```
# Transformation de la variable quantitative taux de pauvrete en variable qualitative
# selon 4 classes: inferieur à 12, entre 12 et 18, entre 18 et 24 et superieur à 24.
# Respectivement pour: faible, intermediaire, eleve et tres-eleve.
base$taux_de_pauvrete <- ifelse(base$taux_de_pauvrete <
12,"faible",base$taux de pauvrete)
base$taux de pauvrete <- ifelse(base$taux de pauvrete <
18,"intermediaire",base$taux_de_pauvrete)
base$taux de pauvrete <- ifelse(base$taux de pauvrete <
24,"eleve",base$taux de pauvrete)
base$taux de pauvrete <- ifelse(base$taux de pauvrete < 50,"tres-
eleve",base$taux de pauvrete)
base$taux de pauvrete <- factor(base$taux de pauvrete, levels = c( "faible",
"intermediaire", "eleve", "tres-eleve"))
# Resume globale
head(base)
tail(base)
summary(base)
# Resume variable Quantitative
# 1)Etude de la variable Niveau de vie Median
summary(base$`Mediane niveau de vie (en euros)`)
var(base$`Mediane_niveau_de_vie_(en euros)`)
n=length(base$`Mediane niveau de vie (en euros)`)
(n-1)/n*var(base$`Mediane_niveau_de_vie_(en euros)`)
sd(base$`Mediane_niveau_de_vie_(en euros)`)
sqrt((n-1)/n)*sd(base$`Mediane niveau de vie (en euros)`)
sqrt((n-1)/n)*sd(base$`Mediane niveau de vie (en
euros)')/mean(base$'Mediane niveau de vie (en euros)')
range(base$`Mediane_niveau_de_vie_(en euros)`)
diff(range(base$`Mediane niveau de vie (en euros)`))
IQR(base$`Mediane_niveau_de_vie_(en euros)`)
quantile(base$`Mediane niveau de vie (en euros)`)
quantile(base$`Mediane_niveau_de_vie_(en euros)`,probs=seq(0.1,1,by=0.1))
hist(base$`Mediane niveau de vie (en euros)`,freq=TRUE,xlab="Mediane revenu
disponible par UC (en euros)", ylab="Densité de fréquence",
   main="Histogramme de la variable Mediane niveau de vie ")
boxplot(base$`Mediane niveau de vie (en euros)`,ylab="Mediane niveau de vie (en
euros)",
```

```
main="Boîte-à-moustaches de la variable Mediane nveau de vie ")
plot(ecdf(base$`Mediane niveau de vie (en euros)`), ylab="F(x)", main="Fonction de
répartition empirique de la mediane du revenu disponible")
median(base$`Mediane niveau de vie (en euros)`)
#2) Etude la variable Rapport interdecile:
summary(base$Rapport interdecile)
var((base$Rapport_interdecile))
n=length(base$Rapport interdecile)
(n-1)/n*var(base$Rapport interdecile)
sd(base$Rapport interdecile)
sqrt((n-1)/n)*sd(base$Rapport interdecile)
(sqrt((n-1)/n)*sd(base$Rapport interdecile))/mean(base$Rapport interdecile)
range(base$Rapport_interdecile)
diff(range(base$Rapport interdecile))
