बीजीय व्यंजक एवं सर्वसमिकाएँ

0853CH09

8.1 बीजीय व्यंजकों का योग एवं व्यवकलन

पिछली कक्षाओं में हम बीजीय व्यंजकों (अथवा केवल व्यंजकों) के बारे में जानकारी प्राप्त कर चुके हैं। x + 3, 2y - 5, $3x^2$, 4xy + 7 इत्यादि व्यंजकों के उदाहरण हैं।

पिछली कक्षाओं में हमने यह भी सीखा है कि बीजीय व्यंजकों को कैसे जोड़ा और घटाया जाता है, उदाहरणार्थ $7x^2 - 4x + 5$ एवं 9x - 10, को जोड़ने के लिए हम इस प्रकार करते हैं :

$$7x^{2} - 4x + 5
+ 9x - 10
7x^{2} + 5x - 5$$

विचार कीजिए कि हम योगफल कैसे ज्ञात करते हैं। जोड़े जाने वाले प्रत्येक व्यंजक को हम विभिन्न पंक्तियों में लिखते हैं। ऐसा करते समय हम समान पदों को एक दूसरे के ऊपर-नीचे लिखते हैं और, जैसा ऊपर दर्शाया गया है, हम उन समान पदों को जोड़ते हैं। अत: 5 + (-10) = 5 - 10 = -5 इसी प्रकार, -4x + 9x = (-4 + 9)x = 5x. आइए कुछ और उदाहरण हल करते हैं।

उदाहरण 1:7xy+5yz-3zx, 4yz+9zx-4y, -3xz+5x-2xy का योग ज्ञात कीजिए। **हल**: समान पदों को एक दूसरे के ऊपर-नीचे रखकर तीन व्यंजकों को विभिन्न पंक्तियों में लिखते हुए, हम प्राप्त करते हैं:

$$7xy + 5yz - 3zx$$
+ $4yz + 9zx - 4y$
+ $-2xy - 3zx + 5x$ (ध्यान दीजिए xz और zx एक समान हैं)
$$5xy + 9yz + 3zx + 5x - 4y$$

इस प्रकार व्यंजकों का योग 5xy + 9yz + 3zx + 5x - 4y है। ध्यान दीजिए दूसरे व्यंजक के पद -4y और तीसरे व्यंजक के पद 5x को योगफल में वैसे ही लिखा गया है जैसे वे हैं क्योंकि दूसरे व्यंजकों में उनका कोई समान पद नहीं है।

उदाहरण 2: $7x^2 - 4xy + 8y^2 + 5x - 3y$ में से $5x^2 - 4y^2 + 6y - 3$ को घटाइए। हल:

$$7x^{2} - 4xy + 8y^{2} + 5x - 3y$$

$$5x^{2} - 4y^{2} + 6y - 3$$
(-) (+) (-) (+)
$$2x^{2} - 4xy + 12y^{2} + 5x - 9y + 3$$

नोट किसी संख्या का घटाना उसके योज्य प्रतिलोम को जोडने के समान है। इस प्रकार – 3 को घटाना, +3 को जोड़ने के समान है, इसी प्रकार 6y को घटाना, -6y को जोड़ने जैसा है। $-4y^2$ को घटाना $4y^2$ को जोड़ने के समान है और इसी प्रकार अन्य दूसरी पंक्ति के प्रत्येक पद के नीचे तीसरी पंक्ति में लिखे चिहन से यह जानने में सहायता मिलती है कि कौन सी संक्रिया की जाती हैं।

्रप्रश्नावली 8.1

1. निम्नलिखित का योग ज्ञात कीजिए :

(i)
$$ab - bc$$
, $bc - ca$, $ca - ab$

(ii)
$$a - b + ab, b - c + bc, c - a + ac$$

(iii)
$$2p^2q^2 - 3pq + 4$$
, $5 + 7pq - 3p^2q^2$ (iv) $l^2 + m^2$, $m^2 + n^2$, $n^2 + l^2$,

