

Lecture 06 – Convolutional Neural Networks

Prof. João Fernando Mari

joaofmari.github.io joaof.mari@ufv.br

Agenda

- Classification pipelines
- Multi-layer Perceptron (MLP)
- Convolutional Neural Networks (CNNs)
- Convolutional layer
- Pooling layer
- Activation function
- Fully connected layer
- Output layer softmax
- Loss function
- Optimizers
- Architectures
- Development and libraries
- Image datasets

Classification pipelines

Yann LeCun's Deep Learning Course at CDS - SPRING 2021

Multi-layer Perceptron (MLP)

Learn TensorFlow and deep learning, without a Ph.D.

Convolutional Neural Networks (CNNs)

CONVOLUTIONAL LAYER

Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.

Convolutional layer C¹

1

b1

0

w0[:,:,0]							
-1	1	1					
1	1	2					
0 -2 1							
	_	_					
w0	[:,:	,1]					
w0 -1	[:,:	,1] -1					
		-					

0 -2 0

w1[:,:,2] 0 -2 0

2 -1 -1

_	 	 						
							1	
			x[:,	:,2	* '	w0[:,:,	2]
			-17					

b0

b1

1	[:,:	,0]		x[:,	:,0] * ı	w1[:,:,	0
1	-2	1		-9					ı
L	1	2			_				l
2	2	2							l
1	[:,:	,1]							l
2	-2	-2							
2	1	0		Ь				ш	l

				0					
x[:,:,2] * w1[:,:,2									
-2									

0 3

0 1

b1

-					- 1						
0	4	3	0	0	2	0					
0	2	6	1	7	3	0					
0	3	7	6	5	5	0					
0	0	0	0	0	0	0					
x[:,:,2] 5×5 + pad 1											
0	0	0	0	0	0	0					
0	6	5	2	3	6	0					
0	3	7	0	2	4	0					
0	2	6	4	0	6	0					
0	1	3	0	3	5	0					
0	1	1	0	1	4	0					
0	0	0	0	0	0	0					

0 -2 0

w1[:,:,2] 0 -2 0

x[:,:,0] * w1[:,:,0]								
-9	14	6						

w0[:,:,0]							
-1	1	1					
1	1	2					
0 -2 1							
0	-2	Τ.					
w0							
w0							
w0 -1 -1	[:,:	,1]					

w0[:,:,2]

1 -2 2

w1[:,:,2]

0 -2 0

2 -1 -1

-1	12						1	
			_					
							:,:,	2]
			-17	0	14	-2	-8	
		l						

b0

b1

w1[:,:,0]						x[:,:,0] * w1[:,:,0]					
-1	-2	1				-9	14	6	7	18	
1	1	2								_	
-2	2	2									
w1	[:,:	,1]									
-2	-2	-2									
-2	1	0								I	l
0	-2	0									

x[:,:,2] * w1[:,:,2]
-2 -21 -1 3 -17

$x[:,:,0] 5 \times 5 + pad 1$											
0	0	0	0	0	0	0					
0	6	3	4	6	2	0					
0	7	4	4	6	1	0					
0	2	6	2	2	7	0					
0	4	3	7	7	2	0					
0	5	4	1	7	3	0					
0	0	0	0	0	0	0					

- x[:,:,1] 5×5 + pad 1
 0 0 0 0 0 0 0 0
 0 5 5 1 7 3 0
 0 4 0 3 1 5 0
 0 4 3 0 0 2 0
 0 2 6 1 7 3 0
 0 3 7 6 5 5 0
 0 0 0 0 0 0 0

w0[:,:,0]
-1 1 1
1 1 2
0 -2 1
w0[:,:,1]
-1 1 -1
-1 1 2

-1	-1	1						
w0[:,:,2]								
-1	-1	1						
1	-2	2						
2	-1	2						

					l					
x[:,:,2] * w0[:,:,2]										
-17	0	14	-2	-8						
-3										

b0

b1

w1[:,:,0]					
-1	-2	1			
1	1	2			
-2	2	2			

•	w1	[:,:	,1]
	-2	-2	-2
	-2	1	0

0 -2 0

w1	L:,:	,2]
0	-2	0
2	-1	-1
-2	1	-2

	2,,,				
-9	14	6	7	18	
7					

x[:,:,0] * w1[:,:,0]

x[:,:,1] * w1[:,:,							
-13	-11	-21	-17	-9			
-20							

Ů									
x[:,:,2] * w1[:,:,2									
-2	-21	-1	3	-17					
3									

x[:,:,0] * w1[:,:,0]

