

复习

直流电机静态特性:

转矩平衡: $T_{em} = T_L$

电压平衡: $U = E + IR = K_e \Omega + IR$

他/并励直流电机机械特性:

$$\Omega = \frac{U - \frac{T_{em}}{K_T} R}{K_e}$$

$$\Omega = \frac{U - \frac{T_{em}}{K_T} R}{K_E}$$

$$\Omega = \frac{U - \frac{T_{em}}{K_T} R}{K_E}$$

复习

控制特性:

$$T_{em} = K_T I = K_T \frac{U - K_e \Omega}{R}$$

调节特性:

$$\Omega = \frac{U - IR}{K_e} = \frac{U - \frac{T_{em}}{K_T}R}{K_e}$$

哈尔滨工业大学航天学院 控制与仿真中心

复习

直流电机的调速运行

- --串电阻调速
- --弱磁调速
- --调压调速

复习: 直流电机的调速运行

直流电机的调速控制: 串电阻调速

保持 $\Phi = \Phi_N$; $U = U_N$;

增加电阻 $R_a \rightarrow R^{\uparrow}$

 $R \uparrow \rightarrow n \downarrow$, n_0 不变;

调速特性:

- 1。简单,易实现; 2。损耗大,低效率; 调阻调速特性曲线
- 3。降速调速; 4。一般为有级调速; 5。特性变软;
- 6。轻载时调速范围小。

哈尔滨工业大学航天学院 控制与仿真中心

复习: 直流电机的调速运行

直流电机的调速控制:弱磁调速

保持 $U = U_N$, $R = R_a$;

减**小**励磁 $\Phi_N \to \Phi$ ↓

 $\Phi \downarrow \rightarrow n \uparrow$, $n_0 \uparrow$

- 1。基速以上和额定电流以下的调速;
- 2。转速上升; 3。机械特性曲线变软;

4。高效率; 5。恒功率; 6。一般调速范围在2-4。

调磁调速特性曲线

哈尔滨工业大学航天学院 <mark>控制与仿真中心</mark>

复习: 直流电机的调速运行

直流电机的调速控制: 降压调速

保持
$$\Phi = \Phi_N$$
; $R = R_a$

$$U\downarrow \rightarrow n\downarrow$$
, $n_0\downarrow$

调速特性:

- 1。基速以下调速;
- 2。线性直线族特性;
- 3。控制与调节特性良好; 4。易于无级调速;
- 5。效率高; 6。需调压电源实现。

哈尔滨工业大学航天学院 控制与仿真中心

(

例题分析

例: 有一他励电动机,已知: U_N = 220V, R_a = 0.225 Ω , 额定力矩 T_N 对应 I_a = 68.5A, n_N = 1500r/min,保持 T_N 输出

- (1)采用电枢串电阻调速,使n=1000r/min,应串入多大的电阻?
- (2)采用降压调速,使n=1000r/min,电源电压应降为多少?
- (3)采用弱磁调速, $\Phi = 0.85 \Phi_N$,电动机的转速为多少? 能否长期运行?

例题分析

(1)采用电枢串电阻调速时,当 $\Phi = \Phi_N$, $T = T_N$ 时 $I_a = 68.5$ A,

根据

$$n = \frac{U_N - (R_a + R)I_a}{C_E \Phi_N} \qquad n_N = \frac{U_N - R_a I_a}{C_E \Phi_N}$$

$$\frac{n}{n_N} = \frac{U_N - (R_a + R)I_a}{U_N - R_a I_a}$$

$$= \frac{220 - (0.225 + R) \times 68.5}{220 - 0.225 \times 68.5} = \frac{1000}{1500}$$