(iv)
$$l^2 + m^2$$
, $m^2 + n^2$, $n^2 + l^2$,

$$2lm + 2mn + 2nl$$

2. (a)
$$12a - 9ab + 5b - 3$$
 में से $4a - 7ab + 3b + 12$ को घटाइए।

(b)
$$5xy - 2yz - 2zx + 10xyz$$
 में से $3xy + 5yz - 7zx$ को घटाइए।

(c)
$$18-3p-11q+5pq-2pq^2+5p^2q$$
 में से $4p^2q-3pq+5pq^2-8p+7q-10$
को घटाइए।

8.2 बीजीय व्यंजकों का गुणन

(i) बिंदुओं के निम्नलिखित प्रतिरूप को देखिए :

				बिं	दुओं	के	प्रति	रूप	बिंदुओं की कुल संख्या
•	•	•	•	•	•	•	•	•	4 × 9
•	•	•	•	•	•	•			5 × 7

- (ii) क्या आप ऐसी और परिस्थितियों के बारे में सोच सकते हैं जिनमें दो बीजीय व्यंजकों को गुणा करना पड़ता हो? अमीना उठकर कहती है। "हम आयत के क्षेत्रफल के बारे में सोच सकते हैं।" आयत का क्षेत्रफल $l \times b$, हैं जिसमें l लंबाई है और b चौड़ाई है। यदि आयत की लंबाई 5 इकाई बढ़ा दी जाए, अर्थात्, (l+5) कर दी जाए और चौड़ाई 3 इकाई कम कर दी जाए अर्थात् (b-3) कर दी जाए तो आयत का क्षेत्रफल $(l+5) \times (b-3)$ होगा।
- (iii) क्या आप आयतन के बारे में सोच सकते हैं? (एक आयताकार बक्से का आयतन उसकी लंबाई, चौड़ाई और ऊँचाई के गुणनफल से प्राप्त होता है।)
- (iv) सिरता कहती है कि जब हम वस्तुएँ खरीदते हैं तो हमें गुणा करना पड़ता है। उदाहरणार्थ यदि प्रति दर्जन केलों का मूल्य p रुपये है और स्कूल पिकिनक के लिए z दर्जन केलों की आवश्यकता है, तो हमें $(p \times z)$ रुपयों का भुगतान करना पड़ेगा।

अयत का क्षेत्रफल ज्ञात करने के लिए हमें $l \times b$ अथवा $(l+5) \times (b-3)$ के रूप के बीजीय व्यंजकों को गुणा करना पड़ता है।

मान लीजिए, प्रति दर्जन केलों का मूल्य 2 रुपये कम होता और पिकनिक के लिए 4 दर्जन कम केलों की आवश्यकता होती तो, प्रति दर्जन केलों का मूल्य (p-2) रुपये होता और (z-4) दर्जन केलों की आवश्यकता होती। इसिलए, हमें $(p-2)\times(z-4)$ रुपयों का भुगतान करना पड़ता है।

प्रयास कीजिए

क्या आप ऐसी और दो परिस्थितियों के बारे में सोच सकते हैं जहाँ हमें बीजीय व्यंजकों को गुणा करना पड़ सकता है?

[**नोट :** • चाल और समय के बारे में सोचिए।

• साधारण ब्याज, मूलधन और साधारण ब्याज की दर इत्यादि के बारे में सोचिए।]

उपर्युक्त सभी उदाहरणों में हमने दो अथवा अधिक राशियों का गुणन किया है। यदि राशियाँ बीजीय व्यंजकों के रूप में दी हुई हैं और हमें उनका गुणनफल ज्ञात करना है तो इसका अर्थ यह हुआ कि हमें यह जानना चाहिए कि यह गुणनफल कैसे प्राप्त किया जाए। आइए, इसे क्रमानुसार करते हैं। सबसे पहले हम दो एकपदियों का गुणन करते हैं।

