Assignment No. 5

Numerical Computing

Start Date: December 11, 2020

End Date: December 18, 2020

Solve the following problems through Picard Method of successive approximation by writinng code in Mathematica. Solve the problems upto 10th order.

(v)
$$\frac{dy}{dx} = e^x + y^2$$
, $y(0) = 0$

$$\left[Ans. \ y_1 = e^x - 1, \ y_2 = \frac{e^{2x}}{2} - e^x + x + \frac{1}{2}, \ y_3 = \frac{e^{4x}}{16} - \frac{e^{3x}}{3} + \frac{x^2}{2} + \frac{x}{4} - \frac{107}{48} \right]$$

(vi) Obtain y(0.1), given
$$y' = \frac{y - x}{y + x}$$
 and y(0) = 1.

[Ans.
$$y(0.1) = 1.0906$$
]

(vii) Given
$$y' = \frac{x^2}{1+y^2}$$
 and $y(0) = 0$. Find $y(0.25)$, $y(0.5)$.
[Ans. $y(0.25) = 0.005$, $y(0.5) = 0.042$]

(viii) Solve
$$y' = x - y^2$$
, given $y(0) = 1$.

Ans.
$$y = 1 - x + \frac{5}{2}x^2 - 2x^3 + x^4 - \frac{x^5}{4}$$

(ix) Solve
$$y' = x^2 + y^2$$
, given $y(0) = 0$.

Ans.
$$y = \frac{x^3}{5} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \dots$$

(x) Solve y' = 2x - y, with y(1) = 3. Find also y(1.1).

$$\left[Ans.\ y = \frac{73}{12} - \frac{35}{6}x + \frac{7}{2}x^2 - \frac{5}{6}x^3 + \frac{x}{12}, \\ y(1.1) = 2.914508\right]$$