

Testing Times -

How to decide when to take an econometric result serious

by Ralf Martin (r.martin@imperial.ac.uk)

Objective for today

Understand the reliability of a regression result...

...assuming there is no bias or mis-specification of the model

We are talking about the known unknowns today

Go to www.menti.com and use the code 13 94 44 4

How would you decide decide if a dice is fair?

Press S to hide image

• We can never 100% certain if a dice is fair

 However, if something happens that is very unlikely for a fair dice (e.g. 20 sixes in a row) we will conclude the dice is rigged.

- Hypothesis testing for dice in a nutshell

Hypothesis testing in for econometric models

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

How <u>likely</u> is it to see a slope such as this...

- even if there is no relationship between foreigners and crime
- and there is no endogeneity

The distribution of our estimates

- To work out how likely a particular estimation outcome is given a hypothesis we need to know the distribution of the estimates
- For a distribution we need the notion of a random experiment (like throwing a dice)
- In the context of estimating an econometric model the random experiment is taking a random sample of a population

Monte Carlo Experiment

obs <- 100

Imperial Colle

- Let's make the data ourselves
- E.g. suppose the true model is $Y_i = 2 + 0 \times X_i + \varepsilon_i$
- The following sequence of commands will draw a sample driven by this model in R

```
x < -0.5 + runif(obs)*2.5
sig=sqrt(5.5)*2
eps <- rnorm(obs,0,sig)
y < -2 + x * 0 + eps
df=data.frame(x,y)
ggplot(df, aes(x, y))+geom point(color="blue") +theme minimal()
```

 $\beta_1 = 0$

Let's run regression

```
monte1 <- lm(y \sim x , data = df)
summary(monte1)
```

```
##
## Call:
## lm(formula = y \sim x, data = df)
## Residuals:
       Min
                1Q Median
                                         Max
  -11.9561 -2.9585 0.0476 2.6857 12.3041
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3535
                          1.3215 3.294 0.00137 **
              -0.8188
## X
                          0.6724 -1.218 0.22623
## Signif. codes: 0 *** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.78, 98 degrees of freedom
## Multiple R-squared: 0.01491,
                                Ao, ed R-squared: 0.004855
## F-statistic: 1.483 on 1 and 98 DF, p-val 2262
```

How does it compare?

$$Y_i = 2 + 0 \times X_i + \varepsilon_i$$

Let's do it many times

Let's look at histogram of β_1 1000 times

Distribution is very close to a normal distribution

10

Imperial College Business School Imperial means Intelligent Business

Large vs small sample

The distribution is more dispersed for a sample of 10 (small sample) than for a sample of 100

More variation in $\boldsymbol{\varepsilon}$

There is a lot we don't know about Y

Dispersed X vs not so dispersed X

If X varies more our estimate of β becomes more precise

13

Imperial College Business School Imperial means Intelligent Business

Non normal ϵ

Imperial College Business School

Non normal ϵ with same variance

Normal ϵ

Small sample (10 obs)

Large sample (100 obs)

Central limit theorem

The variance of the estimator

Standard Error of ϵ We can estimate from $\hat{\epsilon}$

Standard Error of estimate $\sigma_{\widehat{\beta}_1}^2 = \frac{\sigma_{\epsilon}^2}{nVAR(X)}$

- Hence we also see in the formula that a larger number of observations means a lower variance of the estimated parameter.
- Moreover a larger variance of the of X (relative to the variance of ϵ) will imply a smaller variance of the estimate of β . Intuition: with bigger changes in X it will be easier to detect it's effect on Y.

