Theory of Computation

More on Turing Machines

Lecture 7a - Manuel Mazzara

A bit of context

Turing machine

- The Turing machine (TM) is the historical model of "computer"
 - simple
 - conceptually important
- TMs use tapes as memory
 - Tapes are not destructive
 - They can be read many times

The general model

History

The Turing machine was invented in 1936
 by Alan Turing, (a-machine, automatic machine)

 It is a mathematical description of a very simple device for <u>arbitrary computations</u>

Church—Turing thesis

- The intuitive notion of "effectively calculable" is captured by
 - the functions computable by a Turing machine
 - by those expressible in the lambda calculus

This assumption is now known as the Church—
 Turing thesis

Informally

- A <u>configuration</u> of a TM is a snapshot of the machine
- A configuration should include:
 - state of the control device
 - string on the input tape and the position of the head
 - string and position of the head for each memory tape

Definition

A configuration c of a TM with K memory tapes is the following (K+2)-tuple:

c=x \uparrow iy,
$$\alpha_1 \uparrow A_1 \beta_1$$
, ..., $\alpha_K \uparrow A_K \beta_K$ >

where

- $-q\in Q$
- $-x,y\in I^*, i\in I$
- $-\alpha_r, \beta_r \in \Gamma^*, A_r \in \Gamma \ \forall r \ 1 \le r \le K$
- $-\uparrow\notin I\cup\Gamma$

Initial configuration

$$c_0 = \langle q_0, \uparrow iy, \uparrow Z_0, ..., \uparrow Z_0 \rangle$$

Formally:

- 3=x-
- $-\alpha_r$, $\beta_r = \varepsilon$, $A_r = Z_0 \forall r \ 1 \le r \le K$

Informally:

- The control device is in the initial state
- All the heads are at the beginning of the corresponding tape

Example

$$c = \langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle$$

$c=<q_1, \uparrow aabbcc, Z_0 \uparrow >$

$c = \langle q_1, aa \uparrow bbcc, Z_0 AA \uparrow \rangle$

Acceptance condition

 A string x∈I* is <u>accepted</u> by a TM M with K memory tapes if and only if

$$c_0 = \langle q_0, \uparrow x, \uparrow Z_0, ..., \uparrow Z_0 \rangle | -^* -_M$$

$$c_F = \langle q, x' \uparrow iy, \alpha_1 \uparrow A_1 \beta_1, ..., \alpha_K \uparrow A_K \beta_K \rangle \text{ with } q \in F$$

$$(\text{and } x = x'iy)$$

- c_F is called final configuration
- $|-^*-_{M}$ is the reflexive transitive closure of the $|--_{M}$ relation
- $L(M)=\{x \mid x \in I^* \text{ and } x \text{ is accepted by } M\}$

Example

 $c_0 = \langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle$

 $c_F = \langle q_F, aabbcc\uparrow, Z_0AA\uparrow \rangle$

TM vs PDA

- We know that aⁿbⁿcⁿ or aⁿbⁿ∪aⁿb²ⁿ cannot be recognized by any PDA
- but they can be recognized by a TM
 - We have seen a TM for aⁿbⁿcⁿ
- Every language recognizable by a PDA can be recognized by a TM
 - A TM can always be built to use (one of) its memory tape(s) as a stack
- The languages accepted by TMs are called recursively enumerable

Languages

TMs have a higher expressive power than PDAs

Example: aⁿbⁿ∪aⁿb²ⁿ

TM vs Von Neumann Machines

- TMs can simulate a Von Neumann machine (VNM)
 - It is an abstract model of computers
- TM differs from VNM wrt. memory access
 - TM: sequential
 - VNM: direct
- The memory access type does not affect the expressive power of a machine
 - It does not change the class of problems solvable with a machine (with this specific difference)
 - It may affect the complexity

Operations on TMs (1)

- TMs are closed under
 - Intersection
 - Union
 - Concatenation
 - Kleene star
- TMs are not close under complement
 - They are not close under difference either (why?)