 $R = 0.995 \Omega$

哈尔滨工业大学航天学院 控制与仿真中心

例题分析

(2)降压调速时,当 $\Phi = \Phi_N$, $T = T_N$ 时 $I_a = 68.5A$,

根据

$$n = \frac{U - R_a I_a}{C_E \Phi_N}$$
 $n_N = \frac{U_N - R_a I_a}{C_E \Phi_N}$

$$\frac{n}{n_N} = \frac{U - R_a I_a}{U_N - R_a I_a}$$

$$= \frac{U - 0.225 \times 68.5}{220 - 0.225 \times 68.5} = \frac{1000}{1500}$$

$$U = 151.8V$$

哈尔滨工业大学航天学院 <mark>控制与仿真中心</mark>

例题分析

(3)弱磁调速时,当 Φ = 0.85 Φ _N,T=T_N时,

根据
$$\frac{T}{T_N} = \frac{\Phi I_a}{\Phi_N I_{aN}} = \frac{0.85\Phi_N I_a}{\Phi_N I_{aN}} = \frac{0.85I_a}{I_{aN}} = 1$$

$$I_a = \frac{I_N}{0.85} = 80.59A \quad \text{电动机不能长期运行}$$

$$\frac{n}{n_N} = \frac{(U_N - R_a I_a)/C_E \Phi}{(U_N - R_a I_{aN})/C_E \Phi_N}$$

$$= \frac{220 - 0.225 \times 80.59}{(220 - 0.225 \times 68.5) \times 0.85} = \frac{n}{1500}$$

$$n = 1741 \text{ rpm}$$

哈尔滨工业大学航天学院 控制与仿真中心

目 录

- 1. 直流电机的四象限运行
- 2. 直流电机的动态特性
- 3. 电机的选用
- 4. 直流电机应用实例
- 5. 直流电机总结

1. 直流电机的四象限运行

- -- 电动运行
- --再生制动
- --能耗制动
- --反接制动

1. 直流电机的四象限运行

直流电机四象限运行

--电机伺服控制的内涵

哈尔滨工业大学航天学院 控制与仿真中心

目 录

- 1. 直流电机的四象限运行
- 2. 直流电机的动态特性
- 3. 电机的选用
- 4. 直流电机应用实例
- 5. 直流电机总结

哈尔滨工业大学航天学院 控制与仿真中心

2.直流电机的动态特性

哈尔滨工业大学航天学院 控制与仿真中心

U.S.

目 录

- 1. 直流电机的四象限运行
- 2. 直流电机的动态特性
- 3. 电机的选用
- 4. 直流电机应用实例
- 5. 直流电机总结

3. 电机的选用

电机选择的考虑

从电机侧看

$$J = J_m + \frac{1}{i^2} J_L \qquad T_f = \frac{1}{i} T_L$$

$$T_f = \frac{1}{i}T_L$$

J_L-负载转动惯量; J_m-电机转动惯量; i-齿轮减速比 T,-负载力矩;

哈尔滨工业大学航天学院 控制与仿真中心

3. 电机的选用

(1) 峰值力矩—加速度/惯性力矩+阻力矩

$$T_p = (J_m + J_L)a + T_f$$

J_m-电机转动惯量 J_L-负载折算转动惯量

- a -加速度 T_f-折算阻力矩
- (2) 额定力矩--电机长时间运行允许的最大电流
- (3) 额定转速—转矩*转速=功率
- (4) 力矩常数Kt—电流, 电势常数Ke—电压;
- (5) 尺寸、质量与接口形式

3. 电机的选用

例1 考虑两个具有不同参数的电机,如表所示。需要电机在3000r/min速度下运行,并产生=1.2 N·m。供电电源电压45V,问需要什么样的电机?

参数	电机A	电机B
Kt/ (N·m/A)	0.1	0.2
Ke/ (V/ (rad/s))	0.1	0.2
R/Ω	0.5	2.0

哈尔滨工业大学航天学院 控制与仿真中心

3. 电机的选用

例1 在3000r/min速度下运行,产生=1.2 N·m

参数	电机A	电机B
Kt/ N·m/A	0.1	0.2
Ke/ V/(rad/s)	0.1	0.2
R/Ω	0.5	2.0

$$I_{\text{max}} = \frac{T_P}{K_t} \longrightarrow \begin{array}{c} 12A \\ 6A \end{array}$$

$$V_m = rI + K_e \cdot \Omega \longrightarrow \begin{array}{c} 37.4 \text{V} \\ 74.8 \text{V} \end{array}$$

