appendix

C

Decay Characteristics of Some Medically Important Radionuclides

The figures show nuclear decay scheme diagrams using the conventions described in Chapter 3. In the tables accompanying the decay diagrams, the first column is the type of radiation emitted, y(i) is the frequency of the ith emission per nuclear decay in $(\mathrm{Bq} \bullet \mathrm{sec})^{-1}$, E(i) is the corresponding transition energy for the emission in MeV (given as the average energy for beta decay), and $y(i) \times E(i)$ is the average energy emitted per decay. [Figures from ICRP Publication No. 38, Radionuclide Transformations: Energy and Intensity of Emissions. In Annals of the ICRP (International Commission on Radiological Protection). Oxford, Pergamon Press, 1983.1

Legend for radiation listed in decay tables:

γ gamma ray

β beta-minus particle

 β^+ beta-plus particle

γ± annihilation photons

ce-K, ce-L, etc.... internal conversion electrons

ejected from the K, L, etc.... shell (Chapter 3, Section E)

Auger-XXX Auger electrons (see

Chapter 2, Section C.3 for explanation of notation)

 K_{α} , K_{β} etc, ... X ray characteristic x rays (see

Chapter 2, Table 2-1 for

notation)

 ΔE residual low-energy radiation

(mainly Auger processes) not easily described by individual

discrete transitions

HYDROGEN-3

	Half Life = 12.35 Years				
Decay Mode(s): β ⁻					
Radiation	$y(i) (Bq \bullet s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
β- 1	1.00E 00	5.683E-03*	5.68E-03		
LISTED β,	5.68E-03				
LISTED RADIATIONS			5.68E-03		

*AVERAGE ENERGY (MeV)

HELIUM-3 DAUGHTER IS STABLE.

CARBON-11

Half Life = 20.38 Minutes						
	Decay Mo	de(s): EC, β ⁺				
Radiation $y(i) (Bq \cdot s)^{-1} E(i) (MeV) y(i) \times E(i)$						
β+ 1	9.98E-01	3.855E-01*	3.85E-01			
γ±	2.00E 00	5.110E-01	1.02E 00			
$K\alpha_1 X ray$	1.62E-06	1.833E-04	2.97E-10			
$K\alpha_2 X$ ray	8.10E-07	1.833E-04	1.48E-10			
LISTED X,	1.02E 00					
LISTED β , ce AND Auger RADIATIONS 3.85E-01						
LISTED RA	LISTED RADIATIONS 1.40E 00					

^{*}AVERAGE ENERGY (MeV) BORON-11 DAUGHTER IS STABLE.

CARBON-14

Half Life = 5730 Years				
Decay Mode(s): β ⁻				
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	
β 1	1.00E 00	4.945E-02*	4.95E-02	
LISTED β , ce AND Auger RADIATIONS 4.95E-02				
LISTED RADIATIONS 4.95E-02				

^{*}AVERAGE ENERGY (MeV) NITROGEN-14 DAUGHTER IS STABLE.

NITROGEN-13

Half Life = 9.965 Minutes					
	Decay Mo	de(s): EC, β ⁺			
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
β+ 1	9.98E-01	4.918E-01*	4.91E-01		
γ±	2.00E 00	5.110E-01	1.02E 00		
$K\alpha_1 X ray$	2.38E-06	2.774E-04	6.59E-10		
$K\alpha_2 X ray$	1.19E-06	2.774E-04	3.30E-10		
Auger-KLL	1.80E-03	2.564E-04*	4.61E-07		
LISTED X,	1.02E 00				
LISTED β , ce AND Auger RADIATIONS 4.91E					
LISTED RA	LISTED RADIATIONS 1.51E 00				

^{*}AVERAGE ENERGY (MeV) CARBON-13 DAUGHTER IS STABLE.

OXYGEN-15

Half Life = 122.24 Seconds				
	Decay Mo	de(s): EC, β ⁺		
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	
β+ 1	9.99E-01	7.353E-01*	7.34E-01	
γ±	2.00E 00	5.110E-01	1.02E 00	
$K\alpha_1 X$ ray	2.65E-06	3.924E-04	1.04E-09	
$K\alpha_2 X$ ray	1.32E-06	3.924E-04	5.19E-10	
Auger-KLL	1.13E-03	3.684E-04*	4.15E-07	
LISTED X,	1.02E 00			
LISTED β , ce AND Auger RADIATIONS 7.34E-01				
LISTED RA	1.76E 00			

^{*}AVERAGE ENERGY (MeV) NITROGEN-15 DAUGHTER IS STABLE.

FLUORINE-18

Half Life = 109.77 Minutes					
	Decay Mode(s): EC, β ⁺				
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
β+ 1	9.67E-01	2.498E-01*	2.42E-01		
γ±	1.93E 00	5.110E-01	9.86E-01		
LISTED X, γ AND γ	± RADIATIONS		1.02E 00		
LISTED β , ce AND Auger RADIATIONS 2.50E-01					
LISTED RADIATION	LISTED RADIATIONS 1.27E 00				

^{*}AVERAGE ENERGY (MeV)

OXYGEN-18 DAUGHTER IS STABLE.

SODIUM-22

Half Life = 2.602 Years					
	Deca	ay Mode(s): EC, β ⁺			
Radiation	$y(i) (Bq \bullet s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
β ⁺ 1	8.98E-01	2.154E-01*	1.94E-01		
β ⁺ 2	6.00E-04	8.350E-01*	5.01E-04		
γ±	1.80E 00	5.110E-01	9.19E-01		
γ 1	9.99E-01	1.275E 00	1.27E 00		
ce-K, γ 1	6.43E-06	1.274E 00	8.19E-06		
ce-L ₁ , γ 1	3.77E-07	1.274E 00	4.81E-07		
ce- L_2 , γ 1	2.07E-10	1.275E 00	2.64E-10		
ce-L ₃ , γ 1	3.40E-10	1.275E 00	4.33E-10		
$K\alpha_1 X ray$	9.42E-04	8.486E-04	7.99E-07		
$K\alpha_2 X$ ray	4.72E-04	8.486E-04	4.01E-07		
$K\alpha_3 X ray$	1.19E-12	8.219E-04	9.76E-16		
Auger-KLL	9.96E-02	8.006E-04*	7.97E-05		
LISTED X, γ AND γ ± RADIATIONS 2.19E 00					
LISTED β , ce AND Auger RADIATIONS 1.94E-01					
LISTED RADIATIONS	LISTED RADIATIONS 2.39E 00				

^{*}AVERAGE ENERGY (MeV)

NEON-22 DAUGHTER IS STABLE.

