Mathématiques

Henri LEFEBVRE

18 octobre 2017

Table des matières

1	Ana	$ m alyse~dans~\mathbb{R}~(MT90/MT91/MT12)$	2
	1.1	Propriétés de $\mathbb R$	2
	1.2	Suites réelles $\mathbb{N} \to \mathbb{R}$	3
	1.3	Fonctions réelles $\mathbb{R} \to \mathbb{R}$ (généralités)	4
	1.4	Dérivation	4
	1.5	Théorie de la mesure	5
		1.5.1 Généralités	5
		1.5.2 Exemples de mesures	6
	1.6	Intégration	6
		1.6.1 Définitions	6
		1.6.2 Propriétés	7
		1.6.3 Convergence	8
		1.6.4 Intégrale de Riemann-Stieltjes	G
		1.6.5 Fonctions définies par une intégrale	G
		1.6.6 Introduction au calcul des variations	10
	1.7	Séries dans $\mathbb R$	10
		1.7.1 Généralités	10
		1.7.2 Séries de Taylor	11
		1.7.3 Séries de Fourier	12
	1.8	Le corps $\mathbb C$	13
	1.9	Distributions	14
		1.9.1 Fonctions test ou de base : \mathcal{D}	14
		1.9.2 Distributions: \mathcal{D}'	14
	1.10	Convolution	14
		1.10.1 Convolution de fonction	14
		1.10.2 Convolution de suite	14
		1.10.3 Convolution de distribution et algèbre dans \mathcal{D}'_+	15
	1.11	Transformées de Fourier	15
	1.12	Transformées de Laplace	15
2	Ana	$ ext{alyse dans } \mathbb{R}^n \; ext{(MT22)}$	16
3	Alge	èbre linéaire (MT23)	17
4	Ana	dyse numérique (MT09)	18
5	Stat	cistiques (SY02)	19
6	Opt	imisation (RO04)	20
7	For	mulaires	91

Analyse dans \mathbb{R} (MT90/MT91/MT12)

1.1 Propriétés de \mathbb{R}

Structure : $(\mathbb{R}, +, \dot)$ est un corps ordonné

Formule du binôme :

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \text{ avec } \binom{n}{k} = \frac{n!}{k!(n-k)!}, \forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}$$

Produit scalaire : $\langle x, y \rangle = xy, \forall x, y \in \mathbb{R}$

Norme (\mathbb{R}) (valeur avsolue) : $\mathbb{R} \to \mathbb{R}_+, x \to |x| = \begin{cases} x & \text{si } x > 0 \\ -x & \text{sinon} \end{cases}$

Positivité: |x| > 0 et $|x| = 0 \Leftrightarrow x = 0$

 ${\bf Homoth\acute{e}tie}\,:|ax|=|a||x|$

Inégalité triangulaire : $|x+y| \le |x| + |y|$ Convergence : $f(x) \longrightarrow l \Leftrightarrow |f(x) - l| \longrightarrow 0$

Intervalles: I est un intervalle si $\forall a, b \in I, a < c < b \Rightarrow c \in I$

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$
$$c \in [a,b] \Leftrightarrow \exists \theta \in [0,1], c = \theta a + (1-\theta)b$$

Densité de \mathbb{Q} :

$$\forall]a,b[\neq\emptyset,\exists\alpha\in\mathbb{Q}\cap]a,b[\text{ et }\exists\beta\in(\mathbb{R}-\mathbb{Q})\cap]a,b[$$

Ensembles bornées : Soit $A \subset \mathbb{R}$

Majoration: $\forall x \in A, x \leq M$ **Minoration**: $\forall x \in A, x \geq m$ **Encadrement**: $\forall x \in A, |x| < M$

Borne supérieur : Plus petit des majorants (s'ils existent)

$$s = \sup A \Leftrightarrow \Big\{ \forall x \in A, x \leq s \quad \forall t < s, \exists x \in A \text{ tel que } t < x \Big\}$$

Droite numérique achevée $:\overline{\mathbb{R}}=\mathbb{R}\cup\{\pm\infty\}$

1.2 Suites réelles $\mathbb{N} \to \mathbb{R}$

Définition : $u : \mathbb{N} \to \mathbb{R}, n \mapsto u_n$

Convergence:

$$(U_n) \longrightarrow l, n \longrightarrow \infty \Leftrightarrow (\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que } \forall n \in \mathbb{N}, n > n_0 \Rightarrow |u_n - l| < \varepsilon)$$

