Efficacy Comparison of Descriptor modeling and Graph modeling for Ligand Based Virtual Screening

Using the MUV dataset

Hugo Hakem – Meng Bioengineering 04/25/2024

Under the supervision of:

- Professor. Teresa Head-Gordon
- GSI. Yingze (Eric) Wang

Efficacy Comparison of Descriptor modeling and Graph modeling for Ligand Based Virtual Screening

1.

Using the MUV dataset

1. Ligand Based Virtual Screening (LBVS)

• From a large virtual databases of available compounds, extract small focused subsets with an enriched fraction of active compounds (in regard of a target) in order to speed up biological testing. [1][2][3]

Subset of unactive compounds

Efficacy Comparison of Descriptor modeling and Graph modeling for Ligand Based Virtual Screening

1.

Using the MUV dataset

۷.

• MUV dataset is created from bioactivity data from PubChem BioAssay. It can be downloaded on MoleculeNet [4].

17 Targets

	mol id	smiles	MUV- 466	MUV- 548	MUV- 600	MUV- 644	MUV- 652	MUV- 689	MUV- 692	MUV- 712	MUV- 713	MUV- 733	MUV- 737	MUV- 810	MUV- 832	MUV- 846	MUV- 852	MUV- 858	MUV- 859
†	CID2999678	Cc1cccc(N2CCN(C(=O)C34CC5CC(CC(C5)C3)C4)CC2)c1C	NaN	0.0	NaN	NaN	NaN	0.0	NaN	NaN	NaN	NaN	NaN						
93087 mols	CID2999672 CID976329	COc1cc2c(cc1NC(=O)CN1C(=O)NC3(CCc4ccccc43)C1=O CSc1nc(-c2ccco2)nn1C(=O)c1cccs1	NaN 0.0	NaN 0.0	0.0 NaN	NaN NaN	NaN 0.0	NaN NaN	NaN NaN	NaN NaN	NaN 0.0	NaN NaN	NaN NaN	NaN NaN	NaN 1.0	NaN 1.0	NaN 1.0	NaN NaN	0.0 NaN
70007 222020	CID3240391	COc1ccc(OC)c(-n2c(C)nc3cc(C(=O)O)ccc32)c1	0.0	NaN	0.0	NaN	NaN	0.0	NaN	1.0	NaN								
↓	CID2537908	Clc1ccc(OCCN2CCN(c3ncnc4sccc34)CC2)cc1	NaN	1.0	1.0	0.0	0.0	NaN											

Statistics per Targets:

- ~14700 mols
- ~ 29 mols active
- ~ 0.2% Positive rate

Statistics on active compounds:

471 mols active 1 times

16 mols active 2 times

2 mols active 3 times

- Why this dataset?
 - \rightarrow Benchmarking Dataset for LBVS. It stands for Maximum Unbiased Validation Dataset [2][3].
 - Adress Artificial Enrichment Bias:
 - Unactive compound too different from Active compound
 - Adress Analogue Bias:
 - o **Active** compound **too similar** with each others
- How the chemical similarity has been computed?
 - → In term of simple descriptor:

NumAtoms NumHeavyAtoms Br C Cl F N O S HBA HBD LogP NumRings

- What is the goal with this Dataset?
 - → Perform all 17 Classification Tasks

	MUV- 466	MUV- 548	MUV- 600	MUV- 644	MUV- 652	MUV- 689	MUV- 692	MUV- 712	MUV- 713	MUV- 733	MUV- 737	MUV- 810	MUV- 832	MUV- 846	MUV- 852	MUV- 858	MUV- 859
PositiveCount	27	29	30	30	29	29	30	28	29	28	29	29	30	30	29	29	24
FalseCount	14814	14705	14698	14593	14873	14572	14614	14383	14807	14654	14662	14615	14637	14681	14622	14745	14722

- Which metric of success?
 - → Very unalanced dataset: **ROC_AUC** / focused on positive classification [5]

3.

Efficacy Comparison of Descriptor modeling and Graph modeling for Ligand Based Virtual Screening

1.

Using the MUV dataset

2.

Which set of Descriptor ? [6]

• 13 Simple Descriptor, 1D

NumAtoms NumHeavyAtoms Br C Cl F N O S HBA HBD LogP NumRings

• 166 MACCS Keys Descriptor, 2D — After Processing 149 rdkit.Chem.rdMolDescriptors.GetMACCSKeysFingerprint((Mol)mol)

• 210 Complex Descriptor, mix of 1D and 2D After Processing 203

rdkit.Chem.Descriptors.CalcMolDescriptors((Mol)mol)

Merge Descriptor

307

Which classification model?

Random Forest

Fine tuning:

Loss Function [7]

$$Focal\ Loss(p) = -(y(1-p)^{\gamma} \log p + (1-y)p^{\gamma} \log (1-p))$$
 pip install imbalance-xgboost [8]

• Other hyper-parameters:

n_estimator	max_depth	eta (learning rate)	focal_gamma
500	8	0.1	1.4

Was Grid Search possible?

• 20s training / target with CPU→ 5min40s for 17 target and 22min40s for each descriptors

Which Data Splitter?

- Random Train/Test: 0.8 / 0.2
- **Scaffold [9]** Train/Test: 0.8/ 0.2
 - ightarrow Split made on core structure of molecules, to make the model learn on a Train split with very different molecule than the Test split.
 - \rightarrow It challenges the generalization of the model.

