GENOME 560 Part II Probabilistic Modeling & Learning: Introduction to Probabilistic Models

GENOME 560

Su-In Lee, CSE & GS (suinlee@uw.edu)

Why Take This Course?

- Data are interesting because they help us understand the world
- Genomics: massive amounts of data ...
- Statistics is fundamental in genomics because it is integral in the design, analysis and interpretation of experiments
- This course covers the key statistical concepts and methods necessary for extracting biological insights from experimental data

Learning Goals

- 10 weeks is too short to cover all of statistics or even every specific topic that might arise in the course of your research...
- Statistical and computational methods should never be treated as "recipes" to follow!
- Instead, we should focus on
 - rigorous understanding of fundamental concepts that will provide you with the tools necessary to address routine statistical analyses
 - foundation to understand and learn more specific topics

Syllabus:

Date	Торіс
Week 1	Introduction to probability, random variables and probability distributions, descriptive statistics, joint and conditional probability
Week 2	More probability distributions, introduction to hypothesis testing
Week 3	Parametric hypothesis testing; comparing means, comparing proportions
Week 4	Non-parametric hypothesis testing; comparing means, comparing proportions; rank-based tests; permutation testing
Week 5	More on permutation testing; resampling methods; sample size calculations

We are here.

Syllabus:

Date	Topic
Week 1	Introduction to probability, random variables and probability distributions, descriptive statistics, joint and conditional probability
Week 2	More probability distributions, introduction to hypothesis testing
Week 3	Parametric hypothesis testing; comparing means, comparing proportions
Week 4	Non-parametric hypothesis testing; comparing means, comparing proportions; rank-based tests; permutation testing
Week 5	More on permutation testing; resampling methods; sample size calculations

Trees

Part I covers many important trees. It's time to shift from focusing on tress to understanding forest.

Forest

Syllabus:

Date	Торіс
Week 1	Introduction to probability, random variables and probability distributions, descriptive statistics, joint and conditional probability
Week 2	More probability distributions, introduction to hypothesis testing
Week 3	Parametric hypothesis testing; comparing means, comparing proportions
Week 4	Non-parametric hypothesis testing; comparing means, comparing proportions; rank-based tests; permutation testing
Week 5	More on permutation testing; resampling methods; sample size calculations

Probabilistic Modeling & Learning

What is Probabilistic Model?

- A compact representation of the world
 - A set of random variables A, B, C, ...
 - Probabilistic distribution over the variables P(A, B, C, ...) –
 relationship among variables
- We can use probabilistic models to understand better about the world e.g., *relationships* among variables
- Questions
 - Given partial data that measure the world, can infer a probabilistic model? Learning
 - Is the inferred model correct? How sure are we?
 Model selection

Syllabus:

Date	Торіс		
Week 1	Introduction to probability, random variables and probability distributions, descriptive statistics, joint and conditional probability		
Week 2	More probability distributions, introduction to hypothesis testing		
Week 3	Parametric hypothesis testing; comparing means, comparing proportions		
Week 4	Non-parametric hypothesis testing; comparing means, comparing proportions; rank-based tests; permutation testing		
Week 5	More on permutation testing; resampling methods; sample size calculations		
Week 6	Basics of Bayesian networks; parameter estimation	Representation	
Week 7	Maximum likelihood estimation (MLE), Bayesian estimation	Learning	
Week 8	Linear regression, High-dimensionality, feature selection Cross-validation, model selection	Learning	
Week 9	Single factor ANOVA, two-way ANOVA	Model selection	
Week 10	Multiple hypothesis testing		

References

- A Primer on Learning in Bayesian Networks for Computational Biology
 - Chris Needhan et al. PLOS Computational Biology, 2007
- Probabilistic Graphical Models: Principles and Techniques
 - Daphne Koller and Nir Friedman, MIT Press 2009
 - Chapters 2.1-2.3, and 3.1-3.3

Outline

Probability theory review

- Probabilistic models in genomics
- Bayesian networks representation
- No R exercise today

