TEST REPORT

Reference No. : WTS17S0579239E

FCC ID..... : 2AL7Q-EE0354

Applicant.....: ShenZhen EBELONG Technology Co., Ltd

Address..... ShenZhen Wisdom Innovation Center Suite A. 607, Qianjin 2nd Road,

Baoan District, ShenZhen, GuangDong, China

Manufacturer....: The same as above

Address.....: The same as above

Product Name...... : Wireless Kinetic Energy Switch

Model No. EQ0114, EQ0122, EE0154, EQ0214, EQ0222, EE0254, EQ0314,

EQ0322, EE0354

Standards...... : FCC CFR47 Part 15 Section C 15.231: 2016

Date of Receipt sample.... : May 15, 2017

Date of Test..... : May 16–Jun. 04, 2017

Date of Issue..... : Jun. 05, 2017

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Philo Zhong / Manager

Robin Zhou /Test Engineer

obin.Zhou

2 Contents

			Page
1	COVE	R PAGE	1
2	CONT	TENTS	2
3	REPO	ORT REVISION HISTORY	3
4	GENE	ERAL INFORMATION	4
	4.1 4.2 4.3 4.4	GENERAL DESCRIPTION OF E.U.T	4 4
5	EQUII	PMENT USED DURING TEST	5
	5.1 5.2 5.3	EQUIPMENTS LIST	5
6	TEST	SUMMARY	7
7	RADIA	ATED SPURIOUS EMISSIONS	8
	7.1 7.2 7.3 7.4 7.5	EUT OPERATION TEST SETUP SPECTRUM ANALYZER SETUP TEST PROCEDURE SUMMARY OF TEST RESULTS	9 10 11
8	PERIO	ODIC OPERATION	13
9	EMIS	SION BANDWIDTH	15
	9.1 9.2	TEST PROCEDURETEST RESULT	
10	ANTE	NNA REQUIREMENT	16
11	SAR E	EVALUATION	17
	11.1 11.2 11.3	REQUIREMENTS THE PROCEDURES / LIMIT RESULT: COMPLIANCE	17
12	РНОТ	TOGRAPHS – MODEL EE0354 TEST SETUP	18
	12.1	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	18
13	РНОТ	TOGRAPHS - CONSTRUCTIONAL DETAILS	20
	13.1 13.2	EUT- EXTERNAL PHOTOSEUT- INTERNAL PHOTOS	

Reference No.: WTS17S0579239E Page 3 of 39

3 Report Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS17S0579239E	May 15, 2017	May 16– Jun. 04, 2017	Jun. 05, 2017	original	-	Valid

Reference No.: WTS17S0579239E Page 4 of 39

4 General Information

4.1 General Description of E.U.T.

Product Name Wireless Kinetic Energy Switch

Model No. EQ0114, EQ0122, EE0154, EQ0214, EQ0222, EE0254, EQ0314,

EQ0322, EE0354

Model Difference:

Product Name	Model No.	Number of Keys	Difference Description
	EQ0114		Only the model name is
	EQ0122	1 key	Only the model name is difference
	EE0154		dillerence
Wireless Kinetic	EQ0214		Only the model name is
Energy Switch	EQ0222	2 key	Only the model name is difference
Energy Switch	EE0254		dillerence
	EQ0314		Only the model name is
	EQ0322	3 key	Only the model name is difference
	EE0354		dillerence

For all above models are the same radio module and antenna, only the number of keys is difference. The model EE0354 is the tested sample.

Type of Modulation : FSK

Frequency Range : 433.30 MHz
The Lowest Oscillator : 12.80 MHz

Antenna installation : Single whip antenna

4.2 Details of E.U.T.

Technical Data : Energy Harvesting from self-generating.

