

Curso de ingeniería centrado en código Capitalizando lo desarrollado durante el confinamiento

Bettachini, Víctor A.; Real, Mariano A.; Palazzo, Edgardo Kowalski, F.: Jara, D.

1/9

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

Aula y práctica: transcripción y reiteración

• Memoria $\xrightarrow{profesor}$ pizarrón/presentación

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

- Memoria $\xrightarrow{protesor}$ pizarrón/presentación
- Pizarrón/presentación \xrightarrow{alumno} cuaderno

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

- Memoria $\xrightarrow{protesor}$ pizarrón/presentación
- Pizarrón/presentación \xrightarrow{alumno} cuaderno
- Práctica: reiterar diagramas, cálculos, etc.

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

- Memoria $\xrightarrow{profesor}$ pizarrón/presentación
- Pizarrón/presentación \xrightarrow{alumno} cuaderno
- Práctica: reiterar diagramas, cálculos, etc.
- Aburrimiento ⇒ ↓ concentración

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

- Memoria $\xrightarrow{profesor}$ pizarrón/presentación
- Pizarrón/presentación \xrightarrow{alumno} cuaderno
- Práctica: reiterar diagramas, cálculos, etc.
- Aburrimiento ⇒ ↓ concentración

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

Aula y práctica: transcripción y reiteración

- Memoria $\xrightarrow{profesor}$ pizarrón/presentación
- Pizarrón/presentación \xrightarrow{alumno} cuaderno
- Práctica: reiterar diagramas, cálculos, etc.
- Aburrimiento ⇒ ↓ concentración

• Ingenio $\xrightarrow{profesor}$ código en repositorio

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

- Memoria $\xrightarrow{profesor}$ pizarrón/presentación
- Pizarrón/presentación \xrightarrow{alumno} cuaderno
- Práctica: reiterar diagramas, cálculos, etc.
- Aburrimiento ⇒ ↓ concentración

- Ingenio $\xrightarrow{profesor}$ código en repositorio
- Repositorio del curso \xrightarrow{alumno} propio

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

- Memoria $\xrightarrow{profesor}$ pizarrón/presentación
- Pizarrón/presentación \xrightarrow{alumno} cuaderno
- Práctica: reiterar diagramas, cálculos, etc.
- Aburrimiento ⇒ ↓ concentración

- Ingenio $\xrightarrow{profesor}$ código en repositorio
- Repositorio del curso \xrightarrow{alumno} propio
- Práctica: re-utilizar código

Licklider (1957): 85 % de "pensar" es lo mundano (calcular, dibujar, etc.)

- Memoria $\xrightarrow{profesor}$ pizarrón/presentación
- Pizarrón/presentación \xrightarrow{alumno} cuaderno
- Práctica: reiterar diagramas, cálculos, etc.
- Aburrimiento ⇒ ↓ concentración

- Ingenio $\xrightarrow{profesor}$ código en repositorio
- Repositorio del curso \xrightarrow{alumno} propio
- Práctica: re-utilizar código
- El empeño se pone en la nuevo

• Usan calculadora pues aprendieron aritmética en la primaria.

- Usan calculadora pues **aprendieron** aritmética en la primaria.
- Usarán álgebra computacional pues aprobaron álgebra y análisis.

```
sistemaEcuaciones = [
         x EL,
         phi EL.
      variablesDespeie = [x.diff(t.2), phi.diff(t.2)] # despeiar aceleraciones generalizadas
      variablesDespeje_sol= sym.nomlinsolve(sistemaEcuaciones, variablesDespeje ).args[0]
[15]: x_pp = sym.Eq(variablesDespeje[0], variablesDespeje_sol.args[0] ) # [m s-2]
      phi pp = sym.Eq(variablesDespeje[1], variablesDespeje_sol.args[1] ) # [m s-2]
      x pp, phi pp
```


- Usan calculadora pues **aprendieron** aritmética en la primaria.
- Usarán álgebra computacional pues aprobaron álgebra y análisis.
 - Enfocarse en nuevas habilidades, no en cálculos automatizables.

```
sistemaEcuaciones = [
         x EL,
         phi EL.
      variablesDespeie = [x.diff(t.2), phi.diff(t.2)] # despeiar aceleraciones generalizadas
      variablesDespeje_sol= sym.nomlinsolve(sistemaEcuaciones, variablesDespeje ).args[0]
[15]: x_pp = sym.Eq(variablesDespeje[0], variablesDespeje_sol.args[0] ) # [m s-2]
      phi pp = sym.Eq(variablesDespeje[1], variablesDespeje_sol.args[1] ) # [m s-2]
     x_pp, phi_pp
```


- Usan calculadora pues **aprendieron** aritmética en la primaria.
- Usarán álgebra computacional pues aprobaron álgebra y análisis.
 - Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - Con cálculo numérico resolverán lo imposible en pizarrón/papel.

- Usan calculadora pues **aprendieron** aritmética en la primaria.
- Usarán álgebra computacional pues aprobaron álgebra y análisis.
 - Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - Con cálculo numérico resolverán lo imposible en pizarrón/papel.

- Usan calculadora pues **aprendieron** aritmética en la primaria.
- Usarán álgebra computacional pues aprobaron álgebra y análisis.
 - Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - Con cálculo numérico resolverán lo imposible en pizarrón/papel.

Papert (1980) "El aprendizaje sucede cuando el alumno toma las riendas"

• Cierto problema es resuelto por un código provisto por el docente.

- Usan calculadora pues aprendieron aritmética en la primaria.
- Usarán álgebra computacional pues aprobaron álgebra y análisis.
 - Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - Con cálculo numérico resolverán lo imposible en pizarrón/papel.

