Explore Trends of WiMMed Indicators

AJ Perez-Luque (@ajpelu); FJ Bonet; J Herrero and R. Perez-Perez
2016 March

Prepare Data

- 1. Read data of Mann-Kendal Sen-Slope for each pixels and WiMMed indicators
- 2. Read data of topographic variable:
 - Convert radian to deg.
 - Create categorical variable for elevation (250 m)
 - Classify aspect into 8 categories
- 3. Read data from hydrological basin
- 4. Read spatial data:
 - Select only centroides of interest
- 5. Create two dataframes:
 - Full Dataframe with all variables and all pixels (fulldf)
 - :red_circle: In this exploration we don't filter the data by elevation

```
# Trend analysis data
# Define name of indicators (see variables names)
# Use annual and season aggregation
"preau", "presp", "presu", "prewi",
                "tempau", "tempsp", "tempsu", "tempwi")
# Loop to read files
for (j in indicadores){
  aux <- read.csv(file=paste(di, "/data/derived/", j, ".csv", sep= ""),</pre>
             header = TRUE,
             sep = ',')
  assign(j, aux)
}
# --
# Define pixels of interes
pixels_interes <- pre$nie_malla_modi_id</pre>
# Read Topographic data
rawtopo <- read.csv(file=paste(di, "/data/topo_nie_malla_modis.csv", sep=""),</pre>
                   header=TRUE,
                   sep = ",")
# function to convert radian to degree
rad2deg <- function(rad) {(rad * 180) / (pi)}</pre>
topo <- rawtopo %>%
```

```
filter(id %in% pixels_interes) %>%
  mutate(nie_malla_modi_id = id,
         slope50mean_deg = rad2deg(slope50mean),
         slope50median_deg = rad2deg(slope50median),
         aspect50mean_deg = rad2deg(aspect50mean),
         aspect50median_deg = rad2deg(aspect50median)) %>%
  dplyr::select(nie_malla_modi_id, dem50mean, dem50median, slope50mean_deg,
                slope50median deg, aspect50mean deg, aspect50median deg)
## Create interval variables (250 m) for dem; and classify aspect into 8 categories
topo <- topo %>%
  mutate(dem50mean_group = cut(dem50mean,
                         breaks = seq(from=0, to=3500, by=250),
                         labels = c("0-250", "251-500", "501-750", "751-1000",
                                     "1001-1250", "1251-1500", "1501-1750", "1751-2000",
                                     "2001-2250", "2251-2500", "2501-2750", "2751-3000",
                                     "3001-3250", "3251-3500")),
         aspect50mean_deg_group = cut(aspect50mean_deg,
                                       breaks= c(22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, 337.5, 3
                                       labels = c("N", "NE", "E", "SE", "S", "SW", "W", "NW")))
# --
# Read spatial data and Get lat/long
centroides <- rgdal::readOGR(dsn=paste(di, "/data/geoinfo", sep=""),</pre>
                             layer = "centroides selected", verbose = FALSE)
# Select only attributes of interest and rename them
centroides <- centroides[c("id")]</pre>
# Create lat/lnq by id
xycentroides <- cbind(centroides@data, coordinates(centroides))</pre>
names(xycentroides) <- c("nie_malla_modi_id", "lon","lat")</pre>
xycentroides <- filter(xycentroides, nie_malla_modi_id %in% pixels_interes)</pre>
# --
# Hydrological basin
basin <- read.csv(file=paste(di, "/data/derived/pixel_region.csv", sep=""),</pre>
                    header=TRUE,
                    sep = ",")
# --
# Create un dataframe con todos los datos
fulldf <- topo %>%
  inner_join(pre, by=c("nie_malla_modi_id")) %>%
  inner_join(pre_snow, by=c("nie_malla_modi_id")) %>%
  inner_join(pre_snow_per, by=c("nie_malla_modi_id")) %>%
  inner_join(temp, by=c("nie_malla_modi_id")) %>%
  inner_join(pnau, by=c("nie_malla_modi_id")) %>%
  inner_join(pnsp, by=c("nie_malla_modi_id")) %>%
  inner_join(pnsu, by=c("nie_malla_modi_id")) %>%
```

```
inner_join(pnwi, by=c("nie_malla_modi_id")) %>%
inner_join(preau, by=c("nie_malla_modi_id")) %>%
inner_join(presp, by=c("nie_malla_modi_id")) %>%
inner_join(presu, by=c("nie_malla_modi_id")) %>%
inner_join(prewi, by=c("nie_malla_modi_id")) %>%
inner_join(tempau, by=c("nie_malla_modi_id")) %>%
inner_join(tempsp, by=c("nie_malla_modi_id")) %>%
inner_join(tempsu, by=c("nie_malla_modi_id")) %>%
inner_join(tempsu, by=c("nie_malla_modi_id")) %>%
inner_join(xycentroides, by="nie_malla_modi_id")) %>%
inner_join(basin, by="nie_malla_modi_id")

# Create subset of pixels above 1250
fulldf1250 <- fulldf %>%
filter(dem50mean > 1250)
```