IQR(base$Rapport interdecile)
quantile(base$Rapport_interdecile)
quantile(base$Rapport interdecile,probs=seq(0.1,1,by=0.1))
hist(base$Rapport interdecile,freq=TRUE,xlab="Rapport interdecile",ylab="Densité de
fréquence",
  main="Histogramme de la variable Rapport interdecile")
boxplot(base$Rapport interdecile,xlab="Rapport interdecile",ylab="Intensité",
    main="Boîte-à-moustaches de la variable Rapport interdecile")
plot(ecdf(base$Rapport interdecile),xlab="Rapport interdecile",ylab="F(x)",main="Fonction
de répartition empirique du rapport interdecile")
median(base$Rapport interdecile)
# Resume variable qualitative
# 1) Etude de la variable taux de pauvrete
# Diagramme circulaire
table(base$taux de pauvrete)
prop.table(table(base$taux de pauvrete))
tableau=table(base$taux_de_pauvrete)
pie(tableau)
# Methode plus logique mais même resultat
pie(prop.table(table(base$taux_de_pauvrete)))
main="Diagramme circulaire du taux de pauvrete"
```

```
# Diagramme tuyaux d'orgue
barplot(table(base$taux de pauvrete),
    main="Diagramme en tuyaux d'orgue de la variable taux de pauvrete",
    ylab="effectif", xlab="taux de pauvrete")
# Etude de la liaison entre deux variables quantitatives
#1) Entre mediane_niveau_de_vie_(en euros) et rapport_interdecile
summary(base$`Mediane niveau de vie (en euros)`)
summary(base$Rapport interdecile)
# la mediane des niveaux de vie median est de 20093€ tandis que sa moyenne est de 20392€
# la mediane du rapport interdecile est de 3.096 tandis que sa moyenne est de 3.244
# La mediane < moyenne pour les deux series donc il y a une sur-representation des petites
valeurs.
n=length(base$`Mediane_niveau_de_vie_(en euros)`)
(n-1)/n*var(base$`Mediane_niveau_de_vie_(en euros)`)
(n-1)/n*var(base$Rapport interdecile)
par(mfrow=c(2,2))
hist(base$`Mediane_niveau_de_vie_(en euros)`,freq=FALSE,main="Histogramme du niveau
de vie Median", ylab="densité", xlab="niveau de vie median")
hist(base$Rapport interdecile,freq=FALSE,main="Histogramme du rapport interdecile",
ylab="densité", xlab="rapport interdecile")
boxplot(base$`Mediane niveau de vie (en euros)`,main="Boite à moustache du niveau de
vie median", ylab="niveau de vie median")
boxplot(base$Rapport interdecile,main="Boite à moustache du rapport
interdecile", ylab="rapport interdecile")
# Sur-representation des faibles valeurs pour le rapport interdecile et
# sur-representations des valeurs intermediaires pour le niveau de vie median
par(mfrow=c(1,1)) # Espace graphique rétablie 1/1
#2) Nuages de points
```

