Seminar 4 Şiruri şi serii de funcții

Convergență punctuală și convergență uniformă

Definiție 1.1 (Convergență punctuală): Fie (X, d) un spațiu metric și fie $f_n : X \to \mathbb{R}$ un șir de funcții. Fie $f : X \to \mathbb{R}$ o funcție.

Spunem că șirul (f_n) converge punctual (simplu) la f dacă:

$$\lim_{n\to\infty} f_n(x) = f(x), \forall x\in X.$$

Scriem $f_n \xrightarrow{PC} f$ și numim funcția f limita punctuală a șirului (f_n) .

Definiție 1.2 (Convergență uniformă): În condițiile și cu notațiile din teorema anterioară, spunem că șirul (f_n) este *uniform convergent* la f dacă:

$$\forall \varepsilon > 0, \exists N_{\varepsilon} > 0 \text{ a.i. } |f_{n}(x) - f(x)| < \varepsilon, \forall n \geqslant N_{\varepsilon}, \forall x \in X.$$

Echivalent, în exerciții, se va folosi caracterizarea:

Propoziție 1.1: În condițiile și cu notațiile de mai sus, șirul (f_n) converge uniform la f dacă și numai dacă:

$$\lim_{n\to\infty} \sup_{x\in X} |f_n(x) - f(x)| = 0.$$

Legătura între aceste două tipuri de convergență este foarte importantă:

Teoremă 1.1: Orice șir de funcții $f_n : [a,b] \to \mathbb{R}$, uniform convergent pe [a,b] este punctual convergent pe [a,b].

Reciproca este falsă.

Iată un contraexemplu pentru reciprocă. Fie [a,b]=[0,1] și $f_n(x)=x^n, n\geqslant 1$. Pentru orice argument $x\in [a,b]$, avem:

$$\lim_{n\to\infty}f_n(x)=\begin{cases} 0, & x\in[0,1)\\ 1, & x=1. \end{cases}$$

Din aceasta, rezultă că $f_n \xrightarrow{PC} f$, unde f este funcția definită de limita de mai sus. Dar:

$$\begin{split} \|f_{n} - f\| &= \sup_{x \in [0,1)} |f_{n}(x) - f(x)| \\ &= \max(\sup_{x \in [0,1)} (|f_{n}(x) - f(x)|, |f_{n}(1) - f(1)|)) \\ &= \max(\sup_{x \in [0,1)} (x^{n}, 0)) \\ &= 1, \end{split}$$

de unde rezultă că $\lim_{n\to\infty} ||f_n-f||=1\neq 0$. Rezultă că (f_n) este punctual convergent, nu uniform convergent pe [0,1).

Pentru funcții mărginite, convergența uniformă coincide cu noțiunea clasică de convergență.

De asemenea, proprietatea de continuitate nu se transferă automat în cazul șirurilor de funcții. Dacă funcțiile f_n sînt continue, iar șirul f_n converge simplu la f, nu rezultă, în general, că f este continuă. De exemplu, să luăm șirul de funcții continue:

$$f_n:[0,1]\to\mathbb{R},\quad f_n(x)=x^n.$$

Acesta converge punctual la funcția discontinuă:

$$f(x) = \begin{cases} 0, & x \in [0, 1) \\ 1, & x = 1. \end{cases}$$

Continuitatea se transferă în următorul caz:

Teoremă 1.2 (Transfer de continuitate): Dacă f_n sînt funcții continue, iar șirul f_n converge uniform la f_n atunci funcția f_n este continuă.

