BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

100 38 050.6

Anmeldetag:

02. August 2000

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

<u>Erstanmelder</u>: Degussa-Hüls Aktiengesellschaft, Frankfurt am Main/DE

Bezeichnung:

Neue für das metH-Gen kodierende

Nukleotidsequenzen

IPC:

C 07 H, C 12 P, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 15. Juni 2001

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Weihmay

10

Neue für das metH-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das metH-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Methionin, unter Verwendung von Bakterien, in denen das metH-Gen verstärkt wird.

Stand der Technik

L-Aminosäuren, insbesondere L-Methionin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z.B. die Methionin-Analoga α-Methyl-Methionin, Ethionin, Norleucin, N-acetylnorleucin, S-Trifluoromethylhomocystein, 2-amino-5heprenoitsäure, Seleno-Methionin, Methioninsulfoximin,

Methoxin, 1-Aminocyclopentan-Carboxylsäure oder auxotroph

für regulatorisch bedeutsame Metabolite sind und Aminosäuren wie z.B. L-Methionin produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L- Aminosäure produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure- Produktion untersucht.

Aufgabe der Erfindung

Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren, insbesondere L-Methionin, bereitzustellen.

Beschreibung der Erfindung

20

Werden im folgenden L-Methionin oder Methionin erwähnt, sind damit auch die Salze wie z.B. Methionin-Hydrochlorid oder Methion-Sulfat gemeint.

Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das metH-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine
 25 Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No.
 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und

- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
- wobei das Polypeptid bevorzugt die Aktivität der 5 Homocystein-Methyltransferase II aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1,10 oder
 - (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz

 (i) oder (ii) komplementären Sequenz
 hybridisiert, und gegebenenfalls
 - (iv) funktionsneutralen Sinnmutationen in (i).

Weitere Gegenstände sind

- ein Polynukleotid enthaltend die Nukleo-20 tidsequenz wie in SEQ ID No. 1 dargestellt;
 - ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält
- ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, 25 insbesondere Pendelvektor oder Plasmidvektor, und
 - als Wirtszelle dienende coryneforme Bakterien, die den Vektor enthalten oder in denen das metH-Gen verstärkt ist.

25

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank, die das vollständige Gen mit der Polynukleotidsequenz entsprechend SEQ ID No. 1 enthält, mit einer Sonde, die die Sequenz des genannten Polynukleotids gemäß SEQ ID No. 1 oder ein Fragment davon enthält und Isolierung der genannten DNA-Sequenz.

Polynukleotidsequenzen gemäß der Erfindung sind als
Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um
Nukleinsäuren bzw. Polynukleotide oder Gene in voller Länge
zu isolieren, die für Homocystein-Methyltransferase II
kodieren, oder um solche Nukleinsäuren bzw. Polynukleotide
oder Gene zu isolieren, die eine hohe Ähnlichkeit der

15 Sequenz mit der des Homocystein-Methyltransferase II-Gens aufweisen.

Polynukleotidsequenzen gemäß der Erfindung sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für Homocystein-Methyltransferase II kodieren.

Solche, als Sonden oder Primer dienende Oligonukleotide, enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es 30 sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

20

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid

5 gemäß SEQ ID No. 2, insbesondere solche mit der
biologischen Aktivität der Homocystein-Methyltransferase II
und auch solche ein, die zu wenigstens 70%, bevorzugt zu
wenigstens 80% und besonders die zu wenigstens 90% bis 95%
identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und
10 die genannte Aktivität aufweisen.

Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Methionin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren, und in denen die für das metH-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren, insbesondere L-Methionin, aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

10

Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

oder daraus hergestellte L-Aminosäuren produzierende Mutanten beziehungsweise Stämme, wie beispielsweise der L-Methionin produzierende Stamm

15 Corynebacterium glutamicum ATCC21608.

Den Erfindern gelang es, das neue, für das Enzym Homocystein-Methyltransferase II (EC 2.1.1.13) kodierende metH-Gen von C. glutamicum zu isolieren.

Zur Isolierung des metH-Gens oder auch anderer Gene von C. 20 glutamicum wird zunächst eine Genbank dieses Mikroorganismus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, 25 Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ -Vektoren angelegt wurde. 30 Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al.,

1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde.

Börmann et al. (Molecular Microbiology 6(3), 317-326)

(1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)). Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979))

- oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences
- USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z.B. bei Sanger et al. (Proceedings of
- the National Academy of Sciences of the United States of America, 74:5463-5467, 1977) beschrieben ist.

Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem von

25 Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.

Auf diese Weise wurde die neue für das Gen metH kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID No.

- 30 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des metH-Genproduktes
- 35 dargestellt.

35

Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" (sense mutations) bekannt, die zu keiner 10 grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann 15 unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der 20 Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind

In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.

ebenfalls Bestandteil der Erfindung.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al.

(International Journal of Systematic Bacteriology (1991)

41: 255-260). Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Es wurde gefunden, daß coryneforme Bakterien nach Überexpression des metH-Gens in verbesserter Weise Aminosäuren, insbesondere L-Methionin, produzieren.

- Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen L-Methionin-Produktion zu
- steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom
- integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
- Anleitungen hierzu findet der Fachmann unter anderem bei 30 Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei 35 Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei

Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15 - 24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.

- Zur Verstärkung wurde das erfindungsgemäße metH-Gen beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z.B. pZ1 (Menkel et al.,
- Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z.B. solche, die auf pCG4 (US-A
- 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.
- Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe 25 derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons
- beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)),
- 35 pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73

verstärken.