PHOSPHORUS-32

Half Life = 14.29 Days				
Decay Mode(s): β ⁻				
Radiation $y(i)$ (Bq•s) ⁻¹ $E(i)$ (MeV) $y(i) \times E(i)$				
β 1	1.00E 00	6.947E-01*	6.95E-01	
LISTED β , ce AND Auger RADIATIONS 6.95E-01				
LISTED RA	LISTED RADIATIONS 6.95E-01			

*AVERAGE ENERGY (MeV) SULFUR-32 DAUGHTER IS STABLE.

SULFUR-35

Half Life = 87.44 Days				
Decay Mode(s): β-				
Radiation	$y(i) (Bq \bullet s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	
β- 1	1.00E 00	4.883E-02*	4.88E-02	
LISTED β,	4.88E-02			
LISTED RA	DIATIONS		4.88E-02	

*AVERAGE ENERGY (MeV) CHLORINE-35 DAUGHTER IS STABLE.

CHROMIUM-51

Half Life = 27.704 Days						
	Decay Mod	de(s): EC				
Radiation	Radiation $y(i) (Bq \cdot s)^{-1} E(i) (MeV)$					
γ1	9.83E-02	3.201E-01	3.15E-02			
ce-K, γ 1	1.52E-04	3.146E-01	4.78E-05			
ce-L ₁ , γ 1	1.38E-05	3.194E-01	4.41E-06			
$K\alpha_1$ X-ray	1.33E-01	4.952E-03	6.59E-04			
$K\alpha_2$ X-ray	6.70E-02	4.945E-03	3.31E-04			
Kβ ₁ X-ray	1.76E-02	5.427E-03	9.53E-05			
Kβ ₃ X-ray	8.88E-03	5.427E-03	4.82E-05			
Auger-KLL	5.58E-01	4.339E-03*	2.42E-03			
Auger-KLX	1.13E-01	4.876E-03*	5.49E-04			
Auger-KXY	8.59E-03	5.386E-03*	4.63E-05			
Auger-LMM	1.51E 00	4.859E-04*	7.34E-04			
Auger-LMX	1.05E-02	5.183E-04*	5.45E-06			
Auger-MXY	3.19E 00	1.603E-05*	5.12E-05			
LISTED X 7	AND γ± RADIA	ATIONS	3.26E-02			
OMITTED X	γ AND γ± RAI	DIATIONS**	5.89E-07			
LISTED β, ce	3.86E-03					
OMITTED β , ce AND Auger 8.33E-08 RADIATIONS**						
LISTED RAI	LISTED RADIATIONS 3.65E-02					
OMITTED RADIATIONS** 6.72E-07						

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY. VANADIUM-51 DAUGHTER IS STABLE.

COBALT-57

Half Life = 270.9 Days					
Decay Mode(s): EC					
Radiation	$y(i) (\mathrm{Bq} \bullet \mathrm{s})^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
γ 1	9.19E-02	1.441E-02	1.32E-03		
ce-K, γ 1	7.13E-01	7.301E-03	5.20E-03		
ce-L ₁ , γ 1	6.80E-02	1.357E-02	9.22E-04		
ce- L_2 , γ 1	4.20E-03	1.369E-02	5.75E-05		
ce-L ₃ , γ 1	1.69E-03	1.370E-02	2.31E-05		
γ 2	8.56E-01	1.221E-01	1.04E-01		
ce-K, γ 2	1.84E-02	1.150E-01	2.12E-03		
ce- L_1 , γ 2	1.73E-03	1.212E-01	2.10E-04		
γ3	1.06E-01	1.365E-01	1.45E-02		
ce-K, γ 3	1.43E-02	1.294E-01	1.84E-03		
ce-L ₁ , γ 3	1.27E-03	1.356E-01	1.73E-04		
γ9	1.60E-03	6.920E-01	1.11E-03		
$K\alpha_1 X ray$	3.34E-01	6.404E-03	2.14E-03		
$K\alpha_2 X$ ray	1.69E-01	6.391E-03	1.08E-03		
$K\beta_1 X$ ray	4.51E-02	7.058E-03	3.19E-04		
$K\beta_3 X$ ray	2.29E-02	7.058E-03	1.61E-04		
Auger-KLL	8.54E-01	5.574E-03*	4.76E-03		
Auger-KLX	2.04E-01	6.302E-03*	1.29E-03		
Auger-KXY	1.79E-02	7.000E-03*	1.25E-04		
Auger-LMM	2.43E 00	6.703E-04*	1.63E-03		
Auger-LMX	1.54E-01	7.067E-04*	1.09E-04		
Auger-MXY	5.33E 00	2.232E-05*	1.19E-04		
LISTED X, γ AND γ±	1.25E-01				
OMITTED X, γ AND γ ± RADIATIONS**			1.57E-04		
LISTED β , ce AND A	auger RADIATIONS		1.86E-02		
OMITTED β , ce AND	Auger RADIATIONS**		4.08E-05		
LISTED RADIATIONS			1.44E-01		
OMITTED RADIATI	ONS**		1.98E-04		

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY. IRON-57 DAUGHTER IS STABLE.

COBALT-60

Half Life = 5.271 Years				
	Decay Mo	ode(s): β ⁻		
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	
β- 1	9.99E-01	9.577E-02*	9.57E-02	
β-3	8.00E-04	6.258E-01*	5.01E-04	
γ3	9.99E-01	1.173E 00	1.17E 00	
ce-K, γ 3	1.50E-04	1.165E 00	1.75E-04	
γ 4	1.00E 00	1.332E 00	1.33E 00	
ce-K, γ 4	1.14E-04	1.324E 00	1.50E-04	
LISTED X,	2.50E 00			
OMITTED 2	1.14E-04			
LISTED β,	ce AND Auger I	RADIATIONS	9.65E-02	
OMITTED RADIATION	4.73E-05			
LISTED RA	2.60E 00			
OMITTED	1.61E-04			

^{*}AVERAGE ENERGY (MeV)

COPPER-62

Half Life = 9.74 Minutes						
Decay Mode(s): EC, β ⁺						
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$			
β^+ 4	9.76E-01	1.315E 00*	1.28E 00			
γ±	1.96E 00	5.110E-01	1.00E 00			
γ 3	1.47E-03	8.757E-01	1.29E-03			
γ 6	3.35E-03	$1.173 \to 00$	3.93E-03			
LISTED X,	γ AND γ± RADI	IATIONS	1.00E 00			
OMITTED 2	X, γ AND γ± RA	DIATIONS**	1.92E-03			
LISTED β, α	ce AND Auger I	RADIATIONS	1.28E 00			
OMITTED (RADIATION	1.48E-03					
LISTED RADIATIONS 2.29E 00						
OMITTED I	RADIATIONS**	:	3.40E-03			

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY. NICKEL-60 DAUGHTER IS STABLE.

