Statistical Evaluation of Low Cost Non-inferior Imaging Diagnostic Tests

Joong-Ho (Johann) Won, Xiao Wu, and Ying Lu

Seoul National University, Harvard University, and Stanford University

December 12, 2015

Outline

- Introduction
 - biomarkers
 - designs for clinical validation
 - imaging biomarkers characteristics
- New design for prognostic values of imaging markers
 - illustration of the idea
 - simple 2x2-state model
 - estimation procedure
- Simulation studies
- Conclusion

Biomarkers

New biomarkers are discovered in an accelerated pace (ESR Executive Council, 03/2010)

Biomarkers have multiple applications (NCCN Task Force Report, 11/2011):

- Prognostic: associate some clinical outcomes independent of the treatment rendered
- Diagnostic: define a classification of the patient sample to establish the particular disease state or disease subtypes
- Predictive: predict the activity of a specific class or type of therapy and are used to help make more specific treatment decisions
- Companion diagnostic: diagnostic, prognostic, or predictive markers useful to identify a subgroup of patients for whom a therapy has shown benefits

Biomarker validation

Before their clinical uses, these biomarkers need to go through rigorous validation

- Analytic validation: how accurately and reliably the marker measures the truth
- Clinical validation: the strength of association between the marker measurement and the clinical outcome of interests
- Clinical utility: ability of the marker measures to improve clinical decision-making and patient outcome
- · Report marker validation according to REMARK criteria

Designs for biomarker validation

- Various designs for clinical validation of a prognostic marker
 - prospective cohort study: expensive and long study duration for rare outcomes
 - nested case-control study: cost effective and shorter study duration
- · They do not work for imaging markers!
 - techniques change rapidly and prospective cohort study may take too long to be relevant
 - technique is new and often no historical samples
- Worse for low cost non-inferior test price cap

Imaging biomarkers

Anatomical, functional or molecular parameters detected with imaging

- Characteristic of imaging markers
 - non-invasive
 - may change over time
 - can be measured longitudinally
- Typical study designs for imaging research
 - cross sectional cohort study or case-control study: cost saving, good for diagnostic test, but not for prognostic prediction because of bias estimation
 - prospective longitudinal cohort study: good for both diagnosis and prediction but takes too long and cost too much for rare endpoints

Imaging markers: examples

Osteoporosis is one of the major public health challenges in modern society

- Bone mineral density (BMD) measured by dual X-ray absorptiometry (DXA) technique, both diagnostic and prognostic marker for osteoporotic hip fracture
- Speed of sound (SOS) measured by quantitative ultrasonometry (QUS) is an alternative prognostic predictor

Imaging markers: examples (cont'd)

- QUS is safe, simple, free of radiation, portable, and cost-effective, but a late comer: first publication in 1969, 3 in 1980s and only started in 1990s (later than DXA)
- Cost of DXA is already low (\$50/scan)

Prognostic prediction

- A population-based European multicenter prospectively designed observational study (OPUS, Gleur et al. 2004) conducted to estimate odds ratio of SOS with incident fracture by following participants – the best but expensive design.
- Low chance to recover the study cost for hip fracture.
- In epidemiology, a case-control study is also used for this purpose key exposure prior to event.
- A true case-control study is often not possible for imaging techniques, e.g., for SOS, due to lack of measurement (exposure) history

A new design

- Goal: to develop a cost-effective design to establish association of prognostic values of imaging markers
- Ideas:
 - take advantage of case-control design to enrich cases for none-death outcomes
 - ▶ take advantage of *prior event times* for the case
 - take advantage of repeated measures of imaging markers via short-term follow-up
 - use statistical modeling to impute the missing marker measures prior to the outcome

Illustration of the new design

Simplification: 2x2-state Markov chain model

- X(t) = (Y(t), S(t))
 - ▶ measurement $Y(t) \in \{H, L\}$; disease status $S(t) \in \{N, D\}$
- Assumptions
 - No recovery
 - ► Continuous transition: no change in measurement when diseased

2x2-state Markov chain model: algebra

The transition probability matrix of this chain can be written

$$P = \begin{array}{ccccc} & & \text{LN} & & \text{HN} & & \text{LD} & & \text{HD} \\ \text{LN} & & p\alpha & & (1-p)\alpha & 1-\alpha & & 0 \\ \text{HN} & & (1-q)\beta & & q\beta & & 0 & 1-\beta \\ \text{D} & & 0 & & r & 1-r \\ \text{D} & & 0 & & 1-s & s \end{array} \right].$$

