Lecture 10: Bernoulli and Geometric Random Variables

Chapter 3.3-3.5

Goals for Today

Define

- ► Bernoulli random variables
- ► Geometric random variables

Mathematical Definition of a Bernoulli Random Variable

A random variable X is a random process or variable with a numerical outcome. The behavior of random variables is described in terms of their distribution.

Bernoulli Distribution

Say we have an experiment where each trial (or instance) has two possible outcomes. Examples:

- ► Coin flips: heads vs tails
- ▶ Medical test (for a disease): positive vs negative
- ▶ Rolling a die and getting a 6 vs not getting a 6

In each case we can define the outcomes to be a success or a failure. No moral judgement; just labels.

Bernoulli Distribution	
	5/13
Definition of a Bernoulli Random Variable	

Example of Bernoulli Distribution

- A success as rolling a 6. So $P(X = 1) = P(\text{success}) = p = \frac{1}{6}$.
- ► A failure as rolling anything else So $P(X = 0) = P(\text{failure}) = 1 p = \frac{5}{6}$.

Intuition Behind σ

Sample Proportion

0/12

Back to Lecture 3.1: Population vs Sample Values

	True Population Value	Sample Value
Mean	μ	\overline{x}
Variance	σ^2	s^2
Standard Deviation	σ	s
Proportion	р	p

The sample proportion $\widehat{\rho}$ is a specific kind of sample mean for Bernoulli random variables, which estimates p, a specific kind of population mean.

1	
Scenario	
	11 / 13
ı	
Geometric Random Variables	

Intuition Behind μ	
,	3 / 13