अणुगति सिद्धांत नोट्स

<u>आदर्श गैस</u> के बारे में हम पढ़ चुके हैं एवं उसमें इसका समीकरण भी पढ़ा है।

लेकिन यहां आदर्श गैस के अणुगति सिद्धांत के बारे में संपूर्ण अध्ययन करेंगे। एवं इससे संबंधित सभी बिंदुओं पर प्रकाश डाला जाएगा।

गैस का अणुगति सिद्धांत

गैसों के गुणों की व्याख्या अणुगति सिद्धांत के अनुसार की जा सकती है और सिद्धांत के अनुसार, प्रत्येक गैस विभिन्न छोटे-छोटे कणों से मिलकर बनी होती है इन कणों को अणु कहते हैं। अगर एक आदर्श गैस की बात करें तो उसके सभी अणु एक दूसरे के समान अर्थात सभी अणु एक जैसे होते हैं। एवं यह अणु एक दूसरे से बहुत दूर-दूर होते हैं। अर्थात गैस में अधिकांश रिक्त स्थान ही होता है। गैस के सभी अणु निरंतर सरल रेखीय गति करते रहते हैं अतः गति करते हुए यह अणु पात्र की दीवार से टकराते रहते हैं। जिस कारण अणुओं की चाल वह गति दोनों बदल जाती है।

अणुगति सिद्धांत

गैसों के अणुगति सिद्धांत की परिकल्पनाएं

- प्रत्येक गैस अनेक छोटे-छोटे कणों से मिलकर बनी होती है जिसे अणु कहते हैं।
- गैस के अणु निरंतर नियत चाल से सरल रेखा में गति करती रहती हैं।
- गैसों के अणुओं के बीच टक्कर पूर्ण रूप से प्रत्यास्थ होती है। अर्थात इन टक्करों से गैस के अणुओं की गतिज ऊर्जा संरक्षित रहती है।
- अणु पात्र की दीवारों से टकराते रहते हैं लेकिन टक्करों से गैस के आयतन में कोई परिवर्तन नहीं होता है।
- अणुओं की गित पर गुरुत्वाकर्षण बल का कोई प्रभाव नहीं पड़ता है क्योंकि अणुओं का द्रव्यमान बहुत कम एवं वेग अत्यधिक होता है।

अणुगति सिद्धांत संबंधित सूत्र

• गैस का वर्ग माध्य मूल चाल

$$v_{rms} \propto \sqrt{T}$$

अतः किसी गैस के अणुओं की वर्ग माध्य मूल चाल उस गैस के परमताप के अनुक्रमानुपाती होती है। इससे स्पष्ट होता है कि गैस के अणुओं की गति जितनी अधिक होगी गैस का ताप उतना ही अधिक होगा।

• वर्ग माध्य मूल चाल तथा अणुभार

$$\left|rac{v_{1rms}}{v_{2rms}} \propto \sqrt{rac{M_2}{M_1}}
ight|$$

जहां M_1 व M_2 दो विभिन्न गैसों के अणुभार हैं तथा उनकी वर्ग माध्य मूल चाल v_{1rms} व v_{2rms} हैं।

$$ullet$$
 अण**ुक**ीगत**ि**जऊर**्**ज $=rac{3}{2}k_BT$

जहां k_B बोल्ट्समान नियतांक तथा T परमताप है।

बॉयल का नियम क्या है, ग्राफीय निरूपण कीजिए, सूत्र |

बॉयल का नियम

इस नियम के अनुसार, नियत ताप पर किसी गैस के निश्चित द्रव्यमान का आयतन उस गैस के दाब के व्युत्क्रमानुपाती होता है। अर्थात् $V \propto \frac{1}{P}$ अथवा VP = -1

अर्थात् इस समीकरण द्वारा स्पष्ट होता है कि यदि हम गैस के ताप को नियत रखते हुए उसके दाब को दोगुना कर दें तो गैस का आयतन आधा रह जाएगा। या इसके विपरीत आयतन को दोगुना कर दिया जाए, तो गैस का दाब आधा हो जाएगा।

बॉयल के नियम का ग्राफीय निरूपण

माना नियत ताप पर किसी द्रव्यमान की गैस का प्रारंभिक दाब व आयतन P_1 व V_1 हो तथा गैस के अंतिम दाब व आयतन P_2 व V_2 हो तो बॉयल के नियम से

$$P_1V_1=P_2V_2$$

चित्र में किसी गैस के लिए विभिन्न नियत तापों T_1 , T_2 , T_3 पर दाब व आयतन के बीच ग्राफ को दर्शाया गया है।

अतः ताप और दाब की सभी अवस्थाओं पर जैसे बॉयल के नियम का पालन नहीं करती है। अर्थात् गैसें केवल निम्न दाब तथा ऊंचे ताप पर ही बॉयल के नियम (boyle's law in Hindi) का पालन करती हैं। आदर्श गैस बॉयल के नियम का पालन करती है वास्तव में यह एक काल्पनिक गैस है।

