基于张量分解的神经影像分类模型 多元统计分析期末汇报

王一鑫

兰州大学萃英学院

2025年6月19日

◆ロ > ← 同 > ← 巨 > ← 巨 > 一 豆 ・ り Q ○

- 1 引言
- 2 建模方法
- 3 模拟研究
- 4 参考文献

4□ > 4□ > 4 ≥ > 4 ≥ >

●◎

- 2 建模方法
- 3 模拟研究
- 4 参考文献

4□ > 4□ > 4 ≥ > 4 ≥ >

全文概要

引言

• 张量又称多维数组, 是矩阵的高维推广。与传统的矩阵(二 维数据)不同,张量能够处理更高维度的数据,因此它是多 维数据表示的理想工具。

言

- 张量又称多维数组, 是矩阵的高维推广。与传统的矩阵(二 维数据)不同,张量能够处理更高维度的数据,因此它是多 维数据表示的理想工具。
- 随着计算能力的突破性进展, 张量方法在医学影像分析这类 跨学科领域的应用日益扩展。

全文概要

言

- 张量又称多维数组,是矩阵的高维推广。与传统的矩阵(二 维数据)不同,张量能够处理更高维度的数据,因此它是多 维数据表示的理想工具。
- 随着计算能力的突破性进展,张量方法在医学影像分析这类 跨学科领域的应用日益扩展。
- 在本研究中, 我们提出了一种基于高维神经成像数据的贝叶 斯张量分类方法。所提出的方法将贝叶斯张量回归应用到了 分类问题上。张量结构特别适用于神经成像数据, 因为它尊 重空间信息. 同时通过 PARAFAC 分解进行有效降维。我们 实施了两种数据增强方案,通过模拟和数据应用证明了所提 方法的优越性。

2 建模方法

张量及其分解 基于不同损失函数的分类模型 先验估计

- 3 模拟研究
- 4 参考文献

基于张量分解的神经影像分类模型

←□ → ←□ → ← ≥ → ← ≥ →

- 2 建模方法
 - 张量及其分解

基于不同损失函数的分类模型 先验估计 后验推断 贝叶斯张量模型

- 3 模拟研究
- 4 参考文献

◆ロ > ◆ 個 > ◆ 差 > ◆ 差 > り < ②</p>

张量的概念

张量

张量是一个多维数组, d 阶张量是一个具有 d 个维度的数组, 表示为:

$$\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$$

图 1: 标量,向量,矩阵和三阶张量[1]

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 〇

Tucker 分解

• 张量分解是一种将高维张量分解为若干低维因子组合的技 巧, 其中一种为 Tucker 分解, 它是张量的高阶主成分分析 (PCA),将张量分解为核心张量与各模式因子矩阵的乘积。

- 张量分解是一种将高维张量分解为若干低维因子组合的技 巧, 其中一种为 Tucker 分解, 它是张量的高阶主成分分析 (PCA),将张量分解为核心张量与各模式因子矩阵的乘积。
- 具体地, 给定一个张量 $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, Tucker 分解表示 为:

Tucker 分解

- 张量分解是一种将高维张量分解为若干低维因子组合的技巧,其中一种为 Tucker 分解,它是张量的高阶主成分分析(PCA),将张量分解为核心张量与各模式因子矩阵的乘积。
- 具体地, 给定一个张量 X∈ ℝ^{n1×n2×···×nd}, Tucker 分解表示为:

Tucker 分解

$$\mathcal{X} \approx \mathcal{C} \times_1 Q^1 \times_2 Q^2 \cdots \times_d Q^d = \sum_{j_1=1}^{m_1} \sum_{j_2=1}^{m_2} \cdots \sum_{j_d=1}^{m_d} c_{j_1 j_2 \dots j_d} \mathbf{q}_{j_1}^1 \circ \mathbf{q}_{j_2}^2 \circ \cdots \circ \mathbf{q}_{j_d}^d$$

$$\tag{1}$$

- (ロ) (部) (注) (注) (注) (の()

Tucker 分解

- 张量分解是一种将高维张量分解为若干低维因子组合的技巧,其中一种为 Tucker 分解,它是张量的高阶主成分分析(PCA),将张量分解为核心张量与各模式因子矩阵的乘积。
- 具体地, 给定一个张量 X∈ ℝ^{n1×n2×···×nd}, Tucker 分解表示为:

Tucker 分解

$$\mathcal{X} \approx \mathcal{C} \times_1 Q^1 \times_2 Q^2 \cdots \times_d Q^d = \sum_{j_1=1}^{m_1} \sum_{j_2=1}^{m_2} \cdots \sum_{j_d=1}^{m_d} c_{j_1 j_2 \dots j_d} \mathbf{q}_{j_1}^1 \circ \mathbf{q}_{j_2}^2 \circ \cdots \circ \mathbf{q}_{j_d}^d$$

$$\tag{1}$$

• 其中, $C \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$ 是核心张量, $Q^k \in \mathbb{R}^{n_k \times m_k}$ 是因子矩阵.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト . 差 . か Q @

Tucker 分解示意图

图 2: Tucker 分解示意图^[1]

PARAFAC 分解

• 特别地, 当 $m_1 = m_2 = \cdots = m_d = R$, 且核心张量限制为 对角型时被称为 PARAFAC 分解, 它将张量近似为一组秩为 1的张量的和。具体而言, 给定一个张量 $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$. 其分解形式为:

• 特别地, 当 $m_1 = m_2 = \cdots = m_d = R$, 且核心张量限制为对角型时被称为 PARAFAC 分解. 它将张量近似为一组秩为 1 的张量的和。具体而言,给定一个张量 $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, 其分解形式为:

PARAFAC 分解

$$\mathcal{X} \approx \sum_{r=1}^{R} \beta_1^{(r)} \circ \beta_2^{(r)} \circ \cdots \circ \beta_d^{(r)}$$
 (2)

PARAFAC 分解

 特别地、当 m₁ = m₂ = ··· = m_d = R、且核心张量限制为 对角型时被称为 PARAFAC 分解, 它将张量近似为一组秩为 1的张量的和。具体而言,给定一个张量 $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$. 其分解形式为:

PARAFAC 分解

$$\mathcal{X} \approx \sum_{r=1}^{R} \beta_1^{(r)} \circ \beta_2^{(r)} \circ \cdots \circ \beta_d^{(r)}$$
 (2)

• 其中 β_1, \dots, β_d 是长度为 p_1, \dots, p_d 的向量. PARAFAC 分 解将系数 $p_1 \times \cdots \times p_d$ 降低至 $R(p_1 + p_2 + \cdots + p_d)$, 提供 了有效的降维.

PARAFAC 分解图示

图 3: PARAFAC 分解示意图^[1]

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 Q Q

- 1 引言
- 2 建模方法 基于不同损失函数的分类模型 先验估计
- 3 模拟研究
- 4 参考文献

←□ → ←□ → ← ≥ → ← ≥ →

• 损失函数就像是我们用来衡量"错误"的工具。在机器学习中,我们通过这个工具来评判模型训练性能。

兰州大学萃英学院

损失函数

- 损失函数就像是我们用来衡量"错误"的工具。在机器学习 中, 我们通过这个工具来评判模型训练性能。
- 贝叶斯方法中, 损失函数转化为不同类型的似然 (likelihood)。通过损失函数结合模型参数的先验假设和真实 观测值来更新参数. 通过这种方式, 我们可以得到对模型参 数的更好估计。

- 损失函数就像是我们用来衡量"错误"的工具。在机器学习 中, 我们通过这个工具来评判模型训练性能。
- 贝叶斯方法中, 损失函数转化为不同类型的似然 (likelihood)。通过损失函数结合模型参数的先验假设和真实 观测值来更新参数. 通过这种方式, 我们可以得到对模型参 数的更好估计。
- 我们使用了两种常用的损失函数,分别是以支持向量机为代 表的铰链损失(hinge loss)和逻辑回归损失(logistic regression loss).

Hinge Loss

Hinge Loss

$$\mathcal{L}(y|\beta) = \frac{1}{\sigma^2} \max(1 - yf(\mathbf{x}; \beta), 0) + R$$
 (3)

这里的 $y \in \{-1,1\}$ 是二元输出, $f(\cdot)$ 是协变量 x 的线性或非线 性函数, β 是需要从数据中估计的参数, σ^2 是调整参数。

图 4: SVM 的铰链损失

伪似然 (pseudo-likelihood) 方法

SVM 并没有明确的似然函数,不能直接在贝叶斯框架下建模。针对该问题, Polson 和 Scott 提出了一种伪似然 (pseudo-likelihood)的方法^[3]。