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY. NICKEL-62 DAUGHTER IS STABLE.

COPPER-64

Half Life = 12.701 Hours				
Decay Mode(s): β ⁻ , EC, β ⁺				
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	
β- 1	3.72E-01	1.902E-01*	7.08E-02	
β+ 1	1.79E-01	2.781E-01*	4.97E-02	
$\gamma\pm$	3.58E-01	5.110E-01	1.83E-01	
γ 1	4.90E-03	1.346E 00	6.59E-03	
$K\alpha_1 X$ ray	9.78E-02	7.478E-03	7.31E-04	
$K\alpha_2 X$ ray	4.97E-02	7.461E-03	3.71E-04	
Auger-KLL	1.84E-01	6.489E-03*	1.20E-03	
Auger-KLX	4.83E-02	7.356E-03*	3.55E-04	
Auger-LMM	5.66E-01	8.103E-04*	4.59E-04	
LISTED X, γ AND $\gamma \pm$ R.	ADIATIONS		1.90E-01	
OMITTED X, γ AND $\gamma \pm$	RADIATIONS**		1.68E-04	
LISTED β, ce AND Aug	1.23E-01			
OMITTED β, ce AND A	1.06E-04			
LISTED RADIATIONS			3.13E-01	
OMITTED RADIATION	S**		2.74E-04	

^{*}AVERAGE ENERGY (MeV)

NICKEL-64 DAUGHTER, YIELD 6.28E-01, IS STABLE.

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY. ZINC-64 DAUGHTER, YIELD 3.72E-01, IS STABLE.

GALLIUM-67

Half Life = 78.26 Hours							
			Decay M	ode(s): EC			
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	Radiation	$y(i) (Bq \bullet s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$
γ1	3.07E-02	9.127E-02	2.80E-03	γ 10	1.45E-03	8.877E-01	1.29E-03
ce-K, γ 1	2.23E-03	8.161E-02	1.82E-04	$K\alpha_1 X ray$	3.28E-01	8.639E-03	2.83E-03
γ 2	3.83E-01	9.331E-02	3.57E-02	$K\alpha_2 X ray$	1.67E-01	8.616E-03	1.44E-03
ce-K, γ 2	2.87E-01	8.365E-02	2.40E-02	$K\beta_1 X ray$	4.49E-02	9.572E-03	4.30E-04
ce- L_1 , γ 2	2.54E-02	9.212E-02	2.34E-03	$K\beta_3 X ray$	2.30E-02	9.572E-03	2.20E-04
ce-L ₂ , γ 2	3.98E-03	9.227E-02	3.67E-04	Auger-KLL	4.67E-01	7.466E-03*	3.49E-03
ce- L_3 , γ 2	5.81E-03	9.229E-02	5.36E-04	Auger-KLX	1.33E-01	8.482E-03*	1.12E-03
ce-M, γ 2	5.17E-03	9.322E-02*	4.82E-04	Auger-KXY	1.31E-02	9.473E-03*	1.24E-04
γ 3	2.09E-01	1.846E-01	3.87E-02	Auger-LMM	1.55E 00	9.444E-04*	1.46E-03
ce-K, γ 3	4.07E-03	1.749E-01	7.11E-04	Auger-LMX	1.43E-01	1.020E-03*	1.46E-04
ce- L_1 , γ 3	3.87E-04	1.834E-01	7.11E-05	Auger-MXY	3.49E 00	4.566E-05*	1.60E-04
γ 4	2.37E-02	2.090E-01	4.94E-03	LISTED X, γ	AND γ± RADI	ATIONS	1.58E-01
ce-K, γ 4	1.90E-04	1.993E-01	3.79E-05	OMITTED X,	γ AND γ ± RA	DIATIONS**	8.52E-05
γ 5	1.68E-01	3.002E-01	5.04E-02	LISTED β , ce	AND Auger R	ADIATIONS	3.54E-02
ce-K, γ 5	5.83E-04	2.906E-01	1.69E-04	1 /	ce AND Auger	•	1.04E-04
γ 6	4.70E-02	3.935E-01	1.85E-02	RADIATIONS			4.000
γ 7	6.86E-04	4.942E-01	3.39E-04	LISTED RAD			1.93E-01
γ9	5.13E-04	7.944E-01	4.08E-04	OMITTED RA	ADIATIONS**		1.89E-04

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY. ZINC-67 DAUGHTER IS STABLE.

GALLIUM-68

Half Life = 68 Minutes						
Decay Mode(s): EC, β ⁺						
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$			
β+ 1	1.08E-02	3.526E-01*	3.80E-03			
β^+ 2	8.79E-01	8.358E-01*	7.35E-01			
γ±	$1.78E\ 00$	5.110E-01	9.10E-01			
γ3	3.30E-02	$1.077 \to 00$	3.56E-02			
γ 4	9.90E-04	1.261E 00	1.25E-03			
γ 6	1.43E-03	1.883E 00	2.69E-03			
LISTED X,	9.49E-01					
OMITTED	1.61E-03					
LISTED β ,	7.39E-01					
OMITTED RADIATIO	5.45E-04					
LISTED RA	ADIATIONS		1.69E 00			
OMITTED	2.15E-03					

^{*}AVERAGE ENERGY (MeV)

ZINC-68 DAUGHTER IS STABLE.

GERMANIUM-68

Half Life = 271 Days					
Decay Mode(s): EC					
Radiation	$y(i) (Bq \bullet s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
$K\alpha_1 X ray$	2.55E-01	9.252E-03	2.36E-03		
$K\alpha_2 X$ ray	1.31E-01	9.225E-03	1.20E-03		
$K\alpha_3 X ray$	3.93E-07	9.069E-03	3.56E-09		
$K\beta_1 \ X \ ray$	3.59E-02	1.026E-02	3.68E-04		
$K\beta_3 X ray$	1.83E-02	1.026E-02	1.88E-04		
$K\beta_5 X ray$	6.43E-05	1.035E-02	6.66E-07		
$L\alpha X ray$	4.55E-03	1.098E-03*	5.00E-06		
$L\beta$ X ray	1.91E-03	1.131E-03*	2.16E-06		
Lη X ray	1.13E-04	9.842E-04	1.11E-07		
$\mathbf{L}l$ X ray	2.29E-04	9.573E-04	2.20E-07		
Auger-KLL	3.19E-01	7.976E-03*	2.55E-03		
Auger-KLX	9.39E-02	9.074E-03*	8.52E-04		
Auger-KXY	9.49E-03	1.015E-02*	9.63E-05		
Auger-LMM	1.11E 00	1.017E-03*	1.13E-03		
Auger-LMX	1.18E-01	1.108E-03*	1.31E-04		
Auger-MXY	2.53E 00	5.928E-05*	1.50E-04		
LISTED X, γ	4.13E-03				
LISTED β, c	e AND Auger F	RADIATIONS	4.90E-03		
LISTED RA	9.03E-03				

^{*}AVERAGE ENERGY (MeV)
GALLIUM-68 DAUGHTER IS RADIOACTIVE.

