6

11)

(3)

Int. Cl. 2:

C 07 D 207/32

C 07 D 409/12 C 07 D 405/12

A 61 K 31/40

A 61 K 31/435

A 61 K 31/38

A 61 K 31/335

PATENTAMT

BUNDESREPUBLIK DEUTSCHLAND

28 31 850 Offenlegungsschrift

Aktenzeichen:

P 28 31 850.5

Anmeldetag:

20. 7.78

Offenlegungstag:

7. 2.80

3 Unionspriorität:

DEUTSCHES

33 33

(2) Bezeichnung:

N-Arylsulfonylpyrrole, ihre Herstellung und diese enthaltende

therapeutische Mittel

7

Anmelder:

BASF AG, 6700 Ludwigshafen

@

Erfinder:

Bliesener, Jens-Uwe, Dipl.-Chem. Dr.;

Geiss, Karl-Heinz, Dipl.-Chem. Dr.; Lenke, Dieter, Prof. Dr.;

6700 Ludwigshafen; Mueller, Claus D., Dr.med.vet., 6806 Viernheim

Patentansprüche

1.)

Verbindungen der Formel 1

5

10

in der R¹ einen gesättigten, gegebenenfalls substituierten aliphatischen Rest mit 1 bis 8 C-Atomen, einen ungesättigten Alkylrest mit 2 bis 8 C-Atomen, einen Cycloalkylrest mit 3 bis 7 C-Atomen im Ring, einen Alkylrest mit 1 bis 4 C-Atomen, der durch Phenyl oder einen 5- oder 6-gliedrigen aromatischen heterocyclischen Ring mit einem N-, O- oder S-Atom substituiert ist, wobei der Phenylring oder der heterocyclische Ring 1- bis mehrfach substituiert sein können, R² ein Wasserstoffatom, R¹ und R² zusammen mit dem Stickstoffatom einen 4- bis 6-gliedrigen cycloaliphatischen Ring, R³ ein Wasserstoffatom oder einen Alkylrest mit 1 bis 5 C-Atomen, X ein Sauerstoff-, Schwefelatom oder die SO- oder

25

20

NH-Gruppe und Ar einen gegebenenfalls 1- bis 3fach substituierten Phenylring bedeuten, und ihre therapeutisch verwendbaren Ammonium-, Alkalimetalloder Säureadditionssalze.

30

einen Alkylrest mit 1 bis 5 C-Atomen, einen Allylrest, einen Benzylrest, der im Phenyl gegebenenfalls
durch Methyl, Methoxy, Carboxy oder Brom substituiert

35

23/78 D/St 18.07.1978

10

15

20

ist, einen Furylmethylrest oder einen Thienylmethylrest, wobei der Thiophenring gegebenenfalls 1- bis
2-fach durch Methyl, Chlor oder Brom und der Furanring
gegebenenfalls durch Brom oder Methyl substituiert
ist,
R² ein Wasserstoffatom,
R¹ und R² zusammen mit dem Stickstoffatom einen Pyrrolidinring,
R³ ein Wasserstoffatom, Methyl oder Athyl,
X ein Schwefel- oder Sauerstoffatom, eine _SO- oder
_NH-Gruppe und
Ar einen Phenylrest, der gegebenenfalls durch Methyl,

X ein Schwefel- oder Sauerstoffatom, eine _SO- oder _NH-Gruppe und Ar einen Phenylrest, der gegebenenfalls durch Methyl, Chlor oder Methoxy substituiert ist, bedeuten, und ihre therapeutisch verwendbaren Ammonium-, Alkalimetall- oder Säureadditionssalze.

- 7. Verbindung der Formel 1 nach Anspruch 1, in der R¹ n-Butyl, R² und R³ Wasserstoffatome, X ein Schwefelatom und Ar Phenyl bedeuten.
- 4. Verbindung der Formel 1 nach Anspruch 1, in der R¹
 Benzyl, R² und R³ Wasserstoffatome, X ein Schwefelatom
 und Ar Phenyl bedeuten.
- Verbindung der Formel 1 nach Anspruch 1, in der R¹
 3-Thienylmethyl, R² und R³ Wasserstoffatome, X ein Schwefelatom und Ar Phenyl bedeuten.
- Verbindung der Formel 1 nach Anspruch 1, in der R¹

 2-Thienylmethyl, R² und R³ Wasserstoffatome, X ein Schwefelatom und Ar Phenyl bedeuten.
- 7. Verbindung der Formel 1 nach Anspruch 1, in der R¹
 3-Thienylmethyl, R² und R³ Wasserstoffatome, X ein
 Schwefelatom und Ar p-Chlorphenyl bedeuten.

- 78. Verbindung der Formel 1 nach Anspruch 1, in der R¹ 2-Furylmethyl, R² und R³ Wasserstoffatome, X ein Schwefelatom und Ar Phenyl bedeuten.
- 5 9. Verbindung der Formel 1 nach Anspruch 1, in der R¹ n-Butyl, R² und R³ Wasserstoffatome, X ein Sauerstoffatom und Ar Phenyl bedeuten.
- 10. Verbindung der Formel 1 nach Anspruch 1, in der R¹
 Benzyl, R² und R³ Wasserstoffatome, X ein Sauerstoffatom und Ar Phenyl bedeuten.
 - 11. Verbindung der Formel 1 nach Anspruch 1, in der R¹
 3-Thienylmethyl, R² und R³ Wasserstoffatome, X ein Sauerstoffatom und Ar Phenyl bedeuten.
 - 12. Verbindung der Formel 1 nach Anspruch 1, in der R¹
 2-Thienylmethyl, R² und R³ Wasserstoffatome, X ein Sauerstoffatom und Ar Phenyl bedeuten.

- 13. Verbindung der Formel 1 nach Anspruch 1, in der R¹
 2-Furylmethyl, R² und R³ Wasserstoffatome, X -NH- und
 Ar Phenyl bedeuten.
- 25 14. Therapeutisches Mittel, enthaltend neben üblichen Träger- und Verdünnungsmitteln eine Verbindung der Formel 1 als Wirkstoff.

30

BASF Aktiengesellschaft

- 4 -

O. Z. 0050/033304

N-Arylsulfonylpyrrole, ihre Herstellung und diese enthaltende therapeutische Mittel

Die Erfindung betrifft Verbindungen der Formel 1

5

10 -

in der R¹ einen gesättigten, gegebenenfalls substituierten aliphatischen Rest mit 1 bis 8 C-Atomen, einen ungesättigten Alkylrest mit 2 bis 8 C-Atomen, einen Cycloalkylrest mit 3 bis 7 C-Atomen im Ring, einen Alkylrest mit 1 bis 4 C-Atomen, der durch Phenyl oder einen 5- oder 6-gliedrigen aromatischen heterocyclischen Ring mit einem N-, 0- oder S-Atom substituiert ist, wobei der Phenylring oder der heterocyclische Ring 1- bis mehrfach substituiert sein können, R² ein Wasserstoffatom, R¹ und R² zusammen mit dem Stickstoffatom einen 4- bis 6-gliedrigen cycloaliphatischen Ring,

25 R³ ein Wasserstoffatom oder einen Alkylrest mit 1 bis 5 C-Atomen,

909886/0095

BASF Aktiengesellschaft

X ein Sauerstoff-, Schwefelatom oder die SO- oder NH-Gruppe und Ar einen gegebenenfalls 1- bis 3-fach substituierten Phenylring bedeuten, und ihre therapeutisch verwendbaren Ammonium-, Alkalimetall- oder Säureadditionssalze, die wertvolle pharmakologische Eigenschaften aufweisen.

Für R¹ kommen als Alkylreste, geradkettige oder verzweigte, als Alkenylreste oder als Cycloalkylreste beispielsweise Methyl, Athyl, n- oder i-Propyl, n-, i- oder sek.-Butyl, n-oder i-Pentyl, n-Hexyl oder n-Heptyl, Allyl, Methallyl oder 2-Butenyl, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl in Betracht.

Araliphatische Reste für R¹ sind beispielsweise Methylen, Athylen-1,2 und Athylen-1,1, die einen Phenyl-, Pyridyl-, Furyl- oder Thienylring aufweisen, wobei der aromatische Ring 1- bis 2-fach durch Alkylgruppen mit 1- bis 4 C-Atomen, insbesondere Methyl oder Athyl, Alkoxygruppen mit 1- bis 4 C-Atomen, insbesondere Methoxy und Athoxy, Halogen-atome, wie Fluor, Chlor oder Brom, Nitro, Amino oder Dialkylamino mit 1 bis 4 C-Atomen im Alkyl, insbesondere Dimethylamino oder Diäthylamino, Cyano und Carboxy substituiert sein kann.

25 Für den Fall, daß R¹ und R² zusammen mit dem Stickstoffatom einen heterocyclischen Ring bilden, sind beispielsweise Pyrrolidinyl, Piperidinyl und Homopiperidinyl zu nennen.

Für R³ kommen als Alkylreste insbesondere Methyl und Äthyl in Betracht.

Substituierte Phenylreste für Ar sind beispielsweise 1- bis 3-fach durch Alkylgruppen mit 1 bis 4 C-Atomen, z.B. Methyl oder Athyl, Alkoxygruppen mit 1 bis 4 C-Atomen, z.B.

35 Methoxy oder Athoxy, Halogenatome, z.B. Fluor, Chlor oder

Brom, Nitrogruppen oder Dialkylaminogruppen mit jeweils 1 bis 4 C-Atomen z.B. Dimethylamino oder Diäthylamino, substituierte Reste.