- SVM 并没有明确的似然函数,不能直接在贝叶斯框架下建 模。针对该问题, Polson 和 Scott 提出了一种伪似然 (pseudo-likelihood) 的方法^[3]。
- 具体而言, 伪似然可以被表示为一种带有潜在变量 ρ 的位 置-尺度混合正态分布 (location-scale mixture of normals), 这种表示法可以为后验推断提供高效的吉布斯采样器。

伪似然 (pseudo-likelihood) 方法

- SVM 并没有明确的似然函数,不能直接在贝叶斯框架下建模。针对该问题, Polson 和 Scott 提出了一种伪似然 (pseudo-likelihood) 的方法^[3]。
- 具体而言,伪似然可以被表示为一种带有潜在变量 ρ 的位置-尺度混合正态分布(location-scale mixture of normals),这种表示法可以为后验推断提供高效的吉布斯采样器。

伪似然方法

$$L = \prod_{i=1}^{n} L_{i}(y_{i}|\mathbf{x}_{i},\boldsymbol{\beta},\sigma^{2}) = \prod_{i=1}^{n} \left\{ \frac{1}{\sigma^{2}} \exp\{-\frac{2}{\sigma^{2}} \max(1 - y_{i}f(\mathbf{x};\boldsymbol{\beta}),0)\} \right\}$$
$$= \int_{0}^{\infty} \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi\rho_{i}}} \exp(-\frac{(1 + \rho_{i} - y_{i}f(\mathbf{x};\boldsymbol{\beta}))^{2}}{2\rho_{i}\sigma^{2}}) d\rho_{i}$$
(4)

- 4 ロ ト 4 御 ト 4 蓮 ト 4 蓮 ト 9 年 9 9 9 9

Logistic Loss

Logistic Loss

$$\mathcal{L}(y=1|\boldsymbol{\beta}) = \frac{\exp\{f(\mathbf{x};\boldsymbol{\beta})\}}{1 + \exp\{f(\mathbf{x};\boldsymbol{\beta})\}}$$
 (5)

其中, $f(\mathbf{x}; \boldsymbol{\beta})$ 代表协变量对逻辑损失的贡献, $\boldsymbol{\beta}$ 为待估参数。

图 5: 逻辑回归损失函数 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト)夏 - 夕 3 (

|Polya-Gamma 潜<u>变量</u>

• 在贝叶斯框架中, 逻辑回归的似然函数在分析上并不方便处 理,这使得直接从后验分布中采样变得困难。针对此问题. 我们通常使用 Polya-Gamma 潜变量来实现[4]。

• 在贝叶斯框架中,逻辑回归的似然函数在分析上并不方便处 理,这使得直接从后验分布中采样变得困难。针对此问题. 我们通常使用 Polya-Gamma 潜变量来实现[4]。

Polva-Gamma 分布

若随机变量 X 有如下形式

$$X \stackrel{D}{=} \frac{1}{2\pi^2} \sum_{k=1}^{\infty} \frac{g_k}{(k-1/2)^2 + c^2/(4\pi^2)}$$
 (6)

则称 X 服从参数为 b>0, $c\in\mathbb{R}$ 的 Polya-Gamma 分布, 记作 X PG(b,c). 其中 g_k 服从 Gamma 分布 Ga(b,1), 相互独立。 $\stackrel{D}{=}$ 表示在分布意义下相等。

• 通过引入 Polya-Gamma 潜在变量可以将对数优势比参数化的二项式似然表示为关于 Polya-Gamma 分布的高斯混合^[4]。 逻辑损失函数可以通过对潜在的 Polya-Gamma 变量进行边缘化处理而得到,其关系如下所示:

• 通过引入 Polya-Gamma 潜在变量可以将对数优势比参数化 的二项式似然表示为关于 Polya-Gamma 分布的高斯混合^[4]。 逻辑损失函数可以通过对潜在的 Polya-Gamma 变量进行边 缘化处理而得到, 其关系如下所示:

损失函数

$$\frac{(e^{f(\cdot)})^y}{(1+e^{f(\cdot)})^b} = 2^{-b}e^{\kappa\psi} \int_0^\infty e^{-\omega\psi^2/2} p(\omega) d\omega, \quad b > 0, \quad \kappa = y - \frac{b}{2}$$
(7)

通过引入 Polya-Gamma 潜在变量可以将对数优势比参数化的二项式似然表示为关于 Polya-Gamma 分布的高斯混合^[4]。
 逻辑损失函数可以通过对潜在的 Polya-Gamma 变量进行边缘化处理而得到,其关系如下所示:

损失函数

$$\frac{(e^{f(\cdot)})^{y}}{(1+e^{f(\cdot)})^{b}} = 2^{-b}e^{\kappa\psi} \int_{0}^{\infty} e^{-\omega\psi^{2}/2} p(\omega) d\omega, \quad b > 0, \quad \kappa = y - \frac{b}{2}$$
(7)

其中 ω ~ PG(b,0), p(ω) 表示 Polya-Gamma 分布的密度函数。

- (ロ) (個) (注) (注) E り(C

在该等式基础上, 完整的数据增强似然函数为

$$L = \prod_{i=1}^{n} \frac{(e^{f_i})^{y_i}}{1 + e^{f_i}} = \prod_{i=1}^{n} 2^{-1} e^{\kappa_i \psi_i} \int_0^\infty e^{-\omega_i f_i^2/2} p(\omega_i) \, d\omega_i$$
 (8)

其中
$$\kappa_i = y_i - \frac{1}{2}$$
, $b = 1$, $\omega_i \sim \mathsf{PG}(1,0)$ 。

2 建模方法

张量及其分解 基于不同损失函数的分类模型 先验估计

- 3 模拟研究
- 4 参考文献

先验估计

线性预测模型

$$f_i = \langle \mathbf{X}_i, \mathbf{B} \rangle + \mathbf{z}_i' \gamma$$
 (9)

- 这里的 X; 和 z; 分别表示第 i 个样本的影像预测变量与其他 特征。符号 (·,·) 表示内积算子。张量系数矩阵 B 用于量化 图像在分类模型中的作用, γ 是一个维度为 p_z+1 的向量, 用以捕捉补充协变量的影响。
- 对张量 B 进行 PARAFAC 分解,这里的 B∈ ⊗_{i-1} ℝ^{pi},有 如下分解形式

$$\boldsymbol{B} \approx \sum_{r=1}^{R} \beta_{1}^{(r)} \circ \beta_{2}^{(r)} \circ \cdots \circ \beta_{d}^{(r)}$$
 (10)

- ullet 在贝叶斯框架下需要有先验假设,对这里 $eta_{i}^{(r)}$ 的先验选择, 我们可以采用多向 Dirichlet 广义双帕累托 (multiway Dirichlet generalized double Pareto, M-DGDP) 分布^[5]。
- Guhaniyogi 等人证明了[5] 使用该方法作为先验可以在贝叶 斯张量回归中实现自动稀疏性控制、低秩建模与不失大信号 的精确建模,同时具备对称性和后验一致性的理论保证。
- 具体地, 该先验在各组分之间以可交换方式诱导收缩效应, 其中全局尺度参数为 $\tau \sim \text{Ga}(a_{\tau}, b_{\tau})$, 并在每个组分中进行 调整为 $\tau_r = \phi_r \tau$, $r = 1, \ldots, R$, 其中 $\Phi = (\phi_1, \dots, \phi_R) \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_R)$, 其作用是鼓励在 假设的 PARAFAC 分解中向低秩方向收缩。
- 此外, 令 $W_{ir} = diag(w_{ir,1}, ..., w_{jr,p_i}), j = 1, ..., d$ 且 r = 1, ..., R 表示边缘特异的尺度参数。

multiway Dirichlet generalized double Pareto, M-DGDP

• 层次结构的边缘层先验给定如下:

$$\boldsymbol{\beta}_{j}^{(r)} \sim \mathcal{N}(0, (\phi_{r}\tau) \boldsymbol{W}_{jr}), \quad w_{jr,k} \sim \operatorname{Exp}(\lambda_{jr}^{2}/2), \quad \lambda_{jr} \sim \operatorname{Ga}(a_{\lambda}, b_{\lambda}).$$
(11)

• 对元素特异尺度进行边缘化后, 可得:

$$\beta_{j,k}^{(r)} \mid \lambda_{jr}, \phi_r, \tau \stackrel{\mathsf{iid}}{\sim} \mathrm{DE}(\lambda_{jr}/\sqrt{\phi_r \tau}), \quad 1 \leq k \leq p_j.$$

