Most Permissive Boolean Networks in practice

Loïc Paulevé

CNRS/LaBRI, Bordeaux, France https://loicpauleve.name

Joint work with S. Haar, T. Chatain, J. Kolčák (Inria Saclay/LSV)

Boolean networks and systems biology

$$f_1(\mathbf{x}) = 1$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

- BNs widely used as "mechanistic" models of biological processes (cellular differentiation, tumorigenesis, cycles, ...)
- Validation of BN models: reproduce observed behaviors
- Reachability ~ observed change of state of components
- Attractors ~ stable behaviors (possibly sustained oscillations)

Boolean Network (BN) $f: \mathbb{B}^n \to \mathbb{B}^n$

Discrete dynamical system with semantics specifying how a configuration of the network evolves in time

Boolean Network (BN)

Discrete dynamical system with semantics specifying how a configuration of the network evolves in time

Boolean Network (BN)

$$f: \mathbb{B}^n \to \mathbb{B}^n$$

Discrete dynamical system with semantics specifying how a configuration of the network evolves in time

Boolean Network (BN)

Discrete dynamical system with semantics specifying how a configuration of the network evolves in time

Reachable configurations

ullet Given BN f and semantics σ

$$\rho_{\sigma}^f(x) \subseteq \mathbb{B}^n$$

is the set of configurations reachable from configuration \boldsymbol{x}

• For reachability, general asynchronous semantics also includes sequential, blocsequential, ...

but is it complete? (w.r.t. what?)

Regulation motif

Observed output

with quantitative models, and synthetically designed DNA circuits

Regulation motif

Observed output

with quantitative models, and synthetically designed DNA circuits

Boolean network

$$f_1(\mathbf{x}) = \text{signal}$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

Asynchronous dynamics from 000

Regulation motif

Observed output

with quantitative models, and synthetically designed DNA circuits

Boolean network

$$f_1(\mathbf{x}) = \text{signal}$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

Asynchronous dynamics from 000

- **⇒** impossible to activate 3...
- model validation fails but the logic is correct!
- no BN matching the motif works..
- **→** incoherent abstraction for reachability...

Regulation motif

Observed output

Boolean network

$$f_1(\mathbf{x}) = \text{signal}$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

Asynchronous dynamics from 000

- Boolean dynamics fails to capture the period when 1 is high enough to activate 2, but not high enough to inhibit 3...
- one can fix the issue with multivalued networks, or delays
- → adds many parameters, limiting their general application

correct!

lity...

with q

synthe

(A)synchronous Boolean Networks

Bad abstractions of non-binary systems

- can miss behaviors...
- ... also includes stochastic methods
- impact reachable attractors: one can wrongly conclude an attractor is not reachable

Costly to analyze

- reachability and attractor properties are PSPACE-complete
- usually limited to 50-100 components; then requires approximations..

(A)synchronous Boolean Networks

Bad abstractions of non-binary systems

- can miss behaviors...
- ... also includes stochastic methods
- impact reachable attractors: one can wrongly conclude an attractor is not reachable

Costly to analyze

- reachability and attractor properties are PSPACE-complete
- usually limited to 50-100 components; then requires approximations..

Most Permissive Boolean Networks (MPBNs) Paulevé et al, Nature Communications, 2020

Complete abstraction

- guarantees not to miss any behavior achievable by a quantitative model following the same logic
- remains stringent enough to capture differentiation processes

Highly scalable

- reachability: P/P^{NP};
 attractor: coNP/coNP^{coNP}
- benchmarks with 100,000 components
- unlocks large-scale BN inference

No additional parameters!

Most Permissive semantics - with pseudo dynamic states

Two key ingredients:

- delay between firing and application of state change
 - → allow interleaving other state changes
- in pseudo "dynamic" states

other components choose what they see

Most Permissive semantics - with pseudo dynamic states

Automaton of component i

+ full-asynchronous interleaving

$$\rho_{\mathrm{mp}}^f(\mathbf{x}) := \{ \mathbf{y} \in \mathbb{B}^n \mid \mathbf{x} \xrightarrow{f}^* \mathbf{y} \}$$

$$f_1(\mathbf{x}) = \text{signal}$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

$$f_1(\mathbf{x}) = \text{signal}$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

$$f_1(\mathbf{x}) = \text{signal}$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

$$f_1(\mathbf{x}) = \text{signal}$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

$$f_1(\mathbf{x}) = \text{signal}$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

