Basmalla Zakaria Sliem	20210598
Nada Mamdouh Mohamed	20200593
Mohamed Ahmed Abdelghani	20200423
Suhayla Ehab Gamal	20200236

Retail Sales Forecasting and Customer Segmentation

Data cleaning steps

-Handling missing values:

We find that there are missing values in 3 columns in the dataset (Product_ID, Quantity_sold, Total_purchase_amount)

-We have handled the missing values for product_ID column by calculating the average of the column by this function:

and replace blank cells with the average = 26 because this is the closest number to the rest of values of product ID with the same category and sales price.

- Handling missing values in quantity_sold column by finding the most repetitive value (mode) for the customer ID by this function:

mode id18 =MODE(C44:C1094) we find that mode for quantity sold for customer with ID (18) for grocery category = 55, it means that Iam looking for the most repetitive quantity sold from this category for this customer

And for customer with ID= 2 the most repetitive quantity sold of grocery category=26.

-The missing values in total purchase amount column filled automatically when we calculate it by multiplying sales_price by quantity_sold.

-Handling outliers:

we find outliers by using pivot tables and charts, handled the outliers by replacing them with the quartiles.

here are some outliers founded in total_purchase_amount:

At year 2020 we have outliers (47582, 207689)

Outliers founded in quantity_sold:

For month November every year (643)

Outlier founded in sales_price:

For month December every year (323)

Exploratory Data Analysis steps

We perform exploratory analysis to understand summary statistics for each numerical data by using descriptive statistics with excel

Go to data -> data analysis -> descriptive statistics then we put the input range and output range

so, we have repeated these steps to make a summary statistic for (Quantity_sold, Sales_price, age, total_purchase_amount)

	A	В	С	D	E	F	G	Н	1	J	K
1	quantity_sold			sales_price			age			total_purchase	_amount
2											
3	Mean	121.56		Mean	69.32		Mean	40.34		Mean	8412.87
4	Standard Error	5.06		Standard Error	2.36		Standard Error	0.41		Standard Error	651.58
5	Median	51.00		Median	44.00		Median	36.00		Median	2420.00
6	Mode	112.00		Mode	44.00		Mode	23.00		Mode	4928.00
7	Standard Deviation	167.67		Standard Deviation	78.23		Standard Deviation	13.74		Standard Deviation	21571.03
8	Sample Variance	28114.90		Sample Variance	6119.63		Sample Variance	188.73		Sample Variance	465309423.89
9	Kurtosis	3.91		Kurtosis	4.11		Kurtosis	-1.19		Kurtosis	58.53
10	Skewness	2.19		Skewness	2.22		Skewness	0.41		Skewness	6.99
11	Range	636.00		Range	316.00		Range	42.00		Range	207640.00
12	Minimum	7.00		Minimum	7.00		Minimum	23.00		Minimum	49.00
13	Maximum	643.00		Maximum	323.00		Maximum	65.00		Maximum	207689.00
14	Sum	133229.00		Sum	75976.00		Sum	44216.00		Sum	9220508.00
15	Count	1096.00		Count	1096.00		Count	1096.00		Count	1096.00

Data visualization steps:

In data visualization we use pivot charts in excel.

-We make a column chart to show the relation between the gender and the quantity sold for each category to this gender (male and female):

-a pie chart to show the percentage of the quantity sold for each category per year:

-column chart to show the quantity sold per month for each category:

-column chart to show the total purchase amount per month for each category:

-column chart to show the relation between quantity sold for each category and the age:

-a line chart shows the trend of sales price of each category per month:

We created a dashboard containing a slicer for (date, category, gender and age)

Time series forecasting

Time series analysis for quantity sold and total purchase amount:

Quantitative Forecasting

We Calculate Exponential Smoothing and Forecasted Quantity Sold and Sales Price ,and by Multiply them with each other to get Total Purchase Amount by this

Function: =M2+0.1*(C2-M2) Ft+1= Ft+0.1*(At-Ft)

1	Α	В	C	D	Е	F	G	Н	1	J	K	L	М	N	0
1	date 💌	product_ID 🔻	quantity_sold 🔻	sales_price 💌	Category *	customer_id 🔻	age 🔻	gender 💌	purchase_frequency 🔻	total_purchase_amount 💌	Year ▼	Month ▼	F(Quantity Sold) *	F(Sales Price)	F(Total Purchase)
2 1	/1/2020	22	112	44	Electronics	1	25	m	1	4928	2020	Jan	112	4/	4928
3 1	/2/2020	32	323	7	Clothing	2	33	m	5	2261	2020	Jan	112	4/	4928
4 1	/3/2020	11	223	55	Furniture	3	52	f	6	12265	2020	Jan	133	40	5364
5 1	/4/2020	33	43	74	Grocery	4	29	m	8	3182	2020	Jan	142	42	5935
6 1	/5/2020	26	643	39	Stationery	5	36	m	5	25077	2020	Jan	132	45	5947
7 1	/6/2020	51	33	112	Stationery	6	37	m	4	3696	2020	Jan	183	44	8136
8 1	/7/2020	26	26	323	Stationery	7	42	f	3	8398	2020	Jan	168	51	8606
9 1	/8/2020	17	51	223	Stationery	8	23	f	3	11373	2020	Jan	154	78	12065
10 1	/9/2020	22	22	43	Grocery	9	23	m	2	946	2020	Jan	144	93	13337
11 1/	10/2020	32	44	44	Clothing	10	65	f	8	1936	2020	Jan	132	88	11552
12 1/	11/2020	11	7	7	Clothing	11	55	m	7	49	2020	Jan	123	83	10246

