Показатели качества кристаллов для преобразования частоты.

Параметры кристалла для преобразования частоты

<u>Параметры</u>:

- 1. Диапазон прозрачности, коэффициент поглощения
- 2. Наличие фазового синхронизма,
- 3. Тип фазового синхронизма.
- 4. Углы фазового синхронизма.
- 5. Коэффициент эффективной нелинейности.
- 6. Угловая ширина синхронизма.
- 7. Спектральная ширина синхронизма.
- 8. Температурная ширина синхронизма.
- 9. Порог разрушения.

Ограничения по ширинам синхронизма:

- 1. Угловая многомодовое излучение, малоапертурное,
- 2. Спектральная импульсы фемтосекундной длительности,
 - перестраиваемое по длине волны излучение,
- 3. Температурная большая средняя мощность излучения,

окружающая среда.

Генерация второй гармоники

 $1,0642~\mathrm{Mkm} \rightarrow 0,532~\mathrm{Mkm}$

	Тип	θ	φ	2Δθ	2Δφ	Δλ, μΜ	2ΔT, °C	<i>d</i> , пм/В
ADP	ooe	42°14′	45°	5'22"	-	10,57	1,5	0,39
	oee	62°23′	0°, 90°	11'32"	-	54,02	1,8	0,47
DKDP	ooe	36°34′	45°	6'24"	-	5,8	26,7	0,25
	oee	55°38′	0°, 90°	11'48"	-	4,96	27,6	0,40
LiNbO ₃	ooe	83°3′	90°	<u>17'20"</u>	-	0,32	1,25	<u>6,24</u>
LiIO ₃	ooe	29°59′	-	2'10"	-	0,64	11,2	<u>3,55</u>
	oee	44°1′	-	3'41"	-	0,68	8,7	≡0
вво	ooe	22°53′	30°	2′54″	-	2,12	29,8	1,7
	oee	32°33′	0°	4′30″	-	2,16	31,2	1,27
CLBO	ooe	29°12′	45°	5'12"	-	3,86	48,7	0,42
	oee	42°29′	0°, 90°	8'40"	-	3,85	49,8	0,86
LBO	ssf	90°	11°36′	4°33′	22'25"	3,8	10,3	0,83
KTP	sff	90°	22°30′	4°30′	<u>59'11"</u>	0,58	23,1	<u>3,08</u>

Сравнение кристаллов

1)
$$\Delta\theta_1 > \Delta\theta_2$$
 1-й кристалл лучше 2-го $d_{eff,1} > d_{eff,2}$ $\Delta\theta_1 < \Delta\theta_2$ $d_{eff,1} < d_{eff,2}$ $d_{eff,1} > d_{eff,2}$ $d_{eff,1} > d_{eff,2}$

Кристаллы сравнивают для решения конкретной задачи!

Типовые задачи:

- 1. Излучение с большой расходимостью.
- 2. Излучение с большой шириной частотного спектра.

Показатели качества кристаллов

Приближение заданного поля, монохроматичное плосковолновое излучение

$$\eta_p = 240\pi^3 \left[\frac{d_{eff}^2}{n_2^3} \right] \frac{L_{cr}^2}{\lambda_{10}^2} I_{10} \operatorname{sinc}^2(\Delta k L_{cr}/2)$$

$$FOM_{\,2} = d_{\it eff}^{\,2} \, / \, n_{2}^{\,3} \,$$
 - на единицу длины. $FOM_{\,2} \, \,\,\, [\, pm^{\,2} \, / V^{\,2}\,]$

$$FOM_2 [pm^2/V^2]$$

$$\Delta\theta_{cr} = \Delta\theta_{phm} / L_{cr} = \gamma \cdot \theta_{rad} \qquad \gamma > 1$$

$$L_{cr} = \Delta\theta_{phm} / \Delta\theta_{cr} = \left(\Delta\theta_{phm} / \Delta\theta_{rad}\right)$$

