```
In [1]: import pandas as pd
          import numpy as np
          import seaborn as sns
          from sklearn.metrics import accuracy_score
          import matplotlib.pyplot as plt
          from sklearn.decomposition import PCA
          from sklearn.preprocessing import StandardScaler
In [2]: | df_full=pd.read_csv("DataB.csv")
In [3]: df_full
Out[3]:
                Unnamed:
                          fea.1 fea.2 fea.3 fea.4 fea.5 fea.6 fea.7 fea.8 fea.9 ... fea.776 fea.777 f
             0
                        1
                             4
                                   4
                                         3
                                               0
                                                     0
                                                           4
                                                                 2
                                                                       1
                                                                            4 ...
                                                                                       1
                                                                                               3
             1
                        2
                             5
                                   1
                                         4
                                               3
                                                           3
                                                                 5
                                                                            4 ...
                                                                                       1
                                                                                               1
             2
                        3
                             1
                                         0
                                               3
                                                                0
                                                                       1
                                                                                               0
                                   3
                                                     1
                                                           1
                                                                            0 ...
                                                                                       3
             3
                             5
                                   3
                                         2
                                               3
                                                     5
                                                           2
                                                                 2
                                                                      0
                                                                                       5
                                                                                               4
                       5
                             3
                                   5
                                         3
                                               3
                                                           4
                                                                                               3
                    2062
          2061
                             4
                                   0
                                         3
                                               0
                                                     4
                                                           0
                                                                4
                                                                      3
                                                                            1 ...
                                                                                       0
                                                                                               1
          2062
                    2063
                                   2
                                         3
                                               4
                                                                       3
                                                                            3 ...
                                                                                               0
                                                                      5
          2063
                    2064
                             2
                                   3
                                         2
                                               3
                                                     1
                                                           2
                                                                5
                                                                            5 ...
                                                                                       5
                                                                                               1
                                                                            2 ...
          2064
                                   2
                                         4
                                               3
                                                     1
                                                                3
                                                                      2
                                                                                       3
                                                                                               2
                    2065
                             5
                                                           0
                                                                      2
                                                                                       2
          2065
                                   3
                                         1
                                               3
                                                     2
                                                           5
                                                                4
                                                                            2 ...
                                                                                               3
                    2066
                             3
         2066 rows × 786 columns
```

In [4]: | df_features=df_full.filter(regex=("fea.*"))

In [5]: df_features

Out[5]:

	fea.1	fea.2	fea.3	fea.4	fea.5	fea.6	fea.7	fea.8	fea.9	fea.10	 fea.775	fea.776	fea.7
0	4	4	3	0	0	4	2	1	4	1	 1	1	_
1	5	1	4	3	1	3	5	1	4	4	 3	1	
2	1	3	0	3	1	1	0	1	0	2	 4	3	
3	5	3	2	3	5	2	2	0	4	5	 4	5	
4	3	5	3	3	0	4	1	1	4	3	 1	1	
2061	4	0	3	0	4	0	4	3	1	2	 3	0	
2062	2	2	3	4	2	1	2	3	3	4	 1	4	
2063	2	3	2	3	1	2	5	5	5	0	 3	5	
2064	5	2	4	3	1	0	3	2	2	1	 2	3	
2065	3	3	1	3	2	5	4	2	2	4	 3	2	

2066 rows × 784 columns

In [6]: # df_features=StandardScaler().fit_transform(df_fea) # applying normalizati
 on
df_features=((df_fea-df_fea.mean())) #mean centered only .

localhost:8888/nbconvert/html/ass2-que2.ipynb?download=false

```
In [8]:
           df features znorm
Out[8]:
                       fea.1
                                  fea.2
                                             fea.3
                                                         fea.4
                                                                    fea.5
                                                                               fea.6
                                                                                           fea.7
                                                                                                      fea.8
               0
                   1.010077
                              0.966782
                                         0.359594
                                                    -1.668004
                                                              -1.638671
                                                                            1.007994
                                                                                      -0.324102
                                                                                                 -0.992537
                                                                                                             9.0
                   1.687176
                             -1.029924
                                          1.026488
                                                     0.336317
                                                               -0.976018
                                                                           0.340307
                                                                                       1.674690
                                                                                                 -0.992537
                                                                                                             9.0
                  -1.021220
                              0.301213
                                         -1.641090
                                                     0.336317
                                                               -0.976018
                                                                           -0.995067
                                                                                      -1.656630
                                                                                                 -0.992537
                                                                                                             -1.6
                   1.687176
               3
                              0.301213
                                         -0.307301
                                                     0.336317
                                                                1.674594
                                                                           -0.327380
                                                                                      -0.324102
                                                                                                 -1.648724
                                                                                                             9.0
                   0.332978
                              1.632350
                                          0.359594
                                                     0.336317
                                                               -1.638671
                                                                            1.007994
                                                                                      -0.990366
                                                                                                 -0.992537
                                                                                                             9.0
            2061
                             -1.695492
                                                    -1.668004
                                                                1.011941
                                                                           -1.662753
                                                                                       1.008426
                   1.010077
                                          0.359594
                                                                                                  0.319835
                                                                                                             -1.C
            2062
                  -0.344121
                              -0.364355
                                          0.359594
                                                     1.004424
                                                               -0.313365
                                                                           -0.995067
                                                                                      -0.324102
                                                                                                  0.319835
                                                                                                             0.3
           2063
                  -0.344121
                                                                                                             1.6
                              0.301213
                                         -0.307301
                                                     0.336317
                                                               -0.976018
                                                                           -0.327380
                                                                                       1.674690
                                                                                                  1.632208
            2064
                   1.687176
                             -0.364355
                                          1.026488
                                                     0.336317
                                                               -0.976018
                                                                          -1.662753
                                                                                       0.342162
                                                                                                 -0.336351
                                                                                                             -0.3
            2065
                   0.332978
                              0.301213
                                         -0.974195
                                                     0.336317
                                                               -0.313365
                                                                            1.675681
                                                                                       1.008426
                                                                                                 -0.336351
                                                                                                             -0.3
           2066 rows × 784 columns
```

1. In PCA, compute the eigenvectors and eigenvalues. Plot the scree plot and visually discuss which cut-off is good.

finding covariance matrix --> (xt.x). This will lead to d*d matrix along dimensions .

```
In [9]: covariance_matrix=np.cov(df_features_znorm.T) #.T otherwise use rowvar=Fals
   e. if true each row reperesnts a variable.
In [10]: covariance_matrix=pd.DataFrame(covariance_matrix)
```

```
In [11]:
          covariance matrix.head() # here 0 stands for fea1 and so on.calculated on f
           eature space xt.x .. 0 -->i.e feature 1's variance with d features in firs
           t column and so on ..
Out[11]:
                     0
                                        2
                                                                               6
                                                                                        7
                                                                     5
              1.000484 -0.020254
                                  0.028026 -0.027699 -0.003159
                                                              0.026745 -0.007159 -0.027586 -0.0077
           1 -0.020254
                       1.000484
                                  0.021676 -0.033306 -0.008296
                                                              0.047226
                                                                        0.001896
                                                                                  0.003229
                                                                                           -0.0355
             0.028026
                       0.021676
                                           0.000480 -0.022512 -0.009226 -0.016804
                                 1.000484
                                                                                 -0.005930
                                                                                            0.0165
           3 -0.027699 -0.033306
                                 0.000480
                                           1.000484
                                                     0.008106 -0.009736 -0.030415
                                                                                  0.009572
                                                                                            0.0073
             -0.003159 -0.008296 -0.022512
                                                                                           0.0005
                                           0.008106
                                                     1.000484 -0.047146 -0.050727
                                                                                  0.010993
          5 rows × 784 columns
```

finding the eigen vectors and corresponding eigen values and sorting them out in decreasing order.

```
values, vectors = np.linalg.eigh(covariance matrix) #eigh? changing the si
In [12]:
          gns. because its a symmetric cov matrix therefore eigh
In [13]:
         sorted values = np.argsort(values)[::-1] #sorting acc to index reverse retu
          rns array of indices of same shape.
In [14]:
         # sorted values
In [15]: # sorted values=pd.DataFrame(sorted values)
         # sorted_values.head()
         # sorted values=sorted values.to numpy()
          sorted vectors = vectors[:,sorted values] #sorting the vectors acc to same
In [16]:
          index
In [17]:
         values = values[sorted values] #sorting values
         values=pd.DataFrame(values)
In [18]:
         sorted vectors=pd.DataFrame(sorted vectors.T)
In [19]:
```

eigen values: the amount of variance explained by each of these vectors/axes/components.

In [20]: values Out[20]: 0

0 51.777319 **1** 28.800865 26.770911 23.930346 21.575039 779 0.008340 780 0.008145 781 0.007711 782 0.007438 783 0.007105

784 rows × 1 columns

Directions created with highest variance with respect to data in feature space. i.e first column highest e value will lead to first pc when projected with original data. eigen vectors: pricipal axes in feature space representing the maximum variance in data.

In [21]: sorted_vectors

Out[21]:

	0	1	2	3	4	5	6	7	
0	0.001979	0.001513	-0.000492	-0.003617	-0.000810	0.005896	-0.001439	-0.001285	-0.00
1	0.004933	-0.006404	-0.001566	0.000518	-0.002937	-0.003685	-0.008790	0.000596	-0.00
2	-0.000375	0.002587	-0.003725	0.000352	-0.001220	-0.000092	-0.002634	0.005623	-0.00
3	0.006154	0.002790	-0.003226	-0.002489	0.010679	0.000604	-0.001788	-0.003557	-0.00
4	-0.003251	0.003767	0.001384	-0.000363	-0.001331	0.008793	0.002887	0.007900	-0.00
779	0.000990	0.002825	0.002969	0.007797	0.005491	0.001475	0.001826	0.004143	-0.00
780	-0.003076	-0.002147	0.000022	0.002503	0.006257	-0.003685	0.000386	0.003653	-0.00
781	0.002942	0.001887	0.008383	-0.001179	-0.004695	-0.002205	-0.002482	-0.000407	-0.00
782	-0.000692	0.004045	0.000907	0.004380	0.003882	-0.000384	-0.000257	0.000715	-0.00
783	0.001785	0.004795	-0.008164	0.004050	-0.004779	-0.001970	-0.007182	0.003580	0.00
784 r	ows × 784	columns							

```
In [22]: # # can also be done simply by::::::::::

# pca=PCA()
# pca=pca.fit(df_features_znorm) #not transform, it will make pc's
# pca_eigen_vectors=pca.components_ #defining the direction of the vector
# pca_eigen_vectors_df=pd.DataFrame(pca_eigen_vectors)
# # pca_eigen_vectors_df
# pca_eigen_values=pca.explained_variance_ #defining the length of the vect
or
# pca_eigen_values_df=pd.DataFrame(pca_eigen_values)
# pca_eigen_vectors_df
# pca_eigen_vectors_df
# pca_exp_var_ratio=pca.explained_variance_ratio_
# #pca_exp_var_ratio=pd.DataFrame(pca_exp_var_ratio)
# # pca_exp_var_ratio
```

Percentage of variance explained by each of the selected components. Sum is 1 if all the components are taken.

```
In [23]: # count_values=df_features_znorm.shape[0]
    sum_values=values.sum()
    explained_variance_proportion_variation_around_origin_for_each_pc=values/su
    m_values
```

In [24]: explained_variance_proportion_variation_around_origin_for_each_pc[0:15]

Out[24]:

0

- 0.066011
- **1** 0.036718
- 2 0.034130
- 3 0.030509
- **4** 0.027506
- **5** 0.020263
- **6** 0.017672
- **7** 0.015187
- **8** 0.013592
- 9 0.012524
- **10** 0.011619
- **11** 0.010566
- **12** 0.009524
- **13** 0.009162
- **14** 0.008947

Cumulative explained variance

```
In [26]: # cum_exp_variance=pd.DataFrame(cum_exp_variance)
```

