

# Teoria e Pratica dell'Omologia Persistente: un'indagine sull'efficacia dell'analisi topologica dei dati

Andrea Di Via 4486604

Relatore interno: Matteo Penegini

Relatore esterno: Ulderico Fugacci

## **Indice**

- 1. Introduzione
- 2. Complessi Simpliciali
- 3. Omologia Simpliciale
- 4. Omologia Persistente
- 5. Esperimenti e Risultati
- 6. Conclusione

## Introduzione

L'omologia persistente è uno strumento dell'analisi topologica dei dati e si tratta di un adattamento del concetto di omologia alle nuvole di punti dati

**Obiettivo:** identificare le caratteristiche topologicamente dominanti all'interno dei dati, come componenti connesse, tunnel, cavita' etc.



## Introduzione

## Come associare una forma ad un insieme di dati?

Si considera **un ispessimento di una nuvola** di punti a diverse scale di risoluzione (definita filtrazione) e se ne analizza **l'evoluzione della forma** risultante attraverso diverse scale di risoluzione

#### Significato del termine "persistente":

- <u>Informazione</u> → cicli che sopravvivono in <u>molteplic</u>i fasi della filtrazione (persistenti)
- Rumore → cicli che spariscono in <u>poche</u> fasi della filtrazione (temporanei)



# **Applicazioni**

#### **Imaging Medico**

Studio del riconoscimento dei dendrogrammi cerebrali nei bambini con ADHD e autismo



#### Studio del riconoscimento di tumori



#### Chimica e Biochimica

Caratterizzazione della struttura proteica



#### Analisi dei Sistemi Dinamici

Studio della dinamica dei flussi di Kolmogorov e della convezione di Raleygh-Bernard



## Caso studio

#### **Edilizia**



#### **Motivazioni Pratiche**

- Risparmio di tempo nel distinguere superfici crepate
- Minima dipendenza da operatori, non si richiede un'ispezione manuale di tutti i dati

### Motivazioni Metodologiche

Questo approccio riduce la quantità di dati necessari per far fronte a:

- complessità dei dati
- presenza di rumore
- scelta di specifici parametri

## **Indice**

- 1. Introduzione
- 2. Complessi Simpliciali
- 3. Omologia Simpliciale
- 4. Omologia Persistente
- 5. Esperimenti e Risultati
- 6. Conclusione

# **Simplessi**

#### **Indipendenza Geometrica**

Un insieme  $\{a_0, ..., a_n\}$  di punti di  $\mathbb{R}^n$  si dice geometricamente indipendente se, i vettori  $a_1-a_0, a_2-a_0, ..., a_n-a_0$  sono linearmente indipendenti in  $\mathbb{R}$ .

#### **Simplesso**

Sia X= $\{a_0, a_1, ..., a_n\}$  un insieme di punti geometricamente indipendenti in  $\mathbb{R}^n$ .

Il simplesso  $\Delta^n$  di dimensione n generato da X è l'insieme di tutte le combinazioni convesse di punti di X

$$\Delta^{n} = \{ x \in \mathbb{R}^{N} | x = \sum_{i=0}^{n} t_{i} a_{i}, \quad \sum_{i=0}^{n} t_{i} = 1, \quad t_{i} \ge 0 \quad \forall i \in \{0, ..., n\} \}$$



#### **Faccia**

Un simplesso  $\Delta^k$  generato da  $\{a_0,a_1,\ldots,a_k\}\subset X$  si dice faccia di  $\Delta^n$ 

# Complessi Simpliciali Finiti

#### **Complesso Simpliciale Geometrico**

Un complesso simpliciale K in  $\mathbb{R}^n$  è una collezione finita di simplessi in  $\mathbb{R}^n$  tale che

- ogni faccia di un simplesso  $\Delta^n$  di K sia ancora un simplesso di K
- L'intersezione di due qualsiasi simplessi o è vuota o è una faccia di entrambi i simplessi



