Regularised methods

Oxford Spring School in Advanced Research Methods 2025

Dr Thomas Robinson, LSE

Day 2/5

Introduction

Yesterday we explored how a familiar estimator (logistic regression) incorporates some fundamental aspects of ML

- ML is not some entirely new, alien type of doing statistics
- ML is typically focused on prediction problems
- Lots of really useful ML models are extensions of regression framework

So how should we understand OLS within a prediction context?

How do other popular forms of ML come out of it?

Today's session

- 1. Recap OLS from prediction perspective
 - ► How does OLS work?
 - Optimisation criteria
 - ► Bias-variance trade-off
- 2. LASSO estimator
- 3. Practical application

Key topics:

- ► Bias and variance
- Regularisation

Ordinary Least Squares Regression

Refresher: which is the best line?

Refresher: which is the best line? 2

Refresher: which is the best line? 2

OLS as a tool for inference

In inference terms, OLS estimates $\hat{\beta}$ that:

- lacktriangle Capture the linear relationships between ${f X}$ and ${f y}$
- lackbox Yield individual estimates of the partial associations between X on y
- ightharpoonup Allows us to understand the uncertainty over \hat{eta}
 - ightharpoonup E.g., how confident we are that there is a non-zero relationship between x_1 and y

OLS: Optimisation

OLS regression minimises the sum of the squared error between the regression line $(X\beta)$ and the observed outcome (y):

$$\underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \sum_{i=1}^{N} (y_i - \boldsymbol{x_i}\boldsymbol{\beta})^2,$$

where $x_i\beta$ is the linear regression function.

How might we solve this?

- Maximum likelihood estimation
- Calculus there is a closed form solution (unlike logistic regression)

Why do we like OLS?

Not only does OLS have a closed form solution, we also know that, under the Gauss Markov (GM) assumptions, OLS is:

- Best
- ► Linear (Hansen 2021)
- Unbiased
- Estimator

GM Assumptions

In other words, in terms of estimating the parameters β , you will not find a model with a lower variance that is also unbiased

OLS is good for inference:

- Typically very concerned with generating **unbiased** estimates of $\hat{oldsymbol{eta}}$
- ▶ Most efficient test of a (linear) hypothesis

Bias

Bias is a feature of the estimator:

- ightharpoonup Bias $_{oldsymbol{eta}}=(\mathbb{E}[oldsymbol{\hat{eta}}]-oldsymbol{eta})$
- On average, the estimated parameters are equal to the true parameters
- ▶ Under GM, we know that $(\mathbb{E}[\hat{\boldsymbol{\beta}}] \boldsymbol{\beta}) = 0$

Variance

As we sample new (GM-satisfying) data, the parameters of our model will shift:

- ▶ Hence, there will be variance over our parameter estimates
- $\blacktriangleright \ \mathbb{V}_{\hat{\boldsymbol{\beta}}} = \mathbb{E}[(\mathbb{E}[\hat{\boldsymbol{\beta}}] \hat{\boldsymbol{\beta}})^2]$
- ► The average distance between a particular parameter estimate and the mean of parameter estimates over multiple samples

Visualising bias and variance

Predicting new values

In the remainder of today's session, we are going to consider the following generic supervised learning problem:

- $lackbox{ We observe } (oldsymbol{y},oldsymbol{X})\in\mathcal{D}$
 - A training sample that is taken from a wider possible set of data
 - l.e. we can think, counterfactually, of resampling to get a new sample $(y_{\mathsf{New}}, X_{\mathsf{New}})$
- \blacktriangleright We also observe a "test" dataset X'

The goal is to estimate $oldsymbol{y'}$ by training a model \hat{f}

ightharpoonup The outcomes that correspond to X'

OLS as a tool for prediction

When we run OLS, we also get a "trained model":

- $lackbox{}\hat{f}$ that has parameters equal to $\hat{oldsymbol{eta}}$
- ightharpoonup Can be applied to a new "test" dataset X'
- lacktriangle To generate new predictions y'

Bias and variance of predictions

We can also think of bias in terms of the predictions:

- lacksquare Bias $_{m{y}} = (\mathbb{E}[m{\hat{y}}] m{y})$
- ► We ideally want low bias
- ▶ High bias suggests the model is not sensitive enough

And we can think about the variance of the prediction:

$$\mathbf{V}_{\hat{\boldsymbol{y}}} = \mathbb{E}[(\mathbb{E}[\hat{\boldsymbol{y}}] - \hat{\boldsymbol{y}})^2]$$

High variance means that the model is very sensitive to $oldsymbol{X}$ – the training data – but will perform poorly out-of-sample

With new data, and high variance, we would expect quite different predictions

Bias-variance trade off

So can't we just choose a low-variance, low-bias modeling strategy?

