Principles of Abstract Interpretation MIT press

Ch. **19**, Structural forward reachability semantics

Patrick Cousot

pcousot.github.io

PrAbsInt@gmail.com github.com/PrAbsInt/

These slides are available at http://github.com/PrAbsInt/slides/slides/slides-19--structural-forward-reachability-semantics-PrAbsInt.pdf

Design of a verification/analysis method for a programming language by abstract interpretation

- Define the syntax and operational semantics of the language
- Define program properties and the collecting semantics
- Define an abstraction of properties (preferably by a Galois connection)
- Calculate a sound (and possibly complete) abstract semantics by abstraction of the collecting semantics
 ← this chapter
- Define an abstract inductive proof method/analysis algorithm

Chapter 17

Structural fixpoint prefix trace semantics (quick reminder from Chapter 17)

Fixpoint prefix trace semantics of an assignment statement

Fixpoint prefix trace semantics of an assignment statement $S := \ell x = E$;

$$\widehat{\mathcal{S}}^* \llbracket \mathbf{S} \rrbracket (\pi^{\ell}) = \{\ell\} \cup \{\ell \xrightarrow{\mathbf{x} = \mathbf{E} = \upsilon} \text{ after} \llbracket \mathbf{S} \rrbracket \mid \upsilon = \mathscr{E} \llbracket \mathbf{E} \rrbracket \varrho(\pi^{\ell}) \}$$

$$\widehat{\mathcal{S}}^* \llbracket \mathbf{S} \rrbracket (\pi^{\ell'}) = \varnothing$$

$$(17.2)$$

example of basic case

Fixpoint prefix trace semantics of a statement list

Prefix traces of a statement list Sl ::= Sl' S

$$\widehat{\mathcal{S}}^* \llbracket \mathtt{Sl} \rrbracket (\pi_1) = \widehat{\mathcal{S}}^* \llbracket \mathtt{Sl}' \rrbracket (\pi_1) \cup \{\pi_2 \circ \pi_3 \mid \pi_2 \in \widehat{\mathcal{S}}^+ \llbracket \mathtt{Sl}' \rrbracket (\pi_1) \wedge \pi_3 \in \widehat{\mathcal{S}}^* \llbracket \mathtt{S} \rrbracket (\pi_1 \circ \pi_2) \}$$

$$(17.3)$$

• example of inductive case $(\widehat{\mathcal{S}}^*[Sl])$ defined in terms of $\widehat{\mathcal{S}}^+[Sl']$ and $\widehat{\mathcal{S}}^*[S]$ with $Sl' \triangleleft Sl$ and $S \triangleleft Sl$)

Fixpoint prefix trace semantics of an iteration

Prefix traces of an iteration statement
$$S ::= while \ell$$
 (B) S_b

$$\mathcal{S}^*[while \ell (B) S_b] = Ifp^{\xi} \mathcal{F}^*[while \ell (B) S_b] \qquad (17.4)$$

$$\mathcal{F}^*[while \ell (B) S_b](X)(\pi_1 \ell') \triangleq \varnothing \qquad when \quad \ell' \neq \ell$$

$$\mathcal{F}^*[while \ell (B) S_b](X)(\pi_1 \ell) \triangleq \{\ell\} \qquad (a)$$

$$\cup \{\ell' \pi_2 \ell' \xrightarrow{\neg (B)} \text{after}[S] \mid \ell' \pi_2 \ell' \in X(\pi_1 \ell') \land \\ \mathcal{B}[B]\varrho(\pi_1 \ell' \pi_2 \ell') = \text{ff} \land \ell' = \ell\} \qquad (b)$$

$$\cup \{\ell' \pi_2 \ell' \xrightarrow{B} \text{at}[S_b] \neg \pi_3 \mid \ell' \pi_2 \ell' \in X(\pi_1 \ell') \land \mathcal{B}[B]\varrho(\pi_1 \ell' \pi_2 \ell') = \text{tt} \\ \land \pi_3 \in \mathcal{S}^*[S_b](\pi_1 \ell' \pi_2 \ell' \xrightarrow{B} \text{at}[S_b]) \land \ell' = \ell\} \qquad (c)$$

- example of inductive/structural fixpoint case
 - inductive/structural: $S^*[while \ell (B) S_b]$ defined in terms of $S^*[S_b]$ with $S_b \triangleleft while \ell (B) S_b$
 - fixpoint: $S^*[while \ell (B) S_b]$ recursively defined in terms of itself (n+1) iterations are n iterations plus 1 iteration)

