1	Coalescent process for epidemic models with superspreading
2	Xavier Didelot $^{1,2,*},$ Ian Roberts 2,
3 4 5 6 7	 School of Life Sciences, University of Warwick, United Kingdom Department of Statistics, University of Warwick, United Kingdom * Corresponding author. Tel: 0044 (0)2476 572827. Email: xavier.didelot@gmail.com
8	Running title: Coalescent for epidemic with superspreading
9	Keywords: infectious disease epidemiology modelling; offspring distribution; superspreading; lambda-coalescent model; multiple mergers

1 Introduction

Superspreading in infectious disease epidemiology (Lloyd-Smith et al. 2005). For example SARS-CoV-2 superspreading (Wang et al. 2020; Lemieux et al. 2021; Gómez-Carballa et al. 2021). Coalescent model (Kingman 1982a,b). Work by Li and Fraser (Li et al. 2017; Fraser and Li 2017). Lambda-coalescent models (Pitman 1999; Sagitov 1999; Donnelly and Kurtz 1999). Beta-coalescent (Schweinsberg 2003) is a specific type of Lambda-coalescent. Was used in (Hoscheit and Pybus 2019) and (Menardo et al. 2021). David's paper on inference of multiple mergers while dating a pathogen phylogeny (Helekal et al. 2024).

$_{\scriptscriptstyle 19}$ 2 General case

Discrete time t. Non-overlapping generations of infected individuals. At time t there are N_t infected individuals. Each of them creates a number $s_{t,i}$ of secondary infections at time t+1, following the offspring distribution $\alpha_t(s)$. The mean of this distribution is the basic reproduction number R_t and the variance is V_t . We have:

$$N_{t+1} = \sum_{i=1}^{N_t} s_{t,i} \tag{1}$$

Let $p_{k,t}$ be the probability that k individuals at time t+1 have the same infector at time t.

25 2.1 Inclusive coalescence probability

- Inclusive coalescence probability $p_{k,t}(N_t, N_{t+1})$ is the probability that a specific set of k individuals from generation t+1 find a common ancestor in generation t, conditional on population sizes N_t and N_{t+1} .
- Given full information about offspring counts from individuals in generation $t \mathbf{s}_t = (s_{t,1}, \dots s_{t,N_t})$, we have

$$p_{k,t}(\mathbf{s}_t, N_t) = \sum_{i=1}^{N_t} \frac{\binom{s_{t,i}}{k}}{\binom{N_{t+1}}{k}}$$

$$= \sum_{i=1}^{N_t} \frac{\Gamma(s_{t,i}+1)\Gamma(N_{t+1}-k+1)}{\Gamma(s_{t,i}-k+1)\Gamma(N_{t+1})}.$$
(2)

Full information $\{s_{t,i}\}$ yields the population size N_{t+1} but is not feasible to observe in practice. We can instead express the inclusive coalescence probability conditioning on the next population size N_{t+1}

by summing over possible offspring counts $\mathbf{s}_t = (s_{t,1}, \dots s_{t,N_t})$ conditional on the total generation size.

Let
$$S_t^{-(1)} = (S_{t,2}, \dots, S_{t,N_t}).$$

$$p_{k,t}(N_{t}, N_{t+1}) = \sum_{\mathbf{s}_{t} \in \mathbb{N}_{0}^{N_{t}}} \mathbb{P} \left[\mathbf{S}_{t} = \mathbf{s}_{t} \middle| \sum_{i=1}^{N_{t}} S_{t,i} = N_{t+1} \right] p_{k,t}(\mathbf{s}_{t}, N_{t})$$

$$= \sum_{\mathbf{s}_{t} \in \mathbb{N}_{0}^{N_{t}}} \mathbb{P} \left[\mathbf{S}_{t} = \mathbf{s}_{t} \middle| \sum_{i=1}^{N_{t}} S_{t,i} = N_{t+1} \right] \sum_{i=1}^{N_{t}} \frac{\binom{s_{t,i}}{k}}{\binom{N_{t+1}}{k}}$$

