

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு ஐந்தாம் தவணைப் பரீட்சை - 2023

National Field Work Centre, Thondaimanaru.

5th Term Examination - 2023

இரசாயனவியல்	I
Chemistry	I

Two Hours 02 T I

பகுதி I

- 🕨 எல்லா வினாக்களுக்கும் விடையளிக்குக.
- 01) பின்வரும் கூற்றுக்கள் (I) ஐயும் (II) ஐயும் கருதுக.
 - (I) அணுவில் நேரேற்றப்பட்ட துணிக்கைகள் சிறிய கனவளவில் செறிவாக்கப்பட்டுள்ளன.
 - (II) ஒரு மூலக்கூறு அல்லது அயனின் மைய அணுவைச் சூழ்ந்துள்ள இலத்திரன் சோடிகள் ஒன்றிலிருந்து ஒன்று அதிகூடிய தூரத்தில் ஒழுங்காக்கப்படும்.

மேற்குறிப்பிட்ட கூற்றுக்கள் (I), (II) இனால் தரப்படும் எண்ணக்கருக்களுடன் தொடர்புடைய விஞ்ஞானிகள் முறையே

- (1) J. J. தொம்சன், ஹென்றி லோரன்ஸ்
- (2) நீல்ஸ்போர், Ronald Gillespie.
- (3) ஏர்னஸ்ட் இரதபோட், கில்பேட் லூயிஸ்
- (4) ஏர்னஸ்ட் இரதபோட், Ronald Gillespie
- (5) ஜேம்ஸ் சட்விக், டிபுரொக்லி
- 02) I Cl_4^- அயனின் I அணுவைச் சூழவுள்ள இலத்திரன் சோடிகளின் ஒழுங்கமைப்பும் மூலக்கூற்றுக் கேத்திர கணித வடிவமும் முறையே
 - (1) சதுரத்தனம், சதுரத்தளம்
 - (2) எண்முகி, சதுரத்தளம்
 - (3) சதுரக்கும்பகம், எண்முகி
 - (4) நான்முகி, முக்கோண இருகூம்பகம்
 - (5) முக்கோண இருகூம்பகம், சதுரத்தளம்
- 03) பின்வரும் சேர்வையின் IUPAC பெயர் யாது?

$$\begin{array}{c} \mathsf{CHO} \\ | \\ \mathsf{CH_3} - \mathsf{CH} - \mathsf{CH} - \mathsf{CH_2} - \mathsf{CO_2} \mathsf{CH_2} \mathsf{CH_3} \\ | \\ \mathsf{C} \equiv \mathsf{CH} \end{array}$$

- (1) ethyl 3 formyl 4 methylhex 5 ynoate
- (2) ethyl 3 formyl 4 methyl 5 hexynoate
- (3) ethyl 3 formyl 4 methylhexynoate
- (4) ethyl 3 formyl 4 oxohex 5 ynoate
- (5) ethyl 3 formyl 4 methylhex 5 enoate

- 04) X எனும் சேதனச் சேர்வை பின்வரும் அவதானிப்புக்களைக் கொடுத்தது.
 - பிரேடியின் சோதனைப் பொருளுடன் செம்மஞ்சள் நிற வீழ்படிவைத் தோற்றுவித்தது.
 - நீர் Na_2CO_3 கரைசலுடன் வாயுக்குமிழ்களை வெளியேற்றியது.
 - NaNO₂ / dil HCl உடன் பரிகரித்துப் பின்னர் லூக்காசின் சோதனைப் பொருள் இடுகையில் உடனடிக் கலங்கல் பெறப்பட்டது.

சேர்வை X ஆக இருப்பதற்கு பொருத்தமானது

$$\begin{array}{c} CH_2CHO \\ | \\ (2) \\ CH_3 - C - NH_2 \\ | \\ CH_2OH \end{array}$$

(3)
$$OHC - CH_2 - CH_2 COOH$$

 OCH_3
 $CH_3 - CC - CH_2CH_2 - NH_2$

- 05) பின்வருவனவற்றில் எது Li மற்றும் அதன் சேர்வைகள் தொடர்பாக தவறானது?
 - (1) கூட்டம் 1 மூலங்களில் உருகுநிலை மிகக் கூடியது Li ஆகும்.
 - (2) Li_2 CO_3 இன் வெப்பப்பிரிகையின் போது CO_2 வாயு வெளியேறும்.
 - (3) அறைவெப்பநிலையில் $LiHCO_3$ திண்ம நிலையில் காணப்படமாட்டாது.
 - (4) Li ஐ வளியில் எரிக்கும் போது இரண்டு விளைபொருள்கள் உருவாகக்கூடும்.
 - (5) கூட்டம் 1 மூலகங்களில் (Li தொடக்கம் Cs வரையானவை) குறைந்த மறைப் பெறுமானமுள்ள இலத்திரன் ஏற்றல் வெப்பவுள்ளுறை கொண்டது Li ஆகும்.
- 06) $Pb\ Cl_2$ ஆனது நீரில் அரிதாகக் கரையும் அயன் சேர்வையொன்றாகும். 25° C இல் திண்ம $Pb\ Cl_2$ உடன் சமநிலையில் உள்ள $Pb\ Cl_2$ இன் நிரம்பிய நீர்க்கரைசலொன்று தொடர்பான பின்வரும் கூற்றுகளில் சரியானது எது?
 - (1) செறிந்த HCl சேர்க்கும் போது $PbCl_2$ இன் கரைதிறன் குறையும்.
 - (2) சிறிதளவு $Pb(NO_3)_{2(s)}$ சேர்க்கப்படின் கரைசலின் Cl^- அயன் செறிவு அதிகரிக்கும்.
 - (3) சிறிதளவு $Cl_3CCOONa$ திண்மம் சேர்க்கப்படின் $PbCl_2$ இன் கரைதிறன் மாற்றமடையாது.
 - (4) சிறிதளவு திண்ம NaI சேர்க்கும் போது $PbCl_2$ இன் கரைதிறன் மாற்றமடையாது.
 - (5) வெப்பநிலை அதிகரிக்கப்படின் கரைசலில் உள்ள $Pb_{(aq)}^{2+}$ செறிவு குறைவடையும்.
- 07) $25 \, ^{\circ}$ C இல் ஒரு மின்னிரசாயனக் கலத்தில் நடைபெறும் தாக்கம் $M_{(s)} + 3\,Ag^{+}_{(aq)} o 3\,Ag_{(s)} + M^{3+}_{(aq)}$ இன் \in^{\emptyset} cell ஆனது +1.56V ஆக இருக்கும் அதே வேளை இச்செயன்முறையின் அரைத்தாக்கங்கள்

