实验报告 磁力摆

少年班学院 马天开 PB21000030 (5号)

2022年5月29日

1 实验目的

理解小磁针在地磁场中运动的特征,掌握测量局部 **4** 地磁场的方法。设计试验方案测量磁力摆的磁矩和转动 惯量,掌握两小磁针耦合运动规律。

技能方面,掌握基本的电磁学实验技能和电学仪器 的使用,锻炼运用刚体力学和电磁学知识,通过变形物 理公式,培养数据处理能力。

2 实验器材

高灵敏度特斯拉计(量程: 0-300mT, $\Delta=0.01mT$)、Helmholtz 线圈、磁力摆两个、直流电源,质量相同的配重螺母两个、米尺、秒表。

高灵敏度特斯拉计精度: 0.01mT, 米尺精度: $\Delta=0.1cm$, 秒表精度: $\Delta=0.01s$

3 实验原理

3.1 磁力摆的运动

当磁力摆偏离平衡位置角度小于 $\theta \leq 5^{\circ}$ 时,磁力摆的运动方程为:

$$\frac{d^2\theta}{dt^2} = -\frac{mB}{J}\theta\tag{1}$$

其中,m为磁力摆的磁矩,J为磁力摆的转动惯量,B为所在位置磁感应强度。

上面的方程是简谐运动方程,一般解的周期计算 为:

$$T = 2\pi \sqrt{\frac{J}{mB}} \tag{2}$$

3.2 Helmholtz 线圈

Helmholtz 线圈是一对彼此平行且连通的共轴圆形线圈组,每组 N 匝,电流方向一致。当线圈之间的距离 a 恰好等于圆形线圈的半径 R 时,两线圈中点附近的磁场近似于均匀磁场,磁感应强度为:

$$B_I = (\frac{4}{5})^{3/2} \frac{\mu_0 I}{R} = kI \tag{3}$$

3.3 两小磁针的耦合运动

当两个小磁针悬挂在相同高度,同向耦合和反向耦合时,震动周期之间存在如下关系:

$$\ln(\frac{1}{2} | \omega^2 + \omega^{*^2} |) = -\beta \ln L + \ln(\alpha \cdot m^2)$$
 (4)

4 实验方法

- Helmholtz 线圈参数的测量: 打开各仪器电源,首 先将特斯拉计调零。打开电源,设置输出电压为 U = 30V,逐渐调整电流 I 的大小,(I < 1A),将特 斯拉计测量端放置在垂直于磁感线的方向上。记录 I - B 值的大小。(共8组)
- 测量局部地磁场水平分量的大小: 首先确定通入电流后线圈产生的磁场方向和地磁场方向平行,方法如下: 在未通电的情况下,悬挂一小磁针。此时小磁针所指方向为地磁场的水平分量方向。以此方向平行放置 Helmholtz 线圈,此时调整线圈中通入电流大小,若随着电流增大,摆动周期逐渐减小,说明线圈摆放方向与地磁场方向相同。相反的表现是: 随着电流增大,摆动周期先增大后减小(反映叠加磁场从变弱到变强)。控制电流大小 I < 0.1A,随着电流变化,记录磁针摆动周期的变化(100次)。</p>
- 测量转动惯量及磁矩: 调整电流大小 I = 0.02A, 测量磁针摆动周期 (100 次), 并测量螺帽到悬线长度。
- 地磁场中耦合现象的观察:将两个小磁针同高度 悬挂,分别令他们同向耦合、反向耦合,记录他们 的摆动周期(ω和ω*)。同时和小磁针单独运动 的周期对比,比较三者关系。
- 地磁场中耦合磁针运动的测量: 将两个小磁针同 高度悬挂,分别测量同相位周期 ω 和反相位周期 ω^* ,记录两者随着磁针间水平距离 L 之间的变化。

5 实验数据

5.1 线圈参数的测量

(U = 30V)

I/A	0.1	0.2	0.3	0.4	0.5
B/mT	0.47	0.91	1.37	1.83	2.29
I/A	0.6	0.7	0.8	0.9	1.0
B/mT	2.76	3.23	3.71	4.17	4.64

5.2 测量局部地磁场水平分量的大小

(U = 30V)

