

Descripción del problema

 Resolución de una ecuación: cálculo del valor o valores de x para los cuales se verifica que

$$f(x) = 0$$

- Al valor de x se lo conoce como raíz o cero de la función f
- Solución analítica o calculable
 - Polinomios de grado mayor que 4
 - Funciones trascendentes y algebraicas
- Métodos de cálculo de raíces no analíticas
 - Métodos iterativos: generan sucesión de valores que se aproximan a la raíz
 - Convergencia Criterios

$$|f(p_N)| < \varepsilon$$
 $|p_N - p_{N-1}| < \varepsilon$

- Velocidad
- Estabilidad (propagación de errores)

- **Descripción**
- **Objetivos**
- Temario
- **Ejercicios**
- **Bibliografía**

Ejemplo

Ejemplo

- **Objetivos**
- ☐ Temario
- **Ejercicios**
- 🗀 Bibliografía

- Una esfera de radio r y densidad ρ pesa
- El volumen del segmento esférico hundido en el agua una profundidad h viene dado por $\frac{\pi}{3} (3rh^2 h^3)$

 Encontrar la profundidad, en función del radio, a la cual una esfera de densidad 0.6 flota en el agua

Ejemplo

 Planteamiento (Principio de Arquímedes): el empuje debe equilibrar el peso

$$\frac{\pi}{3} (3rh^2 - h^3) \rho_a = \frac{4}{3} \pi r^3 \rho_e$$

Ecuación a resolver

$$0 = h^3 \rho_a - 3rh^2 \rho_a + 4r^3 \rho_e \rightarrow$$

$$F(x) = x^3 - 3x^2 + 2.4 = 0$$
 siendo $x = \frac{h}{r}$

- Existencia y unicidad de solución : Polinomio de tercer grado con 3 raíces
- Cálculo de la solución: obtención analítica o aproximada: { 2.6611, -0.7952, 1.1341 }
- Coherencia de la solución { 1.1341 }

Descripción

Ejemplo

- **Objetivos**
- Temario
- **Ejercicios**
- Bibliografía

Definiciones

Introducción

Mét. Bisección Met. Punto Fijo Met. Newton y otros Resumen Polinomios

DEMOSTRACIONES

<u>Ejercicios</u>

☐ Bibliografía

 Una función F(x) es una aplicación de un conjunto inicial A en otro conjunto final B tal que a cada elemento del conjunto inicial le hace corresponder un elemento del conjunto final.

$$F:A \to B$$

$$x \to y = F(x)$$

- Resolver una ecuación consiste en hallar los elementos α∈A, denominados raíces de la ecuación, que convierten la igualdad F(x)=0 en una identidad.
- Una raíz α se dice que tiene multiplicada de orden m cuando $F^{(k)}(\alpha)=0$, k=0,1,...,m-1 y $F^{(m)}(\alpha)\neq 0$. Cuando la multiplicidad es uno, la raíz se denomina simple.

Ejemplos:

Simple Doble

$$F(x) = x^3 - 2x^2 + x$$
 $F(0) = 0$ $F(1) = 0$
 $F'(x) = 3x^2 - 4x + 1$ $F'(0) = 1$ $F'(1) = 0$
 $F''(x) = 6x - 4$ $F''(1) = 2$

Objetivos

- Descripción
- **Objetivos**
- Temario
- **Ejercicios**
- **Bibliografía**

- Comprender e interpretar gráficamente los métodos, para así intuir sus ventajas e inconvenientes
- Diferenciar los métodos de intervalo de los de iteración funcional en cuanto a aplicabilidad y convergencia
- Entender el concepto de velocidad de convergencia y su importancia en la eficiencia de un método
- Conocer los problemas que presentan las raíces múltiples

Teoremas (I)

<u>Descripción</u>

Temario

Introducción

Mét. Bisección

Met. Punto Fijo

Met. Newton v otros

Resumen

Polinomios

DEMOSTRACIONES

🗀 Bibliografía

• Teorema I (Teorema de Bolzano).

Sea *F*(*x*) una función continua en [a, b] con valores de signos opuestos en los extremos, entonces existe un punto c en [a,b] en que la función se anula.

$$F(x) \in C[a,b]/F(a) \cdot F(b) < 0 \Rightarrow \exists c \in [a,b]/F(c) = 0$$

• Teorema II

Si F(x) es derivable en (a,b), cambia de signo en los extremos y su derivada no se anula en todo el intervalo, entonces la ecuación F(x) = 0 tiene una raíz única en el mismo.

$$F(x) \in C^{1}(a,b)/F(a) \cdot F(b) < 0 \land \forall x \in (a,b) : F'(x) \neq 0$$
$$\Rightarrow \exists ! c \in [a,b]/F(c) = 0$$

Teoremas (II)

• Teorema III

Entre dos raíces consecutivas de la ecuación F'(x)=0 existe, a lo sumo, una raíz de F(x)=0.

Temario

Introducción

Mét. Bisección Met. Punto Fijo Met. Newton y otros Resumen Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

🗀 Bibliografía

Si la función es monótona (creciente o decreciente) en un intervalo, la raíz, de existir, es única

Aproximación de la raíz

- <u> Descripción</u>
- <u> Objetivos</u>
- **Temario**

Introducción

Mét. Bisección Met. Punto Fijo Met. Newton y otros Resumen Polinomios

DEMOSTRACIONES

- **<u>Ejercicios</u>**
- 🗀 Bibliografía

- Son métodos iterativos $\left\{x^{(n)}\right\}_{n=0}^{\infty} \to \alpha$
 - Condiciones de convergencia
 - Velocidad de convergencia
 - Test de parada: elemento de la sucesión que "aproxima" la raíz.
- Definición:
 - Una sucesión que converge a un valor α, se dice que lo hace con orden de convergencia k y constante asintótica L cuando

$$\lim_{n \to \infty} \frac{\left| \alpha - x^{(n+1)} \right|}{\left| \alpha - x^{(n)} \right|^{k}} = L$$

Ejemplo

$$\begin{cases} x_n = 1 + \frac{1}{2^n} & \lim_{n \to \infty} \frac{\left| 1 - \left(1 + \frac{1}{2^{n+1}} \right) \right|}{\left| 1 - \left(1 + \frac{1}{2^n} \right) \right|^k} = \lim_{n \to \infty} \frac{2^{kn}}{2^{n+1}} = 2^{(k-1)n-1} = \frac{1}{2} \Longrightarrow k = 1 \\ y_{n+1} = 1 + \frac{1}{3^n} & \lim_{n \to \infty} \frac{\left| 1 - y_n \right|}{\left| 1 - x_n \right|} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^n = 0 \end{cases}$$

