Soluciones para la tarea del 16 de mayo

$$1) f(x) = 3x^2$$

Detectamos los coeficientes de la función:

$$a = 3$$

$$b = 0$$

$$c = 0$$

Lo primero que debemos hacer es buscar el punto del vértice.

Partimos de su coordenada "x" que se calcula con la siguiente fórmula:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot 3} = 0$$

$$v_y = f(v_x) = f(0) = 3 \cdot 0^2 = 0$$

El vértice es el punto V = (0,0)

Ya sabíamos que tenía que ser así, por la expresión algebraica que tenía la función.

Además sabemos que sus *ramas van hacia arriba* ya que a>0

Ahora debemos obtener el valor de un par de puntos de la función, a la izquierda y a la derecha del vértice:

			٧		
х	-2	-1	0	1	2
f(x)	12	3	0	3	12

$$Dom(f(x)) = \mathbb{R}$$

 $Im(f(x)) = [0, +\infty)$
 $Continua\ en\ \mathbb{R}$

$$Min \rightarrow (0,0)$$

$$Crece: [0, +\infty)$$

$$Decrece: (-\infty, 0]$$

Corte
$$ejeX:(0,0)$$

Corte eje
$$Y$$
: $(0,0)$

$$2) f(x) = -\frac{1}{3}x^2$$

$$a = -\frac{1}{3}$$
$$b = 0$$

$$c = 0$$

Lo primero que debemos hacer es buscar el punto del vértice. Partimos de su coordenada "x" que se calcula con la siguiente fórmula:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot \left(-\frac{1}{3}\right)} = 0$$

$$v_y = f(v_x) = f(0) = \left(-\frac{1}{3}\right) \cdot 0^2 = 0$$

El vértice es el punto V = (0,0)

Ya sabíamos que tenía que ser así, por la expresión algebraica que tenía la función.

Además sabemos que sus *ramas van hacia abajo* ya que a < 0

Ahora debemos obtener el valor de un par de puntos de la función, a la izquierda y a la derecha del vértice:

			٧		
x	-6	-3	0	3	6
f(x)	-12	-3	0	-3	-12

$$Dom(f(x)) = \mathbb{R}$$

 $Im(f(x)) = [0, -\infty)$
 $Continua \ en \ \mathbb{R}$
 $Max \to (0,0)$
 $Crece: (-\infty, 0]$
 $Decrece: [0, +\infty)$
 $Función \ par$
 $Corte \ ejeX: (0,0)$
 $Corte \ ejeY: (0,0)$

$$3) f(x) = 2x^2 - 2$$

$$a = 2$$

$$b = 0$$

$$c = -2$$

Lo primero que debemos hacer es buscar el punto del vértice.

Partimos de su coordenada "x" que se calcula con la siguiente fórmula:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot 2} = \frac{0}{4} = 0$$

$$v_y = f(v_x) = f(0) = 2 \cdot 0^2 - 2 = -2$$

El vértice es el punto V = (0, -2)

Ya sabíamos que tenía que ser así, por la expresión algebraica que tenía la función.

Además sabemos que sus ramas van hacia arriba ya que a>0

Ahora debemos obtener el valor de un par de puntos de la función, a la izquierda y a la derecha del vértice:

			٧		
x	-2	-1	0	1	2
f(x)	6	0	-2	0	6

$$Dom(f(x)) = \mathbb{R}$$

$$Im(f(x)) = [-2, +\infty)$$

$$Continua\ en\ \mathbb{R}$$

 $Min \rightarrow (0, -2)$

Crece: $[0, +\infty)$

 $Decrece: (-\infty, 0]$

Función par

Corte ejeX: (-1,0)(1,0)

Corte ejeY: (0, -2)

4)
$$f(x) = -x^2 + 1$$

$$a = -1$$

$$b = 0$$

$$c = 1$$

Lo primero que debemos hacer es buscar el punto del vértice. Partimos de su coordenada "x" que se calcula con la siguiente fórmula:

$$v_x = \frac{-b}{2a} = \frac{0}{2 \cdot (-1)} = \frac{0}{-2} = 0$$

$$v_y = f(v_x) = f(0) = -0^2 + 1 = 1$$

El vértice es el punto V = (0, 1)

Ya sabíamos que tenía que ser así, por la expresión algebraica que tenía la función.

Además sabemos que sus *ramas van hacia abajo* ya que a < 0

Ahora debemos obtener el valor de un par de puntos de la función, a la izquierda y a la derecha del vértice:

			>		
x	-2	-1	0	1	2
f(x)	-3	0	1	0	-3

$$Dom(f(x)) = \mathbb{R}$$
 $Im(f(x)) = (-\infty, 1]$
 $Continua\ en\ \mathbb{R}$
 $Max \to (0, 1)$
 $Crece: (-\infty, 0]$
 $Decrece: [0, +\infty)$
 $Función\ par$
 $Corte eie X: (-1, 0) (1, 0)$

Corte ejeX: (-1,0) (1,0)Corte ejeY: (0,1)

$$5) f(x) = x^2 + 4x$$

$$a = 1$$

$$b = 4$$

$$c = 0$$

Lo primero que debemos hacer es buscar el punto del vértice.

