2nd CRTM Working Group Meeting 28 April, 2008

Joint Center for Satellite Data Assimilation

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

CWG#1 Action Items

- Code Review and Acceptance Guidelines: CWG members to provide feedback.
 - None Received.
- ftp upload: Done. CWG members notified.
 - No notification of test uploads received.
- CRTM Web Page: Framework created by JCSDA webmaster. Content needs to be added.
- CRTM Repository: EMC has began process to set up accessible Subversion repository.
 - Hardware is being purchased.
 - Primary and secondary servers will be in NCEP "DMZ". Access via user ID.
 - Incremental backups every night (online for 7 days). Full backups weekly (online for 28 days).
 - Trac SCM software to be used. ViewVC also available.
 - Current server will become read-only mirror, with additional web services such as web page, forums, wiki, etc.

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

CRTM Software Status

- CRTM v1.1 released 29 February, 2008.
- Available from ftp://ftp.emc.ncep.noaa.gov/jcsda/crtm
- Main changes in this release:
 - implementation of extra-layering methodology to supplement atmospheres with climatology if the inputs are lower than the CRTM model top (0.005hPa).
 - implementation of the NESDIS MHS Snow and Sea Ice emissivity models.
 - Several updates to coefficients
 - new directory structure
 - Microwave TauCoeff: no longer include the Liebe Zeeman effect adjustment factor. For comparison with previous coeffs, the Liebe files should be used.
 - Infrared TauCoeff: We now have "ordinary" (ORD) coefficients, those based on Planck-weighted (PW) transmittances, and those using a mixture (ORD-PW). Only a few instruments with exceptionally broad channels have Planck-weighted transmittance based coefficients.
 - Microwave SpcCoeff: Files for no antenna correction (No_AC), the AAPP antenna correction (AAPP_AC) and the NESDIS antenna correction (NESDIS_AC). AAPP_AC for AMSU-A/B and MHS; NESDIS_AC for AMSUA-A.

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

Improving Computational Efficiency (1)

Quanhua Liu

- The CRTM is used operationally in the GSI for clear radiance assimilation. Cloudy radiance assimilation is the next effort for the CRTM team. This is challenging due to:
 - Unlike temperature, water vapor and trace gases, clouds are discontinuous media in the horizontal, vertical, and time domain. Generating the multi-dimensional error covariance is difficult.
 - Large uncertainties in cloud microphysics; such as particle size and shape. How to obtain this information from cloud water content, temperature and water vapor.
 - Computational needs are expensive because of multiple scattering in the cloud and between clouds as well as between surface and clouds.

Improving Computational Efficiency (2)

Quanhua Liu

- In concert with NCEP scientists and IBM CCS support, it was found that the IBM intrinsic matrix multiplication was extremely slow. We also found that the computational efficiency is memory-usage sensitive.
 We are testing the following changes in the CRTM code:
 - Add fast(er) matrix manipulation functions.
 - Move the RTV structure (holds the RTSolution forward results for adjoint calculation) from the CRTM_RTSolution.f90 and make pointer for its large arrays to CRTM_RTSolution_Define.f90
- The changes save about 30% CPU time, but still does not satisfy the requirement for cloudy radiance assimilation.

Improving Computational Efficiency (3)

Quanhua Liu

- Further improvement have been made to develop fast two and four streams + observation angle. The four-stream + observation angle is generally accurate for microwave and infrared radiance simulation. Requires a better treatment of cloud and aerosol phase functions.
- The new two and four stream + observation algorithm uses the same adding code as ADA, but a fast calculation for each layer in a new module CRTM_RTSolution_AMOM.f90. Preliminary results are shown in Table 1.

Table 1. CPU time usage for operational algorithm (op), operational algorithm with the fast matrix manipulation (rev-op), new four-stream and new two-stream methods.

