# LaPIS Diagnostic Test Workbook - Mathematics

Name : Sugesh V

Class: 7

Section : C

School : AKV Public School

Login ID : AKV181

# Sugesh V's Performance Report



Score: 19/40 Percentage: 47.5%

# Sugesh V's Study Planner

| Date | Topics Planned  | Q. Numbers    | Teacher Remark    | Teacher Sign  | Parent Sig |
|------|-----------------|---------------|-------------------|---------------|------------|
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 | Teacher's Fe  | edback to Student |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      |                 |               |                   |               |            |
|      | Class Teacher S | <br>Signature | Princi            | pal Signature |            |

# Mensuration

| Topics to be Improved |                   |  |
|-----------------------|-------------------|--|
| Area                  | Area of rectangle |  |

Hi, here in this video you will learn Area



Question: 1

Find which of the shaded portion in the given shape represent it's area.







.....

......



Answer:

Given figure is \_\_\_\_\_\_ in shape.

Area is the \_\_\_\_\_ ( inside/ outside/ boundary ) of a shape.

Question: 2

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:



The garden is in \_\_\_\_\_ shape.

Length of garden is \_\_\_\_\_ and breadth of garden is \_\_\_\_\_.

Formula for area of the shape = \_\_\_\_\_.

The area of garden =  $\underline{\qquad}$  x  $\underline{\qquad}$  =  $\underline{\qquad}$   $cm^2$ 

Question: 3

Shade the possible dimension of the door whose area is 500  $m^2$ 

$$50~m~\times~10~m$$

$$25 m \times 20 m$$

.....

$$30~m~\times~20~m$$

| Answer: | $\boldsymbol{A}$ | ns | w | er | • |
|---------|------------------|----|---|----|---|
|---------|------------------|----|---|----|---|

Door is \_\_\_\_\_ in shape. Area of the \_\_\_\_ shaped door is \_\_\_\_.

| Dimensions                       | Length | Breadth | Area |
|----------------------------------|--------|---------|------|
| $50 \text{m} \times 10 \text{m}$ |        |         |      |
| $25\text{m} \times 25\text{m}$   |        |         |      |
| $25m \times 20m$                 |        |         |      |
| $30 \text{m} \times 20 \text{m}$ |        |         |      |

Therefore, possible dimension of the door whose area is 500  $m^2$  is/are \_\_\_\_\_

# Data handling

| Topics to be Improved            |                       |  |
|----------------------------------|-----------------------|--|
| Chance of probability            | Basis of probability  |  |
| Arithmetic mean, mode and median | Mean, Median and Mode |  |

| and m                          |                                                                                                                  |                         |                                        |                         |                  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|-------------------------|------------------|
|                                |                                                                                                                  |                         |                                        |                         |                  |
| Hi, her                        | re in this video you                                                                                             | ı will learn <b>B</b> a | sics of probabil                       | lity<br>————            |                  |
| Questio                        | n: 4                                                                                                             |                         |                                        |                         |                  |
| Identify 1                     | the sure events and im                                                                                           | possible events         |                                        |                         |                  |
| (i) Th                         | e sun rises in the west                                                                                          |                         |                                        |                         |                  |
| (ii) Wa                        | ter is colourless.                                                                                               |                         |                                        |                         |                  |
| (iii) Clo                      | ock rotates in clock wis                                                                                         | se direction.           |                                        |                         |                  |
| (iv) Bal                       | ll is square in shape.                                                                                           |                         |                                        |                         |                  |
| $\underline{Answer}$           | <u>:</u>                                                                                                         |                         |                                        |                         |                  |
| Events the Here, The event.    | hat always occur are cannot occur are cannot occur are cannot occur are cannot examine the sun rises in the west | alled<br>is             | (sure/ impossibl<br>event. Water is co | le) events. lourless is |                  |
| Questio                        | n: <u>5</u>                                                                                                      |                         |                                        |                         |                  |
| Probabil                       | ity of sure events is                                                                                            | (grea                   | ter / smaller) than p                  | robability of in        | possible events. |
| $\underline{Answer}$           | <u>:</u>                                                                                                         |                         |                                        |                         |                  |
| Probabil                       | ity of sure event $=$<br>ity of impossible event<br>e, Probability of sure $\epsilon$                            | = (0/1                  | / any number).                         | le event.               |                  |
| $\underline{\textit{Questio}}$ | <u>n: 6</u>                                                                                                      |                         |                                        |                         |                  |
| Raju has                       | s pencil, an eraser, a so                                                                                        | cale, sharpener, c      | olour pencil and prot                  | ractor in his bo        | ox. What is the  |

