Model Question Paper –I with effect from 2022

USN

First Semester B. E Degree examination Mathematics-I for Computer Science Stream (2MATS11) Time: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

		Module-1	Marks
Q. 01	a	With usual notation prove that $tan\phi = r\frac{d\theta}{dr}$	6
	b	Find the angle between the curves $r = alog\theta$ and $r = \frac{a}{log\theta}$	7
	c Show that the radius of curvature at any point θ on the cycloid		
		$x = a(\theta + \sin\theta), y = a(1 - \cos\theta)$ is $4 a\cos\left(\frac{\theta}{2}\right)$	7
		OR	
Q. 02	a	Show that the curves $r = a(1 + sin\theta)$ and $r = a(1 - sin\theta)$ cuts each other orthogonally	6
	b	Find the pedal equation of the curve $\frac{2a}{r} = (1 + \cos\theta)$	7
	c	Find the radius of curvature for the curve $y^2 = \frac{4a^2(2a-x)}{x}$, where the curve meets the x-axis	7
		Module-2	
Q. 03	a	Expand $log(secx)$ up to the term containing x^4 using Maclaurin's series	6
	b	If $u = e^{ax+by}f(ax-by)$ prove that $b\frac{\partial u}{\partial x} + a\frac{\partial u}{\partial y} = 2abu$ by using the	7
		concept of composite functions.	
	С	Find the extreme values of the function $f(x,y) = x^3 + 3xy^2 - 3y^2 - 3x^2 + 4$	7
		OR	
Q. 04	a	Evaluate i) $\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{1/x}$ ii) $\lim_{x \to 0} \left(\frac{tanx}{x} \right)^{1/x}$	6
	b	If $u = f(x - y, y - z, z - x)$ show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	7
	c	If $x + y + z = u$, $y + z = v$ and $z = uvw$,	_
		find the values of $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	7
		Module-3	
Q. 05	a	Solve $\frac{dy}{dx} + \frac{y}{x} = x^2 y^6$	6
	b	Find the orthogonal trajectories of $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is a	7
		parameter.	,

	c	Solve $xyp^2 - (x^2 + y^2)p + xy = 0$	7		
		OR			
Q. 06	a	Solve $(x^2 + y^2 + x)dx + xydy = 0$	6		
	b	and an inductance L, the current i build up at a rate given by $L\frac{di}{dt} + Ri = E$. Find i as a function of t . How long will it be, before the current has reached one-half its final value, if $E = 6$ volts, $R = 100$ ohms and $L = 0.1$ henry?			
	c	Find the general solution of the equation $(px - y)(py + x) = a^2p$ by reducing into Clairaut's form by taking the substitution $X = x^2$, $Y = y^2$			
		Module-4			
Q. 07	a	Find the least positive values of x such that i) $71 \equiv x (mod 8)$ ii) $78 + x \equiv 3 (mod 5)$ iii) $89 \equiv (x + 3) (mod 4)$	6		
	b	Find the remainder when $(349 \times 74 \times 36)$ is divided by 3	7		
	c	Solve $2x + 6y \equiv 1 \pmod{7}$ $4x + 3y \equiv 2 \pmod{7}$	7		
		OR			
Q. 08	a	 i) Find the last digit of 7²⁰¹³ ii) Find the last digit of 13³⁷ 	6		
	b	Find the remainder when the number 2 ¹⁰⁰⁰ is divided by 13	7		
	c	Find the remainder when 14! is divided by 17	7		
		Module-5			
Q. 09	a	Find the rank of the matrix $\begin{bmatrix} 2 - 1 - 3 - 1 \\ 1 & 2 & 3 - 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 - 1 \end{bmatrix}$	6		
	b	Solve the system of equations by using the Gauss-Jordan method $x + y + z = 10$, $2x - y + 3z = 19$, $x + 2y + 3z = 22$	7		
	c	Using power method find the largest eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$	7		
		OR			
Q. 10	a	Solve the following system of equations by Gauss-Seidel method $10x + y + z = 12$, $x + 10y + z = 12$, $x + y + 10z = 12$	6		
	b	For what values of a and b the system of equation $x + y + z = 6$: $x + 2y + 3z = 10$: $x + 2y + az = b$ has i) no solution ii) a unique solution and iii) infinite number of solution	7		

Table s	howing	the Blooms Taxonomy Level, Cou	rse outcome and	Program outcome
Questic	on	Blooms taxonomy level attached	Course	Program
			outcome	outcome
Q.1	a)	L1	CO 01	PO 01
	b)	L2	CO 01	PO 01
	c)	L3	CO 01	PO 02
Q. 2	a)	L1	CO 01	PO 01
	b)	L2	CO 01	PO 01
İ	c)	L3	CO 01	PO 02
Q. 3	a)	L2	CO 02	PO 01
	b)	L2	CO 02	PO 01
	c)	L3	CO 02	PO 03
Q. 4	a)	L2	CO 02	PO 01
	b)	L2	CO 02	PO 01
	c)	L3	CO 02	PO 02
Q. 5	a)	L2	CO 03	PO 02
	b)	L3	CO 03	PO 03
	c)	L2	CO 03	PO 01
Q. 6	a)	L2	CO 03	PO 02
	b)	L3	CO 03	PO 03
	c)	L2	CO 03	PO 01
Q. 7	a)	L2	CO 04	PO 01
	b)	L2	CO 04	PO 01
	c)	L2	CO 04	PO 02
Q. 8	a)	L2	CO 04	PO 01
	b)	L2	CO 04	PO 01
	c)	L2	CO 04	PO 02
Q. 9	a)	L2	CO 05	PO 01
	b)	L3	CO 05	PO 01
	c)	L3	CO 05	PO 02
Q. 10	a)	L2	CO 05	PO 01
	b)	L3	CO 05	PO 02
	c)	L3	CO 05	PO 01

		Lower-order thinking skills	
Bloom's Taxonomy Levels	Remembering (Knowledge): L ₁	Understanding (Comprehension): L ₂	Applying (Application): L ₃
Levels	Higher-order thinking skills		
	Analyzing (Analysis): L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