	ор	rev-op	Four-stream + observation angle	Two-stream + observation angle
Single CPU	100	69	26	17
32 CPUs for GSI	100	66	29	18

Transmittance Algorithm Improvement (1) Motivation, plan and progress

Yong Han and Yong Chen

Current CRTM transmittance algorithm: Compact OPTRAN

The effective absorption coefficient k^* at layer A_i is estimated with predictors x_j :

$$Ln(k^*(A_i)) = c_0(A_i) + \sum_{j=1}^{6} c_j(A_i)x_j(A_i)$$
 A_i integrated absorber amount at layer i

 $C_j(A_i)$ is an nth (<= 10) order polynomial of variable A_i , obtained through regression H2O and O3 are variable gases

- Advantages:
 - Smooth Jacobian profiles, due to the constraint of the polynomial function
 - Good memory efficiency
- Disadvantages:
 - At some channels, poor accuracy
 - At some channels, the algorithm is trained (the regression) with some artificial k* values because they are required to be positive. It is known that the effective absorption coefficients can be negative.
 - Relatively poor computational efficiency because of the need to evaluate the polynomial

Transmittance Algorithm Improvement (2)

Work based on available algorithms

Yong Han and Yong Chen

- Two classes of transmittance algorithms
 - Band-based: channel transmittances (SRF-averaged) are estimated directly. CRTM-OPTRAN, RTTOV and UMBC SARTA belong to this class.
 - Node-based: monochromatic transmittances and radiances are first estimated at a set of selected frequencies (nodes), the radiances are then weighted to form the channel radiance. OSS and PC algorithms belong to this class.
- The band-based algorithms are referenced for this work, since they match to the current CRTM structure.
- Differences among OPTRAN, RTTOV and SARTA
 - OPTRAN: optical paths are estimated at fixed levels of the integrated absorber amount
 - RTTOV: optical paths are estimated at fixed pressure levels
 - SARTA: a mix of OPTRAN and RTTOV.
- H2O, O3, CO2, CO, CH4 and CO (possible others) will be treated as variable gases

Transmittance Algorithm Improvement (3) Progress and remaining work

Yong Han and Yong Chen

- The development includes two parts: training package and CRTM transmittance module
- Training package
 - Transmittance algorithm (50% completed)
 - Training software for generating transmittance coefficients (50% completed)
- CRTM transmittance module (0% completion)
 - It will be built to accommodate multiple transmittance algorithms. Compact-OPTRAN will be kept as an option.
 - SSU and Zeeman transmittance algorithms will be included.
- Test and evaluation (0% completed)
 - Test against LBL model
 - Comparison with Compact-OPTRAN
 - Comparison with observations
 - Evaluation in data assimilation experiments

Interpolation Module Update (1)

Paul van Delst

- Interpolation code update to accommodate scattering (cloud and aerosol) calculations.
- Bulk optical properties in LUT interpolated to input data values (e.g. frequency, effective radius, temperature.
- Updated tests with regular polynomial and spline interpolation revealed a number of (known) problems. Need to get it right since:
 - More people working on assimilation of cloudy radiances.
 - Want to use same interpolation code in emissivity models.
- Problems.
 - Derivatives of interpolates not continuous across LUT hingepoints.
 - CloudCoeff and AerosolCoeff LUT data have data density and quality issues.
- Implemented Averaged Quadratic interpolation

Interpolation Module Update (2)

Paul van Delst

Interpolation Module Update (3)

Paul van Delst

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion

CSU; Andy Jones

- CSU MWLSM source code delivered to JCSDA.
- Forward and adjoint model of code delivered.
- Code is currently under review at JCSDA.

2:30pm: Review of CWG#1 action items (10min)

2:30pm: CRTM Software Status (5min)

2:45pm: Dr. Z.Liu Presentation (15min)

3:00pm: Core Member Reports

JCSDA Report; Q. Liu, Y.Han, P.van Delst (15min)

GMAO; Emily Liu (5min)

NRL; Ben Ruston (5min)

NPOESS; Ye Hong (5min)

OAR; Dan Birkenheuer (5min)

3:35pm: Collaborating Member Reports

Texas A&M; Ping Yang (5min)

UW-Madison; Ralf Bennartz (5min)

AER; Jean-Luc Moncet (5min)

CSU; Andy Jones (5min)

3:55pm: Open Discussion