ICCS310: Assignment 6

Possawat Sanorkam possawat2017@hotmail.com March 24, 2021

1: The Meaning of Thin	T:	The	Meaning	ot	Thing	$\mathbf{z}\mathbf{s}$
------------------------	----	-----	---------	----	-------	------------------------

- (1) Class NP is the problems that can be solved within polynomial time using a NFA. Besides, we can solve it in polynomial time using a machine that compute all possibilities at once.
- (2) Show that
- (3) Show that
- (4) Show that

2: Closure of NP

$$ACCEPT_{TM} = \{ \langle M, x \rangle | M \text{ is a TM that accepts input x} \}$$

(i) Prove that $ACCEPT_{TM} \leq REJECT_{TM}$

Proof:

Suppose that TM M_{REJECT} decides $\mathsf{REJECT}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ using M_{REJECT} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M by reversing the accept and reject states.
- 2. Run M_{REJECT} with $\langle M', w \rangle$.
- 3. If M_{REJECT} accepts, we accept. If M_{REJECT} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{REJECT}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{REJECT} . Therefore, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{REJECT}_{\mathsf{TM}}$. \square

(ii)) Prove that $REJECT_{TM} \leq ACCEPT_{TM}$

Proof:

Suppose that TM M_{REJECT} decides $\mathsf{REJECT}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{REJECT}_{\mathsf{TM}}$ using M_{ACCEPT} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M by reversing the accept and reject states.
- 2. Run M_{ACCEPT} with $\langle M', w \rangle$.

3. If M_{ACCEPT} accepts, we accept. If M_{ACCEPT} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{REJECT}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{REJECT} can correctly decide $\mathsf{REJECT}_{\mathsf{TM}}$ provided that there is a TM M_{ACCEPT} . Therefore, $\mathsf{REJECT}_{\mathsf{TM}} \leq \mathsf{ACCEPT}_{\mathsf{TM}}$. \square

3: This is NP

$$T = \{\langle M \rangle | M \text{ is a TM that accepts } \mathbf{rev}(w) \text{ whenever it accepts } w\}$$

where $\mathbf{rev}(w)$ is the reverse of the string w. Show that T is undecidable.

Proof: $(ACCEPT_{TM} \leq T_{TM})$

Suppose that TM M_T decides T_{TM} and TM M_{ACCEPT} decides ACCEPT_{TM}, we want to show how to decide ACCEPT_{TM} using M_T .

On input $\langle M, w \rangle$:

- 1. Make TM M' that accepts a string w, then it also accepts w^R . On input x:
- 1.1 If x = 01, then accept x.
- 1.2 If $x \neq 01$, then run M on input w and accept if M accepts.
- 2. Run M_T on $\langle M', w \rangle$.
- 3. If M_{T} accepts, we accept. If M_{T} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{T}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

From observation, if M accepts w, then M' accepts every string, so $\langle M' \rangle \in \mathsf{T}_{\mathsf{TM}}$. If M does not accept w, then only 01 will be accepted which means $\langle M' \rangle \notin \mathsf{T}_{\mathsf{TM}}$

Then, M_{ACCEPT} can correctly decide ACCEPT_{TM} provided that there is a TM M_{T} .

So, ACCEPT_{TM} \leq T_{TM}. Therefore, T is undecidable. \square

4: NP-Complete

(i) Show that

$$\mathsf{TOTAL} = \{ \langle M \rangle | \text{ M is a Turing machine that halts on every input} \}$$

is undecidable

Proof: $(ACCEPT_{TM} \leq TOTAL_{TM})$

Suppose that TM M_{TOTAL} decides $\mathsf{TOTAL}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ using M_{TOTAL} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M where if M accepts, we accept and enter loops when M rejects.
- 2. Run M_{TOTAL} with $\langle M', w \rangle$.
- 3. If M_{TOTAL} accepts, we accept. If M_{TOTAL} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{TOTAL}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{TOTAL} . So, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{TOTAL}_{\mathsf{TM}}$. Therefore, TOTAL is undecidable. \square

(ii) Show that

FINITE =
$$\{\langle M \rangle | M \text{ is a Turing machine and } L(M) \text{ is a finite set} \}$$

is undecidable

Proof: $(ACCEPT_{TM} \leq FINITE_{TM})$

Suppose that TM $M_{\sf FINITE}$ decides FINITE_{TM} and TM $M_{\sf ACCEPT}$ decides ACCEPT_{TM}, we want to show how to decide ACCEPT_{TM} using $M_{\sf FINITE}$.

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M where if M accepts, we accept and enter loops when M rejects.
- 2. Run M_{FINITE} with $\langle M', w \rangle$.
- 3. If M_{FINITE} accepts, we accept. If M_{FINITE} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{FINITE}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{FINITE} . So, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{FINITE}_{\mathsf{TM}}$. Therefore, FINITE is undecidable. \square

(iii) Show that

$$REGULAR = \{\langle M \rangle | M \text{ is a Turing machine and } L(M) \text{ is regular} \}$$

is undecidable

Proof: $(ACCEPT_{TM} \leq REGULAR_{TM})$

Suppose that TM M_{REGULAR} decides $\mathsf{REGULAR}_{\mathsf{TM}}$ and TM M_{ACCEPT} decides $\mathsf{ACCEPT}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ using M_{REGULAR} .

Given $\langle M, w \rangle$ as input:

- 1. Make TM M' from M. On input x:
- 1.1 If x has the form 0^n1^n , accepts.
- 1.2 If x does not have the form $0^n 1^n$, run M on input w and accept if M accepts w.
- 2. Run M_{REGULAR} with $\langle M', w \rangle$.
- 3. If M_{REGULAR} accepts, we accept. If M_{REGULAR} rejects, we reject.

Notice that this mechanism accepts if and only if M accepts w and rejects if and only if M' rejects w.

$$M_{\mathsf{REGULAR}}$$
 accepts $\langle M', w \rangle \iff M_{\mathsf{ACCEPT}}$ accepts $\langle M, w \rangle$

Hence, M_{ACCEPT} can correctly decide $\mathsf{ACCEPT}_{\mathsf{TM}}$ provided that there is a TM M_{REGULAR} . So, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{REGULAR}_{\mathsf{TM}}$. Therefore, $\mathsf{REGULAR}$ is undecidable. \square

5: Silver Lining If P = NP

Prove that

 $\mathsf{TOTAL} \leq_T \mathsf{FINITE}$

Proof:

Suppose that TM M_{TOTAL} decides $\mathsf{TOTAL}_{\mathsf{TM}}$ and TM M_{FINITE} decides $\mathsf{FINITE}_{\mathsf{TM}}$, we want to show how to decide $\mathsf{TOTAL}_{\mathsf{TM}}$ using M_{FINITE} .

Given $\langle M \rangle$ as input:

- 1. Run M_{FINITE} on $\langle M \rangle$.
- 2. If M_{FINITE} accepts, we accept. If M_{FINITE} rejects, we rejects.

Refer to the fact that M_{FINITE} can determine whether M has finite set of L(M) or not, M will halt on every input only if L(M) is a finite set. If L(M) is not a finite set, we would not be able to determine that it will halt on every input since there would be at least one input that would not halt.

Hence, M_{TOTAL} can correctly decide $\mathsf{TOTAL}_{\mathsf{TM}}$ provided that there is a TM M_{FINITE} . Therefore, $\mathsf{ACCEPT}_{\mathsf{TM}} \leq \mathsf{REGULAR}_{\mathsf{TM}}$. \square