Control Sistemas Mecatronicos

BMJIvan

10 de agosto de $2021\,$

1. UNIDAD I

1.1. Solución de ecuaciones en espacio de estado

$$(1) \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

con condición inicial

$$x(0) = x_0.$$

$$A: n \times n, \ x: n \times 1, \ B: n \times m, \ u: m \times 1, \ C: p \times n, \ y: p \times 1,$$

El problema consiste en determinar x(t) y la respuesta y(t) Aplicando la transformada de Laplace a (1)

$$\mathcal{L}\{\dot{x}(t)\} = \mathcal{L}\{Ax(t)\} + \mathcal{L}\{Bu(t)\}$$

$$sX(s) - X(0) = AX(s) + Bu(s)$$

$$\underbrace{sX(s)}_{n \times 1} - \underbrace{AX(s)}_{n \times 1} = X(0) + Bu(s)$$

$$(sI - A)X(s) = X(0) + Bu(s)$$

$$X(s) = (sI - A)^{-1}X(0) + (sI - A)^{-1}Bu(s)$$

$$\mathcal{L}^{-1}\{X(s)\} = x(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}x(0) + \mathcal{L}^{-1}\{(sI - A)^{-1}Bu(s)\}$$

$$y(t) = \underbrace{\mathcal{C}\mathcal{L}^{-1}\{(sI - A)^{-1}\}X(0)}_{\text{Solución homogenea}} + \underbrace{\mathcal{C}\mathcal{L}^{-1}\{(sI - A)^{-1}Bu(s)\}}_{\text{Solución particular}}$$
 Respuesta en estado transitorio Respuesta en estado estacionario

Respuesta natural

Respuesta forzada

1.2. Transformación de similitud

considere el vector $q: n \times 1 \ (q \in \mathbb{R}^n)$. El conjunto de vectores q_1, \ldots, q_m es linealmente independiente si existen numero reales $\alpha_1, \ldots, \alpha_m$ no todos cero, tales que

$$\alpha_1 q_1 + \alpha_1 q_1 \dots, \alpha_n q_n = 0 \quad (1)$$

Si la solución unica de (1) es $\alpha_1 = \alpha_2 \dots = \alpha_m$ entonces el conjunto de vectores es linealmente independientes (l.i).

A la expresión $\alpha_1 q_1 + \alpha_2 q_2 + \ldots + \alpha_n q_n$ se le denomina combinación lineal. Base: Un conjunto de vetores l.i en \mathbb{R}^n se define como una base si se puede expresar como una combinación lineal unica.

En \mathbb{R}^n todo conjunto de vectores l.i puede utilizarse como una base.

Sea $X: n \times 1$ todo vector X puede expresarse como

$$X = \alpha_1 q_1 + \dots + \alpha_n q_n \quad (2)$$

donde q_i son l.i.

De (2) se tiene que

$$X = \underbrace{\begin{bmatrix} q_1, & q_2, & \dots, & q_n \end{bmatrix}}_{n \times n} \underbrace{\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}}_{n \times 1}$$
 (3)

se definen

$$Q = \begin{bmatrix} q_1, & q_2, & \dots, & q_n \end{bmatrix}, \quad \tilde{X} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

entonces sustituyendo en (3) se tiene que

$$X = Q\tilde{X}$$

donde
$$X$$
 y \tilde{X} son similares.
De (2) $X^{\top} = \alpha_1 S_1 + \alpha_2 S_2 + \ldots + \alpha_n S_n \ S_i : 1 \times n$

$$X^{\top} = \begin{bmatrix} \alpha_1, & \alpha_2, & \dots & \alpha_n \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_n \end{bmatrix}$$

