ECE 215 Spring 2025

Objective 2.4: Analog Filters

Objective 2.4

Real (non-ideal) Filters

I can determine the filter type and gain of simple series circuits containing a resistor, capacitor, and/or inductor.

ANALOG FILTERS

- Every signal will experience some level of noise
 - Intentional jamming
 - Unintentional environmental (thermal, lightening) or other signals (poor planning)
- Signal conditioning uses LPFs near the system input to remove unwanted high frequency noise (more on this in Obj 2.5!)
- **Gain** is the amplitude scaling, or ratio of V_{out}/V_{in} , provided by the circuit at every frequency
 - Ideal filters do not exist gain does not abruptly change but gradually transitions between passband and stopband
 - "Real" filters are built using resistors with inductors and/or capacitors, both of whose "resistance" (i.e., impedance) changes with frequency

IDEAL VS. REALITY

- Where is the cutoff frequency?
- Why is it there?

• 3dB point =
$$\frac{P_{out}}{P_{in}} = \frac{1}{2}$$

• This means
$$\left| \frac{V_{out}}{V_{in}} \right| = \frac{1}{\sqrt{2}}$$

Cutoff Frequencies

HOW ABOUT THIS ONE (C-R)?

Real (non-ideal) Filters

Your turn! Determine HPF or LPF.

Cutoff Frequencies

CUTOFF FREQUENCY FOR R-C CIRCUIT

$$Gain = \frac{V_{out}}{V_{in}} = \frac{1}{j2\pi fRC + 1}$$

$$f_{\text{cutoff}} = \frac{1}{2\pi fRC}$$

CUTOFF FREQUENCY FOR C-R CIRCUIT

Gain =
$$\frac{v_o(t)}{v_s(t)} = \frac{1}{1 - j\frac{1}{2\pi fRC}}$$

R-C Cutoff

$$f_{\text{cutoff}} = \frac{1}{2\pi fRC} \rightarrow \text{Same as the R-C!!!!}$$

Real (non-ideal) Filters

CALCULATE THE CUTOFF FREQUENCY FOR...

A transmission line modeled as an R-L circuit with $R = 4\Omega$ and $L = 5\mu H$

An R-C low pass filter with $R = 60\Omega$ and C = 5nF

A C-R high pass filter with $R = 100\Omega$ and $C = 8\mu$ F.

PRACTICE

Your communications radio has a lower frequency bound of 800kHz. You know it has a capacitor value of 100nF, but what is the resistor value?

A signal passes through a circuit consisting of a 60Ω resistor and a $1\mu F$ capacitor in series. The output voltage is across the capacitor. What kind of filter is this and what is the cutoff frequency?