Maladaptive plastic responses of flowering time to geothermal heating (Cerastium 2)

Repeat and extend analyses done by Johan

Alicia Valdés

Contents

Read data from loggers	2
Data preparation	2
Distributions	2
1. How useful soil temperature is as a cue for air temperature	5
Figure 2: Correlations soil-air temperature vs soil temperature	. 7
2. Effect of temperature on FFD	7
Model diagnostics	. 9
Piecewise regression (not shown).	. 11
Plot 2018 (not used)	. 12
3. Effect of temperature on fitness	12
Model diagnostics	. 13
GLMs with poisson distribution	. 15
GLMs with negative binomial distribution	. 16
Model diagnostics	. 19
Figure 3: Effects of temperature on ffd, size and fitness in 2018	20
Figure S1: Effects of temperature on ffd, size and fitness in 2017	21
Possible Appendix: Are instantaneous measures of soil temperature representative for the conditions during the entire spring/growing season?	ne 2 1
April-June	. 21

4. Effect of temperature on selection on FFD		22
Model diagnostics		. 24
BCa intervals		. 26
2017		. 26
2018		. 26
Figure 4: Effects of temperature on selection in 2018		26
Possble Appendix: Relationships between std FFD and relative fitness for of the distribution of soil temperature	different pa	rts 2 6
Figure S2: Effects of ffd on relative fitness in 2018		28
5. Effect of temperature on the relationship absolute fitness-FFD		28
Model diagnostics		. 30
BCa intervals		. 32
2017		. 32
2018		. 32

Read data from loggers

Data preparation

Load data, keep variables needed and merge

```
id id_original temp    ffd nfl
                                         nseed year
                                                       ffd_std
                                                                  nfl_std
## 1 2017_01
             H1 19.4 172.0 6 269.3333 2017 -0.4912772 -0.34533654
## 4 2017_04
                     H5 31.0 163.5
                                  4 106.0000 2017 -1.5514686 -0.71175481
## 6 2017_06
                    H7 29.4 170.0 4 105.0000 2017 -0.7407340 -0.71175481
## 7 2017_07
                    H8 29.0 170.0 9 150.0000 2017 -0.7407340 0.02108173
## 8 2017_08
                    H12 21.7 170.0 4 141.0000 2017 -0.7407340 -0.71175481
                    H13 22.6 170.0 4 126.0000 2017 -0.7407340 -0.71175481
## 9 2017_09
    nseed_rel
## 1 0.4769565
## 4 0.1877131
## 6 0.1859422
## 7 0.2656317
## 8 0.2496938
## 9 0.2231307
```

Distributions

Histograms

Histograms by year

QQplots

QQplots by year

1. How useful soil temperature is as a cue for air temperature

Do correlations between soil and air temperature vary with soil temperature?

We test this using logger pairs.

After looking at plots from individual pairs of loggers, make a new variable pair_problem: -0 = no problem- 1 = some problems (remove)

Use only logger pairs with no problems (53 pairs out of 73): pairs 1-4,9,11,13-16,21-62,70.

Most loggers end up on June 6th, so using data until June 5th.

Using pairs of loggers where above and belowground logger are at less than 2 m distance.

[1] 68

[1] 32

68 loggers (34 pairs), of which 32 loggers in Cerastium plants, and 36 loggers in other plants.

For each date and logger pair, calculate mean, max and min of air and soil temperature (from, respectively, the above and belowground logger). Then, calculate the correlation coefficient for air and soil temperatures

over the period April-May-June. Finally, regress these correlation coefficients on mean soil temperature (from the belowground logger) for the same period (April-May-June).

