Especificação Organizacional de Sistemas Multiagentes e o modelo \mathcal{M} oise⁺

Jomi Fred Hübner (FURB/SC) jomi@inf.furb.br

Nota

Estes slides são uma versão atualizada dos slides utilizados nos seguintes cursos/tutoriais:

- Jomi F. Hübner e Jaime S. Schiman. JAIA 2003.
- Olivier Boissier e Jaime S. Schiman. EASSS 2005.

Roteiro

- Modelos organizacionais
- Modelo Moise⁺
- Programação orientada a organizações

Noção intuitiva de organização

- Exemplos:
 - ★ Uma mesa de trabalho
 - ⋆ Um formigueiro
 - ⋆ Uma célula
 - * Um time de futebol
- Perguntas:
 - ⋆ O que é exatamente organização?
 - ⋆ Quais os tipos de organização?
 - ⋆ Por que organizar?

Por que organizar um SMA?

- Se os agentes são autônomos (autonomia de funcionamento, objetivos, etc.), como o sistema vai atingir um objetivo global?
- A autonomia precisa ser "limitada".
- Exemplo "todos nós somos autônomos, mas quando assumimos o papel de aluno, já não podemos mais fazer certas coisas e podemos fazer outras".
- Na sociedade humana, a noção de papel é muito utilizada para representar direitos e obrigações que, de certa forma, controlam nossa autonomia.

Motivações para organizar um SMA na perspectiva de um agente (local)

- Facilitar o processo de decisão (diminuir seu espaço de busca)
 - "já que eu tenho que fazer o trabalho da disciplina, melhor fazê-lo logo"
 - ★ Noções organizacionais envolvidas no raciocínio: ser aluno, brigações de aluno.
- Facilitar o raciocínio e a interação com os demais
 - * "se ele é um **vendedor** de casas, então posso lhe perguntar as ofertas atuais".
 - Noções organizacionais envolvidas no raciocínio: ser vendedor, obrigações dos vendedores.

Motivações para organizar um SMA na perspectiva do sistema (global)

- Facilitar um comportamento global coeso, voltado a uma finalidade.
- Principalmente no contexto de sistemas abertos
 - ⋆ Novos agentes podem entrar no sistema.
 - ★ Esses novos agentes podem ter diferentes arquiteturas, formas de programação, objetivos, ...

Duas **formas de ver** organização [Lemaître and Excelente, 1998]

(a) Visão centrada nos agentes

(b) Visão centrada na organização

Algumas definições

- "Organizations are structured, patterned systems of activity, knowledge, culture, memory, history, and capabilities that are distinct from any single agent" [Gasser, 2001]
 Organização como um fenômeno supra-individual.
- "A decision and communication schema which is applied to a set of actors that together fulfill a set of tasks in order to satisfy goals while guarantying a global coherent state" [Malone, 1999]
 Organização como um padrão de comportamento para atingir um objetivo global.

O que é Organização

A organização de um SMA é um conjunto de restrições ao comportamento dos agentes a fim de conduzi-los a uma finalidade comum. [Dignum and Dignum, 2001]

- Estas restrições podem estar explícitas ou não e os agentes podem ser ou não conscientes delas.
- No caso onde se deseja explicitar a organização (observada ou institucionalizada), como descrevê-la?
- Que noções utilizar (grupos, papéis, tarefas, missões, autoridade, etc.)?
- Qual o significado destas noções?

⇒ Modelos Organizacionais

O modelo AGR (Agent Group Role) [Ferber and Gutknecht, 1998]

- Uma organização é um conjunto de grupos e agentes com papéis nestes grupos.
- Um grupo tem um conjunto de papéis necessários para seu funcionamento.
- Papel é um conjunto de funções que os agentes assumem ao entrar em um grupo.
- Não importa a arquitetura

dos agentes.

- Implementado no MADKIT.
- A organização é instanciada pelos agentes.

O modelo TOVE [Fox et al., 1998]

O modelo TÆMS [Decker, 1998]

Organização nas **metodologias** de desenvolvimento de SMA

GAIA [Wooldridge et al., 1999]: A organização do sistema é definida por meio dos modelos de papéis e de interação.

Cada papel organizacional é formado por

- responsabilidades (funções que o agente deve realizar para o sistema, definidas por meio de atividades e protocolos),
- permissões para utilização de recursos,
- atividades (ações que o agente pode realizar sozinho) e
- protocolos (como o agente deve interagir com os demais).

