Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної

техніки Кафедра інформатики та програмної

інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних

алгоритмів»

Варіант<u> 28</u>

Виконав студент <u>ІП-11 Сідак Кирил Ігорович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив Мартинова Оксана Петрівна

(прізвище, ім'я, по батькові)

Лабараторна робота№5

Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання:

Варіант 28

Отримати всі піфагорові трійки натуральних чисел, кожне з яких не перевищує n, тобто всі такі трійки натуральних чисел a, b, c, що $a^2 + b^2 = c^2$ ($a \le b \le c$).

Постановка задачі: для кожного натурального числа а та b, кожне з яких не більше заданого числа n, треба знайти таке число c (c не більше n), що $a^2 + b^2 = c^2$. Тобто, якщо $c = \operatorname{sqrt}(a^2 + b^2) - \operatorname{ціле} \operatorname{число}$, то a, b, c – одна з шуканих піфагорових трійок чисел.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Задане натуральне число, яке обмежує значення піфагорових трійок	цілий	n	Вхідне дане
Перше число з піфагорової трійки	цілий	a	Проміжне дане
Друге число з піфагорової трійки	цілий	b	Проміжне дане
Число, квадрат якого є сумою квадратів першого і другого числа піфагорової трійки.	дійсний	c	Результат

Таким чином, формування задачі зводиться до обчислення значення с для кожного натурального а від 1 до n включно та відповідного йому b від a+1 до n включно, $c = \operatorname{sqrt}(a^2+b^2)$. Якщо $c - \operatorname{ціле}$ число ([c] == c) та c <= n, то значення a, b, для яких це виконується є шуканими, тобто знайдені числа a, b, c

утворюють піфагорову трійку. Отже, в результаті перевірки для кожного можливого а та b отримаємо всі можливі піфагорові трійки, в яких жодне з чисел не перевищує n.

[] – ціла частина від числа

sqrt() – квадратний корінь числа

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо перебір першого числа

Крок 3. Деталізуємо перебір другого числа

Крок 4. Деталізуємо визначення шуканої піфагорової трійки.

Псевдокод

Крок 1

Початок

Перебір першого числа

Перебір другого числа

Визначення шуканої піфагорової трійки

Кінець

Крок 2

Початок

повторити

для а від 1 до п

Перебір другого числа

Визначення шуканої піфагорової трійки

все повторити

Кінець

```
Початок
         повторити
           для а від 1 до п
             повторити
               для b від a+1 до n
                 Визначення шуканої піфагорової трійки
             все повторити
         все повторити
Кінець
Крок 4
Початок
         повторити
           для а від 1 до п
             повторити
```

для b від a+1 до n $c = sqrt(a^2 + b^2)$ якщо c == [c] i c <= n

виведення "a = ", a, " b = ", b," c = ", c, "\n"

все якщо

T0

все повторити

все повторити

Кінець

Блок-схема Крок 1 Початок Введення п Перебір першого числа Перебір другого числа Визначення шуканої піфагорової трійки

Кінець

Крок 2

Крок 3

Крок 4

Випробування алгоритму

Блок	Дія			
	Початок			
1	Введення n = 20			
2	Після 3 ітерації для а та 1 ітерації для b: $a=3, b=4, c=5$ $c=[c]$ - так Виведення " $a=3, b=4, c=5$ "			
4	Після 5 ітерації для а та 7 ітерації для b: $a = 5$, $b = 12$, $c = 13$ $c = [c]$ - так Виведення " $a = 5$, $b = 12$, $c = 13$ "			
5	Після 6 ітерації для а та 2 ітерації для b: $a=6, b=8, c=10$ $c=[c]$ - так Виведення " $a=6, b=8, c=10$ "			
6	Після 8 ітерації для а та 7 ітерації для b: a = 8, b = 15, c = 17 c = [c] - так Виведення "a = 8, b = 15, c = 17"			
7	Після 9 ітерації для а та 3 ітерації для b: a = 9, b = 12, c = 15 c = [c] - так Виведення "a = 9, b = 12, c = 15"			
8	Після 12 ітерації для а та 4 ітерації для b: a = 12, b = 16, c = 20 c = [c] - так Виведення "a = 12, b = 16, c = 20"			
	Кінець			

Висновок

Отже, я дослідив особливості складних циклів, використавши два арифметичні цикли, один вкладений в інший, для знаходження усіх можливих піфагорових трійок чисел із заданим обмеженням та отримав коректний результат.