Bachelor projekt

Dynamic Deadlock Detection in Go

Erik Daniel Kassubek

Datum

Albert-Ludwigs-Universität Freiburg im Breisgau Technische Fakultät Institut für Informatik

Betreuer

Prof. Dr. Thiemann, Albert-Ludwigs-Universität Freiburg

Prof. Dr. Sulzmann, Hochschule Karlsruhe

TODO: write abstract

Inhaltsverzeichnis

1	Theoretischer Hintergrund		
	1.1 Deadlocks		
2	2 Review bestehender Tools		
3	Implementierung eines Deadlock-Detectors	7	

1 Theoretischer Hintergrund

1.1 Deadlocks

Ein Deadlock ist ein Zustand in einem nebenläufigen Programm, indem alle laufenden Tread zyklisch auf die Freigabe von Ressourcen warten, die von einem anderen Tread belegt sind. Im großen und ganzen lassen sich Deadlocks in zwei Gruppen einteilen: Ressourcen-Deadlocks und Kommunikations-Deadlocks [1]. Im folgenden sollen jedoch nur durch Locks erzeugte Ressourcen-Deadlocks betrachtet werden.

Locks gehören zu den am weitesten verbreiteten Mechanismen um sicher zu stellen, dass sich in einem nebenläufigen Programm immer nur ein Thread in einem kritischen Bereich aufhalten kann [1], bzw. dass immer nur maximal ein Tread gleichzeitig auf eine gemeinsame Resource, wie z.B. eine Variable zugreifen kann. Möchte ein Thread T_1 nun in einen Bereich eintreten, der durch ein Lock, welches bereits von einem anderen Thread T_0 beansprucht wird, geschützt ist, muss es so lange vor dem Lock warten, bis dieses von T_0 wieder frei gegeben wird.

Ein Deadlock kann nun entstehen, wenn all Treads vor einem solchen Lock warten müssen, wobei die Locks immer von einem anderen Tread gehalten werden. Im folgende bezeichnet $acq_i(l)$, dass das Lock l von Prozess T_i beansprucht und $rel_i(l)$, dass l von T_i wieder freigegeben wird. Man betrachte nun das folgende Beispiel [2] mit den Treads T_1 und T_2 :

	T_1	T_2
1.	$acq_1(y)$	
2.	$acq_1(x)$	
3.	$rel_1(x)$	
4.	$rel_1(y)$	
5.		$acq_2(x)$
6.		$acq_2(y)$
7.		$rel_2(y)$
8.		$rel_2(x)$

Da T_1 und T_2 gleichzeitig ablaufen ist folgender Ablauf möglich:

$$T_1$$
 T_2
1. $acq_1(y)$
5. $acq_2(x)$
2. $B - acq_1(x)$
6. $B - acq_2(y)$

Dabei impliziert $B - acq_i(l)$, dass $acq_i(l)$ nicht ausgeführt werden konnte, bzw. dass der Thread T_i vor dem Lock halten muss, da das Lock bereits von einem anderen Tread beansprucht wird. In diesem Beispiel wartet nun T_1 darauf, dass das Lock x geöffnet wird und T_2 wartet darauf, dass Lock y geöffnet wird. Da nun aller Thread warten müssen, bis ein Lock freigegeben wird, allerdings keiner der Threads weiter laufen kann um ein Lock zu öffnen, kommt es zum Stillstand. Dieser Zustand wird als Deadlock bezeichnet.

1.2 Deadlocks-Detection

Deadlocks in Programmen sind Fehler, die oft den vollständige Abbruch eines Programmes zu Folge haben, wenn keine zusätzliche Routine zur Auflösung von Deadlocks implementiert ist. Aus diesem Grund möchte man bereits bei der Implementierung eines Programmes verhindern, dass ein solcher Deadlock auftreten kann. Unglücklicherweise kann es ohne zusätzliche Hilfsmittel schwierig sein, einen solchen Deadlock zu erkennen, da das Auftreten eines Deadlock von dem genauen Ablauf der verschiedenen Threads abhängt.

Um dennoch Deadlocks detektieren zu können, können Lock-Graphen oder Lock-Bäume verwendet werden.

Lock-Graphen

Ein Lock-Graph ist ein gerichteter Graph G = (L, E), Dabei ist L die Menge aller Locks $E \subseteq L \times L$ ist definiert als $(l_1, l_2) \in E$ genau dann wenn es einen Tread T gibt, welcher $acq(l_2)$ ausgeführt, während er bereits das Lock l_1 hält [3]. Mathematisch ausgedrückt gilt also

$$(l_1, l_2) \in E \Leftrightarrow \exists t_1, t_3 \not\exists t_2 ((t_1 < t_2 < t_3) \land aqr(l_1)[t_1] \land rel(l_1)[t_2] \land aqr(l_2)[t_3])$$

wobei $aqr(l_1)[t_i]$ bedeutet, dass $aqr(l_1)$ zum Zeitpunkt t_i ausgeführt wird und equivalent für $rel(l_1)[t_i]$.

Ein Deadlock kann nun auftreten wenn es innerhalb dieses Graphen einen Kreis gibt. Um zu verhindern, dass ein false positive dadurch ausgelöst wird, dass alle Kanten in einem solchen Kreis aus dem selben Thread kommen (wodurch kein Deadlock entstehen kann), können die Kanten noch zusätzlich mit einem Label versehen werden, welche den Thread identifiziert, durch welchen die Kante in den Graphen eingefügt wurde. Bei dem Testen nach Zyklen muss nun beachtet werden, dass nicht alle Kanten in dem Kreis das selbe Label haben [3].

2 Review bestehender Tools

3 Implementierung eines Deadlock-Detectors

Literatur

- [1] J. Zhou, S. Silvestro, H. Liu, Y. Cai und T. Liu, "UNDEAD: Detecting and preventing deadlocks in production software," in 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), Los Alamitos, CA, USA: IEEE Computer Society, Nov. 2017, S. 729–740. DOI: 10.1109/ASE.2017.8115684.
- [2] M. Sulzmann, Dynamic deadlock prediction, https://sulzmann.github.io/AutonomeSysteme/lec-deadlock.html. (besucht am 03.05.2022).
- [3] S. Bensalem und K. Havelund, "Dynamic Deadlock Analysis of Multi-threaded Programs," in *Hardware and Software, Verification and Testing*, S. Ur, E. Bin und Y. Wolfsthal, Hrsg., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, S. 208–223, ISBN: 978-3-540-32605-2. DOI: 10.1007/11678779_15.