AS1213 多功能红外遥控器芯片 ^{规格书}

December 2001

Version 1.0

深圳市爱思科微电子有限公司 Shenzhen ASIC Micro-electronics Ltd TEL: 0086-755-26690989

FAX: 0086-755-26815295

202002-12-19 第 1 页 共 16 页

目录

	主要特点	2
	<u></u>	
\equiv	<u></u>	
四	管脚图及管脚功能	
五.		
	1, 9028-021, 022, 023	
	2, <u>PT2222</u>	
	3, <u>LC7461</u>	
	4, M34280	
	5, SAA3010T	10
	二) <u>键数据码确定</u>	11
		12
		13
六		
七.	 . 封装外形图	15

AS1213 是一块用于红外遥控系统中的专用发射集成电路,集 9028-021、9028-022、9028-023、LC7461、M34280、SAA3010T 和 PT2222 于一体,是一款多系统红外遥控发射芯片。采用 CMOS 工艺制造。它可外接 64 个按键。除 SAA3010T 系统外,其他系统都具有三组双重按键。

一. 主要特点:

- ★低压 CMOS 工艺制造
- ★低工作电压(V_{DD}=2.0~5.0V)
- ★通过 SEL 选择管脚,可支持 448+18 条指令码
- ★用户编码可选择
- ★SOP-24 封装形式

二. 应用范围:

- ★电视机
- ★组合音响设备
- ★录音卡座
- ★空调器
- ★VCD、DVD 播放机

三. 结构框图

202002-12-19 第 3 页 共 16 页

四. 管脚图及管脚功能

1), 管脚图

2), 管脚描述

管脚号	名称	类型	描述
1	VDD		电源(2.0V~4.0V)3V(典型)
2	TEST	IN	测试用(高电平有效,平时悬空,内有下拉电阻)
3	OSCO	OUT	晶振输出
4	OSCI	IN	晶振输入
5-12	DRV0-DRV7	OUT	P 沟道开漏输出 用于键盘扫描输出
13-20	SEN0-SEN7	IN	8 位输入脚 用于键盘扫描输入 (平时为低电平,内有下拉电阻)
21	LED	OUT	用于按键指示灯 LED
22	REMO	OUT	带载波的遥控信号输出
23	SEL	IN	用于系统选择跳线
24	GND		地

202002-12-19 第 4 页 共 16 页

五. 功能说明

一) 编码方式

AS1213 遥控器可通过跳线选择发送下列五种码型之一: 9028-021、022、023; LC7461; M34280; PT2222 和 SAA3010T, 并可选择七种用户编码之一。下面分别说明他们各自的格式:

1,9028-021、022、023 码型:

该码型(9028-022)的一帧数据中含有32位,即8位用户编码(C7-C0:00001110(0EH)),

8 位用户编码的重复码,8 位键数据编码(D0~D7)以及他的反码。用户码和键数据码的发送均是低位在前,高位在后。

如上图 1 所示:一帧完整的发射码有引导码、用户编码和键数据码三部分组成。引导码由一个 4.5ms 高电平脉冲及 4.5ms 的低电平脉冲组成;八位用户编码为 00001110 (0EH),被连续发送两次:八位的键数据码也被连续发送两次,第一次发送的是键数据码的原码,第二次发送的是键数据码的反码。

"1"和"0"的区分取决于脉冲之间的时间,称之为脉冲位置调制方式(PPM)。波形如图 4。9028-021 的码型与 9028-022 相同,其用户码定义为 00001101(0DH)。9028-023 的码型与 9028-022 相同,其用户码定义为 00011000(18H)。另外还有 9028-021A 的码型与 9028-022 相同,其用户码定义为 00001011(0BH)。

该码型的输出波形如图 2所示,重复码波形如图 3所示,"1" 和 "0" 的波形如图 4所示,载波波形如图 5所示:

图 2 9028-022 的发射波形

202002-12-19 第 5 页 共 16 页

图 3 9028-022 的重复码波形

图 4 9028-022 的"1"和"0"的波形

发射端输出高电平时按图 5的载波波形发送: 频率: 38KHz; 占空比: 1/3。

图 5 9028-022 的载波波形

202002-12-19 第 6 页 共 16 页

2, PT2222 码型:

PT2222 所发射的一帧码含有一个引导码,8位的用户编码(C7~C0=14H)及其反码,8位的键数据码及其反码。下图给出了这一帧码的结构。

图 6 PT2222 数据格式

如上图 6 所示,引导码由一个 9ms 的载波波形和 4.5ms 的关断时间构成,它作为随后发射的码的引导。在发重复码时,引导码由一个 9ms 的载波波形和 2.25ms 的关断时间构成。每次 8 位的码被传送的同时,它们的反码也被传送。编码采用脉冲位置调制方式(PPM),利用之间的时间间隔来区分"0"和"1",其波形同图 4。发射端输出高电平时按图 5的载波波形发送。

