GUJARAT TECHNOLOGICAL UNIVERSITY

M.SC(IT)- INTEGRATED – SEMESTER I- EXAMINATION –WINTER-2024

Subject Code: 1310502 Date: 20/12/2				
Time	Subject Name: Mathematics-I Fime:10:30 AM TO 01:00 PM Instructions: Total Marks: 7			
 Attempt all questions. Make Suitable assumptions wherever necessary. Figures to the right indicate full marks. Use of simple calculators and non-programmable scientific calculators are permitted. 				
Q.1	(a)	Prove that $\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2.$	03	
		Solve the following system of equations using Cramer's rule $2x - y = 5$, $x + y = 4$.	04	
	(c)	Find the inverse of the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ by elementary operations.	07	
Q.2	(a)	If $A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & -4 \end{bmatrix}$, find the eigenvalues for the matrices (1) A^2 , (2) A^{-1} .	03	
		Verify Cayley-Hamilton theorem for matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.	04	
	(c)	Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$.	07	
		OR		
	(c)	Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 - 2xz$ to canonical form by orthogonal transformations.	07	
Q.3	(a)	•	03	
	(b)	Write the statement of Rolle's theorem. Verify Rolle's theorem for the	04	
	(c)	function $f(x) = x^2 - 5x + 4$ on [1,4]. Solve $(D^2 + 1)y = cosec(x)$ using method of variation of parameters.	07	
	(C)	Solve $(D + 1)y = cosec(x)$ using method of variation of parameters. OR	07	
Q.3	(a)	Define Normal form with example.	03	
	(b)	Write the statement of Mean Value Theorem. Verify Mean Value	04	
		Theorem for the function $f(x) = x^2 - 2x + 4$ on [1,5].		
. .	(c)	Solve $(D^2 + 9)y = \cos 4x + 2$.	07	
Q.4	(a)	Evaluate $\lim_{x\to 0} \frac{1}{x} (1 - x \cot x)$.	03	
	(b)	If $u = \sin^{-1}\left(\frac{x+2y+3z}{\sqrt{x^8+y^8+z^8}}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} + 3tanu = 0$.	04	
	(c)	Find the extreme points of $f(x,y) = x^3 + y^3 - 63(x+y) + 12xy$.	07	

Q.4		Expand $\log_e x$ in powers of $(x-1)$ by Taylor's Theorem. If $u = f(y-z, z-x, x-y)$, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	03 04
	(c)	Find the minimum values of x^2yz^3 , subject to the condition	07
		2x + y + 3z = a.	
Q.5	(a)	Solve: $\sinh x \cos y dx - \cosh x \sin y dy = 0$.	03
	(b)	Solve $\frac{dy}{dx} + (tanx) y = sin2x$.	04
	(c)	Solve $y'' + 4y = 8x^2$ using method of undetermined coefficients.	07
		OR	
Q.5	(a)	Solve $(D^3 - D^2 + 4D - 4)y = 0$; $D = \frac{d}{dx}$.	03
	(b)	Solve $e^{-y} \frac{dy}{dx} + \frac{e^{-y}}{x} = \frac{1}{x^2}$.	04
	(c)	Solve $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \sin(\log x)$.	07
