Software Engineering

Lecture 05: 계획 (프로젝트 관리와 계획) (Part 2)

Professor: Jung Uk Kim

ju.kim@khu.ac.kr

Computer Science and Engineering, Kyung Hee University

일정 계획

• 일정 계획

 소프트웨어를 개발하기 위해 어떤 작업이 필요한지 찾은 후, 진행할 순서 를 결정하거나, 주어진 개발 기간에 소작업의 개발 기간 및 그들 간의 순서, 필요한 자원 등과 같은 일정을 계획하는 것

일정 계획

• 일정 계획

• 작업 순서 결정, 소작업의 개발 기간, 순서, 필요한 자원 등의 일정 계획

총 개발 기간	6개월(○○○.	1. 1. ~ 0000. 6. 31.)										
소작업	교과 과정 관리, 수	l과 과정 관리, 수업 관리, 수강 관리, 성적 관리, 사용자 정보 관리										
소작업별 개발 기간		소작업 사용자 정보 관리 교과 과정 관리 수업 관리 수강 관리 성적 관리 테스트	개발기간 1개월(1. 1. ~ 1. 31.) 1개월(2. 1. ~ 2. 28.) 1개월(3. 1. ~ 3. 31.) 1개월(4. 1. ~ 4. 30.) 1개월(5. 1. ~ 5. 31.) 1개월(6. 1. ~ 6. 30.)									
개발 순서	사용자 정보 관리	l용자 정보 관리 → 교과 과정 관리 → 수업 관리 → 수강 관리 → 성적 관리										
필요 자원	개발 툴(파워빌더)), 개발용 PC, 개발 공간										

일정 계획 - 작업 분할 구조도 (WBS)

· 일정 계획 (실생활 예제)

일정 계획 - 작업 분할 구조도 (WBS)

- 작업 분할 구조도 (Work Breakdown Structure, WBS)
 - 프로젝트 목표를 달성하기 위해 **필요한 활동과 업무를 세분화**하는 작업
 - 프로젝트 구성 요소들을 계층 구조로 분류 (프로젝트의 작업 파악이 가능)
 - 프로젝트의 전체 범위 정의
 - 프로젝트 **작업을 세분화** (최하위에 있는 항목: **작업 패키지**)

일정 계획 - 작업 분할 구조도 (WBS)

• 작업 분할 구조도 (장점)

- 사용자와 개발자 간의 의사소통 도구로 사용함
- 프로젝트 업무 내역을 가시화할 수 있어 관리가 용이함
- 프로젝트 팀원의 책임과 역할이 분명함
- 필요 인력, 일정 계획, 개발비 산정 시 **기초**로 활용함
- 성과 측정 및 조정 시 기준선으로 활용할 수 있음

• 네트워크 차트

- WBS의 작업 순서, 소요 기간 등을 네트워크 형태의 그래프로 표현
- 이를 통해 **어떤 작업이 중요한지**, 또 **일정에 여유가 있는 작업은 어떤 것인** 지 찾아내 **중점 관리를 해야 하는 작업을 명확히** 하는데 사용

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - 네트워크 차트를 그리기 위한 목록

작업	작업 설명	선행 작업	소요 기간(주)
Α	개인 정보 등록/수정/조회/삭제 프로그램 개발	_	2
В	학적 변동 자료 등록/수정/조회/삭제 프로그램 개발	Α	6
С	휴 · 복학 및 자퇴 등록/수정/조회/삭제 프로그램 개발	Α	4
D	교육 과정 등록/수정/조회/삭제 프로그램 개발	B, C	2
Е	유사/동일 괴목 등록/수정/조회/삭제 프로그램 개발	D	4
F	개설 강좌 등록/수정/조회/삭제 프로그램 개발	D	3
G	수강 과목 등록/수정/조회/삭제 프로그램 개발	Е	2
Н	시간표 등록/수정/조회/삭제 프로그램 개발	Е	4
I	성적 등록/수정/조회/삭제 프로그램 개발	F	2
J	장학생 등록/수정/조회/삭제 프로그램 개발	F	1
K	등록금 등록/수정/조회/삭제 프로그램 개발	G, H	2
L	졸업 사정 등록/수정/조회/삭제 프로그램 개발	I, K	2
М	사회봉사 실적 등록/수정/조회/삭제 프로그램 개발	J, L	3

