Lecture 2

Perceptron: Single Layer Neural Network

Naresh Manwani

Deep Learning: Theory and Practices CS7.601 (Monsson 2022) IIIT-Hyderabad

August 2, 2022

Supervised Learning

Unsupervised Learning

Hyperplane

- w is normal to the hyperplane.
- $\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$ is the distance of \mathbf{x} from the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$.

Hyperplane

- w is normal to the hyperplane.
- $\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$ is the distance of \mathbf{x} from the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$. (HW for you)

Linear Discriminant Function

ullet Let $\mathcal{X}\subset\mathbb{R}^d$ be the feature space.

- Let $\mathcal{X} \subset \mathbb{R}^d$ be the feature space.
- ullet We can categorise the task in hand based on the label space, denoted by ${\mathcal Y}$ as:

$$\mathcal{Y} = \begin{cases} \{+1, -1\} & \text{Binary Classification} \\ \{1, 2, 3, .., C\} & \text{Multi-class Classification} \\ \mathbb{R} & \text{Regression} \end{cases}$$

- Let $\mathcal{X} \subset \mathbb{R}^d$ be the feature space.
- \bullet We can categorise the task in hand based on the label space, denoted by ${\mathcal Y}$ as:

$$\mathcal{Y} = \begin{cases} \{+1,-1\} & \text{Binary Classification} \\ \{1,2,3,..,C\} & \text{Multi-class Classification} \\ \mathbb{R} & \text{Regression} \end{cases}$$

• We assume the training data is $S = \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}.$

- ullet Let $\mathcal{X}\subset\mathbb{R}^d$ be the feature space.
- \bullet We can categorise the task in hand based on the label space, denoted by $\mathcal Y$ as:

$$\mathcal{Y} = \begin{cases} \{+1,-1\} & \text{Binary Classification} \\ \{1,2,3,..,C\} & \text{Multi-class Classification} \\ \mathbb{R} & \text{Regression} \end{cases}$$

- We assume the training data is $S = \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}.$
- ullet We want to learn a function, $f:\mathcal{X} \to \mathcal{Y}$, using training set S .

Loss Function

• The hypothesis f(x) predicts the label (\hat{y}) .

Loss Function

- The hypothesis f(x) predicts the label (\hat{y}) .
- To measure the discrepancy between the prediction (\hat{y}) and the corresponding actual label y, we use a loss function.

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$$
 If considering $sign(f(\mathbf{x}))$
 $L: \mathbb{R} \times \mathcal{Y} \to \mathbb{R}_+$ Considering simply $f(\mathbf{x})$

Risk Function

• Risk: Risk is defined as the expectation of the loss function.

$$R_L(f) = \mathbb{E}[L(f(\mathbf{x}), y)]$$

Expected Risk

Risk Function

• Risk: Risk is defined as the expectation of the loss function.

$$R_L(f) = \mathbb{E}[L(f(\mathbf{x}), y)]$$
 Expected Risk

• We are usually provided with a finite set of training examples, $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}.$

Risk Function

• Risk: Risk is defined as the expectation of the loss function.

$$R_L(f) = \mathbb{E}[L(f(\mathbf{x}), y)]$$
 Expected Risk

- We are usually provided with a finite set of training examples, $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}.$
- In such situation, we find the *empirical risk* as follows:

$$\hat{R}_L(f) = \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i), y_i)$$
 Empirical Risk

Empirical Risk Minimization

• Minimizing the empirical risk of a learning algorithm can be achieved in two ways.

Empirical Risk Minimization

- Minimizing the empirical risk of a learning algorithm can be achieved in two ways.
- One is through batch learning where the risk over all the training examples is minimized at once. SVM, logistic regression algorithms minimize the risk through batch learning.

Empirical Risk Minimization

- Minimizing the empirical risk of a learning algorithm can be achieved in two ways.
- One is through batch learning where the risk over all the training examples is minimized at once. SVM, logistic regression algorithms minimize the risk through batch learning.
- The second way, is through online learning where, the risk is minimized in a sequential order and is fast and scalable. For example: Perceptron.

In an online learning algorithm, the learning takes place in a sequence of trials.

• Observes the example instance \mathbf{x}_t .

10

- Observes the example instance \mathbf{x}_t .
- Uses current hypothesis f_t to predict the output $\hat{y_t} = f_t(\mathbf{x}_t)$.

- Observes the example instance \mathbf{x}_t .
- Uses current hypothesis f_t to predict the output $\hat{y_t} = f_t(\mathbf{x}_t)$.
- Observe actual output y_t .

- Observes the example instance x_t.
- Uses current hypothesis f_t to predict the output $\hat{y_t} = f_t(\mathbf{x}_t)$.
- Observe actual output y_t .
- Incurs a loss of $L(\hat{y_t}, y_t)$.

- Observes the example instance \mathbf{x}_t .
- Uses current hypothesis f_t to predict the output $\hat{y_t} = f_t(\mathbf{x}_t)$.
- Observe actual output y_t .
- Incurs a loss of $L(\hat{y_t}, y_t)$.
- Updates the current hypothesis.

