EXERCISE 13

1. What is a "constraint" as it relates to data integrity?

A constraint in the context of databases is a rule applied to columns in a table to ensure the accuracy and reliability of the data within the table Constraints enforce data integrity by limiting the type of data that can be inserted into a column, thus preventing invalid data from entering the database.

2. What are the limitations of constraints that may be applied at the column level and at the table Level?

Constraints like NOT NULL, UNIQUE, PRIMARY KEY, and CHECK can be defined directly on a column.

Limited to the specific column only.

3. Why is it important to give meaningful names to constraints?

Enhance readability and maintainability of the database schema. Help in easily identifying and understanding the purpose of the constraint. Simplify troubleshooting and debugging when constraints are violated.

4. Based on the information provided by the owners, choose a datatype for each column. Indicate the length, precision, and scale for each NUMBER datatype.

Column Name	Data Type	Nullable
location_id	NUMBER(5, 0)	NO
street_address	VARCHAR2(50)	YES
postal_code	VARCHAR2(12)	YES
city	VARCHAR2(30)	NO
state_province	VARCHAR2(25)	YES
country_id	CHAR(2)	YES

5. Use "(nullable)" to indicate those columns that can have null values.

Column Name	Data Type	Nullable
location_id	NUMBER(5, 0)	NO
street_address	VARCHAR2(50)	YES
postal_code	VARCHAR2(12)	YES
city	VARCHAR2(30)	NO
state_province	VARCHAR2(25)	YES
country_id	CHAR(2)	YES

6. Write the CREATE TABLE statement for the Global Fast Foods locations table to define the constraints at the column level.

CREATE TABLE locations (location_id NUMBER(5, 0) PRIMARY KEY, street_address VARCHAR2(50),postal_code VARCHAR2(12)city VARCHAR2(30) NOT NULL, state_province VARCHAR2(25), country_id CHAR(2));

7. Execute the CREATE TABLE statement in Oracle Application Express.

Executing the create table statem

8. Execute a DESCRIBE command to view the Table Summary information.

DESC locations;

9. Rewrite the CREATE TABLE statement for the Global Fast Foods locations table to define the UNIQUE constraints at the table level. Do not execute this statement.

CREATE TABLE locations (location_id NUMBER(5, 0),street_address VARCHAR2(50), postal_code VARCHAR2(12),city VARCHAR2(30) NOT NULL,state_province VARCHAR2(25), country_id CHAR(2), CONSTRAINT loc_pk PRIMARY KEY (location_id), CONSTRAINT loc_city_uk UNIQUE (city));

PRIMARY KEY, FOREIGN KEY, and CHECK Constraints

- 1. What is the purpose of a
- PRIMARY KEY
- FOREIGN KEY
- CHECK CONSTRAINT

PRIMARY KEY: Ensures that each row in the table has a unique identifier and no NULL values. FOREIGN KEY: Enforces a link between two tables, ensuring that the foreign key in the child table matches a primary key in the parent table.

CHECK CONSTRAINT: Ensures that all values in a column meet a specific condition.

2. Using the column information for the animals table below, name constraints where applicable at the table level, otherwise name them at the column level. Define the primary key (animal_id). The license_tag_number must be unique. The admit_date and vaccination_date columns cannot contain null values.

animal_id NUMBER(6)
name VARCHAR2(25)
license_tag_number NUMBER(10)
admit_date DATE
adoption_id NUMBER(5),
vaccination_date DATE

CREATE TABLE animals (animal_id NUMBER(6) PRIMARY KEY, name VARCHAR2(25), license_tag_number NUMBER(10) UNIQUE,admit_date DATE NOT NULL, adoption id NUMBER(5),vaccination date DATE NOT NULL);

3. Create the animals table. Write the syntax you will use to create the table.

CREATE TABLE animals (animal_id NUMBER(6) CONSTRAINT animal_pk PRIMARY KEY, name VARCHAR2(25),license_tag_number NUMBER(10) CONSTRAINT license_tag_uk UNIQUE, admit_date DATE CONSTRAINT admit_date_nn NOT NULL, adoption id NUMBER(5),vaccination date DATE CONSTRAINT vaccination date nn NOT NULL);

4. Enter one row into the table. Execute a SELECT * statement to verify your input. Refer to the graphic below for input.

ANIMAL_I D NAM E LICENSE_TAG_NUMBE R ADMIT_DAT E ADOPTION_I D VACCINATION_DAT E 101 Spot 35540 10-Oct-2004 205 12-Oct-2004

INSERT INTO animals (animal_id, name, license_tag_number, admit_date, adoption_id, vaccination_date)VALUES (101, 'Spot', 35540, TO_DATE('10-OCT-2004', 'DD-MON-YYYY'), 205, TO DATE('12-OCT-2004', 'DD-MON-YYYY'));

SELECT * FROM animals;

5. Write the syntax to create a foreign key (adoption_id) in the animals table that has a corresponding primary-key reference in the adoptions table. Show both the column-level and table-level syntax. Note that because you have not actually created an adoptions table, no adoption_id primary key exists, so the foreign key cannot be added to the animals table.

