전공: 국제한국학 학년: 4 학번: 20181202 이름: 김수미

1. 교재를 참조하여 테트리스 프로젝트 3주차에 구현하는 추천 기능은 어떤 원리로 작동되는지 설명하시오. 그리고 추천 기능을 구현하는 tree 구조의 장점(효율성)과 단점(비효율성)을 기술하시오.

1) 테트리스 추천 기능 작동 원리

먼저 블록이 현재 놓일 수 있는 위치와 해당 위치에 따른 점수를 모두 계산하고(블록의 회전 경우의 수까지 모두 고려), 각 경우의 수에 따라서 다음 블록이 위치할 수 있는 경우의 수까지 고려하여 그 점수의 총합이 가장 큰 경우를 추천하는 시스템이다. 즉 현재 블록과 다음 블록 총 두가지의 상황을 고려하면서 테트리스 블록이 가장 높은 점수를 획득할 수 있게 놓이는 자리를 추천한다. 모든 경우의 수는 트리 자료구조를 이용하여 관리한다.

2) Tree구조의 장점과 단점

장점(효율성): 다른 자료구조보다 추천 시스템에서 필요한 수많은 경우의 수를 체계적으로 정리하고 관리할 수 있다.

단점(비효율성): tree의 깊이가 깊어지는 경우 시간 및 공간 복잡도가 exponential 하게 증가하기 때문에, 추천 기능의 정확도를 높이기 위해서 더 많은 depth의 트리를 구축하려 해도 구현 가능한 정도에 한계가 존재한다.

- 2. Tree구조의 비효율성을 해결할 방법에 대해서 2가지 이상 생각하고, 그 idea를 기술하시오.
- 1) Pruning: 일정 점수에 미치지 못하는 이득의 가지는 삭제한다(시간 및 공간 복잡도 감소) 트리를 구성할 때 마다 일정 점수에 미치지 못하는 Score의 노드는 삭제한다. 이는 트리가 차지하는 공간 복잡도와 계산에 필요한 시간 복잡도를 감소시키는 효과가 있지만 삭제한 노드에서 가장 큰 누적 점수가 파생될 수도 있는 경우를 놓치게 된다.

2) 노드가 저장하는 데이터의 단순화(공간 복잡도 감소)

노드는 매번 필드에 블록이 어떻게 쌓이는지를 저장해야 한다. 그래야 현재 블록 다음에 나오는 블록의 위치까지 고려하여 최대 점수를 낼 수 있는 위치를 추천해줄 수 있기 때문이다. 이렇게 필드에 블록이 쌓이는 방식을 2차원 배열에 일일이 표시하는 것이 아닌, 일차원 배열로 각 열에 존재하는 블록의 최대 높이만을 저장하는 방법을 선택할 수 있다. 이 방법의 단점은 필드의 중간에 생긴 구멍에 대한 정보가 손실된다는 것이다.