Metaheuristics for the Team Orienteering Problem

Claudia Archetti⁽¹⁾ Alain Hertz⁽²⁾ Maria Grazia Speranza⁽¹⁾

(1) University of Brescia, Department of Quantitative Methods, Brescia, Italy

(2) École Polytechnique and GERAD, Montréal, Canada

{archetti, speranza}@eco.unibs.it

alain.hertz@gerad.ca

Abstract

May 19, 2005

The Team Orienteering Problem (TOP) is the generalization to the case of multiple tours of the Orienteering Problem, known also as Selective Traveling Salesman Problem. A set of potential customers is available and a profit is collected for the visit of each customer. A fleet of vehicles is available to visit the customers, within a given time limit. The profit of a customer can be collected by one vehicle at most. The objective is to identify the customers which maximize the total collected profit while satisfying the given time limit for each vehicle. We propose two variants of a generalized tabu search algorithm and a variable neighborhood search algorithm for the solution of the TOP and show that each of these algorithms beats the already known heuristics. Computational experiments are made on standard instances.

Keywords: Team Orienteering Problem, Selective Traveling Salesman Problem, Tabu Search Heuristic, Variable Neighborhood Search Heuristic.

1 Introduction

A huge number of papers appeared in the literature which study the well known Traveling Salesman Problem (TSP) and its generalizations to the case of multiple vehicles known as Vehicle Routing Problems (VRPs). While there exists one and only one TSP, many problems belong to the class of VRPs (see Toth and Vigo (2002)). In the TSP and in the VRPs all customers need to be visited. This means that in the situations modeled all customers are known at the time the optimization model is run. Moreover, the solution found by the model will not need to be modified later. While this is indeed the case in many practical problems, there are many other practical problems where some of these assumptions are not valid. For example, not all customers may need to be visited or the problem has a dynamic structure and the solution found may need to be modified while it is being implemented. This implies that the problems have a different structure and that this structure needs to be explicitly modeled.

Let us consider some situations where not all customers need to be visited when the optimization model is run. Consider the situation where all customers need to be visited but not necessarily in the same tour or set of tours, for instance in the cases where a customer has to be visited within a given time period, say three days. Then, when a tour or a set of tours has to be organized for a given day, there are customers that need to be visited but also customers that may be visited or whose visit may be postponed. In this case the lack of need to serve all customers in the same day comes from the dynamic nature of the problem. Another situation is when customers have to be selected within a given set. Nowadays it is more and more frequent that demands for transportation service are posted on the web, usually in specific databases, and the carriers can pick up those demands and offer their service to some of these customers. Thus, the carrier has to select within the set of potential customers those who are most convenient for him. The carrier may need to take into account in the decision sets of customers which, as traditionally, need to be served.

When a set of customers need to be selected and a single tour organized, the optimization problems become variants of the TSP. A profit is associated to each customer which makes customers more or less profitable. On the other hand the traveling cost or time needs to be taken into account. A recent survey by Feillet, Dejax and Gendreau (2004) defines those problems as the TSPs with profits. The objective function may be the maximization of the collected total profit (Orienteering

Problem), the minimization of the total traveling cost (Prize-Collecting TSP) or the optimization of a combination of both (Profitable Tour Problem). While some of the TSPs with profit have been investigated by a number of researchers, such as the Orienteering Problem (OP), and for some others little can be found in the literature, very few papers are available for any of the extensions of the TSPs with profits to the case of multiple tours. We call this class of problems the VRPs with profits. No dedicated survey is available for the VRPs with profits because the body of literature is definitely not large enough for a survey. The list of papers in which multi-vehicle routing problems with profits are addressed appears in Feillet, Dejax and Gendreau (2004).

In this paper we investigate the VRP with profit which is the extension to the case of multiple tours of the most studied TSP with profits, namely the OP. In the OP, given a set of potential customers with associated profit and given the distances between pairs of customers, the objective is to find the subset of customers for which the collected profit is maximum, given a constraint on the total length of the tour. The OP is also called the Selective Traveling Salesman Problem (STSP). The name orienteering comes from an outdoor sport usually played on mountains or forest areas. Given a specified set of points, each competitor, with the help of a map and a compass, has to visit as many points as possible within a specified time limit. The competitor starts at a given point and has to return to the same point. Golden, Assad and Dahl (1984) proposed to apply the modeling as an OP of a vehicle routing problem with an inventory component. The extension of the Orienteering Problem to the case of multiple tours is known as the Team Orienteering Problem (TOP).

The TOP appeared in the literature in a paper by Butt and Cavalier (1994) under the name Multiple Tour Maximum Collection Problem, while the definition of TOP was introduced by Chao, Golden and Wasil (1996). In this paper a heuristic algorithm is presented together with an interesting variant of an algorithm proposed in Tsiligirides (1984).

Few other papers approached the TOP from an algorithmic perspective. For references on exact approaches to the TOP and, in general, to the multi-vehicle routing problems with profits we refer to Feillet, Dejax and Gendreau (2004). On the other hand, a number of papers considered practical applications of VRPs with

profits (see Feillet, Dejax, Gendreau, 2004).

Among the metaheuristics proposed for the solution of combinatorial optimization problems, tabu search (see, for example, Gendreau, Hertz, Laporte, 1994) has been shown to be very effective for vehicle routing problems. Another interesting metaheuristic is the variable neighborhood search (see Mladenovic and Hansen, 1997). In this paper the effectiveness of these metaheuristics is confirmed. We propose two variants of a generalized tabu search algorithm and a variable neighborhood search algorithm for the solution of the TOP and show that such heuristics obtain very good results, in terms of solution quality, within a reasonable amount of time. The results have been compared with the results obtained by the heuristics proposed by Chao, Golden and Wasil (1996) and by Tang and Miller-Hooks (2005).

The paper is organized as follows. In Section 2 the TOP is defined, while in Section 3 the proposed heuristics are presented. The computational results on a large set of standard instances are presented and discussed in Section 4. Finally, some conclusions are drawn.

2 The Team Orienteering Problem

We consider a complete undirected graph G = (V, E), where V = 1, ..., n is the set of vertices and E is the set of edges. Vertex 1 is the starting and ending point of each tour and each vertex i = 2, ..., n represents a potential customer. An edge $(i, j) \in E$ represents the possibility to travel from customer i to customer j. A nonnegative profit s_i is associated to each vertex $(s_1 = 0)$ and a symmetric time distance c_{ij} is associated to each edge $(i, j) \in E$. A set of m vehicles is available to visit the customers. Each vehicle can visit any subset of the customers V within a given time limit T_{max} . The profit of each customer i can be collected by one vehicle at most.

The objective of the Team Orienteering Problem (TOP) is to maximize the total collected profit satisfying the time limit T_{max} for each vehicle.

As already mentioned in the introduction, the TOP has as special case the Orienteering Problem (OP), known also as Selective Traveling Salesman Problem. The OP has been shown to be NP-hard by Golden, Levy and Vohra (1987). Therefore,

3 Solution Algorithms

Let S be the set of solutions to a combinatorial optimisation problem. For a solution $s \in S$, let N(s) denote a neighborhood of s which is defined as a set of neighbor solutions in S obtained from s by performing a local change on it. Local search techniques visit a sequence s_0, \ldots, s_t of solutions, where s_0 is an initial solution and $s_{i+1} \in N(s_i)$ $(i = 1, \ldots, t-1)$. Tabu search is one of the most famous local search techniques. It was introduced by Glover in 1986. A description of the method and its concepts can be found in Glover and Laguna (1997). A basic tabu search is described in Figure 1.

Choose an initial solution s; set $TL = \emptyset$ (tabu list); set $s^* = s$ (best solution) Repeat the following until a stopping criterion is met

- Determine a best solution $s' \in N(s)$ such that either $s' \notin TL$ or s' is better than s^*
- If s' is better than s^* then set $s^* := s'$
- Set s := s' and update TL

Figure 1: Basic tabu search

A few years ago, Hansen and Mladenović have proposed a new solution technique called $Variable\ Neighborhood\ Search\ (VNS\ for\ short)$. The main idea of this new method is to use various neighborhoods during the search. Given an incumbent s, a neighbor solution s' is generated according to one of these neighborhoods, and a local search is then applied to s' in order to obtain a possibly better solution s''. If s'' is better than s, then s'' becomes the new incumbent; otherwise, a different neighborhood is considered in order to try to improve upon solution s. Let $N^{(k)}$ ($k=0,\ldots,k_{max}$) denote a finite set of neighborhoods, where $N^{(k)}(s)$ is the set of solutions in the k-th neighborhood of s. A basic VNS (Hansen, Mladenović, 1999) is described in Figure 2.

