Introducción a la Programación Algoritmos y Estructuras de Datos I

Primer cuatrimestre de 2023

Lógica proposicional

Habíamos visto...

Objetivo: Aprender a programar en lenguajes funcionales y en lenguajes imperativos.

Habíamos visto...

Objetivo: Aprender a programar en lenguajes funcionales y en lenguajes imperativos.

- Especificar problemas.
 - Describirlos en un lenguaje semiformal.
- ► Pensar algoritmos para resolver los problemas.
 - En esta materia nos concentramos en programas para tratamiento de secuencias principalmente.
- ► Empezar a razonar acerca de estos algoritmos y programas.
 - Veremos conceptos de testing.
 - Veremos nociones de complejidad.

Definición (Especificación) de un problema

```
problema nombre(parámetros) :tipo de dato del resultado{
   requiere etiqueta { condiciones sobre los parámetros de entrada }
   asegura etiqueta { condiciones sobre los parámetros de salida }
}
```

- ▶ *nombre*: nombre que le damos al problema
 - será resuelto por una función con ese mismo nombre
- parámetros: lista de parámetros separada por comas, donde cada parámetro contiene:
 - Nombre del parámetro
 - Tipo de datos del parámetro
- tipo de dato del resultado: tipo de dato del resultado del problema (inicialmente especificaremos funciones)
 - En los asegura, podremos referenciar el valor devuelto con el nombre de res
- etiquetas: son nombres opcionales que nos servirán para nombrar declarativamente a las condiciones de los requiere o aseguras.

Definición (Especificación) de un problema

► Sobre los requiere

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de entrada.
- Puede haber más de un requiere (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un requiere no debería contradecir a otro).

► Sobre los asegura

- Describen todas las condiciones y posibles valores o casuísticas de los parámetros de salida y entrada/salida en función de los parámetros de entrada.
- Puede haber más de un asegura (recomendamos una condición por renglón). Se asume que valen todos juntos (es una conjunción).
- Evitar contradicciones (un asegura no debería contradecir a otro).

Antes de continuar... hablemos de lógica proposicional

- ► Si bien no utilizaremos un lenguaje formal para especificar... ¿Es lo mismo decir...?
 - Mañana llueve e iré a comprar un paragüas
 - Si mañana llueve iré a comprar un paragüas
 - O mañana no llueve o no iré a comprar un paragüas
 - Compraré un paragüas por si mañana llueve
 - ► Si compro un paragüas, mañana llueve

► Símbolos:

True , False , \neg , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

► Símbolos:

True , False ,
$$\neg$$
 , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

$$p$$
, q , r , ...

► Símbolos:

True , False ,
$$\neg$$
 , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

$$p$$
, q , r , ...

- ► Fórmulas
 - 1. True y False son fórmulas

► Símbolos:

True , False ,
$$\neg$$
 , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

$$p$$
, q , r , ...

- ▶ Fórmulas
 - 1. True y False son fórmulas
 - 2. Cualquier variable proposicional es una fórmula

► Símbolos:

True, False,
$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow , (,)

$$p, q, r, \dots$$

- ▶ Fórmulas
 - 1. True y False son fórmulas
 - 2. Cualquier variable proposicional es una fórmula
 - 3. Si A es una fórmula, $\neg A$ es una fórmula

► Símbolos:

True, False,
$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow , (,)

$$p$$
, q , r , ...

- ▶ Fórmulas
 - 1. True y False son fórmulas
 - 2. Cualquier variable proposicional es una fórmula
 - 3. Si A es una fórmula, $\neg A$ es una fórmula
 - 4. Si A_1,A_2,\ldots,A_n son fórmulas, $(A_1\wedge A_2\wedge\cdots\wedge A_n)$ es una fórmula

► Símbolos:

True , False ,
$$\neg$$
 , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

$$p$$
, q , r , ...

