Úkol 1

1. příklad

Uvažujme operaci \circ definovanou následovně: $L_1 \circ L_2 = L_1 \cup \overline{L_2}$. S využitím uzávěrových vlastností dokažte, nebo vyvraťte, následující vztahy:

- (a) $L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \circ L_2 \in \mathcal{L}_3$
- (b) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \circ L_2 \in \mathcal{L}_2^D$
- (c) $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \circ L_2 \in \mathcal{L}_2$

 \mathcal{L}_2^D značí třídu deterministických bezkontextových jazyků, \mathcal{L}_2 třídu bezkontextových jazyků a \mathcal{L}_3 třídu regulárních jazyků.

Řešení:

(a) Vztah (a) je platný.

Důkaz:

- Vztah přepíšeme s využitím definované operace \circ : $L_1, L_2 \in \mathcal{L}_3 \Rightarrow (L_1 \circ L_2 \in \mathcal{L}_3 \Leftrightarrow L_1 \cup \overline{L_2} \in \mathcal{L}_3)$
- Podle věty 3.23^1 třída regulárních jazyků \mathcal{L}_3 tvoří množinovou *Booleovu algebru*, z čehož plyne uzavřenost této třídy vůči doplňku a sjednocení.
- Díky uzavřenosti vůči doplňku platí vtah $L_2 \in \mathcal{L}_3 \Rightarrow \overline{L_2} \in \mathcal{L}_3$.
- Konečně díky uzavřenosti vůči sjednocení platí vztah $L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \cup \overline{L_2} \in \mathcal{L}_3$, který je ekvivalentní vztahu (a).

(b) Vztah (b) je platný.

Důkaz:

- Vztah přepíšeme s využitím definované operace \circ : $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow (L_1 \circ L_2 \in \mathcal{L}_2^D \Leftrightarrow L_1 \cup \overline{L_2} \in \mathcal{L}_2^D)$
- Podle věty 4.27^1 jsou deterministické bezkontextové jazyky \mathcal{L}_2^D uzavřeny vůči doplňku. Díky této větě platí vztah $L_2 \in \mathcal{L}_2^D \Rightarrow \overline{L_2} \in \mathcal{L}_2^D$.
- Věta 4.27^1 také říká, že deterministické bezkontextové jazyky \mathcal{L}_2^D jsou uzavřeny vůči průniku s regulárními jazyky \mathcal{L}_3 . Podle této věty tedy platí následující vztah:

$$(L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \cap \overline{L_2} \in \mathcal{L}_2^D) \Leftrightarrow (L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow \overline{L_1 \cap \overline{L_2}} \in \mathcal{L}_2^D)$$

- S využitím *De Morganova zákona* lze tento vztah upravit na $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow \overline{L_1} \cup \overline{\overline{L_2}} \in \mathcal{L}_2^D$.
- S využitím věty 4.27^1 a věty 3.23^1 , která říká, že třída regulárních jazyků \mathcal{L}_3 tvoří množinovou *Booleovu algebru*, z čehož plyne uzavřenost této třídy vůči doplňku, můžeme výše uvedený vztah dále upravit na tvar $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \cup \overline{L_2} \in \mathcal{L}_2^D$, což je vztah ekvivalentní zadanému vztahu (b).

(c) Vztah (c) není platný.

Důkaz sporem:

• Předpokládejme, že vztah (c) je platný.

 $^{^{1}} Studijni\ text-https://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf.$

- Vztah přepíšeme s využitím definované operace \circ : $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow (L_1 \circ L_2 \in \mathcal{L}_2 \Leftrightarrow L_1 \cup \overline{L_2} \in \mathcal{L}_2)$
- Podle věty 2.4^1 platí vztah $\mathcal{L}_3 \subset \mathcal{L}_2$, proto můžeme výše uvedený vztah upravit na $L_2 \in \mathcal{L}_2 \Rightarrow \overline{L_2} \in \mathcal{L}_2$.
- Věta 4.24^1 však říká, že bezkontextové jazyky \mathcal{L}_2 nejsou uzavřeny vůči doplňku, tj. $L_2 \in \mathcal{L}_2 \Rightarrow \overline{L_2} \notin \mathcal{L}_2$, což je **spor. Vztah (c) tedy neplatí.**

2. příklad

Mějme jazyk L nad abecedou $\{a,b,\#\}$ definovaný následovně: $L=\{a^ib^j\#a^kb^l\mid i+2j=2k+l\}$. Sestrojte deterministický zásobníkový automat M_L takový, že $L(M_L)=L$.

