MetaFormer is Actually What You Need for Vision

Yu, Weihao, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng Yan

Sea Al Lab & National University of Singapore

April 3, 2023

Presented by Boyao Li

Overview

- Introduction
- Background
- MetaFormer
- Experiments and Future Work

Introduction

This paper abstracts transformers into a general architecture MetaFormer, and empirically demonstrates that the success of transformer/MLP-like models is largely attributed to the MetaFormer architecture rather than specific token mixers.

- PoolFormer: only employ a pooling operator as a weak token mixer for MetaFormer.
- Achieve competitive performance compared with the SOTA models using sophistic design of token mixers on multiple vision tasks.

Why matters?

- Inspire more future research dedicated to improving MetaFormer instead of the token mixer modules.
- PoolFormer could serve as a good start baseline for future MetaFormer architecture design.

Background

- Transformer
- Vision Transformer (ViT)
- MLP-like Models

Transformer

Encoder and Decoder Stacks

- N(In this work N = 6) identical layers. Each layer has two sub-layers.
- Output for each sub-layer:Y = LayerNorm(X + SubLayer(X))

Transformer

Scaled Dot-Product Attention

- Queries (d_k) , keys (d_k) and values (d_v)
- Attention $(Q, K, V) = \operatorname{softmax}(QK^T/\sqrt{d_k})V$

Multi-Head Attention

- MultiHead $(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O$, where $\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$
- $W_i^Q \in \mathbb{R}^{d_{model} \times d_k}, W_i^K \in \mathbb{R}^{d_{model} \times d_k}, W_i^V \in \mathbb{R}^{d_{model} \times d_v}, W_i^O \in \mathbb{R}^{hd_v \times d_{model}}$

In this work, $d_{model} = 512, h = 8, d_{dv} = d_{model}/h = 64.$

Scaled Dot-Product Attention

Concat

Scaled Dot-Product
Attention

Multi-Head Attention

- A pure transformer applied on sequences of image patches can perform very well on image classification tasks, and the reliance on CNN may not be necessary.
- Yield modest accuracies of a few percentage points below ResNets of comparable size when pre-trained on mid-sized datasets such as ImageNet-1K.
- Reach/beat SOTA models when trained on larger datasets(14M-300M images) such as ImageNet-21K(14M images with 21K classes) and JFK-300M dataset.

- Patch Embedding
 - Reshape a 2D (H, W) image $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$ into a sequence of 2D (P, P) patches $\mathbf{x}_o \in \mathbb{R}^{N \times (P^2 \cdot C)}$.
 - C is the number of the channels.
 - $N = HW/P^2$ is the number of the patches.
- Use standard learnable 1D position embeddings.
- Prepend a learnable embedding to the sequence of embedded patches $z_0^0 = x_{class}$ similar as BERT's CLS token. Only the class vector is used to predict the output.
- ViT has much less images-specific inductive bias than CNNs due to that self-attention layers are global.

Related Work: Data-efficient Image Transformers (DeiT)

- Build upon ViT and produce competitive transformers by training on ImageNet only with less computing resource.
- New distillation strategy specific to transformers
 - Add a distillation token to the sequence of embedded patches to reproduce the label given by the "teacher" instead of true label on output of the network.
 - Both the class and distillation tokens are learned by backpropagation.

Yu, Weihao, et al. (Sea AI & NUS)

MLP-like Models

MLP-Mixer(and ResMLP)

- While convolutions and attentions are both sufficient for good performance, neither of them are necessary.
- Two types of MLP layers
 - ullet token-mixing MLP: $\mathbb{R}^N o \mathbb{R}^N$, applied across patches.
 - ullet channel-mixing MLP: $\mathbb{R}^{\mathcal{C}} \to \mathbb{R}^{\mathcal{C}}$, applied independently to patches.
- Position embeddings are not included because token-mixing MLP are sensitive to the order of the input tokens.
- Attain competitive performance on image classification benchmarks when trained on large datasets or with modern regularization schemes.

Yu, Weihao, et al. (Sea AI & NUS)

MLP-Mixer

MLP-like Models

Related Work: Spatial-shift MLP

- MLP-Mixer cannot achieve as outstanding performance as its CNN/ViT counterparts.
- Replace token-mixing MLP to some spatial-shift operations for the communications between patches.

