INSTITUTO FEDERAL Espírito Santo Campus Serra	Curso de Engenharia de Controle e Automação			
	Componente Curricular: Cálculo Numérico Professor: Hilário Tomaz Alves de Oliveira			
	Semestre:	Período: 4°	Turma:	Data de Entrega:
	2020.1	remodo: 4	Noite	22/03/2020

<u>Lista de Implementação 1 – Introdução ao Octave</u>

Observações:

- As soluções das questões devem estar contidas em arquivos de código na linguagem Octave (extensão .m). Para padronizar utilize o seguinte padrão de nomenclatura.
 - o L#NumeroListaQ#NumeroQuestao.m
 - Nos quais:
 - #NumeroLista deve ser trocado pelo número da lista;
 - #NumeroQuestao deve ser trocado pelo número da questão.
 - o **Exemplos:** L1Q1.m, L3Q4.m, L5Q10.m, entre outros.
 - OBS: Nas questões que envolvem a criação de uma função, lembre-se que o nome do arquivo (.m) que a contém deve ter o mesmo nome da função declarada. Desta forma, somente o script de teste da função deve seguir o padrão de nomenclatura anterior.
- Ao final cada aluno deve enviar uma pasta compactada contendo todos os arquivos com suas soluções.

Questão 1. Faça um Script que mostre todos os números inteiros de 1 a 100, exibidos um abaixo do outro na tela.

Questão 2. Escreva um Script que calcule o fatorial de um número inteiro, sabendo-se que:

$$n! = 1 \times 2 \times 3 \times ... \times n-1 \times n$$

 $0! = 1$

Questão 3. Escreva uma função chamada **celsius = conversaoCelsius(F)** que receba como parâmetro uma temperatura **F** dada na escala Fahrenheit e retorne a temperatura equivalente em grau Celsius. Crie um script para testar sua função.

$$C = \frac{5 \times (F-32)}{9}$$

Questão 4. Faça uma função [x1, x2] = raizEquacaoSegundoGrau(a, b, c) para determinar as raízes de uma equação de segundo grau, dados os seus coeficientes. Fórmulas: $x = \frac{-b \pm \sqrt{\Delta}}{2a}$, onde $\Delta = b^2$ - 4ac. Obs: se Δ for negativo, não existem as raízes reais da equação. Dica: utilize a função sqrt. Crie um script para testar sua função.

Questão 5. O algoritmo de Euclides para determinar o Máximo Divisor Comum (MDC) entre dois números inteiros, consiste em formar uma sequência de inteiros cujos dois primeiros elementos são os números dados. Cada elemento seguinte é o resto da divisão dos dois anteriores. A sequência terminará quando um elemento da mesma for nulo. O MDC entre os números dados é o elemento anterior ao zero. Faça uma função **mdc** = **calcularMDC(x, y)** para este algoritmo. **Exemplo:** dados os números 12 e 15, será formada a sequência: 12, 15, 12, 3, 0 e o MDC entre 12 e 15 é 3. Crie um script para testar sua função.

Questão 6. Escreva um script que leia um vetor gabarito de 10 elementos. Cada elemento de gabarito contém um número inteiro (1, 2, 3, 4 ou 5) que correspondente as opções corretas de uma prova objetiva. Em seguida o programa deve ler um vetor resposta, também de 10 elementos inteiros, contendo as respostas de um aluno. O script deve comparar os dois vetores e escrever o número de acertos do aluno.

Questão 7. Deseja-se calcular a conta de consumo de energia elétrica de um consumidor. O preço de 1 Kwh custa atualmente R\$ 0,27. O cálculo da conta é dado por: **Preço do Kwh x Quantidade consumida**. Entretanto, o valor da conta não deverá ser inferior a R\$ 13,00, ou seja, mesmo que o seu consumo seja muito

baixo, ele terá que pagar essa taxa mínima. Escreva um script que leia a quantidade de Kwh consumida, determine e exiba o total a pagar.

Questão 8. Na matemática, um número perfeito é um inteiro para o qual a soma de todos os seus divisores positivos próprios (excluindo-o) é igual ao próprio número. Por exemplo, o número 6 possui como divisores os números 1, 2 e 3, cuja soma é 6. Além do número 6, outros números perfeitos são: 28, 496, 8.128, entre outros. Desenvolva um script que dado um número inteiro positivo, verifique e imprima na tela se o número digitado é ou não um número perfeito.

Questão 9. A distância euclidiana (ou distância métrica) é a distância entre dois pontos, que pode ser provada pela aplicação repetida do teorema de Pitágoras. Aplicando essa fórmula como distância, o espaço euclidiano torna-se um espaço métrico. A distância euclidiana entre os pontos $p = (p_1, p_2, ..., p_n)$ e $q = (q_1, q_2, ..., q_n)$, em um espaço euclidiano n-dimensional, é definida a seguir. Implemente uma função **distancia** = **calcularDistanciaEuclidiana(p, q)** que receba dois vetores de tamanho **n** e retorne o valor da distância euclidiana entre eles. Crie um script para testar sua função.

$$\sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

Questão 10. Uma rainha requisitou os serviços de um monge e disse-lhe que pagaria qualquer preço. O monge, necessitando de alimentos, indagou à rainha sobre o pagamento, se poderia ser feito com grãos de trigo dispostos em um tabuleiro de xadrez (que possui 64 casas), de tal forma que o primeiro quadro deveria conter apenas um grão e os quadros subsequentes, o dobro do quadro anterior. A rainha achou o trabalho barato e pediu que o serviço fosse executado, sem se dar conta de que seria impossível efetuar o pagamento. Faça script para calcular o número de grãos que o monge esperava receber.