TR Manual

Wego & Industrial Robot

목차

- 1. Hardware Specification
- 2. Control TR Using ROS
- 3. TR ROS Topic

01

Hardware Specification

01 Hardware Specification

• TR 스펙사항

Dimensions(L X W X H)	• 685 X 570 X 155 (mm)
Overall weight	• 28~30 (Kg)
Track	• 360 (mm)
Rated Progressive Load	• 100 (Kg)
Minimum Turning Radius	Om (Can Rotate In place)
Climbing angle	• < 8°
Obstacle crossing ability	• 10MM
Max. speed	• 6KM/H
Max. stroke	• 15KM
Suspension form	Independent Suspension With Rocker Arm

01 Hardware Specification

Dimensions

Q1 : RS232(현재 미지원)

Q2: CAN_24V Port

Q3 : E-STOP

Q4 : 전원 포트

Q5: 전원 스위치

Q6 : 전력 LED 패널

01 조종기 작동법

- 전원 On / Off를 위해 7, 8 버튼을 길게 입력(1, 2, 3, 4는 위 올린 상태로 구동)
- 수동 모드 조작을 위해 2를 중앙으로 이동한 후, 5를 이용하여 전, 후방 이동, 6을 이용하여 좌우 회전
 조작 가능
- Serial or CAN을 이용한 주행을 위해서는 2를 위(CAN) 또는 아래(Serial)로 이동하면 자율 주행 모드 실행 가능
- 3을 이용하여, 수동 모드 시, TR의 조명을 변경 가능
- 4를 이용하여, TR 의 최대 이동 속도 변경 가능(Speed Mode, Normal Mode)

1. Lever SWA 7. Power switch key 1

2. Lever SWB 8. Power switch key 2

3. Lever SWC 9. Mobile/Tablet fixing support interface

4. Lever SWD 10. Ring interface

5. Left rocker 11. LCD panel

6. Right rocker

^{*}When the user gets the RC transmitter, the settings have been available without having to be set separately.

01 CAN 케이블 사용

- 1. 전원을 사용하기 앞서 제품과 함께 제공된 오른쪽 사진과 같이 생긴 물건이 있습니다.
- 해당 패키지 안에는 CAN 어댑터, CAN to USB 젠더, Serial Cable 등 다양한 악세사리들이 들어있습니다.

01 CAN 케이블 사용

- 3. 모든 차량에는 오른쪽 사진과 같이 생긴 포트가 나와있습니다. (특정 차량은 후면 혹은 측면에서 나오는 제품도 있습니다.)
- 4. 해당 포트는 CAN통신과 24V DC 전원이 나오는 포트입니다.
- 패키지에 동봉된 액세서리를 활용하여 결합해줍니다.

01 CAN 케이블 사용

- 6. 선이 총 4개가 나오는데 여기서 노란색과 파란색은 Can to USB 컨버터에 들어가며 노란색이 CAN_H, 파란색이 CAN_L 입니다.
- 7. 그리고 빨간색이 Vcc(+), 검은색이 GND(-)이며, 24V(오차범위 2.5V)가 나옵니다.
- 8. 꼭 다른 센서에 사용하실 때 컨버터와 분배기를 활용하여 일정한 출력을 유지시켜 사용하는 걸 권장합니다.

- Install ROS Package & Build Package
- 1. \$ mkdir -p ~/catkin_ws/src
- 2. \$ cd ~/catkin_ws/src
- 3. \$ git clone https://github.com/agilexrobotics/ugv_sdk.git
- 4. \$ git clone https://github.com/agilexrobotics/tracer_ros.git
- Install Dependencies
- 1. \$ sudo apt install ros-melodic-teleop-twist-keyboard
- 2. \$ sudo apt install ros-melodic-joint-state-publisher-gui
- 3. \$ sudo apt install ros-melodic-ros-controllers
- 4. \$ cd ~/catkin_ws
- 5. \$ catkin_make

- Setup CAN-To-USB
- 1. \$ sudo modprobe gs_usb
- 2. \$ sudo ip link set can0 up type can bitrate 500000
- 3. \$ ifconfig -a (설정 확인을 위한 부분)
- 4. \$ sudo apt install can-utils (최초 실행에만 필요)
- 5. \$ candump can0 (데이터 입출력 확인을 위해 사용)
- 6. \$ rosrun tracer_bringup setup_can2usb.bash (위의 내용을 한 번에 실행)
- 7. \$ rosrun tracer_bringup bringup_can2usb.bash (재부팅 or USB 재연결시 실행)

- Start Node
- 1. \$ roslaunch tracer_bringup tracer_robot_base.launch (using CAN)
- 자동 모드 테스트
- 테스트 전 rqt graph 실행하여, driver가 cmd_vel을 subscribe하고 있는지 확인
 \$ rqt_graph
- 방법 1 : Robot-Steering 이용
 - \$ sudo apt install ros-melodic-rqt-robot-steering

