TUGAS LKP 7 PRAKTIKUM PENGENALAN POLA Dosen Pengampu: Dr. Toto Hardiyanto, S.Kom, M.Si

7

MACHINE LEARNING BERBASIS ALGORITMA TREE

Di susun oleh : SUFIATUL MARYANA G6601211012

PROGRAM PASCASARJANA
PROGRAM STUDI ILMU KOMPUTER
DEPARTEMEN ILMU KOMPUTER
INSTITUT PERTANIAN BOGOR
2021

PERTEMUAN 7

Machine Learning berbasis Algoritma Tree

Link github: https://github.com/sufiatulmaryana/RKP7Pola1

TUJUAN PRAKTIKUM

Pada praktikum Pereteman 8 akan menerapkan beberapa konsep antara lain :

- 1. Decision Tree
- 2. CART
- 3. Bagging dan Random Forest

Keempat konsep tersebut diterapkan pada sebuah permasalahan dengan menggunakan tools / bahasa pemrograman Python.

1. Decision Tree

```
#Import Library
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
from sklearn import metrics
#Melakukan pembacaaan dataset
col_names = ['pregnant', 'glucose', 'bp', 'skin', 'insulin', 'bmi', 'pedigree',
'age', 'label']
# load dataset
pima = pd.read csv("pima-indians-diabetes.csv", header=None, names=col names)
#print(pima)
#split dataset in features and target variable
feature cols = ['pregnant', 'insulin', 'bmi', 'age', 'glucose', 'bp', 'pedigree']
x = pima[feature_cols] # Features
y = pima.label # Target variable
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.25,
random state=3)
# Membuat objek DT
# Dapat dioptimalkan dengan menghitung Entropy
  clf = DecisionTreeClassifier()
  clf = DecisionTreeClassifier(criterion="entropy", max depth=3)
```

```
# Melakukan Pelatihan DT
    clf = clf.fit(X_train, y_train)

# Memprediksi
y_pred = clf.predict(X_test)

# Menghitung akurasi model
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

2. CART (Classification And Regression Tree)

Load Dataset

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from sklearn.datasets import load_boston
boston_dataset = load_boston()

boston = pd.DataFrame(boston_dataset.data, columns=boston_dataset.feature_names)

boston['MEDV'] = boston_dataset.target
names = boston_dataset.feature_names
```

#Library CART pada python from sklearn.tree import DecisionTreeRegressor

```
array = boston.values

X = array[:,0:13]
Y = array[:,13]
#print(X)
#print(Y)

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=1234)

#model = DecisionTreeRegressor(max_leaf_nodes = 20)

model = DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None, max_leaf_nodes=50, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=None, splitter='best')
```

#Evaluasi

```
rt = model.fit(X_train, Y_train)
rt

import random as rnd

rnd.seed(123458)
X_new = X[rnd.randrange(X.shape[0])]
X_new = X_new.reshape(1,13)

#Prediksi Model
YHat = model.predict(X_new)

df = pd.DataFrame(X_new, columns = names)
df["Predicted Price"] = YHat
df.head(1)

from sklearn.metrics import r2_score
YHat = model.predict(X_test)
print(YHat)
```

#Menghitung Rata-rata Kuadrat

```
r2 = r2_score(Y_test, YHat)
print("R-Squared = ", r2)
```

3. Bagging

#Impor Library

```
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import BaggingClassifier
from sklearn.model selection import GridSearchCV
```

#Load cancer dataset

```
bc = datasets.load_breast_cancer()
X = bc.data
y = bc.target

#membagi dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1, stratify=y)
```

#Melakukan pipelining

#Skema bagging

TUGAS PRAKTIKUM

1. Melakukan visualisasi Tree

a. Decision Tree

PROB	LEMS OUTP	UT DEBUG	G CON	SOLE	TERMINAL				
<pre>[Running] python -u "d:\ANNA\S3\Tugas7\TugasPrak7.py"</pre>									
	pregnant	glucose	bp	skin	insulin	bmi	pedigree	age	label
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
• •								• • •	
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

