Εξόρυξη Δεδομένων

2: Μέθοδοι εξόρυξης δεδομένων

Περιεχόμενα

- Επισκόπηση μεθόδων
 - Ταξινόμηση
 - Παλινδρόμηση
 - Συσταδοποίηση
 - Κανόνες συσχέτισης
 - Ακολουθιακά πρότυπα
- Εκτίμηση αποτελεσμάτων
- Η μάθηση ως αναζήτηση
- Επιρροή

Μέθοδοι εξόρυξης δεδομένων

Ανάλογα με τον τρόπο εξόρυξης

- Ταξινόμηση Classification: εκμάθηση μια συνάρτησης κατασκευή ενός μοντέλου που απεικονίζει ένα στοιχείο σε μια (συνήθως) κλάση επιλέγοντας από ένα σύνολο από προκαθορισμένες κλάσεις
- Συσταδοποίηση Clustering: εύρεση ενός συνόλου από ομάδες με όμοια στοιχεία
- Εύρεση Συχνών Προτύπων, Εξαρτήσεων και Συσχετίσεων –
 Dependencies and associations: εύρεση σημαντικών/συχνών εξαρτήσεων μεταξύ γνωρισμάτων
- Συνοψίσεις Summarization: εύρεση μιας συνοπτικής περιγραφής του συνόλου δεδομένων ή ενός υποσυνόλου του
- ...και άλλες

Ανάλογα με το στόχο

- Predictive Methods Μέθοδοι πρόβλεψης
 - Χρήση κάποιων μεταβλητών για να προβλέψουν άγνωστες ή μελλοντικές τιμές κάποιων άλλων μεταβλητών
- Descriptive Methods Περιγραφικοί Μέθοδοι
 - Στόχος να βρεθούν κατανοητά πρότυπα που περιγράφουν τα δεδομένα – τις ιδιότητες τους

Ταξινόμηση μεθόδων με βάση το αποτέλεσμα

- Ταξινόμηση [Predictive]
- Συσταδοποίηση [Descriptive]
- Εύρεση Κανόνων Συσχέτισης [Descriptive]
- Sequential Pattern Discovery [Descriptive]
- Regression Συνοψίσεις [Predictive]
 - ένα συνοπτικό μοντέλο για τα δεδομένα (πχ μια συνάρτηση)
- Deviation/Anomaly Detection [Predictive]
 - outlier analysis (στατιστικοί έλεγχοι για σπάνια σημεία),
 - evolution analysis (πχ ανάλυση χρονοσειρών πχ μετοχές) κλπ

Ταξινόμηση

Διαδικασία ταξινόμησης

- Αρχικά διαθέτουμε ένα σύνολο από εγγραφές
- Κάθε εγγραφή έχει ένα σύνολο από γνωρίσματα, ένα από αυτά είναι η κλάση (ή κατηγορία)
- Σκοπός: εύρεση ενός μοντέλου για το γνώρισμα της κλάσης ως συνάρτηση της τιμής των άλλων γνωρισμάτων.
 - να αναθέτει σε εγγραφές που δεν έχουμε δει μια κλάση με την μεγαλύτερη δυνατή ακρίβεια
- Το αρχικό σύνολο δεδομένων χωρίζεται σε ένα σύνολο εκπαίδευσης (training set) και σε ένα σύνολο ελέγχου (test set)
 - το training set χρησιμοποιείται για την κατασκευή του μοντέλου
 - το test set χρησιμοποιείται για να ελέγξει την ακρίβεια του μοντέλου

Παράδειγμα ρίσματα κιλέν

Γνωρίσματα

Η τιμή του cheat είναι γνωστή για όλα τα δείγματα

1		•		X F
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund	Marital Status	Taxable Income	Cheat	
No	Single	75K	?	
Yes	Married	50K	?	
No	Married	150K	?	,
Yes	Divorced	90K	?	
No	Single	40K	?	
No	Married	80K	?	Σύνολο
	-	<u>40</u>		Ελέγχου
ολο χίδευσης		κμάθηση αξινόμησι	15	Μοντέλο

Πως μοιάζει το μοντέλο;

