6 Comparações entre as Heurísticas GRASP e VNS

O objetivo desse capítulo é comparar a heurística GRASP com filtro e reconexão por caminhos, apresentada no Capítulo 4, com a heurística VNS com filtro e reconexão por caminhos, apresentada no Capítulo 5, em termos da qualidade das soluções encontradas e dos tempos de processamento obtidos para diversas classes de instâncias. Três diferentes tipos de comparações serão realizadas.

Primeiramente, as heurísticas serão comparadas obtendo-se a qualidade das soluções encontradas em três diferentes tempos de processamento para cada instância, possibilitando estudar o comportamento dos algoritmos em tempos distintos de execução.

Em seguida, gráficos de distribuição de probabilidade empírica do tempo gasto para encontrar um valor alvo serão utilizados para a comparação das heurísticas.

O modelo baseado em árvore geradora mínima restrita por grau para o problema das p-medianas conectadas, apresentado na Seção 2.4.2, possibilitou a obtenção de soluções ótimas para algumas instâncias testadas. Assim, por último, comparações em termos absolutos serão realizadas entre as heurísticas nas instâncias em que o ótimo é conhecido. Para as instâncias em que não se conhece o ótimo, a melhor solução encontrada pelas heurísticas GRASP e VNS será a melhor solução conhecida para aquela instância. Essas comparações mostraram a necessidade de incorporar um passo adicional em ambos os algoritmos. O passo de pós-otimização consiste em executar um algoritmo ótimo para o problema de Steiner tendo como entrada as p facilidades abertas da melhor solução encontrada pelas heurísticas, após todas as iterações terem sido realizadas.

Este capítulo está organizado como se segue. A Seção 6.1 mostra o ambiente de teste e as instâncias utilizadas na comparação das heurísticas. A Seção 6.2 compara a qualidade das soluções encontradas pelas heurísticas fixandose três diferentes tempos de processamento para cada instância. A Seção 6.3 apresenta gráficos de distribuição de probabilidade do tempo gasto para atingir o valor alvo para ambas as heurísticas. A Seção 6.4 mostra as comparações em termos absolutos entre as heurísticas para todas as instâncias e descreve o passo de pós-otimização, assim como seus resultados computacionais. Por

último, a Seção 6.5 apresenta as conclusões e considerações finais do capítulo.

6.1 Ambiente de Teste e Instâncias Utilizadas

As heurísticas GRASP e VNS foram implementadas em C com o parâmetro de otimização -O3 e executadas em uma máquina Pentium IV 3.2 GHz com 1 Gbyte de memória RAM sob o sistema operacional Linux RedHat 9.0. O gerador de números aleatórios utilizado foi o de Matsumoto e Nishimura [53].

Para a execução do modelo baseado em árvore geradora mínima restrita por grau, utilizou-se a mesma máquina e a versão 8.0 do resolvedor de programação linear inteira ILOG CPLEX. A restrição de eliminação de sub-rotas foi substituída pela restrição de Miller-Tucker-Zemlin utilizada no problema do caixeiro viajante [38].

Para a comparação das heurísticas, dois grupos de instâncias serão utilizados. O primeiro grupo são as instâncias proporcionais das classes ORM_P, GRM_P e SLM_P (w=2, w=5 e w=10), apresentadas na Seção 3.3.4, totalizando-se 189 problemas. O segundo grupo, denominado de instâncias não proporcionais, foi obtido a partir do grupo de instâncias proporcionais ORM_P e GRM_P (w=2) da seguinte maneira. Dado um grafo G=(V,E) com custos associados às arestas, o custo de servir cada usuário i a partir de cada facilidade j é dado pelo valor do caminho mais curto d_{ij} no grafo G, como no grupo de instâncias proporcionais. Porém, o custo de instalação c_{ij} de cada aresta é escolhido aleatoriamente no intervalo $[(w \times a_{ij}) - (w \times a_{ij})/2, (w \times a_{ij}) + (w \times a_{ij})/2]$, onde a_{ij} é o custo associado à aresta (i,j) nas instâncias proporcionais ORM_P e GRM_P com w=2. As classes de instâncias não-proporcionais serão denominadas de ORM_NP e GRM_NP, totalizando 60 problemas.

6.2 Tempo de Processamento Limitado

Nesta seção, as heurísticas serão comparadas com base nas soluções encontradas em três tempos de processamento distintos para cada instância: um tempo menor de execução (tp), um tempo intermediário de execução (ti) e um tempo maior de execução (tg). Como ambas as heurísticas utilizam a mesma busca local, adotou-se o seguinte procedimento para a fixação dos tempos. Para cada instância das classes proporcionais ORM_P, GRM_P e SLM_P (w=2, w=5 e w=10), utilizou-se o tempo médio de processamento de cada iteração da busca local concatenada em 15 execuções realizadas, obtido dos experimentos no Capítulo 3 (medida tam). Fixou-se então $tp=10 \times tam$, $ti=40 \times tam$ e $tg=70 \times tam$. Os tempos tp, ti e tg das classes ORM_NP

e GRM_NP serão os mesmos das respectivas classes proporcionais ORM_P e GRM_P (w=2).

Como exemplo, o valor de tam para a instância ORM_P19 (w=2) é 6,28 segundos. Assim, executam-se as heurísticas para essa instância com a mesma semente do gerador de números aleatórios fixando-se os seguintes tempos: tp=62,80 segundos, ti=251,20 segundos e tg=439,60 segundos. Para as instâncias em que o valor de tam é muito pequeno, fixou-se tam=1,00 segundo. Por exemplo, o valor de tam para a instância ORM_P1 (w=2) é 0,003 segundos. Assim, executam-se as heurísticas para essa instância com a mesma semente com os tempos: tp=10,00 segundos, ti=40,00 segundos e tg=70,00 segundos.

Para cada instância, heurística e tempo de processamento, cinco execuções diferentes foram realizadas. As Tabelas 6.1 a 6.9 mostram os valores obtidos para as medidas relativas drpm, cm e melhor para todos os grupos de instâncias (proporcionais e não proporcionais) e tempos de processamento testados. As heurísticas GRASP e VNS acrescidas da estratégia de filtro e do procedimento de reconexão por caminhos serão denominadas, respectivamente, de GRASPf_RC e VNSf_RC. Os valores em negrito destacam o melhor resultado obtido pelas heurísticas em cada medida para cada grupo de instâncias nos tempos tp, ti e tg.

Classe	Algoritmo	drpm	cm	melhor
ORM_P	GRASPf_RC	0,003	1,60	33
(40 instâncias)	VNSf_RC	-0,003	1,40	40
GRM_P	GRASPf_RC	0,004	1,63	19
(20 instâncias)	VNSf_RC	-0,004	1,38	20
SLM_P	GRASPf_RC	-0,020	1,00	2
(3 instâncias)	VNSf_RC	0,020	2,00	2

Tabela 6.1: Qualidade relativa das heurísticas no tempo tp para as instâncias proporcionais (w = 2).

Classe	Algoritmo	drpm	cm	melhor
ORM_P	GRASPf_RC	-0,005	1,42	38
(40 instâncias)	VNSf_RC	0,005	1,58	37
GRM_P	GRASPf_RC	0,0006	1,45	19
(20 instâncias)	VNSf_RC	-0,0006	1,55	20
SLM_P	GRASPf_RC	-0,10	1,00	3
(3 instâncias)	VNSf_RC	0,10	2,00	0

Tabela 6.2: Qualidade relativa das heurísticas no tempo tp para as instâncias proporcionais (w = 5).

Primeiramente serão analisados os resultados obtidos pelas heurísticas nas instâncias proporcionais. As Tabelas 6.1 a 6.3 apresentam os resultados obtidos pelo GRASPf_RC e VNSf_RC no menor tempo de execução (tp).

Classe	Algoritmo	drpm	cm	melhor
ORM_P	GRASPf_RC	-0,027	1,44	38
(40 instâncias)	VNSf_RC	0,027	1,56	35
GRM_P	GRASPf_RC	0,00006	1,55	20
(20 instâncias)	VNSf_RC	-0,00006	$1,\!45$	18
SLM_P	GRASPf_RC	-0,37	1,00	3
(3 instâncias)	VNSf_RC	0,37	2,00	0

Tabela 6.3: Qualidade relativa das heurísticas no tempo tp para as instâncias proporcionais (w = 10).

As medidas drpm e cm mostram que, em média, o algoritmo GRASPf_RC obteve resultados melhores do que a heurística VNSf_RC no tempo tp para as instâncias testadas. Na medida drpm, o GRASPf_RC foi melhor do que o VNSf_RC em cinco grupos de instâncias: ORM_P (w=5 e w=10) e SLM_P (w=2, w=5 e w=10). Na medida cm, o GRASPf_RC foi melhor do que o VNSf_RC em seis grupos de instâncias: ORM_P (w=5 e w=10), GRM_P (w=5) e SLM_P (w=2, w=5 e w=10). Na medida melhor, das 189 instâncias proporcionais testadas, GRASPf_RC (resp. VNSf_RC) obteve o menor valor em 175 problemas (resp. 172 problemas).

Sejam agora os resultados obtidos pelas heurísticas no tempo intermediário de execução (ti), como mostram as Tabelas 6.4 a 6.6.

Classe	Algoritmo	drpm	cm	melhor
ORM_P	GRASPf_RC	0,002	1,54	34
(40 instâncias)	VNSf_RC	-0,002	$1,\!46$	39
GRM _ P	GRASPf_RC	0,0009	1,53	20
(20 instâncias)	VNSf_RC	-0,0009	1,47	20
SLM_P	GRASPf_RC	-0,0007	1,33	3
(3 instâncias)	VNSf_RC	0,0007	1,67	3

Tabela 6.4: Qualidade relativa das heurísticas no tempo ti para as instâncias proporcionais (w = 2).

Classe	Algoritmo	drpm	cm	melhor
ORM_P	GRASPf_RC	-0,002	1,46	40
(40 instâncias)	VNSf_RC	0,002	1,54	38
GRM_P	GRASPf_RC	0,0004	1,47	20
(20 instâncias)	VNSf_RC	-0,0004	1,53	20
SLM_P	GRASPf_RC	-0,044	1,00	3
(3 instâncias)	VNSf_RC	0,044	2,00	0

Tabela 6.5: Qualidade relativa das heurísticas no tempo ti para as instâncias proporcionais (w = 5).

