Stat 205: Introduction to Nonparametric **Statistics**

Lecture 06: Linear Model, ANOVA

Instructor David Donoho; TA: Yu Wang

Linear Regression

Single Predictor
Theil Test

Theil Estimat

Transformation

Multiple Predictor

Rank-based Fitting Rank-based Inferen

Analysis of

Variance

Kruskal-Wallis Effects & Multiple

Two-Way

Nonparametric Test of Specified Linear Fit Single Predictor *x*

ightharpoonup Pairs (Y_i, X_i) and model

$$Y_i = bX_i + e_i$$

- \vdash $H_0: b = b_0; (e_i)$ stochastically independent of (X_i) .
- Deviations

$$D_i(b) = Y_i - b \cdot X_i$$

► Theil's test Statistic

$$C(b) = \sum_{i < j} \operatorname{sign}(D_i(b) - D_j(b))$$

▶ Under H_0 , $C(b_0)$ is distribution-free.

Theil Test

Properties of Theil's Test Statistic

- Under H_0 : (X_i) formally independent of $(Y_i b_0 X_i)$:
 - Distribution-free when (e;) are iid with strictly monotone CDF.
 - Approximate normality

$$C(b_0) \approx_D N(0, \frac{n(n-1)(2n+5)}{18}), \qquad n \to \infty.$$

Normalized Statistic:

$$\tilde{C} = rac{C(b_0)}{\sqrt{Var_0(S(b_0))}} = 3 \cdot rac{C(b_0)}{\sqrt{n(n-1)(n+5/2)}}$$

Approximate Level- α two-sided test:

Reject
$$H_0$$
 if $|\tilde{C}| > \mathfrak{Z}_{1-lpha/2}$

- Exact distributions, tests by using permutation inference.
- Asymptotic Relative efficiency under iid Normal (e:)

$$ARE(C(b_0), b_{OLS}|bivariate Normal) = \rho^2 \cdot e(Wilcoxon, Mean|univariate Normal).$$

where

$$\rho = \rho_{Pearson}(\{X_{(1)}, \dots X_{(n)}\}, \{1, \dots, n\})$$

Nonparametric Linear Fit with Single Predictor x

 \triangleright Pairs (Y_i, X_i) and model

$$Y_i = a + bX_i + e_i$$

Pairwise Slopes

$$b_{ij} = \frac{Y_i - Y_j}{X_i - X_j}$$

Theil's Slope Estimate

$$\hat{b} = \mathsf{median}_{i < j} b_{ij}$$

• Ordered Pairwise Slopes, $N = \binom{n}{2}$

$$b^1 \leq b^2 \leq \cdots \leq b^{N-1} \leq b^N$$

Theil Confidence Statement

$$b\in(b^{c_-},b^{c_+}), \qquad c_\pmpprox rac{N}{2}\pm \mathfrak{Z}_{lpha/2}\sqrt{rac{n(n-1)(n+2/5)}{9}}$$

Intercept estimate (recall $D_i(b) = Y_i - bX_i$):

$$\hat{a} = \text{median}_i D_i(\hat{b}).$$

Theil Estimate

 $X_i' = a' + b'X_i$ affine transformation

 $\hat{b}_{Theil}(\{(Y_i, X_i')\}) \cdot b' = \hat{b}_{Theil}(\{(Y_i, X_i)\})$

Relation to Kendall au

Affine-Equivariance

$$\tau_K(\{(D_i(\hat{b}_{Theil}), X_i)\}) \approx 0.$$

Properties of Theil's Slope Estimate

High-breakdown

breakdown fraction(\hat{b}_{Theil}) = 0.29%.

- High Asymptotic Relative Efficiency at standard normal ≈ 0.91 .
- Applications
 - Astronomy (generalization to censored data)
 - Environmental data
 - Climatology
 - Environmental Monitoring

Example: Granato (2006), 1

Linear Regression Single Predict

Theil Estimate

rfit Approach

Predictors
Rank-based Fitting
Rank-based Inference

Analysis of Variance

Kruskal-Wallis
Effects & Multiple
Testing

Kendall-Theil Robust Line
(KTRLine—version 1.0)—A Visual Basic
Program for Calculating and Graphing
Robust Nonparametric Estimates of
Linear-Regression Coefficients Between
Two Continuous Variables

By Gregory E. Granato

Chapter 7
Section A, Statistical Analysis,
Book 4, Hydrologic Analysis and Interpretation

Example: Granato (2006), 2

Linear
Regression
Single Predictor
Theil Test
Theil Estimate
Cloud Seeding
rfit Approach
Transformations
Multiple
Predictors
Rank-based Iritt
Rank-based Iritt
Example: FFA

Analysis o

Variance

Kruskal-Walli

Effects & Multip Testing

Two-Way

Figure 8. Example of the Kendall-Theil Robust Line Interpretive Graphing and Model Specification Form with the plot menu selected.

