UNSW, School of Mathematics and Statistics

MATH2089 - Numerical Methods

Week 06 - Numerical Integration

- Quadrature rules
- Trapezoidal Rule
- Simpson's Rule
- Gauss-Legendre Rule

Degree of precision Change of variables Difficult integrals Adaptive Quadrature Integrals vs Differential equations

- MATLAB M-files
 - numint.m
 - gauleg.m

• spike.m

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019 1 / 26

Numerical Integration

Quadrature rules

Quadrature Rules

Integral

$$I(f) = \int_a^b f(x) \ dx$$

Definition (Quadrature Rule)

A quadrature rule $Q_N(f)$ to approximate the integral I(f) using the nodes $x_i \in [a, b]$ for j = 1, ..., N and weights $w_i, j = 1, ..., N$ is

$$Q_N(f) = \sum_{j=1}^{N} w_j f(x_j)$$

Quadrature Error

$$E_N(f) = I(f) - Q_N(f)$$

- Want as $N \to \infty$: $Q_N(f) \to I(f) \iff |E_N(f)| \to 0$
- $E_N(f) > 0 \iff I(f) > Q_N(f), \quad E_N(f) < 0 \iff I(f) < Q_N(f)$

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019 3 / 26

Numerical Integration Quadrature rules

Integration

• One-dimensional integral of $f \in C([a,b])$

$$I(f) = \int_{a}^{b} f(x) \, dx$$

Multi-dimensional integrals not in this course

Example (Standard normal probabilities)

$$X \sim N(0,1), \quad \mathbb{P}\left[a \le X \le b\right] = \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-u^{2}/2} du$$

Numerical Integration

Quadrature rules

T2 2019

2 / 26

Quadrature rule

• Quadrature rule: $Q_N(f) = \sum_{i=1}^{N} w_j f(x_j)$, nodes x_j , weights w_j

Trapezoidal Rule

• Divide [a, b] into N equal width intervals (N + 1 points)

$$x_j = a + hj, \quad j = 0, \dots, N, \quad \text{where} \quad h = \frac{b - a}{N}$$

- Function values $f_i \equiv f(x_i)$
- Approximate f(x) on $[x_i, x_{i+1}]$ by a straight line joining f_i and f_{i+1}
- Trapezoidal rule

$$Q_N(f) = h\left(\frac{1}{2}f_0 + \sum_{j=1}^{N-1} f_j + \frac{1}{2}f_N\right)$$

- ullet Weights $w_0=w_N=rac{h}{2}$, $w_j=h,\ j=1,\ldots,N-1$
- Error for $f \in C^2([a,b])$

$$E_N(f) = -\frac{(b-a)h^2}{12}f''(\eta) \quad \text{some } \eta \in [a,b].$$

• $E_N(f) = O(h^2) = O(N^{-2})$

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019

Numerical Integration Simpson's Rule

Simpson's rule – example

Simpson's Rule

- \bullet N intervals, equal width h, N even
- Approximate f by a quadratic function over $[x_{i-1}, x_{i+1}]$
- Simpson's rule

$$Q_N(f) = \frac{h}{3} \left(f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + \dots + 2f_{N-2} + 4f_{N-1} + f_N \right)$$

Weights

$$w_0 = w_N = \frac{h}{3}, \ w_{2j-1} = \frac{4h}{3}, \ w_{2j} = \frac{2h}{3}, \ j = 1, \dots, \frac{N}{2} - 1; \ w_{N-1} = \frac{4h}{3}.$$

• Error for $f \in C^4([a,b])$

$$E_N(f) = -\frac{(b-a)h^4}{180}f^{(4)}(\eta)$$
 some $\eta \in [a,b]$.

• $E_N(f) = O(h^4)$ or $E_N(f) = O(N^{-4})$

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019

6 / 26

Numerical Integration Simpson's Rule

Example - Standard normal probability

Example (Standard normal probability)

Estimate $I(\phi) = \int_{-2}^{3} \phi(x) dx$ using the Trapezoidal rule and Simpson's rule with N=2,4,8,16,32,64,128. Tabulate the errors $E_N(\phi)$ and the ratios $E_{N/2}(\phi)/E_N(\phi)$ of the errors.