1

,	:,1] * '	w1[:,:,	1]					b1	
	-11	-21	-17	-9						0	
						x[:,	:,2 ⁻	* 1	w1ſ	:,:,	2
1						_			_	-17	
1						3					

- $x[:,:,1] 5 \times 5 + pad 1$
- $x[:,:,2] 5 \times 5 + pad 1$ 6 0 0

w0[:,:,0] w0[:,:,1]

w0[:,:,2]

x[:,:,0] * w1[:,:,0]

]					b0 1	
	x[:,	_			:,:,	2
	-17	0	14	-2	-8	
	-3	-5	32	11	-10	
	9	-7	22	12	-14	
						ı

w1[:,:,0]					
-1	-2	1			
1	1	2			
-2	2	2			

1	1	2
-2	2	2
w1	[:,:	,1]
-2	-2	-2
-2	1	0

w1[:,:,2]						
0	-2	0				
2	-1	-1				
-2	1	-2				
	0 2 -2	0 -2 2 -1 -2 1				

		18	7	6	14	-9
		17	22	20	20	7
<[:,:,1]		28	22	2	17	3
-13 -11 -2		35	1	27	26	15
-20 -30 -		35	36	22	15	11
-26 -15 -3	'	_				
-38 -34 -4						

x[:,	:,1] * '	w1[:,:,	1]					b
-13	-11	-21	-17	-9						
-20	-30	-7	-27	-5		_				
-26	-15	-34	-28	-28		x[:,	,:,2	* '	_	_
-38	-34	-49	-31	-21		-2	-21	-1	3	-1
-15	-17	-6	-19	-1		3	-33	-25	-7	-1
				T		-3	-5	-28	-4	-1
						-7	-12	-5	-15	-1

x[:	,:,0] 5	×5	+ p	ad :	1
0	0	0	0	0	0	0
0	6	3	4	6	2	0
0	7	4	4	6	1	0
0	2	6	2	2	7	0
0	4	3	7	7	2	0
0	5	4	1	7	3	0
0	0	0	0	0	0	0

- x[:,:,1] 5×5 + pad 1
 0 0 0 0 0 0 0 0
 0 5 5 1 7 3 0
 0 4 0 3 1 5 0
 0 4 3 0 0 2 0
 0 2 6 1 7 3 0
 0 3 7 6 5 5 0

- w0[:,:,0]
 -1 1 1
 1 1 2
 0 -2 1
 w0[:,:,1]

x[:,	:,0] * י	w0[:,:,	0]
12	26	18	25	21	
-5	28	19	4	24	
-5	11	15	17	24	
4	16	20	26	14	
1	16	5	5	20	

,:,	1]					b0	
12						1	
13							
-6		x[:,	:,2] * '		:,:,	2]
15		-17	0	14	-2	-8	
19		-3	-5	32	11	-10	
	ı	9	-7	22	12	-14	
		9	2	17	14	-13	
		4	-1	15	9	-5	

- w1[:,:,0]

 -1 -2 1
 1 1 2
 -2 2 2
- w1[:,:,1]
 -2 -2 -2
 -2 1 0
 0 -2 0
- w1[:,:,2]

 0 -2 0
 2 -1 -1
 -2 1 -2
- -9 14 6 7 18 7 20 20 22 17 3 17 2 22 28 -15 26 27 1 35 11 15 22 36 35

x[:,:,0] * w1[:,:,0]

x[:,:,2] * w1[:,:,2]

