高等机器学习

大师子子大手大

刘铁岩、张辉帅微软亚洲研究院、

Statistical Learning Theory

Huishuai Zhang (张辉帅)

Role / Group:	Senior researcher at MSRA
University:	Syracuse University, USTC
Major / Degree:	ECE/PhD
Specialization:	Machine learning theory, optimization

A sentence that best describes you:

A researcher tends to be productive...

Overall Picture of SLT

- Goal: Good performance on the test data
- Mind the gap
- Bound the gap

Overall Picture of SLT

• Training: Find a function f from a function class \mathcal{F} based on training dataset \mathcal{D} .

• Evaluation: How does f perform on test data from the true distribution \mathcal{P} ?

- Where is the gap?
 - $\mathcal{D} \rightarrow \mathcal{P}$: generalization error
 - Hypothesis space F: approximation error
 - Find: optimization error

Empirical Risk Minimization

- Training data: $D_n = \{(x_1, y_1), ..., (x_n, y_n)\} \in (\mathcal{X} \times \mathcal{Y})^n$, generated from ground truth distribution P.
- Model: $f \in \mathcal{F}: \mathcal{X} \to \mathcal{Y}$
- Loss function: $l(f; x, y) \triangleq l(f(x), y)$
- (Expected) Risk: $L(f) = \mathbb{E}_{x,y\sim P}L(f(x),y)$
- Empirical risk and Empirical risk minimization:

$$\widehat{L_n}(f) = \frac{1}{n} \sum_{i=1}^n l(f; x_i, y_i)$$

$$f_n^* = \arg\min_{f \in \mathcal{F}} \widehat{L_n}(f),$$

 f_n^T is the model produced by the learning algorithm at the T's iteration.

• Measure: the excess risk of the learnt model f_n^T is defined as $L(f_n^T) - L^*$

where $L^* = \min_f L(f)$ is the Bayes (expected) risk. We want the excess risk as small as possible.

Error Decomposition

Excess risk: Optimization Error Estimation Error Approximation Error
$$L(f_n^T) - L^* = \underbrace{\left(L(f_n^T) - L(f_n^*)\right)}_{} + \underbrace{\left(L(f_n^*) - \inf_{f \in \mathcal{F}} L(f)\right)}_{} + \underbrace{\left(\inf_{f \in \mathcal{F}} L(f) - L^*\right)}_{}$$

Discussion

	Optimization Error	Estimation Error	Approximation Error
Definition	$L(f_n^T) - L(f_n^*)$	$L(f_n^*) - \inf_{f \in \mathcal{F}} L(f)$	$\inf_{f\in\mathcal{F}}L(f)-L^*$
Caused by	Approximate Optimization Algorithm	Finite Training Data	Limited Hypothesis Space
Hypothesis space ${\mathcal F}$	Not clear	the larger, the larger	the larger, the smaller
Number of training instances n	In general, the larger, the smaller, but with larger computation cost.	the larger, the smaller Bias and Varia	nce Tradeoff
Opt Algorithm and Iteration number <i>T</i>	the better/larger, the smaller Optimization and Gene	ralization Interplay	

Guarantees for Three Errors

- Optimization error <= = Convergence rate of optimization algorithms $L(f_n^T) L(f_n^*) \le \epsilon(Alg, \mathcal{F}, n, T)$
- Estimation/generalization error <= = Upper bound in terms of capacity $L(f_n^*) \inf_{f \in \mathcal{F}} L(f) \leq 2 \sup_{f \in \mathcal{F}} \left| \widehat{L_n}(f) L(f) \right| \leq \epsilon(Cap(\mathcal{F}), n)$
- Approximation error (cannot be controllable in general) for neural networks <== Universal approximation theorem of neural networks

Outline

Optimization theory

Generalization theory

Approximation theory

Definition of Convergence Rate

Assume the optimization error $L(f_n^T) - L(f_n^*) \le \epsilon(Alg, \mathcal{F}, n, T)$ Does the log error $\log \epsilon(T)$ decrease faster than -T?

