

combinación lineal	
Dice 9 un vector piede ser expresado como la suma de n Vectores multiplicados por n constantes	
$V = C_0 \cdot V_0 + C_1 \cdot V_1 + \dots + C_{n-1} \cdot V_{n-1}$	
ϵ):	1
* * Example 2.3.1	1
Un Conjunto de vectoses es linealmente independiente si existen constantes tales que:	1
$\mathcal{O} = C_0 \cdot V_0 + C_1 \cdot V_1 + \cdots + C_{n-1} \cdot V_{n-1}$	
La dimension de un espacio de jectores complejos es el Nº de elementos en la base del espacio de vectores	
E):	

€ Unción a < V, V) ≥ 0 9a tis race: ⟨1, v⟩ = 5:i √=0 VXV -> C Produto Punto Para vectores C (Vi, vica) = C2 (Vi, V2) $\langle V_{i}, V_{2} \rangle = V_{1}^{T} * V_{2} \qquad \langle V_{i}, V_{2} \rangle = V_{i}^{+} * V_{2}$ < V1, V2) = (V2, V1) Producto Punto Para materes N° seales N° complejos (A, B) TRace (AT *B) = Trace (A * B) $Teace(c) = \sum_{i=1}^{n-1} CC_{i,i}$ $(f,g) = \sum f(i)g(i)$ Func (N, C) (f,9) = [f(t)9(6) dt FUNC ([a, 6], C) $V_1 = [2,1,3]^T$, $V_2 = [6,2,4]^T$, $V_3 = [0,-1,2]^T$ Dado iostoas q' se cumple (V,+V2, V3) = (V1, V3) + (V2, V3) (1) $\langle V_{1}, V_2 + V_3 \rangle = \langle V_i, V_2 \rangle + \langle V_i, V_3 \rangle$ 2

11

$$G = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

$$\left\langle \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right\rangle + \left\langle \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \right\rangle$$

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} (0-1)(0-3) \\ (-2+0)(-1+0) \end{bmatrix}$$

$$\begin{bmatrix} 2-1 & 1-3 \\ 2+1 & 1+3 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix} + \begin{bmatrix} -1 & -3 \\ -2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ -4 & 3 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & -2 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 5 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ -4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ -4 & 3 \end{bmatrix}$$

2.7. 1
$$\begin{bmatrix}
5 + 13i \\
6 + 2i \\
0.63 - 6i
\end{bmatrix} + \begin{cases}
4 & i \\
2 & 23 - 6i
\end{bmatrix} \\
2 & 21.43i
\end{bmatrix} = \begin{cases}
73 + 5i \\
6 + 6i \\
2 & 25 - 6i
\end{bmatrix} \\
2 & 21.43i
\end{bmatrix}$$
2.1.2 $poobab fooling meather:$

$$(V + W) + X = V + (W + X) \qquad \text{Joinde } V_i, X_i, W_i \in I$$

$$\begin{bmatrix}
V_0 + W_0 \\
V_1 + W_2 \\
V_1 & X_i
\end{bmatrix} = \begin{bmatrix}
V_0 \\
V_1 \\
X_1 & V_1
\end{bmatrix} + \begin{bmatrix}
W_0 + X_0 \\
W_1 + X_1 \\
V_1 & W_1 + X_1
\end{bmatrix}$$

$$\begin{bmatrix}
V_0 + W_0 + X_0 \\
V_1 & X_1 \\
V_1 & X_1
\end{bmatrix} = \begin{bmatrix}
V_0 + X_0 \\
V_1 & X_1 \\
V_1 & X_1
\end{bmatrix} = \begin{bmatrix}
V_0 + X_0 \\
W_1 + X_1 \\
V_1 & X_1
\end{bmatrix}$$

$$\begin{bmatrix}
V_0 + W_0 + X_0 \\
V_1 & X_1 \\
V_1 & X_1
\end{bmatrix} = \begin{bmatrix}
V_0 + X_0 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} = \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} = \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} = \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} = \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_2
\end{bmatrix} + \begin{bmatrix}
V_1 + V_2 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_2
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_2
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_2 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_2
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_2 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_3 + V_1 \\
V_4 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_2 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_2 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_2 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_2 + V_1 \\
V_3 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_2 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_2 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1 \\
V_1 & X_1
\end{bmatrix} + \begin{bmatrix}
V_1 + V_1$$

