CSC405 Microprocessor

8086 Microprocessor

Pin Diagram

8086 - Pin Diagram

Max mode (Min mode)

8086 – Functional Pin Diagram

SI. No.	Pins	Name of the pins
I	Supply pins (3 pins)	V _{cc} , GND, GND
II	Clock related pins (3 pins)	CLK, RESET, READY
III	Address and Data pins (21 pins)	$AD_0 - AD_{15}$, $A_{10}/S_3 - A_{10}/S_6$, \overline{BHE}/S_7
IV	Interrupt pins (2 pins)	NMI, INTR
V	Other Control pins (3 pins)	$\overline{\text{TEST}}$, MN/ $\overline{\text{MX}}$, $\overline{\text{RD}}$
VI	Mode Multiplexed Signals (8 pins)	$HOLD - \overline{RQ_0} / \overline{GT_0}$
		HLDA – $\overline{RQ_1}$ / $\overline{GT_1}$, \overline{WR} – \overline{LOCK}
		$\overline{\text{DEN}} - \overline{S_0}$, DT/ $\overline{R} - \overline{S_1}$
		M/ $\overline{10} - \overline{S_2}$, ALE $-QS_0$
		\overline{INTA} – QS_1

8086 – Pin Configuration

Pin Definitions:

- 1) Supply pins (3 pins)
- 2) Clock related pins (3 pins)
- 3) Address & Data pins (21 pins)
- 4) Interrupt pins (2 pins)
- 5) Other Control pins (3 pins)
- 6) Mode Multiplexed signals(8 pins)

description

Supply pins (3 pins)

- V_{CC} (40)
- ▶ GND 2 pins (1 & 20)

I. Supply pins (3 pins)

- 1. V_{cc} : used for power supply i.e., +5V on V_{cc} w.r.t. GND
- 2. GND
- 3. GND

2 separate GND pins provided for easier dissipation of current.

SI. No.	Pins	Name of the pins
I	Supply pins (3 pins)	V _{cc} , GND, GND
II	Clock related pins (3 pins)	CLK, RESET, READY
III	Address and Data pins (21 pins)	$AD_0 - AD_{15}$, $A_{10}/S_3 - A_{10}/S_6$, \overline{BHE}/S_7
IV	Interrupt pins (2 pins)	NMI, INTR
V	Other Control pins (3 pins)	$\overline{\text{TEST}}$, MN/ $\overline{\text{MX}}$, $\overline{\text{RD}}$
VI	Mode Multiplexed Signals (8 pins)	$HOLD - \overline{RQ_0} / \overline{GT_0}$
		HLDA – $\overline{RQ_1}$ / $\overline{GT_1}$, \overline{WR} – \overline{LOCK}
		$\overline{\text{DEN}} - \overline{S_0}$, DT/ $\overline{R} - \overline{S_1}$
		M/ $\overline{10}$ – $\overline{S_2}$, ALE – QS ₀
		$\overline{INTA} - QS_1$

description

II. Clock related pins (3 pins)

- CLK (Pin 19)
- RESET (Pin 21)
- READY (Pin 22)

1. CLK (Pin 19):

- This pin provides the basic timing for the 8086 processor.
- Each clock pulse causes a state change (a new activity) in the processor
- Hence it is called as a T-state (transition-state)
- 8086 requires asymmetric 33% duty cycle TTL clock signal.
- NO on-chip clock generator on 8086. Hence an external clock generator (8284) is used to provide the clock signal.
- > 8086 works on 6MHz frequency.
- \triangleright Hence, T-state = 1/6MHz = 0.1667 µsec or 166 nanosec.

2. RESET (Pin 21):

- \triangleright Is an input signal used to "reset" the μ P & hence the whole system.
- It must be active high for 4-clock cycles.
- The 8284 clock generator provides the reset signal.
- Impact: it clears all the Flag bits, the Instruction Queue, DS, SS, ES & IP & sets the bits of CS register.
- Hence, the reset vector address is "FFFF0H" for 8086.
- i.e., whenever 8086 is reset it will always go to this address to fetch the 1st instruction.
- Generated using the "power on reset circuit"

3. READY (Pin 22):

- This acknowledgement signal is used by slower peripherals to inform the μP whether they are "ready" or not.
- \triangleright µP samples READY input signal between T₃ & T₄ state of every Machine Cycle.
- If devices are "ready"
 - ✓ READY signal = "1" &
 - \checkmark the µP simply continues the operation as usual.
- If devices are "not ready"
 - ✓ the READY signal = "0" &
 - \checkmark the μP enters the "wait state". i.e., it inserts wait-states between T2 and T3.