#### **Complesso Simpliciale Astratto**

Un complesso simpliciale astratto è una collezione finita S di insiemi non vuoti tale che

$$A \in S \Rightarrow B \in S \ \forall B \subseteq A$$
.  $B \neq \emptyset$ 



Topologia: topologia di sottospazio indotta dalla topologia euclidea sullo spazio soggiacente

## **Indice**

- 1. Introduzione
- 2. Complessi Simpliciali
- 3. Omologia Simpliciale
- 4. Omologia Persistente
- 5. Esperimenti e Risultati
- 6. Conclusione

# Omologia simpliciale a coefficienti in $\mathbb{Z}_2$

#### Catena

Una p-catena è una somma formale dei p-simplessi  $\Delta_i^p$  in K complesso simpliciale

$$c = \sum_{i=0}^{n} \alpha_i \Delta_i^p$$
 con  $\alpha_i \in \mathbb{Z}_2$ 

Le p-catene di K formano il gruppo abeliano libero  $(C_p(K; \mathbb{Z}_2), +)$  la cui base è data dai p-simplessi

#### **Operatore di Bordo**

Se  $\Delta_p = [v_0, ..., v_p]$  è un p-simplesso con p > 0, si definisce l'operatore di bordo

$$\partial_p : C_p(K; \mathbb{Z}_2) \to C_{p-1}(K; \mathbb{Z}_2)$$

$$\partial_p \Delta^p = \partial_p [v_0, \dots, v_p] = \sum_{i=0}^p [v_0, \dots, \hat{v}_i, \dots, v_p]$$

dove  $\hat{v}_i$  rappresenta il vertice mancante.

L'elemento  $[v_0,\dots,\hat{v}_i,\dots,v_p]$  rappresenta l'i-esima faccia di  $\Delta_p$  ottenuta una volta eliminato il suo i-esimo vertice

$$\partial_{\mathbf{A}}\left(\mathbf{x}_{\mathbf{G}}^{\mathbf{G}}\right) = \left(\mathbf{x}_{\mathbf{G}}^{\mathbf{G}}\right) + \left(\mathbf{x}_{\mathbf{G}}^{\mathbf{G}}\right) \qquad \partial_{\mathbf{D}}\left(\mathbf{x}_{\mathbf{G}}^{\mathbf{G}}\right) = \left(\mathbf{x}_{\mathbf{G}}^{\mathbf{G}}\right) + \left(\mathbf$$

# Omologia simpliciale a coefficienti in $\mathbb{Z}_2$

#### Cicli e Bordi

Il nucleo di  $\partial_p: C_p(K; \mathbb{Z}_2) \to C_{p-1}(K; \mathbb{Z}_2)$  è detto gruppo di p-cicli e viene denotato  $Z_p(K; \mathbb{Z}_2)$ L'immagine di  $\partial_{p+1}: C_{p+1}(K; \mathbb{Z}_2) \to C_p(K; \mathbb{Z}_2)$  è detta gruppo di p-bordi e viene denotata con  $B_p(K; \mathbb{Z}_2)$ 

#### **Proposizione**

$$\partial_p \circ \partial_{p+1} = 0 \qquad \Longrightarrow \qquad Im \ \partial_{p+1} \subseteq Ker \ \partial_p \qquad \Longrightarrow \qquad B_p(K; \mathbb{Z}_2) \leq Z_p(K; \mathbb{Z}_2)$$

Ogni bordo di una (p+1)-catena è anche un p-ciclo

#### Gruppo di Omologia

Si definisce il p-esimo gruppo di omologia come:  $H_p(K; \mathbb{Z}_2) = Z_p(K; \mathbb{Z}_2)/B_p(K; \mathbb{Z}_2)$ 



## **Indice**

- 1. Introduzione
- 2. Complessi Simpliciali
- 3. Omologia Simpliciale
- 4. Omologia Persistente
- 5. Esperimenti e Risultati
- 6. Conclusione

