

Para determinar el tipo de disipador que puedes usar, primero revisemos el cálculo que realizaste en la página.

Parámetros que ingresaste:

- Temperatura Ambiente: 30 °C
- Temperatura Máxima: 175 °C
- Resistencia Térmica Junta-Carcasa: 1.1 °C/W
- Resistencia Térmica Carcasa-Disipador: 0.5 °C/W
- Potencia Disipada: 4 W
- Resistencia Térmica Mínima del Disipador Calculada: 34.65 °C/W

Cálculo de la temperatura máxima permitida

Para verificar la resistencia térmica mínima del disipador, podemos usar la siguiente fórmula:

$$T_{max} = T_{ambiente} + (P_{disipada} \times (R_{J-C} + R_{C-D} + R_{D-A}))$$

donde:

- T_{max} es la temperatura máxima.
- $T_{ambiente}$ es la temperatura ambiente.
- $P_{disipada}$ es la potencia disipada.
- R_{J-C} es la resistencia térmica de la unión a la carcasa.
- R_{C-D} es la resistencia térmica de la carcasa al disipador.
- R_{D-A} es la resistencia térmica del disipador al ambiente.

Calculando el R_{D-A}

Para determinar la resistencia térmica del disipador al ambiente que necesitas, reordenamos la fórmula anterior:

$$R_{D-A} = \frac{T_{max} - T_{ambiente}}{P_{disipada}} - R_{J-C} - R_{C-D}$$

Sustituyendo los valores:

- $T_{max} = 175^{\circ}C$
- $T_{ambiente} = 30^{\circ}C$
- $P_{disipada} = 4W$
- $R_{J-C} = 1.1 ^{\circ} C/W$
- $R_{C-D} = 0.5^{\circ}C/W$

Cálculo

$$R_{D-A} = \frac{175 - 30}{4} - 1.1 - 0.5$$

$$R_{D-A} = \frac{145}{4} - 1.1 - 0.5$$

$$R_{D-A} = 36.25 - 1.1 - 0.5 = 34.15^{\circ}C/W$$

Comparación

La resistencia térmica mínima del disipador calculada en la página fue de 34.65 °C/W, lo cual es mayor que el valor que obtuvimos, 34.15 °C/W. Esto significa que el cálculo está correcto, y el disipador que elijas debe tener una resistencia térmica al ambiente menor o igual a 34.15 °C/W.

Recomendación

Cuando busques un disipador, asegúrate de que su resistencia térmica R_{D-A} sea adecuada para mantener la temperatura del dispositivo por debajo de los 175 °C. También es buena idea considerar un disipador con un margen de seguridad, así que podrías buscar uno con una resistencia térmica menor, por ejemplo, alrededor de 30 °C/W o menos.

Si tienes un modelo de disipador específico en mente, puedo ayudarte a verificar sus especificaciones.

conoces algun modelo que cumpla eso?

Aquí hay algunas recomendaciones de disipadores de calor que podrían cumplir con la resistencia térmica máxima de 34.15 °C/W o menor, adecuados para aplicaciones con transistores, CPUs o LEDs:

1. Disipadores de Aluminio

- Thermaltake A4023:
 - Resistencia Térmica: Alrededor de 28 °C/W.
 - Dimensiones: 100 mm x 100 mm x 60 mm.
 - Ideal para aplicaciones de CPU y transistores.

2. Disipadores de Cobre

- Noctua NH-U12S:
 - Resistencia Térmica: Aproximadamente 30 °C/W.
 - **Dimensiones**: 125 mm x 150 mm x 45 mm.
 - Excelente para CPUs y aplicaciones de alto rendimiento.

3. Disipadores de Montaje en Superficie

- Aavid Thermalloy 501-8500:
 - Resistencia Térmica: 29.5 °C/W.
 - Dimensiones: 25 mm x 25 mm x 100 mm.
 - Adecuado para aplicaciones de LED y transistores.

4. Disipadores de Alta Capacidad

- FAN-540:
 - Resistencia Térmica: Alrededor de 32 °C/W.
 - Dimensiones: 60 mm x 60 mm x 100 mm.
 - Diseñado para cargas térmicas más altas.

Consideraciones Adicionales

 Ventilación: Si tu aplicación puede permitir un ventilador adicional, los disipadores activos pueden mejorar significativamente el rendimiento térmico.

- Pasta Térmica: Asegúrate de aplicar una buena pasta térmica entre el componente y el disipador para mejorar la conductividad térmica.
- Espacio: Verifica las dimensiones del disipador y asegúrate de que encaje en tu aplicación.

Donde Comprar

Puedes encontrar estos modelos en tiendas en línea como Amazon, Newegg, o en distribuidores especializados en componentes electrónicos. Asegúrate de verificar las especificaciones del fabricante antes de hacer la compra.

Si necesitas más detalles sobre un modelo en específico o ayuda para seleccionar el más adecuado, ¡házmelo saber!