NTRU Prime: Security and Performance Analysis

Chitchanok Chuengsatiansup & Christine van Vredendaal

Technische Universiteit Eindhoven

February 26, 2016

Joint work with Daniel J. Bernstein & Tanja Lange

What is NTRU Prime?

• Public key is small/small $\in (\mathbb{Z}/q)[x]/poly$

	NTRU	NTRU Prime
poly	x^N-1	$x^{p} - x - 1$
Modulus <i>q</i>	2 ^d	prime
# of factors of poly mod q	> 1	1
# of proper subfields	> 1	1
Every <i>m</i> encryptable	Х	✓
No decryption failures	X	✓

What is NTRU Prime?

• Public key is small/small $\in (\mathbb{Z}/q)[x]/poly$

	NTRU	NTRU Prime
poly	x^N-1	$x^{p} - x - 1$
Modulus <i>q</i>	2 ^d	prime
# of factors of poly mod q	> 1	1
# of proper subfields	> 1	1
Every <i>m</i> encryptable	Х	✓
No decryption failures	X	✓

We investigated security against the strongest known attacks;
hybrid attack of BKZ and MitM, and lattice sieving

р	q	t	Key size	Security
881	7673	159	11.4 Kb	257

What is NTRU Prime?

• Public key is small/small $\in (\mathbb{Z}/q)[x]/poly$

	NTRU	NTRU Prime
poly	x^N-1	$x^{p} - x - 1$
Modulus <i>q</i>	2 ^d	prime
# of factors of poly mod q	> 1	1
# of proper subfields	> 1	1
Every <i>m</i> encryptable	Х	✓
No decryption failures	X	✓

We investigated security against the strongest known attacks;
hybrid attack of BKZ and MitM, and lattice sieving

р	q	t	Key size	Security
881	7673	159	11.4 Kb	257

But, is it still fast?

Polynomial Multiplication

- Main bottleneck is polynomial multiplication
- Multiplication algorithms considered:
 - Toom (3-7)
 - refined Karatsuba
 - arbitrary degree variant of Karatsuba (3-7)
- Best operation count found so far for 896×896 :
 - ullet 5-level refined Karatsuba up to 128×128
 - Toom7: evaluated at $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, 6, \infty$
- Performance
 - vectorized Haswell implementation in progress
 - ullet ≥ 0.125 cycles per floating-point operation

	mul	con mult	add	shift	total
op.	50544	16083	121248	7407	195282
$cycles \geq$	6318	2011	15156	926	24411