Cours MOdélisation, Vérification et Expérimentations Exercices (avec les corrections) Sémantique des langages de programmation par Dominique Méry 22 mai 2025

Exercices sur Frama-c et wp

Exercice 1 Question 1.1 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires A(x,y,z);
  ensures \ \ result == 49;
int q6(int x, int y, int z){
   z = y*(x+y);
   y = x * y;
   x=x*x;
   z = z + x + y;
/*@ \ assert \ z == 49; */
  return z;
En utilisant l'opérateur wp, proposer des assertions pour A(x,y,z), afin que le contrat soit
correct.
← Solution de la question 1.1
A(x,y,z) est défini par y*(xy)+x*x+x*y==49+.
/*@ requires A(x,y,z) ;
  ensures \ \ result == 49;
int q6(int x, int y, int z){
   /*@ assert y*(x+y)+x*x+x*y == 49; */
  z = y*(x+y);
   /*@ assert z+x*x+x*y == 49; */
   y = x * y;
   /*@ assert z+x*x+y == 49; */
   x=x*x;
   /*@ assert z+x+y == 49; */
   z = z + x + y;
/*@ assert z == 49; */
  return z;
```

Fin 1.1

Question 1.2 Soit le petit programme suivant annoté mais incomplet.

```
/*@ requires A(x,y,z);
  ensures \result == 144 ;
*/
int q6(int x,int y, int z){
  int u;
```

```
u = x+y+z;
x=x*x;
/*@ assert x == 9;*/
y=y*y;
/*@ assert y == 16;*/
z=z*z;
u = u*u;
return u;
}
```

En utilisant l'opérateur wp, proposer une assertion pour A, afin que le contrat soit correct. Les annotations indiquées sont correctes et font partie des données du problème.

Solution de la question 1.2 .

L'assertion A(x,y,z) peut \tilde{A}^a tre simplement x*x == 9 && y*y == 16 && (xy+z)*(x+y+z) == 144+.

```
/*@ requires A(x,y,z);
  ensures \ \ result == 144 ;
*/
int q6(int x, int y, int z){
                             y*y == 16 \& (x+y+z)* (x+y+z) == 144;*/
 /*@ assert x*x == 9 & 
  int u;
                               y*y == 16 \&\&
  /*@ assert x*x == 9 &&
                                                (x+y+z)* (x+y+z) == 144;*/
 u = x + y + z;
  /*@ assert
             x*x == 9 &  
                               y*y == 16 \&\&
                                               u*u == 144;*/
 x=x*x;
                            y*y == 16 \&\&
                                           u*u == 144;*/
  /*@ assert x == 9 \&\&
 y=y*y;
 /*@ \ assert \ y == 16 \&\&
                           u*u == 144;*/
 z=z*z;
 /*@ \ assert \ u*u == 144;*/
 u = u * u;
 /*@ \ assert \ u == 144;*/
   return u;
```

Fin 1.2

Exercice 2 Nous étudions ce petit algorithme qui calcule quelque chose et nous avons exécuté cet algorithme de 0 et 10 pour obtenir la suite suivante :

```
"#ifndef _A_H
#define _A_H
#define _A_H
|/ Definition of the mathematical function mathpower2
| *@ axiomatic mathpower {
    @ logic integer mathpower(integer n, integer m);
    @ axiom mathpower_0: \forall integer n; n >= 0 ==> mathpower(n,0) == 1;
    @ axiom mathpower_in: \forall integer n,m; n >= 0 && m >= 0
==> mathpower(n,m+1) == mathpower(n,m)*n;
    @ } */

int inv1(int x);
#endif
```

```
#include #include qmathiinv1.h>

int inv1(int x)
{ int u=0;
   int k=0;
   while (k < x)
   { u=2*u+1;
      k=k+1;
   };
   return(u);
}</pre>
```

Si on utilise la fonction power2, on obtient la suite suivante :

