随机生态笔记

修格致

2019年8月20日

目录

Ι	文献阅读														
1	随机	上生态与	空间演化博	弈											,
	1.1	弱选择	下的空间海	寅化博弈											,
		1.1.1	摘要翻译												,

4 目录

Part I

文献阅读

Chapter 1

随机生态与空间演化博弈

1.1 弱选择下的空间演化博弈

相关文献链接: Spatial evolutionary games with weak selection, 2017, PNAS.

1.1.1 摘要翻译

进来,一套严格的数学理论来解释弱自然选择机制之下的空间博弈理论。所谓弱自然选择,指的是各种策略的 payoff 差别不大。分析的关键在于,如果合理地重标度时间和空间,那么空间模型就会收敛于某个偏微分方程(PDE)的解。这种方法可以用来分析 2×2 的博弈,但还有一些 3×3 的博弈的 PDE 极限是未知的。本文中,我们给出了一大类 3×3 的博弈的确定行为,并通过模拟验证了规律。总之,空间的效应等价于改变 payoff矩阵,并且只要这个过程确定,空间博弈的行为可以由 replicator 方程来预测(We say predicted here because in some cases the behavior of the spatial game is different from that of the replicator equation for the modified game.)。举个例子,石头剪刀布博弈有一个复制方程,可以旋转出边界。而空间使这个系统稳定了下来,并导出了均衡。

关键词:癌症建模、公共资源博弈、骨癌、石头剪子布。

演化博弈的一般假设为:人口是同质的混合,也就是说,每个人的复制矩阵是相同的。详见(Hofbauer 和 Sigmund)的书。如果 u_i 是选择策略 i

的人的频率,那么我们有

$$\frac{du_i}{dt} = u_i(F_i - \bar{F}),\tag{1.1}$$

$$\frac{du_i}{dt} = u_i(F_i - \bar{F}),$$
where $F_i = \sum_j G_{i,j} u_j$ (1.2)

其中 F_i 是每种策略的效用, G_{ij} 是二人博弈时,两人分别选择 i,j 策略时, 第一个人得到的 payoff; $\bar{F} = \sum_i u_i F_i$ 是平均效用。

这种同质混合假设对于生态学中的演化博弈或者肿瘤的形成来说,并 不适用。所以我们需要理解空间结构是如何影响