Задача 1. Колко е *x*?

$$0.5^{x} + 2^{-x} = (\frac{1}{4})^{x}$$

Задача 2. Пресметнете

$$(2x+3)^4 - 205(2x+3)^3 + 2x - 3$$
, ako $x = 101$.

Задача 3. Пресметнете сбора на числата a и b за тъждеството

$$(1-3x) \times (1+3x+(3x)^2+(3x)^3+(3x)^4) = 1-3a^4x^b$$
.

Задача 4. Колко са целите числа, които са между корените на уравнението?

$$(13x - 6)^2 = 121x^2$$

Задача 5. Пресметнете $x^3 + 9xy + y^3$, ако x + y = 3.

Задача 6. Точката A(a+b,a-b) е в III квадрант и $ab \neq 0$. В кой квадрант е точката B(a,b-a)? **Задача 7.** За коя стойност на x изразът $x^2 + (x+1)^2 + (x+2)^2 + (x+3)^2$ има най-малка стойност?

Задача 8. Колко е произведението на корените на уравнението?

$$(x-4)x^2 = (x-4)(2x-3)^2$$

Задача 9. Възможните остатъци при деление на естественото число N на 9 са 0, 1, 2, 3, 4, 5, 6, 7 или 8. Колко са възможните различни остатъци, които се получават при делението на N^3 на 9?

Задача 10. Ако $(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)\neq 0$, пресметнете частното

$$\frac{a^3 + b^3 + c^3 - 3abc}{(a+b+c)((a-b)^2 + (b-c)^2 + (c-a)^2)}$$

Задача 11. Катетите и медианата към хипотенузата на правоъгълен триъгълник са съответно (2n+2) *ст.*, n *ст.* и $\frac{2n+3}{2}$ *ст.* Колко квадратни сантиметра е лицето на триъгълника? (Посочете числов отговор)

Задача 12. Точките $A_1,A_2,A_3,A_4,\ldots,A_{13},A_{14}$ са разположени върху една права в посочения ред, като $A_1A_2=1$ cm, $A_2A_3=1$ cm, $A_3A_4=2$ cm, $A_4A_5=3$ cm, $A_5A_6=5$ $cm,\ldots,$ $A_{10}A_{11}=55$ cm, $A_{11}A_{12}=89$ cm, $A_{12}A_{13}=144$ cm (т.е. $A_iA_{i+1}=A_{i-2}A_{i-1}+A_{i-1}A_i,$ $i\geq 3$). Колко сантиметра е дължината на отсечката A_5A_9 ?

Задача 13. В правоъгълния $\triangle ABC(\angle ACB = 90^\circ)$, $CH \perp AB(H \in AB)$. Ъглополовящата на $\angle BAC$ пресича BC и CH съответно в точките L и D. Височината на $\triangle ALC$, спусната от върха C, пресича AL в точка Q и AH = CQ.

Колко градуса е *∠САL*?

Задача 14. Точките P и Q са точки съответно от страните AB и BC на ΔABC , такива, че AP:PB=3:2,BQ:BC=2:3. Ако лицето на ΔAQC е $10~cm^2$, пресметнете в cm^2 лицето на ΔCPO .

Задача 15. От древни времена е известна фигурата додекаедър, която е съставена от 12 правилни петоъгълника. Такъв додекаедър е едно от петте платонови тела. Колко са ръбовете на това тяло?

Задача 16. Четириъгълникът ABCD е квадрат, а ΔABF и ΔBEC са правоъгълни равнобедрени триъгълници. Пресметнете $\frac{DE^2}{EF^2}$

Задача 17. В кутия има N бонбони. Ако първо взема M бонбона, а след това третинката от останалите и още M бонбона в кутията ще останат M бонбона. Колко е най-малката възможна стойност на N?

Задача 18. На дъската са написани неравенствата

$$x > 1$$
, $x < 3$, $x > 5$, $x < 7$, $x > 9$, $x < 11$, $x > 13$.

Кое е най-малкото естествено число, за което са верни най-много от тези неравенства? **Задача 19.** Кое е най-малкото 10-цифрено число, за което са изпълнени и двете условия:

- числото е записано с всичките десет цифри 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9;
- сборът от първите му три цифри е равен на сбора на последните му две цифри?

Задача 20. Ако
$$5+95+995+...+\underbrace{999...95}_{19}+\underbrace{999...95}_{20}=N,$$

с колко цифри 1 се записва числото N?