Insper

Ciência dos Dados

Modelos Probabilísticos Contínuos

Distribuição Uniforme*
Distribuição Exponencial*
Distribuição Normal

*Ver detalhes no livro

Magalhães e Lima, 7ª edição. Seção 6.2

Objetivos de Aprendizagem

Os alunos devem ser capazes de:

- Descrever as propriedades de modelos probabilísticos já bem definidos na literatura, em particular, da distribuição exponencial e da normal.
- Utilizar modelos normais para resolução de problemas seja com ou sem uso do Python.
- Contrastar resultados teóricos e empíricos.

Insper

Distribuição Normal (ou Gaussiana)

Distribuição Normal

$$Med(X) = \mu$$

$$Moda(X) = \mu$$

$$E(X) = \mu$$

$$Var(X) = \sigma^2$$

Insper

Distribuição Normal

Médias diferentes e desvio padrões iguais

Médias iguais e desvio padrões diferentes

Distribuição Normal

Conhecido como Regra: 68-95-99

Distribuição Normal - Padronização

Muitas vezes estamos interessados em valores de probabilidade que a regra 68-95-99 não pode nos fornecer.

Como calcular a área abaixo da curva (probabilidade) nestes casos?

Cálculo DA Integral

OU

Uso de algum software para obter probabilidade **OU**

Padronização da curva Normal

Tabela z

Distribuição Normal - Padronização

Se X ~ $N(\mu, \sigma^2)$, então a v.a. definida por

$$Z = \frac{X - \mu}{\sigma}$$

terá média zero e variância 1.

Ainda, prova-se que

$$Z = \frac{X - \mu}{\sigma} \sim N(0;1)$$

pois toda combinação linear de uma v.a. com distribuição normal também é uma normal. Insper

Distribuição Normal - Padronização

Vimos que se X ~ $N(\mu, \sigma^2)$, então

$$Z = \frac{X - \mu}{\sigma} \sim N(0;1)$$

Logo, para calcular áreas sob curvas normais que não a padrão, primeiro converta X em Z e depois procure o valor numa tabela apropriada ou no Excel ou no Python.

Exemplo dados empírico e modelo normal

Escolher local para abrir uma Padaria

Uma empresa deve decidir onde construir uma padaria:

Bairro A ou Bairro B.

Os investidores visam atingir um público alvo de maior renda média. Logo, a decisão final deverá ser baseada em informações sobre a renda dos moradores dessas regiões.

Em princípio, quanto maior o número de famílias com rendas mais altas, maior será a chance do empreendimento ser bem sucedido.

Compare as distribuições de renda pessoal (em salários mínimos) dos dois bairros. Qual é o melhor bairro para construir o padaria? Justifique.

Insper

Medidas-resumo

Medidas resumo da renda pessoal dos moradores das duas regiões:

A B

Média: 7,0019 6,8705

Desvio Padrão: 0,6734 0,8890

Mínimo: 4,8760 4,6883

Máximo: 9,0808 9,1364

Q1: 6,5447 6,2049

Mediana: 7,0180 6,9314

Q3: 7,4344 7,6183

Tamanho Amostral: 500 500

Boxplot

Histograma

Ajustando com a Normal

7
Φ
용
ल
<u>=</u>
ာ္က
픙
g
· <u></u>
=
.⊑
d
<u>ө</u>
g
· <u></u>
鲁
_⊆
b
arte
ဋ
ш.

	Segunda decimal de z									
	O	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736		0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000d