Modélisation de processus aléatoires Partiel - Jeudi 31 mars 2005

2 heures - Documents autorisés

Exercice 1 : Branchement géométrique

On considère un processus de branchement

$$Z_{n+1} = \begin{cases} \sum_{i=1}^{Z_n} \xi_i^n & \text{si } Z_n \neq 0 \\ 0 & \text{si } Z_n = 0 \end{cases}$$

La probabilité qu'un mâle ait k descendants mâles est ici donnée par

$$p_k = pq^k, q = 1 - p, 0$$

Les $(\xi_i^n)_{n\in\mathbb{N},i\in\mathbb{N}^*}$ sont indépendantes et identiquement distribuées suivant la loi $(p_k)_{k\in\mathbb{N}}$.

1- Rappeler la forme de la fonction génératrice G(s)

$$\label{eq:definition} \textit{D'après le cours}: G(s) = \sum_{k \leq 0} p_k s^k = \sum_{k \leq 0} p q^k s^k = \frac{p}{1 - qs}$$

2- On note $m = \mathbb{E}(\xi)$. Exprimer m en fonction de p et q

$$m = G'(1) = \frac{q}{n}$$

On montre facilement, en utilisant la relation de composition

$$(\forall n \in \mathbb{N}^*)G_n(s) = (G_{n-1} \circ G)(s)$$

que pour tout $n \ge 1$:

$$G_n(s) = \frac{m^n(1-s) + ms - 1}{m^{n+1}(1-s) + ms - 1}$$

3- Donner alors la probabilité d'extinction de la $n^{\text{ème}}$ génération, dans les cas $p \neq q$ et p = q. En déduire l'évolution de la population.

On a alors:

$$P(Z_n = 0) = G_n(0) = \begin{cases} \frac{m^n - 1}{m^{n+1} - 1} & si \quad p \neq q\\ \frac{n}{n+1} & si \quad p = q \end{cases}$$
 (1)

 $et\ donc$

- $si \ q et il y a extinction presque sûre$
- $si\ q=p\ G_n(0) \to 1$ et il y a extinction presque sûre $si\ q>p\ G_n(0) \to \frac{p}{q}$ et l'extinction n'est pas certaine.

On note alors $M_n = \frac{Z_n}{m^n}$.

4- Montrer que $(M_n)_{n\in\mathbb{N}}$ est une martingale. Calculer son espérance.

```
\mathbb{E}(Z_{n+1}|Z_0\cdots Z_n) = \mathbb{E}(Z_{n+1}|Z_n) \ car(Z_n) \ chaîne \ de \ Markov et donc M_n martingale avec de plus \mathbb{E}(Z_{n+1}|Z_0\cdots Z_n) = mZ_n et \mathbb{E}(M_n) = 1
```

D'après le théorème de convergence des martingales positives, on en déduit que $M_n \to M_\infty$, et sur $\{M_\infty > 0\}$, la croissance de Z_n est alors exponentielle.

5- Dans le cas sous-critique (m < 1), où $Z_n = 0$ à partir d'un certain rang, donner la valeur de M_{∞} presque sûrement. Discuter de ce résultat en le comparant à l'espérance $\mathbb{E}(M_n)$ calculée précédemment.

Dans le cas m < 1, $M_{\infty} = 0$ presque sûrement, et il y a contradiction apparente avec $\mathbb{E}(M_n) = 1$

Exercice 2 : Temps d'attente d'une séquence donnée

Un très grand casino contient une infinité de joueurs G_i qui disposent chacun d'une fortune de 1 euro. Un croupier tire à pile ou face, avec probabilités p et q=1-p, toutes les secondes. Au temps n, le joueur G_n se met à parier (d'autres joueurs G_i , i < n peuvent encore jouer) de la manière suivante : il place 1 euro sur pile. Le casino étant équitable, il touche en cas de succès $\frac{1}{p}$ euro. Il place alors à nouveau cette fortune sur pile. Il continue ainsi à parier toute sa fortune sur pile jusqu'à ce qu'il ait gagné trois fois de suite (PPP) ou qu'il perde tout. Dans les deux cas, il quitte alors le casino.

