Project Report

DATE	14 November 2022	
Team ID	PNT2022TMID28002	
Team Members	Kishore R (Team Leader)	
	Ganesh Karthik R (Team member 1)	
	Farhan Ahmed R (Team member 2)	
	Prasanna Kumar V (Team member 3)	
Project Name	Project - Global Sales Data Analytics	

Project Name: Global Sales Data Analytics

Team Id: PNT2022TMID28002

Team Leader: Kishore R

Team Member 1: Ganesh Karthik R

Team Member 2: Farhan Ahmed R

Team Member 3: Prasanna Kumar V

CONTENT

1.	INTRODUCTION
	1.1 Project Overview
	1.2 Purpose
2.	LITERATURE SURVEY
	2.1 Existing problem
	2.2 References
	2.3 Problem Statement Definition
3.	IDEATION & PROPOSED SOLUTION
	3.1 Empathy Map Canvas
	3.2 Ideation & Brainstorming
	3.3 Proposed Solution
	3.4 Problem Solution fit
4.	REQUIREMENT ANALYSIS
	4.1 Functional requirement
	4.2 Non-Functional requirements
5.	PROJECT DESIGN
	5.1 Data Flow Diagrams
	5.2 Solution & Technical Architecture
	5.3 User Stories
6.	PROJECT PLANNING & SCHEDULING
	6.1 Sprint Planning & Estimation
	6.2 Sprint Delivery Schedule
	6.3 Reports from JIRA
7.	Visualization
8.	ADVANTAGES & DISADVANTAGES
9.	CONCLUSION
10.	FUTURE SCOPE
11.	APPENDIX
	Source Code
	GitHuh & Project Demo Link

1. INTRODUCTION

1.1 Project Overview

Even with loads of data available at hand, a lot of companies struggle to identify key information such as how they can boost their sales or where they can minimize their losses. This is when they approach companies that offer analytics services. Through these services, businesses will be able to get useful insights into how well (or bad)

their business is doing and they end up making impactful business decisions.

1.2 Purpose

To analyse and identify trends in given data in order to make impactful business decisions

2. LITERATURE SURVEY

Paper/Title

and Big Data

Developmen

Year

2.1 Existing problem

Shopping online is currently the need of the hour. Because of this COVID, it's not easy to walk in a store randomly and buy anything you want. So try to understand a few things like, Customer Analysis and Product Analysis of this Global Superstore.

Journal

2.2 References

S.No

5.110	1 aper/11tie	1 cai	Journar	Method	Auvantage	Disauvantages
1	Effects of 3D	September	IEEE Access	1)VTO technology	1) Virtual try-on	The thing to
	Virtual "Try-	2020	(Volume: 8)	consists of making a	(VTO) is a new	overcome is the
	On" on Online			virtual body model	technology	psychological
	Sales and			from the customer's	used to help	barrier on the
	Customers'			own body size, 3D	customers try	side of the
	Purchasing			garment modelling,	on and mix and	customer, and
	Experiences			and interactive try-on	match apparel	convincing them
				and mix-and-match of	without a	to use and trust
				garments. Many	fitting room.	virtual try-on
				studies explain the	2)It appeared	applications. That
				method of making a	when	requires being
				virtual body by	conventional	extra clear about
				scanning or measuring	shops were in	what's happening
				the customer's body	crisis because	with user data
				2)We propose a new	of consumers'	such as images
				method, instead of 2D	shift to online	and videos, where
				CADpatterns, we use	retailers. VTO	they're
				3D garment photos; to	technology has	processed, how
				make a 3D garment	been adopted	they're used, and
				mesh surface because	because it has	so on
				2D CAD patterns are	many	
				always copyrighted	advantages in	
				and require	both retail	
					channels	
2.	Sales	March 2021	Research	The association of	This paper	This paper
	Analytics		Paper	cancer drug costs and	provides a	provides a

