CS224N Assignment 1: Exploring Word Vectors (25 Points)

Due 4:30pm, Tue Jan 19

Welcome to CS224N!

Before you start, make sure you read the README.txt in the same directory as this notebook for important setup information. A lot of code is provided in this notebook, and we highly encourage you to read and understand it as part of the learning:)

If you aren't super familiar with Python, Numpy, or Matplotlib, we recommend you check out the review session on Friday. The session will be recorded and the material will be made available on our website website website https://web.stanford.edu/class/cs224n/index.html#schedule). The CS231N Python/Numpy https://cs231n.github.io/python-numpy-tutorial/) is also a great resource.

Assignment Notes: Please make sure to save the notebook as you go along. Submission Instructions are located at the bottom of the notebook.

```
In [39]: # All Import Statements Defined Here
         # Note: Do not add to this list.
         import sys
         assert sys.version info[0]==3
         assert sys.version info[1] >= 5
         from gensim.models import KeyedVectors
         from gensim.test.utils import datapath
         import pprint
         import matplotlib.pyplot as plt
         plt.rcParams['figure.figsize'] = [10, 5]
         import nltk
         nltk.download('reuters')
         from nltk.corpus import reuters
         import numpy as np
         import random
         import scipy as sp
         from sklearn.decomposition import TruncatedSVD
         from sklearn.decomposition import PCA
         START TOKEN = '<START>'
         END TOKEN = '<END>'
         np.random.seed(0)
         random.seed(0)
         # -----
```

[nltk_data] Downloading package reuters to /Users/chih-[nltk_data] hsuankao/nltk_data... [nltk_data] Package reuters is already up-to-date!

Word Vectors

Word Vectors are often used as a fundamental component for downstream NLP tasks, e.g. question answering, text generation, translation, etc., so it is important to build some intuitions as to their strengths and weaknesses. Here, you will explore two types of word vectors: those derived from *co-occurrence matrices*, and those derived via *GloVe*.

Note on Terminology: The terms "word vectors" and "word embeddings" are often used interchangeably. The term "embedding" refers to the fact that we are encoding aspects of a word's meaning in a lower dimensional space. As Wikipedia (https://en.wikipedia.org/wiki/Word_embedding) states, "conceptually it involves a mathematical embedding from a space with one dimension per word to a continuous vector space with a much lower dimension".

Part 1: Count-Based Word Vectors (10 points)

Most word vector models start from the following idea:

You shall know a word by the company it keeps (<u>Firth, J. R. 1957:11</u> (https://en.wikipedia.org/wiki/John_Rupert_Firth))

Many word vector implementations are driven by the idea that similar words, i.e., (near) synonyms, will be used in similar contexts. As a result, similar words will often be spoken or written along with a shared subset of words, i.e., contexts. By examining these contexts, we can try to develop embeddings for our words. With this intuition in mind, many "old school" approaches to constructing word vectors relied on word counts. Here we elaborate upon one of those strategies, *co-occurrence matrices* (for more information, see here (here (<a href="http://web.stanford.edu/class/cs124/lec/vectorsemantics.video.pdf) or here (<a href="http://web.stanford.edu/class/cs124/lec/vectorsemantics.video.pdf) or here (<a href="http://web.stanford.edu/class/cs124/lec/vectorsemantics.video.pdf) or here (<a href="https://web.stanford.edu/class/cs124/lec/vectorsemantics.video.pdf).

Co-Occurrence

A co-occurrence matrix counts how often things co-occur in some environment. Given some word w_i occurring in the document, we consider the *context window* surrounding w_i . Supposing our fixed window size is n, then this is the n preceding and n subsequent words in that document, i.e. words $w_{i-n} \dots w_{i-1}$ and $w_{i+1} \dots w_{i+n}$. We build a *co-occurrence matrix* M, which is a symmetric word-by-word matrix in which M_{ij} is the number of times w_j appears inside w_i 's window among all documents.

Example: Co-Occurrence with Fixed Window of n=1:

Document 1: "all that glitters is not gold"

Document 2: "all is well that ends well"

*	<start></start>	all	that	glitters	is	not	gold	well	ends	<end></end>
<start></start>	0	2	0	0	0	0	0	0	0	0
all	2	0	1	0	1	0	0	0	0	0
that	0	1	0	1	0	0	0	1	1	0
glitters	0	0	1	0	1	0	0	0	0	0
is	0	1	0	1	0	1	0	1	0	0
not	0	0	0	0	1	0	1	0	0	0
gold	0	0	0	0	0	1	0	0	0	1
well	0	0	1	0	1	0	0	0	1	1
ends	0	0	1	0	0	0	0	1	0	0
<end></end>	0	0	0	0	0	0	1	1	0	0

Note: In NLP, we often add <START> and <END> tokens to represent the beginning and end of sentences, paragraphs or documents. In thise case we imagine <START> and <END> tokens encapsulating each document, e.g., " <START> All that glitters is not gold <END> ", and include these tokens in our co-occurrence counts.

The rows (or columns) of this matrix provide one type of word vectors (those based on word-word co-occurrence), but the vectors will be large in general (linear in the number of distinct words in a corpus). Thus, our next step is to run *dimensionality reduction*. In particular, we will run SVD (Singular Value Decomposition), which is a kind of generalized PCA (Principal Components Analysis) to select the top k principal components. Here's a visualization of dimensionality reduction with SVD. In this picture our co-occurrence matrix is A with n rows corresponding to n words. We obtain a full matrix decomposition, with the singular values ordered in the diagonal S matrix, and our new, shorter length-k word vectors in U_k .

This reduced-dimensionality co-occurrence representation preserves semantic relationships between words, e.g. *doctor* and *hospital* will be closer than *doctor* and *dog*.

Notes: If you can barely remember what an eigenvalue is, here's <u>a slow, friendly introduction to SVD</u> (https://davetang.org/file/Singular_Value_Decomposition_Tutorial.pdf). If you want to learn more thoroughly about PCA or SVD, feel free to check out lectures <u>7 (https://web.stanford.edu/class/cs168/l/17.pdf)</u>, <u>8 (http://theory.stanford.edu/~tim/s15/l/18.pdf)</u>, and <u>9 (https://web.stanford.edu/class/cs168/l/19.pdf)</u> of CS168. These course notes provide a great high-level treatment of these general purpose algorithms. Though, for the purpose of this class, you only need to know how to extract the k-dimensional embeddings by utilizing pre-programmed implementations of these algorithms from the numpy, scipy, or sklearn python packages. In practice, it is challenging to apply full SVD to large corpora because of the memory needed to perform PCA or SVD. However, if you only want the top k vector components for relatively small k — known as k — known as

Plotting Co-Occurrence Word Embeddings

Here, we will be using the Reuters (business and financial news) corpus. If you haven't run the import cell at the top of this page, please run it now (click it and press SHIFT-RETURN). The corpus consists of 10,788 news documents totaling 1.3 million words. These documents span 90 categories and are split into train and test. For more details, please see https://www.nltk.org/book/ch02.html

(https://www.nltk.org/book/ch02.html). We provide a read_corpus function below that pulls out only articles from the "crude" (i.e. news articles about oil, gas, etc.) category. The function also adds <START> and <END> tokens to each of the documents, and lowercases words. You do **not** have to perform any other kind of pre-processing.

