This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05009037 A

(43) Date of publication of application: 19.01.93

(51) Int CI

C03B 23/025 C03B 35/24

(21) Application number: 03241494

(22) Date of filing: 20.09.91

(30) Priority:

26.09.90 JP 02256229

(71) Applicant:

ASAHI GLASS CO LTD

(72) Inventor:

HIROTSU TAKASHI OTANI KAZUYOSHI NAGAOKA TERUJI

(54) METHOD FOR BENDING GLASS PLATE AND DEVICE THEREFOR

(57) Abstract:

PURPOSE: To provide the bending method for a glass plate having a double- curved surface which utilizes the greater part of the existing production line for the glass plate having a single curved surface and necessitates only the simple change of equipment.

CONSTITUTION: The glass plate 32 is transported on hearth beds 34, 35 in a gas turnace 30 and is bent at a desired radius R_2 of curvature along the axis of the direction perpendicular to the transporting direction. The glass plate is further bent to a radius R_1 of curvature in a longitudinal direction along the curve of an upward grade of a hearth bed 36 when the plate arrives at the hearth bed 36 having the desired radius R_1 of curvature along the axis of the transporting direction. The glass plate 32 is cooled and tempered by the cold wind through cooling blow-port module groups 38A, 38B.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-9037

(43)公開日 平成5年(1993)1月19日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 3 B 23/025

9041-4G

35/24

9041-4G

審査請求 未請求 請求項の数10(全 10 頁)

(21)出願番号

特願平3-241494

(22)出願日

平成3年(1991)9月20日

(31)優先権主張番号 特願平2-256229

(32)優先日

平 2 (1990) 9 月26日

(33)優先権主張国

日本(JP)

(71)出願人 000000044

旭硝子株式会社

東京都千代田区丸の内2丁目1番2号

(72)発明者 広津 孝

神奈川県川崎市川崎区田町2丁目4番1号

旭硝子株式会社京浜工場内

(72)発明者 大谷 一吉

神奈川県愛甲郡愛川町角田字小沢上原426

番 1 旭硝子株式会社相模事業所内

(72)発明者 長岡 輝治

神奈川県愛甲郡愛川町角田字小沢上原426

番1 旭硝子株式会社相模事業所内

(74)代理人 弁理士 松浦 憲三

(54) 【発明の名称】 ガラス板の曲げ成形方法およびその装置

(57)【要約】

【目的】既存単曲面のガラス板の生産ラインの設備の大 部分を利用し、簡単な設備の変更のみで行える複曲面ガ ラス板の曲げ成形方法を提供する。

【構成】ガラス板32はガス炉30内のハースベッド3 4、35上で搬送されて、搬送方向と垂直な方向軸に沿 って所望の曲率半径R、で曲げ成形され、さらに、所望 の曲率半径R₁ を搬送方向軸に沿って有するハースベッ ド36の上に到達すると、ハースベッド36の上り勾配 の湾曲に沿って長手方向に曲率半径R,に曲げ成形され る。ついで、ガラス板32は冷却吹き口モジュール群3 8A、38Bを通じての風冷により冷却、強化される。

【特許請求の範囲】

【請求項1】ガラス板を、成形炉内の搬送面上を搬送し ながらガラス板をその軟化点温度付近にまで加熱すると とにより搬送面に沿った形状にガラス板を自重で曲げ成 形するガラス板の曲げ成形方法であって、この方法は、 ガラス板を成形炉内の搬送面上を搬送させる際、その少 なくとも成形炉の搬出口近傍において上がり勾配となっ ており、かつ搬送方向軸及び搬送方向と垂直な方向軸の 双方に沿って所定の曲率を持って上方に凸にされた複曲 面形状を有する複曲曲げ搬送面の上を搬送させ、それに 10 より複曲曲げ搬送面に略沿った形状にガラス板を曲げる 複曲曲げ工程と、

成形炉の搬出口から搬出されたガラス板を、複曲曲げ搬 送面と略連続的に連なった複曲面形状をなし、かつ少な くとも一部は下り勾配に配設された冷却搬送面の上を搬 送させつつ冷却強化する冷却強化工程と、

を含むことを特徴とするガラス板の曲げ成形方法。

【請求項2】ガラス板を、成形炉内の搬送面上を搬送し ながらガラス板をその軟化点温度付近にまで加熱すると とにより搬送面に沿った形状にガラス板を自重で曲げ成 20 成形炉と、 形するガラス板の曲げ成形方法であって、この方法は、 ガラス板を成形炉内の搬送面上を搬送させる際、その少 なくとも成形炉の搬出口近傍において下り勾配となって おり、かつ搬送方向軸及び搬送方向と垂直な方向軸の双 方に沿って所定の曲率を持って下方に凸にされた複曲面 形状を有する複曲曲げ搬送面の上を搬送させ、それによ り複曲曲げ搬送面に略沿った形状にガラス板を曲げる複 曲曲げ工程と、

成形炉の搬出口から搬出されたガラス板を、複曲曲げ搬 送面と略連続的に連なった複曲面形状をなし、かつ少な 30 を有することを特徴とするガラス板を成形炉内の搬送面 くとも一部は上がり勾配に配設された冷却搬送面の上を 搬送させつつ冷却強化する冷却強化工程と、

を含むことを特徴とするガラス板の曲げ成形方法。

【請求項3】請求項1記載のガラス板の曲げ成形方法で あって、

冷却強化工程の後に、後処理工程用搬送路の高さまで前 記ガラス板を移送する移送工程を有することを特徴とす るガラス板の曲げ成形方法。

【請求項4】請求項1記載のガラス板の曲げ成形方法で あって、

複曲曲げ工程の前に、成形炉内において、搬送方向と垂 直な方向軸に沿って所定の曲率をもって上方に凸にされ た単曲面形状を有する単曲曲げ搬送面の上を略水平方向 に搬送することにより、単曲曲げ搬送面に略沿った形状 に自重で曲げ成形する単曲曲げ工程を有することを特徴 とするガラス板の曲げ成形方法。

【請求項5】請求項1記載のガラス板の曲げ成形方法で あって、

成形炉のハースベッドが複曲曲げ搬送面をなし、ガラス

曲げ搬送面下面から吹き出されるガスからなるガス層を 介して浮揚支持されていることを特徴とするガラス板の 曲げ成形方法。

【請求項6】ガラス板を軟化点温度付近にまで加熱する 成形炉と、

成形炉内にあって、搬送方向軸及び搬送方向と垂直な方 向軸の双方に沿って上に凸の複曲面形状をなし、成形炉 の少なくとも搬出口近傍にその上がり勾配部が配設され た、複曲曲げ搬送面と、

前記複曲曲げ搬送面と略連続的に連なった複曲面形状を なし、少なくとも一部は下り勾配に配設された冷却用搬 送面と、

前記冷却用搬送面の近傍に配設されたガラス板冷却強化 手段と、

を有することを特徴とするガラス板を成形炉内の搬送面 上を搬送しながらガラス板をその軟化点温度付近にまで 加熱することにより、搬送面に略沿った形状にガラス板 を自重により曲げ成形するガラス板の曲げ成形装置。

【請求項7】ガラス板を軟化点温度付近にまで加熱する

成形炉内にあって、搬送方向軸及び搬送方向と垂直な方 向軸の双方に沿って下に凸の複曲面形状をなし、成形炉 の少なくとも搬出口近傍にその下り勾配部が配設され た、複曲曲げ搬送面と、

前記複曲曲げ搬送面と略連続的に連なった複曲面形状を なし、少なくとも一部は上がり勾配に配設された冷却用 搬送面と、

前記冷却用搬送面の近傍に配設されたガラス板冷却強化 手段と、

上を搬送しながらガラス板をその軟化点温度付近にまで 加熱することにより、搬送面に略沿った形状にガラス板 を自重により曲げ成形するガラス板の曲げ成形装置。

【請求項8】請求項6のガラス板の曲げ成形装置であっ て、

更に、冷却用搬送面の搬送方向下流側に設けられた前記 ガラス板を後処理工程用搬送路の高さにまでガラス板を 移送する移送手段と、を有することを特徴とするガラス 板の曲げ成形装置。

【請求項9】請求項6のガラス板の曲げ成形装置であっ 40 て、

更に、複曲曲げ搬送面の搬送方向上流側に設けられた、 搬送方向と垂直な方向軸に沿って上に凸の単曲面形状を なす単曲曲げ搬送面を有することを特徴とする、ガラス 板の曲げ成形装置。

【請求項10】請求項6のガラス板の曲げ成形装置であ って、

成形炉のハースベッドが複曲曲げ搬送面をなし、複曲曲 げ搬送面には、該複曲曲げ搬送面の下面からガスを吹き 板を複曲曲げ搬送面上を搬送する際に、ガラス板は複曲 50 出し、該ガスからなる層を介してガラス板を浮揚支持す

る支持手段が設けられていることを特徴とするガラス板 の曲げ成形装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ガラス板を複曲面に曲 げ成形する方法及びその装置に関する。

[0002]

【従来の技術】最近自動車産業において複曲面に成形さ れたガラス板、即ち、図3に示すようにガラス板8が長 成形された複曲面のガラス板8が必要とされるようにな ってきた。

