

174 CH17: Amortized Algorithms

Tighter bounds by looking at a sequence of operations and averaging

Chapter 17

	Introduction 357
15	Dynamic Programming 359
	15.1 Rod cutting 360
	15.2 Matrix-chain multiplication 370
	15.3 Elements of dynamic programming 378
	15.4 Longest common subsequence 390
	15.5 Optimal binary search trees 397
16	Greedy Algorithms 414

★ 16.4 Matroids and greedy methods 437

16.1 An activity-selection problem 41516.2 Elements of the greedy strategy 423

★ 16.5 A task-scheduling problem as a matroid 443

17 Amortized Analysis 451

Advanced Design and Analysis Techniques

17.1 Aggregate analysis 452

16.3 Huffman codes 428

- 17.2 The accounting method 456
- 17.3 The potential method 459
- 17.4 Dynamic tables 463

Stacks w/ Augmented Operation

- Consider a Stack:
 - Push(S, x): pushes object x onto stack S
 - Pop(S): pops the top of the stack S and returns the popped object (returning error if stack is empty).
- Each stack operation runs in O(1) time.
- We can think of these ops as having cost 1.
- Cost of a sequence of n Push and Pop operations is thus n.

• push(S, 2)

S:

• 2

- push(S, 2)
- push(S, 1)

S:

- 1
- 2

- push(S, 2)
- push(S, 1)
- push(S, 3)

- S:
- 3
- 1
- 2

- push(S, 2)
- push(S, 1)
- push(S, 3)
- Pop(S)

- S:
- 1
- 2

- push(S, 2)
- push(S, 1)
- push(S, 3)
- Pop(S)
- Push(S, 7)

- S:
- 7
- 1
- 2

- push(S, 2)
- push(S, 1)
- push(S, 3)
- Pop(S)
- Push(S, 7)
- Pop(S)
- Pop(S)

S:

• 2

Stacks How much work have we done?

- push(S, 2)
- push(S, 1)
- push(S, 3)
- Pop(S)
- Push(S, 7)
- Pop(S)
- Pop(S)

S:

• 2

How much work have we done?

- push(S, 2)
- push(S, 1)
- push(S, 3)
- Pop(S)
- Push(S, 7)
- Pop(S)
- Pop(S)

- S:
- 2

7 Units of Work Total

Multipop(S, k)

- Now we augment our stack with a new operation:
- Multipop(S, k): removes the k top objects of stack S. If stack has fewer than k object, the stack is emptied.

Multipop(S, k)

```
MULTIPOP(S, k)

1 while not STACK-EMPTY(S) and k > 0

2 POP(S)
```

```
17.1 Aggregate analysis
```

453

- a) Multipop(S, 4)
- b) Multipop(S, 7)

Multipop(S, k)

```
MULTIPOP(S, k)

1 while not STACK-EMPTY(S) and k > 0

2 POP(S)

3 k = k - 1
```

- Cost of Multipop(S, k) = min(s, k)
 - s=# of objects on stack

Augmented Stack w/ Worst-Case Analysis

- Push & Pop are O(1)
- How about Multipop(S, k)???
- Worst-Case w/ Multipop:
 - n items in stack
 - n items pop from stack with Multipop(S, n)
 - Cost of one Multipop is O(n)
- THEREFORE Worst-Case w/ Augmented Stack is O(n²)
 - n operations of Multipop worst-case cost of n

Worst-Case w/ Observation

- Worst-Case requires n Multipop operations, with each popping n items.
 - Where did these n² items come from?????
- NOTE: each item can only be popped once per time its pushed.
 - $\le n \text{ Push's} => \le n \text{ Pop's}$
 - Including those in Multipop
- Although our worst-case analysis is correct,
 The O(n²) result, obtained by considering worst case cost of each operation individually,
 IS NOT TIGHT!

Augmented Stack w/ Aggregate Analysis

- Aggregate Analysis, we show that for all n, a sequence of n operations takes worst-case time T(n) in total!
 - Here we are looking at a block of operations rather than operations individually.
- Amortized Cost is calculated per operation as T(n)/n
 - Total cost averaged over the number of operations!

Augmented Stack w/ Aggregate Analysis

- Remember: each item can only be popped once per time its pushed.
 - $\le n \text{ Push's} => \le n \text{ Pop's}$
 - Including those in Multipop
- So the maximum cost possible w/ n operations is n.
 - -T(n) = n
- So the amortized cost per operation is:
 - -T(n)/n = O(1)!!!
 - NOT O(n) like worst-case for Multipop

Aggregate Analysis

- Aggregate Analysis assigns amortized cost of each operation as the average cost.
 - -T(n)/n
- BUT: this is not a type of probabilistic analysis.
- T(n) is a worst-case bound on n operations.