total cancer treatment

costs per cancer site

Method

Disadvantages

Advantage

commercial/sa

les analytics,

commercial/sal

es analytics, big

	ts Needed Now to Address PractitionerI dentified Emerging Biopharmace uti cal Sales Force Strategic and Operational Issues			uses two methods: Kaplan-Meier Sample Average (KMSA) method and an approach similar to the Cox proportional hazard model. Generalised Propensity Score (GPS) based weighting with bootstrap standard errors can be used to estimate the marginal effect of detailing on drug utilisation.	big data management, and organisational blueprint for companies on how to prepare and operate successfully in this evolving sales force pharma landscape. Focuses largely on patient,payer,sa les and marketing analytics	data management, and organisational blueprint for companies on how to prepare and operate successfully in this evolving sales force pharma landscape. Focuses largely on patient,payer,sal es and marketing analytics
3.	Impact of big data analytics on sales performance in pharmaceuti cal organization	April 2021	Research Paper	This study is related to the quantitative research method. This method emphasises the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre- existing statistical data using	Sales performance effectively and efficiently achieves the targets in the sales process by examining opportunities and improving	The data were collected from a developing country, and the results of this research may be different in developed countries
4.	Visual Analytics for Decision Support: A Supply Chain Perspective	June 2021	Research	computational techniques. 1. Visualisation types suitable for particular analytical goals in each of the SC activities, i.e Visualisation Techniques. 2. Analytical reasoning by analysts involved in the process of analysis, i.e., tactics	1. The lack of identifying specific SC business decisions that can be supported by VA. 2. The lack of exploring various analytical capabilities of SC VA systems. 3. The lack of	First, the application of VA in supporting the source and make processes of the SC may be explored, such as cost modelling of different sources and production scheduling. Second, visualising the impact of

			identifying the	external	ı
			state of the art	variables on	ì
			in visualisation	different SC	ì
			techniques and	operations such	ì
			tactics have	as the effect of	ì
			been resolved.	weather forecast	ì
				on sales may be	ì
				investigated	ì
				more	i
				extensively.	ì

Paper links:

1. Effects of 3D Virtual "Try-On" on Online Sales and Customers' Purchasing Experiences

https://ieeexplore.ieee.org/document/9189849

2. Sales Analytics and Big Data Developments Needed Now to Address Practitioner-identified Emerging Biopharmaceutical Sales Force Strategic and Operational Issues

https://www.pmsa.org/jpmsa-vol05-article01

3. Impact of big data analytics on sales performance in pharmaceutical organisations

https://doi.org/10.1371/journal.pone.0250229

4. Visual Analytics for Decision Support: A Supply Chain Perspective https://ieeexplore.ieee.org/document/9445829

2.3 Problem Statement Definition

Sales data is a term that includes a large array of metrics but, broadly speaking, if you can measure something in relation to the sales process, its viable sales data. Modern software like IBM cognos can help you collect this data, but it's important to learn how to read this data to understand what it means for your business and where you can improve.

With such an expansive sales data definition, it can be hard to know where to focus your efforts—especially if you also have to spend time selling. With the right sales analysis tools, you'll have a wealth of information and be able to spot trends that will empower you and your team and provide better sales forecasts and goals for the rest of the organization. The trick is in knowing which metrics to use and when.

Problem	I am (Customer)	I'm trying to	But	Because	Which makes me
Statement (PS)					feel
PS-1	a customer	buy a product	it is not in stock	it is in demand and many people are placing orders	annoyed
PS-2	a customer	replace a product that I bought	customer support is not responding	of too much traffic	disappointed
PS-3	a customer	buy a product	it is overpriced	of its demand	frustated
PS-4	a customer	buy a product	there is something odd about the reviews	the product as such isn't the best in its domain	vexed

3. IDEATION & PROPOSED SOLUTION

3.2 Ideation & Brainstorming

Top 3 ideas:

- 1. Identify which markets are thriving in each region/zone
- 2. Perform segment-wise analysis
- 3. Identify returning customers (if any)
- **3.3** Proposed Solution
- 1. Problem Statement (Problem to be solved)

Customer, Product analysis and detect emerging trends in business using data analytics. (Sales analysis is an important aspect of running a successful business. Through sales analytics, we can decide which products to focus on, where to sell and how best to reach customers.)

2. Idea / Solution description

There are many ready-made analytics software's but that is not the cure to all problems. To tackle this, we are creating a customized analytics model that will help helps businesses of all sizes grow revenue, automate tasks, make smarter decisions and keeps you updated of your customer behavioural changes

3. Novelty / Uniqueness

The customized analytics model will help to get a successful data analytics initiative that will provide a clear picture of where you are, where you have been and where you should go. By using this model. So, this model will stand apart from others.

