GÉOMÉTRIE DIFFÉRENTIELLE

2023-2024

Table des matières

1	Fonctions continues	1
2	Dérivée, dérivée partielle, différentielle 2.1 Différentiabilité des fonctions multi-variables 2.2 Deux points fins 2.3 La dérivée de composition	6
3	Inversion locale, fonctions implicites, théorème du rang 3.1 Théorème de l'application inverse	9
4	Algèbre multilinéaire 4.1 L'espace dual E^* 4.2 Les applications multilinéaires $4.2.1$ Quelques notations 4.3 Produit scalaire 4.4 Les élément de volumes et orientation	$15 \\ 16 \\ 21$
1	Fonctions continues $U \subseteq \mathbb{R}^n$ ouvert. $G : \{ x_1, \dots, x_n \} \mapsto f(x_1, \dots, x_n) \in \mathcal{F} $ application. $G : \{ x_1, \dots, x_n \} \in \mathcal{F} $ application. $G : \{ x_1, \dots, x_n \} \in \mathcal{F} $ application.	

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in U, ||x - x_0|| < \delta \to |f(x) - f(x_0)| < \varepsilon,$$

avec $||y|| = \sqrt{y_1^2 + \dots + y_n^2}$.

On dit que f est une application continue quand f est continue en $x \in U$ pour tout $x \in U$.

Proposition 1.1. f est continue si et seulement si pour tout intervalle ouvert $J \subseteq \mathbb{R}$, $f^{-1}(J)$ est ouvert, avec $f^{-1}(J) := \{x \in U \mid f(x) \in J\}$.

Démonstration. 1. Si f est continue, alors $\forall J \subset \mathbb{R}$ intervalle ouvert, $f^{-1}(J)$ est ouvert. Il faut montrer que $\forall x_0 \in f^{-1}(J)$, il existe r > 0 tel que $B(x_0, r) \subset f^{-1}(J)$. J = (a, b). $x_0 \in f^{-1}(J) \implies f(x_0) \in J \implies a < f(x_0) < b \implies \exists \varepsilon > 0$ tel que $a < f(x_0) - \varepsilon < f(x_0) < f(x_0) + \varepsilon < b$.

Figure 1 – Illustration

FIGURE 2 – On choisit ε de cette sorte

On peut choisir $\varepsilon = \min\{\frac{b - f(x_0)}{2}, \frac{f(x_0) - a}{2}\}.$ Donc il y a $\delta > 0$ tel que

$$||x - x_0|| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

$$\implies -\varepsilon < f(x) - f(x_0) < \varepsilon$$

$$\implies f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon \implies a < f(x) < b$$

$$\implies f(x) \in J \implies x \in f^{-1}(J).$$

Choisissons $r := \delta$

$$x \in B(x_0, r) \implies ||x - x_0|| < r = \delta.$$

On a démontré que avec ce choix de δ on a $x \in f^{-1}(J) \implies B(x_0, r) \subset f^{-1}(J)$.

2. Si $f^{-1}(J)$ ouvert pour tout intervalle $J \subset \mathbb{R}$, alors f est continue.

Fixons $x_0 \in U : \varepsilon > 0$ est donné.

On met
$$J = (f(x_0) - \varepsilon, f(x_0) + \varepsilon) \neq \emptyset$$
.

Par l'hypothèse, $f^{-1}(J)$ est ouvert, donc $\exists r > 0, B(x_0, r) \subset f^{-1}(J)$.

On met $\delta := r$.

$$||x - x_0|| < \delta \implies x \in B(x_0, \delta) = B(x_0, r)$$

$$\implies x \in f^{-1}(J) \implies f(x) \in J$$

$$\implies f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon \implies -\varepsilon < f(x) - f(x_0) < \varepsilon$$

$$\implies |f(x) - f(x_0)| < \varepsilon.$$

On peut aussi généraliser ces définitions et la proposition aux cas où $f:U\to\mathbb{R}^m$ est une application de U dans \mathbb{R}^m , avec

$$f(x_1,\ldots,x_n) = (f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_m)).$$

Exemple $f(x_1, x_2) = (x_1^2 + 3\cos(x_2)e^{x_1 - x_2}), n = 2, m = 2, U = \mathbb{R}^2.$

Définition 1.1. f est continue en $x_0 \in U$ si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in U, ||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \varepsilon,$$
 avec $||f(x) - f(x_0)|| = \sqrt{(f_1(x) - f_1(x_0))^2 + \dots + (f_m(x) - f_m(x_0))^2}$.

Définition 1.2. $f: U \to \mathbb{R}^m$ est continue quand f est continue en $x, \forall x \in U$.

Proposition 1.2. Les 3 conditions suivantes sont équivalentes.

- 1. $f: U \to \mathbb{R}^m$ est continue;
- 2. $\forall j \in \{1, \dots, m\}, f_j \text{ est continue};$
- 3. $\forall V \subseteq \mathbb{R}^m$ ensemble ouvert, $f^{-1}(V)$ est ouvert.

Figure 3 – Illustration pour 1.2

2 Dérivée, dérivée partielle, différentielle

 $f:U\to\mathbb{R}.$

 $x \in U$ fixé.

La dérivée partielle $\frac{\partial f}{\partial x_i}$, pour $i \in \{1, \dots, n\}$ et $x = (x_1, \dots, x_n)$ est définie par

$$\frac{\partial f}{\partial x_i}(x_1, \dots, x_n) := \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n)}{h}$$

si la limite existe.

Si $e_i \in \mathbb{R}^n$ est le vecteur $e_i = (0, 0, \dots, 0, \overbrace{1}^{i\text{-ème}}, 0, \dots, 0)$ (tel que $\{e_1, \dots, e_n\}$ est la base standart de l'espace linéaire \mathbb{R}^n), on a

$$\frac{\partial f}{\partial x_i}(x) := \lim_{h \to 0} \frac{f(x + he_i)}{h}.$$

On peut aussi calculer les dérivées partielles de $\frac{\partial f}{\partial x_i}$. En général, pour tout $k \geq 1$,

$$\frac{\partial^k f}{\partial x_k \partial x_{k-1} \dots \partial x_2 \partial x_1} = \frac{\partial}{\partial x_k} \left(\frac{\partial}{\partial x_{k-1}} \dots \left(\frac{\partial f}{\partial x_1} \right) \right).$$

 $i_1 \in \{1, \dots, n\}, \dots, i_k \in \{1, \dots, n\}.$

Pour k = 1, il y a n dérivées partielles.

Pour $k = 2, i_1 \longrightarrow n$ choix de $\{1, \ldots, n\}$.

 $i_2 \longrightarrow n$ choix.

Donc il y a n^2 choix.

En général, il y a n^k dérivées partielles différentes de l'ordre k.

Définition 2.1. $r \in \mathbb{N}$.

On dit que $f:U\to\mathbb{R}$ est une application de classe \mathcal{C}^r ou tout simplement f est \mathcal{C}^r quand

- 1. Si r = 0, f est continue.
- 2. Si $r \ge 1$, f est continue et les dérivées partielles d'ordre k existent partout dans U et elles sont toutes les applications continues dans U et ceci pour tout $1 \le k \le r$.
- 3. Pour $f: U \to \mathbb{R}^m$, une application, on dit que f est \mathcal{C}^r si $\forall j \in \{1, \dots, m\}$, f_j est une application \mathcal{C}^r , avec $f = (f_1, \dots, f_m)$.

On dit que f est \mathcal{C}^{∞} quand $\forall r \in \mathbb{N}$, f est \mathcal{C}^{r} .

2.1 Différentiabilité des fonctions multi-variables

 $U \subseteq \mathbb{R}^n$ ouvert, $f: U \to \mathbb{R}^n$, $x = (x_1, \dots, x_n) \in U$, $f = (f_1, \dots, f_m)$.

On dit que f est différentiable à $x \in U$ quand il existe une application linéaire $L : \mathbb{R}^n \to \mathbb{R}^m$ telle que

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ si } ||h|| < \delta \text{ et } x + h \in U, \text{ alors } ||f(x+h) - (f(x) + L(h))|| < \varepsilon ||h||.$$

FIGURE 4 – Exemple illustratif avec x = 0, f(0) = 0

f différentiable en 0 si $\forall \varepsilon > 0$, $\exists \delta > 0$, $||h|| < \delta \implies ||f(h) - L(h)|| < \varepsilon ||h||$.

Proposition 2.1. $n = 1, m = 1, f : I \to \mathbb{R}$ est différentiable selon la définition donnée sur un point $x \in I$ si et seulement si f'(x) existe.

 $D\'{e}monstration.$

1. Sens direct : f différentiable en $x \in I \implies f'(x)$ existe. $\exists L : \mathbb{R} \to \mathbb{R}$ telle que

$$\forall \varepsilon > 0, \exists \delta > 0, \|h\| < \delta, x + h \in I \implies \|f(x+h) - f(x) - L(h)\| < \varepsilon \|h\|.$$

L(h) = ah pour un $a \in \mathbb{R}$ quelconque mais fixé.

a est la pente ou le coefficient directeur.

Prenons a la pente du graphe de L (comme L linéaire, $\exists a \in \mathbb{R}$ tel que $\forall h \in \mathbb{R}, L(h) = ah$). On obtient

$$\forall \varepsilon > 0, \exists \delta > 0, |h| < \delta, x + h \in I \implies |f(x+h) - f(x) - ah| \le \varepsilon |h|.$$

On divise par $|h| \neq 0$ pour obtenir

$$\left| \frac{f(x+h) - f(x)}{h} - \frac{ah}{h} \right| \le \varepsilon.$$

$$\forall \varepsilon>0, \exists \delta>0 \text{ tel que } |h|<\delta, h+x\in I, \text{ alors } \left|\frac{f(x+h)-f(x)}{h}-a\right|\leq \varepsilon,$$

c'est à dire

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = a.$$

Donc f'(x) existe et f'(x) = a.

2. Sens réciproque : f'(x) existe $\Longrightarrow f$ différentiable. Si f'(x) existe, on met a := f'(x). On définit L(h) = ah. On sait que

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x) = a.$$

Donc

$$\forall \varepsilon > 0, \exists \delta > 0, |h| < \delta \implies \left| \frac{f(x+h) - f(x)}{h} - a \right| \le \varepsilon$$

$$\implies |f(x+h) - f(x) - ah| \le \varepsilon |h|$$

$$\implies \forall h, |h| < \delta, \text{ on a } |f(x+h) - f(x) - ah| < \varepsilon |h|.$$

f est différentiable selon notre définition avec L(h) = ah.

On suppose maintenant que $f: U \to \mathbb{R}^m, U \subseteq \mathbb{R}^n$. Pour $x \in U$, f différentiable en x si $\exists L : \mathbb{R}^n \to \mathbb{R}^m$ linéaire telle que

$$\forall \varepsilon > 0, \exists \delta > 0, \forall h \in \mathbb{R}^n, ||h|| < \delta, x + h \in U \implies ||f(x+h) - f(x) - L(h)|| \le \varepsilon ||h||.$$

On note $\mathscr{L}(\mathbb{R}^n, \mathbb{R}^m) = \{T : \mathbb{R}^n \to \mathbb{R}^m \mid T \text{ est linéaire } \}.$

On écrit dans ce cas là que $Df(x) = L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

En particulier, si f est différentiable pour tout $x \in U$, on obtient une application

$$Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m).$$

Rappel Chaque transformation linéaire est uniquement représentée par une matrice au cas où les bases des espaces de départ et d'arrivée sont fixées.

Si on choisit les bases standart $\alpha = \{e_1, \dots, e_n\}$ pour \mathbb{R}^n et $\beta = \{e_1, \dots, e_m\} \in \mathbb{R}^m, T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

$$[T]^{\alpha}_{\beta} := A = [A_{ij}]_{m \times n}$$

et on a

$$T(e_j) = \sum_{i=1}^m A_{ij} e_i = \begin{pmatrix} A_{1j} \\ A_{2j} \\ \vdots \\ A_{mj} \end{pmatrix}.$$

C'est la j-ième colonne de la matrice A.