- Equal to: linear convergence rate, e.g., $O(e^{-T})$
- Faster than: super-linear convergence rate, e.g., $O(e^{-T^2})$
 - Quadratic: $\log \log \epsilon(T)$ deceasing in the same order with -T, e.g. $O\left(e^{-2^T}\right)$
- Slower than: sub-linear convergence rate, e.g., $O\left(\frac{1}{T}\right)$

Convexity

$$g(w) - g(v) \ge \nabla g(v)^{\tau}(w - v)$$

$$\forall w, v \in \mathcal{W},$$

 $g(w) - g(v) \ge \nabla g(v)^{\tau} (w - v) + \frac{\alpha}{2} \left| |w - v| \right|^{2}$ $\forall w, v \in \mathcal{W},$

 $g(w) = w_1^2 + w_2^2$

Convex

Strongly-Convex

Smooth

Lipschitz

 β -smooth: $||\nabla g(w) - \nabla g(w)|| \leq \beta ||w - v||$ $\forall w, v \in \mathcal{W}$.

$$g(w) - g(v) \le \nabla g(v)^{\tau}(w - v) + \frac{\beta}{2} ||w - v||^{2}$$

$$g(w) - g(v) \ge \nabla g(v)^{\tau}(w - v) + \frac{\alpha}{2} ||w - v||^{2}$$

$$\frac{\alpha}{2} ||w - w^{*}||^{2} \le g(w) - g(w^{*}) \le \frac{\beta}{2} ||w - w^{*}||^{2}$$

$$(\alpha \le \beta)$$
For $w^{*} \in \arg \min f(x)$, we have
$$\frac{\alpha}{2} ||w - w^{*}||^{2} \le g(w) - g(w^{*}) \le \frac{\beta}{2} ||w - w^{*}||^{2}$$

L-Lipschitz: $|g(w) - g(v)| \le L ||w - v||$ $\forall w, v \in \mathcal{W}$

For $w^* \in \arg\min f(x)$, we have

$$\frac{\alpha}{2}||w - w^*||^2 \le g(w) - g(w^*) \le \frac{\beta}{2}||w - w^*||^2$$

$$(\alpha \le \beta)$$

Convergence Rate of GD

Theorem 1: Assume the objective f is **convex** and β -smooth on \mathbb{R}^d .

With step size $\eta = \frac{1}{\beta}$, Gradient Descent satisfies:

$$f(x_{T+1}) - f(x^*) \le \frac{2\beta ||x_1 - x^*||^2}{T}.$$

Sub-linear Convergence

Theorem 2: Assume the objective f is α -strongly convex and β -smooth on R^d .

With step size $\eta = \frac{2}{\alpha + \beta}$, Gradient Descent satisfies:

$$f(x_{T+1}) - f(x^*) \le \frac{\beta}{2} exp\left(-\frac{4T}{Q+1}\right) ||x_1 - x^*||^2$$
, Linear Convergence

where
$$Q = \frac{\beta}{\alpha}$$
.

Convergence Rate of Newton's Method

Theorem 3: Suppose the function f is continuously differentiable, its derivative is not 0 at its optimum x^* , and it has a second derivative at x^* , then the convergence is quadratic:

$$\left|\left|x_{t}-x^{*}\right|\right| \leq O\left(e^{-2^{T}}\right)$$

Advantage:

We have a more accurate local approximation of the objective, the convergence is much faster.

Disadvantage:

We need to compute the inverse of Hessian, which is time/storage consuming.

Convergence Rate of GD and SGD

Overall Complexity (ϵ) = Convergence Rate⁻¹(ϵ) * Complexity of each iteration

	Strongly Convex + Smooth			Convex + Smooth		
	Convergence Rate	Complexity of each iteration	Overall Complexity	Convergence Rate	Complexity of each iteration	Overall Complexity
GD	$O\left(\exp\left(-\frac{t}{Q}\right)\right)$	$O(n \cdot d)$	$O\left(nd\cdot Q\cdot\log\left(\frac{1}{\epsilon}\right)\right)$	$O\left(\frac{\beta}{t}\right)$	$O(n \cdot d)$	$O\left(nd \cdot \beta \cdot \left(\frac{1}{\epsilon}\right)\right)$
SGD	$O\left(\frac{1}{t}\right)$	<i>O</i> (<i>d</i>)	$O\left(\frac{d}{\epsilon}\right)$	$O\left(\frac{1}{\sqrt{t}}\right)$	O(d)	$O\left(\frac{d}{\epsilon^2}\right)$

When data size n is very large, SGD is faster than GD.

