Solución de Problemas de Probabilidad y Estadística

Martín Alexis Martínez Andrade - 2049334

Problema 1: Tipos de datos y Medidas de tendencia central

\mathbf{Nombre}	Edad (años)	Área de trabajo
Ana	25	Ventas
Luis	30	Administración
Marta	40	Producción
Carlos	35	Ventas
Elena	28	Recursos Humanos
Juan	50	Producción
Sofía	45	Administración
Pedro	38	Ventas
Daniel	33	Producción
Laura	27	Recursos Humanos

1. Clasificación de variables

• Nombre: Variable cualitativa.

• Edad: Variable cuantitativa

• Área de trabajo: Variable cualitativa.

2. Cálculo de media, mediana y moda para la variable "Edad"

Las ordenamos de forma ascendente:

Media:

$$\bar{x} = \frac{25 + 27 + 28 + 30 + 33 + 35 + 38 + 40 + 45 + 50}{10} = \frac{351}{10} = 35.1.$$

Mediana:

Tenemos 10 datos, así que la mediana es el promedio del 5to y 6to:

Mediana =
$$\frac{33 + 35}{2} = 34$$
.

Moda:

Cada valor tiene frecuencia 1, por lo que es amodal.

3. Interpretación:

La media de 35.1 años y la mediana de 34 años indican que, como son cercanas, no hay valores extremos (muy desviados de la media).

Problema 2: Medidas de dispersión

$$X = \{70, 85, 90, 95, 88, 92, 75, 80\},\$$

1. Cálculo de varianza y desviación estándar

Calculemos primero la media:

$$\bar{x} = \frac{70 + 85 + 90 + 95 + 88 + 92 + 75 + 80}{8} = \frac{675}{8} = 84.375.$$

Utilizando la fórmula de la varianza para la población:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

Calculando la varianza muestral:

$$s \approx \frac{(70 - 84.375)^2 + \dots + (80 - 84.375)^2}{7} \approx 75.69$$

La desviación estándar es:

$$\sigma \approx \sqrt{75.69} \approx 8.7.$$

2. Interpretación:

La desviación estándar de aproximadamente 8.7 indica que la dispersión de las calificaciones es bastante moderada.

Problema 3: Probabilidades y Teorema de Bayes

En la empresa se tienen las siguientes probabilidades de tener un programador o un diseñador:

$$P(Programador) = 0.60, \quad P(Diseñador) = 0.40.$$

Se sabe que las probabilidades de que una persona tenga conocimientos de IA con las siguientes probabilidades:

$$P(IA|Programador) = 0.70, P(IA|Diseñador) = 0.30.$$

Primero, la probabilidad total de conocer IA:

$$P(IA) = P(IA|Prog)P(Prog) + P(IA|Diseñador)P(Diseñador) = 0.70(0.60) + 0.30(0.40) = 0.42 + 0.12 = 0.54.$$

Aplicamos el Teorema de Bayes:

$$P(\text{Prog}|\text{IA}) = \frac{P(\text{IA}|\text{Prog})P(\text{Prog})}{P(\text{IA})} = \frac{0.42}{0.54} \approx 0.77.$$

Hay 77% de probabilidad de que se elija a un programador si se elige a un empleado al azar que tiene conocimientos de IA.

Problema 4: Distribuciones de probabilidad (Poisson)

Suponga que el número de defectos sigue una distribución de Poisson con media $\lambda=3$ defectos por lote.

1. Probabilidad de que tenga exactamente 2 defectos

Utilizamos la fórmula:

$$P(x = k) = \frac{\lambda^k e^{-\lambda}}{k!}.$$

Para k=2:

$$P(x=2) = \frac{e^{-3} \cdot 3^2}{2!} = \frac{9e^{-3}}{2} \approx \mathbf{0.22}$$

2. Probabilidad de al menos 1 defecto

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{e^{-3} \cdot 3^0}{0!} = 1 - e^{-3} \approx 1 - 0.049 \approx \mathbf{0.951}.$$

Problema 5: Funciones de densidad y distribución acumulativa (Normal)

Sea
$$X \sim N(\mu = 50, \sigma = 10)$$
.

