UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET SARAJEVO

SIMPLEKS ALGORITAM

TUTORIJAL BR. 1

Predmet: Osnove operacionih istraživanja

Nastavnik: Prof. dr. Željko Jurić

Saradnik: Denis Hasanbašić

Studij: Elektrotehnika

Smjer: Računarstvo i informatika

SADRŽAJ

- 1. Uvod
- 2. Primjeri *Simpleks algoritam*
 - Primjer br. 1
 - Primjer br. 2
- 3. Dodaci primjerima Očitavanje vrijednosti dualnih promjenljivih iz Simpleks tabele
 - Dodatak primjeru br. 1
- 4. Zadaci Simpleks algoritam
 - Zadatak br. 1
 - Zadatak br. 2

UVOD

RJEŠAVANJE PROBLEMA LINEARNOG PROGRAMIRANJA

PRIMJENOM SIMPLEKS ALGORITMA

- 1. Formirati standardnu formu problema linearnog programiranja;
- 2. Formirati *normalnu formu* problema linearnog programiranja;
- 3. Formirati početnu Simpleks tabelu;
- 4. Provjeriti uslov zaustavljanja Simpleks algoritma;
- 5. Odrediti vodeću kolonu;
- 6. Odrediti *vodeći red*;
- 7. Formirati novu Simpleks tabelu;

PRIMJERI

PRIMJER BR. 1

Pekara proizvodi bijeli i crni hljeb te koristi tri osnovna sastojka: brašno, vodu i ulje. Za potrebe proizvodnje pekara svaki dan može nabaviti najviše 20 kilograma brašna, 40 litara vode i 10 litara ulja. Za proizvodnju jedne ture bijelog hljeba potrebno je 4 kilograma brašna, 6 litara vode i 2 litre ulja. Za proizvodnju jedne ture crnog hljeba potrebno je 2 kilograma brašna, 8 litara vode i 2 litre ulja. Pekara jednom turom bijelog hljeba dobije 10 KM, a jednom turom crnog hljeba 15 KM. Potrebno je odrediti plan proizvodnje za pekaru koji omogućava ostvarivanje maksimalne dobiti, uzimajući u obzir postavljene zahtjeve.

$$arg max Z = 10 x_1 + 15 x_2$$

p.o.

$$4x_1 + 2x_2 \le 20$$

$$6x_1 + 8x_2 \le 40$$

$$2 x_1 + 2 x_2 \le 10$$

$$x_1 \ge 0, x_2 \ge 0$$

arg max
$$Z = 10 x_1 + 15 x_2$$

p.o.
 $4 x_1 + 2 x_2 + x_3 = 20$
 $6 x_1 + 8 x_2 + x_4 = 40$
 $2 x_1 + 2 x_2 + x_5 = 10$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$

Formirati početnu Simpleks tabelu

Baza	b_i	x_1	x_2	x_3	x_4	x_5
x_3	20	4	2	1	0	0
X_4	40	6	8	0	1	0
x_5	10	2	2	0	0	1
	0	10	15	0	0	0

Iteracija br. 1: Provjeriti uslov zaustavljanja Simpleks algoritma

Da li postoji pozitivan koeficijent u posljednjem redu Simpleks tabele?

Baza	b_i	x_1	x_2	x_3	x_4	x_5
x_3	20	4	2	1	0	0
X_4	40	6	8	0	1	0
x_5	10	2	2	0	0	1
	0	10	15	0	0	0

Iteracija br. 1: Odrediti vodeću kolonu

Koji je najveći pozitivni koeficijent u posljednjem redu Simpleks tabele?

Baza	b_i	x_1	x_2	x_3	x_4	x_5
x_3	20	4	2	1	0	0
X_4	40	6	8	0	1	0
x_5	10	2	2	0	0	1
	0	10	15	0	0	0

Iteracija br. 1: Odrediti vodeći red

Koja je najmanja nenegativna vrijednost koeficijenta t_i ?