SI. No.	Pins	Name of the pins
I	Supply pins (3 pins)	V _{cc} , GND, GND
II	Clock related pins (3 pins)	CLK, RESET, READY
III	Address and Data pins (21 pins)	$AD_0 - AD_{15}$, $A_{10}/S_3 - A_{10}/S_6$, \overline{BHE}/S_7
IV	Interrupt pins (2 pins)	NMI, INTR
V	Other Control pins (3 pins)	\overline{TEST} , MN/ \overline{MX} , \overline{RD}
VI	Mode Multiplexed Signals (8 pins)	$HOLD - \overline{RQ_0} / \overline{GT_0}$
		HLDA – $\overline{RQ_1}$ / $\overline{GT_1}$, \overline{WR} – \overline{LOCK}
		$\overline{\text{DEN}} - \overline{S_0}$, DT/ $\overline{R} - \overline{S_1}$
		M/ $\overline{10} - \overline{S_2}$, ALE $-QS_0$
		$\overline{INTA} - QS_1$

description

II. Address and Data Pins(21 pins)

- 1. $AD_{15} AD_0$,
- 2. $A_{16}/S_3 A_{19}/S_6$
- $3. \overline{BHE}/S_7$

description

III. Address and Data Pins(21 pins)

1. $AD_{15} - AD_0$,

1. $AD_{15} - AD_0$

- ➤ 8086 has a time multiplexed address/data bus. i.e., the bus carries address for sometime and data for some other time.
- During T1, AD₀ AD₁₅ carries lower order 16-bit address.
- In the remaining clock cycles, they carry 16-bit data.
- > AD₀-AD₇: carry lower order byte of data.
- AD₈-AD₁₅: carry higher order byte of data.

III. Address and Data Pins(21 pins)

2. $A_{16}/S_3 - A_{19}/S_{6}$

2. A16/S3 - A19/S6 (Pin 35-38)

These lines are multiplexed unidirectional (outgoing) address and status bus.

During T1, they carry higher order 4-bit address.

In the remaining clock cycles, they carry status signals

2. A16/S3 - A19/S6

(Pin 35-38)

- > **S5** gives the status of the interrupt enable flag.
- ➤ **S6** goes low when 8086 controls shared system bus. i.e., 8086 is the bus master.

S ₄	S ₃	Segment Selected
0	0	Extra Segment
0	1	Stack Segment
1	0	CS/ No Segment Selected
1	1	Data Segment

description

II. Address and Data Pins(21 pins)

3. \overline{BHE}/S_7

$\mathbf{B}. \quad \overline{\mathbf{BHE}}/\mathbf{S}_{7} \text{ (Pin 34)}$

- BHE stands for Bus High Enable.
- ▶ BHE signal when low indicates the transfer of data over higher order data bus (D8–D15).
- BHE along with A0 are used to select even or odd memory banks or I/O ports
- 8-bit I/O devices use this signal.
- It is multiplexed with status pin S7 which is reserved for future use.

description

8086 Memory Access Encoding

BHE	A_0	Action
0	0	Access 16bit word
0	1	Access odd byte to $D_8 - D_{15}$
1	0	Access even byte to $D_0 - D_7$
1	1	No action

Importance of **ALE** (Address Latch Enable)

- Signal ALE is used to determine which signal is present on the multiplexed bus.
- When ALE = 1, the respective buses carry $A_0 A_{15}$, $A_{16} A_{19}$ & BHE
- When ALE = 0, the respective buses carry $D_0 D_{15}$, $S_3 S_7$
- It is to be noted that ALE is high during the 1st T-state of any machine cycle.