MESSAGE [Garijo et al., 2001], a organização é composta por

- o propósito da organização (um conjunto de metas que devem ser satisfeitas pelas tarefas);
- estrutura de workflow (relação entre as tarefas, suas dependências e dos agentes responsáveis pelas tarefas);
- estrutura organizacional (relação dos papéis e agentes que os assumem);
- entidade de controle (define como se dá a resolução de conflitos);
- recursos da organização; e
- relações organizacionais (utilizadas para formar hierarquias entre papéis, por exemplo).

MESSAGE [Garijo et al., 2001], a organização é composta por

- o propósito da organização (um conjunto de metas que devem ser satisfeitas pelas tarefas);
- estrutura de workflow (relação entre as tarefas, suas dependências e dos agentes responsáveis pelas tarefas);
- estrutura organizacional (relação dos papéis e agentes que os assumem);
- entidade de controle (define como se dá a resolução de conflitos);
- recursos da organização; e
- relações organizacionais (utilizadas para formar hierarquias entre papéis, por exemplo).

Nestas metodologias, a organização não faz parte do SMA, não serve aos agentes mas ao projetista.

agentes **sem** conhecimento organizacional

agentes **com** conhecimento organizacional

agentes **sem** conhecimento organizacional

agentes **com** conhecimento organizacional

agentes **sem** conhecimento organizacional

agentes **com** conhecimento organizacional

Resumo

A organização de um SMA é um conjunto de restrições ao comportamento dos agentes a fim de conduzi-los a uma finalidade comum.

- Organização observada
- Organização institucionalizada, descrita a partir de modelos
 - ★ Funcionais (TÆMS)
 - ★ Estruturais (AGR)
 - ★ Mistos (TOVE)
- Os agentes podem ou não ter capacidade de raciocinar sobre sua organização.

Roteiro

- Modelos organizacionais
- Modelo \mathcal{M} oise $^+$
- Programação orientada a organizações

Visão geral

• Estrutura: o que os agentes podem fazer

Visão geral

- Estrutura: o que os agentes podem fazer
- Funcionamento: como os agentes podem fazer

Visão geral

- Estrutura: o que os agentes podem fazer
- Funcionamento: como os agentes podem fazer
- Deôntica: o que os agentes devem fazer

Especificação Estrutural

- Papel: conjunto de restrições comportamentais que um agente aceita quanto entra em um grupo
 - * em relação a outros agentes (exemplo: autoridade) e

Especificação Estrutural

- Papel: conjunto de restrições comportamentais que um agente aceita quanto entra em um grupo
 - * em relação a outros agentes (exemplo: autoridade) e
 - ★ em relação a tarefas comuns (objetivos globais)

Especificação Estrutural

- Papel: conjunto de restrições comportamentais que um agente aceita quanto entra em um grupo
 - * em relação a outros agentes (exemplo: autoridade) e
 - ★ em relação a tarefas comuns (objetivos globais)
- A especificação estrutural é feita em três níveis
 - ⋆ individual: definição dos papéis
 - ⋆ social: ligação entre papéis
 - ★ coletiva: agrupamento de papéis

Relação de herança entre papéis

Notação para "o papel ρ tem uma especialização ρ' ":

$$\rho \quad \Box \quad \rho$$

Notação para "o papel ρ tem uma especialização ρ' ":

$$\rho \quad \Box \quad \rho' \\
\rho_{docente} \quad \Box \quad \rho_{diretor}$$

Notação para "o papel ρ tem uma especialização ρ' ":

$$\rho \quad \Box \quad \rho'$$

$$\rho_{docente} \quad \Box \quad \rho_{diretor}$$

Propriedades:

$$\rho \sqsubseteq \rho' \land \rho' \sqsubseteq \rho \quad \Rightarrow \quad \rho = \rho'$$

$$\rho \sqsubseteq \rho' \land \rho' \sqsubseteq \rho'' \quad \Rightarrow \quad \rho \sqsubseteq \rho''$$

$$\forall \rho \bullet \rho_{soc} \sqsubseteq \rho$$

$$\not{\equiv} \rho \bullet \rho \sqsubseteq \rho_{soc}$$

Nível coletivo: **Grupos**

Nível social: Compatibilidades entre papéis

Notação para "agente com o papel ρ também pode assumir o papel ρ' ":