on choisit le rapport interdecile comme variable à expliquer (=Y, en ordonnées) # et le niveau de vie median comme variable explicative (=X, en abscisses)

plot(base\$`Mediane niveau de vie (en euros)`,base\$Rapport interdecile,main="Nuage de points", xlab="niveau de vie median ", ylab="rapport interdecile")

#le nuage de points est concentré avec une legere correlation positive: quand le niveau de vie median augmente, le rapport interdercile augmente legerement)

on remarque une dispersion pour les valeurs des niveau de vie median inferieur à 18000 ou superieur à 24000

onr remarque un point isolé avec un niveau de vie médian très élevé qui peut être un point influent

```
cov(base$`Mediane_niveau_de_vie_(en euros)`,base$Rapport_interdecile)
# cov>0 donc liaison positive entre les deux variables
cor(base$`Mediane_niveau_de_vie_(en euros)`,base$Rapport_interdecile)
# il est positif mais proche de 0.4, il y a donc une faible corrélation linéaire positive entre les
deux variables
cov(base$`Mediane niveau de vie (en
euros)`,base$Rapport_interdecile)/sqrt(var(base$`Mediane_niveau_de_vie_(en
euros)`)*var(base$Rapport interdecile))
# même valeur
regression=lm(base$Rapport interdecile~base$`Mediane niveau de vie (en euros)`)
# equation de la droite de regession (D): rapport_interdecile=
0,000126*mediane niveau de vie+0.681201
#coefficiants
regression$coefficients
#coefficiants arrondis
round(regression$coefficients,3)
#valeurs ajustés
regression$fitted.values
#résidus
regression$residuals
# Test pour le departement 14 Calvados
regression$coefficients[2]*base$`Mediane niveau de vie (en
euros)`[14]+regression$coefficients[1]
regression$fitted.values[14]
# Verrification réussit
# résidu e_14 chapeau
base$`Mediane niveau de vie (en euros)`[14]-regression$fitted.values[14]
regression$residuals[14]
summary(regression)
# R2= Multiple R-squared: 0.172
```

```
# même valeur avec
cor(base$`Mediane niveau de vie (en euros)`,base$Rapport interdecile)^2
# Verification réussit
# 17% de la variation de la variable rapport interdecile est expliqué par la regression donc,
de la variable niveau de vie median.
# le R2 est assez proche de 0 donc le modèle est plutot de mauvaise qualité
# on refait le nuage de points
plot(base$`Mediane niveau de vie (en euros)`,base$Rapport interdecile,main="Nuage de
points", xlab="niveau de vie median", ylab="rapport inter-decile")
# on ajoute la droite de régression (en rouge)
abline(regression,col="red")
# on ajoute le barycentre du nuage de points = point de coordonnées (x_barre,y_barre) en
bleu
points(mean(base$`Mediane niveau de vie (en
euros)`),mean(base$Rapport interdecile),pch="+",col="blue")
mean(base$`Mediane niveau de vie (en euros)`)
mean(base$Rapport interdecile)
# la droite de régression passe bien par le barycentre du nuage de points (vu en cours)
## 1) Résidus en fonction de SE
plot(base$`Mediane_niveau_de_vie_(en euros)`,regression$residuals,
   main="Résidus en fonction de niveau de vie median",
  xlab="variable explicative", ylab="résidus")
# il ne doit pas y avoir de liaison entre les résidus et la variable explicative
## 2) Moyenne des résidus
mean(regression$residuals)
# en théorie la moyenne des résidus est nulle, sa valeur est très proche de 0
sum(regression$residuals)
# en théorie la somme des résidus est également nulle, sa valeur est aussi très proche de 0
## 3) Identification de résidus sur le nuage de points
# Il est important de repérer les departements ayant de forts résidus car leur rapport
interdecile
# a été mal prédit par la régression (erreur de saisie ? comportement particulier ? point
```

influent = qui a un fort impact dans l'estimation des coef. de la régression ?)

```
plot(base$`Mediane_niveau_de_vie_(en euros)`,base$Rapport_interdecile,main="Nuage de
points", xlab="niveau de vie median à l'embauche", ylab="rapport inter decile")
abline(regression,col="red")
# identify(base$`Mediane niveau de vie (en euros)`,base$Rapport interdecile) # cliquer
sur les points dont on veut obtenir l'indice
# puis sur le bouton Finish pour obtenir les valeurs
# graphiquement, le departement ayant le plus fort résidu est le 76
# valeur du résidu de cet individu
regression$residuals[76] # 2.29642
max(regression$residuals) # c'est bien le résidu le plus élevé
# on peut repérer graphiquement que les departements 98,76eme valeur donc departement
75=PARIS,97ème valeur donc departement 972=Martinique,94ème valeur donc dep93 seine-
Saint dennis ont de forts résidus
# valeur des résidus de ces individus
regression$residuals[c(98,76,97,94)]
# pour une analyse plus fine, on peut déterminer les plus forts résidus par le calcul :
# les 10 plus forts négatifs
head(sort(regression$residuals),10)
# les 10 plus forts positifs
tail(sort(regression$residuals),10)
# les 10 plus grands en valeur absolue
tail(sort(abs(regression$residuals)),10) # mais on perd le signe
## Etude sans le point de salaire à l'embauche maximum
# valeur du niveau de vie median maximum
max(base$`Mediane_niveau_de_vie_(en euros)`) # 26808
# identification de l'individu
which(base$`Mediane niveau de vie (en
euros)`==max(base$`Mediane_niveau_de_vie_(en euros)`)) # 76ème valeur donc 75=Paris
# On crée de nouveaux vecteurs de données sans cet individu
SE2=base$`Mediane niveau de vie (en euros)`[-76]
```

