MATH 2135 Linear Algebra

3.A The Vector Space of Linear Maps

Alyssa Motas

March 21, 2021

Contents

1	Def	inition and Examples of Linear Maps	3
	1.1	Definition of a linear map	3
	1.2	Notation $\mathcal{L}(V, W)$	3
	1.3	Examples of linear maps	3
	1.4	Linear maps and basis of domain	5
2	Alg	ebraic Operations on $\mathcal{L}(V,W)$	6
	2.1	Addition and scalar multiplication on $\mathcal{L}(V, W)$	6
	2.2	$\mathcal{L}(V,W)$ is a vector space	6
	2.3	Product of linear maps	6
	2.4	Algebraic properties of products of linear maps	7
	2.5	Example	7
	2.6	Linear maps take 0 to 0	8

1 Definition and Examples of Linear Maps

The words "map," "mapping," "function" all mean exactly the same thing. Let X, Y be sets. A function $f: X \to Y$ is an operation that assigns to each element $x \in X$ a unique element $y \in Y$, called y = f(x). X is called the domain of f, and Y is called the codomain of f. We also say that f is a "map" from X to Y.

1.1 Definition of a linear map

A linear map or linear transformation from V to W is a function $T: V \to W$ with the following properties:

1. Additivity.

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$

2. Homogeneity.

$$T(\lambda v) = \lambda(Tv)$$
 for all $\lambda \in \mathbf{F}$ and all $v \in V$.

1.2 Notation $\mathcal{L}(V, W)$

The set of all linear maps from V to W is denoted by

$$\mathcal{L}(V, W) = \{T : V \to W \mid T \text{ is linear } \}.$$

In the case that V=W, a linear function $T:V\to V$ is called an *operator* on V. In other words, $\mathcal{L}(V,V)$ is the set of operators on V.

1.3 Examples of linear maps

1. **zero function** The zero function is denoted by $0 \in \mathcal{L}(V, W)$ and defined with

$$0v = 0$$
 or $f(v) = 0$.

The 0 on the left side is a function from VtoW, whereas the right one is the additive identity in W. The zero function is linear.

2. **identity function** The identity map, denoted by I, is the function that takes each element to itself. It is defined as $I \in \mathcal{L}(V, V)$ such that

$$Iv = v$$
.

The identity map is linear.

3. differentiation Define $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ by

$$Dp = p'$$
.

D is a linear function because: (f+g)'=f'+g' and $(\lambda f)'=\lambda f'$ whenever f,g are differentiable and λ is a constant.

4. integration (antiderivative) Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ such that

$$T(p) = \int_0^x p(t)dt.$$

T is a linear function since the integral of the sum of two functions equals the sum of the integrals, and the integral of a constant times a function equals the constant times the integral of the function.

5. integration (definite integrals) Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ such that

$$T(p) = \int_0^1 p(x)dx.$$

T is also linear with similar reasons as the previous example.

6. multiplication by x^2 Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ such that

$$(Tp)(x) = x^2 p(x).$$

7. **backward shift** Recall that \mathbf{F}^{∞} is the vector space of all sequences of elements of \mathbf{F} . Define $B \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ such that

$$B(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots).$$

8. forward shift Define $F \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ such that

$$F(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots).$$

9. recurrence relation Consider the Fibonacci sequence such taht

$$a_{n+2} = a_n + a_{n+1}, \qquad n \ge 3.$$

For example, we have $(a_1, a_2, a_3, a_4, a_5, ...) = (1, 1, 2, 3, 5, ...)$. We can also write the reccurence in terms of the backward (and forward) shfit operators:

$$a = (a_1, a_2, a_3, a_4, a_5, \dots)$$

$$Ba = (a_2, a_3, a_4, a_5, a_6, \dots)$$

$$B^2a = B(Ba) = (a_3, a_4, a_5, a_6, a_7, \dots)$$

Cosnider the equation $B^2a = Ba + a$. We can do algebra with such equation:

$$B^2a - Ba - a = 0 \qquad \Leftrightarrow \qquad (B^2 - B - I)a = 0.$$

10. from \mathbb{R}^3 to \mathbb{R}^2 Define $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ by

$$T(x, y, z) = (2x - y + 3z, 7x + 5y - 6z).$$

11. **from** \mathbf{F}^n **to** \mathbf{F}^m Let m and n be positive integers, and let $A_{j,k} \in \mathbf{F}$ for $j = 1, \ldots, m$ and $k = 1, \ldots, n$, and define $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$ by

$$T(x_1, \dots, x_n) = (A_{1,1}x_1 + \dots + A_{1,n}x_n, \dots, A_{m,1}x_1, \dots + A_{m,n}x_n).$$

1.4 Linear maps and basis of domain

Suppose v_1, \ldots, v_n is a basis of V and $w_1, \ldots, w_n \in W$. Then there exists a unique linear map $T: V \to W$ such that

$$Tv_j = w_j$$

for each $j = 1, \ldots, n$.

