

计算机组成原理

第 18、19讲

左德承

哈尔滨工业大学计算学部 容错与移动计算研究中心

2. 中断系统需解决的问题

8.4

- (1) 各中断源 如何 向 CPU 提出请求?
- (2) 各中断源 同时 提出 请求 怎么办?
- (3) CPU 什么 条件、什么 时间、以什么 方式 响应中断?
- (4) 如何保护现场?
- (5) 如何寻找入口地址?
- (6) 如何恢复现场,如何返回?
- (7) 处理中断的过程中又 出现新的中断 怎么办? 硬件 + 软件

二、中断请求标记和中断判优逻辑

8.4

1. 中断请求标记 INTR

一个请求源 一个 INTR 中断请求标记触发器

多个INTR 组成中断请求标记寄存器

INTR 分散 在各个中断源的 接口电路中

INTR 集中在 CPU 的中断系统内

2. 中断判优逻辑

8.4

- (1) 硬件实现(排队器)
 - ① 分散 在各个中断源的 接口电路中 链式排队器 参见第五章
 - ②集中在CPU内

INTR₁、INTR₂、INTR₃、INTR₄ 优先级 按 降序 排列

(2) 软件实现(程序查询)

A、B、C 优先级按 降序 排列

三、中断服务程序入口地址的寻找 8.4

1. 硬件向量法

向量地址 12H、13H、14H 入口地址 200、300、400

2. 软件查询法

8.4

八个中断源 1, 2, ... 8按降序排列

中断识别程序(入口地址 M)

地址	指令	说明
M	SKP DZ 1# JMP 1# SR SKP DZ 2# JMP 2# SR	1# D = 0 跳 (D) 完成触发器) 1# D = 1 转 1# 服务程序 2# D = 0 跳 2# D = 1 转 2# 服务程序
	: SKP DZ 8 [#] JMP 8 [#] SR	8 [#] D = 0 跳 8 [#] D = 1 转8 [#] 服务程序

四、中断响应

- 1. 响应中断的条件 允许中断触发器 EINT=1
- 2. 响应中断的时间

指令执行周期结束时刻由CPU发查询信号

8.4

(1) 保护程序断点

断点存于特定地址(0号地址)内 断点进栈

(2) 寻找服务程序入口地址

向量地址 → PC (硬件向量法)

中断识别程序 入口地址 $M \longrightarrow PC$ (软件查询法)

(3) 硬件 关中断

INT 中断标记

EINT 允许中断

R-S触发器

五、保护现场和恢复现场

8.4

1. 保护现场 {断点 中断隐指令 完成 寄存器 内容 中断服务程序 完成

2. 恢复现场 中断服务程序 完成

保护现场 **PUSH** 中 断 视不同请求源而定 其它服务程序 服 务 恢复现场 **POP** 程 序 中断返回 IRET

六、中断屏蔽技术

8.4

1. 多重中断的概念

程序断点 k+1, l+1, m+1

划分优先级的一般规律 8.4

- 硬件故障中断属于最高级,其次是程序错误中断
- 非屏蔽中断优于可屏蔽中断
- DMA请求优先于I/O设备传送的中断请求
- 高速设备优于低速设备
- 输入设备的中断优于输出设备
- 实时设备优先于普通设备

2. 实现多重中断的条件

8.4

- (1) 提前 设置 开中断 指令
- (2) 优先级别高 的中断源 有权中断优先级别低 的中断源

3. 屏蔽技术

8.4

(1) 屏蔽触发器的作用

MASK = 0 (未屏蔽)

INTR 能被置 "1"

 $MASK_i = 1$ (屏蔽)

 $INTP_i = 0$ (不能被排队选中)

(2) 屏蔽字

8.4

16个中断源 1, 2, 3, … 16 按 降序 排列

优先级	屏 蔽 字
1	11111111111111
2	01111111111111
3	001111111111111
4	000111111111111
5	0000111111111111
6	0000011111111111
:	
15	0 0 0 0 0 0 0 0 0 0 0 0 1 1
16	0 0 0 0 0 0 0 0 0 0 0 0 0 1

(3) 屏蔽技术可改变处理优先等级

8.4

响应优先级不可改变

处理优先级

可改变 (通过重新设置屏蔽字)