【0003】図4に複曲面を成形する為の装置として提 案された曲げ成形装置の1例が示されている。(特公昭 49-10331号公報) この曲げ成形装置10によれ ば、ガラス板8はハースベッド13、13・・・上を搬 送されながら搬送方向に垂直な方向軸に沿って半径R、 で曲げ成形が行なわれ、ついで、ガラス板8の搬送方向 軸に沿って湾曲状に形成されたハースベッド14、16 げ成形され、次に吹き口18で冷却強化される。 これに より、図3に示す様なガラス板8の複曲面が成形され る。

[0004]

【発明が解決しようとする課題】このようなガラス製造 ラインにおいては、設備投資として、成形炉の占める割 合が極めて大きい。したがって、複曲面ガラスの製造ラ インと、従来の単曲面ガラスの製造ラインとでできるか ぎり設備を共有すること、特に成形炉を共有することが できると、有利である。しかし、炉などを共通して使用 30

することには以下のようなさまざまな困難があった。 【0005】即ち、既存の単曲面のガラス製造ラインと 図4に示したような複曲面のガラス製造ラインとを共用 しようとすると、複曲面用のハースベッド14、16、 吹き口18と単曲面用のハースベッド等とを互いに交換 する必要がある。しかしながら、前述した従来の複曲面 用の曲げ成形装置では、ガラス板がスムーズに前進する 様に、ガラス板を長手方向に曲げ成形するハースベッド 14、16が連続的に下り勾配で設けられているので、 成形後の高さ(H1)まで大きく落ち込む(図で落ち込 み量を(H)とした)。したがって、もし、単曲面のガ ラス板の生産ラインと複曲面のガラス板の生産ラインの 成形炉とを共用すると、複曲面のガラス板の生産時に は、長手方向を曲げ成形し終えた落ち込み位置(H1) から落ち込む前の位置(H2)までガラス板を引き上げ る引き上げ手段を特別に設ける必要がある。

【0006】落ち込み位置(H1)は単曲面のガラス板 と複曲面のガラス板とで異なるだけでなく、複曲面のガ ラス板の仕様によって変化する。したがって、このよう 50 ることにより、引き上げの安定性を向上させることを目

な引き上げ手段は、ガラス板の曲げ成形仕様によって専 用のものを用いるか、汎用の引き上げ手段を仕様でとに 調整して用いるか、いずれかにせざるを得ない。引き上 げ手段を専用化し、ガラス板の品種ごとに用意すること は、設備投資上の大きな不利になり好ましくない。ま た、汎用の引き上げ手段を仕様でとに調整することは、 品種変えの際に時間と労力がかかり過ぎ、実用的でな

【0007】加えて、従来の装置において、落ち込み位 手方向にも幅方向にもそれぞれ R_1 、 R_2 の半径で曲げ 10 置(H2)から落ち込む前の位置(H1)までガラス板 を引き上げること自体が、実際には大きな技術的困難を 伴うものである。

【0008】すなわち、従来の単曲面のガラス板の曲げ 成形ラインは、できるかぎり設備スペースを小さくする ために、通常、成形炉12と後工程用コンベア20との 間(L)の距離を短く設定している(通常数m以下)。 従って、もし、既存の単曲面用ガラス板成形ラインの成 形炉を複曲面のガラス板の生産に適用しようとすると、 この短い距離(L)で、成形後のガラス板の落ち込み位 によってガラス板8を搬送方向軸に沿って半径R, で曲 20 置(H1)から落ち込み前の高さ(H2)までガラス板 を引き上げる必要がある。

> 【0009】このような場合、吹き口18の搬送面と引 き上げ装置の搬送面とでは、曲率や、傾きが大きく変化 するため、この境界でガラス板を安定に搬送することは 極めて難しい。もし、距離(L)を十数m以上に広くす ることができれば、この困難は緩和されるが、省スペー スの要請に合わなくなる上、既設の単曲面ガラス板の製 造ラインを複曲面成形用に転用することができなくな

【0010】本発明の目的はこのような事情に鑑みてな されたものであり、既存単曲面のガラス板の生産ライン の設備の大部分を利用し、簡単な設備の変更のみで行な うことのできる複曲面ガラス板の曲げ成形方法及びその 装置を提供することである。

【0011】本発明の他の目的は、できるかぎり占有ス ペースの小さい複曲面ガラス板の曲げ成形方法及びその 装置を提供することである。

【0012】また、本発明のもう1つの目的は、単曲面 ガラス板を成形する成形炉と、さまざまな仕様の複曲面 図4に示すようにガラス板が成形前の髙さ(H2)から 40 ガラス板を成形する成形炉とを共有し得る様にすること である。

> 【0013】更に、本発明のもう1つの目的は、複曲面 成形時の、ガラス板の落ち込み量を一定化することによ り、落ち込み位置(H2)から落ち込む前の位置(H 1)までガラス板を引き上げる手段をガラス板の複曲面 形状の仕様にかかわらず共通化し、ガラス板の仕様変更 時の設備調整の手間をできるかぎり少なくすることであ

> 【0014】また、上記の引き上げる距離を小さく抑え

的とするものである。

[0015]

【課題を解決するための手段】本願発明は前述の課題を 解決する為、ガラス板を、成形炉内の搬送面上を搬送し ながらガラス板をその軟化点温度付近にまで加熱するこ とにより搬送面に沿った形状にガラス板を自重で曲げ成 形するガラス板の曲げ成形方法であって、この方法は: ガラス板を成形炉内の搬送面上を搬送させる際、その少 なくとも成形炉の搬出口近傍において上がり勾配となっ ており、かつ搬送方向軸及び搬送方向と垂直な方向軸の 10 双方に沿って所定の曲率を持って上方に凸にされた複曲 面形状を有する複曲曲が搬送面の上を搬送させ、それに より複曲曲げ搬送面に略沿った形状にガラス板を曲げる 複曲曲げ工程と、成形炉の搬出口から搬出されたガラス 板を、複曲曲げ搬送面と略連続的に連なった複曲面形状 をなし、かつ少なくとも一部は下り勾配に配設された冷 却搬送面の上を搬送させつつ冷却強化する冷却強化工程 と、を含むことを特徴とするガラス板の曲げ成形方法を 提供する。

ラス板を後処理工程用搬送路の高さにまでガラス板を移 送する移送工程を有することを特徴とするガラス板の曲 げ成形方法を提供する。

【0017】また、更に、複曲曲げ工程の前に、成形炉 内において、搬送方向と垂直な方向軸に沿って所定の曲 率をもって上方に凸にされた単曲面形状を有する単曲曲 げ搬送面の上を略水平方向に搬送することにより、単曲 曲げ搬送面に略沿った形状に自重で曲げ成形する単曲曲 げ工程を有することを特徴とするガラス板の曲げ成形方 法を提供する。

【0018】また、更に、ハースベッドが複曲面曲げ成 形用搬送面をなし、ガラス板を複曲面曲げ成形用搬送面 上を搬送する際に、ガラス板は複曲面曲げ成形用搬送面 下面から吹き出されるガスからなるガス層を介して浮揚 支持されていることを特徴とするガラス板の曲げ成形方

【0019】また、ガラス板を軟化点温度付近にまで加 熱する成形炉と、成形炉内にあって、搬送方向軸及び搬 送方向と垂直な方向軸の双方に沿って上に凸の複曲面形 状をなし、成形炉の少なくとも搬出口近傍にその上がり 勾配部が配設された、複曲曲げ搬送面と、前記複曲曲げ 搬送面と略連続的に連なった複曲面形状をなし、少なく とも一部は下り勾配に配設された冷却用搬送面と、前記 冷却用搬送面の近傍に配設されたガラス板冷却強化手段 と、を有することを特徴とするガラス板を成形炉内の搬 送面上を搬送しながらガラス板をその軟化点温度付近に まで加熱することにより、搬送面に略沿った形状にガラ ス板を自重により曲げ成形するガラス板の曲げ成形装置 を提供するものである。

【0020】また、更に、強化用搬送面の搬送方向下流 50 ラス板搬送方向に駆動される駆動チェーン53が配置さ

側に設けられた前記ガラス板を後処理工程用搬送路の高 さにまでガラス板を移送する移送手段と、を有すること を特徴とするガラス板の曲げ成形装置を提供するもので ある。

【0021】また、更に、複曲曲げ搬送面の搬送方向上 流側に設けられた、搬送方向と垂直な方向軸に沿って上 に凸の単曲面形状をなす単曲曲げ搬送面を有することを 特徴とする、ガラス板の曲げ成形装置を提供するもので ある。

【0022】また、更に、ハースベッドが複曲面曲げ成 形用搬送面をなし、複曲面曲げ成形用搬送面には、該複 曲面曲げ成形用搬送面の下面からガスを吹き出し、該ガ スからなる層を介してガラス板を浮揚支持する支持手段 が設けられていることを特徴とするガラス板の曲げ成形 装置を提供するものである。