Incrementing a Binary Counter

- Implement a k-bit binary counter!
- array A[0..k-1]
 - A.length = k
 - A[0] is low-order bit
 - A[k-1] is high-order bit

$$x = \sum_{i=0}^{k} A[i] * 2^i$$

Binary Function w/ Python

```
>>> print '\n'.join(
    ["(%i,%s)"%(i,bin(i)) for i in range(11)])
(0,0b0)
(1,0b1)

    NOTE: Low-order bit is A[n]

(2,0b10)
(3.0b11)
(4,0b100)
(5,0b101)
(6,0b110)
(7,0b111)
(8,0b1000)
(9,0b1001)
(10,0b1010)
```

Binary Function w/ Python

To Match Textbook use a few utilities:

```
btoa = lambda x:''.join(x[::-1])
btoi = lambda x:int(''.join(x[::-1]),2)
itob = lambda x:bin(x)[:1:-1]
```

Increment(A)

INCREMENT(A)

```
1  i = 0

2  while i < A.length and A[i] == 1

3  A[i] = 0

4  i = i + 1

5  if i < A.length

6  A[i] = 1
```

- Loop 2-4 wants to add 1 to into position i
- If A[i] is already 1, then adding one flips it to 0.
 - Requiring carry add 1 into position i+1
- If A[i] is 0 loop exits w/ 1 inserted into A[i] in line
 6.
 - Otherwise now A[i] = 0 for all i<A.length & x=0</p>

Increment(A) w/

```
bincount.py - D:\Documents\GitHub\ics1293\Code\py\bincount.py
File Edit Format Run Options Windows Help
#binary operations w/ binary counter
                                                      = 00000000
btoa = lambda x:''.join(x[::-1])
                                                    1 = 00000001
btoi = lambda x:int(''.join(x[::-1]),2)
                                                    2 = 00000010
itob = lambda x:bin(x)[:1:-1]
                                                    3 = 00000011
                                                                   (3)
                                                    4 = 00000100
def incrementBinaryCounter(A):
                                                    5 = 00000101
                                                                   (5)
    ''' High Order Bit in A[0]'''
                                                    6 = 00000110
    i = 0
                                                    7 = 00000111
                                                                   (7)
    while i < len(A) and A[i] == '1':
                                                    8 = 00001000
                                                                     8)
        A[i] = '0'
                                                    9 = 00001001
        i += 1
                                                   10 = 00001010
                                                                   (10)
    if i < len(A):
                                                   11 = 00001011
                                                                   (11)
        A[i] = '1'
                                                   12 = 00001100
                                                                   (12)
                                                   13 = 00001101
                                                                   (13)
A=list('00000000')
                                                   14 = 00001110
                                                                   (14)
for i in range (20):
                                                   15 = 00001111
                                                                   (15)
    print "%2i = %s (%2i) "%(i,btoa(A),btoi(A)) 16 = 00010000
                                                                   (16)
    incrementBinaryCounter(A)
                                                   17 = 00010001
                                                                   (17)
                                                   18 = 00010010
                                                                   (18)
                                                   19 = 00010011
                                                                   (19)
                                                                    25
```

Ln: 17 Col: 17

Binary Counter w/ Worst-Case Analysis

- In the worst case, Increment needs to flip all k bits.
 - '11111111' => '00000000'
- So worst-case cost for n Increments in O(nk)
- Clearly, here again, this is not possible!

We can Tighten our Analysis!

0	=	00000000	(0)
1	=	00000001	(1)
2	=	00000010	(2)
3	=	00000011	(3)
4	=	00000100	(4)
5	=	00000101	(5)
6	=	00000110	(6)
7	=	00000111	(7)
8	=	00001000	(8)
9	=	00001001	(9)
10	=	00001010	(10)
11	=	00001011	(11)
12	=	00001100	(12)
13	=	00001101	(13)
14	=	00001110	(14)
15	=	00001111	(15)
16	=	00010000	(16)
17	=	00010001	(17)
18	=	00010010	(18)
19	=	00010011	(19)

Counter value	MJKGKGKAKGKGKJKG	Total cost
0	0 0 0 0 0 0 0	0
1	0 0 0 0 0 0 0 1	1
2	0 0 0 0 0 0 1 0	3
3	0 0 0 0 0 0 1 1	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	0 0 0 0 1 1 1 0	25
15	0 0 0 0 1 1 1 1	26
16	0 0 0 1 0 0 0	31

Increment w/ Observation

Not every bit flips everytime!