(1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) oder pBGS8 (Spratt et al.,1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den 10 gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology 15 and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei 20 Kopien des betreffenden Gens.

Zusätzlich kann es für die Produktion von Aminosäuren, insbesondere L-Methionin vorteilhaft sein, neben dem metH-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus oder des Aminosäure-Exports zu

So kann beispielsweise für die Herstellung von Aminosäuren, insbesondere L-Methionin, eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),

- das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die Pyruvat Carboxylase kodierende Gen pyc (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für eine feed-back resistente Aspartatkinase kodierende Gen lysC (ACCESSION Number P26512),
 - das für die Homoserin O-Acetyltransferase kodierende Gen metA (ACCESSION Number AF052652),
 - das für die Cystahionin-gamma-Synthase kodierende Gen metB (ACCESSION Number AF126953),
 - das für die Cystahionin-gamma-Lyase kodierende Gen aecD (ACCESSION Number M89931)
 - das für die Serin-Hydroxymethyltransferase kodierende Gen glyA (JP-A-08107788),
- das für die O-Acetylhomoserin-Sulfhydrylase kodierende Gen metY (DSM 13556)

verstärkt, insbesondere überexprimiert werden.

Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Methionin, vorteilhaft sein, zusätzlich zur Verstärkung des metH Gens eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Homoserine Kinase kodierende Gen thrB (ACCESSION Number P08210),
- das für die Threonin Dehydratase kodierende Gen ilvA
 (ACCESSION Number Q04513),
 - das für die Threonin Synthase kodierende Gen thrC (ACCESSION Number P23669),

- das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh (ACCESSION Number Y00151),
- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1; DSM 13047),
- das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi (US 09/396,478; DSM 12969),
 - das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 1995 1975.7; DSM 13114)

abzuschwächen, insbesondere die Expression zu verringern.

- Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Methionin, vorteilhaft sein, neben der Überexpression des metH-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
- Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren, insbesondere L-Methionin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen 30 von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten.

Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose,

Melasse, Stärke und Cellulose, Öle und Fette wie z.B.
Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und Linolsäure,
Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

Als Stickstoffquelle können organische Stickstoff haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat,

Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die

- entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben
- genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
- Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie

z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z.B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die Analyse von L-Methionin kann durch Ionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben.

Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Methionin.

Die vorliegende Erfindung wird im folgenden anhand von 20 Ausführungsbeispielen näher erläutert.

Beispiel 1

Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032

wurde wie bei Tauch et al. (1995, Plasmid 33:168-179)

beschrieben isoliert und mit dem Restriktionsenzym Sau3AI

(Amersham Pharmacia, Freiburg, Deutschland,

Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell

gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer

Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland,

Produktbeschreibung SAP, Code no. 1758250)

dephosphoryliert.

Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert. Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI

- 10 (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland,
- Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.
- Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) wurden die Zellen in 10 mM MgSO₄ aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular
- Cloning: A Laboratory Manual, Cold Spring Harbor)
 beschrieben durchgeführt, wobei die Zellen auf LB-Agar
 (Lennox, 1955, Virology, 1:190) mit 100 mg/l Ampicillin
 ausplattiert wurden. Nach Inkubation über Nacht bei 37°C
 wurden rekombinante Einzelklone selektioniert.

30 Beispiel 2

Isolierung und Sequenzierung des metH-Gens

Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden,

10 Germany).

Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia,

- 15 Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-
- Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-
 - Agar (Lennox, 1955, Virology, 1:190) mit 50 mg/l Zeocin ausplattiert.

Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden,

Deutschland). Die Sequenzierung erfolgte nach der DideoxyKettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin

Terminator Cycle Sequencing Kit" von PE Applied Biosystems

(Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

Die erhaltenen Roh-Sequenzdaten wurden anschließend unter

Anwendung des Staden-Programpakets (1986, Nucleic Acids
Research, 14:217-231) Version 97-0 prozessiert. Die
Einzelsequenzen der pZerol-Derivate wurden zu einem
zusammenhängenden Contig assembliert. Die computergestützte
Kodierbereichsanalyse wurde mit dem Programm XNIP (Staden,
1986, Nucleic Acids Research, 14:217-231) angefertigt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 3662 Basenpaaren, welches als metH-Gen bezeichnet wurde. Das metH-Gen kodiert für ein Protein von 1221 Aminosäuren.

```
SEQUENZPROTOKOLL
     <110> Degussa-Hüls AG
 5
     <120> Neue für das metH-Gen kodierende Nukleotidsequenzen
     <130> 000365 BT
     <140>
10
     <141>
     <160> 2
     <170> PatentIn Ver. 2.1
15
     <210> 1
     <211> 4301
     <212> DNA
     <213> Corynebacterium glutamicum
20
     <220>
     <221> CDS
     <222> (385)..(4047)
     <223> metH-Gen
25
     <400> 1
     taagggtttt ggaggcattg gccgcgaacc catcgctggt catcccgggt ttgcgcatgc 60
     cacgttcgta ttcataacca atcgcgatgc cttgagccca ccagccactg acatcaaagt 120
30
     tgtccacgat gtgctttgcg atgtgggtgt gagtccaaga ggtggctttt acgtcgtcaa 180
     gcaattttag ccactcttcc cacggctttc cggtgccgtt gaggatagct tcaggggaca 240
35
     tgcctggtgt tgagccttgc ggagtggagt cagtcatgcg accgagacta gtggcgcttt 300
     gcctgtgttg cttaggcggc gttgaaaatg aactacgaat gaaaagttcg ggaattgtct 360
     aatccgtact aagctgtcta caca atg tct act tca gtt act tca cca gcc
                                                                        411
40
                                Met Ser Thr Ser Val Thr Ser Pro Ala
     cac aac aac gca cat tee tee gaa ttt ttg gat geg ttg gca aac cat
                                                                        459
     His Asn Asn Ala His Ser Ser Glu Phe Leu Asp Ala Leu Ala Asn His
45
      10
     gtg ttg atc ggc gac ggc gcc atg ggc acc cag ctc caa ggc ttt gac
                                                                        507
     Val Leu Ile Gly Asp Gly Ala Met Gly Thr Gln Leu Gln Gly Phe Asp
50
     ctg gac gtg gaa aag gat ttc ctt gat ctg gag ggg tgt aat gag att
                                                                        555
     Leu Asp Val Glu Lys Asp Phe Leu Asp Leu Glu Gly Cys Asn Glu Ile
                  45
55
     ctc aac gac acc cgc cct gat gtg ttg agg cag att cac cgc gcc tac
     Leu Asn Asp Thr Arg Pro Asp Val Leu Arg Gln Ile His Arg Ala Tyr
              60
```

