

Vo5G 技术白皮书

发布日期 2018年7月

版权所有 © 华为技术有限公司 2018。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传 播。

商标声明

₩ HUAWEI 和其他华为商标均为华为技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

免责声明

本文档可能含有预测信息,包括但不限于有关未来的财务、运营、产品系列、新技术等信息。由于实践中存 在很多不确定因素,可能导致实际结果与预测信息有很大的差别。因此,本文档信息仅供参考,不构成任何 要约或承诺。华为可能不经通知修改上述信息,恕不另行通知。

华为技术有限公司

地址: 邮编: 518129 深圳市龙岗区坂田华为基地

网址: http://www.huawei.com

目 录

1 引言	5
2 Vo5G 已随 5G 一起标准化	5
2.1 什么是 Vo5G?	5
2.2 Vo5G 标准进展	6
2.3 语音、视频编码标准进展	7
2.4 Vo5G 话音方案介绍	7
2.4.1 Vonr	
2.4.2 EPS FB	8
2.4.3 VoelTE	10
2.4.4 RAT FB	10
2.5 Vo5G 短信和 USSD 方案介绍	11
2.6 不同 5G 组网下 Vo5G 方案介绍	12
2.6.1 EPC NSA 方式引入 5G	
2.6.2 5GC 方式下引入 5G	13
3 Vo5G 是加速 5G 发展的一个重要技术	17
4 迈向 Vo5G 之路:IMS 就绪是前提条件	18
5 迈向 Vo5G 之路:加速 VoLTE 商用是 Vo5G 的基础	18
5.1 5G 商用初期选择的话音方案	18
5.2 向 VoNR 演进	20
5.2.2 路径 1: VoLTE->EPS FB->VoNR	
5.2.3 路径 2: VoLTE-> VoNR	
5.2.4 路径 3: VoLTE-> VoeLTE->RAT FB->VoNR	21
5.3 加速 VoLTE 商用是 Vo5G 的基础	21

Vo5G 技术白皮书

6 Vo5G 之后: 面向行业实时音视频通信持续演进	. 22
6.1 5G 会给运营商的实时音视频通信带来新变化	. 22
6.2 3GPP R16 已立项研究下一代实时通信网络	. 22
7 结论	. 23
8 缩略语表	24

插图目录

图 2-1 5G 话音方案选项图	6
图 2-2 Vo5G 标准进展图	6
图 2-3 通过 5GC 和 gNB 承载的 VoNR 协议栈图	8
图 2-4 通过 EPC 和 gNB 承载的 VoNR 协议栈图	8
图 2-5 EPS Fallback 协议栈图	9
图 2-6 VoeLTE 协议栈图	10
图 2-7 RAT Fallback 协议栈图	11
图 2-8 5G 的 Option3/3a/3X 组网图	12
图 2-9 VoLTE over E-UTRA PDCP 协议栈图	13
图 2-10 VoLTE over NR PDCP 协议栈图	13
图 2-11 5G Option7/7a/7X 组网图	14
图 2-12 5G Option5 组网图	14
图 2-13 5G Option2 组网图	15
图 2-14 EPS Fallback 到 VoNR 演进图	15
图 2-15 双注册 VoLTE 到 VoNR 演进图	16
图 2-16 RAT Fallback 到 VoNR 演进图	16
图 2-17 5G Option4/4a 组网图	17
图 5-1 5G 部署选择意向图	19
图 5-2 5G 语音方案选择意向图	20
图 5-3 VoNR 演进图	21

1 引言

2018年6月14日,国际标准组织3GPP全会(TSG#80)批准了第五代移动通信技术标准(5GNR)独立组网功能冻结。加之去年12月完成的非独立组网NR标准,5G已经完成第一阶段全功能标准化工作。这意味着5G标准按时完成,5G网络商用进程随之开启。

虽然数据业务驱动了 5G 的演进,但话音业务仍然是运营商的重要业务。和 4G 网络一样,5G 商用首先要确定怎样提供话音业务。

2 Vo5G已随 5G一起标准化

2.1 什么是 Vo5G?

