Deuxième partiel de mathématique

Mercredi 23 novembre 2011 — durée : 1 heure

◄ Corrigé ▶

Exercice 1 (Questions diverses)

• Point 1) :

Soit $(u_n)_{n\in\mathbb{N}}$ la suite numérique définie par $u_n := e^{-\sqrt{n}}$.

Sachant qu'on a $x^4e^{-x} \longrightarrow 0$ lorsque $x \longrightarrow +\infty$, on en déduit $n^2u_n \longrightarrow 0$ lorsque $n \longrightarrow +\infty$ (avec $x \coloneqq \sqrt{n} \longrightarrow +\infty$), ce qui montre que la série numérique $\sum_{n\geqslant 0} u_n$ converge d'après la règle de Riemann avec $\alpha \coloneqq 2 > 1$.

Remarque:

Pour tout entier $n \ge 0$, on a $u_n > 0$ et

$$u_{n+1}/u_n = e^{\sqrt{n} - \sqrt{n+1}} = e^{-1/(\sqrt{n} + \sqrt{n+1})} \longrightarrow e^0 = 1$$
 lorsque $n \longrightarrow +\infty$,

ce qui ne permet pas de conclure ici à l'aide de la règle de d'Alembert (et donc avec celle de Cauchy non plus).

• Point 2) :

Pour $x \in \mathbf{R}$, la série numérique $\sum_{n \ge 0} x^n$ étant géométrique de raison x, elle converge si, et seulement si, on a $x \in]-1,1[$.

• Point 3) :

On a
$$\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$$
 pour tout $x \in]-1, 1[$.

• Point 4) :

Soit $(\varphi_n)_{n\in\mathbb{N}}$ la suite de fonctions de \mathbb{R} dans \mathbb{R} définie par $\varphi_n(x) := x^n$.

Pour tout entier $n \geqslant 0$ et tout réel $x \in [0, 1/2]$, on a $|\varphi_n(x)| = x^n \leqslant (1/2)^n$.

Comme on a |1/2| < 1, la série géométrique $\sum_{n \geqslant 0} (1/2)^n$ converge, et donc la série de fonctions

 $\sum_{n \geq 0} \varphi_n \text{ converge normalement sur } [0, 1/2].$

• Point 5) :

* Point (a) :

Pour tous $n \ge 1$ entier et $x \in \mathbf{R}$, on a $|f_n(x)| = |\cos(n^3 x^2)|/n \le 1/n \longrightarrow 0$ lorsque $n \longrightarrow +\infty$. Ceci prouve que la suite de fonctions $(f_n)_{n\ge 1}$ converge uniformément vers 0 sur \mathbf{R} .

* Point (b) :

Puisque $(f_n)_{n\geqslant 1}$ est une suite de fonctions intégrables sur [0,1] au sens de Riemann (car continues sur \mathbf{R}) qui converge uniformément vers 0 sur ce segment, on a $\int_0^1 f_n(x) \mathrm{d}x \longrightarrow \int_0^1 0 \mathrm{d}x = 0$ lorsque $n \longrightarrow +\infty$.

Exercice 2

• Point 1) :

Pour tous $x \in [-1, 1]$ et $n \ge 1$ entier, on a $f_n(x) = \frac{xn}{n + x^2} \longrightarrow x/1 = x$ lorsque $n \longrightarrow +\infty$. Ainsi $(f_n)_{n \ge 1}$ converge simplement sur [-1, 1] vers la fonction $f : [-1, 1] \longrightarrow \mathbf{R}$ définie par f(x) = x.

• Point 2) :

Pour tous $n \ge 1$ entier et $x \in [-1, 1]$, on a

$$|f_n(x) - f(x)| = \frac{|x|^3}{n + x^2} \le \frac{1}{n + x^2} \le 1/n \longrightarrow 0 \text{ lorsque } n \longrightarrow +\infty.$$

Ceci montre que la suite de fonctions $(f_n)_{n\geqslant 1}$ converge uniformément vers f sur [-1,1].

Exercice 3

• Point 1) :

Pour $x \in \mathbf{R}$ fixé, on a $u_n(x) > 0$ pour tout entier $n \ge 1$ et

$$u_{n+1}(x)/u_n(x) = \frac{n}{n+1}e^{-x} \longrightarrow e^{-x} \text{ lorsque } n \longrightarrow +\infty.$$

Cette limite étant strictement inférieure à un pour x > 0 et strictement supérieure à un pour x < 0, la règle de d'Alembert entraı̂ne que la série numérique $\sum_{n \geqslant 1} u_n(x)$ converge pour x > 0 et diverge pour x < 0.