Recap

- Regression estimates are (approximately) normally distributed
- We can work out the variance
- Normal distribution is fully characterized by standard error and

mean $f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$

- To work out the likelihood of that a value of a particular value arises we can work out the area under the density

 Significance level
- We can define how much risk of being wrong we are willing to accept and then work out a critical threshold

The foreigners cause crime hypothesis

P value: Probability that we have values more extreme than what we estimated

```
df=read_dta("../data/foreigners.dta")
 df['crimesPc']=df$crimes11/df$pop11
 reg1=lm(crimesPc~b_migr11,df)
 summary(reg1)
##
## Call:
## lm(formula = crimesPc ~ b migr11, data = df)
##
## Residuals:
##
       Min
                10 Median
                                30
                                       Max
## -1.5886 -0.3789 -0.1038 0.2046 14.0988
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.992957 0.079387 12.508 < 2e-16
## b migr11     0.037630     0.005088     7.396     1.23e-12 ***
## ---
```

Small P means we can reject that the coefficient is 0 (with little risk of being wrong)

P-value

The P-value tells us how likely it is that we get an estimate that is smaller that is further away from O than the estimated value

Significance levels

- Define how much risk of being wrong we are willing to accept and Work out a critical threshold value for $\hat{\beta}$ (call it c)
- If we find $\hat{\beta}$ >c or $\hat{\beta}$ < -c we know to reject that it is 0.

Null Hypothesis HO: $\beta = 0$

Alternative Hypthesis H1: $\beta \neq 0$

Finding c: Standard Normal ($\sigma = 1$)

- Say we willing to accept a higher risk
- Would we have a lower or higher threshold than c=1.96?
- E.g. what about 10% Type I risk?

Working out the threshold yourself

 $\frac{1\%}{2}$ qnorm(0.005) = -2.575829 qnorm(0.005) = -2.575829 qnorm(0.025) = -1.959964 qnorm(0.05) = -1.644854

- The higher the significance level the smaller the threshold
- Higher significance level means we are less worried about an error of type I (reject even if true)
- Hence we are happy to reject in more cases

Normal Density

qnorm(0.995) = 2.575829qnorm(0.975) = 1.959964

qnorm(0.95) = 1.644854

2

Cumulative Density

0

10%

What if β is not standard normal (i.e. $\sigma_{\beta} \neq 1$)?

t statistic: ratio between estimate and standard error

$$t = \frac{\hat{\beta}}{\hat{\sigma}_{\widehat{\beta}}} \sim N(0,1)$$

The foreigners cause crime hypothesis

```
Standard error = 0.005
\frac{0.037}{0.005} = 7.4 > 1.96
```

23

```
df=read_dta("../data/foreigners.dta")
 df['crimesPc']=df$crimes11/df$pop11
 reg1=lm(crimesPc~b_migr11,df)
 summary(reg1)
##
## Call:
## lm(formula = crimesPc ~ b migr11, data = df)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -1.5886 -0.3789 -0.1038 0.2046 14.0988
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.992957 0.079387
                                  12.508 < 2e-16
## b migr11
              0.037630
                         0.005088 7.396 1.23e-12 ***
## ---
```

t-value = Estimate/Standard Error

Imperial College Business School eans Intelligent Business

More or less significant estimates

- If we have a lower significance level (e.g. 1%) we are less likely to reject a hypothesis
- This is to avoid making the Type I error
- If we still reject the β =0 on the basis of an estimate $\hat{\beta}$ we say that **the estimate is highly significant**
- If we would only reject the hypothesis with a much higher significance level (e.g. 10% instead of 5%) we say that the estimate is only **weakly significant**

24

Another example

eaef <- read.csv("https://www.dropbox.com/s/9n0k7bs20z7qkv9/eaef21.csv?dl=1")

```
> mod_earn_exp <- lm(EARNINGS ~ EXP , data = eaef)</pre>
   summary(mod_earn_exp)
                                         EXP= years of job experience
Call:
lm(formula = EARNINGS \sim EXP, data = eaef)
Residuals:
   Min
            10 Median
                           3Q
                                  Max
-17.140 -8.876 -3.723 3.869 99.986
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.5553
                       2.4425 6.369 4.09e-10 ***
EXP
             0.2415
                       0.1398 1.727 0.0847 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.39 on 538 degrees of
Multiple R-squared: 0.005515, Adjusted R-sq
```

