More on Integration

1 Fundamental Theorem of Calculus, Part I

Theorem 1.1. If $f:[a,b] \to \mathbb{R}$ is integrable and $F:[a,b] \to \mathbb{R}$ is a continuous function such that F'(x) = f(x) for all $x \in (a,b)$, then

$$\int_{a}^{b} f = F(b) - F(a).$$

Proof. Fix $\varepsilon \geq 0$. Then there exists a partition P such that

$$U(f, P) - L(f, P) \le \varepsilon$$
.

By applying the mean value theorem to the function F interval $[P_{k-1}, P_k]$, we find that there is some $x_k \in (P_{k-1}, P_k)$ such that

$$(P_k - P_{k-1})f(x_k) = F(P_k) - F(P_{k-1}).$$

Then

$$F(b) - F(a) = \sum_{k=1}^{n} (F(P_k) - F(P_{k-1})) = \sum_{k=1}^{n} f(x_k)(P_k - P_{k-1}).$$

This means that

$$L(f, P) \le F(b) - F(a) \le U(f, P).$$

But we also have

$$L(f, P) \le \int_a^b f \le U(f, P)$$

so combining these, we see that

$$\left| \int_{a}^{b} f - (F(b) - F(a)) \right| \le \varepsilon.$$

Since ε is arbitrary, we are done.

This theorem lets us calculate lots of integrals quickly, since we know how to calculate derivatives already.

Corollary 1.2 (Integration by parts). If u and v are continuous functions on [a,b] which are

differentiable on (a,b), and u' and v' are integrable on [a,b], then

$$\int_{a}^{b} uv' + \int_{a}^{b} u'v = u(b)v(b) - u(a)v(a).$$

Proof. Observe that g = uv is integrable (we haven't proved this, but it's true: see theorem 6.13(a) in Rudin if you're worried about this). Then g' = uv' + u'v by the product rule for derivatives, so

$$\int_{a}^{b} uv' + \int_{a}^{b} u'v = \int_{a}^{b} g' = g(b) - g(a) = u(b)u(a) - u(a)v(a).$$

2 Fundamental Theorem of Calculus, Part II

If $a \geq b$, then we define

$$\int_{a}^{b} f := -\int_{b}^{a} f,$$

and we also define

$$\int_{a}^{a} f := 0.$$

Theorem 2.1. Let $f:[a,b] \to \mathbb{R}$ be integrable and define a function $F:[a,b] \to \mathbb{R}$ by

$$F(x) = \int_{a}^{x} f.$$

Then F is continuous. Moreover, if f is continuous at $c \in (a,b)$, then F is differentiable at x_0 and F'(c) = f(c).

Proof. Let $R := ||f||_{\sup}$. Fix $\varepsilon \geq 0$. Whenever $|x - y| \leq \varepsilon/R$ with $x \leq y$, observe that

$$|F(y) - F(x)| = \left| \int_x^y f \right| \le \int_x^y |f| \le \int_x^y R = R(y - x) \le \varepsilon.$$

This shows that F is continuous. (In fact, it even shows that it is uniformly continuous, but we knew that automatically anyway since F is a continuous function on a compact set).

Suppose f is continuous at $x_0 \in (a, b)$. Then for $x \neq c$, observe that

$$\frac{F(x) - F(c)}{x - c} = \frac{1}{x - c} \int_{c}^{x} f.$$

Observe also that

$$f(c) = \frac{1}{x - c} \int_{c}^{x} f(c),$$

so then, combining these,

$$\frac{F(x) - F(c)}{x - c} - f(c) = \frac{1}{x - c} \int_{c}^{x} (f - f(c)).$$

Fix $\varepsilon \geq 0$. Since f is continuous at c, there exists $\delta \geq 0$ such that $|x - c| \leq \delta$ implies $|f(x) - f(c)| \leq \delta$

 ε . Then

$$\left| \frac{F(x) - F(c)}{x - c} - f(c) \right| = \frac{1}{|x - c|} \left| \int_{c}^{x} (f - f(c)) \right| \le \frac{1}{|x - c|} \left| \int_{c}^{x} |f - f(c)| \right| \le \varepsilon$$

which shows that

$$F'(c) = \lim_{x \to c} \frac{F(x) - F(c)}{x - c} = f(c).$$

3 Change of Variables

Theorem 3.1. Let I and J be open intervals and suppose $u: J \to I$ is a continuously differentiable function. If $f: I \to \mathbb{R}$ is continuous, then

$$\int_{a}^{b} (f \circ u)u' = \int_{u(a)}^{u(b)} f$$

for all $a, b \in J$.

