given an Array of size N. find the Kth minimum element in the Array. K< log N A: {1,5,-1,2,10,33

$$K = 3 \Rightarrow 2$$

$$K = 5 \Rightarrow 5$$

$$K = 1 \Rightarrow -1$$

brute force

- () Sout (Arr)
- 2 return Arr[K-1]

A:  $\{1, 5, -1, 2, 10, 3\}$ 

0 1 2 3 4 5 {-1, 1, 2, 3, 5, 10 }

K=3 => A[2]

TC: O(NlogN)

SC: Depends on sorting algo.

#

A: 
$$\{1, 5, -1, 2, 10, 3\}$$

A:  $\{-1, 5, 1, 2, 10, 3\}$ 

Min =  $1$ 

A:  $\{-1, 1, 2, 5, 10, 3\}$ 

Min =  $3$ 

A:  $\{-1, 1, 2, 8, 10, 5\}$ 

Min =  $3$ 

A:  $\{-1, 1, 2, 8, 10, 5\}$ 

Min =  $5$ 

To of finding the Min(Arr) = O(N)TC:  $O(KN) < O(N\log N)$ SC: O(I)

Selection Sort

Selecting the minimum element & placing this element at 14s right position is selection

TC: O(N2)

for (i=0; i< N; i++) {

min = Ali]

nin\_index = i;

for (j=i+1; j< N; j++) {

if (A[j] < min) {

nin = A[j];

nin\_index = j;

3

3

Surap (Ali], A[min\_index]);

3

A: 
$$\{1, 5, \{1\}, 2, 10, 33\}$$
 $i=0$ 
 $min = 4 - 1$ 
 $m=1 = 2$ 

A:  $\{-1, 1, 5, 2, 10, 33\}$ 
 $min = 4$ 
 $min = 4$ 

 $A: \{-1, 1, 2, 3, 5, 103\}$ Suplace?  $\Rightarrow$  YES: SC = O(1) Stable => NO {2, 5, 2, 1, 63 {1, 5, 2, 2, 63  $\{ \perp, (2), 5, (2), 6 \}$ Quiz Max. no. et suraps in selection sort! # Constraint: - Smapping is allowed only b/w consecutive elements.

8672 8672 8672 8672 8672 8672 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 872 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873

 $4 : \{3, 6, 7, 2, 8, 7, 8, 9, 11\}$  2 + 4 + 8 + 8

A:  $\{3, 5, 2, 7, 7, 5, 8, 9, 11\}$ 2 6 4 7 7

A: {8, 2, 8, 4, 8, 4, 8, 9, 113 2 3 4 & 6

A: 2, 3, 4, 5, 6, 7, 8, 9, 113  $\Rightarrow$  Sorted

# Keep on taking the Marc element at the end of the Array.

\[
\Rightarrow\) Bubble Sort

## Code

for ( 
$$i = 0$$
;  $i < N$ ;  $i + +$ ) 1

for (  $j = 0$ ;  $j < N -$ );  $j + +$ ) {

if (  $A[j] > A[j + i]$ ) {

Smap( $A[j], A[j + i]$ );

 $i = 0 \Rightarrow j \in [0, N-2] \Rightarrow N-1$ 
 $i = 1 \Rightarrow j \in [0, N-3] \Rightarrow N-2$ 
 $i = 2 \Rightarrow j \in [0, N-4] \Rightarrow N-3$ 
 $i = 2 \Rightarrow j \in [0, N-1-2] \Rightarrow N-3$ 
 $i = 2 \Rightarrow j \in [0, N-1-2] \Rightarrow N-3$ 

## $0=\langle j \langle =N-i-2\rangle$

\* 21 at any iteration, smap count is zero then it means Array has already become sorted. Quiz Max. no. of smaps in Bubble Sort.

Smaps = 1+2+3+----+(N-1)=  $\frac{N(N-1)}{2}$ 

Implace ? YES | SC: O(1)

Stable ? YES

A: {2, x, x, 23 L 2 2 5

 $A: \{1, 2, 2, 5\}$ 

Orgiven 2 Sorted arrays of size N2M. Merge Amazon these 2 sorted arrays into 1 sorted array

A: {2,5,4,12,20,24,293

B: 16,9,10,14,18,193

 $C: \{2, 5, 6, 7, 9, 10, 12, 14, 18, 19, 20, 24, 29\}$ 

## Approach # 1

- FM+NJD tui ¢
- $\Rightarrow$  Put all the elements of A & B into C.  $\Rightarrow$  Sort (C)  $\Rightarrow$  O((N+M)  $\log$  (N+M))  $\mapsto$  N+M

TC: D((N+M) lag(N+M))

SC: 0(N+M)

## Approach#2

A: {2,5,4,12,20,24,293 => Sorted

B: 16,9,10,14,18,193 => Sorted.

C[0] = min(A[0], B[0])

Ctk] = min (Ali), Bti])

```
merge (in AI), int M, int Bl], int N)?
       int C[N+M]
        1=0 1/ Array A

1=0 1/ Array B

K=0 1/ Array C
        while (i< M && j< N) 1
               1 (Cita > Cita) fi
                    C[K] = A] (];
                     1++
                3
Else 1
                   C(K) = B[j]
j++
        Juhile (i < M) 1
             C[K] = A]();
             1++
             K++
         while (j<N) {
            ([K] = B[i];
i++;
        return C;
```

TC: 0(N+M) SC: O(N+M) (Output) # Old marline Tark: - Sort an Array of size N= 100. bubble Sort  $> O(N^2)$ Selection Sort # of iterations =  $(100)^2 = 10000$ 9899 98 99  $(50)^2 = 2500$  $(50)^2 = 2500$ J merge 100 # of Herations = 2500 + 2500 + 100 5100 0 - - - 24 25 99 49 50 74 75 (25)2 (25)2 (25)e (25)2 20450

# of Herations =  $(25)^2 * 4 + 25 * 4 + 50 + 50$ = 2500 + 100 + 100=  $2\frac{7}{400}$   $10 \text{ K} \longrightarrow 5 \text{ K} \longrightarrow 2.5 \text{ K} \longrightarrow ---$ MERGE SORT (Divide & Conquer)



Code:

# Assumption: nuergeSort (A, e, x) sorts the Array from I to 2.

mege Sort (int Al), int e, int 2) 1 if ( l== x) int mid=(l+x)/2; mergesort (A, l, mid); mergesort (A, mid+1, 2); merge (A, I, mid, r)

Recurrence Relation:

T(N) = 2T(N|2) + N

TC: D(NlogN)

TC: 0 (N\* log\_N)

# 8C: O(N)