本題得分

五、设线性方程组

$$\begin{cases}
-2x_1 + x_2 + x_3 = 10, \\
-x_1 + 2x_2 + 3x_3 = 12, \\
4x_1 + 2x_2 + x_3 = 16,
\end{cases}$$

- (1) 写出 Jacobi 迭代法、Gauss-Seidel 迭代法解该方程组的迭代公式; 〖6分〗
- (2) 考察用 Gauss-Seidel 解该方程组的收敛性。〖12分〗

(1) Jacobi
$$S_{\lambda_{1}}^{(k+1)} = 0.5 \times_{2}^{(k)} + 0.5 \times_{3}^{(k)} - 5$$

 $X_{2}^{(k+1)} = 0.5 \times_{1}^{(k)} - 1.5 \times_{3}^{(k)} + 6$
 $X_{3}^{(k+1)} = -4 \times_{1}^{(k)} - 2 \times_{2}^{(k)} + 16$
Gauss-serole $S_{\lambda_{1}}^{(k+1)} = 0.5 \times_{2}^{(k)} + 0.5 \times_{3}^{(k)} + 5$
 $S_{\lambda_{2}}^{(k+1)} = 0.5 \times_{1}^{(k+1)} - 1.5 \times_{3}^{(k)} + 6$
 $S_{\lambda_{3}}^{(k+1)} = -4 \times_{1}^{(k+1)} - 2 \times_{2}^{(k+1)} + 16$

(2)
$$\triangle$$

$$\begin{cases} x_1^{(k+1)} = 0.5x_2^{(k)} + 0.5x_3^{(k)} - 5 \\ x_2^{(k+1)} = 0.25x_2^{(k)} - 1.25x_3^{(k)} + 3.5 \\ x_3^{(k+1)} = -2.5x_2^{(k)} + 0.5x_3^{(k)} + 29 \end{cases}$$

$$\begin{cases} M_{GS} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0.25 & -1.25 \\ 0 & -2.5 & 0.5 \end{cases},$$

ı	本趣			
ı	得分 六	、用最小二乘拟合方法求一形如 $y = ax + bx^3$, 其中数据表如下・	(a.	b 为堂
ı	数)的经验公式	, 其中数据表如下:		>3111

x	-2	-1	0	1	2
У	-8.99	-1.51	0.001	1.47	9.02
W- 10					[18 £

取为公二人, 凡以二人3

得 (Po, Po)= 素
$$\chi_i^2 = 10$$
, (Po, Pi)= $\frac{5}{12}\chi_i^4 = 34$ (Pi, Pi)= 素 $\chi_i^6 = 130$

得正则方程且

$$\begin{bmatrix} (P_0, P_0) & (P_0, P_1) \\ (P_1, P_0) & (P_1, P_1) \end{bmatrix} \begin{bmatrix} q \\ b \end{bmatrix} = \begin{bmatrix} (Y_1, P_0) \\ (Y_1, P_1) \end{bmatrix}$$

$$\begin{bmatrix} 10 & 34 \\ 34 & 130 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \end{bmatrix} = \begin{bmatrix} 39 \\ 47.06 \end{bmatrix}$$

得 ○ ≈ 0.4858, 6~1.0042

则拟台世民为 y=0.4858x+1.0042x3

3