

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PIAUÍ CAMPUS PICOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

KARIELLY DE CARVALHO

REGISTRO DE PONTO DIGITAL

PICOS, PIAUÍ 2025

KARIELLY DE CARVALHO

REGISTRO DE PONTO DIGITAL

Trabalho de Conclusão de Curso (Relatório Técnico de Software) apresentado como exigência parcial para obtenção do diploma do Curso de Análise e Desenvolvimento de Sistemas do Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Picos.

Orientador: Prof. Me. Jesiel Viana da Silva

KARIELLY DE CARVALHO

REGISTRO DE PONTO DIGITAL

Trabalho de Conclusão de Curso (Relatório Técnico de Software) apresentado como exigência parcial para obtenção do diploma do Curso de Análise e Desenvolvimento de Sistemas do Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Picos.

Aprovada em _	
	BANCA EXAMINADORA:
	Prof. Me. Jesiel Viana da Silva(Orientador) Instituto Federal do Piauí (IFPI)
	Prof. Me. Aislan Rafael Rodrigues de Sousa Instituto Federal do Piauí (IFPI)
	Prof. M ^e . João Paulo Lima do Nascimento

PICOS, PIAUÍ 2025

Instituto Federal do Piauí (IFPI)

AGRADECIMENTOS

Agradeço primeiramente a Deus, por me conceder sabedoria, saúde e força durante toda esta jornada acadêmica.

Ao meu orientador, professor Jesiel Viana, pela dedicação, paciência e ótimas orientações ao longo do desenvolvimento deste trabalho.

À minha família, especialmente aos meus pais, Juvan Luís de Carvalho e Alessandra Rodrigues de Carvalho, por todo amor, apoio incondicional e incentivo desde o início da minha trajetória — sem vocês, nada disso seria possível. À minha irmã, Fernanda Monique de Carvalho, e ao meu irmão, Levi Rodrigues de Carvalho, pelo companheirismo e carinho. À minha sobrinha, Aurora Monique de Carvalho, que, com sua doçura e alegria, iluminou muitos dos meus dias e me deu ainda mais motivação para seguir em frente.

Ao meu namorado, Jean Carlos Rodrigues Sousa, por todo incentivo e parceria nos momentos mais desafiadores desta caminhada. Sua presença foi importante para que eu chegasse até aqui, e sua confiança em mim fez toda a diferença.

A todos que, de alguma forma, contribuíram para a realização deste trabalho, deixo o meu mais sincero agradecimento.

LISTA DE TABELAS

Tabela 1 – Cronograma de atividades																							1	1
-------------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

LISTA DE ABREVIATURAS E SIGLAS

ABNT Associação Brasileira de Normas Técnicas

CLT Consolidação das Leis do Trabalho

CSS Cascading Style Sheets (Folhas de Estilo em Cascata)

IFPI Instituto Federal de Educação, Ciência e Tecnologia do Piauí

MPE Micro e Pequenas Empresas

ORM Mapeador Objeto-Relacional

SSR Server-Side Rendering (Renderização no Lado do Servidor)

API Interface de Programação de Aplicação

SUMÁRIO

1	INTRODUÇÃO	8
1.1	Justificativa	9
1.2	Objetivos	9
1.2.1	Geral	9
1.2.2	Específicos	9
2	CRONOGRAMA	11
3	TECNOLOGIAS ENVOLVIDAS	12
3.1	Tecnologias Front-End	12
3.1.1	Next.js	12
3.1.2	React.js	12
3.1.3	TypeScript	12
3.1.4	Tailwind CSS	12
3.2	Tecnologias Back-End	13
3.2.1	NestJS	13
3.2.2	Prisma	13
3.2.3	PostgreSQL	13
	Referências	14

1 INTRODUÇÃO

A gestão da jornada de trabalho é um elemento crucial para o bom funcionamento das organizações, pois influencia diretamente tanto a conformidade com a
legislação quanto a eficiência operacional. No Brasil, o artigo 74 da Consolidação
das Leis do Trabalho (CLT)¹ determina que empresas com mais de 20 colaboradores
devem manter o registro de ponto de seus funcionários (Brasil, 1943). No entanto,
micro e pequenas empresas (MPEs) enfrentam desafios significativos nesse aspecto,
especialmente devido ao alto custo de sistemas eletrônicos de controle de ponto. Como
alternativa, muitas recorrem a métodos manuais, considerados mais acessíveis inicialmente, mas que acabam aumentando os riscos de imprecisões, perdas de dados e
até fraudes no acompanhamento das horas trabalhadas, comprometendo a eficácia
na gestão do tempo (Miranda, 2023). A adoção de sistemas digitais de registro de
ponto oferece benefícios importantes. Essas soluções eliminam a necessidade de
equipamentos físicos específicos, permitindo o uso de dispositivos já disponíveis, como
tablets, smartphones ou computadores. Dessa forma, tornam-se opções mais práticas
e econômicas para a gestão eficiente do banco de horas (Florindo; Bianchi, 2022).

De acordo com Gomes (2023), o registro de ponto digital tem se consolidado como uma solução eficaz para empresas que buscam otimizar a gestão de suas equipes sem comprometer o orçamento. Esse modelo proporciona maior precisão e transparência no acompanhamento das horas trabalhadas, além de reduzir os custos operacionais. Em contrapartida, a permanência no uso de métodos manuais pode levar a falhas significativas na supervisão da jornada de trabalho, prejudicando tanto empregadores quanto empregados. Um monitoramento inadequado impacta negativamente o cumprimento das obrigações legais e a transparência necessária para garantir a confiança mútua entre as partes (Abreu, 2016).

Este projeto tem como objetivo propor e desenvolver uma solução digital acessível e eficiente. Para isso, será desenvolvido um sistema de registro de ponto digital que utiliza tecnologias como escaneamento de QR Code e geolocalização. Essa abordagem busca otimizar o controle das horas trabalhadas, proporcionando maior precisão, autonomia aos funcionários e conformidade com as exigências legais, além de reduzir custos e riscos associados aos métodos manuais.

Segundo Gomes (2023), a adoção de sistemas digitais para o registro de ponto oferece uma alternativa prática e econômica para empresas com recursos limitados, enquanto Mariotti e Kienetz (2011) enfatizam que esses sistemas desempenham um papel essencial na melhoria dos processos internos e no cumprimento das normas trabalhistas. Assim, os sistemas digitais não apenas aumentam a eficiência, mas

https://www.planalto.gov.br/ccivil_03/decreto-lei/del5452.htm

também promovem a transparência e a segurança jurídica para empregadores e funcionários.

1.1 JUSTIFICATIVA

Este projeto visa aprimorar o gerenciamento e controle das horas trabalhadas, beneficiando tanto empresas quanto funcionários, ao modernizar e tornar mais seguro o processo de gestão de pessoas por meio de soluções tecnológicas. Muitas micro e pequenas empresas (MPEs) ainda enfrentam dificuldades para substituir registros manuais por sistemas digitais. Métodos tradicionais, como planilhas e livros de ponto, são suscetíveis a erros humanos e não garantem a segurança necessária, podendo resultar em inconsistências no controle de jornada e problemas trabalhistas (Florindo; Bianchi, 2022).

Diante desse cenário, este estudo se torna importante para analisar e desenvolver uma solução digital acessível, segura e eficiente. Além de atender às exigências legais, um sistema digital pode reduzir custos operacionais, otimizar o controle de jornada e fortalecer a transparência nas relações de trabalho. Com isso, há potencial para impactos positivos significativos, como aumento da produtividade, redução de erros manuais e maior satisfação dos colaboradores (Gomes, 2023).

De acordo com Longo e Watanabe (2019), a transformação digital tem impulsionado mudanças rápidas e contínuas nas organizações, reformulando produtos, serviços e processos internos. Essas mudanças afetam diretamente as relações de trabalho e tornam indispensável a adoção de soluções inovadoras para acompanhar a evolução do mercado. Assim, este estudo se justifica pela necessidade de desenvolver uma ferramenta digital que atenda a essas novas demandas, promovendo benefícios para empregadores e funcionários, além de contribuir para a modernização e eficiência da gestão empresarial.

1.2 OBJETIVOS

1.2.1 **Geral**

Desenvolver e avaliar a usabilidade do sistema de Registro de Ponto que utilize QR Code e geolocalização para registrar as entradas e saídas dos funcionários, integrando uma interface que permita o acompanhamento dos bancos de horas e oferecendo mais segurança e praticidade para as empresas e seus colaboradores.

