Sequências

Pode-se pensar numa **sequência** como uma lista de números escritos em uma ordem definida:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

Equivalentemente, a toda função com domínio \mathbb{N} podemos associar uma sequência pela lei $a_n=f(n)$. Deste modo, a definição de sequência pode ser formalizada por meio de função.

NOTAÇÃO A sequência $\{a_1, a_2, a_3, \ldots\}$ é também indicada por

$$\{a_n\}$$
 ou $\{a_n\}_{n=1}^{\infty}$

Exemplos

- 1) Naturais
- 2) Pares
- 3) Impares

- 4) Quadrados Perfeitos
- 5) Triangulares
- 7) Primos
- 8) Finitas
- 9) Infinitas
- 10) Crescentes
- 11) Decrescentes
- 12) Monótonas
- 13) Alternadas
- 14) PA
- 15) PG

6) Fibonacci

Tempo	Casais Adultos	Casais Não Adultos	Total de Casais
	1	0	1
1º mês	1	10	2
2º mês	1	$1_1 + 1_0 = 2$	3
3º mês	2	$1_1 + 2_0 = 3$	5
4º mês	3	$2_1 + 3_0 = 5$	8
5º mês	5	$3_1 + 5_0 = 8$	13
:	:		:
12º mês	144	233	377

Termo Geral

EXEMPLO 1 Algumas sequências podem ser definidas dando uma fórmula para o *n*-ésimo termo. Nos exemplos seguintes, damos três descrições da sequência: uma usando a notação anterior, outra empregando a fórmula da definição e uma terceira escrevendo os termos da sequência. Observe que não é necessário começar em 1.

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$
 $a_n = \frac{n}{n+1}$ $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$

(b)
$$\left\{\frac{(-1)^n(n+1)}{3^n}\right\}$$
 $a_n = \frac{(-1)^n(n+1)}{3^n}$ $\left\{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots, \frac{(-1)^n(n+1)}{3^n}, \dots\right\}$

(c)
$$\{\sqrt{n-3}\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, n \ge 3 \{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots \}$

EXEMPLO 2 Encontre uma fórmula para o termo geral a_n da sequência

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3.125}, \ldots\right\}$$

supondo que o padrão dos primeiros termos continue.

1 Definição Uma sequência $\{a_n\}$ tem limite L e escrevemos

$$\lim_{n\to\infty} a_n = L \quad \text{ou} \quad a_n \to L \text{ quando } n \to \infty$$

se pudermos tornar os termos a_n tão próximos de L quanto quisermos ao fazer n suficientemente grande. Se $\lim_{n\to\infty} a_n$ existir, dizemos que a sequência **converge** (ou é **convergente**). Caso contrário, dizemos que a sequência **diverge** (ou é **divergente**).

2 Definição Uma sequência $\{a_n\}$ tem **limite** L e escrevemos

$$\lim_{n\to\infty} a_n = L \quad \text{ou} \quad a_n \to L \text{ quando } n \to \infty$$

se, para cada $\varepsilon > 0$ existir um inteiro correspondente N tal que

se
$$n > N$$
 então $|a_n - L| < \varepsilon$

Teorema Se $\lim_{x\to\infty} f(x) = L$ e $f(n) = a_n$ quando n é um inteiro, então $\lim_{n\to\infty} a_n = L$.

5 Definição $\lim_{n\to\infty} a_n = \infty$ significa que para cada número positivo M existe um inteiro N tal que

se
$$n > N$$
 então $a_n > M$

Se $\{a_n\}$ e $\{b_n\}$ forem sequências convergentes e c for uma constante, então

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty} c = c$$

$$\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} \quad \text{se } \lim_{n\to\infty} b_n \neq 0$$

$$\lim_{n\to\infty} a_n^p = \left[\lim_{n\to\infty} a_n\right]^p \text{ se } p > 0 \text{ e } a_n > 0$$

Se
$$a_n \le b_n \le c_n$$
 para $n \ge n_0$ e $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, então $\lim_{n \to \infty} b_n = L$.