【0023】上述したような技術的手段によれば、成形 炉中に配設された搬送面上を搬送されるガラス板は、成 形炉内にてガラス軟化温度付近まで加熱されて自重によ り搬送面に略沿った複曲面形状に成形された後、冷却強 【0016】また、更に、冷却強化工程の後に、前記ガ 20 化手段により、冷却強化され、更に、洗浄等の後処理が 行なわれる場所にガラス板を搬送する後処理工程用搬送 路に導入される。

> 【0024】このような技術的手段において、ガラス板 を曲げ成形する際の成形炉については、少なくとも、成 形対象となるガラス板をその軟化温度まで加熱する手段 と、ガラス板をその上で搬送する搬送面とを包含したも のであれば適宜設計変更して差支えない。この場合にお いて、加熱手段としては、ヒーターによる輻射熱加熱に よるものがある。また、通常、耐火レンガにより形成さ 30 れるハースベッドの下部から、ハースベッドに設けられ た孔を通じて髙温のガスを噴出し、このガスによりガラ ス板の軟化温度付近にまで加熱するものであっても良 い。この場合、ガラス板は上記ガスからなる層を介して 浮揚、支持されることになる。従って、この場合、成形 炉のハースベッドが上記搬送面となることになる。ハー スベッド下部からのガスによる加熱を行なえば、搬送面 とガラス板が接触しないことになるので、ガラス板に搬 送時の傷が発生することを防ぐ観点からすれば望まし

【0025】また、上記搬送手段としては、ガラス板を 成形炉内で搬送し得るものであればよく、種々の構造が 採用できる。特に上述の、ハースベッド下部からのガス によってガラス板の加熱を行なう場合について適した搬 送手段の1例を図5に示した。ガラス板51は、ハース ベッド50に設けられた孔55を通して吹き上げられた ガスからなるガス層を介して浮揚支持されて、矢印の方 向に搬送される。ハースベッド50は水平方向から搬送 方向の周りに1~5度、好ましくは2~4度傾いてお り、ハースベッド50の前記傾きの下方側面近傍に、ガ

れている。また、駆動チェーン53にはガラス板の支持 金具であるホルダー52、52及びプッシャー54が取 り付けられている。そして、駆動チェーン53を矢印方 向に駆動すると、それに伴って、ホルダー52、52お よびプッシャー53が、ガラス板51を接触保持しなが ら移動し、ガラス板が搬送される。上記の構造は1つの 例であり、本発明の搬送手段はこれに限られるわけでは ない。

【0026】更にまた、上記ガラス板冷却強化手段につ いては、ガラス板が成形炉内で成形された形状を保持し 10 ながら適当な強化が施されるものであれば、適宜設計変 更して差支えない。特に、ガラス板が搬送される搬送路 の上下に、適当な間隔でノズル状の吹き口が多数配置さ れた冷却用吹き口モジュール群を設け、この吹き口から 噴出される空気によりガラス板をその両面から冷却強化 するものが、ガラス板に均一な強化を施す観点から言え ば、好ましい。更に、冷却を二段階に分けることもでき る。すなわち、まず、均一な強化を施しながら歪み点以 下の温度にまで冷却し(1次冷却)、ついで、ほぼ常温 に成るまで冷却する(2次冷却)。1次冷却時のみに上 20 記の冷却用吹き口モジュール群は強化が施される1次冷 却時のみの用いる様にすれば、冷却用吹き口モジュール 群に対する設備投資が節約できる。

【0027】本願発明におけるガラス板の搬送面として は、成形炉内にあって、搬送方向軸及び搬送方向と垂直 な方向軸の双方に沿って上に凸の複曲面形状をなし、成 形炉の少なくとも搬出口近傍にその上がり勾配部が配設 された複曲曲げ成形用搬送面と、前記複曲曲げ搬送面と 略連続的に連なった複曲面形状をなし、少なくとも一部 は下り勾配に配設された冷却用搬送面とを包含するもの 30 がある。また、成形炉内にあって、搬送方向軸及び搬送 方向と垂直な方向軸の双方に沿って下に凸の複曲面形状 をなし、成形炉の少なくとも搬出口近傍にその下り勾配 部が配設された、複曲曲げ搬送面と、前記複曲曲げ搬送 面と略連続的に連なった複曲面形状をなし、少なくとも 一部は上がり勾配に配設された冷却用搬送面とを包含す るものであっても良い。両者はほぼ湾曲の上下を反対に するだけであり、ほぼ同様に考えられるので、以下は、 前者、すなわち、上に凸の複曲面形状にガラス板を成形 する場合について説明する。

【0028】前記上がり勾配の角度は、所定のガラス板 の曲げ成形形状に応じて適宜決定することができる。ま た、搬送面の曲率は、やはり、ガラス板の成形されるべ き形状に対応したものとして決定されるが、搬送を安定 に行なうために、搬送方向と垂直な方向軸に沿っては、 曲率半径500mm、好ましくは1000mm以上、搬 送方向軸に沿っては、曲率半径10000mm以上、好 ましくは2000mm以上となる成形に本発明を適用 するのが良い。

より適宜変化するものであっても良い。例えば搬送初期 には曲率を小さくし、搬送路の下流に行くに従い次第に 曲率を大きくして、成形炉の搬出口付近でガラス板の所 望の曲げ形状にほぼ一致した曲率を有する様な搬送面と しても良い。

【0030】また、本発明において、ガラス板の複曲面 形状が品種により様々に変化する場合においても、既存 の単曲面曲げガラス板の生産ラインの設備をより簡単に 適用して成形し得る様にする観点からは、冷却用搬送面 の搬送方向下流側に、前記ガラス板を後処理工程用搬送 路の高さにまでガラス板を移送する移送手段を併設する ことが好ましい。これにより、後処理工程を固定したま ま、上記移送手段の傾きを調節するだけで、後処理工程 用搬送路にガラス板を導くことが可能になるので、曲率 の異なる多数種類のガラス板の生産に容易に対応すると とが出来る。上記移送手段としては、ディスクコンベ ア、ベルトコンベア等ガラス板を移送可能な手段であれ ば広く利用できる。

【0031】また、通常の自動車ガラス板の様に、一方 向(車に取り付けた際の水平方向など)に沿ってのみ比 較的深い曲げ成形が必要な用途においては、上記の複曲 曲げ搬送面の上流側に、搬送方向と直交する方向軸に沿 ってのみ所定の曲率で湾曲している単曲曲げ搬送面を設 けることが好ましい。この場合は、大きい曲率で曲げ成 形する必要のある方向が搬送方向と垂直な方向となるよ うに上記単曲曲げ搬送面上にガラス板を載置してガラス 板を成形炉中で搬送することにより、複曲面成形の前 に、予め搬送方向と垂直な方向軸に沿って曲げ加工を施 しておくことができる。

【0032】更に、このような場合、複曲曲げ搬送面と 単曲曲げ搬送面とが両者の境界付近で傾きに差がある と、ガラス板がこの境界を通過する際、複曲曲げ搬送面 に接触し、ガラス板にひずみ等を発生する場合がある。 このような事態を防止するため、単曲曲げ搬送面も搬送 方向に若干上がり勾配になるように傾けておくことが有 効である。なお、単曲曲げ搬送面と複曲曲げ搬送面とに 傾きの差があると、その境界付近でガラス板に逆ぞりが 生じることがあるが、ガラス板はこの境界付近を通過し た後、複曲搬送面上で最終形状に成形されることになる 40 ので、問題ない。

[0033]

【実施例】以下添付図面に従って本発明に係るガラス板 の曲げ成形方法及びその装置について詳説する。

【0034】図1は本発明に係るガラス板の曲げ成形装 置の側面図、図2はその要部拡大図である。成形炉たる ガス炉30内にはガラス板32の搬送面を形成する単曲 曲げ搬送面たるハースベッド34、34・・・及びハー スペッド35が、設けられている。ハースペッド34、 34・・・表面及びハースベッド35表面は、ガラス板 【0029】更に、搬送面の曲率は、搬送面上の位置に 50 32の進行方向に対して直交する方向軸に沿って曲率半

径R、の上に凸状の湾曲面となっている。また、ハース ベッド34は搬送方向ほぼ水平に、ハースベッド35は 搬送方向若干上り勾配に設けられている。また、これら ハースベッド34、34・・・及びハースベド35の表 面は搬送方向軸回りに3度ないし4度傾斜している。

【0035】ガラス板32はハースベッド34、34・ ・・面及びハースベッド35面上にハースベッド下面か ら吹き出されるガス層を介して浮揚支持されている。図 で、34A、34A・・・、35Aはハースベッド下部 き上げるためのガスチャンバー部を示している。そし て、ガラス板32がハースベッド34、35上で浮揚さ れた状態で、図5に示したようにガス炉30のハースベ ッド進行方向の側面に沿って設置された駆動チェーン5 3にガラス板を、支持金具を介して、或はドライブディ スクを介して駆動的に接触係合せしめる。ガラス板32 は支持金具の移動にともない、前記ハースベッド34、 34・・・上及びハースベッド35上を連続して搬送さ れる。との搬送の間にガラス板32は軟化点付近の所定 の温度まで加熱され、自重で、ハースベッド34、35 20 る。 の表面湾曲形状に略沿った形状に曲げ成形される。

