Homework 4

Requirements:

- 1. Digital format (can be typeset or photos, ought to write clearly if written by hand), upload to https://course.pku.edu.cn/.
- 2. Submit by next class
- 3. A problem is not counted if nobody can work it out
- 4. Each homework 10 points; 1 point deducted for each week's delay

Problems:

1. Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, with $\mathbf{b} \in \text{Range}(\mathbf{A})$. Show that $\exists \mathbf{x}$ satisfying

$$x > 0$$
, $Ax = b$

iff there exists no λ with

$$\mathbf{A}^T \boldsymbol{\lambda} > \mathbf{0}, \ \mathbf{A}^T \boldsymbol{\lambda} \neq 0, \ \mathbf{b}^T \boldsymbol{\lambda} \leq 0.$$

- 2. Let $C = \{ \mathbf{x} \in \mathbb{R}^n | \|\mathbf{x}\|_{\infty} \le 1 \}$, the ℓ_{∞} -norm unit ball in \mathbb{R}^n , and let $\mathbf{x} \in \partial C$. Identify the supporting hyperplanes of C at \mathbf{x} explicitly.
- 3. Judge which of the following functions are convex or concave, and find their moduli if they are strongly convex or concave.
 - (a) $f(x) = e^x 1$ on \mathbb{R} .
- (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
- (c) $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .
- (d) $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
- (e) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$.
- (f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 < \alpha < 1$ on \mathbb{R}^2_{++} .
- 4. Show that $f(t) = (t-1) \ln \frac{t}{t+1}$ is strictly convex on t > 0.
- 5. Prove that the negative entropy is 1-strongly convex.
- 6. Prove that if f is a convex and differentiable function, then for all \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 , and $a_1, a_2, a_3 > 0$ such that $a_1 + a_2 = a_3$, we have

$$\langle \nabla f(\mathbf{x}_3), a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 - a_3 \mathbf{x}_3 \rangle \le a_1 f(\mathbf{x}_1) + a_2 f(\mathbf{x}_2) - a_3 f(\mathbf{x}_3).$$