

PC-0039 US

<110> Chen, Huei-Mei
Honchell, Cynthia D.
Tang, Y. Tom

<120> Mucin-Related Tumor Marker

<130> PC-0039 US

<140> To Be Assigned
<141> Herewith

<160> 20

<170> PERL Program

<210> 1

<211> 946

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 182514CD1

<400> 1

Met	Ser	Gln	Thr	Glu	Thr	Val	Ser	Arg	Ser	Val	Ala	Pro	Met	Arg
1				5					10				15	
Gly	Gly	Glu	Ile	Thr	Ala	His	Trp	Leu	Leu	Thr	Asn	Ser	Thr	Thr
					20				25				30	
Ser	Ala	Asp	Val	Thr	Gly	Ser	Ser	Ala	Ser	Tyr	Pro	Glu	Gly	Val
				35					40				45	
Asn	Ala	Ser	Val	Leu	Thr	Gln	Phe	Ser	Asp	Ser	Thr	Val	Gln	Ser
				50					55				60	
Gly	Gly	Ser	His	Thr	Ala	Leu	Gly	Asp	Arg	Ser	Tyr	Ser	Glu	Ser
				65					70				75	
Ser	Ser	Thr	Ser	Ser	Glu	Ser	Leu	Asn	Ser	Ser	Ala	Pro	Arg	
				80					85				90	
Gly	Glu	Arg	Ser	Ile	Ala	Gly	Ile	Ser	Tyr	Gly	Gln	Val	Arg	Gly
				95					100				105	
Thr	Ala	Ile	Glu	Gln	Arg	Thr	Ser	Ser	Asp	His	Thr	Asp	His	Thr
				110					115				120	
Tyr	Leu	Ser	Ser	Thr	Phe	Thr	Lys	Gly	Glu	Arg	Ala	Leu	Leu	Ser
				125					130				135	
Ile	Thr	Asp	Asn	Ser	Ser	Ser	Asp	Ile	Val	Glu	Ser	Ser	Thr	
				140					145				150	
Ser	Tyr	Ile	Lys	Ile	Ser	Asn	Ser	Ser	His	Ser	Glu	Tyr	Ser	Ser
				155					160				165	
Phe	Ser	His	Ala	Gln	Thr	Glu	Arg	Ser	Asn	Ile	Ser	Ser	Tyr	Asp
				170					175				180	
Gly	Glu	Tyr	Ala	Gln	Pro	Ser	Thr	Glu	Ser	Pro	Val	Leu	His	Thr
				185					190				195	
Ser	Asn	Leu	Pro	Ser	Tyr	Thr	Pro	Thr	Ile	Asn	Met	Pro	Asn	Thr
				200					205				210	
Ser	Val	Val	Leu	Asp	Thr	Asp	Ala	Glu	Phe	Val	Ser	Asp	Ser	Ser
				215					220				225	
Ser	Gly	Pro	Pro											
				230					235				240	
Leu	Pro	Leu	Pro	Ser	Val	Ser	Gln	Ser	His	His	Leu	Phe	Ser	Ser
				245					250				255	
Ile	Leu	Pro	Ser	Thr	Arg	Ala	Ser	Val	His	Leu	Leu	Lys	Ser	Thr
				260					265				270	

Ser Asp Ala Ser Thr Pro Trp Ser Ser Ser Pro Ser Pro Leu Pro
 275 280 285
 Val Ser Leu Thr Thr Ser Thr Ser Ala Pro Leu Ser Val Ser Gln
 290 295 300
 Thr Thr Leu Pro Gln Ser Ser Ser Thr Pro Val Leu Pro Arg Ala
 305 310 315
 Arg Glu Thr Pro Val Thr Ser Phe Gln Thr Ser Thr Met Thr Ser
 320 325 330
 Phe Met Thr Met Leu His Ser Ser Gln Thr Ala Asp Leu Lys Ser
 335 340 345
 Gln Ser Thr Pro His Gln Glu Lys Val Ile Thr Glu Ser Lys Ser
 350 355 360
 Pro Ser Leu Val Ser Leu Pro Thr Glu Ser Thr Lys Ala Val Thr
 365 370 375
 Thr Asn Ser Pro Leu Pro Pro Ser Leu Thr Glu Ser Ser Thr Glu
 380 385 390
 Gln Thr Leu Pro Ala Thr Ser Thr Asn Leu Ala Gln Met Ser Pro
 395 400 405
 Thr Phe Thr Thr Thr Ile Leu Lys Thr Ser Gln Pro Leu Met Thr
 410 415 420
 Thr Pro Gly Thr Leu Ser Ser Thr Ala Ser Leu Val Thr Gly Pro
 425 430 435
 Ile Ala Val Gln Thr Thr Ala Gly Lys Gln Leu Ser Leu Thr His
 440 445 450
 Pro Glu Ile Leu Val Pro Gln Ile Ser Thr Glu Gly Gly Ile Ser
 455 460 465
 Thr Glu Arg Asn Arg Val Ile Val Asp Ala Thr Thr Gly Leu Ile
 470 475 480
 Pro Leu Thr Ser Val Pro Thr Ser Ala Lys Glu Met Thr Thr Lys
 485 490 495
 Leu Gly Val Thr Ala Glu Tyr Ser Pro Ala Ser Arg Ser Leu Gly
 500 505 510
 Thr Ser Pro Ser Pro Gln Thr Thr Val Val Ser Thr Ala Glu Asp
 515 520 525
 Leu Ala Pro Lys Ser Ala Thr Phe Ala Val Gln Ser Ser Thr Gln
 530 535 540
 Ser Pro Thr Thr Leu Ser Ser Ser Ala Ser Val Asn Ser Cys Ala
 545 550 555
 Val Asn Pro Cys Leu His Asn Gly Glu Cys Val Ala Asp Asn Thr
 560 565 570
 Ser Arg Gly Tyr His Cys Arg Cys Pro Pro Ser Trp Gln Gly Asp
 575 580 585
 Asp Cys Ser Val Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Pro
 590 595 600
 Ser Thr Ala Thr Cys Asn Asn Thr Gln Gly Ser Phe Ile Cys Lys
 605 610 615
 Cys Pro Val Gly Tyr Gln Leu Glu Lys Gly Ile Cys Asn Leu Val
 620 625 630
 Arg Thr Phe Val Thr Glu Phe Lys Leu Lys Arg Thr Phe Leu Asn
 635 640 645
 Thr Thr Val Glu Lys His Ser Asp Leu Gln Glu Val Glu Asn Glu
 650 655 660
 Ile Thr Lys Thr Leu Asn Met Cys Phe Ser Ala Leu Pro Ser Tyr
 665 670 675
 Ile Arg Ser Thr Val His Ala Ser Arg Glu Ser Asn Ala Val Val
 680 685 690
 Ile Ser Leu Gln Thr Thr Phe Ser Leu Ala Ser Asn Val Thr Leu
 695 700 705
 Phe Asp Leu Ala Asp Arg Met Gln Lys Cys Val Asn Ser Cys Lys
 710 715 720
 Ser Ser Ala Glu Val Cys Gln Leu Leu Gly Ser Gln Arg Arg Ile

```
<210> 2
<211> 6952
<212> DNA
<213> Homo sapi
```