And to predict future sales for year 2023 based on historical trends:

1098 1/1/2023	0	2023 J	n 119	67	7920
1099 1/2/2023	0	2023 J	n 107	60	6416
1100 1/3/2023	0	2023 Ja	n 96	54	5197
1101 1/4/2023	0	2023 J	n 86	49	4209
1102 1/5/2023	0	2023 J	n 78	44	3409
1103 1/6/2023	0	2023 Ja	n 70	39	2762
1104 1/7/2023	0	2023 Ja	n 63	35	2237
1105 1/8/2023	0	2023 J	n 57	32	1812
1106 1/9/2023	0	2023 Ja	n 51	29	1468
1107 1/10/2023	0	2023 Ja	n 46	26	1189
1108 1/11/2023	0	2023 J	n 41	23	963
1109 1/12/2023	0	2023 Ja	n 37	21	780
1110 1/13/2023	0	2023 J	n 34	19	632
1111 1/14/2023	0	2023 J	n 30	17	512
1112 1/15/2023	0	2023 J	n 27	15	415
1113 1/16/2023	0	2023 J	n 24	14	336
1114 1/17/2023	0	2023 J	n 22	12	272
1115 1/18/2023	0	2023 J	n 20	11	220
1116 1/19/2023	0	2023 J	n 18	10	178
1117 1/20/2023	0	2023 J	n 16	9	145
1118 1/21/2023	0	2023 Ja	n 14	8	117
1119 1/22/2023	0	2023 J	n 13	7	95
1120 1/23/2023	0	2023 J	n 12	7	77
1121 1/24/2023	0	2023 Ja	n 11	6	62
1122 1/25/2023	0	2023 J	n 9	5	50
1123 1/26/2023	0	2023 J	n 9	5	41
1124 1/27/2023	0	2023 J	n 8	4	33
1125 1/28/2023	0	2023 J	n 7	4	27
1126 1/29/2023	0	2023 J	n 6	3	22
1127 1/30/2023	0	2023 J	n 6	3	18

Customer Segmentation:

Data Loading and Preprocessing

```
# Import necessary libraries
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report

✓ 0.0s
```

The initial step involves loading the data from the Excel sheet and extracting relevant features for analysis.

The features selected include 'Quantity_sold', 'sales_price', 'age', 'purchase_frequency', and 'total_purchase_amount'.

The target variable is 'Category', representing the category to which each customer belongs.

```
# Data preprocessing
X = data[[' Quantity_sold', ' sales_price', 'age', 'purchase_frequency', 'total_purchase_amount']]
y = data['Category']

$\square$ 0.0s
```

Feature Standardization:

To ensure consistent scaling.

```
# Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
✓ 0.0s
```

Customer Segmentation using KMeans Clustering

```
# Customer Segmentation using KMeans clustering
kmeans = KMeans(n_clusters=3)
data['Cluster'] = kmeans.fit_predict(X_scaled)

✓ 0.0s
```

Data Splitting for Classification:

The dataset is split into training and testing sets to train and evaluate the neural network classifier.

Train set is 80% of the data

Test set is 20% of the data

The Targeted: y

The features: X_scaled

```
# Split the data into training and testing sets for classification

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=35)

✓ 0.0s
```

Neural Network Classification

A Multi-Layer Perceptron (MLP) classifier is employed to classify customers based on the provided features.

Using activation function: relu

The first hidden layer has 64 neurons.

The second hidden layer has 32 neurons.

```
# Neural Network Classification

classifier = MLPClassifier(hidden_layer_sizes=(64, 32), max_iter=100, activation='relu', random_state=35)

classifier.fit(X_train, y_train)

✓ 0.6s
```

Model Evaluation

The performance of the classifier is evaluated using the classification report.

Accuracy = 0.72

```
# Predictions on the test set
   y_pred = classifier.predict(X_test)
 ✓ 0.0s
   # Evaluate the model
   print("Classification Report:\n", classification_report(y_test, y_pred))
Classification Report:
                 precision recall f1-score support
    Clothing 0.95 0.49 0.65
ectronics 0.77 0.57 0.65
Furniture 1.00 1.00 1.00
Grocery 0.62 0.94 0.74
tationery 1.00 0.37 0.54
                                                            41
Electronics
Furniture
Grocery
Stationery
                                                            30
                                                            18
                                                            96
    accuracy
                                              0.72
                                                            220
   macro avg
                     0.87
                                  0.67
                                              0.72
                                                            220
weighted avg
                      0.79
                                  0.72
                                              0.70
                                                            220
```

Customer Segmentation Results

The cluster information obtained from KMeans clustering is appended to the predictions and displayed in the results dataframe.