Assume that the chain starts from a normal popluation:

$$\pi^{(0)} = \begin{array}{cccc} & \text{LN} & \text{HN} & \text{LD} & \text{HD} \\ \pi^{(0)} = & \begin{bmatrix} \pi^{(0)}_{LN} & \pi^{(0)}_{HN} & 0 & 0 \end{bmatrix}, & \pi^0_{LN} + \pi^{(0)}_{HN} = 1. \end{array}$$

• Model parameters: $p, q, r, s, \alpha, \beta$, and $\pi_{IN}^{(0)}$.

Prognosis

 Interested in the 1-year odds ratio of incidence given that the subject is normal at age t:

$$\begin{split} &\frac{\Pr(T = t + 1 | X_t = \text{HN}) / \Pr(T > t + 1 | X_t = \text{HN})}{\Pr(T = t + 1 | X_t = \text{LN}) / \Pr(T > t + 1 | X_t = \text{LN})} \\ &= \frac{\Pr(X_{t+1} = \text{HD} | X_t = \text{HN}) / \Pr(X_{t+1} = \text{HN or LN} | X_t = \text{HN})}{\Pr(X_{t+1} = \text{LD} | X_t = \text{LN}) / \Pr(X_{t+1} = \text{LN or HN} | X_t = \text{LN})} \\ &= \frac{(1 - \beta) / \beta}{(1 - \alpha) / \alpha}. \end{split}$$

With logistic transforms

$$lpha = 1/(1 + e^{\gamma_0}), \ eta = 1/(1 + e^{\gamma_1}).$$

the log odds ratio is $\gamma_1 - \gamma_0$.

Estimation

• Write P as

$$P = \begin{bmatrix} \bar{\Lambda} P_N & \Lambda \\ & P_D \end{bmatrix},$$

where

$$P_N = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix}, \quad P_D = \begin{bmatrix} r & 1-r \\ 1-s & s \end{bmatrix},$$

and

$$\Lambda = diag(1 - \alpha, 1 - \beta), \quad \bar{\Lambda} = diag(\alpha, \beta).$$

- P_N is the conditional transition submatrix *before* the disease on-set given that the subject remains normal after the transition, i.e., conditioned on T>t+1
- P_D is the conditional transition submatrix *after* the disease on-set, or T < t.

Conditional transition submatrices

• The conditional transition submatrix P_D after the disease on-set can be easily estimated, because the MLE of r and s is

$$\hat{r} = \frac{\#\{LD \to LD\}}{\#\{LD \to LD\} + \#\{LD \to HD\}}$$

$$\hat{s} = \frac{\#\{HD \to HD\}}{\#\{HD \to HD\} + \#\{HD \to LD\}}$$

and these transtions are well observed by the **short-term follow-up** of the case group.

Conditional transition submatrices (cont'd)

• Short-term follow-up also allows us to estimate the conditional transition matrix P_N before the disease on-set efficiently:

$$\begin{split} \hat{\rho} &= \frac{\#\{\mathsf{LN} \rightarrow \mathsf{LN}\}}{\#\{\mathsf{LN} \rightarrow \mathsf{LN}\} + \#\{\mathsf{LN} \rightarrow \mathsf{HN}\}} \\ \hat{q} &= \frac{\#\{\mathsf{HN} \rightarrow \mathsf{HN}\}}{\#\{\mathsf{HN} \rightarrow \mathsf{HN}\} + \#\{\mathsf{HN} \rightarrow \mathsf{LN}\}}, \end{split}$$

Estimation of odds ratio

- Normal-to-disease transition is very rare, i.e., $\alpha, \beta \approx 1$
- Estimation of the odds ratio based on the observed number of transtions is unstable
 - it is not unlikely that no transition occurs during the short-term follow-up.
- Assuming that P_N and P_D are accurately estimated from the short-term follow-up, we can proceed with the estimation of α and β using the structure of the case-control design.

