# Práctica 1 Análisis Predictivo Mediante Clasificación

Paula Villanueva Núñez

49314567Z pvillanunez@correo.ugr.es Cuarto Curso del Grado en Ingeniería Informática Curso 2021-2022 Grupo 1 Universidad de Granada

# Índice

| 1 | Intro | oduccion                  | 4 |
|---|-------|---------------------------|---|
|   | 1.1   | Conjuntos de datos        | 4 |
|   |       | 1.1.1 Heart Failure       | 4 |
|   |       | 1.1.2 Mobile Price        | 5 |
|   |       | 1.1.3 Bank Marketing      | 5 |
|   |       | 1.1.4 Tanzania Water Pump | 6 |
|   | 1.2   | Diseño experimental       | 7 |
| 2 | Resu  | ıltados obtenidos         | 8 |
|   | 2.1   | Árbol de decisión         | 8 |
|   |       | 2.1.1 Heart Failure       | 9 |
|   |       | 2.1.2 Mobile Price        | 9 |
|   |       | 2.1.3 Bank Marketing      | 9 |
|   |       | 2.1.4 Tanzania Water Pump | 0 |
|   | 2.2   | k-NN                      | 0 |
|   |       | 2.2.1 Heart Failure       | 1 |
|   |       | 2.2.2 Mobile Price        | 1 |
|   |       | 2.2.3 Bank Marketing      | 2 |
|   |       | 2.2.4 Tanzania Water Pump |   |
|   | 2.3   | Naïve Bayes               | 3 |
|   |       | 2.3.1 Heart Failure       | 4 |
|   |       | 2.3.2 Mobile Price        | 4 |
|   |       | 2.3.3 Bank Marketing      | 5 |
|   |       | 2.3.4 Tanzania Water Pump |   |
|   | 2.4   | Random Forest             |   |
|   |       | 2.4.1 Heart Failure       | 6 |
|   |       | 2.4.2 Mobile Price        | 6 |
|   |       | 2.4.3 Bank Marketing      | 7 |
|   |       | 2.4.4 Tanzania Water Pump | 7 |
|   | 2.5   | XGBoost                   | 8 |
|   |       | 2.5.1 Heart Failure       | 8 |
|   |       | 2.5.2 Mobile Price        | 9 |
|   |       | 2.5.3 Bank Marketing      | 9 |
|   |       | 2.5.4 Tanzania Water Pump | 0 |
| 3 | Anál  | isis de resultados        | 1 |
| _ | 3.1   | Heart Failure             |   |
|   | 3.2   | Mobile Price              |   |
|   | 3.3   | Bank Marketing            |   |
|   | 3.4   | Tanzania Power Pump       |   |
|   | 3.5   | Ranking                   |   |
|   |       |                           | - |

# $\'{I}ndice$

| 4 | Conf  | figuració | ón de algoritmos    | 32 |
|---|-------|-----------|---------------------|----|
|   | 4.1   | k-NN      |                     | 32 |
|   |       | 4.1.1     | Heart Failure       | 32 |
|   |       | 4.1.2     | Mobile Price        | 34 |
|   |       | 4.1.3     | Bank Marketing      | 35 |
|   |       | 4.1.4     | Tanzania Power Pump | 36 |
|   | 4.2   | Rando     | om Forest           | 38 |
|   |       | 4.2.1     | Heart Failure       | 38 |
|   |       | 4.2.2     | Mobile Price        | 40 |
|   |       | 4.2.3     | Bank Marketing      | 41 |
|   |       | 4.2.4     | Tanzania Power Pump | 42 |
| 5 | Proc  | esado d   | de datos            | 45 |
| 6 | Inte  | rpretaci  | ión de resultados   | 49 |
|   | 6.1   | Heart     | Failure             | 49 |
|   | 6.2   | Mobile    | le Price            | 50 |
|   | 6.3   | Bank      | Marketing           | 51 |
|   | 6.4   | Tanza     | ania Power Pump     | 52 |
| 7 | Cont  | tenido a  | ndicional           | 54 |
| 8 | Bibli | iografía  |                     | 58 |

#### 1 Introducción

En esta práctica abordaremos problemas reales de clasificación mediante el uso de algoritmos de aprendizaje supervisado de clasificación de forma que aportarán valor en forma de conocimiento para ayudar en la toma de decisiones. Se trabajarán con cuatro conjuntos de datos reales sobre los que se emplearán diferentes algoritmos de clasificación, para su comparación, y se examinarán las predicciones obtenidas y concluir estrategias para resolver cada problema.

Los problemas con los que se han trabajado combinan distintas propiedades, como la clasificación binaria y multiclase, clases balanceadas o no, atributos nominales y numéricos, existencia o no de valores perdidos, etc. Dichos problemas son los siguientes: Heart Failure Prediction, Mobile Price Classification, Bank Marketing y Tanzania water Pump que se describirán a continuación.

#### 1.1 Conjuntos de datos

#### 1.1.1 Heart Failure

Este dataset proporciona una predicción sobre si una persona puede sufrir una insuficiencia cardíaca. De esta forma, este problema tendrá dos clases diferentes a clasificar (0: normal, 1: insuficiencia cardíaca) a partir de unas variables, como la edad, el sexo, el tipo de dolor de pecho, la presión arterial en reposo, el colesterol... de cada persona. Con esta predicción, se podrá ayudar a detectar y tratar de forma precoz las enfermedades relacionadas con el corazón.

Este conjunto de datos tiene 918 instancias clasificadas según si el corazón es normal, 0, o si tiene una insuficiencia cardíaca, 1, de la siguiente forma.



Figura 1: Porcentaje de instancias clasificadas de Heart Failure

Observamos que las clases están desbalanceadas, más de la mitad (un 55.3%) tienen insuficiencia cardíaca y el resto, un 44.7%, tienen el corazón normal. Además, posee valores desconocidos en la variable *Cholesterol*, donde aparecen ceros, por lo que he decidido sustituirlos por interrogaciones para que el programa los detecte debidamente.

Para este conjunto de datos consideraremos la clase positiva "1", pues nos interesa saber si una persona podría desarrollar alguna insuficiencia cardíaca.

#### 1.1.2 Mobile Price

Este dataset proporciona una predicción del rango del precio indicando cómo de alto es el precio.

Este problema tendrá cuatro clases diferentes a clasificar: 0, 1, 2 o 3; ordenando de menor a mayor dicho precio. Cada instancia tiene una serie de variables, como la energía de la batería, bluetooth, megapíxeles de la cámara, 4G, memoria interna... Con esta predicción, podremos estimar el precio de los móviles que una compañía produce.

Este conjunto de datos tiene 2000 instancias clasificadas de 0 a 3, en orden ascendente del precio, de la siguiente forma.



Figura 2: Porcentaje de instancias clasificadas de Mobile Price

Observamos que las clases están perfectamente balanceadas, cada clase posee el mismo número de instancias. Además, tampoco observamos valores perdidos.

Para este conjunto de datos, como las clases están perfectamente balanceadas, hemos agrupado las clases en dos grupos. Una primera clase, 0, que tendrá las clases 0 y 1; y la segunda clase, 2, que tendrá las clases 2 y 3.

#### 1.1.3 Bank Marketing

Los datos están relacionados con campañas de marketing de una institución bancaria portuguesa. Este dataset proporciona una predicción sobre si una persona se subscribiría a un depósito a plazo.

De esta forma, este problema tendrá dos clases diferentes a clasificar (sí o no) a partir de unas variables, como la edad, el trabajo, el estado civil, el nivel de educación, la hipoteca, los préstamos... que tiene cada persona.

Este conjunto de datos tiene 41188 instancias clasificadas según si la persona se subscribiría o no de la siguiente forma.

#### **Bank Marketing**



Figura 3: Porcentaje de instancias clasificadas de Bank Marketing

Observamos que hay un desbalanceo bastante notable entre las distintas clases, la mayoría (un 88.7%) responden que "no", mientras que apenas el 11.3% responden que "sí"se subscribirían a un depósito a plazo. Además, se contemplan valores desconocidos, *unknown*.

Para este conjunto de datos consideraremos la clase positiva zes", pues nos interesa saber quién sí se subscribiría a dicho depósito a plazo.

#### 1.1.4 Tanzania Water Pump

Este dataset proporciona una predicción sobre si una bomba de agua funciona o no.

Este problema tendrá dos clases diferentes a clasificar (functional o non functional) a partir de unas variables, como la altura, la fecha, el financiador, la altitud, la organización, el nombre, la región, la población de alrededor... de cada nomba de agua. Con esta predicción, podremos saber qué puntos de agua fallarán y así podremos mejorar las operaciones de mantenimiento y garantizar que se disponga de agua potable y limpia.

Este conjunto de datos tiene 55083 instancias clasificadas según si es funcional o no de la siguiente forma.

#### **Tanzania Power Pump**



Figura 4: Porcentaje de instancias clasificadas de Tanzania Power Pump

Observamos que hay un desbalanceo entre las distintas clases, más de la mitad (un 58.6%) son

bombas de agua funcionales, mientras que el 41.4% no son funcionales. Además, se perciben valores desconocidos, *unknown*, y valores perdidos, ?.

Para este conjunto de datos consideraremos la clase positiva "non functional", pues nos interesa saber qué bombas de agua no funcionan y así poder mejorar las operaciones de mantenimiento.

#### 1.2 Diseño experimental

Para realizar esta práctica, se han considerado cinco algoritmos de clasificación: árbol de decisión, k-NN, Naive Bayes, Random Forest y XGBoost.

Toda la experimentación se ha realizado con validación cruzada de 5 particiones y la semilla aleatoria utilizada es 4567. Para ello, se han empleado los nodos de KNIME X-Partitioner y X-Aggregator.

De esta forma, Heart Failure tendrá un conjunto de entrenamiento de tamaño 735 y un conjunto de prueba de tamaño 183. Por otra parte, Mobile Price tendrá un conjunto de entrenamiento de tamaño 1600 y un conjunto de prueba de tamaño 400. De la misma forma, Bank Marketing tendrá un entrenamiento de tamaño 32951 y un conjunto de prueba de tamaño 8237. Por último, Tanzania Water Pump tendrá un conjunto de entrenamiento de tamaño 44067 y un conjunto de prueba de tamaño 11016.

Además, para sustentar el análisis comparativo se han empleado tablas de errores, matrices de confusión y curvas ROC. Además de la precisión, se han añadido las medidas de rendimiento TPR, TNR, Valor- $F_1$ , G-mean y AUC así como medidas de complejidad del modelo.

#### 2 Resultados obtenidos

En esta sección se muestran los algoritmos estudiados junto con el flujo de trabajo empleado y una tabla con los resultados obtenidos por el algoritmo en todos los problemas.

#### 2.1 Árbol de decisión

Un **árbol de decisión** es un clasificador que en función de un conjunto de atributos permite determinar a qué clase pertenece el caso objeto de estudio. Esto es, divide el conjunto de ejemplos según el valor de unos atributos seleccionados previamente. El criterio de selección de variables elegido es GINI (CART), es decir, si un conjunto de datos T tiene ejemplos pertenecientes a n clases, el índice Gini se define como

$$gini(T) = 1 - \sum_{j=1}^{n} p_j^2$$

donde  $p_i$  es la frecuencia relativa de la clase j en T.

Se elige para dividir el nodo, el atributo que proporciona el índice gini(T) más pequeño.

Los árboles de decisión tratan bien los datos con ruido. Sin embargo, no manejan de forma fácil los atributos continuos y tienen dificultad para trabajar con valores perdidos.

El flujo de trabajo de este algoritmo en KNIME es el siguiente, común para todos los datasets.



Figura 5: Metanodo Árbol de decisión

Se han utilizado los nodos Decision Tree Learner, usando Gini, y Decision Tree Predictor. No ha sido necesario tratar los valores perdidos o desconocidos que presentaban algunos conjuntos de datos. Sin embargo, los datasets Heart Failure y Mobile Price han necesitado transformar su clase a un valor nominal. El resto de atributos pueden ser nominales o numéricos.

Con respecto a los valores numéricos, como vimos en teoría, los árboles de decisión no manejan de forma fácil los atributos continuos. El nodo Decision Tree Learner, para resolver este problema, divide el dominio en dos subconjuntos para tratarlos de forma categórica.

Además, el nodo Decision Tree Predictor nos proporciona el árbol obtenido, que es fácil de interpretar.

Por otra parte, se han creado dos metanodos, Tree size para calcular el tamaño del árbol obtenido y Extract model size para representarlo en una tabla.

En el siguiente apartado veremos los resultados obtenidos de este algoritmo en cada conjunto de datos, detallando más la tabla que se muestra a continuación.

Tabla 1: Criterios de precisión del árbol de decisión

| Árbol de decisión en | TP    | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | Model size | AUC    |
|----------------------|-------|------|-------|------|--------|--------|--------|----------|----------|--------|------------|--------|
| Heart Failure        | 422   | 87   | 323   | 86   | 0.8307 | 0.7878 | 0.8290 | 0.8115   | 0.8299   | 0.8090 | 69.2       | 0.8157 |
| Mobile Price         | 947   | 59   | 941   | 53   | 0.947  | 0.941  | 0.9414 | 0.944    | 0.9442   | 0.9439 | 36         | 0.9502 |
| Bank Marketing       | 2284  | 1864 | 34387 | 2149 | 0.5152 | 0.9486 | 0.5506 | 0.9014   | 0.5323   | 0.6991 | 2686.2     | 0.7207 |
| Tanzania Power Pump  | 17748 | 4520 | 27493 | 4871 | 0.7847 | 0.8588 | 0.7970 | 0.8281   | 0.7908   | 0.8209 | 4882       | 0.8385 |

#### 2.1.1 Heart Failure

En este dataset ha sido necesario usar el nodo Number to String para transformar la clase HeartDisease a un String, pues así lo requiere este algoritmo.

La matriz de confusión obtenida es la siguiente.

Tabla 2: Matriz de confusión del árbol de decisión de Heart Failure

| Heart Disease | 0   | 1   |
|---------------|-----|-----|
| 0             | 329 | 81  |
| 1             | 88  | 420 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 3: Criterios de precisión del árbol de decisión de Heart Failure

| Hear Failure      | TP  | FP | TN  | FN | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | Model size | AUC    |
|-------------------|-----|----|-----|----|--------|--------|--------|----------|----------|--------|------------|--------|
| Árbol de decisión | 422 | 87 | 323 | 86 | 0.8307 | 0.7878 | 0.8290 | 0.8115   | 0.8299   | 0.8090 | 69.2       | 0.8157 |

#### 2.1.2 Mobile Price

En este dataset ha sido necesario usar el nodo Number to String para transformar la clase price\_range a un String, pues así lo requiere este algoritmo.

