Devoir surveillé nº 3 - MPI

Samedi 18 octobre 2025.

Ce devoir surveillé, d'une durée de 4h est constitué de deux problèmes tout à fait indépendants issus des concours. Le premier est commun avec les MPI*. On attachera une attention particulière au soin et à la présentation, et à la rigueur de l'argumentation, tout en évitant les lourdeurs inutiles.

On maintient la petite règle supplémentaire du dernier devoir : ne pas répondre à une question si vous n'êtes pas sûr de le faire soigneusement, et avec les idées à peu près claires. Bon courage!

Problème 1 : Étude d'une famille de séries entières

Dans tout le problème, α désigne un nombre réel. On note \mathbb{D}_{α} l'ensemble des réels x pour lesquels la série entière $\sum_{n\geq 1}\frac{x^n}{n^{\alpha}}$ est convergente et on pose, pour tout $x\in\mathbb{D}_{\alpha}$:

$$f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}$$

Objectifs:

Ce problème est composé de deux **parties** indépendantes.

Dans la partie I, on étudie quelques propriétés élémentaires des fonctions f_{α} .

L'objectif de la partie II est de construire un logarithme complexe.

I. Quelques propriétés des fonctions f_{α}

- Q1. Déterminer le rayon de convergence R commun aux séries entières définissant les fonctions f_{α} .
- **Q2.** Déterminer, suivant les valeurs du réel α , le domaine de définition \mathbb{D}_{α} de la fonction f_{α} . On distinguera les cas $\alpha \in]-\infty,0]$, $\alpha \in]0,1]$ et $\alpha \in]1,+\infty[$.
- **Q3.** On suppose dans cette question $\alpha > 0$. Déterminer, pour tout $x \in \mathbb{D}_{\alpha}$, le signe de $f_{\alpha}(x)$.
- **Q4.** Expliciter f_0 , f_{-1} et f_1 .
- **Q5.** Soit $\alpha > 1$. Prouver que f_{α} est continue sur \mathbb{D}_{α} .
- **Q6.** Soit $\alpha \leq 1$. Prouver que $\lim_{x\to 1^-} f_{\alpha}(x) = +\infty$. On pourra comparer f_{α} à f_1 .

II. Un logarithme complexe

Q7. Donner sans démonstration le développement en série entière au voisinage de 0 de la fonction qui à $x \in]-1,1[$ associe $\ln(1+x)$.

Pour tout nombre complexe z, tel que la série $\sum_{n\geqslant 1}\frac{(-z)^n}{n}$ est convergente, on note :

$$S(z) = -\sum_{n=1}^{+\infty} \frac{(-z)^n}{n}$$

Q8. Donner le rayon de convergence R de la série entière définissant S. Pour tout x réel élément de]-R,R[, déterminer la valeur de $\exp(S(x))$.

Soit $z_0 \in \mathbb{C}$ tel que $|z_0| < R$. On considère la série entière de la variable réelle t suivante :

$$\sum_{n \ge 1} (-1)^{n-1} \frac{z_0^n}{n} t^n.$$

En cas de convergence, on note g(t) sa somme.

On a donc, pour $t \in \mathbb{R}$ tel que la série est convergente, $g(t) = S(tz_0)$.

- **Q9.** Déterminer le rayon de convergence de la série entière définissant g.
- **Q10.** Prouver que g est définie et de classe \mathcal{C}^{∞} sur [0,1]. Déterminer, pour tout $t \in [0,1], g'(t)$.
- **Q11.** On pose $h = \exp \circ g$. Prouver que pour tout $t \in [0, 1]$:

$$h'(t) = \frac{z_0}{1 + tz_0}h(t).$$

Q12. Résoudre l'équation différentielle de la question précédente et en déduire que :

$$\exp(S(z_0)) = z_0 + 1.$$

Problème 2 : Séries de Taylor et développement en série entière

Dans ce problème, toutes les fonctions considérées sont définies sur un intervalle I de $\mathbb R$ et à valeurs réelles.

Les questions **Q2.** et **Q9.** introduisent des intégrales sur $]0, +\infty[$, ce que nous n'avons pas encore étudié cette année. La mention (5/2) sur ces questions indiquent donc que pour avoir tous les points, certaines justifications ne sont attendues que pour les étudiants 5/2.

