February 2, 2024

Audio Filter Design

ELEC-E5620 - Audio Signal Processing, Lecture #3

Vesa Välimäki

Acoustics Lab, Dept. Information and Communications Engineering

Sound check

Course Schedule for 2024 (Periods III-IV)

	0.	General issues (Vesa, Gloria & Eloi)	12.1.2024	
	1.	History and future of audio DSP (Vesa)	19.1.2024	
	2.	Digital filters in audio (Vesa)	26.1.2024	
	3.	Audio filter design (Vesa)	2.2.2024	
	4.	Analysis of audio signals (Eloi)	9.2.2024	
	5.	Audio effects processing (Vesa)	16.2.2024	
	* No lecture (Evaluation week for Period III)		*23.2.2024	
	6.	Sound synthesis (Dr. Fabian Esqueda, Korg Germany, Berlin)	1.3.2024	
	7.	Artificial reverberation (Dr. Karolina Prawda, Aalto Acoustics Lab)	8.3.2024	
	8.	Physics-based sound synthesis (Dr. Max Schäfer, Univ. Erlangen)	15.3.2024	
	9.	Sampling rate conversion (Vesa)	22.3.2024	
	* No lecture (Spring Break/Easter)		*29.3.2024	
	10.	Audio coding (Vesa)	5.4.2024	
	11.	BONUS: Machine learning in audio (Eloi & Gloria)	12.4.2024	
A?	Scho	o University ool of Electrical neering ©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen	February 2, 2	2024

Demo: Saturating Resonant Filter

Ivan Benc Xiaojie Pi Ruijie Wang A³³

3

Outline

- Introduction and motivation
- Properties of digital filters
- FIR or IIR?
- Error norms for filter design
- Auditory resolution
- FIR filter design
- IIR filter design
- Graphic equalizers

February 2, 2024

.

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Introduction & Motivation

- More advanced filters needed in many real-life applications
 - Equalization of loudspeakers/headphones
 - o Room correction (loudspeaker-room EQ)
 - Graphic equalization (for music production, concerts etc.)
 - HRTF (head-related transfer function) filters for 3-D sound
 - o Digital musical instruments, e.g., piano soundboard, guitar or violin body
 - o Reverberation algorithms (to adjust the T60 curve)
 - Modeling of signal frames, e.g. in audio coding

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

5

Introduction & Motivation 2

- Which application, what purpose?
 - o Requirements help in choosing the design method
- General principle
 - Quick methods for real-time applications (aim at designing a low-order filter)
 - Accurate methods for off-line processing (high-order filters, when necessary)

- Frequency resolution of the hearing system is nonlinear (logarithmic): good at low, poor at high frequencies
- Conventional "textbook" filter design techniques (lowpass, highpass, bandpass...) are usually unsuitable

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

-

7

Properties of Filters

Convolution for linear and time-invariant (LTI) systems:

y[n] = h[n] * x[n]Impulse response of the filter omain

Input signal $\sum_{k=0}^{M} b_k z^{-k}$

The same in Z-domain

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen , LOL

Properties of Filters: Magnitude

- Frequency response
 - o Replace z with $e^{j\omega}$

$$H(e^{j\omega}) = \frac{B(e^{j\omega})}{A(e^{j\omega})}$$

- Magnitude response
 - o Take the absolute value

 $|H(e^{j\omega})|$

- In Matlab
 - o freqz.m

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

ç

9

Properties of Filters: Phase

- Phase response
 - o Radian phase shift
- Phase delay
 - Time delay of each sinusoidal component (in samples)
- Group delay
 - o Time delay (in samples) of the amplitude envelope of a sinusoid at frequency ω
- $D(\omega) = -\frac{d}{d\omega}\theta(\omega)$

 $P(\omega) = -\frac{\theta(\omega)}{\omega}$

 $\theta(\omega) = \arg\{H(e^{j\omega})\}$

- In Matlab
 - o phasez.m
 - o phasedelay.m
 - o grpdelay.m

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

Phase Delay of a Digital Filter

- Phase response and phase delay
 - 2nd-order allpass filter

$$P(\omega) = -\frac{\theta(\omega)}{\omega}$$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

