# A sign preserving WENO reconstruction

### Deep Ray



Tata Institute of Fundamental Research Centre for Applicable Mathematics Bangalore deep@math.tifrbng.res.in http://math.tifrbng.res.in/~deep

ICIAM-2015, Beijing 14th August, 2015

#### Work done with:

Ulrik S. Fjordholm, NTNU, Trondheim

#### Supported by:

 AIRBUS Group Corporate Foundation Chair in Mathematics of Complex Systems, established in TIFR/ICTS, Bangalore

Consider the 1D Cauchy problem

$$\partial_t u + \partial_x f(u) = 0$$
  $\forall (x, t) \in \mathbb{R} \times \mathbb{R}^+$   
 $u(x, 0) = u_0(x)$   $\forall x \in \mathbb{R}$ 

Consider the 1D Cauchy problem

$$\partial_t u + \partial_x f(u) = 0$$
  $\forall (x, t) \in \mathbb{R} \times \mathbb{R}^+$   
 $u(x, 0) = u_0(x)$   $\forall x \in \mathbb{R}$ 

Search for Weak (distributional) Solution.

Uniqueness?

Consider the 1D Cauchy problem

$$\partial_t u + \partial_x f(u) = 0$$
  $\forall (x, t) \in \mathbb{R} \times \mathbb{R}^+$   
 $u(x, 0) = u_0(x)$   $\forall x \in \mathbb{R}$ 

Search for Weak (distributional) Solution.

Uniqueness?

Entropy-entropy flux pair 
$$(\eta(u),q(u))$$
 with  $q'=\eta'f'.$ 

$$v(u) = \eta'(u) \to \text{entropy variables}$$

$$v(u)\partial_t u + v(u)\partial_x (f(u)) = \partial_t \eta(u) + \partial_x q(u) = 0$$

Consider the 1D Cauchy problem

$$\partial_t u + \partial_x f(u) = 0$$
  $\forall (x, t) \in \mathbb{R} \times \mathbb{R}^+$   
 $u(x, 0) = u_0(x)$   $\forall x \in \mathbb{R}$ 

Search for Weak (distributional) Solution.

Uniqueness?

Entropy-entropy flux pair  $(\eta(u),q(u))$  with  $q'=\eta'f'.$ 

$$v(u) = \eta'(u) \to \text{entropy variables}$$

$$v(u)\partial_t u + v(u)\partial_x (f(u)) = \partial_t \eta(u) + \partial_x q(u) = 0$$

For discontinuous solutions we have

$$\partial_t \eta(u) + \partial_x q(u) \le 0$$

Existence, uniqueness of solutions for scalar conservation laws (Kruzkov).

AIM: Design numerical schemes satisfying a discrete entropy inequality.

AIM: Design numerical schemes satisfying a discrete entropy inequality.

Monontone, E-schemes (Osher)  $\longrightarrow$  first order

# higher order

AIM: Design ∧ numerical schemes satisfying a discrete entropy inequality.

Monontone, E-schemes (Osher)  $\longrightarrow$  first order

### Outline

- Finite difference scheme
- Entropy conservative/stable schemes
- Higher-order entropy stable schemes
- Sign preservation and other essentials
- SP-WENO
- Numerical results

### Finite difference scheme



Discretize the domain  $\Omega = \bigcup_i I_i$ , where

$$I_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}), \qquad x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}} \equiv h$$

### Finite difference scheme



Discretize the domain  $\Omega = \bigcup_i I_i$ , where

$$I_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}), \qquad x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}} \equiv h$$

Consider the semi-discrete finite difference scheme

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} + \frac{1}{h} \left( F_{i + \frac{1}{2}} - F_{i - \frac{1}{2}} \right) = 0$$

 $F_{i+\frac{1}{2}}(t) = F(u_i(t), u_{i+1}(t))$  is the numerical flux satisfying

- **1** Consistency: F(u, u) = f(u)
- **2** Conservation:  $F(u_1, u_2) = -F(u_2, u_1)$

#### **Step 1: Entropy conservation**

#### Entropy conservative scheme

A scheme is entropy conservative if

$$\frac{\mathrm{d}\eta(u_i)}{\mathrm{d}t} + \frac{1}{h} \left( q_{i+\frac{1}{2}}^* - q_{i-\frac{1}{2}}^* \right) = 0$$

where  $q_{i+\frac{1}{2}}^*$  is a consistent numerical entropy flux.

### Step 1: Entropy conservation

#### Entropy conservative scheme

A scheme is entropy conservative if

$$\frac{\mathrm{d}\eta(u_i)}{\mathrm{d}t} + \frac{1}{h} \left( q_{i+\frac{1}{2}}^* - q_{i-\frac{1}{2}}^* \right) = 0$$

where  $q_{i+\frac{1}{2}}^*$  is a consistent numerical entropy flux.