La matriz de confusión obtenida es la siguiente.

Tabla 4: Matriz de confusión del árbol de decisión de Mobile Price

| Mobile Price | 0   | 2   |
|--------------|-----|-----|
| 0            | 941 | 59  |
| 2            | 53  | 947 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 5: Criterios de precisión del árbol de decisión de Mobile Price

| Mobile Price      | TP  | FP | TN  | FN | TPR   | TNR   | PPV    | Accuracy | F1-score | G-mean | Model size | AUC    |
|-------------------|-----|----|-----|----|-------|-------|--------|----------|----------|--------|------------|--------|
| Árbol de decisión | 947 | 59 | 941 | 53 | 0.947 | 0.941 | 0.9414 | 0.944    | 0.9442   | 0.9439 | 36         | 0.9502 |

#### 2.1.3 Bank Marketing

Tabla 6: Matriz de confusión del árbol de decisión de Bank Marketing

| Bank Marketing | no    | yes  |
|----------------|-------|------|
| no             | 34387 | 1864 |
| yes            | 2149  | 2284 |

Tabla 7: Criterios de precisión del árbol de decisión de Bank Marketing

| Bank Marketing    | TP   | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | Model size | AUC    |
|-------------------|------|------|-------|------|--------|--------|--------|----------|----------|--------|------------|--------|
| Árbol de decisión | 2284 | 1864 | 34387 | 2149 | 0.5152 | 0.9486 | 0.5506 | 0.9014   | 0.5323   | 0.6991 | 2686.2     | 0.7207 |

#### 2.1.4 Tanzania Water Pump

La matriz de confusión obtenida es la siguiente.

Tabla 8: Matriz de confusión del árbol de decisión de Tanzania Water Pump

| Tanzania Water Pump | functional | non functional |
|---------------------|------------|----------------|
| functional          | 27493      | 4520           |
| non functional      | 4871       | 17748          |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 9: Criterios de precisión del árbol de decisión de Tanzania Water Pump

| Tanzania Water Pump | $\operatorname{TP}$ | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | Model size | AUC    |
|---------------------|---------------------|------|-------|------|--------|--------|--------|----------|----------|--------|------------|--------|
| Árbol de decisión   | 17748               | 4520 | 27493 | 4871 | 0.7847 | 0.8588 | 0.7970 | 0.8281   | 0.7908   | 0.8209 | 4882       | 0.8385 |

#### 2.2 k-NN

Como segundo algoritmo se ha elegido el clasificador del vecino más cercano ( $\mathbf{k}$ - $\mathbf{N}\mathbf{N}$ ). Su proceso de aprendizaje consiste en almacenar una tabla con los ejemplos disponibles, junto a la clase asociada a cada uno de ellos. Ante un nuevo ejemplo a clasificar, se calcula su distancia (euclídea) con respecto a los n ejemplos existentes en la tabla, y se consideran los k más cercanos. El nuevo ejemplo se clasifica según la clase mayoritaria de los k ejemplos más cercanos. Para aplicar este algoritmo, es necesario que los atributos estén discretizados y normalizados en [0,1] para no priorizarlos sobre otros.

En todos los conjuntos de datos se ha utilizado el nodo K Nearest Neighbor tomando el número de vecinos k=3. Además, en todos los conjuntos de datos se ha utilizado el nodo Column Rename puesto que el anterior nodo definía la columna de predicción como Class [kNN]. De esta forma dicha columna pasará a llamarse al igual que las otras en los distintos algoritmos, Prediction (class).

En algunos casos ha sido necesario tratar los valores perdidos que presentaban algunos conjuntos de datos, incluso ha sido imprescindible discretizar y normalizar los atributos en algunos datasets.

En el siguiente apartado veremos los resultados obtenidos de este algoritmo en cada conjunto de datos, detallando más la tabla que se muestra a continuación.

Tabla 10: Criterios de precisión de 3-NN

| 3-NN en             | TP    | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------------|-------|------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| Heart Failure       | 452   | 83   | 327   | 56   | 0.8898 | 0.7976 | 0.8449 | 0.8486   | 0.8667   | 0.8424 | 0.8741 |
| Mobile Price        | 790   | 204  | 796   | 210  | 0.79   | 0.796  | 0.7947 | 0.793    | 0.7923   | 0.7929 | 0.8475 |
| Bank Marketing      | 1438  | 1347 | 35201 | 3202 | 0.3099 | 0.9631 | 0.5163 | 0.8896   | 0.3873   | 0.5463 | 0.7400 |
| Tanzania Power Pump | 16480 | 4781 | 27478 | 6344 | 0.7220 | 0.8518 | 0.7751 | 0.7980   | 0.7476   | 0.7842 | 0.8480 |

#### 2.2.1 Heart Failure

En este conjunto ha sido necesario, antes de aplicar este clasificador, el nodo Number to String para transformar HeartDisease a un String. También se han usado los nodos Category To Number y Normalizer para transformar el resto de atributos a valores numéricos normalizados. Además, como este dataset posee valores perdidos, también ha sido necesario utilizar los nodos Missing Value y Missing Value (apply) para tratarlos, se ha utilizado la mediana para los valores numéricos y el valor más frecuente para los nominales. El flujo queda como muestra la siguiente figura.



Figura 6: Metanodo k-NN de Heart Failure

La matriz de confusión obtenida es la siguiente.

Tabla 11: Matriz de confusión de 3-NN de Heart Failure

| Heart Disease | 0   | 1   |
|---------------|-----|-----|
| 0             | 329 | 81  |
| 1             | 58  | 450 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 12: Criterios de precisión de 3-NN de Heart Failure

| Hear Failure | TP  | FP | TN  | FN | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|--------------|-----|----|-----|----|--------|--------|--------|----------|----------|--------|--------|
| 3-NN         | 452 | 83 | 327 | 56 | 0.8898 | 0.7976 | 0.8449 | 0.8486   | 0.8667   | 0.8424 | 0.8741 |

#### 2.2.2 Mobile Price

En este conjunto ha sido necesario, antes de aplicar este clasificador, el nodo Number to String para transformar price\_range a un String. Como el resto de atributos eran numéricos, solo ha

sido necesario utilizar el nodo Normalizer para normalizarlos. Como no posee valores perdidos, no ha sido necesario ningún procesamiento adicional. El flujo queda como muestra la siguiente figura.



Figura 7: Metanodo k-NN de Mobile Price

La matriz de confusión obtenida es la siguiente.

Tabla 13: Matriz de confusión de 3-NN de Mobile Price

| Mobile Price | 0   | 2   |
|--------------|-----|-----|
| 0            | 796 | 204 |
| 2            | 210 | 790 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 14: Criterios de precisión de 3-NN de Mobile Price

| Mobile Price | TP  | FP  | TN  | FN  | TPR  | TNR   | PPV    | Accuracy | F1-score | G-mean | AUC    |
|--------------|-----|-----|-----|-----|------|-------|--------|----------|----------|--------|--------|
| 3-NN         | 790 | 204 | 796 | 210 | 0.79 | 0.796 | 0.7947 | 0.793    | 0.7923   | 0.7929 | 0.8475 |

#### 2.2.3 Bank Marketing

Para este conjunto de datos se han usado los nodos Category To Number y Normalizer para transformar el resto de atributos a valores numéricos normalizados. Al igual que el conjunto de datos anterior, no ha sido necesario tratar los valores perdidos. Por lo que el flujo de trabajo es igual a la figura 7.

La matriz de confusión obtenida es la siguiente.

Tabla 15: Matriz de confusión de 3-NN de Bank Marketing

| Bank Marketing | no    | yes  |
|----------------|-------|------|
| no             | 35201 | 1347 |
| yes            | 3202  | 1438 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 16: Criterios de precisión de 3-NN de Bank Marketing

| Bank Marketing | TP   | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|----------------|------|------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| 3-NN           | 1438 | 1347 | 35201 | 3202 | 0.3099 | 0.9631 | 0.5163 | 0.8896   | 0.3873   | 0.5463 | 0.7400 |

#### 2.2.4 Tanzania Water Pump

Para este conjunto de datos se han usado los nodos Category To Number y Normalizer para transformar el resto de atributos a valores numéricos normalizados. Al igual que el conjunto de datos Heart Failure, también posee valores perdidos y ha sido necesario utilizar los nodos Missing Value y Missing Value (apply) para tratarlos, se ha utilizado la mediana para los valores numéricos y el valor más frecuente para los nominales. El flujo es igual al de la figura 6

La matriz de confusión obtenida es la siguiente.

Tabla 17: Matriz de confusión de 3-NN de Tanzania Water Pump

| Tanzania Water Pump | functional | non functional |
|---------------------|------------|----------------|
| functional          | 27478      | 4781           |
| non functional      | 6344       | 16480          |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 18: Criterios de precisión de 3-NN de Tanzania Water Pump

| Tanzania Water Pump | TP    | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------------|-------|------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| 3-NN                | 16480 | 4781 | 27478 | 6344 | 0.7220 | 0.8518 | 0.7751 | 0.7980   | 0.7476   | 0.7842 | 0.8480 |

#### 2.3 Naïve Bayes

El **teorema de Bayes** orientado a un problema de clasificación con n variables tiene la siguiente expresión

$$P(C|A_1, ..., A_n) = \frac{P(A_1, ..., A_n|C)P(C)}{P(A_1, ..., A_n)}$$

El clasificador **Naïve Bayes** es el modelo de red bayesiana orientada a clasificación más simple. Supone que todos los atributos son independientes conocida la variable clase y calcula la clase más probable condicionando el resto de atributos.

El flujo de trabajo de este algoritmo en KNIME es el siguiente, común para todos los datasets.



Figura 8: Metanodo Naive Bayes

En todos los conjuntos de datos se han utilizado los nodos Naive Bayes Learner y Naive Bayes Predictor.

En algunos casos ha sido necesario transformar la clase principal a un valor nominal, puesto que este algoritmo así lo requiere. Sin embargo, algunos conjuntos de datos poseen valores perdidos o desconocidos y no ha sido necesario tratarlos, pues el algoritmo es capaz de trabajar con ellos.

En el siguiente apartado veremos los resultados obtenidos de este algoritmo en cada conjunto de datos, detallando más la tabla que se muestra a continuación.

Tabla 19: Criterios de precisión de Naïve Bayes

| Naïve Bayes en      | TP    | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------------|-------|------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| Heart Failure       | 439   | 68   | 342   | 69   | 0.8642 | 0.8341 | 0.8659 | 0.8508   | 0.8650   | 0.8490 | 0.9202 |
| Mobile Price        | 926   | 75   | 925   | 74   | 0.926  | 0.925  | 0.9250 | 0.9255   | 0.9255   | 0.9254 | 0.9763 |
| Bank Marketing      | 2510  | 3565 | 32983 | 2130 | 0.5409 | 0.9025 | 0.4132 | 0.8617   | 0.4685   | 0.6987 | 0.8337 |
| Tanzania Power Pump | 15125 | 6716 | 25543 | 7699 | 0.6627 | 0.7918 | 0.6925 | 0.7383   | 0.6773   | 0.7244 | 0.8040 |

#### 2.3.1 Heart Failure

Ha sido necesario transformar la clase principal HeartDisease a un valor nominal con el nodo Number to String.

La matriz de confusión obtenida es la siguiente.

Tabla 20: Matriz de confusión de Naive Bayes de Heart Failure

| Heart Disease | 0   | 1   |
|---------------|-----|-----|
| 0             | 342 | 68  |
| 1             | 69  | 439 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 21: Criterios de precisión de Naive Bayes de Heart Failure

| Hear Failure | TP  | FP | TN  | FN | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|--------------|-----|----|-----|----|--------|--------|--------|----------|----------|--------|--------|
| Naive Bayes  | 439 | 68 | 342 | 69 | 0.8642 | 0.8341 | 0.8659 | 0.8508   | 0.8650   | 0.8490 | 0.9202 |

#### 2.3.2 Mobile Price

Ha sido necesario transformar la clase principal price\_range a un valor nominal con el nodo Number to String.

La matriz de confusión obtenida es la siguiente.

Tabla 22: Matriz de confusión de Naive Bayes de Mobile Price

| Mobile Price | 0   | 2   |
|--------------|-----|-----|
| 0            | 925 | 75  |
| 2            | 74  | 926 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 23: Criterios de precisión de Naive Bayes de Mobile Price

| Mobile Price | TP  | FP | TN  | FN | TPR   | TNR   | PPV    | Accuracy | F1-score | G-mean | AUC    |
|--------------|-----|----|-----|----|-------|-------|--------|----------|----------|--------|--------|
| Naive Bayes  | 926 | 75 | 925 | 74 | 0.926 | 0.925 | 0.9250 | 0.9255   | 0.9255   | 0.9254 | 0.9763 |

#### 2.3.3 Bank Marketing

La matriz de confusión obtenida es la siguiente.

Tabla 24: Matriz de confusión de Naive Bayes de Bank Marketing

| Bank Marketing | no    | yes  |
|----------------|-------|------|
| no             | 32983 | 3565 |
| yes            | 2130  | 2510 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 25: Criterios de precisión de Naive Bayes de Bank Marketing

| Bank Marketing | TP   | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|----------------|------|------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| Naive Bayes    | 2510 | 3565 | 32983 | 2130 | 0.5409 | 0.9025 | 0.4132 | 0.8617   | 0.4685   | 0.6987 | 0.8337 |

#### 2.3.4 Tanzania Water Pump

La matriz de confusión obtenida es la siguiente.

Tabla 26: Matriz de confusión de Naive Bayes de Tanzania Water Pump

| Tanzania Water Pump | functional | non functional |
|---------------------|------------|----------------|
| functional          | 25543      | 6716           |
| non functional      | 7699       | 15125          |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 27: Criterios de precisión de Naive Bayes de Tanzania Water Pump

| Tanzania Water Pump | TP    | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------------|-------|------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| Naive Bayes         | 15125 | 6716 | 25543 | 7699 | 0.6627 | 0.7918 | 0.6925 | 0.7383   | 0.6773   | 0.7244 | 0.8040 |

#### 2.4 Random Forest

Random Forest es un multiclasificador que consta de varios árboles de decisión. Cada uno se construye con un conjunto diferente de filas y para cada división dentro de un árbol se elige al azar un conjunto de columnas. Los conjuntos de filas para cada árbol de decisión se crean mediante bootstrapping y tienen el mismo tamaño que la tabla de entrada original. Es una modificación de bagging.

El flujo de trabajo de este algoritmo en KNIME es el siguiente, común para todos los datasets (salvo Tanzania Water Pump).