Řešení:

 $\begin{aligned} \mathbf{M_L} &= (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b, \#\}, \{\sim, *, \circ\}, \delta, q_0, \sim, \{q_5\}), \text{ kde } \\ \delta &\subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \longrightarrow 2^{Q \times \Gamma^*} \text{ je přechodová funkce definovaná následovně:} \end{aligned}$

$$\delta(q_0,a,\sim) = (q_0,*\sim)$$

$$\delta(q_0,a,*) = (q_0,\circ*)$$

$$\delta(q_0,a,\circ) = (q_0,\circ\circ)$$

$$\delta(q_0,a,\circ) = (q_0,\circ\circ)$$

$$\delta(q_0,b,\circ) = (q_1,\circ*\sim)$$

$$\delta(q_0,b,\circ) = (q_1,\circ\circ\circ)$$

$$\delta(q_0,b,\circ) = (q_0,\circ)$$

Grafická reprezentace automatu M_L:

3. příklad

Dokažte, že jazyk L z předchozího příkladu není regulární.

Řešení:

Důkaz sporem:

- Předpokládejme, že jazyk L je regulární, tj. $L \in \mathcal{L}_3$.
- Potom dle *Pumping lemma* (věta 3.18¹) platí:

```
\begin{array}{l} \exists \, k > 0 \in \mathbb{N} : \forall \, w \in L : |w| \geq k \Rightarrow \\ \Rightarrow \exists \, x, y, z \in \{a, b, \#\}^* : w = xyz \land y \neq \varepsilon \land |xy| \leq k \land \forall i \geq 0 \in \mathbb{N} : xy^iz \in L \end{array}
```

- Uvažme libovolné *k* splňující výše uvedené.
- Zvolme $w = a^k \# b^k$. $w \in L$, protože $L = \{a^{i'}b^{j'} \# a^{k'}b^{l'} \mid i' + 2j' = 2k' + l'\}$ a $w = a^k b^0 \# a^0 b^k$, kde platí $k + 2 \cdot 0 = 2 \cdot 0 + k \Rightarrow k = k$. Dále platí, že $|w| = 2k + 1 \ge k$.
- Tedy $\exists x, y, z \in \{a, b, \#\}^* : a^k \# b^k = xyz \land y \neq \varepsilon \land |xy| \le k \land \forall i \ge 0 \in \mathbb{N} : xy^i z \in L$.
- Uvažme libovolné x, y, z vyhovující výše uvedené podmínce.
- Z toho, že $|xy| \le k$ a $y \ne \varepsilon$ plyne: $x = a^r \land y = a^s \land z = a^{k-r-s} \# b^k \land r \ge 0 \land s > 0 \land r + s \le k$.
- Zvolme i = 2, potom $xy^2z = a^ra^sa^sa^{k-r-s}\#b^k = a^{k+s}\#b^k \notin L$.
- To je **spor**, protože $k + s \neq k$, protože s > 0 a z *Pumping lemma* plyne, že $xy^iz \in L$. Proto **jazyk L není** regulární, tj. L $\notin \mathcal{L}_3$.

4. příklad

Navrhněte algoritmus, který pro daný nedeterministický konečný automat $A=(Q,\Sigma,\delta,q_0,F)$ rozhodne, zda $\forall w \in L(A): |w| \geq 5$.

Dále demonstrujte běh tohoto algoritmu na automatu $A = (\{q_0, q_1, q_2, q_3, q_4\}, \{a\}, \delta, q_0, \{q_4\})$, kde δ je definována jako

```
\delta(q_0, a) = \{q_1, q_0\}, \, \delta(q_1, a) = \{q_1, q_2\}, \\ \delta(q_2, a) = \{q_0, q_3\}, \, \delta(q_3, a) = \{q_0, q_4\}, \\ \delta(q_4, a) = \{q_0\}.
```

Řešení:

Algoritmus:

Vstup: Nedeterministický konečný automat $A = (Q, \Sigma, \delta, q_0, F)$.

$$\frac{\text{V\'{y}stup:}}{\text{FALSE}} \begin{cases} \text{TRUE} & \text{pokud } \forall w \in L(A) : |w| \ge 5 \\ \text{FALSE} & \text{jinak, tj. pokud } \exists w \in L(A) : |w| < 5 \end{cases}$$

Metoda:

1. Nechť $R_\delta \subseteq Q \times Q$ je binární relace, která popisuje, zda je v automatu A možný přímý přechod mezi danou dvojicí stavů (p,q), definována na základě přechodové funkce δ následovně:

$$R_{\delta} = \{(p,q) \in Q \times Q \mid \exists a \in \Sigma : q \in \delta(p,a)\}$$

