င်းကေးးမှာဗာဧာည် အစိုအျှ QCM ទ្រុន្យ១ចុះរៀនថ្នាក់ខិស្តុកសោលគឺចណ្ ២០១៧

ធ្វើដំណោះស្រាយដោយ 🗳 សំអុខ និស្សិតថ្នាក់វិស្វករសាលាតិចណូ បង្រៀនក្បួនដោះស្រាយកាត់ ដោយធ្វើឲ្យបានរហ័ស ដើម្បីទទួលបានពិន្ទុល្អ និងអាហារូបករណ៍

 ${\bf 9}$. គេឲ្យ ${\bf E}$ ជាសំណុំប្លសទាំងអស់នៃសមីការ ${\bf x}^2+5{\bf x}+6=0$ ។

 $(\hat{n}) E = \{-2\}$

(2) $E = \{-3\}$

(a) $E = \{3, 2\}$ (b) $E = \{3, -2\}$ (c) $E = \{-3, -2\}$

ជំណោះស្រាយ

តាម Vieta's Theorem គេមាន $X^2 - SX + P = 0$ ដែល α និង β ជាប្លួសនៃសមីការនេះ គេបាន $\alpha + \beta = S$ និង $\alpha \cdot \beta = P$ ដើម្បី ឲ្យបានសមីការមានទម្រង់ $x^2 + 5x + 6 = 0$ លុះត្រាតែ ផលបូកប្តស $\alpha + \beta = -5$ និង $\alpha \cdot \beta = 6$

∴ ভঞ্জেল ম

សម្គាល់ យើងអាចដោះស្រាយតាមវិធីផ្សេងទៀតក៏បាន តែខ្លះអាចនឹងចំណាយពេលច្រើន ។

f U. សំណុំ f I នៃឬសទាំងអស់របស់វិសមីការ $f 2^{2x} - 4 \geq 0$ គឺ

(n) $I = (-\infty; 1)$

 (\mathfrak{P}) $I = (1; \infty)$

(ង) ចម្លើយផ្សេង

(8) $I = [1; +\infty)$

(ឃ) $I = (-\infty; 1]$

ជំនោះស្រាយ

គេមាន $2^{2x} - 4 \ge 0$ នោះ

$$2^{2x} \ge 2^2$$

$$\Leftrightarrow 2x > 2$$

 $\Rightarrow x > 1$

∴ ಪಣ್ಣಿಣ ೩

M. ចូរគណនា $\lim_{x\to 0} \frac{x}{\sqrt{1+x}-1}$ គឺ (ខ) 3

(គ) 2

(ឃ) –2

(ង) ចម្លើយផ្សេង

ಜೀಣಾ:ಕ್ಷಾಟ

$$\lim_{x \to 0} \frac{x}{\sqrt{1+x}-1} = \lim_{x \to 0} \frac{x\left(\sqrt{1+x}-1\right)}{x}$$
$$= \lim_{x \to 0} \sqrt{1+x}+1 = 2$$

$$\therefore \lim_{x \to 0} \frac{x}{\sqrt{1+x}-1} = 2$$

.: ខម្សើយ ធ

$$\frac{1-\cos 2x}{x}$$
 គឺ $\frac{1-\cos 2x}{x^2}$ គឺ

(8) 1

(ង) ចម្លើយផ្សេង

ដំណោះស្រួយ

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 x}{x^2} \quad \left(1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2}\right)$$
$$= 2(1)^2 = 2$$

∴ ខម្ខើយ ក

 \mathbf{k} . បើ $\mathbf{f}'(\mathbf{x})$ ជាដេរីវេនៃអនុគមន៍ $\mathbf{f}(\mathbf{x}) = (\mathbf{x} - 1) \, \mathbf{e}^{\mathbf{x}}$ នោះ

