Logistic Regression with R: Example One

```
> math = read.table("http://www.utstat.toronto.edu/~brunner/312f12/code n data/mathcat.data")
> math[1:5,]
  hsqpa hsengl hscalc course passed outcome
1 78.0
           80 Yes Mainstrm No Failed
                                 Yes Passed
Yes Passed
            75
  66.0
                 Yes Mainstrm
  80.2
            70
                 Yes Mainstrm
                               Yes Passed
Yes Passed
4 81.7
            67
                 Yes Mainstrm
5 86.8
            80
                 Yes Mainstrm
> attach(math) # Variable names are now available
> length(hsgpa)
[1] 394
> # First, some simple examples to illustrate the methods
> # Two continuous explanatory variables
> model1 = glm(passed ~ hsgpa + hsengl, family=binomial)
> summary(model1)
qlm(formula = passed ~ hsqpa + hsengl, family = binomial)
Deviance Residuals:
         1Q Median
   Min
                              30
                                        Max
                                     2.2883
-2.5577 -0.9833
                  0.4340 0.9126
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.69568 2.00683 -7.323 2.43e-13 ***
             0.22982
                         0.02955
                                  7.776 7.47e-15 ***
hsgpa
hsengl
            -0.04020
                         0.01709 - 2.352
                                           0.0187 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 530.66 on 393 degrees of freedom
Residual deviance: 437.69 on 391 degrees of freedom
AIC: 443.69
Number of Fisher Scoring iterations: 4
> betahat1 = model1$coefficients; betahat1
 (Intercept)
               hsqpa
                              hsengl
              0.22982332 -0.04020062
-14.69567812
> # For a constant value of mark in HS English, for every one-point increase
> # in HS GPA, estimated odds of passing are multiplied by ...
> exp(betahat1[2])
  hsqpa
1.258378
```

Deviance = -2[L_{M} - L_{S}] (p. 85)

Where L_M is the maximum log likelihood of the model, and L_S is the maximum log likelihood of an "ideal" model that fits as well as possible. The greater the deviance, the worse the model fits compared to the "best case."

Akaike information criterion: AIC = 2p + Deviance, where p = number of model parameters

```
> # Deviance = -2LL + c
> # Constant will be discussed later.
> # But recall that the likelihood ratio test statistic is the
> # DIFFERENCE between two -2LL values, so
> # G-squared = Deviance(Reduced)-Deviance(Full)
> # Test both explanatory variables at once
> # Null deviance is deviance of a model with just the intercept.
> model1$deviance
[1] 437.6855
> model1$null.deviance
[1] 530.6559
> # G-squared = Deviance(Reduced)-Deviance(Full)
> # df = difference in number of betas
> G2 = model1$null.deviance-model1$deviance; G2
[1] 92.97039
> 1-pchisq(G2,df=1)
[1] 0
> a1 = anova(model1); a1
Analysis of Deviance Table
Model: binomial, link: logit
Response: passed
Terms added sequentially (first to last)
       Df Deviance Resid. Df Resid. Dev
NULL
                         393
                                 530.66
            87.221
                         392
                                 443.43
hsgpa
        1
       1
hsengl
            5.749
                         391
                                 437.69
> # a1 is a matrix
> a1[1,4] - a1[2,4]
[1] 87.22114
> anova(model1,test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: passed
Terms added sequentially (first to last)
       Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL
                         393
                                 530.66
                                           <2e-16 ***
hsgpa
        1
            87.221
                         392
                                 443.43
             5.749
                         391
                                 437.69
                                           0.0165 *
hsengl 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> # For LR test of hsengl controlling for hagpa
> # Compare Z = -2.352, p = 0.0187
```

```
> # Estimate the probability of passing for a student with
> # HSGPA = 80 and HS English = 75
                             \pi = \frac{e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_{p-1} x_{p-1}}}{1 + e^{\beta_0 + \beta_1 x_1 + \ldots + \beta_{p-1} x_{p-1}}}
> x = c(1,80,75); xb = sum(x*model1$coefficients)
> phat = \exp(xb)/(1+\exp(xb)); phat
[1] 0.8042151
> ######### Categorical explanatory variables ##########
> # Are represented by dummy variables.