Figura 9: Metanodo Random Forest

Se han utilizado los nodos Random Forest Learner, con 100 modelos y usando el índice Gini, y Random Forest Predictor.

No ha sido necesario tratar los valores perdidos o desconocidos que presentaban algunos conjuntos de datos. Sin embargo, los datasets Heart Failure y Mobile Price han necesitado transformar su clase a un valor nominal.

En el siguiente apartado veremos los resultados obtenidos de este algoritmo en cada conjunto de datos, detallando más la tabla que se muestra a continuación.

Tabla 28: Criterios de precisión de Random Forest

| Random Forest en    | TP   | FP  | TN    | FN    | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------------|------|-----|-------|-------|--------|--------|--------|----------|----------|--------|--------|
| Heart Failure       | 449  | 70  | 340   | 59    | 0.8839 | 0.8293 | 0.8651 | 0.8595   | 0.8744   | 0.8561 | 0.9249 |
| Mobile Price        | 947  | 42  | 958   | 53    | 0.947  | 0.958  | 0.9575 | 0.9525   | 0.9522   | 0.9524 | 0.9915 |
| Bank Marketing      | 2044 | 949 | 35599 | 2596  | 0.4405 | 0.9740 | 0.6829 | 0.9139   | 0.5356   | 0.6550 | 0.9433 |
| Tanzania Power Pump | 8905 | 670 | 31589 | 13919 | 0.3902 | 0.9792 | 0.9300 | 0.7351   | 0.5497   | 0.6181 | 0.8540 |

#### 2.4.1 Heart Failure

La matriz de confusión obtenida es la siguiente.

Tabla 29: Matriz de confusión de Random Forest de Heart Failure

| Heart Disease | 0   | 1   |
|---------------|-----|-----|
| 0             | 340 | 70  |
| 1             | 59  | 449 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 30: Criterios de precisión de Random Forest de Heart Failure

| Hear Failure  | TP  | FP | TN  | FN | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------|-----|----|-----|----|--------|--------|--------|----------|----------|--------|--------|
| Random Forest | 449 | 70 | 340 | 59 | 0.8839 | 0.8293 | 0.8651 | 0.8595   | 0.8744   | 0.8561 | 0.9249 |

#### 2.4.2 Mobile Price

Tabla 31: Matriz de confusión de Random Forest de Mobile Price

| Mobile Price | 0   | 2   |
|--------------|-----|-----|
| 0            | 958 | 42  |
| 2            | 53  | 947 |

Tabla 32: Criterios de precisión de Random Forest de Mobile Price

| Mobile Price  | TP  | FP | TN  | FN | TPR   | TNR   | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------|-----|----|-----|----|-------|-------|--------|----------|----------|--------|--------|
| Random Forest | 947 | 42 | 958 | 53 | 0.947 | 0.958 | 0.9575 | 0.9525   | 0.9522   | 0.9524 | 0.9915 |

#### 2.4.3 Bank Marketing

La matriz de confusión obtenida es la siguiente.

Tabla 33: Matriz de confusión de Random Forest de Bank Marketing

| Bank Marketing | no    | yes  |
|----------------|-------|------|
| no             | 35599 | 949  |
| yes            | 2596  | 2044 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 34: Criterios de precisión de Random Forest de Bank Marketing

| Bank Marketing | TP   | $_{\mathrm{FP}}$ | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|----------------|------|------------------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| Random Forest  | 2044 | 949              | 35599 | 2596 | 0.4405 | 0.9740 | 0.6829 | 0.9139   | 0.5356   | 0.6550 | 0.9433 |

#### 2.4.4 Tanzania Water Pump

En este conjunto de datos ha sido necesario utilizar el nodo Domain Calculator, pues el algoritmo lo necesitaba para poder tener en cuenta todas las variables. De esta forma, el flujo de datos se ha modificado como muestra la siguiente imagen.



Figura 10: Metanodo Random Forest de Tanzania Water Pump

Tabla 35: Matriz de confusión de Random Forest de Tanzania Water Pump

| Tanzania Water Pump | functional | non functional |
|---------------------|------------|----------------|
| functional          | 31589      | 670            |
| non functional      | 13919      | 8905           |

Tabla 36: Criterios de precisión de Random Forest de Tanzania Water Pump

| Tanzania Water Pump | TP   | FP  | TN    | FN    | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------------|------|-----|-------|-------|--------|--------|--------|----------|----------|--------|--------|
| Random Forest       | 8905 | 670 | 31589 | 13919 | 0.3902 | 0.9792 | 0.9300 | 0.7351   | 0.5497   | 0.6181 | 0.8540 |

#### 2.5 XGBoost

XGBoost es un multiclasificador basado en árboles para la clasificación. Se basa en un algoritmo de boosting, es decir, se tiene en cuenta los fallos del anterior clasificador.

El flujo de trabajo de este algoritmo en KNIME es el siguiente, común para todos los datasets.



Figura 11: Metanodo XGBoost

Se han utilizado los nodos XGBoost Tree Ensemble Learner, usando Gini, y XGBoost Predictor

No ha sido necesario tratar los valores perdidos o desconocidos que presentaban algunos conjuntos de datos. Sin embargo, en algunos casos ha sido necesario transformar los valores de los atributos categóricos a numéricos y/o transformar su clase principal a un valor nominal.

En el siguiente apartado veremos los resultados obtenidos de este algoritmo en cada conjunto de datos, detallando más la tabla que se muestra a continuación.

Tabla 37: Criterios de precisión de XGBoost

| XGBoost en          | TP    | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------------|-------|------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| Heart Failure       | 453   | 75   | 335   | 55   | 0.8917 | 0.8171 | 0.8580 | 0.8584   | 0.8745   | 0.8536 | 0.9215 |
| Mobile Price        | 968   | 30   | 970   | 32   | 0.968  | 0.97   | 0.9699 | 0.969    | 0.9689   | 0.9689 | 0.9963 |
| Bank Marketing      | 2514  | 1408 | 35140 | 2126 | 0.5418 | 0.9615 | 0.6410 | 0.9142   | 0.5872   | 0.7218 | 0.9473 |
| Tanzania Power Pump | 17322 | 2720 | 29539 | 5502 | 0.759  | 0.9157 | 0.8643 | 0.8507   | 0.8082   | 0.8336 | 0.9208 |

#### 2.5.1 Heart Failure

En este dataset ha sido necesario usar el nodo Number to String para transformar la clase HeartDisease a un String, pues así lo requiere este algoritmo. También se ha usado el nodo Category To Number para transformar el resto de atributos a valores numéricos.

Tabla 38: Matriz de confusión de XGBoost de Heart Failure

| Heart Disease | 0   | 1   |
|---------------|-----|-----|
| 0             | 335 | 75  |
| 1             | 55  | 453 |

Tabla 39: Criterios de precisión de XGBoost de Heart Failure

| Hear Failure | TP  | FP | TN  | FN | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|--------------|-----|----|-----|----|--------|--------|--------|----------|----------|--------|--------|
| XGBoost      | 453 | 75 | 335 | 55 | 0.8917 | 0.8171 | 0.8580 | 0.8584   | 0.8745   | 0.8536 | 0.9215 |

#### 2.5.2 Mobile Price

En este dataset ha sido necesario usar el nodo Number to String para transformar la clase HeartDisease a un String, pues así lo requiere este algoritmo.

La matriz de confusión obtenida es la siguiente.

Tabla 40: Matriz de confusión de XGBoost de Mobile Price

| Mobile Price | 0   | 2   |
|--------------|-----|-----|
| 0            | 970 | 30  |
| 2            | 32  | 968 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 41: Criterios de precisión de XGBoost de Mobile Price

| Mobile Price | TP  | FP | TN  | FN | TPR   | TNR  | PPV    | Accuracy | F1-score | G-mean | AUC    |
|--------------|-----|----|-----|----|-------|------|--------|----------|----------|--------|--------|
| XGBoost      | 968 | 30 | 970 | 32 | 0.968 | 0.97 | 0.9699 | 0.969    | 0.9689   | 0.9689 | 0.9963 |

#### 2.5.3 Bank Marketing

Se ha usado el nodo Category To Number para transformar el resto de atributos a valores numéricos.

La matriz de confusión obtenida es la siguiente.

Tabla 42: Matriz de confusión de XGBoost de Bank Marketing

| Bank Marketing | no    | yes  |
|----------------|-------|------|
| no             | 35140 | 1408 |
| yes            | 2126  | 2514 |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 43: Criterios de precisión de XGBoost de Bank Marketing

| Bank Marketing | TP   | FP   | TN    | FN   | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|----------------|------|------|-------|------|--------|--------|--------|----------|----------|--------|--------|
| XGBoost        | 2514 | 1408 | 35140 | 2126 | 0.5418 | 0.9615 | 0.6410 | 0.9142   | 0.5872   | 0.7218 | 0.9473 |

## 2.5.4 Tanzania Water Pump

Se ha usado el nodo Category To Number para transformar el resto de atributos a valores numéricos.

La matriz de confusión obtenida es la siguiente.

Tabla 44: Matriz de confusión de XGBoost de Tanzania Water Pump

| Tanzania Water Pump | functional | non functional |
|---------------------|------------|----------------|
| functional          | 29539      | 2720           |
| non functional      | 5502       | 17322          |

En la siguiente tabla se puede contemplar la interpretación de dicha matriz.

Tabla 45: Criterios de precisión de XGBoost de Tanzania Water Pump

| Tanzania Water Pump | $^{\mathrm{TP}}$ | FP   | TN    | FN   | TPR   | TNR    | PPV    | Accuracy | F1-score | G-mean | AUC    |
|---------------------|------------------|------|-------|------|-------|--------|--------|----------|----------|--------|--------|
| XGBoost             | 17322            | 2720 | 29539 | 5502 | 0.759 | 0.9157 | 0.8643 | 0.8507   | 0.8082   | 0.8336 | 0.9208 |

## 3 Análisis de resultados

Para analizar los resultados obtenidos en la sección anterior, realizaremos un análisis comparativo en cada conjunto de datos estudiado.

#### 3.1 Heart Failure

En la siguiente tabla se muestran los criterios de precisión del dataset Heart Failure que hemos obtenido con los algoritmos que hemos aplicado.

Tabla 46: Criterios de precisión de Heart Failure

| Heart Failure     | TP  | FP | TN  | FN | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | Model size | AUC    |
|-------------------|-----|----|-----|----|--------|--------|--------|----------|----------|--------|------------|--------|
| Árbol de decisión | 422 | 87 | 323 | 86 | 0.8307 | 0.7878 | 0.8290 | 0.8115   | 0.8299   | 0.8090 | 69.2       | 0.8157 |
| 3-NN              | 452 | 83 | 327 | 56 | 0.8898 | 0.7976 | 0.8449 | 0.8486   | 0.8667   | 0.8424 | NaN        | 0.8741 |
| Naive Bayes       | 439 | 68 | 342 | 69 | 0.8642 | 0.8341 | 0.8659 | 0.8508   | 0.8650   | 0.8490 | NaN        | 0.9202 |
| Random Forest     | 449 | 70 | 340 | 59 | 0.8839 | 0.8293 | 0.8651 | 0.8595   | 0.8744   | 0.8561 | NaN        | 0.9249 |
| XGBoost           | 453 | 75 | 335 | 55 | 0.8917 | 0.8171 | 0.8580 | 0.8584   | 0.8745   | 0.8536 | NaN        | 0.9215 |

En la siguiente figura se muestra una gráfica para representar la tasa de aciertos y fallos de cada algoritmo empleado, según nuestra clase positiva "1".



Figura 12: Matriz de confusión de Heart Failure

Nuestro objetivo es que haya el máximo número de TP (Verdaderos positivos)), pues así podemos saber con certeza cuántas predicciones son ciertas. De esta forma, observamos que en la gráfica XGBoost lo consigue, seguido de 3-NN y Random Forest. También es importante que haya el mínimo número de FN (Falsos Negativos), que también lo consiguen los tres algoritmos que maximizaban el número de TP. Observamos que, en general, todos los algoritmos producen resultados similares y el que peor resultados proporciona es el árbol de decisión.

En la siguiente figura se ha representado la precisión de los algoritmos.



Figura 13: G-mean de Heart Failure

Como bien observábamos, el árbol de decisión es el que menos precisión tiene, y el resto de algoritmos tienen precisión similar. Todos los algoritmos sobrepasan el umbral de 0.8. Es posible que el árbol de decisión no produzca tan buenos resultados porque no manejan de forma fácil los atributos continuos y tienen dificultad para trabajar con valores perdidos, y este conjunto de datos los posee.

En el algoritmo de Naïve Bayes suponemos que todas las variables son independientes, lo cual puede influir negativamente en los resultados.

El algoritmo 3-NN es válido para la clasificación y para la predicción numérica, lo cual se puede aprovechar en este dataset.

Los algoritmos Random Forest y XGBoost producen también buenos resultados, esto se debe a que son multiclasificadores.

En general, todos los algoritmos producen resultados muy similares y no se observan grandes diferencias. Además, tienen una precisión bastante buena por lo que podemos decir que todos producen buenos resultados.

A continuación se ha representado la curva ROC junto al índice AUC (Área bajo la curva). Esta gráfica representa cómo aumenta el número de errores en función de aumentar el número de aciertos en nuestra clase positiva. Esto es, cuanto más cercano a 1 sea el índice AUC, mejor será el algoritmo.



Figura 14: Curva ROC de Heart Failure

Como ya habíamos observado, el árbol de decisión es el que peor resultados obtiene, con un índice AUC de 0.828. Los algoritmos Naïve Bayes, Random Forest y XGBoost producen los mejores resultados en este conjunto de datos, con un índice AUC superior a 0.92.

#### 3.2 Mobile Price

En la siguiente tabla se muestran los criterios de precisión del dataset Mobile Price que hemos obtenido con los algoritmos que hemos aplicado.

Tabla 47: Criterios de precisión de Mobile Price

| Mobile Price      | TP  | FP  | TN  | FN  | TPR   | TNR   | PPV    | Accuracy | F1-score | G-mean | Model size | AUC    |
|-------------------|-----|-----|-----|-----|-------|-------|--------|----------|----------|--------|------------|--------|
| Árbol de decisión | 947 | 59  | 941 | 53  | 0.947 | 0.941 | 0.9414 | 0.944    | 0.9442   | 0.9439 | 36         | 0.9502 |
| 3-NN              | 790 | 204 | 796 | 210 | 0.79  | 0.796 | 0.7947 | 0.793    | 0.7923   | 0.7929 | NaN        | 0.8475 |
| Naive Bayes       | 926 | 75  | 925 | 74  | 0.926 | 0.925 | 0.9250 | 0.9255   | 0.9255   | 0.9254 | NaN        | 0.9763 |
| Random Forest     | 947 | 42  | 958 | 53  | 0.947 | 0.958 | 0.9575 | 0.9525   | 0.9522   | 0.9524 | NaN        | 0.9915 |
| XGBoost           | 968 | 30  | 970 | 32  | 0.968 | 0.97  | 0.9699 | 0.969    | 0.9689   | 0.9689 | NaN        | 0.9963 |

En la siguiente figura se muestra una gráfica para representar la tasa de aciertos y fallos de cada algoritmo empleado, según nuestra clase positiva "2".