Baza	b_i	x_1	x_2	x_3	<i>x</i> ₄	x_5	t_i
x_3	20	4	2	1	0	0	20/2=10
x_4	40	6	8	0	1	0	40/8=5
x_5	10	2	2	0	0	1	10/2=5
	0	10	15	0	0	0	

Iteracija br. 1: Formirati novu Simpleks tabelu

Promjenljiva x_2 ulazi u bazu. Promjenljiva x_4 izlazi iz baze.

Elemente vodećeg reda dijelimo sa vodećim elementom 8.

Od *I* reda oduzimamo vodeći red pomnožen sa 2.

Od III reda oduzimamo vodeći red pomnožen sa 2.

Od IV reda oduzimamo vodeći red pomnožen sa 15.

Baza	b_i	x_1	x_2	x_3	x_4	x_5
x_3	10	5/2	0	1	-1/4	0
x_2	5	3/4	1	0	1/8	0
x_5	0	1/2	0	0	-1/4	1
	-75	-5/4	0	0	-15/8	0

Iteracija br. 2: Provjeriti uslov zaustavljanja Simpleks algoritma

Da li postoji pozitivan koeficijent u posljednjem redu Simpleks tabele?

Baza	b_i	x_{I}	x_2	x_3	x_4	x_5
x_3	10	5/2	0	1	-1/4	0
x_2	5	3/4	1	0	1/8	0
x_5	0	1/2	0	0	-1/4	1
	-75	-5/4	0	0	-15/8	0

$$x_1 = 0$$

$$x_2 = 5$$

$$Z = 75$$

PRIMJER BR. 2

Da bi student savladao njemački jezik, potrebno je da najmanje 10 sati sedmično uči gramatiku i isto toliko vježba pravopis. Student može pohađati dva kursa iz njemačkog jezika istovremeno. Prvi kurs predviđa učenje gramatike 2 sata i vježbanje pravopisa 4 sata sedmično. Drugi kurs predviđa učenje gramatike 2 sata i vježbanje pravopisa 6 sati sedmično. Cijena pohađanja prvog kursa je 3 KM po satu, a drugog kursa 5 KM po satu. Potrebno je napraviti plan učenja za studenta koji omogućava ostvarivanje minimalnih troškova, uzimajući u obzir postavljene zahtjeve.

 $\arg\min Z = 3 x_1 + 5 x_2$

p.o.

$$2 x_1 + 2 x_2 \ge 10$$

$$4x_1 + 6x_2 \ge 10$$

$$x_1 \ge 0, x_2 \ge 0$$

Promjenljive x_4 i x_6 su vještačke promjenljive. Uvodi se kazneni koeficijent M.

arg min
$$Z = 10 x_1 + 15 x_2 + M x_4 + M x_6$$

p.o.

$$2 x_1 + 2 x_2 - x_3 + x_4 = 10$$

$$4 x_1 + 6 x_2 - x_5 + x_6 = 10$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0$$

Eliminišemo promjenljive x_4 i x_6 iz funkcije cilja.

$$x_4 = 10 - 2 x_1 - 2 x_2 + x_3$$

$$x_6 = 10 - 4 x_1 - 6 x_2 + x_5$$

$$Z = 3 x_1 + 5 x_2 + M (10 - 2 x_1 - 2 x_2 + x_3) + M (10 - 4 x_1 - 6 x_2 + x_5)$$

$$Z = (3 - 6M) x_1 + (5 - 8M) x_2 + M x_3 + M x_5 + 20M$$

Funkciju cilja pomnožimo sa -1.

arg max
$$Z = (6M - 3) x_1 + (8M - 5) x_2 - M x_3 - M x_5 - 20M$$

p.o.
 $2 x_1 + 2 x_2 - x_3 + x_4 = 10$
 $4 x_1 + 6 x_2 - x_5 + x_6 = 10$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0$

Formirati početnu Simpleks tabelu

Baza	b_i	x_1	x_2	x_3	<i>x</i> ₄	x_5	x_6
x_4	10	2	2	-1	1	0	0
x_6	10	4	6	0	0	-1	1
M	-20	6	8	-1	0	-1	0
	0	-3	-5	0	0	0	0

<u>Iteracija br. 1:</u> Provjeriti uslov zaustavljanja *Simpleks algoritma*

Da li postoji pozitivan koeficijent u pretposljednjem redu Simpleks tabele?