$$\rho \bowtie \rho'$$

Notação para "agente com o papel ρ também pode assumir o papel ρ' ":

$$\rho \bowtie \rho'$$

$$\rho_{professor} \bowtie \rho_{diretor}$$

Notação para "agente com o papel ρ também pode assumir o papel ρ ":

$$\rho \bowtie \rho'$$

$$\rho_{professor} \bowtie \rho_{diretor}$$

Propriedades:

$$\rho \bowtie \rho$$

$$\rho \bowtie \rho' \land \rho' \bowtie \rho'' \quad \Rightarrow \quad \rho \bowtie \rho''$$

$$\rho_a \bowtie \rho_b \land \rho_a \neq \rho_b \land \rho_a \sqsubseteq \rho' \quad \Rightarrow \quad \rho' \bowtie \rho_b$$

$$\rho \sqsubseteq \rho' \quad \Rightarrow \quad \rho' \bowtie \rho$$

Nível social: Ligações entre papéis

Notação para "o papel ρ_s tem uma ligação do tipo t com o papel ρ_d ":

$$link(\rho_s, \rho_d, t)$$

Notação para "o papel ρ_s tem uma ligação do tipo t com o papel ρ_d ":

$$link(\rho_s, \rho_d, t)$$

 $link(\rho_{docente}, \rho_{aluno}, aut)$

Notação para "o papel ρ_s tem uma ligação do tipo t com o papel ρ_d ":

$$link(\rho_s, \rho_d, t)$$
$$link(\rho_{docente}, \rho_{aluno}, aut)$$

Propriedades:

$$link(\rho_{s}, \rho_{d}, t) \wedge \rho_{s} \sqsubseteq \rho'_{s} \implies link(\rho'_{s}, \rho_{d}, t)$$

$$link(\rho_{s}, \rho_{d}, t) \wedge \rho_{d} \sqsubseteq \rho'_{d} \implies link(\rho_{s}, \rho'_{d}, t)$$

$$link(\rho_{s}, \rho_{d}, aut) \implies link(\rho_{s}, \rho_{d}, com)$$

$$link(\rho_{s}, \rho_{d}, com) \implies link(\rho_{s}, \rho_{d}, acq)$$

• Estrutura: o que os agentes podem fazer.

- Estrutura: o que os agentes podem fazer.
 - ★ Quanto maior o conjunto de possibilidades, maior a autonomia, maior a flexibilidade de adaptação, maior o esforço de raciocínio do agente.

Especificação Funcional

A especificação funcional define o conjunto de **esquemas** que um SMA utiliza para alcançar suas metas.

Esquemas sociais = (planos + missões)

- Os planos determinam a coordenação na realização das metas.
- As missões ligam os agentes aos planos.

Metas globais

Um meta global representa um estado do mundo que é desejado pelo SMA.

A cada meta é associado uma combinação de três valores que indicam

- 1. seu **nível de de satisfatibilidade**: indica se a meta já foi alcançada ou não , ou ainda se ela é impossível de ser alcançada;
- 2. seu **nível de alocação**: indica se já existe ou não algum agente comprometido a satisfazer a meta;
- 3. seu **nível de ativação**: indica se as pré-condições necessárias para que a meta seja satisfeita estão presentes. Por exemplo, a meta "entregar a documentação" não é permitida até que a documentação esteja toda preparada.

Missões - atribuições dos agentes

meta	descrição	missão
aceito	o/a candidato/a é aceito no programa de pós-graduação	
docPrazo	a documentação é recebida no prazo	
docOk	a documentação está correta	
aprovado	o/a candidado é aprovado pela comissão	m_5
temDoc	o/a candidato/a tem toda a documentação necessária	m_1
temOri	o/a candidato/a tem um/a orientador/a	m_1
insSub	a inscrição está submetida	m_1
subEle	submissão eletrônica	m_1
subCor	submissão por correio	m_1
reuniaoOk	uma reunião está marcada	m_3
relatorOk	um relator está indicado	m_4
projAval	o projeto do candidato é avaliado	m_5
formPreen	o formulário de matrícula preenchido é recebido	m_1

Planos

Esquema social

Um esquema é formado por

- missões
- planos
- cardinalidade das missões (um agente deve assumir a missão de avaliar o projeto do candidato)

Um conjunto de esquemas mais uma relação de preferência entre as missões formam a especificação funcional.

