§4. Моменты. Центры масс плоских фигур

Моментом инерции относительно оси l материальной точки M, имеющей массу m и отстоящей от оси l на расстояние d, называется величина $J_l = md^2$.

Моментом инерции относительно оси l системы n материальных точек с массами m_1, m_2, \ldots, m_n называется сумма

$$J_l = \sum_{k=1}^n m_k d_k^2 ,$$

где d_1, d_2, \ldots, d_n – расстояния точек до оси l . В случае сплошной массы, распределенной в плоской области, вместо суммы должен быть соответствующий интеграл.

Рис. 3.1. Иллюстрация к примеру 4.1

Пример 4.1. Найти момент инерции однородной пластинки, имеющей форму треугольника с основанием a и высотой h, относительно его основания. Будем предполагать пластинку однородной, так что её поверхностная плотность равна ρ (т. е. масса, приходящаяся на единицу площади) будет постоянной и, следовательно, $m = \rho S$, где S – площадь пластинки.

• Основание треугольника примем за ось Ox, а его высоту за ось Oy (рис. 3.1). Разобьем треугольник на бесконечно тонкие горизонтальные полоски ширины dy, играющие роль элементарных масс $dm = \rho dS$.

Используя подобие треугольников, получаем:

$$\frac{AB}{a} = \frac{h - y}{h} \,. \tag{4.1}$$

Площадь dS бесконечно тонкой горизонтальной полоски ширины dy равна $dS = AB \, dy$ $\Rightarrow AB = \frac{dS}{dy}$, тогда из (4.1) следует

$$\frac{dS}{a\,dy} = \frac{h-y}{h} \quad \Rightarrow \quad dS = \frac{a}{h}(h-y)\,dy\,,$$

откуда

$$dJ_x = y^2 \rho dS \implies dJ_x = \frac{a}{h} \rho y^2 (h - y) dy$$
.

Следовательно,

$$J_x = \rho \frac{a}{h} \int_{0}^{h} y^2 (h - y) \, dy = \rho \frac{a}{h} \left(h \frac{y^3}{3} - \frac{y^4}{4} \right) \Big|_{0}^{h} = \frac{1}{12} \rho a h^3. \blacktriangleleft$$

C материальной точки M, имеющей массу m и отклонение x (с учетом знака) от оси l, называется величина $M_l = mx$.

Статическим моментом относительно оси l системы n материальных точек с массами $m_1, m_2, ..., m_n$, лежащих в одной плоскости с осью l и имеющих отклонения $x_1, x_2, ..., x_n$ (с учетом знаков) от этой оси (рис. 4.2), называется сумма

$$M_{l} = \sum_{k=1}^{n} m_{k} x_{k} . {4.2}$$

Если массы непрерывно заполняют фигуру плоскости xOy, то вместо сумм (4.2) должен быть соответствующий интеграл.

Рис. 4.2. К вычислению статического момента системы материальных точек

Рис. 4.3. Иллюстрация к примеру 4.2

Пример 4.2. Найти статический момент однородной пластинки, имеющей форму полукруга радиуса R и плотность ρ , относительно основания полукруга.

• Основание полукруга поместим на ось Ox, а за ось Oy примем перпендикуляр к оси Ox, проходящий через центр полукруга (рис. 4.3). Разобьем полукруг на бесконечно тонкие горизонтальные полоски ширины dy. Элементарный статический момент dM_x этой бесконечно тонкой полоски относительно оси Ox будет равен $dM_x = \rho y \, dm = \rho y \cdot AB \, dy \implies dM_x = \rho y 2r \, dy$.

Из треугольника (рис. 4.3) по теореме Пифагора находим $r = \sqrt{R^2 - y^2}$. Следовательно,

$$dM_x = 2\rho y \sqrt{R^2 - y^2} \, dy \,. \tag{4.3}$$

Интегрируя равенство (4.3) по y, получим:

$$M_x = 2\rho \int_0^R y \sqrt{R^2 - y^2} dy = -\frac{2}{3}\rho \sqrt{(R^2 - y^2)^3} \Big|_0^R = \frac{2R^3}{3}\rho.$$

Центр масс. Координаты центра масс $C(x^*, y^*)$ плоской фигуры массы m вычисляются по формулам

$$x^* = \frac{M_y}{m}, \quad y^* = \frac{M_x}{m},$$
 (4.4)

где M_y и M_x — статические моменты плоской фигуры массы m.

Пример 4.3. Найти координаты центра масс однородной пластинки, рассмотренной в предыдущем примере.

Так как пластинка предполагается однородной (плотность ρ), то в силу симметрии пластинки её Чищентр масс $C(x^*,y^*)$ должен лежать на оси Oy, т. е. $x^*=0$.

Рис. 4.4. Иллюстрация к примеру 4.3

Масса т пластинки равна

$$m = \rho S = \frac{1}{2} \pi R^2 \rho , \qquad (4.5)$$

а так как из предыдущего примера известно, что $M_x = \frac{2R^3}{3} \rho$, то в силу формулы (4.4) будем иметь $y^* = \frac{M_x}{m} = \frac{2\rho R^3/3}{\pi \rho R^2/2} = \frac{4R}{3\pi}$. Итак, $C(0, 4R/3\pi)$ – центр масс однородного полукруга радиуса R.