Stochastic Bilevel Optimization

Qingyang Zhu

@SI152: Numerical Optimization

Problem Formulation

$$\min_{x \in \mathbb{R}^p} \Phi(x) := f(x, y^*(x))$$

s.t.
$$y^*(x) = rg \min_{y \in \mathbb{R}^q} g(x,y),$$
 Strongly convex, $y^*(x)$ is unique

- ightharpoonup f(x,y): outer-level loss; g(x,y): inner-level loss
- \rightarrow $y^*(x)$: minimizer of inner-level loss $g(x,\cdot)$

Methods

Constrained single-level Optimization w/ KKT conditions

- Many constraints: not for ML X
- Constraints bring nonconvexity

Methods cont.

Efficient Gradient-based:

- Approximate Implicit Differentiation (AID)
- Iterative Differentiation (ITD)

$$\min_{x \in \mathbb{R}^p} \Phi(x) := f(x, y^*(x))$$

s.t.
$$y^*(x) = \underset{y \in \mathbb{R}^q}{\arg \min} g(x, y),$$

Use Hypergradient
$$\nabla \Phi(x_k) = \frac{\partial f(x_k, y^*(x_k))}{\partial x_k}$$

To perform Gradient Descent

Problems of Hypergradient $\nabla \Phi(x_k) = \frac{\partial f(x_k, y^*(x_k))}{\partial x_k}$

min
$$\phi(x) = f(x, y^*(x))$$

 $\nabla_x \phi(x) = \nabla_x f(x, y^*(x)) + \nabla_{y^*} f(x, y^*(x)) \nabla_x y^*(x)$ (1)
Since $y^*(x) = argmin g(x, y)$
 $\nabla_y g(x, y^*(x)) = o$
 $\nabla_x \nabla_y g(x, y^*(x)) + \nabla_y g(x, y^*(x)) \nabla_x y^*(x) = o$ (2)
Combine (1) . (2)
 $\nabla_x \phi(x) = \nabla_x f(x, y^*(x)) - \nabla_y f(x, y^*(x)) [\nabla_y g(x, y^*(x))]^{-1}$
 $\times \nabla_x \nabla_y g(x, y^*(x))$

The Inverse of Hessian: O(n^2+n^3)

AID Approximate Implicit Differentiation

min
$$\phi(x) = f(x, y^*(x))$$

 $\nabla_x \phi(x) = \nabla_x f(x, y^*(x)) + \nabla_{y^*} f(x, y^*(x)) \nabla_x y^*(x)$ (1)
Since $y^*(x) = argmin g(x, y)$
 $\nabla_y g(x, y^*(x)) = o$
 $\nabla_x \nabla_y g(x, y^*(x)) + \nabla_y g(x, y^*(x)) \nabla_x y^*(x) = o$ (2)
Combine (1) . (2)
 $\nabla_x \phi(x) = \nabla_x f(x, y^*(x)) - \nabla_y f(x, y^*(x)) [\nabla_y g(x, y^*(x))]^{-1}$
 $\times \nabla_x \nabla_y g(x, y^*(x))$

Conjugate Gradient -> v*

$$abla_y^2 g(x_k, ar{y}_k^D)$$
 Positive definite

$$\min_{v} \frac{1}{2} v^T \nabla_y^2 g(x_k, \hat{y}_k^D) v - v^T \nabla_y f(\tilde{x}_k, \hat{y}_k^D)$$

Unconstrained quadratic optimization

$$\nabla^2_y g(x_k, y_k^D) v = \nabla_y f(x_k, y_k^D)$$

A linear system

ITD Iterative Differentiation

$$\frac{\partial f(x_k, y_k^D(x_k))}{\partial x_k} \Longrightarrow \frac{\partial f(x_k, y^*(x_k))}{\partial x_k}$$

Compute via Back Propagation

AID & ITD Implementation

Algorithm 1 Bilevel algorithms via AID or ITD

```
1: Input: K, D, N, stepsizes \alpha, \beta, initializations x_0, y_0, v_0.
```

2: for
$$k = 0, 1, 2, ..., K$$
 do

2: **for**
$$k = 0, 1, 2, ..., K$$
 do
3: Set $y_k^0 = y_{k-1}^D$ if $k > 0$ and y_0 otherwise
4: **for** $t = 1, ..., D$ **do**

4: for
$$t = 1, \dots, D$$
 do

5: Update
$$y_k^t = y_k^{t-1} - \alpha \nabla_y g(x_k, y_k^{t-1})$$

end for

Hypergradient estimation via

AID: 1) set
$$v_k^0 = v_{k-1}^N$$
 if $k > 0$ and v_0 otherwise

2) solve
$$v_k^N$$
 from $\nabla_y^2 g(x_k, y_k^D) v = \nabla_y f(x_k, y_k^D)$
via N steps of CG starting from v_k^0

3) get Jacobian-vector product $\nabla_x \nabla_y g(x_k, y_k^D) v_k^N$ via automatic differentiation

4)
$$\widehat{\nabla}\Phi(x_k) = \nabla_x f(x_k, y_k^D) - \nabla_x \nabla_y g(x_k, y_k^D) v_k^N$$

ITD: compute
$$\widehat{\nabla}\Phi(x_k) = \frac{\partial f(x_k, y_k^D)}{\partial x_k}$$
 via backpropagation

8: Update
$$x_{k+1} = x_k - \beta \widehat{\nabla} \Phi(x_k)$$

9: end for

Both first use D gradient descent to find an approximate $\vee^*:=y_k^D$

Stochastic Formulation

$$\min_{x \in \mathbb{R}^p} \Phi(x) = f(x, y^*(x)) = \begin{cases} \frac{1}{n} \sum_{i=1}^n F(x, y^*(x); \xi_i) \\ \mathbb{E}_{\xi} \left[F(x, y^*(x); \xi) \right] \end{cases}$$
s.t.
$$y^*(x) = \arg\min_{y \in \mathbb{R}^q} g(x, y) = \begin{cases} \frac{1}{m} \sum_{i=1}^m G(x, y; \zeta_i) \\ \mathbb{E}_{\zeta} \left[G(x, y; \zeta) \right] \end{cases}$$
(2)

StocBio

StocBio cont.