$$= \sum_{i=1}^{N_{t}} \sum_{\mathbf{s}_{t} \in \mathbb{N}_{0}^{N_{t}}} \frac{\binom{s_{t,i}}{N_{t+1}}}{\binom{N_{t+1}}{k}} \mathbb{P} \left[S_{t,1} = s_{t,1}, \mathbf{S}_{t}^{-(1)} = \mathbf{s}_{t}^{-(1)} \middle| \sum_{i=1}^{N_{t}} S_{t,i} = N_{t+1} \right]$$

$$= \frac{N_{t}}{\binom{N_{t+1}}{k}} \sum_{\mathbf{s}_{t} \in \mathbb{N}_{0}^{N_{t}}} \binom{s_{t,1}}{k} \mathbb{P} \left[S_{t,1} = s_{t,1} \middle| \sum_{i=1}^{N_{t}} S_{t,i} = N_{t+1} \right]$$

$$= \frac{N_{t}}{\binom{N_{t+1}}{k}} \sum_{\mathbf{s}_{t,1}=0} \binom{s_{t,1}}{k} \mathbb{P} \left[S_{t,1} = s_{t,1} \middle| \sum_{i=1}^{N_{t}} S_{t,i} = N_{t+1} \right]$$

$$\times \underbrace{\sum_{\mathbf{s}_{t}^{-(1)} \in \mathbb{N}_{0}^{N_{t}-1}}} \mathbb{P} \left[\mathbf{S}_{t}^{-(1)} = \mathbf{s}_{t}^{-(1)} \middle| \sum_{i=2}^{N_{t}} S_{t,i} = N_{t+1} - s_{1,t} \right]$$

$$= \frac{N_{t}}{\binom{N_{t+1}}{k}} \mathbb{E} \left[\binom{S_{t,1}}{k} \middle| \sum_{i=1}^{N_{t}} S_{t,i} = N_{t+1} \right]$$

$$= \frac{N_{t}}{\binom{N_{t+1}}{k}} \mathbb{E} \left[\binom{S_{t,1}}{k} \middle| \sum_{i=1}^{N_{t}} S_{t,i} = N_{t+1} \right]$$

$$(3)$$

The falling factorial moments $\mathbb{E}\left[\frac{S_{t,1}!}{(S_{t,1}-k)!}\Big|\sum_{i=1}^{N_t}S_{t,i}=N_{t+1}\right]$ in Equation (3) can be readily obtained

by differentiating the probability generating function of $S_{t,1}|(\sum_{i=1}^{N_t} S_{t,i} = N_{t+1})$.

³⁷ 2.2 Exclusive coalescence probability

- ³⁸ Generally, we observe a sample of individuals from each generation rather than the entire population.
- In this case, we are interested in the exclusive coalescence probability $p_{n,k,t}(N_t,N_{t+1})$ that exactly k
- $_{40}$ individuals from a sample of n arose from a common ancestor one generation in the past given knowlege
- of the total population sizes N_t and N_{t+1} .
- 42 Given full information about offspring counts of the parents of sampled individuals at the present,

 $\mathbf{x}_t = (x_{t,1}, \dots, x_{t,N_t}), \text{ we have}$

$$p_{n,k,t}(\mathbf{x}_t, N_t) = \sum_{i=1}^{N_t} \frac{\binom{x_{t,i}}{k}}{\binom{n}{k}} \mathbb{I}\{x_{t,i} = k\}$$

$$= \sum_{i=1}^{N_t} \frac{x_{t,i}!}{(x_{t,i} - k)!} \frac{(n-k)!}{n!} \mathbb{I}\{x_{t,i} = k\}.$$
(4)