Choose an initial solution s; set k = 1

Repeat the following until a stopping criterion is met

- shaking: Generate s' at random in $N^{(k)}(s)$
- local search: Apply a local search on s' using $N^{(0)}$. Let s'' be the resulting solution

• update: If s'' is better than s then set s=s'' and k=1, else set $k=(k \mod k_{max})+1$ Figure 2: Basic VNS

Notice that neighborhood $N^{(0)}$ is used in the local search phase, but not in the shaking one. Solutions in $N^{(0)}(s)$ are typically much closer to s than those in $N^{(k)}(s)$ with k > 0. For this reason, a move from s to a solution $s' \in N^{(k)}(s)$ (k > 0) is often called a jump.

We describe in this section two generalized tabu search algorithms and one VNS for the solution of the TOP. The three proposed algorithms follow the general scheme illustrated in Figure 3. Given an incumbent solution s, we make a jump to a solution s'. We then apply a tabu search on s' in order to try to improve it. The resulting solution s'' is then compared to s. If we follow a VNS strategy, then s'' becomes the new incumbent only if s'' is better than s. In the generalized tabu search strategy, we set s = s'' even if s'' is worse than s. This process is repeated until some stopping criterion is met. More details on this general scheme will be given in Section 3.5. We first need to fix some notations and define some basic concepts.

Figure 3. General scheme of our solution methods

3.1 Notations and basic concepts

The profit P(C) of a set $C \subseteq V$ of customers is the total profit $\sum_{i \in C} s_i$ of the customers in C. The profit P(r) of a route r is defined as the total profit of the customers on it, and its duration T(r) is its total time distance. A route r is feasible if $T(r) \leq T_{max}$. To measure the possible infeasibility of a route r, we define $I(r) = max\{T(r) - T_{max}, 0\}^2$. Hence, I(r) = 0 if and only if r is feasible.

For a set R of routes, $P(R) = \sum_{r \in R} P(r)$ denotes the total profit in R, $I(R) = \sum_{r \in R} I(r)$ is the total infeasibility in R, and C(R) is the set of customers visited on the routes in R.

A solution is defined as a set of routes such that each route starts and ends at the depot, and each customer is visited exactly once by exactly one vehicle. We denote $R_{TOP}(s)$ the set of m most profitable routes in s, and $R_{NTOP}(s)$ the set of all remaining routes. A solution s is feasible if each route in s is feasible (i.e. I(s) = 0). A solution s is admissible if the routes in $R_{NTOP}(s)$ are feasible (i.e. $I(R_{NTOP}(s)) = 0$). Hence an admissible solution can have infeasible routes, but these are necessarily among the m most profitable ones. The aim of the TOP is to determine a feasible solution s that maximizes $P(R_{TOP}(s))$.

In a solution s, we denote $r_c(s)$ the route visiting customer c. For a customer c and a route $r \neq r_c(s)$, we denote r + c the route obtained by adding c to r using the cheapest insertion technique. Similarly, given a route r and a customer c on r, we denote r - c the route obtained from r by removing c and by linking its predecessor to its successor.

The tabu search algorithms we have implemented use two kinds of moves:

- 1-move: In a 1-move, customer c is moved from its route to a route $r \neq r_c(s)$. Route r can be an empty route. Hence, $r_c(s)$ and r are replaced by $r_c(s) - c$ and r + c, respectively. A 1-move can be characterized by the pair (c, r). We denote $s \oplus (c, r)$ the resulting solution.
- swap-move: Let c and c' be two customers on two different routes. A swap-move consists in replacing $r_c(s)$ and $r_{c'}(s)$ by $(r_c(s)-c)+c'$ and $(r_{c'}(s)-c')+c$, respectively. A swap-move can be characterized by the ordered pair (c,c'). We denote $s \oplus (c,c')$ the resulting solution.

In the 1-moves, in general route r can be an empty route. In the cases where empty routes are not allowed this will be explicitly specified. Notice that if s is an admissible solution and (x, y) a move (i.e., a 1-move or a swap-move), then $s \oplus (x, y)$ is not necessarily admissible. We have therefore designed procedures that either reduce or totally remove the infeasibility in a subset of routes. These procedures are described in the next section.

3.2 Reducing and removing infeasibility

Let R be a set of routes such that I(R) > 0. The REPAIR procedure described in Figure 4 creates a new set of routes R' with C(R') = C(R) and I(R') = 0. This is done by performing 1-moves that strictly reduce the infeasibility. Notice that such 1-moves always exist since it is always possible to remove a customer from a route r with I(r) > 0 and to insert it into a new route.

```
Procedure REPAIR
```

```
Input: A set R of routes with I(R)>0 Output: A set R' of routes with C(R')=C(R) and I(R')=0 Set R'=R While I(R')>0 do
```

- Choose a route $r \in R'$ with I(r) > 0 and a customer c in r (all choices are random)
- Choose a 1-move (c, r^*) such that $I(r^* + c) = 0$ and $T(r^* + c) T(r)$ is minimum
- Replace r and r^* by r-c and r^*+c in R'

Figure 4. Procedure that removes the infeasibility in a set of routes

Notice that if s is a infeasible solution, then the output of REPAIR(s) is a feasible solution. However, if s is a non-admissible solution, then the solution obtained by replacing $R_{NTOP}(s)$ by REPAIR($R_{NTOP}(s)$) is not necessarily admissible. Indeed, some routes in REPAIR($R_{NTOP}(s)$) are possibly obtained by adding customers from other routes in $R_{NTOP}(s)$, and these routes can therefore become more profitable than some infeasible routes in $R_{TOP}(s)$. Hence, several calls to REPAIR can be necessary to transform a non-admissible solution into an admissible one. Procedure MAKE_ADMISSIBLE of Figure 5 makes this transformation. The procedure is finite since the number of infeasible routes strictly decreases at each call to REPAIR.

Procedure MAKE_ADMISSIBLE

```
Input: a non-admissible solution s
Output: an admissible solution s'
Set s' = s;
While s' is not admissible do
Replace the routes in R_{NTOP}(s') by those in REPAIR(R_{NTOP}(s'))
Update R_{TOP}(s') and R_{NTOP}(s')
```

Figure 5. Procedure that transforms a solution into an admissible one

This is illustrated on Figure 6. The graph in Figure 6.a is the original network with the starting and ending point of each tour in the center (black vertex). All time distances on the edges are supposed equal to 1. When there is no edge between two vertices i and j, the time distance c_{ij} between these two vertices is equal to 2 since one can link i to j by going through the black vertex. The time limit T_{max} is equal to 3 and the numbers on the vertices are their profits. We suppose that m=3. A solution s is represented in Figure 6.b. There are 5 routes, 3 in $R_{TOP}(s)$ and 2 in $R_{NTOP}(s)$. The routes in $R_{TOP}(s)$ are represented with plain lines while those in $R_{NTOP}(s)$ are represented with dashed lines. The solution is not admissible since one route in $R_{NTOP}(s)$ has a duration of $4 > 3 = T_{max}$. The solution obtained by replacing $R_{NTOP}(s)$ by REPAIR($R_{NTOP}(s)$) is represented in Figure 6.c. It is not admissible since the route with a profit of 5 is not feasible and it now belongs to $R_{NTOP}(s)$. A second call to REPAIR is necessary to obtain the admissible (but non feasible) solution of Figure 6.d.

Figure 6. Illustration of the MAKE_ADMISSIBLE procedure

Given a set R of routes with I(R) > 0, the next procedure, called REDUCE_INF, creates a new set of routes R' with C(R') = C(R), $|R'| \le |R|$ and $I(R') \le I(R)$. The REDUCE_INF procedure is a local search that follows the general scheme of Figure 7. Neighbors are obtained by making 1-moves and swap-moves, but without creating any new route.

The value of a set of routes is measured using two functions F_1 and F_2 .

- $F_1(R)$ is the total infeasibility I(R) in R;
- $F_2(R)$ is the total duration $\sum_{r \in R} T(r)$ of the routes in R.

A set R of routes is said F-better than a set R' of routes if $F_1(R) < F_1(R')$ or $F_1(R) = F_1(R')$ and $F_2(R) < F_2(R')$. We denote $R <_F R'$. Given a solution s, the set R of routes in a solution of $N^{(k)}(s)$ is F-best in $N^{(k)}(s)$ if $R <_F R'$ for any $R' \neq R$ in a solution of $N^{(k)}(s)$.

Procedure REDUCE_INF

```
Input: A set R of routes with I(R) > 0
Output: A set R' of routes with C(R') = C(R), |R'| \le |R|, and I(R') \le I(R)
Set R' = R
```

While no stopping criterion is met do

- Determine the F-best 1-move m_1 (which does not create new routes)
- If $R \oplus m_1 <_F R$ then set R equal to $R \oplus m_1$
- Else determine the best swap-move m_2 such that $R \oplus m_2 <_F R$ if $R \oplus m_1 <_F R \oplus m_2$ then set $R = R \oplus m_1$ else set $R = R \oplus m_2$
- If $R <_F R'$ then set R' = R

Figure 7. Procedure that reduces the infeasibility in a set R of routes

The stopping criterion is fixed at 100 iterations without improvements. The procedure is a simple local search without any tabu list. This choice is motivated by the need to make REDUCE_INF procedure very fast since it can be called a large number of times during the entire algorithm.