Partie préliminaire

Dans cette partie, les questions sont indépendantes les unes des autres et leurs résultats peuvent être admis dans la suite du problème.

- **Q1.** Justifier, pour tout réel $x \in]-1,1[$, l'existence de $\sum_{n=1}^{+\infty} nx^{n-1}$ et donner sa valeur.
- **Q2.** (5/2) On rappelle que la fonction Γ est définie pour tout réel $x \in]0, +\infty[$ par :

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} \, \mathrm{d}t.$$

Démontrer que, pour tout réel $x \in]0, +\infty[$, $\Gamma(x+1) = x\Gamma(x)$ et en déduire, pour tout entier naturel n non nul, la valeur de $\Gamma(n)$.

Q3. Démontrer la formule de Taylor avec reste de Laplace (ou reste intégral) : Si I est un intervalle contenant le réel a, si f est une fonction de I dans \mathbb{R} de classe \mathcal{C}^{∞} sur I, alors pour tout réel $x \in I$ et pour tout entier naturel n, on a:

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_{a}^{x} \frac{(x-a)^n}{n!} f^{(n+1)}(t) dt.$$

ON RAPELLE LE THÉORÈME SUIVANT :

Si une fonction f admet un développement en série entière sur l'intervalle]-a,a[, alors :

- la fonction f est de classe C^{∞} sur]-a,a[,
- son développement en série entière est unique et donné par la série de Taylor de la fonction f à l'origine :

$$\forall x \in]-a, a[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

I. Quelques exemples d'utilisation de ce théorème

- **Q4.** On considère la fonction f définie par : f(0) = 1 et, pour tout réel $x \neq 0$, $f(x) = \frac{\sin(x)}{x}$. Démontrer que la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- **Q5.** Expliciter une fonction f de classe C^{∞} sur un voisinage de 0 et vérifiant, pour tout entier naturel n, l'égalité $f^{(n)}(0) = n$ n!.
- Q6. Un théorème des moments.

Soit f une fonction développable en série entière sur]-R,R[avec R>1:

$$\forall x \in]-R, R[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

On suppose que, pour tout entier naturel n, $\int_0^1 x^n f(x) dx = 0$.

L'obectif de cette question est de montrer que f est identiquement nulle sur]-R,R[.

- a) Démontrer que la série $\sum_{n\geqslant 0} f(x) \frac{f^{(n)}(0)}{n!} x^n$ converge normalement sur l'intervalle [0,1].
- b) à l'aide du calcul de $\int_0^1 (f(x))^2 dx$, démontrer que la fonction f est nulle sur l'intervalle [0,1].
- c) Démontrer que la fonction f est nulle sur l'intervalle]-R,R[.

II. Contre-exemples

- **Q7.** Donner un exemple de fonction f à la fois de classe \mathcal{C}^{∞} sur un intervalle I et développable en série entière au voisinage de l'origine, mais qui ne coïncide pas avec sa série de Taylor en 0 sur I tout entier.
- Q8. Un exemple de fonction ne coïncidant avec sa série de Taylor en 0 sur aucun voisinage de 0.

On considère la fonction f définie sur \mathbb{R} par : f(0) = 0 et $\forall x \neq 0, f(x) = \exp\left(-\frac{1}{x^2}\right)$.

- a) Montrer que f est continue et dérivable en 0, et dessiner sans justification l'allure de sa courbe représentative.
- b) Par les théorèmes généraux, la fonction f est de classe \mathcal{C}^{∞} sur $]0, +\infty[$. Démontrer que, pour tout entier naturel n, il existe un polynôme P_n tel que, pour tout $x \in]0, +\infty[$, $f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} \exp\left(-\frac{1}{x^2}\right)$.
- c) Démontrer que la fonction f est de classe C^{∞} sur $[0, +\infty[$ avec, pour tout entier naturel n, $f^{(n)}(0) = 0$.

Par parité, la fonction f ainsi définie est de classe \mathcal{C}^{∞} sur \mathbb{R} .

- d) La fonction f est-elle développable en série entière sur un intervalle]-r,r[?] Justifier soigneusement votre réponse.
- Q9. Un exemple où la série de Taylor de la fonction f en 0 a un rayon nul.

Pour tout réel
$$x$$
, on pose : $f(x) = \int_0^{+\infty} \frac{e^{-t}}{1 + tx^2} dt$.

