Programming Project 1: Logistic Regression

Deadline: January 29, 2024

In this project, you are given a training set and a test set which contain information about salaries of employees in a company. You will need to complete the following coding tasks:

- 1. Do some data cleaning and analysis on the given datasets.
- 2. Build and train a logistic regression model to predict if an employee has a salary higher than \$50K. You will need to implement the gradient ascent method to train the model.
- 3. Report data analysis and the training performance of your model.

1 Preliminaries

Data Description. You are given a training set stored in the $train_data.csv$ file and a test set stored in the $test_data.csv$ file. In these files, each row represents a different employee (or data samples), and the columns include information such as age, education, etc. In total, there are 14 features corresponding to the first 14 columns in the datasets. The last income column shows if each employee has an income $\leq 50K$ or > 50K, which represents true labels of the samples. The training set contains 26,049 data samples and the test set contains 6,512 samples.

Required Libraries. To complete your tasks, you will need to install the following libraries:

- numpy: To install via Anaconda, run the command: conda install numpy
- pandas: To install via Anaconda, run the command: conda install pandas
- scikit-learn: To install via Anaconda, run the command: conda install scikit-learn
- matplotlib: To install via Anaconda, run the command: conda install matplotlib
- seaborn: To install via Anaconda, run the command: conda install seaborn

2 Task 1: Data Cleaning and Analysis (30 points)

In this task, you are provided a file with starter code in it, $proj1_data_analysis.ipynb$. You have to implement three methods in this file:

1. (15 pts) clean_data(train_data, test_data): In this method, you need to write codes to:

- (a) Fill in missing values: There are missing entries that have a value of "?"; you need to replace these "?" values with suitable values.
- (b) Find entries with strange values and replace them with suitable values: For example, in the *capital.gain* column, there are entries with a value of 99999.0, which is completely out of the normal range of values in this column. These entries can be considered as outliers that need to be addressed.
- (c) Drop unnecessary columns from the datasets, including education.num and fnlwqt.
- (d) Simplify the *race* and *education* columns. In particular, in the *race* column, find all entries with values in ['Black', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other'] and replace them with the same value of 'Other'. In the *education* column, find all entries with values in ['11th', '9th', '7th-8th', '5th-6th', '10th', '1st-4th', 'Preschool', '12th'] and replace them with the same value of 'School'.
- (e) Convert labels into binary values: that is, in the *income* column, replace the value of $\leq 50K$ with the value of 0 and replace the value of > 50K with the value of 1.
- (f) Lastly, save the processed data into cleaned_train_data.csv and cleaned_test_data.csv files.
- 2. (5 pts) plot_numeric_feature_correlation(train_data): In this method, you need to write codes to compute and plot the heatmap showing the correlation among numeric features and true labels using the training set. To complete this task, you can use the pandas.DataFrame.corr method to compute the correlation and the seaborn.heatmap method to plot the heatmap. The plotted figure should look similar to the figure below:

Figure 1: Correlation Heatmap

3. (10 pts) plot_histogram(train_data): In this method, you need to write codes to plot histograms showing the number of samples in the training set that have income $\leq 50K$ and > 50K for every column. For example, the histogram for the age column should look like:

3 Task 2: Implement Logistic Regression Model (60 points)

You are provided a file with starter code, $proj1_classification.ipynb$. You have to build and train a logistic regression model to predict if an employee has a salary $\leq 50K$ or > 50K using this starter-code file. You have to implement:

- 1. (40 pts) Class LogisticRegression(object): In this class, we already provided a completed __init__() function which provide all necessary inputs to train the model, including:
 - Training set: (self.X_train, self.y_train)
 - Test set: (self.X_test, self.y_test)
 - Learning rate: self.learn_rate
 - Number of gradient ascent iterations self.n_iters

In this __init__() function, we also initialized the model weights self.weight. You need to update these weights during the gradient ascent process. Essentially, you will implement the following three methods to train the logistic regression model using gradient ascent.

- (a) predict_prob(self, samples): The input of this method is a set of samples, named samples. You will use the current model weights self.weight to compute and return the predicted probability that each sample in samples has the income > 50K.
- (b) compute_gradient(self,): In this method, you are going to compute and return the gradient of the average log-likelihood objective (computed based on the training set) with respect to the model weights self.weight.

- (c) gradient_ascent(self,): In this method, you will implement gradient ascent to train the parameters self.weight of the logistic regression model using the training set.

 In addition, after every gradient ascent step of updating the model weights, you need to compute the prediction accuracy and average log-likelihood objective values for both the training and test sets based on the updated weights. You will store these values in self.accuracy_train, self.accuracy_test, self.log_likelihood_train, and self.log_likelihood_test correspondingly. Note that these variables are already initialized as empty lists in the __init__() function.
- 2. (5 pts) Method preprocess_data(X_train, X_test): In this method, you will do some preprocessing on the datasets including: (i) encoding categorical features using the OneHotEncoder class; and (ii) normalizing numerical features using the StandardScaler() class. These two classes are imported from the scikit-learn library.
- 3. (5 pts) Method plot_log_likelihood_performance(log_likelihood_train, log_likelihood_test): In this method, you are going to plot the average log-likelihood curves for the training and test sets during the training process (i.e., gradient ascent iterations). The input is the (log_likelihood_train, log_likelihood_test) lists that you computed in the method gradient_ascent(self,). The plotted figure should look similar to the following figure:

- 4. (5 pts) Method plot_accuracy_performance(accuracy_train, accuracy_test): In this method, you are going to plot the prediction accuracy for the training and test sets during the training process. The input is the (accuracy_train, accuracy_test) lists that you computed in the method gradient_ascent(self,).
- 5. (5 pts) Method plot_roc(X_train, y_train, X_test, y_test, learner): In this method, you will plot the ROC curve showing the performance of the trained logistic regression model learner on the input training and test sets.

4 Task 3: Write Report (10 points)

Finally, you will write a report on the results of your data analysis and model performance. Your report should include the following results:

- 1. The correlation heatmap plotted using your plot_numeric_feature_correlation() method. Write 2-3 sentences summarizing your observations regarding the correlations between numerical features as well as between these features and the *income* labels.
- 2. The histograms with respect to the *education* and *hours.per.weak* columns, plotted using your plot_histogram(train_data) method. Write 2-3 sentences summarizing your observations regarding these histograms.
- 3. The average log-likelihood figures using your plot_log_likelihood_performance() method and prediction accuracy figures using your plot_accuracy_performance() method when the learning rate is learn_rate= 0.05 and learn_rate= 0.75, respectively. Write 2-3 sentences summarizing your observations regarding these results.
- 4. The ROC figures using your plot_roc() methods when the learning rate is learn_rate= 0.05 and learn_rate= 0.75, respectively.

Save your report in a file named proj1_report.pdf.

5 Submission

You will need to submit the following files: (i) $proj1_data_analysis.ipynb$; (ii) $proj1_classification.ipynb$; and (iii) $proj1_report.pdf$ on Canvas.