# Física do Corpo Humano

Licenciatura em Física

Ana letiva de 2020/2021 - 1º semestre.

Estas notas resultam directamente da adaptação de materiais de apoio utilizados nas aulas de Física do Corpo Humano para o curso de Licenciatura em Física — Percurso C — Física Médica, para o ano letivo de 2020/2021.

São facultadas apenas para servirem como guia das matérias abordadas, podendo ser vistas como "sumários" alargados e ilustrados de cada um dos temas. Sendo, na sua maioria, cópias directas dos "slides" apresentados **não devem**, pelo exposto, **ser tomadas como elemento de estudo**.

As publicações referidas na bibliografia (todas elas existentes nas bibliotecas da Universidade do Minho e /ou na posse do docente responsável) deverão servir para o estudo aprofundado dos temas tratados nesta unidade curricular.

A sequência apresentada, bem como a maior parte das figuras, segue muito de perto os capítulos 7\* e 8\*\* do livro "Physics of the Human Body," de Herman P. Irving, indicado como principal texto de apoio, pelo que é sugerida a leitura atenta desses textos.

\*excluíndo a secção 7.5

<sup>\*\*</sup> excluíndo 8.3; 8.4.4 e 8.4.5

# Circulação de fluidos no corpo humano:

- Sangue no coração e sistema circulatório
- Ar nos pulmões e sistema respiratório
- Urina na bexiga e sistema urinário

••••

....

O fluxo direcionado de fluidos no corpo, ocorre, essencialmente, por movimento do respetivo fluido em sistemas de vasos. O movimento "não direcionado" ocorre por difusão → escala ...

#### Pressão arterial

No contexto do corpo humano, é usual usar-se a "pressão manométrica" e não a pressão absoluta:

$$P_{manom\'etria} = P_{absoluta} - 1 atm$$

Faz sentido – o que importa é a diferença de pressão...

| arterial blood pressure      |                                  |
|------------------------------|----------------------------------|
| maximum (systolic)           | 100-140                          |
| minimum (diastolic)          | 60-90                            |
| capillary blood pressure     |                                  |
| arterial end                 | 30                               |
| venous end                   | 10                               |
| venous blood pressure        |                                  |
| typical                      | 3–7                              |
| great veins                  | <1                               |
| middle ear pressure          |                                  |
| typical                      | <1                               |
| eardrum rupture threshold    | 120                              |
| eye pressure                 |                                  |
| humors                       | 20 (12-23)                       |
| glaucoma threshold range     | $\sim$ 21-30                     |
| cerebrospinal fluid pressure |                                  |
| in brain – lying down        | 5-12                             |
| gastrointestinal             | 10-12                            |
| skeleton                     |                                  |
| long leg bones, standing     | $\sim$ 7,600 (10 atm.)           |
| urinary bladder pressure     |                                  |
| voiding pressure             | 15-30 (20-40 cmH <sub>2</sub> O) |
| momentary, up to             | $120 \ (150 \ cmH_2O)$           |
| intrathoracie                |                                  |
| between lung and chest wall  | -10                              |
|                              |                                  |

Pressões (manométricas) típicas no corpo humano (em mm Hg)

# Medida da pressão arterial

A pressão sanguínea mede-se com um esfigmomanómetro:

manga medidor de pressão (mede a pressão na manga) sistema de injeção de ar

A manga é colocada na parte superior do braço, acima do cotovelo, envolvendo a artéria braquial.

O sensor de um estetoscópio é colocado na parte inferior do braço, junto à zona do cotovelo.

Sem pressão na manga, não há qualquer som audível. Quando se pressuriza (despressuriza) a manga, são ouvidos sons caraterísticos.

→ Sons de Korotkoff



# Medida da pressão arterial

Como varia a pressão sanguínea nas principais artérias em função do tempo?

Sistólica ~ **120 mm Hg** 

Diastólica ~ **80 mm Hg** 



Quando a pressão na manga excede a pressão sistólica deixa de haver fluxo de sangue para a parte inferior do braço  $\rightarrow$  deixa da haver som audível.

Quando a pressão na manga baixa para valores mesmo abaixo da **pressão sistólica**, passa a haver um **fluxo intermitente** – turbulento  $\rightarrow$  **sons the Korotkoff**, detetáveis por um estetoscópio.

À medida que a pressão na manga continua a baixar, os sons continuam audíveis até essa pressão igualar a pressão diastólica. Aí, o fluxo deixa de ser turbulento e o som deixa de se ouvir  $\rightarrow$  pressão diastólica.

https://www.youtube.com/watch?v=kih1 lOgjic

https://www.youtube.com/watch?v=VJrLHePNDQ4

https://www.youtube.com/watch?v=xjBDiQL3sW0

https://www.youtube.com/watch?v=UfCr\_wUepxo

# Lei de Laplace

A pressão no interior das paredes dos vasos sanguíneos (P) excede a pressão exterior ( $P_{ext}$ ) por:

$$\Delta P = P - P_{ext}$$

Qual deverá ser a **tensão** nas paredes dos vasos que permita suportar esta **diferença de pressão**, em equilíbrio?

A força que é exercida nas paredes (interior) é dada por:

$$\Delta P \times \acute{a}rea = \Delta P \times (R\theta)L$$

As componentes horizontais de T anulam-se. As verticais (para "dentro") são dadas por:

$$T \times sin(\theta/2) \approx T \times (\theta/2)$$



Nota: a tensão **T** (no "filme") tem unidades de força/comprimento. Pode representar a tensão ao longo de uma circunferência que envolve um vaso sanguíneo.

