NAVAL POSTGRADUATE SCHOOL

Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA8 10 and 15 December 1983

bу

Paul A. Wittmann Michele M. Rienecker Edward A. Kelley, Jr. Christopher N.K. Mooers

February 1985

Approved for public release; distribution unlimited.

Prepared for: Office of Naval Research Environmental Sciences Directorate (Code 420) Arlington, VA 22217

FedDocs D 208.14/2 NPS-68-85-006 FodLosk L208.14/2 1095-68 55-006

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943

Commodore R.H. Shumaker Superintendent

David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was Prepared by:

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

REPORT DOCUMENTAT	ION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NPS-68-85-006	2. GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER
HYDROGRAPHIC DATA FROM THE OP OPTOMA8, 10 and 15 DECEMBER,		S TYPE OF REPORT & PERIOD COVERED Report for October 1982 to January 1985 6. PERFORMING ORG. REPORT NUMBER
Paul A. Wittmann, Michele M. Edward A. Kelley, Jr., Christ	opher N.K. Mooers	B CONTRACT OR GRANT NUMBER(9)
Naval Postgraduate School Department of Oceanography Monterey, CA 93943	RESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA WORK UNIT NUMBERS 61153N N000148WR24051
Office of Naval Research (Cod Arlington, VA 22217	le 420)	12. REPORT DATE February 1985 13. NUMBER OF PAGES (29)
14. MONITORING AGENCY NAME & ADDRESS(II di	llerent from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release;	distribution unlimi	ted.
17. DISTRIBUTION STATEMENT (of the ebetract on	tered in Block 20, il different fro	m Report)
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necess)	any and Identify by black annihing	
California Current System	my mid (dentily by block number)	

California Current System
Physical Oceanography
Dynamic Oceanography

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

The two flights comprising OPTOMA8 were undertaken on 10 and 15 December, 1983 to sample a subdomain of the California Current System. This report presents the hydrographic data, acquired by AXBT deployments, from the flight.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)					

Hydrographic Data from the **OPTOMA** Program: OPTOMA8

10 and 15 December, 1983

by

Paul A. Wittmann Michele M. Rienecker Edward A. Kelley, Jr Christopher N. K. Mooers

The **OPTOMA** Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138.

TABLE OF CONTENTS

	PAGE
LIVET OF TABLES	
LIST OF TABLES	ii
LIST OF FIGURES	iii
INTRODUCTION	2
DATA ACQUISITION	2
DATA PROCESSING	3
DATA PRESENTATION	3
ACKNOWLEDGEMENTS	27
INITIAL DISTRIBUTION LIST	28

LIST OF TABLES

Table No.	Caption	Page
1.	Leg I Station Listing	8
2.	Leg II Station Listing	10

LIST OF FIGURES

Figure	No.	Caption	Page
1.		The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	1
2.		The cruise track for OPTOMA8. The track for Leg I on 10 December, 1983 is shown by the solid line; the track for Leg II on 15 December, 1983 is shown by the broken line.	5
3.		AXBT station locations for OPTOMA8.	6
4.		Station numbers for OPTOMA8.	7
5	(a)-(c).	Temperature profiles staggered by multiples of 5C (OPTOMA8, Leg I).	12
6	(a)-(c).	Temperature profiles staggered by multiples of 5C (OPTOMA8, Leg II).	15
7	(a)-(g).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMA8, Leg I).	18
8	(a)-(h).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMA8, Leg II).	22
9.		Mean temperature profiles, with + and - the standard deviations, from OPTOMA8: (a) Leg I and (b) Leg II.	26

Figure 1: The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis)

Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

In December, 1983 two flights comprising OPTOMA8 were undertaken by a Navy Reserve Patrol Wing and together provided coverage of both the NOCAL and CENCAL domains. The flight on 10 December is denoted Leg I and covered the northern half of the domains; on 15 December, Leg II covered the southern half of the domains. Bathythermographic data were acquired along the tracks shown in figure 2. The total areal coverage was roughly 450 km alongshore by 360 km cross-shore. Nominal station spacing was about 40 km along-track.

DATA ACOUISITION

During Leg I a shallow (400m) or deep (800m) Sippican AXBT (Airborne Expendable Bathythermograph) was deployed on station from a Navy P3 aircraft; during Leg II only shallow AXBT's were deployed. The aircraft maintained an altitude of approximately 1500 ft and an airspeed of 210 knots. The data were recorded onboard on audio tapes using a 16-channel recorder. Analog traces were also produced using two lofargram recorders which operated on UHF channels 14 and 16.

Station positions were obtained from the aircraft's Inertial Navigation System with hourly updates by radar and TACAN (Tactical Air Navigation); accuracy of position is within 1 km. The thermistor on the Sippican AXBT has an accuracy of +0.18C in temperature and +2% or 5m (whichever is greater) in depth.

