[70240413 Statistical Machine Learning, Spring, 2018]

Statistical Learning Theory

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

April 24, 2018

Supervised learning

- The basic framework:
 - Data consists of pairs (instance, label)
 - \square Label is ± 1 or -1
 - Algorithm construct a function (instance -> label)
 - Goal: make few mistakes on future unseen instances

Approximation/Interpolation

It is always possible to build a function that fits exactly the data

But is it reasonable?

Occam's Razor

- ♦ Idea: look for regularities in the observed phenomenon; these can be generalized from the observed past to the future
 - Choose the simplest consistent model
- How to measure simplicity?
 - Number of parameters
 - Description length
 - **...**

No Free Lunch

No free lunch theorem:

- If there is no assumption on how the past is related to the future, prediction is impossible
- If there is no restriction on the possible phenomena, generalization is impossible
- We need to make assumptions
- Simplicity is not absolute
- Data will never replace knowledge
- ♦ Generalization = data + knowledge

Assumptions

- Two types of assumptions
 - Future observations related to past ones
 - Stationarity of the phenomenon
 - Constraints on the phenomenon
 - Notion of simplicity

Goals of SLT

How can we make predictions from the past? What are the assumptions?

- Give a formal definition of learning, generalization, overfitting
- Characterize the performance of learning algorithms
- Design better algorithms

Probabilistic Model

- Relationship between past and future observations
 - Sampled independently from the same distribution
- ♠ Independence: each new observation yields maximum information
- ♦ Identical distribution: the observations give information about the underlying distribution

Probabilistic Model

- lacktriangle We consider an input space ${\mathcal X}$ and output space ${\mathcal Y}$
 - \square For classification, we have $\mathcal{Y} = \{+1, -1\}$
- **Assumption**: the pairs $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ are distributed according to P (unknown)
- **Data**: we observe a sequence of n i.i.d. pairs (X_i, Y_i) sampled from P
- Goal: construct a function $g: \mathcal{X} \to \mathcal{Y}$ which predicts Y from X

Probabilistic Model

- Criterion to choose our function:
 - Low probability of error

$$P(g(X) \neq Y)$$

Risk:

$$R(g) = P(g(X) \neq Y) = \mathbb{E}[1_{[g(X) \neq Y]}]$$

- □ *P* is unknown so that we cannot directly measure the risk
- Can only measure the agreement on the data
- **Empirical Risk:**

$$R_n(g) = \frac{1}{n} \sum_{i=1}^n 1_{[g(X_i) \neq Y_i]}$$

Target Function

- \bullet P can be decomposed as $P_X \times P(Y|X)$
- Regression function:

$$\eta(x) = \mathbb{E}[Y|X = x] = 2\mathbb{P}[Y = 1|X = x] - 1$$

Target function:

$$t(x) = \operatorname{sgn} \eta(x)$$

- \bullet In the deterministic case Y = t(X) ($\mathbb{P}[Y = 1|X] \in \{0,1\}$)
- In general, the noise level

$$n(x) = \min(\mathbb{P}[Y = 1|X = x], 1 - \mathbb{P}[Y = 1|X = x])$$

= $(1 - \eta(x))/2$

Assumptions about P

- Need assumptions about P
 - $lue{ }$ If t(x) is totally chaotic, there is no possible generalization from finite data
- Assumptions can be
 - □ Preference (e.g., a prior distribution on possible functions)
 - Restriction (e.g., set of possible functions)
- Treating lack of knowledge
 - Bayesian approach: uniform distribution
 - Learning theory approach: worst-case analysis

Overfitting/Underfitting

- The data can mislead you
 - Underfitting model too small to fit the data
 - Overfitting artificially good agreement with the data
- No way to detect them from the data! Need extra validation data

Empirical Risk Minimization

 \diamond Choose a model \mathcal{G} (set of functions)

Minimize the empirical risk in the model

$$\min_{g \in \mathcal{G}} R_n(g)$$

• What if the Bayes classifier is not in the model?

