Project Presentation

QCourse 551-1

Project 27: QNN Algorithm Implementation

Mentor: Tal Michaeli

Team Members: Ashmit Gupta

Asif Saad

Roman Ledenov

Implementing a Hybrid Network to classify the MNIST Dataset

Agenda

- Introduction to QNN
- Problem Statement
- <u>Project Milestone</u>
- Re-evaluating QNN Architecture
- <u>Getting MNIST Dataset</u>
- <u>Preprocessing MNIST</u>
 <u>Datasets</u>
- <u>Preparing Data loader</u>

- Quantum Function for encoding image pixels
- Quantum Function for mixing
- Quantum Function for CZ Block
- Overall Circuit for Quantum Model
- Quantum Neural Network
- Loss Function, Optimizer, Training
 & Testing

Quantum Neural Network

Quantum Neural Networks are quantum algorithms based on parametrized quantum circuits that can be trained in a variational manner using classical optimizers.

These algorithmic models can be trained to find hidden patterns in data similar to their classical counterparts. These models can load classical data (inputs) into a quantum state, and later process it with quantum gates parametrized by trainable weights.

A Quantum layer take in classical data and return classical data.

Quantum Neural Network Algorithm Implementation

Problem Statement: Create a hybrid network consisting of both classical and quantum layers to classify the MNIST dataset.

Project Milestones

01	02	03	04	05	WE ARE HERE! O 6
WEEK 1-3	WEEK 4-5	WEEK 6-7	WEEK 8-9	WEEK 10-11	WEEK 12
Discuss project, understanding the prerequisites and creating a work plan.	Pre-processing MNIST dataset and encoding it into a Quantum Circuit.	Design and Implement circuit for Quantum Layer.	Training and Testing of our QNN,	Extend our research, make our project code modular, and start writing our project research paper.	Finishing up and final presentation.

Getting MNIST Data Set

I have created two different functions:

- To download and use MNIST dataset provided by PyTorch (torchvision.datasets) constuting classes from 0 to 9 of any subset size.
- To use custom binary dataset.

```
create_dataloaders_from_folders(
train dir: str,
test dir: str,
batch size: int,
transform: Optional[Callable] = None,
target transform: Optional[Callable] = None,
num workers: int = NUM WORKERS
"""Creates training and testing DataLoaders....
train_data = datasets.ImageFolder(train_dir, transform=transform, target transform=target transform)
test data = datasets.ImageFolder(test dir, transform=transform, target transform=target transform)
class names = train data.classes
                                                                           train dataloader = DataLoader(
                                                                              t10k-images-idx3-ubyte
    train data,
                                                                              🔋 t10k-images-idx3-ubyte.gz
    batch size=batch size,
                                                                              t10k-labels-idx1-ubyte
    shuffle=True,
    num workers=num workers,
                                                                              110k-labels-idx1-ubyte.gz
    pin memory=True,
                                                                              train-images-idx3-ubyte
                                                                              🔋 train-images-idx3-ubyte.gz
test dataloader = DataLoader(
    test data,
                                                                              train-labels-idx1-ubyte
    batch size=batch size,
                                                                              🚺 train-labels-idx1-ubyte.gz
    shuffle=False,
    num workers=num workers,
                                                                           pin memory=True,

✓ 

  im test

                                                                             > • 0
return train dataloader, test dataloader, class_names
                                                                             1
                                                                            > train
```

```
create mnist dataloaders(
batch size: int,
root: str = "data",
transform: Optional[Callable] = None,
target transform: Optional[Callable] = None,
num workers: int = NUM WORKERS,
create subset: bool = False,
subset size:int = 64
"""Creates training and testing DataLoaders....
train data = datasets.MNIST(
   root=root, train=True, download=True,
   transform=transform, target transform=target transform
test data = datasets.MNIST(
   root=root, train=False, download=True,
   transform=transform, target transform=target transform
class names = train data.classes
if create subset:
   train data = Subset(train data, range(subset size))
   test data = Subset(test data, range(subset size))
train dataloader = DataLoader(train data, batch size=batch size, shuffle=True, num workers=num workers,
test dataloader = DataLoader(test data, batch size=batch size, shuffle=False, num workers=num workers,)
return train dataloader, test dataloader, class names
```

Pre-processing the MNIST Dataset

The input MNIST images are all 28×28 . In this step, we will firstly center-crop input images to 24×24 and then down-sample them to 4×4 for MNIST. Then we convert the image pixels into angles for passing them into Rotation gates later for encoding.

```
def input_transform(image):
    The input MNIST images are all 28 \times 28 px. This function will firstly
    center-crop them to 24 \times 24 and then down-sample them to 4 \times 4 for MNIST.
    Then we convert the image pixels into angles for passing them into Rotation
    gates later for encoding.
    image = transforms.Grayscale(num output channels=1)(image)
    image = transforms.ToTensor()(image)
    image = transforms.CenterCrop(24)(image)
    image = transforms.Resize(size = (4,4), antialias=True)(image)
    image = image.squeeze()
    image pixels = torch.flatten(image)
    angles = torch.sqrt(image pixels / 256)
    return angles
def target transform(label):
    Transforms labels into their one-hot encoded format of size 10.
    Ex.: 2 -> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
    label tensor = torch.LongTensor([label])
    one hot label = torch.nn.functional.one hot(label tensor, 10)
   return one hot label.squeeze()
def target transform bin(label):
    Transforms labels into their one-hot encoded format of size 2.
    Ex.: 0 \rightarrow [1, 0]
    label tensor = torch.LongTensor([label])
    one hot label = torch.nn.functional.one hot(label tensor, 2)
    return one hot label.squeeze()
```

