

Analýza a návrh blokovacích kondenzátorů v digitální standardní knihovně technologie CMOS 65 nm

Bakalářská práce

Autor práce: RADEK KUČERA

Vedoucí práce: Ing. VOJTĚCH KRÁL

Oponent: Ing. PAVEL BARTOŠ

Brno, 11.6.2024

- Prostudovat digitálně standardní buňky v 65 nm CMOS technologii.
 - Zaměřit se na blokující kondenzátory.
- Význam blokujících kondenzátorů.
 - Prozkoumat různé topologie.
 - Charakterizovat jejich vlastnosti.
- Simulace a analýza.
 - Navrhnout simulaci.
 - Na základě jednoduché simulace vybrat nejvhodnější topologii.
 - Vytvoření layoutů a jejich simulace s parazitní extrakcí a přes PVT.
 - Optimalizace layoutů pro specifické požadavky.

Digitálně standardní buňka

- Implementují digitální obvody a funkce (hradla, registry, atd).
- Vyhrazené místo pro PMOS a NMOS tranzistory.
- Fixní výška.
- Různá šířka v závislosti na komplexitě.
- Mohou být zrcadleny podél X/Y osy.
 - Rozvod napájení bude navazovat.
 - Nesmí být porušeno DRC.

Obr. 1: Šablona standardní buňky

Blokující kondenzátor v CMOS

- Brání změně napětí na rozvodu napájení.
 - Nízká impedanční cesta k zemi.
 - Lokální zdroj energie.
- Filtruje tedy:
 - Elektromagnetická interference přeslechy.
 - Úbytky napětí způsobené parazitním odporem a indukcí.

Topologie

Všechny byly porovnány v jednoduché simulaci.

Byl vybrán:

Parametry

Parametry návrhu:

- Šířka *W*.
- Délka *L*.
- Počet hřebínků *NF*.

Sledované parametry:

- Efektivní odpor *R*_{ef}.
- Efektivní kapacita C_{ef} .
- Činitel jakosti Q.
- Svodový proud *I*_L.
- Frekvence maxima Q.
- Maximální kapacita.
- Svodový proud vůči kapacitě.

Obvod pro simulace

Rovnice:

$$\hat{Z} = rac{\hat{V_{ac}}}{\hat{I_c}}$$
 $R_{ef} = \operatorname{Re}(\hat{Z})$
 $= -rac{1}{2\pi \cdot f \cdot \operatorname{Im}(\hat{Z})}$

 $Q = \frac{\mathsf{Im}(\hat{Z})}{\mathsf{Re}(\hat{Z})}$

Obvod:

- TRAN simulace pro R_{ef} , C_{ef} , Q.
- **DC** simulace pro I_I .

Výsledky simulace

- Layouty byly dělány:
 - Standardní buňka o šířce 32 gridů.
 - Standardní prahové napětí.
 - Simulace s parazitní extrakcí.
 - Iterativně upravovány více než 60 různých layoutů.

- Optimalizovány pro:
 - Kapacitu.
 - Činitel jakosti.
 - Svodový proud.
 - Kompromis předchozích.

Layout	C_{max} $[-]$	$f_{C_{1/2}}$ [GHz]	Q_{max} $[-]$	$f_{Q_{max}}$ [GHz]	I_L/C_{max} [-]
Kapacita	1.67	10.76	4.73	1.61	19.8
Činitel jakosti	0.80	152.76	11.79	12.25	40.6
Svodový proud	0.92	7.59	4.2	1.53	16.2
Kompromis	1.29	46.13	7.51	5.55	33.9

¹Hodnoty jsou normalizovány z důvodu NDA.

Ukázka průběhů

Obr. 2: Porovnání průběhů kapacit vybraných layoutů.

Ukázka průběhů

Obr. 3: Porovnání průběhů činitele jakosti vybraných layoutů.

Kapacita

- 4 velké PMOS C_{max} a $f_{C_{1/2}}$.
- 3 NMOS *f*_{C1/2}.
- 3+1 PMOS vlevo využití prostoru, kvůli DRC.

Obr. 4: Layout optimalizovaný pro kapacitu.

Svodový proud

- Primárně přes plochu hradla.
- 1 min. NMOS kvůli komplementaritě.
- Maximalizace parazitní kapacity C_{gs}, C_{gd}.

Obr. 5: Layout optimalizovaný pro svodový proud.

Činitel jakosti

 Maximální počet NMOS a PMOS o minimální délce.

Obr. 6: Layout optimalizovaný pro činitel jakosti.

Kompromis

- Kombinace předchozích.
- 3 veliké PMOS, zbylé minimální délky.
- Maximální počet NMOS o minimální délce.

Obr. 7: Layout kompromisně optimalizovaný.

Závěr

Závěr:

- Prostudoval digitálně standardní buňky.
- Analyzoval různé možné topologie (NMOS, PMOS, CMOS, CP) a odsimuloval jednoduchou simulací.
- Navrhl a iterativně optimalizoval buňky zaměřené na čtyři parametry simuloval jejich chování s parazitní extrakcí a přes PVT.
- Výsledné buňky mohou být zařazeny do digitálně standardní knihovny.
 - Všechny do jedné knihovny návrhář si vybere dle konkrétní aplikace.
 - Specifické pro různé aplikace např. pro ultra low power buňka optimalizovaná na svodový proud.

Děkuji za pozornost!

Otázky oponenta

- 1.) Proč jste identifikoval cross-coupled topologii jako nejlepší volbu navzdory jejímu nižšímu činiteli jakosti?
 - Stejná kapacita a svodový proud jako CMOS.
 - Lepší ESD vlastnosti nemá připojené hradlo přímo na rozvod napájení, ale v cestě má kanál komplementárního tranzistoru.
 - Průrazné napětí hradla v 65 nm je kolem 5 V.
 - V onsemi automotive.
 - Zlepšení výtěžnosti stačí jeden proražený kondenzátor zkrat.

Otázky oponenta

2.) Jak byste postupoval, pokud byste měl navrhnout blokovací kondenzátory pro jinou technologii, například 28 nm?

Bylo by třeba nastudovat danou technologii:

- FinFET tranzistory.
- Jiné dielektrické materiály (high-k).
- Výraznější omezení z hlediska layoutu menší volnost, přísnější DRC.

Téměř celý pracovní postup této práce je automatizován (kromě layoutu) \rightarrow na základě nastudování dané technologie s drobnými úpravami skriptů by bylo možné velice rychle odsimulovat základní chování.

Otázky oponenta

3.) Jakou budoucí práci byste navrhl na základě vašich zjištění?

Simulování ve více realistických scénářích:

- Vliv ostatních buněk a vyšších metalů.
- Porovnaní s buňkami, které se aktuálně používají.
- Nahrazení těchto buněk již v existujícím návrhu a porovnání těchto návrhů.

Výroba na test chipu.