Em equilíbrio (comprimento L):

$$\Delta P \times (R\theta)L = 2T \times \frac{\theta}{2}L \rightarrow T = R\Delta P$$

Para uma esfera:  $T = R \Delta P/2$ 

# Lei de Laplace

Tensão superficial ( $\gamma$ ) para vários líquidos

| liquid              | T (°C) | $\gamma (10^{-4}  \text{N/m})$ |
|---------------------|--------|--------------------------------|
| water               | 0      | 7.56                           |
|                     | 20     | 7.28                           |
|                     | 60     | 6.62                           |
|                     | 100    | 5.89                           |
| whole blood         | 20     | 5.5-6.1                        |
| blood plasma        | 20     | 5.0 - 5.6                      |
| lung surfactant     | 20     | 0.1                            |
| cerebrospinal fluid | 20     | 6.0 - 6.3                      |
| saliva              | 20     | 1.5-2.1                        |
| benzene             | 20     | 2.89                           |
| mercury             | 20     | 46.4                           |

#### O sistema circulatório e o ciclo cardíaco

# Circulação

pulmonar ("pequena circulação") sistémica ("grande circulação" ou "circulação geral")

Na circulação sistémica, o sangue arterial é bombeado, do ventrículo esquerdo do coração, através da aorta, para todos os órgãos. Após as "trocas de nutrientes" ao nível dos tecidos, o sangue regressa ao coração como sangue venoso através da aurícula direita e das veias cavas.

Na circulação pulmonar, sangue pobre em oxigénio é bombeado pelo ventrículo direito para os pulmões, onde é oxigenado, regressando ao ventrículo esquerdo.



#### O sistema circulatório e o ciclo cardíaco

|                    | P (mmHg) | V (L) |
|--------------------|----------|-------|
| systemic arteries  | 100      | 1.0   |
| systemic veins     | 2        | 3.5   |
| pulmonary arteries | 15       | 0.1   |
| pulmonary veins    | 5        | 0.4   |

Valores da pressão sanguínea (em repouso), e volumes de sangue em cada parte do sistema

Sistémico → maior pressão – a parte esquerda do coração é maior. É necessário levar o sangue mais longe!

# Coração



Nota 1: deficiências no funcionamento das válvulas podem ser detetadas por auscultação, devido às variações de fluxo que provocam.

Nota 2: as doenças do aparelho circulatório são a principal causa de morte em Portugal e na maior parte dos países europeus.







| vessel                   | $_{\rm (mm)}^{\rm diameter}$ | length (mm) | $\begin{array}{c} \mathrm{wall\ thickness} \\ (\mu\mathrm{m}) \end{array}$ | pressure<br>(mmHg) |
|--------------------------|------------------------------|-------------|----------------------------------------------------------------------------|--------------------|
| aorta                    | 25.0                         | 400         | 1,500                                                                      | 100                |
| large arteries           | 6.5                          | 200         | 1,000                                                                      | 100                |
| main artery branches     | 2.4                          | 100         | 800                                                                        | 95                 |
| terminal artery branches | 1.2                          | 10          | 125                                                                        | 90                 |
| arterioles               | 0.1                          | $^2$        | 20                                                                         | 60                 |
| capillaries              | 0.008                        | 1           | 1                                                                          | 30                 |
| venules                  | 0.15                         | $^2$        | 2                                                                          | 20                 |
| terminal venules         | 1.5                          | 10          | 40                                                                         | 15                 |
| main venous branches     | 5.0                          | 100         | 500                                                                        | 15                 |
| large veins              | 14.0                         | 200         | 800                                                                        | 10                 |
| vena cava <sup>a</sup>   | 30.0                         | 400         | 1,200                                                                      | 5                  |
| heart chambers           | _                            | _           | _                                                                          | 120                |

Ciclo cardíaco

Características dos diferentes vasos presentes no sistema circulatório humano

| vessel                   | number         | $\begin{array}{c} \rm total \\ \rm length \\ \rm (mm) \end{array}$ | $\begin{array}{c} {\rm total} \\ {\rm surface \ area} \\ {\rm (mm^2)} \end{array}$ | $\begin{array}{c} \rm{total\ blood} \\ \rm{volume} \\ \rm{(mm}^3) \end{array}$ |
|--------------------------|----------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| aorta                    | 1              | 400                                                                | 31,400                                                                             | 200,000                                                                        |
| large arteries           | 40             | 8,000                                                              | 163,000                                                                            | 260,000                                                                        |
| main artery branches     | 500            | 50,000                                                             | 377,000                                                                            | 220,000                                                                        |
| terminal artery branches | 11,000         | 110,000                                                            | 415,000                                                                            | 120,000                                                                        |
| arterioles               | 4,500,000      | 9,000,000                                                          | 2,800,000                                                                          | 70,000                                                                         |
| capillaries              | 19,000,000,000 | 19,000,000,000                                                     | 298,000,000                                                                        | 375,000                                                                        |
| venules                  | 10,000,000     | 20,000,000                                                         | 9,400,000                                                                          | 355,000                                                                        |
| terminal venules         | 11,000         | 110,000                                                            | 518,000                                                                            | 190,000                                                                        |
| main venous branches     | 500            | 50,000                                                             | 785,000                                                                            | 1,590,000                                                                      |
| large veins              | 40             | 8,000                                                              | 352,000                                                                            | 1,290,000                                                                      |
| vena cava <sup>a</sup>   | $1^a$          | 400                                                                | 37,700                                                                             | 280,000                                                                        |
| heart chambers           | _              |                                                                    |                                                                                    | 450,000                                                                        |
| Total                    |                | ${\sim}19{,}000\mathrm{km}$                                        | 312,900,000                                                                        | 5,400,000                                                                      |

This is for a 30-yr-old male, with mass 70 kg and 5.4 L blood volume.