Answer:

probability of getting a pen from his box.

| Does Raju have                        | pen in his box,<br>r of getting pen from h                         | (Yes/ N       | Vo).        | 0/1)             |                       |                    |
|---------------------------------------|--------------------------------------------------------------------|---------------|-------------|------------------|-----------------------|--------------------|
| Hi, here in th                        | nis video you will le                                              | earn <b>M</b> | ean, Me     | ${ m edian,\ N}$ | Iode                  |                    |
| Question: 7                           |                                                                    |               |             |                  |                       |                    |
| Find the mode o                       | f the following data: 5                                            | 15, 23,       | 5, 32, 44,  | 72, 55, 6, 3     | 8, 5, 65, 45,         | 67, 24, 19 and 98. |
| Answer:                               |                                                                    |               |             |                  |                       |                    |
| Arranging the da                      | ber that occursata in ascending order: occurs most number of       |               |             |                  |                       |                    |
| Question: 8                           |                                                                    |               |             |                  |                       |                    |
|                                       | ntains median of the gi                                            | ven data      | 3. 5. 6. 2. | 7. 9. 6. 4       | and 1                 |                    |
| ascending or dese<br>Arrange the give | (first/cencending order.  n data in ascending or the given data is | der :         |             |                  |                       |                    |
|                                       | the given data is                                                  |               |             | s the            |                       | oi a data.         |
| $\underline{Question: \ 9}$           |                                                                    |               |             |                  | • • • • • • • • • • • |                    |
|                                       | Marks scored                                                       | 100           | 90          | 80               | 70                    |                    |
|                                       | Number of students                                                 | 4             | 5           | 2                | 1                     |                    |
| Mean =                                | , Median = ar                                                      | nd Mode       | =           |                  |                       |                    |
| Answer:                               |                                                                    |               |             |                  |                       |                    |
| $Mean = \frac{1}{m}$                  | of all observation umber of observation                            |               |             |                  |                       |                    |
| Therefore, mean<br>Arrange the data   | observation =<br>  =<br>  a in ascending order :, mode             |               |             |                  | tion =                |                    |

# Geometry

| Topics to be Improved                                                       |                                                     |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| Criteria for congruence of triangle                                         | Idenfication of criteria of congruence of triangles |  |  |  |
| Transversal angle made by transversal  Basics of Transversal angle          |                                                     |  |  |  |
| Right angle triangle and pythagoras property  Basics of Pythagoras property |                                                     |  |  |  |
| Related angles                                                              | Complementary angles                                |  |  |  |

| Hi, here in this video you will learn Criteria of congruence                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question: 10                                                                                                                                                            |
| Circle the groups that contain congruent images.                                                                                                                        |
|                                                                                                                                                                         |
| Answer:                                                                                                                                                                 |
| Two geometrical shapes are said to be congruent if they are (identical/non-identical) in shapes and size.  Example: Square and Rectangle are (congruent/not congruent). |
| Question: 11                                                                                                                                                            |
| If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under (SSS/ASA/SAS) criteria .          |
| Answer:                                                                                                                                                                 |
| Two triangle are (congruent/not congruent) if they are identical in shapes and size Criteria for congruence of triangles are SSS, and                                   |
| 1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.                           |
| 2. In SAS Congruence criteria(2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.          |

3. In ASA Congruence criteria - (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

| SSS | sides and angles are equal |
|-----|----------------------------|
| SAS | sides and angles are equal |
| ASA | sides and angles are equal |

.....

......

Question: 12

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR





Answer:

The given two triangles satisfy \_\_\_\_\_\_ criteria of congruence. By SAS congruence criteria, MN = \_\_\_\_\_, \_\_\_ and  $\angle N$  = \_\_\_\_\_ The side MN=8 cm in  $\Delta LNM$  is equal to the side \_\_\_\_\_ in  $\Delta PRQ$  The common included angle in  $\Delta$  LNM and  $\Delta PRQ$  are \_\_\_\_\_ The side PR is equal to the side in \_\_\_\_\_  $\Delta LNM$ . Therefore, length of side PR = \_\_\_\_\_

Hi, here in this video you will learn Basics of Transversal angle



| One          | estion: | 13 |
|--------------|---------|----|
| $\omega u u$ | -010010 | 10 |



#### Answer:

A line that intersects two or more lines at distinct points is called a \_\_\_\_\_ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is \_\_\_\_\_ angles.

