Project

Victoria (Tori) Widjaja & Jeremiah Fa'atiliga

2024-06-19

R Markdown

```
library(dplyr)
library(tidyr)
library(tibble)
library(readr)
library(tidyverse)
library(ggplot2)
library(GGally)
library(corrplot)
library(plotmo)
library(caret)
library(kernlab)
library(earth)
library(skimr)
library(psych)
library(reshape2)
library(gt)
library(ROSE)
rseed <- 123
dir_prefix <- getwd()</pre>
print(dir_prefix)
## [1] "C:/Users/ToriT/ADS503-Group6"
### Connection info for GitHub File
url <- paste(dir_prefix, 'healthcare-dataset-stroke-data.csv', sep ='/')</pre>
df_orig <- read_csv(url)</pre>
print(url)
## [1] "C:/Users/ToriT/ADS503-Group6/healthcare-dataset-stroke-data.csv"
describe(df_orig)
```

```
##
                                                                   min
                                       sd
                                           median trimmed
                  vars
                        n
                              mean
                                                              mad
## id
                    1 5110 36517.83 21161.72 36932.00 36542.26 27413.27 67.00
## gender*
                    2 5110
                             1.41
                                    0.49
                                            1.00 1.39
                                                            0.00 1.00
## age
                    3 5110
                             43.23
                                     22.61
                                            45.00
                                                    43.61
                                                            26.69 0.08
## hypertension
                  4 5110
                             0.10
                                  0.30
                                           0.00 0.00 0.00 0.00
## heart disease
                   5 5110
                              0.05
                                    0.23
                                             0.00
                                                    0.00
                                                             0.00 0.00
## ever_married*
                    6 5110
                              1.66
                                     0.48
                                             2.00 1.70
                                                             0.00 1.00
```

```
1.28
## work_type*
                        7 5110
                                   3.50
                                                     4.00
                                                               3.62
                                                                        0.00 1.00
## Residence_type*
                        8 5110
                                   1.51
                                            0.50
                                                     2.00
                                                               1.51
                                                                        0.00 1.00
                                           45.28
                                                                       26.06 55.12
## avg_glucose_level
                        9 5110
                                 106.15
                                                    91.88
                                                              97.85
                                 172.19
                                                   158.00
                                                            163.08
                                                                       74.13 1.00
## bmi*
                       10 5110
                                           88.96
## smoking_status*
                       11 5110
                                   2.59
                                            1.09
                                                     2.00
                                                               2.61
                                                                        1.48
                                                                             1.00
## stroke
                       12 5110
                                   0.05
                                            0.22
                                                     0.00
                                                               0.00
                                                                        0.00 0.00
##
                          max
                                 range skew kurtosis
                                                          se
## id
                     72940.00 72873.00 -0.02
                                                -1.21 296.03
## gender*
                         3.00
                                  2.00 0.35
                                                -1.86
                                                        0.01
                        82.00
                                 81.92 -0.14
                                                -0.99
                                                        0.32
## age
## hypertension
                         1.00
                                  1.00 2.71
                                                 5.37
                                                        0.00
## heart_disease
                         1.00
                                  1.00 3.94
                                                13.57
                                                        0.00
## ever_married*
                         2.00
                                  1.00 -0.66
                                                -1.57
                                                        0.01
                         5.00
                                  4.00 -0.91
                                                -0.49
                                                        0.02
## work_type*
## Residence_type*
                         2.00
                                  1.00 -0.03
                                                -2.00
                                                        0.01
## avg_glucose_level
                       271.74
                                216.62 1.57
                                                 1.68
                                                        0.63
## bmi*
                       419.00
                                418.00 0.97
                                                 0.87
                                                        1.24
## smoking_status*
                         4.00
                                  3.00 0.08
                                                -1.35
                                                        0.02
## stroke
                         1.00
                                  1.00 4.19
                                                15.57
                                                        0.00
```

