Annex C: Overview of textbook expressions on charge carrier statistics in thermal equilibrium

Taken from R. F. Pierret, Semiconductor Device Fundamentals, Addison Wesley, 1996.

Table 2.4 Carrier Modeling Equation Summary.

Density of States and Fermi Function

$$g_{c}(E) = \frac{m_{n}^{*}\sqrt{2m_{n}^{*}(E - E_{c})}}{\pi^{2}\hbar^{3}}, \quad E \geq E_{c}$$

$$g_{v}(E) = \frac{m_{p}^{*}\sqrt{2m_{p}^{*}(E_{v} - E)}}{\pi^{2}\hbar^{3}}, \quad E \leq E_{v}$$

$$f(E) = \frac{1}{1 + e^{(E - E_{p})/kT}}$$

n, p, and Fermi Level Computational Relationships

$$n = \frac{N_{\rm D} - N_{\rm A}}{2} + \left[\left(\frac{N_{\rm D} - N_{\rm A}}{2} \right)^2 + n_{\rm i}^2 \right]^{1/2} \qquad E_{\rm i} = \frac{E_{\rm c} + E_{\rm v}}{2} + \frac{3}{4} k T \ln \left(\frac{m_{\rm p}^*}{m_{\rm n}^*} \right)$$

$$n \approx N_{\rm D} \qquad N_{\rm D} \gg N_{\rm A}, N_{\rm D} \gg n_{\rm i} \qquad E_{\rm F} - E_{\rm i} = k T \ln(n/n_{\rm i}) = -k T \ln(p/n_{\rm i})$$

$$p \approx n_{\rm i}^2/N_{\rm D} \qquad E_{\rm F} - E_{\rm i} = k T \ln(N_{\rm D}/n_{\rm i}) \quad N_{\rm D} \gg N_{\rm A}, N_{\rm D} \gg n_{\rm i}$$

$$n \approx n_{\rm i}^2/N_{\rm A} \qquad E_{\rm i} - E_{\rm F} = k T \ln(N_{\rm A}/n_{\rm i}) \quad N_{\rm A} \gg N_{\rm D}, N_{\rm A} \gg n_{\rm i}$$

$$E_{\rm i} - E_{\rm F} = k T \ln(N_{\rm A}/n_{\rm i}) \quad N_{\rm A} \gg N_{\rm D}, N_{\rm A} \gg n_{\rm i}$$

Carrier Concentration Relationships

$$n = N_{\rm C} \frac{2}{\sqrt{\pi}} F_{1/2}(\eta_{\rm c}) \qquad N_{\rm C} = 2 \left[\frac{m_{\rm n}^* kT}{2\pi \hbar^2} \right]^{3/2} \qquad p = N_{\rm V} e^{(E_{\rm F} - E_{\rm c})/kT}$$

$$p = N_{\rm V} \frac{2}{\sqrt{\pi}} F_{1/2}(\eta_{\rm v}) \qquad N_{\rm V} = 2 \left[\frac{m_{\rm p}^* kT}{2\pi \hbar^2} \right]^{3/2} \qquad n = n_{\rm i} e^{(E_{\rm F} - E_{\rm i})/kT}$$

$$p = n_{\rm i} e^{(E_{\rm i} - E_{\rm F})/kT}$$

 $n_{\rm i}, np ext{-}Product, and Charge Neutrality}$

$$n_{\rm i} = \sqrt{N_{\rm C} N_{\rm V}} e^{-E_{\rm G}/2kT}$$
 $np = n_{\rm i}^2$ $p - n + N_{\rm D} - N_{\rm A} = 0$