

INPUT FASTQ Data

Base programs: **Nextflow** C and C++ Python Numpy

QC and Host Filtering

Remove Low-Quality Reads (Trimmomatic and RunOC Trimmomatic stats.py) BuildHostIndex Identify host reads (BWA) AlignReadsToHost Remove host reads (Samtools and RemoveHostDNA samtoolsidx stats.pv) Convert file types (Bedtools) NonHostReads

Resistome Analysis

Microbiome Analysis

Identify AMR reads (BWA) _ _ → AlignToAMR

Apply gene fraction (ResistomeAnalyzer)

_ - → RunResistome

Build count matrix (amr long to wide.py)

- → ResistomeResults

Extract reads mapped to SNP genes (AWK)

_ - → ExtractSNP

Confirm SNPs required for resistance (RGI)

- - → RunRGI

Combine AMR counts (amr_long_to_wide.py)

_ - → Confirmed ResistomeResults

Rarefy (RarefactionAnalyzer)

_ _ → RunRarefaction

Identify SNPs (SNPFinder, Freebayes)

L___RunSNPFinder, RunFreebayes

OUTPUT resistome count matrix

Build kraken k-mer DB (download is already built)

Build k-mer index for each sample, match to DB (kraken) - → RunKraken

Build count matrix (kraken long to wide.py)

L _ _ KrakenResults **FilteredKrakenResults**

OUTPUT microbiome count matrix

Underline indicates a program/script needed to run Nextflow pipeline Italics indicates an output directory from Nextflow pipeline. Resistome analysis performs the same steps for de-duplicated alignments.