Assume we could calculate the mean squared error of some test data X' given a trained model \hat{f} :

$$\mathsf{MSE} = \mathbb{E}[(\hat{f}(\boldsymbol{X'}) - \boldsymbol{y'})^2].$$

We can decompose this further:

$$MSE = \underbrace{\mathbb{E}\big[(\hat{f}(\boldsymbol{X'}) - \mathbb{E}[\boldsymbol{\hat{y}}])^2\big]}_{\text{Variance}} + \underbrace{\big(\mathbb{E}[\boldsymbol{\hat{y}}] - \boldsymbol{y'}\big)^2}_{\text{Bias}^2}$$

So holding the MSE fixed, if we reduce the variance we must increase the bias

I.e. there is a bias-variance trade-off

Visualising the trade-off

Error ◆ Variance ◆ Bias² ◆ Total

Out of sample performance of OLS

This trade-off explains why we might not want to use OLS for prediction tasks:

- By virtue of GM assumptions and B(L)UE, the MSE is explained entirely by the variance
 - Across models, the parameters will be centred on the true values (an unbiased estimator)
- We cannot tweak the model to get slightly better out-of-sample predictions at the expense of some added bias
 - In other words, we cannot leverage the bias-variance trade-off

OLS: Complex OLS model trained on ${\bf X}$

OLS: Compare models' predictions to \mathbf{X}'

OLS: Variance in model predictions over ${\bf X}$

The LASSO estimator

Regularisation and overfitting

In the previous examples, a complex model yields poor out-of-sample predictions.

To ensure our model does not have too much variance, we can *penalise* this complexity

- ► This will introduce bias into the model
- But, if done well, we can reduce the total MSE by offsetting overly-high variance
- And therefore yield better predictions on X'

We call this process **regularisation**:

- Especially important where, by design, ML algorithms are highly flexible/complex
- Limits overfitting

Regularisation of OLS

If we want to regularise OLS we need to modify its loss function L:

- $ightharpoonup L_{OLS}$ is unbiased
- So, adding any non-zero term will add bias...
- ... and hopefully improve out-of-sample prediction

In other words:

lacktriangle We sacrifice some variance in order to improve the predictive performance of the model on X^\prime

Generalising OLS with regularization

Following Kleinberg et al (2015) we can state this problem as the linear optimisation of:

$$\arg\min_{f} \underbrace{\sum_{i=1}^{N} (y_i - f(\boldsymbol{x_i}))^2}_{\text{Sum of squared error}} + \underbrace{\lambda R(f)}_{\text{Regularisation}}$$

For OLS:

- $f \in \mathcal{F}_{linear}$ $\lambda = \frac{1}{20} = 0$

But what if $\lambda \neq 0$?

- ▶ Then we must decide what $R(\cdot)$ is
- And decide on a value of λ a hyperparameter (more on selecting these tomorrow!)

$R(\cdot)$ as shrinkage

Consider an OLS model with k parameters:

- ▶ The model estimates coefficients for each parameter
- Regardless of how large or small that coefficient is
- ▶ In a sense, with non-zero estimates for each parameter these models can be considered "complex"

We can reduce the complexity of the regression model by setting some parameters to zero

- ▶ I.e. we **shrink** the coefficient estimates
- ► Aim to reduce the variance error by more than the increase in bias error

In the linear framework, we need some way to penalize non-zero coefficients

Least absolute shrinkage and selection operator (LASSO)

We can calculate the total magnitude (or **L1 Norm**) of the coefficients in a model as:

$$||\boldsymbol{\beta}||_1 = \sum_j |\beta_j|$$

Next, we can think about restricting the size of this norm:

$$||\boldsymbol{\beta}||_1 \leq t$$

Finally we can include this term in our loss function:

$$\underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \sum_{i=1}^{N} (y_i - \boldsymbol{x_i}\boldsymbol{\beta})^2$$
 subject to $||\boldsymbol{\beta}||_1 \leq t$,

which is equivalent to:

$$\underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i \boldsymbol{\beta})^2 + \lambda ||\boldsymbol{\beta}||_1.$$

LASSO

Hence, the LASSO estimator conforms to the generalised loss function introduced earlier

 $R(f) = ||\hat{\beta}||_1$

LASSO often yields coefficient estimates of exactly zero:

- ▶ Think about varying the true value of some coefficient β_j :
 - Nhen β_j is large, we might shrink it (relative to OLS) but the importance of this predictor is sufficient to entail a non-zero coefficient
 - ightharpoonup But for some small enough value b, the cost of including b in L1-norm is greater than the reduction in squared error
- ► In other words, the L1 norm constraint can lead to "corner solutions"

Example of LASSO corner solution ($||\beta||_1 \leq 1$)

Comparison of $\hat{\beta}_j^{\rm OLS}$ to $\hat{\beta}_j^{\rm LASSO}$

Two helpful properties of LASSO

1. Prediction accuracy

- We trade off an amount of bias for a (hopefully) greater reduction in variance, improving out-of-sample prediction
- Cf. a non-zero true coefficient estimated with a large confidence interval

2. Selection of relevant variables

- The possibility of corner-solutions acts as a useful variable selection mechanism
- ▶ LASSO essentially selects the most important variables for us

Application

Generalised applications

What sorts of general topics/data might we expect to see LASSO models?