- Hervorzuhebende Verbindungen der Formel 1 sind solche, in der
 - R¹ einen Alkylrest mit 1 bis 5 C-Atomen, einen Allylrest, einen Benzylrest, der im Phenyl gegebenenfalls durch Methyl, Methoxy, Carboxy oder Brom substituiert ist, einen
- 10 2- oder 3-Furylmethylrest oder einen 2- oder 3-Thienylmethylrest, wobei der Thiophenring gegebenenfalls 1- bis 2-fach durch Methyl, Chlor oder Brom, und der Furanring gegebenenfalls durch Brom oder Methyl substituiert ist, R² ein Wasserstoffatom,
- R¹ und R² zusammen mit dem Stickstoffatom einen Pyrrolidinring,
 - R³ ein Wasserstoffatom, Methyl oder Äthyl, X ein Schwefel- oder Sauerstoffatom, eine SO- oder Gruppe und
- 20 Ar einen Phenylrest, der gegebenenfalls durch Methyl, Chlor oder Methoxy substituiert ist, bedeuten, und ihre therapeutisch verwendbaren Ammonium-, Alkalimetall- oder Säureadditionssalze.
- Davon können als besonders bevorzugte Verbindungen solche 25 hervorgehoben werden, in denen R¹ n-Butyl, Benzyl, 3-Thienylmethyl, 2-Thienylmethyl, 2-Furylmethyl, R² und R³ Wasserstoffatome,
 - X ein Schwefelatom, Sauerstoffatom oder -NH- und

30 Ar Phenyl oder p-Chlorphenyl bedeuten.

Die Verbindungen der Formel 1 können, wenn R⁵ ein Wasserstoffatom bedeutet, in an sich üblicher Weise in ihre Ammonium- oder Alkalimetallsalze, insbesondere Natrium- und 35

Kaliumsalze, überführt werden. Gegenstand der Erfindung sind weiterhin auch die physiologisch verträglichen Säure-additionssalze, wie sie in üblicher Weise hergestellt und verwendet werden.

5

Die erfindungsgemäßen Verbindungen weisen wertvolle pharmakologische Eigenschaften auf. Insbesondere können sie als
Diuretika verwendet werden. Diuretika mit einer Sulfonamidgruppe sind bereits bekannt. Weiterhin ist für diese Verbindungen bekannt, daß eine Substitution der beiden Protonen an der Sulfonamidgruppe zu einem beträchtlichen Wirkungsabfall bis zum Wirkungsverlust führt. Demgegenüber
wurde bei den erfindungsgemäßen Verbindungen überraschenderweise eine hohe Wirkungsstärke gefunden.

15

Die Tatsache, daß die diuretische Wirksamkeit von Sulfonamidverbindungen durch Substitution am Amidstickstoff verringert wird, geht aus der Literatur, beispielsweise
W. Liebenow, F. Leuschner, Arzneim.-Forsch. 25, 240- (1975),
M.L. Höfle et al J. Med. Chem. 11, 970- (1968),
J.M. Sprague, Ann. N.Y. Acad.-Sci. 71, 328- (1958) oder
Handbuch der experimentellen Pharmakologie, Band XXIV,
S. 268- (1969), Springer-Verlag, hervor.

25 Die Verbindungen der Formel 1 werden hergestellt, indem man eine Verbindung der Formel 2

. .

in der R¹, R², X und Ar die in Anspruch 1 angegebenen Bedeutungen haben, mit einer Verbindung der Formel 3

5

3

in der W für ein Chloratom, einen Alkoxyrest mit 1 bis 5 C-Atomen im Alkyl oder einen Carbalkoxyrest mit 1 bis 5 C-Atomen im Alkyl steht, in an sich üblicher Weise umsetzt und wobei die erhaltene Carbonsäure gegebenenfalls in ihren Ester, ein erhaltener Thioäther gegebenenfalls in das Sulfoxid oder die erhaltene Verbindung der Formel 1 in ein therapeutisch verwendbares Ammonium-, Alkali- oder Säureadditionssalz überführt wird.

15

In der Ausgangsverbindung 3 stellen die Reste W bevorzugt Methoxy-, Äthoxy-, Carbomethoxy- und Carboäthoxyreste dar. Die besonders bevorzugte Ausgangsverbindung ist das 2,5-Dimethoxytetrahydrofuran.

20

25

Die Umsetzung erfolgt vorzugsweise in Eisessig oder wäßriger Essigsäure unter Erhitzen bis zum Siedepunkt, wie es beispielsweise von J.W.F. Wasby, K. Chan in Synth. Commun. 3, 303 ff (1973) oder von A.D. Josey und E.L. Jenner in J. Org. Chem., Band 27, S. 2466-2470 (1962) beschrieben wird.

In einer anderen Verfahrensweise werden die Ausgangsverbindungen 2 und 3 in einem unter den Reaktionsbedingungen inerten organischen Lösungsmittel, z.B. einem aromatischen Kohlenwasserstoff, wie Benzol, Toluol, Äthylbenzol, Chlorbenzol, Dichlorbenzol, o-, m-, p-Xylol, Isopropylbenzol, Methylnaphthalin, einem aliphatischen oder cycloaliphatischen Kohlenwasserstoff, wie Ligroin, Petroläther, Heptan,

Hexan, Cyclohexan oder entsprechenden Gemischen in Gegenwart einer katalytischen Menge einer anorganischen oder organischen Säure, vorzugsweise p-Toluolsulfonsäure, bei Temperaturen von 40 bis 200°C, vorzugsweise von 60 bis 150°C, drucklos oder unter Druck umgesetzt.

Von den genannten Lösungsmitteln sind Cyclohexan und Toluol bevorzugt. Als Ausgangsverbindungen 2 können auch die Niederalkylester verwendet werden.

Erhaltene Ester der Formel 1 lassen sich durch dem Fachmann bekannte Verfahren in die Säure überführen und in umgekehrter Weise erhaltene Säuren in ihre Ester. Ebenso werden erhaltene Thioäther in an sich üblicher Weise in die Sulfoxide überführt.

Die Ausgangsverbindungen der Formel 2 sind bekannt oder können beispielsweise nach den in den DE-OS 19 64 503 und 24 19 970 beschriebenen Verfahren hergestellt werden.

Die erfindungsgemäßen Verbindungen der Formel 1 können weiterhin hergestellt werden, indem man eine Acylamino-verbindung der Formel 4

$$\begin{array}{c}
\text{COOR}^4 \\
\\
\text{R}^6 - \text{C-NH} & \text{SO}_2 - \text{N} \\
\\
\text{N} & \text{Ar}
\end{array}$$

in der R⁴ einen Alkylrest mit 1 bis 5 C-Atomen, X ein Sauerstoff-, Schwefelatom oder die -NH-Gruppe, Ar einen gegebenenfalls 1- bis 3-fach substituierten Phenylring und

10

20

25

R⁶ einen gesättigten, gegebenenfalls substituierten aliphatischen Rest mit 1 bis 7 C-Atomen,
Phenyl oder einen 5- oder 6-gliedrigen aromatischen heterocyclischen Ring mit einem N-, 0- oder S-Atom, wobei der
Phenylring oder der heterocyclische Ring 1 bis mehrfach substituiert sein kann, oder einen Alkylrest mit 1 bis
3 C-Atomen, der substituiert ist durch Phenyl oder einen
5- oder 6-gliedrigen aromatischen heterocyclischen Ring
mit einem N-, 0- oder S-Atom, wobei der Phenylring oder
der heterocyclische Ring 1 bis mehrfach substituiert sein kann, bedeuten, in an sich bekannter Weise mit einem Borhydrid in Gegenwart einer Lewis-Säure reduziert und den erhaltenen Ester gegebenenfalls verseift und einen erhaltenen Thioäther gegebenenfalls in das Sulfoxid überführt.

15

Nach diesem Verfahren können nicht alle erfindungsgemäßen Verbindungen gemäß Formel 1 hergestellt werden. Die beworzugten Bedeutungen für R⁶ sind daher Methyl, Äthyl, n-Propyl, n-Butyl, Phenyl, gegebenenfalls durch Methoxy, Brom oder Methyl einfach substituiertes Phenyl, 2- oder 3-Thienyl, im Ring gegebenenfalls durch Chlor, Brom oder Methyl ein oder zweifach substituiert, 2- oder 3-Furyl, im Ring gegebenenfalls durch Brom oder Methyl einfach substituiert.

25

Die Reduktion der Carbonylgruppe kann beispielsweise unter den in der DE-OS 24 53 548 beschriebenen Bedingungen erfolgen. Zweckmäßigerweise wird sie in einem inerten Lösungsmittel bei Temperaturen von -20°C bis 100°C durchgeführt. In der bevorzugten Ausführungsform wird die Reaktion mit Diboran in Gegenwart von Aluminiumchlorid, Titantetrachlorid oder Borfluorid, bzw. seiner Addukte, wie beispielsweise Borfluoridätherat, als Lewis-Säure in einem Äther als Lösungsmittel durchgeführt.

O.Z. 0050/033304

In einen besonders bevorzugten Ausführungsform wird die zu reduzierende Verbindung der Formel 4 in Diäthyläther, Tetrahydrofuran oder Äthylenglykoldimethyläther als Lösungsmittel mit Bortrifluorid bzw. seinem Ätherat vorgelegt und bei 0°C - 40°C durch Zugabe von Natriumborhydrid in fester Form oder als Suspension in einem geeigneten Lösungsmittel Diboran in situ erzeugt und dadurch die Reduktion durchgeführt.

Interessanterweise erfolgt die Reduktion ohne Spaltung der recht labilen SO₂-N-Bindung und die Pyrrol-Verbindung erleidet in Gegenwart von Lewis-Säuren keine Nebenreaktionen, wie es u.U. zu erwarten wäre, (vgl. Gossauer "Die Chemie der Pyrrole", Springer Verlag 1974 S. 324).

Gegebenenfalls werden die entsprechenden Säuren der Formel 1, in der R³ ein Wasserstoffatom bedeutet, in an sich bekannter Weise durch alkalische oder saure Verseifung eines erhaltenen Esters erhalten. Bevorzugt erfolgt die Hydrolyse in wäßriger Lösung mit äquimolekularer Menge an Base, bevorzugt Natronlauge, bei Temperaturen zwischen 20 - 100°C.

Da N-acylierte Pyrrole unter basichen Bedingungen sehr leicht gespalten werden (Gossauer "Die Chemie der Pyrrole", Springer-Verlag Berlin 1974, S. 324), ist es überraschend, daß die Hydrolyse der Estergruppe unter Erhalt der N-Sulfonylpyrrolgruppe gelingt.

Herstellung von Zwischenprodukten für die Ausgangsverbindungen der Formel 2 und 4 und Herstellung der Ausgangsverbindungen der Formel 2 und 4: 4-Halogen-3-halogensulfonyl-5-nitrobenzoesäure bzw. ihre Alkalimetallsalze oder Niedrigalkylester der allgemeinen Formel 5

5

10

15

in der Y und Z jeweils ein Halogenatom, wie Fluor, Chlor oder Brom, bedeuten und R für ein Wasserstoffatom, ein Alkalimetallatom oder eine Niedrigalkylgruppe, insbesondere Methyl oder Äthyl, steht, können mit einem Pyrrol der allgemeinen Formel 6,

6

in der R⁵ ein Metallatom der ersten Hauptgruppe bedeutet, in einem unter den Reaktionsbedingungen inerten Lösungs-mittel bei Temperaturen von -20°C und 200°C zu den Verbindungen der allgemeinen Formel 7,

25

30

in der R⁴ und Z die für Formel 5 genannten Bedeutungen aufweisen, umgesetzt werden.

