Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 Постановка задачи	
2 Метод решения	
3 Описание алгоритма	
4 Блок-схема алгоритма	12
5 Код программы	
6 Тестирование	18
ЗАКЛЮЧЕНИЕ	20
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	21

1 ПОСТАНОВКА ЗАДАЧИ

Разработать систему, которая демонстрирует реализацию принципа полиморфизма при иерархическом конструировании объекта.

Спроектировать 4 разных объекта. Перенумеровать классы их принадлежности от 1 до 4. Каждый объект имеет свойство целочисленного типа в закрытом доступе. Это свойство хранит значение коэффициента многочлена, соответствующее номеру класса. Его значение определяется в конструкторе объекта, посредством значений параметра целочисленного типа.

У каждого объекта есть метод в открытом доступе, с одинаковым наименованием. У этого метода есть один целочисленный параметр, который содержит значение переменной многочлена. Метод вычисляет значение многочлена степени согласно номеру класса принадлежности объекта и возвращает полученный целочисленный результат.

Сконструировать иерархию вложенных объектов (наследственность объектов). Объект второго класса содержит в своем составе объект первого класса. Объект третьего класса содержит в своем составе объект второго класса. Объект четвертого класса содержит в своем составе объект третьего класса. Обеспечить передачу необходимых коэффициентов конструкторам объектов согласно наследственности.

Алгоритм конструирования и отработки системы:

- 1. Объявляется указатель на объект первого класса.
- 2. Объявляются четыре целочисленные переменные a1, a2, a3 a4, значения которых соответствуют коэффициентам многочлена (a1*x + a2*x*x + a3*x*x*x + a4*x*x*x*x).
 - 3. Объявляется целочисленная переменная х, для хранения значения

переменной многочлена.

- 4. Объявляется целочисленная переменная i_class, для хранения значения номера класса.
 - 5. Вводятся значения переменных а1, а2, а3, а4.
- 6. Создается объект класс 4 посредством параметризированного конструктора, которому передаются в качестве аргументов a1, a2, a3 a4. Адрес объекта присваивается объявленному указателю.
 - 7. Начало цикла
 - 7.1. Вводится значение переменной х.
 - 7.2. Если значение х равно нулю, то цикл завершается.
 - 7.3. Иначе, вводится значение номера класса.
- 7.4. Согласно номеру класса, вызывается метод вычисления многочлена посредством объекта, который соответствует номеру класса и полученный результат выводится.
 - 8. Конец цикла.
 - 9. Завершается работа системы.

При сдаче задания пояснить правила использования указателя на объект родительского класса.

1.1 Описание входных данных

Первая строка:

«целое число, значение a1» «целое число, значение a2» «целое число, значение a3» «целое число, значение a4»

Начиная со второй строки, построчно:

«целое число, значение х» «целое число, номер класса»

1.2 Описание выходных данных

Первая строка:

a1 = «целое число» a2 = «целое число» a3 = «целое число» a4 = «целое число»

Наименование коэффициента отделяется от предыдущего целого числа четырьмя пробелами.

Со второй строки и далее построчно:

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект cl1 класса Class1 предназначен для;
- оператор static_cast для преобразований между типами;
- библиотека iostream;
- арифметические операторы;
- цикл с постусловием while;
- конструкция switch-case;
- объекты стандартного потока ввода/вывода данных cin/cout.

Класс Class1:

- свойства/поля:
 - о поле коэффициент многочлена:
 - наименование k1;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод Class1 конструктор;
 - о метод calculate вычисление значения многочлена.

Класс Class2:

- свойства/поля:
 - о поле коэффициент многочлена:
 - наименование k2;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод Class2 конструктор;

о метод calculate — вычисление значения многочлена.

Класс Class3:

- свойства/поля:
 - о поле коэффициент многочлена:
 - наименование k3;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод Class3 конструктор;
 - о метод calculate вычисление значения многочлена.

Класс Class4:

- свойства/поля:
 - о поле коэффициент многочлена:
 - наименование k4;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод Class4 конструктор;
 - о метод calculate вычисление значения многочлена.

Таблица 1 – Иерархия наследования классов

No	Имя класса	Классы-	Модификатор	Описание	Номер
		наследники	доступа при		
			наследовании		
1	Class1				
		Class2	public		2
2	Class2				
		Class3	public		3
3	Class3				

No	Имя класса	Классы-	Модификатор	Описание	Номер
		наследники	доступа при		
			наследовании		
		Class4	public		4
4	Class4				

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Class1

Функционал: Конструктор.