1- Soit S_n le profit (ou la perte) cumulé(e) du casino après le $n^{\text{ème}}$ tirage. Montrer que S_n est une martingale

Soit Y_n la v.a. associée au nième tirage, et \mathcal{F}_n la filtration naturelle. Soit X_n la somme des gains et pertes des joueurs après le nième coup. X_n étant une fonction déterministe des résultats Y_n , elle est \mathcal{F}_n -mesurable. Comme le jeu est équitable, on a de plus $\mathbb{E}(X_n) = 0$. Ainsi, S_n est la somme de variables aléatoires indépendantes, et de moyenne nulle, c'est donc une martingale.

2- Soit T le nombre de tirages effectués avant la première apparition de PPP. Montrer que T est un temps d'arrêt.

 $\{T=n\}$ est déterministe des résultats de $Y_1 \cdots Y_n$ et est donc \mathcal{F}_n -mesurable. (i.e. $1_{\{T=n\}} \in \mathcal{F}_n$). C'est donc un temps d'arrêt.

3- On peut également prouver que $\mathbb{E}(T) < \infty$. En déduire que $\mathbb{E}(S_T) = 0$, et que $\mathbb{E}(T) = p^{-1} + p^{-2} + p^{-3}$.

D'après le théorème de Doob, $\mathbb{E}(S_T)=0$ car $\mathbb{E}(S_T)=\mathbb{E}(S_0)=0$. Au moment où le jeu s'arrête, $G_1\cdots G_n$ on misé -1 et seuls G_{n-2},G_{n-1} et G_n on gagné respectivement p^{-3},p^{-2} et p^{-1} . Comme $\mathbb{E}(S_T)=0$, il vient $\mathbb{E}(T)=p^{-1}+p^{-2}+p^{-3}$

4- Adapter le raisonnement pour calculer le temps moyen d'attente de PFP. Que vaut-il en secondes?

au temps d'arrêt N correspondant, $\mathbb{E}(N) = p^{-1} + p^{-2}.q^{-1}$

Exercice 3 : Modélisation de l'évolution d'un taux de change

On modélise l'évolution d'un taux de change euro/dollar par un processus stochastique $(C_t)_{t\geq 0}$, avec

$$C_t = C_0 e^{\alpha W_t}, \alpha > 0$$

 $(W_t)_{t\geq 0}$ est un mouvement brownien standard. En d'autres termes, C_t est le nombre d'euros que l'on peut obtenir par dollar, au temps t.

On note $f(x) = C_0 e^{\alpha x}$.

1- Calculer f'(x) et f''(x).

$$f'(x) = C_0 \alpha e^{\alpha x}$$
 et $f''(x) = C_0 \alpha^2 e^{\alpha x}$

2- En appliquant la fonction f à W_t , et en utilisant la formue d'Itô, déterminer l'équation différentielle satisfaite par le processus $(C_t)_{t\geq 0}$.

pour
$$f(W_t) = C_t$$
 on a $dC_t = \alpha C_t dW_t + \frac{\alpha^2}{2} C_t dt$

Le processus $(X_t)_{t\geq 0}$ modélise maintenant l'évolution d'une action en dollars. Il satisfait l'équation différentielle stochastique

$$dX_t = \mu X_t dt + \sigma X_t dW_t^*$$

où $(W_t^*)_{t\geq 0}$ est un mouvement brownien standard indépendant de $(W_t)_{t\geq 0}$

3- Déterminez l'équation différentielle stochastique satisfaite par l'évolution $(Y_t)_{t\geq 0}$ de l'action en euros

comme
$$dY = XdC + CdX$$
, on trouve $dY_t = \alpha Y_t dW_t + \sigma Y_t dW_t^* + \left(\frac{\alpha^2}{2} + \mu\right) Y_t dt$

 $Indication: \text{si } (A_t)_{t \geq 0} \text{ et } (B_t)_{t \geq 0} \text{ sont deux processus stochastiques indépendants, } d(AB) = AdB + BdA$