Contemporary Methods in Causal Inference for Program Evaluation

Noah Greifer

UNC Chapel Hill

Department of Psychology & Neuroscience

11/1/18

Agenda

- Causal inference basics
- Causal inference methods
 - Classic methods: Regression, PS matching, PS weighting
 - New methods
 - Additional challenges: clusters and missing data
- Application: evaluating CSS
- Demonstration of methods in R

Evaluating CSS

- Interested in the causal effect of Chancellor's Science Scholars (CSS) program on student outcomes
- Why can't we just compare CSS and non-CSS students?
 - Intense selection: CSS only accepts the best
 - Even if CSS were not effective, CSS students would have better outcomes
- Confounding:
 - Selection into treatment is caused by variables that also cause variation in the outcome

Evaluating CSS

Causal Inference Basics

- Potential Outcomes
 - Y¹ and Y⁰
 - Outcome were a student to be in CSS or not in CSS
 - Only one is observed
 - Individual treatment effect: $\tau_i = Y_i^1 Y_i^0$

3.6

GPA:

3.0

GPA:

3.2

GPA:

3.2

Causal Effects

- Average Treatment Effect in the population (ATE)
 - $E[\tau] = E[Y^1 Y^0] = E[Y^1] E[Y^0]$
 - Difference between giving everyone treatment versus giving everyone control
- Average Treatment Effect in the treated (ATT)
 - $E[\tau|T=1] = E[Y^1|T=1] E[Y^0|T=1]$
 - Difference between giving treatment to those who received treatment versus giving control to those who received treatment
- Average Treatment Effect in the control (ATC)
 - $E[\tau|T=0] = E[Y^1|T=0] E[Y^0|T=0]$
 - Difference between giving treatment to those who received control versus giving control to those who received control

Causal Effects

- $E[Y^1|T=1]$ is known; Y^1 for those with T=1 is just Y
- We need to estimate $E[Y^0|T=1]$
 - What if those who received treatment had instead received control?
- Simulate $E[Y^0|T=1]$ using control group
 - In control group, we know Y^0
 - Need subset of the control group that is exchangeable with treated group

Assumptions

- Conditional Exchangeability (CE):
 - We have measured a sufficient set of variables required to remove confounding
- Positivity:
 - All units have a nonzero probability of being in treatment or control
- Stable Unit Treatment Value Assumption (SUTVA):
 - Outcome do not depend on treatment status of others
- Consistency:
 - No unmeasured versions of treatment

Methods

Regression/ANCOVA

ANCOVA:

- $Y = \mu_t + \beta X + \epsilon$
- Comparison between μ_1 and μ_0 is the treatment effect estimate
- Biased if any treatment effect heterogeneity

Regression:

- $Y = \beta_0 + \tau T + \beta_1 X + \beta_2 XT + \epsilon$
- If all X centered, τ is the treatment effect estimate
- Generally a good strategy, but has weaknesses

Regression/ANCOVA

• Strengths:

- Low standard errors → high power if there is an effect
- Easy to implement (not if you want to get fancy, which you should)
- Does a good job at eliminating bias (even better if you want to get fancy)

Weaknesses

- Requires correct parametric form
- Model may not be stable with many variables
- Less straightforward to estimate ATT
- Doesn't separate design form analysis: easy to cheat (even by accident)

Design/Preprocessing

- Matching, Weighting, Stratification
- Done without looking at outcome variable until final estimation step
 - Can perform many exploratory analyses without biasing inference
- Less sensitive to functional form

Matching

- Finding a set of controls with a similar covariate distribution to the treated
 - Discarding the rest
 - Distinct from pairing: finding pairs/small subsets of treated and controls
- Historically, matching is done by finding pairs; paired units form matched set
 - Debate over whether to retain pairing if done this way
- Effect estimate is comparison of means in matched sample
 - Independent samples t-test, paired sample t-test, other paired/non-paired methods

