Largest Local Values in a Matrix

You are given an n x n integer matrix grid.

Generate an integer matrix maxLocal of size (n - 2) x (n - 2) such that:

 maxLocal[i][j] is equal to the largest value of the 3 x 3 matrix in grid centered around row i + 1 and column j + 1.

In other words, we want to find the largest value in every contiguous 3 x 3 matrix in grid.

Return the generated matrix.

Example 1:

9	9	8	1
5	6	2	6
8	2	6	4
6	2	2	2

9	9
8	6

Input: grid = [[9,9,8,1],[5,6,2,6],[8,2,6,4],[6,2,2,2]]

Output: [[9,9],[8,6]]

Explanation: The diagram above shows the original matrix and the generated matrix.

Notice that each value in the generated matrix corresponds to the largest value of a contiguous 3 x 3 matrix in grid.

Example 2:

1	1	1	1	1
1	1	1	1	1
1	1	2	1	1
1	1	1	1	1
1	1	1	1	1

2	2	2
2	2	2
2	2	2

Input: grid = [[1,1,1,1,1],[1,1,1,1],[1,1,2,1,1],[1,1,1,1,1],[1,1,1,1,1]]

Output: [[2,2,2],[2,2,2],[2,2,2]]

Explanation: Notice that the 2 is contained within every contiguous 3 x 3 matrix in grid.

Constraints:

- n == grid.length == grid[i].length
- 3 <= n <= 100
- 1 <= grid[i][j] <= 100