EYP1113 - PROBABILIDAD Y ESTADÍSTICA

Capítulo 4-5: Funciones de Variables Aleatorias

RICARDO ARAVENA C. RICARDO OLEA O.

FACULTAD DE MATEMÁTICAS
DEPARTAMENTO DE ESTADÍSTICA
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

SEGUNDO SEMESTRE 2019

CONTENIDO I

1 Introducción

- 2 Derivación de Distribuciones de Probabilidad
 - Funciones de Variables Aleatorias
 - Funciones de Multiples Variables Aleatorias
 - Teorema Central del Límite
 - Distribución de Valores Extremos

- 3 Momentos de funciones de Variables Aleatorias
 - Esperanza matemática de una función
 - Media y Varianza de una función general

Introducción

Introducción

En el área de la ingeniería los problemas, a menudo, involucran la determinación de relaciones funcionales entre una variable dependiente y dos o más variables independientes.

Si una de las variables independientes o más son aleatorias, la variable dependiente será aleatoria.

Por tanto, su distribución de probabilidades y momentos (media, varianza) deben ser obtenidas a partir de la o las variables aleatorias básicas.

Introducción

Ejemplo

La deflexión (desviación), D, de una barra de acero de largo L sometida a una carga P, corresponde a una relación funcional entre la carga P y el módulo de la elasticidad E de la barra, dada por:

$$D = \frac{PL^3}{3EI}$$

donde I es el momento de la inercia.

Claramente, P y E son variables aleatorias con sus correspondientes $f_P(p)$ y $f_E(e)$, la deflexión D también es una variable aleatoria con $f_D(d)$, la cual debe ser obtenida a partir de las funciones de P y E.

DERIVACIÓN DE DISTRIBUCIONES

DE PROBABILIDAD

Considere una función de una variable aleatoria X,

$$Y = g(X)$$

Si Y = y, entonces $X = g^{-1}(y)$ donde g^{-1} es la función inversa de g.

En el caso que g^{-1} tenga raíz única, entonces en el caso que X sea una variable aleatoria discreta, la nueva variable aleatoria también lo será, donde

$$P(Y = y) = P\left[X = g^{-1}(y)\right]$$

Esto implica, que la función de probabilidad de Y es

$$\rho_Y(y) = \rho_X \left[g^{-1}(y) \right] \tag{1}$$

La función de distribución de probabilidad acumulada de Y esta dada por

$$F_Y(y) = P(Y \le y) = \begin{cases} P\left[X \le g^{-1}(y)\right] & \text{si } g(\cdot) \text{ es creciente} \\ P\left[X \ge g^{-1}(y)\right] & \text{si } g(\cdot) \text{ es decreciente} \end{cases}$$

Cuando y crece con x se tiene que:

■ Caso discreto

$$F_Y(y) = \sum_{x \le g^{-1}(y)} p_X(x)$$

■ Caso continuo

$$F_{Y}(y) = \int_{x \le g^{-1}(y)} f_{X}(x) \, dx = \int_{-\infty}^{g^{-1}(y)} f_{X}(x) \, dx$$
$$= \int_{-\infty}^{y} f_{X} \left[g^{-1}(v) \right] \cdot \left[\frac{d}{dv} g^{-1}(v) \right] \, dv$$

Luego, la función de de densidad de Y

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X \left[g^{-1}(y) \right] \cdot \left[\frac{d}{dy} g^{-1}(y) \right]$$

Como $g(\cdot)$ es creciente, entonces

$$\left[\frac{d}{dy}g^{-1}(y)\right] > 0$$

En el caso que $g(\cdot)$ sea decreciente, entonces

$$F_Y(y) = 1 - F_X \left[g^{-1}(y) \right]$$

Luego

$$f_Y(y) = \frac{d}{dy}F_Y(y) = -f_X\left[g^{-1}(y)\right] \cdot \left[\frac{d}{dy}g^{-1}(y)\right]$$

con

$$\left\lceil \frac{d}{dy}g^{-1}(y)\right\rceil < 0$$

Por lo tanto

$$f_Y(y) = f_X \left[g^{-1}(y) \right] \cdot \left| \frac{d}{dy} g^{-1}(y) \right|$$

Ejemplo 4.1

Comencemos por ilustrar la transformación de una distribución discreta como se indica en la ecuación (1).

