

Chapitre Protocoles

Notion de protocole Terminologie et concepts Diagrammes temporels Aperçu de TCP et UDP

PR - Protocoles

- Comment s' organise le dialogue entre machines différentes
- Vous comprendrez:
 - Comment analyser les échanges entre deux machines
 - (PR2) Comment deux machines peuvent acheminer sans perte des informations même si le réseau perd des messages

R. GROZ Intro-2

Plan PR1

- Notion de protocole
- Constituants d'un protocole
 - PDU, formats
 - Règles et enchaînements
- Diagrammes temporels: illustrent des enchaînements
- Lien avec l'architecture en couches
 - insertion protocole-couche
 - encapsulation
- 1^{er} aperçu de UDP, TCP

Problèmes à résoudre

Pb5 - Dialogue entre machines

- Réseau relie des pgms informatiques
 - pas directement des humains
- Pgm <u>répartis</u>: en morceaux qui s' exécutent sur différentes machines
 - Application Web: morceau1=navigateur, morceau2:serveur Apache
- Machines « stupides »: besoin de protocoles précis pour se comprendre, parler le même langage, sinon se bloquent.
 - Web: navigateur et Apache se parlent HTTP

Illustration de protocoles

protocole humain & protocole réseau (entre machines)

Notion de protocole

Protocoles (sens générique)

- "comment allez-vous ?"/ "how do you do"
- présentations
- ... génération de certains messages
- ... des actions spécifiques à la réception
- ... un ordre à respecter pour bien se comprendre

Protocoles réseau

- entre des machines
- toutes les communications sous contrôle des protocoles

Les protocoles définissent:
1.le format
2.l'ordre des messages
envoyés et reçus
3.des actions à
entreprendre à l'envoi et à
la réception de messages

Protocole: défini par

<u>PDU</u>

- 1. Format des messages:
- successions de champs
 d'information (ex:
 @exp, heure, longueur
 et type du contenu...)
 - codage de l'information des informations dans chaque champ
- Message: <u>PDU</u> (Protocol Data Unit)

- Règles:
 - 2. d'enchaînement
 - 3. actions à effectuer

Exemple:

- sur réception du PDU de type x
 - •si le champ x.z = 0 alors répondre par un PDU de type y
 - sinon stocker la valeur reçue

Exemples de PDU couche applicative: HTTP *HyperText Transfer Protocol*

Codé en caractères ASCII • Exemple de requête GET / HTTP/1.1 Host: web.ensimag.fr • Exemple de réponse Date: Wed, 10 Oct 2007 17:20:14 GMT Server: Apache/2.0.52 (Red Hat) Last-Modified: Thu, 14 Jun 2007 11:36:53 GMT t Content-Length: 1497 Connection: close Content-Type: text/html <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"> Contenu < html><head> <title>Extranet ensimag</title> etc.

Exemple de PDU couche « basse »: TCP

En fait: les Nx32 bits sont transmis l'un après l'autre On « replie » les lignes en tableau pour la lisibilité

- No. de séquence
 - no. du premier octet des DONNÉES
- No. d'ACK
 - no. de l'octet attendu

Diagramme temporel: enchaînement

• Représente le fonctionnement dynamique des échanges (le diagramme de couches est statique)

NB: dynamique (évolue / temps) <-/-> statique

- Il existe une notation normalisée un peu différente (MSC: Message Sequence Charts, norme ITU Z.120)
 - et une variante appelée Sequence Diagrams en notation UML

Diagramme temporel à 3 machines

Plan PR1

- Notion de protocole
- Constituants d'un protocole
 - PDU, formats
 - Règles et enchaînements
- Diagrammes temporels
- •Lien avec l'architecture en couches
 - insertion protocole-couche
 - encapsulation
- 1^{er} aperçu de UDP, TCP

Pb 6 - Dialogues via intermédiaires

Protocoles de réseau sous-jacents

 HTTP utilise une connexion TCP (protocole gérant le transport des informations)

