Cross-Database Transfer Learning via Learnable and Discriminant Error-Correcting Output Codes

Feng-Ju Chang¹ Yen-Yu Lin¹ Ming-Fang Weng²

¹Research Center for Information Technology Innovation, Academia Sinica, Taiwan ²Institute of Information Science, Academia Sinica, Taiwan

The Problem

- Multi-class object recognition with few labeled data
 - Goal: Learn a target classifier with low generalization errors

Over-fitting (poor generalization)

The Problem

• What and how prior knowledge help to learn a robust classifier without labeling new data?

Can be from different categories & different databases

Source task (many existing labeled

Target task (few labeled data)

different categories, database, feature distribution

Previous work: Instance transfer, feature transfer, model transfer

- Conventional TL algorithms: Lack multi-class formulation
 - > Cannot explore intra- and inter- class distribution (less discriminant)

2012/11/3

[Dai et al., ICML'07]

[Yan et al., MM'07]

[Yao et al., CVPR'12

Our Approach: Attribute Transfer

[Lampert et al., CVPR'09]

- Our goal: Attributes should be learnable
 - > Alleviate the labeling effort

Our Approach

- Multi-classes (source) to multi-classes (target) knowledge transfer
- What to transfer: a sequence of learnable, discriminant attributes
 - Commonly shared by the source and target domains
 - Converted two multi-class classification tasks to related, binary ones
- How to transfer: Two-layer multi-task variant of AdaBoost.OC
 - Boosting algorithm with error-correcting output codes (ECOC)
 - Better generalization [Dietterich et al., JAIR'95]
 - Outer layer: Attribute partition discovery
 - Inner layer: Attribute classifier learning

Characteristics of Our Approach

- Two-layer multi-task variant of AdaBoost.OC
 - Outer layer: Discover a set of attribute partitions
 - Discriminant: Multi-class formulation
 - Learnable: Without human effort
 - **Complementary**: Iterative error minimization

- ➤ Inner layer: Learn attribute classifiers
 - Employ classifier sharing principle
 - Support multiple kernel learning: Combining various low-level features

Outline

- Multi-class transfer learning
 - Connect two domains via attribute partition sharing
 - > Knowledge transfer by jointly learning classifiers

Experimental results

Sharing Attribute Partions for Domain Correlation

- Two criteria for designing the partition function:
 - Criterion 1: Discriminant for both domains
 - Criterion 2: Achieve class consistency between the opposite domains

Establish Partition Function

• Combine above two graphs, the partition function *B* can be learned by the following optimization problem:

```
J_{dis}(B) = \begin{bmatrix} \text{Criterion 1: Maximize discriminability of intra domains} \\ J_{shr}(B) = \begin{bmatrix} \text{Criterion 2: Minimize the class inconsistency between two domains} \\ \end{bmatrix}
```

- ➤ Binary integer programming: NP-complete problem
- Continuous relaxation: Solving a generalized eigenvalue problem

How to Transfer

- Two-layer multi-task variant of AdaBoost.OC
 - Outer layer: Discover a set of attribute partitions

Outline

- Multi-class Transfer Learning
 - > Connect two domains via attribute partition function sharing
 - Knowledge transfer by jointly learning classifiers

Experimental results

Jointly Learning Classifiers for Knowledge Transfer

- Attribute classifier learning:
 - Exploit the classifier sharing principle [Torralba et al., TPAMI'07]
- A boosting-based approach is presented
 - The design of weak learners: *dyadic hypercuts*
 - The discriminative power of each kernel \rightarrow a set of weak learners
 - Achieve multiple kernel learning
 - Dual-domain boosting for knowledge transfer
 - The relatedness between tasks: Modeled by the shared weak learners
 - The difference between tasks: Reflected by respective ensemble coefficients
 - Avoid negative transfer

$$f^{\ell}(\mathbf{x}) = \sum_{t=1}^{V} \beta_t^{\ell} h_t(\mathbf{x})$$
 for $\ell \in \{S, T\}$

Difference Relatedness

How to Transfer

- Two-layer multi-task variant of AdaBoost.OC
 - ➤ Outer layer: Discover a set of attribute partitions
 - ➤ Inner layer: Learn attribute classifiers

Class	circle	green	animal
	1	0	0
	1	0	0
	0	0	0
	0	1	1
Fire	0	1	0
Keep clear	1	1	1
	1	1	0
		1	0
		0	U

How to Transfer

- Two-layer multi-task variant of AdaBoost.OC
 - Outer layer: Discover a set of attribute partitions

➤ Inner layer: Learn attribute classifiers

Attribute "circle"

data

Attribute Partition		
Class	circle	
	1	
0	1	
(a) (b) (b) (c) (c)	0	
	0	
Fire exit Keep clear	0	
	0	
	1	
	1	

Outline

- Multi-class Transfer Learning
 - > Connect two domains via attribute partition function sharing
 - > Knowledge transfer by jointly learning classifiers

Experimental results

Experimental Settings

- Datasets:
 - Caltech256, SUN09, MSRC
- Features and kernels:
 - ➤ GIST, BoW-SIFT, Color histogram, Texton
 - RBF kernels with the Euclidean distance
- Baselines:
 - Target Only (T Only):
 - Average Kernel SVM (AK), Multiple Kernel SVM (MKL)
 - > Source only (S Only):
 - Classemes [Torresani et al., ECCV'10] + AK, Classemes + MKL
 - \triangleright Target + Source (T + S):
 - Classemes + AK, Classemes + MKL, Multiple Kernel Transfer Learning
 (MKTL) [Jie et al., ICCV'11]

Experimental Settings

- For each dataset:
 - ➤ 10 target categories and 20 source categories are randomly selected
 - > Training: 1 to 10 samples per target class, 50 samples per source class
 - > Testing: 50 samples per target class
- All experiments are repeated 10 times
- Two scenarios:
 - Within-database transfer learning:
 - Source and target classes are from the same database
 - Cross-database transfer learning:
 - Source and target classes are from different databases

Within-database Transfer Learning

Recognition rate w.r.t # of training sample per class

Cross-database Transfer Learning

Conclusions

- The proposed method transfers knowledge from multiple classes to multiple classes via two-layer boosting architecture
- No assumptions about the relatedness of the source and target domains are made
- Knowledge transfer via attributes:
 - Discriminant, learnable, and complementary
- The proposed framework can be extended to zero-shot learning
 - Learn a new object category without training data

Thank You