Una matriz es estable cuando los valores propios son negativos. Sea la ecuacion lineal

$$Ax = y$$
 (4)

donde $A: n \times n \ B: n \times 1 \ y: n \times 1$ se definen

$$x = Q\tilde{x}, \ y = Q\tilde{y}$$

sustituyendo en (4) se tiene que

$$AQ\tilde{x} = Q\tilde{y}$$
$$Q^{-1}AQ\tilde{x} = \tilde{y} \quad (5)$$

donde A y $Q^{-1}AQ$ son similares y A esta relacionada con la estabilidad. ejercicio: Sea $A:n\times n$ una matriz estable, demuestre que la matriz $\tilde{A}=Q^{-1}AQ$ es tambien estable, considere que Q es invertible. Si

$$det(\lambda I - A) = \lambda^n + alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \dots + \alpha_n = 0$$

$$det(\lambda I - \tilde{A}) = \lambda^n + alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \dots + \alpha_n = 0$$

entonces

$$\begin{split} \det(\lambda I - \tilde{A} &= \det(\lambda I - A) \\ \det(\lambda I - \tilde{A}) &= \det(\lambda Q^{-1}Q - Q^{-1}AQ) \\ &= \det(Q^{-1}\lambda Q - Q^{-1}AQ) \\ &= \det(Q^{-1}(\lambda I - A)Q) \\ &= \det(Q^{-1})\det(\lambda I - A)\det(Q) \\ &= \det(Q^{-1})\det(Q)\det(\lambda I - A) \\ &= \det(Q^{-1}Q)\det(\lambda I - A) \\ &= \det(\lambda I - A) \end{split}$$

repetir el ejercicio anterior considerando la siguiente matriz $\tilde{A}=QAQ^{-1}$

$$\begin{aligned} \det(\lambda I - \tilde{A} &= \det(\lambda I - A) \\ \det(\lambda I - A) &= \det(\lambda I - QAQ^{-1}) \\ &= \det(\lambda QQ^{-1} - QAQ^{-1}) \\ &= \det(Q\lambda Q^{-1} - QAQ^{-1}) \\ &= \det(Q(\lambda I - A)Q^{-1}) \\ &= \det(Q)\det(\lambda I - A)\det(Q^{-1}) \\ &= \det(Q)\det(Q^{-1})\det(\lambda I - A) \\ &= \det(QQ^{-1})\det(\lambda I - A) \\ &= \det(\lambda I - A) \end{aligned}$$

1.3. Controlabilidad y observabilidad de sistemas lineales

Sea el sistema

$$(1) \left\{ \begin{array}{l} \dot{x}(t) = \overbrace{A}^{\text{estabilidad}} x(t) + \underbrace{B}_{\text{controlabilidad}} u(t) \\ y(t) = Cx(t) \end{array} \right.$$

donde

$$\begin{split} X: n \times 1 \\ A: n \times n \\ B: n \times m & entradas \\ u: m \times 1 \\ C: p \times n \\ y: P \times 1 & salidas \end{split}$$

Controlabilidad: Existencia de una entrada u(t) tal que cada variable de estado se pueda manipular de manera independiente. Es decir, las entradas cambian las variables.

Observabilidad: Consiste en determinar el estado inicial a partit de la salida y(t). Es decir, las condiciones iniciales afectan la salida.

Definición 1. El sistema (1) es controlable si existe u(t) tal que para todo estado inicial $x_0 = x(0)$ y todo estado final $x_f = x(T)$, el sistema puede llevarse de x_0 a x_f en tiempo finito.

1.4. Solución de ecuaciones en espacio de estado 2

Se condidera el sistema

$$(1) \left\{ \begin{array}{l} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \quad x(0) = X_0 \end{array} \right.$$

$$\begin{split} \dot{x}(t) - Ax(t) &= Bu(t) \\ e^{-At}(\dot{x}(t) - Ax(t)) &= e^{-At}Bu(t) \\ e^{-At}(\dot{x}(t)) - e^{-At}Ax(t) &= e^{-At}Bu(t) \\ \int_0^t \frac{d}{dt}(e^{-A\tau}x(\tau)) &= \int_0^t Bu(\tau)d\tau \\ e^{-A\tau}\Big|_a^b &= \int_0^t e^{-A\tau}Bu(\tau)d\tau \\ e^{-At}x(t) - e^0x(0) &= \int_0^t e^{-A\tau}Bu(\tau)d\tau \\ e^{At}(e^{-At}x(t) - e^0x(0)) &= e^{At}\Big(\int_0^t e^{-A\tau}Bu(\tau)d\tau\Big) \\ x(t) &= e^{At}x(0) + \int_0^t e^{(t-\tau)}Bu(\tau)d\tau + C \end{split}$$

