(. Input Connection (P->G) [0, (]: global parameters: lr, α , β pre:

I post
$$+= \omega$$

a pre $+= (/(\alpha num_G))$
 $\Theta_{pre} += (/(\beta num_G))$

post:

$$\Delta \omega = -\text{decay} + \text{lr} (\text{a pre} - \Theta_{\text{pre}})$$

 $\omega = \text{clip} (\omega + \Delta \omega, 0, 1)$

3. Output Connection (G->H) [0, (]: global parameters: lr, lr rev , α , β .

pre:

I post
$$+= \omega$$
a pre $+= (/(\alpha num_H))$
 Θ pre $+= (/(\beta num_H))$

post:

a post
$$f = (/(\alpha num_G))$$

 $\Theta post f = (/(\beta num_G))$
 $\Delta w = -decay f (a pre - \Theta pre)$
 $w = clip(w + \Delta w, 0, ())$

Reverse part:

everywhere: G - pre neuron, H - post neuron

Y. Negative Connection (H->H)[-(,0]: global parameters: lr neg pre: l post += w negpost: $l w neg = -lr neg(a pre - \Theta pre)$ l w neg = clip(w neg + Dw neg, -(,0))