Foundations of Artificial Intelligence

Prof. Dr. J. Boedecker, Prof. Dr. W. Burgard, Prof. Dr. F. Hutter, Prof. Dr. B. Nebel T. Schulte, R. Rajan, S. Adriaensen, K. Sirohi Summer Term 2021

> University of Freiburg Department of Computer Science

Exercise Sheet 6 Due: Friday, June 10, 2021

Exercise 6.1 (Semantics of Predicate Logic)

Consider the Interpretation $\mathcal{I} = \langle \mathcal{D}, \cdot^{\mathcal{I}} \rangle$ with

- $\mathcal{D} = \{0, 1, 2, 3\}$
- $even^{\mathcal{I}} = \{0, 2\}$
- $odd^{\mathcal{I}} = \{1, 3\}$
- $lessThan^{\mathcal{I}} = \{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}$
- $two^{\mathcal{I}} = 2$
- $plus^{\mathcal{I}}: \mathcal{D} \times \mathcal{D} \to \mathcal{D}, plus^{\mathcal{I}}(a,b) = (a+b) \mod 4$

and the variable assignment $\alpha = \{(x, 0), (y, 1)\}.$

Decide for the following formulae θ_i if \mathcal{I} is a model for θ_i under α , i.e. if \mathcal{I} , $\alpha \models \theta_i$. Explain your answer by formally applying the semantics. (a) $\theta_1 = odd(y) \wedge even(two)$

(a)
$$\theta_1 = odd(y) \wedge even(two)$$

- (b) $\theta_2 = \forall x \ (even(x) \lor odd(x)) \checkmark$
- (c) $\theta_3 = \forall x \exists y \ less Than(x, y) \times$
- (d) $\theta_4 = \forall x \ (even(x) \Rightarrow \exists y \ lessThan(x,y)) \checkmark$
- (e) $\theta_5 = \forall x \ (odd(x) \Rightarrow even(plus(x,y)))_{\times}$

Exercise 6.2 (Semantics of Predicate Logic)

Consider the Interpretation $\mathcal{I} = \langle \mathcal{D}, \mathcal{I} \rangle$ and the variable assignment α :

- $\mathcal{D} = \{a, b, c\}$
- $P^{\mathcal{I}} = \{(a, a), (a, b), (b, a), (b, b), (b, c), (c, a)\}$
- $Q^{\mathcal{I}} = \{a, b\}$
- $R^{\mathcal{I}} = \{(a, a), (a, b), (a, c), (b, c), (c, b)\}$
- $\alpha = \{(v, a), (w, b)\}$

Decide for the following formulae θ_i if \mathcal{I} is a model for θ_i under α , i.e. if \mathcal{I} , $\alpha \models \theta_i$. Explain your answer by formally applying the semantics.

(a)
$$\theta_1 = \forall x (P(x, w) \Rightarrow Q(x)) \times$$

(b)
$$\theta_2 = \exists x (R(v, x) \Rightarrow P(x, x)) \times$$

(c)
$$\theta_3 = \forall x \forall y (R(x,y) \iff Q(y)) \checkmark$$

(d)
$$\theta_4 = \left[\neg \forall x \forall y (Q(y) \lor P(x, y)) \right] \land \left[\exists z (Q(z) \lor P(w, z)) \right]$$

Note: The exercise sheets may be worked on in groups of up to three students.