Enfin, pour x = 0, on a $u_n(x) = u_n(0) = 1/n$ pour tout entier $n \ge 1$. La série numérique $\sum_{n\ge 1} u_n(x)$ est donc ici divergente car égale à la série harmonique.

Conclusion : étant donné $x \in \mathbf{R}$, la série numérique $\sum_{n\geqslant 1} u_n(x)$ est convergente si, et seulement si, on a x>0.

• Point 2) :

Fixons un réel a > 0 arbitraire.

Pour chaque entier $n \ge 1$, la fonction $u_n : \mathbf{R} \longrightarrow \mathbf{R}$ est dérivable avec $u'_n(x) = -e^{-nx}$ pour tout $x \in \mathbf{R}$, d'où l'on tire

$$|u'_n(x)| = e^{-nx} \leqslant e^{-na} = (e^{-a})^n$$

pour tout x > a.

Comme on a $|e^{-a}| < 1$, la série géométrique $\sum_{n \ge 1} (e^{-a})^n$ converge, et donc la série de fonctions

 $\sum_{n\geq 1} u'_n \text{ converge normalement sur }]a, +\infty[.$

Ainsi, les séries de fonctions $\sum_{n\geqslant 1}u_n$ et $\sum_{n\geqslant 1}u'_n$ convergent respectivement simplement et uniformément sur l'intervalle $]a,+\infty[$, ce qui implique que la somme $S:]0,+\infty[\longrightarrow \mathbf{R}$ est dérivable sur $]a,+\infty[$ avec $S'(x)=\sum_{n=1}^{+\infty}u'_n(x)$ pour tout x>a.

Puisque le point précédent est valable pour a > 0 quelconque et que la dérivabilité est une notion locale, il en résulte que la fonction S est dérivable sur $\bigcup_{a>0}]a, +\infty[=]0, +\infty[$ avec

$$S'(x) = \sum_{n=1}^{+\infty} u'_n(x) = -\sum_{n=1}^{+\infty} (e^{-x})^n = 1 - \frac{1}{1 - e^{-x}} = \frac{-e^{-x}}{1 - e^{-x}}$$

pour tout x > 0.

Remarque:

Étant donné x > 0, on peut aussi faire le calcul suivant :

$$S'(x) = \sum_{n=1}^{+\infty} u'_n(x) = -\sum_{n=1}^{+\infty} (e^{-x})^n = -e^{-x} \times \sum_{n=1}^{+\infty} (e^{-x})^{n-1} = -e^{-x} \times \sum_{n=0}^{+\infty} (e^{-x})^n = \frac{-e^{-x}}{1 - e^{-x}}.$$

Cette façon de procéder pour déterminer la somme d'une série géométrique dont l'indice de départ est non nul est généralement plus rapide que la précédente; en effet, pour tous $n_0 \in \mathbf{N}$ et $z \in \mathbf{C}$ tel que |z| < 1, on a

$$\sum_{n=n_0+1}^{+\infty} z^n = \sum_{n=0}^{+\infty} z^n - \sum_{n=0}^{n_0} z^n = \frac{1}{1-z} - \frac{1-z^{n_0+1}}{1-z} = \frac{z^{n_0+1}}{1-z} ,$$

mais il est préférable de calculer ainsi :

$$\sum_{n=n_0+1}^{+\infty} z^n = \sum_{n=0}^{+\infty} z^{n+n_0+1} = z^{n_0+1} \times \sum_{n=0}^{+\infty} z^n = \frac{z^{n_0+1}}{1-z}.$$

• Point 3) :

Pour x > 0 fixé, on a $0 \le u_n(x) = e^{-nx}/n \le e^{-nx} = -u'_n(x)$ pour tout entier $n \ge 1$, ce qui conduit à $0 \le S(x) \le -S'(x)$ après avoir sommé sur n de 1 à $+\infty$.

• Point 4) :

Lorsque $x \to +\infty$, on a $-S'(x) = e^{-x}/(1-e^{-x}) \to 0/(1-0) = 0$, ce qui entraı̂ne par encadrement $S(x) \to 0$ d'après le point 3.