Als geeignete Alkalimetalle für R⁵ sind zu nennen: 5 Lithium, Natrium und Kalium. Geeignete Lösungsmittel sind beispielsweise Dimethylsulfoxyd, Dimethylformamid, N-Methylpyrrolidon, Tetrahydrofuran, Diäthyläther, Athylenglykoldimethyläther, Diäthylenglykoldimethyläther, Tetramethyläthylendiamin und Toluol. Die Pyrrole der Formel 6 können 10 in an sich bekannter Weise, A. Gossauer "Die Chemie der Pyrrole", Springer-Verlag Berlin, 1974, S. 169 f., aus Pyrrol durch Reaktion mit einer Alkalimetallverbindung in einem unter den Reaktionsbedingungen inerten Lösungsmittel, bevorzugt im gleichen Lösungsmittel, das zur Reaktion 15 mit Verbindungen 5 benutzt wird, hergestellt werden. Geeignete Basen sind beispielsweise Alkalimetallalkoholate, Alkalimetallamide, Alkalidimetallhydride, Alkyl- oder Arylalkalimetall-Verbindungen und die Alkalimetalle, z.B. Kaliumtertiärbutylat, Natriumamid, Natriumhydrid, Kaliumhydrid, n-Butyllithium, n-Butylnatrium, Natrium und Kalium.

Wie aus der Literatur bekannt ist, E.P. Papadopoulos u. N.F. Haider, Tetra. Lett. 1968, 1721, verläuft die Umsetzung von Arylsulfonylchloriden mit Pyrrolkalium nur dann zufriedenstellend, wenn der Benzolkern entweder unsubstituiert ist oder in p-Stellung eine Gruppe mit +M-Effekt, wie z.B. ein Halogenatom oder einen CH₃O-Rest, trägt. Durch Einführung einer p-Nitrogruppe sinkt die Ausbeute drastisch auf 26 % gegenüber 87 % bei Benzolsulfochlorid.

Es ist daher überraschend und nicht vorhersehbar, daß die Umsetzung der Verbindungen der Formel 5, in denen der Benzolring außer einer Nitrogruppe weitere elektronegative Gruppen trägt, ebenfalls im gewünschten Sinne abläuft.

In der bevorzugten Ausführungsform werden Pyrrole der Formel 6 in einem Äther als Lösungsmittel bei Temperaturen von 0°C bis 150°C mit einer Verbindung der Formel 5 umgesetzt. Besonders bevorzugt ist die Reaktion der Pyrrole 6, in denen R⁵ ein Kaliumatom bedeutet, in Tetrahydrofuran bei 0 - 80°C mit einer Verbindung der Formel 5, in der R⁴ Methyl oder Äthyl und Y und 2 je ein Chloratom bedeuten. Die Pyrrol-Verbindung 6, in der R⁵ Kalium bedeutet, wird nach literaturbekanntem Verfahren aus Pyrrol mit elementarem Kalium als Lösung in Tetrahydrofuran hergestellt und ohne Isolierung weiter umgesetzt.

In der nächsten Stufe werden Verbindungen der allgemeinen Formel 7 mit einer Verbindung ArXH, in der Ar die für Formel 2 angegebene Bedeutung hat und X ein Sauerstoff-, Schwefelatom oder die Gruppe >NH bedeutet, zu N-Sulfonylpyrrolen der Formel 8

20

15

8

25

in der R⁴, X und Ar die hier angegebene Bedeutung besitzen, umgesetzt.

Als Verbindungen der Formel ArXH können beispielsweise verwendet werden:

Thiophenol, 2-Methylthiophenol, 3-Methylthiophenol, 4-Methylthiophenol, 4-Methylthiophenol, 2-Methoxythiophenol, 35

3-Methoxythiophenol, 4-Methoxythiophenol, 4-Athoxythiophenol, 2-Chlorthiophenol, 4-Chlorthiophenol, 3,4-Dichlorthiophenol, 3-Dimethylaminothiophenol, 4-Dimethylaminothiophenol, 4-Acetaminothiophenol, 4-Acetaminothiophenol, Phenol, Anilin und analog dem Thiophenol substituierten Phenole und Aniline. Etwa zusätzlich vorhandene funktionelle Gruppen in ArXH, wie weitere OH-, NH₂- oder SH-Gruppen, können durch übliche Schutzgruppen, z.B. Acylierung, blockiert werden.

.10

Die Reaktion kann mit oder ohne Lösungsmittel durchgeführt werden. Vorteilhafter ist es, ein Lösungsmittel zu verwenden. Besonders geeignet sind organische Lösungsmittel, wie Äther und tertiäre Amide, insbesondere Tetrahydrofuran, Glykoldimethyläther, Dimethylformamid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid. Die Verbindungen ArXH werden als solche in Gegenwart von Basen oder aber in Form ihrer Alkalimetallsalze eingesetzt. Als Basen kommen Alkalihydroxyde, -alkoholate, -amide und -hydride zur Anwendung. Besondere Bedeutung haben die Thiophenol und Phenol-Derivate, die wie bereits aufgezeigt, substituiert sein können.

Da bekanntlich N-acylierte Pyrrole unter alkalischen Bedingungen sehr leicht gespalten werden, Gossauer, "Die Chemie der Pyrrole", Springer-Verlag, Berlin 1974, S. 324, war es nicht vorherzusehen, daß unter den obigen Bedingungen die N-Sulfonylpyrrol-Gruppe erhalten bleibt. Weiter war es überraschend, daß zum Austausch von Z gegen XAr Temperaturen von über 100°C, wie sie in DOS 25 18 999 für die Umsetzung ähnlicher Verbindungen empfohlen wurden, nicht notwendig sind, da die Reaktion bereits unterhalb 100°C mit ausreichender Geschwindigkeit abläuft.

Besonders vorteilhaft wird die Umsetzung einer Verbindung 7 in einem Ather als Lösungsmittel, wie beispielsweise Tetrabydrofuran, bei Temperaturen von O°C bis 80°C durchgeführt. Hierbei kommen insbesondere die Natrium- oder Kaliumsalze der Verbindungen ArXH zur Anwendung oder die Umsetzungen werden in Gegenwart eines Natrium- oder Kaliumalkoholats, wie Natriummethylat oder Kaliumtertiärbutylats, durchgeführt.

Die Verbindungen der Formel 8, in denen X für SO steht, erhält man aus dem entsprechenden Thioäther durch Oxydation nach literaturbekannten Verfahren, wie durch Oxydation mit $\rm H_2O_2$ oder Peressigsäure.

Die Reduktion der Nitrogruppe in Verbindungen der Formel 8 zu den Verbindungen der Formel 9,

15

10

20

٠, ".

9

in denen R⁴, X und Ar die für Formel 8 angegebenen Bedeutungen haben, erfolgt in an sich bekannter Weise durch katalytische Hydrierung.

Die katalytische Reduktion erfolgt in einem Lösungsmittel in Gegenwart eines Katalysators, wie z.B. Palladium, Platin oder Raney-Nickel auf einem geeigneten Trägermaterial. Als Lösungsmittel wurden vorzugsweise organische Lösungsmittel, wie Methanol, Äthanol, Essigester, Tetrahydrofuran, Dioxan oder Dimethylformamid, verwendet. Man hydriert bei Raumtemperatur und Normaldruck oder bei erhöhter Temperatur, gegebenenfalls unter Druck im Autoklaven, wobei

die Bedingungen so gewählt werden, daß der Pyrrol-Rest bei der Hydrierung erhalten bleibt.

Aus der Literatur ist bekannt, daß Pyrrole mit elektronegativen Substituenten am Stickstoffatom, wie z.B. eine Benzoylgruppe oder eine Athoxycarbonylgruppe, leicht und unter milden Bedingungen zu Pyrrolidinen hydriert werden J.L. Rainey u. H. Adkins JACS 61, 1104 (1939). Es war daher überraschend und nicht vorherzusehen, daß die Hydrierung der Verbindungen 8 unter Erhalt des Pyrrolringes zu den gewünschten Verbindungen der Formel 9 führt.

Die erhaltenen Amine der Formel 9 können mit einer Verbindung der allgemeinen Formel R⁶COL, wobei R⁶ einen aliphatischen, araliphatischen, aromatischen oder heteroaromatischen Rest bedeutet und L ein Halogenatom, wie Chlor oder Brom, oder den Rest eines aktivierten Esters oder eines gemischten oder symmetrischen Anhydrids darstellt, wobei im letzteren Fall L die Gruppe O-CO-R⁶ bedeutet, zu einer Verbindung der Formel 4

4

umgesetzt werden.

Bevorzugte Acylierungsmittel sind z.B. Acetylchlorid, n-Buttersäureanhydrid, Propionylchlorid, n-Buttersäureanhydrid, Propionylchlorid, n-Valeroylchlorid, Benzoylchlorid, 2- bzw. 3-Furancarbonsäurechlorid, 2- bzw. 3-Thiophencarbonsäurechlorid.

BASF Aktiengesellschaft

Die Acylierung erfolgt in an sich bekannter Weise, es war jedoch nicht vorherzusehen, daß die Reaktionen der N-Sulfonylpyrrole 9 mit den Verbindungen R⁶COL in guter Ausbeute saubere Produkte vom Typ 4 liefern, da bekanntlich Pyrrole ebenfalls sehr leicht acyliert werden können und erwartungsgemäß schlecht auftrennbare Gemische auftreten sollten R.A. Jones, G.P. Bean "The Chemistry of Pyrroles", Acad. Press, N.Y., 1977, S. 159 f, J. Chem. Soc., C, 1970, 2563.