Exploratory Data Analysis (EDA)

```
###graphical and non-graphical representations of relationships between the response variable and predi
df_eda <- df_orig
rownames(df_eda) <- df_eda$id
## Warning: Setting row names on a tibble is deprecated.
df_eda <- dplyr::select(df_eda, -id)</pre>
print(df eda)
## # A tibble: 5,110 x 11
               age hypertension heart_disease ever_married work_type Residence_type
##
                                         <dbl> <chr>
                                                                      <chr>
##
      <chr> <dbl>
                          <dbl>
                                                            <chr>>
   1 Male
                                             1 Yes
                                                                      Urban
##
                67
                              0
                                                            Private
## 2 Female
                              0
                                             0 Yes
                                                            Self-emp~ Rural
                61
## 3 Male
                80
                              0
                                             1 Yes
                                                            Private
                                                                      Rural
## 4 Female
                49
                              0
                                             0 Yes
                                                            Private
                                                                      Urban
## 5 Female
                79
                              1
                                             0 Yes
                                                            Self-emp~ Rural
## 6 Male
                81
                              0
                                                                      Urban
                                             0 Yes
                                                            Private
## 7 Male
                74
                              1
                                             1 Yes
                                                            Private
                                                                      Rural
## 8 Female
                                            0 No
                                                                      Urban
                69
                              0
                                                            Private
## 9 Female
                59
                              0
                                            0 Yes
                                                                      Rural
                                                            Private
## 10 Female
                78
                              0
                                             0 Yes
                                                            Private
                                                                      Urban
## # i 5,100 more rows
## # i 4 more variables: avg_glucose_level <dbl>, bmi <chr>, smoking_status <chr>,
```

Histograms

stroke <dbl>

```
# Filter out N/A values for bmi and convert to numeric

df_eda <- df_eda %>%
    filter(!is.na(bmi)) %>%
    mutate(bmi = as.numeric(bmi))

# Pivot longer and convert value column to numeric if possible

df_long <- df_eda %>%
    pivot_longer(-c(stroke, ever_married, gender, hypertension, heart_disease, Residence_type, work_type, mutate(value = as.numeric(value))

# Plot histograms

ggplot(df_long, aes(x = value)) +
    geom_histogram(bins = 20) +
    facet_wrap(~Variable, scales = "free", ncol = 2) +
    theme_bw() +
    labs(title = 'Histograms of Variables Distributions', x = NULL, y = "Count")
```

Histograms of Variables Distributions

Corrplot

```
numeric_df <- df_eda[sapply(df_eda, is.numeric)]
numeric_df |>
    ggpairs(title = "Relationship Between Predictors", progress = FALSE)+
    theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Relationship Between Predictors

Class Balance

Percentage of Strokes

Distributions of Values (Counts)

```
wrap_text <- function(x, width) {</pre>
  sapply(strwrap(x, width = width, simplify = FALSE), paste, collapse = "\n")
# Select non-numeric columns
non_numeric_columns <- names(df_eda)[sapply(df_eda, is.factor) | sapply(df_eda, is.character)]
# Function to create plots
create_plots <- function(col) {</pre>
  counts <- table(df_eda[[col]], df_eda$stroke)</pre>
  counts_df <- as.data.frame(counts)</pre>
  names(counts_df) <- c(col, "stroke", "count")</pre>
  ggplot(counts_df, aes(x = !!sym(col), y = count, fill = factor(stroke))) +
    geom_bar(stat = "identity", position = "dodge") +
    geom_text(aes(label = paste0(count)),
              vjust = -0.5, size = 3, position = position_dodge(width = 0.9)) + # Add count / percent
    labs(x = col, y = "Count of Records",
         title = paste("Bar Graph of Stroke by", col, " by Count")) +
    theme(axis.text.x = element_text(angle = 45, hjust = 1),
          panel.spacing = unit(3, "lines"),
          legend.text = element_text(size = 7),  # Adjust legend text size
          legend.title = element_text(size = 9)) # Adjust legend title size
```

