Tutorial Outline

- Part 1: Background and challenges (20 min)
- Part 2: Preliminaries of invariance (20 min)
- Q&A / Break (10 min)
- Part 3: Invariance in the era before deep learning (30 min)
- Part 4: Invariance in the early era of deep learning (10 min)
- Q&A / Coffee Break (30 min)
- Part 5: Invariance in the era of rethinking deep learning (50 min)
- Part 6: Conclusions and discussions (20 min)
- Q&A (10 min)

A Historical Perspective of Data Representation Rethinking Deep Learning with Invariance: The Good, The Bad, and The Ugly

Deep (Representation) Learning, A Big Bang Moment For Al

Data Representation

H. Simon, 1969 The Sciences of the Artificial

"solving a problem simply means representing it so as to make the solution transparent"

Data

Representation =>

Knowledge discovery

Application

Processing Human Perceptual Information

• J Deng, W Dong, R Socher, et al. ImageNet: A large-scale hierarchical image database. CVPR, 2009.

Playing Board Games

• D Silver, J Schrittwieser, K Simonyan, et al. Mastering the game of go without human knowledge. Nature, 2017.

Generating Realistic Media

• Z Epstein, A Hertzmann, L. Herman, et al. Art and the science of generative Al. Science, 2023.

Empirical Risk Minimization (ERM), Behind All These Successes

Empirical Risk Minimization

Empirical learning draws the lines between categories.

But what about robustness, interpretability, and efficiency?

• V Vapnik. Principles of risk minimization for learning theory. NIPS, 1991.

Robustness of Empirical Learning

• Robustness: the performance of a system is stable for intra-class variations on the input.

Color

One-pixel

Watermark

Physical

Weird

• C Buckner. Understanding adversarial examples requires a theory of artefacts for deep learning. *Nature Machine Intelligence*, 2020.

Interpretability of Empirical Learning

• Interpretability: the behavior of a system can be understood or predicted by humans.

• X Li, C Cao, Y Shi, et al. A survey of data-driven and knowledge-aware explainable Al. TKDE, 2020.

Efficiency of Empirical Learning

• Efficiency: the real-time availability and energy cost during human-computer interaction.

Common carbon footprint benchmarks

in lbs of CO2 equivalent

E Strubell, A Ganesh, A McCallum, et al. Energy and policy considerations for modern deep learning research. *AAAI*, 2020.

When Moving Towards Trustworthy Al

Empirical learning v.s. robustness, interpretability, efficiency...

• H Liu, M Chaudhary, H Wang. Towards trustworthy and aligned machine learning: A data-centric survey with causality perspectives. arXiv preprint arXiv:2307.16851, 2023.

A Foundational Prior Underlying Both Natural World And Al Systems

Invariance/Symmetry in Natural World

• A symmetry of a system is a transformation that leaves a certain property invariant.

F. Klein, 1872 Erlangen Program

E. Noether, 1918
Noether's Theorem

H. Weyl, 1929
The Book of Symmetry

R. L. Mills, 1954

C. N. Yang & R. L. Mills, 1954
Yang-Mills Theory

F Klein. A comparative review of recent researches in geometry. Bulletin of the American Mathematical Society, 1893.
 H Weyl. Symmetry. Princeton University Press, 2015.

Invariance/Symmetry in AI Systems

An AI system is a digital modeling of the physical systems in the natural world.

Y. LeCun, Y. Bengio & G. Hinton, 2015, Deep learning, Nature

The Selectivity—Invariance Dilemma: "representations that are selective to the aspects that are important for discrimination, but that are invariant to irrelevant aspects"

• Y Bengio, A Courville, P Vincent. Representation learning: A review and new perspectives. *TPAMI*, 2013.

How Invariance/Symmetry Helps Robustness, Interpretability, Efficiency

- Perfect robustness the performance of the AI system remains invariant with respect to the transformations of interest.
- Interpretable concept humans and AI systems share a basic concept that allows humans to predict AI behavior on transformations of interest.

 Structural efficiency — Al systems no longer need to memorize non-discriminative data variants.