$$\text{(fi) } f'(x) = e^x$$

(គ)
$$f'(x) = (x-1)$$

(ង)
$$f'(x) = xe^x$$

(2)
$$f'(x) = (x-1)e^x$$

$$(\mathfrak{W}) f'(x) = 2xe^{x}$$

ಜೀಣಾ:್ರಕ್ಷಾಟ

$$f(x) = (x-1)e^{x}$$

$$f'(x) = (x-1)'e^{x} + (e^{x})'(x-1)$$
Hint: $(u(x) \cdot v(x))' = u'(x)v(x) + v'(x)u(x)$

$$= xe^{x}$$

∴ ಪಣ್ಣಿಣ ಭ

 ${f b}$. យក ${f f}({f x})=3\sin{(2{f x}+3)}$ ជាអនុគមន៍ និង ${f f}'({f x})$ ជាដេរីវេនៃ ${f f}({f x})$ ។ គេបាន

(ñ)
$$f'(x) = 2\cos(2x+3)$$

(a)
$$f'(x) = 3\cos(2x + 3)$$

(ង) ចម្លើយផ្សេង

(2)
$$f'(x) = 6 \cos(2x + 3)$$

(
$$\mathfrak{W}$$
) $f'(x) = 6 \sin(2x + 3)$

ដំណោះស្រាយ

$$f(x) = 3\sin(2x + 3)$$

$$f'(x) = 3(2x + 3)'\cos(2x + 3)$$
Hint: $(\sin u(x))' = u'(x)\cos u(x)$

 $= 6 \cos (2x + 3)$

∴ ខម្លើយ ធ

 $rak{v}$. គេយក r ជាម៉ូឌុល និង heta ជាអាគុយម៉ងនៃចំនួនកុំផ្លិច $z=2\sqrt{2}-2\sqrt{2}i$ គេបាន

(fi)
$$r = 4$$
, $\theta = \frac{3\pi}{4}$

(គ)
$$\mathbf{r} = 4$$
, $\theta = -\frac{3\pi}{4}$

(2)
$$r=4$$
, $\theta=\frac{\pi}{4}$

$$(\mathfrak{W}) \; \mathbf{r} = 4, \theta = -\frac{\pi}{4}$$

င္မီးကားဌနာဗာ

គេមាន
$$z=2\sqrt{2}-2\sqrt{2}i$$
 នោះ $z=4\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)=4\left[\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right]$ $\Rightarrow r=4, \theta=-\frac{\pi}{4}$ \therefore ទទ្ធើម ឃ

ថំ. ចូរគណនា $\int_0^1 \left(6\sqrt{x} + 6x\right) dx$ ស្មើនឹង

(ñ) 7

$$(2) - 7$$

$$(\mathfrak{P})\frac{7}{6}$$

 $(\mathfrak{W}) - \frac{7}{6}$

(ង) ចម្លើយផ្សេង

ಜೀಚಾ:ಕ್ರಾಟ

គេមាន
$$\int_0^1 \left(6\sqrt{x} + 6x\right) dx$$

$$= 4\sqrt{x^3} + 3x^2 \Big|_0^1$$
$$\int_0^1 \left(6\sqrt{x} + 6x\right) dx = 4\left(\sqrt{1^3}\right) + 3(1)^2 - 0 = 7$$

∴ ខម្លើយ ក

៩. បើ $f(x) = \int 4xe^{x^2} dx$ នោះ

(n)
$$f(x) = 4e^{x^2} + c$$

(គ)
$$f(x) = 2e^{x^2} + c$$

(ង) ចម្លើយផ្សេង

(8)
$$f(x) = e^{x^2} + c$$

$$(\mathfrak{W}) f(x) = 4xe^{x^2} + c$$

ಜೀನಾ:;ಕಾಅ

ដែល
$$f(x) = \int 4xe^{x^2}dx = 2\int 2xe^{x^2}dx$$
 តាង $t = x^2 \Rightarrow dt = 2xdx$ នោះ $f(x) = 2\int e^tdt = 2e^t + c$ $\Rightarrow f(x) = \int 4xe^{x^2}dx = 2e^{x^2} + c$ \therefore ទទ្ធេច គ

 ${\bf 90}.$ កន្សោម ${\bf S}_n=1+rac{1}{2}+rac{1}{4}+\cdots+rac{1}{2^{n-1}}$ ស្មើនឹង