I/A	$100T_{1}/s$	$100T_{2}/s$	$100T_3/s$
0.01	67.13	67.14	67.32
0.015	60.32	59.44	58.82
0.02	54.07	53.35	55.77
0.025	49.40	48.75	48.54
0.03	46.76	45.29	45.17
0.035	43.90	42.79	42.46
0.04	40.60	40.10	40.56
0.045	38.19	38.29	37.68

5.3 测量转动惯量及磁矩

(U = 30V, I = 0.02A)

$100\mathrm{T/s}$	74.00	73.54	73.42
d/cm	5.60	5.61	5.60

5.4 地磁场中耦合现象的观察

$100\omega_0/s$	107.28	107.03	107.23
$100\omega/s$	65.88	65.57	65.63
$100\omega^*/s$	102.48	104.75	103.46

5.5 地磁场中耦合磁针运动的测量

L/cm	$100\omega/s$	$100\omega^*/s$
23.5	80.19	92.46
25.0	83.70	97.34
26.5	84.03	98.39
28.0	91.93	102.60
29.5	93.23	103.46
31.0	94.00	105.27

6 数据处理

6.1 线圈参数的测量

对 I-B 进行线性拟合,得到:

$$\begin{cases} B = 4.65 \cdot I - 0.02 \\ S_{\kappa} = \kappa \cdot \sqrt{\frac{\frac{1}{R^2} - 1}{n - 2}} = 1.471 \times 10^{-2} \end{cases}$$
 (5)

$$\begin{cases} u_{A\kappa} = S_{\kappa} \times t_{p} = 0.15mT/A \\ \therefore \kappa = 4.65 \pm 0.15mT/A \end{cases}$$
 (6)

6.2 测量局部地磁场水平分量的大小

利用公式2,并计算到地磁场,得到:

$$I = \frac{1}{\kappa} \left(\frac{2\pi J}{m} \cdot \frac{1}{T^2} - B_0 \right) \tag{7}$$

对 $\frac{1}{T^2} - I$ 进行线性拟合,得到:

$$\begin{cases} B_0 = \kappa \cdot b = 27.98mT \\ U_{B_0}/B_0 = \sqrt{(U_{\kappa}/\kappa)^2 + (U_b/b)^2} = 0.23mT \end{cases} \tag{8}$$

$$\therefore B_0 = 27.98 \pm 0.23mT \tag{9}$$

6.3 测量转动惯量及磁矩

对公式 ² , 考虑到转动惯量的变化, 符合以下两个公式:

$$\begin{cases} J_0 = (\frac{T_0}{2\pi})^2 \cdot mB \\ J_0 + \frac{1}{2}m_0 d^2 = (\frac{T}{2\pi})^2 \cdot mB \end{cases}$$
 (10)

因此有,

$$m = \frac{2\pi^2 m_0 d^2}{(T^2 - T_0^2) \cdot B} \tag{11}$$

同时, 计算不确定度为:

$$\begin{split} (U_m/m)^2 &= (U_{m_0}/m_0)^2 + (U_d/d)^2 + 2(U_T/T)^2 \\ &\quad + 2(U_{T_0}/T_0)^2 + (U_B/B)^2 \end{split} \tag{12}$$

计算得到:

$$m = 1.75 \pm 0.14 A \cdot m^2$$

$$J_0 = 1.19 \pm 0.05 kg \cdot m^2$$

6.4 地磁场中耦合现象的观察

根据测量结果:

$$\omega < \omega^* < \omega_0 \tag{14}$$

6.5 地磁场中耦合磁针运动的测量

对 $\ln L - \ln(\frac{1}{2} \mid \omega^2 + \omega^{*^2} \mid)$ 进行线性拟合,得到:

因此计算出 $\beta = -1.057, \alpha = 88.037$

7 实验结论

7.1 结果

见数据处理部分。

(13) 7.2 思考题

如何利用作图法或最小二乘法求得局部地磁场的 水平分量?

附加磁场的强度,随电流增强成线性变化,因此 测算周期零点的周期,便可得到地磁场的水平分 量

• 如何说明两小磁针耦合运动"拍频"与那些物理量有关?

与外加磁场、距离、小磁针的磁矩相关。