Approximation/Estimation

Bayes risk

$$R^* = \inf_g R(g)$$

- Best risk a deterministic function can have (risk of the target function, or Bayes classifier)
- Decomposition: $R(g^*) = \inf_{g \in \mathcal{G}} R(g)$

$$R(g_n) - R^* = \underbrace{R(g^*) - R^*}_{\text{Approximation}} + \underbrace{R(g_n) - R(g^*)}_{\text{Estimation}}$$

- Only the estimation error is random (i.e. depends on the data)
- In statistics, this is known as bias-variance decomposition

Bias-Variance Decomposition

Originally coined in regression with squared error loss

$$Y_i = f(X_i) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- $\hfill \Box$ Goal: find a function $\hat{f}(X)$ to approximate the truth Y=f(X) from some training dataset
- Expected square error for an unseen *X*:

$$\mathbb{E}[(Y - \hat{f}(X))^2] = \operatorname{Bias}[\hat{f}(X)]^2 + \operatorname{Var}[\hat{f}(X)] + \sigma^2$$

where

Bias
$$[\hat{f}(X)] = \mathbb{E}[\hat{f}(X)] - f(X), \text{ Var}[\hat{f}(X)] = \mathbb{E}[(\hat{f}(X) - \mathbb{E}[\hat{f}(X)])^2]$$

- Note: expectation is taken over different choices of training set
- Now used in more general settings

Bias-Variance Decomposition

Bias-Variance Tradeoff

An example that ERM can fail

- \diamond Assume a data space $\mathcal{X} = [0, 1]$ with a uniform distribution
- Define the true label deterministically

$$Y = \begin{cases} -1 & \text{if } X < 0.5\\ 1 & \text{if } X \ge 0.5. \end{cases}$$

• Given a set of training data, consider the classifier

$$g_n(X) = \begin{cases} Y_i & \text{if } X = X_i \text{ for some } i = 1, \dots, n \\ 1 & \text{otherwise.} \end{cases}$$

- \bullet Then, we have $R_n(g) = 0$
- But R(g) = 1/2
- The classifier doesn't learn anything! Overfitting!

Structural risk Minimization

- Choose a collection of models $\{\mathcal{G}_d: d=1,2,\ldots\}$
- Minimize the empirical risk in each model
- Minimize the penalized empirical risk

$$\min_{d} \min_{g \in \mathcal{G}_d} R_n(g) + \operatorname{pen}(d, n)$$

- ightharpoonup pen(d,n) gives preference to models where estimation error is small
- ightharpoonup pen(d,n) measures the size or capacity of the model

Regularization

- \diamond Choose a large model \mathcal{G} (possibly dense)
- lacktriangle Choose a regularizer ||g||
- Minimize the regularized empirical risk

$$\min_{g \in \mathcal{G}} R_n(g) + \lambda \left\| g \right\|^2$$

- lacktriangle Choose an optimal trade-off λ (regularization parameter)
- Most methods can be thought of as regularization methods, e.g., SVMs

Bounds

- A learning algorithm
 - \square Takes as input the data $(X_1, Y_1), \ldots, (X_n, Y_n)$
 - ullet Produces a function g_n
- \diamond Can we estimate the risk of g_n ?

- Key points:
 - random quantity (depends on the data)
 - need probabilistic bounds

Bounds

Error bounds

$$R(g_n) \le R_n(g_n) + B$$

- Estimation from the data
- Relative error bounds
 - Best in a class

$$R(g_n) \le R(g^*) + B$$

Bayes risk

$$R(g_n) \leq R^* + B$$

=> theoretical guarantees

Basic Bounds

Probability Tools

- Basic facts:
 - Union:

$$\mathbb{P}\left[A \text{ or } B\right] \leq \mathbb{P}\left[A\right] + \mathbb{P}\left[B\right]$$

Inclusion:

If
$$A \Rightarrow B$$
, then $\mathbb{P}[A] \leq \mathbb{P}[B]$

• Inversion:

If $\mathbb{P}[X \ge t] \le F(t)$ then with probability at least $1 - \delta$,

$$X \le F^{-1}(\delta)$$

Probability Tools

- Basic Inequalities
 - Jensen:

for
$$f$$
 convex, $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

Markov:

If
$$X \geq 0$$
 then for all $t > 0$, $\mathbb{P}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}$

Chebyshev:

for
$$t > 0$$
, $\mathbb{P}\left[|X - \mathbb{E}[X]| \ge t\right] \le \frac{\operatorname{Var}[X]}{t^2}$

Chernoff:

for all
$$t \in \mathbb{R}$$
, $\mathbb{P}\left[X \geq t\right] \leq \inf_{\lambda \geq 0} \mathbb{E}\left[e^{\lambda(X-t)}\right]$

Error Bounds

- Recall that we want to bound $R(g_n) = \mathbb{E}\left[1_{[g_n(X)\neq Y]}\right]$ where g_n has been constructed from $(X_1, Y_1), \ldots, (X_n, Y_n)$
 - Cannot be observed (*P* is unknown)
 - Random (depends on the data)
- We want to bound

$$\mathbb{P}\left[R(g_n) - R_n(g_n) > \varepsilon\right]$$

Loss class

 \bullet For convenience, let Z=(X,Y). Given $\mathcal G$ define the loss class

$$\mathcal{F} = \{ f : (x, y) \mapsto 1_{[g(x) \neq y]} : g \in \mathcal{G} \}$$

Denote

$$Pf = \mathbb{E}\left[f(X,Y)\right] \quad P_n f = \frac{1}{n} \sum_{i=1}^n f(X_i, Y_i)$$

Quantity of interest:

$$Pf - P_nf$$

The Law of Large Numbers

$$R(g) - R_n(g) = \mathbb{E}[f(Z)] - \frac{1}{n} \sum_{i=1}^{n} f(Z_i)$$

- Difference between the expectation and the empirical average of r.v. f(Z)
- Law of large numbers:

$$\mathbb{P}\left[\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f(Z_i) - \mathbb{E}\left[f(Z)\right] = 0\right] = 1$$

■ Can we quantify it for a finite *n*?

Hoeffding's Inequality

- A quantitative version of law of large numbers
- Assumes bounded random variables

Theorem 1. Let Z_1, \ldots, Z_n be n i.i.d. random variables. If $f(Z) \in [a, b]$. Then for all $\varepsilon > 0$, we have

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-\mathbb{E}\left[f(Z)\right]\right|>\varepsilon\right]\leq2\exp\left(-\frac{2n\varepsilon^{2}}{(b-a)^{2}}\right).$$

Hoeffding's Inequality

• We can rewrite it to better understand

• Let
$$\delta = 2 \exp\left(-\frac{2n\varepsilon^2}{(b-a)^2}\right)$$

Then

$$\mathbb{P}\left[|P_n f - P f| > (b - a)\sqrt{\frac{\log \frac{2}{\delta}}{2n}}\right] \le \delta$$

or [Inversion] with probability at least $1 - \delta$,

$$|P_n f - Pf| \le (b - a) \sqrt{\frac{\log \frac{2}{\delta}}{2n}}$$

Hoeffding's Inequality

- \bullet Let's apply to $f(Z) = 1_{[g(X) \neq Y]}$
- lacktrianglet For any g and any $\delta > 0$, with probability at least 1δ

$$R(g) \le R_n(g) + \sqrt{\frac{\log \frac{2}{\delta}}{2n}}.$$

- \diamond Notice that one has to consider a fixed function g and the probability is respect to the sampling of data
- If the function depends on the data, this does not apply!