Παράδειγμα Μοντέλου: Δέντρο Απόφασης - Decision tree

KNAZH

1 / 68				K,
Tid	Home Owner	Marital Status	Taxable Income	Default
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Home **Owner** Yes, Ŋο NO **Marital Status** Single, Married Divorced **TaxInc** NO < 80K > 80K YES NO

Σύνολο Εκπαίδευσης Μοντέλο: Δέντρο Απόφασης

W	KIN			
Tid	Home Owner	Marital Status	Taxable Income	Default
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Για τα ίδια δεδομένα μπορεί να υπάρχουν παραπάνω από ένα δέντρα απόφασης (μοντέλα)

Τεχνικές/Μοντέλα ταξινόμησης

- Μοντέλα
 - Δέντρα απόφασης, νευρωνικά δίκτυα, k-πιο κοντινοί γείτονες, support vector machines κλπ
- Ανάλυση σχετικότητας (relevance analysis): ποια γνωρίσματα επηρεάζουν την ταξινόμηση;

Ανάλυση σχετικότητας

- Επιλογή γνωρισμάτων
- Όταν «χτίζω» ένα δέντρο απόφασης
 - θέλω να ξεκινώ με αποφάσεις που διαχωρίζουν καλά τον πληθυσμό μου
 - θέλω να ελέγχω αρχικά τα γνωρίσματα που μου δίνουν το μεγαλύτερο κέρδος πληροφορίας – information gain
 - θέλω να αποφεύγω τις πολλές διασπάσεις στο δέντρο μου – overfitting
- Αναλύω τα γνωρίσματά μου και υπολογίζω μεγέθη όπως: πλήθος διαφορετικών τιμών, κατανομή τιμών σε ένα γνώρισμα κλπ.

Εφαρμογή 1: Direct Marketing

- Στόχος: Θέλω να στείλω διαφημιστικά μόνο σε εκείνους τους πελάτες που είναι πιο πιθανόν να αγοράσουν ένα κινητό τηλέφωνο. Έτσι μειώνω τα ταχυδρομικά μου έξοδα.
- Προσέγγιση:
 - Γνώρισμα κλάσης: Client_type{buy, don't buy}: ξέρω ποιοι αποφάσισαν να το αγοράσουν και ποιοι όχι
 - Χρησιμοποίηση των δεδομένων από ένα παρόμοιο προϊόν που βγήκε στην αγορά πρόσφατα
 - Συλλογή ποικίλων δημογραφικών κλπ δεδομένων για τους πελάτες
 - Η πληροφορία αυτή αποτελεί τα γνωρίσματα για την εκπαίδευση ενός μοντέλου ταξινόμησης

Νευρωνικό δίκτυο

Εφαρμογή 2: Fraud Detection

- Στόχος: Θέλω να βρω ποιες συναλλαγές μιας πιστωτικής κάρτας δεν έγιναν από τον ιδιοκτήτη της
- Προσέγγιση:
 - Γνώρισμα κλάσης: transaction_type {fraud, fair}: Ξέρω κάθε προηγούμενη συναλλαγή αν ήταν απάτη ή όχι
 - Χρησιμοποίηση των δεδομένων από προηγούμενες συναλλαγές με αυτήν την κάρτα και πληροφορίες για τον κάτοχο της (τι αγοράζει, πότε, από πού, πόσο συχνά πληρώνει)
 - Χρήση αυτής της πληροφορίας ως τα γνωρίσματα για την εκπαίδευση ενός μοντέλου ταξινόμησης
 - Χρήση του μοντέλου για τον χαρακτηρισμό μελλοντικών συναλλαγών

Εφαρμογή 3: Customer Devotion

- Στόχος: Θέλω να εξετάσω αν οι πελάτες μιας εταιρίας τηλεπικοινωνιών θα προτιμήσουν μια ανταγωνιστική εταιρεία
- Προσέγγιση:
 - Γνώρισμα κλάσης: Client_type {loyal, disloyal}: Χαρακτηρισμός κάθε πελάτη ως πιστού ή όχι
 - Χρησιμοποίηση των δεδομένων από παλιές και νέες
 συναλλαγές πελατών (πόσο συχνά τηλεφωνούν, που πότε,
 οικονομική κατάσταση, οικογενειακή κατάσταση κλπ)
 - Χρήση αυτής της πληροφορίας ως τα γνωρίσματα για την εκμάθηση ενός μοντέλου ταξινόμησης

Εφαρμογή 4: Image classification

• Για ιατρικές, αστρονομικές κλπ εικόνες

Αρχικό

Κλάση:

• Στάδιο δημιουργίας

Ενδιάμεσο

Γνωρίσματα:

- Χαρακτηριστικά της εικόνας,
- Χαρακτηριστικά του κυμάτων φωτός που ελήφθησαν, κλπ.

