

Kontest 2 - 27.09.2023

Rozwiązania Finaliści

Zadanie 1. Udowodnij, że dla liczb rzeczywistych x, y > 1, zachodzi

$$\frac{x^2}{y-1} + \frac{y^2}{x-1} \geqslant 8.$$

Dowód. Załóżmy bez straty ogólności, że $x \ge y$. Wtedy $x^2 \ge y^2$ i $\frac{1}{y-1} \ge \frac{1}{x-1}$, więc z twierdzenia o ciągach jednomonotonicznych

$$\frac{x^2}{y-1} + \frac{y^2}{x-1} \geqslant \frac{x^2}{x-1} + \frac{y^2}{y-1}.$$

Ponadto

$$\frac{x^2}{x-1} \geqslant 4 \iff (x-2)^2 \geqslant 0.$$

Zatem

$$\frac{x^2}{y-1} + \frac{y^2}{x-1} \geqslant \frac{x^2}{x-1} + \frac{y^2}{y-1} \geqslant 8.$$

Zadanie 2. Niech PQ będzie średnicą półokręgu H. Okrąg O jest wewnętrznie styczny do H i styczny do PQ w C. Niech A będzie punktem na H, a B punktem na PQ, takim, że $AB \perp PQ$ i AB jest styczne do O. Udowodnij, że AC jest dwusieczną $\triangleleft PAB$.

Dowód. Rozważmy inwersję o środku C i dowolnym promieniu r. Trójkąty CAP i CP'A' oraz trójkąty $\triangle CAB$ i $\triangle CB'A'$ są podobne, więc AC jest dwusieczną $\triangleleft PAB$ wtedy i tylko wtedy, gdy $\triangleleft CAP = \triangleleft CAB$, co jest równoważne do $\triangleleft CP'A' = \triangleleft CB'A'$.

Prosta PQ przechodzi na samą siebie. Skoro okrąg O przechodzi przez C, w inwersji przechodzi on na prostą O' równoległą do PQ. H jest styczny do okręgu O i jest prostopadły do prostej PQ, więc przechodzi na półokrąg H' o średnicy P'Q' styczny do prostej O'. Odcinek AB jest styczny do okręgu O i jest prostopadły do PQ, więc przechodzi na łuk A'B' na półokręgu stycznym do prostej O' i ma średnicę CB'.

Kontest 2

Zauważmy, że łuk A'Q' oraz łuk A'C są symetryczne względem symetralnej odcinka CQ', co nam daje $\triangleleft CP'A' = \triangleleft CB'A'$

Zadanie 3. Niech x, y będą liczbami całkowitymi spełniającymi $2 \le x, y \le 100$. Udowodnij, że istnieje $n \in \mathbb{N}_+$, takie, że $x^{2^n} + y^{2^n}$ nie jest pierwsze.

Dowód. Jeśli x = y, to teza jest oczywista, więc dalej zakładamy $x \neq y$. Pokażemy, że dla liczby pierwszej $p=257=2^8+1$ istnieje $n\in\mathbb{N}$, takie że $x^{2^n}+y^{2^n}$ jest wielokrotnością p. Niech $z \in 2, \ldots, p-2$, takie że $z \equiv xy^{-1} \pmod{p}$ (takie z istnieje, bo 0 < x, y < p i $x \neq y$ oraz 0 < x + y < p). Zauważmy, że $ord_n(z) \mid p-1=2^8$, wiec $ord_n(z)=2^s$, $s \ge 2$. Ponadto

$$p \mid z^{2^{s}} - 1 = (z^{2^{s-1}} - 1)(z^{2^{s-1}} + 1),$$

ale $p \nmid z^{2^{s-1}} - 1$, więc $z^{2^{s-1}} \equiv -1 \pmod{p}$, czyli $x^{2^{s-1}} \equiv -y^{2^{s-1}} \pmod{p}$, skąd $p \mid$ $x^{2^{s-1}} + y^{2^{s-1}}$. Pozostaje zauważyć, że równanie $u^2 + v^2 = 257$ ma dokładnie jedno rozwiązanie: (16,1), z dokładnością do zmiany kolejności lub znaków (znany fakt lub sprawdzenie ręczne). Zatem $x^{2^{s-1}} + y^{2^{s-1}}$ nie jest liczbą pierwszą, bo x, y > 1.

