

Spark on IBM Platform Computing Technology

Jun Feng Liu liujunf@cn.ibm.com

IBM Platform Computing

- Start with HPC background
 - Platform LSF
 - Platform Symphony
 - Customers: Financial, Manufacture, Electronic design
- Expertise on
 - Cluster resource management
 - Heterogeneous workload co-existing and scheduling
 - Distribution System & Computing
- Enter into big data world
 - Mapreduce
 - Spark
 - Etc
- IBM Spark services
 - Bluemix
 - OpenPower Cloud (Suppervessel)
 - Power Cloud (POK)

On demand Spark cloud services

- Dedicate Cluster
 - Runs spark as standalone model
 - No Resource manager
 - Service offer by node numbers
 - Service avaliability (restart, zookeeper)
- Challenge
 - How to isolation
 - Normally runs on Docker & VM
 - How to provision
 - Leverage OpenStack or similar technology to provision cluster
 - How to scale
 - Monitor the resource utilization
 - Dynamic add new node into cluster
 - How to shrink
 - Mostly trigger by user because of SLA
 - How to store data
 - HDFS co-existing with Spark cluster
 - Separated storage services (data locality)

On demand Spark cloud services

- Spark on YARN or Mesos
 - Leverage Resource Manager
 - Dynamic Start executor
 - Mix work load on same clusters
 - Service clould based on Resource level
 - Service avaliability (retry)
- Challenge
 - How to isolation
 - Could be Docker or VM or user level
 - How to provision
 - Pre-deploy the cluster, but let resource manage decide where and when to start them
 - User level isolation
 - How to scale
 - Fine grained v.s Coarse Grained
 - How to shrink
 - Depends on resource manager
 - Reclaim consideration (driver? Executors? Dependencies services?)
 - How to store data
 - Shared HDFS with all tenant.
 - Separated storage services

On demand Spark cloud services

- Spark on Platform Symphony
 - Notebook, Batch and Streaming (Scala and python)
 - Fine grained scheduler based on Job and tasks in Realtime
 - Scheduling based on data locality and tasks types
 - Improve the memory utilization based on tasks types
 - Heterogeneous workload co-existing and scheduling
 - Service level based on slot numbers
- Challenge
 - How to isolation
 - Application based (user based) isolation
 - LxC and docker is option
 - How to provision
 - Platform Symphony Advance Service controller, or Apache Ambari
 - How to scale
 - Tenant users balance the resource based on policy
 - Scaling drive by scheduler and workload
 - Real time adjust resource boundary based on job type
 - grouping spark driver and executor
 - How to shrink
 - Executor reduce the resource when tasks number go down
 - Share extra slots with Mapreduce, LSF and other workload
 - Smart Reclaim & Maintains Reclaim
 - How to store data
 - Shared HDFS with all tenant (better data locality)
 - OpenStack Swift

IBM InterConnect & Strata Demo

IBM Bluemix Snapshot

Spark on Open Power (Super Vessel)

- Open Power Cloud drive by China Research lab (Super Vessel)
 - Help University and OpenPower alliance to develop application
 - Launch the spark as-a-Service on Super vessel
 - Right now is based on standalone spark cluster
- Discussing to move to Spark on Symphony platform
 - Similar architect that Spark on Bluemix
 - Promote the solution on Open Power ecosystem

IBM Internal Use Only

Super vessel user cases

- Public Spark Services
 - Notebook interface to support Scala and Python
 - User request spark services instance
 - Takes one slot from the system by default
 - Auto-scaling drive by workload and share the same cluster
 - Auto-scaling the cluster node by open stack
- Private Spark Services
 - Professor can make a pre-defined cluster for their students
 - Each student keep one tenant on the cluster
 - Use notebook finish the research work.

Life Science App on Spark

- ADAM is the open source life science solution based on SPARK
- Platform have good customer based on the domain
- Connected with ADAM originator Tim during Spark 2015
 - PPM offer a work-centric view
 - Hybrid work load on EGO
 - Mapreduce, Spark and LSF

Join us! Send resume to me liujunf@cn.ibm.com