Limite infinie:

$$(U_n) \longrightarrow l, n \longrightarrow \infty \Leftrightarrow (\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \text{ tel que } \forall n \in \mathbb{N}, n > n_0 \Rightarrow u_n > \varepsilon)$$

Convergences connues:

$$\lim_{n \to \infty} \frac{k^n}{n!} = 0; \lim_{n \to \infty} \frac{n^{\alpha}}{k^n} = 0; \lim_{n \to \infty} \frac{(\ln \beta)^{\beta}}{n^{\alpha}} = 0$$

Propriétés de convergence : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ avec $u_n \longrightarrow l$ et $v_n \longrightarrow l'$ quand $n \longrightarrow \infty$

Combinaison : $u_n + \lambda v_n \longrightarrow l + \lambda l'$ quand $n \longrightarrow \infty$

Produit: $u_n v_n \longrightarrow \infty$ quand $n \longrightarrow \infty$

Quotient: Si $l' \neq 0$, $u_n/v_n \longrightarrow l/l'$ quand $n \longrightarrow \infty$

Vers zéro : Si $u_n \longrightarrow 0$ et v_n bornée, alors $u_n v_n \longrightarrow 0$ quand $n \longrightarrow \infty$

Ordre: Si $u_n \leq v_n$ alors $\lim_{n\to\infty} u_n \leq \lim_{n\to\infty} v_n$

Suites adjacentes : (u_n) et (v_n) sont dites adjacentes si et seulement si

$$(u_n)$$
 est croissante; (v_n) est décroissante; $\lim_{n\to\infty}(v_n-u_n)=0$

Suite arithmétique :

Définition récursive : $u_{n+1} = u_n + r$ Définition générale : $u_n = u_0 + nr$

Somme des termes:

$$\sum_{k=0}^{n-1} u_k = n \frac{u_0 + u_{n-1}}{2}$$

Suite géométrique :

Définition récursive : $u_{n=1} = qu_n$ Définition générale : $u_n = q^n u_0$

Somme des termes:

$$\sum_{k=0}^{n-1} u_k = u_0 \frac{1 - q^n}{1 - q}$$

Suites récurrentes : $u_{n+1} = f(u_n)$

Si $\exists l \in \mathbb{R}$ point fixe de f (i.e. f(l) = l) et f contractancte (i.e. f k-lipschitzienne avec 0 < k < 1) alors $(u_n) \longrightarrow l$

1.3 Fonctions réelles $\mathbb{R} \to \mathbb{R}$ (généralités)

Définition : $f : \mathbb{R} \to \mathbb{R}, x \mapsto f(x)$

Image: $\forall A \subset \mathbb{R}, f(A) = \{y | \exists x \in A, y = f(x)\}$

Image réciproque : $f^{-1}(B) = \{x \in D_f | f(x) \in B\}$

Support: supp $\varphi = \overline{\{x | \varphi(x) \neq 0\}}$

 $\textbf{Correspondances}\ : \text{Pour}\ f: E \to F$

 $\mathbf{Surjection}\,: \forall x, x' \in E, f(x) = f(x') \Rightarrow x = x'$

Injection: $\forall y \in F, \exists x \in E \text{ tel que } y = f(x)$

Bijection: $\forall y \in F, \exists ! x \in E \text{ tel que } y = f(x) \text{ (} f \text{ injective et surjective)}$

Composée : $f \circ g(x) = f(g(x))$ Fonction identité : $id : x \mapsto x$

Bijection réciproque : Si f bijective, alors $\exists f^{-1}$ tel que $f \circ f^{-1} = f^{-1} \circ f = id$

Convergence : $f(x) \longrightarrow l, x \longrightarrow a$

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \Omega, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Limite à droite:

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \Omega, a < x < a + \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Caractérisation de la limite (par les suites) :

$$\lim_{x \to a} f(x) = l \Leftrightarrow \left(\forall (x_n)_{n \in \mathbb{N}}, \begin{cases} \lim_{n \to \infty} x_n = a \\ \forall n \in \mathbb{N}, x_n \in \Omega - \{a\} \end{cases} \Rightarrow \lim_{x \to \infty} f(x_n) = l \right)$$

Continuité:

$$\lim_{x \to a} f(x) = f(a)$$

Théorème des valeurs intermediaires (TVI) : Soit $f \in C^0([a,b])$ et $y \in \mathbb{R}$

$$f(a) < y < f(b) \Rightarrow \exists x \in [a,b], f(x) = y$$

Condition de Lipschitz:

$$\exists k \in \mathbb{R}, \forall x, y \in \mathbb{R}, |f(x) - f(y)| < k|x - y|$$