3.3 Jumps

We have designed two procedures for generating jumps from a given solution s. In the first procedure, a jump from s is obtained by performing a series of 1-moves from $R_{NTOP}(s)$ to $R_{TOP}(s)$. The amplitude of such a jump is defined as the number of customers that are moved. We denote $J_k^1(s)$ the set of neighbors which can be obtained from s with such jumps of amplitude k. When moving a customer to $R_{TOP}(s)$, we try to avoid creating infeasibility. Details are given in Figure 8.

```
Procedure JUMP_1
```

```
Input: An admissible solution s and an amplitude k \leq |C(R_{NTOP}(s))|
Output: An admissible solution s' \in J_k^1(s)
Set s' = s
```

For i=1 to k do

• Choose a customer c at random in $C(R_{NTOP}(s'))$

- Determine a 1-move (c,r) with $r \in R_{TOP}(s')$ that minimizes I(r+c) I(r)Ties are broken by choosing a 1-move with minimum insertion cost T(r+c) - T(r)
- Replace r by r + c in $R_{TOP}(s')$

Figure 8. First kind of jump

The second kind of jump is obtained by moving a set U of customers from $R_{TOP}(s)$ to $R_{NTOP}(s)$, and a set W of customers from $R_{NTOP}(s)$ to $R_{TOP}(s)$. In order to have a chance to increase the profit in $R_{TOP}(s)$, we try to determine sets U and W such that $P(U) \leq P(W)$. This is done as follows. We first choose U at random in $C(R_{TOP}(s))$. Then, if $P(U) > P(R_{NTOP}(s))$ we set $W = C(R_{NTOP}(s))$; otherwise, we build W by sequentially adding customers from $C(R_{NTOP}(s))$ as long as P(W) < P(U). The customers in $U \cup W$ are moved as follows: they are first removed from their routes; the customers in U are then sequentially inserted into $R_{NTOP}(s)$ without creating infeasibility (new routes are created if necessary); finally, the customers in W are sequentially inserted into the existing routes in $R_{TOP}(s)$, with the smallest possible increase in infeasibility. The solution s' resulting from such an exchange is not necessarily admissible since infeasible routes can move from $R_{TOP}(s)$ to $R_{NTOP}(s')$. If needed, we therefore repair the resulting solution by using the MAKE_ADMISSIBLE procedure. The amplitude of this second kind of jump is defined as the number of customers in U. We denote $J_k^2(s)$ the set containing all solutions obtained from s with such jumps of amplitude k. Details are given in Figure 9.

Procedure JUMP_2

Input: An admissible solution s and an amplitude $k \leq |C(R_{TOP}(s))|$ Output: An admissible solution $s' \in J_k^2(s)$

- Set $R = R_{TOP}(s)$ and $R' = R_{NTOP}(s)$
- For i=1 to k do
 Choose a customer c at random in C(R), add it to U and replace r_c by $r_c c$ in R
- If P(R') < P(U) then set W = C(R') and set $R' = \emptyset$ Else set $W = \emptyset$ and repeat the following until $P(W) \ge P(U)$ Choose $c \in C(R')$ at random, add c to W and replace r_c by $r_c - c$ in R'
- For all $c \in U$ do (sequentially)
 Let Q be the set of 1-moves (c,r) such that $r \in R'$ or is a new route, and I(r+c) = 0Choose a 1-move $(c,r) \in Q$ with minimum insertion cost T(r+c) T(r)Replace r with r+c in R'

- For all $c \in W$ do (sequentially)

 Let Q be the set of 1-moves (c,r) such that $r \in R$ and I(r+c) I(r) is minimum Choose a 1-move $(c,r) \in Q$ with minimum insertion cost T(r+c) T(r)Replace r with r+c in R
- Set $s' = R \cup R'$ (i.e., s' is the solution made by the union of the routes in R and R') If s' is not admissible then replace s' with MAKE_ADMISSIBLE(s')

Figure 9. Second kind of jump

Procedure JUMP_2 is illustrated in Figure 10. The example is constructed as in Figure 6 with time distances equal to 1 on the edges and 2 on the non-edges. The time limit T_{max} is equal to 3 while the number m of available vehicles is here equal to 2. The solution s in Figure 10.b is admissible but not feasible since one route in $R_{TOP}(s)$ has a duration of $5 > 3 = T_{max}$. A jump to a solution $s' \in J_1^2(s)$ is performed by moving v to $R_{NTOP}(s)$ and w to $R_{TOP}(s)$. These moves do not create any new infeasibility. The solution s' resulting from this exchange is represented in Figure 10.c. It is not admissible since the infeasible route of $R_{TOP}(s)$ remains infeasible after the removal of v, while it is no longer one of the two most profitable routes. The MAKE_ADMISSIBLE procedure creates the admissible (and feasible) solution of Figure 10.d.

Figure 10. Illustration of the second kind of jump

3.4 Tabu search

We have developed two tabu search algorithms. One explores the set of feasible solutions while the other one visits admissible but non necessarily feasible solutions. Both algorithms follow the general scheme of Figure 1. They use 1-moves and swapmoves, and the tabu list contains pairs (c, r) with the meaning that it is forbidden to move customer c to route r. When performing a 1-move (c, r), the pair $(c, r_c(s))$ is introduced in the tabu list TL, while when performing a swap-move (c, c'), both

pairs $(c, r_c(s))$ and $(c', r_{c'}(s))$ enter TL. A 1-move (c, r) is considered as tabu if $(c, r) \in TL$ while a swap-move (c, c') is considered as tabu if $(c, r_{c'}(s)) \in TL$ or (not exclusive) $(c', r_c(s)) \in TL$. Each time s^* is improved, we apply the classical 2-opt procedure (Lin, 1965) on each route in s^* .

We use five functions for measuring the quality of the solutions visited during the search.

- $f_1(s)$ is the total profit $P(R_{TOP}(s))$ of the routes in $R_{TOP}(s)$.
- $f_2(s)$ is the total duration $\sum_{r \in R_{TOP}(s)} T(r)$ of the routes in $R_{TOP}(s)$.
- $f_3(s)$ is defined as $P(R_{TOP}(s)) \alpha I(R_{TOP}(s))$, where α is a parameter that gives more or less importance to the second component of this funtion. Notice that $f_3(s) = f_1(s)$ if s is feasible. Parameter α is initially set equal to 1 and is then adjusted every 10 iterations, as in (Gendreau et al., 1994): if the ten previous solutions were feasible then α is divided by 2; if they were all infeasible, then α is multiplied by 2; otherwise α remains unchanged.
- $f_4(s)$ is the number of non empty routes in s.
- $f_5(s)$ is the total duration $\sum_{r \in R_{NTOP}(s)} T(r)$ of the routes in $R_{NTOP}(s)$.

The tabu search with the feasible strategy visits only feasible solutions that are compared with functions f_1 , f_2 , f_4 and f_5 . We say that a solution s is (1,2,4,5)-better than a solutions s' if $f_1(s) > f_1(s')$, or $f_1(s) = f_1(s')$ and $f_2(s) < f_2(s')$, or $f_1(s) = f_1(s')$, $f_2(s) = f_2(s')$ and $f_4(s) < f_4(s')$, or $f_1(s) = f_1(s')$, $f_2(s) = f_2(s')$, $f_4(s) = f_4(s')$ and $f_5(s) < f_5(s')$.

The tabu search with the *penalty strategy* can visit infeasible solutions but infeasibility is penalized. More precisely, we use in this case functions f_3 , f_4 and f_5 , and we say that s is (3,4,5)-better than s' if $f_3(s) > f_3(s')$, or $f_3(s) = f_3(s')$ and $f_4(s) < f_4(s')$, or $f_3(s) = f_3(s')$, $f_4(s) = f_4(s')$ and $f_5(s) < f_5(s')$.

To unify the description of the algorithms, we define $\nu = (1,2,4,5)$ in the feasible strategy and $\nu = (3,4,5)$ in the penalty strategy, and we write about ν -better solutions.

Many 1-moves and swap-moves have no influence on the f_1 -value of a solution. Indeed, for a 1-move (c,r) with $\{r_c(s),r\} \subseteq R_{NTOP}(s)$ we have $f_1(s) = f_1(s \oplus (c,r))$, unless $r+c \in R_{TOP}(s \oplus (c,r))$. Similarly, for a swap-move (c,c') with $\{r_c(s), r_{c'}(s)\} \subseteq R_{NTOP}(s)$ we have $f_1(s) = f_1(s \oplus (c,c'))$, unless $(r_c(s)-c)+c'$ or $(r_{c'}(s)-c')+c$ belongs to $R_{TOP}(s \oplus (c,c'))$. To better guide the search towards an optimal solution, we only use moves which can have an influence on the f_1 -value of the current solution. More precisely, we only consider moves (x,y) such that $R_{TOP}(s) \neq R_{TOP}(s \oplus (x,y))$. Such moves are said interesting.