In [27]: cum_exp_variance*100

```
Out[27]: array([
                    6.60105329,
                                  10.27285485,
                                                 13.68585902,
                                                                16.73672168,
                                                 23.28081102,
                   19.48730796,
                                  21.51356207,
                                                                24.79947466,
                   26.15869123,
                                  27.41109276,
                                                 28.57294545,
                                                                29.62957132,
                   30.58194441,
                                  31.49819163,
                                                 32.39293912,
                                                                33.25084497,
                   34.03767231,
                                  34.80647794,
                                                 35.56786792,
                                                                36.30040669,
                   37.01006555,
                                  37.69096736,
                                                 38.36793512,
                                                                39.01461745,
                   39.6395954 ,
                                  40.24393637,
                                                 40.81259078,
                                                                41.3784849 ,
                   41.9362798 ,
                                  42.4780984 ,
                                                 43.013217
                                                                43.53999149,
                  44.05080072,
                                  44.54795772,
                                                 45.03509904,
                                                                45.51420603,
                  45.98602757,
                                  46.44147372,
                                                 46.89262097,
                                                                47.33578555,
                  47.76652109,
                                  48.18432108,
                                                 48.5917961,
                                                                48.99818359,
                   49.39337824,
                                  49.77666856,
                                                 50.153614
                                                                50.52793941,
                   50.89085986,
                                  51.2484551 ,
                                                 51.60255969,
                                                                51.95132732,
                   52.29945225,
                                  52.63606688,
                                                 52.96784744,
                                                                53.29492938,
                   53.61146856,
                                  53.92578902,
                                                 54.23668959,
                                                                54.54399805,
                   54.84819088,
                                  55.1470685 ,
                                                 55.44169147,
                                                                55.72964665,
                   56.01394994,
                                  56.2942943,
                                                 56.56888597,
                                                                56.84244417,
                                                 57.6340219 ,
                   57.10930867,
                                  57.37234371,
                                                                57.8897467
                   58.14085033,
                                  58.39029526,
                                                 58.63584891,
                                                                58.87860541,
                                                                59.81858321,
                   59.11837117,
                                  59.3533717 ,
                                                 59.58701097,
                   60.04920481,
                                  60.27873367,
                                                 60.50712238,
                                                                60.73382614,
                   60.95737106,
                                  61.17973867,
                                                 61.40059536,
                                                                61.61949857,
                   61.83567062,
                                  62.04941948,
                                                 62.26258793,
                                                                62.47474757,
                   62.6854854 ,
                                  62.89534271,
                                                 63.10271449,
                                                                63.3080022 ,
                   63.51163423,
                                  63.71475494,
                                                 63.91640257,
                                                                64.11633661,
                   64.31495681,
                                  64.51339294,
                                                 64.71116292,
                                                                64.90683161,
                   65.10093512,
                                  65.29452018,
                                                 65.48642558,
                                                                65.67817339,
                   65.86919425,
                                  66.05926057,
                                                 66.24808191,
                                                                66.43637397,
                   66.62396686,
                                  66.81092352,
                                                 66.99573861,
                                                                67.17996666,
                   67.36355342,
                                  67.54548714,
                                                 67.72684508,
                                                                67.90738935,
                   68.08693536,
                                  68.26570609,
                                                 68.44364304,
                                                                68.62069975,
                   68.79651357,
                                  68.97218183,
                                                 69.14630713,
                                                                69.32016691,
                   69.49305318,
                                  69.66489828,
                                                 69.83559318,
                                                                70.00516892,
                   70.17447941,
                                  70.3431055 ,
                                                 70.51129696,
                                                                70.67787884,
                   70.84409704,
                                  71.00970677,
                                                 71.17506123,
                                                                71.33981609,
                   71.50340702,
                                                                71.99007694,
                                  71.66642701,
                                                 71.82873158,
                   72.15046509,
                                  72.31037254,
                                                 72.46982151,
                                                                72.62860895,
                   72.78680141,
                                  72.94371053,
                                                 73.10039769,
                                                                73.25624864,
                   73.41139072,
                                                 73.71922896,
                                  73.5656817 ,
                                                                73.87182627,
                   74.02432259,
                                  74.17598052,
                                                 74.32699523,
                                                                74.47733797,
                   74.62732019,
                                  74.77610115,
                                                 74.92408499,
                                                                75.07176306,
                                  75.36573554,
                   75.21888068,
                                                 75.51156323,
                                                                75.65698922,
                                  75.94631585,
                                                 76.09055714,
                   75.80201126,
                                                                76.23388147,
                   76.37644994,
                                  76.51866267,
                                                 76.66030219,
                                                                76.80071755,
                                                 77.21789477,
                                                                77.3560971
                   76.94056172,
                                  77.07951527,
                   77.49324141,
                                  77.62995958,
                                                 77.7664295 ,
                                                                77.90201244,
                   78.03704412,
                                  78.17149783,
                                                 78.30569853,
                                                                78.43943957,
                   78.5727319 ,
                                  78.70563226,
                                                 78.83764962,
                                                                78.96903917,
                   79.10008971,
                                  79.23089921,
                                                 79.36101824,
                                                                79.49096404,
                   79.62023763,
                                  79.74850166,
                                                 79.87603547,
                                                                80.00317302,
                   80.13019061,
                                  80.25672409,
                                                 80.38282987,
                                                                80.50874766,
                   80.63437125,
                                  80.75957691,
                                                 80.88369261,
                                                                81.00741901,
                   81.13089893,
                                  81.25355114,
                                                 81.37584887,
                                                                81.49756821,
                                  81.73929474,
                                                 81.85974228,
                                                                81.97978019,
                   81.61854326,
                   82.0991381 ,
                                  82.21815286,
                                                 82.33635244,
                                                                82.45353253,
                   82.57022565,
                                  82.68619997,
                                                 82.80176751,
                                                                82.91705833,
                   83.03192255,
                                  83.14614663,
                                                 83.26005107,
                                                                83.37315636,
```

```
83.48613126,
               83.59852591,
                              83.71014922,
                                             83.82143834,
83.93211258,
               84.04258045,
                              84.15257371,
                                             84.26180421,
84.37095625,
               84.47981092,
                              84.58806642,
                                             84.69600288,
84.80310753,
               84.90918133,
                              85.01497162,
                                             85.12068913,
85.22585615,
               85.3307343 ,
                              85.43526778,
                                             85.53932369,
85.64239709,
               85.74532071,
                              85.84811792,
                                             85.94982811,
86.05150566,
               86.15217888,
                              86.25267332,
                                             86.35282237,
86.45272946,
               86.55208221,
                              86.6507616 ,
                                             86.74852505,
86.84608075,
               86.94312568,
                              87.03949237,
                                             87.13547534,
               87.3267161 ,
87.23119328,
                              87.42152985,
                                             87.51587933,
87.6097583 ,
               87.70335205,
                              87.79638788,
                                             87.88903046,
87.98153079,
               88.07349071,
                              88.16457981,
                                             88.25563879,
               88.43621138,
                              88.52592741,
88.34610576,
                                             88.61548241,
88.70438268,
               88.79257661,
                              88.88060897,
                                             88.96820973,
89.05531093,
               89.14115364,
                              89.22683461,
                                             89.312359
89.39745228,
               89.48234758,
                              89.56694356,
                                             89.65098848,
89.73468336,
               89.81803003,
                              89.90085491,
                                             89.98315141,
                                             90.30780586,
90.06495166,
               90.14642704,
                              90.22730467,
90.38788732,
               90.4679329 ,
                              90.54728262,
                                             90.62632098,
90.70482237,
               90.78283624,
                              90.86022601,
                                             90.93749271,
91.01399125,
               91.09013979,
                              91.16598747,
                                             91.24150392,
91.3167636 ,
               91.39151304,
                              91.46563591,
                                             91.53918182,
91.61263027,
               91.68565312,
                              91.7582556 ,
                                             91.83035761,
91.90185386,
               91.97313837,
                              92.04397181,
                                             92.114625
92.18421956,
               92.25354049,
                              92.3226053 ,
                                             92.39136694,
92.4590618 ,
               92.52664462,
                              92.59372881,
                                             92.66039286,
92.72683016,
               92.7928936 ,
                              92.85870385,
                                             92.92352891,
92.98792764,
               93.05190308,
                              93.11511316,
                                             93.17807376,
93.24017175,
               93.30220416,
                              93.3636754,
                                             93.42449389,
93.48493486,
               93.54470048,
                              93.60429891,
                                             93.66313551,
93.72161299,
               93.77954362,
                              93.83735512,
                                             93.89436789,
93.95123364,
               94.00782769,
                              94.06390695,
                                             94.11953682,
94.17454331,
               94.22871222,
                              94.28279701,
                                             94.33662711,
94.38960971,
               94.44220586,
                              94.49450629,
                                             94.54652507,
94.59735182,
               94.64797985,
                              94.69769226,
                                             94.74723965,
               94.84470231,
                              94.89299281,
                                             94.94100165,
94.79622545,
94.98850945,
               95.03557409,
                              95.08212845,
                                             95.12842492,
95.17417206,
               95.21959091,
                              95.26473558,
                                             95.30924981,
95.35351329,
               95.39719838,
                              95.44038214,
                                             95.48316839,
95.52581524,
               95.56775698,
                              95.60943007,
                                             95.65057078,
95.69137936,
               95.73190526,
                              95.77195769,
                                             95.81177266,
               95.89026559,
                              95.92862198,
95.85125827,
                                             95.96663185,
               96.04152529,
                              96.07847764,
96.00424522,
                                             96.11500179,
96.15135477,
               96.18729948,
                              96.22279359,
                                             96.25808387,
96.29320891,
               96.32780888,
                              96.36184547,
                                             96.39566219,
96.42894834,
               96.46203513,
                              96.49454932,
                                             96.5265297
96.5583624 ,
               96.58995804,
                              96.62131545,
                                             96.6520862
               96.71309793,
                              96.74316967,
96.68274495,
                                             96.7729336
96.80245389,
               96.83185642,
                              96.86104554,
                                             96.88994249,
96.91864697,
               96.94684952,
                              96.97476789,
                                             97.00239386,
                              97.0839273 ,
97.02986465,
               97.05698155,
                                             97.11056379,
97.13698938,
               97.16325483,
                              97.18917218,
                                             97.21462049,
97.23992352,
                              97.28986156,
                                             97.31446401,
               97.26514933,
97.3389009 ,
               97.36293393,
                              97.3868129 ,
                                             97.4104683 ,
97.43386073,
               97.45707539,
                              97.48014595,
                                             97.50291964,
                              97.57000918,
97.5255678 ,
               97.54796996,
                                             97.5919721 ,
97.61381501,
               97.63530352,
                              97.65664314,
                                             97.67781748,
```

```
97.74017151,
97.69872585,
               97.71950145,
                                             97.76081553,
97.78106006,
               97.80088895,
                              97.82065957,
                                             97.84012506,
97.85934183,
               97.87850415,
                              97.89729365,
                                             97.91601155,
97.93451662,
               97.95292609,
                              97.971221
                                             97.98931178,
98.0072295 ,
               98.0249871 ,
                              98.04260436,
                                             98.05990556,
98.07711585,
               98.0942864 ,
                              98.11132128,
                                             98.12808828,
98.14480354,
               98.16130487,
                              98.17775934,
                                             98.19410999,
98.21025073,
               98.22628521,
                              98.24219202,
                                             98.25795448,
98.27339292,
               98.28868041,
                              98.30394481,
                                             98.31917679,
98.33430012,
               98.34927692,
                              98.36408204,
                                             98.37881591,
98.39335906,
               98.40784631,
                              98.42217738,
                                             98.43630768,
98.45024185,
               98.46413972,
                              98.4778477 ,
                                             98.49153748,
98.50510618,
               98.51857347,
                              98.53187627,
                                             98.54512187,
98.55821708,
               98.57121058,
                              98.58412028,
                                             98.59687131,
98.6095682 ,
               98.62214947,
                              98.63454987,
                                             98.64678565,
98.6589859 ,
               98.67117648,
                              98.68324896,
                                             98.69521156,
98.70701875,
               98.71879355,
                              98.73047345,
                                             98.74203536,
98.75344601,
               98.76472079,
                              98.77590417,
                                             98.78703274,
98.79812488,
               98.80914888,
                              98.82010748,
                                             98.83081679,
98.84150442,
                              98.86256317,
                                             98.87300474,
               98.85205651,
98.88337156,
               98.89359853,
                              98.90379126,
                                             98.91387187,
98.92394505,
               98.9338315 ,
                              98.94371491,
                                             98.95346217,
98.96316264,
               98.97280588,
                              98.98239927,
                                             98.99188594,
                              99.0199978,
99.0013173 ,
               99.01068443,
                                             99.02930491,
99.03849546,
               99.04760031,
                              99.0566537 ,
                                             99.06559931,
99.07447689,
               99.08329309,
                              99.09204521,
                                             99.10077588,
99.10942322,
               99.11791105,
                              99.12637831,
                                             99.13472485,
99.14304107,
               99.15131912,
                              99.15947975,
                                             99.16761579,
99.17571336,
               99.1837393 ,
                              99.19170553,
                                             99.19963292,
99.20744427,
               99.21522681,
                              99.22296711,
                                             99.23066942,
                              99.25334143,
99.23828554,
               99.24582993,
                                             99.2607881 ,
99.26819624,
               99.27556146,
                              99.28291144,
                                             99.2901581 ,
99.29732638,
               99.30447173,
                              99.31154731,
                                             99.31859652,
99.32557812,
               99.33249823,
                              99.33938697,
                                             99.34620976,
99.35301235,
               99.35973698,
                              99.36635489,
                                             99.37295094,
99.37946828,
               99.38597017,
                              99.39241583,
                                             99.3988267
99.40518336,
               99.41147395,
                              99.41773857,
                                             99.4239522
99.43012148,
               99.4362694 ,
                              99.44238385,
                                             99.44847689,
99.4544365 ,
               99.46037862,
                              99.46626983,
                                             99.47207949,
99.4778837 ,
               99.48364007,
                              99.48934982,
                                             99.49503345,
99.50064515,
               99.50622716,
                              99.51175568,
                                             99.51723333,
                              99.53348675,
99.52269087,
               99.528124
                                             99.53882917,
               99.54941027,
                              99.55459632,
                                             99.55977062,
99.54414562,
99.56493601,
               99.57003887,
                              99.57512822,
                                             99.58016876,
                                             99.59960306,
99.585079
               99.5899511 ,
                              99.59479471,
99.60438877,
               99.6091498 ,
                              99.61389599,
                                             99.6185777 ,
               99.62779071,
                              99.63235492,
                                             99.6369083
99.6231997 ,
               99.64589854,
                              99.65031904,
                                             99.6547039
99.6414162 ,
99.65906464,
               99.66338037,
                              99.6676674 ,
                                             99.67194965,
99.67618793,
               99.68040582,
                              99.68456449,
                                             99.68871006,
99.69283134,
               99.69692462,
                              99.70098056,
                                             99.70499253,
99.70896912,
               99.71289073,
                              99.71679487,
                                             99.72068232,
99.72453227,
               99.7283155 ,
                              99.73209201,
                                             99.73585697,
99.73955554,
               99.743233
                              99.74687229,
                                             99.7504692 ,
                              99.7611598,
99.75405575,
               99.75761967,
                                             99.76467362,
                              99.77509351,
99.76817871,
               99.77165906,
                                             99.77852148,
99.78190668,
               99.78526379,
                              99.7886066 ,
                                             99.79191114,
```

```
99.7951858 ,
               99.79842998,
                             99.80166087,
                                            99.80484423,
99.80800273,
              99.8111483 ,
                             99.81422472,
                                            99.81728291,
99.82032315,
              99.82333948,
                             99.82633227,
                                            99.82927887,
99.83221812,
              99.83512711,
                             99.83800651,
                                            99.84087889,
99.84373882,
              99.84654962,
                             99.8493125 ,
                                            99.85206791,
                             99.86015008,
99.85477974,
               99.8574717 ,
                                            99.86278878,
99.86541396,
              99.8679983 ,
                             99.8705662 ,
                                            99.87312481,
99.87564887,
              99.8781338 ,
                             99.88059805,
                                            99.88304193,
99.88547326,
                             99.89029055,
                                            99.89265077,
              99.88788661,
99.89500588,
              99.89734368,
                             99.89963464,
                                            99.90191728,
              99.90644468,
99.90418871,
                             99.90866016,
                                            99.9108612 ,
99.91304955,
              99.91519059,
                             99.9173216 ,
                                            99.91943948,
              99.92360601,
                             99.92565258,
                                            99.92768446,
99.92152476,
99.92969349,
              99.9316899 ,
                             99.93366352,
                                            99.93561932,
99.93754364,
              99.93944212,
                             99.94132128,
                                            99.94317424,
99.94502218,
              99.94684159,
                             99.94864469,
                                            99.95042351,
99.9521666 ,
              99.95388993,
                             99.95559857,
                                            99.95729477,
99.9589592 ,
                             99.96224141,
                                            99.96386318,
              99.96060485,
99.96547168,
                             99.96861482,
                                            99.97015474,
              99.96705543,
99.9716634 ,
              99.97314294,
                             99.97461149,
                                            99.97606013,
99.97749278,
              99.9789158,
                             99.98031096,
                                            99.98168949,
99.98304613,
              99.9843396 ,
                             99.98562388,
                                            99.98690288,
                                            99.99170908,
                             99.99054914,
99.98813939,
              99.98936182,
              99.99397233,
                             99.99506115,
                                            99.99612445,
99.9928478 ,
99.99716284,
              99.99814597,
                             99.99909423, 100.
                                                        ])
```

