(1) Let variable \mathcal{X} follow a Bernoulli distribution with parameter p, i.e., the probability of x is $\mathbf{x}(x) = p^x(1-p)^{1-x}$. If the set of independent and identically distributed data (i.i.d.) samples $\mathcal{X} = \{x_1, \dots, x_N\}$ follows the Bernoulli distribution, derive the maximum likelihood estimate (MLE) for p^{MLE} .

(MLE) for
$$p^{MLE}$$
, p^{MLE} ,

(2) Let variable \mathcal{X} follow an exponential distribution with parameter λ , i.e., the probability of x is $\{x\}$ (x) = $\lambda e^{-\lambda x}$. If the set of independent and identically distributed data (i.i.d.) samples $\mathcal{X} = \{x_1, \dots, x_N\}$ follows the exponential distribution, derive the maximum likelihood estimate (MLE) for λ^{MLE} .

$$\frac{\partial \mathcal{L}(\lambda)}{\partial \lambda} = \frac{1}{N} \frac{1}{f(x_N)} = \frac{1}{N} \frac{\log f(x_N)}{\log \lambda} = \frac{1$$