1. Zadanie 17

1.1. Treść

Zaprojektować czebyszewowski filtr pasmowo przepustowy (FPP, rys. 1.1) o strukturze paskowej jak na rys. 1.2 dla następujących danych: $Z_0=50~\Omega,~f_0=2.8\times10^9~Hz,~w=0.1,~L_r=0.2~dB,~f_a=3.2\times10^9~Hz$ i $L_a=30~dB.$ Filtr zrealizować z odcinków symetrycznej linii paskowej opisanej w zadaniu ??.

Rysunek 1.1: Charakterystyka projektowanego filtru

Rysunek 1.2: Realizacja filtru przy użyciu symetrycznej linii paskowej

Tabela 1.1: Parametry zaprojektowanego filtru

i	g	$Z_0 [\Omega]$	w [mm]	l [mm]
0	1.0			
1	1.30287657175	3.20338115776	47.5830406797	16.7294898437
2	1.28442456136	3.46442342228	43.8597176927	16.7294898437
3	1.97619882964	3.39627708893	44.7764554109	16.7294898437
4	0.84680075915	4.9956490685	29.8615873107	16.7294898437
5	1.0			

1.2. Rozwiązanie

W pierwszym kroku należy obliczyć minimalną ilość sekcji filtru:

$$n \ge \frac{\operatorname{arch}\sqrt{\frac{L'_a - 1}{L'_r - 1}}}{\operatorname{arch}\left(\frac{\sin\frac{\pi w_a}{4}}{\sin\frac{\pi w}{4}}\right)}$$

$$= 4$$
(1.1)

Następnie należy obliczyć parametry filtru dolnoprzepustowego a na ich podstawie wartości elementów filtru o parametrach skupionych. Wyniki tych obliczeń przedstawia tabela 1.1.