Tareita 17

Simulación estocástica

Marco Antonio Andrade Barrera

17 de mayo de 2018

Estimar $E[\lambda|datos]$

```
Cosos 0 1 2 3 74 Total
Repeliciones 139 128 55 25 13 360
```

De acuerdo con los datos anteriores, el algoritmo que se propone es

- 1. Dados los datos, dar $\lambda^{(0)}$ y la transición de t a t+1 será
- 2. Generar $\{y_1^{(t+1)}, \cdots, y_{13}^{(t+1)}\} \sim P_0(y|\lambda^{(t)})I_{[4,\infty)}(y)$
- 3. Generar $\lambda^{(t+1)} \sim Ga(\lambda|313 + \sum_{i=1}^{13} y_i^{(t+1)}, 360)$

En el siguiente bloque de código se implementa el algoritmo para generar una cadena de tamaño n dado un valor inicial λ_0 .

```
algo <- function(n,10){</pre>
  lambdaT <- list()</pre>
  lambdaT[[1]] <- 10
  i <- 2
  repeat{
    y <- lapply(X = 1:13,FUN = function(j){</pre>
      d <- TRUE
      while (d) {
         yj <- rpois(n = 1,lambda = lambdaT[[i-1]])</pre>
         if(4 <= yj) break
      уj
    })
    y <- unlist(y)
    lambdaT[[i]] \leftarrow rgamma(n = 1, shape = 313 + sum(y), rate = 360)
    i <- i + 1
    if(n < i) break
  }
  unlist(lambdaT)
}
```

Generar tres cadenas independientes de tamaño 8,945, después de generar y tirar 2,018. Independientes significa que se dan tres valores iniciales diferentes.

```
#Fijar semilla
set.seed(58)

#Cadena 1
cad1 <- algo(n = 8945+2018,10 = 1.5)
#tirar las primeras 2018
cad1 <- cad1[-(1:2018)]

#Cadena 2
cad2 <- algo(n = 8945+2018,10 = 2.1)
#tirar las primeras 2018
cad2 <- cad2[-(1:2018)]

#Cadena 3
cad3 <- algo(n = 8945+2018,10 = 1.8)
#tirar las primeras 2018
cad3 <- cad3[-(1:2018)]</pre>
```

Con cada una de las cadenas estimar el valor esperado

```
#usando cadena 1
mean(cad1)

## [1] 1.021964

#usando cadena 2
mean(cad2)

## [1] 1.022666

#usando cadena 3
mean(cad3)

## [1] 1.021985
```

Como se puede observar, los tres valores son muy parecidos al valor que se muestra en las notas (1.02557).

Graficar los promedios ergódicos (de 20 en 20) de las tres cadenas

```
#Cadena 1
graf <- unlist(lapply(X = c(seq(20,8940,20),8945),FUN = function(1){
   mean(cad1[1:1])
}))
plot(graf,pch=16,main = "Promedios ergódicos usando la cadena 1")
abline(h = mean(cad1))</pre>
```

Promedios ergódicos usando la cadena 1


```
#Cadena 2
graf <- unlist(lapply(X = c(seq(20,8940,20),8945),FUN = function(1){
   mean(cad2[1:1])
}))
plot(graf,pch=16,main = "Promedios ergódicos usando la cadena 2")
abline(h = mean(cad2))</pre>
```

Promedios ergódicos usando la cadena 2


```
#Cadena 3
graf <- unlist(lapply(X = c(seq(20,8940,20),8945),FUN = function(1){
   mean(cad3[1:1])
}))
plot(graf,pch=16,main = "Promedios ergódicos usando la cadena 3")
abline(h = mean(cad3))</pre>
```

Promedios ergódicos usando la cadena 3

En los tres casos, se observa que los promedios ergódicos convergen a la esperanza estimada mediante el promedio de las cadenas.