Formal Query Languages: Relational Algebra

- Set Theory Operations
- Specific Relational Operations
- Write Queries in Relational Algebra

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Relational Algebra -+ * +

- Operations on entire relations
 - Operands are (constant or variable) relations
 - Result is a relation
- Set theory operations:
 - Union, Intersection, Difference and Cartesian Product (product for short)
- Specific relational operations:
 - Selection, Projection, Join and Division
- Complete set of relational algebra operations:
 - Select, project, product, union and difference
- SQL is based on concepts from relational algebra

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

0

Selection

Unary operator Select, σ:

 $\sigma_{\text{selection-condition}}(r)$

- □ E.g., $\sigma_{Name= 'John' \lor Name = 'Susan'}$ (STUDENT)
 - result = $\{t \mid t \in r \text{ and } (t[Name] = 'John' \text{ or } t[Name] = 'Susan')\}$
- Selection condition any logical expression on attributes of r involving any applicable comparison operator
 {=,<, ≤, >, ≥, ≠}

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

3

Example of Selection

- \Box σ Name='Bob' \vee Maior = 'Math' (S) = ?
- How can I get a copy of S?
- a now can I get a copy of 5.

Relation **S**

SID	Name	Major
1	Bob	CS
3	Ann	CoE
4	Bob	Math

□ How can I get an empty copy of S?

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

4

Projection

 π

- Unary operator Project, п:
 - Π_{attribute-list} (r)
 - Attribute-list $\subseteq R$

- Relation **S**
- **E.g.,** Π Name, Major (STUDENT)
 - result = $\{t \mid t \in r \text{ and } t[Name, Major]\}$
- □ What about $\pi_{SID, Major}(S) = ?$

SID	Name	Major
1	Bob	CS
3	Ann	CoE
4	Bob	Math
5	Bob	CS

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

5

Renaming Operator

- □ Renaming attributes of the result RSLT(StudentID, GPA) \leftarrow Π SID, OPA (HS)
- □ Change the name of Attributes (in general): $\rho(a1,a2,a3,..an)(r)$
- Example:

$$\rho(\mbox{StudentID, GPA})$$
 ($$\pi_{\mbox{ SID, QPA}}$ ($\sigma_{\mbox{ Dept = 'CSD'}}$ $$^{\mbox{ QPA>3.5}}$ (STUDENT))$

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Relational Algebra Expressions

- □ Query: List the QPA of all students (SID) in CSD whose QPA is greater than 3.5
- □ STUDENT (SID, FName, SName, Dept, Major, QPA)
- Nesting the operations

 $\Pi_{SID, OPA}$ ($\sigma_{Dept = 'CSD' \land OPA>3.5}$ (STUDENT))

□ **Sequence** of operations

$$\label{eq:hsparse} \begin{split} \text{HS} \leftarrow \sigma_{\text{ Dept = 'CSD'}} &\sim_{\text{QPA}>3.5} \text{ (STUDENT)} \\ \text{RESULT} \leftarrow \pi_{\text{ SID, OPA}} \text{ (HS)} \end{split}$$

- Query tree
 - leaves nodes are relations and internal nodes are operations

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

6

Properties of σ and π

- \Box $\sigma_{cond1} (\sigma_{cond2} (R)) = \sigma_{cond2} (\sigma_{cond1} (R))$
- $\Box \ \sigma_{cond1} (\sigma_{cond2} (R)) = \sigma_{cond2} \wedge_{cond1} (R)$ $= \sigma_{cond1} \wedge_{cond2} (R)$
- \Box Π_{list1} (Π_{list2} (R)) = Π_{list1} (R) When?

Efficient / Optimized Queries

- □ Reduce cost of computing (a.k.a, time-complexity)
 - Short-circuit (fast computing logical expressions)
 - Execute faster comparisons first
- □ Reduce memory needs (a.k.a., space-complexity)
 - Execute Selections with high selectivity (i.e., with more strict conditions) to reduce the size of intermediate tables.
 - Execute Projects as early as possible to reduce tuple size

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Selectivity

- Selectivity = The ratio of the number of records that satisfy a condition to the total number of records
- □ Let assume that Students
 - Female = 55% & Male 45%
 - CS majors = 5% & Non-CS majors = 95%
- □ Which is more efficient?
 - $\sigma_{\text{Major}= '\text{Non-CS'}} \cap \sigma_{\text{Major}= '\text{Female'}} (STUDENT)$
 - σ_{Gender = 'Female' A Major= 'Non-CS'} (STUDENT)
 - σ Major= 'CS' Gender = 'Female' (STUDENT)

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Basic Set Operations

 \square r \cup s \square r \cap s

 \Box r - s

relation r

Α	В	С
а	b	С
d	а	f
С	b	d

relation s

Α	В	С
b	g	а
d	а	f

- \Box Can we perform \cup , \cap , between any two relations?
 - They need to be union compatible
 - -IRI = ISI and
 - Both ∪ and ∩ are commutative operations tribute Names?

