CSCI 6470 Quiz #8 Questions Answers

Monday November 20, 2023 (12:40pm-1:10pm EST)

Student Name ______ Student ID_____

There are 4 questions and 60 points in total. Good luck!	
1.	(10 points) The exhaustive search algorithm MaxIS-Solver for Maximum Independent Set has time complexity $O(1.619^n)$, which is derived from recursive formula for the time $T(n) = T(n-1) + T(n-2) + O(n)$, where n is the number vertices in the input graph.
	(1) Explain where the term $T(n-1)$ comes from: vertex v is discarded from the chosen independent set $\boxed{4 \ points}$
	(2) Explain where the term $T(n-2)$ comes from: since isolated vertices are all included in the chosen independent set, $2 points$
	vertex v has at least one neighbor $2 points$
	(3) The algorithm can be improved to achieve $T(n) = T(n-1) + T(n-3) + O(n)$. Explain how term $T(n-2)$ is reduced to $T(n-3)$: degree ≤ 1 vertices are all included in the chosen independent set, vertex v has at least 2 neighbor 1 points 1 points
2.	(15 points) Let MST-D be a decision version of MST such that, on the input graph G and input weight threshold w , MST-D has the "yes" answer if and only if G has a minimum spanning tree of weight $\leq w$. Now any algorithm A for MST-D can be used to construct an algorithm A_{mst} for problem MST. Answer the following questions:
	(1) On input graph H of MST, how does A _{mst} use A to find the minimum weight w ₀ of a spanning tree for H? A _{mst} runs on H and w = 1,2, to w _{max} or w = w _{max} down to 1, (where w _{max} is the sum of edge weights), until answers are changed from "no" to "yes" (or from "yes" to "no") 6 points
	(2) Once w_0 is found, how does A_{mst} use A again to find the corresponding spanning tree of weight w_0 ? For every edge $e \in H$, A_{mst} runs on $H - \{e\}$ and w_0 . If answer remains "yes" remove e from H , otherwise, keep e . $5 points$
	(3) How to guarantee that, if A has time complexity $O(n^d)$, the constructed A_{mst} has time complexity $O(n^{d+2})$? Use binary search on w in step (1), with complexity $O(n) \times O(n^d)$ 2 points step (2) goes through $O(n^2)$ edges, has complexity $O(n^2) \times O(n^d)$ 2 points

- 3. (15 points) Answer the following questions regarding polynomial-time verifiable problems. Assume V_{SAT} to be a verification algorithm for **SAT**.
 - (1) What should the input to V_{SAT} be? (ϕ, A) , where ϕ is a boolean formula and A is a truth value assignment for variables in ϕ 3 points
 - (2) What should V_{SAT} check to fulfill its verification duty?
 - (a) verifies that A has assignments for all variables in ϕ ; 3 points
 - (b) check that ϕ can be evaluated to TRUE; 3 points
 - (c) output "yes" if and only if both (a) and (b) turn out true. 3 points
- 4. (20 points) The class \mathcal{NP} is defined as follows according to the lecture note:

Definition: \mathcal{NP} is the class of decision problems whose answers can be verified in polynomial time.

That is,

For every decision problem $D \in \mathcal{NP}$, which decides on input x to answer "yes" or "no", there exists a verifier V_D such that

$$\forall x, D(x) \begin{cases} = "yes" & \exists y, V_D(x,y) = \text{ TRUE} \\ = "no" & \forall y, V_D(x,y) = \text{ FALSE} \end{cases}$$

where V_D can be computed in polynomial time, and y is called a *certificate* or *witness* to an "yes" answer.

Let problem **Independent Set** be decision problem D in the definition.

- (1) What is x specific to the **Independent Set** problem? (G, k), where G is a graph and $k \ge 0$ is an integer; 4 points
- (2) What is y specific to the **Independent Set** problem? a set of vertices (independent set) of size k; 4 points
- (3) What is V_D specific to the **Independent Set** problem? verification algorithm to verify if y is an independent set of size k for G; 4 points
- (4) V_D runs in polynomial time $O(N^c)$ for some constant c, where N = |(x,y)| 4 points
- (5) Does D runs in a polynomial time also? Explain D may or may not run in a polynomial time. A polynomial-time solvable problem, like Reachability, can have a polynomial-time verifier, while a more difficult problem, like SAT, can also have a polynomial-time verifier.
 4 points