Business Data Management (BDM)

Project Application

Target User: Zalora

Aim: To successfully compile customer and product data into a database and use queries to identify trends or necessary data

Business requirements

- 1. A user can have **one address** associated with themselves. The date that the user signs up on is also logged.
- 2. Whenever an order is made by the user, the data would be stored in the purchase history, which contains the number of purchases and the date purchased.
- 3. The order would also be attached to the user's associated address.
- 4. A review contains a unique review ID and ratings.

ER Model

- 1. Wishlist was removed
- 2. Removed clothing subtypes
 (Adult+Children)
- 3. Removed supplier due to the lack of meaningful attributes (changed supplier/brand to Brand attribute under Product)
- 4. Created Purchase History associative entity (removed purchase history as an attribute under user_data)
- 5. Changes to user address format
- 6. Quantity is a relationship attribute between ORDER and PRODUCT

LD Model (updated)

Which product type & brand is the most popular?

```
select p.brand, p.product_type, AVG(rd.ratings) as average_ratings
from product p
inner join review rd
on p.product_id = rd.product_id
group by p.brand
order by average_ratings desc;
```

	brand	product_type	average_ratings
)	BOURJOIS	Beauty	5.0000
	Sleep No More	Clothing	5.0000
	Versace	Beauty	5.0000
	ADIDAS	Clothing	4.5000
	Nike	Clothing	4.0000
	Abercrombie & Fitch	Clothing	4.0000
	Twenty Eight Shoes	Clothing	3.5000
	H&M	Clothing	3.5000
	Moschnino	Clothing	3.0000
	Under Armour	Clothing	3.0000
	Dsquared2	Clothing	1.5000
	Clinique	Beauty	1.5000

Top Brands include BOURJOIS, Sleep No More, Twenty Eight Shoes, Versace that have a 5/5 rating

> Continue to offer these brands on Zalora

Brands with low ratings include Dsquared2 and Clinique

 Discontinue once contract ends or haggle for lower price

Most common material used in clothing / Number of products that use cotton and how much

```
select pm.material, count(distinct p.product_id) as num from product_material pm, product p
where p.product_id = pm.product_id and pm.material like "%cotton%"
group by material;
```

	material	num	
•	100% Cotton	4	
	100% organic cotton	3	
	95% Cotton	1	
	99% Cotton	1	
	Cotton Blend	1	

We found that a majority of users purchased clothes made out of 100% Cotton and 100% Organic cotton.

- The 100% keyword seems to resonate with users.
- We propose that Zalora looks into increasing supply for such products.

OUTPUT

Which payment method is most commonly used for orders > \$50?

```
select payment_method, count(order_id) as number
from `order`
where order_id in
select op.order_id
from product p
join order_product op
on p.product_id = op.product_id
where p.price*(1-ifnull(op.discount, 0))*op.quantity > 50
group by payment_method
order by number DESC;
```

payment_method number			
Visa	5		
Cash	3		
Mastercard	2		
GrabPay	2		

Most common payment method is Visa

• Provide discounts or incentives targeted at Visa users may drive up sales as users are likely to spend more

order by date_month;

Sales volume of clothing vs beauty products by month

```
select month(date_of_purchase) as date_month, count(case p.product_type when "clothing" then 1 else null end) as no_of_clothing,
count(case p.product_type when "beauty" then 1 else null end) as no_of_beauty, count(p.product_id) as total
from purchase_history ph
inner join order_product op on ph.order_id = op.order_id
inner join product p on op.product_id = p.product_id
group by date_month
```

	date_month	no_of_clothing	no_of_beauty	total
•	1	1	2	3
	2	2	0	2
	3	3	0	3
	4	1	0	1
	5	1	0	1
	6	1	0	1
	9	2	0	2
	10	1	0	1
	11	1	0	1
	12	5	2	7

Sales tend to peak around
December, which is expected due to
Christmas

Clothing product sales are significantly higher than beauty product sales, especially in December

- Provide discounts for the middle of the year to increase sales in that time frame
- Increase marketing effort for beauty products

Gender proportion of user purchases for each product

```
select d.product_type, u.gender, count(u.gender) as no_per_gender_purchased, count(u.gender) / sum(count(u.gender)) over() as proportion
from `user` u
inner join `order` o on o.user_id = u.user_id
inner join order_product p on p.order_id = o.order_id
inner join product d on d.product_id = p.product_id
group by u.gender, d.product_type
order by u.gender
;
```

	product_type	gender	no_per_gender_purchased	proportion	
)	Beauty	F	1	0.0455	
	Clothing	F	9	0.4091	
	Beauty	M	3	0.1364	
	Clothing	M	9	0.4091	

- By segregating each product type by gender, as well as their respective counts, we obtain this result.
- We observe how interestingly, the male customers purchased more clothing/ beauty products.
- We propose that Zalora increase their marketing efforts towards their male audiences

OUTPUT

QUERY 6 Which delivery service is the most efficient?

```
select d.Company, AVG(DATEDIFF(o.Delivery_Date,p.Date_of_Purchase)) as difference_days
from Delivery d, `Order` o, Purchase_History p
where o.Order_ID=p.Order_ID
and o.Delivery_ID=d.Delivery_ID
GROUP BY d.Company
ORDER BY difference_days desc;
```

	Company	difference_days
>	S.F. Express Singapore	19.5000
	NinjaVan	17.0000
	SingPost	16.7500
	Yamato Transport Singapore	15.3333
	Janio Asia	15.2000

- Janio Asia is the most efficient delivery service as it takes the least average number of days (15.2 days) for the delivery to be completed
- S.F Express Singapore
 is the least
 inefficient delivery
 service as it has the
 highest average number
 of days (19.5 days) for
 delivery to be
 completed
- Zalora should focus on Janio Asia's delivery service to provide better customer experience

Lessons Learnt

- Data needs to be formatted properly to ease the data analysis process
 - O Need to think carefully about the requirements of the database before data collection
- Importance of order of statements in MySQL
 - O Eg. create parent tables first
 - O What we did was to find the entities that had the least links in the ER diagram and create those tables first such as USER_DATA, PRODUCT, DELIVERY
- Additional ways in which we can write SQL queries to provide insight using our data
- The reasoning behind logical diagrams to ensure the integrity of our tables.