Medidas dos fluxos de sangue podem ser feitas por Ecocardiografia Doppler (ultrasónica) ou por "Balistocardiografia\*

<sup>\*</sup>registo do impulso da onda sistólica

#### Balistocardiografia

(ou balistografia), s. f. (fr. ballistocardiographie ou ballistographie; ing. ballistocardiography). Método de exploração utilizado em cardiologia, que permite registar, com o auxílio de um balistocardiógrafo (balistógrafo), os movimentos muito fracos do corpo humano que lhe são transmitidos à distância pela contracção cardíaca, pela ejecção do sangue e pela sua passagem nos grandes vasos. O resultado registado é um balistocardiograma (balistograma) que complementa os dados fornecidos por outros métodos gráficos, nomeadamente o electrocardiograma.

in Glossário de "Médicos de Portugal"



Video recomendado: <a href="https://www.youtube.com/watch?v=IS9TD9fHFv0">www.youtube.com/watch?v=IS9TD9fHFv0</a>

#### "Circuito elétrico"





As duas partes (direita e esquerda) devem trabalhar completamente sincronizadas

Existe um "pacemaker" que envia um impulso elétrico para as aurículas e que obriga à contração simultânea.

O sinal segue depois para o nodo auriculoventricular (atrioventricular), onde sofre um "atraso".

É depois enviado para o músculo cardíaco ventricular, obrigando à contração ventricular simultânea.

#### "Circuito elétrico"



- \* Fibras de Purkinje contração coordenada do coração
- \*\* "apex" cardíaco responsável pela contração ventricular. Recebe e reenvia sinais elétricos vindos do nó aurículo-ventricular

# Correntes elétricas e efeitos no corpo humano

| Bibliographic Entry                                                                                                 | Result (w/surrounding text)                                                                                                                                                                                                                      | Standardized<br>Result |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Cutnell, John D., Johnson, Kenneth W. <i>Physics. 4th ed.</i> New York, NY: Wiley, 1998.                            | "Currents of approximately 0.2 A are potentially fatal, because they can make the heart fibrillate, or beat in an uncontrolled manner."                                                                                                          | 0.2 A                  |
| Carr, Joseph J. Safety for electronic hobbyists. Popular Electronics. October 1997. as found in Britannica.com.     | "In general, for limb-contact electrical shocks, accepted rules of thumb are: 1-5 mA is the level of perception; 10 mA is the level where pain is sensed; at 100 mA severe muscular contraction occurs, and at 100-300 mA electrocution occurs." | 0.1–0.3 A              |
| "Electrical Injuries." The Merck Manual of Medical Information: Home Edition, Pennsylvania: Merck                   | "At currents as low as 60 to 100 milliamperes, low-voltage (110-220 volts), 60-hertz alternating current traveling through the chest for a split second can cause life-threatening irregular heart rhythms. About 300-500                        | 0.06–0.1 A<br>(AC)     |
| Home Edition. Pennsylvania: Merck, 1997.                                                                            | milliamperes of direct current is needed to have the same effect."                                                                                                                                                                               | 0.3–0.5 A<br>(DC)      |
| Zitzewitz, Paul W., Neff, Robert F.  Merrill Physics, Principles and Problems. New York: Glencoe McGraw-Hill, 1995. | "The damage caused by electric shock depends on the current flowing through the body 1 mA can be felt; 5 mA is painful. Above 15 mA, a person loses muscle control, and 70 mA can be fatal."                                                     | 0.07 A                 |
| Watson, George. SCEN 103 Class<br>12. University of Delaware. March 8,<br>1999.                                     | "0.10 death due to fibrillation > 0.20 no fibrillation, but severe burning, no breathing"                                                                                                                                                        | 0.1–0.2 A              |

#### Válvulas

Há quatro válvulas principais no coração, todas de "sentido único"

Mitral ou bicúspide: fluxo sanguíneo entre aurícula e ventrículo esquerdos.

**Tricúspide**: fluxo sanguíneo entre aurícula e ventrículo direitos. **Aórtica**: fluxo sanguíneo entre o ventrículo esquerdo e a aorta.

**Pulmonar:** fluxo sanguíneo entre o ventrículo direito e a artéria pulmonar.



#### Válvulas



https://www.youtube.com/watch?v=yGIFBzaTuol

(seg 30 e seguintes)

https://www.youtube.com/watch?v=oHMmtqKgs50

#### Física do sistema circulatório

- Como é que a pressão varia nas artérias e nas veias (ao longo das), incluindo nos capilares.
- Quais as consequências das "irregularidades" nas artérias, tais como "entupimentos" e aneurismas (dilatação anormal do vaso por enfraquecimento das paredes --- pode romper...).

do ponto de vista da "força" das paredes das artérias

- Cálculo do trabalho feito pelo coração –necessidades metabólicas do corpo (contribuição)
- Modelo Físico do sistema circulatório e do coração.

# Propriedades do sangue

• pH normal de ~ 7.4 рН Sangue venoso tem um pH < (+CO<sub>2</sub>) • Cerca de um grau acima da temperatura corporal temperatura • Ap. 38°C • 3 a 5 vezes mais denso e mais viscoso do que a viscosidade água e ligeiramente pegajoso. • Vermelho. Tom varia com o conteúdo de O<sub>2</sub>. cor • Sangue arterial é mais "vivo". • 5 a 6 L para um homem adulto. 4 a 5 L para uma quantidade mulher adulta. ~ 8% massa total do corpo.