Analisando-se os resultados obtidos no tempo ti, praticamente o mesmo padrão de comportamento ocorreu nas medidas drpm e cm em relação ao menor tempo de execução (tp). Na medida drpm, GRASPf_RC foi melhor do

Classe	Algoritmo	drpm	cm	melhor
ORM _ P	GRASPf_RC	-0,009	1,42	39
(40 instâncias)	VNSf_RC	0,009	1,58	38
GRM_P	GRASPf_RC	-0,0001	1,50	20
(20 instâncias)	VNSf_RC	0,0001	1,50	20
SLM_P	GRASPf_RC	-0,18	1,00	3
(3 instâncias)	VNSf_RC	0,18	2,00	0

Tabela 6.6: Qualidade relativa das heurísticas no tempo ti para as instâncias proporcionais (w = 10).

que o VNSf_RC em seis grupos de instâncias: ORM_P (w=5 e w=10), GRM_P (w=10) e SLM_P (w=2, w=5 e w=10). Na medida cm, o GRASPf_RC foi melhor do que o VNSf_RC em seis grupos de instâncias: ORM_P (w=5 e w=10), GRM_P (w=5) e SLM_P (w=2, w=5 e w=10). Na medida melhor, dos 189 problemas testados, GRASPf_RC e VNSf_RC obteve o menor valor em 182 e 178 problemas, respectivamente. Executando-se os algoritmos em um tempo maior em relação a tp, as heurísticas convergem para as mesmas soluções em alguns grupos de instâncias, como, por exemplo, GRM_P (w=2, w=5 e w=10).

Sejam os resultados obtidos pelas heurísticas no maior tempo de execução (tg), como mostram as Tabelas 6.7 a 6.9.

Classe	Algoritmo	drpm	cm	melhor
ORM_P	GRASPf_RC	0,001	1,54	35
(40 instâncias)	VNSf_RC	-0,001	$1,\!46$	38
GRM_P	GRASPf_RC	0,0003	1,53	20
(20 instâncias)	VNSf_RC	-0,0003	$1,\!47$	20
SLM_P	GRASPf_RC	0,00	1,5	3
(3 instâncias)	VNSf_RC	0,00	$1,\!5$	3

Tabela 6.7: Qualidade relativa das heurísticas no tempo tg para as instâncias proporcionais (w = 2).

Classe	Algoritmo	drpm	cm	melhor
ORM_P	GRASPf_RC	-0,0012	1,47	39
(40 instâncias)	VNSf_RC	0,0012	1,53	38
GRM_P	GRASPf_RC	0,0004	1,55	20
(20 instâncias)	VNSf_RC	-0,0004	$1,\!45$	20
SLM_P	GRASPf_RC	-0,031	1,00	3
(3 instâncias)	VNSf_RC	0,031	2,00	1

Tabela 6.8: Qualidade relativa das heurísticas no tempo tg para as instâncias proporcionais (w = 5).

Analisando-se as tabelas do tempo tg, ocorreu uma pequena melhora dos resultados obtidos pelo VNSf_RC em relação ao GRASPf_RC nas medidas drpm e cm, comparando-se com os tempos de execução anteriores (tp e ti). Nas

Classe	Algoritmo	drpm	cm	melhor
ORM_P	GRASPf_RC	-0,006	1,44	40
(40 instâncias)	VNSf_RC	0,006	1,56	39
GRM_P	GRASPf_RC	0,0002	1,53	20
(20 instâncias)	VNSf_RC	-0,0002	$1,\!47$	20
SLM_P	GRASPf_RC	-0,14	1,00	3
(3 instâncias)	VNSf_RC	$0,\!14$	2,00	0

Tabela 6.9: Qualidade relativa das heurísticas no tempo tg para as instâncias proporcionais (w = 10).

medidas drpm e cm, GRASPf_RC foi melhor do que VNSf_RC nos mesmos quatro grupos de instâncias: ORM_P (w=5 e w=10) e SLM_P (w=5 e w=10). Na medida melhor, das 189 instâncias testadas, GRASPf_RC (resp. VNSf_RC) obteve o menor valor em 183 problemas (resp. 179 problemas). Quando aumenta-se o tempo de execução, a tendência é de que, os algoritmos apresentem praticamente os mesmos resultados, convergindo para as mesmas soluções na maioria das instâncias testadas.

Sejam agora os resultados obtidos pelas heurísticas nas instâncias não proporcionais nos tempos tp, ti e tg (Tabelas 6.10 a 6.12).

Classe	Algoritmo	drpm	cm	melhor
ORM_NP	GRASPf_RC	0,005	1,56	36
(40 instâncias)	VNSf_RC	-0,005	1,44	37
GRM_NP	GRASPf_RC	0,006	1,55	19
(20 instâncias)	VNSf_RC	-0,006	$1,\!45$	20

Tabela 6.10: Qualidade relativa das heurísticas no tempo tp para as instâncias não proporcionais.

Classe	Algoritmo	drpm	cm	melhor
ORM_NP	GRASPf_RC	0,004	1,57	32
(40 instâncias)	VNSf_RC	-0,004	1,43	40
GRM_NP	GRASPf_RC	-0,002	1,48	20
(20 instâncias)	VNSf_RC	0,002	1,52	17

Tabela 6.11: Qualidade relativa das heurísticas no tempo ti para as instâncias não proporcionais.

Classe	Algoritmo	drpm	cm	melhor
ORM_NP	GRASPf_RC	0,004	1,60	33
(40 instâncias)	VNSf_RC	-0,004	1,40	40
GRM_NP	GRASPf_RC	-0,002	1,45	19
(20 instâncias)	VNSf_RC	0,002	1,55	18

Tabela 6.12: Qualidade relativa das heurísticas no tempo tg para as instâncias não proporcionais.

Analisando-se os resultados no menor tempo de execução (tp), em média, VNSf_RC apresentou resultados melhores do que GRASPf_RC nas medidas

drpm e cm em ambas as classes. Na medida melhor, das 60 instâncias testadas, GRASPf_RC (resp. VNSf_RC) obteve o menor valor em 55 problemas (resp. 57 problemas). Aumentando-se o tempo de execução dos algoritmos (tempo ti), o VNSf_RC continua sendo melhor na classe ORM_NP, porém, apresenta resultados piores do que o GRASPf_RC na classe GRM_NP. Na medida melhor, dos 60 problemas, GRASPf_RC (resp. VNSf_RC) obteve o menor valor em 52 problemas (resp. 57 problemas). Por último, no maior tempo de execução (tg), as heurísticas mantiveram o mesmo padrão de comportamento do tempo ti nas medidas drpm e cm. Na medida melhor, dos 60 problemas, GRASPf_RC (resp. VNSf_RC) obteve o menor valor em 52 problemas (resp. 58 problemas).

6.3 Tempo para Atingir um Valor Alvo

Esta seção compara as heurísticas através de gráficos que mostram a distribuição de probabilidade empírica da variável aleatória tempo gasto para encontrar um valor alvo. Como explicado na Seção 4.5.2, primeiramente fixa-se o valor alvo e faz-se 200 execuções independentes para cada heurística. Em cada execução, termina-se o algoritmo quando uma solução de valor menor ou igual ao valor alvo é encontrada. O i-ésimo menor tempo de execução é associado à probabilidade $prob_i = (i - 1/2)/200$ para i = 1, 2, ..., 200. Através desses gráficos, pode-se comparar experimentalmente diferentes algoritmos aleatórios ou diferentes versões do mesmo algoritmo aleatório [1].

As seguintes instâncias proporcionais e não proporcionais, com seus respectivos valores alvo entre parênteses, foram avaliadas: ORM_P18 (5990) para w=2, ORM_P30 (7530) para w=5, ORM_P20 (10600) para w=10, GRM_NP17 (7370) e ORM_NP37 (6195). Instâncias maiores foram escolhidas porque nesses problemas os algoritmos apresentaram diferenças significativas. Executando-se as heurísticas em instâncias menores, em geral, as curvas de ambas se equivalem, como mostra a Figura 6.1 (instância GRM_P5 com w=5 e valor alvo 8379). Pelo gráfico, em um tempo inferior à 3,5 segundos, as heurísticas encontram um valor menor ou igual ao alvo 8379 com 100% de probabilidade.

Analisando-se as instâncias proporcionais maiores, no problema ORM_P18 com w=2 (Figura 6.2), a probabilidade de encontrar uma solução com valor pelo menos tão bom quanto o valor alvo 5990 aumenta do GRASPf_RC para o VNSf_RC. A probabilidade de encontrar o valor alvo em menos de 20 segundos é aproximadamente 90% para o VNSf_RC e aproximadamente 50% para o GRASPf_RC.

Quando aumenta-se o fator w nas instâncias proporcionais, o GRASPf_RC é, em geral, superior ao VNSf_RC, como mostram as Figuras 6.3 e 6.4. No primeiro (resp. segundo) gráfico, a probabilidade de encontrar o

Figura 6.1: Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 8379 para a instância GRM_P5 (w = 5).

Figura 6.2: Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 5990 para a instância ORM_P18 (w=2).

valor alvo em menos de 250 segundos (resp. 95 segundos) é de 100% para o GRASPf_RC e de aproximadamente 85% (resp. 64%) para o VNSf_RC.

Figura 6.3: Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 7530 para a instância ORM_P30 (w=5).

Figura 6.4: Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 10600 para a instância ORM-P20 (w=10).

Analisando-se agora as duas instâncias não proporcionais testadas, observou-se que, GRASPf_RC é superior ao VNSf_RC no problema GRM_NP17 e que, VNSf_RC é superior ao GRASPf_RC na instância ORM_NP37. Na Figura 6.5, a probabilidade de encontrar o valor alvo em menos de 100 segun-

dos é de aproximadamente 90% para o GRASPf_RC e de aproximadamente 71% para o VNSf_RC, enquanto que, na Figura 6.6, um valor menor ou igual ao alvo 6195 é encontrado em um tempo inferior à 100 segundos pelo VNSf_RC e GRASPf_RC com 95% e 45% de probabilidade, respectivamente.

Figura 6.5: Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 7370 para a instância GRM_NP17.

Figura 6.6: Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 6195 para a instância ORM_NP37.

6.4 Soluções Ótimas e Passo de Pós-Otimização

O modelo baseado em árvore geradora mínima restrita por grau possibilitou a obtenção de soluções ótimas para 49 das 189 instâncias proporcionais testadas, como mostram as Tabelas 6.13 e 6.14. As colunas indicam o nome do problema (Instância), o número de vértices do grafo (n), o número de arestas do grafo (|E|), o número de facilidades a serem instaladas (p), o valor da solução ótima do problema (F_O) , o tempo gasto em segundos para encontrar a solução ótima (Tempo (s)) e o número de nós explorados pelo algoritmo branch and bound (Nós).