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - (1) CPM (Critical Path Model)을 그린다
 - 노드(Node)는 작업, 간선은 노드 간의 선후 의존 관계 (e.g., D는 B,C가 끝나 야 시작)

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - (2) ES (Earliest Start Time)을 구한다

• ES: 가능한 빨리 시작할 수 있는 시간으로, 선행 작업이 완료되었을 때 해당작

업을 시작할 수 있는 가장 빠른 시점

작업	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М
작업 시작 시간	0	2	2	8	10	10	14	14	13	13	18	20	22
작업 시간	2	6	4	2	4	3	2	4	2	1	2	2	3

작업	소요 기간(주)
А	2
В	6
С	4
D	2
Е	4
F	3
G	2
Н	4
1	2
J	1
K	2
L	2
М	3

10

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - (2) ES (Earliest Start Time)을 구한다

• ES: 가능한 빨리 시작할 수 있는 시간으로, 선행 작업이 완료되었을 때 해당작

업을 시작할 수 있는 가장 빠른 시점

	작업	소요 기간(주)
	Α	2
ľ	В	6
	С	4
	D	2
	E	4
	F	3
	G	2
	Н	4
	1	2
	J	1
	K	2
	L	2
	М	3
-		

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - (2) EF (Earliest Finish Time)을 구한다
 - EF: 가장 빠른 시작 시간(ES)으로 시작했을 때의 가장 빠른 완료 시간
 - 가능한 빨리 끝낼 수 있는 시간으로 'ES+작업 소요 시간'

작업	Α	В	С	D	Е	F	G	Н	-1	J	K	L	М
작업 시작 시간	0	2	2	8	10	10	14	14	13	13	18	20	22
작업	Α	В	С	D	Е	F	G	Н	-1	J	K	L	М
EF	2	8	6	10	14	13	16	18	15	14	20	22	25

ES

EF

작업	소요 기간(주)
Α	2
В	6
С	4
D	2
Е	4
F	3
G	2
Н	4
1	2
J	1
K	2
L	2
М	3

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - (3) LS (Latest Start Time)을 구한다
 - LS: **늦어도 시작해야 하는 시간**
 - 이 시간에 시작하지 않으면(늦으면) 총 일정이 지연됨(뒤에서 앞 방향으로 계산)

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - (3) LS (Latest Start Time)을 구한다
 - LS: **늦어도 시작해야 하는 시간**
 - 이 시간에 시작하지 않으면(늦으면) 총 일정이 지연됨(뒤에서 앞 방향으로 계산)

= 3-20	작업별 가장 늦게	시아 스 네지	시가 (다의 · 즈)
# 3-20	역하는 사용 돗계	시작될 ㅜ 샀는	시간 (근귀 - 구/

작업	Α	В	С	D	Е	F	G	Н	-1	J	K	L	М
작업 시작 시간	0	2	4	8	10	15	16	14	18	21	18	20	22
작업 시간	2	6	4	2	4	3	2	4	2	1	2	2	3

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - (4) LF (Latest Finish Time)을 구한다

LS(아무리 늦어도 이 때 시작) LF -----+작업소요시간--

• LF: 작업을 가장 늦게 끝낼 수 있는 시간 (LS + 작업소요시간)

작업	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	
작업 시작 시간	0	2	4	8	10	15	16	14	18	21	18	20	22	LS
작업 시간	2	6	4	2	4	3	2	4	2	1	2	2	3	
작업 완료 시간	2	8	8	10	14	18	18	18	20	22	20	22	25	LF

- (5) ST (Slack Time)을 구한다
 - ST: 여유 있는 시간
 - 가장 늦게 시작하는 시간 (LS) 가장 빨리 시작하는 시간 (ES)

작업	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
작업별 빠른 시작 시간	0	2	2	8	10	10	14	14	13	13	18	20	22
작업별 늦은 시작 시간	0	2	4	8	10	15	16	14	18	21	18	20	22
여유시간	0	0	2	0	0	5	2	0	5	8	0	0	0