								ttg Leu 80										651
	5	ctg Leu 90	ccg Pro	aac Asn	ttg Leu	gcg Ala	gat Asp 95	tat Tyr	gac Asp	atc Ile	gct Ala	gat Asp 100	cgt Arg	tgc Cys	cgt Arg	gag Glu	ctt Leu 105	699
	10	gcc Ala	tac Tyr	aag Lys	ggc Gly	act Thr 110	gca Ala	gtg Val	gct Ala	agg Arg	gaa Glu 115	gtg Val	gct Ala	gat Asp	gag Glu	atg Met 120	Gly	747
	15							cgg Arg										795
	20							ctg Leu										843
المراجعة المراجعة								gcg Ala 160										891
	25							gct Ala										939
	30							gcc Ala										987
	35							gta Val										1035
	40							ttg Leu										1083
(· · ·		atg Met	att Ile 235	ggt Gly	ctg Leu	aac Asn	tgc Cys	gcc Ala 240	acc Thr	ggc Gly	cca Pro	gat Asp	gag Glu 245	atg Met	agc Ser	gag Glu	cac His	1131
	45	ctg Leu 250	cgt Arg	tac Tyr	ctg Leu	tcc Ser	aag Lys 255	cac His	gcc Ala	gat Asp	att Ile	cct Pro 260	gtg Val	tcg Ser	gtg Val	atg Met	cct Pro 265	1179
	50							ctg Leu										1227
	55							cag Gln										1275
								ggt Gly										1323

		cgt Arg	gcg Ala 315	gtc Val	cgc Arg	gat Asp	gcg Ala	gtg Val 320	gtt Val	ggt Gly	gtt Val	cca Pro	gag Glu 325	cag Gln	gaa Glu	acc Thr	tcc Ser	1371
	5	aca Thr 330	ctg Leu	acc Thr	aag Lys	atc Ile	cct Pro 335	gca Ala	ggc Gly	cct Pro	gtt Val	gag Glu 340	cag Gln	gcc Ala	tcc Ser	cgc Arg	gag Glu 345	1419
	10	gtg Val	gag Glu	aaa Lys	gag Glu	gac Asp 350	tcc Ser	gtc Val	gcg Ala	tcg Ser	ctg Leu 355	tac Tyr	acc Thr	tcg Ser	gtg Val	cca Pro 360	ttg Leu	1467
	15	tcc Ser	cag Gln	gaa Glu	acc Thr 365	ggc Gly	att Ile	tcc Ser	atg Met	atc Ile 370	ggt Gly	gag Glu	cgc Arg	acc Thr	aac Asn 375	tcc Ser	aac Asn	1515
×	20	ggt Gly	tcc Ser	aag Lys 380	gca Ala	ttc Phe	cgt Arg	gag Glu	gca Ala 385	atg Met	ctg Leu	tct Ser	ggc Gly	gat Asp 390	tgg Trp	gaa Glu	aag Lys	1563
, 	20	tgt Cys	gtg Val 395	gat Asp	att Ile	gcc Ala	aag Lys	cag Gln 400	caa Gln	acc Thr	cgc Arg	gat Asp	ggt Gly 405	gca Ala	cac His	atg Met	ctg Leu	1611
	25	gat Asp 410	ctt Leu	tgt Cys	gtg Val	gat Asp	tac Tyr 415	gtg Val	gga Gly	cga Arg	gac Asp	ggc Gly 420	acc Thr	gcc Ala	gat Asp	atg Met	gcg Ala 425	1659
	30	acc Thr	ttg Leu	gca Ala	gca Ala	ctt Leu 430	ctt Leu	gct Ala	acc Thr	agc Ser	tcc Ser 435	act Thr	ttg Leu	cca Pro	atc Ile	atg Met 440	att Ile	1707
	35					cca Pro												1755
<u>``</u>	40	gga Gly	cga Arg	agc Ser 460	atc Ile	gtt Val	aac Asn	tcc Ser	gtc Val 465	aac Asn	ttt Phe	gaa Glu	gac Asp	ggc Gly 470	gat Asp	ggc Gly	cct Pro	1803
	10	gag Glu	tcc Ser 475	cgc Arg	tac Tyr	cag Gln	cgc Arg	atc Ile 480	atg Met	aaa Lys	ctg Leu	gta Val	aag Lys 485	cag Gln	cac His	ggt Gly	gcg Ala	1851
	45	gcc Ala 490	gtg Val	gtt Val	gcg Ala	ctg Leu	acc Thr 495	att Ile	gat Asp	gag Glu	gaa Glu	ggc Gly 500	cag Gln	gca Ala	cgt Arg	acc Thr	gct Ala 505	1899
	50	gag Glu	cac His	aag Lys	gtg Val	cgc Arg 510	att Ile	gct Ala	aaa Lys	cga Arg	ctg Leu 515	att Ile	gac Asp	gat Asp	atc Ile	acc Thr 520	ggc Gly	1947
	55					gat Asp												1995
		ccg Pro	atc Ile	tct Ser 540	act Thr	ggc Gly	cag Gln	gaa Glu	gaa Glu 545	acc Thr	agg Arg	cga Arg	gat Asp	ggc Gly 550	att Ile	gaa Glu	acc Thr	2043

