# Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики  $\mathbb{N}$  5.2.1

# Опыт Франка-Герца

Автор:

Филиппенко Павел Б01-009



Долгопрудный, 2022

#### Цель работы

Методом электронного возбуждения измерить энергию первого уровня атома гелия в динамическом и статическом режимах.

#### Теоретические сведения

Разреженный одноатомный газ (в нашем случае – гелий) заполняет трёхэлектродную лампу. Электроны, испускаемые разогретым катодом, ускоряются в постоянном электрическом поле, созданным между катодом и сетчатым анодом лампы. Передвигаясь от катода
к аноду, электроны сталкиваются с атомами гелия. Если энергия электрона, налетающего на атом, недостаточна для того, чтобы перевести его в возбуждённое состояние (или
ионизовать), то возможны только упругие соударения, при которых электроны почти не
теряют энергии, так как их масса в тысячи раз меньше массы атомов.

По мере увеличения разности потенциалов между анодом и катодом энергия электронов увеличивается и, в конце концов, оказывается достаточной для возбуждения атомов. При таких — неупругих — столкновениях кинетическая энергия налетающего электрона передаётся одному из атомных электронов, вызывая его переход на свободный энергетический уровень (возбуждение) или совсем отрывая его от атома (ионизация).

При увеличении потенциала анода ток в лампе вначале растёт, подобно тому как это происходит в вакуумном диоде (рис. 2). Однако, когда энергия электронов становится достаточной для возбуждения атомов, ток коллектора резко уменьшается. Это происходит потому, что при неупругих соударениях с атомами электроны почти полностью теряют свою энергию и не могут преодолеть задерживающего потенциала между анодом и коллектором. При дальнейшем увеличении потенциала анода ток коллектора вновь возрастает: электроны, испытавшие неупругие соударения, при дальнейшем движении к аноду успевают набрать энергию, достаточную для преодоления задерживающего потенциала.



Рис. 1: Характер зависимости I(U)

#### Оборудование

Схема экспериментальной установки отображена на рис. 2 и 3.



Рис. 2: Принципиальная схема установки



Рис. 3: Блок-схема экспериментальной установки

## Задача о потенциальной яме

Решим задачу о частице в потенциальной яме. Найдем разрешенные уровни энергии частицы в потенциальной яме с бесконечновысокими стенками. Положим, что масса частицы m, а ширина ямы a.

Составим уравнение Шредингера в общем виде

$$-\frac{\hbar}{2m}\psi'' + u\psi = E\psi$$

Для области внутри ямы

$$\psi'' + \frac{2m}{\hbar}E\psi = 0$$

положим  $k^2 = \frac{2m}{\hbar} E$ , тогда решение волнового уравнения в общем виде запишется:

$$\psi(x) = A\sin kx + B\cos kx$$

Найдем константы из граничных условий:

$$\psi(0) = 0 \implies B = 0; \quad \psi(a) = 0 \implies A \sin ka = 0 \implies$$

$$k_n a = n\pi \ (n \in \mathbb{N})$$

$$k_n = \frac{\pi}{a} n$$

$$E = \frac{\hbar^2 k_n^2}{2m} = \frac{\pi^2 \hbar^2}{2ma^2} n^2$$



Рис. 4: Потенциальная яма

### Обработка данных

В динамическом режиме получили на экране осцилогрфа инвертированную вольтамперную характиристику рис 5.

Цена деления по горизонтали 5 В. Таким образом, интервал напряжения между соседними пиками порядка 15 В. Точное значение интервала между пиками установить по осцилографу сложно. Данный этап дает лишь оценочное значение.

В статическом режиме снимим вольтамперную характиристику при значениях запирающего напряжения 4 В, 6 В и 9 В.

По данным из таблицы 1 для каждого значения запирающего напряжения построим вольльтамперную характиристику рис 6, 7, 8, 9.

Таким образом, при различных значениях запирающего напряжения мы получили энергию первого возбужденного состояния атома гелия  $E=e\Delta V$ .

При запирающем напряжении  $V_1=4$  В  $E=(17.6\pm0.02)$  эВ При запирающем напряжении  $V_1=6$  В  $E=(19.0\pm0.02)$  эВ При запирающем напряжении  $V_1=9$  В  $E=(17.0\pm0.02)$  эВ

Посчитаем среднее значение найденной величины и погрешность.

