Counting Irreducible Representations of General Linear Groups and Unitary Groups

Qiutong Wang

Zhejiang University

August 11, 2025

Outline

- Introduce the counting method developed by Dan Barbasch,
 Jia-Jun Ma, Binyong Sun, and Chen-Bo Zhu.
- Show it's application in counting the irreducible representations of general linear groups and unitary groups.

Background

- G: connected reductive algebraic group defined over ℝ;
- G is a real Lie group together with a Lie group homorphism $\iota:G\to \mathrm{G}(\mathbb{R})$ with open image and finite kernel;
- \mathfrak{g} , \mathfrak{g}_0 are Lie algebras of $G(\mathbb{C})$, G;
- ${}^a\mathfrak{h}$: the abstract Caratan subalgebra of \mathfrak{g} , with root lattice $Q_{\mathfrak{g}}$, weight group $Q^{\mathfrak{g}}$, and analalytic weight lattice Q_{ι} $(Q_{\mathfrak{g}} \subseteq Q_{\iota} \subseteq Q^{\mathfrak{g}} \subseteq {}^a\mathfrak{h}^*);$
- W: the abstract Weyl group of \mathfrak{g} act on ${}^{a}\mathfrak{h}$;
- Rep(G): the category of Casselman-Wallach representations of G;
- Irr(G): set of isomorphism classes of irreducible objects in Rep(G).

• There is a partition of Irr(G) with respect to infinitesimal characters:

$$\operatorname{Irr}(G) = \bigsqcup_{\lambda \in W \setminus {}^{a}\mathfrak{h}^{*}} \operatorname{Irr}_{\lambda}(G),$$

according to work of Harish-Chandra, each set $\operatorname{Irr}_{\lambda}(G)$ is finite:

• According to complex associated variety (annihilator variety), there is a further partition of $\operatorname{Irr}_{\lambda}(G)$:

$$\operatorname{Irr}_{\lambda}(\mathit{G}) = \bigsqcup_{\mathcal{O} \in \operatorname{G}(\mathbb{C}) \setminus \operatorname{Nil}(\mathfrak{g})} \operatorname{Irr}_{\lambda}(\mathit{G}; \mathcal{O}).$$

Goal: Describe the size of each set $\operatorname{Irr}_{\lambda}(G; \mathcal{O})$ in terms of combinatorial data.

Counting Formula

Theorem (Barbasch, Ma, Sun, Zhu)

$$\sharp (\operatorname{Irr}_{\nu}(\mathit{G}; \mathcal{O})) \leq \sum_{\sigma \in \operatorname{Irr}(\mathit{W}(\Lambda); \mathcal{O})} [1_{\mathit{W}_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda}(\mathcal{K}(\mathit{G}))],$$

where $1_{W_{\nu}}$ denotes the trivial representation of the stabilizer W_{ν} of ν in W. The equality holds if the Coxeter group $W(\Lambda)$ has no simple factor of type F_4 , E_6 , E_7 , or E_8 , and G is linear or isomorphic to a real metaplectic group.

In their paper, they use this formula to count the number of special unipotent representations.

Coherent Continuation Representation

 $\mathcal{R}_{hol}(G(\mathbb{C}))$: Grothendieck ring of finite-dimensional holomorphic representations of $G(\mathbb{C})$.

 $\mathcal{K}(G)$: Grothendieck group of $\operatorname{Rep}(G)$ which has a $\mathcal{R}_{\operatorname{hol}}(\operatorname{G}(\mathbb{C}))$ module structure via tensor product.

Coherent family

Let $\Lambda = \nu + Q_{\iota} \subseteq {}^{a}\mathfrak{h}^{*}$, a Λ -coherent family is a map

$$\Phi: \Lambda \to \mathcal{K}(G)$$
,

such that:

- for any $\nu \in \Lambda$, $\Phi(\nu) \in \mathcal{K}_{\nu}(G)$,
- for any $F \in \mathcal{R}_{hol}(G(\mathbb{C}))$ and $\nu \in \Lambda$, $F \cdot (\Phi(\nu)) = \sum_{\mu \in \Delta(F)} \Phi(\nu + \mu)$ (where $\Delta(F)$ is the set of weights of F counted multiplicity).

