Decoding the Unspoken: Details on Methodology for FSDE Design Expo 2025

M. Soroush Izadan

FSDE Design Expo 2025

1 Introduction

Effective human-robot interaction (HRI) requires robots to perceive and interpret subtle human social cues in real-time. We present a unified recursive Bayesian framework for estimating key social factors: Facial Approachability (A_F) , Head Pose-Based Engagement (E_F) , and Motion-Based Approachability (A_M) . These estimates, represented as Gaussian distributions (μ, σ^2) , allow robots to dynamically adapt their behavior based on a probabilistic understanding of the human state, incorporating temporal dynamics and principled uncertainty management.

2 Core Bayesian Estimation Framework

All estimators employ a recursive Bayesian approach, modeling the target social factor $(X \in \{A_F, E_F, A_M\})$ as a Gaussian random variable. The state at time t is inferred from relevant observations $O^{(t)}$ and the previous state $X^{(t-1)}$.

The core update cycle involves two steps:

1. Prediction (Time Update): The prior belief from the previous time step is propagated forward, incorporating process noise ($\sigma_{process}^2$) to account for potential state drift over time Δt :

$$p(X^{(t)}|X^{(t-1)}) = \mathcal{N}(\mu_{prior}^{(t-1)}, (\sigma_{prior}^{(t-1)})^2 + \sigma_{process}^2 \cdot \Delta t) = \mathcal{N}(\mu_{predict}^{(t)}, (\sigma_{predict}^{(t)})^2)$$
(1)

2. Update (Measurement Update): A likelihood function $p(O^{(t)}|X^{(t)})$ is computed based on the current observations. This likelihood, modeled as $\mathcal{N}(\mu_{likelihood}^{(t)}, (\sigma_{likelihood}^{(t)})^2)$, represents how well different hypothetical states $X^{(t)}$ explain the observations. The predicted prior is then combined with the likelihood using standard Gaussian update equations to yield the posterior belief:

$$(\sigma_{posterior}^{(t)})^2 = \left(\frac{1}{(\sigma_{predict}^{(t)})^2} + \frac{1}{(\sigma_{likelihood}^{(t)})^2}\right)^{-1}$$
(2)

$$\mu_{posterior}^{(t)} = (\sigma_{posterior}^{(t)})^2 \left(\frac{\mu_{predict}^{(t)}}{(\sigma_{predict}^{(t)})^2} + \frac{\mu_{likelihood}^{(t)}}{(\sigma_{likelihood}^{(t)})^2} \right)$$
(3)

The posterior mean $\mu_{posterior}^{(t)}$ is typically clamped to [0, 1] and the variance $(\sigma_{posterior}^{(t)})^2$ is lower-bounded.

3 Facial Approachability Estimation (A_F)

3.1 Goal

Estimate the perceived approachability based on facial expressions and gaze direction, drawing from social psychology findings.

3.2 Input Cues $(O^{(t)})$

- Detected facial emotion probabilities (e.g., neutral, happy, sad, etc.).
- Gaze direction (e.g., direct vs. averted).

3.3 Core Logic & Likelihood

- Emotions are mapped to base approachability means (μ_E) , informed by psychological ratings (e.g., happy \rightarrow high μ_E , anger \rightarrow low μ_E).
- Gaze direction modulates the means for certain emotions (e.g., direct gaze slightly increases μ_E for happy).
- The overall $\mu_{likelihood}$ is a weighted average of the emotion-gaze modulated means, weighted by temporally smoothed emotion probabilities.
- The $\sigma_{likelihood}^2$ incorporates base uncertainties for each emotion and the variance across contributing emotions.
- Temporal smoothing of emotion probabilities using an EWMA-like model enhances robustness to noise.
- Uncertainty quantification considers classification entropy, potentially grouped by valence.

4 Head Pose-Based Engagement Estimation (E_F)

4.1 Goal

Estimate cognitive engagement based on head orientation dynamics, interpreting focus vs. scanning behavior.

4.2 Input Cues $(O^{(t)})$

- Head pose (yaw, pitch) classified into Regions of Interest (ROIs) with hysteresis.
- History of confirmed ROI dwell times.
- History of confirmed ROI changes.

4.3 Core Logic & Likelihood

Engagement (E_F) is estimated from two primary head pose features:

- ROI Dwell Time Entropy (H_{norm}) : Calculated over a time window. Low entropy (focus on few ROIs) maps to high $\mu_{likelihood}$ via an inverse sigmoid function. High entropy (scatter across many ROIs) maps to low $\mu_{likelihood}$.
- EWMA of ROI Change Rate ($\mathcal{E}_{\Delta ROI}$): Captures recent head movement activity. Low rate (stability) maps to high $\mu_{likelihood}$ via an inverse sigmoid. High rate (active scanning) maps to low $\mu_{likelihood}$.
- The two likelihoods are combined using inverse variance weighting. Disagreement between the entropy and rate cues increases $\sigma^2_{likelihood}$, based on comparing normalized cue outputs.

5 Motion-Based Approachability Estimation (A_M)

5.1 Goal

Estimate approachability based on locomotion patterns, interpreting speed and movement variability.

5.2 Input Cues $(O^{(t)})$

Filtered velocity estimates $(\mathbf{v}_t = [v_x, v_y]^T)$ from Kalman-filtered motion tracking data, used to derive:

- Current Speed (S_t) .
- EWMA of Speed Change $(\mathcal{E}_{\Delta S}^{(t)})$.
- EWMA of Heading Change $(\mathcal{E}_{\Delta H}^{(t)})$, using circular differences.

5.3 Core Logic & Likelihood

Approachability (A_M) is inferred from fusing speed and variability cues:

- Speed Cue (S_t) : Low speed maps to high $\mu_{likelihood}$ (inverse sigmoid). High speed maps to low $\mu_{likelihood}$. Crucially, the *influence* of this cue is weighted (w_S) based on the speed's distance from a neutral midpoint, reducing its impact for ambiguous mid-range speeds.
- Variation Cues $(\mathcal{E}_{\Delta S}, \mathcal{E}_{\Delta H})$: High change rates map to high $\mu_{likelihood}$ (standard sigmoid). Low change rates map towards a neutral $\mu_{likelihood}$ (e.g., ≈ 0.5), indicating stability is less informative than active variation for *increasing* approachability in this model.
- Likelihoods are combined using modulated inverse variance weighting (incorporating w_S). Disagreement between normalized cue outputs increases $\sigma^2_{likelihood}$.

The use of Kalman-filtered velocity provides robustness against noisy raw motion data.

6 System Implications

This suite of estimators provides a multi-faceted, probabilistic assessment of human social state. By combining A_F , E_F , and A_M , potentially through higher-level fusion or rule-based systems, robots can gain a richer understanding for guiding navigation, interaction initiation, dialogue management, and overall socially appropriate behavior in dynamic human environments. The continuous nature and explicit uncertainty representation are key for robust real-world deployment.