ADVANCED CALCULUS MA11003

SECTION 11, 12, & 15CD

Dr. Jitendra Kumar

Professor
Department of Mathematics
Indian Institute of Technology Kharagpur
West Bengal 721302, India

Webpage: http://www.facweb.iitkgp.ac.in/~jkumar/

Concepts Covered

Differential Calculus

Functions of Several Variables

- **☐** Composite Functions
- **☐** Homogeneous Functions

Composite Functions

Consider
$$z = f(x, y)$$
 \rightarrow (1)

Let
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$$
 (2) or $\begin{cases} x = \phi(u, v) \\ y = \psi(u, v) \end{cases}$ (2')

The equations (1 & 2) or (1 & 2') are said to define z as composite function of t or u & v.

Differentiation of Composite Functions

Let z = f(x, y) posses continuous partial derivatives (differentiable) and let $x = \phi(t)$, $y = \psi(t)$ posses continuous derivatives (differentiable). Then

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Proof: Let z = f(x, y), $x = \phi(t)$, $y = \psi(t)$ be a composite function of t.

Assuming z, ϕ, ψ to be differentiable

$$\Delta z = z_x \Delta x + z_y \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

Dividing by Δt

$$\frac{\Delta z}{\Delta t} = \frac{\partial z}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial z}{\partial y} \frac{\Delta y}{\Delta t} + \epsilon_1 \frac{\Delta x}{\Delta t} + \epsilon_2 \frac{\Delta y}{\Delta t}$$

Taking limit $\Delta t \to 0 \ (\Delta x \to 0, \ \Delta y \to 0)$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$

Differentiation of Composite Functions

For the case
$$z = f(x, y)$$
 $x = \phi(u, v)$, $y = \psi(u, v)$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

Problem - 1 Given
$$z = xy$$
; $x = \cos t$, $y = \sin t$. Find $\frac{\mathrm{d}z}{\mathrm{d}t}$.

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$= y(-\sin t) + x \cos t$$

$$= -\sin^2 t + \cos^2 t$$

$$= \cos 2t$$

Problem - 2 Let z be a function of x & y. Further, it is given that

$$x = e^{u} + e^{-v} \qquad \qquad y = e^{-u} + e^{v}$$
 Then show that
$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} = \frac{\partial z}{\partial x} e^{u} + \frac{\partial z}{\partial y} (-e^{-u})$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v} = -\frac{\partial z}{\partial x} e^{-v} + \frac{\partial z}{\partial y} e^{v}$$

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} (e^u + e^{-v}) - \frac{\partial z}{\partial y} (e^{-u} + e^v) = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$$

Homogeneous Functions

An expression in (x, y) is homogeneous of order n if it can be expressed as

$$x^n f\left(\frac{y}{x}\right)$$

OR

A function f(x, y) is said to be homogeneous of order n if it satisfies

$$f(tx, ty) = t^n f(x, y)$$

Example of Homogeneous Functions

•
$$f(x,y) = a_0 x^n + a_1 x^{n-1} y + a_2 x^{n-2} y^2 + \dots + a_n y^n$$

$$= x^{n} \left(a_{0} + a_{1} \left(\frac{y}{x} \right) + a_{2} \left(\frac{y}{x} \right)^{2} + \dots + a_{n} \left(\frac{y}{x} \right)^{n} \right)$$

$$g \left(\frac{y}{x} \right)$$

Homogeneous function of order n

•
$$f(x,y) = \frac{\sqrt{y} + \sqrt{x}}{y + x} = \frac{\sqrt{x}}{x} \frac{\sqrt{\frac{y}{x}} + 1}{\frac{y}{x} + 1} = x^{-\frac{1}{2}} g\left(\frac{y}{x}\right)$$
 Homogeneous function of order $-\frac{1}{2}$

Euler's Theorem on Homogeneous Functions

If z = f(x, y) be a homogeneous function of x & y of order n, then

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz, \qquad \forall x, y \in D$$