अणुगति सिद्धांत के आधार पर बॉयल का नियम

किसी निश्चित द्रव्यमान की गैस द्वारा आरोपित दाब

$$P = \frac{1}{3} mnv^2$$

सूत्र में mn गैस का द्रव्यमान है जो कि निश्चित है। यदि ताप नियत रहे तो v^2 भी नियत रहेगा तब

$$PV =$$
न**ि**यतांक

यही बॉयल का नियम है।

पढ़ें... 11वीं भौतिक नोट्स | 11th class physics notes in Hindi

आशा करते है कि बॉयल की नियम से संबंधित यह अध्याय आपके लिए सहायता पूर्ण रहा होगा। यह अध्याय ज्यादा बड़ा नहीं है इसमें कुछ ही बिंदु है इनसे संबंधित परीक्षाओं में या तो आंकिक (numerical) पूछा जाता है। या वस्तुनिष्ठ प्रशन आते हैं। इसकी theory बहुत कमी से आती है। आप इसका सूत्र जरूर याद रखें।

$$P_1 V_1 = P_2 V_2$$

चार्ल्स का नियम क्या है समझाइए, सूत्र

विषय-सूची

चार्ल्स का नियम

इस नियम के अनुसार, नियत पर किसी गैस के निश्चित द्रव्यमान का आयतन गैस के परमताप के अनुक्रमानुपाती होता है। अर्थात् $V \propto T$

अथवा
$$oxedsymbol{rac{V}{T}}=$$
 न $oxedsymbol{\cap}$ यत $oxedsymbol{\circ}$ ंक

अतः इस समीकरण द्वारा स्पष्ट होता है कि यदि हम गैस के दाब को नियत रखते हुए गैस के ताप को दोगुना कर दें तो गैस का आयतन भी दोगुना हो जायेगा।

चार्ल्स के नियम का सूत्र

माना नियत दाब पर किसी द्रव्यमान की गैस का प्रारंभिक ताप व आयतन T_1 व V_1 हों तथा गैस के अंतिम ताप व आयतन T_2 व V_2 हों तो चार्ल्स के नियम से

$$oxed{rac{V_1}{T_1}=rac{V_2}{T_2}}$$

चित्र में किसी गैस के विभिन्न दाबों P_1 , P_2 व P_3 पर ताप व आयतन के बीच ग्राफ को प्रदर्शित किया गया है। आदर्श गैस दाब की सभी अवस्थाओं में चार्ल्स के नियम का पालन करती है।

पढ़ें... 11वीं भौतिक नोट्स | 11th class physics notes in Hindi

अणुगति सिद्धांत के आधार पर चार्ल्स का नियम

अणुगति सिद्धांत से निश्चित द्रव्यमान की गैस का दाब

$$P = \frac{1}{2} \left(\frac{m}{V} \right) V^2$$

जहां V – गैस का आयतन, m – गैस के प्रत्येक कण का द्रव्यमान , n – गैस के अणुओं की संख्या तथा v – अणुओं का वर्ग माध्य मूल चाल है।

अतः PV =
$$\frac{1}{3}$$
mn v²

$$V = \frac{2}{3} \frac{n}{P} \times \frac{1}{2} \text{ mn v}^2 (2 से गुणा-भाग)$$

चूंकि गैस के एक अणु की गतिज ऊर्जा = $\frac{1}{2}$ mv²

$$=\frac{2}{3}$$
kT होता है। तब

$$V = \frac{2}{3} \frac{n}{P} \times \frac{3}{2} kT$$

$$V = \frac{nkT}{P}$$

यदि गैस का दाब नियत हो तब एक निश्चित द्रव्यमान की गैस के लिए n भी नियत होगा। एवं k तो नियतांक ही है तब

 $V \propto T$

यही चार्ल्स का नियम है।

आवोगाद्रो का नियम क्या है लिखिए, परिभाषा, संख्या का मान बताइए

आवोगाद्रो का नियम

इस नियम के अनुसार, समान ताप और दाब पर विभिन्न गैसों के निश्चित आयतन में अणुओं की संख्या समान होती है। इसे आवोगाद्रो का नियम (Avogadro's law in Hindi) कहते हैं।

माना A और B दो गैसें हैं समान ताप और दाब पर इनका समान आयतन V है तो इन दोनों गैसों के अणुओं की संख्या भी समान n होगी।

आवोगाद्रो संख्या

किसी गैस के एक ग्राम मोल में अणुओं की संख्या को आवोगाद्रो संख्या कहते हैं। इसे N से प्रदर्शित करते हैं। 1 मोल कार्बन-12 में उपस्थित परमाणुओं की संख्या 6.022 × 10²³ होती है। इस संख्या को ही आवोगाद्रो संख्या कहते हैं। अतः आवोगाद्रो संख्या का मान 6.022 × 10²³ अणु होता है।

ग्राहम बेल का विसरण नियम

इस नियम के अनुसार, निश्चित ताप और दाब पर किन्ही गैसों की विसरण की दर उनके घनत्व के वर्गमूल के व्युत्क्रमानुपाती होती है।

माना दो गैसें हैं जिनके घनत्व ρ_1 व ρ_2 हैं। एवं इनकी वर्ग माध्य मूल चाल क्रमशः v_{1rms} व v_{2rms} हैं तो

$$\frac{v_{1rms}}{v_{2rms}} = \sqrt{\frac{\rho_1}{\rho_2}}$$

यदि गैसों की विसरण दरें क्रमशः R_1 व R_2 हों तो

$$\frac{R_1}{R_2} = \frac{v_{1rms}}{v_{2rms}}$$

चूंकि वर्ग माध्य मूल चाल का अनुपात गैसों के अणुभार के वर्गमूल के व्युत्क्रमानुपाती होता है अर्थात्

$$rac{R_1}{R_2} = \sqrt{rac{M_2}{M_1}}$$

जहां M_1 = पहली गैस का अणुभार

M₂ = दूसरी गैस के लिए अणुभार

R₁ = पहली गैस की विसरण दर

R₂ = दूसरी गैस की विसरण दर

आवोगाद्रो नियम से संबंधित प्रश्न उत्तर

1. आवोगाद्रो संख्या का मान क्या है?

Ans. 6.022 × 10²³ अणु