Activation functions:

Sigmoid Function: This function maps the input to a range between 0 and 1 and was commonly used in the past as an activation function for neural networks.	$Sigmoid / Logistic$ $f(x) = \frac{1}{1 + e^{-x}}$	Sigmoid / Logistic
2. Hyperbolic Tangent (tanh) Function: Similar to the sigmoid function, but it maps the input to a range between -1 and 1, and it is still used in certain situations today.	Tanh $f(x) = \frac{\left(e^x - e^{-x}\right)}{\left(e^x + e^{-x}\right)}$	Tanh 25 13 -5 -3 -1 1 3 5 -05 -15 -25
3. Rectified Linear Unit (ReLU): One of the most popular activation functions, it's simple and effective, replacing negative values with zero to introduce non-linearity.	ReLU $f(x) = max(0, x)$	ReLU 10 6 4 2 -10 -5 0 5 10 vrtas
4. Leaky ReLU : A variation of ReLU, it allows a small, non-zero gradient for negative inputs to prevent neurons from getting stuck during training.	Leaky ReLU $f(x) = max (0.1x, x)$	Leaky ReLU max(0.1* x,x) 12 max(0.1* x,x) 71 71 71 71 71 71
5. Parametric ReLU (PReLU): Similar to Leaky ReLU, but with the slope for negative inputs as a learnable parameter.	Parametric ReLU $f(x) = max (ax, x)$	Parametric ReLU f(y) = y y

