Variable Selection Methods Comparison

Hongjie Liu, Jiajun Tao, Shaohan Chen

2023-02-27

Motivation

- ▶ Identifying the effect of a treatment, exposure, or intervention is one of the most fundamental tasks we encounter as biostatisticians...
- but outside of a randomized control trial (RCT), confounding variables can bias our estimates of treatment effects.
- ▶ Propensity score matching (PSM) is a tool that can help us mitigate the effects of confounders. . .
- but there is no consensus on the best way to estimate standard errors when using the PSM algorithm.
- How can we assess which procedures reliably estimate standard errors?

Motivation

 $A \ simulation \ study!$

A (Yet) Quick(er) Foray into Propensity Score Matching

- (1) We start with an unmatched dataset.
- (2) We estimate the propensity score the probability of treatment given some set of covariates according to some pre-specified model fitting (e.g., logistic regression).
- (3) We pair treated and untreated indiviuals who have similar propensity scores according to some pre-specified matching algorithm (e.g., nearest neighbors).
- (4) We end with a matched dataset.

Enter the Bootstrap

- Bootstrapping is one of the most common procedures for estimating standard errors.
- ► The PSM algorithm intakes an unmatched dataset and outputs a matched one.
- ▶ **Primary Research Question:** When do we execute the bootstrap before the match or after it?
- Let's try both!

Data Generation - Continuous Outcome

For each individual $i \in \{1, \ldots, n\}$, we consider covariates $L_{1i}, L_{2i}, L_{3i} \sim N(0,1)$. Treatments are distributed according to law $A_i \sim B(\pi_i)$, where π_i - the true propensity to be treated - is subject to the data-generating process

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha_0 + \alpha_1 L_{1i} + \alpha_2 L_{2i}.$$

Given this, we further define the data-generating process of our continuous outcome via

$$Y_i = \beta_1 A_i + \beta_2 L_{2i} + \beta_3 L_{3i} + \varepsilon_i,$$

where ε_i denotes random error. Because L_{2i} effects both A_i and Y_i , it acts as a confounder in estimating the treatment effect.

Data Generation - Binary Outcome

For each individual $i \in \{1, \ldots, n\}$, we consider covariates $L_{1i}, L_{2i}, L_{3i} \sim N(0,1)$. Treatments are distributed according to law $A_i \sim B(\pi_i)$, where π_i - the true propensity to be treated - is subject to the data-generating process

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha_0 + \alpha_1 L_{1i} + \alpha_2 L_{2i}.$$

Given this, we further define the data-generating process of our binary outcome via $Y_i \sim B(\tau_i)$ where

$$\log\left(\frac{\tau_i}{1-\tau_i}\right) = \beta_0 + \beta_1 A_i + \beta_2 L_{2i} + \beta_3 L_{3i}.$$

Observe that we have omitted a random error term, as realizations of our binary Y_i are innately subject to noise.

Data Generation - Random Number Generation (Binary Outcome)

```
set.seed(20220217)
seed_vec <- runif(100000, min, max)</pre>
  for (i in 1:n) {
    set.seed(seeds[i])
    long rnorm <- rnorm(size*3, mean = 0, sd = 1)</pre>
    long runif <- runif(size*2)</pre>
    beta error <- rnorm(size, mean = 0, sd = 0.25)
    L1 <- long_rnorm[1:size]
    L2 <- long rnorm[(size + 1):(2*size)]
    L3 \leftarrow long rnorm[(2*size + 1):(3*size)]
    comp_pA = long_runif[1:size]
    A = (prob_A > comp_pA)
    # function continues...
```

Parameters of Interest

- lacktriangle The sample size of each dataset $n_{\sf sample} \in \{100, 1000\}$
- ► The population proportion of treated individuals $\pi \in \{0.113, 0.216, 0.313\}$
- ▶ The true average treatment effect $\beta_1 \in \{0.15, 0.30\}$ for binary data; $\beta_1 \in \{-1, 1\}$ for continuous data

Other Parameters

- ▶ The number of datasets $m_{\text{sample}} = 100$
- ▶ The number of bootstrap re-samples $m_{\text{boot}} = 500$
- The sample size of bootstrap re-samples $n_{\text{simple}} = n_{\text{complex}} = n_{\text{sample}} \times \pi$
- Strength of covariate effect on treatment $\alpha_1 = \log(1.25), \alpha_2 = \log(1.75)$
- Strength of covariate effect on outcome $\beta_2 = \log(1.75), \beta_3 = \log(1.25)$

Signal Identification Metrics

Define the true predictors to be positive and the null predictors to be negative.

Sensitivity: $\frac{TP}{TP+FN}$.

Specificity: $\frac{TN}{TN+FP}$.

 $\qquad \textbf{F1-Score:} \ \ \frac{2 \cdot sensitivity \cdot precision}{sensitivity + precision} \, .$

Accuracy: $\frac{TP+TN}{TP+TN+FP+FN}$.

Parameter Identification Metrics

Denote the estimation of β as $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_n)$.

- ▶ Bias: $\frac{1}{p} \sum_{i=1}^{p} (\hat{\beta}_i \beta_i)$
- ► MSE: $\frac{1}{p} \sum_{i=1}^{p} (\hat{\beta}_{i} \beta_{i})^{2}$

Summary of Results

- ► For binary outcomes, the simple bootstrap tended to underestimate the standard error
- ► Larger standard error estimates from complex bootstrap in binary and continuous settings
- Differences between simple and complex bootstrap were smaller for larger sample sizes
- Complex bootstrap not as reliable in small sample sizes

Limitations

- ► Sample size / treatment (or exposure) prevalence
- ► Small number of initial samples, limited in detecting significant differences in coverage rate

Future Work

- Larger number of initial samples, narrower coverage window
- Increased sample size, changes in bootstrap performance?
- Changes in treatment propensity model
- ► Non-normal distributions of covariates