(n)
$$S_n = 2 \left(1 - 2^{-n}\right)^n$$

(a)
$$S_n = \frac{1-2^n}{2}$$

(ង) ចម្លើយផ្សេង

(2)
$$S_n = \frac{2^n - 1}{2}$$

(11)
$$S_n = 2(2^n - 1)$$

ಕ್ಷೀಚುಃ ಭಾರಾ

តាម
$$S_n = \frac{1-q^n}{1-q}$$
 ដែល $q = \frac{1}{2}$ ចំពោះ $0 < q < 1$
$$\Rightarrow S_n = \frac{1-\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}} = \frac{1-(2)^{-n}}{\frac{1}{2}}$$
 $S_n = 2\left(1-2^{-n}\right)$ \therefore ទទ្ធមន្ត ត

👊 ក្នុងចំណោមអនុគមន៍ខាងក្រោម តើអនុគមន៍មួយណាមិនមែនជាអនុគមន៍ខួប?

$$\text{(ñ) } f_1(x) = \frac{8 - \cos\left(\sqrt{2}x\right)}{4 + \cos\left(\sqrt{2}x\right)}$$

(2)
$$f_5(x) = \frac{\cos(5x) - \cos(3x)}{4 + \cos(7x) + \cos(2x)}$$

(11)
$$f_4(x) = \frac{8 - \cos(3x)}{4 + \cos(2x)}$$

(A)
$$f_2(x) = \frac{8-3\cos(\pi x)}{4+\cos(3\pi x)}$$

(ង)
$$f_3(x) = \frac{5 + \cos(3\pi x)}{4 + 3\cos(3x)}$$

င်းအားဌနာဗာ

∴ ಪಣ್ಣಿಚ ಭ

 ${rac{9}{ t U}}$. គេឲ្យ ${f a}$ និង ${f f b}$ ជាវ៉ិចទ័រពីរក្នុងលំហដែល $\|{f a}\|=3$, $\|{f b}\|=4$ និង $\|{f a}-{f b}\|=\sqrt{43}$ ។ ចូររកតម្លៃលេខនៃ $\|{f 2}{f a}+{f b}\|$ ។ (ង) ចម្លើយផ្សេង (ñ) 5

င်းအားဌနာဇာ

គេមាន
$$\|\vec{a} - \vec{b}\| = \sqrt{43} \Leftrightarrow \|\vec{a} - \vec{b}\|^2 = \sqrt{43}^2$$

$$\|\vec{a} - \vec{b}\|^2 = \|a\|^2 + \|b\|^2 - 2\vec{a}\vec{b}$$

$$\sqrt{43}^2 = 3^2 + 4^2 - 2\vec{a} \cdot \vec{b}$$

$$\vec{a} \cdot \vec{b} = -9$$
និង $\|2\vec{a} + \vec{b}\|^2$

$$\|2\vec{a} + \vec{b}\|^2 = 4\|a\|^2 + \|b\|^2 + 4\vec{a} \cdot \vec{b}$$

$$= 4 \cdot 3^2 + 4^2 + 4(-9) = 4^2$$

$$\Rightarrow \|2\vec{a} + \vec{b}\| = \sqrt{4^2} = 4$$

$$\therefore$$
 56565 ង

១៣. គេឲ្យវ៉ិចទ័របី $\vec{a}=(1,1,1)$, $\vec{b}=(1,-2,1)$, $\vec{c}=(-1,-2,1)$ ។ ចូររកមាឌ V នៃតេត្រាអែតដែលកំណត់ដោយវ៉ិចទ័រទាំងបីនេះ ។

 $(\tilde{n}) V = 4$

(2) $V = \frac{4}{3}$ (3) V = 8

 $(\mathfrak{W}) V = \frac{8}{3}$

(ង) ចម្លើយផ្សេង

ಜೀಣಾ:ೄಕಾಅ

មាឌតេត្រាអែត
$$V = \frac{1}{6} \left(\vec{a} \times \vec{b} \right) \cdot \vec{c} = \frac{4}{3}$$
 \therefore **ទទើយ** ខ

