Analysis signals from sleep with Data mining technique for predict sleep stages

การวิเคราะน์คลื่นสัญญาณจากการนอน ด้วยเทคนิคการเรียนรู้ของเครื่องเพื่อทำนายระดับ

การนอนหลับ

Narongrit Sridonthong 5710210119 Wanchai Nuptnit 5710210389

Advisor
Asst. Prof. Thakerng Wongsirichot

Scope

must appropriate

Find the best model that can classify sleep stages from data signals.

Analysis and Evaluate result of model

Improve model for best classification

Objective

- To develop methodology for sleep stages classification with physical signals
- To apply the model for automatic analyze sleep stages and can easy to analyze with sleep specialists.

CRISP-DM

Data Understaning

Channel	Sampling Rat (Hz)	łe
SaO2	1	
PR	1	
EEG (sec)	128	
ECG	256	
EMG	128	
EOG(L)	64	
EOG(R)	64	
EEG	128	
Airflow	8	
Thor RES	8	
Abdo RES	8	
Position	1	
Light	1	
OX STAT	1	

f = 1.0 Hz T = 1.0 s

f = 2.0 HzT = 0.5 s

Data Preprocessing


```
Select C:\WINDOWS\system32\cmd.exe
     path:C:\Users\chai \Google Drive\1 2560 (1)\308- Project2\edf\shhs1
 shhs2-200078. edf
                        1 128 256 128 32 32 128 8
                    96. 09216449 96. 09216449 96. 09216449 96. 09216449]
(PR) [ 76. 37140459 77. 34798199 79. 3011368 81. 2542916 83. 2074464 ]
(EEG(sec)) [ -2.45098039 -8.33333333 -16.17647059 -26.96078431 -16.17647059]
(ECG) [ 0.21078431  0.20098039  0.19117647  0.19117647  0.18137255]
(EMG) [-2.59411765 -1.85294118 -3.08823529 5.31176471 -8.77058824]
(EOG (L)) [ 11. 2745098 21. 07843137 -14. 21568627 -8. 33333333 -10. 29411765]
(EOG(R)) [-23.03921569 -16.17647059 5.39215686
                                                  8. 33333333
(EEG) [ -6.37254902 16.17647059 19.11764706 10.29411765 5.39215686]
(AIRFLOW) [-0.90588235 -0.49019608 -0.09019608 0.23921569 0.4745098 ]
(THOR RES) [-0. 28627451 -0. 24705882 -0. 16078431 -0. 09019608 0. 02745098]
(ABDO RES) [-0.60784314 -0.52156863 -0.46666667 -0.29411765 0.27843137]
                                              Sample Data from EDF file
(POSITION) [ 3. 3. 3. 3. 3.]
```


Example of training set (CSV file)