式 (11) 在单个边缘系数上诱导了 GDP (广义双帕累托) 先验, 从而具有自适应 Lasso 惩罚的形式。

- 在估计集合 $\mathbf{B}_r = \{\beta_j^{(r)}; 1 \leq j \leq D\}$ 时,该模型通过引入边缘内异质性建模方式进行适应性调整,即引入元素特异的尺度参数 $w_{jr,k}$. 其中共享的速率参数 λ_{jr} 可在边缘内的多个元素间传递信息,从而在局部尺度上诱导收缩。
- 最后我们假设 γ 的先验是 $\mathcal{N}(0,\Sigma_{0\gamma})$,完成了所有参数的先验估计。

- 1 引言
- 2 建模方法

张量及其分解 基于不同损失函数的分类模型 先验估计

后验推断

贝叶斯张量模型

- 3 模拟研究
- 4 参考文献

(ロ) (部) (注) (注) 注 り(()

MCMC 算法

• 蒙特卡罗法(Monte Carlo method)是通过从概率模型的随 机抽样进行近似数值计算的方法。马尔可夫链蒙特卡罗法 (Markov Chain Monte Carlo, MCMC),则是以马尔可夫链 (Markov chain) 为概率模型的蒙特卡罗法。马尔可夫链蒙特 卡罗法构建一个马尔可夫链, 使其平稳分布就是要进行抽样 的分布, 首先基于该马尔可夫链进行随机游走, 产生样本的 序列, 之后使用该平稳分布的样本进行近似数值计算。

MCMC 算法

- 蒙特卡罗法 (Monte Carlo method) 是通过从概率模型的随 机抽样进行近似数值计算的方法。马尔可夫链蒙特卡罗法 (Markov Chain Monte Carlo, MCMC),则是以马尔可夫链 (Markov chain) 为概率模型的蒙特卡罗法。马尔可夫链蒙特 卡罗法构建一个马尔可夫链, 使其平稳分布就是要进行抽样 的分布, 首先基于该马尔可夫链进行随机游走, 产生样本的 序列、之后使用该平稳分布的样本进行近似数值计算。
- 吉布斯采样和 Metropolis-Hastings 算法是常用的 MCMC 方 法。

Gibbs Sampling

Algorithm 1: Gibbs Sampling (吉布斯抽样)

Input: 目标密度函数 p(x), 函数 f(x); 收敛步数 m, 迭代步数 n

Output: 随机样本 $\{x_{m+1}, \ldots, x_n\}$ 及函数样本均值 f_{mn}

- 1 初始化: 设初始样本 $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_t^{(0)})^{\top}$.
- **2 for** i = 1 *to* n **do**
- 设上一步样本为 $x^{(i-1)} = (x_1^{(i-1)}, x_2^{(i-1)}, \dots, x_t^{(i-1)})^{\top}$ 3
- for i = 1 to k do 4
- 从条件分布 $p(x_i|x_1^{(i)},\ldots,x_{i-1}^{(i)},x_{i+1}^{(i-1)},\ldots,x_{i}^{(i-1)})$ 采样 $x_i^{(i)}$. 5
- end 6
- 得到当前样本 $x^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots, x_t^{(i)})^{\mathsf{T}}$.
- 8 end
- 9 抽取后 n-m 个样本组成样本集合 $\{x^{(m+1)},...,x^{(n)}\}$
- 10 计算函数样本均值: $f_{mn} = \frac{1}{n-m} \sum_{i=m+1}^{n} f(x^{(i)})$

- 1 引言
- 2 建模方法

张量及其分解 基于不同损失函数的分类模型 先验估计 贝叶斯张量模型

- 3 模拟研究
- 4 参考文献

基于张量分解的神经影像分类模型

←□ → ←□ → ← ≥ → ← ≥ →

贝叶斯张量模型

• 令 $y \in \mathbb{R}$ 表示一个响应值, $\mathbf{z} \in \mathbb{R}^p$, $\mathbf{X} \in \bigotimes_{j=1}^d \mathbb{R}^{p_j}$, 我们有如下的张量回归模型:

$$y|\gamma, \mathbf{B}, \sigma \sim \mathcal{N}(z'\gamma + \langle X, \mathbf{B} \rangle, \sigma^{2})$$

$$\mathbf{B} = \sum_{r=1}^{R} \mathbf{B}_{r}, \quad \mathbf{B}_{r} = \beta_{1}^{(r)} \circ \cdots \circ \beta_{d}^{(r)}$$

$$\gamma \sim \pi_{\gamma}, \quad \beta_{j}^{(r)} \sim \pi_{\beta}$$
(12)