Bit	Flips how often	Times in n Increments
0	Every time	N
1	½ the time	$\lfloor n/2 \rfloor$
2	¼ the time	$\lfloor n/2^2 \rfloor$
i	$^{1}/_{2^{i}}$ the time	$\lfloor n/2^i \rfloor$
i≥k	never	0

Increment w/ Observation

Therefore, total # of flips =

$$\sum_{i=0}^{k-1} \lfloor n/2^i \rfloor$$

$$n\sum_{i=0}^{\infty} 1/2^{i}$$

- $n * (1 / (1 \frac{1}{2})) = 2n$
- SO: T(n) = 2n
 - so average cost per operation is O(1)

If the set of stack operations included a
 Multipush operation, which pushes k items
 onto the stack, would the O(1) bound on the
 amortized cost of stack operations continue to
 hold?

 Show that if a Decrement operation were included in the k-bit counter example, n operations could cost as much as Θ(nk) time

- Suppose we perform a sequence of n operations on a data structure in which the ith operation costs i if i is an exact power of 2, and 1 otherwise.
- Use aggregate analysis to determine the amortized cost per operation.

- Let c_i = cost of the ith operation
- C_i =
 - i if i is an exact power of 2
 - 1 otherwise

Operation	Cost
1	1
2	2
3	1
4	4
5	1
6	1
7	1
8	8
9	1
10	1

 How many operations between 1 and n will be an exact power of 2?

How many powers of 2 between 1 and n?

- 2⁰, 2¹, 2², ..., 2^{lgn}
- $? = 2^0 + 2^1 + 2^2 + ... + 2^{lgn}$
- Total Cost T(n) = n + (2n-1) < 3n

- How many operations between 1 and n will be an exact power of 2?
- How many powers of 2 between 1 and n?
- 2^0 , 2^1 , 2^2 , ..., 2^{lgn}
- $? = 2^0 + 2^1 + 2^2 + ... + 2^{lgn}$
- $= 2^{\lg n+1} 1 = 2*2^{\lg n} 1 = 2n-1$
- Total Cost T(n) = n + (2n-1) < 3n

Amortized Analysis w/ Accounting Method

- Different charges assigned to different operations
 - Some are charged more than their actual cost
 - Some are charged less
- Amortized cost is the amount charged

Accounting Method w/ Amortized Costs

- Amortized Costs when exceeding actual costs generate credit.
- Credits are stored and used later to pay for operations that are more expensive than their amortized cost.
- Credit must never go negative!

Amortized Costs

- Amortized Costs must be chosen carefully!
- Must ensure that total amortized cost of a sequence of operations provides an upper bound on total actual cost.
- MOREOVER: Total Amortized Cost must be an upper bound for all possible sequences!

Amortized Costs Equation 17.1

$$\sum_{i=1}^{n} \widehat{c}_i \ge \sum_{i=1}^{n} c_i$$

- c_i : actual cost of the ith operation
- \widehat{c}_i : amortized cost of the ith operation

Actual cost can never exceed Amortized Cost

$$\sum_{i=1}^{n} \widehat{c}_i - \sum_{i=1}^{n} c_i \ge 0$$

- c_i : actual cost of the ith operation
- \widehat{c}_i : amortized cost of the ith operation
- If credit is negative, algorithm is in debt!
- While the algorithm is in debt, Amortized Cost is not an upper bound on performance!

Remember Stack w/ Multipop!

- (a) Multipop(S, 4); (b) Multipop(S, 7)
- Actual Costs:
 - Push=1, Pop=1, Multipop=min(s,k)
 - s=stack size, k=multipop parameter
- Let's utilize the following Amortized Costs
 - Push=2, Pop=0, Multipop=0

Plates @ Cafeteria

- Represent our Stack w/ Plates in dispenser.
- Each time we add a plate we spend 1 dollar and put 1 dollar on the plate!

 The dollar on the plate is prepayment for the cost of later popping it!

Plates @ Cafeteria

- The most our n operations will cost is 2n.
- No sequence of operations can ever create a debt.

So we can conclude that Total Amortized
 Cost T(n) = O(n) is an upper bound.

Bin Counter

- Running time is proportional to the number of flipped bits!
- Dollar Bills will represent unit cost!

