Fondamenti di Automatica (Ing. Gestionale) Prof. Fredy Ruiz Appello del 29 giugno 2023

ESERCIZIO 1

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\dot{x_1}(t) = \alpha x_1(t) + 2x_2(t) + u(t)
\dot{x_2}(t) = \beta x_2(t) + 5u(t)
y(t) = x_1(t) + x_2(t) + u(t)$$

dove α e β e sono costanti reali.

1. Classificare il sistema

2. Studiare la stabilità del sistema al variare dei parametri α e β .

3. Determinare i punti di equilibrio del sistema per un ingresso costante $u(t) = \bar{u}$. È possibile trovare degli equilibri per un qualsiasi valore di α e β ?

4. Fissando i valori dei parametri $\alpha=1,\ \beta=-1$ trovare gli autovalori, autovettori e la risposta del movimento libero dello stato per $x_1(0)=0$ e $x_2(0)=1$.

ESERCIZIO 2

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\begin{cases} x_1(k+1) = \alpha x_1^2(k) + u(k) \\ y_1(k) = x_1(k) + u_1(k) \end{cases}$$

dove α è una costante reale *Positiva*.

1. Classificare il sistema.

2. Determinare i punti di equilibrio del sistema per un ingresso costante $u(k) = \bar{u}$. È possibile trovare degli equilibri per un qualsiasi valore di \bar{u} ?

3. Posto $\alpha=0.25$, determinare le equazioni del sistema linearizzato attorno agli stati di equilibrio corrispondenti a $\bar{u}=-3$.

5. Fissato $\alpha=0.25$, calcolare i primi 5 campioni del movimento dello stato del sistema non lineare per $u(k)=-3, \forall k\geq 0$ e $x_1(0)=-1$.

ESERCIZIO 3

Si consideri la funzione di trasferimento

$$G(s) = 10 \frac{s - 2}{s^2 + 11s + 10}$$

di un sistema lineare tempo invariante senza autovalori nascosti.

1. Calcolare guadagno, tipo, poli e zeri di G(s) e studiare la stabilità del sistema con funzione di trasferimento G(s).

2. Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di trasferimento G(s).

3. Per un ingresso u(t) tipo scalino determinare l'espressione analitica dell'uscita y(t) e i valori di y(0), y'(0) e $y(\infty)$. Tracciare qualitativamente l'andamento dell'uscita. È possibile fare una approssimazione a poli dominanti? Giustificare la risposta.

- 4. Determinare, giustificando la risposta, quanto vale l'uscita y(t) di regime del sistema lineare tempo invariante con funzione di trasferimento G(s) associata agli ingressi:
 - $u_1(t) = 4sin(0.1t)$
 - $u_2(t) = 10sin(10t)$

ESERCIZIO 4

Si consideri il sistema di controllo in figura

dove

$$G(s) = \frac{9}{(s+30)(s+5)}$$

е

$$R(s) = 100 \frac{s+5}{s}.$$

1. Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di anello L(s).

0	
2.	Determinare le proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.
3.	Determinare l'errore a transitorio esaurito a fronte di un ingresso di riferimento $y^o(t) = 5sca(t)$.
4.	Determinale il modulo dell'errore a transitorio esaurito a fronte di un disturbo $d(t) = \sin(\omega t)$, con $\omega = 10rad/s$.

5. Dire, giustificando la risposta, quanto vale l'ampiezza dell'uscita y(t) di regime associata all'ingresso $y^o(t) = 4\sin(0.1t) - 10\sin(100\,t)$ con d(t) = 0.