1.4 Dérivation

Dérivabilité : f est dérivable si et seulement si

$$\exists d \in \mathbb{R}$$
, tel que $f(x+h) = f(x) + hd + |h|\epsilon(h)$

Taux de variation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Théorème de Rolle : Soit $f \in C^0([a,b])$

$$f(a) = f(b) \Rightarrow \exists c \in [a, b] \text{ tel que } f'(c) = 0$$

Théorème des accroissements finis : Soit $f \in C^0([a,b])$

$$\exists c \in [a, b] \text{ tel que } f'(c) = \frac{f(b) - f(a)}{b - a}$$

Formule de Leibniz:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

Opérations:

$$(f+\lambda g)'=f'+\lambda g', \lambda\in\mathbb{R}; \ \left(\frac{f}{g}\right)'=\frac{f'g-fg'}{g^2}; \ (f\circ g)'=g'\times(f'\circ g)$$

Fonction réciproque :

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

Dérivées connues :

$$(x^q)' = qx^{q-1}, q \in \mathbb{Z}; (e^x)' = e^x; (\ln|x|)' = \frac{1}{x}; (\cos x)' = -\sin x; (\sin x)' = \cos x; (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

Saut d'une fonction :

$$\sigma_m = f^{(m)}(0^+) - f^{(m)}(0^-), m \ge 0$$

1.5 Théorie de la mesure

1.5.1 Généralités

Fonction indicatrice (ou caractéristique):

$$1_A(x) = \begin{pmatrix} 1 & \text{si } x \in A \\ 0 & \text{si } x \in /A \end{pmatrix}$$

 σ -algèbre (tribu) : Une famille A de sous-ensemble de X est une tribu si :

- 1. $X \in A$
- 2. A est stable par complémentarité
- 3. A est stable par union dénombrable

Espace mesurable: Ensemble muni d'une tribu (X, A)

Tribu borélienne : Plus petite tribu de \mathbb{R} contenant tous les intervalles

Mesure: Une mesure μ sur (X, A) est une application de $A \to [0, \infty]$ telle que

- 1. $\mu(\emptyset) = 0$
- 2. Si $(An)n \ge 1$ est une suite dénombrable de A deux à deux disjointes alors : $\mu\left(\bigcup_{n\ge 1}A_n\right) = \sum_{n>1}\mu(A_n)$ $(\sigma\text{-additivit\'e})$

Espace mesuré : Le triplet (X, A, μ) est appelé un espace mesuré Proposition : soit \bar{x} une tribu de X

- 1. Si $A, B \in \bar{x}$ et $A \subset B$ alors $\mu(A) \leq \mu(B)$
- 2. Si $A_1 \subset A_2 \subset ... \subset A_n \subset ..., A_k \in \bar{x}$ alors $\lim_{n \to \infty} A_n = \bigcup_n A_n$ et $\mu(\bigcup_n A_n) = \lim_{n \to \infty} \mu(A_n)$
- 3. Si $A, B \in \bar{x}$ alors $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$

Ensemble négligeable : A est dit négligeable si $\mu(A) = 0$

Proposition vraie presque partout (pp) : Une proposition est dite vraie (μ -)presque partout sur X si elle est vrai sur X E avec $\mu(E) = 0$

Ensemble de mesure nulle : Un sous-ensemble A de \mathbb{R} est dit de mesure nulle si pour tout $\varepsilon > 0$, il existe une suite d'intervalles ouverts et bornés (I_n) telle que :

- 1. $A \subset \cup_{i \geq 1} I_i$
- 2. $\sum_{i\geq 1} |I_i| < \varepsilon$

Propositions:

- 1. Tout ensemble dénombrable est de mesure nulle
- 2. Si A est de mesure nulle et $B \subset A$, alors B est de mesure nulle
- 3. Si $A \bigcup_{n>1} A_n$ avec chaque A_n de mesure nulle, alors A est de mesure nulle

Fonction mesurable : $f:(X,\bar{x})\to(\mathbb{R},B)$ est mesurable si $f^{-1}(B)\subset\bar{x}$

1.5.2 Exemples de mesures

Mesure de Lebesgue : Il existe une unique mesure λ sur $(\mathbb{R}, B(\mathbb{R}))$ telle que $\forall I = [a, b]$ borné, $\lambda([a, b]) = \lambda([a, b]) = b - a$

