

Ondeando Banderas

Carvajal-Guerrero, M.F., Guarín-Rojas, J.A., Montaño-Villa, L.M.

Casos de estudio

Vista desde arriba

Modelos teóricos

Modelo Manela (2008)

$$-w^2\zeta + \zeta^{\prime\prime\prime\prime\prime} - \frac{\alpha^2}{\mu}\Delta\Pi = 0$$

iResultados!

Nuestro modelo

$$-w^{2}\zeta + \zeta'''' - \frac{\alpha^{2}}{\mu}\Delta\Pi = 0$$

$$a_{x}^{(i)} = \frac{k}{m_{i}}(x_{i+1} + x_{i-1} - 2x_{i}) + \left(\frac{1}{m_{i}}\right)F_{r} sen^{2}(\alpha) - g$$

$$a_{y}^{(i)} = \frac{k}{m_{i}}(y_{i+1} + y_{i-1} - 2y_{i}) - \left(\frac{1}{m_{i}}\right)F_{r} sen(\alpha)\cos(\alpha) - g$$
iResultados!

Construcción de un túnel de viento para analizar el comportamiento de la bandera

¿Qué velocidad lleva el viento que la hace ondear?

Se analizó el espectro de potencias de 36 muestras de audio en las que se encontró una relación entre la velocidad a la que fue sometida la bandera y la frecuencia dominante del audio.

iContáctanos!

Tomando los máximos de cada una de las grabaciones de construye el anemómetro.