```
# Create plots for each non-numeric column
plots_list <- map(non_numeric_columns, ~ create_plots(.x))
# Print plots
walk(plots_list, print)</pre>
```

Bar Graph of Stroke by gender by Count

Bar Graph of Stroke by smoking_status by Count

Distributions of Values (Percentages)

```
# Function to create plots
create_plots <- function(col) {</pre>
  counts <- table(df eda[[col]], df eda$stroke)</pre>
  counts_df <- as.data.frame(counts)</pre>
  names(counts_df) <- c(col, "stroke", "count")</pre>
  # Calculate percentages within each category
  counts_df <- counts_df %>%
    group_by(stroke) %>%
    mutate(percent = count / sum(count) * 100) %>%
    ungroup()
  ggplot(counts_df, aes(x = !!sym(col), y = percent, fill = factor(stroke))) +
    geom_bar(stat = "identity") +
    geom_text(aes(label = paste0(round(percent, 1), "%")),
              vjust = -0.5, size = 3) + # Add percent labels
    labs(x = col, y = "Percentage of Records",
         title = paste("Bar Graph of Stroke by", col, "\nPercentage (Total Stroke Type %)")) +
    facet_wrap(~stroke, scales = "free") + # Facet by stroke
    theme(axis.text.x = element_text(angle = 30, hjust = 1),
          panel.spacing = unit(3, "lines")
)}
```

```
# Create plots for each non-numeric column
plots_list <- map(non_numeric_columns, ~ create_plots(.x))
# Print plots
walk(plots_list, print)</pre>
```

Bar Graph of Stroke by gender Percentage (Total Stroke Type %)

Bar Graph of Stroke by ever_married Percentage (Total Stroke Type %)

Bar Graph of Stroke by work_type Percentage (Total Stroke Type %)

Bar Graph of Stroke by Residence_type Percentage (Total Stroke Type %)

Bar Graph of Stroke by smoking_status Percentage (Total Stroke Type %)

Heatmap

Data Splitting - Training & Test

Data Wrangling and Pre-Processing

Missing Values

```
table(trainData$gender)

##
## Female Male
## 2395 1693

trainData$gender[trainData$gender == "Other"] <- {
    ux <- unique(trainData$gender)
    mode_gender <- ux[which.max(tabulate(match(trainData$gender, ux)))]
    mode_gender</pre>
```

```
}
testData$gender[testData$gender == "Other"] <- {</pre>
  ux <- unique(testData$gender)</pre>
  mode_gender <- ux[which.max(tabulate(match(testData$gender, ux)))]</pre>
  mode_gender
}
table(trainData$gender)
##
## Female
            Male
##
     2395
             1693
# Check for missing data
colSums(is.na(trainData))
##
               gender
                                               hypertension
                                                                 heart_disease
                                      age
##
                                        0
##
        ever_married
                                             Residence_type avg_glucose_level
                               work_type
##
                                                           0
##
                  bmi
                          smoking_status
                                                     stroke
##
                  162
### bagImpute used because missing data is random
bag_missing <- preProcess(trainData, method = "bagImpute")</pre>
                                                                ##### CHANGE? knn ??
trainData <- predict(bag_missing, newdata = trainData)</pre>
# bagImpute for Test Data
testData <- predict(bag_missing, newdata = testData)</pre>
colSums(is.na(trainData))
##
               gender
                                               hypertension
                                                                 heart_disease
                                      age
##
##
        ever_married
                               work_type
                                             Residence_type avg_glucose_level
##
                                                           0
##
                  bmi
                          smoking_status
                                                      stroke
##
                    0
Setting up Factors
### Factor Train
non_numeric_cols <- sapply(trainData, function(x) !is.numeric(x))</pre>
# Convert non-numeric columns to factors
trainData <- trainData %>%
  mutate_if(non_numeric_cols, as.factor)
### Factor Test
non_numeric_cols <- sapply(testData, function(x) !is.numeric(x))</pre>
```

Convert non-numeric columns to factors Test

mutate_if(non_numeric_cols, as.factor)

testData <- testData %>%

#str(trainData)
#str(testData)

Dummy Variables