<u> </u>	3	
Counter	1.666.666	Total
value	M. M. M. M. M. M. W. W. W.	cost
0	0 0 0 0 0 0 0 0	0
1	0 0 0 0 0 0 0 1	1
2	0 0 0 0 0 0 1 0	3
3	0 0 0 0 0 0 1 1	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	0 0 0 0 1 1 1 0	25
15	0 0 0 0 1 1 1 1	26
16	0 0 0 1 0 0 0	31

Bin Counter w/ Accounting Method

- Amortized Costs:
 - Each time we set a bit to 1 we'll charge \$2!
 - Actual Cost is One Dollar!
 - One Dollar of the Two dollars charged used to cover actual cost!
 - Second dollar stored on bit as credit.
 - Setting a bit to 0 has cost 0!
 - When bit set 0 we'll use the One Dollar stored on bit.

Bin Counter w/ Accounting Method

- NOTE: Initially all bits are 0.
- At any point in time, every 1 in the counter has a dollar of credit on it.
- Thus, we can charge nothing to reset a bit to 0
 - we just pay for the reset with bill on bit!!

Increment(A)

INCREMENT(A)

```
1  i = 0

2  while i < A.length and A[i] == 1

3  A[i] = 0

4  i = i + 1

5  if i < A.length

6  A[i] = 1
```

- Increment Calls set at most one bit (line 6)!
 - Costing 2 dollars !!
- The number of 1s in the counter never becomes negative
 - thus the amount of credit stays nonnegative.
- Thus n Increment operations have Total Amortized Cost T(n) < 2n = O(n)

- Suppose we perform a sequence of stack operations on a stack whose size never exceeds k.
 - After every k operations, we make a copy of the entire stack for backup purposes.
- Show that the cost of n stack operations, including copy the stack, is O(n) by assigning suitable amortized costs to the various stack operations.

- Amortized Costs:
 - Push: \$2
 - Pop: \$2
- For each Push and Pop:
 - one dollar used to pay for operation.
 - one dollar saved in stack.
 - After k operations there will always be \$k to pay for copy!

 Redo Exercise 17.1-3 using accounting method of analysis.

- Let c_i = cost of the ith operation
- \bullet $C_i =$
 - i if i is an exact power of 2
 - 1 otherwise

Operation	Cost
1	1
2	2
3	1
4	4
5	1
6	1
7	1
8	8
9	1
10	1

- How many operations between 1 and n will be an exact power of 2?
- How many powers of 2 between 1 and n?
- 2^0 , 2^1 , 2^2 , ..., 2^{lgn}
- $? = 2^0 + 2^1 + 2^2 + ... + 2^{lgn}$
- $= 2^{\lg n+1} 1 = 2*2^{\lg n} 1 = 2n-1$
- Total Cost T(n) = n + (2n-1) < 3n

- Charge \$3 for each operation
 - if i is not an exact power of 2, pay one dollar
 - if i is an exact power of 2, pay i dollars using stored

credit!

Operation	Cost	Actual Cost	Credit Remaining
1	3	1	2
2	3	2	3
3	3	1	5
4	3	4	4
5	3	1	6
6	3	1	8
7	3	1	10
8	3	8	5
9	3	1	7
10	3	1	9

- Charge \$3 for each operation
 - if i is not an exact power of 2, pay one dollar
 - if i is an exact power of 2, pay i dollars using stored credit!
- Total Amortized Cost for n operation T(n)=3n
- Total Actual Cost T(n) = n + (2n-1) < 3n
- Since:
 - the amortized cost of each operation is O(1),
 - and the amount of credit never goes negative,
 - the total cost of n operations is O(n)

Amortized Analysis w/ Potential Method

- Like accounting method, but credit thought of as potential (like physics) stored with the entire data structure.
 - Accounting method stores credit w/ specific objects
 - plates in stack
 - bits in counter
 - Potential method stores potential in data structure as a whole.
 - Potential can be released to pay for future operations
 - Most Flexible of amortized analysis methods!