Angle that lies on different vertices and on the same sides of transversal is \_\_\_\_\_ angles. Therefore,  $\angle 1$  and  $\angle 7$  are \_\_\_\_\_

# Question: 14

Find the transversal, alternate angles and corresponding angles in a given diagram.



#### Answer:

A line that intersects two or more lines at distinct points is called a \_\_\_\_\_ (transversal/Intersecting line).

In a given diagram, \_\_\_\_\_ is a transversal line. (BF/AD/CE)

| Alternate angles                                        | Corresponding angles                                  |
|---------------------------------------------------------|-------------------------------------------------------|
| $\angle a$ and $\angle g$ , $\angle b$ and $\angle h$ , | $\angle$ a and $\angle$ e, $\angle$ b and $\angle$ f, |
|                                                         |                                                       |
|                                                         |                                                       |
|                                                         |                                                       |

Question: 15

Find  $\angle e$  and  $\angle g$  if  $\angle a = 30^{\circ}$ .



Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are \_\_\_\_\_ (equal / not equal).
- (ii) Corresponding angles are \_\_\_\_\_ (equal / not equal).

Here, alternate angle of  $\angle a$  is \_\_\_\_\_ and its value is \_\_\_\_. Corresponding angle of  $\angle a$  is \_\_\_\_\_ and its value is \_\_\_\_\_.

Hi, here in this video you will learn Pythagoras property



Question: 16

In a right angled triangle, square of the \_\_\_\_\_ = sum of the squares of the legs.

......

Answer:

Pythagoras theorem is only applicable for \_\_\_\_\_\_ triangle.

Longest side of the triangle is \_\_\_\_\_ (hypotenuse/ legs) and other two sides are called \_\_\_\_\_ (hypotenuse/ legs).

Pythagoras theorem states that \_\_\_\_\_

Question: 17

Find the hypotenuse of the triangle ABC if base is  $12~\mathrm{m}$  and altitude is  $5~\mathrm{m}$ .

Answer:



Pythagoras theorem states that square of the  $\_\_\_$  = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$ 

Base and altitude are \_\_\_\_\_ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem, 
$$(____)^2 = (____)^2 + (____)^2$$

......

Therefore, hypotenuse of the triangle is \_\_\_\_\_.

# Question: 18

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

### Answer:



Pythagoras theorem states that square on the \_\_\_\_\_ = sum of the squares on

Is Pythagoras theorem applicable in rectangle?  $\_$  ( yes/ no).

Given: breadth = \_\_\_\_\_, length of diagonal = \_\_\_\_\_

.....

Therefore, diagonal of the rectangle is \_\_\_\_\_

Hi, here in this video you will learn Related Angles



# Question: 19

- 1. Two angles are complementary if their sum is equal to \_\_\_\_\_.
- 2. Two angles are supplementary if their sum is equal to \_\_\_\_\_.

# Answer:

1. When sum of the two angles is equal to 90°, they are called as \_\_\_\_\_ angle. Example : 45° and 45°, \_\_\_\_\_, and \_\_\_\_.

2. When sum of the two angles is equal to 180°, they are called as \_\_\_\_\_ angle. Example : 90° and 90°, \_\_\_\_\_, and \_\_\_\_.

 $\underline{Question:~20}$ 

Shade the complementary angles.

85°, 95°

Answer:

Two angles are said be complementary if the sum of their angles are equal to \_\_\_\_\_.

 $85^{\circ}+95^{\circ}=$  and this is \_\_\_\_\_ (a / not a) complementary angles.

 $45^{\circ} + 45^{\circ} =$  and this is angles.

 $6^{\circ} + 84^{\circ} =$  and this is \_\_\_\_\_ angles.

 $73^{\circ}$  +  $107^{\circ} =$  \_\_\_\_ and this is \_\_\_ angles.

 $36^{\circ} + 64^{\circ} =$  and this is \_\_\_\_\_ angles.

 $90^{\circ} + 90^{\circ} =$  and this is angles.

Question: 21

Find the complement and supplement of  $15^{\circ}$  and  $90^{\circ}$ 

Answer:

One angle is \_\_\_\_\_ (complements / supplements) to other angle, when sum of the two angles is equal to  $90^{\circ}$ .

