M3P11 Galois Theory

Lectured by Prof Alessio Corti Typeset by David Kurniadi Angdinata

Spring 2019

Contents

0	Introduction	3
	What is Galois theory? 1.1 Fields	
2	Fields	10

0 Introduction

The following are references.

- E Artin, Galois theory, 1994
- A Grothendieck and M Raynaud, Revêtements étales et groupe fondamental, 2002
- I N Herstein, Topics in algebra, 1975
- $\bullet\,$ M Reid, Galois theory, 2014

Lecture 1 Thursday 10/01/19

1 What is Galois theory?

1.1 Fields

Notation 1.1. If K is a field, or a ring, I denote

$$K[x] = \{a_0 + \dots + a_n x^n \mid a_i \in K\},\$$

the ring of polynomials with coefficients in K.

Example 1.2.

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- Quadratic fields

$$\mathbb{Q}\left(\sqrt{2}\right) = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\right\} = \frac{\mathbb{Q}\left[x\right]}{\langle x^2 - 2\rangle}.$$

It is also a field, since

$$\frac{1}{\left(a+b\sqrt{2}\right)} = \frac{a-b\sqrt{2}}{a^2-2b^2}.$$

• If p is prime, $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ is a finite field. If $f(x) \in K[x]$ is irreducible,

$$\frac{K\left[x\right]}{\left\langle f\left(x\right)\right\rangle }$$

is a field. For example, x^2-2 . Both $\mathbb Z$ and K[x] have a division algorithm. For example, let $[a] \in \mathbb Z/p\mathbb Z$ and $[a] \neq 0$, that is $p \mid a$. Since p is prime, $\gcd(p,a) = 1$, so there exist $x,y \in \mathbb Z$ such that ax + py = 1. Thus $[a] \cdot [x] = 1$ in $\mathbb Z/p\mathbb Z$.

- For K a field, either for all $m \in \mathbb{Z}$, $m \neq 0$ in K, so K has characteristic ch(K) = 0, or there exists p prime such that m = 0 if and only if $p \mid m$, so K has characteristic ch(K) = p.
- \bullet For K a field,

$$K\left(x\right)=Frac\left(K\left[x\right]\right)=\left\{ \phi\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}\;\middle|\;f,g\in K\left[x\right],\;g\neq0\right\} .$$

is also a field, the field of rational functions with coefficients in K. For example, $\mathbb{F}_{p}(x,Y) = \mathbb{F}_{p}(x)(Y)$.

Example 1.3. Consider algebraic equations in a field K.

• Let $ax^2 + bx^2 + c = 0$ for $a, b, c \in K$ be a quadratic. There is a formula

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

• For a cubic $y^3 + 3py + 2q = 0$,

$$y = \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}}.$$

- There is a formula for quartic equations.
- It is a theorem that there can be no such formula for equations of degree at least five.

Galois theory deals with these easily.

Definition 1.4. A field homomorphism is a function $\phi: K_1 \to K_2$ that preserves the field operations, for all $a, b \in K_1$,

$$\phi\left(a+b\right)=\phi\left(a\right)+\phi\left(b\right),\qquad\phi\left(ab\right)=\phi\left(a\right)\phi\left(b\right),\qquad\phi\left(0_{K_{1}}\right)=0_{K_{2}},\qquad\phi\left(1_{K_{1}}\right)=1_{K_{2}}.$$

Remark 1.5. All field homomorphisms are injective. If $a \in K_1 \setminus \{0\}$, then there exists $b \in K_1$ such that ab = 1, then $\phi(a) \phi(b) = 1$, so $\phi(a) \neq 0$. This easily implies ϕ is injective. If $a_1 \neq a_2$, then $a_1 - a_n \neq 0$, so $\phi(a_1 - a_2) = \phi(a_1) - \phi(a_2) \neq 0$. Then $\phi(a_1) \neq \phi(a_2)$.