Observando-se as Tabelas 6.13 e 6.14, pode-se notar que a solução ótima foi encontrada somente para instâncias proporcionais relativamente pequenas em termos de número de vértices e facilidades a serem instaladas, o que mostra a dificuldade para a resolução exata de instâncias até mesmo menores. Gastouse mais de oito dias de tempo de processamento para encontrar a solução ótima da instância ORM_P27 (w=2) e quase dez dias de tempo de processamento para encontrar a solução ótima da instância GRM_P12 (w=2). O problema ORM_P35 (w=2) não foi resolvido devido à falta de memória. A solução ótima do problema ORM_P12 com w=2 (instância com asterisco na Tabela 6.13) foi encontrada inicializando-se o resolvedor de programação linear inteira com o valor da solução obtida pelas heurísticas GRASPf_RC e VNSf_RC no tempo tg (7074). Mesmo utilizando o valor da solução obtida pelas heurísticas como limite inicial, gastou-se aproximadamente três dias de tempo de processamento para encontrar a solução ótima do problema.

A obtenção de soluções ótimas para esses problemas possibilitou realizar comparações em termos absolutos com as heurísticas. Para cada instância, a melhor solução obtida pelo GRASPf_RC e pelo VNSf_RC em cinco execuções com o tempo limitado a tg (em segundos) será utilizada para a comparação com a solução ótima. Para as instâncias em que não se conhece o ótimo, a melhor solução encontrada pelo algoritmo GRASPf_RC ou pela heurística VNSf_RC será a melhor solução conhecida. As Tabelas 6.15 a 6.25 apresentam esses resultados para as instâncias proporcionais e não proporcionais, onde as colunas F_G^* e F_V^* correspondem ao valor da melhor solução encontrada pelos algoritmos GRASPf_RC e VNSf_RC, respectivamente. As colunas ${}^*_{G} = 100 \times \frac{F_G^* - F_O}{F_O}$ e ${}^*_{V} = 100 \times \frac{F_V^* - F_O}{F_O}$ indicam, respectivamente, o desvio relativo percentual do valor das soluções obtidas pelos algoritmos GRASPf_RC e VNSf_RC em relação ao valor ótimo de cada instância proporcional. Os valores em negrito representam o melhor resultado obtido pelo GRASPf_RC ou VNSf_RC nas instâncias em que não ocorreram empates.

Comparando-se a qualidade das soluções e os tempos de processamento do algoritmo exato (Tabelas 6.13 e 6.14) e das heurísticas (Tabelas 6.15

a 6.20) nas instâncias proporcionais, observa-se que, em poucos segundos, o GRASPf_RC e o VNSf_RC encontraram a solução ótima na maioria das instâncias testadas, enquanto o algoritmo exato gastou horas ou até mesmo dias de tempo de processamento para encontrá-la. Porém, em alguns problemas como, por exemplo, GRM_P1 e ORM_P27 (w=2), as heurísticas não conseguiram encontrar a solução ótima.

	Instância	n	E	p	F_O	Tempo (s)	Nós
	ORM_P1	100	198	5	6443	1.072,39	59.893
	ORM_P2	100	193	10	5228	$4.792,\!11$	140.621
	ORM_P3	100	198	10	5368	$9.366,\!33$	372.665
	ORM_P4	100	196	20	5123	108.305,75	5.477.384
	ORM_P6	200	786	5	8180	58.447,19	1.016.864
	ORM_P7	200	779	10	6217	166.072,09	2.098.362
w = 2	ORM_P11	300	1.772	5	7855	$5.072,\!67$	22.906
	ORM_P12*	300	1.758	10	7074	266.225,22	910.891
	ORM_P16	400	3.153	5	8292	3.843,13	2.350
	ORM_P17	400	3.142	10	7279	40.988,16	64.417
	ORM_P21	500	4.909	5	9272	10.817,77	9.453
	ORM_P22	500	4.896	10	8839	169.399,73	209.789
	ORM_P26	600	7.068	5	10022	41.627,77	45.071
	ORM_P27	600	7.072	10	8553	720.582,59	460.940
	ORM_P31	700	9.601	5	10185	102.431,89	50.702
	ORM_P1	100	198	5	7184	1.599,26	54.990
	ORM_P2	100	193	10	6572	28.168,31	1.067.082
	ORM_P3	100	198	10	6776	76.090,34	1.749.654
w = 5	ORM _ P11	300	1.772	5	8062	$14.966,\!63$	86.414
	ORM_P16	400	3.153	5	8458	$10.551,\!84$	3.675
	ORM_P21	500	4.909	5	9473	54.611,31	94.832
	ORM_P26	600	7.068	5	10169	179.345,39	237.600
	ORM_P1	100	198	5	8146	1.310,67	33.641
	ORM_P2	100	193	10	7706	7.315,97	219.336
w = 10	ORM_P3	100	198	10	8265	73.774,47	1.732.743
	ORM _ P11	300	1.772	5	8383	29.226,83	56.750
	ORM_P16	400	3.153	5	8728	$56.704,\!55$	16.187
	ORM_P21	500	4.909	5	9808	72.600,92	47.605

Tabela 6.13: Valor da solução ótima para algumas instâncias da classe proporcional ORM_P ($w=2,\,w=5$ e w=10).

Comparando-se as heurísticas entre si (Tabelas 6.15 a 6.25), observa-se que as mesmas obtiveram praticamente os mesmos resultados no maior tempo de execução (tg). Nas instâncias proporcionais (189 problemas), GRASPf_RC e VNSf_RC encontraram os mesmos resultados em 173 instâncias. GRASPf_RC foi superior ao VNSf_RC em dez instâncias e VNSf_RC foi melhor do que GRASPf_RC em seis instâncias. Nas instâncias não proporcionais (60 problemas), GRASPf_RC e VNSf_RC encontraram os mesmos resultados em

49 instâncias. GRASPf_RC foi superior ao VNSf_RC em duas instâncias e VNSf_RC foi melhor do que GRASPf_RC em oito instâncias.

Em relação às 49 instâncias proporcionais cujo valor ótimo é conhecido, os resultados apresentados pelas heurísticas são idênticos. GRASPf_RC e VNSf_RC conseguiram encontrar a solução ótima em 42 problemas. Nas sete instâncias restantes, as heurísticas ficaram, no máximo, a 0.54% do valor ótimo em GRM_P10 com w=2.

Analisando-se o conjunto de facilidades abertas encontradas na solução ótima e comparando-se com as facilidades abertas encontradas pelas heurísticas nas sete instâncias, foi observado que, em algumas delas, as mesmas facilidades foram abertas pelo algoritmo exato e pela heurística, mas a árvore de Steiner obtida pela heurística Prim ao conectá-las não era ótima. A partir dessas observações, propõe-se então um passo adicional de pós-otimização, que consiste em utilizar um algoritmo exato para o problema de Steiner usando como entrada as facilidades abertas na melhor solução encontrada pelos algoritmos GRASPf_RC e VNSf_RC após todas as iterações terem sido realizadas.

	Instância	n	E	p	F_O	Tempo (s)	Nós
	GRM _ P1	100	4.950	5	6391	6.496,75	84.575
	GRM_P2	100		10	5475	45.788,98	154.709
	GRM _ P3	100		15	5157	33.666,48	95.137
w = 2	GRM_P4	100		20	5246	269.193,56	1.559.511
	GRM_P10	150	11.175	5	11413	$15.056,\!66$	17.124
	GRM_P11	150		10	9823	83.297,28	51.512
	GRM_P12	150		15	8867	856.170,36	361.340
	GRM_P1	100	4.950	5	7036	1.383,08	2.104
	GRM_P2	100		10	6662	35.836,39	86.685
	GRM_P3	100		15	6923	19.166,23	57.150
w = 5	GRM_P4	100		20	7602	$20.264,\!56$	175.112
	GRM_P10	150	11.175	5	12202	7.655,94	5.596
	GRM_P11	150		10	11086	$79.751,\!42$	53.927
	GRM_P12	150		15	10767	319.858,98	187.331
	GRM_P1	100	4.950	5	7884	1.466,13	2.613
	GRM_P2	100		10	8580	$22.530,\!55$	76.213
	GRM_P3	100		15	9793	2.949,95	7.896
w = 10	GRM_P4	100		20	11487	$16.681,\!17$	191.562
	GRM_P10	150	11.175	5	13083	8.693,39	6.717
	GRM _ P11	150		10	13040	28.675,19	21.631
	GRM_P12	150		15	13845	373.131,34	312.704

Tabela 6.14: Valor da solução ótima para algumas instâncias da classe proporcional GRM_P (w=2, w=5 e w=10).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_V$
ORM_P1	100	5	70,00	6443	6443	0,00	$\frac{1}{6443}$	0,00
ORM_P2	100	10	70,00	5228	5228	0,00	5228	0,00
ORM_P3	100	10	70,00	5368	5368	0,00	5368	0,00
ORM_P4	100	20	70,00	5123	5123	0,00	5123	0,00
ORM_P5	100	33	70,00		3663		3663	
ORM_P6	200	5	70,00	8180	8185	0,06	8185	0,06
ORM_P7	200	10	70,00	6217	6217	0,00	6217	0,00
ORM_P8	200	20	70,00		5865		5865	,
ORM_P9	200	40	70,00		4699		4699	
ORM_P10	200	67	110,60		3457		3457	
ORM_P11	300	5	70,00	7855	7855	0,00	7855	0,00
ORM_P12	300	10	70,00	7074	7074	0,00	7074	0,00
ORM_P13	300	30	70,00		5539		5539	
ORM_P14	300	60	136,50		4981		4981	
ORM_P15	300	100	565,60		4477		4477	
ORM_P16	400	5	70,00	8292	8292	0,00	8292	0,00
ORM_P17	400	10	70,00	7279	7279	0,00	7279	0,00
ORM_P18	400	40	70,00		5982		5984	
ORM_P19	400	80	439,60		4787		4787	
ORM_P20	400	133	1.397,20		4860		4860	
ORM_P21	500	5	70,00	9272	9272	0,00	9272	0,00
ORM_P22	500	10	70,00	8839	8839	0,00	8839	0,00
ORM_P23	500	50	105,70		5799		5799	
ORM_P24	500	100	1.129,80		4983		4982	
ORM_P25	500	167	3.789,10		4808		4808	
ORM_P26	600	5	70,00	10022	10022	0,00	10022	0,00
ORM_P27	600	10	70,00	8553	8555	0,02	8555	0,02
ORM_P28	600	60	223,30		5599		5598	
ORM_P29	600	120	2.313,50		5078		5079	
ORM_P30	600	200	6.317,50		5133		5133	
ORM_P31	700	5	70,00	10185	10185	0,00	10185	0,00
ORM_P32	700	10	70,00		9509		9509	
ORM_P33	700	70	225,40		5920		5919	
ORM_P34	700	140	3.195,50		5099		5099	
ORM_P35	800	5	70,00		10485		10485	
ORM_P36	800	10	70,00		10157		10157	
ORM_P37	800	80	504,70		6403		6402	
ORM_P38	900	5	70,00		11156		11156	
ORM_P39	900	10	70,00		9591		9591	
ORM_P40	900	90	1.268,40		6438		6437	