LS ES

- 네트워크 차트 (예시) 학사 관리 어플리케이션
 - (6) 임계 경로(Critical Path)를 구한다
 - 임계 경로: **그래프에 여유시간이 없는 경로**
 - 모든 일정 계획은 임계 경로에 의해 좌우 됨
 - 임계 경로를 벗어난 작업은 시간 한도 내에서는 여유가 있음 (e.g., 작업 I가 2주 지연되더라도 5주의 여유시간이 있어 프로젝트 최종 완료일 에 영향 X)

일정 계획 - 간트 차트

• 간트 차트

- 프로젝트 일정 관리를 위한 바(bar) 형태의 도구
- WBS를 통해 프로젝트의 주요 활동을 파악한 후, 각 활동의 일정을 시작하는 지점 과 끝나는 시점을 연결한 막대 모양으로 표시
- 전체 일정을 한눈에 볼 수 있음

ID	활동명	시작일	완료일							201	6년					
טו	200	시작된	근프글	기간	1	2	3	4	5	6	7	8	9	10	11	12
1	힉적부 관리	16. 01. 01.	16. 02. 28.	2												
2	학생 변동 관리	16. 01. 01.	16. 01. 31.	1												
3	교과 관리	16. 03. 01.	16. 05. 3 <mark>1</mark> .	3												
4	수업 관리	16. 06. 01.	16. 07. 3 <mark>1</mark> .	2												
5	수강관리	16. 07. 01.	16. 09. 30.	3												
6	성적 관리	16. 10. 01.	16. 12. 31.	3											_	

위험 분석

- 부산 여행에서 발생할 수 있는 위험 요소
 - 목표 변경 (부산 → 여수)
 - 기차의 사고 / 회사 파업
 - 소매치기로 인한 여행 경비 0원
 - 친구들과 다툼으로 인한 여행 인원 부족

위험 분석

- 위험 분석
 - 소프트웨어 개발에 방해가 되는 요소를 미리 예상하고, 이에 관해 적절한 대책을 수립하는 활동
 - 위험 요소: 사용자 요구사항 (가장 큰 위험 요소), 인력 부족, 예산 부족 등
 - 위험 분석 단계
 - (1) 위험 요소를 미리 파악하고(**위험 요소 식별**),
 - (2) 위험 요소의 발생 확률과 영향도를 평가한 뒤(**위험 분석**),
 - (3) 분석한 결과에 따라 위험 우선순위를 정해 그게 맞게 대책을 세워야 함 (위험 계획 수립)

위험 분석 - 위험 요소 식별

- 위험 요소 식별
 - 프로젝트 수행에 영향을 주는 위험 요소 파악
 - 브레인스토밍 또는 유사 프로젝트 때의 위험 요소 참조

위험 요소	위험 내용
개발자의 이직	프로젝트 수행 중 개발자들이 이직한다.
요구사항 변경	요구사항 확정 이후에도 변경 요구가 계속된다.
발주사의 재정적 어려움	프로젝트 수행 중 고객사에 경제적인 어려움이 발생한다.
예상을 빗나간 투입 인력	처음에 예측한 인력보다 더 많은 인력이 필요하다.
개발 기간 부족	처음에 예측한 개발 기간을 초과한다.
개발비 초과	처음에 예측한 개발비로 개발을 완료할 수 없다.

위험 분석 - 위험 분석, 위험 계획 수립

- 위험 분석
 - 위험 요소 식별 후, **위험 요소가 발생할 가능성과 영향력을 판단**
 - 과거 프로젝트에서 위험을 분석한 경험이 많은 개발자에 의존
 - **위험 발생 가능성, 위험 발생 확률** 등 분석
- 위험 계획 수립
 - 위험 분석을 통해 이를 처리하는 위험 대응 방안 수립
 - 우선순위에 따라 진행
- (추가) 위험 감시
 - 식별된 위험은 계속 감시
 - 유사한 프로젝트를 진행할 때 참고할 수 있도록 데이터베이스 내에 기록

Questions?