Steiner tree Problem

Given an undirected graph G=(U,E) with non-negative edge weights and a subset of vertices R (alled terminals)

the Steiner tree Problem is to find a minimum cost tree

that Contains all terminals (may include additional vertices).

Steiner

Vertices.

Examples

R= Terminals = {a,d}

Steiner tree of weight 3

R= Terminals = {a,b,c}

Steiner tree of weight 10

- 1 It a Steiner tree Problem in Graphs Contains exactly two terminals, it reduces to finding the Shortest Path.
- 2) It a Steiner tree Problem in Graphs Contains all Vertices as terminals, it reduces to finding the minimum Spanning tree (MST)
- (3) We know that non-negative shortest Path and MST Problem are solvable in Polynomial time. However decision version of Steiner tree Problem is NP-Complete.

Metric Steiner tree Problem
It is a Steiner tree Problem in which
Gris a complete graph and
edge costs satisfy the triangle inequality
[We will work on Metric Steiner tree]

MST-based Algorithm:

let R denote the Set of required verlices.

clearly a MST on R is a feasible Solution.

But MST on R may not give optimal

Theorem: The cost of an MST on R is

within 2.0PT.

front: Consider a Steiner tree T of cost OPT. By doubling the edges of T we obtain an Eulerian graph Connecting all Veolices of R and Possibly Some Steiner Vertices. Find an Euler tour of this graph. Clearly the cost this Euler tour is 2.0PT Next obtain a Hamiltonian cycle on the Veetices of R by traversing the Euler tour and "Short-culting" Steiner Vertices and

Because of triangle inequality, the Shortcuts do not increase the Cost of the tour.

Previously Visited Veetices on R.

It we delete one edge of this
Hamiltonian cycle, we Obtain a Rath that
Spans R and has cost at most 2017.
This Path is also a Spanning tree on R.
Hence, the MST on R has Cost at most
2.0PT.

1. The hardness of the Steiner tree Problem lies
in determining the optimal subset of Steiner
U
vertices that need to be included in the tree.
Show this by Proving that if this set is Provided
U U
then optimal Steiner tree can be computed in
Polynomial time.