🙎 ជំ. គេយក a, b ជាប្រវែងជ្រុងជាប់នឹងមុំកែង និង c ជាប្រវែងអ៊ីប៉ូតេនុសនៃត្រីកោណកែងមួយ។ បើ a កើនឡើងដោយអត្រា 5cm/s នៅពេល a = 4cm និង b កើនឡើងដោយអត្រា $10 {
m cm/s}$ នៅពេល $b=3 {
m cm}$ ចូររកអត្រាកំណើននៃបរិមាត្រត្រីកោណនេះ ។

- $(\tilde{n}) 20 \text{cm/s}$
- (2) 10cm/s
- (គ) 15cm/s
- (ឃ) 25cm/s
- (ង) ចម្លើយផ្សេង

ជំនាះអ្ន

គេមាន $c^2 = a^2 + b^2$ (ពីតាគ័រ) និង p = a + b + c (បរិមាត្រ) គេបាន 2cdc = 2ada + 2bdb និង dp = da + db + dc

$$dc = \frac{ada + bdb}{c} = \frac{ada + bdb}{\sqrt{a^2 + b^2}}$$

$$dc = \frac{4 \cdot 5 + 3 \cdot 10}{\sqrt{4^2 + 3^2}} = 10 \text{cm/s}$$

$$\Rightarrow dp = 5 \text{cm/s} + 10 \text{cm/s} + 10 \text{cm/s} = 25 \text{cm/s}$$

$$\therefore \quad \text{Signs} \quad \text{w}$$

១៤ំ. ចូរគណនាដេរីវេនៃអនុគមន៍ $f(x) = x^{x^{2017}}$ ។

(ñ)
$$x^{x^{2017}} (2017 \ln(x) + 1)$$

(
$$\beta$$
) $x^{x^{2017}+2016}$ (2017 ln (x) + 1)

(8)
$$x^{x^{2017}+2016} (2016 \ln (x) + 1)$$

(
$$\text{W}$$
) $x^{x^{2017}+2016}$ (2017 ln (x) – 1)

(ង) ចម្លើយផ្សេង

ಕ್ಷೀಚುಚಿಕಾಣ

១៦. តម្លៃនៃ
$$\lim_{x \to 0} \left(x^{x^{2017}} \right)$$
 គឺ៖

(8) 2

(គ) e

(ឃ) e⁻¹

(ង) ចម្លើយផ្សេង

ಕ್ಷೀಬ್ಯಾಾ ಭಾಡಾ

 \mathfrak{IM} . គេយក $a_{n+1}=\sqrt[3]{6+a_n}$ និង $a_0=0$ ។ ចូររកលីមីត A នៃស្វ៊ីត a_n ។

(n)
$$A = 3$$

(2) A = 2

(គ) A = 1

(ឃ) A = 0

(ង) ចម្លើយផ្សេង

ដំណោះស្រាយ

តាង A>0 ជាលីមីតរបស់ស្វ៊ិត a_{n}

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} a_{n+1} = A$$

$$\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} \sqrt[3]{6 + a_n}$$

$$A = \lim_{n \to +\infty} \sqrt[3]{6 + A}$$

$$A^3 = 6 + A$$

$$A^3 - A - 6 = 0 \Rightarrow A = 2$$

$$\therefore \quad \text{Signs} \quad \text{2}$$

១៤៍. គេយក $f(x) = x^3 - 3x + m + 2$ ដែល m ជាប៉ារ៉ាម៉ែត្រ។ ចូរកំណត់តម្លៃទាំងអស់នៃ m ដើម្បីឲ្យខ្សែកោងតាងអនុគមន៍នេះកាត់អ័ក្សអាប់ស៊ីស បាន៣ចំណុចខុសគ្នា។

$$(\tilde{n}) \, m < -8$$

$$(2) -8 \le m < -4$$

$$(\mathfrak{P}) - 4 < m < 0$$

(ພັ)
$$-4 \le m \le 0$$

(ង) ចម្លើយផ្សេង

ជំនោះស្រាយ

គេមាន
$$f(x) = x^3 - 3x + m + 2$$

 $f'(x) = 3x^2 - 3$
 $f'(x) = 0 \Leftrightarrow 3x^2 - 3 = 0$
 $\Rightarrow x = \pm 1$

