

characterization of a Kleene algebra

 ${\bf Canonical\ name} \quad {\bf Characterization Of AKleene Algebra}$

Date of creation 2013-03-22 17:02:40 Last modified on 2013-03-22 17:02:40

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771)
Entry type Definition
Classification msc 20M35
Classification msc 68Q70
Defines *-continuous

Let A be an idempotent semiring with a unary operator * on A. The following are equivalent

- 1. $ac + b \le c$ implies $a^*b \le c$,
- 2. $ab \le b$ implies $a^*b \le b$.

Proof. $(1 \Rightarrow 2)$. Assume $ab \leq b$. So ab + b = b. Then (ab + b) + b = ab + (b + b) = ab + b = b, which implies $ab + b \leq b$. By 1, this means $a^*b \leq b$ as desired. $(2 \Rightarrow 1)$. Assume $ac + b \leq c$. Since $0 \leq b$, we get $ac = ac + 0 \leq ac + b \leq c$. Consequently $a^*c \leq c$.

From the above observation, we see that we get an equivalent definition of a Kleene algebra if the axioms

$$ac + b \le c$$
 implies $a^*b \le c$ and $ca + b \le c$ implies $ba^* \le c$

are replaced by

$$ab < b \text{ implies } a^*b < b$$
 and $ba < b \text{ implies } ba^* < b$.

Let A be a Kleene algebra. Some of the interesting properties of * on A are the following:

1.
$$0^* = 1$$
.

2.
$$a^n \leq a^*$$
 for all non-negative integers n .

3.
$$1^*a \le a$$
.

4.
$$1^* = 1$$
.

5.
$$1 + a^* = a^*$$
.

6.
$$a \le b$$
 implies $a^* \le b^*$.

7.
$$a^*a^* = a^*$$
.

8.
$$a^{**} = a^*$$
.

9.
$$1 + aa^* = a^*$$
.

10.
$$1 + a^*a = a^*$$
.

11.
$$ac \le cb$$
 implies $a^*c \le cb^*$.

12.
$$cb \le ac$$
 implies $cb^* \le a^*c$.

13.
$$(ab)^*a = a(ba)^*$$
.

14.
$$1 + a(ba)^*b = (ab)^*$$
.

15. If
$$c = c^2$$
 and $1 \le c$, then $c^* = c$.

16.
$$(a+b)^* = a^*(ba^*)^*$$
.

Remarks.

- Properties 9 and 10 imply that the axioms $1+aa^* \le a^*$ and $1+a^*a \le a^*$ of a Kleene algebra can be replaced by these stronger ones.
- Though in the example of Kleene algebras formed by regular expressions,

$$a^* = \bigcup \{a^i \mid i = 0, 1, 2, \ldots\},\$$

and we see that a^* is the least upper bound of the a^i 's, this is not a property of a general Kleene algebra. A counterexample of this can be found in Kozen's article, see below. He calls a Kleene algebra K*-continuous if $a^* \leq b$ whenever $a^i \leq b$ for any $i \in \mathbb{N} \cup \{0\}$, and $a, b \in K$.

References

[1] D. Kozen, http://www.cs.cornell.edu/kozen/papers/kacs.psOn Kleene Algebras and Closed Semirings (1990).