Deep Learning Based Recommendation (Part B)

Topic 9B

Deep learning

- Autoencoder for recommender system
 - Autoencoder example in Keras
 - Alternative DL Framework
 - ■Google Colab
 - Running an example in Google Colab

Autoencoder for recommender system

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	0	3	0	3	0
User 2	4	0	0	2	0
User 3	0	0	3	0	0
User 4	3	0	4	0	3
User 5	4	3	0	4	0

A matrix of user/item ratings

In global context, the latent representation in encoding layer can be expected to embrace users' preferences for items, or vice versa.

Autoencoder for recommender system

Autoencoder example in Keras

Autoencoder for MNIST (Hand written images)

Autoencoder example in Keras

Autoencoder for MNIST (Hand written images)

Autoencoder example in Keras

- Techniques for boosting performance of Autoencoder
 - Change dimension of input, output, and hidden
 - Change loss function
 - Change optimizer function (RMSprop, Adagrad, Adam, and etc)
 - Add more layers in encoder and decoder (Stacked autoencoder)
 - Try different activation function (ReLU, Sigmoid, Tanh, Softmax, etc)
 - Add noise to input set (Denoising autoencoder)
 - Add regularization term for loss (Sparse autoencoder)

Practice

- Deep Learning Framework
 - Tensorflow
 - Keras
 - PyTorch
- Google Colaboratory (Colab)
- Running an example using Google Colab

TensorFlow

- Open source platform for numerical computation by Google
 - Using data flow graphs
- Data flow graphs (DFG)
 - Each node in the **graph** represents the instance of a mathematical operation (multiply, add, divide, ...).
 - Each edge is a multi-dimensional data set (tensors) on which the operations are performed.

Data flow graphs

PyTorch

- Open source platform for numerical computation by Facebook
 - Tensor computation with strong GPU acceleration.
 - Deep learning built on a tape-based autodiff system.
 - Can change DFG at runtime unlike TensorFlow
- Difference between PyTorch vs TensorFlow

```
For example, to calculate 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots
                                                                                                *TensorFlow
                             O PyTorch
                                                                   import tensorflow as tf
      import torch
                                                                   x = tf.Variable(0.)
                                                                   y = tf.Variable(1.)
      x = torch.Tensor([0.])
                                                     Construction
                                                                   add op = x.assign(x + y)
      y = torch.Tensor([1.])
                                                           Phase
                                                                   div op = y.assign(y / 2)
                                                                   init = tf.global variables initializer()
      for iteration in range(50):
          x = x + y
                                                                   with tf.Session() as sess:
          y = y / 2
                                                                       init.run()
                                                                       for iteration in range(50):
                                                        Execution
      print(x)
                                                                           sess.run(add op)
                                                           Phase
                                                                           sess.run(div op)
                                                                       print(x.eval())
```

Keras

- A high-level neural networks API
 - Running on top of TensorFlow, CNTK, Theano.
 - Allowing for easy and fast prototyping (through user friendliness, modularity, and extensibility).

Conceptual model diagram with Lego vs Actual Implementation

Google Colaboratory (Colab)

Free service provided by Google for academy

(https://colab.research.google.com/notebooks/welcome.ipynb)

- Jupyter Notebook + Google Drive
 - It requires Gmail account and you can connect personal Google drive to save results and models.
 - It is also available Linux commend to handle environment.
- Computer Specifications
 - OS: Ubuntu 18.04
 - CPU: Xenon 2.3GHz
 - GPU: Tesla K80
 - Memory: 13G
- Available for up to 12 hours, and after 12 hours initializing all environment settings and files.

Example – First starts

Getting Started with Google Colab:

https://towardsdatascience.com/getting-started-with-google-colab-f2fff97f594c

Example – First starts

Or, upload provided ipynb file, and open with Colaboratory

Example - Sync Google drive

Then, sync your google drive to save results and models

Example - Sync Google drive

Mount Google drive's root and drive folder

Select your own folder and Go into a folder

```
[21] cd Colab Notebooks
```

/content/gdrive/My Drive/Colab Notebooks

Example – GPU Acceleration

