

Computação Evolucionária

Alexandre Farias Baía - 201700470001

Relatório - O Dilema dos Prisioneiros

1. Introdução

Neste relatório, é discutida a análise do comportamento do Dilema dos Prisioneiros através de um algoritmo genético, onde a evolução deste demonstra se uma população tende a ser mais ou menos egoísta de acordo com determinados parâmetros

2. Objetivo

Implementar um algoritmo genético capaz de simular uma população diante do Dilema dos Prisioneiros, e a partir do comportamento desta a cada geração, analisar a qual situação a população tende. Para a análise são utilizados gráficos e tabelas, além de que a conclusão é baseada em perguntas propostas no comando do trabalho.

3. Metodologia

Neste trabalho a seguinte abordagem quanto ao dilema dos prisioneiros:

- Duas pessoas cometeram um crime. Elas são presas. Para que o governo consiga prendê-los, ele precisa que elas confessem e mostrem provas sobre o crime. Elas são interrogadas separadas.
- Se as duas pessoas não confessarem (isto é, cooperarem entre si), então o governo terá de soltá-los em 6 meses devido à falta de provas.
- No entanto, se uma delas ficar calada e a outra confessar, a pessoa que cooperou com o parceiro de crime (ficou calado) vai ser preso por 30 anos, enquanto o outro que confessou, por ter ajudado a polícia, será solto na hora.
- Se ambos confessarem, então ambos são presos por 10 anos por terem cooperado com a justiça.

A modelagem do algoritmo genético é feita da seguinte forma:

- Cada indivíduo é uma cadeia de números reais entre 0 e 1, onde 0 é
 máxima cooperação com o parceiro e 1 é a máxima delação do parceiro.
 Ou seja, abaixo de 0,5 é cooperação (não delação) e acima de 0,5 é delação.
- Cada cromossomo possui 30 genes.
- Existem dois tipos de *Fitness*: Individual e Grupo

Os tipos de Fitness levam em consideração o pareamento entre cooperação (C) e delação (D), normalizados de 0 a 1, e de forma proporcional ao tempo de prisão, como segue a tabela abaixo.

Tabela 1: Valores de para o Fitness Individual (Esquerda) e o de Grupo (direita)

Condição	Valor do Fitness
DC	1
CC	0.9
DD	0.66
CD	0

Condição	Valor do Fitness
CC	1
CD ou DC	0.33
DD	0

Existe também uma parcela bônus do fitness, onde é levada em consideração a quantidade de cadeias de C encontradas no indivíduo de teste, essa parcela de bônus é dada pela fórmula abaixo.

$$Bonus = (numerocadeias * valorbonus) * (1 - mediagenes_c)$$

Essa parcela bônus é adicionada a média encontrada na primeira parcela do *fitness*.

Quanto aos operadores do algoritmo genético, é utilizada a seleção por torneio, cruzamento aritmético, mutação gaussiana e o total de indivíduos da população é igual a 50.

Há 3 casos de testes para a avaliação do problema proposto: (1) quando os indivíduos são comparados par-a-par, (2) quando um indivíduo é comparado com 10% da população e (3) quando um indivíduo é comparado a 30% da população. E em cada caso desse, é necessário verificar as seguintes situações: fixa-se uma valor de C e varia-se o bônus e fixa-se o bônus e varia-se o C. A tabela abaixo sumariza os testes.

Tabela 2: Parâmetros do algoritmo genético.

	Caso de Teste 1		Caso de Teste 2		Caso de Teste 3	
Parâmetro	Individual	Grupo	Individual	Grupo	Individual	Grupo
Tamanho da População	50	50	50	50	50	50
Tamanho do Ring	3	3	3	3	3	3
Prob. de Cruzamento	90%	90%	90%	90%	90%	90%
Prob. de Mutação	1%	1%	1%	1%	1%	1%
Desvio-Padrão	1%	1%	1%	1%	1%	1%
Gerações	600	600	1200	1200	1200	1200
Valor de C	10/20	10/20	10/20	10/20	10/20	10/20
Valor do Bônus	0%/20%/40%	0%/20%/40%	0%/20%/40%	0%/20%/40%	0%/20%/40%	0%/20%/40%

Um Diagrama de Classes é necessário para um melhor entendimento da implementação, este é exibido na figura 3.1.