$$Ag^{+}_{(aq)} + e \rightarrow Ag_{(s)}$$
(1) $\epsilon_{1}^{\emptyset} = 0.80 V$

$$M_{(ag)}^{3+} + 3e \rightarrow M_{(s)}$$
(2) $\epsilon_2^{\emptyset} = ?$

தாக்கம் (2) இன் நியமத் தாழ்த்தல் அழுத்தம் \in_2^\emptyset ஆனது

- (1) 0.76 V
- (2) 0.06 V
- (3) -0.76 V
- (4) 2.36 V
- (5) 0.84 V

08)	எவ்வெப்பு	நிலையில்	SO_2	வாயுவின்	கதி	வர்க்க	இடையா	ானது	$27^{0}C$	இலுள்ள	O_2	வாயு	வின்
	கதிவர்க்க	இடைக்குச்	சமன	ராக இருச்	க்கும்?	(S = 3)	32, O = 1	16) <i>SC</i>	O_2 , O_2	இலட்சிய	வாயு	க்கள்	என
	கருதுக.												

- $(1) 600^{\circ}$ C
- (2) 327 K
- (3) 300 K
- $(4) 300^{\circ} C$
- (5) 327°C
- 09) $\mathcal{C}_1\ moldm^{-3}\ BaCl_2$ கரைசலின் $V\ dm^3$ இற்கு $\mathcal{C}_2\ moldm^{-3}\ Na_2CO_3$ கரைசலின் $V\ dm^3$ சேர்த்த ஆனது மிகையான இங்கு $BaCl_2$ போது $BaCO_3$ வீழ்படிவாகியது. தொழிற்படுகின்றது. குறித்த வெப்பநிலையில் $Ba\mathcal{C}O_3$ இன் கரைதிறன் பெருக்கம் x எனின் அவ்வெப்பநிலையில் $BaCO_3$ இன் கரைதிறன் $moldm^{-3}$ இல் யாதாகும்?
 - (1) χ^{-2}
- (2) $\frac{(C_1 + C_2)x}{2}$ (3) $\frac{2x}{C_1 + C_2}$ (4) $\frac{2xV}{C_1 C_2}$ (5) $\frac{2x}{C_1 C_2}$

- 10) ஆவர்த்தன அட்டவணையின் 2ம், 3ம் ஆவர்த்தன மூலகங்களின் சில இயல்புகள் பற்றிய பின்வரும் கூற்றுக்களில் தவறானது எது?
 - (1) Ne ஆனது அதிகூடிய 1ம் அயனாக்கற் சக்கியைக் கொண்டிருக்கும்.
 - (2) மிகக் கூடிய அணு ஆரையையுடையது Na ஆகும்.
 - (3) வாயு நிலையில் உள்ள அணுவொன்றுடன் ஓர் இலத்திரனைச் சேர்க்கும் போது அதிகூடிய சக்தியை வெளிவிடுவது F ஆகும்.
 - (4) 2ம் ஆவர்த்தன மூலகங்கள் உருவாக்கும் உறுதியான அன்னயன்களின் ஆரையானது 3ம் ஆவர்த்தன மூலகங்கள் உருவாக்கும் உறுதியான கற்றயன்களின் ஆரையிலும் பெரிதாகும்.
 - (5) இரு ஆவர்த்தனங்களிலும் இடமிருந்து வலமாக கற்றயனின் பருமன் குறைந்து செல்லும்.
- 11) பின்வருவனவற்றில் சரியான கூற்றை இனம் காண்க.
 - (1) நீர்க்கரைசலில் H_2O_2 இன் பிரிகை அமிலங்களால் தூண்டப்படும்.
 - (2) HNO_2 ஆனது இருவழிவிகாரத்துக்குட்பட்டு HNO_3 மற்றும் NO, H_2O என்பன பெறப்படும்.
 - (3) NH_3 வாயுவானது மிகையான $Cl_{2(g)}$ உடன் தாக்கமுற்று N_2 , NH_4 Cl என்பன பெறப்படும்.
 - (4) அறைவெப்பநிலையில் கந்தகத்தின் உறுதியான பிறதிருப்ப வடிவம் ஒரு சரிவுக் கந்தகமாகும்.
 - (5) $PCl_{5(g)}$ ஆனது வரையறுத்த அளவு நீருடன் தாக்கம் புரிகையில் H_3PO_4 விளைவுகளில் ஒன்றாகப் பெறப்படும்.
- 12) அனிலீன் தொடர்பான பின்வரும் கூற்றுகளில் சரியானது எது?
 - (1) $NaOH_{(aq)}$ உடன் வெப்பமேற்றும் போது $NH_{3(q)}$ ஐ விளைவாகத் தரும்.
 - (2) அறைவெப்பநிலையில் $Na\ NO_2$ / ஐதான HCl உடன் தாக்கமுற்று பென்சீன் ஈரசோனியம் குளோரைட்டைத் தரும்.
 - (3) Paranitroanilene உடன் ஒப்பிடுகையில் மூல இயல்பு குறைந்தது.
 - (4) லூயி அமிலமான $AlCl_3$ முன்னிலையில் அனிலீன் மூலக்கூறு அற்கைலேற்றம், ஏசைலேற்றம் என்பவற்றுக்குட்படும்.
 - (5) இது ஒரு கருநாடியாகச் செயற்படக்கூடிய அதேவேளை இலத்திரன் நாட்டப் பிரதியீட்டுத் தாக்கங்களையும் கொடுக்கக்கூடியது.
- 13) $25~^\circ$ C வெப்பநிலையில் $A_{(aq)}+OH^-_{(aq)} o C^-_{(aq)}+H_2~O_{(\ell)}$ எனும் முதன்மைத் தாக்கத்தில் A இன் செறிவை $0.1 \ mol \ dm^{-3}$ ஆக மாறாது பேணிக் கொண்டு pH உடன் ஆரம்பத் தாக்கவீதம் அளவிடப்பட்டது. pH ஆனது 9.5 ஆக இருக்கும் போது வீதம் $4.8 \times 10^{-4} \ mol \ dm^{-3} \ s^{-1}$ ஆகக் காணப்பட்டதெனின் வீதம் $2.4 imes 10^{-4} \ mol \ dm^{-3} \ s^{-1}$ ஆகும் போது கரைசலின் pH ஆக அமைவது.
 - (1) 7.5
- (2) 8.5
- (3) 9.2
- (4) 11.5
- (5) 13.5

14)	25° C இல் A , B எனும் இரு கலக்கும் தகவுள்ள திரவங்கள் இலட்சியக் கரைசலை ஆக்கக்
	கூடியன. இவ்வெப்பநிலையில் இக்கரைசல் அதன் ஆவியுடன் சமநிலையிலுள்ள போது திரவ
	அவத்தையில் A இன் மூல்ப்பின்னம் $\frac{1}{5}$ உம் ஆவி நிலையில் A இன் மூல்ப் பின்னம் $\frac{3}{7}$ உம்
	ஆகும். இவ்வெப்பநிலையில் A இன் திரவநிலை மூலப்பின்னம் $rac{2}{5}$ ஆகும் போது B இன்
	ஆவிநிலை மூலப்பின்னம் யாதாகும்?
	(1) $\frac{2}{3}$ (2) $\frac{3}{5}$ (3) $\frac{4}{5}$ (4) $\frac{1}{3}$ (5) $\frac{4}{7}$
15)	HA உம் HB உம் ஒரு மூலமென்னமிலங்களாகும். 25°C இல் HA ஐயும் HB ஐயும் கொண்ட
	நீர்க்கரைசலொன்றில் HA , HB இன் செறிவுகள் முறையே $0.03\ mol\ dm^{-3}$ உம் $0.1\ mol\ dm^{-3}$
	உம் ஆகும். (25° C இல் HA , HB இன் அயனாக்க மாறிலிகள் முறையே $2 imes 10^{-6} \ mol \ dm^{-3}$,
	$1 \times 10^{-6} \ mol \ dm^{-3}$ ஆகும்)
	மேற்படி கரைசலின் pH பெறுமானம் அண்ணளவாக
	(1) 3.4 (2) 3.6 (3) 3.26 (4) 4.2 (5) 5.4
16)	பின்வரும் பதார்த்தங்கள் ஒவ்வொன்றினதும் $0.1\ mol\ dm^{-3}$ செறிவுள்ள கரைசல்களின் pH அதிகரிக்கும் வரிசை யாது?
	(a) NaF (b) $NH_4 Cl$ (c) $(NH_4)_2 SO_4$ (d) $Na_2 SO_4$ (e) $Na_2 CO_3$
	(1) $c < b < d < a < e$ (2) $a < c < b < d < e$ (3) $b < d < e < c < a$
	(4) $b < c < a < d < e$ (5) $c < d < e < a < b$
17)	NH_4OH கரைசலொன்று திணிவு ரீதியில் 30% NH_4OH ஐக் கொண்டுள்ளதுடன் அதன் அடர்த்தி
	$0.9~gcm^{-3}$ ஆகும். $2~mol~dm^{-3}~NH_4OH$ கரைசலின் $250~cm^3$ கனவளவைத் தயாரிப்பதற்கு
	மேற்குறிப்பிட்ட NH_4OH கரைசலின் என்ன கனவளவு எடுக்கப்பட வேண்டும். $(N=14,O=16,H=1)$
	(1) 64.8 cm^3 (2) 190 cm^3 (3) 204 cm^3 (4) 220 cm^3 (5) 267 cm^3
18)	பின்வரும் சமநிலைகளைக் கருதுக.
	$H_{2(g)} + \frac{1}{2}S_{2(g)} \implies H_2S_{(g)} ; Kp_1 = 0.80$
	$3H_{2(g)} + SO_{2(g)} \rightleftharpoons H_2S_{(g)} + 2H_2O_{(g)} ; Kp_2 = 1.8 \times 10^4$
	எனின் சமநிலை $4H_{2(g)}+2SO_{2(g)}\rightleftharpoons S_{2(g)}+4H_{2}O_{(g)}$ இன் Kp ஆனது $(K_{p}$ பெறுமானங்கள்
	நியம் அமுக்கம் சார்பானவை எனக் கருதுக)
	(1) 4.44×10^{-5} (2) 2.25×10^4 (3) 5.07×10^8
	$(4) \ \ 4.26 \times 10^6 \qquad \qquad (5) \ \ 3.36 \times 10^4$
19)	அசேதனச் சேர்வை X இன் நீர்க்கரைசலுக்கு ஐதான HCl சேர்த்த போது கபில நிற வாயுவும்
	நிறமுடைய கரைசலொன்றும் பெறப்பட்டன. மேற்குறிப்பிட்ட நிறமுடைய கரைசலுக்கு செறிந்த NH_3
	கரைசல் மிகையாக சேர்த்த போது மஞ்சள் கபில நிறக் கரைசல் உருவானதுடன் வளிக்குத்
	திறந்து வைத்த போது கரைசலின் நிறம் செம்மஞ்சள் கபிலமாக மாறியது எனின் சேர்வை X ஆக
	இருக்கக்கூடியது.
	(1) $Co(NO_2)_2$ (2) $Cu(NO_2)_2$ (3) $Cr(NO_2)_3$ (4) $Fe(NO_2)_2$ (5) $Cu\ Br$