Teorema Se
$$\lim_{n\to\infty} |a_n| = 0$$
, então $\lim_{n\to\infty} a_n = 0$.

EXEMPLO 4 Encontre
$$\lim_{n\to\infty} \frac{n}{n+1}$$
.

EXEMPLO 5 A sequência
$$a_n = \frac{n}{\sqrt{10 + n}}$$
 é convergente ou divergente?

EXEMPLO 6 Calcule
$$\lim_{n\to\infty} \frac{\ln n}{n}$$
.

EXEMPLO 7 Determine se a sequência $a_n = (-1)^n$ é convergente ou divergente.

EXEMPLO 8 Calcule
$$\lim_{n\to\infty} \frac{(-1)^n}{n}$$
 se ele existir.

Teorema Se $\lim_{n\to\infty} a_n = L$ e se a função f for contínua em L, então

$$\lim_{n\to\infty} f(a_n) = f(L)$$

EXEMPLO 9 Encontre $\lim_{n\to\infty} \text{sen}(\pi/n)$.

EXEMPLO 10 Discuta a convergência da sequência $a_n = n!/n^n$, onde $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

9 A sequência $\{r^n\}$ é convergente se $-1 < r \le 1$ e divergente para todos os outros valores de r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{se } -1 < r < 1 \\ 1 & \text{se } r = 1 \end{cases}$$

10 Definição Uma sequência $\{a_n\}$ é chamada **crescente** se $a_n < a_{n+1}$ para todo $n \ge 1$, isso é, $a_1 < a_2 < a_3 < \cdots$. É chamado **decrescente** se $a_n > a_{n+1}$ para todo $n \ge 1$. Uma sequência é **monótona** se for crescente ou decrescente.

EXEMPLO 12 A sequência
$$\left\{\frac{3}{n+5}\right\}$$
 é decrescente porque

EXEMPLO 13 Mostre que a sequência
$$a_n = \frac{n}{n^2 + 1}$$
 é decrescente.

11 Definição Uma sequência $\{a_n\}$ é **limitada superiormente** se existir um número M tal que

$$a_n \leq M$$
 para todo $n \geq 1$

Ela é **limitada inferiormente** se existir um número *m* tal que

$$m \le a_n$$
 para todo $n \ge 1$

Se ela for limitada superior e inferiormente, então $\{a_n\}$ é uma sequência limitada.

12 Teorema da Sequência Monótona Toda sequência monótona limitada é convergente.

Séries

Em geral, se tentarmos somar os termos de uma sequência infinita $\{a_n\}_{n=1}^{\infty}$, obteremos uma expressão da forma

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

que é denominada uma **série infinita** (ou apenas **série**) e é denotada, por simplicidade, pelo símbolo

$$\sum_{n=1}^{\infty} a_n \quad \text{ou} \quad \sum a_n$$

2 Definição Dada uma série $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, denote por s_n sua n-ésima soma parcial:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

Se a sequência $\{s_n\}$ for convergente e $\lim_{n\to\infty} s_n = s$ existir como um número real, então a série $\sum a_n$ é chamada **convergente**, e escrevemos

$$a_1 + a_2 + \cdots + a_n + \cdots = s$$
 ou $\sum_{n=1}^{\infty} a_n = s$

O número s é chamado a **soma** da série. Se a sequência $\{s_n\}$ é divergente, então a série é chamada **divergente**.

EXEMPLO 1 Suponhamos que se saiba que a soma dos primeiros n termos da série $\sum_{n=1}^{\infty} a_n$ seja

$$s_n = a_1 + a_2 + \cdots + a_n = \frac{2n}{3n+5}$$

EXEMPLO 2 Um exemplo importante de uma série infinita é a série geométrica

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$
 $a \neq 0$

4 A série geométrica

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

é convergente se |r| < 1 e sua soma é

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \qquad |r| < 1$$

Se $|r| \ge 1$, a série geométrica é divergente.

EXEMPLO 3 Encontre a soma da série geométrica

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

EXEMPLO 4 A série $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ é convergente ou divergente?

EXEMPLO 5 Escreva o número $2,3\overline{17} = 2,3171717...$ como uma razão de inteiros.

