Public-key Cryptography II

Practical instantiations

Practical Constructions

- ElGamal
- D-H Key Exchange
- ElGamal Encryption/Signatures
- Schnorr Signatures

ElGamal

- Defined by 3 algorithms:
- (PK,SK) <- KeyGen(1ⁿ)
 - run GroupGen(1ⁿ) -> (G,g,q)
 - pick $x < -Z_q$, find $h = g^x$
 - return PK = (G,g,q,h), SK = (G,g,q,x)
- C <− Encrypt(PK,m ∈ G)
 - pick y <- Z_q
 - return C = (g^y, h^y•m)

ElGamal

- m <- Decrypt(SK,C)
 - return $m = (h^y \cdot m)/g^{yx}$
- If DDH is hard, ElGamal is CPA-secure
- Proof intuition:
 - Reduction-based proof
 - Assume ElGamal CPA-adversary A exists
 - Show DDH adversary B exists too
 - By interacting with A, B can break DDH

ElGamal Implementation Issues

- (G,g,q) usually fixed, shared among receivers
- Each receiver chooses individual x <- Zq
- Choose |G| = q, prime-order subgroup of Z_p*, or elliptic curves
- $m \in G$, unfortunately.
 - Either map actual message $m' \leftrightarrow m$; $m \in G$
 - Or just use hybrid encryption (K = H(m), m ∈ G)

Diffie-Hellman Key Exchange

Set up three public values:

1) Prime p, 2) group G, 3) generator g of group

- Picks secret key, SK_A, SK_A<p
- 2. Computes $PK_A = g^{SKA} \mod p$

5. Exchange PK_A, PK_B

- 3. Picks secret key, SK_B, SK_B<p
- 4. Computes $PK_B = g^{SKB} \mod p$

6. Compute shared key: $K=(PK_B)^{SKA}$ mod p

7. Compute shared key: $K=(PK_A)^{SKB}$ mod p

Diffie-Hellman Key Exchange

- Hard for Charlie to find K, knowing only PKA and PKB. Why?
- Because for computing K, Charlie would need to find either SKA or SKB:

$$SK_A = log_g PK_A$$
, or $SK_B = log_g PK_B$

- Then compute K similar to Alice or Bob
- Since we assume discrete logs are hard to find, secret keys hard for Charlie to compute

Public values: p, g, G known to all

- 1. Picks 2 secret keys: $SK_1,SK_2 < p$
- 2. Computes $PK_1 = g^{SK1}$ mod p, $PK_2 = g^{SK2}$ mod p

- 3. Picks secret key, SK_A<p
- 4. Computes $PK_A = g^{SKA} \mod p$

- 6. Intercept PK_A
- 7. Compute $K_2 = PK_A^{SK2}$ mod p
 - 8. Send PK₁ to Bob
 - 9. Compute $K_1 = PK_1^{SKB} \mod p$

11. Intercept PK_B12. Compute K₁=PK_B^{SK1} mod p

13. Send PK₂ to Alice

14. Compute $K_2 = PK_2^{SKA}$ mod p

- Alice-Charlie share key K₂,
- Bob-Charlie share key K₁
- What could Charlie do?
 - Intercept all messages between Alice, Bob
 - Just read and pass messages along
 - Or send spurious messages to either party
- Intuitive way to fix this: Authenticate Alice, Bob to each other
 - But need PKI, CA, etc. in place

ElGamal Signatures

Set up four public values:

- 1) Prime p, 2) group G, 3) generator g of group
- G, 4) Message M to be signed by Alice

- 1. Picks secret key, SK_A<p-1
- 2. Computes $PK_A = g^{SKA} \mod p$ 3.

Send PK_A to Bob. Also send $E_{PKB}(M)^2$

- 4. Compute h = H(M); $0 \le h \le p-1^1$
 - 1: h is the hash of the message M
 - 2: We assume Bob has already transmitted his public key PK_B to Alice

ElGamal Signatures

- 5. Pick K; such that $1 \le K \le p-1$, gcd(K,p-1) = 1
- 6. Compute $S_1 = g^K \mod p$
- 7. Compute $S_2 = K^{-1} (h (SK_A \cdot S_1)) \mod p^1$
- 8. Sig = (S_1, S_2)

9. Send Sig to Bob

- 10. Compute $V_1=g^h \mod p$
- 11. Compute $V_2 = (PK_A)^{S1}$ (S₁)^{S2} mod p
- 12. Is $V_1 \stackrel{?}{=} V_2$? If yes, accept Sig as valid, else reject

1: K is just an element of a group, typically Z_p^* . Recollect that every group element has to have an inverse element in the same group (see Number Theory II slide set).