【0036】また、ハースベッド35と搬出口30Aと の間には、進行方向と垂直な方向軸に沿っては曲率半径 R、、進行方向軸に沿っては曲率半径R、の湾曲状であ り、かつ上り勾配のハースベッド36が配設されてい る。そして、ガス炉30の外側にはハースベッド36と 略連続的に連なってほぼ同一湾曲形状の(即ち曲率半径 R, 、R, を持つ)冷却用搬送面、及びガラス板に冷却 空気を吹き付ける風冷面となる冷却用吹き口モジュール 群38Aが下り勾配面を形成するように配設されてい る。この冷却用吹き口モジュール群38Aの上方には同 様な曲率を持つ冷却用吹き口モジュール群38Bが上記 冷却用吹き口モジュール群38Aに対向して設けられて おり、ガラス板32はこの冷却用吹き口モジュール群3 8A、38Bにより急冷強化されるようになっている。 風冷用吹き口箱40、42は冷却用吹き口モジュール群 38A、38Bに接続されて設けられたエアーチャンバ 一である。

【0037】更に冷却用吹き口モジュール群38Aの下 流端部にはディスクコンベア44が設けられている。デ 40 れている。このベルトコンベア46には耐熱用のVベル ィスクコンベア44は第1図上で冷却用吹き口モジュー ル群38Aの右端部から45まで下がり勾配状に形成さ れている。このディスクコンベア44には、既存のディ スクローラ44Aの周面に耐熱性ゴムを張り、さらに周 囲に、ベークライト等の耐熱性樹脂リングを装着したも のを使用している。

【0038】本実施例において、冷却工程は二段階から なる。その様子を示した斜視図が図6である。第一段階 では、ガラス板32は冷却用吹き口モジュール群38A れる(1次冷却)。図6においては、上側の冷却用吹き 口モジュール群38Bは省略して描いている。第二段階 では、ディスクコンベア44上を搬送されるとともに、 ディスクコンベア44の下部に設けられた吹き口43か らのエアーにより、さらに冷却され、冷却されたガラス 板32は支持金具(図5参照)からひき離され、次工程 へ運ばれる(2次冷却)。

10

【0039】支持金具からガラス板を引き離す方法につ いては、特に限定されるものではないが、好ましい方法 から表面上部にガラス板を浮揚支持するためのガスを吹 10 として以下の二つが例示される。第1の方法は、ガラス 板32がほぼ常温にまで冷却される位置近傍で、駆動チ ェーン53及びそれに取り付けられた支持金具を搬送面 の高さから上昇させるとともに、ディスクローラ44A の回転速度を1~5%程度速めるものである。第2の方 法は、搬送面の搬送方向の回りの傾斜を搬送方向に次第 に変化させるものである。つまり、駆動チェーン53方 向に傾斜した搬送面を搬送方向に進むにしたがい駆動チ ェーン53と反対方向に傾斜するように変化させ、ガラ ス板32が搬送面上で自重によりガラスずれるようにす

> 【0040】本実施例の場合、搬送面形状はディスクロ ーラ44Aの表面のつくる形状により決定されるので第 2の方法でガラス板32を搬送面上でずらすためには、 ディスクローラ44Aの表面形状を搬送方向下流に向か って徐々に変化させていく必要がある。このように、徐 々にディスクローラ44Aの傾きを変化させるために は、ディスクローラとして、エクスパンドローラを用い ることが好ましい。エクスパンドローラは、好ましく は、耐熱ゴムからなる表面の内部に、ステンレス等の耐 熱金属のスプリングを有している。従って、ローラの両 端の位置を決めることにより、自在に表面の曲率とその 傾きを決めることができる。図6は、このエクスパンド ローラを用いた場合についての冷却工程に係る装置を示 している。

> 【0041】ディスクコンベア44の搬送方向下流端に は、後処理工程の工程用のベルトコンベア48にまでガ ラス板32を移送する上がり勾配状のベルトコンベア4 6が連続して設けられ、ベルトコンベア46の上端部は 後工程用のベルトコンベア48と略同一の髙さに設定さ ト46Aが使用されている。

> 【0042】ディスクコンベア44の下流端と、後工程 用のベルトコンベア48の高さがほぼ同一であれば、デ ィスクコンベア44から後工程用ベルトコンベアに直接 ガラス板32を搬送できることがある。このような場合 は、ベルトコンベア46を設ける必要がないため、設備 の簡易性の観点から極めて好ましいものである。

【0043】しかし、通常は、曲げ成形に要する搬送距 離と、冷却強化に要する搬送距離とは常に一致するわけ 上を搬送され、急冷されるとともにに均一な強化が施さ 50 ではない。これらは、求められるガラス板の複曲面形状

によって変化する。そこで、上記のベルトコンベア46 を設けて、ベルトコンベア46の搬送の勾配をわずかに 調整することによりガラス板形状の仕様変更に対応し得 るようにすることは、実用上好ましい。

【0044】すなわち、本発明によれば、ハースベッド 34、35、36の勾配、冷却用吹き口モジュール群3 8 Aの勾配を調整することにより、ディスクコンベア4 4の搬送方向下流端の髙さをガラス板の仕様にかかわら ず、かなりの程度そろえることができる。従って、ベル 様変更に対応可能になる。また、上記のハースベッド等 の勾配を調整することにより、ディスクコンベア44の 搬送方向下流端の高さと後工程用コンベア48の高さと が余り変わらないように設定できる。従って、設けるべ ルトコンベア46の勾配は余り急なものである必要はな く、搬送を極めて安定に行うことができる。

【0045】以下、本実施例にかかる装置の作用につい て説明する。

【0046】ガラス板32はガス炉30内のハースベッ ド34、34・・・ハースベッド35上で搬送されて、 搬送方向と垂直な方向軸に沿って所望の曲率半径R。で 曲げ成形されるとともに風冷強化のために必要な髙温ま で加熱される。このガラス板32が、ハースベッド35 を経て、ガス炉30の搬出口30A近傍のに設けられ た、所望の曲率半径R、を搬送方向軸に沿って有するハ ースベッド36の上に到達すると、ハースベッド36の 湾曲に沿って長手方向に曲率半径R」に曲げ成形され る。これによりガラス板32は幅方向には曲率半径R, で、長手方向には曲率半径R、で曲げ成形されて複曲面

【0047】このように成形されたガラス板32はガス 炉30の搬出口30Aから搬出され冷却用吹き口モジュ ール群38A上に搬送されるとともに吹き□40及び4 2から冷却吹き□モジュール群38A、38Bを通じて の風冷により約400度迄冷却、強化される。冷却され たガラス板32はディスクコンベア44上を下降すると ともに更に冷却用吹き口モジュール群を用いずに吹き口 43により風冷される。そしてガラス板32が所定の形 状と強度を得た後、駆動チェーン53に取りつけられた 支持金具から引き離され、さらに、ベルトコンベア46 40 される。 の上がり勾配面を介して後工程用のベルトコンベア48 に搬送される。

【0048】従来の曲げガラス板の仕様に多かったよう にガラス板32を幅方向に沿ってのみに湾曲した単曲面 で曲げ成形する場合には、ガス炉30の搬出口30A近 傍の上がり勾配状のハースベッド35、湾曲状のハース ベッド36及びガス炉30外の冷却用吹き口モジュール 群38A、ディスクローラ44、ベルトコンベア46を 取り除き、その後に単曲曲げ用ハースベッドやディスク ローラを設け、ハースベッド34、34・・・と後工程 50

用コンベア48とを連続させることによりほぼ同じ設備 により対応できる。その後、前述したと同様にガラス板 32を搬送すると、ハースベッド34、34・・・の表 面形状に沿う様に、ガラス板32の幅方向に沿って曲げ

12

【0049】このように、本願発明によればガラス板3 2を一旦上昇させながら長手方向の曲げ成形を行なうの で、ガラス板32の落ち込み量(H)を小さくすること ができる。従って、ガラス板32の幅方向のみを曲げ成 トコンベア46の搬送勾配のわずかな調整でこれらの仕 10 形する既存の生産ラインにおいて、ガス炉30と後工程 用コンベア48との間の距離(L)が短くても、落ち込 んだ位置の高さ(H2)から後工程用コンベア48の髙 さ(H1)まで引き上げることができる。これにより既 存のガラス曲げ生産ラインと成形炉その他の大部分の設 備を共通して用い、その一部を交換するだけでガラス板 を複曲面状に成形することのできるガラス板曲げ生産ラ インが得られる。

[0050]

【発明の効果】本願発明のガラス板の曲げ方法及びその 装置によれば、ガス炉内で搬送する方向と直交する方向 に沿って曲げ成形されたガラス板をガス炉内で一旦引き 上げてからガラス板を搬送方向に沿って曲げ成形し、ガ ス炉から搬出するとともに下降させながら冷却強化行な う。これにより、冷却強化されたガラス板が落ち込んだ 位置から後工程のベルトコンベアまでの高さの差を小さ く押えることができ、従って、曲げ成形されたガラス板 のハンドリングが容易となる。