DATA PROCESSING

The data presented in this report are the result of hand digitization of the temperature profiles on the analog traces. Only inflection points were digitized, giving an average of about 15 points per shallow profile and about 20 points per deep profile. The digitization procedure was carried out by NAVOCEANO personnel who used an HP digitizing pad. The data, provided for OPTOMA on magnetic tape, were transferred to the IBM 3033 at the Naval Postgraduate School and edited by removing obvious cast failures that were not identified during the flight or digitization procedure. From the Leg I data set approximately 97% of casts were retained; of these 37 were from deep and 23 from shallow AXBT's. From the Leg II data set approximately 90% of casts were retained; all 55 casts were from shallow AXBT's.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, D.C.

DATA PRESENTATION

The cruise track, station locations and station numbers are shown in Figures 2, 3, and 4, respectively. These figures are followed by a listing of the stations, with their coordinates, and the date and time at which the station was occupied.

Temperature profiles from the AXBT casts in Legs I an II are shown in staggered fashion in Figures 5 and 6, respectively. The location of these profiles may be found by reference to the various maps of the cruise track. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added.

Isotherms along each transect are shown in Figures 7 and 8. Transect extremes are identified. Based on instrument accuracy and the vertical temperature

gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to $\pm 20m$.

The data presentation concludes with plots of mean temperature profiles, with + and - the standard deviations, from each of the flight legs.

Figure 2: The cruise track for OPTOMA8. The track for Leg I on 10 December, 1983 is shown by the solid line; the track for Leg II on 15 December, 1983 is shown by the broken line.

Figure 3: AXBT station locations for OPTOMA8.

Figure 4: Station numbers for OPTOMA8.

Table 1: Leg I Station Listing

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM		SURFACE TEMP (DEG C)
123456789111231451678911123456789111231451678922223456789333333333333333333333333333333333333		833444 833444 8333444	1928 1934 1939 1944 1953 1959 20014 20025 20035 20045 20125 21120 21125 21215 21215 21215 21222 22223 22223 22225 2225 225 25	37.59 37.50 37.38 37.26 37.15 37.06 37.00 36.48 36.48 36.49 37.36 37	123.38 124.00 124.20 124.40 125.01 125.16 125.42 126.09 126.38 126.55 126.32 126.55 126.32 126.55 126.32 125.13 125.53 125.53 125.12 124.51 125.35 125.33 125.12 124.47 125.35 125.23 126.48 127.48	13.4 13.7 13.8 14.0 13.8 14.1 14.2 14.4 14.2 14.4 14.6 14.4 14.6 14.6 14.3 14.5 14.9 14.9 14.9 14.6 14.7 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
43 44 45		83344 83344 83344	2318 2323 2328	38.33	126.44 127.05 127.25	
		3 3 3 1 1		55.22		-1.5

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)
46	AXBT	83344	2332	38.11	127.46	14.2
47	AXBT	83344	2337	38.00	128.06	14.3
48	AXBT	83344	2344	38.05	127.44	14.6
49	AXBT	83344	2354	38.17	126.56	14.2
50	AXBT	83344	2359	38.23	126.31	14.6
51	AXBT	83345	4	38.29	126.07	14.6
52	AXBT	83345	10	38.35	125.42	14.6
53	AXBT	83345	15	38.40	125.18	14.5
54	AXBT	83345	19	38.45	124.53	13.7
55	AXBT	83345	27	38.54	124.16	13.3
56	AXBT	83345	33	38.44	124.34	14.1
57	AXBT	83345	38	38.33	124.55	13.9
58	AXBT	83345	44	38.22	125.16	13.8
59	AXBT	83345	48	38.11	125.37	14.5
60	AXBT	83345	52	38.02	125.52	14.4

Table 2: Leg II Station Listing

STN	TYPE	YR/DAY	GMT	(NORTH)		TEMP
61263666789012377777777888888889999999999999999999999	AXBT AXBT AXBT AXBT AXBT AXBT AXBT AXBT	833449 833449 833449 8333449 8333449 8333449 8333449 8333449 833449 833449 833449 833449 833449 833449 833449 833449 833449 833449 833449 833449 833449 833449 83449	1947 1955 2003 2008 2014 2020 2027 2032 2037 2042 2103 2112 2123 2131 2138 2149 2156 2206 2220 2234 2247	36.13 35.57 35.45 35.33 35.17 35.07 34.58 34.46 35.07 35.22 35.38 35.56 36.08 36.31 36.35 36.29 36.24 36.19 36.04	122.32 123.03 123.23 123.43 124.12 124.46 125.25 126.09 125.40 125.06 124.37 124.08 123.48 123.28 123.06 123.13 123.38 124.02 124.24 125.23 126.00 126.44 125.24	14.0 14.5 14.5 14.8 16.3 14.7 14.8 15.9 14.5 14.7 14.5 14.7 14.5 14.7 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
104 105	AXBT AXBT	83350 83350	13 17	36.11 36.03	124.46 125.02	13.5 14.1

