

Fig. 1

Fig. 2A

Fig. 2B

Fig. 3

Fig. 4

Fig. 5A

Fig. 5.B

fig. 6A

Fig. 4

fig. 68

<u>86 A</u>	<u>86 B</u>	<u>86 C</u>	<u>86 D</u>	<u>86 E</u>	<u>86 F</u>
B: 68, 2	A: -68, -2 C: 69, 4	B: -69, -4 D: 66, -1	C: -66, -1 E: 66, -1	D: -66, 1 E: 67, -2	E -67, 2

Fig. 6C

FIG. 6D

Select C as "base"

Align B, D to C

Align A to B and E to D

FIG. 6E

F

L94

Fig. 7A

Fig. 7B

Fig. 8

Fig. 9

Original Image

	2-D coordinates	4-D coordinates
Vertex 0	(x_0, y_0)	$(x_0, y_0, 0, 1)$
Vertex 1	(x_1, y_1)	$(x_1, y_1, 0, 1)$
Vertex 2	(x_2, y_2)	$(x_2, y_2, 0, 1)$
Vertex 3	(x_3, y_3)	$(x_3, y_3, 0, 1)$
The i^{th} vertex	(x_i, y_i)	$(x_i, y_i, 0, 1)$
		\downarrow
		130
		\downarrow
		132

Fig. 10 A

Perspective Correction Transformations

1. Translate outwards:

$$T_a = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & f & 1 \end{bmatrix} \quad \curvearrowright 136$$

2. Three rotations:

$$\Theta_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_x & \sin \theta_x & 0 \\ 0 & -\sin \theta_x & \cos \theta_x & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad 140 \quad \Theta_y = \begin{bmatrix} \cos \theta_y & 0 & -\sin \theta_y & 0 \\ 0 & 1 & 0 & 0 \\ \sin \theta_y & 0 & \cos \theta_y & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad 142$$

$$\Theta_z = \begin{bmatrix} \cos \theta_z & \sin \theta_z & 0 & 0 \\ -\sin \theta_z & \cos \theta_z & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad 138$$

3. Translate inwards:

$$T_b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -f & 1 \end{bmatrix} \quad 144$$

4. Effect of focal length on Perspective:

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad 146$$

Fig. 10C

Perspective Correction

Perspective Corrected Image Vertices given by:

$$\hat{p}_i = p_i T_a \Theta_z \Theta_y \Theta_x T_b P = [\hat{x}_i, \hat{y}_i, \hat{z}_i, \hat{w}_i] \quad \curvearrowleft 150$$

↑
152

But:

$$\hat{w}_i = -\frac{x_i}{f} (-\sin \theta_z \sin \theta_x + \cos \theta_z \sin \theta_y \cos \theta_y) + \frac{y_i}{f} (\cos \theta_z \sin \theta_x + \sin \theta_z \sin \theta_y \cos \theta_x) + \cos \theta_y \cos \theta_x \quad \curvearrowleft 152$$

and x'_i and y'_i from the perspective corrected image are given by:

$$x'_i = \frac{\hat{x}_i}{\hat{w}_i} \quad \text{and} \quad y'_i = \frac{\hat{y}_i}{\hat{w}_i} \quad \curvearrowleft 156$$

154

Therefore we can write:

$$F_{x_i}(\theta_z, \theta_y, \theta_x, f) - x'_i = 0 \quad \curvearrowleft 158$$

Taking:

$$t = [\theta_x \quad \theta_y \quad \theta_z \quad f] \quad \curvearrowleft 160$$

We can write:

$$-F(t) = \begin{bmatrix} x_o - F_{x_0}(\theta_z, \theta_y, \theta_x, f) \\ y_o - F_{y_0}(\theta_z, \theta_y, \theta_x, f) \\ \vdots \\ x_i - F_{x_i}(\theta_z, \theta_y, \theta_x, f) \\ y_i - F_{y_i}(\theta_z, \theta_y, \theta_x, f) \end{bmatrix} \quad \curvearrowleft 162$$

Fig. 10 D

Newton's Method

By Newton's method of numerical computation, t is an estimate of the values

$$[\theta_x \quad \theta_y \quad \theta_z \quad f]$$

then:

$$t_{new} = t - J^{-1}F(t) \curvearrowright 166$$

is a better estimate of the values.

Where J^{-1} is the matrix of partial derivatives:

$$J_{i,j} = \frac{\partial F_i}{\partial t_j} \curvearrowright 164$$

Fig. 10 E

Fig. 11

Fig. 12