

Contenido

- Introducción
- Diferentes formatos de datos
- Lectura de archivos planos
- La librería readr
- Lectura de archivos de Excel

<u>Introducción</u>

Metodologías de analítica famosas

Knowledge Discovery on Databases (KDD)

Cross Industry Standard Process for Data Mining (CRISP-DM)

Algunas preguntas

■ ¿Qué es la extensión de un archivo?

- ¿Qué significan las extensiones csv, xlsx, txt?
- ¿Dónde están los datos que usualmente cargamos para análisis?

Activar la opción para ver las extensiones de archivos

Diferentes formatos de datos

Según su estructura

Datos Estructurados

color edad altura peso puntuacion Paco Rojo 24 182 74.8 Juan Green 30 170 70.1 169 60.0 3: Andres Amarillo 41 20 183 75.0 4: Natalia Green 22 Verde 31 178 83.9 221 Rojo 35 172 76.2 6: Miriam Juan Amarillo 22 164 68.0

Datos Semi-Estructurados

Datos NO Estructurados

Según su ubicación

En el disco duro

En la web

En una base de datos

MySQL Server
Oracle

PostgreSQL SQLite

Lectura de archivos planos

Algunas herramientas básicas

Editor de archivos de texto plano

- Notepad de Windows
- Sublime Text
- Notepad++
- Visual Studio Code
- Atom
- Vim
- **...**

Librerías de carga de datos de R

- utils
- readr
- readxl

Lectura de archivos planos

Parámetros de una función de carga

- Archivo (file): el nombre de un archivo o una conexión
- Encabezado (header): Valor lógico que indica si el archivo tiene una línea de encabezado
- Separador: una cadena que indica cómo se separan las columnas (p.ej, por comas, por tabs, por algún símbolo raro)
- Clases de columnas: Datos que indica la clase de cada columna en el conjunto de datos.
- Filas a saltar: el número de líneas para saltar desde el principio

...

Archivo de prueba # 1

 Abrir el editor de texto de preferencia y escribir lo siguiente:

```
be objeto,x,y,z • objeto,x,y,z

objeto,x,y,z

objeto,x,y,z

cubo,0,0,0

sefera,1,1,0

cilindro,-1,10,3

5
```

2. Guardar el archivo en una carpeta

Carga del archivo con librería utils

Las funciones read.* permiten cargar datos

```
x <- read.csv("cargadatos/prueba1.txt")</pre>
```

x <- read.table("cargadatos/prueba1.txt")

Existen varias formas de usar las funciones read.*

Revisar la documentación (F1)

Archivo de prueba # 2

Descarga el siguiente archivo

https://raw.githubusercontent.com/hadley/r4ds/master/data/heights.csv

Comprueba el separador de columnas en el archivo con un editor de texto

¿Son comas? ¿Son puntos y comas? ¿Son tabs? ¿Son caracteres raros?

Selecciona el método adecuado para cargar el archivo (Ver documentación)

```
read.table(file, header = FALSE, sep = "", quote = "\"'",
          dec = ".", numerals = c("allow.loss", "warn.loss", "no.loss"),
          row.names, col.names, as.is = !stringsAsFactors,
          na.strings = "NA", colClasses = NA, nrows = -1,
          skip = 0, check.names = TRUE, fill = !blank.lines.skip,
          strip.white = FALSE, blank.lines.skip = TRUE,
          comment.char = "#",
          allowEscapes = FALSE, flush = FALSE,
          stringsAsFactors = FALSE,
          fileEncoding = "", encoding = "unknown", text, skipNul = FALSE)
read.csv(file, header = TRUE, sep = ",", quote = "\"",
        dec = ".", fill = TRUE, comment.char = "", ...)
read.csv2(file, header = TRUE, sep = ";", quote = "\"",
         dec = ",", fill = TRUE, comment.char = "", ...)
read.delim(file, header = TRUE, sep = "\t", quote = "\"",
          dec = ".", fill = TRUE, comment.char = "", ...)
read.delim2(file, header = TRUE, sep = "\t", quote = "\"",
           dec = ",", fill = TRUE, comment.char = "", ...)
```

x <- read.csv("cargadatos/heights.csv")</pre>

Codificación de caracteres (encoding)