- a) (5/2) Justifier que, pour tout réel x, la fonction $t \mapsto \frac{e^{-t}}{1+tx^2}$ est bien intégrable sur $[0, +\infty[$, puis démontrer que la fonction f est de classe \mathcal{C}^1 sur \mathbb{R} . On admettra que la fonction f est de classe \mathcal{C}^∞ sur \mathbb{R} et que l'on obtient les dérivées successives en dérivant sous le signe intégrale.
- b) Pour $t \in]0, +\infty[$, calculer, au moyen d'une série entière, les dérivées successives en 0 de la fonction $x \longmapsto \frac{e^{-t}}{1 + tx^2}$ pour en déduire l'expression de $f^{(n)}(0)$ pour tout entier naturel n.
- c) Quel est le rayon de la série entière $\sum_{n\geqslant 0} \frac{f^{(n)}(0)}{n!} x^n$?
 La fonction f est-elle développable en série entière à l'origine?

III. Condition suffisante

On se propose, dans cette partie, d'étudier une condition suffisante pour qu'une fonction de classe \mathcal{C}^{∞} sur un intervalle centré en 0 soit développable en série entière au voisinage de 0.

- **Q10.** Soient a un réel strictement positif et f une fonction de classe C^{∞} sur l'intervalle]-a,a[. On suppose qu'il existe un réel M>0 tel que, pour tout $x\in]-a,a[$ et pour tout entier naturel $n,|f^{(n)}(x)|\leqslant M.$
 - a) Démontrer que la fonction f est développable en série entière au voisinage de l'origine.
 - b) Donner un exemple simple de fonction pour laquelle ce résultat s'applique.

Un corrigé

Problème 1 : Étude d'une famille de séries entières

Corrigé très concis, la rédaction devrait être un peu plus détaillée

I. Quelques propriétés des fonctions f_{α}

Q1.
$$\forall z \in \mathbb{C}, \ \left| \frac{z^n}{n^{\alpha}} \right| \xrightarrow[n \to +\infty]{} \begin{cases} 0 & \text{si } |z| < 1 \\ +\infty & \text{si } |z| > 1 \end{cases} \text{donc } R = 1.$$

On pouvait aussi utiliser bien sûr le critère de d'Alembert

Q2. D'après ce qui précède, $]-1,1[\subset \mathcal{D}_{\alpha}\subset [-1,1].$

La série converge en 1 si, et seulement si $\alpha > 1$ (c'est une série de Riemann), et en -1 si, et seulement si $\alpha > 0$, en utilisant le critère spécial des séries alternées (si $\alpha \leq 0$, la série diverge grossièrement).

On a donc
$$\mathcal{D}_{\alpha} = \begin{cases}]-1,1[& \text{si } \alpha \in]-\infty,0] \\ [-1,1[& \text{si } \alpha \in]0,1] \\ [-1,1] & \text{si } \alpha \in]1,+\infty[\end{cases}$$

Q3. Pour $x \ge 0$, la série est à termes positifs donc $f_{\alpha}(x) \ge 0$.

Pour $x \leq 0$, la série satisfait les hypothèses du critère spécial des séries altérnées donc sa somme est du signe de son 1^{er} terme : $f_{\alpha}(x) \leq 0$.

Q4. D'après le cours, $f_0(x) = \frac{1}{1-x}$ et $f_1(x) = -\ln(1-x)$.

Par le théorème de dérivation des séries entières, $f_0'(x) = \sum_{n=1}^{+\infty} nx^{n-1} = \frac{1}{x}f_{-1}(x)$.

On a donc
$$f_{-1}(x) = \frac{x}{(1-x)^2}$$

- **Q5.** Pour $\alpha > 1$, la série converge normalement sur [-1,1] donc f_{α} est continue sur $\mathcal{D}_{\alpha} = [-1,1]$.
- **Q6.** Pour tout $x \in [0,1[,\frac{x^n}{n^\alpha} \geqslant \frac{x^n}{n} \text{ donc } f_\alpha(x) \geqslant f_1(x)$. Or $f_1(x) = -\ln(1-x) \xrightarrow[x\to 1^-]{} +\infty$. On en déduit que $\lim_{x\to 1^-} f_\alpha(x) = +\infty$.

