assidut Supérieur d'Informatique et de Mathématiques de Monastir ISIMM

Devoir Surveillé - S1-2023/2024

Filière: I ^{to} Licence en sciences informatique: Génie Logiciel et Système d'information		ière : Formelle	Enseignante : Aljia BOUZIDI	
Date: 08/11/2023	Nbr de Crédits :3	Coefficient :1.5	Documents autorisés : Non	
Durée : 1h	Régime d'éva	luation : Mixte	Nombre de pages : 02	

Exercice 1 (5points)

Pour chaque énoncé ci-dessous, déterminez si elle est une proposition ou non (répondez par 'oui' ou 'non'). Si ce n'est pas une proposition, expliquer pourquoi.

- 1. Les dragons ont existé il y a des milliers d'années
- L'Égypte est le pays le plus peuplé du monde
- 3. Pour tout $x \in \mathbb{R}$, il existe un $y \in \mathbb{R}$ tel que x + y = 10
- 4. Les rêves prémonitoires sont une preuve de la clairvoyance
- 5. Tous les triangles ont trois côtés
- 6. L'amour est la seule émotion réelle
- Ouvre la fenêtre
- 8. Une condition suffisante ou nécessaire pour qu'un joueur gagnele match est qu'il s'entraîne dur
- Pour tous les nombres entiers x, s'il existe un nombre entier y tel que x + y = 10, alors x est un multiple de 2.
- 10. Soit f(x) = 2x + 1

Exercice 2 (5 points)

Trois collègues, Albert, Bernard et Charlesdéjeunent ensemble chaque jour ouvrable.

Question: Exprimer les propositions ci-dessous par des formules propositionnelles:

- 1. Il suffit qu'Albert commande un dessert pour que Bernard en commande un aussi.
- Une condition nécessaire pour Bernard et Albert commande un dessert est que Charles commande un dessert.
- 3. Chaque jour, soit Bernard, soit Charles, mais pas les deux, commandent un dessert.
- Albert ou Charles, ou les deux, commandent chaque jour un dessert. De plus, s'ils ne le font pas tous les deux, Bernard en commande aussi un.
- Charles commande un dessert si seulement si Albert fait de même. Cependant, si Albert commande un dessert, cela ne signifie pas nécessairement que Charles en commande un.

Exercice 3 (10 points)

- Soit la formule F1 définie comme (pV q) ∧ (¬rV p)↔ (¬P ∧ (r → q)).
 - a) Donner la table de vérité de la formule F1 (2 pts).
 - b) Dire si:

 - F1 est satisfiable? Pourquoi ?(0.5pt)
 - F1 est antilogie? Pourquoi ?(0.5)
 - c) La formule F1 admet-t-elle des modèles ? (0.5) si oui lequel ou lesquels ? (0.5)
- 2. Soit la formule F2 définie comme p ∨ q ∧ ¬ r ∨ p ↔ ¬P ∧ r → q.
 - a) Donner la table de vérité de la formule F2 (2 pts).
 - b) Dire si:
 - = F2? Pourquoi ? (0.5pt)
 - F2 est satisfiable? Pourquoi ?(0.5pt)
 - F2 est antilogie? Pourquoi ?(0.5)
 - c) La formule F2 admet-t-elle des modèles ? (0.5) si oui lequel ou lesquels ? (0.5)
- 3. F1 et F2 sont-t-elles compatibles ? Pourquoi ? si oui donner les modèles communs (1)

Institut Supérieur d'Informatique et de Mathématiques de Monastir

Devoir Surveillé – S1– 2023/2024

Filière: 1ère License en	Mat	ière :	Enseignante :	
Sciences d'Informatique	Logique	Formelle	Aljia BOUZIDI	
Date: 20 / 11 / 2021	Nbr de Crédits : 3	Coefficient: 1.5	Documents autorisés : Non	
Durée : 1h	Régime d'évalua	ation : Mixte / CC	Nombre de pages : 04	

Exercice 1 (5 points)

- Non. Cette déclaration n'est pas une proposition car elle concerne une question de fait historique qui peut être vraie ou fausse, mais elle n'est pas formulée comme une déclaration factuelle claire.
- 2. Oui. Cette déclaration est une proposition. Elle énonce un fait vérifiable concernant la population de l'Égypte.
- 3. Oui. Cette déclaration est une proposition. Elle exprime une relation mathématique entre les nombres réels x et y.
- 4. Non. Cette déclaration n'est pas une proposition car elle concerne une question de croyance ou de spéculation plutôt qu'une déclaration factuelle claire.
- 5. Oui. Cette déclaration est une proposition. Elle énonce une vérité mathématique concernant la définition des triangles.
- 6. Non. Cette déclaration n'est pas une proposition car elle est subjective et dépend des opinions individuelles sur les émotions.
- 7. Non. Cette déclaration n'est pas une proposition. Elle est une commande ou une demande, mais elle ne décrit pas une affirmation factuelle.
- 8. Oui. Cette déclaration est une proposition. Elle énonce des conditions pour gagner un match, bien que cela soit formulé de manière conditionnelle.
- 9. Oui. Cette déclaration est une proposition. Elle énonce une relation mathématique entre les nombres entiers x et y à travers une implication logique.
- 10. Non. Cette déclaration n'est pas une proposition, c'est la définition d'une fonction mathématique, mais elle ne peut pas être évaluée comme vraie ou fausse en soi.