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY.

RUBIDIUM-82

	Half Life = 1.3 Minutes					
Decay Mode(s): EC, β ⁺						
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$			
β+ 4	2.76E-03	5.174E-01*	1.43E-03			
β+ 6	1.72E-03	8.325E-01*	1.44E-03			
β+ 7	1.16E-01	1.157E 00*	1.34E-01			
β+ 8	8.33E-01	1.523E 00*	1.27E 00			
γ±	1.91E 00	5.110E-01	9.75E-01			
γ 4	1.34E-01	7.765E-01	1.04E-01			
γ 5	5.05E-03	1.395E 00	7.05E-03			
γ6	9.38E-04	1.475E 00	1.38E-03			
LISTED X,	γ AND γ± RAD	IATIONS	1.09E 00			
OMITTED 2	X, γ AND γ± RA	DIATIONS**	5.36E-03			
LISTED β,	1.41E 00					
OMITTED RADIATION	7.03E-04					
LISTED RA	DIATIONS		2.49E 00			
OMITTED	RADIATIONS**	*	6.06E-03			

^{*}AVERAGE ENERGY (MeV)

YTTRIUM-90

Half Life = 64 Hours						
Decay Mode(s): β ⁻						
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$			
β- 2	1.00E 00	9.348E-01*	9.35E-01			
$K\alpha_1 X ray$	5.79E-05	1.578E-02	9.13E-07			
$K\alpha_2 X ray$	3.03E-05	1.569E-02	4.75E-07			
$K\beta_1 X ray$	9.55E-06	1.767E-02	1.69E-07			
$K\beta_2 X ray$	2.14E-06	1.797E-02	3.85E-08			
$K\beta_3 X ray$	4.89E-06	1.765E-02	8.63E-08			
Lα X ray	2.29E-06	2.042E-03*	4.67E-09			
$L\beta$ X ray	1.61E-06	2.130E-03*	3.43E-09			
LISTED X,	γ AND γ± RAD	IATIONS	1.69E-06			
OMITTED	X, γ AND γ± RA	DIATIONS**	1.25E-09			
LISTED β, α	9.35E-01					
OMITTED RADIATION	3.10E-04					
LISTED RA	DIATIONS		9.35E-01			
OMITTED	3.10E-04					

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY. KRYPTON-82 DAUGHTER IS STABLE.

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY. ZIRCONIUM-90 DAUGHTER IS STABLE.

ZIRCONIUM-89

Half Life = 78.43 Hours				
Decay Mode(s): EC, β^+				
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	
β+ 1	2.26E-01	3.949E-01*	8.94E-02	
γ±	4.53E-01	5.110E-01	2.31E-01	
γ 1	9.99E-01	9.092E-01	9.08E-01	
ce-K ₂ , γ 1	7.44E-03	8.922E-01	6.63E-03	
ce-L ₁ , γ 1	8.26E-04	9.068E-01	7.49E-04	
γ 3	9.99E-04	1.657E 00	1.66E-03	
γ 4	7.69E-03	1.713E 00	1.32E-02	
γ 5	1.30E-03	1.744E 00	2.26E-03	
$K\alpha_1 X$ ray	2.69E-01	1.496E-02	4.03E-03	
$K\alpha_2 X$ ray	1.40E-01	1.488E-02	2.09E-03	
Auger-KLL	1.40E-01	1.262E-02*	1.76E-03	
Auger-KLX	5.14E-02	1.453E-02*	7.47E-04	
Auger-LMM	5.58E-01	1.664E-03*	9.28E-04	
Auger-LMX	2.21E-01	1.960E-03*	4.34E-04	
Auger-MXY	1.50E 00	$2.250 \to 04$	3.38E-04	
LISTED X, γ AND $\gamma \pm$ R	ADIATIONS		1.16E 00	
OMITTED X, γ AND γ±	2.45E-03			
LISTED β, ce AND Auger RADIATIONS 1.01E-01				
OMITTED β , ce AND Auger RADIATIONS** 3.45E-04				
LISTED RADIATIONS			1.26E 00	
OMITTED RADIATION	VS**		2.79E-03	

Yttrium-89 DAUGHTER IS STABLE.

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY.

MOLYBDENUM-99

Half Life = 66 Hours					
	Decay Mode(s): β-				
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
β 5	1.66E-01	1.330E-01*	2.20E-02		
β- 6	1.17E-02	2.895E-01*	3.39E-03		
β- 7	8.20E-01	4.426E-01*	3.63E-01		
γ 2	1.16E-02	4.059E-02	4.69E-04		
ce-K, γ 2	3.77E-02	1.954E-02	7.38E-04		
γ 4	4.95E-02	1.405E-01	6.95E-03		
ce-K, γ 4	4.89E-03	1.194E-01	5.84E-04		
γ8	6.06E-02	1.811E-01	1.10E-02		
ce-K, γ 8	7.62E-03	1.600E-01	1.22E-03		
γ 11	1.19E-02	3.664E-01	4.37E-03		
γ 19	5.45E-04	5.288E-01	2.88E-04		
γ 24	2.60E-04	6.218E-01	1.61E-04		
γ 25	1.22E-01	7.395E-01	9.02E-02		
γ 27	4.32E-02	7.779E-01	3.36E-02		
γ 28	1.33E-03	8.230E-01	1.09E-03		
γ 29	9.76E-04	9.608E-01	9.37E-04		
$K\alpha_1 X ray$	2.15E-02	1.837E-02	3.95E-04		
$K\alpha_2 X$ ray	1.13E-02	1.825E-02	2.06E-04		
LISTED X, γ AND γ	1.50E-01				
OMITTED X, γ AND γ ± RADIATIONS**			4.87E-04		
LISTED β , ce AND Auger RADIATIONS			3.91E-01		
OMITTED β , ce AND Auger RADIATIONS**			1.33E-03		
LISTED RADIATIO	NS		5.41E-01		
OMITTED RADIAT	IONS**		1.82E-03		

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY. TECHNETIUM-99M DAUGHTER, YIELD 8.76E-01, IS RADIOACTIVE. TECHNETIUM-99 DAUGHTER, YIELD 1.24E-01, IS RADIOACTIVE.

