

How to Train Your Perceptron

Computer Vision

Carnegie Mellon University (Kris Kitani)

Let's start easy

world's smallest perceptron!

$$y = wx$$

(a.k.a. line equation, linear regression)

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i, y_i\}$$
$$y = f_{PER}(x; w)$$

Estimate the parameters of the Perceptron

Given training data:

y
10.1
1.9
3.4
1.1

What do you think the weight parameter is?

$$y = wx$$

Given training data:

x	y
10	10.1
2	1.9
3.5	3.4
1	1.1

What do you think the weight parameter is?

$$y = wx$$

not so obvious as the network gets more complicated so we use ...

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

$$\hat{y} = wx$$

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

and a perceptron

$$\hat{y} = wx$$

Modify weight w such that \hat{y} gets 'closer' to y

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

$$\hat{y} = wx$$

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

$$\hat{y} = wx$$

Before diving into gradient descent, we need to understand ...

Loss Function defines what is means to be close to the true solution

YOU get to chose the loss function!

(some are better than others depending on what you want to do)

Squared Error (L2)

(a popular loss function)

L1 Loss

$$\ell(\hat{y}, y) = |\hat{y} - y|$$

Zero-One Loss

$$\ell(\hat{y}, y) = \mathbf{1}[\hat{y} = y]$$

L2 Loss

$$\ell(\hat{y}, y) = (\hat{y} - y)^2$$

Hinge Loss

$$\ell(\hat{y}, y) = \max(0, 1 - y \cdot \hat{y})$$

back to the...

World's Smallest Perceptron!

$$y = wx$$

(a.k.a. line equation, linear regression)

function of **ONE** parameter!

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i, y_i\}$$
 $y = f_{\text{PER}}(x; w)$
what is this activation function?

Estimate the parameter of the Perceptron

Learning a Perceptron

Given a set of samples and a Perceptron

$$\{x_i,y_i\}$$
 $y=f_{\mathrm{PER}}(x;w)$ what is this activation function? linear function! $f(x)=wx$

Estimate the parameter of the Perceptron

Learning Strategy

(gradient descent)

Given several examples

$$\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$$

$$\hat{y} = wx$$

Let's demystify this process first...

Code to train your perceptron:

Let's demystify this process first...

Code to train your perceptron:

for
$$n = 1 \dots N$$

$$w = w + (y_n - \hat{y})x_i;$$

just one line of code!

Let's demystify this process first...

Recall:

Code to train your perceptron:

for
$$n = 1...N$$

$$w = w + (y_n - \hat{y})x_i;$$

just one line of code!