2 Derivare și integrare termen cu termen

Pentru șiruri de funcții, operația de integrare și cea de derivare pot comuta, în anumite situații. Fie f_n , $f:[a,b]\to\mathbb{R}$ funcții continue. Dacă f_n converge uniform la f, atunci are loc proprietatea de integrare termen cu termen:

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b f(x)dx.$$

Similar, pentru cazul derivatelor, să luăm un exemplu. Considerăm șirul $f_n(x) = \frac{\sin(nx)}{x}$, $x \in \mathbb{R}$. Acest șir converge uniform la funcția nulă:

$$\lim_{n\to\infty}\sup_{x\in\mathbb{R}}|f(x)|\leqslant\lim_{n\to\infty}\frac{1}{n}=0.$$

Următorul rezultat dă condiții suficiente pentru convergența șirului derivatelor:

Teoremă 2.1 (Derivare termen cu termen): Presupunem că funcțiile f_n sînt derivabile, pentru orice $n \in \mathbb{N}$. Dacă șirul f_n converge punctual la f și dacă există $g : [a, b] \to \mathbb{R}$, astfel încît f'_n converge uniform la g, atunci g este derivabilă și avem g' = g.

3 Serii de funcții

Pentru studiul seriilor de funcții, vom folosi noțiunile cunoscute de la serii de numere, transferînd proprietățile la șirul sumelor parțiale.

Fie $u_n: X \to \mathbb{R}$ un șir de funcții și fie $s_n = \sum_{k=1}^n u_k$ șirul sumelor parțiale.

Spunem că seria $\sum u_n$ este punctual (simplu) convergentă dacă s_n este punctual convergent, ca șir de funcții.

Seria se numește *uniform convergentă* dacă s_n converge uniform.

Suma seriei este limita (punctuală sau uniformă) a șirului sumelor parțiale.

În calcule, se va folosi următorul rezultat:

Teoremă 3.1 (Weierstrass): Dacă există un șir cu termeni pozitivi a_n , astfel încît $|u_n(x)| \le a_n$, pentru orice $x \in X$, iar seria $\sum a_n$ converge, atunci seria $\sum u_n$ converge uniform.

Rezultatul privitor la transferul de continuitate se regăsește și în acest caz:

Teoremă 3.2 (Transfer de continuitate): Dacă u_n sînt funcții continue, iar seria $\sum u_n$ converge uniform la f, atunci funcția f este continuă.

De asemenea, avem și rezultatele privitoare la *derivare și integrare termen cu termen* pentru serii de functii.

Spunem că o serie de funcții $\sum f_n$ are proprietatea de integrare termen cu termen pe intervalul [a,b] dacă:

$$\int_{a}^{b} \left(\sum_{n} f_{n}(x) \right) dx = \sum_{n} \left(\int_{a}^{b} f_{n}(x) dx \right).$$

Similar, spunem că o serie de funcții are proprietatea de derivare termen cu termen pe mulțimea D dacă:

 $\left(\sum_{n} f_{n}(x)\right)' = \sum_{n} f'_{n}(x), \forall x \in D.$

Aceste proprietăți sînt verificate în condițiile date de rezultatul următor.

Teoremă 3.3: Fie $u_n : [a, b] \to \mathbb{R}$ un șir de funcții continue.

(a) Dacă seria $\sum u_n$ converge uniform la f, atunci f este integrabilă și avem:

$$\int_a^b \sum_n u_n(x) dx = \sum_n \int_a^b u_n(x) dx.$$

(b) Presupunem că toate funcțiile u_n sînt derivabile. Dacă seria $\sum u_n$ converge punctual la f și dacă există $g:[a,b] \to \mathbb{R}$, astfel încît $\sum_n u_n'$ converge uniform la g, atunci f este derivabilă și f'=g.

Observație 3.1: Se poate arăta că mai sus avem condiții *suficiente*, nu și necesare pentru ca o serie să se poată integra (respectiv deriva) termen cu termen.

4 Formula lui Taylor

Orice funcție cu anumite proprietăți poate fi aproximată cu un polinom. Rezultatul formal este următorul.

Definiție 4.1: Fie $I \subseteq \mathbb{R}$ un interval deschis și $f: I \to \mathbb{R}$ o funcție de clasă $C^m(I)$. Pentru orice $a \in I$, definim *polinomul Taylor* de gradul $n \le m$ asociat funcției f în punctul a prin:

$$T_{n,f,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

Restul (eroarea de aproximare) este definit prin:

$$R_{n,f,\alpha} = f(x) - T_{n,f,\alpha}(x).$$

Primele polinoame (de gradul întîi și al doilea) se numesc, respectiv, *aproximarea liniară* și *pătratică* a lui f, în jurul lui a.