En particulier, pour chaque $x \in U$ où f est différentiable, en fixant les bases standart de \mathbb{R}^n et \mathbb{R}^m , on peut supposer que $Df(x) \in \mathbb{R}^{m \times n}$.

On peut identifier $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ avec $\mathbb{R}^{m \times n} = \{ [A_{ij}], 1 \le i \le n, 1 \le j \le m \mid A_{ij} \in \mathbb{R} \}.$

Avec cette identification, on peut utiliser la norme euclidienne de $\mathbb{R}^{m \times n}$, $||A|| = \left(\sum_{i=1}^n \sum_{j=1}^m |A_{ij}|^2\right)^{\frac{1}{2}}$. Comme ça on peut parler de continuité et de différentiabilité de l'application

$$Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \simeq \mathbb{R}^{m \times n}$$

Ou bien on peut encore identifier $\mathbb{R}^{m \times n}$ avec \mathbb{R}^{mn} . Alors $Df: U \subseteq \mathbb{R}^n \to \mathbb{R}^{mn}$.

Donc on peut parler de continuité de Df, de derivée de Df.

Pour $x \in U, D(Df)(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)).$

On va noter D(Df) par D^2f . Alors $D^2f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^{m \times n})$. $D^2f : U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^{m \times n}) \simeq \mathbb{R}^{mn^2}$.

Théorème 2.1. $f: U \to \mathbb{R}^m$ une application donnée et $r \in \mathbb{N}$.

f est de classe C^r si et seulement si $D^k f: U \to \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \ldots))$ (de dimension mn^k) existe comme une application pour tout $1 \leq k \leq r$, et elle est en plus continue.

2.2 Deux points fins

En général, les dérivées partielles de f peuvent exister sans que Df soit définie. Par exemple, dans \mathbb{R}^2 , on peut avoir f telle que $\frac{\partial f}{\partial x_1}(0)$ existe, $\frac{\partial f}{\partial x_2}$ existe, mais Df(0) n'existe pas. Par contre, si $Df(x_0)$ existe, alors toutes les dérivées partielles de f existent en x_0 .

 $D\acute{e}monstration$. Supposons que $Df(x_0)$ existe. Donc

$$\forall \varepsilon > 0, \exists \delta > 0, ||h|| < \delta, x + h \in U \implies ||f(x) - f(x_0) - L(h)|| < \varepsilon ||h||.$$

Fixons une direction $\overrightarrow{v} \in \mathbb{R}^n$ et on met $h = t \overrightarrow{v}$, avec $\|\overrightarrow{v}\| \neq 0$. Donc $\|h\| = |t| \cdot \|\overrightarrow{v}\|$. Donc

$$\forall \varepsilon > 0, \exists \delta > 0, t < \frac{\delta}{\|\overrightarrow{v}\|}, x_0 + t\overrightarrow{v} \in U \implies |f(x_0 + t\overrightarrow{v}) - f(x_0) - tL(\overrightarrow{v})| < \varepsilon |t| \|\overrightarrow{v}\|.$$

On pose $\tilde{\varepsilon} = \varepsilon \|\overrightarrow{v}\|$ et $\tilde{\delta} = \frac{\delta}{\|\overrightarrow{v}\|}$.

$$\forall \tilde{\varepsilon} > 0, \exists \tilde{\delta} > 0 \text{ tel que } |t| < \tilde{\delta} \implies \|f(x_0 + t\overrightarrow{v}) - f(x_0) - tL(\overrightarrow{v})\| \le \tilde{\varepsilon}$$

$$\forall \tilde{\varepsilon} > 0, \exists \tilde{\delta} > 0, |t| < \tilde{\delta} \implies \left\| \frac{1}{t} \left(f(x_0 + t\overrightarrow{v}) - f(x_0) \right) - L(\overrightarrow{v}) \right\| \le \tilde{\varepsilon}$$

$$\implies \lim_{t \to 0} \frac{1}{t} \left(f(x_0 + t\overrightarrow{v}) - f(x_0) \right) = L(\overrightarrow{v}) = Df(x_0)(\overrightarrow{v}).$$

On définit

$$D_{\overrightarrow{v}}f(x_0) := \lim_{t \to 0} \frac{1}{t} (f(x_0 + t\overrightarrow{v}) - f(x_0)).$$

Donc si $Df(x_0)$ existe, la dérivée directionnelle de f en x_0 dans une direction $\overrightarrow{v} \in \mathbb{R}^n$ existe et on a

$$D\overrightarrow{v}f(x_0) = Df(x_0)(\overrightarrow{v}) \in \mathbb{R}^m.$$

En particulier, si $\overrightarrow{v} = e_j, 1 \leq j \leq n$,

$$\frac{\partial f}{\partial x_j}f(x_0) = D_{e_j}f(x_0) = Df(x_0)(e_j).$$

Il se peut que toutes les dérivées directionnelles $D_{\overrightarrow{v}}f(x_0)$ existent pour tout $\overrightarrow{v} \in \mathbb{R}^n$ alors que $Df(x_0)$ n'existe pas.

Théorème 2.2. Si $f: U \to \mathbb{R}^m, x_0 \in U$. Si $Df(x_0)$ existe, alors f est continue en x_0 .

Démonstration. En exercice.

Il se peut que toutes les dérivées directionnelles $D_{\overrightarrow{v}}f(x_0)$ existent pour tout $\overrightarrow{v} \in \mathbb{R}^n$ en $x_0 \in U$ sans que pour autant f soit continue en x_0 .

Si la matrice de $Df(x_0)$ est donnée par $[A_{ij}]_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$.

$$\forall j \in \{1, \dots, n\}, A_{e_j} = \frac{\partial f}{\partial x_j}(x_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_j}(x_0) \\ \vdots \\ \frac{\partial f_m}{\partial x_j}(x_0) \end{bmatrix}.$$

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_j} & \dots & \frac{\partial f_1}{\partial x_j} \end{bmatrix}.$$

$$Df = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

C'est la matrice jacobienne de f.

2.3 La dérivée de composition

 $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, (g \circ f)'(x) = g'(f(x))f'(x).$

 $f: U \to \mathbb{R}^m, q: V \to \mathbb{R}^p.$

Supposons que pour $x_0 \in U$, $f(x_0) \in V$.

Si f est continue, $g \circ f$ est définie dans un voisinage de x_0 , par exemple dans une boule ouverte $B(x_0, r) = \tilde{U} \subset U \cap f^{-1}(V)$.

 $g \circ f : U \to \mathbb{R}^p$.

Supposons que les trois dérivées $Df(x_0), Dg(f(x_0)), D(g \circ f)(x_0)$ existent.

 $Df(x_0) \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m).$

 $D(g(f(x_0))) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p).$

 $D(g \circ f) \in (\mathbb{R}^n, \mathbb{R}^p).$

Théorème 2.3. Supposons que f est dérivable en $x_0 \in U$ avec la dérivée $Df(x_0)$ et g est dérivable en $f(x_0) \in V$ avec la dérivée $Dg(f(x_0))$, alors $g \circ f$ est bien dérivable en $x_0 \in U$ et

$$D(g \circ f)(x_0) = Dg(f(x_0)) \circ Df(x_0).$$

FIGURE 5 – La différentiation composée

Si on utilise les matrices jacobiennes de chaque dérivée $(1 \le k \le m, 1 \le j \le n, 1 \le i \le p)$,

$$\left[\frac{\partial (g\circ f)_i}{\partial x_j}\right]_{p\times n}(x_0) = \left[\frac{\partial g_i}{\partial y_k}\right]_{p\times m}(f(x_0)) \times \left[\frac{\partial f_k}{\partial x_j}\right]_{m\times n}(x_0).$$

$$\left[\frac{\partial z_i}{\partial x_j}\right](x_0) = \left[\frac{\partial z_i}{\partial y_k}\right](f(x_0)) \times \left[\frac{\partial y_k}{\partial x_j}\right](x_0).$$

On a:

$$\frac{\partial z_i}{\partial x_j}(x_0) = \sum_{k=1}^n \frac{\partial z_i}{\partial y_k}(f(x_0)) \frac{\partial y_k}{\partial x_j}(x_0).$$

 $f:U\to\mathbb{R}^m,U\subseteq\mathbb{R}^n,\,V=f(U)$ est ouvert et $g:V\to\mathbb{R}^n$ est l'inverse de f.

Donc $g \circ f : U \to \mathbb{R}^n$ et $g \circ f = \mathbb{1}_U$.

Si en plus f et g sont différentiables, alors m = n et $\forall x \in U, Dg(f(x)) = (Df(x))^{-1}$, c'est à dire en particulier Df(x) est une transformation linéaire inversible.

Démonstration. Si f est dérivable en $x \in U$ et g dérivable en $f(x) \in V$, $\mathbb{1} = g \circ f$ dérivable en x_0 et

$$D1_U(x_0) = D(g(f(x_0))) \circ Df(x_0).$$

$$\mathbb{1}_U(x) = x \implies D\mathbb{1}_U(x_0) \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^n).$$

Donc

$$\mathbb{1}_{\mathbb{R}^n} = Dg(f(x_0)) \circ Df(x_0).$$

Ainsi comme g est linéaire de f on a $f \circ g = \mathbb{1}_V$, donc

$$\mathbb{1}_{\mathbb{R}^m} = Df(x_0) \circ Dg(f(x_0)).$$

Lemme. Si $L: \mathbb{R}^n \to \mathbb{R}^m$ est une fonction linéaire, $\overrightarrow{b} \in \mathbb{R}^m$ et $T(x) = L(x) + \overrightarrow{b}$, $T: \mathbb{R}^n \to \mathbb{R}^m$. Ainsi T est différentiable dans \mathbb{R}^n et

$$\forall x \in \mathbb{R}^n, DT(x) = L.$$

Dans ce cas, $DT: \mathbb{R}^n \to \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)$ est une application constante (les dérivées partielles de T aussi).

3 Inversion locale, fonctions implicites, théorème du rang

Théorème 3.1 (de Bronner). Si $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m, h : U \to V$ est un homéomorphisme (i. e. h continue, inversible et d'inverse **continue** $h^{-1}: V \to U$), alors m = n.

3.1 Théorème de l'application inverse

Théorème 3.2 (De l'application inverse). $U \subseteq \mathbb{R}^n$, $x_0 \in U$, $f: U \to \mathbb{R}^n$, f est de classe C^1 . Supposons que $Df(x_0) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ est inversible.

Alors il existe des ensembles ouverts $W \subset U$, $x_0 \in W$ et $V \subseteq \mathbb{R}^n$ tels que $f_{|W}: W \to V$ est inversible. L'inverse $(f_{|W})^{-1}: V \to W$ est aussi de classe \mathcal{C}^1 .

 $Figure\ 6-Fonctions\ inversibles$

Remarque. Si en plus f est de classe \mathcal{C}^r , alors $(f_{|W})^{-1}$ est aussi de classe \mathcal{C}^r . Notons que $\forall y \in V, x \in W, f(x) = y$,

$$(D(f_{|W})^{-1})(y) = (Df(x))^{-1}.$$

En particulier, il existe W tel que Df(x) est inversible pour tout $x \in W$.

3.2 Théorème du rang

20-09-2023

Théorème 3.3 (Du rang). $f: U \to \mathbb{R}^m$, $U \subset \mathbb{R}^n$ de classe \mathcal{C}^r , $r \geq 1$. Supposons que $\forall x \in U$,

$$\operatorname{rang}(Df(x)) \equiv k$$
,

 $où 1 \le k \le m \text{ est fixé.}$

 $(Df(x): \mathbb{R}^n \to \mathbb{R}^m, \ donc \ 0 \le \operatorname{rang}(Df(x)) \le m).$

Soit $x_0 \in U$. Alors il y a des ouverts $W \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m, x_0 \in W, f(x) \in V$, 2 applications de classe C^r inversibles

$$\varphi: W \to W', \varphi(x_0) = 0, W' \subseteq \mathbb{R}^n$$

$$\psi: V \to V', \psi(f(x_0)) = 0, V' \subseteq \mathbb{R}^m$$

telles que $\forall z \in W', z = (z_1, \dots, z_n),$

$$\psi \circ f \circ \varphi^{-1}(z_1, z_2, \dots, z_n) = (z_1, z_2, \dots, z_k, 0, \dots, 0).$$

FIGURE 7 – Illustration du théorème de rang

En particulier, f(W) est un objet de dimension k, de régularité \mathcal{C}^r (Si m=3, k=2, f(W) est une surface de classe \mathcal{C}^r) et pour tout $y \in f(W), f^{-1}(y)$ est un objet de dimension n-k de régularité \mathcal{C}^r .

