สัปดาห์ที่ 2 Types, Operators, and Expressions

เรียบเรียงโดย ชาคริต วัชโรภาส

วิชา 01418113 Computer Programming ¶

1. การใช้งานตัวแปร

ตัวแปรภาษา C ยังไม่สามารถถูกใช้งานได้จนกว่าจะมีการประกาศตัวแปร (declare) ดังตัวอย่างที่แสดงให้เห็นถึง ปัญหานี้ในด้านล่าง

```
In [1]: #include <stdio.h>
2
3 int main()
4 {
5     x = 10;
6 }
```

```
/tmp/tmp2diaa4bp.c: In function 'main':
/tmp/tmp2diaa4bp.c:5:4: error: 'x' undeclared (first use in this function)
    x = 10;
```

/tmp/tmp2diaa4bp.c:5:4: note: each undeclared identifier is reported only once for each function i
t appears in

[C kernel] GCC exited with code 1, the executable will not be executed

การประกาศตัวแปรทำได้ด้วยการระบุประเภทของตัวแปร แล้วตามด้วยชื่อตัวแปร

```
int x;
```

ดังที่แสดงข้างบนนี้เป็นการประกาศตัวแปร x ที่มีประเภทของตัวแปรเป็นเลขจำนวนเต็ม (integer)

```
In [2]: 1 #include <stdio.h>
2
3 int main()
4 {
5 int x; < ທາງປາ:ເທດຕ່າງເພິ່ງ ປາ:ເກກ ພວກກ້າງແຕ້າວາ ເປັນ ຄົດ
6 float y;
7
8 x = 10;
9 y = 2.54;
10 }
```

1.1 ชื่อตัวแปร (Variable Names)

น้ามขึ้นถ้าป คริเลบ Itext X

ข้อกำหนดในการตั้งชื่อตัวแปรของภาษา C เป็นดังนี้

- ชื่อตัวแปรประกอบด้วยตัวอักขระและตัวเลข โดยที่ตัวอักษรตัวแรกของชื่อตัวแปรต้องเป็นอักขระ
- เครื่องหมาย นับว่าเป็นอักขระ
- การใช้เครื่องหมาย __ คั่นระหว่างคำในชื่อตัวแปรช่วยให้การอ่านโค้ดทำได้ง่าย
- อักขระภาษาอังกฤษตัวพิมพ์ใหญ่และตัวพิมพ์เล็กถือว่าเป็นอักขระที่แตกต่างกัน
- เรามักจะใช้อักขระภาษาอังกฤษที่เป็นตัวพิมพ์ใหญ่ทั้งหมดกับการนิยามค่า symbolic constant
- ห้ามชื่อตัวแปรซ้ำกับคีย์เวิร์ดในภาษา C เช่น if, else, int, float เป็นตัน

1.2 การตั้งชื่อตัวแปร นามสำกับ key mod oonson Symbolic constand maris ro โดย ป_

- การตั้งชื่อตัวแปรควรคำนึงถึงในเรื่องของ readability คือ ให้อ่านแล้วเข้าใจได้ง่าย
- ถึงแม้ว่า a = b * c; จะถูกไวยกรณ์ในภาษา C แต่จุดประสงค์ของการใช้งานไม่ชัดเจน
- snake misso • ต.ย. weekly pay = hours worked * hourly pay rate; สื่อความหมายมากกว่า

รูปแบบชื่อตัวแปรที่มักใช้กัน

- snake_case, student_id, student_name [ชื่อตัวแปรตัวเล็กหมด แล้วคั้นด้วง _]
- คั้นแต่ละคำในตัวแปรด้วยเครื่องหมาย (underscore)
- CamelCase, StudentID, StudentName [สามรถเป็นสาใหม่ ขอแต่ลเต็ได้เก็น]
- ตัวอักษรตัวแรกของแต่ละคำเป็นอักขระพิมพ์ใหญ่นอกนั้นเป็นอักขระพิมพ์เล็ก
- camelCase, studentID, studentName
- บางครั้ง CamelCase <mark>มีการใช้งา</mark>นที่ตัว<mark>อักษรในคำแรกเป็นอักขระพิมพ์เล็ก หลังจากนั้นใช้หลักการข</mark>อง CamelCase ตามปกติ