Explained variance % by each Principal component around origin.

```
In [28]: #sing_vals = np.arange(num_vars) + 1
    plt.plot(explained_variance_proportion_variation_around_origin_for_each_pc*
    100, 'r-', linewidth=1)
    plt.title('Scree Plot')
    plt.xlabel('Principal Components')
    plt.ylabel('Explained variance percentage')
    plt.legend(['Explained variance % by each pc around origin'], loc='best')
```

Out[28]: <matplotlib.legend.Legend at 0x1edbe8e6548>

Cumulative Explained variance % by each Principal component around origin.

```
In [29]: plt.plot(cum_exp_variance*100)
    plt.title('Scree Plot')
    plt.xlabel('Principal Components')
    plt.ylabel('cumulative explained_variance')
    plt.legend(['cum Variation explained by PC'], loc='best')
```

Out[29]: <matplotlib.legend.Legend at 0x1edbff1d888>

Eigen value/Amount of variance explained by each principal component.

```
In [30]: plt.figure(figsize=(20,5))
    val=values[0]
    j=[]
    for i in range(1,25):
        j.append('PC'+str(i))
    p=pd.DataFrame(j,columns=['1'])
    val=values[:25]
    bar_df=pd.concat([val,p],axis=1)

    sns.barplot(x='1',y=val[0],data=bar_df)
    plt.xlabel('Principal Components')
    plt.ylabel('Eigen values')
```

Out[30]: Text(0, 0.5, 'Eigen values')

Eigen value scree plot

```
In [31]: plt.plot(values, linewidth=2, markersize=12)
   plt.xlabel('Principal Components')
   plt.ylabel('Eigen values')
   plt.title('EIgen Value scree plot')
```

Out[31]: Text(0.5, 1.0, 'EIgen Value scree plot')

Checking lambda>1 for how many values.

Discussing Good cut-off

1. Scree Plots: Criteria-1

a)Eigen value scree plot-->

On visualizing the scree plot and using the elbow method to determine the number of principal components, we see that there is a big drop when PC=50(approximately). If we choose these number of components then the variance explained by our model is roughly around 40% which will be a drastic model. If we choose the point where the line becomes constant, then the number of components would be approximately 200 which suggests a good variance of around 80%.

b)Explained variance % scree plot-->

Same is the case with this plot as we are just finding the variance % explained by each P.C-->eigen.val/sum(eigen.val).

RESULT: we choose Number of components=200 (approximately)

2. Eigen value>1: Criteria-2

If we choose the principal components with eigen values i.e variance explained by each principal component to be more than 1, then we end up taking exactly 199 components which will let our model explain the variance of around 80%. shown in the above cell.

RESULT: we choose Number of components=199 or 200.

3. Cumulative explained variance: Criteria-3

If we want to have our model explain 80% of the total variance, then we simply analyze the Cumulative plot and find out that around 200 components will explain this much variance. Also, if we look the values of our variable "cum_exp_variance", it suggests 80% variance explained at No_components=200.

RESULT: we choose Number of components=200.

Citations:

- 1. https://towardsdatascience.com/let-us-understand-the-correlation-matrix-and-covariance-matrix-d42e6b643c22
- 2. https://ro-che.info/articles/2017-12-11-pca-explained-variance
- 3.https://stats.stackexchange.com/questions/22569/pca-and-proportion-of-variance-explained

Part 2: subplots::=>

```
In [35]: pca=PCA(20)
         pca transformed1=pca.fit transform(df features znorm)
In [36]: pca transformed1
Out[36]: array([[ 9.97069223, -6.18172062, -4.99286135, ..., -0.69373135,
                 -1.1601097 , 1.45042368],
                [11.41599975, -6.94158881, -5.06303443, ..., 0.17989547,
                 -0.51211917, 0.16463441],
                [3.69011914, -4.69310042, -2.90865912, ..., 3.14749288,
                  1.07171358, 4.42777009],
                . . . ,
                [-0.34942149, -0.9336773]
                                           8.10744327, ..., -1.66920137,
                 -1.20916765, -0.79560088],
                [-3.11526322, -2.09047048, 6.27252244, ..., -1.07402893,
                 -0.33641313, -1.47238565],
                [-5.64409377, 0.24616446, 4.14018274, ..., 3.426435 ,
                  0.59625527, 3.08214847]])
 In [ ]:
In [37]:
         final data components=pd.DataFrame(pca transformed1)
In [38]:
        # pca transformed1.components
         final data components=pd.concat([final data components, df full[['gnd']]],
In [39]:
         axis = 1)
```

In [40]: final_data_components

Out[40]:

	0	1	2	3	4	5	6	7	
0	9.970692	-6.181721	-4.992861	-4.394894	-2.777859	-2.844865	1.276250	1.465378	6.8
1	11.416000	-6.941589	-5.063034	-4.242167	-1.844953	-0.146294	1.683077	2.973201	6.1
2	3.690119	-4.693100	-2.908659	3.935115	-6.811775	-3.226263	3.663473	5.407368	3.4
3	7.312408	-6.042890	-3.648012	3.506946	-4.562449	-5.523816	3.972068	4.890343	6.8
4	18.061520	-1.862430	-4.038829	-5.871645	-7.322167	4.442875	-2.186249	2.859818	2.
2061	-1.917926	-0.397486	7.951742	0.162117	-2.170054	-2.309860	-3.861855	-3.854849	1.:
2062	0.525752	2.646708	9.095311	0.969307	-2.257414	4.548021	-1.437043	-3.040765	-1.9
2063	-0.349421	-0.933677	8.107443	0.824251	-2.814456	-2.822887	-3.678484	-3.033047	-1.
2064	-3.115263	-2.090470	6.272522	-1.529840	-0.036311	-2.586613	-2.099681	-0.086586	۱.،
2065	-5.644094	0.246164	4.140183	2.238916	-2.477063	-3.198740	2.975437	3.480728	-2.8
0000	04								

```
In [41]:
             fig, axs = plt.subplots(5,4,figsize=(25,25))
              k=0
             fig.delaxes(axs[4][3])
             for i in range(0,axs.shape[0]):
                   for j in range(0,axs.shape[1]):
                         sns.scatterplot(final_data_components[k], final_data_components[k+1
              ],hue=final_data_components.gnd,legend='full',ax=axs[i,j],palette=['green',
              'blue','yellow','orange','pink'])
                         axs[i,j].set(xlabel='Pricipal Component-'+str(k+1),ylabel='Principa
             1 Component-'+str(k+2))
                         axs[i,j].set_title('Pricipal Component-'+str(k+1)+'vs Pricipal Comp
             onent-'+str(k+2))
                         if i==4 and j==2:
                               break;
                         k=k+1;
                  Pricipal Component-1
Pricipal Component-5vs Pricipal Compon
                                                                         Pricipal Component-3
Pricipal Component-7vs Pricipal Component-8
                                                                                                           Pricipal Component-4
                                                                         Pricipal Component-7
Pricipal Component-11vs Pricipal Component-12
                                                                                                          Pricipal Component-12
onent-16vs Pricipal Component-17
                                                                        Pricipal Component-15
Pricipal Component-19vs Pricipal Component-20
```

```
explained_variance_proportion_variation_around_origin_for_each_pc[0:15]
Out[42]:
                    0
            0 0.066011
            1 0.036718
            2 0.034130
            3 0.030509
            4 0.027506
            5 0.020263
            6 0.017672
            7 0.015187
            8 0.013592
            9 0.012524
           10 0.011619
           11 0.010566
           12 0.009524
           13 0.009162
           14 0.008947
          corn1_g=final_data_components[[0,1,2,3,4,5,6,7,8,'gnd']].corr()
In [43]:
In [44]:
          cor=corn1_g['gnd']
In [45]:
          print("Correlation with class label::\n\n")
          Correlation with class label::
Out[45]: 0
                -0.194708
                 0.156830
          1
          2
                 0.505208
          3
                 0.398520
          4
                -0.251002
          5
                 0.095011
          6
                -0.001216
          7
                -0.111017
          8
                -0.240323
                 1.000000
          gnd
          Name: gnd, dtype: float64
```

ANALYSIS: Dimensional cutoff

PC1 VS PC2::=>

- 1. Visually ::=>Variation between the data points is maximum. There is very less overlapping.
- 2. Amount of variance explained by each principal component is highest in case of pc1 and pc2 and the highest eigen values as well which is obvious.
- 3. Var_explained(PC1):6.6%, Var_explained(PC2):3.6%. Total explained variance by both the PC's: around 10%.
- 4. Although separation between the classes is not a parameter which PCA considers, but I have found out that correlation between the class and the PC1 is 0.19, and the corr between PC2 and class is 0.15.

PC2 VS PC3::=>

- 1. Visually ::=>Variation between the data points is high with class 0 getting overlapped.
- 2. Amount of variance explained by each principal component in case of pc2 and pc3 is fair enough(Not too low).
- 3. Var_explained(PC2):3.36%, Var_explained(PC3):3.4%. Total explained variance by both the PC's: around 6.76%.
- 4. Although separation between the classes is not a parameter which PCA considers, but correlation between the class and the PC2 is 0.09, and the corr between PC3 and class is 0.0012.

PC5 VS PC6::=>

- 1. Visually ::=>Variation between the data points is not too high with class 1 getting overlapped.
- 2. Amount of variance explained by each principal component in case of pc5 and pc6 is around 5%.
- 3. Var_explained(PC5):2.70%, Var_explained(PC6):2.0%. Total explained variance by both the PC's: around 4.70%.
- 4. Correlation between the class and the PC5 is 0.25, and the corr between PC6 and class is 0.09 which is good enough and same as that provided by pc1 and pc2.

PC6 VS PC7::=>

- 1. Visually ::=>Variation between the data points is low with class 0 getting distored and spreaded.
- 2. Amount of variance explained by each principal component in case of pc6 and pc7 is around 3.7%.
- 3. Var_explained(PC6):2.0%, Var_explained(PC7):1.7%. Total explained variance by both the PC's: around 3.70%.

4. Correlation between the class and the PC6 is 0.09, and the corr between PC7 and class is 0.0012 which is too low.

RESULT:==>

- 1.On comparing all the parameters (Visual cutoff, class separation, explained variance, eigen values, correlation between the component and the class), we have concluded that till PC5 and PC6, there is a good separability. After which explained variance and all the other parameters start to deteriorate as well as we can see from the plots. PC7 and PC8 overlaps the classes 0,2,3 with explained variance of only 3.2%
- 2. On comparing with the previous analysis, we find out that that if we want to achieve a variance of around 80% then we need to have 200 components approximately. And the total variance explained by the 6 components is around 21%. ALI the other components after this, comtribute very little to the explained variance which can be seen by our variable "cum_exp_variance".
- 3. PCA 1 vs PCA 2 AND PCA 5 vs PCA 6 => Explain the results versus the known classes and compare between the two plots.

```
In [46]: fig2=plt.figure(figsize=(12,12), dpi= 80, facecolor='w', edgecolor='k')
    sns.scatterplot(final_data_components[0],final_data_components[1],hue=final
    _data_components.gnd,legend='full',palette=['green','blue','yellow','orang
    e','pink'])
    plt.xlabel("PRINCIPAL COMPONENT 1 ")
    plt.ylabel("PRINCIPAL COMPONENT 2 ")
    plt.title("PCA1 VS PCA2")
```

Out[46]: Text(0.5, 1.0, 'PCA1 VS PCA2')


```
In [47]: #2.2.1.3
    fig3=plt.figure(figsize=(12,12), dpi= 80, facecolor='w', edgecolor='k')
    sns.scatterplot(final_data_components[4],final_data_components[5],hue=final
    _data_components.gnd,legend='full',palette=['green','blue','yellow','orang
    e','pink'])
    plt.xlabel("PRINCIPAL COMPONENT 5 ")
    plt.ylabel("PRINCIPAL COMPONENT 6 ")
    plt.title("PCA5 VS PCA6")
```

Out[47]: Text(0.5, 1.0, 'PCA5 VS PCA6')

ANALYSIS ::=>

PC1 VS PC2:: RESULTS VERSUS KNOWN CLASSES=>

1. Visually ::=>

1.class 0: There is no cluster being formed for class 0 and there is no overlapping as well.