Limitations

• For each fixed function $f \in \mathcal{F}$, there is a set S of samples for which $\sqrt{\frac{2}{\log 2}}$

$$Pf - P_n f \le \sqrt{\frac{\log \frac{2}{\delta}}{2n}} \left(\mathbb{P}[S] \ge 1 - \delta \right)$$

- They may be different for different functions
- The function chosen by the algorithm depends on the sample
- lacktriangle For the observed sample, only some of the functions in $\mathcal F$ will satisfy this inequality!

Limitations

What we need to bound is

$$Pf_n - P_nf_n$$

- lacksquare where f_n is the function chosen by the algorithm on the data
- \bullet For any fixed sample, there exists a function f such that

$$Pf - P_n f = 1$$

- E.g.: take the function which is $f(X_i) = Y_i$ on the data; and f(X) = -Y elsewhere
- This does not contradict Hoeffding but shows it is not enough!

Limitations

• Hoeffding's inequality quantifies differences for a fixed function

Uniform Deviations

- Before seeing the data, we don't know which function the algorithm will choose
- The trick is to consider uniform deviations

$$R(f_n) - R_n(f_n) \le \sup_{f \in \mathcal{F}} (R(f) - R_n(f))$$

• We need a bound which holds simultaneously for all functions in a class

Union Bound

 \diamond Consider two functions f_1, f_2 and define

$$C_i = \{(x_1, y_1), \dots, (x_n, y_n) : Pf_i - P_n f_i > \varepsilon\}$$

From Hoeffding's inequality, for each i:

$$\mathbb{P}\left[C_i\right] \leq \delta$$

• We want to bound the probability of being "bad" for i=1 or i=2

$$\mathbb{P}\left[C_1 \cup C_2\right] \leq \mathbb{P}\left[C_1\right] + \mathbb{P}\left[C_2\right]$$

Union Bound – finite case

In general, for the finite case

$$\mathbb{P}\left[C_1 \cup \ldots \cup C_N\right] \leq \sum_{i=1}^N \mathbb{P}\left[C_i\right]$$

• We have

$$\mathbb{P}\left[\exists f \in \{f_1, \dots, f_N\} : Pf - P_n f > \varepsilon\right]$$

$$\leq \sum_{i=1}^{N} \mathbb{P}\left[Pf_i - P_n f_i > \varepsilon\right]$$

$$\leq N \exp\left(-2n\varepsilon^2\right)$$

Union Bound – finite case

 \bullet We obtain, for $\mathcal{G} = \{g_1, \ldots, g_N\}$, for any $\delta > 0$ with probability at least $1 - \delta$

$$\forall g \in \mathcal{G}, \ R(g) \le R_n(g) + \sqrt{\frac{\log N + \log \frac{1}{\delta}}{2n}}$$

This is a generalization bound!

Estimation Error

$$\ \, \text{Let (best in a class)} \, \ g^* = \arg\min_{g \in \mathcal{G}} R(g) \,$$

 \bullet If g_n minimizes the empirical risk in G, we have

$$R_n(g^*) - R_n(g_n) \ge 0$$

Thus
$$R(g_n) = R(g_n) - R(g^*) + R(g^*)$$

$$\leq R_n(g^*) - R_n(g_n) + R(g_n) - R(g^*) + R(g^*)$$

$$\leq 2 \sup_{g \in \mathcal{G}} |R(g) - R_n(g)| + R(g^*)$$

 \bullet We obtain with probability at least $1-\delta$

$$R(g_n) \le R(g^*) + 2\sqrt{\frac{\log N + \log \frac{2}{\delta}}{2n}}$$

Summary

- Inference requires assumptions
 - Data sampled i.i.d from P
 - Restrict the possible functions to G
 - Choose a sequence of models to have more flexibility/control
- Bounds are valid w.r.t. repeated sampling
 - For a fixed function g, for most of the samples

$$R(g) - R_n(g) \approx 1/\sqrt{n}$$

 \Box For most of samples if $|\mathcal{G}| = N$

$$\sup_{g \in \mathcal{G}} R(g) - R_n(g) \approx \sqrt{\log N/n}$$

Improvements

We obtained

$$\sup_{g \in \mathcal{G}} R(g) - R_n(g) \le \sqrt{\frac{\log N + \log \frac{2}{\delta}}{2n}}$$

- Can be improved
 - Hoeffding only uses boundedness, not the variance
 - Union bound as bad as if independent
 - Supremum is not what the algorithm chooses

Refined Union Bound

 \bullet For each $f \in \mathcal{F}$, apply Hoeffding's inequality

$$\mathbb{P}\left[Pf - P_n f > \sqrt{\frac{\log \frac{1}{\delta(f)}}{2n}}\right] \le \delta(f)$$

 \bullet Thus, if we have a countable set \mathcal{F} , the union bound yields

$$\mathbb{P}\left[\exists f \in \mathcal{F} : Pf - P_n f > \sqrt{\frac{\log \frac{1}{\delta(f)}}{2n}}\right] \leq \sum_{f \in \mathcal{F}} \delta(f)$$

- Choose $\delta(f) = \delta p(f)$ with $\sum_{f \in \mathcal{F}} p(f) = 1$
- \bullet With probability at least 1δ

$$\forall f \in \mathcal{F}, \ Pf \leq P_n f + \sqrt{\frac{\log \frac{1}{p(f)} + \log \frac{1}{\delta}}{2n}}$$

• Can put prior knowledge about the algorithm into p(f)!

Infinite Case: VC Theory

Infinite Case

- Measure of the size of an infinite class?
- Consider

$$\mathcal{F}_{z_1,...,z_n} = \{ (f(z_1), ..., f(z_n)) : f \in \mathcal{F} \}$$

- The size of this set is the number of possible ways in which the data (z_1, \ldots, z_n) can be classified
- Growth function

$$S_{\mathcal{F}}(n) = \sup_{(z_1, \dots, z_n)} |\mathcal{F}_{z_1, \dots, z_n}|$$

• Note that $S_{\mathcal{F}}(n) = S_{\mathcal{G}}(n)$

Infinite Case

 \bullet Result (Vapnik-Chervonenkis): with probability at least $1-\delta$

$$\forall g \in \mathcal{G}, \ R(g) \leq R_n(g) + 2\sqrt{2\frac{\log S_{\mathcal{G}}(2n) + \log \frac{2}{\delta}}{n}}$$

- □ Always better than N in the finite case $(S_{\mathcal{G}}(n) \leq N)$
- How to compute $S_{\mathcal{G}}(n)$ in general?
- => use VC dimension!

- \bullet Note that since $g \in \{-1, 1\}$, $S_{\mathcal{G}}(n) \leq 2^n$
- If $S_{\mathcal{G}}(n) = 2^n$, the class of functions can generate any classification on n points (shattering)
- **Definition**: The VC-dimension of \mathcal{G} is the largest n such that

$$S_{\mathcal{G}}(n) = 2^n$$

- Decision stumps in 2D
 - 3 data points can be shattered

- How about 3 points in the same line?
 - Degenerating case (1D)!

$$^{\circ}$$
 VC >= 3

 \bullet In general, VC = d+1 (d-dim space)

- Decision stumps in 2D
 - How about 4 data points?
 - For all placements of 4 pts, there exists a labeling that can't be shattered!

 \bullet Hyperplanes: In \mathbb{R}^d , VC(hyperplanes) = d+1

Parallel rectangles in 2D

$$^{\circ}$$
 VC >= 3

- Parallel rectangles in 2D
 - How about 4 points?

Some placement of 4 points can't be shattered

- Parallel rectangles in 2D
 - How about 5 points? (homework)
 - Note: if VC = 4, then for all placements of 5 points, there exists a labeling that can't be shattered

Is VC-dimension equal to number of parameters?

- ullet One parameter $\{\operatorname{sgn}(\sin(tx)):t\in\mathbb{R}\}$
- Infinite VC dimension!