## **Filtrazione**

Sia K un complesso simpliciale

**Filtrazione:** successione crescente  $K_0 \subseteq \cdots \subseteq K_n = K$  di sottocomplessi di K



Per ogni i < j si ha la mappa dell'inclusione di  $\iota_{i,j} : K_i \to K_j$ 

Per ogni dimensione p di K, il diagramma commuta:

$$C_{p+1}(K_0) \xrightarrow{\iota_{0,1}} C_{p+1}(K_1) \xrightarrow{\iota_{1,2}} \dots \xrightarrow{\iota_{n-1,n}} C_{p+1}(K_n)$$

$$\downarrow \partial_{p+1} \qquad \qquad \downarrow \partial_{p+1} \qquad \qquad \downarrow \partial_{p+1} \qquad \downarrow \partial_{p+1}$$

$$C_p(K_0) \xrightarrow{\iota_{0,1}} C_p(K_1) \xrightarrow{\iota_{1,2}} \dots \xrightarrow{\iota_{n-1,n}} C_p(K_n)$$

$$\downarrow \partial_p \qquad \qquad \downarrow \partial_p \qquad \qquad \downarrow \partial_p$$

$$C_{p-1}(K_0) \xrightarrow{\iota_{0,1}} C_{p-1}(K_1) \xrightarrow{\iota_{1,2}} \dots \xrightarrow{\iota_{n-1,n}} C_{p-1}(K_n).$$

Ogni inclusione induce l'omomorfismo  $f_p^{i,j}:H_p(K_i)\to H_p(K_j)$  per ogni dimensione p

# **Omologia Persistente**

Si definisce il p-esimo gruppo di omologia persistente l'immagine degli omomorfismi  $f_p^{i,j}: H_p(K_i) \to H_p(K_j)$  indotti dalle inclusioni di  $K_i$  in  $K_j$ 

$$H_p^{i,j} = Im f_p^{i,j} \text{ per } 0 \le i \le j \le n$$

I gruppi di omologia persistente consistono delle classi di omologia in  $K_i$  sopravvissute in  $K_i$ 

#### Coppie di Persistenza

Se una classe  $\gamma$  nasce in  $K_i$  e muore in  $K_j$ , si definisce  $(i,j)\in\mathbb{N}\times\overline{\mathbb{N}}$  la coppia di persistenza

#### **Persistenza**

Se una classe  $\gamma$  nasce in  $K_i$  e muore in  $K_i$ , si definisce  $pers(\gamma) = j - i$  la persistenza

È possibile caratterizzare i gruppi di omologia persistente attraverso le coppie di persistenza

# Rappresentazione Visiva





Rappresentazione delle coppie di persistenza (i, j) con una certa molteplicità

Le caratteristiche che persistono fino all'ultimo valore della filtrazione, presentano coordinate all'infinito

$$H_0$$
  $(0, 1)$   $H_1$   $(2, 3)$   $(2, \infty)$ 

#### Diagramma di Persistenza

Siccome i<j, tutti i punti giacciono sopra rispetto alla diagonale

Spazio:  $\mathbb{N} \times \overline{\mathbb{N}}$ 

**Persistenza:** distanza verticale dalla diagonale

distanza grande → caratteristiche robuste

distanza piccola→ rumore nei dati

# Dai Dati ai Complessi

#### **Complesso di Vietoris-Rips**

Sia V un insieme di punti in  $\mathbb{R}^n$ . Siano  $B_u(r)$  delle palle chiuse di centro  $u \in V$  e raggio r e sia S la collezione di queste palle.

$$VR(r) := \{ X \subseteq V | d(u, v) \le 2r \quad \forall u, v \in X \}$$

#### **Realizzazione Geometrica:**

- Insiemi → vertici
- Intersezioni comuni →1-simplessi che congiungono i vertici
- A ogni n-ciclo viene aggiunto un (n+1)-simplesso, diventando bordo



#### **Filtrazione**



## **Indice**

- 1. Introduzione
- 2. Complessi Simpliciali
- 3. Omologia Simpliciale
- 4. Omologia Persistente
- 5. Esperimenti e Risultati
- 6. Conclusione

## **Dataset**



#### **Dataset originale**

- Quantità:  $40.000 \rightarrow 50\%$  crepate e 50% non crepate
- Dimensione: 227x227 pixel con canali RGB
- Caratteristiche: variazioni in termini di finitura superficiale o condizione di illuminazione

