Math 240A: Real Analysis, Fall 2019

Midterm Exam Solution

B. Li, November 3, 2019

Name				ID numb			 _			
T	mı · ·	,		,	1 1		TD1	_	 C + + 1 400	 _

Note: This is a close-book and close-note exam. There are 5 problems of total 100 points. To get credit, you must show your work. Partial credit will be given to partial answers.

Problem	1	2	3	4	5	Total
Score						

- 1. (20 points) Determine if each of the following statements is true or false. If it is true, prove it. If it is false, give a counter example.
 - (1) Let (X, \mathcal{M}) be a measurable space. A function $f: X \to \mathbb{R}$ is measurable if $\{x \in X : f(x) > r\}$ is measurable for any rational number r.
 - (2) If E is a Lebesgue measurable, infinite subset of \mathbb{R} , then $m(E) = \infty$.

Solution.

- (1) Ture. Let $a \in \mathbb{R}$. Then there exist rational numbers r_k (k = 1, 2, ...) such that they decrease and converge to a. Then we have $\{f > a\} = \bigcup_{k=1}^{\infty} \{f > r_k\}$. But each $\{f > r_k\} \in \mathcal{M}$. Hence $\{f > a\} \in \mathcal{M}$. Thus, f is measurable.
- (2) False. Example. $E = \mathbb{N}$. First, for any $x \in \mathbb{R}$, we have

$$m(\{x\}) = m\left(\bigcap_{n=1}^{\infty} (x - 1/n, x + 1/n)\right) = \lim_{n \to \infty} m((x - 1/n, x + 1/n)) = \lim_{n \to \infty} \frac{2}{n} = 0.$$

Hence

$$m(\mathbb{N}) = \sum_{n=1}^{\infty} m(\{n\}) = 0.$$

2. (20 points) Let μ be the Lebesgue–Stieltjes measure associated to the following increasing and right-continuous function $F: \mathbb{R} \to \mathbb{R}$:

$$F(x) = \begin{cases} 0 & \text{if } x < 0, \\ x + 1 & \text{if } 0 \le x < 1, \\ x^2 + 2 & \text{if } 1 \le x < \infty. \end{cases}$$

Calculate $\mu(\{0\})$, $\mu((1,2])$, and $\mu([3,\infty))$.

Solution.

- $(1) \ \mu(\{0\}) = \lim_{n \to \infty} \mu((-1/n, 1/n]) = \lim_{n \to \infty} \left[F(1/n) F(-1/n) \right] = \lim_{n \to \infty} (1 + 1/n 0) = 1.$
- (2) $\mu((1,2]) = F(2) F(1) = (2^2 + 2) (1^2 + 2) = 3.$
- $(3) \ \mu([3,\infty)) \geq \mu((3,\infty)) \geq \mu((3,n]) = F(n) F(3) \to \infty \quad \text{as } n \to \infty. \text{ Hence } \mu([3,\infty)) = \infty.$

3. (20 points) Calculate the following limit with justification: (Note that $|\sin u| \le |u|$ for any $u \in \mathbb{R}$.)

$$\lim_{n \to \infty} \int_0^n \frac{n}{x(1+x^2)} \sin\left(\frac{x}{n}\right) dx.$$

Solution. Let $f_n(x) = \chi_{(0,n)}(x) \frac{n}{x(1+x^2)} \sin\left(\frac{x}{n}\right)$ $(0 < x < \infty)$. Each f_n is Lebesgue measurable as it is the product of two Lebesgue measurable functions, one a simple function and the other continuous function.

Note that $|f_n(x)| \le 1/(1+x^2)$ for all x > 0 since $|n\sin(x/n)/x| = |\sin(x/n)/(x/n)| \le 1$ for all n and all x > 0. Moreover, $1/(1+x^2)$ is integrable in $(0, \infty)$. In addition, for any x > 0,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \chi_{(0,n)}(x) \lim_{n \to \infty} \frac{\sin(x/n)}{x/n} \frac{1}{1+x^2} = \frac{1}{1+x^2}.$$

Hence by the Lebesgue Dominant Convergence Theorem, we have

$$\lim_{n \to \infty} \int_0^n \frac{n}{x(1+x^2)} \sin\left(\frac{x}{n}\right) dx = \int_0^\infty \lim_{n \to \infty} f_n(x) dx = \int_0^\infty \frac{1}{1+x^2} dx = \arctan x \Big|_0^\infty = \frac{\pi}{4}.$$

4. (20 points) Let (X, \mathcal{M}, μ) be a measure space. Assume all $f, f_n \in L^1(\mu)$ (n = 1, 2, ...) and $f_n \to f$ in $L^1(\mu)$. Prove that $f_n \to f$ in measure.