<220>
<221> misc_feature
<223> Incyte ID No: 182514CB1

<400> 2
gttcgatgaa agaattgccg ctttcaaac aaagagtgga acagcctcg 60
agagaggcg atggggctgt cagaagaatg gactgtgcac agccaagagg ccaccactc 120
ggcttgaggc cttcccttcc ttccctgctt ggagatggg 180
gaagagaaaat tcctcaggac cagatctctc ctggctgcat ttctacagga cagcagctc 240
ctctcccttc tttagacctt ctcacccctc taaaagtaca gagaagctta acaactccac 300
tggcctccag agtcctcag tcagtc 360
tgatggggc ccgagaacgc tgcatctt gacggtcagt ctgggactg tgagcaagac 420
agaaggctc cccaaggact ccagaattgc cacgactca tcctcagttcc 480
ctctgcagtg gaatcgagaa gaaacagtag agtaactggg aatccagggg atgaggaatt 540
cattgaacca tccacagaaa atgaatttgg acttacgtt ttgcgtggca aaatgattc 600
ccaaccttgc gagaacatca gcttgc 660
tctcagactg agactgtgtc tagtgc 720
cactggctct tgaccaacag cacaacatct gcagatgtga cagaagctc tgcttcata 780
cctgaaggtg tgaatgcttc agtggc 840
gaaagtaca cagcattggg agataggat tattcagat cttcatctac atcttcctcg 900
gaaagcttga attcatcagc accacgtgga 960
caagtgcgtg gcacagctat tgaacaaagg acttccagcg accacacaga ccacacctac
1020
ctgtcatcta ctttcaccaa aggagaacgg gcgttactgt ccattacaga taacagttca

1080
tcctcagaca ttgtggagag ctcaacttct tatattaaaa tctcaaactc ttcacattca
1140
gagtattcct cttttctca tgctcagact gagagaagta acatctcatc ctatgacggg
1200
gaatatgctc agcttctac tgagtcgcca gttctgcata catccaacct tccgtcctac
1260
acacccacca ttaatatgcc gaacacttcg gttgttctgg acactgatgc tgagtttgtt
1320
agtgactcct ctccttcctc ttccttcctc tcctcttctt cttcttcagg gcctcctttg
1380
cctctgcctt ctgtgtcaca atcccaccat ttatttcat caattttacc atcaaccagg
1440
gcctctgtgc atctactaaa gtctacctct gatgcattcca caccatggtc ttcctcacca
1500
tcaccttac cagtatcctt aacgacatct acatctgccc cacttctgt ctcacaaaca
1560
accttgccac agtcatctc taccctgtc ctgcccaggg caagggagac tccttgact
1620
tcatttcaga catcaacaat gacatcattc atgacaatgc tccatagtag tcaaactgca
1680
gaccctaaga gccagagcac cccacaccaa gagaaagtca ttacagaatc aaagtccacca
1740
agcctggtgt ctctgcccac agagtccacc aaagctgtaa caacaaactc tccttgcct
1800
ccatccttaa cagagtccctc cacagagcaa acccttccag ccacaagcac caacttagca
1860
caaatgtctc caactttcac aactaccatt ctgaagacct ctcagcctct tatgaccact
1920
cctggcaccc tgtcaagcac agcatctctg gtcactggcc ctatagccgt acagactaca
1980
gctggaaaac agctctcgct gaccatcct gaaatactag ttcccaaata ctcaacagaa
2040
ggtggcatca gcacagaaaag gaaccgagtg attgtggatg ctaccactgg attgatccct
2100
ttgaccagtg tacccacatc agaaaaagaa atgaccacaa agcttggcgt tacagcagag
2160
tacagccccag cttcacgttc cctcggaca ttccttc cccaaaccac agttttcc
2220
acggctgaag acttggctcc caaatctgcc accttgctg ttcaagcagcac cacacagtca
2280
ccaaacaacac tgtcctcttc agcctcagtc aacagctgtg ctgtgaaccc ttgtcttcac
2340
aatggcgaat gcgtcgaga caacaccagc cgtggctacc actgcaggtg cccgccttcc
2400
tggcaagggg atgattgcag tgtggatgtg aatgagtgcc tgtcgaaccc ctgcccattcc
2460
acagccacgt gcaacaatac tcagggatcc tttatctgca aatgcccggg tgggtaccag
2520
ttggaaaaag ggatatgcaa tttggataga acttcgtga cagagttaa attaaagaga
2580
actttctta atacaactgt ggaaaaacat tcagacctac aagaagttga aaatgagatc
2640
acaaaaacgt taaatatgtt ttttcagcg ttacctagtt acatccgatc tacagttcac
2700
gcctctaggg agtccaacgc ggtgggtatc tcactgcaaa caacctttc cctggcctcc
2760
aatgtgacgc tatttgaccc ggctgatagg atgcagaaaat gtgtcaactc ctgcaagtcc
2820
tctgctgagg tctgccagct cttggatct cagaggcggg tcttagagc gggcagcttg
2880