Notation:  $\Delta(\cdot)_{i+\frac{1}{2}} = (\cdot)_{i+1} - (\cdot)_i$ 

#### A sufficient condition (Tadmor)

A scheme with flux  $F_{i+\frac{1}{2}}^{\ast}$  is entropy conservative if

$$\Delta v_{i+\frac{1}{2}} F_{i+\frac{1}{2}}^* = \Delta \Psi_{i+\frac{1}{2}}$$

where  $\Psi(u) := v(u)f(u) - q(u)$  is the entropy potential.



#### Remarks

- The above scheme is second order accurate in space.
- Unique entropy conservative flux (given  $\eta$ )

$$F_{i+\frac{1}{2}}^* = \frac{\Delta \Psi_{i+\frac{1}{2}}}{\Delta v_{i+\frac{1}{2}}}.$$

Higher order entropy conservative schemes (Mercier et al.)

$$F_{i+\frac{1}{2}}^{*,2p} = \sum_{r=1}^{p} \alpha_r^p \sum_{s=0}^{r-1} F^*(u_{i-s}, u_{i-s+r}) \qquad (2p\text{-th order})$$

• For scalar laws, any convex  $\eta(u)$  works, with

$$q(u) = \int_{-\infty}^{u} \eta'(z)f'(z)dz$$

### Step 2: Add dissipation

Entropy dissipated near discontinuities.

$$F_{i+\frac{1}{2}} = F_{i+\frac{1}{2}}^{*,2p} - \frac{1}{2}a_{i+\frac{1}{2}}\Delta v_{i+\frac{1}{2}}$$

where  $a_{i+\frac{1}{2}} \approx |f'(u)|$ .

#### Step 2: Add dissipation

Entropy dissipated near discontinuities.

$$F_{i+\frac{1}{2}} = F_{i+\frac{1}{2}}^{*,2p} - \frac{1}{2}a_{i+\frac{1}{2}}\Delta v_{i+\frac{1}{2}}$$

where  $a_{i+\frac{1}{2}} \approx |f'(u)|$ .

#### Entropy stable scheme

The scheme with the above flux satisfies

$$\frac{\mathrm{d}\eta(u_i)}{\mathrm{d}t} + \frac{1}{h} \left( q_{i + \frac{1}{2}} - q_{i - \frac{1}{2}} \right) \le 0$$

$$\Delta v_{i+\frac{1}{2}} \sim \mathcal{O}(h) \quad \Longrightarrow \quad \text{ first order flux }$$

$$\Delta v_{i+\frac{1}{2}} \sim \mathcal{O}(h) \implies \text{ first order flux}$$

**Idea:** At each  $x_{i+\frac{1}{2}}$ , reconstruct v in  $I_i,I_{i+1}$  with polynomials  $v_i(x),v_{i+1}(x)$  respectively.

$$v_{i+\frac{1}{2}}^- = v_i(x_{i+\frac{1}{2}}), \qquad v_{i+\frac{1}{2}}^+ = v_{i+1}(x_{i+\frac{1}{2}}), \qquad [\![v]\!]_{i+\frac{1}{2}} = v_{i+\frac{1}{2}}^+ - v_{i+\frac{1}{2}}^-$$

Replace  $\Delta v_{i+\frac{1}{2}}$  by  $[\![v]\!]_{i+\frac{1}{2}}\sim \mathcal{O}(h^k).$ 

$$\Delta v_{i+\frac{1}{2}} \sim \mathcal{O}(h) \quad \Longrightarrow \quad \text{first order flux}$$

**Idea:** At each  $x_{i+\frac{1}{2}}$ , reconstruct v in  $I_i,I_{i+1}$  with polynomials  $v_i(x),v_{i+1}(x)$  respectively.

$$v_{i+\frac{1}{2}}^- = v_i(x_{i+\frac{1}{2}}), \qquad v_{i+\frac{1}{2}}^+ = v_{i+1}(x_{i+\frac{1}{2}}), \qquad [\![v]\!]_{i+\frac{1}{2}} = v_{i+\frac{1}{2}}^+ - v_{i+\frac{1}{2}}^-$$

Replace  $\Delta v_{i+\frac{1}{2}}$  by  $[\![v]\!]_{i+\frac{1}{2}}\sim \mathcal{O}(h^k).$ 

# How do we ensure entropy stability?

$$\Delta v_{i+\frac{1}{2}} \sim \mathcal{O}(h) \quad \Longrightarrow \quad \text{ first order flux}$$

**Idea:** At each  $x_{i+\frac{1}{2}}$ , reconstruct v in  $I_i, I_{i+1}$  with polynomials  $v_i(\mathbf{x}), v_{i+1}(\mathbf{x})$  respectively.