Mesure de Dirac : $\delta_a : T \to \{0,1\}$ avec T une tribu et $\delta_a = \begin{cases} 1 \text{ si } a \in A \\ 0 \text{ si } a \notin A \end{cases}$

Mesure de comptage (cardinal) : Pour un ensemble dénombrable de \mathbb{R} , $\forall n, \mu(\{n\}) = 1$

1.6 Intégration

1.6.1 Définitions

Fonction en escalier : Fonctions constantes sur des intervalles

Intégrale de Riemann : Soit

$$f = \sum_{i=1}^{n} \alpha_i 1_{I_i}$$

une fonction en escalier, on définit l'intégrale de f par

$$I(f) = \int_a^b f(t)dt = \sum \alpha_i (x_{i+1} - x_i)$$

Pour une fonction quelconque, s'il existe, pour tout $\varepsilon > 0$, deux fonctions en escalier f_{ε} et F_{ε} telle que $f_{\varepsilon} \leq f \leq F_{\varepsilon}$ et F_{ε} et F_{ε} et dite Riemann-intégrable et on a :

$$\int_{a}^{b} f(t)dt = \sup \{I(g)|g \text{ fonction en escalier et } g \leq f\}$$

Fonction étagée : Fonction dont l'image est constituée d'un nombre fini de valeurs réelles

Théorème: Toute fonction à valeur dans \mathbb{R}^n est limite de fonctions étagées

Intégrale de Lebesgue : Soit

$$f = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

une fonction étagée, on définit l'intégrale de f par rapport à la mesure μ par

$$\int_X f d\mu = \sum_{i=1}^n \alpha_i \mu(A_i)$$

et pour $E \subset X$

$$\int_E f d\mu = \int_X f 1_E d\mu$$

Pour f une fonction positive,

$$\int_X f d\mu = \sup \left\{ \int s d\mu | s \text{ \'etag\'ee et } s \leq f \right\}$$

Enfin pour une fonction quelconque, on définit : $f^+ = \max(0, f)$ et $f^- = \max(0, -f)$ de sorte que :

$$\int f d\mu = \int f^+ d\mu + \int f^- d\mu$$

1.6.2 Propriétés

Lien Riemann-Lebesgue : Si f est Riemann-Intégrable, alors f est Lebesgue-intégrable Ensemble de fonctions intégrables (au sens de Lebesgue) :

$$L^{p}(A) = \left\{ f : \mathbb{R} \to \mathbb{R} | \int_{A} |f|^{p} < \infty \right\}$$

Fonctions localement intégrables : $f: \mathbb{R} \to \mathbb{R}$ Lebesgue-intégrable sur tout intervalle borné $(L^1 \subset L^1_{loc})$

Intégration et dérivation :

$$f(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

Egalité d'intégrales :

$$f \stackrel{pp}{=} g \Leftrightarrow \int f(t)dt = \int g(t)dt$$

Linéarité:

$$\int (f(t) + \lambda g(t))dt = \int f(t)dt + \lambda \int g(t)dt$$

Relation de Chasles : Qui implique aussi $\int_a^b f(t)dt = -\int_b^a f(t)dt$

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Relation d'ordre:

$$f \le g \Leftrightarrow \int f(t)dt \le \int g(t)dt$$

Fonction périodique : Soit f une fonction T-périodique,

$$\int_0^T f(t)dt = \int_c^{c+T} f(t)dt$$

Inégalité triangulaire :

$$\left| \int f(t)dt \right| \le \int |f(t)|dt$$

Cauchy-Schwartz:

$$\left| \int f(t)g(t)dt \right| \leq \sqrt{\int f^2(t)dt \times \int g^2(t)dt}$$

Inégalité de Holder:

$$\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \int f(t)g(t)dt \le \left(\int |f(t)|^p dt\right)^{\frac{1}{p}} \left(\int |g(t)|^q dt\right)^{\frac{1}{q}}$$

Théorème de la moyenne :

$$\forall x \in [a, b], m \le f \le M, \Rightarrow m \le \frac{1}{b - a} \int_a^b f(t)dt \le M$$

Inégalité de la moyenne :

$$\left| \int_a^b f(x)g(x)dx \right| \le \sup_{x \in [a,b]} |f(x)| \times \int_a^b |g(x)|dx$$