Detención del método

$$\left\{x^{(n)}\right\}_{n=0}^{\infty} \to \alpha$$

- **Objetivos**
- **☐ Temario**

Introducción

Mét. Bisección

Met. Punto Fijo

Met. Newton v otros

Resumen

Polinomios

DEMOSTRACIONES

- **Ejercicios**
- **Bibliografía**

Error absoluto

$$\left|\alpha - x^{(n)}\right| < \varepsilon \qquad \rightarrow \left|x^{(n+1)} - x^{(n)}\right| < \varepsilon \rightarrow x^{(n)} =$$

• Error absoluto
$$\left| \frac{\alpha - x^{(n)}}{\alpha} \right| < \varepsilon \qquad \rightarrow \left| \frac{x^{(n+1)} - x^{(n)}}{\alpha} \right| < \varepsilon \rightarrow x^{(n)} = 1$$
• Error relativo
$$\left| \frac{\alpha - x^{(n)}}{\alpha} \right| < \varepsilon \qquad \rightarrow \left| \frac{x^{(n+1)} - x^{(n)}}{x^{(n)}} \right| \neq 0?$$
• Valor absoluto de
$$\left| F\left(x^{(n)}\right) \right| < \varepsilon \qquad \Rightarrow F\left(x^{(n)}\right) < \varepsilon$$

$$\left| F\left(x^{(n)} \right) \right| < \varepsilon$$

$$\mathcal{E}(x) = (x-1)^{10}$$

$$\varepsilon = 0.001$$

$$x^{(n)} = 1 + \frac{1}{n}$$

$$\left| F(x^{(n)}) \right| < \varepsilon \Rightarrow n \ge 2$$

$$\left| \alpha - x^{(n)} \right| < \varepsilon \Rightarrow n \ge 1000$$

Acotación del error (caso general)

Teorema

Sea la ecuación F(x)=0, donde F(x) una función continua y derivable en [a, b], α su raíz exacta y $x^{(n)}$ una aproximada, ambas situadas en el intervalo [a,b], si F'(x) tiene una cota inferior no nula m en todo el intervalo, la diferencia entre la solución real y la aproximada está acotada por F(x)/m

X	a	F(x)	Cota
0.75	-1	-0.2067	0.5293
	0	-0.4375	0.4375
	1	-0.9262	2.2470
1.25	-1	0.1612	0.4127
	0	0.5625	0.5625
	1	1.9633	4.7633

Descripción

- **Objetivos**
- Temario

Introducción

Mét. Bisección Met. Punto Fijo

Met. Newton y otros

Resumen

Polinomios

DEMOSTRACIONES

Ejercicios

Bibliografía

6	f(x)	$=e^{ax}(x^2-1)$		_
	a=-1 a=0			
5	a=1			f
4				/
			/	
3				
2				
			/	
1		/		
0				
-1				
-2 0.5	0.75	1	1.25	1.5

Bases

- Descripción
- <u> Objetivos</u>
- **Temario**

Introducción

Mét. Bisección Met. Punto Fijo Met. Newton y otros Resumen

DEMOSTRACIONES

<u> Ejercicios</u>

Polinomios

<u> Bibliografía</u>

- Aplicación del Teorema de Bolzano.
- Proceso: disminuir en cada iteración el tamaño del intervalo en que se busca la raíz, hasta alcanzar la precisión deseada.
- Procedimiento:
 - f(x) verifica Bolzano en [a,b]
 - Mientras no se cumpla el criterio de parada, repetir:
 - Generar un valor x⁽ⁿ⁾ en [a,b]
 - Seleccionar el intervalo [a, x⁽ⁿ⁾] o [x⁽ⁿ⁾,b] que cumpla Bolzano
- Acotación

$$|b - a| = |b_0 - a_0| > |b_1 - a_1| > \dots + |b_n - a_n| : F(b_n) F(a_n) < 0$$

$$x^{(n)} \in [a_n, b_n] \Rightarrow |\alpha - x^{(n)}| \le |b_n - a_n|$$

Método de Bisección

- f es una función continua en el intervalo [a, b]
- Signo de f(a) y f(b) son diferentes (Considera sólo el signo de la función)
- Existe un punto p del intervalo tal que :

$$f(p) = 0$$

 El método consiste en dividir el intervalo [a, b] a la mitad y en cada paso localizar la mitad que contenga a p

$$p_n = \frac{1}{2}(a_n + b_n)$$

- <u> Descripción</u>
- <u> Objetivos</u>
- <u> Temario</u>

Introducción

Mét. Bisección

Met. Punto Fijo Met. Newton y otros

Resumen

Polinomios

DEMOSTRACIONES

- <u> Ejercicios</u>
- 🗖 Bibliografía

Descripción

<u> Temario</u>

Introducción

Mét. Bisección

Met. Punto Fijo Met. Newton y otros Resumen Polinomios

DEMOSTRACIONES

🗀 Bibliografía

Para comenzar, sea $a_1 = a$ y $b_1 = b$ y sea p_1 es el punto medio de [a, b], es decir,

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}.$$

- Si $f(p_1) = 0$, entonces $p = p_1$ y terminamos.
- Si $f(p_1) \neq 0$, entonces $f(p_1)$ tiene el mismo signo que ya sea $f(a_1)$ o $f(b_1)$.
 - \diamond Si $f(p_1)$ y $f(a_1)$ tienen el mismo signo, $p \in (p_1, b_1)$. Sea $a_2 = p_1$ y $b_2 = b_1$.
 - \diamond Si $f(p_1)$ y $f(a_1)$ tienen signos opuestos, $p \in (a_1, p_1)$. Sea $a_2 = a_1$ y $b_2 = p_1$.