Baza	b_i	x_I	x_2	x_3	<i>x</i> ₄	x_5	x_6
x_4	10	2	2	-1	1	0	0
<i>x</i> ₆	10	4	6	0	0	-1	1
M	-20	6	8	-1	0	-1	0
	0	-3	-5	0	0	0	0

Iteracija br. 1: Odrediti vodeću kolonu

Koji je najveći pozitivni koeficijent u pretposljednjem (i posljednjem) redu Simpleks tabele?

Baza	b_i	x_1	x_2	x_3	x_4	x_5	x_6
x_4	10	2	2	-1	1	0	0
x_6	10	4	6	0	0	-1	1
M	-20	6	8	-1	0	-1	0
	0	-3	-5	0	0	0	0

Iteracija br. 1: Odrediti vodeći red

Koja je najmanja nenegativna vrijednost koeficijenta t_i ?

Baza	b_i	x_I	x_2	x_3	x_4	x_5	x_6	t_i
x_4	10	2	2	-1	1	0	0	5
x_6	10	4	6	0	0	-1	1	5/3
M	-20	6	8	-1	0	-1	0	
	0	-3	-5	0	0	0	0	

Iteracija br. 1: Formirati novu Simpleks tabelu

Promjenljiva x_2 ulazi u bazu. Promjenljiva x_6 izlazi iz baze.

Promjenljiva x_6 je vještačka promjenljiva koju je moguće eliminisati.

Elemente vodećeg reda dijelimo sa vodećim elementom 6.

Od I reda oduzimamo vodeći red pomnožen sa 2.

Od III reda oduzimamo vodeći red pomnožen sa 8.

Sa *IV* redom sabiramo vodeći red pomnožen sa 5.

Baza	b_i	x_1	x_2	x_3	x_4	x_5
x_4	20/3	2/3	0	-1	1	1/3
x_2	5/3	2/3	1	0	0	-1/6
M	-50/3	2/3	0	-1	0	1/3
	25/3	1/3	0	0	0	-5/6

Iteracija br. 2: Provjeriti uslov zaustavljanja Simpleks algoritma

Da li postoji pozitivan koeficijent u pretposljednjem redu Simpleks tabele?

Baza	b_i	x_1	x_2	x_3	x_4	x_5
X_4	20/3	2/3	0	-1	1	1/3
x_2	5/3	2/3	1	0	0	-1/6
M	-50/3	2/3	0	-1	0	1/3
	25/3	1/3	0	0	0	-5/6

Iteracija br. 2: Odrediti vodeću kolonu

Koji je najveći pozitivni koeficijent u pretposljednjem (i posljednjem) redu Simpleks tabele?

Baza	b_{i}	x_1	x_2	x_3	X_4	x_5
x_4	20/3	2/3	0	-1	1	1/3
x_2	5/3	2/3	1	0	0	-1/6
M	-50/3	2/3	0	-1	0	1/3
	25/3	1/3	0	0	0	-5/6

Iteracija br. 2: Odrediti vodeći red

Koja je najmanja nenegativna vrijednost koeficijenta t_i ?

Baza	b_i	x_{I}	x_2	x_3	x_4	x_5	t_i
X_4	20/3	2/3	0	-1	1	1/3	10
x_2	5/3	2/3	1	0	0	-1/6	5/2
M	-50/3	2/3	0	-1	0	1/3	
	25/3	1/3	0	0	0	-5/6	

Iteracija br. 2: Formirati novu Simpleks tabelu

Promjenljiva x_1 ulazi u bazu. Promjenljiva x_2 izlazi iz baze.

Elemente vodećeg reda dijelimo sa vodećim elementom 2/3.

Od *I* reda oduzimamo vodeći red pomnožen sa 2/3.

Od *III* reda oduzimamo vodeći red pomnožen sa 2/3.

Od IV reda oduzimamo vodeći red pomnožen sa 1/3.

Baza	b_i	x_1	x_2	x_3	x_4	x_5
X_4	5	0	-1	-1	1	1/2
x_1	5/2	1	3/2	0	0	-1/4
M	-55/3	0	-1	-1	0	1/2
	15/2	0	-1/2	0	0	-3/4

Iteracija br. 3: Provjeriti uslov zaustavljanja Simpleks algoritma

Da li postoji pozitivan koeficijent u pretposljednjem redu Simpleks tabele?

