

Evaluation of Medical Validity in Colorectal Cancer Clinical Synthetic Data and Enhancement through Data/Model-based Ensemble

장수영¹, 김종현¹, 이주현¹, 최영조²

¹ Department of Biomedical Systems Informatics, Yonsei University College of Medicine

² Digital Analytics, Yonsei University

Colorectal cancer (CRC)

- Colorectal cancer (CRC) is the third most common cancer, and the third cause of cancer-related death in Korea [1,2].
- Approximately 30-40% of patients experience a recurrence after surgery. Furthermore, the duration between the initial treatment and the onset of recurrence is closely linked to overall survival [3,4].

Figure 1. Colorectal cancer [5]

^[1] https://www.cancer.go.kr/lay1/S1T639C641/contents.do

^[2] https://www.cancer.go.kr/lay1/S1T645C646/contents.do

Machine learning & Synthetic data

- Machine learning is used to predict diagnosis, treatment response, recurrence, based on patient data [6].
- In the case of colorectal cancer, it is difficult to accurately predict the complex patterns of patient data due to various recurrence patterns and related factors, so technologies such as machine learning are utilized [7].
- However, real world medical data is privacy-sensitive data and has limited accessibility [8].

Machine learning & Synthetic data

- To overcome the limitations of real world medical data, synthetic data is used to protect privacy while maintaining the statistical properties of real world data [9].
- Synthetic data allows models to be trained on larger amounts of data, and it can improve the generalization performance of the model [10].

Objective

- To predict the recurrence and its timing in colorectal cancer patients, we develop and evaluate a medically valid prediction model using synthetic data.
 - Generate synthetic data for predicting recurrence and its timing in colorectal cancer patients.
 - Develop and evaluate a medically valid prediction model using the synthetic data.
 - Enhance the predictive accuracy with ensemble techniques.

Dataset Table 1. Dataset describe

column name	label name	column name	label name	column name	label name	
PT_SBST_NO 환자번호		SGPT_VNIN_NM	외과병리정맥침명	SGPT_SRMG_DCTS_STAT_NM	외과병리수술절제면원위암조직크기 상태명	
BSPT_FRST_DIAG_CD	기본환자최초진단코드	SGPT_ANIN_NM	외과병리혈관조영침윤명	SGPT_SRMG_PCTS_STAT_NM	외과병리수술절제면근위암조직크기 상태명	
BSPT_IDGN_AGE	기본환자나이	SRGC_DIFF	외과병리접수일자	SGPT_SRMG_RCTS_STAT_NM	외과병리수술절제면방사형암조직크 기상태코드	
BSPT_SEX_CD	기본환자성별코드	IMPT_HM1E_RSLT_NM	면역병리HMLH1검사결과명	SGPT_SRMV_LN_CNT	외과병리절제림프절수	
BSPT_STAG_VL	기본환자병기값	IMPT_HP2E_RSLT_NM	면역병리HP2E검사결과명	SGPT_TUMR_BUDD_NM	외과병리종양발아명	
BSPT_T_STAG_VL	기본환자T병기값	IMPT_HS2E_RSLT_NM	면역병리 HS2E 검사결과명	CEA_DIAG	진단일과 가장 가까운 일자의 CEA Value	
BSPT_N_STAG_VL	기본환자N병기값	IMPT_HS6E_RSLT_NM	면역병리HS6E검사결과명	CEA_MAX	최대 CEA Value	
BSPT_M_STAG_VL	기본환자M병기값	MNTY_DIFF	면역병리접수일자	CEA_MIN	최소 CEA Value	
MLPT_BRME_RSLT_NM	분자병리BRAF_MUTATION검사결과 명	DEAD_DIFF	사망진단일자	CEA_RCNF	재발일과 가장 가까운 일자의 CEA Value	
MLPT_KE2E_RSLT_NM	분자병리 KRASMUTATION_EXON2 검 사결과명	OPRT_CLCN_OPRT_KIND_NM	수술대장암수술종류명	CEA_MED	CEA 중위값	
MLPT_KRES_RSLT_NM	분자병리 KRASMUTATION 검사결과명	OPRT_CURA_RSCT_NM	수술근치적절제술명	CEA_OPRT	최초 수술과 가장 가까운 일자의 CE/ Value	
MLPT_MSIE_RSLT_NM	분자병리NRASMUTATION검사결과코 드	OPRT_DIFF	수술일자	SGPT_PATL_M_STAG_VL	외과병리병리학적M병기값	
MLPT_NREX_RSLT_NM	MLPT_NREX_RSLT_NM	ADJ_REGN_NM	Adjuvant항암치료명	SGPT_PATL_N_STAG_VL	외과병리병리학적N병기값	
MLCR_DIFF	분자병리접수일자	ADJ_CYCL_VL_MAX	Adjuvant항암치료 최대 Cycle 수	SGPT_PATL_T_STAG_VL	외과병리병리학적T병기값	
BPTH_BPSY_RSLT_CONT	생체검사병리생체검사결과내용	ADJ_CYCLE_PERIOD	Adjuvant항암치료일자	SGPT_PATL_STAG_VL	외과병리병리학적병기값	
BPTH_CELL_DIFF_NM	생체검사병리세포분화명	PAL_REGN_NM_LINE	Palliative항암치료명	NEO_CYCLE_PERIOD	Neo-Adjuvant항암치료일자	
BPSY_DIFF	생체검사병리접수일자	PAL_CYCL_VL_MAX_LINE	Palliative항암치료 최대 Cycle 수	DEAD_NFRM_DEAD	사망여부	
GPT_CELL_DIFF_NM	외과병리세포분화명	PAL_CYCLE_PERIOD_LINE	Palliative항암치료일자	SGPT_NERV_PREX_NM	외과병리신경주위침윤명	
GPT_MTST_LN_CNT	외과병리전이림프절수	NEO_REGN_NM	Neo-Adjuvant항암치료명	NEO_CYCL_VL_MAX	Neo-Adjuvant항암톗료 로 D44	

Data preprocessing

- Removed columns with Nan values greater than or equal to 90
- Remove variables that cannot be clinically present at the time of prediction

Figure 2. Number of values for all variables

REaLTabFormer Model for Tabular Data

- Based on: GPT-2 architecture, optimized for handling tabular data.
- Designed for immediate application on any table with independent observations, offering versatility in modeling diverse datasets.

REaLTabFormer

Figure 4. Illustration of the REaLTabFormer model [11]

REaLTabFormer Model for Tabular Data

stratifiedkfold(n_splits=5) -> Create synthetic data

Figure 5. Apply stratifiedkfold (n_splits=5) to generate synthetic data

Prediction model (Data-Model based Ensemble)

Figure 6. Framework for Ensemble model 1 ((a) data ensemble model, (b) model ensemble model (c) data-model based ensemble model 1 ((a) data ensemble model)

Prediction model for time series data (colorectal cancer recurs)

- We designed a model to predict colorectal cancer recurrence in 6-month intervals.
 - : As a result, a model was designed to predict relapse within 6 months, relapse within 1 year, and etc.
- We predict colon cancer recurrence using real data and given synthetic data with xgboost.

Figure 8. Histogram of recurrence time intervals (days)

Application in genomic data

- We developed a model for predicting sepsis severity using single-cell RNA-seq data from sepsis patients.
- Filtered 136 septic shock marker gene sets from single cell RNA seq data.
- Validated model performance using real data and synthesised data based on real data
- Identified potential improvements in model performance using a previously developed data/model based ensemble model.

Table 2. Single-cell RNA gene expression matrix

	N4BP2L2	NAA10	ACAP1	NFKBIA
5_1_ATCACGAAGTGGGAAA-1	0.878078650648452	0	0.878078650648452	0
5_1_GATCACAGTCCTTGTC-1	1.95258258018174	0	1.95258258018174	0.920966104239639
5_1_TCATCATGTAGAGACC-1	1.392703431126	0	0.921421269761609	1.392703431126
5_1_AACAAGATCTGGGTCG-1	1.71646472012716	0	0.924896324040134	0
5_1_ACCAACAAGGGCCTCT-1	1.74956480449501	0	1.42745211425187	0.949351336568677
5_1_CGGAATTGTAATTAGG-1	1.75574247070183	0	0.953938847214584	0

Design of Data/Model-based Ensemble model

DHLab
DIGHTAL HEALTHCARE LABORATORY

Results of model exploration

Figure 9. Result of real data (AUC = 1.00)

Figure 10 Feature importance of real data

- We found the AUC value to be 1.0 when developing the model using all variables.
- However, we did not exclude variable names with information unobtainable at the time of prediction.

4 PDHLab

Results of model exploration

Figure 11. Result of real data (removed columns) (AUC = 0.79)

Figure 12. Feature importance of real data (removed columns)

- Excludes variables that have information not available at the time of prediction
- CEA_RCNF(CEA value at the time of recurrence), PAL_CYCLE_VL_MAX_LINE_1(Maximum number of cycles of palliative chemotherapy) PAL_CYCLE_PERIOD_LINE_1(Date of palliative chemotherapy) CEA_MAX(Maximum value of CEA value from diagnosis to recurrence), CEA_MIN(Maximum value of CEA value from diagnosis to recurrence), DEAD'(Death status), DEAD_DIFF_1(Duration from diagnosis to death)

Compare synthetic and real data

Figure 13. Distribution of real data and synthetic data

(b) REaLTabFormer synthetic data

Correlations between synthetic and real data

A. Correlation of Given synthetic data and real data

B. Correlation of REaLTabForme-synthetic data and real data

•

1/

Prediction model (w/o Ensemble)

Table 2. Result of colorectal cancer recurrence prediction model without ensemble

Model		Accuracy	AUROC	Confusion matrix
XGBoost	Real data	0.8805	0.7901	[[8813 277] [958 290]]
	Given synthetic data	0.8467	0.5368	[[8636 454] [1131 117]]
	REaLTabFormer synthetic data	0.8703	0.7619	[[8667 423] [918 330]]
	Real data + given synthetic data	0.8844	0.7913	[[8847 243] [952 296]]
	Real data + REaLTabFormer synthetic data	0.8814(0.9250*)	0.7888(0.9034*)	[[8818 272] [954 294]]

^{*} These values are from REaLTabFormer, synthesized using the entire set of real data without avoiding train-test overlap.

Prediction model (Ensemble)

Table 3. Result of colorectal cancer recurrence prediction model with ensemble

Model		Data	Accuracy	AUROC	Confusion matrix
		Real data	0.8793	0.7737	[[8806 284] [964 284]]
	XGBoost	REaLTabFormer synthetic data	0.8703	0.7619	[[8667 423] [918 330]]
Data based ensemble model		Ensemble	0.8801	0.7844	[[8813 277] [969 279]]
ensemble model	LightGBM	Real data	0.8825	0.7987	[[8872 218] [997 251]]
		REaLTabFormer synthetic data	0.8830	0.7880	[[8924 166] [1044 204]]
		Ensemble	0.8831	0.8047	[[8931 159] [1022 226]]
Model based ensemble model		Real data	0.8814	0.7989	[[8883 207] [995 253]]
		REaLTabFormer synthetic data	0.8691	0.7862	[[8914 176] [1040 208]]
Data/Model based ensemble model		Ensemble	0.8863	0.8046	[[8926 164] [1011 237]]

Prediction model (when colorectal cancer recurs)

Table 4. Comparison of Time-to-Recurrence Predictions in Colorectal Cancer (Real data Vs Synthetic Data) (5-fold)

Data	Motrico	Time series (day)								
Data	Metrics	0-180	0-360	0-540	0-720	0-900	0-1080	0-1260	0-1440	0-1620
Real data	Accuracy	0.9875	0.9583	0.9264	0.9109	0.8994	0.8937	0.8915	0.8880	0.8875
	AUROC	0.7142	0.7520	0.7830	0.7994	0.7888	0.7948	0.7911	0.7899	0.8002
	Confusion matrix	[10207, 4] [125, 2]	[9897, 34] [397, 10]	[9497, 108] [653, 80]	[9279, 148] [773, 138]	[9103, 201] [839, 195]	[9008, 224] [875, 231]	[8978, 212] [910, 238]	[8909, 249] [909, 271]	[8891, 248] [915, 284]
Given	Accuracy	0.9877	0.9606	0.9270	0.8825	0.8776	0.8617	0.8519	0.8504	0.8481
synthetic	AUROC	0.5000	0.5000	0.5359	0.4909	0.5471	0.5481	0.5355	0.5222	0.5359
data	Confusion matrix	[10211, 0] [127, 0]	[9931, 0] [407, 0]	[9579, 26] [729, 4]	[9075, 352] [863, 48]	[9006, 298] [967, 67]	[8805, 427] [1003, 103]	[8695, 495] [1036, 112]	[8693, 465] [1082, 98]	[8669, 470] [1100, 99]
REaLTabFo	Accuracy	0.9854	0.9561	0.9183	0.9010	0.8918	0.8857	0.8826	0.8782	0.8735
rmer synthetic data	AUROC	0.7319	0.7727	0.8114	0.7993	0.7887	0.7789	0.7821	0.7692	0.7719
	Confusion matrix	[8146, 22] [99, 3]	[7879, 56] [307, 28]	[7454, 224] [452, 140]	[7253, 294] [525, 198]	[7147, 307] [588, 228]	[7080, 283] [662, 245]	[7028, 311] [660, 271]	[6966, 358] [649, 297]	[6916, 376] [670, 308]

Application in genomic data

Table 5. Result of sepsis severity prediction model with ensemble

Model		Data	Accuracy	AUROC	Confusion matrix
	XGBoost	Real data	0.813	0.815	[[39 77] [21 388]
		REaLTabFormer synthetic data	0.803	0.742	[[34 82] 21 388]]
Data based		Ensemble	0.794	0.782	[[30 86] 22 387]]
ensemble model	LightGBM	Real data	0.8457	0.837	[[48 68] [13 396]]
		REaLTabFormer synthetic data	0.7924	0.784	[[26 90] 19 390]]
		Ensemble	0.813	0.817	[[33 83] [15 394]]
	·		0.843	0.837	[[55 61] [21 388]]
Model based ensemble model		REaLTabFormer synthetic data	0.800	0.786	[[39 77[[28 381]]
Data/Model based	Data/Model based ensemble model		0.8267	0.839	[[40 76] 15 394]]

Figure 15. ROC curve of sepsis severity prediction model with ensemble

Discussion

- Variable selections is vital for both model performance and medical validity. So, we avoided 1) train, test set contamination, and 2) data target leakage focused on meaningful variables.
- We developed a prediction model for colorectal cancer recurrence using synthetic data. Enhanced performance was observed with XGBoost and LGBM ensemble model. Synthetic data proved crucial for model performance improved.
- We completed the external validation by applying the data-model based ensemble model to a genomic dataset, which shows that our model is applicable to other datasets as well.

