Prueba individual.

3.2. Nivel II.

Parte A

1. Los dígitos 2, 2, 3, y 5 se ordenan al azar para formar un número de cuatro dígitos. ¿Cuál es la probabilidad de que la suma del primer y el último dígito sea par?

2. En el hexágono regular ABCDEF, dos de las diagonales, FC y BD, se intersectan en G. La razón entre el área del cuadrilátero FEDG y el área del $\triangle BCG$ es:

- 3. Sesenta hombres trabajando en una construcción han hecho 1/3 del trabajo en 18 días. El proyecto está retrasado y debe ser completado en los siguientes doce días. ¿Cuántos trabajadores más se necesita contratar?
- 4. Si todas las palabras que se pueden formar al permutar las letras de la palabra SMART son ordenadas alfabéticamente, ¿qué lugar ocupa la palabra SMART?
- 5. En $\triangle ABC$ tenemos que AB = AD y $\angle ABC \angle ACB = 45^{\circ}$. Encuentra la medida en grados de $\angle CBD$.

- 6. Juan calcula la suma de los primeros n enteros positivos y encuentra que la suma es 5053. Si ha contado un entero dos veces, ¿cuál es éste?
- 7. ¿Cuál es el mayor entero positivo n que satisface $n^{200} < 5^{300}$?
- 8. En la siguiente figura, si $DE \parallel BC$, Área $(\triangle ADE) = 1$ cm² y Área $(\triangle ADC) = 5$ cm², encuentre la medida en cm² de Área $(\triangle DBC)$.

- 9. Si a y b son enteros positivos tales que $a^2 + 2ab 3b^2 41 = 0$, encuentre el valor $a^2 + b^2$.
- 10. Encuentre el menor entero positivo n tal que $2^8 + 2^{11} + 2^n$ es un cuadrado perfecto.

11. En la figura de abajo, se tiene que BA = BC, AD = AF, EB = ED. Halla la medida en grados de $\angle BED$.

12. Sean a, b y c números reales tales que $\frac{ab}{a+b} = \frac{1}{3}$, $\frac{bc}{b+c} = \frac{1}{4}$ y $\frac{ca}{c+a} = \frac{1}{5}$. Encuentre el valor de $\frac{24abc}{ab+bc+ca}$.

Parte B

- 1. Sean a, b, c, d, e enteros positivos que satisfacen 5a = 4b = 3c = 2d = e y k = a + 2b + 3c + 4d + 5e. Encuentra el menor valor que puede tomar k.
- 2. El diagrama de abajo muestra un rectángulo ABLJ, donde el área de ACD, BCEF, DEIJ y FGH son $22 \, \mathrm{cm}^2$, $500 \, \mathrm{cm}^2$, $482 \, \mathrm{cm}^2$ y $22 \, \mathrm{cm}^2$ respectivamente. Encuentre el área de HIK en cm^2 .

3. ¿Cuál es el mayor entero positivo n para el cual $n^3 + 2006$ es divisible por n + 26?