tgcaagcgga agagtcccga atgtgacaaa gacaccctcca tctgcactga cctggacggc
2940
gttgccttgt gccagtgcaa gtcgggatac tttcagttca acaagatgga ccactcctgc
3000
cgagcatgtg aagatggata taggcttgaa aatgaaacct gcatgagttg cccatttggc
3060
cttggggc tcaactgtgg aaaccctat cagcttatca ctgtggtgat cgcagccgca
3120
ggaggtgggc tcctgctcat cctaggcata gcactgattg ttacctgttg cagaaagaat
3180
aaaaatgaca taagcaaact catcttcaaa agtggagatt tccaaatgtc cccatatgct
3240
gaataccccca aaaatcctcg ctcacaagaa tggggccgag aagctattga aatgcata
3300
aatggaaagta ccaaaaacct cctccagatg acggatgtgt actactcgcc tacaagtgt
3360
aggaatccag aacttgaacg aaacggactc tacccggcct acactggact gccaggatca
3420
cggcattctt gcattttccc cggacagtat aaccctgtt tcatcagtga tgaaagcaga
3480
agaagagact acttttaagt ccaggagaga gagggactca ttgctctgag ccagtcac
3540
gggacccctg ctcagaggac cgcaccagga ggctgcgcgg aggatttgatc gggagccac
3600
ctgagtgca agcaggaaga gggacaggca tgccccgtt gaccacagt gaggagac
3660
gtggatgtgg aaccacaggc tgctcattca gcacctttgt tgtaactgtg aacgtgaat
3720
tggccagta tcaagagagt ctctctgagt gactgcacca tggcactggc accagggcga
3780
ctattagcca gggcagacca ctagacttca gtgcagggac ctggtttcc cttcggttgc
3840
actttagtaa attgggtggg aggtttcattt ttggatctgt tttgagactg ttccagaaag
3900
aaggcttcct ttcccggagac acttccatag gcagcaattt ggtgattcat ttgcagcaaa
3960
atactggctt gttattttt ttccctgccc gcgcctgcgt gctaaacaac agatgaggat
4020
gagcgtacca ctgaagtctg aagatgtcgc cattgaacgg acagtgtttt catatgttc
4080
taggttgtct tatgctacag ttcccaagcc agccccaca gtgagggaaat gtgtgaggca
4140
ccgcacacaa ctgcaatgtg ttttttaagt caaggtgaca catgtattta agatttttt
4200
ttaaaatctc ttgcagtt aatctcactt ttcaaaacaa gcctggatca gggcaaaaca
4260
acttatattt ggttttagct ggaggctcag caggcagatt gcaggcaggg gggcacttt
4320
catccatgag ggcccagcct gggccctggg actctgatca ccattgtgga ggccagaggc
4380
agctgcgtat ggaggagaaa tgtcaaactg aacgcaggtt tcaccactct aggaaagc
4440
cttggatgtggc ccctgcagct ggatgtggtt agagggatgg gctgaatagg caggttagat
4500
ttcctgcattt aacagtgcattt tggaaagctg tggatgtttcc tgaggaagaa cagggagcc
4560
agatggagcc acacatgagt ttgcacccg gctactgcag cactttgtac ccagaatctc
4620
atgtccacaaa accccatgtt aacttcaac cactcaaagc tggatgtttcc gctgaagaaa
4680
taactttttt ttctcacccca gtcatttgta cctcttcata tggctgtgtc gcaccctcca

4740
gaaacgtgg tatacttcca gtcagtgtgg gagaactgaa gacttccggg tggtcgagga
4800
actgagggtt gacccatcgaa aaggaaatgc cactcatctt atttattatg cctgtatgt
4860
gggtcctgcc agggagacat ccagttactcg gtgtctttaa ttgccacctg gggactgt
4920
tttattggcc ttctttgggg catcctggtt ttggatgaag tgagggaaat acagaggtaa
4980
aagaattgtc tccaccctga agcggggagt cccgcttcac atttctggaa atggcgcagc
5040
caactggggac agttctgccc cgggcatggt tgtttcttca aggtcctcta aatataatcc
5100
ctattcttac ataatccttg gccctgatgg tttaagcaa gaactcctgt gtcccatgg
5160
ctccaccact caccatcacc ctgctgttagc aagagtccctaa gtcagggag gtgcattta
5220
gtagttaaat tgcacttacat gagataa ataaaaggag aactgtttt atcagtggag
5280
gctaacctaa aatttcaaag tgcgcctt ttgaaatctt gggcctctct ctctgttagaa
5340
ccaatggccc tttgtggctc acggcctcgc acctaactgg agagttctga gtcctgcag
5400
ctcacctgag cccacagact aggcttcttg gtccttccg cagcatgcct gtcacccccc
5460
agaacccgca gctgtggaa gagccatgta gggaggctat tcccaggcat acactccac
5520
tgccttcagc tgacgtcaca gctgacaaat catctccctt atcggagcca gaagacttca
5580
gctccacaaa atgaagtgtt ctgtcctgaa aacattttt ggaagaatcc caacatcgag
5640
aaaacggtgtt cctgtgagtt ccaacaatgc ttcttgcata tgggtttctt ccgtatggag
5700
tggattaaga gtgtttatt ttgttgcata aactgagaaa aaaaggaggc acccacaagg
5760
ttgaggtcac acagtctcca cagttccag gaggcgttt ggggtggggg aggacactcc
5820
agagcatgag gctctaagg gacatgagta aagcatgtct gtgacccagt gaggaaggga
5880
gaggccagct gcactcctgc acggggttcc tagctgcaga agggtccccgc ctagggcag
5940
gggaaacacc tgatagcaga agaggcctgg atgcacaccc ggcacgcccga ggctctccgc
6000
ccagacacag tgctccatgt cagccctgc acctgggtt gttgattcac gtgcacagat
6060
gccacaatcc tgccaccaata tcccacagat gggggaaagg gaggaggagg ggcaagtgt
6120
gtgttaactgc tcaagagatg cttaaacctc catagagagg agccggcgc agggcatct
6180
gtgtgtcccg tcacacactg cagcaggaa ggggtggctgg ctggctccct ggcacatgt
6240
gtttggttta agctccagag ggtcttattt ccattgtctt ttccctgtcc ctttgagcca
6300
gcctaaggcc ctggagtctg tttctttagg cgatgaaact gacatgctcc taccatgacc
6360
aggctctggg caaggctccct cacagtatcc ttgagagggt ggcacggaag tgcccatattc
6420
tcaggtacag aaaccttcag agaggataaa tagcttgcctc tgttagaagca ggactgaaac
6480
ccttgccgc ctgactcccc cagctactct gcccactgta gcccctgcc ttactgtcct
6540

PC-0039 US

ggcacacccc tcaccatcct gtatacctta aatatcaaag agggcaagag agaaagggct
6600
ttaaagataa gttattttt taaggaacct taatattatt tttaagaagt aaccaaatta
6660
gtgacgtgaa atgaaaaaaaaaaaaaa aatgctgact accctttga aaatgtgctt
6720
tcagattgtt ttttatatgt aattcttaga cacttgtcat taagaaaata gtggctggct
6780
tgtgctcagc aagaagcaca ctggcacgtg gctttggat aggaagtggaa aggcaaggac
6840
ctgggttct gacaagtgcc gtcagactta ccctccatc tggagagctg gtggctttgg
6900
tccccctgggtt agggccatgg gttccccact attactggaa agctataagg tg
6952

<210> 3
<211> 830
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 56024557H1

<400> 3
gttcgatgaa agaattgccg ctttcaaacc aaagagtggaa acagcctcg 60
agagagggcg atggggctgt cagaagaatg gactgtgcac agccaaggagg ccaccactc 120
ggcttgagc ctttccttc ttccgtctt ggagatggaa gagctgacca cgccttctag 180
gaagagaaat tcctcaggac cagatctctc ctggctgcat ttctacagga cagcagctc 240
ctctcctctc tttagacctt ctcacacccctc tgaaagtaca gagaagctta acaactccac 300
tggcctccag agtcctcag tcagtcacaaac aaagacaatg catgttgcta ccgtgttccac 360
tgatggggc ccgagaacgc tgcatctt gacggtcagt ctgggacctg tgagcaagac 420
agaaggcttc cccaaggact ccagaattgc cacgacttca tcctcagtc ttcttcacc 480
ctctcagtg gaatcgagaa gaaacagtag agtaactggg aatccaggcg atgaaggaat 540
tcattgaacc atccacagaaa aatgaattt gacttacgtc ttttgcgttg gcaaaatgtat 600
tcccccaactt tggagaacat cagcttgcac gcagctctga gtgtcaaaaa tgggaacgtc 660
cccatgtctc cagactgaga ctgtgttcta ggtccagtcg caccatgaa aggtggagaa 720
gaatccactg gccaccgggtt cttgacaaag caacaaacat ctgcagattt tgaccggaa 780
gctcggttca ttccctggag gtgtgatgtc cagtgttggc cgttctcaga 830

<210> 4
<211> 910
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 56024633J1

<400> 4
caaggttgg tttgtagacag aaagtggggc agatgtatgt gtcgttaagg atactggtaa 60
agggtatggt gaggaaagacc acgggtgtgg tgcacatcgag gtagacttta gtagatgcac 120
agaggccctg gttgtatggta aaattgtatga aaataaatgg tggattgtt acacagaggg 180
cagaggccaa ggaggccctg aagaagaaga agaggaggag gaggaagagg aggaggagga 240
gtcactaaca aactcagcat cagtgtccag aacaaccgaa gtgttccgca tattatgtt 300
gggtgtgttag gacggaaagggt tggatgtatg cagaactggc gactcagtag aaggctgagc 360
atattcccg tcataggatg agatgttact tctctcagtc tgacatgag aaaaggagga 420
atactctgaa tgtgaagagt ttgagattt aatataagaa gttgagctct ccacaatgtc 480
tgaggatgaa ctgttatctg taatggacag taacgcccgt tctccttgg tgaaagttaga 540
tgacaggttag gtgtggctcg tttgtgtcgct ggaagtccctt tttcaatag ctgtgccacg 600
cacttgaccg tagctaatcc cagcgattga acgttctcca cgtgggtgctg atgaattcaa 660

PC-0039 US

gctttccgag gaagatgtcg atgaagacact ctgaataact cctatctccc aatgctgtgt 720
gacttcctcc agactgtaca gtagagtctg agaactgggt caacactgaa gcattcacac 780
cttcaggata atgaagcaga gttccgtca catctgcaga tgggtgtctg tggccaaga 840
gcccggtgtc agtggatccc tccaccctct catgggtgcg aatgacctag acccagctcc 900
agtctgagac 910

<210> 5
<211> 643
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 71060123V1

<400> 5
agtatccta acgacatcta catctgcccc actttctgtc tcacaaaacaa ccttgcacaca 60
gtcatcttct acccctgtcc tgcccgaggc aagggagact cctgtgactt catttcagac 120
atcaacaatgc acatcattca tgacaatgtct ccatacgatg caaactgcac accttaagag 180
ccagagcacc ccacaccaag agaaagtcat tacagaatca aagtccacaa gcctgggtgc 240
tctggccaca gagtccacca aagctgtac aacaaaactct ccttgcctcc atccttaaca 300
gagtcctcca gagacaaac cttccagcc acaaggcacc acttagcaca aatgtctcca 360
actttcacaatc ctaccattctt gaagacctct cagccttta tgaccactcc tggcacccctg 420
tcaaggacacag catctctgtt cactggccct atagccgtac agactacagc tggaaaacag 480
ctctcgctga cccatcttga aatactagtt cctcaaatactt caacagaagg tggcatcagc 540
acagaaagga accgagtgat tgtgatgtt accactggat tggatccctt gaccagtgtt 600
cccacatcag caaaagaaaat gaccacaaaag cttgggtta cag 643

<210> 6
<211> 554
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7437161H1

<400> 6
tgtaccacca tcagaaaaag aaatgaccac aaagcttggc gttacagcag agtacagccc 60
agcttcacgt tccctcgaa catctcttc tccccaaacc acagttgttt ccacggctga 120
agacttggct cccaaatctg ccaccttgc tggtcagac agcacacagt caccaacaac 180
actgtctct tcagcctcag tcaacagctg tggtgtgaac cttgtcttc acaatggcga 240
atgcgtcgca gacaacacca gccgtggcta ccactgcagg tgcccgctt cctggcaagg 300
ggatgatgc agtgtggatg tgaatgatgtt cctgtcgaaac ccctgcccattt ccacagccac 360
gtgcaacaat actcagggat ctttatctg caaatgcccc gttgggtacc agttgaaaa 420
agggatatgc aatttggta gaaacctcgat gacagatgtt aaattaaaga gaactttct 480
taatacaact gtggaaaaac attcagacact acaagaatgtt gaaaatgaga tcaccaaaac 540
gttaaatatg tggtt 554

<210> 7
<211> 571
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 71247228V1

<400> 7
gatcaccaaa acgttaataa ttttttttcc agcggttacactt agttacatcc gatctacagt 60
tcacgcctctt agggagtcac acgcgggtgtt gatctcaactt caaacaaccc ttccctggc 120

PC-0039 US

ctccaaatgtg acgctatttgc acctggctga taggatgcag aaatgtgtca actcctgcaa 180
ggtcctctgc tgaggtctgc cagctttgg gatctcagag gcggatctt agagcggca 240
gcttgtgcaa gcggaagagt cccgaatgtg acaaagacac ctccatctgc actgacctgg 300
acggcggtgc cctgtgccag tgcaagtccg gatacttca gttcaacaag atggaccact 360
cctgccgagc atgtgaagat ggatataggc ttgaaaatga aacctgcatg agttccccat 420
ttggccttgg tggctcaac tgtgaaacc cctatcaact tatcaactgtg gtgatcgac 480
ccgcgggagg tgggctcctg ctcatcctag gcacatcgact gattgttacc tggtgcagaa 540
agaataaaaaa tgacataagc aaactcatct t 571

<210> 8
<211> 433
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 6475676H1

<400> 8
tggaaacttgc atgagttgtc cattcagcct tgggtggctc aactgtggaa accccttatca 60
gcttatactact gtgggtatcg cagccgcggg aggtgggctc ctgctcatcc taggcattcgc 120
actgattgtt acctgttgc aaaaataaa aatgacata agcaaaactca tcttcaaaag 180
tggagatttc caaatgtccc cgtatgtca ataccccaaa aatcctcgct cacaagaatg 240
ggcccgagaa gctattgaaa tgcattgagaa tggaaagtacc aaaaacctcc tccagatgac 300
ggatgtgtac tactcgccca caagtgtaag gaatccagaa cttgaacgaa acggactcta 360
cccggttac actggactgc caggatcacg ggattcttc attttccccg gacagtataa 420
accgtcttc atc 433

<210> 9
<211> 538
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7735769H1

<400> 9
ggggccgaga agctattgaa atgcattgaga atggaagtac caaaaacctc ctccagatga 60
cgatgtgtca ctactcgccct acaagtgtaa ggaatccaga acttgaacga aacggactct 120
accggcccta cactggactg ccagatcac ggcatttttg cattttcccc ggacagtata 180
accgtctt catcagtgtat gaaagcagaa gaagagacta cttttaagtc caggagagag 240
aggactcat tgctctgagc cagtcacccg ggacctctgc tcagaggacc gcaccaggag 300
gctgcgcccggatgtcg ggagccacgc tgagtggcaa gcaggaacga gggacaggca 360
tgcggggcgt gaccacatgt gaggagacag gtggatgtgg aaccacaggc tgctcattca 420
gcaccttgcgt tgtaactgtg aacgtgaatg tggccactgt tcaagagagt ctctctgagt 480
gactgcacca tggactggc accagggcga ctattagcca gggcagacca ctagactt 538

<210> 10
<211> 567
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 7180688H1

<400> 10
ctagacttca gtgcaggacc tggtttccc ttctgttgc ctttagtaaa ttgggtggga 60
ggtttcctt tggatctgtt ttgagactgt tccagaaaga aggcttcctt tcccgagaca 120
cttccatagg cagcaatttg gtgattcatt tgcaaaaa tactggcttg ttaatttattt 180

PC-0039 US

tcctgcccag cgcctgcgtg ctaaaacaaca gatgaggatg agcgtaccac tgaagtctga 240
agatgtcgcc attgaacgga cagtgtttc atatgttct aggttgtctt atgctacagt 300
ttccaagcca gcccccacag tgagggaaatg tgtgaggcac cgcacacaac tgcaatgtgt 360
tttttaagtc aagggtgacac atgtatttaa gatTTTTTaaaatctct ttgcagttaa 420
atctcactt ttcaaacaag cctggatcat ggcacaaacaa cttatatttg gtttagctg 480
gaggctcagc aggcagatgg caggcagggg ggcactttc atccatgaga ggccagcctg 540
gggcctggga ctctgatcac cattgtg 567

<210> 11
<211> 600
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 70650868V1

<400> 11
ctcaactcat ccaaaaccag gatgccccaa agaaggccaa taaacacagt tccccaggtg 60
gcaattaaag acaccgagta ctggatgtct ccctggcagg acccacatca caggcataat 120
aaataagatg agtggaaact cctcccgaa ggtcaaccct cagttcctcg accaaccgga 180
agtcttcagt tctcccacac tgacttggaa tataaccacg tttctggagg gtgcacaca 240
gccccatgaa gaggtacaaa tgacttgggtg agaaaaaaaaa gttatttctt cagccgaata 300
aacagtttgc agtggttgaa agttacatg gggtttggg acatgagatt ctgggtaaa 360
agtgcgtcag tagccggta gcaaaactcat gtgtggctcc attcggctc cctgttcttc 420
ctcaggaatc cacacagctt cccaaagcac ttttgatgca gggaaatctaa cctggctatt 480
cagcccatcc ctctaaccac atccagctgc aggggctcaa caagctgctt tcctagagtg 540
gtgaaacctg cgttcagttt gacattttctt cctccataag caggttgcctc tggcctccac 600

<210> 12
<211> 371
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2359874T6

<400> 12
gaagaaacaa ccatgccccg ggcagaactg tccccagtggtt ctgcaccatt tccagaaatg 60
tgaagcggga ctccccgctt caggggtggag acaattcttt tacctctgtt ttccccctcac 120
ttcatccaaa accaggatgc cccaaagaag gccaataaac acagttcccc aggtggcaat 180
taaagacacc gagttacttgg tttctccctg gcaggaccca catcacaggc ataataaaata 240
agatgagtgg aacttcccttc ccgaagtcaa ccctcagttt ctcgaccaac cggaagtctt 300
cagttctccc actgtactgg gaagtataac cacgtttctt gagggtgcga cacagccata 360
tgaaggaaattt c 371

<210> 13
<211> 399
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2359874R6

<400> 13
cttcatatgg ctgtgtcgca ccctccagaa acgtggttat acttccagtc agtgtgggag 60
aactgaagac ttccgggtgg tcgaggaact gagggttgac cttcgggaag gaagttccac 120
tcatcttatttattatgcct gtgtatgtggg ttctgcccagg gagacatcca gtactcggtg 180
tcttaatttgc ccacctgggg aactgtgtttt attggccttc tttggggcat cctgggtttt 240

PC-0039 US

gatgaagtga gggaaataca gaggtaaaag aattgtctcc accctgaagc ggggagtccc 300
gcttcacatt tctggaaatg gtgcagccac tggggacagt tctgccccgg gcatggttgt 360
ttcttcaagg tcctctaaat ataatcccta ttcttacat 399

<210> 14
<211> 595
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 70650365V1

<400> 14
tttggggcat cctggtttg gatgaagtga gggaaataca gaggtaaaag aattgtctcc 60
accctgaagc ggggagtccc gcttcacatt tctggaaatg gtgcagccac tggggacagt 120
tctgccccgg gcatggttgt ttcttcaagg tcctctaaat ataatcccta ttcttacata 180
atcctgtggc ctgatggtt taagaagaa ctccctgttc ccatggtctc caccactcac 240
catcacccctg ctgttagcaag agtcctagtc aggggaggtg catttttagta gttaaatggc 300
acttatccat gagataaata aaaggagaac tggttttatac agtggaggct aacctaaaat 360
ttcaaagtgt cgccctttgg aaactctgggg cctctcttc ttagaaacca atggcccttg 420
gtggctcacg gcctcgacc ctaactggag agttctgagc tcctgcagct cacctgagcc 480
cacagactag gcttcttggc tcctccgca gcaggctgt tcaccccaga acccgagct 540
gtgggaagag ccatgttaggg aggctaattc caggcataca cttccactgc cttca 595

<210> 15
<211> 549
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1241344R6

<220>
<221> unsure
<222> 442, 460, 515
<223> a, t, c, g, or other

<400> 15
acctaactgg agagttctga gtcacctgcag ctcaccttag cccacagact aggcttcttg 60
gctccttccg cagcatgct gtcacccccc agaaccgcga gctgtggaa gagccatgt 120
ggggaggctat tcccaggcat acactccac tgccttcagc tgacgtcaca gctgacaaat 180
catctcctct atcggagcca gaagacttca gtcacaaa atgaagtgtt ctgtcctgaa 240
aacattctt ggaagaatcc caacatcgag aaaacggtgtt cctgtgagtt ccaacaatgc 300
ttttgttca tgggtttttt ccgtatggag tggattaaga gtgttttatt ttgttgg 360
aactgagaaa aaaaggaggc acccacaagg ttgaggtcac acagtctcca cagttccag 420
gaggcggtt ggggtgggg aangcacctcc agagcatgan ggctctaagg ggacatgagt 480
aaagcatgtc tgtgacccag tgaggaaagg gagangccag ctgcactcct gcaacgggg 540
ttccttagct 549

<210> 16
<211> 272
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 008938H1

<220>

PC-0039 US

<221> unsure
<222> 75, 106, 112, 163, 167, 192, 252
<223> a, t, c, g, or other

<400> 16
ggagaggcca gctgcactcc tgacacgggt tcctagctgc agaagggtcc cgccctaggcc 60
gaggggaaac acctnatagc agaagaggcc tggatgcaca cctggnacgc cnaggcttc 120
cgcccagaca cagtgcctca tgtcaaccccc tgcacctggg gtntgnatt cacgtgcaca 180
gatgccacaa tnctgcacca atatcccaca gatggggaa ggtgagagga agggcaagt 240
aatgtgtacc tnctcaagag atgcttaaac ct 272

<210> 17
<211> 424
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2580841F6

<220>
<221> unsure
<222> 162, 251
<223> a, t, c, g, or other

<400> 17
ggttaagct ccagagggtc ttattgccat tgtctttcc tctgcccctt gagccagcct 60
aaggccctgg agtctgtttc ttaggcgga tgaactgaca tgctcctacc atgaccaggc 120
tctggcaag gtcctcaca gtatcctga gaggtggca tngaagtgcc catttctcag 180
gtacagaaac cttcagagag gataaatagc ttgcctgtta gaagcaggac taaaaccctt 240
gtccgcctga ntcccccagc tactctgcc actgtagccc cctgccttac tgtccctggca 300
cacccctcac catcctgtat accttaataa tcaaagaggg caagagagaa agggcttaa 360
agataagtta ttttttaag gaaccttaat attattttta agaagtaacc aaattagtga 420
cgtg 424

<210> 18
<211> 430
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 70621193V1

<400> 18
cctggtacac ccctcaccat cctgtatacc taaaatatca aagagggcaa gagagaaaagg 60
gcttaaaga taagttatt ttttaaggaa ccttaatatt atttttaaga agtaaccaaa 120
ttatgtacgt gaaatgcaaa aaaaaaaaaa aaaaatgtct gactaccctt ttggaaaaagt 180
gtgcttccag attggcttt ttatagtgtt attctttaga cacttggtca ttaagaaaaa 240
tagtggcggg ctggtgcttc agcaagaagc acacggcac ggtggcttg gatataaggag 300
gtggaaaggca aggaccgggt gtttctggac aggtggcggc cagacttaca cttccatctg 360
gagagcttgtt ggcttggtc ccctggtag gccatgggt tccccactat tactggaaag 420
ctatagggtg 430

