УДК 621.311

Методичні вказівки до практичних занять з дисципліни «Ресурсозберігаючі технології логістичних систем» (для студентів, які навчаються за спеціальністю 131 «Прикладна механіка», спеціалізація «Автоматизовані логістичні системи» / Уклад. О.Б. Нєженцев. - Київ: КПІ ім. Ігоря Сікорського, 2024. - 40 с.

Дано рекомендації щодо виконання практичних занять з дисципліни «Ресурсозберігаючі технології логістичних систем». Наведено вихідні дані і варіанти завдань, викладено методики розрахунку втрат і економії електричної енергії в типових електричних установках. Надано приклади розрахунку. Для закріплення знань по кожному заняттю студентам запропоновано контрольні питання.

Укладач: О.Б. Нєженцев, к.т.н., доц.

Відповідальний. за випуск О.Ф. Луговський, д.т.н., проф.

Рецензент Б.С. Воронцов, д.т.н., проф.

ПРАКТИЧНЕ ЗАНЯТТЯ 2 Тема: РОЗРАХУНОК ВТРАТ В ЕЛЕКТРОДВИГУНАХ ТА ПРИВОДАХ ЛОГІСТИЧНИХ СИСТЕМ

Мета заняття - визначити втрати потужності і електроенергії в електродвигунах і приводах логістичних систем.

2.1 Умова завдання 3

Визначити втрати потужності і електроенергії в двигуні елеватора, що перенавантажує сипкий матеріал. В елеваторі встановлено асинхронний електродвигун А-61-4. Середньодобова тривалість роботи елеватора $t_c=4$ год. Сила струму при середньому навантаженні $I_{cp}=16,0$ А. Коефіцієнт холостого ходу $K_x=0,08$.

2.2 Розв'язок

За даними з каталогу на двигун А-61-4:

- номінальна потужність, кВт	$P_{\rm H} = 10 \text{KBT};$
- ККД двигуна при номінальному завантаженні	$\eta_{_{\rm H}} = 0.875$;
- номінальний струм, А	$I_{H} = 19,7 A;$
- приведений активний опір двигуна, Ом	$r_9 = 0.647$ Om;
- сила струму при холостому ході, А	$I_x = 11,0 A.$

Потужність електродвигуна при холостому ході:

$$P_x = \sqrt{3} \cdot U \cdot I_x \cos \phi = \sqrt{3} \cdot 380 \cdot 11 \cdot 0,65 = 4706 \; B_T = 4,71 \; \text{kBt} \; .$$

По графіку завантаження [1] визначаємо:

- для режиму холостого ходу при $I_x = 11.0 \text{ A} \rightarrow \cos \phi = 0.65$;
- для режиму середнього завантаження при I_{cp} = 16,0 A \rightarrow cos ϕ = 0,84.

Потужність електродвигуна при середньому навантаженні:

$$P_{cp} = \sqrt{3} \cdot U \cdot I_{cp} \cos φ = \sqrt{3} \cdot 380 \cdot 16 \cdot 0,84 = 8846 \; B_T = 8,85 \; \text{kBt} \; .$$

Втрати потужності при холостому режимі двигуна:

$$\begin{split} \Delta P_{_{X}} &= P_{_{\! H}} \cdot \! \left(\frac{1}{\eta_{_{\! H}}} \! - \! 1 \right) \! - \! 3 \cdot r_{_{\! 9}} \cdot \! \left(\! I_{_{\! H}}^2 \! - \! I_{_{\! X}}^2 \right) \! \cdot \! 10^{-3} = \\ &= \! 10 \cdot \! \left(\frac{1}{0,\!875} \! - \! 1 \right) \! - \! 3 \cdot \! 0,\!647 \cdot \! \left(\! 19,\! 7^2 \! - \! 11^2 \right) \! \cdot \! 10^{-3} = 0,\! 91 \, \, \text{kBt}. \end{split}$$

Втрати потужності при середньому навантаженні ($I_{cp} = 16 \text{ A}$) двигуна:

$$\Delta P_{cp} = P_{H} \cdot \left(\frac{1}{\eta_{H}} - 1\right) - 3 \cdot r_{3} \cdot \left(I_{H}^{2} - I_{cp}^{2}\right) \cdot 10^{-3} =$$

=
$$10 \cdot \left(\frac{1}{0,875} - 1\right) - 3 \cdot 0,647 \cdot \left(19,7^2 - 16^2\right) \cdot 10^{-3} = 1,17 \text{ kBt.}$$

ККД електродвигуна при холостому ході:

$$\eta_{x} = \frac{P_{x} - \Delta P_{x}}{P_{x}} = \frac{4,71 - 0.91}{4,71} = 0.81.$$