We concern ourselves with field extensions $k \subset K$, and every homomorphism is an extension. Consider a field extension $k \subset K$ and $\alpha \in K$. Then $k(\alpha) \subset K$ denotes the smallest subfield of K that contains k, α . Not to be confused with k(x).

Example 1.6. There are two very different cases exemplified in $\mathbb{Q} \subset \mathbb{C}$.

- $\alpha = \sqrt{2}$, $\mathbb{Q}(\sqrt{2})$.
- $\alpha = \pi$, $\mathbb{Q}(\pi)$.

Definition 1.7.

- α is algebraic over k if $f(\alpha) = 0$ for some $0 \neq f \in k[x]$. Otherwise we say that α is **transcendental** over k.
- The extension $k \subset K$ is algebraic if for all $\alpha \in K$, α is algebraic over k.

Definition 1.8. Consider a field k and $f \in k[x]$. We say that $k \subset K$ is a splitting field for f if

$$f(x) = a \prod_{i=1}^{n} (x - \lambda_i) \in K[x], \qquad a \in k \setminus \{0\}, \qquad K = k(\lambda_1, \dots, \lambda_n).$$

Example 1.9.

• If $f(x) = x^2 - 2 \in \mathbb{Q}[x]$, then $K = \mathbb{Q}(\sqrt{2})$ is a splitting field for f. Indeed

$$x^{2}-2=\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)\in\mathbb{Q}\left(\sqrt{2}\right)\left[x\right].$$

- If $f(x) = x^2 + 2$, then $K = \mathbb{Q}(\sqrt{-2})$.
- If $f(x) = x^3 2$, then

$$\mathbb{Q}\left(\sqrt[3]{2}\right) = \left\{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\right\}$$

is not a splitting field. $K = \mathbb{Q}\left(\sqrt[3]{2},\omega\right)$, where $\omega = \frac{-1+\sqrt{3}}{2}$, is a splitting field.

$$x^{3} - 2 = \left(x - \sqrt[3]{2}\right)\left(x - \omega\sqrt[3]{2}\right)\left(x - \omega^{2}\sqrt[3]{2}\right).$$

1.2 Galois correspondence

Theorem 1.10 (Fundamental theorem of Galois theory). Assume characteristic zero. Let $k \subset K$ be the splitting field of $f(x) \in k[x]$. Let

 $G = \{ \text{field isomorphisms } \sigma : K \to K \mid \sigma \text{ is a field automorphism of } K \text{ such that } \sigma \mid_k = id_k \}.$

We call this group the Galois group. There is a one-to-one correspondence

Why is this cool? Fields are hard, groups are easy. We will see that there is a good formula for the roots of f(x) if and only if G is a soluble group.

Lecture 3 Tuesday 15/01/19

Example 1.11. Let $\deg(f) = 2$ and $f(x) = x^2 + 2Ax + B \in K[x]$. If K already contains the roots then L = K and $G = \{id\}$. Suppose K does not contain the roots. We still have quadratic formula

$$\lambda_{1,2} = -A \pm \sqrt{A^2 - B}.$$

If $\Delta = A^2 - B$ then $\sqrt{\Delta}$ does not exist in K. We must have

$$L = K\left(\sqrt{\Delta}\right) = \left\{a + b\sqrt{\Delta} \mid a, b \in K\right\}.$$

Then $K \subset L$ and

$$G = \{\sigma : L \to L \mid \sigma \mid_K = id\} = C_2$$

is generated by

$$\sigma: a + b\sqrt{\Delta} \mapsto a - b\sqrt{\Delta}.$$

Further specialisation is the following.

• Let $K = \mathbb{R}$ and $\Delta = -1$. Then

$$L = \mathbb{C} = \left\{ a + b\sqrt{-1} \mid a, b \in \mathbb{R} \right\},\,$$

and $G = C_2$ is generated by

$$\sigma: a + b\sqrt{-1} \mapsto a - b\sqrt{-1}$$
,

complex conjugation.