$$\sigma_E = \sqrt{\frac{\sum (\overline{E} - E)^2}{N(N-1)}}$$

$$\overline{E} = (17.9 \pm 0.6) \text{ } 9B$$

| 4 B       |             | 6 B       |             | 9 B       |             |
|-----------|-------------|-----------|-------------|-----------|-------------|
| V±0.01, B | I ±0.001 мА | V±0.01, B | I ±0.001 мА | V±0.01, B | I ±0.001 мА |
| 4.25      | 0.062       | 2.60      | 0.019       | 5.28      | 0.015       |
| 6.25      | 0.094       | 6.05      | 0.066       | 10.0      | 0.090       |
| 8.14      | 0.127       | 9.12      | 0.120       | 12.6      | 0.133       |
| 10.8      | 0.171       | 12.3      | 0.169       | 14.9      | 0.167       |
| 14.6      | 0.223       | 16.0      | 0.221       | 17.4      | 0.203       |
| 17.5      | 0.258       | 16.7      | 0.228       | 19.5      | 0.228       |
| 17.9      | 0.262       | 17.4      | 0.239       | 20.7      | 0.235       |
| 18.7      | 0.269       | 18.1      | 0.249       | 21.6      | 0.236       |
| 19.7      | 0.274       | 19.1      | 0.258       | 22.5      | 0.233       |
| 21.0      | 0.274       | 20.0      | 0.263       | 24.0      | 0.203       |
| 21.9      | 0.271       | 21.0      | 0.263       | 24.3      | 0.183       |
| 22.3      | 0.261       | 21.9      | 0.257       | 24.5      | 0.098       |
| 22.7      | 0.251       | 22.5      | 0.252       | 25.2      | 0.078       |
| 23.0      | 0.221       | 23.2      | 0.236       | 26.5      | 0.071       |
| 23.3      | 0.211       | 23.4      | 0.221       | 27.6      | 0.077       |
| 24.3      | 0.213       | 23.5      | 0.205       | 28.8      | 0.093       |
| 24.7      | 0.218       | 23.8      | 0.169       | 29.6      | 0.112       |
| 25.4      | 0.232       | 24.8      | 0.144       | 30.6      | 0.138       |
| 26.3      | 0.249       | 25.8      | 0.152       | 31.6      | 0.160       |
| 26.8      | 0.259       | 27.7      | 0.194       | 33.8      | 0.207       |
| 27.6      | 0.275       | 29.0      | 0.220       | 35.8      | 0.240       |
| 28.5      | 0.293       | 29.9      | 0.240       | 37.0      | 0.250       |
| 29.4      | 0.309       | 31.9      | 0.277       | 38.6      | 0.255       |
| 32.1      | 0.359       | 33.4      | 0.306       | 39.4      | 0.253       |
| 33.8      | 0.389       | 35.0      | 0.333       | 41.1      | 0.241       |
| 35.0      | 0.409       | 36.9      | 0.346       | 42.9      | 0.229       |
| 37.3      | 0.419       | 39.0      | 0.347       | 44.4      | 0.218       |
| 38.5      | 0.419       | 40.9      | 0.330       | 46.4      | 0.201       |
| 39.4      | 0.411       | 42.9      | 0.316       | 48.2      | 0.196       |
| 40.5      | 0.400       | 44.5      | 0.308       | 50.1      | 0.192       |
| 40.9      | 0.395       | 46.1      | 0.305       | 51.7      | 0.199       |
| 41.7      | 0.391       | 47.7      | 0.308       | 52.7      | 0.204       |
| 42.7      | 0.387       | 49.4      | 0.317       |           |             |
| 44.5      | 0.388       | 51.6      | 0.330       |           |             |
| 45.2      | 0.390       | 53.1      | 0.343       |           |             |
| 49.4      | 0.417       | 56.0      | 0.370       |           |             |

Таблица 1: Таблица эксперементальных данных для трех запирающих напряжений



Рис. 5: Вольтамперная характиристика, полученная в динамическом режиме

Замечание: на графиках вольтамперных характиристик при увеличении запирающего напряжения уменьшаются значения тока, а так же усиливаются провалы после пиков. Это объясняется тем, что ток зависит от количества электронов, попадающих на коллектор. Чем выше запирающее напряжение, тем меньше электронов после столкновения с гелием смогут набрать необходимую энергию для прохождения этой разности потенциалов.

#### Вывод

В данной работе мы получили энергию первого уровня ионизации атома гелия, используя эксперемент Франка-Герца. Были использованы два метода определения энеригии: динамический (по картинке на осцилографе) и статиеский (по ВАХ). Оба метода являются достаточно грубыми и подходят для оценки реального значения.

Мы так же убедились в том, что при увеличении запирающего напряжения расстояние между пиками ВАХ не меняется. Это доказывает, что энегрия первый уровень энергии является чисто параметром вещества и не зависит от внешних факторов.



Рис. 6: ВАХ для запирающего напряжения 4 В



Рис. 7: ВАХ для запирающего напряжения 6 В



Рис. 8: ВАХ для запирающего напряжения 9 В



Рис. 9: ВАХ для трех значений запирающего напряжения