ដើម្បីឲ្យអនុគមន៍នេះកាត់អ័ក្សអាប់ស៊ីសបាន៣ចំណុចខុសគ្នា លុះត្រាតែ f(-1)f(1) < 0

គេហន
$$(-1+3+m+2)(1-3+m+2)<0$$
 $(m+4)(m)<0$ $\Rightarrow m>-4$ និង $m<0$ ឬ $-4< m<0$

១៩. គេមាន f(x) ជាអនុគមន៍ កំណត់បាន និងមានអាំងតេក្រាលលើចន្លោះបិទ $[0;\pi]$ ដែលផ្ទៀងផ្ទាត់ $f(\pi-x)=f(x)$ និង $I=\int_0^\pi x f(x) dx$ ។ គេបាន

(fi)
$$I = \frac{\pi}{3} \int_0^{\pi} f(x) dx$$

(គ)
$$I = \frac{\pi}{2} \int_0^{\pi} f(x) dx$$

(fi)
$$I = \frac{\pi}{3} \int_0^{\pi} f(x) dx$$
 (fi) $I = \frac{\pi}{2} \int_0^{\pi} f(x) dx$ (ti) $I = \frac{\pi}{4} \int_0^{\pi} f(x) dx$

(2)
$$I = \int_0^{\pi} f(x) dx$$

(ង) ចម្លើយផ្សេង

ជំនាះស្រាយ

 ${f U0}$. គេយក x_1, x_2 ជាប្ញសពីរនៃមីការ $x^2 - (3\sin t - \cos t)x - 8\sin^2 t = 0$ និង $G = x_1^2 + x_2^2$ ។ ចូររកតម្លៃតូចជាងគេ G_{\min} និងតម្លៃធំជាង គេ G_{max} នៃកន្សោម G។

(ñ)
$$G_{min} = 6$$
, $G_{max} = 16$

(គ)
$$G_{min} = 2$$
, $G_{max} = 4$

(ង) ចម្លើយផ្សេង

(2)
$$G_{min} = 6$$
, $G_{max} = 19$

$$(W) G_{min} = 8, G_{max} = 18$$

ជំណោះស្រួយ

ប្រើ Vieta's Theorem នោះ
$$x_1+x_1=-\frac{b}{a}=(3\sin t-\cos t)$$
 និង $x_1\cdot x_2=\frac{c}{a}=-8\sin^2 t$ យើងមាន $x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2$

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$$

$$= (3 \sin t - \cos t)^2 - 2(-8 \cos^2 t)$$

$$= (3 \sin t - \cos t)^2 + 16 \sin^2 t$$

$$= 9 \sin^2 t - 6 \sin t \cos t + 17 \cos^2 t$$

$$= (3 \cos t - \sin t)^2 + 8(\sin^2 t + \cos^2 t)$$

$$= (3 \cos t - \sin t)^2 + 8(*)$$

ប្រើ Chauchy – Schwarz ដែល
$$\forall a_1, a_2, a_3, \ldots, a_n$$
, និង $b_1, b_2, b_3, \ldots, b_n \in \mathbb{R}$ $\Rightarrow \left(a_1b_1+a_2b_2+\cdots+a_nb_n\right)^2 \leq \left(a_1^2+a_2^2+\ldots a_n^2\right) \left(b_1^2+b_2^2+\cdots+b_n^2\right)$ សមភាពនេះកើតមានពេល $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \cdots = \frac{a_n}{b_n}$ នោះ $(3\cos t - \sin t)^2 \leq \left(3^2 + (-1)^2\right) \left(\sin^2 t + \cos^2 t\right)$ $(3\cos t - \sin t)^2 \leq 10$ (**) តាម (*) និង (**)

