COVID-19 Correlates of Protection Analysis Report $_{\rm mock\ Study}$

USG COVID-19 Response Biostatistics Team

 $\mathrm{May}\ 24,\ 2021$

Contents

1	Sto	Stochastic Interventional Vaccine Efficacy	
	1.1	Figures for Stochastic Interventional CoPs for Day 57	9
	1.2	Figures for Stochastic Interventional CoPs for Day 29	18
2	Med	diators of Vaccine Efficacy	27
3	App	pendix	29

4 CONTENTS

List of Tables

- 2.1 Table of mediation effect estimates for quantitative markers with 95% confidence intervals.

 Direct VE = VE comparing vaccine vs. placebo with marker set to distribution in placebo.

 Indirect VE = VE in vaccinated comparing observed marker vs. hypothetical marker under placebo.
 - Prop. mediated = fraction of total risk reduction from vaccine attributed to antibody response. 27
- 2.2 Table of mediation effect estimates for tertile markers with 95% confidence intervals.

 Direct VE = VE comparing vaccine vs. placebo with marker set to distribution in placebo.

 Indirect VE = VE in vaccinated comparing observed marker vs. hypothetical marker under placebo.
 - Prop. mediated = fraction of total risk reduction from vaccine attributed to antibody response. 27

6 LIST OF TABLES

List of Figures

1.1	Stochastic interventional risk estimates, with confidence intervals, for spike protein binding antibody at Day 57	10
1.2	Stochastic interventional VE estimates, with confidence intervals, for spike protein binding antibody at Day 57	11
1.3	Stochastic interventional risk estimates, with confidence intervals, for RBD binding antibody at Day 57	12
1.4	Stochastic interventional VE estimates, with confidence intervals; for RBD binding antibody at Day 57	13
1.5	Stochastic interventional risk estimates, with confidence intervals, for pseudo-neutralizing antibody (ID50) at Day 57	14
1.6	Stochastic interventional VE estimates, with confidence intervals, for pseudo-neutralizing antibody (ID50) at Day 57	15
1.7	Stochastic interventional risk estimates, with confidence intervals, for pseudo-neutralizing antibody (ID80) at Day 57	16
1.8	Stochastic interventional VE estimates, with confidence intervals, for pseudo-neutralizing antibody (ID80) at Day 57	17
1.9	Stochastic interventional risk estimates, with confidence intervals, for spike protein binding antibody at Day 29	18
1.10	Stochastic interventional VE estimates, with confidence intervals, for spike protein binding antibody at Day 29	19
1.11	Stochastic interventional risk estimates, with confidence intervals, for RBD binding antibody at Day 29	20
1.12	Stochastic interventional VE estimates, with confidence intervals, for RBD binding antibody at Day 29	21
1.13	Stochastic interventional risk estimates, with confidence intervals, for pseudo-neutralizing antibody (ID50) at Day 29	22
1.14	Stochastic interventional VE estimates, with confidence intervals, for pseudo-neutralizing antibody (ID50) at Day 29	23
1.15	Stochastic interventional risk estimates, with confidence intervals, for pseudo-neutralizing antibody (ID80) at Day 29	24
1.16	Stochastic interventional VE estimates, with confidence intervals, for pseudo-neutralizing antibody (ID80) at Day 29	25

8 LIST OF FIGURES

Chapter 1

Stochastic Interventional Vaccine Efficacy

We estimate the counterfactual mean of symptomatic COVID-19 infection under posited shifts in the measured activity levels of each of 4 candidate mechanistic correlates of protection (mCoP) biomarkers. By shifting the standardized biomarker activity levels by standard unit shifts along the grid $\{-1, -0.5, 0, 0.5, 1\}$, we can assess the degree to which vaccines that modulate mCoP biomarker activity to these levels could mitigate symptomatic COVID-19 infection in terms of counterfactual stochastic interventional risk and vaccine efficacy (VE).

1.1 Figures for Stochastic Interventional CoPs for Day 57

1.1.1 Stoch interv. risk: spike protein binding antibody

Mean counterfactual COVID–19 infection risk across standardized shifts in spike protein binding antibody levels, summarized by projection of causal dose–response curve onto a linear working model.

Figure 1.1: Stochastic interventional risk estimates, with confidence intervals, for spike protein binding antibody at Day 57

1.1.2 Stoch. interv. VE: spike protein binding antibody

Stoch. Interv. VE v. Symptomatic COVID–19 at Day 57 working MSM summary: ($\hat{\beta}_{TMLE}$ = -2e-04, p-value = 0. 9997)

Stochastic interventional vaccine efficacy v. COVID-19 infection across standardized shifts in spike protein binding antibody levels, summarized by projection of causal dose-response curve on a linear working model.