中断源	原屏蔽字	新屏蔽字
A	1 1 1 1	1 1 1 1
В	0 1 1 1	0 1 0 0
C	0 0 1 1	0 1 1 0
D	0 0 0 1	0 1 1 1

响应优先级 $A \rightarrow B \rightarrow C \rightarrow D$ 降序排列

处理优先级 $A \rightarrow D \rightarrow C \rightarrow B$ 降序排列

(3) 屏蔽技术可改变处理优先等级

8.4

CPU 执行程序轨迹(原屏蔽字)

(3) 屏蔽技术可改变处理优先等级

8.4

CPU 执行程序轨迹(新屏蔽字)

(4) 屏蔽技术的其他作用

可以人为地屏蔽某个中断源的请求

024/6/6 便于程序控制

(5) 新屏蔽字的设置

8.4

单重中断和多重中断的服务程序流程 单重 多重 取指令 取指令 执行指令 执行指令 否 否 中断否? 中断否? 是 是 中 中 中断响应 中断响应 断隐指令 断 中 中 程序断点进栈 程序断点进栈 断 断 隐 关中断 关中断 周 周 指 期 向量地址 \rightarrow PC 期 向量地址 \rightarrow PC 令 保护现场 保护现场 中 中断服务程序 开中断 断 设备服务 服务程序 设备服务 恢复现场 恢复现场 开中断 中断返回 中断返回

4. 多重中断的断点保护

8.4

(1) 断点进栈

中断隐指令 完成

(2) 断点存入"0"地址 中断隐指令 完成

中断周期 $0 \longrightarrow MAR$

命令存储器写

PC → MDR 断点 → MDR

(MDR) → 存入存储器

- 三次中断,三个断点都存入"0"地址
- ? 如何保证断点不丢失?

(3) 程序断点存入"0"地址的断点保护8.4

地址	内容	说明
0 5	XXXX JMP SERVE	存程序断点 5 为向量地址
SERVE	STA SAVE	保护现场
置屏蔽字	LDA 0 STA RETURN ENI	} 0 地址内容转存 开中断
	•	} 其他服务内容
	LDA SAVE	恢复现场
	JMP @ RETURN	间址返回
SAVE	$\times \times \times \times$	存放 ACC 内容
RETURN 2024/6/6	$\times \times \times \times$	转存 0 地址内容

第3章系统总线

- 3.1 总线的基本概念
- 3.2 总线的分类
- 3.3 总线特性及性能指标
- 3.4 总线结构
- 3.5 总线控制

3.1 总线的基本概念

- 一、为什么要用总线
- 二、什么是总线

总线是连接各个部件的信息传输线,

是各个部件共享的传输介质

三、总线上信息的传送

四、总线结构的计算机举例

3.1

1.单总线结构框图

单总线 (系统总线)

2.1 面向 CPU 的双总线结构框图 3.1

2.2 以存储器为中心的双总线结构框图

2.3 具有通道的双总线结构

3.1

3.1 三总线结构

3.1

3.2 三总线结构的又一形式

4. 四总线结构

3.1

3.2 总线的分类

- 1. 片内总线 芯片内部的总线
- 2. 系统总线 计算机各部件之间 的信息传输线 双向 与机器字长、存储字长有关 地址总线 单向 与存储地址、I/O地址有关 控制总线 有出 有入

中断请求、总线请求

存储器读、存储器写总线允许、中断确认

3. 通信总线

用于 计算机系统之间 或 计算机系统 与其他系统(如控制仪表、移动通信等) 之间的通信

4. 常见总线接口举例

3.2

4. 常见总线接口举例

* USB应归为 通信总线

PCI

PCI-Express (PCI-E)

3.3 总线特性及性能指标

一、总线物理实现

二、总线特性

3.3

1. 机械特性 尺寸、形状、管脚数及排列顺序

2. 电气特性 传输方向 和有效的 电平 范围

3. 功能特性 每根传输线的功能 {数据控制

4. 时间特性 信号的时序关系

三、总线的性能指标

- 1. 总线宽度 数据线的根数
- 2. 标准传输率 每秒传输的最大字节数 (MBps)
- 3. 时钟同步/异步同步、不同步
- 4. 总线复用 地址线与数据线复用
- 5. 信号线数 地址线、数据线和控制线的总和
- 6. 总线控制方式 突发、自动、仲裁、逻辑、计数
- 7. 其他指标 负载能力