$$v_{i+\frac{1}{2}}^- = v_i(x_{i+\frac{1}{2}}), \qquad v_{i+\frac{1}{2}}^+ = v_{i+1}(x_{i+\frac{1}{2}}), \qquad [v]_{i+\frac{1}{2}} = v_{i+\frac{1}{2}}^+ - v_{i+\frac{1}{2}}^-$$

Replace  $\Delta v_{i+\frac{1}{2}}$  by  $[\![v]\!]_{i+\frac{1}{2}}\sim \mathcal{O}(h^k).$ 

### Sign property (Fjordholm et al.)

The scheme with the numerical flux

$$F_{i+\frac{1}{2}} = F_{i+\frac{1}{2}}^* - \frac{1}{2} a_{i+\frac{1}{2}} \llbracket v \rrbracket_{i+\frac{1}{2}}$$

is entropy stable if the following sign property holds for  $x_{i+\frac{1}{2}}$ 

$$\operatorname{sign}(\llbracket v \rrbracket_{i+\frac{1}{2}}) = \operatorname{sign}(\Delta v_{i+\frac{1}{2}}).$$



## Sign preserving reconstructions

#### Second order reconstruction with minmod limiter



where

$$\mathsf{minmod}(a,b) = \begin{cases} \mathrm{sign}(a) \min{(|a|,|b|)}, & \mathsf{if} \ \mathrm{sign}(a) = \mathrm{sign}(b) \\ 0, & \mathsf{o.w.} \end{cases}$$

### Sign preserving reconstructions

#### Second order reconstruction with minmod limiter



where

$$\mathsf{minmod}(a,b) = \begin{cases} \mathrm{sign}(a) \min{(|a|,|b|)}, & \mathsf{if} \ \mathrm{sign}(a) = \mathrm{sign}(b) \\ 0, & \mathsf{o.w.} \end{cases}$$

#### ENO interpolation (Fjordholm et. al)

Construct k-th degree polynomial using adaptive stencil.

### WENO reconstruction

**Idea:** Convex combination of all k polynomials of (ENO-k) to get a (2k-1)-th order approximation.

#### Advantages:

- Full utilization of (2k-1) cells
- ENO has accuracy issues due to unstable stencils <sup>1</sup>

 $<sup>^2</sup>$ A. M. Rogerson and E. Meiburg *A numerical study of the convergence properties of ENO schemes.* (1990)

### WENO reconstruction

**Idea:** Convex combination of all k polynomials of (ENO-k) to get a (2k-1)-th order approximation.

#### Advantages:

- Full utilization of (2k-1) cells
- ENO has accuracy issues due to unstable stencils <sup>1</sup>

# Choose weights to satisfy the sign property?

<sup>2</sup>A. M. Rogerson and E. Meiburg *A numerical study of the convergence properties of ENO schemes.* (1990)





# Reconstruction from left: $v_{i+\frac{1}{2}}^-$

$$S_0 = \{x_i, x_{i+1}\}, \quad S_1 = \{x_{i-1}, x_i\}$$

Second order reconstructions are:

$$v_{i+\frac{1}{2}}^{(0),-} = \frac{v_i}{2} + \frac{v_{i+1}}{2}, \qquad v_{i+\frac{1}{2}}^{(1),-} = -\frac{v_{i-1}}{2} + \frac{3v_i}{2}$$



# Reconstruction from right: $v_{i+\frac{1}{2}}^+$

$$S_0 = \{x_{i+1}, x_{i+2}\}, \quad S_1 = \{x_i, x_{i+1}\}$$

Second order reconstructions are:

$$v_{i+\frac{1}{2}}^{(0),+} = \frac{3v_{i+1}}{2} - \frac{v_{i+2}}{2}, \qquad v_{i+\frac{1}{2}}^{(1),+} = \frac{v_i}{2} + \frac{v_{i+1}}{2}$$



#### WENO-3: convex combination of ENO-2 polynomials

$$v_{i+\frac{1}{2}}^{-} = w_0 v_{i+\frac{1}{2}}^{(0),-} + w_1 v_{i+\frac{1}{2}}^{(1),-}, \qquad v_{i+\frac{1}{2}}^{+} = \tilde{w}_0 v_{i+\frac{1}{2}}^{(0),+} + \tilde{w}_1 v_{i+\frac{1}{2}}^{(1),+}$$

Taylor expansion gives the (order) constraints

$$w_0 + w_1 = 1$$
  $\widetilde{w}_0 + \widetilde{w}_1 = 1$   $\frac{w_0}{8} - \frac{3w_1}{8} = C_1 = \mathcal{O}(h)$   $-\frac{\widetilde{3w}_0}{8} + \frac{\widetilde{w}_1}{8} = C_2 = \mathcal{O}(h)$ 