Figure 1.2: Stochastic interventional VE estimates, with confidence intervals, for spike protein binding antibody at Day 57

Day 57

1.1.3 Stoch. interv. risk: RBD binding antibody

Figure 1.3: Stochastic interventional risk estimates, with confidence intervals, for RBD binding antibody at

1.1.4 Stoch. interv. VE: RBD binding antibody

Figure 1.4: Stochastic interventional VE estimates, with confidence intervals, for RBD binding antibody at Day 57

1.1.5 Stoch. interv. risk: pseudo-neutralizing antibody (ID50)

Mean counterfactual COVID–19 infection risk across standardized shifts in pseudo–neutralizing antibody (ID50) levels, summarized by projection of causal dose–response curve onto a linear working model.

Figure 1.5: Stochastic interventional risk estimates, with confidence intervals, for pseudo-neutralizing antibody (ID50) at Day 57

1.1.6 Stoch. interv. VE: pseudo-neutralizing antibody (ID50)

Stochastic interventional vaccine efficacy v. COVID-19 infection across standardized shifts in pseudo-neutralizing antibody (ID50) levels, summarized by projection of causal dose-response curve on a linear working model.

Figure 1.6: Stochastic interventional VE estimates, with confidence intervals, for pseudo-neutralizing antibody (ID50) at Day 57

1.1.7 Stoch. interv. risk: pseudo-neutralizing antibody (ID80)

Mean counterfactual COVID–19 infection risk across standardized shifts in pseudo–neutralizing antibody (ID80) levels, summarized by projection of causal dose–response curve onto a linear working model.

Figure 1.7: Stochastic interventional risk estimates, with confidence intervals, for pseudo-neutralizing antibody (ID80) at Day 57

1.1.8 Stoch. interv. VE: pseudo-neutralizing antibody (ID80)

Stochastic interventional vaccine efficacy v. COVID-19 infection across standardized shifts in pseudo-neutralizing antibody (ID80) levels, summarized by projection of causal dose-response curve on a linear working model.

Figure 1.8: Stochastic interventional VE estimates, with confidence intervals, for pseudo-neutralizing anti-body (ID80) at Day 57

1.2 Figures for Stochastic Interventional CoPs for Day 29

1.2.1 Stoch. interv. risk: spike protein binding antibody

Stoch. Interv. Risk of Symptomatic COVID–19 at Day 29 working MSM summary: ($\hat{\beta}_{TMLE} = 3e-04$, p-value = 0. 9289)

Mean counterfactual COVID–19 infection risk across standardized shifts in spike protein binding antibody levels, summarized by projection of causal dose–response curve onto a linear working model.

Figure 1.9: Stochastic interventional risk estimates, with confidence intervals, for spike protein binding antibody at Day 29

1.2.2 Stoch. interv. VE: spike protein binding antibody

-1.0

Stochastic interventional vaccine efficacy v. COVID–19 infection across standardized shifts in spike protein binding antibody levels, summarized by projection of causal dose–response curve on a linear working model.

1.0

Figure 1.10: Stochastic interventional VE estimates, with confidence intervals, for spike protein binding antibody at Day 29

-0.5 0.0 0.5
Shift in standardized spike protein binding antibody

1.2.3 Stoch. interv. risk: RBD binding antibody

Stoch. Interv. Risk of Symptomatic COVID–19 at Day 29 working MSM summary: ($\hat{\beta}_{TMLE} = 0.0047$, p–value = 0.055)

Figure 1.11: Stochastic interventional risk estimates, with confidence intervals, for RBD binding antibody at Day 29

1.2.4 Stoch. interv. VE: RBD binding antibody

Stochastic interventional vaccine efficacy v. COVID-19 infection across standardized shifts in RBD binding antibody levels, summarized by projection of causal dose-response curve on a linear working model.

Figure 1.12: Stochastic interventional VE estimates, with confidence intervals, for RBD binding antibody at Day 29

1.2.5 Stoch. interv. risk: pseudo-neutralizing antibody (ID50)

Stoch. Interv. Risk of Symptomatic COVID–19 at Day 29 working MSM summary: ($\hat{\beta}_{TMLE} = 4e-04$, p-value = 0. 8301)

Mean counterfactual COVID–19 infection risk across standardized shifts in pseudo–neutralizing antibody (ID50) levels, summarized by projection of causal dose–response curve onto a linear working model.

Figure 1.13: Stochastic interventional risk estimates, with confidence intervals, for pseudo-neutralizing antibody (ID50) at Day 29

1.2.6 Stoch. interv. VE: pseudo-neutralizing antibody (ID50)

Stoch. Interv. VE v. Symptomatic COVID–19 at Day 29 working MSM summary: ($\hat{\beta}_{TMLE} = -0.0041$, p-value = 0. 9963)

Stochastic interventional vaccine efficacy v. COVID-19 infection across standardized shifts in pseudo-neutralizing antibody (ID50) levels, summarized by projection of causal dose-response curve on a linear working model.