3. 电机的选用

例2:摩擦阻力矩:0.2Nm,系 统转动惯量 1.6*10⁻⁴kgm²

。运动要求:60ms旋转一

圈,每秒重复10次。

$$\omega_{P} = \frac{\text{fic} \, \$ \, \text{inj} \, 58}{\frac{1}{2} T_{\text{linje}} + T_{\text{ficje}} + \frac{1}{2} T_{\text{linje}}} = \frac{2\pi}{0.04} = 157 (rad/s)$$

$$\omega_{P} = \frac{157}{2} T_{\text{linje}} + \frac{1}{2} T_{\text{linje}} = \frac{2\pi}{0.04} = 157 (rad/s)$$

$$\alpha = \frac{\omega_P}{T_{\text{trisk}}} = \frac{157}{0.02} = 7850(rad/s^2)$$

$$T_{g1} = J_L \alpha + T_f$$

$$= 1.6 \times 10^{-4} \times 7850 + 0.2 = 1.456(Nm)$$

$$T_{g2} = T_f = 0.2(Nm)$$

$$T_{g3} = -J_L \alpha + T_f$$

$$= -1.6 \times 10^{-4} \times 7850 + 0.2 = -1.056(Nm)$$

哈尔滨工业大学航天学院 控制与仿真中心

3. 电机的选用

若所选电机:

连续转矩 $T_C = 1.2(Nm)$

最大力矩 $T_p = 4(Nm)$

最大速度 $\omega_P = 314(rad/s)$

则所选电机:

- 1.满足最大力矩要求;
- 2.满足最大转速要求;
- 3.满足连续运转要求,不 会产生过热现象。

$$T_{rms} = \left[\frac{1}{T} \int_{0}^{T} T_{g}^{2} dt\right]^{\frac{1}{2}} = 0.809 < T_{c} = 1.2$$

目 录

- 1. 直流电机的四象限运行
- 2. 直流电机的动态特性
- 3. 电机的选用
- 4. 直流电机应用实例
- 5. 直流电机总结

哈尔滨工业大学航天学院 控制与仿真中心

4. 直流电机应用实例

- 4.1 直流伺服电机
 - --直流伺服电机
 - --低惯量直流伺服电机
 - --宽调速直流伺服电机
- 4.2 直流力矩电机
 - --直流力矩电机
 - --有限转角直流力矩电机
- 4.3 直流微型电机/玩具电机

4. 直流电机应用实例—直流伺服电机

- 直流伺服电动机在原理上与普通的直流电动机并无区别, 但是由于伺服电机工作特点的要求,在具体实现上结构有 些区别。
- 普通电磁式直流伺服电动机

结构较复杂但控制方便,灵活,既可电枢控制,也可 采用磁场控制。

哈尔滨工业大学航天学院 控制与仿真中心

4. 直流电机应用实例—直流伺服电机

• 永磁式直流伺服电动机

只能进行电枢控制,但是结构较简单,体积小、出力 大、效率高。

4. 直流电机应用实例—直流伺服电机

直流伺服电机相对于普通直流电机的特点:

- 1.惯量小、动作快反应快、过载能力大、调速范围宽;
- 2.低速力矩大, 波动小, 运行平稳;
- 3.低噪音,高效率;
- 4.后端编码器反馈(选配)构成直流伺服;

哈尔滨工业大学航天学院 控制与仿真中心

4. 直流电机应用实例—直流伺服电机

直流伺服电机广泛应用在宽调速系统和精确位置控制系统中,其输出功率一般为1~几百瓦,也有达数干瓦。额定电压有6V、9V、12V、24V、27V、48V、

110V、220V等;额定转速多在几百至几千r/min。

4. 直流电机应用实例—直流伺服电机

83ZY

直流永磁伺服电机/DC PERMANENT MAGNET SERVO MOTOR

详细说明 General Specifications

絶縁等級 Insulation Class
 協行温度 Operating Temperature Range
 相対温度/湿度 Environment Temperature/Humidit
 20±2℃,65%±5%RH
 防护等級 Protection
 互列の
 可选择配件 Choose Components
 磁編码器
 Magnetic encoder

.