MetaFormer

MetaFormer

- For an input image $I, X = \text{InputEmb}(I), X \in \mathbb{R}^{N \times C}$
- Y = TokenMixer(Norm(X)) + X. $\text{Norm}(\cdot)$ denotes normalization such as Layer Normalization or Batch Normalization.
- $Z = \sigma(\text{Norm}(Y)W_1)W_2 + Y$ where $W_1 \in \mathbb{R}^{C \times rC}$, $W_2 \in \mathbb{R}^{rC \times C}$. r is the MLP (expansion) ratio, and $\sigma(\cdot)$ is a non-linear activation function such as GeLU or ReLU.

PoolFormer

- Use (average) pooling as the token mixer.
- Assuming input $T \in \mathbb{R}^{C \times H \times W}$ is channel-first, the pooling operator is $T'_{:,i,j} = \left(\frac{1}{K \times K} \sum_{p,q=1}^K T'_{:,i+p-\frac{K+1}{2},i+q-\frac{K+1}{2}}\right) T_{:,i,j}, \text{ where } K \text{ is the pooling size.}$
- The subtraction of the input itself is added due to that MetaFormer block already has a residual connection.

Yu, Weihao, et al. (Sea AI & NUS)

Overall Framework of PoolFormer

Experiments: Model Configurations

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stage	#Tokens	Laver Sp	ecification		Po	olFor	mer		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Stage	# TOKEIIS	Layer Sp	S12	S24	S36	M36	M48		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Patch	Patch Size	7×7 , stride 4					
Patch Block #Block 2 4 6 6			Embedding	Embed. Dim.		64	9	6		
Patch Block #Block 2 4 6 6	1	$\frac{H}{4} \times \frac{W}{4}$	DoolFormore	Pooling Size		3 ×	3, str	ide 1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				MLP Ratio			4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BIOCK	# Block	2	4	6	6	8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Patch	Patch Size		3 ×	3, str	ide 2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Embedding	Embed. Dim.		128	19	192		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$\frac{H}{8} \times \frac{W}{8}$		Pooling Size	3×3 , stride 1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				MLP Ratio						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BIOCK	# Block	2	4	6	6	8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Patch	Patch Size		3 ×	ide 2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Embedding	Embed. Dim.		320	384			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$\frac{H}{16} \times \frac{W}{16}$		Pooling Size	3×3 , stride 1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				MLP Ratio						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BIOCK	# Block	6	12	18	18	24	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Patch	Patch Size		3 ×	3, str	ride 2		
Block MLP Ratio 4			Embedding	Embed. Dim.		512	70	768		
Block MLP Ratio 4	4	$\frac{H}{32} \times \frac{W}{32}$	PoolFormer		3×3 , stride 1					
#Block 2 4 6 6 Parameters (M) 11.9 21.4 30.8 56.1		02 02		MLP Ratio	4					
			BIOCK	# Block	2	4	6	6	8	
MACs (G) 19 35 51 90		Parameters (M)						56.1	73.4	
1.9 3.3 3.1 9.0		MACs (G)					5.1	9.0	11.8	

Experiments: Image Classification

Setup

- Dataset: ImageNet-1K
- Data augmentation: MixUp, CutMix, CutOut and RandAugment
- Use Modified Layer Normalization (MLN) to compute the mean and variance along token and channel dimensions compared to only channel dimension in vanilla Layer Normalization.

