

Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão

Capítulo II

- Anexo 1 -

Resolução de problemas de PLIP

EXEMPLO 1

Considere o seguinte problema:

Mensalmente um carpinteiro possui 6 peças de madeira e dispõe de 28 horas livres para construir dois modelos diferentes de bancos. Cada banco do modelo I requer 2 peças de madeira e exige 7 horas de trabalho. Cada banco do modelo II requer 1 peça de madeira e exige 8 horas de trabalho. Os lucros unitários obtidos com a venda dos

bancos são de, respetivamente, 12 e 8 Unidades Monetárias (U.M.).

O carpinteiro pretende saber quantos bancos de cada modelo deve fabricar por mês, de forma a maximizar o lucro obtido com a venda dos bancos.

Para responder a esta questão, formule o problema em termos de um modelo de PLIP e resolva-o recorrendo ao algoritmo de Gomory.

O problema de programação linear inteira pura (PLIP) que temos para resolver é o seguinte:

Max
$$z = 12 x1 + 8 x2$$

s.a
 $2x1 + x2 \le 6$ (1)
 $7x1 + 8x2 \le 28$ (2)
 $x1 \ge 0, x2 \ge 0$
 $x1, x2$ inteiros

Adicionando as variáveis *slack* x₃ e x₄ em (1) e (2), respetivamente, vamos resolver o seguinte problema de programação linear associado:

$$\begin{aligned} &\text{Max } z = 12 \text{ x1} + 8 \text{ x2} \\ &\text{s.a} \\ &2 \text{x1} + \text{ x2} + \text{x3} = 6 \\ &7 \text{x1} + 8 \text{x2} + \text{x4} = 28 \\ &x_i \geq 0, i = 1, 2, ..., 4 \end{aligned}$$

Aplicando o método *simplex*:

<u>c</u>	12	8	0	0	
$\underline{\mathbf{x}}_{\mathbf{B}} \underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	<u>b</u>
$\mathbf{x_3} = 0$	2*	1	1	0	6 ←
x ₄ 0	7	8	0	1	28
$z_{\mathbf{j}}$ - $c_{\mathbf{j}}$	-12	-8	0	0	0
	$ \uparrow \uparrow$				
<u>c</u>	12	8	0	0	
$\underline{\mathbf{x}}_{\mathbf{B}} \underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	X3	X4	<u>b</u>
x_1 12	1	1/2	1/2	0	3
x ₄ 0	0	9/2*	-7/2	1	7 ←
$z_{\mathbf{j}}$ - $c_{\mathbf{j}}$	0	-2	6	0	36
	l				

	<u>c</u>	12	8	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	X3	X4	<u>b</u>
X ₁	12	1	0	8/9	-1/9	20/9
X2	8	0	1	-7/9	2/9	14/9
Z	j ^{-C} j	0	0	40/9	4/9	352/9

- Quadro ótimo para o problema de PL associado pois não existem valores negativos na linha zj-cj
- No entanto, a solução obtida não satisfaz as restrições de integralidade de x₁ e
 x₂. Ou seja, não é ótima para o problema de PLIP
- Temos que introduzir uma restrição de corte

<u>c</u>	0	0	
$\underline{\mathbf{x}}_{\mathbf{B}} \underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	Х3	X4	<u>b</u>
X ₁			20/9 = 18/9+2/9 = 2+2/9
X2	-7/9	2/9	$14/9 \Leftarrow = 9/9 + 5/9 = 1 + 5/9$
z _j -c _j			

- Escolhe-se a linha da variável básica x₂ (a que tem maior parte fracionária)
- Selecionam-se as partes fracionárias correspondentes a x₃ e x₄ (VNB)
- A restrição de corte a considerar será:

$$(1 - 7/9) x_3 + 2/9 x_4 \ge 5/9$$

 $<=> 2/9 x_3 + 2/9 x_4 \ge 5/9$

Acrescentando a folga x₅ e transformando-a na forma de igualdade:

$$<=> -2/9 x_3 -2/9 x_4 \le -5/9 <=> -2/9 x_3 -2/9 x_4 + x_5 = -5/9$$

Introduzindo-a no quadro anterior e aplicando o método dual do *simplex*:

	<u>c</u>	12	8	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	X5	<u>b</u>
X1	12	1	0	8/9	-1/9	0	20/9
X 2	8	0	1	-7/9	2/9	O	14/9
X5	0	0	0	-2/9	-2/9*	1	<i>-</i> 5/9 ←
Z	z _j -c _j	0	0	40/9	4/9	0	352/9
					\uparrow		
	<u>c</u>	12	8	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	12 x ₁	8 x ₂	0 x ₃	0 x4	0 x5	<u>b</u>
<u>X</u> B				G		C	<u>b</u> 5/2 =4/2+1/2
	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	
X ₁	<u>c</u> _{B} \ <u>X</u> 12	1 1	0 0	1 X ₃	0 0	-1/2	5/2 =4/2+1/2
X ₁ X ₂	<u>c</u> _{B} \ <u>X</u> 12 8	1 0	0 1	1 -1	X4 0 0	X5 -1/2 1	5/2 =4/2+1/2 1
X1 X2 X4	<u>c</u> _{B} \ <u>X</u> 12 8	1 0	0 1	1 -1	X4 0 0	X5 -1/2 1	$5/2 = 4/2 + 1/2$ 1 $5/2 \Leftarrow = 4/2 + 1/2$

Novo quadro ótimo (não há valores negativos na coluna b)

- => Na solução obtida, x₂'*=1, pelo que satisfaz a restrição de integralidade para x₂
- => O mesmo não se verifica relativamente a x_1 , pois x_1 '*=5/2
 - Há que introduzir uma **nova restrição de corte**

Para tal selecionam-se as partes fracionárias correspondentes a x3, que é 0, e a x5

$$-9/2 = -8/2 - 1/2 = -4 - 1/2$$

=> A nova restrição de corte a considerar será:

$$<=> (1-1/2) x_5 \ge 1/2 <=> 1/2 x_5 \ge 1/2 <=> -1/2 x_5 \le -1/2$$

Acrescentando a folga x_6 e transformando-a na forma de igualdade:

$$<=> -1/2x_5 + x_6 = -1/2$$

Introduzindo no quadro ótimo anterior e aplicando o método dual do *simplex*:

	<u>c</u>	12	8	0	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	X5	X6	<u>b</u>
X ₁	12	1	0	1	0	-1/2	0	5/2
X2	8	0	1	-1	0	1	0	1
X4	0	0	0	1	1	-9/2	0	5/2
X6	0	0	0	0	0	-1/2	1	-1/2 ←
Z	(j-c _j	0	0	4	0	2	0	38
						\uparrow		

	<u>c</u>	12	8	0	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	X6	<u>b</u>
X 1	12	1	0	1	0	0	-1	3
X2	8	0	1	-1	0	0	2	0
X4	0	0	0	1	1	0	-9	7
X5	0	0	0	0	0	1	-2	1
Z	j-c _j	0	0	4	0	0	4	36

Novo quadro ótimo (não há valores negativos na coluna b)

Este quadro é também ótimo para o problema de PLIP!

=> x₁,,*=3 e satisfaz a restrição de integralidade x₂,,*=0 e satisfaz a restrição de integralidade

$$=> \underline{x}''*=(x_1, x_2, x_3, x_4, x_5, x_6)=(3, 0, 0, 7, 1, 0)$$

com $z''*=36$

Interpretação Gráfica:

Max
$$z = 12 x_1 + 8 x_2$$

s.a
 $2x_1 + x_2 \le 6$
 $7x_1 + 8x_2 \le 28$
 $x_1 \ge 0, x_2 \ge 0$
 x_1, x_2 inteiros