2.class 1: It is clearly custered and well separated.

3.class [2,3,4]: These classes are getting overlapped with each other.

RESULT :=>The amount of variance explained by each PC is maximum as compared to other components(Var_explained(PC1):6.6%, Var_explained(PC2):3.6%) because these two combined covers the maximum explained variance. As PCA doesn't take class labels into account, so the overlapping of the classes is compromised in the plots.(correlation between the class and the PC1: 0.19, and the correlation between PC2 and class: 0.15.)

PC5 VS PC6:: RESULTS VERSUS KNOWN CLASSES=>

1. Visually ::=>

1.class 0: This is distorted and heavily spread.

2.class 1: This class is overlapped by [2,4].

3.class [3]: This is somehow separated.

RESULT :=>The amount of variance explained by each PC (Var_explained(PC5):2.70%, Var_explained(PC6):2.0%) which is comparatively bad than PC1 and PC2.Correlation between the class and the PC5: 0.25, and the correlation between PC6 and class: 0.09.)

COMPARISON BETWEEN THE TWO PLOTS:==>

- 1.Class 1 is getting clearly separated in [PC1,PC2] plot, whereas class 1 is getting overlapped in [PC5,PC6].
- 2.ln [PC1,PC2]-> class 0 is also separated with little bit of spread whereas in [PC5,PC6], it is distoreted and overlapped.
- 3. Overall correlation between [PC1,class]+[PC2,class] is same as [PC5,class]+[PC6,class] which is 0.34.
- 4.Overall explained_variance[PC1,PC2]={10.2%} and explained_variance[PC5,PC6]={4.7%} which shows data points are well varied in PC1,PC2 plot which can be seen in the plots because the variance explained by each of them is highest.

4) PCA AND DUAL PCA

```
In [48]: import timeit
         start = timeit.default timer()
In [49]: #finding cov matrix for features. i.e d*d
         # covariance matrix manual=np.cov(df features znorm.T) # transpose of datas
         et i.e features on rows side. equivalent to AT.A i.e on doing eig , vector
          it gives is right singular vector feature ke along
         # covariance matrix manual1=pd.DataFrame(covariance matrix manual)
         # df_features_znorm_transpose=np.transpose(df_features_znorm)
         df features znorm transpose=df features znorm.T
         df features znorm np=df features znorm.to numpy()
         df features znorm np T=df features znorm transpose.to numpy()
In [50]: #finding cov matrix at*a --> gives us U i.e features*features 784*784
         cov_mat1=np.matmul(df_features_znorm_np_T,df_features_znorm_np)
         # cov_mat1=cov_mat1/(df_full.shape[0]-1) # also not feasible for pca projec
         tion don't do BECAUSE OF COMPARISON WITH S GIVEN BY NUMPY SVD (IT DOESN'T DIV
         IDE VALUES BY N-1).
         values pca1, vectors pca1= np.linalg.eig(cov mat1)
         #vectors pca1 #U unsorted 784*784
In [51]: vectors pca1
Out[51]: array([[-0.00197863, 0.00493308, -0.00037529, ..., -0.00013358,
                 -0.00062295, -0.00157864],
                [-0.00151307, -0.00640373, 0.00258725, ..., 0.00274212,
                 -0.00837347, 0.0063992 ],
                [ 0.00049178, -0.00156563, -0.00372451, ..., 0.00445827,
                  0.00683485, -0.00181313],
                . . . ,
                [0.0001125, 0.00300533, -0.00335936, ..., 0.00245866,
                 -0.00039547, 0.00083265],
                [0.00132315, 0.00947149, 0.00553066, ..., -0.01026383,
                 -0.01070597, 0.01537859],
                [-0.00591181, 0.00287621, 0.00624184, ..., 0.00383851,
                 -0.00246361, 0.00327846]])
In [52]: | # #finding cov matrix a*at --> gives us U when passed into eigh i.e observ
         ations*observations 2066*2066
         # cov_mat=np.matmul(df_features_znorm_np,df_features_znorm_np_T)
         # cov_mat=cov_mat/(df_full.shape[0]-1)
         # values pca, vectors pca = np.linalq.eigh(cov mat)
         # #vectors_pca #u sorted 2066*2066
         # cov mat=pd.DataFrame(cov mat)
         # # cov mat
         # sorted values2 = np.argsort(values pca)[::-1]
         # vectors_pca = vectors_pca[:,sorted_values2]
         # values pca = values pca[sorted values2]
         # values pca=pd.DataFrame(values pca)
         # sorted vectors2=pd.DataFrame(vectors pca.T)
         # v=sorted vectors2
         # v # equivalent to uh in svd
```

Out[53]:

		0	1	2	3	4	5	6
	0	2066.000000	-41.823743	57.874052	-57.199348	-6.523476	55.229393	-14.783244
	1	-41.823743	2066.000000	44.760228	-68.776377	-17.131647	97.521100	3.914803
	2	57.874052	44.760228	2066.000000	0.991612	-46.487979	-19.050772	-34.701012
	3	-57.199348	-68.776377	0.991612	2066.000000	16.739481	-20.104114	-62.806372
	4	-6.523476	-17.131647	-46.487979	16.739481	2066.000000	-97.356457	-104.750265
7	79	0.467566	41.243121	98.016048	15.180252	20.994929	-30.593971	17.570093
7	80	-25.518658	-27.541538	41.750798	-8.986629	68.180045	-64.300539	-21.734513
7	81	1.264345	-20.144299	12.484072	-14.431025	-12.729503	-11.266006	40.744245
7	82	27.349291	74.631377	-57.230211	11.942206	14.714233	-0.216029	41.312080
7	83	65.592079	-37.354962	64.114544	-6.604229	3.782801	-14.702626	17.741478

784 rows × 784 columns

-sorting the vectors and values -

```
In [54]: # sorted_values3 = np.argsort(values_pca1)[::-1]
# vectors_pca1 = vectors_pca1[:,sorted_values3]
# values_pca1 = values_pca1[sorted_values3]
# values_pca1=pd.DataFrame(values_pca1)
# sorted_vectors3=pd.DataFrame(vectors_pca1.T)
# u=sorted_vectors3
```

```
In [55]: u=vectors_pca1 #equivalent to vh in svd
```

```
In [56]: u
Out[56]: array([[-0.00197863, 0.00493308, -0.00037529, ..., -0.00013358,
                 -0.00062295, -0.00157864],
                 [-0.00151307, -0.00640373, 0.00258725, ..., 0.00274212,
                 -0.00837347, 0.0063992 ],
                 [0.00049178, -0.00156563, -0.00372451, ..., 0.00445827,
                   0.00683485, -0.00181313],
                 [ 0.0001125 ,
                               0.00300533, -0.00335936, ..., 0.00245866,
                 -0.00039547,
                               0.00083265],
                 [0.00132315, 0.00947149, 0.00553066, ..., -0.01026383,
                 -0.01070597, 0.01537859],
                 [-0.00591181, 0.00287621, 0.00624184, ..., 0.00383851,
                  -0.00246361, 0.00327846]])
In [57]: u.shape
Out[57]: (784, 784)
In [58]: df_features_znorm.shape
Out[58]: (2066, 784)
In [59]:
        s=np.sqrt(values pca1)
In [60]: s=pd.DataFrame(s)
In [61]:
Out[61]:
                      0
            0 326.986490
            1 243.872478
            2 235.121097
            3 222.297469
            4 211.074528
                7.451470
          779
          780
                6.586566
          781
                7.404827
          782
                7.017413
          783
                6.899872
         784 rows × 1 columns
```

```
In [62]:
            df features znorm
Out[62]:
                       fea.1
                                  fea.2
                                                                   fea.5
                                             fea.3
                                                        fea.4
                                                                              fea.6
                                                                                         fea.7
                                                                                                    fea.8
                0
                    1.010077
                               0.966782
                                         0.359594
                                                    -1.668004 -1.638671
                                                                           1.007994
                                                                                    -0.324102 -0.992537
                                                                                                           9.0
                    1.687176
                              -1.029924
                                          1.026488
                                                     0.336317
                                                              -0.976018
                                                                          0.340307
                                                                                     1.674690
                                                                                               -0.992537
                                                                                                           9.0
                2
                   -1.021220
                               0.301213
                                        -1.641090
                                                     0.336317
                                                               -0.976018
                                                                          -0.995067
                                                                                    -1.656630
                                                                                               -0.992537
                                                                                                          -1.6
                    1.687176
                               0.301213
                                         -0.307301
                                                                                                           9.0
                3
                                                     0.336317
                                                                1.674594
                                                                          -0.327380
                                                                                     -0.324102
                                                                                               -1.648724
                    0.332978
                               1.632350
                                          0.359594
                                                     0.336317
                                                               -1.638671
                                                                           1.007994
                                                                                     -0.990366
                                                                                               -0.992537
                                                                                                           9.0
                                                                                 ...
                          ...
                                                                                            ...
                                                                                                0.319835
             2061
                    1.010077
                              -1.695492
                                         0.359594
                                                    -1.668004
                                                                1.011941
                                                                         -1.662753
                                                                                     1.008426
                                                                                                          -1.C
             2062
                                                                                                           0.3
                   -0.344121
                              -0.364355
                                          0.359594
                                                     1.004424
                                                               -0.313365
                                                                          -0.995067
                                                                                     -0.324102
                                                                                                0.319835
             2063
                   -0.344121
                               0.301213
                                         -0.307301
                                                     0.336317
                                                               -0.976018
                                                                         -0.327380
                                                                                                1.632208
                                                                                                           1.6
                                                                                     1.674690
             2064
                                                               -0.976018
                                                                                                          -0.3
                    1.687176
                              -0.364355
                                          1.026488
                                                     0.336317
                                                                         -1.662753
                                                                                     0.342162
                                                                                               -0.336351
             2065
                    0.332978
                               0.301213
                                         -0.974195
                                                     0.336317
                                                               -0.313365
                                                                          1.675681
                                                                                     1.008426
                                                                                               -0.336351
                                                                                                          -0.3
            2066 rows × 784 columns
In [63]:
            proj_pca_=np.dot(u.T,df_features_znorm_np_T)
In [64]:
            proj_pca=pd.DataFrame(proj_pca_)
```

Projected data is found using utxt or ut.x

```
In [65]:
            proj_pca.T
Out[65]:
                            0
                                       1
                                                  2
                                                             3
                                                                       4
                                                                                  5
                                                                                             6
                                                                                                       7
                0
                    -9.970692
                                6.181722 -4.992863
                                                     4.394879 2.777870 -2.844761
                                                                                      1.276232
                                                                                                1.463996
                                                                                                           6.8
                   -11.416000
                                6.941587
                                         -5.063029
                                                     4.242178
                                                               1.844940
                                                                          -0.146431
                                                                                      1.683401
                                                                                                2.974999
                                                                                                           6.:
                2
                    -3.690119
                                4.693097
                                         -2.908656
                                                    -3.935094
                                                                6.811806
                                                                          -3.226107
                                                                                     3.662990
                                                                                                5.408198
                                                                                                           3.4
                3
                    -7.312408
                                6.042886
                                          -3.648012
                                                     -3.506919
                                                                                                           6.
                                                                4.562468
                                                                          -5.523882
                                                                                      3.971637
                                                                                                4.891807
                   -18.061520
                                1.862436
                                          -4.038834
                                                     5.871621
                                                                7.322140
                                                                           4.443076
                                                                                     -2.186078
                                                                                                2.857345
                                                                                                           2.
                                                            ...
                                                                      ...
            2061
                     1.917926
                                0.397488
                                          7.951743 -0.162132 2.170046
                                                                         -2.309800 -3.861676
                                                                                               -3.855531
                                                                                                           1.:
             2062
                    -0.525752
                               -2.646714
                                          9.095319 -0.969272
                                                               2.257428
                                                                          4.547903
                                                                                    -1.437164
                                                                                                -3.038324
                                                                                                          -1.
            2063
                     0.349422
                                0.933681
                                          8.107442
                                                    -0.824268
                                                               2.814438
                                                                          -2.822867
                                                                                     -3.678327
                                                                                                -3.033837
                                                                                                          -1.
                                                     1.529823
            2064
                     3.115263
                                2.090474
                                          6.272519
                                                               0.036308
                                                                          -2.586437
                                                                                     -2.099663
                                                                                                -0.088302
                                                                                                           1.4
             2065
                     5.644094
                               -0.246167
                                           4.140183 -2.238905 2.477097
                                                                         -3.198489
                                                                                     2.975116
                                                                                                3.481201
                                                                                                          -2.8
            2066 rows × 784 columns
```

