Naming/Formula Writing For Ternary Ionic Compounds:

- First, identify that a polyatomic ion is present by noticing that 3 or more upper case letters are in the formula or noticing that the name ends with "-ate" or "-ite". (or "-ide" in rare cases)
- The naming is similar to other ionic compounds with cation named first, followed by the anion name.
- Knowing ion names/ formulas well is the key.

Common Polyatomic Ions: The 8 common "-ates" - A useful way to generate some common polyatomic ion formulas. (all ending with "-ate") Steps: 1. Look at the upper right corner of the periodic table. (Ignore noble gases) Write down the elements from carbon to iodine, and add phosphorous and sulfur. C N O F P S CI Br

2. Add oxygen to each element. Each element on the outside has 3 oxygen atoms, the center two have 4 each. Since oxygen alone cannot form a common "ate", cross it out.

 CO_3 NO_3 $\cancel{\boxtimes}$ FO_3 PO_4 SO_4 CIO_3 BrO_3 IO_3

3. Place charges on the ions. All ions have similar charges as the first element in the formula. Exceptions: NO_{3} , CO_{3}

$$CO_3^2$$
 NO_3 \times FO_3 PO_4^3 SO_4^2 CIO_3 BrO_3 IO_3

4. Give a name to each ion, beginning with the name of the first element and the ending "-ate"

$$CO_3^2$$
 NO_3 $\not X$ FO_3

carbonate nitrate fluorate

phosphate sulfate chlorate

BrO₃

bromate

 10_3

iodate

Oxygen Variation of the 8 Common "ates"

If you take a polyatomic ion that ends with "-ate", new ions can be created by adding or removing oxygen atoms. Note: no change in charge results. The (root) ate is a common "ate".

Relationship	General	Example	Example
	name	name	formula
one more oxygen atom than (root)ate	per(root) ate	perchlorate	ClO ₄
	(root)ate	chlorate	ClO ₃
one less oxygen atom than (root)ate	(root)ite	chlorite	ClO ₂
two less oxygen atoms than (root)ate	hypo(root)ite	hypochlorite	ClO -

Hydrogen Variation of Polyatomic Ions

- -Polyatomic ions with a charge of 2- or greater are capable of having hydrogen atoms as part of the ion.
- -Unlike varying the number of oxygen, adding hydrogen does change the charge. For every H that is added, the charge increases by +1.

Ion Formula	Ion Name	Change in H
PO ₄ 3-	phosphate	none
HPO ₄ ²⁻	hydrogen phosphate	1 added
H ₂ PO ₄ -	dihydrogen phosphate	2 added