1.2.2 Específicos

 Analisar as principais ferramentas digitais de registro de ponto disponíveis no mercado, identificando suas funcionalidades, limitações e requisitos para garantir um controle eficiente da jornada de trabalho.

- Identificar as principais dificuldades enfrentadas por empresas e funcionários no controle de ponto.
- Desenvolver um protótipo funcional de um sistema de registro de ponto digital, utilizando QR Code e geolocalização para registrar entradas e saídas dos funcionários de maneira prática e segura.
- Realizar testes de usabilidade, coletando feedback de empresas e funcionários para validar e aprimorar as funcionalidades do sistema.

2 CRONOGRAMA

O cronograma apresentado a seguir descreve a previsão de execução das atividades relacionadas ao desenvolvimento do sistema de registro de ponto digital. As etapas foram organizadas considerando o tempo disponível entre os meses de abril e agosto, e foram definidas de acordo com a complexidade de cada fase do projeto. O planejamento contempla desde o levantamento de requisitos até a finalização do protótipo e a redação do relatório técnico.

Tabela 1 – Cronograma de atividades.

Atividades	Abr	Mai	Jun	Jul	Ago
Levantamento de requisitos	Х				
Análise de soluções existentes e tecnologias	Х				
Definição da arquitetura do sistema	Х	Х			
Desenvolvimento do protótipo		Х	Х	Х	
Testes de usabilidade				Х	
Redação e ajustes do relatório técnico				Х	Х
Revisão final e entrega					Х

Fonte: Elaborado pela autora.

3 TECNOLOGIAS ENVOLVIDAS

Este capítulo apresenta as principais tecnologias que serão utilizadas no desenvolvimento do projeto, abrangendo tanto o front-end quanto o back-end. Serão descritas as linguagens de programação, frameworks, bibliotecas e ferramentas empregadas, bem como as razões para sua escolha e como cada uma contribui para o desenvolvimento do projeto.

3.1 TECNOLOGIAS FRONT-END

3.1.1 Next.js

O Next.js é um framework para aplicações web construído sobre o React, que permite a renderização no lado do servidor (Server-Side Rendering — SSR) e a geração de sites estáticos. Foi escolhido por oferecer, junto ao React, uma plataforma robusta, organizada e escalável, o que contribui diretamente para a qualidade e estrutura do desenvolvimento do projeto (Vercel, 2025).

3.1.2 React.js

O React.js é uma biblioteca JavaScript para criação de interfaces de usuário, baseada em componentes reutilizáveis. Foi escolhida por ser compatível com JavaScript e TypeScript, facilitar a modularização. (Meta Platforms, Inc., 2025).

3.1.3 TypeScript

O TypeScript é uma linguagem de programação que adiciona tipagem estática ao JavaScript, permitindo identificar erros ainda durante o desenvolvimento. Foi escolhido por melhorar a legibilidade, a manutenção do código e por oferecer maior segurança no desenvolvimento (Microsoft, 2025).

3.1.4 Tailwind CSS

O Tailwind CSS é um framework de folhas de estilo em cascata (Cascading Style Sheets — CSS) baseado em classes utilitárias. Ele permite a criação rápida de interfaces responsivas e customizáveis, com menos necessidade de escrever CSS manualmente. Foi escolhido por agilizar o desenvolvimento visual e garantir consistência no design (Tailwind Labs, 2025).

3.2 TECNOLOGIAS BACK-END

3.2.1 NestJS

O NestJS é um framework para construção de aplicações Node.js escaláveis e eficientes. Baseado em TypeScript, ele utiliza conceitos do Angular, como módulos, controladores e serviços, para estruturar o código de forma organizada e modular. O NestJS facilita a criação de APIs (Interfaces de Programação de Aplicações) robustas e de fácil manutenção (NestJS Contributors, 2025).

3.2.2 **Prisma**

O Prisma é um ORM (Mapeador Objeto-Relacional) moderno para Node.js e TypeScript. Ele simplifica a interação com o banco de dados, oferecendo uma API intuitiva e tipada para consultas e manipulação de dados. O Prisma facilita a manutenção da consistência dos dados e melhora a produtividade no desenvolvimento (Prisma Data, Inc., 2025).