- 2. Nechť R_{δ}^{+} je tranzitivní uzávěr relace R_{δ} .
- 3. Nechť výstup algoritmu je dán predikátem φ definovaným následovně:

$$\varphi: \forall q_1, q_6 \in Q: q_1 = q_0 \land q_6 \in F \land (q_1, q_6) \in R_{\delta}^+ \Rightarrow \exists Q' \subseteq Q: |Q'| = 6 \land q_1, q_6 \in Q' \land \forall 2 \le i \le 6 \in \mathbb{N}: \exists q_i \in Q': (q_{i-1}, q_i) \in R_{\delta}^+$$

Demonstrace běhu algoritmu na daném automatu A:

Vstup: Daný automat A.

Metoda:

- 1. $R_{\delta} = \{(q_0, q_1), (q_0, q_0), (q_1, q_1), (q_1, q_2), (q_2, q_0), (q_2, q_3), (q_3, q_0), (q_3, q_4), (q_4, q_0)\}$
- 2. $R_{\delta}^{+} = \{q_0, q_1, q_2, q_3, q_4\} \times \{q_0, q_1, q_2, q_3, q_4\}$
- 3. $\varphi = \text{FALSE}$, protože predikát φ je nesplnitelný. Na cestě od počátečního stavu q_0 do koncového stavu q_4 se nenachází dostatečný počet přechodů mezi navzájem různými stavy.

Výstup: FALSE, tj. neplatí $\forall w \in L(A) : |w| \ge 5$.

5. příklad

Dokažte, že jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) \bmod 2 \neq 0 \land \#_b(w) \leq 2\}$ je regulární. Postupujte následovně:

- Definujte \sim_L pro jazyk L.
- Zapište rozklad $\Sigma^*/{\sim_L}$ a určete počet tříd tohoto rozkladu.
- Ukažte, že L je sjednocením některých tříd rozkladu Σ^*/\sim_L .

Řešení:

- **Prefixová ekvivalence** pro jazyk L, $\sim_{\mathbf{L}} \subseteq \{a,b\}^* \times \{a,b\}^*$ je definována následovně: $(\forall u,v \in \{a,b\}^* : u \sim_L v) \Leftrightarrow (\forall w \in \{a,b\}^* : uw \in L \Leftrightarrow vw \in L) \Leftrightarrow ((\#_a(u) \bmod 2 = \#_a(v) \bmod 2 \land \land ((\#_b(u) = 0 \land \#_b(v) = 0) \lor (\#_b(u) = 1 \land \#_b(v) = 1) \lor (\#_b(u) = 2 \land \#_b(v) = 2))) \lor (\#_b(u) > 2 \land \#_b(v) > 2))$
- Rozklad množiny všech řetězců nad abecedou $\Sigma = \{a,b\}$ jazyka L (Σ^*) podle prefixové ekvivalence $\sim_L (\Sigma^*/\sim_L)$ je následující:

```
L_{1} = \{ w \in \Sigma^{*} \mid \#_{a}(w) \mod 2 = 0 \land \#_{b}(w) = 0 \}
L_{2} = \{ w \in \Sigma^{*} \mid \#_{a}(w) \mod 2 = 1 \land \#_{b}(w) = 0 \}
L_{3} = \{ w \in \Sigma^{*} \mid \#_{a}(w) \mod 2 = 0 \land \#_{b}(w) = 1 \}
L_{4} = \{ w \in \Sigma^{*} \mid \#_{a}(w) \mod 2 = 1 \land \#_{b}(w) = 1 \}
L_{5} = \{ w \in \Sigma^{*} \mid \#_{a}(w) \mod 2 = 0 \land \#_{b}(w) = 2 \}
L_{6} = \{ w \in \Sigma^{*} \mid \#_{a}(w) \mod 2 = 1 \land \#_{b}(w) = 2 \}
L_{7} = \{ w \in \Sigma^{*} \mid \#_{b}(w) > 2 \}
```

Počet tříd tohoto rozkladu je 7.

- Jazyk L je sjednocením tříd L_2 , L_4 a L_6 , tj. $L = L_2 \cup L_4 \cup L_6$.
- Protože má relace prefixové ekvivalence \sim_L konečný index 7 (počet tříd rozkladu Σ^*/\sim_L) a jazyk L je sjednocením některých tříd rozkladu určeného relací \sim_L , jak je ukázáno výše, plyne z *Myhill-Nerodovi* věty (věta 3.20^1) tvrzení, že jazyk L je přijímaný deterministickým končeným automatem, proto **je jazyk** L **regulární**, **tj.** $L \in \mathcal{L}_3$.