23-51-04

O.(a)(i) HAL - Single. (ii) complete

Cb) PCA
problem
achieve.

(c) (i) Naive. -> 101

(ii) P(ps) = 20%

60% ps ->>25h

30% n-ps ->>25%

posterior probabili-ly

Solution (a) (i)

1) Initialization: Each object is a cluster
2) Iteration | : Merge two clusters with the min distance distant

	١	3	6	17	111	12
1	0					+
3	2	0			+-	+
6	5	3	U			
7	6	4	1	O		
11	10	8	5	4	D	
12	11	9	6	5	ſ	6

we find (6) and 973 has the min distant 1 [11] and [12] has the min distant 1 So we randomly choose \$6} and \$7} and merge than to cluster (6,7)

3 I feration 2.

_		١	3	6,7	111	12
	1	0				+
	3	2	0		+-	+
Ь	7,	5	3	D		
_	11	10	8	4	D	
	12	11	9	5		6

9 Iferation 4

	1,3	6,7	11, 12
1,3	D		
6,7	3	D	
11/12	8	4	0

S1,33, 86,73 → S1,3,6,7]

(1) Stopping: only 2 clusters are left C1=91,3,6,75 a=911,125

(;;)

1) Initialization: Each object is a cluster
2) Iteration | : Merge two clusters with the min distance distant

	ſ	3	6	17	111	12
1	0					
3	2	0			+-	+
6	5	3	U			
7	6	4	1	O		
11	10	8	5	4	D	
12	11	9	6	5	ſ	6

we find (6) and 973 has the min distant 1 911) and 912) has the min distant 1 So we randomly choose \$63 and 873 and merge then to cluster (6,7)

3 Iteration 2.

_		1	3	6,7	111	12
	1	0				+
	3	2	0		_	+
Ь	,7	6	4	D		
_	11	10	8	5	D	
	12	11	9	Б	ſ	G

911 / 123 -> 911,12)

@ Iteration 3

_		١	3	6,7	11, 12
	1	0			
	3	2	0		
Ь	,7	Ь	4	D	
ĮΙ,	· [2	(1	9	6	D

113 73] -> 31,35

@ Iteration 4

	1,3	6,7	11 , 12
113	Ð		
6,7	6	D	
[1, [2	11	6	D

91,3596,75 -> 91,3,6,73

96,75 {11,12} -> 96,7,11,12}

Forelow choose the first one

(B) Stop: only two clusters lefts: 1,3,6,716.11,125

- (b) D concept: PCA is a simple and popular method and unsupervised Learning, to loan the best low dimensional subspace for data projection.
- 3 Problem: PCA want to achieve two objective simultaneously.
 Objective
- (1) the mean square error (MSE) of the projected data is minimized.
- (1) The variance of the projected data is max
- 3 procedure: Apply SUD to the data matrix,

 Select the unit weight vector UK from the U

 matrix sand calculate CUKT 772)VK
- Deason: The variance-man criterion is equivalent to minimising the reconstruction error under orthogonal projection.

(c) @ Study = | free = 0 money = |

@
$$p(spam \mid study = 1, free = 0, money = 1)$$

= $\frac{p(study = 1 \mid spam)p(free = 0 \mid spam)p(money = 1 \mid spam)p(spam)}{p(study = 1, free = 0, money = 1)}$

= $\frac{p(study = 1, free = 0, money = 1)}{p(study = 1, free = 0, money = 1)}$

Without smoothing the span-class likelihood is zero, because the classifier haven't trained by study = 1, free = 0, money = 1) sample

(3)
$$p(S|H) = \frac{p(H|S) \times p(S)}{p(H|S)}$$

= $\frac{0.6 \times 0.2}{0.36}$