Linear models testing the effect of soil temperature on correlations between soil and air temperature:

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.70490	0.03085	22.84701	0
corr_airsoil_max	meansoiltemp	-0.01201	0.00213	-5.65264	0
corr_airsoil_mean	(Intercept)	0.88168	0.02732	32.26804	0
corr_airsoil_mean	meansoiltemp	-0.01581	0.00188	-8.39776	0
corr_airsoil_min	(Intercept)	0.73125	0.02851	25.64630	0
corr_airsoil_min	meansoiltemp	-0.01572	0.00196	-8.00263	0

Predictions of correlations for minimum and maximum temperatures:

```
## # Predicted values of corr
## # x = meansoiltemp
##
                        95% CI
##
     x | Predicted |
## -----
             0.81 | [0.77, 0.85]
  4.50 l
## 33.15 |
             0.36 | [0.28, 0.44]
## # Predicted values of corr
## # x = meansoiltemp
##
##
     x | Predicted |
                        95% CI
## -----
## 4.50 |
            0.65 | [0.61, 0.70]
             0.31 | [0.21, 0.40]
## 33.15 |
## # Predicted values of corr
## # x = meansoiltemp
##
                        95% CI
##
     x | Predicted |
## -----
  4.50 |
             0.66 | [0.62, 0.70]
## 33.15 |
             0.21 | [0.12, 0.30]
```


2. Effect of temperature on FFD

Not including number of flowers as covariate, including quadratic effects of fld.

```
FFD_2017_1<-lm(ffd~temp+I(temp^2),subset(mydata,year==2017))
summ(FFD_2017_1,vif=T,scale=T) # scale=T reports standardized coefs
```

Observations	245
Dependent variable	ffd
Type	OLS linear regression

F(2,242)	17.016
\mathbb{R}^2	0.123
$Adj. R^2$	0.116

	Est.	S.E.	t val.	p	VIF
(Intercept)	175.939	0.482	365.338	0.000	NA
$_{ m temp}$	-6.146	1.721	-3.572	0.000	12.715
$I(temp^2)$	3.673	1.721	2.135	0.034	12.715

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

```
FFD_2018_1<-lm(ffd~temp+I(temp^2),subset(mydata,year==2018))
summ(FFD_2018_1,vif=T,scale=T) # scale=T reports standardized coefs
```

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(2,101)	25.765
\mathbb{R}^2	0.338
$Adj. R^2$	0.325

	Est.	S.E.	t val.	p	VIF
(Intercept)	181.876	1.100	165.267	0.000	NA
$_{ m temp}$	-15.623	4.972	-3.142	0.002	20.214
$I(temp^2)$	8.094	4.972	1.628	0.107	20.214

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

Quadratic term of ffd significant in 2017 but not in 2018. Refit model for 2018 withouth quadratic term of ffd.

```
FFD_2018_2<-lm(ffd~temp,subset(mydata,year==2018))
summ(FFD_2018_2,scale=T)</pre>
```

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(1,102)	48.102
\mathbb{R}^2	0.320
$Adj. R^2$	0.314

Predictions of ffd for minimum and maximum temperatures:

	Est.	S.E.	t val.	р
(Intercept)	181.876	1.109	163.946	0.000
$_{\mathrm{temp}}$	-7.731	1.115	-6.936	0.000

Standard errors: OLS; Continuous predictors are mean-centered and scaled by 1 s.d.

```
## # Predicted values of ffd
## # x = temp
##
##
       x | Predicted |
                                  95% CI
##
              180.75 | [178.70, 182.80]
## 45.50 |
              173.63 | [165.24, 182.02]
## # Predicted values of ffd
## # x = temp
##
##
       x | Predicted |
                                  95% CI
    3.50 |
              191.36 | [187.91, 194.81]
              158.74 | [151.85, 165.63]
## 34.00 |
```

Model diagnostics

FFD_2017_1

DHARMa residual diagnostics

Residuals against temp

Residual vs. predicted No significant problems detected

2018:

DHARMa residual diagnostics

Residuals against temp

Models should be OK.

