

ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Εξαντλητική αναζήτηση

Κωνσταντίνος Γιαννουτάκης Επίκουρος Καθηγητής

ΣΥΝΟΨΗ ΔΙΑΛΕΞΗΣ

• Εξαντλητική Αναζήτηση

ΕΞΑΝΤΛΗΤΙΚΗ ΑΝΑΖΗΤΗΣΗ

- Πρόβλημα Πλανόδιου Πωλητή
- Πρόβλημα του Σακιδίου
- Πρόβλημα της Ανάθεσης

EEANTAHTIKH ANAZHTHΣH (EXHAUSTIVE SEARCH)

Εξαντλητική Αναζήτηση

είναι μία **μέθοδος ωμής βίας** όπου **αναζητούμε ένα στοιχείο με συγκεκριμένη ιδιότητα**, συχνά μεταξύ συνδυαστικών αντικειμένων όπως συνδυασμούς, διατάξεις ή υποσύνολα συνόλου

Μεθοδολογία

- 1. Κατασκευάζουμε μία λίστα όλων των δυνατών λύσεων στο πρόβλημα με ένα συστηματικό τρόπο
 - a. Παρουσιάζονται όλες οι λύσεις
 - b. Καμία λύση δεν επαναλαμβάνεται
- 2. Εξετάζουμε τις λύσεις μία προς μία, απορρίπτοντας τις μη ικανοποιητικές και κρατώντας τη μέχρι στιγμής καλύτερη
- 3. Όταν τελειώσει η αναζήτηση, ανακοινώνεται ο νικητής

ΠΡΟΒΛΗΜΑ ΠΛΑΝΟΔΙΟΎ ΠΩΛΗΤΗ (TRAVELING SALESMAN PROBLEM)

Δοσμένων *n* πόλεων με γνωστές μεταξύ τους αποστάσεις, να βρεθεί η συντομότερη διαδρομή που περνά από όλες τις πόλεις ακριβώς μία φορά πριν επιστρέψει στην αφετηρία.

ΠΡΟΒΛΗΜΑ ΠΛΑΝΟΔΙΟΎ ΠΩΛΗΤΗ

	Διαδρομή	Κόστος
1	$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	2+3+7+5= 17
2	$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	2+4+7+8=21
3	$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$	8+3+4+5=20
4	$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$	8+7+4+2=21
5	$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$	5+4+3+8=20
6	$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$	5+7+3+2= 17

Ποιο είναι το πλήθος όλων των δυνατών διαδρομών (σε σχέση με το πλήθος των κόμβων);

ΠΡΟΒΛΗΜΑ ΠΛΑΝΟΔΙΟΎ ΠΩΛΗΤΗ

- 1. Θεωρούμε την πόλη 1 ως το αρχικό και τελικό σημείο.
- 2. Δημιουργούμε όλες τις (n-1)! παραλλαγές.
- 3. Υπολογίζουμε το κόστος κάθε παραλλαγής και αποθηκεύουμε το ελάχιστο κόστος.
- 4. Επιστρέφουμε την παραλλαγή με το ελάχιστο κόστος.

Πολυπλοκότητα $\mathcal{O}(n!)$

ΠΡΟΒΛΗΜΑ ΤΟΥ ΣΑΚΙΔΙΟΥ (KNAPSACK PROBLEM)

Δοσμένων n αντικειμένων με βάρη w_1 , w_2 , ..., w_n και αξίες v_1 , v_2 , ..., v_n και ενός σάκου χωρητικότητας W, να βρεθεί το πολυτιμότερο υποσύνολο των αντικειμένων που ταιριάζουν στο σάκο.

Χωρητικότητα <i>W</i> =16				
Είδος Βάρος Αξία (€)				
0	2	20		
1	5	30		
2	10	50		
3	5	10		

ΠΡΟΒΛΗΜΑ ΤΟΥ ΣΑΚΙΔΙΟΥ

Χωρητικότητα <i>W</i> =16			
Είδος Βάρος Αξία (€)			
0 2		20	
1	5	30	
2	10	50	
3	5	10	

Ποιο είναι το πλήθος όλων των δυνατών συνδυασμών αντικειμένων (σε σχέση με το πλήθος των αντικειμένων);

