Advanced Machine Learning

Markov Chain Monte Carlo

(Based on slides by Ian Murray)

José Miguel Hernández-Lobato
Department of Engineering
University of Cambridge

Lent Term

Simple Monte Carlo

By the **law of large numbers**, integrals writen as an expected value can be approximated by the **empirical mean** of statistical samples.

General case:

$$\int f(x)p(x)\,dx \approx \frac{1}{N}\sum_{n=1}^N f(x_n)\,,\quad x_n \sim p(x)\,.$$

Predictions in Bayesian machine learning:

$$p(y|\mathcal{D}) = \int p(y|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} p(y|\boldsymbol{\theta}_n), \quad \boldsymbol{\theta}_n \sim p(\boldsymbol{\theta}|\mathcal{D}).$$

More examples: EM algorithm, stochastic optimization, game tree search.

Properties of Monte Carlo estimate

Estimator:

$$\int f(x)p(x)\,dx \approx \hat{f} \equiv \frac{1}{N}\sum_{n=1}^{N}f(x_n)\,,\quad x_n \sim p(x)\,.$$

Unbiasedness:

$$\mathbf{E}_{x_1,...,x_N}\left[\hat{f}\right] = \frac{1}{N} \sum_{n=1}^N \mathbf{E}_{x_n}[f(x_n)] = \mathbf{E}_x[f(x)].$$

Variance shrinkage:

$$\operatorname{Var}_{x_1,...,x_N}\left[\hat{f}\right] = \frac{1}{N^2} \sum_{n=1}^N \operatorname{Var}_{x_n}\left[f(x_n)\right] = \frac{\operatorname{Var}_{x_n}\left[f(x)\right]}{N}.$$

The error shrinks as $1/\sqrt{N}$, independently of dimension of x!

When to use Monte Carlo methods?

As numerical methods go, Monte Carlo is one of the least efficient; it should be used only on those intractable problems for which all other numerical methods are even less efficient.

- Alan D. Sokal

Sokal, A. Functional integration. Springer, 1997. 131-192.

The main advantage of Monte Carlo methods is their **unbiasedness**.

They are the best method when **computational cost** is not a key factor.

Figure: T. Minka. Phd thesis, MIT, 2001.

Exact sampling from arbitrary distributions

Select points uniformly at random from the area under the curve.

Area to the left of each sample x is uniformly distributed in [0,1]. Why?

Rejection sampling

Simple alternative to sample from p(x) when inverse CDF cannot be applied.

Based on sampling under a curve $Mq(x) \ge p(x)$ for all x.

- **1** Sample $x_i \sim q(x)$ and $u \sim \text{Uniform}[0, 1]$.
- ② If $uMq(x_i) > p(x_i)$ then reject x_i and repeat.

No need for p(x) to be normalized. What is the **acceptance** probability?

Importance sampling

Rejecting x_i seems wasteful. Could we avoid this?

Write instead the integral as an **expectation under** q(x):

$$\int f(x)p(x) dx = \int f(x)\frac{p(x)}{q(x)}q(x) dx, \qquad q(x) > 0 \text{ if } p(x) > 0$$

$$\approx \frac{1}{N}\sum_{n=1}^{N} f(x_n)\underbrace{\frac{p(x_n)}{q(x_n)}}_{w_n} = \frac{1}{N}\sum_{n=1}^{N} f(x_n)w_n, \qquad x_i \sim q(x).$$

The w_n are known as **importance weights**.

Can be applied **even if the integral is not an expectation**.

Given p(x), what is the best sampling proposal q?

Importance sampling weights

Weights obtained in probit regression when $q(\mathbf{x})$ is the prior.

Many samples do not contribute to the expectation!

Markov Chain Monte Carlo (MCMC)

Main idea: construct a biased random walk that explores a target distribution $p_*(\mathbf{x})$ (whose normalization constant may not be known).

The random walk transition operator follows the Markov assumption:

$$\mathbf{x}_t \sim T(\mathbf{x}_t | \mathbf{x}_{t-1})$$
.