II. Un logarithme complexe

Q7. Pour
$$x \in]-1,1[$$
, $\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}x^n}{n} = -\sum_{n=1}^{+\infty} \frac{(-x)^n}{n}$

- **Q8.** On a R = 1 et pour $x \in]-1,1[$, $\exp(S(x)) = 1 + x$, d'après la question précédente.
- **Q9.** On trouve que ce rayon de convergence est $R_g = \frac{1}{|z_0|}$, à l'aide par exemple du critère de d'Alembert.
- **Q10.** D'après le théorème de dérivation des séries entières, g est de classe \mathcal{C}^{∞} sur $]-R_g, R_g[$, qui contient [0,1] et $g'(t) = \sum_{n=1}^{+\infty} (-1)^{n-1} z_0^n t^{n-1} = \frac{z_0}{1+tz_0}$.
- **Q11.** D'après ce qui précède, h est de classe \mathcal{C}^{∞} sur [0,1] et $h'(t)=g'(t)h(t)=\frac{z_0}{1+tz_0}h(t)$.

Q12. On remarque que la fonction $z: t \mapsto 1 + tz_0$ est solution de cette équation différentielle. De plus, z(0) = 1 = h(0). Ainsi, h et z sont solutions du même problème de Cauchy, donc elle sont égales. En t = 1, on obtient $h(1) = \exp(S(z_0)) = z(1) = 1 + z_0$.

Problème 2 : Séries de Taylor et développement en série entière

Partie préliminaire

Q1. La série entière $\sum_{n=1}^{\infty} nx^{n-1}$ est la série dérivée de la série entière $\sum_{n=0}^{\infty} x^n$. Cette dernière a pour rayon de convergence 1 donc la série dérivée est de même rayon de convergence et sa somme est la dérivée de la série $\sum_{n=0}^{\infty} x^n$.

De plus,
$$\forall x \in]-1, 1[, \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}]$$
. Donc $\forall x \in]-1, 1[, \sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}]$.

Q2. Soit x > 0.

Fixons deux réels a et A tels que 0 < a < A.

Posons les fonctions u et v définies sur le segment [a,A] par $u(t)=t^x$ et $v(t)=-e^{-t}$. u et v sont de classe C^1 sur [a,A] et $\forall t \in [a,A], u'(t)=xt^{x-1}$ et $v'(t)=e^{-t}$.

Par le théorème d'intégration par parties, $\int_a^A t^x e^{-t} dt = \left[-t^x e^{-t} \right]_a^A + x \int_a^A t^{x-1} e^{-t} dt = a^x e^{-a} - t$

$$A^x e^{-A} + x \int_a^A t^{x-1} e^{-t} dt.$$

On fait tendre a vers 0 et A vers $+\infty$.

Par définition de la fonction Γ , les deux intégrales convergent respectivement vers $\Gamma(x+1)$ et $\Gamma(x)$.

Comme x est strictement positif, a^x tend vers 0 donc $a^x e^{-t} = O(a^x)$ également quand a tend vers 0.

Enfin, par théorème de comparaison, $A^x e^{-A}$ tend vers 0 quand A tend vers $+\infty$.

Par unicité de la limite, on obtient l'égalité $\Gamma(x+1)=x\Gamma(x)$.

Montrons par récurrence sur $n \in \mathbb{N}^*$ le prédicat P(n) : " $\Gamma(n) = (n-1)!$.

$$\Gamma(0) = \int_0^{+\infty} e^{-t} dt = 1 = 0! \text{ donc } P(0) \text{ est vrai.}$$

Soit $n \in \mathbb{N}^*$. On suppose que P(n) est vrai.

n > 0 donc $\Gamma(n+1) = n\Gamma(n) = n(n-1)! = n!$. Donc P(n+1) est vrai.

Conclusion : par le principe de récurrence, P(n) est vrai pour tout $n \in \mathbb{N}^*$ et $\forall n \in \mathbb{N}^*, \Gamma(n) = (n-1)!$.

Q3. Soit $x \in \mathbb{R}$ fixé. Montrons par récurrence sur $n \in \mathbb{N}$ le prédicat $P(n): f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) +$

$$\int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Initialisation:

$$\sum_{k=0}^{n} \frac{(x-a)^0}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^0}{0!} f'(t) dt = f(a) + \int_a^x f'(t) dt = f(a) + f(x) - f(a) = f(x).$$

Donc P(0) est vrai.