Υποσύνολο	Συνολικό Βάρος	Συνολική Αξία (€)
{0}	2	20
{1}	5	30
{2}	10	50
{3}	5	10
{0,1}	7	50
{0,2}	12	70
{0,3}	7	30
{1,2}	15	80
{1,3}	10	40
{2,3}	15	60
{0,1,2}	17	Μη εφικτό
{0,1,3}	12	60
{0,2,3}	17	Μη εφικτό
{1,2,3}	20	Μη εφικτό
{0,1,2,3}	22	Μη εφικτό

ΚΩΔΙΚΑΣ C

Είσοδος:

- Η χωρητικότητα του σακιδίου (W)
- Τα βάρη των αντικειμένων (πίνακας wt)
- Η αξία των αντικειμένων (πίνακας val)
- Το πλήθος των αντικειμένων (n)

Έξοδος:

• Η αξία των αντικειμένων στην καλύτερη περίπτωση

```
int knapSack(int W, int wt[], int val[], int n)
    // Βασική περίπτωση
    if (n == 0 || W <= 0)
        return 0;
    // Εάν το βάρος του η-οστού αντικειμένου είναι μεγαλύτερο
    // από τη χωρητικότητα W, τότε το αντικείμενο δεν μπορεί
    // να συμπεριληφθεί στην καλύτερη λύση
    if (wt[n-1] > W)
        return knapSack(W, wt, val, n - 1);
    // Επέστρεψε το μεγαλύτερο των 2 περιπτώσεων:
    // (1) συμπεριλαμβανομένου του η-οστού αντικειμένου
    // (2) χωρίς το η-οστό αντικείμενο
    else
        return max(val[n - 1] + knapSack(W - wt[n - 1],
                                               wt, val, n - 1),
            knapSack(W, wt, val, n - 1));
```

KS(16,4)

W=16				
Είδος	wt	val		
0	2	20		
1	5	30		
2	10	50		
3	5	10		

return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));

Επιλογή "3"

KS(16,4) Παράλειψη "3"

10+ KS(11,3)

KS(16,3)

W=16				
Είδος	wt	val		
0	2	20		
1	5	30		
2	10	50		
3	5	10		

return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));

W=16 Είδος wt val 2 20 0 5 30 1 10 50 2 5 3 10

	Επιλογή "3"	
	10+ KS(11,3)	
Επιλογή "2"	Παράλειψη "2"	
50+ KS(1,2)	KS(11,2)	

Επιλογή "2"

Παράλειψη "2"

KS(16,2)

KS(16,3)

Παράλειψη "3"

return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));

KS(16,4)

Επιλογή "3"

	• •
10 KS(1	0+ .1,3)
Επιλογή "2"	Παράλειψη "2"
50+ KS(1,2)	KS(11,2)
Επιλογή ″1" Παράλειψη "1"	Επιλογή "1" Παράλειψη "1"
30+ KS(-4,1) KS(1,1)	30+ KS(6,1) KS(11,1)

KS(16,3) Παράλειψη "2" Επιλογή "2" 50+ KS(16,2) KS(6,2)Επιλογή *"1*" Παράλειψη "1" Παράλειψη "1" Επιλογή "½" 30+ 30+ KS(6,1) KS(16,1) KS(1,1)KS(11,1)

Παράλειψη "3"

return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));

KS(16,4)

W=16 ΔΕΝΔΡΟ ΑΝΑΔΡΟΜΗΣ Είδος wt val 0 2 20 KS(16,4) 30 5 1 Επιλογή "3" Παράλειψη "3" 50 2 10 10+ 3 5 10 KS(16,3) KS(11,3) Παράλειψη "2" Επιλογή "2" Παράλειψη "2" Επιλογή "2" 50+ 50+ KS(11,2) KS(16,2) KS(1,2) KS(6,2)Παράλειψη "1" Παράλειψη "1" Επιλογή "1" Παράλειψη "1" Επιλογή "⁄1" Επιλογή ″1" Παράλειψη "1" Επιλογή "½" 30+ 30+ 30+ 30+ KS(11,1) KS(1,1) KS(6,1) KS(16,1) KS(11,1) KS(-4,1)KS(6,1)KS(1,1) Επιλογή "0" Επιλογή "0" Επιλογή "0" Επιλογή "Ø" Επιλογή "0" Επιλογή "0" Επιλογή "0" Παράλειψη "0" 20+ 20+ 20+ 20+ 20+ 20+ 20+ KS(1,0) KS(6,0) KS(6,0) KS(11,0) KS(11,0) KS(1,0) KS(16,0) KS(9,0) KS(4,0) KS(9,0) KS(-1,0) KS(14,0) KS(-1,0) KS(4,0)

return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));

