Non-Regular Languages

The finiteness of the state set of DFA's leads to ways to give examples of non-regular languages.

Suppose DFA M recognizes an infinite language L.

- If we look at long enough strings in L, we will find one that causes M to visit the same state q more than once.
- We can then repeat (or "pump") the segment that takes us from q back to q, to obtain an infinite family of related strings in L.

The Pumping Lemma

Pumping Lemma: (Sipser, 1.70) Suppose L is a regular language. Then there exists a number p such that, if w is any string in L with $|w| \ge p$, then w may be written w = xyz such that the following all hold:

- 1. $xy^iz \in L$, for all $i \ge 0$
- 2. |y| > 0
- 3. $|xy| \le p$.

$$\forall L. \ L \ \text{regular} \rightarrow$$

$$\exists p. \ \forall w. \ w \in L \land |w| \ge p \rightarrow$$

$$\exists x \ y \ z. \ w = xyz \land (1) \land (2) \land (3)$$

Proof of the Pumping Lemma

- Assume *L* is regular.
- ullet Let M be a DFA that recognizes L.
- \bullet Let p be the number of states of M.
- Assume $w \in L$ is such that $|w| \ge p$.
- Choose states $r_0, r_1, \ldots, r_{|w|}$ such that $r_0 = q_0,$ $r_{|w|} \in F$, and $r_{i+1} = \delta(r_i, w_{i+1})$ for $0 \le i \le |w|$. Such states exist because M accepts w.
- By the Pigeonhole Principle, there exist j and k with $0 \le j < k \le p$ such that $r_j = r_k$.

Let

$$-x=w_1w_2\dots w_j,$$

$$-y = w_{j+1}w_{j+2}\dots w_k$$
, and

$$-z = w_{k+1}w_{k+2}\dots w_n;$$

so that w = xyz. Since j < k we have |y| = k - j > 0. Since $k \le p$ we have $|xy| \le p$.

• For any given $i \ge 0$, the sequence of states:

$$r_0, \dots, r_j, \underbrace{r_{j+1}, \dots, r_k}_{i \text{ times}}, r_{k+1}, \dots, r_{|w|}$$

shows that M accepts xy^iz , hence $xy^iz \in L$.

Applying the Pumping Lemma

Example: (Sipser, 1.73) The language $B = \{0^n 1^n . n \ge 0\}$ is not regular.

Proof:

- ullet Suppose (to obtain a contradiction) that B is regular.
- By the Pumping Lemma (using ∀-elimination):

$$\exists p. \ \forall w. \ w \in B \land |w| \ge p \rightarrow$$
$$\exists x \ y \ z. \ w = xyz \land (1) \land (2) \land (3)$$

where (1), (2), (3) are as in the statement of the Pumping Lemma.

• Obtain p (using \exists -elimination) so that

$$\forall w. \ w \in B \land |w| \ge p \rightarrow (\exists x \ y \ z. \ w = xyz \land (1) \land (2) \land (3))$$

• Let w be the string 0^p1^p . Since $w \in B$ and $|w| = 2p \ge p$, we have (by \forall -elimination and implication elimination):

$$\exists x \ y \ z. \ w = xyz \wedge (1) \wedge (2) \wedge (3).$$

- Obtain (using \exists -elimination) x, y, and z so that
 - -w = xyz
 - $-xy^iz \in B$, for all $i \ge 0$
 - -|y| > 0
 - $-|xy| \le p$

- Since $|xy| \le p$, the string y must have the form 0^k for some k with $0 < k \le p$. Then x must be 0^{p-k} and we must have $0^{p-k}1^p = xy^0z \in B$.
- But $0^{p-k}1^p$ cannot be in B, because $p-k \neq p$, so the assumption that B is regular leads to a contradiction. We conclude that B cannot be regular.

Note:

- The PL gives us p (we cannot choose it as we wish).
- ullet The pumping length p depends on L.
- We get to choose w however we wish, as long as $|w| \ge p$ and $w \in L$.
- The PL gives us x, y, and z (we can't choose them).

Using Other Facts with the PL

Sometimes it is useful to apply other knowledge about regular languages before applying the PL.

Example: Let

 $L = \{w \in \{0, 1, 2\}^*. \#0(w) + \#1(w) = \#2(w)\}.$ Then L is not regular.

Proof:

• Suppose L were regular.

Then

$$L \cap 0^*1^*2^* = \{0^m1^n2^{m+n}. \ m \ge 0, n \ge 0\}.$$

would also be regular.

- Let p be the pumping length given by the PL (for $L \cap 0^*1^*2^*$), and let $w = 0^p1^p2^{2p}$.
- Obtain, by the PL, strings x, y, z with w=xyz, |y|>0, $|xy|\leq p$, and $xy^iz\in L\cap 0^*1^*2^*$ for all $i\geq 0$.
- Since $|xy| \le p$, we must have $y = 0^k$ for some k with $0 < k \le p$.
- Then $xy^0z = xz = 0^{p-k}1^p2^{2p} \in L \cap 0^*1^*2^*$. This is a contradiction, because $(p-k) + p = 2p k \neq 2p$.

 \bullet Since our initial assumption that L is regular leads to a contradiction, we conclude that L is not regular.

A Non-Regular Unary Language

Example: (Sipser, 1.75) The language $D = \{1^{n^2}. n \ge 0\}$ is not regular.

Proof: Suppose D were regular. Let p be the pumping length, given by the PL. Let $w=1^{p^2}$. By the PL, we may obtain x, y, z such that $w=xyz, |y|>0, |xy|\leq p$, and $xy^iz\in D$ for all $i\geq 0$. In particular xyz and $xy^2z\in D$.

Now, since $|xy| \le p$, we must have $|y| \le p$. Also $|xyz| = p^2$, so $|xy^2z| = p^2 + |y| \le p^2 + p$. However, there is no perfect square between p^2 and $(p+1)^2 = p^2 + 2p + 1$, so $p^2 + p$ cannot be a perfect square. This contradicts $xy^2z \in D$, and we conclude that D cannot be regular.

A Generalization

Def. An *arithmetic progression* is a sequence of numbers such that the difference between consecutive terms is constant.

Prop. If $L \subseteq \{1\}^*$ is regular, then the set of lengths of strings in L includes an arithmetic progression.

Proof Idea: The lengths of strings $|xy^kz|$ given by a particular application of the Pumping Lemma is such an arithmetic progression.

The gaps between the lengths of strings in L cannot become arbitrarily large.