Considere la posibilidad de una viga de longitud L que se somete a una carga F aplicada en el extremo libre de la viga como se muestra en la figura:

Ejemplo 4.1

Supongamos que la carga F se compone de una serie de cajas de un mismo pesos y el número de cajas x cargadas en la viga varía de 0 a n.

Si una caja es cargada con probabilidad p, entonces,

$$p_F(x) = P(F = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$

Ejemplo 4.1

Bajo una carga de *x* cajas, el momento de flexion en el empotramiento de la viga esta dado por:

$$m = L \cdot x \Rightarrow x = \frac{m}{L}$$

Luego, la función de probabilidad del momento M es:

$$p_M(m) = P(X = m/L) = \binom{n}{m/L} p^{m/L} (1-p)^{n-m/L}$$

Ejemplo 4.2

Sea $X \sim \text{Normal}(\mu, \sigma)$.

Determine la distribución de $Y = \frac{X - \mu}{\sigma}$.

Ejemplo 4.3

Sea $X \sim \text{Log-Normal}(\lambda, \zeta)$.

Determine la distribución de $Y = \ln X$.

Cuando $g^{-1}(y)$ no tiene solución única, es decir,

$$g^{-1}(y) = x_1, x_2, \dots, x_k,$$

Entonces

$$(Y = y) = \bigcup_{i=1}^k (X = x_i)$$

Si X es discreta, entonces

$$p_Y(y) = \sum_{i=1}^k p_X \left[g_i^{-1}(y) \right]$$

Si X es continua, entonces

$$f_Y(y) = \sum_{i=1}^k f_X \left[g_i^{-1}(y) \right] \cdot \left| \frac{d}{dy} g_i^{-1}(y) \right|$$

Ejemplo 4.4

La energía de deformación en una barra elástica sometido a una fuerza axial *S* está dada por la ecuación:

$$U = \frac{L}{2AE} S^2$$

Donde,

■ L: Largo de la barra.

■ A: Área de sección transversal de la barra.

■ E: Módulo de elasticidad del material.

Si $S \sim \text{Log-Normal}$ con parámetros λ y ζ . Determina la función densidad de U.

Ejemplo 4.5

Suponga ahora que $S \sim \text{Normal}(0,1)$. Determine la densidad de U.

En el caso que una variable dependa de otras dos o más variables aleatorias, ésta también es una variable aleatoria y por tanto su distribución de probabilidad puede ser obtenida a partir de ellas.

Considere el caso

$$Z = g(X, Y)$$

donde X e Y son variables aleatorias.

Si X e Y son discretas, se tiene

$${Z = z} = {g(X, Y) = z}$$

= $\bigcup_{g(x,y)=z} {X = x, Y = y}$

y su función de probabilidad esta dada por

$$p_{Z}(z) = \sum_{g(x,y)=z} p_{X,Y}(x,y)$$

Si X e Y son continuas, la función de distribución de probabilidad acumulada de Z esta dada por

$$F_{Z}(z) = \iint_{g(x,y) \le z} f_{X,Y}(x,y) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{g^{-1}} f_{X,Y}(x,y) \, dx \, dy$$

donde $g^{-1} = g^{-1}(z, y)$.

Cambiando la variable de integración de x a z, se tiene

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial u} g^{-1} \right| du dy$$

derivando con respecto a z, obtenemos la función de de densidad de Z, la cual resulta ser:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial z} g^{-1} \right| dy$$

Alternativamente, si consideramos la inversa con respecto a y, es decir, $g^{-1} = g^{-1}(x, z)$, se tiene que la función de densidad de Z esta dada por:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(x,g^{-1}) \left| \frac{\partial}{\partial z} g^{-1} \right| dx$$

Suma de Variables Aleatorias Discretas

Considere la suma de dos variables aleatorias discretas, Z = X + Y.

En este caso, la función de probabilidad de Z esta dada por:

$$p_Z(z) = \sum_{x+y=z} p_{X,Y}(x,y) = \sum_{x \in \Theta_X} p_{X,Y}(x,z-x)$$

Si X e Y son independientes, entonces

$$p_{X,Y} = p_X(x) \cdot p_Y(y)$$

Ejercicio: Si X e Y son variables aleatorias independientes con distribución de Poisson con parámetros ν y μ , mostrar que la distribución de Z = X + Y es Poisson $(\nu + \mu)$.