$$\eta_p = 240\pi^3 \left[\frac{d_{eff}^2 \left(\Delta \theta_{phm} \right)^2}{n_2^3} \right] \frac{1}{\lambda_{10}^2} \frac{I_{10}}{\left(\gamma \cdot \theta_{rad} \right)^2} \operatorname{sinc}^2 \left(\Delta k L_{cr} / 2 \right)$$

$$FOM_{3\theta} = \frac{d_{eff}^2 \left(\Delta \theta_{phm}\right)^2}{n_2^3}$$

 $FOM_{3\theta} = \frac{d_{eff}^2 \left(\Delta \theta_{phm} \right)^2}{n^3}$ - на длине кристалла с заданной величиной угловой ширины ФС. $FOM_{3\theta}$ [$pm^2/V^2 \cdot mrad^2$]

Показатели качества кристаллов – угловые ширины

Эквивалентно:

$$d_{eff,2} = d_{eff,1} L_2/L_1 = d_{eff,1} \Delta\theta_{phm,2}/\Delta\theta_{phm,1}$$

Показатели качества кристаллов

$$FOM_1 = d_{eff}$$

$$FOM_2 = d_{eff}^2 / n_2^3$$

$$FOM_{3\theta} = \frac{d_{eff}^2 \left(2\Delta\theta_{phm}\right)^2}{n_2^3}$$

$$FOM_{3\lambda} = \frac{d_{eff}^2 \left(2\Delta \lambda_{phm}\right)^2}{n_2^3}$$

$$FOM_{3T} = \frac{d_{eff}^2 \left(2\Delta T_{phm}\right)^2}{n_2^3}$$

- параметр кристалла

$$FOM_1 [n_M/B]$$

- на единицу длины.

$$FOM_{2\theta} [nm^2/B^2]$$

- на длине кристалла с заданной величиной угловой ширины ФС.

$$FOM_{3\theta} [nM^2/B^2 \cdot mpa\partial^2]$$

- на длине кристалла с заданной величиной спектральной ширины ФС.

$$FOM_{3\theta} [nM^2/B^2 \cdot HM^2]$$

- на длине кристалла с заданной величиной температурной ширины ФС.

$$FOM_{3\theta}$$
 $[nM^2/B^2 \cdot C^2]$

Генерация второй гармоники

 $1,0642~\mathrm{Mkm} \rightarrow 0,532~\mathrm{Mkm}$

	Тип	θ	φ	2Δθ	2Δφ	Δ λ, ημ	2ΔT, °C	<i>d,</i> пм/В	$FOM_{3, \theta}$	FOM _{3,λ}	FOM _{3,T}
ADP	ooe	42°14′	45°	5′22″	-	10,57	1,5	0,39	1,35	41,4	0,11
	oee	62°23′	0°, 90°	11'32"	-	54,02	1,8	0,47	9,43	207,2	0,24
DKDP	ooe	36°34′	45°	6′24″	-	5,8	26,7	0,25	0,81	0,66	14,1
	oee	55°38′	0°, 90°	11'48"	-	4,96	27,6	0,40	6,91	1,22	37,8
LiNbO ₃	ooe	83°3′	90°	<u>17′20″</u>	-	0,32	1,25	<u>6,24</u>	<u>754,1</u>	0,26	3,92
LiIO ₃	ooe	29°59′	-	2′10″	-	0,64	11,2	<u>3,55</u>	8,65	0,76	<u>231,6</u>
	oee	44°1′	-	3'41"	-	0,68	8,7	≡ 0	≡0	≡0	≡0
вво	ooe	22°53′	30°	2′54″	-	2,12	29,8	1,7	5,36	2,86	<u>568,4</u>
	oee	32°33′	0°	4′30″	-	2,16	31,2	1,27	7,49	1,72	<u>361,4</u>
CLBO	ooe	29°12′	45°	5′12″	-	3,86	48,7	0,42	1,45	0,8	127,3
	oee	42°29′	0°, 90°	8'40"	-	3,85	49,8	0,86	17,49	3,42	<u>573,8</u>
LBO	ssf	90°	11°36′	4°33′	22'25"	3,8	10,3	0,83	83,62	2,41	13,93
КТР	sff	90°	22°30′	4°30′	<u>59'11"</u>	0,58	23,1	<u>3,08</u>	<u>5418,2</u>	0,52	<u>825,7</u>