- ▶ Fórmulas
 - 1. True y False son fórmulas
 - 2. Cualquier variable proposicional es una fórmula
 - 3. Si A es una fórmula, $\neg A$ es una fórmula
 - 4. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \wedge A_2 \wedge \cdots \wedge A_n)$ es una fórmula
 - 5. Si A_1,A_2,\ldots,A_n son fórmulas, $(A_1\vee A_2\vee\cdots\vee A_n)$ es una fórmula

► Símbolos:

True , False ,
$$\neg$$
 , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

$$p$$
 , q , r , \dots

- ▶ Fórmulas
 - 1. True y False son fórmulas
 - 2. Cualquier variable proposicional es una fórmula
 - 3. Si A es una fórmula, $\neg A$ es una fórmula
 - 4. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \wedge A_2 \wedge \cdots \wedge A_n)$ es una fórmula
 - 5. Si A_1,A_2,\ldots,A_n son fórmulas, $(A_1\vee A_2\vee\cdots\vee A_n)$ es una fórmula
 - 6. Si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula

► Símbolos:

True , False ,
$$\neg$$
 , \wedge , \vee , \rightarrow , \leftrightarrow , (,)

$$p$$
 , q , r , \dots

- ▶ Fórmulas
 - 1. True y False son fórmulas
 - 2. Cualquier variable proposicional es una fórmula
 - 3. Si A es una fórmula, $\neg A$ es una fórmula
 - 4. Si A_1, A_2, \ldots, A_n son fórmulas, $(A_1 \wedge A_2 \wedge \cdots \wedge A_n)$ es una fórmula
 - 5. Si A_1, A_2, \dots, A_n son fórmulas, $(A_1 \vee A_2 \vee \dots \vee A_n)$ es una fórmula
 - 6. Si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula
 - 7. Si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula

 \blacktriangleright Dos valores de verdad: "verdadero" (V) y "falso" (F).

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- ► Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	
F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	V

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

Ρ	$\neg p$
V	F
F	V

p	q	$(p \land q)$
V	V	
V	F	
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- ► Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

p	$\neg p$
V	F
F	V

p	q	$(p \land q)$
V	V	V
V	F	
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- ► Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

p	$\neg p$
V	F
F	V

p	q	$(p \land q)$
V	V	V
V	F	F
F	V	
F	F	
	•	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

V	F
F	V

р	q	$(p \land q)$
V	V	V
V	F	F
F	V	F
F	F	
	•	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	V

p	q	$(p \land q)$
V	V	V
V	F	F
F	V	F
F	F	F

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

$\neg p$
F
V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

p	q	$(p \lor q)$
V	V	
V	F	
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- ► Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

$\neg p$
F
V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

p	q	$(p \lor q)$
V	V	V
V	F	
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

p	q	$(p \lor q)$
V	V	V
V	F	V
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

$\neg p$
F
V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

p	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	V
F	V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

q	$(p \lor q)$
V	V
F	V
V	V
F	F
	V F V

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	
V	F	
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

$\neg p$
F
V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p o q)
V	V	V
V	F	
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

$\neg p$
F
V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	V
V	F	F
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

$\neg p$
F
V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	V
V	F	F
F	V	V
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

p	$\neg p$
V	F
F	٧

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	V
V	F	F
F	V	V
F	F	V

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	٧

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	V
V	F	F
F	V	V
F	F	V

р	q	$(p \leftrightarrow q)$
V	V	
V	F	
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	٧

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	V
V	F	F
F	V	V
F	F	V

р	q	$(p \leftrightarrow q)$
V	V	V
V	F	
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	٧

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	V
V	F	F
F	V	V
F	F	V

р	q	$(p \leftrightarrow q)$
V	V	V
V	F	F
F	V	
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	٧

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	V
V	F	F
F	V	V
F	F	V

р	q	$(p \leftrightarrow q)$
V	V	V
V	F	F
F	V	F
F	F	

- ▶ Dos valores de verdad: "verdadero" (V) y "falso" (F).
- Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula.

р	$\neg p$
V	F
F	V

р	q	$(p \wedge q)$
V	V	V
V	F	F
F	V	F
F	F	F

р	q	$(p \lor q)$
V	V	V
V	F	V
F	V	V
F	F	F

р	q	(p ightarrow q)
V	V	V
V	F	F
F	V	V
F	F	V

р	q	$(p \leftrightarrow q)$
V	V	V
V	F	F
F	V	F
F	F	V

Una fórmula es una tautología si siempre toma el valor V para valores definidos de sus variables proposicionales.

