

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»	
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»	

Отчет по лабораторной работе №2 по курсу

"Проектирование Рекомендательных Систем"

Тема Сравнение алгоритмов коллаборативной фи	ильтрации
Студент Варламова Е. А.	
Группа ИУ7-33М	
Оценка (баллы)	
Преподаватели Быстрицкая А.Ю.	

Оглавление

В	Зведение		3
1	Ана	литический раздел	4
	1.1	Коллаборативная фильтрация	4
	1.2	Коллаборативная фильтрация по пользователю	4
	1.3	Коллаборативная фильтрация по объекту	4
2	Кон	структорский раздел	5
	2.1	MovieLens Rating	5
3	Tex	нологический раздел	6
	3.1	Средства реализации	6
	3.2	Библиотеки	6
4	Исс	педовательский раздел	7
	4.1	Условия исследований	7
	4.2	Зависимости времени выполнения коллаборативной фильтрации от парамет-	
		ра количества используемых похожих объектов для каждой из мер близости.	7
	4.3	Зависимости значений ROC-AUC от параметра количества используемых по-	
		хожих объектов	9
3 <i>A</i>	КЛН	ОЧЕНИЕ	12
CI	ПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	13

ВВЕДЕНИЕ

Цель работы — сравнение алгоритмов коллаборативной фильтрации по пользователю и по объекту.

Для достижения поставленной цели потребуется:

- привести описание алгоритмов;
- привести описание используемых для исследования данных;
- провести сравнение алгоритмов по времени работы и точности предсказания.

1. Аналитический раздел

1.1 Коллаборативная фильтрация

Коллаборативная фильтрация — это метод рекомендации, при котором анализируется только реакция пользователей на объекты — оценки, которые выставляют пользователи. [1]

Оценки могут быть как явными, так и неявными (например, длительность нахождения пользователя на странице товара). Целью фильтрации является предсказание оценки пользователем по оценкам других. Чем больше имеется оценок, тем точнее получатся рекомендации. [1]

1.2 Коллаборативная фильтрация по пользователю

В данном методе предполагается, что пользователи, которые в прошлом имели похожие предпочтения, будут иметь похожие предпочтения и в будущем. Для построения рекомендаций с использованием этого метода выполняются следующие шаги:

- 1. Создание матрицы, где строки представляют пользователей, а столбцы объекты; значения в ячейках матрицы отражают оценки или действия пользователей по отношению к объектам;
- 2. Вычисление сходства между пользователями (обычно используются косинусное сходство или корреляция Пирсона);
- 3. Для конкретного пользователя генерируются рекомендации на основе сходства с другими пользователями через агрегацию оценок или действий похожих пользователей.

1.3 Коллаборативная фильтрация по объекту

В данном методе предполагается, что пользователи будут интересоваться теми объектами, которые похожи на уже положительно оцененные объекты. Для построения рекомендаций с использованием метода выполняются следующие шаги:

- 1. Создание матрицы, где строки представляют объекты, а столбцы пользователей; значения в ячейках матрицы определяют оценки или действия пользователей по отношению к объектам;
- 2. Вычисление сходства между объектами;
- 3. Генерация рекомендаций с опорой на сходство между объектами, которые пользователь уже оценил.

2. Конструкторский раздел

2.1 MovieLens Rating

В качестве источника данных был взят датасет, располагающийся в свободном доступе на веб-сайте MovieLens [2]. Набор данных включает в себя множество записей, поля которых описывают идентификатор пользова- теля, объект, оценку (от 1 до 5) и время появления рецензии. Предобработки проводить не потребовалось.

3. Технологический раздел

3.1 Средства реализации

В качестве используемого был выбран язык программирования Python [3].

Данный выбор обусловлен следующими факторами:

- Большое количество исчерпывающей документации;
- Широкий выбор доступных библиотек для разработки;
- Простота синтаксиса языка и высокая скорость разработки.

При написании программного продукта использовалась среда разработки Visual Studio Code. Данный выбор обусловлен тем, что данная среда распространяется по свободной лицензии, поставляется для конечного пользователя с открытым исходным кодом, а также имеет большое число расширений, ускоряющих разработку.

3.2 Библиотеки

При анализе и обработке датасета, а также для решения поставленных задач использовались библиотеки:

- pandas;
- numpy;
- matplotlib;
- sklearn [4];
- LibRecommender [5].

Данные библиотеки позволили полностью покрыть спектр потребностей при выполнении работы.

4. Исследовательский раздел

4.1 Условия исследований

Исследование проводилось на персональном вычислительной машине со следующими характеристиками:

- процессор Intel Core i5,
- операционная система MacOs Big Sur,
- 8 Гб оперативной памяти.

Временные затраты определялись с использованием библиотеки time. Значение ROC-AUC определялось с использованием библиотеки Lib-Recommender.

В данном исследовании значение параметра, отвевающего за количество используемых похожих объектов, менялось от 1 до 30. Также для каждого алгоритма и значения параметра использовались косинусная мера, критерий Пирсона и мера Жаккара.

4.2 Зависимости времени выполнения коллаборативной фильтрации от параметра количества используемых похожих объектов для каждой из мер близости

На рисунке 4.1 представлен график зависимости времени выполнения коллаборативной фильтрации по пользователю и по объекту от параметра количества используемых похожих объектов для каждой из мер близости.

Рис. 4.1: График зависимости времени выполнения коллаборативной фильтрации по пользователю и по объекту от параметра количества используемых похожих объектов для каждой из мер близости.

4.3 Зависимости значений ROC-AUC от параметра количества используемых похожих объектов

На рисунке 4.3 представлен график зависимости ROC-AUC от параметра количества используемых похожих объектов для каждой из мер близости.

Рис. 4.2: График зависимости ROC-AUC от параметра количества используемых похожих объектов для каждой из мер близости.

ЗАКЛЮЧЕНИЕ

В ходе выполнения работы было проведено сравнение алгоритмов коллаборативной фильтрации по пользователю и по объекту.

Были решены следующие задачи:

- приведено описание алгоритмов;
- приведено описание используемых для исследования данных;
- проведено сравнение алгоритмов по времени работы и точности предсказания.

В результате проведенных исследований заметно, что при фильтрации по пользователю, лучше всего по времени себя показала косинусная мера на значениях параметра больше 5. В случае фильтрации по объекту, сложно выделить какую-то из мер близости.

Также стало понятно, что на рассматриваемом датасете с точки зрения ROC-AUC большие значения количества похожих объектов ведут к улучшению качества рекомендаций.

Список литературы

- Владимировна Смоленчук Татьяна. Метод коллаборативной фильтрации для рекомендательных сервисов // Вестник науки и образования. 2019.
 № 22-1.
- 2. MovieLens [Электронный ресурс]. Режим доступа: https://grouplens.org/datasets/movielens/ (дата обращения 16.09.2023).
- 3. Python official page [Электронный ресурс]. Режим доступа: https://www.python.org/ (дата обращения 10.05.2023).
- 4. Scikit-learn official page [Электронный ресурс]. Режим доступа: https://scikit-learn.org/stable/ (дата обращения 10.05.2023).
- 5. LibRecommender: official PyPl project page [Электронный ресурс]. Режим доступа: https://pypi.org/project/LibRecommender/ (дата обращения 16.09.2023).