Manuscript title

First Author 1 , Second Author 2 , ..., and Last Author 2 Second affiliation 3 Third affiliation

November 7, 2023

Abstract

The abstract is a concise (short and clear) summary of your work. It should clearly state the problem, the methods used, the main results, and the conclusions, and should not include citations and formulas.

Keywords:

PACS:

1. Introduction

This template is recommended for authors who will submit their manuscript in LaTex to Chinese Physics B. ^[1] You are also advised to read some articles (Refs. [2–6]) already published in the journal. It can be very helpful for preparing your own manuscript, especially for preparing formatted formulas, tables, figures, and references.

Note: A brief guidance on how to prepare a manuscript is also given at the end of this template (after the Reference section).

^{*}Corresponding author. E-mail: xxx@xxx.edu

- 2. First-level heading (e.g., Theoretical method or Experimental setup)
- 3. First-level heading (e.g., Results and discussion)
- 3.1. Second-level heading
- 3.1.1. Third-level heading
- 3.2. Second-level heading
- 3.2.1. Third-level heading

4. Conclusion

Appendix A: Appendix heading

Appendix is optional.

Data availability statement

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/XXXXXXX. This statement should be given if some related data have been deposited in Science Data Bank.

Acknowledgment

Financial supports are given here. The scientific contributions from other people or groups are also acknowledged here.

References

- $[1] \ https://cpb.iphy.ac.cn/EN/column/column32.shtml$
- [2] Zheng M T, Schwier E F, Iwasawa H and Shimada K 2020 Chin. Phys. B 29 067901
- [3] Zeng H L and Aurell E 2020 $\it Chin.\ Phys.\ B$ $\bf 29$ 080201
- $[4]\,$ Zhao R T, Xing B Y, Mu H M, Fu Y H and Zhang L J 2022 Chin. Phys. B $\bf 31$ 056302
- [5] Li A, Xu W, Chen X, Yao B N, Huo J T, Wang J Q and Li R W 2022 Chin. Phys. B 31 040706
- [6] Chen Z Y, Xie F K, Wan M, Yuan Y, Liu M, Wang Z G, Meng S and Wang Y G 2023 Chin. Phys. B 32 118104

Brief guidance on how to prepare a manuscript

1. Authors' names

For Authors' names, please put the given name ahead of the family name. For Chinese authors, the name in Chinese characters should also be given. For example, Gang Liu(刘刚), Xiao-Ming Li(李晓明).

2. Equations

- Italics should be used for variables (mass m, voltage V, and so on); Roman type should be used for units (kilogram kg, second s, and so on);
 - Vectors and matrices should be given in bold italics (electric field **E**, magnetic field **B**, and so on);
- Roman face should be used otherwise (differential operator d, exp(), max, i = $\sqrt{-1}$, sin, cos, lg, ln, special functions like spherical harmonics $Y_l^m(\theta, \phi)$, Bessel function $J_l(x)$, Legendre function $P_l^m(x)$, $\Gamma(x)$, and confluent hypergeometric function F(a; c; x), subscripts and superscripts if they are not variables, and so on).

Example 1 A one-dimensional harmonic oscillator is described by the following equation:

$$m_{\rm o}a = m_{\rm o}\frac{\mathrm{d}^2x}{\mathrm{d}^2t} = -k_{\rm s}x,\tag{1}$$

where x and a are the position and the acceleration of the oscillator, respectively, m_0 is the mass of the oscillator, and k_s is the spring constant (subscripts o and s denote the oscillator and the spring, respectively).

Example 2 The Maxwell–Faraday equation reads

$$\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t,\tag{2}$$

where E and B are the electric and the magnetic fields, respectively.

3. Figures

- If you reuse published figures, please seek permission from the copyright holder.
- For articles prepared in LaTex, please provide all figures in EPS format.

Example 1

Fig. 1. Transmittance for the eigenvalues of the cavity included the BP and BC, plotted as a function of $\Delta\varphi$, for the case of $\beta = 45^{\circ}$.

- The axis labels should be given in the form of "variable (unit)".
- For single-column figures, the figure width should be smaller than 7.5 cm.