Piecewise regression (not shown).

```
FFD_2017_segm<-segmented(lm(ffd~temp,subset(mydata,year==2017))),
                         seg.Z=~temp,psi=20)
slope(FFD_2017_segm)
## $temp
##
                    St.Err.
                             t value CI(95%).1 CI(95%).u
## slope1 -0.41168 0.068323 -6.02550
                                      -0.54626
                                                 -0.27709
## slope2 0.96590 1.177400
                             0.82034
                                       -1.35350
                                                  3.28530
AIC(FFD_2017_1,FFD_2017_segm)
##
                 df
                         AIC
## FFD_2017_1
                  4 1690.033
## FFD_2017_segm 5 1689.235
```

CIs for the slope of the second segment include zero (means it is not significantly different from zero?). Very little difference in AIC (<2), so the piecewise regression is not better.

```
## $temp
## Est. St.Err. t value CI(95%).1 CI(95%).u
## slope1 -2.18310 0.53289 -4.09680 -3.2404 -1.12590
## slope2 -0.36933 0.38814 -0.95153 -1.1394 0.40073

AIC(FFD_2018_1,FFD_2018_segm)

## Gf AIC
## FFD_2018_1 4 803.0307
## FFD_2018_segm 5 800.0710
```

CIs for the slope of the second segment include zero (means it is not significantly different from zero?). Difference in AIC >2 so the piecewise regression seems to be better.

Plot 2018 (not used)

Keep the linear model, as the piecewise one does not seem to fit much better (the reduction in AIC was also small).

3. Effect of temperature on fitness

```
fitness_2017_1<-lm(nseed~temp+I(temp^2)+log(nfl),subset(mydata,year==2017))
summ(fitness_2017_1,vif=T,scale=T) # scale=T reports standardized coefs
```

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(3,241)	67.240
\mathbb{R}^2	0.456
$Adj. R^2$	0.449

	Est.	S.E.	t val.	p	VIF
(Intercept)	564.692	43.167	13.082	0.000	NA
$_{\text{temp}}$	-344.358	158.067	-2.179	0.030	13.354
$'I(temp^2)'$	195.214	155.818	1.253	0.211	12.977
'log(nfl)'	647.075	45.688	14.163	0.000	1.116

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

```
fitness_2018_1<-lm(nseed~temp+I(temp^2)+log(nfl), subset(mydata, year==2018))
summ(fitness_2018_1, vif=T, scale=T) # scale=T reports standardized coefs</pre>
```

Quadratic terms of ffd not significant. Refit models withouth quadratic terms of ffd.

Observations	104
Dependent variable	nseed
Type	OLS linear regression

F(3,100)	42.951
\mathbb{R}^2	0.563
$Adj. R^2$	0.550

	Est.	S.E.	t val.	p	VIF
(Intercept)	212.442	18.026	11.785	0.000	NA
$_{\text{temp}}$	0.861	81.497	0.011	0.992	20.244
$'I(temp^2)'$	-60.226	81.470	-0.739	0.461	20.231
$\log(nfl)$	199.191	18.141	10.980	0.000	1.003

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

fitness_2017_2<-lm(nseed~temp+log(nfl),subset(mydata,year==2017))
summ(fitness_2017_2,vif=T,scale=T) # scale=T reports standardized coefs</pre>

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(2,242)	99.840
\mathbb{R}^2	0.452
$Adj. R^2$	0.448

	Est.	S.E.	t val.	p	VIF
(Intercept)	564.692	43.218	13.066	0.000	NA
$_{ m temp}$	-154.606	45.279	-3.415	0.001	1.093
'log(nfl)'	638.951	45.279	14.112	0.000	1.093

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

```
fitness_2018_2<-lm(nseed~temp+log(nfl),subset(mydata,year==2018))
summ(fitness_2018_2,vif=T,scale=T) # scale=T reports standardized coefs</pre>
```

Observations	104
Dependent variable	nseed
Type	OLS linear regression

Model diagnostics

qq-plot and plot of residuals vs. predicted:

F(2,101)	64.443
\mathbb{R}^2	0.561
$Adj. R^2$	0.552

	Est.	S.E.	t val.	p	VIF
(Intercept)	212.442	17.985	11.812	0.000	NA
temp	-57.875	18.092	-3.199	0.002	1.002
'log(nfl)'	199.581	18.092	11.031	0.000	1.002

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

2017:

DHARMa residual diagnostics

2018:

DHARMa residual diagnostics

Quite bad looking! We should try another distribution.

