Solutions to Homework 2

Section 1, Exercises 8, 10, 12, 13, 16, 17 (updated), and 18.

Exercise 8. Let $\zeta = e^{2\pi i/5}$.

- (a) Prove that $K = \mathbb{Q}(\zeta)$ is a splitting field for the polynomial $f(x) = x^5 1$ over \mathbb{Q} , and determine the degree $[K : \mathbb{Q}]$.
- (b) Prove that K is a Galois extension of \mathbb{Q} , and determine its Galois group.

Solution. For (a), note that $x^5 - 1 = (x - 1)(x - \zeta)(x - \zeta^2)(x - \zeta^3)(x - \zeta^4)$, so f factors into linear factors in K. Also, K is generated by the roots of f(x), so K is the splitting field of f. Also, $g(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible over \mathbb{Q} , since it is irreducible mod 2. It has ζ as a root, so it is the irreducible polynomial of ζ . Thus $[K:\mathbb{Q}] = 4$.

For (b), any automorphism of K is completely determined by how it acts on ζ . Since g(x) defined above is irreducible, we can send ζ to any root of g(x), i.e., to ζ , ζ^2 , ζ^3 , or ζ^4 . These are the only possible automorphisms of K, and they are all different, so $|G(K/\mathbb{Q})| = 4$. Hence K/\mathbb{Q} is Galois. The Galois group is cyclic, generated by the automorphism $\zeta \mapsto \zeta^2$, since this element of the Galois group has order four.

Exercise 10. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Determine $[K : \mathbb{Q}]$, prove that K is a Galois extension of \mathbb{Q} , and determine its Galois group.

Solution. In the tower of fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq K$, each field is a proper subset of the one that follows, and each extension is of degree at most 2, so each extension must be of degree exactly 2. Hence $[K:\mathbb{Q}] = 2 \cdot 2 \cdot 2 = 8$.

Elements of the Galois group are determined by where they send $\sqrt{2}$, $\sqrt{3}$, and $\sqrt{5}$, and they must send each of these to their negative. Since $\sqrt{2}$, $\sqrt{3}$, and $\sqrt{5}$ are not roots of the same irreducible polynomial, we can choose where each goes independently of where another is mapped. So

$$G(K/\mathbb{Q}) = \{ \mathrm{id}, \sigma, \tau, \rho, \sigma\tau, \sigma\rho, \tau\rho, \sigma\tau\rho \}.$$

where σ , τ , and ρ , map $\sqrt{2}$, $\sqrt{3}$, and $\sqrt{5}$ to $-\sqrt{2}$, $-\sqrt{3}$, and $-\sqrt{5}$, respectively, and fix the other field generators. In particular, $|G(K/\mathbb{Q})| = [K:\mathbb{Q}] = 8$, so the extension is Galois. Note $G(K/\mathbb{Q}) \cong C_2 \times C_2 \times C_2$.

Exercise 12. Determine all automorphisms of the field $\mathbb{Q}(\sqrt[3]{2})$.

Solution. Note that $f(x) = x^3 - 2$ is a polynomial having $\sqrt[3]{2}$ as root, so any automorphism of $\mathbb{Q}(\sqrt[3]{2})$ would have to take $\sqrt[3]{2}$ to another root of f. But we know (since $f'(x) \geq 0$ for all x) that f has only one real root, so it must have two non-real roots. But $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$, so these two roots are not elements of $\mathbb{Q}(\sqrt[3]{2})$. Hence any automorphism has to map $\sqrt[3]{2}$ to itself, meaning that it is the identity.

This is an example of a field extension which is not Galois. \Box

Exercise 13. Let K/F be a finite extension. Prove that the Galois group G(K/F) is a finite group.

Proof. Since K/F is a finite extension, K is finitely generated as a field over F (for example, it is generated by the elements of a basis). So we can write $K = F(a_1, a_2, \ldots, a_n)$. Finite extensions are algebraic, so each a_i is the root of a polynomial, say of degree d_i . Then every transformation is determined by how it acts on the set $\{a_1, \ldots, a_n\}$, and there are at most d_i choices where to send each a_i , so there are at most $d_1 d_2 \cdots d_n$ elements in G(K/F).