Proof. Since f and u are both continuous, so is the composite $f \circ u$. Moreover u' is continuous also, so the product $(f \circ u)u'$ is also continuous, and therefore also integrable. Fix some $c \in I$ and define

$$F(x) = \int_{c}^{x} f.$$

Since f is continuous on I, we know that F is differentiable on I by theorem 2.1. Let $g = F \circ u$ and observe that

$$g'(x) = F'(u(x))u'(x) = f(u(x))u'(x)$$

for all $x \in J$ by the chain rule. In other words, $g' = (f \circ u)u'$. Thus, using theorem 1.1 for the second step,

$$\int_{a}^{b} (f \circ u)u' = \int_{a}^{b} g' = g(b) - g(a) = F(u(b)) - F(u(a)) = \int_{c}^{u(b)} f - \int_{c}^{u(a)} f = \int_{u(a)}^{u(b)} f. \qquad \Box$$

4 Differentiation and Integration of Power Series

Lemma 4.1. If $\sum a_n x^n$ has radius of convergence R, then both of the power series

$$\sum_{n=1}^{\infty} n a_n x^{n-1} \ and \ \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

also have radius of convergence R.

Proof. First note that $\sum na_nx^{n-1}$ has the same radius of convergence as $\sum na_nx^n$, since both of these converge for the same values of x. Similarly $\sum a_nx^{n+1}/(n+1)$ and $\sum a_nx^n/(n+1)$ also have the same radius of convergence.

Now note that $R = 1/\alpha$ where $\alpha := \limsup |a_n|^{1/n}$. Then

$$\limsup_{n \to \infty} \sqrt[n]{n \, |a_n|} = \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \alpha$$

since $\lim n^{1/n} = 1$. Thus $\sum na_nx^n$ also has radius of convergence $1/\alpha = R$. Similarly,

$$\limsup_{n \to \infty} \sqrt[n]{\frac{|a_n|}{n+1}} = \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \alpha$$

since $\lim_{n \to \infty} (n+1)^{1/n} = 1$ also. Thus $\sum a_n x^n/(n+1)$ also has radius of convergence $1/\alpha = R$.

For the remainder of this section, we suppose $\sum a_n x^n$ has radius of convergence $R \geq 0$. We define the function $f: (-R,R) \to \mathbb{R}$ by $f(x) = \sum a_n x^n$. Also, we define the functions $f_n: \mathbb{R} \to \mathbb{R}$ by $f_n(x) = a_n x^n$. Recall that f is continuous on (-R,R), which in particular guarantees integrability, and also that the series of functions $\sum f_n$ converges uniformly to f on compact subsets of (-R,R).

Lemma 4.2. For all $x \in (-R, R)$,

$$\int_0^x f = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

Proof. Let us assume that $x \ge 0$, and the case $x \le 0$ is analogous. We know that the series of functions $\sum f_n$ converges uniformly on the compact set [0, x]. Thus

$$\int_0^x f = \lim_{n \to \infty} \int_0^x f_n = \lim_{n \to \infty} \sum_{k=0}^n a_k \int_0^x t^k = \lim_{n \to \infty} \sum_{k=0}^n \frac{x^{k+1}}{k+1} = \sum_{k=0}^\infty \frac{a_k}{k+1} x^{k+1}.$$

Lemma 4.3. The function f is differentiable on (-R,R) and, for all $x \in (-R,R)$, we have

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^n.$$

Proof. Consider the function $g:(-R,R)\to\mathbb{R}$ defined by $g(x)=\sum na_nx^{n-1}$. Then, by lemma 4.2, we know that

$$\int_0^x g = \sum_{n=1}^\infty a_n x^n = f(x) - a_0$$

for all $x \in (-R, R)$. If we choose some $S \in (0, R)$, observe that for all $x \in [-S, S]$, we have

$$f(x) = \int_0^x g + a_0 = \int_{-S}^x g + \left(a_0 - \int_{-S}^0 g\right).$$

Since g is continuous on [-S, S], theorem 2.1 guarantees that f is differentiable and that f'(x) = g(x) for all $x \in (-S, S)$ (since the term in the parentheses above is just some constant). In other words, we have

$$f'(x) = \sum_{k=1}^{\infty} n a_n x^{n-1}$$

for all $x \in (-S, S)$. Since S is arbitrary, we have the same result for all $x \in (-R, R)$.

5 Sample Problems

Problem 1. Let $f:[0,\infty)\to\mathbb{R}$ be a nonnegative and monotonically decreasing function. Then the series of real numbers

$$\sum_{n=0}^{\infty} f(n)$$

converges if and only if

$$\lim_{n\to\infty} \int_0^n f$$

converges. (This is called the "integral test," and it is sometimes useful for checking whether or not a series converges.)

Hint. For each $n \in \mathbb{N}$, consider the partition $P^{(n)} := \{0, 1, 2, \dots, n\}$ of [0, n].