Pracownia z analizy numerycznej Sprawozdanie do zadania P3.06

Mikołaj Słupiński

Wrocław, dnia 12 stycznia 2017 r.

1 Wstęp

Przybliżanie wartości całki oznaczonej jest jednym z najważniejszych zadań analizy numerycznej. Nic więc dziwnego, że powstało wiele metod całkowania numerycznego. Wśród nich, szczególną popularnością cieszą się kwadratura Gaussa oraz Newtona-Cotesa. Nie mniej popularną metodą jest metoda Curtisa-Clenshawa interpolująca funkcję w n+1 punktach, ekstremach wielomianu Czebyszewa. Opisywana przeze mnie kwadratura działa na podobnej zasadzie.

2 Opis kwadratury

Niech I będzie całką postaci

$$I = \int_{-1}^{1} f(x) dx.$$

Niech $n \geq 2$ będzie ustaloną liczba parzystą. Możemy wtedy określić n+1 węzłów interpolacyjnych na przedziale [-1,1] w miejscu punktów ekstremalnych wielomianu Czebyszewa $T_n(x)$ oraz punktavh brzegowych, wtedy

$$u_k:=\cos\alpha_k,\quad \alpha_k:=\frac{k\pi}{n},\quad k=0,1,...,n\,.$$

Te punkty pozwalają nam dokonać interpolacji Czebyszewa drugiego rodzaju. Możemy przybliżyć funkcję f(x) przez wielomian $J_n(x)$ jako

$$f(x) \approx J_n(x) = \sum_{k=0}^{n} {}''a_k T(x)$$
.

Wielomiany Czebyszewa są ortogonalne w sensie dyskretnego iloczynu skalarnego w węzłach u_k , co więcej

$$\sum_{k=0}^{n} T_r(u_k) T_s(u_k) = \begin{cases} n & \text{jeżeli } r = s = 0 \text{ lub } r = s = n \\ \frac{n}{2} & \text{jeżeli } r = s \neq 0 \end{cases}.$$

Rysunek 1: Wykres funkcji f(x)

Otrzymujemy w ostateczności

$$a_k = \frac{2}{n} \sum_{j=0} n'' f(u_j) T_k(u_j).$$

Niech J_n będzie naszym przybliżeniem funkcji f. Pozwala nam ono aproksymować wartość całki I. Zdefiniujmy I_n następująco:

$$I_n := \int_{-1}^1 J_n(x) dx.$$

Z wzoru rekurencyjnego na kolejne wielomiany Czebyszewa otrzymujemy

$$\int_{-1}^{1} T_n(x) dx = \frac{1}{2} \left(\frac{T_{n+1}(x)}{n+1} - \frac{T_{n-1}(x)}{n-1} \right) \Big|_{-1}^{1}.$$

Korzystając z powyższego wzoru ostatecznie dostajemy

$$I_n = 2(b_1 + b_3 + \dots + b_{n-1}), \text{ gdzie } b_{2k-1} := \frac{a_{2k-2} - a_{2k}}{4k - 2}.$$

Powyższy wzór pozwala nam na przybliżenie całki z satysfakcjonującą dokładnością.

3 Przykłady obliczeń

Aby uzmysłowić sobie działanie powyższej metody, warto dokonać kilku przykładowych obliczeń. Do wykonania testów użyto programu program. jl.

Za pierwszy przykład posłuży nam funkcja f(x) zdefiniowana następująco

$$f(x) = \frac{1}{x^4 + x^2 + 0.9} \,,$$

dla której wartość całki wynosi

$$\int_{-1}^{1} f(x)dx = 1.58223.$$

W tabeli nr 1 pokazano wyniki przybliżeń wartości całki dla $n \in {2,4,...,100}.$

Tablica 1: Wartości kolejnych przybliżeń ${\cal I}_n$ dla funkcji f

n	I_n	n	I_n
2	1.8390804597701154	52	1.8390804597701154
4	1.5691396725879485	54	1.5691396725879485
6	1.5823077129642087	56	1.5823077129642087
8	1.5823677724538778	58	1.5823677724538778
10	1.5821874997277126	60	1.5821874997277126
12	1.5822408404681412	62	1.5822408404681412
14	1.5822322569562068	64	1.5822322569562068
16	1.5822329156419064	66	1.5822329156419064
18	1.5822329978953582	68	1.5822329978953582
20	1.5822329560919610	70	1.5822329560919610
22	1.5822329647058602	72	1.5822329647058602
24	1.5822329637106787	74	1.5822329637106787
26	1.5822329637029517	76	1.5822329637029517
28	1.5822329637376509	78	1.5822329637376509
30	1.5822329637283628	80	1.5822329637283628
32	1.5822329637297676	82	1.5822329637297676
34	1.5822329637296915	84	1.5822329637296915
36	1.5822329637296630	86	1.5822329637296630
38	1.5822329637296730	88	1.5822329637296730
40	1.5822329637296740	90	1.5822329637296740
42	1.5822329637296728	92	1.5822329637296728
44	1.5822329637296710	94	1.5822329637296710
46	1.5822329637296735	96	1.5822329637296735
48	1.5822329637296715	98	1.5822329637296715
50	1.5822329637296755	100	1.5822329637296755

