Statistic

for machine learning

Tran Trong Khiem

AI lab tranning

2024/05/29

Tran Trong Khiem Statistic 1 / 14

- 1 Differential Evolution
- 2 JADE
- 3 mixSHADE

Introduction

Differential Evolution (DE) is a novel parallel direct search:

- Population for each generation G as $\{x_{i,G}\}_0^{NP-1}$
- Size of population does't change during optimization process.
- Generates new trail vector by calculate the weighted sum of three different members.
- $x_{\text{best },G}$ is evaluated for every generation G in order to keep track of the optimization progress.
- Basics scheme:
 - Scheme DE1
 - Scheme DE2

Tran Trong Khiem Statistic 3 / 14

Scheme DE1

For each vector $x_{i,G}$, new vector v is generated according to:

$$v = x_{r_1,G} + F(x_{r_2,G} - x_{r_3,G})$$

- $r_1, r_2, r_3 \in \{0, 1, 2, \dots, NP 1\}$, integer and mutually different.
- F is a real and constant factor.

In order to increase the diversity of the parameter vectors, the child vector $u = (u_1, u_2, \dots, u_D)^T$.

- Choose n random from [0, D-1].
- *L* is drawn from the interval [0, D-1] with the probability $Pr(L=\nu) = (CR)^{\nu}$, where $CR \in [0, 1]$.

$$u_j = \begin{cases} v_j, & \text{for } j = n \bmod D, (n+1) \bmod D, \cdots (n+L-1) \bmod D \\ (x_{i,G})_j, & \text{otherwise} \end{cases}$$

Tran Trong Khiem Statistic 4 / 14

Scheme DE2

Basically, scheme DE2 works the same way as DE1 but generates the vector v according to

$$\mathbf{v} = \mathbf{x}_{i,G} + \lambda \cdot (\mathbf{x}_{\text{best},G} - \mathbf{x}_{i,G}) + F \cdot (\mathbf{x}_{r2,G} - \mathbf{x}_{r3,G})$$

Tran Trong Khiem Statistic 5 / 14

- 1 Differential Evolution
- 2 JADE
- 3 mixSHADE

JADE: Adaptive differential evolution with optional external archive

For each vector $x_{i,G}$, new vector v is generated as:

$$\mathbf{v} = \mathbf{x}_{i,G} + \lambda \cdot (\mathbf{x}_{\text{pbest},G} - \mathbf{x}_{i,G}) + F \cdot (\mathbf{x}_{r2,G} - \mathbf{x}_{r3,G})$$

 x_i is associated with its own CR_i and F_i parameters $CR_i \sim \mathcal{N}(\mu_{CR}, 0.1)$ and $F_i \sim \mathcal{C}(\mu_F, 0.1)$.

- If CR_i is generated outside of the interval [0, 1], it is replaced by the limit value (0 or 1) closest to the generated value.
- When $F_i > 1$, F_i is truncated to 1, and when $F_i \le 0$, the sampling is repeatedly applied to try to generate a valid value.
- $x_{\text{pbest},G}$ is randomly selected from the top $N \times p$.

At the end of the generation, if v is better than x, then CR_i and F_i are recoded as S_{CR} and S_F , μ_{CR} and μ_F are updated as:

$$\mu_{CR} = (1 - c) \cdot \mu_{CR} + c \cdot \text{mean}_A(S_{CR})$$

$$\mu_F = (1 - c) \cdot \mu_F + c \cdot \text{mean}_L(S_F)$$

Tran Trong Khiem Statistic 7 / 14

Appendix

External Archive:

- In order to to maintain diversity, if $u_{i,G}$ better than $x_{i,G}$, then $x_{i,G}$ append to archive set A.
- $x_{r2,G}$ is choosen randomly from set $P \cup A$.
- If |A| = |P|, randomly delete element from A.

Lehmer mean is computed as:

$$\operatorname{mean}_{L}(S_{F}) = \frac{\sum_{F} F^{2}}{\sum_{F} F}$$

Weighted mean is computed as:

$$\operatorname{mean}_W(S_{CR}) = \sum_k w_k \cdot S_{CR,k}$$

$$w_k = \frac{\Delta f_k}{\sum_k \Delta f_k}$$

Tran Trong Khiem Statistic 8 / 14

SHADE:Success-History Based Parameter Adaptation for Differential Evolution

SHADE maintains a historical memory with H entries for both of the DE control parameters CR and F, M_{CR} , M_F . In each generation, for each x_i :

- Select index r_i randomly from the interval [1,H].
- sample $CR_i \sim \mathcal{N}(M_{CR,r_i}, 0.1)$ and $F_i \sim \mathcal{C}(M_{C,r_i}, 0.1)$ and $p_{i,G} = \text{rand}[p_{\min}, 0.2]$
- Generate new trail vector as JADE.

If $u_{i,G}$ better than $x_{i,G}$:

- CR_i and F_i are recorded in S_{CR} and S_F .
- The contents of memory are updated as follows:

$$M_{CR,k,G+1} = egin{cases} ext{mean}_{AW}(S_{CR}) & ext{if } S_{CR}
eq \emptyset \\ M_{CR,k,G} & ext{otherwise} \end{cases}$$

Update the same for $M_{F,k,G+1}$

Tran Trong Khiem Statistic 9 / 14

- 1 Differential Evolution
- 2 JADE
- 3 mixSHADE

mixSHADE

Ideal: use SHADE with different with multiple mutation strategies. Mutation strategies:

- DE/pbest/2: $v_i = x_{pbest} + F(x_{r1} x_{r2}) + F(x_{r3} x_{r4})$
 - Rapid convergence but reduced exploration.
- DE/current-to-pbest/1: $v_i = x_i + F(x_{r1} x_{r2}) + F(x_{pbest} x_i)$
 - Combines exploration and exploitation.
- DE/target-to-rand/1:

$$v_i = x_i + F(x_{r1} - x_i) + F(x_{r2} - x_i) + F(x_{r3} - x_{r2})$$

Increases exploration by targeting random individuals.

