Q1 Discretization of the Poisson Equation

1) Introduction

In Part 4.1, we discretize the 2D Poisson equation using a standard 5-point stencil. This leads to a sparse linear system Au=b, which will be solved via multigrid in subsequent parts. We implement matrix-free routines to compute Au, construct the right-hand side vector b, and map the 2D domain to a 1D structure for computation.

We consider the 2D Poisson equation: $-\Delta u(x,y)=f(x,y), (x,y)\in (0,1)^2$

with homogeneous Dirichlet boundary conditions u=0 on $\partial\Omega$.

2) Implemmention:

• Grid and Notation

We use a regular grid with $N \times N$ interior points and spacing:

$$h = \frac{1}{N+1}$$

Let $u_{i,j}$ be the approximation of $u_{xi,yj}$ at grid point $xi=ih,y_j=jh$, where $1 \leq i,j \leq N$. We flatten the 2D grid into a 1D array using row-major order:

$$k = (i-1) \cdot N + (j-1)$$

• Discretization (5-point stencil)

The Laplacian operator is discretized using the standard five-point stencil:

$$- arDelta u(x_i,y_j) pprox - rac{1}{h^2} (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j})$$

This gives a linear system of the form:

$$Au = b$$

Where:

 $A \in R^{N^2 \times N^2}$ is a symmetric positive-definite matrix, applied implicitly through the stencil (we don't assemble it explicitly).

$$b_k = h^2 \cdot f(x_i, y_j)$$
 , with $f(x, y) = 2\pi^2 sin(\pi x) sin(\pi y)$

3) Notes

- The matrix A is not stored explicitly. Instead, I implement a function $apply_A()$ that computes $A \cdot u$ using the 5-point stencil directly.
- The right-hand side vector b is built using a function build_rhs(), which evaluates f(x,y)) at each interior point and scales by h^2 .
- Boundary values are always zero, so don't need to store them explicitly.

4) Test Output

Test Output (Example)

When N=4, the generated b values are positive and match the expected shape of the right-hand side. We confirmed that $[apply_A()]$ on an initial guess of zero returns a zero vector, and the functions are ready to be integrated into the multigrid V-cycle

Q2: Multigrid V-Cycle Solver

1) Introduction

In this question, I implement a serial V-cycle multigrid method to solve the 2D Poisson equation with zero Dirichlet boundary conditions. The goal is to show that the residual decreases by a constant factor each cycle, and to reach a given tolerance efficiently. I follow the algorithm described in *A Multigrid Tutorial*, *Second Edition* by Briggs, Henson, and McCormick.

2) Method Overview

- 1. **Grid Hierarchy**: I build a sequence of nested grids. The finest has n_0 interior points in each direction, and each coarser grid halves the number of points (Chapter 4.1).
- 2. **Smoothing**: On each level, I use Gauss–Seidel relaxation for pre- and post-smoothing ("relaxation" in Section 2.2).
- 3. **Residual Computation**: I compute the residual r = f Au on the fine grid (Section 3.1).
- 4. **Restriction**: I apply full-weighting restriction to transfer the residual to the next coarser grid (described in Section 3.2).
- 5. **Coarse Grid Correction**: On the coarsest grid, I solve by several smoothing steps.
- 6. **Prolongation**: I interpolate the coarse-grid correction back to the fine grid with bilinear interpolation (Section 3.3).
- 7. V-Cycle: I wrap these steps into a recursive V-cycle algorithm (Chapter 4.2).

3) Implementation Details

- **File Structure**: Each main step has its own module: init_levels, smooth, residual, restriction, prolongation, vcycle, and main.c. Headers define a Level struct holding the grid size, spacing, and arrays.
- **Smoother**: In smooth.c, I perform nul pre- and nul post-relaxation sweeps.
- **Data Layout**: Grid arrays include boundary layers, indexed by a simple macro <code>IDX(lvl,i,j)</code>.
- Main Loop: In main.c, I initialize the right-hand side $f(x,y)=2\pi^2\sin{(\pi x)}\sin{(\pi y)}$, then run up to maxCycles V-cycles and print the L² norm of the residual after each cycle.
- Build: A Makefile compiles all modules into vcycle solver.