Example 2

Fig. 2. Distribution of turbulent kinetic energy. (a)–(c) Corresponding distributions of turbulent kinetic energy averaged over 5000 frames (100 sec) under three confinements. The color shows the intensity of turbulent kinetic energy \overline{E}_t . Meanwhile, x=0 µm indicates the position of the drop contact line.

- For multi-part figures, different parts must be labeled as (a), (b), (c), etc.
- Every part should be described in the caption.
- For double-column figures, the figure width should be smaller than 15 cm.

4. Table

Tables are inserted in the center environment.

Example 1

Table 1. Simulation parameters.

Variable	Parameter	Simulation value		
L	grating length	15 mm		
Λ	grating period	$525.878~\mathrm{nm}$		
λ_0	central wavelength	1545.1 nm		
$n_{ m eff}$	effective refractive index	1.4774		
δ_n	refractive index modulation depth	0.9×10^{-4}		

Example 2

Table 2. Results of the average MSE.

	r_c (Å)	r_0 (Å)	κr_0		r_c (Å)	r_0 (Å)	κr_0
Cu	0.800	14.10	2.550	Sn ^{a)}	0.680	1.870	3.700
Ag	0.990	15.90	2.710	$Pb^{b)}$	0.450	1.930	3.760
Au	1.150	15.90	2.710	$Ca^{c)}$	0.750	2.170	3.560
Mg	0.490	17.60	3.200	$\mathrm{Sr^{a)}}$	0.900	2.370	3.720
Zn	0.300	15.20	2.970	$\mathrm{Li^{b}})$	0.380	1.730	2.830
Cd	0.530	17.10	3.160	$\mathrm{Na^{c}})$	0.760	2.110	3.120
Hg	0.550	17.80	3.220	$K^{a)}$	1.120	2.620	3.480
Al	0.230	15.80	3.240	$\mathrm{Rb^{b}}$	1.330	2.800	3.590
$_{ m Ga}$	0.310	16.70	3.330	$Cs^{c)}$	1.420	3.030	3.740
In	0.460	18.40	3.500	$\mathrm{Ba^{a)}}$	0.960	2.460	3.780
Tl	0.480	18.90	3.550				
a) D - C [0]	b) p - c [o]	c) p.e. [4]					

^{a)}Ref. [2], ^{b)}Ref. [3], ^{c)}Ref. [4].

5. References

• Only published or accepted manuscripts should be included in this reference list;

- References should all be cited in the main text by using command ucite (Chinese Physics B^[1]) or cite (in Refs. [1–4]);
 - Each reference item should contain one and only one publication;
 - References must be numbered in the order that they appear in the main text;
- All authors of a publication should be listed, omission is not allowed unless there are more than 20 of them; et al. should be used in the later case after the 3rd author to omit the others.

Some reference examples are shown below.

Journal

- [1] Shahverdiev E M and Shore K A 2005 Phys. Rev. E 71 016201
- [2] Wang J S, Feng J and Zhan M S 2010 Acta Phys. Sin. 50 299 (in Chinese)

Book

- [3] Murrell J N, Carter S, Farantos S C, Huxley P and Varandas A J C 1984 Molecular Potential Energy Functions (Chichester: John Wiley and Sons) p. 9
 - [4] Bloembergen N 1965 Nonlinear Optics, 2nd edn. (New York: Benjamin) pp. 12–15

Conference publication

- [5] Tabbal A M, Merel P and Chaker M 1999 Proceedings of the 14th International Symposium on Plasma Chemistry, August 2–6, 1999, Prague, Czech Republic, p. 1099
- [6] Magen N, Kolodny A, Weiser U and Shamir N 2004 Proceedings of the International Workshop on System Level Interconnect Prediction, February 14–16, 2004, Paris, France, p. 7

arXiv

[7] Latham T and Gershon T 2008 arXiv:0809.0872v1 [hep-ph]

Patent

[8] Plank C J (U.S. Patent) 4 081 490 [1978-02-15]

Dissertation

[9] Guo Z Y 2005 Optical Readout Infrared Imaging System at Room Temperature (Ph.D. Dissertation) (Hefei: University of Science and Technology of China) (in Chinese)