Weighting

- Estimate weights (like sampling weights) that when applied to the sample yield balanced samples
- Effect estimate is comparison of weighted means
 - Weighted t-test, weighted regression
 - Standard errors by bootstrap, sandwich standard error, or, in some cases, analytical formula

Matching vs. Weighting

Matching

- Exact pairing eliminates functional form assumptions
- Easy to explain and interpret
- Can only estimate ATT or ATC
- Can discard many units, decreasing power
- Relies on good matches

Weighting

- Flexible and smooth
- Generally more power and less bias
- Can estimate any estimand

Propensity Scores

- One-dimensional summary of all covariates
- $\widehat{ps} = \widehat{P}(T = 1|X)$
- Rosenbaum & Rubin (1983):
 - If conditioning on X is sufficient to eliminate bias, conditioning on propensity score is sufficient to eliminate bias
- Propensity score matching
- Propensity score weighting
- Propensity score stratification
- Propensity score ANCOVA

Preprocessing Process

- 1. Decide on estimand, variables, assumptions
- 2. Preprocess: matching/weighting
- 3. Assess balance and sample size
 - If poor, redo steps 2 and 3
- 4. Estimate treatment effect

Historical Approaches: Matching

- Mahalanobis distance matching
- Propensity score matching
 - PS estimate with logistic regression or other parametric model using maximum likelihood
- Many options:
 - With or without replacement
 - With or without a caliper
 - 1:1, 1:k, or variable 1:k
 - Top to bottom, bottom to top, random

Historical Approaches: Matching

• Problems:

- Balance not guaranteed
- Need to manually search through PS specifications and matching options to find good balance while retaining power
- Problems with bias and efficiency
- Some options affect inference

Historical Approaches: Weighting

- Propensity score weighting
 - PS estimated with logistic regression or other parametric model using maximum likelihood

•
$$w_i = T_i + (1 - T_i) \frac{\widehat{ps}_i}{1 - \widehat{ps}_i}$$

- Options:
 - Trimmed/truncated weights
 - Stabilized weights

Historical Approaches: Weighting

• Problems:

- Balance not guaranteed
- Need to manually search through PS specifications and to find good balance while retaining power
- Often extreme weights cause instability in effect estimates → low power, high variability
- Trimming methods *ad hoc* and can change inference

Historical Approaches

- In general, parametric approaches
 - Maximize likelihood, not related to causal inference goals of balance
 - Require manual respecification
 - Require knowledge or testing of nonlinearities and interactions
 - Are sensitive to model choices

Machine Learning: Matching

- Genetic matching
 - Use "evolutionary algorithm" to find best matches by trying out many matches and optimizing toward best ones
 - Automatically seeks out balance, no need for iterative balance checking
 - No need to estimate PS

Machine Learning: Matching

• Problems

- Computationally intensive
- Doesn't always find a good solution; now what?
- Solution may not be truly optimal

Machine Learning: Weighting

- Generalized boosted modeling (GBM):
 - Estimates PS using boosted logistic regression
 - Doesn't require functional form assumptions; automatically includes interactions and nonlinearities
 - Automatically seeks out balance, no need for iterative balance checking
 - Decent performance in simulations and empirical studies
- SuperLearner:
 - Combines many machine learning methods to find the best
 - Focus on prediction rather than balance

Machine Learning: Weighting

• Problems:

- Computationally intensive
- Doesn't always find a good solution; now what?
- Solution may not be truly optimal
- Some methods focus on good prediction rather than balance, which is not useful for causal inference

Machine Learning

- In general, machine learning methods
 - Automate the process of finding good balance, but treat it as a mostly random search
 - Can have an objective function related to balance
 - Can account for nonlinearities and interactions
 - Are not fully optimal
 - Computationally intensive
 - Frequently fail, but can be effective