-2 -21 -1 3 -17

3 -33 -25 -7 -18

-3 -5 -28 -4 -16

-7 -12 -5 -15 -10

-1 -11 0

b1

w0[:,:	,0]
-1 1	1
1 1	2
0 -2	1
w0[:,:	,1]
-1 1	-1
-1 1	2
-1 -1	1
w0[:,:	,2]
-1 -1	1
1 -2	2
I 2 I-1	2
2 -1	
w1[:,:	
	,0] 1
w1[:,: -1 -2 1 1	,0] 1 2
w1[:,:	,0] 1
w1[:,: -1 -2 1 1	,0] 1 2 2 ,1]
w1[:,: -1 -2 1 1 -2 2 w1[:,:	,0] 1 2 2 ,1]
w1[:,: -1 -2 1 1 -2 2 w1[:,: -2 -2 -2 1	,0] 1 2 2 ,1] -2 0
w1[:,: -1 -2 1 1 -2 2 w1[:,: -2 -2 -2 -2 1 0 -2	,0] 1 2 2 ,1] -2 0 0
w1[:,: -1 -2 1 1 -2 2 w1[:,: -2 -2 -2 1 0 -2 w1[:,:	,0] 1 2 2 ,1] -2 0 0 ,2]
w1[:,: -1 -2 1 1 -2 2 w1[:,: -2 -2 -2 -2 1 0 -2 w1[:,:	,0] 1 2 2 ,1] -2 0 0 ,2]
w1[:,: -1 -2 1 1 -2 2 w1[:,: -2 -2 -2 1 0 -2 w1[:,:	,0] 1 2 2 ,1] -2 0 0 ,2]

15 9

b1

y[:,:,1]

•	
,0]	
1	1
2	
1	
,1]	
-1	
2	
1	
,2]	
1	
2	
-	
2	
 -	
2	
,0]	
,0]	
,0] 1 2	
2 ,0] 1 2 2	
,0] 1 2 2 2	
2 ,0] 1 2 2 ,1]	
2 ,0] 1 2 2 ,1] -2 0	
,0] 1 2 2 2 ,1] -2 0 0	
	2 1 -1 2 1 :,2]

-2 1 -2

15 9

b1

y[:,:,1]

0

0

17

POOLING LAYER

Pooling layer

Pooling layer

Pooling layer

Pooling layer

ACTIVATION FUNCTION

Activation function

FULLY CONNECTED LAYER

Fully connected layer

OUTPUT LAYER - SOFTMAX

Output layer - softmax

Softmax function for M classes:

$$- softmax(x_i) = \frac{e^{x_i}}{\sum_{j=0}^{M-1} e^{x_j}}$$

Example:

- $\mathbf{x} = [-0.8 \ 2.0 \ 6.0 \ -2.7 \ 0.8]$
 - $\sum_{j=0}^{M-1} x_j = 5.3$
 - Sum != 1.0. It cannot be interpreted as probabilities.

$$-\sum_{j=0}^{M-1} e^{x_j} = 0.4493 + 7.3891 + 403.4288 + 0.0672 + 2.2255 = 413.5599$$

- $softmax(x_i) = [0.0011 \ 0.0179 \ 0.9755 \ 0.0002 \ 0.0054]$
 - $\sum_{i=0}^{M-1} softmax(x_i) = 1.0$
 - The probability of the sample belonging to each class.

LOSS FUNCTION

Cross-entropy loss

Cross-entropy for more than 2 classes (M>2):

$$- L(\mathbf{y}, \widehat{\mathbf{y}}) = -\sum_{j=0}^{M-1} \mathbf{y}_j \cdot \log(\widehat{\mathbf{y}}_j)$$

Cross-entropy for 2 classes (M=2):

$$-L(\mathbf{y},\widehat{\mathbf{y}}) = -(\mathbf{y} \cdot \log(\widehat{\mathbf{y}}) + (1-\mathbf{y})\log(1-\widehat{\mathbf{y}}))$$

Cross-entropy for M>2

- 5 classes, **correct** classification, with 72% probability:
 - $y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$
 - $-\hat{y} = [0.20 \ 0.0 \ 0.05 \ 0.72 \ 0.03]$
 - $L(\mathbf{y}, \widehat{\mathbf{y}}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$
 - $L(\mathbf{y}, \widehat{\mathbf{y}}) = -(\log 0.72) = 0.14267$

Cross-entropy for M>2

- 5 classes, **correct** classification, with 72% probability:
 - $\mathbf{y} = [0 \quad 0 \quad 0 \quad 1 \quad 0]$ $\hat{\mathbf{y}} = [0.20 \quad 0.0 \quad 0.05 \quad 0.72 \quad 0.03]$ $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$ $L(\mathbf{y}, \hat{\mathbf{y}}) = -(\log 0.72) = 0.14267$
- 5 classes, correct classification, with 52% probability:
 - $\mathbf{y} = [0 \quad 0 \quad 0 \quad 1 \quad 0]$ $\hat{\mathbf{y}} = [0.30 \quad 0.0 \quad 0.05 \quad 0.52 \quad 0.13]$ $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.3 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.52 + 0 \times \log 0.13)$ $L(\mathbf{y}, \hat{\mathbf{y}}) = -(\log 0.52) = 0.284$

