MAD 4204, Homework 1

Standard notation: Recall from class that $[n] := \{1, 2, ..., n\}$ and that for S a set and $k \in \mathbb{N}$ that $\binom{S}{k}$ is the set of k-element subsets of S. Also, let 2^S denote the power set of S. For $\mathcal{F} \subseteq 2^S$, we say $F \in \mathcal{F}$ is maximal if $F \subseteq F' \in \mathcal{F}$ implies F' = F and maximum if $|F'| \leq |F|$ for all $F' \in \mathcal{F}$.

A matroid \mathcal{M}_B on the finite ground set S defined in terms of bases is a set $\mathcal{M}_B \subseteq \binom{S}{k}$ satisfying the exchange property: for all $A, B \in \mathcal{M}_B$ and $a \in A$ there exists some $b \in B$ so that the set $(A \setminus \{a\}) \cup \{b\}$ is in \mathcal{M}_B . Here, each $B \in \mathcal{M}$ is a basis.

Problems to turn in:

1. Let G = ([n], E) be a graph and let $\overline{G} = ([n], {[n] \choose 2} \setminus E)$ be its complement. Prove for n sufficiently large that at least one of G and \overline{G} contains a cycle.

Your proof should include a value n that guarantees this property.

- 2. Let G = ([n], E) be a finite simple graph. Let M be a maximal matching in G and M' be a maximum matching in G. Prove that $|M'| \leq 2|M|$.
- 3. For \mathcal{M} a matroid on ground set S defined in terms of bases, we say $I \subseteq S$ is independent if there exists $B \in \mathcal{M}$ so that $I \subseteq B$. An alternate definition of a matroid \mathcal{M}_I on ground set S in terms of independent sets is that $\mathcal{M}_I \subseteq 2^S$ so that:
 - (hereditary property) if $A \subseteq B \in \mathcal{M}_I$, then $A \in \mathcal{M}_I$,
 - (augmentation property) for $A, B \in \mathcal{M}_I$ with |A| < |B| there exists $b \in B$ so that $A \cup \{b\} \in \mathcal{M}_I$.

We show these definitions are equivalent by solving:

- (a) For \mathcal{M}_I a matroid defined in terms of its independent sets, we say $B \in \mathcal{M}_I$ is a basis if B is maximal in \mathcal{M}_I . Prove two bases in \mathcal{M}_I satisfy the exchange property.
- (b) For \mathcal{M}_B a matroid defined in terms of its bases, show that two independent sets A, B of \mathcal{M} satisfy the augmentation property.

 (Compare this with Lemma 10.10 in the course text)
- 4. For \mathcal{M} a matroid on ground set S (from Problem 3, we can define it in terms of bases or independent sets, whichever is more convenient), let $w: S \to \mathbb{R}_{\geq 0}$. For B a basis in \mathcal{M} , define $w(B) = \sum_{b \in B} w(b)$.

Describe an algorithm for finding the basis B minimizing w(B) and prove that it is optimal. (Hint: compare to the greedy algorithm for finding the minimum weighted spanning tree)

Recommended problems:

- 1. Read Chapter 3 if you haven't already.
- 2. Do all the Quick Check problems in Chapters 9 and 10.1.

- 3. For G=(V,E) a finite simple graph, the neighborhood of $v\in V$ is the set $N(v):=\{u\in V:(u,v)\in E\}$ and the degree of v is d(v):=|N(v)|. Is there a simple graph G on six vertices whose degrees are 4,4,4,2,1,1? This is called the degree sequence of G.
- 4. Find two trees with the same degree sequence that are not isomorphic.
- 5. Exercise 10.10: For G a finite simple graph, show at least one of G and \overline{G} is connected.