```
### dummy variables for Trfactors
dummy_model1 <- dummyVars(stroke ~ gender + ever_married + work_type + Residence_type + smoking_status,</pre>
trainData_dummy <- as.data.frame(predict(dummy_model1, newdata = trainData))</pre>
trainData_dummy <- as.data.frame(lapply(trainData_dummy, as.factor))</pre>
### dummy variables for test factors
dummy_model2 <- dummyVars(stroke ~ gender + ever_married + work_type + Residence_type + smoking_status,
testData_dummy <- as.data.frame(predict(dummy_model2, newdata = testData))</pre>
testData_dummy <- as.data.frame(lapply(testData_dummy, as.factor))</pre>
#head(trainData dummy)
#head(testData dummy)
### Dropping columns that can be inferred from the others to avoid multicollinearity
trainData_dummy <-select(trainData_dummy, -gender.Female, -ever_married.No, -work_type.children, -Resid
#head(trainData_dummy)
trainData_selected <- select(trainData, age, hypertension, heart_disease, avg_glucose_level, bmi, strok
#str(trainData_selected)
### Test Dropping columns that can be inferred from the others to avoid multicollinearity
testData_dummy <-select(testData_dummy, -gender.Female, -ever_married.No, -work_type.children, -Residen
testData_selected <- select(testData, age, hypertension, heart_disease, avg_glucose_level, bmi, stroke)
#str(testData_dummy)
# Train
trainData_ready <- cbind(trainData_dummy, trainData_selected)</pre>
trainData_ready <- trainData_ready %>%
 mutate(across(all_of(c("hypertension", "heart_disease", "stroke")), as.factor))
names(trainData_ready) <- gsub("\\.", "_", names(trainData_ready))</pre>
names(trainData_ready) <- gsub("_Yes", "", names(trainData_ready))</pre>
trainData_ready$stroke <- as.factor(make.names(as.character(trainData_ready$stroke)))
head(trainData_ready)
     gender_Male ever_married work_type_Govt_job work_type_Never_worked
## 1
                                                                         0
               1
                             1
## 2
               0
                             1
                                                 0
                                                                         0
## 3
                                                 0
                                                                         0
               1
                             1
## 4
               0
                             1
                                                 0
                                                                         0
## 5
               Λ
                             1
                                                 Ω
                                                                         0
## 6
     work_type_Private work_type_Self_employed Residence_type_Urban
##
## 1
                      1
                                                                     1
                     0
## 2
                                               1
                                                                     0
## 3
                     1
                                              0
                                                                     0
## 4
                                              0
                      1
                                                                     1
## 5
                      0
                                               1
                                                                     0
## 6
##
     smoking_status_formerly_smoked smoking_status_never_smoked
## 1
## 2
                                   0
                                                                1
```