Προχωρημένο

Μέγεθος Δεδομένων:

- 72 εκατ. ἀστρα, 20 εκατ. γαλαξίες
- Object Catalog: 9 GB
- Image Database: 150 GB

Συνοψίζοντας

- Βρίσκω τα γνωρίσματα που με ενδιαφέρουν
- Τα μετατρέπω ώστε να ταιριάζουν στον αλγόριθμο
- Ορίζω το γνώρισμα κλάσης και τις διαφορετικές τιμές που μπορεί να πάρει
- Εκπαιδεύω το μοντέλο μου χρησιμοποιώντας μέρος των δεδομένων (ορισμένες μόνο συναλλαγές)
- Ελέγχω την αποτελεσματικότητα του μοντέλου μου χρησιμοποιώντας τα υπόλοιπα δεδομένα μου

Παλινδρόμηση

Ανάλυση παλινδρόμισης

- Regression analysis: στατιστική εκμάθηση μιας συνάρτησης που απεικονίζει ένα στοιχείο σε μια πραγματική τιμή
- Χρησιμοποιείται για αριθμητικές προβλέψεις
- Αναλύει τα υπάρχοντα δεδομένα για να καθορίσει τη συνάρτηση (συχνά γραμμική)
- Αξιοποιεί τη συνάρτηση για να προβλέψει αποτελέσματα για τα νέα δεδομένα

Παράδειγμα regression analysis

- Επιλέγω πέντε φοιτητές που παρακολουθούν το μάθημα της «Εξόρυξης Δεδομένων» και τους κάνω ένα τεστ στις βάσεις δεδομένων
- Θέλω να απαντήσω τα ακόλουθα:
 - Ποια συνάρτηση γραμμικής παλινδρόμησης
 προβλέπει καλύτερα την επίδοση στο μάθημα της εξόρυξης με βάση την επίδοση στο τεστ στις ΒΔ;
 - Αν κάποιος γράψει 80% στο τεστ, τι βαθμό να περιμένω στο μάθημα;
 - Πόσο καλά ταιριάζει στα δεδομένα η συνάρτηση παλινδρόμησης;

Δεδομένα

	Γεστ			Μάθημ	α			
	Stud	x _i	y _i	$(x_i - x_\mu)$	$(\mathbf{y}_{i} - \mathbf{y}_{\mu})$	$(x_i - x_{\mu})^2$	$(y_i - y_\mu)^2$	$(x_i - x_\mu)(y_i - y_\mu)$
	1	95	85	17	8	289	64	136
	2	85	95	7	18	49	324	126
	3	80	70	2	-7	4	49	-14
	4	70	65	-8	-12	64	144	96
	5	60	70	-18	-7	324	49	126
Sum		390	385			730	630	470
Mean		78	77					

Γραμμική λύση: $y=b_0+b_1x$ Λύνουμε ως προς b_0 και b_1 : $b_1 = \Sigma \left[(x_i - x_\mu)(y_i - y_\mu) \right] / \Sigma \left[(x_i - x_\mu)^2 \right] = 470/730 = 0.644$ $b_0 = y_\mu - b_1 * x_\mu = 77 - (0.644)(78) = 26.768$

Αποτελέσματα

- Εκτιμώμενος βαθμός για επίδοση 80% στο τεστ
 - $\hat{y} = 26.768 + 0.644x = 26.768 + 0.644 * 80 = 26.768 + 51.52 = 78.288$
 - Η τιμή του x πρέπει να είναι στα όρια που χρησιμοποιήθηκαν για την εκπαίδευση
 - Διαφορετικά μπορεί να έχουμε αλλοιώσεις (extrapolation)
- Υπολογισμός καταλληλότητας της συνάρτησης
 - Coefficient of Determination

$$R^{2} = \left(\frac{1}{N} \frac{\sum_{i=1}^{N} (x_{i} - x_{\mu})(y_{i} - y_{\mu})}{\sigma_{x} \sigma_{y}}\right)^{2}$$