4. Social Impact / Customer Satisfaction

This model will help various businesses to make informed business decisions, improve efficiency, increase revenue and minimize the financial loss.

5. Business Model (Revenue Model)

This model help companies better understand their customers, evaluate their ad campaigns, personalize content and create content strategies, so it will be a successful model. As it is useful it will definitely attract customers.

6. Scalability of the Solution

Whatever the dataset is, the customized model will produce a clear insight of the data with good and interactive visualization. That data visualization is used to identify patterns, trends, etc.

3.4 Problem Solution fit

CUSTOMER SEGMENT(S)

- 1. Companies / Organizations.
- 2. Retailers.
- 3. Sales and Marketing Team.

CUSTOMER CONSTRAINTS

- 1. Low quality of data
- 2. High cost
- 3. Going through same process each time like finding the default and essential thing (Like finding low and high selling product)

AVAILABLE SOLUTIONS

Creating a customized analytics software that will automate the repetitive tasks, which will a lot of time for the customers.

JOBS-TO-BE-DONE / PROBLEMS

Each time we have to look for some important things in the dataset like which is the least selling product and all. In the current system we have to do some steps in-order to get the output. It will be time consuming if we do this for each and every datasets

PROBLEM ROOT CAUSE

Repetition of some process each time while analyzing a dataset.

BEHAVIOUR

Trying to find which is the highest and low selling products by using the analytical tool each time.

TRIGGERS		CHALLENGE OF BEHAVIOUR
Finding basic details (Like which region	YOUR SOLUTION	CHALLENGE OF BEHAVIOUR
has the highest selling, etc.) of a dataset	Automating all the repetitive process that	Try to find a way to avoid time constraint
without spending a lot of time.	takes place during the analysis of a dataset.	
EMOTIONS	By doing the we can able to show the	
Before: Feeling irate for doing same	customer some default analysis whenever	
process again and again	the dataset is loaded into the software.	
After: They will feel calm and better		

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
FR-1	User Registration	Registration through Form Registration through Gmail	
FR-2	User Confirmation	confirmation via Email	
FR-3	Login	The user should login to the system by using valid user credentials	
FR-4	Dataset	Upload dataset into the analytics tool.	
FR-5	Analysis It involves gathering all the processing it, exploring the find patterns and other insign		
FR-6	Create Dashboard	Create Charts, Graphs, Tables, etc.	

FR-7	Reporting	The reporting function helps users have complete control over their business. The real-time reporting collects current information and displays the data on an intuitive user interface.

4.2 Non-Functional requirement

FR No. Non-Functional Requirement		Description
NFR-1	Usability	Optimized resources and it can be used by everyone
NFR-2	Security	Anyone with correct Log In credentials can view the Dashboards/Templates.
NFR-3	Reliability	Templates are reliable because we are uploading and accessing it through Cloud
NFR-4	Performance	It has high state of performance and efficiency
NFR-5	Availability	It is free of cost and available to everyone who wants to know about sales data
NFR-6	Scalability	Dashboards/Templates are very much Scalable, the user can modify the metrics whenever they want

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1	User Interface	How user interacts with application	IBM Cognos Analytics
2	Working with the dataset	Cleaning, extracting process of dataset is done	IBM Cognos Analytics with Watson
3	Data Exploration	Information in the dataset is identified	IBM Cognos Analytics with Watson
4	Data Visualization	Data is represented in form of chart, table and graph in an interactive way	IBM Cognos Analytics with Watson
5	Outcome of analysis process	The user will see the visualization through dashboards, report and story	IBM Cognos Analytics with Watson

6	Cloud Database	Uploaded data are stored in the cloud database (Database Service on Cloud)	IBM DB2, IBM Cloudant
7	File Storage	File storage requirements	IBM Cloud

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	IBM Cognos, IBM Cloud, IBM Watson
2.	Security Implementations	Secure user information and data	Active Directory
3.	Scalable Architecture	Supports various data sizes	Web 3.0 IBM Cloud
4.	Availability	Multi page layout providing various visualizations of data and provide full support irrespective of platform and device specifications	Cognos Business Intelligence Server
5.	Performance	Withstand huge data and process them without crashing	IBM Cognos, Performance Management Hub

