МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к лабораторным работам по курсу

«ИНФОРМАТИКА»

Часть І

Лабораторный практикум

Лабораторная работа № 1. Кодирование информации и элементы алгебры логики

Кодирование информации в компьютере

• *Система счисления* - способ наименования и изображения чисел с помощью символов, имеющих определенные количественные значения.

В зависимости от назначения и применения различают внутренние коды (для представления данных в ЭВМ), коды, предназначенные для обмена данными и их передачи по каналам связи и коды для специальных применений.

Внутренние коды базируются на использовании позиционных систем счисления с основанием Р. В общем случае число Z_P может быть представлено в виде:

$$Z_P = A_N * B^N + A_{N-1} * B^{N-1} + ... + A_1 * B^1 + A_0 * B^0$$

где N - номер позиции или разряд.

 A_0 , A_1 , ..., A_N - разрядные коэффициенты, которые могут принимать значения цифр, соответствующей системы счисления.

Основные системы счисления,

используемые для представления информации в ПК

Система счисления	Основание Р	Символы A _I
Двоичная	2	0, 1
Восьмеричная	8	0,1,2,3,4,5,6,7
Десятичная	10	0,1,2,3,4,5,6,7,8,9
Шестнадцатеричная	16	0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
		10 11 12 13 14 15

Десятичная система счисления

Используемые символы: 0,1,2,3,4,5,6,7,8,9.

Примеры чисел: 245_{10} , 38_{10} , 1379_{10} .

Степени числа 10:

 $10^0 = 1$

 $10^{1}=10$

 $10^2 = 100$ и т.д.

Нумерация разрядов начинается с нуля справа налево.

Представление числа в виде степеней числа 10.

$$245_{10} = 2 \cdot 10^2 + 4 \cdot 10^1 + 5 \cdot 10^0.$$

Двоичная система счисления

Используемые символы: 0,1.

<u>Примеры чисел:</u> 10111₂, 1111₂, 01101010₂.

Степени числа 2:

 $\overline{2}^{0} = 1$

 $2^1 = 2$

 $2^2 = 4$

 $2^3 = 8$

 $2^4 = 16$

 $2^5 = 32$

 $2^6 = 64$

 $2^7 = 128$

 $2^8 = 256$

 $2^9 = 512$

 $2^{10} = 1024$

 $2^{11} = 2048$

 $2^{12} = 4096$

Нумерация разрядов начинается с нуля справа налево.

Представление числа в виде степеней числа 2.

$$10111_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 16 + 4 + 2 + 1 = 23_{10}.$$

<u>Перевод из десятичной системы счисления в двоичную</u>: необходимо представить десятичное число в виде суммы степеней числа 2; если какаялибо степень отсутствует в сумме, в соответствующем разряде двоичного числа будет 0, если присутствует, то 1.

Например:

876543210

$$456 = 256 + 128 + 64 + 8 = 2^8 + 2^7 + 2^6 + 2^3 = 111001000_2.$$

Правила сложения двоичных чисел:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = (1) 0

Примеры.

Представление отрицательных чисел в двоичном коде.

Для того, чтобы получить отрицательное двоичное число, необходимо:

- 1) инвертировать все разряды положительного двоичного числа;
- 2) прибавить к младшему разряду единицу.

Пример: Вычислить в двоичной форме.

 123_{10} - $38_{10} = 85_{10}$.

1 этап. Переводим числа 123 и 38 в двоичную форму.

$$123_{10} = 64 + 32 + 16 + 8 + 2 + 1 = 2^6 + 2^5 + 2^4 + 2^3 + 2^1 + 2^0 = 1111011$$

 $38_{10} = 32 + 4 + 2 = 2^5 + 2^2 + 2^1 = 100110_2 = 0100110_2$ (Выравниваем количество разрядов).

- <u>2 этап.</u> Переводим 38₁₀ в 38₁₀:
- 1) инвертируем все разряды

0100110

 \downarrow

1011001

2) прибавляем к младшему разряду единицу

1011001

0000001

1011010

 $-38_{10} = 1011010_2$

3 этап. Выполняем сложение 123₁₀ + - 38₁₀:

1111011

+ 1011010

(1)1010101 (старшая единица в разряд переноса)

<u>4 этап.</u> Переводим $1010101_2 = 2^6 + 2^4 + 2^2 + 2^0 = 64 + 16 + 4 + 1 = 85_{10}$.