- Is VC-dimension equal to number of parameters?
- 1 nearest neighbor:
 - Infinite dimension!

- \bullet We know that $S_{\mathcal{G}}(n)=2^n$ for $n\leq h$
- \bullet What happens for $n \geq h$?

Vapnik-Chervonenkis-Sauer-Shelah Lemma

- \diamond Let \mathcal{G} be a class of functions with finite VC-dimension h.
- ightharpoonup Then for all $n\in\mathbb{N}$

$$S_{\mathcal{G}}(n) \leq \sum_{i=0}^{h} {n \choose i}$$

ightharpoonup and for all $n \geq h$

$$S_{\mathcal{G}}(n) \le \left(\frac{en}{h}\right)^n$$

VC Bound

- \bullet Let \mathcal{G} be a class with VC-dimension h.
- \bullet With probability at least 1δ

$$\forall g \in \mathcal{G}, \ R(g) \le R_n(g) + 2\sqrt{2\frac{h \log \frac{2en}{h} + \log \frac{2}{\delta}}{n}}$$

So the error is of order

$$\sqrt{\frac{h \log n}{n}}$$

Interpretation of VC Dimension

- It is a measure of effective dimension
 - Depends on the geometry of the class
 - Gives a natural definition of simplicity (by quantifying the potential overfitting)
 - Not related to the number of parameters
 - Finiteness guarantees learnability under any distribution

Symmetrization Lemma

- Key ingredient in VC bounds
- \bullet Let Z'_1, \ldots, Z'_n be an independent (ghost) sample and P'_n be the corresponding empirical measure
- **Lemma**: for any t > 0, such that $nt^2 \ge 2$,

$$\mathbb{P}\left[\sup_{f\in\mathcal{F}}(P-P_n)f\geq t\right]\leq 2\mathbb{P}\left[\sup_{f\in\mathcal{F}}(P_n'-P_n)f\geq t/2\right]$$

Proof

 f_n the function achieving the supremum (depends on Z_1, \ldots, Z_n)

$$1_{[(P-P_n)f_n>t]}1_{[(P-P'_n)f_n< t/2]} = 1_{[(P-P_n)f_n>t \land (P-P'_n)f_n< t/2]}$$

$$\leq 1_{[(P'_n-P_n)f_n>t/2]}$$

Taking expectations with respect to the second sample gives

$$1_{[(P-P_n)f_n>t]} \mathbb{P}' \left[(P-P'_n)f_n < t/2 \right] \le \mathbb{P}' \left[(P'_n-P_n)f_n > t/2 \right]$$

By Chebyshev inequality,

$$\mathbb{P}'\left[(P-P_n')f_n \ge t/2\right] \le \frac{4\mathsf{Var}\left[f_n\right]}{nt^2} \le \frac{1}{nt^2}$$

Proof

• We have

$$1_{[(P-P_n)f_n>t]}(1-\frac{1}{nt^2}) \le \mathbb{P}'\left[(P_n'-P_n)f_n > t/2\right]$$

Take expectation with respect to first sample

Proof of VC Bound

- Symmetrization allows to replace expectation by average on ghost sample
- Function class projected on the double sample

$$\mathcal{F}_{Z_1,...,Z_n,Z_1',...,Z_n'}$$

- $\ \ \, \ \ \, \ \ \, \ \ \,$ Union bound on $\, \mathcal{F}_{Z_1,...,Z_n,Z_1',...,Z_n'}$
- Variant of Hoeffding's inequality

$$\mathbb{P}\left[P_n f - P_n' f > t\right] \le 2e^{-nt^2/2}$$

Proof of VC Bound

More details

$$\mathbb{P}\left[\sup_{f\in\mathcal{F}}(P-P_n)f\geq t\right]
\leq 2\mathbb{P}\left[\sup_{f\in\mathcal{F}}(P'_n-P_n)f\geq t/2\right]
= 2\mathbb{P}\left[\sup_{f\in\mathcal{F}_{Z_1,...,Z_n,Z'_1,...,Z'_n}}(P'_n-P_n)f\geq t/2\right]
\leq 2S_F(2n)\mathbb{P}\left[(P'_n-P_n)f\geq t/2\right]
\leq 4S_F(2n)e^{-nt^2/8}$$