Una fórmula es una tautología si siempre toma el valor V para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \to p)$ es tautología:

Una fórmula es una tautología si siempre toma el valor V para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

р	q	$(p \wedge q)$	$((p \land q) \to p)$
V	V	V	
V	F	F	
F	V	F	
F	F	F	

Una fórmula es una tautología si siempre toma el valor V para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

р	q	$(p \wedge q)$	$((p \land q) \to p)$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

Una fórmula es una tautología si siempre toma el valor V para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

р	q	$(p \land q)$	$((p \land q) \to p)$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

► Una fórmula es una contradicción si siempre toma el valor F para valores definidos de sus variables proposicionales.

Una fórmula es una tautología si siempre toma el valor V para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

р	q	$(p \land q)$	$((p \land q) \to p)$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

Una fórmula es una contradicción si siempre toma el valor F para valores definidos de sus variables proposicionales.

Por ejemplo, $(p \land \neg p)$ es contradicción:

р	$\neg p$	$(p \wedge \neg p)$
V	F	
F	V	

Una fórmula es una tautología si siempre toma el valor V para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

р	q	$(p \land q)$	$((p \land q) \to p)$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

Una fórmula es una contradicción si siempre toma el valor F para valores definidos de sus variables proposicionales.

Por ejemplo, $(p \land \neg p)$ es contradicción:

р	$\neg p$	$(p \land \neg p)$
V	F	F
F	V	F

Una fórmula es una tautología si siempre toma el valor V para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

р	q	$(p \land q)$	$((p \land q) \to p)$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

Una fórmula es una contradicción si siempre toma el valor F para valores definidos de sus variables proposicionales.

Por ejemplo, $(p \land \neg p)$ es contradicción:

р	$\neg p$	$(p \wedge \neg p)$
V	F	F
F	V	F

 Una fórmula es una contingencia cuando no es ni tautología ni contradicción.

► Teorema. Las siguientes fórmulas son tautologías.

- ► Teorema. Las siguientes fórmulas son tautologías.
 - 1. Doble negación $(\neg \neg p \leftrightarrow p)$

- ► Teorema. Las siguientes fórmulas son tautologías.
 - 1. Doble negación $(\neg \neg p \leftrightarrow p)$
 - 2. Idempotencia $((p \land p) \leftrightarrow p) \\ ((p \lor p) \leftrightarrow p)$

- ► Teorema. Las siguientes fórmulas son tautologías.
 - 1. Doble negación $(\neg \neg p \leftrightarrow p)$
 - 2. Idempotencia $((p \land p) \leftrightarrow p)$ $((p \lor p) \leftrightarrow p)$
 - 3. Asociatividad $(((p \land q) \land r) \leftrightarrow (p \land (q \land r))) \\ (((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r)))$

- ► Teorema. Las siguientes fórmulas son tautologías.
 - 1. Doble negación $(\neg \neg p \leftrightarrow p)$
 - 2. Idempotencia $((p \land p) \leftrightarrow p)$ $((p \lor p) \leftrightarrow p)$
 - 3. Asociatividad $(((p \land q) \land r) \leftrightarrow (p \land (q \land r)))$ $(((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r)))$
 - 4. Conmutatividad $((p \land q) \leftrightarrow (q \land p)) \\ ((p \lor q) \leftrightarrow (q \lor p))$

- ► Teorema. Las siguientes fórmulas son tautologías.
 - 1. Doble negación $(\neg \neg p \leftrightarrow p)$
 - 2. Idempotencia $((p \land p) \leftrightarrow p)$ $((p \lor p) \leftrightarrow p)$
 - 3. Asociatividad $(((p \land q) \land r) \leftrightarrow (p \land (q \land r)))$ $(((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r)))$
 - 4. Conmutatividad $((p \land q) \leftrightarrow (q \land p)) \\ ((p \lor q) \leftrightarrow (q \lor p))$
 - 5. Distributividad $((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))) \\ ((p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r)))$

