Convex Sets and Functions

$$f:\mathbb{R}^{n} \to \mathbb{R}$$

$$epif = \left\{ \begin{bmatrix} x \\ t \end{bmatrix} \in \mathbb{R}^{n+1} \right\} \quad f(x) = t \quad \forall x \in dom f \right\}$$

$$\text{Eg} \quad f(x) = ||x|| \quad \text{then } epif : \left\{ \begin{bmatrix} x \\ t \end{bmatrix} \in \mathbb{R}^{n+1} \middle| 1|x| = t \right\}$$

$$\text{Eg} \quad f(x)$$

$$\chi \in \mathbb{R}$$

$$\chi \in \mathbb{R}$$

Repult: f convex function (> epif convex set

Compare: Ist order condition vs. Supporting hyperplane

Quasi-convex functions

Given
$$x$$
: define $S_{\alpha} = \{x \mid f(x) \leq \alpha \} \subseteq \mathbb{R}^{n}$

(contrast with epif) Sublevel set

Result:
$$f(\underline{x})$$
 convex \Rightarrow S_{α} convex (when non-empty)

Proof:
$$S_{\alpha}: x, y \in S_{\alpha}$$

$$x \in S_{\alpha} \Rightarrow f(x) \leq \alpha$$

 $y \in S_{\alpha} \Rightarrow f(y) \leq \alpha$

$$f(0x+(-0)y) \leq 0f(x) + (-0)f(y)$$
 Zenoth-order
 $\leq 0\alpha + (-0)\alpha$
 $= \alpha$

$$\Rightarrow$$
 $0x+(1-0)y \in S_{x} \Rightarrow S_{x}$ convex

Converse not true

- possible that I non-convex but So still convex set

Eg: f(x) = log(x) f concave not convex $\frac{d^2f}{dx^2} = \frac{1}{x^2} < 0$

 $S_{\alpha} = \frac{\xi_{\alpha} | \log(x) \leq \alpha \xi}{\text{or } \xi \text{ o } \zeta \propto \leq e^{\alpha} \xi}$ interval, convex

Quasi-convex functions: f s.t. Sa (Sub-level set) convex set—

includes convex functions

 S^{α} (superlevel set) = $\frac{2}{3} \times |f(\underline{x})| \ge \alpha$

Quasi-concave: f st. Sd convex set

-Genevalize convexity idea monotonic functions are both quasi-convex & quasi-concave