 先前提出的多向先验(11) 可为张量回归模型 (12) 的大多数 参数提供吉布斯采样方案。我们依赖于边缘化与分块策略来 减少以下参数的自相关性

$$\left\{ \left(\boldsymbol{\beta}_{j}^{(r)}, w_{jr}; \ 1 \leq j \leq d, \ 1 \leq r \leq R \right), \ (\boldsymbol{\Phi}, \tau), \ \boldsymbol{\gamma} \right\}$$

从 $[\alpha, \Phi, \tau | \mathbf{B}, \mathbf{W}]$, $[\mathbf{B}, \mathbf{W} | \Phi, \tau, \gamma, \mathbf{y}]$, 以及 $[\gamma | \mathbf{B}, \mathbf{y}]$ 依次进行 采样。具体算法 BT-SVM 和 BT-LR 太过复杂,并未列出。

模拟研究

•000000000000000

- 1 引言
- 3 模拟研究 模型评估 MRI 脑肿瘤分类
- 4 参考文献

4□ > 4□ > 4 ≥ > 4 ≥ >

模拟研究

- 1 引言
- 2 建模方法
- ③ 模拟研究 模拟数据生成 模型评估 MRI 脑肿瘤分类
- 4 参考文献

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · から○

模拟数据生成

• 我们通过几种模拟设置来阐述方法的性能,并使用其他已有 的方法进行比较。考虑四种不同类型的张量系数 B 来生成 二元结果,设置如下:

模拟数据牛成

- 我们通过几种模拟设置来阐述方法的性能,并使用其他已有 的方法进行比较。考虑四种不同类型的张量系数 B 来生成 二元结果,设置如下:
- 场景 1 张量 B 由秩 $R_0 = 3$ 和维度 p = c(48, 48) 的秩-RPARAFAC 分解构建。每个 β 边缘 $\beta_i^{(r)}$ 都是从独立的二项 分布 Binomial(2,0.2) 生成的。在构建张量之后,我们将张 量 B 单元格的最大值设置为 1。

模拟数据生成

- 我们通过几种模拟设置来阐述方法的性能,并使用其他已有的方法进行比较。考虑四种不同类型的张量系数 B 来生成二元结果,设置如下:
- 场景 $\mathbf{1}$ 张量 \mathbf{B} 由秩 $R_0 = 3$ 和维度 p = c(48,48) 的秩-R PARAFAC 分解构建。每个 β 边缘 $\beta_j^{(r)}$ 都是从独立的二项分布 Binomial(2,0.2) 生成的。在构建张量之后,我们将张量 \mathbf{B} 单元格的最大值设置为 1。
- 场景 2 张量图像由秩 $R_0 = 3$ 的秩-R PARAFAC 分解模拟。 这里,我们没有从已知分布生成张量边缘,而是手动设置了 $\beta_j^{(r)}$ 的每个值。

- 我们通过几种模拟设置来阐述方法的性能,并使用其他已有 的方法进行比较。考虑四种不同类型的张量系数 B 来生成 二元结果,设置如下:
- 场景 1 张量 B 由秩 $R_0 = 3$ 和维度 p = c(48, 48) 的秩-RPARAFAC 分解构建。每个 $oldsymbol{eta}$ 边缘 $oldsymbol{eta}_i^{(r)}$ 都是从独立的二项 分布 Binomial(2,0.2) 生成的。在构建张量之后,我们将张 量 B 单元格的最大值设置为 1。
- 场景 2 张量图像由秩 R₀ = 3 的秩-R PARAFAC 分解模拟。 这里, 我们没有从已知分布生成张量边缘, 而是手动设置了 的每个值。
- 场景 3 与从 PARAFAC 分解生成 2D 张量图像不同、张量系 数 B 对于矩形区域设置为 1, 否则为 0. 非零元素约占总面 积的 30%。