Figura 15: Matriz de confusión de Mobile Price

Al igual que hemos comentado en el apartado anterior, nos fijaremos en los algoritmos que maximizan el número de verdaderos positivos (TP) y minimizan los falsos negativos (FN).

Observamos que, salvo 3-NN, producen valores similares de TP. El algoritmo 3-NN tiene un número de verdaderos positivos algo más bajo. Lo mismo sucede con los falsos negativos, todos producen valores muy pequeños excepto 3-NN.

En la siguiente figura se ha representado la precisión de los algoritmos.



Figura 16: G-mean de Mobile Price

Podemos contemplar que los algoritmos basados en árboles (árbol de decisión, Random Forest y XGBoost) junto a Naïve Bayes son los que proporcionan mejores resultados, superando el umbral de 0.95, e incluso muy cercanos a 1. Sin embargo, el algoritmo 3-NN se queda en 0.8475, esto puede deberse a los problemas en la frontera o que le dé la misma importancia a cada atributo en vez de darle más importancia a los atributos relevantes, esto podría hacerse asignando pesos.

A continuación se ha representado la curva ROC junto al índice AUC (Área bajo la curva). Esta gráfica representa cómo aumenta el número de errores en función de aumentar el número de aciertos en nuestra clase positiva. Esto es, cuanto más cercano a 1 sea el índice AUC, mejor será el algoritmo.



Figura 17: Curva ROC de Mobile Price

Vemos que los mejores algoritmos son los que están basados en multiclasificadores, Random Forest y XGBoost. Destacamos que sus índices AUC son muy proximos a 1. Los algoritmos Naïve Bayes y árbol de decisión también producen índices AUC muy altos. Por último, el algoritmo 3-NN tiene un índice AUC más bajo, 0.848, como ya lo veíamos venir.

#### 3.3 Bank Marketing

En la siguiente tabla se muestran los criterios de precisión del dataset Bank Marketing que hemos obtenido con los algoritmos que hemos aplicado.

Tabla 48: Criterios de precisión de Bank Marketing

| Bank Marketing            | TP           | FP           | TN             | FN           | TPR              | TNR              | PPV              | Accuracy         | F1-score         | G-mean           | Model size    | AUC              |
|---------------------------|--------------|--------------|----------------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------|------------------|
| Árbol de decisión<br>3-NN | 2284<br>1438 | 1864<br>1347 | 34387<br>35201 | 2149<br>3202 | 0.5152<br>0.3099 | 0.9486<br>0.9631 | 0.5506<br>0.5163 | 0.9014<br>0.8896 | 0.5323<br>0.3873 | 0.6991<br>0.5463 | 2686.2<br>NaN | 0.7207<br>0.7400 |
| Naive Bayes               | 2510         | 3565         | 32983          | 2130         | 0.5409           | 0.9025           | 0.4132           | 0.8617           | 0.4685           | 0.6987           | NaN           | 0.8340           |
| Random Forest             | 2044         | 949          | 35599          | 2596         | 0.4405           | 0.9740           | 0.6829           | 0.9139           | 0.5356           | 0.6550           | NaN           | 0.9433           |
| XGBoost                   | 2514         | 1408         | 35140          | 2126         | 0.5418           | 0.9615           | 0.6410           | 0.9142           | 0.5872           | 0.7218           | NaN           | 0.9473           |

En la siguiente figura se muestra una gráfica para representar la tasa de aciertos y fallos de cada algoritmo empleado, según nuestra clase positiva zes".



Figura 18: Matriz de confusión de Bank Marketing

En este conjunto de datos, los algoritmos Naïve Bayes y XGBoost son los que mayor número de verdaderos positivos (TP) consiguen. Sin embargo, 3-NN es el que menos consigue. Con respecto a los falsos negativos, el árbol de decisión, Naïve Bayes y XGBoost son los que menor número de falsos negativos consiguen. De la misma forma, 3-NN es el que más consigue.

En la siguiente figura se ha representado la precisión de los algoritmos.



Figura 19: G-mean de Bank Marketing

Observamos que XGBoost es el que mejor G-mean tiene, cabe destacar que es un multiclasificador y tiene en cuenta los fallos de la anterior clasificador lo cual hace que sea tan bueno. A este algoritmo le siguen el árbol de decisión y Naïve Bayes. Puede que el árbol de decisión no funcione tan bien porque no maneja bien los atributos continuos o incluso porque haya sobreaprendizaje.

En esta gráfica también podemos contemplar que 3-NN es el peor, puede deberse a que haya problemas en la frontera o que le dé la misma importancia a cada atributo en vez de darle más importancia a los atributos relevantes, esto podría hacerse asignando pesos.

A continuación se ha representado la curva ROC junto al índice AUC (Área bajo la curva). Esta gráfica representa cómo aumenta el número de errores en función de aumentar el número de aciertos en nuestra clase positiva. Esto es, cuanto más cercano a 1 sea el índice AUC, mejor será el algoritmo.



Figura 20: Curva ROC de Bank Marketing

Cabe destacar la gráfica del algoritmo del árbol de decisión, pues conforme aumenta el número de falsos positivos, el número de verdaderos positivos permanece constante la mayor parte e incluso llega a quedarse por debajo del algoritmo random. Como ya habíamos observado, los algoritmos basados en multiclasificadores, Random Forest y XGBoost, son los que mejor índice AUC tienen, un 0.94 aproximadamente. También sobresale lo que ocurre con la gráfica de 3-NN, pues habíamos visto que era el peor algoritmo pero a partir de un número de falsos negativos consigue superar al árbol de decisión.

El algoritmo Naïve Bayes tiene un buen índice AUC, aunque no es tan bueno como los multiclasificadores pues este algoritmo supone independencia entre las distintas clases.

#### 3.4 Tanzania Power Pump

En la siguiente tabla se muestran los criterios de precisión del dataset Tanzania Power Pump que hemos obtenido con los algoritmos que hemos aplicado.

Tabla 49: Criterios de precisión de Tanzania Power Pump

| Tanzania Power Pump | TP    | FP   | TN    | FN    | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | Model size | AUC    |
|---------------------|-------|------|-------|-------|--------|--------|--------|----------|----------|--------|------------|--------|
| Árbol de decisión   | 17748 | 4520 | 27493 | 4871  | 0.7847 | 0.8588 | 0.7970 | 0.8281   | 0.7908   | 0.8209 | 4882       | 0.8385 |
| 3-NN                | 16480 | 4781 | 27478 | 6344  | 0.7220 | 0.8518 | 0.7751 | 0.7980   | 0.7476   | 0.7842 | NaN        | 0.8480 |
| Naive Bayes         | 15125 | 6716 | 25543 | 7699  | 0.6627 | 0.7918 | 0.6925 | 0.7383   | 0.6773   | 0.7244 | NaN        | 0.8010 |
| Random Forest       | 8905  | 670  | 31589 | 13919 | 0.3902 | 0.9792 | 0.9300 | 0.7351   | 0.5497   | 0.6181 | NaN        | 0.8540 |
| XGBoost             | 17322 | 2720 | 29539 | 5502  | 0.759  | 0.9157 | 0.8643 | 0.8507   | 0.8082   | 0.8336 | NaN        | 0.9208 |

En la siguiente figura se muestra una gráfica para representar la tasa de aciertos y fallos de cada algoritmo empleado, según nuestra clase positiva "non functional".



Figura 21: Matriz de confusión de Tanzania Power Pump

Vemos que el árbol de decisón es el que más número de verdaderos positivos (TP) tiene. Los algoritmos 3-NN, Naïve Bayes y XGBoost también producen resultados similares. Sin embargo, el algoritmo Random Forest produce unos resultados peores.

Con respecto a los falsos negativos (FN), el árbol de decisión también obtiene un número muy pequeño de ellos. De la misma forma, los algoritmos 3-NN, Naïve Bayes y XGBoost también tienen resultados parecidos. Destaca Random Forest porque tiene más del triple de falsos negativos que el árbol de decisión.

En la siguiente figura se ha representado la precisión de los algoritmos.



Figura 22: G-mean de Tanzania Power Pump

En esa gráfica seguimos observando que Random Forest es el que peor resultados obtiene. El multiclasificador XGBoost es el que mejor resultados tiene, le sigue el árbol de decision y 3-NN.

A continuación se ha representado la curva ROC junto al índice AUC (Área bajo la curva). Esta gráfica representa cómo aumenta el número de errores en función de aumentar el número de aciertos en nuestra clase positiva. Esto es, cuanto más cercano a 1 sea el índice AUC, mejor será el algoritmo.



Figura 23: Curva ROC de Tanzania Power Pump

Tenemos que XGBoost proporciona los mejores resultados, pues lo que destaca en este algoritmo es que tiene en cuenta los fallos de la anterior clasificación. A este algoritmo le sigue Random Forest, KNN, árbol de decisión y Naïve Bayes en último lugar.

### 3.5 Ranking

Por último, se ha realizado un ranking entre los distintos algoritmos en cada dataset. Para tener una vista global, se han representado los resultados comentados anteriormente en una misma gráfica, que se muestra a continuación.



Figura 24: G-mean en cada dataset

Hemos realizado la media de cada algoritmo en cada dataset y se obtienen los siguientes resultados.



Figura 25: Media de G-mean

Para realizar el ranking, hemos analizado la posición, del 1 al 5, de cada algoritmo en cada dataset según si es el mejor, 1, o si ha obtenido los peores resultados, 5. Hemos realizado la media de la posición de cada algoritmo y el podium queda como indica la siguiente gráfica.



Figura 26: Podium

En primer lugar, tenemos que XGBoost es el mejor algoritmo en todos los datasets, puede deberse a que es un multiclasificador que tiene en cuenta los fallos de la anterior clasificicación. En segundo lugar, tenemos un empate entre el árbol de decisión y Random Forest. El tercer puesto es para 3-NN y el último puesto es para Naïve Bayes.

# 4 Configuración de algoritmos

Los resultados que hemos obtenido y estudiado hasta ahora se correspondían a algoritmos cuya configuración había sido por defecto. En algunos casos hemos observado que no siempre funcionan tan bien como otros algoritmos, por lo que en esta sección estudiaremos configuraciones alternativas de los parámetros de dos de los algoritmos empleados. Además, estudiaremos los resultados obtenidos proporcionando tablas comparativas.

#### 4.1 k-NN

Habíamos estudiado el caso particular en el que k=3, es decir, el número de vecinos cercanos que consideraba para clasificar las instancias. Este algoritmo nos proporcionaba resultados buenos en algunos conjuntos de datos, pero empeoraba en otros. Para realizar un estudio de este algoritmo, probaremos con diferentes valores de k y analizaremos si se comporta mejor o peor en cada dataset.

El flujo de datos utilizado es el siguiente, donde en el metanodo KNN variaremos el número de vecinos y el resultado se añadirá al final de un fichero .csv



Figura 27: Metanodo Configuración KNN

#### 4.1.1 Heart Failure

Ejecutando en algoritmo k-NN en el dataset Heart Failure variando los valores de k, obtenemos los siguientes resultados.

Tabla 50: Criterios de precisión de K-NN de Heart Failure

| Hear Failure | TP  | FP  | TN  | FN | TPR    | TNR    | PPV      | Accuracy | F1-score | G-mean    | AUC          |
|--------------|-----|-----|-----|----|--------|--------|----------|----------|----------|-----------|--------------|
| 1-NN         | 432 | 83  | 327 | 76 | 0.8503 | 0.7975 | 0.8388   | 0.8267   | 0.8445   | 0.8235    | 0.82397      |
| 2-NN         | 478 | 123 | 287 | 30 | 0.9409 | 0.7    | 0.7953   | 0.83333  | 0.862037 | 0.8115795 | 0.87707      |
| 3-NN         | 450 | 81  | 329 | 58 | 0.8858 | 0.8024 | 0.8474   | 0.84858  | 0.8663   | 0.8431025 | 0.882533     |
| 5-NN         | 455 | 86  | 324 | 53 | 0.8956 | 0.7902 | 0.8410   | 0.84858  | 0.86749  | 0.8413068 | 0.8918       |
| 7-NN         | 458 | 83  | 327 | 50 | 0.9015 | 0.7975 | 0.84658  | 0.8551   | 0.87321  | 0.8479745 | 0.89835      |
| 10-NN        | 462 | 94  | 316 | 46 | 0.9094 | 0.7707 | 0.8309   | 0.84749  | 0.8684   | 0.837222  | 0.90160      |
| 15-NN        | 463 | 90  | 320 | 45 | 0.9114 | 0.7804 | 0.8372   | 0.8529   | 0.87276  | 0.8434157 | 0.903557     |
| 20-NN        | 465 | 98  | 312 | 43 | 0.9153 | 0.7609 | 0.82593  | 0.84649  | 0.8683   | 0.834603  | 0.9056654    |
| 25-NN        | 462 | 99  | 311 | 46 | 0.9094 | 0.7585 | 0.8235   | 0.84204  | 0.86435  | 0.830572  | 0.904433     |
| 30-NN        | 462 | 102 | 308 | 46 | 0.9094 | 0.7512 | 0.819188 | 0.83877  | 0.8619   | 0.8265565 | 0.90172      |
| 35-NN        | 460 | 101 | 309 | 48 | 0.9055 | 0.7536 | 0.81996  | 0.83769  | 0.86061  | 0.82610   | 0.899603     |
| 40-NN        | 459 | 100 | 310 | 49 | 0.9035 | 0.7560 | 0.82110  | 0.8376   | 0.86035  | 0.826539  | 0.898890     |
| 50-NN        | 454 | 97  | 313 | 54 | 0.8937 | 0.7634 | 0.82395  | 0.8355   | 0.8574   | 0.82599   | 0.8969440176 |
| 60-NN        | 439 | 90  | 320 | 69 | 0.8641 | 0.7804 | 0.82986  | 0.82679  | 0.84667  | 0.821265  | 0.89485      |
| 70-NN        | 432 | 89  | 321 | 76 | 0.8503 | 0.7829 | 0.82917  | 0.82026  | 0.8396   | 0.81596   | 0.893419     |

Para interpretar estos resultados con más facilidad, hemos representado algunas medidas en las siguientes gráficas.





