A Neural Network Alternative to Non-negative Audio Models

Paris Smaragdis#*

Shrikant Venkataramani*

*University of Illinois at Urbana Champaign

#Adobe Research

ICASSP 2017

Motivation

- Supervised single channel source separation
 - Using models trained from clean sounds
- Two dominant approaches
 - Non-negative Matrix Factorization (NMF)
 - Reusable and interpretable models
 - Deep learning
 - State of the art results, Non-transferable models
- Neural network formulation of NMF models
 - Maintaining reusability, taking advantage of deeplearning structures

Transferable Models

Being able to plug-in trained models

Learning an NMF model

Learning spectral bases from spectrograms.

$$\mathbf{X} = \mathbf{W} \cdot \mathbf{H}$$
 $\mathbf{X}, \mathbf{W}, \mathbf{H} \in \mathbb{R}^+$

NMF in action

Analyzing piano notes

NMF as an Auto-encoder

NMF

$$X = W \cdot H$$

Non-negative Auto-encoder (NAE)

$$\mathbf{H} = \mathbf{W}^* \cdot \mathbf{X} \text{ such that } \mathbf{H} \ge 0$$

$$\widehat{\mathbf{X}} = \mathbf{W} \cdot \mathbf{H} \text{ such that } \mathbf{W} \ge 0$$

6

Removing Non-negativity constraints

- Enforcing non-negativity is cumbersome.
- Non-negative layer outputs
 - Results in a magnitude spectrogram at the output
 - Results in a non-negative activation at hidden layer
 - Can be enforced with an activation function

$$g(x) = \max(x, 0) \text{ or } |x| \text{ or } ln(1 + e^x)$$

NAE in action

- Bases are not guaranteed to be non-negative
 - Results in dense activations
- Adding sparsity to hidden layer output
 - Results in sparse activations
 - Intuitive bases and activations

$$KL(\mathbf{X}||g(\mathbf{W}\cdot\mathbf{H}))$$
 $KL(\mathbf{X}||g(\mathbf{W}\cdot\mathbf{H})) + \lambda||\mathbf{H}||_1$

Advantages of NAE

- Difficult to extend NMF models
 - Easy to do with Neural nets.
 - LSTMs, CNNs, Multi-layer networks etc

Multi-layer NAE

NMF source separation

 Spectrogram of the mixture is the sum of source spectrograms.

NAE source separation

NAE source separation

Goal: Estimating network inputs instead of the weights

$$\mathbf{X} = g(\mathbf{W_1} \cdot \mathbf{H_{x_1}}) + g(\mathbf{W_2} \cdot \mathbf{H_{x_2}})$$

 Gradient-descent/back-propagation to train the network

Separated spectrograms

$$\mathbf{X_1} = g(\mathbf{W_1} \cdot \mathbf{H_{x_1}})$$

$$\mathbf{X_2} = g(\mathbf{W_2} \cdot \mathbf{H_{x_2}})$$

Evaluation

- Two-speaker mixtures
 - Training data ~ 20-25 seconds
 - Test data: Single sentence of known speakers
- Evaluation metrics
 - BSS_eval metrics (SDR, SIR, SAR)
 - STOI (intelligibility measure)
- Compared multilayer and shallow versions
 - With multiple ranks (number of hidden units)

- Number of NAE layers = 2
- Number of hidden units = 20

- Number of NAE layers = 4
- Number of hidden units = 20

- Number of NAE layers = 2
- Number of hidden units = 100

- Number of NAE layers = 4
- Number of hidden units = 100

Shallow vs Multi-layer NAE

- Shallow NAEs give comparable performance over all ranks
- Multi-layer
 NAEs require
 higher ranks

Conclusions

- NAE models can replace NMF
 - This allows us to generalize to complex structures
- NAE models superior to NMF models
 - Shallow NAEs comparable to NMF
 - Multi-layer NAEs outperform NMF significantly
- Future directions
 - Incorporating exotic neural models (LSTMs, CNNs etc)

THANK YOU