Chapter 19

Ch. **19**, Structural forward reachability semantics

Forward relational reachability semantics

- Objective: define a semantics that attaches to each program point ℓ of the program
 - the strongest predicate $/\star I^{\ell}(\vec{x}_0, \vec{x}) \star /$ describing the relation between the initial values \vec{x}_0 of the variables \vec{x} and the values \vec{x} of these variables \vec{x} whenever control reaches that program point ℓ .
 - i.e. the relation $\mathcal{R}^\ell \in \wp(\mathbb{E} \mathbf{v} \times \mathbb{E} \mathbf{v})$ between the initial and current environment $\mathcal{R}^\ell = \{\langle \rho_0, \, \rho \rangle \mid I^\ell(\rho_0(\vec{\mathbf{x}}), \rho(\vec{\mathbf{x}}))\}$ with the convention that $\overrightarrow{x_0} = \rho_0(\vec{\mathbf{x}})$ denotes the initial value of $\vec{\mathbf{x}}$ in the initial environment ρ_0 while $\vec{\mathbf{x}} = \rho(\vec{\mathbf{x}})$ denotes the current value of $\vec{\mathbf{x}}$ in the current environment ρ .

Forward assertional reachability semantics

■ Similar, but forgets about the initial values \vec{x}_0 i.e. /* $I^{\ell}(\vec{x})$ */
en.wikipedia.org/wiki/Reachability
en.wikipedia.org/wiki/Reachability_problem
en.wikipedia.org/wiki/Invariant_(mathematics) #Invariants_in_computer_science
https://en.wikipedia.org/wiki/Loop_invariant

Examples of reachability/invariant semantics

Assertional local invariants, Example

```
\label{eq:local_problem} $$ /* \ x = 0 \ (\mbox{initialization hypothesis}) \ */ $$ $ \mbox{while} \ \ell_1 \ (x < 10) \ /* \ 0 \leqslant x \leqslant 10 \ (\mbox{loop invariant}) \ */ $$ $ \ell_2 \ /* \ 0 \leqslant x < 10 \ */ $$ $ x = x + 1 \ ; $$ $ $ \ell_3 \ /* \ x = 10 \ */ $$ $
```

Representing such logical propositions by sets of environments, we have

en.wikipedia.org/wiki/Invariant_(mathematics)#Invariants_in_computer_science
https://en.wikipedia.org/wiki/Loop_invariant

П

Relational local invariants, Example

```
/* x = x<sub>0</sub> (initialization hypothesis) */ while \ell_1 (x < 10) /* (10 \le x_0 = x) \lor (x_0 \le x \le 10) (loop invariant) */ \ell_2 /* x_0 \le x < 10 */ x = x + 1; \ell_3 /* (10 \le x_0 = x) \lor (x_0 < 10 \land x = 10) */
```

Representing such logical propositions by a binary relation between environments, we have

Reachability/invariant semantics

Notations to handle both the assertional and relational cases at once

tag	assertional	relational
$\vec{\varrho}$	r	Ŕ
$oldsymbol{\mathcal{S}}^{ec{arrho}} \llbracket \mathtt{P} rbracket$	ઙ [ೕ] ૼ[[P]]	ઙ ≅૿[p]
$\mathbb{E}^{\mathbf{v}_{\ell}}$	Eν	$\mathbb{E} \mathbf{v} \times \mathbb{E} \mathbf{v}$

Formal definition of the assertional/relational reachability semantics

• Let $\ell_0 = at \llbracket S \rrbracket$.

$$\begin{split} \mathcal{S}^{\vec{r}} \llbracket \mathbf{S} \rrbracket \, \mathcal{R}_0^{} \, \ell & \triangleq & \left\{ \boldsymbol{\varrho}(\pi_0^{\ell_0}\pi_1^{\ell'}) \mid \boldsymbol{\varrho}(\pi_0^{\ell_0}) \in \mathcal{R}_0^{} \wedge \exists \pi_2^{} \cdot \ell_0^{} \pi_1^{\ell'} \pi_2^{} \in \mathcal{S}^* \llbracket \mathbf{S} \rrbracket (\pi_0^{\ell_0}) \wedge \ell' = \ell \right\} \\ \mathcal{S}^{\vec{\mathsf{R}}} \llbracket \mathbf{S} \rrbracket \, \mathcal{R}_0^{} \, \ell & \triangleq & \left\{ \langle \rho_0^{}, \, \boldsymbol{\varrho}(\pi_0^{\ell_0}\pi_1^{\ell'}) \rangle \mid \langle \rho_0^{}, \, \boldsymbol{\varrho}(\pi_0^{\ell_0}) \rangle \in \mathcal{R}_0^{} \wedge \exists \pi_2^{} \cdot \ell_0^{} \pi_1^{\ell'} \pi_2^{} \in \mathcal{S}^* \llbracket \mathbf{S} \rrbracket (\pi_0^{\ell_0}) \wedge \ell' = \ell \right\} \end{split}$$

