Section 11.3: Integral test Ex. 1 Consider:  $\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ Then for  $f(x) = \frac{1}{x^2}$ , f(K) = QK $\frac{2}{\sum_{k=1}^{\infty} \frac{1}{k^2}} = \frac{A rea of}{rectangle} \leq \frac{1}{1 + \int \frac{1}{x^2}}$ 

 $\frac{\sum_{k=1}^{\infty} \frac{1}{x^{2}}}{\sum_{k=1}^{\infty} \frac{1}{x^{2}}} \leq 1 + \int_{1}^{\infty} x^{-2} dx = 1 + \left(-x^{-1}\right) \Big|_{1}^{\infty}$  = 2.

So, any partial sum satisfies  $S_{n} = \sum_{k=1}^{n} \frac{1}{k^{2}} \leq \sum_{k=1}^{n} \frac{1}{k^{2}} \leq 2$ 

=> The sequence of pertial sums {sn}is bounded:

 $0 < S_n \leq 2$ 

But the Rx are nonnigative, so

$$S_{n+1} - S_n = \sum_{k=1}^{N} a_k - \sum_{k=1}^{N} a_k = R_{n+1} > 0$$
 $\Rightarrow S_{n+1} > S_n$ .

The sequence of portiol sums  $\{s_n\}$  is increasing and bounded  $=>$  convergent!

 $\Rightarrow \sum_{k=1}^{N} \frac{1}{x^2}$  is convergent.

(not to 2 though).

 $\begin{cases} x = 1 \\ x = 1 \end{cases}$ 
 $\begin{cases} x = 1 \\ x = 1 \end{cases}$ 
 $\begin{cases} x = 1 \\ x = 1 \end{cases}$ 

Introduce  $\begin{cases} f(n) = \frac{1}{\sqrt{3}}, & \text{then } \int_{\sqrt{3}}^{1} dx = R \\ \sqrt{3} \end{cases}$ 

Introduce 
$$f(n) = \frac{1}{\sqrt{2}}$$
, then  $\int \frac{1}{\sqrt{2}} dx = +\infty$ 



$$\sum_{K=1}^{\infty} \frac{1}{x^{1/2}} = Avea of vectorights > \int \frac{1}{\sqrt{5x}} dx =$$

$$= 25x \Big|_{1}^{\infty} = \lim_{t \to \infty} 25x \Big|_{1}^{t} = +\infty$$



$$=\lim_{t\to\infty} \left(\operatorname{avcton} t - \operatorname{avcton} t\right)$$

$$= \overline{1} - \overline{1} = \overline{1} \quad \text{Gonvergent}$$

$$= \overline{1} - \overline{1} = \overline{1} \quad \text{Gonvergent}$$

$$= \sum_{k=1}^{\infty} \frac{1}{k^2 + 1} \quad \text{is convergent.}$$

$$= \sum_{k=1}^{\infty} \frac{1}{k^2 + 1} \quad \text{is convergent.}$$

$$= \sum_{k=1}^{\infty} \frac{1}{k^2} \quad \text{Convergent.}$$

divergence test.

For p>0, consider  $f(n) = \frac{1}{x^p}$  for x in [1,00),

this f(1) is { continuous decreasing}

The integral test applies,

 $\sum_{k=1}^{\infty} \frac{1}{k^{*}}$  is convergen  $t = \infty$ 

(=>) \frac{1}{\sir} da is convergent (=)

 $= \sum_{k=1}^{\infty} \frac{1}{k^*} \text{ is convergen } t \iff p > 1.$ 

Ex.5 Test for convergence:

\[
\sum\_{\text{K}=1} \frac{\text{ln k}}{\text{K}} \frac{\text{divergente}}{\text{convergence}} = n t  $f(x) = \frac{\ln x}{x} \quad for \quad x \ge 1$ positive continuous but not decreasing!  $f'(x) = \left(\frac{\ln x}{x}\right)' = \frac{1/x \cdot x - \ln x}{x^2}$   $= \frac{1 - \ln x}{x^2} < 0, \text{ when } \ln x > 1,$ or  $X > \ell$ . => the integral test applies to

\( \sum\_{K=3} \frac{\lambda\_K}{K} \) => the series is convergent

if and only if so is the interval

I had dx - lim floor dx

$$= \left| \begin{array}{c} u = \ln x \\ | du = \frac{dx}{x} \right| = \lim_{t \to \infty} \int u \, du$$

$$= \lim_{t \to \infty} \frac{u^2}{x} \left| \ln t \right| = \lim_{t \to \infty} \left( \ln t \right)^2 = \lim_{t \to \infty} \frac{1}{x} \left| \frac{1}{x} \right| = \lim_{t \to \infty} \frac{1}{x} \left|$$

Estimeting the sum of a series

We have seen:  $\sum_{k=1}^{\infty} \frac{1}{k^2} \leq 2$ .

In fact  $\sum_{K=1}^{\infty} \frac{1}{K^2} = \frac{\pi^2}{6}$  (Euler, uses Fourier expansions)

We con use the ideas of the Integral test to estimate, how well the partial sums of a series approximate the Infinite sum:

Givan a series Zar, su prose ax>0,

 $\sum_{k=1}^{\infty} = S.$   $\sum_{k=1}^{\infty} \text{ remainder}$   $\sum_{k=1}^{\infty} -S_n = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{\infty} a_k$   $\sum_{k=1}^{\infty} -\sum_{k=1}^{\infty} a_k$ 

Applying the orea organes to from the integral

## test, we con estimate Rn:

Remainder estimate. Suppose f(x) is continuous, positive, decreasing on x > N > 1, and  $a_k = f(k)$  k > N.

Then for  $R_n = \sum_{k=n+1}^{\infty} a_k$  there holds





Ex.6 (a) Approximate  $\sum_{k=1}^{\infty} \frac{1}{k^2}$  by  $S_{10}$ Estimate the error.

(b) Now many terms ove necessary for the precision of 10-5?

(a) 
$$S-S_{10} = R_{10} \le \int \frac{1}{10} dx = \lim_{t \to \infty} \frac{x^{-2}}{-2} | \frac{t}{10}$$

$$= \lim_{t \to \infty} \frac{1}{2} \left( \frac{1}{100} - \frac{1}{t^2} \right) = \frac{1}{200} = 0.005$$

 $S_{10} = \sum_{k=1}^{10} \frac{1}{k^3} = 1.1975$ 

(b) 
$$S-S_{n}=R_{n} \leq \int \frac{1}{2} dx = \frac{1}{2} \cdot \frac{1}{n^{2}}$$

To guarantee that  $R_{n} \leq 10^{-5}$  we take n so large that  $\frac{1}{2n^{2}} \leq 10^{-5}$ 
 $\Rightarrow R_{n} = \frac{1}{2n^{2}} \leq 10^{-5}$ 

Solve for n:

 $\frac{1}{2n^{2}} \leq 10^{-5} = \frac{1}{10^{5}} \Rightarrow 2n^{2} > 10^{5}$ 
 $n \geq \sqrt{\frac{10^{5}}{2}} \approx 223.6$ 
 $\Rightarrow n \geq 224$