

# EFFICIENT INFERENCE ON HIGH-DIMENSIONAL LINEAR MODELS WITH MISSING OUTCOMES

Yikun Zhang<sup>†</sup>, Alexander Giessing, and Yen-Chi Chen Department of Statistics, University of Washington yikun@uw.edu



-- Oracle MAE

NB (min-feas)

### PROBLEM OF INTEREST

Statistical inference on the conditional mean  $m_0(x)$ E(Y|X=x) in the presence of high-dimensional covariates and missing outcomes is of practical importance. How can we conduct this inference efficiently?

The efficiency should come from two aspects:

- 1. The final estimator of  $m_0(x)$  is semi-parametrically efficient among a certain class of estimators.
- 2. The entire inference procedures are computationally effi-

Consider a random sample **Basic Assumptions:**  $\{(Y_i, R_i, X_i)\}_{i=1}^n$  drawn from the joint distribution of  $(Y,R,X)\in\mathbb{R} imes\{0,1\} imes\mathbb{R}^d$  satisfying

- (a)  $Y = X^T \beta_0 + \epsilon$  with  $E(\epsilon | X) = 0$  and  $E(\epsilon^2 | X) = \sigma_{\epsilon}^2$ , where  $||\beta_0||_0 = \sum_{k=1}^d \mathbb{1}_{\{\beta_{0k} \neq 0\}} = s_\beta < n \ll d$ .
- (b) The missingness indicator R is conditionally independent of Y given X (*i.e.*, missing at random; MAR).

#### Main Takeaway:

- Semi-parametrically efficient debiased estimator of  $m_0(x) = x^T \beta_0$  with high-dimensional covariates, MAR outcomes, and heavy-tailed noises.
- Computationally efficient procedures with both || Step 5: Construct the asymptotic  $(1-\tau)$ -level confidence interval as: Python (Debias-Infer) and R (DebiasInfer) implementations.
- Clear motivation for the proposed debiasing program by the rationale of bias-variance trade-offs.
- Comparative simulations and real-world applications with finite-sample performance guarantees.

## MOTIVATION: BIAS-VARIANCE TRADE-OFF

The conditional mean squared error can be decomposed as:

$$\mathbf{E}\left[\left(\sqrt{n}\,m^{\mathrm{debias}}(x;\boldsymbol{w})-\sqrt{n}\,m_0(x)\right)^2\,\middle|\boldsymbol{X}\right]$$

$$=\sigma_{\epsilon}^2\sum_{i=1}^nw_i^2\pi(X_i)+\left[\left(\frac{1}{\sqrt{n}}\sum_{i=1}^nw_i\pi(X_i)X_i-x\right)^T\sqrt{n}\left(\beta_0-\beta\right)\right]$$
Main variance
Conditional bias

Asymptotic negligible variance

**Idea:** Design a convex program that solves for the debiasing weights  $w_i$ , i = 1, ..., n in order to

- Minimize the estimated "Main variance"  $\sum_{i=1}^{n} w_i^2 \widehat{\pi}_i$ .
- Constrain the estimated upper bound of "Conditional bias"

$$\left\| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_i \widehat{\pi}_i X_i - x \right\|_{\infty} \sqrt{n} \left\| \beta_0 - \widehat{\beta} \right\|_{1}.$$

# METHODOLOGY AND THEORY

To conduct statistical inference on  $m_0(x) = x^T \beta_0$ , we propose a debiasing method with the following procedures:

**Step 1:** Compute the **Lasso pilot estimate**  $\widehat{\beta}$  with complete-case data

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{arg \, min}} \left[ \frac{1}{n} \sum_{i=1}^n R_i (Y_i - X_i^T \beta)^2 + \lambda ||\beta||_1 \right],$$

where  $\lambda > 0$  is a regularization parameter.

Step 2: Obtain consistent propensity score estimates  $\widehat{\pi}_i = \widehat{P}(R_i = 1|X_i)$ for i = 1, ..., n by any machine learning method (not necessarily a parametric model) on the data  $\{(X_i, R_i)\}_{i=1}^n$ .

**Step 3:** Solve for the debiasing weight vector  $\hat{\boldsymbol{w}} \equiv \hat{\boldsymbol{w}}(x) =$  $(\widehat{w}_1(x),...,\widehat{w}_n(x))^T \in \mathbb{R}^n$  through a **debiasing program** defined as:

$$\min_{\boldsymbol{w}\in\mathbb{R}^n} \left\{ \sum_{i=1}^n \widehat{\pi}_i w_i^2 : \left\| x - \frac{1}{\sqrt{n}} \sum_{i=1}^n w_i \widehat{\pi}_i X_i \right\|_{\infty} \le \frac{\gamma}{n} \right\},\,$$

where  $\gamma > 0$  is a tuning parameter.