February 2, 2024

11

Phase Delay of a Digital Filter (2)

Phase delay is negative of the slope of a straight line fitted through 0 and $\theta(\omega)$:

$$P(\omega) = -\frac{\theta(\omega)}{\omega}$$
$$= \frac{0 - \theta(\omega)}{0 - \omega}$$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Phase Delay of a Digital Filter (3)

Phase delay is negative of the slope of a straight line fitted through 0 and $\theta(\omega)$:

$$P(\omega) = -\frac{\theta(\omega)}{\omega}$$
$$= \frac{0 - \theta(\omega)}{0 - \omega}$$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

February 2, 2024

13

Group delay of a Digital Filter

Phase response and group delay

> The same 2nd-order allpass filter as before

$$D(\omega) = -\frac{d}{d\omega}\theta(\omega)$$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Group delay of a Digital Filter (2)

Group delay is -1 times the local gradient of the phase function $\theta(\omega)$

$$D(\omega) = -\frac{d}{d\omega}\theta(\omega)$$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

February 2, 2024

15

Phase Delay vs. Group delay

Phase delay = Group delay, when the phase function is linear (here: at low fregs)

Otherwise: Phase delay ≠ Group delay

(here: at mid & high freqs)

Group delay

Phase delay

Aalto University School of Electrical Engineering

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

How to Present the Digital Frequency Axis?

- Radians
 - Sampling frequency = $2\pi \rightarrow Axis [0, \pi]$
- Normalized
 - Sampling frequency = $1 \rightarrow Axis [0, 0.5]$
 - Easy to convert to Hz by multiplying by the sampling frequency

- Sampling frequency = $2 \rightarrow Axis [0, 1]$
- Hz
 - E.g., if the sampling frequency is 44.1 kHz → Axis [0, 22.05] kHz 0

©2016-2024 Vesa Välimäki "luho Liski Heidi-Maria Lehtonen, Sami Oksanen

February 2, 2024

Impulse respose

10

(n) samples

0.25

0.2

0.15

0.1

0.05

-0.05^L

17

Phase Characteristics (1)

Linear phase

- Easy to obtain using FIR filters
- Symmetric impulse response 0
- Phase delay = group delay
- Sometimes desirable, but why?

Zero phase

- Special case of a linear-phase filter
- Impulse response symmetric w.r.t. $0 \rightarrow$ noncausal! 0
- Possible offline: filtfilt.m

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

February 2, 2024

15

Linear Phase in Practice

- Linear phase → constant phase delay at all frequencies
 - o In the example here, the filter causes 100 samples of delay

19

Phase Characteristics (2)

Minimum phase

- No zeros outside the unit circle
- o Often desirable, why?
- Releases energy as fast as possible for the given magnitude response
- Always stable and causal
- Also its inverse filter is stable

Maximum phase

- All zeros outside the unit circle (or on the unit circle)
- Time-reversed version of the minimum-phase system

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

15

Impulse respose

10

(n) samples

10

5

Aalto University
School of Electrical
Engineering

February 2, 2024 21

21

How to Construct a Minimum Phase?

- Option #1: Mirroring the Zeros
 - Zeros outside the unit circle are relocated to inside the unit circle

$$z = re^{j\theta}, r > 1 \rightarrow z = \frac{e^{j\theta}}{r}$$

 Not feasible when the filter order is large, because then it's difficult or impossible to find the zeros (i.e., roots of a polynomial)

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

How to Construct a Minimum Phase?

Option #2: The Hilbert Transform Method

- Logarithm of the magnitude response and the phase function of a minimum-phase system are Hilbert transform pairs
- To convert a filter to minimum-phase: Replace the filter's phase response with the Hilbert transform of its log magnitude response!
- $_{\odot}$ The Hilbert transform shifts the phase of the input signal by 90 degrees ($_{\pi}$ radians)
- See: https://ccrma.stanford.edu/~jos/sasp/Minimum_Phase_Filter_Design.html

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

23

23

How to Construct a Minimum Phase?

