

Optimization

Gunhee Kim

Computer Science and Engineering

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization

Cost Function

If we exactly know the performance measure *P* of test sets, it is an *optimization* problem

• If not, we define a cost function $J(\theta)$ so that Minimizing $J(\theta) \sim \text{maximizing } P$

Cost function as an average over the training set

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \hat{p}_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), \boldsymbol{y})$$

- L: the per-example loss function, $f(x; \theta)$: predicted output
- \hat{p}_{data} : empirical distribution, y: target output

Risk (expected generalization error)

$$J^*(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), \boldsymbol{y})$$

• p_{data} : true data generating distribution

Cost Function

Empirical risk

• If the data are iid, the error function J is a sum of error functions J_m , one per data point

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \hat{p}_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y) = \frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

Empirical risk minimization is prone to overfitting

Models with high capacity can simply memorize the training set

Gradient Descent

The (almost) simplest algorithm in the world

Although it may not be often the most efficient method

Gradient $\partial f(x)/\partial x$ at x is the direction where f(x) increases

• The negative $-\partial f(x)/\partial x$ is called steepest descent direction

Gradient Descent

Goal: minimize_x f(x)

Procedure

- Start from initial point x₀
- Just iterate $x_{k+1} = x_k \varepsilon_k \nabla J(x_k)$
- ε_k is a stepsize at iteration k

Stepsize is an issue

Batch Gradient Descent in Machine Learning

Find a parameter set θ to minimize error function $J(\theta)$

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \varepsilon_k \nabla J(\boldsymbol{\theta}_k)$$

Batch (deterministic) gradient descent

Process all examples together in each step

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \varepsilon_k \boldsymbol{g}$$
 where $\boldsymbol{g} = \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^m L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$

- Entire training set examined at each step
- Very slow when n is very large

Mini-Batch Gradient Descent

Computing the exact gradient is expensive

 This seems wasteful because there will be only a small change in the weights

Stochastic gradient descent (or online learning)

- If each batch contains just one example
- Much faster than exact gradient descent
- Effective when combined with momentum

Select examples randomly (or reorder and choose in order)

• for i = 1 to n:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \varepsilon_k \boldsymbol{g}$$
 where $\boldsymbol{g} = \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$

Stochastic Gradient Descent

Does it converge? [Leon Bottou, 1998]

 When the leaning rate decreases with an appropriate rate and (with mild assumptions), SGD converges

$$\sum_{k=1}^{\infty} \varepsilon_k = \infty$$
 and $\sum_{k=1}^{\infty} \varepsilon_k^2 < \infty$

The learning rate (or step size) is a free parameter

- No general prescriptions for selecting appropriate learning rate
- Even no fixed rate appropriate for entire learning period

Too large size: Divergence

Too small size: Slow convergence

Mini-Batch Gradient Descent

Mini-batch optimization

- Divide the dataset into small batches of examples, compute the gradient using a single batch, make an update, then move to the next batch
- Good for multicore or parallel architectures
- Particularly good for GPU that is very good at matrix computation (power of 2 batch sizes)
- Small batches can offer a regularizing effect (due to the noise by random sampling)

Convergence is very sensitive to learning rate

- Oscillations near solution due to probabilistic nature of sampling
- Need to decrease with time to ensure the algorithm converges

Gradient Descent with Momentum

Original Gradient Descent

Gradient Descent with Momentum

• v^i is the weighted sum of all the previous gradient $(\nabla C(\theta^0), \nabla C(\theta^1), \cdots, \nabla C(\theta^{i-1}))$

Gradient Descent with Momentum

Nesterov's Accelerated Gradient

Do not compute the gradient at old state

Gradient descent, Momentum, NAG

Given a minibatch of m training examples: $\{(x^{(i)}, y^{(i)})\}$

SGD

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Apply update $\theta \leftarrow \theta \varepsilon g$

SGD with momentum

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Compute the velocity update: $\boldsymbol{v} \leftarrow \boldsymbol{\alpha} \boldsymbol{v} \varepsilon \boldsymbol{g}$
- Apply update $\theta \leftarrow \theta + v$