Spróbujmy teraz rozważyć następującą funkcję

$$g(x) = \frac{1}{1+x^4} \,,$$

dla której wartość całki na przedziale [0,1] wynosi:

$$\int_0^1 g(x)dx = \frac{2\pi - \log(17 - 12\sqrt{2})}{8\sqrt{2}} \approx 0.86697.$$

Zauważmy, że funkcja g(x) jest parzysta, a zatem możemy obliczyć jej wartość na przedziale [-1,1], a następnie wynik podzielić przez dwa. Wyniki kolejnych przybliżeń wartości funkcji g podano w tabeli nr 2.

Rysunek 2: Wykres funkcji g(x)

Rysunek 3: Wykres funkcji h(x)

Tablica 2: Wartości kolejnych przybliżeń ${\cal I}_n$ dla funkcji g

n	I_n	n	I_n
2	0.875000000000000000	52	0.875000000000000000
4	0.86249999999999999	54	0.8624999999999999
6	0.8661764705882353	56	0.8661764705882353
8	0.8670717446270544	58	0.8670717446270544
10	0.8669927009342300	60	0.8669927009342300
12	0.8669664978194389	62	0.8669664978194389
14	0.8669732969416176	64	0.8669732969416176
16	0.8669731743756107	66	0.8669731743756107
18	0.8669729457800330	68	0.8669729457800330
20	0.8669729869401689	70	0.8669729869401689
22	0.8669729890232729	72	0.8669729890232729
24	0.8669729870778224	74	0.8669729870778224
26	0.8669729873159584	76	0.8669729873159584
28	0.8669729873545489	78	0.8669729873545489
30	0.8669729873384345	80	0.8669729873384345
32	0.8669729873395545	82	0.8669729873395545
34	0.8669729873400329	84	0.8669729873400329
36	0.8669729873399047	86	0.8669729873399047
38	0.8669729873399056	88	0.8669729873399056
40	0.8669729873399129	90	0.8669729873399129
42	0.8669729873399107	92	0.8669729873399107
44	0.8669729873399102	94	0.8669729873399102
46	0.8669729873399112	96	0.8669729873399112
48	0.8669729873399102	98	0.8669729873399102
50	0.8669729873399125	100	0.8669729873399125

Na samym końcu zdefiniujmy funkcję h następująco:

$$h(x) = \frac{2}{2 + \sin(10\pi x)}.$$

Wartość jej całki na przedziale $\left[-1,1\right]$ wynosi

$$\int_{-1}^{1} h(x)dx = \frac{4}{\sqrt{3}} \approx 2.3094.$$

Kolejne przybliżenia przedstawiono w tabeli nr 3.

4 Dokładność zastosowanej kwadratury

Stosując daną kwadraturę warto znać jej dokładność, żeby wiedzieć jak dobry wynik przybliżenia otrzymujemy. Jednakże, nie zawsze jesteśmy w stanie obliczyć błąd kolejnych przybliżeń.

Tablica 3: Wartości kolejnych przybliżeń ${\cal I}_n$ dla funkcji h

	T		T
n	I_n	n	I_n
2	1.99999999999987	52	1.999999999999987
4	2.0144763777856167	54	2.0144763777856167
6	2.1318513910770880	56	2.1318513910770880
8	2.1026132264713615	58	2.1026132264713615
10	2.1066815288634750	60	2.1066815288634750
12	2.2545974763952747	62	2.2545974763952747
14	2.2300844342456890	64	2.2300844342456890
16	2.2116395861568248	66	2.2116395861568248
18	2.3716382456932217	68	2.3716382456932217
20	2.2493862059556147	70	2.2493862059556147
22	2.3966957951946326	72	2.3966957951946326
24	2.2135598288329947	74	2.2135598288329947
26	2.4171205361186754	76	2.4171205361186754
28	2.2713032539077330	78	2.2713032539077330
30	2.1510751250836493	80	2.1510751250836493
32	2.2227420660882120	82	2.2227420660882120
34	2.2898488541296260	84	2.2898488541296260
36	2.3050764298124040	86	2.3050764298124040
38	2.3073904328059040	88	2.3073904328059040
40	2.3139707445860160	90	2.3139707445860160
42	2.3052286725846383	92	2.3052286725846383
44	2.3131874756999620	94	2.3131874756999620
46	2.3040080041515925	96	2.3040080041515925
48	2.3146045892301577	98	2.3146045892301577
50	2.3056929418149905	100	2.3056929418149905