Pasa un espacio de Psoducto Punto:
tv1= Kv, v) > long told of poom
5x 2.4.5 distance de [4+3i, 6-4i, 12-7i, 13i] =A
= (A, A) = A+ A = (4-3i) (4+3i) + (6-4i) (6+4i) + (12-7i) (12+7i) + 169i
$C \times \tilde{C} \Rightarrow C ^2$
= 16+9+36+16+144+49-169
G_{K} 2.4.6 $A = \begin{bmatrix} 3 & 5 \end{bmatrix} \text{ as } M = \emptyset$ $A = \begin{bmatrix} 3 & 5 \end{bmatrix} \text{ as } M = \emptyset$
$ A - \frac{1}{4} \sin(e(A^T, A)) = \frac{3}{3} \frac{2}{5} \frac{3}{5} = \frac{9}{4} \frac{4}{15} \frac{15}{10} = \frac{1}{5} \frac{1}{15} \frac{1}{10} = \frac{1}{5} \frac{1}{10} \frac{1}{15} \frac{1}{10} = \frac{1}{5} \frac{1}{10} \frac{1}{10} = \frac{1}{5} \frac{1}{10} \frac{1}{10} = \frac{1}{5} \frac{1}{10} \frac{1}{10} = \frac{1}{5} \frac{1}{10} $
Exoce 6.0ce
$=\sqrt{\frac{13}{29}} = \sqrt{\frac{3}{83}}$
REHACE ZUS -506-endo 9 (V,V) = V+xV 5. V EC

$$\exists x \ 2.4.7 \ V_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \ V_2 = \begin{bmatrix} 2 \\ 21 \end{bmatrix} \ J(V_1, V_2) = ?$$

$$d(V_1, V_2) = \sqrt{[3-1]^3} \left[\frac{1}{1} \right] = \sqrt{1+1+4} = \sqrt{11}$$

2 vectores en un esquiso producto punto son ist onale; s: (v, vz)=0

tograpio Base de un espacio del

€x 2.4.8

$$V=[3,-1,0]$$
 $V'=[2,-2,1]$ calculas el angula entre estos vectoses

$$\theta = a6ccos(1.13)$$

$$= \theta = a6ccos(1.13)$$
no está definido

NA espicit	o complejo de	PED PUNEO	es	Confleto	5.7	PaGA C	ada
Va ex:	ste un V E V		1				
		L:	m Vn-	·V]=0		1 1	
		n->0	0		1	1 1	
					1 1	1 1	
tilbest	Espacio (1 1	1 1	1 1	
SPace	POL Punto	Co wb 1	eto	1 1	1 1	1 1	
				1 1 1			
O		NAM	1 1		1 1		
Taka und	a materia A	in C				1 - 1	
		20.0			0 00	PY L	oles a
71	hay yn c	P C	y un	vector !	- 0 . 01	()	
	Y = c-V	1 1 1	1 1	1 1 1	1		
	7 V = C·V					1	
0 06	e igien vallu	0				1	
	e:900 vec					1	
			1 1	1 1 1	1 1 1		; i t 1 8 i i 1 1 f 8
Vas:05	eigenvector	es detes	Minan	un ei	901€.	spacio	
				1 1 1	1 1 1 1 1 1 1 1 1		
				1 1			
Base 06.	609 onal 57	Pod .	ent,63	3 5.15 110	itoie	s es	CERO
			1 1	1 1	1 1 1	- ! !	
1 1 1 1		1 1 1	1 1	1 1	1 1 1	1 1	1 1 1
1 1 1 1						1 1	
	3 1 1 1			1 1		1 1	
			1 1	1 1 1	(1 1	1 1	
			1 1		f t 6		
		1 1 1	1 1	1 1 1	1 1 1	1 1	
		1 1 1 1	1 1	1 1 1	1 1 1	1 1	1 1 1 1
	: 4 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1	1 1	1 1 1	1 1 1 1	1 1 1 1 1 1 1 1
	1 1 1 1 1	1 1 1 1	1 1		1 1 1	i i	1 1 1 1
			1 1		1 1 1	1 1	1 1 1