Tabela 6.15: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe ORM_P (w=2).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_V$
ORM_P1	100	5	70,00	7184	7184	0,00	7184	0,00
ORM_P2	100	10	70,00	6572	6572	0,00	6572	0,00
ORM_P3	100	10	70,00	6776	6776	0,00	6776	0,00
ORM_P4	100	20	70,00		6944		6944	
ORM_P5	100	33	70,00		5292		5292	
ORM_P6	200	5	70,00		8662		8662	
ORM_P7	200	10	70,00		6977		6967	
ORM_P8	200	20	70,00		7203		7203	
ORM_P9	200	40	83,30		6436		6436	
ORM_P10	200	67	94,50		5004		5004	
ORM_P11	300	5	70,00	8062	8062	0,00	8062	0,00
ORM_P12	300	10	70,00		7666		7666	
ORM_P13	300	30	114,80		6693		6693	
ORM_P14	300	60	277,90		6632		6632	
ORM_P15	300	100	441,00		6363		6363	
ORM_P16	400	5	70,00	8458	8458	0,00	8458	0,00
ORM_P17	400	10	70,00		7676		7676	
ORM_P18	400	40	304,50		7259		7259	
ORM_P19	400	80	917,00		6537		6537	
ORM_P20	400	133	1.570,10		7256		7258	
ORM_P21	500	5	70,00	9473	9473	0,00	9473	0,00
ORM_P22	500	10	70,00		9219		9219	
ORM_P23	500	50	954,80		7020		7020	
ORM_P24	500	100	2.519,30		6648		6648	
ORM_P25	500	167	3.541,30		6897		6897	
ORM_P26	600	5	70,00	10169	10169	0,00	10169	0,00
ORM_P27	600	10	70,00		8893		8893	
ORM_P28	600	60	925,40		6791		6791	
ORM_P29	600	120	4.786,60		6739		6739	
ORM_P30	600	200	9.401,70		7485		7486	
ORM_P31	700	5	70,00		10332		10332	
ORM_P32	700	10	70,00		9821		9821	
ORM_P33	700	70	2.183,30		7224		7224	
ORM_P34	700	140	7.136,50		6771		6771	
ORM_P35	800	5	70,00		10610		10610	
ORM_P36	800	10	70,00		10452		10452	
ORM_P37	800	80	4.980,50		7897		7897	
ORM_P38	900	5	70,00		11300		11300	
ORM_P39	900	10	70,00		9839		9839	
ORM_P40	900	90	7.820,40		7836		7836	

Tabela 6.16: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe ORM_P (w=5).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_{V}$
ORM_P1	100	5	70,00	8146	8146	0,00	8146	0,00
ORM_P2	100	10	70,00	7706	7706	0,00	7706	0,00
ORM_P3	100	10	70,00	8265	8265	0,00	8265	0,00
ORM_P4	100	20	70,00		9135		9135	
ORM_P5	100	33	70,00		7485		7485	
ORM_P6	200	5	70,00		9387		9387	
ORM_P7	200	10	70,00		7878		7878	
ORM_P8	200	20	70,00		8632		8632	
ORM_P9	200	40	70,00		8174		8174	
ORM_P10	200	67	70,00		6894		6894	
ORM_P11	300	5	70,00	8383	8383	0,00	8383	0,00
ORM_P12	300	10	70,00		8426		8426	
ORM_P13	300	30	70,00		7679		7679	
ORM_P14	300	60	372,40		8505		8505	
ORM_P15	300	100	593,60		8864		8864	
ORM_P16	400	5	70,00	8728	8728	0,00	8728	0,00
ORM_P17	400	10	70,00		8317		8317	
ORM_P18	400	40	$197,\!40$		8547		8547	
ORM_P19	400	80	1.267,70		8313		8313	
ORM_P20	400	133	$1.599,\!50$		10386		10397	
ORM _ P21	500	5	70,00	9808	9808	0,00	9808	0,00
ORM_P22	500	10	70,00		9776		9776	
ORM _ P23	500	50	679,00		8359		8359	
ORM_P24	500	100	$2.735,\!60$		8548		8548	
ORM_P25	500	167	$3.761,\!80$		9610		9610	
ORM_P26	600	5	70,00		10414		10414	
ORM _ P27	600	10	70,00		9317		9317	
ORM_P28	600	60	2.317,00		8077		8077	
ORM_P29	600	120	4.769,10		8552		8552	
ORM_P30	600	200	9.440,90		10735		10735	
ORM_P31	700	5	70,00		10556		10556	
ORM_P32	700	10	70,00		10304		10304	
ORM _ P33	700	70	3.476,20		8666		8666	
ORM_P34	700	140	5.868,80		8551		8551	
ORM_P35	800	5	70,00		10811		10811	
ORM _ P36	800	10	70,00		10898		10898	
ORM_P37	800	80	6.720,70		9575		9575	
ORM_P38	900	5	70,00		11525		11525	
ORM_P39	900	10	70,00		10220		10220	
ORM _ P40	900	90	14.610,40		9380		9380	

Tabela 6.17: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe ORM_P (w=10).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_V$
GRM_P1	100	5	70,00	6391	6403	0,19	6403	0,19
GRM_P2	100	10	70,00	5475	5489	$0,\!26$	5489	0,26
GRM_P3	100	15	70,00	5157	5157	0,00	5157	0,00
GRM_P4	100	20	70,00	5246	5246	0,00	5246	0,00
GRM_P5	100	25	70,00		5403		5403	
GRM_P6	100	30	70,00		5580		5580	
GRM_P7	100	35	70,00		5766		5766	
GRM_P8	100	40	70,00		5961		5961	
GRM_P9	100	50	70,00		6364		6364	
GRM_P10	150	5	70,00	11413	11475	$0,\!54$	11475	$0,\!54$
GRM_P11	150	10	70,00	9823	9862	0,40	9862	0,40
GRM_P12	150	15	70,00	8867	8910	0,48	8910	0,48
GRM_P13	150	20	70,00		8352		8352	
GRM_P14	150	25	70,00		8174		8174	
GRM_P15	150	30	70,70		8133		8133	
GRM_P16	150	35	197,40		8243		8243	
GRM_P17	150	40	182,70		8372		8372	
GRM_P18	150	45	270,20		8530		8530	
GRM_P19	150	50	333,20		8701		8701	
GRM_P20	150	60	328,30		9080		9080	

Tabela 6.18: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe GRM_P (w=2).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_V$
GRM_P1	100	5	70,00	7036	7036	0,00	7036	0,00
GRM_P2	100	10	70,00	6662	6662	0,00	6662	0,00
GRM_P3	100	15	70,00	6923	6923	0,00	6923	0,00
GRM_P4	100	20	70,00	7602	7602	0,00	7602	0,00
GRM_P5	100	25	70,00		8379		8379	
GRM_P6	100	30	70,00		9178		9178	
GRM_P7	100	35	70,00		9984		9984	
GRM_P8	100	40	70,00		10802		10802	
GRM_P9	100	50	70,00		12447		12447	
GRM_P10	150	5	70,00	12202	12202	0,00	12202	0,00
GRM_P11	150	10	70,00	11086	11086	0,00	11086	0,00
GRM_P12	150	15	70,00	10767	10767	0,00	10767	0,00
GRM_P13	150	20	70,00		10902		10902	
GRM_P14	150	25	82,60		11293		11293	
GRM_P15	150	30	149,10		11874		11874	
GRM_P16	150	35	212,80		12539		12539	
GRM_P17	150	40	197,40		13276		13276	
GRM_P18	150	45	221,20		14036		14036	
GRM_P19	150	50	426,30		14814		14814	
GRM_P20	150	60	386,40		16422		16422	

Tabela 6.19: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe GRM_P (w=5).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_V$
GRM _ P1	100	5	70,00	7884	7884	0,00	7884	0,00
GRM_P2	100	10	70,00	8580	8580	0,00	8580	0,00
GRM_P3	100	15	70,00	9793	9793	0,00	9793	0,00
GRM_P4	100	20	70,00	11487	11487		11487	
GRM_P5	100	25	70,00		13273		13273	
GRM_P6	100	30	70,00		15079		15079	
GRM_P7	100	35	70,00		16909		16909	
GRM_P8	100	40	70,00		18754		18754	
GRM_P9	100	50	70,00		22507		22507	
GRM_P10	150	5	70,00	13083	13083	0,00	13083	0,00
GRM_P11	150	10	70,00	13040	13040	0,00	13040	0,00
GRM_P12	150	15	70,00	13845	13845	0,00	13845	0,00
GRM_P13	150	20	70,00		14985		14985	
GRM_P14	150	25	142,80		16355		16355	
GRM_P15	150	30	119,70		17919		17919	
GRM_P16	150	35	168,00		19579		19579	
GRM_P17	150	40	157,50		21317		21317	
GRM_P18	150	45	211,40		23095		23095	
GRM_P19	150	50	247,80		24895		24895	
GRM_P20	150	60	252,70		28566		28566	

Tabela 6.20: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe GRM_P (w = 10).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_V$
SLM_P1	700	233	10.581,90		4851		4851	
SLM_P2	800	267	16.639,00		5317		5317	
SLM_P3	900	300	36.101,80		5409		5409	

Tabela 6.21: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe SLM_P (w=2).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_V$
SLM_P1	700	233	12.399,80		6961		6961	
SLM_P2	800	267	24.776,50		7840		7841	
SLM_P3	900	300	35.674,10		7880		7885	

Tabela 6.22: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe SLM_P (w = 5).

Instância	n	p	tg(s)	F_O	F_G^*	$\%_G$	F_V^*	$\%_V$
SLM_P1	700	233	12.350,10		9767		9788	
SLM_P2	800	267	33.688,90		11304		11319	
SLM_P3	900	300	51.396,10		11273		11289	

Tabela 6.23: Comparações absolutas entre as heurísticas para as instâncias proporcionais da classe SLM_P (w = 10).

