Denominador con al menos un factor cuadrático que no se repite

Revisemos el siguiente ejercicio. Como puedes ver, la factorización ya está realizada: tenemos dos denominadores y uno de ellos es de segundo grado.

$$\int \frac{(x^2 - x - 3)dx}{(x^2 + 1)(x + 4)} =$$

Prosigamos con los pasos ya planteados, tomando en cuenta lo que hemos señalado respecto a los denominadores:

Paso 1. El denominador ya está factorizado, por lo tanto, tenemos:

$$(x^2 + 1)(x + 4)$$

Observa que un factor es cuadrático, por lo tanto, planteamos nuestra suma de fracciones de la siguiente manera:

$$\frac{(x^2 - x - 3)}{(x^2 + 1)(x + 4)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{(x + 4)^2}$$

Proseguimos con el ejemplo trabajando sobre la suma parcial:

A, B y C son numeradores hipotéticos, es decir, los planteamos para determinar si existen o no. En caso de que así sea, sustituiremos la integral original por una suma de dos funciones.

Paso 2. Tomamos la suma de dos fracciones hipotéticas y procedemos a integrar en una sola expresión, muy similar a la original. Veamos:

$$\frac{Ax+b}{x^2+1} + \frac{c}{(x+4)} = \frac{(Ax+b)(x+4) + C(x^2+1)}{(x^2+1)(x+4)} = \frac{Ax^2 + 4Ax + Bx + 4B + Cx^2 + C}{(x^2+1)(x+4)}$$

Paso 3. Iqualamos la expresión resultante con la original:

$$\frac{(x^2 - x - 3)}{(x^2 + 1)(x + 4)} = \frac{Ax^2 + 4Ax + Bx + 4B + Cx^2 + C}{(x^2 + 1)(x + 4)}$$

Paso 4. Para determinar los valores de A, B y C tendremos que construir un sistema de ecuaciones que incluya tanto a los elementos del numerador original como a los elementos del numerador hipotético.

• Para x^2 :

De un lado tenemos el coeficiente 1, del otro $A+\mathcal{C}$. Lo expresamos del siguiente modo:

$$1 = A + C$$

• Para *x*:

De un lado tenemos el coeficiente -1, del otro 4A+B. Lo expresamos del siguiente modo:

$$-1 = 4A + B$$

Para el término con solo constantes:

De un lado tenemos el coeficiente -3, del otro 4B+C. Lo expresamos del siguiente modo:

$$-3 = 4B + C$$

Así, podemos construir el siguiente sistema de ecuaciones:

(1)	1 = A + C
(2)	-1 = 4A + B
(3)	-3 = 4B + C

Paso 5. Encontramos las incógnitas:

En este caso es conveniente eliminar C en (1) y (3) restando:

(1)
$$1 = A + C$$

(3) $-1(-3 = 4B + C)$

Resulta la ecuación (4):

$$4 = A - 4B$$

Luego, relacionamos (2) y (4):

(2)	-1 = 4A + B
(4)	4 = A - 4B

Eliminamos B multiplicando (2) y (4):

(2)	-4 = 16A + 4B
(4)	4 = A - 4B

Sumando ambas ecuaciones resulta:

$$0 = 17A$$

Por lo tanto, A = 0.

Nuestras ecuaciones quedan de la siguiente manera:

(4)	4 = A - 4B
Sustituyendo A en (4) :	4 = 0 - 4B
Da como resultado:	B = -1

Sustituimos C en (1):

(1)	1 = A + C
Sustituyendo C en (1) :	1 = 0 + C
Da como resultado:	C = 1

Paso 6. Una vez que encontramos las incógnitas buscadas, ya podemos expresar la integral original en función de la nueva expresión:

$$\frac{(x^2 - x - 3)}{(x^2 + 1)(x + 4)} = \frac{-1}{x^2 + 1} + \frac{1}{(x + 4)^2}$$

En la integral tendríamos que:

$$\int \frac{(x^2 - x - 3)dx}{(x^2 + 1)(x + 4)} = \int \left(\frac{-1}{x^2 + 1} + \frac{1}{(x + 4)^2}\right) dx = -\int \frac{dx}{x^2 + 1} + \int \frac{dx}{(x + 4)^2}$$

Aplicando las integrales correspondientes, tendríamos el siguiente resultado:

$$y = -\arctan x - \frac{1}{(x+4)} + C$$