				gcc Ala														2091
	5			ggt Gly														2139
	10			ctt Leu														2187
	15			gcg Ala														2235
-X	20			cgc Arg 620														2283
	20			gat Asp														2331
	25			gct Ala													gct . Ala 665	2379
	30			ttg Leu														2427
	35			ctt Leu														2475
<u>~</u>	40			atc Ile 700														2523
	10			ttt Phe													tcg Ser	2571
	45			acc Thr														2619
	50	gag Glu	gaa Glu	gca Ala	gaa Glu	gct Ala 750	acc Thr	gga Gly	tct Ser	gcg Ala	cag Gln 755	gca Ala	gag Glu	ggc Gly	aag Lys	ggc Gly 760	aaa Lys	2667
	55			gtg Val														2715
		ttg Leu	gtg Val	gac Asp 780	atc Ile	att Ile	ttg Leu	tcc Ser	aac Asn 785	aac Asn	ggt Gly	tac Tyr	gac Asp	gtg Val 790	gtg Val	aac Asn	ttg Leu	2763

		ggc Gly	atc Ile 795	Lys	cag Gln	cca Pro	ctg Leu	tcc Ser 800	gcc Ala	atg Met	ttg Leu	gaa Glu	gca Ala 805	Ala	gaa Glu	gaa Glu	cac His	2811
	5	aaa Lys 810	Ala	gac Asp	gtc Val	atc Ile	ggc Gly 815	atg Met	tcg Ser	gga Gly	ctt Leu	ctt Leu 820	Val	aag Lys	tcc Ser	acc Thr	gtg Val 825	2859
	10	gtg Val	atg Met	aag Lys	gaa Glu	aac Asn 830	ctt Leu	gag Glu	gag Glu	atg Met	aac Asn 835	aac Asn	gcc Ala	ggc Gly	gca Ala	tcc Ser 840	aat Asn	2907
	15	tac Tyr	cca Pro	gtc Val	att Ile 845	ttg Leu	ggt Gly	ggc Gly	gct Ala	gcg Ala 850	ctg Leu	acg Thr	cgt Arg	acc Thr	tac Tyr 855	gtg Val	gaa Glu	2955
	20	aac Asn	gat Asp	ctc Leu 860	aac Asn	gag Glu	gtg Val	tac Tyr	acc Thr 865	ggt Gly	gag Glu	gtg Val	tac Tyr	tac Tyr 870	gcc Ala	cgt Arg	gat Asp	3003
· •		gct Ala	ttc Phe 875	gag Glu	ggc Gly	ctg Leu	cgc Arg	ctg Leu 880	atg Met	gat Asp	gag Glu	gtg Val	atg Met 885	gca Ala	gaa Glu	aag Lys	cgt Arg	3051
	25	ggt Gly 890	gaa Glu	gga Gly	ctt Leu	gat Asp	ccc Pro 895	aac Asn	tca Ser	cca Pro	gaa Glu	gct Ala 900	att Ile	gag Glu	cag Gln	gcg Ala	aag Lys 905	3099
	30	aag Lys	aag Lys	gcg Ala	gaa Glu	cgt Arg 910	aag Lys	gct Ala	cgt Arg	aat Asn	gag Glu 915	cgt Arg	tcc Ser	cgc Arg	aag Lys	att Ile 920	gcc Ala	3147
	35	gcg Ala	gag Glu	cgt Arg	aaa Lys 925	gct Ala	aat Asn	gcg Ala	gct Ala	ccc Pro 930	gtg Val	att Ile	gtt Val	ccg Pro	gag Glu 935	cgt Arg	tct Ser	3195
/A	40	gat Asp	gtc Val	tcc Ser 940	acc Thr	gat Asp	act Thr	cca Pro	acc Thr 945	gcg Ala	gca Ala	cca Pro	ccg Pro	ttc Phe 950	tgg Trp	gga Gly	acc Thr	3243
		cgc Arg	att Ile 955	gtc Val	aag Lys	ggt Gly	ctg Leu	ccc Pro 960	ttg Leu	gcg Ala	gag Glu	ttc Phe	ttg Leu 965	ggc Gly	aac Asn	ctt Leu	gat Asp	3291
	45	gag Glu 970	cgc Arg	gcc Ala	ttg Leu	ttc Phe	atg Met 975	G1A aaa	cag Gln	tgg Trp	ggt Gly	ctg Leu 980	aaa Lys	tcc Ser	acc Thr	cgc Arg	ggc Gly 985	3339
	50	aac Asn	gag Glu	ggt Gly	cca Pro	agc Ser 990	tat Tyr	gag Glu	gat Asp	ttg Leu	gtg Val 995	gaa Glu	act Thr	gaa Glu	Gly	cga Arg 000	cca Pro	3387
	55	cgc Arg	ctg Leu	Arg	tac Tyr 005	tgg Trp	ctg Leu	gat Asp	Arg	ctg Leu 010	aag Lys	tct Ser	gag Glu	Gly	att Ile 015	ttg Leu	gac Asp	3435
		cac His	Val	gcc Ala 020	ttg Leu	gtg Val	tat Tyr	Gly	tac Tyr 025	ttc Phe	cca Pro	gcg Ala	Val	gcg Ala 030	gaa Glu	ggc Gly	gat Asp	3483

