

Table des matières

1	Coefficients binomiaux			
	1.1	Absorption et choix imbriqués		
	1.2	Binôme de Newton		
	1.3	Sommes de binômes		
	1.4	Multinômes		
	1.5	Congruences		

TABLE DES MATIÈRES

Chapitre 1

Coefficients binomiaux

Je note n pour l'entier et/ou l'ensemble à $\{0, 1, \dots, n-1\}$ à n éléments. Et $(n)_k$ pour le nombre de combinaisons de taille k parmi n. I.e.

$$(n)_k = \frac{n!}{(n-k)!}$$

Y'a

- 1. n^k flèches de $k \to n$.
- 2. Y'a $(n)_k$ flèches injectives de $k \to n$. Ça correspond aux suites du Knuth.
- 3. Y'a k! ordres totaux sur k (les précompositions par une permutation!).
- 4. On déduit que y'a $\frac{(n)_k}{k!}$ sous-ensembles de taille k dans n.

Remarque 1. La distinction entre fonction et sous-ensemble est cool. Quand on dit sous-ensemble on s'en fout de l'ordre! Quand on dit fonction on peut précomposer par une permutation

1.1 Absorption et choix imbriqués

On a les formules d'absorptions

$$k \binom{n}{k} = n \binom{n-1}{k-1}$$

via (n-k) = (n-1) - (k-1) et

$$(n-k)\binom{n}{k} = n\binom{n-1}{k}$$

on peut en déduire

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

via l'identité

$$(n-k)\binom{n}{k} + k\binom{n}{k} = n\binom{n-1}{k} + n\binom{n}{k}$$

c'est abusé mdr.

Sinon on peut se rendre compte de la formule via

- 1. On fixe $i \in n$.
- 2. Pour choisir k éléments, soit on prends i et on a k-1 parmi n-1 à choisir.
- 3. Soit on prends pas i et on a k parmi n-1 à choisir.

Remarque 2. Pour une preuve on peut prendre une suite et mettre i en premier, puis $(n-1)_{k-1}$.

1.2 Binôme de Newton

Pour calculer le produit $\prod_{k=1}^n (a+b) = (a+b)^n$ on peut choisir un chemin dans la distributivité. Y'a 2^n choix à faire mais ça consiste à dire dire on prend ou a ou b dans le k-ème monôme. Le nombre de manière d'avoir $a^k b^{n-k}$ c'est faire k choix parmi n en version désordonnée. D'où $\binom{n}{k}$.

1.3 Sommes de binômes

La première c'est

$$\sum_{k=0}^{n} \binom{n}{k} = k^n + 1$$

et on la trouve en remarquant que $k^n+1=\#P(n)$ les parties de n. L'autre c'est

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}$$

et on peut la trouver soit via l'identité

$$(X+1)^n - 1 = X(\sum_{i=0}^{n-1} (X+1)^i)$$

Coefficients binomiaux

soit par absorption successives, i.e.

$$(k+2 k+1) = (k+1 k+1) + (k+1 k)$$

d'où en commençant par le début de la somme et via

$$(k+1 k+1) = (k k)$$

on peut itérer jusqu'au résultat.

1.4 Multinômes

Y'a l'identité

$$(X_1 + \dots + X^m)^n = \sum_{k_1 + \dots + k_m = n} {n \choose k_1, \dots, k_n} \prod_{i=1}^m X_i^{k_i}$$

où $\binom{n}{k_1,\ldots,k_m}=\frac{n!}{\prod_i k_i!}$ est le nombre de manière de partitionner n en m sous-ensembles disjoints de tailles k_1,\ldots,k_m . Par rapport à l'identité du coefficient multinomial la preuve c'est que

$$(n \ k_1).(n-k_1 \ k_2).(n-(k_1+k_2) \ k_3)... = \frac{n!}{\prod_i k_i!}$$

via un choix d'une suite décroissante k_1, \ldots, k_m (y'en a tjr une). La preuve du multinôme c'est la même idée.

1.5 Congruences

Pour $n|(n \ k)$ quand $n \wedge k = 1$ on peut écrire $n(n-1 \ k-1) = k(n \ k)$. Si $n \wedge k = 1$ on a fini. En particulier, $p^e|(p^e \ k)$ si $p \nmid k$. En général, $p|(p^e \ k)$ pour $1 \leq k \leq p^e$.

Via le calcul du multinôme on déduit aussi que $n \mid \binom{n}{k_1, \ldots, k_m}$ dès que il existe i tel que $k_i \wedge n = 1$.