Πολυπλοκότητα

W=16 Είδος wt val 0 2 20 30 5 1 2 10 50 3 5 10

KS(16,4)

Επιλογή "3"

KS(16,3)

Παράλειψη "3"

10+ KS(11,3) Παράλειψη "2" Επιλογή "2" 50+ KS(11,2) KS(1,2) Παράλειψη "1" Επιλογή "1" Παράλειψη "1" Επιλογή ″1" 30+ 30+ KS(1,1) KS(11,1) KS(-4,1)KS(6,1)Επιλογή "0" Επιλογή "0" Επιλογή "0" Παράλειψη "0" Παράλειψη "0" Παράλειψη "0" 20+ 20+ 20+ KS(1,0) KS(6,0) KS(11,0) KS(4,0) KS(9,0) KS(-1,0)

Παράλειψη "2" Επιλογή "2" 50+ KS(16,2) KS(6,2)Παράλειψη "1" Επιλογή "⁄1" Παράλειψη "1" Επιλογή "1" 30+ **30**+ KS(6,1)KS(16,1) KS(11,1) KS(1,1)Επιλογή "0" Επιλογή "0" Επιλογή "0" Επιλογή "Ø" Παράλειψη "0" Παράλειψη "0" Παράλειψη "0" Παράλειψη "0" 20+ 20+ 20+ KS(1,0) KS(6,0) KS(11,0) KS(16,0) KS(9,0) KS(14,0) KS(4,0)

return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));

20+

KS(-1,0)

return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));

ΠΡΟΒΛΗΜΑ ΤΗΣ ΑΝΑΘΕΣΗΣ (ASSIGNMENT PROBLEM)

Δοσμένων **n ατόμων** και **n εργασιών**, και **C[i, j]** να είναι το **κόστος** αν το άτομο *i* αναλάβει την εργασία *j*, να ανατεθεί ένα άτομο σε κάθε εργασία με συνολικό ελάχιστο κόστος.

	Εργασία 1	Εργασία 2	Εργασία 3	Εργασία 4
Άτομο 1	9	2	7	8
Άτομο 2	6	4	3	7
Άτομο 3	5	8	1	8
Άτομο 4	7	6	9	4

ΠΡΟΒΛΗΜΑ ΤΗΣ ΑΝΑΘΕΣΗΣ

A	νάθεση	

......

- 1	,	,	
Συνο/	llKO	κόστος	
	••••	******	

.....

	Εργασία 1	Εργασία 2	Εργασία 3	Εργασία 4
Άτομο 1	9	2	7	8
Άτομο 2	6	4	3	7
Άτομο 3	5	8	1	8
Άτομο 4	7	6	9	4

Πόσους δυνατούς συνδυασμούς μπορούμε να έχουμε;

ΠΡΟΒΛΗΜΑ ΤΗΣ ΑΝΑΘΕΣΗΣ

Ανάθεση

......

Συνολικό κόστος

.....

	Εργασία 1	Εργασία 2	Εργασία 3	Εργασία 4
Άτομο 1	9	2	7	8
Άτομο 2	6	4	3	7
Άτομο 3	5	8	1	8
Άτομο 4	7	6	9	4

Πολυπλοκότητα: $\mathcal{O}(n!)$

ΣΥΜΠΕΡΑΣΜΑΤΑ

- Οι αλγόριθμοι εξαντλητικής αναζήτησης εκτελούνται σε ρεαλιστικούς χρόνους μόνο για μικρά στιγμιότυπα
- Κάποιες φορές υπάρχουν καλύτερες εναλλακτικές λύσεις
 - Συντομότερα μονοπάτια
 - Ελάχιστα συνδετικά δένδρα
 - Πρόβλημα ανάθεσης
- Μερικές φορές όμως η εξαντλητική αναζήτηση (ή κάποια παραλλαγή) είναι η μοναδική γνωστή λύση

Κωνσταντίνος Γιαννουτάκης

Επίκ. Καθηγητής kgiannou@uom.edu.gr