1º plano de corte:

$$2/9 x_3 + 2/9 x_4 \ge 5/9 <=> 2x_3 + 2x_4 \ge 5$$

Como

$$x_3 = 6 - 2x_1 - x_2$$
 e $x_4 = 28 - 7x_1 - 8x_2$

temos

$$2(6-2x_1-x_2) + 2(28-7x_1-8x_2) \ge 5 <=>$$
 $<=> 12-4x_1-2x_2+56-14x_1-16x_2 \ge 5 <=>$
 $<=> -18x_1-18x_2 \ge -63 <=>$
 $<=> 2x_1+2x_2 < 7$

2º plano de corte:

$$1/2 \ x_5 \ge 1/2$$
 <=> $x_5 \ge 1$

Como

$$x_5 = -5/9 + 2/9x_3 + 2/9x_4 = -5/9 + 2/9(6 - 2x_1 - x_2) + 2/9(28 - 7x_1 - 8x_2)$$
 $<=> x_5 = -5/9 + 12/9 - 4/9x_1 - 2/9x_2 + 56/9 - 14/9x_1 - 16/9x_2 <=>$
 $<=> x_5 = 63/9 - 18/9x_1 - 18/9x_2 = 7 - 2x_1 - 2x_2$

temos

$$x_5 \ge 1 <=> 7 - 2x_1 - 2x_2 \ge 1 <=> -2x_1 - 2x_2 \ge -6 <=> x_1 + x_2 \le 3$$

EXEMPLO 2

Considere o seguinte problema:

Uma fábrica de brinquedos produz dois tipos de carros telecomandados (A e B). Cada carro do tipo A requer cerca do triplo do tempo de produção em relação aos do tipo B e sabe-se que se todos os carros fossem do tipo B a fábrica teria capacidade para produzir diariamente um máximo de 400 carros.

Sabe-se que as vendas médias diárias dos carros dos tipos A e B não excedem as 150 e as 200 unidades, respetivamente.

Assumindo que cada carro do tipo A produz um lucro de 4000 U.M. e que cada carro do tipo B produz um lucro de 2500 U.M., a empresa pretende saber quantos carros de cada tipo deve fabricar diariamente de modo a maximizar o lucro.

Para responder a esta questão, formule o problema em termos de um modelo de PLIP e resolva-o recorrendo ao algoritmo de Gomory.

O problema de programação linear inteira pura (PLIP) que temos para resolver é o seguinte:

Max
$$z = 4000 x_1 + 2500 x_2$$

s.a
 $x_1 \leq 150$ (1)
 $x_2 \leq 200$ (2)
 $3x_1 + x_2 \leq 400$ (3)
 $x_1 \geq 0, x_2 \geq 0$
 x_1, x_2 inteiros

Adicionando as variáveis *slack* x₃, x₄ e x₅ em (1), (2) e (3), respetivamente, vamos resolver o seguinte problema de programação linear associado (método *simplex*):

$$\begin{array}{lll} \text{Max} & z = 4000 \text{ x1} + 2500 \text{ x2} \\ \text{s.a} & & & & \\ \text{x1} & & + \text{x3} & & = 150 \\ & & & & & \\ \text{x2} & & + \text{x4} & & = 200 \\ & & & & \\ 3\text{x1} + & \text{x2} & & + \text{x5} & = 400 \\ & & & & \\ \text{x}_i \geq 0, \, i = 1, \, 2, \, ..., \, 5 \end{array}$$

	<u>c</u>	4000	2500	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	X5	<u>b</u>
X 3	0	1	0	1	0	0	150 (1)
X4	0	0	1	0	1	0	200 (2)
X5	0	3*	1	0	0	1	$400 \Leftarrow (3)$
Z	j- ^C j	-4000	-2500	0	0	0	0
		\uparrow					
		4000	2500	\circ	0	0	
	<u>c</u>	4000	2500	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	4000 x ₁	2500 x ₂	0 x ₃	0 X4	0 x5	<u>b</u>
<u>X</u> B	<u> </u>						b 50/3
	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X1	X2	Х3	X4	X5	
Х3	$c_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	0 0	-1/3	1 1	0 0	-1/3	50/3

