```
In [1]: #importing necessary Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

1&2 Downloading & Loading Dataset

In [3]:	##	##Loading Dataset								
		=pd.rea .head()		nguins_size.csv")						
Out[3]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g			
	0	Adelie	Torgersen	39.1	18.7	181.0	3750.0			
	1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FE		
	2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FE		
	3	Adelie	Torgersen	NaN	NaN	NaN	NaN			
	4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FE		
4										

3. visualizations

3.1 Univariate Analysis

In [5]: sns.displot(df["body_mass_g"])

Out[5]: <seaborn.axisgrid.FacetGrid at 0x1f4bde12830>


```
In [6]: df["species"].unique()
```



```
In [9]: sns.barplot(x =df["species"].value_counts().index,y =df["species"].value_counts()
Out[9]: <Axes: ylabel='species'>
```


3.2 Bivariate Analysis

```
In [10]: sns.lineplot(x = df["culmen_length_mm"],y=df["body_mass_g"])
Out[10]: <Axes: xlabel='culmen_length_mm', ylabel='body_mass_g'>
```


 $sns.scatterplot(x=df["culmen_depth_mm"],y=df["body_mass_g"])$

In [11]:

Out[11]: <Axes:

<Axes: xlabel='culmen_depth_mm', ylabel='body_mass_g'>

3.3 Multivariate Analysis

```
In [12]: plt.figure(figsize=(4,4))
sns.pairplot(df)
```

Out[12]: <seaborn.axisgrid.PairGrid at 0x1f4c20c8970>

<Figure size 400x400 with 0 Axes>

In [13]: plt.figure(figsize=(4,4))
sns.heatmap(df.corr(),annot=True)

C:\Users\DELL\AppData\Local\Temp\ipykernel_12584\3789453644.py:2: FutureWarning: T he default value of numeric_only in DataFrame.corr is deprecated. In a future vers ion, it will default to False. Select only valid columns or specify the value of n umeric_only to silence this warning.

sns.heatmap(df.corr(),annot=True)

Out[13]: <Axes: >

4. descriptive statistics

Out[14]

In [14]:	##descriptive statistics
	<pre>df.describe()</pre>

•	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

5. Handling Missing Values

```
In [15]: ##checking missing values
    df.isnull().any()
```

```
False
          species
Out[15]:
          island
                               False
          culmen_length_mm
                                True
          culmen_depth_mm
                                True
          flipper length mm
                                True
          body_mass_g
                                True
          sex
                                True
          dtype: bool
          df.isnull().sum()
In [16]:
          species
                                0
Out[16]:
                                0
          island
          culmen_length_mm
                                2
          culmen_depth_mm
                                2
          flipper_length_mm
                                2
                                2
          body_mass_g
                               10
          sex
          dtype: int64
In [17]:
          #handling null values of numerical parameters using median()
          df["culmen_length_mm"].fillna(df["culmen_length_mm"].median(),inplace=True)
          df["culmen_depth_mm"].fillna(df["culmen_depth_mm"].median(),inplace=True)
          df["flipper_length_mm"].fillna(df["flipper_length_mm"].median(),inplace=True)
          df["body_mass_g"].fillna(df["body_mass_g"].median(),inplace=True)
          #handling null values of categorical parameters using mode()
In [18]:
          df["sex"].mode()
              MALE
Out[18]:
          Name: sex, dtype: object
          df["sex"].fillna("MALE",inplace=True)
In [19]:
          df.isnull().sum()
In [20]:
          species
                               0
Out[20]:
                               0
          island
          culmen_length_mm
                               0
          culmen_depth_mm
                               0
          flipper_length_mm
                               0
          body_mass_g
                               0
                               0
          sex
          dtype: int64
```

6. Outlier detection

In [21]:	<pre>df.head()</pre>									
Out[21]:	species		island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g			
	0	Adelie	Torgersen	39.10	18.7	181.0	3750.0			
	1	Adelie	Torgersen	39.50	17.4	186.0	3800.0	FE		
	2	Adelie	Torgersen	40.30	18.0	195.0	3250.0	FE		
	3	Adelie	Torgersen	44.45	17.3	197.0	4050.0			
	4	Adelie	Torgersen	36.70	19.3	193.0	3450.0	FE		
								•		
In [22]:	<pre>sns.boxplot(df["culmen length mm"])</pre>									

Out[22]: <Axes: >