The proposed tabu search is described in Figure 11. It uses a subroutine called UPDATE that updates the current best neighbor each time a better neighbor is found. More precisely, let s' denote the current best neighbor of a solution s. For a move (x, y) and a vector $\nu = (1, 2, 4, 5)$ or (3, 4, 5), the UPDATE subroutine replaces s' by $s \oplus (x, y)$ if $s \oplus (x, y)$ is interesting and ν -better than s', and if $(x, y) \notin TL$ or $s \oplus (x, y)$ is ν -better than the best solution s^* encountered so far.

Tabu search for the TOP

Choose an initial solution s; set $TL = \emptyset$ (tabu list); set $s^* = s$ (best solution) Repeat the following until N_{max} iterations have been performed without improving s^*

• Set s'=s and $\nu=(1,2,4,5)$ for the feasible strategy or $\nu=(3,4,5)$ for the penalty strategy

```
Feasible strategy
For each 1-move (c,r) do

If I(r+c)=0 then \mathrm{UPDATE}(\nu,(c,r))
Else, for all customers c'\neq c in r+c, do

If both (r_c(s)-c)+c' and (r-c')+c are feasible routes then \mathrm{UPDATE}(\nu,(c,c'))

Penalty strategy
For each 1-move (c,r) do

If I(r+c)=0 or r+c\in R_{TOP}(s\oplus(c,r)) then \mathrm{UPDATE}(\nu,(c,r))
Else, for all customers c'\neq c in r+c do

If I((r-c')+c)=0 then \mathrm{UPDATE}(\nu,(c,c'))
If s' is not admissible then replace s' with \mathrm{MAKE\_ADMISSIBLE}(s')
```

- If s' is better than s^* then improve each route of s' by means of the 2-opt procedure and set $s^* := s'$
- Set s:=s' and update TL

Subroutine UPDATE

```
Input A vector \nu = (1,2,4,5) or (3,4,5) and a move (x,y)
 Output A possible update of s'
If (x,y) is an interesting move and if s \oplus (x,y) is \nu-better than s' then
  if (x,y) \notin TL or s \oplus (x,y) is \nu-better than s^* then set s' = s \oplus (x,y)
```

Figure 11: A tabu search algorithm for the TOP

For moving to a neighbor solution, the feasible strategy considers all 1-moves (c,r); if I(r+c) > 0 then all swap moves (c,c') which induce a feasible solution $s \oplus (c, c')$ are also considered.

The penalty strategy also considers all 1-moves (c, r): if r + c is an infeasible route in $R_{NTOP}(s \oplus (c,r))$ then all swap moves (c,c') which induce a feasible route (r-c')+c are also considered. Notice that if s is admissible and I(r+c)=0for a 1-move (c,r), then $s \oplus (c,r)$ is possibly non-admissible. Indeed, if $r_c(s)$ is an infeasible route in $R_{TOP}(s)$, then $r_c(s) - c$ is possibly infeasible in $R_{NTOP}(s \oplus (c, r))$. Similarly, if s is admissible and $I((r_{c'}(s) - c') + c) = 0$ for a swap-move (c, c'), then $s \oplus (c,c')$ is possibly non-admissible since $(r_c(s)-c)+c'$ is possibly infeasible in $R_{NTOP}(s \oplus (c,c'))$ We therefore use the MAKE_ADMISSIBLE procedure to repair the best neighbor.

The tabu search is stopped when N_{max} iterations have been performed without improving s^* . We call LONG_TABU the version of the above algorithm where N_{max} is fixed equal to 400n, while SHORT_TABU denotes the version with $N_{max} = 25$.

3.5Three algorithms for the TOP

The three algorithms that are tested and compared in the next section all follow the general scheme of Figure 3 which we now detail in Figure 12.

General Scheme

Generate an initial feasible solution s as in Chao et al. (1996)

Repeat the following as long as a stopping criterion is met

- Choose an amplitude k and generate a solution $s' \in J_k^1(s) \cup J_k^2(s)$ In case of a feasible strategy do - if I(s') > 0 then replace the routes in $R_{TOP}(s')$ by those in REDUCE_INF $(R_{TOP}(s'))$

 - if I(s') > 0 then replace s' by REPAIR(s')

- Apply the tabu search of Figure 11 on s', and let s'' denote the resulting solution
- Decide whether s is set equal to s'' or unchanged

Figure 12: General scheme of our solution methods for the TOP

We start with an initial feasible solution generated using the initial solution proposed by Chao et al. (1996). We then perform a jump to a solution $s' \in J_k^1(s) \cup J_k^2(s)$. If we follow the feasible strategy, we first reduce the infeasibility in $R_{TOP}(s')$ by means of REDUCE_INF, and we then make s' feasible (if needed) by means of REPAIR. We then apply the tabu search algorithm of Figure 11 and finally decide whether the resulting solution s'' replaces s or not. This process is repeated until a stopping criterion is met.

Two of the proposed algorithms use LONG_TABU. We have observed in preliminary experiments that, when $s' \in J_k^1(s)$, LONG_TABU often turns back to s after a relatively short time. For this reason, we only consider the second kind of jump when using LONG_TABU. The amplitude of a jump k is a parameter of the algorithm. We call GENERALIZED_TABU_FEASIBLE the algorithm that uses the feasible strategy while GENERALIZED_TABU_PENALTY uses the penalty strategy. Both algorithms stop when a number maxjumps of jumps has been performed. The algorithms are summarized in Figures 13 and 14.

Algorithm GENERALIZED_TABU_FEASIBLE

Generate an initial feasible solution s as in Chao et al. (1996)

Repeat the following maxjump times

- Take a value k and determine $s' \in J_k^2(s)$ by means of JUMP_2
- if I(s') > 0 then replace the routes in $R_{TOP}(s')$ by those in REDUCE_INF $(R_{TOP}(s'))$
- if I(s') > 0 then replace s' by REPAIR(s')
- Apply LONG_TABU with the feasible strategy on s'; let s'' be the resulting solution
- Set s = s''

Figure 13: The GENERALIZED_TABU_FEASIBLE algorithm

Algorithm GENERALIZED_TABU_PENALTY

Generate an initial feasible solution s as in Chao et al. (1996)

Repeat the following maxjump times

- Take a value k and determine $s' \in J_k^2(s)$ by means of JUMP_2
- Apply LONG_TABU with the penalty strategy on s'; let s'' be the resulting solution
- Set s = s''

Figure 14: The GENERALIZED_TABU_PENALTY algorithm

The third algorithm is a Variable Neighborhood Search that uses SHORT_TABU as local search. In preliminary experiments, we have observed that SHORT_TABU is often not able to recover feasibility when it is lost. For this reason, we only use the feasible strategy with SHORT_TABU. Following the VNS scheme, we set s=s'' only if s'' is (1,2,4,5)-better than s. For each amplitude k of the jumps, a number \overline{k} of jumps is made before changing k. We have implemented two rules for varying the amplitude k of the jumps. The ascending rule starts with k=1 and augments k until the value k_{max} is reached. If s'' is (1,2,4,5)-better than s, k is reset equal to 1, otherwise k is augmented by one if the number of jumps with amplitude k is \overline{k} and remains unchanged if this is not the case. When \overline{k} jumps of amplitude k_{max} are made, the procedure is repeated making a new loop. The algorithm stops when a number of loops equal to maxloops has been performed. We have also tested a descending rule which decreases k from k_{max} to 1. The results obtained are very similar to those with the ascending strategy. We therefore only report on results obtained with the descending rule. The algorithm, called VNS_FEASIBLE, is summarized in Figure 15.

Algorithm VNS_FEASIBLE

Generate an initial feasible solution s as in Chao et al. (1996)

Set $k = k_{max}$, $counter_jumps = 1$ and $counter_loops = 1$

Repeat the following until $counter_jumps > maxloops$

- Choose i at random in $\{1,2\}$ and determine a solution $s' \in J_k^i(s)$ by means of JUMP-i
- if I(s') > 0 then replace the routes in $R_{TOP}(s')$ by those in REDUCE_INF $(R_{TOP}(s'))$
- if I(s') > 0 then replace s' by REPAIR(s')
- Apply SHORT_TABU with the feasible strategy on s'; let s" be the resulting solution
- If s'' is (1,2,4,5)-better than s then set s=s'', $k=k_{max}$, $counter_jumps=1$ and $counter_Joops=1$. Otherwise if $counter_jumps=\overline{k}$ set k=k-1. If k=0 set $k=k_{max}$, $counter_jumps=1$, $counter_Joops=counter_Joops+1$

Figure 15: The VNS_FEASIBLE algorithm

4 Computational Experiments

The computational experiments have been made on the set of 320 benchmark instances published in Chao, Golden and Wasil (1996). The results produced by our algorithms have been compared with those produced by the algorithm of Chao, Golden and Wasil (1996), from now on CGW algorithm, and with those produced by the algorithm of Tang and Miller-Hooks (2005), from now on TMH algorithm. We did not compare the algorithms with Tsiligirides algorithm (Tsiligirides, 1984), because it has been shown to be dominated

by the CGW or TMH in Tang and Miller-Hooks (2005). The experiments have been run on a personal computer Intel Pentium 4 with 2.80GHz and 1048GB Ram. The values of the solutions obtained by CGW and TMH algorithms have been taken from Tang and Miller-Hooks (2005).