In each generation, with each x_i , we have:

- p_1 is probability using DE/pbest/2.
- p_2 is probability using DE/current-to-pbest/1.
- p_3 is probability using DE/target-to-rand/1.

Tran Trong Khiem Statistic 11 / 14

Update mutation strategies probability

Using scores to evaluate mutation strategies $\{s_1, s_2, s_3\}$.

At begin of algorithm, init $s_i = \epsilon_i$ with $\epsilon_i > 0$. Sample mutation strategies probability as:

$$p_i = \frac{|s_i|}{\sum_j |s_j|}$$

• If $u_{i,G}$ better than $x_{i,G}$ then:

$$s_i = s_i + \min(\beta_i, \frac{|f(u_i) - f(x_i)|}{|f(x_i)| + \delta})$$

- $\beta_i > 0$ can be set different for each mutation strategies.
- $\delta > 0$ is used to avoid division by zero.
- Set β_i to a small value in the early generations for better exploration.

Tran Trong Khiem Statistic 12 / 14

Experiment in CEC2013

Table 1: Comparison of Mean (Std Dev) across SHADE, JADE, and MixSHADE for different functions.

	OTTA DE	TA DE	M. GIMPE
F	SHADE	JADE	MixSHADE
F_1	0.00e + 00 (0.00e + 00)	0.00e + 00 (0.00e + 00)	0.00e+00 (0.00e+00)
F_2	9.00e + 03(7.47e + 03)	7.67e + 03(5.66e + 03)	7.53e+03 (7.47e+03)
F_3	4.02e+01 (2.13e+02)	4.71e + 05(2.35e + 06)	4.02e+01 (2.13e+02)
F_4	1.92e + 04 (3.01e + 04)	4.10e + 02 (4.40e + 02)	1.90e+04 (3.01e+04)
F_5	0.00e + 00 (0.00e + 00)	0.00e + 00 (0.00e + 00)	0.00e+00 (0.00e+00)
F_6	5.96e-01 (3.73e+00)	2.07e + 01 (7.17e + 00)	6.06e - 01(3.73e + 00)
F_7	4.60e + 00 (5.39e + 00)	2.09e + 01 (4.93e + 02)	4.50e+00 (5.39e+00)
F_8	2.07e+01 (1.76e+01)	2.09e + 01 (4.93e + 02)	2.12e + 01 (1.76e + 01)
F_9	2.75e + 01 (1.77e + 01)	2.65e+01 (1.96e+01)	2.71e + 01 (1.77e + 01)
F_{10}	7.69e - 02(3.58e - 02)	4.02e-02 (2.37e-02)	7.53e - 02(3.58e - 02)
F_{11}	0.00e + 00 (0.00e + 00)	0.00e + 00 (0.00e + 00)	0.00e+00 (0.00e+00)
F_{12}	2.31e + 01 (3.73e + 00)	2.29e + 01 (5.45e + 00)	2.25e+01 (3.73e+00)
F_{13}	5.03e + 01 (1.34e + 01)	4.67e+01 (1.37e+01)	5.01e + 01 (1.34e + 01)
F_{14}	3.18e - 02(2.33e - 02)	$2.86e - 02 \ (2.53e - 02)$	2.78e-02 (2.33e-02)

Tran Trong Khiem Statistic 13 / 14

Experiment in CEC2013

Table 2: Comparison of Mean (Std Dev) across SHADE, JADE, and MixSHADE for different functions.

F	SHADE	JADE	MixSHADE
F_{15}	3.22e + 03(2.64e + 02)	1.84e+00 (6.27e-01)	3.16e + 00(2.64e - 01)
F_{16}	9.13e-01 (1.85e-01)	1.84e + 00(6.27e - 01)	9.25e - 01(1.85e - 01)
F_{17}	3.04e + 01 (3.83e - 14)	3.04e + 01 (1.95e - 14)	2.94e+01 (3.83e-14)
F_{18}	7.20e+01 (5.58e+00)	7.76e + 01 (5.91e + 00)	7.25e + 01 (5.58e + 00)
F_{19}	1.36e + 00 (1.20e - 01)	1.44e + 00 (8.71e - 02)	1.30e+00 (1.20e-01)
F_{20}	1.05e + 01(6.04e - 01)	1.04e+01 (5.82e-01)	1.07e + 01(6.04e - 01)
F_{21}	3.09e + 02(5.65e + 01)	3.04e + 02 (6.68e + 01)	3.02e+02 (6.68e+01)
F_{22}	3.36e+03 (4.01e+02)	9.39e + 01 (3.08e + 01)	3.93e + 03 (4.01e + 02)
F_{23}	3.51e + 03 (4.11e + 02)	3.36e+03 (4.01e+02)	3.57e + 03(4.12e + 02)
F_{24}	2.05e + 02(5.29e + 00)	2.17e + 02(1.57e + 01)	1.85e+02 (4.29e+00)
F_{25}	2.59e + 02 (1.96e + 01)	2.74e + 02 (1.06e + 01)	2.53e+02 (1.97e+01)
F_{26}	2.02e + 02 (1.48e + 01)	2.15e+02 (4.11e+01)	2.12e + 02 (1.4e + 01)
F_{27}	3.88e + 02 (1.09e + 02)	6.70e + 02(2.40e + 02)	3.78e+02 (1.e+02)
F_{28}	3.00e + 02(0.00e + 00)	3.00e + 02(0.00e + 00)	3.00e + 02 (0.00e + 00)

Tran Trong Khiem Statistic 14 / 14