Criterios de detención del método

- **Descripción**
- <u> Objetivos</u>
- <u> Temario</u>

Introducción

Mét. Bisección

Met. Punto Fijo

Met. Newton y otros

Resumen

Polinomios

DEMOSTRACIONES

- <u> Ejercicios</u>
- <u> Bibliografía</u>

- Dado un valor de $\varepsilon > 0$ se pueden generar $p_1, p_2, p_3, \dots, p_N$ hasta que se cumpla alguno de los siguientes criterios:
- N: número de pasos
- $|p_N p_{N-1}| < \varepsilon$

- $|f(p_N)| < \varepsilon$
- Ventajas: muy simple
- Inconvenientes: no usa información sobre la función

Algoritmo del método de Bisección (Burden)

Para obtener una solución a f(x) = 0 dada una función f continua en el intervalo [a, b], donde f(a) y f(b) tienen signos opuestos:

<u> Descripción</u>

<u> Objetivos</u>

Temario

Introducción

Mét. Bisección

Met. Punto Fijo Met. Newton v otros

Resumen

Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

🗀 Bibliografía

ENTRADA puntos finales a, b; tolerancia TOL; número máximo de iteraciones N_0 . SALIDA solución aproximada p o mensaje de falla.

Paso 1 Sea
$$i = 1$$
;
 $FA = f(a)$.

Paso 2 Mientras $i \le N_0$ haga los pasos 3–6.

Paso 3 Sea
$$p = a + (b - a)/2$$
; (Calcule p_i .)
 $FP = f(p)$.

Paso 4 Si
$$FP = 0$$
 o $(b - a)/2 < TOL$ entonces
SALIDA (p) ; (Procedimiento completado exitosamente.)
PARE.

Paso 5 Sea
$$i = i + 1$$
.

Paso 6 Si
$$FA \cdot FP > 0$$
 entonces determine $a = p$; (Calcule a_i, b_i .) $FA = FP$

también determine b = p. (FA no cambia.)

Paso 7 SALIDA ('El método fracasó después de N_0 iteraciones, $N_0 = ', N_0$); (El procedimiento no fue exitoso.)

PARE.

<u> Descripción</u>

<u> Objetivos</u>

Introducción

Mét. Bisección

Met. Punto Fijo Met. Newton y otros

Resumen Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

🗀 Bibliografía

¿Cuántos términos se necesitan para que el error sea menos que ¿?

Suponga que $f \in C[a,b]$ y f(a).f(b) < 0. El método de bisección genera una sucesión $\{p_n\}_{n=1}^{\infty}$ que se a cero con.

$$|p_n - p| \le \frac{b - a}{2^n} \qquad \qquad n \ge 1$$

Despejando el valor de n

$$n \geq \frac{\ln \frac{|b-a|}{\epsilon}}{\ln 2}$$

Bisección (Ejemplo)

$$f(x) = x.e^x - 4$$

$$\varepsilon \le 10^{-5}$$

<u> Objetivos</u>

Temario

Introducción

Mét. Bisección

Met. Punto Fijo

Met. Newton y otros

Resumen

Polinomios

DEMOSTRACIONES

Ejercicios

🗀 Bibliografía

$$a = 0$$
 $b = 2$

$$n \ge \frac{\ln \frac{|b-a|}{\varepsilon}}{\ln 2} = \frac{\ln \frac{|2-0|}{10^{-5}}}{\ln 2} = 17,25$$

Iteración	a	f(a)	b	f(b)	pn	f(pn)	Е
0	0	-4	2	10,7781122	1	-1,281718172	1
1	1	-1,281718172	2	10,7781122	1,5	2,722533606	0,5
2	1	-1,281718172	1,5	2,722533606	1,25	0,362928697	0,25
3	1	-1,281718172	1,25	0,362928697	1,125	-0,534756045	0,125
4	1,125	-0,534756045	1,25	0,362928697	1,1875	-0,106337401	0,0625
5	1,1875	-0,106337401	1,25	0,362928697	1,21875	0,122978105	0,03125
6	1,1875	-0,106337401	1,21875	0,122978105	1,203125	0,007018059	0,015625
7	1,1875	-0,106337401	1,203125	0,007018059	1,1953125	-0,049981915	0,0078125
8	1,1953125	-0,049981915	1,203125	0,007018059	1,19921875	-0,021562902	0,0039063
9	1,1992188	-0,021562902	1,203125	0,007018059	1,201171875	-0,007292717	0,0019531
10	1,2011719	-0,007292717	1,203125	0,007018059	1,202148438	-0,00014241	0,0009766
11	1,2021484	-0,00014241	1,203125	0,007018059	1,202636719	0,003436554	0,0004883
12	1,2021484	-0,00014241	1,2026367	0,003436554	1,202392578	0,001646754	0,0002441
13	1,2021484	-0,00014241	1,2023926	0,001646754	1,202270508	0,000752093	0,0001221
14	1,2021484	-0,00014241	1,2022705	0,000752093	1,202209473	0,000304822	6,104E-05
15	1,2021484	-0,00014241	1,2022095	0,000304822	1,202178955	8,12012E-05	3,052E-05
16	1,2021484	-0,00014241	1,202179	8,12012E-05	1,202163696	-3,06055E-05	1,526E-05
17	1,2021637	-3,06055E-05	1,202179	8,12012E-05	1,202171326	2,52975E-05	7,629E-06

Métodos de Punto Fijo

Definición

Sea g(x) una función continua en [a,b] y un punto p en [a,b] tal que g(p)=p, entonces P se denomina punto fijo de g(p).

<u> Descripción</u>

<u> Objetivos</u>

<u> Temario</u>

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros

Resumen

Demostraciones

<u> Ejercicios</u>

🗀 Bibliografía

Ejemplo:

La función $g(x) = x^2 - 2$ tiene dos puntos fijos:

Temario

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros

Resumen

Demostraciones

<u> Ejercicios</u>

🗀 Bibliografía

El método del Punto Fijo consiste en: Transformar f(x) en g(x)=x

Obtener raíces de f(x) "equivale" a calcular los puntos fijos de g(x)

<u> Objetivos</u>

Temario

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros

Resumen

Demostraciones

<u> 🗀 Bibliografía</u>

a) La raíz como un punto donde la función cruza el eje x.

 b) la raíz como la intersección de las dos funciones componentes.