【0051】従って、既存の設備のガス炉から後工程用 コンベアまでの距離が短い場合でも、成形炉等の既存の 30 生産設備を利用してガラス板を搬送方向と直交する方向 及び搬送方向に曲げ成形し、ガラス板を複曲面に曲げ成 形することができる。

【0052】請求項3及び請求項8に係る発明によれ ば、既存のガラス板の生産ラインの設備をより柔軟に複 曲面曲げ成形用のラインに適用し得る様になる。

【0053】請求項4及び請求項9に係る発明によれ ば、通常の自動車用ガラス板の様に、ガラス板の一方向 のみ比較的深い曲げ成形が必要な用途において、コンパ クトでスペースをとらない曲げ成形方法及び設備が提供

【0054】請求項5及び請求項10に係る発明によれ ば、ガラス板と搬送面とが接触しないのでガラス板に搬 送中の歪みが生じにくく、より高品質な、曲げガラス板 を得る方法及び設備が提供される。

【図面の簡単な説明】

- 【図1】本発明に係るガラス板の曲げ装置の概略全体図
- 【図2】本発明に係るガラス板の曲げ装置の要部拡大図
- 【図3】複曲面状に曲げ成形されたガラス板の斜視図
- 【図4】従来のガラス板の曲げ成形装置の概略全体図
- 【図5】ガラス板の搬送手段の1例を示す概略斜視図

(8)

特開平5-9037

13

*38 冷却用吹き口モジュール群

【図6】実施例における冷却工程に係る装置を示す要部

斜視図

【符号の説明】

30 ガス炉

32 ガラス板

34、35、36 ハースベッド

のの「神経が神気を出てアニッ

40、42 吹き口

44 ディスクコンベア

46 ベルトコンベア48 後工程用コンベア

【図1】

【図3】

【図2】

【図6】

【手続補正書】

【提出日】平成3年9月21日

【手続補正1】

【補正対象書類名】図面

【補正対象項目名】図1

【補正方法】変更

【補正内容】

【図1】

特開平5-9037

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第1区分 【発行日】平成11年(1999)8月24日

【公開番号】特開平5-9037

【公開日】平成5年(1993)1月19日

【年通号数】公開特許公報5-91

【出願番号】特願平3-241494

【国際特許分類第6版】

CO3B 23/025

35/24

[FI]

CO3B 23/025

35/24

【手続補正書】

【提出日】平成3年9月21日

【手続補正1】

【補正対象書類名】図面

【補正対象項目名】図1

*【補正方法】変更 【補正内容】 【図1】

【手続補正書】

【提出日】平成10年9月17日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】明細書

【発明の名称】ガラス板の曲げ成形方法およびその装置 【特許請求の範囲】

【請求項1】<u>成</u>形炉内の搬送面上を搬送しながらガラス板をその軟化点温度付近にまで加熱することにより搬送面に沿った形状にガラス板を自重で曲げ成形するガラス板の曲げ成形方法であって<u>、</u>

ガラス板を成形炉内の搬送面上を搬送させる際<u>少</u>なく とも成形炉の搬出口近傍において上がり勾配となってお り、かつ搬送方向軸及び搬送方向と垂直な方向軸の双方 に沿って所定の曲率を持って上方に凸にされた複曲面形 状を有する複曲曲げ搬送面の上を搬送させ、それにより 複曲曲げ搬送面に略沿った形状にガラス板を曲げる複曲 曲げ工程と、

成形炉の搬出口から搬出されたガラス板を、複曲曲げ搬送面と略連続的に連なった複曲面形状をなし、かつ少なくとも一部は下り勾配に配設された冷却搬送面の上を搬送させつつ冷却強化する冷却強化工程と、

を含むことを特徴とするガラス板の曲げ成形方法。

【請求項2】<u>成</u>形炉内の搬送面上を搬送しながらガラス板をその軟化点温度付近にまで加熱することにより搬送面に沿った形状にガラス板を自重で曲げ成形するガラス板の曲げ成形方法であって、

ガラス板を成形炉内の搬送面上を搬送させる際、少なく

とも成形炉の搬出口近傍において下り勾配となっており、かつ搬送方向軸及び搬送方向と垂直な方向軸の双方に沿って所定の曲率を持って下方に凸にされた複曲面形状を有する複曲曲げ搬送面の上を搬送させ、それにより複曲曲げ搬送面に略沿った形状にガラス板を曲げる複曲曲げ工程と、

成形炉の搬出口から搬出されたガラス板を、複曲曲げ搬送面と略連続的に連なった複曲面形状をなし、かつ少なくとも一部は上がり勾配に配設された冷却搬送面の上を搬送させつつ冷却強化する冷却強化工程と、

を含むことを特徴とするガラス板の曲げ成形方法。

【請求項3】請求項1記載のガラス板の曲げ成形方法であって。

冷却強化工程の後に、後処理工程用搬送路の高さまで前 記ガラス板を移送する移送工程を有することを特徴とす るガラス板の曲げ成形方法。

【請求項4】請求項1記載のガラス板の曲げ成形方法であって。

複曲曲げ工程の前に、成形炉内において、搬送方向と垂直な方向軸に沿って所定の曲率をもって上方に凸にされた単曲面形状を有する単曲曲げ搬送面の上を略水平方向に搬送することにより、単曲曲げ搬送面に略沿った形状に自重で曲げ成形する単曲曲げ工程を有することを特徴とするガラス板の曲げ成形方法。

【請求項5】請求項1記載のガラス板の曲げ成形方法で あって

成形炉のハースベッドが複曲曲げ搬送面をなし、ガラス 板を複曲曲げ搬送面上を搬送する際に、ガラス板は複曲 曲げ搬送面下面から吹き出されるガスからなるガス層を 介して浮揚支持されていることを特徴とするガラス板の 曲げ成形方法。

【請求項6】ガラス板を軟化点温度付近にまで加熱する 成形炉と、

成形炉内にあって、搬送方向軸及び搬送方向と垂直な方向軸の双方に沿って上に凸の複曲面形状をなし、成形炉の少なくとも搬出口近傍にその上がり勾配部が配設された、複曲曲げ搬送面と、

前記複曲曲げ搬送面と略連続的に連なった複曲面形状をなし、少なくとも一部は下り勾配に配設された冷却用搬送面と、

前記冷却用搬送面の近傍に配設されたガラス板冷却強化 手段と、

を有することを特徴とするガラス板を成形炉内の搬送面上を搬送しながらガラス板をその軟化点温度付近にまで加熱することにより、搬送面に略沿った形状にガラス板を自重により曲げ成形するガラス板の曲げ成形装置。

【請求項7】ガラス板を軟化点温度付近にまで加熱する 成形炉と、

成形炉内にあって、撤送方向軸及び撤送方向と垂直な方 向軸の双方に沿って下に凸の複曲面形状をなし、成形炉 の少なくとも搬出口近傍にその下り勾配部が配設された、複曲曲げ搬送面と、

前記複曲曲げ搬送面と略連続的に連なった複曲面形状をなし、少なくとも一部は上がり勾配に配設された冷却用 搬送面と、

前記冷却用搬送面の近傍に配設されたガラス板冷却強化手段と、

を有することを特徴とするガラス板を成形炉内の搬送面 上を搬送しながらガラス板をその軟化点温度付近にまで 加熱することにより、搬送面に略沿った形状にガラス板 を自重により曲げ成形するガラス板の曲げ成形装置。

【請求項8】請求項6<u>記載</u>のガラス板の曲げ成形装置で あって

更に、冷却用搬送面の搬送方向下流側に設けられた前記 ガラス板を後処理工程用搬送路の高さにまでガラス板を 移送する移送手段と、を有することを特徴とするガラス 板の曲げ成形装置。

【請求項9】請求項6<u>記載</u>のガラス板の曲げ成形装置であって、

更に、複曲曲け搬送面の搬送方向上流側に設けられた、 搬送方向と垂直な方向軸に沿って上に凸の単曲面形状を なす単曲曲げ搬送面を有することを特徴とする、ガラス 板の曲げ成形装置。

【請求項10】請求項6<u>記載</u>のガラス板の曲げ成形装置であって、

成形炉のハースベッドが複曲曲げ搬送面をなし、複曲曲 げ搬送面には、該複曲曲げ搬送面の下面からガスを吹き 出し、該ガスからなる層を介してガラス板を浮揚支持す る支持手段が設けられていることを特徴とするガラス板 の曲げ成形装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ガラス板を複曲面に曲 げ成形する方法及びその装置に関する。

[0002]

【従来の技術】最近自動車産業において複曲面に成形されたガラス板、即ち、図3に示すようにガラス板8が長手方向にも幅方向にもそれぞれR1、R2の半径で曲げ成形された複曲面のガラス板8が必要とされるようになってきた。

【0003】図4に複曲面を成形する<u>ため</u>の装置として提案された曲げ成形装置の1例が示されている。(特公昭49-10331号公報)との曲げ成形装置10によれば、ガラス板8はハースベッド13、13・・・上を搬送されながら搬送方向に垂直な方向軸に沿って半径R,で曲げ成形が行なわれ、ついで、ガラス板8の搬送方向軸に沿って湾曲状に形成されたハースベッド14、16によってガラス板8を搬送方向軸に沿って半径R,で曲げ成形され、次に吹き口18で冷却強化される。これにより、図3に示す様なガラス板8の複曲面が成形され

