(19)日本国特許庁(JP)

C 2 5 D 13/06

(12) 公開特許公報(A)

(11)特許出關公開番号 特開2002-275690

(P2002-275690A)

(43)公開日 平成14年9月25日(2002.9.25)

(51) Int.Cl.7

識別配号

FΙ

C 2 5 D 13/06

テーマコート*(参考)

D

審査請求 未請求 請求項の数2 〇L (全 8 頁)

(21)出觀番号

特願2001-77823(P2001-77823)

(71)出願人 000001409

関西ペイント株式会社

兵庫県尼崎市神崎町33番1号

(22)出願日 平成13年3月19日(2001.3,19)

(72)発明者 杉田 賢

神奈川県平塚市東八幡 4丁目17番1号 関

西ペイント株式会社内

(72)発明者 矢和田 武史

神奈川県平塚市東八幡 4丁目17番1号 関

西ペイント株式会社内

(72)発明者 平木 忠義

神奈川県平塚市東八幡 4丁目17番1号 関

西ペイント株式会社内

(54) 【発明の名称】 強膜形成方法及び塗装物

(57)【要約】

【課題】 外板膜厚(μm)を増膜させることなく、内 板膜厚(µm)が確保できる均一塗装性を有し、さらに GA材仕上がり性良好なカチオン電着塗料を見出する ٤.

【解決手段】 1. カチオン電着塗装において、単位膜 厚当たりの分極抵抗値(a)が120~300kΩ·cm² / m . 及び単位電気量当たりの塗料折出量(b)が5 0~150mg/Cの範囲であるカチオン電着塗料を用 い、実効電圧(V)230V以下で塗装することを特徴 とする塗膜形成方法。2.1項に記載の塗膜形成方法に より塗膜が形成された塗装物。

【特許請求の範囲】

【請求項1】 カチオン電着塗装において、単位膜厚当 たりの分極抵抗値(a)が120~300kQ·cm²/μ m、及び単位電気量当たりの塗料析出量(b)が50~ 150mg/cの範囲であるカチオン電着塗料を用い、実 効電圧(V)230V以下で塗装することを特徴とする 塗膜形成方法。

【請求項2】 請求項1に記載の塗膜形成方法により、 塗膜が形成された塗装物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は、袋構造を有する 被塗物の外板膜厚を抑制しつつ袋構造内部などの内板の 塗膜形成性(つきまわり性)を向上(増膜)させ、優れ た均一塗装性に関する塗膜形成方法である。

【〇〇〇2】詳しくは、単位膜厚当たりの分極抵抗値 (a) 120~300 kΩ・cm/μm、及び単位電気量 当たりの塗料析出量(b)50~150mg/cに調整し たカチオン電着塗料を用い、実効電圧(V)230V以 下で塗装することを特徴とする電着塗膜形成方法。さら 20 に該塗膜形成方法による塗膜を有する塗装物に関する。 [0003]

【従来の技術及びその課題】 カチオン電着塗料は、塗 装作業性が優れ、形成した塗膜の防食性が良好なことか ら、これらの性能が要求される自動車ボディなどの導電 性金属製品の下塗り塗料として広く使用されている。

【0004】しかし近年、衝突安全性向上の面から自動 車ボディの強度アップのため、幾重にも補強部材が重な り合った構造は、電気が流れにくく電流密度が低下する ことから塗膜が析出し難く、未塗装となり防食性低下の 30 原因となる。

【0005】このため袋構造内部の膜厚(µm)を確保 するために電着時の塗装電圧を上げて塗装されるが、反 面自動車ボディの外板膜厚(μm)が厚くなったり合金 化溶融亜鉛メッキ鋼板(GA材)などの防錆鋼板におい てピンホールが発生し易いなどの問題がある。

【0006】そこで、袋構造を有する被塗物の外板膜厚 (μm)を増膜させることなく、袋構造内部などの内板 の塗膜形成性の向上、即ち、内板膜厚(μm)/外板膜 厚(μm)の割合(%)が高い、良好なつきまわり性が 40 強く求められている。

> 分極抵抗値Y($K\Omega \cdot cm^2$) = 単位膜厚当たりの分極抵抗値(a)×乾燥膜 厚X (µm) + Z

図1に、回帰分析を適用して得られる分極抵抗値Y(k) $\Omega \cdot c m^2$) の近似式のグラフを示す。単位電気量当た りの塗料析出量(b)とは、各電圧(例えば、50~3) 00 V) にて3 分間塗装し、塗装時間内に流れた各電圧※

式(2) ※ での電気量 X、(クーロン)、及び析出した乾燥重量 Y、(mg)の関係を回帰分析を適用して得られる式 (3)で表される近似式から求められる。

[0012]

乾燥重量 Y (mg) =単位電気量当たりの塗料析出量(b)×電気量 X (ク

-uv) + 2

式(3)

* [0007]