Linear

Regression
Single Predictor

Their rest

Cloud Seeding

rfit Approach

Multiple

Rank-based Fi

Rank-based Infere Example: FFA

Analysis

Variance

Kruskal-Wallis

Effects & Multip Testing

Two-Wa

Example: Cloud Seeding

- Experiment in Australia's Snowy Mountains
- ► Measure Effect of Cloud Seeding on Rainfall

Smith (1967)

Linear Regression

Single Predictor
Theil Test

Theil Estimate
Cloud Seeding

Transformation

Multiple Predictor

Rank-based Fitting
Rank-based Inference
Example: FFA

Analysis of

One-Way

Kruskal-Wallis

Effects & Multiple
Tection

Two-Way

Cloud Seeding, 2

- ► T: Rainfall in Target Area
- ▶ Q: Rainfall in Control Area
- ► [T/Q] Rainfall ratio
- Double Ratio

$$y_i = \frac{[T/Q][Seeded]}{[T/Q][Unseeded]}$$

- \triangleright x_i : Years seeded so far $1 \le x_i \le 5$
- ▶ Slope b_0 = effect of more years of seeding previously.
- $ightharpoonup b_0 = 0$ is theory of no effect

Linear

Regression

Single Predicto
Theil Test

Theil Estimate
Cloud Seeding

rfit Approach

Transformation

Dradiet

Rank-based Fitting Rank-based Inferen

Example: FFA

Analysis o

One-Way

Kruskal-Wallis

Testing

Two Wov

Cloud Seeding, 3

- T: Rainfall in Target Area; Q: Rainfall in Control Area
- ► [T/Q] Rainfall ratio
- Double Ratio

$$y_i = \frac{[T/Q][Seeded]}{[T/Q][Unseeded]}$$

 \triangleright x_i : Years seeded so far $1 \le x_i \le 5$

$$\begin{array}{ccc} x_i & y_i \\ 1 & 1.26 \\ 2 & 1.27 \\ 3 & 1.12 \\ 4 & 1.16 \\ 5 & 1.03 \end{array}$$

Table: Double Ratio in Snowy Mountains Seeding Experiment

incor

Linear Regression

Theil Test

Cloud Seeding rfit Approach

Transformation

Predictors

Rank-based Inferen

Analysis of

Variance One-Way

Kruskal-Wallis Effects & Multiple

Two-Way

Calculation of Test Statistic

R command:

When $b_0 = 0$, $D_i(0) = Y_i$; hence

$$C(0) = \sum_{i < j} sign(Y_i - Y_j) = -6;$$
 $\tilde{C} = -0.6.$

exact p-value for one sided alternative $b_0 < 0$: p = 0.117

Alternate Approach

ken = cor.test(year,doubleRatio,method="kendall",alternative = "two.sided")
ken\$p.value

[1] 0.2333333

No evidence for cloud seeding impacting rainfall

exact *p*-value for two-sided alternative $b_0 \neq 0$: p = 0.234

Linear Regression

Theil Test
Theil Estimate

rfit Approach

Transformatio

Multiple Predictors

Rank-based Fitting
Rank-based Inference
Example: EFA

Analysis of

Kruskal-Wallis
Effects & Multiple
Testing

Two-Way

Example: Engel Data

```
> library(Rfit)
```

- > data(engel)
- > plot(engel)
- > abline(rfit(foodexp~income,data=engel))
- > abline(lm(foodexp~income,data=engel),lty=2)
- > legend("topleft",c('R','LS'),lty=c(1,2))

The command rfit obtains robust R estimates for the linear regression models, for example (4.1). To examine the coefficients of the fit, use the summary command. Critical values and p-values based on a Student t distribution with n-2 degrees of freedom recommended for inference. For this example, Rfit used the t-distribution with 233 degrees of freedom to obtain the p-value.

```
> fit<-rfit(foodexp~income,data=engel)</pre>
```

> coef(summary(fit))

```
Estimate Std. Error t.value p.value (Intercept) 103.7667620 12.78877598 8.113893 2.812710e-14 income 0.5375705 0.01150719 46.716038 2.621879e-120
```

rfit Approach

Example: Engel Data, 2

FIGURE 4.1 Scatterplot of Engel data with overlaid regression lines.

rfit Approach

Example: Engel Data, 3

Normal Q-Q Plot

Aside: Ladder of Transformations, 1

KTRLine 1.0—Visual Basic Program for Calculating Robust Nonparametric Estimates of Coefficients Between Variables

LADDER OF POWERS (modified from Velleman and Hoaglin, 1981; Helsel and Hirsch, 2002) Power Transformation Use Name Comment higher powers can be used for (-) cube skewness 2 x^2 sauare original units no transformation 1/2 \sqrt{x} square root commonly used $\sqrt[3]{x}$ for (+) 1/3 cube root commonly used skewness 0 logarithim commonly used: holds log(x)the place of x^0 -1/2-1/√x reciprocal root minus sign preserves order of observations -1 -1/xreciprocal -2 $-1/x^2$ reciprocal square lower powers can be used

Figure 5. The ladder of powers for use in transforming the independent (X) and (or) dependent (Y) variables to improve a regression model. (Modified from Helsel and Hirsch, 2002.) All powers except for the reciprocal root and reciprocal square are available in the Kendall-Theil Robust Line software. The line separates transformations for negative (-) and positive (+) skewness.

