CSCI 1550: PROBABILISTIC METHODS IN CS (NOTES)

ALEXANDER W. LEE

1. Events and Probability

Definition. A probability space has three components:

- (1) a sample space Ω , which is the set of all possible outcomes of the random process modeled by the probability space;
- (2) a family of sets \mathcal{F} representing the allowable events, where each set in \mathcal{F} is a subset of the sample space Ω ; and
- (3) a probability function $Pr: \mathcal{F} \to \mathbb{R}$ satisfying the following definition.

Definition. A probability function is any function $Pr : \mathcal{F} \to \mathbb{R}$ that satisfies the following conditions:

- (1) for any event E, $0 \le \Pr(E) \le 1$;
- (2) $Pr(\Omega) = 1$; and
- (3) for any finite or countably infinite sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots ,

$$\Pr\left(\bigcup_{i\geq 1} E_i\right) = \sum_{i\geq 1} \Pr(E_i).$$

Lemma. For any two events E_1 and E_2 ,

$$\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2) - \Pr(E_1 \cap E_2).$$

Lemma (Union Bound). For any finite or countably infinite sequence of events E_1, E_2, \ldots ,

$$\Pr\left(\bigcup_{i\geq 1} E_i\right) \leq \sum_{i\geq 1} \Pr(E_i).$$

Lemma. Let E_1, \ldots, E_n be any n events. Then

$$\Pr\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} \Pr(E_{i}) - \sum_{i < j} \Pr(E_{i} \cap E_{j}) + \sum_{i < j < k} \Pr(E_{i} \cap E_{j} \cap E_{k})$$
$$- \dots + (-1)^{l+1} \sum_{i_{1} < i_{2} < \dots < i_{l}} \Pr\left(\bigcap_{r=1}^{l} E_{i_{r}}\right) + \dots$$

Definition. Two events E and F are independent if and only if

$$\Pr(E \cap F) = \Pr(E) \cdot \Pr(F).$$

More generally, events E_1, E_2, \ldots, E_k are mutually independent if and only if, for any subset $I \subseteq [1, k]$,

$$\Pr\left(\bigcap_{i\in I} E_i\right) = \prod_{i\in I} \Pr(E_i).$$

Definition. The conditional probability that event E occurs given that event F occurs is

$$\Pr(E \mid F) = \frac{\Pr(E \cap F)}{\Pr(F)}.$$

The conditional probability is well-defined only if Pr(F) > 0.

Theorem (Law of Total Probability). Let E_1, E_2, \ldots, E_n be mutually disjoint events in the sample space Ω , and let $\bigcup_{i=1}^n E_i = \Omega$. Then

$$\Pr(B) = \sum_{i=1}^{n} \Pr(B \cap E_i) = \sum_{i=1}^{n} \Pr(B \mid E_i) \Pr(E_i).$$

Theorem (Bayes' Law). Assume that E_1, E_2, \ldots, E_n are mutually disjoint events in the sample space Ω such that $\bigcup_{i=1}^n E_i = \Omega$. Then

$$\Pr(E_j \mid B) = \frac{\Pr(E_j \cap B)}{\Pr(B)} = \frac{\Pr(B \mid E_j) \Pr(E_j)}{\sum_{i=1}^n \Pr(B \mid E_i) \Pr(E_i)}.$$

Theorem. For any $x \in \mathbb{R}$,

$$1 - x \le e^{-x}.$$

Equivalently,

$$1 + x < e^x$$
.

2. Discrete Random Variables and Expectation

Definition. A random variable X on a sample space Ω is a real-valued (measurable) function on Ω ; that is, $X : \Omega \to \mathbb{R}$. A discrete random variable is a random variable that takes on only a finite or countably infinite numbers of values.

Definition. Two random variable X and Y are independent if and only if

$$Pr((X = x) \cap (Y = y)) = Pr(X = x) \cdot Pr(Y = y)$$

for all values x and y. Similarly, random variables X_1, X_2, \ldots, X_k are mutually independent if and only if, for any subset $I \subseteq [1, k]$ and any values $x_i, i \in I$,

$$\Pr\left(\bigcap_{i\in I}(X_i=x_i)\right) = \prod_{i\in I}\Pr(X_i=x_i).$$

Definition. The expectation of a discrete random variable X, denoted by $\mathbf{E}[X]$, is given by

$$\mathbf{E}[X] = \sum_{i} i \Pr(X = i),$$

where the summation is over all values in the range of X. The expectation is finite if $\sum_i |i| \Pr(X=i)$ converges; otherwise, the expectation is unbounded.

Theorem (Linearity of Expectations). For any finite collection of discrete random variables X_1, X_2, \ldots, X_n with finite expectations,

$$\mathbf{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbf{E}[X_i].$$

Lemma. For any constant c and discrete random variable X,

$$\mathbf{E}[cX] = c\mathbf{E}[X].$$

Definition. Suppose that we run an experiment that succeeds with probability p and fails with probability 1-p. A variable X is called a Bernoulli or an indicator random variable if

$$X = \begin{cases} 1 & \text{if the experiments succeeds,} \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\mathbf{E}[X] = \Pr(X = 1) = p$.

Definition. Consider a sequence of n independent experiments, each of which succeeds with probability p. If we let X represent the number of successes in the n experiments, then X has a binomial distribution. A binomial random variable X with parameters n and p, denoted by B(n,p), is defined by the following probability distribution on $j=0,1,2,\ldots,n$:

$$\Pr(X=j) = \binom{n}{j} p^j (1-p)^{n-j}.$$

That is, the binomial random variable X equals j when there are exactly j successes and n-j failures in n independent experiments, each of which is successful with probability p.

Lemma. For a binomial random variable X with parameters n and p,

$$\mathbf{E}[X] = np.$$

Definition.

$$\mathbf{E}[Y \mid Z = z] = \sum_{y} y \Pr(Y = y \mid Z = z),$$

where the summation is over all y in the range of Y.

Lemma. For any random variables X and Y,

$$\mathbf{E}[X] = \sum_y \Pr(Y = y) \mathbf{E}[X \mid Y = y],$$

where the sum is over all values in the range of Y and all of the expectations exist.

Lemma. For any finite collection of discrete random variables $X_1, X_2, ..., X_n$ with finite expectations and for any random variable Y,

$$\mathbf{E}\left[\sum_{i=1}^{n} X_i \mid Y = y\right] = \sum_{i=1}^{n} \mathbf{E}[X_i \mid Y = y].$$

Definition. The expression $\mathbf{E}[X \mid Y]$ is a random variable f(Z) that takes on the value $\mathbf{E}[Y \mid Z = z]$ when Z = z.

Theorem.

$$\mathbf{E}[Y] = \mathbf{E}[\mathbf{E}[Y \mid Z]].$$

Definition. We perform a sequence of independent trials until the first success, where each trial succeeds with probability p. A geometric random variable X with parameter p is given by the following probability distribution on $n = 1, 2, \ldots$:

$$\Pr(X = n) = (1 - p)^{n-1}p.$$

That is, for the geometric random variable X to equal n, there must be n-1 failures, followed by a success.

Lemma. For a geometric random variable X with parameter p and for n > 0,

$$\Pr(X = n + k \mid X > k) = \Pr(X = n).$$

Lemma. Let X be a discrete random variable that takes on only non-negative integer values. Then

$$\mathbf{E}[X] = \sum_{i=1}^{\infty} \Pr(X \ge i).$$

Lemma. For a geometric random variable X with parameter p,

$$\mathbf{E}[X] = \frac{1}{p}.$$

Lemma. The harmonic number $H(n) = \sum_{i=1}^{n} 1/i$ satisfies $H(n) = \ln n + \Theta(1)$.

3. Moments and Deviations

Theorem (Markov's Inequality). Let X be a random variable that assumes only non-negative values. Then, for all a > 0,

$$\Pr(X \ge a) \le \frac{\mathbf{E}[X]}{a}.$$

Definition. The kth moment of a random variable X is $\mathbf{E}[X^k]$.

Definition. The variance of a random variable X is defined as

$$Var[X] = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}.$$

The standard deviation of a random variable X is

$$\sigma[X] = \sqrt{\mathbf{Var}[X]}.$$

Lemma. For a Bernoulli random variable with success probability p,

$$\mathbf{Var}[X] = p(1-p).$$

Definition. The covariance of two random variables X and Y is

$$\mathbf{Cov}(X, y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])].$$

Theorem. For any two random variables X and Y,

$$\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y] + 2\mathbf{Cov}(X,Y).$$

Theorem. If X and Y are two independent random variables, then

$$\mathbf{E}[X \cdot Y] = \mathbf{E}[X] \cdot \mathbf{E}[Y].$$

Corollary. If X and Y are independent random variables, then

$$\mathbf{Cov}(X,Y) = 0$$

and

$$\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y].$$

Theorem. Let X_1, X_2, \ldots, X_n be mutually independent random variables. Then

$$\mathbf{Var}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbf{Var}[X_i].$$

Lemma. For a binomial random variable X with parameters n and p,

$$\mathbf{Var}[X] = np(1-p).$$

Theorem (Chebyshev's Inequality). For any a > 0,

$$\Pr(|X - \mathbf{E}[X]| \ge a) \le \frac{\mathbf{Var}[X]}{a^2}.$$

Corollary. For any t > 1,

$$\Pr(|X - \mathbf{E}[X]| \ge t \cdot \sigma[X]) \le \frac{1}{t^2} \text{ and}$$
$$\Pr(|X - \mathbf{E}[X]| \ge t \cdot \mathbf{E}[X]) \le \frac{\mathbf{Var}[X]}{t^2(\mathbf{E}[X])^2}.$$

Lemma. For a geometric random variable X with parameter p,

$$\mathbf{Var}[X] = (1 - p)/p^2.$$

Definition. The X be a random variable. The median of X is defined to be any value m such that

$$\Pr(X \le m) \ge \frac{1}{2}$$
 and $\Pr(X \ge m) \ge \frac{1}{2}$.

4. Chernoff and Hoeffding Bounds

Definition. The moment generating function of a random variable X is

$$M_X(t) = \mathbf{E}[e^{tX}].$$

Theorem. Let X be a random variable with moment generating function $M_X(t)$. Under the assumption that exchanging the expectation and differentiation operands is legitimate, for all n > 1 we have

$$\mathbf{E}[X^n] = M_X^{(n)}(0),$$

where $M_X^{(n)}(0)$ is the nth derivative of $M_X(t)$ evaluated at t=0.

Theorem. Let X and Y be two random variables. If

$$M_X(t) = M_Y(t)$$

for all $t \in (-\delta, \delta)$ for some $\delta > 0$, then X and Y have the same distribution.

Theorem. If X and Y are independent random variables, then

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$

Definition. A sum of independent 0-1 random variables are known as Poisson trials. The distributions of the random variables in Poisson trials are not necessarily identical. Bernoulli trials are a special case of Poisson trials where the independent 0-1 random variables have the same distribution; in other words, all trials are Poisson trials that take on the value 1 with the same probability.

Theorem. Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[X]$. Then the following Chernoff bounds hold:

(1) for any $\delta > 0$,

$$\Pr(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu};$$

(2) for $0 < \delta \le 1$,

$$\Pr(X \ge (1+\delta)\mu) \le e^{-\mu\delta^2/3};$$

(3) for $R \geq 6\mu$,

$$\Pr(X \ge R) \le e^{-R}$$
.

Theorem. Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[X]$. Then, for $0 < \delta < 1$:

(1)

$$\Pr(X \le (1 - \delta)\mu) \le \left(\frac{e^{-\delta}}{(1 - \delta)^{(1 - \delta)}}\right)^{\mu};$$

(2)

$$\Pr(X \le (1 - \delta)\mu) \le e^{-\mu\delta^2/2}$$

Corollary. Let X_1, \ldots, X_n be independent Poisson trials such that $\Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[X]$. For $0 < \delta < 1$,

$$\Pr(|X - \mu| \ge \delta\mu) \le 2e^{-\mu\delta^2/3}.$$

Theorem. Let X_1, \ldots, X_n be independent random variables with

$$\Pr(X_i = 1) = \Pr(X_i = -1) = \frac{1}{2}.$$

Let $X = \sum_{i=1}^{n} X_i$. For any a > 0,

$$\Pr(X \ge a) \le e^{-a^2/2n}.$$

By symmetry we also have

$$\Pr(X \le -a) \le e^{-a^2/2n}.$$

Corollary. Let $X_1, \ldots X_n$ be independent random variables with

$$\Pr(X_i = 1) = \Pr(X_i = -1) = \frac{1}{2}.$$

Let $X = \sum_{i=1}^{n} X_i$. Then, for any a > 0,

$$\Pr(|X| \ge a) \le 2e^{-a^2/2n}.$$

Corollary. Let Y_1, \ldots, Y_n be independent random variables with

$$\Pr(Y_i = 1) = \Pr(Y_i = 0) = \frac{1}{2}.$$

Let $Y = \sum_{i=1}^{n} Y_i$ and $\mu = \mathbf{E}[Y] = n/2$.

(1) For any a > 0,

$$\Pr(Y \ge \mu + a) \le e^{-2a^2/n}$$
.

(2) For any $\delta > 0$,

$$\Pr(Y \ge (1+\delta)\mu) \le e^{-\delta^2\mu}.$$

Corollary. Let Y_1, \ldots, Y_n be independent random variables with

$$\Pr(Y_i = 1) = \Pr(Y_i = 0) = \frac{1}{2}.$$

Let $Y = \sum_{i=1}^{n} Y_i$ and $\mu = \mathbf{E}[Y] = n/2$.

(1) For any $0 < a < \mu$,

$$\Pr(Y \le \mu - a) \le e^{-2a^2/n}$$

(2) For any $0 < \delta < 1$,

$$\Pr(Y \le (1 - \delta)\mu) \le e^{-\delta^2 \mu}.$$

Theorem (Hoeffding Bound). Let X_1, \ldots, X_n be independent random variables such that for all $1 \le i \le n$, $\mathbf{E}[X_i] = \mu$ and $\Pr(a \le X_i \le b) = 1$. Then

$$\Pr\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right) \leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}.$$

Lemma (Hoeffding's Lemma). Let X be a random variable such that $Pr(X \in [a,b]) = 1$ and $\mathbf{E}[X] = 0$. Then for every $\lambda > 0$,

$$\mathbf{E}[e^{\lambda X}] \le e^{\lambda^2 (b-a)^2/8}.$$

Theorem. Let $X_1, ..., X_n$ be independent random variables with $\mathbf{E}[X_i] = \mu_i$ and $\Pr(a_i \leq X_i \leq b_i) = 1$ for constants a_i and b_i . Then

$$\Pr\left(\left|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i\right| \ge \epsilon\right) \le 2e^{-2\epsilon^2/\sum_{i=1}^{n} (b_i - a_i)^2}.$$

13. Martingales

Definition. A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if, for all $n \ge 0$, the following conditions hold:

- Z_n is a function of X_0, X_1, \ldots, X_n ;
- $\mathbf{E}[|Z_n|] < \infty$;
- $\mathbf{E}[Z_{n+1} \mid X_0, \dots, X_n] = Z_n$.

A sequence of random variables Z_n, Z_1, \ldots is called a martingale when it is a martingale with respect to itself. That is, $\mathbf{E}[|Z_n|] < \infty$, and $\mathbf{E}[Z_{n+1} \mid Z_0, \ldots, Z_n] = Z$.

Definition. A Doob martingale refers to a martingale constructed using the following general approach. Let X_0, X_1, \ldots, X_n be a sequence of random variables, and let Y be a random variable with $\mathbf{E}[|Y|] < \infty$. (Generally, Y will depend on X_0, \ldots, X_n .) Then

$$Z_i = \mathbf{E}[Y \mid X_0, \dots, X_i], \quad i = 0, 1, \dots, n,$$

gives a martingale with respect to X_0, X_1, \ldots, X_n .

Lemma. If the sequence Z_0, Z_1, \ldots, Z_n is a martingale with respect to X_0, X_1, \ldots, X_n , then

$$\mathbf{E}[Z_n] = \mathbf{E}[Z_0].$$

Definition. A nonnegative integer-valued random variable T is a stopping time for the sequence $\{Z_i, i \geq 0\}$ if the probability of the event T = n is independent of variables $\{Z_{n+j} \mid Z_1, \ldots, Z_n, j \geq 1\}$ (i.e., the variables Z_{n+1}, Z_{n+2}, \ldots conditioned on the values Z_1, \ldots, Z_n).

Theorem (Martingale Stopping Theorem). If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots , then

$$\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$$

whenever one of the following holds:

- the Z_i are bounded, so there is a constant c such that, for all i, $|Z_i| \leq c$;
- T is bounded;
- $\mathbf{E}[T] < \infty$, and there is a constant c such that $\mathbf{E}[|Z_{i+1} Z_i| \mid X_1, \dots, X_i] < c$.

Theorem (Wald's Equation). Let $X_1, X_2, ...$ be nonnegative, independent, indentically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \cdot \mathbf{E}[X].$$

Definition. Let $Z_0, Z_1,...$ be a sequence of independent random variables. A nonnegative, integer-valued random variable T is a stopping time for the sequence if the event T = n is independent of $Z_{n+1}, Z_{n+2},...$

Theorem (Azuma-Hoeffding Inequality). Let X_0, \ldots, X_n be a martingale such that

$$|X_k - X_{k-1}| \le c_k.$$

Then, for all $t \geq 1$ and $\lambda > 0$,

$$\Pr(|X_t - X_0| \ge \lambda) \le 2e^{-\lambda^2/2\sum_{k=1}^t c_k^2}.$$

Corollary. Let X_0, X_1, \ldots be a martingale such that, for all $k \geq 1$,

$$|X_k - X_{k-1}| \le c.$$

Then, for all $t \geq 0$ and $\lambda > 0$,

$$\Pr(|X_t - X_0| \ge \lambda c\sqrt{t}) \le 2e^{-\lambda^2/2}.$$

Theorem (Azuma-Hoeffding Inequality). Let X_0, \ldots, X_n be a martingale such that

$$B_k \le X_k - X_{k-1} \le B_k + d_k$$

for some constants d_k and for some random variables B_k that may be functions of $X_0, X_1, \ldots, X_{k-1}$. Then, for all $t \ge 0$ and any $\lambda > 0$,

$$\Pr(|X_t - X_0| \ge \lambda) \le 2e^{-2\lambda^2/(\sum_{k=1}^t d_k^2)}.$$

Definition. A function

$$f(\bar{X}) = f(X_1, X_2, \dots, X_n)$$

satisfies a Lipschitz condition with bound c if, for any i and for any set of values x_1, \ldots, x_n and y_i ,

$$|f(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) - f(x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)| \le c.$$

Theorem (McDiarmid's Inequality). Let f be a function on n variables that satisfies the above Lipschitz condition with bound c. Let X_1, \ldots, X_n be independent random variables such that $f(X_1, \ldots, X_n)$ is in the domain of f. Then

$$\Pr(|f(X_1,...,X_n) - \mathbf{E}[f(X_1,...,X_n)]| \ge \lambda) \le 2e^{-2\lambda^2/(nc^2)}.$$