Задачи для подготовки к квизу #4

9 декабря 2020 г.

В каждом вопросе выберите все верные ответы.

Рассмотрим случайное наблюдение X из нормального распределения, $X \sim \mathcal{N}(\theta, \sigma^2)$. Для простоты предположим, что $\sigma^2 = 5$. Пусть априорное распределение θ является нормальным $\mathcal{N}(4,8)$.

1. На основе условия задачи можно сделать вывод, что

A.
$$f(\theta) = ce^{-(X-\theta)^2/10}$$
.

B.
$$f(\theta) = ce^{-(\theta-4)^2/16}$$
.

C.
$$f(X|\theta) = ce^{-(\theta-4)^2/16}$$
.

D.
$$f(X|\theta) = ce^{-\frac{1}{2}(X-\theta)^2/10}$$

- Е. Нет верного ответа.
- 2. Пусть X=3. Апостериорное распределение параметра θ задаётся как

A.
$$f(\theta|X) = Ce^{-\frac{(\theta-4)^2}{16} - \frac{(3-\theta)^2}{10}}$$

B.
$$f(X|\theta) = Ce^{-\frac{(\theta-4)^2}{10} - \frac{(3-\theta)^2}{16}}$$

C.
$$f(X,\theta) = Ce^{-\frac{(\theta-4)^2}{16} - \frac{(3-\theta)^2}{10}}$$

D.
$$f(\theta|X) = Ce^{-\frac{(\theta-4)^2}{10} - \frac{(3-\theta)^2}{16}}$$
.

- Е. Нет верного ответа.
- 3. При выделении полного квадрата относительно θ в степени экспоненты получается выражение

A.
$$-\frac{(\theta - 44/13)^2 + 152/13 - (44/13)^2}{80/13}$$
.

B.
$$-\frac{(\theta - 126/169)^2 + 4/169 - (28/169)^2}{12/169}$$
.

C.
$$-\frac{(\theta - 4)^2 + 12/13 - (155/13)^2}{1/13}.$$

D.
$$-\frac{(\theta+1/21)^2-7/21+(14/21)^2}{78/21}$$
.

- Е. Нет верного ответа.
- 4. Апостериорное распределение θ с точностью до константы является
 - A. Beta(1,3).
 - В. стандартным нормальным.
 - С. нормальным.
 - D. распределением Вейбулла.

- Е. Нет верного ответа.
- 5. 95%-ый байесовский доверительный интервал для θ
 - А. совпадает с частотным.
 - В. совпадает с 10%-ым байесовским доверительным интервалом для σ^2 .
 - С. не может быть приближен при помощи симуляции
 - D. вычисляется как $\mathbb{P}(\theta \in (a,b)|X) < 0.95$.
 - Е. Нет верного ответа.

Пусть $X_1, ..., X_n$ – выборка независимых одинаково распределённых случайных величин из нормального распределения $\mathcal{N}(\mu, 1)$.

- 1. При проверке гипотезы $H_0: \mu=0$ против $H_1: \mu\neq 0$ рассчитывается статистика $(\bar X-0)/{\rm se}(\bar X)$. Эта статистика имеет распределение
 - A. t_{n-1} .
 - В. Нормальное.
 - С. Фишера.
 - D. Асимптотически нормальное, но t-распределение при малых n.
 - Е. Нет верного ответа.
- 2. При проверке гипотезы $H_0: \mu=0$ против $H_1: \mu\neq 0$ оказалось, что p-value равно 0.06. Это означает, что
 - А. нулевая гипотеза отвергается на уровне значимости 5%.
 - В. нулевая гипотеза отвергается на уровне значимости 1%.
 - С. нулевая гипотеза не отвергается при любом разумном уровне значимости.
 - D. нулевая гипотеза не отвергается на уровне значимости 1%.
 - Е. Нет верного ответа.
- 3. При проверке гипотезы $H_0: \mu = 0$ против $H_1: \mu \neq 0$
 - A. p-value окажется меньше нуля.
 - В. если p-value окажется равным 0.55, то H_0 будет отвергнута на любом разумном уровне значимости.
 - С. если p-value окажется равным 0.000, то H_0 будет отвергнута на любом разумном уровне значимости.
 - D. p-value равно функции правдоподобия, взятой в точке разницы между истинным параметром и ML-оценкой μ .
 - Е. Нет верного ответа.

При тестировании трёх видов лекарств против плацебо ($H_0: p_i = p_{plac}$) оказалось, что p-value в соответствующих тестах равны 0.000, 0.001, 0.08.

- 1. На основании условия задачи можно сделать вывод о том, что на уровне значимости 5%
 - А. только одно лекарство статистически отличается от плацебо.
 - В. только одно лекарство статистически не отличается от плацебо.
 - С. существует разумный уровень значимости, на котором H_0 не будет отвергнута для первого лекарства.
 - D. не существует разумного уровня значимости, на котором H_0 будет отвергнута для третьего лекарства.
 - Е. Нет верного ответа.
- 2. При проведении множественного тестирования методом Бонферрони

- А. H_0 будет отвергнута для третьего лекарства.
- В. каждое p-value необходимо сравнивать с $\alpha/2$.
- С. только одна нулевая гипотеза не будет отвергнута.
- D. следует всегда выбрать уровень значимости 10%.
- Е. Нет верного ответа.