3GPP 已明确 5G 沿用 4G 的话音架构,仍基于 IMS 提供话音业务。4G 的无线接入技术为 LTE,其上面承载话音称之为 VoLTE;5G 的无线接入技术为 NR,其上面承载话音称之为 VoNR。VoLTE、VoNR 作为 IMS 话音的不同接入方式存在。

回顾 4G 话音方案, VoLTE 是 4G 网络的目标话音解决方案, 考虑到 4G 网络覆盖的扩张及终端生态系统的成熟, 全球运营商普遍经历了从 CSFB 到 VoLTE 演进过程。

运营商部署 5G,除了同样需要考虑 5G 网络覆盖的扩张及终端生态系统的成熟的因素,还需要考虑众多 5G 组网部署选项的因素。5G 话音方案将面临如下众多选项和演进过程:

图2-1 5G 话音方案选项图

如上图,除了 VoNR 外,EPS FB (EPS Fallback)、RAT FB (RAT Fallback)、VoeLTE [1] 的话音方案也需要借助 5GC 实现,这些方案在 4G 时代并没有定义,所以 VoNR 并不能表示 5G 所有的话音方案。业界需要 Vo5G 来概况所有 5G 话音方案,Vo5G 应包含 VoNR, VoeLTE, EPS FB, RAT FB。

[1] eLTE 指 4G LTE 基站升级后,支持接入 5GC,也称为 ng-eNB; eLTE 架构定义请参考 3GPP TS 38.300

2.2 Vo5G 标准进展

在5G标准化的一开始,就已经充分的考虑话音业务。截止2018年6月,3GPP在Rel-15已完成Vo5G基本功能定义,可满足5G商用部署要求。

图2-2 Vo5G 标准进展图

5G 组网选项有很多, 无论通过 EPC NSA 方式引入 5G, 或者通过 5GC 方式引入 5G, 都已完成语音方案的标准化。同时在 5GC 引入后,为了简化网络和加速 CS 语音退出历史舞台,5GC 不再提供 CSFB 的回落方案。

2.3 语音、视频编码标准进展

GSMA 和 3GPP 已经明确在 Vo5G 中, EVS [2]和 H.265 是语音和视频的必选编码, 这个和 VoLTE 的 AMR 和 H.264 编码比,可用更少的带宽给用户带来更好的体验。

未来,3GPP 将在 Rel-16 完成 IVAS (Immersive Voice and Audio Services) 的标准化,该语音编码具有更好的用户体验和更好的抗丢包能力,可面向 VR 应用带来沉浸的效果,还能在 EVS 的基础上进一步提升抗丢包能力。

同时 ITU 和 ISO 也已成立了联合研究组,正在研究下一代视频编码标准 H.266,将在 2020 年发布新一代的视频标准。目前业界积累的技术已经使得 H.266 比 H.265 性能进一步提升了 40%以上,将是业界最为领先的视频压缩技术方案。

随着音视频编码的持续演进,IVAS 和 H.266 有望在 Vo5G 上率先应用,持续提升用户体验。

[2] EVS 即 Enhanced Voice Services,在 3GPP Rel-12 标准化,是 3GPP 当前抗丢包和质量最好的语音编码

2.4 Vo5G 话音方案介绍

2.4.1 VoNR

VoNR 即 Voice over NR,指话音承载在 gNB 上,根据不同的 5G 组网,存在两个不同选项。

1、通过 5GC 和 gNB 承载 VoNR,如下:

7

图2-3 通过 5GC 和 gNB 承载的 VoNR 协议栈图

2、通过 EPC 和 gNB 承载 VoNR,如下:

图2-4 通过 EPC 和 gNB 承载的 VoNR 协议栈图

在 VoNR 下,终端驻留 NR,语音业务和数据业务都承载在 NR 网络。当手机移动到 NR 信号覆盖较差的区域时,需发起基于覆盖的切换来实现和 4G 的互操作,切换到 LTE,由 VoLTE 来提供服务。

2.4.2 EPS FB

EPS FB 即 EPS Fallback, 5G NR 初期不提供语音业务,当 gNB 在 NR 上建立 IMS 话音通道时触发切换,此时 gNB 向 5GC 发起重定向或者 inter-RAT 切换请求,回落到 LTE 网络,由 VoLTE 提供服务,如下:

图2-5 EPS Fallback 协议栈图

EPS FB 的用户体验和 4G 的 CSFB 体验类似,终端驻留 5G NR,一打电话,话音和数据都回落 4G LTE;由于引入了额外的回落过程,接续时间也比 VoNR 长 1-2 秒。但与 4G 的 CSFB 体验也有不同,如 USSD 等业务并不会触发 EPS FB。

EPS FB 的部署要求是 LTE 和 NR 重叠覆盖。EPS FB 的好处在于 UE/gNB 只需支持 IMS 信令通道 (SIP over NR, 实时性要求不高), 而无需支持 IMS 话音通道 (RTP/RTCP over NR, 实时性要求高); RTP/RTCP over NR 往往需要 NR 持续做网络优化,以达到语音质量好和 UE 功耗低的要求。选择这个技术,运营商可在 5G NR 初期聚焦发展数据业务,待 NR 网络覆盖和优化后再演进到 VoNR。

2.4.3 VoeLTE

VoeLTE 即 Voice over eLTE, 指话音承载在 5GC 以及 ng-eNB 上, 如下:

图2-6 VoeLTE 协议栈图

在 VoeLTE 下,终端驻留 eLTE,语音业务和数据业务都承载在 eLTE 网络。当手机移动到 eLTE 信号覆盖较差的区域时,需发起基于覆盖的切换来实现和 4G 或 NR 的互操作,切换到 LTE 或 NR,由 VoLTE 或 VoNR 来提供服务。

2.4.4 RAT FB

RAT FB 即 RAT Fallback,与 EPS FB 类似,5G NR 初期不提供语音业务,当 gNB 在5G上建立 IMS 话音通道时触发切换,此时 gNB 向5GC 发起重定向或者 inter-RAT 切换请求,回落到 eLTE 网络,由 VoeLTE 提供服务,如下:

图2-7 RAT Fallback 协议栈图

RAT FB 的用户体验和引入原因和 EPS FB 是一样的。RAT FB 的部署要求则是 eLTE 和 NR 重叠覆盖,主要用于 NR 和 LTE 无重叠覆盖,且 gNB 不部署 IMS 话音通道 (RTP/RTCP over NR)。

2.5 Vo5G 短信和 USSD 方案介绍

在 Vo5G 下, 无论 VoNR、EPS FB、VoeLTE 或 RAT FB, 短信和 USSD 均借助 5GC 和 IMS 来实现:

短信通过 SMS over IMS 实现,可参考 3GPP TS 23.204;

补充业务修改通过 XCAP/Ut 接口实现,可参考 3GPP TS 24.623; USSD 则通过 USSD over IMS 实现,可参考 3GPP TS 23.390。

2.6 不同 5G 组网下 Vo5G 方案介绍

2.6.1 EPC NSA 方式引入 5G

对于 5G 的 Option3/3a/3X 组网,NR 由 gNB 提供,然后 gNB 作为 eNB 的从站,接入到 EPC 网络。如下:

图2-8 5G的 Option3/3a/3X 组网图

1、话音

在这个组网下,话音可以继续使用 CSFB、VoLTE 等技术,也可以在 NR 覆盖下使用 VoNR 技术。一般来说,运营商可选择 CSFB 演进到 VoLTE,然后可选择再向 VoNR 演进。

在该组网下,使用 VoLTE 技术,存在两个选项。

1) 4G 定义的 VoLTE

图2-9 VolTE over E-UTRA PDCP 协议栈图

2) VolTE over NR PDCP

图2-10 VoLTE over NR PDCP 协议栈图

3GPP TS 37.340 针对 Option3 系列的组网,eNB 是可选支持 NR PDCP 或者 E-UTRA PDCP,如果选择只支持 NR PDCP,则会带来 VoLTE over NR PDCP 的变种。虽然没有给 VoLTE 带来新功能,但新协议栈的引入,会给网络带来优化、UE 功耗调优上的工作量。

