

Input: G = (V, E) – directed graph, each edge $(u, v) \in E$ has weight wt(u, v) > 0, fixed vertex s (source).

 $d(v_1, v_2) = \text{length of}$ a path from v_1 to v_2 .

Output: for each vertex v:

Input: G = (V, E) – directed graph, each edge $(u, v) \in E$ has weight wt(u, v) > 0, fixed vertex s (source).

 $d(v_1, v_2) = ext{length of}$ a path from v_1 to v_2 .

Output: for each vertex v:

Input: G = (V, E) – directed graph, each edge $(u, v) \in E$ has weight wt(u, v) > 0, fixed vertex s (source).

 $d(v_1, v_2) = \text{length of}$ a path from v_1 to v_2 .

Output: for each vertex v:

Input: G = (V, E) – directed graph, each edge $(u, v) \in E$ has weight wt(u, v) > 0, fixed vertex s (source).

 $d(v_1, v_2) = ext{length of}$ a path from v_1 to v_2 .

Output: for each vertex v:

How to Find the Shortest Paths?

For each vertex v, maintain a variable:

d(v) = length of a shortest path from s to v found so far.

Start: d(s) = 0, $d(v) = \infty$ for every vertex $v \neq s$

Loop: Pick a vertex u for which $d(u) = \delta(s, u)$ For each edge (u, v):

$$d(v) = \min(d(v), d(u) + wt(u, v))$$

How do we pick u? How do we know that $d(u) = \delta(s, u)$?

Shortest Paths in Directed Graphs

Maintain $S \subseteq V$ such that for all $v \in S$: $d(v) = \delta(s, v)$ (i.e. we know the shortest path from s to v for all $v \in S$)

Shortest Paths in Directed Graphs

d(s) = 0, $d(v) = \infty$ for each vertex $v \neq s$.

Loop: Grow S by moving one vertex u from Q to S.

$$V \setminus S = Q$$

Which vertex \boldsymbol{u} do we move?

u = vertex of Q for which d(u) is minimum.

Need to prove that for this vertex u, $d(u) = \delta(s, u)$.

Once we move u from Q to S, for each edge (u,v) update $d(v) = \min \bigl(d(v), d(u) + wt(u,v) \bigr).$

Dijkstra (1959)


```
Input: G = (V, E) – arbitrary directed graph (not necessarily acyclic), each edge (u, v) \in E has weight wt(u, v) > 0, fixed vertex s (source).
```

Algorithm:

```
for each vertex v \in V: set d(v) = \infty. d(s) = 0, S = \emptyset, Q = V while Q \neq \emptyset: u = \text{vertex of } Q \text{ with minimum } d(u). d(u) = \delta(s, u) delete u from Q; add u to S. for each edge (u, v): if d(v) > d(u) + wt(u, v) then d(v) = d(u) + wt(u, v).
```


Q	S	t	x	y	Z
d	0	∞	∞	∞	∞

- u = s
- $\delta(s,s)=d(s)=0$
- delete s from Q
- update d(t) and d(y)

Q	S	t	x	y	Z
d	0	∞	∞	∞	∞

- u = s
- $\delta(s,s)=d(s)=0$
- delete s from Q
- update d(t) and d(y)

Q	S	t	x	y	Z
d	0	∞	∞	∞	∞

Q	t	x	y	Z
d	10	∞	5	∞

- u = s
- $\delta(s,s)=d(s)=0$
- delete s from Q
- update d(t) and d(y)

Q	t	x	y	Z
d	10	∞	5	∞

- u = y
- $\delta(s, y) = d(y) = 5$
- delete y from Q
- update d(t), d(x), and d(z)

Q	t	x	y	Z
d	10	∞	5	∞

- u = y
- $\delta(s, y) = d(y) = 5$
- delete y from Q
- update d(t), d(x), and d(z)

Q	t	x	y	Z
d	10	∞	5	∞

Q	t	x	Z
d	8	14	7

- u = y
- $\delta(s, y) = d(y) = 5$
- delete y from Q
- update d(t), d(x), and d(z)

Q	t	x	Z
d	8	14	7

- u = z
- $\delta(s,z)=d(z)=7$
- delete z from Q
- update d(x) and d(s)

$\delta(s,z)$	=	7
$\delta(s,y)$	=	5
$\delta(s,s)$	=	0

Q	t	x	Z
d	8	14	7

- u = z
- $\delta(s,z) = d(z) = 7$
- delete z from Q
- update d(x) and d(s)

$\delta(s,z)$	=	7
$\delta(s,y)$	=	5
$\delta(s,s)$	=	0

Q	t	x	Z
d	8	14	7

Q	t	x
d	8	13

- u = z
- $\delta(s,z) = d(z) = 7$
- delete z from Q
- update d(x) and d(s)

$\delta(s,z)$	=	7
$\delta(s,y)$	=	5
$\delta(s,s)$	=	0

Q	t	x
d	8	13

- u = t
- $\delta(s,t) = d(t) = 8$
- delete t from Q
- update d(x) and d(y)

$$\delta(s,t)=8$$

$$\delta(s,z)=7$$

$$\delta(s, y) = 5$$

$$\delta(s,s)=0$$

Q	t	x
d	8	13

- u = t
- $\delta(s,t) = d(t) = 8$
- delete t from Q
- update d(x) and d(y)

$$\delta(s,t) = 8$$
 $\delta(s,z) = 7$
 $\delta(s,y) = 5$
 $\delta(s,s) = 0$

Q	t	x
d	8	13

Q	x
d	9

- u = t
- $\delta(s,t) = d(t) = 8$
- delete t from Q
- update d(x) and d(y)

$$\delta(s,t) = 8$$

$$\delta(s,z)=7$$

$$\delta(s, y) = 5$$

$$\delta(s,s)=0$$

Q	x
d	9

- u = x
- $\delta(s, x) = d(x) = 9$
- delete x from Q
- update d(z)

$$\delta(s,x)=9$$

$$\delta(s,t)=8$$

$$\delta(s,z)=7$$

$$\delta(s, y) = 5$$

$$\delta(s,s)=0$$

Q	x
d	9

- u = x
- $\delta(s,x) = d(x) = 9$
- delete x from Q
- update d(z)

$$\delta(s,x)=9$$

$$\delta(s,t)=8$$

$$\delta(s,z)=7$$

$$\delta(s, y) = 5$$

$$\delta(s,s)=0$$

Q d

- u = x
- $\delta(s,x) = d(x) = 9$
- delete x from Q
- update d(z)

$$\delta(s,x)=9$$

$$\delta(s,t)=8$$

$$\delta(s,z)=7$$

$$\delta(s, y) = 5$$

$$\delta(s,s)=0$$

- $Q = \emptyset$
- we are done!