る。

[0004]

【発明が解決しようとする課題】このようなガラス製造ラインにおいては、設備投資として、成形炉の占める割合が極めて大きい。したがって、複曲面ガラスの製造ラインと、従来の単曲面ガラスの製造ラインとでできるかぎり設備を共有すること、特に成形炉を共有することができると、有利である。しかし、炉などを共通して使用することには以下のようなさまざまな困難があった。

【0005】即ち、既存の単曲面のガラス製造ラインと 図4に示したような複曲面のガラス製造ラインとを共用 しようとすると、複曲面用のハースベッド14、16、 吹き口18と単曲面用のハースベッド等とを互いに交換 する必要がある。しかしながら、前述した従来の複曲面 用の曲げ成形装置では、ガラス板がスムーズに前進する 様に、ガラス板を長手方向に曲げ成形するハースベッド 14、16が連続的に下り勾配で設けられているので、 図4に示すようにガラス板が成形前の高さ(H2)から 成形後の髙さ(H1)まで大きく落ち込む(図で落ち込 み量を(H)とした)。したがって、もし、単曲面のガ ラス板の生産ラインと複曲面のガラス板の生産ラインの 成形炉とを共用すると、複曲面のガラス板の生産時に は、長手方向を曲げ成形し終えた落ち込み位置(H1) から落ち込む前の位置(H2)までガラス板を引き上げ る引き上げ手段を特別に設ける必要がある。

【0006】落ち込み位置(H1)は単曲面のガラス板と複曲面のガラス板とで異なるだけでなく、複曲面のガラス板の仕様によって変化する。したがって、このような引き上げ手段は、ガラス板の曲げ成形仕様によって専用のものを用いるか、汎用の引き上げ手段を仕様ごとに調整して用いるか、いずれかにせざるを得ない。引き上げ手段を専用化し、ガラス板の品種ごとに用意することは、設備投資上の大きな不利になり好ましくない。また、汎用の引き上げ手段を仕様ごとに調整することは、品種変えの際に時間と労力がかかり過ぎ、実用的でない。

【0007】加えて、従来の装置において、落ち込み位置(H2)から落ち込む前の位置(H1)までガラス板を引き上げること自体が、実際には大きな技術的困難を伴うものである。

【0008】すなわち、従来の単曲面のガラス板の曲げ成形ラインは、できるかぎり設備スペースを小さくするために、通常、成形炉12と後工程用コンベア20との間(L)の距離を短く設定している(通常数m以下)。従って、もし、既存の単曲面用ガラス板成形ラインの成形炉を複曲面のガラス板の生産に適用しようとすると、この短い距離(L)で、成形後のガラス板の落ち込み位置(H1)から落ち込み前の高さ(H2)までガラス板を引き上げる必要がある。

【0009】とのような場合、吹き口18の搬送面と引

き上げ装置の搬送面とでは、曲率や、傾きが大きく変化するため、この境界でガラス板を安定に搬送することは極めて難しい。もし、距離(L)を十数m以上に広くすることができれば、この困難は緩和されるが、省スペースの要請に合わなくなる上、既設の単曲面ガラス板の製造ラインを複曲面成形用に転用することができなくなス

【0010】本発明の目的は、このような事情に鑑み、既存単曲面のガラス板の生産ラインの設備の大部分を利用し、簡単な設備の変更のみで行なうことのできる複曲面ガラス板の曲げ成形方法及びその装置を提供することである。

【0011】本発明の他の目的は、できるかぎり占有スペースの小さい複曲面ガラス板の曲げ成形方法及びその装置を提供することである。

【0012】また、本発明のもう1つの目的は、単曲面ガラス板を成形する成形炉と、さまざまな仕様の複曲面ガラス板を成形する成形炉とを共有し得る様にすることである。

【0013】更に、本発明のもう1つの目的は、複曲面成形時の、ガラス板の落ち込み量を一定化することにより、落ち込み位置(H2)から落ち込む前の位置(H1)までガラス板を引き上げる手段をガラス板の複曲面形状の仕様にかかわらず共通化し、ガラス板の仕様変更時の設備調整の手間をできるかぎり少なくすることであ

【0014】また、上記の引き上げる距離を小さく抑えることにより、引き上げの安定性を向上させることを目的とするものである。

[0015]

【課題を解決するための手段】本発明は前述の課題を解 決するため、成形炉内の搬送面上を搬送しながらガラス 板をその軟化点温度付近にまで加熱することにより搬送 面に沿った形状にガラス板を自重で曲げ成形するガラス 板の曲げ成形方法であって、ガラス板を成形炉内の搬送 面上を搬送させる際、少なくとも成形炉の搬出口近傍に おいて上がり勾配となっており、かつ搬送方向軸及び搬 送方向と垂直な方向軸の双方に沿って所定の曲率を持っ て上方に凸にされた複曲面形状を有する複曲曲げ搬送面 の上を搬送させ、それにより複曲曲げ搬送面に略沿った 形状にガラス板を曲げる複曲曲げ工程と、成形炉の搬出 口から搬出されたガラス板を、複曲曲げ搬送面と略連続 的に連なった複曲面形状をなし、かつ少なくとも一部は 下り勾配に配設された冷却搬送面の上を搬送させつつ冷 却強化する冷却強化工程と、を含むことを特徴とするガ ラス板の曲げ成形方法を提供する。

【0016】また、更に、冷却強化工程の後に、前記ガラス板を後処理工程用搬送路の高さにまでガラス板を移送する移送工程を有することを特徴とするガラス板の曲げ成形方法を提供する。

【0017】また、更に、複曲曲げ工程の前に、成形炉内において、搬送方向と垂直な方向軸に沿って所定の曲率をもって上方に凸にされた単曲面形状を有する単曲曲げ搬送面の上を略水平方向に搬送することにより、単曲曲げ搬送面に略沿った形状に自重で曲げ成形する単曲曲げ工程を有することを特徴とするガラス板の曲げ成形方法を提供する。

【0018】また、更に、ハースベッドが複曲面曲げ成形用搬送面をなし、ガラス板を複曲面曲け成形用搬送面上を搬送する際に、ガラス板は複曲面曲げ成形用搬送面下面から吹き出されるガスからなるガス層を介して浮揚支持されていることを特徴とするガラス板の曲げ成形方法を提供する。

【0019】また、ガラス板を軟化点温度付近にまで加熱する成形炉と、成形炉内にあって、搬送方向軸及び搬送方向と垂直な方向軸の双方に沿って上に凸の複曲面形状をなし、成形炉の少なくとも搬出口近傍にその上がり勾配部が配設された、複曲曲げ搬送面と、前記複曲曲げ搬送面と略連続的に連なった複曲面形状をなし、少ならとも一部は下り勾配に配設された冷却用搬送面と、前記冷却用搬送面の近傍に配設されたガラス板冷却強化手段と、を有することを特徴とするガラス板を成形炉内の搬送面上を搬送しながらガラス板をその軟化点温度付近にまで加熱することにより、搬送面に略沿った形状にガラス板を自重により曲げ成形するガラス板の曲げ成形装置を提供するものである。

【0020】また、更に、強化用搬送面の搬送方向下流側に設けられた前記ガラス板を後処理工程用搬送路の高さにまでガラス板を移送する移送手段と、を有することを特徴とするガラス板の曲げ成形装置を提供するものである

【0021】また、更に、複曲曲げ搬送面の搬送方向上流側に設けられた、搬送方向と垂直な方向軸に沿って上に凸の単曲面形状をなす単曲曲げ搬送面を有することを特徴とする、ガラス板の曲げ成形装置を提供するものである。

【0022】また、更に、ハースベッドが複曲面曲げ成形用搬送面をなし、複曲面曲げ成形用搬送面には、該複曲面曲げ成形用搬送面の下面からガスを吹き出し、該ガスからなる層を介してガラス板を浮揚支持する支持手段が設けられていることを特徴とするガラス板の曲げ成形装置を提供するものである。

【0023】上述したような技術的手段によれば、成形炉中に配設された搬送面上を搬送されるガラス板は、成形炉内にてガラス軟化温度付近まで加熱されて自重により搬送面に略沿った複曲面形状に成形された後、冷却強化手段により、冷却強化され、更に、洗浄等の後処理が行なわれる場所にガラス板を搬送する後処理工程用搬送路に導入される。

【0024】このような技術的手段において、ガラス板

を曲げ成形する際の成形炉については、少なくとも、成形対象となるガラス板をその軟化温度まで加熱する手段と、ガラス板をその上で搬送する搬送面とを包含したものであれば適宜設計変更して差支えない。この場合において、加熱手段としては、ヒーターによる輻射熱加熱によるものがある。また、通常、耐火レンガにより形成されるハースベッドの下部から、ハースベッドに設けがあれた孔を通じて高温のガスを噴出し、このガスによりガラス板の軟化温度付近にまで加熱するものであっても良い。この場合、ガラス板は上記ガスからなる層を介して浮揚、支持されることになる。従って、この場合、ハースベッド下部からのガスによる加熱を行なえば、搬送師ののハースベッド下部からのガスによる加熱を行なえば、搬送時の傷が発生することを防ぐ観点からすれば望ました。

