

CODING ACTIVE INFERENCE

From Simple Agents to Edge Intelligence

https://github.com/cerkut/D3A-AIF-Starter

CUMHUR ERKUT

DEPT. OF ARCHITECTURE, DESIGN AND MEDIA TECHNOLOGY (CREATE)

Remember: November 13-15, 2024 https://symposium.activeinference.institute

Active Inference for Multisensory Experience

PROBLEM

T-shaped profile combining sound, music, and motion with AI/XR for real-time deployment with MLOps

Real-time Processing of Traditional Music with Differentiable DSP

Background: Each real—time generative model challenges us in code, model, data, and operational practices.

Example 1: Resurrecting Tromba Marina.

Also Flamenco, Nordic and Middle Eastern traditions.

Example 2: Generative Choreographies combining sound, music, and movement. Also therapy.

Aim: Keep the interested, motivated, and contributing graduates in Denmark

Towards Multimedia Edge Intelligence with Active Inference

Top: 3 scenario pilots at the lab. a) Workshop with XR-enabled EI musical instruments during a visit from University of Oslo. b) Social movement exercises with adolescents on the autism spectrum c) Movement therapy and feedback with Zed Cameras on Jetson Orin. Bottom: starting EI-enabled research instrumentation at the lab.

Towards Multimedia Edge Intelligence with Active Inference

Top: 3 scenario pilots at the lab. a) Workshop with XR-enabled EI musical instruments during a visit from University of Oslo. b) Social movement exercises with adolescents on the autism spectrum c) Movement therapy and feedback with Zed Cameras on Jetson Orin. Bottom: starting EI-enabled research instrumentation at the lab.

POMDP generative models

Partially Observed Markov Decision Process

$$P(o_{1:T}, s_{1:T}, \pi, \phi) = P(\phi)P(s_1)P(\pi)\prod_{\tau=2}^{T} P(s_{\tau} | s_{\tau-1}, \pi; \phi)\prod_{\tau=1}^{T} P(o_{\tau} | s_{\tau}; \phi)$$

	t-2 $t-1$
$P(o_t s_t, \mathbf{A})$ "Observation model" "Sensory likelihood mapping"	A
$P(s_{ au} s_{ au-1}, \pi \cdot \mathbf{B})$ "Transition or dynamics model" "Dynamical mapping"	В
$P(o \mathbf{C})$ "Prior over observations" "Prior preferences"	C
$P(s_1 \mathbf{D})$ Prior over initial hidden states	D

POMDP generative models

Partially Observed Markov Decision Process

$$P(o_{1:T}, s_{1:T}, \pi, \phi) = P(\phi)P(s_1)P(\pi) \prod_{\tau=2}^{T} P(s_{\tau} | s_{\tau-1}, \pi; \phi) \prod_{\tau=1}^{T} P(o_{\tau} | s_{\tau}; \phi)$$

$$C \longrightarrow G \longrightarrow \pi$$

Markovian Space

Underlying infrastracture

Marco 2 Notative Blanker

System State

A O

t

A Color 1

A Color 2

A Color 3

A Color 3

A Color 3

A Color 4

A Color 5

A Color 5

A Color 7

Underlying infrastructure

Table 3: Open Source Code for the Free Energy Principle.

Reference

Classical active inference	(Da Costa et al., 2020)	Linear generative model	https://www.fil.ion.ucl.ac.uk/spm	Matlab
	(Heins et al., 2022)	Discrete state space	https://github.com/infer-actively/pymdp	Python
	(Sajid, Ball et al., 2021)	FrozenLake	https://github.com/ucbtns/dai	Python
Deep active	(Ueltzhöffer, 2018)	MountainCar	https://github.com/kaiu85/deepAI_paper	Python
inference	(Fountas et al., 2020)	Dynamic dSprites & Animal-AI	https://github.com/zfountas/deep-active -inference-mc	Python
	(van der Himst & Lanillos, 2020)	CartPole	https://github.com/Grottoh/Deep-Active-Inference -for-Partially-Observable-MDPs	Python
	(Millidge, 2019)	CartPole	https://github.com/BerenMillidge/DeepActive Inference	Python
	(Rood et al., 2020)	Rubber hand illusion	https://github.com/thomasroodnl/active-inference-rhi	Python
Robotics	(Sancaktar et al., 2020)	Nao robot	https://github.com/cansu97/PixelAI	Python
	(Pezzato et al., 2020)	Panda robot	https://github.com/cpezzato/panda_simulation	Matlab
	(Pezzato et al., 2023)	TIAGo robot	https://github.com/cpezzato/discrete_active_inference	Python & Matlab
	(Baioumy, Duckworth et al., 2021)	Panda robot	https://github.com/MoBaioumy/ active_inference_panda_paper	Python
	(Baltieri & Buckley, 2020)	Panda robot	https://github.com/mbaltieri/GeneralisedFiltering	Python
	(Matsumoto & Tani, 2020)	Controller	https://github.com/oist-cnru/GLean	Python
	(Meo & Lanillos, 2021)	Panda robots	https://github.com/Cmeo97/MAIF	Python
	(Baioumy, Pezzato et al., 2021)	Controller	https://github.com/cpezzato/unbiased_aic	C++

