Trabalho 1 Circuitos - ALU

Paulo Ricardo Lisboa de Almeida

 1^o Semestre - 2024

1 Descrição

Implemente um circuito para uma Unidade Lógica e Aritmética (ALU), capaz de fazer quatro operações. A ALU deve receber dois valores de 6 bits cada, A e B, e um valor O de 2 bits. A resposta deve ser um valor S de 6 bits. Considere também uma saida F de 1 bit, que indica se ocorreu um overflow (F = 1), ou não (F = 0).

Você pode usar apenas portas lógicas simples (AND, OR, NOT, NAND, NOR, XOR e XNOR). No seu circuito, todos os valores negativos devem ser representados em complemento de 2. As operações são descritas nas próximas seções.

1.1 Soma

Ao receber um valor A e um B, e $O = 00_2$, o seu circutio deve gerar como saída S = A + B. Ou seja, os valores devem ser somados.

1.2 Subtração

Ao receber um valor A e um B, e $O = 01_2$, o seu circutio deve gerar como saída S = A - B. Ou seja, os valores devem ser subtraídos.

1.3 Comparação

Ao receber um valor A e um B, e $O=10_2$, o seu circutio deve comparar A com B, e $S=000001_2$ se A=B, ou $S=000000_2$ se $A\neq B$. Ou seja, os valores devem ser comparados.

1.4 Multiplicação

A multiplicação é dada pelo código $O = 11_2$. Ao receber um valor A e um B, o circuito deve produzir como resposta o resultado de $A \times B$. Ou seja, os valores devem ser multiplicados. Exclusivamente para essa operação, considere o seguinte.

- Somente os 4 primeiros bits de A e B (bits de índice 0 a 3) serão usados para a entrada, enquanto os demais permanecerão zerados. Caso qualquer dos dois bits mais altos de A ou B (bits 4 ou 5) sejam 1, faça F = 1 para sinalizar um erro na operação.
- A saída S terá 8 bits (cuidado, para as demais operações, utilize apenas os 6 primeiros bits de S como resposta).

• Considere que A e B são números naturais, incluindo o zero (o circuito não precisa ser capaz de realizar multiplicações com valores negativos).

1.5 Exemplos

Na Tabela 1.5 são dados alguns exemplos de operações e as respostas esperadas pelo circuito.

Tabela 1 – Exemplos de operações

Descrição	O_1O_0	$A_5A_4A_3A_2A_1A_0$	$B_5B_4B_3B_2B_1B_0$	$S_7S_6S_5S_4S_3S_2S_1S_0$	\overline{F}
12+2	00	001100	000010	001110	0
31 + 15	00	011111	001111	101110	1
31+(-1)	00	011111	111111	011110	0
-30-12	01	100010	001100	010110	1
7 = = 7	10	000111	000111	000001	0
-30 = = 7	10	100010	000111	000000	0
7*3	11	000111	000011	00010101	0
15*15	11	001111	001111	11100001	0
Erro	11	100000	000000	XXXXXXXX	1

2 Simulador e Template

O trabalho deve ser feito no $Digital^1$.

Você deve usar o template disponibilizado no Moodle. O main serve para testes do seu circuito - não edite o main. Implemente o seu trabalho no arquivo Circuito do template.

3 Dicas

- Você pode criar subcircuitos para facilitar a criação do trabalho.
- Você pode gravar um vídeo demonstrando que seu circuito funciona, e encaminhar juntamente no .tar.gz do trabalho.

4 Apresentação

Você deve agendar um horário com o professor (agenda será liberada via Moodle) para apresentar seu trabalho funcionando, e explicar como você chegou no circuito apresentado. Durante a apresentação você precisará defender o seu trabalho.

Você terá exatos 10 minutos para apresentar o trabalho. Atrasos podem acarretar na perda de pontos, e a não apresentação do trabalho acarretará na perda total dos pontos.

5 Arquivos a serem entregues

Você deve compactar o seu trabalho em um arquivo tar.gz (é obrigatório que o arquivo seja .tar.gz – arquivo tarball compactado via Gzip) de nome trab1SeuGRR.tar.gz. Se, por

^{1 &}lt;https://github.com/hneemann/Digital>

exemplo, seu GRR é 1234, o diretório contendo os arquivos do trabalho deve se chamar trab1grr1234. Compacte esse diretório, sendo que a versão compactada vai se chamar trab1grr1234.tar.gz. O diretório deve conter o seguinte:

- Arquivos do seu circuito;
- Arquivos que provam que você criou o circuito (Karnaugh, simplificações, ...);
- Vídeo de demonstração de no máximo 2 minutos (opcional).

Os arquivos que provam que você criou o circuito devem mostrar claramente como o circuito foi modelado. Esses arquivos podem ser solicitados durante a apresentação.

6 Entrega

O trabalho deve ser entregue via Moodle. A data limite para o envio está estipulada no link de entrega do Moodle.

Não serão aceitas entregas em atraso, exceto para os casos explicitamente amparados pelas resoluções da UFPR.

7 Grupos, Pesos e Datas

Grupos: trabalho individual.

Valor: 30% da nota do semestre.

Submissão: Via Moodle. Veja a data limite no link de submissão.

8 Descontos Padrão e Critérios de Avaliação

Alguns descontos padrão, considerando uma nota entre 0 e 100 pontos para o trabalho:

- Plágio de qualquer fonte acarreta na perda total da pontuação para todos os envolvidos. Isso é válido mesmo para casos onde o plágio se refere a apenas um trecho do trabalho;
- A não apresentação do trabalho acarreta na perda total dos pontos;
- Não submissão via Moodle acarreta na perda total dos pontos;
- Inclusão de arquivos desnecessários (lixo): desconto de 5 a 20 pontos;
- Nomes de arquivo incorretos: 5 pontos por arquivo;
- Arquivos corrompidos ou com extensão incorreta: de 5 a 100 pontos.

Os principais critérios de avaliação serão os seguintes:

- Os arquivos solicitados foram entregues?
- O trabalho está correto, ou seja, tudo foi feito de acordo com o especificado?

- O circuito é correto e simplificado?
- O circuito é organizado e evita redundâncias?
- Durante a apresentação o(a) aluno(a) tem domínio sobre o que está explicando?

9 Demais Regras

- Dúvidas ou casos não especificados neste documento podem ser discutidos até a data de entrega do trabalho. Não serão aceitas reclamações após a data da entrega.
- Os alunos podem (devem) procurar o professor para discutir dúvidas quanto ao trabalho.
- O descumprimento das regras dispostas nesse documento podem acarretar na perda parcial ou total da nota do trabalho.