【課題を解決するための手段】 本発明者らはこれらの 要望に応えるために鋭意研究を行なった結果、下記の手 段により目的が達成できることを見出し、本発明を完成 した。

2

【0008】即ち、本発明は

1. カチオン電着塗装において、単位膜厚当たりの分極 抵抗値(a)が120~300kΩ・cml/μm、及び単 位電気量当たりの塗料析出量(b)が50~150mg/ 10 Cの範囲であるカチオン電着塗料を用い、実効電圧23 0 V以下で塗装することを特徴とする塗膜形成方法、

1 項に記載の塗膜形成方法により塗膜が形成され た塗装物。

に関する。

[0009]

【発明の実施の形態】 本発明は、カチオン電着塗装に おいて、単位膜厚当たりの分極抵抗値(a)が120~ 300kΩ・cm²/μm、及び単位電気量当たりの塗料析 出量(b) が50~150 mg/Cの範囲であるカチオン 電着塗料を用い、実効電圧230 V以下で塗装する電着 塗膜形成方法、及び塗装物に関する。単位膜厚当たりの 分極抵抗値(a)が120~300kΩ・cm²/μm、及 び単位電気量当たりの塗料析出量(b)が50~150 ma/Cの範囲であることが必要であり、双方の条件を満 足しない場合はGA材の塗装性とつきまわり性が両立し ない。

【0010】塗料特数の、単位膜厚当たりの分極抵抗値 (a)とは、電着塗装(例えば、浴温28℃、極比A/ C=1/2、極間距離10cmの一定条件)において、 各電圧(例えば、50~300V)にて3分間塗装し、 3分後に流れた電流値(A)と、電圧(V)、塗装面積 (cm²) により、式(1) で示される、分極抵抗値Y. (kΩ·cm²)=電圧(V)×塗装面積(cm²)/ (定電圧塗装3分後の電流値(A)×1000)

式(1) から計算される。 【〇〇11】次に、各電圧(V)で析出した乾燥膜厚X v (μm)と、各電圧 (V) での分極抵抗値 Yv (kΩ ·cm²)の関係を、回帰分析を適用して得られる近似 式の傾きから、単位膜厚当たりの分極抵抗値(a)が求 められ、式(2)のように表される。

[0013]

その近似式の傾きにより、単位電気量当たりの塗料析出 50 量(b)を求めることができる。図2に、回帰分析を適

20

用して得られる乾燥重量Y(mg)の近似式のグラフを 示す。

【0014】とこで、単位膜厚当たりの分極抵抗値 (a)が120~300kΩ・cm//μm、好ましくは1 80~250kΩ·cm³/μmの範囲、及び単位電気量当 たりの塗料析出量(b)を50~150mg/C 好まし くは70~100mg/Cの範囲のカチオン電着塗料にお いて、電着塗装時の実効電圧が230V以下でGA材の ピンホールを発生させることなく、つきまわり性を向上 することができる。即ち、袋構造内部の塗膜形成性が向 10 上した。つきまわり性は、図3、図4に挙げたような 「4枚ボックスつきまわり性」にて評価した。また、こ の単位膜厚当たりの分極抵抗値(a)が300kΩ·cm 1/µmを超える場合には、所定の膜厚を得にくく、塗 膜の仕上がり性低下やGA材にてピンホールが発生し易 い。また、 $120 \,\mathrm{k}\Omega \cdot \mathrm{cm}^2 / \mu \,\mathrm{m}$ 未満の場合には、つき まわり性に対する効果が十分でなく、外板膜厚と内板膜 厚の膜厚差が大きくなる。

【0015】単位膜厚当たりの分極抵抗値(a)を12 $0\sim300$ k Ω · cm² $/\mu$ m に調整するには、カチオン 電着塗料中の顔料濃度を調整する方法、さらにはカチオ ン性の基体樹脂の分子量をアップ、可塑剤量を低減する 方法、硬化樹脂の分子量をアップする方法、カチオン電 着塗料中の有機溶剤量を減少する方法などがあり、これ **ら方法の一種、又はこれらを組み合わせた方法により達** 成される。

【0016】また、単位電気量当たりの塗料折出量 (b) が50~150 mq/Cの範囲にあると、袋構造内 部のように電気の流れにくい箇所であっても、少ない電 気量で多くのカチオン電着塗料を析出させることができ るため、袋構造内部の膜厚をさらに向上(増膜)させる ことができ、GA材の塗装性も良好である。

【0017】この単位電気量当たりの塗料析出量(b) が150mg/Cを超える場合には、カチオン電着塗料析 出量が多く成り過ぎ外板面の膜厚増加を招き、また50 mq/C未満の場合には内板面の膜厚低下が発生して、つ きまわり性に対する効果が十分でなく、さらにGA材に てピンホールが発生する。