Rozwiązaniem problemu może okazać się eksperymentalne sprawdzenie, w jaki sposób różnią się między sobą kolejne przybliżenia funkcji, po to aby tak dobrać wartość n, aby przybliżenie było stosunkowo dokładne.

Chcemy aby wartości przybliżeń spełniały nierówność

$$|I_n - I_{n-2}| < \varepsilon |I_n|$$

dla ustalonego ε .

W tabeli nr 4 pokazano wartości wyrażenia $\frac{|I_n-I_{n-2}|}{|I_n|}$ dla kolejnych wartości n. Widać, że już dla n równego około 40, jesteśmy w stanie uzyskać satysfakcjonujące nas przybliżenie.

5 Wnioski

Istnieje wiele różnych kwadratur pozwalających nam przybliżyć wartość całki. Jednakże, znając podstawowe zasady ich działania, jesteśmy w stanie modyfiko-

wać je oraz tworzyć własne. Dobrą bazą jest interpolacja wielomianowa funkcji, która jest podstawą m.in. kwadratury Newtona-Cotesa czy Curtisa-Clenshawa.

Ponadto, zazwyczaj jesteśmy w stanie zoptymalizować powstałe kwadratury, np. w przypadku omówionej przez nas metody, możemy wykorzystać szybką transformatę Fouriera do obliczenia kolejnych współczynników naszego wielomianu interpolacyjnego.

Nie zawsze jednak łatwo jest oszacować otrzymaną dokładność przybliżenia, ale mimo to jesteśmy w stanie dobrać parametry, aby dobrze ocenić uzyskane przybliżenie.

Literatura

- [1] David Kincaid, Ward Cheney, *Analiza Numeryczna*, Wydawnictwa Naukowo-Techniczne, Warszawa, 2006.
- [2] Ake Björck, Germund Dahlquist, *Metody numeryczne*, Państwowe Wydawnictwo Naukowe, 1987.
- [3] Jörg Waldvogel Fast Construction of the Fejér and Clenshaw-Curtis Quadrature Rules, BIT Numerical Mathematics, 2003, Vol. 43, No. 1, pp. 001018.