8.3 एकपदी को एकपदी से गुणा करना

जिस व्यंजक में केवल एक पद होता है उसे एकपदी कहते हैं।

8.3.1 दो एकपदियों को गुणा करना

हम प्रारंभ करते हैं

 $4 \times x = x + x + x + x = 4x$ से जो पहले सीख चुके <u>हैं</u>।

इसी प्रकार, $4 \times (3x) = 3x + 3x + 3x + 3x = 12x$ अब निम्नलिखित गुणनफलों पर विचार कीजिए :

(i) $x \times 3y = x \times 3 \times y = 3 \times x \times y = 3xy$

(ii) $5x \times 3y = 5 \times x \times 3 \times y = 5 \times 3 \times x \times y = 15xy$

(iii) $5x \times (-3y) = 5 \times x \times (-3) \times y$

 $= 5 \times (-3) \times x \times y = -15xy$

कुछ और उपयोगी उदाहरण इस प्रकार हैं:

(iv)
$$5x \times 4x^2 = (5 \times 4) \times (x \times x^2)$$

= $20 \times x^3 = 20x^3$

(v)
$$5x \times (-4xyz) = (5 \times -4) \times (x \times xyz)$$

= $-20 \times (x \times x \times yz) = -20x^2yz$

ध्यान दीजिए कि हमने दोनों एकपिदयों के बीजीय भागों के विभिन्न चरों की घातों को कैसे इकट्ठा किया है। ऐसा करने के लिए हमने घातों के नियमों का उपयोग किया है। नोट कीजिए : $5 \times 4 = 20$

अर्थात्, गुणनफल का गुणांक = प्रथम एकपदी का गुणांक × द्वितीय एकपदी का गुणांक और

ध्यान दीजिए एकपदियों के

तीनों गुणनफल 3xy, 15xy, -15xy भी एकपदी हैं।

$$x \times x^2 = x^3$$

अर्थात्, गुणनफल का बीजीय गुणनखंड = प्रथम एकपदी का बीजीय गुणनखंड x द्वितीय एकपदी का बीजीय गुणनखंड।

8.3.2 तीन अथवा अधिक एकपदियों को गुणा करना

निम्नलिखित उदाहरणों पर विचार कीजिए :

(i)
$$2x \times 5y \times 7z = (2x \times 5y) \times 7z = 10xy \times 7z = 70xyz$$

(ii)
$$4xy \times 5x^2y^2 \times 6x^3y^3 = (4xy \times 5x^2y^2) \times 6x^3y^3 = 20x^3y^3 \times 6x^3y^3 = 120x^3y^3 \times x^3y^3$$

= $120 (x^3 \times x^3) \times (y^3 \times y^3) = 120x^6 \times y^6 = 120x^6y^6$

यह स्पष्ट है कि हम सर्वप्रथम पहले दो एकपिदयों को गुणा करते हैं और इस प्रकार गुणनफल के रूप में प्राप्त एकपिदी को तीसरे एकपिदी से गुणा करते हैं। बहुसंख्य एकपिदयों को गुणा करने के लिए इस विधि का विस्तार किया जा सकता है।

प्रयास कीजिए

 $4x \times 5y \times 7z$ ज्ञात कीजिए :

सर्वप्रथम $4x \times 5y$ ज्ञात कीजिए और फिर उसे 7z से गुणा कीजिए, अथवा सर्वप्रथम $5y \times 7z$ ज्ञात कीजिए और इसे 4x से गुणा कीजिए। क्या परिणाम एक जैसा है? आप क्या विचार करते हैं? क्या गुणा करते समय क्रम का महत्त्व है?