- (Informally, if $\mathcal{R}_0 \in \wp(\mathbb{E} \mathbf{v}^{\vec{\varrho}})$ is a precondition and $\ell \in \mathbb{L}$ is the program label then $\mathcal{S}^{\vec{\varrho}}[S] \mathcal{R}_0 \ell$ is an invariant at ℓ which holds if and when execution of the program component S started with an initial state satisfying the precondition \mathcal{R}_0 reaches program point ℓ .)
- This formal definition is hard to work with, so we look for an equivalent structural definition $\widehat{S}^{\vec{\ell}}[S] = S^{\vec{\ell}}[S]$.

Environment assignment

Assignment $\rho[x \leftarrow v]$ of a value $v \in V$ to a variable $x \in V$ in an environment $\rho \in Ev$.

$$\rho[\mathsf{x} \leftarrow v](\mathsf{x}) \triangleq v
\rho[\mathsf{x} \leftarrow v](\mathsf{y}) \triangleq \rho(\mathsf{y}) \text{ when } \mathsf{x} \neq \mathsf{y}$$
(19.10)

Examples of environment assignment

• ρ encodes the values of variables *before* the assignment x = 0; $\rho[x \leftarrow 0]$ encodes the values of variables *after* the assignment

i.e. $\rho[x \leftarrow 0](x) = 0$ is the value of x after the assignment while the value of the other variables is unchanged.

 $\leftarrow \rho \text{ encodes the values of variables } before \text{ the assignment}$ $\mathbf{x} = \mathbf{x} + \mathbf{1} \text{ ;}$ $\leftarrow \rho[\mathbf{x} \leftarrow \rho(\mathbf{x}) + 1] \text{ encodes the values of variables } after \text{ the assignment}$

The value of x after the assignment x = x + 1; is the value $\rho(x)$ of x before the assignment incremented by 1 that is $\rho(x) + 1$. Value of all other variables unchanged.

Reachability at a statement S

$$\mathcal{S}^{\vec{\varrho}}[\![\mathbf{S}]\!](\mathcal{R}_0)$$
at $[\![\mathbf{S}]\!] \triangleq \mathcal{R}_0$

Reachability outside a statement S

$$\ell \notin \mathsf{labx}[\![\mathsf{S}]\!] \quad \Rightarrow \quad \widehat{\mathcal{S}}^{\, \vec{\varrho}}[\![\mathsf{S}]\!] (\mathcal{R}_0) \ell = \varnothing$$

(19.30)

Reachability of a program $P ::= Sl \ell'$

$$\widehat{\mathcal{S}}^{\vec{\varrho}} \llbracket P \rrbracket \triangleq \widehat{\mathcal{S}}^{\vec{\varrho}} \llbracket S1 \rrbracket$$

(19.19)

Reachability of a skip statement
$$S ::=$$
;
$$\widehat{S}^{\vec{\ell}}[S] \mathcal{R}_0^{\ell} = [\ell \in \{at[S], after[S]\} ? \mathcal{R}_0 : \varnothing)$$
(19.21)

Assignment example

$$\widehat{\mathcal{S}}^{\vec{r}}\llbracket\ell_1 \ x = x + 1 \ ; \ell_2\rrbracket \ \{\rho \mid \rho(x) = 0\} \ \ell_2$$

$$\triangleq \operatorname{assign}_{\vec{r}}\llbracket x, x + 1 \rrbracket \ \{\rho \mid \rho(x) = 0\} \qquad \qquad (\operatorname{def.} \ (19.12) \text{ of } \widehat{\mathcal{S}}^{\vec{r}})$$

$$\triangleq \{\rho[x \leftarrow \mathcal{A}[x + 1]\rho] \mid \rho \in \{\rho \mid \rho(x) = 0\}\} \qquad (\operatorname{def.} \ (19.12) \text{ of assign}_{\vec{r}})$$

$$\triangleq \{\rho[x \leftarrow \rho(x) + 1] \mid \rho(x) = 0\} \qquad (\operatorname{def.} \ \in \operatorname{and semantics of arithmetic expressions in Section 3.6})$$

$$= \{\rho[x \leftarrow 1] \mid \rho \in \mathbb{E} v\} \qquad (\operatorname{mathematical def.} +) \square$$