Data structure

		control (N)	case (D)			
		$ au > t_0$	au=1	au=2	• • •	$ au = t_0$
risk	L	n_1	m ₁₁	m ₁₂		m_{1t_0}
	Н	n_2	m ₂₁	m_{22}	• • •	m_{2t_0}
	sum	n	m			

- $au=1,\ldots,t_0$ are the observed disease on-set times for the case subjects
- $n = \#\{\text{ctrl}\}, m = \#\{\text{case}\}\ \text{are fixed}$

Control group

• Probability of the observation in the control group (N by time t_0) is binomial:

$$\binom{n}{n_1} \Pr(X_{t_0} = \mathsf{LN} | \mathcal{T} > t_0)^{n_1} (1 - \Pr(X_{t_0} = \mathsf{LN} | \mathcal{T} > t_0))^{n_2}$$

where the observations (counts) are made at t_0 , and

$$Pr(X_{t_0} = LN | T > t_0) = Pr(X_{t_0} = LN | X_{t_0} = LN \text{ or } HN)$$

$$= \frac{\pi_{LN}^{(t_0)}}{\pi_{LN}^{(t_0)} + \pi_{HN}^{t_0}} = \frac{\pi_N^{(0)} (\bar{\Lambda} P_N)^{t_0} \mathbf{e}_1}{\pi_N^{(0)} (\bar{\Lambda} P_N)^{t_0} \mathbf{1}}$$

Control group (cont'd)

Thus the log-likelihood of the control group is

$$\begin{split} I_{\mathsf{ctrl}}(\alpha,\beta,\pi_{LN}^{(0)}) &= n_1 \log(\pi_N^{(0)}(\bar{\Lambda}P_N)^{t_0} e_1) + n_2 \log(\pi_N^{(0)}(\bar{\Lambda}P_N)^{t_0} e_2) \\ &- n \log(\pi_N^{(0)}(\bar{\Lambda}P_N)^{t_0} \mathbf{1}) + \mathsf{const.} \end{split}$$

Case group

• Sampling distribution of the case group is multinomial with $(p_{\text{LD}}^{(1)}, p_{\text{HD}}^{(1)}, \dots, p_{\text{LD}}^{(t_0)}, p_{\text{HD}}^{(t_0)})$, where

$$\rho_{\mathsf{LD}}^{(\tau)} = \frac{\mathsf{Pr}(X_{t_0} = \mathsf{LD}, T = \tau)}{\mathsf{Pr}(T \le t_0)}, \quad \tau = 1, 2, \dots, t_0.$$

Numerator:

$$\begin{aligned} \Pr(X_{t_0} = \mathsf{LD}, T = \tau) &= \Pr(X_{\tau - 1} = \mathsf{LN}, X_{\tau} = \mathsf{LD}, X_{t_0} = \mathsf{LD}) \\ &+ \Pr(X_{\tau - 1} = \mathsf{HN}, X_{\tau} = \mathsf{HD}, X_{t_0} = \mathsf{LD}) \\ &= \pi_N^{(\tau - 1)} \Lambda P_D^{t_0 - \tau} e_1 = \pi_N^{(0)} (\bar{\Lambda} P_N)^{\tau - 1} \Lambda P_D^{t_0 - \tau} e_1 \end{aligned}$$

Case group (cont'd)

Denominator:

$$\Pr(T \le t_0) = \Pr(X_{t_0} = \text{LD or HD}) = \pi_{LD}^{(t_0)} + \pi_{HD}^{(t_0)} = \pi_D^{(t_0)} \mathbf{1}$$
$$= \pi_N^{(0)} \left(\sum_{k=0}^{t_0-1} (\bar{\Lambda} P_N)^k \right) \Lambda \mathbf{1},$$

since

$$\pi_D^{(t)} = \pi_{(0)} \Lambda P_D^{t-1} + \pi_N^{(1)} \Lambda P_D^{t-2} + \dots + \pi_N^{(t-1)} \Lambda$$

= $\pi_N^{(0)} \Lambda P_D^{t-1} + \pi_N^{(0)} (\bar{\Lambda} P_N) \Lambda P_D^{t-2} + \dots + \pi_N^{(0)} (\bar{\Lambda} P_N)^{t-1} \Lambda$

and
$$P_D^k \mathbf{1} = \mathbf{1}$$

Case group (cont'd)

Thus the log likelihood of the case group is

$$\begin{split} I_{\text{case}}(\alpha,\beta,\pi_{LN}^{(0)}) &= \sum_{t=1}^{t_0} \left(m_{1t} \log(\pi_N^{(0)}(\bar{\Lambda}P_N)^{t-1} \Lambda P_D^{t_0-t} \mathbf{e}_1) \right. \\ &+ m_{2t} \log(\pi_N^{(0)}(\bar{\Lambda}P_N)^{t-1} \Lambda P_D^{t_0-t} \mathbf{e}_2) \right) \\ &- m \log \left(\pi_N^{(0)} \left(\sum_{k=0}^{t_0-1} (\bar{\Lambda}P_N)^k \right) \Lambda \mathbf{1} \right) + \text{const} \end{split}$$