- ► Teorema. Las siguientes fórmulas son tautologías.
 - 1. Doble negación $(\neg \neg p \leftrightarrow p)$
 - 2. Idempotencia $((p \land p) \leftrightarrow p)$ $((p \lor p) \leftrightarrow p)$
 - 3. Asociatividad $(((p \land q) \land r) \leftrightarrow (p \land (q \land r)))$ $(((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r)))$
 - 4. Conmutatividad $((p \land q) \leftrightarrow (q \land p)) \\ ((p \lor q) \leftrightarrow (q \lor p))$
 - 5. Distributividad $((p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r)))$ $((p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r)))$
 - 6. Reglas de De Morgan $(\neg(p \land q) \leftrightarrow (\neg p \lor \neg q))$ $(\neg(p \lor q) \leftrightarrow (\neg p \land \neg q))$

▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que *A* fuerza a *B* o que *B* es más débil que *A*.

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p?

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p? Sí

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p? Sí
 - 2. $\iota(p \lor q)$ es más fuerte que p?

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p? Sí
 - 2. $ilde{\iota}(p \lor q)$ es más fuerte que p? No

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ▶ Por ejemplo,
 - 1. $i(p \land q)$ es más fuerte que p? Sí No
 - 2. $\downarrow(p \lor q)$ es más fuerte que p?
 - 3. p es más fuerte que $(q \rightarrow p)$?

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p? Sí
 - 2. $\iota(p \lor q)$ es más fuerte que p? No

 - 4. ¿p es más fuerte que q?

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p? Si
 - 2. $\iota(p \lor q)$ es más fuerte que p? No
 - 3. $\not p$ es más fuerte que $(q \to p)$? Sí Pero notemos que si q está indefinido y p es verdadero entonces $(q \to p)$ está indefinido.
 - 4. $\not p$ es más fuerte que q? No

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p? Sí
 - 2. $\xi(p \lor q)$ es más fuerte que p? No

 - 5. $\not p$ es más fuerte que p?

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $i(p \land q)$ es más fuerte que p? Sí
 - 2. $\iota(p \lor q)$ es más fuerte que p? No

 - 4. $\not p$ es más fuerte que q? No
 - 5. $\not p$ es más fuerte que p? Sí

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\iota(p \land q)$ es más fuerte que p? Sí
 - 2. $\iota(p \lor q)$ es más fuerte que p? No

 - 4. $\not p$ es más fuerte que q? No
 - 5. p es más fuerte que p? Sí
 - 6. ¿hay una fórmula más fuerte que todas?

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\xi(p \land q)$ es más fuerte que p? Sí
 - 2. $\iota(p \lor q)$ es más fuerte que p? No
 - 3. $\not p$ es más fuerte que $(q \to p)$? Sí Pero notemos que si q está indefinido y p es verdadero entonces $(q \to p)$ está indefinido.
 - 4. $\not p$ es más fuerte que q? No
 - 5. p es más fuerte que p? Sí
 - 6. ¿hay una fórmula más fuerte que todas? Sí, False

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $i(p \land q)$ es más fuerte que p? Sí
 - 2. $\iota(p \lor q)$ es más fuerte que p? No
 - 3. $\not p$ es más fuerte que $(q \to p)$? Sí Pero notemos que si q está indefinido y p es verdadero entonces $(q \to p)$ está indefinido.
 - 4. $\not p$ es más fuerte que q? No
 - 5. $\not p$ es más fuerte que p? Sí
 - 6. ¿hay una fórmula más fuerte que todas? Sí, False
 - 7. ¿hay una fórmula más débil que todas?

