Exercise Session 12

Exercise 1.

(CLRS 25.1–4) Show that matrix multiplication defined by EXTEND-SHORTEST-PATH is associative. Hint: Let us write $A \odot B$ for EXTEND-SHORTEST-PATH(A, B). You have to prove that for arbitrary $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, and $C \in \mathbb{R}^{p \times q}$ we have that $(A \odot B) \odot C = A \odot (B \odot C)$.

Solution 1.

Consider $(A \odot B) \odot C$. Let $R = (A \odot B)$ and $S = (A \odot B) \odot C$. Then by definition of \odot we have

$$s_{ij} = \min_{1 \le k \le p} \{r_{ik} + c_{kj}\}$$
 and $r_{ik} = \min_{1 \le l \le n} \{a_{il} + b_{lk}\}.$

Therefore

$$s_{ij} = \min_{1 \le k \le p} \left\{ \left(\min_{1 \le l \le n} \left\{ a_{il} + b_{lk} \right\} \right) + c_{kj} \right\}$$

$$= \min_{1 \le k \le p} \left\{ \min_{1 \le l \le n} \left\{ \left(a_{il} + b_{lk} \right) + c_{kj} \right\} \right\}.$$
 (by distributivity of + over min)

Now consider $A \odot (B \odot C)$. Let $R' = (B \odot C)$, and $S' = A \odot (B \odot C)$, Then

$$s'_{ij} = \min_{1 \le l \le n} \{a_{il} + r'_{lj}\}$$
 and $r'_{lj} = \min_{1 \le k \le p} \{b_{lk} + c_{kj}\}.$

Therefore

$$s'_{ij} = \min_{1 \le l \le n} \{ a_{il} + \left(\min_{1 \le k \le p} \{ b_{lk} + c_{kj} \} \right) \}$$

= $\min_{1 \le l \le n} \{ \min_{1 \le k \le p} \{ a_{il} + (b_{lk} + c_{kj}) \} \}.$ (by distributivity of + over min)

Using the associativity of + we obtain

$$s_{ij} = \min_{1 \le k \le p} \{ \min_{1 \le l \le n} \{ (a_{il} + b_{lk}) + c_{kj} \} \}$$

$$= \min_{1 \le l \le n} \{ \min_{1 \le k \le p} \{ (a_{il} + b_{lk}) + c_{kj} \} \}$$

$$= \min_{1 \le l \le n} \{ \min_{1 \le k \le p} \{ a_{il} + (b_{lk} + c_{kj}) \} \}$$

$$= s'_{ij}$$
 (by associativity of +)
$$= s'_{ij}$$

It is concluded that $(A \odot B) \odot C = A \odot (B \odot C)$.

Exercise 2.

(CLRS 25.1–9) Modify FASTER-ALL-PAIRS-SHORTEST-PATHS so that it can determine whether the graph contains a negative-weight cycle. Justify the correctness of your solution.

Solution 2.

Run Faster-All-Pairs-Shortest-Paths on the graph until the first time that the matrix $L^{(m)}$ has one or more negative values on the diagonal (i.e., $l_{ii}^{(m)} < 0$ for some $1 \le i \le n$), or until we have computed $L^{(m)}$ for some m > n. The correctness of the proposed solution is justified by the fact that for any iteration of Faster-All-Pairs-Shortest-Paths the value $l_{ij}^{(m)}$ is the minimal weight among paths from i to j having at most m edges. Thus $l_{ii}^{(m)} < 0$ represents the minimal weight of a cycle having at most m edges. If a negative cycle exists, it will be found before m > n, because any simple path has at most n-1 edges.

Exercise 3.

Let G = (V, E) be a weighted directed graph represented using the weight matrix $W = (w_{ij})$ where

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ w(v_i, v_j) & \text{if } i \neq j \text{ and } (v_i, v_j) \in E \\ \infty & \text{if } i \neq j \text{ and } (v_i, v_j) \notin E \end{cases}$$

How would we delete an arbitrary vertex v from this graph, without changing the shortest-path distance between any other pair of vertices? Describe an algorithm that constructs a weighted directed graph $G' = (V \setminus \{v\}, E')$ such that shortest-path distance between any two vertices in G' is equal to the shortest-path distance between the same two vertices in G in $O(|V|^2)$ time.

Solution 3.

