Machine Learning 101

- How did our brain process the images?
- How did the grouping happen?
- Human brain processed the given images learning
- After learning the brain simply looked at the new image and compared with the groups classified the image to the closest group -Classification
- If a machine has to perform the same operation we use Machine Learning
- We write programs for learning and then classification, this is nothing but machine learning

Difference Traditional Models & Machine Learning

- ML is more heuristic
- Focused on improving performance of a learning agent
- Also looks at real-time self learning and robotics areas not part of data mining
- Some algorithms are too heuristic that there is no one right or wrong answer

Applications of ML

- Biomedical / Biometrics
 - Medicine:
 - Screening
 - Diagnosis and prognosis
 - Drug discovery
- Security:
 - Face recognition
 - Signature / fingerprint / iris verification
 - DNA fingerprinting

Applications of ML

- Computer / Internet
 - Computer interfaces:
 - Troubleshooting wizards
 - Handwriting and speech
 - Brain waves
 - Internet
 - Hit ranking
 - Spam filtering
 - Text categorization
 - Text translation
 - Recommendation

Main Parts in Machine Learning

- Any Machine Learning algorithm has three parts
 - The Output
 - The Objective Function or Performance Matrix
 - The Input

Email Spam Classification

- The Output: Categorize email messages as spam or legitimate.
- Objective Function: Percentage of email messages correctly classified.
- The Input: Database of emails, some with human-given labels

Hand Writing Recognition

- The Output: Recognizing hand-written words
- Objective Function: Percentage of words correctly classified
- The Input: Database of human-labeled images of handwritten words

Machine Learning

- We will talk about the following methods:
 - k-Nearest Neighbor (Instance based learning)
 - Perceptron (Neural Networks)
 - Support Vector Machines
 - Decision trees
- With hands on demonstrations
- Main question:
 How to efficiently train
 (build a model/find model parameters)?

Machine Learning

- Supervised Learning
 - -Have some data with labeled values
- Unsupervised Learning
 - Does not have labeled data

Example: Spam filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$

- Instance space x ∈ X (|X|= n data points)
 - Binary or real-valued feature vector x of word occurrences
 - -d features (words + other things, $d^{100,000}$)
- Class y ∈ Y
 - y: Spam (+1), Ham (-1)
- Goal: Estimate a function f(x) so that y = f(x)

More generally: Supervised Learning

Would like to do prediction:
 estimate a function f(x) so that y = f(x)

Where y can be:

- Real number: Regression
- Categorical: Classification
- Complex object:
 - Ranking of items, Parse tree, etc.

Data is labeled:

- Have many pairs {(x, y)}
 - x ... vector of binary, categorical, real valued features
 - y ... class ({+1, -1}, or a real number)

Would like to do prediction:

estimate a function f(x) so that y = f(x)

- Where y can be:
 - Real number: Regression
 - Categorical: Classification
 - Complex object:
 - Ranking of items, Parse tree, etc.
- Data is labeled:
 - Have many pairs {(x, y)}
 - x ... vector of binary, categorical, real valued features
 - **y** ... class ({+1, -1}, or a real number)

Training and test set

Estimate y = f(x) on X, Y. Hope that the same f(x)also works on unseen X', Y'

- Task: Given data (X,Y) build a model f() to predict Y' based on X'
- Strategy: Estimate y=f(x) Training on (X,Y).

 Hope that the same f(x) also Test data works to predict unknown Y'
 - The "hope" is called generalization
 - Overfitting: If f(x) predicts well Y but is unable to predict
 Y'
 - We want to build a model that generalizes well to unseen data

 Idea: Pretend we do not know the data/labels we actually do know

- Build the model f(x) on the training data See how well f(x) does on the test data

Refinement: Cross validation

- Splitting into training/validation set is brutal
- Let's split our data (X,Y) into 10-folds (buckets)
- Take out 1-fold for validation, train on remaining 9
- Repeat this 10 times, report average performance₁₄

- Models to know:
 - Linear Regressions
 - SVM
 - Decision Trees

Linear models for classification

Binary classification:

$$f(x) = \begin{cases} +1 & \text{if } w^{(1)} x^{(1)} + w^{(2)} x^{(2)} + \dots + w^{(d)} x^{(d)} \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

- Input: Vectors x_i and labels y_i
 - Vectors x_i are real valued where $||x||_2 = 1$
- Goal: Find vector $w = (w^{(1)}, w^{(2)}, ..., w^{(d)})$
 - Each $\mathbf{w}^{(i)}$ is a real number

Decision

boundary

is **linear**

SVM – Linear Classifier

Supervised Learning

SVM – Linear Classifier

There are many lines that can be linear classifiers.

