Kelompok 5

- 1. Rafif Rabbani (2102286)
- 2. Bagas Ghulam Maulana (2102476)
- 3. Muhammad Rahman Wicaksono (2102800)

Pertemuan 5 Analisis Numerik

Diberikan data berikut:

t	1	1.2	1.4	1.6	1.8
y = f(t)	7.38906	11.02318	16.44465	24.53253	44.70118

Hampiri nilai fungsi y pada t = 1.1 dengan metode berikut:

1. Interpolasi Linier

Nilai fungsi y = f(t) pada t = 1.1 dihampiri dengan

$$f(t) = f(t_0) + \frac{f(t_1) - f(t_0)}{t_1 - t_0} (t - t_0)$$

$$f(1.1) = 7.38906 + \frac{11.02318 - 7.38906}{1.2 - 1} (1.1 - 1)$$

$$= 9.20612$$

Perhitungan dengan "Microsoft Excel"

t	1	1.2	1.4	1.6	1.8
y = f(t)	7.38906	11.02318	16.44465	24.53253	44.70118
t =					1.1
y					9.20612

2. Interpolasi Kuadrat

Misalkan

$$L_0 = \frac{(t-t_1)(t-t_2)}{(t_0-t_1)(t_0-t_2)}$$

$$= \frac{(1.1-1.2)(1.1-1.4)}{(1-1.2)(1-1.4)}$$

$$= 0.375$$

$$L_1 = \frac{(t-t_0)(t-t_2)}{(t_1-t_0)(t_1-t_2)}$$

$$= \frac{(1.1-1)(1.1-1.2)}{(1.2-1)(1.2-1.4)}$$

$$= 0.75$$

$$L_2 = \frac{(t-t_0)(t-t_1)}{(t_2-t_0)(t_2-t_1)}$$

$$= \frac{(1.1-1)(1.1-1.2)}{(1.4-1.1)(1.4-1.2)}$$

$$= -0.125$$

Maka

$$f(t) = t_0 L_0 + t_1 L_1 t_2 L_2$$

= 1(0.375) + 1.2(0.75) + 1.4(-0.125)
= 8.982701

Perhitungan dengan "Microsoft Excel"

t	1	1.2	1.4	1.6	1.8	
y = f(t)	7.38906	11.02318	16.44465	24.53253	44.70118	
t =	1.1					
y=	8.98270125					

3. Interpolasi Beda Maju Newton-Gregory

Tabel beda:

x	f(x)	Δf	Δf^2	Δf^3	Δf^4
1	7.38906	3.63412	1.78735	0.87906	8.53529
1.2	11.02318	5.42147	2.66641	9.41436	
1.4	16.44465	8.08788	12.08077		
1.6	24.53253	20.16865			
1.8	44.70118				

Hampiran nilai fungsi akan dihitung dengan

$$f(t) = f(t_0) + (x - x_0) \left(\frac{\Delta f_0}{1!h}\right) + (x - x_0)(x - x_1) \left(\frac{\Delta^2 f_0}{2!h^2}\right) + \dots + (x - x_0)\dots(x - x_{n-1}) \left(\frac{\Delta^n f_0}{n!h^n}\right)$$

Perhitungan dilakukan dengan "Microsoft Excel"

t=x	1	1.2	1.4	1.6	1.8				
y = f(t)	7.38906	7.38906 11.02318 16.44465 24.53253 44.70118							
t=	1.1								
h=	0.2								
f(x) =	8.70423234375								

4. Interpolasi Beda Mundur Newton-Gregory

Tabel beda

x	f(x)	Δf	Δf^2	Δf^3	Δf^4
1	7.38906	3.63412	1.78735	0.87906	8.53529
1.2	11.02318	5.42147	2.66641	9.41436	
1.4	16.44465	8.08788	12.08077		
1.6	24.53253	20.16865			
1.8	44.70118				

Hampiran nilai fungsi akan dihitung dengan

$$f(t) = f(t_n) + (t - t_n) \frac{1}{1!h} \nabla f(t_n) + f(t - t_n)(t - t_{n-1}) \frac{1}{2!h^2} \nabla^2 f(t_n) + \dots + (t - t_n) \dots$$

Perhitungan dilakukan dengan "Microsoft Excel"

t=x	1	1.2	1.4	1.6	1.8			
y = f(t)	7.38906	7.38906 11.02318 16.44465 24.53253 44.70118						
t=	1.1							
h=	0.2							
f(x)=	8.70423234374999							

Dari keempat metode tersebut, metode pertama yaitu interpolasi linier lebih mudah dihitung. Namun, metode ini hanya menggunakan tepat 2 titik sehingga tingkat akurasinya rendah. Lalu untuk metode interpolasi kuadrat, tingkat akurasinya lebih tinggi dibanding metode interpolasi linier karena menggunakan tepat 3 titik yang juga menjadi kelemahannya karena jika terdapat lebih dari 3 titik, maka titik-titik tersebut tidak terjamin cocok dengan solusi akhirnya. Metode terakhir adalah metode interpolasi beda maju dan mundur Newton-Gregory. Walau metode ini paling sulit dilakukan, tingkat akurasinya lebih tinggi dibanding 2 metode sebelumnya dan jumlah titik yang diinterpolasi tidak dibatasi.