Acest polinom se regăsește și în formula lui Taylor, care ne arată legătura lui strînsă cu orice funcție.

Teoremă 4.1 (Formula lui Taylor cu restul Lagrange): Fie $f: I \to \mathbb{R}$ o funcție de clasă $C^{n+1}(I)$ și $a \in I$. Atunci, pentru orice $x \in I$, există $\xi \in (a, x)$ sau (x, a) astfel încît:

$$f(x) = T_{n,f,a}(x) + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

Așadar, din această teoremă știm mai precis eroarea aproximării unei funcții cu polinomul Taylor asociat.

Următoarele sînt consecințe ale teoremei:

(a) Restul poate fi scris sub *forma Peano*: există o funcție $\omega: I \to \mathbb{R}$, cu $\lim_{x \to a} \omega(x) = \omega(a) = 0$ și restul se scrie:

$$R_{n,f,a}(x) = \frac{(x-a)^n}{n!} \omega(x).$$

(b) Restul poate fi scris și sub formă integrală:

$$R_{n,f,a}(x) = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt;$$

(c)
$$\lim_{x \to a} \frac{R_{n,f,a}(x)}{(x-a)^n} = 0.$$

Aceste noțiuni pot fi mai departe utilizate pentru a studia seria Taylor asociată unei funcții.

Definiție 4.2: Fie $I \subseteq \mathbb{R}$ un interval deschis și fie $f: I \to \mathbb{R}$ o funcție de clasă $C^{\infty}(I)$. Pentru orice $x_0 \in I$, se definește *seria Taylor* asociată funcției f în punctul x_0 seria de puteri:

$$T = \sum_{n \geqslant 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Dacă $x_0 = 0$, seria se mai numește *Maclaurin*.

Importanța seriilor Taylor este dată de rezultatul următor:

Teoremă 4.2: Fie a < b și fie $f \in C^{\infty}([a,b])$ astfel încît să existe M > 0 cu proprietatea că $\forall n \in \mathbb{N}, \forall x \in [a,b], |f^{(n)}(x)| \leq M$.

Atunci pentru orice $x_0 \in (a,b)$, seria Taylor a lui f în jurul lui x_0 este uniform convergentă pe [a,b] și suma ei este funcția f. Adică avem:

$$f(x) = \sum_{n \ge 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \forall x \in [a, b].$$

5 Serii de puteri

Seriile de puteri constituie un caz particular al seriilor de funcții, luînd funcții de tip polinomial.

Definiție 5.1: Fie (a_n) un șir de numere reale (complexe) și fie $a \in \mathbb{R}$.

Seria $\sum_{n\geq 0} a_n (x-a)^n$ se numește *seria de puteri centrată în* a, definită de șirul a_n .

Toate rezultatele privitoare la seriile de funcții sînt valabile și pentru seriile de puteri. În plus, avem:

Teoremă 5.1 (Abel 1): *Pentru orice serie de puteri* $\sum a_n x^n$ *există un număr* $0 \le R \le \infty$, *astfel încît*:

- (a) Seria este absolut convergentă pe intervalul (-R, R);
- (b) Pentru orice x, cu |x| > R, seria este divergentă;
- (c) Pentru orice 0 < r < R, seria este uniform convergentă pe [-r, r].

Numărul R se numește raza de convergență a seriei de puteri, iar intervalul (-R,R) se numește intervalul de convergență a seriei.

În plus, datorită naturii sale, suma unei serii de puteri este o funcție continuă în orice punct interior intervalului de convergență.

Teoremă 5.2 (Abel 2): Fie $\sum a_n x^n$ o serie de puteri, R raza de convergență și f suma sa. Dacă seria este convergentă în R, atunci f este continuă în R.

Rezultatul similar are loc și pentru punctul -R.

