# Phase Diagrams for Ceramists 1969 Supplement

Ernest M. Levin,
Carl R. Robbins and
Howard F. McMurdie

Compiled at the National Bureau of Standards

Margie K. Reser, Editor

**SECOND PRINTING 1985** 

© Copyright, 1969, by

The American Ceramic Society

65 Ceramic Drive, Columbus, Ohio 43214

Printed in U.S.A.

ISBN 0-916094-05-7





Fig. 2340.—System Al<sub>2</sub>O<sub>3</sub>-La<sub>2</sub>O<sub>3</sub>.

I. A. Bondar and N. V. Vinogradova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 5, 785 (1964); Edward T. Fritsche and Lowell G. Tensmeyer, J. Am. Ceram. Soc., 50 [3] 167 (1967), also report an La<sub>2</sub>O<sub>3</sub>·11Al<sub>2</sub>O<sub>3</sub> compound that melts congruently at 1995°C.





Fig. 2342.—System  $Al_2O_3$ -Nd $_2O_3$ .

N. A. Toropov and T. P. Kiseleva, Zh. Neorgan. Khim., 6 [10] 2353 (1961); Russ. J. Inorg. Chem. (English Transl.), 1193 (1961).



Fig. 2341.—System  $Al_2O_3$ —LaAlO3. Compound composition of  $\beta$  is in the range  $Na_2O \cdot 10Al_2O_3$  (1:10) to  $Na_2O \cdot 12Al_2O_3$  (1:12).

Pham Huu Thanh; Ph.D. Thesis, Sci. Faculty Univ. of Lyon, June, 1965; p. 77 (Order No. 357); Maurice Rolin and Pham Huu Thanh, Rev. Hautes Temp. Refractaires, 2 [2] 184 (1965).





Fig. 2343.—System Al<sub>2</sub>O<sub>3</sub>-Sc<sub>2</sub>O<sub>3</sub>. R ss = solid solution phase. N. A. Toropov and V. A. Vasil'eva, *Dokl. Akad. Nauk SSSR*, 152 [6] 1379 (1963).



N. A. Toropov, I. A. Bondar, F. Ya. Galakhov, X. S. Nikogosyan, and N. V. Vinogradova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 7, 1162 (1964).



Fig. 2346.—System Al<sub>2</sub>SiO<sub>5</sub> showing kyanite-sillimanite equilibrium boundary; tentative.

S. W. Richardson, P. M. Bell, and M. C. Gilbert, Carnegie Inst. Washington, Yearbook, 65, 248 (1966).



Fig. 2345.—P-T diagram for the system  $Al_2SiO_5$ . Kyanite-sillimanite inversion was accomplished hydrothermally.

R. C. Newton, Science, 151 [3715] 1223 (1966).



Fig. 2347.—System Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> at high temperatures and pressures; deduced. R. C. DeVries, J. Am. Ceram. Soc., 47 [5] 236 (1964).



Fig. 2361.—System  $Cr_2O_3$ -Nd<sub>2</sub>O<sub>3</sub>.

V. N. Pavlikov and S. G. Tresvyatskii, Zh. Neorgan. Khim., 11 [6] 1442 (1966); Russ. J. Inorg. Chem. (English Transl.), 771 (1966).

# Dy<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>



Fig. 2362.—System  $Dy_2O_3$ -Si $O_2$ .

N. A. Toropov, F. Ya. Galakhov, and S. F. Konovalova, Izv. Akad. Nauk SSSR, Ser. Khim. No. 8, 1368 (1961); Bull. Acad. Sci. USSR, Div. Chem. Sci. (English Transl.), 1275 (1961).

## $Dy_2O_3-ZrO_2$



Fig. 2363.—System  $Dy_2O_3$ – $ZrO_2$ , subsolidus; proposed. B = rare-earth oxide type,  $C_1$  and  $C_2$  = cubic phases, and  $H_2$  and  $H_3$  = hexagonal phases.

Monique Perez y Jorba, Ann. Chim. (Paris), 7, 509 (1962).