- 我们通过几种模拟设置来阐述方法的性能,并使用其他已有 的方法进行比较。考虑四种不同类型的张量系数 B 来生成 二元结果,设置如下:
- 场景 1 张量 B 由秩 $R_0 = 3$ 和维度 p = c(48, 48) 的秩-RPARAFAC 分解构建。每个 $oldsymbol{eta}$ 边缘 $oldsymbol{eta}_i^{(r)}$ 都是从独立的二项 分布 Binomial(2,0.2) 生成的。在构建张量之后,我们将张 量 B 单元格的最大值设置为 1。
- 场景 2 张量图像由秩 $R_0 = 3$ 的秩-R PARAFAC 分解模拟。 这里, 我们没有从已知分布生成张量边缘, 而是手动设置了 $\beta_{:}^{(r)}$ 的每个值。
- 场景 3 与从 PARAFAC 分解生成 2D 张量图像不同. 张量系 数 B 对于矩形区域设置为 1, 否则为 0. 非零元素约占总面 积的 30%。
- 场景 4 张量系数 B 对于圆形区域设置为 1, 否则为 0. 非零 元素约占总面积的 10%。

模拟数据图示

- 2 建模方法
- ③ 模拟研究 模拟数据生成 模型评估 MRI 脑肿瘤分类
- 4 参考文献

• 我们使用均方根误差(Root Mean Squared Error, RMSE)与 相关系数 (correlation coefficient) 来评估单元层级张量系数 的点估计精度。同时, 为了衡量分类准确性, 我们计算误分 类率 (misclassification error) 与 F1 分数 (F1 score)。

模型评估

- 我们使用均方根误差(Root Mean Squared Error, RMSE)与 相关系数 (correlation coefficient) 来评估单元层级张量系数 的点估计精度。同时, 为了衡量分类准确性, 我们计算误分 类率 (misclassification error) 与 F1 分数 (F1 score)。
- 实验中,我们将数据按 70:30 的比例划分为训练集与测试 集。用干系数估计与特征选择性能评估的指标在训练集上计 算,而分类性能指标在测试集上进行评估。

- 我们使用均方根误差(Root Mean Squared Error, RMSE)与 相关系数 (correlation coefficient) 来评估单元层级张量系数 的点估计精度。同时, 为了衡量分类准确性, 我们计算误分 类率 (misclassification error) 与 F1 分数 (F1 score)。
- 实验中, 我们将数据按 70:30 的比例划分为训练集与测试 集。用干系数估计与特征选择性能评估的指标在训练集上计 算,而分类性能指标在测试集上进行评估。
- 为检验新模型的性能, 我们选取两种现有的先进分类方法作 为对比模型,分别是带有 Lasso 惩罚项的逻辑回归模型 (Lasso Logistic Regression) 和 L1 范数支持向量机模型 (L1-norm Support Vector Machine, SVM).

张量数据预测

 图 10 展示了使用 BT-SVM 和 BT-LR 估算张量系数的情况。 从图中可以看出, 我们提出的方法能够广泛地恢复二维张量 B 的形状, 而不受其形状的影响, 也不取决于张量信号是否 通过 PARAFAC 分解构建。

张量数据预测

- 图 10 展示了使用 BT-SVM 和 BT-LR 估算张量系数的情况。 从图中可以看出, 我们提出的方法能够广泛地恢复二维张量 B 的形状, 而不受其形状的影响, 也不取决于张量信号是否 通过 PARAFAC 分解构建。
- 为了展示预测系数和真实系数之间的相关程度, 我们通过图 11 展示了不同模型(LR 和 SVM)在不同情景下的表现。

图 10: 估计的张量系数 (第一排由 BT-SVM 模型估计第二排由 BT-LR 模型估计)

残差图

图 11: 残差图

000000000000

表1和表3中展示了评估模型性能的相关结果,分别对应场景1-4。具体而言,表1展示了在二元结果Y由SVMLoss生成时的四个场景的结果,而表3则展示了当Y来自逻辑损失时的结果。这些结果表明,提出的两种方法(BT-SVM和BT-LR)在系数估计和分类性能上始终优于其他竞争的惩罚方法。

分类性能

- 表 1 和表 3 中展示了评估模型性能的相关结果. 分别对应 场景 1-4。具体而言、表 1 展示了在二元结果 Y 由 SVM Loss 生成时的四个场景的结果, 而表 3 则展示了当 Y 来自 逻辑损失时的结果。这些结果表明, 提出的两种方法 (BT-SVM 和 BT-LR) 在系数估计和分类性能上始终优于其 他竞争的惩罚方法。
- 当二元结果数据来自 SVM 损失时, BT-SVM 方法具有优越 的系数估计(如表1中较低的 RMSE 和较高的相关系数所 示)和改进的分类精度(如表1中较低的误分类率和较高的 F1 分数所示)。即便在数据由逻辑损失生成时,依然有这一 特点。

表 1: Performance Comparison of Different Methods Across Scenarios; Y generated from SVM Loss.