```
0 --> 1,1 --> 2,2 --> 4,3 --> 8,4 --> 16,5 --> 32,6 --> 64,7 --> 128,8 --> 256,9 --
```

Question 2.1 On comprend que l'algorithme calcule la suite u_n d'entiers telle que $\forall n \in \mathbb{N} : u_n = 2^n - 1$. En particulier, $u_0 = 0$.

Donner une définition de u_{n+1} en fonction de u_n en calculant le rapport $\frac{u_{n+1}+1}{u_n+1}$

Question 2.2 Ecrire un contrat pour cette algorithme en précisant la clause requires et la clause ensures.

Question 2.3 Proposer un invariant de boucle en vous aidant de la suite u_n et monter qu'il est correct pur cette preuve de correction.

Question 2.4 Exprimer la terminaison de cet algorithme et justifier qu'il termine pour la précondition choisie.

Exercice 3 On dit que S1 est équivalent à S2 et on note $S1 \equiv S2$, si pour touts les états s et s', $(S1, s) \xrightarrow[nat]{} s'$ si, et seulement si, $(S2, s) \xrightarrow[nat]{} s'$.

Question 3.1 Montrer que while b do S od \equiv if b then S; while b do S od else skip fi

Question 3.2 Etendre la fonction sémantique pour l'instruction repeat S until b.

Question 3.3 Montrer que repeat S until $b \equiv S$; if b then skip else repeat S until b fi

Exercice 4 On rappelle que wp(X := E)(P(x)) = P[e(x)/x] et que $\{A(x)\}X := E\{B(x)\}$ est définie par $A \Rightarrow wp(X := E)(B)$. On peut assez naturellement appliquer cette définition pour

```
\ell_1 : A(x)
X := E(X)
\ell_2 : B(x)
```

Montrer la correction des triplets suivants et vérifier avec Frama-C en examinant les conditions de vérification engendrées :

```
- \begin{cases} \ell_1 : x = 10 \ \land \ y = z + x \ \land z = 2 \cdot x \\ y := z + x \\ \ell_2 : x = 10 \ \land \ y = x + 2 \cdot 10 \end{cases}
```

$$- \begin{cases} \ell_1 : x = 1 \ \land \ y = 12 \\ x := 2 \cdot y \\ \ell_2 : x = 1 \ \land \ y = 24 \end{cases}$$

$$- \begin{cases} \ell_1 : x = 11 \ \land \ y = 13 \\ z := x; x := y; y := z; \\ \ell_2 : x = 26/2 \ \land \ y = 33/3 \end{cases}$$

$$- \begin{cases} \ell_1 : x = 9 \ \land \ y = z + x \\ y := x + 9 \\ \ell_2 : x = 9 \ \land \ y = x + 9 \end{cases}$$

$$- \begin{cases} \ell_1 : x = 1 \ \land \ y = 3 \ \land \ x + y = 12 \\ x := y + x \\ \ell_2 : x = 567 \ \land \ y = 34 \end{cases}$$

Exercice 5 Calculer wp(S)(P) dans les cas suivants :

- 1. wp(X := E(X); Y := F(X))(P(x, y))
- 2. wp(X := Y, Y := X)(P(x, y))
- 3. $wp(while\ TRUE\ do\ X := E(X)\ od)(P(x,y))$
- **4.** $wp(while\ FALSE\ do\ X := E(X)\ od)(P(x,y))$
- 5. $wp(while \times < 20 \ do \ X := X+1 \ od)(TRUE)$

Sémantique naturelle et sémantique SOS

Exercice 6