#### **Dataset utilizzato**

- **Quantità:** 5000 → 50% crepate e 50% non crepate
- **Dimensione:** 50x50 pixel con canali RGB

## Passo 1: Elaborazione Dati



# Nuvole di punti a partire dal dataset



## **Elaborazione Dati**



- Ridimensionamento a 50x50 pixel
- Binarizzazione
  - Soglie basate su una media
- Ottima individuazione della crepa
- Immagine «sporcata» →
  Complesso di Vietoris-Rips non efficace
  - Soglie basate su valori fissati a priori

Soglia 128 → Poco efficace per immagini scure

Soglia 110 → Migliore per il dataset studiato

Aggiunta di un bordo

## Passo 2: Analisi Dati



(studio del primo gruppo di omologia persistente)

# Diagrammi persistenza



Uni**Ge** | DIMA

# Falsi negativi



# Falsi positivi



# Matrici di confusione con persistenza 5

#### **Test (random)**

#### **Addestramento (1:8)**



Falsi negativi >> Falsi positivi





# Matrici di confusione con persistenza 1

#### **Test (random)**

#### **Addestramento (1:8)**



Falsi negativi < Falsi positivi





# Confronti con approccio di machine learning





#### Random Forest - errore 0.0480



#### **Macchina a Supporto Vettoriale**

- Classificatore lineare che individua l'iperpiano che separa due classi con il massimo margine.
- Il margine è la distanza tra l'iperpiano ottimale e i punti più vicini dei dati di addestramento che si trovano da un lato e dall'altro dell'iperpiano

#### **Foresta Casuale**

- Classificatore d'insieme ottenuto da insieme di alberi decisionali (foresta) per effettuare classificazioni.
- Ogni albero viene addestrato su un sottoinsieme dei dati e le previsioni vengono combinate per migliorare l'accuratezza complessiva.

## **Indice**

- 1. Introduzione
- 2. Complessi Simpliciali
- 3. Omologia Simpliciale
- 4. Omologia Persistente
- 5. Esperimenti e Risultati
- 6. Conclusione

## Conclusione

#### **Obiettivo e Metodologia**

• Indagare limiti e vantaggi dell'omologia persistente nella teoria e nella pratica attraverso la classificazione automatica di crepe

#### Nella teoria:

- Inferire una struttura topologica ai dati
- Calcolo dell'omologia persistente sulla filtrazione data dai complessi
- Analisi dei diagrammi di persistenza

#### Nella pratica:

- Elaborazione delle immagini per facilitare la costruzione dei complessi di Vietoris-Rips e di una filtrazione
- Calcolo dell'omologia persistente sulla filtrazione
- Classificazione in base al primo gruppo di omologia persistente e calcolo dell'errore sulle previsioni

#### **Valutazioni**

- Metodo efficace con ottimi risultati e senza la richiesta di specifici parametri
- Buona robustezza al rumore
- Elevato grado di calcolo per grandi dataset

#### **Lavori Futuri**

- Analisi del dataset utilizzando altre strutture topologiche e altri approcci topologici
- Classificazione sfruttando la distanza tra diagrammi di persistenza.
- Collaborazione tra il machine learning e l'omologia persistente

# Uni**Ge**DIMA

# Uni**Ge**DIMA

# Complessi Simpliciali Astratti

#### **Complesso Simpliciale Astratto**

Un complesso simpliciale astratto è una collezione S di insiemi non vuoti tale che

$$A \in S \Rightarrow B \in S \ \forall B \subseteq A, \quad B \neq \emptyset$$

- Simplesso: l'elemento A ∈ S è detto simplesso di S
- **Dimensione:** la dimensione di un complesso S è definita come il massimo delle dimensioni dei suoi simplessi
- Faccia: ogni sottoinsieme non vuoto di  $A \in S$  è detto faccia di A
- Sottocomplesso: una sottocollezione di S è un complesso e si dice sottocomplesso di S
- Topologia: topologia di sottospazio indotta dalla topologia euclidea sullo spazio soggiacente