ALTER TABLE animals ADD CONSTRAINT animal_fk
FOREIGN KEY (adoption id) REFERENCES adoptions(adoption id);

- 6. What is the effect of setting the foreign key in the ANIMAL table as:
- a. ON DELETE CASCADE
- b. ON DELETE SET NULL

ON DELETE CASCADE: Automatically deletes child records when the parent record is deleted. ON DELETE SET NULL: Sets the foreign key to NULL in the child records when the parent record is deleted.

7. What are the restrictions on defining a CHECK constraint?

CHECK constraints must reference columns in the same table. Cannot reference columns in other tables or subqueries. Must evaluate to TRUE or FALSE for each row.

PRACTICE PROBLEM

Managing Constraints

1. What are four functions that an ALTER statement can perform on constraints?

Add a new constraint.

Drop an existing constraint.

Enable a disabled constraint.

Disable an active constraint.

2. Since the tables are copies of the original tables, the integrity rules are not passed onto the new tables; only the column datatype definitions remain. You will need to add a PRIMARY KEY constraint to the copy_d_clients table.

Name the primary key copy_d_clients_pk. What is the syntax you used to create the PRIMARY KEY constraint to the copy_d_clients.table?

ALTER TABLE copy_d_clients
ADD CONSTRAINT copy_d_clients_pk PRIMARY KEY (client_number);

3. Create a FOREIGN KEY constraint in the copy_d_events table. Name the foreign key copy_d_events_fk. This key references the copy_d_clients table client_number column. What is the syntax you used to create the FOREIGN KEY constraint in the copy_d_events table?

ALTER TABLE copy_d_events ADD CONSTRAINT copy_d_events_fk FOREIGN KEY (client_number) REFERENCES copy_d_clients(client_number);

- 4. Use a SELECT statement to verify the constraint names for each of the tables. Note that the Table names must be capitalized.
- a. The constraint name for the primary key in the copy_d_clients table is _.

SELECT CONSTRAINT_NAME FROM USER_CONSTRAINTS WHERE TABLE_NAME = 'COPY_D_CLIENTS'; SELECT CONSTRAINT_NAME FROM USER_CONSTRAINTS WHERE TABLE_NAME = 'COPY_D_EVENTS';

5. Drop the PRIMARY KEY constraint on the copy d clients table. Explain your results.

ALTER TABLE copy_d_clients
DROP CONSTRAINT copy_d_clients_pk;

6. Add the following event to the copy_d_events table. Explain your results. ID NAME EVENT_DATE DESCRIPTION COST VENUE_ID PACKAGE_CODE THEME_CODE CLIENT_NUMBER 140 Cline
Bas

Mitzvah 15-Jul-2004 Church and Private Home formal 4500 105 87 77 7125

INSERT INTO copy_d_events (ID, NAME, EVENT_DATE, DESCRIPTION, COST, VENUE_ID, PACKAGE_CODE, THEME_CODE, CLIENT_NUMBER) VALUES (140, 'Cline Bas Mitzvah', TO_DATE('15-JUL-2004', 'DD-MON-YYYY'), 'Church and Private Home formal', 4500, 105, 87, 77, 7125);

7. Create an ALTER TABLE query to disable the primary key in the copy_d_clients table. Then add the values from #6 to the copy_d_events table. Explain your results.

ALTER TABLE copy_d_clients DISABLE CONSTRAINT copy_d_clients_pk;

-- Insert the new event INSERT INTO copy_d_events (ID, NAME, EVENT_DATE, DESCRIPTION, COST, VENUE_ID, PACKAGE_CODE, THEME_CODE, CLIENT_NUMBER) VALUES (140, 'Cline Bas Mitzvah', TO_DATE('15-JUL-2004', 'DD-MON-YYYY'), 'Church and Private Home formal', 4500, 105, 87, 77, 7125);

8. Repeat question 6: Insert the new values in the copy_d_events table. Explain your results.

ALTER TABLE copy_d_clients ENABLE CONSTRAINT copy_d_clients_pk;

9. Enable the primary-key constraint in the copy_d_clients table. Explain your results.

To re-enable referential integrity, ensure the data adheres to the constraint rules before enabling it.

10. If you wanted to enable the foreign-key column and reestablish the referential integrity between these two tables, what must be done?

Disabling constraints allows data manipulation without constraint checks.