anteriormente se obtuvo

$$x(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}x(0) + \mathcal{L}^{-1}\{(sI - A)^{-1}Bu(s)\}\$$

Por lo tanto

$$e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

A continuación se desarrollará los dos terminos un poco mas. Se considera la matriz exponencial de la siguiente forma

$$f(t) = e^{At} \quad f(0) = I$$

entonces, partiendo de la derivada

$$f(t) = Ae^{At} = Af(t)$$

$$\mathcal{L}\{f(t)\} = \mathcal{L}\{Af(t)\}$$

$$sF(s) - AF(s) = AF(s)$$

$$sF(s) - AF(s) = F(0)$$

$$(sI - A)F(s) = I$$

$$(sI - A)^{-1}(sI - A)F(s) = (sI - A)^{-1}I$$

$$F(s) = (sI - A)^{-1}$$

$$\mathcal{L}^{-1}\{F(s)\} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

$$F(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

$$e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

Por otro lado, considerando la definicion de la convolución

$$h(t) = (f * g)(t) = \int_0^t f(t - \tau)g(\tau)d\tau$$

Según el teorema de la covolución. si $\mathcal{L}\{f(t)\}y\mathcal{L}\{g(t)\}$ existen para $s>a\geq 0$, entonces

$$\mathcal{L}\{f*g\} = \mathcal{L}\{f(t)\}\mathcal{L}\{g(t)\} = F(s)G(s)$$

considerando las ecuaciones

$$f(t) = e^{At}, \quad g(t) = Bu(t)$$

Se tiene que

$$\int_0^t e^{At-\tau} Bu(\tau) d\tau = f * g$$

Aplicando la transformada de Laplace se tiene que

$$\mathcal{L}\left\{\int_0^t e^{At-\tau} Bu(\tau) d\tau\right\} = \mathcal{L}\left\{f * g\right\}$$
$$= F(s)G(s)$$
$$= (SI - A)^{-1} Bu(s)$$

Por lo tanto aplucando la transformada inversa de Laplace se obtiene

$$\int_0^t e^{At-\tau} Bu(\tau) d\tau = \mathcal{L}^{-1} \Big\{ (SI - A)^{-1} Bu(s) \Big\}$$

1.5. Criterios de estabilidad

El sistema

$$(1) \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

O el par (A, B) es controlable si cumple alguno de los siguientes criterios.

1) Controlabilidad de Kalman La matriz de controlabilidad

$$C = \left[\underbrace{B}_{n \times m} \quad \underbrace{AB}_{n \times m} \quad A^2B \quad \dots \quad A^{n-1}B \right] \Big\} n \times nm$$

para m = 1 (una entrada), con $det(C) \neq 0$ es de rango completo, es decir, rango(C) = n.

2) Controlabilidad de Hautus La matriz de controlabilidad

$$H = \begin{bmatrix} \lambda I - A & B \end{bmatrix} n \times (n+m)$$

es de rango completa, rango(HC) = n para todo $\lambda \in \mathbb{C}$

3) Gramiano de controlabilidad

$$G_c = \int_0^t e^{At\tau} B B^T e^{A^T \tau} d\tau$$

es invertible, es decir, $det(G_c) \neq 0$)

4) Los valores propios de la matriz A-Bk pueden asignarse arbitrariamente.

2. Criterios de observabilidad

El sistema

$$(1) \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

O el par (A, B) es observable si cumple alguno de los siguientes criterios.