Параметры: целочисленный параметр р1 - коэффициент многочлена при х.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса Class1

N₂	Предикат	Действия	No
			перехода
1		Присвоение полю k1 значения p1	Ø

3.2 Алгоритм метода calculate класса Class1

Функционал: Вычисление значения многочлена.

Параметры: целочисленный параметр х - переменная многочлена.

Возвращаемое значение: целочисленное значение - реультат вычислений.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода calculate класса Class1

N₂	Предикат	Действия	N₂
			перехода
1		Возврат k1 * x	Ø

3.3 Алгоритм конструктора класса Class2

Функционал: Конструктор.

Параметры: целочисленные параметры p1, p2 - коэффициенты многочлена при x.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса Class2

N₂	Предикат	Действия	
			перехода
1		Вызов конструктора родительского класса Class1 с передачей в него	2
		p1	
2		Присвоение полю k2 параметра p2	Ø

3.4 Алгоритм метода calculate класса Class2

Функционал: Вычисление значения многочлена.

Параметры: целочисленный параметр х - переменная многочлена.

Возвращаемое значение: целочисленное значение - реультат вычислений.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода calculate класса Class2

N₂	Предикат	Действия	No
			перехода
1		Возврат k1*x + k2*x*x	Ø

3.5 Алгоритм конструктора класса Class3

Функционал: Конструктор.

Параметры: целочисленные параметры p1, p2, p3 - коэффициенты многочлена при x.

Алгоритм конструктора представлен в таблице 6.

Таблица 6 – Алгоритм конструктора класса Class3

No	Предикат	Действия	No
			перехода
1		Вызов конструктора родительского класса Class2 с передачей в него	2
		p1, p2	
2		Присвоение полю k3 параметра p3	Ø

3.6 Алгоритм метода calculate класса Class3

Функционал: Вычисление значения многочлена.

Параметры: целочисленный параметр х - переменная многочлена.

Возвращаемое значение: целочисленное значение - реультат вычислений.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода calculate класса Class3

N	□ Предикат	Действия	No
			перехода
1		Возврат k1*x + k2*x*x + k3*x*x*x	Ø

3.7 Алгоритм конструктора класса Class4

Функционал: Конструктор.

Параметры: целочисленные параметры p1, p2, p3, p4 - коэффициенты многочлена при x.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса Class4

No	Предикат	Действия	No
			перехода
1		Вызов конструктора родительского класса Class3 с передачей в него	2
		p1, p2, p3	
2		Присвоение полю k4 параметра p4	Ø

3.8 Алгоритм метода calculate класса Class4

Функционал: Вычисление значения многочлена.

Параметры: целочисленный параметр х - переменная многочлена.

Возвращаемое значение: целочисленное значение - реультат вычислений.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода calculate класса Class4

N₂	Предикат	Действия	No	
			перехода	
1		Возврат k1*x + k2*x*x + k3*x*x*x + k4*x*x*x*x	Ø	

3.9 Алгоритм функции main

Функционал: главная функция программы.

Параметры: нет.

Возвращаемое значение: целое число - идентификатор работоспособности программы.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции таіп

N₂	Предикат	Действия	No
			перехода
1		Объявление переменной cl1 типа Class1*	2
2		Объявление целочисленных переменных a1, a2, a3, a4, x, i_class	3
3		Ввод значений а1, а2, а3, а4	4
4		Создание объекта класса Class4 с передачей в конструктор параметров a1, a2, a3, a4 и присваивание указателя на созданный объект переменной cl1	
5		Вывод строки "a1 = ", a1, " a2 = ", a2, " a3 = ",	6

Nº	Предикат	Действия	№ перехода	
		a3, " a4 = ", a4	- F	
6		Присвоение х значения -1	7	
7		Ввод значения х	8	
8	x == 0?		Ø	
		Ввод значения i_class	9	
9		Вывод строки "Class", i_class, " ", "F(", x, ") = "	10	
10	i_class == 1?	class == 1? Вывод результата		
			11	
11	i_class == 2?	Приведение указателя cl1 к указателю на объект	14	
		класса Class2 с помощью оператора static_cast и		
		вывод результата выполнения метода calculate,		
		вызванного у объекта по этому указателю с		
		передачей в него параметра х		
			12	
12	i_class == 3?	Приведение указателя cl1 к указателю на объект	14	
		класса Class3 с помощью оператора static_cast и		
		вывод результата выполнения метода calculate,		
		вызванного у объекта по этому указателю с		
		передачей в него параметра х		
			13	
13	i_class == 4?	Приведение указателя cl1 к указателю на объект	14	
		класса Class4 с помощью оператора static_cast и		
		вывод результата выполнения метода calculate,		
		вызванного у объекта по этому указателю с		
		передачей в него параметра х		
			14	
14		Переход на новую строку	7	