Outline

Optimization theory

Generalization theory

Approximation theory

Capacity of the Hypothesis Space

Capacity $(\mathcal{F}; n)$

- = Complexity ($\{f(x_1), \dots, f(x_n): f \in \mathcal{F}, x_1, \dots x_n \in \mathcal{X}\}$)
- $= Complexity(\mathcal{F}_{|S_n \in \mathcal{X}^n})$

Projections of ${\mathcal F}$ on finite data samples

Example: $\mathcal{F} = \{linear\ classifiers\ on\ R^2\}$

Fix 2 data samples
$$S_2$$

$$\mathcal{F}_{|S_2} = \{(-1,1), (1,-1), (-1,-1), (1,1)\}$$

VC Dimension (Vapnik 1971)

Growth function:

If we measure $Complexity(\mathcal{F}_{|S_n \in \mathcal{X}^n})$ by $\max_{S_n \in \mathcal{X}^n} |\mathcal{F}_{|S_n \in \mathcal{X}^n}|$, we call the corresponding capacity growth function, denoted by $G(\mathcal{F}, n)$

VC-dimension:

if $G(\mathcal{F},n)=2^n$, then the hypothesis space \mathcal{F} can shatter n instances. If we measure $Complexity(\mathcal{F}_{|S_n\in\mathcal{X}^n})$ by the largest number of instances that \mathcal{F} can shatter, i.e., $VC(\mathcal{F})=max\,\{n\colon G(\mathcal{F},n)=2^n\}$

VC dimension v.s. Growth function:

(Sauer's Lemma) Growth function can be upper bounded using VC dimension h,

$$G(\mathcal{F}, n) \le \sum_{i=0}^{h} {n \choose i} \le \left(\frac{en}{d}\right)^d$$

Example $VC(\mathcal{F}) = ?$

 $\mathcal{F} = \{linear\ classifiers\ on\ R^2\}$

 $\mathcal{F} = \{axis \ aligned \ rectangels \ on \ R^2\}$

VC Bound

Theorem 4: Assume the VC dimension of the hypothesis space $\mathcal F$ is h, then for arbitrary n>h and $\delta>0$, with probability at least $1-\delta$, we have

$$\sup_{f \in \mathcal{F}} |\widehat{L_n}(f) - L(f)| \le \sqrt{\frac{8h \log\left(\frac{2en}{h}\right) + 8\log\frac{2}{\delta}}{n}}$$

$$L(f_n^*) - \inf_{f \in \mathcal{F}} L(f) \le 2 \sup_{f \in \mathcal{F}} \left| \widehat{L_n}(f) - L(f) \right| \le O\left(\sqrt{\frac{h}{n}}\right)$$

Covering Number

Covering number:

 $N(X, \epsilon, d)$ with $X \in \mathbb{R}^m$ is the size of the ϵ -net of the set X with distance d over \mathbb{R}^m .

Example (Covering number of Euclidean norm ball):

$$N(B(1), \epsilon, \|\cdot\|_2) \le \left(1 + \frac{2}{\epsilon}\right)^m \le \left(\frac{3}{\epsilon}\right)^m$$
.

If we measure $Complexity(\mathcal{F}_{|S_n \in \mathcal{X}^n})$ by $\max_{S_n \in \mathcal{X}^n} N(\mathcal{F}_{|S_n \in \mathcal{X}^n}, \epsilon, d)$, we call the corresponding capacity covering number, denoted as $N(\mathcal{F}; \mathbf{n}, \epsilon, \mathbf{d})$. (Bartlett 1998)

Covering Number Bound

Theorem 5: for arbitrary $\epsilon > 0$, we have

$$\mathbb{P}\left\{\sup_{f\in\mathcal{F}}\left|\widehat{L_n}(f)-L(f)\right|\leq\epsilon\right\}\geq 1-8\mathbb{E}[N(\mathcal{F};n,\epsilon,d_H)]e^{-\frac{n\epsilon^2}{128}}.$$

Covering numbers can be defined for class of real-valued functions, giving an estimation error bound for learning tasks other than classification.

Rademacher Average

Empirical Rademacher Average (Bartlett 2003):

If we measure $Complexity(\mathcal{F}_{|S_n \in \mathcal{X}^n})$ by the expected degree $\mathcal{F}_{|S_n \in \mathcal{X}^n}$ can fit the random noise sequence of length n, then we get the empirical Rademacher Average, i.e.,

$$RA(\mathcal{F}; S_n) = \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i f(x_i) \right]$$

where σ_1 , ..., σ_n are independent uniform $\{\pm 1\}$ -valued random variables.