1) Observabilidad de Kalman La matriz de observabilidad

$$C = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} \right\} pn \times n$$

es de rango completo, rango(C) = n.

2)Observabilidad de Hautus La matriz de observabilidad

$$H_o = \begin{bmatrix} \lambda I - A \\ C \end{bmatrix}$$

es de rango completa, $rango(H_o) = n$ para todo $\lambda \in \mathbb{C}$

3) Gramiano de observabilidad

$$G_o = \int_0^t e^{At\tau} C^T C e^{A^T \tau} d\tau$$

es invertible, $det(G_o) \neq 0$) 4) Los valores propios de la matriz A-LC pueden asignarse arbitrariamente.

2.1. Forma Canonica Controlable

Ejercicio: demostrar que la propiedad de controlabilidad es invariante para cualquier transformación de similtud

Se considera la transformación de similitud

$$(1)X = P^{-1}z$$

donde P es invertible Se toma el sistema

(2)
$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

Se sustituye (1) en (2) para conseguir $P^{-1}\dot{z}=AP^{-1}z+Bu,$ y asi, obtener el sistema

$$(3) \begin{cases} \dot{z}(t) = \overbrace{PAP^{-1}}^{\tilde{A}} + \overbrace{PBu}^{\tilde{B}} \\ y(t) = CP^{-1} \end{cases}$$

donde A y PAP^{-1} son invariantes, se tiene que $\lambda(A) = \lambda(PAP^{-1})$ debido a que P es invertible, entonces $rango(\tilde{C}) = rango(C)$.

Se obtiene la matriz de controlabilidad para los sitemas (2) y (3) respectivamente.

(4)
$$C = [B, AB, A^2B, \dots, A^{n-1}B]$$

(5) $\tilde{C} = [\tilde{B}, \tilde{A}\tilde{B}, \tilde{A}^2\tilde{B}, \dots, \tilde{A}^{n-1}\tilde{B}]$

Considerando que $(PAP^{-1})^n = PA^nP^{-1}$, se sustituye las matrices similares de (3) en (5)

$$\tilde{C} = [PB, PAP^{-1}PB, PA^{2}P^{-1}PB, \dots, PA^{n-1}P^{-1}PB]$$

 $\tilde{C} = P[B, AB, A^{2}B, \dots, A^{n-1}B]$
 $\tilde{C} = PC$

Lo que se busca es la matriz P, por lo tanto, de la ecuación anterior se puede despejar de la siguiente forma

$$\tilde{C} = PC$$

$$\tilde{C}\tilde{C}^{-1} = PC\tilde{C}^{-1}$$

$$I = PC\tilde{C}^{-1}$$

$$P^{-1}I = C\tilde{C}^{-1}$$

$$P^{-1} = C\tilde{C}^{-1}$$
 (6)

Ahora se tomará el sistema de entradas y salidas

$$y^{n}(t) + a_{1}y^{n-1}(t) + \dots + a_{n}y(t) = b_{1}u^{n-1}(t) + \dots + b_{n}u(t)$$

$$\mathcal{L}\{y^{n}(t) + a_{1}y^{n-1}(t) + \dots + a_{n}y(t)\} = \mathcal{L}\{b_{1}u^{n-1}(t) + \dots + b_{n}u(t)\}$$

$$y(s)s^{n} + a_{1}y(s)s^{n-1} + \dots + a_{n}y(s) = b_{1}u(s)s^{n-1} + \dots + b_{n}u(s)$$

$$y(s)(s^{n} + a_{1}s^{n-1} + \dots + a_{n}) = u(s)(b_{1}s^{n-1} + \dots + b_{n})$$

Se escribe la función de transferencia como

$$g(s) = \frac{y(s)}{u(s)} = \frac{b_1 s^{n-1} + \dots + b_n}{s^n + a_1 s^{n-1} + \dots + a_n} = \frac{N(s)}{D(s)}$$