Quantum Function for encoding image pixels

We encode 16 pixel image such as 4 px per qubit by using different rotation gates on each qubit.

```
@QFunc
def encoding(q: QArray[QBit]) -> None:
   This function encodes the input data into the qubits. This input data is a 4x4 image pixel values
   converted into angle for rotation gates (RX, RY, RZ, RX) in form of a 16x1 vector.
   We encode 4 pixels per qubit.
    Args:
        q (QArray[QBit]): Array of four Qubits to encode the input data into.
   RX(theta="input 0", target=q[0]) # Pixel 0 on Qubit 0
   RY(theta="input 1", target=q[0]) # Pixel 1 on Qubit 0
   RZ(theta="input 2", target=q[0]) # Pixel 2 on Qubit 0
                                                                                                                                        Rz
                                                                                         Rx
                                                                                                                                                               Rx
   RX(theta="input 3", target=q[0]) # Pixel 3 on Qubit 0
                                                                                                               input 1
                                                                                                                                      input 2
                                                                                       input 0
                                                                                                                                                              input 3
   RX(theta="input_4", target=q[1]) # Pixel 4 on Qubit 1
   RY(theta="input_5", target=q[1]) # Pixel 5 on Qubit 1
                                                                                                                                        Rz
                                                                                         Rx
                                                                                                                                                               Rx
   RZ(theta="input 6", target=q[1]) # Pixel 6 on Qubit 1
                                                                                                               input_5
                                                                                       input_4
                                                                                                                                      input_6
                                                                                                                                                              input_7
   RX(theta="input 7", target=q[1]) # Pixel 7 on Qubit 1
   RX(theta="input 8", target=q[2]) # Pixel 8 on Qubit 2
                                                                                                                                        Rz
                                                                                         Rx
                                                                                                                                                               Rx
   RY(theta="input 9", target=q[2]) # Pixel 9 on Qubit 2
                                                                                                               input 9
                                                                                        input 8
                                                                                                                                      input_10
                                                                                                                                                             input_11
   RZ(theta="input 10", target=q[2]) # Pixel 10 on Qubit 2
   RX(theta="input 11", target=q[2]) # Pixel 11 on Qubit 2
                                                                                         Rx
                                                                                                                Ry
                                                                                                                                        Rz
                                                                                                                                                               Rx
                                                                            TARGET
                                                                                       input_12
                                                                                                              input_13
                                                                                                                                                             input_15
                                                                                                                                      input_14
                                                                                                    TARGET
                                                                                                                           TARGET
                                                                                                                                                  TARGET
   RX(theta="input 12", target=q[3]) # Pixel 12 on Qubit 3
   RY(theta="input 13", target=q[3]) # Pixel 13 on Qubit 3
   RZ(theta="input_14", target=q[3]) # Pixel 14 on Qubit 3
   RX(theta="input 15", target=q[3]) # Pixel 15 on Qubit 3
```

Fig: Snapshot of a quantum circuit in classiq fot encoding image dataset into 4 qubits.

Quantum Function for mixing

After encoding, we performs the mixing operation on these four qubits such that:

- (i) RZZ layer: add RZZ gates to all logical adjacent wires and the logical farthest wires to form a ring connection, for example, an RZZ layer in a 4-qubit circuit contains 4 RZZ gates which lie on wires 1 and 2, 2 and 3, 3 and 4, 4 and 1;
- (ii) RXX layer: same structure as in RZZ layer;

(iii) RZX layer: same structure as in RZZ layer;

Fig: Snapshot of a quantum circuit in classiq for Mixing.

Quantum Function for CZ Block

In this block we add CZ gates to all logical adjacent wires.

```
@QFunc
def cz_block(q: QArray[QBit]) -> None:
    This function applies CZ gates between each qubit.
    Args:
          (QArray[QBit]): Array of four Qubits to apply the entanglement operation on.
    CZ(control=q[0], target=q[1])
    CZ(control=q[1], target=q[2])
                                                                               CTRL
                                                                                          CTRL
    CZ(control=q[2], target=q[3])
                                                                                                           CTRL
                                                                            TARGET
                                                                                                CTRL
                                                                                             TARGE
                                                                                                                CTRL
                                                                                                                            CTRL
                                                                                                              TARGET
                                                                                                                            TARGE
```

Fig: Snapshot of a quantum circuit in classiq for CZ-Block.

