PreProject

EH4DSE – 2-akset Gimbal – Semester projekt

Deltagere:

Stud nr: au554305	Navn: Christian Holm Pedersen
Stud nr: au634379	Navn: Ricky Schultz
Stud nr: au632793	Navn: Emil Christensen
Stud nr: au636966	Navn: Jacob Aalykke Vad
Stud nr: au634825	Navn: Jenath Srikanth
Dato: 13/04/2021	AU – Herning 4. Sem (Team 2) Studievejleder: Waqas A. Khan

Indholdsfortegnelse

Introduktion	3
Pre-Analyse:	4
Problemstilling	4
Rich Picture	
System definition	5
Requirements	
Pre-Contracting:	7
Development Planning - Tidsplan	7
Quote – Bestillingsliste	9
Referencer	10

Introduktion

I dette projekt skal der laves en gimbal til at stabilisere et element, eksempelvis et kamera eller et glas vand. En gimbal er en drejelig platform, der giver dig mulighed for at rotere et objekt langs en enkelt akse. En mere anvendt 3-akset gimbal gør det muligt for et element monteret på den at være uafhængig af bevægelsen for den akse, der holder gimbalen. Disse 3 akser er identificeret som Tilt, pan og roll.

Figur 1 - gimbal illustration stabilizing camera (Coughlin, 2021)

I dette projekt vil der blive lavet to akser til stabilisering, hhv. x- og y-aksen altså tilt og roll. Hver akse vil blive styret af en BLDC-motor, som hhv. Tilt og hældningen af platformen, hvor objektet er placeret. På den måde kan der bygges et control system der muliggøre, at man kan modregne for de kræfter der påvirker systemet udefra, og derved få en helt stabil platform.

For at få systemet til at virke, skal der designes og implementeres et control system der tager højde fra miljøets påvirkninger, og derved vil kunne stabilisere objektet. Dette vil være muligt med forskellige sensorer der giver et feedback til systemet, hvorefter systemet kan korrigere for de eksterne faktorer.

Igennem projektet skal der først arbejdes med analyse, hvor der undersøges, nærmer på hvilken form for control system der skal anvendes, hvilke komponenter der skal vælges og hvordan man evt. kan filtrer outputtet fra sensorerne. Derefter skal teorien implementeres hvor konstruktionen laves, og elektronikken kobles på. Herefter kan der kalibreres og kontrolsystemet kan justeres.

Pre-Analyse:

Problemstilling

Aktiv stabilitetskontrol, en form for dynamisk stabilitetskontrol, er kontrolprincip, der bruges bredt i industrien, til at centrere og stabilisere objekter. Princippet er bl.a. brugt til stabilisering af kameraer, skibe biler og GPS-kontrol. Aktiv stabilitetskontrol bygger på brugen af bevægelsessensorer og positionskontrol, der kan vippe og dreje et objekt, og ved hjælp af closed-loop PID-control centrere og stabilisere det ønskede objekt.

Aktiv stabilitetskontrol er altså et vidtrækkende kontrolprincip, der både nuværende tidspunkt og fremtidigt har sin berettigelse mange steder i tekniske udviklingen af samfundet. Derfor vil nysgerrigheden for at lære mere om dette dynamiske kontrolprincip danne grundlag for projektet.

Derudover Ricky har erfaringer med, at hans varm kop kaffe sommetider vælter, når han cruiser rundt på de jyske landeveje med bassen godt skruet op i hans Volvo 850 T-5R. Derfor har Ricky et ønske om få en kopholder, der kan stabilisere koppen, så den ikke vælter. Motivationen for Ricky og hans kammerater er derfor, at konstruere en aktiv stabilitetskontroller, der løser hans problemet og kan stabilisere en kop varm kaffe, når han cruiser.

Formålet med projektet er at undersøge, analysere og forstå hvordan et aktivt control system virker, herunder control teori og forskellige filtre, der kan reducere støjen I control systemet. Derefter er målet at designe og implementere et 2-akset gimbal control system, der kan bruges til at stabilisere et mindre objekt.