- 20) கீழே தரப்பட்டுள்ள கணியங்களுள் எவை எப்பொழுதும் வெப்பநிலையைச் சார்ந்திருக்கும்?
 - A கரைதிறன் பெருக்கம்
 - B தாக்க வரிசை
 - C தாக்கப் பொறிநுட்பம்
 - D மின்னிரசாயனக் கலமொன்றின் மின்னியக்க விசை
 - E தாக்கவீத மாறிலி
 - F ஏவற்சக்தி
 - G அரை வாழ்வுக் காலம்
 - H மின்கடத்து திறன்
 - (1) A, B, D, F
- (2) A, D, E, G, H
- (3) B, C, E, G

- (4) B, C, D, E, F
- (5) C, F, G, H
- 21) 25°C இல் குறித்த அமிலமொன்று காரக்கரைசலொன்றினால் நியமிக்கப்படுகையில் ஏற்படும் *pH* மாற்ற வளையி கீழே தரப்பட்டுள்ளது.

சேர்க்கப்பட்ட காரத்தின் கனவளவு

மேற்படி நியமிப்பு தொடர்பான பின்வரும் கூற்றுகளில் பிழையானது எது?

- (1) இது மென்கார வன்னமில வகைக்குரிய நியமிப்பாக அமையலாம்.
- (2) பகுதி A-B தாங்கல் தன்மையைக் கொண்டிருக்கும்
- (3) இந்நியமிப்புக்கு மெதயிற் செம்மஞ்சள் காட்டி சரியான முடிவுப் புள்ளியைத் தரும்.
- (4) பகுதி C-D தாங்கல் தன்மையைக் கொண்டிருக்கும்.
- (5) இந்நியமிப்பின் சமவலுப் புள்ளியில் கரைசலானது அமில இயல்பைக் காட்டும்.

22)
$$HO - O - CO_2 CH_2 CH_3 \xrightarrow{\text{(i)} NaOH_{(aq)}}$$
 விளைவு $P \xrightarrow{PCl_5}$ விளைவு Q (ii) ஐதான H_2SO_4

விளைவு Q ஆக இருக்கக்கூடியது

$$(4) \bigcirc O \qquad CH_3 COCl \qquad (5) \bigcirc O \qquad CH_3 CH_2 Cl$$

$$OH \qquad CH_3 COCl \qquad (5) \bigcirc O \qquad CH_3 CH_2 Cl$$

- 23) NaBr, KCl, NaI, KBr ஆகிய சேர்வைகளின் அயன் இயல்பு அதிகரிக்கும் சரியான வரிசையைக் குறிப்பிடுவது எது?
 - (1) NaI < NaBr < KBr < KCl
 - (2) NaI < KBr < NaBr < KCl
 - (3) NaI < NaBr < KCl < KBr
 - (4) KCl < KBr < NaBr < NaI
 - (5) KCl < NaBr < KBr < NaI
- 24) $I_{2(s)}$ இன் நியம பதங்கமாதல் வெப்பவுள்ளுறை $57.3~KJ~mol^{-1}$ உம் நியம உருகலின் வெப்பவுள்ளுறை $15.5~KJ~mol^{-1}$ உம் எனத் தரப்பட்டுள்ளது. (I=127) பின்வரும் கூற்றுகளுள் பிழையானதைத் தெரிவு செய்க.
 - (1) $I_{2(g)}$ இன் நியம ஒடுங்கலின் வெப்பவுள்ளுறை $-41.8~{\it KJ}~{\it mol}^{-1}.$
 - (2) $I_{2(s)}$ உருகும் போது உறிஞ்சப்படும் வெப்பத்தைக் காட்டிலும் $I_{2(\ell)}$ ஆவியாகும் போது உறிஞ்சப்படும் வெப்பம் உயர்வானது.
 - (3) 63.5g $I_{2(\ell)}$ ஆனது ஆவியாகும் போது 20.9~KJ வெப்பம் உறிஞ்சப்படுகிறது.
 - (4) 2 மூல் $I_{2(s)}$ பதங்கமாகும் போது $114.6\ KJ$ வெப்பம் உறிஞ்சப்படுகின்றது.
 - (5) உயர் வெப்பநிலை $I_{2(s)}$ இன் பதங்கமாதலின் சுய இயல்பைக் குறைக்கின்றது.
- 25) இரு அரைத் தாக்கங்களும் அவற்றின் நியமத் தாழ்த்தல் மின்வாய் அழுத்தங்களும் கீழே தரப்பட்டுள்ளன.