Figura 3.1: Diagrama de Classes do código usado para a implementação

O código foi desenvolvido em Python 3.6, através da IDE PyCharm no sistema operacional Windows 8.

4. Resultados

Os seguintes gráficos foram obtidos através da execução do código.

Caso de Teste = Par-a-par, Fitness = Grupo, Valor de C = 10, Bônus = 0.0 %

	Melhor individuo
1	<u> </u>
2	6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3	cececececececececececece
4	<i>ÇCC,CCC,CC,CCC,CCC,CCC,CC,CC,CC,CC,CC,CC</i>
5	66666666666666666666666666

Caso de Teste = Par-a-par, Fitness = Individual, Valor de C = 10, Bônus = 20.0 %

	Melhor indivíduo
1	0,
2	0,
[0,
4	D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.
-	0,

Caso de Teste = Par-a-par, Fitness = Grupo, Valor de C = 10, Bônus = 20.0 %

	Melhor Individuo
1	dedelected eccelected eccelected eccelected
2	cececececececececececece
3	CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
4	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
5	ccccccccccccccccccccccccccc

Caso de Teste = Par-a-par, Fitness = Individual, Valor de C = 20, Bônus = 20.0 %

Caso de Teste = Par-a-par, Fitness = Grupo, Valor de C = 20, Bônus = 20.0 %

	Melhor Individuo
1	cccccccccccccccccccccccccccc
2	ccccccccccccccccccccccccccc
3	CCCCCCCCCCCCCCCCCCCCCCCCCC
4	CCCCCCCCCCCCCCCCCCCCCCCCCCCC
5	$c_{C_1C_1C_2C_1C_2C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C$

Caso de Teste = Par-a-par, Fitness = Individual, Valor de C = 20, Bônus = 40.0 %

Caso de Teste = Par-a-par, Fitness = Grupo, Valor de C = 20, Bônus = 40.0 %

	Melhor Individuo
1	<u> </u>
2	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
3	CCC,CCC,CCC,CCC,CCC,CCC,CCC,CCC,CC
4	CCC,CCC,CCC,CCC,CCC,CCC,CCC,CCC,CC
5	0,

Caso de Teste = 10.0 % de Opositores, Fitness = Individual, Valor de C = 10, Bônus = 0.0 %

Caso de Teste = 10.0 % de Opositores, Fitness = Grupo, Valor de C = 10, Bônus = 0.0 %

	Melhor individuo
1	<u> </u>
2	CCCCCCCCCCCCCCCCCCCCCCCCCCCC
3	c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/
4	$c_{C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,$
5	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Caso de Teste = 10.0 % de Opositores, Fitness = Individual, Valor de C = 10, Bônus = 20.0 %

	Melhor individuo
1	D.D.D.C.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D
2	CD.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.
3	0,
4	0,
П	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

Caso de Teste = 10.0 % de Opositores, Fitness = Grupo, Valor de C = 10, Bônus = 20.0 %

	Melhor Individuo
-	c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,b,c,c,c
E	DCCCCCCDCCCCCCCCCCCCCCCCCCC
F	C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,
F	D,D,D,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C
-	c/c/c/c/c/b/b/c/c/c/c/c/c/c/c/c/c/c/c/c

Caso de Teste = 10.0 % de Opositores, Fitness = Individual, Valor de C = 20, Bônus = 20.0 %

Caso de Teste = 10.0 % de Opositores, Fitness = Grupo, Valor de C = 20, Bônus = 20.0 %

