Determine whether or not these objects exist. If so, write down an example. If not, explain why not.

- (1) A 3×2 matrix whose columns are linearly independent.
- (2) A 2×3 matrix whose columns are linearly independent.
- (3) A noninvertible 4×4 matrix whose columns span \mathbb{R}^4 .
- (4) A basis of the vector space $null((1 \ 1 \ 2))$.
- (5) An orthogonal matrix whose rows are linearly dependent.
- (6) A nonidentity matrix which equals its own inverse.
- (7) A matrix A such that null(A) = col(A).
- (8) A basis $\{v_1, v_2, v_3\} \in \mathbb{R}^3$ such that $||v_i v_j|| = 1$ for all $i \neq j$.
- (9) An orthogonal matrix Q such that $\text{null}(QQ^{\top}) \cap \text{col}(QQ^{\top})$ is larger than $\{0\}$.
- (10) A 3×2 matrix A and a 2×3 matrix B such that $AB = Id_{3\times 3}$.
- (11) Two matrices A, B such that $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ and null(B) is larger than $\{0\}$.
- (12) Two matrices A, B such that $AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and null(B) is larger than $\{0\}$.
- (13) Two linearly independent vectors in null($\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$) which are both perpendicular to $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
- (14) A rank-one matrix whose columns are linearly independent.
- (15) An nonzero upper-triangular matrix whose columns are linearly dependent.
- (16) Two matrices A, B such that $AB = \mathrm{Id}_{4\times 4}$, the matrix A is not invertible, and the columns of B are linearly independent.
- (17) A diagonal matrix Σ such that $P\Sigma P$ is not diagonal, where $P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.
- (18) A 3×4 matrix A and a 3-vector b such that Ax = b has a unique solution.
- (19) A spanning set $v_1, v_2, v_3, v_4, v_5 \in \mathbb{R}^4$ with $v_i + v_j + v_k = 0$ whenever i, j, k are all different.
- (20) Nonzero 2×2 projection matrices P, Q, R satisfying $P + Q + R = \mathrm{Id}_{2 \times 2}$.
- (21) Nonzero 2×2 projection matrices P, Q, R satisfying $P + Q + R = \frac{3}{2} \operatorname{Id}_{2 \times 2}$.

SOLUTIONS

DNE stands for 'does not exist.'

- $(1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$
- (2) DNE. If the columns were independent, the rank would be 3, but the rank of a 2×3 matrix is ≤ 2 .
- (3) DNE. If the columns span \mathbb{R}^4 , then the rank is 4, so the matrix is invertible (e.g. because Σ in the full SVD is invertible).
- (4) $\begin{pmatrix} 1\\0\\-\frac{1}{2} \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\-\frac{1}{2} \end{pmatrix}$.
- (5) Any $n \times m$ orthogonal matrix with n > m works.
- $(6) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$
- $(7) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$
- (8) $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$.
- (9) DNE. If $P^2 = P$, then $\text{null}(P) \cap \text{col}(P) = \{0\}$. Indeed, any x which lies in the intersection must satisfy Px = 0 and x = Py for some y. But applying P to the second equation gives 0 = Px = Py = x, so x = 0. Now apply this to $P = QQ^{\top}$.
- (10) DNE. Since B is 2×3 , its null space has dimension $\geq 3 2 = 1$. Since $\text{null}(AB) \supseteq \text{null}(B)$, the former has dimension ≥ 1 . But $\text{null}(\text{Id}_{3\times 3}) = \{0\}$, contradiction.
- (11) DNE. Since $\operatorname{null}(AB) \supseteq \operatorname{null}(B)$, we conclude that $\operatorname{null}(B) = \{0\}$ since the nullspace of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ is $\{0\}$.
- (12) Take $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- (13) DNE. The two vectors must lie in the nullspace of $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. Since this nullspace is 1-dimensional, it cannot contain two linearly independent vectors.
- (14) Any nonzero matrix of size 1×1 works.
- $(15) \ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$
- (16) Take B to be any 5×4 orthogonal matrix, and take $A = B^{\top}$.
- (17) DNE. For the multiplication to make sense, Σ must be a 4×3 diagonal matrix, and one can check that $P\Sigma P = \Sigma$ by directly doing the multiplication.
- (18) DNE. Since $\operatorname{null}(A)$ is bigger than $\{0\}$ (it has dimension $\geq 4-3=1$), a solution to Ax=b is never unique; if x is a solution, then x+v is another solution, for any $v \in \operatorname{null}(A)$.

(19) DNE. By using $v_1 = -v_2 - v_3$, we conclude that

$$span(v_1, v_2, v_3, v_4, v_5) = span(v_2, v_3, v_4, v_5).$$

By using $v_2 = -v_3 - v_4$, we conclude that

$$span(v_2, v_3, v_4, v_5) = span(v_3, v_4, v_5).$$

But the latter has dimension ≤ 3 , so it cannot equal \mathbb{R}^4 .

(20) DNE. Since P, Q, R are nonzero, each must have rank 1 or 2. We break into two cases.

Case 1. Suppose at least one of P, Q, R has rank 2, e.g. P has rank 2. Then P is invertible, so $P^2 = P$ implies that $P = \mathrm{Id}_{2\times 2}$, and hence Q + R = 0. But then setting Q = -R in $Q^2 = Q$ yields $R^2 = -R$, which contradicts $R^2 = R$ since R is nonzero. So this case can't happen.

Case 2. Suppose each of P, Q, R has rank 1. Then $Q + R = \mathrm{Id}_{2 \times 2} - P$. Define $\tilde{P} := \mathrm{Id}_{2 \times 2} - P$, and observe that \tilde{P} is a projection matrix of rank 1. Let $v \in \mathrm{null}(\tilde{P})$ be a nonzero vector. The relation $Q + R = \tilde{P}$ implies that Qv = -Rv, and now we break into two subcases.

Subcase 2a. Assume that Qv = 0, so Rv = 0. This implies that $\operatorname{null}(Q) = \operatorname{null}(R) = \operatorname{null}(\tilde{P})$. For any $x \in \mathbb{R}^2$ not in $\operatorname{null}(\tilde{P})$, we have

$$Qx - x \in \text{null}(Q) = \text{null}(\tilde{P})$$

 $Rx - x \in \text{null}(R) = \text{null}(\tilde{P})$

$$-\tilde{P}x + x \in \text{null}(\tilde{P}).$$

Adding these and using $Q + R = \tilde{P}$ shows that $-x \in \text{null}(\tilde{P})$, contradicting our choice of x. So this subcase can't happen.

Subcase 2b. Assume that $Qv \neq 0$, so $Rv \neq 0$. This implies that $\operatorname{col}(Q) = \operatorname{col}(R) = \operatorname{col}(\tilde{P})$. For any nonzero $x \in \operatorname{col}(\tilde{P})$, we have $Qx = Rx = \tilde{P}x = x$, but then the relation $Q + R = \tilde{P}$ implies that 2x = x, contradicting our choice of x. So this subcase can't happen.

A simpler solution can be given by looking at the trace of these matrices – the sum of the diagonal entries. The key idea is that the trace of a projection matrix is equal to its rank.

(21) Take three 1-dimensional subspaces of \mathbb{R}^2 at 60° -angles to one another, and let P, Q, R be orthogonal projections onto those subspaces.