Let's have a look what these documents are like....

```
In [41]: | reuters_corpus = read corpus()
         pprint.pprint(reuters corpus[:3], compact=True, width=100)
         [['<START>', 'japan', 'to', 'revise', 'long', '-', 'term', 'energy',
         'demand', 'downwards', 'the',
           'ministry', 'of', 'international', 'trade', 'and', 'industry', '('
          'miti', ')', 'will', 'revise',
           'its', 'long', '-', 'term', 'energy', 'supply', '/', 'demand', 'ou
         tlook', 'by', 'august', 'to',
           'meet', 'a', 'forecast', 'downtrend', 'in', 'japanese', 'energy',
         'demand', ',', 'ministry',
           'officials', 'said', '.', 'miti', 'is', 'expected', 'to', 'lower',
         'the', 'projection', 'for',
           'primary', 'energy', 'supplies', 'in', 'the', 'year', '2000', 'to'
         , '550', 'mln', 'kilolitres',
           '(', 'kl', ')', 'from', '600', 'mln', ',', 'they', 'said', '.', 't
         he', 'decision', 'follows',
           'the', 'emergence', 'of', 'structural', 'changes', 'in', 'japanese
         ', 'industry', 'following',
           'the', 'rise', 'in', 'the', 'value', 'of', 'the', 'yen', 'and', 'a
         ', 'decline', 'in', 'domestic',
           'electric', 'power', 'demand', '.', 'miti', 'is', 'planning', 'to'
          'work', 'out', 'a', 'revised',
           'energy', 'supply', '/', 'demand', 'outlook', 'through', 'delibera
```

```
tions', 'of', 'committee',
  'meetings', 'of', 'the', 'agency', 'of', 'natural', 'resources', '
and', 'energy', ',', 'the',
  'officials', 'said', '.', 'they', 'said', 'miti', 'will', 'also',
'review', 'the', 'breakdown',
  'of', 'energy', 'supply', 'sources', ',', 'including', 'oil', ',',
'nuclear', ',', 'coal', 'and',
  'natural', 'gas', '.', 'nuclear', 'energy', 'provided', 'the', 'bu
lk', 'of', 'japan', "'", 's',
  'electric', 'power', 'in', 'the', 'fiscal', 'year', 'ended', 'marc
h', '31', ',', 'supplying',
  'an', 'estimated', '27', 'pct', 'on', 'a', 'kilowatt', '/', 'hour'
 'basis', ',', 'followed',
  'by', 'oil', '(', '23', 'pct', ')', 'and', 'liquefied', 'natural',
'gas', '(', '21', 'pct', '),',
  'they', 'noted', '.', '<END>'],
 ['<START>', 'energy', '/', 'u', '.', 's', '.', 'petrochemical', 'in
dustry', 'cheap', 'oil',
  'feedstocks', ',', 'the', 'weakened', 'u', '.', 's', '.', 'dollar'
 'and', 'a', 'plant',
  'utilization', 'rate', 'approaching', '90', 'pct', 'will', 'propel
  'the', 'streamlined', 'u',
  '.', 's', '.', 'petrochemical', 'industry', 'to', 'record', 'profi
ts', 'this', 'year', ',',
  'with', 'growth', 'expected', 'through', 'at', 'least', '1990', ',
', 'major', 'company',
 'executives', 'predicted', '.', 'this', 'bullish', 'outlook', 'for
', 'chemical', 'manufacturing',
  'and', 'an', 'industrywide', 'move', 'to', 'shed', 'unrelated', 'b
usinesses', 'has', 'prompted',
  'gaf', 'corp', '&', 'lt', ';', 'gaf', '>,', 'privately', '-', 'hel
d', 'cain', 'chemical', 'inc',
  ',', 'and', 'other', 'firms', 'to', 'aggressively', 'seek', 'acqui
sitions', 'of', 'petrochemical',
  'plants', '.', 'oil', 'companies', 'such', 'as', 'ashland', 'oil',
'inc', '&', 'lt', ';', 'ash',
  '>,', 'the', 'kentucky', '-', 'based', 'oil', 'refiner', 'and', 'm
arketer', ',', 'are', 'also',
  'shopping', 'for', 'money', '-', 'making', 'petrochemical', 'busin
esses', 'to', 'buy', '.', '"',
  'i', 'see', 'us', 'poised', 'at', 'the', 'threshold', 'of', 'a', '
golden', 'period', ',"', 'said',
  'paul', 'oreffice', ',', 'chairman', 'of', 'giant', 'dow', 'chemic
al', 'co', '&', 'lt',
  'dow', '>,', 'adding', ',', '"', 'there', "'", 's', 'no', 'major',
'plant', 'capacity', 'being',
  'added', 'around', 'the', 'world', 'now', '.', 'the', 'whole', 'ga
me', 'is', 'bringing', 'out',
  'new', 'products', 'and', 'improving', 'the', 'old', 'ones', '."',
'analysts', 'say', 'the',
  'chemical', 'industry', "'", 's', 'biggest', 'customers', ',', 'au
tomobile', 'manufacturers',
  'and', 'home', 'builders', 'that', 'use', 'a', 'lot', 'of', 'paint
```

```
s', 'and', 'plastics', ',',
  'are', 'expected', 'to', 'buy', 'quantities', 'this', 'year', '.',
'u', '.', 's', '.',
  'petrochemical', 'plants', 'are', 'currently', 'operating', 'at',
'about', '90', 'pct',
  'capacity', ',', 'reflecting', 'tighter', 'supply', 'that', 'could
', 'hike', 'product', 'prices',
  'by', '30', 'to', '40', 'pct', 'this', 'year', ',', 'said', 'john'
, 'dosher', ',', 'managing',
 'director', 'of', 'pace', 'consultants', 'inc', 'of', 'houston', '
.', 'demand', 'for', 'some',
  'products', 'such', 'as', 'styrene', 'could', 'push', 'profit', 'm
argins', 'up', 'by', 'as',
  'much', 'as', '300', 'pct', ',', 'he', 'said', '.', 'oreffice', ',
', 'speaking', 'at', 'a',
  'meeting', 'of', 'chemical', 'engineers', 'in', 'houston', ',', 's
aid', 'dow', 'would', 'easily',
  'top', 'the', '741', 'mln', 'dlrs', 'it', 'earned', 'last', 'year'
, 'and', 'predicted', 'it',
 'would', 'have', 'the', 'best', 'year', 'in', 'its', 'history', '.
', 'in', '1985', ',', 'when',
  'oil', 'prices', 'were', 'still', 'above', '25', 'dlrs', 'a', 'bar
rel', 'and', 'chemical',
  'exports', 'were', 'adversely', 'affected', 'by', 'the', 'strong',
'u', '.', 's', '.', 'dollar',
  ',', 'dow', 'had', 'profits', 'of', '58', 'mln', 'dlrs', '.', '"',
'i', 'believe', 'the',
  'entire', 'chemical', 'industry', 'is', 'headed', 'for', 'a', 'rec
ord', 'year', 'or', 'close',
  'to', 'it', ',"', 'oreffice', 'said', '.', 'gaf', 'chairman', 'sam
uel', 'heyman', 'estimated',
  'that', 'the', 'u', '.', 's', '.', 'chemical', 'industry', 'would'
, 'report', 'a', '20', 'pct',
  'gain', 'in', 'profits', 'during', '1987', '.', 'last', 'year', ',
', 'the', 'domestic',
  'industry', 'earned', 'a', 'total', 'of', '13', 'billion', 'dlrs',
',', 'a', '54', 'pct', 'leap',
  'from', '1985', '.', 'the', 'turn', 'in', 'the', 'fortunes', 'of',
'the', 'once', '-', 'sickly',
  'chemical', 'industry', 'has', 'been', 'brought', 'about', 'by', '
a', 'combination', 'of', 'luck',
  'and', 'planning', ',', 'said', 'pace', "'", 's', 'john', 'dosher'
 '.', 'dosher', 'said', 'last',
  'year', "'", 's', 'fall', 'in', 'oil', 'prices', 'made', 'feedstoc
ks', 'dramatically', 'cheaper',
  'and', 'at', 'the', 'same', 'time', 'the', 'american', 'dollar', '
was', 'weakening', 'against',
  'foreign', 'currencies', '.', 'that', 'helped', 'boost', 'u', '.',
's', '.', 'chemical',
  'exports', '.', 'also', 'helping', 'to', 'bring', 'supply', 'and',
'demand', 'into', 'balance',