• N - πλήθος παρατηρήσεων, σ_x και σ_v - η τυπική απόκλιση των x και y:

$$\sigma_{x} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - x_{\mu})^2}{N}}$$

Συσταδοποίηση

Ορισμός

- Μου δίνεται
 - Ένα σύνολο από αντικείμενα (σημεία) που καθένα έχει κάποια γνωρίσματα
 - Ένας τρόπος μέτρησης ομοιότητας μεταξύ αντικειμένων
- Εύρεση συστάδων (clusters, ομάδων) τέτοιων ώστε:
 - Τα σημεία της ίδιας συστάδας να είναι όσο το δυνατόν πιο όμοια μεταξύ τους
 - Τα σημεία σε διαφορετικές συστάδες να είναι όσο το δυνατόν λιγότερα όμοια μεταξύ τους
- Σε αντίθεση με την ταξινόμηση, οι συστάδες δεν είναι γνωστές από πριν
- Αλγόριθμοι: k-Means (πρέπει να ορίσουμε πόσα clusters θέλουμε), Ιεραρχικοί (δημιουργώ μια ιεραρχία από clusters και υπο-clusters αυτών)

Παράδειγμα

- Κριτήρια/απαιτήσεις
 - Οι αποστάσεις μέσα στη συστάδα (intra cluster similarity)
 ελαχιστοποιούνται
 - Οι αποστάσεις ανάμεσα στις συστάδες (intra cluster dissimilarity)
 μεγιστοποιούνται
- Ο ορισμός ενός μέτρου απόστασης/ομοιότητας μεταξύ των στοιχειωδών δεδομένων μου είναι το σημαντικότερο πρόβλημα στη συσταδοποίηση
- Το δεύτερο σημαντικότερο πρόβλημα είναι να χαρακτηρίσω (να περιγράψω) τις παραγόμενες συστάδες

Εφαρμογή 1: Market Segmentation

- Στόχος: Θέλω να χωρίσω τους καταναλωτές σε ομάδες και στη συνέχεια να εφαρμόσω μια συγκεκριμένη πολιτική μάρκετινγκ για κάθε ομάδα
- Πρέπει επίσης να χαρακτηρίσω τις παραγόμενες ομάδες
- Προσέγγιση:
 - Συγκέντρωση διαφορετικών γνωρισμάτων για τους καταναλωτές
 - Ορισμός «ομοιότητας» ανάμεσα στους πελάτες
 - Δημιουργία ομάδων με όμοιους πελάτες
 - Μέτρηση της ποιότητας της ομαδοποίησης (πχ παρατηρώντας τις αγοραστικές συνήθειες στην ίδια ομάδα και ανάμεσα σε διαφορετικές ομάδες)

Παράδειγμα

Εφαρμογή 2: Συσταδοποίηση Εγγράφων

 Στόχος: Εύρεση ομάδων από έγγραφα που είναι όμοια μεταξύ τους με βάση τους σημαντικούς όρους που εμφανίζονται σε αυτά

• Προσέγγιση:

- Εύρεση των όρων που εμφανίζονται συχνά σε κάθε έγγραφο
- Μέτρηση ομοιότητας με βάση τη συχνότητα των διαφορετικών όρων. Χρήση μέτρου για τη δημιουργία συστάδων
- Όφελος: Μέθοδοι Ανάκτησης Πληροφορία (Information Retrieval) μπορεί να χρησιμοποιήσουν τις συστάδες για να συσχετίσουν έναν καινούργιο έγγραφο ή έναν όρο αναζήτησης με τα έγγραφα κάθε συστάδας

Παράδειγμα

Αντικείμενα: 3204 Άρθρα των Los Angeles Times

Μέτρηση Ομοιότητας: Πόσες κοινές λέξεις έχουν δύο κείμενα

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

Category	Total Articles	Correctly Placed
Financial	555	364
Foreign	341	260
National	273	36
Metro	943	746
Sports	738	573
Entertainment	354	278