# Topologia Complessi Simpliciali

#### **Supporto**

Il supporto di un complesso simpliciale K è definito come il sottoinsieme di  $\mathbb{R}^N$  determinato dall'unione dei simplessi che compongono K e si indica con |K|

#### **Topologia**

• Siccome ogni simplesso  $\Delta^n$  è dotato della sua topologia  $\tau_{\Delta^n}$  indotta dalla topologia euclidea su  $\mathbb{R}^n$  si definisce la topologia  $\tau_K$  su |K| come segue:

$$A \subseteq |K|$$
è chiuso in  $(|K|, \tau_K) \Leftrightarrow A \cap \Delta^n$ è chiuso in  $(\Delta^n, \tau_{\Delta^n}) \forall \Delta^n \in K$ .

La topologia  $au_K$  su |K| coincide con la topologia che  $au_{|K|}$  eredita come sottospazio di  $\mathbb{R}^n$ 

- $au_K$  è più fine di  $au_{|K|}$  per ogni complesso simpliciale
- le due topologie coincidono in condizione di finitezza



# Operare in $\mathbb{Z}_2$

#### Vantaggi:

Teorico:

Il teorema di struttura per moduli graduati finitamente generati su un PID permette di caratterizzare l'omologia persistente attraverso le coppie di persistenza

$$M := \bigoplus_{i \in \mathbb{N}} H_p(K_i; \mathbb{F}) \cong \bigoplus_{k=1,\dots,n} \mathbb{F}[x](-r_k) \oplus \bigoplus_{l=1,\dots,m} (\mathbb{F}[x]/(x^{j_l} - x^{i_l}))(-i_l)$$

• Computazionale:

L'algoritmo di calcolo dell'omologia persistente basato su una riduzione di matrici di bordo presenta

un costo inferiore



#### Svantaggi:

Perdita di informazioni topologiche (omologia di toro e bottiglia di Klein coincidono)





## Generalizzazioni

#### Catene

c =  $\sum_{i=0}^{n} g_i \sigma_i^p$  dove  $\sigma_i^p$  sono funzioni caratteristiche e  $g_i \in G$ .

Simplessi singolari:  $\sigma^p : \Delta^p \rightarrow X$  continua

**Δ-complessi:**  $\sigma^p$ :  $\Delta^p \rightarrow X$  continua e iniettiva sulla parte interna

**Complessi simpliciali :**  $\sigma^p : \Delta^p \to \Delta^p$  identità



#### **Omologia relativa**

Sia K un  $\Delta$ -complesso finito con A  $\subset$  K un sottocomplesso. Si definiscono i gruppi di omologia relativa  $H^{\Delta}_{n}(K,A)$  come:  $\Delta_{n}(K,A) = \Delta_{n}(K)/\Delta_{n}(A)$ .

#### **Teorema**

Gli omeomorfismi  $H_n^{\Delta}(K,A) \to H_n(K,A)$  sono isomorfismi per ogni n e per ogni  $\Delta_n(K,A)$ .

#### Vantaggi:

- Sfruttare i risultati già noti per l'omologia singolare anche per l'omologia simpliciale
- Nessuna dipendenza dalla nozione di orientamento sui simplessi

# Rappresentazioni



Rappresentazione delle coppie di persistenza (i, j) con una certa molteplicità

Le caratteristiche che persistono fino all'ultimo valore della filtrazione, presentano coordinate all'infinito

#### Diagramma codice a barre

Spazio:  $\overline{\mathbb{N}}$ 

**Persistenza:** lunghezza degli intervalli Intervalli lunghi → caratteristiche robuste  $H_0$ 

 $H_1$ 

Intervalli brevi → rumore nei dati



#### Diagramma di persistenza

Siccome i<j, tutti i punti giacciono sopra rispetto alla diagonale

Spazio:  $\mathbb{N} \times \overline{\mathbb{N}}$ 

Persistenza: distanza verticale dalla diagonale



## Nervo



#### Nervo

Sia S una collezione finita di insiemi in  $\mathbb{R}^n$ . Il nervo Nrv(S) di S è costituito da tutte le sottocollezioni non vuote i cui insiemi hanno intersezione comune non vuota:

$$Nrv(\mathbf{S}) = \{ \mathbf{X} \subseteq \mathbf{S} | \bigcap_{X \in \mathbf{X}} X \neq \emptyset \}.$$