Systemet skal derfor opfylde krav:

- Systemet skal være et aktivt feedback kontrolsystem
- Systemet skal være 2-akset og kunne stabilisere i x- og y-retningen
- Systemet skal gøre brug af PID-control
- Systemet skal kunne modvirke turbulens og stabilisere et glas, så det ikke vælter under en køretur

Projektet er inspireret af artiklen "A control system for a 3-axis camera stabilizer" (Algoz & Hasnain, 2018), hvor der designes en 3-akset kamera gimbal controller. De to store forskellen mellem artiklen og dette projekt er:

1) Antal akset stabiliseret:

Systemet i dette projekt er 2-akset gimbal system

2) Vægten systemet skal kunne håndtere:

Systemet skal være i stand til at stabilisere et dynamisk element, som eksempelvis en kop kaffe, på op til 0,5kg

Rich Picture

På vores Rich Picture har vi tegnet det produkt som vi vil ende ud i. Der ses at vi har en boks til mikrocontrolleren og elektronikken, det er også den man holder for at betjene produktet. Vi bruger et accelerometer og gyroscope som feedback sensorer til systemet. Vi skal altså have de 2 aktuatorer (Roll og Pitch) til at rotere den modsatte retning som sensorerne måler for at kunne stabilisere objektet.

System definition

Systemet vil kontrollere og stabilisere et objekt og vil ved brug af en sensor og DC-motorer kommunikere med kontrolsystem, så objektet forbliver oprejst og ikke vælter.

Systemet vil give en modeffekt/kontraeffekt ved ændring af position i x- og y-retningen, for at holde en objektet i en konstant placering.

Systemet er forbundet op på et MCU board, som virker som systemets mikroprocessor og derved håndtere kommunikationen mellem accelerometer/gyroskop sensor og DC-motorer.

Accelerometer sensoren måler på x- og y-akserne, gyroskop sensoren måler på ændringshastigheden, og giver inputs til MCU, som sender kommandoer videre til DC-motorende gennem et PID-design.

Systemet/produktet skal bruges i bilen, og vil derfor få spænding/strøm fra cigarettænderen i bilen på 12V.

Systemet skal selvfølgelig være sikkert at bruge og skal kunne bruges af alle, også uden tilsynsførende.

Systemet skal være i stand til at holde til temperaturvariationen fra frysepunktet punktet til omkring 40 grader Celsius.

Motorerne i systemet skal kunne løfte/bevæge et dynamisk objekt på min. 500g.

Requirements

Herunder vil kravene for det samlede system blive defineret, og vil løbede blive opdateret.

- 1. System elementer
 - 1.1. Systemet skal indeholde en MCU
 - 1.2. Systemet skal indeholde to motorer
 - 1.2.1. Skal kunne bære et glas vand.
 - 1.3. Systemet skal indeholde en motor controller
 - 1.4. Systemet skal indeholde et accelerometer
 - 1.5. Systemet skal indeholde et gyroskop
- 2. Konstruktion
 - 2.1. Platform skal have en dimension mellem 6 x 6 cm og 10 x 10 cm
 - 2.2. Skal indeholde to akser hhv. x- og y-akse.
- 3. Control system
 - 3.1. Feedback control system
 - 3.1.1. Control systemet skal være af typen PID
 - 3.1.2. Der skal være feedback i form af sensor output, nævnt i punkt 1.4 og 1.5.
 - 3.2. Minimal stabilisering
 - 3.2.1. Systemet skal kunne holde et glas med vand uden at vælte.

Pre-Contracting:

Development Planning - Tidsplan

På Gantt-skemaet nedenfor ses den forventede tidsplan for projektet. Analyse og implementations delen af projektet er på tidsplanen kun repræsenteret som overordnede emner.

Der er også uddelt ansvarsområder i pre-projektet, men ikke i projektdelen endnu da den er opdelt meget i de forskellige undergrupper. Under det generelle Gantt skema kan individuelle skemaer ses for både analysefasen og implementationsfasen.