SI. No.	Pins	Name of the pins
I	Supply pins (3 pins)	V _{cc} , GND, GND
II	Clock related pins (3 pins)	CLK, RESET, READY
III	Address and Data pins (21 pins)	$AD_0 - AD_{15}$, $A_{10}/S_3 - A_{10}/S_6$, \overline{BHE}/S_7
IV	Interrupt pins (2 pins)	NMI, INTR
V	Other Control pins (3 pins)	$\overline{\text{TEST}}$, MN/ $\overline{\text{MX}}$, $\overline{\text{RD}}$
VI	Mode Multiplexed Signals (8 pins)	$HOLD - \overline{RQ_0} / \overline{GT_0}$
		HLDA – $\overline{RQ_1}$ / $\overline{GT_1}$, \overline{WR} – \overline{LOCK}
		$\overline{\text{DEN}} - \overline{S_0}$, DT/ $\overline{R} - \overline{S_1}$
		M/ $\overline{10} - \overline{S_2}$, ALE $-QS_0$
		\overline{INTA} – QS_1

IV. Interrupt pins (2 pins)

- 1. NMI
- 2. INTR

1. NMI (Pin 17):

- NMI stands for non-maskable interrupt signal.
- It is a higher priority interrupt (compared to INTR).
- It is a rising edge triggered interrupt.
- NMI is not maskable internally by CLI instruction.
- NMI is typically used for hardware failures that require immediate attention

2. INTR:

- One of the 2 hardware interrupt inputs of 8086.
- It is active high.
- It is level triggered.
- Sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation.
- ➤ INTR is the **lowest priority** interrupt. i.e., if INTR & NMI occur together, NMI will be serviced 1st.
- It can be internally masked by software resetting the Interrupt Enable bit.

SI. No.	Pins	Name of the pins
I	Supply pins (3 pins)	V _{cc} , GND, GND
II	Clock related pins (3 pins)	CLK, RESET, READY
III	Address and Data pins (21 pins)	$AD_0 - AD_{15}$, $A_{10}/S_3 - A_{10}/S_6$, \overline{BHE}/S_7
IV	Interrupt pins (2 pins)	NMI, INTR
V	Other Control pins (3 pins)	$\overline{\text{TEST}}$, MN/ $\overline{\text{MX}}$, $\overline{\text{RD}}$
VI	Mode Multiplexed Signals (8 pins)	$HOLD - \overline{RQ_0} / \overline{GT_0}$
		HLDA $-\overline{RQ_1}/\overline{GT_1}, \overline{WR} - \overline{LOCK}$
		$\overline{\text{DEN}} - \overline{S_0}$, DT/ $\overline{R} - \overline{S_1}$
		M/ $\overline{10} - \overline{S_2}$, ALE $-QS_0$
		\overline{INTA} – QS_1

description

V. Other Control pins

- 1. TEST
- \overline{RD}
- 3. MN/\overline{MX}

■ *1.* TEST :

- ➤ It is an active low input line dedicated for 8087 Co-processor.
- > **TEST** can only be connected with 8087 in **Max mode**.
- > **TEST** is used by 8086 to check whether 8087 is busy or not.
- In fact BUSY pin of 8087 is connected to TEST pin of 8086.
- If low, execution continues else microprocessor is in wait state.
- It is examined by WAIT instruction

■ 1. TEST :

- μP checks TEST when we write WAIT instruction. WAIT is written just before an 8087 instruction.
- > If \overline{TESI} = "0" it means 8087 is not busy. In that case μ P will simply continue.
- ightharpoonup If \overline{TESJ} = "1" it means 8087 is still busy & completing the previous instruction.
- Hence, μP will enter wait state. This allows 8087 extra time to complete its operation.
- Once 8087 completes its operation, it makes BUSY signal "0". This makes TEST signal "0".
- Now μP coms out of the wait state & proceed with the program.

\overline{RD}

- IT is an active LOW output signal.
- RD along with WR and M/ IO are decoded together to determine if the μP is performing a memory read, memory write, I/O read or an I/O write operation
- This signal operated only in minimum mode.
- In maximum mode this signal gets disabled.

■3. MN/MX:

- \triangleright This is **input** signal to 8086 μ P.
- $ightharpoonup MN/\overline{MX}$ is "1" means μP is working in minimum mode
- In minimum mode there is only 1 processor i.e., 8086
- $ightharpoonup MN/\overline{MX}$ is "0" means μP is working in maximum mode
- In maximum mode there can be multiple processors along with 8086.