### WENO-3: convex combination of ENO-2 polynomials

$$v_{i+\frac{1}{2}}^{-} = w_0 v_{i+\frac{1}{2}}^{(0),-} + w_1 v_{i+\frac{1}{2}}^{(1),-}, \qquad v_{i+\frac{1}{2}}^{+} = \tilde{w}_0 v_{i+\frac{1}{2}}^{(0),+} + \tilde{w}_1 v_{i+\frac{1}{2}}^{(1),+}$$

$$w_0 = \frac{3}{4} + 2C_1 \qquad w_1 = \frac{1}{4} - 2C_1$$
$$\widetilde{w}_0 = \frac{1}{4} - 2C_2 \qquad \widetilde{w}_1 = \frac{3}{4} + 2C_2$$



### WENO-3: convex combination of ENO-2 polynomials

$$v_{i+\frac{1}{2}}^{-} = w_0 v_{i+\frac{1}{2}}^{(0),-} + w_1 v_{i+\frac{1}{2}}^{(1),-}, \qquad v_{i+\frac{1}{2}}^{+} = \tilde{w}_0 v_{i+\frac{1}{2}}^{(0),+} + \tilde{w}_1 v_{i+\frac{1}{2}}^{(1),+}$$

$$w_0 = \frac{3}{4} + 2C_1$$
  $w_1 = \frac{1}{4} - 2C_1$   $\widetilde{w}_0 = \frac{1}{4} - 2C_2$   $\widetilde{w}_1 = \frac{3}{4} + 2C_2$ 

### "Ideal" weights



### WENO-3: convex combination of ENO-2 polynomials

$$v_{i+\frac{1}{2}}^{-} = w_0 v_{i+\frac{1}{2}}^{(0),-} + w_1 v_{i+\frac{1}{2}}^{(1),-}, \qquad v_{i+\frac{1}{2}}^{+} = \tilde{w}_0 v_{i+\frac{1}{2}}^{(0),+} + \tilde{w}_1 v_{i+\frac{1}{2}}^{(1),+}$$

$$w_0 = \frac{3}{4} + 2C_1$$
  $w_1 = \frac{1}{4} - 2C_1$   $\widetilde{w}_0 = \frac{1}{4} - 2C_2$   $\widetilde{w}_1 = \frac{3}{4} + 2C_2$ 

#### Issues:

"Ideal" weights

- No smoothness indicators
- Sign property

### Consistency:

$$0 \le w_0, w_1, \widetilde{w}_0, \widetilde{w}_1 \le 1$$

or

$$-\frac{3}{8} \le C_1, C_2 \le \frac{1}{8}$$

### Consistency:

$$0 \le w_0, w_1, \widetilde{w}_0, \widetilde{w}_1 \le 1$$

or

$$-\frac{3}{8} \le C_1, C_2 \le \frac{1}{8}$$

#### Sign property:

$$\operatorname{sign}(\Delta v_{i+\frac{1}{2}}) = \operatorname{sign}([\![v]\!]_{i+\frac{1}{2}})$$

Define,

$$\theta_i^- = \frac{\Delta v_{i+\frac{1}{2}}}{\Delta v_{i-\frac{1}{2}}}, \qquad \theta_i^+ = \frac{1}{\theta_i^-} = \frac{\Delta v_{i-\frac{1}{2}}}{\Delta v_{i+\frac{1}{2}}}$$

Thus,

$$\left[\widetilde{w}_0(1-\theta_{i+1}^-) + w_1(1-\theta_i^+)\right] \ge 0$$

**Negation symmetry:** No bias towards positive or negative values. Under the transform  $v\mapsto -v$ 

$$\Delta v_{j+\frac{1}{2}} \mapsto -\Delta v_{j+\frac{1}{2}} \qquad \forall \ j \in \mathbb{Z}$$

But  $\theta_j^-$  or  $\theta_j^+$  remain unchanged.

**Negation symmetry:** No bias towards positive or negative values. Under the transform  $v\mapsto -v$ 

$$\Delta v_{j+\frac{1}{2}} \mapsto -\Delta v_{j+\frac{1}{2}} \qquad \forall \ j \in \mathbb{Z}$$

But  $\theta_j^-$  or  $\theta_j^+$  remain unchanged. A sufficient condition

$$C_1 = C_1(\theta_i^+, \theta_{i+1}^-), \qquad C_2 = C_2(\theta_i^+, \theta_{i+1}^-)$$

**Negation symmetry:** No bias towards positive or negative values. Under the transform  $v\mapsto -v$ 

$$\Delta v_{j+\frac{1}{2}} \mapsto -\Delta v_{j+\frac{1}{2}} \qquad \forall \ j \in \mathbb{Z}$$

