MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$

$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$

$$x_1 - x_3 + x_4 = 1$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & -1 & 5 & | & 4 \\ -1 & 0 & -2 & | & -1 \\ 1 & 3 & -1 & | & -5 \end{bmatrix}$$

E3. Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$

$$x_1 + x_2 - x_3 + 5x_4 = 3$$

 ${\bf E4.}~$ Find a basis for the solution set of the system of equations

$$x + 3y + 3z + 7w = 0$$

$$x + 3y - z - w = 0$$

$$2x + 6y + 3z + 8w = 0$$

$$x + 3y - 2z - 3w = 0$$

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$

- (a) Show that the vector **addition** \oplus is **associative**: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

V2. Determine if $\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ belongs to the span of the set $\left\{ \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$.

V3. Determine if the vectors $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 5\\-1\\-2 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\-1 \end{bmatrix}$, and $\begin{bmatrix} 0\\2\\-1 \end{bmatrix}$ span \mathbb{R}^3

V4. Determine if $\left\{ \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^4 .

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\3\\-2 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

S2. Determine if the set $\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4 .

S3. Let W be the subspace of \mathcal{P}_3 given by $W = \text{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right)$. Find a basis for W.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$. Find the dimension of W.

E1:	V3:	
E2:	V4:	
E3:	S1:	
E4:	S2:	
V1:	S3:	
V2:	S4:	