One angle is \_\_\_\_\_ (complements / supplements) to other angle, when sum of the two angles is equal to 180°.

Complement of  $15^{\circ} =$ \_\_\_\_\_\_,

Complement of  $90^{\circ} = \underline{\hspace{1cm}}$ .

Supplement of  $15^{\circ} = \underline{\hspace{1cm}}$ ,

Supplement of  $90^{\circ} = \underline{\hspace{1cm}}$ 

# Number system

| Topics to be Improved                       |                                                   |  |  |
|---------------------------------------------|---------------------------------------------------|--|--|
| Properties of integers Associative property |                                                   |  |  |
| Exponents                                   | Solving exponents                                 |  |  |
| Fractions                                   | Division of fraction, Multiplication of fractions |  |  |
| Decimals                                    | Multiplication and division of decimals           |  |  |
| Operations on rational numbers              | Subtraction of rational numbers                   |  |  |
| Positive and negative rational numbers      | Identification of positive rational numbers       |  |  |

| Hi, | here | in | this | video | you | will | learn | Pro | perties   | of | integers |
|-----|------|----|------|-------|-----|------|-------|-----|-----------|----|----------|
| ,   |      |    | 0    | 0_ 0  | .,  |      |       |     | P 0- 0-00 |    |          |



Question: 22

Match the following based on the properties of integers

| i   | Closure     |
|-----|-------------|
| ii  | Associative |
| iii | Commutative |
| iv  | Identity    |

| a | (5+7)+3=3+(7+5) |
|---|-----------------|
| b | 21 + 0 = 21     |
| c | 15 + 17 = 32    |
| d | 1 + 99 = 99 + 1 |

......

#### Answer:

| (i) | ) C | losure | prope | erty | : |
|-----|-----|--------|-------|------|---|
|-----|-----|--------|-------|------|---|

The sum of integers is always \_\_\_\_\_( integer / not a integer).

Therefore, \_\_\_\_\_ + \_\_\_\_ = \_\_\_\_

From the given option \_\_\_\_\_ satisfies the closure property.

# (ii) Associative property:

Rearranging the parentheses ( brackets)  $\_\_\_\_$  (does not/ does) change the sum.

Therefore,  $(a + b) + c = \underline{\hspace{1cm}}$ 

From the given option \_\_\_\_\_\_ satisfies the Associative property.

# (iii) Commutative property:

Changing the order of the addends  $\_\_\_$  (does not/ does) change the sum.

Therefore,  $a + b = _{---} + _{---}$ 

From the given option \_\_\_\_\_\_ satisfies the Commutative property.

| (iv) Identity property: The Therefore, a +:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | ny number always retu                                         | rns same number.            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------|-----------------------------|
| From the given option _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | es the Identity property                                      |                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                               |                             |
| Question: 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                               |                             |
| Mark the operations in which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | commutative propert      | y holds true for any tw                                       | o integers.                 |
| Addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Subtraction              | Multiplication                                                | Division                    |
| $\underline{Answer:}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                               |                             |
| In commutative property, characteristic content conten |                          |                                                               | of the operands             |
| For any two integers, commut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                               |                             |
| The commutative property for<br>The commutative property for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                               |                             |
| $Question: 24 \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                               |                             |
| Are additive identity and mul-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tiplicative identity the | e same? (Yes or No)                                           |                             |
| $\underline{Answer:}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                               |                             |
| Identity property holds only fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or, _                    |                                                               |                             |
| The Identity property for add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                                               |                             |
| The Identity property for mul-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tiplication is           | and multiplicat                                               | ive identity is             |
| Therefore, additive identity is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( equal / not            | t equal) to multiplicative                                    | ve identity.                |
| Hi, here in this video yo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u will learn <b>Expo</b> | onents and power                                              |                             |
| Question: 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                               |                             |
| Find the exponential form of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000.                    |                                                               |                             |
| Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rase) tells us how mar   | ny times a number shou                                        | ald be multiplied by itself |
| to get the desired result.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rase, tells as now man   | ly united a fidiliser shoc                                    | ira be maniphea by 165en    |
| Exponents is also called as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Base / Power)           |                                                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000 can be written a    | $as = 10 \times \underline{\qquad} \times \underline{\qquad}$ |                             |
| 10 is raise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ed to the power of       | _= (10)—                                                      |                             |
| Question: 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                               |                             |
| <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                                                               |                             |

Find the value of  $(-2)^3$ .