Instância	n	p	tg(s)	F_G^*	F_V^*
ORM_NP1	100	5	70,00	6447	$\frac{-v}{6447}$
ORM_NP2	100	10	70,00	5196	5196
ORM_NP3	100	10	70,00	5235	5235
ORM_NP4	100	20	70,00	4935	4930
ORM_NP5	100	33	70,00	3377	3377
ORM_NP6	200	5	70,00	8098	8098
ORM_NP7	200	10	70,00	6153	6153
ORM_NP8	200	20	70,00	5627	5623
ORM_NP9	200	40	70,00	4364	4364
ORM_NP10	200	67	110,60	3362	3362
ORM_NP11	300	5	70,00	7832	7832
ORM_NP12	300	10	70,00	6979	6979
ORM_NP13	300	30	70,00	5342	5342
ORM_NP14	300	60	136,50	4781	4781
ORM_NP15	300	100	565,60	4120	4120
ORM_NP16	400	5	70,00	8293	8293
ORM_NP17	400	10	70,00	7246	7246
ORM_NP18	400	40	70,00	5838	5835
ORM_NP19	400	80	439,60	4546	4546
ORM_NP20	400	133	$1.397,\!20$	4428	4428
ORM_NP21	500	5	70,00	9238	9238
ORM_NP22	500	10	70,00	8800	8800
ORM_NP23	500	50	105,70	5629	5628
ORM_NP24	500	100	1.129,80	4678	4678
ORM_NP25	500	167	3.789,10	4538	4538
ORM_NP26	600	5	70,00	9996	9996
ORM_NP27	600	10	70,00	8514	8514
ORM_NP28	600	60	223,30	5442	5438
ORM_NP29	600	120	2.313,50	4801	4801
ORM_NP30	600	200	$6.317,\!50$	4700	4700
ORM_NP31	700	5	70,00	10158	10158
ORM_NP32	700	10	70,00	9474	9474
ORM_NP33	700	70	$225,\!40$	5723	5718
ORM_NP34	700	140	$3.195,\!50$	4759	4759
ORM_NP35	800	5	70,00	10463	10463
ORM_NP36	800	10	70,00	10116	10116
ORM_NP37	800	80	504,70	6190	6189
ORM_NP38	900	5	70,00	11129	11129
ORM_NP39	900	10	70,00	9551	9551
ORM_NP40	900	90	1.268,40	6213	6213

Tabela 6.24: Comparações absolutas entre as heurísticas para as instâncias não proporcionais da classe ORM_NP.

Instância	n	p	tg(s)	F_G^*	F_V^*
GRM_NP1	100	5	70,00	6156	6156
GRM_NP2	100	10	70,00	5185	5185
GRM_NP3	100	15	70,00	4825	4825
GRM_NP4	100	20	70,00	4720	4720
GRM_NP5	100	25	70,00	4675	4675
GRM_NP6	100	30	70,00	4675	4675
GRM_NP7	100	35	70,00	4685	4685
GRM_NP8	100	40	70,00	4717	4717
GRM_NP9	100	50	70,00	4806	4806
GRM_NP10	150	5	70,00	11334	11334
GRM_NP11	150	10	70,00	9710	9710
GRM_NP12	150	15	70,00	8751	8759
GRM_NP13	150	20	70,00	8135	8135
GRM_NP14	150	25	70,00	7719	7719
GRM_NP15	150	30	70,70	7527	7527
GRM_NP16	150	35	197,40	7427	7431
GRM_NP17	150	40	182,70	7362	7360
GRM_NP18	150	45	270,20	7341	7341
GRM_NP19	150	50	333,20	7346	7346
GRM_NP20	150	60	328,30	7405	7405

Tabela 6.25: Comparações absolutas entre as heurísticas para as instâncias não proporcionais da classe GRM_NP.

6.4.1 Passo de Pós-Otimização

O algoritmo de pós-otimização poderia ser uma heurística de busca local ou mesmo uma heurística baseada em uma metaheurística para o problema de Steiner. Um algoritmo exato foi utilizado porque o número de terminais é relativamente pequeno em comparação com instâncias testadas na literatura para o problema de Steiner [61], não demandando, assim, um custo computacional alto. Além disso, obtém-se também um parâmetro para testar a eficiência da heurística construtiva Prim escolhida para conectar as p facilidades abertas. A pós-otimização é executada por um algoritmo do tipo $branch\ and\ ascent\ [61]$.

As Tabelas 6.26 a 6.44 apresentam a melhor solução encontrada pelos algoritmos aplicando-se o branch and ascent à solução obtida em cada uma das cinco execuções das heurísticas limitadas ao tempo tg. As heurísticas GRASPf_RC e VNSf_RC acrescidas do procedimento de pós-otimização serão denominadas, respectivamente, de GRASPf_RC_PO e VNSf_RC_PO. As heurísticas apresentaram os mesmos resultados para as classes de instâncias GRM_P (w=2, w=5 e w=10) e, por isso, os resultados serão mostrados em uma mesma tabela. A coluna F_P indica o valor da função objetivo relacionado ao custo de atendimento dos usuários realizado pelas p facilidades

abertas referente a melhor solução encontrada pelos algoritmos; A coluna F_T indica o valor da função objetivo relacionado ao custo de interconexão das facilidades abertas referente a melhor solução encontrada pelos algoritmos; F_{OT} representa o valor da árvore de Steiner obtida pelo algoritmo exato no passo de pós-otimização; Tempo (s) indica o tempo gasto em segundos na execução do algoritmo exato e F_{PO} representa o valor da melhor solução encontrada pelas heurísticas, levando-se em consideração, os possíveis ganhos obtidos com a pós-otimização. Os valores em negrito nas colunas F_T e F_{OT} representam uma melhoria na árvore de Steiner obtida pela pós-otimização e, conseqüentemente, uma melhoria na melhor solução encontrada pelos algoritmos (coluna F_{PO}).

A coluna Tempo (s) indica que o algoritmo exato do passo de pósotimização executa em menos de um segundo para todas as instâncias testadas. A escolha de Prim se mostrou bastante acertada para integrar o algoritmo de busca local utilizado pelas heurísticas, pois na grande maioria dos problemas, a heurística construtiva conseguiu encontrar soluções com valor ótimo obtido pelo algoritmo branch and ascent.

Adicionando-se o passo de pós-otimização, as heurísticas encontraram a solução ótima nas instâncias ORM_P27 e GRM_P1 (w=2). Nas instâncias ORM_P6, GRM_P2, GRM_P10, GRM_P11 e GRM_P12 (w=2), em que a solução ótima é conhecida e as heurísticas GRASPf_RC e VNSf_RC não conseguiram encontrar o ótimo, houve uma melhoria somente na instância GRM_P10, com o desvio relativo percentual caindo de 0,54% para 0,46%. Nessas cinco instâncias, GRASPf_RC_PO e VNSf_RC_PO ficaram, no máximo, a 0,48% do valor ótimo na instância GRM_P12.

Nos problemas em que não se conhece o ótimo, GRASPf_RC_PO conseguiu melhorar a melhor solução encontrada por GRASPf_RC em 13 instâncias proporcionais: ORM_P23, ORM_P28, ORM_P29, ORM_P33, ORM_P34 e ORM_P37 (w = 2), ORM_P7, ORM_P27 e ORM_P36 (w = 5), ORM_P32 e ORM_P39 (w = 2 e w = 5). Nas instâncias não proporcionais, ocorreram 16 melhorias: ORM_P8, ORM_P14, ORM_P16, ORM_P18, ORM_P19, ORM_P22, ORM_P23, ORM_P27, ORM_P28, ORM_P29, ORM_P33, ORM_P36, ORM_P37 e ORM_P40 (w = 2), GRM_P1 e GRM_P10 (w = 2). Já o VNSf_RC_PO conseguiu melhorar a melhor solução encontrada pelo VNSf_RC em 12 instâncias proporcionais: ORM_P23, ORM_P28, ORM_P29, ORM_P33 e ORM_P37 (w = 2), ORM_P7, ORM_P27 e ORM_P36 (w=5), ORM_P32 e ORM_P39 (w=2 e w=5). Nas instâncias não proporcionais, ocorreram 16 melhorias: ORM_P14, ORM_P16, ORM_P18, ORM_P19, ORM_P22, ORM_P23, ORM_P27, ORM_P28, ORM_P29, ORM_P33, ORM_34, ORM_P36, ORM_P37 e ORM_P40 (w = 2), GRM_P1 e GRM_P10 (w = 2). Com a pós-otimização, das 189 (resp. 60) instâncias proporcionais (resp. não proporcionais) testadas, GRASPf_RC_PO e VNSf_RC_PO encontraram os mesmos resultados em 174 (resp. 53) instâncias. GRASPf_RC foi superior a VNSf_RC em dez (resp. duas) instâncias e VNSf_RC foi melhor do que GRASPf_RC em cinco (resp. cinco) instâncias.

Instância	F_O	F_G^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
ORM_P1	6443	6443	5891	552	552	0,00	6443
ORM_P2	5228	5228	4224	1004	1004	0,00	5228
ORM_P3	5368	5368	4276	1092	1092	0,00	5368
ORM_P4	5123	5123	3661	1462	1462	0,01	5123
ORM_P5		3663	2269	1394	1394	0,00	3663
ORM_P6	8180	8185	7867	318	318	0,00	8185
ORM_P7	6217	6217	5689	528	528	0,01	6217
ORM_P8		5865	4751	1114	1114	0,01	5865
ORM_P9		4699	3285	1414	1414	0,01	4699
ORM_P10		3457	2193	1264	1264	0,00	3457
ORM_P11	7855	7855	7717	138	138	0,01	7855
ORM_P12	7074	7074	6658	416	416	0,01	7074
ORM_P13		5539	4613	926	926	0,02	5539
ORM_P14		4981	3447	1534	1534	0,02	4981
ORM_P15		4477	2781	1696	1696	0,02	4477
ORM_P16	8292	8292	8172	120	120	0,03	8292
ORM_P17	7279	7279	7009	270	270	0,02	7279
ORM_P18		5982	4980	1002	1002	0,03	5982
ORM_P19		4787	3223	1564	1564	0,06	4787
ORM_P20		4860	2828	2032	2032	0,05	4860
ORM_P21	9272	9272	9138	134	134	0,03	9272
ORM_P22	8839	8839	8579	260	260	0,02	8839
ORM_P23		5799	4805	994	992	0,08	5797
ORM_P24		4983	3475	1508	1508	0,09	4983
ORM_P25		4808	2994	1814	1814	0,10	4808
ORM_P26	10022	10022	9924	98	98	0,05	10022
ORM_P27	8553	8555	8329	226	224	0,11	8553
ORM_P28		5599	4653	946	944	0,10	5597
ORM_P29		5079	3497	1582	1580	0,12	5077
ORM_P30		5133	3131	2002	2002	0,11	5133
ORM_P31	10185	10185	10087	98	98	0,05	10185
ORM_P32		9509	9301	208	200	0,16	9501
ORM_P33		5921	4835	1086	1082	0,13	5917
ORM_P34		5100	3608	1492	1490	0,16	5098
ORM_P35		10485	10401	84	84	0,07	10485
ORM_P36		10157	9953	204	204	0,08	10157
ORM_P37		6404	5222	1182	1180	0,18	6402
ORM_P38		11156	11060	96	96	0,18	11156
ORM_P39		9591	9423	168	158	0,11	9581
ORM_P40		6438	5342	1096	1096	0,22	6438

Tabela 6.26: Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe ORM_P (w=2).

