ИДЗ 19.2 Вариант 15 Рязанов Д.В ИСУ 367522

Дана таблица распределения 100 автомашин по затратам на перевозки X (ден. ед.) и по протяженности маршрутов перевозок Y (км). Известно, что между X и Y существует линейная корреляционная зависимость. Требуется:

- а) Найти уравнение прямой регрессии у и х;
- b) Построить уравнение эмпирической линии регрессии и случайные точки выборки (X, Y)

Y X	1200	2700	4200	6700	8200	9700	11200	12700	$m_{_{\chi}}$
20	4	2	5	-	ı	ı	-	-	11
520	-	ı	7	5	2	ı	-	-	14
1020	-	ı	-	9	14	6	-	-	29
1520	-	-	-	7	8	6	-	-	21
2020	-	ı	-	-	4	5	7	-	16
2520	-	-	-	-	-	3	2	4	9
m_y	4	2	12	21	28	20	9	4	100

Решение:

Для подсчета числовых характеристик (выборочных средних \overline{x} и \overline{y} , выборочных средних квадратичных отклонений S_x и S_y и выборочного корреляционного момента S_{xy}) составляем расчетную таблицу.

Вычисляем выборочные средние \overline{x} и y:

$$\overline{x} = \frac{\sum \sum m_{ij} x_i}{n} = \frac{\sum m_{x_i} x_i}{n} = 1240$$

$$\overline{y} = \frac{\sum m_{y_j} y_j}{n} = 7765$$

Выборочные дисперсии находим по формулам:

$$s_x^2 = \frac{1}{n-1} \left(\sum m_{x_i} x_i^2 - \frac{1}{n} \left(\sum m_{x_i} x_i \right)^2 \right) = 511600$$

$$s_y^2 = \frac{1}{n-1} \left(\sum m_{y_i} y_i^2 - \frac{1}{n} \left(\sum m_{y_i} y_i \right)^2 \right) = 6838275$$

CKO

$$S_{x} = 715,26$$

$$S_y = 2615,01$$

X					Y			
	1200	2700	4200	6700	8200	9700	11200	12700
20	96000	108000	420000	0	0	0	0	0
520	0	0	152880 00	_	8528000	0	0	0
1020	0	0	0	61506 000	1170960 00	59364000	0	0
1520	0	0	0	71288 000	9971200 0	88464000	0	0
2020	0	0	0	0	6625600	97970000	158368000	0
2520	0	0	0	0	0	73332000		128016000

Корреляционный момент вычисляем по формуле:

$$S_{xy} = \frac{1}{n-1} \left(\sum \sum m_{ij} x_i y_j - \frac{1}{n} \left(\sum m_{x_i} x_i \right) \left(\sum m_{y_j} y_j \right) \right) = 11196800$$

Оценкой теоретической линии регрессии является эмпирическая линия регрессии, уравнение которой имеет вид

$$y = \overline{y} + r_{xy} \frac{S_y}{S_x} (x - \overline{x}),$$

$$r_{xy} = \frac{s_{xy}}{s_x s_y} = 0.84$$

Составляем уравнение эмпирической линии регрессии y на x:

$$y=3,07*(x-1240)+7765=3,07*x+3964,05$$

