OMIS 482 PROJECT 2

Kevin Rius

Jeff Willer

NOTE: Again, please include screenshots of any major steps and an explanation behind each thing you did. You will need to present this so you will also need to create a PowerPoint presentation.

1. Find a data set that has at least 1000 observations and at least 10 input variables. Please get the data set approved by me prior to moving on with the project. This is also a first come, first serve type of situation. If someone else finds the same data set first and asks me about it, it cannot be used by another group. This does not need to be a SAS data file, as you can convert many data types to SAS files. If you need help with this step, please ask. Some data file types are easier to convert using the SAS Studio software and I can always do this conversion for you if necessary. You may also find your data as split, multiple data files. These can be combined and used if it is something you are really interested in using.

Below is our dataset file we used for our analysis!

2. Please describe the data to me in your project. Please tell me if the target is binary or continuous and describe all of the input variables and their measurement scales. Why are you using predictive modeling techniques on this data?

Our Variables:

VARIABLES

- World_Rank = world rank for each university (Interval) *REJECTED*
- Institution = name of university (Nominal)
- Country = country of each university (Nominal)
- <u>National_Rank</u> = rank of university within its country (Interval)
- Quality_of_Education = rank for quality of education (Interval)
- Alumni_Employment = rank for alumni employment (Interval)
- Quality_of_Faculty_= rank for quality of faculty (Interval)
- Publications = rank for publications (Interval)
- <u>Influence</u> = rank for influence on students & their educational growth (Interval)
- <u>Citations</u> = number of students at the university (Interval)
- Broad_Impact = rank for broad impact (only for 2014-2015) (Interval) *DROPPED*
- Patents = rank for patents from University (Interval)
- Score = total score, used for determining world rank; highest score = greatest rank (Interval) *TARGET*
- Year = year of ranking (2012 to 2015) (Interval)

₩ Variables - FIMPORT

(none)	~ _	not Equal to	V	/				
Columns: Label Mining Basic								
Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit	
alumni_emplo	yn <mark>Input</mark>	Interval	No		No			
citations	Input	Interval	No		No			
country	Input	Nominal	No		No			
nfluence	Input	Interval	No		No			
nstitution	Input	Nominal	No		No			
national_rank	Input	Interval	No		No			
patents	Input	Interval	No		No			
oublications	Input	Interval	No		No			
quality_of_edu	ıc <mark>Input</mark>	Interval	No		No			
quality_of_fac	ulInput	Interval	No		No			
score	Target	Interval	No		No			
world_rank	Rejected	Interval	No		No			
/ear	Input	Interval	No		No			

- Our target variable is Score (0.00-100.00) which is an interval variable. World_Rank was rejected because World_rank and score have a very similar relationship. The university with the highest score will also have the highest rank and vice-versa, so we decided to take the variable out because it would affect variable worth and other statistical measures to determine the factors for the best university. We are using predictive modeling techniques on this data to determine which variables influence having the "best" university, meaning which variables have the biggest contribution and impact on the score which gives each university its rank. We would like to find out according to the data collected which factors contribute to making a great university and educational institution!
- 3. Create a new project in SAS.
- 4. Create a new library in SAS that links to whatever folder your data is saved in.
- 5. Create a new diagram in SAS.
- 6. Input the data set into SAS. Make sure the target is set to be a target variable and all measurement scales are correct. Put the data set on your diagram.
- 7. Do data partition. You can choose the amount you allocate to each one but please tell me what you chose. This can be influenced by your sample size so if you have any concerns with what you set up, please ask me before proceeding.
- We decided to use the default values for data partition: Training = 40.0, Validation = 30.0, and Test = 30.0

Property	Value	
General		٨
Node ID	Part	
Imported Data		
Exported Data		
Notes		
Train		
Variables		
Output Type	Data	
Partitioning Method	Default	
Random Seed	12345	
□Data Set Allocations		
Training	40.0	
Validation	30.0	
i. Test	30.0	
Report		
Interval Targets	Yes	
Class Targets	No	v
▲▼		

- 8. Go through all the **sample nodes** we went over in chapter 2 (Input Data, Data Partition, Filter, File Import, Time Series, Merge, and Append). Does your data require you to use any of these nodes (other than input data or data partition)? If so, please add it onto the diagram and explain why the node was added and what was done in terms of settings. You can also explain why you chose NOT to use any of these nodes.
 - The only sample nodes we used in our analysis was the File Import node and Data Partition node. We need to use the File Import node to input our dataset into SAS EM for analysis and we also were required to use the Data Partition node for further analysis. We did not use any other sample nodes we went over in chapter 2 because we felt our data set did not need these nodes to be applied. The Time Series node was not very necessary for our data as we only had year dates which were not very impactful on the data to begin with, the Merge and Append nodes were also not needed for our dataset we used in our analysis.
- 9. Go through all the **initial data exploration** nodes we went over in chapter 2 (Stat Explore, MultiPlot, Graph Explore, Variable Clustering, and Cluster). You should run Stat Explore and MultiPlot to look at the distributions of your variables and comment on what you see. Would it make sense to use any of the other nodes from this section for your data? If so, please add it onto the diagram and explain why the node was added and what was done in terms of settings.

• We decided to use both the StatExplore and Multiplot nodes as the only initial data exploration nodes. Below you can view the results of the Stat Explore Node and Multiplot Node. You can see in the Variable Worth chart the variables with the highest worth (variables with the highest worth are the most important variables in relation to the target variable – score) Variable worth is calculated from the p-values of the chi-square statistics! When using the StatExplore node for a continuous target the interval variables property must be set to No, and the Correlations, Pearson Correlations and Spearman Correlations properties are all set to Yes.

Chi-Square Statistics	
Chi-Square	Yes
Interval Variables	No
Number of Bins	5
Correlation Statistics	
Correlations	Yes
Pearson Correlations	Yes
Spearman Correlations	Yes
Status	

(maximum 500 observati	ons prince	.4)								
Data Role=TRAIN										
Maniah la	D-1-	W	Standard	Non	Wi and	Wd as d assessed	Wa da an	W	(Y)	77
Variable	Role	Mean	Deviation	Missing	Missing	Minimum	Median	Maximum	Skewness	Kurtosi:
alumni_employment	INPUT	358.9932	187.5072	880	0	1	456	567	-0.51704	-1.21521
citations	INPUT	409.6045	261.0195	880	0	1	428	812	0.072282	-1.23329
influence	INPUT	459.2091	304.6086	880	0	1	441	991	0.116506	-1.2872
national_rank	INPUT	40.69659	52.1435	880	0	1	21	229	1.963456	3.17185
patents	INPUT	435.3977	275.9086	880	0	1	426	871	0.005226	-1.3662
publications	INPUT	460.0739	304.0745	880	0	1	442	999	0.106756	-1.2724
quality_of_education	INPUT	273.775	122.273	880	0	1	355	367	-0.97532	-0.681
quality_of_faculty	INPUT	179.092	64.39684	880	0	1	210	218	-1.56055	0.89554
year	INPUT	2014.35	0.755864	880	0	2012	2014	2015	-1.28069	0.58308
score	TARGET	47.90466	7.950473	880	0	43.36	45.11	100	4.002199	18.11259

Correlation Statistics (maximum 500 observations printed)

Data Role=TRAIN Type=PEARSON Target=score

Input	Correlation
national_rank	-0.20832
year	-0.24161
patents	-0.47717
alumni_employment	-0.50227
influence	-0.52971
publications	-0.52974
citations	-0.53141
quality_of_education	-0.61116
quality_of_faculty	-0.70702

Data Role=TRAIN Type=SPEARMAN Target=score

Input	Correlation
	0 20762
year	-0.20763
national_rank	-0.31208
quality_of_faculty	-0.57137
alumni_employment	-0.57340
quality_of_education	-0.60081
patents	-0.64924
citations	-0.80715
influence	-0.84104
publications	-0.85368

- 10. Go through all the **tools for data modification** nodes we went over in chapter 2 (Drop, Replacement, Impute, Interactive Binning, and Principal Components). Would it make sense to use any of these nodes for your data? If so, please add it onto the diagram and explain why the node was added and what was done.
 - We did not need to use any tools for data modification nodes within our analysis.
- 11. Are you choosing to do variable selection or transformation of variables? What is your reasoning behind your decision? If you do choose to do either of these, add the nodes to the diagram and set the appropriate settings.
 - Prior to adding our data set into SASEM we removed one variable (broad_impact as it was a variable only collected for 2 of the 4 years within the data set and that is why we removed it. Additionally, we rejected the World_rank variables as prior explained!) We did not want any other variables to end up being rejected with a low R-squared value as we wanted to see each and every variable provided in the dataset in our analysis.
- 12. Add some decision tree models to the diagram and vary the settings in each one to produce different trees. The number of trees you can create can depend on the type of target variable you chose. Explain why you built the trees you built.

• We decided to use two decision tree nodes and the reason we only did two is because with our target variable being interval we were able to selection two interval target criterion. The first decision tree used ProbF while decision tree 2 used Variance as the criterion.

• We connected a model comparison node to each decision tree node to determine which model would be best. After running the model comparison node, it was determined that decision tree 2 (variance criterion) was the better of the two decision tree models. Decision tree 2 had the lower Average Square Error and was selected. The results can be viewed below:

Data Role=Test

	Statistics	Tree2	Tree	
Test:	Average Squared Error	5.23	5.31	
Test:	Divisor for TASE	660.00	660.00	
Test:	Maximum Absolute Error	19.97	19.97	
Test:	Sum of Frequencies	660.00	660.00	
Test:	Root Average Squared Error	2.29	2.30	
Test:	Sum of Squared Errors	3451.89	3505.90	
Test:	Sum of Weights Times Freqs	660.00	660.00	

- 13. Add different types of neural network models to the diagram and vary the settings to produce different models. Explain why you chose to add each type of neural network model to the diagram.
 - We only used one neural network node within our diagram due to having an interval target variable. The settings used for our neural network node can be viewed below. We used Average Error as our Model Selection Criterion. Additionally, we used Multilayer Perception as our Architecture, and for our Target Layer Activation Function we used the identity function since our target variable is interval!

Property	Value	
General		
Node ID	Neural	
Imported Data		
Exported Data		
Notes		
Train		
Variables		
Continue Training	No	
Network		
Optimization		
Initialization Seed	12345	
Model Selection Criterion	Average Error	
Suppress Output	No	
Score		
Hidden Units	No	
Residuals	Yes	
Standardization	No	

Property	Value	
Archi tecture	Multilayer Perceptron	
Direct Connection	No	
Number of Hidden Units	3	
Randomization Distribution	Normal	
Randomization Center	0.0	
Randomization Scale	0.1	
Input Standardization	Standard Deviation	
Hidden Layer Combination Function	Default	
Hidden Layer Activation Function	Default	
Hidden Bias	Yes	
Target Layer Combination Function	Default	
Target Layer Activation Function	Identity	
Target Laver Error Eupction	Default	

• Here are the Fit Statistics results from the Neural Network Node:

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
score	score	_DFT_	Total Degre	880		
score	score	_DFE_	Degrees of	-1263		
score	score	_DFM_	Model Degr	2143		
score	score	_NW_	Number of	2143		
score	score	_AIC_	Akaike's Inf			
score	score	_SBC_	Schwarz's			
score	score	_ASE_	Average Sq	4.807647	22.19633	22.40179
score	score	_MAX_	Maximum A	19.44566	49.50534	48.23534
score	score	_DIV_	Divisor for	880	660	660
score	score	_NOBS_	Sum of Fre	880	660	660
score	score	_RASE_	Root Avera	2.192635	4.711298	4.733053
score	score	_SSE_	Sum of Squ	4230.73	14649.58	14785.18
score	score	_SUMW_	Sum of Cas	880	660	660
score	score	_FPE_	Final Predic			
score	score	_MSE_	Mean Squa		22.19633	22.40179
score	score	_RFPE_	Root Final			
score	score	_RMSE_	Root Mean		4.711298	4.733053
score	score	_AVERR_	Average Err	4.807647	22.19633	22.40179
score	score	_ERR_	Error Functi	4230.73	14649.58	14785.18
score	score	_MISC_	Misclassific			
score	score	_WRONG_	Number of			

- 14. Add different types of regression models to the diagram. Vary the selection model property to build the different models. Make sure the regression type property is set correctly for your type of target variable.
 - We used 4 different types of regression models in our diagram varying the selection model property to build different models. The regression type property was set to Linear Regression due to having an interval target! The 4 different types of regression models used were as followed:

Regression Node 1: Selection Model = None, Selection Criterion = Default

Regression Node 2: Selection Model = Stepwise, Selection Criterion = Validation Error

Regression Node 3: Selection Model = Forward, Selection Criterion = Validation Error

Regression Node 4: Selection Model = Backward, Selection Criterion = Validation Error

All 4 regression nodes were connected to a Model Comparison node to view
which regression model was the best out of all of them. The first regression
node was selected as the best model (Selection Model = None, Selection
Criterion = Default) this model had the lowest Test Average Square Error
and was selected. The results of all the four regression nodes can be viewed
below:

Fit Statistics:

d: Sum ase ights	Test: Average Squared	Test: Lower 95% Conf. Limit for	Test: Upper 95% Conf. Limit for	Error	Test: Divisor for TASE	Test: Error Function	Maximum Absolute	Test: Mean Square Error	Test: Sum of Frequencies	Test: Root Average Squared	Test: Root Mean Square Error	Test: Sum of Square Errors	Test: Sum of Case Weights
es Freq	Error	TASE	TASE	Function			Error			Error			Times Fre
660	21.36013	11.79958	33.71077	21.36013	660	14097.68	48.23534	21.36013	660	4.621702	4.621702	14097.68	
660	21.36013	11.79958	33.71077	21.36013	660	14097.68		21.36013	660		4.621702		
660	21.38495	11.80449	33.76483	21.38495	660	14114.07		21.38495	660		4.624387	14114.07	
660	21.56467	11.85913	34.12406	21.56467	660	14232.68	48.23534	21.56467	660	4.643778	4.643778	14232.68	

Fit Statistics
Model Selection based on Valid: Average Squared Error (_VASE_)

			Valid:	Train:
			Average	Average
Selected	Model	Model	Squared	Squared
Model	Node	Description	Error	Error
Y	Reg	Regression	21.4252	1.23616
	Reg4	Regression (4)	21.4252	1.23616
	Reg3	Regression (3)	21.5051	1.23922
	Reg2	Regression (2)	22.1258	1.55025

Test Statistics:

Data Role=Test				
Statistics	Reg	Reg4	Reg3	Reg2
Test: Lower 95% Conf. Limit for TASE	11.80	11.80	11.80	11.86
Test: Upper 95% Conf. Limit for TASE	33.71	33.71	33.76	34.12
Test: Average Squared Error	21.36	21.36	21.38	21.56
Test: Average Error Function	21.36	21.36	21.38	21.56
Test: Divisor for TASE	660.00	660.00	660.00	660.00
Test: Error Function	14097.68	14097.68	14114.07	14232.68
Test: Maximum Absolute Error	48.24	48.24	48.24	48.24
Test: Mean Square Error	21.36	21.36	21.38	21.56
Test: Sum of Frequencies	660.00	660.00	660.00	660.00
Test: Root Average Squared Error	4.62	4.62	4.62	4.64
Test: Root Mean Square Error	4.62	4.62	4.62	4.64
Test: Sum of Square Errors	14097.68	14097.68	14114.07	14232.68
Test: Sum of Case Weights Times Freq	660.00	660.00	660.00	660.00

COMPLETED DIAGRAM BEFORE COMPARING ALL MODELS:

15. Add a model comparison node and use different criteria to explain which model ends up being the best one.

• After running the model comparison node combining the best Decision Tree (2), the best Regression model, and the lone Neural Network model, the Decision Tree (2) was selected due to having the lowest Average Square Error (Test data) of 5.23 compared to the Regression model having 21.36 (Test data), and the Neural Network model having an Average Square error of 22.40179 (Test data). The results of the final model comparison node can be viewed below:

Selected Model	Predecessor Node	Model Node	Model Description	Target Variable	Target Label	Selection Criterion: Valid: Average Squared Error	Train: Akaike's Information Criterion	Train: Average Squared Error	Train: Average Error Function	Train: Degrees of Freedom for Error	Train: Model Degrees of Freedom	Train: Total Degrees of Freedom	Train: Divisor for ASE
/	MdlComp	Tree2	Decision Tr	score	score	4.376768		2.481531				880	8
	MdlComp2	Reg	Regression	score	score	21.42515	1506.567	1.236158	1.236158	220	660	880	
	Neural	Neural	Neural Net	score	score	22.19633		4.807647	4.807647	-1263	2143	880	

Test: Average Squared Error	Test: Lower 95% Conf. Limit for TASE	Test: Upper 95% Conf. Limit for TASE	Test: Average Error Function	Test: Divisor for TASE	Test: Error Function	Test: Maximum Absolute Error	Square Error	Test: Sum of Frequencies	Test: Root Average Squared Error	Test: Root Mean Square Error	Test: Sum of Square Errors	Test: Sum of Case Weights Times Freq	Train: Misclassifica tion Rate
5.230129				660		19.96917		660	2.286948		3451.885	660	
21.36013	11.79958	33.71077	21.36013	660	14097.68	48.23534	21.36013	660	4.621702	4.621702	14097.68	660	
22.40179			22.40179	660	14785.18	48.23534	22.40179	660	4.733053	4.733053	14785.18	660	

Data Role=Test

Statis	stics	Tree2	Reg	Neural
			•	•
Test:	Lower 95% Conf. Limit for TASE		11.80	
Test:	Upper 95% Conf. Limit for TASE		33.71	
Test:	Average Squared Error	5.23	21.36	22.40
Test:	Average Error Function		21.36	22.40
Test:	Divisor for TASE	660.00	660.00	660.00
Test:	Error Function		14097.68	14785.18
		-		
Test:	Maximum Absolute Error	19.97	48.24	48.24
Test:	Misclassification Rate			
Test:	Lower 95% Conf. Limit for TMISC			
Test:	Upper 95% Conf. Limit for TMISC			
Test:	Mean Square Error		21.36	22.40
Test:	Sum of Frequencies	660.00	660.00	660.00
Test:	Root Average Squared Error	2.29	4.62	4.73
Test:	Root Mean Square Error		4.62	4.73
Test:	Sum of Square Errors	3451.89	14097.68	14785.18
Test:	Sum of Case Weights Times Freq	660.00	660.00	660.00
Test:	Number of Wrong Classifications			

*------

^{*} Score Output