Zadanie 4. Podziałem liczby n nazywamy przedstawienie liczby n w postaci sumy liczb całkowitych dodatnich, przy czym podziały uznajemy za takie same, jeśli da się z jednego uzyskać drugi poprzez zmianę kolejności dodawania.

Udowodnij, że dla naturalnej liczby n liczba podziałów liczby n, z których każda część występuje co najmniej dwa razy jest równa liczbie podziałów n na części, które sa podzielne przez 2 lub 3.

 $Dow \acute{o}d$. Niech a_n oznacza liczbę takich podziałów liczby n, w których każdy składnik występuje przynajmniej dwukrotnie. Niech b_n oznacza liczbę takich podziałów liczby n, w których każdy składnik jest podzielny przez 2 lub 3. Przyjmujemy $a_0 = b_0 = 1$. Zdefiniujmy funkcje tworzące

$$A(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

$$B(x) = \sum_{n=0}^{\infty} b_n x^n = b_0 + b_1 x + b_2 x^2 + \dots$$

Pieczarki 27.09.2023 Kontest 2

A(x) można zapisać jako iloczyn szeregów formalnych.

$$A(x) = (1 + x^{2} + x^{3} + x^{4} + \dots) (1 + x^{4} + x^{6} + x^{8} + \dots)$$

$$(1 + x^{6} + x^{9} + \dots) \cdots = \prod_{k=1}^{\infty} (1 + x^{2k} + x^{3k} + \dots) = \prod_{k=1}^{\infty} (-x^{k} + \sum_{n=0}^{\infty} x^{kn}) = \prod_{k=1}^{\infty} (-x^{k} + \frac{1}{1 - x^{k}}) = \prod_{k=1}^{\infty} \frac{1 - x^{k} + x^{2k}}{1 - x^{k}} = \prod_{k=1}^{\infty} \frac{1 + x^{3k}}{1 - x^{2k}} = \prod_{k=1}^{\infty} \frac{1 - x^{6k}}{(1 - x^{3k})(1 - x^{2k})}$$

Podobnie możemy zapisać B(x) jako iloczyn szeregów formalnych.

$$(1+x^{2}+x^{4}+\dots) (1+x^{3}+x^{6}+\dots) (1+x^{4}+x^{8}+\dots) \dots =$$

$$= \prod_{\substack{k \geqslant 1 \\ 2|k\vee 3|k}}^{\infty} (1+x^{k}+x^{2k}+\dots) = \prod_{\substack{k \geqslant 1 \\ 2|k\vee 3|k}}^{\infty} \frac{1}{1-x^{k}}$$

$$=_{\text{Zasada włączeń i wyłączeń}} \left(\prod_{k \geqslant 1}^{\infty} \frac{1}{1-x^{2k}} \right) \left(\prod_{k \geqslant 1}^{\infty} \frac{1}{1-x^{3k}} \right) \left(\prod_{k \geqslant 1}^{\infty} (1-x^{6k}) \right) =$$

$$= \prod_{k=1}^{\infty} \frac{1-x^{6k}}{(1-x^{2k})(1-x^{3k})}$$

Stąd mamy równość szeregów formalnych A(x) = B(x), co implikuje $a_n = b_n$ dla każdego $n \ge 0$.

Uwaga. Jeśli ktoś nie czuje się komfortowo z szeregami formalnymi, to rozwiązanie można również przepisać używając jedynie wielomianów. Aby pokazać tezę dla wszystkich n < N można zdefiniować A(x), B(x) jako wielomiany stopnia $D \gg N$ i pokazać, że $x^N \mid A(x) - B(x)$. Wówczas możemy zastąpić iloczyny nieskończone przez iloczyny skończone i wszystkie równości rozpatrujemy modulo wielomian x^N .