• Let $K = \mathbb{Q}$ and $\Delta = 2$. Then

$$L = \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\},\,$$

and $G = C_2$ is generated by

$$\sigma: a + b\sqrt{2} \mapsto a - b\sqrt{2}.$$

Theorem 1.10 implies there does not exist $K \subsetneq K_1 \subsetneq K\left(\sqrt{\Delta}\right) = L$. Is this obvious? Consider $x \in L \setminus K$, so $x = a + b\sqrt{\Delta}$, and $b \neq 0$, and then

$$\sqrt{\Delta} = \frac{x-a}{b},$$

so K(x) = L.

Example 1.12. Let $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ and $L = \mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega = \frac{-1 + i\sqrt{3}}{2}$. ω is a solution of $x^2 + x + 1 = 0$. Then

$$\mathbb{Q}\left(\omega\right)=\mathbb{Q}\left(\sqrt{-3}\right),\qquad\mathbb{Q}\left(\sqrt[3]{2}\right)=\left\{a+b\sqrt[3]{2}+c\sqrt[3]{4}\mid a,b,c\in\mathbb{Q}\right\}.$$

Remark 1.13. For any splitting field of f, there is always a natural inclusion group homomorphism

$$\rho:G\subset S\left(\lambda_{1},\ldots,\lambda_{n}\right),$$

the group of permutations of the roots of $f = x^n + a_1 x^{n-1} + \cdots + a_n$.

• If $\sigma \in G$, $f(\lambda) = 0$, so $\lambda^n + a_1 \lambda^{n-1} + \cdots + a_n = 0$.

$$0 = \sigma(0) = \sigma(\lambda^n + a_1\lambda^{n-1} + \dots + a_n) = \sigma(\lambda)^n + a_1\sigma(\lambda)^{n-1} + \dots + a_n.$$

• ρ is injective. If for all i, $\sigma(\lambda_i) = \lambda_i$, then $\sigma = id$ on $K(\lambda_1, \ldots, \lambda_n) = L$.

Theorem 1.10 and Remark 1.13 gives $G = \mathfrak{S}_3$.

Definition 1.14. $K \subset L$ is **finite** if L is finite-dimensional as a vector space over K. The **degree** of L over K is $[L:K] = \dim_K(L)$.

Lecture 4 Thursday 17/01/19

Two things about this.

Theorem 1.15 (Tower law). Let $K \subset L \subset F$. Then [F:K] = [F:L][L:K].

Theorem 1.16. Suppose $f(x) \in K[x]$ is irreducible of degree $d = \deg(f)$ and $L = K(\lambda)$ where $f(\lambda) = 0$, then $[K(\lambda) : K] = d$.

Example 1.17.

$$K = \mathbb{Q}\left(\sqrt[3]{2}\right) = \left\{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\right\}$$

is a field, and $[K:\mathbb{Q}]=3$.

Example 1.18. Let $L = \mathbb{Q}(\sqrt[3]{2}, \omega)$ be the splitting field of $x^3 - 2$ over \mathbb{Q} . The lattice of subfields is

(Exercise: $\mathbb{Q}\left(\sqrt[3]{2} + \omega\right) = L$, $\mathbb{Q}\left(\omega^2\sqrt[3]{2}\right) \cap \mathbb{Q}\left(\omega\sqrt[3]{2}\right) = \mathbb{Q}$, and $\mathbb{Q}\left(\sqrt[3]{2}, \omega\sqrt[3]{2}\right) = L$) What is $[L:\mathbb{Q}\left(\sqrt[3]{2}\right)]$? Note $L = \mathbb{Q}\left(\sqrt[3]{2}\right)\left(\sqrt{-3}\right)$. Could $\sqrt{-3} \in \mathbb{Q}\left(\sqrt[3]{2}\right)$? Consider $x^2 + 3 \in \mathbb{Q}\left(\sqrt[3]{2}\right)$ [x]. By Theorem 1.15,

$$\begin{split} [L:\mathbb{Q}] &= [L:\mathbb{Q}\left(\omega\right)] \left[\mathbb{Q}\left(\omega\right):\mathbb{Q}\right] = 2 \left[L:\mathbb{Q}\left(\omega\right)\right], \\ [L:\mathbb{Q}] &= \left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right] \left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right] = 3 \left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right]. \end{split}$$

