Complex Analysis: Homework 12

Martín Prado

November 6, 2024 Universidad de los Andes — Bogotá Colombia

Exercise 1.

Let $U \subseteq \mathbb{C}$ be an open, connected, and bounded set with closure \overline{U} . Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of continuous functions $\overline{U} \to \mathbb{C}$ whose restrictions to U are holomorphic. Suppose the sequence converges uniformly on $\overline{U} \setminus U$. Prove that $(f_n)_{n \in \mathbb{N}}$ converges uniformly on \overline{U}

Solution

Since (f_n) converges uniformly at $\partial U = \overline{U} \setminus U$

Define $g_{n,m} = f_n - f_m$ and note that by the Maximum Modulus Principle, since $g_{n,m}$ is a holomorphic function and U is bounded, it follows that $g_{n,m}$ attains its maximum at the boundary of U:

$$\max_{z \in \overline{U}} |g_{n,m}(z)| \le \max_{z \in \partial U} |g_{n,m}(z)| \to 0.$$

Therefore, (f_n) is a Cauchy sequence of functions in the metric space $X = (H(\overline{U}), \|\cdot\|_{\infty})$. Now, since $(H(\overline{U}), \|\cdot\|_{\infty})$ is a closed subspace of $(C(\overline{U}), \|\cdot\|_{\infty})$ which is a Banach space because every function in $C(\overline{U})$ is bounded, it follows that X is a Banach space too, and thus, (f_n) converges uniformly in \overline{U} .

Exercise 2.

Let $U_1=\{z\in\mathbb{C}: \operatorname{Im}(z)>0\},\ U_2=\mathbb{C}\setminus(-\infty,0] \text{ and } \mathbb{E}=\{z\in\mathbb{C}: |z|<1\}, \text{ find biholomorphic functions}$

$$f: U_1 \to \mathbb{E}, \qquad g: U_2 \to \mathbb{E}.$$

Solution Item (a)

For the first homework we proved that the Cayley transform $f^{-1}: \mathbb{E} \to U_1$, $f^{-1}(z) = i \frac{1-z}{1+z}$ is a bijection with inverse function

$$f(z) = \frac{i-z}{i+z}.$$

Since the only singularity is outside its domain, it follows that f is holomorphic too.

Solution Item (b)

Remark. Note that the 2 solutions for $z^2 = a^2$ are: a and $e^{i\pi}a$. If $\text{Re}(a) \neq 0$, then one of the 2 solutions is in $U_3 := \{z \in \mathbb{C} : \text{Re}(z) > 0\}$ and the other in $e^{i\pi}U_3 = \{z \in \mathbb{C} : \text{Re}(z) < 0\}$ (the other half plane). Therefore, the branch of $\sqrt{\cdot} = z \mapsto \sqrt{|z|} \cdot \exp(i \arg(z)/2)$ defined for $\arg(z) \in (-\pi, \pi)$ is a biholomorphic map between U_2 and U_3 .

In the first place, note that by taking $g_1 = \sqrt{\cdot}$ as the branch of the square root defined for $\arg(z) \in (-\pi, \pi)$, we obtain a biholomorphic function from U_2 to $\{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$. Now, rotate 90° with the function $g_2(z) = iz$ to obtain U_1 and finally apply f to obtain \mathbb{E} :

$$g(z) = f \circ g_2 \circ g_1(z) = \frac{i - i\sqrt{z}}{i + i\sqrt{z}} = \frac{1 - \sqrt{z}}{1 + \sqrt{z}}.$$

Exercise 3.

Find a biholomorphic function $f: \{z \in \mathbb{C} : |z| < 1, \operatorname{Re}(z) > 0\} \to \{z \in \mathbb{C} : |z| < 1\}.$

Solution

Let $V_1 := \{z \in \mathbb{C} : |z| < 1, \operatorname{Re}(z) > 0\}$ be the right half (unit) disk.

Claim 1. Let $h: \mathbb{E} \to U_1$ be the Cayley transform $h(z) = i\frac{1-z}{1+z}$ from the previous exercise. Then, $h|_{V_2}$ is a bijection between the upper half disk $V_2 := \{z \in \mathbb{C} : |z| < 1, \text{ Im}(z) > 0\}$ and the first quadrant $V_3 := \{z \in \mathbb{C} : \text{Re}(z) > 0, \text{Im}(z) > 0\}$.