- Similarly to the exclusive coalescence probability, we can use this to evaluate the exclusive probability
- given N_t and N_{t+1} by summing over possible parent offspring configurations (for $k \leq n$),

$$p_{n,k,t}(N_{t}, N_{t+1}) = \sum_{\mathbf{x}_{t} \in \mathbb{N}_{0}^{N_{t}}} \mathbb{P} \left[\mathbf{X}_{t} = \mathbf{x}_{t} \middle| \sum_{i=1}^{n} X_{t,i} = n \right] p_{n,k,t}(\mathbf{x}_{t}, N_{t})$$

$$= \sum_{\mathbf{x}_{t} \in \mathbb{N}_{0}^{N_{t}}} \mathbb{P} \left[\mathbf{X}_{t} = \mathbf{x}_{t} \middle| \sum_{i=1}^{n} X_{t,i} = n \right] \sum_{i=1}^{N_{t}} \frac{\binom{x_{t,i}}{k}}{\binom{n}{k}} \mathbb{I} \{ x_{t,i} = k \}$$

$$= \frac{N_{t}}{\binom{n}{k}} \sum_{\mathbf{x}_{t} \in \mathbb{N}_{0}^{N_{t}}} \binom{x_{t,1}}{k} \mathbb{P} \left[\mathbf{X}_{t} = \mathbf{x}_{t} \middle| \sum_{i=1}^{N_{t}} X_{t,i} = n \right] \mathbb{I} \{ x_{t,1} = k \}$$

$$= \frac{N_{t}}{\binom{n}{k}} \sum_{\mathbf{x}_{t}^{-(1)} \in \mathbb{N}_{0}^{N_{t-1}}} \binom{k}{k} \mathbb{P} \left[X_{t,1} = k, \mathbf{X}_{t}^{-(1)} = \mathbf{x}_{t}^{-(1)} \middle| \sum_{i=1}^{N_{t}} X_{t,i} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} [X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{t,i} = n \right]$$

$$= \frac{N_{t}}{\binom{n}{k}} \mathbb{P} \left[X_{t,1} = k \middle| \sum_{i=1}^{N_{t}} X_{t,i} = n \right]. \tag{5}$$

- Note that $X_{t,i}$ does not follow the same offspring distribution as $S_{t,i}$. $(X_{t,1},\ldots,X_{t,N_t})$ consists of n
- individuals sampled from generation t+1 without replacement there is no guarantee that all offspring
- 48 from any given parent are included in the sample.

⁴⁹ 2.3 Complementarity of exclusive coalescence probabilities

If we consider one of the lines observed amongst a set of n, it can either remain uncoalesced (with probability p_{n1t}) or coalesce in an event of size k (with probability $p_{n,k,t}$) with any set of k-1 lines among the n-1 other lines, leading to the following complementarity equation:

$$\sum_{k=1}^{n} \binom{n-1}{k-1} p_{n,k,t} = 1 \tag{6}$$

We can show that it is indeed satisfied by the formula in Equation (5):

$$\sum_{k=1}^{n} {n-1 \choose k-1} p_{n,k,t} = \sum_{k=1}^{n} {n-1 \choose k-1} \frac{N_t}{\binom{n}{k}} \mathbb{P} \left[X_1 = k \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \sum_{k=1}^{n} N_t \frac{k}{n} \mathbb{P} \left[X_1 = k \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \frac{N_t}{n} \sum_{k=0}^{n} k \mathbb{P} \left[X_1 = k \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \frac{N_t}{n} \mathbb{E} \left[X_1 \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \frac{1}{n} \sum_{i=1}^{N_t} \mathbb{E} \left[X_i \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= \frac{1}{n} \mathbb{E} \left[\sum_{i=1}^{N_t} X_i \middle| \sum_{i=1}^{N_t} X_i = n \right]$$

$$= 1$$

$$= 1$$
(7)

