Discrete operators in 1D

Best to discretize equs in conservation form:

1) mass cons.:
$$\nabla \cdot q = f_s$$

2) Darcy's law:
$$q = -K\nabla h$$

Highlights two basic operators in vector calc.:

- 1) Divergence of a vector
- 2) Gradient of a scalar

Note: There is also the Curl but we won't need it.

Most PDE's in science and engineering are built from these operators?

If we had discrete analogs of these operators:

- · solve different equations
- · clean & readable implementation
- · dimension & coordinat system independent

$$\nabla \cdot , \nabla , (\nabla x)$$
 are linear operators

We are looking for two matrices so that

$$\nabla \cdot q = f_s \implies \underset{q = -\nabla h}{\mathbb{D}} \times q = f_s$$

$$(k=1) \qquad q = -\nabla h \implies q = -G_h$$

so that

$$-\nabla \cdot \nabla h = -\nabla_h^2 = f_s \Rightarrow -\underline{D}\underline{G}\underline{h} = f_s$$

Staggered grid Needed to obtain a compact stencil.

scalars: h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8 Nx = 8

Fluxeo: q_1 q_2 q_3 q_4 q_5 q_6 q_7 q_8 q_9 Nfx = Nx+l=9

Divide domain $x \in [0, L]$ into Nx=8 control volumes of length Δx .

Control volume/cell: i = degree of freedom (dof)

Discrete divergence operator

Divergence takes aflux and returns a scalar: V.q-f,

$$f_s = \underline{D} \underline{h}$$

 $N \times \cdot 1$ $(N \times + 1) \cdot N \times N \times \cdot 1$

maps from faces to centers

Entries into D for Nx=8

9

fu	
	X

-1	I							
	-1	1						
		-(l					
			-1	I				
				-1	l			
					-1	1		
						-1	1	
							-1	1

94

Finite Diff.: $\nabla \cdot q = \frac{dq}{dx} \approx \frac{9i4i-9i}{\Delta x} = fi$

Example: $f_4 = \frac{q_5 - q_4}{\Delta x}$

Discrete gradient operator

Gradient takes a scalar and returns a flux: q=- Th

$$q = - \underbrace{G} \quad \underline{h}$$

$$(Nxt1)\cdot I \quad (Nx+1)\cdot Nx \quad Nx\cdot I \quad \vdots \quad \underbrace{+}_{X} q = \underbrace{+}_{X} \underbrace{G} \quad \underbrace{-}_{X} \underbrace{+}_{X} \underbrace{-}_{X}$$

Finite difference:
$$q_i = \frac{h_i - h_{i-1}}{\Delta x}$$

1; -•	9							, र =
m minus sign not portof [= 1				0				
nus	93				- (1		
not not		= -	$\frac{1}{\Delta x}$			-1	-1	l
Note: the minus is <u>not</u> port			AX					-1
Note								

			_	=				_
0								
-1	(hz
	- (1						h ₂
		-1	I					
			-1	l				
				-1	l			
					一	1		
						-1	1	
							0	

Example:
$$q_3 = \frac{h_3 - h_2}{\Delta X}$$

On boundaries we set flux to zero (natural BC)

Relation between \underline{D} and \underline{G} If we look at \underline{D} and \underline{G} we observe $\underline{G} = -\underline{D}^T$ in the interior of domain

At bond's the natural BC's in G lead to difference.

This relation ship is due to the fact that ∇ . and ∇ are adjoint operators.

Discrete Laplacian Operator

Continuum:
$$\nabla \cdot \nabla = \nabla^2 - \nabla^2 h = f_s$$

Note: Laplacian takes scalar and returns a scalar

Discrete mean operator

This will become useful once we have variable

coefficients, K=K(x).

M computes the <u>arithmetic</u> mean of cell center values on the faces.

$$\underline{mf} = \underline{\underline{H}}$$
 $\underline{\underline{f}}$

(Nx+1)·1 (Nx+1)·Nx Nx·1

⇒ M has shape of G (cellcenter → faces) but entries are different

mf									Ŧ
			2,						
			1	ı					fz
mf3				1	ı				6 63
	=	1)	ι			
		2				l	ı		
							1	ı	
								2	

$$f_{i-1}$$
 f_i for example: $mf_3 = \frac{f_2 + f_3}{2}$