Link

Language

Task

Zhang, Zhengquan, and Feng Xu. 2024. "An Overview of the Free Energy Principle and Related Research." Neural Computation 36 (5): 963–1021. doi:10.1162/neco_a_01642.

Table 3: Open Source Code for the Free Energy Principle.

Reference

Classical active inference	(Da Costa et al., 2020)	Linear generative model	https://www.fil.ion.ucl.ac.uk/spm	Matlab
	(Heins et al., 2022)	Discrete state space	https://github.com/infer-actively/pymdp	Python
	(Sajid, Ball et al., 2021)	FrozenLake	https://github.com/ucbtns/dai	Python
Deep active	(Ueltzhöffer, 2018)	MountainCar	https://github.com/kaiu85/deepAI_paper	Python
inference	(Fountas et al., 2020)	Dynamic dSprites & Animal-AI	https://github.com/zfountas/deep-active -inference-mc	Python
	(van der Himst & Lanillos, 2020)	CartPole	https://github.com/Grottoh/Deep-Active-Inference -for-Partially-Observable-MDPs	Python
	(Millidge, 2019)	CartPole	https://github.com/BerenMillidge/DeepActive Inference	Python
	(Rood et al., 2020)	Rubber hand illusion	https://github.com/thomasroodnl/active-inference-rhi	Python
Robotics	(Sancaktar et al., 2020)	Nao robot	https://github.com/cansu97/PixelAI	Python
	(Pezzato et al., 2020)	Panda robot	https://github.com/cpezzato/panda_simulation	Matlab
	(Pezzato et al., 2023)	TIAGo robot	https://github.com/cpezzato/discrete_active_inference	Python & Matlab
	(Baioumy, Duckworth et al., 2021)	Panda robot	https://github.com/MoBaioumy/ active_inference_panda_paper	Python
	(Baltieri & Buckley, 2020)	Panda robot	https://github.com/mbaltieri/GeneralisedFiltering	Python
	(Matsumoto & Tani, 2020)	Controller	https://github.com/oist-cnru/GLean	Python
	(Meo & Lanillos, 2021)	Panda robots	https://github.com/Cmeo97/MAIF	Python
	(Baioumy, Pezzato et al., 2021)	Controller	https://github.com/cpezzato/unbiased_aic	C++

Link

Language

Task

Zhang, Zhengquan, and Feng Xu. 2024. "An Overview of the Free Energy Principle and Related Research." Neural Computation 36 (5): 963–1021. doi:10.1162/neco_a_01642.