- Descripción
- <u> Objetivos</u>
- <u> 🇁 Temario</u>

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros

Resumen

Demostraciones

- <u> Ejercicios</u>
- 🗀 Bibliografía

Problemas

• Existen infinitas transformaciones

$$F(x) + x^n = x^n \longrightarrow x = \sqrt[n]{F(x) + x^n}$$

• ¿Todas las raíces de F(x) son puntos fijos de G(x)?¿y todos los puntos fijos de G(x) son raíces de F(x)?

$$F(x) = (x+1)(x-2) = x^{2} - x - 2 \to \begin{cases} x = \sqrt{x+2} & x = 2\\ x = -\sqrt{x+2} & x = -1 \end{cases}$$

$$x^{2}(x^{2}-x-2) \rightarrow \begin{cases} x = \sqrt{\frac{1}{2}(x^{4}-x^{3})} & x = 2,0\\ x = -\sqrt{\frac{1}{2}(x^{4}-x^{3})} & x = -1,0 \end{cases}$$

Existencia y unicidad del Punto Fijo

Descripción

<u> Objetios</u>

Temario

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros Resumen

Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

<u> 🗀 Bibliografía</u>

Teorema

- Sea g(x) una función continua en [a, b] tal que g(a)≥a y
 g(b)≤b, entonces g(x) tiene uno o más puntos fijos en [a,b].
- Si además g'(x) está definida en (a,b) y existe una constante positiva k<1 tal que para cualquier punto x del intervalo |g'(x)| ≤k<1, entonces el punto fijo es único.

Procedimiento: Generar la sucesión

$$x_n = g(x_{n-1}), \qquad n \ge 1,$$

Nota

Condiciones suficientes, no necesarias

Demostración existencia

Si:
$$g(a) = a$$
 ó $g(b) = b$

PF en a o b

Descripción

→ Temario

Introducción Mét. Biseccion

Met. Punto Fijo

Met. Newton v otros Resumen **Polinomios**

DEMOSTRACIONES

Ejercicios

Bibliografía

Si no $g(a) > a \land g(b) < b$

La función h(x) = g(x) - x es continua en [a, b]

$$h(a) = g(a) - a > 0 \land h(b) = g(b) - b < 0$$

Por el teorema del Valor Medio Existe un $p \in [a, b]$ para el cual h(p) = 0 y p es punto fijo de g

Demostración unicidad

Supongamos que $|g'(x)| \le k < 1$ y que p y q son puntos fijos en [a, b] tales que $p \ne q$:

Por el teorema del Valor intermedio existe un numero ξ entre p y q tal que

$$g'(\xi) = \frac{g(p) - g(q)}{p - q}$$

Por lo tanto

$$|p - q| = |g(p) - g(q)| = |g'(\xi)| |p - q| \le k |p - q| < |p - q|$$
 Contradición

Esta contradicción es porque supusimos p≠q:

Por lo que p = q y el Punto Fijo es único

- **Descripción**
- <u> Objetivos</u>
- **Temario**

Introducción

Mét. bisección

Met. Punto Fijo

Met. Newton y otros

Resumen

Polinomios

DEMOSTRACIONES

- <u> Ejercicios</u>
- <u> 🗀 Bibliografía</u>

Método de punto fijo

Para aproximar el punto fijo de una función g, escogemos una aproximación inicial x_0 y generamos la sucesión $\{x_n\}_{n=0}^{\infty}$ haciendo $\mathbf{x_n} = \mathbf{g}(\mathbf{x_{n-1}})$ para cada $n \ge 1$.

<u> Objetivos</u>

Temario

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros Resumen

Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

🗀 Bibliografía

Convergencia monotónica

Convergencia osicilatoria

<u> Objetivos</u>

Temario

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros Resumen

Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

🗀 Bibliografía

Divergencia oscilatoria

Algoritmo del método de punto fijo (Burden)

Para obtener una solución a p=g(p) dada una aproximación inicial p_0 :

<u>Descripción</u>

<u> Objetivos</u>

<u> Temario</u>

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros

Resumen Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

🗖 Bibliografía

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set $p = g(p_0)$. (Compute p_i .)

Step 4 If $|p - p_0| < TOL$ then OUTPUT (p); (The procedure was successful.) STOP.

Step 5 Set i = i + 1.

Step 6 Set $p_0 = p$. (Update p_0 .)

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

Ejemplos gráficos

<u> Objetivos</u>

Temario

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros Resumen

Resument Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

<u> Bibliografía</u>

Ejemplo 1

$$F(x) = x \cdot e^x - 4$$
 en [1,2]

$$F(x) = x \cdot e^x - 4 = 0 \longrightarrow g(x) = \frac{4}{e^x}$$

$$F(x) = x \cdot e^{x} - 4 = 0 \rightarrow g(x) = \frac{4}{e^{x}}$$
$$F(x) = x \cdot e^{x} - 4 = 0 \rightarrow g(x) = \log(4e^{-x})$$

$$xF(x) = x^2 \cdot e^x - 4x = 0 \rightarrow g(x) = 2\sqrt{xe^{-x}}$$

Introducción

Mét. Bisección Met. Punto Fijo

Met. Newton v otros

Resumen

Polinomios

1.2

1.3

1.4

1.5

Х

1.6

1.7

1.8

1.9

1.1

07 1.2022 1.2022

08 1.2022 1.2022

1.2022 1.2022 09

10 1.2022 1.2022

Ejemplo 2 (ilustra algunas características del método de punto fijo)

La ecuacion $x^3 + 4x^2 - 10 = 0$ tiene una raíz única en [1, 2]. Hay muchas formas para convertirla en la forma x = g(x) mediante un simple manejo algebraico.

- (a) $x = g_1(x) = x x^3 4x^2 + 10$
- **(b)** $x = g_2(x) = \left(\frac{10}{x} 4x\right)^{1/2}$

(c) $x = g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$

(d) $x = g_4(x) = \left(\frac{10}{4+x}\right)^{1/2}$

- <u> Descripción</u>
- <u> Objetivos</u>
- <u> Temario</u>

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton y otros Resumen Polinomios

DEMOSTRACIONES

- **Ejercicios**
- <u> 🗀 Bibliografía</u>

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Con $x_0 = 1.5$, la tabla proporciona los resultados del método de punto fijo para las cinco opciones de g.