Calculul razei de convergență se face cu următoarea:

Teoremă 5.3 (Cauchy—Hadamard): Fie $\sum a_n x^n$ o serie de puteri, R raza sa de convergență și definim

$$\omega = \limsup \sqrt[n]{|\mathfrak{a}_n|}.$$

Atunci:

- $R = \omega^{-1}$, dacă $0 < \omega < \infty$;
- R = 0 dacă $\omega = \infty$;
- $R = \infty$ dacă $\omega = 0$.

Din nou, mulțumită naturii particulare a seriilor de puteri, teoremele de derivare și integrare termen cu termen sînt verificate. Dacă $\sum a_n(x-a)^n$ este o serie de puteri, iar S(x) este suma sa, atunci:

- (a) Seria derivatelor $\sum na_n(x-a)^{n-1}$ are aceeași rază de convergență cu seria inițială și suma sa este S'(x);
- (b) Seria primitivelor $\sum a_n \frac{(x-a)^{n+1}}{n+1}$ are aceeași rază de convergență cu seria inițială, iar suma sa este o primitivă a lui S.

6 Exercitii

1. Să se studieze convergența punctuală și uniformă a șirurilor de funcții:

(a)
$$u_n : (0,1) \to \mathbb{R}, u_n(x) = \frac{1}{nx+1}, n \geqslant 0;$$

(b)
$$u_n : [0,1] \to \mathbb{R}, u_n(x) = x^n - x^{2n}, n \ge 0 \text{ (sup în } \frac{1}{\sqrt{2}}\text{);}$$

(c)
$$u_n : \mathbb{R} \to \mathbb{R}, u_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, n > 0;$$

(d)
$$u_n: [-1,1] \rightarrow \mathbb{R}, u_n(x) = \frac{x}{1+nx^2};$$

2. Fie șirul $u_n : \mathbb{R} \to \mathbb{R}, u_n(x) = \frac{\sin nx}{\sqrt{n}}, n > 0.$

Să se studieze convergența șirurilor u_n și u'_n .

- 3. Să se studieze convergența seriilor de funcții și să se decidă dacă se pot deriva termen cu termen:
- (a) $\sum n^{-x}$, $x \in \mathbb{R}$ (Weierstrass, comparație cu armonică);
- (b) $\sum \frac{\sin nx}{2^n}$, $x \in \mathbb{R}$;
- (c) $\sum \frac{\sin nx}{n(n+1)}$.
 - 4. Să se dezvolte următoarele funcții în serie Maclaurin, precizînd și domeniul de convergență:

(a)
$$f(x) = e^x (R = \mathbb{R});$$

(b)
$$f(x) = \sin x (R = \mathbb{R});$$

(c)
$$f(x) = \cos x (R = \mathbb{R});$$

(d)
$$f(x) = (1+x)^{\alpha}, \alpha \in \mathbb{R} (R = \{|x| < 1\});$$

(e)
$$f(x) = \frac{1}{1+x} (R = (-1,1));$$

(f)
$$f(x) = \ln(1+x)$$
;

(g)
$$f(x) = \arctan x$$
.

5. Să se calculeze cu o eroare mai mică decît 10^{-3} integralele (dezvoltînd integrandul în jurul lui 0, integrînd termen cu termen și aproximînd seria alternată rezultată):

(a)
$$\int_0^{\frac{1}{2}} \frac{\sin x}{x} dx;$$

(b)
$$\int_0^{\frac{1}{2}} \frac{\ln(1+x)}{x} dx;$$

(c)
$$\int_0^{\frac{1}{3}} \frac{\arctan x}{x} dx;$$

(d)
$$\int_{0}^{1} e^{-x^{2}} dx$$
.

6. Să se calculeze raza de convergență și mulțimea de convergență în $\mathbb R$ pentru următoarele serii de puteri:

(a)
$$\sum_{n\geqslant 0} x^n$$
;

(b)
$$\sum_{n\geqslant 1} n^n x^n;$$

(c)
$$\sum_{n\geqslant 1} (-1)^{n+1} \frac{x^n}{n}$$
;

(d)
$$\sum_{n\geqslant 1} \frac{n^n x^n}{n!}.$$