极限与连续	
1.1.1 可数集与不可数集	
-双射函数: 单射 (每个输入映射到不同的输出) +满射 (覆盖了所有可能的输出)	
·等势: 两集合存在双射关系,则为等势 (势对于有限集合来说是集合元素个数) Eg.	
$y = \tan\left(\pi\left(x - \frac{1}{2}\right)\right)$ $x \in (0, 1)$ 可知 $(0, 1)$ 与 $(-\infty, +\infty)$ 等势	
Sigmoid(x) = $\frac{1}{1+e^x}$ $x \in R$ 将R与(0, 1)联系起来	
可数集与不可数集:如果存在正整数集N+到集合A的双射关系,则称为可数集。	
可数集: 离散的, 在数轴上长度为0。无理数集是连续的, 是不可数集。	
1.1.2数列的极限	
(极限定义、数列的上界与下界、单调收敛定理(可以由此得到	
e))	
1.判断方法: 定义法、单调收敛定理、夹逼法	
1.1.3函数的极限	
1.f (x) 在x点处趋近极限a的存在条件: 去心邻域内所有函数值都等	
于a。左极限=右极限(夹逼定理)	
1.1.4函数的连续性与间断点	
间断点:第一类(左右存在但不相等或者不等于函数值):跳跃间断	
点、可去间断点	
第二类(左右有一个不存在)	
介值定理	
1.1.6上确界、下确界	
上界最小值	
1.1.7李普希茨连续性	
给定函数f(x),如果对于区间D内任意两点a、b,都存在常数K使得	
$ f(a) - f(b) \le K a - b $,则称 $f(x)$ 在D内满足李普希茨连续	
李普希茨常数:满足的K的最小值,即为f(x)曲线斜率最大值的绝对	
1.1.7无穷小量	
$f(x)$ 在 x_0 的某去心邻域有定义且, $x \to x_0$ $f(x) = 0$,则称 $f(x)$ 是 $x \to x_0$	

的无穷小量。

假设f(x) 和 在此处键 <i>l</i> · · · · · · · · · · · · · · · · · · ·	、公式。 0.∞	C 水	小店 4		:(w) <i>目</i>	a(22)						
$\lim_{x \to x_0} \frac{f(x)}{g(x)} =$	0; ∞ <i>;</i>	C , ∃	に狙ノ	A0111 1	(X)定	g(x)						
高阶无穷小	小,比值	直为1时	,时套	等价无	穷小。							
下面是一些典型	的等价无穷	5小, 当 x	→ 0 时	,有								
$\sin(x) \sim x$	arcsin	$a(x) \sim x$		tai	$n x \sim x$	ln	(1+x)	$\sim x$				
$e^x - 1 \sim x$	$1-\cos$	$s(x) \sim \frac{x^2}{2}$		$\sqrt[n]{1+x}$	$-1 \sim \frac{x}{n}$		$a^x - 1$	$\sim x \ln a$				