

Universidade Eduardo Mondlane

Faculdade de Ciências Departamento de Física

ELECTRÓNICA ANALÓGICA

Trabalho Laboratorial Nº2: Técnicas de análise de circuítos - Teoremas de Thevenin e de Norton

1 Objectivos

1. Determinar experimentalmente os circuítos equivalentes de Thévenin e Norton de um circuito eléctrico.

2 Material

- 1. Uma (1) fonte de tensão variável (DC Power Suply) de 0 12V;
- 2. Quatro (4) resístores $(R_1 = 220\Omega; R_2 = 33\Omega; R_3 = 470\Omega \text{ e } R_L = 330\Omega)^1$;
- 3. Um (1) reóstato;
- 4. Um (1) voltímetro;
- 5. Um (1) amperímetro.

3 Procedimento experimental

3.1 Determinação de equivalente Thévenin

- 1. Ajuste a fonte de tensão para 5.0V/dc;
- 2. Monte o circuíto da Fig.1
- 3. Com o voltímetro em **DC**, meça a tensão nos terminais **c** e **d** (essa é a tensão Thévenin).
- 4. Retire a fonte de tensão (Vin) e faça um shunt entre **a** e **b** e, meça a resistência nos terminais **c** e **d** (essa é a resistência Thévenin).
- 5. Ligue a resistência de carga (R_L)nos terminais \mathbf{c} e \mathbf{d} , meça a intensidade e a queda de tensão nessa resistência. Preencha a Tabela 1.
- 6. Ajuste o valor do reóstato de tal forma que seja igual à resistência Thévenin (R_{Th}). Ajuste o valor da fonte de tensão de modo que $V_{in} = V_{Th}$ e, monte o equivalente Thévenin conforme a Fig.2
- 7. Ligue a resistência de carga nos terminais do circuíto da Fig.2 e meça os valores de V_L e I_L . Preencha a Tabela 2.

 $^{^{1}\}mathrm{Em}$ caso de insuficiência destas resistências, pode-se substituir por outras disponíveis!

o.2 Determinação de equivalente ivolton

O TIGOTUIO E TIIDEELIO

3.2 Determinação de equivalente Norton

- 1. Ajuste a fonte de tensão para 5.0V/dc;
- 2. Monte o circuíto da Fig.1;
- 3. Com o amperímetro em DC meça a corrente de curto-circuito entre os terminais \mathbf{c} e \mathbf{d} (essa é a corrente de Norton- I_N);
- 4. Retire a fonte de tensão (Vin) e faça um shunt entre \mathbf{a} e \mathbf{b} e, meça a resistência nos terminais \mathbf{c} e \mathbf{d} (essa é a resistência de Norton R_N);
- 5. Ligue a resistência de carga (R_L)nos terminais \mathbf{c} e \mathbf{d} , meça a intensidade e a queda de tensão nessa resistência. Preencha a Tabela 3;
- 6. Ajuste o valor do reóstato de tal forma que seja igual à resistência Norton (R_N) ;
- 7. Ajuste a fonte de tensão para zero volt ($V_{in} = 0V$). Monte o circuito equivalente de Norton conforme a Fig.3;
- 8. Apartir de zero, ajuste a tensão de entrada (V_{in}) de tal maneira que o amperímetro (A) indique o valor da corrente Norton do item 3. Conseguindo esse valor de corrente, já tem o circuito equivalente de Norton da Fig.1;
- 9. Ligue a resistência de carga nos terminais do circuíto da fig.3 e meça os valores de V_L e I_L . Preencha a Tabela 4.

4 Questões de verificação

1. Discute os seus resultados no que concerne à relação entre os valores medidos (expreminetais) e os calculados (teóricos), os erros associados e as suas possíveis razões e/ou causas.

5 Figuras e tabelas

Figura 2:

Tabela 1:						
	$V_{Th}(V)$	$R_{Th}(\Omega)$	$R_L(\Omega)$	$V_L(V)$	$I_L(A)$	
Valor medido						
Valor calculado						

, 1100101010111111111111

Tabela 2:

Iabela 2.						
	$V_{Th}(V)$	$R_{Th}(\Omega)$	$R_L(\Omega)$	$V_L(V)$	$I_L(A)$	
Valor medido						

Tabela 3:

	$V_{Th}(V)$	$R_N(\Omega)$	$R_L(\Omega)$	$V_L(V)$	$I_L(A)$
Valor medido					
Valor calculado					

Figura 3:

Tabela 4:

	$I_N(V)$	$R_N(\Omega)$	$R_L(\Omega)$	$V_L(V)$	$I_L(A)$
Valor medido					