MEC1210 - THERMODYNAMIQUE

TRAVAIL À FAIRE SUITE À LA 4° RENCONTRE DU PROJET

Liste des tâches devant être faites suite à la 4^e rencontre du projet.

- 1) Avancer votre connaissance du **logiciel EES** en l'explorant plus à fond, principalement le sujet portant sur les « Diagram Window » que vous devez utiliser.
- 2) Terminer le **programme EES de calcul** des paramètres thermodynamiques du cycle de Rankine avec dégazeur. En page 3 vous trouverez la figure de ce cycle et la numérotation des points utilisée. Afin de simplifier ce travail, nous vous fournissons en page 2 les données et les hypothèses que vous devez utiliser.
- 3) Construire le **diagramme** ($\mathbf{T} \mathbf{S}$) (température entropie) du cycle Rankine complet. Ne pas oublier que la construction de ce diagramme nécessite que les paramètres soient sous forme de vecteurs (ex: T[5]).
- 4) À partie des paramètres thermodynamiques, principalement les températures (T) et les enthalpies (h), de chaque point **vous devez calculer** :
 - Les caractéristiques thermodynamiques en chaque point du cycle
 - La puissance utilisée par les 2 pompes
 - La puissance brute des 2 turbines et la puissance nette du cycle Rankine
 - La puissance électrique produite par l'alternateur
 - Le rapport de puissance utilisée par les pompes sur la puissance produite par les turbines
 - Le bilan énergétique du dégazeur (OFWH)
 - Le bilan énergétique du condenseur
 - Le taux de chaleur fournie à l'eau par chaque échangeur de chaleur : Préchauffeur - Générateur de vapeur - Surchauffeur - Resurchauffeur
 - Le taux de chaleur totale fournie à l'eau
 - Le rendement du cycle Rankine avec irréversibilités
 - Le rendement thermique du cycle de Carnot
- 5) En préparation à la 5^e rencontre, les étudiants doivent lire les pages du livre de Thermodynamique de Çengel, Boles & Lacroix portant sur le cycle Rankine complet.

NOTE: Voir site Moodle du cours pour la remise du travail #3!

Tableau des données :

```
Toutes les pressions sont en valeur absolue
Rendement de la pompe # 1 Basse Pression = 88 %
Rendement de la pompe # 2 Haute Pression = 85 %
Rendement de la turbine Haute Pression = 85 %
Rendement de la turbine Basse Pression – section-1 = 86 %
Rendement de la turbine Basse Pression – section-2 = 87 %
Rendement de l'alternateur = 96 %
Différence de hauteur entre les points 1 et 2 = 10 m
Différence de hauteur entre les points 4 et 5 = 15 m
Pertes de pression dans les échangeurs = 75 kPa (évolutions 6-7, 7-8, 8-9 et 10-11)
```

Tableau des données à utiliser pour le cycle Rankine complet :

POINT	NOM	ÉTAT	DÉBIT	T	P	TITRE
			(kg/s)	(°C)	(kPa)	(-)
1	Sortie du condenseur		61.5	30.0	10.0	
2	Entrée de la pompe Basse Pression	Liquide				
3	Sortie de la pompe Basse Pression	Liquide comprimé			2000.0	
4	Sortie du Dégazeur				1300.0	
5	Entrée de la pompe Haute Pression	Liquide				
6	Sortie de la pompe Haute Pression	Liquide comprimé			10500.0	
7	Point virtuel	Liquide saturé				0.0
8	Sortie du Ballon	Vapeur saturée				1.0
9	Entrée de la turbine Haute Pression	Vapeur surchauffée		371.0		
10	Sortie de la turbine Haute Pression				1700.0	
11	Entrée de la turbine Basse Pression			371.0		
12	Extraction		2.0		1300.0	
13	Sortie de la turbine Basse Pression	Vapeur humide				
14	Entrée eau de refroidissement	Liquide	1240.0	17.3	120.0	
15	Sortie eau de refroidissement	Liquide		44.0	110.0	

Particularités du cycle Rankine avec Dégazeur :

- 1) <u>Il est nécessaire de faire un bilan d'énergie sur le Dégazeur pour pouvoir déterminer les</u> conditions au point [4]
- 2) Les conditions aux points [2] et [5] sont déterminées en prenant compte de l'effet de la colonne d'eau sur la pression ainsi que sur les autres propriétés (h , T , s , x)
- 3) Un soutirage de vapeur se fait au point [12], la turbine basse pression doit être traitée en deux sections différentes
- 4) Afin de simplifier le système, on considère qu'il n'y a pas d'eau d'appoint.

Rappel:

La condensation de la vapeur dans le condenseur se fait à pression constante

Figure : Cycle Rankine avec dégazeur