<u> Descripción</u>				
<u> Objetivos</u>				
☐Temario				
Introducción				
Mét. Bisección				
Met. Punto Fijo				
Met. Newton y otros				
Resumen				
Polinomios				
DEMOSTRACIONES				
<u> Ejercicios</u>				
🗖 Bibliografía				

n	(a)	<i>(b)</i>	(c)	(<i>d</i>)	<i>(e)</i>
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1/2}$	1.345458374	1.364957015	1.365230014
4	1.03×10^{8}		1.375170253	1.365264748	1.365230013
5	م مراد ما	se torna	1.360094193	1.365225594	
6	diverge	indefinida	1.367846968	1.365230576	
7		porque	1.363887004	1.365229942	
8		contiene	1.365916734	1.365230022	
9		la raíz de	1.364878217	1.365230012	
10		un número	1.365410062	1.365230014	
15			1.365223680	1.365230013	
20		negativo	1.365230236		
25			1.365230006		
30			1.365230013		

Ejemplo 3

$$F(x) = x \cdot e^x - 4 \text{ en } [1,2]$$

Descripción

Objetivos

Temario

Introducción Mét. Bisección

Met. Punto Fijo

Met. Newton v otros Resumen

Polinomios

DEMOSTRACIONES

☐ Ejercicios

Bibliografía

Estudio analítico

Mapeo: ∀x∈[a,b]:g(x) ∈[a,b]

$$g(x) = 2\sqrt{xe^{-x}} = 2\sqrt{\frac{x}{e^{x}}} \quad g'(x) = (e^{-x} - xe^{-x})(xe^{-x})^{-\frac{1}{2}} = \frac{e^{-x} - xe^{-x}}{\sqrt{xe^{-x}}} = \frac{1 - x}{\sqrt{xe^{x}}}$$

$$g'(x) = 0 \Rightarrow x = 1$$

$$g(1) = 2\sqrt{\frac{1}{e^1}} \approx 1.2131 \quad g(2) = 2\sqrt{\frac{2}{e^2}} \approx 1.0405 \quad \max_{x \in [1,2]} g(x) \approx 1.2131 \quad \min_{x \in [1,2]} g(x) \approx 1.0405$$

– Contractividad $\exists k \in [0,1)/\forall x \in [a,b]:|g'(x)| \leq k < 1$ ✓

$$g'(x) = \frac{1-x}{\sqrt{xe^x}} \quad g''(x) = \frac{1+2x-x^2}{2\sqrt{x^3e^x}}$$

$$g''(x) = 0 \Rightarrow 1+2x-x^2 = 0 \Rightarrow x = 1 \pm \sqrt{2} \rightarrow 1-\sqrt{2} \notin [1,2]$$

$$g'(1+\sqrt{2}) \approx -0.27220 \quad g'(1) = 0 \quad g'(2) = -0.2601 \quad \max_{x \in [1,2]} |g'(x)| \approx 0.2722$$

Ventajas en inconvenientes

- <u> Descripción</u>
- **Objetivos**
- **Temario**

Introducción

Mét. Bisección

Met. Punto Fijo

Met. Newton y otros

Resumen

Polinomios

DEMOSTRACIONES

- <u> Ejercicios</u>
- 🗀 Bibliografía

- Métodos de la bisección
 - Exigen las condiciones del teorema de Bolzano
 - Sólo son válidos para encontrar raíces simples
 - Acotan el error de la raíz y no sólo el de la función
 - La longitud del intervalo "suele" tender a cero
 - Velocidades de convergencia lineales y super lineales
- Métodos del punto fijo
 - Exigen las condiciones de punto fijo.
 - Puede ser complicado encontrar la función que las verifique
 - Son válidos para raíces de cualquier multiplicidad
 - No acotan el error de la raíz
 - Velocidades de convergencia lineales y cuadráticas
 - Hay métodos para acelerar la velocidad

Método de Newton - Raphson

Es uno de los métodos mas simples y poderosos Se puede demostrar:

- Gráficamente
- Acelerando la convergencia
- Desarrollo de los polinomios de Taylor

Sea $f \in C^2[a,b]$. Si $p_0 \in [a,b]$ es una aproximación para p tal que $f'(p_0) \neq 0$ y $|p_N - p_{N-1}|$ es "pequeño".

Desarrollamos Taylor para f(x) expandido alrededor de p_0 y evaluado en x = p

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p))$$

<u> Descripción</u>

<u> Objetivos</u>

<u> Temario</u>

Introducción Mét. Bisección Met. Punto Fijo

Met. Newton

Resumen
Demostraciones

<u> Ejercicios</u>

🗀 Bibliografía

 $\xi(p)$) está entre p y p_0 .

 $Como f(p) = 0 y |p_N - p_{N-1}|$ es "pequeño".

<u> Temario</u>

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Resumen

Demostraciones

🗀 Bibliografía

$$0 = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p))$$

Como $|p_N - p_{N-1}|$ es "pequeño $(p-p_0)^2$ es "mucho mas pequeño"

$$0 \approx f(p_0) + (p - p_0)f'(p_0)$$

$$p = p_0 - \frac{f(p_0)}{f'(p_0)} \equiv p_1$$

En General:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 para $n \ge 1$

Algoritmo del método de Newton-Rapshon (Burden)

Para obtener una solución a $f(x = 0 \text{ dada una aproximación inicial } p_0$

<u> Descripción</u>

<u> Objetivos</u>

<u> Temario</u>

Introducción Mét. Bisección Met. Punto Fijo

Met. Newton

Resumen Polinomios

DEMOSTRACIONES

<u> Ejercicios</u>

🗀 Bibliografía

ENTRADA aproximación inicial p_0 tolerancia TOL; número máximo de iteraciones N_0 SALIDA solución aproximada p o mensaje de falla.

Paso 1 Determine i = 1.

Paso 2 Mientras $i \le N_0$ haga los pasos 3–6.

Paso 3 Determine
$$p = p_0 - f(p_0)/f'(p_0)$$
. (Calcule p_i .)

Paso 4 Si
$$|p - p_0| < TOL$$
 entonces
SALIDA (p) ; (El procedimiento fue exitoso.)
PARE.

Paso 5 Determine i = i + 1.

Paso 6 Determine $p_0 = p$. (*Actualizee* p_0 .)

Paso 7 SALIDA ('El método falló después de N_0 iteraciones, $N_0 = ', N_0$); (El procedimiento no fue exitoso.)

PARE.