Exemplo

meta	descrição
g_{31}	realizar uma prova
g_{32}	preparar a prova
g_{33}	responder a prova
g_{34}	encontrar uma prova já aplicada
g_{35}	alterar o texto da prova

 $m_{42} \prec m_{44}$

Exemplo

descrição
realizar uma prova
preparar a prova
responder a prova
encontrar uma prova já aplicada
alterar o texto da prova

 $m_{42} \prec m_{44}$

A especificação funcional determina como os agentes podem alcançar o objetivo do sistema.

Especificação **Deôntica**

A relação entre estrutura e funcionamento é estabelecida no nível individual: papel \rightarrow missão

- tipo: permissão ou obrigação
- restrições temporais

Papel	Relação deôntica	Missão	Restrições temporais
presidente	per	$sch_{ingresso}.m_4$	$[feb/02\ feb/28]$
secretario	per	$sch_{ingresso}.m_2$	Any
secretario	per	$sch_{ingresso}.m_3$	Any
membro	per	$sch_{ingresso}.m_{5}$	Any
candidato	per	$sch_{ingresso}.m_1$	Any
aluno	obl	$sch_{prova1}.m_{43}$	Any
professor	obl	$sch_{prova1}.m_{42}$	$periodic\ 3$

Entidade Organizacional

Exemplo **B2B**: estrutura

Exemplo **B2B**: funcionamento

Exemplo **B2B**: obrigações

Visão **geral** do \mathcal{M} OISE⁺

Resumo

O modelo $\mathcal{M}OISE^+$ apresenta uma concepção de como a organização contribui para a finalidade do SMA: restringindo os comportamentos dos agentes através de uma estrutura de ligações entre papéis e um conjunto de planos globais.

- i) Não se pretende especificar os agentes e nem estabelecer qualquer requisito para eles.
- ii) Permite descrever uma organização em três dimensões: estrutural, funcional e deôntica. Em cada dimensão é possível definir um escopo individual (como papéis e missões) e um escopo coletivo (como grupos e esquemas).

- iii) A noção de papel do modelo $\mathcal{M}OISE^+$ permite conceber um papel com as seguintes características:
 - a) coletivo
 - b) normativo
- iv) Permite estabelecer restrições sobre a dinâmica de formação da entidade através da noção de "bem formado" dos grupos e missões.
- v) Torna explícita a finalidade do sistema.
- vi) Permite a especificação dos aspectos organizacionais (papéis, planos, ...) de forma **independente**.

Roteiro

- Modelos organizacionais
- Modelo Moise⁺
- Programação orientada a organizações

Motivação para uma arquitetura organizacional

• Enquanto o modelo determina o que é uma organização, a arquitetura determina como um SMA organizado funciona.

Motivação para uma arquitetura organizacional

- Enquanto o modelo determina o que é uma organização, a arquitetura determina como um SMA organizado funciona.
 - * Como funciona uma sociedade que segue uma organização?

- Enquanto o modelo determina o que é uma organização, a arquitetura determina como um SMA organizado funciona.
 - ★ Como funciona uma sociedade que segue uma organização?
 - ★ Com que linguagem se descreve a organização do SMA?

- Enquanto o modelo determina o que é uma organização, a arquitetura determina como um SMA organizado funciona.
 - ★ Como funciona uma sociedade que segue uma organização?
 - ★ Com que linguagem se descreve a organização do SMA?
 - ⋆ Onde as informações organizacionais ficam armazenadas (em um único lugar ou descentralizado)?

- Enquanto o modelo determina o que é uma organização, a arquitetura determina como um SMA organizado funciona.
 - ★ Como funciona uma sociedade que segue uma organização?
 - ★ Com que linguagem se descreve a organização do SMA?
 - ⋆ Onde as informações organizacionais ficam armazenadas (em um único lugar ou descentralizado)?
 - ★ Como o modelo interfere no comportamento dos agentes?