[768 rows x 9 columns] Accuracy: 0.671875

[Done] exited with code=0 in 0.854 seconds

b. CART

```
[Running] python -u "d:\ANNA\S3\Tugas7\cart.py"
[[6.3200e-03 1.8000e+01 2.3100e+00 ... 1.5300e+01
  3.9690e+02 4.9800e+001
[2.7310e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01
  3.9690e+02 9.1400e+00]
[2.7290e-02 0.0000e+00 7.0700e+00 ... 1.7800e+01
  3.9283e+02 4.0300e+001
[6.0760e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01
  3.9690e+02 5.6400e+001
[1.0959e-01 0.0000e+00 1.1930e+01 ... 2.1000e+01
  3.9345e+02 6.4800e+001
 [4.7410e-02 0.0000e+00 1.1930e+01 ... 2.1000e+01
  3.9690e+02 7.8800e+0011
[24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15.
  18.9 21.7 20.4
18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6
  13.9 16.6 14.8
18.4 21. 12.7 14.5 13.2 13.1 13.5 18.9 20. 21.
                                                   24.7
  30.8 34.9 26.6
25.3 24.7 21.2 19.3 20. 16.6 14.4 19.4 19.7 20.5 25.
  23.4 18.9 35.4
24.7 31.6 23.3 19.6 18.7 16. 22.2 25. 33. 23.5 19.4
  22. 17.4 20.9
24.2 21.7 22.8 23.4 24.1 21.4 20. 20.8 21.2 20.3 28.
  23.9 24.8 22.9
23.9 26.6 22.5 22.2 23.6 28.7 22.6 22. 22.9 25. 20.6
  28.4 21.4 38.7
43.8 33.2 27.5 26.5 18.6 19.3 20.1 19.5 19.5 20.4 19.8
  19.4 21.7 22.8
18.8 18.7 18.5 18.3 21.2 19.2 20.4 19.3 22. 20.3 20.5
  17.3 18.8 21.4
15.7 16.2 18. 14.3 19.2 19.6 23. 18.4 15.6 18.1 17.4
```

- 17.1 13.3 17.8
- 14. 14.4 13.4 15.6 11.8 13.8 15.6 14.6 17.8 15.4 21.5 19.6 15.3 19.4
- 17. 15.6 13.1 41.3 24.3 23.3 27. 50. 50. 50. 22.7 25. 50. 23.8
- 23.8 22.3 17.4 19.1 23.1 23.6 22.6 29.4 23.2 24.6 29.9 37.2 39.8 36.2
- 37.9 32.5 26.4 29.6 50. 32. 29.8 34.9 37. 30.5 36.4 31.1 29.1 50.
- 33.3 30.3 34.6 34.9 32.9 24.1 42.3 48.5 50. 22.6 24.4 22.5 24.4 20.
- 21.7 19.3 22.4 28.1 23.7 25. 23.3 28.7 21.5 23. 26.7 21.7 27.5 30.1
- 44.8 50. 37.6 31.6 46.7 31.5 24.3 31.7 41.7 48.3 29. 24. 25.1 31.5
- 23.7 23.3 22. 20.1 22.2 23.7 17.6 18.5 24.3 20.5 24.5 26.2 24.4 24.8
- 29.6 42.8 21.9 20.9 44. 50. 36. 30.1 33.8 43.1 48.8 31. 36.5 22.8
- 30.7 50. 43.5 20.7 21.1 25.2 24.4 35.2 32.4 32. 33.2 33.1 29.1 35.1
- 45.4 35.4 46. 50. 32.2 22. 20.1 23.2 22.3 24.8 28.5 37.3 27.9 23.9
- 21.7 28.6 27.1 20.3 22.5 29. 24.8 22. 26.4 33.1 36.1 28.4 33.4 28.2
- 22.8 20.3 16.1 22.1 19.4 21.6 23.8 16.2 17.8 19.8 23.1 21. 23.8 23.1
- 20.4 18.5 25. 24.6 23. 22.2 19.3 22.6 19.8 17.1 19.4 22.2 20.7 21.1
- 19.5 18.5 20.6 19. 18.7 32.7 16.5 23.9 31.2 17.5 17.2 23.1 24.5 26.6
- 22.9 24.1 18.6 30.1 18.2 20.6 17.8 21.7 22.7 22.6 25. 19.9 20.8 16.8
- 21.9 27.5 21.9 23.1 50. 50. 50. 50. 50. 13.8 13.8 15. 13.9 13.3
- 13.1 10.2 10.4 10.9 11.3 12.3 8.8 7.2 10.5 7.4 10.2 11.5 15.1 23.2
- 9.7 13.8 12.7 13.1 12.5 8.5 5. 6.3 5.6 7.2 12.1 8.3 8.5 5.
- 11.9 27.9 17.2 27.5 15. 17.2 17.9 16.3 7. 7.2 7.5 10.4 8.8 8.4
- 16.7 14.2 20.8 13.4 11.7 8.3 10.2 10.9 11. 9.5 14.5 14.1 16.1 14.3
- 11.7 13.4 9.6 8.7 8.4 12.8 10.5 17.1 18.4 15.4 10.8 11.8 14.9 12.6
- 14.1 13. 13.4 15.2 16.1 17.8 14.9 14.1 12.7 13.5 14.9 20. 16.4 17.7
- 19.5 20.2 21.4 19.9 19. 19.1 19.1 20.1 19.9 19.6 23.2

