4 Lista de exercícios de MVGA 2011 Prof. Dr. Helton Hideraldo Bíscaro

- 1. Mostre que um conjunto de vetores $\{u_1, ..., u_n\}$ é Linearmente dependente se, e somente se, pelo menos um deles for combinação linear dos outros.
- 2. Seja $C=\{u,v,w\}\,$ um conjunto Linearmente Independente. Mostre que o conjunto $B=\{u+v,u-v,u-2v+w\}$ também é L.I.
- 3. Seja $C=\{u,v,w\}$ um conjunto Linearmente Independente. Mostre que o conjunto $B=\{u,u+v,u+v+w\}$ também é L.I.
- 4. Sejam $u_1, ..., u_n$ vetores l.i. em um espaço vetorial V. Então cada vetor $v \in [u_1, ..., u_n]$ se escreve de maneira única como $v = \alpha_1 u_1 + ... + \alpha_n u_n$.
- 5. Quais das aplicações abaixo são transformaçformaões lineares?
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que T(x,y) = (x+y,x);
 - (b) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}$ tal que T(x, y, z) = 2x 3y + 4z;
 - (c) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}$ tal que T(x, y) = xy.
- 6. Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ o operador linear definido por: T(x,y,z) = (x+2y-z,y+z,x+y-2z). Encontre uma base e a dimensão para $\operatorname{Im}(T)$ e $\operatorname{Ker}(T)$.
- 7. Encontre uma transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que T(1,2) = (3,-1) e T(0,1) = (1.2);
- 8. Mostre que toda a transformação linear bijetora $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ leva retas em retas. Ou seja, a imagem de uma reta por essa transformação também é uma reta.
- 9. Determinar uma transformação linear $T:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ cuja imagem seja gerada pelos vetores (1,2,0) e (1,1,1).
- 10. Encontre uma base para o núcleo, outra para a imagem da transformação $T: \wp^2(\mathbb{R}) \longrightarrow \wp^2(\mathbb{R})$ tal que T(p) = p' + p''.