Analyse comparée d'arbres taxonomiques

C. Réda sous la direction de M. Nikolski & M. Raffinot

CGFB, équipe CBIB, Bordeaux

du 1er juin au 27 juillet 2016

- Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

Informations sur le stage

- Lieu: Centre de Génomique Fonctionnelle (CGFB)
- <u>Equipe</u>: Centre de BioInformatique (CBIB)
- Dates : du 1^{er} juin au 27 juillet 2016

- └ Organisation
 - 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
 - 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
 - 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
 - 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
 - 5 Conclusion
 - 6 Bibliographie

■ Une dizaine de logiciels de bioinformatique, dont Tango;

- Une dizaine de logiciels de bioinformatique, dont Tango;
- Participation et 3^{eme} place au concours international **Dream** Challenge ;

- Une dizaine de logiciels de bioinformatique, dont Tango;
- Participation et 3^{eme} place au concours international **Dream** Challenge ;

Participation au projet Galaxy ;

- Une dizaine de logiciels de bioinformatique, dont Tango;
- Participation et 3^{eme} place au concours international **Dream** Challenge ;

- Participation au projet Galaxy ;
- Collaborations avec :
 - l'Inra de Bordeaux,

- Une dizaine de logiciels de bioinformatique, dont Tango;
- Participation et 3^{eme} place au concours international **Dream** Challenge ;

- Participation au projet Galaxy ;
- Collaborations avec :
 - l'Inra de Bordeaux,
 - le LaBRI.

- Une dizaine de logiciels de bioinformatique, dont Tango;
- Participation et 3^{eme} place au concours international **Dream** Challenge ;

- Participation au projet Galaxy ;
- Collaborations avec :
 - l'Inra de Bordeaux,
 - le LaBRI.
 - GenoToul Bioinformatique à Toulouse,

- Une dizaine de logiciels de bioinformatique, dont Tango;
- Participation et 3^{eme} place au concours international **Dream** Challenge ;

- Participation au projet Galaxy ;
- Collaborations avec :
 - l'Inra de Bordeaux,
 - le LaBRI.
 - GenoToul Bioinformatique à Toulouse,
 - et l'hôpital **Pellegrin** à Bordeaux.

- Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

Traitement du matériel génétique brut

■ Extraction de l'ADN par réaction chimique;

Traitement du matériel génétique brut

- Extraction de l'ADN par réaction chimique;
- Séquençage de l'ADN obtenu : obtention de la structure primaire de l'ADN.

Traitement du matériel génétique brut

- Extraction de l'ADN par réaction chimique;
- Séquençage de l'ADN obtenu : obtention de la structure primaire de l'ADN.

Next-Generation Sequencing (NGS)

Méthode rapide, relativement bon marché de séquençage de l'ADN, encline aux erreurs.

Donne des morceaux de séquences (reads) d'une longueur de 32 à 1 000 paires de bases.

Identification des reads à des espèces

■ Séquençage réalisé sur les gènes 16S;

Identification des reads à des espèces

- Séquençage réalisé sur les gènes 16S;
- Limites des régions hyper variables difficiles à évaluer;

CONSERVED REGIONS: unspecific applications

VARIABLE REGIONS: group or species-specific applications

Identification des reads à des espèces

- Séquençage réalisé sur les gènes 16S;
- Limites des régions hyper variables difficiles à évaluer;

CONSERVED REGIONS: unspecific applications

VARIABLE REGIONS: group or species-specific applications

Alignement des reads obtenus sur ces régions à des séquences de référence.

Contexte scientifique

Arbres taxonomiques

Arbre taxonomique

Graphe connexe acyclique non orienté de hauteur bornée, correspondant à l'histoire évolutive du monde vivant.

Arbres taxonomiques

Caractéristiques

- Plus un noeud est proche de la racine, moins son degré est grand;
- Nettement plus de feuilles que de noeuds internes;
- Assignation d'un read plus complexe qu'il n'y paraît.

- Sujet du stage
 - Contexte scientifique

Least Common Ancestor (LCA) de A et B

Dernier noeud de la partie commune des chemins de la racine jusqu'à A et B.

Existence d'algorithmes :

Existence d'algorithmes :

 améliorant l'alignement des reads aux séquences (Smith et Waterman, 1981);

Existence d'algorithmes :

- améliorant l'alignement des reads aux séquences (Smith et Waterman, 1981);
- améliorant l'assignation dans l'arbre des reads matchés (Clemente et al., 2011 : l'outil Tango);

Existence d'algorithmes :

- améliorant l'alignement des reads aux séquences (Smith et Waterman, 1981);
- améliorant l'assignation dans l'arbre des reads matchés (Clemente et al., 2011 : l'outil Tango);
- implémentant des mesures quantifiant la pertinence d'un arbre taxonomique (Robinson et Foulds, 1981)
- ...

