About interpolation on manifolds...

How to interpolate points on curved spaces?

Light fast general good looking interpolation

How to interpolate?

Each segment between two consecutive points is a Bézier function.

Light

good looking

interpolation

Reconstruction: the De Casteljau algorithm

 ${\bf Light} \qquad {\bf fast} \qquad {\bf general} \qquad {\bf good\ looking} \qquad {\bf interpolation}$

How to generalize Bézier curves to manifolds? The straight line is a geodesic

How to generalize Bézier curves to manifolds? The exponential map to construct the geodesic

$$\gamma(t) = \operatorname{Exp}_x(t\xi_x)$$

How to generalize Bézier curves to manifolds?

The logarithmic map to determine the starting velocity

$$\operatorname{Log}_{\boldsymbol{x}}(\boldsymbol{y}) = \boldsymbol{\xi}_{\boldsymbol{x}}$$

Piecewise interpolation on the sphere

 $Light \quad fast \quad general \quad {\it good looking} \quad interpolation$

Interpolation on Riemannian manifolds with a C^1 piecewize-Bézier path

Pierre-Yves Gousenbourger

8 october 2014

Good-looking curve on the Euclidean space

Find the optimal position of control points

\mathcal{C}^1 -piecewise Bézier interpolation

$$b_i^L = \operatorname{Exp}_{p_i}(-\alpha_i v_i)$$
$$b_i^R = \operatorname{Exp}_{p_i}(-\alpha_i v_i)$$

Minimization of the mean square acceleration of the path

$$\underbrace{\min_{\alpha_{i}} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(\alpha_{i};t)\|^{2} dt + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(\alpha_{i};t)\|^{2} dt + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(\alpha_{i};t)\|^{2} dt}_{\text{Second order polynomial } P(\alpha_{i})}$$

$$\nabla P(\alpha_i)!$$

Minimization of the mean square acceleration of the path

$$\underbrace{\min_{\alpha_{i}} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(\alpha_{i};t)\|^{2} dt + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(\alpha_{i};t)\|^{2} dt + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(\alpha_{i};t)\|^{2} dt}_{\text{Second, order polynomial } P(\alpha_{i})}$$

Minimization of the mean square acceleration of the path

$$\underbrace{\min_{\alpha_{i}} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(\alpha_{i};t)\|^{2} dt + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(\alpha_{i};t)\|^{2} dt + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(\alpha_{i};t)\|^{2} dt}_{\text{Second, order polynomial } P(\alpha_{i})}$$

Minimization of the mean square acceleration of the path

$$\underbrace{\min_{\alpha_{i}} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(\alpha_{i};t)\|^{2} dt + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(\alpha_{i};t)\|^{2} dt + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(\alpha_{i};t)\|^{2} dt}_{Casard and an arrival P(z_{i})}$$

Minimization of the mean square acceleration of the path

$$\underbrace{\min_{\alpha_{i}} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(\alpha_{i};t)\|^{2} dt + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(\alpha_{i};t)\|^{2} dt + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(\alpha_{i};t)\|^{2} dt}_{\text{Second order polynomial } P(\alpha_{i})}$$

Minimization of the mean square acceleration of the path

$$\underbrace{\min_{\alpha_{i}} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(\alpha_{i};t)\|^{2} dt + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(\alpha_{i};t)\|^{2} dt + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(\alpha_{i};t)\|^{2} dt}_{\text{Second order polynomial } P(\alpha_{i})}$$

A result on \mathbb{R}^2

Light fast general good looking interpolation

Generalization to manifolds : the sphere \mathbb{S}^2

Generalization to manifolds : the special orthogonal group SO(3)

Generalization to manifolds: morphing of shapes

Conclusions

Light fast general good looking interpolation

No choice of velocities v_i ? (Arnould, Samir, Absil) Application to manifolds of high dimension?

Any questions?

Interpolation on Riemannian manifolds with a C^1 piecewize-Bézier path

Pierre-Yves Gousenbourger

8 october 2014