图 7 PT2222 的连续发射波形

图 8 PT2222 的第一次传送波形

图 9 PT2222 的第二次传送波形(重复码波形)

202002-12-19 第 7 页 共 16 页

3, LC 7461 码型

该码(LC7461T)的一帧数据中含有 42 位,即 13 位用户编码(C12 — C0: 0000100010111 (0117H))和 8 位键数据编码(D0~D7)以及他们各自的反码,请参考下图:

LC7461 码型所发送的码包含一引导码、13 位用户码和 8 位数据码以及它们的反码。这样很大程度上减少了误码率。如下图所示:

引导码有 9ms 的载波和 4.5ms 的载波关断波形所构成,以作为用户码、键数据码以及它们的反码的先导。

"1"和"0"的区分取决与脉冲之间的时间,称之为脉冲位置调制方式(PPM),如<u>图 4</u>所示。发射端输出高电平时按<u>图 5</u>的载波波形发送。

202002-12-19 第 8 页 共 16 页

LC 7461T 的输出波形如图 12,图 13 所示:

图 12 LC 7461T 的第一次传送波形

图 13 LC 7461T 的第二次传送波形 (重复码波形)

202002-12-19 第 9 页 共 16 页

4, M34280 码型:

如上图所示:一帧完整的发射码有引导码、用户编码和键数据码三部分组成。引导码由一个 8.44ms 的高电平脉冲及 4.22ms 的低电平脉冲组成; 八位用户编码与八位的键数据码之间有一 4.22ms 的低电平间隔。在连续发射波形时,重复码波形与第一次发射的波形相同。

M32480 码型的输出波形如下图 15 所示:

图 15 M32480 的传送波形

"1"和"0"也采用脉冲位置调制方式 (PPM),如图 16 所示。载波波形如图 5所示

图 16 M32480 的 "1" 和 "0" 的波形

202002-12-19 第 10 页 共 16 页

5, SAA3010T 码型:

AS1213 的 SAA3010T 码型的一帧数据有以下几部分组成: 1) 起始码部分——1.5 位(两个逻辑"1"); 2) 控制码部分—1 位; 3) 系统码部分—5 位: 00000; 4) 指令码部分—6 位。在连续发射波形时,重复码波形与第一次发射的波形相同。控制码位在前后两次按键中交替改变。请参考下图:

图 17 发射码波形

图 18 连续发射波形

这里等待时间+扫描时间=18 个位的时间 重复周期=4*16 个位的时间

" 0码和1码传送采用双相位编码发送技术,如图20所示。

图 20 "1" 和 "0" 的波形

这里,一位的时间=3 * 2^8 * Tosc=1.688ms(典型值 Tosc=1/455KHz) 载波波形同<u>图 5</u>

202002-12-19 第 11 页 共 16 页

二) 键数据码确定

AS1213 遥控器设置 8 个按键输入端 SEN0-SEN7 和 8 个按键输出端 DRV0-DRV7,由此设置了一个 8 *8 的键盘,共 64 键。键盘矩阵如下表所示:

輸出	DRV0 (PIN5) (000)	DRV1 (PIN6) (001)	DRV2 (PIN7) (010)	DRV3 (PIN8) (011)	DRV4 (PIN9) (100)	DRV5 (PIN10) (101)	DRV6 (PIN11) (110)	DRV7 (PIN12) (111)
SEN0 (PIN13) (000)	K1 (00H)	K2 (01H)	K3 (02H)	K4 (03H)	K33 (20H)	K34 (21H)	K35 (22H)	K36 (23H)
SEN1 (PIN14) (001)	K5 (04H)	K6 (05H)	K7 (06H)	K8 (07H)	K37 (24H)	K38 (25H)	K39 (26H)	K40 (27H)
SEN2 (PIN15) (010)	K9 (08H)	K10 (09H)	K11 (0AH)	K12 (0BH)	K41 (28H)	K42 (29H)	K43 (2AH)	K44 (2BH)
SEN3 (PIN16) (011)	K13 (0CH)	K14 (0DH)	K15 (0EH)	K16 (0FH)	K45 (2CH)	K46 (2DH)	K47 (2EH)	K48 (2FH)
SEN4 (PIN17) (100)	K17 (10H)	K18 (11H)	K19 (12H)	K20 (13H)	K49 (30H)	K50 (31H)	K51 (32H)	K52 (33H)
SEN5 (PIN18) (101)	K21 (14H)	K22 (15H)	K23 (16H)	K24 (17H)	K53 (34H)	K54 (35H)	K55 (36H)	K56 (37H)
SEN6 (PIN19) (110)	K25 (18H)	K26 (19H)	K27 (1AH)	K28 (1BH)	K57 (38H)	K58 (39H)	K59 (3AH)	K60 (3BH)
SEN7 (PIN20) (111)	K29 (1CH)	K30 (1DH)	K31 (1EH)	K32 (1FH)	K61 (3CH)	K62 (3DH)	K63 (3EH)	K64 (3FH)
SEL (PIN23)	跳线 TC9028 -022	跳线 TC9028 -023	跳线 LC7461	跳线 M34280	跳线 TC9028 -021	跳线 TC9028 -021A	跳线 PT2222	跳线 SAA3010
用户码 C12-C8 C7-C0	00001110	00011000	00001 00010111	11011000	00001101	00001011	00010100	00000