Instância	F_O	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
ORM_P1	6443	6443	5891	552	552	0,00	6443
ORM_P2	5228	5228	4224	1004	1004	0,00	5228
ORM_P3	5368	5368	4276	1092	1092	0,00	5368
ORM_P4	5123	5123	3661	1462	1462	0,01	5123
ORM_P5		3663	2269	1394	1394	0,00	3663
ORM_P6	8180	8185	7867	318	318	0,00	8185
ORM_P7	6217	6217	5689	528	528	0,01	6217
ORM_P8		5865	4751	1114	1114	0,01	5865
ORM_P9		4699	3285	1414	1414	0,01	4699
ORM_P10		3457	2193	1264	1264	0,00	3457
ORM_P11	7855	7855	7717	138	138	0,01	7855
ORM_P12	7074	7074	6658	416	416	0,01	7074
ORM_P13		5539	4613	926	926	0,02	5539
ORM_P14		4981	3441	1540	1540	0,02	4981
ORM_P15		4477	2781	1696	1696	0,02	4477
ORM_P16	8292	8292	8172	120	120	0,03	8292
ORM_P17	7279	7279	7009	270	270	0,02	7279
ORM_P18		5984	4980	1004	1004	0,03	5984
ORM_P19		4787	3235	1552	1552	0,06	4787
ORM_P20		4860	2828	2032	2032	0,05	4860
ORM_P21	9272	9272	9138	134	134	0,03	9272
ORM_P22	8839	8839	8579	260	260	0,02	8839
ORM_P23		5799	4797	1002	1000	0,08	5797
ORM_P24		4982	3512	1470	1470	0,09	4982
ORM_P25		4808	2994	1814	1814	0,10	4808
ORM_P26	10022	10022	9924	98	98	0,05	10022
ORM_P27	8553	8555	8329	226	224	0,11	8553
ORM_P28		5598	4652	946	944	0,09	5596
ORM_P29		5079	3491	1588	1586	0,13	5077
ORM_P30		5133	3153	1980	1980	0,11	5133
ORM_P31	10185	10185	10087	98	98	0,05	10185
ORM_P32		9509	9301	208	200	0,16	9501
ORM_P33		5919	4825	1094	1090	0,21	5915
ORM_P34		5099	3583	1516	1516	$0,\!17$	5099
ORM_P35		10485	10401	84	84	0,07	10485
ORM_P36		10157	9953	204	204	0,08	10157
ORM_P37		6402	5186	1216	1214	0,32	6400
ORM_P38		11156	11060	96	96	0,18	11156
ORM_P39		9591	9423	168	158	0,11	9581
ORM_P40		6437	5339	1098	1098	0,22	6437

Tabela 6.27: Resultados da pós-otimização para a heurística VNSf_RC nas instâncias proporcionais da classe ORM_P (w=2).

Instância	F_O	F_G^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
ORM_P1	7184	7184	6059	1125	1125	0,01	7184
ORM_P2	6572	6572	4992	1580	1580	0,00	6572
ORM_P3	6776	6776	5021	1755	1755	0,00	6776
ORM_P4		6944	4549	2395	2395	0,00	6944
ORM_P5		5292	2907	2385	2385	0,00	5292
ORM_P6		8662	7872	790	790	0,00	8662
ORM_P7		6977	5822	1155	1130	0,00	6952
ORM_P8		7203	5148	2055	2055	0,01	7203
ORM_P9		6436	4221	2215	2215	0,00	6436
ORM_P10		5004	3054	1950	1950	0,01	5004
ORM_P11	8062	8062	7717	345	345	0,01	8062
ORM_P12		7666	6796	870	870	0,01	7666
ORM_P13		6693	5238	1455	1455	0,01	6693
ORM_P14		6632	4392	2240	2240	0,00	6632
ORM_P15		6363	3708	2655	2655	0,02	6363
ORM_P16	8458	8458	8188	270	270	0,02	8458
ORM_P17		7676	7021	655	655	0,01	7676
ORM_P18		7259	5444	1815	1815	0,02	7259
ORM_P19		6537	4362	2175	2175	0,03	6537
ORM_P20		7256	3951	3305	3305	0,04	7256
ORM_P21	9473	9473	9138	335	335	0,04	9473
ORM_P22		9219	8594	625	625	0,03	9219
ORM_P23		7020	5325	1695	1695	$0,\!05$	7020
ORM_P24		6648	4418	2230	2230	0,06	6648
ORM_P25		6897	4037	2860	2860	0,07	6897
ORM_P26	10169	10169	9924	245	245	0,00	10169
ORM_P27		8893	8338	555	550	0,05	8888
ORM_P28		6791	5146	1645	1645	0,07	6791
ORM_P29		6739	4694	2045	2045	0,09	6739
ORM_P30		7485	4035	3450	3450	0,12	7485
ORM_P31		10332	10087	245	245	0,04	10332
ORM_P32		9821	9306	515	495	0,16	9801
ORM_P33		7224	5364	1860	1860	0,10	7224
ORM _ P34		6771	4721	2050	2050	0,13	6771
ORM_P35		10610	10405	205	205	0,06	10610
ORM_P36		10452	9972	480	475	0,09	10447
ORM_P37		7897	5772	2125	2125	0,14	7897
ORM_P38		11300	11060	240	240	0,18	11300
ORM_P39		9839	9429	410	405	0,11	9834
ORM _ P40		7836	5891	1945	1945	0,16	7836

Tabela 6.28: Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe ORM_P (w=5).

Instância	F_O	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
ORM_P1	7184	7184	6059	1125	1125	0,01	7184
ORM_P2	6572	6572	4992	1580	1580	0,00	6572
ORM_P3	6776	6776	5021	1755	1755	0,00	6776
ORM_P4		6944	4549	2395	2395	0,00	6944
ORM_P5		5292	2907	2385	2385	0,00	5292
ORM_P6		8662	7872	790	790	0,00	8662
ORM_P7		6977	5822	1155	1130	0,00	6952
ORM_P8		7203	5148	2055	2055	0,01	7203
ORM_P9		6436	4221	2215	2215	0,00	6436
ORM_P10		5004	3054	1950	1950	0,01	5004
ORM_P11	8062	8062	7717	345	345	0,01	8062
ORM_P12		7666	6796	870	870	0,01	7666
ORM_P13		6693	5238	1455	1455	0,01	6693
ORM_P14		6632	4392	2240	2240	0,00	6632
ORM_P15		6363	3708	2655	2655	0,02	6363
ORM_P16	8458	8458	8188	270	270	0,02	8458
ORM_P17		7676	7021	655	655	0,01	7676
ORM_P18		7259	5444	1815	1815	0,02	7259
ORM_P19		6537	4362	2175	2175	0,03	6537
ORM_P20		7258	3893	3365	3365	0,06	7258
ORM_P21	9473	9473	9138	335	335	0,04	9473
ORM_P22		9219	8594	625	625	0,03	9219
ORM_P23		7020	5325	1695	1695	$0,\!05$	7020
ORM_P24		6648	4418	2230	2230	0,06	6648
ORM_P25		6897	4037	2860	2860	0,07	6897
ORM_P26	10169	10169	9924	245	245	0,00	10169
ORM_P27		8893	8333	560	555	0,06	8888
ORM_P28		6791	5146	1645	1645	0,07	6791
ORM_P29		6739	4694	2045	2045	0,09	6739
ORM_P30		7486	4016	3470	3470	0,12	7486
ORM_P31		10332	10087	245	245	0,04	10332
ORM_P32		9821	9306	515	495	0,16	9801
ORM_P33		7224	5374	1850	1850	0,10	7224
ORM_P34		6771	4711	2060	2060	0,13	6771
ORM_P35		10610	10405	205	205	0,06	10610
ORM _ P36		10452	9972	480	475	0,09	10447
ORM_P37		7897	5812	2085	2085	$0,\!14$	7897
ORM_P38		11300	11060	240	240	0,18	11300
ORM_P39		9839	9429	410	405	$0,\!11$	$\boldsymbol{9834}$
ORM _ P40		7836	5891	1945	1945	0,16	7836

Tabela 6.29: Resultados da pós-otimização para a heurística VNSf_RC nas instâncias proporcionais da classe ORM_P (w=5).

Instância	F_O	F_G^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
ORM_P1	8146	8146	6846	1300	1300	0,00	8146
ORM_P2	7706	7706	6606	1100	1100	0,00	7706
ORM_P3	8265	8265	5765	2500	2500	0,00	8265
ORM_P4		9135	5115	4020	4020	0,00	9135
ORM_P5		7485	3345	4140	4140	0,00	7485
ORM_P6		9387	8037	1350	1350	0,00	9387
ORM_P7		7878	6468	1410	1410	0,00	7878
ORM_P8		8632	6692	1940	1940	0,00	8632
ORM_P9		8174	5344	2830	2830	0,01	8174
ORM_P10		6894	3204	3690	3690	0,01	6894
ORM_P11	8383	8383	7753	630	630	0,00	8383
ORM_P12		8426	7046	1380	1380	0,01	8426
ORM_P13		7679	6249	1430	1430	0,00	7679
ORM_P14		8505	5165	3340	3340	0,01	8505
ORM_P15		8864	4024	4840	4840	0,02	8864
ORM_P16	8728	8728	8188	540	540	0,01	8728
ORM_P17		8317	7127	1190	1190	0,01	8317
ORM_P18		8547	6567	1980	1980	0,02	8547
ORM_P19		8313	5013	3300	3300	0,03	8313
ORM_P20		10386	4316	6070	6070	0,04	10386
ORM_P21	9808	9808	9138	670	670	0,04	9808
ORM_P22		9776	8706	1070	1070	0,02	9776
ORM_P23		8359	6179	2180	2180	0,04	8359
ORM_P24		8548	5148	3400	3400	0,00	8548
ORM_P25		9610	4400	5210	5210	0,07	9610
ORM_P26		10414	9924	490	490	0,06	10414
ORM_P27		9317	8557	760	760	0,03	9317
ORM_P28		8077	6037	2040	2040	0,04	8077
ORM_P29		8552	5252	3300	3300	0,07	8552
ORM_P30		10735	4445	6290	6290	0,11	10735
ORM_P31		10556	10126	430	430	0,04	10556
ORM _ P32		10304	9434	870	870	$0,\!05$	10304
ORM_P33		8666	6366	2300	2300	$0,\!05$	8666
ORM _ P34		8551	5201	3350	3350	0,12	8551
ORM_P35		10811	10491	320	320	0,05	10811
ORM_P36		10898	10028	870	870	0,06	10898
ORM_P37		9575	6845	2730	2730	0,12	9575
ORM _ P38		11525	11105	420	420	0,08	11525
ORM_P39		10220	9480	740	740	0,08	10220
ORM_P40		9380	6840	2540	2540	0,12	9380

Tabela 6.30: Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe ORM_P (w=10).