Partimos de su coordenada "x" que se calcula con la siguiente fórmula:

$$v_x = \frac{-b}{2a} = \frac{-4}{2 \cdot 1} = \frac{-4}{2} = -2$$

$$v_y = f(v_x) = f(-2) = (-2)^2 + 4 \cdot (-2) = 4 - 8 = -4$$

El vértice es el punto V = (-2, -4)

Además sabemos que sus *ramas van hacia arriba* ya que a>0

Ahora debemos obtener el valor de un par de puntos de la función, a la izquierda y a la derecha del vértice:

			٧		
х	-4	-3	-2	-1	0
f(x)	0	-3	-4	-3	0

 $Dom(f(x)) = \mathbb{R}$ $Im(f(x)) = [-4, +\infty)$ $Continua\ en\ \mathbb{R}$ $Min \to (-2, -4)$ $Crece: [-2, +\infty)$ $Decrece: (-\infty, -2]$ $Corte\ ejeX: (-4, 0)\ (0, 0)$

Corte ejeY: (0,0)

$$6) f(x) = -2x^2 + 6x$$

$$a = -2$$

$$b = 6$$

$$c = 0$$

Lo primero que debemos hacer es buscar el punto del vértice.

Partimos de su coordenada "x" que se calcula con la siguiente fórmula:

$$v_x = \frac{-b}{2a} = \frac{-6}{2 \cdot (-2)} = \frac{-6}{-4} = 1.5$$

 $v_y = f(v_x) = f(1.5) = -2 \cdot 1.5^2 + 6 \cdot 1.5 = 4.5$

El vértice es el punto V = (1.5, 4.5)

Además sabemos que sus $\it ramas van hacia abajo ya que a < 0$

Ahora debemos obtener el valor de un par de puntos de la función, a la izquierda y a la derecha del vértice:

			٧		
x	0	1	1.5	2	3
f(x)	0	4	4.5	4	0

 $Dom(f(x)) = \mathbb{R}$ $Im(f(x)) = (-\infty, 4.5]$ $Continua\ en\ \mathbb{R}$ $Max \to (1.5, 4.5)$ $Crece: (-\infty, 1.5]$ $Decrece: [1.5, +\infty)$

Corte ejeX: (0,0) (3,0) Corte ejeY: (0,0)

7)
$$f(x) = x^2 + 4x - 3$$

$$a = 1$$

$$b = 4$$

$$c = -3$$

Lo primero que debemos hacer es buscar el punto del vértice.

Partimos de su coordenada "x" que se calcula con la siguiente fórmula:

$$v_x = \frac{-b}{2a} = \frac{-4}{2 \cdot 1} = \frac{-4}{2} = -2$$

$$v_y = f(v_x) = f(-2) = (-2)^2 + 4 \cdot (-2) - 3 = 4 - 8 - 3 = -7$$

El vértice es el punto V = (-2, -7)

Además sabemos que sus *ramas van hacia arriba* ya que a>0

Ahora debemos obtener el valor de un par de puntos de la función, a la izquierda y a la derecha del vértice:

			٧		
x	-4	-3	-2	-1	0
f(x)	-3	-6	-7	-6	-3

 $Dom(f(x)) = \mathbb{R}$ $Im(f(x)) = [-7, +\infty)$ $Continua \ en \ \mathbb{R}$ $Min \rightarrow (-2, -7)$ $Crece: [-2, +\infty)$ $Decrece: (-\infty, -2]$ $Corte \ ejeX:$ $(-4.65, 0) \ (0.65, 0)$ $Corte \ ejeY: (0, -3)$

8)
$$f(x) = -2x^2 + 6x + 2$$

$$a = -2$$

$$b = 6$$

$$c = 2$$

Lo primero que debemos hacer es buscar el punto del vértice.

Partimos de su coordenada "x" que se calcula con la siguiente fórmula:

$$v_x = \frac{-b}{2a} = \frac{-6}{2 \cdot (-2)} = \frac{-6}{-4} = 1.5$$

$$v_y = f(v_x) = f(1.5) = -2 \cdot 1.5^2 + 6 \cdot 1.5 + 2 = 6.5$$

El vértice es el punto V = (1.5, 6.5)

Ahora debemos obtener el valor de un par de puntos de la función, a la izquierda y a la derecha del vértice:

			٧		
х	0	1	1.5	2	3
f(x)	2	6	6.5	6	2

 $Dom(f(x)) = \mathbb{R}$ $Im(f(x)) = (-\infty, 6.5]$ $Continua \ en \ \mathbb{R}$ $Max \rightarrow (1.5, 6.5)$ $Crece: (-\infty, 1.5]$ $Decrece: [1.5, +\infty)$ $Corte \ ejeX:$ (-0.30, 0) (3.30, 0)

Corte ejeY:(0,2)