Explore trends of annual variables by basin

We explore the pattern of snow-cover indicators trends by hydrological basin.

```
## Summary statistics
misvariables <- c('tau_pre', 'sen_slope_pre', 'tau_pre_snow', 'sen_slope_pre_snow',
                  'tau_pre_snow_per', 'sen_slope_pre_snow_per', 'tau_temp', 'sen_slope_temp')
variable agrupa <- 'basin name'
prefijo <- 'basin '
df <- fulldf
stats_basin <- data.frame()</pre>
for (i in misvariables){
  vnames <- c(variable_agrupa, i)</pre>
  aux <- df %>%
    dplyr::select(one_of(vnames)) %>%
    mutate_(vinterest = i) %>%
    group_by_(.dots=variable_agrupa) %>%
    summarise(mean=mean(vinterest),
              sd = sd(vinterest),
              se = sd / sqrt (length(vinterest)))
  aux <- aux %>%
    mutate(variable = i)
  stats_basin <- rbind(stats_basin, aux)</pre>
  # assign(pasteO(prefijo,i), aux)
```

Pre

```
df_letter_aux <- data.frame()
df <- fulldf</pre>
```

```
# Tau pre
# ANOVA
variable <- 'tau_pre'
my_ylab <- 'Tau Pre'

myformula <- formula(paste(variable, '~ basin_name', sep=''))
mod <- aov(myformula, data=df)
pander(tidy(mod), caption=my_ylab)</pre>
```

Table 1: Tau Pre

term	df	sumsq	meansq	statistic	p.value
basin_name Residuals	4 7989	9.865 20.8	2.466 0.002604	947.2 NA	0 NA


```
# Sen Pre
# ANOVA
variable <- 'sen_slope_pre'
my_ylab <- 'Sen slope Pre'

myformula <- formula(paste(variable, '~ basin_name', sep=''))
mod <- aov(myformula, data=df)
pander(tidy(mod), caption=my_ylab)</pre>
```

Table 2: Sen slope Pre

term	df	sumsq	meansq	statistic	p.value
basin_name	4	36119	9030	1028	0
Residuals	7989	70192	8.786	NA	NA

Pre Snow

```
# Tau Pre Snow
# ANOVA
variable <- 'tau_pre_snow'
my_ylab <- 'Tau Pre Snow'

myformula <- formula(paste(variable, '~ basin_name', sep=''))
mod <- aov(myformula, data=df)
pander(tidy(mod), caption=my_ylab)</pre>
```

Table 3: Tau Pre Snow

term	df	sumsq	meansq	statistic	p.value
basin_name	4	33.34	8.335 0.01269	656.9	0
Residuals	7989	101.4		NA	NA


```
# Sen Pre Snow
# ANOVA
variable <- 'sen_slope_pre_snow'
my_ylab <- 'Sen slope Pre Snow'

myformula <- formula(paste(variable, '~ basin_name', sep=''))
mod <- aov(myformula, data=df)
pander(tidy(mod), caption=my_ylab)</pre>
```

Table 4: Sen slope Pre Snow

term	df	sumsq	meansq	statistic	p.value
basin_name Residuals	4	26876	6719	660.3	0
	7989	81287	10.17	N A	NA

Pre Snow per

```
# Pre Snow per
# ANOVA
variable <- 'tau_pre_snow_per'
my_ylab <- 'Tau Pre snow per'

myformula <- formula(paste(variable, '~ basin_name', sep=''))
mod <- aov(myformula, data=df)
pander(tidy(mod), caption=my_ylab)</pre>
```