2、短信和 USSD

短信同样可继续使用 SMS over SGs 技术, 也可以使用 SMS over IMS 技术。USSD 也可继续使用 CSFB 技术, 也可使用 USSD over IMS 技术。

2.6.2 5GC 方式下引入 5G

1、短信和 USSD

短信只能使用 SMS over IMS 技术。USSD 也只能使用 USSD over IMS 技术。

2、话音

1) 5G Option7/7a/7X 组网

该组网主要是从 Option3 系列的组网演变而来,随着 5GC 的部署,原接入 EPC 的 Option3 系列组网可割接到 5GC 下。

图2-11 5G Option7/7a/7X 组网图

在该组网下,由于 5GC 不再和 MSC 有接口,所以无法继续使用 CSFB 技术。话音需要使用 VoeLTE 技术,也可以在 NR 覆盖下使用 VoNR 技术。运营商可选择再向 VoNR 演进。

2) 5G Option5组网

图2-12 5G Option5 组网图

该组网主要是从 LTE 的组网演变而来,随着 5GC 的部署,原接入 EPC 的 eNB 升级为 ng-eNB 后,可割接到 5GC 下。

同样,由于 5GC 不再和 MSC 有接口,所以无法继续使用 CSFB 技术。话音需要使用 VoeLTE 技术。

3) 5G Option2组网

该组网是 5G 的目标组网。话音可直接选择 VoNR,如下:

图2-13 5G Option2 组网图

另外在5G部署初期,NR会和4G重叠覆盖,话音可先选择EPS FB;然后再演进到VoNR,如下:

图2-14 EPS Fallback 到 VoNR 演进图

或者在 5G 部署初期,NR 会和 4G 重叠覆盖,运营商也可先选择 UE 双注册 [3]的方案,UE [4]可同时接入 EPS 和 5GS,电话业务始终借助 EPS 采用 VoLTE 承载,而数据业务则根据覆盖选择 NR/5GS 或者 LTE/EPC 承载;然后再演进到 VoNR,如下:

图2-15 双注册 VoLTE 到 VoNR 演进图

[3]双注册在 3GPP TS 23.501 和 23.502 定义

[4]UE 可采用 dual Rx/Tx 或者 1Tx+2Rx 来满足同时接入 EPS 和 5GS 的要求。UE 存在功耗较大的问题

或者在 5G 部署初期, NR 会和 eLTE 重叠覆盖, 话音可先选择 RAT FB; 然后再演进到 VoNR, 如下:

图2-16 RAT Fallback 到 VoNR 演进图

4) 5G Option4/4a 组网

该组网是 5G的 Option2 基础上的增强,主要增加了 eLTE 从站。

图2-17 5G Option4/4a 组网图

由于主站 NR 覆盖范围比从站 eLTE 大, 从站上可不开通话音。话音方案选项和 Option2 是一样的。

3 Vo5G 是加速 5G 发展的一个重要技术

5G 大发展需要更多的频谱资源,尤其穿透力好的低频资源,而优质的低频资源却被 2/3G 用作语音通话给占据,无法释放。同时 5G 的引入,运营商将面临 2/3/4/5G 四 网共存的挑战,过多的制式和网络,带来高 CAPEX 和 OPEX。Vo5G 可以加快语音通话从 2/3G 转移到 4G 或 5G 上,从而达到减少网络、降低成本以及重耕低频资源为 5G 的目的。

Vo5G 继承了 VoLTE 一样的用户体验: 电话接通时间短, 从拨号到听见回铃音仅需要 1-2 秒; 打电话可以同时享受 4/5G 高速上网, 可以边高速下载边打电话。

同时 Vo5G 必选了 EVS 和 H.265 编码, 可带来更好的体验: 扩展了音频带宽(超宽带、全带); 改善了音频和视频的抗干扰性。

所以,运营商有动力,用户也乐意,Vo5G将成为加速5G发展的重要一环。

4

迈向 Vo5G 之路: IMS 就绪是前提条件

3GPP 已明确 5G 必须基于 IMS 提供话音业务,也就是无论 3GPP Rel-15 的 VoNR、VoeLTE、 EPS FB、RAT FB, 还是 Rel-16 的 5G 到 3G SRVCC 都需要部署 IMS。