<210> 19
<211> 957
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature

<223> Genbank ID No: g2853301

<400> 19

Ile	Thr	Ile	Thr	Glu	Thr	Thr	Ser	His	Ser	Thr	Pro	Ser	Tyr	Thr
1				5					10					15
Thr	Ser	Ile	Thr	Thr	Thr	Glu	Thr	Pro	Ser	His	Ser	Thr	Pro	Ser
				20					25					30
Tyr	Thr	Thr	Ser	Ile	Thr	Thr	Thr	Glu	Thr	Pro	Ser	His	Ser	Thr
				35				40						45
Pro	Ser	Phe	Thr	Ser	Ser	Ile	Thr	Thr	Thr	Glu	Thr	Thr	Ser	His
				50				55						60
Ser	Thr	Pro	Ser	Phe	Thr	Ser	Ser	Ile	Arg	Thr	Thr	Glu	Thr	Thr
				65				70						75
Ser	Tyr	Ser	Thr	Pro	Ser	Phe	Thr	Ser	Ser	Asn	Thr	Ile	Thr	Glu
				80				85						90
Thr	Thr	Ser	His	Ser	Thr	Pro	Ser	Tyr	Ile	Thr	Ser	Ile	Thr	Thr
				95				100						105
Thr	Glu	Thr	Pro	Ser	Ser	Ser	Thr	Pro	Ser	Phe	Ser	Ser	Ser	Ile
				110				115						120
Thr	Thr	Thr	Glu	Thr	Thr	Ser	His	Ser	Thr	Pro	Gly	Phe	Thr	Ser
				125				130						135
Ser	Ile	Thr	Thr	Thr	Glu	Thr	Thr	Ser	His	Ser	Thr	Pro	Ser	Phe
				140				145						150
Thr	Ser	Ser	Ile	Thr	Thr	Glu	Thr	Thr	Ser	His	Asp	Thr	Pro	
				155				160						165
Ser	Phe	Thr	Ser	Ser	Ile	Thr	Thr	Ser	Glu	Thr	Pro	Ser	His	Ser
				170				175						180
Thr	Pro	Ser	Ser	Thr	Ser	Leu	Ile	Thr	Thr	Thr	Lys	Thr	Thr	Ser
				185				190						195
His	Ser	Thr	Pro	Ser	Phe	Thr	Ser	Ser	Ile	Thr	Thr	Thr	Glu	Thr
				200				205						210
Thr	Ser	His	Ser	Ala	Arg	Ser	Phe	Thr	Ser	Ser	Ile	Thr	Thr	Thr
				215				220						225
Glu	Thr	Thr	Ser	His	Asn	Thr	Arg	Ser	Phe	Thr	Ser	Ser	Ile	Thr
				230				235						240
Thr	Thr	Glu	Thr	Asn	Ser	His	Ser	Thr	Thr	Ser	Phe	Thr	Ser	Ser
				245				250						255
Ile	Thr	Thr	Thr	Glu	Thr	Thr	Ser	His	Ser	Thr	Pro	Ser	Phe	Ser
				260				265						270
Ser	Ser	Ile	Thr	Thr	Thr	Glu	Thr	Pro	Leu	His	Ser	Thr	Pro	Gly
				275				280						285
Leu	Pro	Ser	Trp	Val	Thr	Thr	Thr	Lys	Thr	Thr	Ser	His	Ile	Thr
				290				295						300
Pro	Gly	Leu	Thr	Ser	Ser	Ile	Thr	Thr	Thr	Glu	Thr	Thr	Ser	His
				305				310						315
Ser	Thr	Pro	Gly	Phe	Thr	Ser	Ser	Ile	Thr	Thr	Thr	Glu	Thr	Thr
				320				325						330
Ser	Glu	Ser	Thr	Pro	Ser	Leu	Ser	Ser	Thr	Ile	Tyr	Ser	Thr	
				335				340						345
Val	Ser	Thr	Ser	Thr	Thr	Ala	Ile	Thr	Ser	His	Phe	Thr	Ser	
				350				355						360
Glu	Thr	Ala	Val	Thr	Pro	Thr	Pro	Val	Thr	Pro	Ser	Ser	Leu	Ser
				365				370						375
Thr	Asp	Ile	Pro	Thr	Thr	Ser	Leu	Arg	Thr	Leu	Thr	Pro	Ser	Ser
				380				385						390
Val	Gly	Thr	Ser	Thr	Ser	Leu	Thr	Thr	Thr	Asp	Phe	Pro	Ser	
				395				400						405
Ile	Pro	Thr	Asp	Ile	Ser	Thr	Leu	Pro	Thr	Arg	Thr	His	Ile	Ile
				410				415						420
Ser	Ser	Ser	Pro	Ser	Ile	Gln	Ser	Thr	Glu	Thr	Ser	Ser	Leu	Val
				425				430						435

Gly Thr Thr Ser Pro Thr Met Ser Thr Val Arg Met Thr Leu Arg
 440 445 450
 Ile Thr Glu Asn Thr Pro Ile Ser Ser Phe Ser Thr Ser Ile Val
 455 460 465
 Val Ile Pro Glu Thr Pro Thr Gln Thr Pro Pro Val Leu Thr Ser
 470 475 480
 Ala Thr Gly Thr Gln Thr Ser Pro Ala Pro Thr Thr Val Thr Phe
 485 490 495
 Gly Ser Thr Asp Ser Ser Thr Ser Thr Leu His Thr Leu Thr Pro
 500 505 510
 Ser Thr Ala Leu Ser Thr Ile Val Ser Thr Ser Gln Val Pro Ile
 515 520 525
 Pro Ser Thr His Ser Ser Thr Leu Gln Thr Thr Pro Ser Thr Pro
 530 535 540
 Ser Leu Gln Thr Ser Leu Thr Ser Thr Ser Glu Phe Thr Thr Glu
 545 550 555
 Ser Phe Thr Arg Gly Ser Thr Ser Thr Asn Ala Ile Leu Thr Ser
 560 565 570
 Phe Ser Thr Ile Ile Trp Ser Ser Thr Pro Thr Ile Ile Met Ser
 575 580 585
 Ser Ser Pro Ser Ser Ala Ser Ile Thr Pro Val Phe Ser Thr Thr
 590 595 600
 Ile His Ser Val Pro Ser Ser Pro Tyr Ile Phe Ser Thr Glu Asn
 605 610 615
 Val Gly Ser Ala Ser Ile Thr Gly Phe Pro Ser Leu Ser Ser Ser
 620 625 630
 Ala Thr Thr Ser Thr Ser Ser Thr Ser Ser Leu Thr Thr Ala
 635 640 645
 Leu Thr Glu Ile Thr Pro Phe Ser Tyr Ile Ser Leu Pro Ser Thr
 650 655 660
 Thr Pro Cys Pro Gly Thr Ile Thr Ile Thr Ile Val Pro Ala Ser
 665 670 675
 Pro Thr Asp Pro Cys Val Glu Met Asp Pro Ser Thr Glu Ala Thr
 680 685 690
 Ser Pro Pro Thr Thr Pro Leu Thr Val Phe Pro Phe Thr Thr Glu
 695 700 705
 Met Val Thr Cys Pro Thr Ser Ile Ser Ile Gln Thr Thr Leu Thr
 710 715 720
 Thr Tyr Met Asp Thr Ser Ser Met Met Pro Glu Ser Glu Ser Ser
 725 730 735
 Ile Ser Pro Asn Ala Ser Ser Ser Thr Gly Thr Gly Thr Val Pro
 740 745 750
 Thr Asn Thr Val Phe Thr Ser Thr Arg Leu Pro Thr Ser Glu Thr
 755 760 765
 Trp Leu Ser Asn Ser Ser Val Ile Pro Leu Pro Leu Pro Gly Val
 770 775 780
 Ser Thr Ile Pro Leu Thr Met Lys Pro Ser Ser Ser Leu Pro Thr
 785 790 795
 Ile Leu Arg Thr Ser Ser Lys Ser Thr His Pro Ser Pro Pro Thr
 800 805 810
 Thr Arg Thr Ser Glu Thr Pro Val Ala Thr Thr Gln Thr Pro Thr
 815 820 825
 Thr Leu Thr Ser Arg Arg Thr Thr Arg Ile Thr Ser Gln Met Thr
 830 835 840
 Thr Gln Ser Thr Leu Thr Thr Ala Gly Thr Cys Asp Asn Gly
 845 850 855
 Gly Thr Trp Glu Gln Gly Gln Cys Ala Cys Leu Pro Gly Phe Ser
 860 865 870
 Gly Asp Arg Cys Gln Leu Gln Thr Arg Cys Gln Asn Gly Gly Gln
 875 880 885
 Trp Asp Gly Leu Lys Cys Gln Cys Pro Ser Thr Phe Tyr Gly Ser

