Theoretische Informatik: Blatt 7

 Abgabe bis 9. Oktober 2015 Assistent: Sacha Krug, CHN D $42\,$

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 19

Aufgabe 20

(a) $e(n) = 2^n$

- 1. Gehe auf Band 1 nach links bis ¢.
- 2. Gehe auf Band 2 nach links bis ¢
- 3. Lies Zeichen auf Band 1. Schreibe für jede gelesene 0 auf Band 1 00 auf Band 2. Für ein _ schreibe ein _.
- 4. Gehe auf Beiden Bändern nach links und kopiere Inhalt von Band 2 auf Band 1 einschließlich bis Zeichen ...
- 5. Rücke mit Lesekopf nach rechts.

Das Ergebnis steht dann auf $Band\ 2$ bis zum ersten \Box .

Auf diese Art generieren wir 2^n 0en. Für n 0en der Eingabe lesen wir pro Schritt 2^i Nullen. Das schreiben geschieht jeweils in $\mathcal{O}(1)$.

$$\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2 \in \mathcal{O}(2^{n})$$

Folglich ist e(n) zeitkonstruierbar.

(b) $f(n) = fib_n$

Wir konstruieren ein 3-Band Turingmaschine M. M bekommt als Eingabe das Wort 0^n auf Band 0. Wir unterscheiden mehrere Eingaben w.

Fall 1 $w = \lambda$

In diesem Fall ist n = 0. M schreibt 0 auf Band 1 und hält.

Fall 2 w = 0

In diesem Fall ist n = 1. M schreibt 1 auf Band 1 und hält.

Fall 3 $|w| = n, n \ge 2$ Der Lesekopf auf Band 0 liegt auf der dritten 0.

- 1. M schreibt λ auf B and 1 und 0 auf B and 2.
- 2. M löscht B and 3 und schreibt zuerst alle 0en von B and 1 und dann alle 0en von B and 2 auf B and 3.
- 3. Der Lesekopf für $Band \ \theta$ geht nach rechts. Liest er dort \$ ist auf $Band \ 3$ das Ergebnis und M hält. Ansonsten kopiert M den Inhalt von $Band \ 2$ auf $Band \ 1$ und den von $Band \ 3$ auf $Band \ 2$. Dann wird zu Schritt 2. gesprungen.

ANALyse fehlt noch.

Aufgabe 21

Wir wissen: $f: \mathbb{N} \to \mathbb{N}$, $q: \mathbb{N} \to \mathbb{N}$ und f und g sind beide platzkonstruierbar.

 $\Rightarrow \text{ Es gibt 1-Band-Turing$ $maschinen } F \text{ und } G \text{, so dass} \quad \frac{\operatorname{Space}_F(n_1) \leq f(n_1)}{\operatorname{Space}_G(n_2) \leq g(n_2)} \quad \forall n_1, n_2 \in \mathbb{N}$ und für jede Eingabe 0^{n_1} generiert F das Wort $0^{f(n_1)}$ auf ihrem Arbeitsband und hält in Zustand q_{accept} . Sei nun H eine 1-Band-Turingmaschine mit Eingabe mit Arbeitsalphabet $\Gamma_F \times \Gamma_G \cup \Gamma_F \cup \Gamma_G$ und Eingabe 0^n .

H simuliert nun die Arbeit von F auf folgende Weise:

Ist der Lesekopf des Arbeitsbandes auf dem Symbol $\binom{\alpha}{\beta}$ simuliert M F so als würde F α lesen. Schreibt F ein neues Zeichen α' , schreibt H $\binom{\alpha'}{\beta}$ auf das Band.

Sobald F gehalten hat, fährt H mit Éingabe- und Arbeitsbandkopf nach links auf φ .

Anschließend simuliert H, G auf gleiche Art wie F.

Für $\binom{\alpha}{\beta}$ wird β gelesen, und für β' wird an der gleichen Stelle $\binom{\alpha}{\beta'}$ geschrieben.

 ${\cal H}$ wandelt nun die das Band von der Form

$$\varphi\left(\begin{smallmatrix}0\\0\end{smallmatrix}\right)\left(\begin{smallmatrix}0\\0\end{smallmatrix}\right)\cdots\left(\begin{smallmatrix}0\\0\end{smallmatrix}\right)\left\{\left\{\left(\begin{smallmatrix}0\\0\end{smallmatrix}\right)\right\}^*,\,\left\{\left(\begin{smallmatrix}0\\-\end{smallmatrix}\right)\right\}^*\right\}$$

Schrittweise (ab φ nach rechts) um in $\varphi 0^i$, $i \in \mathbb{N}$, wie folgt:

- 1. Ist Zeichen der Form $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, ersetze durch 0 und ersetze erstes \Box durch eine 0.
- 2. Ist Zeichen der Form (5) oder (6) ersetze mit 0.

Wiederhole Schritte bis Kopf Zeichen _ liest. Dann akzeptiere.

Es steht nun genau $f(n) \cdot g(n) := h(n)$, ('·' ist Konkatenation) auf dem Band und der benutzte Platz während der Berechnung der Simulation der beiden Turingmaschinen ist Space_H = $\max\{|f(n)|, |g(n)|\}$ und nach dem Schreiben des Ergebnisses Space_H = |f(n)| + |g(n)| = |h(n)|.

 $\Rightarrow H$ ist platzkonstruierbar.