MATH 2330: Multivariable Calculus

4.5: Chain Rule

Section 4.5: Chain Rule

Chain Rule, Case 1:

Let z = f(x, y) where x = g(t), y = h(t). Then

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Example 1: (Revisited) Consider $f(x,y)=x^2+y^2, \quad x=3t, \quad y=e^{2t}$. Compare the result from calculating $\frac{df}{dt}$ using the Chain Rule with the result that you get from first rewriting f as a function of t, then taking the derivative.

Chain Rule, Case 2:

Let z=f(x,y) where $x=g(s,t),\quad y=h(s,t).$ Then

$$\frac{\partial z}{\partial t} =$$

$$\frac{\partial z}{\partial s} =$$

Example 2: Consider $g(x,y)=x^2+xy+y^2, \quad x=3(t+s), \quad y=e^{2st}.$ Find $\frac{\partial g}{\partial s}$ and $\frac{\partial g}{\partial t}$ at (s,t)=(1,0).

Example 3: Draw a diagram to help you write out the Chain Rule for w=f(x,y,z) where $x=g(s,t),\quad y=h(s,t),\qquad z=k(s,t).$