# Decision Tree State Clustering With Word and Syllable Features

By Hank Liao, Chris Alberti, Michiel Bacchiani, and Olivier Siohan / September, 2010

reporter: 許妙鸞

Professor: 陳嘉平

#### **Abstract**

- In large vocabulary continuous speech recognition, decision trees are widely used to cluster triphone states.
- In addition to commonly used phonetically based questions, others have proposed additional questions such as phone position within word or syllable.
- This paper examines using the word or syllable context itself as a feature in the decision tree, providing an elegant way of introducing word- or syllable-specific models into the system.
- Positive results are reported on two state-of-the-art systems: voicemail transcription and a search by voice tasks across a variety of acoustic model and training set sizes.
- Index Terms: decision tree state clustering, large vocabulary continuous speech recognition, tagged clustering.

#### Introduction

- 最先進的連續語音辨識詞彙系統,使用決 策樹去聚集上下文相依的HMM 狀態
- 上下文相依的模型依條件分成左右兩邊的 phone,稱之為 triphone
- Triphone 的數量相當大,不是所有的 triphone都可以在訓練資料時被遵守,這導 致資料稀疏的議題

# **Decision Tree State Clustering**

- 決策樹常被用在大量詞彙的連續自動語音 辨識,把聚集到的大量CD分成小的集合, 其分佈可以被評估
- Context 的小資料被結合直到資料足夠使用
- 標準分詞的聲學單位是triphone
- 如:

trees  $\rightarrow$  t+r t-r+iy r-iy+z iy-z

# 決策樹使用語音問題分類



Figure 1: Decision tree clustering state 3 of phone i. 10 contexts are clustered into 5 leaves/states.

# 父節點的平均值和變異數

$$\boldsymbol{\mu}^p = \frac{1}{N^p} \sum_{c \in p} \boldsymbol{m}^c \qquad \boldsymbol{\Sigma}^p = \frac{1}{N^p} \sum_{c \in p} \boldsymbol{S}^c - \boldsymbol{\mu}^p \boldsymbol{\mu}^{p\mathsf{T}}$$

$$N^p = \sum_{c \in p} N^c$$

N<sup>c</sup>: total state occupancy

p:a parent node

c:context

μ<sup>p</sup>:mean

Σp: 變異數

m<sup>c</sup>:一階的context c 統計

S<sup>c</sup>:二階的context c 統計

# 每一個節點的變化

$$LL_{gain} = \log \left[ \frac{L(X_{\in y} | \boldsymbol{\mu}^{y}, \boldsymbol{\Sigma}^{y};) L(X_{\in n} | \boldsymbol{\mu}^{n}, \boldsymbol{\Sigma}^{n})}{L(X_{\in p} | \boldsymbol{\mu}^{p}, \boldsymbol{\Sigma}^{p})} \right]$$
$$= -\frac{1}{2} N^{y} \log(|\boldsymbol{\Sigma}^{y}|) - \frac{1}{2} N^{n} \log(|\boldsymbol{\Sigma}^{n}|)$$
$$+ \frac{1}{2} N^{p} \log(|\boldsymbol{\Sigma}^{p}|)$$

y: yes child node

n: no child node

Xei:訓練的資料和nodei相關

$$X_{\in p} = X_{\in y} \bigcup X_{\in n}$$

## Word and Syllable Context

- 這篇paper提出以真實的單字或音節的上下文為條件的phone model
- 在一個FST為基礎的ASR系統,一個加權FST被用來表示統計的語言模型G,一個語音的詞彙L,上下文相依的轉換器 C
- 最佳化的decoding graph是使用FST做minimization, determinization and composition

#### **Decoding Graph**

$$\min(C \circ \det(L \circ G))$$

$$\min(\det(CL)) \circ G$$

det: determinization

G:統計的語言模型(weighted word acceptor)

L:一個語音的詞彙

(context independent phone to word transducer)

C:上下文相依的轉換器

(CD phone model to context independent phones)

#### $\mathsf{CL}$

```
1 2 3 4
0 1 t@word=trees#wb=true trees
1 2 r@word=trees#wb=false
2 3 iy@word=trees#wb=false
3 4 z@word=trees#wb=true
```

- 1: from state
- 2: to state
- 3: input label
- 4: output label
- wb: word boundary
- @、#: 分開phone和特徵關鍵值的配對

#### CL with left context

```
0 1 t@word=trees#wb=true#left=sil trees
1 2 r@word=trees#wb=false#left=t
2 3 iy@word=trees#wb=false#left=r
3 4 z@word=trees#wb=true#left=iy
```