Experiments: Image Classification

General Arch.	Token Mixer	Outcome Model	Image Size	Params (M)	MACs (G)	Top-1 (%
		▼ RSB-ResNet-18 [57]	224	12	1.8	70.6
Convolutional		RSB-ResNet-34 [57]	224	22	3.7	75.5
Neural Netowrks	_	▼ RSB-ResNet-50 [57]	224	26	4.1	79.8
incural inclowiks		RSB-ResNet-101 [57]	224	45	7.9	81.3
		▼ RSB-ResNet-152 [57]	224	60	11.6	81.8
		▲ ViT-B/16* [17]	224	86	17.6	79.7
		▲ ViT-L/16* [17]	224	307	63.6	76.1
		▲ DeiT-S [51]	224	22	4.6	79.8
	Attention	▲ DeiT-B [51]	224	86	17.5	81.8
	Attention	▲ PVT-Tiny [55]	224	13	1.9	75.1
		▲ PVT-Small [55]	224	25	3.8	79.8
		▲ PVT-Medium [55]	224	44	6.7	81.2
		▲ PVT-Large [55]	224	61	9.8	81.7
		MLP-Mixer-B/16 [49]	224	59	12.7	76.4
	Spatial MLP	ResMLP-S12 [50]	224	15	3.0	76.6
MetaFormer		ResMLP-S24 [50]	224	30	6.0	79.4
Wietaroffilei		ResMLP-B24 [50]	224	116	23.0	81.0
		Swin-Mixer-T/D24 [35]	256	20	4.0	79.4
		Swin-Mixer-T/D6 [35]	256	23	4.0	79.7
		Swin-Mixer-B/D24 [35]	224	61	10.4	81.3
		▶ gMLP-S [34]	224	20	4.5	79.6
		▶ gMLP-B [34]	224	73	15.8	81.6
		PoolFormer-S12	224	12	1.9	77.2
		PoolFormer-S24	224	21	3.5	80.3
	Pooling	PoolFormer-S36	224	31	5.1	81.4
		PoolFormer-M36	224	56	9.0	82.1
		PoolFormer-M48	224	73	11.8	82.5

Experiments: Image Classification

Experiments: Object Detection and Instance Segmentation

Backbone	RetinaNet 1×						Mask R-CNN 1×							
Backbone	Params (M)	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	Params (M)	APb	$\mathrm{AP}^{\mathrm{b}}_{50}$	$\mathrm{AP^b_{75}}$	AP^{m}	$\mathrm{AP_{50}^m}$	$\mathrm{AP^m_{75}}$
▼ ResNet-18 [23]	21.3	31.8	49.6	33.6	16.3	34.3	43.2	31.2	34.0	54.0	36.7	31.2	51.0	32.7
PoolFormer-S12	21.7	36.2	56.2	38.2	20.8	39.1	48.0	31.6	37.3	59.0	40.1	34.6	55.8	36.9
▼ ResNet-50 [23]	37.7	36.3	55.3	38.6	19.3	40.0	48.8	44.2	38.0	58.6	41.4	34.4	55.1	36.7
PoolFormer-S24	31.1	38.9	59.7	41.3	23.3	42.1	51.8	41.0	40.1	62.2	43.4	37.0	59.1	39.6
V ResNet-101 [23]	56.7	38.5	57.8	41.2	21.4	42.6	51.1	63.2	40.4	61.1	44.2	36.4	57.7	38.8
PoolFormer-S36	40.6	39.5	60.5	41.8	22.5	42.9	52.4	50.5	41.0	63.1	44.8	37.7	60.1	40.0

Table 3. Performance of object detection using RetinaNet, and object detection and instance segmentation using Mask R-CNN on COCO val2017 [33]. $1 \times$ training schedule (i.e.12 epochs) is used for training detection models. AP^b and AP^m represent bounding box AP and mask AP, respectively.

Experiments: Object Detection and Instance Segmentation

Backbone	RetinaNet 1×						Mask R-CNN 1×							
Backbone	Params (M)	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	Params (M)	APb	$\mathrm{AP}^{\mathrm{b}}_{50}$	$\mathrm{AP^{b}_{75}}$	AP^{m}	AP_{50}^{m}	AP_{75}^{m}
▼ ResNet-18 [23]	21.3	31.8	49.6	33.6	16.3	34.3	43.2	31.2	34.0	54.0	36.7	31.2	51.0	32.7
PoolFormer-S12	21.7	36.2	56.2	38.2	20.8	39.1	48.0	31.6	37.3	59.0	40.1	34.6	55.8	36.9
▼ ResNet-50 [23]	37.7	36.3	55.3	38.6	19.3	40.0	48.8	44.2	38.0	58.6	41.4	34.4	55.1	36.7
PoolFormer-S24	31.1	38.9	59.7	41.3	23.3	42.1	51.8	41.0	40.1	62.2	43.4	37.0	59.1	39.6
V ResNet-101 [23]	56.7	38.5	57.8	41.2	21.4	42.6	51.1	63.2	40.4	61.1	44.2	36.4	57.7	38.8
PoolFormer-S36	40.6	39.5	60.5	41.8	22.5	42.9	52.4	50.5	41.0	63.1	44.8	37.7	60.1	40.0

Table 3. Performance of object detection using RetinaNet, and object detection and instance segmentation using Mask R-CNN on COCO val2017 [33]. $1 \times$ training schedule (i.e.12 epochs) is used for training detection models. AP^b and AP^m represent bounding box AP and mask AP, respectively.