ККД електродвигуна при середньому навантаженні:

$$\eta_{cp} = \frac{P_{cp} - \Delta P_{cp}}{P_{cp}} = \frac{8,85 - 1,17}{8,85} = 0,87.$$

Втрати активної потужності в елеваторі:

$$\Delta P_a = P_x \cdot \eta_x = 4,71 \cdot 0,81 = 3,82 \text{ kBt.}$$

Втрати електроенергії за рік:

$$\Delta E_a = \Delta P_a \cdot T_r = 3,82 \cdot 1220 = 4660$$
 кВт·год,

де T_{Γ} - число годин роботи за рік

$$T_r = t_c \cdot L = 4 \cdot 305 = 1220$$
 год,

тут t_c - середньодобова тривалість роботи елеватора, $t_c=4$ год; L- кількість робочих днів за рік, $L\approx 305$.

Сумарна річна витрата електроенергії:

$$\begin{split} E &= P_{cp} \cdot T_{r} \cdot (1 - K_{x}) + P_{x} \cdot T_{r} \cdot K_{x} = \\ &= 8,85 \cdot 1220 \cdot (1 - 0,08) + 4,71 \cdot 1220 \cdot 0,08 = 10393 \text{ кВт·год.} \end{split}$$

Відносні втрати електроенергії:

- у елеваторі

$$\frac{\Delta E_a}{E} \cdot 100\% = \frac{4660}{10393} \cdot 100\% = 44,84\% ;$$

- в електродвигуні при холостому ходу:

$$\frac{\Delta P_x \cdot T_r \cdot K_x}{E} \cdot 100\% = \frac{0.91 \cdot 1220 \cdot 0.08}{10393} \cdot 100\% = 0.85\%;$$

- в електродвигуні при середньому навантаженні:

$$\frac{\Delta P_{cp} \cdot T_r \cdot (1 - K_x)}{E} \cdot 100\% = \frac{1,17 \cdot 1220 \cdot (1 - 0,08)}{10393} \cdot 100\% = 12,6\% \ .$$

Корисна витрата електроенергії на виконання механічної роботи:

$$\begin{split} \frac{(P_{cp} - \Delta P_{cp} - \Delta P_a) \cdot T_{_{\Gamma}} \cdot (1 - K_{_{X}})}{E} \cdot 100\% = \\ \frac{(8,85 - 1,17 - 3,82) \cdot 1220 \cdot (1 - 0,08)}{10393} \cdot 100\% = 41,69\% \; . \end{split}$$

Початкові дані для розрахунку втрат потужності та енергії в елеваторі за різними варіантами наведено в таблиці 3.

Т а б л и ц я 3 - Початкові дані для розрахунку втрат в двигуні елеватора

Варіант	Тип електродвигуна	Р _н , кВт	$\eta_{\scriptscriptstyle \mathrm{H}}$	I _H ,	I _x ,	соsф для х.х.	I _{cp} ,	соsф для ср.н.	г _э , Ом	t _с , год	K _x
1	4A160S6У3	11,0	0,87	23,5	12,3	0,68	18,6	0,87	0,560	8	0,12
2	4А180М6У3	18,5	0,89	31,2	14,6	0,65	25,6	0,82	0,525	6	0,16
3	4А150М6У3	15,0	0,84	27,3	13,4	0,69	22,8	0,85	0,605	5	0,14
4	4А132М6У3	7,5	0,80	17,2	9,7	0,64	14,9	0,80	0,735	7	0,18
5	4A160S6У3	11, 0	0,87	23,5	12,3	0,68	16,0	0,80	0,560	5	0,09
6	4А180М6У3	18,5	0,89	31,2	14,6	0,65	20,5	0,87	0,525	9	0,11
7	4А150М6У3	15,0	0,84	27,3	13,4	0,69	18,5	0,79	0,605	7	0,07
8	4А132М6У3	7,5	0,80	17,2	9,7	0,64	12,0	0,77	0,735	4	0,10
9	4A160S6У3	11,0	0,87	23,5	12,3	0,68	20,0	0,90	0,560	6	0,09
10	4А180М6У3	18,5	0,89	31,2	14,6	0,65	28,0	0,89	0,525	4	0,13
11	4А150М6У3	15,0	0,84	27,3	13,4	0,69	16,0	0,77	0,605	9	0,10
12	4А132М6У3	7,5	0,80	17,2	9,7	0,64	13,0	0,79	0,735	5	0,14
13	AO2-52-6	7,5	0,87	15,8	7,9	0,71	11,2	0,80	0,620	6	0,12
14	AO2-61-6	10,0	0,88	19,6	9,4	0,73	14,8	0,87	0,594	7	0,10
15	AO2-62-6	13,0	0,88	23,9	10,7	0,74	16,3	0,87	0,542	8	0,08
16	AO2-71-6	17,0	0,90	28,4	12,8	0,75	21,5	0,88	0,516	5	0,11
17	AO2-72-6	22,0	0,905	36,7	14,2	0,76	24,4	0,89	0,491	6	0,14
18	AO2-81-6	30,0	0,91	42,5	17,6	0,77	33,6	0,90	0,427	7	0,09
19	AO2-82-6	40,0	0,915	56,3	21,9	0,77	42,7	0,90	0,401	8	0,12
20	AO2-91-6	55,0	0,925	79,1	28,5	0,78	13,0	0,91	0,335	5	0,12