> # First an example from earlier.
> coursepassed = table(course, passed); coursepassed
           passed
course
             No Yes
  Catch-up
            27
             7 24
  Elite
  Mainstrm 124 204
> addmargins(coursepassed,c(1,2)) # See marginal totals
           passed
             No Yes Sum
course
  Catch-up 27
                 8 35
                 24
  Elite
                      31
  Mainstrm 124 204 328
            158 236 394
> prop.table(coursepassed,1) # See proportions of row totals
           passed
course
  Catch-up 0.7714286 0.2285714
  Elite 0.2258065 0.7741935
  Mainstrm 0.3780488 0.6219512
> # Test independence, first with a Pearson X^2
> cp = chisq.test(coursepassed); cp
      Pearson's Chi-squared test
data: coursepassed
X-squared = 24.6745, df = 2, p-value = 4.385e-06
>
> # Now LR test
                                  G^2 = 2\sum_{j=1}^c n_j \log \left(rac{n_j}{\widehat{\mu}_j}
ight)
> muhat = cp$expected; nij = coursepassed
> G2 = 2 * sum( nij * log(nij/muhat) ); G2
[1] 24.91574
```

```
> muhat = cp$expected; nij = coursepassed
> G2 = 2 * sum( nij * log(nij/muhat) ); G2
[1] 24.91574
> # Now with logistic regression and dummy variables
> is.factor(course) # Is course already a factor?
[1] TRUE
> contrasts(course) # Reference cat should be alphabetically first
         Elite Mainstrm
Catch-up
            0
                      0
Elite
             1
                      0
Mainstrm
> # Want Mainstream to be the reference category
> contrasts(course) = contr.treatment(3,base=3)
> contrasts(course)
         1 2
Catch-up 1 0
         0 1
Elite
Mainstrm 0 0
> model2 = glm(passed ~ course, family=binomial); summary(model2)
Call:
glm(formula = passed ~ course, family = binomial)
Deviance Residuals:
    Min
              10
                   Median
                                30
                                        Max
-1.7251 -1.3948
                            0.9746
                   0.9746
                                     1.7181
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                                 4.372 1.23e-05 ***
(Intercept)
              0.4978
                         0.1139
course1
             -1.7142
                         0.4183 -4.098 4.17e-05 ***
course2
              0.7343
                         0.4444
                                  1.652 0.0985 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 530.66
                                   degrees of freedom
                          on 393
Residual deviance: 505.74 on 391 degrees of freedom
AIC: 511.74
Number of Fisher Scoring iterations: 4
> anova(model2) # Both dummy variables are entered at once bec. course is a factor.
Analysis of Deviance Table
Model: binomial, link: logit
Response: passed
Terms added sequentially (first to last)
       Df Deviance Resid. Df Resid. Dev
NULL
                         393
                                 530.66
course 2
            24.916
                         391
                                 505.74
> # Compare G^2 = 24.91574 from the LR test of independence.
```

```
> # The estimated odds of passing are times as great for students in
> # the catch-up course, compared to students in the mainstream course.