Which one is the optimal classifier.

SVM - Classifier

Margin

Define the **margin** of a linear classifier as the width that theboundary could be increased by before hitting a datapoint.

SVM - Classifier

Maximum Margin

- The maximum margin linear classifier is the linear classifier
- with the maximum margin.
- This is the simplest kind of SVM (Called Linear SVM)

SVM - Classifier

- Support Vectors
 - Examples closest to the hyper plane are support vectors.
 - $Margin \rho$ of the separator is the distance between support vectors.

Non-linearly Separable Data

If data is not separable introduce penalty:

 $\min_{w} \frac{1}{2} ||w||^2 + \mathbf{C} \cdot (\text{# number of mistakes})$

$$s.t. \forall i, y_i(w \cdot x_i + b) \ge 1$$

- Minimize $\|w\|^2$ plus the number of training mistakes
- Set C using cross validation
- How to penalize mistakes?
 - All mistakes are not equally bad!

Optimization "Accuracy"

For optimizing *f*(*w*,*b*) *within reasonable* quality *SGD-SVM* is super fast

Decision Trees

- Supervised Learning
 - Classification/Rule based
 - Random Forests
 - Multiple trees/Ensemble
 - Subsets of features
 - Interior nodes are feature splits
 - Leaf is desired value
 - Boosted trees: regression

Unsupervised Learning

• KNN

Instance Based Learning

- Instance based learning
- Example: Nearest neighbor
 - Keep the whole training dataset: {(x, y)}
 - A query example (vector) q comes
 - Find closest example(s) x*
 - Predict y*
- Works both for regression and classification
 - Collaborative filtering is an example of k-NN classifier
 - Find k most similar people to user x that have rated movie
 y
 - Predict rating $\mathbf{y}_{\mathbf{x}}$ of \mathbf{x} as an average of $\mathbf{y}_{\mathbf{k}}$

1-Nearest Neighbor

- To make Nearest Neighbor work we need 4 things:
 - Distance metric:
 - Euclidean
 - How many neighbors to look at?
 - One
 - Weighting function (optional):
 - Unused
 - How to fit with the local points?
 - Just predict the same output as the nearest neighbor

k-Nearest Neighbor

- Distance metric:
 - Euclidean
- How many neighbors to look at?
 - -k
- Weighting function (optional):
 - Unused
- How to fit with the local points?
 - Just predict the average output among k nearest neighbors

Kernel Regression

- Distance metric:
 - Euclidean
- How many neighbors to look at?
 - All of them (!)
- Weighting function:

$$- w_i = \exp(-\frac{d(x_i,q)^2}{K_w})$$

- Nearby points to query q are weighted more strongly. $\mathbf{K}_{\mathbf{w}}$...kernel width.
- How to fit with the local points?
 - Predict weighted average: $\frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}}$

How to find nearest neighbors?

- Given: a set P of n points in R^d
- Goal: Given a query point q
 - NN: Find the nearest neighbor p of q in P
 - Range search: Find one/all points in P within distance r from q

Algorithms for NN

- Main memory:
 - Linear scan
 - Tree based:
 - Quadtree
 - kd-tree
 - Hashing:
 - Locality-Sensitive Hashing
- Secondary storage:
 - R-trees

Clustering

 Given a cloud of data points we want to understand its structure

The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar

Usually:

- Points are in a high-dimensional space
- Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters & Outliers

Clustering is a hard problem!