```
## 3
                                  0
                                                               1
## 4
                                  0
                                                               0
## 5
                                  0
                                                               1
## 6
                                                               Ω
                                  1
##
     smoking_status_smokes age hypertension heart_disease avg_glucose_level
## 1
                         0 67
                                          0
                                                         1
## 2
                         0 61
                                                         0
                                                                      202.21
                                                                      105.92
## 3
                         0 80
                                          0
                                                         1
## 4
                         1
                           49
                                          Λ
                                                         Λ
                                                                      171.23
                         0 79
                                                         0
## 5
                                          1
                                                                      174.12
## 6
                         0 81
                                                                      186.21
##
          bmi stroke
## 1 36.60000
## 2 34.58408
                  X 1
## 3 32.50000
                  Х1
## 4 34.40000
                  X1
## 5 24.00000
                  X1
## 6 29.00000
                  X1
# Test
testData_ready <- cbind(testData_dummy, testData_selected)</pre>
testData ready <- testData ready %>%
  mutate(across(all_of(c("hypertension", "heart_disease", "stroke")), as.factor))
names(testData_ready) <- gsub("\\.", "_", names(testData_ready))</pre>
names(testData_ready) <- gsub("_Yes", "", names(testData_ready))</pre>
testData_ready$stroke <- as.factor(make.names(as.character(testData_ready$stroke)))</pre>
str(testData ready)
## 'data.frame':
                    1022 obs. of 16 variables:
## $ gender_Male
                                     : Factor w/ 2 levels "0", "1": 2 2 1 2 2 2 2 2 1 1 ...
                                     : Factor w/ 2 levels "0", "1": 1 2 2 2 2 2 2 2 2 2 ...
##
   $ ever_married
                                    : Factor w/ 2 levels "0", "1": 2 1 1 1 1 1 1 1 1 1 ...
## $ work_type_Govt_job
                                    : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
## $ work_type_Never_worked
                                    : Factor w/ 2 levels "0", "1": 1 2 2 1 2 2 2 2 2 1 ...
## $ work_type_Private
                                    : Factor w/ 2 levels "0", "1": 1 1 1 2 1 1 1 1 1 2 ...
## $ work_type_Self_employed
## $ Residence_type_Urban
                                    : Factor w/ 2 levels "0", "1": 2 1 1 2 1 2 1 2 1 2 ...
## $ smoking_status_formerly_smoked: Factor w/ 2 levels "0","1": 1 1 2 1 2 1 2 1 1 1 ...
## $ smoking_status_never_smoked : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 2 ...
## $ smoking_status_smokes
                                    : Factor w/ 2 levels "0", "1": 1 1 1 2 1 2 1 2 2 1 ...
## $ age
                                    : num 57 82 65 69 59 57 74 82 39 77 ...
                                    : Factor w/ 2 levels "0", "1": 1 1 1 1 1 2 1 1 2 2 ...
## $ hypertension
## $ heart disease
                                    : Factor w/ 2 levels "0", "1": 2 2 1 2 1 1 1 2 1 1 ...
## $ avg_glucose_level
                                     : num 217 208 101 195 212 ...
## $ bmi
                                     : num 35 32.5 28.2 28.3 35 ...
   $ stroke
                                     : Factor w/ 2 levels "X0", "X1": 2 2 2 2 2 2 2 2 2 2 ...
##
Class Imbalance (ROSE Method)
# Calculate counts and convert to data frame
stroke_counts <- as.data.frame(table(trainData_ready$stroke))</pre>
colnames(stroke_counts) <- c("Stroke", "Count")</pre>
stroke_counts$Stroke <- factor(stroke_counts$Stroke, levels = c('X0', 'X1'), labels = c("No Stroke", "S
### Bar Chart
ggplot(stroke_counts, aes(x = Stroke, y = Count)) +
```

```
geom_bar(stat = "identity", fill = "skyblue") +
labs(title = "Count of Stroke Values",
    x = "Stroke",
    y = "Count") +
geom_text(aes(label = Count),
    vjust = -0.5,  # Position above the bars
    size = 3,  # Size of the text
    color = "black")  # Color of the text
```

Count of Stroke Values


```
geom_bar(stat = "identity", fill = "skyblue") +
labs(title = "Count of Stroke Values in Balanced Dataset",
    x = "Stroke",
    y = "Count") +
geom_text(aes(label = Count),
    vjust = -0.5,
    size = 3,
    color = "black")
```

Count of Stroke Values in Balanced Dataset