1 bit = 2 Ai

เราใช้หลักการตั้งชื่อตัวแปรนี้ในการตั้งชื่อฟังก์ชันได้ด้วย

WELVALONG ที่หลินขริง จำนวน เต็ม binary รับเ

2. ประเภทข้อมูลและขนาด (Data Types and Sizes)

- ประเภทข้อมูลที่ใช้<mark>เก็บเลขจำนวนเต็ม</mark> รู้ bit รู้ bit รู้ bit รู้ bit รู้ 25b
 - char (ใช้หน่วยความจำ <mark>1 ไบท์</mark>)
 - int (ส่วนใหญ่ใช้หน่วยความจำ 4 ไบท์ แต่ทั้งนี้ขึ้นอยู่กับตัวคอมไพเลอร์ด้วย)
- ประเภทข้อมูลที่ใช้เก็บเลขจำนวนจริง
 - float (ใช้หน่วยความจำ 4 ไบท์) เ^{ด็บค}่าไล้ทั่ง +, -
 - double (ใช้หน่วยความจำ 8 ไบท์)
- <mark>คีย์เวิร์ด short</mark> ช่วยลดแพื้นที่จัดเก็บให้กับประเภทตัวแปรจำนวนเต็ม ส่วนคีย์เวิร์ด long ช่วยเพิ่มพื้นที่จัดเก็บ long milnivernovosint daniming sold ข้อมล
 - shot & int & long short int
 - long int
- <mark>คีย์เวิร์ด signed</mark> ใช้กำหนดประเภทตัวแปรจำนวนเต็มให้สามารถเก็บค่าที่มีเครื่องหมาย (ซึ่งปกติตัวแปร ี่จำนวนเต็มก็เก็บค่าที่มีเครื่องหมายอยู่แล้ว) ส่วนคีย์เวิร์ด unsigned ใช้กำหนดประเภทตัวแปรจำนวนเต็มให้ สามารถเก็บค่าเฉพาะค่าบวก
 - 🔹 signed int (ซึ่งหากเราไม่ใส่คีย์เวิร์ด signed ก็ยังให้ผลเหมือนกัน) 🧖 🕂 🗂
 - unsigned char ເຄັນ ໄຊພາ ທຳ +
- เราสามารถใช้ <u>sizeof ซึ่งเป็น macro ในการตรวจสอบขนาดตัวแปรและปร</u>ะเภทข้อมูล
- คีย์เวิร์ด void มักจะใช้ในกรณีของการนิยามฟังก์ชันที่ไม่มีการส่งค่ากลับไปยังผู้เรียก และยังใช้ในการกำหนดให้ กับตัวแปร<u>ที่ใม่มีประเภทข้อมูล</u>

```
In [3]:
         1 #include <stdio.h>
         3 int main()
           { char c;
               int i;
               float f;
         7
               double d;
          8
         9
               printf("size of c = %d\n", sizeof(c));
               printf("size of i = %d\n", sizeof(i));
         10
               printf("size of f = %d\n", sizeof(f));
         11
               printf("size of d = %d\n", sizeof(d));
         12
         13 }
```

```
size of c = 1
size of i = 4
size of f = 4
size of d = 8
```

```
In [4]:
                1 #include <stdio.h>
                3 int main()
                                                                                = %d\n", sizeof(char));
                      printf("sizeof(char)
                5
                     printf("sizeof(int)
                                                                                  = %d\n", sizeof(int));
                     printf("sizeof(float)
printf("sizeof(double)
                                                                                 = %d\n", sizeof(float));
                7
                     printf("sizeof(double)
printf("sizeof(short int)
printf("sizeof(long int)
printf("sizeof(unsigend char)
printf("sizeof(unsigned int)
printf("sizeof(unsigned int));
                8
               9
              10
              11
              12
                         printf("sizeof(unsigned short int) = %d\n", sizeof(unsigned short int));
              13
              14
                         printf("sizeof(void)
                                                                                  = %d\n", sizeof(void));
              15 }
```

```
sizeof(char)
                          = 1
                          = 4
sizeof(int)
                          = 4
sizeof(float)
                          = 8
sizeof(double)
sizeof(short int)
                          = 2
sizeof(long int)
                          = 8
                          = 1
sizeof(unsigend char)
sizeof(unsigned int)
                         = 4
sizeof(unsigned short int) = 2
sizeof(void)
```