Si tratta di un complesso simpliciale astratto infatti

$$\bigcap_{X \in \mathbf{X}} X \neq \emptyset \quad \text{e} \quad Y \subseteq \mathbf{X} \Longrightarrow \bigcap_{Y \in \mathbf{X}} Y \neq \emptyset$$

#### Realizzazione geometrica:

Insiemi → vertici

Intersezioni comuni →1-simplessi che congiungono i vertici

# Complesso di Cech e di Vietoris-Rips



#### Complesso di Cech

Si consideri un insieme di punti V in  $\mathbb{R}^n$ . Siano  $B_u(\mathbf{r})$  delle bolle chiuse di centro u  $\in$  V e raggio r e S la collezione di queste bolle. Il complesso di Cech di V di raggio r è isomorfo al nervo di S. Formalmente:

$$\check{C}ech(r) := \{ \mathbf{X} \subseteq \mathbf{S} | \bigcap_{B_u(r) \in \mathbf{X}} B_u(r) \neq \emptyset \} = \{ X \subseteq V | \bigcap_{u \in X} B_u(r) \neq \emptyset \}.$$

#### **Complesso di Vietoris-Rips**

Si consideri un insieme di punti V in  $\mathbb{R}^n$ . Siano  $B_x(r)$  delle bolle chiuse di centro  $x \in V$  e raggio r e S la collezione di queste bolle. Il complesso di Vietoris-Rips di V di raggio r consiste di tutti i sottoinsiemi di bolle di diametro al più 2r, cioè

$$VR(r) := \{X \subseteq V | d(u, v) \le 2r \quad \forall u, v \in X\}.$$



Sia  $F = \{K_i\}_{i \in \mathbb{N}}$  una filtrazione.

#### Ordinamento

Sia una sequenza  $\Delta_1, \dots, \Delta_n$  di simplessi, si definisce un ordinamento tale che:

a) 
$$f(\Delta_i) < f(\Delta_j) \Longrightarrow i < j$$

**b)** 
$$\Delta_i$$
 faccia di  $\Delta_j \Longrightarrow i < j$ 

#### Matrice di Bordo

Matrice D della forma  $D[a_{i,j}]$  dove i, j = 1, ..., n e

$$a_{i,j} = egin{cases} 1 ext{ se } \Delta_i ext{ è una faccia di } \Delta_j ext{ di co-dimensione 1} \ & \mathbf{0} ext{ altrimenti} \end{cases}$$

#### Matrice Ridotta

Sia j una colonna non nulla di D. Si definisce  $low(j) := max\{i \mid a_{i,j} \neq 0\}$ . Una matrice R si dice ridotta se la funzione low(j) è iniettiva nel suo dominio

$$\forall j_0 \neq j \ [low(j_0) \neq low(j)].$$

#### Algorithm 1 Riduzione di Matrici

```
1: R = D;

2: for j = 1 to m do

3: while there exists j_0 < j with low(j_0) = low(j) do

4: add column j_0 to j

5: end while

6: end for.
```

















$$H_0$$
  $(0, 1)$   $(0, \infty)$ 

$$[2, 3], [5, 6], [4, 7], [8, 10], [1,\infty), [9,\infty).$$

$$[0, 0], [0, 0], [0, 1], [2, 3], [0, \infty), [2,\infty).$$

$$(i,j) \in Dgm_p(f) \Leftrightarrow i = low(j) \& \dim \Delta_i = p$$

$$(j,\infty)\in Dgm_p(f) \Longleftrightarrow colonna\ i=0\ \&\ i\not\in low$$

# Strategia



(studio del primo gruppo di omologia persistente)

# Nuvole di punti a partire dal dataset



# Nuvole di punti a partire dal dataset

