1. Prove that the log-sum-exp function

$$f(x) = \log \sum_{i=1}^{m} \exp(a_i^T x)$$

is convex.

2. Suppose that the scalar random variable x takes values $\{a_1, a_2, \ldots, a_n\}$ with probability $\mathbf{prob}(x = a_i) = p_i$ for $i = 1, \ldots, n$. Is the variance

$$\mathbf{var}\ x = \mathbb{E}x^2 - (\mathbb{E}x)^2$$

a convex or concave function in the probabilities $p = (p_1, \dots, p_n)$? Prove your answer.

- 3. Prove that the intersection of convex sets $S = S_1 \cap S_2 \cap \cdots \cap S_n$ is a convex set.
- 4. Show that the second-order cone

$$\mathcal{S} = \{(x,t) \in \mathbf{R}^n \times \mathbf{R}_+ \mid ||x||_2 \le t\}$$

is convex.

5. Consider the convex optimization problem

$$\underset{x}{\text{minimize}} f(x) \text{ subject to } x \in \mathcal{C}, \tag{1}$$

where $f: \mathbf{R}^n \to \mathbf{R}$ is a convex and differentiable function, and $\mathcal{C} \subseteq \mathbf{R}^n$ is a convex set. A point x^* is optimal for (1) if and only if

$$x^* = \mathbf{proj}_{\mathcal{C}}(x^* - \gamma \nabla f(x^*)) \tag{2}$$

for any constant $\gamma > 0$, where the projection operator **proj** itself is an optimization problem:

$$\operatorname{\mathbf{proj}}_{\mathcal{C}}(z) = \operatorname*{argmin}_{x \in \mathcal{C}} \|x - z\|_{2}.$$

(a) **Affine set.** For $C = \{x \mid Ax = b\}$, prove that (2) holds if and only if $\nabla f(x^*)$ is in the range of A^T .

Hint: decompose $\nabla f(x)$ into orthogonal components in $\mathbf{range}(A^T)$ and $\mathbf{null}(A)$.

- (b) Nonnegative constraint. For $\mathcal{C} = \mathbf{R}_{+}^{n}$, prove that (2) implies $\nabla f(x^{*}) \geq 0$.
- (c) Normal cone. In general, x^* is optimal for (1) if and only if

$$-\nabla f(x^*) \in \mathcal{N}(x^*),\tag{3}$$

where $\mathcal{N}(x^*)$ is the normal cone of \mathcal{C} at point x^* . Show that this property is equivalent to (2).

Page 1 March 2, 2022