SGD with Nesterov momentum

- Apply interim update: $\widehat{\theta} \leftarrow \theta + v$
- Compute gradient at interim point: $g \leftarrow \frac{1}{m} \nabla_{\widehat{\boldsymbol{\theta}}} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \widehat{\boldsymbol{\theta}}), y^{(i)})$
- Compute the velocity and update: $v \leftarrow \alpha v \varepsilon g$ and $\theta \leftarrow \theta + v$

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization
- Optimization Strategies and Meta-Algorithms

How to Set Learning Rates

One of the most difficult hyperparameters to set

Popular assumption: Reduce the learning rate by some factor every few epochs

- At the beginning, we are far from a minimum, so we use larger learning rate
- After several epochs, we are close to a minimum, so we reduce the learning rate
- 1/t decay: $\varepsilon = \varepsilon_0/(1+kt)$ where t is the iteration number, and ε_0 , k are hyperparameters
- Exponential decay: $\varepsilon = \varepsilon_0 \exp(-kt)$

Adaptive Learning Rates

Each parameter should have different learning

 Automatically adapt the axis-aligned learning rates throughout the course of learning

Adagrad

Different adaptive learning rates for each weight

- Divide the learning rate element-wise by history of average gradient
- If w has small average gradient → large learning rate
 If w has large average gradient → small learning rate

Loop

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Accumulate squared gradient: : $r \leftarrow r + g \odot g$
- Apply update $\theta \leftarrow \theta \varepsilon/(\delta + \sqrt{r}) \odot g$

Empirical behavior

 The accumulation of squared gradients from the beginning of training can cause a excessive decrease in the learning rate

RMSprop

Suggested by G. Hinton in the Coursera course lecture 6

- Problem of AdaGrad: shrink the learning rate according to the entire history of the squared gradient (too small before arriving)
- Exponentially decaying average to discard history from the extreme past
- Still modulates the learning rate of each weight

Loop

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Accumulate squared gradient: : $r \leftarrow \rho r + (1 \rho)g \odot g$
- Apply update $\theta \leftarrow \theta \varepsilon/(\sqrt{\delta + r}) \odot g$

One of the go-to optimization method for deep learning

Adam (Adaptive Moments)

RMSProp + momentum

- Consider both first-order and second-order moments
- Include bias correction

Loop

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Update the first/second moment: $s \leftarrow \rho_1 s + (1 \rho_1) g$ and $r \leftarrow \rho_2 r + (1 \rho_2) g \odot g$ where ρ_1/ρ_2 : exponential decay rate
- Correct biases: $\hat{\mathbf{s}} \leftarrow \mathbf{s}/(1-\rho_1^t)$ and $\hat{\mathbf{r}} \leftarrow \mathbf{r}/(1-\rho_2^t)$
- Apply update $\theta \leftarrow \theta \varepsilon \hat{s}/(\sqrt{\hat{r}} + \delta) \odot g$

Visualizing Optimization Algorithms

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization

Parameter Initialization

Initialization is critical!

Only heuristic recommendation

- Neural network optimization is not yet well understood
- How do we set the initial point?
- How does the initial point affect generalization?

Heuristics #1: Break symmetry between different units

- The units at the same layers should be initialized differently
- Otherwise, they are constantly updated in the same way
- One solution: Gram-Schmidt orthogonalization on an initial weight matrix
- Alternative: Random initialization (much cheaper and good enough in a high-entropy distribution in a high-D space)

Parameter Initialization

Heuristics #2: Simply drawn from a Gaussian or uniform

However, magnitudes and scales matter

Trade-off for larger initial weights

- Help avoid losing signal during forward/back-propagation
- May cause exploding values, sensitivity to small perturbation, and loss of gradient through saturated units
- Smaller values encourage regularization

Later, we will discuss Xavier & MSRA initiallization

Parameter Initialization

Other parameter settings are easier

- Simply set the biases to zero
- Safely initialize variance or precision parameters to 1

Practical tips (from pre-training and fine-tuning)

- Initialize a supervised model with the parameters learned by an unsupervised model trained on the same inputs (e.g. audoencoders, greedy layer-wise training)
- Use the parameters learned on a related task
- Sometimes, the parameters on a unrelated task may help
- Other tips: regards multiple settings as hyper-parameters, and test with a single mini-batch of data