$$Mn_{(aq)}^{2+} + 2e \rightarrow Mn_{(s)} ; \in \emptyset = -1.18 V$$

$$Mn_{(aa)}^{3+} + e \rightarrow Mn_{(aa)}^{2+}$$
; $\in^{\emptyset} = +1.51 V$

இதிலிருந்து $3Mn_{(aq)}^{2+} o Mn_{(s)} + 2Mn_{(aq)}^{3+}$ எனும் கலத்தாக்கத்தில் கலத்தின் மின்னியக்க விசையும் தாக்கத்தின் சுய இயல்பும் பற்றிய சரியான கூற்று எது?

- (1) +2.69 V, தாக்கம் சுயமாக நடைபெறும்
- (2) +2.69 V, தாக்கம் சுயமாக நடைபெறாது
- (3) -2.69 V, தாக்கம் சுயமாக நடைபெறாது
- (4) $-2.69\,V$, தாக்கம் சுயமாக நடைபெறும்
- (5) +0.33 V, தாக்கம் சுயமாக நடைபெறும்
- 26) 298~K இல் CH_3COONa எனும் உப்பின் நீர்க்கரைசலின் செறிவு $C~mol~dm^{-3}$ உம் CH_3COOH இன் அமிலக் கூட்டப் பிரிகை மாறிலி K_a உம் ஆகும். பின்வரும் கோவைகளில் எது 298~K இல் இவ்வுப்புக் கரைசலின் pH ஐத் தருகின்றது?

(1)
$$pH = \frac{1}{2} pK_a + \frac{1}{2} pK_w + \frac{1}{2} \log\left(\frac{1}{c}\right)$$

(2)
$$pH = \frac{1}{2} pK_a - \frac{1}{2} pK_w - \frac{1}{2} \log\left(\frac{1}{c}\right)$$

(3)
$$pH = \frac{1}{2} pK_a + \frac{1}{2} pK_w + \frac{1}{2} \log C$$

(4)
$$pH = \frac{1}{2} pK_a + \frac{1}{2} pK_w - \frac{1}{2} \log C$$

(5)
$$pH = \frac{1}{2} pK_a - \frac{1}{2} pK_w - \frac{1}{2} \log C$$

- 27) அற்கைல ஏலைட்டுகள் பற்றிய பின்வரும் கூற்றுகளில் தவறானது எது?
 - (1) அற்கைல ஏலைட்டுகள் முனைவுத் தன்மையைக் கொண்டுள்ள போதிலும் நீருடன் Hபிணைப்பை ஏற்படுத்தமாட்டா.
 - (2) இவற்றின் சிறப்பியல்புத் தாக்கங்கள் கருநாட்டப் பிரதியீட்டு வகைக்குரியனவாகும்.
 - (3) புடை ஏலைட்டுகளின் கார நீர்ப்பகுப்புத் தாக்கத்தில் $\mathcal{C}-X$ பிணைப்பு உடைதலும் $\mathcal{C}-\mathcal{O}H$ பிணைப்பு உருவாவதும் ஒரே சமயத்தில் நடைபெறும்.
 - (4) இவை KCN உடன் தாக்கமடைந்து பெறப்படும் விளைவிற்கு $Li\;AlH_4$ சேர்த்துப் பின் H_2O சேர்க்கையில் அமைன்கள் பெறப்படும்.
 - (5) CH_3CH_2Cl உடன் CH_3O^- இனது தாக்கமானது கருநாட்டப் பிரதியீட்டு அல்லது நீக்கல் பொறிமுறையைக் கொண்டிருக்க முடியும்.
- 28) $CH_3-CH=CH_2$ உடன் Br_2 இனது கூட்டல் தாக்கத்தின் பொறிமுறையின் பொருத்தமான படி பின்வருவனவற்றுள் எது?
 - (1) $CH_3 CH = CH_2$ $\delta_{Br}^- Br^{\delta+}$

- $(3) \quad CH_3 CH CH_2 \qquad \stackrel{(-)}{:}Br$
- $(4) \quad CH_3 CH CH_2$
- $(5) CH_3 CH = CH_2$
- 29) NH_3 ஐயும் CO_2 ஐயும் தாக்கமுறச் செய்வதால் யூரியா $[CO(NH_2)_2]$ தயாரிக்கப்பட முடியும். இதற்கான (சமப்படுத்தப்படாத) சமன்பாடு வருமாறு :

$$NH_{3(g)} + \ CO_{2(g)} \ \to CO(NH_2)_{2(s)} + \ H_2O_{(l)}$$

 $85g NH_3$ ஐயும் $176 \, g \, CO_2$ ஐயும் தாக்கம் புரியச் செய்வதால் கொள்கையளவில் பெறப்படத்தக்க யூரியாவின் திணிவு (kg இல்)

