Lecture 06: Applications I

Nikola Zlatanov

Innopolis University

Advanced Statistics

13-th of March to 20-th of March, 2023

- We started this course by observing that high dimensions could be a major problem, due to the curse of dimensionality.
- Why don't we then fix the problem due to high-dimensions as follows: Take the high-dimensional data and transform it into a low-dimensional data.
- Let there be N high-dimensional vectors $\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N$, where $\boldsymbol{x}_j^T = [x_1, x_2, ..., x_d]$, for j = 1, 2, ..., N, where d is very high.
- We would like to make a transformation of $x_1, x_2, ..., x_N$ into $y_1, y_2, ..., y_N$, where $y_j^T = [y_1, y_2, ..., y_n]$, for j = 1, 2, ..., N, where $n \ll d$, and yet the geometry of $x_1, x_2, ..., x_N$ are preserved in $y_1, y_2, ..., y_N$.

• First we have to define what do we mean by "the geometry of the data": By "the geometry of the data", we mean the pairwise distances between the original data.

Is this possible? It turns out it is possible if $n = O(\ln(N)) \ll d$.

• Thm (Johnson-Lindenstrauss Lemma): \forall vectors $\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_N$, where $\boldsymbol{x}_j \in \mathbb{R}^d$, for j = 1, 2, ..., N, there exists a linear map $T: \boldsymbol{x}_j \to \boldsymbol{y}_j$, where $\boldsymbol{y}_j \in \mathbb{R}^n$ and $n \ll d$ such that the following holds

$$\Pr\{(1-\delta)||\boldsymbol{x}_{m}-\boldsymbol{x}_{j}||_{2} \leq ||\boldsymbol{y}_{m}-\boldsymbol{y}_{j}||_{2} \leq (1+\delta)||\boldsymbol{x}_{m}-\boldsymbol{x}_{j}||_{2}\} \geq 1-\epsilon$$
(1)

for any $j \neq m$, where j = 1, 2, ..., N and m = 1, 2, ..., N, and small $\delta > 0$ and $\epsilon > 0$ if

$$n > \frac{1}{c} \left(\ln(N) + \frac{1}{2} \ln\left(\frac{1}{\epsilon}\right) + \frac{1}{2} \ln(2) \right)$$

holds where

$$c = \frac{\delta(2-\delta)}{k} \min\left\{\frac{\delta(2-\delta)}{k}, 1\right\},\tag{2}$$

where k is some constant.

Proof:

- The vectors $x_1, x_2, ..., x_N$ and $y_1, y_2, ..., y_N$ are all deterministic.
- However, we will use a probabilistic method to find the mapping $T: x_j \to y_j$.
- Specifically, we will choose a linear map $T(\cdot)$ at random, and then we will prove that the linear map $T(\cdot)$ satisfies the properties that we seek.
- Now, a linear map is simply a multiplication of $x_1, x_2, ..., x_N$ by a matrix T, of size $n \times d$, to obtain $y_1, y_2, ..., y_N$.
- Hence, if we will choose a linear map $T(\cdot)$ at random, this means that we should choose a matrix T at random.
- ullet How is it possible that a randomly chosen matrix T would work?

- Let's have a random matrix G of size $n \times d$ populated by i.i.d. Gaussian entries, i.e., the (i, j)-th element of G, denoted by G_{ij} , is generated i.i.d. according to the Gaussian distribution N(0, 1) for i = 1, 2, ..., n and j = 1, 2, ..., d.
- Let us have a fixed vector $z \in \mathbb{R}^d$, with norm $||z||_2$.
- Now, let's investigate the distribution of Gz. The *i*-th element of Gz, denoted by $(Gz)_i$ is given by

$$(Gz)_i = \sum_{j=1}^d G_{ij}z_j \sim N\left(0, \sum_{j=1}^d z_j^2\right) = N\left(0, ||z||_2^2\right) \stackrel{(a)}{=} N(0, 1)$$
 (3)

where (a) holds if and only if $||z||_2 = 1$.

On the other hand, let's fix two vectors, \boldsymbol{x}_m and \boldsymbol{x}_l . Then, the vector $\boldsymbol{G}\boldsymbol{x}_m - \boldsymbol{G}\boldsymbol{x}_l$, according to (3), has i.i.d. zero-mean Gaussian elements each with variance $||\boldsymbol{x}_m - \boldsymbol{x}_l||_2$.

Hence, if we normalize $Gx_m - Gx_l$ by $||x_m - x_l||_2$, the vector

$$\frac{||\boldsymbol{G}\boldsymbol{x}_m - \boldsymbol{G}\boldsymbol{x}_l||_2}{||\boldsymbol{x}_m - \boldsymbol{x}_l||_2}$$

will have i.i.d. zero-mean Gaussian elements each with variance one. As a result, we can use the Thin-Shell Theorem, which states that

$$\Pr\left\{ \left| \frac{||\boldsymbol{G}\boldsymbol{x}_{m} - \boldsymbol{G}\boldsymbol{x}_{l}||_{2}}{||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}} - \sqrt{n} \right| \leq \delta \sqrt{n} \right\} \\
\geq 1 - 2 \exp\left(-n \frac{\delta(2 - \delta)}{k} \min\left\{ \frac{\delta(2 - \delta)}{k}, 1 \right\} \right), \tag{4}$$

where k is some constant.