Solution (MATLAB script numint.m)

	Trapezoidal rule			Simpson's rule		
N	$Q_N(f)$	$E_N(f)$	Ratio	$Q_N(f)$	$E_N(f)$	Ratio
2	0.9531918356	2.27e-02		1.2222367683	-2.46e-01	
4	0.9608643565	1.50e-02	1.51	0.9634218635	1.25e-02	-19.7
8	0.9719937401	3.91e-03	3.85	0.9757035347	1.96e-04	63.5
16	0.9749155260	9.84e-04	3.97	0.9758894546	1.05e-05	18.7
32	0.9756533862	2.47e-04	3.99	0.9758993396	6.30e-07	16.7
64	0.9758382948	6.17e-05	4.00	0.9758999310	3.90e-08	16.2
128	0.9758845494	1.54e-05	4.00	0.9758999676	2.43e-09	16.0

Table: Trapezoidal rule and Simpson's rule for $\int_{-2}^{3} \phi(x) dx$

Gauss-Legendre Rule

- Integral on [-1,1] $I(f) = \int_{-1}^{1} f(x)dx \approx Q_N(f) = \sum_{i=1}^{N} w_i f(z_i)$
- "Optimal" choice of both nodes z_i and weights w_i
- Nodes z_i : zeros of $P_N(x)$, degree N Legendre polynomial on [-1,1]
 - Legendre polynomials, three-term recurrence

$$P_0(x) = 1, \ P_1(x) = x, \ (n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

- Weights w_j : $w_j = \frac{2}{(1-z_i^2)[P_N'(z_i)]^2} \ge 0$ $j=1,\ldots,N$
- MATLAB function gauleg.m
- Error for $f \in C^{2N}([-1,1])$

$$E_N(f) = \frac{2^{2N+1}(N!)^4}{(2N+1)[(2N)!]^3} f^{(2N)}(\eta) \quad \text{some } \eta \in (-1,1),$$

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019 10 / 26

Numerical Integration Gauss-Legendre Rule

Gauss-Legendre rule Example

Example (Standard normal probability – Gauss-Legendre rule)

N	$Q_N(f)$	$I(f) - Q_N(f)$
2	0.7900637402	1.86e-01
3	1.0083098187	-3.24e-02
4	0.9720865669	3.81e-03
5	0.9761640669	-2.64e-04
6	0.9759029512	-2.98e-06
7	0.9758959874	3.98e-06
8	0.9759006722	-7.02e-07
9	0.9758998852	8.48e-08
10	0.9758999783	-8.26e-09
15	0.9758999700	1.11e-14
20	0.9758999700	-5.55e-16

Table: Gauss-Legendre rule on $\int_{-2}^{3} \phi(x) dx$

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019

Numerical Integration Gauss-Legendre Rule

Gauss-Legendre Quadrature

- Given Gauss-Legendre nodes z_i and weights w_i for [-1,1]
- Map $z \in [-1, 1]$ to $x \in [-2, 3]$ by $x = \frac{5}{2}z + \frac{1}{2}$, $\Longrightarrow dx = \frac{5}{2}dz$
- Approximate integral

$$\int_{-2}^{3} f(x)dx = \int_{-1}^{1} f\left(\frac{5}{2}z + \frac{1}{2}\right) \frac{5}{2}dz \approx \sum_{i=1}^{N} \frac{5w_{i}}{2} f\left(\frac{5}{2}z_{i} + \frac{1}{2}\right)$$

• On interval [-2,3]

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019

11 / 26

Degree of precision

• Degree of precision is highest degree m such that

 $E_N(1) = E_N(x) = E_N(x^2) = \dots = E_N(x^m) = 0$ but $E_N(x^{m+1}) \neq 0$.

- Degree of precision of trapezoidal rule is 1.
- Degree of precision of Simpson's rule is 3.
- Degree of precision of a Gauss-Legendre rule with N points is 2N-1.

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019

13 / 26

(Numerical Methods)

WK 06 - Numerical Integration

Change of variables

Change of variables – Linear

- Map interval [0,1] to [a,b]
 - Change of variables

$$y = a + (b - a)x, \qquad dy = (b - a)dx,$$

$$\int_{a}^{b} f(y)dy = (b - a) \int_{0}^{1} f(a + (b - a)x)dx.$$

- Map interval [-1,1] to [a,b]
 - Change of variables

$$y = \frac{a+b}{2} + \frac{b-a}{2}x, \qquad dy = \frac{b-a}{2}dx,$$

$$\int_{a}^{b} f(y)dy = \frac{(b-a)}{2} \int_{-1}^{1} f\left(\frac{a+b}{2} + \frac{(b-a)}{2}x\right) dx.$$

T2 2019

14 / 26

Change of variables

(Numerical Methods) WK 06 - Numerical Integration T2 2019 (Numerical Methods) WK 06 - Numerical Integration T2 2019 16 / 26 15 / 26

Change of variables

Change of variables - Nonlinear

- Map \mathbb{R} to [0,1]
 - Expected value of f(X), random variable $X \sim N(0,1)$

$$\mathbb{E}\left[f\right] = \int_{\mathbb{R}} f(x)\phi(x)dx$$

 \bullet ϕ standard normal pdf, Φ standard normal cdf

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}, \qquad \Phi(x) = \int_{-\infty}^x \phi(u) du$$

