武汉大学数学与统计学院

2010-2011 第一学期《高等数学 A1》期末考试试题 A

- 一、(42分)试解下列各题:
 - 1、计算 $\lim_{x\to+\infty} \left[e^{\frac{1}{x}}-1\right]^{\frac{1}{\ln x}}$
 - 2、求解微分方程 y''' y'' + 2y' 2y = 0 的通解。
 - 3、判断函数 $f(x) = \frac{x^2 x}{x^2 1} \sqrt{1 + \frac{1}{x^2}}$ 的间断点,并说明是可去间断点、跳跃间断点、无穷间断点还是振荡间断点。
 - 4、求曲线 $y = \frac{x^2 5}{x 3}$ 的渐近线方程.

 - 6、讨论函数 $y = \ln(x^2 + 1)$ 的单调性和曲线 $y = \ln(x^2 + 1)$ 的凹凸性, 并求函数 $y = \ln(x^2 + 1)$ 的极值和曲线 $y = \ln(x^2 + 1)$ 的拐点。
- 二、(8分) 设函数 y = f(x) 与 y = g(x) 互为反函数, f(x) 可导,且 $f'(x) \neq 0$, f(a) = 3a, $F(x) = f[\frac{1}{a}g^2(4x a)], 求 F'(a).$
- 三、(10 分) 设函数 $f(x) = \begin{cases} ax^2 + b\tan x + c & x \le 0 \\ \ln(1+x) & x > 0 \end{cases}$, 试问 a,b,c 为何值时, f(x) 在 x = 0 处一

阶导数连续,但二阶导数不存在。

四、(12 分) 设函数
$$f(x) = \begin{cases} \sqrt{1-x^2} + x\cos^5 x & -1 \le x \le 1 \\ & \frac{\arctan x}{x^2} & x > 1 \end{cases}$$
 , 求积分:
$$\int_{-1}^{+\infty} f(x) \mathrm{d}x$$

- 五、(12 分) 已知一容器的侧面是由曲线 $L: x^2 y^2 = 1$ $(-1 \le y \le 1)$ (单位: m),绕着 oy 轴旋转而成,容器中装有其一半容量的水若以每分钟 $\frac{\pi}{3}$ 的速度将水从容器口处抽出,问:
 - 1、需要多少分钟才能抽完?
 - 2、需要做多少功?
- 六、(10 分)求曲线 $y = \sqrt{x}$ 的一条切线,使得该曲线与切线 l 及直线 x = 0 和 x = 2 所围成的图形绕 x 轴旋转的旋转体的体积为最小.
- 七、(6 分)设 f(x) 在 [a,b] 上连续,在 (a,b) 内二阶可导,且 $f(a) = f(b) \ge 0$,又有 f(c) < 0 (a < c < b). 试证:在 (a,b) 内至少存在两点 ξ_1 , ξ_2 使 $f''(\xi_1) > 0$, $f''(\xi_2) > 0$.

武汉大学数学与统计学院

2010-2011 第一学期《高等数学 A1》期末考试试题参考答案

一、(42分)试解下列各题:

1、解: 原极限=
$$e^{\lim_{x\to\infty}\frac{\ln(e^{x}-1)}{\ln x}}=e^{\lim_{x\to\infty}\frac{e^{\frac{1}{x}}}{\frac{1}{x}}(-\frac{1}{x^{2}})}=e^{\lim_{x\to\infty}\frac{-\frac{1}{x}}{\frac{1}{x}}}=e^{-1}$$
或原极限= $e^{\lim_{x\to\infty}\frac{\ln\frac{1}{x}}{x}}=e^{-1}$

2、解: 齐次方程 y''' - y'' + 2y' - 2y = 0 的特征方程为 $\lambda^3 - \lambda^2 + 2\lambda - 2 = (\lambda - 1)(\lambda^2 + 2) = 0$,它有 复 数 根 为 : $\lambda = \pm \sqrt{2}i$, 实 特 征 根 为 : $\lambda = 1$,故 原 方 程 的 通 解 为 : $y = C_1 e^x + C_2 \cos \sqrt{2}x + C_3 \sin \sqrt{2}x$)

3、解:由
$$f(x) = \frac{x(x-1)\sqrt{1+x^2}}{(x+1)(x-1)|x|}$$
 知, $x = 0; x = 1; x = -1$ 是间断点,

跳跃间断点;
$$\lim_{x\to 1} f(x) = \frac{x(x-1)\sqrt{1+x^2}}{(x+1)(x-1)|x|} = \frac{\sqrt{2}}{2}$$
所以 $x=1$ 是可去间断点;