4.3 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	High channel
Transmitting	433.30MHz

4.4 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

FCC Test Site Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

3m Ser	3m Semi-anechoic Chamber for Radiation Emissions								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	Spectrum Analyzer	R&S	FSP	100091	Apr. 29, 2017	Apr. 28, 2018			
2	Amplifier	Agilent	8447D	2944A10178	Jan. 12, 2017	Jan. 11, 2018			
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	Oct. 17, 2016	Oct. 16, 2017			
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr. 07, 2017	Apr. 06, 2018			
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017			
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr. 07, 2017	Apr. 06, 2018			
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr. 07, 2017	Apr. 06, 2018			
8	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	Apr. 07, 2017	Apr. 06, 2018			
9	Test Receiver	R&S	ESCI	101296	Apr. 06, 2017	Apr. 05, 2018			
10	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr. 07, 2017	Apr. 06, 2018			
11	Amplifier	ANRITSU	MH648A	M43381	Apr. 07, 2017	Apr. 06, 2018			
12	Cable	HUBER+SUHNER	CBL2	525178	Apr. 07, 2017	Apr. 06, 2018			
RF Cor	nducted Testing								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.12, 2016	Sep.11, 2017			
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12, 2016	Sep.11, 2017			
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.12, 2016	Sep.11, 2017			

5.2 Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Conducted Emissions	150kHz~30MHz	±3.64dB	(1)
Radiated Spurious	30MHz~1000MHz	±5.03dB	(1)
Emissions 1000M~6000MHz		± 5.47 dB	(1)

Reference No.: WTS17S0579239E Page 6 of 39

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS17S0579239E Page 7 of 39

6 Test Summary

Test Requirement	Result
15.207	N/A
15.205(a) 15.209 15.231(a)	С
15.231(a)	С
15.231(c)	С
15.203	С
1.1307(b)(1)	С
	15.207 15.205(a) 15.209 15.231(a) 15.231(a) 15.231(c)

Note: C=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable

Reference No.: WTS17S0579239E Page 8 of 39

7 Radiated Spurious Emissions

Test Requirement: FCC Part15 Paragraph 15.231(a)

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

Fundamental Frequency (MHz)	Field Strength of Fundamental (uV/m)	Field Strength of Fundamental (dBuV/m)	Field Strength of Spurious Emission (uV/m)	Field Strength of Spurious Emission (dBuV/m)		
44.66-40.70	2250	67	225	47		
70-130	1250	62	125	42		
130-174	1250 to 3750	62 to 71.48	125 to 375	42 to 51.48		
174-260	3750	71.48	375	51.48		
260-470	3750 to 12500	71.48 to 81.94	375 to 1250	51.48 to 61.94		
Above 470	12500	81.94	1250	61.94		
aa** linear interpolations						

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GHz	<u>.</u>	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz

Reference No.: WTS17S0579239E Page 11 of 39

7.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 9 KHz~30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 5GHz

High channel: 433.30MHz

High channel: 433.30MHZ								
Fraguenay	Receiver	Turn table	RX Antenna		Corrected	Corrected	FCC Part 15.231/15.209/205	
Frequency	Frequency Reading (PK)		Height	Polar	Factor	Amplitude (PK)	Limit	Margin
(MHz)	(dBµV)	Degree	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµV/ m)	(dB)
433.30	99.75	129	1.1	Н	-7.11	92.64	100.80	-8.16
433.30	100.12	132	1.7	V	-7.11	93.01	100.80	-7.79
866.60	71.23	269	1.6	Н	0.04	71.27	80.80	-9.53
866.60	72.35	51	1.7	V	0.04	72.39	80.80	-8.41
1913.25	65.34	208	1.9	Н	-16.38	48.96	74.00	-25.04
1913.25	65.12	342	1.6	V	-16.38	48.74	74.00	-25.26
2347.12	59.31	278	1.5	Н	-14.87	44.44	74.00	-29.56
2347.12	58.68	270	2.0	V	-14.87	43.81	74.00	-30.19

AV = Peak +20Log₁₀ (duty cycle) =PK+ (-19.17) [refer to section 8 for more detail]

		RX Duty cycle	Calculated	FCC Part 15.231/209/205		
Frequency	PK	Antenna Polar	Factor	AV	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
433.30	92.64	Н	-19.17	73.47	80.80	-7.33
433.30	93.01	V	-19.17	73.84	80.80	-6.96
866.60	71.27	Н	-19.17	52.10	60.80	-8.70
866.60	72.39	V	-19.17	53.22	60.80	-7.58
1913.25	48.96	Н	-19.17	29.79	54.00	-24.21
1913.25	48.74	V	-19.17	29.57	54.00	-24.43
2347.12	44.44	Н	-19.17	25.27	54.00	-28.73
2347.12	43.81	V	-19.17	24.64	54.00	-29.36