Your turn: What do you conclude from this regression? (multiple options can be correct)

- (a) EXP coefficient is significantly different from 0 at 1%
- (b) EXP coefficient is significantly different from 0 at 5%
- (c) EXP coefficient is significantly different from 0 at 10%

Extra Slides

More general hypothesis tests

Previously we had HO: $\beta = 0$

$$t = \frac{\hat{\beta} - \beta}{\hat{\sigma}_{\widehat{\beta}}}$$

As before we can compare the t statistic with the critical values c for the standard normal distribution

Expected value of estimate under HO

More general tests example

Testing $\beta = 0$ is probably the most common test However, many other could be of interest.

Consider Experience vs Schooling

Possible hypothesis: one year of schooling leads to one year less of experience

28

Can we reject this?

How to find out?

Imperial College Business School Imperial means Intelligent Business

Experience vs schooling

mod earn exp <-lim(EXP ~ S , data = eaef)

Coefficient is negative but smaller than 1. But is it small enough to reject that $\beta = -1$?

Experience vs schooling

```
mod earn exp <-lim(EXP ~ S , data = eaef)
```

 $t = \frac{-0.3961446 - (-1)}{0.0765003} = 7.894 > 1.96$, hence we reject the hypothesis

Note: .

disp qt(0.025,538) -1.9643832

Imperial Correge pasmess seriour

30

Experience vs schooling

```
mod earn exp <-lim(EXP ~ S , data = eaef)
```

```
Call:
  lm(formula = EXP \sim S, data = eaef)
  Residuals:
                                                             Linear hypothesis test
                 1Q Median
       Min
                                   30
                                           Max
                                                             Hypothesis:
  -17.0512 -2.3320 0.8564 3.1391
                                        6.3756
                                                             S = -1
                                                             Model 1: restricted model
                                                             Model 2: EXP ∼ S
  Coefficients:
                                                              Res.Df RSS Df Sum of Sq F Pr(>F)
                                                             1 539 11260
              Estimate Std. Error t value Pr(>|t|)
                                                             2 538 10091 1 1168.7 62.307 1.658e-14 ***
  (Intercept) 22.3165 1.0624 21.006 < 2e-16 ***
                                                             Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
  S
          -0.3961 0.0765 -5.178 3.17e-07 ***
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Alternative way to implement this test in R:
library("car")
linear Hypothesis (mod earn exp, c( "S = -1") )
```

A note of caution

An estimate can be significant and biased Or non-significant and non-biased (or vice versa)

- Significance is separate from bias
- We don't necessarily prefer an over another because one is significant.
- We need to ask for underlying reasons why one estimate is significant and the other one not.

Quick test: we have 2 estimates of the same parameter. Which would you prefer?

• Estimate 1 is biased and significant, estimate 2 is not significant but not biased?

Estimation of $\sigma_{\widehat{oldsymbol{eta}}}$

$$\sigma_{\widehat{\beta}}^2 = \frac{\sigma_{\epsilon}^2}{nVAR(X)}$$
 Estimate using
$$VAR(\hat{\epsilon}^2)$$

$$\widehat{\sigma}_{\widehat{\beta}}^2 = \frac{\sigma_{\epsilon}^2}{nVAR(X)}$$

Student's t-Distribution

Standard normal

Degrees of Freedom (DoF): observations – parameters we need to estimate before we can estimate ϵ

William Sealy Gosset AKA Student

- t is a bit more dispersed than the normal
- Converges to Normal for large n
- We only need to worry about t for really small samples (<50)

Critical values t distribution

qt(0.025, 10) -2.228139

Imperial College Business School

i.e. to have the same level of risk of making error I we reject fewer values

more probability weight in the tails