Papert (1980) "El aprendizaje sucede cuando el alumno toma las riendas"

- Cierto problema es resuelto por un código provisto por el docente.
- El alumno realiza modificaciones para resolver nuevas problemáticas.

- Usan calculadora pues **aprendieron** aritmética en la primaria.
- Usarán álgebra computacional pues aprobaron álgebra y análisis.
 - Enfocarse en nuevas habilidades, no en cálculos automatizables.
 - Con cálculo numérico resolverán lo imposible en pizarrón/papel.

Papert (1980) "El aprendizaje sucede cuando el alumno toma las riendas"

- Cierto problema es resuelto por un código provisto por el docente.
- El alumno realiza modificaciones para resolver nuevas problemáticas.
- Paulatinamente se torna autónomo reutilizando el propio código.

Todo el material es editable en línea

Todo el material es editable en línea

Teoría y ejercicios resueltos en linea en cuadernos programables

• Consultas asincrónicas en línea (24/7) públicas hacia otros alumnos.

Sincrónico	Teoría	Ejercicios
Antes	Leer y aplicar	Iniciarles
Durante	Aclarar dudas	Terminarles
Luego	Consultas	Correcciones
	adicionales	del docente

Teoría y ejercicios resueltos en linea en cuadernos programables

- Consultas asincrónicas en línea (24/7) públicas hacia otros alumnos.
- Trabajo remoto colaborativo en cuadernos multi-usuario.

Sincrónico	Teoría	Ejercicios
Antes	Leer y aplicar	Iniciarles
Durante	Aclarar dudas	Terminarles
Luego	Consultas	Correcciones
	adicionales	del docente

Teoría y ejercicios resueltos en linea en cuadernos programables

- Consultas asincrónicas en línea (24/7) públicas hacia otros alumnos.
- Trabajo remoto colaborativo en cuadernos multi-usuario.
- Al finalizar ejercicios, asistencia docente sincrónica individual

Sincrónico	Teoría	Ejercicios
Antes	Leer y aplicar	Iniciarles
Durante	Aclarar dudas	Terminarles
Luego	Consultas	Correcciones
	adicionales	del docente

Teoría y ejercicios resueltos en linea en cuadernos programables

- Consultas asincrónicas en línea (24/7) públicas hacia otros alumnos.
- Trabajo remoto colaborativo en cuadernos multi-usuario.
- Al finalizar ejercicios, asistencia docente sincrónica individual
- Entrega obligatoria para su corrección semanal.

Sincrónico	Teoría	Ejercicios
Antes	Leer y aplicar	Iniciarles
Durante	Aclarar dudas	Terminarles
Luego	Consultas	Correcciones
	adicionales	del docente

Asistencia docente y corrección asincrónica

Seguimiento individualizado

Curso centrado en código

• Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.
- Práctica: reutilización del código del docente.

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.
- Práctica: reutilización del código del docente.
- Ejecución en línea:

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.
- Práctica: reutilización del código del docente.
- Ejecución en línea:
 - Colaboración y corrección remota.

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.
- Práctica: reutilización del código del docente.
- Ejecución en línea:
 - Colaboración y corrección remota.
 - No requiere computadoras en el campus, ni que sean poderosas.

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.
- Práctica: reutilización del código del docente.
- Ejecución en línea:
 - Colaboración y corrección remota.
 - No requiere computadoras en el campus, ni que sean poderosas.
 - Registro fechado del trabajo del alumno.

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.
- Práctica: reutilización del código del docente.
- Ejecución en línea:
 - Colaboración y corrección remota.
 - No requiere computadoras en el campus, ni que sean poderosas.
 - Registro fechado del trabajo del alumno.

Modalidad de aula invertida

Teoría: énfasis en la lectura autónoma por parte del alumno.

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.
- Práctica: reutilización del código del docente.
- Ejecución en línea:
 - Colaboración y corrección remota.
 - No requiere computadoras en el campus, ni que sean poderosas.
 - Registro fechado del trabajo del alumno.

- Teoría: énfasis en la lectura autónoma por parte del alumno.
- Consultas: asincrónicas y públicas.

Curso centrado en código

- Teoría: texto + ecuaciones + código ejecutable en cuadernos digitales.
- Reforzados con videos propios y bibliografía.
- Práctica: reutilización del código del docente.
- Ejecución en línea:
 - Colaboración y corrección remota.
 - No requiere computadoras en el campus, ni que sean poderosas.
 - Registro fechado del trabajo del alumno.

- Teoría: énfasis en la lectura autónoma por parte del alumno.
- Consultas: asincrónicas y públicas.
- Finalizar ejercicios: asistencia personalizada del docente

2023 Retro-alimentación de los alumnos mejoró:

Apuntes y código en el repositorio.

- Apuntes y código en el repositorio.
- Metodología ejercitación y evaluación. Mayor exigencia de ejercicios \rightarrow mejor respuesta.

- Apuntes y código en el repositorio.
- Metodología ejercitación y evaluación. Mayor exigencia de ejercicios \rightarrow mejor respuesta.

- Apuntes y código en el repositorio.
- Metodología ejercitación y evaluación. Mayor exigencia de ejercicios \rightarrow mejor respuesta.
- 2024 • Física II empleará simulaciones provistas por nosotros.

- Apuntes y código en el repositorio.
- Metodología ejercitación y evaluación. Mayor exigencia de ejercicios \rightarrow mejor respuesta.
- 2024 • Física II empleará simulaciones provistas por nosotros.
 - Prompt engineering: alumnos generarán código con IA.