 $2 \mid [L:\mathbb{Q}]$ and $3 \mid [L:\mathbb{Q}]$, so $6 \mid [L:\mathbb{Q}]$. Either x^2+3 is irreducible over $\mathbb{Q}\left(\sqrt[3]{2}\right)$, so by Theorem 1.16 $\left[L:\mathbb{Q}\left(\sqrt[3]{2}\right)\right] = 2$ and $\left[L:\mathbb{Q}\right] = 6$. Or x^2+3 is not irreducible, so $\mathbb{Q}\left(\sqrt[3]{2}\right) = L$ and $\left[L:\mathbb{Q}\right] = 3$, a contradiction. Are there any other fields? Claim that there are no other fields. Suppose $\mathbb{Q} \subsetneq K \subsetneq L$ is such a field. By Theorem 1.15 $\left[K:\mathbb{Q}\right] = 2$ or $\left[K:\mathbb{Q}\right] = 3$.

• Suppose $[K:\mathbb{Q}]=2$.

$$K(\omega)$$
 $K(\omega)$
 $C(\omega)$
 $C(\omega)$

Either $\omega \in K$, that is $\mathbb{Q}(\omega) \subset K$, so by Theorem 1.15 $\mathbb{Q}(\omega) = K$. Or $\omega \notin K$ gives $[K(\omega) : K] = 2$, so $[K(\omega) : \mathbb{Q}] = 4$ contradicts the tower law for $\mathbb{Q} \subset K(\omega) \subset L$.

• Suppose $[K:\mathbb{Q}]=3$.

$$L \\ 2 \\ K(\omega) \\ 3 \\ \mathbb{Q}$$

Claim that $x^3 - 2 \in K[x]$ splits, so it has a root in K. Either $\sqrt[3]{2} \in K$, $\omega \sqrt[3]{2} \in K$, or $\omega^2 \sqrt[3]{2} \in K$.

I want to prove that

$$G = Aut_{\mathbb{Q}}(L) = \{ \sigma : L \to L \mid \sigma \mid_{\mathbb{Q}} = id_{\mathbb{Q}} \} = \mathfrak{S}_3.$$

Lecture 5 Friday 18/01/19

Proof of Theorem 1.15. Suppose $y_1, \ldots, y_m \in F$ is a basis of F as a vector space over L. Suppose $x_1, \ldots, x_n \in L$ is a basis of L as a vector space over K. Claim that $\{x_iy_j\}$ is a basis of F over K.

• $\{x_iy_i\}$ generates F. Let $z \in F$. There exist $\mu_1, \ldots, \mu_n \in L$ such that

$$z = \mu_1 y_1 + \dots + \mu_n y_n. \tag{1}$$

 $\mu_j \in L$ so for all j there exists $\lambda_{ij} \in K$ such that

$$\mu_j = x_1 \lambda_{1j} + \dots + x_m \lambda_{mj}. \tag{2}$$

Plug in (2) into (1),

$$z = \sum_{i,j} \lambda_{ij} x_i y_j.$$

• $\{x_iy_j\}$ are linearly independent over K. Suppose there exists $\lambda_{ij} \in K$ such that

$$0 = \sum_{i,j} \lambda_{ij} x_i y_j = \sum_{j} \left(\sum_{i} \lambda_{ij} x_i \right) y_j,$$

so for all j, $\sum_{i} \lambda_{ij} x_i = 0$, so for all j and all i, $\lambda_{ij} = 0$.