Criterios de detención del método

- **Descripción**
- <u> Objetivos</u>
- **Temario**

Introducción

Mét. Bisección

Met. Punto Fijo

Met. Newton

Resumen

Polinomios

DEMOSTRACIONES

- <u> Ejercicios</u>
- <u> Bibliografía</u>

- Dado un valor de $\varepsilon > 0$ se pueden generar $p_1, p_2, p_3, \dots, p_N$ hasta que se cumpla alguno de los siguientes criterios:
- **N**: número de pasos
- $|p_N p_{N-1}| < \varepsilon$

$$\bullet \quad \frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon$$

- $|f(pN)| < \varepsilon$
- Ventajas: muy simple
- Inconvenientes: $f'(p_{n-1}) \neq 0$ puede NO CONVERGER

Descripción

Objetivos

Temario

Resumen

Demostraciones

Ejercicios

Bibliografía

Introducción Mét. Bisección Met. Punto Fijo Met. Newton

Ejemplo:

$$f(x) = x. ex - 4$$

i	xi	f(xi)	f´(xi)	xi+1	Ea
1		-1,28171817	, ,		
2		0,25223252	,	,	,
3		0,00589957	•	,	•
4		3,4479E-06	,	,	,
5	,	1,1795E-12	•	,	•
6	1,20216787	0	7,32732232	1,20216787	0

https://www.geogebra.org/m/XCrwWHzy

Descripción

Introducción Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Resumen
Demostraciones

<u> Ejercicios</u>

Método de la Secante

El método de Newton es uno de los métodos mas simples y poderosos pero necesita conocer la derivada de I función y a veces es muy difícil de calcular analíticamente Por definición

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \left(\frac{f(x) - f(p_{n-1})}{x - p_{n-1}} \right)$$

Si p_{n-2} está cerca de p_{n-1}

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}} = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

Usando esta aproximación para $f'(p_{n-1})$

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

Descripción

<u> Objetivos</u>

<u> Temario</u>

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Resumen

Demostraciones

<u> Ejercicios</u>

Método de la Secante

<u> Objetivos</u>

Temario

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Resumen

Demostraciones

<u> Ejercicios</u>

<u> Bibliografía</u>

Algoritmo del método de la Secante (Burden)

Para obtener una solución a f(x) = 0 dada una aproximación inicial p_0 y p_1

ENTRADA aproximaciones iniciales p_0 , p_1 tolerancia TOL; número máximo de iteraciones N_0 .

SALIDA solución aproximada p o mensaje de falla.

Paso 1 Determine
$$i = 2$$
;
 $q_0 = f(p_0)$;
 $q_1 = f(p_1)$.

Paso 2 Mientras $i \le N_0$ haga los pasos 3–6.

Paso 3 Determine
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Calcule p_i .)

Paso 4 Si $|p - p_1| < TOL$ entonces

SALIDA (p) ; (El procedimiento fue exitoso.)

PARE.

Paso 5 Determine i = i + 1.

Paso 6 Determine
$$p_0 = p_1$$
; (Actualize p_0, q_0, p_1, q_1 .)
$$q_0 = q_1;$$

$$p_1 = p;$$

$$q_1 = f(p).$$

Paso 7 SALIDA ('El método falló después de N_0 iteraciones, $N_0 = ', N_0$); (El procedimiento no fue exitoso.)

PARE.

Descripción

<u> Objetivos</u>

<u> Temario</u>

Introducción Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Resumen

Demostraciones

<u>Ejercicios</u>

<u> 🗀 Bibliografía</u>

Ejemplo:

$$f(x) = x. ex - 4$$

					1	
i	хi	xi-1	F(xi)	F(xi-1)	xi+1	Ea
1	0	1	-4	-1,28171817	1,471517765	32,04295429
2	1	1,471517765	-1,28171817	2,409697807	1,163718446	26,44963821
3	1,471517765	1,163718446	2,409697807	-0,27398655	1,195142736	2,629333607
4	1,163718446	1,195142736	-0,27398655	-0,05121334	1,202366866	0,600825799
5						
7						
8						
	1,195142736 1,202366866 1,202166855	1,202366866 1,202166855 1,202167873 1,202167873	-0,05121334 0,001458294 -7,4621E-06	0,001458294 -7,4621E-06 -1,0795E-09	1,202166855 1,202167873	0,01663 8,47005 1,22553

https://www.geogebra.org/m/A3M5HAPY

<u> Descripción</u>

<u> Objetivos</u>

Temario

Introducción Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Resumen

Demostraciones

<u> Ejercicios</u>

Método de la Regla Falsa o Falsa Posición

El de la regla falsa es similar a la método de la secante. Requiere dos valores iniciales para comenzar pero incluye una prueba para garantizar que la raíz este siempre contenida entre iteraciones sucesivas

Elegimos p_0 y p_1 tales que $f(p_0)f(p_1) < 0$ es decir que tengan \neq signo

 p_2 se calcula de igual manera que en el método de la secante como la interseccion en x de la recta que une los puntos $(p_0,f(p_0))$ y $(p_1,f(p_1))$:

$$p_2 = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$

- Si $f(p_2) f(p_1) < 0$ la raíz estará $p_1 y p_2$ por lo que p_3 se calcula como la intersección en x de la recta que une $(p_1, f(p_1)) y (p_2, f(p_2))$
- Si $f(p_2) f(p_1) > 0$ la raíz estará $p_0 y p_2$ por lo que p_3 se calcula como la intersección en x de la recta que une $(p_0, f(p_0)) y (p_2, f(p_2))$

Una vez hecho esto repetimos el procedimiento para calcular p_4

<u> Descripción</u>

<u> Objetivos</u>

Temario

Introducción Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

<u> Ejercicios</u>

Método de la Regla Falsa o Falsa Posición

<u> Objetivos</u>

Temario

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

<u> Ejercicios</u>

<u> Bibliografía</u>

Algoritmo del método de la Regla Falsa(Burden)

Para obtener una solución a f(x) = 0 dada una aproximación inicial p_0 y p_1 donde $f(p_0)$ y $f(p_1)$ tiene distinto signo

ENTRADA aproximaciones iniciales p_0 , p_1 tolerancia TOL; número máximo de iteraciones N_0 .

SALIDA solución aproximada p o mensaje de falla.

Paso 1 Determine i = 2;

$$q_0 = f(p_0);$$

 $q_1 = f(p_1).$

Paso 2 Mientras $i \le N_0$ haga los pasos 3–7.

Paso 3 Determine $p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$. (Calcule p_i .)

Paso 4 Si $|p - p_1| < TOL$ entonces SALIDA (p); (El procedimiento fue exitoso.) PARE.

Paso 5 Determine i = i + 1; q = f(p).