₅₄ 3 Poisson case

Here the offspring distribution is $\alpha_t = \text{Poisson}(R_t)$. In this case, we have

$$\sum_{i=1}^{N_t} S_{t,i} \sim \text{Poisson}(N_t R_t), \tag{8}$$

56 and conditional distribution

$$\mathbb{P}\left[S_{t,1} = s \middle| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right] = \frac{\mathbb{P}\left[S_{t,1} = s, \sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right]}{\mathbb{P}\left[\sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right]}$$

$$= \frac{\alpha_t(s) \mathbb{P}\left[\sum_{i=1}^{N_t} S_{t,i} = N_{t+1} - s\right]}{\mathbb{P}\left[\sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right]}$$

$$= \frac{R_t^s e^{-R_t}}{s!} \cdot \frac{((N_t - 1)R_t)^{N_{t+1} - s}}{(N_{t+1} - s)!}$$

$$= \frac{(N_{t+1})}{s} \left(\frac{1}{N_t}\right)^s \left(1 - \frac{1}{N_t}\right)^{N_{t+1} - s}}, \tag{9}$$

7 that is

$$S_{t,1} \left| \left(\sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \right) \sim \text{Binomial}\left(N_{t+1}, \frac{1}{N_t} \right).$$
 (10)

The inclusive probability of coalescence for k lines is given by Equation (3) by injecting the falling factorial moments of a Binomial distribution (Potts 1953), resulting in:

$$\mathbb{E}\left[\binom{S_{t,1}}{k}\bigg|\sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right] = \frac{1}{k!} \mathbb{E}\left[\frac{S_{t,1}!}{(S_{t,1}-k)!}\bigg|\sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right] = \frac{1}{k!} \frac{N_{t+1}!}{(N_{t+1}-k)!} \left(\frac{1}{N_t}\right)^k. \quad (11)$$

60 Consequently, the inclusive probability of coalescence for k lines is

$$p_{k,t} = \frac{1}{N_t^{k-1}}. (12)$$

By injecting the probability mass function of a binomial distribution in Equation (5) we deduce that the exclusive probability of coalescence for k lines from a sample of n ($n \ge k$) is

$$p_{n,k,t} = \frac{(N_t - 1)^{n-k}}{N_t^{n-1}}. (13)$$

It is interesting to note that neither the inclusive nor the exclusive coalescence probability depend on the mean R_t of the Poisson offspring distribution or the size N_{t+1} of the population at time t+1. The inclusive coalescent probability in Equation (12) can also be obtained conceptually by considering that among the k lines, the first one has an ancestor with probability one, and the remaining k-1 need to have the same ancestor among a set of N_t from which they choose uniformly at random so that the probability of picking the same ancestor is $1/N_t$. The exclusive coalescent probability in Equation (13) can be derived likewise by considering that in addition to the above, each of the n-k other lines need to choose a different ancestor, which happens with probability $(N_t-1)/N_t$.

4 Negative-Binomial case

Here the offspring distribution is $\alpha_t = \text{Negative-Binomial}(r, p)$ with parameters (r, p) set my momentmatching mean R_t and variance V_t . The resulting parameters for this distribution are $r = R_t^2/(V_t - R_t)$ and $p = R_t/V_t$. In this case, we have

$$\sum_{i=1}^{N_t} S_{t,i} \sim \text{Negative-Binomial}(N_t r, p), \tag{14}$$

and similarly to the Poisson(λ) offspring distribution identify the conditional distribution of $S_{t,1}|\sum_{i=1}^{N_t} S_{t,i}$ as follows,

$$\mathbb{P}\left[S_{t,1} = s \middle| \sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right] = \frac{\alpha_t(s) \cdot \mathbb{P}\left[\sum_{i=2}^{N_t} S_{t,i} = N_{t+1} - s\right]}{\mathbb{P}\left[\sum_{i=1}^{N_t} S_{t,i} = N_{t+1}\right]}$$
(15)

$$=\frac{\frac{\Gamma(r+s)}{s!\Gamma(r)}(1-p)^{s}p^{r} \cdot \frac{\Gamma((N_{t}-1)r+(N_{t+1}-s))}{(N_{t+1}-s)!\Gamma((N_{t}-1)r)}(1-p)^{N_{t+1}-s}p^{(N_{t}-1)r}}{\frac{\Gamma(N_{t}r+N_{t+1})}{N_{t+1}!\Gamma(N_{t}r)}(1-p)^{N_{t+1}}p^{N_{t}r}}$$