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $i(p \land q)$ es más fuerte que p? Sí
 - 2. $\iota(p \lor q)$ es más fuerte que p? No
 - 3. $\not p$ es más fuerte que $(q \to p)$? Sí Pero notemos que si q está indefinido y p es verdadero entonces $(q \to p)$ está indefinido.
 - 4. $\not p$ es más fuerte que q? No
 - 5. $\not p$ es más fuerte que p? Sí
 - 6. ¿hay una fórmula más fuerte que todas? Sí, False
 - 7. ¿hay una fórmula más débil que todas? Sí, True

Expresión bien definida

- ► Toda expresión está bien definida si todas las proposiciones valen *T* o *F*.
- Sin embargo, existe la posibilidad de que haya expresiones que no estén bien definidas.
 - Por ejemplo, la expresión x/y = 5 no está bien definida si y = 0.
- Por esta razón, necesitamos una lógica que nos permita decir que está bien definida la siguiente expresión

▶
$$y = 0 \lor x/y = 5$$

- ► Para esto, introducimos tres valores de verdad:
 - 1. verdadero (V)
 - 2. falso (F)
 - 3. indefinido (\perp)

Semántica trivaluada (secuencial)

Se llama secuencial porque ...

Se llama secuencial porque ...

los términos se evalúan de izquierda a derecha,

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	T	
F	T	
	V	
	F	
	\perp	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	Т	
F		
Τ	V	
Τ	F	
1	1	

р	q	$(p \vee_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	Τ	
F		
Τ	V	
T	F	
1	Τ	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	Т	1
F		
Τ	V	
Τ	F	
1	1	

р	q	$(p \vee_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	Τ	
F	\perp	
Τ	V	
Τ	F	
Τ	Τ	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	Т	
F	\perp	F
T	V	
Τ	F	
T		

р	q	$(p \vee_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	Τ	
F		
Τ	V	
Τ	F	
Τ	Τ	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ► la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	Т	1
F	\perp	F
T	V	Τ
Τ	F	1
T	T	Т

р	q	$(p \vee_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	Τ	
F	\perp	
Τ	V	
Τ	F	
Τ	Τ	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	Т	
F		F
Τ	V	
T	F	
1	1	

	~	(n)/, a)
р	q	$(p \vee_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	Τ	V
F	\perp	
1	V	
T	F	
1	Τ	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	Т	
F		F
\perp	V	
T	F	
1	1	

р	q	$(p \lor_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	T	V
F	T	
上	V	
	F	
上	T	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
V	V	V
V	F	F
F	V	F
F	F	F
V	Т	
F		F
Τ	V	
T	F	1
1	1	

р	q	$(p \vee_L q)$
V	V	V
V	F	V
F	V	V
F	F	F
V	Τ	V
F		
1	V	
1	F	1
\perp	\perp	\perp

р	q	$(p \rightarrow_L q)$
V	V	V
V	F	F
F	V	V
F	F	V
V	T	
F	T	
\perp	V	
\perp	F	
\perp	Τ	

р	q	$(p \rightarrow_L q)$
V	V	V
V	F	F
F	V	V
F	F	V
V	1	Τ
F	T	
\perp	V	
\perp	F	
\perp	T	

р	q	$(p \rightarrow_L q)$
V	V	V
V	F	F
F	V	V
F	F	V
V	1	
F	T	V
\perp	V	
\perp	F	
\perp	T	

р	q	$(p \rightarrow_L q)$
V	V	V
V	F	F
F	V	V
F	F	V
V	Τ	
F	Τ	V
\perp	V	
\perp	F	
\perp	Τ	Т

Cuantificadores

- La lógica proposicional no alcanza para expresar o describir propiedades que tendran los elementos de un conjunto.
- Formalmente, ese grado de abstracción se alcanzaría introduciendo lógica de primer orden.
- En la LPO existen cuantificadores que permiten predicar sobre algunos o todos los elementos de un conjunto.
- ► (∀x : T) P(x): Fórmula lógica. Afirma que todos los elementos de tipo T cumplen la propiedad P.
 - Se lee "Para todo x de tipo T se cumple P(x)"
- ▶ $(\exists x : T) P(x)$: Fórmula lógica. Afirma que **al menos un** elemento de tipo T cumple la propiedad P.
 - ▶ Se lee "Existe al menos un x de tipo T que cumple P(x)"