	<u>c</u>	4000	2500	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	<u>b</u>
X3	0	0	O	1	1/3	-1/3	250/3 = 249/3 + 1/3
X 2	2500	0	1	0	1	0	200
X1	4000	1	0	0	-1/3	1/3	200/3 =198/3+2/3
Z	j- ^C j	0	0	0	3500/3	4000/3	2300000/3 =
							= 766666.66

- Quadro ótimo para o problema PL associado
- ♠ Mas não ótimo para o problema de PLIP, pois x₁*=200/3=66.667 na solução obtida (valor não inteiro!)
- Vamos introduzir uma restrição de corte:

Escolhe-se a linha da variável básica x₁, pois é a que tem maior parte fracionária

Selecionam-se as partes fracionárias correspondentes a x4 e x5

A restrição de corte a considerar será:

$$(1-1/3) x_4 + 1/3 x_5 \ge 2/3$$

$$<=> 2/3 x_4 + 1/3 x_5 \ge 2/3$$

Acrescentando a folga x_6 e transformando-a na forma de igualdade:

$$<=> -2/3 x_4 -1/3 x_5 \le -2/3 <=> -2/3 x_4 -1/3 x_5 +x_6 = -2/3$$

Introduzindo no quadro ótimo anterior e aplicando o método dual do *simplex*:

<u>c</u>	4000	2500	0	0	0	0	
$\underline{\mathbf{x}}_{\mathbf{B}} \ \underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	X6	<u>b</u>
$\mathbf{x_3} = 0$	0	0	1	1/3	-1/3	0	250/3
$x_2 2500$	0	1	0	1	0	0	200
x_1 4000	1	0	0	-1/3	1/3	0	200/3
$\mathbf{x_6} 0$	0	0	0	-2/3*	-1/3	1	-2/3 ⇐
z _j -c _j	0	0	0	3500/3 ↑	4000/3	0	2300000/3
				П			

	<u>c</u>	4000	2500	0	0	0	0	
<u>X</u> B	$\underline{\mathbf{c}}_{\mathbf{B}} \setminus \underline{\mathbf{x}}$	X ₁	X2	Х3	X4	X5	X6	<u>b</u>
X3	0	0	0	1	0	-1/2	1/2	83
X2	2500	0	1	0	0	-1/2	3/2	199
X 1	4000	1	0	0	0	1/2	-1/2	67
X4	0	0	0	0	1	1/2	-3/2	1
Z	^L j ^{-C} j	0	0	0	0	750	1750	765500

- Quadro ótimo para o problema PL associado
- Este quadro é também ótimo para o problema de PLIP pois satisfaz as restrições de integralidade de x₁ e x₂!

=>
$$x_1'*=67$$

 $x_2'*=199$
=> $\underline{x'}*=(x_1, x_2, x_3, x_4, x_5, x_6)=(67, 199, 83, 1, 0, 0)$
 $com z'*=765500$

Interpretação Gráfica:

Max
$$z = 4000 x1 + 2500 x2$$

s.a
 $x1 \leq 150$ (1)
 $x2 \leq 200$ (2)
 $3x1 + x2 \leq 400$ (3)
 $x1 \geq 0, x2 \geq 0$
 $x1, x2$ inteiros

Restrição de corte:

$$2/3 x_4 + 1/3 x_5 \ge 2/3 <=> 2x_4 + x_5 \ge 2$$

Como

$$x_4 = 200 - x_2 e \quad x_5 = 400 - 3x_1 - x_2$$

temos

$$2(200 - x_2) + (400 - 3x_1 - x_2) \ge 2 \le >$$

$$<=> 800 - 3x_1 - 3x_2 \ge 2 <=>$$

$$<=> -3x_1 - 3x_2 \ge -798 <=>$$

$$<=> x_1 + x_2 \le 266$$