Optical Properties

Instructor: Prof. Bishakh Bhattacharya

Dept. of Mechanical Engineering

IIT Kanpur

India

E-mail : bishakh@iitk.ac.in

Contents

- 1) Basic concepts
- 2) Optical properties of metals
- 3) Optical properties of non-metals
- 4) Applications of optical phenomenon

The Electromagnetic Spectrum

Increasing
Photon
Energy (eV)

Color & Energy
Violet ~ 3.17eV
Blue ~ 2.73eV
Green ~ 2.52eV
Yellow ~ 2.15eV
Orange ~ 2.08eV
Red ~ 1.62eV

Smart Materials Structures and Systems
Laboratory
IIT Kanpur

Electromagnetic Radiation

■ <u>Each electromagnetic radiation</u> is characterized by a <u>combination</u> of a time-varying electric field (E) & a time-varying magnetic field (H) propagating through space and having specific range of wavelengths.

 \Box All electromagnetic radiation traverses a **vacuum** at the **same velocity** (3 x 10⁸ m/s).

$$Velocity, c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$$

 ϵ_o = Electric permittivity of vacuum = 8.854 x 10⁻¹² Farad/meter μ_o = Magnetic permittivity of vacuum = 1.257 x 10 ⁻⁶ Henry/meter

Energy,
$$E = h\vartheta = h\frac{c}{\lambda}$$

h = Planck's constant = $6.634 \times 10^{-34} \text{ J-s}$

 θ = Frequency (Hz or s⁻¹)

 λ = Wavelength (m)

C = velocity (m/s)

Reference: W.D Callister, 7 Ed.

Light Interactions with Solids

• Incident light is reflected, absorbed, scattered, and/or transmitted.

Optical classification of materials:

Reference: W.D Callister, 7 Ed.

Optical properties – Metals

- All frequencies of visible light are absorbed by metals because of the continuously available empty electron states, which permit electron transitions.
- The incident radiation having frequencies within the visible range excites electrons into unoccupied energy states above the Fermi energy. So, the incident radiation is absorbed. Hence metals are opaque.
- The Fermi energy is the maximum energy occupied by an electron at OK.
- The change in energy of the electron ΔE is equal to the energy of the photon.
- Reemission of a photon of light takes place by the direct transition of an electron from a high to a low energy state.
- **Metals are opaque** to **low frequency** radiation (radiowaves to about some middle of UV rays).
- **Metals** are **transparent** to **high frequency** (x-ray and γ-ray) radiation.

Photon absorption

Photon Reemission

Optical Properties of Metals: Absorption

Photons are absorbed by electron transitions.

- Unfilled electron states are adjacent to filled states
- Near-surface electrons absorb visible light.

Optical Properties of Metals: REFLECTION

- Most of the absorbed radiation is reemitted from the surface in the form of visible light of the same wavelength, which appears as reflected light.
- Electron transition from an excited state produces a photon.

• Metals Reflectivity = I_R/I_0 is between 0.90 and 0.95.

Optical Properties of Non-metals

With regard to non-metals all four optical phenomenon are important:

- Refraction
- Reflection
- Absorption
- Transmission

Refraction

 When light photons are transmitted through a material, they causes polarization of the electrons and in turn the speed of light is reduced and the beam of light changes direction.

Vacuum

Refraction of Light

Medium 1

Medium 2

Glass

Refractive Index,
$$n = \frac{Speed\ of\ light\ in\ a\ vacuum\ (c)}{Speed\ of\ light\ in\ a\ Medium\ (v)}$$

Speed of light in a Medium
$$(v) = \frac{1}{\sqrt{\in \mu}}$$

where, \in and μ are the permittivity and permeability of the medium.

$$n = \frac{c}{v} = \frac{\sqrt{\in \mu}}{\sqrt{\epsilon_o \mu_o}} = \sqrt{\epsilon_r \mu_r}$$

where, ϵ_r and μ_r are the relative permittivity and permeability of the medium.

Using **Snell's law**

$$n_1 sin\theta_i = n_2 sin\theta_r$$

Refractive Index

Material	Average Index of Refraction
Ceramics	
Silica glass	1.458
Borosilicate (Pyrex) glass	1.47
Soda-lime glass	1.51
Quartz (SiO ₂)	1.55
Dense optical flint glass	1.65
Spinel (MgAl ₂ O ₄)	1.72
Periclase (MgO)	1.74
Corundum (Al ₂ O ₃)	1.76
Polymers	
Polytetrafluoroethylene	1.35
Polymethyl methacrylate	1.49
Polypropylene	1.49
Polyethylene	1.51
Polystyrene	1.60

Reference: W.D Callister, 7 Ed.