Transformations

Aside: Ladder of Transformations, 2

Figure 6. The bulging rule for transforming curvature to linearity. (Modified from Helsel and Hirsch, 2002.)

Regression
Single Predicto

Theil Estimate Cloud Seeding

Transformations

Multiple
Predictors
Rank-based Fitting
Rank-based Inference

Analysis of

Variance
One-Way
Kruskal-Wallis
Effects & Multiple
Testing

Example: Transformed Engel Data, 1

Regression
Single Predictor
Theil Test

Theil Test
Theil Estima

Transformations

Multiple

Predictors
Rank-based Fitting

Analysis o

One-Way Kruskal-Wallis Effects & Multiple Testing

Example: Transformed Engel Data, 1

Regression

Single Predicto

Cloud Soodi

rfit Approa

Transformations

Multiple

Predictor

Rank-based Infere

Example: FFA

Variance

One-Way Kruskal-Wallis

Testing

data(engel)
par(mfrow=c(1,2))
plot(engel)

abline(rfit(foodexp ~ income,data=engel))
abline(lm(foodexp ~ income,data=engel),lty=2)

plot(log(engel),ylab="log(income)",xlab="log(foodexp)")
abline(rfit(log(foodexp) ~ log(income),data=engel))

abline(rfit(log(foodexp) ~ log(income),data=engel))
abline(lm(log(foodexp) ~ log(income),data=engel),lty=2)

Example: Transformed Engel Data, 3

Linear Regression Single Predictor Theil Test Theil Estimat

Transformations

David

Rank-based Fitting
Rank-based Inference

Analysis o

One-Way Kruskal-Wallis

Two-Way

Regression

Theil Test

I neii Test

Cloud Seed

Transformations

Multiple

Rank-hased Fitti

Rank-based Inferen

Example: FFA

Analysis c

One-Way

Kruskal-Wallis

Testing

Example: Hans Rosling's argument

5. Global income inequality has gone down

Global income distribution in 1800, 1975, and 2010 of the land of

These estimates are based on reconstructed National Accounts and within-country inequality measure Non-market income (e.g. through home production such as subsistence farming) is taken into account.

Linear

Regression

Theil Test

Their Carlos

Cloud Seedi

Transformations

Transformatio

Multiple

D. L.L. LEWI

Rank-based Inference

Example: FFA

Analysis of

Variance

One-vvay

Kruskal-Wallis

Effects & Multipl

Testing

Example: Speed Data

Dataset speed from library(npsm)

Transforming Speed Data, 1

Regressio

Single Predict

Theil Estim

rfit Approac

Transformations

Multiple

Predicto

Rank-based Fitti

Example: FFA

Analysis o

Variance

Kruskal-Wallis

Effects & Multip

Two-Way

```
library(devtools)
install_github('kloke/npsm')
library(npsm)
par(mfrow=c(1,1))
plot(sp ~ mpg, data=speed,
    main="Dataset speed from library(npsm)",
    ylab="sp, top speed",
    xlab="mpg, miles/gal")
```

Plotting Speed Data

Linear Regressio

Single Predict

Theil Estim

rfit Approach

Transformations

Predictors

Rank-based Fi

Rank-based Infere

Analysis o

Variance

Kruekal-Wallie

Kruskai-vvallis

Testing

```
gpm <- 1/speed$mpg
gph <- orange * speed$sp
rfit(galh ~ gpm) -> fit
par(mfrow=c(1,2))
plot(gpm,gph,main="Transformed Car Speed Data")
abline(coef(fit))
rs <- rstudent(fit)
qqnorm(rs)
abline(0,1)</pre>
```

Linear

Single Predicto

Theil Estima

rfit Approac

Transformations

Multiple

Davidicipie

Rank-based Fitting

Example: FFA

Analysis o

Variance

Une-vvay

TCTUSKAI-VVAIIIS

Two Way

Transforming Speed Data

Rank-based Fitting

Multiple Predictor Setting

- $Y = (Y_1, \dots, Y_n)^T n \times 1$ column vector of responses
- \triangleright $X = (X_{ii})$ $n \times p$ centered matrix of predictors.
- ▶ 1 $n \times 1$ column vector of ones
- Linear Model

$$Y = 1\alpha + X\beta + e$$

ightharpoonup Here $\alpha \in \mathbf{R}$ viewed as different kind of parameter than $\beta \in \mathbb{R}^p$

