EE 101 Tutorial 8: BJT Amplifiers and Op-Amp circuits

1. A common collector amplifier (emitter follower) is shown below where $R_{\tau}=R_{\epsilon}|R_{\iota}$. Using the given small signal ac model of the npn BJT, find the voltage gain A_{ν} , input resistance R_{ι} and output resistance R_{\circ} .

- 2. For the amplifier above, $h_{fe}=h_{FE}=100$, $R_1=R_2=400$ k Ω , $R_E=R_S=1$ k Ω , $R_L=9$ k Ω , and $V_{cc}=20$ V. Given that $I_{cq}=3.09$ mA, find (a) A_v , (b) R_{in} , (c) $A_i=i_L/i_b$, (d) R_o . Does this amplifier act as a unity gain amplifier with high input resistance and low output resistance?
- 3. A more accurate BJT small signal ac model, the hybrid (h) parameter model is given below. Using this model, find A_V , R_{in} and A_i for the common collector amplifier given above, for h_{ie} =840 Ω , h_{re} =10⁻⁴, h_{fe} =100, h_{oe} =10⁻⁵ Ω ⁻¹. Compare the values with those obtained in (2) above.

4. Consider the op-amp circuit below operating in the linear mode. Assuming ideal conditions find the voltage gain (v_o/v_i) , output resistance and input resistance of this circuit.

- 5. Design a non-inverting amplifier which has an input resistance of 10 k Ω , an open-circuit voltage gain of 26 dB. The feedback network is specified to draw no more than 0.1mA from the output of the op amp when the open-circuit output voltage is in the range –10V<vo<10V.
- 6. Consider the following Schmitt trigger circuit. Assume $V_o = +/- V_{sat}$, plot the V_o vs V_i characteristic, and find the threshold voltages in terms of R_1 , R_2 and V_{sat} .

- 7. The op-amp circuit below is an example of series-series feedback.
- (i) Assuming infinite A, $R_{in}=\infty$, $R_o=0$ Ω for the op-amp, find the gain A_F of the amplifier?
- (ii) Assume finite gain A, finite R_{in}, R_o=0 Ω for the op-amp. For R_{in}>>R show that the input resistance R_{iF} of the amplifier is given by, $R_{iF} = \frac{v_{in}}{i_{in}} \approx \left(1 + \frac{AR}{R + R_L}\right) R_{in}$.
- (iii) Assume finite gain A, finite R_{in} , non-zero R_{o} for the op-amp. For R_{in} >>R show that, $R_{oF} \approx (1+A)R + R_{o}$.