	Melhor Individuo
1	CCCCCCCCCCCCCCCCCCCCCCCCCC
2	000000000000000000000000000000000000000
3	0.
4	CCC,CCC,CC,CC,CC,CC,CC,CC,CC,CC,CC,CC,C
5	0,

Caso de Teste = 10.0 % de Opositores, Fitness = Individual, Valor de C = 20, Bônus = 40.0 %

	Melhor individuo
1	0,
2	C_D_D_D_D_D_D_D_C_D_D_D_D_D_D_D_D_D_D_D
3	0,
4	0,
8	D,D,D,D,D,D,C,D,D,D,D,D,D,D,D,D,D,D,D,D

Caso de Teste = 10.0 % de Opositores, Fitness = Grupo, Valor de C = 20, Bônus = 40.0 %

	Melhor Individuo
1	ccccccccccccccccccccccccccc
2	ccccccccccccccccccccccc
3	ccccccccccccccccccccccc
4	CCCCCCCCCCCCCCCCCCCCCCCCCCCC
5	CCCCBcCCCCCCCCCCCCCCCCCCCCCCC

Caso de Teste = 30.0 % de Opositores, Fitness = Individual, Valor de C = 10, Bônus = 0.0 %

	Melhor Individuo
1	0.
2	0.
3	0,
4	0,
П	D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,

Caso de Teste = 30.0 % de Opositores, Fitness = Grupo, Valor de C = 10, Bônus = 0.0 %

	Melhor individuo
1	CCC,CCC,CCC,CCC,CCC,CCC,CCC,CCC,CC
2	cccccccccccccccccccccccccccc
3	CCC,CCC,CCC,CCC,CCC,CCC,CCC,CCC,CCC,CC
4	CCC,CCC,CC,CC,CC,CC,CC,CC,CC,CC,CC,CC,C
5	CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Caso de Teste = 30.0 % de Opositores, Fitness = Individual, Valor de C = 10, Bônus = 20.0 %

	Melhor Individuo
1	0,
2	0,
3	0,
4	B,D,B,D,D,D,D,D,C,D,D,D,D,D,D,D,D,D,D,D,
5	D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,D,

Caso de Teste = 30.0 % de Opositores, Fitness = Grupo, Valor de C = 10, Bônus = 20.0 %

	Melhor Individuo
1	CDD,CC,CCC,CCC,CCC,CCC,CCC,CCC,CCC,CCC,
2	Beeeeeeeeeeeeeeeeeee
3	C,D,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,D
4	D,C,D,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C
5	CDDDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Caso de Teste = 30.0 % de Opositores, Fitness = Individual, Valor de C = 20, Bônus = 20.0 %

Figura 4.1: Casos de Teste para o par-a-par, 10% de opositores e 30% de opositores com suas dadas variações de Valor de C e Valor do Bônus

Figura 4.2: Resultados sumarizados para o Fitness Individiual

Figura: 4.3: Resultados sumarizados para o Fitness em Grupo

5. Conclusão

Com base nas perguntas abordadas pelo professor, a conclusão deste relatório será baseada nelas

a) Qual é o impacto do tamanho de C? A população fica mais ou menos egoísta com a variação de C?

O tamanho de C, quanto mais elevado, deixou a população mais egoísta.

b) O mesmo para o valor do bônus: qual o valor do bônus para uma dada cadeia para que a população se torne menos egoísta?

Valores de bônus mais elevados tendem a tornar uma população menos egoísta em uma dada cadeia, como por exemplo, em aumentar o bônus de 10% para 20% com C=10.

c) Qual é a diferença de comportamento para Fitness Individual e o Fitness em Grupo?

Para o Fitness Individual, os indivíduos tendem a delatar, e para o Fitness em Grupo, os indivíduos tendem a cooperar.

d) Quanto mais indivíduos são usados para comparação qual é o comportamento?

Quanto mais indivíduos são usados para comparação, mais lentamente a população convergiu, no caso, para 10% e 30% de opositores foi necessário testes com 1200 gerações para se observar a convergência.