On note que les deux applications φ et ψ sont de classe \mathcal{C}^r et inversibles. On peut démontrer que dans ce cas-là, les inverses φ^{-1} et ψ^{-1} sont aussi de classe \mathcal{C}^r .

$$D\varphi^{-1}(y)=(D\varphi(\varphi^{-1}(y))^{-1}), y\in W'.$$

 φ^{-1} étant continue, $D\varphi$ étant continue, l'inverse d'une matrice étant continue tant que det $\neq 0$, φ est de classe \mathcal{C}^1 inversible $\implies \varphi^{-1}$ est de classe \mathcal{C}^1 .

Définition 3.1 (Difféomorphisme). Soient $U, U' \subseteq \mathbb{R}^n$ ouverts.

Si $\varphi: U \to U'$ est une application de classe \mathcal{C}^r , avec l'inverse $\varphi^{-1}: U' \to U$ de classe \mathcal{C}^r , on dit que φ est un difféomorphisme de classe \mathcal{C}^r .

Remarque (Le théorème de rang dans le cas spécial où f est linéaire). Soit $L: \mathbb{R}^n \to \mathbb{R}^m$, rang $(L) = k, 0 \le k \le m$, alors il existe deux bases α_n et β_m pour \mathbb{R}^n et \mathbb{R}^m telles que

$$[L]_{\alpha_n}^{\beta_m} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}_{m \times n}.$$

(En exercice).

Corollaire. $U \subseteq \mathbb{R}^n, f: U \to \mathbb{R}^m, f \text{ est } \mathcal{C}^r, r \geq 1.$

Supposons que pour $x_0 \in U$, $Df(x_0)$ est injective. $Df(x_0) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Alors il existe un voisinage W de x_0 tel que f est injective sur W.

Pour $x \in U$,

$$Df(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}_{m \times n}.$$

Si $Df(x_0)$ est injective, rang $(Df(x_0)) = n \ (m \ge n)$. On obtient une sous-matrice de Df(x) de taille $n \times n$ inversible.

Lemme (D'algèbre linéaire). $A \in \mathbb{R}^{m \times n}$. Alors rang A = n si et seulement si il existe une sous-matrice $B \in \mathbb{R}^{n \times n}$ de A telle que det $B \neq 0$. (En exercice).

Alors sous les hypothèse du corollaire 3.2, rang $Df(x) \equiv n$ dans un voisinage W de x_0 , appliquant le théorème du rang

$$\tilde{f} = \varphi \circ f \circ \varphi^{-1}(z_1, \dots, z_n) = (z_1, \dots, z_n, 0, \dots, 0)$$

qui est injectif.

Corollaire. Les mêmes hypothèses que dans le corollaire 3.2.

Si $Df(x_0)$ est surjective, alors il existe un voisinage ouvert $V \subseteq f(U)$ de $f(x_0)$ (c'est à dire $f(x_0)$ est un point intérieur de f(U)) tel que f est surjective sur V.

Argument à travers l'observation de l'algèbre linéaire qui dit que si $\operatorname{rang}(A) = m, m \leq n, A \in \mathbb{R}^{m \times n}$, il y a une sous-matrice $B \in \mathbb{R}^{m \times m}$ tel que $\det(B) \neq 0$.

Théorème de rang : $k = m \le n$.

Les détails en exercice.

3.3 Théorème de fonctions implicites

Théorème 3.4 (De fonctions implicites). $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m, F: U \times V \to \mathbb{R}^m$ une application $C^r, r \geq 1$.

 $(x_0, y_0) \in U \to V \ donn\acute{e}.$

$$DF(x_0) \in \mathbb{R}^{m \times (m+n)}$$

et

$$DF(x_0) = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \dots & \frac{\partial F}{\partial x_n} & | & \frac{\partial F}{\partial y_1} & \dots & \frac{\partial F}{\partial y_m} \end{bmatrix}_{m \times (m+n)}.$$

Pour tout $(x_0, y_0) \in U \times V$, $DyF(x_0, y_0) \in \mathbb{R}^{m \times m}$. Supposons que $DyF(x_0)$ est inversible. Alors il existe un voisinage W de x_0 dans U et une application C^r $f: W \to V$ telle que $f(x_0) = y_0$ et

$$\forall x \in W, F(x, f(x)) = F(x_0, y_0).$$

FIGURE 8 – Illustration du théorème de fonctions implicites

Donc le graphe de $x \longrightarrow f(x)$ dans $W \times V$ pour l'application $f: W \to V$ est à l'intérieur de $F^{-1}(x_0)$.

On peut dire que la fonction implicite

$$F(x,y) = z_0, x \in \mathbb{R}^n, y \in \mathbb{R}^m, z_0 \in \mathbb{R}^n$$

peut être exprimée explicitement y = f(x) dans un voisinage W.

Exemple m = 1 = n. Si $F(x, y) = y^2 - x$.

Exemple 1 $x_0 = 0, y_0 = 1, z_0 = 1.$

$$DF = \begin{bmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \end{bmatrix} = \begin{bmatrix} -1 & 2y \end{bmatrix} \in \mathcal{C}^{\infty}.$$

$$DyF = [2y]_{|x|}.$$

$$DyF(x_0, y_0) = 2y_0 = 2 \neq 0.$$

Donc près de $(0,1) = (x_0, y_0), y = f(x)$ a une solution C^{∞} .

Mais si $x_0 = 0, y_0 = 0, z_0 = 0, DyF(x_0, y_0) = 2y_0 = 0$ n'est pas inversible. F est \mathcal{C}^{∞} .

Implicitement, près de (0,0), on a $y^2 - x = 0$.

On essaie de trouver y = f(x).

$$y^2 = x \implies y = \pm \sqrt{x}.$$

Mais $\sqrt{\cdot}$ n'est pas définie pour x < 0 près de $x_0 = 0$!

Donc il n'y a pas un moyen d'écrire explicitement F(x,y) = 0 près de (0,0) comme une fonction \mathcal{C}^{∞} .

Remarque (Sur le théorème des fonctions implicites). En effet, si $W' = f(W) \subset V$, on a

$$(x,y) \in W \times W', F(x,y) = z_0 \iff y = f(x).$$

4 Algèbre multilinéaire

Soit E espace vectoriel sur \mathbb{R} de dimension finie n, c'est-à-dire il existe $\beta = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ base telle que

$$\forall \overrightarrow{v} \in E, \exists ! (\alpha_1, \dots, \alpha_n), \overrightarrow{v} = \sum_{i=1}^n \alpha_i \overrightarrow{v_i}.$$

En particulier, β engendre E ($E = \text{span}(\beta) = \langle \beta \rangle$) si β est libre.

4.1 L'espace dual E^*

$$E^* = \{T : E \to \mathbb{R} \text{ lin\'eaire}\} = \mathcal{L}(E, \mathbb{R}).$$

Théorème 4.1. On $a \dim(E^*) = \dim(E)$.

Démonstration. Supposons $\beta = (e_1, \dots, e_n)$ est une base ordonnée de E. On définit alors n éléments (e^1, e^2, \dots, e^n) , $e^j \in E^*$ de la manière suivante :

$$e^{j}(e_{i}) = \delta_{i}^{j} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon.} \end{cases}$$

Remarque (Personnelle). e^j est l'évaluation du vecteur $\overrightarrow{v} \in E$ en e_i .

Donc
$$e^j \left(\sum_{i=1}^n \alpha_i e_i \right) = \sum_{i=1}^n \alpha_i e^j (e_i) = \sum_{i=1}^n \alpha_i \delta_i^j = \alpha_i.$$

Donc $\forall j \in \{1, \dots, n\}, e^j \in E^*, \beta^* = \{e^1, \dots, e^n\}$. On montre que β^* est une base pour E^* .

1. β^* est libre. Supposons que pour $c_i \in \mathbb{R}$,

$$\sum_{j=1}^{n} c_j e^j = 0 \in E^*.$$

Donc pour tout i,

$$\left(\sum_{j=1}^n c_j e^j\right)(e_i) = 0 \in \mathbb{R} \text{ et}$$

$$\left(\sum_{j=1}^n c_j e^j\right)(e_i) = \sum_{j=1}^n c_j e^j(e_i) = \sum_{j=1}^n c_j \delta_i^j = c_i.$$

Donc $\forall i, c_i = 0$.

2. β^* engendre E^* . Soit $T \in E^*$. Est-ce qu'il existe $\alpha_1, \ldots, \alpha_n$ tel que

$$T = \sum_{j=1}^{n} \alpha_j e^j ?$$

Essayons de trouver les α_i en appliquant l'identité desirée en e_i .

$$\forall i, T(e_i) = \left(\sum_{j=1}^n \alpha_j e_j\right)(e_i) = \sum_{j=1}^n \alpha_j e_j(e_i) = \sum_{j=1}^n \alpha_j \delta_i^j = \alpha_i.$$

Donc pour $T \in E^*$ donnée, le candidat pour α_i est

$$\forall i \in \{1, \ldots, n\}, \alpha_i \in T(e_i) \in \mathbb{R},$$

et on obtient que

$$\forall i \in \{1, \dots, n\}, T(e_i) = \left(\sum_{j=1}^n \alpha_j e^j\right)(e_i).$$

Comme T et \tilde{T} ont les mêmes valeurs sur la base β , donc $T = \tilde{T}$.

$$T = \sum_{j=1}^{n} T(e_j)e^j.$$

Définition 4.1. On dit que β^* est la base duale de β .

On considère le dual du dual $E^{**} = (E^*)^*$.

Théorème 4.2. Si dim $(E) < \infty$, il y a un isomorphisme canonique entre E et E^{**} .

On peut définir $E \to E^{**}$. On pose $e: E \to E^{**}$.

$$(\iota(\overrightarrow{v}))(T) = T(\overrightarrow{v}),$$

 $\forall T \in E^* = \mathcal{L}(E, \mathbb{R}).$

Exercice 1.

- 1. Montrer que $\forall v \in E, \iota(\overrightarrow{v}) : E^* \to \mathbb{R}$ est une transformation linéaire.
- 2. Montrer que $\iota: E \to E^{**}$ est une transformation linéaire.
- 3. Montrer que ι est bijective (donc un isomorphisme).

Démonstration.

1.

$$\iota(\overrightarrow{v})(\alpha T + S) = (\alpha T + S)(\overrightarrow{v}) = \alpha T(\overrightarrow{v}) + S(\overrightarrow{v}) = \alpha \iota(\overrightarrow{v})(T) + \iota(\overrightarrow{v})(S).$$

2. $\iota: E \to E^{**}$ est linéaire.

$$\iota(\alpha \overrightarrow{v} + \overrightarrow{w})(T) = T(\alpha \overrightarrow{v} + \overrightarrow{w}) \stackrel{T \text{ linéaire}}{=} \alpha T(\overrightarrow{v}) + T(\overrightarrow{w})$$
$$= \alpha \iota(\overrightarrow{v})(T) + \iota(\overrightarrow{w})(T) = \alpha \iota(\overrightarrow{v}) + \iota(\overrightarrow{w}).$$

Comme c'est vrai $\forall T \in E^*$, on a l'identification $\iota(\alpha \overrightarrow{v} + \overrightarrow{w}) = \alpha \iota(\overrightarrow{v}) + \iota(\overrightarrow{w})$ (comme un élément de E^{**}). Donc ι est une transformation linéaire.

3. On sait que $dimE = dimE^* = dimE^{**}$ (ce qui veut dire que ι est surjective). Pour démontrer que ι est un isomorphisme, il suffit de démontrer que $\operatorname{Ker}(\iota) = \{0\}$ (que ι est injective). Si $\overrightarrow{v} \in \operatorname{Ker}(\iota)$, alors $\iota(\overrightarrow{v}) = 0 \implies \forall T \in E^*, T(\overrightarrow{v}) = \iota(\overrightarrow{v})(T) = 0(T) = 0$, donc \overrightarrow{v} est tel que $\forall T \in E^*, T(\overrightarrow{v}) = 0$.

Si $\overrightarrow{v} \neq \overrightarrow{0}$, on peut compléter \overrightarrow{v} avec une base $\{\overrightarrow{v}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}\}$ de E et définir $T(\alpha_1 \overrightarrow{v} + \alpha_2 \overrightarrow{v_2} + \dots + \alpha_n \overrightarrow{v_n}) = \alpha_1$. Dans ce cas-là, $T(\overrightarrow{v}) = 1 \neq 0$.

Si $\beta = (e_1, \dots, e_n)$ base de E. On a vu que la base duale $\beta^* = (e^1, e^2, \dots, e^n)$ est une base de E^* .

$$e^{j}(e_{i}) = \delta_{i}^{j}$$
.

$$(\beta^*)^* = \beta^{**} = (\varepsilon_1, \eta_2, \dots, \eta_n).$$

$$\forall i, \eta_i \in E^{**}, \eta_i(e^i) = \delta_i^j, \forall i, j. \tag{1}$$

On va aussi calculer

$$\iota(e_i)(e^j) = e^j(e_i) = \delta_i^j. \tag{2}$$

 $\forall e^j$ de base β^* , on a

$$\eta_i(e^j) = \iota(e_i)(e^j), \eta_i, \iota(e_i) \in E^{**} = \mathcal{L}(E^*, \mathbb{R}).$$

 η_i et $i(e_i)$ coincident sur une base de E^* , donc

$$\forall i, \eta_i = \iota(e_i).$$

Pour simplifier, parfois on identifie E et E^{**} par l'application ι , c'est-à-dire on met $\overrightarrow{v} = \iota(\overrightarrow{v})$.

Les éléments de E^* sont appelés les vecteurs covariants. Les éléments de E^{**} sont appelés les vecteurs contravariants.

4.2 Les applications multilinéaires

Supposons que E_1, E_2, \dots, E_k sont des espaces vectoriels sur \mathbb{R} et E' espace vectoriel de \mathbb{R} .

$$\alpha: E_1 \times E_2 \times \cdots \times E_k \longrightarrow E'$$

est une application k-linéaire quand α est linéaire par rapport à chaque coordonnée dans l'un des espaces E_j quand les autres coordonnées (composantes) sont fixées.

$$\overrightarrow{v_i} \in \overrightarrow{E_i}, \ 1 \leq i \leq k, \ \alpha(\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}).$$

Si $\forall i \in \{1, \dots, k\}, \ a \in \mathbb{R}, \forall \overrightarrow{v_j} \in E_j, \ \overrightarrow{w} \in E_i, \ \text{on a}$

$$\alpha(\overrightarrow{v_1},\overrightarrow{v_2},\ldots,a\overrightarrow{v_i}+\overrightarrow{w},\ldots,\overrightarrow{v_k})=a\alpha(\overrightarrow{v_1},\ldots,\overrightarrow{v_i},\ldots,\overrightarrow{v_k})+\alpha(\overrightarrow{v_1},\overrightarrow{v_2},\ldots,\overbrace{\overrightarrow{w}}^{i\text{-ème}},\ldots,\overrightarrow{v_k}).$$

Exemple

- 1. f(x,y) = xy, $f: \mathbb{R}^{E_1} \times \mathbb{R}^{E_2} \to \mathbb{R}^{E'}$.
- 2. $E_1 = E_2 = \mathbb{R}^n, E' = \mathbb{R},$

$$\alpha(\overrightarrow{v_1}, \overrightarrow{v_2}) = \overrightarrow{v_1} \cdot \overrightarrow{v_2}$$
 2-linéaire.

3. $E_1 = E_2 = E_3 \equiv \mathbb{R}^3, E' = \mathbb{R}$.

$$\alpha(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}) = \overrightarrow{v_1} \cdot (\overrightarrow{v_2} \wedge \overrightarrow{v_3}) = det \left(\begin{bmatrix} \overrightarrow{v_1} \\ \overrightarrow{v_2} \\ \overrightarrow{v_3} \end{bmatrix} \right)_{3 \times 3}.$$

Cette application est 3-linéaire.

4. $E_1 = E_2 = \cdots = E_n = \mathbb{R}^n$.

$$\alpha(\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}) = det \begin{pmatrix} \overrightarrow{v_1} \\ \overrightarrow{v_2} \\ \vdots \\ \overrightarrow{v_n} \end{pmatrix}.$$

C'est une application n-linéaire.

5. Le déterminant d'une matrice de taille $n \times n$ est une application n-linéaire.

4.2.1Quelques notations

E espace vectoriel de dimension finie.

On note $\Omega^k(E):=\{\alpha: \underbrace{E\times E\times \cdots \times E}_{k \text{ fois}} \to \mathbb{R} \mid \alpha \text{ est } k\text{-lin\'eaire}\}.$ Remarquons que $\Omega^1(E)=\{\alpha: E\to \mathbb{R} \mid \alpha \text{ est lin\'eaire}\}=E^*.$

Proposition 4.1. $\forall k \in \mathbb{N}^*, \Omega^k(E)$ est un espace vectoriel de dimension n^k .

Démonstration. Si $\alpha, \beta \in \Omega^k(E), a \in \mathbb{R}$. Il faut démontrer que $a\alpha + \beta$ est aussi une application k-linéaire $\operatorname{sur} E^k = \underbrace{E \times \cdots \times E}_{k \text{ fois}}$

$$a\alpha + \beta(b\overrightarrow{v_1} + \overrightarrow{w}, \dots) = a[\alpha(b\overrightarrow{v_1} + \overrightarrow{w}, \dots)] + \beta(b\overrightarrow{v_1} + \overrightarrow{w})$$

= $a[b\alpha(\overrightarrow{v_1}, \dots) + \alpha(\overrightarrow{w}, \dots)] + b\beta(v_1, \dots) + \beta(\overrightarrow{w}, \dots)$
= $b[a\alpha + \beta](\overrightarrow{v_1}, \dots) + [a\alpha + \beta](\overrightarrow{w}, \dots)$

De même pour chaque $1 \le i \le k$.

Pour trouver la dimension de $\Omega^k(E)$, il faudra trouver une base de $\Omega^k(E)$. Pour cela, il faudra d'abord introduire "le produit tensoriel".

Définition 4.2 (Produit tensoriel). Supposons que $\alpha: E_1 \times \cdots \times E_k \to \mathbb{R}$ k-linéaire, $\beta: E'_1 \times \cdots \times E'_l \to \mathbb{R}$ l-linéaire.

On définit

$$\alpha \otimes \beta : E_1 \times \cdots \times E_k \times E'_1 \times \cdots \times E'_l \longrightarrow \mathbb{R}$$

telle que

$$\alpha \otimes \beta(\overrightarrow{v_1}, \dots, \overrightarrow{v_k}, \overrightarrow{v_1}, \dots, \overrightarrow{v_l}) := \alpha(\overrightarrow{v_1}, \dots, \overrightarrow{v_k}) \beta(\overrightarrow{v_1}, \dots, \overrightarrow{v_l})$$

qui est une application (k+l)-linéaire (avec $\overrightarrow{v_i} \in E_i, i \in \{1, \dots, k\}, \overrightarrow{v_i'} \in E_i', j \in \{1, \dots, l\}$).

Les applications k-linéaires sont appelées les tenseurs covariants d'ordre k.

Exercice 2. On montre que \otimes est une opération associative.

 $\forall \alpha, \beta, \gamma \text{ tenseurs covariants,}$

$$(\alpha \otimes \beta) \otimes \gamma = \alpha \otimes (\beta \otimes \gamma).$$

Exemple $E_1 = \mathbb{R}^n, E_1' = \mathbb{R}^n, k = l = 1, \alpha \in E_1^*, \alpha(\overrightarrow{v}) = 2\overrightarrow{v} \cdot e_1, \forall \overrightarrow{v} \in \mathbb{R}^n, \beta \in E_1^{'*}, \beta(\overrightarrow{v'}) = \overrightarrow{v'} \cdot e_1, \forall \overrightarrow{v'} \in \mathbb{R}^n.$

$$\alpha \otimes \beta(\overrightarrow{v}, \overrightarrow{v'}) = 2(\overrightarrow{v} \cdot e_1)(\overrightarrow{v'} \cdot e_1)$$

et

$$\beta \otimes \alpha(\overrightarrow{v'}, \overrightarrow{v}) = 2(\overrightarrow{v'} \cdot e_1)(\overrightarrow{v} \cdot e_1).$$

Mais si $\tilde{\beta}(\overrightarrow{v'}) = \overrightarrow{v'} \cdot e_2$,

$$\alpha \otimes \widetilde{\beta}(\overrightarrow{v}, \overrightarrow{v'}) = 2(\overrightarrow{v} \cdot e_1)(\overrightarrow{v'} \cdot e_2),$$
mais $\widetilde{\beta} \otimes \alpha(\overrightarrow{v'}, \overrightarrow{v}) = 2(\overrightarrow{v'} \cdot e_1)(\overrightarrow{v'} \cdot e_2).$

Le produit tensoriel n'est donc pas commutatif.

$$\begin{split} E^k &= \underbrace{E \times \dots \times E}_{k \text{ fois}} \\ \Omega^k(E) &:= \{\alpha : \underbrace{E \times E \times \dots \times E}_{k \text{ fois}} \to \mathbb{R} \mid \alpha \text{ est k-linéaire}\}. \end{split}$$

Proposition 4.2. $\Omega^k(E)$ est un espace vectoriel de dimension n^k , où n = dim(E).

Démonstration. dimE = n, (e_1, \ldots, e_n) est une base de E et (e^1, \ldots, e^n) est une base de $E^* = \Omega^1(E)$. Par exemple si on prend

$$\underbrace{e^1 \otimes e^1 \otimes \cdots \otimes e^1}_{k \text{ fois}} : E \times \cdots \times E \to \mathbb{R},$$

et

$$e^1 \otimes e^1 \otimes \cdots \otimes e^1(\overrightarrow{v_1}, \dots, \overrightarrow{v_n}), \overrightarrow{v_i} \in E,$$

= $e^1(\overrightarrow{v_1})e^1(\overrightarrow{v_2}) \dots e^1(\overrightarrow{v_n}).$

$$\mathscr{A} = \{e^{i_1} \otimes e^{i_2} \otimes \cdots \otimes e^{i_k} \mid \text{pour } 1 \leq j \leq k, 1 \leq i_k \leq n\}.$$

Il y a n choix pour chaque e^{ij} , alors, au total, on a n^k choix pour les éléments de \mathscr{A} , ce qui démontre la proposition 4.2. On montre maintenant que

- 1. \mathscr{A} engendre $\Omega^k(E)$;
- 2. \mathscr{A} est libre.

Soit $\alpha \in \Omega^k(E)$.