Potential Method

- D_i = Data Structure after the ith operation
- D_0 = the initial data structure
- c_i = actual cost of the ith operation
- \widehat{c}_i = amortized cost of the ith operation

- Potential Function: $\Phi(D_i) \to \mathbb{R}$
 - $-\Phi(D_i)$ is the potential associated w/ data structure D_i

Potential Method

- $\widehat{c}_i = c_i + \Phi(Di) \Phi(Di_{-1})$
- $\Delta\Phi(Di) = \Phi(Di) \Phi(Di_{-1})$
 - Increase (or decrease) in potential due to ith operation

Total Amortized Cost T(n) w/ Potential Method

$$T(n) = \sum_{i=1}^{n} \widehat{c}_{i}$$

$$= \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

- $\Phi(Dn) \geq \Phi(D_0)$, for all i
 - Amortized Cost an upper bound

Augmented Stack w/ Potential Method

- Φ(Di) = is the number of items in the stack w/ ith operation.
- $\Phi(D_0) = 0$
- $\Phi(Di) \geq 0$

Augmented Stack w/ Potential Method

Operation	Actual Cost	ΔΦ(Di)	Amortized Cost
Push	1	(s+1) - s = 1	1 + 1 = 2
Рор	1	(s-1) - s = -1	1 - 1 = 0
Multipop(S, k)	k' = min(k,s)	(s-k')-s=-k'	k'-k'=0

Amortized cost of n operations

$$-T(n) < 2n = O(n)$$

- Now lets look @ Bin Counter again.
- $\Phi(D_i)=b_i$ is the number of ones in counter after ith Increment Operation.
- Now using this Phi Function we can look at the amortized cost of an Increment Operation.

- $\Phi(D_i)=b_i$ is the number of ones in counter after ith Increment Operation.
- Say ith increment operation resets t_i bits

$$-c_i = t_i + 1$$

- Since in addition to resetting the t_i bits it also potentially sets one bit.
- If b_i = 0, all bits are 0 (no 1's)
 - THEN b_{i-1} must have just reset all k bits
 - $-b_{i-1} = t_i = k \text{ (all 1's)}$

- If b_i>0, Then some number of bits are set at time i.
 - THEN $b_i =$
 - b_{i-1}: the number of bits set before this operation
 - -t_i: decreased by the number of bits that were just reset.
 - +1: Plus one more for the possible bit just set.
- So for both cases:

$$b_i \leq b_{i-1} - t_i + 1$$

So for both cases:

$$b_i \le b_{i-1} - t_i + 1$$

- $\Delta\Phi(D_i) = (b_{i-1} t_i + 1) b_{i-1}$
- SO: $\Delta \Phi(D_i) = 1 t_i$

•
$$\widehat{c}_i = c_i + \Delta \Phi(D_i)$$

$$\leq (t_i + 1) + (1 - t_i)$$

$$\leq 2$$

- $\widehat{c}_i \leq 2$
- Since:
 - $-\Phi(D_0)=0$
 - $-\Phi(D_i) \geq 0$, for all i
 - THEN, the total amortized cost (2n) is an upper bound on the total actual cost
 - -T(n) = O(n)

Dynamic Tables

- "We do not always know in advance how many objects some application will store in a table."
- Dynamically expanding and contracting tables deal with this problem.
- Amortized Analysis allows us to show we can solve this problem in O(1)
 - Providing Dynamic Tables as efficiently as Static Tables.

Dynamic Tables w/ C++

- <vector>'s allow dynamic arrays in c++
- Array.push_back(it)
 - Adds new item
- Array.back()
 - Returns last item.
- Array.pop_back()
 - Removes last item.

```
#include <iostream>
                            // Enables use of IO
    #include <vector>
                            // Enables use of vector
    #include <cstdlib>
                            // Enables use of rand()
    using namespace std;
 6 v int main(){
      vector<int> dynamicArray;
      int i, randomSize;
      /* random size of vector */
10
      randomSize = rand()%11;
11
      for (i=0;i<randomSize;++i){</pre>
12 v
13
        dynamicArray.push back(i);
14
15
      /* print out new vector */
      while (dynamicArray.size()>0) {
        cout << dynamicArray.back() <<" ";</pre>
17
        dynamicArray.pop back();
18
19
      cout <<endl;
20
21
22
```

Dynamic Tables

- As it fills, it must reallocate with a larger size
 - copying all objects into the new, larger table
- As it contracts, it might want to reallocate with a smaller size
 - freeing unused space!

Operations w/ Dynamic Table

- Table-Insert: item inserted into table occupying a single slot!
 - SLOT: space for one
- Table-Delete: removes an item from the table
 - thereby freeing a slot
- GOAL:
 - Insertion & Deletion in O(1)!
 - Unused space never exceeds a constant fraction of total space!

Load Factor w/ Dynamic Table

Load Factor α(T)

$$\alpha$$
(Empty Table) = 0

$$\alpha(Table) = \frac{Items in Table}{Size of Table (number of slots)}$$

- GOAL: Load Factor Bound Below by Constant
 - Insures unused space is never more than a constant fraction of total space!