# Funções do sangue

# **Transporte**

- Respiração
- Transporta nutrientes do trato gastrointestinal
- Transporte de hormonas das glândulas endócrinas
- Transporte os "restos" do metabolismo

# Regulação

- Regula o pH
- Ajusta e mantém a temperatura corporal
- Mantém o conteúdo de água nas células

#### Proteção

- Protege contra doenças através da fagocitose
- Reservatório para eletrólitos, água, ...
- Realiza a hematose (venoso arterial)

# Propriedades do sangue

#### Fluido não-Newtoniano

# composição não homogénea





fracção (em volume) de glóbulos vermelhos no sangue

O plasma, com mais de 90% de água, comportase como um fluido Newtoniano, com uma viscosidade de 0.0012 Pa s.

A viscosidade do sangue diminui com o aumento da tensão tangencial

 $100 \times$  água para tensão tangenciais muito baixas  $4 \times$  água para valores típicos do escoamento.

... em muitos casos ainda podemos tratar o sangue como um fluido Newtoniano.

# Pressão sanguínea e fluxo nos vasos

# Estrutura dos vasos sanguíneos



# Pressão sanguínea



Pressão sanguínea média no sistema circulatório, para uma pessoa adulta deitada

As oscilações de pressão sanguínea nas artérias principais na circulação sistémica, traduzem o ciclo sístole/diástole.

Como a sístole demora cerca de um terço do ciclo e a diástole cerca de dois terços, a pressão média é definida como:

$$P_{m\acute{e}dia} = \frac{P_{sistole} + 2P_{di\acute{a}stole}}{3}$$

A maior parte das quedas de pressão ocorrem nas arteríolas e capilares → viscosidade

A pressão nas veias é demasiado baixa para, só por si, fazer voltar o sangue ao coração, apesar dos seus largos diâmetros → baixa resistência. Existe um mecanismo peristáltico...



Pressão sanguínea

Diferenças de pressão e irrigação sanguínea.

Para uma pessoa em pé, há um  $\Delta P$  dado por  $\rho gh$ , em que h representa a altura relativamente ao coração

Diferença de ~30 mmHg entre o cérebro e o coração ( $\Delta h \sim 40$  cm).

Efeitos da gravidade.....

Porque não devemos "fazer o pino" por grandes períodos?

O que acontece na cabeça? E nos pés?

Quem sofre de "varizes" tem mais problemas em estar na posição vertical (veias dilatadas e irregulares...)

# Modelização de fluxo em vasos sanguíneos



Fluxo sanguíneo: caso genérico)

$$Q_1 = Q_2 = Q$$

 $P_{ext} = 0$  (pressão manométrica)

# Propriedades físicas dos vasos sanguíneos:

- -resistência ao fluxo  $\Rightarrow$  é necessária uma diferença de pressão nas extremidades para haver fluxo.
- -"compliance" em resposta a um estímulo de expansão.

Caso particular 1 (vaso com volume constante – vaso "resistente")



$$P_1 - P_2 = R_{fluxo} \times Q$$

"Lei de Ohm"

A resistência vascular ( $R_{fluxo}$ ) é dada por (tubo raio r):

$$R_{fluxo} = \frac{8\eta L}{\pi r^4}$$

# Modelização de fluxo em vasos sanguíneos

Caso particular 2 (vaso flexível ("compliance" \*) – resistência muito baixa)

$$P_1 = P_2 = P$$

$$Q_1 \longrightarrow Q_2$$

$$P_{\text{outside}} = 0$$

Neste caso: 
$$V\!\left(P\right) = V_d + C_{fluxo}P \qquad \qquad C_{fluxo} - \text{``coeficiente de flexibilidade''}$$
 
$$V_d - \text{volume quando P = 0}$$

No caso do vaso "resistente", o caudal é afetado pela variação da pressão ao longo do vaso. No caso do vaso "flexível", o seu volume é afetado pela diferença de pressão entre o interior e o exterior.

Os vasos reais tem características de um e de outro.

A aorta, as artérias e veias maiores, tem características mais próximas dos vasos "flexíveis". Arteríolas, capilares e vénulas comportam-se como vasos de "resistência".

As arteríolas são os vasos onde ocorrem as maiores quedas de pressão, sendo essa a razão pela qual o coração tem de bombear o sangue a pressão tão elevada.

<sup>\*</sup>A propriedade de um material sofrer uma deformação elástica ou uma mudança de volume quando sujeito a uma força. Inverso de rigidez.

Queda de pressão nas artérias e em vasos "resistentes"

Da lei de Poiseuille: 
$$\Delta P = \frac{8 \eta l}{\pi r^4} Q$$
 Podemos estimar  $\Delta P = P_1 - P_2$ 

$$\Delta P = P_1 - P_2$$

na aorta, nas grandes artérias, nas arteríolas e nos capilares.

Resistência ao fluxo utilizando valores "standard" : (pág 463/4 FHB)  $R_{fluxo,0} = \frac{7.7 \times 10^{-5} mmHg}{cm^3/s}$ 

$$R_{fluxo,0} = \frac{7.7 \times 10^{-5} mmHg}{cm^3/s}$$

Unidades PRU – unidade de resistência periférica (unidade comum em fisiologia)

Para um vaso com comprimento e raio arbitrário:  $R_{fluxo} = R_{fluxo,0} \frac{L(cm)}{r^4(cm)}$ 

e: 
$$\Delta P = R_{fluxo}Q = 7.7 \times 10^{-5} (mmHg) R \frac{L(cm)}{r^4(cm)} Q(cm^3/s)$$

Aorta  $\rightarrow$  grandes artérias  $\rightarrow$  arteriolas  $\rightarrow$  capilares

