A Practical Course in Numerical Methods for Engineers

WS 2022/2023

Aufgabenblatt 2

Rechengenauigkeit, Interpolation und Kurvenanpassung

Aufgabe 1: Rechengenauigkeit

Erstellen Sie eine Matlab-Funktion (function $x_num = 1$ ineintersection(P1,P2)) zur Berechnung der xKoordinate des Schnittpunktes zweier Geraden. Die erste Gerade ist durch die Punkte P_1 und P_2 festgelegt.
Die zweite Gerade ist die Horizontale durch y = 2. Die Punkte P_1 und P_2 sind gegeben als

$$\mathbf{P}_1 = \begin{pmatrix} 0.0 \\ 1.0 \end{pmatrix}$$
 und $\mathbf{P}_2 = \begin{pmatrix} \delta \\ 1.0 + \delta \end{pmatrix}$.

Berechnen Sie die x-Koordinate des Schnittpunktes für $10^{-20} \le \delta \le 10^5$. Wählen Sie dazu eine geeignete Verteilung des Parameters δ . Plotten Sie für die verschiedenen δ den Betrag des absoluten Fehlers der Position $(\delta, |x_{\rm ex} - x_{\rm num}|)$ in doppelt logarithmischem Maßstab im relevanten Bereich. Dabei ist $x_{\rm ex}$ der analytische exakte Schnittpunkt und $x_{\rm num}$ Ihr ermittelter Wert. Interpretieren Sie das Ergebnis qualitativ.

Aufgabe 2: Interpolation mit Lagrange-Polynomen

Erstellen Sie ein Matlab-Programm, das die Auswertung der Lagrange-Polynome und deren Ableitung für einen beliebigen Grad ermöglicht. Es sind fünf Stützstellen x mit den zugehörigen Funktionswerten $f(x) = \left(\frac{x}{1+x}\right)^5$ gegeben:

х	0.0	1.0	2.0	3.0	4.0
f(x)	0.000000000000	0.031250000000	0.131687242798	0.237304687500	0.327680000000

Berechnen Sie mit Hilfe des erstellten Programmes den Funktionswert und die Ableitung an der Stelle x = 0.6 und plotten Sie die jeweilige Funktion sowie die Ableitung der untenstehenden Lagrange-Interpolation. Es ist exemplarisch der Plot für Polynome vom Grad 4 gezeigt.

Wenden dies auf folgende Fälle an:

a) Polynome vom Grad 1. Verwenden Sie nur die Punkte x = 0.0 und x = 1.0.

Lsg.:
$$f_{L1}(0.6) = 0.01875$$
, $f'_{L1}(0.6) = 0.03125$

b) Polynome vom Grad 4.

Lsg.:
$$f_{L4}(0.6) = 0.0053987$$
, $f'_{L4}(0.6) = 0.046593$

c) Polynome vom Grad 80. Verwenden Sie dazu die gegebene Funktion f(x) und werten Sie diese in gleichmäßigen Abständen im Intervall [0.0, 4.0] aus.

Lsg.:
$$f_{L80}(0.6) = 0.0074158$$
, $f'_{L80}(0.6) = 0.038624$

Hinweis: Die exakte Lösung der zugrunde liegenden Funktion lautet: f(0.6) = 0.0074158, f'(0.6) = 0.038624.