Assignment 3

Vaddamani Saketh - CS20BTECH11054

Download all python codes from

https://github.com/CS20BTECH11054/AI1103/blob/main/Assignment_3/codes/Assignment_3.py

and latex-tikz codes from

https://github.com/CS20BTECH11054/AI1103/blob/main/Assignment_3/Assignment_3.tex

1 Problem

A continuous random variable X has a probability density function $f(x) = e^{-x}$, $0 < x < \infty$, then P(X > 1) is

2 Solution

Let the CDF of f(x) be denoted by $F_X(x)$ We know that,

$$d(F_X(x)) = f(x) dx$$
 (2.0.1)

Therefore, applying definite integral on both sides from 0 to x in (2.0.1), we get,

$$\int_{0}^{x} d(F_X(x)) = \int_{0}^{x} f(x) dx = \int_{0}^{x} e^{-x} dx$$

$$F_X(x) - F_X(0) = e^{-0} - e^{-x} = 1 - e^{-x}$$
 (2.0.2)

We know that, there is no probability for the random variable X to satisfy $X \le 0$, So, for x = 0 $F_X(0)$ should be zero. So,

$$F_X(0) = 0 (2.0.3)$$

Substituting (2.0.3) in (2.0.2), we get

$$F_X(x) = 1 - e^{-x}$$
 (2.0.4)

We know that, by definition

$$P(X > x) = 1 - F_X(x)$$
 (2.0.5)

Substituting (2.0.4) and x=1 in (2.0.5), we get

$$P(X > 1) = 1 - F_X(1) = 1 - (1 - e^{-1})$$
 (2.0.6)

$$P(X > 1) = e^{-1}$$
 (2.0.7)

Therefore, $P(X > 1) = \frac{1}{e}$

Fig. 0: **PDF**

Fig. 0: **CDF**