Em cada "nível" (vasos iguais e paralelos), o fluxo é dado por  $\sim Q_t/n$ 



Para  $Q_t = 80 \text{ cm}^3 \text{ e } Q = Q_t / n \text{ temos:}$ 

$$\Delta P = R_{fluxo} Q = 7.7 \times 10^{-5} \left( mm Hg \right) R \frac{L(cm)}{r^4 (cm)} \frac{80}{n}$$

$$=\frac{0.0062\,mmHg}{n}\frac{L(\,cm\,)}{r^4(\,cm\,)}$$

Aorta (n=1)  $r \sim 1.25$  cm;  $L \sim 10$  cm  $\Rightarrow \Delta P = 0.0025$  mm Hg (insignificante)

Grandes artérias (n=200)  $r \sim 0.2$  cm;  $L \sim 75$  cm  $\Rightarrow \Delta P = 1.4$  mm Hg (insignificante)

Pequenas artérias e arteríolas (n=5×10<sup>5</sup>)  $r \sim 30 \ \mu m$ ;  $L \sim 0.6 \ cm \Rightarrow \Delta P = 91 \ mm \ Hg$  (muito significativo)

Capilares (n=10<sup>10</sup>)  $r \sim 3.5 \ \mu m$ ;  $L \sim 0.2 \ cm \Rightarrow \Delta P = 8.2 \ mm \ Hg$  (significativo)

Queda de pressão nas artérias e em vasos - modelo

#### Conclusões:

Os resultados do modelo estão de acordo com a figura que nos dá a situação "real".



Arteríolas e capilares podem ser bem aproximados pelo modelo dos vasos "resistentes" (resistance vessels).

A aorta e as grandes artérias sofrem apenas pequenas variações de pressão, e são melhor descritas pelo modelo dos vasos "elásticos" (compliance vessels).

As veias tem um maior diâmetro comparativamente com as artérias  $\Rightarrow$  menor resistência  $\Rightarrow$  menor  $\Delta P$ 

Queda de pressão nas artérias e em vasos - modelo

Para todos os vasos, existe uma queda linear da pressão com a distância → lei Poiseuille

$$\frac{dP}{dx} = \frac{8\eta}{\pi r^4} Q$$

Esta aproximação "vê" o fluxo sanguíneo como uma "linha de transmissão", em que o fluxo é analisado por unidade de comprimento ao longo do vaso. Isto em oposição à visão integrada dada por exemplo pela equação

$$\Delta P = R_{fluxo}Q$$

O que acontece nas artérias parcialmente entupidas/obstruídas?

se *r* diminui:

maior  $\Delta P$  para o mesmo Q menor Q para o mesmo  $\Delta P$ 

Consequências: aumento da pressão sanguínea para manter o caudal redução do fluxo num determinado ponto → doença das artérias coronárias (aterosclerose)

## A força das paredes dos vasos sanguíneos

Sendo a diferença de pressão entre o interior do vaso e o exterior dada por  $\Delta P = P - P_{ext}$ 

qual a tensão que as paredes dos vasos terão de ser capazes de suportar, para aguentarem esta diferença de pressão positiva?  $\rightarrow$  lei de Laplace  $\Delta P = T/R$ 

| vessel        | diameter<br>(mm) | wall thickness, w (mm) | internal pressure, $\Delta P$ (mmHg) | wall<br>tension,<br>T<br>(dyne/cm) | T/w<br>(kPa) |
|---------------|------------------|------------------------|--------------------------------------|------------------------------------|--------------|
| aorta         | 24.0             | 3.0                    | 100                                  | 160,000                            | 53           |
| large artery  | 8.0              | 1.0                    | 97                                   | 52,000                             | 52           |
| medium artery | 4.0              | 0.8                    | 90                                   | 24,000                             | 30           |
| small artery  | 2.0              | 0.5                    | 75                                   | 10,000                             | 20           |
| arteriole     | 0.3              | 0.02                   | 60                                   | 1,200                              | 60           |
| capillary     | 0.008            | 0.001                  | 30                                   | 16                                 | 16           |
| venule        | 0.02             | 0.002                  | 20                                   | 27                                 | 13           |
| small vein    | 3.0              | 0.2                    | 18                                   | 3,600                              | 18           |
| medium vein   | 5.0              | 0.5                    | 15                                   | 5,000                              | 10           |
| large vein    | 15.0             | 0.8                    | 10                                   | 10,000                             | 12           |
| vena cava     | 30.0             | 1.5                    | 10                                   | 20,000                             | 13           |

Tensão nas paredes dos vasos sanguíneos (calculada) (1 dyne/cm = 0.001 N/m)

A tensão que as paredes dos capilares tem de suportar é muito pequena  $\rightarrow$  raios muito pequenos. T/w aprox. constante.

## Fluxo sanguíneo em artérias que curvam

As paredes de uma artéria sentem uma pressão que é dada pela diferença da pressão hidrostática dentro e fora do vaso. É sentida igualmente em toda a parede.

Artéria curva ⇒ força centrípeta sentida na parte exterior da curva (parede do vaso), de modo a alterar a direção do vetor momento do fluxo sanguíneo.

Qual a magnitude desta força? Constitui uma sobrecarga significativa sobre as paredes da artéria? Qual a sua magnitude comparativamente com a pressão hidrostática?

Ex: raio da artéria – R; raio de curvatura da trajetória -  $\Re$  massa volúmica -  $\rho$ ; velocidade média fluxo – v

Nestas condições, a pressão adicional é dada por:

É máxima onde o fluxo é máximo → aorta

Se  $\rho$  = 1 g cm<sup>-3</sup>; R=1.25 cm;  $\Re$  = 2 cm e v = 100 cm s<sup>-1</sup> resulta

esulta  $P_{centripeta} \approx 5 \, mmHg$ 

É pequeno comparado com a pressão média na aorta (100 mm Hg) → inconsequente

O coração bombeia cerca de 80 cm³ de sangue por contração – volume sistólico (stroke volume)

A frequência (f) do batimento é de cerca de 1 Hz.