Baza	b_i	x_1	x_2	x_3	x_4	x_5
X_4	5	0	-1	-1	1	1/2
x_1	5/2	1	3/2	0	0	-1/4
M	-55/3	0	-1	-1	0	1/2
	15/2	0	-1/2	0	0	-3/4

Iteracija br. 3: Odrediti vodeću kolonu

Koji je najveći pozitivni koeficijent u pretposljednjem (i posljednjem) redu Simpleks tabele?

Baza	b_i	x_1	x_2	x_3	X_4	x_5
x_4	5	0	-1	-1	1	1/2
x_1	5/2	1	3/2	0	0	-1/4
M	-55/3	0	-1	-1	0	1/2
	15/2	0	-1/2	0	0	-3/4

Iteracija br. 3: Odrediti vodeći red

Koja je najmanja nenegativna vrijednost koeficijenta t_i ?

Baza	b_i	x_1	x_2	x_3	<i>x</i> ₄	x_5	t_i
x_4	5	0	-1	-1	1	1/2	10
x_{I}	5/2	1	3/2	0	0	-1/4	
M	-55/3	0	-1	-1	0	1/2	
	15/2	0	-1/2	0	0	-3/4	

Iteracija br. 3: Formirati novu Simpleks tabelu

Promjenljiva x_5 ulazi u bazu. Promjenljiva x_4 izlazi iz baze.

Promjenljiva x_4 je vještačka promjenljiva koju je moguće eliminisati.

Elemente vodećeg reda dijelimo sa vodećim elementom 1/2.

Sa *II* redom sabiramo vodeći red pomnožen sa 1/4.

Od *III* reda oduzimamo vodeći red pomnožen sa 1/2.

Sa IV redom sabiramo vodeći red pomnožen sa 3/4.

Baza	b_i	x_1	x_2	x_3	x_5
x_5	10	0	-2	-2	1
x_1	5	1	1	-1/2	0
M	-70/3	0	0	0	0
	15	0	-2	-3/2	0

Iteracija br. 4: Provjeriti uslov zaustavljanja Simpleks algoritma

Da li postoji pozitivan koeficijent u pretposljednjem redu Simpleks tabele?

Baza	b_i	x_1	x_2	x_3	x_5
x_5	10	0	-2	-2	1
x_1	5	1	1	-1/2	0
M	-70/3	0	0	0	0
	15	0	-2	-3/2	0

$$x_1 = 5$$

$$x_1 = 5$$
$$x_2 = 0$$

$$Z = 15$$

DODACI PRIMJERIMA

Primal za primjer br. 1

arg max
$$Z = 10 x_1 + 15 x_2$$

p.o.
 $4 x_1 + 2 x_2 \le 20$
 $6 x_1 + 8 x_2 \le 40$
 $2 x_1 + 2 x_2 \le 10$
 $x_1 \ge 0, x_2 \ge 0$
arg max $Z = 10 x_1 + 15 x_2$

p.o.

$$4x_1 + 2x_2 + x_3 = 20$$

$$6x_1 + 8x_2 + x_4 = 40$$

$$2x_1 + 2x_2 + x_5 = 10$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

Dual za primjer br. 1

arg min
$$W = 20 \ y_1 + 40 \ y_2 + 10 \ y_3$$

p.o.
 $4 \ y_1 + 6 \ y_2 + 2 \ y_3 \ge 10$
 $2 \ x_1 + 8 \ x_2 + 2 \ y_3 \ge 15$
 $y_1 \ge 0, \ y_2 \ge 0, \ y_3 \ge 0$
arg min $W = 20 \ y_1 + 40 \ y_2 + 10 \ y_3 + M \ y_6 + M \ y_7$
p.o.
 $4 \ y_1 + 6 \ y_2 + 2 \ y_3 - y4 + y6 = 10$
 $2 \ y_1 + 8 \ y_2 + 2 \ y_3 - y5 + y7 = 15$
 $y_1 \ge 0, \ y_2 \ge 0, \ y_3 \ge 0, \ y_4 \ge 0, \ y_5 \ge 0, \ y_6 \ge 0, \ y_7 \ge 0$

Primalne i dualne međusobno spregnute promjenljive

Primalne izvorne promjenljive: x_1 i x_2 .