## Answer:

 $_{-}$  (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form 
$$(-2)^3$$
, base = \_\_\_\_, power = \_\_\_\_.  
 $(-2)^3 =$ \_\_\_  $\times$ \_\_  $\times$ \_\_ = \_\_\_.

Question: 27

- (i) Tenth power of 100 is  $((10)^{100})$  or  $(100)^{10}$ ).
- (ii) k is raised to the power of 5 is  $((k)^5)$  or  $(5)^k$ .

### Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = \_\_\_\_, Power/Exponents = \_\_\_\_, exponential form = \_\_\_\_.
- (ii) k is raised to the power of 5: Base = \_\_\_\_, Power/Exponent = \_\_\_\_, exponential form =  $\_$

Hi, here in this video you will learn Division on fractions



Question: 28

Find the shape which contains the improper fraction of  $5\frac{2}{7}$ .

| 10 |  |
|----|--|
| 35 |  |





.....



Answer:

 $5\frac{2}{7}$  is a \_\_\_\_\_ (proper/mixed) fraction. Here, 5 is \_\_\_\_ , 2 is \_\_\_\_ and 7 is \_\_\_\_

To convert mixed fraction into improper fraction,  $\frac{\text{(Whole} \times \underline{\hspace{1cm}} \underline{\hspace{1cm}}} \underline{\hspace{1cm}} \underline{\hspace{1cm}}$ 

$$5\frac{2}{7} = \frac{( --- \times --- ) + ----}{7} = \frac{\square}{\square}$$

| Question: 29                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Solve: $\frac{1}{3} \div \frac{14}{3}$                                                                                                            |
| Answer:                                                                                                                                           |
| To divide a fraction by another fraction, multiply the dividend by ( same / reciprocal) of the divisor. Here, dividend = and divisor =            |
| $\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$                                                            |
| Question: 30                                                                                                                                      |
| Find the half of the fraction $\frac{12}{40}$ .                                                                                                   |
| Answer:                                                                                                                                           |
| To find half of a number, divide the number by                                                                                                    |
| $\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{\underline{}} = \underline{\underline{}}$                                      |
| Then the answer is                                                                                                                                |
| Hi, here in this video you will learn Basics of decimals                                                                                          |
| Question: 31                                                                                                                                      |
| Shade 0.4 part of the given shape.                                                                                                                |
|                                                                                                                                                   |
| Answer:                                                                                                                                           |
| There are boxes.  0.4 can be expressed as in fraction  This fraction represents parts out ofequal parts.  So, we need to shade boxes out ofboxes. |
| Question: 32                                                                                                                                      |
| Solve the following.                                                                                                                              |
|                                                                                                                                                   |

(ii)  $0.48 \times 1.2$ 

## Answer:

(i)  $0.4 \times 1.2$ :

Multiplication of  $0.4 \times 1.2$  assuming there is no decimal point is \_\_\_\_\_. The number of digits after decimal point in 0.4 is \_\_\_\_\_ and 1.2 is \_\_\_\_\_. Total digits after decimal point in the product of two numbers is \_\_\_\_\_. Count that digits from the right towards left and place the decimal point, the result is

(ii)  $0.48 \times 1.2$ :

Multiplication of  $0.48 \times 1.2$  assuming there is no decimal point is \_\_\_\_\_. The number of digits after decimal point in 0.48 is \_\_\_\_\_ and 1.2 is \_\_\_\_\_. Total digits after decimal point in the product of two numbers is \_\_\_\_\_. Count that digits from the right towards left and place the decimal point, the result is \_\_\_\_\_.

Question: 33

One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?

### Answer:

One box contains \_\_\_\_\_ chocolates. The cost of one box is \_\_\_\_\_ Then cost of one chocolate = \_\_\_\_ ÷ \_\_\_\_ = \_\_\_

- (i) Total digits after decimal point in decimal number = \_\_\_\_\_
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} = \underline{\hspace{1cm}}$$

(iii) Place the decimal point after \_\_\_\_\_ digits counting from the right in the quotient after division.