3. ค่าคงที่ (Constants)

ค่าคงที่จำนวนเต็ม

printf ("/ Fln", 10e -2)

- an integer constant, ต.ย. 1234
- a long constant, ต.ย. 1234567891 หรือ 123456789L
- unsigned constants (ตัวเลขจำนวนเต็มตามด้วย u หรือ U)
- unsigned long constants (ตัวเลขจำนวนเต็มตามด้วย ul หรือ UL)

ค่าคงที่จำนวนจริง . 0 ร f խ∝่

- floating-point constants เช่น 123.4 หรือ 1e-2
- floating-point constants เช่น ตัวเลขจำนวนเต็มตามด้วย f หรือ F
- double constants (ตามด้วย l หรือ L)

ค่าคงที่ของเลขฐาน 2, ฐาน 8, และ ฐาน 16

- 0 (ศูนย์) แล้วตามตัวเลขจำนวนเต็มจะบ่งบอกถึงเลขฐาน 8 (octal)
- 0x หรือ 0X จะบ่งบอกถึงเลขฐาน 16 (hexadecimal)
- ตัวอย่างเช่น 037 จะมีค่าเท่ากับ 31 (ในฐาน 10), 0x1f หรือ 0x1F จะเท่ากับ ...
- 0b หรือ 0B จะบ่งบอกถึงเลขฐาน 2 (binary)
- ตัวอย่างเช่น 0123 เป็นค่าคงที่นเลขฐาน 8, 0x123 เป็นค่าคงที่ในเลขฐาน 16, 0b1001 เป็นค่าคงที่ในเลข ฐาน 2

รูปแบบการพิมพ์ (print format) สำหรับเลขฐาน 8 และฐาน 16

- ใช้ %๐ ในการพิมพ์เลขฐาน 8
- ใช่ %x ในการพิมพ์เลขฐาน 16 (ใช้ %X หากต้องการให้ตัวอักษรเอถึงเอฟเป็นอักขระพิมพ์ใหญ่)

ค่าคงที่ของตัวอักษร (Character Constant)

- character constant จะเขียนอยู่ในรูปตัวอักขระหนึ่งตัวโดยถูกห้อมล้อมด้วยเครื่องหมาย*ฝนทอง* (single quote)
- ต.ย. 'x', '0'
- ASCII character and integer value conversion
- อักขระบางตัวในตาราง ASCII ถูกอ้างถึงโดยใช้ escape sequences เช่น \n หมายถึง newline
- '\0' เป็นอักขระตัวแรกในตาราง ASCII ซึ่งมีค่าโค้ดในตารางเป็น 0 และถูกกำหนดให้เป็น null character

\a	alert (bell) character	\\	backslash
\b	backspace	\?	question mark
\f	formfeed	\'	single quote
\n	newline	\"	double quote
\r	carriage return	\000	octal number
\t	horizontal tab	$\backslash xhh$	hexadecimal number
\v	vertical tab		

์ ค่าคงที่สตริง (String Constant)

- string constant เป็นกลุ่มของอักขระที่ห้อมล้อมด้วยเครื่องหมาย*ฟันหนู* (double quote)
- ต.ម. "This is a sting constant."
- "" เป็น empty string หรือสตริงเปล่า
- The internal representation of a sting has a null character '\0' at the end, so the physical storage required is one more than the number of characters written between the quotes. เรื่องนี้จะกลับมาพูดอีกครั้งตอนบรรยายถึงเรื่องอาเรย์ของอักขระ

```
In [5]: 1 // หากต้องการทดสอบความรู้
2 3 #include <stdio.h>
4 5 int main()
6 {
7 }
```