Si consideramos una función de transferencia racional (sin retardo) y estrictamente propia (orden del denominador mayor que el numerador)

$$g(s) = N(s)D(s)^{-1}$$

donde N(s) y D(s) son polinomios. Por lo tanto, la función de transferencia se puede escribir como

$$g(s) = \frac{y(s)}{u(s)} = N(s)D(s)^{-1}$$

La salida del sistema se puede escribir como

$$y(s) = N(s)D(s)^{-1}u(s)$$

donde $v(s) = D(s)^{-1}u(s).$ Entonces la entrada y la salida se pueden escribir como

$$u(s) = D(s)v(s)$$
$$y(s) = N(s)v(s)$$

Se definen las variables de estado de la siguiente forma

$$\begin{bmatrix} X_1(s) \\ X_2(s) \\ \vdots \\ X_{n-1}(s) \\ X_n(s) \end{bmatrix} = \begin{bmatrix} S^{n-1} \\ S^{n-2} \\ \vdots \\ S \\ 1 \end{bmatrix} v(s)$$

entonces las variables de estado se pueden escribir como

$$X_{n} = v(s)$$

$$X_{n-1} = sv(s) = sX_{n}(s)$$

$$X_{n-2}(s) = S^{2}v(s) = s(sv(s)) = sX_{n-1}(s)$$

$$\vdots$$

$$X_{2}(s) = sX_{3}(s)$$

$$X_{1}(s) = sX_{2}(s)$$

Si se sustituyen las variables de estado en la entrada se obtiene lo siguiente

$$u(s) = sX_1(s) + a_1X_1(s) + \ldots + a_nX_n(s)$$

Se despeja $sX_1(s)$

$$sX_1(s) = -a_1X_1(s) - \dots - a_nX_n + u(s)$$

Entonces es posible escribir el espacio de estados como

$$\begin{bmatrix} SX_{1}(s) \\ SX_{2}(s) \\ \vdots \\ SX_{n}(s) \end{bmatrix} = \underbrace{\begin{bmatrix} -a_{1} & -a_{2} & \cdots & -a_{n} \\ 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix}}_{\tilde{A}} \begin{bmatrix} X_{1}(s) \\ X_{2}(s) \\ \vdots \\ X_{n}(s) \end{bmatrix} + \underbrace{\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{\tilde{B}} u(s)$$

Según la definición de la matriz similar de controlabilidad

$$\tilde{C} = [\tilde{B}, \tilde{A}\tilde{B}, \tilde{A}^2\tilde{B}, \cdots, \tilde{A}^{n-1}\tilde{B}]$$

Se usará una matriz de 3*3 para encontrar un patrón

$$\tilde{C} = \begin{bmatrix} 1 & -a_1 & -a_1^2 - a_2 \\ 0 & 1 & -a_1 \\ 0 & 0 & 1 \end{bmatrix}$$

La inversa esta dada por

$$\tilde{C}^{-1} = \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_1 \\ 0 & 0 & 1 \end{bmatrix}$$

Por lo tanto, la inversa de la matriz similar de controlabilidad se puede expresar como

$$\tilde{C}^{-1} = \begin{bmatrix} 1 & a_1 & a_2 & \cdots & a_{n-1} \\ 0 & 1 & a_1 & \cdots & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & a_1 \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Considerando la matriz de controlabilidad

$$C = [B, AB, A^2B, \cdots, A^{n-1}B]$$

La ecuación (6) se puede escribir como

$$P^{-1} = [B, AB, A^{2}B, \cdots, A^{n-1}B] \begin{bmatrix} 1 & a_{1} & a_{2} & \cdots & a_{n-1} \\ 0 & 1 & a_{1} & \cdots & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & a_{1} \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

2.2. Forma Canonica Observable

Ejercicio: Demostrar que la propiedad de observabilidad es invariante para cualquier transformación de similitud.