```
In [23]: sns.boxplot(df["culmen_depth_mm"])
.
```

Out[23]: <Axes: >


```
In [24]: sns.boxplot(df["flipper_length_mm"])
Out[24]: <Axes: >
```



```
In [25]: sns.boxplot(df["body_mass_g"])
```


7. Indentifying Correlation

In [27]: df.corr()

C:\Users\DELL\AppData\Local\Temp\ipykernel_12584\1134722465.py:1: FutureWarning: T he default value of numeric_only in DataFrame.corr is deprecated. In a future vers ion, it will default to False. Select only valid columns or specify the value of n umeric_only to silence this warning.

df.corr()

Out[27]: culmen_length_mm culmen_depth_mm flipper_length_mm body_mass_g

culmen_length_mm 1,000000 -0,235000 0,655858 0,594925

culmen_length_mm	1.000000	-0.235000	0.655858	0.594925
culmen_depth_mm	-0.235000	1.000000	-0.583832	-0.471942
flipper_length_mm	0.655858	-0.583832	1.000000	0.871221
body_mass_g	0.594925	-0.471942	0.871221	1.000000

8. Encoding

In [28]:	df	.head()						
Out[28]:		species	island	l culmen_length_mi	m culmen_depth_m	ım flipper_length_m	ım body_mass_	g
	0	Adelie	Torgerser	n 39.1	0 18	3.7 18	1.0 3750.	0
	1	Adelie	Torgerser	39.5	50 17	7.4 186	5.0 3800.	0 FE
	2	Adelie	Torgerser	40.3	30 18	3.0 199	5.0 3250.	0 FE
	3	Adelie	Torgerser	1 44.4	15 17	7.3 19 ⁻	7.0 4050.	0
	4	Adelie	Torgerser	36.7	70 19	9.3 193	3450.	O FE
4								•
In [29]:	#L	abel en	coder is	used to encode	the categorical	., species,island columns to conver		ical
In [30]:	fr	om skle	_	ncoder from skle rocessing import				
In [31]:	df	"islan	d"]=le.f	<pre>fit_transform(df it_transform(df[transform(df['se</pre>	'island'])			
In [32]:	df	.head()						
Out[32]:		species	island o	ulmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
	0	0	2	39.10	18.7	181.0	3750.0	2
	1	0	2	39.50	17.4	186.0	3800.0	1
	2	0	2	40.30	18.0	195.0	3250.0	1
	3	0	2	44.45	17.3	197.0	4050.0	2
	4	0	2	36.70	19.3	193.0	3450.0	1
4								•

9. X&Y Split

```
In [33]: X=df.drop(columns=["body_mass_g"],axis=1)
    X.head()
```

Out[33]:		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	sex
	0	0	2	39.10	18.7	181.0	2
	1	0	2	39.50	17.4	186.0	1
	2	0	2	40.30	18.0	195.0	1
	3	0	2	44.45	17.3	197.0	2
	4	0	2	36.70	19.3	193.0	1

```
In [34]: Y=df["body_mass_g"]
Y.head()
```

Out[34]: 0 3750.0 1 3800.0 2 3250.0 3 4050.0 4 3450.0

Name: body_mass_g, dtype: float64

10. Scaling the data

In [35]:	<pre>from sklearn.preprocessing import MinMaxScaler scale=MinMaxScaler()</pre>
In [36]:	<pre>X_scaled=pd.DataFrame(scale.fit_transform(X),columns=X.columns)</pre>
In [37]:	<pre>X_scaled.head()</pre>
Out[37]:	species island culmen_length_mm culmen_depth_mm flipper_length_mm sex

•		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	sex
	0	0.0	1.0	0.254545	0.666667	0.152542	1.0
	1	0.0	1.0	0.269091	0.511905	0.237288	0.5
	2	0.0	1.0	0.298182	0.583333	0.389831	0.5
	3	0.0	1.0	0.449091	0.500000	0.423729	1.0
	4	0.0	1.0	0.167273	0.738095	0.355932	0.5

11. Spliting Training & Testing Data

In [38]: from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(X_scaled,Y,test_size=0.2,random_startest_split(X_scaled,Y).

12. Checking Training & Testing data shape

In [39]: x_train.shape

Out[39]: (275, 6)

In [40]: y_train.shape
Out[40]: (275,)

In [41]: x_test.shape
Out[41]: (69, 6)

In [42]: y_test.shape
Out[42]: (69,)

In []: