▼ TP4

Exercício 4.1

No contexto do sistema de travagem ABS ("Anti-Lock Breaking System"), pretende-se construir um autómato híbrido que descreva o sistema e que possa ser usado para verificar as suas propriedades dinâmicas.

- A componente discreta do autómato contém os modos: Start, Free, Stopping, Blocked, e
 Stopped.
 - o modo Start inicia o funcionamento com os valores iniciais das velocidades
 - no modo Free não existe qualquer força de travagem;
 - no modo Stopping aplica-se a força de travagem alta;
 - no modo Blocked as rodas estão bloqueadas em relação ao corpo mas o veículo move-se
 (i.e. derrapa) com pequeno atrito ao solo;
 - no modo Stopped o veículo está imobilizado.
- \circ A componente contínua do autómato usa variáveis contínuas V,v para descrever a velocidade do corpo e a velocidade linear das rodas ambas em relação so solo.
- Assume-se que o sistema de travagem exerce uma força de atrito proporcional à diferença das duas velocidades. A dinâmica contínua, as equações de fluxo, está descrita abaixo.
- Os "switchs" são a componente de projeto deste trabalho; cabe ao aluno definir quais devem ser de modo a que o sistema tenha um comportamento desejável: imobilize-se depressa e não "derrape" muito.
- É imprescindível evitar que o sistema tenha "trajetórias de Zenão". Isto é, sequências infinitas de transições entre dois modos em intervalos de tempo que tendem para zero mas nunca alcancam zero.

Faça

- 1. Defina um autómato híbrido que descreva a dinâmica do sistema segundo as notas abaixo indicadas e com os "switchs" por si escolhidos.
- 2. Modele em lógica temporal linear LT propriedades que caracterizam o comportamento desejável do sistema. Nomeadamente
 - i. "o veículo imobiliza-se completamente em menos de t segundos"
 - ii. "a velocidade V diminui sempre com o tempo".
- 3. Codifique em SMT's o modelo que definiu em 1.
- 4. Codifique em SMT's a verificação das propriedades temporais que definiu em 2.

Equações de Fluxo

1. Durante la travagem não existe qualquer força no sistema excepto as forças de atrito. Quando uma superfície se desloca em relação à outra, a força de atrito lé proporcional à força de compressão entre elas.

- 2. No contacto rodas/solo a força de compressão é dada pelo o peso P que é constante e independente do modo. Tem-se $f=a\,P$ sendo $\,a$ a constante de atrito; o valor de a depende do modo: é baixa em Blocked e alta nos restantes.
- 3. No contacto corpo/rodas, a força de compressão é a força de travagem que agui se assume como proporcional à diferença de velocidades
- F = c(V v)A constante de proporcionalidade c depende do modo: é elevada no modo stopping e baixa nos outros.
- 4. As equações que traduzem a dinâmica do sistema são, em todos os modo excepto Blocked,

$$(\dot{V}=-F)\wedge(\dot{v}=-a\,P+F)$$

e, no modo Blocked, a dinâmica do sistema é regida por

, no modo Blocked, la dinamica do sistema el regida por
$$(V=v) \, \wedge \, (\, \dot{v} \, = -a \, P \,)$$

- 6. Tanto no modo Blocked como no modo Free existe um "timer" que impede que o controlo aí permaneça mais do que au segundos. Os - switch(V,v,t,V',v',t') nesses modos devem forçar esta condição.
- 7. Todos os "switchs" devem ser construídos de modo a impedir a existência de trajetórias de Zenão.
- 8. No instante inicial lo modo é $|\mathsf{Stant}|$ el tem-se $V=v=V_0$. A velocidade V_0 é "input" do problema.

Exercício 4.2

O programa Python seguinte implementa o algoritmo de *bubble sort* para ordenação *in situ* de um array de inteiros seq.

```
seq = [-2,1,2,-1,4,-4,-3,3]
changed = True

while changed:
    changed = False
    for i in range(len(seq) - 1):
        if seq[i] > seq[i+1]:
            seq[i], seq[i+1] = seq[i]
            changed = True

pass
```

- 1. Defina a pré-condição e a pós-condição que descrevem a especificação deste algoritmo.
- 2. O ciclo for pode ser descrito por uma transição $\mathbf{seq} \leftarrow exp(\mathbf{seq})$. Construa uma relação de transição $\mathbf{trans}(\mathbf{seq},\mathbf{seq}')$ que modele esta atribuição.
- 3. Usando a técnica que lhe parecer mais conveniente verifique a correção do algoritmo.