Propiedades De Continuidad

Wilson Jerez

Corolario

Dadas $f: X \to \mathbb{R}^m$ y $g: X \to \mathbb{R}^n$, sea $(f,g): X \to \mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$ definida por (f,g)(x) = (f(x),g(x)). Entonces, (f,g) es continua si, y solo si, f y g son ambas continuas.

Demostración

Supongamos primero que (f,g) es continua. Entonces, para todo $\varepsilon>0$ existe un $\delta>0$ tal que si $x\in X$ y $\|x-a\|<\delta$, entonces $\|(f,g)(x)-(f,g)(a)\|<\varepsilon$. Esto implica que $\|f(x)-f(a)\|<\varepsilon$ y $\|g(x)-g(a)\|<\varepsilon$, por lo que f y g son continuas en a.

Recíprocamente, supongamos que f y g son continuas en a. Entonces, para todo $\varepsilon>0$ existen $\delta_f>0$ y $\delta_g>0$ tales que si $\|x-a\|<\delta_f$, entonces $\|f(x)-f(a)\|<\varepsilon/2$, y si $\|x-a\|<\delta_g$, entonces $\|g(x)-g(a)\|<\varepsilon/2$. Tomando $\delta=\min\{\delta_f,\delta_g\}$, si $\|x-a\|<\delta$, entonces $\|(f,g)(x)-(f,g)(a)\|=\max\{\|f(x)-f(a)\|,\|g(x)-g(a)\|\}<\varepsilon$, lo que muestra que (f,g) es continua en a.

Consideraciones

Consideremos las siguientes aplicaciones bajo la hipótesis de que $X \subset \mathbb{R}^m$ y $f, g: X \to \mathbb{R}^n$, $\alpha: X \to \mathbb{R}$ son aplicaciones continuas.

Demostraciones

Continuidad de f + g

Para demostrar que f+g es continua, consideremos un punto $a\in X$ y un número $\varepsilon>0$ arbitrario. Dado que f y g son continuas, existen $\delta_f>0$ y $\delta_q>0$ tales que para todo $x\in X$,

$$\|x-a\|<\delta_f\Rightarrow \|f(x)-f(a)\|<\frac{\varepsilon}{2}$$

$$\|x-a\|<\delta_g\Rightarrow\|g(x)-g(a)\|<\frac{\varepsilon}{2}$$

Tomando $\delta = \min\{\delta_f, \delta_q\}$, tenemos que si $||x - a|| < \delta$, entonces

$$\|(f+g)(x)-(f+g)(a)\|=\|f(x)+g(x)-f(a)-g(a)\|\leq \|f(x)-f(a)\|+\|g(x)-g(a)\|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Por lo tanto, f + g es continua en a.

Continuidad de $\alpha \cdot f$

Para demostrar que $\alpha \cdot f$ es continua, seguimos un razonamiento similar. Dado $\varepsilon > 0$, existen $\delta_{\alpha} > 0$ y $\delta_f > 0$ tales que

$$\|x-a\|<\delta_{\alpha}\Rightarrow |\alpha(x)-\alpha(a)|<\frac{\varepsilon}{2\|f(a)\|+1}$$

$$\|x-a\|<\delta_f\Rightarrow \|f(x)-f(a)\|<\frac{\varepsilon}{2|\alpha(a)|+1}$$

Tomando $\delta = \min\{\delta_\alpha, \delta_f\},$ si $\|x-a\| < \delta,$ entonces

$$\|(\alpha \cdot f)(x) - (\alpha \cdot f)(a)\| = \|\alpha(x)f(x) - \alpha(a)f(a)\| = \|\alpha(x)f(x) - \alpha(x)f(a) + \alpha(x)f(a) - \alpha(a)f(a)\| \leq |\alpha(x)| \|f(x) - f(a)\| + |\alpha(x) - \alpha(a)f(a)\| \leq |\alpha(x)f(a) - \alpha(a)f(a)\| \leq |\alpha(x)f($$

Por lo tanto, $\alpha \cdot f$ es continua en a.

Continuidad de $\langle f, g \rangle$

La continuidad de $\langle f, g \rangle$ se puede demostrar de manera similar, utilizando la definición de continuidad y la propiedad de que el producto interno es una operación continua.

Continuidad de $\frac{1}{\alpha}$

Finalmente, para demostrar que $\frac{1}{\alpha}$ es continua en a, asumimos que $0 \notin \alpha(X)$, lo que garantiza que $\alpha(x) \neq 0$ para todo $x \in X$. Dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $\|x - a\| < \delta$, entonces $|\alpha(x) - \alpha(a)| < \varepsilon |\alpha(a)|^2$. Esto asegura que

$$\left| \frac{1}{\alpha(x)} - \frac{1}{\alpha(a)} \right| = \left| \frac{\alpha(a) - \alpha(x)}{\alpha(x)\alpha(a)} \right| < \varepsilon,$$

lo que demuestra la continuidad de $\frac{1}{\alpha}$ en a.