4、解:由
$$a = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $b = \lim_{x \to \infty} [f(x) - ax] = \lim_{x \to \infty} [\frac{x^2 - 5}{x - 3} - x] = \lim_{x \to \infty} \frac{x^2 - 5 - x^2 + 3x}{x - 3} = 3$ 故有斜渐近线: $y = x + 3$,又 $\lim_{x \to 3^+} f(x) = +\infty$, $\lim_{x \to 3^-} f(x) = -\infty$,所以 $x = 3$ 为垂直渐近线。 而 $\lim_{x \to \infty} f(x) = \infty$,所以没有水平渐近线。

$$5 \cdot \text{MF: } y = \ln(x+1)(x+2) = \ln(x+1) + \ln(x+2) \quad y' = \frac{1}{x+1} + \frac{1}{x+2} \qquad y^{(n+1)} = (-1)^n n! [(1+x)^{-(n+1)} + (2+x)^{-(n+1)}]$$

6、解: 定义域为
$$(-\infty, +\infty)$$
 $y' = \frac{2x}{x^2 + 1}$, $y'' = \frac{2(1 - x^2)}{(x^2 + 1)^2}$

由
$$y' = 0$$
 得驻点 $x = 0$. 由 $y'' = 0$ 得 $x_1 = 1$ 和 $x_2' = -1$

x	$(-\infty,0)$	0	$(0,+\infty)$
y'	_	0	+
у	>	0 极小 值	7

x	$(-\infty, -1)$	-1	(-1,1)	1	$(1,+\infty)$
y "	_	0	+	0	_
\overline{y}	\cap	$\ln 2$	U	$\ln 2$	\cap

由上表可以看出,单调增区间为 $(0,+\infty)$,单调减区间为 $(-\infty,0)$,凹区间为(-1,1),凸区间有两个: $(-\infty,-1)$ 和 $(-1,+\infty)$,极小值为 0,拐点有两个: $(-1,\ln 2)$ 和 $(1,\ln 2)$

二、(8分) 解:
$$F'(x) = f'[\frac{1}{a}g^2(4x-a)]\frac{8}{a}g(4x-a)g'(4x-a)$$
,故

$$F'(a) = f'\left[\frac{1}{a}g^{2}(3a)\right] = \frac{8}{a}g(3a)g'(3a) = f'(a) = \frac{8}{a}g(3a)g'(3a) = \frac{8}{a}g(3a) = 8$$

$$\begin{array}{l} \equiv, (10\, \beta) \ \text{ } \\ \text{ } \\ \text{ } \\ f'(0) = \lim_{t \to 0} \frac{\alpha x^2 + b \tan x - 0}{x} - b \\ \text{ } \\ f'(0) = \lim_{t \to 0} \frac{\ln (x + 1) - 0}{x} = 1 \\ \text{ } \\$$

 $f''(\xi_2) = \frac{f'(\zeta_2) - f'(\eta)}{\zeta_2 - \eta} > 0$,故在(a,b) 内至少存在两点 ξ_1 , ξ_2 使 $f''(\xi_1) > 0$, $f''(\xi_2) > 0$ 法二:由 $f(a) = f(b) \geq 0$,f(c) < 0,根据零点值定理知,至少存在一点 $\eta_1 \in (a,c)$,使得 $f(\eta_1) = 0$,至少存在一点 $\eta_2 \in (c,b)$,使得 $f(\eta_2) = 0$,再由罗尔定理知,至少存在一点 $\eta \in (\eta_1,\eta_2)$ 使得 $f'(\eta) = 0$,又在 $[\eta_1,c]$ 与 $[c,\eta_2]$ 上,由拉格朗日中值定理知,至少存在一点 $\zeta_1 \in (\eta_1,c)$,使得 $f'(\zeta_1) = \frac{f(c) - f(\eta_1)}{c - \eta_1} < 0$,由拉格朗日中值定理知,至少存在一点 $\zeta_2 \in (c,\eta_2)$,使得 $f'(\zeta_2) = \frac{f(\eta_2) - f(c)}{\eta_2 - c} > 0$,再在区间 $[\zeta_1,\eta]$ 与 $[\eta,\zeta_2]$ 上,由拉格朗日中值定理知,至少存在一点 $\zeta_2 \in (\eta,\zeta_2)$,使得 $\xi_1 \in (\zeta_1,\eta)$,使得 $\xi_2 = \frac{f'(\zeta_2) - f'(\eta)}{\eta - \zeta_1} > 0$,由拉格朗日中值定理知,至少存在一点 $\xi_2 \in (\eta,\zeta_2)$,使得 $\xi_1 \in (\zeta_1,\eta)$,使得 $\xi_2 = \frac{f'(\zeta_2) - f'(\eta)}{\eta - \zeta_1} > 0$,故在 $\xi_1 \in (\zeta_1,\eta)$,为至少存在两点 $\xi_1 \in (\zeta_1,\eta) > 0$,有 $\xi_2 \in (\eta,\zeta_2) > 0$