Then the cost of one chocolate is \_\_\_\_\_ . The cost of 15 chocolates = cost of one chocolate  $\times$  \_\_\_\_ = \_\_\_ x \_\_\_ = \_\_\_\_

 $\operatorname{Hi}$ , here in this video you will learn  $\operatorname{\mathbf{Multiplication}}$  on  $\operatorname{\mathbf{fractions}}$ 



# Question: 34

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

......

## Answer:

The whole number can be expressed in fraction with denominator equal to \_\_\_\_\_ (zero/one). Therefore, 2 can be written as \_\_\_\_\_ in fraction.

4 can be written as \_\_\_\_\_ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

# Question: 35

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

......

## Answer:

Total number of students = \_\_\_\_\_

Fraction of students who are girls = \_\_\_\_\_

Number of girls =  $\times$  = = =

# Question: 36

Solve:  $2\frac{7}{4} \times \frac{2}{3}$ 

## Answer:

 $2\frac{7}{4}$  is a \_\_\_\_\_ (proper / mixed) fraction. Here, 2 is \_\_\_\_\_, 7 is \_\_\_\_ and 4 is \_\_\_\_\_

To convert mixed fraction into improper fraction,  $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{Denominator}$ Improper fraction of  $2\frac{7}{4} =$ 

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

# Hi, here in this video you will learn Operation on rational numbers



Question: 37

Solve:  $\frac{-3}{3} + \frac{1}{3}$ 

### Answer:

Fractions with same denominators are called \_\_\_\_\_\_ (like/ unlike) fractions. Fraction can be added only if they are \_\_\_\_\_ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{1}{3}$$

# Question: 38

Find the addition of shaded part of box A and shaded part of box B.





# Answer:

Total number of square in box  $A = \underline{\hspace{1cm}}$ .

Number of shaded square in box  $A = \underline{\hspace{1cm}}$ 

Shaded part of box A in fraction = \_\_\_\_\_

Total number of square in box  $B = \underline{\hspace{1cm}}$ .

Number of shaded square in box  $B = \underline{\hspace{1cm}}$ .

Shaded part of box B in fraction = \_\_\_\_\_.

Shaded part of box A + Shaded part of box B =  $\_$  +  $\_$ 

# Question: 39

Find the missing values in the given figure.

# Answer:

Given:  $1 = \frac{7}{10} +$ \_\_\_\_ Transposing  $\frac{7}{10}$  to other sides,  $1 = \frac{7}{10} =$ \_\_\_\_\_

Therefore, result is \_

# Hi, here in this video you will learn Positive and Negative rational numbers



Question: 40 .....

Segregate positive and negative rational number.



Answer:

- If both the numerator and the denominator of a rational number are \_\_\_\_ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is \_\_\_\_\_ (positive/negative) rational number.

In the given circle, positive rational numbers are \_\_\_\_\_ and negative rational numbers are

..... Question: 41

 $\frac{-3}{4}$  is a \_\_\_\_\_ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a \_\_\_\_\_ number, -4 is a \_\_\_\_\_ number. Division of  $\frac{-3}{-4} = \Box$  and this \_\_\_\_ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 42 ......

The product of a positive rational number and a negative rational number is \_\_\_\_\_ rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers:

Examples for negative rational numbers:

Positive rational number × Negative rational number = \_\_\_\_\_ × \_\_\_ = \_\_\_\_ and this is

\_\_\_\_\_ rational number

# Comparing Quantities

| Topics to be Improved                  |                                        |  |  |  |
|----------------------------------------|----------------------------------------|--|--|--|
| Equivalent ratios Basic of proportion  |                                        |  |  |  |
| Conversion of fraction into percentage | Conversion of fraction into percentage |  |  |  |
| Percentage                             | Basic of percentage                    |  |  |  |

| Hi, here in this video you will learn Basics of proportion                                                     |      |
|----------------------------------------------------------------------------------------------------------------|------|
| $\underline{Question:~43}$                                                                                     |      |
| If a:b and c:d are equivalent ratio, then it can be expressed as                                               |      |
| Answer:                                                                                                        |      |
| A (proportion / ratio) is used to express ( one/two) equivalent ratios. Standard form to express proportion is |      |
| Question: 44                                                                                                   |      |
| Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalents                      | ent? |





