Assignment Project Exam Help

https://eduassistpro.github.

Add WeChatedu_assist_pr

Lecture 4: Theory of parallel perf

Previous lecture

Assignmentaredrojectiviewemn Help

- https://eduassistpro.github.
- #pragma omp parallel for
- Mandelbiot satt which has a ne edu_assist_problems in edu_assist_problems.
- Still difficult to achieve good performance for the Mandlebrot set.

This lecture

Assignment Project Exam Help

Now we will look at some general considerations for parallel perf

- https://eduassistpro.github.
- Classic models for predicting paralle highlighting wer telepited at edu_assist_present the scaling, i.e.
- the number of processors and the problem size.

Notation

Assignment Project Exam Help

S

https://eduassistpro.github.

time

f Serial fraction Amdahl, Gustafson-Barsis

What we are trying to achieve

A sasing problem and be shed by esertal flowithming time to p We assume this is optimal, i.e. cannot be improved (in serial).

https://eduassistpro.github.i

• May be known, but take too long to implement.

Usuall Acoustic three algorithm elocal assist_practice one.

 For instance, if developing a parallel bubblesort, would probably compare to **serial bubblesort** (rather than quicksort, mergesort, heapsort *etc.*).

What we are trying to achieve Parallel acceleration Challenges to parallel performance

Parallel acceleration

Assignment the regree to Imatam Help implement a parallel solution on parallel hardware.

https://eduassistpro.github.

Denote the (not necessarily optimal) parallel ex Measured in same units as to edu_assist_prediction.

- On 'as similar as possible' hardware.
- Sometimes known as the wall clock time, as it is what 'a clock on the wall' would measure.

Simultaneous calculations (ideally)

Assignment Project Exam Help https://eduassistpro.github. core 1 Addrew et hiptraedu_assist_pro

$$t_{m} = \frac{1}{-t_{m}}$$

core 3

Multi-core memory cache

serial algorithm.

A Secile representation of the Priories of the Example Help

Chttps://eduassistpro.github.
required by another core.

Depending protocycle hat arranged to memory child hat accessed, a parallel code may result in fewer cache misses overall that the equivalent

Challenges to parallel performance

Assignments Project Examelel pachieving good parallel performance.

In Lehttps://eduassistpro.github.

Hardware performance loss in maintaining
 when two cores repeatedly write to the same
 though they were earlier of the cress dassist

Over the coming lectures we will see two important, general challenges: **synchronisation** and **load balancing**.

Synchronisation

- Main thread may repeatedly **probe** worker thread status.
- Alternatively, workers may signal their completion to main.
- An example of **synchronisation**.

Load balancing

A related issue is load balancing:

ASSIGNMENT trefo pect first amartelp

* https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

This happens in the Mandelbrot set since each thread performs different numbers of calculations [cf. last lecture; Lecture 13].

Parallel overheads

Assignment Project, Examitable poverheads. For example:

- https://eduassistpro.github.i
- **Communication** between threads/processes not present in the serial equivalent.
- completio Wto senhratria edu_assiste_problem size between threads.

The impact may be small or large depending on parallel algorithm and hardware architecture.

Metrics for parallel performance

Assignmentur Project Exignmentelp

The m

https://eduassistpro.github.

• If Ahedard lie were ion was primes for times for the control of the control of

$$t_p = rac{1}{p}t_s \quad \Longrightarrow \quad S = rac{1}{rac{1}{p}t_s} = \mu$$

• Rarely realised in practice due to **parallel overheads**.

Speedup example

Superlinear speedup

Assignment Project Exam Help

Usually due to memory

This ishttps://eduassistpro.github.

Example (right): Benchmark

computation du War Chat edu assist pr

However, this is rare - most commonly see S(p) < p.

> From Parallel Programming in OpenMP, Chandra et al. (Academic, 2001).

Efficiency

Assignmentel Projectri Exame Velp

https://eduassistpro.github.

- corresponds to E=1.
- Of Andrews We eremat edu_assist_p
- Typically E < 1 due to parallel overheads.
- Superlinear speedup gives E > 1.

Models for parallel performance

Assirging Penate Ciral Exatm. Help Select the 'best' without development and testing.

Chal https://eduassistpro.github.

- Need to include e.g. memory cache
- Intolve miny with nown parameters recount assist_provided in the calibration for new hardw

However, even **simple** models can predict **trends**.

• Parallel scaling, which refers to the variation with p.

Amdahl's law

Assignment Protectile Exam Help

https://eduassistpro.github.

This iAdd's Weethat edu_assist_pr

For large p it predicts $S \leq \frac{1}{f}$ regardless of p.

• e.g. f = 0.2, maximum speedup of 5, **even for p**= ∞ !

¹Amdahl, AFIPS Conference Proceedings **30**, 483 (1967).

Schematic for Amdahl's law (p=3)

Gustafson-Barsis law

Assignment Project Exam Help

• Suppose instead n increases with p such that t_p is fixed.

https://eduassistpro.github. $\Rightarrow S < f + p(1-f)$

Now Addr) We Chatedu_assist_pr

This is the Gustafson-Barsis law, or just Gustafson's law¹.

¹Gustafson, Comm. ACM **31**, 532 (1988).

Schematic for Gustafson-Barsis law (p=3)

Amdahl *versus* Gustafson-Barsis

Weak *versus* strong scaling

Astrigummentap Probine et ve Extans a let elp **Strong scaling**: Increasing p with n fixed.

https://eduassistpro.github.

Weak Acaling In Wasing Chilat edu_assist_pr

- Have freedom to vary n.
- e.g. higher resolution meshes for scientific/engineering applications; more/larger layers in neural networks.

Summary and next lecture

Assignment Project Exam Help

- Two common metrics: speedup and efficiency.
- https://eduassistpro.github.i
 - Gustafson-Barsis law.
- Add WeChat edu_assist_pr

Next time we will look more closely at **data dependencies** in parallel loops.