Reachability of a conditional statement $S ::= if(B) S_t$

where

$$\begin{split} &\operatorname{test}^{\vec{r}}[\![\![\![}\mathbf{B}]\!]\mathcal{R}_0 &\triangleq \{\rho \in \mathcal{R}_0 \mid \mathcal{B}\![\![\![}\mathbf{B}]\!]\rho = \mathbf{t}\} \\ &\operatorname{test}^{\vec{R}}[\![\![\![}\mathbf{B}]\!]\mathcal{R}_0 &\triangleq \{\langle \rho_0, \, \rho \rangle \in \mathcal{R}_0 \mid \mathcal{B}\![\![\![}\mathbf{B}]\!]\rho = \mathbf{t}\} \\ &\overline{\operatorname{test}}^{\vec{r}}[\![\![\![}\mathbf{B}]\!]\mathcal{R}_0 &\triangleq \{\rho \in \mathcal{R}_0 \mid \mathcal{B}\![\![\![}\mathbf{B}]\!]\rho = \mathbf{f}\} \\ &\overline{\operatorname{test}}^{\vec{R}}[\![\![}\mathbf{B}]\!]\mathcal{R}_0 &\triangleq \{\langle \rho_0, \, \rho \rangle \in \mathcal{R}_0 \mid \mathcal{B}\![\![\![}\mathbf{B}]\!]\rho = \mathbf{f}\} \end{split}$$

Reachability of a conditional statement $S ::= if(B) S_t else S_f$ $\widehat{\mathcal{S}}^{\ell}[S] \mathcal{R}_0 \ell = [\ell = at[S]] \mathcal{R}_0$ (19.23) $\|\ell \in \inf[S_{\ell}] ? \widehat{\mathcal{S}}^{\vec{\ell}}[S_{\ell}] \text{ (test}^{\vec{\ell}}[B] \mathcal{R}_{0}) \ell$ $\| \ell \in \operatorname{in}[S_f] ? \widehat{\mathcal{S}}^{\vec{\ell}}[S_f] (\overline{\operatorname{test}}^{\vec{\ell}}[B] \mathcal{R}_0) \ell$ $[\ell] = after[S]$? $\widehat{\mathcal{S}}^{\, \vec{\ell}} \llbracket \mathsf{S}_t \rrbracket \; (\mathsf{test}^{\vec{\ell}} \llbracket \mathsf{B} \rrbracket \mathcal{R}_0) \; \ell \cup \widehat{\mathcal{S}}^{\, \vec{\ell}} \llbracket \mathsf{S}_f \rrbracket \; (\overline{\mathsf{test}}^{\, \vec{\ell}} \llbracket \mathsf{B} \rrbracket \mathcal{R}_0) \; \ell$ $\otimes \emptyset$

Reachability of a statement list
$$S1 := S1' S$$

$$\widehat{\mathcal{S}}^{\vec{\ell}}[S1]\mathcal{R}_{0}^{\ell} = [\ell \in labs[S1'] \setminus \{at[S]\} \ \widehat{\mathcal{S}}^{\vec{\ell}}[S1']\mathcal{R}_{0}^{\ell} \\ [\ell \in labs[S] \ \widehat{\mathcal{S}}^{\vec{\ell}}[S](\widehat{\mathcal{S}}^{\vec{\ell}}[S1']\mathcal{R}_{0}^{\ell} at[S])^{\ell} \\ [\mathfrak{S}^{\vec{\ell}}[S](\widehat{\mathcal{S}}^{\vec{\ell}}[S](\widehat{\mathcal{S}}^{\vec{\ell}}[S](\widehat{\mathcal{S}}^{\vec{\ell}}[S])^{\ell} \\ [\mathfrak{S}^{\vec{\ell}}[S](\widehat{\mathcal{S}}^{\vec{\ell}}[S](\widehat{\mathcal{S}}^{\vec{\ell}}[S])^{\ell}]$$

Reachability of an empty statement list
$$S1 := \epsilon$$

$$\widehat{\mathcal{S}}^{\vec{\ell}}[\![\mathtt{Sl}]\!]\mathcal{R}_0^{\ell} = [\![\ell = \mathsf{at}[\![\mathtt{Sl}]\!] \ \widehat{\mathcal{R}}_0^{\ell} \otimes \emptyset]\!]$$

$$\tag{19.20}$$

Reachability of a break statement
$$S ::= \ell$$
 break;
$$\widehat{S}^{\vec{\ell}}[S] \mathcal{R}_0 \ell = [\ell = at[S] \mathcal{R}_0 \mathcal{R}_0 \mathcal{Q}]$$
 (19.25)

