ACQUISIZIONE DI SEGNALI AUDIO MULTICANALE MEDIANTE SISTEMI EMBEDDED PER RILEVAZIONE DELLA DIREZIONE DI ARRIVO

Francesco Pegoraro

Relatore: Fabrizio Argenti Co-Relatore: Francesco Guidi

Corso di Laurea Triennale Ingegneria Informatica Università degli Studi di Firenze Dipartimento di Ingegneria dell'Informazione

Sommario della Presentazione

- 1. Introduzione e obiettivi della tesi
- 2. Metodi di stima della Direction of Arrival (DOA)
- 3. Realizzazione del sistema di acquisizione di segnali audio multicanale
- 4. Risultati Sperimentali
- 5. Conclusioni

INTRODUZIONE E OBIETTIVI DELLA

TESI

Introduzione

Array Signal Processing

Area di studio di segnali attraverso particolari formazioni di sensori.

- Acquisizione multicanale
- Analisi ed elaborazione dei segnali per estrazione parametri di interesse
- Possibilità di applicazioni in ambiti diversi come radar, sonar e audio

Introduzione

Obiettivo del progetto di tesi

Sistema **embedded** in grado di acquisire un segnale audio multicanale e stimarne la direzione di arrivo.

○ Costruzione di array per acquisizione

- O Scelta della piattaforma Hardware e Software
- Implementazione metodo per estrazione della direzione di arrivo

3

OF ARRIVAL (DOA)

METODI DI STIMA DELLA DIRECTION

Direction of Arrival Estimation - ULA

È la stima della direzione da cui un'onda che si propaga arriva in un punto dove sono posti dei sensori.

Direction of Arrival Estimation

🔾 Il ritardo (relativamente al sensore estremo a sinistra) è

$$\tau_k = (k-1)\frac{dsin(\theta)}{c} \Rightarrow e^{-j\omega\tau_k} = e^{-j(k-1)\omega\frac{dsin(\theta)}{c}} = e^{-j(k-1)\omega_s}$$

 \bigcirc Con un segnale narrowband s(t) alla frequenza ω :

$$\begin{bmatrix} y_1(t) \\ y_2(t) \\ \dots \\ y_m(t) \end{bmatrix} = \begin{bmatrix} 1 \\ e^{-j\omega_s} \\ \dots \\ e^{-jm\omega_s} \end{bmatrix} s(t) + \begin{bmatrix} n_1(t) \\ n_2(t) \\ \dots \\ n_m(t) \end{bmatrix}$$

$$\mathbf{y}(t) = \mathbf{a}(\theta)s(t) + \mathbf{e}(t)$$

 $\bigcirc \; L$ sorgenti

$$\mathbf{y}(t) = \sum_{j=0}^{L} \mathbf{a}(\theta_j) s_j(t) + \mathbf{e}(t) = \mathbf{A}(\theta) \mathbf{s}(t) + \mathbf{e}(t)$$

DOA - MUSIC (Multiple Signal Classification)

Matrice di covarianza spaziale

$$\mathbf{R} = E[\mathbf{y}(t)\mathbf{y}^H(t)] = \mathbf{A}E[\mathbf{s}(t)\mathbf{s}^H(t)]\mathbf{A}^H + E[\mathbf{e}(t)\mathbf{e}^H(t)] =$$

$$\mathbf{A}\mathbf{P}\mathbf{A}^H + \sigma^2\mathbf{I}$$

L'algoritmo usato è il MUSIC:

DOA - Estensione al WideBand

- Se il segnale è widebαnd, il ritardo di fase è diverso per ogni frequenza componente il segnale di ingresso
- Il metodo visto per il caso narrowband può essere esteso al caso wideband scomponendo il segnale di ingresso in componenti passa-banda

REALIZZAZIONE DEL SISTEMA DI ACQUISIZIONE DI SEGNALI AUDIO

MULTICANALE

Realizzazione - Schema

Realizzazione - Acquisizione

Multiplexing e Memorizzazione

- O Campionamento del segnale **non simultaneo**
- O Shift di 1/8 del tempo di campionamento

Realizzazione - Trasferimento ed Elaborazione

- Tramite la comunicazione seriale (USB)
- Comma-Separated Values
- Ricampionamento

 Si applicano i metodi di rilevazione della direzione di arrivo descritti precedentemente

Risultati Sperimentali - Ambiente di Prova

Outdoor - riduzione riflessione sonora

Sorgente segnale a 30°

O Risultato: 36°

Sorgente segnale a 90°

O Risultato: 92°

Tabella dei risultati

Sorgente	Risultato Stima	Errore
30°	36°	6°
45°	48°	3°
90°	92°	2°
120°	126°	6°
150°	156°	6°

Oppia Sorgente a 45° e 90°

CONCLUSIONI

Conclusioni

Il sistema realizzato rappresenta:

- Struttura accessibile e dai costi contenuti
- Unione di diverse tecnologie integrate tra loro
- Ottima base per studi ed applicazioni future come piattaforma di sistemi embedded

Grazie per l'attenzione

ACQUISIZIONE DI SEGNALI AUDIO MULTICANALE MEDIANTE SISTEMI EMBEDDED PER RILEVAZIONE DELLA DIREZIONE DI ARRIVO

Francesco Pegoraro

Relatore: Fabrizio Argenti Co-Relatore: Francesco Guidi

Corso di Laurea Triennale Ingegneria Informatica Università degli Studi di Firenze Dipartimento di Ingegneria dell'Informazione