The stopping criterion we have chosen for the GENERALIZED_TABU_FEASIBLE and for the GENERALIZED_TABU_PENALTY is a total number of 3 jumps. In other words, the sequence of operations described in Figures 13 and 14 is repeated three times. We tested two versions of VNS_FEASIBLE, a SLOW VNS_FEASIBLE and a FAST VNS_FEASIBLE. In the SLOW VNS_FEASIBLE the parameter k_{max} has been set to $\frac{2}{3}(n-2)$, the parameter \overline{k} has been set to 3 and the maximum number of loops maxloops to 10. In the FAST VNS_FEASIBLE we set $k_{max} = \frac{n-2}{3}$, $\overline{k} = 1$ and maxloops = 3.

In all the test instances, the starting point of each tour is different from the ending point. The total number of vertices n includes the starting and ending points. The 320 instances include seven sets. The number of vertices is n=32 in set 1, n=21 in set 2, n=33 in set 3, n=100 in set 4, n=66 in set 5, n=64 in set 6 and n=102 in set 7. In each set, an instance is characterized by a number of vehicles m, which varies between 2 and 4, and a different value of the time limit T_{max} . On 121 of the 320 instances all the tested algorithms have obtained the same solution. We report in the following tables only the results we obtained on the set of 199 remaining instances. The 199 instances are distributed among the sets as follows: 9 in set 1, 3 in set 2, 29 in set 3, 53 in set 4, 48 in set 5, 11 in set 6 and 46 in set 7. A detailed table of results for all the test instances, together with the instances themselves, can be found at the web site www-c.eco.unibs.it/ \sim archetti/TOP.zip.

We have made some preliminary tests to determine the length of the tabu list TL. On the basis of the results of these tests, we have determined

$$TL = \lfloor \frac{\sqrt{\beta*random}}{4} + n\lceil \sqrt{m} \rceil \theta \rfloor$$

where:

- $\beta = n$ multiplied by the number of routes created in the initial solution;
- random = a random number in (0, 1];
- θ = multiplier which takes value $\frac{1}{8}$ in GENERALIZED_TABU_FEASIBLE and GENERALIZED_TABU_PENALTY, and value $\frac{1}{16}$ in VNS_FEASIBLE.

In Tables 1, 2, 3 and 4 the value of the solution obtained by the different tested algorithms is shown for sets 1-3, for set 4, for set 5 and for sets 6 and 7, respectively. The best results are indicated with bold numbers. On each instance, three runs have been executed for each of the algorithms that include random choices. With zmin and zmax we denoted the minimum and the maximum value of the objective function obtained. The value zmin can

be seen as a sort of guaranteed value, related to the robustness of the algorithm with respect to the random choices. The value zmax is a value related to the ability of the algorithm to reach good solutions. It is obtained by running the algorithm more than once (three times in our experiments) and taking advantage of the randomness, at the expense of an increase of the computational time. We will see later than the computational time of a run is rarely larger than 10 minutes and, thus, the increase of the computational time due to multiple runs is acceptable. A summarized view of the results is provided in Table 5. In the first row the number of best solutions found by each algorithm over all the 199 instances is shown. The average and the maximum error over all the instances are shown in the second and third row. In the fourth and fifth row each algorithm is compared to CGW and TMH algorithms, respectively. Finally, the last row shows the number of times each algorithm has obtained a solution strictly better than both CGW and TMH algorithms. From this table it can be seen that each of the proposed algorithms improves on the average the performance of CGW and TMH algorithms. The best of the proposed algorithms turns out to be the SLOW VNS_FEASIBLE.

Finally, Table 6 shows the average and maximum computational time required by each algorithm for a run over the instances of the various sets. The CGW algorithm was run on a SUN 4/730 Workstation, while TMH was run on a DEC Alpha XP1000 computer.

In conclusion, the SLOW VNS_FEASIBLE requires in the worst case less than 20 minutes. The GENERALIZED_TABU_FEASIBLE and the GENERALIZED_TABU_PENALTY require a similar computational time, in most cases less than 10 minutes. The time required by the FAST VNS_FEASIBLE is only in one case slightly above 2 minutes. This latter algorithm is an excellent compromise between solution quality and computational effort.

Conclusions

The Team Orienteering Problem (TOP) is the problem where a set of customers may be visited, with a profit guaranteed for each visit. A team of people/vehicles is available and each member of the team can visit any set of customers within a given time limit. The profit of each customer can be collected by one person/vehicle at most. The problem combines the decision of which customers to select with the decision of how to plan the routes. Such decisions might be taken separately, by first selecting the subset of customers to serve and then solving a Vehicle Routing Problem. The sequential solution of the two sub-problems would provide the TOP with a feasible but typically suboptimal solution.

In this paper we presented effective meta-heuristics for the TOP. A variable neirghborhood search algorithm turned out to be more efficient and effective for this problem than two tabu search algorithms. Each proposed algorithm outperformed the previously known heuristics.

Future research will be devoted to extend the proposed meta-heuristics to other VRPs and TSPs with profits.

References

- [1] Butt, S.E., Cavalier, T.M. (1994), A heuristic for the multiple tour maximum collection problem, *Computers and Operations Research* 21, 101-111.
- [2] Chao, I-M., Golden, B., Wasil, E.A. (1996), The team orienteering problem, European Journal of Operational Research 88, 464-474.
- [3] Golden, B., Assad, A., Dahl, R. (1984), Analysis of a large scale vehicle routing problem with an inventory component, *Large Scale Systems* 7, 181-190.
- [4] Feillet, D., Dejax, P., Gendreau, M. (2004), Traveling salesman problems with profits, to appear in *Transportation Science*.
- [5] Gendreau, M., Hertz, A., Laporte, G. (1994), A tabu search heuristic for the vehicle routing problem, Management Science 40, 1276-1290.
- [6] Golden, B., Assad, A., Dahl, R. (1984), Analysis of a large scale vehicle routing problem with an inventory component, *Large Scale Systems* 7, 181-190.
- [7] Golden, B., Levy, L., Vohra, R. (1987), The orienteering problem, *Naval Research Logistics* 34, 307-318.
- [8] Glover F. (1986), Future paths for integer programming and links to artificial intelligence, Computers and Operations Research, 5, 533-549.
- [9] Glover, F., Laguna, M. (eds.), Tabu Search, Kluwer Academic Publishers (1997).
- [10] Hansen, P., Mladenović, N. (1999), An introduction to variable neighborhood search, in S. Voss et al. (eds.) Metaheuristics, advances and trends in local search paradigms for optimization, Kluwer Academic Publishers, Dordrecht, 433-458.
- [11] Lin, S. (1965), Computer solutions of the traveling salesman problem, Bell System Tech. J. 44, 2245-2269.
- [12] Mladenović, N., Hansen, P. (1997), Variable neighborhood search, Computers and Operations Research 24, 1097-1100.
- [13] Tang, H., Miller-Hooks, E. (2005), A tabu search heuristic for the team orienteering problem, *Computers and Operations Research* 32, 1379-1407.

- [14] Tsiligirides, T. (1984), Heuristic methods applied to orienteering, *Journal of the Operational Research Society* 35, 797-809.
- [15] Toth, P., Vigo, D. (eds.), The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (2002).