EXEMPLO 6 Encontre a soma da série $\sum_{n=0}^{\infty} x^n$ onde |x| < 1.

EXEMPLO 7 Mostre que a série $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ é convergente e calcule sua soma.

EXEMPLO 8 Mostre que a série harmônica

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

é divergente.

- **Teorema** Se a série $\sum_{n=1}^{\infty} a_n$ for convergente, então $\lim_{n\to\infty} a_n = 0$.
- **7** Teste de Divergência Se $\lim_{n\to\infty} a_n$ não existir ou se $\lim_{n\to\infty} a_n \neq 0$, então a série $\sum_{n=1}^{\infty} a_n$ é divergente.

EXEMPLO 9 Mostre que a série $\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$ diverge.

Teorema Se Σa_n e Σb_n forem séries convergentes, então também o serão as séries Σca_n (onde c é uma constante), $\Sigma (a_n + b_n)$ e $\Sigma (a_n - b_n)$ e

(i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

(ii)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(iii)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

1) Da primeira propriedade observe que também podemos concluir que, se
$$\sum_{n=1}^\infty a_n$$
 for divergente e c um número real não nulo, então a série $\sum_{n=1}^\infty ca_n$ também será divergente.

2) Já a segunda propriedade não nos permite concluir nada quando à convergência de $\sum_{n=1}^{\infty}(a_n+b_n)$ quando as séries $\sum_{n=1}^{\infty}a_n$ e $\sum_{n=1}^{\infty}b_n$ forem divergentes. E, realmente, neste caso aquela série tanto pode ser convergente quanto divergente.

De fato,

A série
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} 1$$
 é divergente.

também é divergente a serie

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (-1).$$

No entanto, a série

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} 0 = 0$$

é convergente. Por outro lado, é divergente a série

$$\sum_{n=1}^{\infty} (a_n + a_n) = \sum_{n=1}^{\infty} 2.$$

EXEMPLO 10 Mostre que a série

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

é convergente

Teste da Integral

O Teste da Integral Suponha que f seja uma função contínua, positiva e decrescente em $[1, \infty)$ e seja $a_n = f(n)$. Então a série $\sum_{n=1}^{\infty} a_n$ é convergente se, e somente se, a integral imprópria $\int_{1}^{\infty} f(x) dx$ for convergente. Em outras palavras:

- (i) Se $\int_{1}^{\infty} f(x) dx$ for convergente, então $\sum_{n=1}^{\infty} a_n$ é convergente.
- (ii) Se $\int_{1}^{\infty} f(x) dx$ for divergente, então $\sum_{n=1}^{\infty} a_n$ é divergente.

EXEMPLO 1 Teste a série $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ quanto à convergência ou divergência.

EXEMPLO 2 Para que valores de p a série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ é convergente?

1 A série $p \sum_{n=1}^{\infty} \frac{1}{n^p}$ é convergente se p > 1 e divergente se $p \le 1$.

EXEMPLO 3

(a) A série

$$\sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots$$

EXEMPLO 4 Determine se a série $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converge ou diverge.

2 Estimativa do Resto Para o Teste da Integral Suponha que $f(k) = a_k$, onde f é uma função contínua, positiva, decrescente para $x \ge n$ e Σ a_n é convergente. Se $R_n = s - s_n$, então

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_{n}^{\infty} f(x) \, dx$$

EXEMPLO 5

- (a) Aproxime a soma da série $\Sigma 1/n^3$ usando a soma dos 10 primeiros termos. Estime o erro envolvido nessa aproximação.
- (b) Quantos termos são necessários para garantir que a soma tenha precisão de 0,0005?

3

$$s_n + \int_{n+1}^{\infty} f(x) \, dx \le s \le s_n + \int_{n}^{\infty} f(x) \, dx$$

EXEMPLO 6 Use 3 com n = 10 para estimar a soma da série $\sum_{n=1}^{\infty} \frac{1}{n^3}$.

