A single document copy of these notes, as well as a mirror of every note, can be found at connorduncan.xyz/notes

#### 0.0.1 Second Order Energy Correction

$$\langle n^0 | (H_0 | n^2 \rangle + H_1 | n^1 \rangle) = \langle n^0 | (E_n^{(0)} | n^2 \rangle + E_n^{(1)} | n^1 \rangle + E_n^{(2)} | n^0 \rangle)$$

we get

$$E_{n}^{0}\left\langle n^{0}\left|n^{2}\right\rangle +\left\langle n^{0}\right|H_{1}\left|n^{1}\right\rangle =E_{n}^{(0)}\left\langle n^{0}\right|n^{2}\right\rangle +E_{n}^{(1)}\left\langle n^{0}\right|n^{1}\right\rangle +E_{n}^{(2)}\left\langle n^{0}\right|n^{0}\right\rangle$$

We have cancellation, and also  $E_n^{(1)} \langle n^0 | n^1 \rangle \sim 0 + \mathcal{O}(\lambda^2)$ , so we get

$$E_{n}^{(2)} = \left\langle n^{0} \right| H_{1} \left| n^{1} \right\rangle = \sum_{m \neq n} \frac{\left\langle n^{0} \right| H_{1} \left| m^{0} \right\rangle \left\langle m^{0} \right| H_{1} \left| n^{0} \right\rangle}{E_{n}^{(0)} - E_{m}^{(0)}} = \sum_{m \neq n} \frac{\left| \left\langle m^{0} \right| H_{1} \left| n^{0} \right\rangle \right|^{2}}{E_{n}^{(0)} - E_{m}^{(0)}}$$

An interesting property of this is level repulsion. Basically, higher order contributions cause repulsion.



Take some hamiltonian for the simple harmonic oscillator, however, in the presence of an external electric field.

$$H = H_0 + H_1 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 - \mathcal{E}qx$$

#### 0.0.2 First order

First, we attempt the first order correction

$$E_n^{(1)} = \langle n^{(0)} | / H_1 | n^{(0)} \rangle = -\mathcal{E}q \langle n^{(0)} | x | n^{(0)} \rangle = 0$$

where the final equality holds by the homework problem where we showed that x can only have non-vanishing matrix elements between states of opposite parity.

## 0.0.3 Second order

This means we have to go to second order

$$|n\rangle = \left|n^{(0)}\right\rangle - q\mathcal{E}\sum_{m \neq n} \left|m^{(0)}\right\rangle \frac{\left\langle m^{(0)} \left|x\right| n^{(0)}\right\rangle}{E_n^{(0)} - E_m^{(0)}}$$

rewriting  $x = \sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger})$ , we take

$$|n\rangle = \left| n^{(0)} \right\rangle - q\mathcal{E} \left( \left| n^{(0)} + 1 \right\rangle \frac{\sqrt{n+1}}{-\hbar\omega} \sqrt{\frac{\hbar}{2m\omega}} + \left| n^{(0)} - 1 \right\rangle \frac{\sqrt{n}}{\hbar\omega} \sqrt{\frac{\hbar}{2m\omega}} \right)$$
$$= \left| n^{(0)} \right\rangle + \frac{q\mathcal{E}}{\hbar\omega} \sqrt{\frac{\hbar}{2m\omega}} \left( \sqrt{n+1} \left| n^{(0)} + 1 \right\rangle - \sqrt{n} \left| n^{(0)} - 1 \right\rangle \right)$$

Then, we calculate the final energy correction as

$$E_n^{(2)} = \frac{\hbar q^2 \mathcal{E}^2}{2m\omega} \left( \frac{n+1}{-\hbar\omega} + \frac{n}{\hbar\omega} \right) = -\frac{q^2 \mathcal{E}^2}{2m\omega^2}$$

## 0.0.4 Complete the Squares

This is exactly the result that we get from completing the squares and writing

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega \left(x - \frac{q\mathcal{E}}{m\omega^2}\right)^2 - \frac{1}{2}\frac{q^2\mathcal{E}^2}{m\omega^2}$$

This gives us exactly the same result, which is a nice sanity check!

# 0.1 Degenerate Perturbation Theory

If we have some set of degenerate levels, and apply some perturbation, they might split, and be unique



Basically, we want to diagonalize our perturbation matrix within a basis where the degenerate states are no longer degenerate.