Lecture 21: 80x86 Memory Interfacing

Seyed-Hosein Attarzadeh-Niaki

Based on the slides by Hongzi Zhu and Barry Brey

Microprocessors and Assembly

1

Review

- Assembly programming
 - Addition and subtraction
 - Multiplication and division (unsigned)
 - BCD arithmetic
 - Rotate instructions

Microprocessors and Assembly

Outline

- Memory and memory interfacing
 - Memory chips
 - Address decoding
 - Data integrity
 - 8086 memory interfacing

Microprocessors and Assembly

3

Review on Memory Chips

- Key concepts
 - Capacity
 - organization (the number of locations X the size of addressable unit)

4016: $2K \times 8$ read/write SRAM

16 DQ7 15 DQ6 14 DQ5 13 DQ4

On the slowest 4016, access time t_{a(A)} is 250 ns, fast enough to connect directly to an 8088/8086 at 5 MHz

switching characteristics over recommended voltage range, TA = 0°C to 70°C

PARAMETER		TMS4016-12	TMS4016-15	TMS4016-20	TMS4016-25	Ī
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	UNIT
a(A)	Access time from address	120	150	200	250	ns
a(S)	Access time from chip select low	60	75	100	120	ns
ta(G)	Access time from output enable low	50	60	80	100	ns
t _{v(A)}	Output data valid after address change	10	15	15	15	ns
t _{dis(S)}	Output disable time after chip select high	40	50	60	80	ns
t _{dis(G)}	Output disable time after output enable high	40	50	60	80	ns
f _{dis(W)}	Output disable time after write enable low	50	60	60	80	ns
t _{en(S)}	Output enable time after chip select low	5	5	10	10	ns
ten(G)	Output enable time after output enable low	5	5	10	10	ns
t _{en(W)}	Output enable time after write enable high	5	5	10	10	ns

NOTES: 3. C_{i_c} = 100pF for all measurements except $t_{dis(W)}$ and $t_{en(W)}$ $C_{i_c} = 5$ pF for $t_{dis(W)}$ and $t_{en(W)}$.

4. t_{dis} and t_{en} parameters are sampled and not 100% tested.

Microprocessors and Assembly

TMS4464: $64K \times 4$ dynamic RAM (DRAM)

PIN	NOMENCLATURE
A0-A7	Address Inputs
CAS	Column Address Strobe
DQ1-DQ4 Data-In/Data-Out	
G	Output Enable
RAS	Row Address Strobe
v _{oo}	+ 5-V Supply
v _{SS}	Ground
₩	Write Enable

- After 2 or 4 ms, the contents of the DRAM must be completely rewritten (refreshed).
- DRAM requires so many address pins that manufacturers multiplexed address inputs.

irs and Assembly

DRAM Addressing

- First, A₀-A₇ are placed on the address pins and strobed into an internal row latch by row address strobe (RAS) as the row address.
- Next, address bits A₈-A₁₅ are placed on the same eight address inputs and strobed into an internal column latch by the column address strobe (CAS) as the column address

Microprocessors and Assembly

Dual In-line Memory Modules

- Pentium 4 microprocessors have a 64-bit wide data bus
- The memory on DIMMs is organized as 64 bits wide.
- Available in DRAM, EDO, SDRAM, and DDR (doubledata rate) forms
- An EPROM provides information to the system on the size and the speed of the memory device for plug-andplay applications.

Microprocessors and Assembly

11

Reflection

- How does the 8086 CPU execute an instruction like MOV BX, [1000h]?
- What is the difference between executing MOV BX, [1000h] and executing MOV [1001h], BX ?
- What is the difference between accessing memory and accessing I/O devices?

Microprocessors and Assembly

Memory Address Decoding

- According to your instructions that access memory,
 - E.g., MOV AX, [0012H]
- CPU calculates the physical address and put corresponding signals on the address bus
 - E.g., if DS=0900H, what's the PA?
- Memory address decoding circuitry locates the specific memory chip that stores the desired data
 - Examine address decoding using logic gates and 74LS138 decoder chips

Microprocessors and Assembly

13

Memory Address Decoding

More on Address Decoding

- Absolute address decoding
 - All address lines are decoded
- Linear select decoding
 - Only selected lines are decoded
 - Cheap
 - But with aliases: the same memory unit (I/O port) with multiple addresses
 - Why this happens?

Microprocessors and Assembly

19

Example

In a particular computer,

- the address range from 0000h to 3FFFh is used for ROM,
- the range from 4000h to 5FFFh is reserved for future use,
- and the range from 6000h to 0FFFFh is used for RAM.

Assume that the <u>control signals for RAM are CS^ and WE^</u>, and the <u>CPU has 16 address pins</u> (i.e., A15^A0), <u>8 data pins</u> (i.e., D7^D0), and <u>R/W^ and MREQ^ control signals</u>. Achieve the following requests:

- 1. draw the address decoding solution using a 74LS138 chip
- 2. if both ROM and RAM are built with $8K \times 1$ memory chips, try to draw the connection between the CPU and the memory.
- if ROM is built with 8K×8 memory chips and RAM is built with 4K×8 chips, try to draw the connection between the CPU and the memory.
- 4. what if ROM is built with $16K \times 8$ memory chips and RAM is built with $8K \times 8$ memory chips?

