BACKGROUND EXPERIENCE ON ROBOTICS RESEARCH

Presented by

Dyava Rama Krishna Reddy

My Robotics interest start

- During my high schooling I built my robot.
- Used all the components from garbage.

Robotic Tractor which I build with Remote Control System

 Controlled by the Remote Controller and my aim to assist the farmers or in agriculture sector.

BACHELOR'S THESIS CELL PHONE OPERATED LAND ROVER FOR MULTIPLE TASKS

- 8052 MICROCONTROLLER (Used 8 bit microcontroller **AT89S52**).
- MOBILE.
- DTMF DECODER IC (HT9170B):-It gets the signals from the DTMF decoder and it drives the motors according to the DTMF inputs
- Motor Driver (L293D).

Block Diagram of the Work

Construction of the Electronic Circuit for Setup the experiment

 Firstly, convert the high voltage AC to low voltage DC, then place other components on electronic board. The components like: Microcontroller, motor driver, DTMF decoder...

Overview of the Mobile Robot and Body

- The components board is placed on the mobile robot, which included the mobile device
- Try to call the mobile device and control the rover by number pad in mobile.

MASTER'S THESIS

Human Motion Guidance Using Vibrotactile Feedback In Direct Physical Human-Robot Interaction

- pHRI- physical Human and Robot Interaction.
- There is no considerable information towards the human in pHRI.
- The idea and vision of this work to use the Vibrotactile feedback device to enhance the human capabilities in the human-robot cooperative tasks.

VT Feedback to the Human in Human-Robot Interaction

Subtask-1: Human motion guidance towards the desired trajectory/motions, which would lead to an effective manipulation in the pHRI.

Subtask-2: Human's desired motions leads the HRT to a collision with obstacles. Where the VT feedback assists to avoid the inadmissible area.

Subtask-3: Human desired motions reach to the singular configurations of the robot in the human-robot team.

Equipments Used for the Experiments

- KUKA LWR 7 DOF mobile platform robot with impedance controller and collision detection technique @ TUM.
- VT wearable wristband device with Bluetooth supported communication system @ UNISI.
- Tracking the position and velocities in real-time with the help of Qualysis tracking system @ TUM-ITR lab.
- Used solid rectangle object which weight $\cong 3kg$. It conists of handles on both sides for robot manipulator and human arm.

Subtask-1 Experiment

Real human trajectories for different trails

- Given the desired trajectory which is unknown to participants for placing an object from one point to another point.
- Checkpoints are created throughout the desired trajectory and no. of check points radius are arbitrary.

- The task is successful if and only if the participant completes the check points sequentially.
- The human real-time position is guided towards to the check points sequentially.

Subtask-1 Experiment (contd.)

Completion Time for all participants

Avg. Dist b/w the human hand to the desired trajectory

- Task is conducted on 3 participants for 3 trials and all tasks are completed successfully.
- Completion time of each task gradually decreased from trial-1 to trial-3. This shows the users are adapted learning/training very well.

• The results show that, the deviation between the actual human's position and desired trajectory.

Subtask-2 Experiment

Real time human trajectories in workspace and inadimmisble area

- Created two obstacles (in 2D –ZX plane) in free space with different radius, where no information to participants.
- Participants are known only initial and final point position roughly and can choose any his/her desired motions.
- The VT feedback is given in the repulsive way in this subtask. i.e. the VT guides away from obstacles.
- After 10 trails of the experiment, the human collides with obstacles partially on some trails.
- The overall subtask is finished successfully and also got similar results with different participants.

Subtask-3 Experiment

• The HRT singularities are calculated according to the manipulability ellipsoid index (MI) value- Yoshikwaka method.

$$W = \sqrt{\det(J.J^T)}$$

- Due to robot limited capability space, the robotic arm cannot make all configurations according to the human desired configurations.
- The worse the value of MI makes to singularities in pHRT.
- Setting the threshold value (0.1) for of MI, then the VT wrist band activates to guide the human.

Subtask-3 Experiment (contd.)

- In this plot, the blue line shows the MI value throughout the experiment and the red line shows the nearest singularity of the robotic arm.
- During this experiment, when the participant reaches to the singularities of the robotic arm, the VT guides into highest manupability/capability space into admissible area

Thanking You