Rank-based Fitting

Rank-Based Estimator

Would-be coefficients b ($p \times 1$); would-be residuals

$$v(b) = Y - Xb,$$

(note these are not necessarily centered)

- Normalized ranks $R_i v = Rank(v_i(b)|(v_i(b)))/(n+1)$
- Rank Discrepancy (convex!)

$$\|Y-Xb\|_{\phi}=\sum_{i=1}^n\phi(R_iv)v_i$$

- $\sum_{i=1}^{n} \phi(\frac{i}{n+1}) = 0$
- φ(t) nondecreasing
- Examples:
 - Sign Scores: $\phi(u) = \text{sign}(u 1/2)$
 - Wilcoxon Scores: $\phi(u) = \sqrt{12} \cdot (u 1/2)$
- Rank estimator (Jaeckel, Jureckova, Hettmansperger-McKean)

$$\hat{\beta} = \operatorname{argmin}_b || Y - Xb ||_{\phi}.$$

Rank-based Fitting

Properties of Rank-Based Estimator

- Properties: convex objective, can be solved!
- Gradient $\nabla_b || Y Xb ||_{\phi} = X^T \phi(Rv(b))$; minimized where:

$$0 = \nabla_{\hat{\beta}} \| Y - X \hat{\beta} \|_{\phi} \Longrightarrow 0 = X^{T} \phi (R(Y - X \hat{\beta}))$$

Asymptotic Normality:

$$\hat{\beta}_{\phi} \sim_{approx} N(\beta, \tau_{\phi}^2 \cdot (X'X)^{-1})$$

Note: τ_{ϕ} is not Kendall's τ_{K} . ¹

Compare standard least squares

$$\hat{\beta}_{ls} \sim_{approx} N(\beta, Var(e_i) \cdot (X'X)^{-1})$$

Asymptotic Relative Efficiency

$$\mathsf{ARE}(\hat{eta}_{\phi},\hat{eta}_{\mathit{ls}}|F) = rac{\mathit{Var}(e_i)}{ au_{\phi}^2}$$

(Asymptotic) Standard Errors:

$$se([\hat{\beta}_{\phi}]_j) = \tau_{\phi} \cdot [(X'X)^{-1}]_{jj}$$

Pro-Forma t-statistics

$$t([\hat{\beta}_{\phi}]_j) = \frac{[\hat{\beta}_{\phi}]_j}{\operatorname{se}([\hat{\beta}_{+}]_i)}$$

 $^{^{1}\}tau_{\phi}$ defined in (3.19) in Kloke and McKean.

Rank-based Inference

Inference for Nested Linear Models

- $H_0: M\beta = 0 \text{ vs } H_0: M\beta \neq 0.$
- Wald Test Statistic

$$\frac{\textit{Q}(\textit{M}\hat{\beta}_{\phi};\textit{M}'(\textit{X}'\textit{X})^{-1}\textit{M})/\textit{dim}(\textit{span}(\textit{M}))}{\tau_{\phi}^{2}} > \textit{F}_{1-\alpha,q,n-p-1}$$

 $O(m. S) \equiv m' S^{-1} m.$

Recall Jaeckel Discrepancy

$$D(b) = ||Y - Xb||_{\phi}$$
$$D(Full) = \min_{b} D(b);$$

Reduced model:

$$X^{Full} = [X^{Red} X^{Extra}],$$
 $b^{restricted} \equiv [b^{Red} 0]$
 $D(Red) = \min_{b^{restricted}} D(b^{restricted});$

Drop in dispersion test:

$$RD = D(Red) - D(Full)$$
 (≥ 0)