5.3 User Stories

Sprint	Functional Requirement (Epic)	UserSto ry Number	UserStory /Task	StoryPoints	Priority
Sprint-1	Registration and Login	USN-1	Register the application Log into the application after registration	2	High
Sprint-1	Data Collection	USN-1	Gather the data in the form of CSV/XLS files and clean the data to remove the null values	2	High

Sprint-2	Upload dataset	USN -2	Upload data to IBM Cognos	2	High
Sprint-2	Data Preparation and Visualization	USN -2	Filter data for visualization Visualize data in form of charts and graphs	2	High
Sprint-3	Dashboard	USN-3	Create dashboard based on data in IBM Cognos Plan Visualization	2	High
Sprint -4	Prediction and Final Analysis	USN - 4	Predict specific products future sales expectation Analyze the list of categorized products	2	High
Sprint -4	Report	USN -4	Prepare the product and customer description information as a report	2	High

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority
Sprint -1	Registration	USN -1	As a user, I can register for the application by entering my email, password, and confirming my password.	5	High
Sprint -1	Login	USN -2	As a user, I will receive confirmation email onceI have registered for the application, and I can log into the application by entering email & password	5	High

Sprint -1	Data Collection	USN -3	As a user, I need to gather the data in the form of CSV/XLS files and clean the data to remove the null values	10	Low
Sprint -2	Upload Dataset	USN -4	As a user, I will upload the data to IBM Cognosand view the data of the products	5	Medium
Sprint -2	Data preparation	USN -5	As a user, I need to filter the data for visualization in IBM Cognos	5	High
Sprint -2	Data Visualization	USN -6	As a use, I can easily visualize the data in the foim of chaits and giaphs thiough IBM Cognos	10	High
Sprint -3	Dashboard	USN -7	As a useí, I will cíeate the dashboaíds based on the given data in IBM Cognos	5	High
Sprint -3	Dashboard	USN -8	As a user, I must plan visualizations in a way that I'm able to gain insights regarding the sales based upon the category of sales and the respective region	5	Medium
Sprint -3	Dashboard	USN -9	As a user, I must be able to gain insights from the charts/graphs through a variety of relationships established in the dashboard.	10	Medium
Sprint -4	Prediction	USN -10	As a user, I will predict the specific product's future sales expectation.	5	Medium
Sprint -4	Final Analysis	USN -11	As a user, I can Analyse the list of categorized products and their details as a report.	5	High

Sprint -4	Report	USN -12	As a user, I can prepare the	10	High
			product and customer		
			description information and		
			more additional information		
			as a Report		

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	30 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	06 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	20 Nov 2022

Velocity:

The team's average velocity (AV) per iteration unit (story points per day):

Sprint 1: AV = Sprint duration / velocity = 5/6 = 0.87

Sprint 2: AV= Sprint duration/ velocity = 2/6 = 0.34

Sprint 3: AV= Sprint duration/ velocity = 5/6 = 0.87

Sprint 4: AV = Sprint duration / velocity = 5/6 = 0.87

6.3 Reports from JIRA

7. VISUALIZATION

8. TESTING

TAB 10 TBD.....

9.1 Performance Metrics

S.No	Parameter	Screenshot / Values
1.	Dashboard design	No of Visualizations / Graphs - 29
2.	Data Responsiveness	No of Visualizations / Graphs - 29
3.	Amount of Data to be Rendered (DB2	No of Visualizations / Graphs - 29No of Visualizations /
	Metrics)	Graphs - 29
4.	Utilization of Data Filters	Utilized to full effectiveness
5.	Utilization of Data Filters	No of Scenes Added - 7
6.	Descriptive Reports	No of Visualizations / Graphs - 10

10. ADVANTAGES &

DISADVANTAGES Advantages

- Data Visualizations
- Ease of use
- Integration capabilities

Disadvantages

- No prediction features available as of yet
- Need to improve security aspect of the product

11. CONCLUSION

To conclude, we will say that we are providing revolutionary solutions and i easier.	nsights for businesses and making their job a lot

12. FUTURE SCOPE

We can improve our services that we offer by implementing more prediction based insights. Also, we can further exploit other domains as well and offer analytics services to them

13. APPENDIX

GitHub - https://github.com/IBM-EPBL/IBM-Project-30404-1660145997

Project Demo - https://drive.google.com/file/d/1r5Sz68_-rEA_XR0KG2FYcakgZRj_2aN-/view?usp=sharing

THANK YOU