1 subject	epoch	SaO2_min	SaO2_max	SaO2_avg	SaO2_SD	SaO2_kurt	PR_min	PR_max	PR_avg	PR_SD	PR_kurtosi:	position_m	position_m	position_av	position_S[position_ku light_m
2 shhs2-205399	501	0.988933	1	0.992328	0.010086	0.091962					0.0512	0.333333	0.333333	0.333333	0	0
3 shhs2-201859	1121	0	0	0	0	2.78E-17	0	0	0	5.61E-19	0.03567	1	1	1	0	0
4 shhs2-200116	965	0.97923	0.989722	0.986555	0.015958	0.038453	0.724696	0.452776	0.769169	0.060882	0.048514	1	1	1	0	0
5 shhs2-201610	947	0.928282	0.939839	0.940269	0.0215	0.017494	0.666656	0.621256	0.657517	0.02262	0.037499	0.666667	0.666667	0.666667	0	0
6 shhs2-200680	909	0	0	0	0	2.78E-17	0	0	0	0	0	1	1	1	0	0
7 shhs2-200796	1052	0	0	0	0	2.78E-17	0	0	0	6.95E-19	0.03567	0	0.333333	0.016667	0.171935	1
8 shhs2-204680	564	0.990039	0.782609	0.977154	0	2.78E-17	0.627589	0.095238	0.504101	0.016331	0.091158	0	0	0	0	0
9 shhs2-203167	1050	0.959161	0.969426	0.972119	0.010903	0.045088	0.594407	0.305962	0.586498	0.021944	0.10001	1	1	1	0	0
10 shhs2-204086	685	0.947581	0.937622	0.945414	0.010398	0.000661	0.711731	0.725639	0.72495	0.040782	0.085614	0	0	0	0	0
11 shhs2-203807	768	0.979082	0.990137	0.990782	0.018423		0.,, 200,, 2	0.285433	0.001.1	0.006909	0.053506	0	0	0	0	0
12 shhs2-205398	899	0.95875	0.931555	0.950462	0.002 10		0.730637	0.567043	0.6936	0.013414	0.075394	0.666667	0.666667	0.666667	0	0
13 shhs2-203966	1047	0	0	0		2.78E-17	0		0	0	0	1	1	1	0	0
14 shhs2-200813	754	0.948689	0.979082	0.975266		0.148728				0.177968	0.0264	0.666667	0.666667	0.666667	0	0
15 shhs2-203495	1000	0.939239	0.980275	0.953333	0.040108	0.046658	0.640198	0.751398	0.70299	0.083808	0.05041	0.333333	0.333333	0.333333	0	0
16 shhs2-201919	270	0.959306	0.979082	0.962043	0.031645	0.023067		0.417813		0.01693	0.052623	0.666667	0.666667	0.666667	0	0
17 shhs2-200994	423	0.969122	0.969122	0.969122	6.45E-16	2.78E-17	0.64424	0.320625	0.425838	0.01808	0.15716	1	1	1	0	0
18 shhs2-204312	5	0	0.971635	0.805962	0.719504	0.118154	0	0.350929	0.382092	0.214153	0.136056	0.333333	1	0.733333	0.413503	0.103031
19 shhs2-204904	949	0.990137	0.619806	0.974324					0.593733		0.065232	0	0	0	0	0
20 shhs2-205320		0.959564	0.960882	0.965821	0.006928	0.172145	0.456135	0.368844	0.408382	0.004047	0.172145	0.666667	0.666667	0.666667	0	0
21 shhs2-200226	1120	0	0	0	0	0	0	0	0	0	0	0.666667	0.666667	0.666667	0	0
22 shhs2-203080	787	0.928282	0.931555	0.93411	0.0162			0.310849		0.015603	0.061839	0.333333	0.333333	0.333333	0	0
23 shhs2-205026	655	0.969122	0.969426	0.971834	0.011117	0.000661	0.466783	0.325513	0.455174	0.010726	0.02666	0.666667	0.5	0.5	0	0
24 shhs2-200740	1302	0.979444	0.672131	0.924443	0.013713	0.011327	0.584408	0.123307	0.268712	0.039229	0.056928	0.5	0.333333	0.344828	0	0¦

Modeling

Supervised learning

• It is the machine learning task of inferring a function from labeled training data.

Neural network

PEGMV493

Classification Model

- Naïve Bayes
- Nearest Neighbor
- Neuron Network
- Random Forest
- Decision Tree
- Support vector machines

Visual Representation of Train/Test Split and Cross Validation. H/t to my DSI instructor, Joseph Nelson!

K-Folds Cross Validation

 In K-Folds Cross Validation we split our data into k different subsets (or folds). We use k-1 subsets to train our data and leave the last subset (or the last fold) as test data. We then average the model against each of the folds and then finalize our model. After that we test it against the test set.

Why is K-Folds Cross Validation?

- the model learns or describes the "noise" in the training data instead of the actual relationships between variables in the data. This noise, obviously, isn't part in of any new dataset, and cannot be applied to it.
- Overfitting means that model we trained has trained "too well" and is now, well, fit too closely to the training dataset
- Underfitting means that the model does not fit the training data and therefore misses the trends in the data. It also means the model cannot be generalized to new data.

Why ten?

- Extensive experiments have
 shown that this is the best choice
 to get •
- an accurate estimate
- There is also some theoretical evidence for this

Result

Overall / Average
Accuracy 30s epoch length

Overall / Averge Il

Accuracy 15s epoch length

A comparison of _____

แนวคิดและวิธีการ ในการพัฒนางาน ส่วนที่เหลือ Analysis with majority voting

Evaluate model

Progressing wells) it in.

Majority Voting

Neuron Nearest Random Voting Neighbors Forest Network Stage 1 Stage 2 Stage 1 Stage 1 Stage 2 Stage 1 Stage 2 Stage 2