UERGS - UNIVERSIDADE ESTADUAL DO RIO GRANDE DO SUL Prof. a Adriane Parraga

- 1) A figura abaixo apresenta um somador completo de 4 bits. Sabendo que a simbologia de transferência de conteúdo do registrador A para o registrador B é [A] -> [B]. E [M] é o conteúdo da memória.
- a. Qual o conteúdo final do registrador A de acordo com a seguinte seqüência:
- [A] = 0000a.
- [M] = [1001]b.
- $[M] \rightarrow [B]$ c.
- d. [M] = [1001]
- e. $[S] \rightarrow [A]$
- $[M] = [0\bar{1}10]$ f.
- $[M] \rightarrow [B]$ g.
- h. [M] = [1001]
- i. $[S] \rightarrow [A]$
- b. Faça o diagrama de tempo que representa toda esta operação, incluindo todos os sinais envolvidos (load, clear, transfer e o conteúdo do registrador A).
- c. Faça as modificações necessárias para o circuito se tornar um somador/subtrator (considere o somador completo como uma caixa preta).

Figura : Somador Completo de 4 bits com registradores B e acumulador.

FIGURA 6-13 Somador/subtrator paralelo usando o sistema de complemento de 2.

SECÃO 6-2

6-2. Represente cada um dos seguintes números decimais com sinal no sistema de complemento a 2. Utilize um total de oito bits incluindo o bit de sinal.

(a) $+32$	(e) $+127$	(i) -1
(b) -14	(f) -127	(j) −128
(c) $+63$	(g) +89	(k) + 169
(d) -104	(h) -55	(1) ()

6-3. Cada um dos números seguintes representa um número decimal com sinal no sistema de complemento a 2. Determine o valor decimal de cada um. (Sugestão: Utilize a negação para converter números negativos em positivos.)

(a) 01101	(f) 10000000
(b) 11101	(g) 11111111
(c) 01111011	(h) 10000001
(d) 10011001	(i) 01100011
(e) 01111111	(j) 11011001

- 6-4. (a) Qual faixa de valores decimais com sinal pode ser representada usando 12 bits incluindo o bit de sinal?
 - (b) Quantos bits seriam necessários para representar números decimais de -32.768 até +32.767?
- 6-5. Relacione, em ordem, todos os números com sinal que podem ser representados com cinco bits usando o sistema de complemento a 2.
- 6-6. Represente cada um dos valores decimais a seguir como um valor binário de cinco bits com sinal. Depois negue cada um.

(a)
$$+7$$
 (b) -12 (c) $+15$ (d) -1

6-13. Some os números decimais a seguir após convertê-los para seu código BCD.

(a) 74 + 23	(d) 385 ± 118
(b) 58 ± 37	(e) 998 ± 003
(c) $147 + 380$	(f) 623 + 599

SEÇÃO 6-15

6-27. Para o circuito da Fig. 6-13, determine as saídas de soma para os seguintes casos.

(a) Registrador A = 0101 (+5), registrador B = 1110 (-2); SUB = 1, ADD = 0

(b) Registrador A = 1100 (-4), registrador B = 1110 (-2); SUB = 0, ADD = 1

(c) Repita o item (b) com ADD = SUB = 0.