表(1)

这里共设置了64个键,所有系统的键值均按同一方式编码。

键数据的编码方式如下: {0,0,drv[2],sen[2:0],drv[1:0]}。

例如: 当按下键 K13 时, 其输出键值为 K7~K0=00001100, 当按下键 K24 时, 其输出键值为 K7~K0=00010111, 当按下键 K22 时, 其输出键值为 K7~K0=00010101, 当按下键 K38 时, 其输出键值为 K7~K0=00100101。

在所有系统中,除 **SAA3010T** 外,其他系统均有双重按键功能。当按下按键 K34,并同时按下 K38、K42、K46 三键中的任意一键时,系统发出双重按键码,实现多功能按键功能。双重按键功能对按键次序无特别要求。

双重按键的键值按如下方式编码: {0, 1, drv[2], sen[2: 0], drv[1:0]}。

例如: 当按下 K34、K38 时,系统发出键值为 K7~K0=01100101,当按下 K34、K42 时,系统发

202002-12-19 第 12 页 共 16 页

出键值为 K7~K0=01101001, 当按下 K34、K46 时, 系统发出键值为 K7~K0=01101101。

当任意其他两键同时按下,或任意其他多键被同时按下,系统认为该情况是错误按键状态,不响应,也不发出码流。

双键按下后,有一键释放,则发射仍在按着的那个键的信号。

键一直接着,当发送码为9028—021、022、023、021A,PT2222和LC7461码型时,将一帧码发完后发固定的重复码;当发送码为M34280码型和SAA3010码型时,将一帧码发完后在重新发送这一帧码,当键松开时,等该帧码发完后进入低功耗模式。

用户码和键数据码的发送均是低位在前,高位在后。

另注: 以上有关时间的数据均以晶振取 455KHz 时为准,如晶振有所变动相应数据也需改变。

三)系统选择

AS1213 控制器可发送五种不同的码型,系统选择脚 SEL 与 8 个按键输出端 DRV0-DRV7 中的不同端口相连,可以选择不同的系统,如上表 (1) 示。当有多个按键输出端均与 SEL 脚相连时,系统选择以高标号输出端来决定系统。例如: DRV0, DRV6 都接到 SEL 脚,则系统为 PT2222。

依靠输入端口 SEL(23 脚)与输出口 DRV0-DRV7(5~12 脚)作跳线选择系统如下:

- 1. 当输入口 SEL (23 脚)与 DRV0 (5 脚)短接,发射端口 REMO (22 脚)将发送 TC9028-022 码型。用户码为 00001110 (0EH)。
- 2. 当输入口 SEL (23 脚)与 DRV1 (6 脚)短接,发射端口 REMO (22 脚)将发送 TC9028-023 码型。用户码为 00011000 (18H)。
- 3. 当输入口 SEL(23 脚)与 DRV2(7 脚)短接,发射端口 REMO(22 脚)将发送 LC7461码型。用户码为 0000100010111(0117H)。
- 4. 当输入口 SEL (23 脚)与 DRV3 (8 脚)短接,发射端口 REMO (22 脚)将发送 M34280码型。用户码为 11011000 (D8H)。
- 5. 当输入口 SEL (23 脚)与 DRV4 (9 脚)短接,发射端口 REMO (22 脚)将发送 TC9028-021码型。用户码为 00001101 (0DH)。
- 6. 当输入口 SEL (23 脚)与 DRV5 (10 脚)短接,发射端口 REMO (22 脚)将发送 TC9028-021A码型。用户码为 00001011 (0BH)。
- 7. 当输入口 SEL(23 脚)与 DRV6(11 脚)短接,发射端口 REMO(22 脚)将发送 PT2222 码型。用户码为 00010100(14H)。
- 8. 当输入口 SEL (23 脚) 悬空或与 DRV7 (12 脚) 短接,发射端口 REMO (22 脚) 将发送 SAA3010 码型,用户码为 00000 (00H)