```
\begin{array}{lll} n & ::= & 0 \mid 1 \mid n0 \mid n1 \\ e & ::= & n \mid x \mid e1 + e2 \mid e1 - e2 \mid e1 \cdot e2 \\ b & ::= & tt \mid ff \mid e1 = e2 \mid e1 \neq e2 \mid e1 \leq e2 \mid e1 \geq e2 \mid e1 < e2 \mid e1 > e2 \mid \neg b \mid b1 \&\& b2 \\ S & ::= & x := e \mid skip \mid S1; S2 \mid (\textbf{if } b \textbf{ then } S_1 \textbf{ else } S_2 \textbf{ fi} \mid \textbf{ while } b \textbf{ do } S \textbf{ od} \end{array}
```

Question 6.1 Définir une fonction sémantique pour la catégorie syntaxique des chaines numériques NUM à valeurs dans $\mathbb{Z}: \mathcal{N} \in NUM \longrightarrow \mathbb{Z}$.

Question 6.2 Evaluer les valeurs suivantes :

- $--\mathcal{N}(11)$
- $-- \mathcal{N}(101)$
- -- $\mathcal{N}(0100)$

Question 6.3 Montrer que N est bien définie pour toutes les expressions.

Exercice 7 On définit lénsemble des états $States = Var \longrightarrow \mathbb{Z}$ où Var est lénsemble des variables.

Question 7.1 Une expression arithmétique $e \in Exp$ est évaluée dans un état ar la fonction sémantique $\mathcal{E} \in Exp \longrightarrow (States \longrightarrow \mathbb{Z})$. Définir \mathcal{E} par induction sur la syntaxe.

Question 7.2 Soit $s \in S$ tates tel que s(x) = 2 et s(y) = 3 où $x, y \in V$ ar et $s \in S$ tates. Evaluer les expressions suivantes en s : x+y+101, $x \cdot y$.

Question 7.3 Une expression logique $b \in Bexp$ est évaluée dans un état ar la fonction sémantique $\mathcal{B} \in Bexp \longrightarrow (States \longrightarrow \mathbb{B})$. Définir \mathcal{B} par induction sur la syntaxe.

Question 7.4 Soit $s \in S$ tates tell que s(x) = 2 et s(y) = 3 où $x, y \in V$ ar et $s \in S$ tates. Evaluer les expressions suivantes en s : x = y, $x \neq y$, $x \leq y$, x < y && $x + -6 \leq y$.

Question 7.5 On étend le langage des expressions logiques par les deux constructions $b1 \Rightarrow b2$ et $b1 \Leftrightarrow b2$. Ce langage est noté Bexp1.

Montrer que pour tout expression $b \in Bexp1$, il existe une expression $b' \in Bexpt$ telle que $\mathcal{B}(b) = \mathcal{B}(b')$.

Exercice 8 Nous définissons deux opérations substitution et mise à jour. Ces deux opérations seront utilisées plus tard dans léxpression de la sémantique des instructions :

- la notation de substitution $e[x \mapsto e1]$ qui est la substitution de x par e1 dans e.
- la mise à jour pour un état s et on la note $s[x \mapsto v]$ qui est le nouvel état obtenu par mise à jour de la valeur de x pour s.

Question 8.1 *Ecrire une définition inductive de* $e[x \mapsto f]$.

Solution de la question 8.1 .

On définit cette substitution par induction sur la syntaxe des expressions e:

$$n[x \mapsto f] \stackrel{def}{=} n$$
 $x[x \mapsto f] \stackrel{def}{=} f$
 $y[x \mapsto f] \stackrel{def}{=} y$
 $(e1+e2)[x \mapsto f] \stackrel{def}{=} e1[x \mapsto f] \oplus e2[x \mapsto f]$
 $(e1 \cdot e2)[x \mapsto f] \stackrel{def}{=} e1[x \mapsto f] \otimes e2[x \mapsto f]$
 $(e1 \ op \ e2)[x \mapsto f] \stackrel{def}{=} e1[x \mapsto f] \text{ op } e2[x \mapsto f]$

Dans cette écriture, nous utilisons les symboles \oplus \oplus

Dans cette écriture, nous utilisons les symboles \oplus , \otimes et op pour signifier les opérateurs arithmétiques dans lénsemble $\mathbb Z$ et qui sont les opérateurs du monde des mathématiques.

_Fin 8.1

Question 8.2 Définir la mise à jour pour un état s et on la note $s[x \mapsto v]$ qui est le nouvel état obtenu par mise à jour de la valeur de x pour s.

\leftarrow Solution de la question 8.2 $_$

$$s[x \mapsto v](x) \stackrel{def}{=} v$$

$$s[x \mapsto v](y) \stackrel{def}{=} y$$

 \overline{x} et y sont deux noms distincts.

Fin 8.2