Let $W(\Lambda) \subseteq W$ denote the integral Weyl group with respect to Λ .

Coherent continuation representation

Let $\operatorname{Coh}_{\Lambda}(\mathcal{K}(G))$ denote the complex vector space of all coherent families on Λ . It is a representation of $W(\Lambda)$ under the action

$$(\mathbf{w}\cdot\Psi)(\nu)=\Psi(\mathbf{w}^{-1}\nu),$$

for any $w \in W(\Lambda)$, $\Psi \in \mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$, $\nu \in \Lambda$.

For any $\nu \in \Lambda$ we have the evaluation map

ev:
$$\operatorname{Coh}_{\Lambda}(\mathcal{K}(G)) \longrightarrow \mathcal{K}_{\nu}$$

 $\Psi \longmapsto \Psi(\nu)$

Theorem (Schmid, Zuckerman)

ev is surjective for each $\nu \in \Lambda$, and bijective when ν is regular.

Harish-Chandra Cells

Theorem(Vogan's green book)

Suppose $\nu \in {}^a\mathfrak{h}^*$ dominant, $M \in \mathcal{K}_{\nu}(G)$ is an irreducible representation representation. Then there exist a unique coherent family $\overline{\Psi}$ characterised by the following properties:

- $\bullet \ \overline{\Psi}(\nu) = M;$
- If μ is dominant, then $\overline{\Psi}(\mu)$ is irreducible or zero.

There is a basis $\mathcal{B} = \{\overline{\Psi_i}\}\$ of $\mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$ such that for any regular dominant μ , $\overline{\Psi_i}(\mu)$ is an irreducible representation with infinitesimal character ν .

We call $(Coh_{\Lambda}(\mathcal{K}(G)), \mathcal{B})$ a basal representation . We can also define basal subrepresentations.

For any subset S of $\mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$, denote by $\langle S \rangle$ the minimal basal subrepresentation containing S.

Define an equivalence relation on \mathcal{B} by: $\overline{\Psi_i} \approx \overline{\Psi_j}$ if and only if $\langle \overline{\Psi_i} \rangle = \langle \overline{\Psi_j} \rangle$.

The equivalence classes of ${\cal B}$ with respect to this relation are called Harish-Chandra cells.

Cell representations

Let \mathcal{C} be a cell in \mathcal{B} and put $\overline{\mathcal{C}} = \langle \mathcal{C} \rangle \cap \mathcal{B}$. Define the cell representation attached to \mathcal{C} by

$$\mathrm{Coh}_{\Lambda}(\mathcal{K}(\mathit{G}))(\mathcal{C}) := \left\langle \overline{\mathcal{C}} \right\rangle / \left\langle \overline{\mathcal{C}} \backslash \mathcal{C} \right\rangle$$

Hypothesis

The set $\{\sigma \in \operatorname{Irr}(W(\Lambda)) \mid \sigma \text{ occurs in } \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))(\mathcal{C})\}$ is contained in the double cell containing the special representation $\sigma_{\mathcal{C}}$.

BMSZ's Proof

$$egin{aligned} \sharp(\operatorname{Irr}_{
u}(\mathcal{G})) &= \dim \mathcal{K}_{
u}(\mathcal{G}) \stackrel{Vogan}{=} \dim \operatorname{Coh}_{\Lambda}(\mathcal{K}(\mathcal{G}))_{W_{
u}} \ &= [1_{W_{
u}} : \operatorname{Coh}_{\Lambda}(\mathcal{K}(\mathcal{G}))] \ &= \sum_{\sigma \in \operatorname{Irr}(\mathcal{W}(\Lambda))} [1_{W_{
u}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda}(\mathcal{K}(\mathcal{G}))], \end{aligned}$$

If S is a Zariski closed $G(\mathbb{C})$ -stable subset of $Nil(\mathfrak{g})$, then

$$\sharp(\operatorname{Irr}_{\nu,S}(G)) = \sum_{\sigma \in \operatorname{Irr}(W(\Lambda))} [1_{W_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda,S}(\mathcal{K}(G))]$$

$$\xrightarrow{\text{Hypothesis}} \sum_{\sigma \in \operatorname{Irr}_{S}(W(\Lambda))} [1_{W_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))].$$

