

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final-Term Exam Trimester: Fall 2024

Course Code: CSE 4325 Course Title: Microprocessors and Microcontrollers **Total Marks: 40 Duration: 2 hours**

Any examinee found adopting unfair means would be expelled from the trimester/ program as per UIU disciplinary rules.

Q	uestion 1: Answer	all the questions. (10 M	<u>larks)</u>	1	[CO3]
	Global Descriptor Table Local Descriptor Table			criptor Table	
	Index	Address	Index	Address	
	045 H	Base: BE308810, Limit: 78BD7H, Access: 54H, G = 1	045 H	Base: A584718E, Limit: 0FAE1H, Access: F9H, G = 0	
	1A3 H	Base: BFE4DBB8, Limit: 3345AH, Access: 1FH, G = 0	1A3 H	Base: A872A2F3, Limit: 29FDBH, Access: 0DH, G = 0	
	2F6 H	Base: B66125A3, Limit: CC32FH, Access: 8AH, G = 1	2F6 H	Base: AFF3B41C, Limit: 53027H, Access: B8H, G = 1	
	4D1 H	Base: B2B2ACFF, Limit: F56A9H, Access: 27H, G = 1	4D1 H	Base: ABA461B6, Limit: C31ABH, Access: 62H, G = 0	
	6B4 H	Base: B61310BD, Limit: 50AEAH, Access: 53H, G = 0	6B4 H	Base: A56DC418, Limit: E6357H, Access: 54H, G = 1	
	А29 Н	Base: B4DF02F6, Limit: C5072H, Access: 49H, G = 0	A29 H	Base: A61C994D, Limit: 694CCH, Access: 14H, G = 1	
a.	Which entry, table and	requested privilege level are	e selected?		[3]
a.	Which entry, table and	requested privilege level are	e selected?		[3]
b	Starting and Ending ac	ldress of the segment.			[2]
c.	For an offset value of	158C0 H, determine the phy	sical addre	SS.	[1]
d.	Has the segment been accessed?				[1]
€.	Segment type (CS/DS)	/SS/ES).			[2]
f.	Is the descriptor define	ed or undefined?			[1]
Q	uestion 2: Answer	all the questions. (10 M	larks)		[CO5]
ι.	I2C interface. i. Calculate the a ii. During the dig	analog voltage if the ADC re	eading is 83 you need t	to call analogWrite(1760) . Calculat	[2+2]
).	communication, the M	Taster (index - CH) receives 7H) . Draw the corresponding	a 4 byte d	ls? Suppose in a particular I2C ata (from characters: 'uGrad') diagram. ASCII codes for 'A' and	[1+3]

c.	Suppose you want to design a real-time traffic monitoring system for an intersection. The system requires processing multiple sensor inputs (traffic cameras, speed detection sensors) and adjusting traffic signal timings dynamically to optimize traffic flow. The system can be built using either a Raspberry Pi (microprocessor-based system) or Arduino (microcontroller-based system). Which platform would be more suitable and why?			
Q	Question 3: Answer all the questions. (10 Marks)			
a.	Consider the following fetch cycle in an 8086 BIU:	[4]		
	[Fetch, Fetch, Fetch, Fetch, Fetch, Fetch, Fetch]			
	When the one instruction is being executed, four instructions are fetched and saved in the instruction queue. If the 1st instruction is a 'MOV <address>', the 3rd is a 'JUMP <5th instruction address>' and 4th instruction is a 'JUMP <7th instruction address>' instruction, then draw the corresponding BIU and EU's cycle.</address>			
b.	Draw the timing diagram for IO Write operation of microprocessor "808x" showing the activities of $\overline{Mem/10}$, Address-Data bus (AD0 - AD15, A16 - A19), \overline{ALE} , WR, RD, \overline{DEN} , $\overline{DT/R}$ in each clock cycle. [Observe the pins carefully]	[4]		
c.	What is the advantage of paging technique ?	[2]		

Question 4: Answer all the questions. (10 Marks) RAM Content

[CO4]

Address	Content	Address	Content
0H		8H	
1H		9H	
2H		AH	0000 0010
3H		BH	0110 0100
4H		СН	0000 0101
5H		DH	0000 0001
6H		EH	1000 0101
7H		FH	0100 0010

Opcode Table

Mnemonic	Opcode
HLT	1101
OUT	1001
SUB	1100
ADD	1110
LDA	1010

Initially, the value of the Accumulator Register is 1H, the B Register is 3H, and the Output Register is 4H.

a.	Write the assembly code for the following expression using RAM content . $3 + 5 - 2 - 1$			
b.	Find out the values of the Accumulator register, B register and Output Register after executing each instruction written in (a).			
c.	Write the control words for Execution T-states (T4 , T5 , T6) to perform the ADD instruction using the controller sequence below.			
	$\mathbf{CON} = S_U \overline{E}_U C_p E_p L_M C_E \overline{L}_I \overline{E}_I L_A \overline{E}_A \overline{L}_B \overline{L}_O $ [Observe the pins carefully]			