【0018】次に、カチオン電着塗料の調整であるが、 単位電気量当たりの塗料析出量(b)が50~150mg 40 /Cの範囲にするには、上記電着塗料に使用する基体樹 脂のアミン価を45以下として中和価を6~15mgK OH/g、好ましくは7~11mgKOH/gとする方 法が有効である。

【0019】基体樹脂アミン価の調整には基体樹脂の平 均分子量を高くする方法、基体樹脂への付加アミン量を 減量する方法などがあり、これら方法の一種、又はこれ らを組み合わせた調整により達成される。

【0020】上記手法により基体樹脂のアミン価を45

マルションを作成することができ、塗膜の折出開始に必 要な電気量を小さく(塗料の析出開始がを速く)するこ とができる。

【0021】基体樹脂アミン価が45を超える樹脂にお いては、エマルション化の作成に必要な酸量が多くな り、塗膜の析出開始に必要な電気量を小さくする効果が 十分でなく、またその樹脂(アミン価が45を超える樹 脂)を少ない酸量でエマルション化した場合にはエマル ションの貯蔵安定性の低下などの不具合を生じる。

【0022】 ここで、本文中に用いられている実効電圧 とは、実際に被塗物にかかる電圧のことで、図5に示す 方法にて測定する。 (詳細内容については、特開平1-156498号公報参照)

以上、カチオン電着塗料の塗装において、単位膜厚当た りの分極抵抗値(a)が120~300kΩ・cm / μ m、及び単位電気量当たりの塗料析出量(b)が50~ 150ma/Cであるカチオン電着塗料を用いて、実効電圧が 230V以下で塗膜を形成することにより、GA材にお いてピンホールの発生がない条件で、袋構造内部を有す る被塗物の外板面の膜厚を抑制しつつ、袋構造内部の塗 膜形成性(つきまわり性)を向上(増膜)できることを 見出し、本発明を完成するに至った。

【0023】本発明において使用するカチオン電着塗料 としては、上記の特性を満足するものであれば従来から のカチオン電着塗料を適用でき、例えば、水酸基及びカ チオン性基を有する基体樹脂、硬化剤、着色顔料、防錆 顔料、体質顔料、中和剤、有機溶剤などを脱イオン水な どの水に混合分散せしめてなる水性塗料が使用できる。 【0024】基体樹脂は、水酸基及びカチオン性基を有 30 する樹脂であり、この水酸基は硬化剤との架橋反応に関 与し、カチオン性基は安定な水分散液を形成させるため のものであって、例えば、(イ)ポリエポキシ樹脂とカ チオン化剤との反応生成物、(ロ)ポリカルボン酸とポ リアミンとの重縮合物(米国特許第2450940号明 細書参照)を酸でプロトン化したもの、(ハ)ポリイソ シアネート化合物及びポリオールとモノ又はポリアミン との重付加物を酸でプロトン化したもの、(ニ)水酸基 及びアミノ基含有アクリル系、またはビニル系モノマー の共重合体を酸でプロトン化したもの(特公昭45-1 2395号公報、特公昭45-12396号公報参 照)、ホ) ポリカルポン酸樹脂とアルキレンイミンとの 付加物を酸でプロトン化したもの(米国特許第3403 088号明細書参照)などがあげられる。

【0025】これらのうち、(イ)に包含される、ポリ フェノール化合物とエピクロルヒドリンとから得られる ボリエポキシド樹脂のエポキシ基にカチオン化剤を反応 せしめて得られる生成物は塗膜の防食性がすぐれている ので好ましい。

【0026】(イ)のポリエポキシド樹脂は、エポキシ 以下とすることにより、少ない酸量で高い中和当量のエ 50 基を1分子中に2個以上有する化合物であり、200~400 0、好ましくは800~3000の数平均分子量を有す るものが適しており、このものは、例えば、ポリフェノ ル化合物をエピクロルヒドリンとの反応によって得ら れるポリフェノール化合物のポリグリシジルエーテルが 包含される。

【0027】ここで使用できるボリフェノール化合物と しては、例えば、ビス(4-ヒドロキシフェニル)-2. 2-プロパン、4. 4 ~ - ジヒドロキシベンゾフェ ノン、ピス(4-ヒドロキシフェニル)-1,1-エタ ン、ビス-(4-ヒドロキシフェニル)-1,1-イソ 10 は、例えば、上記カチオン化剤中のアルカノ-ルアミン プタン、ビス(4-ヒドロキシーtert-ブチル-フ ェニル) -2, 2-プロパン、ビス(2-ヒドロキシブ チル) メタン、1,5-ジヒドロキシナフタレン、ビス (2, 4 - ジヒドロキシフェニル)メタン、テトラ(4 −ヒドロキシフェニル) −1, 1, 2, 2 − エタン、 4, 4 - ジヒドロキシジフェニルエーテル、4, 4 ジヒドロキシジフェニルスルホン、フェノールノボラ ック、クレゾールノボラックなどがあげられる。(イ) のポリエポキシド樹脂は、ポリオール、ポリエーテルポ リオール、ポリエステルポリオール、ポリアミドアミ ン、ポリカルボン酸、ポリイソシアネート化合物などと 部分的に反応させたものや、ε-カプロラクトン、アク リルモノマーなどをグラフト重合させたものも包含され

