TD 1 – Révisions d'algèbre linéaire

1. À TRAVAILLER EN CLASSE

Exercice 1 (Bases, dimension, supplémentaire). Déterminer une base, des équations, la dimension et un supplémentaire des sous-espaces vectoriels suivants de \mathbb{R}^3 :

- 1. $A = \text{Vect}(a_1, a_2, a_3)$ avec $a_1 = \begin{pmatrix} 3 \\ 3 \\ 10 \end{pmatrix}$, $a_2 = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$ et $a_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$.
- 2. $C = \{(2t + u, -u, -2t) \mid (t, u) \in \mathbb{R}^2\};$
- 3. $D = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 2x y + 3z = 0 \right\};$
- 4. $E = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + y z = 0 \text{ et } 3x y + z = 0 \right\}.$

Exercice 2 (Applications linéaires et matrices). Soit l'application linéaire $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ donnée par :

$$f(\begin{pmatrix} x \\ y \\ z \end{pmatrix}) = \begin{pmatrix} x+2y+z \\ 2x+y+3z \\ -x-y-z \end{pmatrix}.$$

- 1. Donner la matrice de A dans la base canonique de \mathbb{R}^3 .
- 2. (a) Déterminer le noyau de f, noté Ker f.
 - (b) L'application f est-elle injective?
- 3. f est-elle bijective? Si oui, donner f^{-1} .

Exercice 3 (Applications linéaires et bases).

1. Montrer qu'il existe une unique application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 vérifiant :

$$f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix} \qquad \qquad f\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} \qquad \qquad f\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

Calculer $f(\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix})$ et $f(\begin{pmatrix} x \\ y \\ z \end{pmatrix})$ en général.

- 2. Déterminer Ker f.
- 3. Donner la matrice de l'application linéaire f en munissant \mathbb{R}^3 et \mathbb{R}^2 de leurs bases canoniques.
- 4. On considère les bases $B_3 = \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right)$ de \mathbb{R}^3 et $B_2 = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right)$ de \mathbb{R}^2 . En utilisant la formule de changement de bases, donner la matrice de f dans les bases B_2 et B_3 .

Exercice 4 (Diagonalisation avec un paramètre). Soit m un réel et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{pmatrix}$$

- 1. Quelles sont les valeurs propres de f?
- 2. Pour quelles valeurs de m l'endomorphisme f est-il diagonalisable?
- 3. On suppose m=2. Calculer A^k pour tout entier $k\geq 0$.

Exercice 5 (Transposition). On note $(E_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n}$ la base canonique de l'espace vectoriel $M_n(\mathbb{K})$ des matrices carrées de taille n à coefficients dans \mathbb{K}

1. Montrer qu'il existe une unique application linéaire (appelée transposition) $^t: M_n(\mathbb{K}) \to M_n(\mathbb{K})$ telle que :

$$\forall (i,j) \in \{1,\ldots,n\}^2, \ ^tE_{i,j} = E_{j,i}.$$

- 2. Ecrire la transposée de la matrice $\begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}.$
- 3. Montrer que t est un automorphisme de l'espace vectoriel $M_n(\mathbb{K})$.
- 4. Montrer que si A est une matrice de $M_n(\mathbb{K})$, on obtient ^tA par l'une des définitions suivantes :
 - $C_i({}^t\!A) = {}^tL_i(A);$
 - $L_j({}^t A) = {}^t C_j(A);$
 - $-({}^{t}A)_{i,j}=(A)_{j,i}$.

avec $C_i(A)$ la j-ème colonne de la matrice A et $L_i(A)$ la i-ème ligne de la matrice A.

- 5. Montrer que si A est une matrice de $M_n(\mathbb{K})$, on a t(A) = A.
- 6. Montrer que si A et B sont des matrices de $M_n(\mathbb{K})$, on a ${}^t(AB) = {}^tB \times {}^tA$.

Exercice 6. Soit $E = \mathbb{R}^3$, soit $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de E, et soit u l'endomorphisme de E défini par :

$$u(e_1) = -3e_1 + 2e_2 - 4e_3$$
 $u(e_2) = e_1 - e_2 + 2e_3$ $u(e_3) = 4e_1 - 2e_2 + 5e_3$.

- 1. Déterminer la matrice de u dans la base \mathscr{B} .
- 2. Soit $F = \{x \in E : u(x) = x\}$. Montrer que $\dim(F) = 1$ et déterminer un vecteur non nul de F.
- 3. Soit H le sev de E défini par :

$$H = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in E : -2x_1 + 2x_2 + 3x_3 = 0 \right\}.$$

Donner une base (b, c) de H.

- 4. Soit a le vecteur non nul déterminé à la question 2 et soit $\mathscr{B}' = (a, b, u(b))$. Montrer que \mathscr{B}' est une base de E et déterminer la matrice de u dans la base \mathscr{B}' .
- 5. Montrer que $F \oplus H = E$.

Exercice 7 (Matrice de passage). Soit \mathscr{B} la base canonique de \mathbb{R}^3 . Soit e_1, e_2, e_3 les 3 vecteurs de \mathbb{R}^3 définis par :

$$e_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \qquad e_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \qquad \qquad e_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

- 1. Montrer que $\mathscr{B}' = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .
- 2. Déterminer la matrice de passage P de \mathscr{B} vers \mathscr{B}' et calculer P^{-1} .
- 3. Déterminer les coordonnées dans la base \mathcal{B}' du vecteur $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
- 4. Déterminer les coordonnées dans la base \mathcal{B} du vecteur $e_1 e_2$.
- 5. Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par :

$$A = \begin{pmatrix} 1 & 4 & 4 \\ -1 & -3 & -3 \\ 0 & 2 & 3 \end{pmatrix}$$

- (a) Déterminer la matrice R de u dans la base \mathscr{B}' .
- (b) Calculer R^4 .
- (c) Donner l'expression de A en fonction de R, de P et de P^{-1} .
- (d) En déduire les valeurs de A^{4n} pour tout entier $n \ge 0$.