Table 5: Tau Pre snow per

term	df	sumsq	meansq	statistic	p.value
basin_name	4	51.26	$12.82 \\ 0.01093$	1172	0
Residuals	7989	87.34		NA	NA


```
# Sen Pre snow per
# ANOVA
variable <- 'sen_slope_pre_snow_per'
my_ylab <- 'Sen slope Pre snow Per'

myformula <- formula(paste(variable, '~ basin_name', sep=''))
mod <- aov(myformula, data=df)
pander(tidy(mod), caption=my_ylab)</pre>
```

Table 6: Sen slope Pre snow Per

term	df	sumsq	meansq	statistic	p.value
basin_name	4	408.9	102.2	990.7	0
Residuals	7989	824.2	0.1032	NA	NA

Temp

```
# Tau temp
# ANOVA
variable <- 'tau_temp'
my_ylab <- 'Tau Temp'

myformula <- formula(paste(variable, '~ basin_name', sep=''))
mod <- aov(myformula, data=df)
pander(tidy(mod), caption=my_ylab)</pre>
```

Table 7: Tau Temp

term	df	sumsq	meansq	statistic	p.value
basin_name	4	77.58	19.39	1073	0
Residuals	7989	144.4	0.01807	NA	NA


```
# Sen temp
# ANOVA
variable <- 'sen_slope_temp'
my_ylab <- 'Sen slope Temp'

myformula <- formula(paste(variable, '~ basin_name', sep=''))
mod <- aov(myformula, data=df)
pander(tidy(mod), caption=my_ylab)</pre>
```

Table 8: Sen slope Temp

term	df	sumsq	meansq	statistic	p.value
basin_name Residuals	4 7989	$3.186 \\ 5.854$	0.7965 0.0007328	1087 NA	0 NA


```
# Create a df with letter and variables
df_basin <- stats_basin %>%
```


pander(filter(df_basin_tau, variable=="tau_pre"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	-0.01098937	0.02939731	0.0009137712	tau_pre	c
Andarax	-0.04696509	0.06439582	0.0013536781	tau_pre	a
Fardes	-0.01735042	0.06803209	0.0019721519	tau_pre	b
Genil	0.04294557	0.04032604	0.0011493613	tau_pre	e
Guadalfeo	0.03074198	0.03646328	0.0007644780	tau_pre	d

Sen Slope Pre

Tau Pre

pander(filter(df_basin_sen, variable=="sen_slope_pre"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	-0.7765169	2.689399	0.08359592	sen_slope_pre	b

basin_name	mean	sd	se	variable	tukey_basin_name
Andarax	-1.8775444	2.294969	0.04824303	sen_slope_pre	a
Fardes	-0.9828429	4.127396	0.11964723	sen_slope_pre	b
Genil	3.3436109	2.994633	0.08535218	sen_slope_pre	d
Guadalfeo	2.4990914	2.929432	0.06141758	sen_slope_pre	c

Tau Pre Snow

pander(filter(df_basin_tau, variable=="tau_pre_snow"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	0.037144928	0.09847796	0.003061039	tau_pre_snow	b
Andarax	0.007602298	0.11102690	0.002333920	tau_pre_snow	\mathbf{a}
Fardes	0.141271429	0.10960964	0.003177425	tau_pre_snow	d
Genil	0.097918765	0.10568860	0.003012306	tau_pre_snow	\mathbf{c}
Guadalfeo	0.162268132	0.12482449	0.002617032	tau_pre_snow	e

Sen Slope Pre Snow

pander(filter(df_basin_sen, variable=="sen_slope_pre_snow"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	1.4374705	2.444580	0.07598609	sen_slope_pre_snow	b
Andarax	0.1435996	1.016705	0.02137237	sen_slope_pre_snow	a
Fardes	2.0264252	1.981475	0.05744009	sen_slope_pre_snow	\mathbf{c}
Genil	3.7799163	4.679172	0.13336441	sen_slope_pre_snow	d
Guadalfeo	4.6871486	4.255009	0.08920922	sen_slope_pre_snow	e

