Consider the language:

$$F = \left\{ a^i b^j c^k \mid i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k \right\}$$

The language F is the union of three disjoint languages.

$$F_0 = \left\{ b^j c^k \mid j, k \ge 0 \right\}, F_1 \left\{ a b^j c^j \mid j \ge 0 \right\}, F_2 = \left\{ a^i b^j c^k \mid i \ge j, k \ge 0 \right\}$$

Clearly F_0 and F_2 are regular languages.

The class of regular languages is closed under union and complement.

Thus $\overline{F_0 \cup F_2}$ is also regular.

We have
$$F_1 = F - (F_0 \cup F_2)$$

$$= F \cap \overline{F_0 \cup F_2}$$

Since the class of regular languages is closed under intersection if F is regular, then so is F_1 .

a.

Use pumping lemma to show that F_1 is not regular and hence neither is F.

Assume that F_1 is regular language.

Let P be the pumping length given by pumping lemma.

Consider a string $S = ab^P c^P \in F_1$

Clearly |S| > P.

By using the pumping lemma, S can be divided into three pieces.

i.e., $S = ab^P c^P = uvw$ such that $|uv| \le P, |v| > 0$ and $uv^I w \in F_1 \ \forall i \ge 0$

Take
$$u = a$$
 $v = b^P$ $w = c^P$

$$uv^{0}w = a(b^{P})^{0}c^{P} \qquad \therefore (i=0)$$
$$= ac^{P} \notin F_{1}$$

The string w consist of c' s. In this case, string $a(b^P)^0 c^P$ has more cs than b' s and so is not a member of F_1 , violating the condition of pumping lemma.

This is contradiction. The previous assumption that F_1 is regular is wrong. Thus F_1 is not regular.

Therefore, F is also not a regular language

b.

Let pumping length P=2

- Show that every string $S \in F$ of length at least P can be divided into three pieces S = uvw such that, $|uv| \le P, |v| > 0$ and $uv^l w \in F \ \forall l \ge 0$.
- Consider a string $a^ib^jc^k \in F$ of length at least 2.
- Choose x to be the empty string.
- If $i \neq 2$, then choose y to be the first symbol in $a^i b^j c^k$.
- If i = 2, then choose y = aa

Clearly these chosen x, y satisfies the three conditions of pumping lemma.

c.

part (a) and part(b) do not contradict the pumping lemma because the pumping lemma just says if a language is regular then there is a pumping length for that language. But, if the language satisfies the pumping lemma, the language may not be regular.