DATA MINING AND DATA WAREHOUSING

(BCSDM515)

<u>By,</u>

Anusha K S

Assistant Professor, Dept. of CSE VVCE, Mysuru.

MODULE 1

Data Warehousing: Basic Concepts, What is a Data Warehouse? Difference between Operational database Systems and Data Warehouses, Why have a Separate data Warehouse? Data Warehousing: A Multitiered Architecture, Extraction, Transformation and loading, metadata Repository.

Data Warehouse Modeling: Data Cube and OLAP, Data Cube: A multidimensional data model, Stars, Snowflakes and Fact constellations: Schemas for multidimensional Data models, Dimensions: The role of concept Hierarchies, Measures: Their Categorization and computation, Typical OLAP Operations.

SLT: Data Warehouse Models: Enterprise Warehouse, Data Mart and Virtual Warehouse

1. What is data...?

2. What is information...?

3. What is Database...?

Figure: Data warehouse system

DATA WAREHOUSE

- A data warehouse refers to a data repository that is maintained separately from an organization operational database
- Data warehousing provides architectures and tools for business executives to systematically organize, understand, and use their data to make strategic decisions

Key Features of Data Warehouse (According to William H. Inmon)

- Subject-oriented
- Integrated
- Time-variant
- Non-volatile

Differences between Operational Database Systems and Data Warehouses

The major distinguishing features of OLTP and OLAP are summarized as follows

Users and system orientation

OLTP- customer-oriented

OLAP - market-oriented

Data contents

OLTP- current data

OLAP – historic data

Database design

OLTP- ER model

OLAP – star/Snowflake models

View

OLTP- focus on current data

OLAP – info originated form diff. sys

Access patterns

OLTP- short atomic transaction

OLAP – mostly read only operation

Feature	OLTP	oLAP informational processing analysis knowledge worker (e.g., manage executive, analyst) long-term informational requiremen decision support				
Characteristic	operational processing					
Orientation	transaction					
User	clerk, DBA, database professional					
Function	day-to-day operations					
DB design	ER-based, application- oriented	star/snowflake, subject-oriented				
Data	current, guaranteed up-to- date	historic, accuracy maintainedover time				
Summarization	primitive, highly detailed	summarized, consolidated				
View	detailed, flat relational	summarized, multidimensional				
Unit of work	short, simple transaction	complex query				
Access	read/write	mostly read				
Focus	data in	information out				
Operations	index/hash on primary key	lots of scans				
Number of records accessed	tens	millions				
Number of users	thousands	hundreds				
DB size	GB to high-order GB	≥TB				
Priority	high performance, high availability	high flexibility, end-user autonomy				
Metric	transaction throughput	query throughput, response time				

Data Warehousing: A Multitiered Architecture

Figure: Three-tire Data warehouse Architecture

Data Warehouse Models

- 1. Enterprise Warehouse
- 2. Data Mart
 - Independent
 - Dependent
- 3. Virtual Warehouse

Figure: A recommended approach for data warehouse development

Data warehouse systems use back-end tools and utilities to populate and refresh their data

Data extraction

Data cleaning

Data transformation

Load

Refresh

Metadata Repository

- Metadata are data about data.
- When used in a data warehouse, metadata are the data that define warehouse objects
- A data warehouse contains different levels of summarization, of which metadata is one.
- A metadata repository should contain the following:
 - 1. A description of the data warehouse structure
 - 2. Operational metadata
 - 3. The algorithms used for summarization
 - 4. Mapping from the operational environment to the data warehouse
 - 5. Data related to system performance
 - 6. Business metadata

Data Cube: A Multidimensional Data Model

- A data cube allows data to be modeled and viewed in multiple dimensions
- It is defined by dimensions and facts
- **Dimensions** are the perspectives or entities with respect to which an organization wants to keep records
- **Facts** are numeric measures
- **Measures** are stored in fact table.
- In Data Warehousing the data cube is n-dimensional

2-D and 3-D View

Table 4.2 2-D View of Sales Data for AllElectronics According to time and item

	location = "Vancouver"									
	item (type)									
time (quarter)	home entertainment	computer	phone	security						
Q1	605	825	14	400						
Q2	680	952	31	512						
Q3	812	1023	30	501						
Q4	927	1038	38	580						

Note: The sales are from branches located in the city of Vancouver. The measure displayed is dollars_sold (in thousands).