【0028】水酸基及びカチオン性基を有する基体樹脂 は、例えば、これらのボリエボキシド樹脂のエボキシ基 の殆どもしくはすべてにカチオン化剤を反応することに より得られる。

【0029】カチオン化剤として、例えば、第1級アミ ン、第2級アミン、第3級アミン、ポリアミンなどのア 30 ミン化合物があげられ、これらエポキシ基と反応させ て、第2級アミノ基、第3級アミノ基、第4級アンモニ ウム塩基などのカチオン性基を導入してカチオン化樹脂 とする。具体的には、第1級アミン化合物としては、例 えばメチルアミン、エチルアミン、n-プロピルアミ ン、イソプロピルアミン、モノエタノールアミン、nー プロバノールアミン、イソプロバノールアミン等の第1 級アミン化合物:第2級アミン化合物としては、例えば ジエチルアミン、ジエタノールアミン、ジェープロパノ ールアミン、ジイソプロパノールアミン、N-メチルエ 40 えばヘキサメチレンジイソシアネート、トリメチレンジ タノールアミン、N-エチルエタノールアミン等の第2 級アミン化合物:トリエチルアミン、トリエタノールア ミン、N、N-ジメチルエタノールアミン、N-メチル ジエタノールアミン、N、N-ジエチルエタノールアミ ン、N-エチルジエタノ-ルアミン等の第3級アミン化 合物:ポリアミンとしては、例えばエチレンジアミン、 ジエチレントリアミン、ヒドロキシエチルアミノエチル アミン、エチルアミノエチルアミン、メチルアミノプロ ピルアミン、ジメチルアミノエチルアミン、ジメチルア

る。

【0030】これらのアミン化合物以外に、アンモニ ア、ヒドロキシアミン、ヒドラジン、ヒドロキシエチル ヒドラジン、N-ヒドロキシエチルイミダゾリン等の塩 基性化合物をカチオン化剤として用いて形成される塩基 性基を、酸でプロトン化してカチオン性基としてもよ い。用い得る酸としては、ギ酸、酢酸、グリコール酸、 乳酸などの水溶性有機カルボン酸が好ましい。

6

【0031】これらのカチオン性樹脂の水酸基として の反応、エポキシ樹脂中に導入されることがあるカプロ ラクトンの開環物およびポリオールの反応などにより導 入される第1級水酸基;エポキシ樹脂中の2級水酸基な どがあげられ、このうち、アルカノールアミンとの反応 により導入される第1級水酸基は、硬化剤との架橋反応 性がすぐれているので好ましい。

【0032】水酸基及びカチオン性基を有する基体樹脂 における水酸基の含有量は、水酸基当量で20~5000、特 に100~1000mgKOH/gが好ましく、特に第1級水 20 酸基当量は200~1000mgKOH/gが好ましい。

【0033】また、カチオン性基の含有量は、基体樹脂 を水中に安定に分散しうる必要な最低限以上が好まし く、KOH(mg/g固形分)(アミン価)換算で45K OH (mg/g固形分)以下に、特に10~40KOH (m g/g固形分)の範囲内にあることが好ましい。基体樹 脂は遊離のエポキシ基は原則として含んでいない。これ らの基体樹脂中のカチオン性基を酢酸、ギ酸、乳酸、り ん酸などの酸性化合物で中和してから、水に分散混合す ることが好ましく、その水分散液のpHは3~9、特に 5~7の範囲が適している。

【0034】硬化剤として、ポリイソシアネート化合物 のイソシアネート基のすべてを揮発性の活性水素化合物 (ブロック化剤) で反応し封鎖してなるブロック化ポリ イソシアネート化合物が特に好適であり、このものは常 温では不活性であり、所定温度以上に加熱するとこのブ ロック化剤が解離して元のイソシアネート基が再生し て、基体樹脂との架橋反応に関与する。

【0035】ポリイソシアネート化合物は1分子中に遊 離のイソシアネート基2個以上有する化合物であり、例 イソシアネート、テトラメチレンジイソシアネート、ダ イマー酸ジイソシアネート、リジンジイソシアネート等 の脂肪族ジイソシアネート:イソホロンジイソシアネー ト、メチレンビス(シクロヘキシルイソシアネート)、 メチルシクロヘキサンジイソシアネート、シクロヘキサ ンジィソシアネート、シクロベンタンジイソシアネート 等の脂環族ジイソシアネート:キシリレンジイソシアネ ート、トリレンジイソシアネート、ジフェニルメタンジ イソシアネート、ナフタレンジイソシアネート、トルイ ミノプロピルアミン等のポリアミンをあげることができ 50 ジンジイソシアネート等の芳香族ジイソシアネート:こ