Умножение двоичных чисел:

<u>Пример:</u> 15.15 = 225.

Восьмеричная система счисления

11100001

Используемые символы: 0,1,2,3,4,5,6,7.

Примеры чисел: 123₈, 10₈, 437₈.

Степени числа 8:

$$8^0 = 1$$

$$8^1 = 8$$

 $8^2 = 64$

 $8^3 = 512$

 $8^4 = 4096$

Нумерация разрядов начинается с нуля справа налево.

Представление числа в виде степеней числа 8.

$$123_8 = 1.8^2 + 2.8^1 + 3.8^0 = 64 + 16 + 3 = 83_{10}$$
.

<u>Перевод из десятичной системы счисления в восьмеричную</u>: необходимо представить десятичное число в виде суммы степеней числа 8; при этом степени могут включены несколько раз.

$$500_{10} = 7 \cdot 8^2 + 6 \cdot 8^1 + 4 \cdot 8^0 = 764_8.$$

<u>Перевод из восьмеричной системы счисления в двоичную</u>: каждая восьмеричная цифра заменяется триадой (своим двоичным представлением в трех разрядах)

$$573_8 = 101\ 111\ 011_2$$

<u>Перевод из двоичной системы счисления в восьмеричную</u>: каждая триада заменяется на соответствующую восьмеричную цифру, при этом выделение триад начинается с младшего (нулевого) разряда. Недостающие старшие разряды дополняются нулями.

Шестнадцатеричная система счисления

<u>Используемые символы:</u> 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

A - 10 D - 13 B - 11 E - 14

C - 12 F - 15

<u>Примеры чисел:</u> 123₁₆, A10₁₆, 4F₁₆, CD₁₆, E2A₁₆.

Степени числа 16:

 $16^0 = 1$

 $16^1 = 16$

 $16^2 = 256$

 $16^3 = 4096$

Нумерация разрядов начинается с нуля справа налево.

Представление числа в виде степеней числа 16.

$$E2A_8 = 14 \cdot 16^2 + 2 \cdot 16^1 + 10 \cdot 16^0 = 14 \cdot 256 + 2 \cdot 16 + 10 \cdot 1 = 3584 + 32 + 10 = 3626_{10}.$$

<u>Перевод из десятичной системы счисления в шестнадиатеричную</u>: необходимо представить десятичное число в виде суммы степеней числа 16; при этом степени могут включены несколько раз.

$$901_{10} = 3.16^2 + 8.16^1 + 5.16^0 = 385_{16}.$$

<u>Перевод из шестнадцатеричной системы счисления в двоичную</u>: каждая шестнадцатеричная цифра заменяется тетрадой (своим двоичным представлением в четырех разрядах)

$$2F3D_{16} = 0010\ 1111\ 0011\ 1101_2$$

<u>Перевод из двоичной системы счисления в шестнадцатеричную</u>: каждая тетрада заменяется на соответствующую шестнадцатеричную цифру, при этом выделение тетрад начинается с младшего (нулевого) разряда. Недостающие старшие разряды дополняются нулями.

11 1101 0001
$$1011_2 = 0011 1101 0001 1011_2 = 3D1B_8$$
.

Элементы алгебры логики

Для описания логики функционирования аппаратных и программных средств компьютера используется алгебра логики или булева алгебра.

Дж. Буль — английский математик 19 века. Булева алгебра оперирует с <u>логическими переменными</u>, которые могут принимать только 2 значения: истина и ложь, обозначаемые соответственно 1 и 0.

- Совокупность значений логических переменных $x_1, x_2, ..., x_n$ называется *набором переменных*. Набор логических переменных удобно изображать в виде п-разрядного двоичного числа, каждый разряд которого равен значению одной из переменных. Количество наборов логических переменных в п двоичных разрядах равно 2^n .
- *Логической функцией* от набора логических переменных $f(x_1, x_2, ..., x_n)$ называется функция, которая может также принимать только 2 значения: *истина* или *ложь*.