2. À TRAVAILLER CHEZ SOI

Exercice 8 (Bases, dimension). Dans \mathbb{R}^4 , on considère les quatre vecteurs suivants :

$$v_1 = \begin{pmatrix} 1\\ -1\\ 3\\ 2 \end{pmatrix} \qquad \qquad v_2 = \begin{pmatrix} 3\\ -1\\ 0\\ 1 \end{pmatrix} \qquad \qquad v_3 = \begin{pmatrix} 1\\ 1\\ -6\\ -3 \end{pmatrix} \qquad \qquad v_4 = \begin{pmatrix} 0\\ 2\\ -9\\ -5 \end{pmatrix}.$$

Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par ces quatre vecteurs. Déterminer la dimension de F et en donner une base. Donner un système d'équations cartésiennes de F.

Exercice 9 (Liberté, équation cartésienne). On considère, dans \mathbb{R}^3 , les deux vecteurs v=(1,-2,3) et w=(2,-4,m), où $m\in\mathbb{R}$.

- 1. À quelle condition sur le paramètre m la famille (v, w) est-elle une famille libre?
- 2. On suppose dans cette question que m=3. Décrire l'espace vectoriel Vect(v,w): nature géométrique, équation cartésienne, dimension, base. Donner un supplémentaire de Vect(v,w).

Exercice 10 (Liberté). Soient $n \geq 1$ un entier. Soit $f \in \mathcal{L}(\mathbb{R}^n)$ tel que pour tout $x \in \mathbb{R}^n$, la famille (x, f(x)) est liée.

- 1. Montrer que si $x \neq 0$, il existe un unique scalaire λ_x tel que $f(x) = \lambda_x x$.
- 2. Comparer λ_x et λ_y lorsque (x, y) est libre.
- 3. Montrer que f est une homothétie, c'est-à-dire qu'il existe un réel λ tel que pour tout $x \in \mathbb{R}^n$, on ait $f(x) = \lambda x$.

Exercice 11 (Théorème du rang). Soient E un espace vectoriel de dimension finie et f un endomorphisme de E. Montrer que les trois propriétés ci-dessous sont équivalentes :

- (i) $E = \operatorname{Im} f \oplus \operatorname{Ker} f$,
- (ii) Im $f = \text{Im } f^2$,
- (iii) $\operatorname{Ker} f = \operatorname{Ker} f^2$.

Exercice 12 (Théorème du rang). Soient E un espace vectoriel de dimension $n \ge 1$ et f un endomorphisme de E. Montrer que les deux assertions suivantes sont équivalentes :

- (i) $\operatorname{Ker} f = \operatorname{Im} f$
- (ii) $f^2 = 0$ et $n = 2 \times rg(f)$.

Exercice 13 (Applications linéaires et matrices).

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{pmatrix}.$$

- 1. Donner une expression de $f(\begin{pmatrix} x \\ y \\ z \end{pmatrix})$.
- 2. Donner une base de Ker(f) et de Im(f).
- 3. A-t-on $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$?

Exercice 14 (Manipulation des déterminants).

1. Calculer:

$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix}$$

2. En déduire:

$$\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$$

Exercice 15 (Matrice de passage, endomorphisme). Soit $E = \mathbb{R}_2[X]$ l'espace des polynômes de degré au plus 2, et soit $\mathscr{B} = (1, X, X^2)$ la base canonique de E. On considère l'application $f: E \to E$ définie par :

$$\forall P \in \mathbb{R}_2[X]$$
 $f(P) = P(X+1) - P(X).$

- 1. Déterminer les coordonnées de f(P) dans la base canonique, pour $P = a_0 + a_1 X + a_2 X^2$.
- 2. Donner la matrice de f dans la base \mathscr{B} .
- 3. Montrer que $\mathscr{B}' = (1, X 1, (X 1)(X 2))$ est une base de E, et donner la matrice de f dans la base \mathscr{B}' .

Exercice 16 (Valeurs propres). Soit f un endomorphisme d'un espace vectoriel E. On suppose qu'il existe un entier n > 0 tel que 0 est valeur propre de f^n . Montrer que 0 est valeur propre de f.

Exercice 17 (Déterminant). Soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice réelle carrée vérifiant :

$$\forall i \in \{1,\ldots,n\} \qquad \left|a_{i,i}\right| > \sum_{j \neq i} \left|a_{i,j}\right|.$$

- 1. Montrer que A est inversible.
- 2. On suppose de plus que $a_{i,i} > 0$ pour tout $i \in \{1, ..., n\}$. Montrer que det A > 0.

Exercice 18 (Matrice non diagonalisable). Expliquer sans calculs pourquoi la matrice suivante n'est pas diagonalisable :

$$A = \begin{pmatrix} \pi & 1 & 2 \\ 0 & \pi & 3 \\ 0 & 0 & \pi \end{pmatrix}$$

Exercice 19. Soit E un espace vectoriel de dimension finie égale à $n \geq 2$.

- 1. Donner un exemple d'endomorphisme f de E dont l'image et le noyau ne sont pas supplémentaires.
- 2. Supposons, dans cette question uniquement, que f est diagonalisable. Montrer que l'image et le noyau de f sont supplémentaires.
- 3. Soit u un endomorphisme quelconque de E. Montrer qu'il existe un entier k > 0 tel que :

$$E = \operatorname{Im}(u^k) \oplus \operatorname{Ker}(u^k).$$

4. Dans la question précédente, l'endomorphisme u^k est-il nécessairement diagonalisable?