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-7.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

Рисунок 7 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Class1.cpp

Листинг 1 – Class1.cpp

```
#include "Class1.h"
#include <iostream>
using namespace std;

int Class1::calculate(int x){
   return k1*x;
}

Class1::Class1(int p1){
   k1 = p1;
}
```

5.2 Файл Class1.h

Листинг 2 – Class1.h

```
#ifndef __CLASS1__H
#define __CLASS1__H

class Class1 {
   int k1;
   public:
   int calculate(int p1);
    Class1(int a1);
};

#endif
```

5.3 Файл Class2.cpp

Листинг 3 - Class 2.cpp

```
#include "Class2.h"
#include "Class1.h"
#include <iostream>
using namespace std;

int Class2::calculate(int x){
    return Class1::calculate(x) + k2*x*x;
}

Class2::Class2(int a1, int a2) : Class1(a1){
    k2 = a2;
}
```

5.4 Файл Class2.h

Листинг 4 – Class2.h

```
#ifndef __CLASS2__H
#define __CLASS2__H
#include "Class1.h"

class Class2: public Class1 {
    int k2;
    public:
       int calculate(int x);
       Class2(int a1, int a2);
};

#endif
```

5.5 Файл Class3.cpp

Листинг 5 - Class3.cpp

```
#include "Class3.h"
#include "Class2.h"
#include "Class1.h"
#include <iostream>
using namespace std;
```

```
int Class3::calculate(int x){
    return Class2::calculate(x) + k3 *x *x *x;
}

Class3::Class3(int a1, int a2, int a3) : Class2(a1, a2){
    k3 = a3;
}
```

5.6 Файл Class3.h

Листинг 6 – Class3.h

```
#ifndef __CLASS3__H
  #define __CLASS3__H
  #include "Class2.h"

class Class3: public Class2 {
    int k3;
  public:
    int calculate(int x);
    Class3(int a1, int a2, int a3);
};

#endif
```

5.7 Файл Class4.cpp

Листинг 7 – Class4.cpp

```
#include "Class4.h"
#include "Class3.h"
#include "Class2.h"
#include "Class1.h"
#include <iostream>
using namespace std;

int Class4::calculate(int x){
    return Class3::calculate(x) + k4 *x *x *x *x;
}

Class4::Class4(int a1, int a2, int a3, int a4) : Class3(a1, a2, a3){
    k4 = a4;
}
```

5.8 Файл Class4.h

Листинг 8 – Class4.h

```
#ifndef __CLASS4__H
  #define __CLASS4__H
  #include "Class3.h"

class Class4: public Class3 {
    int k4;
  public:
    int calculate(int x);
    Class4(int a1, int a2, int a3, int a4);
};

#endif
```

5.9 Файл таіп.срр

Листинг 9 – таіп.срр

```
#include <iostream>
#include "Class1.h"
#include "Class2.h"
#include "Class3.h"
#include "Class4.h"
using namespace std;
int main()
  Class1* cl1;
  int a1, a2, a3, a4, x, i_class;
  cin >> a1 >> a2 >> a3 >> a4;
  cl1 = new Class4(a1, a2, a3, a4);
  cout << "a1 = " << a1 << " a2 = " << a2 << " a3 = " << a3 << "
                                                                 a4
= " << a4 << endl;
  x = -1;
  while (true) {
    cin >> x;
    if (x == 0){
       break;
    } else {
       switch (i_class){
```

```
case 1:
              cout << cl1->calculate(x);
              break;
           case 2:
              cout << static_cast<Class2*>(cl1)->calculate(x);
              break;
           case 3:
              cout << static_cast<Class3*>(cl1)->calculate(x);
              break;
           case 4:
              cout << static_cast<Class4*>(cl1)->calculate(x);
              break;
        cout << endl;</pre>
      }
  return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные		Фактические выходные данные	
4 2 3 4 2 4 2 3 0	a1 = 4 a3 = 3 Class 4 104 Class 3	a2 = 2 a4 = 4 F(2) = F(2) =	a1 = 4 a3 = 3 Class 4 104 Class 3	a2 = 2 $a4 = 4$ $F(2) = 0$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).