总线的性能指标

• 总线工作频率

- 早期的总线通常一个时钟周期传送一次数据,此时,工作 频率等于总线时钟频率;
- 现在有些总线一个时钟周期可以传送2次或4次数据,因此,工作频率是时钟频率的2倍或4倍。

• 总线带宽

- 总线的最大数据传输率
- 对于同步总线,总线带宽计算公式: B=W×F/N
 - W-总线宽度; F-总线时钟频率;
 - N-完成一次数据传送所用时钟周期数。

F/N实际上就是总线工作频率

四、总线标准

系统总线的进化历程

年份	标准	时钟频率	传输位宽	传输位数/周期	带宽
1981	ISA	8MHz	8	0.5	8MB/s
1988	EISA	8.33MHz	32	1	33.33MB/s
1993	PCI	33MHz	32	1	133MB/s
1996	AGP 1x	66MHz	32	1	266MB/s
	AGP 2x/4x/8x	66MHz	32	2/4/8 (DDR/QDR/ODR)	(533/1,066/2,133)MB/s
1998	PCI-X	133MHz	64	1	1,066MB/s
2004	PCI-E Gen1 x1	2.5GHz	1	1	250MB/s
	PCI-E Gen1 x2/4/8/16	2.5GHz	1	1	(0.5/1/2/4)GB/s
2007	PCI-E Gen2 x1	5GHz	1	1	500MB/s
	PCI-E Gen2 x2/4/8/16	5GHz	1	1	(1/2/4/8)GB/s
2010	PCI-E Gen3 x1	8GHz	1	1	1GB/s
	PCI-E Gen3 x2/4/8/16	8GHz	1	1	(2/4/8/16)GB/s
2017	PCI-E Gen4 x1	16GHz	1	1	2GB/s
	PCI-E Gen4 x2/4/8/16	16GHz	1	1	(4/8/16/32)GB/s
2019	PCI-E Gen5 x1	32GHz	1	1	4GB/s
	PCI-E Gen5 x2/4/8/16	32GHz	1	1	(8/16/32/64)GB/s

1. ISA(Industry Standard Architecture)总线

1981 支持24位地址线

1988

支持8位(PC)/16位(PC/AT)数据线总线时钟频率8MHz 用于80286计算机

2. EISA(Extended ISA)总线

支持32位地址线和数据线

总线时钟频率8MHz

DMA方式下可达33MB/s传输速率 用于80386/80486计算机 1992

1993

1996

3. VL-BUS(VESA Local Bus)总线

与EISA兼容、外加主存总线以实现高速传输总线时钟频率与CPU外频同步(25-40MHz)主存总线驱动能力有限,最多接3个扩展卡用于80486计算机

4. PCI(Peripheral Component Interconnect)总线

总线时钟频率33/66MHz,并与CPU独立总线宽度32位/64位数据传输率132MB/s起,所有设备共享即插即用(自动分配地址空间、中断号等)

)变种: AGP(Accelerated Graphics Port)

四、常见的总线标准

5. PCI-X(PCI eXtended)总线

1998

与PCI总线物理兼容总线时钟频率支持66/100/133MHz 支持DDR和QDR技术,最高传输率533MB/s 多用于服务器和高端PC用户

6. PCI-E (PCI Express) 总线

2004

高速串行总线 可包含多个数据通道x1/x2/x4/x8/x16 数据传输率250MB/s起 软件与传统PCI兼容

变种: NVMe(用于高速SSD,提高传输率)

2011

3.4 总线结构

3.4

- 一、总线结构举例
 - 1. 传统微型机总线结构

源于80286

2. VL-BUS局部总线结构

3. PCI 总线结构

二、现代总线结构

袁春风 计算机组成与系统结构 (第二版)

Intel 体系结构中特指的"系统总线"

系统总线上传输的信息有哪些?

数据(指令、操作数、中断号)、地址、 其他控制/状态/定时等信号!

