Aplikasi Turunan Parsial

Dosen: Dr. Muh. Nur, S.Si., M.Si

Maksimum dan Minimum Fungsi Dua Peubah

Definisi

Misalkan $(x_0, y_0) \in D_f$, maka

- $f(x_o, y_o)$ adalah <u>nilai maksimum global</u> dari f pada D_f , jika $f(x_o, y_o) \ge f(x, y), \ \forall \ (x, y) \in D_f$
- $f(x_o, y_o)$ adalah <u>nilai minimum global</u> dari f pada D_f , jika $f(x_o, y_o) \le f(x, y), \ \forall \ (x, y) \in D_f$
- $f(x_o, y_o)$ adalah <u>nilai ekstrim global</u> dari f pada D_f , jika ia merupakan nilai maksimum global atau nilai minimum global.

Definisi yang sama berlaku dengan kata *global* diganti dengan *lokal*, pada (i) dan (ii), kita hanya memerlukan bahwa pertidaksamaan berlaku pada $N \cap S$, dengan N suatu daerah di sekitar (x_0, y_0) .

Di mana nilai ekstrim muncul?

- Titik di mana kemungkinan terjadinya nilai ekstrim disebut titik kritis
- Titik Kritis ada 3 (tiga), yaitu
 - ı. Titik-titik batas D_f
 - 2. Titik Stasioner

$$(x_0, y_0) \ni \vec{\nabla} f(x_0, y_0) = 0 \Leftrightarrow f_x(x_0, y_0) = 0 \, dan \, f_y(x_0, y_0) = 0$$

3. Titik Singular

$$(\vec{\nabla}f(x_0, y_0) \text{ tidak ada})$$

Úji Nilai Ekstrim

• Untuk menguji apakah di titik kritis terjadi nilai ekstrim, kita gunakan uji turunan parsial kedua, yaitu: Misalkan f(x,y) mempunyai turunan parsial kedua yang kontinu di sekitar (x_0,y_0) , $\nabla f(x_0,y_0) = 0$

dan
$$D = D(x_0, y_0) = f_{xx}(x_0, y_0) \cdot f_{yy}(x_0, y_0) - \left(f_{xy}(x_0, y_0)\right)^2$$
 maka

- 1. Jika D >0 dan $f_{xx}(x_0, y_0) < 0$, maka $f(x_0, y_0)$ nilai maksimum lokal.
- 2. Jika D>0, dan $f_{xx}(x_0, y_0) > 0$, maka $f(x_0, y_0)$ nilai minimum lokal.
- 3. Jika D<0, maka $f(x_0,y_0)$ bukan nilai ekstrim atau (0,0) titik pelana
- 4. Jika D=0, tidak dapat ditarik kesimpulan.

Contoh

1. Tentukan titik kritis dan nilai ekstrim beserta jenisnya, dari

$$f(x,y) = 2x^4 - x^2 + 3y^2$$

Jawab:

$$f_x(x,y) = 8x^3 - 2x$$
 $f_y(x,y) = 6y$
 $f_{xx}(x,y) = 24x^2 - 2$ $f_{yy}(x,y) = 6$
 $f_{xy}(x,y) = 0$

Titik kritisnya (dalam hal ini titik stasioner) diperoleh dengan menyelesaikan persamaan

$$f_x(x,y) = 0 \text{ dan } f_y(x,y) = 0, \text{ yaitu}$$

$$8x^3 - 2x = 0 \implies 2x (4x^2 - 1) = 0 \implies x = 0, x = \pm \frac{1}{2}$$

$$6y = 0 \implies y = 0$$

Jadi titik-titik stasioner adalah $(0, 0), (\frac{1}{2}, 0)$ dan $(-\frac{1}{2}, 0)$

Contoh (lanjutan)

Mengenai jenis nilai ekstrim, bisa dilihat pada tabel berikut:

Titik stasioner	f _{xx}	f _{yy}	f _{xy}	D	Keterangan
(0,0)	- 2	6	0	-12	f(0,0) bukan nilai ekstrim atau (0,0) titik pelana
(1/2, 0)	4	6	0	24	f(1/2,0) = -1/8 nilai minimum lokal
(-1/2, 0)	4	6	0	24	f(-1/2,0) =-1/8 nilai minimum lokal

Contoh

2. Tentukan nilai ekstrim global dan jenisnya, dari

$$f(x,y) = x^2 - y^2 + 1$$
 pada $S = \{(x,y) | x^2 + y^2 \le 1\}$
Jawab:

$$f_{x}(x,y) = 2x$$
 $f_{y}(x,y) = -2y$
 $f_{xx}(x,y) = 2$ $f_{yy}(x,y) = -2$
 $f_{xy}(x,y) = 0$

Titik stasionernya diperoleh dengan menyelesaikan persamaan $f_x(x,y) = 0$ dan $f_y(x,y) = 0$, yaitu didapat (0,0)

Jadi titik-titik stasionernya $(0, 0)(\rightarrow \underline{terletak\ di\ dalam\ S})$,

Dan f(0,0)=1.