  'has', 'been', 'the', 'gradual', 'market', 'absorption', 'of', 'th
e', 'extra', 'chemical',
```

```
'manufacturing', 'capacity', 'created', 'by', 'middle', 'eastern',
'oil', 'producers', 'in',
  'the', 'early', '1980s', '.', 'finally', ',', 'virtually', 'all',
'major', 'u', '.', 's', '.',
  'chemical', 'manufacturers', 'have', 'embarked', 'on', 'an', 'exte
nsive', 'corporate',
  'restructuring', 'program', 'to', 'mothball', 'inefficient', 'plan
ts', ',', 'trim', 'the',
  'payroll', 'and', 'eliminate', 'unrelated', 'businesses', '.', 'th
e', 'restructuring', 'touched',
  'off', 'a', 'flurry', 'of', 'friendly', 'and', 'hostile', 'takeove
r', 'attempts', '.', 'gaf', ',',
  'which', 'made', 'an', 'unsuccessful', 'attempt', 'in', '1985', 't
o', 'acquire', 'union',
  'carbide', 'corp', '&', 'lt', ';', 'uk', '>,', 'recently', 'offere
d', 'three', 'billion', 'dlrs',
  'for', 'borg', 'warner', 'corp', '&', 'lt', ';', 'bor', '>,', 'a',
'chicago', 'manufacturer',
  'of', 'plastics', 'and', 'chemicals', '.', 'another', 'industry',
'powerhouse', ',', 'w', '.',
  'r', '.', 'grace', '&', 'lt', ';', 'gra', '>', 'has', 'divested',
'its', 'retailing', ',',
  'restaurant', 'and', 'fertilizer', 'businesses', 'to', 'raise', 'c
ash', 'for', 'chemical',
  'acquisitions', '.', 'but', 'some', 'experts', 'worry', 'that', 't
he', 'chemical', 'industry',
  'may', 'be', 'headed', 'for', 'trouble', 'if', 'companies', 'conti
nue', 'turning', 'their',
  'back', 'on', 'the', 'manufacturing', 'of', 'staple', 'petrochemic
al', 'commodities', ',', 'such',
  'as', 'ethylene', ',', 'in', 'favor', 'of', 'more', 'profitable',
'specialty', 'chemicals',
  'that', 'are', 'custom', '-', 'designed', 'for', 'a', 'small', 'gr
oup', 'of', 'buyers', '.', '"',
  'companies', 'like', 'dupont', '&', 'lt', ';', 'dd', '>', 'and', '
monsanto', 'co', '&', 'lt', ';',
  'mtc', '>', 'spent', 'the', 'past', 'two', 'or', 'three', 'years',
'trying', 'to', 'get', 'out',
  'of', 'the', 'commodity', 'chemical', 'business', 'in', 'reaction'
, 'to', 'how', 'badly', 'the',
  'market', 'had', 'deteriorated', ',"', 'dosher', 'said', '.', '"',
'but', 'i', 'think', 'they',
  'will', 'eventually', 'kill', 'the', 'margins', 'on', 'the', 'prof
itable', 'chemicals', 'in',
  'the', 'niche', 'market', '."', 'some', 'top', 'chemical', 'execut
ives', 'share', 'the',
  'concern', '.', '"', 'the', 'challenge', 'for', 'our', 'industry',
'is', 'to', 'keep', 'from',
  'getting', 'carried', 'away', 'and', 'repeating', 'past', 'mistake
s', ',"', 'gaf', "'", 's',
  'heyman', 'cautioned', '.', '"', 'the', 'shift', 'from', 'commodit
y', 'chemicals', 'may', 'be',
  ill', '-', 'advised', '.', 'specialty', 'businesses', 'do', 'not'
```

```
'stay', 'special', 'long',
  '."', 'houston', '-', 'based', 'cain', 'chemical', ',', 'created',
'this', 'month', 'by', 'the',
  'sterling', 'investment', 'banking', 'group', ',', 'believes', 'it
', 'can', 'generate', '700',
  'mln', 'dlrs', 'in', 'annual', 'sales', 'by', 'bucking', 'the', 'i
ndustry', 'trend', '.',
  'chairman', 'gordon', 'cain', ',', 'who', 'previously', 'led', 'a'
, 'leveraged', 'buyout', 'of',
  'dupont', "'", 's', 'conoco', 'inc', "'", 's', 'chemical', 'busine
ss', ',', 'has', 'spent', '1',
  '.', '1', 'billion', 'dlrs', 'since', 'january', 'to', 'buy', 'sev
en', 'petrochemical', 'plants',
  'along', 'the', 'texas', 'gulf', 'coast', '.', 'the', 'plants', 'p
roduce', 'only', 'basic',
'commodity', 'petrochemicals', 'that', 'are', 'the', 'building', 'blocks', 'of', 'specialty',
  'products', '.', '"', 'this', 'kind', 'of', 'commodity', 'chemical
', 'business', 'will', 'never',
  'be', 'a', 'glamorous', ',', 'high', '-', 'margin', 'business', ',
"', 'cain', 'said', ',',
  'adding', 'that', 'demand', 'is', 'expected', 'to', 'grow', 'by',
'about', 'three', 'pct',
    'annually', '.', 'garo', 'armen', ',', 'an', 'analyst', 'with', 'd
ean', 'witter', 'reynolds', ',',
  'said', 'chemical', 'makers', 'have', 'also', 'benefitted', 'by',
'increasing', 'demand', 'for',
  'plastics', 'as', 'prices', 'become', 'more', 'competitive', 'with
', 'aluminum', ',', 'wood',
  'and', 'steel', 'products', '.', 'armen', 'estimated', 'the', 'upt
urn', 'in', 'the', 'chemical',
  'business', 'could', 'last', 'as', 'long', 'as', 'four', 'or', 'fi
ve', 'years', ',', 'provided',
  'the', 'u', '.', 's', '.', 'economy', 'continues', 'its', 'modest'
 'rate', 'of', 'growth', '.',
  '<END>'],
 ['<START>', 'turkey', 'calls', 'for', 'dialogue', 'to', 'solve', 'd
ispute', 'turkey', 'said',
  'today', 'its', 'disputes', 'with', 'greece', ',', 'including', 'r
ights', 'on', 'the',
  'continental', 'shelf', 'in', 'the', 'aegean', 'sea', ',', 'should
', 'be', 'solved', 'through',
  'negotiations', '.', 'a', 'foreign', 'ministry', 'statement', 'sai
d', 'the', 'latest', 'crisis',
  'between', 'the', 'two', 'nato', 'members', 'stemmed', 'from', 'th
e', 'continental', 'shelf',
  'dispute', 'and', 'an', 'agreement', 'on', 'this', 'issue', 'would
', 'effect', 'the', 'security',
  ',', 'economy', 'and', 'other', 'rights', 'of', 'both', 'countries '.', '"', 'as', 'the',
  'issue', 'is', 'basicly', 'political', ',', 'a', 'solution', 'can'
, 'only', 'be', 'found', 'by',
  'bilateral', 'negotiations', ',"', 'the', 'statement', 'said', '.'
```

```
, 'greece', 'has', 'repeatedly',
  'said', 'the', 'issue', 'was', 'legal', 'and', 'could', 'be', 'sol
ved', 'at', 'the',
  'international', 'court', 'of', 'justice', '.', 'the', 'two', 'cou
ntries', 'approached', 'armed',
  'confrontation', 'last', 'month', 'after', 'greece', 'announced',
'it', 'planned', 'oil',
  'exploration', 'work', 'in', 'the', 'aegean', 'and', 'turkey', 'sa
id', 'it', 'would', 'also',
  'search', 'for', 'oil', '.', 'a', 'face', '-', 'off', 'was', 'aver
ted', 'when', 'turkey',
  'confined', 'its', 'research', 'to', 'territorrial', 'waters', '.'
 '"', 'the', 'latest',
  'crises', 'created', 'an', 'historic', 'opportunity', 'to', 'solve
', 'the', 'disputes', 'between',
  'the', 'two', 'countries', ',"', 'the', 'foreign', 'ministry', 'st
atement', 'said', '.', 'turkey',
  "'", 's', 'ambassador', 'in', 'athens', ',', 'nazmi', 'akiman', ',
', 'was', 'due', 'to', 'meet',
  'prime', 'minister', 'andreas', 'papandreou', 'today', 'for', 'the
', 'greek', 'reply', 'to', 'a',
  'message', 'sent', 'last', 'week', 'by', 'turkish', 'prime', 'mini
ster', 'turgut', 'ozal', '.',
  'the', 'contents', 'of', 'the', 'message', 'were', 'not', 'disclos
ed', '.', '<END>']]
```