Assim, o débito cardíaco (caudal) é de:

$$Q_t = FV_{sistólico} \approx 80 \, cm^3 \, s^{-1} = 4.8 \, l \, min^{-1}$$

Volume total de sangue  $\sim$  5  $l \Rightarrow$  todo o sangue circula pelo corpo a cada minuto.

Equação da continuidade implica que  $Q = A \times v$  é constante .



$$Q = A \times v = 90 \text{ cm}^3 \text{ s}^{-1}$$

#### Caudais e velocidade dos fluxos sanguíneos

O número de Reynolds varia entre um máximo de 6000 no coração e na aorta e um mínimo  $< 10^{-3}$  nos capilares  $\implies$  fluxo de sangue na aorta é potencialmente turbulento.

A fluxo global sistémico arterial pode ser descrito relacionando o débito cardíaco com a pressão arterial sistémica:

$$P_{sa} = (TPVR) Q_t$$

em que (TPVR) representa a resistência periférica vascular (total).

O corpo humano regula  $P_{sa}$  controlando o débito cardíaco e esta resistência periférica.

Quando estamos deitados, há um volume maior de sangue que é transitoriamente armazenado nas extremidades inferiores do sistema circulatório.

Levantamos  $\Rightarrow$  menor volume de sangue no coração  $\Rightarrow$  queda da pressão  $\Rightarrow$  tonturas.

Q menor

 $\triangle P$  decresce pouco devido aos mecanismos de vasoconstrição (aumento de TPVR)

Pelo contrário, se P aumenta bruscamente, entra em ação o mecanismo que obriga à diminuição da resistência vascular geral, de modo a restaurar a pressão "normal" (cap. 13)

Mesmo em situações de exercício físico moderado, o caudal de sangue aumenta substancialmente.

A distribuição, quer absoluta quer relativa, de sangue pelas diferentes partes do corpo também muda radicalmente





repouso

exercício moderado

Fluxo de sangue em situações de exercício físico

| organ   | rest         | light exercise | heavy exercise | maximal exercise |
|---------|--------------|----------------|----------------|------------------|
| brain   | 750 (13%)    | 750 (8%)       | 750 (4%)       | 750 (3%)         |
| heart   | 250 (4%)     | 350 (3.5%)     | 750 (4%)       | 1,000 (4%)       |
| muscle  | 1,200 (21%)  | 4,500 (47%)    | 12,500 (72%)   | 22,000 (88%)     |
| skin    | 500 (8.5%)   | 1,500 (16%)    | 1,900 (11%)    | 600 (2.5%)       |
| kidney  | 1,100 (19%)  | 900 (9.5%)     | 600 (3.5%)     | 250 (1%)         |
| abdomen | 1,400 (24%)  | 1,100 (11.5%)  | 600 (3.5%)     | 300 (1.2%)       |
| other   | 600 (10.5%)  | 400 (4%)       | 400 (2%)       | 100 (0.4%)       |
| Total   | 5,800 (100%) | 9,500 (100%)   | 17,500 (100%)  | 25,000 (100%)    |

Fluxo de sangue para os órgãos em diferentes situações de exercício físico

# Consequências dos entupimentos das artérias

Aterosclerose\* ocorre quando um depósito ou ateroma se forma nas paredes das grandes artérias elásticas.





Nessas zonas,  $A_2 < A_1 \Rightarrow v_2 > v_1$ equação da continuidade:

$$v_2 = \frac{A_1}{A_2} v_1$$

Tube Wall Constriction

Da equação de Bernoulli resulta: 
$$p_2 - p_1 = \frac{1}{2} \rho v_1^2 \left( 1 - \left( \frac{A_1}{A_2} \right)^2 \right) \Rightarrow P_2 < P_1$$

Por ex: se 
$$A_2 / A_1 = 1/3 \Rightarrow p_2 - p_1 = -4\rho v_1^2$$

Ou seja, esta queda de pressão aumenta com a velocidade do sangue ⇒ aumenta com o aumento da atividade física.

Nas regiões ocluídas o fluxo deixa de ser laminar (vortex).

<sup>\*</sup> distinguir de arteriosclerose → rigidez, por ex. resultado de calcificação

# Consequências dos entupimentos das artérias



Queda de pressão nas artérias e em vasos - modelo

Trabalho realizado pelo coração e as suas necessidades metabólicas



Cálculos .... ver pág. 486 PHB – Irving P. Herman e problema 1 da ficha TP

A eficiência de conversão da energia resultante do metabolismo em trabalho mecânico é de cerca de  $20 \% \Rightarrow 125 \text{ kcal /dia para fazer o coração funcionar.}$ 

Sob exercício excessivo, a pressão pode aumentar 50%, e o caudal de um fator de 5. Nesse caso, o trabalho mecânico realizado pelo coração e as necessidades metabólicas associadas podem aumentar por um fator de 7.5

#### AVCs e aneurismas

**AVCs** 

isquémicos (deficiência no fluxo de sangue)

hemorrágicos (rebentamento de um vaso sanguíneo no cérebro)







hemorrágico

80% dos AVCs são isquémicos

AVCs hemorrágicos → causados por aneurismas (vasos sanguíneos "dilatados")





Sistema complexo de ramificações sucessivas.

