Virtual Force

$$\delta W_e^* + \delta W_i^* = 0$$

$$\delta W_e^* = u_A^{sphere} \delta P \to \delta F_{int} = \delta P$$

$$\delta W_e^* = -u_A^{spring} \delta F_{int}$$

$$\left(u_A^{sphere} - u_A^{spring}\right)\delta P = 0$$

This shows that the sum of the external and internal virtual work due to an external virtual force (or moment) vanishes for structure in static equilibrium, if the displacements and deformations are compatible.

Virtual Force Method for Computing Deflections

 $\delta W_e^* = u \delta P$ or $\delta W_E^* = \theta \delta M$

Where u is the real displacement of the point at which the virtual force is applied. The internal virtual work can be written for a multi-component member as follows: $\delta W_{ie}^* = \sum\limits_{N_m} \delta F_{int} \Delta$

Replace
$$\delta P$$
 with 1, $\bar{1}u = \sum_{N} \bar{f}_{int} \Delta$

Truss Example

$$\delta W_{ie\ bar}^* = \int_L \varepsilon \bar{\sigma} A dx \to \delta W_{ie\ bar}^* = \int_L \frac{\sigma}{E} \bar{\sigma} A dx$$

 $\delta W^*_{ie,bar} = \int_L \varepsilon \bar{\sigma} A dx \to \delta W^*_{ie,bar} = \int_L \frac{\sigma}{E} \bar{\sigma} A dx$ For the case that the real and virtual stresses are constant in the bar, the above expressions are constant in the bar, the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are constant in the bar, and the above expression are cons sion can be expressed in terms of the real internal force, N, and the virtual force, \bar{n} , as follows:

 $\delta W_{ie,bar}^* = \frac{N\bar{n}L}{EA}$

For a truss composed of multiple bars:

$$\delta W_{ie,truss}^* = \sum_{i=1}^{N_b} \frac{N_i \bar{n}_i L_i}{E_i A_i}$$

Using the balance of external and internal virtual work, i.e. $W_e^* = \delta W_{ie,truss}^*$, and applying a dummy load in a particular direction, the displacement, d, at the chosen joint in this direction can be computed by:

$$\bar{1}d = \sum_{i=1}^{N_b} \frac{N_i \bar{n}_i L_i}{E_i A_i}$$

Applying to example above:

Step 1: Compute internal forces, N_i , in the bars due to real load P. Truss must be statically determinate.

$$N_1 = \frac{5}{6}P$$
 and $N_2 = -\frac{5}{6}P$

Step 2: Compute internal forces, \bar{n}_i , in the bars due to the dummy loads $\bar{1}$. First, we apply a dummy load in the horizontal direction to compute the horizontal displacement. $\bar{n}_1^u = \frac{5}{9}$ and $\bar{n}_2^u = \frac{5}{9}$

Do the same for a vertical dummy load at joint B.

$$\bar{n}_1^v = -\frac{5}{6}$$
 and $\bar{n}_2^v = \frac{5}{6}$

Step 3: To evaluate the internal work, summarize in a table:

bar	N_i	\bar{n}_i^u	\bar{n}_i^v	A_i	L_i	E_i
1	$\frac{5}{6}P$	<u>5</u>	$-\frac{5}{6}$	0.15		$3 \cdot 10^{6}$
2	$-\frac{5}{6}P$	$\frac{5}{8}$	$\frac{5}{6}$	0.20	60.0	$3 \cdot 10^{6}$

Step 4: For each dummy load, evaluate the balance of external and internal forces. For the displacement in horizontal:

$$\bar{1}u = \sum_{i=1}^{2} \frac{N_i \bar{n}_i^u L_i}{E_i A_i} = 8.33 \cdot 10^{-3} in$$

Vertical:
$$\bar{1}v = \sum_{i=1}^{2} \frac{N_i \bar{n}_i^v L_i}{E_i A_i} = -44.4 \cdot 10^{-3} in$$

Thermal Loading Assuming that the material properties are constant in the bar and expressing the virtual stress in terms of the internal force, \bar{n} , we obtain:

$$\delta W_{ie,bar}^{*,thermal} = \alpha \Delta T \bar{n} L$$

Defining an internal force due to differential heating/cooling as:

 $N^{thermal} = EA\alpha \Lambda T$

we can write the internal virtual work by replacing the internal force due to mechanical loading, N, with one for thermal loading, $N^{thermal}$.

$$\delta W_{ie,bar}^* = \frac{N^{thermal}\bar{n}L}{EA}$$

 $\delta W_{ie,bar}^* = \frac{N^{thermal}\bar{n}L}{EA}$ From here follow same procedure as previous.

Beam Example

First compute internal virtual work of the beam by virtual stress due to a unit dummy load.

$$\delta W_{ie,beam}^* = \int \int \int_V \varepsilon \bar{\sigma} dx dy dz$$

Use Hook's Law: $\delta W_{ie,beam}^* = \int \int \int_V \frac{\sigma}{E} \bar{\sigma} dx dy dz$

Recall:
$$\sigma = -\frac{M}{I}y$$

Finally:

 $\delta W_{ie.beam}^* = \int_L \frac{M\bar{m}}{EI} dx$ where \bar{m} is virtual bending moment due to unit dummy load.