TCP = « tuyau » pour communiquer entre navigateur & serveur Web

- HTTP: dialogue entre applications
 - sait dire: « envoie-moi telle page (GET) »
 - ne sait pas dire: « envoie ce GET à telle machine »
- TCP: dialogue entre processus logiciels de machines (hôtes)
- TCP s'appuie sur le protocole IP pour parler à son routeur (IP gère l'acheminement)
- IP s'appuie sur la carte Ethernet pour transférer ses octets sur le câble vers le routeur

Architecture de protocoles

Protocole: dans une couche

- Un protocole comporte
 - un format commun de données : unité de données <u>PDU</u> (Protocol Data Unit)
 - en-tête : fonctions de contrôle
 - données opaques pour le protocole

- un ensemble de règles de dialogue : procédures peer to peer procedures
- Module logiciel: entité de protocole protocol entity
 - une interface de <u>service</u>: SAP (Service Access Point) qui offre un ensemble de services (ex. connect, send), à laquelle on passe des SDU (Service Data Unit)
 - fonctions internes: construction/analyse des unités de protocoles, exécution des procédures (actions sur réception de PDU ou requête)

Encapsulation des messages

- Chaque protocole (HTTP, TCP, IP, Ethernet)
 réalise une partie des fonctions nécessaires
- Les messages des différents protocoles sont emboîtés comme des poupées russes: encapsulation

- Une même trame Ethernet encapsule les informations pour plusieurs protocoles à la fois
- •L'outil wireshark observe et décortique la poupée russe qui circule sur le câble Ethernet

Encapsulation

Couches et données

Chaque couche prend des données de la couche au dessus

- ajoute un en-tête pour créer un PDU nouveau
- passe ce PDU en tant que données à la couche au dessous

Analogie postale

- Lettre: contenu applicatif
 - Confiée à la poste (service fiable de transfert)
- Enveloppe: protocole TCP (transfert fiable)
 - Adresse expéditeur et destinataire (ex client & serveur), qualité de service demandée (affranchissement)...
- Sac de courrier: paquet IP
 - sur-emballage utilisé par la poste pour acheminer les données entre ses différents centres de manutention
- Camion postal: trame Ethernet
 - Support physique pour amener l'information à distance

Parlez-vous HTTP?

• telnet permet d'ouvrir un tuyau (TCP) de communication avec un hôte distant (par exemple un serveur WWW, désigné par 80)

bash\$ telnet web.ensimag.fr 80

• Envoi d'une requête

GET / HTTP/1.0

• Exemple de réponse

```
Date: Wed, 10 Oct 2007 17:20:14 GMT
Server: Apache/2.0.52 (Red Hat)
Last-Modified: Thu, 14 Jun 2007 11:36:53 GMT
Content-Length: 1497
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>Extranet ensimag</title>
```

Plan PR1

- Notion de protocole
- Constituants d'un protocole
 - PDU, formats
 - Règles et enchaînements
- Diagrammes temporels
- Lien avec l'architecture en couches
 - insertion protocole-couche
 - encapsulation
- 1^{er} aperçu de UDP, TCP

Plusieurs protocoles de transport

- Car les besoins des applications diffèrent: privilégier retour rapide (UDP), ou fiabilité (TCP), ou régularité (RTP pour des applications audio ou vidéo), etc (MPTCP, ...)
- Service offert différent pour chaque protocole
 - UDP: multiplexage de messages, transport rapide sans garantie (perte possible), détection erreurs (sans correction)
 - TCP: multiplexage, segmentation (transport de flux), récupération des erreurs et pertes, adaptation à la congestion du réseau...
- Service = fonctions offertes
 - QoS : Qualité de Service, caractéristiques non fonctionnelles (valeur des performances etc)

Choix du protocole de transport

- DNS (annuaire) utilise UDP
 - parce que requête et réponses courtes: 1 seul PDU
 - pas besoin de segmentation
 - réponse rapide (pas d'ouverture de connexion)
 - si perte: redemande au même serveur ou à un autre
- HTTP (web), ssh (connexion), SMTP (mél) etc. utilisent TCP
 - garantie d'acheminement sans perte de longs fichiers
 - segmentation automatique par TCP
- •SIP (téléphonie sur IP) utilise RTP (Real-time Transport Protocol)

UDP (User Datagram Protocol)

- Simple interface à IP
 - ajoute le <u>multiplexage</u>
 - plusieurs communications partagent la même interface de réseau
 - applications différenciées par les numéros de port (servent d'adresses locales à cet hôte)
 - un en-tête de 8 octets :
 - port source et destination,
 - longueur (limitée à 8 Koctets)
 - *checksum* sur le paquet
- Pas de garantie d'acheminement
 - En cas de perte (routeur saturé, mauvaise transmission etc), ni l'émetteur ni le récepteur n'en sont informés

En-tête UDP

32 bits

port source	port destination
longueur	checksum

- Ports source et destination
 - identificateurs d'application
- Longueur (en octets) totale y compris les 8 octets d'en-tête
 - min 8 (stupide: payload vide)
 - max théorique 64Koctets (peut être réduit par implém: BSD 8Ko)
- Checksum (somme de contrôle, code détecteur d'erreur)
 - contrôle d'erreurs
 - calcul checksum: comme TCP

TCP (Transmission Control Protocol)

- Fonction
 - transfert d'une séquence d'<u>octets</u>
 - pas de marquage de <u>messages</u> : on numérote les octets (grain fin) et non les messages
- Unité de protocole
 - segment
- Phases
 - connexion
 - transfert
 - fermeture

TCP: Un protocole orienté connexion pour garantir la fiabilité et l'ordre des messages

TCP (Transmission Control Protocol)

- Fiabilité
 - détection d'erreurs ou de trou dans la séquence de numéros par le récepteur
 - retransmission en cas de perte
 - heuristiques de "retransmission rapide »
- Contrôle de flux
 - fenêtre modulée par récepteur (crédit)
- Contrôle de congestion
 - adaptation à l'état d'occupation du réseau

En-tête TCP

32 bits

- longueur en-tête: 4 bits (nbr mots 32 bits); réservé: 6 bits
- 6 bits *flags*: URGent, ACK, PuSH, ReSeT, SYN, FIN
 - SYN segment de connexion, FIN fermeture de connexion
 - ACK no. d'ACK actif (i.e. bit ACK=1 signifie que les 32 bits audessus contiennent bien un No d'ACK significatif)
 - URG pointeur urgent actif
 - PSH force la création d'un segment et sa restitution à l'application

En-tête TCP

32 bits

port source			port destination				
no. de séquence							
no. d'ACK							
long, ent.	réservé						fenêtre
checksum		pointeur urgent					
options							

• Fenêtre annoncée

- récepteur contrôle la fenêtre d'émission (par défaut 4 Koctets, max. 64Koctets)
- Checksum contrôle d'erreurs (cf PR2)
 - sur le pseudo-en-tête: en-tête et les données TCP + adresses IP et type de protocole pris dans l'enveloppe IP + taille du pseudo en-tête)
 - complément à 1 sur somme des compléments à 1 des mots de
 16 bits
 R. GROZ

 PR1-31

En-tête TCP

32 bits

- Pointeur urgent
 - indique la fin des données urgentes
- Options (peut être vide, en-tête=20 octets)
 - MSS (Maximal Segment Size) (sans en-tête)
 - défaut 536 octets ; 1460

Enchaînement de PDU TCP: connexion

- Trois échanges (three-way handshake)
 - entente sur les numéros de séquences différents d'une connexion précédente
 - x, y: choisis en fonction de l'horloge
- Full-duplex (communication bi-directionnelle) avec 2 sens indépendants, chacun ayant sa numérotation d'octets

Exemple de connexion avortée

- Cas d'un segment retardé:
 - A détecte x périmé
 - A répond RST

Fermeture de connexion TCP

- Deux échanges (two-way handshake) pour chaque sens
- Chaque sens de communication libéré séparément
- Si B a encore des données à transmettre, il peut le faire indéfiniment, sinon il peut renvoyer ACK&FIN en même temps (3 messages)

- Concept de protocole: algorithme réparti (règles) + format précis des messages (PDU)
- Terminologie: PDU, en-têtes, règles
- Structure d'encapsulation (associée aux couches)
- Graphiques: diagrammes temporels