- (1) 0.1 kg
- (2) 0.2 kg
- (3) 0.3 kg (4) 0.15 kg
 - (5) 0.25 kg
- 30) 2 $CO_{(g)}+O_{2(g)} \rightleftharpoons$ 2 $CO_{2(g)}$, $\Delta \, H < 0$ எனும் மீள்தாக்கத் தொகுதி சமநிலையடைந்துள்ளதாகக் கருதுக. $CO_{(g)}$ இன் அதிகளவு சமநிலை விளைவைப் பெறுவதற்கு மேற்கொள்ள வேண்டியது.
 - (1) தொகுதியின் அமுக்கத்தையும் வெப்பநிலையையும் அதிகரித்தல்
 - (2) தொகுதியின் அமுக்கத்தையும் வெப்பநிலையையும் குறைத்தல்
 - (3) வெப்பநிலையைக் குறைத்தலும் அமுக்கத்தை அதிகரித்தலும்
 - (4) வெப்பநிலையை அதிகரித்தலும் அமுக்கத்தைக் குறைத்தலும்
 - (5) மாறாக் கனவளவில் சடத்துவ வாயுவொன்றைச் சேர்த்தல்

💠 31 – 40 வரையான வினாக்களுக்கு பின்வரும் அறிவுறுத்தல்களைப் பின்பற்றுக.

(1)	(2)	(3)	(4)	(5)
(a), (b) ஆகியன மாத்திரம் திருத்தமானவை	(b), (c) ஆகியன மாத்திரம் திருத்தமானவை.	(c), (d) ஆகியன மாத்திரம் திருத்தமானவை.	(d), (a) ஆகியன மாத்திரம் திருத்தமானவை.	வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவை.

- 31) சமநிலையிலுள்ள ஒரு மீள்தாக்கத் தொகுதி தொடர்பாக சரியான கூற்று / கூற்றுகள் எது / எவை?
 - (a) ஒரே வெப்பநிலையில் இம் மீள்தாக்கமானது எந்த ஒரு திசையிலிருந்தும் ஆரம்பிக்கப்பட்டு சமநிலை எய்தப்பட முடியும்.
 - (b) குறித்த வெப்பநிலையில் மாறாக்கனவளவு சமநிலைத்தொகுதியொன்றினுள் சடத்துவ வாயுவொன்றைச் சேர்ப்பின் வாயு மூல் எண்ணிக்கை குறையும் திசையில் சமநிலை நகர்த்தப்படும்.
 - (c) முற்தாக்கம் புறவெப்பத்துக்குரிய சமநிலைத் தொகுதியில் வெப்பநிலை அதிகரிப்பு சமநிலைத் தானத்தை முன்னோக்கி நகர்த்தும்.
 - (d) சமநிலைத் தொகுதியினுள் ஊக்கியைச் சேர்ப்பின் சமநிலைத் தானம் மாற்றமடையும்.
- 32) ஓர் உப்பின் நீர்க்கரைசலுக்கு $NH_{3(ag)}$ சேர்த்த போது முதலில் வீழ்படிவொன்று பெறப்பட்டு மிகை $NH_{3(aq)}$ இல் வீழ்படிவானது கரைந்தது. எனினும் அவ்வுப்பின் நீரக்கரைசல் $NaOH_{(aq)}$ உடன் வீழ்படிவை உருவாக்கியதுடன் அவ்வீழ்படிவு மிகை NaOH இல் கரையவில்லை. உப்பின் கற்றயனாக இருக்கக் கூடியது / இருக்கக் கூடியவை
 - (a) Ni^{2+}
- (b) Zn^{2+}
- (c) $A\ell^{3+}$
- (d) Co^{2+}
- 33) 3d தொகுதி மூலகங்கள் பற்றிய பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை
 - (a) $Sc_{(aq)}^{3+}$, $Zn_{(aq)}^{2+}$ ஆகிய அயன்கள் நீர்க்கரைசலில் நிறமற்றவையாகும்.
 - (b) நீர்க்கரைசலில் Cr, Mn, Fe ஆகியவற்றின் கற்றயன்கள் மிகை $NH_{3(aq)}$ உடன் வீழ்படிவைக் கொடுக்கும்.
 - (c) இவற்றின் மின்னெதிர்த்தன்மைப் பெறுமானங்கள் Sc இலிருந்து Zn வரை தொடர்ந்து அதிகரிக்கும்.
 - (d) செறிந்த HCl உடன் Cu^+ அயன்கள் மஞ்சள் நிறச் சிக்கலைத் தோற்றுவிக்கும்.
- 34) பின்வரும் சேர்வைகளில் எது / எவை செறிந்த H_2SO_4 உடன் பரிகரித்த பின் நீர் சேர்க்கும் போது பெறப்படும் பிரதான விளைபொருள் $H^+/K_2Cr_2O_7$ கரைசலின் செம்மஞ்சள் நிறத்தைப் பச்சையாக மாற்றக்கூடும்.?

(a)
$$CH_2 = CH - CH_3$$

(b)
$$CH_2 = C - CH_2CH_3$$

(c)
$$CH_3 - C = CH$$

 $\begin{vmatrix} & & \\$

(d)
$$CH_3CH_2CH = CH - CH_3$$

35) பின்வரும் சேர்வைகளில் எது / எவை Na_2CO_3 கரைசலுடன் பரிகரிக்கப்படுகையில் CO_2 வாயுவைக் கொடுக்கும்?