- Enquanto o modelo determina o que é uma organização, a arquitetura determina como um SMA organizado funciona.
 - ★ Como funciona uma sociedade que segue uma organização?
 - ★ Com que linguagem se descreve a organização do SMA?
 - ⋆ Onde as informações organizacionais ficam armazenadas (em um único lugar ou descentralizado)?
 - ★ Como o modelo interfere no comportamento dos agentes?
 - ★ Como se dá a coordenação dos agentes envolvidos na execução de um esquema?

- Enquanto o modelo determina o que é uma organização, a arquitetura determina como um SMA organizado funciona.
 - ★ Como funciona uma sociedade que segue uma organização?
 - ★ Com que linguagem se descreve a organização do SMA?
 - ⋆ Onde as informações organizacionais ficam armazenadas (em um único lugar ou descentralizado)?
 - ★ Como o modelo interfere no comportamento dos agentes?
 - ★ Como se dá a coordenação dos agentes envolvidos na execução de um esquema?

Abordagens para uma arquitetura organizacional

- Centrada nos agentes [Castelfranchi et al., 1999, Ossowski, 1999]
 - ★ Os agentes são programados de tal forma que "naturalmente" seguem a organização corrente.
 - ★ Os agentes tem recursos de deliberação que lhes permitem raciocinar sobre a organização corrente.
 - * Abordagem inadequada para sistemas abertos.
- Centrada no sistema (instituições)
 - ★ O ambiente/infraestrutura do sistema verifica se os agentes estão seguindo a organização corrente.
 - **★** Exemplos:
 - * AMELI [Esteva et al., 2004] (baseado no ISLANDER)
 - * MADKIT [Gutknecht and Ferber, 2000] (baseado no AGR)
 - * KARMA [Pynadath and Tambe, 2003] (baseado no STEAM)

S- \mathcal{M} OISE⁺ [Hübner et al., 2005]

- Uma possível arquitetura para o modelo $\mathcal{M}OISE^+$.
- Voltado para sistemas abertos e reorganizáveis.
- Abordagem centrada na organização (baseada em camadas).

Camada Organizacional

• Oferece os serviços de manutenção do estado da entidade organizacional e o controle do cumprimento das regras estabelecidas pela organização.

Camada Organizacional

- Oferece os serviços de manutenção do estado da entidade organizacional e o controle do cumprimento das regras estabelecidas pela organização.
 - ★ O OrgManager é um agente cuja função é manter o estado da entidade consistente, por exemplo, não deixando um agente assumir dois papéis incompatíveis.
 - Toda mudança na EnO (entrada de um agente, criação de um grupo, adoção de um papel, ...) deve passar por este agente.

Camada Organizacional

- Oferece os serviços de manutenção do estado da entidade organizacional e o controle do cumprimento das regras estabelecidas pela organização.
 - ★ O OrgManager é um agente cuja função é manter o estado da entidade consistente, por exemplo, não deixando um agente assumir dois papéis incompatíveis.
 - Toda mudança na EnO (entrada de um agente, criação de um grupo, adoção de um papel, ...) deve passar por este agente.
 - ⋆ O OrgBox é uma interface que os agentes utilizam para acessar a organização e os demais agentes.
 - Sempre que um agente deseja realizar uma ação sobre a entidade (se comprometer com uma missão, por exemplo) ou enviar uma mensagem, ele deve solicitar este serviço ao seu OrgBox.

Eventos organizacionais

- Criação da entidade organizacional.
- Criação ou remoção de um grupo.
- Criação ou finalização de esquemas.
- Alteração no estado de uma meta global.
- Entrada e saída de agentes.
- Adoção e abandono de papel.
- Comprometimento e descomprometimento com missões.

Criação da entidade organizacional

Parâmetros

- Finalidade da entidade
- Especificação organizacional (EE, EF, ED)

Criação de sub-grupo

Argumentos

- ⋆ identificação do novo grupo (exemplo: turmaAlemão),
- ★ especificação de grupo (exemplo: turma),
- ★ super-grupo (exemplo: USP, da especificação escola).

Condições

- * não existir grupo com identificação turmaAlemão,
- * turma ser sub-grupo de escola, e
- * a cardinalidade de turma esta correta.

Adoção de papéis

Argumentos

- ⋆ identificação do agente (exemplo: Gustavo),
- ⋆ identificação do papel (exemplo: aluno), e
- ★ identificação do grupo (exemplo: turmaAlemão).

Condições

- ★ Gustavo pertencer ao sistema,
- * aluno pertencer aos papéis de turma,
- * cardinalidade de aluno estar satisfeita para a turmaAlemão,
- * os papéis atuais de Gustavo são compatíveis com aluno.

Criação de esquemas

- Argumentos
 - ★ identificação do novo esquema (exemplo: prova1),
 - ⋆ especificação do esquema (exemplo: prova), e
 - ★ conjunto de grupos responsáveis pelo esquema (exemplo turmaAlemão).
- Condições
 - ⋆ os grupos existirem na entidade.

Comprometimento com missões

Argumentos

- ⋆ identificação do agente (exemplo: Gustavo),
- ★ identificação da missão (exemplo: m42 preparar prova), e
- ★ identificação do esquema (exemplo: prova1).

Condições

- ⋆ a cardinalidade da missão m42 no esquema prova1 não é violada,
- * o esquema ainda não terminou, e
- * os papéis de Gustavo nos grupos responsáveis por prova1 lhe **permitem** o compromisso com a missão m42.

Mudança no **estado** das metas

Dos valores de uma meta, somente o nível de **satisfação** é alterado diretamente por eventos organizacionais.

- Argumentos
 - ⋆ identificação da meta (exemplo: prepararProva), e
 - ★ identificação do esquema (exemplo: prova1).
- Condições
 - ⋆ a meta é permitida,
 - * tem agentes comprometidos com ela, e
 - ⋆ é possível.

Algoritmo para determinar o nível de **ativação** de uma meta

```
1 function isPermitted(scheme sch, goal g)
2 if g is the sch root then
        return true;
 4 else
        g is in a plan that match "g_0 = \cdots g \cdots";
        if g is in a plan that match "g_0 = \cdots g_i , g \cdots" then
 6
            if g_i is already satisfied then
 7
                 return true;
            else
                 return false;
10
11
        else
            return isPermitted(sch, g_0);
12
```

Dependências para a **remoção** de um grupo (visão geral)

- Serviços para os agentes (camada de aplicação)
 - ★ Comunicação: o envio e recebimento de mensagens KQML para/de outros agentes.
 - Verificação das ligações de comunicação.

- Serviços para os agentes (camada de aplicação)
 - ★ Comunicação: o envio e recebimento de mensagens KQML para/de outros agentes.
 - Verificação das ligações de comunicação.
 - ★ Geração de eventos organizacionais: o agente pode entrar no sistema, assumir um papel, criar um grupo, ...

- Serviços para os agentes (camada de aplicação)
 - ★ Comunicação: o envio e recebimento de mensagens KQML para/de outros agentes.
 - Verificação das ligações de comunicação.
 - ★ Geração de eventos organizacionais: o agente pode entrar no sistema, assumir um papel, criar um grupo, ...
 - ★ Informações de obrigações: o OrgBox mantém o agente informado de quais missões ele é obrigado a se comprometer.

- Serviços para os agentes (camada de aplicação)
 - ★ Comunicação: o envio e recebimento de mensagens KQML para/de outros agentes.
 - Verificação das ligações de comunicação.
 - ★ Geração de eventos organizacionais: o agente pode entrar no sistema, assumir um papel, criar um grupo, ...
 - ★ Informações de obrigações: o OrgBox mantém o agente informado de quais missões ele é obrigado a se comprometer.
 - ★ Informações de metas possíveis: o OrgBox mantém o agente de quais são as metas globais que podem ser buscadas

Algoritmo para obter as obrigações de um agente

```
1 function getObligatedMissions(agent \alpha)
2 all \leftarrow empty\ list\ //\ list of obligated missions
3 forall role \rho the agent \alpha plays do
        gr \leftarrow the group where \rho is being played;
       forall scheme si that gr is responsible to do
 5
            if si is not finished then
                for all mission m in the scheme si do
                     if obligated(\rho, m) is in the deontic specification
                      | all \leftarrow append(all, m);
10 return all:
```

Algoritmo para obter as metas **possíveis** para um agente

```
function getPossibleGoals(agent \alpha)
all \leftarrow <>
for all missão m que \alpha está comprometido do
  sch \leftarrow o tipo do esquema onde m foi assumido
  for all meta q da missão m do
     if \neg isSatisfied(g) \land isPossible(g) \land isPermitted(g) then
        for all q_s que é super-meta no sch do
          if \neg isSatisfied(g_s) \land \neg isImpossible(g_s) then
             all \leftarrow append(all, \langle q \rangle)
           end if
        end for
     end if
  end for
end for
ordena all de acordo com as preferências entre as missões
return all
```