Optimization Hybrids: Matching

Optimal PS Matching

- Finds matched pairs that minimize overall propensity score distance
- Similar options to nearest neighbor
- Similar performance to nearest neighbor

Optimal Full PS Matching

- Finds strata containing at least one treated unit that minimize overall propensity score distance across strata
- Uses every unit, so none are discarded
- Usually analyzed using weights generated from matching process rather than as matched data
- Tends to have very good performance, a balance between matching and weighting

Optimization Hybrids: Weighting

- Covariate Balance Propensity Score (CBPS)
 - Estimates PS using logistic regression
 - Uses generalized method of moments to include balance as optimization criterion along with prediction
 - Just-identified version focuses only on balance and not prediction
 - Often yields close to exact balance, especially justidentified version

Optimization Hybrids

- In general, optimization hybrids
 - Combine optimization with some parametric formulation
 - Optimize some criterion using algorithm rather than random search
 - Satisfy those who desire optimization but respect classic approaches
 - Often yield excellent performance
 - Less sensitive to modeling choices
 - Can fail to converge with little advice on how to fix

Optimization Methods: Matching

- Balanced Optimal Subset Selection (BOSS)
 - Finds subset of controls that yield balance with treated
 - No pairing, only matching
 - No propensity score required
 - Users decide exactly what balance means, optimizer satisfies conditions (if possible)
- Cardinality matching/designmatch
 - Finds matched pairs that satisfy user-specified balance constraints
 - Exact balance, fine balance, and approximate balance are possible
 - Can optimize size of matched set for given balance constraints
 - Current implementation in R

Optimization Methods: Matching

• Problems:

- Requires good matches
- Computationally intensive
- Can fail to converge or require approximate solution
- Not well implemented in software
 - BOSS must be manually programmed
 - designmatch full of bugs and limitations, though promising if fixed
- Require specification of balance constraints
 - But easy specifications are allowed

Optimization Methods: Weighting

- Entropy balancing
 - Bypasses propensity scores to estimate weights directly
 - Guarantees exact balance on all covariate if possible
 - Weights do not vary much from 1 → stability, power
 - Doubly robust and semiparametric efficient
- Minimal Approximately Balancing Weights/optweight
 - Uses can specify exactly how much balance is required; can manage bias/variance trade-off
 - Weights are optimized for power and stability
 - Solution more likely to be found
 - Failure to converge can be easily diagnosed
 - Not computationally intensive; sometimes faster than logistic regression!

Optimization Methods: Weighting

• Problems:

- Exact balancing may be too strict (but can be relaxed)
- May fail to converge (but can be diagnosed)
- Requires good substantive knowledge to be most effective (but still very effective even without)

Optimization Methods

- In general, optimization methods
 - Create balanced sets without estimating propensity scores
 - Can achieve perfect or user-specified balance
 - Doubly robust and efficient
 - Easy to use, technology exists
 - Tend to outperform other methods when used correctly

What should I use?

- Whatever works best!
 - Best balance while maximizing effective sample size/minimizing variability of the weights
- (Optimization will almost always be best)
- Weighting will almost always get you best balance and sample size, but doesn't have advantage of pairing
 - Weighting methods tend to be more refined and easier to use

Clustered Data and Missing Data

- Clustered data: students within school/cohorts, patients within hospitals, etc.
- Need to account for unit-level confounding AND cluster-level confounding
 - E.g., if gender affects treatment and outcome, but also proportion of each gender in cluster affects treatment and outcome
- With regression, we might use a multilevel model or fixed effects model to account for cluster membership

- Approaches: CAC, CWC, Hybrids
- Conditioning Within Clusters (CWC)
 - Analysis takes place separately within each cluster, then estimates are combined at the end, conditioning on cluster
 - Automatically eliminates cluster-level confounding
 - Can be challenging to find good balance and sample size, especially with matching