Любая логическая функция может быть задана с помощью таблицы истинности, в левой части которой записываются возможные наборы переменных, а в правой – соответствующие им значения функции.

В случае большого числа переменных, табличный способ становится громоздким. Поэтому, логические функции выражают через элементарные логические функции, которые легко задаются таблично. Как правило, это функции от одной или двух переменных.

Совокупность логических функций, с помощью которых можно выразить логическую функцию любой сложности, называются функционально полными системами логических функций.

<u>Наиболее часто используемая система логических функций</u>: инверсия (¬, отрицание, NOT), конъюнкция (∧, логическое умножение, AND, &), дизъюнкция (∨, логическое сложение, OR).

Битовые операции

Побитовое И (AND)

Побитовое $\mathbf{И}$ — это <u>бинарная операция</u>, действие которой эквивалентно применению <u>логического \mathbf{U} </u> к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Пример:

И	0011
	0101
	0001

Побитовое ИЛИ (OR)

Побитовое ИЛИ — это <u>бинарная операция</u>, действие которой эквивалентно применению <u>логического ИЛИ</u> к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если оба соответствующих бита операндов равны 0, двоичный разряд результата равен 0; если же хотя бы один бит из пары равен 1, двоичный разряд результата равен 1.

Пример:

или	0011	
	0101	
	0111	

Сложение по модулю два (XOR)

Сложение по модулю два (или операция исключающее ИЛИ) — это <u>бинарная операция</u>, результат действия которой равен 1, если число складываемых единичных битов нечетно, если же их число четно, то результат равен 0.

Пример:

Искл. ИЛИ	0011 0101
	0110

Двоичное представление числа $184_{10} = 10111000_2$

старшая	младшая
тетрада	тетрада
1011	1000

После смены тетрад получено число $10001011_2 = 139_{10}$

старшая	младшая
тетрада	тетрада
1000	1011

Задания к лабораторной работе № 1

Часть 1 – Системы счисления

$N_{\underline{0}}$	Перевести	Перевести	Сложить		Вычесть в двоичном	
варианта	из 16:	из 8:	в двоичном виде		виде	
	- в 2 c/c;	- в 2 с/с;	(с проверкой в		(с проверкой в	
	- в 8 с/с;	- в 10 с/с;	десятичной с/с)		десятичной с/с)	
	-в 10 с/с	-в 16 с/с				
1	BE	616	123	21	163	16
2	1F	333	221	77	525	59
3	3D	444	158	51	102	61
4	6A	223	391	32	134	85
5	DA	335	179	51	622	77
6	FC	432	183	36	201	65
7	4D	256	165	22	174	28
8	87	200	218	54	162	91
9	9B	174	324	66	200	72
10	2E	162	452	87	174	28
11	6A	321	328		162	91
12	37	174	326 32		321	23
13	56	162	241 84		165	22
14	FF	321	616	14	218	54
15	E3	165	333	88	324	66
16	C6	215	444	91	452	87
17	9A	324	229	32	328	92
18	BB	201	335	94	326	32
19	2B	174	432	12	241	84
20	AA	162	256	18	616	14
21	43	200	200	72	333	88
22	DD	174	174	28	444	91
23	7C	162	162			21
24	EE	321	321			77
25	CA	165	174	32	321	22
26	2C	211	162 51 165		54	
27	AC	324			66	
28	8F	452	165	22	324	87
29	22	201	218	54	452	92
30	55	174			32	

Часть 2 – Битовые операции

Исходные числа - десятичные целые положительные **ОДНОБАЙТОВЫЕ** числа. Выполнить заданные операции и результат **представить в двоичном и десятичном виде**.