		gac gtg gtg atc ttg gaa tcc ccg gat cca cac gca gcc gaa cgc atg Asp Val Val Ile Leu Glu Ser Pro Asp Pro His Ala Ala Glu Arg Met 1035 1040 1045	3531
	5	cgc ttt agc ttc cca cgc cag cag cgc ggc agg ttc ttg tgc atc gcg Arg Phe Ser Phe Pro Arg Gln Gln Arg Gly Arg Phe Leu Cys Ile Ala 1050 1055 1060 1065	3579
	10	gat ttc att cgc cca cgc gag caa gct gtc aag gac ggc caa gtg gac Asp Phe Ile Arg Pro Arg Glu Gln Ala Val Lys Asp Gly Gln Val Asp 1070 1075 1080	3627
	15	gtc atg cca ttc cag ctg gtc acc atg ggt aat cct att gct gat ttc Val Met Pro Phe Gln Leu Val Thr Met Gly Asn Pro Ile Ala Asp Phe 1085 1090 1095	3675
∠ `\	20	gcc aac gag ttg ttc gca gcc aat gaa tac cgc gag tac ttg gaa gtt Ala Asn Glu Leu Phe Ala Ala Asn Glu Tyr Arg Glu Tyr Leu Glu Val 1100 1105 1110	3723
		cac ggc atc ggc gtg cag ctc acc gaa gca ttg gcc gag tac tgg cac His Gly Ile Gly Val Gln Leu Thr Glu Ala Leu Ala Glu Tyr Trp His 1115 1120 1125	3771
	25	tcc cga gtg cgc agc gaa ctc aag ctg aac gac ggt gga tct gtc gct Ser Arg Val Arg Ser Glu Leu Lys Leu Asn Asp Gly Gly Ser Val Ala 1130 1135 1140	3819
	30	gat ttt gat cca gaa gac aag acc aag ttc ttc gac ctg gat tac cgc Asp Phe Asp Pro Glu Asp Lys Thr Lys Phe Phe Asp Leu Asp Tyr Arg 1150 1155 1160	3867
	35	ggc gcc cgc ttc tcc ttt ggt tac ggt tct tgc cct gat ctg gaa gac Gly Ala Arg Phe Ser Phe Gly Tyr Gly Ser Cys Pro Asp Leu Glu Asp 1165 1170 1175	3915
	40	cgc gca aag ctg gtg gaa ttg ctc gag cca ggc cgt atc ggc gtg gag Arg Ala Lys Leu Val Glu Leu Leu Glu Pro Gly Arg Ile Gly Val Glu 1180 1185 1190	3963
,		ttg tcc gag gaa ctc cag ctg cac cca gag cag tcc aca gac gcg ttt Leu Ser Glu Glu Leu Gln Leu His Pro Glu Gln Ser Thr Asp Ala Phe 1195 1200 1205	4011
	45	gtg ctc tac cac cca gag gca aag tac ttt aac gtc taacaccttt Val Leu Tyr His Pro Glu Ala Lys Tyr Phe Asn Val 1210 1215 1220	4057
	50	gagagggaaa actttcccgc acattgcaga tcgtgccact ttaactaagg ttgacggcat	4117
		gattaaggcg attttctggg acatggacgg cacgatggtg gactctgagc cacagtgggg	4177
		cattgctacc tacgagetca gegaageeat gggeegeege etcaceeegg ageteegga	4237
	55	actcaccgtc ggctcgagcc tgccgcgcac catgcgctta tgcgcagagc acgcaggcat	4297
		taca	4301

