

## DT2118 Lab2: Hidden Markov Models with Gaussian Emissions

## 1 Objective

The objective is to implement the algorithms for evaluation and decoding of Hidden Markov Models (HMMs) combined with Gaussian emission probability distributions. The lab is designed in Python, but the same functions can be obtained in Matlab/Octave or using the Hidden Markov Toolkit (HTK).

### 2 Task

The overall task is to implement and test methods for isolated word recognition:

- implement the forward algorithm,
- use it compute the log likelihood of spoken utterances given a Gaussian HMM
- perform isolated word recognition
- compare the Gaussian HMM to a GMM (Gaussian Mixture Model)
- implement the Viterbi algorithm, and use it to compute Viterbi path and likelihood

In order to pass the lab, you will need to follow the steps described in this document, and produce a report where you describe your work and answer the questions asked here. The report should be submitted in the Assignment section in the course Web on KTH Social https://www.kth.se/social/course/DT2118/. One submission should be done for each group, clearly stating all the members of that group.

### 3 Data

The speech data used in this lab is the same as in Lab 1. This lab assumes that you have loaded the tidigits array containing speech utterances, and that you have computed MFCC features on each utterance. Refer to the instructions of Lab 1 to know how to load and process the data.

Additionally, the lab2\_models.npz file contains the parameters of the models you are going to use to test your functions and the lab2\_example.npz file contains an example that can be used for debugging.

#### 3.1 The models

Load the model file with:

```
import numpy as np
models = np.load('lab2_models.npz')['models']
```

Page 1 (of 6)

The models array has length 11 and contains for each element the following keys:

```
models[0].keys()
['digit', 'pron', 'hmm', 'gmm']
```

| key    | description                                                                   |
|--------|-------------------------------------------------------------------------------|
| digit: | the digit the model refers to                                                 |
| pron:  | pronunciation of the digit in terms of phonemes (not needed in this exercise) |
| hmm:   | model parameters of a Gaussian HMM trained with Baum-Welch                    |
| gmm:   | model parameters of a GMM trained with EM                                     |

Both the HMMs and the GMMs were trained on the same data (different from the data in the tidigits array) and were initialized the same way. Both use diagonal covariance matrices for the Gaussian distributions. The size of the model (number of states in HMM and number of Gaussians in GMM) depends on the digit and was obtained using three states for each phoneme in models[i]['pron'] plus three states for the initial and final silence in the utterance. The HMM model contains the following fields:

```
models[0]['hmm'].keys()
['startprob', 'transmat', 'means', 'covars']
```

| key       | symbol                                  | description                                        |
|-----------|-----------------------------------------|----------------------------------------------------|
| startprob | $\pi_i = P(z_0 = s_i)$                  | probability to start in state $i$                  |
| transmat: | $a_{ij} = P(z_n = s_j   z_{n-1} = s_i)$ | transition probability from state $i$ to $j$       |
| means:    | $\mu_{id}$                              | array of mean vectors (rows correspond to dif-     |
|           |                                         | ferent states)                                     |
| covars:   | $\sigma_{id}^2$                         | array of variance vectors (rows correspond to dif- |
|           |                                         | ferent states)                                     |

The GMM models contain the following fields:

```
models[0]['gmm'].keys()
['weights', 'means', 'covars']
```

| weights: $w_i$ weight of each Gaussian in the mixture                              |           |
|------------------------------------------------------------------------------------|-----------|
|                                                                                    |           |
| means: $\mu_{id}$ array of mean vectors (rows correspond to different Gaus         | ssians)   |
| covars: $\sigma_{id}^2$ array of variance vectors (rows correspond to different Ga | aussians) |

### 3.2 The example

Load the example file with:

```
example = np.load('lab2_example.npz')['example'].item()
```

This is a dictionary containing all the fields as in Lab 1, plus the following additional fields:

Page 2 (of 6)