- Conditioning Across Clusters (CAC)
 - Analysis ignores cluster membership or treats it as a covariate
 - Requires balancing on cluster-level confounders
 - Easy to do, but hard to eliminate bias due to confounding
- Hybrid Approaches
 - Preferential CWC
 - Conditioning within latent classes/similar clusters

Notes:

- Clustering must be taken account of in preprocessing, outcome model, or both
- If interested in moderation by cluster (i.e., clusterspecific effects), need to use CWC and include cluster in outcome model
- If interested in overall effect and cluster is an instrumental variable (affects treatment but not outcome), conditioning on cluster can induce bias
- If using propensity scores, let balance be your guide, not theory or simulation

- Approaches: deletion, missingness indicators, multiple imputation
- Deletion
 - Deleting cases with missing data
 - Always the wrong choice, especially with small sample size and missingness in many variables

10/31/18 46

- Missingness Indicators
 - Treat missingness as its own variable, fill in value for missing data with a constant
 - Perform modeling and balance checking with filled in variables and missingness indicator
 - Method has some success, but tends not to be as effective as multiple imputation

- Multiple Imputation
 - Fill in missing values with best guess; create many data sets with different best guesses
 - Best guesses generated from predictive model
 - Recommendations:
 - Use many imputations
 - Include outcome in imputation
 - Impute missing outcomes
 - Use multiple imputation with chained equations (MICE)
 - Use machine learning for prediction models
 - Two approaches: across and within

Multiple Imputation

- Across approach
 - Estimate propensity scores within each imputed dataset
 - For each unit, compute average propensity score across imputed datasets
 - Perform matching/weighting on average propensity score
 - Perform effect estimation in matched/weighted sample
 - Benefits:
 - Don't need to estimate multiple outcome models or pool results
 - Tends to be effective when you don't use the outcome to impute the predictors
 - Problems:
 - Balance not guaranteed and hard to assess
 - Tends to be ineffective compared to within approach when you do use the outcome to impute predictors
 - Not compatible with missingness in outcomes
 - Not compatible with approaches that don't use propensity scores
 - Unable to include missing covariates in outcome model

Multiple Imputation

- Within approach
 - Perform entire analysis within each imputed data set
 - Combine effect estimates at the end using Rubin's rules
 - Benefits:
 - Straightforward to achieve and assess balance
 - Tends to work well when outcomes are used to impute predictors
 - Statistically validated and understood
 - Compatible with all preprocessing and analysis methods
 - Problems:
 - Many places for analysis to fail; each imputed dataset is an opportunity for failure to converge
 - May not be straightforward to combine estimates, e.g., for model comparison
 - Increase in standard error due to imputation uncertainty

10/31/18 50

Overall Recommendations

Preprocessing

- Use optimization-based weights
 - Entropy balancing if you have a large sample size and want a well-established method
 - Optweight if you need to maximize power and don't mind using a new method (it will soon become more mainstream)
- Avoid 1:1 matching unless treated and control groups are both huge and good matches exist
- If matching, use pairing and perform paired analysis (accounting for pair membership)

Clustered Data

- CWC if possible; otherwise hybrid approach with careful eye on clusterlevel covariates
- Missing Data
 - Multiple imputation, "within" approach
 - Use best practices in multiple imputation
 - Ensure average balance across imputations is satisfactory