On va démontrer que

$$\alpha \stackrel{?}{=} \sum_{1 \leq i_1, \dots, i_k \leq n} \alpha(e_{i_1}, e_{i_2}, \dots, e_{i_k}) e^{i_1} \otimes e^{i_2} \otimes \dots \otimes e^{i_k}.$$

Prenons $(\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}) \in E^k$. On a

$$\overrightarrow{v_j} = \sum_{i=1}^n c_{ij} e_i.$$

$$\alpha(\overrightarrow{v_1}, \dots, \overrightarrow{v_k}) = \alpha \left(\sum_{i=1}^n c_{i1} e_i, \dots, \sum_{i=1}^n c_{ik} e_i \right)$$

$$= \sum_{i=1}^n c_{i1} \alpha \left(e_i, \sum_{i_2} c_{i_2 2} e_{2i}, \dots \right)$$

$$= \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_k=1}^n c_{i_1 1} c_{i_2 2} \dots c_{i_k k} \alpha(e_{i_1}, \dots, e_{i_k}).$$

Maintenant, pour

$$\beta = \sum_{1 \le i_1, \dots, i_n \le n} \alpha(e_{i_1}, \dots, e_{i_n}) e^{i_1} \otimes \dots \otimes e^{i_n},$$

on calcule pour $\beta \in \Omega^k(E)$,

$$\beta(\overrightarrow{v_1},\ldots,\overrightarrow{v_k}) = \sum_{i_1} \sum_{i_2} \ldots \sum_{i_k} c_{i_1} c_{i_2} \ldots c_{i_k} \beta(e_{i_1},\ldots,e_{i_n}).$$

Mais

$$\beta(e_{i_1}, \dots, e_{i_k}) = \sum_{1 \leq i'_1, \dots, i'_k \leq n} \alpha(e_{i'_1}, e_{i'_2}, \dots, e_{i'_k}) e^{i'_1} \otimes e^{i'_2} \otimes \dots \otimes e^{i'_k} (e_{i_1}, \dots, e_{i_k})$$

$$= \sum_{1 \leq i'_1 \leq \dots \leq i'_k \leq n} \alpha(e_{i'_1}, \dots, e_{i'_k}) e^{i'_1} (e_{i_1}) e^{i'_2} (e_{i_2}) \dots e^{i'_k} (e_{i_k})$$

$$= \sum_{1 \leq i'_1, \dots, i'_k \leq n} \alpha(e_{i'_1}, \dots, e_{i'_k}) \delta^{i'_1}_{i_1} \dots \delta^{i'_k}_{i_k} = \alpha(e_{i_1}, \dots, e_{i_n}).$$

Donc

$$\beta(\overrightarrow{v_1},\ldots,\overrightarrow{v_k}) = \sum_{i_1} \sum_{i_2} \ldots \sum_{i_k} c_{i_1 1} c_{i_2 2} \ldots c_{i_k k} \alpha(e_{i_1},\ldots,e_{i_k}) = \alpha(\overrightarrow{v_1},\ldots,\overrightarrow{v_k}).$$

Donc? est démontré, et on a $\alpha \in span(\mathscr{A}) = \langle \mathscr{A} \rangle$, où $\mathscr{A} = \{e^{i_1} \otimes \cdots \otimes e^{i_k}\}$.

Montrons que \mathscr{A} est libre. Soit

$$\sum_{1 \le i_1, \dots, i_k \le n} c_{i_1 i_2 \dots i_k} e^{i_1} \otimes \dots \otimes e^{i_k} = 0 \in \Omega^k(E).$$

Le même calcul qu'auparavant démontre que

$$0 = 0(e_{i_1}, \dots, e_{i_k}) = c_{i_1 \dots i_k}, \forall i_1, \dots, i_k,$$

donc

$$\forall i_1, \dots, i_k, c_{i_1 \dots i_k} = 0,$$

donc \mathscr{A} est libre.

Remarque. Si $f: U \to \mathbb{R}^m, U \subseteq \mathbb{R}^n, Df(x) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m),$

$$Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$$

$$D^2 f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m))$$

$$\vdots$$

$$D^n f(x) \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \dots, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m))).$$

Lemme. $\mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)) \simeq \{\alpha : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \mid \alpha \text{ est 2-linéaire}\}.$

Pour un élément $g \in \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m))$ et $\overrightarrow{v} \in \mathbb{R}^n, g(\overrightarrow{v}) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Pour tout k, pour tout $x \in U$, $D^k f(x) \in (\Omega^k(\mathbb{R}^n))^m$. Cet espace est de dimension $m(n^k)$. On définit

$$\alpha_g(\overrightarrow{v})(\overrightarrow{w}) \in \mathbb{R}^n$$
.

On voit que α_g est une application 2-linéaire.

Supposons que $\alpha_g = \alpha_{g'}$, donc $\forall \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n, \alpha_g(\overrightarrow{v}, \overrightarrow{w}) = \alpha_{g'}(\overrightarrow{v}, \overrightarrow{w}), \text{ donc } g(\overrightarrow{v})(\overrightarrow{w}) = g'(\overrightarrow{v})(\overrightarrow{w}).$

Donc $\forall \overrightarrow{v} \in \mathbb{R}^n, g(\overrightarrow{v}) = g'(\overrightarrow{v}) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m), \text{ donc } g = g'.$

On en déduit que $g \longrightarrow \alpha_g$ est injective.

27-09-2023

Exemple. $T: \mathbb{R}^2 \to \mathbb{R}, Tx = 2x_1 + 5x_2$. On définit $\alpha: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \alpha((x_1, x_2), (x_1', x_2')) = x_1x_2' - x_2x_1', \alpha \in \Omega^2(\mathbb{R}^2)$.

Ecrire le produit tensoriel entre α et T...

Si E,F sont deux espaces vectoriels et $T:E\longrightarrow F$ linéaire $(T\in \mathscr{L}(E,F))$. On peut définir une application linéaire

$$T^*: F^* \longrightarrow E^*.$$

Pour $f \in F^*$, on doit déterminer $T^*(f)$ comme un élément de E^* . Alors $T^*(f)$ doit être une application linéaire $T^*(f) \in \mathcal{L}(E,\mathbb{R})$, i. e. $T^*(f) : E \longrightarrow \mathbb{R}$.

$$\forall v \in E, (T^*(f))(v) \stackrel{\text{def}}{=} f(T(v)) \text{ cf figure 9}.$$

On a $f \in F^*, f \in \mathcal{L}(F, \mathbb{R})$.

FIGURE 9 – Illustration de T^*

 $F^* = \Omega'(F), E^* = \Omega'(E)$. On peut aussi utiliser la notation $\Omega^1(T)$ pour T^* . On peut aussi définir, à partir de T,

$$\Omega^k(T): \underbrace{\Omega^k(F)}_{\alpha} \longrightarrow \underbrace{\Omega^k(E)}_{\beta}.$$

Pour $\alpha \in \Omega^k(E)$, on a besoin que $\underbrace{\Omega^k(T)(\alpha)}_{L^{k}(E)} \in \Omega^k(E)$.

 $\forall v_1, \ldots, v_n$, on a besoin de définir

$$\underbrace{(\Omega^k(T))(\alpha)}_{\beta \in \Omega^k(E)}(v_1, \dots, v_k) = \underbrace{\alpha(T(v_1), T(v_2), \dots, T(v_k))}_{\in F^k}.$$

Exercice 3.

- 1. Montrer que β est k-linéaire, i. e. $\forall k, \Omega^k(T)(\alpha) \in \Omega^k(E)$.
- 2. Montrer que $\Omega^k(S \circ T) = \Omega^k(T) \circ \Omega^k(S)$.
- 3. Montrer que $\Omega^k(\mathbb{1}_E) = \mathbb{1}_{\Omega^k(E)}$.
- 4. Montrer que si $T: E \to F$ est inversible, alors

$$\Omega^k(T^{-1}) = (\Omega^k(T))^{-1}.$$

Quelques propriétés Si on a $E \xrightarrow{T} F \stackrel{S}{G}$, on a

$$\Omega^k(G) \stackrel{\Omega^k(S)}{\longrightarrow} \Omega^k(S) \stackrel{\Omega^k(T)}{\longrightarrow} \Omega^k(E)$$

On a $S \circ T : E \longrightarrow G$. Alors

$$\Omega^k(T) \circ \Omega^k(S) \in \Omega^k(G) \longrightarrow \Omega^k(E)$$

et

$$\Omega^k(S\circ T):\Omega^k(G)\longrightarrow\Omega^k(E)$$

On considère $\mathbb{1}_E: E \to E$. Alors

$$\Omega^k(\mathbb{1}_E) = \mathbb{1}_{\Omega^k(E)}$$

•

On rappelle que l'on peut associer à un vecteur $v \in E$ un vecteur contravariant $\iota(v) \in E^{**}$. On définit alors, $\forall l \in \mathbb{N}, l \geq 1$,

$$\Omega_l(E) := \{ \alpha : \underbrace{E^* \times \cdots \times E^*}_{k \text{ fois}} \to \mathbb{R} \mid \alpha \text{ est } l\text{-linéaire} \} = \Omega^l(E^*),$$

avec la base $\{e_{i_1} \otimes \cdots \otimes e_{i_l} \mid 1 \leq i_j \leq n, 1 \leq j \leq l\}$. On a $\dim(\infty_l(E)) = n^l$ et $\forall \alpha \in \Omega_l(E)$,

$$\alpha = \sum_{1 \leq i_1, \dots, i_l \leq n} \alpha(e^{i_1}, \dots, e^{i_l}) e_{i_1} \otimes \dots \otimes e_{i_l}.$$

Pour $T: E \longrightarrow F$, $\Omega_l(T): \Omega_l(E) \to \Omega_l(F)$ (objets contravariants pour la dualité), avec $\alpha \in \Omega_l(E)$, $\beta = \Omega_l(T)(\alpha) \in \Omega_l(F)$.

On va essayer de définir

$$\beta(f_1,\ldots,f_l) = \Omega_l(T)(\alpha)(f_1,\ldots,f_l) \stackrel{\text{déf}}{=} \alpha(T^*(f_1),\ldots,T^*(f_l)).$$

$$f_j \in F^*$$

$$T^*(f_j) \in F^*$$

On a alors le schéma suivant :

$$F \xrightarrow{T} F \xrightarrow{S} G$$

$$\Omega_l(E) \xrightarrow{\Omega_l(T)} \Omega_l(F) \xrightarrow{\Omega_l(S)} \Omega_l(G).$$

Définition 4.3. Pour tous k, l, on a

$$\Omega^k_l(E) := \{\alpha : \underbrace{E \times \dots \times E}_{k \text{ fois}} \times \underbrace{E^* \times \dots \times E^*}_{l \text{ fois}} \mid \alpha \text{ est } k \text{-lin\'eaire} \}$$

qui a pour base

$$\{e^{i_1}\otimes\cdots\otimes e^{i_k}\otimes e_{j_1}\otimes\cdots\otimes e_{j_l}\mid 1\leq i_1,\ldots,i_k\leq n, 1\leq j_1,\ldots,j_l\leq n\}.$$

On a $\dim(\Omega_l^k) = n^{k+l}$. Pour $\alpha \in \Omega_l^k(E)$, on écrit

$$\alpha = \sum_{\substack{1 \leq i_1, \dots, i_k \leq n \\ 1 \leq j_1, \dots, j_l}} \alpha(e_{i_1}, \dots, e_{i_k}, e^{j_1}, \dots, e^{j_l}) e^{i_1} \otimes \dots \otimes e^{i_k} \otimes e_{j_1} \otimes \dots \otimes e_{j_l}.$$

Parenthèse sur les notations En physique, on écrit

$$\alpha = \sum_{\substack{i_1, \dots, i_k \\ j_1, \dots, j_l}} a_{i_1 \dots i_k}^{j_1 \dots j_l} e^{i_1} \otimes \dots e^{i_k} \otimes e_{j_1} \otimes \dots \otimes e^{j_l}.$$

et on dit : si α est un (l,k) tenseur, alors α est la collection de valeurs $a_{i_1...i_k}^{j_1...j_l}$. Si $T:E\to E$ est donnée, alors $\Omega_l^k(T)(\alpha)$ est donnée maintenant par le coefficient

$$b_{\tilde{i_1},\ldots,\tilde{i_l}}^{\tilde{j_1},\ldots,\tilde{j_l}}$$

4.3 Produit scalaire

Les produits scalaires sur un espace vectoriel sont des tenseurs 2-covariants.