GLMs with poisson distribution

Observations	245
Dependent variable	n_seed_round
Type	Generalized linear model
Family	poisson
Link	log

$\chi^{2}(3)$	149330.384
Pseudo-R ² (Cragg-Uhler)	1.000
Pseudo-R ² (McFadden)	0.714
AIC	59784.973
BIC	59798.978

	Est.	S.E.	z val.	p	VIF
(Intercept)	5.815	0.004	1506.414	0.000	NA
$_{\mathrm{temp}}$	-0.595	0.011	-55.431	0.000	15.530
$'I(temp^2)'$	0.347	0.011	32.117	0.000	15.107
$\log(nfl)$	1.033	0.003	381.797	0.000	1.113

Standard errors: MLE; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

Observations	104
Dependent variable	n_seed_round
Type	Generalized linear model
Family	poisson
Link	\log

$\chi^2(3)$	21316.452
Pseudo-R ² (Cragg-Uhler)	1.000
Pseudo-R ² (McFadden)	0.744
AIC	7359.145
BIC	7369.723

	Est.	S.E.	z val.	p	VIF
(Intercept)	4.826	0.010	479.086	0.000	NA
temp	0.234	0.034	6.935	0.000	15.061
$'I(temp^2)'$	-0.588	0.038	-15.296	0.000	15.078
$\log(nfl)$	1.009	0.008	128.832	0.000	1.008

Standard errors: MLE; Continuous predictors are mean-centered and scaled by 1 s.d.

```
overdisp_fun(fitness_2017_3)
```

```
## chisq ratio rdf p
## 90313.0502 374.7429 241.0000 0.0000
```

```
overdisp_fun(fitness_2018_3)
```

```
## chisq ratio rdf p
## 5744.43831 57.44438 100.00000 0.00000
```

There is significant overdispersion.

GLMs with negative binomial distribution

Observations	245
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative $Binomial(2.1088)$
Link	\log

$\chi^2()$	0.723	0.088	3273.867	3291.374
Pseudo-R ² (Cragg-Uhler)	0.723	0.088	3273.867	3291.374
Pseudo-R ² (McFadden)	0.723	0.088	3273.867	3291.374
AIC	0.723	0.088	3273.867	3291.374
BIC	0.723	0.088	3273.867	3291.374

	Est.	S.E.	z val.	p	VIF
(Intercept)	5.787	0.044	130.869	0.000	NA
temp	-0.408	0.162	-2.515	0.012	13.378
$'I(temp^2)'$	0.173	0.160	1.078	0.281	13.002
$\log(nfl)$	1.092	0.047	23.320	0.000	1.116

Standard errors: MLE; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

Observations	104
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative $Binomial(1.9935)$
Link	log

$\chi^2()$	0.694	0.094	1202.008	1215.230
Pseudo-R ² (Cragg-Uhler)	0.694	0.094	1202.008	1215.230
Pseudo-R ² (McFadden)	0.694	0.094	1202.008	1215.230
AIC	0.694	0.094	1202.008	1215.230
BIC	0.694	0.094	1202.008	1215.230

	Est.	S.E.	z val.	p	VIF
(Intercept)	4.828	0.070	68.612	0.000	NA
temp	0.264	0.320	0.825	0.409	20.150
$'I(temp^2)'$	-0.593	0.321	-1.846	0.065	20.136
'log(nfl)'	1.018	0.071	14.304	0.000	1.003

Standard errors: MLE; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

Quadratic terms of ffd not significant. Refit models withouth quadratic terms of ffd.

fitness_2017_5<-glm.nb(n_seed_round~temp+log(nfl),subset(mydata,year==2017))
summ(fitness_2017_5,vif=T,scale=T)</pre>

Observations	245
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative $Binomial(2.0993)$
Link	\log