# **Chou Partitioning**

- Chou's partitioning algorithm(CPA) 被用來尋找在決策樹的節點最佳分割的資料
- 可被想成是K-means clustering 的應用
- 表示可能的分割的兩個群集被初始化,藉由分裂高斯的父節點
- 意指一些分數的變異,± 0.2被用在這項工作中,且k-means的一些相互作用會執行到收斂為止

# 實驗

- 分成兩個工作
  - Voicemail transcription
  - A search by voice task a.k.a
- 在這篇paper所有的系統使用大量的定向搜索, 使得搜尋錯誤在實驗中不是一個因素
- $M = \beta N^{0.4}$ 
  - M:高斯的數量
  - N: 觀察的數量

## Voicemail Transcription

- 語音信箱轉錄系統訓練425小時的資料,大約50k voicemails
- 兩個測試集合總數大約有35k的單字或超過 3小時的語音
- 語言模型是 Kneser-Ney smoothed, entropy pruned, trigram language model,從各種資源,包括轉錄他們本身(voicemail)和廣播新聞加入字詞

#### Phonetic classes V.S Chou partitioning

|                   | Number of States    |      |       |  |
|-------------------|---------------------|------|-------|--|
| Question type     | 7000                | 9000 | 12000 |  |
|                   | Avg. Cost per Frame |      |       |  |
| Phonetic classes  | 3.06                | 3.03 | 3.00  |  |
| Chou partitioning | 3.07                | 3.03 | 2.99  |  |
|                   | % WER               |      |       |  |
| Phonetic classes  | 27.5                | 27.4 | 27.4  |  |
| Chou partitioning | 27.9                | 27.3 | 27.3  |  |

Table 1: Comparing triphone systems using hand-crafted phonetic classes with automatic CPA questions. Average cost per frame (smaller indicates better fit) and word error rate are reported for increased number of leaves/states.

## 上下文特徵和語音類別問題的結合

. .

| Pho   | netic | Word  |          | Syllable |
|-------|-------|-------|----------|----------|
| Left  | Right | ID    | Boundary | ID       |
| 50.9% | 49.1% |       |          |          |
| 41.4% | 40.6% |       |          | 18.1%    |
| 47.6% | 46.6% |       | 5.7%     |          |
| 40.8% | 41.5% | 17.7% |          |          |
| 39.4% | 39.8% | 16.0% | 4.8%     |          |

Table 2: Percentage of splits by context feature for different 9000 leaf trees. Each row is a mix of different context features.

# 使用不同上下文特徵的結果

| Context  |                    | Number of States |      |       |
|----------|--------------------|------------------|------|-------|
| Phonetic | Non-phonetic       | 7000             | 9000 | 12000 |
|          |                    | 27.5             | 27.4 | 27.4  |
|          | Syllable ID        | 27.4             | 27.4 | 27.0  |
| Triphone | Word Boundary      | 26.9             | 27.3 | 26.9  |
|          | Word ID            | 26.9             | 27.1 | 27.0  |
|          | Word Boundary + ID | 26.9             | 26.9 | 26.5  |

Table 3: Performance results when using different context features (% WER) corresponding to the rows in Table 2.

# Triphone和系統其他的結合的比較



Figure 2: Comparing baseline triphone system with various combined triphone/word/word boundary systems, increasing number of system Gaussians

## Search by Voice Task

- The voice search task 請參閱 www.google.com/mobile
- 實驗將額外增加的上下文特徵表現在大量的訓練資料上
- 語言模型是一個backoff trigram model包含 14M Ngrams和1M單字
- 測試集合包含14k的單字,每一個語音長度 大約3秒左右

# 每個上下文分裂的數量

|           |               | Number of States |       |       |
|-----------|---------------|------------------|-------|-------|
| Train Set | Context       | 7000             | 9000  | 12000 |
| 420hr     | Left phone    | 44.9%            | 43.7% |       |
|           | Right phone   | 39.4%            | 38.3% |       |
|           | Word ID       | 10.0%            | 12.7% |       |
|           | Word boundary | 5.7%             | 5.3%  |       |
| 2100hr    | Left phone    | 44.0%            | 43.4% | 42.9% |
|           | Right phone   | 38.3%            | 36.9% | 36.6% |
|           | Word ID       | 11.8%            | 14.3% | 16.0% |
|           | Word boundary | 5.9%             | 5.4%  | 4.4%  |

Table 4: Percentage of splits of each context feature, varying the number of states and amount of training data.

# Triphone和系統其他的結合的比較



Figure 3: Comparing baseline triphone system with various combined triphone/word/word boundary systems, varying training set size and increasing number of system Gaussians.

# **外古**五

這篇paper探討新的上下文特徵的使用,以上下文相依的phone model的單字和音節為基礎,去結合標準的特徵,例如:word boundary 和 triphonic context