Κανόνες συσχέτισης

Ορισμός

- Δεδομένα: Ένα σύνολο από εγγραφές που η κάθε μία έχει έναν αριθμό από στοιχεία από κάποιο δοσμένο σύνολο
- Εύρεση κανόνων εξάρτησης που προβλέπουν την παρουσία ενός στοιχείου με βάση την παρουσία άλλων στοιχείων
- Βασίζονται στην εύρεση συχνών συνόλων στοιχείων
- Αλγόριθμοι: apriori, FP-Growth

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Κανόνες που βρέθηκαν:
 {Milk} --> {Coke}
 {Diaper, Milk} --> {Beer}
```

Εφαρμογή 1: Προώθηση πωλήσεων

• Έστω ότι ο κανόνας που ανακαλύφθηκε είναι: {Bagels, ... } --> {Potato Chips}

- Potato Chips στα δεξιά του κανόνα => Τι πρέπει να γίνει για να αυξηθούν οι πωλήσεις;
- Bagels στα αριστερά => Μπορεί να χρησιμοποιηθεί για να εκτιμηθεί ποια προϊόντα θα επηρεαστούν αν π.χ. ένα μαγαζί σταματήσει να τα πουλάει.
- Bagels στα αριστερά and Potato chips στα δεξιά =>
 Ποια προϊόντα πρέπει να πουληθούν μαζί με Bagels
 για την προώθηση των Potato chips!

Ακολουθιακές εξαρτήσεις

- Ακολουθιακές εξαρτήσεις: μας ενδιαφέρει η σειρά εμφάνισης των στοιχείων (γεγονότων)
- Παραδείγματα
 - Ακολουθία από προσπελάσεις σελίδων στο διαδίκτυο
 - Ακολουθία στο δανεισμό βιβλίων από μια βιβλιοθήκη
 - Ακολουθία πακέτων που οδήγησαν σε επίθεση σε κάποιον υπολογιστή
 - Σε χωρικά δεδομένα, πχ δεδομένα από την κίνηση ενός αυτοκινήτου

Συνοψίζοντας

- Εκμάθηση του πεδίου εφαρμογής: Σχετική προηγούμενη γνώση και τους στόχους της εφαρμογής
- Δημιουργία του συνόλου δεδομένων: data selection
- Καθαρισμός και προ-επεξεργασία των δεδομένων: (έως και 60% της συνολικής προσπάθειας)
- Ελάττωση δεδομένων και μετασχηματισμοί: Χρήσιμα χαρακτηριστικά,
 ελάττωση διαστάσεων κλπ
- Επιλογή λειτουργίας εξόρυξης δεδομένων: πχ, συσταδοποίηση, ταξινόμηση, κλπ
- Επιλογή του αλγορίθμου εξόρυξης δεδομένων
- Εξόρυξη Δεδομένων: αναζήτηση προτύπων ενδιαφέροντος
- Εκτίμηση προτύπων και αναπαράσταση γνώσης: οπτικοποίηση, μετασχηματισμοί, απομάκρυνση περιττών προτύπων, κλπ
- Χρήση της γνώσης

Οι 10 καλύτεροι αλγόριθμοι ΕΔ (ICDM 2006)

- #1: C4.5 (61 votes) ταξινόμηση (δέντρο απόφασης)
- #2: K-Means (60 votes) συσταδοποίηση
- #3: SVM (58 votes) ταξινόμηση (support vector machine)
- #4: Apriori (52 votes) κανόνες συσχέτισης
- #5: EM (48 votes) στατιστική, συσταδοποίηση (expectation maximization)
- #6: PageRank (46 votes) ιστοσελίδες
- #7: AdaBoost (45 votes) μετα-ταξινομητής
- #7: kNN (45 votes) συσταδοποίηση (κοντινότερος γείτονας)
- #7: Naive Bayes (45 votes) στατιστική, ταξινόμηση
- #10: CART (34 votes) ταξινόμηση (δέντρο απόφασης)

Εκτίμηση ενδιαφέροντος