4. การประกาศตัวแปร (Variable Declarations) ประหาศัพปร

- ตัวแปรในภาษา C ต้องถูกประกาศก่อนถูกใช้งาน
- ตามข้อกำหนดมาตรฐาน C89 หรือ ANSI การประกาศตัวแปรจะต้องถูกกำหนดไว้ตอนส่วนตันของ block เท่านั้น
- การประกาศเป็นการระบุประเภทข้อมูลให้กับตัวแปร

```
int lower, upper, step; char c, line[1000];
```

• การกำหนดค่าเริ่มต้นให้กับตัวแปรสามารถทำได้ในขณะที่ประกาศตัวแปร

```
int lower = 10, upper = 30;
```

• กำหนดค่าเริ่มต้นด้วยนิพจน์

```
char c = 'A' + 1;
```

• เราสามารถประกาศตัวแปรโดยให้เป็นค่าคงที่ที่ไม่สามารถถูกเปลี่ยนค่าได้ตลอดการทำงานของโปรแกรม

```
const int step = 20;
```

• const สามารถใช้กับตัวแปรอาเรย์เพื่อไม่ให้ข้อมูลภายในอาเรย์ถูกเปลี่ยนแปลงได้ โดยเฉพาะในกรณีที่เรา ต้องการส่งผ่านอาเรย์เข้าไปในฟังก์ชัน แต่ไม่ต้องการให้ฟังก์ชันสามารถเปลี่ยนแปลงค่าในอาเรย์ได้

```
int countCharacters(const char[]);
```

4.1 printf() and puts()

```
#include <stdio.h>
int printf(const char *format, ...);
int puts(const char *s);
```

- รูปแบบการพิมพ์ (format) ของ printf()
 - %d print as decimal integer
 - %6d print as decimal integer, at least 6 character wide
 - %06d print as decimal integer, at least 6 character wide with 0 padding
 - %f print as floating point
 - %6f print as floating point, at least 6 character wide
 - %.2f print as floating point, 2 characters after decimal point
 - %6.2f print as floating point, at least 6 wide and 2 after decimal point
- รปแบบอื่นที่ใช้ในบางกรณี
 - %o for octal,
 - %x for hexadecimal,
 - %c for character,
 - %s for character string
 - % for % itself. who // come a graphway to K

4.2 Character Input and Output such and keybord

```
#include <stdio.h>
int getchar(void);
int putchar(int c);
```

- getchar() ใช้รับอักขระ 1 ตัวจาก stdin เข้ามาในโปรแกรม โดยส่งค่ากลับไปยังผู้เรียกใช้ฟังก์ชัน
- putchar() ใช้ส่งอักขระ 1 ตัวออกไปยัง stdout

```
char c;
c = getchar();
c = c + 1;
putchar(c);
```

- EOF เป็นค่าคงที่ที่ถูกกำหนด (defined) ไว้ในไฟล์ stdio.h ซึ่งบ่งบอกถึง end-of-file หรือจุดสิ้นสุด ข้อมูล
- ฟังก์ชัน getchar() จะส่งค่ากลับเป็น EOF เมื่ออักขระที่ถูกส่งเข้ามาในโปรแกรมหมดแล้ว
- ลองรันโปรแกรมข้างล่างนี้โดยใช้ MSYS2

```
#include <stdio.h>
int main()
{    int c;

    c = getchar();
    while (c != EOF) {
        c = c + 1;
        putchar(c);
        c = getchar();
    }
}
```