DBIIIOJIIII 30	данные опе	рации и рез	ультат представить в двоичном	и десити шом виде.
	Пусть а, в	,с. Найти:	Выполнить над числом:	Поменять в целом
	c:=a and b ,		- арифм. сдвиг влево;	положительном
№ варианта		- арифм. сдвиг вправо;	однобайтовом	
_	c := a xor b,		- циклический сдвиг влево;	числе старшую и
	a	b	- циклический сдвиг вправо.	младшую тетрады.
1	116	123	116	123
2	233	221	233	221
3	144	158	144	158
4	223	116	223	116
5	135	233	135	233
6	132	144	132	144
7	253	223	253	223
8	200	135	200	135
9	174	132	174	132
10	162	253	162	253
11	121	200	121	200
12	174	174	174	174
13	162	162	162	162
14	221	121	221	121
15	165	174	165	174
16	215	162	215	162
17	124	229	124	229
18	201	135	201	135
19	172	132	172	132
20	162	254	162	254
21	208	200	208	200
22	171	221	171	221
23	162	165	162	165
24	221	215	221	215
25	165	124	165	124
26	211	201	211	201
27	184	172	184	172
28	152	221	152	221
29	201	165	201	165
30	172	218	172	218

Часть 3 – Логические функции и преобразование логических выражений

Mo	Vida attitta haringana	Постромии поблики натучности или погличаской
№	Упростите логическое выражение	Построить таблицу истинности для логической функции на всех наборах ее переменных
1	$\overline{a \cdot a} \vee b \cdot (a \cdot b \vee b)$	$F(X_1, X_2, X_3) = (X_1 \lor X_2) \land \neg((X_1 \lor X_3) \land (X_2 \lor X_3))$
2	$((a \vee \overline{b}) \rightarrow b) \cdot (\overline{a} \vee b)$	$F(X_1, X_2, X_3) = \neg(X_1 \lor X_2) \land (X_1 \lor X_3) \land (X_2 \lor X_3)$
3	$a \cdot b \cdot c \vee a \cdot b \cdot c$	$F(X_1, X_2, X_3) = (X_1 \lor X_2) \land (X_1 \lor X_3) \land \neg (X_2 \lor X_3)$
4	$a \cdot b \cdot c \vee a \cdot \overline{b \cdot c}$	$F(X_1, X_2, X_3) = (X_1 \land X_2) \lor (X_1 \land X_3) \lor \neg (X_2 \land X_3) \lor \neg X_2$
5	$(\overline{a} \vee \overline{b} \vee \overline{c}) \cdot (\overline{a} \vee b \vee c)$	$F(X_1, X_2, X_3) = \neg(X_1 \land X_2) \lor (X_1 \land X_3) \lor (X_2 \land X_3)$
6	$a \cdot (a \lor b) \cdot (a \lor c)$	$F(X_1, X_2, X_3) = (X_1 \land X_2) \lor \neg (X_1 \land X_3) \lor (X_2 \land X_3)$
7	$a \cdot b \cdot (a \cdot c \vee a \cdot b)$	$F(X_1, X_2, X_3) = \neg ((X_1 \land X_2) \lor \neg (X_1 \land X_3)) \lor (X_2 \land X_3)$
8	$a \cdot c \lor c \cdot (b \lor c) \lor (a \lor b) \cdot c$	$F(X_1, X_2, X_3) = \neg ((X_1 \land X_2) \lor (X_1 \land X_3)) \lor (X_2 \land X_3)$
9	$\overline{a\cdot (b\vee c)\vee a\cdot b}$	$F(X_1, X_2, X_3) = (X_1 \land X_2) \lor \neg ((X_1 \land X_3) \lor (X_2 \land X_3))$
10	$(\overline{a} \lor c) \cdot \overline{a \cdot c} \cdot (b \lor \overline{c}) \cdot \overline{b \cdot c}$	$F(X_1, X_2, X_3) = \neg (X_1 \land X_2) \lor \neg ((X_1 \land X_3) \lor (X_2 \land X_3))$