Generalised applications

What sorts of general topics/data might we expect to see LASSO models?

- Mueller Hannes, Rauh Christopher. Reading Between the Lines: Prediction of Political Violence Using Newspaper Text. American Political Science Review. 2018;112(2):358-375.
 - ► Topic selection
- ▶ Kim In Song. Political Cleavages within Industry: Firm-level Lobbying for Trade Liberalization. American Political Science Review. 2017;111(1):1-20.
 - Word selection
- ▶ Gerring John, Jerzak Connort, Öncel Erzen. The Composition of Descriptive Representation. American Political Science Review. 2023:1-18.
 - ► Variable selection more generally

Blackwell and Olsen (2022)

Suppose we have an outcome $oldsymbol{y}$, a treatment $oldsymbol{d}$, covariates $oldsymbol{X}$, and an "effect moderator" $oldsymbol{v}$

- ▶ We want to estimate an *inference* model
- Understand how the treatment effect is moderated

Naive suggestion:

- Include an interaction term to model the differential effect of treatment
 - l.e. $y_i = \beta_0 + \beta_1 d_i + \beta_2 v_i + \beta_3 d_i v_i + \boldsymbol{\beta'} \boldsymbol{X_i}$

What could be wrong with this model?

Blackwell and Olsen (2022)

Suppose we have an outcome $oldsymbol{y}$, a treatment $oldsymbol{d}$, covariates $oldsymbol{X}$, and an "effect moderator" $oldsymbol{v}$

- ▶ We want to estimate an *inference* model
- Understand how the treatment effect is moderated

Naive suggestion:

- Include an interaction term to model the differential effect of treatment
 - I.e. $y_i = \beta_0 + \beta_1 d_i + \beta_2 v_i + \beta_3 d_i v_i + \beta' X_i$

What could be wrong with this model?

- We assume that the interactive effect β_3 is constant across covariates
- lackbox This introduces bias into the model if vX is related either to dv or y

Prediction and inference problem

Therefore the researcher faces a prediction problem *and* an inference problem:

- ▶ Inference problem: How do we control for potential bias introduced between X, v, d, and y?
- **Prediction problem**: Which interactions within vX are most likely to confound the results?
 - lacktriangle Let us denote the true non-zero predictors ${\cal P}$
 - Inverting a \hat{y} problem which variables are useful to predict new data?

From today's session we know that:

- Bias can be useful to offset variance when making out-of-sample predictions
- ightharpoonup Bias inherently distorts our estimate of eta

Combining LASSO and OLS

Blackwell and Olsen propose splitting the problem of interaction estimation into two stages:

1. Variable selection

- Use LASSO to estimate a series of variable selection models
- Attempt to find interaction terms that correlate with either outcome, treatment, or treatment-moderated interaction

2. Inference

- Use OLS to estimate an inference model
- Using only non-zero interaction terms in LASSO models

What makes this strategy so useful (and informative!) is that:

- We leverage bias to make better predictions in Stage 1
- ▶ We de-bias inference in Stage 2 using OLS + Stage 1 results

Post-double selection method

Stage 1

- Estimate LASSO models for:
 - 1. y on $\{v, X, vX\}$
 - 2. d on $\{v, X, vX\}$
 - 3. dv on $\{v, X, vX\}$
- ▶ Let Z* index all variables with non-zero coefficients in any of models 1-3

Stage 2

lacktriangle Regress y on d,dv and Z*

Blackwell and Olson also suggest adding all "base-terms" (i.e \boldsymbol{X}) regardless of LASSO coefficient

Coding workshop: Implementing post-double selection using LASSO

Extra Slides

Alternative R(f) to the L1 norm

Following a similar logic to the shrinkage used by LASSO, we can define other measures of magnitude, like the L2 norm $||\beta||_2$:

$$\sqrt{\sum_{j} |\beta_{j}|^{2}}$$

When we plug in the L2 norm into the loss function, we get the **ridge regression** estimator:

$$\underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{N} (y_i - \boldsymbol{x_i} \boldsymbol{\beta})^2 + \lambda ||\boldsymbol{\beta}||_2$$

Unlike the LASSO estimator, ridge regression does not have a sharp cut-off, but rather scales the size of all coefficients in the model

Ridge regression – no corner solutions

Ridge regression – constant scaling of coefficients

Gauss Markov Assumptions

Five assumptions need to hold:

- 1. y is a linear function of β
- 2. $\mathbb{E}[\epsilon_i] = 0$
- 3. $V[\epsilon_i] = \sigma_i^2, \forall i$
- 4. $Cov(\epsilon_i, \epsilon_j) = 0, \forall i \neq j$
- 5. $Cov(\boldsymbol{x_i}, \epsilon_i) = 0$