	B	u S (gue	da	Y	Re	esol	ucić	óΩ	de	P	roble	mo	ıS.														
	•	Æ		cio				o S :	For	mal	ism	10	bor	d 1	repre	:Sen	itar	e) En	tori	no.							
					-	7		8 2		obje	tivo	<i>∆</i> r	1 8 7	2	3 4		P	or le	5	ارمو	ente	stud e: XS1					Sia [·]	do
	•	Æs	tac	los		5	4	3					7	6	5			-	- to	das	a	s si torn	tva	cion	es	pos	ble	5
				tri z		3×3	_		1				80			20	,		Pe	rmi		Acc pas					tad	o
	•	Ao	Cio(nes								0	3	1 2	8				_	pre ese	conc ecto	lició	<u> </u>	D.	E	tru	e, Sc	lse [°]
(or	ver T		F	χί <i>δ</i> Λ >0		inter	cam	biai	((F, C		F-1	· , (),		Co	ste L				Cos	ite (ρεί	ona	l').	1			
Į(ا _	Þ	C	>0 <2		inte	ey con	nbia	ı y (F, c). (F,C	(-1 (-1	()		1 1 1)											
															Car	s:lle spla	u Zad	a										
	•			ma tada)		icia	-			pr 8	_	ണ	a).															
						-D		5	6	71																		
			· C.	ondi]	ciōſ																etin	ni p	noble	ema				
													Pa									T						

$$g(n) = g(n) + h(n)$$

h*(n)=coste óptimo real de un camino desde n al objetivo.

· Definición 1:

Un heuristico h(n) es optimista (admisible) si

$$\forall \Omega$$
, $\beta(\Omega) \leq \beta^*(\Omega)$

Propiedud 1

- Costes positivos: $\forall (n,n) \rightarrow c(n,n') \geq 0$
- h(n) admisible : entonces A* es admisible en gragos ginitos.

LD Si hay solución, encuentra la óptima.

Si además el coste de caminos infinitos es infinitos (ej: V(n.n')-> c (n.n') > \(\sigma\), entonces A* es admisible es grafos infinitos.

Desinición 2:

Dados 2 heuristicos optimistas h, hz para un mismo problema, decimos que hz está más informado que h, s::

Vn € objetivo -> h. (n) > h. (n)

Propiedad 2:

Si hz está más informado que hz, entonces A* con hz expande al menos los mismos nodos que A* con hz.

Definición 3:

On heuristico h(n) comple la propiedad monótona.

Si para todo arco del graso (n.n') se comple:

$$\forall avco(n,n') \rightarrow h(n) \leq c(n,n') + h(n')$$

Si se cumple:

Propiedad 3:

- Si R(n) es monótono, entonces cuando A* selecciona un nodo n, ha encontrado el comino óptimo hasta él (nunca se volverá a abrir).
- -Si h(n) es monótono, es admisible. Si es admisible, PUEDE ser o no monótono.

Nota Curiosa: Si h(n) es monótono, A* es el mejor algoritmo de los de Su clase (expande menos nodos que ningún otro).