Step 1: Compute the bending moment due to the real force.

$$M = \frac{p_0 x^3}{6L}$$

Step 2: Compute bending moments due to unit dummy foce and unit dummy moment.

$$\bar{m}^v = 0$$
 for $0 \le x < \frac{L}{2}$ and $\bar{m}^v = x - \frac{L}{2}$ for $\frac{L}{2} \le x \le L$

$$\bar{m}^{\phi} = 0$$
 for $0 \le x < \frac{L}{2}$ and $\bar{m}^{\phi} = -1$ for $\frac{L}{2} \le x \le L$

Step 3: To compute the displacement and the rotation in the middle of the beam, compute the internal work due to the two dummy load cases.

$$v\left(x = \frac{L}{2}\right) = \int_{L} \frac{M\bar{m}^{v}}{EI} dx = \int_{l/2}^{L} \frac{(x - \frac{L}{2})p_{0}x^{3}}{6EIL} dx$$

$$v\left(\frac{L}{2}\right) = \frac{49p_0L^4}{3840EI}$$

Then do the same thing for ϕ

The Direct Stiffness Method

Figure 16.4: The three-member example truss: (a) physical structure; (b) idealization as a pinjointed bar assemblage; (c) geometric, material and fabrication properties; (d) support conditions and applied loads.

$$\mathbf{f} = \begin{bmatrix} f_{x1} \\ f_{y1} \\ f_{x2} \\ f_{y2} \\ f_{x3} \\ f_{y3} \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{x3} \\ u_{y3} \end{bmatrix}$$

Master Stiffness Equations

The master stiffness equations relate the joint forces f of the complete structure to the joint displacements u of the complete structure before specification of support conditions.

$$\begin{bmatrix} f_{x1} \\ f_{y1} \\ f_{x2} \\ f_{y2} \\ f_{x3} \\ f_{y3} \end{bmatrix} = \begin{bmatrix} K_{x1x1} & K_{x1y1} & K_{x1x2} & K_{x1y2} & K_{x1x3} & K_{x1y3} \\ K_{y1x1} & K_{y1y1} & K_{y1x2} & K_{y1y2} & K_{y1x3} & K_{y1y3} \\ K_{x2x1} & K_{x2y1} & K_{x2x2} & K_{x2y2} & K_{x2x3} & K_{x2y3} \\ K_{y2x1} & K_{y2y1} & K_{y2x2} & K_{y2y2} & K_{y2x3} & K_{y2y3} \\ K_{x3x1} & K_{x3y1} & K_{x3x2} & K_{x3y2} & K_{x3x3} & K_{x3y3} \\ K_{y3x1} & K_{y3y1} & K_{y3x2} & K_{y3y2} & K_{y3x3} & K_{y3y3} \end{bmatrix} \begin{bmatrix} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{x3} \\ u_{y3} \end{bmatrix}$$

$$f = Ku$$

Where K is the master stiffness matrix or the global stiffness matrix. Breakdown Stage

Figure 17.2: Disconnection step: (a) idealized example truss; (b) removal of loads and support, disconnection into members (1), (2) and (3), and selection of local coordinate systems. The latter are drawn offset from member axes for visualization convenience.

Begin by discarding all loads and supports (boundary conditions). Then disconnect and disassemble into components. The local coordinate system is $\{\bar{x}, \bar{y}\}$

$$\begin{bmatrix} \bar{f}_{xi} \\ \bar{f}_{yi} \\ \bar{f}_{xj} \\ \bar{f}_{yj} \end{bmatrix} = \begin{bmatrix} \bar{K}_{xixi} & \bar{K}_{xiyi} & \bar{K}_{xixj} & \bar{K}_{xiyj} \\ \bar{K}_{yixi} & \bar{K}_{yiyi} & \bar{K}_{yixj} & \bar{K}_{yiyj} \\ \bar{K}_{xjxi} & \bar{K}_{xjyi} & \bar{K}_{xjxj} & \bar{K}_{xjyj} \\ \bar{K}_{yjxj} & \bar{K}_{yjyi} & \bar{K}_{yjxj} & \bar{K}_{yjyj} \end{bmatrix} \begin{bmatrix} \bar{u}_{xi} \\ \bar{u}_{yi} \\ \bar{u}_{xj} \\ \bar{u}_{xj} \\ \bar{u}_{yj} \end{bmatrix}$$

If membe properties are uniform along its length, $k_s = \frac{EA}{L}$ and, consequently, the force-displacement equation is $F = k_s d = \frac{EAd}{l}$ where F is the internal axial force and d is the relative axial displacement, which is physically the bar elongation.

$$\bar{\mathbf{K}} = \frac{EA}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $c = \cos \phi$ and $s = \sin \phi$ where ϕ is the angle formed by \bar{x} and x, measured CCW from x.

$$\begin{bmatrix} \bar{u}_{xi} \\ \bar{u}_{yi} \\ \bar{u}_{xj} \\ \bar{u}_{xy} \end{bmatrix} = \begin{bmatrix} c & s & 0 & 0 \\ -s & c & 0 & 0 \\ 0 & 0 & c & s \\ 0 & 0 & -s & c \end{bmatrix} \begin{bmatrix} u_{xi} \\ u_{yi} \\ u_{xj} \\ u_{xj} \\ u_{yj} \end{bmatrix} \quad \begin{bmatrix} f_{xi} \\ f_{yi} \\ f_{xj} \\ f_{yj} \end{bmatrix} = \begin{bmatrix} c & -s & 0 & 0 \\ s & c & 0 & 0 \\ 0 & 0 & c & -s \\ 0 & 0 & s & c \end{bmatrix} \begin{bmatrix} \bar{f}_{xi} \\ \bar{f}_{yi} \\ \bar{f}_{xj} \\ \bar{f}_{yj} \end{bmatrix}$$

Global Member Stiffness Equations

$$\mathbf{K}^{e} = \frac{E^{e}A^{e}}{L^{e}} \begin{bmatrix} c^{2} & sc & -c^{2} & -sc \\ sc & s^{2} & -sc & -s^{2} \\ -c^{2} & -sc & c^{2} & sc \\ -sc & -s^{2} & sc & s^{2} \end{bmatrix}$$