Deep learning alapú szótagolás

Németh Gergely Dániel

Abstract

Kivonat

Tartalomjegyzék

1.	Beve	ezetés	3
2.	Szót	agoló programok	3
	2.1.	Liang algoritmusa	3
		2.1.1. Minták választása	3
	2.2.	Hunspell	4
		2.2.1. Szótagolási hibák a magyar Hunspellben	4
3.	Deep	o learning alapú módszerek	4
	3.1.	Deep learning bevezetés	4
		3.1.1. Keretrendszerek	4
	3.2.	Tanító adatok	5
4.	Előr	ecsatolt neurális hálók	5
	4.1.	Karakter címkézés	5
	4.2.		5
		4.2.1. Tanítás a karakter környezetéből	6
		4.2.2. One-hot kódolás	6
		4.2.3. Lapítás	6
	4.3.	Előrecsatolt háló tanítása	6
		4.3.1. A táblázatokban használt rövidítések	6
5	Rek	urrens neurális hálók	7

1. Bevezetés

2. Szótagoló programok

Az elterjedt szótagoló algoritmusok kétféle csoportba bonthatóak: szabály- vagy szótáralapúak. A szabad szoftverek világában *de facto* a TEXszótagolási algoritmusát használják.

A TEX eredeti szótagoló algoritmusát Prof. Knuth tervezte 1977 nyarán [3]. Ez három fő szótagolási szabályt alkalmazott: 1) utótag leválasztás, 2) előtag leválasztás és 3) magánhangzó - mássalhangzó - mássalhangzó - magánhangzó (vccv) elválasztás, azaz ha ilyen betűnégyes található a szóban, legtöbb esetben a mássalhangzók mentén elválasztható. Ez a három szabály gyakran alkalmazható, azonban már az első algoritmusban kiegészült kisebb szabályokkal ("break vowel-q" vagy "break after ck") és kivételek listájával(300 szó).

A TEX82 verzióhoz megjelent Liang szótagoló algoritmusa [5], aminek legfontosabb újítása a minta(*patterns*) alapú szótagolás bevezetése volt. Ennek lényege, hogy a szótagolási szabályok mintákra definiálódtak és az algoritmus a szótagolás során ezeket a mintákat keresi a szóban.

A TEX jelenlegi verziójában a Hunspell szótagoló algoritmust alkalmazzák [6]. Ez az eljárás Liang algoritmusán alapszik, amit nyelvfüggő speciális szótagolási kiterjesztésekkel (non-standard hyphenation extension) egészít ki.

2.1. Liang algoritmusa

Liang szótagoló algoritmusának alapját a szótagolási minták alkotják [5]. Az algoritmust az angol hyphenation elválasztását az alábbi módon végzi:

Az algoritmus először megnézi, hogy a szó benne van-e a kivételek listájában (ez lényegében teljes szavakat tartalmaz mintaként). A *hyphenation* szó nincs a kivételek listájában.

Ezután a szó elejére és végére illeszt egy pont jelző karaktert. Ennek jelentősége azoknál a mintáknál lesz, amelyek akkor érvényesülnek, ha a szó elején, vagy a végén szerepelnek.

.hyphenation.

Ezt követően a minták között keres illeszkedést. A *hyphenation* szóra ezek az alábbiak: hy3ph, he2n, hena4, hen5at, 1na, n2at, 1tio, 2io [5, 37. oldal] A megfelelő mintákat ráillesztve a szóra, a bennük szereplő számokat a szó karakterei közé szúrva az 1. ábrán szereplőket kapjuk.¹

Az algoritmus következő lépésében minden két szomszédos karakter közé illesztünk egy számot. Alapértelmezetten 0-t és ha ennél nagyobb számot találtunk a mintaillesztésnél, a legnagyobb kapott értéket adjuk meg.

A szótagolás szabálya innen már csak egy lépés: a páratlan számok mentén elválasztunk, a párosoknál nem. Ezzel megkaptuk a hy-phen-ation elválasztást.

2.1.1. Minták választása

A fenti algoritmus hatékonyságát nyilvánvalóan a minták mennyisége és hatékonysága határozza meg. Csak azok a szavak választódnak el, amelyekre illeszkedik minta és csak azok lesznek jó elválasztások, melyekre jó minta illeszkedik.

 $^{^1\}mathrm{Az}$ ábrázolásmód Németh cikkéből származik [6].

