Dynamic programming (algorithm type)

Recursion, Rod cutting, Recurrence tree.

Recall algorithm design techniques

- Algorithm design techniques so far:
 - Brute-force algorithms
 - Linear search
 - o Incremental algorithms
 - Insertion sort
 - Algorithms that use other ADTs (implemented using efficient data structures)
 - Heap sort
 - Divide-and-conquer algorithms
 - Binary search, merge sort, quick sort.

Divide and Conquer

- **Divide**: If the input size is too large to deal with in a straightforward manner, divide the problem into two or more **disjoint** sub-problems.
- **Conquer**: Use divide-and-conquer recursively to solve the sub-problems.
- **Combine**: Take the solutions to the sub-problems and combine these solutions into a solution for the original problem.

Dynamic Programming

What if the sub-problems overlap?

Sub-problems share sub-sub-problems

In this case, a divide-and-conquer algorithm does more work than necessary, because it needs to repeatedly solve the overlapped sub-sub-problems.

Let's see a concrete example - Fibonacci numbers.

Fibonacci Numbers

Leonardo Fibinacci (1202):

- We have a rabbit in the beginning
- A rabbit starts producing offspring on the second generation after its birth and produces one child each generation.
- How many rabbits will there be after n generations?

$$F(n) = F(n-1) + F(n-2)$$

$$F(0) = 0, F(1) = 1$$

0, 1, 1, 2, 3, 5, 8, 13, 21, 34...

```
FibonacciR(n)
01 if n <= 1 then return n
02 else return FibonacciR(n-1) + FibonacciR(n-2)</pre>
```

Straightforward recursive procedure is slow! We have two sub problems and their size is one smaller and two smaller.

Let's draw the recursion tree:

We keep calculating the same values!

- Recurrence
 - $T(n) = T(n-1) + T(n-2) + \Theta(1)$
- $T(n) \ge 2T(n-2) + a$ and T(1) = T(0) = 1
- Solving the recurrence.
 - Which method shall we use? Can we use the master method?
 - Reacted substitution method
 - T(n)=2T(n-2)+a
 - T(n-2)=2T(n-4)+a
 - $T(n)=2^2T(n-4)+(2+1)a$
 - T(n-4)=2T(n-6)+a
 - T(n)=2³T(n-6)+(2²+2+1)a
- For real $x \neq 1$, the summation CLRS P1147 A.5 $\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n}$
- is a geometric or exponential series and has the value

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1} \,.$$

- $T(n)=2^{i}T(n-2^{*}i)+(2^{i-1}+...+2+1)a=2^{i}T(n-2^{*}i)+a\sum_{k=0}^{i-1}2^{k}$
- When i=n/2, we have T(n-2*i)=T(0), i.e., the base case
- $T(n)=2^{n/2}T(0) + a^* 2^{n/2} = (a+1) 2^{n/2}$
- When T(n)=2T(n-2)+a, we get
 - $T(n)=2^{n/2}T(0) + a^* 2^{n/2} = (a+1) 2^{n/2}$
- Recall the original recurrence $T(n) \ge 2T(n-2) + a$, then
 - T(n) ≥ (a+1) $2^{n/2} \approx$ (a+1) 1.4ⁿ
- Running time is at least **exponential!**
- Dynamic programming
 - We can calculate F (n) in linear time by remembering solutions to the solved sub-problems
- Compute solution in a bottom-up fashion
- Trade space for time!
 - o Linear time!

Dynamic Programming

Why and when to use DP?

When sub-problems overlap, a divide-and-conquer algorithm does more work than necessary, because it needs to repeatedly solve the overlapped sub-sub-problems.

How does DP work?

A dynamic programming algorithm solves each sub-sub-problem only once and then saves its result (in an array or a hash table), thus avoiding the work of repeatedly solving the common sub-subproblems.

Optimization Problems

- Dynamic programming is typically applied to **optimization problems**.
- Optimization problems can have many possible solutions, each solution has a value, and we wish to find a solution with the optimal (i.e., minimum or maximum) value.
- An algorithm should compute the optimal value plus, if needed, **an** optimal solution.
- Let's see two concrete examples of optimization problems
 - Rod cutting
 - Longest common subsequences

Rod Cutting

- The problem:
 - A steel rod of length n should be cut and sold in pieces.
 - Pieces sold only in integer sizes according to a price table P[1..n].
 - Goal: cut up the rod to maximize profit.

