Quiz 8: Encoding Scheme & Error Detection/Correction

1. Please write the entire 4-bit Gray code by reflecting and prefixing.

2. Please Convert the following Gray code word to Binary code.

10011010

11101100

3. Convert the following Binary code word to Gray code.

10011010

11010111

4. The following hamming coded message was received. Use it to answer questions 4.1 - 4.6

0101101

(4.1) Circle the parity bits p3, p2 and p1

0101101

(4.2) What position number is generated to determine if an error has ocurred in transmission?

```
4567 parity check: c1 = 1
2367 parity check: c2 = 0
1357 parity check: c3 = 0
```

100

(4.3) Did an error occur in transmission?

Yes. The location of the error is in position 4

(4.4) What was the original correct coded message?

0100101

(4.5) What was the original correct message?

0101

(4.6) If the message is binary, what is the decimal value?

5

5. Convert a Negative Decimal Number –15 to an 8-bit binary number using Two's Complement.

1. Convert the positive number (15) to binary (8-bit) 00001111

2. Invert all bits (find the 1's complement) 11110000

3. Add 1 to the result (to get 2's complement) 11110001

6. Converting a signed Binary Number 1111 0001 in Two's Complement to its Decimal Number.

Check the sign bit (MSB)
 The first bit is 1 → the number is negative.

2. Invert all bits (1's complement):

00001110

3. Add 1 to get the magnitude:

00001111 Binary 00001111 = Decimal 15

4. Apply the sign

-15

7. Encode a decimal number 4 using each of the following codes.

- A. Binary Code 0100
- B. BCD Code 0100
- C. Gray Code 0110
- D. Excess-3 Code 0111
- E. 7-bit Hamming Code **1001100**
- 8. A self-complementing code has the special property that the 1's complement of a digit's code represents the code for its 9's complement. Using the (2,4,2,1) weighted code
- 8.1 what is the (2,4,2,1) binary code for decimal number 7?

```
2 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 7
```

(2,4,2,1) binary code is: 1101

8.2 what is the 1's complement of the above (2,4,2,1) code?

Flip each bit: 0010

8.3 what is the decimal value of its flipped code (1's complement)?

 $2 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$ (which is the 9's complement of 7)

8.4 What is the necessary condition that a weighted code must satisfy in order to be self-complementing?

The sum of the weights must equal 9