【0025】また、上記搬送手段としては、ガラス板を 成形炉内で搬送し得るものであればよく、種々の構造が 採用できる。特に上述の、ハースベッド下部からのガス によってガラス板の加熱を行なう場合について適した搬 送手段の1例を図5に示した。ガラス板51は、ハース ベッド50に設けられた孔55を通して吹き上げられた ガスからなるガス層を介して浮揚支持されて、矢印の方 向に搬送される。ハースベッド50は水平方向から搬送 方向の周りに1~5度、好ましくは2~4度傾いてお り、ハースベッド50の前記傾きの下方側面近傍に、ガ ラス板搬送方向に駆動される駆動チェーン53が配置さ れている。また、駆動チェーン53にはガラス板の支持 金具であるホルダー52、52及びプッシャー54が取 り付けられている。そして、駆動チェーン53を矢印方 向に駆動すると、それに伴って、ホルダー52、52お よびプッシャー54が、ガラス板51を接触保持しなが ら移動し、ガラス板が搬送される。上記の構造は1つの 例であり、本発明の搬送手段はこれに限られるわけでは ない。

【0026】更にまた、上記ガラス板冷却強化手段については、ガラス板が成形炉内で成形された形状を保持しながら適当な強化が施されるものであれば、適宜設計変更して差支えない。特に、ガラス板が搬送される搬送路の上下に、適当な間隔でノズル状の吹き口が多数配置された冷却用吹き口モジュール群を設け、この吹き口から噴出される空気によりガラス板をその両面から冷却強化するものが、ガラス板に均一な強化を施す観点から言えば、好ましい。更に、冷却を二段階に分けることもでは、好ましい。更に、冷却を二段階に分けることもできる。すなわち、まず、均一な強化を施しながら歪み点以下の温度にまで冷却し(1次冷却)、ついで、ほぼ常温に成るまで冷却する(2次冷却)。1次冷却時のみに別にでいる様にすれば、冷却用吹き口モジュール群に対する設備投資が節約できる。

【0027】本発明におけるガラス板の搬送面として は、成形炉内にあって、搬送方向軸及び搬送方向と垂直 な方向軸の双方に沿って上に凸の複曲面形状をなし、成 形炉の少なくとも搬出口近傍にその上がり勾配部が配設 された複曲曲げ成形用搬送面と、前記複曲曲げ搬送面と 略連続的に連なった複曲面形状をなし、少なくとも一部 は下り勾配に配設された冷却用搬送面とを包含するもの がある。また、成形炉内にあって、搬送方向軸及び搬送 方向と垂直な方向軸の双方に沿って下に凸の複曲面形状 をなし、成形炉の少なくとも搬出口近傍にその下り勾配 部が配設された、複曲曲げ搬送面と、前記複曲曲げ搬送 面と略連続的に連なった複曲面形状をなし、少なくとも 一部は上がり勾配に配設された冷却用搬送面とを包含す るものであっても良い。両者はほぼ湾曲の上下を反対に するだけであり、ほぼ同様に考えられるので、以下は、 前者、すなわち、上に凸の複曲面形状にガラス板を成形 する場合について説明する。

【0028】前記上がり勾配の角度は、所定のガラス板の曲げ成形形状に応じて適宜決定することができる。また、搬送面の曲率は、やはり、ガラス板の成形されるべき形状に対応したものとして決定されるが、搬送を安定に行なうために、搬送方向と垂直な方向軸に沿っては、曲率半径500mm、好ましくは1000mm以上、搬送方向軸に沿っては、曲率半径10000mm以上、好ましくは20000mm以上となる成形に本発明を適用するのが良い。

【0029】更に、搬送面の曲率は、搬送面上の位置により適宜変化するものであっても良い。例えば搬送初期には曲率を小さくし、搬送路の下流に行くに従い次第に曲率を大きくして、成形炉の搬出口付近でガラス板の所望の曲げ形状にほぼ一致した曲率を有する様な搬送面としても良い。

【0030】また、本発明において、ガラス板の複曲面形状が品種により様々に変化する場合においても、既存の単曲面曲げガラス板の生産ラインの設備をより簡単に適用して成形し得る様にする観点からは、冷却用搬送面の搬送方向下流側に、前記ガラス板を後処理工程用搬送路の高さにまでガラス板を移送する移送手段を併設することが好ましい。これにより、後処理工程を固定したまま、上記移送手段の傾きを調節するだけで、後処理工程用搬送路にガラス板を導くことが可能になるので、曲率の異なる多数種類のガラス板の生産に容易に対応することができる。上記移送手段としては、ディスクコンベア、ベルトコンベア等ガラス板を移送可能な手段であれば広く利用できる。

【0031】また、通常の自動車ガラス板の様に、一方向(車に取り付けた際の水平方向など)に沿ってのみ比較的深い曲げ成形が必要な用途においては、上記の複曲曲げ搬送面の上流側に、搬送方向と直交する方向軸に沿ってのみ所定の曲率で湾曲している単曲曲げ搬送面を設

けることが好ましい。この場合は、大きい曲率で曲げ成形する必要のある方向が搬送方向と垂直な方向となるように上記単曲曲げ搬送面上にガラス板を載置してガラス板を成形炉中で搬送することにより、複曲面成形の前に、予め搬送方向と垂直な方向軸に沿って曲げ加工を施しておくことができる。

【0032】更に、このような場合、複曲曲げ搬送面と単曲曲げ搬送面とが両者の境界付近で傾きに差があると、ガラス板がこの境界を通過する際、複曲曲げ搬送面に接触し、ガラス板にひずみ等を発生する場合がある。このような事態を防止するため、単曲曲げ搬送面も搬送方向に若干上がり勾配になるように傾けておくことが有効である。なお、単曲曲げ搬送面と複曲曲げ搬送面とに傾きの差があると、その境界付近でガラス板に逆ぞりが生じることがあるが、ガラス板はこの境界付近を通過した後、複曲搬送面上で最終形状に成形されることになるので、問題ない。

[0033]

【実施例】以下添付図面に従って本発明に係るガラス板 の曲げ成形方法及びその装置について詳説する。

【0034】図1は本発明に係るガラス板の曲げ成形装置の側面図、図2はその要部拡大図である。成形炉たるガス炉30内にはガラス板32の搬送面を形成する単曲曲げ搬送面たるハースベッド34、34・・・及びハースベッド35が、設けられている。ハースベッド34、34・・・表面及びハースベッド35表面は、ガラス板32の進行方向に対して直交する方向軸に沿って曲率半径R、の、上に凸状の湾曲面となっている。また、ハースベッド34は搬送方向ほぼ水平に、ハースベッド35は搬送方向若干上り勾配に設けられている。また、これらハースベッド34、34・・・及びハースベッド35の表面は搬送方向軸回りに3度ないし4度傾斜している。

【0035】ガラス板32はハースベッド34、34・ ・・面及びハースベッド35面上にハースベッド下面か ら吹き出されるガス層を介して浮揚支持されている。図 で、34A、34A・・・、35Aはハースベッド下部 から表面上部にガラス板を浮揚支持するためのガスを吹 き上げるためのガスチャンバー部を示している。そし て、ガラス板32がハースベッド34、35上で浮揚さ れた状態で、図5に示したようにガス炉30のハースベ ッド進行方向の側面に沿って設置された駆動チェーン5 3にガラス板を、支持金具を介して、或はドライブディ スクを介して駆動的に接触係合せしめる。ガラス板32 は支持金具の移動にともない、前記ハースベッド34、 34・・・上及びハースベッド35上を連続して搬送さ れる。この搬送の間にガラス板32は軟化点付近の所定 の温度まで加熱され、自重で、ハースベッド34、35 の表面湾曲形状に略沿った形状に曲げ成形される。

【0036】また、ハースベッド35と搬出口30Aと

の間には、進行方向と垂直な方向軸に沿っては曲率半径 R、、進行方向軸に沿っては曲率半径R、の湾曲状であ り、かつ上り勾配のハースベッド36が配設されてい る。そして、ガス炉30の外側にはハースベッド36と 略連続的に連なってほぼ同一湾曲形状の(即ち曲率半径 R, R, を持つ)冷却用搬送面、及びガラス板に冷却 空気を吹き付ける風冷面となる冷却用吹き口モジュール 群38Aが下り勾配面を形成するように配設されてい る。この冷却用吹き口モジュール群38Aの上方には同 様な曲率を持つ冷却用吹き口モジュール群38Bが上記 冷却用吹き□モジュール群38Aに対向して設けられて おり、ガラス板32はこの冷却用吹き口モジュール群3 8A、38Bにより急冷強化されるようになっている。 風冷用吹き□箱40、42は冷却用吹き□モジュール群 38A、38Bに接続されて設けられたエアーチャンバ ーである。

