Chapter 4

Molecular Machines and Motors

"Nature, in order to carry out the marvelous operations in animals and plants, has been pleased to construct their organized bodies with a very large number of **machines**, which are of necessity made up of extremely minute parts so shaped and situated such as to form a marvelous organ, the composition of which are usually invisible to the naked eye, without the aid of microscope" - Marcello Malpighi (seventeenth century);

As quoted by Marco Piccolino, Nature Rev. Mol. Cell Biology 1, 149-152 (2000).

MRECELLO MALFIGHE.

From no sugrating of the adjustating by A. M. Totor, proceeded to the Royal
Society by Midgight.

Marcello Malpighi

Molecular Motors and Nanomachines

Every Biological Cell Contains a Huge Number of Different Molecular Machines:

• Stepping Motors:

Dynein and Kinesin

Myosin VI and V

Membrane-Pumps:
 Nano-Assemblers:

• Rotary Motors:

Ribosome

F0F1 ATPase

ATP synthase—also called F0F1 ATPase, or simply F-ATPase Rotary form of Motor.

Nearly identical proteins are found in eukaryotic mitochondria and bacteria ATP synthase utilizes the energy stored in this electrochemical gradient Converts electromotive force into a rotary torque which promotes substrate binding and liberates ATP Composed of at least 8 subunit types: $\alpha 3$, $\beta 3$, γ , δ , ϵ , a, b, c

l0 nm

Two regions

F0: membranous rotor. Units: c and a

F1: Cytosolic rotor: 3 units of α , β each, 1 unit of γ , δ , ϵ and b γ and ϵ makes the stalk

c-complex rotates when a H⁺ enters a-complex. This rotation drives the coupling of ADP to Pi and forms ATP

Produces 3 ATPs per twelve protons passing through it.

Some times even depends on PMF from Na⁺

- Molecular engine powered by the flow of ions across the inner, or cytoplasmic, membrane of a bacterial cell envelope
- Each motor drives a protruding helical filament, and the rotating filaments provide the propulsive force for cells to swim.

Artistic version of flagella motor

- Ion flux is driven by an electrochemical gradient controlled by H+ and Na+
- This gradient consists of a voltage component and a concentration component
- The inside of the cell is typically at an electrical potential about 150mV below the outside and has a slightly lower concentration of H+ or Na+

- This rotor is surrounded by 8-16 torque generators, proteins MotA and MotB, anchored in the cell wall
- Filaments rotate at speeds up to 1000 Hz in swimming cells
- The rotating heart of the motor is a set of rings in the cytoplasmic membrane

Types of flagellar arrangement

Atrichus: No flagella

Polar/ Monotrichous – single flagellum at one pole

Lophotrichous – tuft of flagella at one pole

Amphitrichous - flagella at both poles

Peritrichous – flagella all over

Amphilophotrichous – tuft of flagella at both ends

Superfamilies of Cytoskeletal MOTORS

Cytoskeleton Motor

Thick
Filaments: Microtubule

 α - β dimer

Thin Filaments: actin

Protofilament

Myosin linear Motor

Myosins

- Are a family of motor proteins that bind to & move along actin filaments toward the + ends.
- Large globular heads bind and split ATP
- Undergo a configurational change that changes the angle of the head with respect to an α-helical tail. E.g. Myosin II
- Eg: Muscular contractions and Relaxations

Myosin linear Motor

The Actin myosin complex basically have two regions:

A-band and I-band

A-band: hexagonally arranged thick filaments (Myosin)

I-band: hexagonally arranged thin filaments (actin, troponin, tropomyosin)

Contraction: thick filaments slide or walk along thin filaments. Myosin heads binds to actin. ATP utilized leading to power stroke

Relaxation: Myosin head dissociate from thin filament.

The coiled chain is perpendicular to the microtubules

Kinesin linear Motors

Kinesin is a large protein with 4 polypeptide chains

Like myosin it has 2 light and 2 heavy chains, each with a globular head domain and long a-helical tail.

Kinesin linear Motors

- Kinesin "walks" along the microtubule (MT) protofilament, stepping from one tubulin subunit to the next.
- Moves from Minus end to Plus end.
- Unidirectional motion is produced by a pronounced conformational change in kinesin's "neck linker."

Dynein

- 8 Cilia & flagella are bounded by the plasma membrane.
- 8 A basal body, which is a single centriole cylinder, is at the base of each cilium or flagellum.
- 8 Cilia & flagella have a core axoneme, a complex of microtubules and associated proteins.
- 8 Flagella are usually 1 or 2 per cell. They tend to have a rotary or sinusoidal movement. They may have additional structures outside the core axoneme.
- **9 Cilia** are usually **many** per cell. They tend to have a whip-like movement.

Dynein

- 8 An axoneme includes:
- 8 Nine doublet microtubules around the periphery. The A tubule of each doublet has attached dynein arms.
- 8 Two singlet central microtubules, surrounded by a sheath.

- 8 Nexin links & radial spokes. These provide elastic connections between microtubule doublets and between the A tubule of each doublet and the central sheath.
- Dyneins are a family of minus end directed MT motors. Largest and fastest molecular motors(14 mm/sec vs 2 mm/sec for kinesin)

Thank You

