#4.12 Compute the permutation products.

- (a) (1,5,2,4)(1,5,2,3)
- (b) $(1,5,3)(1,2,3,4,5,6)(1,5,3)^{-1}$
- (c) $[(1,6,7,2)^2(4,5,2,6)^{-1}(1,7,3)]^{-1}$
- (d) (1,6)(1,5)(1,4)(1,3)(1,2)

Ans:

(a) We start with 3:

$$\sigma(3) = 5, \sigma(5) = 4, \sigma(4) = 1, \sigma(1) = 2, \sigma(2) = 3$$

Thus, (1, 5, 2, 4)(1, 5, 2, 3) = (3, 5, 4, 1, 2) = (1, 2, 3, 5, 4)

(b) First calculate $(1,5,3)^{-1} = (1,3,5)$. Then we can calculate the product of (1,5,3)(1,2,3,4,5,6)(1,3,5):

$$\sigma(1) = 4, \sigma(4) = 3, \sigma(3) = 6, \sigma(6) = 5, \sigma(5) = 2, \sigma(2) = 1$$

Thus (1,5,3)(1,2,3,4,5,6)(1,3,5) = (1,4,3,6,5,2)

(c) First calculate $[(1,6,7,2)^2(4,5,2,6)^{-1}(1,7,3)]^{-1}$ = (2,7,6,1)(2,7,6,1)(4,5,2,6)(3,7,1) Then:

$$\sigma(1) = 3, \sigma(3) = 1, \sigma(2) = 2, \sigma(4) = 5, \sigma(5) = 6, \sigma(6) = 4, \sigma(7) = 7,$$

Thus $[(1,6,7,2)^2(4,5,2,6)^{-1}(1,7,3)]^{-1} = (1,3)(2)(4,5,6)(7)$

(d) (1,6)(1,5)(1,4)(1,3)(1,2)

$$\sigma(1) = 2, \sigma(2) = 3, \sigma(3) = 4, \sigma(4) = 5, \sigma(5) = 6, \sigma(6) = 1$$

Thus (1,6)(1,5)(1,4)(1,3)(1,2) = (1,2,3,4,5,6)

#4.26 $f_3: \mathbb{R} \to \mathbb{R}$ defined by $f_3(x) = -x^3$. Is f_3 a permutation?

Ans:

Recall that a permutation is one-to-one and onto function. Thus, we check these two properties.

- (a) f_3 is one-to-one: Assume $f_3(x) = f_3(y)$, then $-x^3 = -y^3$ implies x = y. Thus, f_3 is one-to-one.
- (b) f_3 is onto: For any $y \in \mathbb{R}$, we can find $x = -\sqrt[3]{y} \in \mathbb{R}$ such that $f_3(x) = -x^3 = -(-\sqrt[3]{y})^3 = y$. Thus, f_3 is onto.

So since f_3 is one-to-one and onto, it is a permutation.

#4.35 Give a careful proof using the definition of isomorphism that if G and G' are both groups with G abelian and G' not abelian, then G and G' are not isomorphic.

Ans:

Recall that a group isomorphism needs to satisfy the following:

- (a) ϕ is a homomorphism, i.e., $\forall a, b \in G, \phi(a * b) = \phi(a) * \phi(b)$.
- (b) ϕ is bijective, i.e., ϕ is both injective (one-to-one) and surjective (onto).

Since G is abelian, we can apply the homomorphism ϕ , we know

$$\phi(a * b) = \phi(b * a) = \phi(a) * \phi(b) = \phi(b) * \phi(a)$$

Since ϕ is an isomorphism and $\phi(a)*\phi(b)=\phi(b)*\phi(a)$, we know G' is abelian. However we already know G' is not abelian so we have a contradiction. So, G and G' are not isomorphic.

#5.08 Is the n \times n matrices with determinant greater than or equal than 1 a subgroup of $GL(n,\mathbb{R})$?

Ans:

We check the properties of a subgroup:

- (a) Closure: Let A, B be two $n \times n$ matrices with det ≥ 1 . Then $\det(AB) = \det(A) \det(B) \geq 1$. So it is closed under $GL(n, \mathbb{R})$.
- (b) Identity: The identity matrix has determinent 1, which is in $GL(n, \mathbb{R})$.
- (c) Inverse: Let A be an $n \times n$ matrix with det ≥ 1 . Then $\det(A^{-1}) = \frac{1}{\det(A)} \leq 1$. So it fails the inverse property so it is NOT a subgroup.
- #5.22 Describe all the elements in the cyclic subgroup of $GL(2,\mathbb{R})$ generated by the given 2×2 matrix.

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Ans:

We try multiply the matrix by itself:

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Which is the identity matrix, so the cyclic subgroup generated is:

$$\left\{ \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

#5.30 Find the order of the cyclic subgroup of \mathbb{Z}_{10} generated by 8

Ans:

We can calculate the order of the cyclic subgroup generated by 8:

n	8^n	$\mod 10$
1		8
2		4
2 3		2
4		6
5		8

We repeated at n=5 so the order of by 8 is 4.

#5.56 Show that if $a \in G$, where G is a finite group with identity e, then there exists $n \in \mathbb{Z}^+$ such that $a^n = e$.

Ans:

We can use the idea of the pigeonhole principle. Since G is finite, there is only a finite number of elements in G. So there must be two powers of a that are equal, for exmaple, $a^i = a^j$ for some i > j. Then we can multiply both sides by a^{-i} to get $a^{j-i} = e$. So there exists n = j - i such that $a^n = e$.

#5.61 For sets H and K, we define the intersection $H \cap K$ by

$$H \cap K = \{x \mid x \in H \text{ and } x \in K\}.$$

Show that if $H \leq G$ and $K \leq G$, then $H \cap K \leq G$. (Remember: \leq denotes "is a subgroup of," not "is a subset of.")

Ans:

We need to show that $H \cap K$ is a subgroup of G. We can check the properties of a subgroup:

(a) Closure:

Let $a, b \in H \cap K$, then by definition of intersection $a, b \in H$ and $a, b \in K$. Since H and K are subgroups of G, $ab \in H$ and $ab \in K$. Thus, $ab \in H \cap K$.

(b) Identity:

Since H and K are subgroups of G, they both have e in them. Thus, $e \in H \cap K$.

(c) Inverse:

Let $a \in H \cap K$, then $a \in H$ and $a \in K$. Since H and K are subgroups of G, $a^{-1} \in H$ and $a^{-1} \in K$.

Thus, $a^{-1} \in H \cap K$.

So all three properties are satisfied, and $H \cap K$ is a subgroup of G.