• 前端总线(Front Side Bus,FSB)

- 并行传输、同步定时方式
- 早期Intel架构使用,位于CPU芯片与北桥芯片之间互连
- 从Pentium Pro开始,FSB采用quad pumped技术:每个总线时钟周期传送4次数据。
- 若工作频率为1333MHz(实际单位应是MT/s,表示每秒传送1333M次数据,实际时钟频率为333MHz),总线宽度为64位,则总线带宽为1333MT/s×8B=10.5GB/s。

• QPI(Quick Path Interconnect)总线

- 目前在Intel架构中CPU芯片内部核之间、CPU芯片之间、CPU芯片与IOH(I/O Hub)芯片之间,都通过QPI总线互连
- QPI是基于包交换的串行、高速点对点连接:发送方和接收方各有时钟信号,双方同时传输数据(各有20条数据线),每个QPI数据包含80位,分两个时钟周期传送,每个时钟周期传两次,故每次传20位(16位数据+4位校验位),QPI总线带宽为:每秒传送次数×2B×2。
- QPI总线的速度单位(工作频率)为GT/s,表示每秒传送多少G次。若QPI时 钟频率为2.4GHz,则速度为4.8GT/s,带宽为4.8G×2B×2=19.2GB/s.

存储器总线

3.4

总带宽为: 3 x 8B x 1333M = 32GB/s. 从Core i7开始,北桥在CPU芯片内,CPU通过存储器总线(即内存条插槽,图中为 三通道插槽)直接和内存条相连。3个存控包含在CPU芯片内。 I/O总线用于为系统中的各种I/O设备提供输入输出通道 I/O总线在物理上可以是主板上的I/O扩展槽,如:

第一代: ISA/EISA总线、VESA总线, 早被淘汰

第二代: PCI、AGP、PCI-X, 被逐渐淘汰

第三代: PCI-Express (串行总线,主流总线)

PCI-Express总线

两个PCI-Express设备之间以一个链路(link)相连 每个链路包含多条通路(lane),可以是1,2,4,8,16或32条 PCI-Express×n表示一个具有n条通路的PCI-Express链路 每条通路可同时发送和接受,每个数据字节被转换为10位信息被传输 PCI-Express1.0下,每条通路的发送和接受速率都是2.5Gb/s,故PCI-Express×n的带宽为: 2.5Gb/s×2×n/10=0.5GB/s×n。

PCI-Express1.0下, PCI-Express×2的带宽为1GB/s, PCI-Express×4的带宽为2GB/s, PCI-Express×16的带宽为8GB/s.

基于Core i7系列处理器的互连结构举例

QPI总线的带宽为: 6.4GT/s×2B×2=25.6GB/s

每个存储器总线的带宽为: 64b/8×1066 MT/s = 8.5 GB/s.

3.5 总线控制

- 一、总线判优控制
 - 1. 基本概念
 - 主设备(模块) 对总线有 控制权
 - 从设备(模块) 响应 从主设备发来的总线命令

• 总线判优控制

集中式 计数器定时查询 独立请求方式

2. 链式查询方式

3. 计数器定时查询方式

3.5

2024/6/6

4. 独立请求方式

59

3.5

二、总线通信控制

1. 目的 解决通信双方 协调配合 问题

2. 总线传输周期

申请分配阶段 主模块申请,总线仲裁决定

寻址阶段 主

主模块向从模块 给出地址 和 命令

传数阶段

主模块和从模块 交换数据

结束阶段

主模块 撤消有关信息

60

3.5

3. 总线通信的四种方式

同步通信 由统一时标控制数据传送

异步通信 采用应答方式,没有公共时钟标准

半同步通信 同步、异步结合

人分离式通信 充分挖掘系统总线每个瞬间的潜力

(1) 同步式数据输入

(2) 同步式数据输出

半互锁

63

全互锁

不互锁

(4) 半同步通信(同步、异步 结合) 3.5

同步 发送方用系统 时钟前沿 发信号接收方用系统 时钟后沿 判断、识别

异步 允许不同速度的模块和谐工作

增加一条 "等待"响应信号 WAIT

以输入数据为例的半同步通信时序

- T_1 主模块发地址
- T_2 主模块发命令
- $T_{\rm w}$ 当 $\overline{\rm WAIT}$ 为低电平时,等待一个 T
- $T_{\rm w}$ 当 $\overline{\rm WAIT}$ 为低电平时,等待一个T
 - •
- T, 从模块提供数据
- T_4 从模块撤销数据,主模块撤销命令

(4) 半同步通信(同步、异步 结合) 3.5

上述三种通信的共同点

一个总线传输周期(以输入数据为例)