 Difference is not commutative

 55, Panos K. Chrycoutt: - corresponding attributes have same domains

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Basic Set Operations

relation r

Α	В	С
а	b	С
d	а	f
С	b	d

relation s

D	Е	F
b	g	а
d	а	f

- \Box Can we perform \cup , \cap , between any two relations?
 - They need to be *union compatible*
 - -|R| = |S| and
 - corresponding attributes have same domains

 \Box $r \cup s$

 \Box $r \cap s$

 \Box r - S

- Both ∪ and ∩ are commutative operations tribute Names?

 Difference is not commutative

 35, Panos K. Characast*

Cartesian Product

relation r

relation **s**

rxs

Α	В	С
а	b	С
d	а	f
С	b	d
α_r		

В b | g

- \Box Let p(P) = r(R) x s(S)
- |P| = ? and |p| = ?
 - $|P| = |R| + |S| = \alpha_r + \alpha_s$
 - |p| = |r| * |s|
- □ Name conflicts are resolved by using the relations names as prefixes: r.A, r.B, S.A, S.B

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

15

Common Query

□ Library microDB:

FK Librarian (SSN, Name, SNO)

- Section (SNO, SName, Head)
- □ List the names of head librarians.
- □ How?

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

List the names of head librarians

- □ L: Librarian, S: Section
- LS ← Librarian X Section;
- LS schema:

(L.SSN,L.Name,L.SNO, S.SNO,S.Sname, S.Head)

 $HL \leftarrow \sigma_{L.SSN} = S.Head (LS);$

 $RSLT \leftarrow \Pi_{L.name}$ (HL);

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Equi-Join

- $r \bowtie r \bowtie r.Ai = s.Aj S$
- =-join is a macro of

 $\sigma_{r.Ai = s.Aj}(r \times s)$

relation r

 \Box =-join of r(R) and s(S):

 $r \bowtie_{r,B = s,D} s = ?$

elation s		
С	D	
3	4	
6	8	

Θ-Join

- Θ-join of r(R) and s(S)on attributes r.A_i and s.A_i

$$r \bowtie_{r,Ai \theta s,Aj} s$$

= $\sigma_{r,Ai \theta s,Aj} (r \times s)$

- \bigcirc >-join of r(R) and s(S):
 - $r \bowtie_{r,B \ge s,D} s = ?$

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

relation r

- 1	relation I			
Α	В	С	D	
1	2	3	4	
2	4	6	8	
1	2	4	8	
2	6	6	8	
8	2	თ	4	
2	4	3	4	
1 11				

relation s

С	D
3	4
6	8

17

Example of Θ-Join

 \square \geq -join of r(R) and s(S):

$$r \bowtie_{r,B \ge s,D} s = ?$$

r.A	r.B	r.C	r.D	s.C	s.D
2	4	6	8	3	4
2	4	3	4	3	4
2	6	6	8	3	4

relation **s**

6 6

2 3 4

relation r

3

 2
 4
 6
 8

 1
 2
 4
 8

C	D
3	4
6	8

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

 $r \bowtie s = r \times s, \Theta = \phi$

1Ω

Natural-Join

Equi-join without duplicate columns

r	* _P	S
r	*P	S

- ightharpoonup P=list of attributes: P=R \cap S
- $\square r*s = \prod_{R \cup S} (r \bowtie_{r,P = s,P} s)$
- □ r*s = ?
- □ Note other notations & meanings
 - $r \bowtie s = r * s, R \cap S \neq \phi$
 - r * s = r x s, $R \cap S = \phi$

relation r

Α	В	С	D
1	2	3	4
2	4	6	8
1	2	4	8
2	6	6	8
8	2	3	4
2	4	3	4

relation **s**

С	D	Е
3	4	6
6	8	8
		19