Information & System Security

Mathematics Related to **Public Key** Cryptography

9-1 PRIMES

- Asymmetric-key cryptography uses primes extensively.
- This section discusses only a few concepts and facts to pave the way for Chapter 10.

Topics discussed in this section:

- 9.1.4 Euler's Phi-Function
- 9.1.5 Fermat's Little Theorem
- 9.1.6 Euler's Theorem
- **9.1.7** Generating Primes

9.1.4 Euler's Phi-Function

• Euler's phi-function, $\phi(n)$, which is sometimes called the Euler's totient function.

Properties:

- 1. $\phi(1) = 0$.
- 2. $\phi(p) = p 1$ if p is a prime.
- 3. $\phi(m \times n) = \phi(m) \times \phi(n)$ if m and n are relatively prime.
- 4. $\phi(p^e) = p^e p^{e-1}$ if *p* is a prime.

 $\emptyset(n) = \emptyset(pq) = \emptyset(p) \times \emptyset(q) = (p-1) \times (q-1),$ where p and q are prime numbers.

Proof:

- To see that Ø(n) = Ø(p) x Ø(q), consider that the set of positive integers less than n is the set {1,..., (pq-1)}.
- The integers in this set that are not relatively prime to n are the set {p,2p,...,(q-1)p} and the set {q,2q,...,(p-1)q}.
- Accordingly,

$$\emptyset(n) = (pq-1)-[(q-1) + (p-1)]$$

= $pq-(p+q)+1$
= $(p-1) \times (q-1)$
= $\emptyset(p) \times \emptyset(q)$

Proved.

- We can combine the four rules (discussed now) to find the value of $\phi(n)$.
- For example, if n can be factored as $n = p_1^{e_1} \times p_2^{e_2} \times ... \times p_k^{e_k}$, then we combine the third and the fourth rule to find $\phi(n)$.

$$\phi(n) = (p_1^{e_1} - p_1^{e_1 - 1}) \times (p_2^{e_2} - p_2^{e_2 - 1}) \times \dots \times (p_k^{e_k} - p_k^{e_k - 1})$$

Note

The difficulty of finding $\phi(n)$ depends on the difficulty of finding the factorization of n.

What is the value of $\phi(13)$?

Solution

Because 13 is a prime, $\phi(13) = (13 - 1) = 12$.

Example

What is the value of $\phi(10)$?

Solution

We can use the third rule: $\phi(10) = \phi(2) \times \phi(5)$ = 1 × 4 = 4, because 2 and 5 are primes.

Example

What is the value of $\phi(240)$?

Solution

We can write $240 = 2^4 \times 3^1 \times 5^1$.

Then,
$$\phi(240) = (2^4 - 2^3) \times (3^1 - 3^0) \times (5^1 - 5^0) = 64$$

Example

Can we say that $\phi(49) = \phi(7) \times \phi(7) = 6 \times 6 = 36$?

Solution

No. The third rule applies when m and n are relatively prime. Here $49 = 7^2$.

We need to use the fourth rule: $\phi(49) = 7^2 - 7^1 = 42$.

Example

What is the number of elements in \mathbb{Z}_{14}^* ?

Solution

The answer is $\phi(14) = \phi(7) \times \phi(2) = 6 \times 1 = 6$. The members are 1, 3, 5, 9, 11, and 13.

Note

Interesting point: If n > 2, the value of $\phi(n)$ is even.

9.1.5 Fermat's Little Theorem

First Version

$$a^{p-1} \equiv 1 \mod p$$

Second Version

$$a^p \equiv a \bmod p$$

Find the result of 6^{10} mod 11.

Solution

We have 6^{10} mod 11 = 1. This is the first version of Fermat's little theorem where p = 11.

Example

Find the result of 3^{12} mod 11.

Solution

Here the exponent (12) and the modulus (11) are not the same. With substitution this can be solved using Fermat's little theorem.

Multiplicative Inverse

Fermat's theorem can be used to find multiplicative inverses modulo a prime.

$$a^{-1} \mod p = a^{p-2} \mod p$$

Example

The multiplicative inverses modulo a prime can be found without using the extended Euclidean algorithm:

- a. $8^{-1} \mod 17 = 8^{17-2} \mod 17 = 8^{15} \mod 17 = 15 \mod 17$
- b. $5^{-1} \mod 23 = 5^{23-2} \mod 23 = 5^{21} \mod 23 = 14 \mod 23$
- c. $60^{-1} \mod 101 = 60^{101-2} \mod 101 = 60^{99} \mod 101 = 32 \mod 101$
- d. $22^{-1} \mod 211 = 22^{211-2} \mod 211 = 22^{209} \mod 211 = 48 \mod 211$

9.1.6 Euler's Theorem

First Version

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Second Version

$$a^{k \times \phi(n) + 1} \equiv a \pmod{n}$$

Note

The second version of Euler's theorem is used in the RSA cryptosystem.

Example

Find the result of 6^{24} mod 35.

Solution

We have $6^{24} \mod 35 = 6^{\phi(35)} \mod 35 = 1$.

Example

Find the result of 20^{62} mod 77.