Cross-entropy for M>2

• 5 classes, **correct** classification, with 72% probability:

$$- y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$$

$$- \hat{y} = [0.20 \quad 0.0 \quad 0.05 \quad 0.72 \quad 0.03]$$

$$- L(y, \hat{y}) = -(0 \times \log 0.2 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.72 + 0 \times \log 0.03)$$

$$- L(y, \hat{y}) = -(\log 0.72) = 0.14267$$

• 5 classes, **correct** classification, with 52% probability:

$$- y = [0 \quad 0 \quad 0 \quad 1 \quad 0]$$

$$- \hat{y} = [0.30 \quad 0.0 \quad 0.05 \quad 0.52 \quad 0.13]$$

$$- L(y, \hat{y}) = -(0 \times \log 0.3 + 0 \times \log 0.0 + 0 \times \log 0.5 + 1 \times \log 0.52 + 0 \times \log 0.13)$$

$$- L(y, \hat{y}) = -(\log 0.52) = 0.284$$

• 5 classes, **incorrect** classification:

$$- \mathbf{y} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$- \hat{\mathbf{y}} = \begin{bmatrix} 0.60 & 0.0 & 0.07 & 0.30 & 0.03 \end{bmatrix}$$

$$- L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.6 + 0 \times \log 0.0 + 0 \times \log 0.07 + 1 \times \log 0.3 + 0 \times \log 0.03)$$

$$- L(\mathbf{y}, \hat{\mathbf{y}}) = -(\log 0.3) = 0.5229$$

Cross-entropy for M=2

- 2 classes, correct classification:
 - y = [0]
 - $\hat{y} = [0.20]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1 0) \times \log(1 0.2))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$

Cross-entropy for M=2

- 2 classes, correct classification:
 - y = [0]
 - $\hat{y} = [0.20]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1 0) \times \log(1 0.2))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$

- 2 classes, correct classification:
 - y = [1]
 - $-\hat{y} = [0.92]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (1 1) \times \log(1 0.92))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (0) \times \log(0.08)) = -(\log(0.92)) = 0.03621$

Cross-entropy for M=2

- 2 classes, correct classification:
 - y = [0]
 - $\hat{y} = [0.20]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1 0) \times \log(1 0.2))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.2 + (1) \times \log(0.8)) = -(\log(0.8)) = 0.09691$

- 2 classes, correct classification:
 - y = [1]
 - $\hat{y} = [0.92]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (1 1) \times \log(1 0.92))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(1 \times \log 0.92 + (0) \times \log(0.08)) = -(\log(0.92)) = 0.03621$

- 2 classes, incorrect classification:
 - y = [0]
 - $\hat{y} = [0.65]$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.65 + (1 0) \times \log(1 0.65))$
 - $L(\mathbf{y}, \hat{\mathbf{y}}) = -(0 \times \log 0.65 + (1) \times \log(0.35)) = -(\log(0.35)) = 0.45593$

OPTIMIZERS

- Gradient descent (GD):
 - $W_{t+1} = W_t \eta \sum_{j=1}^N \nabla L(W; x_j)$
 - N is the size of the training set

Donges. Gradient Descent in Machine Learning: A Basic Introduction. https://builtin.com/data-science/gradient-descent

- Stochastic gradient descent (SGD):
 - $W_{t+1} = W_t \eta \sum_{j=1}^{B} \nabla L(W; x_j^B)$
 - − *B* is the size of the mini-batch.

https://wikidocs.net/3413

- SGD with momentum:
 - $W_{t+1} = W_t \eta \sum_{j=1}^B \nabla L(W; x_j^B)$
 - *B* is the size of the mini-batch.

$$- W_{t+1} = W_t + \alpha (W_t - W_{t-1}) + (1 - \alpha) [-\eta \sum_{j=1}^B \nabla L(W; x_j^B)]$$

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

- Other optimizers:
 - AdaGrad Adaptive Gradient
 - AdaDelta Adaptive learning rate
 - RMSProp Root Mean Squared Propagation
 - Adam Adaptive moment estimation
 - **–** ...