Probability Theory Review I

- Assume random variables A and B
 - A: Grade
 - B: Difficulty of course
- Values of A and B
 - $Val(A)=\{a^1,a^2,a^3\}$
 - $Val(B)=\{b^1,b^2\}$
- Probability distributions of A and B, P(A) and P(B)
 - P(A) consists of three probabilities: P(A=a¹), P(A=a²), P(A=a³)
 - P(B) consists of two probabilities: P(B=b¹), P(B=b²)
- Joint probability distribution P(A, B)
 - P(A, B) consists of six probabilities: P(A=a¹, B=b¹), P(A=a¹, B=b²),
 P(A=a², B=b¹), P(A=a², B=b²), P(A=a³, B=b¹), P(A=a³, B=b²)

Probability Theory Review II

- Assume random variables Val(A)={a¹,a²,a³}, Val(B)={b¹,b²}
 P(A), P(B)
- Conditional probability

■ Definition
$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 $P(A|B)$ consists of 6 probabilities: $P(A=a^1,B=b^1) / P(B=b^1)$, $P(A=a^1,B=b^2) / P(B=b^2)$, ... $P(X_1, ..., X_n) = P(X_1) P(X_2|X_1) P(X_3|X_1,X_2) ... P(X_n|X_1,...,X_{n-1})$

Bayes' rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Probabilistic independence

$$A \perp B$$
 if and only if $P(A|B) = P(A) P(A,B) = P(A) P(B)$

Example: Probabilistic Independence

Probabilistic independence

```
A \perp B if and only if P(A|B) = P(A) P(A,B) = P(A) P(B)
```

Assume random variables A and B

```
    A: Grade
    B: Difficulty of course
    P(A,B):
    P(A=A-grade, B=Difficult) < P(A=A-grade) P(B=Difficult)</li>
    P(A=C-grade, B=Difficult) > P(A=C-grade) P(B=Difficult)
```

Assume random variables A and B

```
    A: Grade
    B: Weather in Seattle
    P(A,B):
    P(A=A-grade, B=Cloudy)?
    P(A=C-grade, B=Cloudy)?
```

Bayesian Network 101

- Directed acyclic graph
 - Node: a random variable
 - Edge: probabilistic dependence of one node on another
- The Diabetes example
 - Genetic risk (G), Diabetes (D), Hypertension (H)
 - Val (G) = $\{g^1,g^0\}$, Val (D) = $\{d^1,d^0\}$, Val (H) = $\{h^1,h^0\}$
 - P(G,D,H) = P(G) P(D|G) P(H|D,G) = P(G) P(D|G) P(H|G)

- Variables
 - Course difficulty (D), Val(D) = {easy, hard}
 - Quality of the rec. letter (L), Val(L) = {strong, weak}
 - Intelligence (I),
 - SAT (S),
 - Grade (G),

- , VaI(L) = {strong, VaI(I) = {i¹,i⁰}
- Val (S) = $\{s^1, s^0\}$
- Val (G) = $\{g^1, g^2, g^3\}$

Outline

Probability theory review

Probabilistic models in genomics

Bayesian networks representation

Parameter estimation

Example 1

How a certain DNA mutation, blood pressure and heart disease are related?

There can be several "models"...

Example 2

How genes A, B and C regulate each others' expression levels (mRNA levels)?

There can be several models ...

Gene regulatory network

Model selection problem

Which model do we think is the most likely?

Model selection problem

- Which model do we think is the most likely?
- Given data D, can we compute the following probability?
 - P (Model x is true | D)
 - Model selection: argmax_x P (Model x is true | D)
 - How to compute the probability? How about P (D | Model x is true)?

Outline

- Probability theory review
- Probabilistic models in genomics
- Bayesian networks representation

Parameter estimation

Graphical model representation

- Nodes variables
- Edges relationships between variables
- Bayesian network directed acyclic graph (DAG)

Graphical model representation

- Nodes genes
- Edges regulatory relationships

Parameterization

- The joint probability distribution (JPD) P(G1,G2,G3,G4,G5) may be complex even for just 5 variables.
- Let's say that G's are binary.
- How many numbers do we need to fully specify JPD?
 - P(G1=1,G2=1,G3=1,G4=1,G5=0) = 0.1, ...
 - $2^5 1$
- If G's are all independent,
 - P(G1,G2,G3,G4,G5) = P(G1)P(G2)P(G3)P(G4)P(G5)
 - Then how many numbers do we need to fully specify JPD?