Structural Risk Minimization

SRM (Vapnik, 1979): minimize the right hand side of

$$R(g) \le R_n(g) + B(h, n)$$

 $lue{}$ To this end, introduce a structure on ${\cal G}$

SRM: the picture

Rademacher Complexity

 \bullet Rademacher variables: $\sigma_1, \ldots, \sigma_n$ independent r.v.s with

$$\mathbb{P}\left[\sigma_i = 1\right] = \mathbb{P}\left[\sigma_i = -1\right] = \frac{1}{2}$$

Randomized empirical fitness:

$$R_n g = \frac{1}{n} \sum_{i=1}^n \sigma_i g(X_i)$$

Consider all functions and define the Rademacher average:

$$\mathcal{R}(\mathcal{G}) = \mathbb{E}\left[\sup_{g \in \mathcal{G}} R_n g\right]$$

Conditional Rademacher average (data fixed):

$$\mathcal{R}_n(\mathcal{G}) = \mathbb{E}_{\sigma} \left[\sup_{g \in \mathcal{G}} R_n g \right]$$

Error Bounds

- Distribution dependent
 - with high probability (at least 1-delta)

$$\forall g \in \mathcal{G}, \ R(g) \leq R_n(g) + \mathcal{R}(\mathcal{G}) + \sqrt{\frac{\log(1/\delta)}{2n}}$$

- Data dependent
 - with high probability

$$\forall g \in \mathcal{G}, \ R(g) \le R_n(g) + \mathcal{R}_n(\mathcal{G}) + \sqrt{\frac{2\log(2/\delta)}{n}}$$

which depends solely on the data!

Computing Rademacher Average

• We have the rewritten form:

$$\frac{1}{2}\mathbb{E}\left[\sup_{g\in\mathcal{G}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}g(X_{i})\right]$$

$$= \frac{1}{2} + \mathbb{E}\left[\sup_{g\in\mathcal{G}}\frac{1}{n}\sum_{i=1}^{n}-\frac{1-\sigma_{i}g(X_{i})}{2}\right]$$

$$= \frac{1}{2} - \mathbb{E}\left[\inf_{g\in\mathcal{G}}\frac{1}{n}\sum_{i=1}^{n}\frac{1-\sigma_{i}g(X_{i})}{2}\right]$$

$$= \frac{1}{2} - \mathbb{E}\left[\inf_{g\in\mathcal{G}}R_{n}(g,\sigma)\right]$$

- Computing $\mathcal{R}_n(\mathcal{G})$ is not harder than the empirical risk minimizer!
- If the class is very large, $\mathcal{R}_n(\mathcal{G}) = \frac{1}{2}$

Relationship with VC-dimension

 \bullet For a finite set $|\mathcal{G}| = N$

$$\mathcal{R}_n(\mathcal{G}) \le 2\sqrt{\log N/n}$$

• For a class with VC-dimension *h*:

$$\mathcal{R}(\mathcal{G}) \le 2\sqrt{\frac{h\log\frac{en}{h}}{n}}$$

- Recovers the VC bound with a concentration proof!
- \bullet One can improve the bound by a chaining technique (remove the $\log n$ factor!)

$$\mathcal{R}(\mathcal{G}) \le C\sqrt{\frac{h}{n}}$$

Randomized Classifiers

- \diamond Given \mathcal{G} a class of functions
- \bullet Deterministic: picks a function g_n and always use it to predict
- Randomized:
 - \square Construct a distribution ρ_n over \mathcal{G}
 - ullet For each instance to classify, pick $g \sim
 ho_n$
- Error is averaged over