Reflection

Reflectivity is defined as fraction of light reflected at an interface.

$$R = \frac{I_R}{I_o}$$

• If the light is normal (or perpendicular) to the interface, then

$$R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

Where n₁ and n₂ are the refractive indices of two media

- Higher the refractive index of the solid, the greater is the reflectivity.
- In **metals**, the reflectivity is typically on the order of **0.90-0.95**, whereas for **glasses** it is close to **0.05**.
- The high reflectivity of metals is one reason that they are opaque.

Absorption

 When a light beam in impinged on a material surface, portion of the incident beam that is not reflected by the material is either absorbed or transmitted through the material.

The amount of light absorbed by a material is calculated using **Beer's Law**

$$I_T = I_0 e^{-\beta \ell}$$

 β = absorption coefficient, cm⁻¹ ℓ = sample thickness, cm I_0 = incident light intensity I_0 = transmitted light intensity

$$I_0 = I_T + I_A + I_R$$

• Materials that have large β values are considered to be highly absorptive.

Absorption mechanisms

Rayleigh scattering:

- Photon interacts with the electrons, it is deflected without any change in its energy.
- Example Blue color in the sunlight gets scattered more than other colors in the visible spectrum and thus making sky look blue.

Tyndall effect

- Scattering occurs from particles which are much larger than the wavelength of light.
- Example Clouds look white.

Compton scattering

 Interacting photon knocks out an electron loosing some of its energy during the process.

<u>Photoelectric effect</u>

When photon energy is consumed to release an electron from atom nucleus.

Transmission

 Fraction of light beam that is not reflected or absorbed is transmitted through the material.

$$I_T = I_o (1 - R)^2 e^{-\beta l}$$

Applications of Optical Phenomena

1. Luminescence

- ✓ It is the process where a material absorbs energy and then immediately emits visible radiation.
- ✓ It consists of electron excitation and then dropping down to lower energy states.
- ✓ If the emission of radiation occurs within 10⁻⁸ sec after excitation, the luminescence is called Fluorescence, and if it takes longer than 10⁻⁸ sec, it is known as Phosphorescence.
- ✓ Ordinarily pure materials do not display this phenomenon but some special materials called **Phosphors** have this capacity, such as $BaMgAl_{10}O_{17}$, Y_2O_3 , ZnS, CdS.

✓ Applications: Fluorescent lamps, CRT (Cathode ray tube), plasma video display screens, white LEDs.

2. Photo-conductivity

- Bombardment of semiconductors by photons, with energy equal to greater than the band gap, may result in creation of electron-hole pairs that can be used to generate current. This process is called Photoconductivity.
- It is different from photo-electric effect in the sense that an electron-hole pair is generated whose energy is related to the band gap energy instead of free electron alone whose energy is related to the Fermi level.
- The current produced in photo-conductivity is directly related to the incident light intensity.
- This phenomenon is utilized in photographic light meters. Cadmium sulfide (CdS) is commonly used for the detection of visible light, as in light meters.
- Solar cells are also based on Photoconductivity.

Photographic light meters

Solar cells

3. Lasers

- Laser: Light Amplification by Stimulated Emission of Radiation.
- Unlike luminescence, which produce incoherent light, the light produced by **laser emission** is **coherent** (constant phase difference and the same frequency).
- This is based on the fact that in certain materials, electrons excited by a stimulus produce photons which in turn excite additional photons of identical wavelength.
- Example **Ruby** (Single crystal of Al_2O_3 doped with little amount of Cr_2O_3); Yttrium aluminium garnet ($Y_3Al_5O_{12}$ **YAG**) doped with neodymium, Nd; **He-Ne laser**; some semiconductors like GaAs and InGaAsP.
- Applications welding, metal cutting, heat treatment, surgery, reading compact disks, etc.

Reference: W.D Callister, 7 Ed.

Smart Materials Structures and Systems
Laboratory
IIT Kanpur

Image: Wikipedia

In the **next lecture**, we will study another application:

- ✓ Optical fibres
- ✓ Its principle, types and applications