Reconstruction ut.yt or u.y

```
In [66]: X_hat=np.dot(u,proj_pca)
In [67]: X_hat=pd.DataFrame(X_hat)
```

In [68]: X_hat.T

Out[68]:

	0	1	2	3	4	5	6	7	
0	1.010077	0.966782	0.359594	-1.668004	-1.638671	1.007994	-0.324102	-0.992537	9.0
1	1.687176	-1.029924	1.026488	0.336317	-0.976018	0.340307	1.674690	-0.992537	9.0
2	-1.021220	0.301213	-1.641090	0.336317	-0.976018	-0.995067	-1.656630	-0.992537	-1.6
3	1.687176	0.301213	-0.307301	0.336317	1.674594	-0.327380	-0.324102	-1.648724	9.0
4	0.332978	1.632350	0.359594	0.336317	-1.638671	1.007994	-0.990366	-0.992537	9.0
2061	1.010077	-1.695492	0.359594	-1.668004	1.011941	-1.662753	1.008426	0.319835	-1.C
2062	-0.344121	-0.364355	0.359594	1.004424	-0.313365	-0.995067	-0.324102	0.319835	0.3
2063	-0.344121	0.301213	-0.307301	0.336317	-0.976018	-0.327380	1.674690	1.632208	1.6
2064	1.687176	-0.364355	1.026488	0.336317	-0.976018	-1.662753	0.342162	-0.336351	-0.3
2065	0.332978	0.301213	-0.974195	0.336317	-0.313365	1.675681	1.008426	-0.336351	-0.3

2066 rows × 784 columns

In [69]: df_features_znorm

Out[69]:

	fea.1	fea.2	fea.3	fea.4	fea.5	fea.6	fea.7	fea.8	
0	1.010077	0.966782	0.359594	-1.668004	-1.638671	1.007994	-0.324102	-0.992537	9.0
1	1.687176	-1.029924	1.026488	0.336317	-0.976018	0.340307	1.674690	-0.992537	9.0
2	-1.021220	0.301213	-1.641090	0.336317	-0.976018	-0.995067	-1.656630	-0.992537	-1.6
3	1.687176	0.301213	-0.307301	0.336317	1.674594	-0.327380	-0.324102	-1.648724	9.0
4	0.332978	1.632350	0.359594	0.336317	-1.638671	1.007994	-0.990366	-0.992537	9.0
2061	1.010077	-1.695492	0.359594	-1.668004	1.011941	-1.662753	1.008426	0.319835	-1.C
2062	-0.344121	-0.364355	0.359594	1.004424	-0.313365	-0.995067	-0.324102	0.319835	0.3
2063	-0.344121	0.301213	-0.307301	0.336317	-0.976018	-0.327380	1.674690	1.632208	1.6
2064	1.687176	-0.364355	1.026488	0.336317	-0.976018	-1.662753	0.342162	-0.336351	-0.3
2065	0.332978	0.301213	-0.974195	0.336317	-0.313365	1.675681	1.008426	-0.336351	-0.3

2066 rows × 784 columns

RESULT ::=>

- 1.Reconstruction is done.
- 2. The original dataset is equal to x hat. (Reconstructed)
- 3 Singular value s and singular vector u is also found which can be compared with implementation of

```
In [70]: | stop = timeit.default_timer()
          print('MODEL: ', stop - start)
          Timetaken = pd.DataFrame(columns = ['Model', 'time'])
          Timetaken = Timetaken.append({'Model':'PCA', 'time':stop-start},ignore_inde
          x=True)
         MODEL: 3.7157768110000013
         Timetaken
In [71]:
Out[71]:
             Model
                      time
              PCA 3.715777
         print('SINGUALAR VALUES')
In [72]:
          print(s)
         SINGUALAR VALUES
         0
               326.986490
          1
               243.872478
               235.121097
          3
               222.297469
               211.074528
          4
         779
                 7.451470
          780
                 6.586566
         781
                 7.404827
                 7.017413
         782
         783
                 6.899872
          [784 rows x 1 columns]
```

Using SVD to validate the above results only

```
In [73]: import scipy
In [74]: u, Sigma, v = np.linalg.svd(df_features_znorm,full_matrices=True)
```

```
In [75]:
            Uh=pd.DataFrame(u)
            Vh=pd.DataFrame(v)
            Sigma=pd.DataFrame(Sigma)
In [76]:
            Uh #equivalent to v in dual pca
Out[76]:
                           0
                                       1
                                                  2
                                                             3
                                                                                                         7
                                                                        4
                                                                                   5
                                                                                              6
                    0.030493
                              -0.025348
                                          0.021235
                                                     0.019770 0.013161
                                                                          -0.015703
                                                                                      0.007543
                                                                                                 0.009334
                                                                                                            -0.04
                0
                              -0.028464
                                                                          -0.000808
                1
                    0.034913
                                          0.021534
                                                     0.019083
                                                                0.008741
                                                                                      0.009950
                                                                                                 0.018968
                                                                                                            -0.04
                    0.011285
                               -0.019244
                                          0.012371
                                                                           -0.017808
                                                                                                            -0.0:
                2
                                                     -0.017702
                                                                0.032272
                                                                                      0.021650
                                                                                                 0.034482
                3
                    0.022363
                               -0.024779
                                          0.015515
                                                     -0.015776
                                                                0.021615
                                                                          -0.030491
                                                                                      0.023475
                                                                                                  0.031190
                                                                                                            -0.04
                               -0.007637
                    0.055236
                                                                                      -0.012921
                                          0.017178
                                                     0.026413
                                                                0.034690
                                                                           0.024525
                                                                                                 0.018218
                                                                                                            -0.0
                4
                                                     -0.000729
             2061
                   -0.005865
                              -0.001630
                                         -0.033820
                                                               0.010281
                                                                          -0.012750
                                                                                     -0.022825
                                                                                                -0.024583
                                                                                                            -0.00
             2062
                    0.001608
                               0.010853
                                          -0.038684
                                                     -0.004360
                                                                0.010695
                                                                           0.025104
                                                                                      -0.008494
                                                                                                 -0.019372
                                                                                                            0.0
                    -0.001069
                               -0.003829
                                          -0.034482
                                                     -0.003708
                                                                                      -0.021741
                                                                                                 -0.019344
             2063
                                                                0.013334
                                                                           -0.015582
                                                                                                             0.0
             2064
                   -0.009527
                               -0.008572
                                          -0.026678
                                                     0.006882
                                                                0.000172
                                                                          -0.014277
                                                                                      -0.012410
                                                                                                 -0.000563
                                                                                                            -0.00
             2065
                   -0.017261
                               0.001009
                                         -0.017609
                                                     -0.010072
                                                               0.011736
                                                                          -0.017655
                                                                                      0.017585
                                                                                                 0.022196
                                                                                                            0.0
            2066 rows × 2066 columns
In [77]:
            Vh #equivalent to u in pca
Out[77]:
                          0
                                     1
                                                 2
                                                            3
                                                                       4
                                                                                  5
                                                                                             6
                                                                                                        7
               0
                   0.001979
                              0.001513
                                        -0.000492
                                                    -0.003617
                                                              -0.000810
                                                                           0.005896
                                                                                     -0.001439
                                                                                                -0.001285
                                                                                                           -0.00
                  -0.004933
                              0.006404
                                         0.001566
                                                    -0.000518
                                                               0.002937
                                                                           0.003685
                                                                                      0.008790
                                                                                                -0.000596
                                                                                                            0.00
                   0.000375
                             -0.002587
                                         0.003725
                                                    -0.000352
                                                               0.001220
                                                                           0.000092
                                                                                      0.002634
                                                                                                -0.005623
                                                                                                            0.00
                  -0.006154
                             -0.002790
                                         0.003226
                                                    0.002489
                                                               -0.010679
                                                                          -0.000604
                                                                                      0.001788
                                                                                                 0.003557
                                                                                                            0.00
               3
                   0.003251
                             -0.003767
                                         -0.001384
                                                    0.000363
                                                               0.001331
                                                                          -0.008793
                                                                                     -0.002887
                                                                                                -0.007900
                                                                                                            0.00
               ...
                                                                                                -0.004143
             779
                  -0.000990
                             -0.002825
                                        -0.002969
                                                    -0.007797
                                                               -0.005491
                                                                          -0.001475
                                                                                     -0.001826
                                                                                                            0.00
             780
                   0.003076
                              0.002147
                                         -0.000022
                                                    -0.002503
                                                               -0.006257
                                                                           0.003685
                                                                                     -0.000386
                                                                                                -0.003653
                                                                                                            0.00
             781
                  -0.002942
                             -0.001887
                                         -0.008383
                                                    0.001179
                                                               0.004695
                                                                           0.002205
                                                                                      0.002482
                                                                                                 0.000407
                                                                                                            0.00
             782
                   0.000692
                             -0.004045
                                         -0.000907
                                                    -0.004380
                                                               -0.003882
                                                                           0.000384
                                                                                      0.000257
                                                                                                -0.000715
                                                                                                            0.00
                  -0.001785 -0.004795
                                         0.008164
                                                    -0.004050
                                                               0.004779
                                                                           0.001970
                                                                                      0.007182
                                                                                                -0.003580
                                                                                                           -0.00
            784 rows × 784 columns
```

0 326.986490

1 243.872478

2 235.121097

3 222.297469

4 211.074528

.. ..

779 4.150039

780 4.101121

781 3.990520

782 3.919102

783 3.830292

784 rows × 1 columns

Dual PCA

```
In [79]:
         import timeit
         start = timeit.default timer()
In [80]:
        #finding cov matrix a*at --> gives us U when passed into eigh i.e observat
         ions*observations 2066*2066
         cov_mat=np.matmul(df_features_znorm_np,df_features_znorm_np_T)
         # cov_mat=cov_mat/(df_full.shape[0]-1)
         values_pca, vectors_pca = np.linalg.eigh(cov_mat)
         #vectors_pca #u sorted 2066*2066
        cov_mat=pd.DataFrame(cov_mat)
In [81]:
In [82]:
         sorted_values2 = np.argsort(values_pca)[::-1]
         vectors_pca = vectors_pca[:,sorted_values2]
         values_pca = values_pca[sorted_values2]
         values pca=pd.DataFrame(values pca)
         sorted vectors2=pd.DataFrame(vectors pca.T)
          v=sorted_vectors2
```

```
In [83]:
           v # equivalent to uh in svd
Out[83]:
                          0
                                     1
                                                2
                                                          3
                                                                                5
                                                                     4
                                                                                          6
                                                                                                     7
                0
                   0.030493
                              0.034913
                                         0.011285
                                                   0.022363
                                                              0.055236
                                                                         0.046916
                                                                                   0.040937
                                                                                              0.021700
                                                                                                         0.0
                   -0.025348
                             -0.028464
                                        -0.019244
                                                   -0.024779
                                                             -0.007637
                                                                         0.032482
                                                                                   -0.021805
                                                                                              0.042834
                                                                                                         0.0
                                                   0.015515
                                                                         0.004994
                2
                   0.021235
                              0.021534
                                         0.012371
                                                              0.017178
                                                                                   0.024493
                                                                                              0.007139
                                                                                                         0.0
                   -0.019770
                             -0.019083
                                         0.017702
                                                                                                         0.0
                3
                                                   0.015776
                                                             -0.026413
                                                                        -0.033458
                                                                                   -0.011377
                                                                                             -0.031623
                   0.013161
                              0.008741
                                         0.032272
                                                   0.021615
                                                              0.034690
                                                                        -0.004860
                                                                                   0.039286
                                                                                             -0.054772
                                                                                                         0.0
                                     ...
            2061
                   0.000000
                              0.020181
                                        -0.006487 -0.024432
                                                             -0.044182 -0.084449
                                                                                   0.385945
                                                                                             -0.066391
                                                                                                        -0.3
            2062
                   0.000000
                              0.002232
                                         0.038900
                                                   -0.148384
                                                              0.137218
                                                                         0.173324
                                                                                   0.038450
                                                                                             -0.248543
                                                                                                         0.1
            2063
                   0.000000
                              0.012837
                                         0.032139
                                                  -0.157285
                                                              0.087955
                                                                        -0.082976
                                                                                              0.250372
                                                                                                        -0.0
                                                                                   -0.152485
            2064
                   0.000000
                                        -0.049012 -0.124722
                              0.007584
                                                             -0.103469
                                                                         0.143160
                                                                                   -0.106512
                                                                                              0.177942
                                                                                                        -0.1
            2065
                   0.000000
                             -0.124867
                                        -0.019983 -0.013534
                                                             -0.170539
                                                                        -0.397274
                                                                                   -0.052720
                                                                                             -0.184384
                                                                                                         0.1
            2066 rows × 2066 columns
In [84]:
            s1=np.sqrt(values pca[:784])
            values_pca=values_pca.to_numpy()
In [85]:
            s1
Out[85]:
                           0
               0 326.986490
                 243.872478
                 235.121097
                 222.297469
               3
                  211.074528
              ---
                    4.150039
            779
            780
                    4.101121
            781
                    3.990520
            782
                    3.919102
            783
                    3.830292
           784 rows × 1 columns
In [86]:
            values pca list=values pca.tolist()
```

```
In [87]: values_pca.shape
Out[87]: (2066, 1)
In [88]: flat_list = []
    for sublist in values_pca_list:
        for item in sublist:
            flat_list.append(item)
```

