PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 24

MAT1106 — Introducción al Cálculo Fecha: 2020-12-01

Problema 1:

Demuestre que existe una única función $f: \mathbb{R} \to \mathbb{R}$ tal que para toda función $g: \mathbb{R} \to \mathbb{R}$ se tiene que $f \circ g = g \circ f$.

Solución problema 1:

Problema 2:

Demuestre las siguientes propiedades de funciones:

- 1) $f:A\subseteq\mathbb{R}\to B\mathbb{R}$ es una función biyectiva si y solo si tiene inversa $f^{-1}:B\subseteq\mathbb{R}\to A\subseteq\mathbb{R}$ tal que $\forall x\in B, f\circ f^{-1}(x)=x$ y $\forall x\in A, f^{-1}\circ f(x)=x$.
- 2) Sean $f:A\subseteq\mathbb{R}\to B\subseteq\mathbb{R}$ y $g:B\subseteq\mathbb{R}\to C\subseteq\mathbb{R}$ funciones biyectivas, entonces $g\circ f:A\subseteq\mathbb{R}\to C\subseteq\mathbb{R}$ es biyectiva.
- 3) Sea $f: \mathbb{R} \to \mathbb{R}$ tal que para toda sucesión $x_n \to x$ se tiene que $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n) = f(x)$, demuestre que si $A \subseteq \mathbb{R}$ es acotado entonces f(A) es acotado.

Solución problema 2:

Problema 3:

Demuestre que $f: A \to \mathbb{R}$ donde $f(x) = \frac{x}{(x-1)(x+1)}$ es biyectiva si A es

- **■** (-1,1)
- \blacksquare $\mathbb{R} \setminus [-1,1]$

Solución problema 3: