Mathematik für die Informatik B -Hausaufgabenserie 3

Florian Schlösser, Henri Heyden, Ali Galip Altun stu240349, stu240825, stu242631

Aufgabe 1

Behauptung: $(x_n)_{n\geq 1}$ divergiert unbestimmt.

Voraussetzung: $odd := \{2n + 1 \mid n \in \mathbb{N}\}, even := \{2n \mid n \in \mathbb{N}\}$

Beweis: Nehme an, $(x_n)_{n\geq 1}$ konvergiere oder divergiere bestimmt. Demnach müsse gelten, dass $(x_n)_{n\geq 1}$ einen Limes habe, den wir p nennen werden.

Definiere hierzu die Teilfolgen $(a_n)_{n\geq 1}:=(x_{2n+1})_{n\geq 1}$ und $(b_n)_{n\geq 1}:=(x_{2n})_{n\geq 1}$ von x (es ist leicht zu sehen, dass 2n+1 und 2n strenge monotone Abbildungen von n sind für $n\in\mathbb{N}$).

Beobachte, dass nach den Definitionen von odd und even, $a_n = \frac{1}{n}$ und $b_n = n$ gelten. Nach Satz 2.42 müssten die Limetes von den Folgen a und b gleich dem Limes von x gleichen.

Beobachte aber, dass $\lim_n a_n = 0 \neq \lim_n b_n = +\infty$ nach Skript gilt, was uns zu einem Widerspruch der Annahme $(x_n)_{n\geq 1}$ konvergiere oder divergiere bestimmt.

Demnach gilt das Gegenteil, also divergiert $(x_n)_{n\geq 1}$ unbestimmt.