Learning Hawkes Processes from a Handful of Events

Farnood Salehi*, William Trouleau*, Matthias Grossglauser, Patrick Thiran

Information and Network Dynamics Group, School of Computer and Communication Sciences, EPFL

* The first two authors contributed equally to this work

github.com/trouleau/var-hawkes

Motivation

☐ We want to learn the **causal relationships** in a network of discrete events (time series).

- Multivariate Hawkes Processes (MHPs) are widely used to model mutually exciting patterns in discrete events.
- ☐ But experimental data might be scarce...

Question: How to identify the causal structure of the network when only small data is available?

Model

☐ A Multivariate Hawkes Process is a point process with intensity

$$\lambda_i(t) = \mu_i + \sum_{j=1}^{D} \int_0^t \phi_{ij}(t-\tau) dN_j(\tau).$$

Exogenous intensity:
constant, independent of
the past

Endogenous intensity:
due to excitation from past
events, with excitation kernel

Contribution

- We model the parameters of an MHP as latent variables, and we develop a probabilistic interpretation of existing maximum likelihood methods.
- We assume that each latent variable is sampled from its own prior with some unknown hyper-parameter.
- We introduce, VI-MHP, a new Bayesian approach for learning the causal structure of an MHP in the absence of large volume of data. VI-MHP can optimize over thousands of hyper-parameters efficiently.

Classic Maximum Likelihood Estimation Framework

☐ Maximum Likelihood Estimation (MLE):

MLE estimates the parameters of the model by maximizing the log-likelihood of a sequence ${\cal S}$ w.r.t. the parameters with a regularization term ${\cal R}$

$$\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{W}} = \underset{\boldsymbol{\mu} \geq 0, \boldsymbol{W} \geq 0}{\operatorname{argmin}} - \log p(\mathcal{S}|\boldsymbol{\mu}, \boldsymbol{W}) + \frac{1}{\alpha} \mathcal{R}(\boldsymbol{\mu}, \boldsymbol{W}).$$

Challenges

- Small data amplifies the risk of overfitting.
- •It is desirable to control the effect of the penalty with an independent hyper-parameter for each of the MD^2+D parameters.

But finding all of them with grid-search requires exponentially many grid points... Impractical!

Variational EM for Multivariate Hawkes Processes

☐ Bayesian framework:

Challenges

intractable.

parameters.

Parameters are assumed to be random variables drawn from a prior $p_{\alpha}(\mu, W)$. The goal is to find the posterior $p_{\alpha}(\mu, W|\mathcal{S})$ over the parameters.

Computing the posterior is computationally

• Finding priors, i.e., tuning hyper-parameters lpha

with grid search is impossible for ~ 1000 hyper-

Solution

- Use variational inference to estimate the posterior and to find a lower bound on the marginal likelihood.
- Find the MD^2+D hyper-parameters by **maximizing** the variational lower bound on the marginal likelihood w.r.t. the hyper-parameters.
- \Box Variational Inference (VI) approximates the posterior by a variational distribution $q_{\gamma}(\mu, W)$ parameterized by the variational parameters γ .
- Ul finds the best γ by minimizing the KL-divergence between the variational distribution $q_{\gamma}(\mu, W)$ and the posterior $p_{\alpha}(\mu, W|\mathcal{S})$, which is equivalent to maximizing the ELBO

 $\mathsf{ELBO}(q_{\gamma}, \boldsymbol{\alpha}) = \mathbb{E}_{q_{\gamma}} \left[\log p_{\boldsymbol{\alpha}}(\boldsymbol{\mu}, \boldsymbol{W}, \mathcal{S}) \right] - \mathbb{E}_{q_{\gamma}} [\log q_{\gamma}(\boldsymbol{\mu}, \boldsymbol{W})].$

The ELBO is a lower bound on the marginal likelihood ELBO $(q_{\gamma}, \alpha) \leq \log p_{\alpha}(\mathcal{S})$.

- \Box We maximize the ELBO over both γ and α to increase the marginal likelihood of the data.
- □ Since the parameters are non-negative, we use a log-normal distribution as the variational distribution to approximate the posterior.
- By interpreting regularization terms as unnormalized priors, we can choose priors that retain the desired properties of common penalties.

Variational EM Algorithm

until convergence do

- **E-step:** Maximize the ELBO w.r.t. γ .
- M-step: Maximize the ELBO w.r.t. α with a closed-form solution (which depends on the choice of prior).

done

Output: The variational parameters γ .

Experimental Results

☐ Experiments on Synthetic data

Data

Epidem

☐ Experiments on real dataset

Predictive log-likelihood for the models learned on several datasets with different number of events and dimentions.

Dataset	Statistics		Averaged predictive log-likelihood			
	$\#\dim(D)$	#events (N)	VI-SG	MLE-SGLP	VI-EXP	MLE-ADM4
Epidemics	54	5349	-2,06	-3,03	-4,31	-4,61
Stock market	12	7089	$-1,\!00$	$-2,\!45$	$-2,\!82$	$-2,\!81$
Enron email	143	74294	-0,42	-1,01	$-0,\!23$	-0,40

Performance measured with respect to the number of training samples (averaged over 10 simulated observations over 30 random graphs, with D=50 fixed).