Exemplo: escrever um artigo (OS)

role	deontic relation	mission	cardinality
editor	per	mMan	11
writer	obl	mCol	15
writer	obl	mBib	11

Exemplo: escrever um artigo (OE)

agent	role	in group	mission
Jaime	editor	wpgroup	mMan
Jomi	writer	wpgroup	mCol
Gustavo	writer	wpgroup	mCol
Gustavo	writer	wpgroup	mBib

Um Arquitetura muito simples para os agentes

```
1 while true do
2 g \leftarrow \text{choseGoal}();
3 p \leftarrow \text{makePlan}(g);
4 execute(p);
```

```
1 function choseGoal(): Goal;
2 if there is an organisational goal permitted to be achieved then
        returns it;
 4 if I have no role then
        adopts a role;
        returns choseGoal();
 6
 7 if try to commit to an obligated mission then
        returns choseGoal();
 9 if try to commit to a permitted mission then
        returns choseGoal();
10
11 if try to uncommit to finished schemes then
12
        for all mission m I am committed to do
13
             if the scheme of m is already finished then
                  uncommit(m);
14
15 returns no goal;
```

Programação com S- \mathcal{M} OISE⁺

```
public class JomiAg extends BaseOrgAgent {
public static void main(String[] args) {
  JomiAg a = new JomiAg();
  if (a.enterSoc("jomi", "writePaperSoc")) {
    a.run();
} }
boolean adoptRole() {
  String grTeamId = getOrgBox().getRootGroupInstance( "wpgroup" );
  if (grTeamId != null) {
     getOrgBox().adoptRole("writer", grTeamId);
     return true;
  } else {
     return false;
} }
```

```
protected void plan() {
  currentPlan = null;
  if (currentGoal != null) {
    currentPlan = new ArrayList();
    currentPlan.add("print("+currentGoal+")");
} }
protected void executeAct(String action) {
  if (action.startsWith("print")) {
    print(action);
} }
```

Exemplo de aplicação desta arquitetura: JOJTEAM

- Especificar a organização de um time de futebol com o \mathcal{M} OISE⁺
- Fazer um time que segue uma especificação organizacional
- Apenas mudando a organização o time muda
- Adaptação organizacional

Arquitetura dos Agentes

Exemplo de organização

Resumo

• S-MOISE⁺: uma arquitetura para SMA com organização **tipo OC** (centrado na organização com agentes que raciocinam sobre sua organização).

Disponível em

```
* http://www.lti.pcs.usp.br/moise
* http://www.lti.pcs.usp.br/saci
```

 Proposta independente da arquitetura dos agentes (camada de aplicação).

Resumo

• S-MOISE⁺: uma arquitetura para SMA com organização **tipo OC** (centrado na organização com agentes que raciocinam sobre sua organização).

Disponível em

```
* http://www.lti.pcs.usp.br/moise
* http://www.lti.pcs.usp.br/saci
```

- Proposta independente da arquitetura dos agentes (camada de aplicação).
- Limitações (com solução em uma arquitetura de agente organizacional)
 - ⋆ Não garante as ligações de autoridade.
 - ⋆ Não tem tratamento de exceções (um agente deixar uma missão sem terminar as metas)

Considerações finais

- O que é uma organização para SMA
- Para que serve uma organização
- Quais as formas de conceber uma organização
- Como programar um SMA com organização
- \mathcal{M} OISE⁺
 - ⋆ organização independente dos agentes
 - * três dimensões
 - ★ suporte para reorganização

Referências

- [Castelfranchi et al., 1999] Castelfranchi, C., Dignum, F., Jonker, C. M., and Treur, J. (1999). Deliberate normative agents: Principles and architecture. In Proceedings of The Sixth International Workshop on Agent Theories, Architectures, and Languages (ATAL-99).
- [Decker, 1998] Decker, K. S. (1998). Task environment centered simulation. In Prietula, M. J., Carley, K. M., and Gasser, L., editors, *Simulating Organizations:* Computational Models of Institutions and Groups, chapter 6, pages 105–128. AAAI Press / MIT Press, Menlo Park.
- [Dignum and Dignum, 2001] Dignum, V. and Dignum, F. (2001). Modelling agent societies: Co-ordination frameworks and institutions. In Brazdil, P. and Jorge, A., editors, *Proceedings of the 10th Portuguese Conference on Artificial Intelligence (EPIA'01)*, LNAI 2258, pages 191–204, Berlin. Springer.
- [Esteva et al., 2004] Esteva, M., Rodríguez-Aguilar, J. A., Rosell, B., and L., J. (2004). AMELI: An agent-based middleware for electronic institutions. In Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors, *Proceedings*

