

Dr. rer. nat. Johannes Riesterer

Infinitessimalrechnung

Sir Isaac Newton

Infinitessimalrechnung

Konvergenz erfahrungsgemäß

Etwas konvergiert gegen einen Grenzwert, wenn es sich diesem Grenzwert beliebig nahe annähert.

Figure: Konvergente Schienen

Infinitessimalrechnung

Infinitessimalrechnung

Wie kann man damit rechnen und braucht man das?

Limes

Achilles und die Schildkröte

Figure: Quelle: Wikipedia:

Mehr hier im Video

Paradoxon der Antike

Obwohl Achilles schneller ist, kann er die Schildkröte niemals einholen.

Achilles und die Schildkröte infinitessimal betrachtet

Sei s_0 der Vorsprung der Schildkröte zu Beginn des Rennens, t_0 die Zeit, die Achilles benötigt, um s_0 zurückzulegen. Die Schildkröte ist q-mal langsamer als Achilles. Dann holt Achilles die Schildkröte nach der Zeit $t_0 \cdot q$ ein weiteres Mal ein, nach der Zeit $(t_0 \cdot q) \cdot q = t_0 \cdot q^2$ ein drittes Mal usw. Mit $q^0 = 1$ ist die Summe aller betrachteten Zeiten, die Achilles zurücklegt:

$$t = t_0 \cdot \sum_{n=0}^{\infty} q^n = t_0 \cdot \lim_{n \to \infty} \sum_{k=0}^{n} q^k = t_0 \cdot \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \frac{t_0}{1 - q}.$$

Infinitessimalrechnung Limes

Folge

Eine reelle Folge ist eine Abbildung

$$a: \mathbb{N} \to \mathbb{R}^n$$

Für $n \in \mathbb{N}$ bezeichnen wir $a_n := a(n)$ als n tes Folgenglied.

Limes

Konvergenz

Eine Folge a_n in \mathbb{R}^n heißt konvergent gegen den Grenzwert $a \in \mathbb{R}^n$, wenn gilt:

$$\forall \varepsilon > 0 \; \exists \; N \in \mathbb{N} \; \forall \; n > N : \; d(a, a_n) < \varepsilon$$

in Worten: Es gibt für jedes beliebige (noch so kleine) ε einen Index N derart, dass für alle Indizes n>N, alle weiteren Folgenglieder, gilt: der Abstand $d(a,a_n)$ ist kleiner als ε .