 Probability distribution for a gene depends only on its regulators (parents) in the network.

- The expression levels of G4 and G5 are related only because they share a common regulator G2.
- In mathematical term, G4 and G5 are conditionally independent given G2.

G4 ⊥ G5 | G2

 The expression levels of G4 and G1 are related only because of gene G2.

 The expression levels of G5 and G1 are directly related and through G2 and G3.

G4 ⊥ G5 | G2 G1 ⊥ G4 | G2 •

P(G1,G2,G3,G4,G5) = P(G1) P(G2|G1) P(G3|G1) P(G4|G2) P(G5|G1,G2,G3)

G4 ⊥ G5 | G2 G1 ⊥ G4 | G2 •

- Grade (G) = $\{g^1, g^2, g^3\}$ Conditional probability distribution, P(G|D,I)
- Quality of Letter (L) = {I⁰, I¹}
 Conditional probability distribution, P(L|G)

0.99

0.01

- Intelligence (I) = $\{i^0, i^1\}$ Probability distribution, P(I)
- SAT (S) = {s⁰, s¹}
 Conditional probability distribution, P(S|I)
 P(S|I,D) ?
- Grade (G) = $\{g^1, g^2, g^3\}$ Conditional probability distribution, P(G|D,I)
- Quality of Letter (L) = {I⁰, I¹}
 Conditional probability distribution, P(L|G)

from Koller & Friedman 32

- Grade (G) = {g¹, g², g³}
 Conditional probability distribution, P(G|D,I)
 P(G|D,I,S) ?
- Quality of Letter (L) = {I⁰, I¹}
 Conditional probability distribution, P(L|G)

from Koller & Friedman 33

Variables

- Course difficulty (D) = {d⁰, d¹}
 Probability distribution, P(D)
- Intelligence (I) = {i⁰, i¹}
 Probability distribution, P(I)
- SAT (S) = {s⁰, s¹}

 Conditional probability distribution, P(S|I)
- Grade (G) = $\{g^1, g^2, g^3\}$ Conditional probability distribution, P(G|D,I)
- Quality of Letter (L) = {I⁰, I¹}
 Conditional probability distribution, P(L|G)
 P(L|G, S) ?

What is the probability of observing {D=easy, I=intelligent, G=good, L=strong, S=high}?

- P(D,I,G,L,S)= P(D) P(I) P(G|D,I) P(S|I) P(L|G)
- P(D=easy, I=intelligent, G=good, L=strong, S=high)
 P(D=easy) P(I=intelligent)
 P(G=good | D=easy, I=intelligent)
 P(S=strong | I=intelligent)
 P(L=strong | G=good)
 = 0.6 x 0.3 x 0.9 x 0.9 x 0.8
 = 0.1166

Conditional probability tables (CPTs)

What is the probability of observing {D=easy, I=intelligent, G=good, L=strong, S=high}?

- P(D,I,G,L,S)= P(D) P(I) P(G|D,I) P(S|I) P(L|G)
- P(D=easy, I=intelligent, G=good, L=strong, S=high)
- = P(D=easy) P(I=intelligent)
 P(G=good | D=easy, I=intelligent)
 P(S=strong | I=intelligent)
 P(L=strong | G=good)
- $= 0.6 \times 0.3 \times 0.9 \times 0.9 \times 0.8$
- = 0.1166

(can be "learned" from data!)

How about continuous variables?

- Squares discrete nodes
- Circles continuous nodes

Joint probability distribution

 The JPD is expressed in terms of a product of CPDs, describing each variable in terms of its parents, i.e., those variables it depends upon.

$$p(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} p(x_i \mid \mathbf{pa}(x_i), \theta_i)$$

where $\mathbf{x} = \{x_1, ..., x_n\}$ are the variables (nodes in the BN) and $\mathbf{\theta} = \{\theta_1, ..., \theta_n\}$ denotes the model parameters, where is the set of parameters describing the distribution for the i th variable x_i and θ_i denotes the parents of x_t