Санкт-Петербургский государственный университет Прикладная математика и информатика Статистическое моделирование

Федоров Никита, Понизова Вероника Статистический анализ временных рядов

Конспект

Оглавление

Глава 1	. Общая часть	5
1.1.	Что такое периодограмма?	6
1.2.	Что такое тренд (разные варианты определения)? Как выглядит перио-	
	дограмма тренда?	6
1.3.	Что такое периодическая компонента? Как выглядит ее периодограмма?	6
1.4.	Что такое шум? Как выглядит его периодограмма?	6
1.5.	Периодограмма как оценка спектральной плотности. Распределение зна-	
	чений. Сглаживание периодограммы.	6
1.6.	Чем отличается сглаживание от выделения тренда?	6
1.7.	Что такое линейный фильтр, импульсная характеристика? Причинный	
	фильтр, FIR	6
1.8.	Характеристики фильтра через его воздействие на $\cos(2\pi\omega n)$ (или на	
	комплексную экспоненту) – АЧХ, ФЧХ	6
1.9.	АЧХ фильтра скользящего среднего, зависимость от длины окна	6
1.10.	АЧХ фильтра перехода к разностям (дифференцирования)	6
1.11.	Что такое запаздывание и отчего оно может возникать (на примере сколь-	
	зящего среднего)?	6
1.12.	Смещение при сглаживании фильтром скользящего среднего. Роль вто-	
	рой производной.	6
1.13.	Фильтр для подавления шума. Роль нормы коэффициентов фильтра	6
1.14.	Как связаны периодограммы ряда до применения фильтра и после при-	
	менения фильтра?	6
1.15.	Модели данных – аддитивная и мультипликативная	6
1.16.	Методы стабилизации дисперсии в разных моделях (логарифмирование,	
	извлечение квадратного корня,)	6
1.17.	Выделение тренда у ряда с сезонностью (выбор длины окна в скользящем	
	среднем)	6
1.18.	Переход к разностям – плюсы и минусы (устранение тренда, превращение	
	ряда в стационарный, усиление вклада высоких частот)	6
1.19.	Скользящее среднее и скользящая медиана	6

1.20.	Растекание частоты в периодограмме. Подправка длины ряда для ее	
	устранения	6
1.21.	Выделение тренда с помощью параметрической регрессии	6
1.22.	Выделение тренда с помощью метода LOESS	6
1.23.	Нахождение огибающей периодического ряда с помощью выделения трен-	
	да	6
1.24.	Оценивание поведения дисперсии шума с помощью выделения тренда	6
1.25.	Метод разложения Classical seasonal decomposition	6
1.26.	Метод разложения STL	6
Глава 2	г. Метод SSA	7
2.1.	Как выбирать L	8
2.2.	Последовательный SSA	8
2.3.	Слабая и сильная разделимость.	8
2.4.	Компоненты смешались. Как понять, это слабая или сильная раздели-	
	мость?	8
2.5.	Как идентифицировать тренд?	8
2.6.	Как идентифицировать периодичность?	8
2.7.	Использование матрицы взвешенных корреляций	8
2.8.	Элементарные восстановленные компоненты	8
2.9.	Корни хар.полинома, сигнальные и лишние.	8
2.10.	Оценка параметров в SSA	8
2.11.	Прогноз	8
2.12.	Доверительные интервалы.	8
2.13.	Автоматическая идентификация	8
2.14.	Заполнение пропусков	8
2.15.	Теплицев SSA для стац. рядов	8
2.16.	Projection SSA, выделение лин.тренда	8
2.17.	Улучшение разделимости с помощью вращения в выбранном подпростран-	
	стве: Iterative O-SSA (слабая и сильная разделимость) и DerivSSA (силь-	
	ная разделимость).	8
2 18	Authoreumanus Cadzow SSA	R

MSSA для анализа многомерных временных рядов. Когда лучше анали-	
зировать ряды вместе, а когда отдельно?	8
2D-SSA для разложения изображения	8
В. ARIMA и прочее	9
AR(p) – модель, запись в виде с оператором сдвига	9
AR(p) и модель сигнала в SSA	9
Вид автоковариационной функции acf для AR(p)	9
Вид расf для AR(p)	9
Модель MA(q), вид acf и pacf	9
ARMA(p,q)	9
Дифференцирование, ARIMA(p,d,q)	9
Seasonal $ARIMA(p,d,q)(P,D,Q)$	9
Exponential smoothing, модели тренда, ES и ARIMA	9
	Вид автоковариационной функции acf для $AR(p)$

Глава 1

Общая часть

- 1.1. Что такое периодограмма?
- 1.2. Что такое тренд (разные варианты определения)? Как выглядит периодограмма тренда?
- 1.3. Что такое периодическая компонента? Как выглядит ее периодограмма?
- 1.4. Что такое шум? Как выглядит его периодограмма?
- 1.5. Периодограмма как оценка спектральной плотности. Распределение значений. Сглаживание периодограммы.
- 1.6. Чем отличается сглаживание от выделения тренда?
- 1.7. Что такое линейный фильтр, импульсная характеристика? Причинный фильтр, FIR.
- 1.8. Характеристики фильтра через его воздействие на $\cos(2\pi\omega n)$ (или на комплексную экспоненту) АЧХ, ФЧХ.
- 1.9. AЧХ фильтра скользящего среднего, зависимость от длины окна.
- 1.10. АЧХ фильтра перехода к разностям (дифференцирования).
- 1.11. Что такое запаздывание и отчего оно может возникать (на примере скользящего среднего)?
- 1.12. Смещение при сглаживании фильтром скользящего среднего. Роль второй производной.

Глава 2

Метод SSA

- 2.1. Как выбирать L.
- 2.2. Последовательный SSA.
- 2.3. Слабая и сильная разделимость.
- 2.4. Компоненты смешались. Как понять, это слабая или сильная разделимость?
- 2.5. Как идентифицировать тренд?
- 2.6. Как идентифицировать периодичность?
- 2.7. Использование матрицы взвешенных корреляций.
- 2.8. Элементарные восстановленные компоненты.
- 2.9. Корни хар.полинома, сигнальные и лишние.
- 2.10. Оценка параметров в SSA.
- 2.11. Прогноз.
- 2.12. Доверительные интервалы.
- 2.13. Автоматическая идентификация.
- 2.14. Заполнение пропусков.
- 2.15. Теплицев SSA для стац. рядов.
- 2.16. Projection SSA, выделение лин.тренда.
- 2.17. Улучшение разделимости с помощью вращения в выбранном подпространстве: Iterative O-SSA (слабая и

Глава 3

ARIMA и прочее.

- 3.1. AR(p) модель, запись в виде с оператором сдвига.
- 3.2. AR(p) и модель сигнала в SSA.
- 3.3. Вид автоковариационной функции acf для AR(p).
- 3.4. Вид расf для AR(p).
- 3.5. Модель MA(q), вид acf и pacf.
- 3.6. ARMA(p,q).
- 3.7. Дифференцирование, ARIMA(p,d,q).
- 3.8. Seasonal ARIMA(p,d,q)(P,D,Q).
- 3.9. Exponential smoothing, модели тренда, ES и ARIMA.