Contents

1	Objective-First Nanophotonic Design						
	1.1	The el	ectromagnetic wave equation				
		1.1.1	Physics formulation				
		1.1.2	Numerical formulation				
		1.1.3	Solving for <i>H</i>				
		1.1.4	Solving for ε^{-1}				
		1.1.5	Insight				
	1.2	The ol	bjective-first design problem				
		1.2.1	Design objectives				
		1.2.2	Convexity				
		1.2.3	Typical design formulation				
		1.2.4	Objective-first design formulation				
		1.2.5	Field sub-problem				
		1.2.6	Structure sub-problem				
	1.3	1D res	resonator design				
		1.3.1	Least-squares 4				
		1.3.2	Regularized least-squares 4				
		1.3.3	Alternating directions				
	1.4	Reson	ator design				
		1.4.1	Unbounded ε				
		1.4.2	2D 4				
		1.4.3	2.5D				
	1.5	Waveg	guide coupler design 4				
	1.6	Metan	naterials design 4				

Chapter 1

Objective-First Nanophotonic Design

Abstract The abstract for the book. Introductory paragraph.

1.1 The electromagnetic wave equation

1.1.1 Physics formulation

Let's talk about the electromagnetic wave equation from a physics standpoint. Let's start from Maxwell's equations without currents.

$$\nabla \times E = -\mu_0 \frac{\partial H}{\partial t} \tag{1.1}$$

$$\nabla \times H = J + \varepsilon \frac{\partial E}{\partial t} \tag{1.2}$$

$$\nabla \times E = -i\mu_0 \omega H \tag{1.3}$$

$$\nabla \times H = J + i\varepsilon \omega E \tag{1.4}$$

$$\nabla \times \varepsilon^{-1} \nabla \times H - \mu_0 \omega^2 H = \nabla \times \varepsilon^{-1} J \tag{1.5}$$

1.1.2 Numerical formulation

Now let's talk about the electromagnetic wave equation from a computational perspective.

To solve the wave equation on a computer we need to use the Yee grid.

To make things easier we will use weird units.

We also need to take care of boundary conditions.

1.1.3 Solving for H

The wave equation from a mathematical perspective.

$$(\nabla \times \varepsilon^{-1} \nabla \times -\mu_0 \omega^2) H = \nabla \times \varepsilon^{-1} J \tag{1.6}$$

Becomes, with a change of variables.

$$A(p)x = b(p) \tag{1.7}$$

This can be solved directly in 1D and 2D. Special methods needed in 3D. We just do 1D and 2D.

1.1.4 Solving for ε^{-1}

The wave equation from a optimization perspective.

Because scalar multiplication is transitive $(\varepsilon^{-1}(\nabla \times H) = (\nabla \times H)\varepsilon^{-1}$ and $\varepsilon^{-1}J = J\varepsilon^{-1}$)

$$\nabla \times (\nabla \times H)\varepsilon^{-1} - \nabla \times J\varepsilon^{-1} = \mu_0 \omega^2 H \tag{1.8}$$

which we write as

$$B(x)p = d(x) (1.9)$$

Special constraints... (binary)

1.1.5 Insight

Basically, we see that the electromagnetic wave equation is separably linear in H and ε^{-1}

This means that...

1.2 The objective-first design problem

intro

1.2.1 Design objectives

Talk about f(x) and that we are interested in convex ones.

1.2.2 Convexity

Convex optimization quick intro.

1.2.3 Typical design formulation

Typically,

$$\underset{x,p}{\text{minimize}} \qquad f(x) \tag{1.10}$$

subject to
$$g(x,p) = 0$$
 (1.11)

$$p \in 0,1 \tag{1.12}$$

1.2.4 Objective-first design formulation

Objective-first does

minimize
$$||g(x,p)||^2$$
 (1.13)
subject to $f(x) = f_{\text{ideal}}$ (1.14)

subject to
$$f(x) = f_{ideal}$$
 (1.14)

$$0 \le p \le 1 \tag{1.15}$$

This is a bi-convex problem, which we solve using an alternating directions method.

1.2.5 Field sub-problem

minimize
$$||A(p)x - b(p)||^2$$
 (1.16)
subject to $f(x) = f_{\text{ideal}}$ (1.17)

subject to
$$f(x) = f_{\text{ideal}}$$
 (1.17)

1.2.6 Structure sub-problem

subject to
$$0 \le p \le 1$$
 (1.19)

1.3 1D resonator design

We now build up to the objective-first formulation by example. And from a different perspective.

- 1.3.1 Least-squares
- 1.3.2 Regularized least-squares
- 1.3.3 Alternating directions
- 1.4 Resonator design
- 1.4.1 Unbounded ε
- 1.4.2 2D
- 1.4.3 2.5D

1.5 Waveguide coupler design

this should be more straightforward.

1.6 Metamaterials design