Stats 545: Midterm exam

This is a 75-minute exam for 32 points. Write your name and PUID on each sheet, and also include the number of answer sheets. Attempt all questions.

1 Matrix operations

[8 pts]

Let A, Q, R be $N \times N$ matrices and x an $N \times 1$ vector.

- 1. What is the definition of the matrix norm $||A||_2$? If A has an eigenvalue λ , show that $||A||_2 \ge \lambda$. If A = QR, where Q is an orthonormal (rotation) matrix, show that $||Q||_2 = 1$ and $||A||_2 = ||R||_2$. [3pts]
- 2. If matrix-matrix and matrix-vector multiplication take N^3 and N^2 operations, how many operations are needed to calculate A^8x and A^9 ? What is the cost of A^P in big-O, as a function of N and P? [3pts]
- 3. Define QR and LU decomposition, and give an advantage of each over the other.

[2pts]

2 Sorting and gradient descent

[8 pts]

- 1. Describe an algorithm to find the median (i.e. middle value) of N numbers, specifying its cost in big-O notation. Your algorithm should be faster than $O(N^2)$. You can assume N is odd and all numbers are unique. [3pts]
- 2. Give the big-O cost of quicksort. Give its average cost, explaining what you mean by 'average'. [2pts]
- 3. Give an advantage and disadvantage of gradient descent vs stochastic gradient descent. [1pt]
- 4. Briefly explain the backward Euler (or proximal point) method. Explain why it never increases the value of the objective function. [2pts]

3 Clustering and dynamic programming

[8 pts]

1. Explain single linkage and centroid linkage. For two clusters of size M and N, what is the cost of computing single linkage distance? And centroid linkage? [3pts]

There are N houses in a row, the ith house having value v_i in it. A thief wants to steal from these houses, but cannot steal from two adjacent houses because the owner of a stolen house will wake up their left and right neighbors. The thief wants to steal as much value as possible.

- 2. A greedy strategy is to steal from the most valuable house, and then from the next most valuable house that is available, repeating till no houses are left. Give a setting of N and v_i 's where this is suboptimal. [1pts]
- 3. Instead, the thief will use dynamic programming to decide which houses to break into. Write S_i for the maximum value he can steal from the first i houses. Express S_i as a function of S_j , j < i. Use this to describe how to compute S_N (the forward pass), and then to decide which houses to break into (the backward pass). Write the cost of this algorithm in big-O notation, explaining your answer. [4pts]

4 The EM algorithm

[8 pts]

[1pts]

- 1. What is a *minimal* exponential family distribution. Give an example that is NOT minimal. [1pts]
- 2. Give an advantage and disadvantage of EM vs gradient ascent to perform MLE.
- 3. Define KL divergence between probabilities p(x) and q(x). Prove $KL(p||q) \ge 0$ using Jensen's inequality. [2pts]

 x_i follows a Poisson distribution with with unknown mean λ (recall that the Poisson distribution has the form $p(x|\lambda) = \lambda^x \exp(-\lambda)/x!$). Instead of x_i , we observe y_i , where $y_i = x_i$ if $x_i \ge 5$, else $y_i = 0$. We observe N datapoints $Y = (y_1, \dots, y_N)$.

1. Write the log joint-probability $\log p(Y, X|\lambda)$. Given λ, σ^2 , write the $q_i(x_i)$ that maximizes \mathcal{F} . Is this an exponential family distribution? Explain. Given the q's how do you update λ ? [4pts]