The stationary distribution of $\{\mathbf{x}_t\}$ will be $p_{\star}(\mathbf{x})$:

 $\{\mathbf{x}_t\}$ are approximate, correlated samples from $p_{\star}(\mathbf{x})$.

Transition operator

Discrete example: $x \in 1, 2, 3$.

$$\mathbf{p}_{\star} = \begin{bmatrix} 3/5 \\ 1/5 \\ 1/5 \end{bmatrix}, \quad \mathbf{T} = \begin{bmatrix} 2/3 & 1/2 & 1/2 \\ 1/6 & 0 & 1/2 \\ 1/6 & 1/2 & 0 \end{bmatrix}, \quad [\mathbf{T}]_{a,b} \equiv T(x_t = a | x_{t-1} = b).$$

 \mathbf{p}_{\star} is the invariant distribution of \mathbf{T} because $\mathbf{p}_{\star} = \mathbf{T}\mathbf{p}_{\star}$:

$$\sum_{b} [\mathsf{T}]_{a,b} [\mathsf{p}_{\star}]_{b} = [\mathsf{p}_{\star}]_{a}.$$

 \mathbf{p}_{\star} is the **equilibrium distribution** of \mathbf{T} because for any initial state distribution \mathbf{p}_0 we have that $\lim_{t\to\infty} [\mathbf{T}^t] \, \mathbf{p}_0 = \mathbf{p}_{\star} \, (\mathbf{T} \text{ is ergodic})$.

Detailed balance

Means that transitions $a \to b$ and $b \to a$ are equally probable in the chain:

$$T(\mathbf{x}'|\mathbf{x})p_{\star}(\mathbf{x}) = T(\mathbf{x}|\mathbf{x}')p_{\star}(\mathbf{x}'). \tag{1}$$

Detailed balance implies that the invariant distribution is $p_{\star}(\mathbf{x}')$:

$$\sum_{\mathbf{x}} T(\mathbf{x}'|\mathbf{x}) \rho_{\star}(\mathbf{x}) = \rho_{\star}(\mathbf{x}') \sum_{\mathbf{x}} T(\mathbf{x}|\mathbf{x}') = \rho_{\star}(\mathbf{x}').$$

 $\{\mathbf{x}\}$ satisfies detailed balanced $\Leftrightarrow \{\mathbf{x}\}$ is reversible, that is, x_1, \ldots, x_N and x_N, \ldots, x_1 have the same probability distribution:

To construct a chain that samples from $p_*(\mathbf{x}')$, just find $T(\mathbf{x}'|\mathbf{x})$ satisfying (1).

Metropolis-Hastings

One of the algorithms with highest influence in science and engineering!

Works by sampling from the **transition operator** given by

- Draw a proposal from an easy distribution $q(\mathbf{x}'|\mathbf{x})$, e.g., $\mathcal{N}(\mathbf{x}'|\mathbf{x}, \sigma \mathbf{I})$.
- Accept with probability min $\left(1, \frac{p_{\star}(\mathbf{x}')q(\mathbf{x}|\mathbf{x}')}{p_{\star}(\mathbf{x})q(\mathbf{x}'|\mathbf{x})}\right)$.
- Otherwise the next state \mathbf{x}' in chain is a copy of current state \mathbf{x} .

Acceptance ratio does not change if $p_{\star}(\mathbf{x})$ is not normalized.

The MH transition operator can be shown to satisfy detailed balance.

Proposal $q(\mathbf{x}'|\mathbf{x})$ must have same or larger support than target $p_{\star}(\mathbf{x})$.

Example

Figure source: K. Murphy

Example

Figure source: K. Murphy

Example

Figure source: K. Murphy

Limitations of Metropolis-Hastings (MH)

- Typically, $q(\mathbf{x}'|\mathbf{x}) = \mathcal{N}(\mathbf{x}'|\mathbf{x}, \sigma \mathbf{I})$ and proposals follow a random walk.
- If σ is large, we reject a lot!
- If σ is small, the chain diffuses very slowly: $\approx L^2/\sigma^2$ steps required to obtain independent samples.

Figure source: Ian Murray.