First Step w/ Insertion

- Consider only Insertion
 - Table-Insert
- When the table fills up (no more slots) then a larger new table must be allocated.
 - Common to double the current size.
 - Contents from old table slots must be inserted into slots in larger new table!
 - Table must be contiguous (for O(1) access).
 - Guarantees that $\alpha(T) \ge \frac{1}{2}$

Table-Insert(T, x)

```
TABLE-INSERT (T, x)
     if T.size == 0
         allocate T.table with 1 slot
 3
         T.size = 1
    if T.num == T.size
 5
         allocate new-table with 2 \cdot T. size slots
         insert all items in T. table into new-table
         free T.table
         T.table = new-table
 9
         T.size = 2 \cdot T.size
     insert x into T. table
10
11 T.num = T.num + 1
```

```
DynamicArray::DynamicArray(){
15
        size = 0;
16
17
       num = 0;
18
     };
19
     void TableInsert(DynamicArray& T, int x){
20
       int* newT;
21
       cout << "Table Insert In (size,num): "<<T.size<<",";</pre>
22
       cout << T.num << endl;</pre>
23
       if (T.size==0){
24
25
          cout << "Setting size to 1." <<endl;</pre>
         T.table = new int[1];
26
                                                          2
          T.size=1;
27
                                                          3
28
       if (T.num==T.size){
29
          cout << "Setting size to "<<2*T.size<<".
                                                          5
30
          newT = new int[2*T.size];
31
                                                          6
          for (int i=0;i<T.num;++i){
32
            newT[i]=T.table[i];
33
                                                          8
34
                                                          9
         free(T.table);
35
         T.table=newT;
                                                         10
36
          T.size=2*T.size;
37
                                                         11
38
       T.table[T.num] = x;
39
       T.num+=1;
40
       cout << "Table Insert Out (size,num): "<<T.size<<",";</pre>
41
       cout << T.num << endl;
42
43
44
```

Table-Insert(T,x) w/ C++

```
TABLE-INSERT (T, x)

1 if T.size == 0

2 allocate T.table with 1 slot

3 T.size = 1

4 if T.num == T.size

5 allocate new-table with 2 \cdot T.size slots

6 insert all items in T.table into new-table

7 free T.table

8 T.table = new-table

9 T.size = 2 \cdot T.size

10 insert x into T.table

11 T.num = T.num + 1
```

Two "Insertion" Procedures & Expansion

- Elementary Insertion:
 - Insertion into table in lines 6 & 10
 - Constant Time: O(1)
- Table-Insert(T, x) Procedure
 - Elementary insertion w/ partially full array.
 - Expansion occurs w/ Lines 5-9
 - Expansion cost dominated by elementary insertions into new array.

- Charge 1 per elementary insertion
- Count only elementary insertions
- c_i = actual cost of the ith operation
 - $-c_i = 1 \text{ w/ partially full array}$
 - − If full c_i=i:
 - i-1 items in table at start of ith operation.
 - i-1 items inserted into new array
 - Assume allocation time for new array is constant.
 - ith item inserted into slot of new array

- Worst case cost per operation then c_i=O(n)
- Worst Case Cost w/ n operations = O(n²)
- Still we don't always expand!

- Worst case cost per operation then c_i=O(n)
- Worst Case Cost w/ n operations = O(n²)
- Still we don't always expand!

$$c_i = \begin{cases} i: if \ i-1 \ is \ exact \ power \ of \ 2 \\ 1: & otherwise \end{cases}$$

$$Total\ Cost = \sum_{i=1}^{n} c_i$$

- Worst case cost per operation then c_i=O(n)
- Worst Case Cost w/ n operations = O(n²)
- Still we don't always expand!

$$c_i = \begin{cases} i: if \ i-1 \ is \ exact \ power \ of \ 2 \\ 1: & otherwise \end{cases}$$

$$Total\ Cost = \sum_{i=1}^{n} c_i \le n + \sum_{j=1}^{\lfloor \lg n \rfloor} 2^j$$

- Worst case cost per operation then c_i=O(n)
- Worst Case Cost w/ n operations = O(n²)
- Still we don't always expand!

$$c_i = \begin{cases} i: if \ i-1 \ is \ exact \ power \ of \ 2 \\ 1: \qquad otherwise \end{cases}$$

$$Total \; Cost = \sum_{i=1}^{n} c_i \leq n + \sum_{j=1}^{\lfloor \lg n \rfloor} 2^j = n + \frac{2^{\lfloor \lg n \rfloor} - 1}{2 - 1}$$