 $\tag{16}$

$$= \frac{N_{t+1}!}{s!(N_{t+1}-s)!} \frac{\Gamma(r+s)\Gamma((N_t-1)r + (N_{t+1}-s))}{\Gamma(N_tr + N_{t+1})} \frac{\Gamma(N_tr)}{\Gamma(r)\Gamma((N_t-1)r)}$$
(17)

$$= {N_{t+1} \choose s} \frac{B(s+r, N_{t+1} - s + (N_t - 1)r)}{B(r, (N_t - 1)r)},$$
(18)

that is $S_{t,1} \left| \left(\sum_{i=1}^{N_t} S_{t,i} = N_{t+1} \right) \sim \text{Beta-Binomial}(r, (N_t - 1)r). \right| \right|$

The falling factorial moments of $X \sim \text{Beta-Binomial}(\alpha, \beta)$ are (Tripathi et al. 1994):

$$\mathbb{E}\left[\frac{X!}{(X-r)!}\right] = \binom{n}{r} \frac{\mathrm{B}(\alpha+r,\beta)r!}{\mathrm{B}(\alpha,\beta)}$$
(19)

where B(x,y) denotes the Beta function defined as $B(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$, and injecting this formula into Equation (3), we deduce that the inclusive probability of coalescence for k lines is:

$$p_{k,t} = \frac{B(N_t r + 1, r + k)}{B(r + 1, N_t r + k)}$$
(20)

By injecting the probability mass function of a beta-binomial distribution in Equation (5) we deduce that the exclusive probability of coalescence for k lines is:

$$p_{n,k,t} = \frac{N_t B(k+r, n-k+N_t r - r)}{B(r, N_t r - r)}$$
(21)

- 183 It is interesting to note that as for the Poisson case, the inclusive and exclusive coalescence probabilities
- do not depend on the size N_{t+1} of the population at time t+1. They both depend on the Negative-
- Binomial offspring distribution only through the dispersion parameter r.

$_{ iny 5}$ Example

- ₈₇ Let the offspring distribution have a mean of $R_t = 2$. In the Poisson case the offspring distribution
- is Poisson(2). We consider NegBin cases with the same mean and varying dispersion parameters r.
- When r=1 the NegBin reduces to a Geometric distribution. When r is high the dispersion is low and
- the NegBin behaves almost like a Poisson. See Figure 1.

Figure 1: (A) Offspring distribution. (B) Inclusive probability of coalescence. (C) Exclusive probability of coalescence.

₉₁ 6 Limit when the population size is large

- 92 Consider that N_t is large.
- Show that inclusive probabilities $p_{k,t}$ for k>2 are small compared to $p_{2,t}$.
- Show that exclusive probabilities $p_{n,k,t}$ for k > 2 is small compared to $p_{n,2,t}$, when $n << N_t$.
- Show that inclusive and exclusive probabilities become equal, when $n \ll N_t$ in exclusive probabilities.

96 For Poisson offspring distribution we have:

$$p_{2,t} = p_{n,2,t} = \frac{1}{N_t} \tag{22}$$

97 For Negative-Binomial offspring distribution we have:

$$p_{2,t} = p_{n,2,t} = \frac{r+1}{N_t r + 1} \approx \frac{r+1}{N_t r}$$
(23)

Then we can relate the inclusive coalescent probability for two lines $p_{2,t}$ to previous results from (Volz 2012), (Koelle and Rasmussen 2012) and (Li et al. 2017; Fraser and Li 2017).

