FMI, Info, Anul I

Logică matematică și computațională

Seminar 5

(S5.1) Confirmați sau infirmați:

- (i) pentru orice $\varphi, \psi \in Form, \models \varphi \land \psi$ dacă şi numai dacă $\models \varphi$ şi $\models \psi$;
- (ii) pentru orice $\varphi, \psi \in Form, \vDash \varphi \lor \psi$ dacă și numai dacă $\vDash \varphi$ sau $\vDash \psi$.

(S5.2) Să se găsească toate modelele fiecăreia din mulțimile de formule:

- (i) $\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$
- (ii) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$

(S5.3) Fie $\Gamma \subseteq Form$ şi $\varphi, \psi \in Form$. Să se demonstreze:

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \to \psi$.
- (iii) $\Gamma \vDash \varphi \wedge \psi$ dacă și numai dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi.$

Notație. Pentru orice mulțime Γ de formule și orice formulă φ , notăm cu $\Gamma \vDash_{fin} \varphi$ faptul că există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

- (S5.4) Să se arate că pentru orice mulțime de formule Γ și orice formulă φ avem că $\Gamma \vDash_{fin} \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.
- ${\bf (S5.5)}$ Demonstrați că următoarele afirmații sunt echivalente:
 - (V1) Pentru orice $\Gamma \subseteq Form$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.
- (V2) Pentru orice $\Gamma \subseteq Form, \ \Gamma$ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- (V3) Pentru orice $\Gamma \subseteq Form, \ \varphi \in Form, \ \Gamma \vDash \varphi$ dacă și numai dacă $\Gamma \vDash_{fin} \varphi$.