International Rectifier

IRF2807S IRF2807L

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF2807L) is available for low-profile applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	82⑦	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	58	A
I _{DM}	Pulsed Drain Current ①	280	
P _D @T _C = 25°C	Power Dissipation	230	W
	Linear Derating Factor	1.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
I _{AR}	Avalanche Current①	43	А
E _{AR}	Repetitive Avalanche Energy ^①	23	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.9	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.65	°C/W
R _{0.IA}	Junction-to-Ambient (PCB mount)**		40] 0, **

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

		-				
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.074		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			13	mΩ	V _{GS} = 10V, I _D = 43A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
9fs	Forward Transconductance	38			S	V _{DS} = 50V, I _D = 43A ⁽⁴⁾
I _{DSS}	Drain-to-Source Leakage Current			25	μА	$V_{DS} = 75V, V_{GS} = 0V$
				250		$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 150$ °C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
Qg	Total Gate Charge			160		I _D = 43A
Q_{gs}	Gate-to-Source Charge			29	nC	$V_{DS} = 60V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			55		V_{GS} = 10V, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		13			$V_{DD} = 38V$
t _r	Rise Time		64		ns	$I_D = 43A$
t _{d(off)}	Turn-Off Delay Time		49		115	$R_G = 2.5\Omega$
t _f	Fall Time		48			V_{GS} = 10V, See Fig. 10 $\textcircled{4}$
	Internal Drain Inductance		4.5			Between lead,
L _D			4.5		nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5	5 —	_ nn	from package
						and center of die contact
C _{iss}	Input Capacitance		3820			V _{GS} = 0V
Coss	Output Capacitance		610			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		130		pF	f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy ^②		1280ଔ	340⑥	mJ	I _{AS} = 50A, L = 370μH

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			00@		MOSFET symbol			
	(Body Diode)		82⑦	820	A	showing the			
I _{SM}	Pulsed Source Current		,	200	200			, ,	integral reverse
	(Body Diode)①		280		p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 43$ A, $V_{GS} = 0$ V $\textcircled{4}$			
t _{rr}	Reverse Recovery Time		100	150	ns	$T_J = 25$ °C, $I_F = 43$ A			
Q _{rr}	Reverse Recovery Charge		410	610	nC	di/dt = 100A/µs ④			
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)							

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline @ Starting $T_J = 25^{\circ}C$, $L = 370\mu$H \\ $R_G = 25\Omega$, $I_{AS} = 43A$, $V_{GS} = 10V$ (See Figure 12) \\ \hline \end{tabular}$
- $\label{eq:loss_loss} \begin{array}{l} \text{ } \\ \text$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- © This is a calculated value limited to $T_J = 175$ °C.
- Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- **When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

International TOR Rectifier

IRF2807S/IRF2807L

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF2807S/IRF2807L

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

D²Pak Package Outline

D²Pak Part Marking Information

International **TOR** Rectifier

IRF2807S/IRF2807L

TO-262 Package Outline

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L

LOT CODE 1789

ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

D²Pak Tape & Reel Information

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 02/02