

# Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba



| Engenharia Mecatrônica – Departamento d       | e Eletrônica (DAELN) |
|-----------------------------------------------|----------------------|
| Disciplina: Eletricidade Prof. José Jair Alve | es Mendes Júnior     |

| Aluno: | Data: |
|--------|-------|
|--------|-------|

# Experiência 4 – Divisor de Tensão e Gerador Elétrico

Antes da aula de laboratório, cada aluno deve fazer os cálculos e preencher as tabelas com os valores teóricos e, quando for o caso, montar e soldar previamente cada circuito que será testado. Deve-se preparar os cabos para as medidas de corrente em cada circuito que será testado.

- 1. Objetivos de Aprendizagem
- Verificar, experimentalmente, o divisor de tensão, fixo e variável;
- Determinar, experimentalmente, a resistência interna de um gerador;
- Levantar a curva da tensão em função da corrente de um gerador.
- 2. Componentes utilizados
- Resistores de 1/4W:  $100\Omega$ ,  $1k\Omega$  e  $2,2k\Omega$ ;
- Potenciômetro de fio de  $1k\Omega$ ;
- Um LED;
- Fonte de tensão variável 0V-12V;
- Protoboard;
- Multímetro digital.
- 3. Experiência 4

#### 3.1 Divisor de tensão

Um divisor de tensão consiste em um arranjo de resistores associados de tal forma a subdividir a tensão total em valores específicos, como apresentado na Figura 1. Monte o circuito apresentado na Figura 1 e anote na Tabela 1 os valores de  $V_{R1}$  e  $V_{R2}$  medidos e calculados.



Figura 1 – Circuito para avaliação do divisor de tensão.

# Tabela 1:

| V <sub>R1 calculado</sub> | V <sub>R1 medido</sub> | V <sub>R2</sub> calculado | V <sub>R2 medido</sub> |
|---------------------------|------------------------|---------------------------|------------------------|
|                           |                        |                           |                        |
|                           |                        |                           |                        |

Monte o circuito da Figura 2, onde RP é o potenciômetro del $k\Omega$ , e anote na Tabela 2 os valores  $V_{CA}$  mínimo e máximo, medidos e calculados.



Tabela 2:

| V <sub>CA</sub> mínimo medido | V <sub>CA máximo calculado</sub> | V <sub>CA</sub> máximo medido          |
|-------------------------------|----------------------------------|----------------------------------------|
|                               |                                  |                                        |
|                               |                                  |                                        |
|                               | VCA mínimo medido                | VCA mínimo medido VCA máximo calculado |

### 3.2 Uso de Led

- Monte o circuito da Figura 3



Figura 3 – Circuito para acionamento do Led.

- Calcule o resistor para acender o Led de forma que funcione com o brilho máximo sem o risco de queimar. Leve em conta os dados: corrente máxima de um Led comum é de 20mA e a tensão que o Led utiliza é fixa, dependendo da cor do Led (2V para vermelhos e amarelos) e 3V (azuis e brancos). Calcule tanto o valor do resistor quanto a potência que irá dissipar.

Tabela 3:

| V <sub>Led medido</sub> | I L calculado | I <sub>L medido</sub> | V <sub>R calculado</sub> | V <sub>R medido</sub> |
|-------------------------|---------------|-----------------------|--------------------------|-----------------------|
|                         |               |                       |                          |                       |
|                         |               |                       |                          |                       |

#### 3.3 Gerador Elétrico

Geradores elétricos são dispositivos que mantêm entre seus terminais uma diferença de potencial obtida a partir de uma conversão de outro tipo de energia (mecânica, química e térmica) em energia elétrica.

O gerador ideal é aquele que fornece uma tensão constante, denominada força eletromotriz (E), qualquer que seja a corrente exigida pela carga. Seu símbolo e sua curva característica (tensão em função da corrente) são mostrados na Figura 4. O gerador real perde energia internamente, portanto, a tensão de saída não é constante, sendo atenuada com o aumento da corrente exigida pela carga. Pode-se representar essa perda por uma resistência interna "r" e, consequentemente, o gerador real como um gerador ideal em série com essa resistência, como indicado pela Figura 5.



Figura 4 – Modelo de gerador ideal.



Figura 5 – Modelo de gerador real.

Do circuito equivalente do gerador real, observa-se que a resistência interna causa uma queda de tensão de saída quando ele estiver alimentando uma carga, como apresentado na Figura 6. Aplicando a Lei de Ohm, obtém-se a equação do gerador real:  $V = E - r \times I$ . Na condição de curto circuito na carga  $(R_L = 0\Omega)$  a corrente de curto circuito é dada por  $I_{CC} = E/r$ .

A corrente de curto-circuito ( $I_{CC}$ ), bem como a resistência interna do gerador (r), devem ser obtidos experimentalmente, levantando a curva característica do gerador e extraindo dela os dois parâmetros  $r = tg \ \alpha = \Delta V / \Delta I \ e \ I_{CC} = E/r$ .



Figura 6 – Exemplo circuito com gerador real.

Para levantar experimentalmente as características de um gerador, será utilizado uma fonte estabilizada (0-12V). Essa fonte, dentro de uma faixa de corrente, se comporta como um gerador ideal. Assim, utilizando um resistor de  $100\Omega$  em série com a fonte, simulará a resistência interna do gerador.

Monte o circuito da Figura 6. Meça a tensão entre os pontos A e B sem a resistência  $R_L$  (circuito em aberto,  $R_L = \infty$ ).

| $ m V_{AB}$ em aberto medido = $ m E_{medido}$ = |                                             |
|--------------------------------------------------|---------------------------------------------|
| Calcule e meça a corrente de c                   | curto-circuito $I_{CC}$ ( $R_L = 0\Omega$ ) |
| $I_{ m CC\ calculado} =$                         |                                             |
| $I_{ m CC\ medido} =$                            |                                             |

Para diferentes valores de resistência  $R_L$ , calcule e meça a tensão  $V_{AB}$ , a corrente I e anote os valores da Tabela 5. Com os dados experimentais obtidos, construa uma curva do gerador  $V_{AB}(I) = f(I)$ .

Tabela 5

| $\mathrm{R_L}\left[\Omega ight]$ | 0 | 100 | 470 | 1k | 2,2k | 8 |
|----------------------------------|---|-----|-----|----|------|---|
| V <sub>ABcalculado</sub> [V]     |   |     |     |    |      |   |
| VAB medido [V]                   |   |     |     |    |      |   |
| Icalculado [mA]                  |   |     |     |    |      |   |
| I <sub>medido</sub> [mA]         |   |     |     |    |      |   |

Por intermédio da curva obtida, calcule a resistência interna do gerador "r" e escreva a equação do gerador  $V_{AB}$  (I) =  $E_{medido} - r_{experimental} \times I$ .

| $r_{\text{experimental}} = E_{\text{medido}} / I_{\text{CCmedido}} =$ |  |
|-----------------------------------------------------------------------|--|
| Equação do gerador:                                                   |  |