实验指导书: MATLAB 基本操作

实验目的

- 1. 了解MATLAB基础知识。
- 2. 掌握MATLAB的矩阵的输入与相关运算。
- 3. 掌握MATLAB的程序设计。
- 4. 掌握二维、三维曲线与曲面的绘制。

一、基础知识

1.1 常见数学函数

函数名	数学计算功能	函数名	数学计算功能
abs (x)	实数的绝对值或复数的幅值	floor (x)	对 x 朝-∞方向取整
acos (x)	反余弦 arcsin x	gcd (m, n)	求正整数m和n的最大公约数
acosh (x)	反双曲余弦 arccosh x	imag (x)	求复数 x 的虚部
angle (x)	在四象限内求复数 x 的相角	lcm (m, n)	求正整数 m 和 n 的最小公倍数
asin (x)	反正弦 arcsin <i>x</i>	log (x)	自然对数(以e为底数)
asinh (x)	反双曲正弦 arcsinh x	log10 (x)	常用对数(以10为底数)
atan (x)	反正切 arctan x	real (x)	求复数 x 的实部
atan2 (x,y)	在四象限内求反正切	rem (m, n)	求正整数 m 和 n 的 m/n 之余数
atanh (x)	反双曲正切 arctanh x	round (x)	对x四舍五入到最接近的整数
ceil (x)	对 x 朝+∞方向取整	sign (x)	符号函数: 求出 x 的符号
conj (x)	求复数 x 的共轭复数	sin (x)	正弦 sin x
cos (x)	余弦 cos x	sinh (x)	反双曲正弦 sinh x
cosh (x)	双曲余弦 cosh x	sqrt (x)	求实数 x 的平方根: \sqrt{x}
exp (x)	指数函数 e ^x	tan (x)	正切 tan x
fix (x)	对 x 朝原点方向取整	tanh (x)	双曲正切 tanh x

如:输入 x=[-4.85 -2.3 -0.2 1.3 4.56 6.75],则:

ceil(x) = -4 -2 0 2 5 7 fix(x) = -4 -2 0 1 4 6 floor(x) = -5 -3 -1 1 4 6 round(x) = -5 -2 0 1 5 7

1.2 系统的在线帮助

- 1 help 命令:
 - 1.当不知系统有何帮助内容时,可直接输入 help 以寻求帮助:
 - >> *help* (回车)
 - 2. 当想了解某一主题的内容时,如输入:
 - >> help syntax (了解 Matlab 的语法规定)
 - 3. 当想了解某一具体的函数或命令的帮助信息时,如输入:
 - >> help sqrt (了解函数 sqrt 的相关信息)
- 2 lookfor 命令

现需要完成某一具体操作,不知有何命令或函数可以完成,如输入:

>> lookfor line (查找与直线、线性问题有关的函数)

1.3 常量与变量

系统的变量命名规则:变量名区分字母大小写;变量名必须以字母打头,其后可以是任意字母,数字,或下划线的组合。此外,系统内部预先定义了几个有特殊意义和用途的变量,见下表:

特殊的变量、常量	取 值
ans	用于结果的缺省变量名
pi	圆周率 π 的近似值 (3.1416)
eps	数学中无穷小(epsilon)的近似值(2.2204e - 016)
inf	无穷大,如 1/0 = inf (infinity)
NaN	非数,如 0/0 = NaN (Not a Number), inf/inf = NaN
i, j	虚数单位: $i=j=\sqrt{-1}$

1 数值型向量(矩阵)的输入

1. 任何矩阵(向量),可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔;行与行之间用分号(,)分隔。所有元素处于一方括号([])内;

例 1:

>>
$$Time = [11 \ 12 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10]$$

>> $X \ Data = [2.32 \ 3.43; \ 4.37 \ 5.98]$

2. 系统中提供了多个命令用于输入特殊的矩阵:

函数	功能	函数	功能		
compan	伴随阵	toeplitz	Toeplitz 矩阵		
diag	对角阵	vander	Vandermonde 矩阵		
hadamard	Hadamard 矩阵	zeros 元素全为 0 的矩阵			
hankel	Hankel 矩阵	ones	元素全为1的矩阵		
invhilb	Hilbert 矩阵的逆阵	rand	元素服从均匀分布的随机矩阵		
kron	Kronercker 张量积	randn	元素服从正态分布的随机矩阵		
magic	魔方矩阵	eye 对角线上元素为 1 的矩阵			
pascal	Pascal 矩阵	meshgrid 由两个向量生成的矩阵			

上面函数的具体用法,可以用帮助命令 help 得到。如: meshgrid(x,y)

输入 x=[1 2 3 4]; y=[1 0 5]; [X,Y]=meshgrid(x, y), 则

目的是将原始数据 x, y 转化为矩阵数据 X, Y。

2 符号向量 (矩阵) 的输入

1. 用函数 sym 定义符号矩阵:

函数 sym 实际是在定义一个符号表达式,这时的符号矩阵中的元素可以是任何的符号或者是表达式,而且长度没有限制。只需将方括号置于单引号中。

例 2:

2. 用函数 syms 定义符号矩阵

先定义矩阵中的每一个元素为一个符号变量,而后像普通矩阵一样输入符号矩阵。**例 3**:

1.4 数组(矩阵)的点运算

运算符: + (加)、- (减)、/ (右除)、1 (左除)、1 (乘方),

例 4:

>>
$$g = [1 \ 2 \ 3 \ 4]; h = [4 \ 3 \ 2 \ 1];$$

>> $s1 = g + h, s2 = g.*h, s3 = g.^h, s4 = g.^2, s5 = 2.^h$

1.5 矩阵的运算

运算符: + (加)、- (减)、* (乘)、/ (右除)、\ (左除)、^ (乘方)、' (转置)等; 常用函数: det (行列式)、inv (逆矩阵)、rank (秩)、eig (特征值、特征向量)、rref (化 矩阵为行最简形)

例 5:

二、编程

2.1 建立 M 文件

将多个可执行的系统命令,用文本编辑器编辑后并存放在后缀为 .m 的文件中,若在 MATLAB 命令窗口中输入该 m-文件的文件名(不跟后缀.m!),即可依次执行该文件中的多个命令。这个后缀为.m 的文件,也称为 Matlab 的**脚本文件**(Script File)。

注意: 文件存放路径必须在 Matlab 能搜索的范围内。

2.2 建立函数文件

对于一些特殊用户函数,系统提供了一个用于创建用户函数的命令 function,以备用户随时调用。

1. 格式:

function [输出变量列表]=fun_name(输入变量列表) 用户自定义的函数体

- 2. 函数文件名为: fun name, 注意: 保存时文件名与函数名最好相同;
- 3. 存储路径: 最好在系统的搜索路径上。
- 4. 调用方法: 输出参量=fun name (输入变量)

例 6: 计算 s = n!, 在文本编辑器中输入:

```
function s=pp(n);
    s=1;
    for i=1:n
        s=s*i;
    end
    s;
在 MATLAB 命令窗口中输入: s=pp(5)
结果为 s=120
```

2.3 无条件循环

当需要无条件重复执行某些命令时,可以使用 for 循环:

```
for 循环变量 t=表达式 1: 达式 2: 表达式 3
语句体
```

end

说明:表达式 1 为循环初值,表达式 2 为步长,表达式 3 为循环终值;当表达式 2 省略时则默认步长为 1; for 语句允许嵌套。

```
例 7:
    生成 3×4 阶的 Hiltber 矩阵。
    for i=1:3
    for j=1:4
        H (i, j) =1/(i+j-1);
    end
end
end

如:矩阵输入程序
m=input('矩阵行数: m=');
n= input('矩阵列数: n=');
for j=1:m
for j=1:n
disp(['输入第',num2str(i),'行,第', num2str(j),'列元素'])
A(i, j) = input (' ')
```

2.4 条件循环

1) if-else-then 语句

```
if-else-then 语句的常使用三种形式为:
```

```
(1) if 逻辑表达式
                 (3) if 逻辑表达式 1
   语句体
                       语句体1
                  elseif 逻辑表达式 2
 end
                        语句体 2
(2) if 逻辑表达式 1
                  elseif 逻辑表达式 3
    语句体1
                       •••
                   else
 else
    语句体 2
                      语句体 n
 end
                  end
2) while 循环语句
```

while 循环的一般使用形式为:
while 表达式
语句体

end

例 8: 用二分法计算多项式方程 $x^3 - 2x - 5 = 0$ 在[0, 3]内的一个根。

```
解:
a = 0; fa = -inf;
b = 3; fb = inf;
while b-a > eps*b
    x = (a+b) /2;
    fx = x^3-2*x-5;
    if sign(fx)== sign(fa)
        a = x; fa = fx;
    else
        b = x; fb = fx;
    end
end
x
运行结果为: x = 2.0945515148154233
```

例 9 编写判断学生成绩及格或不及格的 M 文件 ift j3. m。

```
function iftj3 (x)
% iftj3.m 判断成绩 x 等级的多分支结构
%输入参数 x 学生的成绩
if x>=90
    fprintf('该成绩:%d 优秀\n',x)
elseif x>=80
    fprintf('该成绩:%d 良好\n',x)
```

```
elseif x>=70
    fprintf('该成绩:%d 中等\n',x)
elseif x>=60
    fprintf('该成绩:%d 及格\n',x)
else
    fprintf('该成绩:%d 不及格\n',x)
end
```

>> iftj3(91)

该成绩: 91 优秀

>> iftj3(46)

该成绩: 46 不及格

>> iftj3(62)

该成绩: 62 合格

>> iftj3(76)

该成绩: 76 中等

例 通过输入不同的 x, y 值, 根据以下公式计算 f(x, y)的值并显示。

$$f(x,y) = \begin{cases} x+y & x \ge 0, & y \ge 0 \\ x+y^2 & x \ge 0, & y < 0 \\ x^2+y & x < 0, & y \ge 0 \\ x^2+y^2 & x < 0, & y < 0 \end{cases}$$

```
x=input('please input x:');
y=input('please input y:');
if x>=0&y>=0
    f=x+y
elseif x>=0&y<0
    f=x+y^2
elseif x<0&y>=0
    f=x^2+y
else x<0&y<0
    f=x^2+y^2
end</pre>
```

2.5 分支结构

若需要对不同的情形执行不同的操作,可用 switch 分支语句: switch 表达式(标量或字符串)

```
case 值1
          语句体1
     case 值2
         语句体 2
     otherwise
        语句体n
   end
   说明: 当表达式不是 "case" 所列值时, 执行 otherwise 语句体。
例 10 使用 switch 结构判断学生成绩等级情况的函数文件 swch. m, 判断成绩情况。
function swch(x)
%swch.m 判断成绩 x 等级的 switch 开关结构
%输入参数 x 学生的成绩
if x>=0&x<=59
   fprintf('该成绩 %d 不及格\n',x)
else
   s=floor ((x-60) / 10);
   switch s
      case 3
         fprintf('该成绩:%d 优秀\n',x)
      case 2
         fprintf('该成绩:%d 良好\n',x)
      case 1
         fprintf('该成绩:%d 中等\n',x)
      case 0
         fprintf('该成绩:%d 及格\n',x)
   end
end
   >> swch (77)
   该成绩: 77 中等
   >> swch (90)
   该成绩: 90 优秀
```

三、作面

- 3.1 二维曲线绘图
- **1、基本命令:** plot(数据作图、函数作图),ezplot(简易作图),fplot(简易作图)

2、基本绘图控制参数:设置线型、线色、数据点形

1)、曲线点型、线色允许设置值

ſ	线型	符号	_		:					
	汉王	含义	含义 实线 虚线 原		点划线	点划线		双划线		
Ī	线色	符号	b	g	r	С	m	У	k	W
	70	含义	蓝	绿	红	青	品红	黄	黑	白