Tau Pre Snow per

pander(filter(df_basin_tau, variable=="tau_pre_snow_per"))

					tukey_basin_name
basin_name	mean	sd	se	variable	
Adra	0.068837681	0.11937209	0.003710501	tau pre snow p	er b

					tukey_basin_name
basin_name	mean	sd	se	variable	
Andarax	0.006970393	0.12092334	0.002541955	tau_pre_snow_per	a
Fardes	0.171544538	0.07978442	0.002312835	tau_pre_snow_per	c
Genil	0.186624695	0.08944616	0.002549369	tau_pre_snow_per	d
Guadalfeo	0.189606154	0.09862933	0.002067833	tau_pre_snow_per	d

Sen Slope Pre Snow per

```
pander(filter(df_basin_sen, variable=="sen_slope_pre_snow_per"))
```

Table 14: Table continues below

basin_name	mean	sd	se	variable
Adra	0.31071787	0.3701305	0.011504951	sen_slope_pre_snow_per
Andarax	0.06940831	0.2129421	0.004476300	$sen_slope_pre_snow_per$
Fardes	0.47031681	0.2729192	0.007911532	$sen_slope_pre_snow_per$
Genil	0.55064663	0.3149000	0.008975190	$sen_slope_pre_snow_per$
Guadalfeo	0.62944747	0.4030842	0.008450941	$sen_slope_pre_snow_per$

tukey_basin_name	
b	
\mathbf{a}	
c	
d	
e	

Tau Temp

pander(filter(df_basin_tau, variable=="tau_temp"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	0.07298647	0.20477850	0.006365231	tau_temp	a
Andarax	0.29805435	0.09032576	0.001898757	tau_temp	d
Fardes	0.21952857	0.09781271	0.002835449	tau_temp	c
Genil	0.13181235	0.09761136	0.002782091	tau_temp	b
Guadalfeo	0.06259604	0.16174236	0.003391041	tau_temp	a

Sen Slope Temp

```
pander(filter(df_basin_sen, variable=="sen_slope_temp"))
```

					tukey_basin_name
basin_name	mean	sd	se	variable	
Adra	0.014535266	0.04125712	0.0012824156	sen_slope_temp	b
Andarax	0.056003977	0.03183629	0.0006692374	sen_slope_temp	e
Fardes	0.033536975	0.01538286	0.0004459268	sen_slope_temp	d
Genil	0.019424045	0.01397369	0.0003982740	sen_slope_temp	c
Guadalfeo	0.006018462	0.02372294	0.0004973680	sen_slope_temp	a

Explore trends by elevation

Taus

```
myvariable <- 'tau_pre'</pre>
myylab <- 'Tau Pre'</pre>
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                     data= df)
anova(modgam)
## Family: gaussian
## Link function: identity
## Formula:
## tau_pre ~ s(dem50mean)
## Approximate significance of smooth terms:
##
                   edf Ref.df
                                   F p-value
## s(dem50mean) 8.442 8.914 421.1 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## tau_pre ~ s(dem50mean)
```

```
##
## Parametric coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0019388 0.0005714 -3.393 0.000695 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                  edf Ref.df
                                F p-value
## s(dem50mean) 8.442 8.914 421.1 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.32 Deviance explained =
## GCV = 0.0026134 Scale est. = 0.0026103 n = 7994
# Plot GAM
a <-ggplot(df, aes string(x='dem50mean', y=myvariable)) + geom point(col='grey') +
 geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=0.3,
          label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
 mythemeggplot +
 xlab('Elevation') + ylab(myylab)
myvariable <- 'tau_pre_snow'</pre>
myylab <- 'Tau Pre Snow'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova(modgam)
## Family: gaussian
## Link function: identity
## Formula:
## tau_pre_snow ~ s(dem50mean)
##
## Approximate significance of smooth terms:
                 edf Ref.df
                               F p-value
## s(dem50mean) 8.801 8.989 189.5 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
```

```
## Formula:
## tau_pre_snow ~ s(dem50mean)
## Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.089249 0.001318 67.71 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                 edf Ref.df
                                F p-value
## s(dem50mean) 8.801 8.989 189.5 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.176 Deviance explained = 17.7\%
## GCV = 0.013908 Scale est. = 0.013891 n = 7994
b <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=0.6,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
  mythemeggplot +
  xlab('Elevation') + ylab(myylab)
myvariable <- 'tau_pre_snow_per'</pre>
myylab <- 'Tau Pre Snow per'
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova (modgam)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## tau_pre_snow_per ~ s(dem50mean)
## Approximate significance of smooth terms:
                  edf Ref.df
                               F p-value
## s(dem50mean) 8.863 8.995 241.2 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
```

```
##
## Formula:
## tau_pre_snow_per ~ s(dem50mean)
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.119120  0.001306  91.19  <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                  edf Ref.df
                                 F p-value
## s(dem50mean) 8.863 8.995 241.2 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.213 Deviance explained = 21.4\%
## GCV = 0.013658 Scale est. = 0.013641 n = 7994
# Plot GAM
c <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=-0.25,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
 mythemeggplot +
 xlab('Elevation') + ylab(myylab)
myvariable <- 'tau_temp'</pre>
myylab <- 'Tau temp'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova(modgam)
##
## Family: gaussian
## Link function: identity
## Formula:
## tau_temp ~ s(dem50mean)
## Approximate significance of smooth terms:
                  edf Ref.df
                                 F p-value
## s(dem50mean) 7.872 8.675 333.6 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
```

```
## Link function: identity
##
## Formula:
## tau_temp ~ s(dem50mean)
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                edf Ref.df
                              F p-value
## s(dem50mean) 7.872 8.675 333.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.266 Deviance explained = 26.6\%
## GCV = 0.020417 Scale est. = 0.020394 n = 7994
# Plot GAM
d <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
 annotate("text", x = 3000, y=0.4,
          label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
 mythemeggplot +
 xlab('Elevation') + ylab(myylab)
grid.arrange(a, d, b, c, nrow=2)
```