Figura 28: Configuración de KNN en Heart Failure

Observamos que en k=1 obtenemos resultados muy malos en todas las medidas. Para k=2 el número de verdaderos positivos es máximo y el número de falsos negativos es mínimo, sin embargo sus medidas de precisión son más bajas, salvo el TPR, pues el número de falsos positivos es elevado y eso provoca que el valor de AUC sea más bajo. Para el resto de valores de k, tenemos que el número de verdaderos positivos y falsos negativos son muy similares. Si nos fijamos en las medidas

G-mean y AUC también permanecen muy similares. La configuración por defecto que habíamos elegido era cuando k=3 y vemos que si tomamos k=7, podemos incrementar ligeramente los valores de G-mean y AUC. En conclusión, para este dataset el mejor valor de k sería 7, aunque realmente tampoco hay mucha diferencia entre todos los valores.

#### 4.1.2 Mobile Price

Ejecutando en algoritmo k-NN en el dataset Mobile Price variando los valores de k, obtenemos los siguientes resultados.

Tabla 51: Criterios de precisión de K-NN de Mobile Price

| Mobile Price | TP  | FP  | TN  | FN  | TPR   | TNR   | PPV                | Accuracy | F1-score           | G-mean             | AUC                 |
|--------------|-----|-----|-----|-----|-------|-------|--------------------|----------|--------------------|--------------------|---------------------|
| 1-NN         | 737 | 264 | 736 | 263 | 0.737 | 0.736 | 0.7362637362637363 | 0.7365   | 0.736631684157921  | 0.736499830278324  | 0.7365              |
| 2-NN         | 737 | 264 | 736 | 263 | 0.737 | 0.736 | 0.7362637362637363 | 0.7365   | 0.736631684157921  | 0.736499830278324  | 0.803063            |
| 3-NN         | 790 | 204 | 796 | 210 | 0.79  | 0.796 | 0.7947686116700201 | 0.793    | 0.7923771313941825 | 0.7929943253264805 | 0.84750100000000001 |
| 5-NN         | 812 | 187 | 813 | 188 | 0.812 | 0.813 | 0.8128128128128128 | 0.8125   | 0.8124062031015508 | 0.8124998461538315 | 0.885127            |
| 7-NN         | 824 | 161 | 839 | 176 | 0.824 | 0.839 | 0.8365482233502538 | 0.8315   | 0.8302267002518892 | 0.8314661748982937 | 0.9103055           |
| 10-NN        | 844 | 143 | 857 | 156 | 0.844 | 0.857 | 0.8551165146909828 | 0.8505   | 0.8495218922999498 | 0.8504751613069014 | 0.931530999999999   |
| 15-NN        | 857 | 120 | 880 | 143 | 0.857 | 0.88  | 0.8771750255885363 | 0.8685   | 0.8669701568032373 | 0.8684238596445862 | 0.944655999999999   |
| 20-NN        | 871 | 112 | 888 | 129 | 0.871 | 0.888 | 0.8860630722278738 | 0.8795   | 0.8784669692385274 | 0.8794589245666906 | 0.953279            |
| 25-NN        | 873 | 107 | 893 | 127 | 0.873 | 0.893 | 0.8908163265306123 | 0.883    | 0.881818181818182  | 0.8829433730426883 | 0.96054             |
| 30-NN        | 883 | 101 | 899 | 117 | 0.883 | 0.899 | 0.8973577235772358 | 0.891    | 0.8901209677419355 | 0.890964084573559  | 0.965494            |
| 35-NN        | 899 | 93  | 907 | 101 | 0.899 | 0.907 | 0.90625            | 0.903    | 0.9026104417670683 | 0.9029911405988433 | 0.9704885           |
| 40-NN        | 904 | 86  | 914 | 96  | 0.904 | 0.914 | 0.9131313131313131 | 0.909    | 0.9085427135678392 | 0.9089862485208454 | 0.973174            |
| 50-NN        | 908 | 93  | 907 | 92  | 0.908 | 0.907 | 0.9070929070929071 | 0.9075   | 0.9075462268865568 | 0.9074998622589427 | 0.975270999999999   |
| 60-NN        | 909 | 82  | 918 | 91  | 0.909 | 0.918 | 0.917255297679112  | 0.9135   | 0.9131089904570568 | 0.9134889161889158 | 0.9782455000000000  |
| 70-NN        | 918 | 76  | 924 | 82  | 0.918 | 0.924 | 0.9235412474849095 | 0.921    | 0.9207622868605818 | 0.9209951139935543 | 0.979741            |

Para interpretar estos resultados con más facilidad, hemos representado algunas medidas en las siguientes gráficas.



Figura 29: Configuración de KNN en Mobile Price

En este dataset observamos más variedad para los distintos valores de k. Los valores de k=1,2,3 producen resultados bastante malos en comparación con el resto. Observamos que si aumentamos el número de vecinos, los resultados mejoran notablemente. Por lo que el mejor valor de k en este conjunto de datos es el más alto que se pueda, en este caso k=70.

#### 4.1.3 Bank Marketing

Ejecutando en algoritmo k-NN en el dataset Bank Marketing variando los valores de k, obtenemos los siguientes resultados.

|                |      |      | -     |      | 1          |           |          |           |           | O          |           |
|----------------|------|------|-------|------|------------|-----------|----------|-----------|-----------|------------|-----------|
| Bank Marketing | TP   | FP   | TN    | FN   | TPR        | TNR       | PPV      | Accuracy  | F1-score  | G-mean     | AUC       |
| 1-NN           | 1647 | 2265 | 34283 | 2993 | 0.3549563  | 0.9380267 | 0.421012 | 0.8723414 | 0.385173  | 0.5770260  | 0.64672   |
| 2-NN           | 794  | 649  | 35899 | 3846 | 0.171120   | 0.98224   | 0.55024  | 0.89086   | 0.26105   | 0.40997807 | 0.71058   |
| 3-NN           | 1438 | 1347 | 35201 | 3202 | 0.30991    | 0.96314   | 0.5163   | 0.889555  | 0.3873    | 0.5463439  | 0.73999   |
| 5-NN           | 1331 | 1104 | 35444 | 3309 | 0.286853   | 0.969793  | 0.546611 | 0.892857  | 0.37625   | 0.5274357  | 0.7710    |
| 7-NN           | 1281 | 982  | 35566 | 3359 | 0.27607758 | 0.973131  | 0.566062 | 0.8946052 | 0.3711    | 0.5183239  | 0.78820   |
| 10-NN          | 1077 | 678  | 35870 | 3563 | 0.232112   | 0.98144   | 0.61367  | 0.897033  | 0.33682   | 0.477290   | 0.8018    |
| 15-NN          | 1208 | 750  | 35798 | 3432 | 0.26034    | 0.979479  | 0.616956 | 0.8984655 | 0.36617   | 0.504977   | 0.811194  |
| 20-NN          | 1077 | 601  | 35947 | 3563 | 0.23211206 | 0.9835558 | 0.64183  | 0.89890   | 0.340930  | 0.477802   | 0.81427   |
| 25-NN          | 1129 | 640  | 35908 | 3511 | 0.243318   | 0.982488  | 0.638213 | 0.8992    | 0.35231   | 0.48893    | 0.817229  |
| 30-NN          | 1074 | 563  | 35985 | 3566 | 0.2314655  | 0.984595  | 0.656078 | 0.89975   | 0.3422    | 0.4773886  | 0.8210433 |
| 35-NN          | 1113 | 597  | 35951 | 3527 | 0.239870   | 0.983665  | 0.65087  | 0.89987   | 0.35055   | 0.4857493  | 0.8235864 |
| 40-NN          | 1054 | 537  | 36011 | 3586 | 0.227155   | 0.9853069 | 0.66247  | 0.8998980 | 0.3383084 | 0.4730936  | 0.825879  |
| 50-NN          | 1041 | 523  | 36025 | 3599 | 0.2243534  | 0.9856900 | 0.665601 | 0.899922  | 0.335589  | 0.4702     | 0.8290    |
| 60-NN          | 1030 | 501  | 36047 | 3610 | 0.2219827  | 0.98629   | 0.67276  | 0.9001893 | 0.3338194 | 0.46791    | 0.830250  |
| 70-NN          | 1014 | 492  | 36056 | 3626 | 0.2185344  | 0.98653   | 0.673306 | 0.900019  | 0.3299707 | 0.46431    | 0.83028   |
|                |      |      |       |      |            |           |          |           |           |            |           |

Tabla 52: Criterios de precisión de K-NN de Bank Marketing

Para interpretar estos resultados con más facilidad, hemos representado algunas medidas en las siguientes gráficas.



Figura 30: Configuración de KNN en Bank Marketing

En este conjunto de datos no observamos tanta variedad en las distintas medidas de precisión. Lo que destaca en este dataset es que hay mayor número de falsos negativos que verdaderos positivos. Sobre todo en el caso en el que k=2, que obtenemos resultados malísimos. Para el resto de número de vecinos los resultados se mantienen constantes, sin mucha variedad. Pero el valor de k que mejora este dataset es cuando k=1, pues el número de verdaderos positivos es el máximo, el número de falsos negativos es mínimo y el valor de G-mean es máximo, sin embargo el valor de AUC es mínimo. Esto puede deberse a que los datos se encuentren en la frontera y no sepa clasificarlos correctamente.

#### 4.1.4 Tanzania Power Pump

Ejecutando en algoritmo k-NN en el dataset Tanzania Power Pump variando los valores de k, obtenemos los siguientes resultados.

Tabla 53: Criterios de precisión de K-NN de Tanzania Power Pump

| Tanzania Power Pump | TP    | FP   | TN    | FN   | TPR        | TNR        | PPV        | Accuracy  | F1-score    | G-mean      | AUC        |
|---------------------|-------|------|-------|------|------------|------------|------------|-----------|-------------|-------------|------------|
| 1-NN                | 16853 | 5648 | 26611 | 5971 | 0.7383894  | 0.824917   | 0.74898893 | 0.789063  | 0.7436514   | 0.78045501  | 0.7817     |
| 2-NN                | 13685 | 2332 | 29927 | 9139 | 0.5995881  | 0.9277100  | 0.85440469 | 0.7917    | 0.704667    | 0.74581766  | 0.83069    |
| 3-NN                | 16480 | 4781 | 27478 | 6344 | 0.7220469  | 0.851793   | 0.7751281  | 0.798032  | 0.7476465   | 0.7842415   | 0.84825    |
| 5-NN                | 16269 | 4614 | 27645 | 6555 | 0.7128023  | 0.85697    | 0.77905473 | 0.7972332 | 0.7444574   | 0.7815691   | 0.860129   |
| 7-NN                | 16002 | 4592 | 27667 | 6822 | 0.701104   | 0.8576521  | 0.77702243 | 0.79278   | 0.7371136   | 0.775437    | 0.863190   |
| 10-NN               | 14747 | 3536 | 28723 | 8077 | 0.64611    | 0.890387   | 0.80659    | 0.7891727 | 0.7174933   | 0.7584822   | 0.86345    |
| 15-NN               | 15325 | 4563 | 27696 | 7499 | 0.6714423  | 0.858551   | 0.7705651  | 0.781021  | 0.71759     | 0.759254    | 0.859345   |
| 20-NN               | 14366 | 3935 | 28324 | 8458 | 0.6294251  | 0.8780185  | 0.7849844  | 0.775012  | 0.69865     | 0.743402    | 0.854382   |
| 25-NN               | 14747 | 4543 | 27716 | 8077 | 0.646118   | 0.85917    | 0.7644893  | 0.77089   | 0.700337    | 0.7450677   | 0.8501971  |
| 30-NN               | 14113 | 4136 | 28123 | 8711 | 0.618340   | 0.8717877  | 0.7733574  | 0.766770  | 0.687215    | 0.734208    | 0.846317   |
| 35-NN               | 14459 | 4622 | 27637 | 8365 | 0.6334998  | 0.856722   | 0.757769   | 0.764228  | 0.690084    | 0.73670437  | 0.842382   |
| 40-NN               | 13958 | 4271 | 27988 | 8866 | 0.611549   | 0.86760283 | 0.7657030  | 0.761505  | 0.679998    | 0.728410504 | 0.839328   |
| 50-NN               | 13758 | 4319 | 27940 | 9066 | 0.60278654 | 0.8661148  | 0.76107    | 0.757003  | 0.67274636  | 0.7225526   | 0.833787   |
| 60-NN               | 13535 | 4337 | 27922 | 9289 | 0.593016   | 0.865556   | 0.757329   | 0.7526278 | 0.665175938 | 0.716442040 | 0.82858143 |
| 70-NN               | 13391 | 4396 | 27863 | 9433 | 0.5867069  | 0.86372795 | 0.7528532  | 0.748942  | 0.65947649  | 0.711867414 | 0.8237431  |

Para interpretar estos resultados con más facilidad, hemos representado algunas medidas en las siguientes gráficas.



0,75 0,50 0,25 0,00 1 2 3 5 7 10 15 20 25 30 35 40 50 60 70

Figura 31: Configuración de KNN en Tanzania Power Pump

Observamos que a medida que aumentamos el número de vecinos, los resultados empeoran. Además, para k=2 obtenemos resultados igualmente malos. Los mejores resultados que obtenemos son cuando el número de vecinos es 3,5 o 7, pues a partir de ellos empeoran los resultados. Esto puede deberse a que los datos se encuentren en la frontera y no sepa clasificarlos correctamente.

#### **4.2 Random Forest**

La configuración que habíamos elegido previamente para este algoritmo era con el índice Gini y 100 número de modelos. Cambiaremos ambos parámetros y estudiaremos si mejora o empeora en cada dataset.



Figura 32: Configuración de Random Forest por defecto

El flujo de datos utilizado es el siguiente, donde en el metanodo RF variaremos dichos parámetros y el resultado se añadirá al final de un fichero .csv



Figura 33: Metanodo Configuración Random Forest

#### 4.2.1 Heart Failure

Ejecutando en algoritmo Random Forest en el dataset Heart Failure variando los parámetros, obtenemos los siguientes resultados.

Primero, habíamos considerado por defecto el índice Gini. Probaremos con los otros criterios para analizar los resultados que obtienen.