- Worst case cost per operation then c_i=O(n)
- Worst Case Cost w/ n operations = O(n²)
- Still we don't always expand!

$$c_i = \begin{cases} i : if \ i-1 \ is \ exact \ power \ of \ 2 \\ 1 : \qquad otherwise \end{cases}$$

$$Total\ Cost = \sum_{i=1}^{n} c_i \le n + \sum_{j=1}^{\lfloor \lg n \rfloor} 2^j = n + \frac{2^{\lfloor \lg n \rfloor} - 1}{2 - 1}$$

$$< n + 2n = 3n$$

- Worst case cost per operation then c_i=O(n)
- Worst Case Cost w/ n operations = O(n²)
- Aggregate Analysis say amortized cost per operation =

$$c_i = \begin{cases} i: if \ i-1 \ is \ exact \ power \ of \ 2 \\ 1: \qquad otherwise \end{cases}$$

$$Total\ Cost = \sum_{i=1}^{n} c_i \le n + \sum_{j=1}^{\lfloor \lg n \rfloor} 2^j = n + \frac{2^{\lfloor \lg n \rfloor} - 1}{2 - 1}$$

$$< n + 2n = 3n$$

Dynamic Array w/ Accounting Method

- Each insertions cost 3 dollars
 - 1 dollar pays for the elementary insertion
 - 1 dollar pays for the 1 later insertion into slot of new larger table.
 - 1 dollar pays for the later insertion of one other existing item into the new larger table.
- Items continually insert into new tables as the array expands.
- But:
 - The table is never less than half full
 - Half the items (the half copied during the last expansion) have no money on them.
 - The other half of the items have 2 dollars each
 - just enough to cover the items with no money!

Dynamic Array w/ Accounting Method (2nd)

- Suppose we've just expanded
 - size=m before the expansion
 - size=2m after the expansion
- The expansion will use up all the credit.
 - So after the expansion there is no remaining credit.
- m insertions will occur before the next expansion.
 - Each insertion will put 1 dollar on the item
 - Each insertion will put 1 dollar on one of the m items in slots just after expansion
- 2m credits by the next expansion
 - When there'll be 2m items!

Dynamic Array w/ Potential Method

- Define a potential function that's 0 after an expansion, but builds to table size by the time the table is full
 - enabling expansion w/ potential payment

Dynamic Array w/ Potential Method

$$\Phi(T)=2 \cdot T.num - T.size$$

Immediately after expansion :

$$-T.num = T.size/2$$

$$\Phi(T)=2 \cdot \frac{T.size}{2} - T.size = 0$$

Dynamic Array w/Potential Method

$$\Phi(T)=2 \cdot T.num - T.size$$

Since the table is always at least half full:

$$\frac{T.num}{T.size} \ge \frac{1}{2}$$

$$2 \cdot T.num \geq T.size$$

$$\Phi(T) = 2 \cdot T.num - T.size \ge 0$$

 Thus: the sum of the amortized costs of n Table-Insert ops gives an upper bound on the sum of the actual costs!

Amortized Cost ith op w/ no expansion

$$\widehat{c}_i = c_i + \Phi(T_i) - \Phi(T_{i-1})$$

$$= 1 + (2*num_i - size_i) - (2*num_{i-1} - size_{i-1})$$

Since no expansion

= 1 +
$$(2*num_i - size_i) - (2*(num_i - 1) - size_i)$$

$$= 1 + 2*num_i - 2*num_i + 2 = 3$$

• \widehat{c}_i is O(1)

Amortized Cost ith op w/ Expansion

$$\widehat{c}_i = c_i + \Phi(T_i) - \Phi(T_{i-1})$$

- Since expansion
 - $size_i = 2*size_{i-1}$
 - $-\operatorname{size}_{i-1} = \operatorname{num}_{i-1} = \operatorname{num}_{i-1}$
 - $-c_{i} = num_{i-1} + 1 = num_{i}$
- $= num_i + (2num_i size_i) (2num_{i-1} size_{i-1})$
- $= num_i + (2num_i 2(num_i 1)) (2(num_i 1) (num_i 1))$
- $= num_i + 2 (num_i 1) = 3$
- \widehat{c}_i is O(1)

Table Expansion and Contraction

- Now need implementation for TableDelete
 - Table delete removes an item from table.
- Removing the item is ez!
- We need to contract table when load factor become too small.
 - When number of items drops too low
 - Allocate new smaller table
 - Copy items from old to new table
 - Free space for old table.

