LINEAR ALGEBRA: QUIZ 1 March 8, 2001

Answer ALL questions.

- 1. (40%) Define the following terms: (a) rank of an $m \times n$ matrix; (b) nullity of an $m \times n$ matrix; (c) span of $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$; (d) linearly independent set.
- 2. Consider the following system of linear equations:

$$x_1 + 2x_2 - x_3 + 2x_4 + x_5 = 2$$

$$-x_1 - 2x_2 + x_3 + 2x_4 + 3x_5 = 6$$

$$2x_1 + 4x_2 - 3x_3 + 2x_4 = 3$$

$$-3x_1 - 6x_2 + 2x_3 + 3x_5 = 9$$

- (a) (20%) Find the reduced row echelon form of the augmented matrix using the Gaussian elimination method.
- (b) (10%) Find a general solution to the system of linear equations.
- 3. (30%) Determine if the following statements are true or false:
 - (a) If a subset of \mathbb{R}^n is linearly dependent, then it must contain at least n vectors.
 - (b) If $\operatorname{Span}(\mathcal{S}_1) = \operatorname{Span}(\mathcal{S}_2)$, then $\mathcal{S}_1 = \mathcal{S}_2$.
 - (c) No subset of Span $\{\mathbf{u}_1, \ \mathbf{u}_2, \ \dots, \ \mathbf{u}_k\}$ that contains more than k vectors is linearly independent.
 - (d) If a matrix A can be transformed into a matrix B by performing an elementary row operation, then B can be transformed into A by performing an elementary row operation.
 - (e) If A is an $m \times n$ matrix with m > n, then the only solution to $A\mathbf{x} = \mathbf{0}$ is the zero vector $\mathbf{x} = \mathbf{0}$.

LINEAR ALGEBRA QUIZ 2

March 26, 2001

Answer ALL questions.

1. (a) (15%)

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -4 \\ -3 & x & 12 \end{bmatrix}$$

- (i) Find x, such that nullity A = 2.
- (ii) Find x. such that nullity A = 1.
- (iii) Can you find x, such that nullity A = 0? Why?
- (b) (15%)

$$\mathbf{B} = \begin{bmatrix} 1 & 2 \\ 2 & x \\ 4 & y \\ 8 & z \end{bmatrix}$$

- (i) Find x. y. z, such that rank $\mathbf{B} = 1$.
- (ii) If x = 2, find y, z, such that rank $\mathbf{B} = 2$.
- (iii) Can you find x, y, z, such that rank $\mathbf{B} \ge 3$? Why?
- 2. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that

$$\mathbf{T} \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ and } \mathbf{T} \begin{pmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}.$$

(a) (15%) Find the standard matrix of **T**.

(b)
$$(15\%) \mathbf{T} \left[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right] = ?$$

3. Define
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 by $T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ x_1 \\ x_2 \end{bmatrix}$.

- (a) (10%) What is the null space of **T**?
- (b) (10%) Is T one-to-one?
- (c) (10%) What is the range of T?
- (d) (10%) Is T onto?

Linear Algebra Quiz #3

1. Let
$$A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 3 & 4 & 2 & 0 \\ 4 & 4 & 1 & 0 \\ 2 & 2 & 1 & -1 \end{bmatrix}$$

- (i) Show that det $A = \det A'$. (10%)
- (ii) Please determine the rank of A. (10%)
- (iii) Please show that the row space of A equals the row space of A'. (10%)
- (iv) Please determine the dimension of the null space of A'. (10%)
- 2. Please determine the following statements as being true or false for an arbitrary nxn matrix A. (6% each)
- (a) If all columns vectors of A are linearly independent, then the nullity of A is zero.
- (b) If the rank of A^T equals n, then the dimension of the row space of A equals n.
- (c) The set of solutions for AX = b, where b is a vector in R^n , is a subspace of R^n .
- (d) The determinant of A is zero if the columns of A cannot span Rⁿ.
- (e) If AX = 0 has only the zero solution, then the null space of A is an empty set.
- 3. Let A be an n x n matrix.
- (i) Show that if E is an elementary matrix, then EA and A have the same row space. (15%)
- (ii) Show that the row space of the reduced row echelon form of matrix A is the same as the row space of matrix A.

 (15%)

LINEAR ALGEBRA: QUIZ 4 May 17, 2001

Answer ALL questions.

1. (55%) Consider the linear operator $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by

$$T\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right)=\left[\begin{array}{c}3x_1\\x_2+2x_3\\2x_2+x_3\end{array}\right]$$

- (a) (5%) Find the characteristic polynomial of T.
- (b) (5%) Find all the eigenvalues of T. What is the multiplicity of each eigenvalue.
- (c) (15%) Find a basis for the eigenspace corresponding to each eigenvalue of T. What is the dimension of each eigenspace?
- (d) (5%) Find a basis \mathcal{B} for \mathcal{R}^3 consisting of eigenvectors of T.
- (e) (5%) Using the basis \mathcal{B} you found in (c), find the \mathcal{B} -matrix $[T]_{\mathcal{B}}$.
- (f) (5%) Find the standard matrix A of T. How is A related to $[T]_{\mathcal{B}}$?
- (g) (15%) Find A^{100} and A^{-10} $(A^{-10} = (A^{-1})^{10})$.
- 2. (20%) Let I_n and 0 be respectively the $n \times n$ identity matrix and the $n \times n$ zero matrix. What are the eigenvalues of I_n and 0? What are the eigenvectors corresponding to these eigenvalues?
- 3. (25%) Let A be an $n \times n$ matrix. Determine if the following statements are true or false (No explanation is needed.):
 - (a) Every eigenvalue of A is also an eigenvalue of A^T .
 - (b) If A is diagonalizable, then there is a unique diagonal matrix D such that $A = PDP^{-1}$.
 - (c) If A has n distinct eigenvalues, then A is diagonalizable.
 - (d) If A is invertible, then 0 is not an eigenvalue of A.
 - (e) If A is not invertible, then any nonzero vector in Null A is an eigenvector of A.

Linear Algebra: Quiz 5

2001/05/31

- 1. Let $\mathbf{W} = span\{[0\ 1\ 1\ 1]^T, [1\ 0\ 1\ 1]^T\}$ and $\mathbf{v} = [1\ 1\ 0\ -1]^T$. (30%)
 - (a) Find a basis for W^{\perp} .
 - (b) Find the orthogonal projection of v onto W.
 - (c) Find the distance from v to W.
- 2. Let W be a subspace of \mathfrak{R}^n . Let P_w be the orthogonal projection matrix for W. Show that (30%)
 - (a) $(\mathbf{P_w})^2 = \mathbf{P_w}$
 - (b) $P_{\mathbf{w}}$ is symmetric.
- 3. Determine the true or false. (40%)
 - (1) The norm of the sum of orthogonal vectors is the sum of norms of the vectors.
 - (2) The distance between two vectors in \Re^n is the norm of their difference. comp fement
 - (3) The orthogonal component of the row space of a matrix equals the null space of the matrix.
 - (4) Any orthogonal subset of \Re^n is linearly independent.
 - (5) For any subset S of \Re^n , $(S^{\perp})^{\perp} = S$.
 - (6) If S is an orthogonal set of n nonzero vectors in \Re^n , then S is a basis for \Re^n .
 - (7) An orthogonal projection matrix is never invertible.
 - (8) If v is in \Re^n and W is a subspace of \Re^n , then $P_w v$ is the vector in W^{\perp} .