20

れらのポリイソシアネート化合物のウレタン化付加物、 ビユーレットタイプ付加物、イソシアヌル環タイプ付加 物:等があげられる。

【0036】ブロック剤としては、例えば、フェノール 系プロック剤、アルコール系ブロック剤、活性メチレン 系ブロック剤、メルカプタン系ブロック剤、酸アミド系 プロック剤、イミド系ブロック剤、アミン系ブロック 剤、イミダゾール系ブロック剤、尿素系ブロック剤、カ ルバミン酸系ブロック剤、イミン系ブロック剤、オキシ ム系ブロック剤、亜硫酸系ブロック剤、ラクタム系ブロ 10 ック剤などが挙げられる。

【0037】ブロック化ポリイソシアネート化合物は、 これらのポリイソシアネート化合物と活性水素化合物 (ブロック剤)とを既知の方法により反応せしめること により得られ、実質的に遊離のイソシアネート基は存在 しない。基体樹脂と硬化剤との構成比率は、両成分の合 計固形分重量に基づいて、前者は40~90重量%、特 に50~80重量%、後者は60~10重量%、特に5 0~20重量%が好ましい。

【0038】有機溶剤としては、炭化水素系(例えば、 キシレン、トルエン)、アルコール系(例えば、メトル アルコール、n-ブチルアルコール、イソプロビルアル コール、2-エチルヘキシルアルコール、エチレングリ コール、プロピレングリコール)、エーテル系(例え ば、エチレングリコールモノエチルエーテル、エチレン グリコールモノブチルエーテル、エチレングリコールモ ノヘキシルエーテル、プロピレングリコールモノエチル エーテル、3-メチル-3-メトキシブタノール、ジェ チレングリコールモノエチルエーテル、ジエチレングリ コールモノブチルエーテル)、ケトン系(例えば、メチ 30 ルイソプチルケトン、シクロヘキサノン、イソホロン、 アセチルアセトン)、エステル系(例えば、エチレング ルコールモノエチルエーテルアセテート、エチレングリ コールモノブチルエーテルアセテート) やこれらの混合 物が挙げられる。本発明の電着特性を得るには、これら の有機溶剤の添加量がカチオン電着塗料に対して約1重 量%以下の範囲が好ましい。

【0039】着色顔料、防錆顔料、及び体質顔料として は、カチオン電着塗料に使用されている顔料であれば特 に制限なく使用でき、例えば、酸化チタン、カーボンブ 40 ラック、ベンガラ等の着色顔料:リンモリブデン酸アル ミニウム、トリポリリン酸アルミニウム等の防錆顔料: クレー、マイカ、バリタ、炭酸カルシウム、シリカなど の体質顔料があげられる。これらの顔料類の配合量は、 基体樹脂と硬化剤との固形分合計100重量部あたり、 1~100重量部、特に10~50重量部の範囲内が好 ましい。

【0040】カチオン電着塗料は、これらの基体樹脂、 硬化剤、有機溶剤、及び顔料を含有し、さらに基体樹脂 性化合物で中和してから、水に分散混合することによっ て調製することができ、その水分散液のpHは3~9、 特に5~7の範囲が好ましく、樹脂固形分濃度は5~3 0重量%が適している。カチオン電着塗料には、上記し た成分に加えて、さらに必要に応じて硬化触媒、沈降防 止剤などを適宜配合することができる。

【0041】このうち、硬化触媒は、基体樹脂と硬化剤 との架橋反応を促進するために有効であり、例えば、錫 オクトエート、ジブチル錫ジラウレート、ジブチル錫ジ ベンゾエート、乳酸ビスマス、水酸化ビスマス、オクチ ル酸亜鉛、ギ酸亜鉛などがあげられ、その配合量は、基 体樹脂と硬化剤との固形分合計100重量部あたり、

【0042】カチオン電着塗料は、上記の顔料の分散べ ーストを予め製造しておき、これを基体樹脂及び硬化剤 などと混合分散して顔料分散ペーストを製造することが 好ましい。

0. 1~10重量部の範囲内が適している。

【0043】顔料分散ペーストは、上記した着色顔料、 防錆顔料及び体質顔料などをあらかじめ微細粒子に分散 したものであって、例えば、顔料分散用樹脂、中和剤及 び顔料類、さらに必要に応じてビスマス化合物を配合 し、ボールミル、サンドミル、ペブルミルなどの分散混 合機中で分散処理して顔料分散ペーストを調製すること により行なうことができる。