```
trainData_ready <- data.frame(rose_train)</pre>
```

Baseline Model to Beat

```
### Base Model Logistic Regression Model

# Fit logistic regression model

lrm_base_model <- train(stroke ~ .,</pre>
```

```
data = trainData_ready,
                      method = "glm",
                       family = "binomial",
                       trControl = ctrl)
## Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
## in the result set. ROC will be used instead.
# View model summary
summary(lrm_base_model)
##
## Call:
## NULL
##
## Coefficients:
##
                                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                 -3.988e+00 2.959e-01 -13.477 < 2e-16 ***
## gender_Male1
                                 -3.107e-01 8.271e-02 -3.756 0.000172 ***
## ever_married1
                                 2.337e-01 1.206e-01
                                                      1.937 0.052764 .
## work_type_Govt_job1
                                -8.208e-01 3.333e-01 -2.462 0.013799 *
                                -1.189e+01 2.780e+02 -0.043 0.965879
## work_type_Never_worked1
                                 -6.458e-01 3.209e-01 -2.012 0.044208 *
## work_type_Private1
## work_type_Self_employed1
                               -8.378e-01 3.395e-01 -2.468 0.013591 *
## Residence_type_Urban1
                                 3.330e-01 7.935e-02 4.196 2.72e-05 ***
## smoking_status_formerly_smoked1 4.729e-02 1.181e-01 0.400 0.688843
## smoking_status_smokes1
                                 1.164e-02 1.304e-01 0.089 0.928875
## age
                                  6.739e-02 2.891e-03 23.306 < 2e-16 ***
## hypertension1
                                  6.785e-01 1.102e-01 6.159 7.33e-10 ***
                                  4.971e-01 1.344e-01 3.698 0.000218 ***
## heart_disease1
## avg_glucose_level
                                  3.746e-03 7.264e-04 5.157 2.51e-07 ***
                                  3.214e-03 5.895e-03 0.545 0.585639
## bmi
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 5667.1 on 4087 degrees of freedom
## Residual deviance: 3948.9 on 4072 degrees of freedom
## AIC: 3980.9
## Number of Fisher Scoring iterations: 13
# LogReg Predictions
predictions <- predict(lrm_base_model, newdata = trainData_ready)</pre>
# LogReg Confusion Matrix
logregCM <- confusionMatrix(predictions, trainData_ready$stroke)</pre>
# Confusion Matrix Plot
conf_matrix <- as.data.frame(logregCM$table)</pre>
ggplot(data = conf_matrix, aes(x = Reference, y = Prediction)) +
geom tile(aes(fill = Freq)) +
geom_text(aes(label = Freq)) +
```

```
scale_fill_gradient(low = 'yellow', high = 'red') +
labs(title = 'Logistic Regression Model Confusion Matrix', x = 'Actual', y = 'Predicted')
```

Logistic Regression Model Confusion Matrix

Data Prep

```
# Exclude stroke and Identify and remove variables with zero variance
Zero_Var_vars <- nearZeroVar(trainData_ready[, -which(names(trainData_ready) == "stroke"), drop = FALSE
trainData_ready <- trainData_ready[, -Zero_Var_vars, drop = FALSE]
print(names(Zero_Var_vars))</pre>
```

NULL

Models

Model #1 - Linear Discriminant Analysis (LDR)

```
## Linear Discriminant Analysis
##
## 4088 samples
     14 predictor
##
      2 classes: 'XO', 'X1'
##
##
## Pre-processing: centered (14), scaled (14)
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 3680, 3679, 3679, 3679, 3679, 3679, ...
## Resampling results:
##
##
     ROC
                            Spec
                Sens
     0.8409107 0.7265041 0.8151768
# LDA Predictions
predictions <- predict(ldaFit_stroke, newdata = trainData_ready)</pre>
# LDA Confusion Matrix
ldaCM_stroke <- confusionMatrix(predictions, trainData_ready$stroke)</pre>
# Confusion Matrix Plot
conf_matrix <- as.data.frame(ldaCM_stroke$table)</pre>
ggplot(data = conf_matrix, aes(x = Reference, y = Prediction)) +
geom_tile(aes(fill = Freq)) +
geom_text(aes(label = Freq)) +
scale_fill_gradient(low = 'yellow', high = 'green') +
labs(title = 'Linear Discriminant Analysis Model Confusion Matrix', x = 'Actual', y = 'Predicted')
```

Linear Discriminant Analysis Model Confusion Matrix

Model #2 - Penalized Logistic Regression (PLR)

Penalized Logistic Regression


