

Combining PPO and Evolutionary Strategies for Better Policy Optimization

Jennifer She Computer Science, Stanford University jenshe@stanford.edu

Objective

- Propose and implement hybrid policy optimization methods inspired by Proximal Policy Optimization (PPO) and Natural Evolutionary Strategies (ES) in order to leverage their individual strengths
- Compare hybrid methods against PPO and ES in two OpenAI environments:
 CartPole and BipedalWalker

Background

Under the reinforcement learning (RL) framework

the goal of **policy optimization** is to find a policy $\pi_{\theta}: S \times A \rightarrow [0,1]$ defining $\Pr(a_t = a | s_t = s)$ that maximizes the expected return

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)}[\Sigma r_t]$$

PPO updates π_{θ} via an approximation of $\nabla_{\theta}J(\theta)$

- pro: it uses **gradient information** to guide its updates, which helps it to zero-in on potential solutions
- con: it may get stuck at a local optima as a result

ES parameterizes θ with

$$\Theta = \bar{\theta} + \sigma \epsilon, \epsilon \sim \mathcal{N}(0, I)$$

which it updates by sampling $\{\theta^{(1)}, ..., \theta^{(k)}\}$ weighted by their return

$$\frac{1}{k\sigma} \sum_{i=1}^{k} \{ \epsilon_t \sum r_t |_{\tau \sim p(\tau; \theta^{(i)})} \} \tag{1}$$

- pro: it incorporates **stochasticity** in the space of θ for better exploration of π_{θ}
- con: it treats the RL problem as a black-box

The goal is then:

To build hybrid methods that both leverage **gra-dient information** and are **stochastic** in θ

Methods

ES-PPO

- Sample $\theta^{(i)}$ as in ES, but instead, run PPO with these as initializations to obtain $\theta^{(i)\prime}$
- Update π_{θ} by (1) with modified perturbations

$\mathbf{MAX-PPO} \qquad \epsilon_t' = \frac{1}{\sigma} (\theta^{(i)'} - \bar{\theta})$

• Run ES/PPO as above but directly set $\bar{\theta}$ to $\theta^{(i)\prime}$ with the highest return

ALT-PPO $\operatorname{argmax}_i \sum r_t|_{\tau \sim p(\tau; \theta^{(i)'})}$

- Run ES every j PPO iterations We compare these methods to \mathbf{ES} and \mathbf{PPO}

Environments

CartPole-v0 (CP)

- \bullet $S \subset \mathbb{R}^4$, $A = \{0, 1\}$
- Objective: Move cart to keep pole upright
- **Rewards**: +1 every timestep for a max of 200
- **Termination**: Pole falls / cart goes off screen or episode reaches max of 200 timesteps

BipedalWalker-v2 (BW)

- $S \subset \mathbb{R}^{24}, A = [-1, 1]^4$
- Objective: Maneuver walker to right-most side of environment (target) without falling
- Rewards: $+\epsilon$ for moving forward, for a total of 300 on agent reaching target; -100 for falling
- Termination: Walker reaches target or falls

Architecture Details

ES

$$\pi_{\theta}(a|s) = \mathbf{1}[a = f_{\theta}(s)]$$

where f_{θ} is a fully-connected neural network

- \bullet FC(dim(s) × 100) + ReLU
- $\mathbf{2}FC(100 \times \dim(a))$
- $\mathbf{3}$ Sigmoid + $\mathbf{1}[.]$ (**CP**) or Tanh (**BW**)

PPO/Hybrids

$$\pi_{\theta}(a|s) \sim \text{Bernoulli}(g_{\theta}(s))$$
 (CP)
 $\pi_{\theta}(a|s) \sim \mathcal{N}(g_{\theta}(s), \sigma)$ (BW)

where g_{θ} is a fully-connected neural network

- $\mathbf{1} FC(\dim(s) \times 100) + ReLU$
- $\mathbf{2}FC(100 \times 100) + ReLU$
- $\operatorname{\mathfrak{G}FC}(100 \times \dim(a))$
- 4 Sigmoid (**CP**) or Tanh (**BW**)

Results

Figure: Episode returns over training across $5\ \mathrm{trials}$ each

	Return	Training Time
ES	200.0	60.59
PPO	200.0	53.74
ES-PPO	200.0	515.03
MAX-PPO	200.0	363.52
ALT-PPO	200.0	131 24

Table: Final results from CP averaged across 5 trials

Discussion

- **PPO** and **ES** performed well on both tasks
- **PPO:** Training instability (**BW**) likely a result of reusing samples from $\pi_{\theta_{\text{old}}}$
- ES: Evaluating $\theta^{(i)}$ is slow without leveraging large-scale parallel compute \rightarrow extending ES-PPO and MAX-PPO from ES exponentiated this problem, and forced us to choose max sample size k=5 for BW
- **ES-PPO:** PPO calls may drive $\theta^{(i)\prime}$ far from $\bar{\theta}$; thus a weighted average of returns at $\theta^{(i)\prime}$ may no longer be a good predictor of return at weighted average of $\theta^{(i)\prime} \to \text{misleading update signals}$
- MAX-PPO: Mitigates averaging problem of ES-PPO but may lead away from a good solution when all neighbouring $\theta^{(i)}$ have low returns \rightarrow high variance
- **ALT-PPO:** Mitigates high computation cost of ES-PPO and MAX-PPO but its stochasticity may lead away from a good solution when neighbour $\theta^{(i)}$ have low (but different) returns

Future Directions

- Investigate trade-offs in sample efficiency and variance in the case of PPO
- Investigate ways to leverage high-compute in the case of ES-PPO and MAX-PPO
- Investigate stochasticity with adaptive
 variance (using gradient information) to avoid moving away from good solutions
- Investigate more complex environments
 where ES and PPO fail

Acknowledgements

We thank **Mario Srouji (TA)** for the project idea, and help during the project.