Example 1.19. To show $G = \mathfrak{S}_3$. Let $\sigma = \begin{pmatrix} 1 & 2 \end{pmatrix}$. A basis of L/\mathbb{Q} is

$$1, \sqrt[3]{2}, \sqrt[3]{4}, \omega, \omega, \sqrt[3]{2}, \omega, \sqrt[3]{4}.$$

- $\sigma(1) = 1$.
- $\sigma\left(\sqrt[3]{2}\right) = \omega\sqrt[3]{2}$.
- $\sigma\left(\omega\sqrt[3]{2}\right) = \sqrt[3]{2}$.
- $\bullet \ \sigma\left(\sqrt[3]{4}\right) = \sigma\left(\sqrt[3]{2} \cdot \sqrt[3]{2}\right) = \omega\sqrt[3]{2} \cdot \omega\sqrt[3]{2} = \omega^2\sqrt[3]{4} = (-\omega 1)\sqrt[3]{4} = -\omega\sqrt[3]{4} \sqrt[3]{4}.$
- $\bullet \ \ \sigma\left(\omega\right) = \sigma\left(\omega\sqrt[3]{2}/\sqrt[3]{2}\right) = \sigma\left(\omega\sqrt[3]{2}\right)/\sigma\left(\sqrt[3]{2}\right) = \sqrt[3]{2}/\omega\sqrt[3]{2} = 1/\omega = -1 \omega.$
- $\sigma\left(\omega\sqrt[3]{4}\right) = \sigma\left(\omega\sqrt[3]{2} \cdot \sqrt[3]{2}\right) = \sigma\left(\omega\sqrt[3]{2}\right) \cdot \sigma\left(\sqrt[3]{2}\right) = \sqrt[3]{2} \cdot \omega\sqrt[3]{2} = \omega\sqrt[3]{4}$.

Thus

$$\sigma = \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \end{pmatrix}.$$

A question is if there were $\sigma \in G$ such that $\rho(\sigma) = \begin{pmatrix} 1 & 2 \end{pmatrix}$ then we have written the matrix of σ as a \mathbb{Q} -linear map of L in a basis. But how to check that this \mathbb{Q} -linear map is a field homomorphism? We know the Galois correspondence for extensions of degree two. $Gal_{\mathbb{Q}\left(\sqrt[3]{2}\right)}(L)$, $Gal_{\mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)}(L)$, $Gal_{\mathbb{Q}\left(\omega\sqrt[3]{2}\right)}(L)$ $\subset G$ contain an element of order two, and

$$\begin{array}{ccc} \rho: & Gal_{\mathbb{Q}\left(\sqrt[3]{2}\right)}\left(L\right) & \mapsto \begin{pmatrix} 2 & 3 \end{pmatrix} \\ & Gal_{\mathbb{Q}\left(\omega^2\sqrt[3]{2}\right)}\left(L\right) & \mapsto \begin{pmatrix} 1 & 2 \end{pmatrix} \\ & Gal_{\mathbb{Q}\left(\omega\sqrt[3]{2}\right)}\left(L\right) & \mapsto \begin{pmatrix} 1 & 3 \end{pmatrix}. \end{array}$$

The lattice of subgroups is

 $\mathbb{Q}(\omega)/\mathbb{Q}$ is the splitting field of $x^2 + x + 1$ and of $x^2 + 3$.

We can learn the following. Let $k \subset L$ be a splitting field. Consider $k \subset K \subset L$. Then $K \subset L$ is also a splitting field. The corresponding $H \leq G$ is the Galois group $Gal_K(L)$. On the other hand $k \subset K$ is not always a splitting field. It is a splitting field if and only if the corresponding $H \leq G$ is a normal subgroup and in that case $Gal_k(K) = G/H$.

2 Fields

Let $K \subset L$ and $a \in L$. The evaluation homomorphism

Lecture 6 Tuesday 22/01/19

$$e_a: K[x] \rightarrow K[a] \subset L$$

 $f(x) \mapsto f(a)$

is a surjective ring homomorphism, where K[a] is the smallest subring of L containing K and a.

Definition 2.1. $f(x) = a_0 x^n + \cdots + a_n \in K[x]$ is monic if $a_0 = 1$.

Lemma 2.2.