(Fraser and Li 2017) have as their main result an estimate of the effective population size $N_e(t)$ as a function of the actual population size N(t) and the mean and variance of the offspring distribution R and σ^2 :

$$N_e(t) = \frac{N(t)}{\sigma^2/R + R - 1} \tag{24}$$

¹⁰³ In our notation, this is equivalent to:

$$p_{2,t} = \frac{V_t/R_t + R_t - 1}{N_t R_t} \tag{25}$$

In the Poisson case we have $V_t = R_t$ so this reduces to $p_{2,t} = 1/N_t$.

For the Negative-Binomial case we have $V_t/R_t=1/p=(r+R_t)/r$ so that:

$$p_{2,t} = \frac{V_t/R_t + R_t - 1}{N_t R_t} = \frac{r + R_t + rR_t - r}{r N_t R_t} = \frac{r + 1}{r N_t}$$
(26)

which is the same as in Equation (23).

7 Lambda-coalescent

A lambda-coalescent model is defined by a probability measure $\Lambda(dx)$ on the interval [0,1], from which we can deduce the rate $\lambda_{n,k}$ at which any subset of k lineages within a set of n observed lineages coalesce:

$$\lambda_{n,k} = \int_0^1 x^{k-2} (1-x)^{n-k} \Lambda(dx)$$
 (27)

The Beta $(2-\alpha,\alpha)$ -coalescent model (Schweinsberg 2003) has a single parameter $\alpha \in [0,2]$ and is defined as:

$$\Lambda(\mathrm{d}x) = \frac{x^{1-\alpha}(1-x)^{\alpha-1}}{\mathrm{B}(2-\alpha,\alpha)}\mathrm{d}x\tag{28}$$

113 from which we can deduce that:

$$\lambda_{n,k} = \frac{B(k - \alpha, n - k + \alpha)}{B(2 - \alpha, \alpha)}$$
(29)

Special cases include $\alpha=2$ corresponding to the Kingman coalescent, $\alpha=1$ which is known as the Bolthausen-Sznitman coalescent and $\alpha=0$ for which the phylogeny is always star-shaped.

16 8 Implementation

We implemented the analytical methods described in this paper in a new R package entitled *EpiLambda* which is available at https://github.com/xavierdidelot/EpiLambda for R version 3.5 or later. All code and data needed to replicate the results are included in the "run" directory of the *EpiLambda* repository.

9 Discussion

122 Acknowledgements

We acknowledge funding from the National Institute for Health Research (NIHR) Health Protection Research Unit in Genomics and Enabling Data.

