分 数	
评卷人	

1、(12分)

电路如图 1 所示,假设所有运算放大器均为理想的,如果 v_1 =6 \mathbf{V} , v_2 =3 \mathbf{V} 。 计算 v_{O1} , v_{O2} , v_{O3} 和 v_O 的值。

 $v_{o1}=7V$, $v_{o2}=1V$, $v_{o3}=7V$, $v_{o}=-5V$

分 数 评卷人

2、(26分)

放大电路如图 2 所示。已知 MOSFET 的 $K_n=1$ mA/ V^2 , $\lambda=0$, $V_{TN}=1$ V, $C_{gs}=1$ pF, $C_{gd}=0.5$ pF,设通带内各电容均可视为交流短路。试求:

- (1) 标出电容 C_1 、 C_2 和 C_3 的极性;
- (2) 静态工作点 Q (即 I_{DQ} 、 V_{DSQ} 、 V_{DSQ}),判断 MOSFET 工作在哪个工作区;
- (3) 画出电路的小信号等效电路,要标出受控源的控制量和受控量;
- (4) 求互导 g_m 、电压增益 $A_v = v_o/v_i$;
- (5) 求输入电阻 R_i和输出电阻 R_o;
- (6) 求电路的上限频率 fil。

- (1) C₁ 左负右正, C₂ 左正右负, C₃ 上正下负
- (2) $I_{DO}=1$ mA, $V_{GSO}=2$ V, $V_{DSO}=6$ V, 恒流区
- (3) 小信号图解略
- (4) $g_{\rm m} = 2 \text{mS}$, $A_{\rm v} = -2$
- (5) $R_i = 42k\Omega$, $R_o = 3k\Omega$
- (6) $f_{\rm H} = \frac{1}{2\pi R_{\rm eq} C_{\rm eq}} = \frac{1}{2\pi} \cdot (g_{\rm m} + \frac{1}{R_{\rm l}}) \cdot \frac{1}{C_{\rm gs} + (1 A_{\rm v}) C_{\rm gd}} = 382.0 \text{MHz}$

分 数 评卷人

3、(12分)

电路如图 3 所示,设各晶体管均有合适的静态工作点,已知 T1 管的 g_m 1、T2 管的 β_2 、 r_{bo2} ,且 r_{dal} 、 r_{co2} 均可视为无穷大,试求。

- (1) 指出各级电路的组态:
- (2) 电压增益 Av= vo/vi 表达式;
- (3) 与只有第一级的放大电路相比,该多级放大电路对通频带的影响和原因。

(1) 共源一共基电路

(2)
$$A_{\rm v} = -\frac{\beta}{1+\beta} \cdot g_{\rm m}(R_{\rm c}/\!/R_{\rm L})$$

(3) 共基电路具有很低的输入电阻,减小了共源电路中 C_{gd} 的密勒效应,扩展通频带

4、(16 分)

电路如图 4 所示。

- (1) 该电路的级间反馈的组态;
- (2) 若为负反馈, 该反馈稳定的是输出电压还是输出电流, 该电路对应哪一种放大电路模型;
- (3) 假设引入的反馈为深度负反馈,试计算反馈系数、闭环增益和闭环源电压增益。

- (1) 电流并联负反馈
- (2) 稳定输出电流,共射一共射放大电路

(3)
$$F_i = -\frac{R_{e2}}{R_f + R_{e2}}$$
, $A_{if} = -(1 + \frac{R_f}{R_{e2}})$, $A_{vsf} = (1 + \frac{R_f}{R_{e2}}) \cdot \frac{R_{c2}}{R_g}$

分 数	
评卷人	

5、(12分)

电路如图 5 所示, (图中未画出 T3 的偏置电路)。

设输入电压 v_i 为正弦波,电源电压 $V_{\rm CC}=12$ V, $R_{\rm L}=8\,\Omega$,由 T_3 管组成的放大电路的电压增益 $\Delta v_{\rm C3}/\Delta v_{\rm B3}=-8$,试计算当输入电压 v_i 的幅值为 1V 时,电路的输出功率 $P_{\rm o}$ 、电源供给的功率 $P_{\rm V}$ 、两管的总管耗 $P_{\rm T}$ 以及效率 $\eta_{\rm o}$

 $P_0 = 4W$, $P_V = 7.64W$, $P_T = 3.64W$, $\eta = 52.4\%$

电路如图 6 所示, Vz=8V。

- (1) 画出其传输特性 νο=f(v_i);
- (2) 以该电路为基础,在图中增加适当的电路,组成一方波产生电路;
- (3) 定性画出增加适当的电路后, ν_0 和 v_i 端口的波形。

- (1) v_i递增折线拐点为(4V, -8V), v_i递减折线拐点为(-4V, 8V)
- (2) 建立带有自稳幅(或可由电位器控制的)文氏电桥振荡电路输出至 vi
- (3) 当 v_i 幅值大于 4V 时可生成方波

分 数	
评卷人	

7、(10 分)

在图 7 所示三端集成稳压器稳压电路中,输出电压为+15V,整流滤波的电压关系按系数 1.2 计算。

- (1) 电路中有两个错误,请指出并在原图中改正;
- (2) 若三端集成稳压器输入和输出压差最小为 2V,求电压 $|V_A|$ 的最小值?
- (3) 若电网电压有 $\pm 10\%$ 波动,则按电网标称值设计的变压器副边电压 V_2 的有效值至少为多少?
 - (4) 开关稳压电路中, BJT 调整管工作在什么区(截止、放大、饱和)?

- (1) 芯片应为 7815 型, C2 反接
- (2) $|V_{\rm A}|_{\rm min} = 17 \text{V}$
- (3) $V_{2\min} = 15.74 \text{V}$
- (4) 截止区与饱和区