经过多年 VoLTE 的建设,部署 IMS 不再是一件复杂的事情,2/3G 业务继承、CS/IMS 业务一致性等难题已经有标准化的解决方案。同时 IMS 是最早顺应电信网络云化转型大势,实现 NFV 商用的产品。

IMS 部署已进入快车道,截止 GSMA [5] 2018 年 5 月统计,全球已有 138 个运营商商用了基于 IMS 的 VolTE 网络。

[5]数据来源于

https://www.gsma.com/futurenetworks/resources/all-ip-statistics/

5

迈向 Vo5G 之路: 加速 VoLTE 商用是 Vo5G 的基础

5.1 5G 商用初期选择的话音方案

在 2018 IMS 世界论坛 [6]上,通过对运营商调研发现,接近一半的运营商将先选择 EPC NSA 方式引入 5G。

[6] IMS 世界论坛(https://tmt.knect365.com/ims-world-forum/)是全球唯一聚焦 IMS 技术、创新、演进和生态的专业论坛,在业界极具影响力

Which 5G option will be deployed at initial phase? (Check one)

0 3 7

using 5GC and NR gNB access

22 %

using EPC and an LTE eNB acting as master and NR gNB acting as secondary

49 %

using 5GC and eLTE ng-eNB access

16 %

using 5GC and an NR gNB acting as master and eLTE ng-eNB acting as secondary

5 %

using 5GC and an eLTE ng-eNB acting as master and an NR gNB acting as secondary

8 %

图5-1 5G 部署选择意向图

75%的运营商将选择 VoLTE 作为 Vo5G 初期方案,没有运营商选择 CSFB 作为 Vo5G 初期方案。

图5-2 5G 语音方案选择意向图

5.2 向 VoNR 演进

VoNR 是 5G 网络的目标话音解决方案,从 5G 商用初期选择的话音方案演进到 VoNR,存在多条路径。截止 2018 年 6 月,华为 MI(Marketing Intelligence)调研了全球将要部署 5G 的运营商,发现主要有三条 VoNR 演进路径。

图5-3 VoNR 演讲图

5.2.2 路径 1: VoLTE->EPS FB->VoNR

5G 初期语音网络和数据网络分离,话音通过 EPC+LTE 来提供,以 VoLTE 作为语音解决方案。随着 5GC 的引入,话音继续通过 EPC+LTE 来提供,以 EPS FB 作为语音解决方案。最后,在 5G 网络深入优化后,逐步推出 VoNR。主要应用于如下 5G 组网演进路径:

- 4G->5G Option3 系列->5G Option2
- 4G->5G Option2

5.2.3 路径 2: VoLTE-> VoNR

5G 建设以终为始, 语音和数据同时在 5G 上提供。主要应用于如下 5G 组网演进路径:

4G->5G Option2

5.2.4 路径 3: VoLTE-> VoeLTE->RAT FB->VoNR

5G 初期语音网络和数据网络分离,采用 NR+LTE 双连接组网,话音通过 EPC+LTE 来提供,以 VoLTE 作为语音解决方案。随着 5GC 的引入,继续采用 NR+LTE 双连接组网,话音通过 5GC+LTE 来提供,以 VoeLTE 作为语音解决方案。逐步引入 NR 独立组网,话音仍通过 5GC+LTE 来提供,以 RAT FB 作为语音解决方案。最后,在 5G 网络深入优化后,逐步推出 VoNR。主要应用于如下 5G 组网演进路径:

4G->5G Option3 系列->5G Option7 系列->5G Option2

5.3 加速 VoLTE 商用是 Vo5G 的基础

从2G/3G CS 语音到 4G VoLTE,再从VoLTE 支持与2G/3G 电路域的语音业务连续性,到 Vo5G 只支持基于 IMS 提供话音,传统 CS 语音正在渐渐退出历史舞台。这对于运营商来说,随着 5G 临近, VoLTE 部署越来越紧迫。