Teste da Comparação

- **O Teste de Comparação** Suponha que $\sum a_n$ e $\sum b_n$ sejam séries com termos positivos.
- (i) Se Σb_n for convergente e $a_n \le b_n$ para todo n, então Σa_n também será convergente.
- (ii) Se $\sum b_n$ for divergente e $a_n \ge b_n$ para todo n, então $\sum a_n$ também será divergente.
- **EXEMPLO 1** Determine se a série $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$ converge ou diverge.
- **EXEMPLO 2** Teste a série $\sum_{k=1}^{\infty} \frac{\ln k}{k}$ quanto à convergência ou divergência.

EXEMPLO3 A série
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 3}$$
 é divergente.

EXEMPLO 4 A série
$$\sum_{n=1}^{\infty} \frac{4n+5}{8n^3+5n^2}$$
 converge.

O Teste de Comparação de Limite Suponha que $\sum a_n$ e $\sum b_n$ sejam séries com termos positivos. Se

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

onde c é um número finito e c>0, então ambas as séries convergem ou ambas as séries divergem.

EXEMPLO 1 Teste a série
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
 quanto à convergência ou divergência.

EXEMPLO 2 Determine se a série
$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$$
 converge ou diverge.

EXEMPLO3 Use a soma dos 100 primeiros termos para aproximar a soma da série $\sum 1/(n^3 + 1)$. Estime o erro envolvido nessa aproximação.

Séries Alternadas

Teste da Série Alternada Se a série alternada

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \qquad b_n > 0$$

satisfaz

- (i) $b_{n+1} \leq b_n$ para todo n
- (ii) $\lim_{n\to\infty} b_n = 0$

então a série é convergente.

EXEMPLO 1 A série harmônica alternada

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

EXEMPLO 2 A série
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3n}{4n-1}$$

EXEMPLO 3 Teste a série
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$$
 quanto à convergência ou divergência.

Teorema da Estimativa de Séries Alternadas Se $s = \sum (-1)^{n-1}b_n$ for a soma de uma série alternada que satisfaz

$$(i)\ b_{n+1} \le b_n \qquad \text{e} \qquad (ii)\ \lim_{n\to\infty} b_n = 0$$
 então, $|R_n|=|s-s_n| \le b_{n+1}$

EXEMPLO 4 Encontre a soma da série $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ com precisão de três casas decimais.

Convergência Absoluta

Dada qualquer série $\sum a_n$, podemos considerar a série correspondente

$$\sum_{n=1}^{\infty} |a_n| = |a_1| + |a_2| + |a_3| + \cdots$$

cujos termos são os valores absolutos dos termos da série original.

1 Definição Uma série Σ a_n é dita **absolutamente convergente** se a série de valores absolutos Σ $|a_n|$ for convergente.

EXEMPLO 1 A série

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

EXEMPLO 2 Sabemos que a série harmônica alternada

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

- **2 Definição** Uma série $\sum a_n$ é chamada **condicionalmente convergente** se ela for convergente, mas não for absolutamente convergente.
- **Teorema** Se uma série $\sum a_n$ for absolutamente convergente, então ela é convergente.

EXEMPLO 3 Determine se a série

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \cdots$$

é convergente ou divergente.

Teste da Razão

O Teste da Razão

- (i) Se $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, então a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente (e, portanto, convergente).
- (ii) Se $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ ou $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, então a série $\sum_{n=1}^{\infty} a_n$ é divergente.
- (iii) Se $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, o Teste da Razão é inconclusivo, ou seja, nenhuma conclusão pode ser tirada sobre a convergência ou divergência de $\sum a_n$.
- **EXEMPLO 4** Teste a série $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ quanto à convergência absoluta.
- **EXEMPLO 5** Teste a convergência da série $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.

Teste da Raiz

O Teste da Raiz

- (i) Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, então a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente (e, portanto, convergente).
- (ii) Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ ou $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, então a série $\sum_{n=1}^{\infty} a_n$ é divergente.
- (iii) Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, o Teste da Raiz não é conclusivo.

EXEMPLO 6 Teste a convergência da série
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2} \right)^n$$
.

EXEMPLO 7
$$\sum_{n=1}^{\infty} \frac{2^n}{n^n}$$

EXEMPLO 8
$$\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n}$$