4) Results

Running:

```
./vcycle_solver 127 5 3 3 1e-8 100
```

gives a residual reduction of about 0.3 per cycle, matching the textbook's expected convergence rate (see Figure 4.5 in the Tutorial). The solver reaches the tolerance in about 20 cycles.

```
sunlishuang@sunlishangdeMBP Assignment4 2 % \( \cdot \) /vcycle solver 127 5 3 3 1e-8 100
Cycle
         Residual norm
    1
         6.190551e+00
    2
         3.045779e+00
    3
         1.143484e+00
    4
         3.877092e-01
   5
        1.263408e-01
   6
        4.052587e-02
   7
         1.291727e-02
   8
        4.106684e-03
   9
        1.304222e-03
  10
        4.140183e-04
   11
         1.314032e-04
  12
        4.170203e-05
  13
        1.323407e-05
  14
        4.199746e-06
  15
         1.332753e-06
        4.229365e-07
  16
  17
         1.342147e-07
  18
         4.259166e-08
  19
         1.351604e-08
         4.289154e-09
```

5) Conclusion

The V-cycle multigrid method converges rapidly, independent of the fine-grid size. By following the structure in *A Multigrid Tutorial*—particularly the restriction and prolongation schemes in Chapter 3 and the cycle design in Chapter 4—I achieved the expected performance.

6) Reference

Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). A Multigrid Tutorial, Second Edition. SIAM.

Q3: Convergence Experiments

Introduction

In this question, I study how the multigrid V-cycle converges when I change the number of levels and the grid size. I run two experiments based on *A Multigrid Tutorial, Second Edition* (see Section 4.3 for convergence study). The goal is to see how many V-cycles are needed and how runtime and coarse-grid solves behave.

Experiment 1: Fixed Grid, Varying Levels

- **Setup**: Finest grid size . I vary the total levels L = 2,3,4,5,6. Pre- and post-smoothing both use 3 Gauss–Seidel sweeps. Tolerance is .
- **Data Collected**: For each **L**, I record:
 - 1. Number of V-cycles until residual < tol
 - 2. Total time spent
 - 3. Count of coarse-grid solves (one per cycle)
 - 4. Residual history per cycle

• Results:

Levels	Time (s)	Coarse Solves	Cycles
2	0.1009	100	100
3	0.0732	100	100
4	0.0458	63	63
5	0.0185	25	25
6	0.0176	24	24

• **Plot**: Residual vs. cycle (semilog) shows that more levels give faster convergence (see cell 1 in Plots of experiments.mlx).

Summary for Experiment 1

Level	Time(s)	CoarseSolves	Cycles	
2	0.1009	100	100	
3	0.0732	100	100	
4	0.0458	63	63	
5	0.0185	25	25	
6	0.0176	24	24	

Experiment 2: Grid-Size Scaling

- **Setup**: Compare two schemes for :
 - 1. **2-level** multigrid (one coarse grid only)
 - 2. **Full hierarchy** down to \sim 8×8 grid (levels =).
- Results:

N	Scheme	Time (s)	Coarse Solves	Cycles
16	2-level	0.0003	21	21
16	full	0.0003	21	21
32	2-level	0.0034	66	66
32	full	0.0011	23	23
64	2-level	0.0203	100	100
64	full	0.0046	24	24
128	2-level	0.0715	100	100
128	full	0.0186	25	25
256	2-level	0.1751	100	100
256	full	0.0743	26	26

• **Plot**: Full hierarchy always needs fewer cycles and coarse solves. The runtime cost is higher for small N but pays off for large N (see cell 2 in Plots of experiments.mlx).

16	2-level	0.0003	21	21	
16	full	0.0003	21	21	
32	2-level	0.0034	66	66	
32	full	0.0011	23	23	
64	2-level	0.0203	100	100	
64	full	0.0046	24	24	
128	2-level	0.0715	100	100	
128	full	0.0186	25	25	
256	2-level	0.1751	100	100	
256	full	0.0743	26	26	

Discussion

- 1. **More Levels** → **Faster Convergence**: Adding levels reduces V-cycles almost linearly as in Figure 4.7 of the Tutorial. But extra levels add overhead.
- 2. **Two-Level vs Full**: Two-level works for small grids, but full hierarchy keeps optimal 'textbook' convergence cycles almost constant as grows (see Chapter 4.4).
- 3. **Balance**: Best practice is to choose coarsest grid size around or . Too few levels slows convergence, too many levels add overhead.

Reference

Briggs, W. L., Henson, V. E., & McCormick, S. F. (2000). *A Multigrid Tutorial, Second Edition*. SIAM. Chapter 4.3 and 4.4.