हम दूसरे तरीके से भी इस गुणनफल को ज्ञात कर सकते हैं : $4xy \times 5x^2y^2 \times 6x^3y^3$ = $(4 \times 5 \times 6) \times (x \times x^2 \times x^3) \times$ $(y \times y^2 \times y^3) = 120 x^6y^6$

उदाहरण 3: एक आयत के, जिसकी लंबाई और चौड़ाई दी हुई है, क्षेत्रफल की सारणी को पूरा कीजिए:

हल:

लंबाई	चौड़ाई	क्षेत्रफल
3 <i>x</i>	5y	$3x \times 5y = 15xy$
9y	$4y^2$	
4ab	5bc	
$2l^2m$	$3lm^2$	

उदाहरण 4: निम्नलिखित सारणी में तीन आयताकार बक्सों की लंबाई, चौड़ाई और ऊँचाई दी हुई हैं। प्रत्येक का आयतन ज्ञात कीजिए :

	लंबाई	चौड़ाई	ऊँचाई
(i)	2ax	3by	5cz
(ii)	m^2n	n^2p	p^2m
(iii)	2q	$4q^2$	$8q^3$

हल : आयतन = लंबाई × चौडाई × ऊँचाई

अत:

- (i) आयतन = $(2ax) \times (3by) \times (5cz)$ = $2 \times 3 \times 5 \times (ax) \times (by) \times (cz) = 30abcxyz$
- (ii) आयतन = $m^2n \times n^2p \times p^2m$ = $(m^2 \times m) \times (n \times n^2) \times (p \times p^2) = m^3n^3p^3$
- (iii) आयतन = $2q \times 4q^2 \times 8q^3$ = $2 \times 4 \times 8 \times q \times q^2 \times q^3 = 64q^6$

प्रश्नावली 8.2

- 1. निम्नलिखित एकपदी युग्मों का गुणनफल ज्ञात कीजिए:
 - (i) 4, 7*p*
- (ii) -4p, 7p
- (iii) -4p, 7pq
- (iv) $4p^3, -3p$

- (v) 4p, 0
- 2. निम्नलिखित एकपदी युग्मों के रूप में लंबाई एवं चौड़ाई रखने वाले आयतों का क्षेत्रफल ज्ञात कीजिए :

 $(p, q); (10m, 5n); (20x^2, 5y^2); (4x, 3x^2); (3mn, 4np)$

9	6/	•				
	- 2 <i>x</i>	-5 <i>y</i>	$3x^2$	- 4 <i>xy</i>	$7x^2y$	$-9x^2y^2$
2x	$4x^2$:	
-5 <i>y</i>			$-15x^2y$			
$3x^2$						
- 4 <i>xy</i>						•••
$7x^2y$						
$-9x^2y^2$						

3. गुणनफलों की सारणी को पूरा कीजिए:

- 4. ऐसे घना आकार बक्सों का आयतन ज्ञात कीजिए जिनकी लंबाई, चौड़ाई और ऊँचाई क्रमश: निम्नलिखित हैं:
 - (i) 5a, $3a^2$, $7a^4$
- (ii) 2p, 4q, 8r
- (iii) xy, $2x^2y$, $2xy^2$ (iv) a, 2b, 3c
- 5. निम्नलिखित का गुणनफल ज्ञात कीजिए:
 - (i) *xy*, *yz*, *zx*
- (ii) $a, -a^2, a^3$
- (iii) $2, 4y, 8y^2, 16y^3$
- (iv) a, 2b, 3c, 6abc (v) m, -mn, mnp

8.4 एकपदी को बहुपद से गुणा करना

दो पदों वाला व्यंजक द्विपद कहलाता है। तीन पदों वाले व्यंजक को त्रिपद कहते हैं और इसी प्रकार अन्य। व्यापकत: एक अथवा अधिक पदों वाला व्यंजक जिसके गुणांक शून्येतर हों और जिसके चरों की घात ऋणेतर पूर्णांक हों, बहुपद कहलाता है।