Verbindungen der allgemeinen Formel 1, in denen R¹ und R² zusammen mit dem Stickstoffatom einen Heterocyclus bilden, können, wie in der DE-OS 2 461 601 für die Synthese ähnlicher Verbindungen beschrieben, auch durch Umsetzung eines Amins der Formel 9 mit einer Verbindung der Formel 10,

15

10

20

25

30

in der A für einen gesättigten oder ungesättigten, geradkettigen oder verzweigten Alkylenrest mit 1 bis 5 C-Atomen
steht und B ein Sauerstoffatom oder H₂ bedeutet, L und L'
gleiche oder verschiedene Abgangsgruppen darstellen, wobei L
und L', wenn B für O steht, ein Halogenatom, insbesondere
Chlor oder Brom, einen aktivierten Ester, ein gemischtes
Anhydrid oder L und L' zusammen ein gemeinsames O-Atom
bilden, während, wenn B H₂ bedeutet, L die oben angegebene
Bedeutung hat und L' ein Halogenatom wie z.B. Chlor, Brom,
Jod oder einen Sulfonsäureester bedeuten kann, entweder in
einem Schritt oder nach Isolierung einer Zwischenstufe der
Formel 11,

wobei R⁴, X, Ar, A, B und L' die obigen Bedeutungen besitzen und L' im Falle B=O auch OH bedeuten kann, und anschließender Cyclisierung durch Temperaturerhöhung und/oder Zugabe einer Base zu den Verbindungen der allgemeinen Formel 12,

12

wobei R⁴, X, Ar, A und B obige Bedeutung besitzen und nachfolgender Reduktion, wie oben für die Verbindungen 4 beschrieben, erhalten werden. Wie bei den oben beschriebenen Acylierungen der Verbindung 9 zu Verbindung 4 war es auch hier überraschend, daß die gewünschten Produkte 12 in reiner Form isoliert werden konnten.

Nach einer weiteren Ausführungsform können Verbindungen der allgemeinen Formel 7 nach der Reduktion zu den aromatischen Aminen der allgemeinen Formel 13,

10

15

35

O.Z. 0050/033304

wobei R⁴ und Z die in Formel 7 angegebenen Bedeutungen haben mit einer Verbindung der allgemeinen Formel R⁶COL zu einer Verbindung der Formel 14

wobei R⁴ und R⁶ die für Formel 4 und Z die für Formel 7 angegebenen Bedeutungen haben, umgesetzt werden und anschließend durch Reaktion mit einer Verbindung ArXH in eine Verbindung der Formel 4 umgewandelt werden.

Analog können Verbindungen der Formel 15,

$$\begin{array}{c|c}
\text{COOR}^{4} \\
\text{COOR}^{5} \\
\text{COOR}^{5}
\end{array}$$
30

wobei R⁴, A und B die für Formel 12 und Z die für Formel 7 genannten Bedeutungen haben, durch Reaktion eines Amines 13 mit einer Verbindung 10 hergestellt und durch anschließende Umsetzung mit ArXH in eine Verbindung 12

Ubergeführt werden, die nach dem oben beschriebenen Verfahren in die erfindungsgemäßen Verbindungen der Formel 1, in der \mathbb{R}^1 und \mathbb{R}^2 zusammen mit dem Stickstoffatom einen Heterocyclus bilden, umgewandelt werden.

5

Für die Bedingungen dieser Reaktionen und für ihr überraschendes Gelingen gilt das oben Gesagte für die Umwandlungen der analogen Verbindungen.

Weiterhin können Verbindungen der Formel 14 und 15 nach dem oben beschriebenen Verfahren für die Umwandlung von 4 in 1 mit Borhydriden zu Verbindungen 16,

16

- 20 wobei R¹, R² und R⁴ die für Formel 1 und Z die für Formel 7 genannten Bedeutungen haben, reduziert und anschließend mit Verbindungen ArXH, gegebenenfalls nach Hydrolyse, in die erfindungsgemäßen Verbindungen der Formel 1 übergeführt werden.
- In einer weiteren Ausführungsform des vorliegenden Verfahrens können Verbindungen der allgemeinen Formel 17.

17

in denen D für Z oder die Gruppe XAr und E einen der Reste NO2, R6CONH,

15

O.Z. 0050/033304

wobei R¹, R², R⁴, A, B, X, Z und Ar die oben für Formeln 1, 12 und 7 angegebenen Bedeutungen haben, durch Umsetzung eines Sulfonamides der allgemeinen Formel 18 (DOS 1 768 607, DOS 1 964 503, DOS 2 419 970, DOS 2 453 548)

wobei R⁴, D und E obige Bedeutung besitzen, nach dem oben beschriebenen Verfahren mit 2,5-disubstituierten Tetrahydrofuranen hergestellt werden. Diese neuen Verbindungen können als Zwischenstufen in die verschiedenen oben erwähnten Verfahren eingesetzt werden.

Gegenstand der Erfindung sind auch therapeutische Mittel oder Zubereitungen, die neben üblichen Trägerstoffen oder Verdünnungsmitteln eine Verbindung der Formel 1 als Wirkstoff enthalten. Die therapeutischen Mittel können nach dem Fachmann an sich bekannten Methoden entsprechend der gewünschten Applikationsart erhalten werden.

Die nachfolgenden Beispiele sollen die Erfindung in keiner Weise beschränken, sondern lediglich erläutern. Die Verbindungen der folgenden Beispiele sind neben den analytischen Daten auch durch spektroskopische Methoden (IR, NMR) in ihrer Struktur gesichert.

B)

0.2. 0050/033304

Allgemeine Arbeitsvorschrift

Eine Mischung von 15 ml Eisessig, 1 mMol einer Verbindung der Formel 2 und 1,5 mMol 2,5-Dimethoxytetrahydrofuran wird unter Rückfluß gekocht. Durch Entnahme von Proben wird die Beendigung der Reaktion dünnschichtchromatografisch überprüft. Das Reaktionsgemisch wird unter vermindertem Druck fast bis zur Trockene eingeengt und der Rückstand auf ca. 20 ml Eiswasser gegeben. Das ausgeschiedene Rohprodukt wird abgesaugt und getrocknet. In den Fällen, bei denen das Produkt in öliger Form anfällt, wird die wäßrige Phase mit Essigester extrahiert. Die Essigesterphase wird mit gesättigter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck zur Trockene eingeengt. Je nach Reinheit des Rohproduktes wird die erhaltene Verbindung der Formel 1 durch Umkristallisation aus Äthanol oder Essigester/n-Hexan oder durch Säulenchromatographie an Kieselgel mit dem Laufmittel Methylenchlorid/ Essigester isoliert. Die Ausbeuten liegen zwischen 40 und 96%.

Die in den folgenden Beispielen 1 bis 27 angegebenen Verbindungen werden nach dieser Arbeitsvorschrift dargestellt.

Eine Mischung von 10 mMol einer Verbindung der Formel 2, 15 mMol 2,5-Dimethoxytetrahydrofuran und 0,25 g p-Toluolsulfonsäure in 150 ml Toluol wird unter Rückfluß am Wasserabscheider gekocht. Durch Entnahme von Proben wird die Beendigung der Reaktion dünnschichtchromatographisch überprüft. Danach wird unter vermindertem Druck zur Trockene eingeengt und je nach Reinheit des Rohprodukts wird die erhaltene Verbindung der Formel 1 durch Umkristallisation aus Äthanol oder Essigester/n-Hexan oder durch Säulenchromatographie

an Kieselgel mit dem Laufmittel Methylenchlorid/Essigester isoliert.

Die in den folgenden Beispielen 1 bis 27 angegebenen Verbin-5 dungen werden nach dieser Vorschrift praktisch in gleicher Ausbeute erhalten.

10

15

20

25

30

35

909886/0095

0.2. 0050/033304

• •	•	•	•				· .		•		
• • •	Pormel: 1	(R ³ = H)	•					•			
	Beispiel	R ¹	R ²	x	λr	Po °C	C R	Analyse N 0	<u>s</u> .	Cl	9r
5	Nummer .	. c ⁵ g²	Ħ.	3		-	ber. 56,7 b,5 gef. 57,0 4,7 C ₁₉ H ₁₈ O ₄ S ₂ H ₂	6,9 15,9 7,0 16,8 M = 402,5	15,9 15,5		• •
	5	CH2CH2CH3	a	S	c ₆ E ₅	181-182	ber. 57,7 \$,8 gef. 57.9 \$,8 c ₂₀ H ₂₀ O ₄ S ₂ H ₂	6,7 15,4 6,7 15,4 X = 416,5	15,4 15,4	•	•
· · · · ·	3 .	CH ² CH∗CH ²	a	S	c ₆ 15	175-178	ber. 57,9 4,0 ger. 58,2 4,4 C ₂₀ H ₁₈ O ₄ S ₂ H ₂	6,8 15,4 6,6 15,6 3 414,5	15,5 15,2	•	
10	. .	CH ² CH ³ CH ³ CH ³	8 .	S	c ₆ g ₅	166-167	ber. 58,5 5,1 sef. 58,8 5,0 C21H22OqN2S2	6,5 14,9 6,6 15,2 M x 431	14,9	•	•. •.
	5	CH ² CH ² CH ² CH ³	· H	0	c ₆ a ₅	166-167	ber. 60,9 5,4 gef. 61,0 5,7 C ₂₁ E ₂₂ O ₅ N ₂ S	6,8 19,3 6,8 19,2 M = 010,5	7,7		•
· · · ·	6	CH ² CH ² CH ² CH ² CH ²	H	3	c685	179-182	ber. 59,4 5,4 6,5 7,55 5,5 7,56 5,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5	5,3 10,8 6,5 14,2	14,6	•	
15	7.	CH ² -CH ² X		0	с ₆ н ₅	208-210	ber. 61,2 0,9 gef. 61,1 5,1 C21H23O5N2S	6,9 19,3 5,7 19,3 N = 412	7,8	*	•
	В	CH2C6H5	13	S	c ^{er2}	218-220	ber. 62,1 4,3 gef. 62,1 4,4 C24H2OO4H2S2	6,0 13,8 5,1 13,5 N = 460,5	13,8 13,4	•	
	9	сн ₂ с ₆ н ₅	Ħ	0	c ₆ a ₅	90 -9 1	ber. 62,5 5,4 gef. 52,7 5,0 C ₂₄ H ₂₀ O ₅ N ₂ S.CH	5,2 20,3 5,3 20,3 5,2 25,5 N	6,0 6,0 537,	6	• :
20	10	сн ₂ с ₆ н ₅	· K	SO	c ₆ n ₅	219-219	ber. 50,0 4,2 gef. 59,8 4,5 C24H20O5N2S2	5,8 16,6 5,8 16,8 N = 480,5	13,3 13,2	•	
	11	CH2C6H5	K	3	р-сн ₃ -с ₆ н	# 515-51	5 ber. 62,7 9,5 ger. 62,4 4,5 C ₂₅ 8 ₂₂ 0 ₄ N ₂ S ₂	5,9 13,4 5,9 13,0 M = 478,5	13,8. 13,3	•	-
	12	CH2C6H5	E	Ś	p-C1-C5Hq	195-200	ber. 57,8 3,8 gef. 57,9 3,9 C ₂₆ H ₁₉ O ₄ N ₂ S ₂ C1	5.5 13,2	12,8 12,9	7,1 7,1	-
25	13	ca ² c ⁶ d ²	H	S	b-CH ² O-C	Н _ц 193-19	6 ber. 60,7 4,5 gef. 60,3 4,6 C ₂₅ H ₂₂ O ₅ S ₂ H ₂	5,7 16,2 5,5 15,5 H = 404,6	13,0 12,7	.=	• •
	14	ca²-€²	, н	\$	c ₆ E ₅	192-194	ber. 56,1 3,9 gef. 56,0 3,7 C22H18OgH2S3	5,9 13,6 5,8 13,5 N = 470,6	20.3	•	-
· · ·	15	•	· H	0	c ₆ H ₅	174-176	ber. 58,1 b,0 gef. 58,3 4,3 C ₂₂ H ₁₈ O ₅ N ₂ S ₂	6,1 17,6 6,0 17,4 7 = 454,5	13.9	•	
30	16		Ħ	S	p-C1-C ₆ H	212-214	ber. 52,3 3,4 gef. 51,9 3,5 C ₂₂ H ₁₇ O ₄ N ₂ S ₃ C	5,5 12,6 5,6 12,6 1 = 505	19,0 18,7	7,0 7,5	• .
	17	•	Ħ	S	p-CH ₃ -C ₆	1 ₄ 205-20			19,8	•	•.
	18		H-	S	b-ся ² о-с	68 a 191-19	2 ber. 55,2 %,0 ger. 55;2 %, C ₂₃ H ₂₀ O ₅ S ₃ N ₂	5,5 16,0 1 5,8 16,3 M = 501	19,2		-