Reachability of a compound statement
$$S := \{ Sl \}$$

$$\widehat{\mathcal{S}}^{\vec{\varrho}}[\![S]\!] = \widehat{\mathcal{S}}^{\vec{\varrho}}[\![Sl]\!] \tag{19.26}$$

```
Reachability of an iteration statement S ::= while \ell(B) S_h
\widehat{\mathcal{S}}^{\ell} \llbracket \mathsf{S} \rrbracket \mathcal{R}_{0}^{\ell'} = (\mathsf{lfp}^{\leq} \mathcal{F}^{\ell} \llbracket \mathsf{while}^{\ell} (\mathsf{B}) \mathsf{S}_{h} \rrbracket \mathcal{R}_{0}^{\ell'})^{\ell'}
                                                                                                                                                                                                                                                                   (19.16)
\mathscr{F}^{\vec{\ell}} [while \ell (B) S_b] \mathscr{R}_0 \in (\mathscr{L} \to \wp(\mathbb{E} \mathbf{v}^{\vec{\ell}})) \stackrel{\sim}{\longrightarrow} (\mathscr{L} \to \wp(\mathbb{E} \mathbf{v}^{\vec{\ell}}))
\mathcal{F}^{\vec{\ell}} [while \ell (B) S_b \mathcal{R}_0 X \ell' =
        \llbracket \ell' = \ell \ ? \ \mathcal{R}_0 \cup \widehat{\mathcal{S}}^{\vec{\ell}} \llbracket \mathsf{S}_h \rrbracket \text{ (test}^{\vec{\ell}} \llbracket \mathsf{B} \rrbracket X(\ell)) \ell
          \|\ell' \in \inf[S_L] \setminus \{\ell\} \ \widehat{\mathcal{S}} \ \widehat{\ell}[S_L] \ (\operatorname{test}^{\widehat{\ell}}[B]X(\ell)) \ \ell'
                                                                                                                                                                  \widehat{\mathcal{S}}^{\vec{\varrho}} \llbracket \mathsf{S}_h \rrbracket \text{ (test}^{\vec{\varrho}} \llbracket \mathsf{B} \rrbracket X(\ell) \text{) } \ell''
          \|\ell' = \operatorname{after}[S] \ \widehat{\epsilon} \ \overline{\operatorname{test}}^{\vec{\ell}}[B](X(\ell)) \cup
                                                                                                                         ℓ"∈breaks-of[s,]
          \mathbb{Z} \otimes \mathbb{I}
```

Only the *loop invariant* $X(\ell)$ is used!

Loop invariant

```
Invariant of an iteration statement S ::= while \ell(B) S_b
                                                       \overline{\mathcal{F}}^{\vec{\ell}} [while \ell (B) S_h] \mathcal{R}_0 \in \wp(\mathbb{E} \mathbf{v}^{\vec{\ell}}) \longrightarrow \wp(\mathbb{E} \mathbf{v}^{\vec{\ell}})
\widehat{\mathcal{S}}^{\vec{\ell}} \llbracket \mathbf{S} \rrbracket \mathcal{R}_{0} \ell' = \mathsf{let}
                                                                                                                                                                                                                                                                          (19.42)
                                                                 \overline{\boldsymbol{\mathcal{F}}}^{\vec{\ell}} \llbracket \mathsf{while}^{\;\ell} \; (\mathsf{B}) \; \mathsf{S}_{h} \rrbracket \; \boldsymbol{\mathcal{R}}_{.0} \; X \;\; = \;\; \boldsymbol{\mathcal{R}}_{.0} \cup \widehat{\boldsymbol{\mathcal{S}}}^{\;\vec{\ell}} \llbracket \mathsf{S}_{b} \rrbracket \; (\mathsf{test}^{\vec{\ell}} \llbracket \mathsf{B} \rrbracket X) \; \ell
                                                       and I = |fp^{\varsigma} \overline{\mathcal{F}}^{\varrho}|  [while ^{\varrho} (B) S_{\iota} | \mathcal{R}_{0} in
                                                                        \int \ell' = \ell \Im I
                                                                        \| \ell' \in \inf[S_h] \setminus \{\ell\} \ \widehat{\mathcal{S}}^{\vec{\ell}}[S_h] \ (\text{test}^{\vec{\ell}}[B] \ I) \ \ell'
                                                                        \|\ell' = \operatorname{after}[S] \ \widehat{\mathcal{S}} \ \overline{\operatorname{test}}^{\vec{\ell}}[B] \ I \cup \qquad \qquad |\widehat{\mathcal{S}}^{\vec{\ell}}[S_h] \ (\operatorname{test}^{\vec{\ell}}[B] \ I) \ \ell''
                                                                                                                                                                         ℓ"∈breaks-of[s,]
                                                                         \otimes \emptyset
```