Proof: It's clear from the first homework that the restriction to V_2 of the Cayley transform is injective. Now, let $w = x + iy \in V_3$ with $x, y \in \mathbb{R}^+$. We want to show that $h^{-1}(w) =$

 $\frac{i-w}{i+w} \in V_1$, that is, $\operatorname{Im}(h^{-1}(w)) > 0$ (because $h^{-1}(w) \in B_1(0)$). Note that

$$h^{-1}(w) = \frac{i - w}{i + w} = \frac{i - iy - x}{i + iy + x}$$

$$= \frac{i(1 - y) - x}{i(1 + y) + x} \cdot \frac{i(1 + y) - x}{i(1 + y) - x}$$

$$= \frac{1 - x^2 - y^2}{(1 + y)^2 + x^2} + i\frac{2x}{(1 + y)^2 + x^2}$$

Therefore, $\operatorname{Im}(h^{-1}(w)) = \frac{2x}{(1+y)^2 + x^2} > 0$.

Now, $z \mapsto z^2$ is a bijection between V_3 and the upper half plane $V_4 := \{z \in \mathbb{C} : \text{Im}(z) > 0\}$. Finally, from the previous exercise we know that the Inverse Cayley transform maps V_4 to the unit disk $V_5 := B_0(1)$. The map we're looking for is the following

$$V_1 \xrightarrow{z\mapsto iz} V_2 \xrightarrow{z\mapsto h(z)} V_3 \xrightarrow{z\mapsto z^2} V_4 \xrightarrow{z\mapsto h^{-1}(z)} V_5$$

$$f(z) = h^{-1} ((h(iz))^2).$$

Since f is a composition of biholomorphic functions, it follows that f is biholomorphic too.

Exercise 4.

Let $E = \{z \in \mathbb{C} : |z| < 1\}$, and let $f : E \to E$ be a biholomorphic function. Prove that there exist $\alpha \in \mathbb{R}$ and $z_0 \in E$ such that

$$f(z) = e^{i\alpha} \frac{z - z_0}{1 - \overline{z_0}z}.$$

Solution

In the first homework we proved that for $z_0 \in E$, the function

$$F(z) = \frac{z_0 - z}{1 - \overline{z_0}z}$$

is a biholomorphism from the unit disk E to itself. Also, we proved that $F^{-1}(z) = F(z)$ for every $z \in E$.

Now, let $z_0 = f(0)$ and define F accordingly. Then, define $g = f \circ F : E \to E$ with g(0) = 0 and $|g(z)| \le 1$. By Schwarz Lemma, it follows that $|g(z)| \le |z|$.

Also, since $g^{-1} = F^{-1} \circ f^{-1} = F \circ f^{-1}$ exists and satisfies $g^{-1}(0) = 0$ and $|g^{-1}(z)| \le 1$ too, it follows by Schwarz lemma that $|g^{-1}(z)| \le |z|$. Now, for every $z \in E$

$$|z| = |g^{-1}(w)| \le |w| = |g(z)| \le |z|.$$

Therefore, by Schwarz lemma, again, it follows that $g(z) = e^{i\alpha}z$ for some $\alpha \in \mathbb{R}$. Finally,

$$f(z) = g \circ F^{-1}(z) = g \circ F(z) = e^{i\alpha} \frac{z_0 - z}{1 - \overline{z_0}z}.$$

Exercise 5.

Does there exist a homeomorphic function $\mathbb{C} \to \mathbb{E}$?

Solution

Note that the function $f(x) = \frac{x}{1-|x|}$ is a bijection between (0,1) and $(0,\infty)$ with inverse $f^{-1}(x) = \frac{x}{1+|x|}$. In fact, if x < y, then

$$1 - |x| > 1 - |y| \implies \frac{1}{1 - |x|} < \frac{1}{1 - |y|} \implies f(x) < f(y)$$

On the other hand, for $x \in (0, \infty)$, since |x| = x and $\left|\frac{x}{1+x}\right| = \frac{x}{1+x}$, it follows that

$$f(f^{-1}(x)) = f\left(\frac{x}{1+x}\right) = \frac{\frac{x}{1+x}}{1 - \frac{x}{1+x}} = \frac{x}{1-x} = \frac{\frac{x}{1+x}}{\frac{1+x-x}{1+x}} = x.$$

Therefore, f is surjective too.

Now, when we extend to the complex plane with $|\cdot|$ being the module function,

$$f(e^{i\theta}x) = \frac{e^{i\theta}x}{1 - |e^{i\theta}x|} = e^{i\theta}\frac{x}{1 - |x|} = e^{i\theta}f(x).$$

Therefore, f(z) is a bijection between $e^{i\theta}(0,1)$ and $e^{i\theta}(0,\infty)$ and f(0)=0. Therefore, after joining all the domains, we obtain that

$$f(z) = \frac{z}{1 - |z|}$$

is a bijection between $B_1(0)$ and \mathbb{C} and it's continuous because is a composition of continuous functions. Therefore, f is a homeomorphism.