Clustering - Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- And in most cases, looks are not deceiving

- Many applications involve not 2, but 10 or 10,000 dimensions
- High-dimensional spaces look different: Almost all pairs of points are at about the same distance

Clustering Problem: Music CDs

- Intuitively: Music divides into categories, and customers prefer a few categories
 - But what are categories really?
- Represent a CD by a set of customers who bought it:
- Similar CDs have similar sets of customers, and vice-versa

Clustering Problem: Music CDs

Space of all CDs:

- Think of a space with one dim. for each customer
 - Values in a dimension may be 0 or 1 only
 - A CD is a point in this space $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the i th customer bought the CD
- For Amazon, the dimension is tens of millions
- Task: Find clusters of similar CDs

Clustering Problem: Documents

Finding topics:

- Represent a document by a vector $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the i th word (in some order) appears in the document
 - It actually doesn't matter if k is infinite; i.e., we don't limit the set of words
- Documents with similar sets of words may be about the same topic

Cosine, Jaccard, and Euclidean

- As with CDs we have a choice when we think of documents as sets of words or shingles:
 - Sets as vectors: Measure similarity by the cosine distance
 - Sets as sets: Measure similarity by the
 Jaccard distance
 - Sets as points: Measure similarity by Euclidean distance

Overview: Methods of Clustering

0.9

Hierarchical:

- Agglomerative (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one

- Divisive (top down):
 - Start with one cluster and recursively split it

Point assignment:

- Maintain a set of clusters
- Points belong to "nearest" cluster

Implementation

- Naïve implementation of hierarchical clustering:
 - At each step, compute pairwise distances between all pairs of clusters, then merge
 - $-O(N^3)$
- Careful implementation using priority queue can reduce time to $O(N^2 \log N)$
 - Still too expensive for really big datasets that do not fit in memory

k–means Algorithm(s)

- Assumes Euclidean space/distance
- Start by picking k, the number of clusters
- Initialize clusters by picking one point per cluster
 - Example: Pick one point at random, then k-1
 other points, each as far away as possible from
 the previous points

Populating Clusters

- 1) For each point, place it in the cluster whose current centroid it is nearest
- 2) After all points are assigned, update the locations of centroids of the k clusters
- 3) Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- Repeat 2 and 3 until convergence
 - Convergence: Points don't move between clusters and centroids stabilize

Example: Assigning Clusters

x ... data point ... centroid

Example: Assigning Clusters

x ... data point ... centroid

Example: Assigning Clusters

x ... data point ... centroid

Getting the *k* right

How to select *k*?

- Try different k, looking at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little

Example: Picking k

Too few; many long distances to centroid.

Example: Picking k

Just right; distances rather short.

Example: Picking k

Too many;

little improvement in average distance.

Summary

 Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters

Algorithms:

- Agglomerative hierarchical clustering:
 - Centroid and clustroid
- k-means:
 - Initialization, picking *k*

- 3 main parts of a machine learning model
- Overfitting / Curse of Dimensionality
- Intuition Fails in high dimensions
- Theoretical guarantees are not what they seem
- Feature engineering is the key
- More data beats clever algorithms
- Learn many models, not just one
- Correlation does not imply Causation

- 3 main parts of a machine learning model
 - Set of possible models to look through
 - A way to test the models
 - A clever way to find find a really good model

- Overfitting / Curse of Dimensionality
 - Always test your model with out-of-test data
 - More features not necessarily good:
 - More features add noise
 - Correlation between new features might add more noise

- Intuition Fails in high dimensions
 - Biases in model selection not always right
 - Select/test many models

Feature engineering is the key

СПҮ 1	СПҮ 1	CITY 2	СПҮ 2	DRIVABLE?
LAT.	LNG.	LAT.	LNG.	
123.24	46.71	121.33	47.34	Yes
123.24	56.91 46.71	121.33 121.33	55.23 55.34	Yes
123.24	46.71	130.99	47.34	No
		200.33	.,	

More data beats clever algorithms

Learn many models, not just one

- Correlation does not imply Causation
 - modeling observational data can only show us that two variables are related, but it cannot tell us the "why".

Machine Learning - Evaluation

- Did not discuss
 - Performance metrics
 - AUC
 - Others

See

https://github.com/berndbischl/mlr/blob/master/ doc/knitted/tutorial/roc_analysis.md

Machine Learning - Summary

- Tools
 - Spark ML
 - Knime
 - H2O
 - R/R-Studio
 - rattle
 - h2o
 - Mlr
 - SparkR