Proposed Method

Information Fusion Layer

- Denote the output features of fully convolutional block as $(\hat{v}_1, \hat{v}_2, \dots, \hat{v}_t)$
 - t: length of output feature sequence
- Input: features from fully convolutional block
- Output: Sequence of concatenated vectors
 - {outputs from previous block, local attentive, query-aware global attentive}

Proposed Method

Local self-attention module

- Capture the semantic relations between all shots among a video segment.
- Given $(\hat{v}_1, \hat{v}_2, \dots, \hat{v}_t)$ to compute the alignment matrix. (shape: $t \times t \times d_c$)
- Module can learn the relative semantic relationship of different frames in the same segments.
- For different segments, the relation structure should be similar. Therefore, modules share all the trainable parameters, also reduces the amounts of parameters in our model.

(2)
$$f(\hat{v}_i, \hat{v}_j) = P \tanh(W_1 \hat{v}_i + W_2 \hat{v}_j + b) \in R^{d_c}$$

- $P, W_1, W_2 \in \mathbb{R}^{d_c \times d_c}$: trainable parameters
- $b \in R^{d_c}$: bias vector , d_c : dimension of \hat{v}_i

(3)
$$r_{ij} = \frac{\exp(f(\hat{v}_i, \hat{v}_j))}{\sum_{k=0}^{t} \exp(f(\hat{v}_i, \hat{v}_k))}$$

(4) Local attentive video feature for i-th: $\hat{v}_i^l = \sum_{j=0}^l r_{ij} \odot \hat{v}_j$