	GEN_TABL	U_PENALTY	GEN_TABL	J_FEASIBLE	FAST VNS	FEASIBLE SLOW VNS_FEASIBLE				
instance	z min	z max	z min	z max	z min	z max	z min	z max	ТМН	CGW
p1.2.i	135	135	135	135	135	135	135	135	135	130
p1.2.l	190	195	195	195	195	195	195	195	190	190
p1.3.h	70	70	70	70	70	70	70	70	70	75
p1.3.m	175	175	175	175	175	175	175	175	170	175
p1.3.o	205	205	205	205	205	205	205	205	205	215
p1.3.p	220	220	220	220	220	220	220	220	220	215
p1.4.j	75	75	75	75	75	75	75	75	75	70
p1.4.o	165	165	165	165	165	165	165	165	165	160
p1.4.p	175	175	175	175	175	175	175	175	175	160
p2.2.k	275	275	275	275	275	275	275	275	270	270
p2.3.g	145	145	145	145	145	145	145	145	140	140
p2.3.h	165	170	165	165	165	165	165	165	165	165
p3.2.c	180	180	180	180	180	180	180	180	180	170
p3.2.e	260	260	260	260	260	260	260	260	250	260
p3.2.f	300	300	300	300	300	300	300	300	290	300
p3.2.g	360	360	360	360	360	360	360	360	350	350
p3.2.h	400	410	400	410	400	410	410	410	410	390
p3.2.i	450	460	460	460	460	460	460	460	460	440
p3.2.j	510	510	510	510	510	510	510	510	490	470
p3.2.k	550	550	550	550	550	550	550	550	540	540
p3.2.m	610	620	620	620	620	620	620	620	620	620
p3.2.n	650	660	650	660	660	660	660	660	660	660
p3.2.o	680	690	690	690	690	690	690	690	690	680
p3.2.p	710	720	720	720	720	720	720	720	710	710
p3.2.q	750	750	760	760	760	760	760	760	760	750
p3.2.r	770	770	780	790	780	790	790	790	780	780
p3.3.k	440	440	440	440	440	440	440	440	430	430
p3.3.l	480	480	480	480	480	480	480	480	470	470
p3.3.m	520	520	520	520	520	520	520	520	510	520
p3.3.n	570	570	570	570	570	570	570	570	550	550
p3.3.o	590	590	590	590	590	590	590	590	590	580
p3.3.p	640	640	640	640	640	640	640	640	640	620
p3.3.q	680	680	680	680	680	680	680	680	680	630
p3.3.s	720	720	700	720	720	720	720	720	710	710
p3.3.t	760	760	760	760	760	760	760	760	750	720
p3.4.f	190	190	190	190	190	190	190	190	190	180
p3.4.i	270	270	270	270	270	270	270	270	260	260
p3.4.j	310	310	310	310	310	310	310	310	310	300
p3.4.m	390	390	390	390	390	390	390	390	380	380
p3.4.o	490	500	500	500	490	500	500	500	490	490
p3.4.p	560	560	560	560	560	560	560	560	560	530

Table 1: Results for sets 1-3

P4.2.a 206 206 206 206 206 206 206 206 202 204 202 204 202 204 202 204 202 204 202 204 203 204 2		GEN_TAB	U_PENALTY	GEN_TABU	_FEASIBLE	FAST VNS	FEASIBLE	SLOW VNS	_FEASIBLE		
P4.2.c	instance	z min	z max	z min	z max	z min	z max	z min	z max	ТМН	CGW
P4.2.d S28 S30 S31 S31 S27 S31 S31 S31 S31 S31 S31 P4.2.e S599 S618 S613 S612 S618	p4.2.a	206	206	206	206	206	206	206	206	202	194
p42.e 599	p4.2.c	452	452	452	452	452	452	452	452	438	440
P4.2.1	p4.2.d	528	530	531	531	527	531	531	531	517	531
P4.2.g	p4.2.e	599	618	613	613	612	618	618	618	593	580
P4.2.h	p4.2.f	676	687	672	676	672	684	677	687	666	669
p4.2.i	p4.2.g	747	751	751	756	745	750	750	753	749	737
p4.2.j 933 946 937 962 954 962 962 962 962 941 8	p4.2.h	793	795	804	820	818	827	827	835	827	807
p4.2.k	p4.2.i	882	882	886	899	857	916	918	918	915	858
p4.2. 1058 1061 1054 1058 1052 1073 1074 1074 1022 1 p4.2.m 1095 1106 1048 1098 1132 1132 1132 1132 1132 1089 1 p4.2.n 1053 1169 1155 1171 1134 1159 1167 1171 1150 1 p4.2.o 1149 1180 1162 1192 1194 1216 1207 1218 1175 1 p4.2.p 1194 1226 1225 12250 12251 1250 1255 1258 1265 1263 1263 1263 1255 1 p4.2.r 1280 1281 1281 1283 1275 1283 1286 1266 1277 1 p4.2.s 1296 1296 1299 1299 1298 1300 1300 1301 1294 1 p4.2.t 1306 130	p4.2.j	933	946	937	962	954	962	962	962	914	899
p4.2.m 1095 1106 1048 1098 1098 1132 1132 1132 1089 1 p4.2.n 1053 1169 1155 1171 1134 1159 1167 1171 1150 1 p4.2.0 1149 1180 1162 1192 1194 1216 1207 1218 1175 1 p4.2.q 1252 1250 1255 1258 1265 1263 1263 1255 1263 1263 1263 1263 1265 1263 1263 1255 1268 1277 1280 1281 1281 1283 1275 1283 1266 1286 1277 1 194.2.1 1306 1306 1306 1300 1300 1301 1294 1294 1294 1300 1300 1301 1294 1294 1294 1300 1300 1301 1301 1294 1294 1294 1294 1294 1294 1294 1294	p4.2.k	1008	1013	986	1013	1001	1019	1019	1022	963	932
p4.2.n	p4.2.l	1058	1061	1054	1058	1052	1073	1074	1074	1022	1003
p4.2.0	p4.2.m	1095	1106	1048	1098	1098	1132	1132	1132	1089	1039
p4.2.p	p4.2.n	1053	1169	1155	1171	1134	1159	1167	1171	1150	1112
p4.2.q 1252 1252 1250 1255 1258 1265 1263 1263 1255 1 1286 1281 1281 1283 1275 1283 1286 1286 1277 1 1 1286 1286 1277 1 1 1286 1286 1277 1 1 1 1286 1286 1286 1277 1	p4.2.o	1149	1180	1162	1192	1194	1216	1207	1218	1175	1147
p4.2.r 1280 1281 1281 1283 1275 1283 1286 1286 1277 1 p4.2.s 1296 1296 1299 1299 1298 1300 1300 1301 1294 1 p4.3.c 1330 1306<	p4.2.p	1194	1226	1225	1239	1227	1239	1236	1241	1208	1199
p4.2.s 1296 1296 1299 1299 1298 1300 1300 1301 1294 1 p4.2.t 1306 <t< td=""><td>p4.2.q</td><td>1252</td><td>1252</td><td>1250</td><td>1255</td><td>1258</td><td>1265</td><td>1263</td><td>1263</td><td>1255</td><td>1242</td></t<>	p4.2.q	1252	1252	1250	1255	1258	1265	1263	1263	1255	1242
p4.2.t 1306 1428 142 144. 193 192 194 194 108 168 468 468 468 468 468 468 468 468 468 468 468 468 468 468 468	p4.2.r	1280	1281	1281	1283	1275	1283	1286	1286	1277	1199
p4.3.c 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 193 192 p43.d 243.d 335	p4.2.s	1296	1296	1299	1299	1298	1300	1300	1301	1294	1286
p4.3.d 334 335 335 335 333 335 335 335 335 333 335 335 333 335 335 333 335 335 333 335 335 333 335 335 333 335 34 944 26 42 <td>p4.2.t</td> <td>1306</td> <td>1306</td> <td>1306</td> <td>1306</td> <td>1306</td> <td>1306</td> <td>1306</td> <td>1306</td> <td>1306</td> <td>1299</td>	p4.2.t	1306	1306	1306	1306	1306	1306	1306	1306	1306	1299
p4.3.e 468 468 468 468 461 468 799 806<	p4.3.c	193	193	193	193	193	193	193	193	192	191
p4.3.f 579 879 809 806 806 806 806 806 806 806 806 806 806 807 785 975 9778 9919 919 919 919 919 919 919 919 919 919 919 91	p4.3.d	334	335	335	335	333	335	335	335	333	333
p4.3.g 649 651 652 652 647 653 653 653 646 6 p4.3.h 722 722 727 727 715 724 728 729 709 806 </td <td>p4.3.e</td> <td>468</td> <td>468</td> <td>468</td> <td>468</td> <td>461</td> <td>468</td> <td>468</td> <td>468</td> <td>465</td> <td>432</td>	p4.3.e	468	468	468	468	461	468	468	468	465	432