- 36) வாயுக்கள் தொடர்பாக சரியானது / சரியானவை.
 - (a) தரப்பட்ட ஒரு நேரத்தில் சுவருடனான மோதல் எண்ணிக்கை அடர்த்திக்கு நேர்விகித சமன்.
 - (b) மெய்வாயுக்களை அவதி வெப்பநிலையிலும் கூடிய வெப்பநிலையில் திரவமாக்க முடியும்.
 - (c) மெய்வாயுக்களின் வந்தர்வாலின் சமன்பாட்டிலுள்ள அமுக்கத்திருத்தக் காரணி வாயுவின் கனவளவின் வர்க்கத்துக்கு நேர்மாறு விகிதசமனாகும்.
 - (d) மாறா அமுக்கத்தில் இலட்சிய வாயுவொன்றின் கனவளவானது தனிவெப்பநிலைக்கு நேர்விகித சமனாகும்.
- 37) $A_{(g)} \rightleftharpoons 2B_{(g)}$ எனும் தாக்கம் மாறா அமுக்கத்தில் நிகழும் போது தாக்க அளவுடன் கிப்பின் சுயாதீனச் சக்தி மாற்றம் T_1 , T_2 ஆகிய வெவ்வேறு வெப்பநிலைகளில் கீழே தரப்பட்டுள்ளன.

 $(T_2 > T_1)$ G G தாக்க அளவு

மேற்படி தாக்கம் தொடர்பான சரியான கூற்று / கூற்றுகள் எது / எவை?

- (a) T_1 K வெப்பநிலையில் முன்முகத்தாக்கம் மறையான ΔG பெறுமானத்தைக் கொண்டது.
- (b) $T_2 \, K$ இல் பின்முகத்தாக்கம் சுயமாக நடைபெறக் கூடியது.

 $(T_1 K)$

- (c) முன்முகத்தாக்கம் நேரான எந்திரப்பி மாற்றத்தை ($\Delta S>0$) உடையது.
- (d) முன்முகத்தாக்கம் அகவெப்பத்துக்குரியது.
- 38) ஒரு பல்படித்தாக்கம் தொடர்பான பின்வரும் கூற்றுகளில் எது / எவை தவறானது / தவறானவை?
 - (a) குறித்த ஒரு தாக்கி சார்பான வரிசை பூச்சியமெனின் அத்தாக்கியின் செறிவு நேரத்துடன் மாறாது காணப்படும்.
 - (b) இரு படிமுறைகளையுள்ளடக்கிய தாக்கமொன்றில் ஒப்பீட்டளவில் இரண்டாவது படி ஏவற்சக்தி மிகக் கூடியதெனின் தாக்கக் கலவையில் இடைநிலையின் செறிவு கருதக்கூடிய அளவு அதிகரித்துப் பின்னர் குறையும்.
 - (c) வீத விதிக்கோவையில் யாதும் ஒரு தாக்கியின் செறிவு இடம்பெறவில்லை எனின் அத்தாக்கியின் செறிவை மாற்றுதல் தாக்கவீதத்தைப் பாதிக்காது.
 - (d) தாக்கப்படிகளில் ஏவற்சக்தி குறைந்த படியானது தாக்கவீதத்தை நிர்ணயிக்கும் படியாகக் கொள்ளப்படும்.

39) $H_{2(g)}$ இன் $0.2\ mol,\ I_{2(g)}$ இன் $0.5\ mol$ மற்றும் $HI_{(g)}$ இன் $1\ mol$ ஆகியன $1\ dm^3$ கனவளவுள்ள ஒரு விறைத்த மூடிய கொள்கலனினுள் இடப்பட்டு $750\ K$ இல் பின்வரும் சமநிலையை அடையவிடப்பட்டன.

$$2\,HI_{(g)}\
ightleftharpoons H_{2(g)}+\ I_{2(g)}$$
 ; $K_{\mathcal{C}}=2.5 imes 10^{-2}\ (Q_{\mathcal{C}}$ தாக்க ஈவு)

இத்தொகுதி பற்றிய சரியான கூற்று / கூற்றுகள் எது / எவை?

- (a) தொடக்கத்தில் $Q_{\mathcal{C}} > K_{\mathcal{C}}$; தாக்கம் கூடுதலான $HI_{(q)}$ உண்டாக்குமாறு நடைபெறுகின்றது.
- (b) தொடக்கத்தில் $Q_C > K_C$; தாக்கம் கூடுதலான $H_{2(g)}$, $I_{2(g)}$ ஐயும் உண்டாக்குமாறு நடைபெறுகின்றது.
- (c) தொடக்கத்தில் $K_C>Q_C$; தாக்கம் கூடுதலான $H_{2(g)}$ ஐயும் $I_{2(g)}$ ஐயும் நுகருமாறு நடைபெறுகின்றது.
- (d) தொடக்கத்தில் $K_C>Q_C$; தாக்கம் கூடுதலான $I_{2(g)}$ ஐயும் $H_{2(g)}$ ஐயும் நுகருமாறு நடைபெறுகின்றது.
- 40) A, B எனும் கலக்கும் இயல்பற்ற கரைப்பான்களிடையே X என்ற கரையம் கரைந்து ஏற்படும் சமநிலை தொடர்பான கூற்றுகளில் உண்மையானது / உண்மையானவை
 - (a) $A,\ B$ இல் கரைந்த X இன் அளவுகள் கரைக்கப்பட்ட X இன் திணிவில் தங்கியுள்ளது.
 - (b) A, B இல் கரைந்த X இன் அளவுகள் எடுக்கப்பட்ட A, B இன் கனவளவுகளில் தங்கியுள்ளது.
 - (c) A, B இல் கரைந்த X இன் செறிவு விகிதம் கரைக்கப்பட்ட X இன் அளவிலும் A, B இன் கனவளவுகளிலும் தங்கியுள்ளது.
 - (d) குறித்த ஒரு வெப்பநிலையில் A, B இல் கரைந்து ஏற்படும் சமநிலையில் $[X]_A$ இற்கும் $[X]_B$ இற்குமான வரைபு நேர்கோடு எனினும் வெப்பநிலை மாற்றத்துடன் வரைபின் படித்திறன் மாற்றமடையும்.