In [89]: flat_list

Out[89]: [106920.16459705515, 59473.78546651998, 55281.93027001767, 49416.16484289528, 44552.456335586045, 32820.12934635171, 28624.908751809486, 24598.463283754376, 22015.82883906395, 20285.698577942545, 18819.039266814736, 17114.634137768484, 15426.005914921076, 14840.859475957686, 14492.618776370831, 13895.87853319045, 12744.588611643063, 12452.682943678847, 12332.568618996762, 11865.252721872037, 11494.656874874578, 11028.866103400273, 10965.144799081558, 10474.59816615751, 10123.042920923264, 9788.776585319629, 9210.745699190167, 9166.035977787553, 9034.849403819424, 8776.074334044573, 8667.551374830231, 8532.39818663617, 8273.801850424565, 8052.670661098706, 7890.442375732005, 7760.306615935903, 7642.301127614923, 7377.061645909894, 7307.43054299972, 7178.131797530683, 6976.813060864306, 6767.29018266696, 6600.05224166115, 6582.43694369389, 6401.141612382335, 6208.321960844764, 6105.551174688178, 6063.1133565912805, 5878.382178508136, 5792.127585266645, 5735.587720907892, 5649.142794341403, 5638.732731231177, 5452.2952913278, 5373.9956724690965, 5297.890012858874, 5127.124387147885,

5091.186916041768, 5035.793325319473, 4977.610293332051, 4927.145136230499, 4841.05230506824, 4772.137892662617, 4664.136708559146, 4604.9854132920855, 4540.860932212165, 4447.6821482903315, 4430.942574831066, 4322.521730887325, 4260.49428145748, 4238.516820834206, 4142.087069427805, 4067.235987498035, 4040.36925254576, 3977.3404782066423, 3932.0338067223997, 3883.591579852994, 3806.4069504402923, 3784.3580655787973, 3750.877550308347, 3735.4795548887187, 3717.779919812464, 3699.312346022411, 3672.020634651196, 3620.8553128343933, 3601.7860651243473, 3577.3130599593724, 3545.6715237207795, 3501.433776069864, 3462.184453668407, 3452.783151445109, 3436.442963034464, 3413.4133899589433, 3399.151268424607, 3358.8919351335257, 3325.135267972784, 3298.3176233682198, 3290.03557059407, 3266.175267389505, 3238.419644272103, 3217.138837413422, 3214.157346297226, 3203.367288130663, 3169.331930832375, 3143.9799964730005, 3135.582301693815, 3108.376212197097, 3105.823716009211, 3094.04891377295, 3078.58779585424, 3058.4223243422553, 3049.849289061528, 3038.524618493654, 3028.2192888696036,

2993.5312581286657, 2984.0228179731794, 2973.6355509480013, 2946.8606013313333, 2937.5342308596337, 2924.35497166885, 2908.1857689279955, 2895.628168890785, 2882.1231302266724, 2867.865464960211, 2847.7337948060967, 2845.375977793418, 2820.384134805139, 2816.0832933246684, 2800.315035099274, 2783.4507696574074, 2764.8203671968813, 2746.692869785681, 2742.39652961327, 2731.3109711910224, 2724.2710052697794, 2698.20012013966, 2692.3092685730776, 2682.453575603247, 2678.318969752775, 2668.6069510111515, 2649.754320987274, 2640.506532549421, 2628.9185469883587, 2613.381692549348, 2597.877493563606, 2590.0912809928836, 2582.665172509923, 2571.9500252521507, 2562.3129515191163, 2541.5260291294253, 2537.9308336652675, 2524.3863518279777, 2512.9045797129893, 2499.118990283301, 2487.0724120559494, 2471.6857664855133, 2470.0501098688956, 2456.470128179988, 2446.051723995311, 2435.1674658358384, 2429.3281404673535, 2409.870653744171, 2396.9592584382804, 2392.006691176002, 2382.9287893433802, 2378.672859093568, 2362.0352570110977, 2355.528710851534, 2348.9857719337447 2337.3650672989847, 2336.339530526359,

2321.4872922417826, 2309.244269521199, 2303.4820970041314, 2294.1976104129008, 2274.369358307413, 2265.1175882158286, 2250.691823281561, 2241.393558500533, 2238.524013547734, 2221.38674022203, 2214.4842878990758, 2210.4633607623005, 2196.0966352933688, 2187.1674073047066, 2177.805895355231, 2173.7078332129495, 2166.2625454161134, 2158.9944486497498, 2152.645545557593, 2138.3433398784914, 2128.174283673508, 2122.6833472918397, 2118.779087084499, 2107.5950563540064, 2104.7894278632425, 2093.9011433809196, 2077.548849840784, 2065.721353768416, 2059.3027979571743, 2057.359863176664, 2049.518400203888, 2042.5908352565475, 2039.5457668414688, 2034.7806462998988, 2028.0111449256035, 2010.356505155948, 2004.0509882283075, 2000.058652327822, 1986.651725912639, 1980.9101089655517, 1971.541785845444, 1959.4861218462675, 1955.8648068330301, 1950.9419062470924, 1944.3067828382977, 1933.2925662841951, 1927.734517397361, 1914.5304724614916, 1898.0176125999633, 1890.1296784072108, 1878.4871388305494, 1871.8983233221954, 1867.4160983760794, 1860.5063392005368, 1850.1376547227867, 1844.960365967413, 1832.016189667832,

1829.9040735126916, 1820.5057203862295, 1808.0117122698466, 1802.5989969670477, 1792.6393365075787, 1789.2966658644493, 1781.6092507231551, 1769.2543871976513, 1767.983703653112, 1763.1668810196509, 1753.46205362002, 1748.2942723751164, 1734.8211404105323, 1718.1240877659345, 1713.5318606623564, 1712.3530223796447, 1703.4365227670573, 1698.7574592181445, 1693.1747660664694, 1685.4393471288774, 1669.5252732705183, 1667.099093024676, 1665.051743697216, 1647.444666371117, 1646.915963996808, 1630.6484139648085, 1627.7527039573797, 1622.158299575194, 1618.2390289946413, 1609.2602621042884, 1598.353408433035, 1583.5176090418215, 1580.1526602103306, 1571.879464328683, 1560.8935861534826, 1554.6785183651969, 1550.3854875298164, 1547.2251527092512, 1535.7399913253387, 1528.220147048032, 1520.5989656747768, 1515.9791405397482, 1506.942245939231, 1500.5726292096913, 1498.2684937583867, 1489.5154121138826, 1475.4101738964628, 1474.9223413207017, 1465.3334083204747, 1459.4802829752075, 1453.1700810808677, 1450.5617441241855, 1439.956753992306, 1428.5158381174303, 1425.898932706145, 1418.9079927245293, 1410.8165476946253,

1390.432132838342, 1387.8123430401893, 1385.2762154394923, 1378.293179971012, 1375.0866201645854, 1370.2382551363169, 1361.3125416691987, 1355.6428596192386, 1350.002658274157, 1341.5511008749072, 1332.992581129855, 1324.9546545657067, 1319.6924906129645, 1310.0106560360896, 1303.9130794446796, 1297.1147768852381, 1296.5334044275544, 1285.2623795506088, 1280.2190240608948, 1271.5215103307041, 1263.6250746392034, 1253.5161758354761, 1251.5227219244803, 1239.0805493812816, 1233.4112544753434, 1228.538272682451, 1223.1731565372613, 1219.01418862669, 1210.7496591025274, 1200.6007095482298, 1191.2554550350721, 1189.6768756634244, 1182.7832211162513, 1175.9742311283294, 1167.8679764017534, 1158.056330265655, 1154.6265985477396, 1147.3203198481995, 1144.40083858406, 1127.2537476677041, 1122.8215679889888, 1118.6730538592415, 1113.762530074168, 1096.48342375024, 1094.6687851964562, 1086.5920728397275, 1079.7869121491992, 1076.1142408937317, 1070.0585403689379, 1065.9576302509277, 1049.999967838204, 1043.094585496335, 1036.2384248092092, 1023.8414979491517, 1019.8004762820856, 1005.828391886543, 1004.7662951058807,

995.6767775707693, 985.1038624262083, 978.9889272026455, 968.0499997361358, 965.3420725252184, 953.0023006526087, 947.1854614707453, 938.3278190782904, 936.3984236601038, 923.4609097029091, 921.0794722574383, 916.6788235846817, 908.3403442332257, 901.0615999651116, 890.964231954489, 877.3977247900167, 876.0351417493059, 871.9098264476945, 858.1824216165412, 851.9229557947579, 847.1330806498127, 842.5711057865219, 823.2633036610592, 820.0443942936928, 805.2138404044144, 802.5407977576783, 793.4445148249908, 785.2011158010483, 782.1824295064267, 777.6203782911355, 769.5046294018971, 762.3267018641719, 754.0615402516937, 749.8841899970478, 740.986587075836, 735.6691797188403, 731.2280787672452, 721.0164850326393, 716.9551237549805, 707.5866069806119, 699.4662916402627, 693.0277975860037, 690.7698573302698, 679.3488159760713, 674.9973241716202, 666.3742010250786, 660.9944730232478, 656.4158637836085, 648.7467723482599, 644.9005697601357, 639.5658255899526, 631.8187295952473, 621.275345330835, 615.6625755445742, 609.2403349397488, 603.8416948869592, 598.5334699765037,

591.5977086644292, 588.8251788859022, 582.2123245464169, 574.9137586535109, 571.6122192725932, 568.935700618339, 560.4308830822855, 551.3056758644709, 547.744282257967, 539.1504107035821, 535.9212581474361, 526.6467533635199, 518.0002456557137, 515.6082537327087, 511.7684273780472, 507.9097090115244, 498.40739944476314, 496.5932780297685, 491.6406696658686, 487.0852055360594, 482.0994027523267, 478.15312169292986, 476.24569561420805, 472.7890879330935, 468.0565220541773, 464.93909837780967, 456.8091161301302, 452.20620337808475, 447.46992371698946, 444.9565363308063, 439.224336919205, 436.4522381885069, 431.4429012204554, 428.02685316840876, 425.4329999685212, 419.79479917525856, 412.1973960651148, 409.8443087275893, 408.5936818783972, 400.27481084905446, 398.49667232222276, 395.81504745209423, 389.27357858308324, 386.77813197155655, 383.1569383995079, 378.89760043925804, 376.01805746259924, 373.6839555386438, 368.8754837511592, 366.84225282102545, 362.857642259676, 356.9788586757997, 355.7430779985892, 353.7992674467541, 348.05890706705117, 345.64715239663406, 342.97016016877467,

338.66208597109863, 336.51151572906576, 334.8019871863371, 334.38023592931546, 327.9095607174337, 321.1772643181512, 320.23350625269984, 315.29105811252356, 311.26245119638327, 310.3806090428577, 304.3417947877482, 303.1820648113719, 299.73479167066006, 298.18628477168596, 296.3306124316166, 293.02432999011177, 290.2211809695783, 287.62766968268625, 285.3545899547165, 280.23512579763616, 278.7626329009849, 278.11892810068366, 275.92150030833915, 271.582377590406, 270.7444508896633, 267.2793831999976, 266.5202654063596, 264.8386769473172, 261.43861476583385, 259.71761622312704, 257.64945433982336, 255.3115779001129, 250.0631760228279, 247.61821202915212, 247.2442096361099, 246.71916029013934, 244.9591132467487, 242.5858646806605, 239.80497768889254, 238.65110873771684, 235.5616954465967, 234.65646006633804, 232.12650860400612, 228.8748311583666, 225.69787094768535, 225.10988984196885, 222.034121208587, 221.73943150617714, 219.7781569836461, 218.13564874097256, 215.4712366175431, 214.54486608072682, 212.10891396233637, 210.4614701152402, 209.10407051404144, 206.5339569607762, 205.65712018651624,

203.7844652872573, 200.85476783480578, 198.18820868232336, 197.61279032540716, 197.45619077820498, 195.54336283720443, 193.76337517746072, 191.24640756403815, 190.7214802083437, 189.184523225224, 187.27341296667822, 184.82324788071995, 182.62259560731943, 181.14206415181974, 180.25437390825257, 179.6642204669775, 178.56070623102917, 177.50115106369915, 173.46352818460483, 173.1121602558381, 170.9169466988479, 170.18085511470912, 169.12674172527983, 167.9159112689363, 165.650870035845, 165.09599936945256, 163.2801895265787, 163.15968268474904, 160.13520978770183, 160.08592974581018, 157.88062221489085, 157.12271302665482, 156.19585937502097, 155.3883967589895, 153.65982712094547, 152.76382132658492, 151.72350244207624, 150.85269542274605, 150.75143940641036, 148.86337457084664, 147.47530651504024, 146.64168624959285, 144.89594441465806, 143.79413833922567, 142.79978192812314, 141.76206221722916, 141.4144443130969, 140.06480146379337, 137.48113868559523, 137.1479461385645, 135.1925708564781, 134.70145965568412, 134.08325461218553, 132.1812927837395, 131.78289520594714 131.16000268773848, 129.9996335850959,

129.03251741381743, 128.40347253059304, 126.52387632933115, 126.05717048109526, 125.37315811176742, 124.75764669925795, 123.3616208760428, 122.19975067206686, 121.66707861633002, 120.617036163947, 119.99290714658265, 119.29765548531613, 119.05097958288695, 117.37726455362288, 116.1077833709493, 115.73635272147648, 114.6063607168675, 114.17912359786285, 113.0841137157251, 112.08791391780613, 111.58002237548448, 110.51178165557768, 110.18445814646547, 108.92188759900115, 107.19308716102249, 106.83919753973883, 105.56419345310445, 105.31404251952802, 104.40315505605777, 103.83964605493208, 102.96171715991046, 101.89139758041038, 101.47073290188864, 100.64489986703215, 99.92656945602691, 99.58058152706224, 99.03844760113178, 98.69163479024601, 96.53043557376107, 96.24721223022812, 95.42240029728131, 94.10168690750776, 94.01334069288639, 93.23843003297017, 92.48327692144368, 92.06038271239608, 90.89510071953953, 90.4142859354493, 89.54785845306668, 88.7238998421381, 88.39818077781534, 88.00284808208544, 86.8627735399565, 86.53345935175939, 86.11294917380663, 85.273917294425, 84.00062078629708,