Intégrale sur un ensemble négligable : Soit μ une mesure alors

$$\mu(E) = 0 \Rightarrow \int_{E} f d\mu = 0$$

Théorème fondamental:

$$f(x) = f(a) + \int_{a}^{x} f'(t)dt$$

Intégration par partie (IPP) :

$$\int_{a}^{b} u'(t)v(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt$$

Changement de variable :

$$\int_{a}^{b} f(x)dx \stackrel{x=u(t)}{=} \int_{u^{-1}(a)}^{u^{-1}(b)} f(u(t))u'(t)dt$$

Propositions sur l'intégrabilité :

- f monotone $\Rightarrow f$ Riemann-intégrable
- f continue $\Rightarrow f$ Riemann-intégrable
- f pp-continue et bornée $\Rightarrow f$ Riemann-intégrable
- f pp-continue $\Rightarrow f$ Lebesgue-intégrable
- |f| < g, g Lebesgue-intégrable $\Rightarrow f$ Lebesgue-intégrable
- f Lebesgue-intégrable $\Leftrightarrow |f|$ Lebesgue-intégrable

1.6.3 Convergence

Convergence (Riemann):

$$f_n \stackrel{unif}{\longrightarrow} f \Rightarrow \int f_n(t)dt \stackrel{unif}{\longrightarrow} \int f(t)dt$$

Théorème de convergence monotone (Beppo-Levi) :

$$\begin{cases} (f_n) \text{ suite croissante de fonction} \\ f_n \longrightarrow f, n \longrightarrow \infty \end{cases} \Leftrightarrow \int f_n \longrightarrow \int f, n \longrightarrow \infty$$

Théorème de convergence dominée :

$$\begin{cases} f_n \xrightarrow{pp} f \\ |f_n| < g, g \in L^1 \end{cases} \Rightarrow \int f_n \longrightarrow \int f \left(\text{et même} : \int |f_n - f| \longrightarrow 0 \right)$$

Inversion somme-integrale:

$$(f_n)$$
 suite de fonction positive $\Rightarrow \int \sum_{n=0}^{\infty} f_n(x) dx = \sum_{n=0}^{\infty} \int f_n(x) dx$

Théorème de Fubini:

$$f \in L^1 \Rightarrow \iint f(x,y)dxdy = \int \left(\int f(x,y)dx\right)dy$$

Théorème de Fubini-Tonnelle :

$$f \ge 0 \Rightarrow \iint f(x,y) dx dy = \int \left(\int f(x,y) dx \right) dy$$

Définition : intégrale de fonction discontinue, intégrale sur un intervalle non bornée, etc.

Intégrales Riemann-impropre de références :

$$\int_0^1 \frac{dt}{t^{\alpha}} \text{ converge si } \alpha < 1; \int_1^{\infty} \frac{dt}{t^{\alpha}} \text{ converge si } \alpha > 1; \int_0^1 \ln t dt = -1$$

Riemann-impropre et Lebesgue : Si f est Riemann-intégrable au sens impropre et de signe constant alors f est Lebesgue-intégrable

1.6.4 Intégrale de Riemann-Stieltjes

Définition : Si α est une fonction croissante, alors elle définit une mesure. On appelle intégrale de Riemann-Stieltjes l'intégrale par rapport à cette mesure : $\int f(x)d\alpha(x)$ et on a :

$$\alpha([a,b]) = \alpha(b^+) - \alpha(a^-)$$

$$\alpha([a,b[) = \alpha(b^-) - \alpha(a^-)$$

$$\alpha(]a,b[) = \alpha(b^-) - \alpha(a^+)$$

$$\alpha(]a,b[) = \alpha(b^+) - \alpha(a^+)$$

Calcul:

$$\int f(x)d\alpha(x) = \int f(x)\alpha'(x)dx$$

1.6.5 Fonctions définies par une intégrale

Définition: Soit $f:(x,t)\to f(x,t)$, si f est continue en t pour presque-tout x et $|f(t,x)|\leq g(x), g\in L^1$ alors la fonction suivante est défini et est continue

$$F(t) = \int f(t, x) dx$$

Dérivabilité : Si $\frac{\partial f}{\partial t}(x,t)$ existe et est continue et $\left|\frac{\partial f}{\partial x}(x,t)\right| < g(x), g \in L^1$ alors F est dérivable et

$$\frac{dF}{dt}(t) = \int \frac{\partial f}{\partial t}(t, x) dx$$

Formule:

$$\begin{split} F(t) &= \int_{[u(t),v(t)]} f(x,t) dx \\ \frac{dF}{dt}(t) &= f(t,v(t)) \frac{dv(t)}{dt} + f(t,u(t)) \frac{du(t)}{dt} + \int_{[u(t),v(t)]} \frac{\partial f}{\partial t}(x,t) dx \end{split}$$