Most Permissive semantics - completeness and minimality Completeness

A multivalued network $F:\mathbb{M}^n \to \{-1,0,1\}^n$

$$F_i(\square) > 0 \implies \exists \square : f_i(\square) = 1$$

$$F_i(\square) < 0 \implies \exists \square : f_i(\square) = 0$$

Most Permissive semantics simulates any multivalued refinement with asynchronous update

⇒ extends to ODEs

Minimality

• $\mathbf{y} \in \rho_{\mathrm{mp}}^f(\mathbf{x}) \Longrightarrow \exists \mathsf{MN} \, \mathsf{F} \, \mathsf{refining} \, \mathsf{f} \colon \ m \cdot \mathbf{y} \in \rho_{\mathrm{async}}^F(m \cdot \mathbf{x})$

Most Permissive semantics - complexity

Reachability problem

given configurations $x,y\in\mathbb{B}^n$ decide wether

$$y \in \rho^f_\sigma(x)$$

P with locally-monotonic BNs

P^{NP} in general

(there is always a MP trajectory of linear length between reachable configurations)

Attractor

Non-empty set of configurations $A \subseteq \mathbb{B}^n$ s.t. $\forall x \in A, \rho_{\sigma}^f(x) = A$

In-attractor problem

Given a configuration $x \in \mathbb{B}^n$ decide wether it belongs to an attractor

coNP with locally-monotonic BNs coNP^{coNP} in general (MP attractors are minimal trap spaces)

$$f: \mathbb{B}^n \to \mathbb{B}^n$$
 is locally monotonic whenever $\forall i \in \{1, \dots, n\}, \exists \preceq^i \in \{\leq, \geq\}^n : \forall \mathbf{x}, \mathbf{y} \in \mathbb{B}^n, (\mathbf{x}_1 \preceq^i_1 \mathbf{y}_1 \wedge \dots \wedge \mathbf{x}_n \preceq^i_n \mathbf{y}_n) \Rightarrow f_i(\mathbf{x}) \leq f_i(\mathbf{y})$

Most Permissive Boolean Networks - in practice

Attractors

- Fixed points are identical to (a)synchronous BNs
- Attractors are the minimal trap spaces of f;
- Less but bigger attractors than with (a)synchronous BNs

Applications to models of differentiation from litterature

- Recover the same predictions for reachable attractors
- Low computational cost: no need for approximations with model reduction
- Access to nature of attractors in large models

- → Formally guaranteed to capture behaviors that only multivalued discrete models could capture with (a)synchronous interpretations
- → If MPBNs cannot reach an observation, no quantitative refinement can do it

Software

mpbn Python library - https://github.com/pauleve/mpbn

- reachability and (reachable) attractors in locally-monotonic BNs
- shipped in the CoLoMoTo Docker http://colomoto.org/notebook
- based on Answer-Set Programming (clingo)

```
bn = mpbn.load("model.bnet")
bn.reachability(x, y) # True if there is a trajectory from x to y
list(bn.attractors()) # List all attractors
list(bn.attractors(reachable_from=x)) # all attractors reachable from x
```

BoNesis - https://github.com/bioasp/bonesis (work in progress)

- MPBN synthesis (PhD work of S Chevalier)
- can be used to verify advanded properties on a given BN with MP semantics

Scalability experiments

Random scale-free inhibitor-dominant BNs; in-degree up to 1,400

Time for computing

- one attractor
- up to 1,000 attractors
- reachable attractors from a random initial configuration

"VLBNs" (Very Large Boolean Networks) doi:10.5281/zenodo.3714876

Notebooks at:

doi:10.5281/zenodo.3936123

Application to models of cell fate decision

- MPBNs predict more trajectories: can they still predict losses of attractor rechability?
 (key feature of differentiation/fate decision models)
- Model of tumour invasion by Cohen et al 2015 (32 components)
- ⇒ same predictions on reachable attractors in different mutation settings
- Model of T-Cell differenciation by Abou-Jaoude 2015 (101 components)
- ⇒ same predictions for the reprogramming graph
- → applied directly on the large scale model (original study used reduced one)
- → access to the nature of attractors

Most Permissive Boolean Networks in practice

Conclusion

(A)synchronous semantics

- difficult to justify for mechanistic models (inconsistent abstractions)
- can miss important behaviors: lead to reject valid models of biological systems
- have limited tractability (state space explosion)

Most Permissive semantics

- correct abstraction: multilevel/quantitative refinemnts only remove behaviours
- simpler complexity: genome-scale tractability

Missing features (work in progress)

- Quantification of reachable attractors (like MaBoSS with full-async BNs)
- How to represent MP dynamics? transition graph is not adequat..