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Option #3: Cepstral Windowing

- Cepstrum is the inverse Fourier transform of the log of the spectrum
 - F^{-1} is the inverse Discrete Fourier Transform (DFT)
- Deleting the left side of the cepstrum modifies the phase so that the signal becomes minimum-phase
- The window w(n) is a unit-step function (selecting the right half)
- o The minimum-phase impulse response is obtained with DFT.
- o Download the codes (minphase_rceps.m, minphase_hilbert.m) from MyCources and try!
- See also: https://ccrma.stanford.edu/~jos/fp/Creating_Minimum_Phase_
 Filters.html

 $\hat{c}(n) = c(n)w(n)$

 $h_{\rm mp}(n) = F^{-1} \{ e^{F\{\hat{c}(n)\}} \}$

February 2, 2024

Linear-Phase/Minimum-Phase FIR Filter

- Loudspeaker model
 - Low corner frequency (highpass): ≈500 Hz order 256
 - o High corner frequency (lowpass): ≈20 kHz order 32
- For plotting: freqz.m, impz.m, zplane.m
 - o Pay attention to the frequency normalization!
- Download the code (LS_FIR_demo.m) from MyCources!

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

25

25

Linear-Phase/Minimum-Phase FIR Filter Linear phase Minimum phase Magnitude, after min-phase conversion Magnitude (dB) (dB) -50 Magnitude (-150 L -150 2.5 Frequency (Hz) Frequency (Hz) Phase Phas Phase (degrees) Phase (degrees) -500 1000 -1500 -2000 Frequency (Hz) Frequency (Hz) Aalto University School of Electrical Engineering February 2, 2024 ©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Filter Design Problem

- How to approximate the target response with a digital filter
- Minimize the frequency-response error:

$$E(e^{j\theta}) = H(e^{j\theta}) - \widehat{H}(e^{j\theta})$$

Error = target - approximation

- In digital filter design, L_p norms are often used
 - L_2 leads to the least-squares design
 - o L_{∞} leads to the Chebyshev (minimax) design

February 2, 2024

2

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

29

Least-squares (L_2) Norm

$$E_2(e^{j\omega}) = \|H(e^{j\omega}) - \widehat{H}(e^{j\omega})\|_2^2 = \sum_{n=0}^{\infty} |h(n) - \widehat{h}(n)|^2$$

- Many popular filter design techniques, such as Prony's method, use this method (prony.m in Matlab)
- An easy LS FIR filter design method is to truncate the impulse response of the ideal filter
 - o By including the largest samples, you minimize the squared error!

February 2, 2024

Solving FIR Filter Coefficients in LS Design

- If h is the desired response vector, ε is the frequency response error vector, and F is the discrete Fourier transform (DFT) matrix
- Minimize the squared error to design coefficients \hat{h} :

$$\mathbf{F}\widehat{\mathbf{h}} = \mathbf{h} + \boldsymbol{\varepsilon}$$

$$\min \|\boldsymbol{\varepsilon}\|^2 = \min \|\mathbf{F}\widehat{\mathbf{h}} - \mathbf{h}\|^2$$

$$\frac{\partial}{\partial \boldsymbol{h}} (\mathbf{F} \widehat{\boldsymbol{h}} - \boldsymbol{h}) (\mathbf{F} \widehat{\boldsymbol{h}} - \boldsymbol{h})^T = 0$$

$$\frac{\partial}{\partial \boldsymbol{h}} (\widehat{\boldsymbol{h}}^T \mathbf{F}^T \mathbf{F} \widehat{\boldsymbol{h}} - 2 \boldsymbol{h}^T \mathbf{F} \widehat{\boldsymbol{h}} + \boldsymbol{h}^T \boldsymbol{h}) = \mathbf{F}^T \mathbf{F} \widehat{\boldsymbol{h}} - \mathbf{F}^T \boldsymbol{h} = 0$$

$$\Leftrightarrow \widehat{\boldsymbol{h}} = (\mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T \boldsymbol{h}^T$$
 "pseudoinverse"

