第八章 排序

2022年10月2日 星期日 22:56

总结

心与	$\overline{\Sigma}_{i} st \Box$									
名称	数据对象	稳定性		夏杂度	额外	卜空间复杂度				描述
			平均	最坏						
冒泡排序 数组 ✓ О(п		$O(n^2)$	0((无序区,有序区)。 从无序区透过交换找出最大元素放到有序区前端。				
选择排序	数组 链表	X ✓	$O(n^2)$		O(1)		(有序区,无序区) 在无序区里找一个最	。 }小的元素跟在有序区	的后面。对数组:	比较得多,换得少。
插入排序	数组、链表	₹ ✓	$O(n^2)$		O(1)		(有序区,无序区) 把无序区的第一个元		适的位置。对数纟	且:比较得少,换得多。
堆排序	数组	X	$O(n \log n)$)	O(1)		(最大堆,有序区) 从堆顶把根卸出来放	。 汉在有序区之前,再恢	复堆。	
			$O(n\log^2 n$	n)	O(1)					
归并排序	数组	1	$O(n \log n)$)		, , - (8)	把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。 可从上到下或从下到上进行。			
	链表									
快速排序	数组	X	$O(n \log n)$	$O(n^2)$	O(lo	gn)	(小数,基准元素, 在区间中随机挑选一		于基准的元素放在	至基准之前,大于基准的元素放在基准之后,再分别对小数区与大数区进行排序。
希尔排序	数组	X	$O(n\log^2 n$	$O(n^2)$	O(1)		每一轮按照事先决定	的间隔进行插入排序	,间隔会依次缩小	小,最后一次一定要是1。
计数排序	数组、链表	₹ 🗸	O(n+m))	O(n	+ m)	统计小于等于该元素	(值的元素的个数i,于	是该元素就放在	目标数组的索引i位(i≥0)。
桶排序	数组、链表	₹ 🗸	O(n)		O(m	.)	将值为i的元素放入i	号桶,最后依次把桶里	里的元素倒出来。	
基数排序	数组、链表	₹ 🗸	O(k imes n)	$O(n^2)$			一种多关键字的排序	5算法,可用桶排序实	现。	
排序	算法	平均时间	1夏杂度	最好情	况	最坏情况	空间复杂度	排序方式	稳定性	
冒泡	排序	0(n²)	O(n))	O(n²)	O(1)	In-place	稳定	
选择	排序	0(n²)	O(n²	²)	O(n²)	O(1)	In-place	不稳定	
插入	排序	0(n²)	O(n)	O(n²)	O(1)	In-place	稳定	
希尔	排序	O(n l	og n)	O(n log	j² n)	O(n log²	n) O(1)	In-place	不稳定	
归并	排序	O(n l	og n)	O(n log	g n)	O(n log r	n) O(n)	Out-place	稳定	
快速	排序	O(n l	og n)	O(n log	g n)	O(n²)	O(log n)	In-place	不稳定	
堆排	非序	O(n l	og n)	O(n log	g n)	O(n log r	n) O(1)	In-place	不稳定	
计数	排序	O(n	+ k)	O(n +	k)	O(n + k)	O(k)	Out-place	稳定	
						i .	1	i .	ı	