11	$\overline{x+y}\cdot\left(x+\overline{y}\right)$	$F(X_1, X_2, X_3) = (X_1 \vee \neg X_2) \wedge \neg ((X_1 \vee X_3) \wedge (X_2 \vee X_3))$
12	$\overline{x} \cdot y + \overline{x + y} + x$	$F(X_1, X_2, X_3) = \neg (X_1 \lor X_2) \land (X_1 \lor \neg X_3) \land (X_2 \lor X_3)$
13	$(x+y)\cdot(\overline{x}+y)\cdot(\overline{x}+\overline{y})$	$F(X_1, X_2, X_3) = (X_1 \vee \neg X_2) \wedge (X_1 \vee X_3)$
14	$x \cdot y + x \cdot y \cdot z + x \cdot z$	$F(X_1, X_2, X_3) = (\neg X_1 \land X_2) \lor (X_1 \land X_3) \lor \neg (X_2 \land X_3)$
15	$\frac{\overline{x\cdot y+z}}{x\cdot y+z}$	$F(X_1, X_2, X_3) = \neg(X_1 \land \neg X_2) \lor (X_1 \land X_3) \lor (X_2 \land X_3) \lor \neg X_1$
16	$x \cdot y + x \cdot y \cdot z + x \cdot z \cdot p$	$F(X_1, X_2, X_3) = (X_1 \land X_2) \lor \neg (X_1 \land X_3)$
17	$\overline{x + y \cdot z} = \overline{z} = \overline{z}$	$F(X_1, X_2, X_3) = \neg ((X_1 \land X_2) \lor \neg (X_1 \land X_3))$
18	$x \cdot y + x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z$	$F(X_1, X_2, X_3) = \neg ((X_1 \land X_2) \lor (X_1 \land X_3))$
19	$(x \cdot y + z) \cdot (x + y) + z$	$F(X_1, X_2, X_3) = (X_1 \land X_2) \lor \neg ((X_1 \land X_3) \lor (X_2 \land \neg X_3))$
20	$x \cdot y \cdot \left(\overline{x} \cdot z + \overline{x \cdot y} \cdot \overline{z} + z \cdot t\right)$	$F(X_1, X_2, X_3) = \neg ((X_1 \land \neg X_3) \lor (X_2 \land X_3))$
21	$a \lor \neg (a \land b) \land \neg (a \lor b)$	$F(X_1, X_2, X_3) = (X_1 \lor X_2) \land \neg ((X_1 \lor \neg X_3) \land (X_2 \lor X_3))$
22	$a \land (a \lor b) \land (c \lor \neg b)$	$F(X_1, X_2, X_3) = \neg (X_1 \lor X_2) \land (X_1 \lor X_3) \land (X_2 \lor X_3)$
23	$a \land \neg b \lor \neg b \land c \lor \neg a \land \neg b$	$F(X_1, X_2, X_3) = (X_1 \lor X_2) \land (\neg X_1 \lor X_3) \land \neg (X_2 \lor X_3)$
24	$(a \vee \neg a) \wedge b$	$F(X_1, X_2, X_3) = (X_1 \land X_2) \lor (\neg X_1 \land X_3) \lor (\neg X_1 \land \neg X_2)$
25	$(a \lor b) \land (\neg a \lor b) \land (c \lor \neg b)$	$F(X_1, X_2, X_3) = \neg (X_1 \land \neg X_2) \lor (X_1 \land X_3) \lor (X_2 \land X_3)$
26	$a \vee (\neg a \wedge b)$	$F(X_1, X_2, X_3) = (X_1 \land \neg X_2) \lor \neg (X_1 \land X_3) \lor (X_2 \land X_3)$
27	$\neg \ ((a \lor b) \to \neg \ (b \lor c))$	$F(X_1, X_2, X_3) = \neg ((X_1 \land \neg X_2) \lor (X_1 \land X_3)) \lor (X_2 \land X_3)$
28	$(a \lor \neg b) \land (\neg a \lor b)$	$F(X_1, X_2, X_3) = \neg ((X_1 \land X_2) \lor (\neg X_1 \land X_3)) \lor (X_2 \land X_3)$
29	$\neg ((a \lor b) \to \neg (b \lor c))$	$F(X_1, X_2, X_3) = (X_1 \land X_2) \lor \neg ((X_1 \land \neg X_3) \lor (X_2 \land X_3))$
30	$(a \rightarrow b \land \neg c) \land (c \rightarrow b \land a) \land \land (b \rightarrow c \land a)$	$F(X_1, X_2, X_3) = \neg((\neg X_1 \land X_3) \lor (X_2 \land X_3))$