គេបាន
$$(3\cos t - \sin t)^2 \le 10 + 8$$
 $\Rightarrow (3\cos t - \sin t)^2 \le 18$ គេបានតម្លៃធំបំផុត គឺ $G_{max} = 18$ និង តម្លៃតូចបំផុត គឺ $G_{min} = 8$ ទទ្ធេទី ឃ

២១. គេឲ្យ f ជាអនុគមន៍កំណត់បាន និងមានអាំងតេក្រាលលើចន្លោះ $\left[0; \frac{\pi}{2}\right]$ ។ ចូរគណនារកតម្លៃនៃ $I = \int_0^{\frac{\pi}{2}} \frac{f(\cos x)}{f(\cos x) + f(\sin x)} dx$ ។

- (fi) $I = \frac{\pi}{3}$
- (8) $I = \frac{2\pi}{3}$ (11) $I = \frac{\pi}{2}$ (12) $I = \frac{\pi}{4}$
- (ង) ចម្លើយផ្សេង

ជំណោះស្រាយ

ដោយ
$$I = \int_0^{\frac{\pi}{2}} \frac{f(\cos x)}{f(\cos x) + f(\sin x)} dx$$
 (i)

នោះ $I = \int_0^{\frac{\pi}{2}} \frac{f\left[\cos\left(\frac{\pi}{2} - x\right)\right]}{f\left[\cos\left(\frac{\pi}{2} - x\right)\right] + f\left[\sin\left(\frac{\pi}{2} - x\right)\right]} dx$

$$\Rightarrow I = \int_0^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} dx \text{ (ii)}$$

នោះ $I = \int_0^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} dx$

$$\Rightarrow I = \int_0^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} dx$$

$$\Rightarrow I = \int_0^{\frac{\pi}{2}} dx$$

$$\Rightarrow I = \frac{1}{2} \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{4}$$

ទេទ្ធិស ឃ

២២. ផលបូកនៃលេខខ្ទង់រាយ និងលេខខ្ទង់ដប់នៃ 2018²⁰¹⁷ គឺ

- (ñ) 13
- (2)14
- (គ) 5
- (ឃ) 6
- (ង) ចម្លើយផ្សេង

ជំណោះស្រាយ

f U៣. យក λ ជាមេគុណប្រាប់ទិសនៃបន្ទាត់ (L_λ) ដែលកាត់តាមចំណុច P (-1;2) ។ (C) ជាខ្សែកោងតាងសមីការ $y=x^2$ និង A_λ ជាក្រឡាផ្ទៃនៃ ដែនប្លង់ដែលខណ្ឌដោយ (L_λ) និង (C) ។ តម្លៃនៃ λ ដែលនាំឲ្យ A_λ មានតម្លៃតូចជាងគេគឺ

- $(\tilde{n}) \lambda = 2$
- (8) $\lambda = -2$
- (គ) $\lambda = 3$
- $(\mathfrak{W}) \lambda = -3$
- (ង) ចម្លើយផ្សេង

ជំនោះស្រាយ

២៤. ចូររកតម្លៃលេខនៃ $\cos\left(\frac{\pi}{5}\right)$ ។
(ក) $\cos\left(\frac{\pi}{5}\right) = \frac{\sqrt{\sqrt{5}-1}}{2}$