83.81052592331953, 83.66597028222594, 82.65329424401945, 82.43444409288979, 81.64381223577904, 79.53332150777786, 78.91565442922975, 78.45406438181797, 77.88298302490945, 77.51612774916926, 77.1165341560877, 76.87618104026453, 75.83163087657995, 74.86463365649544, 74.362538067943, 73.92863450254771, 73.75308955461294, 73.0163281942214, 72.60258045215416, 71.60074969888132, 71.02346496815632, 70.63282370511952, 69.9037884313653, 69.43886953499359, 69.36147822079243, 68.64935010848136, 68.31906957804397, 67.35978639529843, 67.14765242610429, 66.75406778712089, 66.30067158841621, 65.69581744069816, 64.98363642834214, 64.41061414502529, 63.52010974132759, 63.237017541880235, 62.96668572783265, 62.359361155021986, 61.27871165007295, 61.16980004597682, 60.98267564415396, 59.90733489372986, 59.56549141291603, 58.947125797985116, 58.260718304026916, 58.09292868860934, 57.726476059160035, 57.34105712944193, 56.91485707511083, 56.77353517232039, 56.372606461583196, 55.62936883074075, 55.52440770112033, 54.8314668123557, 54.37659216666732, 54.14495921979941, 53.525169714000924,

53.04101043077716, 52.54753736324023, 52.332115696277256, 51.5622217395451, 51.15961480527429, 50.95025918093086, 49.830003469550725, 49.534887843058684, 49.24408320825769, 48.856902882517026, 48.47555230403817, 47.727406929036434, 47.608238405821226, 47.11821710257646, 46.638827079629124, 46.52533051841397, 46.3234942390657, 45.52782447102574, 44.75145494896505, 44.63070071308967, 43.9246671199304, 43.602884945686036, 43.38285440095844, 42.740187744357286, 42.521197785145745, 41.85968656637819, 41.593414005362696, 41.44296122204297, 40.88320324866584, 40.2495160343475, 39.914567252876566, 39.58465299220175, 39.381365346974185, 39.090053461071285, 38.93761009764925, 38.22962264730527, 38.14663559757769, 37.86636486029023, 37.10778352413303, 36.972951371668614, 36.79122946273654, 36.54099004453967, 35.885063571378616, 35.65120059393678, 35.445703989064285, 34.67947226759397, 34.51687170637252, 34.30427766378243, 33.77609149617067, 33.711024403410796, 33.1490532530189, 32.911263791269946, 32.541147089656256, 32.33681830647186, 31.967642820594186, 31.67890216406078, 31.16908512784854,

30.750393699242657, 30.437566029655883, 30.013349456294346, 29.931842919977637, 29.46984227881124, 29.205559507004832, 28.812335467272526, 28.233505658696906, 27.913557754665643, 27.675558652985092, 27.474110972187113, 26.959631218172603, 26.65518385784669, 26.508222620453317, 26.268415128105545, 26.053621807896885, 25.652613115925757, 25.25826585855829, 24.942688013559692, 24.436366408185428, 23.964874364990635, 23.786783752757067, 23.46419590006474, 23.20519983466797, 23.049355566834024, 22.597944073846076, 22.32864010475102, 21.974110603090853, 20.951002347958312, 20.80205896938015, 20.71649795986156, 20.028278263024763, 19.800234035882877, 19.231505193390174, 18.788019399453812, 18.44442483340116, 18.21446724558275, 17.636102801826368, 17.222825319527946, 16.81919465218766, 15.924247280540587, 15.35935949762859, 14.67113449421824, 1.0829487406614121e-11, 9.710799605921131e-12, 9.45842070296644e-12, 7.860238984524226e-12, 7.505796108484484e-12, 6.724154687170235e-12, 6.3414286679422705e-12, 5.85957286203495e-12, 5.81002743232022e-12, 5.4303930367523996e-12, 5.332296732155085e-12, 5.304403757278871e-12, 4.820790543163779e-12, 4.818716917015948e-12,

4.393792529792439e-12, 4.3797521421181605e-12, 4.149064682209758e-12, 3.826481049898039e-12, 3.73079015594283e-12, 3.706483166804645e-12, 3.5231229653038286e-12, 3.2708872940279544e-12, 3.2644199400229795e-12, 3.1703894332191306e-12, 3.0558165227053176e-12, 3.0231877094646596e-12, 3.0041152541403984e-12, 2.9933681809642884e-12, 2.9861105714532967e-12, 2.980585167666943e-12, 2.9027936977472896e-12, 2.8106618600680582e-12, 2.739160528602449e-12, 2.6862879718429395e-12, 2.6543239090441353e-12, 2.6369072511339466e-12, 2.5843400951788807e-12, 2.5180796267691534e-12, 2.4796567179147995e-12, 2.44909378493913e-12, 2.4081175808025208e-12, 2.399141354345797e-12, 2.332616212143602e-12, 2.3040241658454036e-12, 2.3039773195206043e-12, 2.2757645065347468e-12, 2.27052291467369e-12, 2.2323306556115024e-12, 2.177025726606329e-12, 2.164456113379587e-12, 2.161032238553804e-12, 2.136820872041382e-12, 2.0860208168050854e-12, 2.066134634811231e-12, 2.0639481775585747e-12, 2.0534009080017965e-12, 2.0356953856711756e-12, 2.018259080735976e-12, 2.0065641864628236e-12, 1.9893302705035166e-12, 1.9525974798623806e-12, 1.9399953266159268e-12, 1.9383667820111272e-12, 1.93711476324342e-12, 1.9298528248792574e-12, 1.9235532789414697e-12, 1.9155764210613934e-12, 1.8925865639591637e-12, 1.8741607918447797e-12, 1.8721026396616293e-12, 1.8709821630430746e-12,

1.8579412919716673e-12, 1.856712404506013e-12, 1.8550291973808832e-12, 1.8441971224091674e-12, 1.8438014843236975e-12, 1.8144201082925055e-12, 1.7872551613209344e-12, 1.7619090331748408e-12, 1.755530525409195e-12, 1.755472559899534e-12, 1.7318621624379086e-12, 1.7268325935381583e-12, 1.7221871031990729e-12, 1.7168076502626639e-12, 1.6993769418073538e-12, 1.6867890047135667e-12, 1.6846603895271838e-12, 1.6840505770221492e-12, 1.6759300073102453e-12, 1.657838192718473e-12, 1.6400306549585037e-12, 1.6337610551070857e-12, 1.6322802155252733e-12, 1.6037518933810486e-12, 1.6035260045483506e-12, 1.5785603398520193e-12, 1.576608006566452e-12, 1.5743918480508747e-12, 1.5741133474751133e-12, 1.5664761986775967e-12, 1.5375387464069126e-12, 1.5349684569097611e-12, 1.5323353285668804e-12, 1.531798397019599e-12, 1.5265408787950404e-12, 1.5264076335496007e-12, 1.5237387104410501e-12, 1.5206015773610387e-12, 1.5114094441333102e-12, 1.4913417963074124e-12, 1.4776989733144116e-12, 1.4750603753169844e-12, 1.4741584433686568e-12, 1.4736624105768838e-12, 1.4721346132000613e-12, 1.4663229142013458e-12, 1.4507716930815234e-12, 1.443247741988117e-12, 1.4404641317726443e-12, 1.4357038490577032e-12, 1.4294590823741343e-12, 1.4261378196330385e-12, 1.4165493128056534e-12, 1.4158115882816832e-12, 1.4118348778680404e-12, 1.409446980527557e-12, 1.3980960635450975e-12,

1.3954196275439987e-12, 1.3874443368561405e-12, 1.3825271724568582e-12, 1.3813866655433446e-12, 1.3601005494407538e-12, 1.3397121407080445e-12, 1.327724067523146e-12, 1.3266807270610606e-12, 1.3208119609662183e-12, 1.3185317514420279e-12, 1.314875676605336e-12, 1.3131309789140375e-12, 1.3114011574984101e-12, 1.306687946696089e-12, 1.3055368101869008e-12, 1.3037214414439364e-12, 1.2990911365232697e-12, 1.2981067438290953e-12, 1.29073131090527e-12, 1.2846754005968267e-12, 1.284298156904591e-12, 1.2816956197934859e-12, 1.281156257174914e-12, 1.280766156540005e-12, 1.276282318485296e-12, 1.276175460077752e-12, 1.2742060835877096e-12, 1.2672900604163968e-12, 1.236758510461367e-12, 1.2367218764917498e-12, 1.2321899994871804e-12, 1.2250359981941047e-12, 1.2132498193433502e-12, 1.212961016141923e-12, 1.2039081021754896e-12, 1.1945460671630521e-12, 1.1910110403939388e-12, 1.1898775370294943e-12, 1.1894057493782603e-12, 1.178884365394856e-12, 1.1788218354954098e-12, 1.1762733818149219e-12, 1.1631312677138432e-12, 1.1550930390089202e-12, 1.1543727878210812e-12, 1.154069751657024e-12, 1.144629573591962e-12, 1.1374954776756257e-12, 1.1362791685603674e-12, 1.1358271227756364e-12, 1.1244777781279582e-12, 1.1132318051348643e-12, 1.1086531091969548e-12, 1.1024729412767931e-12, 1.1018744635473512e-12, 1.0957080200399377e-12, 1.0941125032700234e-12,

```
1.0918034937586384e-12,
          1.0915575488333161e-12,
          1.0901492597358806e-12,
          1.0865860421677451e-12,
          1.0764199872619398e-12,
          1.0721814371761275e-12,
          1.0698255499331999e-12,
          1.0626324997995043e-12,
          1.0535547580989648e-12,
          1.0523107502098832e-12,
          1.0459088307414173e-12,
          1.0437685841306285e-12,
          1.0400215770429454e-12,
          1.0385531082574682e-12,
          1.0380868314992096e-12,
          1.0372050658652803e-12,
          1.0326985179315722e-12,
          1.0323689283489895e-12,
          1.0303913670705764e-12,
          1.029914573483078e-12,
          1.0238577716957089e-12,
          1.0211305820860468e-12,
          1.018718419179555e-12,
          1.0161293288409296e-12,
          1.013903875480287e-12,
          1.0090566097553101e-12,
          1.0036033811603256e-12,
          1.0019180326834833e-12,
          9.95624248252639e-13,
          9.935068941737739e-13,
          9.876760417336907e-13,
           ...]
In [90]:
         # a = np.array(values_pca)
          values pca diag=np.diag(flat list)
In [91]:
         values_pca_diag.shape
Out[91]: (2066, 2066)
```

Projection

```
In [92]: proj_dual=np.dot(values_pca_diag,v.T)
In [93]: proj_dual=pd.DataFrame(proj_dual)
```

```
In [94]:
           proj dual.T
Out[94]:
                             0
                                           1
                                                         2
                                                                       3
                                                                                     4
                                                                                                    5
                   3260.281652
                                 2076.393804
                                                623.869540
                                                             1105.095014
                                                                           2460.912277
                                                                                          1539.799577
                                                                                                        11
                  -2710.230937
                                -1692.862034 -1063.848940
                                                           -1224.477082
                                                                           -340.243865
                                                                                          1066.056449
                                                                                                        -6;
                   2270.480054
                                 1280.691083
                                                683.886484
                                                              766.714552
                                                                            765.307684
                                                                                           163.901848
                                                                                                         7(
                   -2113.839617 -1134.958492
                                                978.596760
                                                              779.579273
                                                                         -1176.779627
                                                                                         -1098.110446
                                                                                                        -3:
                   1407.134811
                                  519.842858
                                               1784.060639
                                                             1068.151909
                                                                          1545.517344
                                                                                          -159.517604
                                                                                                        11:
            2061
                      0.000000
                                 1200.214536
                                               -358.633754
                                                           -1207.344120 -1968.416366
                                                                                         -2771.624279
                                                                                                       1104
            2062
                      0.000000
                                  132.742693
                                               2150.474250 -7332.576765
                                                                           6113.376989
                                                                                          5688.516573
                                                                                                        11(
                      0.000000
            2063
                                  763.482999
                                               1776.728554 -7772.417624
                                                                          3918.631772
                                                                                         -2723.270738
                                                                                                       -430
            2064
                      0.000000
                                  451.044453 -2709.468130 -6163.260056 -4609.777451
                                                                                          4698.516903
                                                                                                       ،30
            2065
                      0.000000 -7426.311757 -1104.710680
                                                             -668.809680 -7597.944130 -13038.582332
           2066 rows × 2066 columns
```

Reconstruction

```
In [95]: x_hat_dual1=np.dot(v,df_features_znorm)
x_hat_dual=np.dot(v.T,x_hat_dual1)
```