Instância	F_O	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
ORM_P1	8146	8146	6846	1300	1300	0,00	8146
ORM_P2	7706	7706	6606	1100	1100	0,00	7706
ORM_P3	8265	8265	5765	2500	2500	0,00	8265
ORM_P4		9135	5115	4020	4020	0,00	9135
ORM_P5		7485	3345	4140	4140	0,00	7485
ORM_P6		9387	8037	1350	1350	0,00	9387
ORM_P7		7878	6468	1410	1410	0,00	7878
ORM_P8		8632	6692	1940	1940	0,00	8632
ORM_P9		8174	5344	2830	2830	0,01	8174
ORM_P10		6894	3204	3690	3690	0,01	6894
ORM_P11	8383	8383	7753	630	630	0,00	8383
ORM_P12		8426	7046	1380	1380	0,01	8426
ORM_P13		7679	6249	1430	1430	0,00	7679
ORM_P14		8505	5165	3340	3340	0,01	8505
ORM_P15		8864	4024	4840	4840	0,02	8864
ORM_P16	8728	8728	8188	540	540	0,01	8728
ORM_P17		8317	7127	1190	1190	0,01	8317
ORM_P18		8547	6567	1980	1980	0,02	8547
ORM_P19		8313	5013	3300	3300	0,03	8313
ORM_P20		10397	4387	6010	6010	0,07	10397
ORM_P21	9808	9808	9138	670	670	0,04	9808
ORM_P22		9776	8706	1070	1070	0,02	9776
ORM_P23		8359	6159	2200	2200	0,04	8359
ORM_P24		8548	5148	3400	3400	0,00	8548
ORM _ P25		9610	4400	5210	5210	0,08	9610
ORM_P26		10414	9924	490	490	0,06	10414
ORM _ P27		9317	8557	760	760	0,03	9317
ORM_P28		8077	6037	2040	2040	0,04	8077
ORM_P29		8552	5252	3300	3300	0,07	8552
ORM_P30		10735	4445	6290	6290	0,13	10735
ORM_P31		10556	10126	430	430	0,04	10556
ORM_P32		10304	9434	870	870	$0,\!05$	10304
ORM _ P33		8666	6366	2300	2300	$0,\!05$	8666
ORM_P34		8551	5201	3350	3350	0,12	8551
ORM_P35		10811	10491	320	320	$0,\!05$	10811
ORM_P36		10898	10028	870	870	0,06	10898
ORM_P37		9575	6825	2750	2750	0,12	9575
ORM_P38		11525	11105	420	420	0,08	11525
ORM_P39		10220	9480	740	740	0,08	10220
ORM_P40		9380	6840	2540	2540	0,12	9380

Tabela 6.31: Resultados da pós-otimização para a heurística VNSf_RC nas instâncias proporcionais da classe ORM_P (w=10).

Instância	F_O	F_G^*/F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
GRM _ P1	6391	6403	5703	700	688	0,09	6391
GRM_P2	5475	5489	4707	782	782	0,02	5489
GRM_P3	5157	5157	3971	1186	1186	0,01	5157
GRM_P4	5246	5246	3648	1598	1598	0,03	5246
GRM_P5		5403	3391	2012	2012	0,02	5403
GRM_P6		5580	3152	2428	2428	0,01	5580
GRM_P7		5766	2898	2868	2868	0,02	5766
GRM_P8		5961	2663	3298	3298	0,02	5961
GRM_P9		6364	2260	4104	4104	0,02	6364
GRM_P10	11413	11475	10935	540	530	0,06	11465
GRM_P11	9823	9862	9046	816	816	$0,\!07$	9862
GRM_P12	8867	8910	7664	1246	1246	$0,\!07$	8910
GRM_P13		8352	6636	1716	1716	0,07	8352
GRM_P14		8174	6070	2104	2104	0,08	8174
GRM_P15		8133	5623	2510	2510	0,08	8133
GRM_P16		8243	5325	2918	2918	0,08	8243
GRM_P17		8372	5042	3330	3330	0,08	8372
GRM_P18		8530	4816	3714	3714	0,06	8530
GRM_P19		8701	4581	4120	4120	$0,\!05$	8701
GRM_P20		9080	4164	4916	4916	0,06	9080

Tabela 6.32: Resultados da pós-otimização para as heurísticas GRASPf_RC e VNSf_RC nas instâncias proporcionais da classe GRM_P (w = 2).

6.5 Considerações Finais

Nesse capítulo, as heurísticas GRASP e VNS com filtro e reconexão por caminhos (GRASPf_RC e VNSf_RC, respectivamente) foram comparadas de três formas diferentes.

A qualidade das soluções encontradas pelas heurísticas para as 249 instâncias testadas (189 proporcionais e 60 não proporcionais) foram analisadas em três tempos de processamento distintos: tp, ti e tg. Utilizando-se na avaliação as medidas drpm, cm e melhor, em geral, o GRASPf_RC se mostrou superior ao VNSf_RC nas instâncias proporcionais. Já nas instâncias não proporcionais, o VNSf_RC apresentou resultados melhores. A diferença nas medidas torna-se menor quando aumenta-se o tempo de processamento, com as heurísticas convergindo praticamente para as mesmas soluções nas instâncias proporcionais e não proporcionais nos maiores tempos de processamento (ti e tg).

Em seguida, gráficos do tempo gasto para atingir o valor alvo foram utilizados na comparação. Dos problemas analisados, GRASPf_RC apresentou resultados melhores do que VNSf_RC nas instâncias proporcionais com fator w maior (w = 5 e w = 10) e nas instâncias não proporcionais GRM_NP.

Instância	F_O	F_G^*/F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
GRM_P1	7036	7036	6181	855	855	0,01	7036
GRM_P2	6662	6662	4707	1955	1955	0,02	6662
GRM_P3	6923	6923	4018	2905	2905	0,01	6923
GRM_P4	7602	7602	3707	3895	3895	0,02	7602
GRM_P5		8379	3464	4915	4915	0,02	8379
GRM_P6		9178	3263	5915	5915	0,01	9178
GRM_P7		9984	3059	6925	6925	0,02	9984
GRM_P8		10802	2832	7970	7970	0,01	10802
GRM_P9		12447	2357	10090	10090	0,03	12447
GRM_P10	12202	12202	11297	905	905	0,04	12202
GRM_P11	11086	11086	9046	2040	2040	$0,\!07$	11086
GRM_P12	10767	10767	7672	3095	3095	0,06	10767
GRM_P13		10902	6742	4160	4160	$0,\!05$	10902
GRM_P14		11293	6118	5175	5175	0,06	11293
GRM_P15		11874	5734	6140	6140	0,06	11874
GRM_P16		12539	5479	7060	7060	$0,\!05$	12539
GRM_P17		13276	5181	8095	8095	0,06	13276
GRM_P18		14036	4901	9135	9135	0,06	14036
GRM_P19		14814	4674	10140	10140	0,06	14814
GRM_P20		16422	4222	12200	12200	0,07	16422

Tabela 6.33: Resultados da pós-otimização para as heurísticas GRASPf_RC e VNSf_RC nas instâncias proporcionais da classe GRM_P (w=5).

Instância	F_O	F_G^*/F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
GRM_P1	7884	7884	6224	1660	1660	0,01	7884
GRM_P2	8580	8580	4790	3790	3790	0,02	8580
GRM _ P3	9793	9793	4093	5700	5700	0,01	9793
GRM_P4	11487	11487	3757	7730	7730	0,02	11487
GRM_P5		13273	3513	9760	9760	0,02	13273
GRM_P6		15079	3309	11770	11770	0,01	15079
GRM_P7		16909	3079	13830	13830	0,01	16909
GRM_P8		18754	2854	15900	15900	0,02	18754
GRM_P9		22507	2397	20110	20110	0,03	22507
GRM_P10	13083	13083	11423	1660	1660	0,02	13083
GRM_P11	13040	13040	9190	3850	3850	0,03	13040
GRM_P12	13845	13845	7775	6070	6070	0,06	13845
GRM_P13		14985	7025	7960	7960	$0,\!05$	14985
GRM_P14		16355	6395	9960	9960	0,04	16355
GRM_P15		17919	5919	12000	12000	0,06	17919
GRM_P16		19579	5549	14030	14030	$0,\!05$	19579
GRM_P17		21317	5297	16020	16020	$0,\!05$	21317
GRM_P18		23095	5035	18060	18060	0,05	23095
GRM_P19		24895	4775	20120	20120	0,06	24895
GRM_P20		28566	4316	24250	24250	0,06	28566

Tabela 6.34: Resultados da pós-otimização para as heurísticas GRASPf_RC e VNSf_RC nas instâncias proporcionais da classe GRM_P (w=10).

Instância	F_O	F_G^*/F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
SLM_P1		4851	3065	1786	1786	0,19	4851
SLM_P2		5317	3291	2026	2026	0,23	5317
SLM_P3		5409	3281	2128	2128	$0,\!32$	5409

Tabela 6.35: Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe SLM_P (w = 2).

Instância	F_O	F_G^*/F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
SLM_P1		4851	3051	1800	1800	0,19	4851
SLM_P2		5317	3297	2020	2020	$0,\!23$	5317
SLM_P3		5409	3325	2084	2084	0,32	5409

Tabela 6.36: Resultados da pós-otimização para a heurística VNSf_RC nas instâncias proporcionais da classe SLM_P (w=2).

Instância	F_O	F_G^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
SLM_P1		6961	3986	2975	2975	0,15	6961
SLM_P2		7840	4205	3635	3635	$0,\!23$	7840
SLM_P3		7880	4315	3565	3565	0,28	7880

Tabela 6.37: Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe SLM_P (w=5).

Instância	F_O	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
SLM_P1		6961	3986	2975	2975	0,16	6961
SLM_P2		7841	4196	3645	3645	$0,\!23$	7841
SLM_P3		7885	4325	3560	3560	0,29	7885

Tabela 6.38: Resultados da pós-otimização para a heurística VNSf_RC nas instâncias proporcionais da classe SLM_P (w = 5).

Instância	F_O	F_G^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
SLM_P1		9767	4297	5470	5470	0,16	9767
SLM_P2		11304	4574	6730	6730	0,19	11304
SLM_P3		11273	4683	6590	6590	0,30	11273

Tabela 6.39: Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe SLM_P (w=10).

Instância	F_O	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
SLM_P1		9788	4268	5520	5520	0,16	9788
SLM_P2		11319	4569	6750	6750	0,19	11319
SLM_P3		11294	4654	6640	6640	$0,\!30$	11294

Tabela 6.40: Resultados da pós-otimização para a heurística VNSf_RC nas instâncias não proporcionais da classe SLM_P (w=10).