Remarque (deuxième preuve) :

Pour tous $n \ge 1$ entier et $x \in [1, +\infty[$, on a $|u_n(x)| = e^{-nx}/n \le e^{-nx} \le e^{-n} = (1/e)^n$.

Comme on a |1/e| < 1, la série géométrique $\sum_{n\geqslant 1} (1/e)^n$ converge, et donc la série de fonctions

 $\sum_{n\geq 1} u_n \text{ converge normalement sur } [1,+\infty[.$

Par suite, la convergence uniforme de $\sum_{n\geqslant 1}u_n$ sur $[1,+\infty[$ permet d'appliquer le théorème d'interversion des limites et d'écrire

$$\lim_{x \to +\infty} S(x) = \lim_{\substack{x \to +\infty \\ x \geqslant 1}} S(x) = \sum_{n=1}^{+\infty} \lim_{\substack{x \to +\infty \\ x \geqslant 1}} (e^{-nx}/n) = \sum_{n=1}^{+\infty} 0 = 0.$$

Remarque (troisième preuve) :

D'après la deuxième inégalité du point 3, pour tout x > 0, on a

$$0 \geqslant [S'(x) + S(x)]e^x = S'(x)e^x + S(x)(e^x)' = [S(x)e^x]',$$

ce qui montre que la fonction $S \times \exp$ est décroissante sur $]0, +\infty[$.

En particulier, pour tout $x\geqslant 1$, on peut écrire $S(x)e^x\leqslant S(1)e^1=C\in\mathbf{R}$, d'où l'on tire $S(x)\leqslant Ce^{-x}\longrightarrow 0$ lorsque $x\longrightarrow +\infty$.

Or, par encadrement, ceci entraîne $S(x) \longrightarrow 0$ lorsque $x \longrightarrow +\infty$ puisqu'on a $0 \leqslant S(x)$ pour tout x > 0 d'après la première inégalité du point 3.

Comme pour tout x > 0 on a $[\ln(1 - e^{-x})]' = e^{-x}/(1 - e^{-x}) = -S'(x)$ (voir le point 2), il vient $S(x) = -\ln(1 - e^{-x}) + \alpha$, où α est une constante réelle.

En faisant alors $x \to +\infty$, on obtient $0 = -\ln(1) + \alpha$, c'est-à-dire $\alpha = 0$, ce qui donne finalement $S(x) = -\ln(1 - e^{-x})$ pour tout x > 0.

• Point 5) :

* Point (a) :

Lorsque $x \to 0$ avec 0 < x < 1, on a $1 - e^{-x} = x - x^2/2 + o(x^2) = x[1 - x/2 + o(x)]$, d'où $S(x)/|\ln x| = 1 + \ln[1 - x/2 + o(x)]/\ln x$ (sachant que $|\ln x| = -\ln x$), ce qui entraîne $S(x)/|\ln x| \to 1 + 0 = 1$.

* Point (b) :

Soit $(v_n)_{n\geq 1}$ la suite de fonctions de]0,1/2] dans \mathbf{R} définie par $v_n(x) := u_n(x)/|\ln x|$.

Comme on sait déjà que $\sum_{n\geqslant 1}u_n$ converge simplement sur $]0,+\infty[$ et a pour somme S d'après

le point 1, la série de fonctions $\sum_{n\geqslant 1} v_n$ converge simplement sur cet intervalle aussi et a pour somme $F:]0, +\infty[\longrightarrow \mathbf{R}$ donnée par $F(x) := S(x)/|\ln x|$.

Par conséquent, si la série de fonctions $\sum_{n\geqslant 1}v_n$ convergeait uniformément sur]0,1/2], c'est vers F qu'elle le ferait.

On pourrait alors appliquer le théorème d'interversion des limites et écrire

$$\lim_{x \to 0^+} F(x) = \lim_{\substack{x \to 0 \\ x \in [0, 1/2]}} F(x) = \sum_{n=1}^{+\infty} \lim_{\substack{x \to 0 \\ x \in [0, 1/2]}} [e^{-nx} \times 1/(n|\ln x|)] = \sum_{n=1}^{+\infty} (1 \times 0) = 0,$$

ce qui est faux d'après le point (a) précédent.

Conclusion : la série de fonctions $\sum_{n\geqslant 1}v_n$ ne converge pas uniformément sur]0,1/2].