2.3 Умова завдання 4

Для двошвидкісного асинхронного короткозамкнутого двигуна ліфта потужністю 2,5 кВт, моментом інерції ротора $J_p = 0,226~{\rm kr\cdot m}^2$, відношенням опорів обмоток статора і ротора R_1 / $R_2 = 1,6$ розрахувати втрати енергії в обмотках двигуна при пуску в один і два ступеня, а також при $M_c = 0$ при синхронних швидкостях обертання 1500 / 3000 об/хв.

2.4 Розв'язок

Першу і другу кутові синхронні швидкості визначаємо за формулою:

$$\begin{split} &\omega = \frac{\pi \cdot n_0}{30}\;;\\ &\omega_{01} = \frac{3{,}14 \cdot 3000}{30} = 314\,\mathrm{pag/c};\\ &\omega_{02} = \frac{3{,}14 \cdot 1500}{30} = 157\,\mathrm{pag/c}. \end{split}$$

Пуск двигуна здійснюється з нерухомого стану ($s_{\text{почат}}=1,0$) до синхронної швидкості (при цьому ковзання буде дорівнювати $s_{\text{кін}}=0$).

Рисунок 1 - До визначення втрат енергії при перехідних процесах двошвидкісного асинхронного двигуна

1. Повні втрати енергії при прямому пуску до ω_{01} визначаємо за формулою:

$$\Delta A_{\Pi} = \frac{J_p \cdot \omega_{01}^2}{2} \cdot \left(1 + \frac{R_1}{R_2}\right),$$

де R_1 - опір обмотки статора; R_2 - опір обмотки ротора.

$$\Delta A_{\Pi} = \frac{0,226 \cdot 314^2}{2} \cdot (1+1,6) = 28968 \; \text{Bt·c} = 0,008 \; \text{кBt·год}.$$

- 2. Втрати енергії при ступінчастому пуску:
- а) пуск від $\omega = 0$ до швидкості ω_{02}

$$\begin{split} \Delta A_{\Pi I} &= \frac{J_p \cdot \omega_{02}^2}{2} \cdot \left(1 + \frac{R_1}{R_2}\right) = \\ &= \frac{0,226 \cdot 157^2}{2} \cdot (1 + 1,6) \cdot \frac{1}{3600 \cdot 10^3} = 0,002 \text{ кBt} \cdot \text{год} \,; \end{split}$$

б) пуск від швидкості ω_{02} до ω_{01}

$$\begin{split} \Delta A_{\Pi 2} &= \frac{J_p \cdot (\omega_{01} - \omega_{02})^2}{2} \cdot \left(1 + \frac{R_1}{R_2}\right) = \\ &= \frac{0,226 \cdot (314 - 157)^2}{2} \cdot (1 + 1,6) \cdot \frac{1}{3600 \cdot 10^3} = 0,002 \text{ кBt} \cdot \text{год }. \end{split}$$

Повні втрати при ступінчастому пуску:

$$\Delta A_{\Pi 1-2} = \Delta A_{\Pi 1} + \Delta_{\Pi 2} = 0,002 + 0,002 = 0,004$$
 кВт · год .

Отже, повні втрати енергії при двоступінчастому пуску в два рази менші від повних втрат енергії при прямому пуску.

3. Втрати енергії при гальмуванні противмиканням від швидкості ω_{01} до $\omega=0$ в один ступінь

$$\begin{split} \Delta A_{_{\Gamma}} &= 3 \cdot \frac{J_{p} \cdot \omega_{01}^{2}}{2} \cdot \left(1 + \frac{R_{1}}{R_{2}}\right) = \\ &= 3 \cdot \frac{0,226 \cdot 314^{2}}{2} \cdot \left(1 + 1,6\right) \cdot \frac{1}{3600 \cdot 10^{3}} = 0,024 \text{ кВт} \cdot \text{год} \,. \end{split}$$