Question 8.3 Montrer que $s[x \mapsto v][y \mapsto w] = s[y \mapsto w][x \mapsto v]$ et que $s[x \mapsto v][\mapsto w] = s[x \mapsto v]$.

Question 8.4 Montrer que $\mathcal{E}(e[x \mapsto f])(s) = \mathcal{E}(e)(s[x \mapsto \mathcal{E}(f)(s).$

\leftarrow Solution de la question 8.4

$$\mathbf{Cas} \ \mathbf{e} = \mathbf{n} \begin{cases} \mathcal{E}(n[x \mapsto f])(s) = \mathcal{E}(n)(s) = n \\ \mathcal{E}(n)(s[x \mapsto \mathcal{E}(f)(s) = n \\ \mathcal{E}(n[x \mapsto f])(s) = \mathcal{E}(n)(s[x \mapsto \mathcal{E}(f)(s)]) \\ \mathcal{E}(x[x \mapsto f])(s) = \mathcal{E}(s)(s[x \mapsto \mathcal{E}(f)(s)]) \\ \mathcal{E}(x[x \mapsto f])(s) = \mathcal{E}(f)(s) \\ \mathcal{E}(x[x \mapsto f])(s) = \mathcal{E}(x)(s[x \mapsto \mathcal{E}(f)(s) \\ \mathcal{E}(x[x \mapsto f])(s) = \mathcal{E}(x)(s[x \mapsto \mathcal{E}(f)(s) \\ \mathcal{E}(y[x \mapsto f])(s) = \mathcal{E}(x)(s[x \mapsto \mathcal{E}(f)(s) \\ \mathcal{E}(y[x \mapsto f])(s) = \mathcal{E}(y)(s[x \mapsto \mathcal{E}(f)(s) \\ \mathcal{E}(x[x \mapsto f])(s) = \mathcal{E}(x[x \mapsto f])(s) \oplus \mathcal{E}(x[x \mapsto f])(s) \\ \mathcal{E}(x[x \mapsto f])(s) = \mathcal{E}(x[x \mapsto f])(s) \oplus \mathcal{E}(x[x \mapsto f])(s) \oplus \mathcal{E}(x[x \mapsto f])(s) \\ \mathcal{E}(x[x \mapsto f])(s) \oplus \mathcal{E}(x[x \mapsto f])(s[x \mapsto \mathcal{E}(f)])(s[x \mapsto \mathcal{E}(f)]) \oplus \mathcal{E}(x[x \mapsto f])(s[x \mapsto \mathcal{E}(f)]) \\ \mathcal{E}(x[x \mapsto f])(s[x \mapsto f])(s[x \mapsto \mathcal{E}(x[x \mapsto f])(s[x \mapsto$$

Fin 8.4

Question 8.5 Définir la substitution pour les expressions booléennes $b[x \mapsto e]$ où b est une expression booléenne de BExp et e est une expression arithmétque de Exp.

Question 8.6

Montrer que $\mathcal{E}(b[x \mapsto e])(s) = \mathcal{E}(b)(s[x \mapsto \mathcal{E}(e)(s).$

Solution de la question 8.6 _

Cette question n'est pas corrigé et fait partie des exercices qui pourraient être proposés ors de la prochaine évaluation.

__Fin 8.6

Exercice 9

On rappelle les règles définissant la sémantique naturelle du langage de programmation PL

Question 9.1 Soit s tel que s(u) = 0 et s(v) = 1.

- Evaluer (u := 11;v := u+100;u := u+v,s) en sémantique naturelle.
- Evaluer (w := u ; u := v ; v := w,s) en sémantique naturelle.

Solution de la question 9.1

Une évaluation est une suite d'application des règles ci-dessus.

$$(u := 11, s) \xrightarrow[nat]{} s[u \mapsto \mathcal{E}(11)(s)]$$

- (1) $(u := 11, s) \xrightarrow{nat} s[x \mapsto 3]$ $-(v := u + 100, s[u \mapsto 3]) \xrightarrow{nat} s[u \mapsto 3][v \mapsto \mathcal{E}(u + 100)(s[u \mapsto 3])]$ (2) $(v := u + 100, s[u \mapsto 3]) \xrightarrow{nat} s[u \mapsto 3][v \mapsto 7]$ (3) $(u := u + v, s[u \mapsto 3][v \mapsto 7]) \xrightarrow{nat} s[u \mapsto 3][v \mapsto 7][u \mapsto 10]$ (4) $(u := 11; v := u + 100, s) \xrightarrow{nat} s[u \mapsto 3][v \mapsto 7] \text{ par le point 1 et le point 2 et l'application de } s[u \mapsto 3][v \mapsto 7] \text{ par le point 1 et le point 2 et l'application de } s[u \mapsto 3][v \mapsto 7] \text{ par le point 1 et le point 2 et l'application de } s[u \mapsto 3][v \mapsto 7] \text{ par le point 2 et l'application de } s[u \mapsto 3][v \mapsto 7] \text{ par le point 3 et l'application de } s[u \mapsto 3][v \mapsto 7][v \mapsto 7] \text{ par le point 3 et l'application de } s[u \mapsto 3][v \mapsto 7][v \mapsto 7][$ la règle 2.

 $\textit{(final)} \ (u:=3; v:=u+4; u:=u+v, s) \xrightarrow{\textit{nat}} s[u\mapsto 3][v\mapsto 7][u\mapsto 10] \ \textit{par le point 3 et le point 4}$ et l'application de la règle 2.

On procède de même pour l'autre suite d'instructions qui est laissée en guise de révision pour l'épreuve écrite.

Fin 9.1

7