Optimization for Machine Learning CS-439

Lecture 2: Gradient Descent

Martin Jaggi

EPFL - github.com/epfml/OptML_course

March 1, 2019

Chapter 2

Gradient Descent

The Algorithm

Get near to a minimum \mathbf{x}^* / close to the optimal value $f(\mathbf{x}^*)$?

(Assumptions: $f:\mathbb{R}^d \to \mathbb{R}$ convex, differentiable, has a global minimum \mathbf{x}^\star)

Goal: Find $\mathbf{x} \in \mathbb{R}^d$ such that

$$f(\mathbf{x}) - f(\mathbf{x}^*) \le \varepsilon.$$

Note that there can be several minima $\mathbf{x}_1^\star \neq \mathbf{x}_2^\star$ with $f(\mathbf{x}_1^\star) = f(\mathbf{x}_2^\star)$.

Iterative Algorithm:

$$\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),$$

for timesteps $t = 0, 1, \ldots$, and stepsize $\gamma \geq 0$.

Example

Vanilla analysis

How to bound $f(\mathbf{x}_t) - f(\mathbf{x}^*)$?

lacktriangle Abbreviate $\mathbf{g}_t := \nabla f(\mathbf{x}_t)$, and consider (using the definition of gradient descent)

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{\gamma}(\mathbf{x}_t - \mathbf{x}_{t+1})^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}).$$

▶ Apply $2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$ to rewrite

$$\mathbf{g}_{t}^{\top}(\mathbf{x}_{t}-\mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\|\mathbf{x}_{t}-\mathbf{x}_{t+1}\|^{2} + \|\mathbf{x}_{t}-\mathbf{x}^{\star}\|^{2} - \|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\|^{2} \right)$$
$$= \frac{\gamma}{2} \|\mathbf{g}_{t}\|^{2} + \frac{1}{2\gamma} \left(\|\mathbf{x}_{t}-\mathbf{x}^{\star}\|^{2} - \|\mathbf{x}_{t+1}-\mathbf{x}^{\star}\|^{2} \right)$$

▶ Sum this up over the iterations t:

$$\sum_{t=0}^{T-1} \mathbf{g}_{t}^{\top} (\mathbf{x}_{t} - \mathbf{x}^{\star}) = \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_{t}\|^{2} + \frac{1}{2\gamma} (\|\mathbf{x}_{0} - \mathbf{x}^{\star}\|^{2} - \|\mathbf{x}_{T} - \mathbf{x}^{\star}\|^{2})$$

Vanilla analysis, II

Now we invoke convexity of f with $\mathbf{x} = \mathbf{x}_t, \mathbf{y} = \mathbf{x}^*$:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$$

giving

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^*\|^2,$$

an upper bound for the average error $f(\mathbf{x}_t) - f(\mathbf{x}^*)$ over the steps

- last iterate is not necessarily the best one
- stepsize is crucial

Bounded gradients: $O(1/\varepsilon^2)$ steps

Assume that all gradients of f are bounded in norm.

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^* ; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \le R$ and $\|\nabla f(\mathbf{x})\| \le B$ for all \mathbf{x} . Choosing the stepsize

$$\gamma := \frac{R}{B\sqrt{T}},$$

gradient descent yields

$$\frac{1}{T} \sum_{t=0}^{T-1} f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{RB}{\sqrt{T}}.$$

Bounded gradients: $\mathcal{O}(1/\varepsilon^2)$ steps, II

Proof.

Bounded gradients: $\mathcal{O}(1/\varepsilon^2)$ steps, III

Advantages:

- ▶ dimension-independent!
- ▶ holds for both average, or best iterate

In Practice:

What if we don't know R and B?

 \rightarrow Exercise 13

Convex, but not too curved?

Definition

Let $f:\mathbb{R}^d\to\mathbb{R}$ be convex and differentiable. f is called smooth (with parameter $L\geq 0$) if

$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d.$$

Smoothness: For any \mathbf{x} , the graph of f is below a not-too-steep tangential paraboloid at $(\mathbf{x}, f(\mathbf{x}))$:

- Quadratic functions are smooth
- Operations that preserve smoothness:

Lemma (Exercise 14)

- (i) Let f_1, f_2, \ldots, f_m be convex functions that are smooth with parameters L_1, L_2, \ldots, L_m , and let $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}_+$. Then the convex function $f := \sum_{i=1}^m \lambda_i f_i$ is smooth with parameter $\sum_{i=1}^m \lambda_i L_i$.
- (ii) Let f be convex and smooth with parameter L, and let $g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, for $A \in \mathbb{R}^{d \times m}$ and $\mathbf{b} \in \mathbb{R}^d$. Then the convex function $f \circ g$ is smooth with parameter $L\|A\|^2$, where

 $||A|| = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||}$

is the 2-norm (or spectral norm) of A.

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^* ; furthermore, suppose that f is smooth with parameter L. Choosing

$$\gamma := \frac{1}{L},$$

gradient descent with arbitrary \mathbf{x}_0 satisfies

(i) Function values are monotone decreasing:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

(ii) Use the fact that $2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$ to obtain

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

Proof.

▶ Do we need to know L?
No. Exercise 15.

Smooth vs Lipschitz

- ▶ Bounded gradients \Leftrightarrow Lipschitz continuity of f,
- ▶ Now: smoothness \Leftrightarrow Lipschitz continuity of ∇f .

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. The following two statements are equivalent.

- (i) f is smooth with parameter L.
- (ii) $\|\nabla f(\mathbf{x}) \nabla f(\mathbf{y})\| \le L\|\mathbf{x} \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.