Tabla 54: Criterios de precisión de Random Forest de Heart Failure

| Heart Failure                                            | TP                | FP             | $_{ m TN}$        | FN             | TPR                                                            | TNR                                                            | PPV                                                                                           | Accuracy                                                                                      | F1-score                                                       | G-mean                                                                                       | AUC                                                            |
|----------------------------------------------------------|-------------------|----------------|-------------------|----------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Information Gain<br>Information Gain Ratio<br>Gini Index | 454<br>455<br>449 | 71<br>64<br>70 | 339<br>346<br>340 | 54<br>53<br>59 | 0.8937007874015748<br>0.8956692913385826<br>0.8838582677165354 | 0.8268292682926829<br>0.8439024390243902<br>0.8292682926829268 | $\begin{array}{c} 0.8647619047619047 \\ 0.8766859344894027 \\ 0.8651252408477842 \end{array}$ | $\begin{array}{c} 0.8638344226579521 \\ 0.8725490196078431 \\ 0.8594771241830066 \end{array}$ | 0.8789932236205226<br>0.8860759493670887<br>0.8743914313534568 | $\begin{array}{c} 0.859615011571947 \\ 0.8694006553481984 \\ 0.8561282828192166 \end{array}$ | 0.9272541770693298<br>0.9282048204340312<br>0.9248991741885925 |

Observamos que los tres producen valores similares, aunque Information Gain Ratio es el que mejores resultados obtiene.

Ahora, probaremos a cambiar el número de modelos elegido, que por defecto era 100.

Tabla 55: Criterios de precisión de Random Forest de Heart Failure

| Heart Failure | TP  | FP | TN  | FN | TPR                | TNR                | PPV                 | Accuracy           | F1-score           | G-mean             | AUC                |
|---------------|-----|----|-----|----|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|
| 20            | 443 | 68 | 342 | 65 | 0.8720472440944882 | 0.8341463414634146 | 0.8669275929549902  | 0.855119825708061  | 0.8694798822374877 | 0.8528862868194509 | 0.9189096408680621 |
| 40            | 450 | 69 | 341 | 58 | 0.8858267716535433 | 0.8317073170731707 | 0.8670520231213873  | 0.8616557734204793 | 0.8763388510223953 | 0.8583406128359281 | 0.9232187439984636 |
| 60            | 456 | 67 | 343 | 52 | 0.8976377952755905 | 0.8365853658536585 | 0.8718929254302104  | 0.8703703703703703 | 0.8845780795344326 | 0.8665740841755547 | 0.9249087766468216 |
| 80            | 451 | 67 | 343 | 57 | 0.8877952755905512 | 0.8365853658536585 | 0.8706563706563707  | 0.8649237472766884 | 0.8791423001949319 | 0.8618100344235212 | 0.9240877664682158 |
| 100           | 449 | 70 | 340 | 59 | 0.8838582677165354 | 0.8292682926829268 | 0.8651252408477842  | 0.8594771241830066 | 0.8743914313534568 | 0.8561282828192166 | 0.9248991741885925 |
| 120           | 455 | 68 | 342 | 53 | 0.8956692913385826 | 0.8341463414634146 | 0.869980879541109   | 0.8681917211328976 | 0.8826382153249273 | 0.8643606090811913 | 0.9264211638179377 |
| 140           | 454 | 68 | 342 | 54 | 0.8937007874015748 | 0.8341463414634146 | 0.8697318007662835  | 0.8671023965141612 | 0.8815533980582524 | 0.8634102397898675 | 0.9263779527559057 |
| 160           | 457 | 69 | 341 | 51 | 0.8996062992125984 | 0.8317073170731707 | 0.8688212927756654  | 0.869281045751634  | 0.88394584139265   | 0.8649908332116787 | 0.9272877856731326 |
| 180           | 455 | 70 | 340 | 53 | 0.8956692913385826 | 0.8292682926829268 | 0.866666666666667   | 0.8660130718954249 | 0.8809293320425944 | 0.8618295330498215 | 0.9267116381793742 |
| 200           | 452 | 68 | 342 | 56 | 0.889763779527559  | 0.8341463414634146 | 0.8692307692307693  | 0.8649237472766884 | 0.8793774319066148 | 0.8615063560180932 | 0.9269372959477625 |
| 250           | 455 | 71 | 339 | 53 | 0.8956692913385826 | 0.8268292682926829 | 0.8650190114068441  | 0.8649237472766884 | 0.8800773694390716 | 0.8605612033956133 | 0.9271773574034955 |
| 300           | 454 | 69 | 341 | 54 | 0.8937007874015748 | 0.8317073170731707 | 0.8680688336520076  | 0.8660130718954249 | 0.8806983511154218 | 0.8621470200354137 | 0.9270501248319573 |
| 350           | 457 | 71 | 339 | 51 | 0.8996062992125984 | 0.8268292682926829 | 0.86553030303030303 | 0.8671023965141612 | 0.8822393822393821 | 0.8624504728559438 | 0.92721816785097   |
| 400           | 456 | 71 | 339 | 52 | 0.8976377952755905 | 0.8268292682926829 | 0.8652751423149905  | 0.8660130718954249 | 0.881159420289855  | 0.8615063560180932 | 0.927306990589591  |

Para interpretar estos resultados con más facilidad, hemos representado algunas medidas en las siguientes gráficas.





Figura 34: Configuración de RF en Heart Failure

No observamos casi diferencia, todos los distintos valores producen resultados muy similares. Por lo que en este caso es indiferente elegir un número más pequeño o más alto que el que habíamos elegido por defecto.

#### 4.2.2 Mobile Price

Ejecutando en algoritmo Random Forest en el dataset Mobile Price variando los parámetros, obtenemos los siguientes resultados.

Primero, habíamos considerado por defecto el índice Gini. Probaremos con los otros criterios para analizar los resultados que obtienen.

Tabla 56: Criterios de precisión de Random Forest de Mobile Price

| Mobile Price           | TP  | FP | TN  | FN | TPR   | TNR   | PPV                | Accuracy | F1-score           | G-mean                                                                                        | AUC                |
|------------------------|-----|----|-----|----|-------|-------|--------------------|----------|--------------------|-----------------------------------------------------------------------------------------------|--------------------|
| Information Gain       | 948 | 40 | 960 | 52 | 0.948 | 0.96  | 0.9595141700404858 | 0.954    | 0.9537223340040242 | $\begin{array}{c} 0.9539811318888859 \\ 0.9529952780575568 \\ 0.9524841206025431 \end{array}$ | 0.9926955          |
| Information Gain Ratio | 950 | 44 | 956 | 50 | 0.95  | 0.956 | 0.9557344064386318 | 0.953    | 0.9528585757271815 |                                                                                               | 0.991601499999999  |
| Gini Index             | 947 | 42 | 958 | 53 | 0.947 | 0.958 | 0.9575328614762386 | 0.9525   | 0.9522373051784817 |                                                                                               | 0.9915100000000001 |

Observamos que los tres producen valores similares, aunque Information Gain es el que mejores resultados obtiene.

Ahora, probaremos a cambiar el número de modelos elegido, que por defecto era 100.

Tabla 57: Criterios de precisión de Random Forest de Mobile Price

| Mobile Price | TP  | FP | TN  | FN | TPR   | TNR   | PPV                 | Accuracy | F1-score           | G-mean             | AUC                 |
|--------------|-----|----|-----|----|-------|-------|---------------------|----------|--------------------|--------------------|---------------------|
| 20           | 934 | 41 | 959 | 66 | 0.934 | 0.959 | 0.9579487179487179  | 0.9465   | 0.9458227848101266 | 0.946417455460327  | 0.989               |
| 40           | 943 | 43 | 957 | 57 | 0.943 | 0.957 | 0.9563894523326572  | 0.95     | 0.9496475327291037 | 0.9499742101762552 | 0.9896505           |
| 60           | 943 | 41 | 959 | 57 | 0.943 | 0.959 | 0.95833333333333334 | 0.951    | 0.9506048387096774 | 0.9509663506139425 | 0.9903775           |
| 80           | 947 | 41 | 959 | 53 | 0.947 | 0.959 | 0.958502024291498   | 0.953    | 0.9527162977867204 | 0.9529811120898461 | 0.9908035000000001  |
| 100          | 947 | 42 | 958 | 53 | 0.947 | 0.958 | 0.9575328614762386  | 0.9525   | 0.9522373051784817 | 0.9524841206025431 | 0.99151000000000001 |
| 120          | 950 | 46 | 954 | 50 | 0.95  | 0.954 | 0.9538152610441767  | 0.952    | 0.9519038076152304 | 0.9519978991573458 | 0.991838            |
| 140          | 948 | 43 | 957 | 52 | 0.948 | 0.957 | 0.9566094853683148  | 0.9525   | 0.9522852837769965 | 0.9524893700194244 | 0.991851            |
| 160          | 946 | 41 | 959 | 54 | 0.946 | 0.959 | 0.9584599797365755  | 0.9525   | 0.9521892299949672 | 0.9524778212640964 | 0.99217499999999999 |
| 180          | 949 | 43 | 957 | 51 | 0.949 | 0.957 | 0.9566532258064516  | 0.953    | 0.9528112449799196 | 0.952991605419481  | 0.9922565000000001  |
| 200          | 951 | 43 | 957 | 49 | 0.951 | 0.957 | 0.9567404426559356  | 0.954    | 0.9538615847542627 | 0.9539952830072065 | 0.99245350000000001 |
| 250          | 949 | 44 | 956 | 51 | 0.949 | 0.956 | 0.9556898288016112  | 0.9525   | 0.9523331660812844 | 0.9524935695320992 | 0.992432            |
| 300          | 947 | 44 | 956 | 53 | 0.947 | 0.956 | 0.9556004036326943  | 0.9515   | 0.9512807634354595 | 0.951489358847486  | 0.992405            |
| 350          | 947 | 44 | 956 | 53 | 0.947 | 0.956 | 0.9556004036326943  | 0.9515   | 0.9512807634354595 | 0.951489358847486  | 0.9924074999999999  |
| 400          | 949 | 44 | 956 | 51 | 0.949 | 0.956 | 0.9556898288016112  | 0.9525   | 0.9523331660812844 | 0.9524935695320992 | 0.992433            |

Para interpretar estos resultados con más facilidad, hemos representado algunas medidas en las siguientes gráficas.





Figura 35: Configuración de RF en Mobile Price

No observamos casi diferencia, todos los distintos valores producen resultados muy similares. A medida que aumentamos el número de modelos, observamos que, ligeramente, mejoran los resultados. Pero apenas hay gran diferencia. Por lo que en este caso es indiferente elegir un número más pequeño o más alto que el que habíamos elegido por defecto.

#### 4.2.3 Bank Marketing

Ejecutando en algoritmo Random Forest en el dataset Bank Marketing variando los parámetros, obtenemos los siguientes resultados.

Primero, habíamos considerado por defecto el índice Gini. Probaremos con los otros criterios para analizar los resultados que obtienen.

Tabla 58: Criterios de precisión de Random Forest de Bank Marketing

| $^{\mathrm{TP}}$ | FP         | TN                   | FN                               | TPR                                        | TNR                                                                               | PPV                                                                                                                     | Accuracy                                                                                                                                                                                                                                                             | F1-score                                                                                                                                                                                            | G-mean                                                                                                                                                                                                                                    | AUC                                                                                                                                                                                                                                                                        |
|------------------|------------|----------------------|----------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2024             | 938        | 35610                | 2616                             | 0.4362068965517241                         | 0.9743351209368502                                                                | 0.6833220796758946                                                                                                      | 0.9137127318636497                                                                                                                                                                                                                                                   | 0.5324914496185215                                                                                                                                                                                  | 0.651929213416006                                                                                                                                                                                                                         | 0.9444215012001222                                                                                                                                                                                                                                                         |
| 2083             | 991<br>949 | 35557<br>35599       | 2557<br>2596                     | 0.44892241379310344                        | 0.9728849731859472                                                                |                                                                                                                         | 0.9138584053607847                                                                                                                                                                                                                                                   | 0.5400570391495981                                                                                                                                                                                  | 0.660870539898454                                                                                                                                                                                                                         | 0.9436399769976563                                                                                                                                                                                                                                                         |
|                  | 2024       | 2024 938<br>2083 991 | 2024 938 35610<br>2083 991 35557 | 2024 938 35610 2616<br>2083 991 35557 2557 | 2024 938 35610 2616 0.4362068965517241<br>2083 991 35557 2557 0.44892241379310344 | 2024 938 35610 2616 0.4362068965517241 0.9743351209368502<br>2083 991 35557 2557 0.44892241379310344 0.9728849731859472 | 2024         938         35610         2616         0.4362068965517241         0.9743351209368502         0.6833220796758946           2033         991         35557         2557         0.44892241379310344         0.9728849731859472         0.6776187378009109 | 2024 938 35610 2616 0.4362068965517241 0.9743351209368502 0.6833220796758946 0.9137127318636497<br>2083 991 35557 2557 0.44892241379310344 0.9728849731859472 0.6776187378009109 0.9138584053607847 | 2024 938 35610 2616 0.4362068965517241 0.9743351209368502 0.6833220796758946 0.9137127318636497 0.5324914496185215<br>2083 991 35557 2557 0.44892241379310344 0.9728849731859472 0.6776187378009109 0.9138584053607847 0.5400570391495981 | 2024 938 35610 2616 0.4362068965517241 0.9743351209368502 0.6833220796758946 0.9137127318636497 0.5324914496185215 0.651929213416006 2083 991 35557 2557 0.44892241379310344 0.9728549731859472 0.6776187378009109 0.9138584053607847 0.5400570391495981 0.660870539898454 |

Observamos que los tres producen valores similares, aunque Information Gain Ratio es el que mejores resultados obtiene.

Ahora, probaremos a cambiar el número de modelos elegido, que por defecto era 100.