References

- Propensity score matching
 - Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70(1), 41–55. https://doi.org/10.1093/biomet/70.1.41
- Propensity score weighting
 - Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine, 34(28), 3661–3679. https://doi.org/10.1002/sim.6607
- Genetic matching
 - Diamond, A., & Sekhon, J. S. (2013). Genetic matching for estimating causal effects: A general multivariate matching method for achieving balance in observational studies. Review of Economics and Statistics, 95(3), 932–945.
- · Generalized boosted modeling
 - McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies. *Psychological Methods*, *9*(4), 403–425. https://doi.org/10.1037/1082-989X.9.4.403
- SuperLearner
 - Pirracchio, R., Petersen, M. L., & van der Laan, M. (2015). Improving Propensity Score Estimators' Robustness to Model Misspecification Using Super Learner. American Journal of Epidemiology, 181(2), 108–119. https://doi.org/10.1093/aje/kwu253
- Optimal matching
 - Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of Multivariate Matching Methods: Structures, Distances, and Algorithms. *Journal of Computational* and Graphical Statistics, 2(4), 405–420. https://doi.org/10.2307/1390693
- Optimal full matching
 - Stuart, E. A., & Green, K. M. (2008). Using full matching to estimate causal
 effects in nonexperimental studies: Examining the relationship between
 adolescent marijuana use and adult outcomes. *Developmental Psychology*,
 44(2), 395–406. https://doi.org/10.1037/0012-1649.44.2.395

- Covariate balancing propensity score (CBPS)
 - Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal
 of the Royal Statistical Society: Series B (Statistical Methodology), 76(1),
 243–263.
- BOSS
 - Nikolaev, A. G., Jacobson, S. H., Cho, W. K. T., Sauppe, J. J., & Sewell, E. C. (2013). Balance Optimization Subset Selection (BOSS): An Alternative Approach for Causal Inference with Observational Data. *Operations Research*, 61(2), 398–412. https://doi.org/10.1287/opre.1120.1118
- Optimization-based matching/designmatch
 - de los Angeles Resa, M., & Zubizarreta, J. R. (2016). Evaluation of subset matching methods and forms of covariate balance. Statistics in Medicine, 35(27), 4961–4979. https://doi.org/10.1002/sim.7036
- Entropy balancing
 - Hainmueller, J. (2012). Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies. Political Analysis, 20(1), 25–46. https://doi.org/10.1093/pan/mpr025
- Minimal approximately balancing weights/optweight
 - Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data. *Journal of the American Statistical Association*, 110(511), 910–922. https://doi.org/10.1080/01621459.2015.1023805

11/1/18

Estimating the Causal Effect of CSS Participation

Chancellor's Science Scholars

- Academic enrichment program at UNC
- Funded in part by HHMI
- Intends to increase presence of underrepresented people in STEM PhD programs
 - Racial minorities, gender minorities, firstgeneration students, rural students, etc.
- Involves 13 pillars, including advising, mentorship, financial scholarship
- Intensive and competitive selection process based on demographics, high school scores, and interview

Research Goal

- Estimate the causal effect of CSS on prognostic outcomes
 - Cumulative GPA, DFWU rate, STEM major

10/31/18 55

Data

- Data on four cohorts: 2013, 2014, 2015, 2016
 - CSS and non-CSS (Science Interested)
- Followed for (up to) 4 years

Cohort	Admission	Year 1	Year 2	Year 3	Year 4	n _{css}	n _{non-CSS}
2013						23	1207
2014						33	1348
2015						35	1501
2016						36	1785

10/31/18 56

Data

- Variables:
 - Treatment: Participation in CSS (Y/N)
 - Outcomes:
 - Cumulative GPA
 - DFW unit rate per unit attempted
 - STEM major (Y/N)

Data

Covariates:

- Age
- Sex
- Race/ethnicity
- URM status
- State residency
- Citizenship
- FGC student
- Financial need
- ACT Math, Science, English
- SAT Math, Reading & Writing
- High school type
- High school sector

- Any APs taken
- No. APs
- No. APs ≥ 3
- No. APs ≥ 4
- No. APs = 5
- Any Science APs taken
- No. Science APs
- No. Science APs ≥ 3
- No. Science APs ≥ 4
- No. Science APs = 5
- AP Calculus score
- STEM major at application

10/31/18 58

Methods

Causal Estimand:

- Marginal effect of CSS on outcomes for CSS participants
- Target population: students like CSS students
 - Average treatment effect on the treated; ATT
- Integrating over cohorts, allowing for effect moderation by cohort
 - Involves estimating effects in each cohort and then combining results