 $I = (\mathsf{lfp}^{\varsigma} \, \mathcal{F}^{\ell}[\![\mathsf{while} \, \ell \, (\mathsf{B}) \, \mathsf{S}_b]\!] \, \mathcal{R}_0) \, \ell$ (see Exercise 19.18) can be mathematically calculated iteratively but not mechanizable (Rice theorem).

Reachability transformers preserve joins

Theorem (19.36) For all program components S, $\widehat{\mathcal{S}}^{\vec{\ell}}[S]$ preserves arbitrary joins i.e. $\widehat{\mathcal{S}}^{\vec{\ell}}[S]$ ($\bigcup_i P_i$) $\ell = \bigcup_i \widehat{\mathcal{S}}^{\vec{\ell}}[S]$ (P_i) ℓ .

In particular $\widehat{\mathcal{S}}^{\vec{\ell}}[S](\emptyset) = \emptyset$ and the loop transformer $\mathcal{F}^{\vec{\ell}}[while \ell](B)$ S] preserves arbitrary joins $\dot{[}$ $\dot{]}$ $\dot{[}$ $\dot{[}$

System of equations for the iteration statement

■ By (19.16) for an iteration statement $S ::= \text{while } \ell$ (B) S_b , $\widehat{\mathcal{S}}^{\,\ell}[\![S]\!] \mathcal{R}_0$ is the pointwise \subseteq -least solution to the system of equations

$$\begin{cases} X(\ell') &= \mathscr{F}^{\vec{\ell}} \llbracket \mathsf{while} \ \ell \ (\mathsf{B}) \ \mathsf{S}_b \rrbracket \ \mathscr{R}_0 \ X^{\ \ell'} \\ \ell' \in \mathsf{labx} \llbracket \mathsf{S} \rrbracket$$

- Mathematically solved iteratively
- Not mechanizable, even if the loop invariant is given (Rice theorem)
- Approximations needed

Example 19.15: iteration

- P = while ℓ_1 (x < 10) ℓ_2 x = x + 1; ℓ_3
- all variables are initially 0
- Since there is only one variable x we don't consider properties to be sets of environments but more simply the set of value of x
- Let $R_{\ell_1}^n$ be the set of reachable values of x at ℓ_1 after at most $n \ge 0$ iterations
- The initial value x=0 is reachable at ℓ_1 on iteration entry, that is at iteration 0. So $R_{\ell_1}^0=\mathcal{R}_0=\{0\}$
- After at most 1 iteration, the reachable values $R^1_{\ell_1}$ of x at ℓ_1 are those \mathcal{R}_0 reachable at iteration 0 plus those of iteration 0 which pass the test and have been incremented in the loop body. So $R^1_{\ell_1} = \mathcal{R}^0 \cup \{x+1 \mid x \in R^0_{\ell_1} \land x < 10\} = \{0,1\}$
- **.**..

- Similarly, $R_{\ell_1}^9 = \{0, 1, \dots, 9\}.$
- Then, after at most 10 iterations, the reachable values $R_{\ell_1}^{10}$ of x at ℓ_1 are those \mathcal{R}_0 reachable at iteration 0 plus those $R_{\ell_1}^9$ of previous iterations which pass the test and have been incremented in the loop body. So

$$R_{\ell_1}^{10} = \mathcal{R}^0 \cup \{x+1 \mid x \in R_{\ell_1}^9 \land x < 10\}$$

= $\{0\} \cup \{1, \dots, 10\} = \{0, 1, \dots, 10\};$

■ After at most 11 iterations, the reachable values $R_{\ell_1}^{11}$ of x at ℓ_1 are those \mathcal{R}_0 reachable at iteration 0 plus those $R_{\ell_1}^{10}$ of previous iterations which pass the test and have been incremented in the loop body. So

$$\begin{array}{rcl} R^{11}_{\ell_1} & = & \mathcal{R}^{0}_{\ell_1} \cup \{x+1 \mid x \in R^{10}_{\ell_1} \wedge x < 10\} \\ & = & \{0\} \cup \{1, \dots, 10\} & = & \{0, 1, \dots, 10\} & = & R^{10}_{\ell_1}; \end{array}$$

