Intercambio de datos de Bases de datos relacionales a grafos de propiedad

¹Manuel Rios

¹Facultad de Ciencias. Universidad Nacional de Ingeniería

01 Agosto 2023

- Introducción
- Problemática
- Conocimientos previos
- Metodología
- Resultados
- Conclusiones

Importancia de las bases de datos orientado a grafos de propiedad

Figura: Empresas que utilizan BD orientado a grafos de propiedad

Análisis de datos en BD orientado a grafos de propiedad

Figura: Análisis de datos

Áreas de estudio

- Customer Journey.
- Knowledge Graph.
- Mapas estratégicos de riesgo.
- Lucha contra el Crimen Financiero PBC AML

¿Cómo pasar la información de una base de datos relacional a una orientado a grafos?

Figura: Data Exchange.

¿Objetivos?

- ► Comprensión del esquema y restricciones en una BD relacional.
- Comprensión del esquema y restricciones de un grafo con propiedad.
- Formalización de la BD relacional.
- Formalización del grafo con propiedad.
- Formalización del mapeo entre BD relacional a Grafo con propiedad.

Base de Datos Relacionales

Figura: ¿Qué son las bases de datos relacionales?

Base de Datos Relacionales

∯ ID	♦ JOBTITLE		
5869	Ambulatory Nurse	Marilyn_Clarke7275@sveldo.biz	Marilyn Clarke
5870	Call Center Representative	Drew_Ianson5964@twipet.com	Drew Ianson
5871	Executive Director	Maxwell_Vallins6716@sveldo.biz	Maxwell Vallins
5872	Doctor	Kieth_Gordon1073@bulaffy.com	Kieth Gordon
5873	Budget Analyst	Matthew_Rehman3766@twipet.com	Matthew Rehman
5874	Audiologist	David_Weldon1163@tonsy.org	David Weldon

Figura: Tabla de una base de datos relacional

Lenguaje SQL

```
TABLE IF NOT EXISTS `Wp_ngg_pictures` (

pid bigint(20) NOT NULL AUTO_INCREMENT,

pid bigint(20) NOT NULL,

image_slug` varchar(255) NOT NULL,

'post_id` bigint(20) NOT NULL DEFAULT '0',

'galleryid` bigint(20) NOT NULL DEFAULT '0',

'filename` varchar(255) NOT NULL,

'description` mediumtext,

'altext` mediumtext,

'imagedate` datetime NOT NULL DEFAULT '0000-00-00

'exclude` tinyint(4) DEFAULT '0',

'sortorder` bigint(20) NOT NULL DEFAULT '0'
```

Figura: Lenguaje de base de datos relacionales, SQL

Base de Datos Orientado a grafos de propiedad

Figura: Base de datos orientado a grafos de propiedad

Lenguaje Cyphe

Figura: Cypher Query Language, lenguaje de consulta para Neo4j

Lenguaje Cyphei

Figura: Ejemplo de lenguaje Cypher

Lenguaje de Programación Python

Figura: Python

Estudio de la estructura de la base de datos relacional

Figura: Diagrama de la base de datos

Restricciones

- ► Se tendrá 2 tipos de tablas para las entidades, el primer tipo será las entidades que no tengan dependencias y el segundo tipo serán las entidades que dependan de otras.
- ► El segundo tipo de tablas donde las entidades dependan de otras serán las tablas que se caracterizan por tener las relaciones de otras entidades y el nombre de éstas tendrán la siguiente estructura: Entidad1_Entidad2.
- Este segundo tipo de tabla definido en el anterior punto tendrá la siguiente estructura idTabla, idEntidad1, idEntidad2, relación.

Estudio de la estructura de la base de datos orientado a grafos de propiedad

Figura: Estructura de la base de datos orientada a grafos de propiedad

Formalismo lógico

Para la tabla Persona tenemos el siguiente formalismo lógico:

 $Persona(idPersona,\ NombrePersona,\ ApellidoPersona) \Rightarrow Tripla(idPersona,\ Nombre-Persona) \land Tripla(idPersona,\ ApellidoPersona,\ valor(ApellidoPersona)) \land Tripla(idPersona,\ ApellidoPersona,\ valor(ApellidoPersona))$

Para la tabla Auto tenemos el siguiente formalismo lógico:

 $Auto(idAuto, Marca, Modelo, A\~no) \Rightarrow Tripla(idAuto, Marca, valor(Marca)) \land Tripla(idAuto, Modelo, valor(Modelo)) \land Tripla(idAuto, A\~no, valor(A\~no))$

Figura: Formalismo lógico de las tablas Persona y Auto

Figura: Registros de las tablas que serán nodos

Figura: Registros de las tablas que serán nodos

Figura: Nodo de tipo Persona

Figura: Registros de las tablas que serán relaciones

Results								
	idPers	ona_Persona	idPersona1	idPersona2	relacionPP			
1	1		1	204	Conoce			
2	2		2	661	Pareja_de			
3	3		3	188	Director_de			
4	4		4	586	Jefe_de			
5	5		5	451	Estudiante_de			
6	6		6	496	Cocinero_de			
7	7		7	473	Amigo_de			
8	8		8	109	Manager_de			
9	9		9	52	Vecino_de			
10	10		10	100	A			

Figura: Registros de las tablas que serán relaciones

Figura: Nodos Persona y Auto con sus relaciones

Creación de la base de datos relacional

Figura: Creación de base de datos por medio de Scripts

Creación del código para el intercambio de datos

Figura: Código de intercambio de datos

roducción Problemática Conocimientos previos Metodología Resultados Conclusiones

Figura: Nodos Persona y Auto con su respectiva relación creada en Neo4j

Figura: Nodos Persona y Auto con su respectiva relación creada en Neo4j

Figura: Grafo Persona-Persona-Auto en Neo4j

Figura: Grafo Persona-Persona-Auto en Neo4j

Figura: Vista de algunas relaciones creadas y cantidad


```
Match (n1 { idPersona:997}), (n2 {idPersona:454}) CREATE (n1)-[:Hijo_de]->(n2)
Match (n1 { idPersona:998}), (n2 {idPersona:13}) CREATE (n1)-[:Casero_de]->(n2)
Match (n1 { idPersona:999}), (n2 {idPersona:933}) CREATE (n1)-[:Amante_de]->(n2)
Match (n1 { idPersona:1000}), (n2 {idPersona:37}) CREATE (n1)-[:Jefe_de]->(n2)

Intercambio de datos exitosa

Tiempo de ejecución: 158.33262276649475
PS C:\Users\Skyline\Desktop\UNI\Tesis II\Code>
```

Figura: Tiempo de ejecución del script de intercambio de datos

conclusiones

- Con la realización de este trabajo de investigación para la ejecución del mapeo directo se concluye que es necesario establecer una serie de pasos que conlleva a realizar el intercambio de datos.
- ► El intercambio de datos que se llevó a cabo depende de la estructura de la base de datos relacional.
- El esquema de la base de datos orientada a grafos de propiedad no tienen restricciones en cuanto a su estructura a la hora de realizar el intercambio de datos, por lo que a la hora de la creación del código se utilizan querys Cypher que no son complejos.
- Se obtuvo con éxito el intercambio de datos.

Trabajos futuros

- Intercambio de dato utilizando R2RML (RDB to RDF mapping language) un lenguaje estandarizado por W3C, donde RDF significa Resource Description Framework una estructura de datos estándar.
- Análisis de datos en una base de datos orientada a grafos de propiedad en Neo4j Bloom que tiene como origen una base de datos relacional.