TECHNETIUM-99M

	Half Life = 6.02 Hours					
	De	cay Mode(s): IT				
Radiation	<i>y(i)</i> (Bq•s) ⁻¹	E(i) (MeV)	$y(i) \times E(i)$			
ce-M, γ 1	9.14E-01	1.749E-03*	1.60E-03			
ce-N ⁺ , γ 1	7.57E-02	2.174E-03*	1.65E-04			
γ 2	8.89E-01	1.405E-01	1.25E-01			
ce-K, γ 2	8.79E-02	1.194E-01	1.05E-02			
ce- L_1 , γ 2	9.67E-03	1.374E-01	1.33E-03			
ce- L_2 , γ 2	6.10E-04	1.377E-01	8.40E-05			
ce- L_3 , γ 2	3.01E-04	1.378E-01	4.15E-05			
ce-M, γ 2	1.92E-03	1.400E-01*	2.70E-04			
ce-N $^+$, γ 2	3.71E-04	1.405E-01*	5.21E-05			
ce-K, γ 3	6.91E-03	1.216E-01	8.41E-04			
ce- L_1 , γ 3	1.17E-03	1.396E-01	1.63E-04			
ce- L_2 , γ 3	2.43E-04	1.399E-01	3.39E-05			
ce- L_3 , γ 3	7.40E-04	1.400E-01	1.04E-04			
ce-M, γ 3	4.19E-04	1.422E-01*	5.97E-05			
$K\alpha_1 X ray$	4.03E-02	1.837E-02	7.39E-04			
$K\alpha_2 X ray$	2.12E-02	1.825E-02	3.86E-04			
$K\beta_1 X ray$	6.88E-03	2.062E-02	1.42E-04			
Auger-KLL	1.45E-02	1.535E-02*	2.23E-04			
Auger-KLX	5.76E-03	1.777E-02*	1.02E-04			
Auger-LMM	7.10E-02	2.053E-03*	1.46E-04			
Auger-LMX	3.05E-02	2.468E-03*	7.53E-05			
Auger-MXY	1.11E 00	4.090E-04*	4.54E-04			
LISTED X, γ AND $\gamma \pm 1$	LISTED X, γ AND γ ± RADIATIONS					
OMITTED X, y AND y	OMITTED X, γ AND γ ± RADIATIONS**					
LISTED β , ce AND Au	LISTED β , ce AND Auger RADIATIONS					
OMITTED β , ce AND β	Auger RADIATIONS	**	3.88E-05			
LISTED RADIATIONS	}		1.42E-01			
OMITTED RADIATIO	NS**		1.96E-04			

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY. TECHNETIUM-99 DAUGHTER IS RADIOACTIVE.

INDIUM-111

Half Life = 2.83 Days							
			Decay M	ode(s): EC			
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$
γ 1	9.05E-01	1.713E-01	1.55E-01	Kβ ₂ X ray	2.35E-02	2.664E-02	6.26E-04
ce-K, γ 1	8.27E-02	1.446E-01	1.19E-02	Kβ ₃ X ray	4.14E-02	2.606E-02	1.08E-03
ce- L_1 , γ 1	9.51E-03	1.673E-01	1.59E-03	Auger-KLL	1.06E-01	1.917E-02*	2.03E-03
ce- L_2 , γ 1	5.32E-04	1.676E-01	8.91E-05	Auger-KLX	4.55E-02	2.232E-02*	1.02E-03
ce-M, γ 1	1.95E-03	1.707E-01*	3.33E-04	Auger-KXY	5.85E-03	2.544E-02*	1.49E-04
ce-N ⁺ , γ 1	4.08E-04	1.713E-01*	6.99E-05	Auger-LMM	6.73E-01	2.590E-03*	1.74E-03
γ 2	9.40E-01	2.454E-01	2.31E-01	Auger-LMX	3.06E-01	3.187E-03*	9.75E-04
ce-K, γ 2	5.03E-02	2.187E-01	1.10E-02	Auger-LXY	3.86E-02	3.583E-03*	1.38E-04
ce- L_1 , γ 2	5.15E-03	2.414E-01	1.24E-03	Auger-MXY	1.91E 00	5.104E-04*	9.75E-04
ce- L_2 , γ 2	1.38E-03	2.417E-01	3.32E-04	LISTED X, γ	AND γ± RADIA	ATIONS	4.05E-01
ce-L ₃ , γ 2	1.32E-03	2.419E-01	3.19E-04	OMITTED X	, γ AND γ± RAI	DIATIONS**	2.00E-04
ce-M, γ 2	1.52E-03	2.448E-01*	3.71E-04	LISTED β, co	e AND Auger R	ADIATIONS	3.44E-02
ce-N ⁺ , γ 2	3.01E-04	2.454E-01*	7.39E-05		, ce AND Auger		3.14E-05
$K\alpha_1 X ray$	4.43E-01	2.317E-02	1.03E-02	RADIATION			
$K\alpha_2 X ray$	2.36E-01	2.298E-02	5.42E-03	LISTED RAI			4.40E-01
$K\beta_1 X ray$	8.07E-02	2.609E-02	2.10E-03	OMITTED R	ADIATIONS**		2.31E-04

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY. CADMIUM-111 DAUGHTER IS STABLE.