Significance of Drop in Dispersion

$$F_{\phi} \equiv \frac{RD/q}{\tau_{\phi}/2} > F_{1-\alpha,q,n-p-1}$$

Linear Regression

Theil Test

I neil Test

Cloud Seedir

Transformatio

Multiple

Predicto

Rank-based Fitting Rank-based Inference

Example: FFA

Analysis o

Variance

One-Way

Kruskal-Wallis

Testing

Two-Wav

Example: Free Fatty Acid data


```
Linear
Regression
```

Theil Test

Theil Estima

Cloud Seedi

Transformatio

Transformatio

Predictors

Rank-based Fittin

Rank-based Infere

Example: FFA

Analusia of

Variand

One-Way

Effects & Mult

Two Way

```
> print(cor(ffa,method="spearman"),digits=3)
          age weight
                        skin
                                ffa
age
       1.0000 0.504 0.0428 -0.4168
weight 0.5041 1.000 0.3852 -0.6032
skin
       0.0428 0.385 1.0000 -0.0102
ffa
      -0.4168 -0.603 -0.0102 1.0000
> print(cor(ffa,method="pearson"),digits=3)
         age weight
                    skin
                              ffa
       1.000 0.488 0.101 -0.378
age
weight 0.488 1.000 0.566 -0.542
skin
       0.101 0.566 1.000 -0.149
ffa
      -0.378 -0.542 -0.149 1.000
```

```
> rfitF <-rfit(ffa ~ age+weight+skin,data=ffa)</pre>
                > rfitR <-rfit(ffa ~weight, data=ffa)
Theil Test
                > drop.test(rfitF,rfitR)
                Drop in Dispersion Test
                F-Statistic
                               p-value
                     2.1735
                                0.1281
                > print(summary(rfitF))
                Call:
                rfit.default(formula = ffa ~ age + weight + skin, data = ffa)
                Coefficients:
Example: FFA
                              Estimate Std. Error t.value
                                                          p.value
                (Intercept) 1.4905899 0.2676129 5.5699 2.401e-06 ***
                            -0.0011337 0.0026178 -0.4331 0.6674769
                age
                weight
                           skin
                            0.2747982 0.1333516 2.0607 0.0464133 *
Effects & Multiple
                Multiple R-squared (Robust): 0.3773118
```

Reduction in Dispersion Test: 7.47326 p-value: 0.00049

```
Stat 205
Lecture 06
```

```
> lfitF <-lm(ffa ~ age+weight+skin.data=ffa)
                 > lfitR <-lm(ffa ~weight, data=ffa)
                 > print(summary(lfitF))
                 Call:
                 lm(formula = ffa ~ age + weight + skin, data = ffa)
Theil Test
                 Residuals:
                      Min
                                10 Median
                                                  30
                                                          Max
                 -0.24277 -0.17080 -0.04435 0.10698 0.59315
                 Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
                 (Intercept) 1.702428 0.326988 5.206 7.44e-06 ***
                             -0.002101 0.003269 -0.643 0.52441
                 age
                 weight
                             -0.015246 0.004773 -3.194 0.00286 **
Example: FFA
                 skin
                              0.204574
                                        0.166541 1.228 0.22706
                 Residual standard error: 0.2153 on 37 degrees of freedom
                 Multiple R-squared: 0.3379, Adjusted R-squared: 0.2842
                 F-statistic: 6.295 on 3 and 37 DF, p-value: 0.001467
Effects & Multiple
                 > anova(lfitF.lfitR)
                 Analysis of Variance Table
                 Model 1: ffa ~ age + weight + skin
                 Model 2: ffa ~ weight
                             RSS Df Sum of Sq
                   Res.Df
                                                   F Pr(>F)
                       37 1.7158
                       39 1.8295 -2 -0.1137 1.2259 0.3051
```

```
Linear
Regression
```

Theil Test
Theil Estimate

Cloud Seeding

Transformatio

Multiple

Predictors

Rank-based Fitting

Rank-based Inf

Example: FFA

Analysis of

Variance

Kruskal-Wallis

Effects & Multiple

Two-Way

```
> lfitM <-lm(ffa ~ weight+skin,data=ffa)
> anova(lfitM,lfitR)
Analysis of Variance Table
```

Model 1: ffa ~ weight + skin Model 2: ffa ~ weight Res.Df RSS Df Sum of Sq

1 38 1.7350 2 39 1.8295 -1 -0.09455 2.0709 0.1583 > rfitM <-rfit(ffa ~ weight+skin,data=ffa)

> drop.test(rfitM,rfitR)

Drop in Dispersion Test F-Statistic p-value 4.086830 0.050302

Robust analysis essentially can reject weight-only model in favor of weight+skin.

F Pr(>F)

Least-squares analysis clearly cannot.

Linear Regression

- Theil Test
 Theil Estimate
 Cloud Seeding
 rfit Approach
- Multiple
- Rank-based Fitting
 Rank-based Inference

Analysis o

One-Way

Kruskal-Wallis Effects & Multip Testing

Two-Way

One-Way ANOVA, 1

- Study would-be effect of single factor on response
- Factor varies through *k* levels

Example of ragged array where $n_1 < n_k < n_2$.