Proof. Let us prove the existence of a linear map T with the desired property. Define $T:V\to W$ by

$$T(c_1v_1 + \dots + c_nv_n) = c_1w_1 + \dots + c_nw_n,$$

where c_1, \ldots, c_n are arbitrary elements of **F**. Since v_1, \ldots, v_n is a basis of V, the equation does define a function T since each element of V can be uniquely written in the form of $c_1v_1 + \cdots + c_nv_n$. Suppose that $c_j = 1$ and the other c's being equal to 0, then we have $Tv_j = w_j$.

If $u, v \in V$ with $u = a_1v_1 + \cdots + a_nv_n$ and $v = c_1v_1 + \cdots + c_nv_n$, then

$$T(u+v) = T((a_1 + c_1)v_1 + \dots + (a_n + c_n)v_n)$$

$$= (a_1 + c_1)w_1 + \dots + (a_n + c_n)w_n$$

$$= (a_1w_1 + \dots + a_nw_n) + (c_1w_1 + \dots + c_nw_n)$$

$$= Tu + Tv.$$

If $\lambda \in \mathbf{F}$ and $v = c_1 v_1 + \cdots + c_n v_n$, then

$$T(\lambda v) = T(\lambda c_1 v_1 + \dots + \lambda c_n v_n)$$

$$= \lambda c_1 w_1 + \dots + \lambda c_n w_n$$

$$= \lambda (c_1 w_1 + \dots + c_n w_n)$$

$$= \lambda T v.$$

Thus, T is a linear map from V to W. Now we need to prove that it is unique. Suppose that $T \in \mathcal{L}(V, W)$ and that $Tv_j = w_j$ for j = 1, ..., n. Let $c_1, ..., c_n \in \mathbf{F}$. The homogeneity property of T implies that $T(c_jv_j) = c_jw_j$. The additivity of T now implies that

$$T(c_1v_1 + \dots + c_nv_n) = c_1w_1 + \dots + c_nw_n.$$

Then T is unquiely determined on span (v_1, \ldots, v_n) . Because v_1, \ldots, v_n is a basis of V, this implies that T is uniquely determined on V.

2 Algebraic Operations on $\mathcal{L}(V, W)$

2.1 Addition and scalar multiplication on $\mathcal{L}(V, W)$

Suppose $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbf{F}$. The sum S + T and the product λT are the linear maps from V to W defined by

$$(S+T)(v) = Sv + Tv$$
 and $(\lambda T)(v) = \lambda (Tv)$

for all $v \in V$.

2.2 $\mathcal{L}(V,W)$ is a vector space

With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space (it holds all the 8 laws of vector space). Note that the additive identity is the zero linear map or function.

2.3 Product of linear maps

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then the product $ST \in \mathcal{L}(U, W)$ is defined by

$$(ST)(u) = S(Tu)$$

for $u \in U$. In other words, ST is the composition $S \circ T$ of two functions. Note that ST is defined only when T maps into the domain of S.

2.4 Algebraic properties of products of linear maps

1. Associativity:

$$(T_1T_2)T_3 = T_1(T_2T_3)$$

where T_3 maps into the domain of T_2 , and T_2 maps into the domain of T_1 .

2. Identity:

$$TI = IT = T$$

where $I \in \mathcal{L}(W, W)$ and $T \in \mathcal{L}(V, W)$.

3. Distributive properties:

$$(S_1 + S_2)T = S_1T + S_2T$$
 and $S(T_1 + T_2) = ST_1 + ST_2$

where $T, T_1, T_2 \in \mathcal{L}(U, V)$ and $S, S_1, S_2 \in \mathcal{L}(V, W)$.

4. Powers: If $T \in \mathcal{L}(V, V)$, we define $T^n \in \mathcal{L}(V, V)$ by

$$T^2 = TT \qquad \text{(i.e. } T^2v = T(Tv))$$

$$T^3 = TTT$$

:

$$T^n = TT^{n-1}.$$

2.5 Example

Suppose that $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the differentiation map and $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the multiplication by x^2 . Show that $TD \neq DT$.

We have

$$((TD)p)(x) = x^2p'(x)$$

but

$$((DT)p)(x) = x^2p'(x) + 2xp(x).$$

In other words, differentiating and then multiplying by x^2 is not the same as multiplying by x^2 and then differentiating.

2.6 Linear maps take 0 to 0

Suppose T is a linear map from V to W. Then T(0) = 0.

Proof. We can prove this by additivity or homogeneity.

- By additivity: T(0) = T(0+0) = T(0) + T(0). Then add the additive inverse of T(0) to each side of the equation to conclude T(0) = 0.
- By homogeneity: Suppose that $\lambda = 0$ and u = 0. Then $T(0 \cdot 0) = 0 \cdot T(0) \Rightarrow T(0) = 0$.