Microprocessors and Assembly

(1) draw the address decoding solution using a 74LS138 chip

Solution.

The logic expression of each output of the 74LS138 chip:

romsel0 = A15 * A14 * A13 * MREQ#

Microprocessors and Assembly

21

(2) if both ROM and RAM are built with $8K \times 1$ memory chips, try to draw the connection between the CPU and the memory.

Solution.

byte ROM. If RAM is built with 128×8 memory chips and ROM is built with 512×8 memory chips, please specify the address range of each memory chip. Given that RAM chips need CS~ and WE~ control signals, ROM chips need only CS~ control signal, and the CPU has 16 address pins (A15~A0), 8 data pins (D7~D0) and R/W~ and MREQ~ control signals, draw the connection between the CPU and the memory.

Solution. The address range of each memory chip:

Memory Chip	Address range (hex)	binary	
RAM1	0000~007F	0 0 0 x x x x x x x	
RAM2	0080~00FF	$0\;0\;1\;x\;x\;x\;x\;x\;x\;x$	
RAM3	0100~017F	$0\; 1\; 0\; x\; x\; x\; x\; x\; x\; x\; x$	
RAM4	0180~01FF	$0\; 1\; 1\; x\; x\; x\; x\; x\; x\; x\; x$	
ROM	0200~03FF	1 x x x x x x x x x x	

Microprocessors and Assembly

25

byte ROM. If RAM is built with 128×8 memory chips and ROM is built with 512×8 memory chips, please specify the address range of each memory chip. Given that RAM chips need CS~ and WE~ control signals, ROM chips need only CS~ control signal, and the CPU has 16 address pins (A15~A0), 8 data pins (D7~D0) and R/W~ and MREQ~ control signals, draw the connection between the CPU and the memory.

As the total volume of the memory is 1K, we need 10 address lines. RAM chips need 7 address lines and ROM chips need 9 address lines.

Data Integrity

Checksum byte for ROM

Check the integrity of a series of bytes

- Calculation
 - Add all bytes together and drop all carries
 - Take the 2's complement of the sum
- Store the checksum byte together with data
- check the integrity by adding data and the checksum together
- Then how to prove the integrity of the data?

E.g., 38H, 23H, 33H, 07H, what is the checksum byte? 6BH

Parity bit for DRAM

Check the integrity of a series of bits (a byte)

- even parity: if the number of 1s in the series of bits is odd, then the parity bit is set to 1; otherwise, set to 0, making the total number of 1s even (Data + the parity bit)
- odd parity: if the number of 1s in the series of bits is odd, then the parity bit is set to 0; otherwise, set to 1
- In 8086, odd parity is used, i.e., if data have even number of 1s, the parity bit is set

CRC for disks and the Internet

Microprocessors and Assembly

27

Error-Correcting Circuits (ECC)

- 74LS636 is an 8-bit error correction and detection circuit that
 - corrects any single-bit memory read error;
 - flags any 2-bit error.
 - Called SECDED (single error correction /double error detection).
 - Stores five parity bits
- Modern DDR error-correction memory (ECC) does not actually have logic circuitry on board that detects and corrects errors.
- On 64-bit Pentiums, ECC memory is 72-bits wide using the additional 8 bits to store the ECC code.

Microprocessors and Assembly

Memory Organization in 8086

· Even and odd banks

BHE	A0		
0	0	Even word	D0 - D15
0	1	Odd byte	D8 - D15
1	0	Even byte	D0 - D7
1	1	None	

Address bits A_1 through A_{19} select the storage location that is to be accessed. They are applied to both banks in parallel. A_0 and bank high enable (\overline{BHE}) are used as **bank-select** signals.

Microprocessors and Assembly

29

Byte-Memory Operations

- Byte-memory operation at even address X
- Byte-memory operation at odd address X+1

Microprocessors and Assembly

Aligned Word-Memory Operations

Accessing an aligned word at even address X

Both the high and low banks are accessed at the same time. Both A_0 and \overline{BHE} are set to 0. This 16-bit word is transferred over the complete data bus D_0 through D_{15} in just one bus cycle.

[100h] MOV AX,

Microprocessors and Assembly

Misaligned Word-Memory Operations

Accessing an misaligned word at odd address X+1

Two bus cycles are needed. During the first bus cycle, the byte of the word located at address X + 1 in the high bank is accessed over D_8 through D_{15} . Even though the data transfer uses data lines D_8 through D_{15} , to the processor it is the low byte of the addressed data word. In the second memory bus cycle, the even byte located at X + 2 in the low bank is accessed over bus lines D_0 through D_7 .

Microprocessors and Assembly

Review

What is the complete procedure of the 8086 CPU executing an instruction like MOV BX, [1000h]? What about MOV [1001h], BX?