Artérias – maiores → menores

Veias – menores  $\rightarrow$  majores

Critério: todas as artérias e veias acima de um determinado diâmetro formam um subsistema.



Vasos sanguíneos maiores podem ser aproximados por "vasos elásticos" ("compliance")

Vasos sanguíneos menores podem ser aproximados por "vasos resistentes" ("resistance")

Objetivo: desenvolver um modelo da circulação que simule o fluxo estacionário e que possa incorporar variações temporais como a pulsação arterial.

# Modelo do coração

# Condições:

-considerar o ventrículo esquerdo (o tratamento do direito é semelhante)

- -durante a sístole válvula mitral (auriculoventricular esquerda) fechada válvula aórtica aberta pressão ( $P_{as}$ ) ~ pressão nas artérias sistémicas ( $\Delta P$  pequeno)
- -durante a diástole válvula mitral (auriculoventricular esquerda) aberta válvula aórtica fechada pressão o ventrículo esquerdo recebe sangue da aurícula esquerda, a uma pressão baixa, que é ap. a das veias pulmonares ( $P_{as}$ ) que alimentam a aurícula.  $P_{as} \sim 5 \text{ mmHg}$

#### Modelo estático dos ventrículos

### Condições:

-Capa hemisférica

 $r_i$  - raio interior  $r_o$  - raio exterior parede espessa  $(r_o - r_i)$ 



 $P_{I}$  – "para baixo", é max. durante a sístole – 120 mmHg  $P_{0}$  – "para cima", é exercida pelo pericárdio (~ pressão pleural – pode ser <  $P_{atm}$ )  $\sigma$ - tensão circunferencial que atua nas paredes do ventrículo

(Ver lei de Laplace para uma esfera)

-Em equilíbrio, na direção vertical temos:

$$(\pi r_i^2) P_i = (\pi r_o^2) P_o + (\pi (r_o^2 - r_i^2)) \sigma \qquad \longrightarrow \qquad \sigma = \frac{P_i r_i^2 - P_o r_o^2}{r_o^2 - r_i^2}$$

Nota: A<sub>sup</sub> = 0.5 A<sub>total</sub> – só "parte" da força é na direção vertical

Modelo estático dos ventrículos

Como 
$$P_i >> P_o$$
  $\sigma \approx \frac{P_i}{(r_0/r_i)^2 - 1}$ 

- -Material das paredes do coração é incompressível  $\Rightarrow V_{par}$  não varia com P

-Para a capa hemisférica teremos: 
$$V_{par} = \frac{2\pi \left(r_o^3 - r_i^3\right)}{3} \longrightarrow \left(\frac{r_0}{r_i}\right)^2 = \left(1 + \frac{V_{par}}{V_i}\right)^{\frac{2}{3}}$$

em que o volume interior do ventrículo esquerdo  $(V_i)$  é dado por:  $V_i = 2\pi r_i^3/3$ 

$$e \qquad \sigma \approx \frac{P_i}{\left(1 + \frac{V_{par}}{V_i}\right)^{\frac{2}{3}} - 1}$$

Expandindo em série \* e sabendo que o volume do ventrículo é muito maior que o da parede do coração, teremos:

 $\sigma \approx \frac{3V_i}{2V_{par}}P_i$  o que mostra como uma pressão sistólica elevada ou um aumento do ventrículo esquerdo leva a um aumento da tensão nas paredes

\*Nota  $(1+x)^n \cong 1+nx$  |x| << 1

#### Modelo dinâmico dos ventrículos

-Ventrículo como um vaso "elástico" (compliance), com uma elasticidade (C) que varia no tempo:

$$V(t) = V_d + C(t) P(t)$$



Variação da "elasticidade" (complianvee) ventricular durante o ciclo cardíaco

- -Sístole  $\rightarrow$  baixa elasticidade  $\Rightarrow$  > P, V  $\sim$  const
- -Diástole  $\rightarrow$  alta elasticidade  $\Rightarrow$  < P, relaxação ventricular

#### Modelo dinâmico dos ventrículos

-Variações de volume e pressão no ventrículo durante o ciclo cardíaco



- -A fecho da válvula mitral  $\to$  fim diástole (ED), início da sístole. O volume ventricular é máximo.  $V_{ED}=V_d+C_{diastole}\,P_{pv}$
- -C fecho da válvula aórtica  $\rightarrow$  fim sístole (ES), início da diástole. O volume ventricular é mínimo.  $V_{ES} = V_d + C_{sístole} \ P_{sa}$  (pv veias pulmonares; sa artérias sistémicas )

#### Modelo dinâmico dos ventrículos

O volume bombeado ( $V_{stroke}$ ) é:

$$V_{stroke} = V_{ED} - V_{ES} = C_{sistole} P_{sa} - C_{diastole} P_{pv}$$

Como  $C_{sístole} \sim 0$ 

$$V_{stroke} \approx C_{diastole} P_{pv}$$

Considerando uma frequência de batimento cardíaco F, o caudal fica:

$$Q = FV_{stroke} = FC_{diastole} P_{pv}$$

Fazendo K=F  $C_{di\acute{a}stole}$  temos, para o ventrículo esquerdo, o modelo:

$$Q_L = K_L P_{pv}$$

-Do mesmo modo para o ventrículo direito (que é alimentado pelas veias sistémicas) teremos:

$$Q_R = K_R P_{sv}$$

### Modelo geral do sistema circulatório



Oito subsistemas:

- -"dois" corações (direito e esquerdo)
  - -grandes artérias nos sistemas pulmonar (pa) e sistémico (sa)
  - -grandes veias nos sistemas pulmonar (pv) e sistémico (sv)
  - -pequenos vasos nos sistemas pulmonar e sistémico

