Задача А. Минимум на стеке

Имя входного файла: stack.in
Имя выходного файла: stack.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вам требуется реализовать структуру данных, выполняющую следующие операции:

- 1. Добавить элемент x в конец структуры.
- 2. Удалить последний элемент из структуры.
- 3. Выдать минимальный элемент в структуре.

Формат входных данных

В первой строке входного файла задано одно целое число n — количество операций ($1 \le n \le 10^6$). В следующих n строках заданы сами операции. В i-ой строке число t_i — тип операции (1, если операция добавления. 2, если операция удаления. 3, если операция минимума). Если задана операция добавления, то через пробел записано целое число x — элемент, который следует добавить в структуру ($-10^9 \le x \le 10^9$). Гарантируется, что перед каждой операцией удаления или нахождения минимума структура не пуста.

Формат выходных данных

Для каждой операции нахождения минимума выведите одно число — минимальный элемент в структуре. Ответы разделяйте переводом строки.

stack.in	stack.out
8	-3
1 2	2
1 3	2
1 -3	
3	
2	
3	
2	
3	

Задача В. Топологическая сортировка

Имя входного файла: topsort.in Имя выходного файла: topsort.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать.

Формат входных данных

В первой строке входного файла даны два целых числа N и M ($1 \leqslant N \leqslant 100\,000, 0 \leqslant M \leqslant 100\,000$) — количества вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходных данных

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, вывести «-1».

topsort.in	topsort.out
6 6	4 6 3 1 2 5
1 2	
3 2	
4 2	
2 5	
6 5	
4 6	

ЛКШ.2014.Август.В.День 1 Берендеевы поляны, 29.07.2014

Задача С. НОП-2

Имя входного файла: lcs2.in
Имя выходного файла: lcs2.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Даны две строки. Найдите их наибольшую общую подпоследовательность.

Формат входных данных

Во входном файле находятся две строки, состоящие только из маленьких букв английского алфавита. Длина каждой из строк не превышает 1000.

Формат выходных данных

Выведите одну строку — ответ на задачу.

lcs2.in	lcs2.out
abacaba	acab
dacabc	
sislksh	lksh
lkshsis	

Задача D. Транспортировка

Имя входного файла: cups.in
Имя выходного файла: cups.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Компания "Яндекс" решила подарить всем школьникам и преподавателям ЛКШ оригинальные кружки. К сожалению, количество необходимых кружек оказалось столь велико, что изготовитель доставил кружки в офис Яндекса в самый последний момент. До открытия смены в "Берендеевых полянах" осталось всего 24 часа.

О плачевном состоянии дорог по пути на базу ходят легенды — в частности, на многих разбитых дорогах действует ограничение на вес автомобиля. Соответственно, от нагруженности машины зависит возможность воспользоваться тем или иным маршрутом, тяжёлой машине может потребоваться ехать в обход.

Уже совершенно очевидно, что все кружки не поспеют к открытию. Чтобы спасти ситуацию, отвезите первым рейсом максимально возможное количество кружек успев до начала открытия смены.

Формат входных данных

В первой строке находятся целые числа $n\ (2\leqslant n\leqslant 500)$ и m — количество городов и количество двусторонних дорог, соответственно.

В следующих m строках описываются дороги.

В каждой строке находятся целые числа a_i, b_i, t_i, w_i — соответственно два города, ею соединяемые, время на проезд по ней в минутах и ограничение на вес автомобиля в граммах ($t_i \leq 1440, w_i \leq 10^9, 1 \leq a_i, b_i \leq n$)

Между каждой парой городов есть не более одной дороги.

Кроме того, известно, что офис Яндекса имеет номер 1, а "Берендеевы поляны" — номер n, одна кружка весит 100 грамм, а пустой грузовик — 3 тонны.

Формат выходных данных

Выведите одно число — максимальное количество кружек, которое можно привезти, потратив не более 24 часов.

cups.in	cups.out
3 3	2
1 2 10 3000220	
2 3 20 3000201	
1 3 1 3000099	

Задача Е. Количество инверсий

Имя входного файла: inverse.in Имя выходного файла: inverse.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Напишите программу, которая для заданного массива $A = \langle a_1, a_2, \dots, a_n \rangle$ находит количество пар (i,j) таких, что i < j и $a_i > a_j$.

Формат входных данных

Первая строка входного файла содержит натуральное число n ($1 \le n \le 50\,000$) — количество элементов массива. Вторая строка содержит n попарно различных элементов массива A — целых неотрицательных чисел, не превосходящих 10^6 .

Формат выходных данных

В выходной файл выведите одно число — ответ на задачу.

inverse.in	inverse.out
5	0
6 11 18 28 31	
8	28
999994 999989 999982 999972 999969	
999961 999954 999950	

Задача F. Отрезок с максимальной суммой

Имя входного файла: maxsum.in
Имя выходного файла: maxsum.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дана последовательность из n целых чисел: a_1, \ldots, a_n . Сумма на подотрезке с l по r ($l \leq r$) равна $a_l + \ldots + a_r$. Найдите максимальную сумму среди всех возможных подотрезков данной последовательности.

Формат входных данных

В первой строке ввода записано одно целое положительное число $n \ (1 \le n \le 500\ 000)$.

Во второй строке ввода записано n целых чисел, разделенных пробелами — элементы последовательности a_i ($-1000 \le a_i \le 1000$).

Формат выходных данных

Выведите одно целое число — максимально возможную сумму среди всех подотрезков данной последовательности.

maxsum.in	maxsum.out
3	-1
-1 -2 -3	
5	4
2 -1 2 -1 2	