Length	1	2	3	4	5	6	7	May profit. 24
Price	4	5	13	16	23	24	27	Max profit: 31
								Optimal cut: 1, 1, 5
			5			2	2	
Price:			23	-	+	5		= 28
					~			_
		4	4			3		
Price:		1	6	-	+	13		= 29
(3			3		1 ()
Price:		13	+		13	+	4	= 30

How to solve rod cutting

- r_n: the maximum profit of cutting a rod with length n.
- $r_n = max (P[1] + r_{n-1}, P[2] + r_{n-2}, ..., P[n-1] + r_1, P[n] + r_0)$
 - Get the maximum profit among the following combinations
 - Having a rod with length 1, i.e., P[1], and the maximum profit of the remaining rod with length n-1, i.e., r_{n-1}
 - Having a rod with length 2, i.e., P[2], and the maximum profit of the remaining rod with length n-2, i.e., r_{n-2}
 - •
 - Having a rod with length n, i.e., P[n], and the maximum profit of the remaining rod with length 0, i.e., r₀=0
- For example, if n=7.
 - $r_7 = \max (P[1] + r_6, P[2] + r_5, P[3] + r_4, P[4] + r_3, P[5] + r_2, P[6] + r_1, P[7] + r_0)$
- We say that the rod cutting problem exhibits optimal substructure
 - Optimal solutions to a problem incorporate optimal solutions to related subproblems.

Rod Cutting Recursion

• Recursive top-down solution

```
Rod-Cut(P, n)

1 if n = 0 then return 0
2 q \( \infty - \infty

3 for i\( \infty 1 to n do
4 q \( \infty \max(q, P[i] + Rod - Cut(P, n-i)) \)
5 return q
```

$$r_n = max (P[1] + r_{n-1}, P[2] + r_{n-2}, ..., P[n-1] + r_1, P[n] + r_0)$$

- Rod-Cut(P, n) calls Rod-Cut(P, *n-i*) n times where *i* starts from 1 to n.
- Equivalently, Rod-Cut(P, n) calls Rod-Cut(P, j) for j from n-1 to 0.

Recurrences Tree

Let's consider the case that n = 4

Rod-Cut(P, n) calls Rod-Cut(P, j) for j from n-1 to 0.

Let's see the recursion tree for n and write down the recurrence.

How many subproblems are there and what are the sizes of the sub-problems?

Recurrence:

- $T(n) = \sum_{j=0}^{n-1} T(j)$
- T(0)=Θ(1), constant time.

In order to solve a problem of size n, you need to solve n sub-problems whose sizes are n-1, n-2, n-3, ..., 0, respectively.

Solving the recurrence

•
$$T(n) = \sum_{j=0}^{n-1} T(j) = \frac{T(0) + T(1) + ... + T(n-2)}{T(n-1)} + T(n-1)$$

•
$$T(n-1)=T(0)+T(1) + ... + T(n-2)$$

- T(n)=2T(n-1)
- T(n-1)=2T(n-2)
- $T(n)=2^2T(n-2)$
- T(n-2)=2T(n-3)
- $T(n)=2^3T(n-3)$
- T(n)=2ⁱT(n-i)
- Base case T(0)=a, thus we need to make i=n.
- $T(n)=2^{i}T(n-i)=2^{n}T(n-n)=2^{n}*T(0)=a^{*}2^{n}$
- Running time is exponential!

Rod cutting memorization

- Problem we have for the recursive version:
 - Solving the same sub-problems over and over.
- Dynamic programming top-down with memoization
 - Solve each sub-problem only once and store the answers to the solved sub-problems in a table.
 - Next time, when you need to solve a solved sub-problem, just look up the table to get the answer.