A circulação nos ventrículos é determinada pela pressão nas veias que os alimentam

$$Q_L = K_L P_{pv} \qquad Q_R = K_R P_{sv}$$

O volume nas grandes artérias é determinado pela sua "elasticidade" e pelas pressões interiores.

$$V_{sa} = C_{sa} P_{sa}$$
  $V_{pa} = C_{pa} P_{pa}$ 

### Modelo geral do sistema circulatório

Tal como nas veias

$$V_{sv} = C_{sv} P_{sv} \qquad V_{pv} = C_{pv} P_{pv}$$

A queda de pressão nos vasos pequenos é dada pela diferença entre a pressão nas grandes artérias e nas grandes veias.

$$P_{sa} - P_{sv} = R_s Q_s \qquad P_{pa} - P_{pv} = R_p Q_p$$

Modelo geral do sistema circulatório

Três tipos de variáveis: caudal (Q); volume (V); pressão (P)

Cada subsistema depende de relações entre duas delas:

ventrículos: caudal (Q); pressão (P) grandes vasos: volume (V); pressão (P) pequenos vasos: pressão (P); caudal (Q)

Há doze variáveis desconhecidas:

quatro caudais  $Q_R$ ;  $Q_L$ ;  $Q_s$ ;  $Q_p$  quatro pressões  $P_{sa}$ ;  $P_{sv}$ ;  $P_{pa}$ ;  $P_{pv}$  quatro volumes  $V_{sa}$ ;  $V_{sv}$ ;  $V_{pa}$ ;  $V_{pv}$ 

São necessárias doze equações.

Só temos oito.

Em estado estacionário o fluxo mantém-se constante:  $Q_R$  =  $Q_L$  =  $Q_s$  =  $Q_p$  O que dá mais três equações:

$$Q_R = Q_L$$
;  $Q_R = Q_s$ ;  $Q_R = Q_p$ 

A última equação vem da constância do volume:  $V_O$  =  $V_{sa}$  +  $V_{sv}$  +  $V_{pa}$  +  $V_{pv}$ 

# Modelo geral do sistema circulatório

Resolvendo o sistema podemos chegar a soluções para Q,  $V_i \, e \, P_i$ 

i=sa; sv; pa; pv

.... pág 503 "Physics of the Human Boby", Irving P. Herman

$$Q = \frac{V_0}{T_{sa} + T_{sv} + T_{pa} + T_{pv}}$$

$$V_{i} = \frac{T_{i} V_{0}}{T_{sa} + T_{sv} + T_{pa} + T_{pv}}$$

$$P_{i} = \frac{1}{C_{i}} \frac{T_{i} V_{0}}{T_{sa} + T_{sv} + T_{pa} + T_{pv}}$$

$$T_{sa} = C_{sa} \left( \frac{1}{K_R} + R_s \right)$$

$$T_{pa} = C_{pa} \left( \frac{1}{K_L} + R_p \right)$$

$$T_{sv} = C_{sv} \left( \frac{1}{K_R} \right)$$

$$T_{pv} = C_{pv} \left( \frac{1}{K_L} \right)$$

# Modelo geral do sistema circulatório

Com valores conhecidos para o fluxo e para o volume total, os parâmetros do modelo podem ser determinados.

|                                                | systemic system                                  | pulmonary system                                    |
|------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
| resistance, mmHg/(L/min)<br>compliance, L/mmHg | $R_{\rm s} = 17.5$                               | $R_{\rm p} = 1.79$                                  |
| arterial<br>venous                             | $C_{\text{sa}} = 0.01$<br>$C_{\text{sv}} = 1.75$ | $C_{\text{pa}} = 0.00667$<br>$C_{\text{pv}} = 0.08$ |
| heart                                          | $K_{\rm L} = 1.12$                               | $K_{\rm R}=2.8$                                     |
| total volume: $V_0 = 5.0 \text{ L}$            |                                                  |                                                     |

Parâmetros normais (em repouso), para o modelo de circulação estudado.

É possível ir adicionando complexidade...

### Modelo geral do sistema circulatório

"Pulso arterial" – desvio periódico da pressão arterial sistémica, relativamente ao valor da pressão diastólica, devido à sístole. Ou seja:



$$P_{pulso} = P_{sistole} - P_{diástole}$$

$$P_{pulso} \approx 40 \, mmHg$$

É necessário evoluir o modelo anterior para incorporar este tipo de fluxo...

Considerando o sistema de artérias da circulação sistémica, que são vasos "elásticos - volume pode mudar originando/acomodando variações de fluxo .

O caudal que entra vem da parte esquerda do coração  $(Q_L)$  e o que sai vai para os vasos pequenos (resistentes):

$$\frac{dV_{sa}}{dt} = Q_L(t) - Q_s(t)$$

Modelo geral do sistema circulatório

Para este tipo de vaso elástico sabemos que:

$$V_{sa}(t) = V_{sa,d} + C_{sa}P_{sa}(t)$$

Derivando em relação ao tempo e combinando com as equações anteriores:

$$\frac{dV_{sa}(t)}{dt} = C_{sa} \frac{dP_{sa}(t)}{dt} = Q_L(t) - Q_s(t)$$

Atendendo à relação entre  $P, R \in Q$ :

$$R_{s}Q_{s}=P_{sa}-P_{sv}\approx P_{sa}$$

Chegamos a:

$$C_{sa} \frac{dP_{sa}(t)}{dt} = Q_L(t) - \frac{P_{sa}}{R_s}$$

O que determina a variação temporal da pressão arterial sistémica e, consequentemente, do pulso arterial, se o caudal à saída do ventrículo esquerdo for conhecido.