Hérédité :

Soit $n \in \mathbb{N}^*$. On suppose P(n-1) vrai.

Définissons les fonctions u et v sur I par $u(t) = \frac{(x-t)^n}{n!}$ et $v(t) = f^{(n)}(t)$.

u et v sont de classe C^1 sur I et $\forall t \in I, u'(t) = -n \frac{(x-t)^{n-1}}{n!} = -\frac{(x-t)^{n-1}}{(n-1)!}$ et $v'(t) = f^{(n+1)}(t)$.

Par le théorème d'intégration par parties, $\int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt = \left[\frac{(x-t)^n}{n!} f^{(n)}(t)\right]_a^x + \int_a^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt$ $0^n = 0 \text{ car } n \geqslant 1.$

En exploitant l'hypothèse de récurrence, on obtient ainsi

$$\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt = -\frac{(x-a)^{n}}{n!} f^{(n)}(a) + f(x) - \sum_{k=0}^{n-1} \frac{(x-a)^{k}}{k!} f^{(k)}(a) = f(x) - \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a).$$

P(n) est donc vrai.

Conclusion : par le principe de récurrence, P(n) est vrai pour tout $n \in \mathbb{N}$.

Ι. Quelques exemples

Q4. Par théorème, $\forall x \in \mathbb{R}, \sin x = \sum_{p=0}^{\infty} \frac{(-1)^p}{(2p+1)!} x^{2p+1}$. Donc $\forall x \in \mathbb{R}^*, f(x) = \sum_{p=0}^{\infty} \frac{(-1)^p}{(2p+1)!} x^{2p}$.

De plus,
$$\sum_{p=0}^{\infty} \frac{(-1)^p}{(2p+1)!} 0^{2p} = 1 = f(0) \text{ donc } \forall x \in \mathbb{R}, f(x) = \sum_{p=0}^{\infty} \frac{(-1)^p}{(2p+1)!} x^{2p}.$$

f admet donc un développement en série entière sur l'intervalle $]-\infty,+\infty[$ Cette fonction est donc de classe C^{∞} sur \mathbb{R} .

Q5.]-1,1[est un voisinage de 0.

D'après la question 1,
$$\forall x \in]-1, 1[$$
, $\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = \sum_{n=0}^{\infty} nx^n$

D'après la question 1, $\forall x \in]-1, 1[$, $\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = \sum_{n=0}^{\infty} nx^n$. La fonction f définie sur]-1, 1[par $f(x) = \frac{x}{(1-x)^2}$ est donc développable en série entière sur

l'intervalle]-1,1[. Elle est de classe C^{∞} et d'après le théorème rappelé, $\forall n \in \mathbb{N}, \frac{f^{(n)}(0)}{n!} = n$ donc $\forall n \in \mathbb{N}, f^{(n)}(0) = n.n!.$

a) f est de classe C^{∞} donc en particulier, continue sur]-R,R[. Or $[0,1]\subset]-R,R[$ car R>1.Q6. Donc f est continue sur le segment [0,1]. Par théorème elle est bornée. Il existe et on le fixe un réel M > 0 tel que $\forall x \in [0,1], |f(x)| \leq M$.

> Par théorème, pour tout réel du disque ouvert de convergence]-R,R[, la série $\sum_{n} \frac{f^{(n)}(0)}{n!}x^n$ est absolument convergente.

Or $1 \in]-R, R[$ donc $\left|\frac{f^{(n)}(0)}{n!}\right|$ est le terme général d'une série convergente.

Enfin,
$$\forall x \in [0, 1], \left| f(x) \frac{f^{(n)}(0)}{n!} x^n \right| \leq M \left| \frac{f^{(n)}(0)}{n!} \right|$$
 donc $\sup_{x \in [0, 1]} \left| f(x) \frac{f^{(n)}(0)}{n!} x^n \right| \leq M \left| \frac{f^{(n)}(0)}{n!} \right|.$

Par définition, la série de fonction $\sum_{n=0}^{\infty} f(x) \frac{f^{(n)}(0)}{n!} x^n$ converge normalement sur l'intervalle [0,1].

b) Pour tout $x \in [0,1]$, $\sum_{n=0}^{\infty} f(x) \frac{f^{(n)}(0)}{n!} x^n = f(x) \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(x)^2$.