Question 1.1: Implement distinct_words [code] (2 points)

Write a method to work out the distinct words (word types) that occur in the corpus. You can do this with for loops, but it's more efficient to do it with Python list comprehensions. In particular, this (https://coderwall.com/p/rcmaea/flatten-a-list-of-lists-in-one-line-in-python) may be useful to flatten a list of lists. If you're not familiar with Python list comprehensions in general, here's more information https://python-3-patterns-idioms-test.readthedocs.io/en/latest/Comprehensions.html).

Your returned corpus words should be sorted. You can use python's sorted function for this.

You may find it useful to use <u>Python sets (https://www.w3schools.com/python/python_sets.asp)</u> to remove duplicate words.

```
def distinct words(corpus):
In [42]:
             """ Determine a list of distinct words for the corpus.
                     corpus (list of list of strings): corpus of documents
                 Return:
                     corpus_words (list of strings): sorted list of distinct wo
         rds across the corpus
                     num corpus words (integer): number of distinct words acros
         s the corpus
             H/H/H
             corpus words = []
             num\_corpus\_words = -1
             # -----
             # Use list comprehension
             corpus words = [eachword for line in corpus for eachword in line]
             # Capture distinct ones using set
             corpus words set = set(corpus words)
             # Make elemennts a sorted list
             corpus_words = sorted(list(corpus_words_set))
             # get number of distinct words across the corpus
             num corpus words = len(corpus words)
             # -----
             return corpus words, num corpus words
```

```
In [43]:
         # Run this sanity check
         # Note that this not an exhaustive check for correctness.
         # Define toy corpus
         test corpus = ["{} All that glitters isn't gold {}".format(START TOKEN
         , END TOKEN).split(" "), "{} All's well that ends well {}".format(STAR
         T TOKEN, END TOKEN).split(" ")]
         test_corpus_words, num_corpus_words = distinct_words(test_corpus)
         # Correct answers
         ans test corpus words = sorted([START TOKEN, "All", "ends", "that", "g
         old", "All's", "glitters", "isn't", "well", END TOKEN])
         ans num corpus words = len(ans test corpus words)
         # Test correct number of words
         assert(num corpus words == ans num corpus words), "Incorrect number of
         distinct words. Correct: {}. Yours: {}".format(ans num corpus words, n
         um corpus words)
         # Test correct words
         assert (test corpus words == ans test corpus words), "Incorrect corpus
         words.\nCorrect: {}\nYours: {}".format(str(ans test corpus words),
         str(test corpus words))
         # Print Success
         print ("-" * 80)
         print("Passed All Tests!")
         print ("-" * 80)
          ------
```

Passed All Tests!