0.2. 0050/033304

Formal	4	(R ³		47
KOLUBI	1	LK-	3	H.

Beispiel Nummer	R ¹	R ²	x	Ar	Po °C	ट स	Ans N) O	3_	Cl	2:
19	CH ₂ Br	H	٥	c6g2	229-230	ber. 43,2 2, gef. 43,6 2, C22H16O5N2S2H	9 4.6	13,1 13,2 12	10,5	:	26,
20	p-Br-C6H4-CH2	H	0	c ₆ 85	197-199	ber. 54,7 3, gef. 54,5 3, C24R19O5N2SBR	6 5,3 9 5,3 M = 5	15,2 15,6 27	6,1 5,9	:	15, 15,
21	p-Br-C6H4-CH2	H	5	¢6 ^H 5	203-204	ber. 53,0 3, gef. 53,2 3, C ₂₄ H ₁₉ O ₄ N ₂ S ₂ S	9. 15,2 6 5,0 r M = 5	11,8 11,5 13,5	11,8 12,0	:	14,
22	р-сн30-с6н4-сн3	н	3	c€ _E 2	207-208	ber. 60,7 4, ger. 60,6 4, C ₂₅ H ₂₂ O ₅ H ₂ S ₂	5 5,7 6 5,6 N = 4	16,2 16,2 95	13,0 12,7	-	-
23	о-сн ₃ о-с ₆ н ₄ -сн ₂	a	S	с ₆ н ₅	503-510	ber. 53,0 3, gef. 52.9 3, C ₂₄ H ₁₉ O ₄ N ₂ S ₂ S	5 5,2 6 5,0 r N = 5	11,8 11,6 43,5	11,8 11,9	•	14, 14,
24	C1 SJ CH2-	Ħ	s	°6 [≅] 5	186-187	ber. 52,3 3, gef. 52,1 3, c ₂₂ H ₁₇ O _b N ₂ S ₃ C	t 5,6 5 5,6 1 t = 5	12.7 12.8 05	19,0 18,5	7,0	•
25	^{6-ся-с} ^{6н⁶-ся⁵}	н	s	c ₆ E ₅	118-120	ber. 61,3 3, gef. 61,0 4, c ₂₅ H ₁₉ O _k N ₃ S ₂	9 8,6 0 8,7 M = 4	13,1 13,0 90	13,1 12,9	•	-
26	ш-сн ₃ -с ₅ н ₀ -сн ₂	E	S	c ₆ a ₅	178-180	ber. 62,7 4, gef. 62,6 4, c ₂₅ H ₂₂ O ₄ N ₂ S ₂	5 5,9 6 5,9 M = 4	13,4 13,8 79	13,4 13,1	-	-
27	p-co _z H-c ₆ H _q -cH ₂	E	S	c ₆ E5	266-268	ber. 59.0 b, gef. 59.2 b, C25H2006N2S2	o 5,5 3 5,6 M = 5	18,8 18,9	12.5		

25

30

0.2. 0050/033304

Beispiel 28

Nach der folgenden allgemeinen Vorschrift C) wird die Verbindung des Beispiels 3 in den Methylester übergeführt:

0,2 Mol der Carbonsäure und 800 ml halokonzentrierte methanolische Salzsäure werden ca. 24 Stunden lang auf 50°C erhitzt. Das Ende der Reaktion wird dünnschichtchromatographisch überprüft. Danach wird unter vermindertem Druck zur Trockene eingeengt und durch Umkristallisation aus Methanol gereinigt.

Ausbeuten: 70-95%Fp.: $151-154^{\circ}C$ $C_{25}^{H}_{22}^{O}_{4}^{N}_{2}^{S}_{2}^{N}_{2}^{S}_{2}^{M} = 479$

Analyse: C H O N S
ber.: 62,7 4,5 13,3 5,8 13,4
gef.: 62,9 4,7 13,2 5,8 13,1

20 Beispiele 29 bis 31

Die Verbindungen der Beispiele 29 bis 31 werden nach folgendem Verfahren D) dargestellt:

25 D) 0,02 Mol Thioäther der Formel 1 (R³ = H, X = S),
200 ml Eisessig und 17 ml 30% iges Wasserstoffperoxyd
werden bei Raumtemperatur 2 Tage gerührt. Danach wird
die Reaktionsmischung auf 1 l Eiswasser gegeben, das
ausgefallende Produkt abgesaugt und nach dem Trocknen
aus Methanol umkristallisiert. Ausbeuten: 70-95%

r	Formel 1:	R^2 , R^3	= H,	X = SO			
	Beispiel Nr.	F	R ¹		Ar		Fp °C
5	29	^C 6 ^H 5 ^{-C}	CH ₂ -	C	6 ^H 5	2	18 - 219
· .	Analyse:	C	H	0	N	S	
•	ber.	60.0	4.2	16.6	5.8	13.3	
	gef.	59.8	4.5	16.8	5.8	13.2	
10							
	C24H20O5N2	2 ^S 2	M = 48	80,6			
							•
	. 30	c ₆ H ₅ -c	H ₂ -	p-C	1-c ₆ H	4 2:	14 - 215
15	C24H19O5N2	s ₂ c1	M =	515			
	Analyse:	C	H	0	N	S	Cl
	ber.	56.0	3.7	15.5	5.4	12.4	6.9
	gef.	56.1	3.8	15.8	5.6	12.4	7.0
20							
	31	(s)	CH ₂ -	p-C	H ₃ -C ₆ H	H ₄ 22	26 - 227
	C23 ^H 20 ^O 5 ^N 2	S ₃ .0,5	H ₂ 0	M =	510		
25	Analyse:	C	Н	0	N	S	•
•	ber.		4.2				
•	gef.	54.7	4.3	• -	5.7	_	
	0		. • •		J • 1	1	

Beispiel 32

30

Formel 1:
$$R^1 = C_6H_5CH_2$$
, $R^2 = H$, $R^3 = C_2H_5$, $X = SO$,
 $Ar = p-Cl-C_6H_4$

4 g der freien Säure aus Beispiel 30 werden in einer Mischung von 100 ml absolutem Äthanol und 1 ml konz. Schwefelsäure

B Stunden am Rückfluß gekocht. Die Lösung wird dann auf 50 ml eingeengt und der Rückstand auf 200 ml Eiswasser gegeben.

Das ausgefallene Rohprodukt wird abgesaugt, mit Wasser und dann mit n-Hexan gewaschen, getrocknet und aus Methanol/Methylenchlorid umkristallisiert. Ausbeute: 90%

15 Beispiel 33

20

35

Formel 2:
$$R^1 = \frac{Br CH_2}{Br S}$$
, $R^2 = H$, $R^3 = H$, $X = 0$, $Ar = C_6H_5$

Durch Umsetzung von 3-Amino-4-phenoxy-5-sulfamoylbenzoesäure mit 4,5-Dibrom-3-brommethyl-thiophen in abs.
Äthanol und anschließender Verseifung erhält man nach
literaturbekannter Vorschrift (P. W. Feit, J. Med.
Chem. 14, 432 (1971)) eine Verbindung der Formel 2 mit

$$R^1 = \frac{Br}{Br} S^{CH}_{2}^{-}$$
 $R^2 = H, X = 0 \text{ und } Ar = C_6H_5;$
 $Fp.: 241 - 242^{\circ}C$
 $C_{18}H_{14}O_5N_2S_2Br_2$
 $M = 562$
Analyse: $C = H = 0$ $N = S$

ber.: 38.4 2.5 14.2 5.0 11.4 gef. 38.4 2.8 14.0 4.9 11.1

Die folgenden Beispiele 34 bis 39 werden entsprechend Beispiel 33 hergestellt:

Durch Umsetzung von 3-Amino-4-phenoxy (bzw. phenylthio oder anilino)-5-sulfamoylbenzoesäure mit den entsprechenden subtituierten Benzylbromiden in wäßriger Phase bei konstantem pH-Wert nach literaturbekanntem Verfahren (P.W. Feit, J. Med. Chem. 14, 432 (1971) wird ein Teil der Verbindungen der Formel 2 dargestellt. Nähere Daten siehe unter Beispiel 110 bis 113.