Ejemplo 4.7

Tres distritos residenciales *A*, *B* y *C* están conectados como muestra la figura.

Durante las horas pick, el tráfico promedio estimado de vehículos que sale desde los tres distritos son 2, 3, y 4 vehículos por minuto respectivamente.

¿Cuál es la probabilidad que en un minuto de hora pick crucen por el puente más de nueve vehículos proveniente desde los distritos?

Suma de Variables Aleatorias Continuas

Considere la suma de dos variables aleatorias continuas, Z = X + Y. En este caso, la función de densidad de Z esta dada por

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(z-y,y) dy$$
 o $f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(x,z-x) dx$

Si X e Y son independientes, entonces

$$f_{X,Y} = f_X(x) \cdot f_Y(y)$$

Ejercicio: Muestre que si X e Y son variables aleatorias independientes con distribución $\operatorname{Gamma}(\alpha, \nu)$ y $\operatorname{Gamma}(\beta, \nu)$ respectivamente, entonces $X + Y \sim \operatorname{Gamma}(\alpha + \beta, \nu)$

Ejemplo 4.8

La figura muestra un edificio que concentra una masa m a nivel del techo. Cuando un temblor ocurra el edificio vibrará sobre su posición original. La velocidad de la masa con respecto a los ejes X e Y implican una velocidad $Z = (X^2 + Y^2)^{1/2}$

Suponiendo que X e Y son variables aleatorias independientes con distribución Normal(0,1), determine la distribución de la energía cinética de la masa definida como $W=mZ^2$.

22

Producto y cociente de variables aleatorias continuas

Sea Z=XY, entonces x=z/y por tanto, $\frac{\partial x}{\partial z}=\frac{1}{y}$, aplicando el resultado anterior, se tiene que la función de densidad de Z esta dada por

$$f_Z(z) = \int_{-\infty}^{\infty} \left| \frac{1}{y} \right| f_{X,Y}(z/y,y) dy$$

En términos similares, si Z = X/Y, la función de densidad de Z esta dada por

$$f_Z(z) = \int_{-\infty}^{\infty} |y| \ f_{X,Y}(zy,y) \ dy$$

Ejemplo 4.13

El costo anula de operación de una planta de tratamiento de residuos es función del peso W de los residuos sólidos, el factor de costo unitario F y el coeficiente de eficacia E de la siguiente manera:

$$C = \frac{WF}{\sqrt{E}}$$

donde W, F y E son estadísticamente independientes con distribución Log-Normal

Variable	Mediana	C.O.V.
W	2000 tons/yr	20.0%
F	\$20 per ton	15.0%
Ε	1.6	12.5%

Determine la probabilidad que el costo anual del funcionamiento de la planta de tratamiento de residuos se superior a \$35.000.

4

Ejemplo 4.14

Si Z es una variable aleatoria Normal(0,1) y $U \sim \text{Gamma}(\nu/2, 1/2)$, ambas independientes, muestre que

$$T = rac{Z}{\sqrt{U/
u}} \sim ext{T-Student}(
u)$$

У

$$T^2 \sim \mathsf{Fisher}(1, \nu)$$

La suma de un gran numero de variables aleatorias, donde ninguna es dominante, tiende a la distribución normal cuando en numero de variables aleatorias se incrementa.

El teorema dice que si X_1, \ldots, X_n son variables aleatorias independientes e idénticamente distribuidas (iid) con

$$E(X_i) = \mu$$
 y $Var(X_i) = \sigma^2$

para todo i = 1, ..., n.

Entonces,

$$Z_n = \frac{\displaystyle\sum_{i=1}^n X_i - n \cdot \mu}{\sqrt{n}\,\sigma} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \to Z \sim \mathsf{Normal}(0,1),$$

cuando $n \to \infty$.