		<21:	0> 2 1> 1: 2> Pi 3> Co		ebact	teri	um al	lutai	nicur	n							
	5	<400	0> 2								114 -	7	7	71-		~	
		1	Der	1111	561	5	1111	ser	PIO	Ald	10	ASII	ASI	Ala	nis	Ser 15	Ser
	10				20					25					30	Gly	
	15	Met	GTA	Thr 35	GIn	Leu	Gln	Gly	Phe 40	Asp	Leu	Asp	Val	Glu 45	Lys	Asp	Phe
		Leu	Asp 50	Leu	Glu	Gly	Суѕ	Asn 55	Glu	Ile	Leu	Asn	Asp 60	Thr	Arg	Pro	Asp
, j	20	Val 65	Leu	Arg	Gln	Ile	His 70	Arg	Ala	Tyr	Phe	Glu 75	Ala	Gly	Ala	Asp	Leu 80
		Val	Glu	Thr	Asn	Thr 85	Phe	Gly	Суѕ	Asn	Leu 90	Pro	Asn	Leu	Ala	Asp 95	Tyr
	25	Asp	Ile	Ala	Asp 100	Arg	Cys	Arg	Glu	Leu 105	Ala	Tyr	Lys	Gly	Thr 110	Ala	Val
	30	Ala	Arg	Glu 115	Val	Ala	Asp	Glu	Met 120	Gly	Pro	Gly	Arg	Asn 125	Gly	Met	Arg
		Arg	Phe 130	Val	Val	Gly	Ser	Leu 135	Gly	Pro	Gly	Thr	Lys 140	Leu	Pro	Ser	Leu
	35	Gly 145	His	Ala	Pro	Tyr	Ala 150	Asp	Leu	Arg	Gly	His 155	Tyr	Lys	Glu	Ala	Ala 160
		Leu	Gly	Ile	Ile	Asp 165	Gly	Gly	Gly	Asp	Ala 170	Phe	Leu	Ile	Glu	Thr 175	Ala
,	40	Gln	Asp	Leu	Leu 180	Gln	Val	Lys	Ala	Ala 185	Val	His	Gly	Val	Gln 190	Asp	Ala
	45	Met	Ala	Glu 195	Leu	Asp	Thr	Phe	Leu 200	Pro	Ile	Ile	Cys	His 205	Val	Thr	Val
		Glu	Thr 210	Thr	Gly	Thr	Met	Leu 215	Met	Gly	Ser	Glu	Ile 220	Gly	Ala	Ala	Leu
	50	Thr 225	Ala	Leu	Gln	Pro	Leu 230	Gly	Ile	Asp	Met	Ile 235	Gly	Leu	Asn	Cys	Ala 240
		Thr	Gly	Pro	Asp	Glu 245	Met	Ser	Glu	His	Leu 250	Arg	Tyr	Leu	Ser	Lys 255	
	55	Ala	Asp	Ile	Pro 260	Val	Ser	Val	Met	Pro 265	Asn	Ala	Gly	Leu	Pro 270	Val	Leu
		Gly	Lys	Asn 275	Gly	Ala	Glu	Tyr	Pro 280	Leu	Glu	Ala	Glu	Asp 285	Leu	Ala	Gln

		Ala	Leu 290	Ala	Gly	Phe	Val	Ser 295	Glu	Tyr	Gly	Leu	Ser 300		Val	Gly	Gly	
	5	Cys 305	Cys	Gly	Thr	Thr	Pro 310	Glu	His	Ile	Arg	Ala 315	Val	Arg	Asp	Ala	Val 320	
		Val	Gly	Val	Pro	Glu 325	Gln	Glu	Thr	Ser	Thr 330	Leu	Thr	Lys	Ile	Pro 335	Ala	
	10	Gly	Pro	Val	Glu 340	Gln	Ala	Ser	Arg	Glu 345	Val	Glu	Lys	Glu	Asp 350		Val	
	15	Ala	Ser	Leu 355	Tyr	Thr	Ser	Val	Pro 360	Leu	Ser	Gln	Glu	Thr 365	Gly	Ile	Ser	
		Met	Ile 370	Gly	Glu	Arg	Thr	Asn 375	Ser	Asn	Gly	Ser	Lys 380	Ala	Phe	Arg	Glu	
	20	Ala 385	Met	Leu	Ser	Gly	Asp 390	Trp	Glu	Lys	Cys	Val 395	Asp	Ile	Ala	Lys	Gln 400	
		Gln	Thr	Arg	Asp	Gly 405	Ala	His	Met	Leu	Asp 410	Leu	Cys	Val	Asp	Tyr 415	Val	
	25	Gly	Arg	Asp	Gly 420	Thr	Ala	Asp	Met	Ala 425	Thr	Leu	Ala	Ala	Leu 430	Leu	Ala	
	30	Thr	Ser	Ser 435	Thr	Leu	Pro	Ile	Met 440	Ile	Asp	Ser	Thr	Glu 445	Pro	Glu	Val	
		Ile	Arg 450	Thr	Gly	Leu	Glu	His 455	Leu	Gly	Gly	Arg	Ser 460	Ile	Val	Asn	Ser	
	35	Val 465	Asn	Phe	Glu	Asp	Gly 470	Asp	Gly	Pro	Glu	Ser 475	Arg	Tyr	Gln	Arg	Ile 480	
		Met	Lys	Leu	Val	Lys 485	Gln	His	Gly	Ala	Ala 490	Val	Val	Ala	Leu	Thr 495	Ile	
)	40	Asp	Glu	Glu	Gly 500	Gln	Ala	Arg	Thr	Ala 505	Glu	His	Lys	Val	Arg 510	Ile	Ala	
	45	Lys	Arg	Leu 515	Ile	Asp	Asp	Ile	Thr 520	Gly	Ser	Tyr	Gly	Leu 525	Asp	Ile	Lys	
		Asp	Ile 530	Val	Val	Asp	Cys	Leu 535	Thr	Phe	Pro	Ile	Ser 540	Thr	Gly	Gln	Glu	
ļ	50	Glu 545	Thr	Arg	Arg	Asp	Gly 550	Ile	Glu	Thr	Ile	Glu 555	Ala	Ile	Arg	Glu	Leu 560	
		Lys	Lys	Leu	Tyr	Pro 565	Glu	Ile	His	Thr	Thr 570	Leu	Gly	Leu	Ser	Asn 575	Ile	
į	55	Ser	Phe	Gly	Leu 580	Asn	Pro	Ala	Ala	Arg 585	Gln	Val	Leu	Asn	Ser 590	Val	Phe	
		Leu	Asn	Glu 595	Cys	Ile	Glu	Ala	Gly 600	Leu	Asp	Ser	Ala	Ile 605	Ala	His	Ser	