(8)
$$\cos\left(\frac{\pi}{5}\right) = \frac{\sqrt{\sqrt{5}+1}}{2}$$

(11)
$$\cos\left(\frac{\pi}{5}\right) = \frac{\sqrt{5}-1}{2}$$

$$(\mathfrak{F})\cos\left(\frac{\pi}{5}\right) = \frac{\sqrt{5}+1}{2}$$

ដំណោះស្រួយ

ຄາສ
$$\theta = \frac{\pi}{5}$$
, $0 < \cos \theta < 1$

$$5\theta = \pi$$

$$3\theta = \pi - 2\theta$$

$$\sin 3\theta = \sin (\pi - 2\theta)$$

$$3\sin \theta - 4\sin^3 \theta = 2\sin \theta \cos \theta$$

$$\sin \theta \left(3 - 4\sin^2 \theta\right) = 2\sin \theta \cos \theta$$

$$3 - 4\left(1 - \cos^2 \theta\right) = 2\cos \theta$$

$$4\cos^2 \theta - 2\cos \theta - 1 = 0$$

$$\Rightarrow \cos \theta = \frac{1 + \sqrt{5}}{2} = \frac{\sqrt{5} + 1}{2}$$

ទម្លើយ គ

២៤. តាង
$$E=a+a^2+a^4$$
 និង $F=a^3+a^5+a^6$ ដែល $a=\cos\left(\frac{2\pi}{7}\right)+i\sin\left(\frac{2\pi}{7}\right)$ និង $i^2=-1$ ។ (ក) $\left(E=\frac{2+i\sqrt{7}}{2},F=\frac{2-i\sqrt{7}}{2}\right)$ (គ) $\left(E=\frac{-1+i\sqrt{7}}{2},F=\frac{-1-i\sqrt{7}}{2}\right)$ (2) $\left(E=\frac{1+i\sqrt{7}}{2},F=\frac{1-i\sqrt{7}}{2}\right)$ (2) $\left(E=\frac{1+i\sqrt{7}}{2},F=\frac{1-i\sqrt{7}}{2}\right)$ (2) $\left(E=\frac{-2+i\sqrt{7}}{2},F=\frac{-2-i\sqrt{7}}{2}\right)$ (3) បម្លើយផ្សេង

ដំណោះស្រាយ

២៦. យក x_1, x_2, x_3, x_4, x_5 ជាចំនួនពិតដែលផ្ទៀងផ្ទាត់លក្ខខណ្ឌ $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 4$ ។ ចូររកតម្លៃតូចជាងគេ F_{min} និងតម្លៃធំជាងគេ F_{max} នៃកន្សោម $F = \sqrt{6}x_1 - 4x_2 + 3x_3 - 2x_4 + x_5$ ។

(ñ)
$$F_{min} = -16$$
, $F_{max} = 16$

(គ)
$$F_{min} = -4$$
, $F_{max} = 4$

(ង) ចម្លើយផ្សេង

(2)
$$F_{min} = -6$$
, $F_{max} = 6$

$$(\mathfrak{W}) F_{\min} = -12, F_{\max} = 12$$

ಕ್ಷೀಚುಃಚಾಣ

គេមាន
$$x_1^2+x_2^2+x_3^2+x_4^2+x_5^2=4$$
 និង $F=\sqrt{6}x_1-4x_2+3x_3-2x_4+x_5$ ដោយប្រើ Chauchy – Schwarz ដែល $\forall a_1,a_2,a_3,\ldots,a_n$ និង $b_1,b_2,b_3,\ldots,b_n\in\mathbb{R}$ $\Rightarrow \left(a_1b_1+a_2b_2+\cdots+a_nb_n\right)^2\leq \left(a_1^2+a_2^2+\ldots a_n^2\right)\left(b_1^2+b_2^2+\cdots+b_n^2\right)$ សមភាពនេះកើតមានពេល $\frac{a_1}{b_1}=\frac{a_2}{b_2}=\cdots=\frac{a_n}{b_n}$
$$\left(\sqrt{6}x_1-4x_2+3x_3-2x_4+x_5\right)^2\leq \left(\left(\sqrt{6}\right)^2+(-4)^2+3^3+(-2)^2+1^2\right)\left(x_1^2+x_2^2+x_3^2+x_4^2+x_5^2\right)$$
 $F^2\leq (36)$ (4) $F<\sqrt{36}\times 4=\pm 12$

២៧. គេមាន
$$E_n = \frac{20}{(5-4)\left(5^2-4^2\right)} + \frac{20^2}{\left(5^2-4^2\right)\left(5^3-4^3\right)} + \cdots + \frac{20^n}{(5^n-4^n)\left(5^{n+1}-4^{n+1}\right)}$$
 និង $E = \lim_{n \to +\infty} E_n$ ។ គេបាន

