A Quantum Dot Interacting With a Nano-mechanical Resonator

Yile Ying

Supervisor: Michele Governale Victoria University of Wellington

6th June 2019

1 / 9

Single Atom Laser

- Conventional laser: pump an ensemble of atoms into the excited state to achieve population inversion
- Early experiments on single atom laser:
 e.g. a Rb-85 atom couples to a microwave photon cavity

One-Atom Maser

D. Meschede, H. Walther, and G. Müller
Phys. Rev. Lett. **54**, 551 – Published 11 February 1985

Recent attempts using quantum dots as artificial atoms

Semiconductor double quantum dot micromaser

Y.-Y. Liu¹, J. Stehlik¹, C. Elichler¹, M. J. Gullans², J. M. Taylor^{2,3}, J. R. Petta^{1,4,*}
+ See all authors and affiliations
- Science 16 Jan 2015
- Vol. 347 I Saus 6219, no. 285-287

Phonon lasing: quantum dots with mechanical resonators

Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot

J. Gramich, A. Baumgartner, and C. Schönenberger Phys. Rev. Lett. **115**, 216801 – Published 16 November 2015

Quantum dot with carbon-nanotube

Control of vibrational states by spin-polarized transport in a carbon nanotube resonator

P. Stadler, W. Belzig, and G. Rastelli Phys. Rev. B **91**, 085432 – Published 27 February 2015

- A carbon nanotube quantum dot suspended between two ferromagnetic leads
- The dot spin couples to the vibration mode of the nanotube because of the nanotube spin-orbit interaction and/or a magnetic field gradient
- Lasing has been shown theoretically with collinearlly polarised leads [Mantovani et al., 2019]

Our Goal:

Non-collinearly polarised leads?

The System

- Basis: $|\alpha, n\rangle = |\alpha\rangle \otimes |n\rangle$; $n = 0, 1, 2, \cdots$ oscillator occupation number
- $E_{\downarrow,n+1} = \epsilon \frac{\epsilon_z}{2} + (n+1)\hbar\omega$; $E_{\uparrow,n} = \epsilon + \frac{\epsilon_z}{2} + n\hbar\omega$
- When $\hbar\omega \approx \epsilon_z$, $E_{\downarrow,n+1} \approx E_{\uparrow,n}$: the dot can exchange energy with the oscillator by flipping its spin.
- Electrons tunnel between the dot and the leads.

Assumptions

- Rotation Wave Approximation
 - ▶ the interaction strength between the dot and the oscillator is weak: $|\lambda_d| < \hbar\omega \approx \epsilon_{\rm z}$
 - four eigenstates $|\chi, n\rangle$ of the dot and the oscillator:

$$|0,n\rangle, |\uparrow\downarrow,n\rangle$$

$$|+,n\rangle = \sin\theta_n \, |\!\uparrow,n\rangle - \cos\theta_n \, |\!\downarrow,n+1\rangle$$

$$|-,n\rangle = \cos\theta_n |\uparrow,n\rangle + \sin\theta_n |\downarrow,n+1\rangle$$

- Unidirectional Transport (from left to right)
 - infinitely large voltage on the leads
 - Fermi functions: $f_L = 1$ and $f_R = 0$
- 0 Temperature
 - the bath cools down the oscillator
 - ▶ n=0 when the oscillator is in equilibrium
- Spin Flips in x Axis

$$\hat{e}_{x} = \hat{n}_{I} + \hat{n}_{R}$$

$$\hat{e}_v = \hat{n}_L - \hat{n}_R$$

$$\hat{e}_7 = \hat{n}_1 \times \hat{n}_R$$

Analysis

Reduced Density Matrix of the Dot and the Oscillator

$$\hat{\rho} = \sum_{\chi_1, n_1; \chi_2, n_2} P_{\chi_2, n_2}^{\chi_1, n_1} |\chi_2, n_2\rangle \langle \chi_1, n_1|$$