- Change of variables $y = \Phi(x)$, $x = \Phi^{-1}(y)$, MATLAB norminv
- Derivative

$$\frac{dy}{dx} = \frac{d}{dx} \int_{-\infty}^{x} \phi(u) du = \phi(x)$$

- Bounds of integration $x=-\infty \iff y=0, \quad x=+\infty \iff y=1$

$$\int_{\mathbb{R}} f(x)\phi(x)dx = \int_0^1 f(\Phi^{-1}(y))dy.$$

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019 17 / 26

WK 06 - Numerical Integration

Difficult integrals

Difficult integrals

Example

Approximate the integral

$$I = \int_0^1 \sqrt{x} \, dx = \frac{2}{3}$$

using the Trapezoidal rule, Simpson's rule and the Gauss-Legendre rule with N = 2, 4, 8, 16, 32, 64.

Solution

- [Trapezoidal rule		Simpson's	rule	Gauss-Legendre rule	
Ì	N	$Q_N(f)$	$E_N(f)$	$Q_N(f)$	$E_N(f)$	$Q_N(f)$	$E_N(f)$
ĺ	2	0.6035533906	6.31e-02	0.6380711875	2.86e-02	0.6738873387	-7.22e-03
	4	0.6432830462	2.34e-02	0.6565262648	1.01e-02	0.6678276454	-1.16e-03
	8	0.6581302216	8.54e-03	0.6630792801	3.59e-03	0.6668355801	-1.69e-04
	16	0.6635811969	3.09e-03	0.6653981886	1.27e-03	0.6666896315	-2.30e-05
	32	0.6655589363	1.11e-03	0.6662181827	4.48e-04	0.6666696674	-3.00e-06
	64	0.6662708114	3.96e-04	0.6665081031	1.59e-04	0.6666670504	-3.84e-07

Table: Quadrature rules for $\int_0^1 \sqrt{x} \ dx$

(Numerical Methods)

T2 2019

18 / 26

Difficult integrals

Change of variables

• Some difficult integrands: \sqrt{x} , $\sqrt{|x-1/4|}$ and $e^{-x}\sin(50x)$ (Numerical Methods) WK 06 – Numerical Integration T2 2019 21 / 26

Difficult integrals

Difficult integrals

Difficult integrals cont

- ullet Methods assume integrand f is sufficiently smooth on [a,b]
 - ullet Trapezoidal rule $f \in C^2([a,b])$
 - ullet Simpson's rule $f\in C^4([a,b])$
 - $\bullet \ \ \text{Gauss-Legendre rule} \ f \in C^{2N}([a,b])$
- Difficult: Derivative unbounded
 - Example: $f(x) = \sqrt{x}$ on [0, b]
 - ullet Unbounded derivatives at 0
 - Change of variables: $x = y^2$
 - $\int_0^b \sqrt{x} dx = 2 \int_0^{\sqrt{b}} y^2 dy$
- Difficult: Derivative discontinuity
 - Example: $f(x) = \sqrt{|x 1/4|}$ on [0, 1]
 - \bullet Split integral to remove derivative discontinuity from $|\cdot|$
 - $\int_0^1 f(x)dx = \int_0^{\frac{1}{4}} \sqrt{1/4 x} \, dx + \int_{\frac{1}{4}}^1 \sqrt{x 1/4} \, dx$
 - Change of variables to remove square roots
- Difficult: Highly oscillatory
 - Example: $f(x) = e^{-x} \sin(50x)$
 - ullet N sufficiently large or special method

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019 22 / 26

Difficult integrals

Numerical integration can fail

- ullet Integrating a narrow spike: I(f)=1
 - Underestimate integral if spike between nodes $(Q_{19}(f) \approx 8.11 \times 10^{-6})$
 - Overestimate integral if node falls on spike $(Q_{20}(f) \approx 3.99)$
 - MATLAB script spike.m

23 / 26

Adaptive Quadrature

Adaptive quadrature

- Use error estimates to add more nodes where error is largest
- Matlab function quad

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019

25 / 26

Integrals vs Differential equations

Integrals vs Differential equations

• Fundamental theorem of calculus

$$y(x) = \int_{a}^{x} f(t) dt = F(x) - F(a)$$

where

$$f(t) = \frac{dF(t)}{dt} \iff F(t) = \int f(t)dt$$

ullet Differentiate wrt x

$$y'(x) = f(x), \quad x > a$$

Initial condition

$$y(a) = 0$$

• Integration is equivalent to solving a single differential equation with appropriate initial condition

(Numerical Methods)

WK 06 - Numerical Integration

T2 2019 26 / 26