Note: A stronger statement is true: $|G(K/F)| \leq [K:F]$. In other words, there can never be more automorphisms that the degree of the extension.

Exercise 16. Prove or disprove: Let f(x) be an irreducible cubic polynomial in $\mathbb{Q}[x]$ with one real root α . Show that the other roots form a complex conjugate pair $\beta, \overline{\beta}$, so the field $L = \mathbb{Q}(\beta)$ has an automorphism σ which interchanges $\beta, \overline{\beta}$.

Solution. While the first part is true, the second part is false. Since β is a root of the irreducible cubic polynomial f(x), we have $[\mathbb{Q}(\beta):\mathbb{Q}]=3$. So the order of $G(\mathbb{Q}(\beta)/\mathbb{Q})$ divides 3. Now, σ has even order, so it cannot be in $G(\mathbb{Q}(\beta)/\mathbb{Q})$. \square

Exercise 17. Let K be a Galois extension of a field F such that $G(K/F) \cong C_2 \times C_{12}$. How many intermediate fields L are there such that (a) [L:F] = 4, (b) [L:F] = 9, (c) $G(K/L) \cong C_4$.

Solution.

- (a) By the main Galois theorem, there is exactly one intermediate field L with [L:F]=4 for each subgroup of $C_2 \times C_{12}$ of index 4 (i.e. of order 6). Since every subgroup of $C_2 \times C_{12}$ is abelian and every abelian group of order 6 is cyclic, we only have to check the number of cyclic subgroups of order 6. Using additive notation with (1,0) and (0,1) as generators of $C_2 \times C_{12}$, the three subgroups of order 6 are generated by (0,2), (1,2), and (1,4), respectively. Therefore there are 3 such intermediate fields.
- (b) Again, we are counting subgroups of index 9. Since 9 does not divide 24, there are no such intermediate fields.
- (c) By the Galois correspondence, G(K/L) is equal to the subgroup of G(K/F) that corresponds to L. So we need to find the number of subgroups

of $C_2 \times C_{12}$ that are isomorphic to C_4 . There are two, generated by (0,3), and (1,3) respectively.

Exercise 18. Let $f(x) = x^4 + bx^2 + c \in F[x]$, and let K be the splitting field of f. Prove that G(K/F) is contained in a dihedral group.

Proof. By the quadratic formula, x must satisfy

$$x^2 = \frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

So the roots of f are $\{\alpha, -\alpha, \beta, -\beta\}$, where

$$\alpha = \sqrt{\frac{-b + \sqrt{b^2 - 4c}}{2}} \qquad \beta = \sqrt{\frac{-b - \sqrt{b^2 - 4c}}{2}}.$$

Therefore $K = F(\alpha, \beta)$. Any automorphism is completely determined by how it acts on α and β , and it must send each of α and β to one of $\{\pm \alpha, \pm \beta\}$. We have four choices for where α should go, and since this choice determines where $-\alpha$ goes, we have two choices for where β goes. So there are at most eight automorphisms of K/F:

id: the identity
$$r: \alpha \mapsto \beta \mapsto -\alpha$$
 $r^2: \alpha \mapsto -\alpha, \beta \mapsto -\beta$ $r^3: \alpha \mapsto -\beta \mapsto -\alpha$ $s: \alpha \mapsto -\alpha, \beta$ fixed $sr: \alpha \mapsto \beta \mapsto \alpha$ $sr^2: \alpha$ fixed, $\beta \mapsto -\beta$ $sr^3: \alpha \mapsto -\beta \mapsto \alpha$

This group is isomorphic to D_4 . Of course, there may be more relations on α and β (for example perhaps $\alpha \in F$), in which case not all of these maps correspond to elements of G(K/F). But G(K/F) is a subset, and hence a subgroup of this group, which is isomorphic to D_4 , as desired.

It may be easier to visualize the group above as the group of symmetries of the following diagram:

Here the map r is rotation clockwise by 90 degrees, and the map s is a flip across the horizontal line of symmetry.