1. Probabilidad de que X < 45

Calculamos el valor z:

$$z = \frac{45 - 50}{10} = -0.5.$$

Por lo tanto,

$$P(X < 45) = P(z < -0.5) \approx 0.3085.$$

2. Probabilidad de que X esté entre 40 y 60

$$a = \frac{40 - 50}{10} = -1, \quad b = \frac{60 - 50}{10} = 1.$$

Luego:

$$P(40 < X < 60) = P(-1 < z < 1) \approx 0.8413 - 0.1587 = 0.6826.$$

3. Verificación con la función de distribución acumulativa (CDF)

$$\int_0^{45} \frac{1}{10\sqrt{2\pi}} e^{-\frac{(x-50)^2}{200}} dx \approx 0.3085$$

$$\int_{60}^{40} \frac{1}{10\sqrt{2\pi}} e^{-\frac{(x-50)^2}{200}} dx \approx 0.6826$$

Problema 6: Probabilidad condicional con dados

Se lanza un dado justo de seis caras dos veces.

1. Cálculo de la probabilidad

El primer lanzamiento tiene un resultado impar. Dado que los lanzamientos son independientes, la probabilidad de obtener un número par en el segundo lanzamiento es:

$$P(\text{par en 2do}|\text{impar en 1er}) = P(\text{par}) = \frac{3}{6} = \frac{1}{2}.$$

2. Interpretación:

Incluso sabiendo que en el primer lanzamiento se obtuvo un número impar, el segundo lanzamiento no se ve afectado, pues son eventos independientes.

Problema 7: Distribución binomial

Cada pregunta tiene 4 opciones, con solo 1 correcta y el estudiante responde al azar. La probabilidad de acierto en cada pregunta es:

$$p = \frac{1}{4}, \quad q = 1 - p = \frac{3}{4}.$$

1. Probabilidad de acertar exactamente 3 respuestas

$$P(X=3) = {5 \choose 3} p^3 q^{5-3} = {5 \choose 3} \left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right)^2.$$

$$\binom{5}{3} = 10, \quad \left(\frac{1}{4}\right)^3 = \frac{1}{64}, \quad \left(\frac{3}{4}\right)^2 = \frac{9}{16}.$$

Entonces

$$P(X=3) = 10 \cdot \frac{1}{64} \cdot \frac{9}{16} = \frac{90}{1024} \approx \mathbf{0.087}.$$

2. Probabilidad de acertar al menos una respuesta

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \left(\frac{3}{4}\right)^5.$$

Tenemos:

$$\left(\frac{3}{4}\right)^5 \approx \frac{243}{1024} \approx 0.2373,$$

entonces:

$$P(X \ge 1) \approx 1 - 0.2373 =$$
0.762.

Problema 8: Regla de Laplace

En una urna hay 5 bolas rojas y 7 bolas azules.

1. Probabilidad de extraer una bola roja

$$P(\text{roja}) = \frac{5}{5+7} = \frac{5}{12}.$$

2. Probabilidad de que, al extraer dos bolas sin reemplazo, ambas sean azules

Primera extracción:

$$P_1(\text{azul}) = \frac{7}{12}.$$

Sin reemplazo quedan 6 bolas azules de un total de 11:

$$P_2(\text{azul}|\text{azul en 1er}) = \frac{6}{11}.$$

Por tanto:

$$P(\text{ambas azules}) = \frac{7}{12} \cdot \frac{6}{11} = \frac{42}{132} = \frac{7}{22} \approx \mathbf{0.31}.$$

Problema 10: Ley de los grandes números

Se lanza una moneda justa 1000 veces y se calcula la frecuencia relativa de obtener cara.

1. Valor esperado de la frecuencia relativa

La probabilidad de tener cara en cada lanzamiento es 0.5, por lo que el valor esperado de la frecuencia relativa es:

$$E\left[\frac{\#\text{caras}}{1000}\right] = 0.5.$$

2. Relación con la Ley de los Grandes Números

La Ley de los Grandes Números dice que conforme aumenta el número de ensayos, la frecuencia relativa observada se aproxima a la probabilidad teórica (0.5 para una moneda justa). Al lanzar la moneda 1000 veces (o más), la proporción de caras tenderá a acercarse a 0.5.