Reference No.: WTS17S0579239E Page 13 of 39

8 Periodic Operation

The duty cycle was determined by the following equation:

To calculate the actual field intensity, The duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

Duty Cycle (%)=Total On interval in a complete pulse train/ Length of a complete pulse train * % Duty Cycle Correction Factor (dB) =20 * Log_{10} (Duty Cycle (%))

Pulse-repetition frequency (Hz) =1/ Pulse duration(s)

Total transmission time(ms)	11.0
Pulse duration(s)	0.305
Pulse-repetition frequency(Hz)	3.28
Length of a complete transmission period(ms)	100*
Duty Cycle (%)	11.0
Duty Cycle Correction Factor(dB)	-19.17

(* Note: the transmitter operates for longer than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. So the Length of a complete transmission period=100ms)

Refer to the duty cycle plot (as below),

FCC Part15.231 (a) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

(2)A transmitter activated automatically shall cease transmission within 5 seconds after activation.

Reference No.: WTS17S0579239E Page 15 of 39

9 Emission Bandwidth

Test Requirement: FCC Part15.231(c)
Test Method: FCC Part15.231(c)

Limit The bandwidth of the emission shall be no wider than 0.25% of the

center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission

shall be no wider than 0.5% of the center frequency.

9.1 Test Procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer.EUT and its simulators are placed on a table, let EUT working in test mode, then test it.

2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 3 kHz RBW and 10 kHz VBW. The 20 dB bandwidth was recorded.

9.2 Test Result

Frequency	20dB Bandwidth	99% Bandwidth	Limit	Result
(MHz)	Emission(KHz)	Emission(KHz)	(KHz)	
433.30	206.00	199.60	1083.25	Compliance

Limit=Center Frequency*0.25%

Test Plot

10 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has oneSingle whip antenna, the gain is 2 dBi. meets the requirements of FCC 15.203.

Reference No.: WTS17S0579239E Page 17 of 39

11 SAR Evaluation

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part2.1093 & 447498 D01 General RF Exposure Guidance v06

11.1 Requirements

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is <5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

11.2 The procedures / limit

Source-based time- averaged maximum output power(dBm)	Source-based time-averaged	Minimum test separation distance required for the exposure conditions(mm)	SAR Test Exclusion Thresholds(mW)	Evaluation Result
-2.19	0.604	5	22.80	Compliance

Note: the following is Source-based time-averaged maximum output power Calculation

Frequency	Source-based time- averaged maximum output power	Substituted (0dBm)	Source-based time-averaged maximum output power
(MHz)	(dBµV/m)	(dBµV/m)	(dBm)
433.30	93.01	95.20	-2.19

11.3 Result: Compliance

No SAR measurement is required.

12 Photographs – Model EE0354 Test Setup

12.1 Photograph – Radiation Spurious Emission Test Setup

From 9KHz to 30MHz

From 30MHz to 1GHz

From 1GHz to 5GHz

13 Photographs - Constructional Details

13.1 **EUT- External Photos**

Reference No.: WTS17S0579239E Page 21 of 39

Reference No.: WTS17S0579239E Page 22 of 39

Model: EE0254,

Reference No.: WTS17S0579239E Page 24 of 39

Reference No.: WTS17S0579239E Page 25 of 39

Model:EE0154

Reference No.: WTS17S0579239E Page 27 of 39

Reference No.: WTS17S0579239E Page 28 of 39

13.2 EUT-Internal Photos

Model: EE0354

Reference No.: WTS17S0579239E Page 30 of 39

Reference No.: WTS17S0579239E Page 31 of 39

Reference No.: WTS17S0579239E Page 32 of 39

Model: EE0254

Reference No.: WTS17S0579239E Page 34 of 39

Reference No.: WTS17S0579239E Page 35 of 39

Reference No.: WTS17S0579239E Page 37 of 39

Reference No.: WTS17S0579239E Page 38 of 39

Reference No.: WTS17S0579239E Page 39 of 39

=====End of Report=====