References

- Donnelly, P., Kurtz, T.G., 1999. Particle Representations for Measure-Valued Population Models. The
 Annals of Probability 27. doi:10.1214/aop/1022677258.
- Fraser, C., Li, L.M., 2017. Coalescent models for populations with time-varying population sizes and arbitrary offspring distributions. bioRxiv, 10.1101/131730doi:10.1101/131730.
- Gómez-Carballa, A., Pardo-Seco, J., Bello, X., Martinón-Torres, F., Salas, A., 2021. Superspreading in the emergence of COVID-19 variants. Trends in Genetics 37, 1069–1080. doi:10.1016/j.tig. 2021.09.003.
- Helekal, D., Koskela, J., Didelot, X., 2024. Inference of multiple mergers while dating a pathogen phylogeny. bioRxiv, 2023.09.12.557403doi:10.1101/2023.09.12.557403.
- Hoscheit, P., Pybus, O.G., 2019. The multifurcating skyline plot. Virus Evolution 5, 1–10. doi:10.1093/ve/vez031.
- Kingman, J., 1982a. The coalescent. Stochastic Processes and their Applications 13, 235–248. doi:10.1016/0304-4149(82)90011-4.
- Kingman, J.F.C., 1982b. On the genealogy of large populations. Journal of Applied Probability 19,
 27–43. doi:10.2307/3213548.
- Koelle, K., Rasmussen, D.A., 2012. Rates of coalescence for common epidemiological models at equilibrium. Journal of The Royal Society Interface 9, 997–1007. doi:10.1098/rsif.2011.0495.
- Lemieux, J.E., Siddle, K.J., Shaw, B.M., Loreth, C., Schaffner, S.F., Gladden-Young, A., Adams, G., Fink, T., Tomkins-Tinch, C.H., Krasilnikova, L.A., DeRuff, K.C., Rudy, M., Bauer, M.R.,
- Lagerborg, K.A., Normandin, E., Chapman, S.B., Reilly, S.K., Anahtar, M.N., Lin, A.E., Carter,
- A., Myhrvold, C., Kemball, M.E., Chaluvadi, S., Cusick, C., Flowers, K., Neumann, A., Cerrato,
- F., Farhat, M., Slater, D., Harris, J.B., Branda, J.A., Hooper, D., Gaeta, J.M., Baggett, T.P.,
- O'Connell, J., Gnirke, A., Lieberman, T.D., Philippakis, A., Burns, M., Brown, C.M., Luban, J.,
- Ryan, E.T., Turbett, S.E., LaRocque, R.C., Hanage, W.P., Gallagher, G.R., Madoff, L.C., Smole, S.,
- Pierce, V.M., Rosenberg, E., Sabeti, P.C., Park, D.J., MacInnis, B.L., 2021. Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science 371, eabe3261.
- doi:10.1126/science.abe3261.
- Li, L.M., Grassly, N.C., Fraser, C., 2017. Quantifying Transmission Heterogeneity Using Both Pathogen Phylogenies and Incidence Time Series. Molecular Biology and Evolution 34, 2982–2995. doi:10.1093/molbev/msx195.
- Lloyd-Smith, J., Schreiber, S., Kopp, P., Getz, W., 2005. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–9. doi:10.1038/nature04153.
- Menardo, F., Gagneux, S., Freund, F., 2021. Multiple Merger Genealogies in Outbreaks of
 Mycobacterium tuberculosis. Molecular Biology and Evolution 38, 290–306. doi:10.1093/molbev/
 msaa179.
- Pitman, J., 1999. Coalescents with multiple collisions. The Annals of Probability 27, 1870–1902.
- Potts, R.B., 1953. Note on the Factorial Moments of Standard Distributions. Australian Journal of Physics 6, 498–499. URL: https://www.publish.csiro.au/ph/ph530498, doi:10.1071/ph530498. publisher: CSIRO PUBLISHING.
- Sagitov, S., 1999. The general coalescent with asynchronous mergers of ancestral lines. Journal of Applied Probability 36, 1116–1125. doi:10.1239/jap/1032374759.

- Schweinsberg, J., 2003. Coalescent processes obtained from supercritical Galton-Watson processes.

 Stochastic Processes and their Applications 106, 107–139. doi:10.1016/S0304-4149(03)00028-0.
- Tripathi, R.C., Gupta, R.C., Gurland, J., 1994. Estimation of parameters in the beta binomial model.

 Annals of the Institute of Statistical Mathematics 46, 317–331. URL: https://doi.org/10.1007/
 BF01720588, doi:10.1007/BF01720588.
- Volz, E.M., 2012. Complex population dynamics and the coalescent under neutrality. Genetics 190, 187–201. doi:10.1534/genetics.111.134627.
- Wang, L., Didelot, X., Yang, J., Wong, G., Shi, Y., Liu, W., Gao, G.F., Bi, Y., 2020. Inference of
 person-to-person transmission of COVID-19 reveals hidden super-spreading events during the early
 outbreak phase. Nature Communications 11, 5006. doi:10.1038/s41467-020-18836-4.