- Let's consider a memorization version of rod cutting algorithm.
- Remember the solutions in an array or a hash table.

```
R[n]: the maximum profit of
Rod-Cut-M(P, n)
    for i \leftarrow 1 to n do
                                     cutting a rod with length n.
        R[i] \leftarrow -\infty
    return Rod-Cut-M-Aux (P, n, R)
Rod-Cut-M-Aux (P, n, R)
    if R[n] \ge 0 then return R[n]
2
    if n = 0 then q \leftarrow 0
3
    else
4
      q \leftarrow -\infty
5
      for i \leftarrow 1 to n do
           q \leftarrow \max(q, P[i] + Rod - Cut - M - Aux(P, n-i, R))
7
      R[n] \leftarrow q
    return q
```

Running example: n = 4

• Price table: P[1..4]

Length	1	2	3	4
Price	1	5	8	9

- Let's see how the memorization version of rod cutting works?
 - When array R is assigned with values and what values?
 - When a subproblem is already solved so that you can directly get the value from array R?
- We denote Rod-Cut-M-Aux(P, n, R) as RC(n) for simplicity.
- We have array R in the beginning that looks like:

R[1]	R[2]	R[3]	R[4]
-∞	-∞	-∞	-∞

Run time

- Recurrence: T(n) = T(n-1) + (n-1)
- Repeated substitution method
 - T(n-1)=T(n-2)+(n-2)
 - T(n)=T(n-2) + (n-1) + (n-2)
 - T(n-2)=T(n-3)+(n-3)
 - T(n)=T(n-3)+ (n-1) + (n-2) + (n-3)
 - ...
 - T(n) = T(n-i) + (n-1) + (n-2) + (n-3) + ... + (n-i)
 - To use based case T(0)=a, we set i=n, then we have
 - T(n) = T(n-n) + (n-1) + (n-2) + (n-3) + ... + 2 + 1 + 0
 - = a + n(n-1)/2
 - $= \Theta(n^2)$
- So So we reduce an **exponential** naive recursion to a **quadratic** recursion with memoization.
 - The overhead is an additional Θ(n) array R.

Rod Cutting Bottom-up

- Problem we have for the recursive version:
 - Solving the same sub-problems over and over.
- Dynamic programming bottom-up without recursion.

- Depending on some natural notion on the size of a sub-problem.
- Solving any particular sub-problem depends only on solving **smaller** sub-problems.
- Sort the sub-problems by size and solve them in size order, smallest first. And save the solutions.
- Let's consider a bottom-up version rod cutting algorithm.

```
Rod-Cut-B(P, n) R[n]: the maximum profit of cutting a rod 1 R[0] \leftarrow 0 with length n.

2 for j \leftarrow 1 to n do We compute R[j], where j is from 1 to n, i.e., from small size to big size.

3 q \leftarrow -\infty
When you solve a sub-problem, e.g., R[j], you need to use the for i \leftarrow 1 to j do solutions to smaller sub-problems---that is why i is from 1 to j.

5 q \leftarrow \max(q, P[i] + R[j-i])

6 R[j] \leftarrow q
7 return R[n]
```

• Run time $\Theta(n^2)$

Running example: n = 4

• Price table: P[1..4]

Length	1	2	3	4
Price	1	5	8	9

- Let's see how the bottom-up version of rod cutting works.
 - How array R is populated with the right values?
- Cut it into "2,2".

Getting an optimal solution

- So far, our dynamic programming solutions return the optimal profit.
- But, they do not return an actual optimal solution a list of piece sizes.
 - To return an actual optimal solution, we have to record the choices that lead to optimal profit.
 - S[j]: to achieve the maximum profit of cutting a length j rod, we need to have a piece with length S[j].

```
Rod-Cut-B-Ext(P, n)
    R[0] \leftarrow 0
          j \leftarrow 1 to n do
    for
                                                     Rod-Cut-B(P, n)
3
       \alpha \leftarrow -\infty
       for i \leftarrow 1 to j do
4
                                                      for i \leftarrow 1 to j do
5
           if q < P[i] + R[j-i] then
                                                           q \leftarrow \max(q, P[i]+R[j-i])
6
                q \leftarrow P[i] + R[j-i]
                                                      R[j] \leftarrow q
                S[j] \leftarrow i
8
       R[j] \leftarrow q
9
    return (R[n], S)
                                                                                          53
```

- R[0]=0, base case.
- R[1]=max(P[1]+R[0])=1
 - S[1]=1
- R[2]=max(P[1]+R[1], P[2]+R[0])=max(2, 5)=5
 - S[2]=2
- R[3]=max(P[1]+R[2], P[2]+R[1], P[3]+R[0])=max(6, 6, 8)=8
 S[3]=3
- R[4]=max(P[1]+R[3], P[2]+R[2], P[3]+R[1], P[4]+R[0])=max(9, 10, 9, 9)=10.
 - S[4]=2