1.6.6 Introduction au calcul des variations

Problème de variation : Trouver u^* telle que

$$u^* = \min_{u \in K} J(u)$$
 avec $J(u) = \int_{\alpha}^{\beta} \varphi(u, \dot{u}, t) dt$

Équation d'Euler-Lagrange : u solution du problème de variation, alors

$$\frac{\partial}{\partial u}\varphi(u,\dot{u},t) - \frac{d}{dt} \left[\frac{\partial}{\partial \dot{u}}\varphi(u,\dot{u},t) \right] = 0$$

Intégrale première d'Euler-Lagrange : $\varphi(u,\dot{u},t)=\varphi(u,\dot{u})$

$$\varphi(u, \dot{u}) = \left[\frac{\partial}{\partial \dot{u}}\varphi(u, \dot{u})\right]\dot{u} + k, k \in \mathbb{R}$$

Condition aux limites:

— Deux extrémités fixes : $u(\alpha) = a$ et $u(\beta) = b$

— Une extrémité libre : $u(\alpha) = a$ et $\frac{\partial}{\partial \dot{u}} \varphi(u(\beta), \dot{u}(\beta), \beta) = 0$

— Deux extrémités libres : $\frac{\partial}{\partial \dot{u}}\varphi(u(\alpha),\dot{u}(\alpha),\alpha)=0$ et $\frac{\partial}{\partial \dot{u}}\varphi(u(\beta),\dot{u}(\beta),\beta)=0$

1.7 Séries dans \mathbb{R}

1.7.1 Généralités

Condition nécessaire de convergence :

$$\sum_{n\geq 0} u_n \text{ converge} \Rightarrow u_n \longrightarrow 0$$

Espace vectoriel : L'espace des séries convergentes est un espace vectoriel Critère de Cauchy :

$$\sum u_n \text{ converge} \Leftrightarrow \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, \forall p \in \mathbb{N}, \left| \sum_{k=n+1}^{n+p} \right| < \varepsilon$$

Règle de Riemann : Si $\forall n \in \mathbb{N}, u_n > 0$ et $n^{\alpha}u_n$ majoré pour $\alpha > 1$ alors $\sum u_n$ converge **Règle de d'Alembert** : Si $\forall n \in \mathbb{N}, u_n > 0$ et $\frac{u_{n+1}}{u_n} \longrightarrow l$ avec l < 1 alors $\sum u_n$ converge **Séries géométrique** :

$$\sum_{n>0} aq^n = a \frac{1}{1-q}$$

Séries de Riemann:

$$\sum_{n \ge 1} \frac{1}{n^{\alpha}} \text{ CV } \Leftrightarrow \alpha > 1$$

Série exponentielle:

$$\sum_{n>0} \frac{z^n}{n!} = e^z, z \in \mathbb{C}$$

1.7.2 Séries de Taylor

Formule générale:

$$f(x) = \sum_{n>0} f^{(n)}(x_0) \frac{(x-x_0)^n}{n!}$$

Formule de Taylor-Lagrange:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + \frac{f^{(n+1)}(x_0 + \theta h)}{(n+1)!} h^{n+1}, \theta \in [0, 1]$$

Formule de Taylor-Young:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + h^n \epsilon(h), \epsilon(h) \longrightarrow \infty, h \longrightarrow \infty$$

Séries connues:

$$(1+x)^{\alpha} = 1 + \alpha \frac{x}{1!} + \dots + \alpha(\alpha - 1) \dots (\alpha - n - 1) \frac{x^n}{n!} + o(x^n)$$

$$e^x = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

$$\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{2p-1} \frac{x^{2p-1}}{(2p-1)} + o(x^{2p})$$

$$\tan x = x + \frac{1}{3}x + \frac{2}{15}x^5 + o(x^6)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

Infiniment petit : f est un infiniment petit au voisinage de a si $\lim_{x\to a} f(x) = 0$ Infiniment grand : f est un infiniment grand au voisinage de a si $\lim_{x\to a} |f(x)| = +\infty$ Ordre d'un infiniment petit : f et g sont dit de même ordre si $\lim_{x\to a} \frac{f(x)}{g(x)} \in \mathbb{R}^*$ f est d'ordre p si f et $(x-a)^p$ sont du même ordre