1. ábra. A hyphenation szótagolása

2.2. Hunspell

2.2.1. Szótagolási hibák a magyar Hunspellben

Hunspell szótagolása:

au-tó-val
szem-üveg-gel
has-izom
messze

Helyesen:
a-u-tó-val
szem-ü-veg-gel
has-i-zom
messze
mesz-sze

3. Deep learning alapú módszerek

3.1. Deep learning bevezetés

A gépi tanulás területén egyre nagyobb teret nyernek a deep learning alapú módszerek. A hagyományos osztályozási feladatokon túl, szekvenciális, ún. taggelési problémák megoldására is alkalmasak a neurális hálók, különös tekintettel a rekurrens neurális hálókra.

A mély tanulás bevetését a nyelvtechnológia területén az a tény élteti, hogy az elektronikus kommunikáció korában jelentős mennyiségű nyelvi adatbázisok állnak rendelkezésünkre, így a deep learning legfontosabb eleme, a megfelelő méretű tanulóadat elérhető. Az ismertetett elválasztási algoritmusok kulcseleme, hogy megfelelő elválasztási mintákat ismerjünk fel az adathalmazon (*korpusz*). A képfelismerés terén sokkal komplexebb minták megtalálásában is jelentős eredményeket értek el a deep learning segítségével, így e módszer bevetése a szótagolás problémakörében megalapozott.

3.1.1. Keretrendszerek

Deep learning rendszerek tervezésénél az utóbbi időben ipari és kutatói területen egyaránt elterjedőben vannak a magas szintű keretrendszerek. Ezek legnagyobb előnye, hogy az aktív fejlesztői közösség a gyorsan fejlődő tudományág eredményeit alkalmazható technológiákként tárja a felhasználók elé. A jelentősebb keretrendszerek:

TensorFlow², Torch7³, Keras⁴. Az itt ismertetett eljárások megvalósításához a Keras nyújtotta lehetőségekkel valósultak meg [1].

3.2. Tanító adatok

Mély tanulás esetén az eredmény minőségét alapvetően meghatározza a tanítóhalmaz minősége. Jelen esetben a korpuszok és azok megfelelő szótagoltsága.

A hálótervezés során a Magyar Webkorpusz leggyakoribb 100000 szaván kísérleteztünk [2, 4].

4. Előrecsatolt neurális hálók

A neurális háló lényege ebben ez esetben az, hogy a szó minden karakterére eldöntsük a környezetében lévő karakterek segítségével, hogy a karakternél van-e elválasztás.

A szavakat minden karakter mentén felbontjuk az adott ablakméretre, majd ezekre az ablakokra tanítva oldunk meg egy osztályozó problémát, ami ad egy címkét a karakternek és a címke alapján végezzük az elválasztást.

4.1. Karakter címkézés

Kétféle címkézést használunk. Az első eset előnye, hogy több címke van így több információt adunk át a modellnek, a másodiké pedig, hogy a jósolt címkézés minden esetben elválasztássá alakítható. Ez a BMES esetében nem teljesül: ha két karakterre egymás után E-t jósol, az nem alakítható rögtön valós elválasztássá.

BMES

- B: Begin, szótag elején álló karakter
- M: Middle, közepén lévő karakter, se előtte, se utána nincs elválasztás
- E: End, a karakter után elválasztás van
- S: Single, egy karakterből álló szótag

A le-o-párd szó címkézése: BESBMME

\mathbf{BM}

- B: Begin, szótag elején álló karakter
- M: Minden egyéb eset

A le-o-párd szó címkézése: BMBBMMM

4.2. Adat-előkészítés

Ha az *nyúlanyó* szó *a* karakterét szeretnénk egy 5-ös szimmetrikus ablakú környezetben tanítóadatnak előkészíteni, **BM** címkézéssel, akkor az alábbi előkészületeket kell tennünk:

²TensorFlow: https://www.tensorflow.org/

³Torch7: http://torch.ch/

⁴Keras: https://keras.io/

4.2.1. Tanítás a karakter környezetéből

A jelölésrendszerünk alapján az 5-ös szimmetrikus ablak azt jelenti, hogy a karakter előtt és a karakter után is két-két további karaktert veszünk, és ez alapján az öt karakter alapján próbáljuk meg eldönteni, milyen címke illeszkedik a középső karakterre. Ezt jelöljük 2-1-2-vel. Az nyúlanyó szó és az a betű esetén ez úl a ny ablakot jelent.

Ha az ablak túlnyúl a szó szélén, az elterjedt jelölés alapján a szó elején ^ karaktereket, illetve a szó végén további \$ karaktereket illesztünk az ablakba.

4.2.2. One-hot kódolás

Ahhoz, hogy a karakterekből a keras által feldolgozható tanítóadat legyen, one-hot kódolást végzünk rajta.