Se considera la transformación de similitud

(1)
$$x = Qz$$

donde Q es invertible. Se toma el sistema

$$(2) \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

Se sustituye (1) en (2) para obtener $Q\dot{z} = AQz + Bu$ y asu obtener el sistema

$$(3) \begin{cases} \dot{z}(t) = \overbrace{Q^{-1}AQz}^{\tilde{A}} + \overbrace{Q^{-1}Bu}^{\tilde{B}} \\ y(t) = \underbrace{CQz}_{\tilde{C}} \end{cases}$$

Se obtiene la matriz de observabilidad para los sistemas (2) y (3) respectivamente.

$$(4) O = \begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{n-1} \end{bmatrix} = [C, CA, CA^{2}, \dots, CA^{n-1}]^{T}$$

$$(5) \tilde{O} = \begin{bmatrix} \tilde{C} \\ \tilde{C}\tilde{A} \\ \tilde{C}\tilde{A}^{2} \\ \vdots \\ \tilde{C}\tilde{A}^{n-1} \end{bmatrix} = [\tilde{C}, \tilde{C}\tilde{A}, \tilde{C}\tilde{A}^{2}, \dots, \tilde{C}\tilde{A}^{n-1}]^{T}$$

Debido a que $\tilde{A}^n = Q^{-1}\tilde{A}^nQ$

$$\begin{split} \tilde{O} &= [CQ, CQQ^{-1}AQ, CQQ^{-1}A^2Q, \dots, CQQ^{-1}A^{n-1}Q]^T \\ \tilde{O} &= [CQ, CAQ, CA^2Q, \dots, CA^{n-1}Q]^T \\ \tilde{O} &= [C, CA, CA^2, \dots, CA^{n-1}]^TQ \\ \tilde{O} &= OQ \end{split}$$

Lo que se busca es la matriz Q, por lo tanto, de la ecuación anterior se puede

despejar de la siguiente forma

$$\tilde{O} = OQ$$

$$\tilde{O}Q^{-1} = OQQ^{-1}$$

$$\tilde{O}Q^{-1} = OI$$

$$\tilde{O}^{-1}\tilde{O}Q^{-1} = \tilde{O}^{-1}O$$

$$IQ^{-1} = \tilde{O}^{-1}O$$

$$Q^{-1} = \tilde{O}^{-1}O \quad (6)$$

Debido a que Q es invertible, $rango(\tilde{O}) = rango(O)$ Tomando el sistema de entradas salidas

$$y(s)s^{n} + a_{1}y(s)s^{n-1} + \dots + a_{n}y(s) = b_{1}u(s)s^{n-1} + \dots + b_{n}u(s)$$
 (7)

Se reacomoda de la siguiente forma

$$s^{n}y(s) + s^{n-1}(a_{1}y(s) - b_{1}u(s)) + \ldots + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

Se considera la variable de estado $X_n(s) = y(s)$, es decir

$$y(s) = [0, 0, 0, \dots, 1]X(s)$$

Entonces se comienza a definir las variables de estado a partir de (7), de la siguiente forma

$$s^{n}y(s) + s^{n-1}(a_{1}y(s) - b_{1}u(s)) + \dots + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$s^{n-1}sy(s) + s^{n-1}(a_{1}y(s) - b_{1}u(s)) + \dots + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$s^{n-1}(sy(s) + a_{1}y(s) - b_{1}u(s)) + \dots + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$s^{n-1}(sy(s) + a_{1}y(s) - b_{1}u(s)) + \dots + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$s^{n-1}X_{n-1}(s) + s^{n-2}(a_{2}y(s) - b_{2}u(s)) + \dots + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$s^{n-2}sX_{n-1}(s) + s^{n-2}(a_{2}y(s) - b_{2}u(s)) + \dots + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$s^{n-2}(sX_{n-1}(s) + (a_{2}y(s) - b_{2}u(s))) + \dots + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$\vdots$$

$$s^{2}X_{2}(s) + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$\vdots$$

$$s^{2}X_{2}(s) + s(a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$\vdots$$