Beispiel 40

3-Benzylamino-4-phenylthio-5-(pyrrol-1-yl)-sulfonyl)benzoesäuremethylester

Formel 1:
$$R^4 = CH_3$$
, $X = S$, $Ar = C_6H_5$
 $R^1 = C_6H_5 - CH_2 -$

Man läßt zu einer Lösung von 2,0 g 3-Benzoylamino-4- phenylthio-5-pyrrol-1-yl-sulfonyl-benzoesäuremethylester in 17 ml absolutem äthylenglykoldimethyläther 1 ml Bortrifluoridätherat und anschließend eine Suspension von 0,24 g Natriumborhydrid in 15 ml absolutem äthylenglykoldimethyläther zutropfen und läßt bei Raumtemperatur rühren. Dann wird mit wenig Wasser überschüssiges Reduktionsmittel zerstört und das Produkt durch Zusatz von 50 ml Wasser ausgefällt. Nach Abfiltrieren und Waschen mit Wasser und Hexan erhält man 1,8 g 3-Benzylamino-4-phenylthio-5-pyrrol-1-yl-sulfonyl-benzoesäuremethylester vom Fp.: 151 - 153°C C₂₅H₂₂N₂O₄S₂ M = 479 Ausbeute: 95%

Analyse: C H N O S
ber. 62.7 4.6 5.8 13.3 13.4
gef. 62.9 4.7 5.8 13.2 13.1

Beispiele 41-55 werden analog der Vorschrift in Beispiel 40 hergestellt, wobei Ausbeuten von 80-95% erhalten werden.

20

Bo1	spiel R ¹	X	₽p °c	C	H	0	Ħ	3	Cl	8
4	c ₆ E ₅ CE ₂ -	NE	158-159	ber. 65,1 gef. 65,3 C ₂₅ H ₂₃ O ₄ N ₃ S	5,0 5,0 M =	13,9 14,2 462	9,1 9,3	6,9		1
4	2 CB2	3	111-112	-						
4;	3 CH2	HH	129-130	ber. 61,2 gef. 60,9 C ₂₃ H ₂₁ O ₅ H ₃ S	4,8 4,8	17.7 17.5 452	9.3 9.5	7,1 7,1		
P 1	Col Car-	3	116-119	-					•	
þş	CH ² -	ME	138-139	ber. 61,2 gef. 60,9 C ₂₃ H ₂₁ 0 ₅ N ₃ S	4,7 4,7 H =	17.7 17.9 452	9,3 9,3	7,1 7,0		
. 46	S CH ₂	S	140-141	ber. 57,0 gef. 57,1 C ₂₃ S ₂₀ O ₄ N ₂ S ₃	\$,2 \$,3	13,2 13,3 485	5,8 5,9	19,8 19,6		
47	Z CEZ	NE	152-153	ber. 59,1 gef. 58,8 C ₂₃ H ₂₁ O ₄ H ₃ S ₂	4,5 4,5 N =	13,7 13,7 468	9,0 9,3	13,7 13,5		
48	Br CH2	O	150-151		-				•	
49	. 0, -175	0	129-130	ber. 50,5 gef. 50,9 c ₂₃ H ₁₉ 05 ^S 2Br	3,5 3,9 X •	19,6 19,5 597	5,1° 5,1	11.7 11.7	•	14
50	ZZ CH3	0	108-110	ber. 59.7 gef. 59.5 C24H22O5H2S2	4,6 4,8	16,5° 16,6 = 482	5,9 5,7	13,3 12,9		
51	CH3 CH2	0	124-125	ber. 61,8 gef. 61,6 C24H22O6H2S	4.7 4.8 M •	20,6 20,3 466	6,0 6,0	6,9		
52	Sr S CH2	S	141-142		•					
53	Cars.	0	131-132	ber. 61,0 ger. 60,9 C ₂₃ E ₂₀ 06N ₂ S	4,6 4,4 M =	21,2 21,0 452	6,2 6,1	7,0 6,9		
54	Br CH		126-127		3,9 3.9	15,1 15,1 = 530	7.9 8,1	6,1 6,1	•	15 15
55	CH ₂	ZH.	149-150	ber. 59,1 gef. 59,0 C23H21 ⁰ 4H3S2	4,5 4,7	13.7 13.5 468	9,0 9,2	13,7 13,5		

Beispiel 56

3-Benzylamino-4-phenylthio-5-(pyrrol-1-yl-sulfonyl)benzoesäure

5

Formel 1: $R^1 = C_6H_5 - CH_2$, $R^2 = H$, $R^3 = H$, X = S, $Ar = C_6H_5$

Eine Lösung von 1,0 g 3-Benzylamino-4-phenylthio-5-pyrrol-1-yl-sulfonyl-benzoesäuremethylester in 70 ml Äthanol wird mit einer Lösung von 0,083 g NaOH in 30 ml Wasser versetzt und zunächst 4 Stunden bei Raumtemperatur, dann zur Vervollständigung der Reaktion 1 Stunde bei 40°C gerührt. Nach Abziehen des Äthanols im Vakuum wird die wäßrige Phase mit verdünnter Salzsäure angesäuert und das Produkt abfiltriert und aus Essigester umkristallisiert. Man erhält 3-Benzylamino-4-phenylthio-5-pyrrol-1-yl-sulfonylbenzoesäure vom Fp. 218 - 220°C. Ausbeute: 60%.

Beispiel 57-71

20

Analog Beispiel 56 werden die Verbindungen der Beispiele 41 bis 55 in die Carbonsäuren der allgemeinen Formel 1, $R^2 = H$, $R^3 = H$, $Ar = C_6H_5$ übergeführt, wobei Ausbeuten von 60 bis 96% erhalten werden.

25

30

Beispiel Nummer	R ¹	X	Pp °C	C	H	0	ห	S	Cl
57	с ₆ н ₅ сн ₂ -	NH	228-230	C24H2104H33	4,7 4,9 M =	14,5 14,5 448	9,0	7,2 7,2	
58	CE ²	S	184-185	ber. 58,1 gef. 57,9 C ₂₂ H ₁₈ O ₅ N ₂ S ₂	4,0 4,1 M *	17,6 17,7 454,5	6,1 5,2	14,1 13,9	
59	CH2 CH2	ИН	186-187	ber. 60,4 gef. 60,6 C ₂₂ H ₁₉ O ₅ N ₃ S	t,t t,t H =	19,3 18,3 437	9,6 9,9	7,3 7,3	
60	CH2-	s	202-203	ber. 58,1 gef. 57.9 C22 ^H 18 ^O 5 ^H 2 ^S 2	4,0 4,1 M =	17,5 18,0 454,5	6,1	14.1 13,9	
61	CH2-	ЯН	19 5- 196	ber. 60,8 gef. 60,3 C22 ^H 19 ^O 5 ^N 3 ^S	4,4 2,6 M =	18,3 19,5 437	9,6	7,3 7,2	
52	CH2	S	201-202	ber. 56,2 gef. 56,2 C22 ^H 18 ^O k ^Y 2 ^S 3	3,9 3,9	13,5 13,7 * 471	6.0	20,¢ 19,8	
63	CH2	жн	205–206	52H19O4H3S2	ф,2 ф, ф	14,1 13,9 * 15 0	9,3 9,5	1 ⁴ ,1 13,5	
64	Sr CH2	0	169-170	5er. 51,1 sef. 52,4 C ₂₂ H ₁₇ O ₅ N ₂ S3	3,3 3,5	19,6 19,5 = 517	5,4 4,3	6,2	-
55	Br CH2	0	190-191	ber. 49,5 gef. 50,7 C _{ZZ} H ₁₇ 05 ^N ZS2	3,2 3,5 Sr	15,0 1 ⁶ ,5 X = 533	5.3 5,2	12,0	•
66	CH3 CH	0	189-190	ber. 59,0 gef. 59,1 c ₂₃ H ₂₀ 05 ^N 2 ^S 2	4,5 4,6 M	17,1 17,1 = 468,5	6,0 6,3	13,7 13,8	
67	CH3 CH2	0	167-168	ger. 61,4 ger. 61,1 C23H20O6N2S	4,7 4,4 M	21,1 21,2 = 452	6,1 6,2	7,2 7,1	
88	Br S CH2	S	202-203	ber. 48,1 gef. 48,1 C22H17O4H2S	3,1 3,2 3r	11.7 11.7	5,1 5,1	17,5 17,1	-
69	CH ⁵ -	. 0	166–167	ber. 60,3 gef. 60,2 C2H18O6H2S	4,1 4.3	21,9 21,9 ± 438	6,4 6,5	7,3	
70	3r CH.	शस	189-19	0 ber. 50.3 ger. 50.5 c ₂₂ R ₁₈ 05 ^N 3 ^S	3.5 3.9 Br. 0	16,7 16,5 5 8 ₂ 0	8,0 7,9 N = 525	6.1 6,0	•
71	CH.	NH NH	201-20	2 ber. 58,3 gef. 58,4	\$,2 \$,a	14,1	9,3 9,5	14.1 14,0	

Beispiel 72

Formel 1:
$$R^1 = \sqrt{SCH_2}$$
, $R^2 = H$, $R^3 = H$, $X = SO$

5

$$Ar = C_6H_5)$$

Ausgehend von der Verbindung aus Beispiel 62 wurde die Subtanz analog der allgemeinen Arbeitsvorschrift D

10 hergestellt. Ausbeute: 75%

C H O N S
ber. 54,3 3,7 16,4 5,7 19,7
5 gef. 54,1 3,8 16,6 5,7 19,3
$$C_{22}H_{18}O_{5}N_{2}S_{3}$$
 M = 486,6

Beispiel 73

- 3-Benzoylamino-4-phenylthio-5-pyrrol-1-yl-sulfonyl-benzoe-säuremethylester
 - a) 4-Chlor-5-chlorsulfonyl-3-nitro-benzoesäuremethylester

Formel 5: Y, Z = Cl, R⁴ = CH₃

50 g 4-Chlor-5-chlorsulfonyl-3-nitro-benzoesäure wird
in 600 ml halbkonzentrierter methanolischer HCl-Lösung
über Nacht bei Raumtemperatur gerührt. Nach Einengen
im Vakuum auf 100 ml wird das ausgefallene Produkt abfiltriert und mehrmals mit Äther gewaschen. Man erhält
4-Chlor-5-chlorsulfonyl-3-nitro-benzoesäuremethylester
vom Fp.: 92 -94°C. Ausbeute: 78%
C8H₅Cl₂NO₆S M = 314

0.2. 0050/033304

Analyse: C Cl N .0 S H ber. 30.6 1.6 22.5 4.4 30.6 10.2 gef. 30.7 1.9 22.2 4.4 30.9 10.0