💠 41 — 50 வரையான வினாக்களுக்கான அறிவுறுத்தல்.

தெரிவுகள்	முதலாம் கூற்று			இரண்டாம் கூற்று)	
(01)	உண்மை	உண்மையாக விளக்கத்தைத்	இருந்து தருவது.	முதலாம்	கூற்றுக்குத்	திருத்தமான
(02)	உண்மை	உண்மையாக விளக்கத்தைத்	இருந்து தராதது.	முதலாம்	கூற்றுக்குத்	திருத்தமான
(03)	உண்மை	பொய்				
(04)	பொய்	உண்மை				
(05)	பொய்	பொய்				

	முதலாம் கூற்று	இரண்டாம் கூற்று
41)	$NH_4\ NO_3$ இல் NO_3^- இன் இருக்கையை	NO_3^- அயன் $NaOH$ இன் முன்னிலையில் Al
	உறுதிப்படுத்துவதற்கு NaOH முன்னிலையில்	இனால் NH_3 ஆகத் தாழ்த்தப்படுகின்றது.
	Al தூளுடன் வெப்பமேற்றலாம	
42)	கேத்திர கணித சமபகுதியங்கள் ஈர் வெளிமய	ஒன்றுக்கொன்று ஆடி விம்பங்களாக
	சமபகுதிய வகையைச் சார்ந்தவையாகும்.	அமையாத திண்மத் தோற்றச் சமபகுதியங்கள்
		ஈர்வெளிமய சமயபகுதியங்களாகும்.
43)	$CH_3\ COOH$ இற்கும் $Ba(OH)_2$ இற்கும்	நியமிப்பின் சமவலுப் புள்ளியின் pH ஆனது
	இடையிலான நியமிப்பின் சமவலுப் புள்ளிக்கு	உருவாகும் உப்பின் நீரப்பகுப்பில்
	அண்மையில் சடுதியான pH மாற்றமானது	தங்கியிருக்கும்.
	அமிலத்தின் செறிவுடன் மாற்றமடைந்தாலும்	
44)	சமவலுப் புள்ளியானது மாற்றமடைவதில்லை.	
44)	குறித்த வெப்பநிலையில் $Mg(OH)_2$ இன்	pH அதிகரிப்பினால் $Mg(OH)_2$ இன்
	நிரம்பற் கரைசலின் pH ஐ அதிகரிக்கும்	கரைதிறன் பெருக்கம் குறைவடையும்.
	போது $Mg(OH)_2$ வீழ்படிவாகலாம்.	
45)	தாழ் அமுக்கத்தில் மெய்வாயு ஒன்றின்	மெய்வாயுவின் இலட்சிய நடத்தையிலிருந்தான
	அமுக்கப்படு தன்மைக் காரணி 1 ஐ விடப்	விலகல் அதிகரிக்க அதன் பொயிலின் வெப்பநிலை அதிகரிக்கும்.
	பெரிதாக இருப்பின் அவ்வாயுவின் வெப்பநிலை பொயிலின் வெப்பநிலையிலும்	அதிகிரிக்கும்.
	வெப்பநிலை பொயிலின் வெப்பநிலையிலும் உயர்வாகும்.	
46)	மீள்தாக்க சமநிலைத் தொகுதியொன்றின்	வெப்பநிலை மாற்றத்தினால் எச்சமநிலைத்
	வெப்பநிலையை மாற்றும் போது அச்	தொகுதியொன்றினதும் சமநிலைத்தானம்
	சமநிலைக்கான சமநிலை மாறிலி எப்போதும்	எப்போதும் மாற்றமடையும்.
	மாற்றமடையும்.	
47)		தாக்கவரிசையானது எப்போதும் பீசமானக்
		குணகங்களின் கூட்டுத்தொகைக்குச் சமனான
48)	சமனானதாகும். அலசன் கூட்டத்தில் புளோரீனில் இருந்து	தாகும். புளோரீனில் இருந்து அயடீன் வரை
40)	அயடீன் வரை பிணைப்புப் பிரிகை	பின்னெதிர்த் தன்மை குறைவடையும்.
	வெப்பவுள்ளுறை குறைவடையும்.	
49)	O — $CH = C$ — CH_3 இற்கு ஐதான H_2SO_4	புடைக்காபோகற்றயன்கள் யாவும் வழிக்
		காபோகற்றயன்களிலும் உறுதி கூடியவை
	CH_3	ஆகும்.
	சேர்க்கும் போது கூடிய சதவீத விளைவு	
	OH au/#ic	
	CH ₃	
50)	மின்னிரசாயனக் கலங்களில் உப்புப்	உப்புப்பாலத்திலுள்ள $\mathit{NH_4Cl}_{(aq)}$ இலிருந்து
	பாலத்துக்காக $NH_4\ Cl_{(aq)}$ ஐப் பயன்	NH ₄ + அயன்கள் கலத்தின் கதோட்டறைக்கும்
	படுத்தலாம்.	ர் Cl அயன்கள் அனோட்டறைக்கும்
		நகர்கின்றன.
		நகர்காறன.