29.8 13.8 13.3 16.7 12. 14.6 21.4 23. 23.7 25. 21.8 20.6 21.2 19.1 20.6 15.2 7. 8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9 22. 11.9]

evaluasi

evaluasi			
[35.51 24.26666667 14.02142857 23.71666667	10.38571429	22.35238095	
19.83421053 15.43571429	20.575	27.45	
15.43571429 22.35238095			
22.35238095 18.31666667	17.71111111	23.71666667	
8.49285714 16.81428571			
19.83421053 10.38571429	37.73333333	23.71666667	
19.83421053 16.81428571			
27.45 19.77142857	19.83421053	22.46428571	
31.52857143 22.83333333			
20.575 19.33333333	18.31666667	14.02142857	
23.71666667 17.13333333			
20.50714286 22.35238095	10.38571429	8.49285714	
8.49285714 18.31666667			
49.78571429 31.76	19.83421053	25.4375	
25.4375 42.3			
14.02142857 25.4375	19.83421053	35.51	
23.71666667 23.71666667			
50. 31.76	10.38571429	31.52857143	
25.4375 22.35238095			
35.51 15.43571429	29.33333333	37.73333333	
10.38571429 22.46428571			
35.51 20.50714286	49.78571429	49.15	10.95
23.71666667			
14.02142857 19.18333333	23.71666667	10.38571429	49.15
23.71666667			
15.08181818 15.08181818	42.75	49.78571429	
23.71666667 15.08181818			
22.46428571 13.66666667	25.4375	31.52857143	
19.77142857 22.46428571			
19.33333333 14.26666667	22.46428571	19.18333333	
15.08181818 42.3			
15.43571429 24.26666667	25.4375	25.4375	
19.83421053 19.83421053			
19.18333333 29.33333333	15.43571429	49.78571429	
10.38571429 10.38571429			
31.06666667 19.83421053	8.49285714	25.4375	
19.83421053 25.4375			
15.08181818 22.46428571	37.73333333	25.4375	

15.08181818 49.15

22.35238095 14.02142857 18.31666667 35.51

19.83421053 35.2

23.71666667 22.46428571 19.83421053 22.35238095

22.83333333 19.83421053

16.325 10.38571429 19.83421053 13.66666667

16.81428571 35.51

17.13333333 29.33333333 19.83421053 10.38571429

24.26666667 19.83421053

31.52857143 27.45 22.46428571 24.26666667

23.71666667 8.49285714

19.83421053 19.77142857]

R-Squared = 0.8529712223699968

- 2. Melakukan tanpa skema bagging
 - a. Pada Bagging

Model Linear test Score: 0.965, Model Linear training Score: 0.991

Model Bagging test Score: 0.958, Model Bagging training Score: 0.960

DAFTAR PUSTAKA

1. Richert W & Coelho LP. *Builidng Machine Learning System with Python*. 2013. Packt Publising. Birmingham, UK.