Datenkommunikation

Grundlagen von Rechnernetzen, Teil 1

Wintersemester 2011/2012

Einordnung

1	Grundlagen von Rechnernetzen, Teil 1	
2	Grundlagen von Rechnernetzen, Teil 2	
3	Transportzugriff	
4	Transportschicht, Grundlagen	
5	Transportschicht, TCP (1)	
6	Transportschicht, TCP (2) und UDP	
7	Vermittlungsschicht, Grundlagen	
8	Vermittlungsschicht, Internet	
9	Vermittlungsschicht, Routing	
10	Vermittlungsschicht, Steuerprotokolle und IPv6	
11	Anwendungsschicht, Fallstudien	
12	Mobile IP und TCP	

Überblick

1. Referenzmodelle und Terminologie

- ISO/OSI-Referenzmodell
- TCP/IP-Referenzmodell
- Transportsystem
- Netzwerktopologien
- Internetworking

2. Bitübertragungsschicht

- Aufgaben, Begriffe und Definitionen
- Kodierung (Leitungskodierung)
- Laufzeit, Übertragungszeit, Transferzeit, Jitter
- Digitale Übertragung und PCM, Multiplexverfahren
- Datenübertragungsmedien und Verkabelung

ISO/OSI-Referenzmodell

- Kommunikation zw. Rechnern in offenen, heterogenen Systemen wird beschrieben durch Referenzmodelle
- Vorteil: Offene allgemein verbindliche Vorstellung eines Kommunikationsvorgangs in Form eines Architekturmodells
- Beispiele:
 - ISO/OSI-Referenzmodell
 - OSI = Open System Interconnection
 - ISO = International Standardization Organization
 - TCP/IP-Referenzmodell
 - SNA-Modell (IBM)
 - TRANSDATA (Siemens)

ISO/OSI-Referenzmodell: Schichtung

- Um ein Kommunikationsprotokoll überschaubar zu machen, zerlegt man es in **Schichten** (layer)
 - Beim ISO/OSI-Modell sind es 7 Schichten
- Das Endsystem umfasst alle sieben Schichten
- Das **Transitsystem** umfasst nur die unteren Schichten, z.B. die Schichten 1–3
 - unterschiedliche Teilstrecken miteinander verbinden
 - evtl. verschiedene Übertragungsmedien
 - evtl. verschiedene Netze

ISO/OSI-Referenzmodell: Schichtung

ISO/OSI-Referenzmodell: Aufgaben der Schichtung

Protokolle und Dienste allgemein

- Protokolle sind Verhaltensrichtlinien, auf deren Grundlage sich Computersysteme untereinander "unterhalten" und gegenseitig verstehen:
 - Bestimmte Spielregeln, an die sich Sender und Empfänger halten müssen,
 - damit die Übertragungswünsche der Netzteilnehmer nicht im Chaos enden
- Protokolle sind Vorschriften und Konventionen zur Regelung von
 - Verbindungsaufbau
 - Nachrichtenübermittlung und
 - Verbindungsabbau

Protokolle und Dienste allgemein

- Jede Schicht bietet der ihr jeweils übergeordneten Schicht Funktionen, sog. **Dienste** an
- Jede Schicht (bis auf die unterste) kann von der direkt darunter liegenden Schicht Dienste in Anspruch nehmen, ohne ihre Implementierung zu kennen
- Protokolle übernehmen verschiedene Aufgaben (je nach Schicht)
 - Verbindung aufbauen und Verbindung abbauen
 - Datenübertragung
 - Fehlererkennung und Fehlerbehebung
 - Staukontrolle (Congestion Control)
 - Flusskontrolle

- ...

ISO/OSI-Referenzmodell: Hierarchische Dienststruktur

Begriffe: IDU, SDU, SAP, ICI, SDU, PDU

ISO/OSI-Referenzmodell: Dienststruktur

- Der Dienstnehmer in einer Schicht i nutzt zur Kommunikation einen Diensterbringer i (Dienstprovider) der wiederum die darunter liegende Schicht (i-1) nutzt
- Die Dienste werden über **Dienstzugangspunkte** (Service Access Points, SAP) bereitgestellt
- SAPs sind logische Schnittstellen, deren konkrete Realisierung z. B. in Form einer Funktionsbibliothek oder als eigener Systemprozess gegeben sein kann

ISO/OSI-Dienstemodell

Hierarchische Dienststruktur (Vgl. Gerdsen: Kommunikationssysteme 1 Theorie Entwurf Meßtechnik S. 17)

