

Sciences

Norwegian University of Science and Technology Department of Mathematical TMA4145 Linear Methods Fall 2017

Exercise set 2

Please justify your answers! The most important part is *how* you arrive at an answer, not the answer itself.

- a) Determine the following numbers and decide in each case whether "supremum" can be replaced by "maximum":
 - 1. $\sup_{x \in (0,\infty)} \frac{1}{x^2}$;
 - 2. $\sup_{x \in \mathbb{R}} e^{-2|x|}$;
 - 3. $\sup_{n \in \mathbb{N}} \frac{n^2+3}{n^2+1}$;
 - 4. $\sup_{n \in \mathbb{N}} (-1)^n \frac{n+3}{n^2+1}$.
 - **b)** Determine the following numbers and decide in each case whether "infimum" can be replaced by "minimum":
 - 1. $\inf_{x \in (0,\infty)} \frac{1}{x^2}$;
 - $2. \inf_{x \in \mathbb{R}} e^{-2|x|};$
 - 3. $\inf_{n \in \mathbb{N}} \frac{n^2+3}{n^2+1}$;
 - 4. $\inf_{n \in \mathbb{N}} (-1)^n \frac{n+3}{n^2+1}$.
- $\boxed{2}$ Let A be bounded above. Show that the supremum of A is unique.
- 3 Let $\{X_i\}_{i\in I}$ be a collection of subspaces of a vector space X. Show that the intersection $\cap_{i\in I} X_i$ is a subspace of X.
- $\boxed{\mathbf{4}}$ Let X be a vector space.
 - 1. Prove that the additive inverse is unique (meaning for any $x \in X$ there exists a unique vector $y \in X$ such that x + y = 0; we denote the additive inverse of x by -x.)
 - 2. Show that for every $x \in X$ we have (-1)x = -x. In words multiplication by the scalar -1 gives the additive inverse of a vector.

- 5
- 1. Let X be a vector space and T a linear mapping $T: X \to X$. Show that the range of T is a subspace of X.
- 2. Recall that $C^{(1)}(\mathbb{R})$ are the continuously differentiable functions, and $C(\mathbb{R})$ are the continuous functions. Let be the differentiation operator Df(x) = f'(x). Determine the kernel and the range of the operator $T: C^{(1)}(\mathbb{R}) \to C(\mathbb{R})$ defined by Tf = f' 3f for $f \in C^{(1)}(\mathbb{R})$.