Algorithm 2 Stochastic bilevel optimizer (stocBiO)

- 1: **Input:** K, D, Q, stepsizes α and β , initializations x_0 and y_0 .
- 2: for k = 0, 1, 2, ..., K do
- 3: Set $y_k^0 = y_{k-1}^D$ if k > 0 and y_0 otherwise
- 4: **for** t = 1,, D **do**
- 5: Draw a sample batch S_{t-1}
- 6: Update $y_k^t = y_k^{t-1} \alpha \nabla_y G(x_k, y_k^{t-1}; S_{t-1})$
- 7: end for
- 8: Draw sample batches \mathcal{D}_F , \mathcal{D}_H and \mathcal{D}_G
- 9: Compute gradient $v_0 = \nabla_y F(x_k, y_k^D; \mathcal{D}_F)$
- 10: Construct estimate v_Q via Algorithm 3 given v_0
- 11: Compute $\nabla_x \nabla_y G(x_k, y_k^D; \mathcal{D}_G) v_Q$
- 12: Compute gradient estimate $\widehat{\nabla}\Phi(x_k)$ via eq. (6)
- 13: Update $x_{k+1} = x_k \beta \widehat{\nabla} \Phi(x_k)$
- 14: end for

Algorithm 3 Construct v_Q given v_0

- 1: **Input:** Integer Q, samples $\mathcal{D}_H = \{\mathcal{B}_j\}_{j=1}^Q$ and constant η .
- 2: for j = 1, 2, ..., Q do
- 3: Sample \mathcal{B}_j and compute $G_j(y) = y \eta \nabla_y G(x, y; \mathcal{B}_j)$
- 4: end for
- 5: Set $r_Q = v_0$
- 6: **for** i = Q, ..., 1 **do**
- 7: $r_{i-1} = \partial (G_i(y)r_i)/\partial y = r_i \eta \nabla_y^2 G(x,y;\mathcal{B}_i)r_i$ via automatic differentiation
- 8: end for
- 9: Return $v_Q = \eta \sum_{i=0}^Q r_i$

StocBio cont.

Algorithm 3 Construct v_O given v_0

- 1: **Input:** Integer Q, samples $\mathcal{D}_H = \{\mathcal{B}_j\}_{j=1}^Q$ and constant η .
- 2: **for** j = 1, 2, ..., Q **do**
- 3: Sample \mathcal{B}_j and compute $G_j(y) = y \eta \nabla_y G(x, y; \mathcal{B}_j)$
- 4: end for
- 5: Set $r_Q = v_0$
- 6: **for** i = Q, ..., 1 **do**
- 7: $r_{i-1} = \partial (G_i(y)r_i)/\partial y = r_i \eta \nabla_y^2 G(x, y; \mathcal{B}_i) r_i$ via automatic differentiation
- 8: end for
- 9: Return $v_Q = \eta \sum_{i=0}^Q r_i$

$$\nabla_y^2 g(x_k, y_k^D) v = \nabla_y f(x_k, y_k^D)$$

Neumann Series

$$(\mathrm{Id}-T)^{-1}=\sum_{k=0}^{\infty}T^k$$
 , ld: identical operator

We want A inverse:

$$T(\mathbf{x}) = (\mathbf{I} - \mathbf{A})\mathbf{x} \ \mathbf{A}^{-1} pprox \sum_{i=0}^n (\mathbf{I} - \mathbf{A})^i$$

Performance

Fast Stochastic Bilevel Optimizer

• Lower complexity

Algorithm	$\mathrm{Gc}(F,\epsilon)$	$\mathrm{Gc}(G,\epsilon)$	$JV(G,\epsilon)$	$\mathrm{HV}(G,\epsilon)$
TTSA (Hong et al., 2020)	$\mathcal{O}(ext{poly}(\kappa)\epsilon^{-rac{5}{2}})^*$	$\mathcal{O}(ext{poly}(\kappa)\epsilon^{-rac{5}{2}})$	$\mathcal{O}(ext{poly}(\kappa)\epsilon^{-rac{5}{2}})$	$\mathcal{O}(ext{poly}(\kappa)\epsilon^{-rac{5}{2}})$
BSA (Ghadimi & Wang, 2018)	$\mathcal{O}(\kappa^6\epsilon^{-2})$	$\mathcal{O}(\kappa^9\epsilon^{-3})$	$\mathcal{O}\left(\kappa^6\epsilon^{-2} ight)$	$\widetilde{\mathcal{O}}\left(\kappa^6\epsilon^{-2} ight)$
stocBiO (this paper)	$\mathcal{O}(\kappa^5\epsilon^{-2})$	$\mathcal{O}(\kappa^9\epsilon^{-2})$	$\mathcal{O}\left(\kappa^5\epsilon^{-2} ight)$	$\widetilde{\mathcal{O}}\left(\kappa^6\epsilon^{-2} ight)$

 ϵ : target accuracy; κ : condition number

• Fast convergence and strong efficiency:

Logistic regression on 20 Newsgroup

Data hyper-cleaning on MNIST

Thanks