4d Visualisation of the tropopause, identification of air mass exchanges and their fate

T. Puchka B. Druot M. Rajput R. Wang A.Gontier

KIT MathSEE

Institut für Meteorologie und Klimaforschung IMK, KIT

MathSEE Modeling Week 2019

Supervisor : Tianbai Xiao

Introduction

- Tropopause layer between stratosphere and troposphere
- Polar vortex regulating climate
- Different in the troposphere and in the stratosphere
- Disturbs the tropopause layer

Figure 1: Polar Vortex

Introduction

- German HALO aircraft and POLSTRACC campaign
- Huge data files to analyse
- Concentrating on Potential Vorticity (PV) and Humidity (QV)
- Potential Vorticity: absolute circulation of air, here the athmospheric layers
- Potential Vorticity in Part Per Million to make it easier to read
- Accessing the features faster is important to plan the next flights

Figure 2: Potential Vorticity values linked to the altitude

Figure 3: German Halo aircraft

- 1 Extraction of the data and visualisation
- 2 Identification of the tropopause
- 3 Extraction of the tropopause's features
- Temporal evolution of the location of the tropopause
- 5 Tracing of the features of interest and their temporal evolution
- **6** Conclusion

- Extraction of the data and visualisation
- 2 Identification of the tropopause
- 3 Extraction of the tropopause's features
- 4 Temporal evolution of the location of the tropopause
- 5 Tracing of the features of interest and their temporal evolution
- 6 Conclusion

Extraction of the data and visualisation Slices of data

Split the whole data into slices along different directions

Figure 4: Value of potential vorticity on different dimensions

Extraction of the data and visualisation

The viewer in Python

Figure 5: Slice of Potential Vorticity and Humidity with longitude and latitude seen in the viewer

Extraction of the data and visualisation

The viewer in Python

Figure 6: Slice of Humidity in latitude seen in the viewer

- Extraction of the data and visualisation
- 2 Identification of the tropopause
- 3 Extraction of the tropopause's features
- 4 Temporal evolution of the location of the tropopause
- 5 Tracing of the features of interest and their temporal evolution
- 6 Conclusion

Identification of the tropopause

- Criterion: the value of potential vorticity is equal to 2 PVU
- Choose different tolerances $\delta = 10^{-2}, 10^{-3}, 10^{-4}$
- Acquire the coordinates for further analysis

Figure 7: Acquired coordinates of tropopause with $\delta=10^{-3}$

Figure 8: Acquired coordinates of tropopause with $\delta=10^{-2}$

- Extraction of the data and visualisation
- 2 Identification of the tropopause
- 3 Extraction of the tropopause's features
- 4 Temporal evolution of the location of the tropopause
- 5 Tracing of the features of interest and their temporal evolution
- 6 Conclusion

3d viewer

 The humidity values for the tropopause are coherent with what is expected, humidity is higher when close the ground level

Figure 9: Humidity variation in the tropopause

Now we are in tropopause

Figure 10: humidity where the data points exceeds a threshold of +-25% of the mean value of humidity by keeping potential vorticity fixed.

Correlation between the Potential Vorticity and the Humidity

Figure 11: Humidity and Potential Vorticity on altitude = 14.5km

Correlation between the Potential Vorticity and the Humidity

Figure 12: Schematic of correlation between potential vorticity and humidity

Correlation between the Potential Vorticity and the Humidity

Figure 13: Humidity decreases following an inverse exponential function as the Potential Vorticity increases

- Extraction of the data and visualisation
- 2 Identification of the tropopause
- 3 Extraction of the tropopause's features
- 4 Temporal evolution of the location of the tropopause
- 5 Tracing of the features of interest and their temporal evolution
- 6 Conclusion

Temporal evolution of the location of the tropopause

 The time cursor in the viewer allows the operator to travel through time

Figure 14: Location of the tropopause (blue) with its altitude projection in longitude (green) and latitude (red)

- Extraction of the data and visualisation
- 2 Identification of the tropopause
- 3 Extraction of the tropopause's features
- 4 Temporal evolution of the location of the tropopause
- 5 Tracing of the features of interest and their temporal evolution
- 6 Conclusion

Tracing of the features of interest and their temporal evolution

Method 1: Mean values

Latitude = 32.4

Figure 15: Tracked feature with mean method on latitude

All coordinates given by the tracker :

Latitude: 29.4 - 48.6

Tracing of the features of interest and their temporal evolution

Method 1: Mean values

Longitude = 42.0

Figure 16: Tracked feature with mean method on longitude

All coordinates given by the tracker :

Longitude: 39.4 - 43.2

Tracing of the feature of interest and its temporal evolution Method 2: Gradient

Altitude fixed Gradient for 2D (latitude / longitude) with numpy library :

$$\begin{cases} \textit{Grad}(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h) & \textit{Boundaries} \\ \\ \textit{Grad}(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + O(h^2) & \textit{Otherwise} \end{cases}$$

Check points that verify:

$$||Grad(x_i, y_j)|| > 0.8 * max(Grad(:,:)).$$

Tracing of the feature of interest and its temporal evolution Method 2: gradient

-> 2 lists relative either on the latitude either on longitude : Longitude :

Latitude: 34.0 Detected longitude: -83.4, -39.8, 12.8

Figure 17: Given slice from tracker on longitude axis gradient

Tracing of the feature of interest and its temporal evolution Method 2: gradient

-> 2 lists relative either on the latitude either on longitude : Latitude :

Longitude: -52.8 Detected latitude: 31.2

Figure 18: Given slice from tracker on latitude axis gradient

- 1 Extraction of the data and visualisation
- 2 Identification of the tropopause
- 3 Extraction of the tropopause's features
- 4 Temporal evolution of the location of the tropopause
- 5 Tracing of the features of interest and their temporal evolution
- 6 Conclusion

Conclusion

- Viewer in 2d and 3d with cursors to visualise the data
- Huge amount of data
- Correlation between Potential Vorticity and Humidity
- Gradient based tracing algorithm
- Potential improvement on computational efficiency and on the tracing algorithm