A karakterek esetében ez azt jelenti, hogy a megengedett karaktereket, jelen esetben a magyar ábécé karaktereit és a kezdő-, befejezőkaraktereket egymás után felsoroljuk, majd az adott karaktert úgy reprezentáljuk, hogy egy ezzel azonos hosszúságú tömbben a karakternek megfelelő sorszámú helyre egyest, minden további mezőbe nullást írunk.

A BM illetve BMES címkézést ugyanígy reprezentáljuk egy 2 avagy 4 hosszú tömbbel.

4.2.3. Lapítás

Ha a fentieket elvégezzük egy 5 hosszú ablakra, akkor a magyar ábécét figyelembe véve 5 darab 35+2 hosszú tömböt kapunk. A háló bemenetét úgy kapjuk meg, hogy ezt ellapítjuk egy $5\cdot 37$ hosszú tömbbé (amiben 5 helyen 1-es, minden további helyen 0-ás szerepel). Ez lesz a tanítóadatunk.

4.3. Előrecsatolt háló tanítása

Az első tanítások eredményei az 1. táblázatban láthatóak.

A 2. táblázat a hiperparaméterek optimalizálási eredményeit foglalja össze. Itt a 2-1-2 környezetű karakter-címkézés 2-10 rétegű, rétegenként 10-100 neuronú tanítások közül láthatjuk azokat, amelyeknek validációs hibája megközelíti a 4 százalékot.

A 3. táblázatban a karakter címkézéséhez körülötte megvizsgált karakterek számát változtattuk. Jól látható, hogy egy-egy karakter bevétele még jóval kevesebb információt árul el a címkézésről, mint a többi. Hasonlóképp észrevehető, hogy a túl nagy ablak is ront a helyzeten. Ez azért jelenik meg, mivel a nagyobb ablakok bevezetésével egyre ritkábbak lesznek az adott típusú minták előfordulása az adatokban.

4.3.1. A táblázatokban használt rövidítések

- Length: a-1-b a vizsgált karakter előtt a utána b karaktert veszünk be környezetébe, ami alapján a címkézést végezzük.
- Tag: a címkézés BM vagy BMES
- NLayer: a háló rejtett rétegeinek száma
- NHidden: a rejtett rétegek mérete
- Val_loss: a validációs adatok binary(BM) illetve categorical(BMES) crossentropy hibafüggvénnyel számolt hibája

- Test_w: maximumkiválasztás után hibás eredményt adó teszt adatok száma
- Epochs: a tanításhoz szükséges epoch-ok száma. A tanítás végét early stoping módszerrel határoztuk meg.

No	Tag	Length	Loss	Batch size	Val_loss	Epochs
1	BMES	2-1-0	$\operatorname{cat_cross}$	512	0.616	483
2	BM	2-1-0	bin_cross	1024	0.262	475
3	BM	2-1-0	$\operatorname{cat_cross}$	1024	0.261	543
4	BM	2-1-1	bin_cross	1024	0.063	247
5	BM	2-1-2	bin_cross	1024	0.050	213
6	BM	3-1-3	bin_cross	1024	0.047	223
7	BMES	2-1-2	$\operatorname{cat_cross}$	1024	0.107	389
8	BMES	3-1-3	$\operatorname{cat_cross}$	1024	0.090	769

1. táblázat. Előrecsatolt háló tanítása különböző paraméterekkel

5. Rekurrens neurális hálók

Hivatkozások

- [1] François Chollet. Keras, 2015.
- [2] Péter Halácsy, András Kornai, Nemeth Laszlo, Rung Andras, István Szakadát, and Tron Viktor. Creating open language resources for hungarian. 2004.
- [3] Donald Ervin Knuth. *TEX and METAFONT: New directions in typesetting.* American Mathematical Society, 1979.
- [4] András Kornai, Péter Halácsy, Viktor Nagy, Csaba Oravecz, Viktor Trón, and Dániel Varga. Web-based frequency dictionaries for medium density languages. In *Proceedings of the 2nd International Workshop on Web as Corpus*, pages 1–8. Association for Computational Linguistics, 2006.
- [5] Franklin Mark Liang. *Word hyphenation by computer*. Department of Computer Science, Stanford University, 1983.
- [6] László Németh. Automatic non-standard hyphenation in openoffice. org. *COM-MUNICATIONS OF THE TEX USERS GROUP TUGBOAT EDITOR BARBARA BEETON PROCEEDINGS EDITOR KARL BERRY*, page 32, 2006.