各种算法

主要看的是菜鸟教程的,可以直接看菜鸟教程里面的内容

O(n + k) O(n + k) O(n²) O(n + k) Out-place 稳定

	1.冒泡排序	2.选择排序	3.插入排序	4.希尔排序	5.归并排序
算法步骤	 比较相邻的元素。如果第一个比第二个大,就交换他们两个。 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。 针对所有的元素重复以上的步骤,除了最后一个。 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。 	再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。重复第二步,直到所有元素均排序完毕。	将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)	 按增量序列个数 k, 对序列进行 k 趟排序; 每趟排序, 根据对应的增量 ti, 将待排序列分割成若干长度为 m 的子序列, 分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作 	 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列; 设定两个指针,最初位置分别为两个已经排序序列的起始位置; 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置; 重复步骤 3 直到某一指针达到序列尾; 将另一序列剩下的所有元素直接复制到合并序列尾。
代码	<pre>#include <stdio.h> void bubble_sort(int arr[], int len) { int i, j, temp; for (i = 0; i < len - 1; i++)</stdio.h></pre>	<pre>void swap(int *a, int *b) //交換兩個變數 { int temp = *a; *a = *b; *b = temp; } void selection_sort(int arr[], int len) { int i, j; for (i = 0; i < len - 1; i++) { int min = i; for (j = i + 1; j < len; j++) //走訪未排序的元素</pre>	<pre>void insertion_sort(int arr[], int len) { int i, j, key; for (i = 1; i < len; i++) { key = arr[i]; j = i - 1; while ((j >= 0) && (arr[j] > key)) { arr[j + 1] = arr[j]; j; } arr[j + 1] = key; } }</pre>	<pre>void shell_sort(int arr[], int len) { int gap, i, j; int temp; for (gap = len >> 1; gap > 0; gap >>= 1) for (i = gap; i < len; i++) { temp = arr[i]; for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)</pre>	<pre>void merge_sort_recursive(int arr[], int reg[], int start, int end) { if (start >= end) return; int len = end - start, mid = (len >> 1) + start; int start1 = start, end1 = mid; int start2 = mid + 1, end2 = end; merge_sort_recursive(arr, reg, start1, end1); merge_sort_recursive(arr, reg, start2, end2); int k = start; while (start1 <= end1 && start2 <= end2) reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++]; while (start2 <= end1) reg[k++] = arr[start2++]; for (k = start; k <= end; k++) arr[k] = reg[k]; } void merge_sort(int arr[], const int len) { int reg[len]; merge_sort_recursive(arr, reg, 0, len - 1); }</pre>
动画图链接	https://www.runoob.com/w3cnote/bubble-sort.html	https://www.runoob.com/w3cnote/selection-sort.html	https://www.runoob.com/w3cnote/insertion-sort.html	https://www.runoob.com/w3cnote/shell-sort.html	https://www.runoob.com/w3cnote/merge-sort.html

	6.快速排序	7.堆排序	8.计数排序	9.桶排序	10.基数排序
	 从数列中挑出一个元素,称为 "基准" (pivot); 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区 (partition)操作; 递归地 (recursive) 把小于基准值元素的子数列和大于基准值元素的子数列排序; 	 创建一个堆 H[0n-1]; 把堆首(最大值)和堆尾互换; 把堆的尺寸缩小 1, 并调用 shift_down(0), 目的是把新的数组顶端数据调整到相应位置; 重复步骤 2, 直到堆的尺寸为 1。 	 (1) 找出待排序的数组中最大和最小的元素 (2) 统计数组中每个值为i的元素出现的次数,存入数组C的第i项 (3) 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加) (4) 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1 	 桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点: 在额外空间充足的情况下,尽量增大桶的数量 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中 	 1.10 基数排序 分类 <u>算法</u> 基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。 基数排序:根据键值的每位数字来分配桶; 计数排序:每个桶只存储单一键值; 桶排序:每个桶存储一定范围的数值;
	<pre>void swap(int *x, int *y) { int t = *x;</pre>	#include <stdia.h> #include <stdia.h #include="" <st<="" <stdia.h="" td=""><td><pre>#include stdio.h> #include stdio.h> #includ</pre></td><td><pre>#include siterator> #include siterator> #include svector> using namespace std; const int BUCKET_NUM = 10; struct ListNode {</pre></td><td><pre>#include <stdio.h> #define MAX 20 //#define SMOWPASS #define BASE 10 void print(int *a, int n) { int i; for (i = 0; i < n; i++)</stdio.h></pre></td></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h></stdia.h>	<pre>#include stdio.h> #include stdio.h> #includ</pre>	<pre>#include siterator> #include siterator> #include svector> using namespace std; const int BUCKET_NUM = 10; struct ListNode {</pre>	<pre>#include <stdio.h> #define MAX 20 //#define SMOWPASS #define BASE 10 void print(int *a, int n) { int i; for (i = 0; i < n; i++)</stdio.h></pre>
图链接	https://www.runoob.com/w3cnote/quick-sort-2.html	https://www.runoob.com/w3cnote/heap-sort.html	https://www.runoob.com/w3cnote/counting-sort.html	https://www.runoob.com/w3cnote/bucket-sort.html	https://www.runoob.com/w3cnote/radix-sort.html