ISO/OSI-Referenzmodell: Instanzen

- Die Funktionen innerhalb einer Schicht werden von einer Instanz ausgeführt
- Eine Instanz erbringt die Dienstleistung, die ein Dienstnehmer von einem Dienstprovider erwartet
- Instanzen sind auf den kommunizierenden Systemen verteilt
- Instanzen der gleichen Schicht kommunizieren miteinander über Protokolle
- Zwei kommunizierende Instanzen werden als Partnerinstanzen bezeichnet

ISO/OSI-Referenzmodell: Dienstelemente

- Dienste (Abstraktion) im ISO/OSI-Modell
 - Beispiel: connect, disconnect, data (Datenübertragung)
- Dienstelemente/Dienstprimitive sind Operationen eines Dienstes
- Typische Dienstprimitive sind
 - Request
 - Indication
 - Confirmation
 - Response
 - Beispiel: connest.req, connect.ind, data.req

ISO/OSI-Referenzmodell: Dienste und Protokoll

ISO/OSI-Referenzmodell: Begriffe

ISO/OSI-Referenzmodell: Begriffe

ISO/OSI-Referenzmodell: Begriffe

A-PDU (PDU der Anwendungsschicht)

Transportsystem

Transportschicht (Überblick)

- Stellt einen Transportservice bereit
- Ende-zu-Ende-Verbindung zwischen Anwendungsprozessen
- Gesicherte Transportverbindung

- Schicht 1-4 werden gemeinsam als Transportsystem bezeichnet
- Transportzugriffsschnittstelle ermöglicht Nutzung des Transportsystems
 - z.B. Dienst OSI TP4
 - Vergleichbar mit TCP in der TCP-Welt

TCP/IP-Referenzmodell

Internetworking: Repeater und Bridges

Repeater

Bridges

Internetworking: Hubs, Switches, Router, Gateways

Hubs, Switches

Router

- Abgrenzung:
 - Gateways (auf der Anwendungsebene)

Netzwerktopologien

Busnetz

Ringnetz

Sternnetz

Vermaschtes Netz

Überblick

1. Referenzmodelle und Terminologie

2. Bitübertragungsschicht

- Aufgaben, Begriffe und Definitionen
- Kodierung (Leitungskodierung)
- Laufzeit, Übertragungszeit, Transferzeit, Jitter
- Digitale Übertragung und PCM, Multiplexverfahren
- Datenübertragungsmedien und Verkabelung

Aufgaben der Bitübertragungsschicht

- Bereitstellung der physikalischen Verbindung, Zugang zum Medium
- Festlegung der elektrischen, mechanischen und funktionalen Parameter
- Physikalische Bitdarstellung für das benutzte Übertragungsmedium
- Übertragung von Bits und Bitgruppen

Bitrate, Schrittgeschwindigkeit und Bandbreite

Schrittgeschwindigkeit S

- Die Anzahl der Zustandsänderungen eines Signals pro Zeiteinheit
- Einheit: baud = bd = 1/s (Hz)

Bandbreite B

- Physikalische Eigenschaft des Mediums
- Einheit: Hz

Bitrate R

- Anzahl der übertragbaren Bit pro Zeiteinheit
- Gemessen in Bit/s

Schrittgeschwindigkeit

- Die Schrittgeschwindigkeit S (auch Schrittrate, Taktfrequenz) legt fest,
 - wie oft sich der Wert des Signals (z.B. die Spannung) pro Sekunde bzw. Zeiteinheit ändert
 - S wird gemessen in baud, bd = 1/s (Hertz, Hz)
- Eine Leitung mit b baud überträgt nicht unbedingt b Bit/s
 - Jeder Signalwert kann nicht immer nur ein Bit, sondern evtl.
 auch mehrere oder weniger Bits übertragen
 - Nur bei binärem Signal gilt: 1 baud entspricht 1 Bit/s

Übertragungsstörungen

- Übertragungsmedien sind nicht perfekt
- Störungen möglich
 - Dämpfung ist der Energieverlust, der bei der Verbreitung eines Signals entsteht; Angabe in Dezibel pro Kilometer [db/km]
 - Energieverlust abhängig von der Frequenz
 - Signal fällt bei terrestrischen Medien logarithmisch mit der Entfernung
 - **Laufzeitverzerrung**: Überholen und damit Mischen von Bits
 - **Rauschen**: Beeinträchtigung durch unerwünschte Energie aus anderen Quellen
 - Beispiel: Nebensprechen durch induktive Kopplung zwischen eng benachbarten Drähten

Laufzeit, Übertragungszeit, Transferzeit

Laufzeit, Übertragungszeit, Transferzeit

 Typische Ausbreitungsgeschwindigkeiten und dazu gehörige Laufzeiten vgl.: Gerdsen, P., Kommunikationssysteme

Medium	Ausbreitungsgeschw. V _d [m/s]	Laufzeit T _d [µs/km]
Funkkanal	3 * 10 ⁸ (näherungsweise)	3,33
Freiraum-Infrarot	3 * 10 ⁸ (näherungsweise)	3,33
Glasfaserleitung (Quarzglas)	2 * 108	5
Basisband-Koaxialkabel (50/75 Ohm)	2,3 * 108	4,33
Zweidrahtleitung (verdrillt)	2,5 * 10 ⁸	4

Laufzeit und Übertragungszeit

- Bei niedrigen Übertragungsgeschwindigkeiten ist die Laufzeit gegenüber der Übertragungszeit vernachlässigbar: T_ü ungefähr T_T
- Bei sehr großen Entfernungen (mehrere Tausend km) spielt die Laufzeit eine große Rolle

Übertragung bei großen Distanzen

Übertragung einer 1 Datei mit 1000000 Bit (10⁶)
 über 4.000 Km (4 * 10⁶ m)

Berechnungsbeispiele

Gegeben

- Transferzeit: $T_T = T_{\ddot{u}} + T_{\dot{d}}$ [s] (bis zum Netzzugang des Empfängers)
- Übertragungszeit: $T_{\ddot{u}} = m/v_{\ddot{u}}$ [s] (im Medium, ohne sonstige Verzögerungen)
- Laufzeit: $T_d = d/v_d[s]$ (Übergabe der Signale ans Netz)
- Länge des Bitblocks $m = 10^6$ Bit
- Distanz $d = 4000 \text{ km} = 4 * 10^6 \text{ m}$
- Ausbreitungsgeschwindigkeit $v_d \sim 2.5 * 10^8$ m/s (Kupfer)

Bitrate 10³ Bit/s

- $T_{ij} = 10^6 \text{ Bit } / 10^3 \text{ Bit/s} = 10^3 \text{ s} = 1000 \text{ s}$
- $T_d = 4 * 10^6 \text{ m} / 2.5 * 10^8 \text{ m/s} = 1.6 * 10^{-2} \text{ s} = 0.016 \text{ s} =$ **16 ms**
- $T_T = 1000 s + 16 ms$

Bitrate 109 Bit/s

- $T_{ij} = 10^6 \text{ Bit } / 10^9 \text{ Bit/s} = 10^{-3} \text{ s} = 1 \text{ ms}$
- $T_d = 16 \text{ ms} \text{ (wie oben)}$
- $T_T = 1 \text{ ms} + 16 \text{ ms} = 17 \text{ ms}$

Verzögerungsschwankung, Jitter

- Je nach Netzwerktechnologie unterliegt das Senden und Empfangen von aufeinanderfolgenden Paketen gewissen zeitlichen Schwankungen
- Als Verzögerungsschwankung bzw. Jitter (Flattern) bezeichnet man die Schwankung in der Verzögerung nacheinander empfangener Datenpakete
- Multimedia-Anwendungen (Audio- und Video)
 benötigen z.B. einen kontinuierlichen Datenfluss mit
 - minimaler Verzögerung und
 - minimaler Verzögerungsschwankung

Übertragungsverfahren (1)

Analoge Übertragung des Bitstroms

- Menge der kodierten Werte ist kontinuierlich, unendlicher Zeichenvorrat, Übertragung als elektrische Schwingung
- Digitale Signale müssen auf Trägersignal aufmoduliert werden
- Modulationsarten:
 - Frequenzmodulation (eine Schwingung = 1, zwei Schwingungen = 0)
 - Amplitudenmodulation (flache Schwingung = 0)
 - Phasenmodulation (Schwingung von unten nach oben = 1)
- Beispiel: V24

Digitale Übertragung des Bitstroms

- Endlicher Zeichenvorrat mit sprungartigem Übergang zwischen den digitalen Zeichen
- Beispiel: ISDN, ADSL (Asymmetric Digital Subscriber Line)

Übertragungsverfahren (2)

- Analoge Übertragung: Verlauf der Spannung als Sinuskurve
- Für die Kodierung der Zustände 1 und 0 kann genutzt werden: Variation der Amplitude, der Frequenz oder der Phase

Pulscodemodulation (PCM) (1)

- PCM bildet die Grundlage, um analoge Signale digital zu übertragen (im Zeitmultiplexverfahren)
- Analoges Signal ist zeit- und wertkontinuierlich
- Digitales Signal ist zeit- und wertdiskret
- Drei unterschiedliche Bearbeitungsschritte sind für die Umwandlung notwendig
 - Abtastung
 - Quantisierung
 - Kodierung

Pulscodemodulation (PCM) (2)

PCM: Abtastung

- Ziel der Abtastung
 - Zeitkontinuierliches Signal → zeitdiskretes Signal
- Basis: Abtasttheorem von Shannon
 - Periodische Abtastung benötigt minimale Abtastfrequenz f_A , um das Originalsignal fehlerfrei zu rekonstruieren
 - $1/T = f_A > 2 * B (B= Bandbreite)$
- Analoger Fernsprechkanal: Bandbreite 3100 Hz zwischen 300 Hz und 3400 Hz
 - $f_A > 2 * 3400 Hz = 6800 Hz$
 - Technisch wurde erhöhte Abtastfrequenz von 8000 Hz realisiert
 - Abtastperiode $T_A = 1/f_A = 125 \mu s$
 - Das analoge Sprachsignal wird somit alle 125 μs abgetastet

PCM: Quantisierung

- Die Quantisierung hat zum Ziel, aus einem wertkontinuierlichen Signal ein wertdiskretes Signal zu erzeugen
- Wertebereich des analogen Signals wird in eine endliche Anzahl sog. Quantisierungsintervalle gegliedert
- Jedes Intervall wird mit einem diskreten Wert belegt, d.h. allen analogen Signale des Intervalls wird derselbe diskrete Wert zugewiesen
 - → Quantisierungsfehler, die sich beim Empfänger durch Rauschen bemerkbar machen (max. ½ des Intervalls)
- Bei PCM-Technik: 256 Quantisierungsintervalle

PCM: Kodierung

- Bei der Kodierung werden den Quantisierungsintervallen sog. Codes zugewiesen
- Die PCM-Technik benötigt 8 Bits für die Kodierung (256 Intervalle müssen kodiert werden)
- Daraus ergibt sich ein digitaler Sprachkanal mit folgender Übertragungsrate:
 - $f_A * 8 \text{ bit} = 8000 \text{ Hz} * 8 \text{ bit} = 64 \text{ kbit/s} \text{ (Hz -> 1/s)}$
- Einsatz z.B. bei B-Kanälen im ISDN (Schmalband)
- 64 kbit/s-Kanal stellt die Basiseinheit für die PCM-Übertragungshierarchie dar
 - PCM-30 ist dann: 30 * 64 kbit/s + 2 * 64 kbit/s = 2,048
 Mbit/s
 - PCM-120: 8,448 Mbit/s, ...

Quellen-, Kanal- und Leitungskodierung

Leitungskodierung

- Pegeländerung vor einer Bitdarstellung wird zur Taktrückgewinnung genutzt
 - 1: von hoch auf niedrig
 - 0: umgekehrt

Leitungskodierung

- Leitungskodierung legt fest, wie ein Signal physikalisch übertragen wird: Abbildung Bits → Signale
- Einfachste Form der Kodierung: Reine Bitkodierung
 - Zwei verschiedene Spannungen für 0 und 1
 - Aber: Bei langen Sequenzen von 0 oder 1 geht der Takt verloren, was zu Fehlinterpretationen beim Empfänger führt
 - Takt unterliegt immer kleinen Schwankungen
- Besser: Manchester-Kodierung (Bi-Phase-Mark)
 - Pegeländerung vor einer Bitdarstellung wird zur Taktrückgewinnung genutzt
- Weitere Verfahren
 - NRZI-Verfahren(Non-Return-to-Zero-Inverted)
 - MLT-3-Verfahren (Multi-Level 3)
 - 4B/5B-Kodierung, ..., 8B/10B-Kodierung (bei Gbit-Ethernet), ...