$\chi^2()$	0.722	0.088	3273.106	3287.112
Pseudo-R ² (Cragg-Uhler)	0.722	0.088	3273.106	3287.112
Pseudo-R ² (McFadden)	0.722	0.088	3273.106	3287.112
AIC	0.722	0.088	3273.106	3287.112
BIC	0.722	0.088	3273.106	3287.112

	Est.	S.E.	z val.	p	VIF
(Intercept)	5.788	0.044	130.603	0.000	NA
$_{ m temp}$	-0.238	0.047	-5.117	0.000	1.094
$\log(nfl)$	1.087	0.046	23.377	0.000	1.094

Standard errors: MLE; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

fitness_2018_5<-glm.nb(n_seed_round~temp+log(nfl),subset(mydata,year==2018))
summ(fitness_2018_5,vif=T,scale=T)</pre>

Observations	104
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative $Binomial(1.9313)$
Link	log

$\chi^2()$	0.684	0.091	1203.369	1213.947
Pseudo-R ² (Cragg-Uhler)	0.684	0.091	1203.369	1213.947
Pseudo-R ² (McFadden)	0.684	0.091	1203.369	1213.947
AIC	0.684	0.091	1203.369	1213.947
BIC	0.684	0.091	1203.369	1213.947

	Est.	S.E.	z val.	p	VIF
(Intercept)	4.837	0.071	67.703	0.000	NA
$_{ m temp}$	-0.301	0.072	-4.166	0.000	1.003
'log(nfl)'	1.026	0.072	14.202	0.000	1.003

Standard errors: MLE; Continuous predictors are mean-centered and scaled by 1 s.d. $\,$

Predictions of fitness for minimum and maximum temperatures:

```
## # Predicted counts of n_seed_round
## # x = temp
##
##
       x | Predicted |
                                   95% CI
##
              849.90 | [719.89, 1003.40]
##
## 45.50 |
              243.83 | [169.94, 349.84]
##
## Adjusted for:
## * nfl = 17.13
## # Predicted counts of n_seed_round
## # x = temp
##
##
       x | Predicted |
                                  95% CI
              301.27 | [238.31, 380.87]
## 34.00 |
               84.77 | [ 54.15, 132.71]
##
## Adjusted for:
## * nfl = 10.54
```

Model diagnostics

qq-plot and plot of residuals vs. predicted: 2017:

DHARMa residual diagnostics

2018:

DHARMa residual diagnostics

Some problems but maybe not so bad. Need to look a bit more into this later.

Figure 3: Effects of temperature on ffd, size and fitness in 2018

Model predictions ffd : based on models FFD_2017_1 (with quadratic term of ffd) and FFD_2018_2 (without quadratic term of ffd).

Model predictions fitness: based on models fitness_2017_5 and fitness_2018_5.

Figure S1: Effects of temperature on ffd, size and fitness in 2017

Possible Appendix: Are instantaneous measures of soil temperature representative for the conditions during the entire spring/growing season?

Correlations logger temperature - instant temperature

April-June

For each logger_nr, get mean temperature during April-June and compare with temp_term (which was measured with a thermometer at 10 cm depth on May 2017):

Observations	141
Dependent variable	$mean_logger$
Type	OLS linear regression

F(1,139)	479.674
\mathbb{R}^2	0.775
$Adj. R^2$	0.774

	Est.	S.E.	t val.	p
(Intercept)	-2.825	0.624	-4.529	0.000
$temp_term$	0.932	0.043	21.901	0.000

Standard errors: OLS

Correlation mean temperature from logger data (only below ground loggers) and soil temperature measured in may with thermometer:

[1] 0.8805259

4. Effect of temperature on selection on FFD

subset(mydata,year==2018)) summ(selection_2017_1,scale=T)

Observations	245
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(6,238)	34.508
\mathbb{R}^2	0.465
$Adj. R^2$	0.452