Définition 4.4 (Produit scalaire). Une application $\alpha: E \times E \to \mathbb{R}$ est un produit scalaire quand

- 1. $\alpha \in \Omega^2(E)$;
- 2. α est symétrique, i. e.

$$\forall v, w, \alpha(v, w) = \alpha(w, v).$$

- 3. α est définie positive, i. e. $\forall v \in E, \alpha(v,v) \geq 0$ et $\alpha(v,v) = 0 \iff v = 0$. En particulier, si $v \neq 0$, alors $\alpha(v,v) > 0$.
- α dans une base est donnée par les coefficients $a_{i,j}, 1 \leq i, j \leq n$. Par exemple, on considère

$$v = \sum x_i e_i, w = \sum y_i e_i, \alpha = \sum_{1 \le i, j \le n} a_{ij} e^i \otimes e^j.$$
(3)

Dans ce cas, on a

$$\alpha(v,w) = \left(\sum_{1 \le i,j \le n} a_{ij} e^i \otimes e^j\right) \left(\sum_k x_k e_k, \sum_l y_l e_l\right)$$
(4)

$$= \sum_{i,j,k,l} a_{ij} e^{i}(k) e^{j}(e_{l}) x_{k} y_{l} = \sum_{i,j,k,l} a_{ij} \delta_{k}^{i} \delta_{l}^{j} x_{k} y_{l} = \sum_{i,j} a_{ij} x_{i} y_{j}.$$
 (5)

Donc un produit scalaire est un (0, 2)-tenseur.

Pour aller vers les formes différentielles, on a besoin d'une sous-catégorie de $\Omega_l^k(E)$ qui sont appelés les tenseurs extérieurs. Voici quelques définitions.

Définition 4.5. 1. On dit que σ est une permutation d'ordre k quand

$$\sigma: \{1, \dots, k\} \longmapsto \{1, \dots, k\}$$

est une bijection. On note $\sigma_i := \sigma(i)$. Pour tout $k \in \mathbb{N}$, S_k est l'ensemble des permutations d'ordre k. L'ensemble S_k muni de la loi \circ est un groupe. On dit qu'une permutation est une transposition quand il existe $i \neq j$ tels que

$$\sigma_i = j, \sigma_i = i, \sigma_s = s, \forall s \notin \{i, j\}.$$

 $\forall \sigma \in S_k, \exists \sigma_{(1)}, \ldots, \sigma_{(l)} \text{ tel que}$

$$\sigma = \sigma_{(1)} \dots \sigma_{(l)},\tag{6}$$

et chaque $\sigma_{(s)}$ est une transposition. Cette décomposition n'est pas unique, mais dans toutes les décompositions comme dans 6, la parité de l ne change pas. On définit

$$\frac{\operatorname{sgn}(\sigma)}{\varepsilon(\sigma)} := \begin{cases} 1 \text{ si } l \text{ est paire,} \\ 0 \text{ si } l \text{ est impaire.} \end{cases}$$

Définition 4.6. $\alpha \in \Omega^k(E)$ est dite un **tenseur extérieur** (aussi appelé tenseur antisymétrique) si

$$\forall v_1, \dots, v_k \in E, \forall \sigma \in S_k, \alpha(v_{\sigma_1, \dots, v_{\sigma_k}}) = \operatorname{sgn}(\sigma)\alpha(v_1, \dots, v_n).$$

Proposition 4.3. Les trois assertions suivantes sont équivalentes :

- 1. α est extérieur;
- 2. $\forall \sigma \in S_k$ telle que σ est une transposition,

$$\forall v_1, \dots, v_k, \alpha(v_{\sigma_1, \dots, v_{\sigma_k}}) = -\alpha(v_1, \dots, v_k);$$

3. $\forall v_1, \ldots, v_k \in E$, s'il existe $i, j \in \{1, \ldots, k\}$ tels que $v_i = v_j, i \neq j$, alors $\alpha(v_1, \ldots, v_k) = 0$.

 $D\'{e}monstration.$

- 1. (1) \implies (2). On a sgn(transposition) = -1.
- 2. (2) \Longrightarrow (3). Donné i, j tel que $v_i = v_j, i \neq j$. On considère la transposition qui échange i et j et on a

$$\alpha(v_{\sigma_1},\ldots,v_{\sigma_k}) = -\alpha(v_1,\ldots,v_k),$$

mais $(v_{\sigma_1}, \dots, v_{\sigma_k}) = (v_1, \dots, v_k)$ comme $v_i = v_j$ et donc

$$\alpha(v_1, \dots, v_k) = -\alpha(v_1, \dots, v_k) \implies \alpha(v_1, \dots, v_k) = 0.$$

3. (2) \implies (1). Si $\sigma = \sigma_{(1)} \dots \sigma_{(l)}, \, \sigma_{(j)}$ sont des transpositions, alors

$$\alpha(v_{\sigma_1}, \dots, v_{\sigma_k}) = (-1)^l \alpha(v_1, \dots, v_k) = \operatorname{sgn}(\sigma) \alpha(v_1, \dots, v_k).$$

4. (3) \Longrightarrow (2). σ est une transposition telle que $\sigma_i = j, \sigma_j = i$. Les v_1, \ldots, v_k sont donnés. On écrit :

$$\alpha(v_1, \dots, \underbrace{v_i + v_j}_{\text{position } i}, \underbrace{v_i + v_j}_{\text{position } j}, \dots, v_k) = 0.$$

Mais

$$\alpha(v_1, ..., v_i + v_j, ..., v_i + v_j, ..., v_k)$$

$$= \alpha(v_1, ..., v_i, ..., v_i + v_j, ..., v_k) + \alpha(v_1, ..., v_j, ..., v_i + v_j, ..., v_k)$$

$$= \alpha(v_1, ..., v_i, ..., v_i, ..., v_k) + \alpha(v_1, ..., v_i, ..., v_j, ..., v_k)$$

$$+ \alpha(v_1, ..., v_j, ..., v_i, ..., v_k) + \alpha(v_1, ..., v_j, ..., v_j, ..., v_k).$$

On a donc

$$\alpha(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\alpha(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k) = \alpha(v_{\sigma_1},\ldots,v_{\sigma_k}).$$

Exemple. 1. $\alpha(v,w) = \alpha((v',v^2),(w',w^2)) = v'w^2 - v^2w'$. On vérifie facilement qu'il est antisymétrique.

2. Plus généralement, pour chaque $v_1, \ldots, v_k \in \mathbb{R}^k$,

$$\alpha(v_1,\ldots,v_k) = \det[v_1 \ v_2 \ \ldots \ v_k]$$

est un tenseur extérieur.

Corollaire. Si $\{v_1, \ldots, v_k\}$ n'est pas libre (i. e. linéairement dépendant), $\alpha(v_1, \ldots, v_k) = 0$.

Démonstration. Si la famille n'est pas libre, il existe i tel que $v_i = \sum_{j \neq i} c_j v_j$.

On suppose que dim(E) = n et k > n. Alors si $\alpha \in \Omega^k(E)$ est un tenseur extérieur,

$$\forall v_1, \ldots, v_k \in E, \alpha(v_1, \ldots, v_k) = 0.$$

On définit maintenant

$$\Lambda^k(E) := \{ \alpha \in \Omega^k(E), \alpha \text{ est tenseur extérieur} \}.$$

Proposition 4.4. $\Lambda^k(E)$ est un sous-espace vectoriel, i. e.

$$\forall \alpha, \beta \in \Lambda^k(E), c \in \mathbb{R}, (c\alpha + \beta) \in \Lambda^k(E).$$

Quelle est la dimension de $\Lambda^k(E)$?

On cherche une base pour $\Lambda^k(E)$. Si (e_1,\ldots,e_n) base de $E,(e'_1,\ldots,e'_n)$ base duale, alors

$$\{e^{i_1}\otimes\cdots\otimes e^{i_k}\mid 1\leq i_j\leq n, 1\leq j\leq n\}$$

est une base de $\Omega^k(E)$.

On va définir pour chaque choix d'indices $1 \le i_1 < i_2 < \ldots < i_k \le n$ un élément extérieur $\varepsilon^{i_1 i_2 \ldots i_k}$ comme un élément proposé de base de $\Lambda^k(E)$ par la formule

$$\varepsilon^{i_1 \dots i_k}(v_1, \dots, v_k) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) e^{i_1} \otimes \dots \otimes e^{i_k}(v_{\sigma_1}, \dots, v_{\sigma_k}).$$

Exemple.

$$e^{12}(v_1, v_2) = e^1 \otimes e^2(v_1, v_2) - e^1 \otimes e^2(v_2, v_1) = e^1(v_1)e^2(v_2) - e^1(v_2)e^2(v_1).$$

Proposition 4.5. $\varepsilon^{i_1...i_k} \in \Lambda^k(E)$.

Démonstration. Si $\tau \in S_k$ fixé, alors

$$\varepsilon^{i_1 \cdots i_k}(v_{\tau_1}, \dots, v_{\tau_k}) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) e^{i_1} \otimes \dots \otimes e^{i_k}(v_{\sigma \tau_1}, \dots, v_{\sigma \tau_k})$$
$$= \sigma(\tau) \sum_{\sigma \in S_k} \operatorname{sgn}(\tau) \operatorname{sgn}(\sigma) e^{i_1} \otimes \dots \otimes e^{i_k}(v_{\sigma \tau_1}, \dots, v_{\sigma \tau_2}).$$

Donc

$$\varepsilon^{i_1 \dots i_k}(v_{\tau_1}, \dots, v_{\tau_k}) = \operatorname{sgn}(\tau) \sum_{\sigma' \in S_k} \operatorname{sgn}(\sigma') e^{i_1} \otimes \dots \otimes e^{i_k}(v_{\sigma'_1}, \dots, v_{\sigma'_k}) = \operatorname{sgn}(\sigma) \varepsilon^{i_1 \dots i_k}(v_1, \dots, v_k).$$

Une autre manière pour proposer des éléments de base $\forall 1 \leq i_1 < i_2 < \ldots < i_k \leq n$ et $1 \leq j_1 < \ldots < j_k \leq n$: on va définir

$$\overline{\varepsilon}^{i_1\dots i_k}(e_{j_1},\dots,e_{j_k}) \stackrel{\text{def}}{=} \delta^{i_1}_{j_1}\delta^{i_2}_{j_2}\dots\delta^{i_k}_{j_k}.$$

Si $j_s = j_l$ pour $s \neq l$, alors $\overline{\varepsilon}^{i_1 \dots i_k} = 0$ par définition.

Si j_1, \ldots, j_k sont k indices différents, mais pas dans l'ordre croissant, on les réordonne par une permutation $\sigma \in S_k$ avec $1 \le \sigma_{j_1} < \ldots < \sigma_{j_k} \le n$. On définit

$$\overline{\varepsilon}^{i_1...i_k}(e_{j_1},\ldots,e_{j_k}) \stackrel{\text{def}}{=} \operatorname{sgn}(\sigma)\delta^{j_1}_{i_1}\ldots\delta^{j_k}_{i_k}.$$

Est-ce que on a $\overline{\varepsilon} = \varepsilon$ pour tout choix de $1 \le i_1 < \ldots < i_k \le n$? (exercice). $\overline{\varepsilon}$ est prolongé par k-linéarité sur tout élément $(v_1, \ldots, v_k) \in E^k$.

Théorème 4.3. $\{\overline{\varepsilon}^{i_1...i_k}, \text{ pour tout } 1 \leq i_1 < ... < i_k \leq n\}$ forme une base pour $\Lambda^k(E)$.

Démonstration.

1. Ils sont libres. En effet,

$$\sum_{1 \leq i_1 < \ldots < i_k \leq n} c_{i_1 \ldots i_k} \overline{\varepsilon}^{i_1 \ldots i_k} = 0$$

$$\implies \forall 0 \leq j_1 < \ldots < j_k \leq n, \sum_{1 \leq i_1 < \ldots < i_k \leq n} c_{i_1 \ldots i_k} \overline{\varepsilon}^{i_1 \ldots i_k} (e_{j_1}, \ldots, e_{j_k}) = 0$$

$$\implies 0 = \sum_{1 \leq i_1 < \ldots i_k \leq n} c_{i_1 \ldots i_k} \delta^{i_1}_{j_1} \ldots \delta^{i_1}_{j_1} = c_{j_1 \ldots j_k}.$$

2. Ils génèrent $\Lambda^k(E)$: exercice.

Quelle est la dimension de $\Lambda^k(E)$? C'est $\dim(\Lambda^k(E)) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$. Par convention, $\dim(\Lambda^0(E)) = 1$ et $\Lambda^k(E) = \mathbb{R}$, $\Lambda^k(E) = \{0\}$ si k < 0 et

$$\dim(\Lambda^1(E)) = \frac{n!}{1!(n-1)!} = n \text{ et } \dim(\Lambda^n(E)) = \frac{n!}{(n-n)!0!} = 1.$$

Proposition 4.6. Si $\alpha \in \Lambda^k(F)$, $T \in \mathcal{L}(E,F)$, $(\Omega^k(T))(\alpha) \in \Lambda^k(E)$.