8.4.1 एकपदी को द्विपद से गुणा करना

आइए, एकपदी 3x को द्विपद 5y+2 से गुणा करते हैं, अर्थात्, $3x\times(5y+2)$ ज्ञात करते हैं। स्मरण कीजिए कि 3x और (5y+2) संख्याओं को निरूपित करते हैं। इसिलए विवरण के नियम का उपयोग करते हुए, $3x\times(5y+2)=(3x\times5y)+(3x\times2)=15xy+6x$

हम सामान्यत: अपने परिकलनों में वितरण के नियम का उपयोग करते हैं। उदाहरणार्थ $7 \times 106 = 7 \times (100 + 6)$

 $= 7 \times 100 + 7 \times 6$ (यहाँ हमने वितरण नियम का उपयोग किया है।) = 700 + 42 = 742

 $7 \times 38 = 7 \times (40 - 2)$

 $= 7 \times 40 - 7 \times 2$ (यहाँ हमने वितरण नियम का उपयोग किया है।) = 280 - 14 = 266

इसी प्रकार, $(-3x) \times (-5y + 2) = (-3x) \times (-5y) + (-3x) \times (2) = 15xy - 6x$ और $5xy \times (y^2 + 3) = (5xy \times y^2) + (5xy \times 3) = 5xy^3 + 15xy$. द्विपद एवं एकपदी के गुणनफल के बारे में आपका क्या विचार है? उदाहरणार्थ $(5y+2)\times 3x=?$ हम $7\times 3=3\times 7$; अथवा व्यापक रूप से $a\times b=b\times a$ के रूप में क्रमविनिमेय नियम का उपयोग कर सकते हैं।

इसी प्रकार $(5y + 2) \times 3x = 3x \times (5y + 2) = 15xy + 6x$ है।

प्रयास कीजिए

गुणनफल ज्ञात कीजिए : (i) 2x(3x + 5xy)

(ii) $a^2(2ab-5c)$

8.3.2 एकपदी को त्रिपद से गुणा करना

 $3p \times (4p^2 + 5p + 7)$ लीजिए। पहले की तरह हम वितरण नियम का उपयोग कर सकते हैं।

$$3p \times (4p^2 + 5p + 7) = (3p \times 4p^2) + (3p \times 5p) + (3p \times 7)$$

 $= 12p^3 + 15p^2 + 21p$

त्रिपद के प्रत्येक पद को एकपदी से गुणा कीजिए और गुणनफल को जोड़ दीजिए।

विचार कीजिए वितरण नियम के उपयोग से हम एक पद का एक पद के साथ गुणन करने में सक्षम हैं।

 $(4p^2 + 5p + 7) \times 3p$ का गुणनफल ज्ञात कीजिए।

उदाहरण 5 : व्यंजकों को सरल कीजिए और निर्देशानुसार मान ज्ञात कीजिए :

(i)
$$x(x-3) + 2, x = 1$$
 के लिए

(ii)
$$3y(2y-7)-3(y-4)-63, y=-2$$
 के लिए

हल:

(i)
$$x(x-3) + 2 = x^2 - 3x + 2$$

$$x = 1$$
 के लिए, $x^2 - 3x + 2 = (1)^2 - 3(1) + 2$

$$= 1 - 3 + 2 = 3 - 3 = 0$$

(ii)
$$3y(2y-7) - 3(y-4) - 63 = 6y^2 - 21y - 3y + 12 - 63$$

= $6y^2 - 24y - 51$

$$y = -2$$
 के लिए, $6y^2 - 24y - 51 = 6(-2)^2 - 24(-2) - 51$

$$= 6 \times 4 + 24 \times 2 - 51$$

$$= 24 + 48 - 51 = 72 - 51 = 21$$

उदाहरण 6: जोड़िए:

- (i) 5m(3-m) एवं $6m^2-13m$
- (ii) $4y(3y^2 + 5y 7)$ एवं $2(y^3 4y^2 + 5)$

हल:

- (i) प्रथम व्यंजक $5m(3-m) = (5m \times 3) (5m \times m) = 15m 5m^2$ अब द्वितीय व्यंजक जोड़ने पर $15m - 5m^2 + 6m^2 - 13m = m^2 + 2m$
- (ii) प्रथम व्यंजक = $4y(3y^2 + 5y 7) = (4y \times 3y^2) + (4y \times 5y) + (4y \times (-7))$ = $12y^3 + 20y^2 - 28y$

उदाहरण 7: 2pq(p+q) में से 3pq(p-q) को घटाइए।

हल : हम प्राप्त करते हैं $3pq (p-q) = 3p^2q - 3pq^2$ और

$$2pq (p + q) = 2p^2q + 2pq^2$$

घटाने पर

$$\begin{array}{rcrr}
2p^{2}q & + & 2pq^{2} \\
3p^{2}q & - & 3pq^{2} \\
- & + & \\
-p^{2}q & + & 5pq^{2}
\end{array}$$

प्रश्नावली 8.3

- 1. निम्नलिखित युग्मों में प्रत्येक के व्यंजकों का गुणन कीजिए :
- (i) 4p, q + r (ii) ab, a b (iii) $a + b, 7a^2b^2$ (iv) $a^2 9, 4a$

- (v) pq + qr + rp, 0
- सारणी पूरा कीजिए :

	प्रथम व्यंजक	द्वितीय व्यंजक	गुणनफल
(i)	a o	b+c+d	
(ii)	x + y - 5	5xy	
(iii)	p	$6p^2 - 7p + 5$	
(iv)	$4p^2q^2$	$p^{2}-q^{2}$	
(v)	a+b+c	abc	

- 3. गुणनफल ज्ञात कीजिए:
 - (i) $(a^2) \times (2a^{22}) \times (4a^{26})$
- (ii) $\left(\frac{2}{3}xy\right) \times \left(\frac{-9}{10}x^2y^2\right)$

(iii) $\left(-\frac{10}{3}pq^3\right) \times \left(\frac{6}{5}p^3q\right)$

- (iv) $x \times x^2 \times x^3 \times x^4$
- **4.** (a) 3x(4x-5)+3 को सरल कीजिए और (i) x=3 एवं (ii) $x=\frac{1}{2}$ के लिए इसका मान ज्ञात कीजिए।
 - (b) $a(a^2 + a + 1) + 5$ को सरल कीजिए और (i) a = 0, (ii) a = 1 एवं (iii) a = -1के लिए इसका मान ज्ञात कीजिए।

- **5.** (a) p(p-q), q(q-r) एवं r(r-p) को जोडिए।
 - (b) 2x(z-x-y) एवं 2y(z-y-x) को जोडिए।
 - (c) 4l(10n-3m+2l) में से 3l(l-4m+5n) को घटाइए।
 - (d) 4c(-a+b+c) में से 3a(a+b+c)-2b(a-b+c) को घटाइए।

8.5 बहपद को बहपद से गुणा करना

8.5.1 द्विपद को द्विपद से गणा करना

आइए, एक द्विपद (2a+3b) को दूसरे द्विपद (3a+4b) से गुणा करते हैं। जैसा कि हमने पहले किया है, वैसे ही गुणन के वितरण नियम का अनुसरण करते हुए हम इसे भी क्रम से करते हैं;

$$(3a + 4b) \times (2a + 3b) = 3a \times (2a + 3b) + 4b \times (2a + 3b)$$

ध्यान दीजिए एक द्विपद का प्रत्येक पद दूसरे द्विपद के प्रत्येक पद से गुणा होता है।

$$= (3a \times 2a) + (3a \times 3b) + (4b \times 2a) + (4b \times 3b)$$
$$= 6a^2 + 9ab + 8ba + 12b^2$$