	Est.	S.E.	t val.	p
(Intercept)	0.974	0.082	11.947	0.000
ffd_std	0.212	0.103	2.051	0.041
temp	-0.514	0.284	-1.808	0.072
$I(temp^2)$	0.288	0.279	1.033	0.303
nfl_std	1.226	0.090	13.667	0.000
$ffd_std:temp$	-0.275	0.356	-0.770	0.442
$ffd_std:'I(temp^2)'$	0.229	0.365	0.627	0.531

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1\ \mathrm{s.d.}$

summ(selection_2018_1,scale=T)

Observations	104
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(6,97)	22.809
\mathbb{R}^2	0.585
$Adj. R^2$	0.560

	Est.	S.E.	t val.	p
(Intercept)	1.137	0.106	10.768	0.000
ffd_std	0.019	0.130	0.143	0.886
temp	-0.395	0.597	-0.662	0.510
$I(temp^2)$	0.244	0.661	0.369	0.713
nfl_std	0.973	0.103	9.437	0.000
$ffd_std:temp$	0.314	0.512	0.614	0.541
ffd_std:'I(temp^2)'	-0.076	0.520	-0.146	0.884

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1\ \mathrm{s.d.}$

Quadratic terms of ffd not significant. Refit models withouth quadratic terms of ffd.

Observations	245
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(4,240)	51.54890
R^2	0.46212
$Adj. R^2$	0.45315

	Est.	S.E.	t val.	p
(Intercept)	0.97807	0.08042	12.16219	0.00000
ffd_std	0.21003	0.09939	2.11311	0.03562
temp	-0.24042	0.08186	-2.93713	0.00363
nfl_std	1.21323	0.08880	13.66288	0.00000
$ffd_std:temp$	-0.06739	0.07949	-0.84781	0.39739

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

summ(selection_2018_2,scale=T,digits=5)

Observations	104
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(4,99)	34.66004
\mathbb{R}^2	0.58340
$Adj. R^2$	0.56657

	Est.	S.E.	t val.	p
(Intercept)	1.11076	0.09682	11.47190	0.00000
ffd_std	0.04479	0.12296	0.36422	0.71647
temp	-0.15383	0.11242	-1.36836	0.17430
nfl_std	0.97607	0.10084	9.67898	0.00000
$ffd_std:temp$	0.19755	0.08813	2.24150	0.02723

Standard errors: OLS; Continuous predictors are mean-centered and scaled by $1~\mathrm{s.d.}$

Model diagnostics

qq-plot and plot of residuals vs. predicted:

2017:

DHARMa residual diagnostics

2018:

DHARMa residual diagnostics

Quite bad looking! If we want to keep the linear model with normal distribution (i.e. a "classic" selection model), we can assess significances using BCa intervals.

BCa intervals

2017

```
## ffd 0.01263314 0.79840750

## temp -0.05558642 -0.01320301

## nfl 0.91302964 1.69711242

## ffd:temp -0.02536854 0.00526291
```

FFD significant according to BCa intervals.

2018

##		lower	upper
##	ffd	-0.746527205	0.210568390
##	temp	-0.041058874	-0.001521278
##	nfl	0.731203424	1.257755839
##	ffd:temp	0.004107204	0.052202141

The significances according to the BCa intervals are similar to the ones given in the model summary.

Figure 4: Effects of temperature on selection in 2018

Possble Appendix: Relationships between std FFD and relative fitness for different parts of the distribution of soil temperature

Min. 1st Qu. Median Mean 3rd Qu. Max.

```
## 3.500 6.875 9.300 12.368 17.075 34.000

## [1] 5.784615

## [1] 7.95

## [1] 12.45

## [1] 23.28846
```



```
## List of 2
    $ strip.text.x:List of 11
##
     ..$ family
                       : NULL
                       : NULL
##
     ..$ face
##
     ..$ colour
                       : NULL
##
     ..$ size
                       : NULL
##
     ..$ hjust
                       : NULL
     ..$ vjust
                       : NULL
##
                       : NULL
##
     ..$ angle
                       : NULL
##
     ..$ lineheight
                       : 'margin' num [1:4] 2points Opoints 2points Opoints
##
     ..$ margin
##
     .. ..- attr(*, "unit")= int 8
##
     ..$ debug
                       : NULL
     ..$ inherit.blank: logi FALSE
```