- $(\tilde{n}) E = 5$
- (2)4

- (គ) 3
- (ឃ) 2
- (ង) ចម្លើយផ្សេង

ជំនោះស្រាយ

 $rac{f U f f}{a_1}$. យក a_1, a_2, \ldots, a_m ជាចំនួនគត់ធំជាងសូន្យដែលខុសគ្នាពីរៗ និងមានតួចែកបឋមតូចជាង 5 ។ បើ $F_m = rac{1}{a_1} + rac{1}{a_2} + \cdots + rac{1}{a_m}$ គេបាន

- (fi) $F_{\rm m} < 3$
- (ខ) $8 < F_m < 12$ (គ) $3 \le F_m \le 8$
- (ພ) $12 \le F_{\rm m} < 20$
- (ង) ចម្លើយផ្សេង

ជំណោះស្រាយ

 a_{m} មានតួចែកបឋម តូចជាង 5 នោះគេបាន a_{m} មានទម្រង់ $2^{x} \cdot 3^{y}$ ដែល $x, y \geq 0$ ជាចំនួនគត់

F_m មានតម្លៃអតិបរមា កាលណា ផលបូករាយ គ្រប់តម្លៃនៃ x, y ពីតូចទៅដល់ធំ ។

មានពម្លេអពលមា កាលណា ផលបុកាយ គ្របពម្លាន
$$x,y$$
 ពេលទោងលើ $F_m < F_\infty, \forall m \in \mathbb{N}$ យើងបាន $F_m < \sum_{x=0}^\infty \sum_{y=0}^\infty \frac{1}{2^x \cdot 3^y} = \sum_{x=0}^\infty \frac{1}{2^x} \cdot \sum_{y=0}^\infty \frac{1}{3^y}$
$$F_m < \frac{1}{1-\frac{1}{2}} \cdot \frac{1}{1-\frac{1}{3}} = 2 \cdot \frac{3}{2}$$

$$\Rightarrow F_m < 3$$

$$\therefore \quad \textbf{SG}$$

២៩. គេឲ្យ f ជាអនុគមន៍មានដេរីវេគ្រប់លំដាប់ដែលផ្ទៀងផ្ទាត់ $f(y)-f(x)=\left(y-x\right)$ $f'\left(\frac{x+y}{2}\right)$ ចំពោះគ្រប់ចំនួនពិត x និង y ។ នោះគេបាន (ក) $f(x)=\frac{ax+b}{x^2+2}$ (ក) $f(x)=\frac{x^2+ax+b}{x^2+9}$

- (ង) ចម្លើយផ្សេង

(8) $f(x) = ax^2 + bx + c$

ជំណោះស្រាយ

M0. រកក្រឡាផ្ទៃនៃដែនប្លង់ដែលខណ្ឌដោយក្រាបតាង ${\bf x}=0, {\bf x}=\frac{\pi}{2}, {\bf y}=0$ និង ${\bf y}=\frac{\cos {\bf x}}{\sin^6 {\bf x}+1}$ ។ $\frac{\sqrt{3} \ln \left(2+\sqrt{3}\right)+\pi}{8}$ (គ) $\frac{\sqrt{3} \ln \left(2-\sqrt{3}\right)+\pi}{6}$

- (2) $\frac{\sqrt{3}\ln\left(2-\sqrt{3}\right)+\pi}{2}$
- $\text{(U)} \frac{\sqrt{3}\ln\left(2+\sqrt{3}\right)+\pi}{6}$

ಜೀನಾ: ಕಾಲ

៣១. x_1, x_2 ជាឬសនៃមីការ $x^2 - (5\cos t - \sin t) x - 24\sin^2 t = 0$ (អថេរ x) តាង F_{\min} ជាតម្លៃអប្បរមា និង F_{\max} ជាតម្លៃអតិបរមានៃកន្សោម $x_1^2+x_2^2$ ។ ចូររកតម្លៃនៃ F_{\min} និង F_{\max} ។

- (n) $F_{min} = 24$, $F_{max} = 40$
- (គ) $F_{min} = 25$, $F_{max} = 26$
- (ង) ចម្លើយផ្សេង

- (2) $F_{min} = 24$, $F_{max} = 50$
- $(W) F_{min} = 25, F_{max} = 50$

ಜೀನಾ:: ಕ್ರಾಟ