PHY294, Winter 2017, QUIZ III.

-	on the exam paper. Duration: 25 n	
Name:	; Student #:	; Tutorial group:
molecules is adiabatic	ally expanding from an initial pres	$-C-C-H$. An ideal gas of N acetylenesure p to a final pressure equal to one-half initial volume, $V_{fin.}/V_{in.}$, explaining your
	calculators to find the number, an an freedom are assumed to be "frozen ou	swer of the form, e.g. $20^{\frac{133}{17}+5}$ is acceptable.
$\gamma = 1 + \frac{2}{f} = \frac{f+2}{f}$. T	hus, we have $pV_{in.}^{\gamma} = \frac{p}{2}V_{fin.}^{\gamma}$, or $\frac{V_{fi}}{V_{ii}}$	const., where γ is the adiabate exponent $\frac{n}{1} = 2^{\frac{1}{\gamma}} = 2^{\frac{f}{2+f}}$. For a linear four-atomic luding the 3 translations, 2 rotations, and
		3 points
atoms (atoms of hydr	-	H_2 (hydrogen) molecules and He (helium) m—two protons and two neutrons). What
SOLUTION: The r.n	n.s. speed is $v = \sqrt{\frac{3kT}{m}}$, as follow	rs from equipartition. The helium atoms
	o times heavier than the hydrogen	molecules, thus they are moving $\sqrt{2}$ times
		$2\ points$

Turn over please \longrightarrow

III. An ideal monatomic gas is initially placed in one half of an isolated volume, whose other half is separated by a partition and is empty. What is the work done by the gas as it fills the entire volume after the partition is quickly removed?

SOLUTION: The gas does zero work: there is no partition to push at and the molecules have no way of losing energy while spreading out (diffusing) to fill the entire volume. 2 points

IV. The adiabate equation for the ideal gas is $pV^{\gamma} = const$, in p - V "coordinates". Find the adiabate equation in U - V-coordinates.

SOLUTION: To find the adiabate equation in U-V instead of p-V coordinates, we have to replace p by U. We can do that in two steps. First, using the ideal gas law pV = NkT and starting from the adiabate $pV^{\gamma} = const.$, we rewrite it as $pVV^{\gamma-1} = const$ or $NkTV^{\gamma-1} = const.$. Absorbing the Nk factor into the constant, we have $TV^{\gamma-1} = const.$. Finally we replace T by U using $U = \frac{f}{2}NkT$. Since $\frac{fNk}{2}$ is constant, by redefining the constant once more, we have $UV^{\gamma-1} = const.$ or $UV^{\frac{2}{f}} = const.$

3 points

Total number of points: 3 + 2 + 2 + 3 = 10.