• Problems:

- 1) Confounding
- 2) Incomplete cohort design
- 3) Missing Data

Methods

- Problem: Confounding
 - CSS students very different from non-CSS due to competitive selection process
 - If unaddressed, effect estimate will be biased

Cohort	Admission	Year 1	Year 2	Year 3	Year 4	n _{css}	n _{non-CSS}
2013						23	1207
2014						33	1348
2015						35	1501
2016						36	1785

Cohort	Admission	Year 1	Year 2	Year 3	Year 4	n _{css}	n _{non-CSS}
2013	1 1	I				23	1207
2014			- 1			33	1348
2015						35	1501
2016						36	1785

- Missing predictors: race/ethnicity, ACT scores, SAT scores, high school type, high school sector, high school GPA
- Missing outcomes: Cumulative GPA, STEM major

- Multiple Imputation
 - Create 20 data sets
 - Generate predictions of missing values within each data set
 - Multiple imputation with chained equations (MICE)
 - Random forests for imputation of all variables
 - Impute outcome and use outcomes to impute predictors
 - Perform analysis separately within each data set
 - Combine results using Rubin's rules for estimates and standard errors

Methods

Analysis by outcome year

Cohort	Admission	Year 1	Year 2	Year 3	Year 4	n _{CSS}	n _{non-CSS}
2013	1 1	I				23	1207
2014	-	_	1			33	1348
2015						35	1501
2016	-					36	1785

Overall Analysis Plan

- 1. Multiply impute data
- 2. Estimate balancing weights in each cohort in each imputed data set
- 3. Estimate treatment effect in each cohort in each imputed data set
- 4. Combine effect estimates across cohorts and imputed data sets for final estimate

Balancing Weights

Using optweights

- Minimize variance of the weights while satisfying approximate balance constraints
- Balance constraints:
 - 0.001 for differences in proportion for binary variables
 - 0.001 for standardized mean differences $(\frac{\bar{x}_1 \bar{x}_0}{s_1})$ for continuous variables
 - 0.1 for standardized mean differences for square of ACT Math, SAT Math, and HS GPA
- Convergence:
 - In several cohort-imputations, optimization failed to converge due to strict tolerances
 - In some subsets, need to relax constraints of race/ethnicity and square of High School GPA

10/31/18 66

Balance

Effect Estimation: GPA

- $E[GPA] = \beta_0 + \beta_1 Y_{2014} + \beta_2 Y_{2015} + \beta_3 Y_{2016} + \beta_4 CSS + \beta_5 Y_{2014} \times CSS + \beta_6 Y_{2015} \times CSS + \beta_7 Y_{2016} \times CSS$
- Effect estimate = $\frac{\beta_4 + \beta_5 + \beta_6 + \beta_7}{4}$
- Weighted regression with robust standard error
- Combining results across imputed data sets

10/31/18 68

Effect Estimation: STEM Major

- Binomial regression with identity link
 - Actually doesn't matter because of saturated model
- Estimand: difference in probability of being a STEM major at end of year

Effect Estimation: DFWU/AH

- Zero-inflated negative binomial regression of DFWU on cohort and CSS
- Log Attempted Hours (AH) as offset
- Mixture of students who never fail a class (fail ineligible) and students who might fail one or more classes (fail eligible)

Effect Estimation

	GPA	STEM Major	DFWU: Ineligible	DFWU: Rate
Non-CSS	3.287	.963	.706	.170
CSS	3.537	.899	.795	.092
ATT	0.250	064	.089	.542
P-value	.000	.026	.122	.000

Conclusions

- CSS has positive impacts on students after the first year
 - Negative STEM major effects are possibly an artifact and disappear in later years
- Effects are meager due to the pre-existing condition of excellence in CSS and weighted comparison group, but still meaningful

R Example

https://github.com/ngreifer/Causal-Webinar-11-1-18/