Équivalence :

$$f \sim g \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Développements limités :

f admet un DL à l'ordre n au voisinage de a si

$$\exists \alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{R}$$
 tel que $f(a+h) = \alpha_0 + \alpha_1 h + \dots + \alpha_n h^n + h^n \epsilon(n), \epsilon(h) \longrightarrow 0, h \longrightarrow 0$

f admet un DL à l'ordre n au voisinage de $+\infty$ si

$$\exists_0, \alpha_1, \dots, \alpha_n \in \mathbb{R} \text{ tel que } f(x) = \alpha_0 + \frac{\alpha_1}{x} + \dots + \frac{\alpha_n}{x^n} + \frac{1}{x^n} \epsilon \left(\frac{1}{x}\right)$$

Le DL d'une fonction paire (resp. impaire) ne contient que des termes de puissances paire (resp. impaire).

Opérations sur les DL : Soient
$$f$$
 et g avec
$$\begin{cases} f(a+h) = P(h) + h^n \epsilon_1(h) \\ g(a+h) = Q(h) + h^n \epsilon_2(h) \end{cases}$$

Combinaison : $f(a+h) + \lambda g(a+h) = P(h) + \lambda Q(h) + \epsilon(h)$

 $\mathbf{Produit}\,:fg(a+h)=PQ(a+h)+h^n\epsilon(h)$ tronqué à l'odre n

Quotient : $\frac{f(a+h)}{g(a+h)}$ = quotient de P(h) par Q(h) suivant les puissances croissantes

Primitivisation: Si F' = f avec $f(a+h) = \sum \alpha_i h^i$ alors $F(a+h) = \sum \alpha_i \frac{h^{i+1}}{i+1}$

Étude locale d'une courbe : Soit x_0 tel que $f'(x_0) = 0$

 $f''(x_0) > 0$ alors la courbe est au dessus de la tangente et x_0 réalise un minimum locale $f''(x_0) < 0$ alors la courbe est en dessous de la tangente et x_0 réalise un maximum locale

 $f''(x_0) = 0$ alors x_0 est un point d'inflexion

1.7.3 Séries de Fourier

Dans la base $(e^{in\omega x})_{n\in\mathbb{Z}}$

Série de Fourier : $(e^{in\omega x})_{n\in\mathbb{Z}}$ avec $\omega = \frac{2\pi}{T}$ est une base de l'espace des fonctions T-périodiques, alors pour tout f, fonction T-périodique, on a :

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{in\omega x}$$
 avec $c_n = (f|e^{in\omega}) = \frac{1}{T} \int f(x)e^{-in\omega x} dx$

Egalité de Parsseval : (égalité de la norme)

$$||f||_2^2 = \sum_{n \in \mathbb{Z}} |c_n|^2$$

Dans la base $(\cos n\omega x, \sin n\omega x)_{n\in\mathbb{N}}$

Série de Fourier : Soit f une fonction T-périodique, on a

$$f(x) = a_0 + \sum_{n \ge 1} (a_n \cos n\omega x + b_n \sin n\omega x)$$

$$a_0 = \frac{1}{T} \int_0^T f(x) dx$$
; $a_n = \frac{1}{T} \int_0^T f(x) \cos n\omega x dx$; $b_n = \frac{1}{T} \int_0^T f(x) \sin n\omega x dx$

Egalité de Parsseval : (égalité de la norme)

$$||f||_2^2 = a_0^2 + \frac{1}{2} \sum_{n > 1} (a_n^2 + b_n^2)$$

Autres

Convergence:

$$f \in L^2(0,T), f(x) = \sum_{n \in \mathbb{Z}} c_n(f)e^{in\omega x}$$

$$f \in L^1(0,T), c_n(f) \longrightarrow 0, n \longrightarrow \infty$$

Théorème de Dirichlet (convergence ponctuelle) :

$$f \in C^1 \Rightarrow SF(f)(x_0) \xrightarrow{unif} f(x_0)$$

 $f \in CM^1 \Rightarrow SF(f)(x_0) \longrightarrow \frac{f(x_0^-) + f(x_0^+)}{2}$

Série de Fourier d'une distribution

Définition:

$$T = \sum_{n \in \mathbb{Z}} c_n e^{in\omega x}$$
 avec $c_n = \frac{1}{a} < T, e^{-in\omega s} >$

Convergence : La série de Fourier d'une distribution converge vers la distribution (au sens des distributions)

Convergence d'une série trigonométrique dans \mathcal{D}' :

$$\sum c_n e^{in\omega s}$$
 converge dans $\mathcal{D}' \Leftrightarrow |c_n| \leq A|n|^p$ (suite à croissance lente)