Donc la série de fonction précédemment étudiée converge normalement donc uniformément sur le segment [0,1] vers la fonction $x \mapsto (f(x))^2$. Les fonctions sont continues.

Par théorème d'intégration terme à terme, $\int_0^1 f(x)^2 dx = \sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!} \int_0^1 f(x) x^n dx = 0.$

La fonction $x \mapsto f(x)^2$ est continue, positive et d'intégrale nulle sur le segment [0,1] donc

par théorème, cette fonction est nulle et $\forall x \in [0,1], f(x)^2 = 0.$

Par le caractère intègre de $\mathbb{R}, \forall x \in [0,1], f(x) = 0.$

c) Soit $a \in [0,1[$ fixé. Au voisinage de a, f est identiquement nulle donc $\forall n \in \mathbb{N}, f^{(n)}(a) = 0$. Soit $n \in \mathbb{N}$. $\forall a \in]0,1[,f^{(n)}(a)=0 \text{ donc } f^{(n)} \text{ est nulle sur }]0,1[.$

Par continuité de $f^{(n)}$ en 0 (à droite), $f^{(n)}(0) = 0$.

Donc
$$\forall x \in]-R, R[, f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0.$$

Conclusion: f est la fonction nulle sur l'intervalle]-R,R[.

II. Contre-exemples

Q7. On définit la fonction f sur \mathbb{R} par $f(x) = \frac{1}{1+x^2}$.

Par les théorèmes généraux, f est de classe C^{∞} sur \mathbb{R} .

f est développable en série entière sur]-1,1[et $\forall x \in]-1,1[$, $f(x)=\sum_{n=0}^{\infty}{(-1)^nx^{2n}}$.

En revanche, cette série n'est pas définie pour x=1 (terme général qui ne tend pas vers 0) donc f ne coïncide pas avec sa série de Taylor en 0 sur \mathbb{R} tout entier.

Q8.

b) Dans cette question, nous identifions les polynômes à coefficients réelles et les fonctions polynomiales associées.

Démontrons par récurrence sur $n \in \mathbb{N}$ le prédicat $P(n) : \exists P_n \in \mathbb{R}[X] | \forall x > 0, f^{(n)}(x) =$

Initialisation:

Posons $P_0 = 1$ qui est bien un polynôme...

$$\forall x > 0, \frac{P_0(x)}{x^{3 \times 0}} e^{-1/x^2} = e^{-1/x^2} = f(x).$$

Donc P(0) est vrai.

Hérédité:

Soit $n \ge \mathbb{N}^*$. Supposons P(n-1) vrai.

Alors, il existe et on le fixe un polynôme $P_{n-1} \in \mathbb{R}[X]$ tel que $\forall x > 0, f^{(n-1)}(x) =$ $P_{n-1}(x)x^{-3n+3}e^{-x^{-2}}$.

Par dérivation de l'égalité précédente, on a
$$\forall x>0, f^{(n)}(x)=P'_{n-1}(x)x^{-3n+3}e^{-1/x^2}+P_{n-1}(x)(-3n+3)x^{-3n+2}e^{-1/x^2}+P_{n-1}(x)x^{-3n+3}(2x^{-3})e^{-1/x^2}\\ =\frac{1}{x^{3n}}e^{-1/x^2}\left(x^3P'_{n-1}(x)+(-3n+2)x^2P_{n-1}(x)+2P_{n-1}(x)\right).$$

Posons $P_n = X^3 P'_{n-1} + (-3n+2)X^2 P_{n-1} + 2P_{n-1}$. Par stabilité de $\mathbb{R}[X]$ par la dérivation, le produit, la somme... P_n est un polynôme de $\mathbb{R}[X]$ et il vérifie $\forall x>0, f^{(n)}(x)=0$ $P_n(x) \frac{1}{x^{3n}} e^{-1/x^2}.$

P(n) est donc vrai.

Conclusion : par le principe de récurrence, P(n) est vrai pour tout $n \in \mathbb{N}$ ce qui démontre le résultat.

c) Montrons par récurrence sur n le prédicat P(n): f est de classe C^n sur $[0, +\infty[$ et $f^{(n)} = 0$. Initialisation:

f est continue sur $]0, +\infty[$. De plus, $\lim_{x\to 0^+} \frac{-1}{x^2} = -\infty$ et $\lim_{t\to -\infty} e^u = 0$ donc par composition des limites, $\lim_{x \to 0^+} f(x) = 0 = f(0)$.