5 b) 4-Chlor-3-nitro-5-pyrrol-1-yl-sulfonyl-benzoesäure-methylester

Formel 7: Z = C1, $R^4 = CH_3$

Zu 1 l absolutem Tetrahydrofuran (THF) werden zunächst 10 g metallisches Kalium und anschließend eine Lösung von 21 ml Pyrrol in 50 ml THF zugegeben. Man kocht bis zum Verschwinden des Kaliums am Rückfluß. Nach Abkühlen auf Raumtemperatur läßt man in 30 bis 60 Minuten eine Lösung von 62 g 4-Chlor-5-chlor-sulfonyl-3-nitro-benzoesäuremethylester in 500 ml THF zutropfen und über Nacht bei Raumtemperatur rühren. Anschließend wird das Lösungsmittel bei 30 bis 35°C im Vakuum größtenteils abgezogen, der Rückstand mit Wasser versetzt und zweimal mit Essigester extrahiert. Nach dem Trocknen der organischen Phase über Natriumsulfat wird die organische Lösung mit Aktivkohle aufgekocht und filtriert. Nach Einengen im Vakuum fällt das Produkt aus. Man erhält nach Filtration 4-Chlor-3-nitro-5-pyrrol-1-yl-sulfonyl-benzoesäuremethylester vom Fp.: 136 - 137°C Ausbeute: 70%

25

35

C₁₂H₉ClN₂O₆S

10

15

20

Analyse: Cl C 41.8 10.2 ber. 2.6 8.1 27.8 gef. 42.0 2.8 10.0 8.3 27.4 9.1

30 c) 3-Nitro-4-phenylthio-5-pyrrol-1-yl-sulfonyl-benzoe-säuremethylester

M = 345

Formel 8: R^4 = CH_3 , X = S, Ar = C_6H_5 Eine Suspension von 13 g Natriummethylat in 440 ml absolutem THF wird unter Rühren bei Raumtemperatur in

0. Z. 0050/033304

einer No-Atmosphäre mit einer Lösung von 24,5 ml Thiophenol in 100 ml wasserfreiem THF versetzt. Anschlie-Bend werden 72 g 4-Chlor-3-nitro-5-pyrrol-1-ylsulfonylbenzoesäuremethylester in 220 ml absolutem THF. zugetropft und bei Raumtemperatur bis zum dünnschichtchromatografisch bestimmten Ende der Reaktion gerührt. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wird der Rückstand mehrmals mit Hexan ausgezogen und anschließend aus Essigester/Methanol umkristallisiert. Man erhält 3-Nitro-4-phenylthio-5-pyrrol-1-yl--sulfonyl-benzoesäuremethylester vom Fp.: 153 - 154°C Ausbeute: 45%

M = 418C18H14N2O6S2

BASF Aktiengesellschaft

S Analyse: 51.6 22.9 15.3 6.6 ber. 6.8. 22.7 14.9 gef.

3-Amino-4-phenylthio-5-pyrrol-1-yl-sulfonylbenzoesäuremethylester

> Formel 9: $R^4 = CH_3$, X = S, $Ar = C_6H_5$ 20 g 3-Nitro-4-phenylthio-5-pyrrol-1-yl-sulfonylbenzoesäuremethylester werden in 1 l Essigester in Gegenwart von 2 g Palladium/Aktivkohle zunächst bei Raumtemperatur dann bei 40 - 50°C hydriert. Nach Abfiltrieren des Kontaktes und Einengen des Filtrats im Vakuum wird der Rückstand mit Methylenchlorid über eine Kieselgelsäule chromatographiert. Die produkthaltigen Fraktionen werden vom Lösungsmittel befreit und der Rückstand aus Methanol umkristallisiert. Man erhält 3-Amino-4-phenylthio-5-pyrrol-1-yl-sulfonylbenzoesäuremethylester vom Fp.: 118 - 119°C. Ausbeute: 80% M = 388,5 $C_{18}H_{16}N_{2}O_{4}S_{2}$

- 38 -

O.Z. 0050/033304

Analyse: C H 0 S 55.6 ber. 4.1 7.2 16.5 16.5 gef. 55.7 3.9 7.2 16.8 16.3

5 e) 3-Benzoylamino-4-phenylthio-5-pyrrol-1-yl-sulfonylben-zoesäuremethylester

Formel 4: $R^4 = CH_3$, X = S, $Ar = C_6H_5$, $R^6 = C_6H_5$ 5 g 3-Amino-4-phenylthio-5-pyrrol-1-yl-sulfonylbenzoesäuremethylester, gelöst in 25 ml wasserfreiem Dioxan, 10 werden mit 1,4 ml Pyridin und einer Lösung von 7,2 g Benzoylchlorid in 30 ml Aceton versetzt und bei Raumtemperatur, später bei 40°C gerührt. Das Lösungsmittel wird im Vakuum abgezogen, der Rückstand in Methylenchlorid aufgenommen und mit verdünnter Natriumhydro-15 gencarbonatlösung gewaschen. Nach Trocknen über Natriumsulfat wird das Lösungsmittel im Rotationsverdampfer abgezogen und aus Methanol/Methylenchlorid umkristallisiert. Man erhält 3-Benzoylamino-4-phenyl--thio-5-pyrrol-1-yl-sulfonylbenzoesäuremethylester vom 20 Fp.: 210-211°C. Ausbeute: 59% C₂₅H₂₀N₂O₅S₂ M = 492,6

Analyse: C H N O S
ber. 61,0 4,1 5,7 16,2 13,0
gef. 61,2 4,4 5,8 16,3 12,8

Beispiele 74-76

Nach der Vorschrift e) in Beispiel 73 werden die folgenden Verbindungen aus den Verbindungen der allgemeinen Formel 9 $(R^4 = CH_3, Ar = C_6H_5)$ hergestellt, wobei Ausbeuten von 55-93% erhalten werden.

	Formel 4	(R ⁴	= CH ₃	, Ar = C	5 ^H 5					•
	Beispiel Nr.	R ⁶	X	Fp °C		Anal	yse H	0	N	s
5	74	с ₆ н ₅	NH	191-192	gef.	63,1 63,0 21 ⁰ 5 ^N 3	4,5	16,8 16,7 M = 470	8,9	6,7
10	75		S	165-167	gef.	57,5	3,8	19,9 19,6 M = 48	5,7	13,3 13,1
-	76		NH	182-183	gef.	59,3 59,1 9 ⁰ 6 ^N 3	4,2	20,6 20,1 M = 465	9,2	6,9 6,9
15	77		NH	193-194	gef. C ₂₃ H ₁	57,0 9 ⁰ 5 ^N 3	s ₂ ,1	16,6 16,8 M = 482	8.9	
	78		. 0	224-225	ber. gef. C ₁₉ H ₁	54,8 54,4 6 ⁰ 7 ^N 2	3,9 3,9	26,9 26,8 M = 416	6,7 6,8	7,7 7,6

Beispiel 79

20

25.

3-(2-Furfuroylamino)-4-phenylthio-5-pyrrol-1-yl-sulfonyl-benzoesäuremethylester

Formel 4:
$$R^{4} = CH_{3}$$
, $X = S$, $Ar = C_{6}H_{5}$

Zu einer Lösung von 5 g 3-Amino-4-phenylthio-5-pyrrol-1-yl-sulfonylbenzoesäuremethylester und 1,4 ml N,N-Dimethylanilin in 25 ml wasserfreiem Dioxan werden 3,4 g 2-Furfuroylchlorid, gelöst in 30 ml Dioxan, zugetropft. Nach 3-8 Stun30 den Rühren bei Raumtemperatur wird im Vakuum eingeengt, der
Rückstand in Methylenchlorid gelöst, die organische Phase
mit Wasser und verdünnter Natriumhydrogencarbonatlösung gewaschen, über Natriumsulfat getrocknet und im Rotationsverdampfer vom Lösungsmittel befreit. Nach Umkristallisation
35 aus Methylenchlorid/Nethanol erhält man 5 g 3-(2-Furfuroyl-

0.2. 0050/033304

amino)-4-phenylthio-5-pyrrol-1-yl-sulfonylbenzoesäure-methylester vom Fp.: 165-167°C. Ausbeute: 87%

Beispiele 80 bis 84

Analog der Vorschrift aus Beispiel 79 werden aus den Verbindungen der allgemeinen Formel 9 ($R^4 = CH_3$, Ar = C_6H_5) die folgenden Verbindungen in Ausbeuten von 75-96% erhalten.

10	Beisp.	R ⁶	X	Fp °C		С	H	0	Analy N	se S	B r
15	80	\sqrt{s}	S	196-197	ber.	55,4 55,3 C ₂₃ H	3,6 3,7 18 ^N 2 ^C	16,0 15,8 5 ^S 2	5,6 1 5,6 1 M =	19,3 18,9 499	
	81		NH \	185-186	gef.	57,3	3,9	16,6	8,7 1 9,0 1 M =	13,2	
20	82		NH \	160-161	gef.	59,0	4,1	20,3	9,0 9,1 M =	6,8	i .
	83 Br/		S	187-188	gef	48,1	3.3	13,8	4,9 1 4,9 1 M =	.6,4	
25	84 Br,		NH :	177-178 I	per.5	0,7 0,6 C ₂₃ H	3,3 3,5 18 ⁰ 6 ^N	17,6 17,0 3SBr	7,7 7,8 M =	5.9 5.8 544	14,7 15,0

Beispiel 85

3-Benzoylamino-4-phenylthio-5-(pyrrol-1-yl-sulfonyl)-benzoe-30 -säure-methylester

a) 3-Amino-4-chlor-5-(pyrrol-1-yl-sulfonyl)-benzoesäure-methylester

35 Formel 13:
$$R^4 = CH_3$$
, $Z = C1$

909886/0095

5

10

15

25

30

35

Eine Lösung von 55 g 4-Chlor-3-nitro-5-(pyrrol-1-yl-sulfonyl)-benzoesäuremethylester (s. Beispiel 73 b) in 800 ml Essigester wird in Gegenwart von 5,0 g Palladium/Aktivkohle (10 % Pd) bei 20 - 40°C bis zum Ende der Wasserstoffaufnahme hydriert (Dauer ca. 7 Stunden). Nach Abtrennen des Katalysators wird das Filtrat vom Lösungsmittel befreit und der Rückstand in Essigester/Methanol (9/1). umkristallisiert. Man erhält den 3-Amino-4-chlor-5-(pyrrol-1-yl-sulfonyl)-benzoesäuremethylester vom Fp.: 178 - 181°C. Ausbeute: 70% C12H11N2O4SC1 M = 314,75

b) 3-Benzoylamino-4-chlor-5-(pyrrol-1-yl-sulfonyl)benzoesäuremethylester

20 Formel 14:
$$R^4 = CH_3$$
, $Z = C1$, $R^6 = C_6H_5$

Eine Lösung von 10,0 g 3-Amino-4-chlor-5-(pyrrol-1-yl-sulfonyl)benzoesäuremethylester in 64 ml wasserfreien Dioxan wird mit 3,2 ml Pyridin versetzt, anschließend wird bei Raumtemperatur eine Lösung von 8,9 g Benzoyl-chlorid in 64 ml Aceton zugetropft. Man läßt über Nacht bei Raumtemperatur rühren, engt im Vakuum ein und nimmt den Rückstand in Essigester auf. Nach zweimaligem Waschen mit Wasser wird die organische Phase über Natriumsulfat getrocknet und im Rotationsverdampfer vom Lösungsmittel befreit. Nach Umkristallisieren aus Methanol erhält man 6,4 g 3-Benzoyl-amino-4-chlor-5-(pyrrol-1-yl-sulfonyl)-benzoesäuremethylester vom Fp.: 181 - 182°C. Ausbeute: 61%

C19H15ClN2O5S M = 418,9

5 c) 3-Benzoylamino-4-phenylthio-5-(pyrrol-1-yl-sulfonyl) benzoesäuremethylester

(Formel 4:
$$R^4 = CH_3$$
, $X = S$, R^6 , $Ar = C_6H_5$)

wird nach Vorschrift c) Beispiel 73 aus 87,4 g der oben erhaltenen Verbindung (Beispiel 85 b) hergestellt.

