(A)

$$= (\mathbb{E}(x_{1i}x'_{1i}))^{-1}\mathbb{E}(x_{1i}y_i)$$

$$= (\mathbb{E}(x_{1i}x'_{1i}))^{-1}\mathbb{E}(x_{1i}(x'_{1i}\beta_1 + x'_{2i}\beta_2 + e_i))$$

$$= \beta_1 + (\mathbb{E}(x_{1i}x'_{1i}))^{-1}\mathbb{E}(x_{1i}x'_{2i})\beta_2$$

$$E(b_R) = \beta_1 + P\beta_2.$$

(B)

$$= E[(b_R - \beta)(b_R - \beta)'] = E[(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}]$$

$$= (X'X)^{-1}X'E[\varepsilon\varepsilon']X(X'X)^{-1} = (X'X)^{-1}X'(\sigma^2I)X(X'X)^{-1}$$

$$\text{var}(b_R) = \sigma^2(X_1'X_1)^{-1}$$

(C)

Let b be decomposed in two parts as $b = (b_1^l, b_2^l)1$, where the (k - g)X1 vector b_1 corresponds to the refressors of the restricted model and b_2 to the g added regressors. Then, the relation between b_R nd b_1 is given by $b_R = b_1 + Pb_2$

$$b_R = b_1 + Pb_2$$

(D)

Dependent: Logwage			
Variable	Coefficients	Std. Error	
(Constant)	4.734	.024	
Female	251	.040	
R ²	.073		

Dependent: Logwage		
Variable	Coefficients	
(Constant)	3.866	
Female	248	
Age	.022	
R ²	.344	

Dependent: Logwage		
Variable	Coefficients	
(Constant)	3.866	
Female	137	
Edu	.339	
R ²	.350	

Dependent: Logwage		
Variable	Coefficients	
(Constant)	3.866	
Female	277	
Partime	.106	
R ²	.083	

(F)