МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

«Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»				
Кафедра Защищенных систем связи				
Дисциплина «Основы криптографии с открытыми ключам	и»			
Лабораторная работа № 11				
СИСТЕМА ЭЛЕКТРОННОГО ГОЛОСОВА ОСНОВЕ ГОМОМОРФНЫХ СВОЙСТВ КРИПТО ПЭЙЕ				
Выполнил:	ст. г. ИКТЗ-83			
	Громов А. А.			
Ппоредин	SWADDED R A			
Проверил:	Яковлев В. А.			

Цель лабораторной работы:

Изучение принципов построения системы электронного голосования на основе криптосистемы Пэйе и анализ выполнения требований по обеспечению ее безопасности.

Исходные данные:

Вариант №4.

Избиратель	B1 (10°)	B2 (10¹)	B3 (10 ²)	B4 (10³)	B5 (10 ⁴)	Голос (m)
A1	V		v			m=101
A2			v		v	m=10100
A3			v			m=100
A4		V				m=10
A5	V			V		m=1001
A6			V			m=100
Итог:	2	1	4	1	1	

$$Nv = 6, Nc = 5$$

Основание системы счисления b = Nv + 1 = 7

Выполнение работы:

Генерация ключей:

Максимальное число сообщений, которые можно зашифровать

$$m_{max} = 10^4 + 10^3 = 11000$$

Следовательно, максимально возможная сумма всех голосов

$$T_{max} = Nv * m_{max} = 6 * 11000 = 66000$$

По условию
$$n > T_{\text{max}}$$
; $n > 66000$

Для генерации ключа выберем случайным образом 2 простых больших числа

$$p = 307$$
 и $q = 443$, где $gcd(pq, (p-1)(q-1)) = 1$

Вычисляем $n = 307 \times 443 = 136001$, $n^2 = 18496272001$

$$\lambda = lcm(p-1, q-1) = lcm(306,442) = 3978$$

Пусть
$$\alpha = 17$$
, $\beta = 7$

$$g = (\alpha n + 1)\beta^{n} mod n^{2} = (17 * 136001 + 1)7^{136001} mod 136001^{2}$$
$$= 4877987725$$

$$\mu = \left(L(g^{\lambda} mod \ n^2)\right) - 1 \ mod \ n = ((4877987725^{3978} \ mod \ 18496272001 - 1)/136001)^{-1} mod \ 136001 = 87520$$

Шифрование:

Зашифруем сообщения, содержащие выбор избирателей: $E(m_i) = c_i = g^{mi} \times r_i^n mod n^2 = 4877987725^{mi} \times r_i^{136001} mod 18496272001 r \in Z_n^*$

Избиратель	Случайное число (r _i)	Голос (m)	Зашифрованное значение голоса (c _i)
A1	21	m=101	5197777036
A2	68	m=10100	17083747880
A3	13	m=100	11662488432
A4	7	m=10	11633357469
A5	45	m=1001	6178628370
A6	9	m=100	18023831322
Подсчет:		11412	

 $\begin{array}{l} c_1 = 4877987725^{101} * 21^{136001} mod \ 18496272001 = 5197777036 \\ c_2 = 4877987725^{10100} * 68^{136001} mod \ 18496272001 = 17083747880 \\ c_3 = 4877987725^{100} * 13^{136001} mod \ 18496272001 = 11662488432 \\ c_4 = 4877987725^{10} * 7^{136001} mod \ 18496272001 = 11633357469 \\ c_5 = 4877987725^{1001} * 45^{136001} mod \ 18496272001 = 6178628370 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 18033931333 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 1803393133 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 1803393133 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 1803393133 \\ c_7 = 4977997735^{100} * 0136001 mod \ 18496272001 = 1804001 m$

 $c_6 = 4877987725^{100} * 9^{136001} mod 18496272001 = 18023831322$

Вычислим произведение криптограмм:

$$T = \prod_{i=1}^{Nv} c_i mod n^2$$

$$= (5197777036 * 17083747880 * 11662488432 * 11633357469$$

$$* 6178628370 * 18023831322) mod 18496272001$$

$$= 2322553511$$

Дешифрование:

$$D(T) = L(T^{\lambda} \mod n^{2}) \times \mu \mod n$$

$$= \left(\frac{\left(2322553511^{3978} \mod 18496272001\right) - 1}{136001}\right)$$

$$*87520 \mod 136001 = 11412$$

Таким образом, подсчет зашифрованных голосов дает сумму всех голосов. Для определения победителя голосования необходимо преобразовать получившееся значение в числовую форму, представленную в начале выборов. В данном случае сервер для подсчетов голосов работает с десятичными числами, поэтому перевод не обязателен.

$$11412 = 1 * 10^4 + 1 * 10^3 + 4 * 10^2 + 1 * 10^1 + 2 * 10^0.$$

В силу гомоморфности криптосистемы индекс максимального элемента результирующего вектора и будет индексом победившего кандидата. Следовательно, можно сделать вывод о том, что победителем электронных выборов является кандидат ВЗ.

Вывод:

В ходе выполнения данной лабораторной работы был изучен алгоритм электронного голосования на основе КС Пэйе и определен победитель электронного голосования.