Matlab: hhat = F h

Aalto University
School of Electrical
Engineering

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

3

31

Chebyshev (L_{∞}) Norm

- Chebyshev (minimax) norm:
 - Minimize the maximum component of the error norm
 - Requires an iteration loop and an end rule (for selected accuracy)
 - o The error function will be "equiripple"

$$E_{\infty}(e^{j\omega}) = \|H(e^{j\omega}) - \widehat{H}(e^{j\omega})\|_{\infty} = \max_{-\pi < \omega < \pi} |H(e^{j\omega}) - \widehat{H}(e^{j\omega})|$$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

Auditory Resolution

- Account for the properties of the human hearing
 - Linear or non-uniform frequency scale, e.g., critical bands (in Bark)
 - o The domain in which the error is matched (e.g., loudness or T60 domain)

Tools

- Auditory smoothing: Average of the spectrum with a sliding window (the window size should increase with frequency, as in octaves or Barks
- Weighting functions: Suppress less important frequencies in the error (e.g., weighting proportional to Bark bandwidths)
- Frequency warping: Expand the important frequency range; shrink the less important range

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

33

Frequency Warping

- Frequency scale warping before designing the filter
 - Replace the unit delay with a first-order allpass filter
 - λ is the warping parameter

$$z^{-1} \rightarrow \frac{z^{-1} - \lambda}{1 - \lambda z^{-1}}$$

Aalto University School of Electrical Engineering

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

35

Properties of Warped Filters

- Allpass filter → flat magnitude response with frequency-dependent group delay
- If $\lambda = 0.7661$ ($f_s = 48$ kHz), the warping closely matches the Bark scale (Smith & Abel 1999)
- Design the filter in warped frequency domain > stretch the important frequencies

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

How to Warp?

- Implement the filter in the warped frequency domain
 - o WFIR or WIIR structures
 - o More accuracy, but more computation as well
 - In WIIR structure the delay-free loops must be avoided → remap coefficients
- Unwarp the warped transfer function to a standard filter

Original

$$\lambda = 0.4$$

$$\lambda = 0.8$$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

37

37

Warped FIR Filter

• Chain of first-order allpass filters in an FIR structure

 $A(z) = \frac{z^{-1} + \lambda}{1 + \lambda z^{-1}}$

- s(n) is the signal to be warped, $\delta(n)$ is an impulse, $s_w(n)$ is the warped signal
- The extent of warping is determined by λ
 - o With $\lambda = 0$, the warped FIR filter becomes a standard FIR filter

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

Windowing Methods for FIR Filters

- Truncate the impulse response using a window function
- Many choices for windowing functions!
- Suitable for modeling measured/estimated impulse responses in audio
- In Matlab: fir1.m

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

39

39

Frequency Sampling Method

- Sample the target frequency response uniformly (magnitude & phase)
- Reflect it to the negative frequencies: same magnitude, opposite phase
- Use Inverse DFT (IDFT) to obtain the filter coefficients
- The length of the IDFT specifies the filter length
- Check the frequency response with zero-padded DFT
- Note: there will be "don't care" regions between the sample points
- In Matlab: fir2.m

February 2, 2024

Properties of Window Functions

Rectangular window

- o Minimizes the truncated time-domain L_2 norm
- o Gibb's phenomenon (passband ripple)
- o Low sidelobe rejection
- o Steep transition band

Other window functions

- o Hann
- o Hamming
- o Blackman
- o ...

February 2, 2024

4

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

41

Weighted LS FIR Filter Design

• Using a non-negative weight function W, minimize

$$E = \sum_{k=0}^{L-1} W(\omega_k) |H(\omega_k) - \widehat{H}(\omega_k)|^2$$

• Again, minimize the squared error:

$$\widehat{\boldsymbol{h}} = (\mathbf{F}^T \mathbf{W} \mathbf{F})^{-1} \mathbf{F}^T \mathbf{W} \boldsymbol{h}^T$$

- Give more weight to important points
 - Frequency ranges of interest

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

4

47

IIR Filter Design Methods

- Linear prediction
- Prony's method
- Fixed-pole IIR filters
 - o Balazs Bank 2007, 2008
- Graphic equalization

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

49

49

Linear Prediction

- Also used in Linear Predictive Coding (LPC)
- Powerful analysis technique, especially in speech processing
- Predict the next sample as a linear combination of previous samples
- Many applications
 - Spectral envelope estimation
 - o Pitch prediction
 - Signal modeling for sound synthesis
 - Detection of clicks in audio restoration

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

LPC Coefficients

Compute the next sample as a linear combination of the previous samples

$$\hat{x}(n) = \sum_{k=1}^{P} a_k x(n-k)$$

Minimize the expected value of the mean-squared prediction error

$$E\{e_n^2\} = E\{(x(n) - \hat{x}(n))^2\}$$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

5

51

LPC Model

- Analysis
 - Use the autocorrelation or covariance method to obtain prediction coefficients
 - FIR filter with prediction coefficients is an inverse filter, which whitens the input signal (decorrelation)
 - o Autocorrelation method → minimum phase
- Synthesis
 - Prediction coefficients used in an all-pole IIR filter yield a filter with the spectral characteristics of the input signal
- In Matlab: lpc.m

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

Prony's Method

 Design an IIR filter from a given impulse response

$$H(z) = \frac{B(z)}{A(z)}$$

 Solve denominator (all-pole IIR) coefficients using linear prediction of order N

$$\sum_{k=0}^{N} a_k z^{-k}$$

• Solve numerator (FIR) coefficients by matching the M + 1 first samples of the impulse response

$$\sum_{k=0}^{M} b_k z^{-k}$$

In Matlab: prony.m

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

5

57

"Duel of Digital Filters"

- Why is a FIR filter better?
- Why is an IIR filter better?
- ...in audio applications
- Brainstorm in small groups:
 - o Some groups collect advantages of FIR filters
 - o Other groups collect advantages of IIR filters
 - o Please list your ideas, so that we can write them down

February 2, 2024

"Duel of Digital Filters"

3

FIR Advantages

- Always stable
- Linear phase

IIR Advantages

- More efficient computationally
- Smaller order
- Parametric control possible
- Analog-like phase response
- Good for real-time applications

2 - 5

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

5

59

Fixed-Pole IIR Filters

- Perceptually-motivated parallel IIR structure proposed by Bank (2007)
- First, select pole frequencies, e.g.
 logarithmically: they form basis functions
- Then, solve zeros with LS method, as weights for the basis functions (d₀, d₁)
- That's the final implementation directly; no conversions needed
- Still, the efficiency and resolution can be as good as with warped filters

Source: B. Bank, Audio Equalization with Fixed-Pole Parallel Filters: An Efficient Alternative to Complex Smoothing, *Journal of AES*, 2013

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

60

Fixed-Pole IIR Filters

- Frequency resolution can be controlled by the pole positions (x)
 - Logarithmic pole positions gives a logarithmic frequency resolution
 - Alternatively, the resolution can be tweaked manually (arbitrarily) to fit the target response

B. Bank, "Loudspeaker and room response equalization using parallel filters: Comparison of pole positioning strategies," in Proc. AES 51st Int. Conf., 2013.

Engineering

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

61

Fixed-Pole IIR Filters

- When the poles are set \rightarrow linear optimization problem
- Least-squares solution can be used to solve zeros!

$$\mathbf{h}_{t} = \mathbf{M}\mathbf{p}_{t}$$

where \mathbf{h}_{t} is the target impulse response, \mathbf{M} is the modeling signal matrix, and p contains the zeros (and FIR part coeffs.)

$$\mathbf{p}_{\text{opt}} = (\mathbf{M}^T \mathbf{M})^{-1} \mathbf{M}^T \mathbf{h}_{\text{t}}$$

- Design can be done either in the time or frequency domain
 - Matrix M contains either impulse responses or the transfer functions of the all-pole second-order sections (basis functions)
 - In frequency domain: magnitude-only design & frequency-dependent weighting

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Graphic Equalizer Design

Cascade structure: use equalizing filters; well understood today

Parallel structure: band of resonator (bandpass) filters; difficult to design

Aalto University School of Electrical Engineering

Lehtonen, Sami Oksanen

February 2, 2024

63

Cascade Graphic Equalizer

- Each subfilter is an equalizing filter with fixed f_c and Q
- Gain G_k at each peak can be adjusted (elsewhere ≈ 0 dB)
- Logarithmic frequency division is used, which is closely related to the auditory frequency resolution
- Problem: **interaction** between bands...

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

February 2, 2024

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

65

Aalto University School of Electrical Engineering

- Interaction problem:
- Gain of EQ2 at 1 kHz is 1. < 0 dB
- Gain of EQ1 at 2 kHz is 2. > 0 dB
- Both filters affect the gain at all frequencies!!! (not only around their center frequency)

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

67

Cascade Graphic EQ for Octave Bands

- Naïve design leads to severe approximation problems
 - Filter gains = command gains

Aalto University

February 2, 2024

Novel Cascade Graphic EQ Design

- It is desirable to use 2nd-order band filters
- The most accurate cascade design uses different peak filter shapes than previously (Välimäki & Liski 2017, Liski et al. 2019)
- The magnitude response is optimized at center frequencies and at intermediate frequencies

Second-order cell $H_k(z)$

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

6

69

Cascade GEQ with Variable-Q Filters

- Force the magnitude response to be "constant" at its $f_{\rm c}$ and the 2 neighboring $f_{\rm c}$'s (Välimäki & Liski 2017)
- Approximately constant basis functions are obtained

Normalized magnitude responses of filters with different gain (-12 dB...12 dB)

February 2, 2024

Aalto University
School of Electri
Engineering

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Interaction Matrix

- Interaction matrix **B** shows how much each band filter leaks to neighboring bands (Oliver & Jot 2015; Välimäki & Liski 2017)
- Computed with discrete-time Fourier transform, when the band filters are adjusted to a prototype gain
- Matrix B is normalized so that it shows how much 1 dB of gain leaks from each band filter to other frequency points

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Frequency February 2, 2024

71

Cascade GEQ Based on 2nd-Order Filters

Use inverse matrix of **B** to solve the optimal dB-gains in the least-squares (LS) sense

$$\mathbf{g}_{\text{opt}} = \mathbf{B}^{-1}\mathbf{g}$$

After optimization: filter gains ≠ command gains

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Design with Symmetric Band Filters

- The latest version of the GEQ design (Liski et al., IEEE WASPAA-19) uses symmetric filters having a prescribed Nyquist gain: the ripple is reduced to about 0.8 dB
- The ideal target curve (---) is obtained with oversampling

75

Conclusions

- Properties of filters: magnitude and phase
 - Phase delay and group delay are identical when the phase is linear; otherwise, they are different
- Various audio filter design methods are available
 - For FIR filters: Least squares, weighted least squares, frequency sampling, impulse response truncation/windowing
 - The magnitude and phase responses of the FIR filter can be tuned independently
 - For IIR filters: linear prediction, Prony's method, fixed-pole design, graphic EQ
- Auditory resolution can be applied
 - With frequency weighting or warping or with a log frequency scale
- The most suitable method depends on the applications
- Typical design problems are equalizers, HRTF filters, reverberation algorithms, and musical-instrument responses

Lehtonen, Sami Oksanen

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria

Literature

- Easily accessible online book (check this out!)
 - Smith, J. O., "Introduction to Digital Filters with Audio Applications," http://ccrma.stanford.edu/~jos/filters/
- Filter design
 - o Parks, T. W. and Burrus, C. S. Digital Filter Design. John Wiley & Sons, 1987.
 - o Mitra, S. K. Digital Signal Processing. McGraw-Hill, 2002.
- Frequency warping
 - A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. K. Laine, and J. Huopaniemi, "Frequency-warped signal processing for audio applications," Journal of the Audio Engineering Society, vol. 48, no. 11, pp. 1011–1031, Nov. 2000.
 - o Smith, J. O. III and Abel, J. S. "The Bark and ERB bilinear transforms," IEEE Trans. Speech and Audio Process., Vol. 7, No, 6, pp. 697-708, Nov. 1999.
- Graphic equalizers
 - o J. Liski, "Equalizer Design for Sound Reproduction," DSc thesis, Aalto University, 2020.

