EIE 2050 Digital Logic and Systems

Chapter 2 : Number Systems

Instructor: Yue ZHENG, Ph.D.

Announcements

NO tutorials and homework for the second week EITHER;

Last Week

- ☐ Analog versus Digital
- ☐ Bits (Binary digits), Logic Levels and Digital Waveforms
- Basic logic functions: NOT, AND and OR
- ☐ Combinational & sequential logic functions:
 - comparator, adder, encoder/decoder, (de)multiplexer,
 - flip-flops, registers, counter
- ☐ Integrated circuit (IC): Programmable versus Fixed-function
 - ◆ Package: Surface-mounted and Through-hole
 - Programmable: PLD (SPLD and CPLD) and FPGA
 - ◆ Fixed-function : SSI/MSI/VLSI/ULSI

Binary Numbers

Number Systems

A system of writing to express numbers

- Daily life: 10, 12, 60, ...
- Computer systems: 2, 8,16, ...

Decimal Numbers

1's column
10's column
100's column
1000's column

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Base-10 Numbers

Base-R Number System

- Base: R (R ≥ 2)
- Digit: [0, R-1]
- Weight: R^x

$$\begin{aligned} (\mathsf{N})_{\mathsf{R}} &= \ a_{\mathsf{n-1}} \ a_{\mathsf{n-2}} \ldots \ a_{\mathsf{1}} \ a_{\mathsf{0}} \ a_{\mathsf{-1}} \ldots \ a_{\mathsf{-m}} \\ &= \ a_{\mathsf{n-1}} \times \mathsf{R}^{\mathsf{n-1}} + a_{\mathsf{n-2}} \times \mathsf{R}^{\mathsf{n-2}} + \ldots + a_{\mathsf{1}} \times \mathsf{R}^{\mathsf{1}} + a_{\mathsf{0}} \times \mathsf{R}^{\mathsf{0}} + a_{\mathsf{-1}} \times \mathsf{R}^{\mathsf{-1}} + \ldots + a_{\mathsf{-m}} \times \mathsf{R}^{\mathsf{-m}} \\ &= \sum_{i=-m}^{n-1} a_{\mathsf{i}} \times \mathsf{R} \mathsf{i} \end{aligned}$$

- Decimal numbers: base-10
- Binary numbers: base-2
- Octal numbers: base-8
- Hexadecimal numbers: base-16

Decimal Number System

Base: 10

Digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Weight: ...10² 10¹ 10⁰ 10⁻¹ 10⁻² 10⁻³... Fractional numbers

Decimal point

Decimal numbers in digital systems mean any base 10 numbers, not just those with a decimal point.

$$568.23 = (5 \times 10^{2}) + (6 \times 10^{1}) + (8 \times 10^{0}) + (2 \times 10^{-1}) + (3 \times 10^{-2})$$

$$= (5 \times 100) + (6 \times 10) + (8 \times 1) + (2 \times 0.1) + (3 \times 0.01)$$

$$= 500 + 60 + 8 + 0.2 + 0.03$$

Binary Number System

```
Base: 2
Digit: 0, 1
Weight: ...2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>.2<sup>-1</sup> 2<sup>-2</sup> 2<sup>-3</sup>...
binary point
```

Binary-to-Decimal Conversion:

```
(10.101)_2 = (1 \times 2^1) + (0 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})
= (1 \times 2) + (0 \times 1) + (1 \times 0.5) + (0 \times 0.25) + (1 \times 0.125)
= 2 + 0 + 0.5 + 0 + 0.125
= (2.625)_{10}
```

Powers of Two

- 2⁰ =
- $2^1 =$
- 2² =
- $2^3 =$
- 2⁴ =
- $2^5 =$
- 2⁶ =
- $2^7 =$

Handy to memorize

Counting in Binary

Binary	Decima
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7

1-Bit Binary Numbers	2-Bit Binary Numbers	3-Bit Binary Numbers	4-Bit Binary Numbers	Decimal Equivalents
0	00	000	0000	0
1	01	001	0001	1
	10	010	0010	2
	11	011	0011	3
		100	0100	4
		101	0101	5
		110	0110	6
		111	0111	7
			1000	8
			1001	9
			1010	10
			1011	11
			1100	12
			1101	13
			1110	14
			1111	15

Number Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal

- Decimal to binary conversion:
 - Convert 53₁₀ to binary

Decimal to Binary Conversion

- Two methods:
 - Method 1: Find the largest power of 2 that fits, subtract and repeat
 - Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

Decimal to Binary Conversion

- 53₁₀
- **Method 1:** Find the largest power of 2 that fits, subtract and repeat
 - 53₁₀

32×1

• 53-32 = 21

16×1

• 21-16 = 5

 4×1

• 5-4=1

1×1

- = 110101₂
- Method 2: Repeatedly divide by 2, remainder goes in next most significant bit
 - $53_{10} = 53/2 = 26 R1$
 - 26/2 = 13 R0
 - 13/2 = 6 R1
 - 6/2 = 3 R0
 - 3/2 = 1 R1
 - 1/2 = 0 R1
- = 110101₂

Binary Values and Range

N-digit decimal number

- How many values? 10^N
- Range? [0, 10^N 1]
- Example: 3-digit decimal number:
 - $10^3 = 1000$ possible values
 - Range: [0, 999]

• N-bit binary number

- How many values? 2^N
- Range: [0, 2^N 1]
- Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Octal & Hexadecimal Numbers

Octal Number System

Base: 8

Digit: 0, 1, 2, 3, 4, 5, 6, 7

Weight: ...8² 8¹ 8⁰.8⁻¹ 8⁻² 8⁻³...

Octal-to-Decimal Conversion:

$$(2374)_8 = (2 \times 8^3) + (3 \times 8^2) + (7 \times 8^1) + (4 \times 8^0)$$

= $(2 \times 512) + (3 \times 64) + (7 \times 8) + (4 \times 1)$
= $1024 + 192 + 56 + 4$
= $(1276)_{10}$

Hexadecimal Number System

Base: 16

Digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Weight: ...16² 16¹ 16⁰.16⁻¹ 16⁻² 16⁻³...

Hex-to-Decimal Conversion:

$$(E5)_{16} = (E \times 16^{1}) + (5 \times 16^{0})$$

= $(14 \times 16) + (5 \times 1)$
= $224 + 5$
= $(229)_{10}$

Decimal-to-Octal Conversion

Repeated division by 8 with the 1st remainder being the least significant digit (LSD)

$$(359)_{10} = (547)_8$$

Decimal-to-Hexadecimal Conversion

Repeated division by 16 with the 1st remainder being the least significant digit (LSD)

$$(650)_{10} = (28A)_{16}$$

Conversion btw. Binary, Octal, & Hex. Numbers

- Octal/Hex → Binary
 - Replace each octal (hexadecimal) digit with 3 (4) bits
 - Octal-to-Binary

 7 5 2 6

 111101010110

7526₈=111101010110₂

Conversion btw. Binary, Octal, & Hex. Numbers

- Binary → Octal/Hex
 - Convert each 3-bit (4-bit) group to the equivalent octal (hexadecimal) digit
 - Start from right-most, move from right to left, leading 0s

Why do computers use Binary?

Boolean Logic & Logic Gates: Crash Course Computer Science #3

https://thecrashcourse.com/topic/computerscience/

Why Octal and Hexdecimal?

- A more convenient/compact way to represent large binary numbers
- Easy Conversion from/to Binary
- Examples:
 - Octal: file permission in Linux
 - Hex: memory address

Bytes, Nibbles, & All that Jazz

Bits, Bytes, Nibbles ...

• Byte: 8 bits

Represents one of _____ values

• [___, ___]

Nibble: 4 bits

Represents one of _____ values

• [____, ____]

One binary digit is ___ bit
One hex digit is ___ bits or ___ nibble
Two hex digits make ___ byte

Most significant on left Least significant on right

Large Powers of Two

```
• 2^{10} = 1 kilo \approx 10^3 (1024)

• 2^{20} = 1 mega \approx 10^6 (1,048,576)

• 2^{30} = 1 giga \approx 10^9 (1,073,741,824)

• 2^{40} = 1 tera \approx 10^{12}

• 2^{50} = 1 peta \approx 10^{15}

• 2^{60} = 1 exa \approx 10^{18}
```

Estimating Powers of Two

• What is the value of 2^{24} ?

How large of a value can a 32-bit integer variable represent?

Binary Arithmetic: + - × ÷

Addition

Decimal

Binary

Addition rules

0 + 0 = 0 Sum of 0 with a carry of 0 0 + 1 = 1 Sum of 1 with a carry of 0 1 + 0 = 1 Sum of 1 with a carry of 0 1 + 1 = 10 Sum of 0 with a carry of 1

Binary Addition Examples

 Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Subtraction

$$\begin{array}{r}
 101 \\
 -011 \\
 \hline
 010
 \end{array}$$

Subtraction rules

$$0 - 0 = 0$$

 $1 - 1 = 0$
 $1 - 0 = 1$
 $10 - 1 = 1$ $0 - 1$ with a borrow of 1

Multiplication

Multiplication Rules

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$

Division

Decimal

$$\begin{array}{r}
25 \\
5 \overline{\smash{\big)}\ 125} \\
10 \\
25 \\
\underline{25} \\
0
\end{array}$$

Binary

$$\begin{array}{c|c}
11 & 11 \\
10)110 & 11 \\
\underline{10} & \underline{11} \\
10 & \underline{11} \\
\underline{10} & \underline{11} \\
\underline{10} & \underline{11} \\
\underline{10} & \underline{00}
\end{array}$$

Signed Numbers

Signed Binary Number

Sign/Magnitude Numbers

Two's Complement Numbers

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

$$A: \{a_{N-1}, a_{N-2}, \dots a_2, a_1, a_0\}$$

$$A = (-1)^{a_{N-1}} \sum_{i=0}^{N-2} a_i \, 2^i$$

- Example, 4-bit sign/mag representations of ± 6:
 - +6 =
 - **-** 6
- Range of an N-bit sign/magnitude number:

Sign/Magnitude Numbers

Problems:

Addition doesn't work, for example -6 + 6:

```
1110
+ 0110
10100 (wrong!)
```

Two representations of 0 (± 0):

1000

0000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

Two's Complement Numbers

MSB has weight of -2^{N-1}

$$A = a_{N-1}(-2^{N-1}) + \sum_{i=0}^{N-2} a_i 2^i$$

- Most positive 4-bit number:
- Most negative 4-bit number:

•	The most significant bit still indicates the sign
	(1 = negative, 0 = positive)

•	Range	of an	N-bit two's	comp	lement	number:
---	-------	-------	-------------	------	--------	---------

Decimal	2's Complement
-1	11111111
-2	11111110
-3	11111101
-4	11111100
-128	10000000

Reverse the Sign

- Reverse the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Reverse the sign of $3_{10} = 0011_2$
 - 1. 1100
 - 2.

Historically, this reversing the sign method has been called: "Taking the Two's complement". But this terminology can be confusing, so we instead we call it "reversing the sign".

Two's Complement Examples

- Reverse the sign of $6_{10} = 0110_2$
 - 1.
 - 2.

- What is the decimal value of the two's complement number 1001₂?
 - 1.
 - 2.

Two's Complement Addition

- □ 3-step procedures:
- 1 Convert the decimal numbers into the binary form with negative numbers expressed in the 2's complement form
- Perform binary addition
- Sign: If both numbers positive (negative) → the result positive (negative).
 If the sign is incorrect, overflow has occurred!

Two's Complement Addition

- □ 3-step procedures:
- 1 Convert the decimal numbers into the binary form with negative numbers expressed in the 2's complement form
- Perform binary addition
- Sign: If both numbers positive (negative) → the result positive (negative).
 If the sign is incorrect, overflow has occurred!

Two's Complement Addition: one negative number

Subtraction

- Subtract a 2's complement number by reversing the sign and adding.
- Reverse sign by taking 2's complement

• Ex:
$$3 - 5 = 3 + (-5)$$

• Ex:
$$8 - 3 = 8 + (-3)$$

Multiplication

Direct addition :

- Very lengthy if the multiplier is a large number
- both numbers must be in true (uncomplemented) form.

Partial product

- ◆ Same sign → Positive;
- ◆ Different signs → Negative

Division

- □ Division operation in computers is accomplished using subtraction
- Quotient and Remainder
 - When to stop the subtraction: the remainder is a zero or a negative number
 - Quotient: # of times of subtraction performed
- ☐ Sign of the quotient
 - ◆ Same sign → Positive;
 - ◆ Different signs → Negative

What about dividing 100 by -25?

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

Fixed-Point Numbers

Number Systems

- Numbers we can represent using binary representations
 - Positive numbers
 - Unsigned binary
 - Negative numbers
 - Two's complement
 - Sign/magnitude numbers
- What about fractions?

Numbers with Fractions

- Two common notations:
- Fixed-point: binary point fixed
- Floating-point: binary point floats to the right of the most significant 1

Fixed-Point Numbers

6.75 using 4 integer bits and 4 fraction bits:

$$2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$$

- Binary point is implied
- The number of integer and fraction bits must be agreed upon beforehand

Unsigned Fixed Point Formats

- Ua.b: unsigned number with
 - a integer bits
 - b fractional bits.
- Example: 6.75 is
 - **U4.4**: 01101100
 - **U3.5**: 11011000
 - **U6.2**: 00011011
- 8, 16, and 32-bit fixed point numbers are common
 - U8.8 often represents sensor data, audio, pixels
 - U16.16 used for higher precision signal processing

Signed Fixed Point Formats

- Qa.b: signed 2's complement number with
 - **a** integer bits (including the sign bit)
 - b fractional bits
- To negate a Q fixed point number:
 - Invert the bits
 - Add one to the LSB
- **Example:** write **-6.75** in Q4.4
 - 6.75 = 01101100
 - Invert: 10010011
 - Add 1 LSB: 10010100
- Q1.15 (aka Q15) is common for signal processing (1, -1]

Saturating Arithmetic

- Fixed point overflow is usually bad
 - Produces undesired artifacts:
 - Video: dark pixel in middle of bright pixels
 - Audio: clicking sounds
- Saturating arithmetic
 - Instead of overflowing, use largest value
 - In U4.4: 11000000 + 01111000 = 11111111
 - 12 + 7.5 = 15.9375

Floating-Point Numbers

Floating-Point Numbers

- Binary point floats to the right of the most significant 1
- Similar to decimal scientific notation
- For example, write 273₁₀ in scientific notation:
 - $273 = 2.73 \times 10^2$
- In general, a number is written in scientific notation as:

$$\pm M \times B^{E}$$

- M = mantissa
- -B = base
- $-\mathbf{E} = \text{exponent}$
- In the example, M = 2.73, B = 10, and E = 2

Floating vs. Fixed Point Numbers

- Floating point numbers are like scientific notation
 - Allow a greater dynamic range of smallest to largest
 - Arithmetic is harder
 - Mantissa must be aligned before adding
 - This costs performance and power
- Fixed point numbers are harder for the programmer
 - Smaller dynamic range
 - Take care of overflow
- Floating Point is preferred for general-purpose computing where programming time is most important
- Fixed Point is preferred for signal processing performance, power, and hardware cost matter most
 - Machine learning, video

Floating-Point Numbers

• Example: represent the value 228₁₀ using a 32-bit floating point representation

IEEE 754 floating-point standard

- First bit of the mantissa is always 1: $228_{10} = 11100100_2 = 1.11001 \times 2^7$
 - So, no need to store it: implicit leading 1
- Store just fraction bits in 23-bit field
- Biased exponent: bias = 127 (011111111₂)
 - Biased exponent = bias + exponent
 - Exponent of 7 is stored as:

$$127 + 7 = 134 = 0 \times 10000110_{2}$$

	Exponent	
Sign	Biased	Fraction
0	10000110	110 0100 0000 0000 0000 0000
1 bit	8 bits	23 bits

in hexadecimal: 0x43640000

Why Biased Exponent?

