Modèle

•
$$G = (V, E)$$

•
$$V = \{1, ..., n\}$$

• Caractéristiques : $(X_i)_{1 \le i \le n}$

Objectif : regrouper par similarité suivant les caractéristiques

Formulation du problème

Problème :

$$\min_{P \in \mathcal{P}} w(P) = \frac{1}{n^2} \sum_{1 \le i,j \le n} D(X_i, X_j) \Phi_P(X_i, X_j)$$

- D : mesure de dissimilarité
- $ightharpoonup \mathcal{P}$: ensemble des partitions admissibles
- $ightharpoonup \Phi_P$: indicatrice de *cluster*
- Contraintes supplémentaires :
 - Distribution du calcul
 - ightharpoonup Certains $D(X_i, X_j)$ sont inaccessibles

- dispose de l'information A_i
- \bullet effectue une estimation P_i

- dispose de l'information A_i
- effectue une estimation P_i
- reçoit les estimations de ses voisins

- dispose de l'information A;
- effectue une estimation P_i
- reçoit les estimations de ses voisins

Le nœud i:

- dispose de l'information A_i
- effectue une estimation P_i
- reçoit les estimations de ses voisins
- transmet son estimation à ses voisins

2 juin 2014

3 / 6

- dispose de l'information A_i
- effectue une estimation P_i
- reçoit les estimations de ses voisins
- transmet son estimation à ses voisins

Le nœud i:

- dispose de l'information A;
- effectue une estimation P_i
- reçoit les estimations de ses voisins
- transmet son estimation à ses voisins

Nombreuses variantes possibles :

- Transmission de l'information
 - synchrone/asynchrone
 - stochastique/totale
- Limitation du volume de données transmises.
- Graphe dynamique
- Données dynamiques

Exemple: K-means

K-means:

explications k-means

4 / 6

K-means par gossip

Estimation

• Pour $P \in \mathcal{P}$, on aimerait calculer :

$$w(P) = \frac{1}{n^2} \sum_{1 \leq i,j \leq n} D(X_i, X_j) \Phi_P(X_i, X_j)$$

- Problème : certains $D(X_i, X_i)$ inaccessibles
- Idée : estimer $f: x \mapsto \mathbb{E}\left[D(x, X)\Phi_P(x, X)\right]$

6 / 6