DEM_demo Generalised filtering, Active inference and Free-energy Static Models Hierarchical (empirical) Bayes Dynamic Models Ornstein-Uhlenbeck Bayesian filtering General Linear Model Bayes factors General Linear Model Factor Analysis Deconvolution Lorenz attractor PEB group inversion Lindley paradox **Emprical Bayes** Figure-ground PEB with BMR **Dual estimation** Double-well Simulated EEG analysis Intelligent optimisation Sparse regression Triple estimation PEB & grand averages Contact lens Information gain Variational Filtering DEM and Kalman filtering Image deconvolution PEB & session effects CVA & RSA Linear deconvolution Double-well Variational Laplace and dynamic causal modelling Communication and multiagent games Generalised Filtering Stochastic DCM for fMRI Large DCM for fMRI Birdsona duet Morphogenesis Overview Triple estimation Phase-space reduction Matlab code Run demo Niche construction Spectral DCM for fMRI **Emprical Bayes for DCM** Hemodynamics Cubature filtering Eigenmodes and DCM Bayesian model reduc... Self-organisation and dynamics Perceptual learning and inference DFP demo double well: Life as we know it Loss and surprise Active inference Bird-songs and priors Mismatch negativity Criticality and slowing Learning and entropy Attractor dynamics Mountain car DEMO comparing Variational filtering with particle filtering in the Categorisation Position invariance Synaptic selection Cells of cells Visual tracking Reaching context of a bimodal conditional density. This demonstrates that the variational filter can not only represent free-form densities on the Face recogniton Omission responses Markov Blankets Sentient physics Writing Motor trajectories states but also the causes of responses. Physics & blankets Self organisation Cognitive neuroscience (continuous states) Self entropy Stochastic chaos Behaviour and learning (dynamic) Biased competition Action-observation Cost and divergence Addiction and SHC Paths of least action Deterministic chaos Cornsweet illusion Slow pursuit Heteroclinic channels Affordance and cues MMN and latency Visual search Agency and MDP Eyeblink conditioning Visual occlusion Occulomotor delays Sensory attenuation Evidence accumulation Physiological models Behaviour and learning (discrete) Hemodynamics Coupled oscillators Waiting game Urn or beads task DCM & blankets Trust games Epistemic value Behavioural modelling Habit learning Visual foraging Meta-modelling Nosology Reading Artificial curiosity Voice recognition and language Choice modeling VR setup Segmentation and P300 Mixed models Maze learning (GNII I) Conviriant (a) 2005 The Wallcome Trust Centre for Dictation 20 questions Decisions to movements Interoception Voice recognition Evidence accumulation Movement planning

Classic SPM/DEM: https://www.fil.ion.ucl.ac.uk/spm/doc/papers/DEM_A_variational_treatment_of_dynamic_systems.pdf

Table 3: Open Source Code for the Free Energy Principle.

	Reference	Task	Link	Language
Classical active inference	(Da Costa et al., 2020)	Linear generative model	https://www.fil.ion.ucl.ac.uk/spm	Matlab
	(Heins et al., 2022)	Discrete state space	https://github.com/infer-actively/pymdp	Python
	(Sajid, Ball et al., 2021)	FrozenLake	https://github.com/ucbtns/dai	Python
Deep active	(Ueltzhöffer, 2018)	MountainCar	https://github.com/kaiu85/deepAI_paper	Python
inference	(Fountas et al., 2020)	Dynamic dSprites & Animal-AI	https://github.com/zfountas/deep-active -inference-mc	Python
	(van der Himst & Lanillos, 2020)	CartPole	https://github.com/Grottoh/Deep-Active-Inference -for-Partially-Observable-MDPs	Python
	(Millidge, 2019)	CartPole	https://github.com/BerenMillidge/DeepActive Inference	Python
	(Rood et al., 2020)	Rubber hand illusion	https://github.com/thomasroodnl/active-inference-rhi	Python
Robotics	(Sancaktar et al., 2020)	Nao robot	https://github.com/cansu97/PixelAI	Python
	(Pezzato et al., 2020)	Panda robot	https://github.com/cpezzato/panda_simulation	Matlab
	(Pezzato et al., 2023)	TIAGo robot	https://github.com/cpezzato/discrete_active_inference	Python & Matlab
	(Baioumy, Duckworth et al., 2021)	Panda robot	https://github.com/MoBaioumy/ active_inference_panda_paper	Python
	(Baltieri & Buckley, 2020)	Panda robot	https://github.com/mbaltieri/GeneralisedFiltering	Python
	(Matsumoto & Tani, 2020)	Controller	https://github.com/oist-cnru/GLean	Python
	(Meo & Lanillos, 2021)	Panda robots	https://github.com/Cmeo97/MAIF	Python
	(Baioumy, Pezzato et al., 2021)	Controller	https://github.com/cpezzato/unbiased_aic	C++

Note that the table does not enlist Reactive Message Passing (Julia): https://github.com/ReactiveBayes
Nor https://github.com/ilabcode/ActiveInference.jl

Overview of today's material

A, **B**, **C**, **D**

Make an active inference agent using Agent(A = A, B = B, C = C, D = D)

Specify a task environment (i.e. an env () class)

Run active inference loop!

Insert Web Page

This app allows you to insert secure web pages starting with https:// into the slide deck. Non-secure web pages are not supported for security reasons.

Please enter the URL below.

https:// pymdp-rtd.readthedocs.io

Note: Many popular websites allow secure access. Please click on the preview button to ensure the web page is accessible.

Cartesian Blanket Elastic space for computingcontinuum systems Resources Q_{max} R_{min} Quality Q_{min} Javid Taheri - Schahram Dustdar Albert Zomaya · Shuiguang Deng Cost Edge Intelligence From Theory to Practice

Markovian Space

Application Description

