WEEK 1 DISCUSSION WORKSHEET: PROPOSITIONAL LOGIC

Problem 1: Consider the following pieces of identification a person might have in order to apply for a credit card:

- B: Applicant presents a birth certificate.
- D: Applicant presents a driver's license.
- M: Applicant presents a marriage license.

Write a logical expression for the requirements under the following conditions: (a) The applicant must present either a birth certificate, a driver's license or a

(b): The applicant must present at least two of the following forms of identification: birth certificate, driver's license, marriage license

(c): Applicant must present either a birth certificate or both a driver's license and a marriage license.

Problem 2: If p = T, q = F, r = T, and s = F, what is the truth value of $(p \land q) \leftrightarrow (r \lor s)$?

goblem 3: Write truth tables for the following expressions:

-	IP	9	79	PB79
	ī	ī	F	1
	_	F	ī	F
	F	ī	F	F
	F	F	Ī	1
_				

a	(b):	$(p \vee$	$q) \wedge$	$\neg r$
•				

		<i>f</i>	1		
P	9,	Y	PV9	/ 7r	(PVg) NTY
T	1	T	T	F	F
T	- \	F	Ī	1	T
T	F	T	<u></u>	F	F
<u> </u>	F	F	T	T	
),	(T	T	<u></u>	F
F)	11	T	T	T
F	77	T	F	F	F
F	F	F	F		F

(O miv

(c): $(p \to q) \to r$

$$(d): (n \vee q) \oplus (n \vee \neg r)$$

(e): $\neg p \land ((p \rightarrow q) \lor (\neg p \rightarrow q))$	(m

P	9	r	PVq	75	7575	(2097)
	-					
	-					
		<u> </u>				
		1	'		•	

Problem 4: Use a truth table to prove that the following two expressions are logically equivalent, then explain in words why they should be equivalent: $p \wedge (p \rightarrow q)$ and $p \wedge q$.

 $Problem\ 5:$ Prove the logical equivalence of the following using the laws of propositional logic:

(a):
$$p \land (\neg p \rightarrow q)$$
 and p

(b):
$$(p \to r) \lor (q \to r)$$
 and $(p \land q) \to r$

(c):
$$p \leftrightarrow (p \land r)$$
 and $\neg p \lor r$

Problem 6: Show that the two sentences below are logically equivalent. Express each pair of sentences using a logical expression. Then prove whether the two expressions are logically equivalent. Note: you can assume that x and y are real numbers, so if x is not irrational, then x is rational, and if x is not rational, then x is an irrational number.

- 1. If x is a rational number and y is an irrational number then x-y is an irrational number.
- 2. If x is a rational number and x-y is a rational number then y is a rational number.

1.3 Conditional statements (implication) P -> 9 · Conditional operation/implication

N if P then 9

Nypothesis

Conclusion conclusion

Truth table for 7 ->9

Latex & Mankdown

\ wedge \ vee \ neg 1 oplus (4) \ rightawow 一

Problem 3(c)

(p -> q) -> r

1 P]	9	γ	p->9	Bad-2x
7	T	— [T	T
7		۴	T	
7	F	T	F	T
P	F	F	F	
F	T	T	T	
E	7	F	T	F
F	۲	Ť	T	T
F	F	1=	I	E
		•		

3(e) TP1((p->q)V(¬p->r))