

BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT YELAHANKA - BANGALORE - 64

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

III INTERNAL ASSESSMENT TEST, MAY - 2017

Subject: Microprocessors & Microcontrollers	Subject Code: 15CS44	Branch & Semester : CSE - 4 A & B
Max. Marks : 30 Marks	Date: 23/05/2017 Time: 2 PM - 3:30 PM	Faculty: Mr. Shankar R

Answer FIVE full questions, selecting ONE full question from each Part. (Part D & Part E are compulsory)

Q. No	Question	CO, PO, K level	Marks	
PART-A				
1.	Describe the different features of ARM instruction set that make it suitable for embedded applications?	CO3 (PO1) K2	06	
2.	Explain ARM core dataflow model with a neat diagram.	CO3 (PO1) K2	06	
	PART-B			
3.	Explain program status register byte fields and explain – MRS & MSR.	CO3 (PO1) K2	06	
4.	With example, illustrate how following instructions work? LDRSH STRB LDMDA STMIA	CO4 (PO1) K3	06	
	PART-C			
5.	What are banked registers? Show how the banked registers are utilized when the user mode changes to IRQ mode?	CO3 (PO2) K3	06	
6.	Explain in detail Arithmetic instructions. How Barrel shifter is used with Arithmetic instructions?	CO3 (PO2) K2	06	
	PART-D			
7.	Analyze the ARM processor that we use in BMSIT&M in terms of interrupts or exceptions. How are those exceptions handled?	CO3 (PO1,PO2) K4	06	
	PART - E			
8.	Assess the result of this instruction (post computation). PRE $r1 = 0b1111$ $r2 = 0b0101$ BIC $r0,r1,r2$ What can be the alternate instruction/logic of the above case?	CO4,CO5 (PO2,PO3) K5	06	
Course	Outcomes: Students will be able to			
CO1	Describe the architecture of X86 Microprocessors and have an introduction to Assembly Language Programming.			
CO2 CO3	Discuss the Instruction Set of X86 Microprocessors and extend it to interface various devices to X86 families			
CO3	Understand ARM philosophy and its Instruction Set. Demonstrate the skills to code in Assembly Language, ARM.			
CO5	Construct software and hardware programs using Assembly Language Programm			
K1: Rem	ember K2:Understand K3: Apply K4: Analyze K5: Evalua	te K6: C	reation	