Navne	
Ricky	R
Jenath	JS
Jacob	J
Christian	С
Emil	Е

Figur 2 - Navne og forkortelse

	Hours a week	Meeting	Buffer	Hours left
Person	7	-1	-1	5
Group	35	-5	-5	25

Figur 3 - Udregning af timer til rådighed

		Gantt skema - DSE project								
	Hours	Week 12	Week 13	Week 14	Week 15	Week 16	Week 17	Week 18	Week 19	Week 20
Preproject	40									
Introduction	7	JS								
Problem statement	7	С								
Systemdefinition	7	R								
Richpicture	6	J								
Time-plan	7	Е								
Requirements	4	JS								
Preproject handin	2									
Project	152									
Analysis	50									
Implementation	50									
Assembly										
Results	30									
Discussion	10									
Conclusion	10									
Project handin	2									

Figur 4 - Overordnet Gantt skema

Analysis - Control theory	Hours	Week 14	Week 15	Week 16	Week 17	Week 18	Week 19	Week 20
Automatic control - PID	14							
Filtering	14							
Hardware	22							

Figur 5 - Analyse Gantt skema

Implementation	Hours	Week 14	Week 15	Week 16	Week 17	Week 18	Week 19	Week 20
Hardware & Components	20							
Software	20							
Systemassembly	10							

Figur 6 - Implementering Gantt skema

I analysedelen af dette projekt analyseres hvordan brugen af PID kan benyttes til at lave et gyroskop. I sammenhæng med dette undersøges der også hvilke typer filtre der med fordel kan benyttes ved indsamling af feedback data. Der skal også analyseres hvilken hardvare der skal benyttet i produktet. De overordnede punkter i analysen kan ses nedenfor.

Analyse

- Control theory
 - Automatic control
 - PID-controller
 - (PI-controller)
 - Filtering
 - Complementary filter
 - Kalman filter
- Hardware
 - Finding usable hardware for the application
 - Flowcharts and system diagrams
 - o FRDM-KL25Z
 - Simulink capability
 - MCU setup

I implementationsfasen af dette projekt bliver den hardware som er blevet udvalgt, implementeret til at kunne fungere i vores løsning. Implementeringen indeholder at delene kan fungere mekanisk sammen, samt at de kan programmeres til at fungere sammen.

Implementation

- Hardware and components
 - MCU
 - Motors
 - o 2X DC-motorer
 - Motor driver
 - H-bridge
 - Gyroscope sensor
 - Gimbal frame
 - o 3D print
- Software
 - C code
 - Matlab
 - Simulink
- System assembly
 - · Assembly of hardware

Quote – Bestillingsliste

Til projektet er der behov for følgende del, heriblandt 2 stk. DC gearmotorer til ændring af objekt position, DC-motor driver til styring af gearmotorer, og et gyroscope-/accelerometer sensor, som giver objekt placeringsinputs. 123

Pos. Nr	Komponentnavn	Leverandør	Bestillingsnr.	Pris i alt	Antal
1	L9110S H-bridge Dual DC Stepper Motor Driver Controller	arduinotech.dk: https://arduinotech.d k/shop/l9110s-h- bridge-dual-dc- stepper-motor-driver- controller/	P.14: L9110S H-bridge Dual DC	29	1
2	MPU-6050 ACCELEROMETER MODUL, 3 AKSLER	Jentronic.dk: https://jentronic.dk/ diverse-moduler/64- accelerometer-3- aksler.html	MPU-6050	19	1
3	DC gearmotor, Børstegear, Hastighed: 116 o/min., 7,98 W, 12 V DC, 990 mA	RS-Component: https://dk.rs- online.com/web/p/dc- motorer- jaevnstromsmotorer/ 0420596/	420-596	466,32	2

https://arduinotech.dk/shop/l9110s-h-bridge-dual-dc-stepper-motor-driver-controller/
https://dk.rs-online.com/web/p/bevaegelsessensor-ic-er/8837948P/

³ https://dk.rs-online.com/web/p/dc-motorer-jaevnstromsmotorer/0420596/

Referencer

Algoz, A., & Hasnain, B. A. (2018, June). *A control system for a 3-axis camera stabilizer*. Retrieved from Exjobbframsida: https://uu.diva-portal.org/smash/get/diva2:1231195/FULLTEXT01.pdf#page=8&zoom=100,44,80

Coughlin, P. (2021, 04 06). *EVO Gimbals*. Retrieved from https://www.evogimbals.com/blogs/evoblog/how-does-a-3-axis-gopro-or-dslr-gimbal-work