		Ser	Lys 610	Ile	Leu	Pro	Met	Asn 615	Arg	Ile	Asp	Asp	Arg 620	Gln	Arg	Glu	Val
	5	Ala 625	Leu	Asp	Met	Val	Tyr 630	Asp	Arg	Arg	Thr	Glu 635	Asp	Tyr	Asp	Pro	Leu 640
		Gln	Glu	Phe	Met	Gln 645	Leu	Phe	Glu	Gly	Val 650	Ser	Ala	Ala	Asp	Ala 655	Lys
	10	Asp	Ala	Arg	Ala 660	Glu	Gln	Leu	Ala	Ala 665	Met	Prọ	Leu	Phe	Glu 670	Arg	Leu
	15	Ala	Gln	Arg 675	Ile	Ile	Asp	Gly	Asp 680	Lys	Asn	Gly	Leu	Glu 685	Asp	Asp	Leu
		Glu	Ala 690	Gly	Met	Lys	Glu	Lys 695	Ser	Pro	Ile	Ala	Ile 700	Ile	Asn	Glu	Asp
Ä	20	Leu 705	Leu	Asn	Gly	Met	Lys 710	Thr	Val	Gly	Glu	Leu 715	Phe	Gly	Ser	Gly	Gln 720
		Met	Gln	Leu	Pro	Phe 725	Val	Leu	Gln	Ser	Ala 730	Glu	Thr	Met	Lys	Thr 735	Ala
	25	Val	Ala	Tyr	Leu 740	Glu	Pro	Phe	Met	Glu 745	Glu	Gļu	Ala	Glu	Ala 750	Thr	Gly
	30	Ser	Ala	Gln 755	Ala	Glu	Gly	Lys	Gly 760	Lys	Ile	Val	Val	Ala 765	Thr	Val	Lys
		Gly	Asp 770	Val	His	Asp	Ile	Gly 775	Lys	Asn	Leu	Val	Asp 780	Ile	Ile	Leu	Ser
	35	Asn 785	Asn	Gly	Tyr	Asp	Val 790	Val	Asn	Leu	Gly	Ile 795	Lys	Gln	Pro	Leu	Ser 800
		Ala	Met	Leu	Glu	Ala 805	Ala	Glu	Glu	His	Lys 810	Ala	Asp	Val	Ile	Gly 815	Met
	40	Ser	Gly	Leu	Leu 820	Val	Lys	Ser	Thr	Val 825	Val	Met	Lys	Glu	Asn 830	Leu	Glu
	45	Glu	Met	Asn 835	Asn	Ala	Gly	Ala	Ser 840	Asn	Tyr	Pro	Val	Ile 845	Leu	Gly	Gly
		Ala	Ala 850	Leu	Thr	Arg	Thr	Tyr 855	Val	Glu	Asn	Asp	Leu 860	Asn	Glu	Val	Tyr
	50	Thr 865	Gly	Glu	Val	Tyr	Tyr 870	Ala	Arg	Asp	Ala	Phe 875	Glu	Gly	Leu	Arg	Leu 880
		Met	Asp	Glu	Val	Met 885	Ala	Glu	Lys	Arg	Gly 890	Glu	Gly	Leu	Asp	Pro 895	Asn
	55	Ser	Pro	Glu	Ala 900	Ile	Glu	Gln	Ala	Lys 905	Lys	Lys	Ala	Glu	Arg 910	Lys -	Ala
		Arg	Asn	Glu 915	Arg	Ser	Arg	Lys	Ile 920	Ala	Ala	Glu	Arg	Lys 925	Ala	Asn	Ala

		Ala	Pro 930	Val	Ile	Val	Pro	Glu 935	Arg	Ser	Asp	Val	Ser 940	Thr	Asp	Thr	Pro
	5	Thr 945	Ala	Ala	Pro	Pro	Phe 950	Trp	Gly	Thr	Arg	Ile 955	Val	Lys	Gly	Leu	Pro 960
		Leu	Ala	Glu	Phe	Leu 965	Gly	Asn	Leu	Asp	Glu 970	Arg	Ala	Leu	Phe	Met 975	Gly
	10	Gln	Trp	Gly	Leu 980	Lys	Ser	Thr	Arg	Gly 985	Asn	Glu	Gly	Pro	Ser 990	Tyr	Glu
	15	Asp	Leu	Val 995	Glu	Thr	Glu		Arg L000	Pro	Arg	Leu		Tyr 1005	Trp	Leu	Asp
	10		Leu L010	Lys	Ser	Glu		Ile 1015	Leu	Asp	His		Ala 1020	Leu	Val	Tyr	Gly
	20	Tyr 025	Phe	Pro	Ala		Ala 1030	Glu	Gly	Asp	_	Val 1035	Val	Ile	Leu		Ser 040
		Pro	Asp	Pro		Ala LO45	Ala	Glu	Arg		Arg 1050	Phe	Ser	Phe		Arg .055	Gln
	25	Gln	Arg	Gly	Arg .060	Phe	Leu	Cys		Ala 1065	Asp	Phe	Ile		Pro .070	Arg	Glu
	30	Gln		Val 1075	Lys	Asp	Gly		Val .080	Asp	Val	Met		Phe 1085	Gln	Leu	Val
	30		Met 1090	Gly	Asn	Pro		Ala 1095	Asp	Phe	Ala		Glu .100	Leu	Phe	Ala	Ala
	35	Asn 105	Glu	Tyr	Arg		Tyr 110	Leu	Glu	Val		Gly 1115	Ile	Gly	Val		Leu 120
		Thr	Glu	Ala		Ala 125	Glu	Tyr	Trp		Ser .130	Arg	Val	Arg		Glu .135	Leu
4 1	40	Lys	Leu	Asn 1	Asp .140	Gly	Gly	Ser		Ala .145	Asp	Phe	Asp		Glu 150	Asp	Lys
	45	Thr		Phe l155	Phe	Asp	Leu		Tyr 160	Arg	Gly	Ala		Phe 165	Ser	Phe	Gly
	43		Gly 170	Ser	Суѕ	Pro		Leu .175	Glu	Asp	Arg		Lys 180	Leu	Val	Glu	Leu
	50	Leu 185	Glu	Pro	Gly		Ile 190	Gly	Val	Glu		Ser 195	Glu	Glu	Leu		Leu 200
		His	Pro	Glu		Ser 205	Thr	Asp	Ala		Val .210	Leu	Tyr	His		Glu .215	Ala
	55	Lys	Tyr	Phe 1	Asn .220	Val											