电气性能 EI	ectrical S	pecificatio	ons					
电机型号 Model	额定电压 Rated Voltage (V)	空载转速 NoLoad speed (RPM)	空载电流 NoLoad Current (A)	额定转速 Rated Speed (RPM)	额定电流 Rated Curren (A)	额定转矩 Rated Torque (N.M)	额定功率 Rated Power (W)	机身长度 Length L (MM)
80ZY12-001	12	5200	1.8	4200	13	0. 23	100	102
80ZY24-001	24	6000	1.5	5000	6.7	0.2	105	102
80ZY24-002	24	3600	1	2800	7.5	0.42	120	112
80ZY100-001	100	2400	0.2	1900	1.2	0.4	78	112
80ZY24-003	24	3000	1.3	2500	9.7	0.6	155	137
80ZY220-001	220	3700	0.1	3000	1	0.45	140	137

哈尔滨工业大学航天学院 控制与仿真中心

4. 直流电机应用实例—直流伺服电机

TN2P57 系列电机典型性能参数 (可按客户要求提供 OEM 定制其他参数)

符号		单位	型号			
		平位	TN2P57-07D	TN2P57-09C	TN2P57-12E	TN2P57-16D
Ke	Back E.M.F	Volts/KRPM	6.0	5.6	12.1	12.0
Kt	Torque Constant	oz-in/Amp (mN.m/Amp)	8.1 (57.3)	7.6 (53.5)	16.4 (115.6)	16.2 (114.6)
Rt	Terminal Resistance	Ohms	1.00	0.62	1.75	1.30
L	Inductance	mH	1.1	0.76	2.46	2.03
Rth	Thermal Resistance	Deg C/Watt	4.9	4.4	3.8	2.9
Vt	Voltage Terminal	V dc	24	24	48	48
no	No load Speed @ Vt	RPM	4000	4286	3967	4000
I _o	No load Current @ Vt	Amp	0.55	0.60	0.28	0.32
Tc	Cont. Torque	oz-in (N.m)	21 (0.15)	30 (0.21)	45 (0.32)	65 (0.46)
nc	Speed @ Vt & Tc	RPM	3558	3847	3569	3569
Ic	Current @ Vt & Tc	Amp	3.2	4.6	3.0	4.3
Po	Power Out @ Vt & Tc	Watts	57	85	119	170
Tp	Peak Torque	oz-in (N.m)	42 (0.30)	59 (0.42)	91 (0.64)	129 (0.91)
n _p	Speed @ Vt & Tp	RPM	3117	3409	3172	3139
I _p	Current @ Vt & Tp	Amp	5.8	8.5	5.8	8.3
电机外形尺寸:						

哈尔滨工业大学航天学院 <mark>控制与仿真中心</mark>

4. 直流电机应用实例—低惯量直流伺服电机

线绕盘式直流伺服电动机

电枢无铁心,没有磁饱和效应和齿槽效应,换向性能好,时间常数小,快速响应性能好。

图 3-1-5 线绕盘式直流伺服电动机结构

哈尔滨工业大学航天学院 控制与仿真中心

4. 直流电机应用实例—低惯量直流伺服电机

印制绕组直流伺服电动机

电枢无铁心,没有磁饱和效应 和齿槽效应,换向性能好,时间 常数小,快速响应性能好

4. 直流电机应用实例—低惯量直流伺服电机 直流空心杯型伺服电动机 System Drive 22SYK0601.U 滑动轴承(可订制滚动轴承) 贵金属电刷 标称功率 W 1.0 最大输出功率 3.17 V 79 额定电压 最大效率 0.7 端电阻 ±10% Ω 最大电流 380 行 空载转速 $\pm 10\%$ 8,080 电机运行 最大转矩 1.33 rpm mN. m 空载电流 $\pm 50\%$ 52 区域上限 转速 7,363 mΑ rpm 转速常数 2693 输出功率 1.02 W rpm/V 3.5 转子最大温度 +85 25 转矩常数 mN. m/A $^{\circ}\!\mathbb{C}$ 启动电流 4285 环境温度 $^{\circ}$ C -20~+65 堵转转矩 15.01 重量 45 mN. m

