Administrivia

Next Monday is a holiday

GO VOTE!

L17 Normalization is a Good Idea Continued

Let's order pizza

One type of meat, cheese, and vegetable

Pizza	Topping	Туре
I	Mozzarella	Cheese
I	Pepperoni	Meat
I	Olives	Vegetable
2	Mozzarella	Cheese
2	Sausage	Meat
2	Peppers	Vegetable

Key? (Pizza, Type)

Pizza: Dependencies?

Pizza	Topping	Туре
I	Mozzarella	Cheese
I	Pepperoni	Meat
I	Olives	Vegetable
2	Mozzarella	Cheese
2	Sausage	Meat
2	Peppers	Vegetable

Topping \rightarrow Type Pizza, Type \rightarrow Topping

Is this in BCNF?

Pizza: Decomposition?

Pizza	Topping	Topping	Туре
I	Mozzarella	Mozzarella	Cheese
I	Pepperoni	Pepperoni	Meat
I	Olives	Olives	Vegetable
2	Mozzarella	Sausage	Meat
2	Sausage	Peppers	Vegetable
2	Peppers		

Topping → Type

Pizza, Type → Topping:Lost this dependency!

(In SQL:Can't enforce one topping type)

BCNF in general

Decomposition may not preserve dependencies

In practice: additional checks may be needed e.g. join to enforce topping type constraint

3rd Normal Form (3NF)

Relax BCNF (e.g., BCNF⊆3NF)

F: set of functional dependencies over relation R for $(X \rightarrow Y)$ in F Y is in X OR X is a superkey of R

3rd Normal Form (3NF)

Relax BCNF (e.g., BCNF⊆3NF)

F: set of functional dependencies over relation R
for (X→Y) in F
Y is in X OR
X is a superkey of R OR
Y is part of a key in R

Is new condition trivial? NO! key is minimal Nice properties

lossless join ^ dependency preserving decomposition to 3NF always possible

Pizza: Dependencies?

Pizza	Topping	Туре
I	Mozzarella	Cheese
I	Pepperoni	Meat
I	Olives	Vegetable
2	Mozzarella	Cheese
2	Sausage	Meat
2	Peppers	Vegetable

Topping → Type

Pizza, Type → Topping

Is this in 3NF?

for (X→Y) in F
Y is in X OR
X is a superkey of R OR
Y is part of a key in R

Wait, what just happened?

Redundancy is bad Functional dependencies (FD)

useful to find duplication

BCNF: No redundancy permitted!

But may not be able to enforce FDs

3NF: Permits some duplication

Can always decompose into 3NF

What's the point?

Improve our data design abilities by understanding redundancy

We're going to need some theory

Closure of FDs infer new FDs from existing FDs armstrong's axioms

Minimal FD Set remove redundant FDs

Principled Decomposition

BCNF & 3NF

Closure of FDs

If I know

Name → Bday and Bday → age

Then it implies

Name → age

An FD f' is implied by set F if f' is true when F is true F*: the closure of F is all FDs implied by F

Can we construct this closure automatically? YES

Closure of FDs

Inference rules called Armstrong's Axioms

Reflexivity if $Y \subseteq X$ then $X \rightarrow Y$

Augmentation if $X \rightarrow Y$ then $XZ \rightarrow YZ$ for any ZTransitivity if $X \rightarrow Y \& Y \rightarrow Z$ then $X \rightarrow Z$

These are sound and complete rules

sound doesn't produce FDs not in the closure complete doesn't miss any FDs in the closure

Reflexivity: if $Y \subseteq X$ then $X \rightarrow Y$

 $A \rightarrow A$ $A, B \rightarrow A$

 $X,Y,Z \rightarrow Y,Z$

The "trivial" rule:

column always determines itself

a set of columns determines any subset of those columns

Augmentation if $X \rightarrow Y$ then $XZ \rightarrow YZ$ for any Z

If:A → B

By reflexivity: $C \rightarrow C$

... so ... Stick them together? (informal)

 $A, C \rightarrow B, C$

$\begin{array}{c} \text{Transitivity} \\ \text{if } X \rightarrow Y \ \& Y \rightarrow Z \ \text{then} \ X \rightarrow Z \end{array}$

Informal: apply them in sequence

 $X \rightarrow Y$: if you know (x,y) then X=x always implies Y=y $Y \rightarrow Z$: if you know (y,z) then Y=y always implies Z=z

Therefore, if you see X=x, you know Y=y; and since you see y, you know Z=z

Closure of FDs

 $F = \{A \rightarrow B, B \rightarrow C, CB \rightarrow E\}$ Is $A \rightarrow E$ in the closure?

A → B give

 $A \rightarrow AB$ augmentation A $A \rightarrow BB$ apply $A \rightarrow B$ $A \rightarrow BC$ apply $B \rightarrow C$

 $BC \rightarrow E$ given $A \rightarrow E$ transitivity

We're going to need some theory

Closure of FDs armstrong's axioms

Minimal FD Set

Principled Decomposition

BCNF & 3NF

Minimum Cover of FDs

Closures let us compare sets of FDs meaningfully $FI = \{A \rightarrow B, A \rightarrow C, A \rightarrow BC\}$

 $F2 = \{A \rightarrow B, A \rightarrow C\}$

FI equivalent to F2

If there's a closure (a maximally expanded FD), there's a minimal FD. Let's find it

Minimum Cover of FDs

- I. Turn FDs into standard form
 Split FDs so there is one attribute on the right side
- Minimize left side of each FD
 For each FD, check if can delete a left attribute using another FD given ABC → D, B→C can reduce to AB→D, B→C
- 3. Delete redundant FDs
 check each remaining FD and see if it can be deleted
 e.g., in closure of the other FDs

2 must happen before 3!