Since data are **unbalanced**:

• Need to make sure that 0.8/0.2 of positive in Train/Test

To not miss-estimate the performance of Random Split, **3 generation of Random split is tested and averaged**

3

Efficacy Comparison of Descriptor modeling and Graph modeling for Ligand Based Virtual Screening

 $\mathbf{1}$

Using the MUV dataset

2.

Molecule Graph Representation, downloadable using torchgeometric, based on feature from OGB database [10]

One-Hot-Encoding of those categorical features:

Node features: 25

Bond features: 9

Graph Neural Network architecture inspired from OGB gitHub [10]:

Model hyper-parameters

Num_MPNN	Drop_ratio(p)	Emb_dim
4	0.1	100

Trainer hyper-parameters

Batch_size	Epoch	Learning_rate	L2	Gamma
128	30	5.10^{-4}	10^{-5}	1.4

Was Grid Search possible?

- 3min training / target with CUDA → **51min** for 17 target
- Subset of 1 Target known to be challenging thanks to XGBoost

Accuracy Result

Test Accuracy comparison with XGBoost

Conclusion

Test Accuracy comparison with litterature

XGBoost / split	Scaffold Split	Random Split
MoleculeNet [4]	//	0.720
Mine	0.725	0.741

GNN / split	Scaffold Split	Random Split
MoleculeNet [4]	//	0.775
GNN + Dummy super node [7]	0.789	0.823 (by averaging their valid/test)
TrimNet [11]	//	0.851 (by averaging their valid/test)
Mine	0.691	0.753

Conclusion

Pros and Cons for each model (Efficacy Comparison of Descriptor modeling and Graph modeling for Ligand Based Virtual Screening)

Feature / Model	XGBoost	GNN
Ease of tunning	✓	X
Speed	✓ (20s)	X (3min)
Freedom for tunning	X	✓
Potential to achieve greater accuracy	X (0.741)	√ (0.851)

Conclusion

Success:

- 1. Created a more efficient XGBoost than in the litterature
 - → Showed the importance of chosing the right Descriptor set
- 2. Created a GNN performance with comparable performance to litterature
- 3. Addressed the shortcoming of the litterature in showing the performance difference for each targets

Critics of my pathway:

- 1. XGBoost tunning with Complex Descriptor instead of Merge Descriptor.
 - → It may bias the result saying that Complex, better than Merge
- 2. GNN tunning on 1 target.
 - → May bias the fine tunning resulting in a not so great overall accuracy.
- 3. GNN, One-Hot-Encoding instead of Embedding layer

Thank You

References

- [1] Gimeno, Aleix, et al. « The Light and Dark Sides of Virtual Screening: What Is There to Know? » International Journal of Molecular Sciences, vol. 20, no 6, march 2019, p. 1375. PubMed Central, https://doi.org/10.3390/ijms20061375.
- [2] Rohrer, Sebastian G., et Knut Baumann. « Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data ». Journal of Chemical Information and Modeling, vol. 49, no 2, february 2009, p. 169-84. DOI.org (Crossref), https://doi.org/10.1021/ci8002649.
- [3] Xia, Jie, et al. « Benchmarking methods and data sets for ligand enrichment assessment in virtual screening ». Methods, vol. 71, january 2015, p. 146-57. ScienceDirect, https://doi.org/10.1016/j.ymeth.2014.11.015
- [4] Datasets. https://moleculenet.org/datasets-1. Consulted 4 april 2024.
- [5] « How to explain the ROC AUC score and ROC curve? » Consulté le: 25 avril 2024. [web]. Available:
- https://www.evidentlyai.com/classification-metrics/explain-roc-curve
- [6] « 6.1: Molecular Descriptors ». Chemistry LibreTexts, 26 october 2019,
- https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminformatics/06%3A_Molecular_Similarity/6.01%3A_Molecular_Descriptors.
- [7] J. Li, D. Cai, et X. He, « Learning Graph-Level Representation for Drug Discovery ». arXiv, 15 septembre 2017. Consulted: 25 april 2024. [Web] Available: http://arxiv.org/abs/1709.03741
- [8] C. Wang, C. Deng, et S. Wang, « Imbalance-XGBoost: Leveraging Weighted and Focal Losses for Binary Label-Imbalanced Classification with XGBoost ». 2019.
- [9] « Introduction to Scaffold Splitting Oloren AI ». Consulted: 25 april 2024. [Web]. Available: https://www.oloren.ai/blog/scaff-split
- [10] W. Hu et al., « Open Graph Benchmark: Datasets for Machine Learning on Graphs », arXiv preprint arXiv:2005.00687, 2020.
- [11] P. Li et al., « TrimNet: learning molecular representation from triplet messages for biomedicine », Briefings in Bioinformatics, nov. 2020, doi: 10.1093/bib/bbaa266.

Appendix

Scaffold Splitting [7]

- Group molecules by scaffold.
- **Sort** by the number of molecules by scaffold.
- Molecules withing a **scaffold group with a large occurrence** will be put in priority in the **Training Split** until reaching 80%.
- Put the rest into the test split.
- Actually, a difference is made between positive and negative as the data set is unbalanced.

MPNN architecture detailed:

Example of training for one arbitrary target