Reconstructing a solution

```
Print-Rod-Cut-Solution(P, n)

1 (Cost, S) ← Rod-Cut-D-Ext(P,n)

2 while n > 0 do

3 print S[n]

4 n ← n - S[n]

5 return Cost
```

$\frac{i}{r[i]}$ $s[i]$	0	1	2	3	4	5	6	7	8	9	10
r[i]	0	1	5	8	10	13	17	18	22	25	30
s[i]	0	1	2	3	2	2	6	1	2	3	10

- If n=4, the optimal cutting is 2, 2.
- If n=7, the optimal cutting is 1, 6.
- If n=9, the optimal cutting is 3, 6.
- If n=10, the optimal cutting is 10, i.e., not cutting.

Memoization vs. Bottom-Up

- Pros and cons:
 - They should have the same asymptotic running time.
 - Recursion (Memorization) is usually slower than loops (Bottom-Up).
 - If not all sub-problems need to be solved, memorization only solves the necessary ones.

Mini quiz

• If you have a rod of length 7, what is the optimal profit and what is the corresponding optimal cut?

Length	1	2	3	4	5	6	7
Price	4	5	13	16	23	24	27

- R[0]=0, base case.
- R[1]=max(P[1]+R[0])=4
 - o S[1]=1
- R[2]=max(P[1]+R[1], P[2]+R[0])=max(4+4, 5+0)=8
 - o S[2]=1
- R[3]=max(P[1]+R[2], P[2]+R[1], P[3]+R[0])=max(4+8, 5+4, 13+0)=13
 - o S[3]=3
- R[4]=max(P[1]+R[3], P[2]+R[2], P[3]+R[1], P[4]+R[0])=max(4+13, 5+8, 13+4,16+0)=17.
 - o S[4]=1 or 3
- R[5]=max(P[1]+R[4], P[2]+R[3], P[3]+R[2], P[4]+R[1], P[5]+R[0])=max(4+17, 5+13, 13+8, 16+4, 23+0)=23.
 - S[5]=5
- R[6]=max(P[1]+R[5], P[2]+R[4], P[3]+R[3], P[4]+R[2], P[5]+R[1], P[6]+R[0])=max(4+23, 5+17, 13+13, 16+8, 23+4, 24+0)=27.
 - o S[6]=1 or 5
- R[7]=max(P[1]+R[6], P[2]+R[5], P[3]+R[4], P[4]+R[3], P[5]+R[2], P[6]+R[1], p[7]+R[0])=max(4+27, 5+23, 13+17, 16+13, 23+8, 24+4, 27+0)=31.
 - o S[6]=1 or 5

Longest Common Subsequence

- Given two strings X and Y
- There is a need to quantify how similar they are:
 - Comparing DNA sequences in studies of evolution of different species.
 - o Spell checkers.
- One of the measures of similarity is the length of the Longest Common Subsequence (LCS).
 - Z is a subsequence of X, if it is possible to generate Z by skipping some (possibly none) characters from X
 - X ="ACGGTTA", Z="CTA" is a subsequence of X.
 - Y ="CGTAT".
 - LCS(X,Y) = "CGTA" or "CGTT".
- ullet To solve LCS problem we have to find "skips" that generate LCS(X,Y) from X, and "skips" that generate LCS(X,Y) from Y

Solution Outline

- Given $X_m = x_1 x_2 x_3 \dots x_{m-1} x_m$ ": and $X_n = y_1 y_2 y_3 \dots y_{n-1} y_n$ "
- Brute-force solution
 - \circ Enumerate all subsequences of X_m and check each to see whether it is also a subsequence of Y_n .
 - Keep tracking the longest subsequence we found.
 - Exponential run time: 2^m , because X_m has 2^m subsequences.
- Recursive solution
 - We make Z to be empty and proceed from the ends of X and Y.
 - \circ If $x_m=y_n$, append this symbol to the end of Z, and find LCS(X_{m-1},Y_{n-1}) as the beginning of Z.
 - \circ If $x_m \neq y_n$, compute LCS(X_m, Y_{n-1}) and LCS(X_{m-1}, Y_n), and the longer one is the result.

Recurrence

Let c[i, j] be the length of an LCS of X_i and Y_j, where 1≤i ≤ m, 1 ≤ j ≤ n,

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

- Finally, c[m, n] gives the length of the LCS between X_m and Y_n
- · Pseudo code is shown in P394, CLRS.