- Similarly, after at most n > 10 iterations, $R_{\ell_1}^n = R_{\ell_1}^{10}$.
- Therefore we have

$$R_{\ell_1}^0 = \mathcal{R}^0$$

$$R_{\ell_1}^{n+1} = \mathcal{R}^0 \cup \{x+1 \mid x \in R_{\ell_1}^n \land x < 10\}$$

with
$$R_{\ell_1}^0 \subseteq R_{\ell_1}^1 \subseteq \dots R_{\ell_1}^n \subseteq R_{\ell_1}^{n+1} \subseteq \dots$$

• Letting $R'_{\ell_1}^0 = \emptyset$ and $R'_{\ell_1}^{n+1} = R_{\ell_1}^n$, this is the same as

$$R'_{\ell_1}^0 = \emptyset$$

 $R'_{\ell_1}^{n+1} = \mathcal{R}^0 \cup \{x+1 \mid x \in R'_{\ell_1}^n \land x < 10\}$

with
$$R'_{\ell_1}^0 \subseteq R'_{\ell_1}^1 \subseteq ... R'_{\ell_1}^n \subseteq R'_{\ell_1}^{n+1} \subseteq ...$$

■ This limit is the set of reachable values $\bigcup R'_{\ell_1}^n = \{0, 1, ..., 10\}$ of x at ℓ_1 .

- Obviously, the function $F(R') \triangleq \mathcal{R}^0_{\ell_1} \cup \{x+1 \mid x \in R' \land x < 10\}$ preserves arbitrary joins \bigcup
- So, by Theorem 15.26, the reachable values of x at ℓ_1 are $\widehat{\mathcal{S}}^r / \mathbb{P} / \mathcal{R}^0 \ell_1 = \mathbb{Ifp}^{\varsigma} F$.
- The reachable values of x at ℓ_3 on loop exit are those reachable at ℓ_1 that do not pass the test, that is

$$\widehat{\mathbf{S}}^{\,\vec{r}} \llbracket \mathbf{P} \rrbracket \, \mathcal{R}^{\,0} \,\, \ell_3 \quad = \quad \{ x \in \widehat{\mathbf{S}}^{\,\vec{r}} \llbracket \mathbf{P} \rrbracket \, \mathcal{R}^{\,0} \,\, \ell_1 \mid x \geqslant 10 \} \quad = \quad \{10\}.$$

Chapter 19

Sound, complete, and exact structural abstract semantics (Section **19.6**)

Concrete semantics

■ Let $\langle S[S] \in \mathcal{D}[S]$, $S \in Pc \rangle$ be a structural semantics defined as

$$\begin{cases} \mathcal{S}[s] & \triangleq \mathcal{F}[s](\prod_{s' \triangleleft s} \mathcal{S}[s']) \\ s \in \mathcal{P}_{\mathcal{C}} \end{cases}$$
 (19.38)

where $\langle S', S' \triangleleft S \rangle$ is the finite vector of immediate subcomponents of program components $S \in \mathcal{P}_{\mathcal{C}}$.

- The map $\mathscr{F}[s] \in \prod_{s' \triangleleft s} \mathscr{D}[s'] \to \mathscr{D}[s]$ has no parameters in the basic cases (assignment, skip, etc.).
- It is defined has the fixpoint for iteration statements.

Abstract semantics

- Let $\alpha[s] \in \wp(\mathfrak{D}[s]) \to \langle \mathbb{D}[s], \sqsubseteq \rangle$ be an abstraction of the properties of the semantics $\mathcal{S}[s] \in \mathfrak{D}[s]$.
- The abstract semantics of interest is the abstraction of the collecting semantics.

$$\mathcal{S}^{\mathbb{Z}}[s] \triangleq \alpha[s](\{\mathcal{S}[s]\}) \tag{19.39}$$

• The definition of a structural abstract semantics has the form

$$\begin{cases} \widehat{\mathbf{S}}^{\, \bowtie} \llbracket \mathsf{S} \rrbracket & \triangleq \quad \mathcal{F}^{\, \bowtie} \llbracket \mathsf{S} \rrbracket (\prod_{\mathsf{S}' \, \triangleleft \, \mathsf{S}} \widehat{\mathbf{S}}^{\, \bowtie} \llbracket \mathsf{S}' \rrbracket) \\ \mathsf{S} \in \mathcal{P}_{\mathcal{C}} \end{cases} \tag{19.40}$$

where $\mathscr{F}^{\bowtie}[S] \in \prod_{S' \triangleleft S} \mathbb{D}[S'] \to \mathbb{D}[S].$

■ So the calculation of the structural abstract semantics $\mathfrak{S}^{\,\,\square}[s]$ is purely in the abstract domains $\langle \mathbb{D}[s], \, s \in \mathbb{P}c \rangle$ as opposed to abstract semantics $\mathfrak{S}^{\,\,\square}[s]$ involving calculations in the more complicated concrete domains $\langle \mathfrak{D}[s], \, s \in \mathbb{P}c \rangle$.

