fishing

```
library(tidywerse)
library(tidymodels)
library(gdata)
library(skimr)

theme_set(theme_light())
set.seed(123)
```

Let's load the data

```
fishing <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2 fishing <- fishing %>% filter(year > 1925) # Some data before 1955 have weird behavior
```

Exploratory data analysis

'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.

Total production throughout the years

Considering all species together and lakes separate

It is not feasible to analyze the behaviour of each species on each lake.

```
fishing %>%
  group_by(year, lake, species) %>%
  summarise(year_production = sum(values, na.rm = T))
## 'summarise()' has grouped output by 'year', 'lake'. You can override using the '.groups' argument.
## # A tibble: 8,682 x 4
## # Groups:
               year, lake [533]
##
                                                 year_production
       year lake species
##
      <dbl> <chr> <chr>
                                                           <dbl>
                                                           21655
     1926 Erie Blue Pike
##
##
       1926 Erie
                  Bullheads
                                                              20
##
    3 1926 Erie
                  Burbot
                                                             564
##
    4 1926 Erie
                                                            8603
                  Carp
                  Channel Catfish
##
       1926 Erie
                                                              10
       1926 Erie
                  Channel Catfish and Bullheads
##
    6
                                                            1452
##
    7
       1926 Erie
                  Cisco
                                                            4471
##
      1926 Erie Freshwater Drum
                                                            2426
       1926 Erie Lake Sturgeon
##
                                                              64
## 10 1926 Erie Lake Whitefish
                                                            2788
## # ... with 8,672 more rows
grand_total <- fishing %>%
  group_by(species, year) %>%
  slice_head(n = 1) \%
```

```
select(year, species, grand_total) %>%
  drop_na() %>%
  ungroup() %>%
  group_by(species) %>%
  mutate(species_max = max(grand_total)) %>%
         #species = ifelse(species_max <= 10000, "Other", species)) %>% View()
  filter(species_max > 10000) %>%
  select(year, species, grand_total)
year_total <- grand_total %>%
  ungroup() %>%
  group_by(year) %>%
  summarise(grand_total = sum(grand_total)) %>%
  mutate(species = "Total")
grand_total <- bind_rows(grand_total, year_total)</pre>
grand_total %>%
  ggplot(aes(year, grand_total)) +
  geom_line(aes(color = species), size = 1) +
  scale_y_continuous(labels = label_number_si()) +
  labs(x = NULL,
       y = "Grand total (in pounds)",
       color = NULL,
       title = "Species that had at least one grand total of >10k")
```

Species that had at least one grand total of >10k

Modeling

Let's try to predict the U.S. total production based on the production of Ohio only.

These two plots represent the data used on the model.

U.S. total production throughout the years

Considering all species and all lakes together


```
# This prevents to keep data from regions that did not start fishing activities
# by the year of 1925.
filter(region_max_production > 10000, region_min_production > 0) %>%
select(-region_min_production, -region_max_production) %>%
pivot_wider(names_from = region, values_from = region_production)
```

'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.
These are the regions that present at least one production of >10k,
#as shown on a previous plot.

```
region_production %>%
  ggplot(aes(year, `Ohio (OH)`)) +
  geom_line(size = 1) +
  scale_y_continuous(labels = label_number_si()) +
  labs(x = NULL, y = "Production (in pounds)",
      title = "Total production of the region of Ohio",
      subtitle = "Considering all species together")
```

Total production of the region of Ohio Considering all species together


```
title = "Total production throughout the years",
subtitle = "For regions that had, at least, one production of >10k",
color = NULL)
```

Total production throughout the years

For regions that had, at least, one production of >10k

Now, let's define training and testing data.

```
data <- initial_split(region_production)

train_production <- training(data)
test_production <- testing(data)</pre>
```

It is possible to fit the model and make the predictions right away.

```
lm_model <- linear_reg() %>% set_engine("lm")
model_fit <-
  fit(lm_model, `U.S. Total` ~ `Ohio (OH)`, data = train_production)

prediction <- predict(model_fit, new_data = test_production)</pre>
```

We can apply some metrics to judge model effectiveness.

```
#Let's bind the real values and the predictions make on the test set.
```

```
prediction <- bind_cols(test_production, prediction) %>%
  ungroup() %>%
  select(-year)
pred_metrics <- metric_set(rmse, mae)</pre>
prediction %>%
  ungroup() %>%
 pred_metrics(truth = `U.S. Total`, estimate = .pred)
## # A tibble: 2 x 3
##
     .metric .estimator .estimate
##
     <chr> <chr>
                            <dbl>
## 1 rmse
             standard
                           15482.
## 2 mae
             standard
                           13764.
prediction %>%
  ggplot(aes(`U.S. Total`, .pred)) +
  geom_abline() +
  geom_point() +
  coord_obs_pred()
```


This model produced a mean absolute error of 13k. Let's try adding more regions to the prediction.

Let's fit the model again.

```
model_fit <-
  fit(lm_model,
      `U.S. Total` ~ `Ohio (OH)` + `Minnesota (MN)` + `Wisconsin (WI)` +
        `Michigan (MI)` + `MI State Total`,
      data = train_production)
prediction <- predict(model_fit, new_data = test_production)</pre>
#Let's bind the real values and the predictions make on the test set.
prediction <- bind_cols(test_production, prediction)</pre>
prediction %>%
  ungroup() %>%
  pred_metrics(truth = `U.S. Total`, estimate = .pred)
## # A tibble: 2 x 3
##
     .metric .estimator .estimate
##
   <chr> <chr>
                            <dbl>
## 1 rmse standard
                           11365.
## 2 mae
           {\tt standard}
                           10134.
prediction %>%
  ggplot(aes(.pred, `U.S. Total`)) +
  geom_abline() +
 geom_point() +
  coord_obs_pred()
```


Some regions fit the requirement of having least one production of >10k, but present data starting only at 1953. Let's try using them on our model.

```
region_production <- fishing %>%
  filter(year >= 1953) %>%
  group_by(year, region) %>%
  summarise(region_production = sum(values, na.rm = T)) %>%
  ungroup() %>%
  group_by(region) %>%
  mutate(region_max_production = max(region_production)) %>%
  filter(region_max_production > 10000) %>%
  select(-region_max_production) %>%
  pivot_wider(names_from = region, values_from = region_production)
## 'summarise()' has grouped output by 'year'. You can override using the '.groups' argument.
region_production %>%
  pivot_longer(cols = !starts_with("year"),
               names_to = "region", values_to = "year_production") %>%
  ggplot(aes(year, year_production)) +
  geom_line(aes(color = region), size = 1) +
  scale_y_continuous(labels = label_number_si()) +
  labs(x = NULL,
      y = "Total Production (in pounds)",
      title = "Total production throughout the years",
```

subtitle = "For regions that had, at least, one production of >10k",

Total production throughout the years

For regions that had, at least, one production of >10k

.metric .estimator .estimate

standard

standard

<dbl>

2626.

2085.

<chr> <chr>

##

1 rmse ## 2 mae

```
prediction %>%
  ggplot(aes(.pred, `U.S. Total`)) +
  geom_abline() +
  geom_point() +
  coord_obs_pred()
```