Let $U \subseteq V$ and let $d(W,U)_{ij}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set U. When $U = \emptyset$ we have that $d(W,U)_{ij} = w_{ij}$. For any vertex $v_k \in V$ we have that $d(W,U)_{ij} = \min(d(W,U')_{ij},d(W,U')_{ik}+d(W,U')_{kj})$, where $U' = U \setminus \{v_k\}$. Constructing $G' = (V \setminus \{v_k\}, E')$ such that shortest-path distance between any two vertices in G' is equal to the shortest-path distance between the same two vertices in G is equivalent to construct a weighted adjacency matrix W' such that, for all i, j distinct from k we have that

$$d(W', V \setminus \{v_k\})_{ij} = d(W, V)_{ij}.$$

One can prove by induction on $|V\setminus\{v_k\}|$ that the above equality holds when $d(W',\emptyset)_{ij} = d(W,\{v_k\})_{ij}$. By applying the definition of d on both sides of the equality we obtain $w'_{i,j} = \min(w_{ij}, w_{ik} + w_{kj})$. To simplify the exposition we assume that the vertex we want to remove is v_n , i.e., k = n. If it is not the case we can simply rearrange the columns and rows of the matrix W so that the vertex k becomes the last one (this can be done in time $\Theta(n^2)$). The following algorithm, given W computes W' as described above after removing the vertex v_n .

```
SKIPVERTEX(W)
```

```
 \begin{array}{ll} 1 & n = W.rows \\ 2 & \mathrm{let} \ W' = (w'_{ij}) \ \mathrm{be} \ \mathrm{a} \ \mathrm{new} \ (n-1) \times (n-1) \ \mathrm{matrix} \\ 3 & \mathbf{for} \ i = 1 \ \mathbf{to} \ n - 1 \\ 4 & \mathbf{for} \ j = 1 \ \mathbf{to} \ n - 1 \\ 5 & w'_{i,j} = \min(w_{ij}, w_{in} + w_{nj}) \end{array}
```

One can easily see that the running time of SkipVertex is $O(|V|^2)$.

★ Exercise 4.

Assume that G = (V, E) is a directed acyclic graph represented using adjacency-lists.

- (a) Describe an algorithm that computes the transitive closure of G, i.e. $G^* = (V, E^*)$, and analyse its running time.
- (b) Can you generalise your solution to directed graphs that may contain cycles?

Solution 4.

(a) Let $G^* = (V, E^*)$ be the transitive closure of G. By definition of G^* we have that $(u, v) \in E^*$ if and only if there is a path p in G from u to v, that is $u \leadsto_p v$. This can be restated as

$$(u,v) \in E^*$$
 if and only if $u=v$ or there exists $w \in V$ such that $u \to w \leadsto v$. (1)

If G is a directed acyclic graph we can exploit the fact that we can order its vertices in topological order. Let v_1, v_2, \ldots, v_n be a topological sort for V and let us denote by $G_i = (V_i, E_i)$ the subgraph of G obtained from the subset of vertices $V_i = \{v_i, \ldots, v_n\}$ for $i = 1, \ldots, n$.

For arbitrary $i, j \in \{1, ..., n\}$, we rewrite (1) as $(v_i, v_j) \in E^*$ if and only if i = j or $(v_i, v_k) \in E$ and $v_k \leadsto v_j$ for some k. Note that by the fact that the indices are taken in topological order we can assume that $i < k \le j$ and that the paths $v_k \leadsto v_j$ corresponds to an edge in the transitive closure of the subgraph G_{i+1} . Thus, we can obtain the transitive closure of G_i by adding to the transitive closure of G_{i+1} the vertex v_i , the edge (v_i, v_i) , and all the edges (v_i, v) such that $(v_i, u) \in E$ and (u, v) is an edge of the transitive closure of G_{i+1} .

The following algorithm implements the above idea maintaining the following invariant for the for-loop in lines 3–5: the subgraph induced by the subset of vertices $\{v_i, v_{i+1}, \dots, v_n\}$ is the transitive closure of G_i .

```
DAG-TRANSITIVE-CLOSURE(G)
```

```
let G^* be a new graph with G^*.V = G.V and G^*.Adj[v] = \{v\} for all v \in G^*.V

let v_1, \ldots, v_n be a topological sort of the vertices of G.

for i = n downto 1

for each u \in G.Adj[v_i] such that u \neq v_i

G^*.Adj[v_i] = G^*.Adj[v_i] \cup G^*.Adj[u]

return G^*
```

