计算机网络02(了解即可

物理层的基本概念

传输媒体

류引型

双绞线

同轴电缆

光纤

非导引型

微波诵信

物理层协议主要任务

机械特性: 指明接口所用接线器的形状和尺寸、引脚数目和排列、固定和锁定装置

电气特性: 指明在接口电缆的各条线上出现的电压的范围

功能特性: 指明某条线上出现的某一电平的电压表示什么意义

过程特性: 指明对不同的功能的各种可能事件的出现顺序

物理层下面的传输媒体

引导型传输媒体

同轴电缆

基带同轴电缆/宽带同轴电缆

贵,布线不灵活

双绞线

无屏蔽双绞线UTP电缆

绞合的作用(抵御外界部分干扰,相邻导线电磁干扰)

屏蔽双绞线(增加金属丝编织的屏蔽层——》提高抗电磁干扰能力)

光纤(很细——》做成结实的光缆)

优点

通信容量大

传输损耗小

抗雷电电磁干扰强

无串音干扰, 保密性好

体积小, 重量轻

缺点

割接需要专用设备

光电接口价格贵

电力线

非引导型传输媒体

电信领域使用的电磁波的频谱

传输方式

串行传输

便宜,慢,网络间

并行传输

贵, 快, 电脑内

串行传输

并行传输

同步传输

字节连续不断传输——》若收发方时钟不同步,易出现误差

时钟同步的方法

外同步: 双方间额外添加一条单独的时钟信号线

内同步: 发送端将时钟同步信号编码到发送数据中一起传输(曼彻斯特编码

异步传输

字节间不连续发送

间隔时间不固定

但字节中的每个比特仍同步(各比特持续时间相同

单向通行(单工

只发不收, 如广播

单道

双向交替通行(半双工

可以收发, 但能同时进行, 如对讲机

双道

双向同时通信(全双工

可同时收发, 手机

编码与调制

信息转化为信号的过程

信息——》数据——》信号——》基带信号:数字/模拟——》(通过编码或调制)在信道中传输

码元

构成信号的单位波形

常用编码

不归零编码(存在同步问题

归零编码(自同步, 浪费了很多资源在归零

曼彻斯特编码(在码元中间跳变,既表示时钟,又表示数据

差分曼彻斯特编码(也是中间跳变,但仅代表时钟。数据表示为是否在码元开始处发生变化

基本调制方法(听不懂

信道极限容量

码间串扰

因为失真输出信号无法识别01

失真原因

码元传输速率

信号传输距离

噪声干扰

传输媒体质量

奈氏准则: 理想状态下, 为了避免码间串扰, 码元传输速率有上线

香农公式: 带宽受限且有高斯白噪音干扰的信道的极限信息传输速率