Linear Regression

Cloud Seeding

Multiple

Rank-based Fitting
Rank-based Inference

Analysis o

Variance One-Way

Kruskal-Wallis Effects & Multiple Testing

Assumptions enabling inference

- ► Standard *randomized design*, *n* subjects randomly selected from reference population
- ▶ n_j randomly assigned to treatment j, j = 1, ..., k
- Y_{ij} response of *i*-th individual to *j*-th treatment; $i = 1, ..., n_j$.
- Assumptions
 - ► Independence of responses
 - ► Treatment induces shift in location

Linear

Single Predictor Theil Test Theil Estimate Cloud Seeding rfit Approach

Multiple

Rank-based Fitting
Rank-based Inference
Example: EFA

Analysis of

One-Way

Kruskal-Wallis Effects & Multip

Two-Way

Rank test in 1-way analysis of variance

- ► Total sample size $n = \sum_{j=1}^{k} n_j$.
- ▶ Rank R_{ij} of response Y_{ij} among all n observations; ranked without respect to treatment status
- $ightharpoonup R_{ij}$ average rank of j-th treatment group
- Kruskal-Wallis statistic

$$H = \frac{12}{n(n+1)} \sum_{j=1}^{k} n_j (R_{.j} - \frac{n+1}{2})^2$$

- ► Null hypothesis: all observations iid w/o regard to treatment group
- Distribution-free under null hypothesis;
 exact distribution available by permutation inference.
- ▶ Approx χ^2 distributed with k-1 degrees of freedom.

Linear Regression

Regression Single Predict

Theil Estimate Cloud Seeding rfit Approach

Multiple

Rank-based Fittin Rank-based Infere Example: FFA

Analysis of

Variance

Kruskal-Wallis

Kruskai-vvallis

Testing Two-Wav

Motivation for χ^2 approximation

Kruskal-Wallis statistic

$$H = \frac{12}{n(n+1)} \sum_{j=1}^{k} n_j (R_{\cdot j} - \frac{n+1}{2})^2$$

Derivation: under null hyp, each rank is a random sample without replacement from $1, \ldots, n$

$$E_0(R_{ij})=\frac{n+1}{2}.$$

$$Var_0(R_{i,j}) = (n^2 - 1)/12$$

The mean rank in a group has a variance $\approx 1/n_i$ as large as any individual rank:

$$Var_0(\bar{R}_{\cdot j}) = n_j^{-1} Var_0(R_{i,j})$$

Define $Z_j \equiv \sqrt{n_j}(\bar{R}_{\cdot j} - \frac{n+1}{2})/\sqrt{Var_0(\bar{R}_{\cdot j})}$; it is approximately standardized; since $\sum_j Z_j \equiv 0$ the vector $(Z_i)_{i=1}^k$ has only k-1 degrees of freedom.

Kruskal-Wallis statistic is approximately the sum of k standardized statistics, squared:

$$H = \sum_{j=1}^k (Z_j)^2$$

Approx χ^2 distributed with k-1 degrees of freedom.

Reject
$$H_0$$
 for $H \gtrsim (k-1) + \sqrt{2(k-1)}\mathfrak{Z}_{1-\alpha}$

Example of Kruskal-Wallis test

Linear Regression Single Predicts

Theil Estimate Cloud Seeding

Transformatio

Multiple Predictors Rank-based Fitt

Rank-based Inference Example: FFA

Analysis o Variance

Kruskal-Wallis
Effects & Multipl

Two-Wa

Example 5.2.3. Mucociliary Efficiency Efficiency of self-clearing mechanism of respiratory tract Three groups:

- Normal subjects,
- Subjects with obstructive airway disease, and
- Subjects with asbestosis

Responses: measurements of clearance half-lives

Sample Sizes: $n_1 = n_3 = 5$ and $n_2 = 4$

Null hypothesis: no difference between class-conditional distributions

Theil Test

Rank-based Inference

Kruskal-Wallis

Mucociliary Efficiency Example 5.2.3

Rank-based Fitting

Rank-based Inference

Kruskal-Wallis

```
> normal = c(2.9,3.0,2.5,2.6,3.2)
```

> obstruct = c(3.8.2.7.4.0.2.4)

> asbestosis = c(2.8.3.4.3.7.2.2.2.0)

> x = c(normal,obstruct,asbestosis)

> g = c(rep(1,5), rep(2,4), rep(3,5))

> boxplot(x ~ g,main="Mucociliary Efficiency Example 5.2.3",xlab="normal/obstruct/asbestosis",y

> test = kruskal.test(x,g)

> print(test,digits=5)

Kruskal-Wallis rank sum test

data: x and g

Kruskal-Wallis chi-squared = 0.771, df = 2, p-value = 0.68

Linear Regression

Single Predictor
Theil Test
Theil Estimate
Cloud Seeding

Multiple Predictors

Rank-based Fitting
Rank-based Inference
Example: EFA

Analysis of Variance

Variance One-Way

Effects & Multiple Testing

Two-Way

Formal Hypotheses

▶ Distribution of responses $Y_{ij} \sim_{iid} F_j$, $e_{ij} \sim_{iid} F$.

$$F_j(t) = F(t - \mu_j), \qquad -\infty < t < \infty.$$

▶ Null hypothesis of *no difference*

$$H_0: \mu_1 = \cdots = \mu_k;$$

$$H_0: \Delta_{21} = \Delta_{31} = \cdots = \Delta_{k1} = 0.$$

▶ Alternative of *some difference*

$$H_A: \mu_1, \ldots, \mu_k$$
 not all equal .