Untuk titik-titik batasnya, misalkan x=cos t dan y=sint (karena S adalah lingkaran satuan), sehingga didapat

$$f(t) = \cos^2 t - \sin^2 t + 1$$

Contoh (lanjutan)

Untuk mendapatkan nilai maksimun dan minimun f pada S, turunkan f, yaitu:

```
f'(t)=-2 \cos t \sin t - 2 \sin t \cos t = 0 \Rightarrow -4 \cos t \sin t = 0 \sin 2t = 0 \Rightarrow 2t = 0, \pi, 2\pi, 3\pi \Rightarrow t = 0, \pi/2, \pi, 3\pi/2 Untuk t = 0 \Rightarrow x = 1, y = 0 \Rightarrow f(1, 0) = 2 Untuk t = \pi/2 \Rightarrow x = 0, y = 1 \Rightarrow f(0, 1) = 0 Untuk t = \pi \Rightarrow x = -1, y = 0 \Rightarrow f(-1, 0) = 2 Untuk t = 3\pi/2 \Rightarrow t = 0, t = 0 \Rightarrow t = 0
```

Jadi nilai maksimum global = 2 pada titik (1,0) dan (-1,0), Sedangkan nilai minimun global=0 pada titik (0,1) dan (0,-1)

Latihan

1. Tentukan nilai ekstrim dan jenisnya, dari

a.
$$f(x,y) = x^3 + y^3 - 6xy$$

b. $f(x,y) = xy^2 - 6x^2 - 6y^2$
c. $f(x,y) = x^2 + 4y^2 - 2x + 8y - 1$
d. $f(x,y) = 3x^3 + y^2 - 9x + 4y$
e. $f(x,y) = xy + \frac{2}{x} + \frac{4}{y}$
f. $f(x,y) = e^{-(x^2 + y^2 - 4y)}$

2. Tentukan nilai ekstrim global dan jenisnya, dari

$$f(x,y) = x^2 - 6x + y^2 - 8y + 7$$
 pada $S = \{(x,y) | x^2 + y^2 \le 1\}$

Metode Lagrange

• Untuk mencari nilai ektrim terkendala Misalkan z = f(x,y) dengan kendala g(x,y) = 0. Akan dicari nilai ekstrim f terhadap kendala g.

Untuk memaksimumkan f thd kendala $g(x,y) = 0 \rightarrow \text{sama}$ dengan mencari perpotongan kurva ketinggian f(x, y) = k dengan fungsi kendala g(x, y) = 0 sehingga diperoleh $k \geq f(x, y)$ untuk setiap $x, y \in D_f$ sepanjang g(x, y) = 0

Karena kurva ketinggian dan kurva kendala saling menyinggung \rightarrow garis tegak lurusnya sama. Karena kurva ketinggian $\bot \vec{\nabla} f$ dan kurva kendala $\bot \vec{\nabla} g$ maka $\vec{\nabla} f(x,y) = \lambda \vec{\nabla} g(x,y)$

Metode Lagrange

Untuk memaksimumkan/meminimumkan $f(x_0, y_0)$ terhadap kendala $g(x_0, y_0) = 0$, selesaikan

$$\vec{\nabla} f(x_0, y_0) = \lambda \vec{\nabla} g(x_0, y_0) \ dan \ g(x_0, y_0) = 0$$

dengan (x_0,y_0) titik kritis, λ pengali langrange

Contoh

Gunakan metode lagrange untuk mencari nilai-nilai maksimun dan minimun dari

1.
$$f(x,y)=x^2-y^2+1$$
 pada lingkaran $x^2+y^2=1$ Jawab:

Titik-titik kritis didapat dengan memecahkan persamaan lagrange berikut

yaitu:
$$\vec{\nabla} f(x,y) = \lambda \vec{\nabla} g(x,y) \text{ dan } g(x,y) = 0$$

$$2x\vec{i} - 2y\vec{j} = \lambda(2x\vec{i} + 2y\vec{j})$$

$$2x = \lambda 2x \dots (1)$$

$$- 2y = \lambda 2y \dots (2)$$

$$x^2 + y^2 = 1 \dots (3)$$

```
Dari persamaan (3), nilai x dan y tidak mungkin sama-
sama nol, sehingga
Untuk x \neq 0, dari (1) di dapat \lambda = 1, kemudian dari (2)
di dapat y = 0, dan dari (3) di dapat x^2=1 \rightarrow x = \pm 1
Untuk y \neq 0, dari (2) di dapat \lambda = -1, kemudian dari (1)
di dapat x = 0, dan dari (3) di dapat y^2 = 1 \rightarrow y = \pm 1
Titik-titik kritis yaitu (1,0), (-1,0), (0,1) dan (0,-1)
Untuk (1,0) \Rightarrow f(1,0) = 2, untuk (-1,0) \Rightarrow f(-1,0) = 2
 Untuk (0,1) \Rightarrow f(0,1) = 0, untuk (0,-1) \Rightarrow f(0,-1) = 0
Jadi nilai maksimum global = 2 pada titik (1,0) dan (-1,0),
 Sedangkan nilai minimun global=0 pada titik (0,1)
 dan (0,-1)
```

Latihan

Gunakan metode lagrange untuk mencari nilai-nilai maksimun dan minimun dari

- $1.f(x,y) = x^2 + y^2 \text{ pada kendala } g(x,y) = xy 3 = 0$
- $2.f(x,y) = xy pada lingkaran x^2 + y^2 = 1$
- $3.f(x,y) = 4x^2 4xy + y^2$ pada kendala $x^2 + y^2 = 1$
- $4.f(x,y,z) = x^2+y^2+z^2$ pada kendala x + 3y 2z = 12