CS446 Introduction to Machine Learning (Spring 2015) University of Illinois at Urbana-Champaign http://courses.engr.illinois.edu/cs446

LECTURE 5: BIAS/VARIANCE

Prof. Julia Hockenmaier juliahmr@illinois.edu

Announcements

4-credit hour section students:

You need to find a project partner!

Talk to your friends, use Piazza.

Everybody:

Start working on Homework 1!

Last lecture's key concepts

Linear classifiers: f(x) = wx

Decision boundary: f(x) = 0

Loss functions:

0-1 loss

Square loss

(Batch) gradient descent

Stochastic gradient descent

More on overfitting (informally)

A classifier overfits the training data when its accuracy on the training data goes up but its accuracy on unseen data goes down

Model complexity (informally):

How many parameters do we have to learn?

Decision trees: complexity = #nodes

Empirical error (= on a given data set): What percentage of items in this data set are misclassified by the classifier *f* ?

CS446 Machine Learning

The i.i.d. assumption

Training and test items are independently and identically distributed (i.i.d.):

- There is a distribution P(X, Y) from which the data $\mathcal{D} = \{(x, y)\}$ is generated.

Sometimes it's useful to rewrite P(X, Y) as P(X)P(Y|X) Usually P(X, Y) is unknown to us (we just know it exists)

- Training and test data are samples drawn from the *same* P(X, Y): they are identically distributed
- Each (x, y) is drawn independently from P(X, Y)

Expected error:

What percentage of items drawn from $P(\mathbf{x}, \mathbf{y})$ do we expect to be misclassified by f?

Variance of a learner (informally)

Model complexity

How susceptible is the learner to minor changes in the training data?

(i.e. to different samples from P(X, Y))

Variance increases with model complexity

Bias of a learner (informally)

How likely is the learner to identify the target hypothesis?

Bias is high when the model is (too) simple

Impact of bias and variance

Expected error of a learner ≈ bias² + variance (+noise)

Model complexity

CS446 Machine Learning

13

Underfitting and Overfitting

CS446 Machine Learning

Bias-variance tradeoffs

Dartboard = hypothesis space Bullseye = target function Darts = learned models

K Nearest Neighbor classifier

kNN classifier

Classify an item x by:

- finding the k training examples that are closest to \mathbf{x} (= \mathbf{x} 's k nearest neighbors)
- assign the majority class of these k training examples to \mathbf{x}

How does the bias and variance of kNN vary with k (for k = 1...N)?

Bias/Variance decomposition

Bias of a learner

We distinguish between

- Inductive bias: What assumptions about the target function does the learner use?

Absolute bias: Target function has a particular form (e.g. only consider linear decision boundaries)

Relative bias: Prefer some hypotheses over others (e.g. consider smaller decision trees before larger ones)

- Statistical bias: Systematic error that the learner is expected to make (for a particular target function, over data sets of size M)

Inductive bias

Absolute biases can be...

... *appropriate*: Hypothesis space contains good approximations to target function.

... inappropriate: Hypothesis space does not contain good approximations to target. High statistical bias.

Inductive bias

Relative biases can be...

... too strong: Poor approximations to the target function are preferred.

Statistical bias is high, Variance is low.

... too weak: H not sufficiently constrained. Statistical bias is low, Variance is high.

Inductive and statistical bias/variance

Inductive bias		Statistical	Variance
Absolute	Relative	bias	
appropriate	too strong	high	low
appropriate	\mathbf{ok}	low	low
appropriate	too weak	low	high
inappropriate	too strong	high	low
inappropriate	ok	high	moderate
inappropriate	too weak	high	high

[&]quot;Sweet spot". Often difficult to achieve in practice.

Bias/variance decomposition

The **expected error of a learner on a particular target function** decomposes into a statistical **bias** term and a **variance** term (which both depend on the learner) and a constant **noise** term (which depends on the target function).

Theoretical analysis: Useful to know about, although knowledge of $P(\mathbf{x},y)$ or access to lots of data sets is required to actually compute these terms for a particular target and learner.

Recap (Probability/Stats Cheat Sheet)

Expectation/Mean of (discrete) random variable *X*

The weighted average of X

$$E[X] = \sum_{x} P(X = x)X := \mu_X$$

Expectation of a function of X, f(X):

The weighted average of f(X)

$$E[f(x)] = \sum_{x} P(X = x)f(x)$$

Variance of *X*:

$$Var(X) = E[(X - \mu_X)^2] = \sigma_X^2$$

The expected value of the squared difference between X and its mean

Standard deviation of *X*:

$$\sigma_X = \sqrt{\sigma_X^2} = \sqrt{Var(X)}$$

The square root of the variance

Statistical bias

- Assume each \mathbf{x} has a target value $h(\mathbf{x})$.
- Assume we sample L data sets $D_1,...,D_L$ of size M, and train L learners $f_1,...,f_L$, one on each D_l
- $-f_{avg}(\mathbf{x})$ is the expected predicted value of $f(\mathbf{x})$

$$f_{avg}(\mathbf{x}) = \lim_{L \to \infty} \frac{1}{L} \sum_{l=1}^{L} f_l(\mathbf{x})$$

- The statistical bias of f (for sample size M) at \mathbf{x} is the difference between $f_{avg}(\mathbf{x})$ and $h(\mathbf{x})$

Bias
$$(f, \mathbf{M}, \mathbf{x}) = f_{avq}(\mathbf{x}) - h(\mathbf{x})$$

Variance of a learner

The variance of a learner $f(\mathbf{x})$ is the expected value (over all data sets of size M) of the squared difference between $f(\mathbf{x})$ and $f_{\text{avg}}(\mathbf{x})$

$$Var(f, \mathbf{M}, \mathbf{x}) = E[(f_l(\mathbf{x}) - f_{avg}(\mathbf{x}))^2]$$

CF.: The variance of a random variable X is the expected value of the squared difference between X and its mean:

$$Var(X) = E[(X - \mu_X)^2]$$

$Error = bias^2 + variance$

The expected mean-squared error of f on \mathbf{x} is equal to the squared bias of f on \mathbf{x} plus the variance of f on \mathbf{x} :

$$E[(f_l(\mathbf{x}) - h(\mathbf{x}))^2] = Bias(f, \mathbf{M}, \mathbf{x})^2 + Var(f, \mathbf{M}, \mathbf{x})$$

(**x** is fixed; the expectation is taken over all data sets $D_1, ..., D_l, ..., D_L$ of size M)

Today's key concepts

Overfitting
kNN classifier
Inductive bias
Statistical bias and variance