Existence d'algorithmes :

- améliorant l'alignement des reads aux séquences (Smith et Waterman, 1981);
- améliorant l'assignation dans l'arbre des reads matchés (Clemente et al., 2011 : l'outil Tango);
- implémentant des mesures quantifiant la pertinence d'un arbre taxonomique (Robinson et Foulds, 1981)

Mais...

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

Problème des paires les plus dissemblables

Entrée:

 Une matrice d'occurrence des assignations dans les échantillons.

<u>Sortie</u>: L'ensemble des paires d'échantillons les plus dissemblables.

Problème de compatibilité de la classification

Entrée :

- Un sous-ensemble N de noeuds/bactéries;
- Un tableau contenant les noeuds matchés dans chaque échantillon;
- Un sous-ensemble M de métadonnées.

Sortie : Existe-t-il une correspondance entre N et M ?

Problème de meilleure classification

Entrée :

- Un tableau contenant les noeuds matchés dans chaque échantillon;
- Un sous-ensemble de métadonnées M.

 $\underline{\mathsf{Sortie}:} \ \mathsf{Un} \ \mathsf{sous\text{-}ensemble} \ \mathsf{N} \ \mathsf{de} \ \mathsf{noeuds} \ \mathsf{tel} \ \mathsf{que} \ \mathsf{N} \ \mathsf{ait} \ \mathsf{une} \\ \mathsf{correspondance} \ \mathsf{avec} \ \mathsf{M}.$

- Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

Rappel des problèmes

Problème des paires les plus dissemblables
 Sortie : L'ensemble des paires d'échantillons les plus dissemblables.

Distance calculée

Coefficient de similarité s

■ Si
$$MD(G_1) - MD(G_2) = 0$$
:
 $s(G_1, G_2) = TR(G_1, G_2) + PR(G_1, G_2)$

Sinon:

$$s(G_1, G_2) = TR(G_1, G_2) + PR(G_1, G_2) - |MD(G_1) - MD(G_2)|$$

Distance calculée

Coefficient de similarité s

■ Si
$$MD(G_1) - MD(G_2) = 0$$
:
 $s(G_1, G_2) = TR(G_1, G_2) + PR(G_1, G_2)$

Sinon:

$$s(G_1, G_2) = TR(G_1, G_2) + PR(G_1, G_2) - |MD(G_1) - MD(G_2)|$$

Coefficient de similarité \$\overline{s}\$

$$\overline{s}(G_1, G_2) = \frac{s(G_1, G_2) - E(s)}{\sigma(s)}$$

Problème : trouver des mesures pertinentes !

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

Rappel des problèmes

- Problème de compatibilité de la classification Sortie : Existe-t-il une correspondance entre N et M ?
- Problème de meilleure classification <u>Sortie</u>: Un sous-ensemble N de noeuds tel que N ait une correspondance avec M.

Quelques notions de Machine Learning

Machine Learning

Paradigme qui automatise la reconnaissance de certains motifs.

Quelques notions de Machine Learning

Machine Learning

Paradigme qui automatise la reconnaissance de certains motifs.

Apprentissage supervisé

Classification des données dans des catégories fixées, avec une connaissance *a priori* acquise sur un ensemble d'entraînement.

Le classificateur naïf bayésien

Classificateur naïf bayésien

Pour k classes disjointes de données $(C_i)_{1 \leq i \leq k}$, des critères $(F_i)_{1 \leq i \leq m}$, et une donnée d à classer, ayant $(F_i = x_i)_{1 \leq i \leq m}$, La classe de d est la classe C_j telle que:

$$P(C_j|F_1 = x_1, ..., F_m = x_m) = \max_{h \in \{1, ..., k\}} P(C_h|F_1 = x_1, ... F_m = x_m).$$

Calcul de la pertinence de la classification obtenue

Coefficient J de Youden

$$J(C) = \frac{TP(C)}{TP(C) + FN(C)} + \frac{TN(C)}{TN(C) + FP(C)} - 1.$$

Predicted Class

		r redicted Class		
		Yes	No	
Class	Yes	TP	FN	
Actual	No	FP	TN	

Calcul de la pertinence de la classification obtenue

Coefficient J de Youden

$$J(C) = \frac{TP(C)}{TP(C) + FN(C)} + \frac{TN(C)}{TN(C) + FP(C)} - 1.$$

		Predicted Class		
		Yes	No	
Class	Yes	TP	FN	
Actual	No	FP	TN	

Coefficient modifié pour k classes $(C_i)_{1 \le i \le k}$

Classification "optimale" : $k - \sum_{i=1}^{k} J(C_i)$ minimal, positif.