```
# Best tuning parameters
optimal_plr_tune <- plrFit_stroke$bestTune
print(paste('Best Alpha and Lambda tuning parameters for Penalized Logistic Regression:', paste(optimal</pre>
```

[1] "Best Alpha and Lambda tuning parameters for Penalized Logistic Regression: 1,0.001"

Model #3 - Nearest Shrunken Centroids

1111111111111111111111111111111111

```
plot(nscFit_stroke, main = 'Nearest Shrunken Centroid')
```

Nearest Shrunken Centroid


```
# Best tuning parameters
optimal_nsc_tune <- nscFit_stroke$bestTune
print(paste('Best threshold tuning parameter for Nearest Shrunken Centroids:', paste(optimal_nsc_tune,</pre>
```

[1] "Best threshold tuning parameter for Nearest Shrunken Centroids: 4.89473684210526"

Model #4 - Neural Network

Neural Network


```
# Best tuning parameters
optimal_nn_tune <- nnFit_stroke$bestTune
print(paste('Best Size and Decay tuning parameters for Neural Network:', paste(optimal_nn_tune, collaps)</pre>
```

[1] "Best Size and Decay tuning parameters for Neural Network: 8,0.05"

Model #5 - Random Forest

```
# Set seed for reproducibility
set.seed(rseed)

# Random Forest
rf_grid <- expand.grid(
    mtry = c(2, 4, 6)
)

rfFit_stroke <- train(
    stroke ~ .,
    data = trainData_ready,
    method = "rf",
    trControl = ctrl,
    tuneGrid = rf_grid,
    ntree = 100,
    trace = FALSE
)</pre>
```

Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not

```
## in the result set. ROC will be used instead.
# Print the best parameters and performance metrics
plot(rfFit_stroke, main = 'Random Forest')
```

Random Forest


```
# Best tuning parameters
optimal_rf_tune <- rfFit_stroke$bestTune
print(paste('Best Size and Decay tuning parameters for Random Forest:', paste(optimal_rf_tune, collapse)</pre>
```

[1] "Best Size and Decay tuning parameters for Random Forest: 4"

Results - Summary Table

```
# 1.Make predictions for Linear Discriminant Analysis
lda_pred <- predict(ldaFit_stroke, newdata = testData_ready)
lda_cm <- confusionMatrix(lda_pred, testData_ready$stroke)

# 2.Make predictions for Penalized Logistic Regression
plr_pred <- predict(plrFit_stroke, newdata = testData_ready)
plr_cm <- confusionMatrix(plr_pred, testData_ready$stroke)

# 3.Make predictions for Nearest Shrunken Centroids
nsc_pred <- predict(nscFit_stroke, newdata = testData_ready)
nsc_cm <- confusionMatrix(nsc_pred, testData_ready$stroke)

# 4.Make predictions for Neural Network
nn_pred <- predict(nnFit_stroke, newdata = testData_ready)</pre>
```

```
nn_cm <- confusionMatrix(nn_pred, testData_ready$stroke)</pre>
# 5. Make predictions for Random Forest
rf_pred <- predict(rfFit_stroke, newdata = testData_ready)</pre>
rf_cm <- confusionMatrix(rf_pred, testData_ready$stroke)</pre>
extract_accuracy <- function(model, cm) {</pre>
 tibble(
    model = model,
    Accuracy = cm$overall['Accuracy'],
    `CI Lower` = cm$overall['AccuracyLower'],
    `CI Upper` = cm$overall['AccuracyUpper']
}
# Combine accuracies into a table
accuracies <- bind_rows(</pre>
  extract_accuracy('Linear Discriminant Analysis', lda_cm),
 extract_accuracy('Penalized Logistic Regression', plr_cm),
 extract_accuracy('Nearest Shrunken Centroids', nsc_cm),
 extract_accuracy('Neural Network', nn_cm),
 extract_accuracy('Random Forest', rf_cm)
# Display the table using gt package
accuracies %>%
 arrange(-Accuracy) %>%
 gt() %>%
 fmt_number(columns = c(Accuracy, `CI Lower`, `CI Upper`), decimals = 3)
```

model	Accuracy	CI Lower	CI Upper
Random Forest	0.748	0.720	0.774
Neural Network	0.735	0.707	0.762
Penalized Logistic Regression	0.717	0.689	0.745
Linear Discriminant Analysis	0.711	0.682	0.739
Nearest Shrunken Centroids	0.663	0.634	0.692

Tuned Models

1111111111111111111111111111111111

