Lecture 15 Sampling Distribution And The Central Limit Theorem, part I

BIO210 Biostatistics

Xi Chen Spring, 2022

School of Life Sciences
Southern University of Science and Technology

Use Sample Statistics To Estimate Population Parameters

Intuition of Sampling Distribution

Intuition of Sampling Distribution

100 plates (samples)

Intuition of Sampling Distribution

Sampling Distribution of The Sample Mean

Sampling distribution of the sample mean

i.i.d. Random Variables

 $X_1, X_2, ..., X_n$ are independent and identically distributed (i.i.d.) random variables.

$$X_{1} \sim D(\mu, \sigma^{2})$$

$$X_{2} \sim D(\mu, \sigma^{2})$$

$$X_{3} \sim D(\mu, \sigma^{2})$$

$$\vdots$$

$$X_{n-1} \sim D(\mu, \sigma^{2})$$

$$X_{n} \sim D(\mu, \sigma^{2})$$

$$\bar{X} \sim ?(?,?)$$

The Central Limit Theorem

By Pierre Simon de Laplace in 1810.

Theorem

The sampling distribution of the sample mean of n independent and identically distributed (i.i.d.) random variables is approximately normal, even if original variables themselves are not normally distributed, provided that n is large enough.

$$\bar{X} \sim \mathcal{N}(\mu_{\bar{X}}, \sigma_{\bar{X}}^2), \text{ where } \mu_{\bar{X}} = \mu, \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$
: standard error.

7

The Central Limit Theorem

$$n = 2$$

$$n = 5$$

$$n = 15$$

$$n = 30$$

Exercise

Trip planning: In general, a person drinks 2 L of water when active outdoors with a standard deviation of 0.7 L. You are planning a full day nature trip for 50 people and will bring 110 L of water. What is the probability that you will run out?

Event of interest: { run out of water }

Equivalent event #1: { 50 people drink more than 100 L }

Equivalent event #2: { average water use per person > 2.2 L }