

Tropical cities are experiencing unprecedented growth

46 cities in tropical Asia, Africa and the Middle East will be megacities by 2100

Forecast annual growth rates for 2020-2100: 3-31% in Africa, 0.8-3% in South Asia and 0.5-7% in Southeast Asia [Hoornweg & Pope, 2017]

Tropical cities are the next frontier in air pollution

Currently, limited surface monitoring of air pollutants across the tropics

< 1 monitor per million people [Martin et al., 2019]

Long and consistent record of atmospheric composition from space-based instruments

OMI for NO₂ and HCHO (proxy for NMVOCs)

IASI for NH₃

MODIS for **AOD** (proxy for $PM_{2.5}$)

Assessing the skill of satellite observations at reproducing variability in surface air quality

Satellite versus surface NO₂ in **Delhi**, India (2011-2018)

Satellite versus surface NH₃ at the background site **Harwell**, UK (2011-2015)

Temporal consistency between satellite and surface measurements of NO₂ and NH₃ [Vohra et al., ACP, 2021]

Satellite observations of AOD reproduce long-term trends in PM_{2.5}

Satellite AOD versus surface PM_{2.5} in **Birmingham**, UK (2009-2017)

Complicated by meteorological conditions, aerosol composition & vertical distribution

[Vohra et al., ACP, 2021]

Trends in NO₂ in tropical future megacities in 2005-2018

 NO_2 increases in 41 cities by 0.1-14.1 % a⁻¹

Steep increases in NO₂ with implications for ozone formation and aerosol nitrate

Trends in ozone production regimes in 2005-2018

Satellite observations of HCHO/NO₂ are used as proxy for ozone production regimes

All cities except Jakarta and Sana'a are in NO_x -sensitive regime; Gradual transition to NO_x -saturated regime may occur as early as 2025

[Vohra et al., in review]

Trends in NH₃ in tropical future megacities in 2008-2018

NH₃ increases in cities in all regions except the Indian subcontinent

Steep increasing trends in cities in Africa and Southeast Asia may reflect increasing urban sources of NH₃ [Vohra et al., in review]

Trends in PM_{2.5} in tropical future megacities in 2005-2018

Large and significant increases of 3-8 % a⁻¹ in PM_{2.5} over Indian subcontinent

The large increase in South Asian cities is driven by an increase in PM_{2.5} precursor emissions and not desert dust

Determine premature mortality from exposure to PM_{2.5}

More cohorts, wider age and PM_{2.5} range and more health endpoints than GBD function

[Vodonos et al., 2018]

Higher premature mortality estimates than previous studies

Premature deaths linked to PM_{2.5} from fossil fuel combustion in 2012

[Vohra et al., *ER*, 2021]

Severe health burden in tropical future megacities

Premature mortality from long-term PM_{2.5} exposure

290,000 in 2005

62%

470,000 in 2018

Largest increases in premature mortality in cities in Asia

Effects of PM_{2.5} on health in African cities countered by decline in baseline mortality [Vohra et al., in review]

Conclusion

- Most pollutants in almost all tropical cities increase at rates 2-3 times faster than or opposite in direction to reported national and regional trends
- Only Jakarta shows evidence of air quality improvements due to policy measures, and those improvements have had a limited effect, leading to decline in NO₂ but not in NH₃ or PM_{2.5}
- Ozone formation is on track to transition from strongly NO_x-sensitive to the more challenging to regulate VOC-sensitive regime
- We estimate an increase in premature mortality of 180,000 linked to the rapid rise in anthropogenic air pollution in these fastest-growing tropical cities

Reference

K. Vohra, E. A. Marais, W. J. Bloss, J. Schwartz, L. J. Mickley, M. Van Damme, L. Clarisse, P.-F. Coheur, Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018, in review, *Science Advances*.

Any Questions? Email k.vohra@ucl.ac.uk