Union Bound

- \bullet Let π be a (fixed) distribution over \mathcal{G}
- Recall the refined union bound

$$\forall g \in \mathcal{G}, \ R(g) - R_n(g) \le \sqrt{\frac{\log \frac{1}{\pi(g)} + \log \frac{1}{\delta}}{2n}}$$

 \bullet Take expectation with respect to ρ_n

$$\forall g \in \mathcal{G}, \ R(\rho_n) - R_n(\rho_n) \le \mathbb{E}_{\rho_n} \left[\sqrt{\frac{\log \frac{1}{\pi(g)} + \log \frac{1}{\delta}}{2n}} \right]$$

Union Bound

We have

$$\forall g \in \mathcal{G}, \ R(\rho_n) - R_n(\rho_n) \leq \mathbb{E}_{\rho_n} \left[\sqrt{\frac{\log \frac{1}{\pi(g)} + \log \frac{1}{\delta}}{2n}} \right]$$

$$\leq \sqrt{\frac{-\mathbb{E}_{\rho_n} \left[\log \pi(g) \right] + \log \frac{1}{\delta}}{2n}}$$

$$= \sqrt{\frac{KL(\rho_n, \pi) + H(\rho_n) + \log \frac{1}{\delta}}{2n}}$$

PAC-Bayesian Refinement

- It is possible to improve the previous bound
- \bullet With high probability at least 1δ

$$\forall g \in \mathcal{G}, \ R(\rho_n) - R_n(\rho_n) \le \sqrt{\frac{KL(\rho_n, \pi) + \log 4n + \log \frac{1}{\delta}}{2n - 1}}$$

Motivate development of classifiers by minimizing the bound!

PAC bound for SVMs

- SVMs use a linear classifier
 - \Box For d features, VC = d+1

$$\forall g \in \mathcal{G}, \ R(g) \le R_n(g) + \sqrt{\frac{(d+1)\log\frac{2en}{d+1} + \log\frac{4}{\delta}}{8n}}$$

- Problems!!!
 - Doesn't take margin into account
 - What about kernels?
 - Polynomials: number of features grows really fast = Bad bound!

$$\frac{(p+d-1)!}{p!(d-1)!}$$
 d: input features p: degree of polynomials

RBF kernels: can classify any set of points exactly!

Large Margin Bounds

- \bullet $\mathcal G$ class of linear functions with all have margin at least ρ
- R: radius of the smallest sphere enclosing the data points

$$VC(\mathcal{G}) \le \min\left\{d, \frac{4R^2}{\rho}\right\} + 1$$

 $lue{}$ The larger the margin of functions in class ${\cal G}$, the smaller is its VC dimension!

Large Margin Bounds

$$\forall g \in \mathcal{G}, \ R(g) \le R_n^{\rho}(g) + C\sqrt{\frac{\frac{R^2}{\rho^2}\log n + \log\frac{1}{\delta}}{n}}$$

 $R_n^{\rho}(g)$ the fraction of training examples which have margin smaller than ρ

- \bullet SVMs maximize margin ρ + minimize the hinge loss
 - ullet Optimize tradeoff training error (bias) vs. margin ρ (variance)

What you need to know

- PAC bounds on true risk in terms of empirical risk (training error) and complexity of hypothesis space
- Complexity of the classifier depends on the number of points that can be classified exactly
 - Finite case Number of hypothesis
 - □ Infinite case −VC dimension
- Bias-Variance tradeoff in learning theory
- ♦ Empirical and Structural Risk Minimization
 - But often bounds too loose in practice
- ♦ Other bounds Margin based, PAC-Bayes, ...

References

- ♦ O. Bousquet, S. Boucheron, & G. Lugosi. Introduction to Statistical Learning Theory, Lecture Notes in Artificial Intelligence, 3176:169-207, 2004.
- U. von Luxburg & B. Scholkopf. Statistical Learning Theory: Models, Concepts, and Results. Handbook of the History of Logic, 2009.