Re-enabling constraints ensures data integrity once the data manipulation is complete.

11. Why might you want to disable and then re-enable a constraint?

SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME FROM USER_CONSTRAINTS;

- 12. Query the data dictionary for some of the constraints that you have created. How does the data dictionary identify each constraint type?
- P: Primary key

R: Referential integrity (foreign key)

C: Check constraint

U: Unique constraint

EXERCISE 13

Creating Views

1. What are three uses for a view from a DBA's perspective?

Security: Restricting access to specific columns or rows within a table. Simplification: Simplifying complex queries by encapsulating them within a view. Data Aggregation: Providing aggregated data, such as summaries or statistics, without exposing the raw data.

2. Create a simple view called view_d_songs that contains the ID, title and artist from the DJs on Demand table for each "New Age" type code. In the subquery, use the alias "Song Title" for the title Column.

CREATE VIEW view_d_songs AS SELECT ID, title AS "Song Title", artist FROM d_songs WHERE type_code = 'New Age';

3. SELECT * FROM view_d_songs. What was returned?

SELECT * FROM view_d_songs;

4. REPLACE view_d_songs. Add type_code to the column list. Use aliases for all columns. Or use alias after the CREATE statement as shown.

CREATE OR REPLACE VIEW view_d_songs AS
SELECT ID AS "Song ID", title AS "Song Title", artist AS "Artist Name",
type_code AS "Type Code"
FROM d_songs
WHERE type_code = 'New Age';

5. Jason Tsang, the disk jockey for DJs on Demand, needs a list of the past events and those planned for the coming months so he can make arrangements for each event's equipment setup. As the company manager, you do not want him to have access to the price that clients paid for their events. Create a view for Jason to use that displays the name of the event, the event date, and the theme description. Use aliases for each column name.

CREATE VIEW view_events_for_jason AS SELECT name AS "Event Name", event_date AS "Event Date", theme_description AS "Theme" FROM d events:

6. It is company policy that only upper-level management be allowed access to individual employee salaries. The department managers, however, need to know the minimum, maximum, and average salaries, grouped by department. Use the Oracle database to prepare a view that displays the needed information for department managers.

CREATE VIEW view_dept_salaries AS
SELECT department_id,
 MIN(salary) AS "Min Salary",
 MAX(salary) AS "Max Salary",
 AVG(salary) AS "Avg Salary"
FROM employees
GROUP BY department_id;

DML Operations and Views

Use the DESCRIBE statement to verify that you have tables named copy_d_songs, copy_d_events, copy_d_cds, and copy_d_clients in your schema. If you don't, write a query to create a copy of each.

1. Query the data dictionary USER_UPDATABLE_COLUMNS to make sure the columns in the base tables will allow UPDATE, INSERT, or DELETE. All table names in the data dictionary are stored in Uppercase.

Use the same syntax but change table_name of the other tables.

DESC copy_d_songs; DESC copy_d_events; DESC copy_d_cds; DESC copy_d_clients;

2. Use the CREATE or REPLACE option to create a view of all the columns in the copy_d_songs table called view_copy_d_songs.

SELECT * FROM USER_UPDATABLE_COLUMNS WHERE table_name = 'COPY_D_SONGS';

3. Use view_copy_d_songs to INSERT the following data into the underlying copy_d_songs table. Execute a SELECT * from copy_d_songs to verify your DML command. See the graphic. ID TITLE DURATION ARTIST TYPE_CODE 88 Mello Jello 2 The What 4

CREATE OR REPLACE VIEW view_copy_d_songs AS SELECT * FROM copy_d_songs;

4. Create a view based on the DJs on Demand COPY_D_CDS table. Name the view read_copy_d_cds. Select all columns to be included in the view. Add a WHERE clause to restrict the year to 2000. Add the WITH READ ONLY option.

INSERT INTO view_copy_d_songs (ID, TITLE, DURATION, ARTIST, TYPE_CODE) VALUES (88, 'Mello Jello', 2, 'The What', 4); SELECT * FROM copy_d_songs;

5. Using the read_copy_d_cds view, execute a DELETE FROM read_copy_d_cds WHERE cd_number= 90;

CREATE VIEW read_copy_d_cds AS SELECT * FROM copy_d_cds WHERE year = 2000 WITH READ ONLY;

6. Use REPLACE to modify read_copy_d_cds. Replace the READ ONLY option with WITH CHECK OPTION CONSTRAINT ck_read_copy_d_cds. Execute a SELECT * statement to verify

that the view exists.

DELETE FROM read_copy_d_cds WHERE cd_number = 90; -- This will fail due to the READ ONLY option.