Like Two Properties Preserved

- Load factor of the dynamic table bound below by a positive constant!
- Amortized cost of a table operation is bounded above by a constant!
- Cost measured by elementary insertions & deletions

Expansion & Contraction w/ First Idea

Expand by doubling when full.

Contract by halving when half full.

• Guarantees that $\frac{1}{2} \le \alpha(T) \le 1$

Expansion & Contraction w/ First Idea – Bad Idea

- T.size = 11
- Insert, Insert, Insert, Insert, Insert
- Insert, Insert, Insert, Insert, Insert -> Expand
- T.size = 22 & T.num=12
- Delete, Delete => Contract
- T.num=10 & T.size=11
- Insert, Insert => Expand
- T.size = 22 & T.num = 12
- Delete, Delete => Contract
- T.num=10 & T.size=11
- .
- .
- .

Expansion & Contraction w/ Second Idea

- Expansion was working alright, but we seem to be to anxious to contract!
- Improvement: Let $\alpha(T)$ decrease all the way down to $\frac{1}{2}$ (not just $\frac{1}{2}$) before contracting by $\frac{1}{2}$.
 - After expansion or contraction the array is half full w/ $\alpha(T) = \frac{1}{2}$!

Expansion & Contraction w/ Second Idea's Intuition

- We Want to make sure that we perform enough operations between consecutive expansions/contractions to pay for the change in table size.
- Need to delete have the items before contraction.
- Need to double number of items before expansion.
- Either way, number of operations between expansions/contractions is at least a constant fraction of number of items copied.

Expansion & Contraction Analysis w/ Potential Method

$$\Phi(T) = \begin{cases} 2 \cdot T.num - T.size, & if \alpha(T) \ge \frac{1}{2} \\ \frac{T.size}{2} - T.num, & if \alpha(T) < \frac{1}{2} \end{cases}$$

- When exactly ½ full, potential is 0.
- As the array shrinks under ½ it prepares for contraction.
- As the array expands beyond ½ it prepares for expansion.

Prove Potential Positive @ any point

$$\Phi(T) = \begin{cases} 2 \cdot T.num - T.size, & if \alpha(T) \ge \frac{1}{2} \\ \frac{T.size}{2} - T.num, & if \alpha(T) < \frac{1}{2} \end{cases}$$

- T empty Ф(T)=0
- $\alpha(T) \ge \frac{1}{2} \Rightarrow$ $\text{num } \ge \frac{size}{2} \Rightarrow 2 \cdot num \ge size \Rightarrow \Phi(T) \ge 0$
- $\alpha(T) < \frac{1}{2} \Rightarrow$ $\text{num} < \frac{\text{size}}{2} \Rightarrow \Phi(T) \ge 0$

Additional Intuition

- $\Phi(T)$ measures how far from $\alpha(T) = \frac{1}{2}$ we are.
- $\alpha(T) = \frac{1}{2} \Rightarrow \Phi(T) = 2 \cdot num 2 \cdot num = 0$
- $\alpha(T) = 1 \Rightarrow \Phi(T) = 2 \cdot num num = num$
 - We have potential to cover expansion
- $\alpha(T) = \frac{1}{4} \Rightarrow \Phi(T) = \text{size}/2 \cdot num num$ = $4 \cdot num/2 - num = num$
 - Leaving potential to pay for contraction

Additional Intuition

- SO: When we double or have, have enough potential to pay for moving all num items in array.
- Potential increases linearly between $\alpha(T) = \frac{1}{2}$ and $\alpha(T) = 1$
- Potential also increases linearly between $\alpha(T) = \frac{1}{2}$ and $\alpha(T) = \frac{1}{4}$

Additional Intuition

- $\alpha(T)$ moves from ½ to 1 and from ½ to ¼.
 - Depending on the direction the distance to travel differs.
- Size=20, Num=10, $\alpha(T)=1/2$
 - Distance from 10 to 20 is 10
 - Distance from 10 to 5 is 5!
- For $\alpha(T)$ to go from ½ to 1, num increase from size/2 to size.
 - For a total increase of size/2.
 - Explaining the coefficient of 2 on the T.num term in Φ formula when $\alpha(T) \ge \frac{1}{2}$
- For $\alpha(T)$ to go from ½ to 1/4, num decreases from size/2 to size/4 .
 - For a total decrease of size/4.
 - Explaining the coefficient of -1 on the T.num term in Φ formula when $\alpha(T) < \frac{1}{2}$