Генерация четвертой гармоники

 $0,532 \text{ MKM} \rightarrow 0,266 \text{ MKM}$

	Тип	θ	φ	2Δθ	2Δφ	$\Delta\lambda$, HM	2∆T, °C	<i>d,</i> пм/В	FOM _{3,θ}	FOM _{3,λ}	FOM _{3,T}
ADP	ooe	78°34′	45°	5′57″	-	0,14	0,37	0,57	3,22	1,7·10 ⁻³	0,013
DKDP	ooe	84°34′	45°	12'34"	-	0,14	3,3	0,42	8,09	1.10-3	0,55
вво	ooe	47°25′	30°	57"	-	0,074	5.42	<u>1,32</u>	<u>0,33</u>	2,1·10 ⁻³	10,9
	oee	82°12′	0°	7′05″	-	0,086	6,54	0,03	0,01	1,5·10 ⁻⁶	0,0084
CLBO	ooe	61°27′	45°	2′27″	-	0,13	5,32	0,76	1,02	3·10 ⁻³	4.81

«Лукавые» цифры

$$FOM_{\lambda} = \frac{d_{\it eff}^{\,2}}{n_2^3 \lambda_{10}^2} \quad \lambda = 10.6 \, {\rm mkm} \quad d_{\it eff} = 50 \, {\rm nm/B} \quad n = 3 \quad FOM_{\lambda} = 0.0082 \, 10^{-12} \, \, [1/{\rm B}^2] \quad \lambda = 1.06 \, {\rm mkm} \quad d_{\it eff} = 1.0 \, {\rm nm/B} \quad n = 1.6 \quad FOM_{\lambda} = 0.44 \, 10^{-12} \quad \, [1/{\rm B}^2]$$

Показатели качества кристаллов (с порогом разрушения)

$$\eta_p = 240\pi^3 \frac{d_{eff}^2 (\Delta \theta_{phm})^2}{n_2^3} \frac{1}{\lambda_{10}^2} \frac{I_{10}}{(\gamma \cdot \theta_{rad})^2} \operatorname{sinc}^2 (\Delta k L_{cr} / 2)$$

$$I_{10} = \mu \cdot I_{destr} \qquad \mu < 1$$

$$\eta_p = 240\pi^3 \left[\frac{d_{eff}^2 \left(\Delta \theta_{phm} \right)^2}{n_2^3} I_{destr} \right] \frac{1}{\lambda_{10}^2} \frac{\mu}{\left(\gamma \cdot \theta_{rad} \right)^2} \operatorname{sinc}^2(\Delta k L_{cr} / 2)$$

$$FOM_{4\theta-I} = \frac{d_{eff}^{2} \left(\Delta \theta_{phm}\right)^{2}}{n_{2}^{3}} I_{destr} \qquad FOM_{3\theta-I} \quad [Mpa\partial^{2} / M^{2} / OM]$$

$$FOM_{3\theta-I}$$
 [$mpa\partial^2/M^2/OM$]

λ, мкм	τ, нс	ADP	DKDP	LBO	КТР	LiNbO ₃	ВВО	CLBO
0,355	10	1,0	2,0	0,1	-	-	0,15	17-19
0,532	10	0,75 - 6,0	17,0	0,22	0,1-2,0	0,15	2,3	0,15
1,0642	10	4,5	1,5	1,0	0,9-3,5	0,15	4,5	0,35