2)、数据点形常用设置值

符号	•	0	X	+	*	S	d	p
含义	实心	空心	叉字	十字	八线	方块	菱形	五角星
百人	黑点	圆圈	符	符	符	符	符	符

- 3)、坐标轴控制(axis)、分格线(grid)
- 4)、图形标注:坐标轴名(label)、图形标题(title)、图例(legend)、图形说明(text,gtext),格式如下:

title('s') 书写图形标题

xlabel('s') 横坐标轴名

ylabel('s') 纵坐标轴名

legend('s1','s2',...) 绘制曲线所用线型、色彩、或数据点型图例

text(x1,y1,'s') 在图面(x1,y1)坐标处书写字符注释

gtext('s') 用鼠标选择书写字符注释的位置

5)、常用坐标控制命令

指令	含义	指令	含义
axis off	取消轴背景	axis equal	纵、横轴采用等长
			刻度
axis on	使用轴背景	axis image	同上且坐标框紧贴
			数据范围
axis(v)	人工设定标范围.设定	axis square	产生正方形坐标系
v=[x1,x2,y1,y2,z1,z2]	值: 三维,6 个		

6)、多次叠绘、子图

hold on 使当前轴及图形保持而不被刷新,准备接受此后将绘制的新曲线。

hold off 使当前轴及图形不再具备不被刷的性质。

hold 是否具备不被刷的性质的双向开关。

subplot(m,n,k) 图形窗中有 m×n 幅子图, k 是子图的编号。

二维作图实例:

1. 绘制下列图形曲线。

```
(1) y=x-x<sup>3</sup>/3! (2)x<sup>2</sup>+2Y<sup>2</sup>=64
解:程序如下
```

```
>> x=-10:0.05:10;

y=x-x.^3./6;

subplot(2,1,1)

plot(x,y);

subplot(2,1,2)

ezplot('x^2+2*y^2-64',[-8,8]);

grid on
```

2. 设y=1/(1+e^-t),-pi<=t<=pi,在同一个图形窗口中采用子图的形式绘制条形图、阶梯图、杆图和对数坐标等不同图形,并对不同图形加标注说明。

解:程序如下

```
|>> t=-p1:p1/10:p1;
y=1./(1+exp(-t));
subplot(2,2,1);
bar(t,y);
title('条形图(t,y)');
axis([-pi,pi,0,1]);
subplot(2,2,2);
stairs(t,y,'b');
title('阶梯图(t,y)');
axis([-pi,pi,0,1]);
subplot(2,2,3); stem(t,y,'k');
title('杆图(t,y)');
axis([-pi,pi,0,1]);
subplot(2,2,4);
loglog(t,y,'y');
title('对数坐标图(t,y)')
```


3. 分别用 plot 和 fplot 函数绘制 $y=\sin(1/x)$ 的曲线,分析两曲线的差别。解:程序如下

```
>> x=-2:0.01:2;
y=sin(1./x);
subplot(2,1,1);
plot(x,y);
subplot(2,1,2);
fplot('sin(1./x)',[-2,2],1e-4);
```

结果如下:

3.2 三维曲线绘图

1、基本命令:

plot3(x,y,z,'s') % s 为线色、线形、点形

plot3(x1,y1,z1,'s1',.... xn,yn,zn,'sn')

例:

t=-2*pi:0.01:2*pi;

x=2*cos(t);y=2*sin(t);z=3*t; %(准备数据)

plot3(x,y,z) % (用 plot3 作图)

2、三维曲面作图

(1)产生三维数据

在 MATLAB 中,利用 meshgrid 函数产生平面区域内的网格坐标矩阵。其格式为:

x=a:d1:b; y=c:d2:d;

[X, Y] = meshgrid(x, y);