1.8 Le corps $\mathbb C$

Définition:

$$\mathbb{C} = \{ a + ib | a, b \in \mathbb{R} \text{ et } i^2 = -1 \}$$

Partie réelle et imaginaire :

$$Re(a+ib) = a$$
 et $Im(a+ib) = b$

Module et argument :

$$|z| = \sqrt{a^2 + b^2}$$
 et $\arg z = \tan \frac{b}{a}$

Écriture d'un nombre complexe : $\forall z \in \mathbb{C}, \exists a, b, r, \theta \in \mathbb{R}$ tel que

$$z = a + ib = re^{i\theta} = r(\cos\theta + i\sin\theta)$$
 avec $r = |z|$ et $\theta = \arg z$

Conjugaison : Soi z = a + ib alors $\bar{z} = a - ib$ et

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}; \ \overline{z_1.z_2} = \overline{z_1}.\overline{z_2}; \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}; \ \overline{\overline{z}} = z$$

$$z + \overline{z} = 2 \times Re(z)$$
; $z - \overline{z} = 2i \times Im(z)$

Calcul avec les modules :

$$z\bar{z} = |z|^2$$
; $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$; $|z_1z_2| = |z_1||z_2|$; $|z| = |\bar{z}|$

Calcul avec les arguments :

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)[2\pi]; \ \arg\left(\frac{1}{z}\right) = -\arg(z)$$

Formule de Moivre:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Formules d'Euler:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
; $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

Théorème de D'Alembert-Gauss : Toute équation algébrique de $\mathbb C$ admet au moins une solution dans $\mathbb C$

Racine n-ième :

$$z^{n} = \alpha \Leftrightarrow \begin{cases} |z| = |\alpha|^{\frac{1}{n}} \\ \arg z = \frac{\arg \alpha}{n} + \frac{2k\pi}{n}, k \in [0, n-1] \end{cases}$$

Racine complexe d'une équation du second degrée : $az^2 + bz + c = 0$

$$\delta^2 = b^2 - 4ac$$
 alors $z = \frac{-b \pm \delta}{2a}$

Polynomes premiers : Les seuls polynômes premier de $\mathbb{C}[X]$ sont les polynomes constants, ceux de degré 1 et ceux de degré 2 qui n'ont pas de racine réelles

Multiplicité d'une racine : Soit P un polynôme de $\mathbb{C}[X]$

r de multiplicité
$$m \Leftrightarrow P(r) = P'(r) = \cdots = P^{(n-1)}(r) = 0$$
 et $P^{(m)}(r) \neq 0$

Partie entière d'une fraction rationnelle : Soit $F = P/Q \in \mathbb{C}(X)$ on peut décomposer F de façon unique tel que $F = E + \frac{P_0}{Q}$ avec, ou $P_0 = 0$ ou $deg(P_0) < deg(Q)$

Décomposition en élément simple dans $\mathbb{C}(X)$: Soit F = P/Q

Objectif : écrire F sous la forme $F = P^* + S$ où P^* est un polynôme et S une somme d'éléments simples : Si deq(P) < deq(Q) alors $P^* = 0$

Sinon effectuer la division euclidienne

Décomposer Q en produit de facteur premier

Règles de décomposition dont les constantes a, b, c, d, \ldots sont à déterminer :

$$\frac{N(x)}{(x-1)(x-2)} = \frac{a}{x-1} + \frac{b}{x-2}$$

$$\frac{N(x)}{(x-1)^3(x-2)^2} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{(x-1)^3} + \frac{d}{x-2} + \frac{e}{(x-2)^2}$$

$$\frac{N(x)}{(x-1)(x^2+1)} = \frac{a}{x-1} + \frac{bx+c}{x^2+1}$$

1.9 Distributions

1.9.1 Fonctions test ou de base : \mathcal{D}

1.9.2 Distributions : \mathcal{D}'

1.10 Convolution

1.10.1 Convolution de fonction

Définition sur \mathbb{R} :

1.10.2 Convolution de suite

Définition:

- 1.10.3 Convolution de distribution et algèbre dans \mathcal{D}'_+ Produit tensoriel :
- 1.11 Transformées de Fourier
- 1.12 Transformées de Laplace

Analyse dans \mathbb{R}^n (MT22)

Chapitre 3
Algèbre linéaire (MT23)

Chapitre 4

Analyse numérique (MT09)

Chapitre 5
Statistiques (SY02)

Optimisation (RO04)

Formulaires