Instância	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
ORM_NP1	6447	5893	554	554	0,00	6447
ORM_NP2	5196	4128	1068	1068	0,00	5196
ORM_NP3	5235	4368	867	867	0,00	5235
ORM_NP4	4935	3458	1477	1477	0,01	4935
ORM_NP5	3377	1900	1477	1477	0,01	3377
ORM_NP6	8098	7824	274	274	0,01	8098
ORM_NP7	6153	5641	512	512	0,01	6153
ORM_NP8	5629	4591	1038	1034	0,02	$\bf 5625$
ORM_NP9	4364	3107	1257	1257	0,01	4364
ORM_NP10	3362	1999	1363	1363	0,01	3362
ORM_NP11	7832	7717	115	115	0,00	7832
ORM_NP12	6979	6658	321	321	0,02	6979
ORM_NP13	5342	4485	857	857	0,02	5342
ORM_NP14	4781	3432	1349	1348	0,04	4780
ORM_NP15	4120	2440	1680	1680	0,04	4120
ORM_NP16	8293	8172	121	115	0,02	8287
ORM_NP17	7246	7010	236	236	0,03	7246
ORM_NP18	5838	4962	876	868	0,04	5830
ORM_NP19	4546	3179	1367	1366	0,06	4545
ORM_NP20	4428	2650	1778	1778	$0,\!05$	4428
ORM_NP21	9238	9138	100	100	0,02	9238
ORM_NP22	8800	8583	217	214	0,03	8797
ORM_NP23	5629	4712	917	916	0,08	5628
ORM_NP24	4678	3364	1314	1314	0,09	4678
ORM_NP25	4538	2749	1789	1789	0,11	4538
ORM_NP26	9996	9917	79	79	0,03	9996
ORM_NP27	8514	8307	207	205	0,09	8512
ORM_NP28	5443	4650	793	790	0,10	5440
ORM_NP29	4801	3407	1394	1393	0,14	4800
ORM_NP30	4700	2898	1802	1802	0,15	4700
ORM_NP31	10158	10086	72	72	0,06	10158
ORM_NP32	9474	9297	177	177	0,10	9474
ORM_NP33	5723	4806	917	915	$0,\!17$	$\boldsymbol{5721}$
ORM_NP34	4759	3446	1313	1313	0,18	4759
ORM_NP35	10463	10400	63	63	0,06	10463
ORM_NP36	10116	9934	182	178	0,14	10112
ORM_NP37	6190	5168	1022	1014	0,20	$\boldsymbol{6182}$
ORM_NP38	11129	11060	69	69	0,11	11129
ORM_NP39	9551	9423	128	128	0,19	9551
ORM_NP40	6213	5293	920	919	0,67	6212

Tabela 6.41: Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias não proporcionais da classe ORM_NP (w=2).

Instância	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
ORM_NP1	6447	5893	554	554	0,00	6447
ORM_NP2	5196	4128	1068	1068	0,00	5196
ORM_NP3	5235	4368	867	867	0,00	5235
ORM_NP4	4930	3381	1549	1549	0,01	4930
ORM_NP5	3377	1900	1477	1477	0,01	3377
ORM_NP6	8098	7824	274	274	0,01	8098
ORM_NP7	6153	5641	512	512	0,01	6153
ORM_NP8	5623	4533	1090	1090	0,02	5623
ORM_NP9	4364	3107	1257	1257	0,01	4364
ORM_NP10	3362	1999	1363	1363	0,01	3362
ORM_NP11	7832	7717	115	115	0,00	7832
ORM_NP12	6979	6658	321	321	0,02	6979
ORM_NP13	5342	4485	857	857	0,02	5342
ORM_NP14	4781	3432	1349	1348	0,04	4780
ORM_NP15	4120	2409	1711	1711	$0,\!05$	4120
ORM_NP16	8293	8172	121	115	0,02	8287
ORM_NP17	7246	7010	236	236	0,03	7246
ORM_NP18	5836	4948	888	880	0,04	5828
ORM_NP19	4546	3188	1358	1357	$0,\!07$	4545
ORM_NP20	4428	2650	1778	1778	0,07	4428
ORM_NP21	9238	9138	100	100	0,02	9238
ORM_NP22	8800	8583	217	214	0,03	8797
ORM_NP23	5628	4698	930	929	0,08	5627
ORM_NP24	4678	3371	1307	1307	0,08	4678
ORM_NP25	4538	2749	1789	1789	$0,\!11$	4538
ORM_NP26	9996	9917	79	79	0,03	9996
ORM_NP27	8514	8307	207	205	0,09	8512
ORM_NP28	5439	4634	805	803	$0,\!17$	5437
ORM_NP29	4801	3423	1378	1377	$0,\!12$	4800
ORM_NP30	4700	2898	1802	1802	$0,\!15$	4700
ORM_NP31	10158	10086	72	72	0,06	10158
ORM_NP32	9474	9297	177	177	0,10	9474
ORM_NP33	5718	4803	915	913	$0,\!21$	5716
ORM_NP34	4759	3465	1294	1293	0,18	4758
ORM_NP35	10463	10400	63	63	0,06	10463
ORM_NP36	10116	9934	182	178	0,14	10112
ORM_NP37	6190	5159	1031	1023	3,46	6182
ORM_NP38	11129	11060	69	69	0,11	11129
ORM_NP39	9551	9423	128	128	0,19	9551
ORM_NP40	6213	5295	918	917	0,64	6212

Tabela 6.42: Resultados da pós-otimização para a heurística VNSf_RC nas instâncias não proporcionais da classe ORM_NP (w=2).

Instância	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
GRM_NP1	6156	5703	453	434	0,03	6137
GRM_NP2	5185	4498	687	687	0,02	5185
GRM_NP3	4825	3986	839	839	0,03	4825
GRM_NP4	4720	3708	1012	1012	0,02	4720
GRM_NP5	4675	3418	1257	1257	0,01	4675
GRM_NP6	4675	3161	1514	1514	0,02	4675
GRM_NP7	4685	2915	1770	1770	0,03	4685
GRM_NP8	4717	2688	2029	2029	0,02	4717
GRM_NP9	4806	2233	2573	2573	0,03	4806
GRM_NP10	11334	10841	493	477	0,09	11318
GRM_NP11	9710	8752	958	958	0,12	9710
GRM_NP12	8751	7640	1111	1111	0,11	8751
GRM_NP13	8135	6801	1334	1334	0,09	8135
GRM_NP14	7719	6181	1538	1538	0,06	7719
GRM_NP15	7527	5748	1779	1779	0,10	7527
GRM_NP16	7427	5413	2014	2014	0,06	7427
GRM_NP17	7362	5123	2239	2239	0,08	7362
GRM_NP18	7341	4865	2476	2476	0,08	7341
GRM_NP19	7346	4632	2714	2714	0,07	7346
GRM_NP20	7405	4123	3282	3282	0,08	7405

Tabela 6.43: Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias não proporcionais da classe GRM_NP (w=2).

Instância	F_V^*	F_P	F_T	F_{OT}	Tempo (s)	F_{PO}
GRM_NP1	6156	5703	453	434	0,03	6137
GRM_NP2	5185	4498	687	687	0,02	5185
GRM_NP3	4825	3986	839	839	0,03	4825
GRM_NP4	4720	3708	1012	1012	0,02	4720
GRM_NP5	4675	3418	1257	1257	0,01	4675
GRM_NP6	4675	3161	1514	1514	0,02	4675
GRM_NP7	4685	2915	1770	1770	0,03	4685
GRM_NP8	4717	2688	2029	2029	0,02	4717
GRM_NP9	4806	2233	2573	2573	0,03	4806
GRM_NP10	11334	10841	493	477	0,09	11318
GRM_NP11	9710	8752	958	958	0,12	9710
GRM_NP12	8759	7613	1146	1146	0,07	8759
GRM_NP13	8135	6801	1334	1334	0,09	8135
GRM_NP14	7719	6181	1538	1538	0,06	7719
GRM_NP15	7527	5748	1779	1779	0,10	7527
GRM_NP16	7431	5416	2015	72015	0,08	7431
GRM_NP17	7360	5126	2234	2234	0,06	7360
GRM_NP18	7341	4865	2476	2476	0,08	7341
GRM_NP19	7346	4632	2714	2714	0,07	7346
GRM_NP20	7405	4123	3282	3282	0,08	7405

Tabela 6.44: Resultados da pós-otimização para a heurística VNSf_RC nas instâncias não proporcionais da classe GRM_NP (w=2).

Já o algoritmo VNSf_RC apresentou resultados melhores do que GRASPf_RC nas instâncias proporcionais com w=2 e nas instâncias não proporcionais ORM_NP.

Por último, 49 soluções ótimas para problemas de pequeno porte foram obtidas e os resultados encontrados pelas heurísticas no tempo tg foram comparados com essas instâncias. Para os problemas que não possuem o ótimo, a melhor solução obtida pelos algoritmos no tempo tg foi a melhor solução encontrada. Levando-se em consideração os casos de empate no primeiro lugar, dos 249 problemas, GRASPf_RC apresentou a melhor solução em 234 instâncias e VNSf_RC apresentou a melhor solução em 236 instâncias. Em relação aos problemas com o ótimo conhecido, as heurísticas apresentaram os mesmos resultados, encontrando a solução ótima em 42 problemas, ficando, no máximo, a 0,54% do ótimo nas sete instâncias onde o mesmo não foi alcançado. Investigações adicionais mostraram que, em algumas instâncias, as facilidades abertas encontradas pelos algoritmo exato coincidem com as facilidades abertas encontradas pelas heurísticas. Assim, a árvore de Steiner obtida pelos algoritmos aproximados não é ótima, o que sugeriu um passo adicional de pós-otimização.

O passo de pós-otimização consistiu na execução de um algoritmo ótimo para o problema de Steiner, tendo como vértices teminais as facilidades abertas da melhor solução encontrada pelo GRASPf_RC ou pelo VNSf_RC após todas as iterações terem sido realizadas nas cinco execuções no tempo tg. O algoritmo exato encontrou a árvore de Steiner ótima da melhor solução encontrada pelas heurísticas em menos de um segundo para todas as instâncias testadas. Os resultados da pós-otimização mostraram a eficiência da heurística Prim que obteve a grande maioria das solução ótimas. Acrescentando o passo de pósotimização, GRASPf_RC e VNSf_RC encontraram duas novas soluções ótimas, totalizando 44 problemas e, ficando, no máximo a 0,48% do valor ótimo nas cinco instâncias onde o mesmo não foi alcançado. Nas instâncias em que não se conhece o ótimo, GRASP e VNS, acrescidas da pós-otimização, conseguiram melhorar a melhor solução encontrada pelos algoritmos sem o procedimento em 29 e 28 instâncias, respectivamente. Levando-se em consideração os casos de empate no primeiro lugar e incluindo a pós-otimização, dos 249 problemas, GRASPf_RC apresentou a melhor solução em 239 instâncias e VNSf_RC apresentou a melhor solução em 237 instâncias.