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

7

77

References

- J. S. Abel and D. P. Berners, "Filter design using second-order peaking and shelving sections," in *Proc. Int. Computer Music* Conf., Miami, FL, USA, Nov. 2004.
- B. Bank, "Direct design of parallel second-order filters for instrument body modeling," in *Proc. Int. Computer Music Conf.*, Copenhagen, Denmark, Aug. 2007.
- B. Bank, "Perceptually motivated audio equalization using fixedpole parallel second-order filters," *IEEE Signal Processing Letters*, vol. 15, pp. 477-480, 2008.
- B. Bank, "Audio equalization with fixed-pole parallel filters: An
 efficient alternative to complex smoothing," *Journal of Audio*Engineering Society, vol. 61, pp. 39-49, 2013.
- B. Bank, "Loudspeaker and room response equalization using parallel filters: Comparison of pole positioning strategies," in Proc. AES 51st International Conf., Helsinki, Finland, Aug. 2013.
- B. Bank, "Warped, Kautz, and Fixed-Pole Parallel Filters: A Review," J. Audio Eng. Soc., vol. 70, no. 6, pp. 414–434, (2022 June). https://doi.org/10.17743/jaes.2022.0016
- Huopaniemi, J., Zacharov, N., and Karjalainen, M., "Objective and subjective evaluation of head-related transfer function filter design," in *Proc. 105th AES Convention*, preprint 4805, San Francisco, CA, USA, September 26-29, 1998. Invited paper.

- J. Huopaniemi, Virtual Acoustics and 3-D Sound in Multimedia Signal Processing. Doctoral thesis. Report no. 53 / Helsinki University of Technology, Laboratory of Acoustics and Audio Signal Processing. Espoo, Finland, 1999.
- R. J. Oliver and J.-M. Jot, "Efficient multi-band digital audio graphic equalizer with accurate frequency response control," in *Proc. AES 139th Conv.*, New York, NY, USA, Oct. 2015.
- Lehtonen, H.-M., Rauhala, J., and Välimäki, V. "Sparse multi-stage loss filter design for waveguide piano synthesis," In *Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics*, pp. 331-334, New Paltz, NY, USA, October 16-19, 2005.
- J. Liski, J. Rämö, and V. Välimäki and, "Graphic equalizer design with symmetric biquad filters," in *Proc. IEEE* WASPAA, Oct. 2019.
- V. Välimäki and J. D. Reiss, "All about audio equalization: Solutions and frontiers," Appl. Sci., vol. 6, no. 5, p. 129, May 2016.
- V. Välimäki and J. Liski, "Accurate cascade graphic equalizer," *IEEE Signal Processing Letters*, vol. 24, no. 2, pp. 176–180, Feb. 2017.

February 2, 2024

.a., <u>_</u>, _o_

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen

Learning Diary by Next Thursday

- Here are some tips what you could do this time (one of them, not all)
- Convert a linear-phase FIR filter to minimum phase using the Hilbert transform and/or cepstral windowing method and create plots to compare
- Auditory smoothing: compare what a few smoothing techniques can do to a "random" magnitude response, such as 1/3-octave smoothing
- Compare the effect of different window functions on the DFT spectrum (fft.m) of a pure tone or another signal (to truncate it)
- Compare two or more digital filters: the impulse response, the magnitude & phase responses (freqz.m), and/or the group delay (grpdelay.m), and the poles and zeros (zplane.m) could be plotted and studied

©2016-2024 Vesa Välimäki, Juho Liski, Heidi-Maria Lehtonen, Sami Oksanen February 2, 2024

79

79

Learning Diaries – Submitting Code

 Ensure that all files, including audio and functions, are included in the submitted material

Gloria Dal Santo

- Verify that the code runs successfully before submission
- When submitting functions, include a file demonstrating their usage
- When renaming files, declare the file extension accurately
- Utilize file compression in .zip format whenever possible
- Avoid using external packages.

February 2, 2024