4. 直流电机应用实例—低惯量直流伺服电机

中华人民共和国机械行业标准

JB/T 5867-1991

空心杯电枢永磁直流伺服电动机 通 用 技 术 条 件

哈尔滨工业大学航天学院 控制与仿真中心

4. 直流电机应用实例—低惯量直流伺服电机

- 3 产品分类
- 3.1 电机型号

电机型号由下列部分组成

3.1.1 型号示例
20 SYK 01 A
第一种派生代号
第一种性能参数代号
空心杯电枢水磁直流伺服电动机
机座外径为 20mm

3.1.2 机座号 机座号及其相应的机座外径如表 1 规定

4. 直流电机应用实例—宽调速直流伺服电机

宽调速直流伺服电动机

- 具有调速范围宽,在闭环控制中调速 比可做到1:2000以上;
- 过载能力强,最大转矩可为额定转矩 的5到10倍;
- 低速转矩大,可以与负载同轴连接。
- 这类电机使用在数控机床的进给伺服 驱动、雷达天线驱动及其它伺服跟踪 驱动系统中。

哈尔滨工业大学航天学院 控制与仿真中心

4. 直流电机应用实例—宽调速直流伺服电机

中华人民共和国机械行业标准

JB/T 5866—2004 代替 JB/T 5866—1991

宽调速永磁直流伺服电动机通用技术条件

General specification for wide-regulating-speed permanent magnet DC servo motor

4. 直流电机应用实例—宽调速直流伺服电机

4.1.2 型号示例

4.1.3 机座号

机座号由电动机的机壳(铁心段)外径(单位为mm)来表示。

4.1.4 产品名称代号

产品名称代号用大写汉语拼音字母SZK表示宽调速永磁直流伺服电动机,其含义是:S代表伺服电动机,Z代表直流,K代表宽调速。

对机组形式,产品名称代号用SZK—□表示、□用C代表测速机、X代表旋转变压器、M代表编码器、Z代表制动器。

当电动机装有两种以上元件时,在SZK一后所加代表各元件符号的排列顺序依次为C、X、M、Z。

4.1.5 性能参数代号

性能参数代号以两位阿拉伯数字01~99表示。

5 技术要求	6 试验方法
5.1 使用环境条件	6.1 试验条件
5.2 出线方式及出线标记	6.2 外观和装配质量
5.3 外观和装配质量	6.3 绝缘介电强度
5.4 绝缘介电强度	6.4 绝缘电阻
5.5 绝缘电阻	6.5 旋转方向
5.6 旋转方向	6.6 正、反转速差率
5.7 正、反转速差率	6.7 空载起动电压
5.8 空载起动电压	6.8 超速
5.9 超速	6.9 反电动势系数
5.10 反电动势系数	6.10 直流电阻
	6.11 静摩擦转矩
	6.12 额定电流
5.12 静摩擦转矩	6.13 温升
5.13 额定电流	6.14 换向火花
5.14 温升	6.15 热时间常数
5.15 换向火花	6.16 额定功率
5.16 热时间常数	6.17 电枢转动惯量
5.17 额定功率	6.18 机械时间常数
5.18 电枢转动惯量	6.19 电气时间常数
5.19 机械时间常数	6.20 转矩波动系数
5.20 电气时间常数	6.21 电流过载倍数 6.22 噪声
5.21 转矩波动系数	,p,
5.22 电流过载倍数	6.23 电磁骚扰(电磁干扰)
5.23 噪声	6.24 低温
	6.25 高温
5.24 电磁骚扰 (电磁干扰)	6.26 振动
5.25 低温	6.27 冲击
5.26 高温	6.28 恒定湿热
5.27 振动	6.29 寿命
临水浜工业大字机大字 院	控制与仿具中心