语句执行后,矩阵 X 的每一行都是向量 x,行数等于向量 y 的元素的个数,矩阵 Y 的每一列都是向量 y,列数等于向量 x 的元素的个数。

(2)绘制三维曲面的函数

surf 函数和 mesh 函数的调用格式为:

mesh(x, y, z, c): 画网格曲面,将数据点在空间中描出,并连成网格。

surf(x, y, z, c): 画完整曲面,将数据点所表示曲面画出。

一般情况下,x, y, z 是维数相同的矩阵。x, y 是网格坐标矩阵,z 是网格点上的高度矩阵,c 用于指定在不同高度下的颜色范围。

例 绘制三维曲面图 z=sin(x+sin(y))-x/10。

程序如下:

[x,y]=meshgrid(0:0.25:4*pi); %在[0,4pi]×[0,4pi]区域生成网格坐标

 $z=\sin(x+\sin(y))-x/10;$

mesh(x, y, z);

axis([0 4*pi 0 4*pi -2.5 1]);

如下图:

(3) 其他:

- 1)基本三维命令的几个改进命令 meshc(带等高线的网线图) surfc(带等高线的曲面图)
- 2) 三维视图的可视效果控制 view, rotate3d, rotate
- 3) 图形的透视(hidden)

图形颜色的遮掩 shading。

hidden on 使图形消隐(透视)。

hidden off 关闭消隐(此为默认状态)。

shading 用于曲面颜色不匀时的均衡处理,使用格式为。

shading interp 对网眼内采用匀色处理,使色彩自然连贯。

shading faceted 对网眼颜色不做特殊处理,但加深网线黑色,这种格式有较强的表现力,是默认格式。

此外,还有带等高线的三维网格曲面函数 meshc 和带底座的三维网格曲面函数 meshz。其用法与 mesh 类似,不同的是 meshc 还在 xy 平面上绘制曲面在 z 轴方向的等高线,meshz 还在 xy 平面上绘制曲面的底座。

例 在 xy 平面内选择区域[-8,8]×[-8,8], 绘制 4 种三维曲面图。 程序如下:

```
 \begin{split} & [x,y] = \mathsf{meshgrid}(-8:0.5:8) \,; \\ & z = \sin(\mathsf{sqrt}(x.^2+y.^2))./\mathsf{sqrt}(x.^2+y.^2+\mathsf{eps}) \,; \\ & \mathsf{subplot}(2,2,1) \,; \\ & \mathsf{mesh}(x,y,z) \,; \\ & \mathsf{title}(\mathsf{'mesh}(x,y,z)') \\ & \mathsf{subplot}(2,2,2) \,; \\ & \mathsf{meshc}(x,y,z) \,; \end{split}
```

title('meshc(x, y, z)')
subplot(2, 2, 3);
meshz(x, y, z)
title('meshz(x, y, z)')
subplot(2, 2, 4);
surf(x, y, z);
title('surf(x, y, z)')
如下图:

三、实验题

1. 练习数据和符号的输入方式,将前面的命令在命令窗口中执行通过;

输入 $A=[7 \ 1 \ 5; \ 2 \ 5 \ 6; \ 3 \ 1 \ 5]$, $B=[1 \ 1 \ 1; \ 2 \ 2 \ 2; \ 3 \ 3]$, 在命令窗口中执行下列表达式,掌握其含义:

A(2, 3) A(:,2) A(3,:) A(:,1:2:3) A(:,3).*B(:,2) A(:,3)*B(2,:) A*B A.*B A^2 $A.^2$ B/A B./A

- 2. 输入 C=1:2:20, 则 C (i) 表示什么? 其中 i=1,2,3,...,10;
- 3. 编写程序, 计算 1+3+5+7+···+(2n+1)的值 (用 input 语句输入 n 值)。
- 4. 编写分段函数 f(x) = $\begin{cases} x & 0 \le x < 1 \\ 2-x & 1 \le x \le 2 \end{cases}$ 的函数文件,存放于文件 ff.m 中,计算出 0 其它

f(-3), $f(\sqrt{2})$, $f(\infty)$ 的值。

- 5. 绘制一个三维曲线 x=cosp, y=sinp, z=p。
- 6. 绘制函数z = sin(r)/r的三维曲面图,其中 $r = \sqrt{x^2 + y^2}$.