$$H_0: \max_i |\Delta_{i1}| > 0.$$

Linear

Regression

Theil Test

Theil Estimat

Transformatio

Multiple

Rank-based Fitting

Rank-based Infere

A I

Variance

Kruskal-Wallis

Effects & Multiple Testing

Two-Way

Model Parametrizations, 1

One-way layout Model

$$Y_{ij} = \mu_i + e_{ij}, \qquad i = 1, \ldots, n_j; \qquad j = 1, \ldots, k.$$

- μ_i location
- $ightharpoonup e_{ij} \sim_{iid} F$
- Alternate 'reference-level' Parametrization (used by R)

$$Y_{ij} = \mu_1 + \Delta_{j1} + e_{ij}, \qquad i=1,\ldots,n_j; \qquad j=1,\ldots,k.$$

- $\Delta_{j1} \equiv \mu_j \mu_1$
- Reference level μ_1

Effects & Multiple Testing

Model Parametrizations. 2

Linear Model Parameterization

$$vec(Y) = X\beta + vec(e)$$

vec(Y), vec(e) are $n \times 1$ column vectors indexed by pairs (i, j) taken from the array Y in row-major order:

$$(1,1),(2,1),\ldots,(n_1,1),(1,2),(2,2),\ldots,(n_2,2),\ldots,(n_k,k)$$

X is $n \times k$ matrix with row id's given by pairs (i, j), $i = 1, \ldots, n_i$.

$$X_{(i,1),1} = 1;$$
 $X_{(i,j),\ell} = 1_{\{\ell=j\}},$ $\ell = 2, ..., k$

β = (β_θ) is k × 1 vector.

$$\beta_1 = \mu_1, \quad \beta_j = \Delta_{j,1}, \quad j = 2, ..., k.$$

$$vec(Y)_{(i,j),1} = \sum_{\ell=1}^{k} X_{(i,j),\ell} \beta_{\ell} + vec(e)_{(i,j),1}$$
$$= \mu_1 + \Delta_{i,1} + e_{ij}$$

Linear Regression

Regression
Single Predicto

Theil Estimate Cloud Seeding rfit Approach

Multiple
Predictors
Rank-based Fitting
Rank-based Inference

Analysis of

Variance One-Way

Effects & Multiple Testing

Two-Way

▶ Reduced model: μ_1 arbitrary, $\Delta_{j,1} = 0$, j = 2, ..., k.

- ► Full Model: μ_1 arbitrary, $\max_{j=2,...,k} |\Delta_{j,1}|$.
- ▶ Reduction in dispersion $RD_{\phi} = D_{\phi}(Red) D_{\phi}(Full)$.
- ▶ Drop in dispersion statistic

$$F_{\phi} = rac{RD_{\phi}/(k-1)}{\hat{ au}_{\phi}/2}$$

- \triangleright $\hat{\tau}_{\phi}$ estimate of scale.
- Specifically, for Wilcoxon rank scores write W subscripts, not ϕ .

$$F_W = \frac{RD_W/(k-1)}{\hat{\tau}_W/2}$$

Linear Regression

Theil Test
Theil Estimate
Cloud Seeding

Multiple

Rank-based Fitting Rank-based Inference

Analysis of

One-Way Kruskal-Wallis

Effects & Multiple Testing

Two-Way

Multiple Comparisons

 $(1-\alpha)\cdot 100\%$ CI for effect $\mu_j-\mu_{j'}$:

$$\hat{\Delta}_{jj'} \pm \mathfrak{Z}_{\alpha/2} \cdot \hat{\tau} \cdot \sqrt{\frac{1}{n_j} + \frac{1}{n_j'}}$$

- ▶ There are $\binom{k}{2}$ such Cl's.
- **Expected** number of failures to cover: $\binom{k}{2} \cdot \alpha$.
- ▶ This includes failures to cover 0, when 0 is true.
- ► Familywise error rate FWER=
 P{ one of the CI's does not cover 0 | H₀}
- ▶ If $k \gg 14$ and $\alpha = .05$ we expect several (or many) failures.
- Tukey-Kramer rule instead adjusts CI lengths so that FWER is α . (in some cases; in others, approximately α)

```
Stat 205
Lecture 06
```

Linear Regression Single Predicto Theil Test Theil Estimate Cloud Seeding

Mariaha

Predicto

Rank-based Fitting Rank-based Inference

Analysis o

Variance

Kruskal-Wallis

Effects & Multiple Testing

Two-Wav

```
> robfit= with(quail,oneway.rfit(ldl,treat))
> robfit
Call:
oneway.rfit(y = ldl, g = treat)
Overall Test of All Locations Equal
Drop in Dispersion Test
F-Statistic
                p-value
   3.916944
               0.016394
    Pairwise comparisons using Rfit
data: ldl and treat
2 0.0046 -
3 0.6315 0.0157 -
4 0.5599 0.0243 0.9069
```