> model2$coefficients
              course1
                           course2
(Intercept)
  0.4978384 -1.7142338
                          0.7343053
> exp(model2$coefficients[2])
  course1
0.1801017
> # Get that number from the contingency table
> addmargins(coursepassed,c(1,2))
          passed
           No Yes Sum
course
  Catch-up 27
               8 35
            7 24
  Elite
                   31
  Mainstrm 124 204 328
         158 236 394
> pr = prop.table(coursepassed,1); pr # Estimated conditional probabilities
         passed
course
                 No
  Catch-up 0.7714286 0.2285714
  Elite 0.2258065 0.7741935
 Mainstrm 0.3780488 0.6219512
> odds1 = pr[1,2]/(1-pr[1,2]); odds1
[1] 0.2962963
> odds3 = pr[3,2]/(1-pr[3,2]); odds3
[1] 1.645161
> odds1/odds3
[1] 0.1801017
> exp(model2$coefficients[2])
 course1
0.1801017
```

```
> model3 = glm(passed ~ course + hsgpa + hsengl, family=binomial)
> summary(model3)
Call:
glm(formula = passed ~ course + hsgpa + hsengl, family = binomial)
Deviance Residuals:
   Min
             1Q
                  Median
                               3Q
                                      Max
-2.5404 -0.9852
                  0.4110
                           0.8820
                                    2.2109
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                                -6.872 6.33e-12 ***
(Intercept) -14.18265
                        2.06382
                                       0.00427 **
course1
            -1.29137
                        0.45190
                                -2.858
             0.75847
                        0.49308
                                 1.538
course2
                                        0.12399
                        0.02988
                                 7.342 2.10e-13 ***
hsgpa
             0.21939
hsengl
            -0.03534
                        0.01766
                                -2.001 0.04539 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 530.66
                         on 393
                                 degrees of freedom
Residual deviance: 424.76
                         on 389
                                 degrees of freedom
AIC: 434.76
Number of Fisher Scoring iterations: 4
> anova(model3,test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: passed
Terms added sequentially (first to last)
      Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL
                        393
                                530.66
course
           24.916
                        391
                                505.74 3.887e-06 ***
                                428.90 < 2.2e-16 ***
hsgpa
       1
           76.844
                        390
            4.132
                        389
                                      0.04209 *
hsengl
       1
                                424.76
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> # Interpret all the tests
```

```
> # How about whether they took HS Calculus?
> model4 = update(model3,~ . + hscalc); summary(model4)
glm(formula = passed ~ course + hsgpa + hsengl + hscalc, family = binomial)
Deviance Residuals:
                   Median
    Min
             1Q
                                3Q
                                        Max
                            0.8716
-2.5517 -0.9811
                   0.4059
                                     2.2061
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -15.42813
                         2.20154 -7.008 2.42e-12 ***
                                 -1.803
            -0.88042
course1
                         0.48834
                                           0.0714 .
             0.79966
                         0.50023
course2
                                   1.599
                                           0.1099
hsqpa
              0.22036
                         0.03003
                                   7.337 2.19e-13 ***
                                           0.0416 *
hsengl
             -0.03619
                         0.01776
                                  -2.038
             1.25718
                         0.67282
                                   1.869
                                           0.0617 .
hscalcYes
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 530.66 on 393 degrees of freedom
Residual deviance: 420.90 on 388 degrees of freedom
AIC: 432.9
Number of Fisher Scoring iterations: 4
> # Test course controlling for others
> notcourse = glm(passed ~ hsgpa + hsengl + hscalc , family = binomial)
> anova(notcourse, model4, test="Chisq")
Analysis of Deviance Table
Model 1: passed ~ hsgpa + hsengl + hscalc
Model 2: passed ~ course + hsgpa + hsengl + hscalc
  Resid. Df Resid. Dev Df Deviance P(>|Chi|)
        390
                427.75
                       2
                            6.8575
                                   0.03243 *
2
        388
                420.90
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> # I like Model 3.
```

```
> # I like Model 3. Answer the following questions based on Model 3.
> # Controlling for High School english mark and High School GPA,
> # the estimated odds of passing are ___ times as great for students in the
> # Elite course, compared to students in the Catch-up course.
> betahat3 = model3$coefficients; betahat3
 (Intercept)
                 course1
                                  course2
                                                     hsgpa
                                                                   hsengl
-14.18264\overline{539} -1.29136575
                                0.75846785
                                               0.21939002 -0.03533871
> exp(betahat3[3])/exp(betahat3[2])
course2
7.766609
> # What is the estimated probability of passing for a student
> # in the mainstream course with 90% in HS English and a HS GPA of 80%?
> x = c(1,0,0,80,90); xb = sum(x*model3$coefficients)
> phat = \exp(xb)/(1+\exp(xb)); phat
[1] 0.54688
> # What if the student had 50% in HS English?
> x = c(1,0,0,80,50); xb = sum(x*model3$coefficients)
> phat = \exp(xb)/(1+\exp(xb)); phat
[1] 0.8322448
> # What if the student had -40 in HS English?
> x = c(1,0,0,80,-40); xb = sum(x*model3$coefficients)
> phat = \exp(xb)/(1+\exp(xb)); phat
[1] 0.9916913
>
```

A confidence interval would be nice.