Démonstration. Si $\beta = (\Omega^k(E))(\alpha), v_1, \dots, v_k \in E$,

$$\beta(v_1,\ldots,v_k)=\alpha(T(v_1),\ldots,T(v_k)).$$

Si $i \neq j, v_i = v_j$, alors $T(v_i) = T(v_j)$ et $\alpha(T(v_1), \ldots, T(v_k)) = 0$, donc $\beta(v_1, \ldots, v_k) = 0$. Donc $\beta \in \Lambda^k(E)$.

On écrit

$$\Lambda^k(T) \stackrel{\text{def}}{=} \Omega^k(E)_{|\Lambda^k(E)}.$$

Exemple. 1.

2. Si k = n, on a dim $(\Lambda^k(E)) = 1$ et

$$\overline{\varepsilon}^{1...n}(e_1,\ldots,e_n)=1 \text{ et } \overline{\varepsilon}^{12...n}(e_{\sigma_1},\ldots,e_{\sigma_n})=\operatorname{sgn}(\sigma).$$

Si k=2=n, on a

$$\overline{\varepsilon}(e_1, e_2) = 1, \overline{\varepsilon}(e_2, e_1) = -1, \overline{\varepsilon}(e_1, e_1) = 0, \overline{\varepsilon}(e_2, e_2) = 0.$$

et
$$\overline{\varepsilon}(v,w) = -\overline{\varepsilon}(w,v)$$
. Si $v = (x_1,x_2), w = (y_1,y_2)$. Donc

$$\overline{\varepsilon}(v,w)=\overline{\varepsilon}(x_1e_1+x_2e_2,y_1e_1+y_2e_2)$$
 = ... on développe grâce à la linéarité de l'application = $x_1y_2-x_2y_1$.

C'est le déterminant formé par les vecteurs v, w, à savoir l'aire du parallélogramme formé par v, w.

Donc

$$\overline{\varepsilon}^{12...n}(v_1,\ldots,v_n) = \det[v_1 \ldots v_n].$$

C'est le volume n-dimensionnel signé de parallélipipè de crée par (v_1,\ldots,v_n) (ordonné). On dit que $\overline{\varepsilon}^{1...n}$ est l'élément de volume sur $\Lambda^k(E)$ et on va le noter par $w=\overline{\varepsilon}^{1...n}$.

$$w(v_1, \ldots, v_n) = \text{volume sign\'e de parall\'e lipip\`e de cr\'e\'e par } v_1, \ldots, v_n = \{\sum_{i=1}^n \lambda_i v_i, 0 \le \lambda_i \le 1\}.$$

Remarque (Sur les notations). Parfois on représente les éléments de E comme les vecteurs de colonne

$$\overrightarrow{v} = \begin{bmatrix} x^1 \\ \vdots \\ x^n \end{bmatrix} = |\overrightarrow{v}\rangle, \text{ avec } \overrightarrow{v} = x^1e_1 + \dots + x^ne_n$$

et les éléments de E^* comme les vecteurs de ligne par rapport à la base duale.

$$\overrightarrow{a} = y_1 e^1 + \dots + y_n e^n, \langle \overrightarrow{a} | = [y_1 \dots y_n].$$

Pour $\overrightarrow{a} \in E^*$, pour $\overrightarrow{v} \in E$,

$$\overrightarrow{a}(\overrightarrow{v}) = \sum_{i=1}^{n} y_i x^i = \langle \overrightarrow{a} \mid \overrightarrow{v} \rangle$$
$$= [y_1 \dots y_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Dans le cas général, $w = \overline{\varepsilon}^{1...n} \in \Lambda^k(E)$ est le seul élément de base pour cet espace de dimension 1. Si $T: E \to E$ transpormation linéaire $\Lambda^k(T): \Lambda^k(E) \longrightarrow \Lambda^k(E)$, mais $\dim(\Lambda^n(E)) = 1$. S'il existe $c \in \mathbb{R}, \forall \alpha \in \Lambda^n(E)(\alpha), \Lambda^n(T)(\alpha) = c\alpha$.

Définition 4.7. det(T) := c.

Exercice 4. Si $E = \mathbb{R}^n, T(v) = A | \overrightarrow{v} \rangle$ pour la base standart, alors $\det(T) = \det(A)$.

On considère $T: \mathbb{R}^n \to \mathbb{R}^n$, $\alpha \in \Lambda^n(\mathbb{R}^n)$,

$$(\Lambda^n(T))(\alpha)(w_1,\ldots,w_n) = \alpha(T(w_1),\ldots,T(w_n)) = \det(T)\alpha(w_1,\ldots,w_n).$$

On choisit $\alpha = \omega, w_i = e_i$.

$$\omega(T(e_1), \dots, T(e_n)) = \det(T)\omega(e_1, \dots, e_n). \tag{7}$$

Mais

$$\det(T) = \omega(T(e_1), \dots, T(e_n)) = \det[T(e_1), \dots, T(e_n)]. \tag{8}$$

 $7,8 \implies \det(T) = \det(A).$

 $\det(T)$ est défini directement indépendemment d'une base de E. Donc

$$\Lambda^n(\mathbb{1}_E) = \mathbb{1}_{\Lambda^n(E)},$$

donc $\mathbb{1}_{\Lambda^n(E)}(\alpha) = \alpha \implies c = 1.$

De plus, pour $T: E \to E, S: E \to E$,

$$\Lambda^n(S \circ T) = \Lambda^n(T) \circ \Lambda^n(S) \implies \det(S \circ T) = \det(S) \det(T).$$

Si T est inversible, alors

$$\Lambda^{n}(E)(T \circ T^{-1}) = \Lambda^{n}(\mathbb{1}_{E}) = \mathbb{1}_{\Lambda^{n}(E)}$$

$$\Longrightarrow \Lambda^{n}(T^{-1}) \circ \Lambda^{n}(T) = \mathbb{1}_{\Lambda^{n}(E)}$$

$$\Longrightarrow \det(T) \det(T^{-1}) = 1.$$

Si T est inversible, on a $det(T) \neq 0$ et

$$\det(T^{-1}) = \frac{1}{\det(T)}.$$

Aussi $\det(T) \neq 0 \implies T$ est inversible. Etant donné (e_1, \ldots, e_n) , on doit démontrer que $T(e_1), \ldots, T(e_n)$ forment une famille libre.

$$\omega(T(e_1),\ldots,T(e_n)) = \Lambda^n(T)(\omega)(e_1,\ldots,e_n) = (\det(T))\omega(e_1,\ldots,e_n) = \det(T)\cdot 1 \neq 0.$$

Comme ω est linéairement dépendant, par contraposée, $\{T(e_1), \ldots, T(e_n)\}$ ne peut pas être linéairement dépendant.

Lemme. Si $\{v_1, \ldots, v_n\}$ sont linéairement dépendants, alors $\omega(v_1, \ldots, v_n) = 0$. Si $\omega(v_1, \ldots, v_n) \neq 0$, alors $\{v_1, \ldots, v_n\}$ famille libre.

Aussi, si $\{v_1,\ldots,v_n\}$ sont libres, on définit $Te_i=v_i,T:E\to E$ devient inversible, donc $\det(T)\neq 0$.

$$\det(T) = \det(T)\omega(e_1, \dots, e_n) = (\Lambda^n(T))(\omega)(e_1, \dots, e_n)$$
$$= \omega(T(e_1), \dots, T(e_n)) = \omega(v_1, \dots, v_n) \implies \omega(v_1, \dots, v_n) \neq 0.$$

 $T: E \to E, (e_1, \dots, e_n)$ base de E,

$$Te_i = A|e_i\rangle = \begin{bmatrix} A_{1i} \\ A_{2i} \\ \vdots \\ A_{ni} \end{bmatrix} = \sum_{j=1}^n A_{ji}e_j.$$

$$\det(T) = \omega(T(e_1), \dots, T(e_n)) = \omega(\sum_{j=1}^n A_{j1}e_j, \dots, \sum_{j=1}^n A_{jn}e_j)$$

$$= \sum_{j1} \dots \sum_{jn} A_{j_11}A_{j_22} \dots A_{j_nn}\omega(e_{j1}, \dots, e_{jn}) = \sum_{\sigma \in S_n} A_{\sigma_{11}}A_{\sigma_{22}} \dots A_{\sigma_{nn}}\operatorname{sgn}(\sigma)$$

$$\implies \det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma)A_{\sigma_{11}}A_{\sigma_{22}} \dots A_{\sigma_{nn}}.$$

4.4 Les élément de volumes et orientation

On a défini

$$\omega = \varepsilon^{12...n} \in \Lambda^n(E).$$

Cet élément dépend du choix de la base.

Définition 4.8. On dit que ω est un élément de volume sur E, avec $\dim(E) = n$ si $\omega \in \Lambda^n(E)$ et $\omega = 0$.

Remarque. Si $\omega_1, \omega_2 \in \Lambda^n(E)$ sont deux éléments de volume, alors il existe $c \neq 0, c \in \mathbb{R}$ tel que $\omega_1 = c\omega_2$.

Définition 4.9. On dit qu'une base $\{e_1, \ldots, e_n\}$ de E (base arbitraire $ordonn\acute{e}e$) a l'orientation positive (négative) ou est orientée positivement (négativement) par rapport à ω , qui est élément de volume donné sur E, quand $\omega(e_1, \ldots, e_n) > 0(\omega(e_1, \ldots, e_n) < 0)$.

Si $\omega = \varepsilon^{12...n}$ construit à partir de la base $\{e_1, \ldots, e_n\}$ et $\{e'_1, \ldots, e'_n\}$ est une base orientée positivement par rapport à ω , alors, par rapport à l'application linéaire $T: E \longrightarrow E, T(e_i) = e'_i$, on a $\det(T) > 0$.

Démonstration. En exercice.

La réciproque est aussi vraie.

Définition 4.10. $\{e_1,\ldots,e_n\},\{e'_1,\ldots,e'_n\}$ sont deux bases données. On dit qu'elles sont de même orientation lorsqu'il existe $\omega\in\Lambda^n(E)$ élément de volume tel que $\omega(e_1,\ldots,e_n)$ et $\omega(e'_1,\ldots,e'_n)$ sont de même signe.

Lemme. Si un tel ω dans la définition existe, alors $\forall \omega \in \Lambda^n(E)$, $\omega(e_1, \ldots, e_n)$ et $\omega(e'_1, \ldots, e'_n)$ ont le même signe.

Démonstration. En exercice.

Remarque. Etre de la même orientation est une relation d'équivalence sur la collection de bases sur E. Il y a deux classes d'équivalence.

Si on fait la théorie sur \mathbb{C} (qui n'est pas un corps ordonné), on ne peut pas définir une orientation. Si $\omega(e_1,\ldots,e_n)\in\mathbb{C}$, il n'y a pas de signe (Kahler).

On définit

$$\Lambda^*(E) := \bigoplus_{k \in \mathbb{Z}} \Lambda^k(E) = \bigoplus_{0 \le k \le n} \Lambda^k(E).$$

En général, $\alpha \otimes \beta$ n'est pas un tenseur extérieur. On cherche un produit \wedge qui nous donne

$$\alpha \in \Lambda^k(E), \beta \in \Lambda^l(E) \implies \alpha \wedge \beta \in \Lambda^{k+l}(E).$$

Si on essaie de mettre

$$\alpha \wedge \beta(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) = \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \alpha(v_{\sigma_1}, \dots, v_{\sigma_k}) \beta(v_{\sigma_{k+1}}, \dots, v_{\sigma_{k+l}}).$$

Ce produit est tel que $\alpha \times \beta$ est antisymétrique, mais défini de cette façon, il n'est pas associatif.