Exercice 2 (5 points)

1. Il suffit qu'Albert commande un dessert pour que Bernard en commande un aussi.

Formule : $A \rightarrow B$

2. Une condition nécessaire pour que Bernard et Albert commandent un dessert est que Charles commande un dessert.

Formule : $(B \land A) \rightarrow C$

3. Chaque jour, soit Bernard, soit Charles, mais pas les deux, commandent un dessert.

Formule : $(B \lor C) \land \neg (B \land C)$

4. Albert ou Charles, ou les deux, commandent chaque jour un dessert. De plus, s'ils ne le font pas tous les deux, Bernard en commande aussi un.

Formule : (A \vee C) \wedge ((\neg A \vee \neg C) \rightarrow B)

5. Charles commande un dessert si et seulement si Albert fait de même. Cependant, si Albert commande un dessert, cela ne signifie pas nécessairement que Charles en commande un. Formule : (C ⇔ A) ∧ (A → ¬C)

Exercice 3 (10 points)

- 1. Soit la formule F1 définie comme $(p \lor q) \land (\neg r \lor p) \leftrightarrow (\neg P \land (r \rightarrow q))$.
 - a) Donner la table de vérité de la formule F1 (2 pts).

p	q	r	$X= p \lor q$	¬r	Y= ¬r ∨ p	W=x∧y	¬P	$Z=r \rightarrow q$	$S=\neg P \wedge Z$	w ↔ s
0	0	0	0	1	1	0	1	1	1	0
0	0	1	0	0	0	0	1	0	0	1
0	1	0	1	1	1	1	1	1	1	1
0	1	1	1	0	0	0	1	1	1	0
1	0	0	1	1	1	1	0	1	0	0
1	0	1	1	0	1	1	0	0	0	0
1	1	0	1	1	1	1	0	1	0	0
1	1	1	1	0	1	1	0	1	0	0

b)

- En regardant la table de vérité précédente, nous voyons que F1 n'est pas une tautologie car F1 n'est pas vraie (1) pour toutes les combinaisons possibles de p, q et r. Par conséquent, F1 n'est pas une tautologie.
- Dans la table de vérité, nous voyons que F1 est vraie (1) pour certaines combinaisons de valeurs de p, q et r. Par conséquent, F1 est satisfaisable.
- F1 n'est pas une antilogie, car il existe au moins une combinaison de valeurs de vérité de p, q et r pour lesquelles F1 est vraie (1).
- c) La formule F1 a deux modèles. Ces modèles sont
 - $M1=\{p=0 q=0 r=1\}$
 - $M2=\{p=0 q=1 r=0\}$
- 2. Soit la formule F2 définie comme p \vee q $\wedge \neg$ r \vee p $\leftrightarrow \neg$ P \wedge r \rightarrow q.
 - a) Donner la table de vérité de la formule F2 (2 pts).

p	q	r	¬r	$\neg P$	W=q ^	¬P ∧ r	Z=p V	X=z V p	¬P ∧ r	X
					¬r		w		\rightarrow q	↔ ¬P
										\wedge r \rightarrow
										q
0	0	0	1	1	0	0	0	0	1	0
0	0	1	0	1	0	1	0	0	0	1
0	1	0	1	1	1	0	1	1	1	1
0	1	1	0	1	0	1	0	0	1	0
1	0	0	1	0	0	0	1	1	1	1
1	0	1	0	0	0	0	1	1	1	1
1	1	0	1	0	1	0	1	1	1	1
1	1	1	0	0	0	0	1	1	1	1

b)

- En regardant la table de vérité précédente, nous voyons que F2 n'est pas une tautologie car F1 n'est pas vraie (1) pour toutes les combinaisons possibles de p, q et r. Par conséquent, F2 n'est pas une tautologie.
- Dans la table de vérité, nous voyons que F2 est vraie (1) pour certaines combinaisons de valeurs de p, q et r. Par conséquent, F2 est satisfaisable.
- F2 n'est pas une antilogie, car il existe au moins une combinaison de valeurs de vérité de p, q et r pour lesquelles F2 est vraie (1).
 - c) La formule F2 a six modèles. Ces modèles sont :
 - $M'1=\{p=0 q=0 r=1\}$
 - M'2={p=0q=1 r=0}
 - $M'3=\{p=1q=0 r=0\}$
 - $M'4=\{p=1q=0 r=1\}$
 - $M'5=\{p=1q=1 r=0\}$
 - $M'6=\{p=1q=1r=1\}$
- **3.** En comparant les tables de vérité de F1 et F2, nous pouvons voir qu'il y a au moins une combinaison de valeurs de p, q et r pour lesquelles à la fois F1 et F2 sont vraies. Ainsi, les modèles communs sont M1=M'1 et M2=M'2. Par conséquent, F1 et F2 sont compatibles.