- 자동 모드 테스트
- 방법 2 : Robot-Steering 이용
 - \$ sudo apt install ros-melodic-rqt-robot-steering
 - \$ rosrun rqt_robot_steering rqt_robot_steering
- 위의 cmd_vel을 확인 후, 조종기의 모드를 변경한 후, 아래의 값 변경을 통해 제어가능

- 자동 모드 테스트
- 방법 3: Keyboard Teleop 이용
- \$ roslaunch tracer_bringup tracer_teleop_keyboard.launch
- 아래의 그림에서 설명을 통해 제어 가능(q, z, w, x, e, c를 통해 속도 변경)
- u, i, o, j, k, l, m, , , .을 통해 이동 방향 및 회전 제어 가능

```
Moving around:
For Holonomic mode (strafing), hold down the shift key:
t : up (+z)
b : down (-z)
anything else : stop
q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
CTRL-C to quit
currently:
               speed 0.5
                                turn 1.0
```


- Tracer base Node
- Publishing Topic: /tracer_status, /odom, /tf
- Subscribing Topic: /tracer_light_control, /cmd_vel

- /tracer_status Msg Type (FR = Front Right, RL = Rear Left)
- std_msgs/Header header
 - o uint32 seq
 - time stamp
 - string frame_id
 - float64 linear_velocity
 - float64 angular_velocity
 - uint8 base_state
 - uint8 control_mode
 - uint16 fault_code
- float64 battery_voltage
- tracer_msgs/TracerMotorState[2] motor_states
 - o float64 rpm
- bool light_control_enabled
- tracer_msgs/TracerLightState front_light_state
 - o uint8 mode
 - uint8 custom_value

- /tracer_status → 실제 TR의 상태를 출력
- linear_velocity → TR의 속도
- angular_velocity → TR의 회전 속도
- base_state → 사용하지 않음
- control_mode: 0이면 수동, 1이면 CAN, 2이면 RS232
- fault_code: 0이면 정상, 문제 발생 시 다른 숫자
- motor_states : 각 모터의 상태 출력
- light_control_enabled : 자동 모드 시, light 제어 상태 확인 가능
- front_light_state mode: 0이면 꺼짐, 1이면 고정값, 2이면 숨쉬기 모드

- /odom Msg Type
- std_msgs/Header header
 - o uint32 seq
 - o time stamp
 - string frame_id
 - child_frame_id
- pose
 - o pose
 - position
 - x,y,z
 - orientation
 - X, Y, Z, W
 - covariance
- twist
 - twist
 - linear
 - x,y,z
 - angular
 - X,y,Z

- /odom → 실제 TR 가 ROS와 연결된 후, 바퀴를 통해 이동한 현재 위치 및 현재 이동 상태를 확인 가능
- pose : 출발 이후, 변화한 x, y 및 yaw에 해당하는 값 확인 가능
- pose covariance : 사용하지 않음
- twist 현재 TR의 선속도 및 회전 속도 확인 가능
- twist covariance : 사용하지 않음
- rviz를 통해 출발 위치인 odom과 그 child frame인 base_link를 통해, 출발 지점에서 변화한 정도를 확인 가능

- /tf Msg Type
- std_msgs/Header header
 - o uint32 seq
 - o time stamp
 - string frame_id
 - child_frame_id
 - transform
 - translation
 - X, y, Z
 - rotation
 - X, y, z, W

- /tf → ROS Frame 사이의 변화량에 대한 값 확인 가능
- child_frame_id : 변환할 frame의 이름
- transform : 부모 Frame에서 자식 Frame 사이의 변화량 확인 가능
- transform translation : 부모 자식 Framex, y, z 사이의 변화량 확인 가능
- transform rotation : 부모 자식 Frame 사이의 roll, pitch, yaw 변화량 확인 가능
- rviz의 tf 및 axes를 통해서 변화된 값을 직접 시각적으로 확인 가능

- /TR_light_control Msg Type
- bool enable_cmd_light_control
- uint8 front_mode
- uint8 front_custom_value
- uint8 rear_mode
- uint8 rear_custom_value

- /TR_light_control → 자동 모드에서 TR의 전방 light control 가능
- enable_cmd_light_control: 제어할지 안할지를 입력 (true, false)
- front_mode: 0일 경우 Off, 1일 경우, 현재 값으로 고정, 2일 경우, 숨쉬기 모드,
 3일 경우 아래에서 입력하는 custom value로 설정
- front_custom_value : Mode가 3일 경우 사용하는 Value
- rear_mode 사용할 수 없음

- /cmd_vel Msg Type
- geometry_msgs/Vector3 linear
 - o float64 x
 - float64 y
 - o float64 z
 - geometry_msgs/Vector3 angular
 - float64 x
 - float64 y
 - o float64 z

- /cmd_vel → 자동 모드 시, 속도 및 회전 속도 제어
- linear x값만 사용하며, m/s단위로 이동 속도 입력
- angular z값만 사용하며, 회전 속도를 rad/s단위로 입력

go.support@wego-robotics.com

go.sales@wego-robotics.com

