Seminar Wz _ 916

-
$$r$$
 relation : $r = (A, B, R)$
 $t =$

equivalence relation r = (4, 4, 5c)>hnust-satisfy:

1. Let r, s, t, v be the homogeneous relations defined on the set $M = \{2, 3, 4, 5, 6\}$ by

$$x r y \iff x < y$$

$$x \, s \, y \iff x | y \iff y : \mathbf{x}$$

 $x v y \iff x \equiv y \pmod{3} \iff 3 \mid (4-7) \iff 3 \mid (4-$

Write the graphs R, S, T, V of the given relations.

Sal: R = {(2,3), (2,5), (2,5), (2,6), (3,6), (3,6), (4,5), (4,5)

$$S = \left\{ \left(\frac{2}{3} \right), \left(\frac{2}{5} \right$$

3. Give examples of relations having each one of the properties of reflexivity, transitivity and symmetry, but not the others.

			•
	St: refl., 759-, 7 tras	7 refl, syn, 7 tms	7refl, 75gm, trons
	A= N		A = N
	*vj => */y		
	0	J=[(1,2), (2,1)]	* \$ 5 5 × 5 y
	1 +1y = y=+k, hen		
	y 2 = 2 - ym, m & N		A = {2,53}
	==y==xh=>+121		· · · · · · · · · · · · · · · · · · ·
	This does not work brown		R = { (1,2), (2,3), (1,3)
	it's transitue		
	A={ 335}		
	-		
	$A = \{1,33\}$		
	$\mathcal{R} = \left\{ (1, 2), (2, 3), (4, 1), (2, 2), (5, 3) \right\}$		
		757	
1			

A sot, P={A: | i = I} = P(A) is a partition of A il: · Viji ET Ain Aj = Ø $A_{i} = A$ Thm: A set We have the bijection: { equivalence relations on A} = > } partitions of A? r | >> A/r r_p < 7 A/r = {r<*> (*EA) 7:= V < 77 = { y ∈ A | 7 ry }

r = "hove the same colon"

the set of almosts having the some color as a (or L)

* r y (=) " Here is a set in

P that both or

and y are pot

Δμ = { (1,1), (2,2), 13,3), (4,4)}

5. Let $M = \{1, 2, 3, 4\}$, let r_1 , r_2 be homogeneous relations on M and let π_1 , π_2 , where $R_1 = \Delta_M \cup \{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$, $R_2 = \Delta_M \cup \{(1, 2), (1, 3)\}$, $\pi_1 = \{\{1\}, \{2\}, \{3, 4\}\}$, $\pi_2 = \{\{1\}, \{1, 2\}, \{3, 4\}\}$.

(i) Are r_1, r_2 equivalences on M? If yes, write the corresponding partition.

(ii) Are π_1, π_2 partitions on M? If yes, write the corresponding equivalence relation.

Sol.: (i) v is an equivolence relation

 $M/r_{1} = \{\{1,2,3\}, \{4\}\}$

rz is not an exmodence velitian, bacone

it is not symmetrical, since (1,2) + Rs, but (3.1) & R2

(i) The putition, Scann & Ath: 3! BETh: *+B

 $R_{111} = \{(1,1), (32), (33), (34), (43), (44)\}$

TTZ is not a partition, Laure (1) 1 [12] + &

$$\frac{\xi_{K}}{r} = \{1, 2, 3, 5, 5, 6\}$$

$$r = \{4, 4, 4, 8\}$$

$$\xi = \Delta_{M} \cup \{(1, 2), (2, 6), (6, 1), (1, 6), (6, 2), (2, 1)\}$$

$$(9.5), (5, 4)\}$$

$$n/r = \{\{1, 2, 6\}, \{3\}, \{4, 5\}\}$$

7. Let $n \in \mathbb{N}$. Consider the relation ρ_n on \mathbb{Z} , called the *congruence modulo* n, defined by:

 $x \rho_n y \iff n|(x-y).$

Prove that ρ_n is an equivalence relation on \mathbb{Z} and determine the quotient set (partition) \mathbb{Z}/ρ_n . Discuss the cases n=0 and n=1.

-) Z/fo = { {x} (+ EZ) · Forn=1 =) ++,y: x fny => Z/fn= { Z }

$$Z/P_{n} = \{ P_{n} < x > | x \in Z \}$$

$$f_{n} < x > = \{ y \in Z | x | x | y \} =$$

$$= \{ y \in Z | n | (x - y) \} =$$

$$= \{ y \in Z | x = y | (mod n) \}$$

$$Z/P_{n} = \{ \{ nk + r | k \in Z \} | r \in \{ o, ..., n-1 \} \}$$

$$= Z_{n}$$

8. Determine all equivalence relations and all partitions on the set $M = \{1, 2, 3\}$.

$$\begin{aligned}
& \prod_{\gamma} = \left\{ \begin{cases} 1_{1}, \{2\}, \{3\} \right\} \right\} & R_{\Pi_{\gamma}} = \left\{ (1_{1}1), (2_{1}2), (2_{1}2) \right\} = \Delta_{\mu}, \\
& \prod_{\gamma} = \left\{ \{1_{1}, \{2_{1}3\} \right\} \right\} & R_{\Pi_{\gamma}} = \left\{ (1_{1}1), (2_{1}2), (2_{2}2), ($$