Problem statement:

Implement a simple text editor. The editor initially contains an empty string, S. Perform Q operations of the following 4 types:

- 1. append(W) Append string W to the end of S.
- 2. delete(k) Delete the last k characters of S.
- 3. print(k) Print the k^{th} character of S.
- 4. undo() Undo the last (not previously undone) operation of type 1 or 2, reverting S to the state it was in prior to that operation.

Example

$$S = \mbox{`abcde'}$$

$$\mbox{ops} = [\mbox{`1 fg'}, \mbox{`3 6'}, \mbox{`2 5'}, \mbox{`4'}, \mbox{`3 7'}, \mbox{`4'}, \mbox{`3 4'}]$$

operation			
index	S	ops[index]	explanation
0	abcde	1 fg	append fg
1	abcdefg	3 6	print the 6th letter - f
2	abcdefg	2 5	delete the last 5 letters
3	ab	4	undo the last operation, index 2
4	abcdefg	3 7	print the 7th character - g
5	abcdefg	4	undo the last operation, index 0
6	abcde	3 4	print the 4th character - d

The results should be printed as:

```
f
g
d
```

Input Format

The first line contains an integer, Q, denoting the number of operations.

Each line i of the Q subsequent lines (where $0 \le i < Q$) defines an operation to be performed. Each operation starts with a single integer, t (where $t \in \{1, 2, 3, 4\}$), denoting a type of operation as defined in the Problem Statement above. If the operation requires an argument, t is followed by its space-separated argument. For example, if t = 1 and W = "abcd", line i will be 1 abcd.

Constraints

- $1 \le Q \le 10^6$
- $1 \le k \le |S|$
- The sum of the lengths of all W in the input $\leq 10^6$
- The sum of k over all delete operations $\leq 2 \cdot 10^6$
- All input characters are lowercase English letters.
- It is guaranteed that the sequence of operations given as input is possible to perform.

Output Format

Each operation of type 3 must print the $k^{\rm th}$ character on a new line.

Sample Input

Sample Input

Sample Output

```
c
y
a
```

Explanation

Initially, S is empty. The following sequence of 8 operations are described below:

- 1. S = "". We append abc to S, so S = "abc".
- 2. Print the $3^{\rm rd}$ character on a new line. Currently, the $3^{\rm rd}$ character is c.
- 3. Delete the last 3 characters in S (abc), so S = "".
- 4. Append xy to S, so S = "xy".
- 5. Print the $2^{\rm nd}$ character on a new line. Currently, the $2^{\rm nd}$ character is y.

- 6. Undo the last update to S, making S empty again (i.e., S=""").
- 7. Undo the next to last update to S (the deletion of the last 3 characters), making S = "abc".
- 8. Print the $1^{\rm st}$ character on a new line. Currently, the $1^{\rm st}$ character is ${\tt a}.$