Figure 1.14: Stochastic interventional VE estimates, with confidence intervals, for pseudo-neutralizing antibody (ID50) at Day 29

1.2.7 Stoch. interv. risk: pseudo-neutralizing antibody (ID80)

Mean counterfactual COVID–19 infection risk across standardized shifts in pseudo–neutralizing antibody (ID80) levels, summarized by projection of causal dose–response curve onto a linear working model.

Figure 1.15: Stochastic interventional risk estimates, with confidence intervals, for pseudo-neutralizing antibody (ID80) at Day 29

1.2.8 Stoch. interv. VE: pseudo-neutralizing antibody (ID80)

Stoch. Interv. VE v. Symptomatic COVID–19 at Day 29 working MSM summary: ($\hat{\beta}_{TMLE} = 0.1547$, p–value = 0.0843)

Stochastic interventional vaccine efficacy v. COVID–19 infection across standardized shifts in pseudo–neutralizing antibody (ID80) levels, summarized by projection of causal dose–response curve on a linear working model.

Figure 1.16: Stochastic interventional VE estimates, with confidence intervals, for pseudo-neutralizing antibody (ID80) at Day 29

Chapter 2

Mediators of Vaccine Efficacy

Table 2.1: Table of mediation effect estimates for quantitative markers with 95% confidence intervals. Direct VE = VE comparing vaccine vs. placebo with marker set to distribution in placebo. Indirect VE = VE in vaccinated comparing observed marker vs. hypothetical marker under placebo. Prop. mediated = fraction of total risk reduction from vaccine attributed to antibody response.

Time	Assay	Direct VE	Indirect VE	Prop. mediated
Day 57	Binding Antibody to Spike	NA	NA	NA
Day 57	Binding Antibody to RBD	NA	NA	NA
Day 57	PsV Neutralization 50% Titer	NA	NA	NA
Day 57	PsV Neutralization 80% Titer	$0.918 \ (0.899, \ 0.934)$	$0.298 \ (0.036, \ 0.488)$	$0.124\ (0.227,\ 0.021)$
Day 29	Binding Antibody to Spike	NA	NA	NA
Day 29	Binding Antibody to RBD	NA	NA	NA
Day 29	PsV Neutralization 50% Titer	$0.917\ (0.660,\ 0.980)$	0.308 (-1.813, 0.830)	$0.129\ (0.619,\ -0.362)$
Day 29	PsV Neutralization 80% Titer	$0.878 \ (0.815, \ 0.920)$	$0.528 \ (0.319, \ 0.673)$	$0.263 \ (0.391, \ 0.135)$

^a NA denotes insufficient overlap in antibody response between vaccinated and control participants.

Table 2.2: Table of mediation effect estimates for tertile markers with 95% confidence intervals. Direct VE = VE comparing vaccine vs. placebo with marker set to distribution in placebo. Indirect VE = VE in vaccinated comparing observed marker vs. hypothetical marker under placebo. Prop. mediated = fraction of total risk reduction from vaccine attributed to antibody response.

Time	Assay	Direct VE	Indirect VE	Prop. mediated
Day 57	Binding Antibody to Spike	0.949 (0.857, 0.982)	-0.135 (-1.897, 0.556)	-0.044 (0.283, -0.372)
Day 57	Binding Antibody to RBD	$0.939\ (0.880,\ 0.969)$	0.054 (-0.708, 0.476)	$0.019\ (0.226, -0.188)$
Day 57	PsV Neutralization 50% Titer	$0.940\ (0.897,\ 0.965)$	0.040 (-0.489, 0.381)	0.014 (0.168, -0.140)
Day 57	PsV Neutralization 80% Titer	$0.971\ (0.900,\ 0.991)$	-0.963 (-5.039, 0.362)	$-0.236 \ (0.152, -0.624)$
Day 29	Binding Antibody to Spike	$0.942\ (0.902,\ 0.966)$	0.007 (-0.516, 0.349)	0.002 (0.151, -0.146)
Day 29	Binding Antibody to RBD	$0.937 \ (0.900, \ 0.960)$	$0.084 \ (-0.301, \ 0.356)$	$0.031\ (0.155, -0.093)$
Day 29	PsV Neutralization 50% Titer	$0.950 \ (0.911, \ 0.972)$	-0.147 (-0.847, 0.287)	-0.048 (0.118, -0.214)
Day 29	PsV Neutralization 80% Titer	$0.907 \ (0.857, \ 0.939)$	$0.383 \ (0.115, \ 0.569)$	0.169 (0.295, 0.043)

Chapter 3

Appendix

- This report was built from the CoVPN/correlates_reporting repository with commit hash a026a64998db796f61607d3244a07a368571559b. A diff of the changes introduced by that commit may be viewed at https://github.com/CoVPN/correlates_reporting/commit/a026a64998db796f61607d3244a07a368571559b
- \bullet The sha256 hash sum of the raw input file, "COVID_VEtrial_practicedata_primarystage1.csv": 9093a3d1fd6eb4b5523bfa7df143e1bc6e1f3ee0f6b340eaf60d3859e07a1023