Paso 6 Si $q \cdot q_1 < 0$ entonces determine $p_0 = p_1$; $q_0 = q_1$.

Paso 7 Determine $p_1 = p$; $q_1 = q$.

Paso 8 SALIDA ('El método falló después de N_0 iteraciones, $N_0 = ', N_0$); (El procedimiento no fue exitoso.)

PARE.

Descripción

<u> Objetivos</u>

Introducción Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

<u>Ejercicios</u>

<u> 🗀 Bibliografía</u>

Regula Falsi (Ejemplo)

$$F(x) = x \cdot e^x - 4$$

<u> Objetivos</u>

7 Temario

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

Ejercicios

$$x^{(1)} = a - F(a) \frac{b - a}{F(b) - F(a)} = 0 - (-4) \frac{2 - 0}{10.7781 - (-4)} = 0.5413$$

$$r = 1.202171326 \cdots$$

$$\approx 1.2022$$

$$x^{(2)} = 0.5413 - \left(-3.0698\right) \frac{2 - 0.5413}{10.7781 - \left(-3.0698\right)} = 0.8647$$

$$x^{(3)} = 0.8647 - \left(-1.9470\right) \frac{2 - 0.8647}{10.7781 - \left(-1.9470\right)} = 1.0384$$

$$x^{(4)} = 1.0384 - \left(-1.0668\right) \frac{2 - 1.0384}{10.7781 - \left(-1.0668\right)} = 1.1250$$

Iter	а	F(a)	b	F(b)	X ⁽ⁿ⁾	<i>f</i> (<i>x</i> ⁽ⁿ⁾)
1	0.0000	-4.0000	2.0000	+10.7781	0.5413	-3.0698
2	0.5413	-3.0698	2.0000	+10.7781	0.8647	-1.9470
3	0.8647	-1.9470	2.0000	+10.7781	1.0384	-1.0668
4	1.0384	-1.0668	2.0000	+10.7781	1.1250	-0.5347
5	1.1250	-0.5347	2.0000	+10.7781	1.1664	-0.2556
:	:	:	:	:	:	:
11	1.2014	-0.0053	2.0000	+10.7781	1.2018	-0.0024

Regula Falsi (Ejemplo II)

☐ Objetivos

Temario

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

<u> Ejercicios</u>

<u> Bibliografía</u>

Método de la Regla Falsa o Falsa Posición

<u> Objetivos</u>

Temario

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

<u> Ejercicios</u>

🗀 Bibliografía

• Ejemplo:

$$f(x) = x. ex - 4$$

https://www.geogebra.org/m/MSGkzbug

Anexos

- <u> Descripción</u>
- <u> Objetivos</u>
- **Temario**

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

- <u> Ejercicios</u>
- <u> Bibliografía</u>

Demostraciones y desarrollos

Demostración Teoremas

<u> Descripción</u>

<u> Temario</u>

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

Ejercicios

🗀 Bibliografía

Teorema I

$$F(x) \in C[a,b]/F(a) \cdot F(b) < 0 \Rightarrow \exists c \in [a,b]/F(c) = 0$$

Hipótesis: sean
$$F(a) < 0$$
, $F(b) > 0$ y $c = \frac{1}{2}(a+b)$

$$si F(c) = 0 c.q.d.$$

sino F(c) > 0 se repite con el intervalo [a, c]

ó
$$F(c) < 0$$
 se repite con el intervalo $[c,b]$

Teorema II

$$F(x) \in C^{1}(a,b)/F(a) \cdot F(b) < 0 \land \forall x \in (a,b) : F'(x) \neq 0 \Rightarrow \exists !c \in [a,b]/F(c) = 0$$

Hipótesis:
$$\exists c_1 \neq c_2 : F(c_1) = F(c_2) = 0$$

$$0 = F(c_1) - F(c_2)^{TVM} = F'(\zeta)(c_1 - c_2) \neq 0 \Rightarrow Absurdo \rightarrow \text{Hipótesis Errónea}$$

Volver

Teorema III

$$F(x) \in C^{1}[a,b]/\exists c_{1} < c_{2} : F'(c_{1}) = F'(c_{2}) = 0 \land \forall x \in (c_{1},c_{2}) : F'(x) \neq 0$$

$$\Rightarrow F(x)$$
 tiene 0 o 1 raíz en $[c_1, c_2]$

$$Hip \acute{o}tesis: \exists x_1 \neq x_2 \in [c_1, c_2]: F(x_1) = F(x_2) = 0 \Longrightarrow \exists c \in [x_1, x_2] \subset [c_1, c_2] / F'(c) = 0$$

⇒ Absurdo porque son raíces consecutivas → Hipótesis Errónea

Demostración: Acotaciones de punto fijo

CONDICIONES

Descripción

<u> Objetivos</u>

<u> Temario</u>

Introducción Mét. Intervalo Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

<u> Ejercicios</u>

🗀 Bibliografía

$$g(x) \in C[a,b] \land g'(x) \in C(a,b) \quad \forall x \in [a,b] : g(x) \in [a,b] \quad \forall x \in (a,b) : |g'(x)| \le k < 1$$

HIPÓTESIS

 α punto fijo de $g(x) \rightarrow \alpha \in [a,b]$: $g(\alpha) = \alpha$ Sucesión: $x_n = g(x_{n-1})$

$$\left| \alpha - x_n \right| = \left| g(\alpha) - g(x_{n-1}) \right|^{T^*VM} = \left| g'(\xi)(\alpha - x_{n-1}) \right|_{\xi \in (\alpha, x_{n-1})} = \left| g'(\xi) \right| \left| \alpha - x_{n-1} \right| \le k \left| \alpha - x_{n-1} \right|$$

Aplicando inducción

$$\left|\alpha - x_n\right| \le k^n \left|\alpha - x_0\right| \Longrightarrow \lim_{n \to \infty} \left|\alpha - x_n\right| = \left|\alpha - \lim_{n \to \infty} x_n\right| \le \lim_{n \to \infty} k^n \left|\alpha - x_0\right| = 0 \Longrightarrow \lim_{n \to \infty} x_n = \alpha$$