Proof. Let $\varepsilon > 0$ and $E_n = \{|f_n - f| \ge \varepsilon\}$ (n = 1, 2, ...). We have

$$\int_{X} |f_n - f| \, d\mu \ge \int_{E_n} |f_n - f| \, d\mu \ge \int_{E_n} \varepsilon \, d\mu = \varepsilon \mu(E_n).$$

Thus,

$$\mu(E_n) \le \frac{1}{\varepsilon} \int_X |f_n - f| d\mu \to 0,$$

as $n \to \infty$, since $f_n \to f$ in $L^1(\mu)$. Hence $f_n \to f$ in measure. **Q.E.D.**

5. (20 points) Let (X, \mathcal{M}, μ) be a measure space. Let $f: X \to [0, \infty)$ be a measurable function.

(1) Prove that
$$f \in L^1(\mu)$$
 if and only if $\sum_{n=1}^{\infty} n \, \mu(\{n-1 < f \le n\}) < \infty$.

(2) Prove that if $f \in L^1(\mu)$ then $\lim_{N \to \infty} N\mu(\{f \ge N\}) = 0$.

Note. If $\mu(X) < \infty$ the proof below is also correct.

Proof. (1) Suppose $f \in L^1(\mu)$. Let $E_0 = \{f = 0\}$ and $E_n = \{n - 1 < f \le n\}$ $(n \in \mathbb{N})$. Then X is the disjoint union of E_0, E_1, \ldots and moreover $1 = \chi_X = \chi_{\bigcup_{n=0}^{\infty} E_n} = \sum_{n=0}^{\infty} \chi_{E_n}$ on X. Consequently, since f = 0 on E_0 and f > n - 1 on E_n , we have

$$\infty > \int_{X} f \, d\mu = \int_{X} \left(\sum_{n=0}^{\infty} \chi_{E_{n}} \right) f \, d\mu = \sum_{n=0}^{\infty} \int_{X} \chi_{E_{n}} f \, d\mu$$
$$= \sum_{n=1}^{\infty} \int_{E_{n}} f \, d\mu \ge \sum_{n=1}^{\infty} \int_{E_{n}} (n-1) \, d\mu = \sum_{n=1}^{\infty} (n-1)\mu(E_{n}).$$

But $(n-1)/n \to 1$ as $n \to \infty$. Thus the convergence of $\sum_{n=1}^{\infty} (n-1)\mu(E_n)$ is equivalent to the convergence of $\sum_{n=1}^{\infty} n\mu(E_n)$. Hence, $\sum_{n=1}^{\infty} n\,\mu(\{n-1 < f \le n\}) < \infty$. Conversely, assume $\sum_{n=1}^{\infty} n\,\mu(\{n-1 < f \le n\}) < \infty$. Then, as before, and by the fact that $f \le n$

on E_n for each $n \geq 1$, we have

$$\int_{X} f \, d\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f \, d\mu \le \sum_{n=1}^{\infty} \int_{E_{n}} n \, d\mu = \sum_{n=1}^{\infty} n\mu(E_{n}) < \infty.$$

Hence $f \in L^1(\mu)$.

(2) By Part (1), $\sum_{n=1}^{\infty} n \mu(\{n-1 < f \le n\}) < \infty$. Hence, $\sum_{n=N+1}^{\infty} n \mu(\{n-1 < f \le n\}) \to 0$ as $N \to \infty$. But

$$\sum_{n=N+1}^{\infty} n \, \mu(\{n-1 < f \le n\}) \ge \sum_{n=N+1}^{\infty} N \, \mu(\{n-1 < f \le n\})$$

$$= N \mu \left(\bigcup_{n=N+1}^{\infty} \{n-1 < f \le n\} \right) = N \mu(\{f \ge N\}).$$

Hence $\lim_{N\to\infty} N\mu(\{f\geq N\})=0$. Q.E.D.