Das Produkt wird aus Methanol/Methylenchlorid umkristallisiert. Fp.: 210 - 211°C. Ausbeute: 93%

Die Beispiele 86 bis 87 werden analog zu der bei Beispiel 85 a) angegebenen Vorschrift ausgehend von Verbindungen der Formel 17 (R^4 = H, E = NO_2) durch katalytische Hydrierung erhalten:

Formel 17: $R^4 = H$, $E = NH_2$

25 Beispiel 88

3-Benzylamino-4-chlor-5-(pyrrol-1-yl-sulfonyl)-benzoesäure-methylester

30 Formel 16:
$$R^4 = CH_3$$
, $Z = C1$, $R^2 = H$, $R^1 = C_6H_5 - CH_2 -$

O.Z. 0050/033304

Zu einer Lösung von 1,0 g 3-Benzoylamino-4-chlor-5-(pyrrol-1-yl-sulfonyl)-benzoesäuremethylester in 10 ml trockenem
Diglyme und 0,6 ml BF3-Ätherat wird bei Raumtemperatur eine
Lösung von 0,14 g NaBH4 in 5 ml trockenem Diglyme zugetropft. Nach 1 Stunde wird der NaBH4-überschuß mit wenig
H2O zerstört, der Niederschlag abfiltriert und das Filtrat
unter Kühlung mit ca. 20 ml Wasser versetzt. Das ausgefallene Produkt wird abgesaugt und einmal mit Wasser, dann
mit n-Hexan gewaschen. Nach Umkristallisieren aus Methanol
erhält man sauberes Produkt vom Fp.: 143 - 145°C.

C19^H17^N2^O4^{SCl} M = 404,87 Ausbeut: 905

Analyse:	. C	H	N	0	. S	. C1
ber.	56.4	4.2	6.9	15.8	7.9	8.7
gef.	56.4	4.4	7.0	16.2	7.9	3.7

Die folgenden Beispiele 89 bis 100 werden durch Umsetzung von einer Verbindung der Formel 18 nach der oben angegebenen allgemeinen Arbeitsvorschrift A bzw. B in Ausbeuten von 50-90% erhalten.

25

15

	Formel 17						
	Beispiel Nr.	R ⁴	D	E Allg Arbeit schri	svor-	Fp	°c
5	89	Н	Cl	NO ₂	A	223 -	225
	90	H	Cl	NO ₂	В		11
	91	CH ₃	Cl	NO ²	A	138 -	140
10	92	Н	SC6H5	NOS	В	241 -	243
10	93	Н	NHC6H5	NOS	В	264 -	267
•	94	CH ₃	Cl	C6H5CONH	A	182 -	183
	95	H	oc ₆ H ₅	NO ₂	A	180 -	182
15	96 .	CH ₃	ос ₆ н ₅	Br CONH	A	201 -	202
	97	CH ₃	oc ₆ H ₅	Br	A	206 -	208
00				CH ₃			
20	98	CH ₃	oc ₆ H ₅	CONH	A	206 -	208
	99	CH ₃	oc ₆ H ₅ cr	H ₃ . CONH	A	199 -	201
25	100	CH ₃	oc ₆ H ₅	CONH	A	189 -	190

Beispiele 101 bis 104

Die Ausgangsverbindungen der Beispiele 96 - 98 werden aus 3-Amino-4-phenoxy-5-sulfamoyl-benzoesäuremethylester durch Acylierung analog der Vorschrift des Beispiels 79 hergetellt, wobei Ausbeuten von 70-93% erhalten werden.

0.2. 0050/033304

Die Beispiele 105 bis 109 werden nach der allgemeinen Arbeitsvorschrift C erhalten, wobei bei den Beispielen 105 bis 107 von einer Verbindung der allgemeinen Formel 17 (R = H) und bei den Beispielen 108 und 109 von einer Verbindung der allgemeinen Formel 9 (R = H) ausgegangen wird.

Ausbeuten: 80-95%

Formel 17: $R^4 = CH_3$

	Beispiel Nr.	E .	D	Fp °C
30	105	ио ²	C1	138-140
	106	NO ₂	SC ₆ H ₅	154-157
-	107	NO ₂	NHC ₆ H ₅	135-136

- 46 -

0.2. 0050/033304

Formel 9: $R^4 = CH_3$

Beispiel E D Fp OC Nr.

5

108
NH₂
SC₆H₅
118-119
109
NH₂
NHC₆H₅
144-146

10

15

20

25

30

2831850 0.z. 0050/033304

	•	an			
	B	165	1 1	1.1	1 1
	: . Z . ·	ωωω ~∞	9,6	4,00	တို့
5	Ω	113,0 12,8 1,8	17 17 17 17 17 17 17 17 17 17 17 17 17 1	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0° 4 TT
	0	113,0 13,0 13,0	다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	20.09 24.09 24.09	44 0 20 20
10		03.55 \$1.50 \$1.20	240 000 0 N 20 20	0 + 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 7 4 5 5 0 4 N 2 S
	ပ	48,7 48,5 C20H17	57,4 57,3 621H17	55,0 54,8 C21H18	58,8 58,8 621#20
15		ber. gef.	ber. gef.	ber Ber	ogen.
	ည် ဝင်	223-225	270-272	303-304	211-212
20	Ar	c ₆ H ₅	C6H5	C ₆ H ₅	c ₆ H ₅
•	×	Ω	တ	ν.	· 🔊
25		o-Br-c ₆ H ₄ CH ₂ -	I-с ₆ н ₄ -сн ₂ -	·со ₂ н-с ₆ н ₄ -сн ₂ -	-c _H ,-c _H 2
30	$(R^2 = H)$ R^1	0-Br-C	p-cn-c	p-c02H	m-CH3-C
35	Formel 2 Beispiel Nr.	110	111	112	113

O.Z. 0050/033304

Die in den Beispielen 33, 36 und 37 verwendeten halogenier- ten Thiophenverbindungen können wie folgt erhalten werden.

Beispiel 1

5

10

15

In einem 2-Liter-Kolben werden 300 ml Isopropanol, 300 ml H₂O und 200 g 2,3-Dichlor-thiophen-4-aldehyd vorgelegt und innerhalb von 45 Minuten portionsweise mit 16 g NaBH₄ versetzt. Die Reaktion verläuft exotherm. Sie wird unter Kühlung bei 35 bis 40°C durchgeführt. Anschließend wird die zweiphasige Mischung 30 Minuten bei dieser Temperatur nachgerührt und mit 300 ml H₂O und 500 ml CH₂Cl₂ versetzt. Nach der Phasentrennung wird die wäßrige Phase zweimal mit 250 ml CH₂Cl nachextrahiert. Die organischen Phasen werden mit 250 ml H₂O gewaschen und eingeengt. Der ölige Rückstand wird mit Cyclohexan aufgenommen, worauf 182 g 2,3-Dichlor-4-hydroxymethyl-thiophen kristallin erhalten werden (87,3-% d.Th.) Schmp. 63-65°C.

20 Beispiel 2

Wie in Beispiel 1 beschrieben, werden 124 g 2-Chlor-thio-phen-4-aldehyd in 200 ml Isopropanol und 200 ml H₂O mit 12 g NaBH₄ reduziert und aufgearbeitet. Das Reaktionsprodukt wird durch Destillation gereinigt und ergibt neben 20 g Vor- und Nachlauf 83 g 2-Chlor-4-hydroxymethyl-thiophen, d.h. 77 % der Theorie, Sdp. 67-69°C/O,3 Torr.

Beispiel 3

30

35

25

Analog Beispiel 1 werden hergestellt:

	Sdp./Schmp.	Ausbeute
2-Brom-4-hydroxymethyl-thiophen	86-88°c/0,4 Torr	91 %
2,3-Dibrom-4-hydroxymethyl-thio-	79 - 82°c	83 %
phen.	·	

O.Z. 0050/033304

Beispiel 4

In einem 1-Liter-Kolben wird eine Mischung von 549 g
2,3-Dichlor-4-hydroxymethyl-thiophen und 450 ml CHCl₃ vorgelegt, auf 0°C abgekühlt und bei 0 bis 5°C innerhalb
1 Stunde mit einer Mischung von 271 g PBr₃ und 50 ml CHCl₃
versetzt. Die Lösung wird 1 Stunde nachgerührt und anschließend auf Eis gegeben. Nach dem Abtrennen der organischen Phase wird 2 mal mit wenig Äther nachextrahiert. Die
organischen Phasen werden unter vermindertem Druck eingeengt und der Rückstand mit wenig Triäthylamin bei 58-60°C/
0,1 Torr destilliert.

Analog werden die folgenden Brommethylthiophene hergestellt:

15	Sdp.	Ausbeute				
2-Brom-4-brommethyl-thiop		r 55 %				
2-Chlor-4-brommethyl-thio		r 75 %				
2,3-Dibrom-4-brommethyl-t	hiophen Rohprodukt	96 %				

20

25

30

35

909886/0095