Cuantificadores

- La lógica proposicional no alcanza para expresar o describir propiedades que tendran los elementos de un conjunto.
- Formalmente, ese grado de abstracción se alcanzaría introduciendo lógica de primer orden.
- En la LPO existen cuantificadores que permiten predicar sobre algunos o todos los elementos de un conjunto.
- ► (∀x : T) P(x): Fórmula lógica. Afirma que todos los elementos de tipo T cumplen la propiedad P.
 - Se lee "Para todo x de tipo T se cumple P(x)"
- ▶ $(\exists x : T) P(x)$: Fórmula lógica. Afirma que **al menos un** elemento de tipo T cumple la propiedad P.
 - ▶ Se lee "Existe al menos un x de tipo T que cumple P(x)"

En la expresión ($\forall x : T$) P(x), la variable x está ligada al cuantificador. Una variable es libre cuando no está ligada a ningún cuantificador.

► **Ejemplo:** Crear un predicado esPrimo que sea **Verdadero** si y sólo si el número *n* es un número primo.

- Ejemplo: Crear un predicado esPrimo que sea Verdadero si y sólo si el número n es un número primo.
- pred esPrimo(n : Z) { n es mayor que 1 y sólo divisible por sí mismo y la unidad }

- Ejemplo: Crear un predicado esPrimo que sea Verdadero si y sólo si el número n es un número primo.
- pred esPrimo(n : Z) { n es mayor que 1 y sólo divisible por sí mismo y la unidad }
- ▶ **Ejemplo:** Especificar el problema de, dado un número mayor a 1, indicar si el número es un número primo (con un mini spoiler/ejemplo de especificación).

- Ejemplo: Crear un predicado esPrimo que sea Verdadero si y sólo si el número n es un número primo.
- pred esPrimo(n: Z) { n es mayor que 1 y sólo divisible por sí mismo y la unidad }
- Ejemplo: Especificar el problema de, dado un número mayor a 1, indicar si el número es un número primo (con un mini spoiler/ejemplo de especificación).

```
▶ problema primo(in n : \mathbb{Z}) : Bool \{ requiere \{n > 1\} asegura \{res = true \leftrightarrow esPrimo(n)\} \}
```

► **Ejemplo:** Crear un predicado esPrimo que sea **Verdadero** si y sólo si el número *n* es un número primo.

Ejemplo: Crear un predicado esPrimo que sea Verdadero si y sólo si el número n es un número primo.

```
▶ pred esPrimo(n : \mathbb{Z}) {
n > 1 \ \land \ (\forall n' : \mathbb{Z})(1 < n' < n \rightarrow_{L} n \text{ mod } n' \neq 0)
}
```

Ejemplo: Crear un predicado esPrimo que sea Verdadero si y sólo si el número n es un número primo.

```
▶ pred esPrimo(n : \mathbb{Z}) {
n > 1 \ \land \ (\forall n' : \mathbb{Z})(1 < n' < n \rightarrow_{L} n \bmod n' \neq 0)
}
```

- **Observación:** x mod y se indefine si y = 0.
- Ejemplo: Especificar el problema de, dado un número mayor a 1, indicar si el número es un número primo.

Ejemplo: Crear un predicado esPrimo que sea Verdadero si y sólo si el número n es un número primo.

```
▶ pred esPrimo(n : \mathbb{Z}) {
n > 1 \ \land \ (\forall n' : \mathbb{Z})(1 < n' < n \rightarrow_{L} n \bmod n' \neq 0)
}
```

- **Observación:** x mod y se indefine si y = 0.
- Ejemplo: Especificar el problema de, dado un número mayor a 1, indicar si el número es un número primo.

```
▶ problema primo(in n : \mathbb{Z}) : Bool \{ requiere \{n > 1\} asegura \{res = true \leftrightarrow esPrimo(n)\} \}
```

