Metaheurísticas

Seminario 2. Problemas de optimización con técnicas basadas en búsqueda local

- 1. Problema de la Mínima dispersión differencial (MDDP)
 - Definición del Problema
 - Ejemplo de Aplicación
 - Análisis del Problema
 - Solución Greedy
 - Búsquedas por Trayectorias Simples
 - Casos del problema.
 - Agradecimientos

Definición del Problema

- El Problema de Dispersión Diferencial, Minimum Differential Dispersion Problem (MDDP) es un problema de optimización combinatoria con una formulación sencilla pero una resolución compleja (es NP-completo), que solo con tamaño 50 implica más de 1 hora.
- El problema general consiste en seleccionar un subconjunto *Sel* de m elementos (|M|=m) de un conjunto inicial S de n elementos (obviamente, n > m) de forma que se **minimize** la dispersión entre los elementos escogidos.

Además de los n elementos (e_i , i=1,...,n) y el número de elementos a seleccionar m, se dispone de una matriz D=(d_{ij}) de dimensión $n \times n$ que contiene las distancias entre ellos

Definición del Problema Min-Diff

Para el problema Min Differential Dispersion, con el que trabajaremos en prácticas, se busca lo siguiente:

Minimize
$$Max_{i \in M} \{ \sum_{j \in M} d_{ij} \} - Min_{i \in M} \{ \sum_{j \in M} d_{ij} \}$$

Subject to $M \subset N, |M| = m$

- Las distancias entre pares de elementos se usan para formular el modelo como un problema de optimización binario cuadrático
- Esa formulación es poco eficiente. Se suele resolver como un problema equivalente de programación lineal entera.

Definición del Problema Min-Diff

- Para el problema Min Differential Dispersion, con el que trabajaremos en prácticas, se calcula la dispersión como:
 - 1) Para cada punto elegido v se calcula $\Delta(v)$ como la suma de las distancias de este punto al resto.

$$\Delta(v) = \sum_{u \in S} d_{uv}.$$

2) La dispersión de una solución, denotada como diff(S) se define como la diferencia entre los valores extremos:

$$diff(S) = \max_{u \in S} \Delta(u) - \min_{v \in S} \Delta(v).$$

3) El objetivo es minimizar dicha medida de dispersión:

$$S^* = \underset{S \subseteq V_m}{\operatorname{arg\,min}} diff(S),$$

donde S es el conjunto solución al problema

Tenemos n=8 posibles localizaciones para colocar m=4 farmacias.
 Queremos situarlas de tal manera que estén separadas entre sí a una distancia parecida (mínima dispersión entre sí):

	Latitud	Longitud
1	50	30
2	40	20
3	55	60
4	35	50
5	25	50
6	20	40
7	50	70
8	45	80

- La distancia entre los puntos del gráfico refleja la distancia entre las distintas localizaciones
- La matriz D contiene los valores de dichas distancias. En este ejemplo se ha empleado la distancia Euclídea aunque se pueden usar otras métricas

EJEMPLO DEL MODELO MIN-DIFF (Min-Diff)

La dispersión entre los elementos escogidos es la máxima diferencia de las sumas de las distancias existentes entre ellos:

	2	3	4	5	6	7	8	Localizaciones seleccionadas:
1	14	30	25	32	32	40	50	$x = \{ 3, 4, 6, 8 \}$
2		43	30	34	28	51	60	
3			22	32	40	30	22	V(3)=22+40+22=84
4				10	18	25	32	V(4)=22+18+32= 72 V(6)=40+18+47=105
5					11	32	36	V(8)=22+32+47=101
6						42	47	
7							11	diff(x) = 105 - 72 = 33

La solución del modelo **MinDiff** consiste en encontrar el conjunto de 4 empleados con **la menos dispersión** entre ellos

EJEMPLO DEL MODELO MINDIFF (MinDiff) (2/3)

La dispersión entre los elementos escogidos es la máxima diferencia de las sumas de las distancias existentes entre ellos:

	2	3	4	5	6	7	8	Sol 2: Localizaciones seleccionadas:
1	14	30	25	32	32	40	50	$x = \{ 1, 3, 6, 7 \}$
2		43	30	34	28	51	60	
3			22	32	40	30	22	V(1)=30+32+40=102
4				10	18	25	32	V(3)=30+40+30=100 V(6)=32+40+42=114 Diferencia
5					11	32	36	V(7)=40+30+42=112
6						42	47	
7							11	diff(x) = 114 - 100 = 14

La solución del modelo **MinDiff** consiste en encontrar el conjunto de 4 empleados con **la menos dispersión** entre ellos

EJEMPLO DEL MODELO MAXMIN (MMDP) (3/3)

La diversidad entre los elementos escogidos es el mínimo de las distancias existentes entre ellos:

Sol 1: seleccionadas: $x = \{ 3, 4, 6, 8 \}$ 84 72 105 101 Diferencia $diff(x_1) = 33$

La solución del modelo **MinDiff** consiste en encontrar el conjunto de 4 empleados con **la menor** dispersión entre ellos

Aplicaciones del Problema

- Elegir localización de elementos públicos (farmacias, ...)
- Selección de grupos homogéneos
- Identificación de redes densas
- Reparto equitativo
- Problemas de flujo

Duarte, A, Sánchez-Oro, J., Resende, M.G.C, Glover, F, Martí, R (2015). Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization. Information Sciences 296, 46-60

Duarte, A, Sánchez-Oro, J., Resende, M.G.C, Glover, F, Martí, R (2015). Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization. Information Sciences 296, 46-60

- La complejidad del problema ha provocado que se hayan aplicado muchos algoritmos aproximados para su resolución
- Podemos determinar que una buena fórmula heurística para resolver el problema es:

Añadir secuencialmente el elemento no seleccionado que reduzca la dispersión con respecto a los ya seleccionados

El algoritmo valora en cada caso cómo varía la dispersión al seleccionar cada nuevo elemento:

- El primer elemento seleccionado no está definido, puede ser aleatorio.
- Cada vez que se añade un nuevo elemento al conjunto de seleccionados Sel, se valora cuál incrementa menos (o reduce) la dispersión respecto a los ya elegidos
- El proceso itera hasta seleccionar los m elementos deseados

ALGORITMO GREEDY:

```
1: S \leftarrow \emptyset
2: CL ← V
3: v_0 \leftarrow \texttt{SelectRandom}(\texttt{CL})
                                                  Solución Inicial
4: S \leftarrow S \cup \{v_0\}
5: CL \leftarrow CL \setminus \{v_0\}
6: while |S| < m do
7: RCL \leftarrow CL
8: u \leftarrow \arg\min g(v)
                                                  Aplicar heurística
                 \nu \in RCL
9: S \leftarrow S \cup \{u\}
10: CL \leftarrow CL \setminus \{u\}
11: end while
12: return S
```

El cálculo de g(u) se aplica de la siguiente manera:

1) Para cada elemento *u* no escogido:

$$\forall u \in V - Sel, \partial(u) = \sum_{v \in Sel} d_{uj}$$

2) Luego para cada elemento v existente:

$$\forall v \in Sel, \partial(v) = SumaAnterior(v) + d_{uv}$$

3) Una vez actualizado las sumas para cada elemento, se calcula:

$$\partial_{max}(u) = max \big(\partial(u), max_{v \in Sel} \partial(v) \big) \qquad \partial_{min}(u) = min \big(\partial(u), min_{v \in Sel} \partial(v) \big)$$

4) El cálculo final de g(u) es:

$$g(u) = \partial_{max}(u) - \partial_{min}(u)$$

Búsquedas por Trayectorias Simples: Búsqueda Local del Mejor

■ **Representación**: Problema de selección: un conjunto $Sel = \{s_1, ..., s_m\}$ que almacena los m elementos seleccionados de entre los n elementos del conjunto S

Para ser una solución candidata válida, tiene que satisfacer las restricciones (ser un conjunto de tamaño *m*):

- No puede tener elementos repetidos
- Ha de contener exactamente m elementos
- El orden de los elementos no es relevante

Búsquedas por Trayectorias Simples: Búsqueda Local del Mejor

 Operador de vecino de intercambio y su entorno: El entorno de una solución Sel está formado por las soluciones accesibles desde ella a través de un movimiento de intercambio

Dada una solución (conjunto de elementos seleccionados) se escoge un elemento y se intercambia por otro que no estuviera seleccionado (*Int*(*Sel*,*i*,*j*)):

$$Sel = \{s_1, ..., i, ..., s_m\} \Rightarrow Sel' = \{s_1, ..., j, ..., s_m\}$$

Int(Sel,i,j) verifica las restricciones: si la solución original Sel es factible y el elemento j se escoge de los no seleccionados en Sel, es decir, del conjunto S-Sel, siempre genera una solución vecina Sel' factible

Búsquedas por Trayectorias Simples: Búsqueda Local del Mejor

- Su aplicación provoca que el tamaño del entorno sea demasiado grande (m!), m=10 => más de 3 millones combinaciones.
- La BL del Mejor del MDP explora todo el vecindario, las soluciones resultantes de los $m \cdot (n-m)$ intercambios posibles, escoge el mejor vecino y se mueve a él siempre que se produzca mejora
- Si no la hay, detiene la ejecución y devuelve la solución actual
- El método funciona bien pero es muy lento incluso para casos no demasiado grandes (n=500) y usando un cálculo factorizado del coste $z_{MS}(Sel)$ para acelerar la ejecución (O(n))
- Es recomendable utilizar una estrategia avanzada más eficiente

