Lab Assignment - 7

Instructor: Dr. Arabin Kumar Dey

1 Due date:

• 22/9/2015 midnight.

2 Notes:

- Submit the codes in all R / S-plus corresponding to the questions.
- Make a proper documentation preferably in latex or using some other software and submit the printout of the report in .pdf form.
- Each student needs to write his/ her own solutions, even though discussions of the assignments between students are encouraged.

3 Assignments:

- (1) Consider the daily gold price, London Bullion Market, price per Troy Ounce in U.S. Dollars at 10:30 AM local time, from January 2, 1992 to March 31, 2015.
 - (a) Obtain the time plot of the gold price.
 - (b) Let r_t be the log return of the daily gold price. Obtain the time plot of r_t .

1

- (c) Are there serial correlations in the r_t series? You may use Q(10) to draw the conclusion.
- (d) Build an AR model for r_t . Do you think that this is the correct model for the data set ?
- (f) Use the final model to compute 1-step to 3-step ahead forecasts of r_t at the forecast origin March 31, 2015.
- (2) Assume the distribution of at as $N(0, \sigma_a^2)$ in the MA(1) model: $R_t = a_t + 0.2a_{t-1}$, $\sigma_a = 0.025$
 - (a) Generate 100 random returns (R_t) based on the above model.
 - (b) Plot the sample auto-correlation in different lags.
 - (c) Plot the actual autocorrelation with respect to different lags.
- (3) Consider the monthly simple returns of CRSP Decile 1, 2, 5, 9 and 10 portfolios based on the market capitalization of NYSE/AMEX/NASDAQ. The data span is from January 1961 to September 2011.
- (a) For the return series of Decile 2 and Decile 10, test the null hypothesis that the first 12 lags of autocorrelations are zero at the 5% level. Draw your conclusion.
- (b) Build an ARMA model for the return series of Decile 2. Perform model checking and write down the fitted model.
- (c) Use the fitted ARMA model to produce 1 to 12-step ahead forecasts of the series and the associated standard errors of forecasts.