Operations on TM (2)

- Closure for union, intersection, ...: positive answer
- A TM can easily simulate two other TMs
 - In series or
 - In parallel

this explains the closure

Complement

- Would loop-free TMs (if they existed) be closed under complement?
 - Yes: it would suffice to define the set of halting states and partition it into accepting and nonaccepting states
- → Problems arise from <u>nonterminating</u> computations (to be discussed later on)

How do we use TMs?

- TMs can
 - Recognize languages (Acceptors)
 - Translate accepted languages (Transducers)
- ... but also compute functions
 - They are equivalent to VNMs
- → We can think of a TM as an abstract model of "computer" with sequential memory access

Mechanical view

TM model

Single tape TM

Single tape

- usually unlimited in both directions
- it serves as input, memory and output tape

Bidimensional tape TM

- A head for each dimension
- It can be generalized to dimensions

Control device

Relation among different models

- Both single and multi-tape TMs can be equipped with d-dimensional tapes
- All these TM models are equivalent
 - They can recognize the same class of languages

Theory of Computation

Nondeterminism

Lecture 7b - Manuel Mazzara

Nondeterministic models (1)

- Usually one thinks of an algorithm as a determined sequence of operations
 - In a certain state with a certain input there is no doubt on the next step
- Example: let us compare

```
if x>y then max:=x else max:=y
with

if
     x>=y then max:=x
     x<=y then max:=y
fi</pre>
```

Nondeterministic models (1)

- Is it only a matter of elegance?
- Let us consider the case construct of Pascal: why not having something like the following?

case

```
x=y then S1
z>y+3 then S2
... then
```

endcase

Blind search

Another form of nondeterminsm that is usually "hidden"

Search algorithms

- Search algorithms are a "simulation" of basically nondeterministic algorithms
 - Is the element searched for in the root?

If yes, ok

Otherwise

Search the left subtree Search the right subtree

 Choice of priority among paths is often arbitrary

In conclusion

- Nondeterminism (ND) is a model of computation or at least a model of parallel computing
 - Ada and other concurrent languages exploit it
- It is a useful abstraction to describe search problems and algorithms
- It can be applied to various computational models
- Important: ND models must not be confused with stochastic models

Adding nondeterminsm

$$\delta(q_1,a) = \{q_2, q_3\}$$

Nondeterministic FSA

- A nondeterministic FSA (NDFSA) is a tuple
- <Q, I, δ , q₀, F>, where
 - -Q, I, q_0 , F are defined as in (D)FSAs
 - $-\delta: Q \times I \rightarrow \mathcal{P}(Q)$
- What happens to δ^* ?

Move sequence

• δ^* is inductively defined from δ

$$\delta^*(q, \epsilon) = \{q\}$$

$$\delta^*(q, y.i) = \bigcup_{q' \in \delta^*(q, y)} \delta(q', i)$$

Example:

$$\delta(q_1, a) = \{q_2, q_3\},\$$

$$\delta(q_2, b) = \{q_4, q_5\},\$$

$$\delta(q_3, b) = \{q_6, q_5\}$$

$$\rightarrow \delta^*(q_1, ab) = \{q_4, q_5, q_6\}$$

Acceptance condition

$$x \in L \Leftrightarrow \delta^*(q_0,x) \cap F \neq \emptyset$$

Among the various possible runs (with the same input) of the NDFSA, it is sufficient that **one of them succeeds** to accept the input string

- → Existential nondeterminism
 - There exists also a universal interpretation: $\delta^*(q_0,x)\subseteq F$

DFSA vs NDFSA

- Starting from q_1 and reading ab the automaton reaches a state that belongs to the set $\{q_4, q_5, q_6\}$
- Let us call again "state" the set of possible states in which the NDFSA can be during the run

Formally

- NDFSA have the same power as DFSA
- Given a NDFSA, an equivalent DFSA can be automatically computed as follows:

If
$$A_{ND} = \langle Q, I, \delta, q_0, F \rangle$$
 then $A_D = \langle Q_D, I, \delta_D, q_{0D}, F_D \rangle$, where $-Q_D = \mathcal{P}(Q)$ $-\delta_D(q_D, i) = \bigcup_{q \in q_D} \delta(q, i)$ $-q_{0D} = \{q_0\}$ $-F_D = \{q_D \mid q_D \in Q_D \land q_D \cap F \neq \emptyset\}$

Example (1)

Transform the following NDFSA into the equivalent DFSA

q0	0	q1 \
q0	0	q2 /
q0	1	q1
q1	0	q3
q1	1 /	q3 \
q1	1	q1 /
q2	0	
q2	1	q0
q3	0	q2
q3	1	q0

Example (2)

Let us proceed recursively

q0	0	q1
q0	0	q2
q0	1	q1
q1	0	q3
q1	1	q3
q1	1	q1
q2	0	\perp
q2	1	q0
q3	0	q2
q3	1	q0

Example (3)

Graphically

Why ND?

- NDFSAs are no more powerful than FSAs, but they are not useless
 - It can be easier to design a NDFSA
 - They can be exponentially smaller w.r.t. the number of states
- Example: a NDFSA with 5 states becomes in the worst case a FSA with 2⁵ states

Nondeterministic TM

- To define a nondeterministic TM (NDTM), we need to change the transition function and the translation mapping
- All the other elements remain as in a (D)TM
- The transition function is

$$\delta: (Q-F) \times I \times \Gamma^k \rightarrow \mathcal{P}(Q \times \Gamma^k \times \{R,L,S\}^{k+1})$$

and the output mapping

$$\eta: (Q-F) \times I \times \Gamma^k \rightarrow \mathcal{P}(O \times \{R,S\})$$

Computation tree

Acceptance condition

- A string x∈I* is accepted by a NDTM if and only if there exists a computation that terminates in an accepting state
- It would seem that the problem of accepting a string can be reduced to a visit of a computation tree
 - How should we perform the visit?
 - What about the relationship between DTMs and NDTMs?

Visiting the computation tree

- We know different kinds of visits:
 - Depth-first visit
 - Breadth-first visit
- A depth-first visit cannot work in our problem because the computation tree could have infinite paths and the algorithm might "get stuck" in it
- We should adopt a breadth-first visit algorithm

DTM vs NDTM

Can we build a DTM that visits a tree level by level?

It is a long (and boring) exercise, but YES

- →We can build a DTM that establishes whether a NDTM recognizes a string x
- →Given a NDTM, we can build an equivalent DTM

ND does not add power to TMs

ε Moves and PDAs

- ϵ -moves came with the following constraint: If $\delta(q,\epsilon,A)\neq \perp$, then $\delta(q,i,A)=\perp \ \forall i\in I$
- Without this constraint the presence of ε-moves would make PDAs intrinsically nondeterministic

Adding nondeterminism to PDAs

- Removing the constraint already makes the PDA nondeterministic
- Additionally, we can have nondeterminism by changing the transition function of a PDA and consequently:
 - transitions among configurations
 - acceptance condition

Definition

A nondeterministic PDA (NDPDA) is a tuple

$$\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$$

- -Q, I, Γ , q_0 , Z_0 , F as in (D)PDA
- $-\delta$ is the transition function defined as

$$δ$$
: Q×(I∪{ε})× $Γ$ → P_F (Q× $Γ$ *)

- What is the \mathcal{F} in $\mathcal{P}_{\mathcal{F}}$?
- Why \mathcal{F} ?

Transition function

$$δ$$
: Q×(I∪{ε})×Γ→ P_F (Q×Γ*)

- P_F indicates the *finite* subsets of $Q \times \Gamma^*$
 - Why did we not specify it for NDTM?
- Graphically:

Effects of nondeterminism

- ND does not add expressive power to
 - TMs
 - FSAs
- Does ND add expressive power to DPDAs?