Output tables for 1xN statistical comparisons.

January 15, 2017

1 Average rankings of Friedman test

Average ranks obtained by each method in the Friedman test.

Ranking	3.0417	6.5833	5.6667	6.0833	6.25	7.8333	6.125	5.125	4.6667	3.625
Algorithm	SVRCC	MORF	1	MLS	MLSC	RC	ERC	ERCC	$_{ m SVR}$	SVRRC

Table 1: Average Rankings of the algorithms (Friedman)

Friedman statistic (distributed according to chi-square with 9 degrees of freedom): 48. P-value computed by Friedman Test: 0.

Iman and Davenport statistic (distributed according to F-distribution with 9 and 207 degrees of freedom): 6.571429. P-value computed by Iman and Daveport Test: 0.000000030808.

2 Post hoc comparison (Friedman)

P-values obtained in by applying post hoc methods over the results of Friedman procedure.

Holm	0.005556	0.00625	0.007143	0.008333	0.01	0.0125	0.016667	0.025	0.05
d	0	0.000051	0.000242	0.000419	0.000501	0.00267	0.017142	0.062991	0.504501
$z = (R_0 - R_i)/SE$	5.48241	4.052216	3.670831	3.527812	3.480138	3.003407	2.383656	1.859252	0.667424
algorithm	RC	MORF	MLSC	ERC	$_{ m MLS}$	$^{ m LS}$	ERCC	$_{ m SVR}$	SVRRC
i	6	∞	7	9	2	4	က	2	П

Table 2: Post Hoc comparison Table for $\alpha=0.05~(\text{FRIEDMAN})$

Bonferroni-Dunn's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.005556 . Holm's procedure rejects those hypotheses that have an unadjusted p-value ≤ 0.016667 .

3 Adjusted P-Values (Friedman)

Adjusted P-values obtained through the application of the post hoc methods (Friedman).

a	algorithm	unadjusted p	p_{Bonf}	p_{Holm}
	$^{ m RC}$	0	0	0
	MORF	0.000051	0.000457	0.000406
	MLSC	0.000242	0.002176	0.001692
	ERC	0.000419	0.003771	0.002514
	MLS	0.000501	0.00451	0.002514
	$_{ m SL}$	0.00267	0.024028	0.010679
	ERCC	0.017142	0.154274	0.051425
	SVR	0.062991	0.566923	0.125983
01	SVRRC	0.504501	4.540513	0.504501

Table 3: Adjusted p-values (FRIEDMAN) (I)

i algorithm unadjusted p	0	0.000051	0.000242	0.000419	0.000501	0.00267	0.017142	0.062991	0.504501
algorithm	RC	MORF	MTSC	ERC	MTS	$^{ m LS}$	ERCC	$_{ m SVR}$	SVRRC
	Н	2	33	4	ಬ	9	2	∞	6

Table 4: Adjusted p-values (FRIEDMAN) (II)