5. Arithmetic Operators (ตัวดำเนินการทางคณิตศาสตร์)

- +, -, *, /, %
- % ไม่สามารถใช้กับตัวแปรประเภท float และ double ได้
- นอกจากนี้ +, เป็น unary operator ได้ด้วย
- + และ ที่เป็น binary operator มี precedence เท่ากัน ซึ่งมี precedence ต่ำกว่า *, / และ % ซึ่งต่ำกว่า unary + และ -
- หาก operator มี precedence เท่ากัน เราจะพิจารณาลำดับการทำงานของ operator จากซ้ายไปขวา

Operators	Associativity
() [] -> .	left to right
! ~ ++ + - * (type) sizeof	right to left
* / % ไ ตัวถ์แน็นกรทาง math	left to right
+ -	left to right
<< >>	left to right
< <= > >=	left to right
== !=	left to right
&	left to right
^	left to right
	left to right
& & and	left to right
Or Or	left to right
?:	right to left
= += -= *= /= %= &= ^= = <<=	>>= right to left
,	left to right

6. Relational Operators และ Logical Operators

- Relational Operators
 - **-** >

Toni นั้น msms math

- **■** >=
- <
- <=
- **=**==
- **!** =
- Logical Operators
 - **&**&
 - ||
 - !
 - Evaluation stops as soon as the truth or falsehood is known.

Exactly Which Years Are Leap Years?

- We add a Leap Day on February 29, almost every four years. The leap day is an extra, or intercalary, day and we add it to the shortest month of the year, February.
- In the Gregorian calendar three criteria must be taken into account to identify leap years:
 - The year can be evenly divided by 4;
 - If the year can be evenly divided by 100, it is NOT a leap year, unless;

- The year is also evenly divisible by 400. Then it is a leap year.
- This means that in the Gregorian calendar, the years 2000 and 2400 are leap years, while 1800, 1900, 2100, 2200, 2300 and 2500 are NOT leap years.

```
In [6]:
         1 // ลองเขียนโค้ดทดสอบ Leap year
         2 #include <stdio.h>
         3
         4 int main()
         5 { int years[8] = {2000, 2400, 1800, 1900, 2100, 2200, 2300, 2500};
               int i;
         7
         8
              for (i=0; i < 8; i++) {
         9
                 int year = years[i];
         10
                  if (1 == 0) // กำหนดเงื่อนไขให้ถูกต้อง
         11
                     printf("%d is a leap year\n", year);
         12
         13
                  else
         14
                     printf("%d is not a leap year\n", year);
         15
               }
         16 }
```

```
2000 is not a leap year 2400 is not a leap year 1800 is not a leap year 1900 is not a leap year 2100 is not a leap year 2200 is not a leap year 2300 is not a leap year 2500 is not a leap year
```

7. Type Conversion

- เมื่อนำค่าของข้อมูลประเภทต่างๆ มาถูกใช้งานผ่าน operator ร่วมกัน คอมไพเลอร์จะมีการแปลงค่าข้อมูลให้ เหมาะสม โดยจะแปลงจากประเภทข้อมูลที่ "narrow" ไปยังประเภทข้อมูลที่ "wider" เพื่อไม่ให้สูญเสีย ข้อมูล
 - ต.ย.

- Explicit Type Conversion ทำได้โดยใช้ (type name) expression
- การทดสอบ (c >= '0' && c <= '9') สามารถใช้ฟังก์ชัน isdigit(c) ทดสอบแทนได้ ซึ่งฟังก์ชันนี้ถูก กำหนด function prototype ไว้ใน <ctype.h>
- นอกจากนี้ เรามักจะเห็นโค้ดที่ถูกเขียนในรูปของ

```
if (!valid)
```

```
if (valid == 0)
```

8. Increment and Decrement Operators

```
• n++
• ++n
• n--
• --n
• (i+j)++ is illegal
• Ø.8.
```

```
void squeeze(char s[], int c)
{ int i, j;

for (i = j = 0; s[i] != '\0'; i++)
    if (s[i] != c)
        s[j++] = s[i];
    s[j] = '\0';
}
```

```
In [7]:
         1 #include <stdio.h>
         3 void squeeze(char s[], int c)
         4 { int i, j;
         5
         6
               for (i = j = 0; s[i] != '\0'; i++)
         7
                  if (s[i] != c)
         8
                     s[j++] = s[i];
         9
               s[j] = '\0';
         10 }
         11
         12 int main()
         13 { char my_name[] = "My name is John.";
         14
        15
               printf("%s\n", my_name);
        16
               squeeze(my_name, 'n');
               printf("%s\n", my_name);
         17
         18 }
```

My name is John. My ame is Joh.

