Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Электричество и магнетизм

3.4.1. Диа- и парамагнетики

Глаз Роман Сергеевич Группа Б01-007

Долгопрудный 2021

Содержание

L	Теоретическое введение								
2	Экспериментальная установка								
3	Ход работы								
	3.1 Калибровка электромагнита								
	3.2 Измерение зависимости $F(B^2)$								
	3.2.1 Алюминиевый стержень								
	3.2.2 Графитовый стержень №1								
	3.2.3 Графитовый стержень №2								
	Заключение								
5	Список используемой литературы								

Цель работы: измерение магнитной восприимчивости диа- и парамагнитного образцов.

В работе используются: электромагнит, аналитические весы, милливеберметр, регулируемый источник постоянного тока, образцы.

1. Теоретическое введение

Магнитная восприимчивость тел может быть определена по измерению сил, действующих на тела в магнитном поле. В одном из способов (метод Гюи) используется тонкий и длинный стержень, один из концов которого помещают в зазор электромагнита (обычно в область однородного поля), а другой конец — вне зазора, где величиной магнитного поля можно пренебречь. Закон изменения поля — от максимального до нулевого — в этом случае несуществен.

В этом случае сила, действующая на стержень, имеет вид:

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_I \tag{1}$$

Используя выражение для плонтости энергии магнитного поля, легко получить, что

$$dW_M(\Delta x) \approx \mu \frac{B_0^2}{2\mu_0} S dx - \frac{B_0^2}{2\mu_0} S dx = (\mu - 1) \frac{B_0^2}{2\mu_0} S dx$$
 (2)

Здесь B_0 – идукция магнитного поля электромагнита. Формула выше получена с помощью следующих приближений: магнитная восприимчивость тела мала $\mu \approx 1$, значит можно воспользоваться граничными условиями на магнитную напряжённость.

Таким образом,

$$F_M = \chi \frac{B_0^2}{2\mu_0} S \tag{3}$$

2. Экспериментальная установка

Магнитное поле с максимальной индукцией ≈ 1 Тл создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником постоянного напряжения.

Рис. 1: Схема экспериментальной установки

При измерениях образцы поочерёдно подвешиваются к аналитическим весам так, что один конец образца оказывается в зазоре электромагнита, а другой — вне зазора, где индукцией магнитного поля можно пренебречь. При помощи аналитических весов определяется перегрузка $\Delta P = F$ – сила, действующая на образец со стороны магнитного поля.

Градуировка электромагнита (связь между индукцией магнитного поля B в зазоре электромагнита и силой тока I в его обмотках) производится при помощи милливеберметра.

3. Ход работы

3.1. Калибровка электромагнита

Снимем зависимость B(I), учитывая, что $SN = 72 \text{ см}^2$:

I, \mathbf{A}	0,3	0,6	0,9	1,2	1,5	1,8	2,1	2,4	2,7	3
Ф, мВб	0,75	1,5	2,2	2,95	3,65	4,4	5	5,6	6,2	6,7
B , м \mathbf{T} л	104,2	208,3	305,6	409,7	506,9	611,1	694,4	777,8	861,1	930,6

Построим градуировочную кривую:

Кривую удобно аппроксимировать полиномом четвёртой степени, тогда можно находить точки на этой кривой с помощью формулы полинома.

Все дальнейшие данные для замены токов значениями магнитного поля будут браться из градуировочной кривой.

Рис. 2: Градуировочная кривая

3.2. Измерение зависимости $F(B^2)$

3.2.1. Алюминиевый стержень

Снимем зависимость F(I), после чего строим таблицу для $F(B^2)$.

F, MH	0,13734	0,14715	0,18639	0,20601	0,24525	0,26487
B^2 , м T л 2	256992	312508	373456	426115	482253	541850
F, MH	0,30411	0,33354	0,37278	0,40221	0,43164	
B^2 , м T л 2	604938	671483	741512	802516	865933	

Таблица 1: Таблица для алюминия

Построим график зависимости.

Из зависимости имеем $k=(5,01\pm0,17)\cdot10^{-10}~\frac{\rm H}{\rm Tr^2},$ откуда следует, что $\chi=(1,60\pm0,06)\cdot10^{-11}.$

Рис. 3: График для алюминия

F, MH	0,1079	0,3237	0,5493	0,7651	1,0300
B^2 , м T л 2	10850	43407	93364	167872	256992
F, м H	1,2262	1,4028	1,5410	1,8541	2,0601
B^2 , м T л 2	373456	482253	604938	741512	865933

Таблица 2: Таблица для графита №1

3.2.2. Графитовый стержень №1

Снимем зависимость F(I), после чего строим таблицу для $F(B^2)$. Построим график зависимости.

Из зависимости имеем $k=(2,12\pm0,22)\cdot10^{-9}$ $\frac{\rm H}{{
m T}\pi^2}$, откуда следует, что $\chi=(6,65\pm0,71)\cdot10^{-11}$.

3.2.3. Графитовый стержень №2

Снимем зависимость F(I), после чего строим таблицу для $F(B^2)$. Построим график зависимости.

Из зависимости имеем $k=(2,89\pm0,24)\cdot10^{-9}\,\frac{\mathrm{H}}{\mathrm{Tr}^2},$ откуда следует, что $\chi=(9,06\pm0,72)\cdot10^{-11}.$

Рис. 4: График для графита №1

F, м H	0,1275	0,3728	0,6377	0,9221	1,1968
B^2 , м T л 2	10850	43407	93364	167872	256992
F, м H	1,5206	1,8247	2,1386	2,4231	2,6781
B^2 , м T л 2	373456	482253	604938	741512	865933

Таблица 3: Таблица для графита №2

4. Заключение

Таким образом изначальная модель зависимости F(B) оказалась верна, а при рабочих значения индукции магнитного поля значения магнитной воприимчивости оказались практически постоянными (но видны отклонения при возрастании магнитной индукции электромагнита). Были получены следующие значения магнитной восприимчивости для разных материалов:

Для алюминия $\chi = (1,60\pm0,06)\cdot10^{-11}$. Для графита (первый стержень) $\chi = (6,65\pm0,71)\cdot10^{-11}$. Для графита (второй стержень) $\chi = (9,06\pm0,72)\cdot10^{-11}$.

Рис. 5: График для графита №2

5. Список используемой литературы

- Лабораторный практикум по общей физике. Электричество и магнетизм
- Описание лабораторных работ на кафедре общей физики МФТИ