- diagonal terms: $P_{\chi,n} = P_{\chi,n}^{\chi,n}$ and $\sum_{\chi,n} P_{\chi,n} = 1$
- Master Equation at Steady State

$$\bullet \ 0 = \dot{P}_{\chi_2,n_2}^{\chi_1,n_1} = -\frac{i}{\hbar} (E_{\chi_1,n_1} - E_{\chi_2,n_2}) P_{\chi_2,n_2}^{\chi_1,n_1} + \sum_{\chi'_1,n'_1;\chi'_2,n'_2} W_{\chi_2,n_2;\chi'_2,n'_2}^{\chi_1,n_1;\chi'_1,n'_1} P_{\chi'_2,n'_2}^{\chi'_1,n'_1}$$

- ▶ general transition rate: $W_{\chi_2, \eta_2; \chi'_2, \eta'_2}^{\chi_1, \eta_1, \chi'_1, \eta'_1, \chi'_1, \eta'_1} \propto \Gamma$ or K
- Keldysh Formalism with Diagrammatic Rule
 - $lackbox |\chi, {\it n}
 angle$ propagates on the Keldysh contour
 - leads electron tunnelling line & bath phonon tunnelling line

Numerical Simulation in First Order Expansion ($n_{\text{max}} = 100$)

- off-diagonal elements reduce to zero
- diagrammatic results should agree with Fermi Golden Rule ones

6/9

Anti-parallel Polarisation

(a) average occupation number

(c) Fano factor $(F) = \frac{\langle (\Delta n)^2 \rangle}{\langle n \rangle}$

(b) probability distribution at resonance

Non-collinear Polarisation (1st order, p=1)

(c) Fano factor $(F) = \frac{\langle (\Delta n)^2 \rangle}{\langle n \rangle}$

Conclusion

Carbon-nanotube quantum dot with ferromagnetic leads

- Reproduced collinear polarisation results
 - ▶ Demonstrated the single atom lasing when the polarisation is sufficiently large
- Extended to non-collinear case
 - Developed diagrammatic rules
 - Demonstrated the single atom lasing when the angle between two polarisation axes is sufficiently small with full polarisation strength

• Thank You 🖾 📛

The Hamiltonian

$$\hat{H}_{\mathsf{leads}} = \sum_{\eta,\sigma,k} \epsilon_{k,\sigma} \hat{c}^{\dagger}_{\eta,\sigma,k} \hat{c}_{\eta,\sigma,k},$$

$$\hat{\mathcal{H}}_{\mathsf{dot}} = \sum_{\sigma} \epsilon_{\sigma} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \hat{n}_{\uparrow} \hat{n}_{\downarrow}$$

$$\hat{H}_{\mathrm{osc}}=\hbar\omega\hat{b}^{\dagger}\hat{b},$$

$$\hat{H}_{\mathsf{bath}} = \sum_{q} \hbar \omega_{q} \mathsf{a}_{q}^{\dagger} \mathsf{a}_{q}$$

$$\hat{\mathcal{H}}_{\mathsf{tun}} = \sum_{n,\sigma,k} \left(V_{\eta,\sigma} \hat{c}_{\eta,\sigma,k}^\dagger \hat{d}_\sigma + V_{\eta,\sigma}^* \hat{d}_\sigma^\dagger \hat{c}_{\eta,\sigma,k}
ight)$$

$$\hat{\mathcal{H}}_{\mathsf{intdot}} = -\lambda_d \left(\hat{d}_{\downarrow}^{\dagger} \hat{d}_{\uparrow} + \hat{d}_{\uparrow}^{\dagger} \hat{d}_{\downarrow}
ight) \left(\hat{b}^{\dagger} + \hat{b}
ight)$$

$$\hat{\mathcal{H}}_{\mathsf{intbath}} = \lambda_b \sum_q \left(\mathsf{a}_q^\dagger b + b^\dagger \mathsf{a}_q
ight)$$

Anti-parallel Polarisation (p=1)

(a) average occupation number

(b) probability distribution at resonance

p=0 vs p=1

(a) average spin in the dot

(b) probability of each state

(d) probability of each state