En otras palabras,

$$\sum_{i=1}^{n} X_{i} \overset{\mathsf{aprox}}{\sim} \mathsf{Normal}\left(n\,\mu,\,\sqrt{n}\,\sigma\right) \quad \mathsf{o} \quad \frac{1}{n} \sum_{i=1}^{n} X_{i} \overset{\mathsf{aprox}}{\sim} \mathsf{Normal}\left(\mu,\,\frac{\sigma}{\sqrt{n}}\right)$$

Ejemplos

■ Sean $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$, entonces

$$S_n = \sum_{i=1}^n X_i \sim \text{Binomial}(n, p) \overset{\text{aprox.}}{\sim} \text{Normal}\left(np, \sqrt{np(1-p)}\right)$$

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \overset{\text{aprox.}}{\sim} \text{Normal}\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

■ Sean $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Exponencial}(\lambda)$, entonces

$$S_n = \sum_{i=1}^n X_i \sim \text{Gamma}(n, \lambda)$$

$$\stackrel{\mathsf{aprox.}}{\sim} \mathsf{Normal}\left(\frac{n}{\lambda}, \frac{\sqrt{n}}{\lambda}\right)$$

■ Sean $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$, entonces

$$S_n = \sum_{i=1}^n X_i \sim \mathsf{Poisson}(n\lambda)$$

$$\overset{\mathsf{aprox.}}{\sim} \mathsf{Normal}\left(n\lambda, \sqrt{n\lambda}\right)$$

Cuando se aproxima una variable aleatoria discreta por una continua se recomienda realizar una corrección por continuidad.

Por ejemplo, sea X una variable aleatoria Binomial(n, p) la cual puede ser aproximada por una Normal $(np, \sqrt{np(1-p)})$. Tenemos que

$$P(X \le x) = P(X < x + 1) = P(X < x + 0.5), \text{ con } x \in \mathbb{R}$$

Consideremos n = 100, p = 1/2 y x = 40:

$$P(X \le 40) = \sum_{k=0}^{\lfloor 40 \rfloor} {100 \choose k} p^k (1-p)^{100-k} = 0.02844397 \quad \text{[Valor Exacto]}$$

$$P(X \le 40) \approx \Phi \left(\frac{40 - 100 \cdot 0.5}{\sqrt{100} \cdot \sqrt{0.5 \cdot (1-0.5)}} \right) = 0.02275013$$

$$P(X < 40.5) \approx \Phi \left(\frac{40.5 - 100 \cdot 0.5}{\sqrt{100} \cdot \sqrt{0.5 \cdot (1-0.5)}} \right) = 0.02871656 \quad \text{[Corrección por Continuidad]}$$

$$P(X < 41) \approx \Phi \left(\frac{41 - 100 \cdot 0.5}{\sqrt{100} \cdot \sqrt{0.5 \cdot (1-0.5)}} \right) = 0.03593032$$

Los extremos (mínimo y máximo) de un fenómeno a menudo son de especial interés e importancia en ingeniería.

Por ejemplo:

- Nivel máximo y/o mínimo del flujo de un río en los últimos 25 años.
- Intensidad máxima de un terremoto en los últimos 50 años.

Cuando hablemos de valores extremos, consideramos el mayor y menor valor de una muestra de tamaño *n* de una distribución conocido. Por tanto, nos interesa determinar su distribución exacta o asintótica.

Distribuciones exactas

Considere una variable aleatoria X con función de densidad $f_X(x)$ o de distribución acumulada $F_X(x)$.

Para una muestra X_1, \ldots, X_n de esta distribución, se definen:

$$Y_n = \max\{X_1, \dots, X_n\}, \quad Y_1 = \min\{X_1, \dots, X_n\}$$

La función de densidad del Y_n esta dada por:

$$f_{Y_n} = n [F_X(y)]^{n-1} f_X(y)$$

Mientras que la función de densidad de Y_1 corresponde a:

$$f_{Y_1} = n [1 - F_X(y)]^{n-1} f_X(y)$$

MOMENTOS DE FUNCIONES DE

VARIABLES ALEATORIAS

Ya vimos como obtener funciones de una o más variables aleatorias.

Por ejemplo, funciones lineales de variables normales es normal, o bien, producto o cociente de log-normales es log-normal.

Sin embargo, algunas distribuciones de funciones pueden ser difícil de obtener analíticamente (y hasta imposible).

Por tanto, es necesario disponer de métodos que permitan obtener algunos momentos (media y varianza), o una aproximación de éstos.

Estos momentos están relacionados con los momentos de las variables originales.

El valor esperado de una función de variables aleatorias se denomina esperanza matemática.

Si $Z = g(X_1, ..., X_n)$, entonces la esperanza de Z puede ser obtenida como sigue:

$$E(Z) = \int_{-\infty}^{\infty} \cdot \int_{-\infty}^{\infty} g(x_1, \dots, x_n) f_{X_1, \dots, X_n}(x_1, \dots, x_n) dx_n \cdots dx_1$$

en el caso de variables aleatorias discretas, se sustituyen las integrales por sumas y la función de densidad por función de distribución de probabilidad (puntual).