p4.3.h 722 722 727 727 715 724 728 729 709 709 p4.3.i 799 806 806 806 806 807 785 785 785 785 785 785 785 786 785 785 786 785 788 785 788 861 859 861 860 860 807 785 785 788 789 986 861 859 861 860 860 807 785 788 978 991 919 919 919 919 919 906 80 908 919 904 918 912 919 919 906 80 806 </td <td>p4.3.f</td> <td>579</td> <td>579</td> <td>579</td> <td>579</td> <td>579</td> <td>579</td> <td>579</td> <td>579</td> <td>579</td> <td>552</td>	p4.3.f	579	579	579	579	579	579	579	579	579	552
p4.3.i 799 806 806 806 799 806 807 785<	p4.3.g	649	651	652	652	647	653	653	653	646	623
p4.3.j 855 858 844 858 855 861 859 861 860 8 p4.3.k 908 919 904 918 912 919 919 919 906 8 p4.3.l 972 976 970 973 955 975 975 978 951 95 p4.3.m 1020 1034 1037 1049 1033 1056 1034 1063 1005 95 p4.3.n 1080 1108 1093 1115 1092 1111 1121 1119 1 p4.3.o 1134 1156 1142 1157 1168 1172 1149 1170 1151 1 p4.3.p 1164 1207 1200 1221 1184 1208 1199 1222 1218 1 p4.3.q 1183 1237 1237 1241 1227 1250 1240 1251 1249 1	p4.3.h	722	722	727	727	715	724	728	729	709	717
p4.3.k 908 919 904 918 912 919 919 919 906 8 p4.3.I 972 976 970 973 955 975 975 978 951 9 p4.3.m 1020 1034 1037 1049 1033 1056 1034 1063 1005 9 p4.3.n 1080 1108 1093 1115 1092 1111 1121 1119 1 p4.3.o 1134 1156 1142 1157 1168 1172 1149 1170 1151 1 p4.3.p 1164 1207 1200 1221 1184 1208 1199 1222 1218 1 p4.3.r 1222 1224 1261 1269 1262 1272 1262 1272 1265 1 1249 1 1262 1272 1262 1272 1265 1 1281 1 1249 1 1266	p4.3.i	799	806	806	806	799	806	806	807	785	798
p4.3.I 972 976 970 973 955 975 975 978 951 9 p4.3.m 1020 1034 1037 1049 1033 1056 1034 1063 1005 9 p4.3.n 1080 1108 1093 1115 1092 1111 1121 1121 1119 1 p4.3.o 1134 1156 1142 1157 1168 1172 1149 1170 1151 1 p4.3.p 1164 1207 1200 1221 1184 1208 1199 1222 1218 1 p4.3.q 1183 1237 1237 1241 1227 1250 1240 1251 1249 1 p4.3.r 1222 1224 1261 1269 1262 1272 1262 1272 1262 1272 1265 1 1249 1266 1289 1280 1293 1282 1 1240 1293	p4.3.j	855	858	844	858	855	861	859	861	860	829
p4.3.m 1020 1034 1037 1049 1033 1056 1034 1063 1005 9 p4.3.n 1080 1108 1093 1115 1092 1111 1121 1121 1119 1 p4.3.o 1134 1156 1142 1157 1168 1172 1149 1170 1151 1 p4.3.p 1164 1207 1200 1221 1184 1208 1199 1222 1218 1 p4.3.q 1183 1237 1237 1241 1227 1250 1240 1251 1249 1 p4.3.r 1222 1224 1261 1269 1262 1272 1262 1272 1265 1 1249 1 1266 1289 1280 1293 1282 1 1285 1294 1266 1289 1298 1298 1298 1298 1298 1298 1298 1298 1298 1298 1298	p4.3.k	908	919	904	918	912	919	919	919	906	889
p4.3.n 1080 1108 1093 1115 1092 1111 1121 1121 1119 1 p4.3.o 1134 1156 1142 1157 1168 1172 1149 1170 1151 1 p4.3.p 1164 1207 1200 1221 1184 1208 1199 1222 1218 1 p4.3.q 1183 1237 1237 1241 1227 1250 1240 1251 1249 1 p4.3.r 1222 1224 1261 1269 1262 1272 1262 1272 1265 1 p4.3.r 1220 1224 1261 1269 1262 1272 1262 1272 1265 1 p4.3.r 1227 1303 1297 1304 1298 1289 1280 1293 1282 1 p4.3.r 1297 1303 1297 1304 1298 1298 1298 1293 128	p4.3.l	972	976	970	973	955	975	975	978	951	946
p4.3.o 1134 1156 1142 1157 1168 1172 1149 1170 1151 1 p4.3.p 1164 1207 1200 1221 1184 1208 1199 1222 1218 1 p4.3.q 1183 1237 1237 1241 1227 1250 1240 1251 1249 1 p4.3.r 1222 1224 1261 1269 1262 1272 1262 1272 1262 1272 1265 1	p4.3.m	1020	1034	1037	1049	1033	1056	1034	1063	1005	956
p4.3.p 1164 1207 1200 1221 1184 1208 1199 1222 1218 1 p4.3.q 1183 1237 1237 1241 1227 1250 1240 1251 1249 1 p4.3.r 1222 1224 1261 1269 1262 1272 1262 1272 1265 1 p4.3.s 1250 1250 1285 1294 1266 1289 1280 1293 1282 1 p4.3.t 1297 1303 1297 1304 1298 1298 1298 1304 1288 1 p4.4.e 183 <td>p4.3.n</td> <td>1080</td> <td>1108</td> <td>1093</td> <td>1115</td> <td>1092</td> <td>1111</td> <td>1121</td> <td>1121</td> <td>1119</td> <td>1018</td>	p4.3.n	1080	1108	1093	1115	1092	1111	1121	1121	1119	1018
p4.3.q 1183 1237 1237 1241 1227 1250 1240 1251 1249 1 1249 1 1250 1250 1251 1249 1 1262 1272 1262 1272 1262 1272 1265 1 1 1 1265 1 1 1266 1289 1280 1293 1282 1 <td< td=""><td>p4.3.o</td><td>1134</td><td>1156</td><td>1142</td><td>1157</td><td>1168</td><td>1172</td><td>1149</td><td>1170</td><td>1151</td><td>1078</td></td<>	p4.3.o	1134	1156	1142	1157	1168	1172	1149	1170	1151	1078
p4.3.r 1222 1224 1261 1269 1262 1272 1262 1272 1262 1272 1265 1	p4.3.p	1164	1207	1200	1221	1184	1208	1199	1222	1218	1115
p4.3.s 1250 1250 1285 1294 1266 1289 1280 1293 1282 1 1297 1303 1297 1304 1298 1298 1298 1298 1304 1288 1 1 1288 1 1 1298	p4.3.q	1183	1237	1237	1241	1227	1250	1240	1251	1249	1222
p4.3.t 1297 1303 1297 1304 1298 1298 1298 1304 1288 1 1298 1298 1304 1288 1 1298 1298 1304 1288 1 1 1298 1298 1298 1304 1288 1	p4.3.r	1222	1224	1261	1269	1262	1272	1262	1272	1265	1225
p4.4.e 183 184 324 324 324 324 324 324 324 324 324 324 324 461 461 461 461<	p4.3.s	1250	1250	1285	1294	1266	1289	1280	1293	1282	1239
p4.4.f 324 426 427<	p4.3.t	1297	1303	1297	1304	1298	1298	1298	1304	1288	1285
p4.4.g 461<	p4.4.e	183			183					182	182
p4.4.g 461<			324	324	324	324	324				304
p4.4.i 654 655 656 657 653 657 657 657 628 821 821 821<											460
p4.4.i 654 655 656 657 653 657 657 657 628 821 821 821<	p4.4.h	571	571	571	571	571	571	571	571	554	545
p4.4.j 729 731 728 731 723 732 821 821 821 821 821 821 821 821 821 821 821 821 823 824 821 821 821<						653				627	641
p4.4.I 877 878 876 878 876 879 879 880 875 8 p4.4.m 913 916 914 918 914 916 916 919 910 8 p4.4.n 966 972 962 976 961 968 968 968 977 9	p4.4.j	729	731	728	731	723	732	732	732	732	697
p4.4.m 913 916 914 918 914 916 916 919 910 8 p4.4.n 966 972 962 976 961 968 968 968 977 967	p4.4.k	815	821	816	816	819	821	821	821	819	770
p4.4.m 913 916 914 918 914 916 916 919 910 8 p4.4.n 966 972 962 976 961 968 968 968 977 967	p4.4.l									875	847
p4.4.n 966 972 962 976 961 968 968 968 977 9				914							895
	p4.4.n			962						977	932
	p4.4.o									1014	995
										1056	996
				1144						1124	1084
	p4.4.r	1188		1202						1165	1155
											1230
											1253