ARCHITECTURES

Neocognitron (1979)

Kunihiko Fukushima

Fukushima, K. (1980). "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position". Biological Cybernetics. 36 (4)

LeNet-5 (1998)

Lecun, Y. et al. (1998). "Gradient-based learning applied to document recognition". Proceedings of the IEEE. 86 (11): 2278–2324.

AlexNet (2012)

Krizhevsky, Sutskever e Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NeuripIPS 2012

Inception (GoogLeNet) (2015)

Szegedy, Christian (2015). "Going deeper with convolutions". CVPR2015.

VGG (2014) and ResNet (2015)

Simonyan e Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014

He et al. Deep Residual Learning for Image Recognition. 2015.

DenseNet (2017)

Figure 10. Illustration of a DenseBlock with 5 functions ${\cal H}_l$ and a Transition Layer.

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.

- ImageNet Large Scale Visual Recognition Challenge
 - https://image-net.org/challenges/LSVRC/

https://semiengineering.com/new-vision-technologies-for-real-world-applications/

DEVELOPMENT AND LIBRARIES

Development and libraries

- Training CNNs has a high computational cost.
 - These are recommended to be trained using GPUs.
 - Google Colab provides access to GPUs (with some restrictions).

Development and libraries

- Top libraries for Deep Learning and Convolutional Neural Networks
 - PyTorch
 - https://pytorch.org/
 - Tensorflow
 - https://www.tensorflow.org/

Development and libraries

- Anaconda Distribution:
 - Python distribution with support for major libraries
 - https://www.anaconda.com/products/distribution
- Google Colab:
 - Cloud execution environment with GPUs
 - https://colab.research.google.com

IMAGE DATASETS

- MNIST
 - http://yann.lecun.com/exdb/mnist/
 - 60,000 training images
 - 10,000 testing images
 - 28 x 28 pixels
 - Gray level

Cats vs. Dogs:

- https://www.kaggle.com/c/dogs-vs-cats
- 25,000 training images
- 12,500 testing images
- 2 classes
- Various sizes
- RGB images

Sample of cats & dogs images from Kaggle Dataset

CIFAR10:

- https://www.cs.toronto.edu/~kriz/cifar.html
- 50,000 training images
- 10,000 testing images
- 10 classes
- 32 x 32 pixels
- RGB

ImageNet:

- https://www.image-net.org/
- − ~1,000,000 images
- 1,000 classes
- RGB

Bibliography

- Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.
 - https://sites.icmc.usp.br/moacir/p17sibgrapi-tutorial/
- Moacir Ponti (ICMC-USP). Material para o minicurso Deep Learning
 - https://github.com/maponti/deeplearning intro datascience
- Görner, M. Learn TensorFlow and deep learning, without a Ph.D.
 - https://cloud.google.com/blog/products/gcp/learn-tensorflow-and-deep-learningwithout-a-phd
- CS231n: Convolutional Neural Networks for Visual Recognition
 - http://cs231n.github.io/
- Goodfellow, Bengio e Courville. Deep Learning. MIT Press, 2016
 - https://www.deeplearningbook.org/
- The MathWorks, Inc. What is a Convolutional Neural Network? 3 things you need to know.
 - https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html

Bibliography

- Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics. 36 (4): 193–202.
 - <u>10.1007/bf00344251</u>
- Lecun, Y. et al. (1998). **Gradient-based learning applied to document recognition**. Proceedings of the IEEE. 86 (11): 2278–2324.
 - <u>10.1109/5.726791</u>
- Krizhevsky, Sutskever e Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NeuripIPS 2012.
- Szegedy, Christian (2015). Going deeper with convolutions. CVPR2015.
- Simonyan e Zisserman. **Very Deep Convolutional Networks for Large-Scale Image Recognition**. 2014.
- He et al. Deep Residual Learning for Image Recognition. 2015.
- Huang et al. Densely Connected Convolutional Networks. CVPR 2017.

Bibliography

- Prodrigues, L. F.; Naldi M. C., Mari, J. F. Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images. Computers in Biology and Medicine, 2019.
 - https://doi.org/10.1016/j.compbiomed.2019.103542

THE END