Tabla 59: Criterios de precisión de Random Forest de Bank Marketing

| Bank Marketing | TP   | FP  | TN    | FN   | TPR                 | TNR                | PPV                | Accuracy           | F1-score           | G-mean             | AUC                |
|----------------|------|-----|-------|------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 20             | 1973 | 990 | 35558 | 2667 | 0.4252155172413793  | 0.9729123344642662 | 0.6658791765102936 | 0.9112120034961639 | 0.5190056556622384 | 0.6431931448093494 | 0.9295309805149959 |
| 40             | 2021 | 972 | 35576 | 2619 | 0.4355603448275862  | 0.9734048374740067 | 0.6752422318743735 | 0.9128144119646499 | 0.5295427747936592 | 0.651134814510036  | 0.9381727778632163 |
| 60             | 2039 | 967 | 35581 | 2601 | 0.4394396551724138  | 0.9735416438656014 | 0.6783100465735197 | 0.9133728270370011 | 0.5333507716453048 | 0.6540740051984062 | 0.9410392108346888 |
| 80             | 2044 | 975 | 35573 | 2596 | 0.44051724137931036 | 0.97332275363905   | 0.6770453792646571 | 0.9132999902884336 | 0.5337511424467946 | 0.6548018436174324 | 0.9424813683847033 |
| 100            | 2044 | 949 | 35599 | 2596 | 0.44051724137931036 | 0.9740341468753421 | 0.6829268292682927 | 0.9139312421093523 | 0.5355692388313901 | 0.6550410944290256 | 0.9433032563695167 |
| 120            | 2052 | 961 | 35587 | 2588 | 0.44224137931034485 | 0.9737058115355149 | 0.6810487885828078 | 0.9138341264445955 | 0.5362602900823207 | 0.656211094950371  | 0.9438552966953238 |
| 140            | 2054 | 967 | 35581 | 2586 | 0.44267241379310346 | 0.9735416438656014 | 0.6799073154584575 | 0.9137370107798388 | 0.5362224252708524 | 0.6564754598749991 | 0.944010728215705  |
| 160            | 2065 | 956 | 35592 | 2575 | 0.44504310344827586 | 0.9738426179271096 | 0.6835484938762    | 0.9142711469360008 | 0.539094113040073  | 0.658332697769505  | 0.9440962852818966 |
| 180            | 2072 | 958 | 35590 | 2568 | 0.44655172413793104 | 0.9737878953704717 | 0.6838283828382838 | 0.9143925415169467 | 0.5402868318122555 | 0.6594290436599918 | 0.9442188537841594 |
| 200            | 2074 | 958 | 35590 | 2566 | 0.44698275862068965 | 0.9737878953704717 | 0.6840369393139841 | 0.914441099349325  | 0.540667361835245  | 0.6597472241579565 | 0.944403244623037  |
| 250            | 2077 | 944 | 35604 | 2563 | 0.4476293103448276  | 0.9741709532669366 | 0.6875206885137372 | 0.9148538409245411 | 0.5422268633337685 | 0.6603540504675065 | 0.9448762645156299 |
| 300            | 2079 | 945 | 35603 | 2561 | 0.4480603448275862  | 0.9741435919886177 | 0.6875             | 0.9148781198407303 | 0.5425365344467641 | 0.6606626323154682 | 0.9450535585229438 |
| 350            | 2080 | 949 | 35599 | 2560 | 0.4482758620689655  | 0.9740341468753421 | 0.6866952789699571 | 0.9148052830921628 | 0.5424436041204852 | 0.6607843800175314 | 0.9451812425228232 |
| 400            | 2071 | 949 | 35599 | 2569 | 0.44633620689655173 | 0.9740341468753421 | 0.6857615894039735 | 0.9145867728464602 | 0.5407310704960836 | 0.6593532486490523 | 0.9454841654857288 |

Para interpretar estos resultados con más facilidad, hemos representado algunas medidas en las siguientes gráficas.



Figura 36: Configuración de RF en Bank Marketing

No observamos casi diferencia, todos los distintos valores producen resultados muy similares. Destaca en este dataset que hay mayor número de falsos negativos que verdaderos positivos. A medida que aumentamos el número de modelos, observamos que los resultados mejoran ligeramente, pero apenas hay diferencia.

#### 4.2.4 Tanzania Power Pump

Ejecutando en algoritmo Random Forest en el dataset Tanzania Power Pump variando los parámetros, obtenemos los siguientes resultados.

#### 4 Configuración de algoritmos

Primero, habíamos considerado por defecto el índice Gini. Probaremos con los otros criterios para analizar los resultados que obtienen.

Tabla 60: Criterios de precisión de Random Forest de Tanzania Power Pump

| Tanzania Power Pump    | TP    | FP   | TN    | FN    | TPR                 | TNR                | PPV                | Accuracy           | F1-score           | G-mean             | AUC                |
|------------------------|-------|------|-------|-------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Information Gain       | 9701  | 667  | 31592 | 13123 | 0.42503505082369436 | 0.9793235996156111 | 0.9356674382716049 | 0.7496505273859448 | 0.5845384429983128 | 0.6451719584230738 | 0.8664281740561384 |
| Information Gain Ratio | 10211 | 3881 | 28378 | 12613 | 0.4473799509288468  | 0.8796924889178214 | 0.7245955151859211 | 0.7005609716246392 | 0.5532018636905407 | 0.6273410416388601 | 0.7929647954466243 |
| Gini Index             | 8905  | 670  | 31589 | 13919 | 0.3901594812478093  | 0.9792306023125329 | 0.9300261096605744 | 0.7351451445999673 | 0.5497083243309978 | 0.6181068708728594 | 0.8544337582024703 |

Observamos que los tres producen valores similares, aunque Information Gain es el que mejores resultados obtiene.

Ahora, probaremos a cambiar el número de modelos elegido, que por defecto era 100.

Tabla 61: Criterios de precisión de Random Forest de Tanzania Power Pump

| Tanzania Power Pump | TP   | FP  | TN    | FN    | TPR                 | TNR                | PPV                | Accuracy           | F1-score           | G-mean             | AUC                |
|---------------------|------|-----|-------|-------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 20                  | 8201 | 600 | 31659 | 14623 | 0.35931475639677535 | 0.9814005393843579 | 0.9318259288717191 | 0.7236352413630339 | 0.5186403162055337 | 0.5938280018124393 | 0.8447374108038352 |
| 40                  | 8793 | 674 | 31585 | 14031 | 0.38525236593059936 | 0.9791066059084287 | 0.9288053237562057 | 0.7330392317048817 | 0.5446099532377443 | 0.6141686547069144 | 0.8524861260008387 |
| 60                  | 8671 | 636 | 31623 | 14153 | 0.37990711531720994 | 0.9802845717474193 | 0.9316643386698185 | 0.7315142602980956 | 0.5397279885468862 | 0.6102598494432749 | 0.8542289561983355 |
| 80                  | 8731 | 625 | 31634 | 14093 | 0.38253592709428674 | 0.9806255618587061 | 0.9331979478409577 | 0.73280322422526   | 0.5426351771286513 | 0.612474087972688  | 0.8554967133564413 |
| 100                 | 8905 | 670 | 31589 | 13919 | 0.3901594812478093  | 0.9792306023125329 | 0.9300261096605744 | 0.7351451445999673 | 0.5497083243309978 | 0.6181068708728594 | 0.8544337582024703 |
| 120                 | 9078 | 691 | 31568 | 13746 | 0.397739221871714   | 0.9785796211909855 | 0.9292660456546218 | 0.7379046166693898 | 0.557052127757494  | 0.6238745844094141 | 0.8562463567499761 |
| 140                 | 9078 | 674 | 31585 | 13746 | 0.397739221871714   | 0.9791066059084287 | 0.9308859721082855 | 0.7382132418350489 | 0.5573428290766208 | 0.6240425462766729 | 0.8570212901347769 |
| 160                 | 9045 | 652 | 31607 | 13779 | 0.39629337539432175 | 0.9797885861310022 | 0.9327627101165309 | 0.738013543198446  | 0.5562559576888779 | 0.6231241657733112 | 0.8578450976279908 |
| 180                 | 9101 | 647 | 31612 | 13723 | 0.39874693305292674 | 0.9799435816361326 | 0.9336274107509233 | 0.7391209629105169 | 0.5588235294117647 | 0.6250995902592708 | 0.8587918747412056 |
| 200                 | 9162 | 664 | 31595 | 13662 | 0.40141955835962145 | 0.9794165969186893 | 0.9324241807449624 | 0.7399197574569286 | 0.5612251148545175 | 0.6270223104365455 | 0.85802419064232   |
| 250                 | 9202 | 689 | 31570 | 13622 | 0.4031720995443393  | 0.9786416193930376 | 0.9303407137802042 | 0.740192073779569  | 0.5625554027204647 | 0.6281409048869235 | 0.858234663048084  |
| 300                 | 9283 | 692 | 31567 | 13541 | 0.4067209954433929  | 0.9785486220899594 | 0.9306265664160401 | 0.741608118657299  | 0.5660538431049728 | 0.6308694553282705 | 0.8585255655170998 |
| 350                 | 9283 | 683 | 31576 | 13541 | 0.4067209954433929  | 0.978827613999194  | 0.9314669877583784 | 0.7417715084508832 | 0.5662092101250381 | 0.6309593818410448 | 0.8590740121953919 |
| 400                 | 9298 | 701 | 31558 | 13526 | 0.4073781983876621  | 0.9782696301807248 | 0.9298929892989299 | 0.7417170451863552 | 0.5665539408341712 | 0.6312889350213483 | 0.8587117916929512 |

Para interpretar estos resultados con más facilidad, hemos representado algunas medidas en las siguientes gráficas.





Figura 37: Configuración de RF en Tanzania Power Pump

No observamos casi diferencia, todos los distintos valores producen resultados muy similares. Destaca en este dataset que hay mayor número de falsos negativos que verdaderos positivos. A medida que aumentamos el número de modelos, observamos que los resultados mejoran ligeramente, pero apenas hay diferencia.

### 5 Procesado de datos

Hasta el momento hemos empleado los algoritmos sobre los datos sin apenas procesarlos, solo hemos realizado un preprocesamiento básico cuando el algoritmo así lo indicaba. En esta sección se estudiará un procesado básico de los datos que mejore la predicción.

Para ello, trabajaremos sobre el conjunto de datos de Tanzania Power Pump por la cantidad de instancias que tiene y porque posee valores desconocidos y perdidos.

Utilizaremos el nodo Data Explorer para analizar las propiedades de cada atributo, tales como el número de missing values, el mínimo, el máximo, la media, el número de valores únicos... De esta forma, obtenemos la siguiente información.

- El atributo num\_private es cero en 54374 variables, por lo que eliminaremos esta variable pues indica que se ha perdido su valor real.
- El atributo date\_recorded tiene muchos valores posibles. Además, a la hora de determinar si una bomba de agua es funcional o no, no es necesario saber la fecha en la que se almacenó la información de dicha bomba. Por lo tanto, eliminaremos este atributo.
- El atributo funder tiene muchos valores posibles e indica el fundador de la bomba de agua, puede que sea útil para determinar si una bomba de agua será funcional o no. También vemos que tiene 3198 missing values, no es gran cantidad. Por lo tanto, no creo que sea necesario eliminar este atributo.
- El atributo installer tiene el mismo problema que la anterior variable e indica quién la instaló, información que puede ser relevante. Además, tiene 3215 missing values, no es gran cantidad. Por lo tanto, no creo que sea necesario eliminar este atributo.
- El atributo wpt\_name indica el nombre del punto de agua y será único para cada bomba de agua. Como tiene muchos valores posibles, no proporciona información relevante, por lo tanto lo eliminaremos.
- El atributo ward tiene muchos valores posibles e indica la localización geográfica, información que puede ayudar a clasificarla. Por lo tanto, no creo que sea necesario eliminarlo.
- El atributo recorder\_by tiene un único valor, GeoData Consultants Ltd. Por lo que lo eliminaremos.
- El atributo scheme\_name tiene 26162 missing values y muchos valores posibles. Por lo que lo eliminaremos.



Figura 38: Nodo Data Explorer

También podemos estudiar la correlación entre los atributos. Esto es, si dos atributos están correlados, no será necesario tener a ambos, sino nos quedaremos con uno. Para ello, utilizaremos el nodo Linear Correlation, que nos mostrará la correlación entre los distintos atributos. Buscaremos los atributos que estén correlados linealmente, es decir, con coeficiente 1.



Figura 39: Correlación entre los atributos de Tanzania Power Pump

Observamos que los atributos extraction\_type, extraction\_type\_group y extraction\_type\_class están correlados. Por lo que solo será necesario uno de ellos, nos quedaremos con extraction\_type\_class

Los atributos management y management\_group también están correlados. Nos quedaremos con management\_group.

Los atributos payment y payment\_type están correlados. Nos quedaremos con payment\_type. Los atributos quality\_group y water\_quality están correlados. Nos quedaremos con quality\_group

Los atributos quantity y quantity\_group están correlados. Nos quedaremos con quantity\_group

Los atributos source, source\_type y source\_class están correlados. Por lo que solo será necesario uno de ellos, nos quedaremos con source\_class.

Los atributos waterpoint\_type y waterpoint\_type\_group están correlados. Nos quedaremos con waterpoint\_type\_group.

Además, vamos a convertir una característica categórica en varias binarias. Esto lo realizaremos sobre los atributos source\_class, scheme\_management, management\_group, extraction\_type\_class, public\_meeting, permit, region, quantity\_group, quality\_group, water\_type\_group, payment\_type y basin.

También se ha usado el nodo Missing Values en cada algoritmo para tratar los valores perdidos, se ha utilizado la mediana para los valores numéricos y el valor más frecuente para los nominales. De esta forma, el flujo de trabajo queda como se observa en la siguiente figura.



Figura 40: Metanodo Procesado de Tanzania Power Pump

En la siguiente tabla se muestran los resultados que teníamos y los que hemos obtenido al aplicar el procesado (P).

Tabla 62: Criterios de precisión sin y con procesado de Tanzania Power Pump

| Tanzania Power Pump   | TP    | FP    | TN    | FN    | TPR    | TNR    | PPV    | Accuracy | F1-score | G-mean | Model size  | AUC    |
|-----------------------|-------|-------|-------|-------|--------|--------|--------|----------|----------|--------|-------------|--------|
| Árbol de decisión     | 17748 | 4520  | 27493 | 4871  | 0.7847 | 0.8588 | 0.7970 | 0.8281   | 0.7908   | 0.8209 | 4882        | 0.8385 |
| Árbol de decisión (P) | 17731 | 4502  | 27583 | 4959  | 0.7814 | 0.8596 | 0.7975 | 0.8272   | 0.7893   | 0.8196 | 4434.6      | 0.8365 |
| 3-NN                  | 16480 | 4781  | 27478 | 6344  | 0.7220 | 0.8518 | 0.7751 | 0.7980   | 0.7476   | 0.7842 | NaN         | 0.8480 |
| 3-NN (P)              | 17305 | 4312  | 27947 | 5519  | 0.7581 | 0.8663 | 0.8005 | 0.8215   | 0.7787   | 0.8104 | NaN         | 0.8713 |
| Naive Bayes           | 15125 | 6716  | 25543 | 7699  | 0.6627 | 0.7918 | 0.6925 | 0.7383   | 0.6773   | 0.7244 | NaN         | 0.8010 |
| Naive Bayes (P)       | 16535 | 10417 | 21842 | 6289  | 0.7244 | 0.6770 | 0.6134 | 0.6967   | 0.6643   | 0.7003 | NaN         | 0.7889 |
| Random Forest         | 8905  | 670   | 31589 | 13919 | 0.3902 | 0.9792 | 0.9300 | 0.7351   | 0.5497   | 0.6181 | NaN         | 0.8540 |
| Random Forest (P)     | 12235 | 1734  | 30525 | 10589 | 0.5360 | 0.9462 | 0.8758 | 0.7762   | 0.6650   | 0.7122 | NaN         | 0.8720 |
| XGBoost               | 17322 | 2720  | 29539 | 5502  | 0.759  | 0.9157 | 0.8643 | 0.8507   | 0.8082   | 0.8336 | NaN         | 0.9208 |
| XGBoost (P)           | 17120 | 2717  | 29542 | 5704  | 0.7500 | 0.9157 | 0.8630 | 0.8471   | 0.8026   | 0.8288 | $_{ m NaN}$ | 0.9177 |

Y las curvas ROC sin y con procesado, respectivamente, son las siguientes.