• If a is transcendental, e_a is injective and it extends to $\widetilde{e_a}: K(X) \to K(a)$, by

$$\begin{array}{ccc} K\left(X\right) & & \\ \subset & & \widetilde{e_{a}} & \\ K\left[X\right] & \xrightarrow{e_{a}} & L \end{array}$$

• If a is algebraic, then $Ker(e_a) = \langle f_a \rangle$, where $f_a \in K[x]$ is irreducible, or prime, and unique if monic, then called the minimal polynomial of $a \in L/K$. In this case

Proof. There is nothing to prove.

Let $g(x) \in K[x]$ and $g(a) \neq 0$. Claim that $1/g(a) \in K[a]$. Indeed $\gcd(f,g) = 1$ in K[x] and $f \nmid g$. There exists $\phi, \psi \in K[x]$ such that $f\phi + g\psi = 1$ and $g(a) \psi(a) = 1$.

Remark 2.3. All of this is saying

- $K[a] \cong K(a)$, and
- $K[x]/\langle f_a\rangle \cong K(a)$.

Let

$$Emb_{K}\left(K\left(a\right),F\right)=\left\{ \sigma:K\left(a\right)\rightarrow F\text{ field homomorphism }\mid\forall\lambda\in K,\ \sigma\left(\lambda\right)=\lambda\right\} .$$

Corollary 2.4. For $K \subset L$ and $a \in L$ algebraic over K,

- $[K(a):K] = \deg(f_a)$, and
- If $K \subset F$ is an extension,

$$Emb_{K}(K(a), F) = \{b \in F \mid f_{a}(b) = 0\}.$$

Proof. Since K(a) = K[a], $[K(a) : K] = \dim_K (K(a)) = \dim_K [K(a)]$. Suppose

$$f(x) = x^{n} + \mu_{1}x^{n-1} + \dots + \mu_{n} \in K[x]$$

is the minimal polynomial of a over K. Claim that $1, \ldots, a^{n-1}$ is a basis of K[a] over K.

• The set generates K[a]. Let $c \in K[a]$. There exists $g \in K[x]$ such that g(a) = c. Long division gives

$$g(x) = f(x) q(x) + r(x), \qquad m = \deg(r(x)) < n.$$

Then
$$r(x) = \lambda_0 + \cdots + \lambda_m x^m$$
 and $g(a) = r(a) = \lambda_0 + \cdots + \lambda_m a^m$.

• The set is linearly independent, otherwise there exists

$$g(x) = \lambda_0 + \dots + \lambda_{n-1} x^{n-1} \in K[x],$$

where g(a) = 0, and f was not the minimal polynomial.

 $\sigma\left(a\right)$ is a root of f, since applying σ to $f\left(a\right)=0$ gives

$$0 = \sigma (a^{n} + \mu_{1}a^{n-1} + \dots + \mu_{n}) = \sigma (a)^{n} + \mu_{1}^{n-1}\sigma (a)^{n-1} + \dots + \mu_{n} = f (\sigma (a)).$$

Vice versa, if $b \in F$ is a root of f,

$$K\left(b\right) \stackrel{\left[e_{b}\right]}{\leftarrow} \frac{K\left[x\right]}{\left\langle f\right\rangle} \stackrel{\left[e_{a}\right]}{\sim} K\left(a\right),$$

then $\sigma = [e_b][e_a]^{-1}$. Thus there is a one-to-one correspondence

$$Emb_{K}\left(K\left(a\right),F\right) \leftrightarrow \left\{b\in F\mid f\left(b\right)=0\right\}$$

$$\sigma\mapsto\sigma\left(a\right)$$

$$\left[e_{b}\right]\left[e_{a}\right]^{-1}\leftrightarrow b$$

Corollary 2.5. Let K be a field and $f \in K[x]$. Then there exists $K \subset L$ such that f has a root in L.

Proof. Take g a prime factor of f. Take $L=K\left[x\right]/\left\langle g\right\rangle$. In here $a=\left[x\right]$ is a root of g hence a root of f. \square