 $=6a^2 + 17ab + 12b^2$ (क्योंकि ba = ab है।) जब हम एक द्विपद का एक द्विपद के साथ गुणन करते हैं, तो हम आशा करते हैं कि $2 \times 2 = 4$ पद उपस्थित होने चाहिए परंतु इनमें से दो पद समान हैं जिनको एक साथ इकट्ठा कर

दिया है और इस प्रकार हमें 3 पद प्राप्त होते हैं।

बहुपद को बहुपद से गुणा करते समय हमें समान पदों को ढूँढ़ लेना चाहिए और उन्हें मिला लेना चाहिए।

उदाहरण 8: गुणा कीजिए:

(i)
$$(x-4)$$
 एवं $(2x+3)$ को

(ii)
$$(x - y)$$
 एवं $(3x + 5y)$ को

हल:

(i)
$$(x-4) \times (2x+3) = x \times (2x+3) - 4 \times (2x+3)$$
 (समान पदों को जोड़ने पर)
= $(x \times 2x) + (x \times 3) - (4 \times 2x) - (4 \times 3) = 2x^2 + 3x - 8x - 12$
= $2x^2 - 5x - 12$ (समान पदों को जोड़ने पर)

(ii)
$$(x-y) \times (3x + 5y) = x \times (3x + 5y) - y \times (3x + 5y)$$

= $(x \times 3x) + (x \times 5y) - (y \times 3x) - (y \times 5y)$
= $3x^2 + 5xy - 3yx - 5y^2 = 3x^2 + 2xy - 5y^2$

उदाहरण 9: गुणा कीजिए:

(i)
$$(a+7)$$
 और $(b-5)$ को

(ii)
$$(a^2 + 2b^2)$$
 और $(5a - 3b)$ को

हल:

(i)
$$(a+7) \times (b-5) = a \times (b-5) + 7 \times (b-5)$$

= $ab - 5a + 7b - 35$

नोट कीजिए कि इस गुणन में कोई भी समान पद नहीं हैं।

(ii)
$$(a^2 + 2b^2) \times (5a - 3b) = a^2 (5a - 3b) + 2b^2 \times (5a - 3b)$$

= $5a^3 - 3a^2b + 10ab^2 - 6b^3$

8.5.2 द्विपद को त्रिपद से गुणा करना

इस गणन में हमें त्रिपद के प्रत्येक पद को द्विपद के प्रत्येक पद से गणा करना पडेगा। इस प्रकार हमें $3 \times 2 = 6$ पद प्राप्त होंगे, यदि एक पद को एक पद से गुणा करने पर समान पद बनते हैं. तो प्राप्त पदों की संख्या घटकर पाँच या उससे भी कम हो सकती है।

$$\frac{(a+7)}{\overline{\mathsf{fg}}\mathsf{पq}} \times \underbrace{\frac{(a^2+3a+5)}{\overline{\mathsf{fq}}\mathsf{vq}}}_{\overline{\mathsf{fq}}} = a \times (a^2+3a+5) + 7 \times (a^2+3a+5)$$
 वितरण नियम के उपयोग से
$$= a^3+3a^2+5a+7a^2+21a+35$$

$$= a^3+(3a^2+7a^2)+(5a+21a)+35$$

$$= a^3+10a^2+26a+35$$
 (अंतिम परिणाम में केवल 4 पद ही क्यों हैं?)

उदाहरण 10 : सरल कीजिए : (a+b)(2a-3b+c)-(2a-3b)c

हल: हम प्राप्त करते हैं:

$$(a+b) (2a-3b+c) = a (2a-3b+c) + b (2a-3b+c)$$
$$= 2a^2 - 3ab + ac + 2ab - 3b^2 + bc$$
$$= 2a^2 - ab - 3b^2 + bc + ac$$

(ध्यान दीजिए -3ab एवं 2ab समान पद हैं।)