\blacksquare 3. MN/ $\overline{\text{MX}}$:

- In maximum mode we could connect an 8087, which could work as a numeric processor for powerful arithmetic operations such as trigonometry, log etc.
- We could also connect an 8089, which could work as a dedicated I/O processor used to perform sophisticated I/O data transfers.
- The behavior of many pins of 8086 changes when it switches from min mode to max mode.
- Hence, upon reset μP immediately checks this signal to determine how the pins & the μP itself must function.

SI. No.	Pins	Name of the pins
I	Supply pins (3 pins)	V _{cc} , GND, GND
II	Clock related pins (3 pins)	CLK, RESET, READY
III	Address and Data pins (21 pins)	$AD_0 - AD_{15}$, $A_{10}/S_3 - A_{10}/S_6$, \overline{BHE}/S_7
IV	Interrupt pins (2 pins)	NMI, INTR
V	Other Control pins (3 pins)	\overline{TEST} , MN/ \overline{MX} , \overline{RD}
VI	Mode Multiplexed Signals (8 pins)	$HOLD - \overline{RQ_0} / \overline{GT_0}$
		HLDA – $\overline{RQ_1}$ / $\overline{GT_1}$, \overline{WR} – \overline{LOCK}
		$\overline{\text{DEN}} - \overline{S_0}$, DT/ $\overline{R} - \overline{S_1}$
		M/ $\overline{10}$ – $\overline{S_2}$, ALE – QS_0
		$\overline{INTA} - QS_1$

Important 8086 pin

description

(MIN Mode/MAX Mode Signals):

- \square HOLD $-\overline{RQ_0}/\overline{GT_0}$
- □ HLDA $\overline{RQ_1}$ / $\overline{GT_1}$, \overline{WR} \overline{LOCK}
- \square $\overline{DEN} \overline{S_0}$, $DT/\overline{R} \overline{S_1}$
- \square M/ $\overline{10}$ $\overline{S_2}$, ALE QS₀
- \square INTA-QS₁

Important 8086 pin

description

 \blacksquare INTA - QS₁ :

\blacksquare INTA - QS₁:

- ➤ In **Minimum** mode, it carries the **INTA** (interrupt acknowledge) signal.
- > It is used in response to an interrupt on the INTR line.
- It is an active low signal.
- On receiving INTR signal, two INTA pulses are executed
- \triangleright In **Maximum** mode, it carries the **QS**₁ signal.
- ➤ In **Maximum** mode, Bus Controller gives the **INTA** signal.

Important 8086 pin

description

\blacksquare ALE $-QS_0$

- ➤ In **Minimum** mode, it carries the **ALE** signal, which is used to latch the address.
- \triangleright In **Maximum** mode, it carries the **QS**₀ signal.
- \triangleright It is used with $\mathbf{QS_1}$ to indicate the instruction queue status.
- ➤ In Maximum mode, Bus Controller gives the ALE signal.

- ► A high on **ALE** causes the lower order 16-bit address A_0 - A_{16} , higher order 4-bit address A_{16} - A_{19} & \overline{BHE} to be latched.
- ➤ Latch IC 8282 is used to serve this purpose.

Separating the Address and Data lines of AD₀-AD₁₅

Note: ALE is also used to separate A₁₆-A₁₉ from S₃-S₆ & BHE from S₇

QS₀-QS₁Queue operation

QS1	QS0	Queue operation
0	0	NOP
0	1	Opcode Fetch from queue
1	0	Queue is cleared
1	1	Fetch remaining instruction bytes from queue

 \Box $\overline{DEN} - \overline{S_0}$

ightharpoonup $\overline{DEN} - \overline{S_0}$

- \triangleright In minimum mode it acts as the \overline{DEN} signal.
- An active low signal
- It is used to enable the data transceivers (bi-directional buffers IC 8286).
- Transceiver is used to separate the data from the address/data bus.
- In maximum mode it carries the $\overline{S_0}$ signal.
- In maximum mode, Bus Controller (IC 8288) gives the DEN signal.