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)
106	AXBT	83350	24	35.46	125.32	14.4
107	AXBT	83350	30	35.27	126.00	14.7
108	AXBT	83350	36	35.14	126.21	15.5
109	AXBT	83350	46	35.23	125.50	15.0
110	AXBT	83350	54	35.32	125.16	14.4
111	AXBT	83350	59	35.39	124.52	14.6
112	AXBT	83350	109	35.52	124.05	14.9
113	AXBT	83350	113	35.57	123.42	14.6
114	AXBT	83350	118	36.03	123.18	14.6
115	AXBT	83350	123	36.09	122.54	14.4
116	AXBT	83350	127	36.13	122.33	13.8

(OPTOMA8, Leg I). staggered by multiples of 5C. Figure 5(a): Temperature profit

Figure 5(b).

Figure 5(c).

Figure 6(a): Temperature profiles staggered by multiples of 5C. (OPTOMA8, Leg II).

Figure 7(a), (b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMA8, Leg I).

Figure 7(d).

Figure 7(e).

Figure 7(f).

Figure 7(g).

Figure 8(a), (b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow. (OPTOMA8, Leg II).

Figure 8(c).

Figure 8(d).

Figure 8(e).

Figure 8(f).

Figure 8(g).

Figure 8(h).

Figure 9: Mean temperature profiles, with + and - the standard deviations, from OPTOMA8: (a) Leg I and (b) Leg II.

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program.

The success of the fieldwork was strongly dependent on the competent, willing support of the P3 Reserve Patrol Wing. The digitization carried out by the Fleet Support Branch of NAVOCEANO in Bay St. Louis is gratefully acknowledged.

INITIAL DISTRIBUTION LIST

	A	
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
2.	Dudley Knox Library Code 0142 Naval Postgraduate School Monterey, CA 93943	2
3.	Prof. C.N.K. Mooers, Code 68Mr Naval Postgraduate School Monterey, CA 93943	52
4.	Prof. Allan R. Robinson Division of Applied Sciences Pierce Hall, Room 100D Harvard University Cambridge, MA 02138	8
5.	Dr. Thomas W. Spence Office of Naval Research 800 N. Quincy St. Arlington, VA 22217	1
6.	Naval Postgraduate School Department of Oceanography, Code 68 ATTN: Dr. Michele M. Rienecker, Code 68Rr ATTN: Dr. Edward A. Kelley, Code 68Kp ATTN: Dr. Laurence C. Breaker, Code 68By ATTN: Dr. Mary Batteen, Code 68Bv ATTN: Ms. Marie C. Colton ATTN: Mr. Paul A. Wittmann	1 1 1 1 1
7.	Prof. R.L. Smith College of Oceanography Oregon State University Corvallis, OR 97331	1
8.	Dr. Denise E. Hagan Jet Propulsion Laboratory, Code 183-501 4800 Oak Grove Road Pasadena, CA 91109	1
9.	Commanding Officer ATTN: CDR John F. Pfeiffer, USN ATTN: LCDR Michael R. Frost, RN ATTN: Mr. R. Michael Clancy ATTN: Mr. Ken Pollack ATTN: Ms. Evelyn Hesse Fleet Numerical Oceanography Center Monterey, CA 93943	1 1 1 1

10.	SANDIA National Laboratories ATTN: Dr. Mel Marietta ATTN: Dr. Eugene S. Hertel Div. 6334 Albuquerque, NM 87185	1
11.	LCDR Craig S. Nelson, NOAA Corps Marine Products Branch, W/NMC21 National Meteorological Center National Weather Service, NOAA Washington, DC 20233	1
12.	Commanding Officer ATTN: Dr. Steve A. Piacsek ATTN: Dr. Dana A. Thompson ATTN: Dr. Harley C. Hurlburt ATTN: Dr. Alexander Warn-Varnas Naval Ocean Research and Development Activity NSTL Station, Bay St. Louis, MS 39525	1 1 1
13.	Scripps Institution of Oceanography ATTN: Ms. C. Paden ATTN: Prof. R.E. Davis University of California, San Diego La Jolla, CA 92093	1
14.	Prof. George L. Mellor Geophysical Fluid Dynamics Program Princeton University P.O. Box 308 Princeton, NJ 08540	1
15.	Dr. Robert N. Miller Department of Mathematics Tulane University 6823 St. Charles New Orleans, LA 70118	1
16.	LTJG Diane C. Durban, USN NAVOCEANCOMFAC Keflavik Iceland FPO NY 09571	1