We will now prove the main theorem as follows. We will select a pair of vectors \mathbf{x}_m and \mathbf{x}_l . We will prove (1) for the selected \mathbf{x}_m and \mathbf{x}_l .

Then, we will use the union bound to prove that the theorem holds for all pairs satisfying the given condition.

We start with the selected pair x_m and x_l :

$$\Pr\left\{\left|\frac{||\boldsymbol{G}\boldsymbol{x}_{m} - \boldsymbol{G}\boldsymbol{x}_{l}||_{2}}{||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}} - \sqrt{n}\right| \leq \delta\sqrt{n}\right\}$$

$$= \Pr\left\{\left|||\boldsymbol{G}\boldsymbol{x}_{m} - \boldsymbol{G}\boldsymbol{x}_{l}||_{2} - ||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}\sqrt{n}\right| \leq ||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}\delta\sqrt{n}\right\}$$

$$= \Pr\left\{\left||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}\sqrt{n}(1 - \delta) \leq ||\boldsymbol{G}\boldsymbol{x}_{m} - \boldsymbol{G}\boldsymbol{x}_{l}||_{2} \leq ||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}\sqrt{n}(1 + \delta)\right\}$$

$$= \Pr\left\{\left||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}\sqrt{n}(1 - \delta) \leq ||\boldsymbol{G}\boldsymbol{x}_{m} - \boldsymbol{G}\boldsymbol{x}_{l}||_{2} \leq ||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}\sqrt{n}(1 + \delta)\right\}$$

$$= \Pr\left\{\left||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}(1 - \delta) \leq \frac{1}{\sqrt{n}}||\boldsymbol{G}\boldsymbol{x}_{m} - \boldsymbol{G}\boldsymbol{x}_{l}||_{2} \leq ||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}(1 + \delta)\right\}$$

$$= \text{continuation on next page}$$
(5)

Continuation of (5)

$$\stackrel{(a)}{=} \Pr\left\{ ||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2} (1 - \delta) \leq ||\boldsymbol{T}\boldsymbol{x}_{m} - \boldsymbol{T}\boldsymbol{x}_{l}||_{2} \leq ||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2} (1 + \delta) \right\}$$

$$\stackrel{(b)}{\geq} 1 - 2 \exp\left(-n \frac{\delta(2 - \delta)}{k} \min\left\{\frac{\delta(2 - \delta)}{k}, 1\right\}\right) \stackrel{(c)}{=} 1 - 2e^{-nc}$$
(6)

where (a) comes by setting

$$T = \frac{1}{\sqrt{n}}G,$$

and (c) comes by setting

$$c = \frac{\delta(2-\delta)}{k} \min\left\{\frac{\delta(2-\delta)}{k}, 1\right\} \tag{7}$$

We now take the union bound over all pairs of N vectors

$$\Pr\left\{ \bigcap_{m=1}^{N} \bigcap_{l=m+1}^{N} \left| \frac{||G\boldsymbol{x}_{m} - G\boldsymbol{x}_{l}||_{2}}{||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}} - \sqrt{n} \right| \leq \delta \sqrt{n} \right\} \\
= 1 - \Pr\left\{ \bigcup_{k=1}^{N} \bigcup_{l=k+1}^{N} \left| \frac{||G\boldsymbol{x}_{m} - G\boldsymbol{x}_{l}||_{2}}{||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}} - \sqrt{n} \right| \geq \delta \sqrt{n} \right\} \\
\geq 1 - \sum_{k=1}^{N} \sum_{l=1}^{N} \Pr\left\{ \left| \frac{||G\boldsymbol{x}_{m} - G\boldsymbol{x}_{l}||_{2}}{||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}} - \sqrt{n} \right| \geq \delta \sqrt{n} \right\} \\
= 1 - N^{2} \Pr\left\{ \left| \frac{||G\boldsymbol{x}_{m} - G\boldsymbol{x}_{l}||_{2}}{||\boldsymbol{x}_{m} - \boldsymbol{x}_{l}||_{2}} - \sqrt{n} \right| \geq \delta \sqrt{n} \right\} \\
\geq 1 - 2N^{2} e^{-nc} \\
= 1 - e^{\ln(2) + 2\ln(N) - nc}$$

Now, we want to set n, N, and c such that

$$\Pr\left\{\left|\frac{||\boldsymbol{G}\boldsymbol{x}_m - \boldsymbol{G}\boldsymbol{x}_l||_2}{||\boldsymbol{x}_m - \boldsymbol{x}_l||_2} - \sqrt{n}\right| \le \delta\sqrt{n}\right\} \ge 1 - e^{\ln(2) + 2\ln(N) - nc} \ge 1 - \epsilon$$

which occurs if

$$1 - e^{\ln(2) + 2\ln(N) - nc} \ge 1 - \epsilon$$

or equivalently if

$$\ln(2) + 2\ln(N) - nc < \ln(\epsilon)$$

or equivalently if

$$\ln(N) < nc - \frac{1}{2}\ln\left(\frac{1}{\epsilon}\right) - \frac{1}{2}\ln(2),$$

where c is given in (7) as function of δ . Q.E.D.

Note! We have lost d. Where is d?

Nikola Zlatanov