[100 0, 1]*

ปรายา พระเป็น ซานานางใ

9. Bitwise Operators

```
• & (AND)
```

- The bitwise AND operator is often used to mask off some set of bits, for example
- n = n & 0177;
- sets to zero all but the low-order 7 bits of n.
- (inclusive OR)

```
The bitwise OR operator | is used to turn bits on:

x = x | SET_ON;
sets to one in x the bits that are set to one in SET_ON.
(exclusive OR)
(left shift)
(right shift)
(one's complement (unary))
masking x = x & ~077 --> sets the last six bits of x to zero
ความแตกต่างระหว่าง x & y กับ x && y
```

11. Conditional Expression

- expr1 ? expr2 : expr3
- ลองแปลงโค้ดด้านล่างในอยู่ในรูปของ conditional expression

```
if (a > b)
  z = a;
else
  z = b;
```

• printf("I bought %d book%s\n", n, n==1 ? "" : "s");

12. เกริ่นนำเกี่ยวกับอาเรย์ (Array Introduction)

- ตัวแปรอาเรย์สามารถเก็บข้อมูลมากกว่า 1 จำนวนที่เป็นประเภทเดียวกันไว้ด้วยกัน
- ต.ย.

- a[i] อ้างอิงขึ้นข้อมลตัวที่ i ในอาเรย์ a โดยข้อมลตัวแรกในอาเรย์คือ a[0]
- ลองเขียนโปรแกรมเพื่อนับจำนวนตัวเลขแต่ละตัวในอาเรย์
- อาเรย์ของอักขระเรียกได้อีกอย่างว่า *สตริง*

```
    ■ The bitwise OR operator | is used to turn bits on:
    ■ x = x | SET_ON;
    ■ sets to one in x the bits that are set to one in SET_ON.
    ^ (exclusive OR)
    << (left shift)</li>
    >> (right shift)
    ~ (one's complement (unary))
    ● masking x = x & ~077 --> sets the last six bits of x to zero
    ● ความแตกต่างระหว่าง x & y กับ x && y
```

10. Assignment Operators

```
c = getchar() และ c = d = getchar()
i = i + 2 ==> i += 2
x = x op y ==> x op= y โดย op อยู่ใน {+, -, *, /, %, <<, >>, &, |, ^}
x *= y + 1 ==> x = x * (y + 1)
ลองเขียนโปรแกรมเพื่อใช้นับจำนวน bit ที่มีค่าเป็น 1 ในจำนวนเต็มที่รับค่าเข้ามา
```

11. Conditional Expression

- expr1 ? expr2 : expr3
- ลองแปลงโค้ดด้านล่างในอยู่ในรูปของ conditional expression

```
if (a > b)
  z = a;
else
  z = b;
```

• printf("I bought %d book%s\n", n, n==1 ? "" : "s");

12. เกริ่นนำเกี่ยวกับอาเรย์ (Array Introduction)

- ตัวแปรอาเรย์สามารถเก็บข้อมูลมากกว่า 1 จำนวนที่เป็นประเภทเดียวกันไว้ด้วยกัน
- ឲ. ខ.

- a[i] อ้างอิงขึ้นข้อมลตัวที่ i ในอาเรย์ a โดยข้อมลตัวแรกในอาเรย์คือ a[0]
- ลองเขียนโปรแกรมเพื่อนับจำนวนตัวเลขแต่ละตัวในอาเรย์
- อาเรย์ของอักขระเรียกได้อีกอย่างว่า *สตริง*