Question 1.2: Implement compute_co_occurrence_matrix [code] (3 points)

Write a method that constructs a co-occurrence matrix for a certain window-size n (with a default of 4), considering words n before and n after the word in the center of the window. Here, we start to use <code>numpy(np)</code> to represent vectors, matrices, and tensors. If you're not familiar with NumPy, there's a NumPy tutorial in the second half of this cs231n <code>Python NumPy tutorial</code> (http://cs231n.github.io/python-numpy-tutorial/).

```
In [44]: def compute_co_occurrence_matrix(corpus, window_size=4):
    """ Compute co-occurrence matrix for the given corpus and window_s
    ize (default of 4).

Note: Each word in a document should be at the center of a win
```

```
dow. Words near edges will have a smaller
             number of co-occurring words.
             For example, if we take the document "<START> All that q
litters is not gold <END>" with window size of 4,
              "All" will co-occur with "<START>", "that", "glitters",
"is", and "not".
        Params:
            corpus (list of list of strings): corpus of documents
            window size (int): size of context window
        Return:
            M (a symmetric numpy matrix of shape (number of unique wor
ds in the corpus , number of unique words in the corpus)):
                Co-occurence matrix of word counts.
                The ordering of the words in the rows/columns should b
e the same as the ordering of the words given by the distinct words fu
nction.
           word2ind (dict): dictionary that maps word to index (i.e.
row/column number) for matrix M.
   words, num words = distinct words(corpus)
   M = None
   word2ind = {}
    # -----
    # Initialize numpy matrix M of shape num words*num words with all
zero's
   M = np.zeros((num words, num words))
    # Initialize dictionary mapping words to indices
    for i in range(num words):
       word2ind[words[i]] = i
    # Loop through each line in corpus
    for sentence in corpus:
        # Locate each word in this line
        for i, center word in enumerate(sentence):
            center index = word2ind[center word]
            # Capture windows based on current index and window size
            left index = max(i - window size, 0)
            right index = min(i + window size, len(sentence) - 1)
            # Loo through half, add 1 to the symmetric matrix
            for j in range(left index, i):
               window word = sentence[j]
               M[center index][word2ind[window word]] += 1
               M[word2ind[window word]][center index] += 1
    # -----
    return M, word2ind
```

```
# Run this sanity check
# Note that this is not an exhaustive check for correctness.
# Define toy corpus and get student's co-occurrence matrix
test corpus = ["{} All that glitters isn't gold {}".format(START TOKEN
, END TOKEN).split(" "), "{} All's well that ends well {}".format(STAR
T_TOKEN, END_TOKEN).split(" ")]
M test, word2ind test = compute co occurrence matrix(test corpus, wind
ow size=1)
# Correct M and word2ind
M test ans = np.array(
    [[0., 0., 0., 0., 0., 0., 1., 0., 0., 1.,],
    [0., 0., 1., 1., 0., 0., 0., 0., 0., 0., ],
     [0., 1., 0., 0., 0., 0., 0., 1., 0.,],
     [0., 1., 0., 0., 0., 0., 0., 0., 1.,],
     [0., 0., 0., 0., 0., 0., 0., 0., 1., 1.,],
     [0., 0., 0., 0., 0., 0., 0., 1., 1., 0.,],
     [1., 0., 0., 0., 0., 0., 1., 0., 0., ],
     [0., 0., 0., 0., 0., 1., 1., 0., 0., 0., ],
     [0., 0., 1., 0., 1., 1., 0., 0., 0., 1.,],
     [1., 0., 0., 1., 1., 0., 0., 0., 1., 0.,]]
ans test corpus words = sorted([START TOKEN, "All", "ends", "that", "g
old", "All's", "glitters", "isn't", "well", END TOKEN])
word2ind ans = dict(zip(ans test corpus words, range(len(ans test corp
us words))))
# Test correct word2ind
assert (word2ind_ans == word2ind_test), "Your word2ind is incorrect:\n
Correct: {}\nYours: {}".format(word2ind ans, word2ind test)
# Test correct M shape
assert (M test.shape == M test ans.shape), "M matrix has incorrect sha
pe.\nCorrect: {}\nYours: {}".format(M test.shape, M test ans.shape)
# Test correct M values
for w1 in word2ind ans.keys():
    idx1 = word2ind ans[w1]
    for w2 in word2ind ans.keys():
        idx2 = word2ind ans[w2]
        student = M test[idx1, idx2]
        correct = M test ans[idx1, idx2]
        if student != correct:
            print("Correct M:")
            print(M_test_ans)
            print("Your M: ")
           print(M test)
            raise AssertionError("Incorrect count at index ({}, {})=({
}, {}) in matrix M. Yours has {} but should have {}.".format(idx1, idx
2, w1, w2, student, correct))
```

Question 1.3: Implement reduce_to_k_dim [code] (1 point)

Construct a method that performs dimensionality reduction on the matrix to produce k-dimensional embeddings. Use SVD to take the top k components and produce a new matrix of k-dimensional embeddings.