- Observes the example instance \mathbf{x}_t .
- Uses current hypothesis f_t to predict the output $\hat{y_t} = f_t(\mathbf{x}_t)$.
- Observe actual output y_t .
- Incurs a loss of $L(\hat{y_t}, y_t)$.
- Updates the current hypothesis.
- There is an objective associated with the training, which is to minimize the total loss, in a sequence of T trials.

Total Loss =
$$\sum_{t=1}^{T} L(\hat{y_t}, y_t)$$

• In the above framework, there are some specifics left out.

- In the above framework, there are some specifics left out.
 - What choice of loss function do we make?

- In the above framework, there are some specifics left out.
 - What choice of loss function do we make?
 - How do we update the hypothesis?

- In the above framework, there are some specifics left out.
 - What choice of loss function do we make?
 - How do we update the hypothesis?
- One widely used method to update the hypothesis is Stochastic Gradient Descent (SGD).

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla_{\mathbf{w}} L(f(\mathbf{x}_t), y_t)$$

- In the above framework, there are some specifics left out.
 - What choice of loss function do we make?
 - How do we update the hypothesis?
- One widely used method to update the hypothesis is Stochastic Gradient Descent (SGD).

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla_{\mathbf{w}} L(f(\mathbf{x}_t), y_t)$$

 One model of the above framework is the linear Perceptron. Input to Perceptron is x, hypothesis is given by:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$
 (linear classifier)

Perceptron: Single Layer Neural Network

Figure: The Perceptron model

f predicts a real value, and $sign(f(\mathbf{x}))$ gives the label.

• It used for classification purpose.

- It used for classification purpose.
- Given an example $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^T$, it predicts the output label

$$\hat{y} = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i + b)$$

- It used for classification purpose.
- Given an example $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^T$, it predicts the output label

$$\hat{y} = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i + b)$$

• It then compares the predicted label \hat{y} with the actual label y.

- It used for classification purpose.
- Given an example $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^T$, it predicts the output label

$$\hat{y} = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i + b)$$

- It then compares the predicted label \hat{y} with the actual label y.
- Note that $\hat{y}, y \in \{+1, -1\}.$

- It used for classification purpose.
- Given an example $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^T$, it predicts the output label

$$\hat{y} = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i + b)$$

- It then compares the predicted label \hat{y} with the actual label y.
- Note that $\hat{y}, y \in \{+1, -1\}.$
- If the predicted label is same as actual label, then $y\hat{y} = 1$, else $y\hat{y} = -1$.

- It used for classification purpose.
- Given an example $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^T$, it predicts the output label

$$\hat{y} = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i + b)$$

- It then compares the predicted label \hat{y} with the actual label y.
- Note that $\hat{y}, y \in \{+1, -1\}.$
- If the predicted label is same as actual label, then $y\hat{y} = 1$, else $y\hat{y} = -1$.
- In other words, if the predicted label is same as actual label, then $yf(\mathbf{x}) > 0$, else $yf(\mathbf{x}) < 0$.

Perceptron

- It used for classification purpose.
- Given an example $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^T$, it predicts the output label

$$\hat{y} = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i + b)$$

- It then compares the predicted label \hat{y} with the actual label y.
- Note that $\hat{y}, y \in \{+1, -1\}.$
- If the predicted label is same as actual label, then $y\hat{y} = 1$, else $y\hat{y} = -1$.
- In other words, if the predicted label is same as actual label, then $yf(\mathbf{x}) > 0$, else $yf(\mathbf{x}) < 0$.
- For correct prediction, we want to maximize yf(x).

Perceptron

- It used for classification purpose.
- Given an example $\mathbf{x} = [x_1 \ x_2 \ \dots \ x_d]^T$, it predicts the output label

$$\hat{y} = \operatorname{sign}(f(\mathbf{x})) = \operatorname{sign}(\sum_{i=1}^{d} w_i x_i + b)$$

- It then compares the predicted label \hat{y} with the actual label y.
- Note that $\hat{y}, y \in \{+1, -1\}.$
- If the predicted label is same as actual label, then $y\hat{y} = 1$, else $y\hat{y} = -1$.
- In other words, ff the predicted label is same as actual label, then $yf(\mathbf{x}) > 0$, else $yf(\mathbf{x}) < 0$.
- For correct prediction, we want to maximize yf(x).
- Or minimize $-yf(\mathbf{x})$.

Perceptron Objective Function

Loss Function

$$L_{\mathsf{Perceptron}}(f(\mathbf{x}), y) = max(0, -yf(\mathbf{x}))$$

here $f(\mathbf{x}) = \mathbf{w}.\mathbf{x} + b$

- if $yf(x) \ge 0$ (correct classification), then the loss is 0.
- if $yf(\mathbf{x}) < 0$ (misclassification), then the loss is $-yf(\mathbf{x})$
- Thus, the loss increases lineraly with the margin of misclassification 1

Perceptron Loss

How to update the hypothesis?

Stochastic Gradient Descent

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_f L(f(\mathbf{x}^t), y^t)$$

where ∇ denotes the gradient.

How to update the hypothesis?

Stochastic Gradient Descent

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_f L(f(\mathbf{x}^t), y^t)$$

where ∇ denotes the gradient.