四) 工作模式

电路有两种工作模式:正常工作模式;低功耗模式,除非有键按下,振荡器平时是停振的,这样可以降低功耗。

电路有去抖动功能,按键的时间不够长(小于20ms),无码发出,振荡器停振。

振荡频率为 455KHz, 载波频率为 38KHz, 占空比为 1/3, 以降低正常工作时的功耗。

202002-12-19 第 13 页 共 16 页

五)参数说明

极限参数(除非特别说明, Tamb=25℃)

参数	符号	最小值	最大值	单位
电源电压	V_{DD}	2	7.0	V
输入电压	V _{IN}	-0.5	VDD+0.5	V
输出电压	Vo	-0.5	VDD+0.5	V
输入电流	I _I		40	mA
输出电流	I_{O}		20	mA
功耗	P_{D}		250	mw
贮存温度	Tstg		-40~+125	$^{\circ}$ C
工作温度	Topr		-20~+75	$^{\circ}$ C

推荐工作条件(除非特别说明, Tamb=25℃)

参数	符号	最小值	典型值	最大值	单位
电源电压	V_{DD}	2.0	3.0	3.3	V
振荡频率	Fosc	400	455	500	KHz
输入电压	$V_{\rm IN}$	0		V_{DD}	V

电气参数(除非特别说明, Tamb=25℃, V_{DD}=3.0V)

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压	V_{DD}		2.0	3.0	5.5	V
工作电流	I_{CC1}	按键按下, V _{DD=} 3.0V,			1.0	mA
		Fosc=455KHz,				
		不接红外管、led 管				
静态电流	I_{CC2}	V _{DD=} 3.0V,没有按键			1	uA
		按下, 晶振停振, 红				
		外管,led 管均不工作				
SEN 高电平输入电流	I_{IH1}	$V_{IN}=3.0V$	5		30	uA
SEN 低电平输入电流	I_{IL1}	$V_{IN}=0V$			-0.2	uA
SEN 高电平输入电压	V_{IH1}		$0.7V_{DD}$		V_{DD}	V
SEN 低电平输入电压	V_{IL1}		0		$0.3 \mathrm{V}_{\mathrm{DD}}$	V
SEN 输出漏电流	I_{LO1}	V _{DD=} 7.0V,无按键	0		0.01	uA
DRV 高电平输出电流	I_{OH3}	$V_0=2.5V$	0.5		1.5	mA
DRV 低电平输出电流	I_{OL3}	$V_0=1.4V$	1.5		2.5	mA
DRV 高电平输出电压	V_{OH1}		$0.7V_{DD}$			V
DRV 低电平输出电压	V _{OL1}				0.3	V
DRV 输出漏电流	I_{LO2}	V _{DD=} 7.0V,无按键			0.01	uA
REMO 高电平输出电流	I_{OH1}	$V_0 = 3.0 V$	1.0	5.0		mA
REMO 低电平输出电流	1_{OL1}	$V_0=0.3V$	15	30		uA
REMO 高电平输出电压	V_{OH2}		$0.7V_{DD}$			V
REMO 低电平输出电压	V_{OL2}				0.3	V
REMO 输出漏电流	I_{LO3}	V _{DD=} 7.0V, 无按键			0.2	uA
LED 低电流输出电流	I_{OL2}	$V_0 = 0.3V$	1	1.5		mA
LED 低电平输出电压	V_{OL3}				0.3	V
LED 输出漏电流	I_{LO4}	V _{DD=} 7.0V, 无按键			0.2	uA

202002-12-19 第 14 页 共 16 页

六. 典型应用电路原理图

上图中,下面 8 个开关表示八种跳线的情况,全部断开为 SAA3010 码型;第一个合上为 TC9028-022 码型;第二个合上为 TC9028-023 码型;第三个合上为 LC7461 码型,第四个合上为 M34280 码型;第五个合上为 TC9028-021 码型;第六个合上为 TC9028-021A 码型;第七个合上为 PT2222 码型;第八个合上为 SAA3010 码型;当上电复位后如果一直不接跳线,则系统会默认为是处于 SAA3010 的状态下。

电路图中用一开关表示跳线,用户根据具体用途将其固定。

202002-12-19 第 15 页 共 16 页

七. 封装外形图

版权

2002 年版,版权属深圳市爱思科微电子有限公司所有,未经深圳市爱思科微电子有限公司事先的书面允许,本出版物的任何部分不得被翻版、传播。

本手册中所包含的内容发生变更时,恕不另行通知。

202002-12-19 第 16 页 共 16 页