- Χαρακτηρισμό του «ενδιαφέροντος» ενός προτύπου:
 - Εύκολα κατανοητό
 - Να ισχύει σε δεδομένα ελέγχου ή σε νέα δεδομένα με κάποιο βαθμό βεβαιότητας
 - Πιθανά χρήσιμο
 - Νέα πληροφορία
- Υπάρχουν υποκειμενικά (αναμενόμενα και μη αναμενόμενα) και αντικειμενικά κριτήρια Κάποιες τιμές κατωφλίου
- Πληρότητα (όλα τα ενδιαφέροντα πρότυπα)
- Βελτιστοποίηση (μόνο τα ενδιαφέροντα πρότυπα)

Μάθηση ως αναζήτηση

Μάθηση ως αναζήτησης

- Inductive learning: Βρίσκω ένα σύνολο κανόνων που ταιριάζουν στα δεδομένα
- Παράδειγμα: Τα σύνολα κανόνων
 χρησιμοποιούνται ως γλώσσα περιγραφής
 - Τεράστιος αλλά πεπερασμένος χώρος αναζήτησης
- Απλή λύση:
 - Απαρίθμηση του χώρου κανόνων
 - Διαγραφή όσων περιγραφών (descriptions) δεν ταιριάζουν στα δεδομένα
 - Τα σύνολα κανόνων (περιγραφές) που απομένουν ταιριάζουν στα δεδομένα

Παράδειγμα

- Ο χώρος αναζήτησης για το πρόβλημα του καιρού
 - 4 x 4 x 3 x 3 x 2 = 288 δυνατοί συνδυασμοί τιμών
 - Με 14 κανόνες → 2.7x10³⁴ πιθανά σύνολα κανόνων
- Λύση: Απαλοιφή κανόνων
- Πρακτικά προβλήματα
 - Να επικρατήσουν πολλαπλές περιγραφές
 - Να μη μείνει καμία περιγραφή
 - Αδυναμία περιγραφής του προβλήματος
 - Ύπαρξη θορύβου

Επιρροή - Bias

Επιρροή - Bias

- Σε μια διαδικασία εκπαίδευσης πρέπει αποφασίσουμε:
 - Τη γλώσσα/μοντέλο περιγραφής του χώρου
 - Τη σειρά αναζήτησης
 - Πώς θα αποφύγουμε το overfitting
- Αν δεν τα αποφασίσουμε αυτά έχουμε:
 - Επιρροή γλώσσας: Language bias
 - Επιρροή αναζήτησης: Search bias
 - Επιρροή υπερεκπαίδευσης: Overfitting-avoidance bias

Language bias

- Είναι γενικό το μοντέλο που χρησιμοποιούμε ή περιορίζει τη μάθηση;
- Μια Universal language μπορεί να εκφράζει κάθε παράδειγμα
- Αν το μοντέλο περιέχει τη διάζευξη τότε είναι γενικό (π.χ. rule sets)
- Η γνώση πεδίου μπορεί να εξαιρέσει ορισμένες περιγραφές πριν την έναρξη της αναζήτησης

Search bias

- Ευριστικό αναζήτησης
 - "Άπληστη" αναζήτηση: επιλέγω το καλύτερο βήμα κάθε φορά
 - "Beam search": διατηρώ πάντα εναλλακτικές
 - 0
- Κατεύθυνση αναζήτησης
 - Γενικό-προς-ειδικό
 - π.χ. εξειδίκευση κανόνων με προσθήκη επιπλέον συνθηκών
 - Ειδικό-προς-γενικό
 - π.χ. αρχικά γενικεύω κάθε στιγμιότυπο σε κανόνα

Overfitting-avoidance bias

- Θεωρείται ένα είδος search bias
- Τροποποιώ το κριτήριο αξιολόγησης
 - π.χ. ανάμεσα στην απλότητα των κανόνων και στο πλήθος σφαλμάτων
- Τροποποιώ την στρατηγική αναζήτησης
 - π.χ. με κλάδεμα/pruning κανόνων (απλοποίηση της περιγραφής)
 - Pre-pruning: σταματώ σε απλές περιγραφές και δεν αναζητώ πιο σύνθετες
 - Post-pruning: παράγω σύνθετες περιγραφές και στη συνέχεια τις απλοποιώ