Note: All of numpy, scipy, and scikit-learn (sklearn) provide *some* implementation of SVD, but only scipy and sklearn provide an implementation of Truncated SVD, and only sklearn provides an efficient randomized algorithm for calculating large-scale Truncated SVD. So please use sklearn.decomposition.TruncatedSVD (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html).

```
def reduce to k \dim(M, k=2):
In [46]:
             """ Reduce a co-occurence count matrix of dimensionality (num corp
         us words, num corpus words)
                 to a matrix of dimensionality (num_corpus_words, k) using the
         following SVD function from Scikit-Learn:
                     - http://scikit-learn.org/stable/modules/generated/sklearn
         .decomposition.TruncatedSVD.html
                 Params:
                     M (numpy matrix of shape (number of unique words in the co
         rpus , number of unique words in the corpus)): co-occurence matrix of
         word counts
                     k (int): embedding size of each word after dimension reduc
         tion
                 Return:
                     M reduced (numpy matrix of shape (number of corpus words,
         k)): matrix of k-dimensioal word embeddings.
                             In terms of the SVD from math class, this actually
         returns U * S
             n iters = 10  # Use this parameter in your call to `TruncatedSV
         D^{\wedge}
             M reduced = None
             print("Running Truncated SVD over %i words..." % (M.shape[0]))
             # -----
             svd = TruncatedSVD(n components=k, n iter=n iters)
             M reduced = svd.fit transform(M)
             # -----
             print("Done.")
```

return M reduced

```
In [47]:
         # Run this sanity check
         # Note that this is not an exhaustive check for correctness
         # In fact we only check that your M reduced has the right dimensions.
         # Define toy corpus and run student code
         test corpus = ["{} All that glitters isn't gold {}".format(START TOKEN
         , END TOKEN).split(" "), "{} All's well that ends well {}".format(STAR
         T TOKEN, END TOKEN).split(" ")]
         M test, word2ind test = compute co occurrence matrix(test corpus, wind
         ow size=1)
         M test reduced = reduce to k dim(M test, k=2)
         # Test proper dimensions
         assert (M test reduced.shape[0] == 10), "M reduced has {} rows; should
         have {}".format(M_test_reduced.shape[0], 10)
         assert (M test reduced.shape[1] == 2), "M reduced has {} columns; shou
         ld have {}".format(M test reduced.shape[1], 2)
         # Print Success
         print ("-" * 80)
         print("Passed All Tests!")
         print ("-" * 80)
         Running Truncated SVD over 10 words...
         Done.
         Passed All Tests!
```

Question 1.4: Implement plot_embeddings [code] (1 point)

Here you will write a function to plot a set of 2D vectors in 2D space. For graphs, we will use Matplotlib (plt).

For this example, you may find it useful to adapt this code

(http://web.archive.org/web/20190924160434/https://www.pythonmembers.club/2018/05/08/matplotlib-scatter-plot-annotate-set-text-at-label-each-point/). In the future, a good way to make a plot is to look at the Matplotlib gallery (https://matplotlib.org/gallery/index.html), find a plot that looks somewhat like what you want, and adapt the code they give.

```
def plot embeddings(M reduced, word2ind, words):
In [48]:
             """ Plot in a scatterplot the embeddings of the words specified in
         the list "words".
                NOTE: do not plot all the words listed in M_reduced / word2ind
                 Include a label next to each point.
                 Params:
                    M reduced (numpy matrix of shape (number of unique words i
         n the corpus , 2)): matrix of 2-dimensioal word embeddings
                    word2ind (dict): dictionary that maps word to indices for
         matrix M
                    words (list of strings): words whose embeddings we want to
         visualize
             # -----
             for count, word in enumerate(words):
                 x = M reduced[word2ind[word],0]
                 y = M_reduced[word2ind[word],1]
                plt.scatter(x, y, marker='x', color='red')
                plt.text(x, y, word, fontsize=10)
                 #plt.show()
             # -----
```

Outputted Plot.

Outputted Plot:

Test Plot Solution

Question 1.5: Co-Occurrence Plot Analysis [written] (3 points)

Now we will put together all the parts you have written! We will compute the co-occurrence matrix with fixed window of 4 (the default window size), over the Reuters "crude" (oil) corpus. Then we will use TruncatedSVD to compute 2-dimensional embeddings of each word. TruncatedSVD returns U*S, so we need to normalize the returned vectors, so that all the vectors will appear around the unit circle (therefore closeness is directional closeness). **Note**: The line of code below that does the normalizing uses the NumPy concept of *broadcasting*. If you don't know about broadcasting, check out <u>Computation on Arrays: Broadcasting by Jake VanderPlas (https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arrays-broadcasting.html).</u>

Run the below cell to produce the plot. It'll probably take a few seconds to run. What clusters together in 2-dimensional embedding space? What doesn't cluster together that you might think should have? **Note:** "bpd" stands for "barrels per day" and is a commonly used abbreviation in crude oil topic articles.

Running Truncated SVD over 8185 words...
Done.

Country names such as iraq, equador (and kuwait not so far from them) cluster together. This is because these terms belong to a single type. However, bpd (barrels per day) and barrels (and probably output) don't cluster together although they seem to have similar meanings in terms of oil and energy.

Part 2: Prediction-Based Word Vectors (15 points)

As discussed in class, more recently prediction-based word vectors have demonstrated better performance, such as word2vec and GloVe (which also utilizes the benefit of counts). Here, we shall explore the embeddings produced by GloVe. Please revisit the class notes and lecture slides for more details on the word2vec and GloVe algorithms. If you're feeling adventurous, challenge yourself and try reading GloVe's original paper (https://nlp.stanford.edu/pubs/glove.pdf).

Then run the following cells to load the GloVe vectors into memory. **Note**: If this is your first time to run these cells, i.e. download the embedding model, it will take a couple minutes to run. If you've run these cells before, rerunning them will load the model without redownloading it, which will take about 1 to 2 minutes.

Note: If you are receiving a "reset by peer" error, rerun the cell to restart the download.

Reducing dimensionality of Word Embeddings

Let's directly compare the GloVe embeddings to those of the co-occurrence matrix. In order to avoid running out of memory, we will work with a sample of 10000 GloVe vectors instead. Run the following cells to:

- 1. Put 10000 Glove vectors into a matrix M
- 2. Run reduce_to_k_dim (your Truncated SVD function) to reduce the vectors from 200-dimensional to 2-dimensional.

```
def get_matrix_of_vectors(wv_from_bin, required words=['barrels', 'bpd
In [53]:
         ', 'ecuador', 'energy', 'industry', 'kuwait', 'oil', 'output', 'petrol
         eum', 'iraq']):
              """ Put the GloVe vectors into a matrix M.
                 Param:
                     wv from bin: KeyedVectors object; the 400000 GloVe vectors
         loaded from file
                 Return:
                     M: numpy matrix shape (num words, 200) containing the vect
         ors
                     word2ind: dictionary mapping each word to its row number i
         n M
             import random
             words = list(wv from bin.vocab.keys())
             print("Shuffling words ...")
             random.seed(224)
             random.shuffle(words)
             words = words[:10000]
             print("Putting %i words into word2ind and matrix M..." % len(words
         ))
             word2ind = {}
             M = []
             curInd = 0
             for w in words:
                 try:
                     M.append(wv_from_bin.word_vec(w))
                     word2ind[w] = curInd
                     curInd += 1
                 except KeyError:
                     continue
             for w in required words:
                 if w in words:
                     continue
                 try:
                     M.append(wv_from_bin.word_vec(w))
                     word2ind[w] = curInd
                     curInd += 1
                 except KeyError:
                     continue
             M = np.stack(M)
             print("Done.")
             return M, word2ind
```

Note: If you are receiving out of memory issues on your local machine, try closing other applications to free more memory on your device. You may want to try restarting your machine so that you can free up extra memory. Then immediately run the jupyter notebook and see if you can load the word vectors properly. If you still have problems with loading the embeddings onto your local machine after this, please go to office hours or contact course staff.