Proceso de asignación de números a caracteres gráficos

IISASCII code chart

	USASCII CODE CHOM												
b _{7 b} -	b ₇ b ₆ b ₅					000	° 0 ,	0 0	0 1 1	100	0 1	1 10	1 1
B , ;	b 4	b 3	p ⁵	b i	Row	0	-	2	3	4	5	6	7
	0	0	0	0	0	NUL .	DLE	SP	0	0	P	`	Р
	0	0	0			sон	DC1	!	1	Α	Q	0	q
	0	0	-	0	2	STX	DC 2	••	2	В	R	b	r
	0	0	1	ı	3	ETX	DC3	#	3	C	S	С	S
	0	1	0	0	4	EOT	DC4	•	4	D	Т	đ	1
	0	-	0	1	5	ENQ	NAK	%	5	Ε	U	е	U
	0	1	1	0	6	ACK	SYN	8	6	F	٧	f	٧
	0	1	1	L	7	BEL	ETB	•	7	G	W	g	w
	1	0	0	0	8	BS	CAN	(8	н	×	h	×
		0	0	1	9	нТ	EM)	9	1	Y	i	у
	Π	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0		1		VT	ESC	+	:	K	C	k	{
	I	1	0	0	12	FF	FS	•	<	L	\	l	1
			0	1	13	CR	GS	ı	#	М	כ	m	}
	ı	1	I	0	14	SO	RS		>	N	^	n	~
			1		15	SI	υs	/	?	0		0	DEL

https://cs61.seas.harvard.edu/site/2020/Unicode/ https://www.rapidtables.com/convert/number/ascii-to-binary.html

Lectura de archivos planos

Text to Binary Converter

Enter ASCII/Unicode text string and press the *Convert* to get "01000101 011111000 01100001 01101101 0111

Codificaciones comunes

Lectura de archivos planos

UTF-8

UTF-16 LE

UTF-16 BE

Western (Windows 1252)

Western (ISO 8859-1)

Western (ISO 8859-3)

Western (ISO 8859-15)

Western (Mac Roman)

DOS (CP 437)

Arabic (Windows 1256)

Arabic (ISO 8859-6)

Baltic (Windows 1257)

Baltic (ISO 8859-4)

Celtic (ISO 8859-14)

Central European (Windows 1250)

Central European (ISO 8859-2)

Central European (Mac)

Cyrillic (Windows 1251)

Cyrillic (Windows 866)

Table for Debugging Common UTF-8 Character Encoding Problems.

Code	Point	Characters			Code	Code Point		Characters		
Unicode Windows 1252		Expected Actual		UTF-8 Bytes	Unicode	Windows 1252	Expected	Actual	UTF-8 Bytes	
U+20AC	0x80	€	â,¬	%E2 %82 %AC	U+00C0	0xC0	À	À	%C3 %80	
	0x81				U+00C1	0xC1	Á	Ã	%C3 %81	
U+201A	0x82	,	'	%E2 %80 %9A	U+00C2	0xC2	Â	Ã,	%C3 %82	
U+0192	0x83	f	Æ'	%C6 %92	U+00C3	0xC3	Ã	Ãf	%C3 %83	
U+201E	0x84	"	"	%E2 %80 %9E	U+00C4	0xC4	Ä	Ä	%C3 %84	
U+2026	0x85		…	%E2 %80 %A6	U+00C5	0xC5	Å	Ã	%C3 %85	
U+2020	0x86	†	â€	%E2 %80 %A0	U+00C6	0xC6	Æ	Æ	%C3 %86	
U+2021	0x87	‡	‡	%E2 %80 %A1	U+00C7	0xC7	Ç È	Ç	%C3 %87	
U+02C6	0x88	^	ˆ	%CB %86	U+00C8	0xC8		Ã^	%C3 %88	
U+2030	0x89	%	‰	%E2 %80 %B0	U+00C9	0xC9	É	É	%C3 %89	
U+0160	0x8A	Š	Å	%C5 %A0	U+00CA	0xCA	Ê	Ê	%C3 %8A	
U+2039	0x8B	(‹	%E2 %80 %B9	U+00CB	0xCB	Ë	Ë	%C3 %8B	
U+0152	0x8C	Œ	Å'	%C5 %92	U+00CC	0xCC	Ì	ÃŒ	%C3 %8C	
	0x8D				U+00CD	0xCD	ĺ	Ã	%C3 %8D	
U+017D	0x8E	Ž	Å 1/2	%C5 %BD	U+00CE	0xCE	Î	ÃŽ	%C3 %8E	
	0x8F				U+00CF	0xCF	Ϊ	Ã	%C3 %8F	
	0x90				U+00D0	0xD0	Ð	Ã	%C3 %90	
U+2018	0x91	6	â€~	%E2 %80 %98	U+00D1	0xD1	Ñ	Ñ	%C3 %91	
U+2019	0x92	,	'	%E2 %80 %99	U+00D2	0xD2	Ò	Ã'	%C3 %92	
U+201C	0x93	"	"	%E2 %80 %9C	U+00D3	0xD3	Ó	Ó	%C3 %93	
U+201D	0x94	"	â€	%E2 %80 %9D	U+00D4	0xD4	Ô	Ô	%C3 %94	
U+2022	0x95	•	•	%E2 %80 %A2	U+00D5	0xD5	Õ	Õ	%C3 %95	

https://www.i18nqa.com/debug/utf8-debug.html

La librería **readr**

¿Qué es?

