Gaussian Processes Visual Tool

Eduardo Adame Salles eduardo.salles@fgv.br

Rio de Janeiro, Brazil July 6, 2023

Introduction

GP Visual Tool is called to be a system for the interactive modeling, fitting and interpreting of Gaussian processes.

TODO: Overall image

It allows the user to rigorously specify a model by choosing different sets of hyperparameters.

What is a Gaussian process?

Typically, Gaussian processes (GPs) can be seen as a generalization of the Bayesian Regression. Suppose we want to model a $f: \mathbb{R} \to \mathbb{R}$ as a GP. We would define it as following:

$$\mathbf{y} \mid (\mathbf{f}, \mathbf{x}) \sim \mathcal{N}(\mathbf{f}, \sigma^2 \mathbf{I}),$$

 $\mathbf{f} \mid \mathbf{x} \sim \mathcal{GP}(m, k) \equiv \mathcal{N}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x})),$

for $\mathbf{x} = x_1, \dots, x_N$, $\mathbf{y} = y_1, \dots, y_N$ and $\mathbf{f} = f(x_1), \dots, f(x_N)$. We often refer to m as the mean function (usually $m(x_i) = 0$) and k as the kernel function. Our goal is to find the *posterior* distribution of f.

Means and Kernels

Finding the *posterior* distribution

Some approaches to get optimal hyperparams

Applications of GPs

Life could be a dream.

Developing a visual tool

Objectives and interactions.

Let's start sampling

Some marginals are not that bad¹

¹Marginal distributions :D

Beyond choosing a kernel

Math is actually important

Customization is allowed

Time to play!

Thanks!