DFT - Part 1

- Introduction
- Internal Scan
 - FF-based
 - MUXed-D scan (1973, Stanford)
 - MUXed-D scan flip-flop
 - Test Mode Operation
 - Ckt. Model for ATPG
 - ♦ SSF
 - ♦ LOS
 - **♦ LOC**
 - * Clocked scan
 - * Other scan
 - Latch-based

How to Run Comb. ATPG on Seq. Ckt?

DFT Turns Seq. Ckt. to Comb. Ckt.

- DFT turns sequential ckt into combinational ckt in test mode
 - ATPG sees only comb. ckt. model
- Scan FF become Pseudo Primary Input (PPI), fully controllable
- Scan FF become Pseudo Primary Output (PPO), fully observable

Comb. ATPG Much Faster than Seq. ATPG

Example (1/2)

- Two scan FF in a scan chain
- SI→FF-B →FF-C →SO

Comb. Ckt. Model for SSF ATPG

- A is Pl
- B,C are PPI
- K is PO
- HJ are PPO
 - → H=B^{PPO}, J=C^{PPO}

NOTE: this model assume no fault in FF. (see FFT)

Example (2/2)

Quiz

Q1: Convert seq. ckt. into comb. ckt. model for SSF ATPG.

Q2: Generate a test pattern for SA1 fault.

(show comb. pattern)

PI	PPI	РО	PPO
а	y ₁ y ₂	z	Y ₁ Y ₂

DFT - Part 1

- Introduction
- Internal Scan
 - FF-based
 - MUXed-D scan (1973, Stanford)
 - MUXed-D scan flip-flop
 - Test Mode Operation
 - Ckt Model for ATPG
 - ♦ SSF
 - ♦ LOS
 - **♦ LOC**
 - * Clocked scan
 - * Other scan
 - Latch-based

Model for LOS ATPG

- LOS for Transition Delay Fault
 - ◆ 1. Generate SSF pattern V₂ in time frame TF#2
 - ◆ 2. Then apply constraints to generate V₁ in time frame TF#1

Subscripts = time frame Why TF#2 first? see FFT

LOS Example (1/2)

Example: L slow-to-fall (STF) fault

Time frame #2:

- Inject L₂ SA1
- $B_2^{PPI}=0, C_2^{PPI}=0, A_2^{PI}=1$
- $B_2^{PPO} = D'$

Time frame #1:

- STF fault constraint: L₁ = 1
- LoS constraint: $B_1^{PPI} = C_2^{PPI} = 0$
- so, $C_1^{PPI}=1$

Only One Time Frame Memory Needed

Quiz

Q: Generate LOS test pattern for STF fault. suppose $SI \rightarrow FF_2 \rightarrow FF_1 \rightarrow SO$

(show comb. pattern)

DFT - Part 1

- Introduction
- Internal Scan
 - FF-based
 - MUXed-D scan (1973, Stanford)
 - MUXed-D scan flip-flop
 - Test Mode Operation
 - Ckt Model for ATPG
 - ♦ SSF
 - ♦ LOS
 - ♦ LOC
 - * Clocked scan
 - * Other scan
 - Latch-based

LOS Untestable

Example: B slow-to-fall (STF) fault

Time frame #2:

- Inject B₂^{PPI} SA1
- $B_2^{PPI} = 0, C_2^{PPI} = 0$
- $C_2^{PPO} = D$

Time frame #1:

- Fault constraint: B₁PPI= 1
- LoS constraint: B₁^{PPI}=0
- Conflict!

LOS Untestable due to Structural Dependency

Model for LOC ATPG

- LOC for TDF ATPG
 - 1. Duplicate combinational Ckt into two copies: TF#1 and TF#2
 - 2. Connect TF#1 and TF#2 as one big ckt

LOC Needs Time Frame Expansion

LOC Example (1/2)

- Example: B slow-to-fall (STF) fault
 - SSF ATPG B_2 SA 1 fault
 - with constraint $B_1^{PPI}=1$

- PODEM
- Objective: $B_2=0$
 - Backtrace A₁=0
- Objective: $C_2=0$
 - ◆ Backtrace B₁^{PPI}=1
- Simulate $C_2^{PPO} = D$

Now It is LOC Testable!

LOC Example (2/2)

Quiz

Q1: Please draw ckt model for LOC

Q2: Generate LOC test pattern for STF fault.

Summary

- Run comb. ATPG on seq. ckt with DFT
- SSF: All FF becomes PPI/PPO
- LOS
 - Generate V₂ first, then add constraints to V₁
 - Small memory. Fast run time
 - Fault coverage limited due to structural dependency problem
- LOC
 - Duplicate Ckt into two copies
 - © Good FC
 - **8** More memory. Slow run time
- Current practice: mix LOS and LOC
 - Do LOS first, save memory/computation time
 - Then do LOC, detect remaining faults

FFT

- Q: In LOS ATPG, why generate V₂ first? Why not V₁ first?
 - ◆ 1. Generate SSF pattern for V₂
 - 2. Apply constraints to generate V₁

TF #1

FFT 2

Q: This model assumes FF are good. What if FF are faulty?