15

30

Patentansprüche

- 1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c).
- 2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid 20 eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
 - 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
- 4. Polynukleotid gemäß Anspruch 2, enthaltend die
 Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2, enthaltend
 - (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
 - (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder

20

- (iii) mindestens eine Sequenz, die mit der zur Sequenz(i) oder (ii) komplementären Sequenz hybridisiert,und gegebenenfalls
- (iv) funktionsneutrale Sinnmutationen in (i).
- 5 6. Polynukleotidsequenz gemäß Anspruch 2, das für ein Polypeptid kodiert, das die Aminosäuresequenz in SEQ ID No. 2 darstellt, enthält.
 - 7. Coryneforme Bakterien, in denen das metH-Gen verstärkt, insbesondere überexprimiert wird.
- 8. Als Wirtszelle dienende coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
 - 9. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Methionin, dadurch gekennzeichnet, daß man folgende Schritte durchführt:
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das metH-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
 - b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.
 - 25 10. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.

10

15

- 11. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
- 12. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man einen mit einem Plasmidvektor transformierten Stamm einsetzt, und der Plasmidvektor die für das metH-Gen kodierende Nukleotidsequenz trägt.
- 13. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man die Expression des (der) Polynukleotides (e), das (die) für das metH-Gen kodiert (kodieren) verstärkt, insbesondere überexprimiert.
- 14. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man die katalytischen Eigenschaften des Polypetids (Enzymprotein) erhöht, für das das Polynukleotid metH kodiert.
- 20 15. Verfahren gemäß Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, daß man zur Herstellung von L-Aminosäuren, insbesondere L-Methionin, coryneformen Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
 - 15.1 das für eine feed back resistente Aspartatkinase kodierende Gen lysC,
 - 15.2 das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,
- 30 15.3 das für die 3-Phosphoglycerat Kinase kodierende Gen pgk,

		15.4	das für die Pyruvat Carboxylase kodierende Gen pyc,
		15.5	das für die Triosephosphat Isomerase kodierende Gen tpi
5		15.6	das für die Homoserin O-Acetyltransferase kodierende Gen metA
		15.7	das für die Cystahionin-gamma-Synthase kodierende Gen metB
10		15.8	das für die Cystahionin-gamma-Lyase kodierende Gen aecD
`		15.9	das für die Serin-Hydroxymethyltransferase kodierende Gen glyA
		15.10	das für die O-Acetylhomoserin-Sulfhydrylase kodierende Gen metY
15			verstärkt bzw. überexprimiert.
	16.	g e k e	en gemäß Anspruch 9, dadurch nnzeichnet, daß man zur Herstellung
20 (corynef	minosäuren, insbesondere L-Methionin, ormen Mikroorganismen fermentiert, in denen man eitig eines oder mehrere der Gene, ausgewählt Gruppe
		16.1	das für die Homoserine - Kinase kodierende Gen thrB
25		16.2	das für die Threonin Dehydratase kodierende Gen ilvA
		16.3	das für die Threonin Synthase kodierende Gen thrC

- 16.4 das für die Meso-Diaminopimelat D-Dehydrogenase kodierende Gen ddh
- 16.5 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck
- 5 16.6 das für die Glucose-6-Phosphat6 Isomerase kodierende Gen pgi
 - 16.7 das für die Pyruvat-Oxidase kodierende Gen poxB abschwächt.
- 10 17. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dad urch gekennzeich net, daß man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
 - 18. Verfahren zum Auffinden von RNA, cDNA und DNA, um

 Nukleinsäuren, beziehungsweise Polynukleotide oder Gene
 zu isolieren, die für Homocystein-Methyltransferase II
 kodieren oder eine hohe Ähnlichkeit mit der Sequenz des
 Homocystein-Methyltransferase II Gens aufweisen,
 dadurch gekennzeichnet, dass man die
 - Polynukleotidsequenzen gemäß Anspruch 1, 2, 3 oder 4 als Hybridisierungssonden einsetzt.

Neue für das metH-Gen kodierende Nukleotidsequenzen

Zusammenfassung

5

10

20

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70% identisch istmit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
- c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
 - und Verfahren zur fermentativen Herstellung von LAminosäuren unter Verwendung von coryneformen Bakterien, in
 denen zumindest das metH-Gen verstärkt vorliegt, und die
 Verwendung der Polynukleotidsequenzen als
 Hybridisierungssonden.