Repitiendo el proceso anterior, se tiene $|x_{n+1} - x_n| = \le k^n |x_1 - x_0|$, y tomando m>n

$$\begin{aligned} |x_{m} - x_{n}| &= |x_{m} \pm x_{m-1} \pm x_{m-2} \cdots \pm x_{n+1} - x_{n}| \le |x_{m} - x_{m-1}| + |x_{m-1} - x_{m-2}| + \cdots + |x_{n+1} - x_{n}| \le \\ &\le k^{m-1} |x_{1} - x_{0}| + k^{m-2} |x_{1} - x_{0}| + \cdots + |x_{n+1}| |x_{1} - x_{0}| + k^{n} |x_{1} - x_{0}| \le \\ &\le |x_{1} - x_{0}| \Big(k^{n} + k^{n+1} + \cdots + |x^{m-2}| + k^{m-1} \Big) \le |x_{1} - x_{0}| \frac{k^{n} - k^{m-1} \cdot k}{1 - k} \le |x_{1} - x_{0}| \frac{k^{n} - k^{m}}{1 - k} \end{aligned}$$

$$\lim_{m\to\infty} \left| x_m - x_n \right| = \left| \lim_{m\to\infty} x_m - x_n \right| \le \lim_{m\to\infty} \left(\left| x_1 - x_0 \right| \frac{k^n - k^m}{1 - k} \right) \le \left| x_1 - x_0 \right| \frac{k^n - \lim_{m\to\infty} k^m}{1 - k} \Longrightarrow$$

$$\left|\alpha - x_n\right| \le \frac{k^n}{1 - k} \left|x_1 - x_0\right|$$

Demostración: Método de Aitken

<u> Descripción</u>

<u> Temario</u>

Introducción Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

<u> Ejercicios</u>

Método con convergencia lineal: $\lim_{n \to \infty} \frac{\left| \alpha - x^{(n+1)} \right|}{\left| \alpha - x^{(n)} \right|} = \lambda$

Se supone:

- ⇒ n "suficientemente grande"
- ⇒ el numerador y denominador tienen el mismo signo

$$\frac{\alpha - x^{(n+1)}}{\alpha - x^{(n)}} \approx \lambda \approx \frac{\alpha - x^{(n+2)}}{\alpha - x^{(n+1)}} \longrightarrow \left(\alpha - x^{(n+1)}\right) \left(\alpha - x^{(n+1)}\right) \approx \left(\alpha - x^{(n)}\right) \left(\alpha - x^{(n+2)}\right) \longrightarrow \left(\alpha - x^{(n+1)}\right) \left(\alpha - x^{(n+1)}\right) = \alpha - x^{(n+1)}$$

$$\to \alpha \left(x^{(n+2)} - 2x^{(n+1)} + x^{(n)} \right) \approx x^{(n)} x^{(n+2)} - x^{(n+1)} x^{(n+1)}$$

$$\rightarrow \alpha \approx \frac{x^{(n)}x^{(n+2)} - x^{(n+1)}x^{(n+1)}}{x^{(n+2)} - 2x^{(n+1)} + x^{(n)}}$$

Operando para simplificar

$$\alpha \approx \frac{x^{(n)}x^{(n+2)} - x^{(n+1)}x^{(n+1)} \mp x^{(n)}2x^{(n+1)} \pm x^{(n)}x^{(n)}}{x^{(n+2)} - 2x^{(n+1)} + x^{(n)}} = x^{(n)} + \frac{-x^{(n+1)}x^{(n+1)} + x^{(n)}2x^{(n+1)} - x^{(n)}x^{(n)}}{x^{(n+2)} - 2x^{(n+1)} + x^{(n)}}$$

$$\alpha \approx x^{(n)} - \frac{\left(x^{(n+1)} - x^{(n)}\right)^2}{\left(x^{(n+2)} - x^{(n+1)}\right) - \left(x^{(n+1)} - x^{(n)}\right)}$$

Demostración: Newton con raíces múltiples

<u> Descripción</u>

<u> Objetivos</u>

<u> Temario</u>

Introducción

Mét. Intervalo

Met. Iter. Funcional

Met. Newton

Met. Secante

Met. Regla Falsa

Resumen

Demostraciones

<u> Ejercicios</u>

<u> 🗀 Bibliografía</u>

$$F(x) = (x-\alpha)^n h(x) : h(\alpha) \neq 0$$

$$g(x) = x - \frac{F(x)}{F'(x)} = x - \frac{(x-\alpha)^n h(x)}{\alpha \cdot (x-\alpha)^{n-1} h(x) + (x-\alpha)^n h'(x)} =$$

$$= x - \frac{(x-\alpha) \cdot h(x)}{n \cdot h(x) + (x-\alpha) \cdot h'(x)}$$

$$g'(x) = 1 - \frac{\left[h(x) + (x - \alpha) \cdot h'(x)\right] \left[n \cdot h(x) + (x - \alpha) \cdot h'(x)\right]}{\left[n \cdot h(x) + (x - \alpha) \cdot h'(x)\right]^{2}} + \frac{(x - \alpha) \cdot h(x) \left[(n + 1) \cdot h'(x) + (x - \alpha) \cdot h''(x)\right]}{\left[n \cdot h(x) + (x - \alpha) \cdot h'(x)\right]^{2}}$$

$$g'(\alpha) = 1 - \frac{\left[h(\alpha)\right]\left[n \cdot h(\alpha)\right]}{\left[n \cdot h(\alpha)\right]^{2}} = 1 - \frac{1}{n}$$

Demostración: raíces simples

$$F(x) = (x - \alpha)^{n} h(x) : h(\alpha) \neq 0$$

$$\psi(x) = \frac{F(x)}{F'(x)} = \frac{(x - \alpha) \cdot h(x)}{n \cdot h(x) + (x - \alpha) \cdot h'(x)}$$

$$\psi'(x) = \frac{\left[h(x) + (x - \alpha) \cdot h'(x)\right] \left[n \cdot h(x) + (x - \alpha) \cdot h'(x)\right]}{\left[n \cdot h(x) + (x - \alpha) \cdot h'(x)\right]^{2}}$$

$$+ \frac{(x - \alpha) \cdot h(x) \left[(n + 1) \cdot h'(x) + (x - \alpha) \cdot h''(x)\right]}{\left[n \cdot h(x) + (x - \alpha) \cdot h'(x)\right]^{2}}$$

$$\psi'(\alpha) = \frac{\left[h(\alpha)\right] \left[n \cdot h(\alpha)\right]}{\left[n \cdot h(\alpha)\right]^{2}} = \frac{1}{n} \neq 0$$