# $Dy_2O_3-V_2O_5$



Fig. 2364.—System DyVO4 showing univariant P-T curve for the transition: zircon-type 

⇒ scheelite-type structure.

V. S. Stubican and Rustum Roy, J. Appl. Phys., 34 [7] 1888 (1963).

# Er<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>



Fig. 2365.—System Er<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>.

N. A. Toropov, F. Ya. Galakhov, and S. F. Konovalova, Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1370 (1961); Bull. Acad. Sci. USSR, Div. Chem. Sci. (English Transl.), 1275 (1961).

## Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>



Fig. 2366.—System  $Ga_2O_3$ —Si $O_2$ . See Fig. 341 for diagram showing liquid immiscibility.

N. A. Toropov, Trans. Intern. Ceram. Congr., 7th, London, 1960, p. 437.



Fig. 2370.—System  $ZrO_2$ -Gd<sub>2</sub>O<sub>3</sub> showing monoclinic (M)  $\rightarrow$  tetragonal (tet) inversion of  $ZrO_2$ .

Jean Lefèvre, Ann. Chim. (Paris), 8 [1-2] 128 (1963).





Fig. 2371.—System La<sub>2</sub>O<sub>3</sub>-HfO<sub>2</sub>.

L. N. Komissarova, Wang Kên-shih, V. I. Spitsyn, and Yu. P. Simanov, Zh. Neorgan. Khim., 9 [3] 693 (1964); Russ. J. Inorg. Chem. (English Transl.), 385 (1964).

# La<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>



Fig. 2372.—System La<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>. Oxide ratios of compounds are given as La<sub>2</sub>O<sub>3</sub>:SiO<sub>2</sub>.

N. A. Toropov, I. A. Bondar, and F. Ya. Galakhov, Trans. Intern. Ceram. Congr., 8th, Copenhagen, 1962, p. 87; N. A. Toropov and I. A. Bondar, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 5, 740 (1961).

# BEST AVAILABLE COPY





Fig. 2373.—System La<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>.

J. B. MacChesney and H. A. Sauer, J. Am. Ceram. Soc., 45 [9] 419 (1962).

# La<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>



Fig. 2374.—System  $La_2O_3$ – $ZrO_2$ ; proposed. A = rare-earth oxide type,  $C_1$  = cubic phase, and P = cubic pyrochlore phase.

Monique Perez y Jorba, Ann. Chim. (Paris), 7, 509 (1962).

# Ln<sub>2</sub>O<sub>3</sub>-As<sub>2</sub>O<sub>5</sub>





Fig. 2375.—System  $ZrO_2$ -La<sub>2</sub>O<sub>3</sub> showing monoclinic (M)  $\rightarrow$  tetragonal (tet) inversion of  $ZrO_2$ .

Jean Lefèvre, Ann. Chim. (Paris), 8 [1-2] 128 (1963).

Fig. 2376.—System LnAsO $_4$  showing univariant P-T curves for the transition: zircon-type  $\rightleftarrows$  scheelite-type structure for rare-earth atoms with odd atomic numbers.

V. S. Stubican and Rustum Roy, J. Appl. Phys., 34 [7] 1888 (1963).





Fig. 2381.—System Nd<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>. Oxide ratios of compounds are given as Nd<sub>2</sub>O<sub>3</sub>: SiO<sub>2</sub>.

N. A. Toropov, Trans. Intern. Ceram. Congr., 7th, London, 1960, p. 440.





Fig. 2382.—System  $Nd_2O_3$ -Zr $O_2$ ; proposed. A = rare-earth oxide type,  $C_1$  = cubic phase, and P = cubic pyrochlore phase.



Fig. 2383.—System  $Nd_2O_3$ – $ZrO_2$  showing phase transformations. 1 = monoclinic ss based on  $ZrO_2$ , 2 = tetragonal ss based on  $ZrO_2$ , 3 = monoclinic ss + tetragonal ss + cubic ss, 4 = tetragonal ss + cubic ss, 5 = monoclinic ss + cubic ss of pyrochlore type, 6 = cubic ss of the pyrochlore type, 7 = cubic ss of the pyrochlore type + tetragonal ss based on neodymium oxide, 8 = hexagonal ss based on neodymium oxide, 9 = cubic ( $Mr_2O_3$  type) ss + cubic (pyrochlore type) ss, and 10 = cubic ( $Mr_2O_3$  type) ss + hexagonal ss.