Run-time Analysis. Let |V| = n and |E| = m. Executing line 1 takes time $\Theta(n)$ and line 2 takes $\Theta(n+m)$. For the running time of the for-loop in lines 3–5 we note that each vertex $u \in G.Adj[v_i]$ represents a vertex in the transitive closure of G_{i+1} , which has n-i vertices, hence $\sum_{u \in G.Adj[v_i]} |G^*.Adj[u]| \leq (n-i)^2$. Therefore, the total number of list insertions performed in the for-loop in lines 3–5 is bounded by

$$\sum_{i=1}^{n} (n-i)^2 = \sum_{k=0}^{n-1} k^2$$

$$= \frac{(n-1)n(2n-1)}{6}$$
(CLRS Equation (A.3))
$$= \Theta(n^3)$$

Since each list insertion takes constant time, the overall running time of the for-loop is $O(n^3)$. Therefore the running time of DAG-TRANSITIVE-CLOSURE is $\Theta(n) + \Theta(n+m) + O(n^3) = O(n^3)$.

- (b) The same idea can be applied to generic graph G = (V, E) by noting two things:
 - (a) the graph G_{scc} of strongly connected components of G is a directed acyclic graph
 - (b) if u_1 and u_2 belong to the same strongly connected component and $u_1 \rightsquigarrow v$, then also $u_2 \rightsquigarrow v$ (because $u_2 \rightsquigarrow u_1 \rightsquigarrow v$)

Therefore one can compute the transitive closure of G_{scc} as described before extend it to G. The following pseudocode implements the above intuition.

```
Transitive-Closure'(G)
```

```
1 let G^* be a new graph with G^*.V = G.V and G^*.Adj[v] = \emptyset for all v \in G^*.V

2 compute the graph G_{scc} of strongly-connected compomponents of G

3 G^*_{scc} = \text{DAG-TRANSITIVE-CLOSURE}(G_{scc})

4 for each C \in G^*_{scc}.V

5 for each v \in C

6 G^*.Adj[v] = \bigcup G^*_{scc}.Adj[C]
```

Exercise 5.

Rick has given Morty a detailed map of the Clackspire Labyrinth, which consists of a directed graph G = (V, E) with non-negative edge weights W (indicating distance from one location in the map to the other), along with a list of dangerous locations $D \subset V$ that Morty has to avoid.

- (a) Morty has to determine for each pair of locations $i, j \in V \setminus D$ the length of the shortest walk $i \leadsto j$ that does not have intermediate vertices in D. Describe the algorithm that Morty can use to solve the problem.
- (b) Assume now that Morty also needs to pass by some location in the set $S \subseteq (V \setminus D)$. How does Morty compute the length of the shortest walk from $i \leadsto j$ that avoids dangerous locations D while ensuring to pass by some location in S?

Solution 5.

(a) Morty can solve the the problem by computing solving the all-pairs shortest-paths e.g., using the Floyd-Warshall algorithm having as input the weighted adjacency-matrix $W = (w_i j)$ defined as follows

$$w_{ij} = \begin{cases} 0 & \text{if } i = j \\ w(v_i, v_j) & \text{if } i \neq j \text{ and } (v_i, v_j) \in E \cap (V \setminus D)^2 \\ \infty & \text{otherwise} \end{cases}$$
 (2)

This corresponds to disconnect all vertices in D form the rest of the graph. Therefore Morty can determine for each pair of locations $i, j \in V \setminus D$ the length of the shortest walk $i \leadsto j$ that does not have intermediate vertices in D by calling FLOYD-WARSHALL(W). The running time this procedure is $\Theta(|V|^3)$.

(b) Let D = FLOYD-WARSHALL(W) be the matrix obtained before. If we want to ensure that the path passes through some vertex $v_k \in S$, the resulting matrix D' is obtained as $d'_{ij} = \min\{d_{ik} + d_{k,j} : v_k \in S\}$. The following pseudocode, implements this idea

```
MORTY(G, D, S)

1 construct the matrix W as described in Eq.(2)

2 D = Floyd-Warshall(W)

3 let D' be a new n \times n matrix such that d'_{ij} = \infty

4 for each v_i \in G.V \setminus D

5 for each v_j \in G.V \setminus D

6 for each v_k \in S

7 d'_{ij} = \min(d'_{ij}, d_{ik} + d_{k,j})

8 return D'
```

The running time of MORTY(G, D, S) is $\Theta(|V|^3)$.