- 4. Втрати енергії при ступінчастому гальмуванні:
- а) генераторне гальмування від швидкості ω_{01} до ω_{02} :

$$\begin{split} \Delta A_{r1} &= \frac{J_p \cdot \omega_{02}^2}{2} \cdot \left(1 + \frac{R_1}{R_2}\right) = \\ &= \frac{0,226 \cdot 157^2}{2} \cdot (1 + 1,6) \cdot \frac{1}{3600 \cdot 10^3} = 0,002 \text{ кВт} \cdot \text{год} ; \end{split}$$

б) гальмування противмиканням від швидкості ω_{02} до $\omega = 0$:

$$\begin{split} \Delta A_{_{\Gamma 2}} &= 3 \cdot \frac{J_p \cdot \omega_{02}^2}{2} \cdot \left(1 + \frac{R_1}{R_2}\right) = \\ &= 3 \cdot \frac{0,226 \cdot 157^2}{2} \cdot \left(1 + 1,6\right) \cdot \frac{1}{3600 \cdot 10^3} = 0,006 \text{ кВт} \cdot \text{год} \; ; \end{split}$$

в) повні втрати енергії при ступінчастому гальмуванні:

$$\Delta A_{r1-2} = \Delta A_{r1} + \Delta_{r2} = 0,002 + 0,006 = 0,008 \text{ кBт} \cdot \text{год}$$
.

Отже, повні втрати енергії при гальмуванні противмиканням ($\Delta A_{\Gamma} = 0{,}024$ кВт ·год) у три рази більші, ніж при двохступінчастому гальмуванні ($\Delta A_{\Gamma 1-2} = 0{,}008$ кВт ·год).

Початкові дані для розрахунку втрат енергії в обмотках двигуна при пуску в один і два ступеня за різними варіантами наведено в таблиці 4.

Т а б л и ц я 4 - Початкові дані для розрахунку втрат енергії в обмотках двигуна при пуску в один і два ступеня, а також при холостому ході ($M_c = 0$)

Варіант	$P_{_{ m H}}$, к B т	$J_p, K\Gamma \cdot M^2$	R_1 / R_2	n ₀₁ , об/хв	n ₀₂ , об/хв
1	2,2	0,258	1,8	1500	3000
2	3,0	0,265	1,7	1500	3000
3	3,5	0,296	1,6	375	1000
4	4,0	0,332	1,5	1500	3000
5	5,0	0,365	1,4	375	1000
6	5,5	0,388	1,3	1500	3000
7	7,5	0,421	1,5	375	1000
8	11,0	0,454	1,3	375	1000
9	15,0	0,497	1,6	1500	3000
10	18,5	0,525	1,7	1500	3000
11	22,0	0,605	1,5	1500	3000
12	30,0	0,735	1,4	1500	3000
13	37,0	0,791	1,3	1500	3000
14	45,0	0,864	1,6	1500	3000
15	55,0	0,942	1,5	1500	3000
16	75,0	1,126	1,4	1500	3000
17	7,5	0,491	1,7	1500	3000
18	11,0	0,477	1,6	1500	3000
19	16,0	0,509	1,5	300	1000
20	22,0	0,715	1,4	300	1000

Контрольні питання

- 1 Визначите втрати потужності в електродвигуні:
 - а) при холостому ході;
 - б) при фактичному навантаженні.
- 2 Визначите потужність електродвигуна:
 - а) при холостому ході;
 - б) при фактичному навантаженні.
- 3 Як визначити втрати потужності в елеваторі?
- 4 Визначите втрати електроенергії в елеваторі.
- 5 Який має бути баланс втрат і корисної витрати електроенергії?
- 6 На скільки втрати енергії при ступінчастому пуску менші від втрат енергії при прямому пуску двошвидкісного електродвигуна?
- 7 На скільки втрати енергії при гальмуванні противмиканням більші ніж втрати енергії при двохступінчастому гальмуванні двошвидкісного електродвигуна?

ЛІТЕРАТУРА

- 1 Мартинов А.В., Нєженцев О.Б., Шевченко М.О. Основи енергозбереження: Навчальній посібник. Луганськ: Вид-во СНУ ім. В. Даля, 2003. 232с.
- 2 Лавриненко Ю.М. та ін. Електропривод. Підручник К.: Вид-во «Ліра-К», 2009. 504 с.
- 3 Методичні рекомендації щодо нормування витрат палива, теплової енергії та опалення житлових, громадських будинків, споруд та на господарсько-побутові потреби в України.- К.: Держаний комітет України з енергозбереження. 2000, 636 с.
- 4 Методичні вказівки до практичних занять з дисципліни "Основи енергозбереження в ПТДБММ" (для студентів, що навчаються за напрямом "Машинобудування", спеціальність "Підйомно-транспортні, дорожні, будівельні, меліоративні машини і обладнання") / Уклад. О.Б. Нєженцев, М.О. Шевченко. Сєвєродонецьк: Вид-во СНУ ім. В. Даля, 2016. 40 с.