Exercises 5, 7, 8, 9, 11, and 12 at the end of Chapter 3 in the book by do Carmo.

1. Let \mathcal{M} be an n dimensional manifold, and $(\overline{M}, \overline{g})$ an n+k dimensional Riemannian manifold. Consider an immersion $f: \mathcal{M} \to \overline{\mathcal{M}}$. Then $g=f^*\overline{g}$ is a metric on \mathcal{M} . Let $p \in \mathcal{M}$ and U an open neighborhood such that f(U) is a submanifold of \overline{M} . Furthermore let X and Y be vector fields on f(U). Let \overline{X} and \overline{Y} be their extensions to an open set in \overline{M} . Define $\nabla_X Y|_p = (df)^{-1}(\Pi_T \overline{\nabla}_{\overline{X}} \overline{Y}|_p)$ where $\overline{\nabla}$ is the Riemann connection on \overline{M} , Π_q is, for $q \in f(U)$, the orthogonal projection of $T_q \mathcal{M}$ to $df(T_{f^{-1}(q)} \mathcal{M})$, that is the projection to the tangent space of the submanifold. Show that ∇ defined above is the Riemannian connection on \mathcal{M} .