और
$$(2a-3b) c = 2ac - 3bc है।$$

इसलिए,
$$(a+b)(2a-3b+c)-(2a-3b)c=2a^2-ab-3b^2+bc+ac-(2ac-3bc)$$

= $2a^2-ab-3b^2+bc+ac-2ac+3bc$
= $2a^2-ab-3b^2+(bc+3bc)+(ac-2ac)$
= $2a^2-3b^2-ab+4bc-ac$

प्रश्नावली 8.4

- 1. द्विपदों को गुणा कीजिए:
 - (i) (2x + 5) और (4x 3)
- (ii) (y − 8) और (3y − 4)
- (iii) (2.5l 0.5m) और (2.5l + 0.5m) (iv) (a + 3b) और (x + 5)
- (v) $(2pq + 3q^2)$ और $(3pq 2q^2)$
- (vi) $\left(\frac{3}{4}a^2 + 3b^2\right)$ और $4\left(a^2 + \frac{2}{3}b^2\right)$
- 2. गुणनफल ज्ञात कीजिए:
 - (i) (5-2x)(3+x)

(ii) (x + 7y) (7x - y)

(iii) $(a^2 + b)(a + b^2)$

(iv) $(p^2 - q^2)(2p + q)$

- 3. सरल कीजिए:
 - (i) $(x^2-5)(x+5)+25$
- (ii) $(a^2 + 5)(b^3 + 3) + 5$

(iii) $(t + s^2) (t^2 - s)$

- (iv) (a+b)(c-d)+(a-b)(c+d)+2(ac+bd)
- (v) (x + y)(2x + y) + (x + 2y)(x y) (vi) $(x + y)(x^2 xy + y^2)$
- (vii) (1.5x 4y)(1.5x + 4y + 3) 4.5x + 12y
- (viii) (a+b+c)(a+b-c)

हमने क्या चर्चा की?

- 1. चरों एवं अचरों की सहायता से व्यंजक बनते हैं।
- 2. व्यंजक बनाने के लिए पदों को जोड़ा जाता है। स्वयं पदों का निर्माण गणनखंडों के गुणनफल के रूप में होता है।
- 3. व्यंजक जिनमें एक, दो तथा तीन पद होते हैं क्रमश: एकपदी, द्विपदी और त्रिपदी कहलाते हैं। सामान्यत: एक अथवा अधिक पदों वाला व्यंजक जिसमें पदों के गुणांक शुन्येतर पुणांक हैं और चरों की घात ऋणेतर है. **बहपद** कहलाता है।
- 4. समान चरों से समान पद बनते हैं. और इन चरों की घात भी समान होती है। समान पदों के गुणांक समान होने आवश्यक नहीं है।
- 5. बहपदों को जोडने (अथवा घटाने) के लिए सबसे पहले समान पदों को ढूँढिए और उन्हें जोड़ (अथवा घटा) दीजिए, उसके पश्चात असमान पदों को उपयोग में लीजिए।
- 6. बहुत सी परिस्थितियों में हमें बीजीय व्यंजकों को गुणा करने की आवश्यकता होती है। उदाहरणार्थ आयत का क्षेत्रफल ज्ञात करने के लिए, जिसकी भुजाएँ बीजीय व्यंजकों के रूप में दी हुई हैं।
- 7. एकपदी को एकपदी से गुणा करने पर हमेशा एकपदी प्राप्त होता है।
- 8. बहुपद को एकपदी से गुणा करने के लिए बहुपद का प्रत्येक पद एकपदी से गुणा किया जाता है।
- 9. बहुपद का द्विपद (अथवा त्रिपद) से गुणन करने के लिए हम एक पद को एक-एक पद से गुणा करते हैं. अर्थातु बहुपद का प्रत्येक पद द्विपद (अथवा त्रिपद) के प्रत्येक पद से गुणा किया जाता है। ध्यान दीजिए इस प्रकार के गुणन में, हमें गुणनफल में समान पद प्राप्त हो सकते हैं और उन्हें मिलाना पड सकता है।