**Step 4:** Define the **debiased estimator** for  $m_0(x)$  as:

$$\widehat{m}^{\text{debias}}(x; \widehat{\boldsymbol{w}}) = x^T \widehat{\beta} + \frac{1}{\sqrt{n}} \sum_{i=1}^n \widehat{w}_i(x) R_i \left( Y_i - X_i^T \widehat{\beta} \right). \tag{2}$$

$$\left[\widehat{m}^{\text{debias}}(x;\widehat{\boldsymbol{w}}) \pm \Phi^{-1} \left(1 - \frac{\tau}{2}\right) \cdot \sigma_{\epsilon} \cdot \sqrt{\frac{1}{n} \sum_{i=1}^{n} \widehat{\pi}_{i} \widehat{w}_{i}(x)^{2}}\right],$$

where  $\Phi(\cdot)$  denotes the cumulative distribution function of  $\mathcal{N}(0,1)$ .

**Dual Formulation of the Debiasing Program (1):** 

$$\min_{\ell \in \mathbb{R}^d} \left\{ \frac{1}{4n} \sum_{i=1}^n \widehat{\pi}_i \left[ X_i^T \ell \right]^2 + x^T \ell + \frac{\gamma}{n} \left| \left| \ell \right| \right|_1 \right\}. \tag{3}$$

- The relation between the primal solution  $\widehat{\boldsymbol{w}}(x) \in \mathbb{R}^n$  and the dual solution  $\widehat{\ell}(x) \in \mathbb{R}^d$  is  $\widehat{w}_i(x) = -\frac{1}{2\sqrt{n}} \cdot X_i^T \widehat{\ell}(x)$  for i = 1, ..., n.
- The tuning parameter  $\gamma > 0$  of the debiasing program (1) can be selected via cross-validations (CV) on the dual program (3).

**Asymptotic Normality:**  $\sqrt{n} \left[ \widehat{m}^{\text{debias}}(x; \widehat{\boldsymbol{w}}) - m_0(x) \right] \stackrel{d}{\to} \mathcal{N} \left( 0, \sigma_m^2(x) \right)$ , where  $\sigma_{m,d}^2(x) := \sigma_{\epsilon}^2 x^T \left[ \mathbb{E}\left( RXX^T \right) \right]^{-1} x$  and  $\sigma_m^2(x) = \lim_{n \to \infty} \sigma_{m,d}^2(x)$ . Here,  $\sigma_{m,d}^2(x)$  attains the **semi-parametric efficiency bound** among all asymptotically linear estimators with MAR outcomes for any fixed d.

# INFERENCE ON THE LINEAR CATE

With  $\mathbb{Y} = T \cdot Y(1) + (1 - T) \cdot Y(0)$ , the debiased estimator  $\widehat{m}^{\text{debias}}(x; \widehat{\boldsymbol{w}}_{(1)}, \widehat{\boldsymbol{w}}_{(0)})$  becomes  $x^{T}\left(\widehat{\beta}_{(1)}-\widehat{\beta}_{(0)}\right)+\frac{1}{\sqrt{n}}\sum_{i}\left[\widehat{w}_{i(1)}T_{i}\left(\mathbb{Y}_{i}-X_{i}^{T}\widehat{\beta}_{(1)}\right)-\widehat{w}_{i(0)}\left(1-T_{i}\right)\left(\mathbb{Y}_{i}-X_{i}^{T}\widehat{\beta}_{(0)}\right)\right],$ 

where the weight vectors  $\widehat{m{w}}_{(1)}, \widehat{m{w}}_{(2)} \in \mathbb{R}^n$  come from

$$\begin{aligned}
&\underset{\boldsymbol{w}_{(0)}, \boldsymbol{w}_{(1)} \in \mathbb{R}^{n}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left[ \widehat{\pi}_{i} w_{i(1)}^{2} + (1 - \widehat{\pi}_{i}) w_{i(0)}^{2} \right] \\
&\text{s.t.} \quad \left\| x - \frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_{i(1)} \cdot \widehat{\pi}_{i} \cdot X_{i} \right\|_{\infty} \leq \frac{\gamma_{1}}{n} \text{ and } \left\| x - \frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_{i(0)} \left( 1 - \widehat{\pi}_{i} \right) X_{i} \right\|_{\infty} \leq \frac{\gamma_{2}}{n}.
\end{aligned}$$

# SIMULATION STUDIES AND REAL-WORLD APPLICATIONS

Oracle (min-feas) | \_ \_ \_ 95% nominal level

NB (min-feas)

NN (min-feas)

RF (min-feas)

RF (1SE)

Comparisons With Existing Methods: DL-Jav, DL-vdG, and Refit are run on complete-case (CC), inverse probability weighting (IPW), and oracle data. Our proposed methods (Debias) under three CV-criteria are only run on the data with missing outcomes.



Proposed Debiasing Method With Nonparametrically Estimated Propensity Scores: LR (Lasso-type Logistic regression), NB (Gaussian Naive Bayes), RF (Random Forests), SVM (Support Vector Machine with Gaussian Radial Bases), and NN (Neural Networks).

NB (1SE)

Oracle (1SE) RF (1SE)

Oracle (min-feas)



Applications to Stellar Mass Inference of Galaxies in the Sloan Digital Sky Survey (SDSS-IV, DR16):



Middle Panel: Inference on the stellar mass of a newly observed galaxy based on its spectroscopic and photometric properties.

Right Panel: Testing the negative correlation between the stellar mass and the distance to nearby cosmic filament structures.