$$s^{2}X_{2}(s) + a_{n-1}y(s) - b_{n-1}u(s)) = b_{n}u(s) - a_{n}y(s)$$

$$sX_{1}(s) = b_{n}u(s) - a_{n}y(s)$$

Por lo tanto las variables de estado se definen como

$$X_1(s) = sX_2(s) + a_{n-1}y(s) - b_{n-1}u(s)$$

$$\vdots$$

$$X_{n-2}(s) = sX_{n-1}(s) + a_2y(s) - b_2u(s)$$

$$X_{n-1}(s) = sX_n(s) + a_1y(s) - b_1u(s)$$

$$X_n(s) = y(s)$$

Del proceso para obtener las variables de estado se puede ver que

$$sX_1(s) = -a_n y(s) + b_n u(s)$$

$$s^2 X_2(s) + s(a_{n-1} y(s) - b_{n-1} u(s)) = -a_n y(s) + b_n u(s)$$

$$s^2 X_2(s) + s(a_{n-1} y(s) - b_{n-1} u(s)) = sX_1(s)$$

$$sX_2(s) + (a_{n-1} y(s) - b_{n-1} u(s)) = X_1(s)$$

$$sX_2(s) = X_1(s) - a_{n-1} y(s) + b_{n-1} u(s)$$

entonces la derivada de las variables de estado se pueden escribir de la siguiente forma

$$sX_1(s) = -a_n y(s) + b_n u(s)$$

$$sX_2(s) = X_1(s) - a_{n-1} y(s) + b_{n-1} u(s)$$

$$\vdots$$

$$sX_{n-1}(s) = X_{n-2}(s) - a_2 y(s) + b_2 u(s)$$

$$sX_n(s) = X_{n-1}(s) - a_1 y(s) + b_1 u(s)$$

Recordando que $X_n(s) = y(s)$ se tiene que

$$sX_1(s) = -a_n X_n(s) + b_n u(s)$$

$$sX_2(s) = X_1(s) - a_{n-1} X_n(s) + b_{n-1} u(s)$$

$$\vdots$$

$$sX_{n-1}(s) = X_{n-2}(s) - a_2 X_n(s) + b_2 u(s)$$

$$sX_n(s) = X_{n-1}(s) - a_1 X_n(s) + b_1 u(s)$$

Entonces es posible escribir el espacio de estados como

$$\begin{bmatrix} SX_1(s) \\ SX_2(s) \\ \vdots \\ SX_n(s) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & \cdots & -a_n \\ 1 & 0 & \cdots & -a_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & -a_1 \end{bmatrix}}_{\tilde{A}} \begin{bmatrix} X_1(s) \\ X_2(s) \\ \vdots \\ X_n(s) \end{bmatrix} + \underbrace{\begin{bmatrix} b_n \\ b_{n-1} \\ \vdots \\ b_1 \end{bmatrix}}_{\tilde{B}} u(s)$$
$$y(s) = \underbrace{\begin{bmatrix} 0, 0, \dots, 1 \end{bmatrix}}_{\tilde{C}} X(s)$$

Según la definición de la matriz similar de observabilidad

$$\tilde{O} = [\tilde{C}, \tilde{C}\tilde{A}, \tilde{C}\tilde{A}^2, \cdots, \tilde{C}\tilde{A}^{n-1}]^T$$

Se usará una matriz de 3*3 para encontrar un patrón

$$\tilde{O} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -a_1 \\ 0 & -a_1 & -a_2 + a_1^2 \end{bmatrix}$$

La inversa esta dada por

$$\tilde{C}^{-1} = \begin{bmatrix} a_2 & a_1 & 1 \\ a_1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Por lo tanto, la inversa de la matriz similar de controlabilidad se puede expresar como

$$\tilde{O}^{-1} = \begin{bmatrix} a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ a_1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

Considerando la matriz de observabilidad

$$O = [C, CA, CA^2, \dots, CA^{n-1}]^T$$

La ecuación (6) se puede escribir como

$$Q^{-1} = \begin{bmatrix} a_{n-1} & a_{n-2} & \cdots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \cdots & 1 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ a_1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$