- Estimation maximizes $I_{\mathsf{ctrl}}(\alpha, \beta, \pi_{LN}^{(0)}) + I_{\mathsf{case}}(\alpha, \beta, \pi_{LN}^{(0)})$
- Remember the goal is to estimate OR $((1-\beta)\alpha)/((1-\alpha)\beta)$

Simulation I: null case

- Generated sample datasets with 500 cases and 500 controls, 500 times
- Study time point is fixed $(t_0=5)$
 - ▶ e.g., 65-yr old female fractured b/w ages 60-65
- Short-term follow-up visits are fixed to 2 times (t_1 =6, t_2 =7)
- Conditional transition:

$$P_{N} = \begin{bmatrix} \text{LN} & \text{HN} \\ \text{0.95} & \text{0.05} \\ \text{0.15} & \text{0.85} \end{bmatrix} \quad P_{D} = \begin{bmatrix} \text{LD} & \text{HD} \\ \text{0.95} & \text{0.05} \\ \text{0.10} & \text{0.90} \end{bmatrix}$$

- Comparision between disease with different incidences but same OR (=1):
 - $(1 \alpha, 1 \beta) = (0.001, 0.001)$
 - $(1-\alpha,1-\beta)=(0.020,0.020)$
 - $(1-\alpha, 1-\beta)=(0.110, 0.110)$

Simulation I (cont'd)

Simulation II: non-null case

Same as Simulation I, except for

- comparision between disease with different incidences but about the same odds ratio (\approx 2):
 - $(1-\alpha,1-\beta)=(0.005,0.010)$
 - $(1-\alpha, 1-\beta)=(0.010, 0.020)$
 - $(1-\alpha,1-\beta)=(0.020,0.040)$
 - $(1-\alpha,1-\beta)=(0.110,0.200)$

Simulation II (cont'd)

Simulation III: non-null with varying study times

Same as Simulation I, except for

- incidences are fixed (1 $-\alpha$ =0.01, 1 $-\beta$ =0.02; OR \approx 2), and
- comparision between different study time points (t_0 =5, 10, 15)

Simulation III (cont'd)

Simulation IV: benchmark 1

- Effectiveness of the new design compared to the prospective cohort study
- Similar setting to Simulation I:
 - ▶ Study time point is fixed $(t_0=5)$
 - Same conditional transition matrices as before
 - ▶ Incidences with OR \approx 2: $(1 \alpha, 1 \beta) = (0.005, 0.010)$ and $(1 \alpha, 1 \beta) = (0.010, 0.020)$
- Sample sizes of 500 cases and 500 controls; 1000 cases and 1000 controls
- Comparision of estimation accuracy of OR with varying number of visits for the follow-up

Simulation IV (cont'd)

Simulation V: benchmark 2

- Effectiveness of the new design compared to the prospective cohort study
- Similar setting to Simulation I:
 - ▶ Study time point is fixed $(t_0=5)$
 - Same conditional transition matrices as before
 - ► Incidences with OR \approx 2: $(1 \alpha, 1 \beta) = (0.005, 0.010)$ and $(1 \alpha, 1 \beta) = (0.010, 0.020)$
- Total number of visits fixed to 3 ($t_1=6$, $t_2=7$)
- · Comparision of estimation accuracy of OR with varying sample size

Simulation V (cont'd)

Conclusion

- New design gives an unbiased estimation for odds ratio, which is similar to the case-control design.
- In most common case follow-up with three visits is sufficient to obtain a reasonable estimate.
- Distribution of the estimate appears normal (esp. when study time is not far from the disease on-set); needs formal analysis.
- New design is superior to prospective cohort study in a relative shorter study length, especially for rare diseases.
- Under the same sample size and study length, the new design seems always superior to prospective cohort study in power.
- New design is recommended for rare diseases when the historical exposure to biomarkers are not available.

Limitations

- Assumption of homogeneous transitions need to model aging, etc
- Discrete-time model need to extend to continuous-time setting
- Markov model need to incorporate long-term memory