第七章 符号检验

何为符号检验?符号检验是对给定信息或数据进行检查,以确认其是否符合特定标准或规范的过程。在计算机科学和通信领域,符号检验通常涉及对传输的数据进行检查,以确保数据完整性和准确性。符号检验的目的是确保数据在传输过程中没有被误修改、删除或破坏,并通过检验机制检测和纠正任何错误。我们符号检验的表达式通常为

$$z = \frac{(x+0.5) - 0.5n}{0.5\sqrt{n}}$$

在此表达式中, x 为各概率中出现的次数最少的, n 则是表示样本总数

我们下面来举个关于符号检验的例子。

案例1

随着社会的发展,那些大城市的消费能力也越来越高,我们今天想探究中国首都 北京在各国消费能力最高的城市中是否会排到中下游。我们统计了世界上消费能 力较高的 66 个城市(图 1),其中包括了北京(消费指数 99),我们想通过符号 检验来验证北京是否在这个城市中排名中下游。

66	75	78	80	81	81	82	83	83	83
83	84	85	85	86	86	86	86	87	87
88	88	88	88	88	89	89	89	89	90
90	91	91	91	91	92	93	93	96	96
96	97	99	100	101	102	103	103	104	104
104	105	106	109	109	110	110	110	111	113
115	116	117	118	155	192				

图 1

我们先用二项分布的图来区分拒绝域以及非拒绝域(图2)

图 2

如上图所示,当 z 值大于-1.645 时则同意该假设,反之则拒绝该假设。 我们通过符号检验的表达式,得出了 z=-2.232625,这个值出现在了二项分布的 拒绝域,所以北京的消费水平并没有在这 66 个城市的中下游。

我们也可以用 rstudio 来进行计算 P, 代码如下

> pnorm(-2.232625)

[1] 0.01278684

得出的概率只有百分之1.27,所以也可以验证原来的假设是错误的。