Teste Escrito de Computação Gráfica - LCC 17/06/2022 Duração: 30 minutos por parte

Parte I

1. Considere a primitiva geométrica

myCuboCom3UnidadesDeLado-Rodado30GrausNoEixoDosZz-ComCentroEm-10-8-5

Descreva os parâmetros das transformações geométricas necessárias para obter um cubo cujos lados têm uma unidade de comprimento, orientado com as arestas alinhadas aos eixos originais, e centro na origem:

```
glTranslate(_ , _ , _ );
glRotate(_ , _ , _ , _ );
glScale(_ , _ , _ );
myCubo...();
```

- 2. Considere um conjunto matrizes representativas de transformações geométricas 3D básicas, em que translações são representados por T_i, rotações por R_i, e escalas uniformes por S_i. Para cada afirmação que se segue indique, justificando, se é verdadeira ou falsa:
 - (a) $T_1 \times R_1 = R_1 \times T_1$
 - (b) Para cada par (T_1, S_1) existe um par (T_2, S_2) , tal que $T_1 \times S_1 = S_2 \times T_2$
- 3. Considere os pontos p(1,2,3) e q(3,4,3)
 - (a) Defina uma matriz de escala S tal que q = S
 - (b) Defina uma matriz de translação T tal que q = Tp

Parte II

4. Considere o seguinte excerto de código :

```
\begin{array}{l} translate\,(0\,,\,\,0\,,\,\,-3);\\ drawEsfera\,\,()\,;\\ translate\,(0\,,\,\,0\,,\,\,3)\,;\\ gluLookAt\,(2\,,\,\,0\,,\,\,3\,,\,\,\,\,0\,,\,\,0\,,\,\,-1,\,\,\,\,0\,,\,\,1,\,\,0);\\ translate\,\,(0\,,\,\,0\,,\,\,-3);\\ drawEsfera\,\,()\,; \end{array}
```

Considerando o espaço global, desenhe a posição das esferas, a posição da câmara e o sistema de eixos da câmara, considerando somente o plano XZ.

- Pretende-se colocar uma câmara na circunferência de raio unitário com centro na origem, como ilustrado na figura.
 - (a) Escreva os parâmetros da função glulookat, sabendo que os três primeiros parâmetros representam a posição da câmara, os três seguintes indicam o ponto para onde a câmara aponta, e os três últimos definem o vector "up".

(b) Recorrendo somente a rotações e translações, escreva a sequência de transformações geométricas apropriadas para obter exactamente a mesma definição da câmara.

```
glTranslate(_ , _ , _ );
glRotate(_ , _ , _ , _ );
```

X

Z

6. Considere que a câmara está definida através da função gluLookAt, estando posicionado no espaço global no ponto P, a olhar na direcção do ponto L e com um vector \vec{up} .

Apresente o processo matemático para deslocar a câmara uma unidade para a sua esquerda.

Parte III

7. Considere uma curva de Bézier de grau 3 em 2D com os seguintes pontos de controle: $P_0 = (0,1), P_1 = (0,0), P_2 = (2,1), P_3 = (2,0).$

Apresente o procedimento **geométrico** para o cálculo de P(t) considerando t=0.25. Desenhe uma aproximação da curva obtida.

8. A continuidade entre curvas depende da relação entre os pontos de ambas as curvas. Indique qual a relação necessária entre os pontos de uma curva $P(p_0, p_1, p_2, p_3)$ e uma curva $Q(q_0, q_1, q_2, q_3)$ de forma a que haja continuidade da derivada na transição entre as curvas.

Apresenta um diagrama ilustrativo dos pontos e a sua relação.

9. A figura apresenta um exemplo de um quadrado, rodado 45 graus no eixo dos ZZs, constituído por 16 caixas, ou seja com 4 caixas de lado. Cada caixa é desenhada através da primitiva glBox, em que se assume que as coordenadas dos vértices desta primitiva variam entre -1 e 1 em todos os eixos. Construa um algoritmo para desenhar quadrados como o da figura, tendo as caixas uma unidade de comprimento em todas as dimensões. O número de caixas do lado do quadrado, assim como o ângulo de rotação no eixo dos ZZs são os parâmetro de entrada da função.

Parte IV

10. Considere que se pretende usar uma grelha para representar um terreno. As coordenadas dos pontos da grelha são números inteiros e a dimensão dos lados de cada quadrícula da grelha é uma unidade. Para obter a altura dos pontos da grelha é disponibilizada a função h(pi), sendo pi um ponto da grelha. Para se poder calcular a iluminação dos pontos da grelha é necessário calcular a normal em cada ponto. Com base na figura, indique como proceder matematicamente para calcular a normal do ponto p.

11. Considere a situação ilustrada na figura, onde existe um triângulo a ser iluminado por um holofote cuja luz apenas atinge o círculo representado. Indique, justificando, qual dos modelos estudados consegue lidar correctamente com a situação.

12. Em OpenGL é possível utilizar a técnica de mipmapping no processo de aplicação de texturas. Descreva o processo de aplicação para cada pixel.