Answers of Assignment 9-10-12

Answers of Assignment 9-10-12

	t _{on} = 0.418 *(R _A +R _B)C, t _{off} =R _B C ln(2)=0.69 R _B C
4	Pulse width= 1.1 ms
	Answer of Assignment-10
1	a. 104 Ohm, Z_T = 342.11 Ohm, b. I_C = $^{16.45}$ mA $\angle 90^{\circ}$, c. I_L = $^{16.78}$ mA $\angle -78.69^{\circ}$
	d. $^{795.77}\mu\text{H}$, $^{76.52}\text{nF}$ e. Qp=3.29, BW=6079.03 Hz
2.	: P=20 67 Ohm ;; I=E0 72 mH ;;; O=10 29
۷.	i. R=30.67 Ohm, ii. L=50.72 mH, iii. Q=10.38
3.	a. 3.91 mH, b. X _L =X _C =44.2 ohm, c. I _{rms} = 3.01 mA, d. 42.58 micro W, e. 42.58 micro VA, f. 1, g. Qs= 9.4 , BW= 191.49 Hz.
4.	$Z_L = 0.72 \ \Omega - j \ 5.46 \ \Omega$, $P_{\text{max}} = 25.32 \ \text{W}$
	Answers of Assignment-12
1.	a. $ H(j\omega) = 0.05\omega / \sqrt{[1 + (0.1\omega)^2]}$ and $\theta = 90^\circ - \tan^{-1}(0.1\omega)$.
	b. $ H(j\omega_x) = 1/2\sqrt{2}$ and $\theta_x = 45^\circ$. c. $ H(j\omega) _{\omega \to 0} = 0.05\omega \Rightarrow 6$ dB/octave,
	and $ H(j\omega) _{\omega\to\infty} = 0.5 \Rightarrow flat$.
	d. High pass characteristic with H(jω) _{flat} = 0.5.
2.	a. $\Rightarrow H(j\omega) = 1/\sqrt{[\{1 + 2000(1 - 10^6\omega^2)\}^2 + (0.09\omega)^2]} \text{ and } \theta = -\tan^4[(0.09\omega)/\{1 + 2000(1 - 10^6\omega^2)\}].$
	b. $\omega_x = 1000 \Rightarrow H(j\omega_x) \cong 1/90 \text{ and } \theta_x \cong 90^\circ.$
	$ H(j\omega) _{\omega \to 0} \cong 0.0005 \Rightarrow$ flat but very low level, and $ H(j\omega) _{\omega \to \infty} = 500 / \omega^2 \Rightarrow -12 \text{ dB/octave}.$
	Band pass characteristic with centre frequency ω_x d. because $ H(j\omega_x) >> 0.0005$ (flat level).
3.	a. $\Rightarrow H(j\omega) = 1/\sqrt{[(1-0.0001\omega^2)^2 + 0.0009\omega^2]}$ and
]	$\theta = -\tan^{-1}[0.03\omega/(1 - 0.0001\omega^{2})].$
	b. $\omega_x = 100 \Rightarrow H(j\omega_x) = 1/3 \text{ and } \theta_x = -90^\circ.$

Answers of Assignment 9-10-12

	c. $ H(j\omega) _{\omega\to 0} = 1 \Rightarrow$ flat and
	$ H(j\omega) _{\omega\to\infty} = 10^4/\omega^2 \Rightarrow -12 \text{ dB/octave.}$
	d. Low pass characteristic with $ H(j\omega) _{flat} = 1$.
4.	$f = \frac{1}{2\pi RC\sqrt{6}} \Rightarrow C = \frac{1}{2\pi Rf\sqrt{6}} = \frac{1}{2\pi 10k \times 1k\sqrt{6}} = \underline{6.5nF}$
	$ A = \frac{R_f}{R_i} \ge 29 \Rightarrow R_f \ge 29R_i$ =290 k-ohm
5.	$f = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}} \Rightarrow f^2 = \frac{1}{4\pi^2R_1C_1R_2C_2}$ Frequency of oscillation
	$R_{1}C_{1} = \frac{1}{4\pi^{2} f^{2} R_{2}C_{2}} = \frac{1}{4\pi^{2} (1k)^{2} 10k \times 0.1 \mu} = 0.025 ms \Rightarrow C_{1} = \frac{0.025 ms}{R_{1}} \qquad(1)$
	$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1} \Rightarrow \frac{10k}{1k} = \frac{R_1}{10k} + \frac{0.1\mu F R_1}{0.025ms} \Rightarrow \frac{R_1}{10k} = 10 - \frac{0.1x R_1}{25} = 10$
	$R_1 = 2.439 \text{ k-ohm}$ (1)=> $C_1 = \frac{0.025ms}{2.439 \text{ k-ohm}} = 0.01 \text{ uF}$ Condition of oscillation