Overall Circuit for Quantum Model

The overall quantum model for the quantum neural network for classification of MNIST Dataset compromises of all three parts discussed above: Encoding, Mixing, and CZ Block

```
@QFunc
def main(res: Output[QArray[QBit]]) -> None:
    This is the main function from which model will be created.
    It calls the other functions to perform the encoding, mixing and entanglement.
    Args:
            (Output[QArray[QBit]]): Output QArray of QBits from which the model will be created.
    allocate(4, res)
    encoding(q=res)
    mixing(q=res)
    cz block(q=res)
                                                                q1
# Create a model
model = create model(main)
quantum program = synthesize(model)
                                                                q3
show(quantum program)
```

Fig: Snapshot of overall circuit of Quantum Layer

Post-processing the Measurement Results

SAMPLE EXAMPLE:

{'1101': 33, '1100': 29, '1011': 19, '1000': 57, '0110': 327, '0010': 343, '0000': 413, '0011': 167 '0111': 147, '0001': 145, '1111': 47, '1001': 13, '0101': 91, '1110': 90, '1010': 79, '0100': 48}

We post process the measurement counts to get prediction probabilities of the labels.

```
LOGITS::
                                                                  tensor([413., 145., 343., 167., 48., 91., 327., 147., 57., 13., 79., 19.,
def post process fn(result: SavedResult) -> torch.Tensor:
                                                                        29., 33., 90., 47.])
    counts: dict = result.value.counts
                                                                  TRIMMED LOGITS::
                                                                  tensor([413., 145.])
    # Calculate logits from counts
                                                                  PREDICTION PROBABILITIES::
    logits: float = torch.zeros(16)
                                                                  tensor([0.9435, 0.3313])
    for key, value in counts.items():
         logits[int(key, 2)] = value
    # Trim the logits from length 16 to length 2 since we have only 2 labels
    trimmed logits = logits[:2]
    # Calculate prediction probabilities from logits by normalizing it
    pred probs = torch.nn.functional.normalize(trimmed logits, dim=0)
    return pred_probs.clone().detach()
```

Quantum Neural Network

```
class Net(torch.nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__()
        self.qlayer = QLayer(
            quantum_program,
            execute,
            post_process,
            *args,
            **kwargs
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.qlayer(x)
        return x
qnn = Net()
```

```
def execute_fn(quantum_program: SerializedQuantumProgram, arguments: MultipleArguments) -> ResultsCollection:
    return execute_qnn(quantum_program, arguments)
```

Loss Function, Optimizer, Training & Testing

```
LEARNING RATE = 1.0
# choosing our loss function
loss_fn = nn.L1Loss()
# choosing our optimizer
optimizer = optim.SGD(qnn.parameters(), lr = LEARNING RATE)
def train(
   model: nn.Module,
   data loader: DataLoader,
   loss fn: nn.modules.loss. Loss,
   optimizer: optim.Optimizer,
    epochs: int = 20,
 -> None:
    for epoch in tqdm(range(epochs)):
        print(f"Epoch: {epoch}\n----")
        for data, label in data loader:
           optimizer.zero grad()
           output = model(data)
            loss = loss fn(output, label)
            loss.backward()
           optimizer.step()
train(model, train dataloader, loss fn, optimizer)
```

```
def test(
   model: nn.Module,
   data loader: DataLoader,
   atol=1e-4
  -> float:
   num correct = 0
   total = 0
   # Put the model in eval mode
   model.eval()
   # Turn on inference mode context manager
   with torch.inference mode():
        for data, labels in data loader:
            # Let the model predict
            predictions = model(data)
            # Get a tensor of booleans, indicating if each label is close to the real label
            is prediction correct = predictions.isclose(labels, atol=atol)
            # Count the amount of `True` predictions
            num correct += is prediction correct.sum().item()
            # Count the total evaluations
            # the first dimension of `labels` is `batch size`
            total += labels.size(0)
   # Calculate the accuracy
   accuracy = float(num correct) / float(total)
   print(f"Test Accuracy of the model: {accuracy*100:.2f}")
   return accuracy
test(model, test dataloader)
```

Page 15

Experiment Results

Exp. No.	No. of Batches	Epochs	Classes	Train Loss	Train Time (mins)	Test Accuracy
1.	2	2	0-9	0.28655	2	9.375%
2.	8	2	0-9	0.20318	3	7.422%
3.	8	10	0-9	0.19270	35	8.203%
4.	80	10	0-1	0.10146	165	50%

We are getting approximately 50% accuracy for datasets of classes 0 and 1. Our future plan is to first increase the accuracy and then generalise the model for all classes of MNIST datasets (0 to 9).

Resources

- Paper on <u>Quantum On-Chip Training with Parameter Shift and Gradient Pruning</u>
- Classiq QNN User Guide: https://docs.classiq.io/latest/user-guide/built-in-algorithms/qml/qnn/
- Project <u>Repository on GitHub</u>
- Project Weekly Report: https://jaisarita.hashnode.dev/qcourse511-qnn

Thank you!

Do you have any questions?