Etant donnés un ensemble de métadonnées M (et donc des classes induites par M) et de noeuds N :

Etant donnés un ensemble de métadonnées M (et donc des classes induites par M) et de noeuds N :

1 Entraînement du classificateur;

Etant donnés un ensemble de métadonnées M (et donc des classes induites par M) et de noeuds N :

- 1 Entraînement du classificateur;
- 2 Pour chaque échantillon non assigné, calcul des probabilités postérieures à chaque classe;

Le classificateur naïf bayésien

Classificateur naïf bayésien

$$P(C_j|F_1 = x_1, ..., F_m = x_m)$$

= $\max_{h \in \{1, ..., k\}} P(C_h|F_1 = x_1, ... F_m = x_m).$

Etant donnés un ensemble de métadonnées M (et donc des classes induites par M) et de noeuds N :

- 1 Entraînement du classificateur;
- 2 Pour chaque échantillon non assigné, calcul des probabilités postérieures à chaque classe;
- 3 Assignation de chaque échantillon à la classe qui maximise la probabilité précédente;

Etant donnés un ensemble de métadonnées M (et donc des classes induites par M) et de noeuds N :

- 1 Entraînement du classificateur;
- 2 Pour chaque échantillon non assigné, calcul des probabilités postérieures à chaque classe;
- 3 Assignation de chaque échantillon à la classe qui maximise la probabilité précédente;
- 4 Retour du coefficient J de Youden modifié associé à cette classification.

Etant donnés un ensemble de métadonnées M (et donc des classes induites par M) et de noeuds N :

- 1 Entraînement du classificateur;
- 2 Pour chaque échantillon non assigné, calcul des probabilités postérieures à chaque classe;
- 3 Assignation de chaque échantillon à la classe qui maximise la probabilité précédente;
- 4 Retour du coefficient J de Youden modifié associé à cette classification.

<u>Problème(s)</u>: Beaucoup d'hypothèses *a priori*, et de petites améliorations nécessaires pour gérer les cas limites!

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

Rappel des problèmes

Problème de meilleure classification
<u>Sortie</u>: Un sous-ensemble N de noeuds tel que N ait une correspondance avec M.

Notion de clustering

Apprentissage non supervisé

Identification des différentes classes de données, en étudiant la similarité entre les données.

Notion de clustering

Apprentissage non supervisé

Identification des différentes classes de données, en étudiant la similarité entre les données.

Clustering

Partition d'un ensemble de données, telle que :

- les parties obtenues minimisent la distance entre les objets d'un même groupe;
- la maximisent entre les objets de deux groupes différents.

Problème de clustering

Complexité du problème de partition en k *clusters* de *n* éléments

Le problème de k-partition de n éléments est NP-complet.

Problème de clustering

Complexité du problème de partition en k *clusters* de *n* éléments

Le problème de k-partition de n éléments est NP-complet.

Etapes de l'algorithme des K-moyennes

- 1 Initialisation des k clusters
- 2 Tant que les clusters sont modifiés pendant la boucle
 - Pour tout élément e de l'ensemble de départ
 - Déterminer le cluster C qui minimise la distance entre e et sa moyenne
 - Affecter e à C
 - Recalculer la moyenne de C

Soit T l'arbre taxonomique complet. Pour un certain read i:

■ *M_i*, ensemble de feuilles matchées par *i*;

- *M_i*, ensemble de feuilles matchées par *i*;
- T_i , sous-arbre de T enraciné au LCA des feuilles de M_i ;

- *M_i*, ensemble de feuilles matchées par *i*;
- T_i , sous-arbre de T enraciné au LCA des feuilles de M_i ;
- L_i , ensemble des feuilles de T_i ;

- *M_i*, ensemble de feuilles matchées par *i*;
- T_i , sous-arbre de T enraciné au LCA des feuilles de M_i ;
- L_i , ensemble des feuilles de T_i ;
- N_i , tel que $L_i = M_i \sqcup N_i$.

- *M_i*, ensemble de feuilles matchées par *i*;
- **T**_i, sous-arbre de T enraciné au LCA des feuilles de M_i ;
- L_i , ensemble des feuilles de T_i ;
- N_i , tel que $L_i = M_i \sqcup N_i$.