But  $\theta_j^-$  or  $\theta_j^+$  remain unchanged. A sufficient condition

$$C_1 = C_1(\theta_i^+, \theta_{i+1}^-), \qquad C_2 = C_2(\theta_i^+, \theta_{i+1}^-)$$

Mirror property: Mirroring solution about  $x_{i+\frac{1}{2}}$  gives

$$\theta_{i+1}^- \mapsto \theta_i^+, \qquad \theta_i^+ \mapsto \theta_{i+1}^-$$

The weights must transform as

$$w_0 \mapsto \widetilde{w}_1, \qquad w_1 \mapsto \widetilde{w}_0, \qquad \widetilde{w}_0 \mapsto w_1, \qquad \widetilde{w}_1 \mapsto w_0$$

**Negation symmetry:** No bias towards positive or negative values. Under the transform  $v\mapsto -v$ 

$$\Delta v_{j+\frac{1}{2}} \mapsto -\Delta v_{j+\frac{1}{2}} \qquad \forall \ j \in \mathbb{Z}$$

But  $\theta_j^-$  or  $\theta_j^+$  remain unchanged. A sufficient condition

$$C_1 = C_1(\theta_i^+, \theta_{i+1}^-), \qquad C_2 = C_2(\theta_i^+, \theta_{i+1}^-)$$

Mirror property: Mirroring solution about  $x_{i+\frac{1}{2}}$  gives

$$\theta_{i+1}^- \mapsto \theta_i^+, \qquad \theta_i^+ \mapsto \theta_{i+1}^-$$

The weights must transform as

$$w_0 \mapsto \widetilde{w}_1, \qquad w_1 \mapsto \widetilde{w}_0, \qquad \widetilde{w}_0 \mapsto w_1, \qquad \widetilde{w}_1 \mapsto w_0$$

Assuming negation symmetry holds,

mirror sym. 
$$\iff$$
  $C_1(a,b) = C_2(b,a)$ 

#### **Inner jump condition:** For each cell *i*:



$$\mathrm{sign}(v_{i+\frac{1}{2}}^- - v_{i-\frac{1}{2}}^+) = \underbrace{\mathrm{sign}(\Delta v_{i+\frac{1}{2}}) = \mathrm{sign}(\Delta v_{i-\frac{1}{2}})}_{\text{if true}}$$

Automatically holds for consistent WENO-3 weights

**Remark:** True for ENO-2, but not for higher order ENO.

Define

$$\psi^+ := \frac{(1 - \theta_{i+1}^-)}{(1 - \theta_i^+)}, \qquad \psi^- := \frac{1}{\psi^+}$$

Based on the values of  $\theta_{i+1}^-$  and  $\theta_i^+$ , choose

$$C_{1}(\theta_{i}^{+}, \theta_{i+1}^{-}) = \begin{cases} \frac{1}{8} \left( \frac{f^{+}}{(f^{+})^{2} + (f^{-})^{2}} \right) & \text{if } \theta_{i}^{+} \neq 1, \ \psi^{+} < 0, \ \psi^{+} \neq -1 \\ 0 & \text{if } \theta_{i}^{+} \neq 1, \psi^{+} = -1 \\ -\frac{3}{8} & \text{if } \theta_{i}^{+} = 1 \text{ or } \psi^{+} \geq 0, \ |\theta_{i}^{+}| \leq 1 \end{cases}$$

$$C_{2}(\theta_{i}^{+}, \theta_{i+1}^{-}) = C_{1}(\theta_{i+1}^{-}, \theta_{i}^{+})$$

where

$$\begin{array}{ll} f^+(\theta_i^+,\theta_{i+1}^-) &:=& \begin{cases} \frac{1}{1+\psi^+} & \text{if } \theta_i^+ \neq 1, \psi^+ \neq -1 \\ 1 & \text{otherwise,} \end{cases} \\ f^-(\theta_i^+,\theta_{i+1}^-) &:=& f^+(\theta_{i+1}^-,\theta_i^+) \end{array}$$

The reconstructed jump has the following (simple) expression:

$$\begin{bmatrix} v \end{bmatrix}_{i+\frac{1}{2}} = \begin{cases} \theta_i^+ > 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ > 1 \text{ and } \theta_{i+1}^- > 1 \end{cases} \\ \frac{\theta_i^+}{\theta_i^+} > 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ > 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} v \end{bmatrix}_{i+\frac{1}{2}} = \begin{cases} \frac{1}{2} (\Delta v_{i+\frac{1}{2}} - \Delta v_{i-\frac{1}{2}}) & \text{if} \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| < 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < -1 \text{ and } \theta_{i+1}^- < -1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ -1 \le \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$\begin{bmatrix} |\theta_i^+| \le 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}$$

