EP Γ A Σ IA 4 H

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΑΣΦΑΛΙΣΗ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΠΡΟΤΥΠΑ

ΕΡΓΑΣΙΑ 4^H

1 ΕΡΩΤΗΜΑ

Το πρόγραμμα ζητά ως είσοδο έναν θετικό ακέραιο. Στην περίπτωση που ο ακέραιος είναι μικρότερος του 40, τυπώνεται ο ίδιος ακέραιος, προσαυξημένος κατά 11. Στην περίπτωση που ο ακέραιος είναι μεγαθύτερος ή ίσος του 40, τυπώνεται ο ακέραιος διπθασιασμένος και προσαυξημένος κατά 20.

$$output = \begin{cases} \alpha \kappa \acute{\epsilon} \rho \alpha \iota \circ \varsigma \, + \, 11, & 0 < \alpha \kappa \acute{\epsilon} \rho \alpha \iota \circ \varsigma < 40 \\ 2 \cdot \alpha \kappa \acute{\epsilon} \rho \alpha \iota \circ \varsigma \, + \, 20, & \alpha \kappa \acute{\epsilon} \rho \alpha \iota \circ \varsigma \geq 40 \end{cases}$$

2 ΕΡΩΤΗΜΑ

Είσοδος	Έξοδος		
1	Number is 12		
7	Number is 18		
25	Number is 36		
39	Number is 50		
40	Number is 100		
50	Number is 120		
112	Number is 244		
420	Number is 860		
7523	Number is 15066		
10000	Number is 20020		

3 ΕΡΩΤΗΜΑ

Επομένως το γράφημα ροής είναι το εξής:

Οι κόμβοι 1-2 προσδιορίζουν τις σειριακές εντολές, οι 2-3 την do-while επανάληψη, οι 4-5-6-7-8 την while επανάληψη. Στην while ο κόμβος 4 προσδιορίζει την συνθήκη που επιτρέπει την επανάληψη, ο 5 προσδιορίζει την εντολή b++ της while, ενώ οι 5-6-7-8 την if της while. Οι κόμβοι 9-10-11-12-13 προσδιορίζουν την σύνθετη if. Τέλος οι 13-14-15 προσδιορίζουν την σύνθετη cou κώδικα.

Όσον αφορά την κυκλωματική πολυπλοκότητα:

Πρώτος τρόπος:

$$V(q) = e - n + 2p = 20 - 15 + 2 \cdot 1 = 7$$

Δεύτερος τρόπος:

Oι εντολές του κώδικα είναι η do-while (1), η while (1), η if της while (1), η σύνθετη if (2) και η if στο τέλος (1). Συνολικά 6 εντολές.

$$V(g) = εντολές + 1 = 6 + 1 = 7$$

Τρίτος τρόπος:

Υπάρχουν 7 διαφορετικές περιοχές στο γράφημα.

4 ΕΡΩΤΗΜΑ

Το συντομότερο μονοπάτι είναι το M_0 : 1-2-3-4-9-10-11-13-15. Σε αυτό το μονοπάτι ακολουθείται η δεύτερη διακλάδωση στον κόμβο 4, δηλαδή δεν εκτελείται η while (γρ. 12–16 / κόμβοι 5-6-7-8). Λόγω της E_1 , αυτό το μονοπάτι είναι αδύνατο.

Για τις εξαρτήσεις συνύπαρξης ισχύει:

- Ε₁: Κατά τη πρώτη εκτέθεση της while της γρ. 12, η συνθήκη b!=a πάντα θα είναι αθηθής, οπότε δεν υπάρχει περίπτωση να μην εκτεθεστεί η while. Αυτό συμβαίνει γιατί το a δεν γίνεται να είναι 0 (αθθιώς ακόμα θα βρισκόμασταν στη do-while των γρ. 7-10), ενώ το b πάντα θα είναι 0 θόγω της αρχικοποίησής του. Επομένως σίγουρα θα πρέπει να εκτεθεστεί έστω μια φορά το μονοπάτι 4-5-6-8 (ή 4-5-7-8). Επιπθέον, για να φτάσουμε στο κόμβο 9 (δηθαδή να υπάρχει το μονοπάτι 4-9), πρέπει να έχει τεθειώσει η εκτέθεση της while, άρα είναι απαραίτητη η ύπαρξη του μονοπατιού 8-4.
- Ε₂: Η συνθήκη a==b στην γρ. 19 της σύνθετης if προφανώς θα ισχύει πάντα, βρισκόμενη ακριβώς μετά την while. Επομένως για τον έλεγχο των συνθηκών της if είναι πάντα απαραίτητος ο έλεγχος της δεύτερης συνθήκης c!=b (κόμβος 10), γιατί ποτέ δεν θα εξαχθεί συμπέρασμα αποκλειστικά με την πρώτη. Άρα το μονοπάτι 9-12 δεν γίνεται να υπάρξει.
- E₃: Η συνθήκη c!=b (γρ. **19** / κόμβος 10) δεν γίνεται M₃ να είναι αναληθής, εξαιτίας των αλλεπάλληλων αυξήσεων της while (γρ. **12-15**). Επομένως η else συνθήκη της ίδιας if (γρ. **20**) δεν θα ενεργοποιηθεί ποτέ. Άρα το μονοπάτι 10-12 δεν γίνεται να υπάρξει. Επομένως δεν μπορεί να υπάρξει και το μονοπάτι 12-13. Έτσι, συνδυαστικά για αυτή την if το μόνο πιθανό μονοπάτι είναι το 9-10-11-13.
- Ε₄: Ο κόμβος 15, δηλαδή η else συνθήκη της τελικής if ενεργοποιείται μόνο στη περίπτωση που ο ακέραιος είναι μεγαλύτερος του 40. Επομένως ένα μονοπάτι για να είναι έγκυρο θα πρέπει να περιλαμβάνει ή τους κόμβους 7 και 14 (ακέραιος > 40), ή τους 6 και 13 (0 < ακέραιος < 40).</p>

Επομένως το μικρότερο έγκυρο μονοπάτι είναι το **M**₁: 1-2-3-4-5-6-8-4-9-10-11-13-15.

Ακολουθώντας τον αλγόριθμο, δημιουργούμε και τα υπόλοιπα μονοπάτια προσθέτοντας τις εναπομείνασες ακμές.

M₂: 1-2-3-2-3-4-5-6-8-4-9-10-11-13-15

M₃: 1-2-3-4-5-7-8-4-9-10-11-13-14-15

Τα δυνατά μονοπάτια όπου μπορεί να ελεγχθεί το πρόγραμμα είναι 3, άρα πράγματι $V(g) = 7 \ge 3$.

Τα τέσσερα μονοπάτια τα οποία ήταν αδύνατα αφορούν τις ακμές 3-4-9, 10-12, 9-12 και την συσχέτιση μεταξύ 7ου και 14ου κόμβου, και έτσι είναι αδύνατο να υπάρξουν δεδομένου του κώδικα. Τα υπόθοιπα μονοπάτια είναι έγκυρα και αφορούν τις περιπτώσεις παρακάτω:

5 EPΩTHMA

Μονοπάτι	Περιγραφή	Περίπτωση επεέγχου (input)	Αναμενόμενο αποτέπεσμα (έξοδος προγράμματος)
M_1	Δίνουμε ως είσοδο έναν θετικό ακέραιο μικρότερο του 40.	5	Number is 16
M ₂	Δίνουμε ως είσοδο έναν ακέραιο ο οποίος είναι αρνητικός ή Ο. Ξαναδίνουμε ως είσοδο έναν θετικό ακέραιο.	-2 20	Give a number please: Number is 31
M_3	Δίνουμε ως είσοδο έναν ακέραιο μεγαλύτερο του 40.	50	Number is 120