Question 2.1: GloVe Plot Analysis [written] (3 points)

```
Run the cell below to plot the 2D GloVe embeddings for ['barrels', 'bpd', 'ecuador', 'energy', 'industry', 'kuwait', 'oil', 'output', 'petroleum', 'iraq'].
```

What clusters together in 2-dimensional embedding space? What doesn't cluster together that you think should have? How is the plot different from the one generated earlier from the co-occurrence matrix? What is a possible cause for the difference?

Now, there are two clusters --(ecuador, iraq and petroleum) and (energy, industry) in the 2D embedding space. Similarly, bpd, barrels and output don't cluster together that I think should have. The clustering is different from the previous one in the sense that we now don't have country names cluster together (also, kuwait is even far from the first cluster anymore and petroleum joins). A possible cause for the difference might due to something beyond the word co-occurrence nature in obtaining word vectors [thanks to its aggregated global word-word co-occurrence statistics from a corpus]. GloVe takes advantages as it looks at the ratio between the co-occurrence probabilities to extract the inner meaning of words in addition to co-occurrence of words.

Cosine Similarity

Now that we have word vectors, we need a way to quantify the similarity between individual words, according to these vectors. One such metric is cosine-similarity. We will be using this to find words that are "close" and "far" from one another.

We can think of n-dimensional vectors as points in n-dimensional space. If we take this perspective <u>L1</u> (http://mathworld.wolfram.com/L1-Norm.html) and <u>L2 (http://mathworld.wolfram.com/L2-Norm.html</u>) Distances help quantify the amount of space "we must travel" to get between these two points. Another approach is to examine the angle between two vectors. From trigonometry we know that:

Instead of computing the actual angle, we can leave the similarity in terms of $similarity = cos(\Theta)$. Formally the Cosine Similarity (https://en.wikipedia.org/wiki/Cosine_similarity) s between two vectors p and q is defined as:

$$s = \frac{p \cdot q}{||p||||q||}$$
, where $s \in [-1, 1]$

Question 2.2: Words with Multiple Meanings (1.5 points) [code + written]

Polysemes and homonyms are words that have more than one meaning (see this wiki-page (https://en.wiki-page (https://en.wiki-page (wiki-polysemy) to learn more about the difference between polysemes and homonyms). Find a word with at least two different meanings such that the top-10 most similar words (according to cosine similarity) contain related words from both meanings. For example, "leaves" has both "go_away" and "a_structure_of_a_plant" meaning in the top 10, and "scoop" has both "handed_waffle_cone" and "lowdown". You will probably need to try several polysemous or homonymic words before you find one.

Please state the word you discover and the multiple meanings that occur in the top 10. Why do you think many of the polysemous or homonymic words you tried didn't work (i.e. the top-10 most similar words only contain **one** of the meanings of the words)?

Note: You should use the wv_from_bin.most_similar(word) function to get the top 10 similar words. This function ranks all other words in the vocabulary with respect to their cosine similarity to the given word. For further assistance, please check the **GenSim documentation**(https://radimrehurek.com/gensim/models/keyedvectors.html#gensim.models.keyedvectors.FastTextK(

The word 'chair' has at least two meanings--one is a separate seat for one person, typically with a back and four legs; another one is the person in charge of a meeting or of an organization. The former meaning corresponds well to the 2nd (sitting), 4th (seat), 5th (sits), etc. similar words, while the latter one corresponds well to the 3rd (head), 9th (panel), 10th (board) etc. on the other hand. Many of the polysemous or homonymic words might not work because some words in the top 10 ones don't hold the same meaning with the target word, sometimes even with opposite meanings, which hinders its probability of showing up.

Question 2.3: Synonyms & Antonyms (2 points) [code + written]

When considering Cosine Similarity, it's often more convenient to think of Cosine Distance, which is simply 1 - Cosine Similarity.

Find three words (w_1, w_2, w_3) where w_1 and w_2 are synonyms and w_1 and w_3 are antonyms, but Cosine Distance (w_1, w_3) < Cosine Distance (w_1, w_2) .

As an example, w_1 ="happy" is closer to w_3 ="sad" than to w_2 ="cheerful". Please find a different example that satisfies the above. Once you have found your example, please give a possible explanation for why this counter-intuitive result may have happened.

You should use the the wv_from_bin.distance(w1, w2) function here in order to compute the cosine distance between two words. Please see the GenSim documentation
GenSim documentation
GenSim documentation
GenSim documentation

Synonyms mr, sir have cosine distance: 0.48897749185562134 Antonyms mr, mrs have cosine distance: 0.3088870644569397

Typically speaking, 'mr' and 'sir' usually hold a similar meaning, while 'mr' and 'mrs' are used for different genders. However, the distance between 'mr' and 'mrs' is closer, i.e. they have closer meanings. The counter-intuitive result may have happened because 'mr' and 'mrs' are usually used in the same context although they do not have identical meanings.

Question 2.4: Analogies with Word Vectors [written] (1.5 points)

Word vectors have been shown to sometimes exhibit the ability to solve analogies.

As an example, for the analogy "man: king:: woman: x" (read: man is to king as woman is to x), what is x?

In the cell below, we show you how to use word vectors to find x using the $most_similar$ function from the **GenSim documentation**

(https://radimrehurek.com/gensim/models/keyedvectors.html#gensim.models.keyedvectors.KeyedVectors.

The function finds words that are most similar to the words in the positive list and most dissimilar from the words in the negative list (while omitting the input words, which are often the most similar; see this paper (https://www.aclweb.org/anthology/N18-2039.pdf)). The answer to the analogy will have the highest cosine similarity (largest returned numerical value).

```
In [58]: # Run this cell to answer the analogy -- man : king :: woman : x
    pprint.pprint(wv_from_bin.most_similar(positive=['woman', 'king'], neg
    ative=['man']))

[('queen', 0.6978678703308105),
        ('princess', 0.6081745028495789),
        ('monarch', 0.5889754891395569),
        ('throne', 0.5775108933448792),
        ('prince', 0.5750998258590698),
        ('elizabeth', 0.5463595986366272),
        ('daughter', 0.5399125814437866),
        ('kingdom', 0.5318052172660828),
        ('mother', 0.5168544054031372),
        ('crown', 0.5164473056793213)]
```

Let m, k, w, and x denote the word vectors for man, king, woman, and the answer, respectively. Using only vectors m, k, w, and the vector arithmetic operators + and - in your answer, what is the expression in which we are maximizing cosine similarity with x?

Hint: Recall that word vectors are simply multi-dimensional vectors that represent a word. It might help to draw out a 2D example using arbitrary locations of each vector. Where would man and woman lie in the coordinate plane relative to king and the answer?

w+k-m

Question 2.5: Finding Analogies [code + written] (1.5 points)

Find an example of analogy that holds according to these vectors (i.e. the intended word is ranked top). In your solution please state the full analogy in the form x:y :: a:b. If you believe the analogy is complicated, explain why the analogy holds in one or two sentences.

Note: You may have to try many analogies to find one that works!

sister: brother:: niece: nephew

Question 2.6: Incorrect Analogy [code + written] (1.5 points)

Find an example of analogy that does *not* hold according to these vectors. In your solution, state the intended analogy in the form x:y :: a:b, and state the (incorrect) value of b according to the word vectors.

teacher: student:: doctor: patient; however, the word 'doctor' didn't show up to be the top choice in the most similar word lists.

Question 2.7: Guided Analysis of Bias in Word Vectors [written] (1 point)

It's important to be cognizant of the biases (gender, race, sexual orientation etc.) implicit in our word embeddings. Bias can be dangerous because it can reinforce stereotypes through applications that employ these models.

Run the cell below, to examine (a) which terms are most similar to "woman" and "worker" and most dissimilar to "man", and (b) which terms are most similar to "man" and "worker" and most dissimilar to "woman". Point out the difference between the list of female-associated words and the list of male-associated words, and explain how it is reflecting gender bias.

```
In [61]:
         # Run this cell
         # Here `positive` indicates the list of words to be similar to and `ne
         gative` indicates the list of words to be
         # most dissimilar from.
         pprint.pprint(wv from bin.most similar(positive=['woman', 'worker'], n
         egative=['man']))
         print()
         pprint.pprint(wv from bin.most similar(positive=['man', 'worker'], neg
         ative=['woman']))
         [('employee', 0.6375863552093506),
          ('workers', 0.6068919897079468),
          ('nurse', 0.5837947130203247),
          ('pregnant', 0.5363885760307312),
          ('mother', 0.5321309566497803),
          ('employer', 0.5127025842666626),
          ('teacher', 0.5099577307701111),
          ('child', 0.5096741914749146),
          ('homemaker', 0.5019455552101135),
          ('nurses', 0.4970571994781494)]
         [('workers', 0.611325740814209),
          ('employee', 0.5983108878135681),
          ('working', 0.5615329742431641),
          ('laborer', 0.5442320108413696),
          ('unemployed', 0.5368517637252808),
          ('job', 0.5278826951980591),
          ('work', 0.5223963260650635),
          ('mechanic', 0.5088937282562256),
          ('worked', 0.5054520964622498),
          ('factory', 0.4940453767776489)]
```

The top 1 words of man - worker = woman - x is employee, while the top 1 word of woman - worker = man - x is workers. This represents the gender bias in the context because female is basically associated with the role of employee in the available context.

Question 2.8: Independent Analysis of Bias in Word Vectors [code + written] (1 point)

Use the <code>most_similar</code> function to find another case where some bias is exhibited by the vectors. Please briefly explain the example of bias that you discover.

```
In [62]:
         print("man:doctor :: woman: ?")
         pprint.pprint(wv from bin.most similar(positive=['woman', 'doctor'], n
         egative=['man']))
         print("woman:doctor :: man: ?")
         pprint.pprint(wv from bin.most similar(positive=['man', 'doctor'], neg
         ative=['woman']))
         man:doctor :: woman: ?
         [('nurse', 0.6813318729400635),
          ('physician', 0.6672453284263611),
          ('doctors', 0.6173422932624817),
          ('dentist', 0.5775880217552185),
          ('surgeon', 0.5691418647766113),
          ('hospital', 0.564996600151062),
          ('pregnant', 0.5649075508117676),
          ('nurses', 0.5590691566467285),
          ('medical', 0.5542058944702148),
          ('patient', 0.5518484711647034)]
         woman:doctor :: man: ?
         [('dr.', 0.5486295819282532),
          ('physician', 0.5327188372612),
          ('he', 0.5275284647941589),
          ('him', 0.5230658054351807),
```

On one hand, in the top 10 of man:doctor :: woman: ?, the top 1 word is nurse. On the other hand, in the top 10 word of woman:doctor :: man:: ?, the top 1 word is dr. This again represents certain gender bias in the word embedding because the female doctor is less associated in the context of words; hence, there must exist some bias in terms of the word embedding.

('himself', 0.5116502642631531), ('medical', 0.5046803951263428), ('his', 0.5044265985488892), ('brother', 0.503484845161438), ('surgeon', 0.5005415081977844), ('mr.', 0.4938008189201355)]

Question 2.9: Thinking About Bias [written] (2 points)

Give one explanation of how bias gets into the word vectors. What is an experiment that you could do to test for or to measure this source of bias?

Some biases result from the implicit biases of the context of data, i.e. the source of our data contents. This reflects the perpective of our society nowadays. One way to measure the bias is to utilize some cost function. A cost function could describe the cost of incorrectly predicting, as I pointed out in previous examples. Since a model making an incorrect prediction is an undesirable outcome, we could calculate the cost to do the testing.

Submission Instructions

- 1. Click the Save button at the top of the Jupyter Notebook.
- 2. Select Cell -> All Output -> Clear. This will clear all the outputs from all cells (but will keep the content of all cells).
- 3. Select Cell -> Run All. This will run all the cells in order, and will take several minutes.
- 4. Once you've rerun everything, select File -> Download as -> PDF via LaTeX (If you have trouble using "PDF via LaTex", you can also save the webpage as pdf. Make sure all your solutions especially the coding parts are displayed in the pdf, it's okay if the provided codes get cut off because lines are not wrapped in code cells).
- 5. Look at the PDF file and make sure all your solutions are there, displayed correctly. The PDF is the only thing your graders will see!
- 6. Submit your PDF on Gradescope.