Gradient of L

- Let $f(\mathbf{x}^t) = \mathbf{w}.\mathbf{x}^t + b$
- then

$$\nabla_{\mathbf{w}} L(f(\mathbf{x}^t), y^t) = \nabla_{\mathbf{w}} L(\mathbf{w}.\mathbf{x}^t + b, y^t)$$
$$= \begin{pmatrix} \frac{\partial L}{\partial w_1} \\ \frac{\partial L}{\partial w_2} \\ \vdots \\ \frac{\partial L}{\partial w_t} \end{pmatrix}$$

Stochastic gradient descent on L_{Perceptron}

$$\nabla_{\mathbf{w}} L(\mathbf{w}.\mathbf{x}^{t} + b, y^{t}) = \begin{cases} \nabla_{\mathbf{w}} \left(-y^{t}(\mathbf{w}.\mathbf{x}^{t} + b) \right) & y_{t}(\mathbf{w}^{t}.\mathbf{x}^{t} + b^{t}) \leq 0 \\ 0 & y_{t}(\mathbf{w}^{t}.\mathbf{x}^{t} + b^{t}) > 0 \end{cases}$$

$$= \begin{cases} -y^{t}\mathbf{x}^{t} & y^{t}(\mathbf{w}^{t}.\mathbf{x}^{t} + b^{t}) \leq 0 \\ 0 & y^{t}(\mathbf{w}^{t}.\mathbf{x}^{t} + b^{t}) > 0 \end{cases}$$

$$\nabla_{b} L(\mathbf{w}.\mathbf{x}^{t} + b, y^{t}) = \begin{cases} \nabla_{b} \left(-y^{t}(\mathbf{w}.\mathbf{x}^{t} + b^{t}) \right) & y_{t}(\mathbf{w}^{t}.\mathbf{x}^{t} + b^{t}) \leq 0 \\ 0 & y_{t}(\mathbf{w}^{t}.\mathbf{x}^{t} + b^{t}) > 0 \end{cases}$$

$$= \begin{cases} -y^{t} & y^{t}(\mathbf{w}^{t}.\mathbf{x}^{t} + b^{t}) \leq 0 \\ 0 & y^{t}(\mathbf{w}^{t}.\mathbf{x}^{t} + b^{t}) > 0 \end{cases}$$

Update rule for Perceptron

$$\mathbf{w}^{t+1} = \begin{cases} \mathbf{w}^t + \eta y^t \mathbf{x}^t & y^t (\mathbf{w}^t . \mathbf{x}^t + b^t) \le 0 \\ \mathbf{w}^t & y^t (\mathbf{w}^t . \mathbf{x}^t + b^t) > 0 \end{cases}$$

$$b^{t+1} = \begin{cases} b^t + \eta y^t & y^t (\mathbf{w}^t . \mathbf{x}^t + b^t) \le 0 \\ b^t & y^t (\mathbf{w}^t . \mathbf{x}^t + b^t) > 0 \end{cases}$$

Update Rule for Perceptron

Figure: The weight update in Perceptron during misclassification

Perceptron Algorithm

Input:
$$S = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^T, y^T)\}$$

Output: (\mathbf{w}^*, b^*)
Initialize: $\mathbf{w}^1 = \mathbf{0}, \ b^1 = 0$
For $(t = 1 \text{ to } T)$
Randomly draw an example (\mathbf{x}^t, y^t) from S
If $(y^t(\mathbf{w}^t.\mathbf{x}^t + b^t) \leq 0)$
 $\mathbf{w}^{t+1} = \mathbf{w}^t + y^t\mathbf{x}^t$
 $b^{t+1} = b^t + y^t$
Else
 $\mathbf{w}^{t+1} = \mathbf{w}^t$
 $b^{t+1} = b^t$

Example: Perceptron on 2-D Data

Example: Perceptron on 2-D Data

22

Implementation

Perceptron Implementation in Scikitlearn

Perceptron Convergence for Linearly Separable Case

Theorem

Finite mistake bound: Let $S = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}_T, y_T)\}$, where T is number of samples drawn. Let $\exists \ \mathbf{u} \in \mathbb{R}^d$, s.t $\|\mathbf{u}\|_2 = 1$ and $y_t\mathbf{u}^T\mathbf{x}_t \geq \gamma$, where $\gamma \geq 0$, $t = 1 \dots T$. Let $R_2 = \max_t \|\mathbf{x}_t\|_2$. The Perceptron algorithm converges in at most $\left(\frac{R_2}{\gamma}\right)^2$ iterations.

Universal Approximation Theorem

Any continuous function defined in the n-dimensional unit hypercube may be approximated by a finite sum of the type:

$$\sum_{j=1}^{N} v_j \, \varphi \left(\overrightarrow{\omega}^{(j)} \cdot \overrightarrow{x} + b_j \right),\,$$

wherein $v_j, b_j \in \mathbb{R}$, $\overrightarrow{\omega}^{(j)} \in \mathbb{R}^n$, and φ is a continuous discriminatory function.

Copyright © 2020 Fleuchaus & Gallo mbB, All rights reserved