Tablica 4: Wartości kolejnych względnych zmian przybliżeń całki

n	f(x)	g(x)	h(x)
4	0.1720310766	0.0144927536	0.0071861740
6	0.0083220478	0.0042444822	0.0550577839
8	$3.7955455561 \cdot 10^{-5}$	0.0010325259	0.0139056314
10	0.0001139389	$9.1169963414 \cdot 10^{-5}$	0.0019311426
12	$3.3712149923 \cdot 10^{-5}$	$3.0223906987 \cdot 10^{-5}$	0.0656063661
14	$5.4249380245 \cdot 10^{-6}$	$7.8423663136 \cdot 10^{-6}$	0.0109919794
16	$4.1630135047 \cdot 10^{-7}$	$1.4137231753 \cdot 10^{-7}$	0.0083398978
18	$5.1985675900 \cdot 10^{-8}$	$2.6367094706 \cdot 10^{-7}$	0.0674633494
20	$2.6420507187 \cdot 10^{-8}$	$4.7475684335 \cdot 10^{-8}$	0.0543490662
22	$5.4441408703 \cdot 10^{-9}$	$2.4027323215 \cdot 10^{-9}$	0.0614636157
24	$6.2897279705 \cdot 10^{-10}$	$2.2439574201 \cdot 10^{-9}$	0.0827336871
26	$4.8835603758 \cdot 10^{-12}$	$2.7467517314 \cdot 10^{-10}$	0.0842162003
28	$2.1930482585 \cdot 10^{-11}$	$4.4511726119 \cdot 10^{-11}$	0.0641998297
30	$5.8702643902 \cdot 10^{-12}$	$1.8586890625 \cdot 10^{-11}$	0.0558921106
32	$8.8790731047 \cdot 10^{-13}$	$1.2918430027 \cdot 10^{-12}$	0.0322425810
34	$4.8135325982 \cdot 10^{-14}$	$5.5179931589 \cdot 10^{-13}$	0.0293062085
36	$1.7963037101 \cdot 10^{-14}$	$1.4790629145 \cdot 10^{-13}$	0.0066061045
38	$6.3151302309 \cdot 10^{-15}$	$1.0244591616 \cdot 10^{-15}$	0.0010028658
40	$5.6134490942 \cdot 10^{-16}$	$8.4517880828 \cdot 10^{-15}$	0.0028437316
42	$7.0168113677 \cdot 10^{-16}$	$2.5611479039 \cdot 10^{-15}$	0.0037922797
44	$1.1226898188 \cdot 10^{-15}$	$5.1222958077 \cdot 10^{-16}$	0.0034406217
46	$1.5436985009 \cdot 10^{-15}$	$1.1525165567 \cdot 10^{-15}$	0.0039841318
48	$1.2630260462 \cdot 10^{-15}$	$1.1525165567 \cdot 10^{-15}$	0.0045781405
50	$2.5260520924 \cdot 10^{-15}$	$2.5611479039 \cdot 10^{-15}$	0.0038650625
52	$1.6840347282 \cdot 10^{-15}$	$2.1769757183 \cdot 10^{-15}$	0.0015727278
54	$1.8243709556 \cdot 10^{-15}$	$1.4086313471 \cdot 10^{-15}$	0.0021533167
56	$8.4201736412 \cdot 10^{-16}$	$2.5611479039 \cdot 10^{-16}$	0.0048830083
58	$1.4033622735 \cdot 10^{-15}$	$1.4086313471 \cdot 10^{-15}$	0.0018468347
60	$1.8243709556 \cdot 10^{-15}$	$1.5366887423 \cdot 10^{-15}$	0.0050319894
62	$2.5260520924 \cdot 10^{-15}$	$2.3050331135 \cdot 10^{-15}$	0.0006724679
64	$1.8243709556 \cdot 10^{-15}$	$2.0489183231 \cdot 10^{-15}$	0.0015999044
66	$2.5260520924 \cdot 10^{-15}$	$3.4575496702 \cdot 10^{-15}$	0.0013339440
68	$1.9647071830 \cdot 10^{-15}$	$2.3050331135 \cdot 10^{-15}$	0.0004871373
70	$4.7714317300 \cdot 10^{-15}$	$5.6345253885 \cdot 10^{-15}$	$3.3208326070 \cdot 10^{-5}$
72	$1.9647071830 \cdot 10^{-15}$	$1.4086313471 \cdot 10^{-15}$	0.0001529252
74	$9.8235359148 \cdot 10^{-16}$	$7.6834437117 \cdot 10^{-16}$	0.0001050872
76	$1.4033622735 \cdot 10^{-15}$	$2.3050331135 \cdot 10^{-15}$	$1.1012104827 \cdot 10^{-5}$
78	$4.0697505933 \cdot 10^{-15}$	$5.1222958078 \cdot 10^{-15}$	0.0001845652
80	$4.7714317300 \cdot 10^{-15}$	$5.1222958078 \cdot 10^{-15}$	0.0002735047
82	$9.8235359148 \cdot 10^{-16}$	$1.1525165567 \cdot 10^{-15}$	0.0001803354
84	$1.4033622735 \cdot 10^{-16}$	$5.1222958078 \cdot 10^{-16}$	$8.6652674217 \cdot 10^{-5}$
86	$4.2100868206 \cdot 10^{-16}$	$2.5611479039 \cdot 10^{-16}$	0.0002736495
88	$8.4201736412 \cdot 10^{-16}$	$7.6834437117 \cdot 10^{-16}$	$2.2295008466 \cdot 10^{-5}$
90	$1.5436985008 \cdot 10^{-15}$	$2.1769757183 \cdot 10^{-15}$	0.0002757381
92	0.0	0.0	0.0001034812
94	$4.9117679574 \cdot 10^{-15}$	$6.7870419453 \cdot 10^{-15}$	$5.5386735009 \cdot 10^{-5}$
96	$3.6487419112 \cdot 10^{-15}$	$5.3784105982 \cdot 10^{-15}$	0.0001008388
98	$2.3857158650 \cdot 10^{-15}$	$3.4575496702 \cdot 10^{-15}$	$7.6890799797 \cdot 10^{-5}$
100	$7.0168113677 \cdot 10^{-16}$	0.0	$1.4268564785 \cdot 10^{-5}$