The reconstructed jump has the following (simple) expression:

$$\begin{cases} \theta_i^+ > 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ < 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ > 1 \text{ and } \theta_{i+1}^- > 1 \end{cases} \\ \theta_i^+ > 1 \text{ and } \theta_{i+1}^- > 1 \\ \theta_i^+ > 1 \text{ and } \theta_{i+1}^- < 1 \end{cases}$$
 
$$|\theta_i^+| > 1 \text{ and } \theta_{i+1}^- > 1 \\ |\theta_i^+| > 1 \text{ and } \theta_{i+1}^- > 1 \end{cases}$$
 
$$|\theta_i^+| > 1 \text{ and } \theta_{i+1}^- > 1$$
 
$$|\theta_i^+| > 1 \text{ and } \theta_{i+1}^- > 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- > 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- > 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- > 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1}^- < 1$$
 
$$|\theta_i^+| < 1 \text{ and } \theta_{i+1$$

Stability estimate:

$$\left| \left[ \! \left[ v \right] \! \right]_{i+\frac{1}{2}} \right| \leq 2 \left| \Delta v_{i+\frac{1}{2}} \right| \quad \forall \ i \in \mathbb{Z}$$

Stability estimate:

$$\left| \left[\!\left[v\right]\!\right]_{i+\frac{1}{2}} \right| \leq 2 \left| \Delta v_{i+\frac{1}{2}} \right| \quad \forall \ i \in \mathbb{Z}$$

For ENO-2, the bounding constant = 2For ENO-3, the bounding constant = 3.5

Stability estimate:

$$\left| \left[\!\left[v\right]\!\right]_{i+\frac{1}{2}} \right| \leq 2 \left| \Delta v_{i+\frac{1}{2}} \right| \quad \forall \ i \in \mathbb{Z}$$

For ENO-2, the bounding constant = 2For ENO-3, the bounding constant = 3.5

Better stability bounds for equivalent accuracy!

# Testing reconstruction accuracy

Consider

$$u(x) = \sin(10\pi x) + x, \quad x \in [0, 1].$$

Error in the interface values

$$\|u_{i+\frac{1}{2}}^{-} - u(x_{i+\frac{1}{2}})\|_{L_{h}^{p}} + \|u_{i+\frac{1}{2}}^{+} - u(x_{i+\frac{1}{2}})\|_{L_{h}^{p}}, \quad p \in [1, \infty]$$

where

$$\|(.)_i\|_{L_h^p} = \left(\sum_{i=1}^N |(.)_i|^p h\right)^{\frac{1}{p}} \quad \text{for } p < \infty, \qquad \|(.)_i\|_{L_h^\infty} = \max_i |(.)_i|$$

# Testing reconstruction accuracy

|      | SP-WE    | NO   | ENO      | ENO3 |  |
|------|----------|------|----------|------|--|
| N    | $L_h^1$  |      | $L_h^1$  |      |  |
| 14   | error    | rate | error    | rate |  |
| 40   | 8.59e-02 | -    | 3.95e-02 | -    |  |
| 80   | 6.73e-03 | 3.67 | 4.90e-03 | 3.01 |  |
| 160  | 5.01e-04 | 3.75 | 6.08e-04 | 3.01 |  |
| 320  | 3.64e-05 | 3.78 | 7.57e-05 | 3.01 |  |
| 640  | 2.59e-06 | 3.81 | 9.47e-06 | 3.00 |  |
| 1280 | 1.82e-07 | 3.83 | 1.18e-06 | 3.01 |  |
| 2560 | 1.26e-08 | 3.85 | 1.47e-07 | 3.00 |  |
|      | WENO3    |      | ENO2     |      |  |
| N    | $L_h^1$  |      | $L_h^1$  |      |  |
| IV   | error    | rate | error    | rate |  |
| 40   | 2.04e-01 | -    | 2.35e-01 | -    |  |
| 80   | 4.03e-02 | 2.34 | 5.39e-02 | 2.12 |  |
| 160  | 7.25e-03 | 2.48 | 1.29e-02 | 2.07 |  |
| 320  | 1.18e-03 | 2.62 | 3.14e-03 | 2.03 |  |
| 640  | 1.77e-04 | 2.74 | 7.76e-04 | 2.02 |  |
| 1280 | 2.13e-05 | 3.05 | 1.93e-04 | 2.01 |  |

3.34

2.10e-06

2560

4.81e-05

2.00

### **Evolution problems**

TeCNO-4 flux used:

• EC: Fourth order entropy conservative flux

$$F^{*,4} = \frac{4}{3}F^*(u_i, u_{i+1}) - \frac{1}{6}(F^*(u_{i-1}, u_{i+1}) + F^*(u_i, u_{i+2}))$$