Donc f est continue à droite en 0.

f est donc continue sur $[0, +\infty[$ ce qui démontre P(0).

Hérédité :

Soit $n \in \mathbb{N}^*$. Supposons P(n-1) vrai.

Alors $f^{(n-1)}$ est bien définie et continue sur $[0, +\infty[$.

De plus, f est de classe C^{∞} sur $]0, +\infty[$ donc $f^{(n-1)}$ est de classe C^1 sur $]0, +\infty[$.

D'après la question précédente, $\forall x > 0, (f^{(n-1)})'(x) = f^{(n)}(x) = \frac{P_n(x)}{r^{3n}}e^{-1/x^2}$.

Par les théorèmes de comparaison des fonctions usuelles, au voisinage de $+\infty$, $u^{3n}e^{-u^2}$ o(1).

Or $\lim_{x\to 0^+} (1/x) = +\infty$ donc par substitution, au voisinage de $0^+, \frac{1}{x^{3n}} e^{-1/x^2} = o(1)$.

 P_n est une fonction polynomiale donc continue en 0 donc bornée au voisinage de 0. Ainsi, par théorème d'opérations, $\lim_{x\to 0^+} \frac{P_n(x)}{x^{3n}} e^{-1/x^2} = 0$ donc $\lim_{x\to 0^+} (f^{(n-1)})'(x) = 0$.

En résumé, $f^{(n-1)}$ est continue sur $[0, +\infty[$, de classe C^1 sur $]0, +\infty[$ et $\lim_{n \to \infty} (f^{(n-1)})'(x) = 0$.

Par théorème de prolongement de la classe C^1 , $f^{(n-1)}$ est de classe C^1 sur $[0, +\infty[$ et $(f^{(n-1)})'(0) = \lim_{x \to 0^+} (f^{(n-1)})'(x) = 0$.

Par définition, f est donc de classe C^n sur $[0, +\infty[$ et $f^{(n)}(0) = (f^{(n-1)})'(0) = 0$ ce qui démontre P(n).

Conclusion : par le principe de récurrence, P(n) est vrai pour tout $n \in \mathbb{N}$.

f est donc de classe C^{∞} sur $[0, +\infty[$ et $\forall n \in \mathbb{N}, f^{(n)}(0) = 0.$

d) Supposons qu'il existe r > 0 tel que la fonction f soit développable en série entière sur]-r,r[.

D'après le théorème rappelé et la question précédente, $\forall x \in]-r, r[, f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n =$

En particulier, $r/2 \in]-r, r[$ et $r/2 \neq 0$ donc $e^{-4/r^2} = 0$: absurde.

Conclusion f n'est pas développable en série entière sur aucun intervalle de la forme]-r,r[avec r > 0.

a) Soit $x \in \mathbb{R}$. Q9.

 $\forall t \geq 0, 1 + tx^2 \geq 1$ donc $t \mapsto \frac{e^{-t}}{1 + tx^2}$ est bien définie et continue d'après les théorèmes généraux sur $[0, +\infty[$.

Au voisinage de $+\infty$, $\frac{e^{-t}}{1+tx^2}=O(e^{-t})$. $t\mapsto e^{-t}$ est de signe constant et intégrable au

voisinage de $+\infty$ donc $t \mapsto \frac{e^{-t}}{1+tx^2}$ est intégrable sur $[0, +\infty[$.

f est donc bien définie sur \mathbb{R}

Fixons a un réel strictement positif.

Posons la fonction g définie sur $[0, +\infty[\times[-a, a] \text{ par } g(t, x)] = \frac{e^{-t}}{1 + tx^2}$.

Soit $t \ge 0$ fixé. $x \mapsto g(t,x)$ est dérivable sur [-a,a] et $\forall x \in [-a,a], \frac{\partial g}{\partial x}(x,t) = \frac{-2txe^{-t}}{(1+tx^2)^2}$.

De plus, $\forall x \in [-a, a], \left| \frac{\partial g}{\partial x}(x, t) \right| \le 2tae^{-t}$.