Table 4.3 3-D View of Sales Data for AllElectronics According to time, item, and location

	location = "Chicago"			locat	Iocation = "New York"			location = ``Toronto''			location = "Vancouver"					
	item				item				item			item				
	home				home				home		=		home			
time	ent	comp.	phone	sec.	ent.	сотр.	phone	sec.	ent.	comp.	phone	sec.	ent.	comp.	phone	sec.
Q1	854	882	89	623	1087	968	38	872	818	746	43	591	605	825	14	400
Q2	943	890	64	698	1130	1024	41	925	894	769	52	682	680	952	31	512
Q3	1032	924	59	789	1034	1048	45	1002	940	795	58	728	812	1023	30	501
Q4	1129	992	63	870	1142	1091 `	54	984	978	864	59	784	927	1038	38	580

Note: The measure displayed is dollars_sold (in thousands).

3-D Data Cube

Figure 4.3 A 3-D data cube representation of the data in Table 4.3, according to *time*, *item*, and *location*. The measure displayed is *dollars_sold* (in thousands).

4-D Data Cube

Figure 4.4 A 4-D data cube representation of sales data, according to *time*, *item*, *location*, and *supplier*. The measure displayed is *dollars_sold* (in thousands). For improved readability, only some of the cube values are shown.

Lattice of Cuboids

Figure 4.5 Lattice of cuboids, making up a 4-D data cube for time, item, location, and supplier. Each cuboid represents a different degree of summarization.

Stars, Snowflakes, and Fact Constellations:

Schemas for Multidimensional Data Models

Stars Schema

Star schema of sales data warehouse.

Snowflakes Schema

Snowflake schema of a sales data warehouse.

Fact Constellations Schema

Fact constellation schema of a sales and shipping data warehouse.

Dimensions: The Role of Concept Hierarchies

- A concept hierarchy defines a sequence of mappings from a set of low-level concepts to higher-level, more general concepts
- Example Concept hierarchy for the dimension *location*.

A concept hierarchy for *location*. Due to space limitations, not all of the hierarchy nodes are shown, indicated by ellipses between nodes.

Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for location and (b) a lattice for time.

A concept hierarchy for price.

- Concept hierarchies may also be defined by discretizing or grouping values for a given dimension or attribute, resulting in a "Set-Grouping hierarchy"
- For dimension "prize" with interval range \$x (exclusive) to \$y (inclusive)
- There may be more than one concept hierarchy for a given attribute or
 Dimension based on different user view points
- Concept hierarchies may be provided manually by system users, domain experts or knowledge engineers or may be automatically generated based on statistical analysis of the data distribution.

Measures: Their Categorization and Computation

- A data cube measure is a numeric function that can be evaluated at each point in the data cube space
- A measure value is computed for a given point by aggregating the data corresponding to the respective dimension–value pairs defining the given point.
- Measures can be organized into three categories—distributive, algebraic, and holistic—based on the kind of aggregate functions used
- **Distributive:** Distributive measure can be computed efficiently because of the way the computation can be partitioned

Ex: sum(),count(), min(), max()

• **Algebraic:** A measure is algebraic if it is obtained by applying an algebraic aggregate function

Ex- Avg() computed by sum()/count(), standard_deviation()

• Holistic: A measure is holistic if it is obtained by applying a holistic aggregate function

Ex- median(), mode(), rank()

Typical OLAP Operations

- Roll Up
- Drill Down
- Slice & Dice
- Pivot or Rotate

ure 4.12 Examples of typical OLAP operations on multidimensional data.

Roll - Up

Drill - Down

Slice

Dice

Pivot

Thank you