Distances utilisées dans TaxoCluster

"Distance des ensembles de matches"

Pour deux reads i et j,

$$d_{matched}(i,j) = |M_i| + |M_j| - 2*|M_i \cap M_j|.$$

Distances utilisées dans TaxoCluster

"Distance des ensembles de matches"

Pour deux reads i et j,

$$d_{matched}(i,j) = |M_i| + |M_j| - 2*|M_i \cap M_j|.$$

"Distance de l'arbre de consensus"

Pour deux reads i et j, et un paramètre $q \in [0; 1]$,

$$d_{consensus}(i,j) = |L_i| + |L_j| - q * (|N_i \cap M_j| + |N_j \cap M_i|) - |M_i \cap M_j|.$$

Distance de l'arbre de consensus

Figure: Quand q = 0, $d_{consensus}(T_1, T_2) = 5 + 5 - 0 - 2 = 8$. Quand q = 1, $d_{consensus}(T_1, T_2) = 5 + 5 - 1 \times (1 + 2) - 2 = 5$

 \blacksquare Application de l'algorithme des K-moyennes avec $d_{matched}$

- \blacksquare Application de l'algorithme des K-moyennes avec $d_{matched}$
- 2 Suppression des éléments les moins pertinents

- \blacksquare Application de l'algorithme des K-moyennes avec $d_{matched}$
- 2 Suppression des éléments les moins pertinents
- \blacksquare Application de l'algorithme des K-moyennes avec $d_{consensus}$

- \blacksquare Application de l'algorithme des K-moyennes avec $d_{matched}$
- 2 Suppression des éléments les moins pertinents
- $oxed{3}$ Application de l'algorithme des K-moyennes avec $d_{consensus}$
- 4 Comparaison des clusters obtenus avec ceux induits par les métadonnées

- Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

☐ Implémentation

Implémentation

■ Implémentés en Python 2.9.7;

Implémentation

- Implémentés en Python 2.9.7;
- Disponibles sur GitHub;

Implémentation

- Implémentés en Python 2.9.7;
- Disponibles sur GitHub;
- TaxoCluster et TaxoClassifier encore en développement.

- 1 Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

 Evaluation en comparant les résultats obtenus par les différents logiciels et les résultats statistiques de l'étude de l'hôpital Pellegrin;

- Evaluation en comparant les résultats obtenus par les différents logiciels et les résultats statistiques de l'étude de l'hôpital Pellegrin;
- Résultats donnés par TaxoTree (première méthode) confirmant les résultats statistiques;

- Evaluation en comparant les résultats obtenus par les différents logiciels et les résultats statistiques de l'étude de l'hôpital Pellegrin;
- Résultats donnés par TaxoTree (première méthode) confirmant les résultats statistiques;
- Manque de temps pour les tests de TaxoClassifier et TaxoCluster.

- Evaluation en comparant les résultats obtenus par les différents logiciels et les résultats statistiques de l'étude de l'hôpital Pellegrin;
- Résultats donnés par TaxoTree (première méthode) confirmant les résultats statistiques;
- Manque de temps pour les tests de TaxoClassifier et TaxoCluster.
- En théorie : méthode de TaxoCluster meilleure que les autres;

- Evaluation en comparant les résultats obtenus par les différents logiciels et les résultats statistiques de l'étude de l'hôpital Pellegrin;
- Résultats donnés par TaxoTree (première méthode) confirmant les résultats statistiques;
- Manque de temps pour les tests de TaxoClassifier et TaxoCluster.
- En théorie : méthode de TaxoCluster meilleure que les autres;
- En théorie : pire complexité temporelle pour **TaxoCluster** (pire cas).

- Déroulement du stage
 - Lieu et modalités du stage
 - Organisation
- 2 Sujet du stage
 - Contexte scientifique
 - Problèmes
- 3 Travail de recherche
 - Méthode pseudo-statistique (résumé)
 - Apprentissage supervisé
 - Apprentissage non supervisé
- 4 Evaluation des méthodes
 - Implémentation
 - Evaluation
- 5 Conclusion
- 6 Bibliographie

Bilan et perspectives

Propositions de trois méthodes pour répondre au(x) problème(s);

Bilan et perspectives

- Propositions de trois méthodes pour répondre au(x) problème(s);
- 2 Utilisables sur un ordinateur de puissance moyenne;

Bilan et perspectives

- Propositions de trois méthodes pour répondre au(x) problème(s);
- 2 Utilisables sur un ordinateur de puissance moyenne;
- 3 Nécessité d'autres tests.

Sources

- Flexible taxonomic assignment of ambiguous sequencing, J. Clemente, J. Jansson et G. Valiente, BMC Bioinformatics, 2011.
- Impact de l'antibiothérapie sur le microbiote intestinal chez l'enfant atteint de mucovisidose, R. Enaud, Université de Bordeaux, CHU Pellegrin, 2016.
- Understanding Machine Learning: From Theory to Algorithms, S. Shalev-Shwartz et S. Ben-David, Cambridge University Press, 2014.
- ...