• 主模块发地址、命令 占用总线

• 从模块准备数据 不占用总线 总线空闲

• 从模块向主模块发数据 占用总线

68

3.5

(5) 分离式通信

充分挖掘系统总线每个瞬间的潜力

一个总线传输周期

子周期1

主模块 申请 占用总线,使用完后

即 放弃总线 的使用权

子周期2

从模块 申请 占用总线,将各种信

息送至总线上

主模块

分离式通信特点

- 1. 各模块有权申请占用总线
- 2. 采用同步方式通信,不等对方回答
- 3. 各模块准备数据时,不占用总线
- 4. 总线被占用时,无空闲

充分提高了总线的有效占用

第5章 输入输出系统

- 5.1 概述
- 5.2 外部设备
- 5.3 I/O接口
- 5.4 程序查询方式
- 5.5 程序中断方式
- 5.6 DMA方式

5.1 概述

- 一、输入输出系统的发展概况
 - 1. 早期

分散连接

程序查询方式

CPU和 I/O设备 串行 工作

2. 接口模块和 DMA 阶段

总线连接

 CPU 和 I/O设备 并行 工作 {
 中断方式

 DMA 方式

- 3. 具有通道结构的阶段
- 4. 具有 I/O 处理机的阶段

I/0设备接口插座(连接器)

5.1

(安装在主板上的I/O设备接口插座)

二、输入输出系统的组成

5.1

- 1. I/O 软件
 - (1) I/O 指令
 CPU 指令的一部分

 操作码 命令码 设备码

(2) 通道指令 通道自身的指令 指出数组的首地址、传送字数、操作命令 如 IBM/370 通道指令为 64 位

2. I/O 硬件

设备 I/O 接口 设备 设备控制器 通道

三、I/O设备与主机的联系方式

5.1

- 1. I/O 设备编址方式
 - (1) 统一编址 用取数、存数指令
 - (2) 不统一编址 有专门的 I/O 指令
- 2. 设备选址 用设备选择电路识别是否被选中
- 3. 传送方式
 - (1) 串行
 - (2) 并行

4. 联络方式

5.1

- (1) 立即响应
- (2) 异步工作采用应答信号

2024/(3) 同步工作采用同步时标

5. I/O 设备与主机的连接方式

5.1

(1) 辐射式连接

(2) 总线连接

便于增删设备

四、I/O设备与主机信息传送的控制方式 5.1

1. 程序查询方式

CPU和I/O串行工作

踏步等待

2. 程序中断方式

5.1

 I/O 工作
 自身准备
 CPU 不查询

 与主机交换信息
 CPU 暂停现行程序

 CPU 和 I/O 并行工作

没有踏步等待现象

中断现行程序

程序中断方式流程

5.1

3. DMA 方式

5.1

主存和 I/O 之间有一条直接数据通道

不中断现行程序

周期挪用(周期窃取)

CPU和I/O并行工作

2024/6/6

三种方式的 CPU 工作效率比较

5.1

5.2 I/O设备

一、概述

外部设备大致分三类

1. 人机交互设备

- 键盘、鼠标、打印机、显示器
- 2. 计算机信息存储设备 磁盘、光盘、磁带
- 3. 机一机通信设备 调制解调器等

2024/6/6

二、输入设备

5.2

1. 键盘

按键

判断哪个键按下

将此键翻译成 ASCII 码 (编码键盘法)

2. 鼠标

机械式 金属球 电位器

光电式 光电转换器

3. 触摸屏

三、输出设备

5.2

1. 显示器

(1) 字符显示 字符发生器

(2) 图形显示 主观图像

(3) 图像显示 客观图像

2. 打印机

(1) 击打式 点阵式(逐字、逐行)

(2) 非击打式 激光(逐页)喷墨(逐字)

四、其他

- 1. A/D、D/A 模拟/数字(数字/模拟)转换器
- 2. 终端 由键盘和显示器组成 完成显示控制与存储、键盘管理及通信控制
- 3. 汉字处理 汉字输入、汉字存储、汉字输出

五、多媒体技术

- 1. 什么是多媒体
- 2. 多媒体计算机的关键技术

5.3 I/O接口

一、概述

为什么要设置接口?

- 1. 实现设备的选择
- 2. 实现数据缓冲达到速度匹配
- 3. 实现数据串一并格式转换
- 4. 实现电平转换
- 5. 传送控制命令
- 6. 反映设备的状态("忙"、"就绪"、 "中断请求")

I/0总线、I/0接口与I/0设备的关系5.3

把I/O控制器和插座合起来称为I/O接口。