En el caso que X_1, \ldots, X_n sean variables aleatorias independientes con funciones generadoras de momentos M_{X_1}, \ldots, M_{X_n} respectivamente, se tiene por ejemplo que la función generadora de momentos de

$$Z = \sum_{i=1}^{n} X_i$$

es

$$M_Z(t) = M_{X_1}(t) \times \cdots \times M_{X_n}(t)$$

Este resultado, es útil para mostrar como distribuye la suma de modelos conocidos.

Por otra parte, las transformaciones lineales tiene propiedades interesantes que se verán a continuación.

Sean $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ variables aleatorias y $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_m$ constantes conocidas.

Muestre que

$$\blacksquare \ \mathsf{E}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = a_0 + \sum_{i=1}^n a_i \cdot \mathsf{E}(X_i).$$

■ Si $X_1, ..., X_n$ son variables aleatorias independientes, entonces

$$\operatorname{Var}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = \sum_{i=1}^n a_i^2 \cdot \operatorname{Var}\left(X_i\right)$$

7

Ejemplo

Sea N una variable aleatoria cuyo valor esperado es μ_N y varianza σ_N^2 . Además consideremos la secuencia de variables aleatorias $X_1, X_2...$ con valor esperado μ_X y varianza σ_X^2 . Si

$$T = \sum_{i=1}^{N} X_i$$

y N es independiente de X_1, X_2, \ldots Muestre que

$$\mathsf{E}(T) = \mu_N \cdot \mu_X$$
 y $\mathsf{Var}(T) = \mu_X^2 \, \sigma_N^2 + \mu_N \, \sigma_X^2$

Sea Y = g(X), con X variable aleatoria con función de de densidad $f_X(x)$, entonces:

$$\mu_Y = E(Y) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$\sigma_Y^2 = \text{Var}(Y) = \int_{-\infty}^{\infty} [g(x) - \mu_Y]^2 f_X(x) dx$$

Si no es posible determinar la densidad de X, se puede expandir g(x) en torno a E(X), es decir:

$$g(X) \approx g(\mu_X) + (X - \mu_X) \frac{dg}{dx} + \frac{1}{2} (X - \mu_X)^2 \frac{d^2g}{dx^2}$$

Evaluando las derivadas en μ_X , y truncando se tiene la aproximación de primer orden para la media y varianza:

$$E[g(X)] = g(\mu_X)$$

У

$$Var[g(X)] = Var(X) \left[\frac{d}{dX} g(\mu_X) \right]^2$$

Es posible incluir términos de mayor orden, por ejemplo, la aproximación de segundo orden

Si $Y = g(X_1, \dots, X_n)$, se tiene que la expansión de Taylor entorno a los valores esperados $(\mu_{X_1}, \dots, \mu_{X_n})$ está dada por

$$Y = g[(\mu_{X_1}, \dots, \mu_{X_n})] + \sum_{i=1}^n (X_i - \mu_{X_i}) \frac{\partial g}{\partial X_i}$$

+
$$\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (X_i - \mu_{X_j}) (X_j - \mu_{X_j}) \frac{\partial^2 g}{\partial X_i \partial X_j} + \dots$$

Para el caso de una aproximación de primer orden se tiene que

$$E(Y) \simeq g[(\mu_{X_1}, \ldots, \mu_{X_n})]$$

У

$$\operatorname{Var}(Y) \simeq \sum_{i=1}^{n} \sigma_{X_{i}}^{2} \left(\frac{\partial g}{\partial X_{i}} \right)^{2} + \sum_{i,j=1}^{n} \sum_{i \neq j}^{n} \rho_{ij} \sigma_{X_{i}} \sigma_{X_{j}} \frac{\partial g}{\partial X_{i}} \frac{\partial g}{\partial X_{j}}$$

Para el caso de una aproximación de segundo orden se tiene que

$$E(Y) \simeq g[(\mu_{X_1}, \dots, \mu_{X_n})] + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \rho_{ij} \, \sigma_{X_i} \, \sigma_{X_j} \left(\frac{\partial^2 g}{\partial X_i \, \partial X_j} \right)$$