Table 2: Results for set 4

	GEN_TABU	_PENALTY	GEN_TABU	FEASIBLE	FAST VNS	FEASIBLE	SLOW VNS	FEASIBLE		
instance	z min	z max	TMH	CGW						
p5.2.e	180	180	180	180	180	180	180	180	180	175
p5.2.g	320	320	320	320	315	320	320	320	320	315
p5.2.h	410	410	410	410	410	410	410	410	410	395
p5.2.j	580	580	580	580	580	580	580	580	560	580
p5.2.l	800	800	800	800	800	800	800	800	770	790
p5.2.m	855	860	860	860	860	860	860	860	860	855
p5.2.n	920	925	925	925	925	925	925	925	920	920
p5.2.o	1020	1020	1020	1020	1020	1020	1020	1020	975	1010
p5.2.p	1100	1130	1150	1150	1150	1150	1150	1150	1090	1150
p5.2.q	1165	1195	1195	1195	1190	1195	1195	1195	1185	1195
p5.2.r	1255	1260	1260	1260	1260	1260	1260	1260	1260	1250
p5.2.s	1300	1330	1320	1340	1340	1340	1340	1340	1310	1310
p5.2.t	1360	1380	1400	1400	1400	1400	1400	1400	1380	1380
p5.2.u	1405	1440	1450	1460	1460	1460	1460	1460	1445	1450
p5.2.v	1465	1490	1505	1505	1500	1500	1505	1505	1500	1490
p5.2.w	1525	1555	1560	1565	1560	1560	1560	1560	1560	1545
p5.2.x	1590	1595	1600	1610	1590	1590	1595	1610	1610	1600
p5.2.y	1600	1635	1635	1635	1635	1635	1635	1635	1630	1635
p5.2.z	1655	1670	1670	1680	1670	1670	1670	1670	1665	1680
p5.3.e	95	95	95	95	95	95	95	95	95	110
p5.3.h	260	260	260	260	260	260	260	260	260	255
p5.3.k	495	495	495	495	495	495	495	495	495	480
p5.3.l	595	595	595	595	585	595	595	595	575	595
p5.3.n	750	755	755	755	745	755	755	755	755	755
p5.3.o	870	870	870	870	870	870	870	870	835	870
p5.3.q	1065	1070	1070	1070	1070	1070	1070	1070	1065	1060
p5.3.r	1105	1110	1125	1125	1125	1125	1125	1125	1115	1105
p5.3.s	1185	1185	1190	1190	1190	1190	1190	1190	1175	1175
p5.3.t	1245	1250	1260	1260	1255	1260	1260	1260	1240	1250
p5.3.u	1340	1340	1345	1345	1345	1345	1345	1345	1330	1330
p5.3.v	1410	1420	1420	1425	1415	1425	1425	1425	1410	1400
p5.3.w	1475	1485	1485	1485	1475	1485	1485	1485	1465	1450
p5.3.x	1530	1555	1540	1555	1540	1555	1550	1555	1530	1530
p5.3.y	1575	1590	1590	1595	1590	1595	1595	1595	1580	1580
p5.3.z	1615	1625	1635	1635	1635	1635	1635	1635	1635	1635
p5.4.m	550	555	555	555	550	555	555	555	555	495
p5.4.o	685	690	690	690	690	690	690	690	680	675
p5.4.p	765	765	765	765	760	765	765	765	760	750
p5.4.q	840	860	860	860	860	860	860	860	860	860
p5.4.r	955	960	960	960	960	960	960	960	960	950
p5.4.s	1025	1025	1030	1030	1025	1030	1030	1030	1000	1020
p5.4.t	1160	1160	1160	1160	1160	1160	1160	1160	1100	1160
p5.4.u	1300	1300	1300	1300	1300	1300	1300	1300	1275	1260
p5.4.v	1320	1320	1320	1320	1320	1320	1320	1320	1310	1310
p5.4.w	1370	1375	1385	1390	1380	1390	1385	1390	1380	1380
p5.4.x	1435	1440	1450	1450	1450	1450	1450	1450	1410	1420
p5.4.y	1510	1520	1520	1520	1520	1520	1520	1520	1520	1490
p5.4.z	1595	1620	1620	1620	1620	1620	1620	1620	1575	1545

Table 3: Results for set 5

	GEN_TAB	U_PENALTY	GEN_TABL	_FEASIBLE	FAST VNS	FEASIBLE	SLOW VNS	_FEASIBLE		
instance	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
p6.2.j	936	948	948	948	948	948	948	948	936	942
p6.2.l	1092	1098	1104	1110	1116	1116	1116	1116	1116	1104
p6.2.m	1146	1164	1188	1188	1170	1188	1188	1188	1188	1176
p6.2.n	1224	1242	1260	1260	1242	1260	1242	1260	1260	1242
p6.3.i	642	642	642	642	642	642	642	642	612	642
p6.3.k	894	894	894	894	894	894	894	894	876	894
p6.3.l	984	1002	1002	1002	1002	1002	1002	1002	990	972
p6.3.m	1074	1080	1080	1080	1080	1080	1080	1080	1080	1080
p6.3.n	1152	1170	1170	1170	1170	1170	1170	1170	1152	1158
p6.4.k	528	528	528	528	528	528	528	528	522	546
p6.4.l	684	696	696	696	696	696	696	696	696	690
p7.2.e	290	290	290	290	289	289	290	290	290	275
p7.2.f	387	387	387	387	384	387	387	387	382	379
p7.2.g	456	456	457	459	457	459	459	459	459	453
p7.2.h	519	520	519	520	518	521	521	521	521	517
p7.2.i	578	579	578	579	574	575	579	579	578	576
p7.2.j	641	643	644	644	636	643	644	644	638	633
p7.2.k	702	702	704	705	695	704	702	705	702	693
p7.2.l	758	758	759	767	758	759	767	767	767	758
p7.2.m	818	827	818	824	821	824	821	827	817	811
p7.2.n	884	884	888	888	863	883	884	888	864	864
p7.2.o	925	933	941	945	922	945	945	945	914	934
p7.2.p	992	1000	994	1002	1002	1002	1000	1002	987	987
p7.2.q	1040	1041	1042	1043	1021	1038	1043	1044	1017	1031
p7.2.r	1081	1091	1080	1088	1080	1094	1094	1094	1067	1082
p7.2.s	1117	1123	1124	1128	1127	1136	1136	1136	1116	1127
p7.2.t	1149	1172	1165	1174	1161	1168	1179	1179	1165	1173
p7.3.e	175	175	175	175	175	175	175	175	175	163
p7.3.f	247	247	247	247	247	247	247	247	247	235
p7.3.g	344	344	344	344	344	344	344	344	344	338
p7.3.h	425	425	425	425	425	425	425	425	416	419
p7.3.i	484	487	487	487	487	487	487	487	481	466
p7.3.j	557	564	560	564	556	562	562	564	563	539
p7.3.k	626	633	632	633	619	632	632	633	632	602
p7.3.l	678	683	673	679	666	681	681	681	681	676
p7.3.m	737	749	741	755	727	745	744	762	756	754
p7.3.n	798	810	805	811	808	814	813	820	789	813
p7.3.o	857	873	862	865	859	871	873	874	874	848
p7.3.p	910	917	916	923	906	926	923	927	922	919
p7.3.q	965	976	971	987	969	978	987	987	966	943
p7.3.r	1016	1018	1012	1022	1022	1024	1022	1022	1011	1008
p7.3.s	1070	1081	1068	1081	1046	1079	1068	1079	1061	1064
p7.3.t	1106	1114	1112	1116	1110	1112	1110	1115	1098	1095
p7.4.f	164	164	164	164	164	164	164	164	164	156
p7.4.g	217	217	217	217	217	217	217	217	217	209
p7.4.h	285	285	285	285	285	285	285	285	285	283
p7.4.i	366	366	366	366	366	366	366	366	359	338
p7.4.k	517	520	518	520	514	518	518	520	503	516
p7.4.l	585	590	588	588	575	588	590	590	576	562
p7.4.m	639	644	645	646	639	646	646	646	643	610
p7.4.n	717	723	712	721	699	715	715	730	726	683
p7.4.o	765	772	770	778	757	770	760	781	776	728
p7.4.p	829	841	833	839	828	846	842	846	832	801
p7.4.q	891	902	895	898	896	899	905	906	905	882
p7.4.r	957	970	969	969	959	970	970	970	966	886
p7.4.s	1012	1021	1014	1020	1010	1021	1014	1022	1019	990
p7.4.t	1068	1071	1069	1071	1048	1077	1071	1077	1067	1066
μ	. 300	. 37.1			. 5 . 5				. 507	. 000

Table 4: Results for sets 6-7

	GEN_TABL	GEN_TABU_PENALTY		GEN_TABU_FEASIBLE		FAST VNS_FEASIBLE		SLOW VNS_FEASIBLE		
	z min	z max	z min	z max	z min	z max	z min	z max	TMH	CGW
# best solution found	64	109	106	141	92	138	138	180	52	25
Average error with respect to best	1.27	0.57	0.72	0.33	0.90	0.31	0.36	0.18	1.54	2.80
Maximum error with respect to best	13.64	13.64	13.64	13.64	13.64	13.64	13.64	13.64	13.64	11.07
# better than or equal to CGW	156	177	184	194	172	190	192	194	157	
# better than or equal toTMH	131	167	166	184	152	186	184	198		76
# better than CGW and TMH	71	101	95	115	79	113	109	125		

Table 5: Summary of results over 199 instances

	GEN_TABU_PENALTY		GEN_TABU_FEASIBLE		FAST VNS_FEASIBLE		SLOW VNS_F	EASIBLE		
	Average CPU	Max CPU	Average CPU	Max CPU	Average CPU	Max CPU	Average CPU	Max CPU	TMH	CGW
Set 1	4.67	10.00	1.63	5.00	0.13	1.00	7.78	22.00	N.A.	15.41
Set 2	0.00	0.00	0.00	0.00	0.00	0.00	0.03	1.00	N.A.	0.85
Set 3	6.03	10.00	1.59	9.00	0.15	1.00	10.19	19.00	N.A.	15.37
Set 4	105.29	612.00	282.92	324.00	22.52	121.00	457.89	1118.00	796.70	934.80
Set 5	69.45	147.00	26.55	105.00	34.17	30.00	158.93	394.00	71.30	193.70
Set 6	66.29	96.00	20.19	48.00	8.74	20.00	147.88	310.00	45.70	150.10
Set 7	158.97	582.00	256.76	514.00	10.34	90.00	309.87	911.00	432.60	841.40

Table 6: Computational times