La fonction $t\mapsto 2tae^{-t}$ est positive et intégrable sur $[0,+\infty[$ en particulier car au voisinage $de +\infty$, $2ate^{-t} = o(1/t^2)$

Pour tout $x \in [-a, a]$, les fonctions $t \mapsto g(x, t)$ et $t \mapsto \frac{\partial g}{\partial x}(x, t)$ sont intégrables sur $[0, +\infty[$.

Par théorème, la fonction $x \mapsto \int_0^{+\infty} g(x,t) dt = f(x)$ est de classe C^1 sur [-a,a] donc f est de classe C^1 sur [-a, a] et ceci pour tout a > 0. Donc f est de classe C^1 sur \mathbb{R} .

b) Soit t > 0 fixé. Posons $\alpha = \frac{1}{\sqrt{t}}$ qui est un réel strictement positif.

Soit $x \in]-\alpha, \alpha[$. Alors $tx^2 \in [0, 1[$

Donc
$$\frac{e^{-t}}{1+tx^2} = e^{-t} \sum_{p=0}^{\infty} (-1)^p (tx^2)^p = \sum_{p=0}^{\infty} \frac{(-1)^p t^p (2p)! e^{-t}}{(2p)!} x^{2p}.$$

Notons h la fonction définie sur \mathbb{R} par $h(x) = \frac{e^{-t}}{1 + tx^2}$.

D'après ce qui précède, h est développable en série entière sur l'intervalle $]-\alpha,\alpha[$ donc par le théorème rappelé,

 $\forall p \in \mathbb{N}, f^{(2p)}(0) = (-1)^p (2p)! t^p e^{-t} \text{ et } f^{(2p+1)}(0) = 0.$

c) D'après la question précédente et le résultat admis à la fin de la question 9(a), $\forall p \in \mathbb{N}$, $f^{(2p+1)}(0) = \int_0^{+\infty} 0 \ dt = 0$ et $f^{(2p)}(0) = \int_0^{+\infty} (-1)^p (2p)! e^{-t} t^p \ dt = (-1)^p (2p)! \Gamma(p+1) = 0$

Ainsi, on peut réécrire ainsi (formellement) la série entière $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{p=0}^{\infty} \frac{(-1)^p (2p)! p!}{(2p)!} x^{2p} = \sum_{p=0}^{+\infty} (-1)^p p! \ x^{2p}.$$

Posons $u_p = (-1)^p p! x^{2p}$, terme général d'une suite de réels tous non nuls.

Pour tout $p \in \mathbb{N}$, $\frac{|u_{p+1}|}{|u_p|} = p|x|^2$ qui tend vers $+\infty$ quand p tend vers ∞ .

Donc u_p n'est pas le terme général d'une série absolument convergente.

Par caractérisation du rayon de convergence d'une série entière, celui de la série entière $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \text{ est donc nul.}$ Supposons qu'il existe r>0 tel que f soit développable en série entière sur]-r,r[.

Alors, par le théorème rappelé, $\forall x \in]-r, r[, f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ et, par caractérisation

du rayon de convergence, celui de la série entière $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ est donc supérieur ou égal

à r. Donc $0 \ge r$: absurde.

Donc f n'est pas développable en série entière au voisinage de 0.

II. - $Condition \ suffisante$

Q10. a) Fixons un réel $x \in]-a, a[$.

Soit $n \in \mathbb{N}$.

f est de classe C^{n+1} sur l'intervalle]-a,a[.

 $(0,x) \in]-a,a[^2]$ $|f^{(n+1)}| \le M$.

Par l'inégalité de Taylor Lagrange, on obtient alors $\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \right| \le M \frac{|x-0|^{n+1}}{(n+1)!} = 0$

$$M\frac{|x|^{n+1}}{(n+1)!}.$$

Par comparaison des suites usuelles, $\left(\frac{|x|^{n+1}}{(n+1)!}\right) \to 0$ donc par théorème d'encadrement,

$$\left(\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}\right)_{n \in \mathbb{N}} \to f(x) \text{ce que l'on peut réécrire } \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} = f(x).$$

f est donc développable en série entière sur]-a,a[donc au voisinage de 0.

b) $\forall (n,x) \in \mathbb{N} \times \mathbb{R}, |\sin^{(n)}(x)| \leq 1$ donc sin est développable en série entière au voisinage de 0.