9.2.1 对面积的曲面积分

基础过关

一、填空题

1. 设 Σ 为z = xy由圆柱面 $x^2 + y^2 = a^2(a > 0)$ 所截下的有限曲面,

则
$$\iint_{\Sigma} \frac{\mathrm{d}S}{\sqrt{1+x^2+y^2}} = \underline{\hspace{1cm}}$$

2. $\Im \Sigma = 2$ 是椭球面 $\frac{x^2}{2} + \frac{y^2}{3} + \frac{z^2}{4} = 1$, 其面积为 A,

则曲面积分 $\iint_{S} (2xy + 6x^2 + 4y^2 + 3z^2) dS =$ ______.

3. 设 Σ 是平面 x+y+z=6 被圆柱面 $x^2+y^2=1$ 所截下的部分,则 $\iint_{\Sigma} z dS =$ ______.

4. 设 Σ 为球面 $x^2 + y^2 + z^2 = a^2(a > 0)$, 则 $\bigoplus_{S} (x^2 + y^2 + z^2) dS =$ _____;

 $\oint_{\Sigma} x^2 dS = \underline{\qquad} ; \oint_{\Sigma} \left(\frac{x^2}{4} + \frac{y^2}{3} + \frac{z^2}{2} \right) dS = \underline{\qquad} .$

二、计算曲面积分 $I = \iint_{\Sigma} (2x+2y+z) dS$, 其中 Σ 是平面 2x+2y+z-2=0 在第一卦限的部分.

三、计算曲面积分 $I = \iint_{\Sigma} (2x + 3y + 4z) dS$, 其中 Σ 是上半球面 $z = \sqrt{R^2 - x^2 - y^2}$.

四、计算曲面积分 $I = \iint_{\Sigma} (x^2 + y^2) dS$, 其中 Σ 是

1. 锥面 $z = \sqrt{x^2 + y^2}$ 及平面 z = 1 所围成的区域的整个边界;

2. $\tan z^2 = 3(x^2 + y^2)$ 被平面 z = 0 和 z = 3 所截得的部分.

能力提升

一、设曲面
$$\Sigma$$
: $|x|+|y|+|z|=1$,求 $I=\bigoplus_{\Sigma}(x+|y|)$ dS.

二、求 $I = \iint_{\Sigma} (x^2 + y^2) dS$, Σ : 球面 $x^2 + y^2 + z^2 = 2(x + y + z)$.

延伸探究

一、求曲面 $\Sigma: x^2 + y^2 + z^2 - 2ax - 2ay - 2az + 2a^2 = 0$ 距平面 x + y + z = 0 的最近点与最远点,其中 a > 0,并证明 $\bigoplus_{y} (x + y + z + \sqrt{3}a)^2 dS \ge 36\pi a^4$.