890	895	900
Ser Cys Glu Phe Ala Val Glu Gln Val Asp	Leu Asp Ala Glu	Asp
905	910	915
Phe Cys Arg His Ala Gly Leu His Leu Gln	Gly Cys Gly Asp	Pro
920	925	930
Val Pro Glu Glu Trp Gln His Arg Gly Gly	Leu Pro Gly Pro	Ala
935	940	945
Gly Asp Ala Leu Gln Pro Pro Ala Gly Glu	Arg Val	
950	955	

<210> 20

<211> 528

<212> PRT

<213> Sus scrofa

<220>

<221> misc_feature

<223> Genbank ID No: g915208

<400> 20

Pro Ile Ser Val Gln Pro Ser Ser Ser Ser Ser	Pro Thr Thr	
1 5 10 15		
Ser Thr Thr Ser Val Gln Ser Ser Ser Ser Ser	Val Pro Ile	
20 25 30		
Pro Ser Thr Thr Ser Val Gln Pro Ser Ser Ser	Gly Ser Ala Pro	
35 40 45		
Thr Thr Ser Ala Thr Ser Val Gln Thr Ser Ser	Ser Ser Ser Pro	
50 55 60		
Pro Ile Ser Ser Thr Ile Ser Val Gln Thr Ser	Ser Ser Ser Ser	
65 70 75		
Val Pro Thr Thr Ser Thr Thr Ser Val Gln Pro	Ser Ser Ser Ser	
80 85 90		
Ser Ala Pro Thr Thr Arg Ala Thr Ser Val Gln	Ser Ser Ser Ser	
95 100 105		
Ser Ser Ala Pro Ile Ser Ser Thr Thr Ser Val	Gln Pro Ser Ser	
110 115 120		
Ser Gly Ser Val Pro Thr Thr Ser Ala Thr Ser	Val Gln Ser Ser	
125 130 135		
Ser Ser Ser Ala Pro Thr Thr Ser Ala Thr Ser	Val Gln Pro	
140 145 150		
Ser Ser Ser Ser Pro Pro Ile Ser Ser Thr Val	Ser Val Gln	
155 160 165		
Pro Ser Ser Ser Ser Ser Ala Pro Thr Thr Ser	Val Gln Ser	
170 175 180		
Gln Pro Ser Ser Ser Ser Pro Pro Ile Ser Ser	Thr Val Gln Ser	
185 190 195		
Val Gln Thr Ser Ser Ser Ser Val Pro Thr Thr	Thr Ser Thr Val	
200 205 210		
Ser Val Gln Pro Ser Ser Ser Ser Val Pro Thr	Thr Ser Ala	
215 220 225		
Thr Ser Val Arg Ser Ser Ser Ser Ser Thr Pro	Ile Pro Ser	
230 235 240		
Thr Thr Ser Val Gln Pro Ser Ser Ser Ser Ala	Pro Thr Thr	
245 250 255		
Ser Ala Thr Ser Val Gln Pro Ser Ser Ser Ser	Thr Pro Ile Pro	
260 265 270		
Pro Ser Thr Thr Ser Val Gln Pro Ser Ser Ser	Ser Ala Pro	
275 280 285		
Thr Thr Ser Ala Thr Ser Val Gln Pro Ser Ser	Ser Ser Ser Pro	
290 295 300		
Pro Ile Ser Ser Thr Ile Ser Val Gln Pro Ser	Ser Ser Ser Ser	

PC-0039 US

305	Ser Pro Thr Thr Ser	Thr Thr Ser Val	Gln Pro Ser Ser Ser	Gly	310	315
320	325	330				
Ser Ala Pro Thr	Thr Ser Ala Thr Ser	Val Gln Pro Ser Ser	Ser	335	345	
350	340	355	360			
Ser Ser Pro Pro	Ile Ser Ser Thr Ile	Ser Val Gln Pro Ser	Ser	350	360	
365	370	375				
Ser Ser Gly Ser	Ala Pro Thr Thr Ser	Ala Thr Ser Val Gln	Pro	380	390	
395	385	400	405			
Ser Ser Ser Ser	Ser Val Pro Thr Thr	Ser Ala Thr Ser Val	Arg	410	420	
425	430	445	450			
Gln Pro Ser Ser	Ser Ser Ser Val Pro	Thr Thr Ser Ala Thr	Ser	440	450	
455	460	475	480			
Val Gln Thr Ser	Ser Ser Ser Ser Thr	Pro Ile Pro Ser Thr	Thr	470	480	
485	490	505	510			
Ser Val Gln Pro	Ser Ser Ser Ser Ser	Ala Pro Thr Thr Ser	Ala	500	510	
515	520	525				
Ile Ser Ser						