IODINE-123

	Half Life = 13.2 Hours					
	Decay Mode(s): EC					
Radiation	$y(i) (\mathrm{Bq} \bullet \mathrm{s})^{-1}$	E(i) (MeV)	$y(i) \times E(i)$			
γ 2	8.28E-01	1.590E-01	1.32E-01			
ce-K, γ 2	1.35E-01	1.272E-01	1.72E-02			
ce-L ₁ , γ 2	1.60E-02	1.540E-01	2.47E-03			
ce-L $_2$, γ 2	1.09E-03	1.544E-01	1.69E-04			
ce- L_3 , γ 2	3.46E-04	1.546E-01	5.35E-05			
ce-M, γ 2	3.46E-03	1.582E-01*	5.48E-04			
ce-N ⁺ , γ 2	8.27E-04	1.590E-01*	1.32E-04			
γ 12	7.07E-04	2.480E-01	1.75E-04			
γ 16	7.86E-04	2.810E-01	2.21E-04			
γ 22	1.25E-03	3.463E-01	4.33E-04			
γ 25	4.25E-03	4.400E-01	1.87E-03			
γ 28	3.14E-03	5.053E-01	1.59E-03			
γ 29	1.38E-02	5.290E-01	7.31E-03			
ce-K, γ 29	9.90E-05	4.971E-01	4.92E-05			
γ 30	3.79E-03	5.385E-01	2.04E-03			
γ 36	8.28E-04	6.246E-01	5.17E-04			
γ 38	2.66E-04	6.879E-01	1.83E-04			
γ 39	6.12E-04	7.358E-01	4.50E-04			
γ 41	5.90E-04	7.836E-01	4.62E-04			
$K\alpha_1 X ray$	4.58E-01	2.747E-02	1.26E-02			
$K\alpha_2 X ray$	2.46E-01	2.720E-02	6.70E-03			
$K\beta_1 X ray$	8.66E-02	3.100E-02	2.69E-03			
$K\beta_2 X ray$	2.66E-02	3.171E-02	8.43E-04			
$K\beta_3 X ray$	4.46E-02	3.094E-02	1.38E-03			
Auger-KLL	8.15E-02	2.254E-02*	1.84E-03			
Auger-KLX	3.69E-02	2.635E-02*	9.73E-04			
Auger-KXY	4.92E-03	3.013E-02*	1.48E-04			
Auger-LMM	6.06E-01	3.080E-03*	1.87E-03			
Auger-LMX	3.11E-01	3.849E-03*	1.20E-03			
Auger-LXY	4.40E-02	4.380E-03*	1.93E-04			
Auger-MXY	1.80E 00	6.991E-04*	1.26E-03			
LISTED X, γ AND γ:	LISTED X, γ AND γ ± RADIATIONS					
OMITTED X, γ AND	OMITTED X, γ AND γ ± RADIATIONS**					
LISTED β , ce AND β	Auger RADIATIONS		2.80E-02			
OMITTED β , ce ANI	D Auger RADIATIONS**		1.21E-04			
LISTED RADIATIO	NS		1.99E-01			
OMITTED RADIATI	IONS**		7.97E-04			

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY. TELLURIUM-123M DAUGHTER, YIELD 5.00E-05, IS RADIOACTIVE. TELLURIUM-123 DAUGHTER, YIELD 9.999E-01, IS RADIOACTIVE.

		Hall	Half Life = 4.18 Days	ys			
		Deca	Decay Mode(s): EC, β^+	β÷			
Radiation	$y(i) (\mathrm{Bq} \bullet \mathrm{s})^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	Radiation	$y(i) \; (\mathrm{Bq} ullet \mathrm{s})^{-1}$	E(i) (MeV)	$y(i) \times E(i)$
β+ 2	2.92E-03	3.657E-01*	1.07E-03	γ 61	3.50E-03	2.079E 00	7.27E-03
β^+5	1.12E-01	6.859E-01*	7.66E-02	γ 62	5.80E-03	2.091E 00	1.21E-02
β+6	1.12E-01	9.736E-01*	1.09E-01	γ 64	1.40E-03	2.099E 00	2.94E-03
γ±	4.53E-01	5.110E-01	2.31E-01	γ 65	1.10E-03	2.144E 00	2.36E-03
γ9	6.11E-01	6.027E-01	3.68E-01	γ 66	5.80E-03	2.232E 00	1.29E-02
ce-K, γ 9	2.57E-03	5.709E-01	1.47E-03	γ 67	6.70E-03	2.283E 00	1.53E-02
γ 11	9.56E-03	6.458E-01	6.17E-03	γ 68	1.00E-03	2.294E 00	2.29E-03
γ 17	1.01E-01	7.228E-01	7.27E-02	γ 69	2.00E-03	2.385E 00	4.77E-03
ce-K, γ 17	3.42E-04	6.910E-01	2.36E-04	γ 70	1.10E-03	2.454E 00	2.70E-03
γ 27	4.20E-03	9.682E-01	4.06E-03	γ 75	5.70E-03	2.747E 00	1.57E-02
γ 31	4.30E-03	1.045E 00	4.49E-03	$K\alpha_1 X ray$	3.08E-01	2.747E-02	8.45E-03
γ 32	1.20E-03	1.054E 00	1.26E-03	$\mathrm{K}\alpha_2 \ \mathrm{X} \ \mathrm{ray}$	1.65E-01	2.720E-02	4.49E-03
γ 40	1.45E-02	1.325E 00	1.92E-02	$K\beta_1 X ray$	5.81E-02	3.100E-02	1.80E-03
γ 42	2.90E-03	1.368E 00	3.97E-03	Auger-KLL	5.47E-02	2.254E-02*	1.23E-03
γ 43	1.69E-02	1.376E 00	2.32E-02	Auger-KLX	2.48E-02	2.635E-02*	6.53E-04
γ 48	1.80E-03	1.489E 00	2.68E-03	Auger-LMM	4.07E-01	3.080E-03*	1.25E-03
γ 49	3.03E-02	1.509E 00	4.57E-02	Auger-LMX	2.09E-01	3.849E-03*	8.03E-04
γ 50	1.70E-03	1.560E 00	2.65E-03	Auger-MXY	1.21E 00	6.991E-04*	8.44E-04
γ 52	2.00E-03	1.638E 00	3.27E-03	LISTED X, γ A	LISTED X, γ AND $\gamma\pm$ RADIATIONS	NS	1.08E 00
γ 54	1.10E-03	1.676E 00	1.84E-03	OMITTED X, γ	OMITTED X, γ AND $\gamma\pm$ RADIATIONS**	**SNO	1.82E-02
γ 55	1.06E-01	1.691E 00	1.79E-01	LISTED β , ce ℓ	LISTED β , ce AND Auger RADIATIONS	TIONS	1.93E-01
γ 56	1.70E-03	1.720E 00	2.92E-03	OMITTED β, c	OMITTED β , ce AND Auger RADIATIONS**	IATIONS**	7.71E-04
γ 58	2.10E-03	1.851E 00	3.89E-03	LISTED RADIATIONS	ATIONS		1.27E 00
γ 59	1.60E-03	1.919E 00	3.07E-03	OMITTED RADIATIONS**	DIATIONS**		1.90E-02
γ 60	3.40E-03	2.038E 00	6.93E-03				
*AVEDACE ENED	CALLEY CALLEY						

*AVERAGE ENERGY (MeV)

**EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY.

IODINE-125

Half Life = 60.14 Days					
Decay Mode(s): EC					
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
γ 1	6.67E-02	3.549E-02	2.37E-03		
ce-K, γ 1	8.03E-01	3.678E-03	2.95E-03		
ce- L_1 , γ 1	9.52E-02	3.055E-02	2.91E-03		
ce- L_2 , γ 1	7.64E-03	3.088E-02	2.36E-04		
ce- L_3 , γ 1	1.91E-03	3.115E-02	5.96E-05		
ce-M, γ 1	2.09E-02	3.467E-02*	7.25E-04		
ce-N ⁺ , γ 1	4.96E-03	3.549E-02*	1.76E-04		
$K\alpha_1 X$ ray	7.41E-01	2.747E-02	2.04E-02		
$K\alpha_2 X$ ray	3.98E-01	2.720E-02	1.08E-02		
$K\beta_1 X ray$	1.40E-01	3.100E-02	4.34E-03		
$K\beta_2 X$ ray	4.30E-02	3.171E-02	1.36E-03		
$K\beta_3 X ray$	7.20E-02	3.094 E-02	2.23E-03		
$K\beta_5 X ray$	1.44E-03	3.124E-02	4.51E-05		
Lα X ray	6.14E-02	3.768E-03*	2.31E-04		
Lβ X ray	5.93E-02	4.092E-03*	2.43E-04		
Auger-KLL	1.32E-01	2.254E-02*	2.97E-03		
Auger-KLX	5.97E-02	2.635E-02*	1.57E-03		

IODINE-125-cont'd

Half Life = 60.14 Days					
Decay Mode(s): EC					
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
Auger-KXY	7.95E-03	3.013E-02*	2.40E-04		
Auger-LMM	1.01E 00	3.086E-03*	3.11E-03		
Auger-LMX	5.17E-01	3.855E-03*	1.99E-03		
Auger-LXY	7.33E-02	4.386E-03*	3.21E-04		
Auger-MXY	2.99E 00	6.989E-04*	2.09E-03		
$\Delta \mathbf{E}$	6.22E-01	5.577E-05*	3.47E-05		
LISTED X, γ AND γ ± RADIATIONS 4.20E-02					
OMITTED X, γ AND γ ± RADIATIONS** 4.58E-05					
LISTED β, ce AND Auger RADIATIONS 1.94E-02					
LISTED RADIATIONS 6.14E-02					
OMITTED RADIATIONS** 4.58E-05					

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY. TELLURIUM-125 DAUGHTER IS STABLE.

IODINE-131

Half Life = 8.04 Days				
Decay Mode(s): β ⁻				
Radiation	$y(i) (Bq \bullet s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	
β 1	2.13E-02	6.935E-02*	1.48E-03	
β^- 2	6.20E-03	8.693E-02*	5.39E-04	
β- 3	7.36E-02	9.660E-02*	7.11E-03	
$\beta^- 4$	8.94E-01	1.915E-01*	1.71E-01	
β 6	4.20E-03	2.832E-01*	1.19E-03	
γ 1	2.62E-02	8.018E-02	2.10E-03	
ce-K, γ 1	3.63E-02	4.562E-02	1.66E-03	
ce- L_1 , γ 1	4.30E-03	7.473E-02	3.21E-04	
γ 4	2.65E-03	1.772E-01	4.70E-04	
γ 7	6.06E-02	2.843E-01	1.72E-02	
ce-K, γ 7	2.48E-03	2.497E-01	6.20E-04	
γ 12	2.51E-03	3.258E-01	8.18E-04	
γ 14	8.12E-01	3.645E-01	2.96E-01	
ce-K, γ 14	1.55E-02	3.299E-01	5.10E-03	
ce- L_1 , γ 14	1.71E-03	3.590E-01	6.13E-04	
γ 16	3.61E-03	5.030E-01	1.82E-03	
γ 17	7.27E-02	6.370E-01	4.63E-02	
γ 18	2.20E-03	6.427E-01	1.41E-03	
γ 19	1.80E-02	7.229E-01	1.30E-02	
$K\alpha_1 X ray$	2.59E-02	2.978E-02	7.72E-04	
$K\alpha_2 X$ ray	$K\alpha_2 X ray$ 1.40E-02 2.946E-02			
LISTED X, γ AND	LISTED X, γ AND γ ± RADIATIONS			
OMITTED X, γ AN	OMITTED X, γ AND γ ± RADIATIONS**			
LISTED β , ce AND	LISTED β , ce AND Auger RADIATIONS			
OMITTED β , ce Al	OMITTED β , ce AND Auger RADIATIONS**			
LISTED RADIATION	LISTED RADIATIONS			
OMITTED RADIA	OMITTED RADIATIONS**			

^{*}AVERAGE ENERGY (MeV)

XENON-131 DAUGHTER, YIELD 9.889E-01, IS STABLE.

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i) \times E(i)$ IN ITS CATEGORY. XENON-131M DAUGHTER, YIELD 1.11E-02, IS RADIOACTIVE.

Half Life = 5.245 Days				
Decay Mode(s): β ⁻				
Radiation	y(i) (Bq•s)-1	E(i) (MeV)	$y(i) \times E(i)$	
β^- 2	6.60E-03	7.502E-02*	4.95E-04	
β- 3	9.93E-01	1.005E-01*	9.98E-02	
γ 1	2.11E-03	7.962E-02	1.68E-04	
ce-K, γ 1	3.17E-03	4.364E-02	1.38E-04	
γ 2	3.74E-01	8.100E-02	3.03E-02	
ce-K, γ 2	5.35E-01	4.501E-02	2.41E-02	
$\mathrm{ce} ext{-}\mathrm{L}_1,\gamma~2$	6.52E-02	7.528E-02	4.91E-03	
$\mathrm{ce} ext{-}\mathrm{L}_2,\gamma~2$	4.91E-03	7.564 E-02	3.72E-04	
ce-M, γ 2	1.45E-02	8.000E-02*	1.16E-03	
ce-N $^+$, γ 2	3.80E-03	8.100E-02*	3.08E-04	
γ 3	6.20E-04	1.606E-01	9.96E-05	
$K\alpha_1 X ray$	2.53E-01	3.097E-02	7.85E-03	
$K\alpha_2 X ray$	1.37E-01	3.063E-02	4.20E-03	
$K\beta_1 X ray$	4.89E-02	3.499E-02	1.71E-03	
$K\beta_2 X ray$	1.70E-02	3.584E-02	6.08E-04	
$K\beta_3 X ray$	2.52E-02	3.492E-02	8.80E-04	
Lα X ray	2.44E-02	4.285E-03*	1.04E-04	
Lα X ray	2.32E-02	4.694E-03*	1.09E-04	
Auger-KLL	3.69E-02	$2.524\text{E-}02^*$	9.31E-04	
Auger-KLX	1.73E-02	2.961E-02*	5.12E-04	
Auger-LMM	3.03E-01	3.441E-03*	1.04E-03	
Auger-LMX	1.72E-01	4.344E-03*	7.45E-04	
Auger-MXY	9.33E-01	8.695E-04*	8.11E-04	
LISTED X, γ AND γ ± RADIATIONS			4.60E-02	
OMITTED X, γ AND γ ± RADIATIONS**			6.66E-05	
LISTED β , ce AND Auger RADIATIONS			1.35E-01	
OMITTED β , ce AND	OMITTED β , ce AND Auger RADIATIONS**			
LISTED RADIATIONS	S		1.81E-01	
OMITTED RADIATIO	NS**		4.49E-04	

