AMENDMENTS TO THE CLAIMS

Docket No.: 578562000800

This listing of claims will replace all prior listings and versions of claims in the application.

Claim 1 (canceled)

Claim 2 (canceled)

Claim 3 (canceled)

Claim 4 (currently amended) The composition of claim 2,
A composition comprising a compound according to the formula

$$J_{6}$$
 J_{1}
 J_{1}
 J_{2}
 J_{3}

wherein at least one of J_1 , J_2 , J_3 , J_4 , J_5 , J_6 , J_7 and J_8 is independently M, where each M is independently selected from the group consisting of

 $-(B-A-B)_x-G-(B-A-B)_m-(N(P)-B-A-B)_n-K$

Application No.: 10/606,016

3

Docket No.: 578562000800

wherein each A is independently selected from the group consisting of: a nonentity, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl;

each B is independently selected from the group consisting of: a nonentity, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl;

and with the proviso that each -B-A-B- unit contain at least one carbon atom;
wherein G is independently selected from the group consisting of -N(P)-, -(C=O)-N(P)-,
-N(P)-(C=O)-, and a nonentity;

x is independently 0 or 1;

m is independently 0 or 1;

n is independently an integer from 0 to 20;

each P is independently selected from the group consisting of H and C₁-C₁₂ alkyl;
each K is independently selected from the group consisting of H, C₁-C₁₂ alkyl, C₂-C₁₂
alkenyl, C₂-C₁₂ alkynyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂
cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl, and Q;

where each Q is independently selected from the group consisting of

where each P is independently selected from the group consisting of H and C₁-C₁₂ alkyl, each D is selected from the group consisting of H and C₁-C₃₂ alkyl, y is an integer from 1 to 8, and z is an integer from 0 to 5, and where the Q moiety is attached to the remainder of the molecule at any C or N atom in the Q moiety (including C atoms in the D or P moieties) by removing a hydrogen atom, a P substituent, or a D substituent of the Q moiety to form an open valence for attachment to the remainder of the molecule;

Application No.: 10/606,016

Docket No.: 578562000800

and where the remaining members or member of J₁, J₂, J₃, J₄, J₅, J₆, J₇ and J₈ are each independently selected from the group consisting of H, -B-A-B, -COOH, -SO₃H, -B-A-B-COOH, or —B-A-B-SO₃H, where each A and each B are independently selected as defined above and with the proviso that each -B-A-B- unit has at least one carbon atom;

4

with the proviso that M excludes moieties of the form

 $-K_1-G_5-L_5-(N(P_5)-A_5)_n-K_2$

where K_1 is independently selected from the group consisting of C_1 - C_8 alkyl and where the valence to the left of K_1 attaches to the porphyrin ring;

 G_5 is -O-, -(C=O)-, -C(=O)-O-, -O-(C=O)-, -O-(C=O)-O-, -O-(C=O)-N-, -N-(C=O)-O-, or a nonentity;

<u>L₅ is C₁-C₈ alkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloaryl, C₁-C₈ alkoxy, C₁-C₈ alkyl-C₃-C₈ cycloalkyl, C₁-C₈ alkyl-C₃-C₈ cycloaryl, C₃-C₈ cycloaryl, C₃-C₈ cycloaryl, C₃-C₈ cycloaryl, C₃-C₈ cycloaryl-C₁-C₈ alkyl, C₃-C₈ cycloaryl-C₁-C₈ alkyl, C₃-C₈ cycloaryl-C₁-C₈ alkoxy, C₃-C₈ cycloaryl-C₁-C₈ alkoxy, C₃-C₈ cycloaryl-C₃-C₈ cycloalkyl, or a nonentity;</u>

each A_5 is independently selected from the group consisting of C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkynyl; C_3 - C_8 cycloalkynyl; C_3 - C_8 cycloalkynyl; C_3 - C_8 alkyl;

n is an integer from 2 to 8;

and K_2 is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkenyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkenyl, C_3 - C_8 cycloalkynyl, C_1 - C_8 alkanol, C_3 - C_8 cycloalkanol, and C_3 - C_8 hydroxyaryl;

wherein at least one K is Q, and where the Q moiety is attached to the remainder of the molecule at any N atom in the Q moiety by removing a P substituent of the Q moiety to form an open valence for attachment to the remainder of the molecule.