3.2.3 PostgreSQL

O PostgreSQL é um sistema de gerenciamento de banco de dados relacional de código aberto, conhecido por sua robustez, desempenho e conformidade com padrões. Ele suporta uma ampla variedade de tipos de dados e funcionalidades avançadas, sendo uma escolha sólida para aplicações que requerem integridade e escalabilidade dos dados (The PostgreSQL Global Development Group, 2025).

REFERÊNCIAS

ABREU, Lucas Gennari Silva. Sistema de controle de ponto auxiliado por aplicativo Android, 2016. Citado na p. 8.

BRASIL. **Consolidação das Leis do Trabalho (CLT)**. [*S. l.*]: Imprensa Nacional, 1943. Citado na p. 8.

FLORINDO, Glênio Henrique Carvalho; BIANCHI, Renata Alexandre. **Desenvolvimento de Aplicação para Registro de Ponto Inteligente**. 2022. Trabalho de Graduação – Faculdade de Tecnologia de Franca - "Dr. Thomaz Novelino", Franca, SP. Orientador: Prof^a Dra. Jaqueline Brigladori Pugliesi. Citado nas pp. 8, 9.

GOMES, José Victor Magalhães. **PontoUp - Sistema de Gerenciamento e Registro de Ponto Eletrônico**. 2023. Tese (Doutorado) — Universidade Federal Rural do Semi-Árido. Citado nas pp. 8, 9.

LONGO, Maria Tereza; WATANABE, Carolina Yukari Veludo. Transformação Digital: Uma análise das principais barreiras e dificuldades em micro e pequenas empresas. *In:* ANAIS do XXII SEMEAD - Seminários em Administração. São Paulo, Brasil: [s. n.], 2019. Disponível em:

https://login.semead.com.br/22semead/anais/arquivos/1022.pdf. Citado na p. 9.

MARIOTTI, Isabel; KIENETZ, Taiani Bacchi. Perspectivas da Utilização do Ponto Eletrônico de Acordo com a Portaria 1.510/09. 2011. Tese (Doutorado) – Universidade Federal de Santa Maria. Citado na p. 8.

META PLATFORMS, INC. React – A JavaScript library for building user interfaces. [S. l.: s. n.], 2025. https://reactjs.org/. Acesso em: 27 mar. 2025. Citado na p. 12.

MICROSOFT. **TypeScript - JavaScript with syntax for types**. [*S. l.: s. n.*], 2025. https://www.typescriptlang.org/. **Acesso em: 27 mar. 2025. Citado na p. 12**.

MIRANDA, Izabella. Controle de ponto: conheça os tipos e escolha o ideal para a sua empresa. Acesso em: 10 mar. 2025. 2023. Disponível em:

https://www.contabeis.com.br/noticias/60426/controle-de-ponto-conheca-os-tipos-e-escolha-o-ideal-para-a-sua-empresa/. Citado na p. 8.

NESTJS CONTRIBUTORS. **NestJS - A progressive Node.js framework for building efficient, reliable and scalable server-side applications**. [*S. l.: s. n.*], 2025. https://nestjs.com/. Acesso em: 27 mar. 2025. Citado na p. 13.

PRISMA DATA, INC. **Prisma - Next-generation Node.js and TypeScript ORM**. [S. I.: s. n.], 2025. https://www.prisma.io/. Acesso em: 27 mar. 2025. Citado na p. 13.

TAILWIND LABS. **Tailwind CSS - Rapidly build modern websites without ever leaving your HTML**. [S. l.: s. n.], 2025. https://tailwindcss.com/. Acesso em: 27 mar. 2025. Citado na p. 12.

THE POSTGRESQL GLOBAL DEVELOPMENT GROUP. **PostgreSQL - The world's most advanced open source database**. [S. l.: s. n.], 2025. https://www.postgresql.org/. **Acesso em: 27 mar. 2025. Citado na p. 13**.

VERCEL. Next.js - The React Framework. [S. l.: s. n.], 2025. https://nextjs.org/. Acesso em: 27 mar. 2025. Citado na p. 12.