: C(E, E') \times C(E, E') \to [0, \infty), \ D(f, g) := \sup\{d'(f(x), g(x)) | x \in E\}$$

is a metric.

Proof:

- (a) Since f, g is bounded, $d'(f(x), f_0) \leq M_f, d'(g(x), g_0) \leq M_g$ for some M_f, M_g . We aim to show that there exists a real number M such that for all $x \in E$, $(f(x), g(x)) \leq M$. Given that f and g are bounded, we use the triangle inequality property of the metric space (E', d'). For any $x \in E$, we have $d'(f(x), g(x)) \leq d'(f(x), f_0) + d'(f_0, g_0) + d'(g_0, g(x))$. The term (f_0, g_0) is a fixed distance between two points in E' and hence is a constant, say K. Hence for all $x \in E$, $d'(f(x), g(x)) \leq M_f + K + M_g$, and thus the set is bounded.
- (i) $D(f, f) = \sup\{d'((f(x), f(x))|x \in E\} = 0 \text{ since } d' \text{ is a metric. Note that if } \sup\{d'(f(x), g(x))|x \in E\} = 0 \text{ then } f = g \text{ again since } d' \text{ is a metric.}$
- (ii) $D(f,g) = \sup\{d'((f(x),g(x))|x \in E\} = \sup\{d'((g(x),f(x))|x \in E\} = D(g,f)$
- (iii) $D(f,h)=\sup\{d'(f(x),h(x))|x\in E\}$. Note that we have $d'(f(x),h(x))\leq d'(f(x),g(x))+d'(g(x),h(x))$, and thus $\sup d'(f(x),h(x))\leq \sup d'(f(x),g(x))+\sup d'(g(x),h(x))$, where $x\in E$. Therefore, we have $D(f,h)=\sup\{d'(f(x),h(x))|x\in E\}\leq \sup\{d'(f(x),g(x))|x\in E\}+\sup\{d'(g(x),h(x))|x\in E\}=D(f,g)+D(g,h)$ Hence, D is a metric.

8 *Q8

Let (X, \mathcal{T}) be a topological space and $A \subset X$ a subset.

(a) Check that the collection of sets $\mathcal{T}_A := \{U \cap A | U \in T\}$ is a topology on A. \mathcal{T}_A is called the subspace topology.

(b) Let (E, d) be a metric space, \mathcal{T}_d the corresponding topology and $A \subset E$ a subset. We then have two ways to define a topology on A: (1) we can give A the subspace topology. (2) Alternatively the metric d on E gives us a metric d_A on A given by the same formula: $d_A(x,y) = d(x,y)$ for all $x,y \in A$. Consequently, we get a topology \mathcal{T}_{d_A} on A. Show that these two topologies $(\mathcal{T}_{d_A}$ and $(\mathcal{T}_d)_A)$ are the same.

Proof:

- (a) It contains \varnothing and A since $\varnothing = \varnothing \cap \mathcal{T}$ and $A = A \cap X$, and \varnothing , X are elements of \mathcal{T}_A . Suppose $U_1, U_2, \dots \subseteq \mathcal{T}$ are open sets. Notice that $(U_1 \cap Y) \cap (U) \cap Y \cap (U_n \cap Y) = (U_1 \cap U_2 \cap \dots \cap U_n) \cap Y \subseteq \mathcal{T}_Y$. For arbitrary intersections, we have $\bigcup_{\alpha \in A} (U_\alpha \cap Y) = (\bigcup_{\alpha \in A} U_\alpha) \cap Y \subseteq \mathcal{T}_Y$.
- (b) Suppose $U\subseteq \mathcal{T}_{d_A}, U$ open, we will show that $U\subseteq (\mathcal{T}_d)_A$. And then we show the converse. Since U is open, $\forall x\in U, \exists \varepsilon>0$ s.t. $B_\varepsilon^{d_A}(x)\subseteq U$. Since $d_A=d$, it is also an open ball in $(\mathcal{T}_d)_A$ intersecting A. Hence, $B_\varepsilon^{d_A}(x)=B_\varepsilon^d(x)\cap A$, and we can write U as a union of intersections of open sets in E with A, hence U is open in the subspace topology $(\mathcal{T}_d)_A$. Conversely, suppose that $U\subseteq (\mathcal{T}_d)_A$. Then there exists an open set $U=V\cap A$. For all $x\in V, \exists \varepsilon>0$ s.t. $B_\varepsilon^d(x)\subseteq V$. Since $U=V\cap A$, we have $B_\varepsilon^{d_A}(x)=B_\varepsilon^d(x)\cap A\subseteq U$. Therefore, U is open in $(\mathcal{T}_d)_A$.