【0044】中和剤として酢酸、ぎ酸、乳酸などの有機 酸が使用できる。顔料分散用樹脂としては既知のものが 使用でき、例えば水酸基及びカチオン性基を有する基体 樹脂や界面活性剤などが使用でき、さらに、3級アミン 型、4級アンモニウム塩型、3級スルホニウム塩型など の樹脂が分散用樹脂として使用できる。界面活性剤とし ては例えばHLBが3~18、好ましくは5~15の範囲内 にあるアセチレングリコール系、ポリエチレングリコー ル系、多価アルコール系などのノニオン系界面活性剤が あげられる。分散剤の使用量は、顔料100重量部あた り、1~150重量部、特に10~100重量部の範囲内が好適 である。顔料分散ペーストの固形分含有率は20~80重量

【0045】カチオン電着塗料は、上記の顔料分散ペー ストを予め製造しておき、これを基体樹脂及び硬化剤な どを分散して得られるエマルションと混合して製造する ことが好ましく、塗装時におけるカチオン電着塗料の周 形分含有率は5~30重量%の範囲が適している。

%、特に30~60重量%が適している。

[0046]

【発明の効果】 カチオン電着塗装において、単位膜厚 当たりの分極抵抗値(a)が120~300kQ・cm²/ μm、及び単位電気量当たりの塗料析出量(b)が50 ~150mg/Cである塗料特性を有するカチオン電着塗料を 用いて、実効電圧(V)が230V以下で塗膜を形成す ることにより、GA材においてピンホールの発生がな 中のカチオン性基を酢酸、ギ酸、乳酸、りん酸などの酸 50 く、袋構造内部を有する被塗物の外板膜厚(μm)を抑 制して袋構造内部の膜厚(μm)を向上させる塗膜形成 性(つきまわり性の向上)を見出した。

【0047】詳しくは、上記つきまわり性において、内 板膜厚(μm)/外板膜厚(μm)の膜厚割合(%)が 71~98%という優れた均一塗装性を有する塗装物が 得ることができる。

[0048]

得た。

【実施例】 以下に、本発明に関する実施例、及び比較 例について説明をする。「部」及び「%」はいずれも 「重量部」、「重量%」を基準にしており、また、本発 10 ルベントによりカチオン電着塗料に希釈した場合の溶剤 明はこれらの実施例のみに制限されるものではない。 【0049】エマルションAの製造例

ピーク分子量:7000、アミン価:45、樹脂固形分含 有率80%のアミン付加ポリカプロラクトン変性エポキシ 樹脂を作製した。次に、上記樹脂固形分含有率80%のア ミン付加可塑変性エポキシ樹脂87.5部(樹脂固形分で70 部)、架橋剤として4、4'-ジフェニルメタンジイソシア ネートのエチレングリコールモノブチルエーテルブロッ ク化物33.3部(樹脂固形分で30部)、10%酢酸水溶液1 1.2部(中和価10.5)を配合し、均一に攪拌した 20 後、脱イオン水162部を強く攪拌しながら約15分間を

【0050】エマルションA-1の製造例 上記エマルションAの製造例において、脱ソルベント (注1)によりカチオン電着塗料に希釈した場合の溶剤 量が0.8重量%になるようにエマルションAから溶剤 を除いて、減少した溶剤分は脱イオン水で補給して固形 分含有率34.0%のエマルションA-1を得た。

要して滴下して固形分含有率34.0%のエマルションAを

(注1)脱ソルベント:エマルションを30~40℃に おいて減圧し(-760mmHg)、エマルションを用 いてカチオン電着塗料を希釈した時の溶剤量が所望の量 になるように、該エマルション中から溶剤を取り除い た。なお溶剤量の測定は、ガスクロマトグラフィを用い た。

【0051】エマルションA-2の製造例

上記、エマルションAの製造例において、10%酢酸水溶 液11.2部(中和価10.5)から11.8部(中和 価11)に変更する以外は、同様の配合、操作を行い、 脱ソルベントによりカチオン電養塗料として希釈した場 40 合の溶剤量が0.8重量%になるように溶剤を除き、減 少した溶剤分は脱イオン水で補給して固形分含有率3 4. 0%のエマルションA-2を得た。

【0052】エマルションA-3の製造例

上記エマルションAの製造例において、カチオン電着塗 料に希釈した場合の溶剤量が2.0重量%になるように 脱ソルベントにより溶剤を除き、減少した溶剤分は脱イ オン水で補給して、固形分含有率34.0%のカチオン電着 塗料用のエマルションA - 3を得た。

【0053】エマルションのBの製造例

ピーク分子量:8400、アミン価38、樹脂固形分含有 率80%のアミン付加ポリカプロラクトン変性エポキシ樹

脂を作製した。次に上記樹脂固形分含有率80%のアミン 付加可塑変性エポキシ樹脂87.5部(樹脂固形分で70 部)、架橋剤として4、4'-ジフェニルメタンジイソシア ネートのエチレングリコールモノブチルエーテルブロッ ク化物33.3部(樹脂固形分で30部)、10%酢酸水溶液1 8部を配合し、均一に撹拌した後、脱イオン水16 2部を強く攪拌しながら約15分間を要して滴下し、脱ソ