ES: SP-WENO, ENO-2 or ENO-3 (all preserve sign)

We choose

$$\eta(u) = \frac{u^2}{2} \implies v(u) = u$$

Time integration using a Strong Stability Preserving RK3 scheme

#### Linear advection

$$u_t + u_x = 0$$

#### Test 1:

$$\Omega = [-\pi, \pi], \quad T_f = 0.5, \quad CFL = 0.4, \quad u_0(x) = \sin(x)$$

|     | SP-WENO  |      | ENO3     |      | ENO2     |      |
|-----|----------|------|----------|------|----------|------|
| N   | $L_h^1$  |      | $L_h^1$  |      | $L_h^1$  |      |
| 11  | error    | rate | error    | rate | error    | rate |
| 50  | 6.22e-04 | -    | 2.58e-04 | -    | 1.61e-02 | -    |
| 100 | 6.90e-05 | 3.17 | 3.23e-05 | 3.00 | 4.36e-03 | 1.88 |
| 200 | 7.66e-06 | 3.17 | 4.04e-06 | 3.00 | 1.16e-03 | 1.91 |
| 400 | 8.29e-07 | 3.21 | 5.05e-07 | 3.00 | 3.08e-04 | 1.91 |
| 600 | 2.26e-07 | 3.20 | 1.50e-07 | 3.00 | 1.41e-04 | 1.92 |
| 800 | 8.72e-08 | 3.31 | 6.31e-08 | 3.00 | 8.09e-05 | 1.93 |

#### Linear advection

$$u_t + u_x = 0$$

#### Test 2:

$$\Omega = [-\pi, \pi], \quad T_f = 0.5, \quad CFL = 0.5, \quad u_0(x) = \sin^4(x)$$

MUSCL scheme using ENO known to perform poorly.

|      | SP-WENO  |      | ENO3     |      | ENO2     |      |
|------|----------|------|----------|------|----------|------|
| N    | $L_h^1$  |      | $L_h^1$  |      | $L_h^1$  |      |
| ''   | error    | rate | error    | rate | error    | rate |
| 100  | 1.32e-03 | -    | 1.48e-03 | -    | 2.13e-02 | -    |
| 200  | 1.48e-04 | 3.16 | 1.97e-04 | 2.91 | 6.12e-03 | 1.80 |
| 400  | 1.64e-05 | 3.17 | 2.57e-05 | 2.94 | 1.66e-03 | 1.89 |
| 600  | 4.61e-06 | 3.14 | 8.35e-06 | 2.77 | 7.63e-04 | 1.91 |
| 800  | 1.79e-06 | 3.29 | 4.86e-06 | 1.88 | 4.41e-04 | 1.90 |
| 1000 | 8.55e-07 | 3.31 | 3.62e-06 | 1.32 | 2.87e-04 | 1.92 |

Similar behaviour observed with TeCNO4.

$$u_t + uu_x = 0,$$
  $a_{i+\frac{1}{2}} = \frac{|u_i| + |u_{i+1}|}{2}$ 

#### Test 1:

$$\Omega = [-1, 1], \quad T_f = 0.3, \quad CFL = 0.4, \quad u_0(x) = 1 + \frac{1}{2}\sin(\pi x)$$

|      | SP-WENO  |      | ENO3     |      | ENO2     |      |
|------|----------|------|----------|------|----------|------|
| N    | $L_h^1$  |      | $L_h^1$  |      | $L_h^1$  |      |
| '\ [ | error    | rate | error    | rate | error    | rate |
| 50   | 3.41e-04 | -    | 3.07e-04 | -    | 4.73e-03 | -    |
| 100  | 4.17e-05 | 3.03 | 4.76e-05 | 2.69 | 1.35e-03 | 1.81 |
| 200  | 4.51e-06 | 3.21 | 8.44e-06 | 2.49 | 3.77e-04 | 1.84 |
| 400  | 4.98e-07 | 3.18 | 1.80e-06 | 2.23 | 1.02e-04 | 1.89 |
| 600  | 1.33e-07 | 3.26 | 7.29e-07 | 2.23 | 4.71e-05 | 1.90 |
| 800  | 5.22e-08 | 3.25 | 3.91e-07 | 2.17 | 2.72e-05 | 1.92 |

Test 2: Left moving shock

$$\Omega = [-1, 1], \quad T_f = 0.45, \quad CFL = 0.4$$



Test 3: Rarefaction

$$\Omega = [-1, 1], \quad T_f = 0.2, \quad CFL = 0.4$$



#### Conclusion

#### Proposed a WENO method satisfying

- Sign property (needed for entropy stability)
- Symmetries (mirror, negation)
- Third (or higher) order accurate
- Good control on reconstruction jumps at interfaces

#### Conclusion

#### Proposed a WENO method satisfying

- Sign property (needed for entropy stability)
- Symmetries (mirror, negation)
- Third (or higher) order accurate
- Good control on reconstruction jumps at interfaces

#### What's next?

- Higher order WENO with similar properties?
- Smooth weights?