In [96]: x_hat_dual=pd.DataFrame(x_hat_dual)

```
In [97]:
           x hat dual
Out[97]:
                          0
                                    1
                                              2
                                                         3
                                                                   4
                                                                              5
                                                                                        6
                                                                                                  7
               0
                   1.010077
                             0.966782
                                       0.359594
                                                -1.668004 -1.638671
                                                                       1.007994
                                                                                -0.324102 -0.992537
                                                                                                      9.0
                   1.687176
                            -1.029924
                                        1.026488
                                                  0.336317 -0.976018
                                                                       0.340307
                                                                                 1.674690
                                                                                           -0.992537
                                                                                                      9.0
               2
                  -1.021220
                             0.301213
                                      -1.641090
                                                  0.336317
                                                           -0.976018
                                                                      -0.995067
                                                                                -1.656630
                                                                                           -0.992537
                                                                                                     -1.6
                   1.687176
                             0.301213
                                       -0.307301
               3
                                                  0.336317
                                                            1.674594
                                                                      -0.327380
                                                                                -0.324102 -1.648724
                                                                                                      9.0
                   0.332978
                             1.632350
                                        0.359594
                                                  0.336317
                                                            -1.638671
                                                                       1.007994
                                                                                 -0.990366
                                                                                           -0.992537
                                                                                                      9.0
                                    ...
                                                                             ...
            2061
                   1.010077 -1.695492
                                       0.359594
                                                 -1.668004
                                                             1.011941 -1.662753
                                                                                 1.008426
                                                                                            0.319835
                                                                                                     -1.0
            2062
                            -0.364355
                                                                                                      0.3
                  -0.344121
                                       0.359594
                                                  1.004424
                                                            -0.313365 -0.995067
                                                                                -0.324102
                                                                                            0.319835
            2063
                  -0.344121
                             0.301213
                                       -0.307301
                                                  0.336317
                                                           -0.976018 -0.327380
                                                                                                      1.6
                                                                                 1.674690
                                                                                            1.632208
            2064
                   1.687176
                            -0.364355
                                       1.026488
                                                  0.336317
                                                           -0.976018 -1.662753
                                                                                 0.342162 -0.336351
                                                                                                     -0.3
            2065
                   0.332978
                             0.301213
                                       -0.974195
                                                  0.336317
                                                           -0.313365
                                                                       1.675681
                                                                                 1.008426 -0.336351
                                                                                                     -0.3
           2066 rows × 784 columns
In [98]:
           stop = timeit.default timer()
           print('MODEL: ', stop - start)
           Timetaken = Timetaken.append({'Model':'DUAL PCA', 'time':stop-start},ignore
            index=True)
           MODEL: 5.822685161999999
In [99]:
           Timetaken
Out[99]:
                   Model
                              time
            0
                    PCA 3.715777
```

DUAL PCA 5.822685

ANALYSIS::->

- 1.NOTE:-> Dual PCA is basically used when the number of dimensions >> no of observations to reduce the time of computations and save the computation storage as well. In our case case, Number of dimensions are less than the number of observations.
- 2. Execution Time:-> In our case, time taken by PCA is 3.71 seconds whereas time taken by the dual PCA is 5.8 seconds which is because of the fact defined in above NOTE. In an ideal case, Time and storage taken by the dual pca is always less compared to the PCA.
- 3.We tend to use the training samples into consideration while computing to reduce the computational time rather than taking the dimensions which are more in that particular case.

Citation:

1.http://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/notes/lec6.pdf

```
In [ ]:
```

2.2.2 Theoretical Question

Prove that PCA is the best linear method for reconstruction (with orthonormal bases). Hint: write down the optimization problem and solve it.

2.3.1 Fisher Discriminant Analysis (FDA)

```
In [100]: import timeit
    start = timeit.default_timer()

In [101]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
    x_train=df_features_znorm
    y_train=df_full['gnd']
    lda = LDA()
    lda_transformed1=lda.fit_transform(x_train, y_train)

In [102]: type(lda_transformed1)

Out[102]: numpy.ndarray
```

^{**}Scanned and attached at end

```
lda tranformed1=pd.DataFrame(lda transformed1)
In [104]:
          type(lda_transformed1)
Out[104]: numpy.ndarray
In [105]:
           stop = timeit.default_timer()
           print('MODEL: ', stop - start)
           Timetaken = Timetaken.append({'Model':'LDA', 'time':stop-start},ignore_inde
           x=True)
           MODEL: 1.8334435830000047
           lda tranformed1
In [106]:
Out[106]:
                        0
                                 1
                                          2
                                                    3
               0 -5.277233 -2.052912
                                    3.473823 -1.613518
               1 -5.913727 -1.953482
                                    3.665304 0.189606
               2 -4.154543 -0.868888
                                             0.746605
                                    1.172538
                -6.728769 -2.568941
                                    4.442847 -0.640440
                 -6.977105 -2.125944
                                   2.281978 -0.505802
            2061 -1.493870
                           3.310943 -0.571532
                                             0.611935
            2062 -0.249322
                           4.925294
                                    0.091210 -2.307546
            2063 -1.311290
                          5.398086
                                    0.216997 -1.333615
            2064
                 0.213247
                           5.160965 -0.016662 -0.186851
            2065
                0.404523 4.317396 -0.313309 0.747472
           2066 rows × 4 columns
In [107]:
          lda_with_label=pd.concat([lda_tranformed1,df_full.gnd],axis=1)
```


ANALYSIS::->

RESULTS [known classes] & SEPARABILITY=>

LDA1 VS LDA2

LDA1 :=>LDA 1 separates class label [0,1] from each other and from [2,3,4] very well.(i.e if we tend to draw a line on the LDA1 axes(x axes)) whereas Class labels [2,3,4] overlap with each other.

LDA2 :=>LDA 2 separates class label [4] from [0,1,2,3] very well if we draw a line on the LDA2 axes(y axes)). Class labels [0,1,2,3] overlap with each other.

LDA2 VS LDA3

LDA2 :=>LDA 2 separates class label [4] from [0,1,2,3] very well if we draw a line on the LDA2 axes(x axes)). Class labels [0,1,2,3] overlap with each other.

LDA3 :=>LDA 3 separates class label [3] from [0,1,2,4] very well if we draw a line on the LDA3 axes(y axes)). Class labels [0,1] and [2,4] overlap.

LDA3 VS LDA4

LDA3 :=>LDA 3 separates class label [3] from [0,1,2,4] very well if we draw a line on the LDA3 axes(x axes)). Class labels [0,1] and [2,4] overlap.

LDA4 :=>LDA 4 separates class label [2] from [0,1,3,4] very well if we draw a line on the LDA3 axes(y axes)). Class labels [0,1,3,4] overlap.

RESULT::=> It can be concluded that first direction of LDA separates classes better than the rest of the directions which can be theortically proved by finding the ranked eigen values.

COMPARISON BETWEEN LDA AND PCA RESULTS:==>

- 1.PCA lets us find the principal components with the highest variation in the data.
- 2.LDA finds the directions taking the variation between the classes and the variation within the class into consideration. i.e Maximize(Var between) and Minimize(var within)
- 3.From looking at the plots of both PCA and LDA, we can easily conclude that the "class separability" provided by the IDA directions is far better than that provided by the PCA, whereas the overall variation of data is best in PCA.
- 4.Correlation between the class and the direction is also more in case of LDA whereas PC1 and PC2 accounted for only 0.19 and 0.15 of correltion with the class labels.

Citations:=>

1.https://sebastianraschka.com/Articles/2014_python_lda.html

2.https://towardsdatascience.com/linear-discriminant-analysis-lda-101-using-r-6a97217a55a6

2.3.2 Theoretical Question

Scanned

Dale
2.2.2 Meretical Question:
PCA is the dimensionality seduction technique [linear]
1201 in Tainer 7:
tungue inters
Control of the second state of the second stat
Goal: (i) Preserve as much vas promble
Nariance in the data in the new Coordinate System.
new Coordinate System.
(ii) Reconstruct the original data from the projected data.
the projected data.
Let X = [x, x2 xn] be the datapoints.
In order to all posimete the Space Spanned
his the X was chosen should be
In order to approximate the Space Spanned by the X, we can choosep based on what amount of variance we would like to retain
achor dividual of victoria
une la rulam
To Proove: X = [x, xn]dxn
ni Ela
a domannamel vector.
Project these points on a vector U[PC]
$U_{i}^{T}X$
ixa am
the soled to many various Various (U,Tx)
we ned to manininge Var (U, Tx) 2nd manining Var (U, Tx) and so on
ma maximum vay(02 x) was so on
The state of the s
man variuix)
Maria Company
het S- be a dxd fample Covariance matrin
Jon Service and the service and

	Date
	Var (U,Tx) = U,TSU, = Can + take derivative = 0
	1xa dxd dx1 .: O nouther bround.
	in many (UTSU)
	go after adding Constraint, our Oplingsdion problem will be
	proplem will be
<u>→</u>	OPTIMIZATION PROBLEM
4	man (U, SU,) tous on a direction
*	Shiphest "
<u></u>	LS.t U, U=1 variancefirst
~	
_	teking Lagrange.
P_	$L(u_1,\lambda_1) = U_1^T S U_1 - \lambda \left(U_1^T U_1 - 1 \right)$
=	Ly dual Varieble
~	mis is dual folm of optimization foroblem
C	
<u></u>	$L(U,\lambda_1) = U_1^{T} S U_1 - \lambda_1 (U_1^{T} U_1 - 1)$
C_	
=	$\frac{\partial L}{\partial U} = \frac{\partial SU_1 - \partial J_1 U_1}{\partial U_1} = 0$
	∂U_1
	50, = 10, matrin times a vedor
_	Signature and I in
2	Up - Eigen vector of 5 7 Saddle tots of
-	di - Eigen Value of 5 I this Lagrance.
F.	ie der (L) = 0
7	hu, - Inun =) all are saddle pts.
	which will manimize the Variance
-	UTSU = UT / U = / ie UTSU = /
-	Note: S has at most deigen values &
	deigen Vertoll.
	for dry un, value of obj. in = In
4 (2)	Scanned by CamScanner

Date
Reconstruction:
Reconstruction:
7.
[y=u,Tn, -> 1pt. projected]
Acres hickory be after ittimene mansk ?
$\frac{2.3.2}{5_T} = S_W + S_B$
, 57 = Sw+ Sp. 124
5-0 Total Santta in the Council of
57: Total Scatter is the Summation of within I blw the Scatters.
In PCA, Gwal was to manimize the Variance of the data whereas,
(i) Minimize the Variance within each class distance (ii) Manimize the variance between the Class labels
(ii) Manimize the barrence between
fist class has to projected to with
brogedted men -) WTU, U men Jelon 1
(noal 2 00 =15 » i
mare (w vo - w, tu,)2.
$L = [\omega^{T} \upsilon_{0} - \omega^{T} \upsilon_{1}]^{T} (\omega^{T} \upsilon_{0} - \omega^{T} \upsilon_{1})$
$= (\upsilon_0 - \upsilon_1)^{T} (\omega)(\omega^{T})(\upsilon_0 - \upsilon_1)$ $= \omega^{T} (\upsilon_0 - \upsilon_1) [\upsilon_0 - \upsilon_1)^{T} \omega$
$= \omega^{T}(U_{0}-U_{1})[U_{0}-U_{1})^{T}\omega$

	Date
Wis anknown to us.	Se Kildering III G va
$(v_0-v_1)(v_0-v_1)^{\dagger}=)$	S.B. C.
Holass 1 has Covariance	matrin 5.
n 2	
class I has variance	WIZOW
class 2 has Variance	WTE, W
= var of pre	ejected date.
	a see a
Croal 1 ° minimize va	S= WTEOW
June find w? 1000	DH for multi long
min (WTZOW + WTS	$((1)) \ni ((20 + (21)))$
Sw Within C	les Corrage (1.
So maninize (WTSBW)	Maria Maria
	4. 7
man wTSRW =) Optimization
WTSWW	Proplem
equivalent to	
man	i WTSBW
<u>S.</u>	t WISWW=1
This was the proble	m in PCA where
we had to put co	
the optimization pro	sen welldefined
will cons	ider length of w. and
Jen on for the best dis	etion of which was
also the Close with	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Date
a Olla : H. la aveneren
So Applying the lagrangian $L(W, X) = W^{7}S_{1}S_{1} - \lambda(W^{T}S_{1}W^{T}S_{$
M Solving we get. Sw-SRW = \lambda W Ly full rank
SW-ISBW = JW
L) full rank
20 there is only leigen Ve ctor for 2 dimensionel date in LDA: Whereas, In PCA it was a mor dimensional.
2 dimensional date in LDA.
Whereas, In PCA it was a now dimensione
LDA for multiclas problem can be explained
LDA for much promise
by. I clearer of dimensions
WTSBW Where W = [W, W2-Wj-1)
W SBW WWW.
Tr (WTSBW) , Tr (WTSWW)
T (a)
e mess(12 (d))
mare / Tr (WT SOW)
TE (WTSWW) = 1
Apply leg.
Fut Splw - 1 W
Junet with with the line with
J-1 range
i. fe-le vector

		Date	
$\delta n = \Sigma_0 + \Sigma_j$	s ' F		10.00
$\frac{2n^2}{5_3 = (U_0 - U_1)}$	(U0-U1	J-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
mus, 57 = SB+S	^^		
where $57 = 1$ $n-d$	2 ()(1.	$-(u)(x_1-u)$	
75B=ST-SW	J		1 2
Theoretically we ha	ve prou	ed that La)A
the classes as well the Variance of date-	l in	distance b addition to	θ
which can be c	learly 7 Ft CZ	seen in -	the L
(LDI,LD2J,LD2,		whene	
(1) LDA was ab	le to	separate th	ince
taken whole a	Chount	ias also	
(2) Whereas In PC widely Spread of the classe	A Miles	note date w	as tering
of the classe	s form	red	34