Figure S2: Effects of ffd on relative fitness in 2018

5. Effect of temperature on the relationship absolute fitness-FFD

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(6,238)	34.508
\mathbb{R}^2	0.465
$Adj. R^2$	0.452

	Est.	S.E.	t val.	p
(Intercept)	-6682.670	4879.792	-1.369	0.172
ffd	35.520	27.405	1.296	0.196
temp	394.423	560.245	0.704	0.482
$I(temp^2)$	-8.887	15.022	-0.592	0.555
$\log(nfl)$	625.843	45.793	13.667	0.000
ffd:temp	-2.451	3.181	-0.770	0.442
$ffd:I(temp^2)$	0.054	0.086	0.627	0.531

Standard errors: OLS

summ(selectionabs_2018_1,scale=F)

Observations	104
Dependent variable	nseed
Type	OLS linear regression

F(6,97)	22.809
\mathbb{R}^2	0.585
$Adj. R^2$	0.560

	Est.	S.E.	t val.	p
(Intercept)	1263.606	1411.947	0.895	0.373
ffd	-7.074	7.767	-0.911	0.365
temp	-134.639	192.293	-0.700	0.485
$I(temp^2)$	1.104	5.710	0.193	0.847
$\log(nfl)$	197.641	20.943	9.437	0.000
ffd:temp	0.676	1.101	0.614	0.541
$ffd:I(temp^2)$	-0.005	0.033	-0.146	0.884

Standard errors: OLS

Quadratic terms of ffd not significant. Refit models withouth quadratic terms of ffd.

```
selectionabs_2017_2<-lm(nseed~ffd*temp+log(nfl),subset(mydata,year==2017))
selectionabs_2018_2<-lm(nseed~ffd*temp+log(nfl),subset(mydata,year==2018))
summ(selectionabs_2017_2,scale=F)</pre>
```

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(4,240)	51.549
\mathbb{R}^2	0.462
$Adj. R^2$	0.453

	Est.	S.E.	t val.	p
(Intercept)	-4647.341	2606.895	-1.783	0.076
ffd	23.284	14.531	1.602	0.110
temp	88.601	124.771	0.710	0.478
$\log(nfl)$	619.124	45.314	13.663	0.000
ffd:temp	-0.601	0.709	-0.848	0.397

Standard errors: OLS

summ(selectionabs_2018_2,scale=F)

Observations	104
Dependent variable	nseed
Type	OLS linear regression

F(4,99)	34.660
\mathbb{R}^2	0.583
$Adj. R^2$	0.567

	Est.	S.E.	t val.	p
(Intercept)	755.873	607.739	1.244	0.217
ffd	-4.561	3.188	-1.431	0.156
$_{ m temp}$	-81.835	33.624	-2.434	0.017
$\log(nfl)$	198.339	20.492	9.679	0.000
ffd:temp	0.425	0.190	2.241	0.027

Standard errors: OLS

Model diagnostics

qq-plot and plot of residuals vs. predicted:

2017:

DHARMa residual diagnostics

2018:

DHARMa residual diagnostics

Quite bad looking! If we want to keep the linear model with normal distribution (i.e. a "classic" selection model), we can assess significances using BCa intervals.

BCa intervals

2017

```
## ffd 1.003472 55.8864223
## temp -78.573251 302.5052709
## nfl 464.314453 862.8055575
## ffd:temp -1.809086 0.3783896
```

FFD significant according to BCa intervals.

2018

```
## lower upper
## ffd -11.50971090 3.372549
## temp -150.49193405 -12.073003
## nfl 148.84572035 256.836465
## ffd:temp 0.05646157 0.817838
```

The significances according to the BCa intervals are similar to the ones given in the model summary.