Minimum Cover of FDs

 $A \rightarrow B,ABC \rightarrow E,EF \rightarrow G,ACF \rightarrow EG$

Standard form (single attribute on right) $A \rightarrow B$, $ABC \rightarrow E$, $EF \rightarrow G$, $ACF \rightarrow E$, $ACF \rightarrow G$

Minimize left side

 $A \rightarrow B$, $AC \rightarrow E$, $EF \rightarrow G$, $ACF \rightarrow E$, $ACF \rightarrow G$ reason: $AC \rightarrow E + A \rightarrow B$ implies $ABC \rightarrow E$

Delete Redundant FDs

 $\begin{array}{l} A \!\!\to\!\! B,\ AC \!\!\to\!\! E, EF \!\!\to\!\! G,\ \frac{ACF \!\!\to\!\! E,\ ACF \!\!\to\!\! G}{ACF \!\!\to\!\! E \ implied\ by\ AC \!\!\to\!\! E, ACF \!\!\to\!\! G \ implied\ by\ AC \!\!\to\!\! E, EF \!\!\to\!\! G} \end{array}$

We're going to need some theory

Closure of FDs armstrong's axioms

Minimal FD Set

Principled Decomposition

BCNF & 3NF

Decomposition

Eventually want to decompose R into $R_1 \dots R_n$ wrt \boldsymbol{F}

We've seen issues with decomposition. Lost Joins: Can't recover R from $R_1 \dots R_n$ Lost dependencies

Principled way of avoiding these?

Lossless Join Decomposition

join the decomposed tables to get exactly the original

e.g., decompose R into tables X,Y $\pi_X(R)\bowtie \pi_Y(R)=R$

Lossless wrt F if and only if F^+ contains

 $X \cap Y \rightarrow X \text{ or } Y \cap X \rightarrow Y$

intersection of X, Y is a key for one of them

Lossless wrt F if and only if F+ contains

 $X \cap Y \rightarrow X \text{ or } Y \cap X \rightarrow Y$

intersection of X,Y is a key for one of them

FDs: $A \rightarrow C, A \rightarrow B$

Dependency-preserving Decomposition

 F_R = Projection of F onto R FDs X \rightarrow Y in F⁺ s.t. X and Y attrs are in R

Subset of F that are "valid" for R

If R decompose to X,Y. FDs that hold on X,Y equivalent to all FDs on R $(F_X \cup F_Y)^+ = F^+$

Consider ABCD, C is key, AB→C, D→A BCNF decomposition: BCD, DA AB→C doesn't apply to either table!

We're going to need some theory

Closure of FDs armstrong's axioms

Minimal FD Set

Principled Decomposition

BCNF & 3NF

BCNF

while BCNF is violated
R with FDs F_R
if X→Y violates BCNF
turn R into R-Y & XY

Example

Branch, Customer, banker Name, Office BCNO

Name -> Branch, Office $N \rightarrow BO$ Customer, Branch -> Name CB -> N

Example

Branch, Customer, banker Name, Office BCNO

Name -> Branch, Office $N \rightarrow BO$ Customer, Branch -> Name CB -> N

CB is the key (determines everything)

BCNF

while BCNF is violated
R with FDs F_R
if X→Y violates BCNF
turn R into R-Y & XY

BCNO BC \rightarrow N, N \rightarrow BO NBQ, CN using N \rightarrow BO

uh oh, lost BC→N

3NF

 F^{min} = minimal cover of F Run BCNF using F^{min} for X \rightarrow Y in F^{min} not in projection onto $R_1...R_N$ create relation XY

BCNO BC \rightarrow N, N \rightarrow BO NBO, CN using N \rightarrow BO

3NF

 $\begin{array}{ll} F^{min} = minimal \ cover \ of \ F \\ Run \ BCNF \ using \ F^{min} \\ for \ X \xrightarrow{} Y \ in \ F^{min} \ not \ in \ projection \ onto \ R_1 \dots R_N \\ create \ relation \ XY \end{array}$

BCNO BC \rightarrow N, N \rightarrow BO

NBO, CN using N \rightarrow BO ... oops create BCN

NBO, CN, BCN

NBO, BCN ... BCN: BC is key; N \rightarrow B violates BNCF

Summary

Normal Forms: BCNF and 3NF FD closures: Armstrong's axioms Proper Decomposition

Summary

Accidental redundancy is really really bad Adding lots of joins can hurt performance

Can be at odds with each other

Normalization good starting point, relax as needed

People usually think in terms of entities and keys, usually ends up reasonable

What you should know

Purpose of normalization

Anomalies

Decomposition problems

Functional dependencies & axioms

3NF & BCNF

properties

algorithm