Primalne izravnavajuće promjenljive: x_3 , x_4 i x_5 .

Dualne izvorne promjenljive: y_1 , y_2 i y_3 .

Dualne izravnavajuće promjenljive: y_4 i y_5 .

Primalne i dualne međusobno spregnute promjenljive su:

 x_1 sa y_4 ;

 x_2 sa y_5 ;

 y_1 sa x_3 ;

 y_2 sa x_4 ;

 y_3 sa x_5 ;

Primalne i dualne međusobno spregnute promjenljive

Primalne izvorne promjenljive: x_1 i x_2 .

Primalne izravnavajuće promjenljive: x_3 , x_4 i x_5 .

Dualne izvorne promjenljive: y_1 , y_2 i y_3 .

Dualne izravnavajuće promjenljive: y_4 i y_5 .

Primalne i dualne međusobno spregnute promjenljive su:

 x_1 sa y_4 ;

 x_2 sa y_5 ;

 y_1 sa x_3 ;

 y_2 sa x_4 ;

 y_3 sa x_5 ;

Očitavanje vrijednosti dualnih promjenljivih iz Simpleks tabele

Primal je problem maksimizacije, a sva ograničenja su tipa "manje ili jednako".

 x_1 međusobno spregnuto sa $y_4 => y_4 = -c_1 = 5/4$

 x_2 međusobno spregnuto sa $y_5 \Rightarrow y_5 = -c_2 = 0$

 y_1 međusobno spregnuto sa $x_3 \Rightarrow y_1 = -c_3 = 0$

 y_2 međusobno spregnuto sa $x_4 => y_2 = -c_4 = 15/8$

 y_3 međusobno spregnuto sa $x_5 \Rightarrow y_3 = -c_5 = 0$

Baza	b_i	x_{I}	x_2	x_3	x_4	x_5
x_3	10	5/2	0	1	-1/4	0
x_2	5	3/4	1	0	1/8	0
x_5	0	1/2	0	0	-1/4	1
	-75	-5/4	0	0	-15/8	0

ZADACI

ZADATAK BR. 1

Potrebno je proizvesti novu nijansu sive boje koristeći crnu i bijelu boju. Mora biti iskorišteno barem 6 litara crne i tačno 4 litre bijele boje. Za proizvodnju nijanse sive boje koriste se dvije mašine. Za jedan dan rada na prvoj mašini iskoristi se 6 litara crne i 2 litre bijele boje, dok za jedan dan rada na drugoj mašini iskoriste se 2 litre crne i 2 litre bijele boje. Cijena korištenja prve mašine iznosi 2 KM po satu, dok cijena korištenja druge mašine iznosi 1 KM po satu. Odrediti plan rada na mašinama koji će omogućiti ostvarivanje najmanjih troškova, uzimajući u obzir postavljene zahtjeve.

Rješenje: $x_1 = 0.5$; $x_2 = 1.5$; Z = 60.

ZADATAK BR. 2

Pacijent je odlučio voditi računa o svojoj ishrani jedući sljedeće dvije vrste namirnica: limun i paradajz. Pod zdravom ishranom podrazumijeva se ishrana, u kojoj se dnevno unosi u organizam barem 30 jedinica proteina, manje od 50 jedinica masnoća i tačno 40 jedinica ugljikohidrata. Jedan kilogram limuna košta 4 KM, a u sebi sadrži 5 jedinica proteina, 5 jedinica masnoća i 15 jedinica ugljikohidrata. Jedan kilogram paradajza košta 3 KM, a sadrži 15 jedinica proteina, 10 jedinica masnoća i 20 jedinica ugljikohidrata. Potrebno je odrediti plan ishrane koji omogućava ostvarivanje najmanjih troškova, uzimajući u obzir postavljene zahtjeve.

Rješenje: $x_1 = 0$; $x_2 = 2$; Z = 6.