Here is a description of each field, you will see how to use this information in the reminder of these instructions. All the probabilities described below were obtained by using the HMM model in models[0]['hmm'] and the GMM model in models[0]['gmm'] on the sequence of MFCC vectors in example['mfcc']:

| key           | idxs  | symbol                                        | description                                     |
|---------------|-------|-----------------------------------------------|-------------------------------------------------|
| gmm_obsloglik | [i,j] | $\log \phi_j(x_i)$                            | observation log likelihood for each Gaussian    |
|               |       |                                               | in models[0][gmm], shape: (n_timesteps,         |
|               |       |                                               | n_gaussians)                                    |
| gmm_loglik    | -     | $\log P(X 	heta_{	ext{GMM}})$                 | log likelihood of the observations sequence $X$ |
|               |       |                                               | given the full GMM model, scalar                |
| hmm_obsloglik | [i,j] | $\log \phi_j(x_i)$                            | observation log likelihood for each Gaussians   |
|               |       |                                               | in models[0][hmm], shape: (n_timesteps,         |
|               |       |                                               | $n_{states}$                                    |
| hmm_logalpha  | [i,j] | $\log \alpha_j(x_i)$                          | alpha log probabilities, see definition later,  |
|               |       |                                               | shape: (n_timesteps, n_states)                  |
| hmm_loglik    | -     | $\log P(X 	heta_{	ext{	iny HMM}})$            | log likelihood of the observations sequence $X$ |
|               |       |                                               | given the HMM model, scalar                     |
| hmm_vloglik   | -     | $\log P(X \theta_{	ext{HMM}}, S_{	ext{opt}})$ | Viterbi log likelihood of the observations se-  |
|               |       | 1                                             | quence $X$ given the HMM model and the best     |
|               |       |                                               | path, scalar                                    |

Figure 1 shows some of the relevant fields in example.

# 4 Multivariate Gaussian Density

The function log\_multivariate\_normal\_density\_diag in tools2.py can be used to compute

$$\log \text{ emlik}[i, j] = \log \phi_i(x_i) = \log N(x_i, \mu_i, \Sigma_i) = \log P(x_i | \mu_i, \Sigma_i),$$

that is the log likelihood for each observation  $x_i$  and each term in a multivariate Gaussian density function with means  $\mu_j$  and diagonal covariance matrices  $\Sigma_j$ . In the case of Gaussian HMMs,  $\phi_j$  corresponds to the emission probability model for a single state j. In case of a GMM,  $\phi_j$  corresponds to a single Gaussian in the model, without considering the weights.

Verify that you get the same results as in example['hmm\_obsloglik'] and example['gmm\_obsloglik'] when you apply the log\_multivariate\_normal\_density\_diag function to the example['mfcc'] data using the Gaussian distributions defined respectively in models[0]['hmm'] and models[0]['gmm']. Note that in these cases we are using neither the weights of the GMM, nor the time dependency structure of the HMM, but only the Gaussian distributions.

# 5 GMM Likelihood and Recognition

Based on the output of the function in the previous section, write the gmmloglik function (proto2.py) that computes the log likelihood of an observation sequence  $X = \{x_0, \ldots, x_{N-1}\}$  given the full GMM model, that is, given the weights of each Gaussian density in the GMM model. Remember that the assumption in the GMM model is that the  $x_n$  vectors are independent for

Page 3 (of 6)



Figure 1.

each  $n = [0, N)^1$ . Whenever there is an expression involving the log of a sum of exponents  $(\log \sum \exp(.))$ , make use of the logsumexp function in tools2.py.

The output of the gmmloglik function, using the model parameters in models[0]['gmm'] and the observation sequence from example['mfcc'], should correspond to example['gmm\_loglik'].

Use this function to score each of the 44 utterances in the tidigits array with each of the 11 GMM models in models[i]['gmm']. If we select for each utterance the model with the highest log likelihood, how many digits are misrecognized?