- of the Third International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS'2004), pages 236–243, New York. ACM.
- [Ferber and Gutknecht, 1998] Ferber, J. and Gutknecht, O. (1998). A meta-model for the analysis and design of organizations in multi-agents systems. In Demazeau, Y., editor, *Proceedings of the 3rd International Conference on Multi-Agent Systems (ICMAS'98)*, pages 128–135. IEEE Press.
- [Fox et al., 1998] Fox, M. S., Barbuceanu, M., Gruninger, M., and Lon, J. (1998).
 An organizational ontology for enterprise modeling. In Prietula, M. J., Carley,
 K. M., and Gasser, L., editors, Simulating Organizations: Computational Models of Institutions and Groups, chapter 7, pages 131–152. AAAI Press / MIT Press,
 Menlo Park.
- [Garijo et al., 2001] Garijo, F., Gómes-Sanz, J. J., Pavón, J., and Massonet, P. (2001). Multi-agent system organization: An engineering prespective. In *Pre-Proceeding of the 10th European Workshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW'2001)*.
- [Gasser, 2001] Gasser, L. (2001). Organizations in multi-agent systems. In Pre-Proceeding of the 10th European Worshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW'2001), Annecy.
- [Gutknecht and Ferber, 2000] Gutknecht, O. and Ferber, J. (2000). The MadKit

- agent platform architecture. In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55.
- [Hübner, 2003] Hübner, J. F. (2003). *Um Modelo de Reorganização de Sistemas Multiagentes*. PhD thesis, Universidade de São Paulo, Escola Politécnica. http://www.inf.furb.br/~jomi/pubs/2003/Hubner-tese.pdf.
- [Hübner and Sichman, 2003] Hübner, J. F. and Sichman, J. S. (2003). Organização de sistemas multiagentes. In Vieira, R., Osório, F., and Rezende, S., editors, *III Jornada de Mini-Cursos de Inteligência Artificial (JAIA'03)*, volume 8, pages 247–296. SBC, Campinas. http://www.inf.furb.br/~jomi/pubs/2003/Hubner-jaia2003.pdf.
- [Hübner et al., 2005] Hübner, J. F., Sichman, J. S., and Boissier, O. (2005). S-MOISE+: A middleware for developing organised multi-agent systems. In Boissier, O., Dignum, V., Matson, E., and Sichman, J. S., editors, *Proceedings of the International Workshop on Organizations in Multi-Agent Systems, from Organizations to Organization Oriented Programming in MAS (OOOP'2005)*. http://www.inf.furb.br/~jomi/pubs/2005/Hubner-ooop2005.pdf.
- [Lemaître and Excelente, 1998] Lemaître, C. and Excelente, C. B. (1998). Multi-agent organization approach. In Garijo, F. J. and Lemaître, C., editors, *Proceedings of II Iberoamerican Workshop on DAI and MAS*.

- [Malone, 1999] Malone, T. W. (1999). Tools for inventing organizations: Toward a handbook of organizational process. *Management Science*, 45(3):425–443.
- [Ossowski, 1999] Ossowski, S. (1999). Co-ordination in Artificial Agent Societies: Social Structures and Its Implications for Autonomous Problem-Solving Agents, volume 1535 of LNAI. Springer.
- [Pynadath and Tambe, 2003] Pynadath, D. V. and Tambe, M. (2003). An automated teamwork infrastructure for heterogeneous software agents and humans. *Autonomous Agents and Multi-Agent Systems*, 7(1–2):71–100.
- [Wooldridge et al., 1999] Wooldridge, M., Jennings, N. R., and david Kinny (1999). A methodology for agent-oriented analysis and design. In *Proceedings of the Third International Conference on Autonomous Agentes (Agent's 99*). ACM.