Math 240 Quiz 7 (5.5,6.1,6.2)

Class time:

NetID: _____

neck

Instructions: Calculators, course notes and textbooks a answers MUST be exact; e.g., you should write π instead of 0.3333 Explain your reasoning using complet and punctuation. Show ALL of your work! You have 20 minutes.	ead of 3.14, $\sqrt{2}$ instead of 1.414, and $\frac{1}{3}$
Question 1 (3 points). Find a matrix C of the form $\begin{bmatrix} a \\ b \end{bmatrix}$ real entries, such that $PCP^{-1} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$	
$\det \begin{bmatrix} 1-\lambda & 8 \\ -2 & 1-\lambda \end{bmatrix} = (1-\lambda)^2 + 16 = 0$	$= \lambda = 1 \pm 4 i$
we find eigenvector for h=1-4	2 -217
$\begin{bmatrix} 1 - (1 - 4i) \\ -2 \end{bmatrix} = \begin{bmatrix} i \\ 1 - (1 - 4i) \end{bmatrix}$	
$\begin{bmatrix} 4i & 8 \\ -2 & 4i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 = >$	x,=21×2
$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = X_2 \begin{bmatrix} 2i \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2i \\ 1 \end{bmatrix}$ $C = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	is an eigenvaltor for 1-40 and Part of 2]
therefore $C = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ $PC = \begin{bmatrix} 8 & 2 \\ 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ -2 & 1 \end{bmatrix}$	

Question 2 (3points). Find a basis for W^{\perp} where W is

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$
Let $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then $(R \circ \omega) A$ $= Nul A$

$$\begin{bmatrix} x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
 in Nul $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then $(R \circ \omega) A$ $= Nul A$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = X_1 = X_2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = X_2 \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} + X_4 \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

$$Nul A = \operatorname{Span} \left\{ \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$

$$Nul A = \operatorname{Span} \left\{ \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \right\}$$

Question 3 (4 point). Mark each statement True, False. Justify your answer.

i. Let U and V be $n\times n$ orthogonal matrices. Then UV is invertible.

ii. A square matrix with orthonormal rows is an orthogonal matrix.

iii. Let $u = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$ and $y = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Let $L = \text{Span}\{u\}$, then the distance from u to L is 4.

iv. The matrix
$$\begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$$
 preserve the length of any vector in \mathbb{R}^2 .

False
$$\begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = \begin{bmatrix} 1 \\ 3 & 1 \end{bmatrix}$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = \begin{bmatrix} 1 \\ 3 & 1 \end{bmatrix}$$