Trabalho 16/08/2018 Métodos de Amostragem

Jayme Junior

Para n = 2

Amostra	ys	P(ys)	ys.P(ys)
2,4	3	1/15	0.2
2,5	3.5	1/15	0.23333333333333333
2,7	4.5	1/15	0.3
2,8	5	1/15	0.33333333333333333
2,9	5.5	1/15	0.3666666666666667
4,5	4.5	1/15	0.3
4,7	5.5	1/15	0.3666666666666667
4,8	6	1/15	0.4
4,9	6.5	1/15	0.4333333333333333
5,7	6	1/15	0.4
5,8	6.5	1/15	0.4333333333333333
5,9	7	1/15	0.466666666666667
7,8	7.5	1/15	0.5
7,9	8	1/15	0.53333333333333333
8,9	8.5	1/15	0.5666666666666667

[1] "Comparando média amostral n=2: 5.83 e populacional: 5.83 temos que são iguais."

Para n = 3

Amostra	ys	P(ys)	ys.P(ys)
2,4,5	3.66666666666667	1/20	0.1833333333333333
2,4,7	4.333333333333333	1/20	0.2166666666666667
2,4,8	4.666666666666667	1/20	0.23333333333333333
2,4,9	5	1/20	0.25
2,5,7	4.666666666666667	1/20	0.23333333333333333
2,5,8	5	1/20	0.25
2,5,9	5.333333333333333	1/20	0.266666666666667
2,7,8	5.666666666666667	1/20	0.2833333333333333
2,7,9	6	1/20	0.3
2,8,9	6.333333333333333	1/20	0.3166666666666667
4,5,7	5.333333333333333	1/20	0.266666666666667
$4,\!5,\!8$	5.666666666666667	1/20	0.2833333333333333
4,5,9	6	1/20	0.3
4,7,8	6.333333333333333	1/20	0.3166666666666667
4,7,9	6.66666666666667	1/20	0.333333333333333
4,8,9	7	1/20	0.35
5,7,8	6.66666666666667	1/20	0.3333333333333333
5,7,9	7	1/20	0.35
5,8,9	7.333333333333333	1/20	0.3666666666666667
7,8,9	8	1/20	0.4

[1] "Comparando média amostral n=3: 5.83 e populacional: 5.83 temos que são iguais."

Para n = 4

Amostra	ys	P(ys)	ys.P(ys)
2,4,5,7	4.5	1/15	0.3
2,4,5,8	4.75	1/15	0.3166666666666667
2,4,5,9	5	1/15	0.3333333333333333
2,4,7,8	5.25	1/15	0.35
2,4,7,9	5.5	1/15	0.366666666666667
2,4,8,9	5.75	1/15	0.383333333333333
2,5,7,8	5.5	1/15	0.366666666666667
2,5,7,9	5.75	1/15	0.383333333333333
2,5,8,9	6	1/15	0.4
2,7,8,9	6.5	1/15	0.4333333333333333
4,5,7,8	6	1/15	0.4
4,5,7,9	6.25	1/15	0.416666666666667
4,5,8,9	6.5	1/15	0.4333333333333333
4,7,8,9	7	1/15	0.466666666666667
5,7,8,9	7.25	1/15	0.4833333333333333

[1] "Comparando média amostral n=4: 5.83 e populacional: 5.83 temos que são iguais."

Para todas as amostras n=2, n=3 e n=4

Amostra	ys	P(ys)	ys.P(ys)
2,4	3	1/15	0.2
2,5	3.5	1/15	0.23333333333333333
2,7	4.5	1/15	0.3
2,8	5	1/15	0.3333333333333333
2,9	5.5	1/15	0.366666666666667
4,5	4.5	1/15	0.3
4,7	5.5	1/15	0.366666666666667
4,8	6	1/15	0.4
4,9	6.5	1/15	0.4333333333333333
5,7	6	1/15	0.4
5,8	6.5	1/15	0.4333333333333333
5,9	7	1/15	0.466666666666667
7,8	7.5	1/15	0.5
7,9	8	1/15	0.5333333333333333
8,9	8.5	1/15	0.566666666666667
2,4,5	3.666666666666667	1/20	0.1833333333333333
2,4,7	4.333333333333333	1/20	0.216666666666667
2,4,8	4.666666666666667	1/20	0.2333333333333333
2,4,9	5	1/20	0.25
2,5,7	4.66666666666667	1/20	0.2333333333333333
2,5,8	5	1/20	0.25
2,5,9	5.333333333333333	1/20	0.26666666666667

Amostra	ys	P(ys)	ys.P(ys)
2,7,8	5.66666666666667	1/20	0.283333333333333
2,7,9	6	1/20	0.3
2,8,9	6.333333333333333	1/20	0.3166666666666667
4,5,7	5.333333333333333	1/20	0.266666666666667
4,5,8	5.666666666666667	1/20	0.2833333333333333
4,5,9	6	1/20	0.3
4,7,8	6.333333333333333	1/20	0.3166666666666667
4,7,9	6.66666666666667	1/20	0.333333333333333333333333333333333333
4,8,9	7	1/20	0.35
5,7,8	6.66666666666667	1/20	0.333333333333333
5,7,9	7	1/20	0.35
5,8,9	7.333333333333333	1/20	0.3666666666666667
7,8,9	8	1/20	0.4
2,4,5,7	4.5	1/15	0.3
2,4,5,8	4.75	1/15	0.3166666666666667
2,4,5,9	5	1/15	0.333333333333333
2,4,7,8	5.25	1/15	0.35
2,4,7,9	5.5	1/15	0.3666666666666667
2,4,8,9	5.75	1/15	0.383333333333333
2,5,7,8	5.5	1/15	0.3666666666666667
2,5,7,9	5.75	1/15	0.383333333333333
2,5,8,9	6	1/15	0.4
2,7,8,9	6.5	1/15	0.433333333333333
4,5,7,8	6	1/15	0.4
4,5,7,9	6.25	1/15	0.4166666666666667
4,5,8,9	6.5	1/15	0.433333333333333
4,7,8,9	7	1/15	0.4666666666666667
5,7,8,9	7.25	1/15	0.4833333333333333

Trabalho 2 - 23/08

n=2

```
Y2 <- sum(yspys2)
Y <- mean(x)
sum((ys2 - Y)^2) * (1/15)

## [1] 2.322222

((6-2)/6) * (sum(((ys2 - Y)^2)/5)/2)

## [1] 2.322222

n=3

Y <- mean(x)
sum((ys3 - Y)^2) * (1/20)

## [1] 1.161111
```

```
((6-3)/6) * (sum(((ys3 - Y)^2)/5) * (1/3))

## [1] 0.7740741

n=4

Y <- mean(x)
sum((ys4 - Y)^2) * (1/15)

## [1] 0.5805556
((6-4)/6) * (sum(((ys4 - Y)^2)/5) * (1/4))

## [1] 0.1451389</pre>
```