Fast Network K-function-based Spatial Analysis

Tsz Nam Chan Hong Kong Baptist University edisonchan@comp.hkbu.edu.hk

Leong Hou U University of Macau SKL of Internet of Things for Smart City paklonip@um.edu.mo

Yun Peng Institute of Artificial Intelligence and Blockchain, Guangzhou University yunpeng@gzhu.edu.cn

Byron Choi Hong Kong Baptist University bchoi@comp.hkbu.edu.hk

Jianliang Xu Hong Kong Baptist University xujl@comp.hkbu.edu.hk

Overview of Network K-function

- Clustered
- Network *K*-function $K_P(\tau_d)$
 - A network K-function plot

- A fundamental GIS operation for checking whether the clusters/hotspots (discovered by the clustering/hotspot detection algorithms) in the datasets are significant.
- Network K-function is defined as:

$$K_{\underline{P}}(\tau) = \sum_{p_i \in P} \sum_{\substack{p_j \in P \\ p_i \neq p_i}} \mathbb{I}(\overline{dist_{\underline{G}}(p_i, p_j)} \leq \underline{\tau}) \qquad O(n(T_{SP} + n)) \text{ time } \otimes$$

where I denotes an indicator function.

- Domain experts need to:
 - Provide a road network G = (V, E), a location dataset $P = \{p_1, p_2, ..., p_n\}$, and D thresholds, which are $\tau_1, \tau_2, \dots, \tau_D$.
 - Randomly generate L datasets, which are $R_1, R_2, ..., R_L$, in the road network G.
 - 3. For each threshold τ_d ($1 \le d \le D$), compute the following three terms.
 - $(1) K_P(\tau_d)$

(2)
$$\mathcal{L}(\tau_d) = \min(K_{R_1}(\tau_d), K_{R_2}(\tau_d), \dots, K_{R_L}(\tau_d))$$

(2)
$$\mathcal{L}(\tau_d) = \min \left(K_{R_1}(\tau_d), K_{R_2}(\tau_d), \dots, K_{R_L}(\tau_d) \right)$$

(3) $U(\tau_d) = \max \left(K_{R_1}(\tau_d), K_{R_2}(\tau_d), \dots, K_{R_L}(\tau_d) \right)$

Generating a network K-function plot takes $O(LDn(T_{SP} + n))$ time \odot

Decompose the Network K-function

Neighbor-Sharing (NS) Method

Let P(e) be the set of data points in an edge eof a road network.

$$\begin{split} K_P(\tau) &= \sum_{p_i \in P} \sum_{p_j \in P} \mathbb{I}(dist_G(p_i, p_j) \leq \tau) \\ &= \sum_{\tilde{e} \in E} \sum_{p_i \in P(\tilde{e})} \sum_{e \in E} \sum_{p_j \in P(e)} \mathbb{I}(dist_G(p_i, p_j) \leq \tau) \\ &= \sum_{\tilde{e} \in E} \sum_{e \in E} C_P^{(\tilde{e}, e)}(\tau) \end{split}$$

where
$$C_P^{(\tilde{e},e)}(\tau) = \sum_{p_i \in P(\tilde{e})} \sum_{p_j \in P(e)} \mathbb{I}(dist_G(p_i, p_j) \leq \tau)$$

Question: Can we reduce the time complexity for computing the (\tilde{e}, e) -count function $C_p^{(\tilde{e}, e)}(\tau)$ (e.g., from $O(|P(\tilde{e})||P(e)|)$ to $O(|P(\tilde{e})| + |P(e)|)$?

There are four possible routes with length τ from any data point p_i in the edge $\tilde{e} = (a, b)$ to the edge e = (u, v). We have:

$$\tau_{au}(p_i) = \tau - dist_G(p_i, a) - dist_G(a, u)$$

$$\tau_{bu}(p_i) = \tau - dist_G(p_i, b) - dist_G(b, u)$$

$$\tau_{av}(p_i) = \tau - dist_G(p_i, a) - dist_G(a, v)$$

$$\tau_{bv}(p_i) = \tau - dist_G(p_i, b) - dist_G(b, v)$$

Maintain four sets of data points in the edge e =(u,v).

$$\ell_{au}(p_i) = \{ p_j \in P(e) : dist_G(u, p_j) \le \tau_{au}(p_i) \}$$

$$\ell_{bu}(p_i) = \{ p_j \in P(e) : dist_G(u, p_j) \le \tau_{bu}(p_i) \}$$

$$\ell_{av}(p_i) = \{ p_j \in P(e) : dist_G(v, p_j) \le \tau_{av}(p_i) \}$$

$$\ell_{bv}(p_i) = \{p_j \in P(e) : dist_G(v, p_j) \le \tau_{bv}(p_i)\}$$

- Takes $O(|P(\tilde{e})| + |P(e)|)$ time to compute $C_{\scriptscriptstyle D}^{(\widetilde{e},e)}(au)$ \odot
- Takes $O(LD(|E|T_{SP} + n|E|) + Ln \log n)$ time to generate the network K-function plot (Refer to the paper) ©

Theoretical Results

Experimental Results