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY. CESIUM-133 DAUGHTER IS STABLE.

CESIUM-137

Half Life = 30 Years					
	Decay Mod	le(s): β ⁻			
Radiation	$y(i) (\mathrm{Bq} \bullet \mathrm{s})^{-1}$	E(i) (MeV)	$y(i) \times E(i)$		
β- 1	9.46E-01	1.734E-01*	1.64E-01		
β^- 2	5.40E- 02	4.246E-01*	2.29E-02		
LISTED β , ce AND Auger RADIATIONS 1.87E-01					
LISTED RADIATIONS 1.87E-01					

^{*}AVERAGE ENERGY (MeV)

BARIUM-137M DAUGHTER, YIELD 9.46E-01, IS RADIOACTIVE.

BARIUM-137 DAUGHTER, YIELD 5.40E-02, IS STABLE.

THALLIUM-201

Half Life = 3.044 Days				
Decay Mode(s): EC				
Radiation	$y(i) (Bq \cdot s)^{-1}$	E(i) (MeV)	$y(i) \times E(i)$	
ce-N $^+$, γ 1	6.10E-01	1.570E-03*	9.58E-04	
ce- L_1 , γ 3	7.30E-02	1.576E-02	1.15E-03	
ce- L_2 , γ 3	7.55E-03	1.639E-02	1.24E-04	
ce-M, γ 3	1.90E-02	2.775E-02*	5.27E-04	
ce-N ⁺ , γ 3	6.78E-03	3.060E-02*	2.07E-04	
ce- L_1 , γ 4	6.28E-02	1.735E-02	1.09E-03	
ce- L_2 , γ 4	6.53E-03	1.798E-02	1.17E-04	
ce-M, γ 4	1.63E-02	2.934E-02*	4.80E-04	
ce-N $^+$, γ 4	5.74E-03	3.219E-02*	1.85E-04	
γ 5	2.65E-02	1.353E-01	3.59E-03	
ce-K, γ 5	7.47E-02	5.224E-02	3.90E-03	
ce- L_1 , $\gamma 5$	1.14E-02	1.205E-01	1.37E-03	
ce- L_2 , γ 5	1.20E-03	1.211E-01	1.45E-04	
ce-M, γ 5	2.97E-03	1.325E-01*	3.93E-04	
ce-N $^+$, γ 5	9.58E-04	1.353E-01*	1.30E-04	
γ 6	1.60E-03	1.659E-01	2.65E-04	
ce-K, γ 6	2.26E-03	8.278E-02	1.87E-04	
ce- L_1 , γ 6	3.42E-04	1.510E-01	5.16E-05	

THALLIUM-201-cont'd

Half Life = 3.044 Days				
Decay Mode(s): EC				
Radiation	y(i) (Bq•s)-1	E(i) (MeV)	$y(i) \times E(i)$	
γ 7	1.00E-01	1.674E-01	1.67E-02	
ce-K, γ 7	1.54E-01	8.433E-02	1.30E-02	
ce- L_1 , γ 7	2.35E-02	1.526E-01	3.58E-03	
ce-L $_2$, γ 7	2.48E-03	1.532E-01	3.80E-04	
ce- L_3 , γ 7	2.80E-04	1.551E-01	4.35E-05	
ce-M, γ 7	6.10E-03	1.646E-01*	1.00E-03	
ce-N $^+$, γ 7	1.96E-03	1.674E-01*	3.29E-04	
$K\alpha_1 X ray$	4.62E-01	7.082E-02	3.27E-02	
$K\alpha_2 X$ ray	2.72E-01	6.889E-02	1.87E-02	
$K\beta_1 X ray$	1.05E-01	8.026E-02	8.45E-03	
$K\beta_2 X ray$	4.43E-02	8.258E-02	3.66E-03	
$K\beta_3 X ray$	5.48E-02	7.982E-02	4.37E-03	
$K\beta_5 X ray$	2.88E-03	8.077E-02	2.33E-04	
Lα X ray	1.90E-01	9.980E-03*	1.90E-03	
$L\beta$ X ray	1.82E-01	1.185E-02*	2.15E-03	
Lγ X ray	3.40E-02	1.397E-02*	4.75E-04	
Auger-KLL	2.01E-02	5.526E-02*	1.11E-03	
Auger-KLX	1.12E-02	6.652E-02*	7.45E-04	
Auger-KXY	1.80E-03	7.733E-02*	1.39E-04	
Auger- LMM	4.30E-01	7.753E-03*	3.34E-03	
Auger-LMX	2.78E-01	1.022E-02*	2.84E-03	
Auger-LXY	4.63E-02	1.214E-02*	5.62E-04	
Auger-MXY	1.74E 00	2.673E-03*	4.66E-03	
$\Delta \mathrm{E}$	1.05E 00	5.204E-04*	5.45E-04	
LISTED X, γ AND γ ± RADIATIONS			9.32E-02	
OMITTED X, γ AND γ ± RADIATIONS**			2.52E-04	
LISTED β , ce AND Auger RADIATIONS			4.33E-02	
OMITTED β, ce AND A	OMITTED β , ce AND Auger RADIATIONS**			
LISTED RADIATIONS	LISTED RADIATIONS			
OMITTED RADIATIO	NS**		3.68E-04	

^{*}AVERAGE ENERGY (MeV)

^{**}EACH OMITTED TRANSITION CONTRIBUTES <0.100% TO $\Sigma y(i)\times E(i)$ IN ITS CATEGORY. MERCURY-201 DAUGHTER IS STABLE.