1. Axiomatic quantum physics

This article provides a brief introduction to **axiomatic quantum physics**, which is founded on three core axioms.

First, we recall that a physical system is described by its state—a mathematical entity—and its time evolution, which is typically governed by a differential equation. In classical physics, the state is defined by generalized coordinates $q=\left(q_1,...,q_f\right)$ and their corresponding generalized momenta $p=\left(p_1,...,p_f\right)$. Then the time evolution is determined by **Hamilton function** and **Hamilton's canonical equation**.

We give the definition of the state of a quantum system as following axiom.

Axiom 1.1: The **state** of a quantum system is represented by a unit vector (referred to as the **state vector**) in a complex Hilbert space \mathcal{H} . For any state vector $\psi \in \mathcal{H}$ and any non-zero complex number α , the vectors ψ and $\alpha\psi$ represent the same physical state.

Axiom 1.2: Any observable physical quantity is represented by a self-adjoint operator on \mathcal{H} .

Remark: Self-adjoint operators are used because their eigenvalues, which correspond to the possible measurement outcomes of a physical quantity, are always real numbers. An observable quantity T of a state $\psi \in \mathcal{H}$ in quantum physics is stochastic. Then we define a random variable T_{ψ} . Here we add an axiom for T_{ψ} on a probability space $(\Omega, \mathcal{B}(\mathbb{R}), P)$.

Axiom 1.3: Let $B \in \mathcal{B}(\mathbb{R})$, then $P(T_{\psi} \in B) = ||E_{T(B)}\psi||^2$, where E_T is the spectral measure of T.

Then we obtain the following useful thoerem.

Theorem 1.1: The expectation value of the random variable T_{ψ} is given by $E[T_{\psi}] = \langle \psi, T\psi \rangle$.

Proof: Let $P_{T_{\psi}}$ the probability distribution of T_{ψ} .

$$\begin{split} E\left[T_{\psi}\right] &= \int_{\mathbb{R}} \lambda dP_{T_{\psi}}(\lambda) = \int \lambda d\|E_{T(B)}\psi\|^2 \\ &= \int_{\mathbb{R}} \lambda d\langle E_{T(B)}\psi, E_{T(B)}\psi\rangle \\ &= \int_{\mathbb{R}} \lambda d\langle \psi, E_{T(B)}^2\psi\rangle : E_{T(B)} \text{ is self adjoint operator} \\ &= \int_{\mathbb{R}} d\langle \psi, \lambda E_{T(B)}\psi\rangle : E_{T(B)} \text{ is projection operator} \\ &= \langle \psi, T\psi\rangle : E_{T(B)} \text{ is spectral measure} \end{split}$$