Wilcoxon reduction in dispersion $F_W = 3.92 \text{ w}/p$ -value 0.016

P value adjustment method: none

Linear Regression

Single Predictor
Theil Test
Theil Estimate
Cloud Seeding

Multiple Predictors

Rank-based Fitting
Rank-based Inference
Example: FFA

Analysis o Variance

One-Way Kruskal-Wallis

Effects & Multiple Testing

6 3 4

> summary(robfit,method="tukey")

Multiple Comparisons Method Used tukey

	L3 C Lilia CC	JC LII	Loner bound et opper	-
1 1 2	-25	8.26704	-47.29541	-2
2 1 3	-4	8.26704	-26.29541	18
3 1 4	-5	8.49358	-27.90636	17
4 2 3	-21	8.26704	-43.29541	1
5 2 4	-20	8.49358	-42.90636	2

1 Estimate St Err Lower Round CT Unner Ro

-21.90636

Drug compounds I and II are declared different by Tukey/Kramer after accounting for multiple comparisons

1 8.49358

Linear Regression

Theil Test
Theil Estimate
Cloud Seeding
rfit Approach

Predictors
Rank-based Fitting
Rank-based Inference

Analysis of Variance

Kruskal-Wallis
Effects & Multiple
Testing

Two-Way

Two-Way ANOVA, 1

- ► Study would-be effect of two factors *A*, *B* (say) on response
- ► Factor A varies through a levels, B through b levels

$$Y_{ijk} = \mu_{ij} + e_{ijk}, \qquad i = 1, ..., a; \quad j = 1, ..., b; k = 1, ..., n_{ij}$$

Example:

- Serum Luteinizing Hormone Data:
 Y_{ijk} is nanograms/ml of luteinizing hormone in blood
- ≥ 2 × 5 factorial design; effect of *light* on release of *luteinizing hormone*.
 - ightharpoonup a = 2 light regimes (24-hour light vs 14 on, 10 off)
 - \blacktriangleright b = 5 dosage levels of LRF
- $ightharpoonup n_{ij} = 6$ replicates (mice) per treatment combination

Linear Regression

Single Predictor
Theil Test
Theil Estimate

rfit Approach

Multiple Predictors

Rank-based Inference

Analysis of

One-Way

Kruskal-Wallis

Effects & Multiple

Two-Way

> head(serumLH)

serum light.regime LRF.dose

1 72 Constant C

2 64 Constant C 3 78 Constant C

4 20 Constant 0

56 Constant 0

6 70 Constant C

> tail(serumLH)

serum light.regime LRF.dose

55 296 Intermittent 1250 56 545 Intermittent 1250

57 630 Intermittent 1250

58 418 Intermittent 1250

59 396 Intermittent 1250

60 227 Intermittent 1250

>

5

Theil Test

Two-Way

> raov(serum~ light.regime+LRF.dose.data=serumLH)

Robust ANOVA Table

DF Mean RD F p-value 1 1642.3333 1642.3333 58.28334 0.00000 light.regime

LRF.dose 4 3027.6735 756.9184 26.86162 0.00000 light.regime:LRF.dose 4 451.4553 112.8638 4.00533 0.00678

> summary(aov(serum~ light.regime+LRF.dose+light.regime*LRF.dose,data=serumLH))

Df Sum Sq Mean Sq F value Pr(>F) light.regime 1 242189 242189 40.223 6.41e-08 ***

LRF dose 4 545549 136387 22.652 1.02e-10 ***

light.regime:LRF.dose 4 55099 13775 2.288 0.0729 . 6021

Residuals 50 301055

>

Conclusions differ

Interaction significant by Rank AOV; not significant by Usual AOV

Linear

Regression

Theil Test

Theil Test

Theil Estima

Cloud Seedir

Transformatio

Multiple

Dradicto

Rank-based Fitting

Example: EFA

Analysis of

1/------

One-Way

Kruskal-Wallis

Effects & Multipl

Two-Way

Dose-Response less with 24H light vs 14H light

Linear Regression

Theil Test
Theil Estimate
Cloud Seeding

rfit Approach Transformation

Predictors
Rank-based Fitting
Rank-based Inference
Evample: EFA

Analysis of Variance

Kruskal-Wallis
Effects & Multiple
Testing

Two-Way

Summary

- Transformations can be important (transformative!)
- Rank-based analysis can be done for univariate and multivariate regression
- ➤ Similar UX to classical methods + outlier-resistant + distribution-free
- ► Can be more sensitive to detect subtle effects.
- One-Way Layout/Kruskal-Wallis/Linear Model
- Two-Way Layout/Linear Model

Generalizations: k-Way layout.