【0037】更に冷却用吹き口モジュール群38Aの下流端部にはディスクコンベア44が設けられている。ディスクコンベア44は第1図上で冷却用吹き口モジュール群38Aの右端部から45まで下がり勾配状に形成されている。このディスクコンベア44には、既存のディスクローラ44Aの周面に耐熱性ゴムを張り、さらに周囲に、ベークライト等の耐熱性樹脂リングを装着したものを使用している。

【0038】本実施例において、冷却工程は二段階からなる。その様子を示した斜視図が図6である。第一段階では、ガラス板32は冷却用吹き口モジュール群38A上を搬送され、急冷されるとともにに均一な強化が施される(1次冷却)。図6においては、上側の冷却用吹き口モジュール群38Bは省略して描いている。第二段階では、ディスクコンベア44上を搬送されるとともに、ディスクコンベア44の下部に設けられた吹き口43からのエアーにより、さらに冷却され、冷却されたガラス板32は支持金具(図5参照)からひき離され、次工程へ運ばれる(2次冷却)。

【0039】支持金具からガラス板を引き離す方法については、特に限定されるものではないが、好ましい方法として以下の二つが例示される。第1の方法は、ガラス板32がほぼ常温にまで冷却される位置近傍で、駆動チェーン53及びそれに取り付けられた支持金具を搬送面の高さから上昇させるとともに、ディスクローラ44Aの回転速度を1~5%程度速めるものである。第2の方法は、搬送面の搬送方向の回りの傾斜を搬送方向に次第に変化させるものである。つまり、駆動チェーン53方向に傾斜した搬送面を搬送方向に進むにしたがい駆動チェーン53と反対方向に傾斜したがい駆動チェーン53と反対方向に傾斜するように変化させ、ガラス板32が搬送面上で自重によりガラスがずれるようにする。

【0040】本実施例の場合、搬送面形状はディスクローラ44Aの表面のつくる形状により決定されるので第

2の方法でガラス板32を搬送面上でずらすためには、ディスクローラ44Aの表面形状を搬送方向下流に向かって徐々に変化させていく必要がある。このように、徐々にディスクローラ44Aの傾きを変化させるためには、ディスクローラとして、エクスパンドローラを用いることが好ましい。エクスパンドローラは、好ましくは、耐熱ゴムからなる表面の内部に、ステンレス等の耐熱金属のスプリングを有している。従って、ローラの両端の位置を決めることにより、自在に表面の曲率とその傾きを決めることができる。図6は、このエクスパンドローラを用いた場合についての冷却工程に係る装置を示している。

【0041】ディスクコンベア44の搬送方向下流端には、後処理工程の工程用のベルトコンベア48にまでガラス板32を移送する上がり勾配状のベルトコンベア46が連続して設けられ、ベルトコンベア46の上端部は後工程用のベルトコンベア48と略同一の高さに設定されている。このベルトコンベア46には耐熱用のVベルト46Aが使用されている。

【0042】ディスクコンベア44の下流端と、後工程用のベルトコンベア48の高さがほぼ同一であれば、ディスクコンベア44から後工程用ベルトコンベアに直接ガラス板32を搬送できることがある。このような場合は、ベルトコンベア46を設ける必要がないため、設備の簡易性の観点から極めて好ましいものである。

【0043】しかし、通常は、曲げ成形に要する搬送距離と、冷却強化に要する搬送距離とは常に一致するわけではない。これらは、求められるガラス板の複曲面形状によって変化する。そこで、上記のベルトコンベア46を設けて、ベルトコンベア46の搬送の勾配をわずかに調整することによりガラス板形状の仕様変更に対応し得るようにすることは、実用上好ましい。

【0044】すなわち、本発明によれば、ハースベッド34、35、36の勾配、冷却用吹き口モジュール群38Aの勾配を調整することにより、ディスクコンベア44の搬送方向下流端の高さをガラス板の仕様にかかわらず、かなりの程度そろえることができる。従って、ベルトコンベア46の搬送勾配のわずかな調整でこれらの仕様変更に対応可能になる。また、上記のハースベッド等の勾配を調整することにより、ディスクコンベア44の搬送方向下流端の高さと後工程用コンベア48の高さとが余り変わらないように設定できる。従って、設けるベルトコンベア46の勾配は余り急なものである必要はなく、搬送を極めて安定に行うことができる。

【0045】以下、本実施例にかかる装置の作用について説明する。

【0046】ガラス板32はガス炉30内のハースベッド34、34・・・ハースベッド35上で搬送されて、搬送方向と垂直な方向軸に沿って所望の曲率半径R。で曲げ成形されるとともに風冷強化のために必要な高温ま

で加熱される。このガラス板32が、ハースベッド35を経て、ガス炉30の撥出口30A近傍に設けられた、所望の曲率半径R、を搬送方向軸に沿って有するハースベッド36の上に到達すると、ハースベッド36の湾曲に沿って長手方向に曲率半径R、に曲げ成形される。これによりガラス板32は幅方向には曲率半径R、で、長手方向には曲率半径R、で曲げ成形されて複曲面となる。

【0047】 このように成形されたガラス板32はガス 炉30の搬出口30Aから搬出され冷却用吹き口モジュール群38A、38Bを通じて の風冷により約400度迄冷却、強化される。冷却されたガラス板32はディスクコンベア44上を下降するとともに更に冷却用吹き口モジュール群を用いずに吹き口43により風冷される。そしてガラス板32が所定の形状と強度を得た後、駆動チェーン53に取りつけられた支持金具から引き離され、さらに、ベルトコンベア46の上がり勾配面を介して後工程用のベルトコンベア48に搬送される。

【0048】従来の曲げガラス板の仕様に多かったようにガラス板32を幅方向に沿ってのみに湾曲した単曲面で曲げ成形する場合には、ガス炉30の搬出口30A近傍の上がり勾配状のハースベッド35、湾曲状のハースベッド36及びガス炉30外の冷却用吹き口モジュール群38A、ディスクローラ44、ベルトコンベア46を取り除き、その後に単曲曲げ用ハースベッドやディスクローラを設け、ハースベッド34、34・・・と後工程用コンベア48とを連続させることによりほぼ同じ設備により対応できる。その後、前述したと同様にガラス板32を搬送すると、ハースベッド34、34・・・の表面形状に沿う様に、ガラス板32の幅方向に沿って曲げ成形される。

【0049】 このように、本発明によればガラス板32を一旦上昇させながら長手方向の曲げ成形を行なうので、ガラス板32の落ち込み量(H)を小さくすることができる。従って、ガラス板32の幅方向のみを曲げ成形する既存の生産ラインにおいて、ガス炉30と後工程用コンベア48との間の距離(L)が短くても、落ち込んだ位置の高さ(H2)から後工程用コンベア48の高さ(H1)まで引き上げることができる。これにより既存のガラス曲げ生産ラインと成形炉その他の大部分の設備を共通して用い、その一部を交換するだけでガラス板を複曲面状に成形することのできるガラス板曲げ生産ラインが得られる。

[0050]

【発明の効果】本発明のガラス板の曲げ方法及びその装置によれば、ガス炉内で搬送する方向と直交する方向に沿って曲げ成形されたガラス板をガス炉内で一旦引き上げてからガラス板を搬送方向に沿って曲げ成形し、ガス炉から搬出するとともに下降させながら冷却強化を行なう。これにより、冷却強化されたガラス板が落ち込んだ位置から後工程のベルトコンベアまでの高さの差を小さく抑えることができ、従って、曲げ成形されたガラス板のハンドリングが容易となる。

【0051】従って、既存の設備のガス炉から後工程用コンベアまでの距離が短い場合でも、成形炉等の既存の生産設備を利用してガラス板を搬送方向と直交する方向及び搬送方向に曲げ成形し、ガラス板を複曲面に曲げ成形することができる。

【0052】請求項3及び請求項8に係る発明によれば、既存のガラス板の生産ラインの設備をより柔軟に複曲面曲げ成形用のラインに適用し得る様になる。

【0053】請求項4及び請求項9に係る発明によれば、通常の自動車用ガラス板の様に、ガラス板の一方向のみ比較的深い曲げ成形が必要な用途において、コンパクトでスペースをとらない曲げ成形方法及び設備が提供される。

【0054】請求項5及び請求項10に係る発明によれば、ガラス板と搬送面とが接触しないのでガラス板に搬送中の歪みが生じにくく、より高品質な、曲げガラス板を得る方法及び設備が提供される。

【図面の簡単な説明】

- 【図1】本発明に係るガラス板の曲げ装置の概略全体図
- 【図2】本発明に係るガラス板の曲げ装置の要部拡大図
- 【図3】複曲面状に曲げ成形されたガラス板の斜視図
- 【図4】従来のガラス板の曲げ成形装置の概略全体図
- 【図5】ガラス板の搬送手段の1例を示す概略斜視図
- 【図6】実施例における冷却工程に係る装置を示す要部 斜視図

【符号の説明】

- 30 ガス炉
- 32 ガラス板
- 34、35、36 ハースベッド
- 38 冷却用吹き口モジュール群
- 40、42 吹き口
- 44 ディスクコンベア
- 46 ベルトコンベア
- 48 後工程用コンベア