Profit Curves and Imbalanced Classes

Darren Reger Lecture for Galvanize DSI

I have 5 models, which is the best?

- Model 1 with Accuracy 0.977
- Model 2 with Accuracy 0.02
- Model 3 with Accuracy 0.98
- Model 4 with Accuracy 0.88
- Model 5 with Accuracy 0.748

What about now?

- Model 1 with Precision 0.44 and Recall 0.6
- Model 2 with Precision 0.02 and Recall 1.0
- Model 3 with Precision 0 and Recall 0
- Model 4 with Precision 0.115 and Recall 0.75
- Model 5 with Precision 0.0672 and Recall 0.9

Does this help?

	Predicted: Yes	Predicted: No
Actual: Yes	12	15
Actual: No	8	965

	Predicted: Yes	Predicted: No
Actual: Yes	20	980
Actual: No	0	0

	Predicted: Yes	Predicted: No
Actual: Yes	0	0
Actual: No	20	980

	Predicted: Yes	Predicted: No
Actual: Yes	15	115
Actual: No	5	865

	Predicted: Yes	Predicted: No
Actual: Yes	18	250
Actual: No	2	730

Discussion of Business Applications

Revisiting Confusion Matrix

$$\begin{pmatrix} TP & FP \\ FN & TN \end{pmatrix} \rightarrow \begin{pmatrix} \frac{TP}{TP+FN} & \frac{FP}{FP+TN} \\ \frac{FN}{TP+FN} & \frac{TN}{FP+TN} \end{pmatrix}$$

$$\left(\begin{array}{ccc}
\frac{TP}{TP+FN} & P_{+} & \frac{FP}{FP+TN} & P_{-} \\
\frac{FN}{TP+FN} & P_{+} & \frac{TN}{FP+TN} & P_{-}
\end{array}\right)$$

Profit Matrix =
$$\begin{pmatrix} B_{P_{+}} & C_{P_{+}} \\ C_{P_{-}} & B_{P_{-}} \end{pmatrix}$$

Profit Calculation

Combining information from the Confusion matrix and the Cost-Benefit matrix we can calculate Expected Profit!

$$E[Profit] = P(Y,p) \cdot b(Y,p) + P(Y,n) \cdot c(Y,n) + P(N,p) \cdot c(N,p) + P(N,n) \cdot b(N,n)$$

$$= P(Y|p) \cdot P(p) \cdot b(Y,p) + P(Y|n) \cdot P(n) \cdot c(Y,n) + P(N|p) \cdot P(p) \cdot c(N,p) + P(N|n) \cdot P(n) \cdot b(N,n)$$

$$= P(p) \cdot [P(Y|p) \cdot b(Y,p) + P(N|p) \cdot c(N,p)] + P(n) \cdot [P(Y|n) \cdot c(Y,n) + P(N|n) \cdot b(N,n)]$$

Let's Make a Curve

Making Profit Curves

For a given model f, each threshold value T gives a point on the Profit Curve

Model score is the threshold probability classifying + vs -

- Allow T to be the maximum score
- P = 0, FP = 0
- Calculate E[Profit]
- 4 For each observation, i:
 - If $\hat{\pi}_i > T \longrightarrow \text{increment TP}$
 - Else → increment FP
- Add point (% Test Instances predicted Positive, E[Profit]) to the Profit Graph

Increment T from max-score to min-score, repeating steps 1-4

\$\$\$\$\$\$\$\$\$

Imbalanced Data

- Where do we see it?
- Why is it bad?
- What can we do?
 - Assign Weights
 - **Balancing Classes**

Ateeg Ahmed Siddigui

Choosing Cutoff Point

Undersampling

- Randomly discards majority class observations
- Pros: Makes calculations way faster
- Cons: Throwing out data :(

Oversampling

- Replicates minority class observations
- Pros: Doesn't discard info
- Cons: Overfitting likely:(

SMOTE

 Generates synthetic minority class observations Let's look at the original paper's pseudocode: https://www.jair.org/media/953/live-953-2037-jair.pdf

How do we pick?

Changing Cost Function

- Models with explicit cost function can be modified to incorporate classification cost

• e.g. SVM, logistic
$$\frac{\|w\|^2}{2} + C \sum_{i=1}^n \xi_i \longrightarrow \frac{\|w\|^2}{2} + C^+ \sum_{\{i \mid yi=+1\}}^{n_+} \xi_i + C^- \sum_{\{j \mid yj=-1\}}^{n_-} \xi_j$$

- Can affect the optimization
 - ex. cost sensitive logistic regression no longer convex
- Not possible for all models