Important 8086 pin

description

 \square DT/ $\overline{R} - \overline{S_1}$

\blacksquare DT/ $\overline{R} - \overline{S_1}$:

- In minimum mode it carries **DT**/ \overline{R} (Data Transmit/Receive) signal.
- This signal goes LOW for a Read operation (data is received in) & HIGH for a write (data is transmitted out) operation.
- \triangleright In maximum mode it carries $\overline{S_1}$ signal.
- In maximum mode, Bus Controller gives the $\,$ **DT/** \overline{R} signal.

 \square M/ $\overline{10} - \overline{S_2}$

$$\blacksquare$$
 M/ $\overline{10} - \overline{S_2}$:

M / I 0	RD	WR	Operation
0	0	1	I/O Read
0	1	0	I/O Write
1	0	1	Memory Read
1	1	0	Memory Write

- This signal is issued by the microprocessor to distinguish memory access from I/O access.
- When it is high, memory is accessed.
- When it is low, I/O devices are accessed.

$$\overline{\mathbb{S}_0} - \overline{\mathbb{S}_2}$$

ightharpoonup In Maximum mode, $\overline{S_2}$, $\overline{S_1}$ & $\overline{S_0}$ are decoded by 8288 bus controller to decide which operation has to be performed & hence which control signal has to be generated.

$$\overline{S_0} - \overline{S_2}$$
:

$\overline{S_2}$	$\overline{S_1}$	$\overline{S_0}$	Processor State
0	0	0	Int. Acknowledge
0	0	1	Read I/O Port
0	1	0	Write I/O Port
0	1	1	Halt
1	0	0	Instruction Fetch
1	0	1	Memory Read
1	1	0	Memory Write
1	1	1	Inactive

 $\square \overline{WR} - \overline{LOCK}$

✓ WR – LOCK

- ightharpoonup In minimum mode this line carried the \overline{WR} signal.
- It is used with M/ IO to write to memory or I/O device.
- It is an active low signal
- Data is output during the T2 state,
- Removed during T4

■ WR – LOCK

- \triangleright In maximum mode it functions as the \overline{LOCK} o/p line.
- When this signal is active the external master cannot take control of the system bus.
- It is activated when 8086 executes an instruction with the $\overline{\text{LOCK}}$ prefix & remains active till next instruction.

 \square HOLD $-\overline{RQ_0}/\overline{GT_0}$

\blacksquare HOLD $-\overline{RQ_0}/\overline{GT_0}$

- In minimum mode this pin (line) carries the HOLD input signal.
- The DMA controller (DMAC) issues the "hold" signal to request for the system bus.
- In response the 8086 completes the current bus cycle & releases the control over the system bus.
- μP informs the DMAC that the bus has been released by asserting HLDA signal.

\blacksquare HOLD $-\overline{RQ_0}/\overline{GT_0}$

- In maximum mode this pin (line) carries the bidirectional $\overline{RQ_0}/\overline{GT_0}$ (request/grant) signal.
- the $\overline{RQ_0}/\overline{GT_0}$ signal is used by other processor like 8087 to take control of the system bus from 8086.
- By default 8086 is the bus master.
- ightharpoonup At that time $\overline{RQ_0}/\overline{GT_0}$ is inactive & hence it is HIGH
- If 8087 needs to become master it sends a low "request" pulse on $\overline{RQ_0}/\overline{GT_0}$

\blacksquare HOLD $-\overline{RQ_0}/\overline{GT_0}$

- In response 8086 completes the current bus cycle & releases the control of the system bus. It gives an active low "grant" low pulse to 8087 in the same $\overline{RQ_0}/\overline{GT_0}$ pin, to indicate that 8087 has become the bus master
- Now 8087 performs its required operation on the system bus.
- Now 8087 is free to perform required operation on the system bus.
- Finally 8087 sends a low "Release" pulse on $\overline{RQ_0}/\overline{GT_0}$ signal to inform 8086 to take control of the system bus.

Important 8086 pin

description

 \square HLDA $\overline{RQ_1}/\overline{GT_1}$

\blacksquare HLDA - $\overline{RQ_1}/\overline{GT_1}$

- ➤ In the Minimum Mode, **HLDA** (Hold Acknowledgment) is an acknowledgement signal by the processor to the master requesting the control of the bus through HOLD.
- > It is an active high signal.
- \square In the Maximum mode, $\overline{RQ_1}/\overline{GT_1}$ plays the same role as $\overline{RQ_0}/\overline{GT_0}$