Scenarios	Methods	RMSE	Corr.Coef.	Mis. Class.	F1-score
Scenario 1	LR w/ lasso	0.186	0.118	0.500	0.576
	L1norm-SVM	0.129	0.233	0.413	0.523
	BT-SVM	0.127	0.591	0.340	0.653
	BT-LR	0.197	0.449	0.360	0.640
	LR w/ Lasso	0.395	0.057	0.520	0.487
Scenario 2	L1norm-SVM	0.393	0.168	0.433	0.591
	BT-SVM	0.285	0.820	0.193	0.803
	BT-LR	0.330	0.505	0.347	0.653

表 2: Performance Comparison of Different Methods Across Scenarios; Y generated from SVM Loss.

Scenarios	Methods	RMSE	Corr.Coef.	Mis. Class.	F1-score
C	LR w/ Lasso	0.541	0.064	0.453	0.585
	L1norm-SVM	0.539	0.166	0.407	0.639
Scenario 3	BT-SVM	0.430	0.768	0.227	0.788
	BT-LR	0.454	0.570	0.320	0.684
	LR w/ Lasso	0.315	0.178	0.407	0.639
Scenario 4	L1norm-SVM	0.315	0.213	0.440	0.554
	BT-SVM	0.221	0.769	0.207	0.805
	BT-LR	0.276	0.529	0.347	0.679

分类性能

 ${\bf \Bar{k}}$ 3: Performance Comparison of Different Methods Across Scenarios; Y generated from Lasso Loss.

Scenarios	Methods	RMSE	Corr.Coef.	Mis. Class.	F1-score
Scenario 1	LR w/ lasso	0.175	0.078	0.493	0.580
	L1norm-SVM	0.192	0.208	0.527	0.448
Scenario 1	BT-SVM	0.120	0.701	0.220	0.793
	BT-LR	0.230	0.456	0.340	0.698
	LR w/ Lasso	0.395	0.128	0.547	0.474
Scenario 2	L1norm-SVM	0.393	0.215	0.453	0.534
Scenario 2	BT-SVM	0.233	0.880	0.140	0.844
	BT-LR	0.284	0.670	0.233	0.788

分类性能

表 4: Performance Comparison of Different Methods Across Scenarios; Y generated from Lasso Loss.

Scenarios	Methods	RMSE	Corr.Coef.	Mis. Class.	F1-score
Ci- 2	LR w/ Lasso	0.542	0.050	0.427	0.467
	L1norm-SVM	0.539	0.149	0.413	0.544
Scenario 3	BT-SVM	0.426	0.811	0.187	0.823
	BT-LR	0.414	0.555	0.313	0.647
	LR w/ Lasso	0.316	0.127	0.447	0.518
Scenario 4	L1norm-SVM	0.315	0.193	0.473	0.530
	BT-SVM	0.221	0.739	0.213	0.790
	BT-LR	0.317	0.479	0.360	0.635

- 1 引言
- 2 建模方法
- ③ 模拟研究 模拟数据生成 模型评估 MRI 脑肿瘤分类
- 4 参考文献

◆ロ > ← (目) → (目) → (目) → (の)

脑肿瘤 MRI 图像分类

 数据集包含 155 张脑部肿瘤切片 MRI 图像和 98 张正常 MRI 图像。我们对比了 BT-SVM, BT-LR, 带 Lasso 惩罚的 逻辑回归以及 L1norm-SVM 对该数据集的分类性能。测试 结果见表 5。

表 5: 不同模型的分类性能

Methods	Mis. Class.	F1-score
LR w/ lasso	0.333	0.702
L1norm-SVM	0.451	0.709
BT-SVM	0.211	0.855
BT-LR	0.303	0.763

- 1 引言
- 2 建模方法
- 3 模拟研究
- 4 参考文献

4□ > 4□ > 4 ≥ > 4 ≥ >

- [2] Tucker L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3): 279-311.
- [3] Polson N G, Scott S L. Data augmentation for support vector machines[J]. 2011.
- [4] Polson N G, Scott J G, Windle J. Bayesian inference for logistic models using Pólya-Gamma latent variables. Journal of the American Statistical Association, 2013, 108(504): 1339-1349.
- [5] Guhaniyogi R, Qamar S, Dunson D B. Bayesian tensor regression[J]. Journal of Machine Learning Research, 2017, 18(79): 1-31.

