با استفاده از روش انتگرال گیری با استفاده از نمونه گیری برای حل انتگرال زیر که به صورت زیر در wolfram حل شده است , داریم:

$$\int_0^2 \exp(-x^2) \, dx = \frac{1}{2} \, \sqrt{\pi} \, \, \operatorname{erf}(2) \approx 0.882081$$

نمونه گيري:

$$I = (b-a) < f >$$
. $< f > = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$.

که xi با استفاده از رندوم ژنراتور کامپیوتر به دست می آید.

انتگرال گیری هوشمند با استفاده از تابع $g(x) = \exp(-x)$ میتوانیم اعداد رندومی به صورت $yi = -\ln(xi)$ بسازیم که مانند این توزیع رفتار کنند xi با استفاده از رندوم ژنراتور کامپیوتر به دست می آید) و با استفاده از روش انتگرال گیری هوشمند داریم :

$$I = \left(\int_{-\infty}^{\infty} g(x) dx \right) < \frac{f}{g} >_{g(x)}$$
 $< \frac{f}{g} >_{g(x)} = \frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{g(x_i)}$

$$\int_0^2 \exp(-x) \, dx = 1 + \sinh(2) - \cosh(2) \approx 0.86466$$

$$\Delta = rac{\sigma}{\sqrt{n}}$$
 برای اندازه گیری خطا نیز داریم :

با توجه به توضيحات بالا نتايج چنين حاصل شد:

n	هوشمند	خطا	زمان	خطا	نمونه برداري	خطا نمونه	زمان	خطا نمونه
		هوشمند	اجرا	هوشمند با		بر داری	اجرا	برداری با
				مقدار			نمونه	مقدار
				واقعى			برداری	واقعى
100,000	0.8826731	0.000970	s8.80	0.00061	0.8803111	0.0010899	s4.52	0.001749
10,000	0.880430	0.000981	s 1.05	0.00163	0.8671968	0.0010940	s 0.621	0.014864
1000,000	0.882161	0.00097	1':16"	0.00011	0.883468	0.000344	44.43	0.001407

با توجه به جدول بالا با تکرار بیشتر جواب به مقدار واقعی در هر دو روش نزدیک کیشود. اما دقت روش هوشمند بیشتر از روش نمونه برداری با این حال که در مدت زمان بیشتری اجرا می شود.