Figura 41: Curvas ROC sin y con procesado, respectivamente, de Tanzania Power Pump

En general, no observamos gran diferencia. El árbol de decisión ha reducido su tamaño, pues hemos eliminado varios atributos. Sin embargo, ha obtenido resultados un poco peores. Lo mismo ocurre con Naive Bayes o con XGBoost. Esto se debe a que puede que hayamos eliminado algunos atributos que eran relevantes para estos algoritmos. Sobre todo en Naive Bayes, pues hemos eliminado atributos que estaban correlados, es decir, que dependían y como este algoritmo se basaba en la independencia, observamos que no ha tenido el efecto que queríamos.

Por otra parte, otros algoritmos han mejorado, como es el caso de 3-NN y Random-Forest, este último ha mejorado notablemente. Esto puede deberse a que hemos convertido características categóricas en varias binarias, en el caso de 3-NN, o la eliminación de atributos con muchos valores perdidos.

# 6 Interpretación de resultados

En esta sección estudiaremos los factores que determinan cada clase. Para ello, el algoritmo de árboles de decisión proporciona modelos legibles. Esto es, genera una vista del árbol interactivo e interpretable, indicando cuáles son los atributos por los que se divide en cada caso. Esto nos será realmente útil a la hora de averiguar los atributos más relevantes en cada conjunto de datos. Además, también podremos aprovechas el algoritmo Random Forest, pues nos puede proporcionar información sobre los atributos más usados. En Random Forest podemos seleccionar la opción de mostrar las estadísitcas de los atributos para ver cuántas veces ha podido ser elegido cada atributo (columna candidate) y, de esas veces, cuántas veces realmente ha sido elegido (columna splits). Veamos lo que ocurre en cada conjunto de datos.

#### 6.1 Heart Failure

En la siguiente imagen podemos ver una parte del árbol de decisión del conjunto de datos Heart Failure.

Observamos que la primera división que realiza el árbol es según el atributo St\_Slope, esto significa que este atributo es el más determinante a la hora de clasificar la clase. Dependiendo del valor de esta variable, podemos ver los siguientes atributos relevantes, como ChestPainType o Sex.



Figura 42: Vista del árbol de decisión de Heart Failure

Veamos las estadísticas de los atributos de Random Forest.

| row ID         | #splits (level 0) | #splits (level 1) | #splits (level 2) | #candidates (level 0) | #candidates (level 1) | #candidates (level 2) |
|----------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-----------------------|
| Age            | 2                 | 15                | 38                | 23                    | 54                    | 122                   |
| Sex            | 4                 | 15                | 32                | 31                    | 59                    | 109                   |
| ChestPainType  | 26                | 31                | 52                | 31                    | 54                    | 104                   |
| RestingBP      | 0                 | 3                 | 30                | 29                    | 66                    | 107                   |
| Cholesterol    | 7                 | 17                | 45                | 29                    | 51                    | 117                   |
| FastingBS      | 1                 | 9                 | 23                | 28                    | 54                    | 103                   |
| RestingECG     | 0                 | 3                 | 10                | 26                    | 48                    | 107                   |
| MaxHR          | 8                 | 35                | 42                | 31                    | 62                    | 100                   |
| ExerciseAngina | 21                | 20                | 27                | 28                    | 56                    | 108                   |
| Oldpeak        | 9                 | 23                | 46                | 22                    | 45                    | 112                   |
| ST_Slope       | 22                | 29                | 51                | 22                    | 51                    | 111                   |

Observamos que la variable ChestPainType es la más usada, seguida de ST\_Slope y ExerciseAngina. De las 22 veces que ChestPainType ha sido candidata, todas las veces se ha elegido.

#### **6.2 Mobile Price**

En la siguiente imagen podemos ver una parte del árbol de decisión del conjunto de datos Mobile Price.

Observamos que la primera división que realiza el árbol es según el atributo ram, esto significa que este atributo es el más determinante a la hora de clasificar la clase, es decir, a la hora de determinar el precio de un móvil. Dependiendo del valor de esta variable, podemos ver los siguientes atributos relevantes, como px\_height o battery\_power.



Figura 43: Vista del árbol de decisión de Mobile Price

Veamos las estadísticas de los atributos de Random Forest.

| row ID        | #splits (level 0) | #splits (level 1) | #splits (level 2) | #candidates (level 0) | #candidates (level 1) | #candidates (level 2) |
|---------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-----------------------|
| battery_power | 14                | 26                | 37                | 21                    | 42                    | 73                    |
| blue          | 0                 | 1                 | 0                 | 14                    | 37                    | 76                    |
| clock_speed   | 3                 | 11                | 20                | 20                    | 39                    | 86                    |
| dual_sim      | 1                 | 1                 | 4                 | 20                    | 44                    | 79                    |
| fc            | 3                 | 5                 | 10                | 21                    | 28                    | 71                    |
| four_g        | 0                 | 1                 | 0                 | 26                    | 38                    | 79                    |
| int_memory    | 6                 | 7                 | 26                | 20                    | 40                    | 73                    |
| m_dep         | 2                 | 6                 | 15                | 15                    | 38                    | 74                    |
| mobile_wt     | 8                 | 15                | 33                | 25                    | 42                    | 96                    |
| n_cores       | 4                 | 4                 | 14                | 21                    | 44                    | 88                    |
| pc            | 4                 | 5                 | 20                | 19                    | 47                    | 78                    |
| px_height     | 12                | 21                | 32                | 22                    | 33                    | 72                    |
| px_width      | 15                | 27                | 41                | 19                    | 43                    | 85                    |
| ram           | 20                | 36                | 74                | 20                    | 36                    | 75                    |
| sc_h          | 2                 | 8                 | 18                | 28                    | 39                    | 102                   |
| sc_w          | 4                 | 11                | 13                | 16                    | 36                    | 79                    |
| talk_time     | 1                 | 12                | 22                | 21                    | 43                    | 86                    |
| three_g       | 0                 | 1                 | 4                 | 25                    | 53                    | 68                    |
| touch_screen  | 1                 | 0                 | 6                 | 14                    | 38                    | 67                    |
| wifi          | 0                 | 2                 | 3                 | 13                    | 40                    | 93                    |

Observamos que la variable ram es la más usada, seguida de px\_width y battery\_power. De las 20 veces que ram ha sido candidata, todas las veces se ha elegido.

# 6.3 Bank Marketing

En la siguiente imagen podemos ver una parte del árbol de decisión del conjunto de datos Bank Marketing.

Observamos que la primera división que realiza el árbol es según el atributo nr.employed, esto significa que este atributo es el más determinante a la hora de clasificar la clase. Dependiendo del valor de esta variable, podemos ver los siguientes atributos relevantes, en este caso duration.



Figura 44: Vista del árbol de decisión de Bank Marketing

Veamos las estadísticas de los atributos de Random Forest.

| Atributo       | #splits (level 0) | #splits (level 1) | #splits (level 2) | #candidates (level 0) | #candidates (level 1) | #candidates (level 2) |
|----------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-----------------------|
| age            | 2                 | 2                 | 9                 | 23                    | 41                    | 78                    |
| job            | 1                 | 3                 | 15                | 27                    | 43                    | 62                    |
| marital        | 0                 | 1                 | 2                 | 16                    | 40                    | 69                    |
| education      | 1                 | 1                 | 6                 | 16                    | 51                    | 85                    |
| default        | 1                 | 4                 | 2                 | 17                    | 39                    | 86                    |
| housing        | 0                 | 1                 | 0                 | 20                    | 38                    | 69                    |
| loan           | 0                 | 0                 | 2                 | 26                    | 33                    | 87                    |
| contact        | 1                 | 9                 | 15                | 20                    | 44                    | 85                    |
| month          | 3                 | 18                | 42                | 12                    | 47                    | 88                    |
| day_of_week    | 0                 | 2                 | 8                 | 16                    | 39                    | 75                    |
| duration       | 9                 | 37                | 74                | 13                    | 38                    | 86                    |
| campaign       | 0                 | 0                 | 8                 | 21                    | 38                    | 81                    |
| pdays          | 16                | 13                | 34                | 25                    | 36                    | 85                    |
| previous       | 0                 | 7                 | 10                | 19                    | 44                    | 93                    |
| poutcome       | 8                 | 18                | 27                | 23                    | 41                    | 91                    |
| emp.var.rate   | 7                 | 14                | 21                | 24                    | 39                    | 83                    |
| cons.price.idx | 6                 | 15                | 29                | 19                    | 42                    | 81                    |
| cons.conf.idx  | 5                 | 10                | 25                | 18                    | 27                    | 73                    |
| euribor3m      | 13                | 24                | 36                | 18                    | 39                    | 72                    |
| nr.employed    | 27                | 21                | 34                | 27                    | 41                    | 71                    |

Observamos que la variable nr.employed es la más usada, seguida de pdays y euribor3m. De las 27 veces que nr.employed ha sido candidata, todas las veces se ha elegido.

## 6.4 Tanzania Power Pump

En la siguiente imagen podemos ver una parte del árbol de decisión del conjunto de datos Tanzania Power Pump.

Observamos que la primera división que realiza el árbol es según el atributo quantity\_group, esto significa que este atributo es el más determinante a la hora de clasificar la clase, es decir, a la hora de determinar el precio de un móvil. De esta forma, el árbol se subdivide según los valores de esta variable, enough, insufficient, seasonal, dry o unknown.



Figura 45: Vista del árbol de decisión de Tanzania Power Pump

Veamos las estadísticas de los atributos de Random Forest.

## 6 Interpretación de resultados

| row ID                | #splits (level 0) | #splits (level 1) | #splits (level 2) | #candidates (level 0) | #candidates (level 1) | #candidates (level 2) |
|-----------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-----------------------|
| amount_tsh            | 1                 | 1                 | 3                 | 13                    | 39                    | 69                    |
| date_recorded         | 0                 | 8                 | 22                | 15                    | 36                    | 65                    |
| funder                | 4                 | 6                 | 19                | 10                    | 23                    | 54                    |
| gps_height            | 0                 | 0                 | 0                 | 17                    | 32                    | 64                    |
| installer             | 3                 | 10                | 33                | 14                    | 35                    | 66                    |
| longitude             | 0                 | 0                 | 0                 | 19                    | 16                    | 69                    |
| latitude              | 0                 | 0                 | 0                 | 17                    | 35                    | 68                    |
| wpt_name              | 13                | 25                | 62                | 13                    | 25                    | 63                    |
| num_private           | 0                 | 0                 | 0                 | 16                    | 34                    | 63                    |
| basin                 | 0                 | 0                 | 0                 | 18                    | 28                    | 58                    |
| subvillage            | 11                | 22                | 62                | 12                    | 22                    | 68                    |
| region                | 0                 | 1                 | 10                | 10                    | 33                    | 43                    |
| region_code           | 0                 | 0                 | 0                 | 13                    | 27                    | 76                    |
| district_code         | 0                 | 0                 | 0                 | 11                    | 40                    | 71                    |
| lga                   | 2                 | 7                 | 14                | 20                    | 32                    | 54                    |
| ward                  | 16                | 25                | 33                | 17                    | 32                    | 50                    |
| population            | 0                 | 0                 | 1                 | 11                    | 28                    | 61                    |
| public_meeting        | 0                 | 0                 | 2                 | 17                    | 37                    | 58                    |
| recorded_by           | 0                 | 0                 | 0                 | 12                    | 32                    | 67                    |
| scheme_management     | 0                 | 1                 | 3                 | 17                    | 32                    | 64                    |
| scheme_name           | 8                 | 14                | 31                | 21                    | 29                    | 68                    |
| permit                | 0                 | 0                 | 0                 | 19                    | 33                    | 56                    |
| construction_year     | 0                 | 0                 | 4                 | 14                    | 24                    | 65                    |
| extraction_type       | 8                 | 9                 | 9                 | 21                    | 29                    | 59                    |
| extraction_type_group | 1                 | 5                 | 9                 | 10                    | 29                    | 61                    |
| extraction_type_class | 4                 | 5                 | 6                 | 14                    | 35                    | 76                    |
| management            | 0                 | 2                 | 1                 | 17                    | 31                    | 57                    |
| management_group      | 0                 | 0                 | 0                 | 18                    | 29                    | 62                    |
| payment               | 3                 | 8                 | 5                 | 20                    | 33                    | 56                    |
| payment_type          | 0                 | 2                 | 2                 | 10                    | 34                    | 60                    |
| water_quality         | 1                 | 2                 | 1                 | 18                    | 30                    | 59                    |
| quality_group         | 0                 | 1                 | 3                 | 18                    | 27                    | 66                    |
| quantity              | 8                 | 15                | 16                | 15                    | 33                    | 62                    |
| quantity_group        | 7                 | 16                | 15                | 12                    | 38                    | 41                    |
| source                | 0                 | 1                 | 6                 | 15                    | 40                    | 54                    |
| source_type           | 0                 | 0                 | 3                 | 17                    | 31                    | 57                    |
| source_class          | 0                 | 0                 | 1                 | 17                    | 24                    | 56                    |
| waterpoint_type       | 7                 | 10                | 10                | 16                    | 25                    | 64                    |
| waterpoint_type_group | 3                 | 4                 | 14                | 16                    | 28                    | 70                    |

Observamos que la variable ward es la más usada, seguida de wpt\_name y subvillage. De las 17 veces que ward ha sido candidata, 16 veces se ha elegido.

# **7 Contenido adicional**

A continuación se muestran los flujos de trabajo en cada conjunto de datos.



Figura 46: Flujo de trabajo de Heart Failure



Figura 47: Flujo de trabajo de Bank Marketing



Figura 48: Flujo de trabajo de Mobile Price



Figura 49: Flujo de trabajo de Tanzania Power Pump

# 8 Bibliografía

• Material proporcionado por los profesores sobre la asignatura.

https://ccia.ugr.es/~casillas/knime.html

• Foro de KNIME

https://forum.knime.com/