Photon #8

Calculate the dot product
$$u \cdot v$$
 $u = 2i - 3i + kc$
 $v = i - 2i + 3kc$
 $u \cdot v = 2i + (-3)(-2) + [-3 = 1]$

#24

Find $u_1 \neq u_2$ st. $u_1 = pros_q u$.

Civen: $u_1 \perp u_2$
 $u = u_1 + u_2$
 $u = \left[\frac{6}{2}\right]$
 $q = \left[\frac{1}{-1}\right]$
 $u \cdot q = 6i + 2(-i) = 4$
 $|q| = |q| = |q| = |q|$
 $|q| = |q|$

Let a be a fixed vector in R3 and defre W to be the subset of R3 gien by $\mathcal{W} = \left\{ x : \alpha^{\mathsf{T}} X = 0 \right\}$ Prove that W is a subspace of R3. If Wisasubset of R3, (heck 1) and 2) 1) If X1, X2 in W, then X1 + X2 in W. assure X, ad X2 ae in W. $\alpha^{T} Y_{1} = 0 = \alpha^{T} X_{2}$ $\rightarrow \alpha \sqrt{x_1 + x_2} = 0$ ->XI+X2 is in Wor 2) If Xi is in W then XXI is in W. Xiisin W. $\mathcal{O}_{\mathbf{x}}^{\mathsf{T}} \mathbf{X}_{\mathbf{x}} = \mathbf{0}$ $\propto \Omega^T X_1 = 0 = \Omega^T (\propto X_1) = 0$ $\rightarrow \times \times$, is in W. / 1) and 2) are satisfied, so W is a subspace of R,

P₁₇₅

#32 let Und V be subspaces of R3 defred by $V = \{x : A^T x = 0\}$ and $V = \{x : B^T x = 0\}$ $N = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $A = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ Show U V is not a subspace of R3 Pf 1) If X1 and X2 are in UUV then $x_1 + x_2$ is in $V \cup V$. $a^T x_1 = 0 = a^T x_2 = b^T x_1 = b^T x_2$ $\alpha^{\mathsf{T}} \mathbf{X}_1 - \alpha^{\mathsf{T}} \mathbf{X}_2 - \mathbf{b}^{\mathsf{T}} \mathbf{X}_1 - \mathbf{b}^{\mathsf{T}} \mathbf{X}_2 = \mathbf{0}$ $M^{T}(X_{1}-X_{2})-b^{T}(X_{1}+X_{2})=0$ $G^{T}(X_{1}-X_{2})-G^{T}(X_{1}+X_{2})=G^{T}X_{1}$ $-\alpha^{T}X_{1}-6(x_{1}+x_{2})=0$

 $-\alpha^{\dagger} \chi_{1} - b^{\dagger} (2 \chi_{1} + \chi_{2})$ This does not envil - aTX, ...

1) connot be satisfied >> Not a subspace of R3