Albert Bifet (@abifet)

Paris, 4 October 2016 albert.bifet@telecom-paristech.fr

Definition

Given n_C different classes, a classifier algorithm builds a model that predicts for every unlabelled instance I the class C to which it belongs with accuracy.

Example

A spam filter

Example

Twitter Sentiment analysis: analyze tweets with positive or negative feelings

Data set that describes e-mail features for deciding if it is spam.

Example Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Assume we have to classify the following new instance:

Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	edu	yes	day	?

Majority Class Classifier

Majority Class Classifier

- Training: compute majority class of the dataset
- Prediction:
 - · Output majority class of the dataset

k-Nearest Neighbours

k-NN Classifier

- Training: store all instances in memory
- Prediction:
 - Find the k nearest instances
 - Output majority class of these k instances
- Performance:
 - · Nearest neighbor search
 - Depends on data structure used:
 - linear search
 - space partitioning (tree)

Bayes Classifiers

Naïve Bayes

Based on Bayes Theorem:

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

$$\textit{posterior} = \frac{\textit{prior} \times \textit{likelikood}}{\textit{evidence}}$$

- Estimates the probability of observing attribute a and the prior probability P(c)
- Probability of class c given an instance d:

$$P(c|d) = \frac{P(c)\prod_{a\in d}P(a|c)}{P(d)}$$

Bayes Classifiers

Multinomial Naïve Bayes

- Considers a document as a bag-of-words.
- Estimates the probability of observing word w and the prior probability P(c)
- Probability of class c given a test document d:

$$P(c|d) = \frac{P(c)\prod_{w\in d}P(w|c)^{n_{wd}}}{P(d)}$$

Perceptron/Neuron

- Data stream: $\langle \vec{x}_i, y_i \rangle$
- Classical perceptron: $h_{\vec{w}}(\vec{x}_i) = \operatorname{sgn}(\vec{w}^T \vec{x}_i)$,
- Minimize Mean-square error: $J(\vec{w}) = \frac{1}{2} \sum (y_i h_{\vec{w}}(\vec{x}_i))^2$

Perceptron/Neuron

• We use sigmoid function $h_{\vec{w}} = \sigma(\vec{w}^T \vec{x})$ where

$$\sigma(x) = 1/(1 + e^{-x})$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Sigmoid function

$$\sigma(x) = 1/(1 + e^{-x})$$

Perceptron/Neuron

- Minimize Mean-square error: $J(\vec{w}) = \frac{1}{2} \sum (y_i h_{\vec{w}}(\vec{x}_i))^2$
- Stochastic Gradient Descent: $\vec{w} = \vec{w} \eta \nabla J \vec{x}_i$
- Gradient of the error function:

$$\nabla J = -\sum_{i} (y_i - h_{\vec{w}}(\vec{x}_i)) \nabla h_{\vec{w}}(\vec{x}_i)$$

$$\nabla h_{\vec{w}}(\vec{x}_i) = h_{\vec{w}}(\vec{x}_i)(1 - h_{\vec{w}}(\vec{x}_i))$$

Weight update rule

$$\vec{w} = \vec{w} + \eta \sum_{i} (y_i - h_{\vec{w}}(\vec{x}_i)) h_{\vec{w}}(\vec{x}_i) (1 - h_{\vec{w}}(\vec{x}_i)) \vec{x}_i$$

Stochastic Gradient Descent

Artificial Neural Network

Recurrent Neural Network

A recurrent neural network and the unfolding in time of the computation involved in its forward computation. Source: Nature

Data set that describes e-mail features for deciding if it is spam.

Example				
Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Assume we have to classify the following new instance:

Conta	ins	Domain	Has	Time	
"Mone	∍y"	type	attach.	received	spam
yes		edu	yes	day	?

Assume we have to classify the following new instance:

Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	edu	yes	day	?

Decision Trees

Basic induction strategy:

- A ← the "best" decision attribute for next node
- Assign A as decision attribute for node
- For each value of A, create new descendant of node
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Decision Trees

Splitting Measures:

Gini impurity

$$I = \sum_{i=1}^{J} p_i (1 - p_i)$$

Information Gain

$$Entropy = -\sum_{i=1}^{J} p_i \log p_i$$

Bagging

Example

Dataset of 4 Instances: A, B, C, D

Classifier 1: B, A, C, B Classifier 2: D, B, A, D Classifier 3: B, A, C, B Classifier 4: B, C, B, B Classifier 5: D, C, A, C

Bagging builds a set of *M* base models, with a bootstrap sample created by drawing random samples with replacement.

Random Forests

- Bagging
- Random Trees: trees that in each node only uses a random subset of the attributes

Random Forests is one of the most popular methods in machine learning.

The strength of Weak Learnability, Schapire 90

A boosting algorithm transforms a weak learner into a strong one

A formal description of Boosting (Schapire)

- given a training set $(x_1, y_1), \dots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T
 - construct distribution D_t
 - find weak classifier

$$h_t: X \to \{-1, +1\}$$

with small error $\varepsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$ on D_t

output final classifier

AdaBoost

- 1: Initialize $D_1(i) = 1/m$ for all $i \in \{1, 2, ..., m\}$
- 2: **for** t = 1,2,...T **do**
- 3: Call **WeakLearn**, providing it with distribution D_t
- 4: Get back hypothesis $h_t: X \to Y$
- 5: Calculate error of h_t : $\varepsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)$
- 6: Update distribution

$$D_t: D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \left\{ egin{array}{ll} arepsilon_t / (1-arepsilon_t) & ext{if } h_t(x_i) = y_i \\ 1 & ext{otherwise} \end{array}
ight.$$

where Z_t is a normalization constant (chosen so D_{t+1} is a probability distribution)

7: **return**
$$h_{fin}(x) = \operatorname{arg\,max}_{y \in Y} \sum_{t:h_t(x)=y} -\log \varepsilon_t/(1-\varepsilon_t)$$

AdaBoost

- 1: Initialize $D_1(i) = 1/m$ for all $i \in \{1, 2, ..., m\}$
- 2: **for** t = 1,2,...T **do**
- 3: Call **WeakLearn**, providing it with distribution D_t
- 4: Get back hypothesis $h_t: X \to Y$
- 5: Calculate error of h_t : $\varepsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)$
- 6: Update distribution

$$D_t: D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \varepsilon_t & \text{if } h_t(x_i) = y_i \\ 1 - \varepsilon_t & \text{otherwise} \end{cases}$$

where Z_t is a normalization constant (chosen so D_{t+1} is a probability distribution)

7: **return**
$$h_{fin}(x) = \operatorname{arg\,max}_{y \in Y} \sum_{t:h_t(x)=y} -\log \varepsilon_t/(1-\varepsilon_t)$$

Stacking

Use a classifier to combine predictions of base classifiers Example

- Use a perceptron to do stacking
- Use decision trees as base classifiers