

Note:

ALL changes are in bold, italic and time new roman font like this statement

Exercise 3

Using SimElectronics to model a Closed-Loop Position Control System

In this exercise, we will model an linear actuator with a DC motor using SimElectronics The system will include a PWM driver, H-bridge, DC Motor, and sensor for measuring the speed. We will see how you can combine Simulink components in order to create reusable subsystems. In addition, we will look at a demonstration model from the product to learn more about what you can do with this tool. It is recommended to save your model regularly as you progress through the exercise.

Add DC motor and electrical input

- Create a new Simulink model
 - 1. In the Simulink Library Browser, select File->New->Model.
- From library "Simscape/Electronics/Actuators & Drivers/Rotational Actuators" drag a "DC Motor" into your model.
- From library "Simscape/Foundation Library/Electrical/Electrical Sources" drag a "Controlled Voltage Source" into your model.
- 4. From the library "Simscape/Foundation Library/Electrical/Electrical Sensors" drag a "Current Sensor" block into your model.
- 5. From the library "Simscape/Utilities" drag a "Simulink-PS Converter" into your model.
- 6. From the library "Simulink/Sources" drag a "Signal Builder" into your model. Connect the blocks as shown below.

Parameterize DC Motor

- 7. Double-click on the **DC Motor** and modify the parameters as shown:
- 8. Click on the Electrical Torque tab
 - Set Model parametrization to By equivalent circuit parameters.
 - 2. Set Armature Inductance to 1e-4 H
- 9. Click on the **Mechanical** tab
- 1. Set Rotor inertia to 0.0002 kg*m^2
- 2. Set Rotor damping to 1e-06 N*m/(rad/s)
- 3. Click OK
- 10. Double-click on the Signal Builder block to open the editor.
 - 1. Click on the high segment of the pulse
 - 2. Change the Y value to 12

Add Sensors and Scopes

- 11. From library Simscape/Foundation Library/Mechanical/ Mechanical Sensors drag an Ideal Rotational Motion Sensor block into your model and connect mechanical ports to DC Motor as shown below
- **12.** From library **Simscape/Utilities** drag two **PS-Simulink Converter** into your model and connect to sensors as shown below
- Double-click on the PS-Simulink Converter block for the Ideal Rotational Motion Sensor and change parameter Output signal unit to Rad/s.
- Double-click on the PS-Simulink Converter block for the Current Sensor and change parameter Output signal unit to A.
- From library Simulink/Sinks drag two Scope blocks and connect to the PS-Simulink Converter blocks as shown.
 Rename them Current and Rad/s as shown below.
- From tlibrary Simscape/Foundation Library/Electrical/ Electrical Elements, drag an Electrical Reference into your model and connect as shown below
- From library Simscape/Foundation Library/Mechanical/ Rotational Elements, drag an Mechanical Rotational Reference into your model and connect as shown below.

Create the electrical portion of the motor

- 19. From the library Simscape/Utilities:
 - 1. Drag a **Solver Configuration** block into your model.
 - 2. Connect to any physical connection as shown below.
- 20. Change the Simulink solver type to ODE15s.
 - 1. Select menu item Simulation->Model Configuration Parameters.
 - 2. On the left hand side, select Solver.
 - 3. In the **Solver Options** area, set the **Solver** parameter to **ode15s**.
- 21. Simulate and look at results for current and RPM (menu item **Simulation->Run**)

Add H-Bridge Control

- 22. Delete the Controlled Voltage Source, Signal Builder and S PS blocks
- 23. From library Simscape/Electronics/Actuators & Drivers/Drivers
 - 1. Drag the **H-Bridge** block into your model.
 - 2. Connect the electrical outputs to the current sensor and ground.
 - 3. Connect the REF, REV and BRK ports to ground
- **24.** Double-click on the **H-Bridge** Block and change parameter **Simulation Mode** to **Averaged**
- 25. From the library Simscape/Foundation Library/ Electrical/Electrical Sources
 - 1. Drag a **DC Voltage Source** into your model.
 - Double-click on the DC Voltage Source and set the parameter Constant Voltage to 5V
 - 3. Connect to **H-Bridge** and groundas shown below.
- 26. Re-run simulation and observe the motor RPM

Reverse Motor Using H-Bridge Control

- 27. Control the REV pin with a signal
 - From library Simscape/Foundation Library/Electrical/ Electrical Sources Drag a Controlled Voltage Source into your model.
 - Connect the + port to the REV port on the H-Bridgeshown below (be sure to disconnect the REV port from ground)
 - 3. Connect the port to ground
- 28. From the library Simscape/Utilities drag a Simulink-PS Converter block into your model Connect its output to the Controlled Voltage Source input as shown below.
- 29. Add a pulse signal
 - From the library Simulink/Sources draga Signal Builder block into your model
 - 2. Connect it as shown below.
 - 3. Double-click on the Signal Builder
 - Click the top of the pulse and set parameter Y to 5
- 30. Re-run simulation and observe the effect of the reverse signal on the motor RPM

Apply Braking Using H-Bridge Control

- 31. Copy the Simulink-PS Converter, Controlled Voltage Source, and Electrical Reference blocks and connect to the BRK port on the H-Bridge as shown below
- 32. Double-click on the **Signal Builder** block and add a second pulse signal
- 33. Click on the max level and change value to 5.
- Drag the pulse edges to 7 sec and 9 sec
- Re-run simulation to observe the effect of the breaking signal on RPM

Add PWM Driver Control

- 36. Drive the circuit with a PWM signal
 - Delete one DC Voltage Source, Signal Builder, and Simulink-PS Converter.
 - 2. Connect REF, REV, and BRK pins to ground.
 - From library Simscape/Electronics/Actuators & Drivers/Drivers drag a Controlled PWM Voltage block into your model. Connect as shown below.
 - Double-click on the Controlled PWM Voltage block and change Simulation mode to Averaged
- 37. Connect one of the Controlled Voltage sources across the +ref and -ref PWM inputs as shown below
- 38. From library **Simulink/Sources** drag a **Sine Wave** into your model. Connect to the Controlled Voltage Source input through the **Simulink-PS Converter** block as shown below.
- 39. Double-click on the Sine Wave block and set the Amplitude and Bias to 2.5
- 40. Run simulation

- - X

😑 🕲 🔍 闷 호 🖾 🎏 🎏 🔲 🔒 🕆

Current

SimElectronics_DC_Motor_07

Verify with PWM Model

- 41. Double-Click on the Controlled PWM Voltage block
 - Change the Simulation Mode to PWM
- **42.** Double-Click on **H-Bridge** block and change the Simulation Mode to PWM
- 43. Remove the limit on data in the Scopes
 - On the **Current** Scope, click the **Parameter** button
 - 2. Click on the logging tab
 - 3. Clear the Limit data points to last checkbox
 - Repeat these steps for the RPM Scope 4.
- 44. Run the simulation.
- 45. Examine the simulation output in the scopes using the zoom tools
 - Note that the voltage applied to the motor is a 1kHz PWM signal (Current Scope)
 - Note that the speed profile is almost identical, but slight variations in speed can be seen during the on/off portions of the PWM signal (RPM Scope)

□ 🔒 🕆

- - X