Structural soundness, completeness, exactness

- The structural abstract semantics is
 - sound when $\forall S \in Pc$. $S^{\alpha}[S] \subseteq \widehat{S}^{\alpha}[S]$,
 - complete when $\forall S \in Pc$. $S^{\alpha}[S] \supseteq \widehat{S}^{\alpha}[S]$, and
 - sound and complete or exact when $\forall s \in Pc$. $\mathcal{S}^{\bowtie}[s] = \widehat{\mathcal{S}}^{\bowtie}[s]$.
- Examples:
 - The structural reachability semantics $\widehat{S}^{\vec{\varrho}}$ is exact.
 - The structural sign semantics $\widehat{\mathcal{S}}^{\pm}$ of Section **3.13** is sound but not exact. For example, $\mathcal{S}^{\pm}[2-1] = \alpha_{\pm}(\{\mathcal{S}[2-1]\}) = \alpha_{\pm}(\{1\}) = (>0)$ while $\widehat{\mathcal{S}}^{\pm}[2-1] = \widehat{\mathcal{S}}^{\pm}[2] -_{\pm}\widehat{\mathcal{S}}^{\pm}[1] = (>0) -_{\pm}(>0) = \top_{\pm}$.

How to prove the exactness of a structural abstract semantics?

We first prove the commutation property

$$\forall \mathsf{S} \in \mathbb{P} c \ . \ \alpha[\![\mathsf{S}]\!](\{\mathcal{F}[\![\mathsf{S}]\!](\prod_{\mathsf{S}' \triangleleft \mathsf{S}} X_{\mathsf{S}'})\}) = \mathcal{F}^{\bowtie}[\![\mathsf{S}]\!](\prod_{\mathsf{S}' \triangleleft \mathsf{S}} \alpha[\![\mathsf{S}'\!]\!](\{X_{\mathsf{S}'}\})) \qquad (19.48)$$

for all $S \in \mathbb{P}_{\mathcal{C}}$ and $X_{S'} \in \mathfrak{D}[S']$, $S' \triangleleft S$.

- For iteration statements, $\mathscr{F}[s](\prod_{s' \triangleleft s} X_{s'})$ is a fixpoint, and this proof involves *e.g.* Theorems 18.21 and 18.24, Corollaries 18.31 and 18.32, or similar results.
- This allows us to derive the abstract transformer $\mathscr{F}^{\pi}[s]$, knowing the concrete transformer $\mathscr{F}[s]$ and the abstraction $\alpha[s]$.

- Then the proof proceed by structural induction on $\langle Pc, \triangleleft \rangle$.
- Assuming, by structural induction hypothesis, that $\forall S' \triangleleft S . \mathscr{S}^{\bowtie}[\![S']\!] = \widehat{\mathscr{S}}^{\bowtie}[\![S']\!]$, we have

$$\mathcal{S}^{\mathbb{X}}[s]$$

$$= \alpha[s](\{\mathcal{S}[s]\}) \qquad \qquad ((19.39))$$

$$= \alpha[s](\{\mathcal{F}[s](\prod_{s' \triangleleft s} \mathcal{S}[s'])\}) \qquad \qquad ((19.38))$$

$$= \mathcal{F}^{\mathbb{X}}[s](\prod_{s' \triangleleft s} \mathcal{S}^{\mathbb{X}}[s']) \qquad \qquad (commutation property (19.48))$$

$$= \mathcal{F}^{\mathbb{X}}[s](\prod_{s' \triangleleft s} \mathcal{S}^{\mathbb{X}}[s']) \qquad \qquad ((19.39))$$

$$= \mathcal{F}^{\mathbb{X}}[s](\prod_{s' \triangleleft s} \mathcal{S}^{\mathbb{X}}[s']) \qquad \qquad (structural ind. hyp.)$$

$$= \mathcal{S}^{\mathbb{X}}[s] \qquad \qquad ((19.40)) \quad \Box$$

Home work

The End, Thank you