

The IFB Core Cluster Infrastructure

EBAII 2021

Gildas Le Corguillé, Thomas Denecker & Julien Seiler
IFB Core Cluster taskforce

IFB, une offre nationale

L'IFB Core Cluster n'est pas la seule infrastructure

	Cluster	Localisation du Data center	Coeurs	RAM (Go)	Stockage (To)
ork s	IFB Core	IDRIS - Orsay	5 042	26 542	2 000
NNCR - National Network Computing Resources	Genotoul	Toulouse	6 128	34 304	3 000
	ABiMS	Roscoff	2 608	10 600	2 500
	GenOuest	Rennes	1824	7 500	2 300
	Migale	Jouy en Josas	1084	7 000	350
Z	BiRD	Nantes	560	4 000	500

IFB Core Cluster - Billing

Pourquoi?

- Les financeurs de l'IFB demandent 10% d'autosuffisance
- Une garantie de la pérennité de l'infrastructure (non, l'informatique n'est pas "virtuel")
- Discipliner les utilisateurs pour garantir une utilisation raisonnable des ressources

Comment?

Forfaits / Bundle

		Disk Quota		
		< 250 GB	250 GB < < 1,5 TB	1,5 TB < < 5 TB
	< 10 k hours	0 €	450€	950€
CPU Quota	10 k hours < < 65 k hours	1 700 €	2 000 €	2 500 €
	65 k hours < < 100 k hours	3 000 €	3 375 €	4 000 €

Tarifs Académiques

Provisoire

Au-delà des forfaits / Beyond bundles

Stockage / Storage	250 €	per TB
Calcul / Compute	0.05€	per h CPU

Besoin d'aide?

Rejoignez la communauté IFB

Rendez-vous sur:

https://community.france-bioinformatique.fr

High Performance Computer

Votre ordinateur peut-il faire de la bioinformatique ?

Un ou deux microprocesseurs

Un microprocesseur est chargé de l'exécution des instructions élémentaires demandées par le logiciel

4 à 8 Go de mémoire vive (RAM)

La mémoire vive est utilisée par le microprocesseur pour traiter les données

≃ 1 To d'espace de stockage

L'espace de stockage est utilisé pour conserver de grandes quantités de données de manière plus permanente

Votre ordinateur peut-il faire de la bioinformatique ?

L'exécution de ce workflow nécessite au minimum toutes les ressources d'un ordinateur de bureau pendant plusieurs heures et ceci seulement pour 1 seul fichier fastq.

Pour faire ce type d'analyse nous avons besoin d'ordinateurs plus puissants!

Le Data Center de l'IDRIS Un bâtiment conçu pour accueillir des infrastructures informatiques

Groupes froidPour refroidir les équipements

Groupe électrogènePour garantir l'alimentation électrique

Les armoires de l'IFB Chaque armoire peut contenir 80 super-ordinateurs

Un ordinateur ou **noeud** de calcul

Mémoire vive

Supports processeurs

Un microprocesseur

Un microprocesseur contient plusieurs **coeurs** Chaque coeur se comporte comme un microprocesseur unique.

Tools

Where is my tools?

Software environment

module load fasqtc/0.11.9

par défaut

si une licence doit être acceptée si ce n'est pas dans Bioconda et difficile à intégrer ou urgent si un conteneur Docker existe

Pour toute demande d'installation : https://community.france-bioinformatique.fr/

Besoin d'un outil?

Jupyter

Qu'est-ce qu'un Notebook Jupyter?

de code

Sortie du

Cellule Markdown

My Python 3.7 O

Un fichier spécial avec l'extension .ipynb

- Combinaison de Markdown et de code
- Le code peut être exécuté à l'intérieur du notebook
- La sortie du code est intégrée directement dans le notebook

Exploratory Data Analysis

B + % □ □ ► ■ C → Markdown ∨

Exploratory Data Analysis (EDA) is an open-ended process where we make plots and calculate statistics in order to explore our data. The purpose is to to find anomalies, patterns, trends, or relationships. These may be interesting by themselves (for example finding a correlation between two variables) or they can be used to inform modeling decisions such as which features to use. In short, the goal of EDA is to determine what our data can tell us! EDA generally starts out with a high-level overview, and then narrows in to specific parts of the dataset once as we find interesting areas to examine.

To begin the EDA, we will focus on a single variable, the Energy Star Score, because this is the target for our machine learning models. We can rename the column to score for simplicity and then start exploring this value.

Single Variable Plots

A single variable (called univariate plot shows the distribution of a single variable such as in a histogram.

```
# Rename the score
data = data.rename(columns = {'ENERGY STAR Score': 'score'})

# Histogram of the Energy Star Score
plt.style.use('fivethirtyeight')
plt.hist(data['score'].dropna(), bins = 100, edgecolor = 'k');
plt.xlabel(''Score'); plt.ylabel('Number of Buildings');
plt.title('Energy Star Score Distribution');
```


Qu'est-ce qu'un Notebook Jupyter?

Les notebooks sont populaires

Source: Nbviewer - https://nbviewer.jupyter.org/github/parente/nbestimate/blob/master/estimate.ipynb

Pourquoi s'intéresser aux notebooks?

- Les notebooks vous permettent d'analyser des données et de rédiger des rapports en un seul endroit
- Ils prennent en charge la visualisation des données en temps réel
- Vous pouvez facilement inclure une section interactive dans un notebook
- En accord avec le principe de la science reproductible

Les Notebooks Jupyter sont le cahier de laboratoire pour la science des données.

Qu'est-ce que JupyterHub

JupyterHub est une application web qui vous permet de créer des serveurs JupyterLab sur un cluster ou une infrastructure en nuage.

SLURM

Présentation et démonstration -> https://gitlab.com/ifb-elixirfr/cluster/tutoriel-slurm