Claim 5 (canceled)

Claim 6 (currently amended) The composition of claim 2,

A composition comprising a compound according to the formula

$$J_{6}$$
 J_{7}
 J_{8}
 J_{1}
 J_{1}
 J_{2}
 J_{3}

wherein at least one of J_1 , J_2 , J_3 , J_4 , J_5 , J_6 , J_7 and J_8 is independently M, where each M is independently selected from the group consisting of

$-(B-A-B)_x-G-(B-A-B)_m-(N(P)-B-A-B)_n-K$

wherein each A is independently selected from the group consisting of: a nonentity, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkynyl, C_3 - C_{12} cycloalkanol, and C_3 - C_8 hydroxyaryl;

each B is independently selected from the group consisting of: a nonentity, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl;

and with the proviso that each -B-A-B- unit contain at least one carbon atom;
wherein G is independently selected from the group consisting of -N(P)-, -(C=O)-N(P)-,
-N(P)-(C=O)-, and a nonentity;

x is independently 0 or 1;

m is independently 0 or 1;

n is independently an integer from 0 to 20;

each P is independently selected from the group consisting of H and C₁-C₁₂ alkyl;

6

each K is independently selected from the group consisting of H, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkynyl, C_1 - C_{12} alkanol, C_3 - C_{12} cycloalkanol, and C_3 - C_8 hydroxyaryl, and C_3 - C_{12} cycloalkanol, and C_3 - C_8 hydroxyaryl, and C_3 - C_8

where each Q is independently selected from the group consisting of

where each P is independently selected from the group consisting of H and C₁-C₁₂ alkyl, each D is selected from the group consisting of H and C₁-C₃₂ alkyl, y is an integer from 1 to 8, and z is an integer from 0 to 5, and where the Q moiety is attached to the remainder of the molecule at any C or N atom in the Q moiety (including C atoms in the D or P moieties) by removing a hydrogen atom, a P substituent, or a D substituent of the Q moiety to form an open valence for attachment to the remainder of the molecule;

and where the remaining members or member of J₁, J₂, J₃, J₄, J₅, J₆, J₇ and J₈ are each independently selected from the group consisting of H, -B-A-B, -COOH, -SO₃H, -B-A-B-COOH, or -B-A-B-SO₃H, where each A and each B are independently selected as defined above and with the proviso that each -B-A-B- unit has at least one carbon atom;

with the proviso that M excludes moieties of the form

 $-K_1-G_5-L_5-(N(P_5)-A_5)_n-K_2$

where K_1 is independently selected from the group consisting of C_1 - C_8 alkyl and where the valence to the left of K_1 attaches to the porphyrin ring;

 G_5 is -O-, -(C=O)-, -C(=O)-O-, -O-(C=O)-, -O-(C=O)-O-, -O-(C=O)-N-, -N-(C=O)-O-, or a nonentity;

Application No.: 10/606,016 7

 $\underline{L_5 \text{ is } C_1\text{-}C_8 \text{ alkyl}, C_3\text{-}C_8 \text{ cycloalkyl}, C_3\text{-}C_8 \text{ cycloaryl}, C_1\text{-}C_8 \text{ alkoxy}, C_1\text{-}C_8 \text{ alkyl-}C_3\text{-}C_8 \text{ cycloalkyl},}}{\underline{C_1\text{-}C_8 \text{ alkyl-}C_3\text{-}C_8 \text{ cycloaryl}, C_1\text{-}C_8 \text{ alkoxy-}C_3\text{-}C_8 \text{ cycloaryl}, C_3\text{-}C_8 \text{ cycloaryl}, C_3\text{-}C_8 \text{ cycloaryl-}C_1\text{-}C_8 \text{ alkyl}, C_3\text{-}C_8 \text{ cycloa$

Docket No.: 578562000800

each A_5 is independently selected from the group consisting of C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkynyl;

P₅ is selected from the group consisting of H and C_1 - C_8 alkyl;

n is an integer from 2 to 8;

and K₂ is independently selected from the group consisting of H, C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkenyl, C₂-C₈ alkenyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkynyl, C₁-C₈ alkanol, C₃-C₈ cycloalkanol, and C₃-C₈ hydroxyaryl;

wherein at least one A substituent comprises a eyelopropane cyclopropyl group.

Claim 7 (canceled)

Claim 8 (canceled)

Claim 9 (currently amended) The composition of claim 8,
A composition comprising a compound of the formula

$$J_{6}$$
 J_{7}
 J_{8}
 J_{1}
 J_{1}
 J_{2}
 J_{3}

where J_1 and J_2 are independently M and each M is independently selected from the group consisting of -(B-A-B)-G-(B-A-B)-(N(P)-B-A-B)_n-K;

 $\underline{J_3}$, $\underline{J_4}$, $\underline{J_6}$ and $\underline{J_8}$ are independently selected from methyl and ethyl; and

J₅ and J₇ are independently selected from methyl, ethyl, and -SO₃H;

The composition of claim 8,

wherein at least one B-A-B unit comprises a cycloalkyl moiety.

Claim 10 (original) The composition of claim 9, wherein at least one B-A-B unit comprises a cyclopropyl moiety.

