Chapter 08. AI의 학습원리와 데이터 처리

■ AI 모델에서 학습은 어떻게 이루어지나?

8-1. 머신러닝 모형의 원리 : 분류 모형

(출처: K-ICT 딥러닝 개요, 송준이(아이덴티파이) 자료 인용)

■ 센서 데이터의 분류

- 2개의 입력 센서 데이터로 고장 유무 판별

x1 : 첫 번째 센서에서 수집된 값 x2 : 두 번째 센서에서 수집된 값

Y: 장치의 오작동 여부

	6 -			
		у	×2	x 1
_	5 -	False	0.3	0.1
•	4 -	False	1.2	0.8
	3 -	True	0,3	2,5
		False	4.2	1.2
_	2 -	False	0.8	0.4
•	1-	True	1.2	3,2
	0 -	True	0.1	1.7
0.0 0.5 1.0		False	5.7	3.1
그림> 2개의 센	<	True	0,5	2.9

그림> 2개의 센서 데이터와 장비 고장 유무

8-1. 머신러닝 모형의 원리 : 분류 모형

(출처: K-ICT 딥러닝 개요, 송준이(아이덴티파이) 자료 인용)

- 센서 데이터의 분류
 - 새로운 센서 데이터가 수집된 경우, 장치의 오작동 여부 예측

x1	×2	у
3,9	2,7	?
3,9	1,9	?

분류 문제 : 2개의 데이터를 가장 잘 구별하는 선형 판별식을 찾는 과정

w1x1 + w2x2 = b

8-1. 머신러닝 모형의 원리 : 분류 모형

■ IRIS 꽃 분류

- 입력변수
 - ·꽃받침 길이(sepal length)
 - ·꽃받침 너비(sepal width)
 - ·꽃잎 길이(petal length)
 - ·꽃잎 너비(petal width)
- 출력변수
 - · IRIS의 세 품종
 - ·세토사(Setosa)
 - · 버시컬러(Versicolour)
 - · 버지니카(Virginica)

	레이블(label)			
x1	x2	x3	х3	у
sepal length	sepal width	petal length	petal width	species
5.0	3.4	1.6	0.4	Iris-setosa
5.6	2,9	3.6	1.3	Iris-versicolor
6.3	2.8	5.1	1.5	Iris-virginica

표. 학습 데이터 예시

- 학습이란

학습 데이터에 대해 아래를 만족하는 최적의 파라미터 $\{(w_1, w_2, w_3) b\}$ 를 찾는 과정 $f(w_1x_1 + w_1x_1 + w_1x_1 + b) \Rightarrow 0 \text{ or } 1 \text{ or } 2$

8-2. 머신러닝 모형의 원리 : 분류 모형(이미지 데이터 세트)

(출처: K-ICT 딥러닝 개요, 송준이(아이덴티파이) 자료 인용)

- MNIST 필기체 분류
 - 문제
 - ㆍ사람이 필기체로 작성한 0부터 9까지의 숫자 이미지에 대해 적힌 숫자 값을 식별하기
 - 학습 데이터
 - ㆍ입력값 : 0부터 9까지 필기체로 작성된 숫자 이미지
 - ·레이블 : 이미지에 적힌 실제 숫자 값

<그림> MNIST 필기체 이미지

학습정리 #8차

■ 인공지능 모델에서의 학습

- 훈련(Training) 데이터 세트를 이용해서 학습을 진행함
- "명시적인 조건"이 없이, 라벨링된 데이터를 이용해서 스스로 판단 기준을 만듦

■ 분류 모형(Classification Model)

- 대상의 타입(Type)을 스스로 찾아내고 이를 근거로 각 대상을 적절하게 소팅(Sorting) (비고 : 대상의 값(Value)의 예측 – 회귀모형)
- 군집모델 분석과 같이 데이터 라벨링이 없더라도 판정이 가능함

■ 분류모형의 사용 예

- 데이터의 포맷과 상관 없이 다양한 데이터 소스에 맞도록 모델 개발 가능
- 스팸메일 필터(텍스트), 스마트 팩토리의 고장 제품 판단(이미지), 음성인식 비서(시리, S-Voice) 등