Example: Suppose $S_n = \{x_1, ..., x_n\}$ and $x_i \in \mathbb{R}^d$ for all $i \in [n]$

1. If
$$||x_i||_2 \le X_2$$
, $\mathcal{F} = \{\langle w, x \rangle; ||w||_2 \le W_2\}$, then $RA(\mathcal{F}; S_n) \le \frac{X_2 W_2}{\sqrt{n}}$.

2. If
$$||x||_{\infty} \le X_{\infty}$$
, $\mathcal{F} = \{\langle w, x \rangle; ||w||_{1} \le W_{1}\}$, then $RA(\mathcal{F}; S_{n}) \le X_{\infty}W_{1}\sqrt{\frac{2 \log d}{n}}$.

Rademacher Average

$$RA(\mathcal{F}; n) = \mathbb{E}_{S_n}[RA(\mathcal{F}; S_n)]$$

RA bound

Theorem 5: for arbitrary $\delta>0$, we have, with probability at least $1-\delta$,

$$\sup_{f \in \mathcal{F}} |\widehat{L_n}(f) - L(f)| \le 2RA(\mathcal{F}; n) + \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

RA v.s. Covering number v.s. VC:

$$RA(\mathcal{F}; n) \le \frac{C}{\sqrt{n}} \int_0^\infty \sqrt{\log N(\mathcal{F}; n, \epsilon, d_H)} \le C \sqrt{\frac{h}{n}}$$

Margin bound

- The test error can be upper bounded by the empirical margin loss and Rademacher Average divided by margin.
- Consider the prediction problem with $\mathcal{Y} \in \{-1, 1\}$ and define the margin as f(x)y, we have

$$L(f) \le \widehat{L}_{\gamma}(f) + \frac{RA(\mathcal{F}; n)}{\gamma} + O\left(\frac{1}{\sqrt{n}}\right),$$

where
$$\widehat{L}_{\gamma}(f) = \frac{1}{\mathrm{n}} \sum_{i} \ell_{\gamma}(y_{i}f(x_{i}))$$
 is the average margin loss and γ -margin loss
$$\ell_{\gamma}(t) = \begin{cases} 0, & \text{if } t \geq \gamma \\ 1, & \text{if } t \leq 0 \\ 1 - t/\gamma, & \text{otherwise} \end{cases}$$

Outline

Optimization theory

Generalization theory

Approximation theory

Approximation Error

Continuous function on compact set.

2-layer neural networks with finite hidden units

Universal Approximation of Neural Networks

- (Hornik 1989) Feedforward networks with only a single hidden layer can approximate any continuous function **uniformly** on any compact set and any measurable function arbitrarily well.
- For example, $\forall f \in C([0,1]^d), \forall \epsilon > 0, \exists 2$ -layer neural network NN, s.t.

$$\forall x \in [0,1]^d, |NN(x) - f(x)| \le \epsilon.$$

Overall Picture of SLT

• Training: Find a function f from a function class $\mathcal F$ based on training dataset $\mathcal D$.

$$\arg\min_{f\in\mathcal{F}} \mathbb{E}_{(x_i,y_i)\in\mathcal{D}} \, \boldsymbol{L}(f(x_i),y_i)$$

Evaluation: How does f perform on test data: good or not?

$$\mathbb{E}_{(x_i,y_i)\in\mathcal{P}} L(f(x_i),y_i)$$

- Where is the gap?
 - argmin: optimization error \rightarrow convergence of the algorithm
 - $\mathcal{D} \rightarrow \mathcal{P}$: generalization error \rightarrow hypothesis space capacity
 - Hypothesis space F: approximation error → hypothesis space capacity

Reference

- 周志华, 机器学习, 清华出版社
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press
- Vapnik, The Nature of Statistical Learning Theory, Springer, 1999
- Yoav Freund and Robert E. Schapire, A Short Introduction to Boosting, 1999.
- Shalev-Shwartz, Shai, and Shai Ben-David. *Understanding machine learning:* From theory to algorithms. Cambridge university press, 2014.
- Bousquet, Olivier, Stéphane Boucheron, and Gábor Lugosi. "Introduction to statistical learning theory." Springer, Berlin, Heidelberg, 2003.
- Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural networks, 1989, 2(5): 359-366.

Thanks!

tyliu@microsoft.com

http://research.microsoft.com/users/tyliu/