量が0.8重量%になるよう溶剤を除き、減少した溶剤 分は脱イオン水で補給して、固形分含有率34.0%のエマ

ルションBを得た。 【0054】エマルションCの製造例

上記、エマルションBの製造例において、10%酢酸水溶 液11.8部(中和価11)から10.7部(中和価1 0)に、脱イオン水162部から163部に変更する以 外は、同様の配合、操作にて脱ソルベントによりカチオ ン電着塗料として希釈した場合の溶剤量が0.8重量% になるように溶剤を除き、減少した溶剤分は脱イオン水 で補給して固形分含有率34.0%のエマルションCを 得た。

【0055】エマルションDの製造例

ピーク分子量:7000,アミン価:53, 樹脂固形分含 有率80%のアミン付加ポリカプロラクトン変性エポキシ 樹脂を作製した。次に、上記樹脂固形分含有率80%のア ミン付加可塑変性エポキシ樹脂87.5部(樹脂固形分で70 部)、架橋剤として4、4'-ジフェニルメタンジイソシア ネートのエチレングリコールモノブチルエーテルブロッ ク化物33.3部(樹脂固形分で30部)、10%酢酸水溶液1 5部(中和価14)を配合し、均一に攪拌した後、脱イ オン水158部を強く撹拌しながら約15分間を要して滴 下し、脱ソルベントによりカチオン電着塗料として希釈 した場合の溶剤量が0.8重量%になるように溶剤を除 き、減少した溶剤分は脱イオン水で補給して、固形分含 有率34.0%のエマルションDを得た。

【0056】顔料分散ペーストの製造例 エポキシ系3級アミン型分散用樹脂(注2)5.63部(固 形分3. 1部)、酸化チタン14.5部、精製クレー7.0 部、有機錫1.0部、カーボンブラック0.46部、10%酢酸 水溶液(中和剤)3.37部、脱イオン水15.44部を加

え、ボールミルにて20時間分散したあと取出し、55

%顔料分散ペーストを得た。

(注2)エポキシ系3級アミン型分散用樹脂:フラスコ に、エチレングリコールモノブチルエーテル398部、「E HPE-3150」(ダイセル化学株式会社製、商品名、エポキ シ当量180の脂環式エポキシ樹脂)900部、アミン化合物 (注3) 371部、エポキシアミン生成物(注4) 1651部 を仕込み、攪拌しながら徐々に加熱し、150°Cで反応さ 50 せ、エポキシ当量が0になったことを確認して溶剤で希

* カチオン電着用のエマルションA-1 297部(固形

分100.98部)に、上記製造例で得た55%顔料分

散ペーストを73.7部(固形分40.53部)、 脱

イオン水334.9部を加え、塗料中の溶剤量0.8

%、固形分20%のカチオン電着塗料No. 1を得た。

この塗料を用いて電着塗装した結果、単位膜厚当たりの

分極抵抗値(a)は204.1kΩ・cm²/μm、単位電

気量当たりの塗料析出量(b) が72.8 mg/Cであっ

上記実施例1と同様の操作にて、カチオン電着塗料N

o. 2~No. 7を得、該カチオン電着塗料を電着塗装

して塗料特性、つきまわり性等を評価した。その配合内

【0058】実施例2~4、比較例1~4

容、及び試験結果を表1に示す。

[0059] 【表1】

釈し、固形分55重量%のエポキシ系3級アミン型分散 用樹脂を得た。

(注3)アミン化合物:反応容器に、ステアリン酸285 部、ヒドロキシエチルアミノエチルアミン104部及びト ルエン80部を仕込み、混合攪拌しながら徐々に加熱し、 必要に応じてトルエンを除去しながら反応水18部を分離 除去した後、残存するトルエンを減圧除去することによ りアミン化合物を得た。アミン価は150、凝固点76℃で あった。

(注4) エポキシアミン生成物: フラスコに、ジェタノ 10 ールアミン105部、エポキシ当量190のビスフェノールA ジグリシジルエーテル760部、ビスフェノールA 456部及 びエチレングリコールプチルエーテル330部を配合し、1 50℃でエポキシ基残存量が0になるまで反応させること により得られるエポキシアミン生成物。固形分含有率80

【0057】実施例1

(7)