# $\underline{Answer:}$

| Shaded part of $A = \underline{\hspace{1cm}}$ , Unshaded part of $A = \underline{\hspace{1cm}}$ . |
|---------------------------------------------------------------------------------------------------|
| Ratio of shaded to unshaded parts of A is Fractional form =                                       |
| Shaded part of $B = \underline{\hspace{1cm}}$ ,                                                   |
| Unshaded part of $B = \underline{\hspace{1cm}}$ .                                                 |
| Ratio of shaded to unshaded parts of B is                                                         |
| Fractional form $=$                                                                               |
| Fraction form of A ( equal/ not equal) to Fraction form of B.                                     |
|                                                                                                   |
| Question: 45                                                                                      |

If a: b:: c: d is proportion, shade the correct expression  $\frac{ad}{b}$ ad = cda =Answer: or  $\underline{\hspace{1cm}}$  =  $\underline{\hspace{1cm}}$  (in fraction).

Two equivalent ratio which are proportion, it can be written as a: b:: c: d First and fourth term are called \_\_\_\_\_ and second and third term are called \_\_\_\_ In proportion, product of extreme terms is \_\_\_\_\_ (equal to/ not equal to) product of middle terms. Therefore,  $a \times d = \bot$ then  $a = \underline{\hspace{1cm}}$  and  $c = \underline{\hspace{1cm}}$ 

Hi, here in this video you will learn Converting fraction into percentage



Question: 46

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

### Answer:

Percentage are the fraction with the denominator \_\_\_\_\_

Therefore, 5% can be expressed as \_\_\_\_\_

.....

......

Question: 47

Mark the correct conversion form of fraction  $\frac{1}{2}$  to percentage.

(i) 
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii) 
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii) 
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

#### Answer:

To convert fraction into percentage, the value of \_\_\_\_\_\_ (denominator / numerator)should be 100 or \_\_\_\_\_ ( multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is \_

Question: 48 .....

Find the percentage of shaded part of square.



| Ans | wer: |
|-----|------|

| The square shape is divided into<br>Number of shaded part of square is . | parts |
|--------------------------------------------------------------------------|-------|
| Shaded part of square in fraction is                                     |       |
|                                                                          |       |

| To Convert | into percentage, | x 100 |
|------------|------------------|-------|
|            |                  |       |

Hi, here in this video you will learn Basics of percentage



Question: 49

2% can be written as

# Answer:

Percentages are numerators of fractions with denominator\_\_\_\_\_

$$2\% = \frac{\square}{\square}$$

Question: 50

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

### Answer:

Arun attended LaPIS test for \_\_\_\_\_\_ marks. He got \_\_\_\_\_ marks. 75 % can be written in fraction form \_\_\_\_\_

| Then the mark scored by Arun = Total mark $\times$ 75% = $\times$ =                                      |
|----------------------------------------------------------------------------------------------------------|
| Question: 51                                                                                             |
| There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.    |
| Answer:                                                                                                  |
| There are apples in a basket.  Number of rotten apples are  Fraction form of rotten apples in a basket = |
| Convert it into a percent= x% =                                                                          |

# Algebra

|                                                   | Topics to be Improved                |  |  |  |  |
|---------------------------------------------------|--------------------------------------|--|--|--|--|
| subtraction of algebraic expressions              | subtraction of algebraic expressions |  |  |  |  |
| Addition and subtraction of algebraic expressions | Like terms and Unlike terms          |  |  |  |  |
| Monomials, binomials, trinomials and polynomials  | Types of algebraic expression        |  |  |  |  |
| Basics of simple equation                         | Solving of simple equation           |  |  |  |  |

| Hi. | here in   | this | video | vou     | will        | learn  | Subtraction | on | expression  |
|-----|-----------|------|-------|---------|-------------|--------|-------------|----|-------------|
| ,   | 11010 111 | CIII | 11400 | ., 0 01 | * * * * * * | 100111 |             | ~  | CIPI CODICI |



| Question: 52 |  |
|--------------|--|
| D: 141       |  |

Find the sum of two expressions a + b + c and b + c + d

## Answer:

| The given two expressions are and                                                          |
|--------------------------------------------------------------------------------------------|
| The two terms will get added only if they are( Like/ Unlike) terms.                        |
| The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$ . |
| The answer is                                                                              |

## Question: 53

|                    | School A | School B |
|--------------------|----------|----------|
| Number of boys     | 100b     | 250b     |
| Number of girls    | 150g     | 200g     |
| Number of teachers | 25t      | 45t      |

.....

- (i) Total number of boys in school A and B is \_\_\_\_\_
- (ii) Total number of students in school B is \_\_\_\_\_
- (iii) How many more teachers are there in school B than school A?