No	Tag	Length	NLayer	NHidden	Epochs	Val_loss	Test_w
2.1	BM	2-1-2	2	10	308	0.05025	0.01568
2.2	BM	2-1-2	2	20	250	0.04454	0.01352
2.3	BM	2-1-2	2	30	189	0.04274	0.01264
2.4	BM	2-1-2	2	40	170	0.04151	0.01185
2.5	BM	2-1-2	2	50	196	0.04207	0.01129
2.6	BM	2-1-2	2	60	167	0.04068	0.01119
2.7	BM	2-1-2	2	70	166	0.04155	0.01122
2.8	BM	2-1-2	2	80	175	0.03994	0.01073
2.9	BM	2-1-2	2	90	179	0.03962	0.01050
2.10	BM	2-1-2	2	100	145	0.03911	0.01100
3.7	BM	2-1-2	3	70	176	0.04221	0.01155
3.8	BM	2-1-2	3	80	161	0.03881	0.01095
3.9	BM	2-1-2	3	90	171	0.03872	0.01037
3.10	BM	2-1-2	3	100	178	0.03886	0.01062
4.7	BM	2-1-2	4	70	208	0.04024	0.01116
4.8	BM	2-1-2	4	80	171	0.03995	0.01077
4.9	BM	2-1-2	4	90	177	0.03894	0.01077
4.10	BM	2-1-2	4	100	177	0.03885	0.01090
5.4	BM	2-1-2	5	40	199	0.04423	0.01225
5.5	BM	2-1-2	5	50	205	0.03992	0.01136
5.6	BM	2-1-2	5	60	220	0.03955	0.01090
5.7	BM	2-1-2	5	70	179	0.04013	0.01063
5.8	BM	2-1-2	5	80	207	0.03937	0.01032
5.9	BM	2-1-2	5	90	218	0.03995	0.01076
5.10	BM	2-1-2	5	100	186	0.03927	0.01092
6.7	BM	2-1-2	6	70	202	0.04186	0.01149
6.8	BM	2-1-2	6	80	218	0.04048	0.01076
6.9	BM	2-1-2	6	90	157	0.04715	0.01221
6.10	BM	2-1-2	6	100	217	0.03926	0.01072
7.7	BM	2-1-2	7	70	254	0.04432	0.01218
7.8	BM	2-1-2	7	80	221	0.04335	0.01169
7.9	BM	2-1-2	7	90	224	0.03943	0.01046
7.10	BM	2-1-2	7	100	210	0.04165	0.01198

2. táblázat. Hiperparaméter optimalizálás

No	Tag	Length	NLayer	NHidden	Epochs	Val_loss	Test_w
3.6	BM	1-1-1	5	60	303	0.09159	0.03617
3.7	BM	1-1-1	5	70	303	0.09156	0.03634
3.8	BM	1-1-1	5	80	229	0.09155	0.03582
3.9	BM	1-1-1	5	90	252	0.09137	0.03544
3.10	BM	1-1-1	5	100	196	0.09281	0.03595
3.11	BM	1-1-1	5	110	249	0.09129	0.03601
5.6	BM	2-1-2	5	60	222	0.04062	0.01113
5.7	BM	2-1-2	5	70	202	0.03969	0.01069
5.8	BM	2-1-2	5	80	222	0.04209	0.01099
5.9	BM	2-1-2	5	90	214	0.03992	0.01070
5.10	BM	2-1-2	5	100	198	0.03950	0.01049
5.11	BM	2-1-2	5	110	190	0.03995	0.01052
7.6	BM	3-1-3	5	60	133	0.03853	0.00988
7.7	BM	3-1-3	5	70	131	0.04250	0.01096
7.8	BM	3-1-3	5	80	147	0.04433	0.01245
7.9	BM	3-1-3	5	90	149	0.03865	0.00982
7.10	BM	3-1-3	5	100	137	0.03813	0.00972
7.11	BM	3-1-3	5	110	136	0.03926	0.00952
9.6	BM	4-1-4	5	60	121	0.03903	0.01005
9.7	BM	4-1-4	5	70	119	0.04316	0.01143
9.8	BM	4-1-4	5	80	125	0.04126	0.01104
9.9	BM	4-1-4	5	90	118	0.03934	0.01052
9.10	BM	4-1-4	5	100	116	0.03831	0.01072
9.11	BM	4-1-4	5	110	126	0.03967	0.01082
11.6	BM	5-1-5	5	60	112	0.04542	0.01183
11.7	BM	5-1-5	5	70	111	0.04082	0.01087
11.8	BM	5-1-5	5	80	119	0.04566	0.01220
11.9	BM	5-1-5	5	90	99	0.04360	0.01005
11.10	BM	5-1-5	5	100	103	0.04013	0.01035
11.11	BM	5-1-5	5	110	98	0.04117	0.01064

3. táblázat. Karakter-környezet ablak méretének optimalizálása