Policy Assessment with DSGE: The Case of the Philippines

Paul McNelis

May 2024

Outline

- Introduction
- Macroeconomic Experience
- Model Overview
- 🐠 Bayesian Estimation
 - Introduction to Bayesian methods
 - Assessing the Message
 - Simulating with Smoothed Shocks
- Dark Corners and Counterfactual Policy Simulation
 - Base Simulation
 - Counterfactual Policy Simulation
- Conclusions

Overview

- We will give an overview of Philippine data between 2005 and 2022
- Data include the GFC and the COVID19 periods
- We then present the overall view of the model
- Model is a common framework for Philippines, Malaysia, Thailand, and South Korea
- We extract from the model estimation insights about which factors were more important for driving key variables
- Finally we examine counterfactual policy scenarios to under the effects of alternative monetary/fiscal supports

Why DSGE with Bayesian Estimation?

 Lucas criticism: if we want to do policy analysis, we have to realize that non-structural parameters are policy dependent.

• The deep parameters of the DSGE model are structural, which we

- calibrate. This allows us to do counterfactual policy simulation
- We are also interested in the effect of latent variables on the economy.
- In particular there are unobserved changes in productivity, in the disutility of labor, in time preference or social discounting and banking-sector confidence.
- With DSGE models, we can make use of model-generated proxies for these variables.
- We also want to compare actual policy programs with counterfactual optimal policy and counterfactual no-support policy. We can do so with DSGE simulation

Macro-Financial Indicators

Inflation

Interest Rates

Real Market Indices

Basic Structure

- Heterogeneous consumers and heterogeneous firms
- Ricardian and rule-of-thumb consumers
- Entrepreneurial and working-capital borrowers
- Financial frictions with the Gertler-Karadi incentive compatibility constraint:
- $V_t \geq \mu_t (L_t^{WC} + L_t^L)$
- The cost to the bank of diverting assets cannot be smaller than the gain from diverting assets
- ullet Shocks to the parameter μ_t only make this constraint more severe

Production and Consumption

Labor and Financial Sectors

Why?

- George Box: "All models are wrong but some are useful".
- Ed Leamer: "Lets take the con out of Econometrics".
- We bring priors to the data, we know some variables have positive effects, others negative.
- Bayesian estimation is especially useful when we do not have a large number of observations. But again, there is no free lunch.
- ullet With parameter set $oldsymbol{\Omega}$ we use Bayes' rule:
- Mix of Likelihood function $pr(y|\Omega)$ and Priors: $pr(\Omega)$.
- We use eight observables: GDP, investment, real lending, the policy rate, real government consumption, world demand and world commodity prices
- Shocks are for government spending (g), foreign demand (y*), labor/leisure substitution (ν^L), banking sector risk (μ), foreign inflation ($\pi*$), the policy rate (R) the foreign interest rate (R*), short-term productivity (z) and time preference (ν^C).

Smoothed Shocks

GDP Growth: Impulse Response Paths

Real Exchange Rate: Impulse Response Paths

Real Bank Lending: Impulse Response Paths

FEVD for GDP Growth

Quarterly horizon:

	1	4	8	12	16
$\epsilon^{ u^L}$	0.314	0.513	0.505	0.505	0.513
ϵ^{μ}	0.035	0.041	0.041	0.041	0.040
ϵ^R	0.102	0.062	0.062	0.062	0.061
ϵ^{z}	0.486	0.243	0.235	0.233	0.229
ϵ^{y^*}	0.010	0.013	0.014	0.014	0.013
ϵ^{g}	0.000	0.000	0.000	0.000	0.000
ϵ^{π^*}	0.003	0.044	0.054	0.055	0.055
$\epsilon^{ u^{C}}$	0.043	0.036	0.038	0.038	0.038
ϵ^{R^*}	0.006	0.047	0.051	0.052	0.051

FEVD for the Real Exchange Rate

Quarterly horizon:

	1	4	8	12	16
$\epsilon^{ u^L}$	0.007	0.030	0.054	0.074	0.088
ϵ^{μ}	0.000	0.000	0.000	0.000	0.000
ϵ^R	0.003	0.001	0.001	0.001	0.002
ϵ^{z}	0.004	0.003	0.002	0.002	0.003
ϵ^{y^*}	0.001	0.001	0.001	0.001	0.001
ϵ^{g}	0.000	0.000	0.000	0.000	0.000
ϵ^{π^*}	0.518	0.525	0.522	0.514	0.507
$\epsilon^{ u^{C}}$	0.001	0.002	0.003	0.005	0.006

FEVD for Bank Lending

Quarterly horizon:

	1	4	8	12	16
$\epsilon^{ u^L}$	0.004	0.070	0.070	0.071	0.071
ϵ^{μ}	0.020	0.053	0.054	0.054	0.054
ϵ^R	0.011	0.047	0.050	0.050	0.050
ϵ^z	0.166	0.154	0.150	0.150	0.150
ϵ^{y^*}	0.049	0.054	0.053	0.053	0.053
ϵ^{g}	0.000	0.000	0.000	0.000	0.000
ϵ^{π^*}	0.324	0.255	0.259	0.259	0.260
$\epsilon^{ u^{C}}$	0.104	0.110	0.110	0.110	0.110
ϵ^{R^*}	0.322	0.257	0.255	0.254	0.253

Historical Shock Decomposition: GDP

Historical Shock Decomposition: Real Exchange Rate

Historical Shock Decomposition: Real Bank Lending

Macro Adjustment

Primary Balance and Share Price Index

Policy Rate and Lending Rates

Non-Performing Loan Ratio

Policy Response in Crisis Periods

- We are interested in the adjustment process not just when it rains but when it pours.
- We examine the adjustment for two years (eight quarters) before and eight quarters after the worst crisis event in the long simulation, when GDP is at its absolute minimum value, over a long simulation length.
- We take 100000 quarterly observations generated by our stochastic simulations and, emulating the empirical literature on crisis events or sudden stops, identify particular sudden stop episodes.
- We then go backward and forward by eight quarters and obtain the median values of key variables leading up to and following the crisis event.
- One question: were the GFC and COVID19 really the worst of possible crisis events, given the stochastic system estimated for the model?
- Or put another way, could things have been much much worse?

27 / 43

Dark Corner Dynamics with Base Parameters

Dark Corner Dynamics for Financial Indices

Design of the Experiment

- We evaluate simple rules for transfers and lending forbearance
- Would they have made much of a difference, especially during the crisis periods
- Would they have made a difference for the Non-Performing Loan (NPL) ratio?
- Simple rules for transfers to Non-Ricardian household (NR) and working-capital borrowing (WC)

Simple Rules for Transfers and Taylor Rule

$$TR_{t} = \gamma_{0} TR_{t-1} + \gamma_{1} (C_{t-1}^{NR} - C_{ss}^{NR}) + \gamma_{2} (L_{t-1}^{WC} - L_{ss}^{WC}) + \gamma_{3} (\pi_{t-1} - \pi_{ss})$$
(1)

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_R} \left[\left(\frac{\pi_t}{\bar{\pi}}\right)^{\alpha_{\pi}} \left(\frac{Y_t}{Y_{t-1}} \frac{1}{a_{t-1}}\right)^{\alpha_y} \right]^{1-\rho_R} \tag{2}$$

Coefficients for Transfer/Taylor Rules

Coefficient	Co-Term	TR	R
γ_0	TR_{t-1}	.558	_
γ_1	C ^{NR}	-6.895	_
γ_2	Lwc	-10.33	-
γ_3	π	.903	_
$ ho^R$	R_{t-1}	_	.983
α^{π}	$\frac{\pi_t}{\bar{\pi}}$	_	16.909
α^{y}	$\frac{Y_t}{Y_{t-1}}$	_	5.740

Non-Ricardian Consumption under Base and Optimal Rules

Working Capital Lending under Base and Optimal Rules

Primary Balance under Base and Optimal Rules

NPL Ratio under Base and Optimal Rules

Comparison of Policy Regimes vs. No Support: Design of Experiment

Regime	Parameters for Transfers (TR) and Taylor Rule (R)		
Base Regime	Table 1		
Optimal Transfer/Taylor Rules	TR: Table 5: Col. 2 , R: Table 5, Col. 3		
Optimal Transfer/Inflation Target	TR: Table 5, Col. 2		
	R: $ ho^R = .933, lpha^\pi = 1.28, lpha^y = 0$		
No Support/Pure Inflation Target	$TR\colon \forall i\in [0,3]: \gamma_i=0$		
	R: $\rho^R = .933, \alpha^\pi = 1.28, \alpha^y = 0$		

Macro Adjustment under Base and Alternative Regimes

Euclidean Distance Measures of Base and Alternative Regimes for GDP Growth

		Full Sample	Crisis Periods
Policy Patl	hs:		
Transfer +	Interest	5.024	4.969
Pure	Transfer	3.765	3.890
No	Support	3.481	4.888

NPL Ratio under Base and No-Support Regime

Dark Corner Dynamics: Base and Optimal Rule

Takeaways

- We see that unobservables matter: the disutility of labor, especially in times of crisis
- Philippines is less open that Malaysia, so domestic policies matter.
- Monetary policy is important. The primary lending rate passes through to loans to entrepreneurs
- Targeting both non-Ricardian consumption and working capital lending are effective ways to formulate optimal policy
- The actual policy path is closer to the GDP growth path under optimal policy than the GDP growth path under a no-intervention, no support policy, in times of crisis.

Questions

- Little price stickiness in the model so the quest for the natural rate of interest is not possible
- Government transfers matter but government consumption does not
- This is true, even with the non-Ricardian consumers, which should make fiscal policy matter.