V. B. Glushkova, I. A. Davtyan, and É. K. Keler, Izv. Akad. Nauk SSSR, Neorgan. Materialy, 1 [11] 1955 (1965); Russ. J. Inorg. Materials (English Transl.), 1772 (1965).



Fig. 2384.—System Sc<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>.

N. A. Toropov and V. A. Vasil'eva, Zh. Neorgan. Khim., 7 [8] 1938 (1962); Russ. J. Inorg. Chem. SiO<sub>2</sub> (English Transl.), 1002 (1962).

# Sc<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>



Fig. 2385.—System ScO<sub>1.5</sub>-ZrO<sub>2</sub>; subsolidus. Jean Lefèvre, Ann. Chim. (Paris), 8 [1-2] 138 (1963).

# $Sm_2O_3-SiO_2$



Fig. 2386.—System  $Sm_2O_3-SiO_2$ . Oxide ratios of compounds given as  $Sm_2O_3\cdot SiO_2$ .

N. A. Toropov, Trans. Intern. Ceram. Congr., 7th London, 1960, p. 439; N. A. Toropov and I. A. Bondar, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 8, 1372 (1961); Bull. Acad. Sci. USSR, Div. Chem. Sci. (English Transl.), 1279 (1961).

 $Sm_2O_3-ZrO_2$ 



Fig. 2387.—System  $Sm_2O_3-ZrO_2$ , subsolidus; proposed. A and B = rare-earth oxide types,  $C_1$  and  $C_2$  = cubic phase, and P = cubic pyrochlore phase.

Monique Perez y Jorba, Ann. Chim. (Paris), 7, 509 (1962).

Y2O3-SiO2



Fig. 2388.—System Y<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>. Oxide ratios of compounds are given as Y<sub>2</sub>O<sub>3</sub>:SiO<sub>2</sub>.

N. A. Toropov, Trans. Intern. Ceram. Congr., 7th, London, 1960, p. 438; N. A. Toropov and I. A. Bondar, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 4, 547 (1961).

Y2O3-ThO2



E. C. Subbarao, P. H. Sutter, and J. Hrizo, *J. Am. Ceram. Soc.*, **48** [9] **445** (1965).

Y2O3-ZrO2



Fig. 2390.—System  $Y_2O_3$ – $ZrO_2$  showing compound  $Y_2Zr_2O_7$ . c= cubic, mon = monoclinic, and tet = tetragonal.

F. Fu-kang, A. K. Kuznetsov, and E. K. Keler, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 4, 601 (1963).

# $Yb_2O_3-SiO_2$



Fig. 2391.—System  $Yb_2O_3$ -SiO<sub>2</sub>. Oxide ratios of compounds given as  $Yb_2O_3$ : SiO<sub>2</sub>.

N. A. Toropov, I. A. Bondar, and F. Ya. Galakhov, Trans. Intern. Ceram. Congr., 8th Copenhagen, 1962, p. 87; N. A. Toropov and I. A. Bondar, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 8, 1372 (1961); Bull. Acad. Sci. USSR, Div. Chem. Sci. (English Transl.), 1280 (1961).



Fig. 2392.—System  $Yb_2O_3$ –ZrO<sub>2</sub>, subsolidus; proposed.  $C_1$  and  $C_2$  = cubic phases,  $H_1$  = rhombohedral phase, and  $H_2$  and  $H_3$  = hexagonal phases.

Monique Perez y Jorba, Ann. Chim. (Paris), 7, 509 (1962).

# BEST AVAILABLE COPY



Fig. 2393.—System SiO<sub>2</sub>-GeO<sub>2</sub> showing pressure-composition diagrams at 450°C (solid line) and 500°C (dashed line).

W. S. Miller, F. Dachille, E. C. Shafer, and Rustum Roy, Am. Mineralogist, 48, 1027 (1963).