4. 直流电机应用实例—永磁直流微电机

微型永磁直流电动机技术性能指标					
项目	录音机电动机	中档电动机	玩具电动机		
额定电压/V	6~12	1.5~15	1.5~6		
额定转矩/(×10⁻³Nm)	0.8~1	0.8~3	0.8~2		
额定转速/(r/min)	2 200~2 400	5 000~8 000	6 000~12 000		
稳速精度/(%)	±2				
噪 声/dB	40以下	60以下	70 以下		
寿 命/h	1000以上	60~200	30 以下		
价格/元	10 元左右	3 元左右	1 元左右		
用途	具有稳速装置,用于收录机、 微型收录机、单放机、挺相机、 照相机、激光唱机、电唱机、幻 灯机等	电动剃须刀、电吹风、微型 吸尘器、电动按摩器、充气 机、切片机、电动牙刷、医疗 器具等	各种电动玩具、航模		

哈尔滨工业大学航天学院 控制与仿真中心

目 录

- 1. 直流电机的四象限运行
- 2. 直流电机的动态特性
- 3. 电机的选用
- 4. 直流电机应用实例
- 5. 直流电机总结

5. 直流电机总结

要掌握:

- 1) DCM的基本方程;
- 2) DCM调速方法和调速特性;
- 3) 电机的选择

要了解:

- 1) 直流电机结构;
- 2) 直流电机的电枢反应和换向特点
- 3) 直流伺服电机及种类

5. 直流电机总结

电机的选用

(1) 峰值力矩—加速度/惯性力矩+阻力矩

$$T_p = (J_m + J_L)a + T_f$$

- (2) 额定力矩--电机长时间运行允许的最大电流
- (3) 额定转速—转矩*转速=功率
- (4) 力矩常数Kt—电流, 电势常数Ke—电压;
- (5) 尺寸、质量与接口形式

哈尔滨工业大学航天学院 控制与仿真中心

考试例题

5.3 机床加工中,工件的运动采用伺服电机系统驱动,要求工件机动运动具备重复完成下图所示以 60ms 为周期的运动。

工件的转动惯量 $J_L=2*10^2 kgm^2$,工件运动的摩擦力矩 $T_f=4$ Nm; 确定采用10:1 的减速器驱动方案,有多种直流伺服电机可供选择,这些电机的转动惯量都是 $J_M=2*10^4$ kgm²,额定转速都是 3000rpm;

考试例题

- 1) 不考虑减速器的转动惯量和效率,根据工件驱动需要,对驱动电机的最高转速、 峰值力矩、额定转矩如何要求? (5分)
- 2) 在两种电机峰值转矩和额定转矩都满足驱动需求的前提下,如果 甲电机力矩系数 Kt=0.4 Nm/A,电势系数 Ke=0.4V/rad/s,电枢电阻 R=2Ω。 乙电机力矩系数 Kt=0.1 Nm/A,电势系数 Ke=0.1V/rad/s,电枢电阻 R=0.5Ω。 假设机床驱动供电电压为 110V DC,两种电机是否都能采用?从高效率运行的角度,你选择哪一种电机并说明原因(3分)
- 3) 为了实现工件驱动达到定位精度 0.2° 的要求,可以在电机侧安装光电码盘进行转角负反馈控制,减速器环节会产生 0.04° 以内的驱动传输误差,现在有 8 位、10 位、13 位的绝对式光电编码器可作为电机侧位置检测传感器,合理的选择应是哪

哈尔滨工业大学航天学院 控制与仿真中心

致 谢

本文档所引用的许多素材,来源于互联网上国内外的课件、科技论文、文章、网页等。本文引用只是为了给学生提供更好的教学素材,非商业目的。对这些所引用素材的原创者,在此表示深深的谢意。