# Thank You

# Constructing an entropy stable scheme

#### Choosing

$$\eta(u) = \frac{u^2}{2} \implies v(u) = u$$

#### **Examples:**

• Linear advection: f(u) = cu

$$F_{i+\frac{1}{2}}^* = c \frac{u_i + u_{i+1}}{2}$$

• Burgers' equation:  $f(u) = u^2/2$ 

$$F_{i+\frac{1}{2}}^* = \frac{u_i^2 + u_{i+1}^2 + u_i u_{i+1}}{6}$$

# Entropy stable scheme for 1D system

Choose flux

$$\mathbf{F}_{i+\frac{1}{2}} = \mathbf{F}_{i+\frac{1}{2}}^{*,2p} - \frac{1}{2} \mathbf{D}_{i+\frac{1}{2}} \Delta \mathbf{V}_{i+\frac{1}{2}}, \qquad \mathbf{D} = \mathbf{D}^{\top} \ge 0$$

Specific choice

$$\mathbf{D}_{i+\frac{1}{2}} = \mathbf{R}_{i+\frac{1}{2}} \Lambda_{i+\frac{1}{2}} \mathbf{R}_{i+\frac{1}{2}}^{\top}$$

Define

$$\mathbf{Z} = \mathbf{R}_{i+rac{1}{2}}^{ op} \mathbf{V} \quad o \quad$$
 scaled entropy variable

Reconstruct in Z

$$\mathbf{F}_{i+\frac{1}{2}}^{*,2p} - \frac{1}{2}\mathbf{R}_{i+\frac{1}{2}}\Lambda_{i+\frac{1}{2}}\Delta\mathbf{Z}_{i+\frac{1}{2}} \quad \longrightarrow \quad \mathbf{F}_{i+\frac{1}{2}}^{*,2p} - \frac{1}{2}\mathbf{R}_{i+\frac{1}{2}}\Lambda_{i+\frac{1}{2}}[\![\mathbf{Z}]\!]_{i+\frac{1}{2}}$$

Sign Property:

$$\mathrm{sign}(\Delta\mathbf{Z}_{i+\frac{1}{2}})=\mathrm{sign}([\![\mathbf{Z}]\!]_{i+\frac{1}{2}}),\quad \text{componentwise}$$

Variable order: If v''(x)=0 for  $|x-x_{i+\frac{1}{2}}|=\mathcal{O}(h)$ , then ENO-2 polynomials are third order accurate.





$$C_1, C_2 = \begin{cases} \mathcal{O}(h), & \text{in GC} \\ \text{no restriction}, & \text{in SC} \end{cases}$$

# SP-WENO weights

| LABEL   | Left fig: $w_1$                                         | Right fig: $\widetilde{w}_0$                                      |  |  |
|---------|---------------------------------------------------------|-------------------------------------------------------------------|--|--|
| blue    | 0                                                       | 0                                                                 |  |  |
| magenta | 1                                                       | 1                                                                 |  |  |
| green   | $\frac{1}{4}$                                           | $\frac{1}{4}$                                                     |  |  |
| yellow  | $\frac{1}{4}\left(1-\frac{f^+}{(f^+)^2+(f^-)^2}\right)$ | $\frac{1}{4}\left(1-\frac{f^{-}}{(f^{+})^{2}+(f^{-})^{2}}\right)$ |  |  |



#### Linear advection

Test 3:

$$\Omega = [-1,1], \quad T_f = 0.5, \quad CFL = 0.5$$
 
$$u_0(x) = \begin{cases} 3 & \text{if } x < 0 \\ -1 & \text{if } x > 0. \end{cases}$$





$$u_t + uu_x = 0,$$
  $a_{i+\frac{1}{2}} = \frac{|u_i| + |u_{i+1}|}{2}$ 

#### Test 1:

- Discontinuity at  $t = \frac{2}{\pi} \approx 0.636$ .
- The total entropy should be preserved for smooth solution.
- Sharp decrease in entropy after discontuity appears.

$$\frac{E(t) - E(0)}{E(0)}, \qquad E(t) := \sum_{i} \eta_i(t) h \approx \int_{-1}^{1} \eta(u(x, t)) dx$$

$$u_t + uu_x = 0,$$
  $a_{i+\frac{1}{2}} = \frac{|u_i| + |u_{i+1}|}{2}$ 

#### Test 1:

