Differentiable dynamic programming for structured prediction and attention

Arthur Mensch, Mathieu Blondel

Inria Parietal, Saclay, France NTT Communication Science Laboratories, Kyoto, Japan

July 12, 2018

Predictive models: parametrized functions + linear programs

Classification: $\mathcal{Y} = [1, k]$

Predictive models: parametrized functions + linear programs

Classification: $\mathcal{Y} = [1, k]$

Structured output ? $\mathcal{Y} \subset \mathbb{R}^D$ (edges of a polytope), *e. g.* a tag sequence

Predictive models: parametrized functions + linear programs

Classification: $\mathcal{Y} = [1, k]$

Structure prediction:

Structure prediction: *Structured perceptron loss*

Structure prediction: *Structured perceptron loss*

Backpropagate through the max.

Structure prediction: *Structured perceptron loss*

Backpropagate through the max. Not differentiable everywhere !

Structured prediction as an inner layer

Example: Attention mechanisms, where c are the attention weights.

Structured prediction as an inner layer

Example: Attention mechanisms, where c are the attention weights.

We need to backpropagate through the argmax.

Structured prediction as an inner layer

Example: Attention mechanisms, where c are the attention weights.

We need to backpropagate through the argmax. Zero derivative !

From max to softmax

From max to softmax

Multinomial loss, softmax attention: differentiable

Questions and contributions

• From **max** to **softmax**: Where does this comes from and can we use different smoothing techniques ?

Questions and contributions

- From max to softmax: Where does this comes from and can we use different smoothing techniques?
- How to smooth a wide class of structured prediction LP problems?

$$\max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}(x), \, \boldsymbol{Y} \rangle \qquad \qquad \boldsymbol{Y} \in \mathcal{Y} \subset \mathbb{R}^D = \underset{\boldsymbol{Y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \boldsymbol{\theta}(x), \, \boldsymbol{Y} \rangle$$

Questions and contributions

- From **max** to **softmax**: Where does this comes from and can we use different smoothing techniques ?
- How to smooth a wide class of structured prediction LP problems?

$$\max_{\mathbf{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}(x), \mathbf{Y} \rangle \qquad \qquad \mathbf{Y} \in \mathcal{Y} \subset \mathbb{R}^D = \underset{\mathbf{Y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \boldsymbol{\theta}(x), \mathbf{Y} \rangle$$

Inference mechanisms often rely on a dynamic programming algorithm

Contribution: differentiable dynamic programing

- Smooth max layers to design new structured losses
- Differentiable argmax layers for inner inference mechanisms

Contributions

Generic framework for differentiable structured prediction:

- Regularizing the max operators with strongly convex penalties.
- May output sparse continuous outputs

Applications:

- End-to-end audio to score alignment
- Named entity recognition with sparse predictions
- Block sparse attention mechanisms

Extends and ground in theory: [LeCun et al., 2006, Lample et al., 2016, Kim et al., 2017, Cuturi and Blondel, 2017], etc.

Dynamic programming

Dynamic programming solve the structure prediction problem

$$\mathsf{LP}(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

by splitting the combinatorial set $\mathcal{Y} \subset \mathbb{R}^D$ into sets of smaller dimensions

• Compute LP(θ) in linear time $\mathcal{O}(D)$ vs exponential naive resolution

Dynamic programming

Dynamic programming solve the structure prediction problem

$$\mathsf{LP}(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

by splitting the combinatorial set $\mathcal{Y} \subset \mathbb{R}^D$ into sets of smaller dimensions

• Compute LP(θ) in linear time $\mathcal{O}(D)$ vs exponential naive resolution

Also provide the **argmax** in $\mathcal{O}(D)$:

$$\operatorname*{argmax}_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

Dynamic programming

Dynamic programming solve the structure prediction problem

$$\mathsf{LP}(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

by splitting the combinatorial set $\mathcal{Y} \subset \mathbb{R}^D$ into sets of smaller dimensions

ullet Compute LP($oldsymbol{ heta}$) in linear time $\mathcal{O}(D)$ vs exponential naive resolution

Also provide the **argmax** in $\mathcal{O}(D)$:

$$\underset{\boldsymbol{Y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \boldsymbol{\theta}, \, \boldsymbol{Y} \rangle$$

Examples:

- Viterbi algorithm for infering tag sequences
- Dynamic time warping algorithm for infering alignment matrices

Generic (max, +) DP is best path finding

Directed acyclic graph

- ullet $G=(\mathcal{N},\mathcal{E})$, with 1 root and 1 leaf, nodes numbered in topo. order [1,N]
- Edge (i,j) has weight $\theta_{i,j}$ j parent, i child. $\theta \in \mathbb{R}^{n \times n}$ incidence matrix
- Path $\mathbf{Y} \in \mathcal{Y} \subset \{0,1\}^{N \times N}$: $y_{i,j} = 1$ iff (i,j) is taken

Single path value: $\langle Y, \theta \rangle$

Highest score among all paths

$$\mathsf{LP}(oldsymbol{ heta}) = \max_{oldsymbol{Y} \in \mathcal{V}} \langle oldsymbol{Y}, oldsymbol{ heta}
angle$$

Maximum value computation (finding the max)

Max value from 1 to i

$$v_i(\boldsymbol{\theta}) = \max_{j \in \mathcal{P}_i} \theta_{i,j} + v_j(\boldsymbol{\theta})$$

One pass over the graph

$$(v_1 = 0, v_2, \dots, v_n \triangleq \mathsf{DP}(\boldsymbol{\theta}))$$

= Bellman equation

Maximum value computation (finding the max)

Max value from 1 to i

$$v_i(oldsymbol{ heta}) = \max_{j \in \mathcal{P}_i} heta_{i,j} + v_j(oldsymbol{ heta})$$

One pass over the graph

$$(v_1 = 0, v_2, \dots, v_n \triangleq \mathsf{DP}(\boldsymbol{\theta}))$$

= Bellman equation

The DP recursion solves the linear problem [Bellman, 1958]

$$\mathsf{DP}(\boldsymbol{\theta}) = \mathsf{LP}(\boldsymbol{\theta}) = \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle$$

Best path computation (finding the argmax)

What if we want to find the LP solution (a.k.a. perform inference ?)

Best path computation (finding the argmax)

What if we want to find the LP solution (a.k.a. perform inference ?)

The argmax is computable using backpropagation = backtracking

Danskin theorem [Danskin, 1966]

$$\partial \mathsf{DP}(\boldsymbol{\theta}) = \partial_{\boldsymbol{\theta}}(\boldsymbol{\theta} \to \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)) = \mathsf{conv}(\underset{\boldsymbol{Y} \in \mathcal{Y}}{\mathsf{argmax}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)$$

• When the argmax is unique: $\partial_{\boldsymbol{\theta}} \mathsf{DP}(\boldsymbol{\theta}) = \mathsf{argmax}_{\mathbf{Y} \in \mathcal{Y}} \langle \mathbf{Y}, \boldsymbol{\theta} \rangle$

Best path computation (finding the argmax)

What if we want to find the LP solution (a.k.a. perform inference ?)

The argmax is computable using backpropagation = backtracking

Danskin theorem [Danskin, 1966]

$$\partial \mathsf{DP}(\boldsymbol{\theta}) = \partial_{\boldsymbol{\theta}}(\boldsymbol{\theta} \to \max_{\boldsymbol{Y} \in \mathcal{Y}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)) = \mathsf{conv}(\underset{\boldsymbol{Y} \in \mathcal{Y}}{\mathsf{argmax}} \langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)$$

• When the argmax is unique: $\partial_{\boldsymbol{\theta}}\mathsf{DP}(\boldsymbol{\theta}) = \mathsf{argmax}_{\mathbf{Y} \in \mathcal{Y}} \langle \mathbf{Y}, \boldsymbol{\theta} \rangle$

Dynamic programming layers

We define:

- Max layer: $\theta \to \mathsf{DP}(\theta) = \mathsf{max}_{\mathbf{Y}} \langle \mathbf{Y}, \theta \rangle$
- Argmax layer: $\theta \to \partial_{\theta} \mathsf{DP}(\theta) \sim \mathsf{argmax}_{\mathbf{Y}} \langle \mathbf{Y}, \theta \rangle$

Operator regularization

Obstacles to end-to-end training

- ullet Max layer $oldsymbol{ heta} o \mathsf{DP}(oldsymbol{ heta})$ is not differentiable everywhere
- ullet Argmax layer $oldsymbol{ heta} o \partial \mathsf{DP}(oldsymbol{ heta})$ is piecewise constant / not defined

Operator regularization

Obstacles to end-to-end training

- ullet Max layer $oldsymbol{ heta} o \mathsf{DP}(oldsymbol{ heta})$ is not differentiable everywhere
- ullet Argmax layer $oldsymbol{ heta} o \partial \mathsf{DP}(oldsymbol{ heta})$ is piecewise constant / not defined

Culprit is the Bellman recursion

$$x \in \mathbb{R}^d o \max(x) \in \mathbb{R}$$

- Not differentiable everywhere
- Piecewise linear (null Hessian)

Operator regularization

Obstacles to end-to-end training

- ullet Max layer $oldsymbol{ heta} o \mathsf{DP}(oldsymbol{ heta})$ is not differentiable everywhere
- ullet Argmax layer $oldsymbol{ heta} o \partial \mathsf{DP}(oldsymbol{ heta})$ is piecewise constant / not defined

Culprit is the Bellman recursion

$$m{x} \in \mathbb{R}^d o \max(m{x}) \in \mathbb{R}$$

- Not differentiable everywhere
- Piecewise linear (null Hessian)

Hard geometry

Solution: smooth the maximum operator

Max smoothing

 $\Omega: \mathbb{R} \to \mathbb{R}$ strongly-convex function. $\mathbf{x} \in \mathbb{R}^d$. Δ^d : d-dim simplex.

Smoothed max operator [Moreau, 1965, Nesterov, 2005]

$$\max_{\Omega}(\mathbf{x}) = \max_{\mathbf{y} \in \Delta^d} \langle \mathbf{x}, \mathbf{y} \rangle - \sum_{i=1}^d \Omega(\mathbf{y}_i)$$

Max smoothing

 $\Omega:\mathbb{R} o \mathbb{R}$ strongly-convex function. $extbf{ extit{x}} \in \mathbb{R}^d$. Δ^d : d-dim simplex.

Smoothed max operator [Moreau, 1965, Nesterov, 2005]

$$\max_{\Omega}(\boldsymbol{x}) = \max_{\boldsymbol{y} \in \Delta^d} \langle \boldsymbol{x}, \boldsymbol{y} \rangle - \sum_{i=1}^d \Omega(y_i)$$

Properties:

- Consistent smoothing: $\max_0(x) = \max(x)$
- Twice differentiable almost everywhere with non-zero Hessian

Dynamic programming regularization

What we have at hand

- 1. Smooth max: $\max_{\Omega}(x) = \max_{y \in \Delta^d} \langle x, y \rangle \sum_{i=1}^d \Omega(y_i)$
- **2. Bellman recursion:** $v_i = \max_{j \in \mathcal{P}_i} \theta_{i,j} + v_j$, $\mathsf{DP}(\Theta) \triangleq v_N$

Dynamic programming regularization

What we have at hand

- 1. Smooth max: $\max_{\Omega}(x) = \max_{y \in \Delta^d} \langle x, y \rangle \sum_{i=1}^d \Omega(y_i)$
- **2. Bellman recursion:** $v_i = \max_{j \in \mathcal{P}_i} \theta_{i,j} + v_j$, $\mathsf{DP}(\Theta) \triangleq v_N$

Bottom-up construction

For all $i \in [N]$:

$$v_i(\boldsymbol{\theta}) = \max_{\Omega} (\theta_{i,j} + v_j)_{j \in \mathcal{P}_i}$$

$$\mathsf{DP}_\Omega(\boldsymbol{\theta}) \triangleq \mathsf{v}_N(\boldsymbol{\theta})$$

Regularized best-path: $\nabla \mathsf{DP}_{\Omega}(\boldsymbol{\theta})$

From max to smoothed max:

$$\mathbf{Y}(\mathbf{\theta}) = \partial \mathsf{DP}(\mathbf{\theta}) \Longrightarrow \mathbf{Y}_{\Omega}(\mathbf{\theta}) \triangleq \nabla \mathsf{DP}_{\Omega}(\mathbf{\theta})$$

Regularized best-path: $\nabla \mathsf{DP}_{\Omega}(\boldsymbol{\theta})$

From max to smoothed max:

$$\mathbf{Y}(\mathbf{\theta}) = \partial \mathsf{DP}(\mathbf{\theta}) \Longrightarrow \mathbf{Y}_{\Omega}(\mathbf{\theta}) \triangleq \nabla \mathsf{DP}_{\Omega}(\mathbf{\theta})$$

Computed with backpropagation

Requirements: Gradients of Bellman equations

$$oldsymbol{q}_i =
abla \mathsf{max}_{\Omega} (heta_{i,j} + oldsymbol{v}_j)_{j \in \mathcal{P}_i}$$

Entropy and sparsity-inducing ℓ_2^2 regularization

Entropy:
$$\Omega(x) = \gamma x \log(x) \longrightarrow Softmax$$
 operator $\max_{\Omega}(x) = \log(Z)$, where $Z = \sum_{j} \exp(x_{j}/\gamma)$ $\nabla \max_{\Omega}(x) = (\exp(x_{i}/\gamma)/Z)_{i \in \mathbb{R}^{d}}$

Entropy and sparsity-inducing ℓ_2^2 regularization

Entropy:
$$\Omega(x) = \gamma x \log(x) \longrightarrow Softmax$$
 operator $\max_{\Omega}(x) = \log(Z)$, where $Z = \sum_{j} \exp(x_{j}/\gamma)$ $\nabla \max_{\Omega}(x) = (\exp(x_{i}/\gamma)/Z)_{i \in \mathbb{R}^{d}}$

$$\ell_2^2$$
 penalty: $\Omega(x) = \gamma x^2$ *Sparsemax* [Martins and Astudillo, 2016]

$$abla \mathsf{max}_{\Omega}(\mathbf{x}) = \mathbf{\textit{P}}_{\Delta^d}(\mathbf{x}/\gamma)$$
 Sparse: ℓ_2 projection on simplex

Differentiable DP properties

$\mathsf{DP}_{\Omega}(\theta)$ properties

- $m{ heta}$ $m{ heta}$ $m DP_{\Omega}(m{ heta})$ is convex.
- $\mathsf{DP}_{\Omega}(\boldsymbol{\theta}) = \mathsf{LP}_{\Omega}(\boldsymbol{\theta})$ if and only if $\Omega = -\gamma H(\boldsymbol{\theta})$

$$\mathsf{LP}_{\Omega}(\boldsymbol{\theta}) \triangleq \mathsf{max}_{\Omega} \, \left(\langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle \right)_{\boldsymbol{Y} \in \mathcal{Y}} = \mathsf{max}_{\boldsymbol{p} \in \triangle^{D}} \left\langle \boldsymbol{p}, (\langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)_{\boldsymbol{y} \in \mathcal{Y}} \right\rangle - \Omega(\boldsymbol{p})$$

In this (only) case:

Local Bellman regularization = full LP regularization

Relaxed gradient properties

Probabilistic interpretation

We can define a distribution \mathcal{D}_{Ω} on the set of paths \mathcal{Y} such that

$$abla\mathsf{DP}_\Omega(oldsymbol{ heta}) = \mathbb{E}_{\mathcal{D}_\Omega}[oldsymbol{Y}] \in \mathsf{conv}(\mathcal{Y})$$

Predicted path probabilities: $p_{\theta,\Omega}(\mathbf{Y})$

Relaxed gradient properties

Probabilistic interpretation

We can define a distribution \mathcal{D}_{Ω} on the set of paths \mathcal{Y} such that

$$abla\mathsf{DP}_\Omega(oldsymbol{ heta}) = \mathbb{E}_{\mathcal{D}_\Omega}[oldsymbol{Y}] \in \mathsf{conv}(\mathcal{Y})$$

Predicted path probabilities: $p_{\theta,\Omega}(Y)$

- **Negentropy:** Gibbs distribution: $p_{\theta,\Omega}(Y) \propto \langle Y, \theta \rangle$
- ℓ_2^2 : \mathcal{D}_Ω has a small support $o
 abla \mathsf{DP}_\Omega(m{ heta})$ is sparse

Differentiable dynamic programming layers

Applications

$$\nabla \mathsf{Vit}_{\mathsf{O}} : \mathbb{R}^{T \times S \times S} \to \mathbb{R}^{T \times S \times S}$$

$$\nabla \mathsf{DTW}_{\mathsf{O}}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$$

K-best set predictions in named entity recognition

Structured attention — Neural machine transation

- ullet Compute the attention vector $oldsymbol{c}$ by marginalizing a 2 state linear-chain CRF.
- Use Vit_Ω , with sparse marginal computation $\Omega=\ell_2^2$.
- Versus simple softmax in original version

Similar BLEU scores WMT14 1M

Attention model	fr→en	en→fr
Softmax $ CRF + entropy \\ CRF + \ell_2^2 reg. $	27.96 27.96 27.21	28.08 27.98 27.28

Conclusion

General framework to put dynamic programming algorithms into arbitrary networks

- Efficient and stable algorithms
- Flexibility of regularization (sparse output)

Experiments

- ℓ_2 /entropy have similar performance
- More interpretable outputs / k-best sets with sparsity
- PyTorch package didyprog available (fast custom Viterbi and DTW layer)
- ullet Other applications, instantiated algorithms, backprop through $abla\mathsf{DP}_\Omega(oldsymbol{ heta})$

Poster #48

Example: Linear conditional random field

$$(\mathbf{x}_1,\ldots,\mathbf{x}_T)$$
 observation, $(y_1,\ldots,y_T)\in[S]^T$ states. $\mathbf{Y}\in\mathcal{Y}\in\{0,1\}^{S\times S\times T}$

$$\mathbf{y} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}} \sum_{t=1}^{T} \theta_t(y_t, y_{t-1}, \mathbf{x}_t) = \operatorname*{argmax}_{\mathbf{Y} \in \mathcal{Y}} \langle \boldsymbol{\theta}, \, \mathbf{Y} \rangle$$

Y computed with dynamic programming = **Viterbi algorithm**.

Example: Dynamic time warping

Elastic matching

- Two time-series A, B
- Distance matrix: e.g., $\theta_{i,j} = \|\mathbf{a}_i \mathbf{b}_i\|_2^2$

Alignment matrices

- ullet $(1,1)
 ightarrow (N_A,N_B)$
- \downarrow , \rightarrow , \searrow moves

Best alignment: $\mathbf{Y}(\mathbf{A}, \mathbf{B}) = \underset{\mathbf{Y} \in \mathcal{Y}}{\operatorname{argmax}} \langle \mathbf{Y}, \mathbf{\theta} \rangle$

DTW distance: $d(\pmb{A}, \pmb{B}) = \max_{\pmb{Y} \in \mathcal{V}} \langle \pmb{Y}, \pmb{\theta}
angle$

Computable by dynamic programming

- ullet y set of alignment matrices
- $oldsymbol{ heta}$ distance matrix

Named entity recognition

- **Input data**: Sentences **x** of length **T**
- Labels Y: {Begin/Inside/Outside}{Person/Org./Loc./Misc.}
- Model: Char + Word LSTM + smooth inference mechanism

Bibliography I

In Proc. of ICLR.

```
[Bellman, 1958] Bellman, R. (1958).
  On a routing problem.
  Quarterly of applied mathematics, 16(1):87–90.
[Cuturi and Blondel, 2017] Cuturi, M. and Blondel, M. (2017).
  Soft-DTW: a Differentiable Loss Function for Time-Series.
  In Proc. of ICML, pages 894–903.
[Danskin, 1966] Danskin, J. M. (1966).
  The theory of max-min, with applications.
  SIAM Journal on Applied Mathematics, 14(4):641–664.
[Kim et al., 2017] Kim, Y., Denton, C., Hoang, L., and Rush, A. M. (2017).
  Structured Attention Networks.
```

Bibliography II

```
[Lample et al., 2016] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. (2016).
```

Neural architectures for named entity recognition.

In Proc. of NAACL, pages 260-270.

[LeCun et al., 2006] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. (2006).

A tutorial on energy-based learning.

Predicting structured data, 1(0).

[Martins and Astudillo, 2016] Martins, A. F. and Astudillo, R. F. (2016).

From softmax to sparsemax: A sparse model of attention and multi-label classification.

In Proc. of ICML, pages 1614–1623.

Bibliography III

```
[Moreau, 1965] Moreau, J.-J. (1965).
```

Proximité et dualité dans un espace hilbertien.

Bullet de la Société Mathémathique de France, 93(2):273-299.

[Nesterov, 2005] Nesterov, Y. (2005).

Smooth minimization of non-smooth functions.

Mathematical Programming, 103(1):127–152.