- Es una librería más para cargar datos
- Proporcionar una forma rápida y sencilla de leer datos rectangulares (como csv, tsv y fwf).
- Diseñada para analizar de manera flexible muchos tipos de datos que se encuentran en la naturaleza
- Muestra claramente cuando los datos fallan en cargar

Instalación de paquetes


```
# Se necesitan instalar una vez
# por computador
install.packages("nombrepaquete")
# pero hay que cargarlo cada vez
# que se inicia R
library(nombredelpaquete)
```

Instalación de paquetes

```
# librerías importantes
library(readr)
library(tidyr)
library(dplyr)
library(ggplot2)
```

Paquete **tidyverse**

library(tidyverse) las incluye todas

Modo de uso

La librería readr

Tiene funciones muy parecidas a las funciones de utils

```
read_csv()
read_csv2()
read_tsv()
read_delim()
read_fwf()
read_table()
read_log()
```

Ejemplos:

```
x <- read_csv("cargadatos/prueba1.txt")</pre>
```

```
x <- read_csv("cargadatos/heights.csv ")</pre>
```

Especificación de tipos de datos

readr usa heurísticas para detectar el tipo de dato de cada columna

En algunos casos no detecta correctamente el tipo de dato, lo cual podremos hacer manualmente

Ejemplo:

- Descarga el archivo trickydata.csv https://drive.google.com/file/d/1ABfwmOXoMAdGz_c9g_pUjX-93KX9JdOg/view?usp=sharing
- ¿Qué tipo de datos tiene el archivo?
- ¿Encuentras problemas de calidad en los datos?

Especificación de tipos de datos

Carga los datos en R y revisa el formato de los tipos de datos

■ Sin especificar el tipo de dato

```
tricky <- read_csv("cargadatos/trickydata.csv")</pre>
```

Especificando el tipo de dato

Tipos de datos

Туре	Function	Expects			
Logical	col_logical()	T, F, TRUE, FALSE			
Integer	col_integer()	Integers			
Double	col_double()	Real numbers, include scientific			
Character	col_character()	Anything			
Dates	col_date()	2010-10-20			
Date times	col_datetime()	2010-10-20 20:15			

https://xkcd.com/1179/

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE CONFUSION. THAT'S WHY IN 1988 ISO SET A GLOBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

02/27/2013 02/27/13 27/02/2013 27/02/13 20130227 2013.02.27 27.02.13 27-02-13 27.2.13 2013. Π . 27. $^{27}\!\!\!/_2$ -13 2013.158904109 MMXIII-II-XXVII MMXIII $^{\text{LVII}}_{\text{CCCLXV}}$ 1330300800 ((3+3)×(111+1)-1)×3/3-1/3³ 2013 14 15555 10/11011/1101 02/27/20/13 $^{\circ}_{5}$ $^{\circ}_{1}$ $^{\circ}_{2}$ $^{\circ}_{3}$ $^{\circ}_{3}$

Archivo de prueba # 3

- Descarga el archivo weather.csv https://drive.google.com/file/d/1YLmgmoDREMAVcXcFiJEp-6cKqGFBvfNq/view?usp=sharinq
- Revisa los tipos de datos de cada columna mediante un editor de texto, identifica las columnas que son
 - Datos de texto
 - Números enteros
 - Números decimales
 - Fechas
- Carga el archivo en R usando readr ¿la heurísitica detectó correctamente las columnas?

Lectura de archivos de Excel

■ Intenta abrir un archivo de Excel con un editor de texto

- Un archivo de Excel es diferente al archivo de texto plano
- No se puede abrir con un editor de texto
- Se requiere conocer la lógica de codificación del archivo (o tener una librería que lo sepa)

Instalación de paquetes

```
library(readxl)
```

Habilita la función read_excel()

- Permite definir parámetros propios de un archivo de Excel:
 - Número o nombre de hoja
 - Rango de celdas con los datos (p.je C1:E4)
 - Filas o columnas específicas
 - Qué se entiende como un dato nulo (NA)

Instalación de paquetes

```
library(readxls)
```

Habilita la función read_excel()

- Permite definir parámetros propios de un archivo de Excel:
 - Número o nombre de hoja
 - Rango de celdas con los datos (p.je C1:E4)
 - Filas o columnas específicas
 - Qué se entiende como un dato nulo (NA)

Gracias por tu asistencia y participación ©

Contacto

miguela.orjuela@urosario.edu.co

https://www.linkedin.com/in/miguel-orjuela/

https://github.com/maorjuela73