Solution

If we let k = 1 on the second version, we have $20^{62} \mod 77 = (20 \mod 77) (20^{\phi(77) + 1} \mod 77) \mod 77 = (20)(20) \mod 77 = 15$.

Multiplicative Inverse

Euler's theorem can be used to find multiplicative inverses modulo a composite.

$$a^{-1} \mod n = a^{\phi(n)-1} \mod n$$

Example

The multiplicative inverses modulo a composite can be found without using the extended Euclidean algorithm:

- a. $8^{-1} \mod 77 = 8^{\phi(77)-1} \mod 77 = 8^{59} \mod 77 = 29 \mod 77$
- b. $7^{-1} \mod 15 = 7^{\phi(15)-1} \mod 15 = 7^7 \mod 15 = 13 \mod 15$
- c. $60^{-1} \mod 187 = 60^{\phi(187)-1} \mod 187 = 60^{159} \mod 187 = 53 \mod 187$
- d. $71^{-1} \mod 100 = 71^{\phi(100)-1} \mod 100 = 71^{39} \mod 100 = 31 \mod 100$

9.1.7 Generating Primes

Just think of following functions which generates some primes

•
$$f(n) = 2n+3 = \{3, 5, 7, 9, 11, 13, 15, 17, 19, 23, ...\}$$
[for $n = 0, 1, 2, ...$] [Linear]

•
$$g(n) = n^2 + 1 = \{2, 5, 10, 17, 26, 37, 50, 65, 82, 101, ...\}$$
[for $n = 1, 2, 3, ...$] [Quadratic]

•
$$h(n) = 2^n + 1 = \{2, 3, 5, 9, 17, 33, 65, 129, 257, 513, ...\}$$
[for $n = 0, 1, 2, 3, ...$] [Exponential]

9.1.7 Generating Primes

Mersenne Primes

$$\mathbf{M}_p = 2^p - 1$$

$$M_2 = 2^2 - 1 = 3$$

 $M_3 = 2^3 - 1 = 7$
 $M_5 = 2^5 - 1 = 31$
 $M_7 = 2^7 - 1 = 127$
 $M_{11} = 2^{11} - 1 = 2047$ Not a prime (2047 = 23 × 89)
 $M_{13} = 2^{13} - 1 = 8191$
 $M_{17} = 2^{17} - 1 = 131071$

Note

A number in the form $M_p = 2^p - 1$ is called a Mersenne number and may or may not be a prime.

Fermat Primes

$$\mathbf{F}_n = 2^{2^n} + 1$$

$$F_0 = 3$$
 $F_1 = 5$
 $F_2 = 17$
 $F_3 = 257$
 $F_4 = 65537$
 $F_5 = 4294967297 [641 × 6700417 Not a prime]$

9-2 PRIMALITY TESTING

Finding an algorithm to correctly and efficiently test a very large integer and output a prime or a composite has always been a challenge in number theory, and consequently in cryptography. However, recent developments look very promising.

Topics discussed in this section:

- **9.2.1** Deterministic Algorithms
- 9.2.2 Probabilistic Algorithms
- 9.2.3 Recommended Primality Test

9.2.1 Deterministic Algorithms

Divisibility Algorithm

```
Divisibility_Test (n)
\{ // n \text{ is the number to test for primality } \}
  r \leftarrow 2
  while (r < \sqrt{n})
   if (r \mid n) return "a composite"
   r \leftarrow r + 1
   return "a prime"
```

Note

The bit-operation complexity of the divisibility test is exponential.

9.2.1 Continued Example

Assume n has 256 bits. What is the number of bit operations needed to run the divisibility-test algorithm?

Solution

The bit-operation complexity of this algorithm is $2^{n_b/2}$. This means that the algorithm needs 2^{128} bits operations. On a computer capable of doing 2^{64} bits operations per second, the algorithm needs 2^{64} seconds to do the testing = 5,84,94,24,17,355 years (forever).

9.2.1 Continued

AKS Algorithm

- **AKS** primality test is a deterministic primality-proving algorithm
- Developed by three IIT Kanpur computer scientists-Manindra Agrawal, Neeraj Kayal, and Nitin Saxena.

Let $a \in \mathcal{Z}$, $n \in \mathcal{N}$, $n \geq 2$, and $\gcd(a, n) = 1$. Then n is prime if and only if $(X + a)^n = X^n + a \pmod{n}.$ Polynomial

9.2.1 Continued

AKS Algorithm

The bit-operation complexity of this algorithm is

$$O((\log_2 n_{\rm b})^{12})$$

Example

Assume *n* has 256 bits. What is the number of bit operations needed to run the AKS algorithm?

Solution

This algorithm needs only $(\log_2 256)^{12} = 68,71,94,76,736$ bits operations. On a computer capable of doing 2^{32} bits operations per second, the algorithm needs only 16 seconds.

References

Chapter 9 - Behrouz A Forouzan, Debdeep Mukhopadhyay, Cryptography and Network Security, Mc Graw Hill, 3rd Edition, 2015.

Chapter 8 - William Stallings, Cryptography and Network Security Principles and Practices, 7th Edition, Pearson Education, 2017.