Due 4/23:

All (turn in): page 187, 2, 6, 14

Present (me): 10

Page 187

Exercise 2

Prove that A_n is normal in S_n .

WTS: $sA_ns^{-1} \subset A_n \ \forall \ s \in S_n$.

Let $s \in S_n$, $a \in A_n$.

Case:

i) $s \notin A_n$

Then s can be expressed as a product of k transpositions, where k is an odd integer.

Since s is odd, this means that s^{-1} is also odd.

Since sas⁻¹ is a product of 2k plus an even number of transpositions, sas⁻¹ is even.

Therefore, $sas^{-1} \in A_n \ \forall \ a \in A_n$.

Hence, $sA_ns^{-1} \subset A_n \ \forall \ s \notin A_n$ but still in S_n .

ii) $s \in A_n$

Then sas^{-1} is a product of 3k transpositions (where k is an even integer this time).

Thus, sas^{-1} is even.

Hence, $sA_ns^{-1} \subset A_n \ \forall \ s \in A_n$.

Hence, A_n is normal in S_n .

Exercise 6

Let $H = \{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R} \text{ and } ad \neq 0 \}.$

Is H a normal subgroup of $GL(2, \mathbb{R})$?

WTS: $gHg^{-1} \subset H \forall g \in GL(2, \mathbb{R})$

Let $g \in GL(2, \mathbb{R})$, $h \in H$.

$$\operatorname{ghg}^{-1} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \begin{bmatrix} h & -f \\ -g & e \end{bmatrix} \frac{1}{eh - fg} : \text{a, b, ... h} \in \mathbb{R} \text{ , eh } -\operatorname{fg} \neq 0 \text{ and ad } \neq 0.$$

We want to check if (first)(fourth) in our new matrix (ghg⁻¹) is 0 or not, and if the third entry is 0.

New matrix:

$$\begin{bmatrix} e(ah - bg) - fdg & g(ah - bg) - hdg \\ e(be - fa) + fde & g(be - fa) + hde \end{bmatrix}$$

This matrix is a member of H if

$$e(be - fa) + fde = ebe - efa + fde = 0$$

and

$$(e(ah - bg) - fdg)(g(be - fa) + hde) - (eah - ebg - fdg)(gbe - gfa + hde) \neq 0$$

I'm guessing no, since the the restrictions are less powerful than the number of options e, b, f, a, d, g, h, etc. There is probably a counter example.

Exercise 10

Let
$$H = \{(1), (12)(34)\}$$
 in A_4 .

a. Show that H is not normal in A_4 .

Well, recall that a subgroup H of G is normal iff $gH = Hg \forall g \in G$.

So all we need to do is find a $g \in A_4$ such that $gH \neq Hg$.

Notice: $(23) \in A_4$.

$$(23)H = \{(23)(1), (23)(12)(34)\} = \{(23), (1342)\}\$$

$$H(23) = \{(1)(23), (12)(34)(23)\} = \{(23), (1243)\}\$$

$$\{(23), (1342)\} \neq \{(23), (1243)\}$$

Thus, H is not normal in A₄

b. Referring to the multiplication table for A_4 in Table 5.1 on page 105, show that, although $\alpha_6 H = \alpha_7 H$ and $\alpha_9 H = \alpha_{11} H$, it is not true that $\alpha_6 \alpha_9 H = \alpha_7 \alpha_{11} H$.

$$\alpha_{6} = (243), \alpha_{7} = (142), \alpha_{9} = (132), \text{ and } \alpha_{11} = (234)$$

So, let's look at both:

$$\alpha_{6}\alpha_{9}H \leftarrow ? \longrightarrow \alpha_{7}\alpha_{11}H$$

$$(243)(132)H \leftarrow ? \longrightarrow (142)(234)H$$

$$\{(243)(132)(1),\ (243)(132)(12)(34)\} \ \longleftarrow \ ? \ \longrightarrow \{(142)(234)(1),\ (142)(234)(12)(34)\}$$

$$\{(12)(34), (1)\} \leftarrow ? \longrightarrow \{(14)(23), (13)(24)\}$$

Nope! Those sets are not equal, so it's not true that $\alpha_{6}\alpha_{9}H = \alpha_{7}\alpha_{11}H$.

c. Explain why this proves that the left cosets of H do not form a group under coset multiplication.

Because the order of the permutations results in different output permutation, which means that coset multiplication isn't associative. Therefore, it can't form a group.

Exercise 14

What is the order of the element $14 + \langle 8 \rangle$ in the factor group $\mathbb{Z}_{24}/\langle 8 \rangle$?

Well,

$$Z_{24} / \langle 8 \rangle = \{ z \langle 8 \rangle : z \in Z_{24} \}$$

$$\langle 8 \rangle = \{ e, 8, 16 \}$$

$$14 + \langle 8 \rangle = \{14, 22, 6\}$$

So, first of all, the group Z_{24} / $\langle 8 \rangle$ is going to be of order 8 since $\langle 8 \rangle$ has 8 left cosets.

Therefore, the order of $14 + \langle 8 \rangle$ cannot be larger than 8.

Let's let
$$k = |14 + \langle 8 \rangle|$$
.

By LaGrange's theorem, k divides $|Z_{24} / \langle 8 \rangle|$, since $\langle 14 + \langle 8 \rangle \rangle$ will generate a subgroup of $Z_{24} / \langle 8 \rangle$.

Since k clearly isn't 1, it can only be 2, 4, or 8.

$$14 + 14 + \langle 8 \rangle = 4 + \langle 8 \rangle = \{4, 12, 20\}$$
. Nope!

$$14 + 14 + 14 + 14 = 56 + \langle 8 \rangle = 8 + \langle 8 \rangle = 0 + \langle 8 \rangle = \langle e, 8, 16 \rangle.$$

So,
$$k = |14 + \langle 8 \rangle| = 4$$
.