Sen

##

```
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_pre ~ s(dem50mean)
## Approximate significance of smooth terms:
                  edf Ref.df
                                F p-value
## s(dem50mean) 6.991 8.081 124.4 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_pre ~ s(dem50mean)
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.44774
                          0.03845 11.64 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                  edf Ref.df
                                F p-value
## s(dem50mean) 6.991 8.081 124.4 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.111 Deviance explained = 11.2\%
## GCV = 11.83 Scale est. = 11.818
                                      n = 7994
# Plot GAM
a <-ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=10,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
  mythemeggplot +
  xlab('Elevation') + ylab(myylab)
myvariable <- 'sen_slope_pre_snow'
myylab <- 'Sen Slope Pre snow'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova (modgam)
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_pre_snow ~ s(dem50mean)
## Approximate significance of smooth terms:
##
                  edf Ref.df
                                 F p-value
## s(dem50mean) 8.440 8.914 790.3 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_pre_snow ~ s(dem50mean)
## Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.44440
                        0.02999 81.51 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                 edf Ref.df
                                F p-value
## s(dem50mean) 8.44 8.914 790.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.469 Deviance explained = 46.9%
## GCV = 7.198 Scale est. = 7.1895
# Plot GAM
b <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=0,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
  mythemeggplot +
  xlab('Elevation') + ylab(myylab)
myvariable <- 'sen_slope_pre_snow_per'
myylab <- 'Sen slope Pre snow per'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova (modgam)
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_pre_snow_per ~ s(dem50mean)
## Approximate significance of smooth terms:
##
                  edf Ref.df
                                 F p-value
## s(dem50mean) 8.367 8.891 436.9 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_pre_snow_per ~ s(dem50mean)
## Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.393818  0.003604  109.3  <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                  edf Ref.df
                                 F p-value
## s(dem50mean) 8.367 8.891 436.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.327 Deviance explained = 32.8%
## GCV = 0.10394 Scale est. = 0.10381
                                        n = 7994
# Plot GAM
c <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=2,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
  mythemeggplot +
  xlab('Elevation') + ylab(myylab)
myvariable <- 'sen_slope_temp'</pre>
myylab <- 'Sen Slope Temp'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova (modgam)
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_temp ~ s(dem50mean)
## Approximate significance of smooth terms:
                 edf Ref.df
                                F p-value
## s(dem50mean) 7.688 8.571 227.4 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
## Formula:
## sen_slope_temp ~ s(dem50mean)
## Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.0274322 0.0003373 81.33 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                 edf Ref.df
                                F p-value
## s(dem50mean) 7.688 8.571 227.4 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.196 Deviance explained = 19.7%
## GCV = 0.00091034 Scale est. = 0.00090935 n = 7994
# Plot GAM
d <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=0.1,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
  mythemeggplot +
  xlab('Elevation') + ylab(myylab)
grid.arrange(a, d, b, c, nrow=2)
```