7. Use the read copy d cds view to delete any CD of year 2000 from the underlying copy d cds.

CREATE OR REPLACE VIEW read_copy_d_cds AS SELECT * FROM copy_d_cds WHERE year = 2000 WITH CHECK OPTION CONSTRAINT ck_read_copy_d_cds; SELECT * FROM read_copy_d_cds;

8. Use the read_copy_d_cds view to delete cd_number 90 from the underlying copy_d_cds table.

DELETE FROM read_copy_d_cds WHERE year = 2000;

9. Use the read_copy_d_cds view to delete year 2001 records.

DELETE FROM read_copy_d_cds WHERE cd_number = 90;

10. Execute a SELECT * statement for the base table copy_d_cds. What rows were deleted?

SELECT * FROM copy_d_cds;

11. What are the restrictions on modifying data through a view?

Cannot modify data through a view that includes GROUP BY, DISTINCT, JOIN, or aggregate functions. Views with READ ONLY or CHECK OPTION constraints restrict DML operations.

12. What is Moore's Law? Do you consider that it will continue to apply indefinitely? Support your opinion with research from the internet.

Moore's Law is the observation made by Gordon Moore, co-founder of Intel, in 1965, which states that the number of transistors on a microchip doubles approximately every two years, though the cost of computers is halved.

13. What is the "singularity" in terms of computing?

The singularity, in the context of computing and artificial intelligence, refers to a hypothetical future point where technological growth becomes uncontrollable and irreversible, resulting in unfathomable changes to human civilization.

Managing Views

1. Create a view from the copy_d_songs table called view_copy_d_songs that includes only the title and artist. Execute a SELECT * statement to verify that the view exists.

CREATE VIEW view_copy_d_songs AS SELECT title, artist FROM copy_d_songs; SELECT * FROM view_copy_d_songs;

2. Issue a DROP view_copy_d_songs. Execute a SELECT * statement to verify that the view has been Deleted.

DROP VIEW view_copy_d_songs; SELECT * FROM view_copy_d_songs; -- This will return an error as the view no longer exists.

3. Create a query that selects the last name and salary from the Oracle database. Rank the salaries from highest to lowest for the top three employees.

SELECT last_name, salary
FROM (SELECT last_name, salary, RANK() OVER (ORDER BY salary DESC) AS rnk
FROM employees)
WHERE rnk <= 3:

4. Construct an inline view from the Oracle database that lists the last name, salary, department ID, and maximum salary for each department. Hint: One query will need to calculate maximum salary by department ID.

SELECT e.last_name, e.salary, e.department_id, d.max_salary
FROM employees e
JOIN (SELECT department_id, MAX(salary) AS max_salary
FROM employees
GROUP BY department_id) d
ON e.department_id = d.department_id;

5. Create a query that will return the staff members of Global Fast Foods ranked by salary from lowest to highest.

SELECT last_name, salary FROM employees ORDER BY salary ASC;

Indexes and Synonyms

1. What is an index and what is it used for?

An index improves data retrieval speed by providing quick access to rows based on the indexed columns.

2. What is a ROWID, and how is it used?

ROWID is a unique identifier for each row's physical location in the database.

3. When will an index be created automatically?

Indexes are automatically created for PRIMARY KEY and UNIQUE constraints.

4. Create a nonunique index (foreign key) for the DJs on Demand column (cd_number) in the D_TRACK_LISTINGS table. Use the Oracle Application Express SQL Workshop Data Browser to confirm that the index was created.

CREATE INDEX idx_cd_number ON d_track_listings (cd_number);

5. Use the join statement to display the indexes and uniqueness that exist in the data dictionary for the DJs on Demand D SONGS table.

SELECT index_name, uniqueness FROM USER_INDEXES WHERE table_name = 'D_SONGS';

6. Use a SELECT statement to display the index_name, table_name, and uniqueness from the data dictionary USER_INDEXES for the DJs on Demand D_EVENTS table.

SELECT index_name, table_name, uniqueness FROM USER_INDEXES WHERE table_name = 'D_EVENTS';

7. Write a query to create a synonym called dj tracks for the DJs on Demand d track listings table.

CREATE SYNONYM dj_tracks FOR d_track_listings;

8. Create a function-based index for the last_name column in DJs on Demand D_PARTNERS table that makes it possible not to have to capitalize the table name for searches. Write a SELECT statement that would use this index.

CREATE INDEX idx_last_name_lower
ON d_partners (LOWER(last_name));
SELECT * FROM d_partners WHERE LOWER(last_name) = 'smith';

9. Create a synonym for the D_TRACK_LISTINGS table. Confirm that it has been created by querying the data dictionary.

SELECT synonym_name FROM USER_SYNONYMS WHERE synonym_name = 'DJ_TRACKS';

10.Drop the synonym that you created in question

DROP SYNONYM dj_tracks;