对于 5G,组网情况复杂,既要保证业务的连续性,又要能经济有效地部署网络是成功的关键。将话音网络收敛到 4G/5G,视情况将 2G/3G 话音网络关闭,可有效地降低 OPEX 和 CAPEX。VoLTE 将会成为 5G 时代的基础话音网络,与 Vo5G 协同一起保障话音服务的连续性。

6 Vo5G之后: 面向行业实时音视频通信持续 演进

6.1 5G 会给运营商的实时音视频通信带来新变化

目前,全球有 70 亿人与人之间的话音连接。5G 即将到来,音视频连接将延伸到超过 200 亿的人与人和人与物的连接。在 5G 应用场景中,诸如超高清视频、AR/VR 通信和 loT 这样的 5%-10%场景需要构筑在实时通信能力上,这意味着话音会从消费者话音业务转变为增强的实时通信网络能力,并将在专网和互联网中运行;终端也将从手机变成为诸如 TV、手表、车,甚至是机器人。这对话音业务是很好的契机,并将增强消费者体验,为运营商创造商业价值。

6.2 3GPP R16 已立项研究下一代实时通信网络

FS_NG_RTC [7]项目已经于 2018 年 6 月在 3GPP R16 立项通过。该项目邀请运营商和供应商共同探讨和定义下一代实时通信网络,比如如何提供增强的媒体面来支持 AR/VR通信,如何定义 IMS 网络切片来使能垂直行业等等。

另外各行业对实时音视频的新要求和新应用,是驱动网络架构演进的关键。倡议越来越多的垂直行业伙伴以及整个生态圈能参与到项目中来,共同规划面向未来的实时通信网络。

[7]项目详细信息请参考 3GPP 网站 https://portal.3gpp.org/desktopmodules/WorkItem/WorkItemDetails.aspx?wo rkitemId=800029

7 结论

Vo5G 已随着 3GPP 5G 的标准进程而标准化, Vo5G 方案基于 IMS 来提供。

Vo5G 可以加快语音通话从 2/3G 转移到 4G 或 5G 上,从而达到减少网络、降低成本以及重耕低频资源为 5G 的目的。部署 IMS 和加速 VoLTE 商用是迈向 Vo5G 的必由之路。

5G 将深刻改变我们的社会、我们的生活,整个产业需要提前规划面向未来的实时通信 网络,持续地向下一代通信网络演进。

8 缩略语表

表8-1 缩略语清单

英文缩写	英文全名
3GPP	3rd Generation Partnership Project
5GC	5G Core Network
CAPEX	Capital Expenditures
CS	Circuit Switched Domain
CSFB	Circuit Switched Fallback
EPC	Evolved Packet Core
EPS FB	Evolved Packet System Fallback
EVS	Enhanced Voice Services
GSMA	GSM Association
HTTP	HyperText Transfer Protocol
IMS	IP Multimedia Subsystem
IP	Internet Protocol
ISO	International Organization for Standardization
ITU	International Telecommunication Union
IVAS	Immersive Voice and Audio Services
LTE	Long Term Evolution
MAC	Medium Access Control Protocol
MI	Marketing Intellgence
MSC	Mobile Switching Center
NR	New Radio
NSA	Non-Standalone
OPEX	Operating Expenses
PDCP	Packet Data Convergence Protocol
PHY	Physical Layer
QoS	Quality of Service
RAT	Radio Access Technology
RAT FB	Radio Access Technology Fallback
RLC	Radio Link Control Protocol

RTCP	RTP Control Protocol
RTP	Real-time Transport Protocol
SA	Standalone
SIP	Session Initiation Protocol
SMS	Short Message Service
SRVCC	Single Radio Voice Call Continuity
TCP	Transmission Control Protocol
UDP	User Datagram Protocol
UE	User Equipment
USSD	Unstructured Supplementary Service Data
Vo5G	Voice over 5G
VolTE	Voice over LTE
Vonr	Voice over NR
VoeLTE	Voice over eLTE
XCAP	XML Configuration Access Protocol
eLTE	Evolved LTE
eNB	Evolved NodeB
gNB	Next Generation NodeB
ng-eNB	Next Generation Evolved NodeB
VR	Virtual Reality
AR	Augmented Reality
IoT	Internet of Things