Testing and examples of defined macros

Some quick notes on my macros.

Command	Effect
	\begin{equation} \end{equation}
\mat{1&2\\4&5}	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
$\mbox{$\mathbb{A}$} \{m\} \{n\}$	$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix} \begin{pmatrix} A_{1} & A_{2} & \cdots & A_{n} \end{pmatrix}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$(A_1 A_2 \dots A_n)$
\colx{A}{m}	$\begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{pmatrix}$
\row{A}_i	$r(A)_{i}^{'}$
\col{A}_j	$c(A)_j$

A matrix is a 3x3 grid

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \tag{1}$$

but now I can write

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 (2)

or for 3x3

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 (3)

. Finally, I need to define column and row operators. How about this

$$\mathbf{r}(A)_i = \left(A_{i1} \ A_{i2} \dots A_{in}\right) \tag{4}$$

$$c(A)_{j} = \begin{pmatrix} A_{1j} \\ A_{2j} \\ \vdots \\ A_{mi} \end{pmatrix}$$

$$(5)$$

Now see this -