SA2=base\$Rapport_interdecile[-76]

```
# coefficient de corrélation
cor(SE2,SA2) # 0,2474673 (au lieu de 0,4147707), il est nettement inférieur
# régression
regression2=lm(SA2~SE2)
summary(regression2) # le R2 vaut 0,7605, il est lui aussi légèrement inférieur
abline(regression,col="red")
# ajout de cette nouvelle droite de régression sur le nuage de points
abline(regression2,col="green")
# la droite verte est assez éloigné de la rouge : on peut donc
# considérer que le point 76, Paris est un point influent
## Etude sans le point de plus fort résidu (numéro 76)
# on pourrait faire cette analyse en excluant tous les individus que l'on a repérés comme
# ayant de forts résidus (numéros : 98,76,97,94)
SE3=base$`Mediane niveau de vie (en euros)`[-76]
SA3=base$Rapport_interdecile[-76]
cor(SE3,SA3) # 0,2474673 (au lieu de 0,0.4147707), mon departement ayant le plus grand
residu est
# le meme que celui ayant le niveau de vie median le plus elevé, 75 PARIS
#même resultat
regression3=lm(SA3~SE3)
summary(regression3)
# on voit que le R2 a diminué : 6% au lieu de 17%
# les coefficients de régression ont évolué
abline(regression3,col="purple")
# la droite violette est confondue avec la vert, car c'est la même valeur qui est écarté
# donc le point 75 est toujours un point très influent
## 1. Problématique
```

on cherche à étudier la liaison entre le niveau de vie median et le taux de pauvrete # est-ce que le niveau de vie median a une influence sur le taux de pauvrete ? en particulier, # est-ce que le taux de pauvrete de PARIS 75 est plus faible que celui des autres departements ?

3.1 Représentation graphique des distributions conditionnelles

boxplot(base\$`Mediane_niveau_de_vie_(en euros)`~base\$taux_de_pauvrete,xlab="taux de pauvrete",ylab="niveau de vie median",

main="Boites à moustaches juxtaposées des distributions conditionnels /n du taux de pauvreté sachant le niveau de vie median")

on remarque de grandes différences de niveau de vie median selon le taux de pauvrete # les departements au faible taux de pauvrete ont des revenues median plus élevés que les autres departements

les departements au taux de pauvreté elevé ont des niveau de vie median intermédiaires, avec une très faible dispersion

alors que les niveau de vie median des trois autres catégories sont assez dispersés

3.2 Résumés numériques des distributions conditionnelles

n=length(base\$`Mediane_niveau_de_vie_(en euros)`)
moyennes conditionnelles
mcond=tapply(base\$`Mediane_niveau_de_vie_(en euros)`,base\$taux_de_pauvrete,mean)
mcond

la moyenne des niveau de vie median des departements au taux de pauvrete faible est beaucoup plus élevé que celui des autres departements

la moyenne du niveau de vie median des departements au taux de pauvreté elevee é est légèrement supérieur à celui des departements au taux de pauvrete tres eleve # il semble donc exister une liaison entre le niveau de vie median et le taux de pauvrete

on ajoute les moyennes conditionnelles aux b-à-m juxtaposées points(mcond,col="red",pch="*",cex=2) # option pch pour changer le marqueur et option cex pour augmenter la taille

variances conditionnelles (définition de la variance de R) varcondR=tapply(base\$`Mediane_niveau_de_vie_(en euros)`,base\$taux_de_pauvrete,var)

Effectifs n_i table(base\$taux_de_pauvrete)

variances conditionnelles (sigma_i^2) avec la formule du cours varcond=(table(base\$taux_de_pauvrete)-1)*varcondR/table(base\$taux_de_pauvrete) varcond

on utilise les effectifs n_i grâce à table(base\$taux_de_pauvrete)

remarque : résumés numériques des distributions conditionnelles tapply(base\$`Mediane_niveau_de_vie_(en euros)`,base\$taux_de_pauvrete,summary)

variance intra (moyenne pondérée des sigma_i^2) varintra=sum(table(base\$taux_de_pauvrete)*varcond)/n varintra

variance inter (d'après l'équation d'analyse de la variance) vartot=var(base\$`Mediane_niveau_de_vie_(en euros)`) varinter=vartot-varintra varinter

calcul direct de varinter

1/n*(mcond-rep(mean(base\$`Mediane_niveau_de_vie_(en euros)`)*sum(table(base\$taux_de_pauvrete),3)))^2

calcul du rapport de corrélation eta2
varinter/vartot

eta2=0,377657 est assez proche de 0.4. Il existe donc une liaison faible mais quand même notable entre

le taux de pauvrete et le niveau de vie median, avec la moyenne des niveau de vie median # des departements au taux de pauvrete faible qui est environ 50% plus élevée que de la moyenne de ceux

au taux de pauvreté tres elevé.