Claim 11 (canceled)

Claim 12 (canceled)

Claim 13 (canceled)

Claim 14 (original) The composition of claim 10, where J_1 and J_2 are identical.

Claim 15 (canceled)

Claim 16 (currently amended) The composition of claim 1,

A composition comprising a compound according to the formula

wherein at least one of J₁, J₂, J₃, J₄, J₅, J₆, J₇ and J₈ is independently selected from the group consisting of

$-(B-A-B)_x-G-(B-A-B)_m-(N(P)-B-A-B)_n-K$

wherein each A is independently selected from the group consisting of: a nonentity, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkynyl, C_3 - C_{12} cycloalkynyl, C_3 - C_{12} alkanol, C_3 - C_{12} cycloalkanol, and C_3 - C_8 hydroxyaryl;

each B is independently selected from the group consisting of: a nonentity, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl;

and with the proviso that each -B-A-B- unit contain at least one carbon atom;
wherein G is independently selected from the group consisting of -N(P)-, -(C=O)-N(P)-,
-N(P)-(C=O)-, and a nonentity;

x is independently 0 or 1;

m is independently 0 or 1;

n is independently an integer from 0 to 20;

each P is independently selected from the group consisting of H and C₁-C₁₂ alkyl; each K is independently selected from the group consisting of H, C₁-C₁₂ alkyl, C₂-C₁₂

alkenyl, C₂-C₁₂ alkynyl, C₃-C₁₂ cycloalkyl, C₃-C₈ cycloaryl, C₃-C₁₂ cycloalkenyl, C₃-C₁₂ cycloalkynyl, C₁-C₁₂ alkanol, C₃-C₁₂ cycloalkanol, and C₃-C₈ hydroxyaryl, and Q;

where each Q is independently selected from the group consisting of

where each P is independently selected from the group consisting of H and C₁-C₁₂ alkyl, each D is selected from the group consisting of H and C₁-C₃₂ alkyl, y is an integer from 1 to 8, and z is an integer from 0 to 5, and where the Q moiety is attached to the remainder of the molecule at any C or N atom in the Q moiety (including C atoms in the D or P moieties) by removing a hydrogen atom, a P substituent, or a D substituent of the Q moiety to form an open valence for attachment to the remainder of the molecule;

and where the remaining members or member of J₁, J₂, J₃, J₄, J₅, J₆, J₇ and J₈ are each independently selected from the group consisting of H, -B-A-B, -COOH, -SO₃H, -B-A-B-COOH, or -B-A-B-SO₃H, where each A and each B are independently selected as defined above and with the proviso that each -B-A-B- unit has at least one carbon atom

wherein each -K is independently Q;

where each Q is independently selected from the group consisting of

wherein only one D moiety is selected from the group consisting of C_1 - C_{32} alkyl and all remaining D moieties are H; wherein three P groups are selected from the group consisting of -H and -CH₃; wherein the fourth P group is absent and the Q moiety is attached to the remainder of the molecule at that valence; and wherein y is 2, 3, or 4 and z is 0, 1, or 2.

Claim 17 (currently amended) The composition of claim $2 \frac{4}{3}$, wherein each -K is independently

Q;

where each Q is independently selected from the group consisting of

wherein only one D moiety is selected from the group consisting of C₁-C₃₂ alkyl and all remaining D moieties are H; wherein three P groups are selected from the group consisting of –H and –CH₃; wherein the fourth P group is absent and the Q moiety is attached to the remainder of the molecule at that valence; and wherein y is 2, 3, or 4 and z is 0, 1, or 2.

Claim 18 (currently amended) The composition of claim 6 4, wherein each –K is independently

Q;

where each Q is independently selected from the group consisting of

Docket No.: 578562000800

wherein only one D moiety is selected from the group consisting of C₁-C₃₂ alkyl and all remaining D moieties are H; wherein three P groups are selected from the group consisting of –H and –CH₃; wherein the fourth P group is absent and the Q moiety is attached to the remainder of the molecule at that valence; and wherein y is 2, 3, or 4 and z is 0, 1, or 2.

Claim 19 (currently amended) The composition of claim 1 16, wherein -K is

Claim 20 (currently amended) The composition of claim 24, wherein -K is

Claim 21 (new) The composition of claim 4, further comprising a pharmaceutically acceptable carrier.

Claim 22 (new) The composition of claim 6, further comprising a pharmaceutically acceptable carrier.

Claim 23 (new) The composition according to claim 6 wherein the compound is

and all salts thereof.

Claim 24 (new) The composition according to claim 20, wherein the compound is

and all salts thereof.

Claim 25 (new) The composition of claim 23, further comprising a pharmaceutically acceptable carrier.

Claim 26 (new) The composition of claim 24, further comprising a pharmaceutically acceptable carrier.