Búsqueda Local del Primer Mejor

Duarte, A, Sánchez-Oro, J., Resende, M.G.C, Glover, F, Martí, R (2015). Greedy randomized adaptive search procedure with exterior path relinking for differential dispersion minimization. Information Sciences 296, 46-60

- Algoritmo de búsqueda local del primer mejor: en cuanto se genera una solución vecina que mejora a la actual, se aplica el movimiento y se pasa a la siguiente iteración
 - Se detiene la búsqueda cuando se ha explorado el vecindario completo sin obtener mejora (o tras un número fijo de evaluaciones)
- Se puede explorar el vecindario de forma inteligente:
 - Se calcula la contribución de cada elemento seleccionado al coste de la solución actual (valor de la función objetivo $z_{MS}(Sel)$)
 - Se aplican primero los intercambios de elementos que menos contribuyen
- Se considera una factorización para calcular el coste de Sel' a partir del de Sel considerando sólo el cambio realizado en la función objetivo por el movimiento aplicado. Además, se "factoriza" también el cálculo de la contribución

Exploración Inteligente del Vecindario

- Técnica que permite focalizar la BL en una zona del espacio de búsqueda en la que potencialmente puede ocurrir algo
- Reduce significativamente el tiempo de ejecución con una reducción muy pequeña de la eficacia de la BL del Mejor (incluso puede mejorarla en algunos problemas)
- Se basa en definir un orden de aplicación de los intercambios (exploración de los vecinos) en una BL del primer mejor
- En cada iteración, al cambiar un nodo u por el nodo v mode(Sel, u, v) se podría recalcular la medida de dispersión desde cero, pero es mejor calcular la mejora definida como move_value(Sel, u, v)

Exploración Inteligente del Vecindario

- En lugar de calcular el valor del movimiento Int(Sel,i,j) para todos los intercambios posibles, se escoge el elemento s_{i*} de Sel que presenta el menor aporte (es decir, el valor v para el que se move_value(Sel, u, v) sea mínimo).
- Tras escoger el elemento a extraer, se prueban sucesivamente los intercambios por los elementos no seleccionados:
 - Si se encuentra un movimiento de mejora, se aplica. Si no, se pasa al siguiente elemento con menor aporte y se repite el proceso
 - Si ningún movimiento del vecindario provoca mejora, se finaliza la ejecución y se devuelve la solución actual

Factorización del Movimiento de Intercambio

Para generar Sel', el operador de vecino Int(Sel,i,j) escoge un elemento seleccionado i y lo cambia por uno no seleccionado j:

■
$$Sel = \{s_1, ..., i, ..., s_m\} \Rightarrow Sel' \leftarrow Sel - \{i\} + \{j\} \Rightarrow Sel' = \{s_1, ..., j, ..., s_m\}$$

- No es necesario recalcular todas las distancias de la función objetivo:
 - Al añadir un elemento, las distancias entre los que ya estaban en la solución se mantienen y basta con calcular la dispersión por el nuevo elemento al resto de elementos seleccionados
 - Al eliminar un elemento, las distancias entre elementos que se quedan en la solución se mantienen y basta con restar la distancia del elemento eliminado al resto de elementos en la solución
- Se calcula el nuevo coste de la solución original Sel como:

$$Z_{MM}(Sel, u, v) = (\partial_{max} - \partial_{min}) - z_{MM}(Sel)$$

$$\partial_{max} = max (\partial(v), max_{w \in Sel} \partial(w)) \qquad \partial_{min} = min(\partial(v), min_{w \in Sel} \partial(w))$$

$$\partial(v) = \sum_{w \in Sel} d_{vw} \qquad \forall w \in Sel, \partial(w) = anterior(w) - d_{wu} + d_{wv}$$

Factorización del Movimiento de Intercambio

- El coste del movimiento (la diferencia de costes entre las dos soluciones) $\Delta z_{MM}(Sel,i,j) = z_{MM}(Sel') z_{MM}(Sel)$ se calcula factorizado.
- El cálculo original, implicaba calcular para cada uno de los m elementos la distancia al resto, por tanto era O(n²). De forma factorizada es sól O(n) considerando las m-1 distancias del elemento que se elimina y las m-1 que se añaden.
- Si $\Delta z_{MM}(Sel,i,j)$ es negativo ($\Delta z_{MM}(Sel,i,j)<0$), la solución vecina Sel' es mejor que la actual Sel (es un problema de minimización) y se acepta. Si no, se descarta y se genera otro vecino.
- Podemos combinar fácilmente la factorización del coste con el cálculo de la contribución de los elementos para mejorar aún más la eficiencia:
 - Las distancias del elemento eliminado equivalen directamente a la contribución de dicho elemento,
 - El cálculo de las aportaciones de los elementos actualmente seleccionados también se puede factorizar. No es necesario recalcularlo completamente, basta con restar la distancia del elemento eliminado y sumar la del añadido:

BL-MDP: Factorización del Movimiento de Intercambio

■ El coste $z_{MM}(Sel')$ de la nueva solución vecina es:

$$z_{MM}(Sel') = z_{MM}(Sel) + \Delta z_{MM}(Sel,i,j)$$

 Sólo es necesario calcularlo al final de la ejecución. Durante todo el proceso, basta con trabajar con el coste del movimiento

Repetir

```
Sel' \leftarrow GENERA\_VECINO(Sel);
```

Hasta
$$(\Delta z_{MM}(Sel,i,j) < 0)$$
 O (se ha generado $E(Sel)$ al completo)

Casos del Problema

- Existen distintos grupos de casos del problema para los que se conoce la solución óptima que permiten validar el funcionamiento de los algoritmos de resolución
- Para el MDP, disponemos de cuatro grandes grupos de casos:
 - Casos GKD (Glover, Kuo and Dhir, 1998): Entre otras, 20 matrices $n \times n$ condistancias Euclideas calculadas a partir de puntos con r coordenadas ($r \in \{2, ..., 21\}$) aleatorias en [0,10]. n = 500 elementos y m = 50
 - Casos SOM (Silva, Ochi y Martins, 2004): Entre otras, 20 matrices $n \times n$ con distancias enteras aleatorias en $\{0,9\}$ con $n \in \{100, ..., 500\}$ elementos y $m \in \{0.1 \cdot n, ..., 0.4 \cdot n\}$. P.ej. para n = 100 hay 4 casos con m = 10, 20, 30, 40
 - Casos MDG (Duarte y Martí, 2007):
 - **Tipo a**: 40 matrices $n \times n$ con distancias enteras aleatorias en {0,10}: 20 con n=500 y m=50; y 20 con n=2000 y m=200
 - **Tipo b**: 40 matrices $n \times n$ con distancias reales aleatorias en [0,1000]: 20 con n=500 y m=50; y 20 con n=2000 y m=200
 - **Tipo c**: 20 matrices $n \times n$ con distancias enteras aleatorias en {0,1000}. n=3000 y m={300,400,500,600}

Casos del Problema

Los casos están recopilados en la biblioteca MDPLib, accesible en la Web en la dirección siguiente:

https://grafo.etsii.urjc.es/optsicom/mindiff/

- En dicha dirección pueden encontrarse tanto los datos como los valores de las mejores soluciones encontradas para 315 casos del problema
- Además, están disponibles los resultados de un ejemplo de una experimentación comparativa de distintos algoritmos con 10 minutos de tiempo de ejecución por caso

La Biblioteca MDPLIB

El formato de los ficheros de datos es un fichero de texto con la siguiente estructura:

> n m D

donde n es el número de elementos, m es el número de elementos seleccionados y D es la matriz de distancias entre elementos que está precalculada

Al ser D una matriz simétrica, sólo se almacena la diagonal superior. El fichero contendrá $n \cdot (n-1)/2$ entradas, una por línea, con el siguiente formato:

$$ijd_{ij}$$

donde $i, j \in \{0, ..., n-1\}$ son respectivamente la fila y la columna de la matriz D, mientras que d_{ij} es el valor de la distancia existente entre los elementos i+1 y j+1

La Biblioteca MDPLIB

EJEMPLO: FICHERO DEL CASO GKD-c_1_n500_m50:

497 499 17.05433 498 499 10.37931

Agradecimientos

- Para la preparación de las transparencias de presentación del problema MDPLIB se han usado materiales de los profesores:
 - Rafael Martí. Universidad de Valencia
 - Abraham Duarte. Universidad Rey Juan Carlos
 - Jesús Sánchez-Oro. Universidad Rey Juan Carlos
- Su grupo de investigación ha realizado muchas publicaciones sobre el problema y mantiene la biblioteca MDPLIB. Referencias:
 - Duarte A., Sánchez-Oro J., Resende M.G.C., Glover F., Martí R. Greedy randomized search procedure with exterior path relinking for differential dispersion minimization. Information Sciences, (2016), 46-60.
 - Resende M.G.C., Werneck R.F.A hybrid heuristic for the p-median problemJournal of Heuristics, 10(1) (2016), 59-88
 - Lai X., Hao J-K, Glover, Fred, Yue D. Intensification-driven tabu search for the minimum differential dispersion problem. Knowledge-Based System, 5, January 2019.
 - Aringhieri, R., Cordone R., Grosso A. Construction and improvement algorithms for dispersion problems. European Journal of Operational Research 242 (2015), 21-33.