Leitungskodierung - 4B/5B-Kodierung

- Manchester-Kodierung benötigt je Bit genau 2 Baud
 - Schlechte Effizienz: 50 %
- Reduzierung der erforderlichen Schrittgeschwindigkeit z.B. durch den 4B/5B-Kode
 - Unterbrechung von Langen 0- oder 1-Folgen durch Ergänzungsbits
 - 4 Bits der Daten werden zu 5-Bit-Kodes ergänzt Effizienz: 80 % → 4 Bit mit 5 Baud übertragen

4-Bit-Daten	5-Bit-Code
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111

4-Bit-Daten	5-Bit-Code
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

Mehrfachnutzung von Medien

- Übertragungskanal ist teuer
- Ausschöpfung der Übertragungskapazität über Multiplexierungsverfahren (Multiplexverfahren)
- Medien mit größerer Bandbreite können für mehrere Kanäle genutzt werden
- Man unterscheidet u.a:
 - Frequenzmultiplexverfahren
 - Zeitmultiplexverfahren

Frequenzmultiplexverfahren

 Beim Frequenzmultiplexverfahren (FDM = Frequency Division Multiplexing) wird das nutzbare Frequenzband des Mediums im mehrere Teilbänder aufgeteilt

Zeitmultiplexverfahren

- Beim Zeitmultiplexverfahren (TDM = Time Division Multiplex) wird das Medium für bestimmte Zeitperioden einem Quellen-Senken-Paar zugeordnet
- Übertragung in Zeitperioden, Umschaltung erforderlich

Datenübertragungsmedien: Überblick

Medium	Aufbau	Kanalkapazität
Twisted Pair	Verdrilltes 8-adriges Kupferkabelpaar (Telefonkabel)	Bis 10 Gbit/s
Koaxialkabel	Von zylindrischem Leiter umschlossener Kuperdrahtkern	~10Mbit/s
Glasfaserkabel	Von zylindrischem Glasmantel umschlossener Glaskern	Mehrere Gbit/s
Mobiler Datenfunk	Terrestrischer Zellularfunk (z.B. Funk- LAN)	Einige Mbit/s
Richtfunk	Terrestrisch, ortsfest	Bis 4 Mbit/s
Satellitenfunk	Geostationäre Nachrichtensatelliten	56 kbit/s und mehr

Mandl/Bakomenko/Weiß Datenkommunikation Seite 50

Datenübertragungsmedien: Typische Bitraten

Netze	Bandbreite (Bitrate)	Übertragung eines Lexikons mit 600 MB
Festnetztelefonie:		
Analog	56 kbit/s	25 Std.
ISDN	64 kbit/s	25 Std.
DSL	8 Mbit/s	10 Min.
Mobilkommunikation:		
GSM	9,6kbit/s	146 Std.
UMTS	2 Mbit/s	42 Min.
Lokale Netze:		
Ethernet	10 Mbit/s	8 Min.
Fast-Ethernet	100 Mbit/s	50 Sek.
Gigabit-Ethernet	1 Gbit/s	5 Sek.
Weitverkehrsbandnetze:		
Breitband-ISDN	155 Mbit/s	32 Sek.
(Auf Basis von ATM)	622 Mbit/s	8 Sek.
Optische Fernverbindungen:		
Pro Wellenlänge	40 Gbit/s	0,1 Sek.
Pro Glasfaser	1,6 Tbit/s	0,003 Sek.

Kabelarten und Verkabelung

Kabelarten, Beispiel Twisted-Pair

Kat.5-Kabel (100 Mbit/s - 1 Gbit/s)

- Kategorie 3
 - zwei isolierte verdrillte Kabel
 - gemeinsame Umhüllung für vier Adernpaare
- **Kat**egorie 5
 - mehr Windungen pro cm
 - Umhüllung aus Teflon
- Kategorie 6,7 → Kat 7 = SF/FTP (Foiled Twisted Pair
 → Geflecht + Folie)
 - Adernpaare sind einzeln mit Silberfolie umwickelt

Verkabelung, strukturierte Verkabelung

- Verkabelung der letzten Meile
- Strukturierte Verkabelung in Gebäuden

Rückblick

1. Referenzmodelle und Terminologie

- ISO/OSI-Referenzmodell
- TCP/IP-Referenzmodell
- Transportsystem
- Netzwerktopologien
- Internetworking

2. Bitübertragungsschicht

- Aufgaben, Begriffe und Definitionen
- Kodierung (Leitungskodierung)
- Laufzeit, Übertragungszeit, Transferzeit, Jitter
- Digitale Übertragung und PCM, Multiplexverfahren
- Datenübertragungsmedien und Verkabelung