Experiments: Semantic segmentation

Backbone	Semanti	c FPN
Backbolle	Params (M)	mIoU (%)
▼ ResNet-18 [23]	15.5	32.9
▲ PVT-Tiny [55]	17.0	35.7
PoolFormer-S12	15.7	37.2
▼ ResNet-50 [23]	28.5	36.7
▲ PVT-Small [55]	28.2	39.8
PoolFormer-S24	23.2	40.3
▼ ResNet-101 [23]	47.5	38.8
▼ ResNeXt-101-32x4d [60]	47.1	39.7
▲ PVT-Medium [55]	48.0	41.6
PoolFormer-S36	34.6	42.0
▲ PVT-Large [55]	65.1	42.1
PoolFormer-M36	59.8	42.4
ResNeXt-101-64x4d [60]	86.4	40.2
PoolFormer-M48	77.1	42.7

Table 4. **Performance of Semantic segmentation on ADE20K [65] validation set.** All models are equipped with Semantic FPN [29].

Experiments: Ablation Studies

Ablation	Variant	Params (M)	MACs (G)	Top-1 (%)
Baseline	None (PoolFormer-S12)	11.9	1.9	77.2
	Pooling → Identity mapping	11.9	1.9	74.3
	Pooling → Global random matrix* (extra 21M frozen parameters)	11.9	3.3	75.8
Token mixers	Pooling \rightarrow Depthwise Convolution [9, 37]	11.9	1.9	78.1
Token mixers	Pooling size $3 \rightarrow 5$	11.9	1.9	77.2
	Pooling size $3 \rightarrow 7$	11.9	1.9	77.1
	Pooling size $3 \rightarrow 9$	11.9	1.9	76.8
	Modified Layer Normalization $\uparrow \rightarrow$ Layer Normalization [1]	11.9	1.9	76.5
Normalization	Modified Layer Normalization [†] \rightarrow Batch Normalization [27]	11.9	1.9	76.4
	Modified Layer Normalization $^{\dagger} \rightarrow$ None	11.9	1.9	46.1
Activation	GELU [24] → ReLU [40]	11.9	1.9	76.4
Activation	$GELU \rightarrow SiLU$ [18]	11.9	1.9	77.2
Other commonents	Residual connection [24] → None	11.9	1.9	0.1
Other components	Channel MLP \rightarrow None	2.5	0.3	5.7
	$[Pool, Pool, Pool, Pool] \rightarrow [Pool, Pool, Pool, Attention]$	14.0	2.0	78.3
Hybrid Stages	$[Pool, Pool, Pool, Pool] \rightarrow [Pool, Pool, Attention, Attention]$	16.5	2.6	81.0
	$[Pool, Pool, Pool, Pool] \rightarrow [Pool, Pool, Pool, SpatialFC]$	11.9	1.9	77.5
	$[Pool, Pool, Pool, Pool] \rightarrow [Pool, Pool, SpatialFC, SpatialFC]$	12.2	1.9	77.9

Future Work

- MetaFormer Baselines for Vision
 - IndentityFormer, RandFormer
 - ConvFormer, CAFormer (Convs+Attentions)
- Work on NLP tasks?

References

- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
- Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H. (2021, July). Training data-efficient image transformers distillation through attention. In International conference on machine learning (pp. 10347-10357). PMLR.
- Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., ... Dosovitskiy, A. (2021). Mlp-mixer: An all-mlp architecture for vision. Advances in neural information processing systems, 34, 24261-24272.
- Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-Nouby, A., Grave, E., ... Jégou, H. (2022). Resmlp: Feedforward networks for image classification with data-efficient training. IEEE Transactions on Pattern Analysis and Machine Intelligence.
- Yu, T., Li, X., Cai, Y., Sun, M., Li, P. (2022). S2-mlp: Spatial-shift mlp architecture for vision. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 297-306).
- Yu, W., Si, C., Zhou, P., Luo, M., Zhou, Y., Feng, J., ... Wang, X. (2022). Metaformer baselines for vision. arXiv preprint arXiv:2210.13452.