Ejemplo: Todos los enteros entre 1 y 10 son pares:

$$(\forall n : \mathbb{Z})(1 \le n \le 10 \rightarrow n \mod 2 = 0).$$

Ejemplo: Todos los enteros entre 1 y 10 son pares:

$$(\forall n : \mathbb{Z})(1 \le n \le 10 \rightarrow n \mod 2 = 0).$$

Ejemplo: Existe un entero entre 1 y 10 que es par:

$$(\exists n : \mathbb{Z})(1 \leq n \leq 10 \land n \mod 2 = 0).$$

► **Ejemplo:** Todos los enteros entre 1 y 10 son pares:

$$(\forall n : \mathbb{Z})(1 \le n \le 10 \to n \mod 2 = 0).$$

Ejemplo: Existe un entero entre 1 y 10 que es par:

$$(\exists n : \mathbb{Z})(1 \leq n \leq 10 \land n \mod 2 = 0).$$

▶ En general, si queremos decir que todos los enteros x que cumplen P(x) también cumplen Q(x), decimos:

$$(\forall x: \mathbb{Z})(P(x) \to Q(x)).$$

► **Ejemplo:** Todos los enteros entre 1 y 10 son pares:

$$(\forall n : \mathbb{Z})(1 \le n \le 10 \rightarrow n \mod 2 = 0).$$

Ejemplo: Existe un entero entre 1 y 10 que es par:

$$(\exists n : \mathbb{Z})(1 \leq n \leq 10 \land n \mod 2 = 0).$$

▶ En general, si queremos decir que todos los enteros x que cumplen P(x) también cumplen Q(x), decimos:

$$(\forall x : \mathbb{Z})(P(x) \to Q(x)).$$

▶ Para decir que existe un entero que cumple P(x) y que también cumple Q(x), decimos:

$$(\exists x : \mathbb{Z})(P(x) \wedge Q(x)).$$

La negación de un cuantificador universal es un cuantificador existencial, y viceversa:

La negación de un cuantificador universal es un cuantificador existencial, y viceversa:

No es cierto que todos cumplen P sí y sólo si existe un elemento que no cumple P

La negación de un cuantificador universal es un cuantificador existencial, y viceversa:

No es cierto que todos cumplen P sí y sólo si existe un elemento que no cumple P

Que no es lo mismo que decir:

Ningún elemento cumple P sí y sólo si existe un elemento que no cumple P

- La negación de un cuantificador universal es un cuantificador existencial, y viceversa:
 - $ightharpoonup \neg (\forall n : \mathbb{Z}) P(n) \leftrightarrow (\exists n : \mathbb{Z}) \neg P(n)$

No es cierto que todos cumplen P sí y sólo si existe un elemento que no cumple P

Que no es lo mismo que decir:

Ningún elemento cumple P sí y sólo si existe un elemento que no cumple P

No existe un elemento que cumple P sí y sólo si todos los elemenos no cumplen P

- La negación de un cuantificador universal es un cuantificador existencial, y viceversa:
 - $ightharpoonup \neg (\forall n : \mathbb{Z}) P(n) \leftrightarrow (\exists n : \mathbb{Z}) \neg P(n)$

No es cierto que todos cumplen P sí y sólo si existe un elemento que no cumple P

Que no es lo mismo que decir:

Ningún elemento cumple P sí y sólo si existe un elemento que no cumple P

No existe un elemento que cumple P sí y sólo si todos los elemenos no cumplen P

Que sí es lo mismo que decir:

No existe un elemento que cumple P sí y sólo si ningún elemento cumple P

► Un cuantificador universal generaliza la conjunción:

$$(\forall n : \mathbb{Z}) (a \le n \le b \to P(n)) \wedge P(b+1) \\ \leftrightarrow (\forall n : \mathbb{Z}) (a \le n \le b+1 \to P(n)).$$

► Un cuantificador universal generaliza la conjunción:

$$(\forall n : \mathbb{Z}) (a \le n \le b \to P(n)) \land P(b+1) \\ \leftrightarrow (\forall n : \mathbb{Z}) (a \le n \le b+1 \to P(n)).$$

Un cuantificador existencial generaliza la disyunción:

$$(\exists n : \mathbb{Z}) (a \le n \le b \land P(n)) \lor P(b+1)$$

$$\leftrightarrow (\exists n : \mathbb{Z}) (a \le n \le b+1 \land P(n)).$$

¿Preguntas?