Définition 4.11. $\Lambda^k(E) \times \Lambda^l(E) \xrightarrow{\wedge} \Lambda^{k+l}(E)$, avec $\alpha \in \Lambda^k(E)$, $\beta \in \Lambda^l(E)$, le produit extérieur $\alpha \wedge \beta$ est défini comme l'élément de $\Omega^{k+l}(E)$ par

$$\alpha \wedge \beta(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) = \frac{1}{k! l!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \alpha(v_{\sigma_1}, \dots, v_{\sigma_k}) \beta(v_{\sigma_{k+1}}, \dots, v_{k+l}).$$

Lemme. $\alpha \in \Lambda^k, \beta \in \Lambda^l(E) \implies \alpha \wedge \beta \in \Lambda^{k+l}(E).$

Démonstration. Prenons $\tau \in S_{k+l}$. On a

$$\frac{\alpha \wedge \beta(v_{\tau_1}, \dots, v_{\tau_k}, v_{\tau_{k+1}}, \dots, v_{\tau_{k+l}})}{\stackrel{\text{def}}{=} \frac{1}{k! l!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \alpha(v_{(\sigma\tau)_1}, \dots, v_{(\sigma\tau)_k}) \beta(v_{(\sigma\tau)_{k+1}}, \dots, v_{(\sigma\tau)_{k+l}})}$$

Proposition 4.7. Si $\alpha \in \Lambda^k(E), \beta \in \Lambda^l(E), \gamma \in \Lambda^s(E), \text{ alors}$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma).$$

Donc on peut parler sans confusion de $\alpha \wedge \beta \wedge \gamma \in \Lambda^{k+l+s}(E)$.

Donc on peut généraliser le produit sur m tenseurs extérieurs $\alpha_i \in \Lambda^{k_i}, 1 \leq i \leq m$,

$$\alpha_1 \wedge \dots \wedge \alpha^m (v_1, \dots, v_{k_1}, v_{k_1+1}, \dots, v_{k_1+k_2}, \dots, v_{\sum_{i=1}^{m-1} k_i}, \dots, v_{\sum_{i=1}^m k_i})$$

$$= \frac{1}{k_1! \dots k_m!} \sum_{\sigma \in S_{k_1+\dots+k_m}} \operatorname{sgn}(\sigma) \alpha_1(v_{\sigma_1}, \dots, v_{\sigma_{k_1}}) \alpha_2(\dots) \dots \alpha_m(\dots).$$

Exemple.

$$\varepsilon^{i_1 \dots i_k}(v_1, \dots, v_k) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma)(e^{i_1} \otimes e^{i_n})(v_{\sigma_1}, \dots, v_{\sigma_n})$$

$$= \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma)e^{i_1}(v_{\sigma_1}) \dots e^{i_k}(v_{\sigma_k})$$

$$= \frac{1}{1! \dots 1!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma)e^{i_1}(v_{\sigma_1}) \dots e^{i_k}(v_{\sigma_n}).$$

Si on met
$$m=k, k_1=\cdots=k_m=1, \alpha_{k_j}=e^{i_j}\in\Lambda^1(E), 1\leq j\leq k$$
, on voit que
$$\varepsilon^{i_1\cdots i_k}=e^{i_1}\wedge\cdots\wedge e^{i_k}.$$

Exercice 5. Montrer que $e^{i_1} \wedge \cdots \wedge e^{i_k}(e_{j_1}, \dots, e_{j_k}) = \delta^{i_1}_{j_1} \dots \delta^{i_k}_{j_k}$, avec $0 < i_1 < \dots < i_k \le n, 0 \le j_1 < j_2 < \dots < j_k \le n$ qui montre que

$$\varepsilon^{i_1...i_k} = \overline{\varepsilon}^{i_1...i_k}$$

Donc pour n=m, on obtient $\varepsilon^{12...n}=e^1\wedge\cdots\wedge e^n$. Donc l'élément de volume ω associé à une base ordonnée (e_1,\ldots,e_n) de E est simplement $\omega=e^1\wedge\cdots\wedge e^n$.

Exemple. Si $\alpha_i \in \Lambda^1(E), v_i \in E$,

$$\alpha_1 \wedge \cdots \wedge \alpha_m(v_1, \dots, v_m) = \sum_{\sigma \in S_m} \operatorname{sgn}(\sigma) \alpha_1(v_{\sigma_1} \dots \alpha_m(v_{\sigma_m})) = \det[\alpha_i(v_j)].$$

Exemple. $\alpha_i : \mathbb{R}^3 \to \mathbb{R}$,

$$\alpha_1(x_1, x_2, x_3) = x_1 + x_2, \alpha(x_1, x_2, x_3) = x_3,$$

 $v_1 = (1, 1, 0), v_2 = (0, 1, 0).$

m = 2, n = 3.

$$\begin{split} \alpha_1 \wedge \alpha_2(v_1, v_2) &= \sum_{\sigma \in S_2} \operatorname{sgn}(\sigma) \alpha_1(v_{\sigma_1}) \alpha_2(v_{\sigma_2}) \\ &= \alpha_1(v_1) \alpha_2(v_2) - \alpha_2(v_1) \alpha_1(v_2) = \det \left(\begin{pmatrix} \alpha_1(v_1) & \alpha_1(v_2) \\ \alpha_2(v_1) & \alpha_2(v_2) \end{pmatrix} \right) = \det \left(\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \right) = 2. \end{split}$$

Proposition 4.8. $\alpha \in \Lambda^k(E), \beta \in \Lambda^l(E)$, alors

$$\alpha \wedge \beta = (-1)^{kl} \beta \times \alpha.$$

En particulier, si k est impair,

$$\forall \alpha \in \Lambda^k(E), \alpha \wedge \alpha = 0,$$

parce que dans ce cas, on a $\alpha \wedge \alpha = (-1)\alpha \wedge \alpha$.

Démonstration.

$$\alpha \wedge \beta(v_1, \dots, v_{k+l}) = \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma)(v_{\sigma_1}, \dots, v_{\sigma_k}) \beta(v_{\sigma_{k+1}}, \dots, v_{\sigma_{k+l}})$$
$$\beta \wedge \alpha(v_1, \dots, v_{k+l}) = \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \beta(v_{\sigma_1}, v_{\sigma_l}) \alpha(v_{l+1}, \dots, v_{l+k}).$$

On doit introduire τ telle que $(-1)^{kl}$.

Proposition 4.9. Soit $T \in \mathcal{L}(E, F)$. Pour tout k, $\Lambda^k(T) : \Lambda^k(F) \longrightarrow \Lambda^k(E)$, pour $\alpha \in \Lambda^k(F)$, $\beta \in \Lambda^l(F)$,

$$\underbrace{\Lambda^{k+l}(T)(\alpha \wedge \beta)}_{\in \Lambda^{k+l}(E)} = \underbrace{\Lambda^{k}(T)(\alpha)}_{\in \Lambda^{k}(E)} \wedge \underbrace{\Lambda^{l}(T)(\beta)}_{\in \Lambda^{l}(E)}.$$

La relation entre le produit extérieur \wedge et le produit extérieur des vecteurs de \mathbb{R}^3 : soient $v_1 = (x_1, x_2, x_3)$ et $v_2 = (y_1, y_2, y_3)$.

$$v_1 \times v_2 := (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

Penser à v_1, v_2 comme des éléments de $(\mathbb{R}^3)^*$, donc comme des éléments de $\Lambda^1((\mathbb{R}^3)^*)$. Quels sont les coefficients de $v_1 \wedge v_2$ dans la base $\varepsilon_{12}, \varepsilon_{13}, \varepsilon_{23}$?

$$\begin{split} v_1 \wedge v_2 &= \sum_{1 \leq i_1 < i_2 \leq 3} v_1 \wedge v_2(e^{i_1}, e^{i_2}) \varepsilon_{i_1 i_2} = v_1 \wedge v_2(e^1, e^2) \varepsilon_{12} + v_1 \wedge v_2(e^2, e^3) \varepsilon_{23} + v_1 \wedge v_2(e^1, e^3) \varepsilon_{13} \\ &= [v_1(e^1) v_2(e^2) - v_1(e^2) v_2(e^1)] \varepsilon_{12} + [v_1(e^2) v_2(e^3) - v_2(e^2) v_1(e^3)] \varepsilon_{23} + [v_1(e^1) v_2(e^2) - v_2(e^1) v_1(e^3)] \varepsilon_{13} \\ &= (e^1(v_1) e^2(v_2) - e^2(v_1) e^1(v_2)) \varepsilon_{12} + (e^2(v_1) e^3(v_2) - e^2(v_2) e^3(v_1)) \varepsilon_{23} + (e^1(v_1) e^2(v_2) - e^1(v_2) e^3(v_1)) \varepsilon_{13} \\ &= (x_1 y_2 - x_2 y_1) \varepsilon_{12} + (x_2 y_3 - x_3 y_2) \varepsilon_{23} + (x_1 y_3 - x_3 y_1) \varepsilon_{13}. \end{split}$$

Donc si on choisit la base $\{\varepsilon_{23}, \varepsilon_{31}, \varepsilon_{12}\}$, on obtient $\varepsilon_{31} = -\varepsilon_{13} = e_1 \wedge e_3$. On obtient les coordonnées dans la base ordonnée $(\varepsilon_{23}, \varepsilon_{31}, \varepsilon_{12})$ de $\Lambda_2(\mathbb{R}^3)$ de $v_1 \wedge v_2 \in \Lambda_2(\mathbb{R}^3)$ est donnée par $v_1 \times v_2$.

Définition 4.12 (Contraction d'un tenseur par vecteur). Soit $X \in E$. Pour tout $\alpha \in \Omega^k(E)$, $1 \le k \le n$. $i_X(\alpha) \in \Omega^{k-1}(E)$ pour

$$i_X(\alpha)(v_1,\ldots,v_{k-1}) \stackrel{\text{déf}}{=} \alpha(X,v_1,\ldots,v_{k-1}).$$

On a $\Omega^0 \simeq \mathbb{R}$. Si $\alpha \in \Omega^1(E) = E^*$, on a $i_X(\alpha) = \alpha(X) \in \mathbb{R}$. En particulier, i_X est défini sur $\Lambda^k(E)$ pour tout k.

Lemme. $X \in E, \alpha \in \Lambda^k(E), \ alors \ i_X(\alpha) \in \Lambda^{k-1}(E).$

Démonstration. Pour $v_i = v_j, i \neq j, i, j \in \{1, \dots, k-1\}$, donc

$$i_X(\alpha)(v_1, \dots, v_{k-1}) = \alpha(X, v_1, \dots, v_{k-1}) = 0$$

Proposition 4.10. 1. $X \longrightarrow i_X$ est linéaire dans le sens que

- (a) $i_{X+Y} = i_X + i_Y$,
- (b) $i_{cX} = ci_X$.
- 2. Si on considère i_X restreint à $\Lambda^*(E)$, on a $i_X \circ i_Y = -i_Y \circ i_X$ et $i_X \circ i_X = 0$.
- 3. Pour $i_{X_{|\Lambda^*(E)}}$, on a, pour $\alpha \in \Lambda^k(E)$, $\beta \in \Lambda^l(E)$,

$$i_X(\alpha \wedge \beta) = i_X(\alpha) \wedge \beta + (-1)^k \alpha \wedge (i_X \beta).$$

Remarque. Supposons que $F\subseteq E$ est un sous-espace vectoriel, avec $\dim(F)=n-1, \dim(E)=n,$ $X\notin F$ et ω est un élément de volume en E, alors $\omega\in\lambda^n(E)$. Alors $i_X(\omega)\in\Lambda^{n-1}(F)$ va être un élément de volume pour F.

$$I_F: F \longrightarrow E \text{ est une injection } \Longrightarrow \Lambda^{n-1}(E) \stackrel{\Lambda^{n-1}(I_F)}{\longrightarrow} \Lambda^{n-1}(F),$$

$$\Lambda^{n-1}(I_F)\alpha(v_1,\ldots,v_{n-1}) = \alpha(v_1,\ldots,v_{n-1}), v_i \in F.$$

Donc quand on dit que $i_X(\omega) \in \Lambda^{n-1}(F)$, on est en train de considérer $i_X(\omega)_{|F^{n-1}}$ en réalité.