### Answer:

(i) Number of boys in school  $A = \underline{\hspace{1cm}}$ ,

Number of boys in school  $B = \underline{\hspace{1cm}}$ 

Total number of boys in school A and school B is \_\_\_\_\_ + \_\_\_ = \_\_\_\_

(ii) Number of boys in school B = \_\_\_\_\_,

Number of girls in school  $B = \underline{\hspace{1cm}}$ .

Total number of students in school B is  $\_\_\_$  +  $\_\_\_$  =  $\_\_\_$ .

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A =  $\_\_$ .

Question: 54

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{c|c}
3a - 5b \\
\hline
 (-) & 5a - 7b \\
\hline
 -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are \_\_\_\_\_ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn **Addition on expression** 



Question: 55

Shade the like terms.



Answer:

Given terms are

Two or more term have \_\_\_\_\_ ( same/ different) variables is called like terms.

Here, like terms are \_\_\_\_\_\_.

Question: 56

Complete the expression  $7r^2 + r \bigsqcup_{-2} = \underline{\phantom{a}} r^2$ 

Answer:

| (L | ike / Uı | nlike) terms | s can be | added or | r subtracted. |
|----|----------|--------------|----------|----------|---------------|
|----|----------|--------------|----------|----------|---------------|

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 57 .....

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have : \_\_\_\_\_
- (ii) How many icecreams Sam have more than Ram : \_\_\_\_\_\_.

### Answer:

|     | Chocolates | Icecream |
|-----|------------|----------|
| Sam |            |          |
| Ram |            |          |

(i) Total chocolates Ram and Sam have:

Ram's chocolate + Sam's chocolates =  $\_\_\_$  +  $\_\_\_$  =  $\_\_$ 

(ii) How many icecreams Sam have more than Ram:

\_\_\_\_\_ icecream - \_\_\_\_ icecream = \_\_\_\_ - \_\_ = \_\_\_

......

Hi, here in this video you will learn **Types of expression** 



Question: 58

There are \_\_\_\_\_ terms in the expression 7x + 3y + m + 5.

### Answer:

In algebraic expression, \_\_\_\_\_ (variables/ terms) are connected together with operations of addition.

The terms in the expression are \_\_\_\_\_\_, \_\_\_\_\_, and \_\_\_\_\_\_.

Therefore, there are \_\_\_\_\_\_ terms in the expression.

Question: 59

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2.  $8x^2 + 0$

3. 7xy + 4m

## Answer:

1. The terms in expression  $8x^2 + 0$  are \_\_\_\_\_. Here, expression has \_\_\_\_\_ term and it is a \_\_\_\_\_\_

2. The terms in expression 7xy + 4m are \_\_\_\_\_. Here, expression has \_\_\_\_\_ term and it is a \_\_\_\_\_.

3. The terms in expression 7m + n + 2 are \_\_\_\_\_. Here, expression has \_\_\_\_ term and it is a \_\_\_\_\_.

Question: 60

 $5m^2 + m + 0$  is a \_\_\_\_\_\_ expression. (Monomial/ Binomial/ Trinomial)

### Answer:

The terms in expression  $5m^2 + m + 0$  are \_\_\_\_\_.

Here, the expression has \_\_\_\_\_\_ terms and it is called a \_\_\_\_\_ expression.

.....

Hi, here in this video you will learn Solving an equation



Question: 61

If ©=5, then 5 © +5 =

#### Answer:

The value of the given smiley © is \_\_\_\_\_.

Substituting the value in the expression  $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ .

Question: 62

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

.....

......

7 + 3 = -4

#### Answer:

The given equation is  $7 \pm 3 = -4$  Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, \_\_\_\_\_ is the number that can be placed in a box to make the equation correct.

Question: 63

Arrange the terms in the descending order when the value of x is 2. 2x  $5x \times 1$  x + 3 2x - 4  $\frac{1}{2}x$ 

### Answer:

The given expression are \_\_\_\_\_.

The value of x is \_\_\_\_\_.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ 
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$ 

Arranging in descending order: \_\_\_\_, \_\_\_\_, \_\_\_\_, \_\_\_\_, \_\_\_\_.
Their respective algebraic terms are \_\_\_\_, \_\_\_\_, \_\_\_\_, \_\_\_\_, \_\_\_\_.