```
set.seed(rseed)
# Retrain NN with optimal parameters
nnFit_final <- train(stroke ~ .,</pre>
                       data = trainData_ready,
                       method = 'nnet',
                       maxit = 500,
                       preProcess = c('center', 'scale'),
                       metric = 'ROC',
                       trControl = ctrl,
                       tuneGrid = expand.grid(
                         size = optimal_nn_tune$size,
                         decay = optimal_nn_tune$decay
                         ),
                       trace = FALSE)
set.seed(rseed)
# Retrain RF with optimal parameters
rfFit_final <- train(stroke ~ .,
                      data = trainData_ready,
                      method = "rf",
                      ntree = 100,
                      trControl = ctrl,
                      tuneGrid = expand.grid(
                         mtry = optimal_rf_tune$mtry
                         ))
```

Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not ## in the result set. ROC will be used instead.

Summary for Tuned Models

```
# Make predictions for Linear Discriminant Analysis
lda_pred <- predict(ldaFit_stroke, newdata = testData_ready)
lda_cm2 <- confusionMatrix(lda_pred, testData_ready$stroke)

# Make predictions for Penalized Logistic Regression
plr_pred2 <- predict(plrFit_final, newdata = testData_ready)
plr_cm2 <- confusionMatrix(plr_pred2, testData_ready$stroke)

# Make predictions for Nearest Shrunken Centroids
nsc_pred2 <- predict(nscFit_final, newdata = testData_ready)</pre>
```

```
nsc_cm2 <- confusionMatrix(nsc_pred2, testData_ready$stroke)</pre>
# Make predictions for Neural Network
nn_pred2 <- predict(nnFit_final, newdata = testData_ready)</pre>
nn_cm2 <- confusionMatrix(nn_pred2, testData_ready$stroke)</pre>
# Make predictions for Random Forest
rf pred2 <- predict(rfFit final, newdata = testData ready)</pre>
rf_cm2 <- confusionMatrix(rf_pred2, testData_ready$stroke)</pre>
extract_accuracy <- function(model, cm) {</pre>
  tibble(
    model = model,
    Accuracy = cm$overall['Accuracy'],
    `CI Lower` = cm$overall['AccuracyLower'],
    `CI Upper` = cm$overall['AccuracyUpper']
  )
}
# Combine accuracies into a table
accuracies <- bind_rows(
  extract_accuracy('Linear Discriminant Analysis', lda_cm2),
  extract_accuracy('Penalized Logistic Regression', plr_cm2),
  extract accuracy('Nearest Shrunken Centroids', nsc cm2),
  extract_accuracy('Neural Network', nn_cm2),
  extract_accuracy('Random Forest', rf_cm2),
)
# Display the table using gt package
accuracies %>%
  arrange(-Accuracy) %>%
  gt() %>%
  fmt_number(columns = c(Accuracy, `CI Lower`, `CI Upper`), decimals = 3)
```

model	Accuracy	CI Lower	CI Upper
Random Forest	0.746	0.718	0.772
Neural Network	0.720	0.692	0.748
Penalized Logistic Regression	0.717	0.689	0.745
Linear Discriminant Analysis	0.711	0.682	0.739
Nearest Shrunken Centroids	0.663	0.634	0.692

Final Model

```
rfFit_final$finalModel
```

```
##
## Call:
## randomForest(x = x, y = y, ntree = 100, mtry = param$mtry)
## Type of random forest: classification
## Number of trees: 100
## No. of variables tried at each split: 4
```

```
##

## 00B estimate of error rate: 17.51%

## Confusion matrix:

## X0 X1 class.error

## X0 1569 481 0.2346341

## X1 235 1803 0.1153091
```