- The range of the biased exponent: [-127, +128]
 - Extremely large or Small numbers can be represented in this way

•

Floating-Point Example

- Write **-58.25**₁₀ in floating point (IEEE 754)
- 1. Convert magnitude of decimal to binary:
 - 58.25₁₀ = 111010.01₂
- 2. Write in binary scientific notation:
- 1.1101001 × 2⁵
- 3. Fill in fields:
 - Sign bit: 1 (negative)
 - 8 exponent bits: $(127 + 5) = 132 = 10000100_2$
 - 23 fraction bits: 110 1001 0000 0000 0000 0000

Sign Exponent

Fraction

in hexadecimal: 0xC2690000

Floating-Point Special Cases

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
-∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	Non-zero

Non-positional/Non-weighted Number Systems

Positional/Weighted Number System

Positional/Weighted number system

The value of a symbol is determined by its position

Examples: decimal / binary / octal / hexadecimal number systems ...

Non-positional/Non-weighted number system

The value of a symbol is NOT determined by its position

Examples: gray code, cyclic code ...

Binary Coded Decimal (BCD)

- Express each of the decimal digits with a binary code.
- ☐ The 8421 code

TABLE 2-5 Decimal/BCD conversion. **Decimal Digit BCD**

- BCD-to-Decimal Conversion
 - Starting from the right-most bit and divide the code into groups of four bits

BCD Addition

- 1. Add the two BCD numbers, using the rules for binary addition
- 2. If a 4-bit sum $\leq 9 \rightarrow \text{Valid BCD number}$
- 3. Otherwise, add 6 (0110) to the 4-bit sum

Decimal/BCD conversion.

Decimal Digit	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

The Gray Code (I)

☐ Only a single bit change from one code word to the next in sequence

Four-bit Gray code.

Decimal	Binary	Gray Code	Decimal	Binary	Gray Code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

Gray Code: How to Transfer (II)

EXAMPLE

- (a) Convert the binary number 11000110 to Gray code.
- (b) Convert the Gray code 10101111 to binary.

Solution

(a) Binary to Gray code:

(b) Gray code to binary:

Encoding transmit symbols with the Gray Code

- Transmitter sends one of the four symbols;
- ◆ Transmitted symbols are distorted by noise;
- ◆ The receiver tries to decode the distorted symbols;

Without gray code

With gray code

Why Gray Code has an advantage?

011->100,

intermediate states:

010,001,101,110,111

The probability of making a symbol detection error is inversely proportional to the symbol distance

Alphanumeric Codes

☐ ASCII:

American

Standard

Code for

Information

Interchange

	Control	Characters							Graphi	c Symbols					
Name	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40	,	96	1100000	60
SOH	1	0000001	01	!	33	0100001	21	A	65	1000001	41	a	97	1100001	61
STX	2	0000010	02	,,	34	0100010	22	В	66	1000010	42	ь	98	1100010	62
ETX	3	0000011	03	#	35	0100011	23	C	67	1000011	43	С	99	1100011	63
EOT	4	0000100	04	\$	36	0100100	24	D	68	1000100	44	d	100	1100100	64
ENQ	5	0000101	05	%	37	0100101	25	E	69	1000101	45	e	101	1100101	65
ACK	6	0000110	06	&	38	0100110	26	F	70	1000110	46	f	102	1100110	66
BEL	7	0000111	07	,	39	0100111	27	G	71	1000111	47	g	103	1100111	67
BS	8	0001000	08	(40	0101000	28	Н	72	1001000	48	h	104	1101000	68
HT	9	0001001	09)	41	0101001	29	I	73	1001001	49	i	105	1101001	69
LF	10	0001010	0A	*	42	0101010	2A	J	74	1001010	4A	j	106	1101010	6A
VT	11	0001011	0B	+	43	0101011	2B	K	75	1001011	4B	k	107	1101011	6B
FF	12	0001100	0C	,	44	0101100	2C	L	76	1001100	4C	1	108	1101100	6C
CR	13	0001101	0D	=	45	0101101	2D	M	77	1001101	4D	m	109	1101101	6D
SO	14	0001110	0E		46	0101110	2E	N	78	1001110	4E	n	110	1101110	6E
SI	15	0001111	0F	/	47	0101111	2F	О	79	1001111	4F	О	111	1101111	6F
DLE	16	0010000	10	0	48	0110000	30	P	80	1010000	50	р	112	1110000	70
DC1	17	0010001	11	1	49	0110001	31	Q	81	1010001	51	q	113	1110001	71
DC2	18	0010010	12	2	50	0110010	32	R	82	1010010	52	r	114	1110010	72
DC3	19	0010011	13	3	51	0110011	33	S	83	1010011	53	S	115	1110011	73
DC4	20	0010100	14	4	52	0110100	34	T	84	1010100	54	t	116	1110100	74
NAK	21	0010101	15	5	53	0110101	35	U	85	1010101	55	u	117	1110101	75
SYN	22	0010110	16	6	54	0110110	36	V	86	1010110	56	v	118	1110110	76
ETB	23	0010111	17	7	55	0110111	37	W	87	1010111	57	w	119	1110111	77
CAN	24	0011000	18	8	56	0111000	38	X	88	1011000	58	x	120	1111000	78
EM	25	0011001	19	9	57	0111001	39	Y	89	1011001	59	y	121	1111001	79
SUB	26	0011010	1A	:	58	0111010	3A	Z	90	1011010	5A	z	122	1111010	7A
ESC	27	0011011	1B	;	59	0111011	3B]	91	1011011	5B	{	123	1111011	7B
FS	28	0011100	1C	<	60	0111100	3C	\	92	1011100	5C	Ĺ	124	1111100	7C
GS	29	0011101	1D	=	61	0111101	3D]	93	1011101	5D	}	125	1111101	7D
RS	30	0011110	1E	>	62	0111110	3E	^	94	1011110	5E	~	126	1111110	7E
US	31	0011111	1F	?	63	0111111	3F	-	95	1011111	5F	Del	127	1111111	7F

Error Codes: Parity Bit for Error Detection

☐ A parity bit is attached to a group of bits to make the total number of 1's in a group always even or always odd.

TABLE 2-8

The BCD code with parity bits.

Even	Parity	Odd	Parity
P	BCD	P	BCD
0	0000	1	0000
1	0001	0	0001
1	0010	0	0010
0	0011	1	0011
1	0100	0	0100
0	0101	1	0101
0	0110	1	0110
1	0111	0	0111
1	1000	0	1000
0	1001	1	1001

EXAMPLE

An odd parity system receives the following code groups: 10110, 11010, 110011, 110101110100, and 11000101010. Determine which groups, if any, are in error.

	# of 1's
10110	3
11010	3
110011	4
110101110100	7
1100010101010	6

Since odd parity is required, any group with an even number of 1s is incorrect. The following groups are in error: 110011 and 11000101010.

Error Codes: Cyclic Redundancy Check

- ☐ Cyclic Redundancy Check (CRC): an error detection method that can detect multiple errors in data blocks
- ☐ At the sending end, a checksum is appended to a block of data.
- ☐ At the receiving end, the check sum is generated and compared to the sent checksum. If the check sums are zeros, no error is detected.

D: 11010011 Data
G: 1010 Generator code

Step 1: Append 0000 to the data

D' = 110100110000

Remainder (Checksum): 0100

Step 3: The transmitted CRC is 110100110100

Chapter Review