Given
$$z = f(x, y) = x^n g\left(\frac{y}{x}\right)$$

$$\frac{\partial z}{\partial x} = n \, x^{n-1} g\left(\frac{y}{x}\right) + x^n \left(-\frac{y}{x^2}\right) g'\left(\frac{y}{x}\right) = n \, x^{n-1} g\left(\frac{y}{x}\right) - y \, x^{n-2} \, g'\left(\frac{y}{x}\right)$$

$$\frac{\partial z}{\partial y} = x^n \left(\frac{1}{x}\right) g'\left(\frac{y}{x}\right)$$

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = n x^n g\left(\frac{y}{x}\right) - y x^{n-1} g'\left(\frac{y}{x}\right) + y x^{n-1} g'\left(\frac{y}{x}\right) = nz$$

Problem - 3 If
$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
, $x \neq y$. Then, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2x$

Let
$$z = \tan u = \frac{x^3 + y^3}{x - y} = x^2 \left(\frac{1 + \left(\frac{y}{x} \right)^3}{1 - \frac{y}{x}} \right)$$
 Homogeneous function of order 2

Euler's Theroem:
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z$$

Subst. $z = \tan u$ gives

$$x \sec^2 u \frac{\partial u}{\partial x} + y \sec^2 u \frac{\partial u}{\partial y} = 2 \tan u$$

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

Euler's Theorem on Homogeneous Functions (Generalization)

If z = f(x, y) be a homogeneous function of x & y of order n, then

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz, \qquad \forall x, y \in D$$

If z = f(x, y) be a homogeneous function of x & y of order n, then

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z, \qquad \forall x, y \in D$$

LINK FOR RESPONSES: http://www.facweb.iitkgp.ac.in/~jkumar/teach/MA11003.html

Euler's Theorem on Homogeneous Functions (Generalization)

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z, \qquad \forall x, y \in D$$

Question: Let z = xy $f\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$, where f & g are 2 times differentiable functions.

Then
$$x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2}$$
 equals

(A)	$xy f\left(\frac{y}{x}\right)$	(B)	$2 xy f\left(\frac{y}{x}\right)$
(C)	$2 xy g\left(\frac{y}{x}\right)$	(D)	$xy g\left(\frac{y}{x}\right)$

Problem - 4 Let $z = xy f\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$, where f & g are 2 times differentiable functions.

Then evaluate
$$x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2}$$

Let $z = u_1 + u_2$, where

$$u_1 = xy f\left(\frac{y}{x}\right)$$

Hom. function of order 2

$$u_2 = g\left(\frac{y}{x}\right)$$

Hom. function of order 0

 u_1 : Hom. function of order 2

 u_2 : Hom. function of order 0

 $z = u_1 + u_2$

Euler's Theorem on $u_1 \& u_2$

$$u_1 = xy f\left(\frac{y}{x}\right)$$
 $u_2 = g\left(\frac{y}{x}\right)$

$$u_2 = g\left(\frac{y}{x}\right)$$

$$x^{2} \frac{\partial^{2} u_{1}}{\partial x^{2}} + 2xy \frac{\partial^{2} u_{1}}{\partial x \partial y} + y^{2} \frac{\partial^{2} u_{1}}{\partial y^{2}} = 2 u_{1}$$

$$x^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} + 2xy \frac{\partial^{2} u_{2}}{\partial x \partial y} + y^{2} \frac{\partial^{2} u_{2}}{\partial y^{2}} = 0$$

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = 2 xy f\left(\frac{y}{x}\right)$$

KEY TAKEAWAY

Differentiation of Composite Functions

$$z = f(x, y), x = \phi(t), y = \psi(t)$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$

$$z = f(x, y), \quad x = \phi(u, v), \quad y = \psi(u, v)$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \qquad \qquad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

Euler's Theroem:
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$$

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z$$

Thank Ofour