Property Demonstration on the Greedy Algorithm regarding Load Balancing Problem with Various Examples

陈子蔚 Chen Ziwei

Department of Computer Science and Engineering

Recent Research Topic: Generative Model

Supervisor: 郑锋

2 identical machines $\{M_1, M_2\}$ and 3 jobs $\{J_1, J_2, J_3\}$ with processing time $t_1 = t_2 = 1, t_3 = 2$.

Consider the job sequence represented with time. The following figure on the left is an instance of 211,121, where the makespan $T = 2 = T^*$. #case = $2 \cdot 2! = 4$. The following figure on the right is an instance of 112, where the makespan T = 3. #case = 2! = 2.

$$T_{\text{Avg}} = \frac{4 \cdot 2 + 2 \cdot 3}{4 + 2} = \frac{7}{3}$$

$$\frac{T_{\text{Avg}}}{T^*} = \frac{\frac{7}{3}}{2} = \frac{7}{6}$$

In the next page, the following formulation is obtained.

$$\frac{T_{\text{Avg}}}{T^*} = 1 + \frac{n^3 - 3n^2 + 4n - 2}{2n(n^2 - n + 1)}$$

Simply substitute n with 2,

$$\frac{T_{\text{Avg}}}{T^*}_{n=2} = 1 + \frac{2^3 - 3 \cdot 2^2 + 4 \cdot 2 - 2}{2 \cdot 2 \cdot (2^2 - 2 + 1)} = \frac{7}{6}$$

, which partially confirms the correctness of the formulation.

$$M_1$$
 2

 M_1

 M_2

1

2

1

n identical machines $\{M_i\}$, $i \in [1, n]$ and (n(n-1)+1) jobs $\{J_i\}$, $i \in [1, n^2 - n + 1]$ with processing time $t_1 = t_2 = \cdots = t_{n(n-1)} = 1$, $t_{n^2-n+1} = n$.

Consider the job sequence represented with time

$$1 \cdots 1$$
n $1 \cdots 1$

, and the job J_{n^2-n+1} is at index i in the color red.

Obviously, the makespan $T(i) = \left\lfloor \frac{i-1}{n} \right\rfloor + n$.

The following figure on the left is an instance of i = n + 1, where the makespan T(n + 1) = n + 1.

The following figure on the right is an instance of i = 1, where the makespan $T(1) = n = T^*$.

$$T_{\text{Avg}} = \frac{\sum_{i=1}^{n(n-1)+1} [n(n-1)]! \cdot \left(\left|\frac{i-1}{n}\right| + n\right)}{[n(n-1)+1]!}$$

$$= \frac{\sum_{i=1}^{n(n-1)+1} \left(\left|\frac{i-1}{n}\right| + n\right)}{n(n-1)+1}$$

$$= \frac{n(n^2 - n + 1) + n - 1 + n\sum_{i=0}^{n-2} i}{n^2 - n + 1}$$

$$= n + \frac{n^2 - 3n + 2}{n^2 - n + 1}$$

$$= n + \frac{n^3 - 3n^2 + 4n - 2}{2(n^2 - n + 1)}$$

$$= 1 + \frac{n^3 - 3n^2 + 4n - 2}{2n(n^2 - n + 1)}$$

$$\lim_{n \to +\infty} \frac{T_{\text{Avg}}}{T^*} = 1 + \frac{1}{2} = \frac{3}{2}$$

Consider the first example of Task 4-1.

The sorted job sequence represented with time is 211.

$$T_{\text{Sorted}} = 2 = T^*$$

$$\frac{T_{\text{Avg}}}{T_{\text{Sorted}}} = \frac{T_{\text{Avg}}}{T^*} = \frac{7}{6}$$

Consider the second example of Task 4-1.

The sorted job sequence represented with time is $n1 \cdots 1$.

$$T_{\text{Sorted}} = n = T^*$$

$$\frac{T_{\text{Avg}}}{T_{\text{Sorted}}} = \frac{T_{\text{Avg}}}{T^*} = 1 + \frac{n^3 - 3n^2 + 4n - 2}{2n(n^2 - n + 1)}$$

$$\lim_{n \to +\infty} \frac{T_{\text{Avg}}}{T_{\text{Sorted}}} = \frac{3}{2}$$

Algorithm 1 A Solution to General Settings of Load Balancing

Require: machines $\mathcal{M} = \{M_i\}, i \in [1, m]$, jobs $\mathcal{J} = \{J_i\}, i \in [1, n]$, processing times $t : (\mathcal{M} \times \mathcal{J}) \to \mathbb{N}^+$, t(M, J) represents the processing time of job J on machine M;

Ensure: $A: \mathcal{M} \to 2^{\mathcal{J}}$ with $\left(\bigcup_{M \in \mathcal{M}} A(M) = \mathcal{J}\right) \wedge \left(\bigcap_{M \in \mathcal{M}} A(M) = \varnothing\right)$, makespan T;

- 1: Sort jobs $\mathcal{J} = \{J_i\}, i \in [1, n]$ by $\max_{M \in \mathcal{M}} t(M, J_i)$ and obtain (J'_1, \dots, J'_n) ;
- 2: for $i \leftarrow 1, \cdots, n$ do
- 3: $M' \leftarrow \arg\min_{M \in \mathcal{M}} \sum_{J \in A(M)} t(M, J)$
- 4: $A(M') \leftarrow A(M') \cup J'_i$
- 5: end for
- 6: $T \leftarrow \max_{M \in \mathcal{M}} \sum_{J \in A(M)} t(M, J)$

	J1	J2	J3	J4	J5	J6	J7	J8	J 9	J10	J11	J12	J13	J14	J15
M1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
M2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
M3	3	6	9	12	15	18	21	24	27	30	15	15	15	15	15

Sort the jobs by $\max t(M, J_i)$, obtain the job index sequence

[15,10,14,9,13,12,8,11,7,6,5,4,3,2,1]

Apply the greedy algorithm,

```
Job 15 is assigned to machine 1.
Job 10 is assigned to machine 2.
Job 14 is assigned to machine 3.
Job 9 is assigned to machine 1.
Job 13 is assigned to machine 3.
Job 12 is assigned to machine 2.
Job 8 is assigned to machine 1.
Job 11 is assigned to machine 3.
Job 7 is assigned to machine 1.
Job 6 is assigned to machine 1.
Job 5 is assigned to machine 2.
Job 4 is assigned to machine 1.
Job 3 is assigned to machine 3.
Job 2 is assigned to machine 1.
Job 1 is assigned to machine 1.
Machine 1: [15, 9, 8, 7, 6, 4, 2, 1]
T = 52
Machine 2: [10, 12, 5]
T = 54
Machine 3: [14, 13, 11, 3]
T = 54
makespan: 54
```

The obtained makespan is 54.