表1	金料配合および試験結果						*		
		実施//1	実施例2	実施例3	実施例4	比较分1	比较例2	比較例3	比较分4
	カチオン電着塗料	No. 1	No. 2	No. 3	No. 4	No. 5	No. 5	No. 6	No. 7
	34% エマルション 種	A-1	A-2	8	C	A-3	A-3	8	0
	: as in the state of the state	294.1	294.1	294.1	294.1	294.1	294.1	294.1	294.1
	(固形分)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)
	55% 顔料分散ペースト 部	73.7	64.9	73.7	73.7	61.5	615	92.4	64.9
配合	(固形分)	(40 53)	(35.7)	(40.53)	(40.53)	(33.8)	(33.8)	(50.94)	(35.7)
	脱イオン水 (部)	334.9	319.5	3349	3349	313.4	313.4	367.7	319.5
	20%カチオン電着塗料	702.65	678.5	702.65	702.65	669	669	7542	678.5
	(固形分)	(140.53)	(135.7)	(140.53)	(140.53)	(133.8)	(133.8)	(150.84)	(135.7)
塗料 特性	基体樹脂のアミン面	45	45	36	39	46	45	36	53
	エマルションの中和価	10.5	11	11	10	1111	11	- 11	14
		24	22	24	24	21	21	28	22
	・ 塗料中の溶剤量(%)	0.8	0.8	08	08	2.0	2.0	0.8	08
ŀ	実効電圧(√)	210	210	210	210	210	250	210	210
l	単位膜厚当たりの分極抵抗(a)	204.1	182.2	237	237	61.9	61.9	305	180.3
連科		L	1	1				<u> </u>	
特性	単位電気量当たりの塗料析出量(b)	83.7	72.8	72.8	91.2	76.0	76.0	75.0	40.0
	(mg/C)	l			l	i	1	1	
注料	つきまわり性(注5) G/A(%)	90	83	95	98	55	70	80	35
評価	GA材仕上がり性 (注6)	0	0	0	0	0	×	Δ	0
	塗面の仕上がり性(注7)	0	0	0	.0	0	0	×	0

【0060】(注5)つきまわり性:4枚ボックス法に より評価した。すなわち図3に示すように、4枚のりん 酸亜鉛処理してなるSPC冷延鋼板(0.8mm×70mm×150m) m)を、立てた状態で間隔20mmで平行に配置し、両側面 下部および底部を布粘着テープなどの絶縁体で密閉した ボックスを用いる。なお、GH面の鋼板以外の鋼板AB 面~EFには下部に8mmの穴が設けられている。この ボックスを、図4に示すようにカチオン電着塗料を入れ た容器内に浸漬し、各穴からのみ希釈塗料がボックスに 侵入するようにする。その状態で、各鋼板を電気的に接 40 続し、最も近い鋼板との距離が150mmとなるように対極 を配置した。各鋼板AB面~GH面をカソード、対極を アノードとして電圧を印可して鋼板にカチオン電着塗装 を実施した。この時の電着塗装設定温度は28℃に調整し た。塗装後の各鋼板は、水洗した後160℃で20分間焼き 付けし、空冷の後、対極に最も近いA B面鋼板に形成さ れた塗膜の膜厚と、対極から最も違いGH面鋼板に形成 された膜厚、および下式によりつきまわり性を評価し

つきまわり性G/A(%)=(膜厚(G面)/膜厚(A 50 を以下の判定基準で目視判定した

面))×100

この値が大きいほどつきまわり性(均一膜厚性)が良い と評価できる。

【0061】(注6)GA材仕上がり性:亜鉛メッキ鋼 板 (GA材) のリン酸亜鉛処理鋼板 (0.8mm×70mm×150 m)を、つきまわり性試験と同じ塗装電圧で電着塗装を 実施した。塗装後の各鋼板は、水洗した後160°Cで20分 間焼き付けし、空冷の後、塗膜外観を以下の判定基準で 目視判定した

○: ピンホールの発生がなく良好である

△: 塗面の範囲に1~10個未満のピンホールが認めら れる

´×:塗面の範囲内に10個以上のピンホールが認められ

【0062】(注7)塗面の仕上がり性:上記、つきま わり性の評価に使用したものと同じリン酸亜鉛処理鋼板 (0.8mm×70mm×150mm) を、つきまわり性試験と同じ塗 装電圧で電着塗装を実施した。塗装後の各鋼板は、水洗 した後160°Cで20分間焼き付けし、空冷の後、塗膜外観

〇:平滑性に優れ、良好である

△: 塗面に多少のラウンド感が認められる

×:塗面に顕著なラウンド感が認められる。

【図面の簡単な説明】

【図1】 回帰分析を適用して得られる分極抵抗値Y

13

 $(k\Omega \cdot cm^2)$ の近似式のグラフである。

【図2】 回帰分析を適用して得られる塗料析出量Y

(mg) の近似式のグラフである。

【図3】 つきまわり性の評価治具である。

【図4】 つきまわり性の評価方法を示す説明図であ

る。

*【図5】 実効電圧を測定する場合の配線図である。 【符号の説明】

1. カチオン電着塗料である。

2. マグネティックスターラーにより攪拌する。

3. つきまわり性の評価治具である。

4. デジタルオシロスコープ

5. 被塗物(自動車ボディなど)

6. ダミー板(被塗物との電圧値を測定する端子)

7. 絶縁物

10 8. カチオン電着浴

* 9. 電極(極板)

【図1】

【図3】

【図5】

[図2]

【図4】