### 6 HMM Likelihood and Recognition

### 6.1 Forward Algorithm

Write the function forward following the prototypes in proto2.py. The function should take as input a lattice of emission probabilities as in the previous section, that is an array containing:

$$\log \text{ emlik}[i, j] = \log \phi_i(x_i)$$

The output is the array:

$$logalpha[i, j] = log \alpha_i(j)$$

where i corresponds to time steps and j corresponds to states in the model. The recursion formulae for the forward probabilities in  $log\ domain$  are given here, where we have used Python convention with array indices going from 0 to len-1:

$$\log \alpha_0(j) = \log \pi_j + \log \phi_j(x_0)$$
  
$$\log \alpha_n(j) = \log \left( \sum_{i=0}^{M-1} \exp \left( \log \alpha_{n-1}(i) + \log a_{ij} \right) \right) + \log \phi_j(x_n)$$

In all the cases where there is an expression involving the log of a sum of exponents ( $\log \sum \exp(.)$ ), make use of the logsumexp function in tools2.py.

Apply your function to the example['mfcc'] utterance using the model parameters in models[0]['hmm'] and verify that you obtain the same  $\log \alpha$  array as in example['hmm\_logalpha'].

The definitions of  $\alpha_n(j)$  in terms of probabilities of events are defined below (where  $\theta = \{\Pi, A, \Phi\}$  are the model parameters):

$$\alpha_n(j) = P(x_0, \dots, x_n, z_n = s_i | \theta)$$

Given the above definition, derive the formula to compute the likelihood  $P(X|\theta)$  of the whole sequence  $X = \{x_0, \dots, x_{N-1}\}$ , given the model parameters  $\theta$  in terms of  $\alpha_n(j)$ .

**Hint:** if the events  $B_j, j \in [0, M)$  form a disjoint partition of the sure event, that is:

$$P(B_i, B_j) = 0, \quad \forall i, j, \quad i \neq j, \text{ and}$$

$$\sum_{j=0}^{M-1} P(B_j) = 1,$$

Page 5 (of 6)

<sup>&</sup>lt;sup>1</sup>We are using the convention to express intervals with square brackets "[" if the extreme is included and parentheses ")" if it is excluded. This corresponds to the **range** function in Python that includes the start value but not the end value.

then it is true that  $P(A) = \sum_{j=0}^{M-1} P(A, B_j)$ , that is, we can marginalize out the variable  $B_j$ .

Convert the formula you have derived into log domain. Verify that the log likelihood obtained this way using the model parameters in models[0]['hmm'] and the observation sequence in example['mfcc'] is the same as example['hmm\_loglik'].

Using your formula, score all the 44 utterances in tidigits with each of the 11 HMM models in models. How many mistakes can you count if you take the maximum likelihood model as winner? Compare these results with the GMM results obtained in the previous session.

Repeat the recognition using the Gaussian distributions in the HMM models as if they were a GMM model with equal weights for each Gaussian. What can you say about the results you obtain this way? Can you say something about the influence of the HMM transition model in this particular task?

#### 6.2 Viterbi Approximation

Here you will compute the log likelihood of the observation X given a HMM model and the best sequence of states. This is called the Viterbi approximation. Implement the function viterbi in proto2.py. The Viterbi recursion formulas are as follows:

$$\log V_0(j) = \log \pi_j + \log \phi_j(x_0) \log V_n(j) = \max_{i=0}^{M-1} \left( \log \alpha_{n-1}(i) + \log a_{ij} \right) + \log \phi_j(x_n)$$

In order to recover the best path, you will also need an array storing the best previous path for each time step and state (this needs to be defined only for  $n \in [1, N)$ , that is not for the first time step):

$$\log B_n(j) = \arg \max_{i=0}^{M-1} \left( \log \alpha_{n-1}(i) + \log a_{ij} \right)$$

Consult the course book [1], Section 8.2.3, to see the details of the implementation (note that the book uses indices from 1, instead of 0).

Compute the Viterbi log likelihood for models[0]['hmm'] and example['mfcc'], and verify that you obtain the same result as in example['hmm\_vloglik'].

Plot the alpha array that you obtained in the previous Section and overlay the best path obtained by Viterbi decoding. Can you explain the reason why the path looks this way?

Using the Viterbi algorithm, score all the 44 utterances in tidigits with each of the 11 HMM models in models. How many mistakes can you count if you take the maximum likelihood model as winner? Compare these results with the results obtained in previous sections.

### References

[1] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Processing: A Guide to Theory, Algorithm and System Development. Prentice Hall PTR, 2001.