Unsupervised Learning

CS534

Supervised vs Unsupervised Learning

- So far we have assumed that the training examples were labeled with their class membership --- supervised learning
- We assume now that all one has is a collection of examples without being told their categories --- unsupervised learning

What can we learn from unlabeled data?

Group of clusters in the data

Low dimensional structure

Nonlinear embedding

Clustering

- Are there any groups in the data?
- How to group?
- How many groups?

What is clustering

- Clustering: the process of grouping a set of objects into classes of similar objects
 - high intra-class similarity
 - low inter-class similarity
- It is the most common form of unsupervised learning

Example Applications

- Find genes that are similar in function
- Group documents based on topics
- Categorize customers based on their buying habit

Issues for clustering

- What is a natural grouping among these objects?
 - Definition of "groupness"
- What makes objects "related"?
 - Definition of "similarity/distance"
- Representation for objects
 - Vector, normalization?
- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid "trivial" clusters too large or small
- Clustering Algorithms
 - Partition algorithms
 - Hierarchical algorithms

What is a natural grouping among these objects?

By color? By pattern? By weight?

The definition of natural grouping is subjective.

This is why we call clustering *exploratory* data analysis

What is similarity

Hard to define but
We know it when we see it

- The real meaning of similarity is a philosophical question. We will take a more pragmatic approach
 - Depends on representation and algorithm. For many rep./alg., easier to think in terms of a distance (rather than similarity) between vectors

What properties should a distance measure have?

- Symmetric
 - -D(A,B)=D(B,A)
 - Otherwise, we can say A looks like B but B does not look like A
- Positivity, and self-similarity
 - D(A,B)≥0, and D(A,B)=0 iff A=B
 - Otherwise there will different objects that we cannot tell apart
- Triangle inequality
 - $D(A,B)+D(B,C) \ge D(A,C)$
 - Otherwise one can say "A is like B, B is like C, but A is not like C at all"

Distance Measures: Minkowski Metric

- Suppose two object x and y both have d features $-x = (x_1, \dots, x_d), y = (y_1, \dots, y_d)$
- The Minkowski metric of order r is defined by

$$d(x,y) = \sum_{i=1}^{r} |x_i - y_i|^r$$

- Common Minkowski metrics:
 - Euclidean(r=2): $d(x,y) = \sqrt[2]{\sum_{i}(x_{i} y_{i})^{2}}$
 - Manhattan distance(r=1) : $d(x, y) = \sum_i |x_i y_i|$
 - "Sup" distance(r = $+\infty$): $d(x, y) = \max_{i} |x_i y_i|$

An Example

Other Distances

- Hamming distance (Manhattan distance on binary features)
 - # of features that differ
 - e.g.: distance of two sites based on their species composition

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9
Site A: 1 0 1 1 0 0 1 0 1
Site B: 0 0 1 0 1 1 0 1

$$D(A, B) = 4$$

Mahalanobis distance
 (assuming x, y follows a
 Gaussian distribution with
 covariance matrix Σ

$$D(x,y) = \sqrt{(x-y)^T \Sigma^{-1}(x-y)}$$

Similarities

 Cosine similarities – commonly used to measure document similarity

$$cos(\mathbf{x}, \mathbf{x}') = \frac{\langle \mathbf{x} \cdot \mathbf{x}' \rangle}{|\mathbf{x}| \cdot |\mathbf{x}'|}$$

• Kernels – e.g., RBF (Gaussian) Kernel

$$S(X,X') = \exp\frac{-|X-X'|^2}{2\sigma^2}$$

Clustering algorithms

- Hierarchical algorithms
 - Bottom up agglomerative
 - Top down divisive

- Partition algorithms (Flat)
 - K-means
 - Mixture of Gaussian
 - Spectral Clustering

Hierarchical Clustering

Given a set of objects, build a tree-based taxonomy

 Hierarchies are convenient way for organizing information, used frequently by web-portals

Hierarchical Agglomerative Clustering (HAC)

- Starts with each obj in a separate cluster
- Repeatedly joins the closest pair of clusters
- until there is only one cluster

The history of merging forms a tree of hierarchy

Question: how to measure the "closeness" of two clusters?

Visualization of the hierarchy: Dendrogram

- The distance between two clusters is represented as the length of the node that joins the two objects
- Can be used to identify the number of clusters in data
 - A horizontal cut will create a unique clustering
 - Moving the cut from root down creates more clusters
 - Large gaps between the merging nodes indicate a good cutting point

Closest Pair of Clusters

The distance between two clusters is defined as the distance between:

- Single-link
 - The nearest pair of points

- Complete-link
 - The furthest pair of points

- Centroid
 - The center of gravity

- Average-link
 - Average of all cross-cluster pairs

Single Link Method

(3)

	<u>b</u>	c	<u>d</u>	•
a b	2	5 3	6 5 ·	
c			4	

Complete Link Method

1	1	1
(1	1
1	_	,

	c,d
a, b	•6

Dendrograms

Another example

Single Link vs. Complete Link

Single-link creates straggly clusters due to chaining effect

Computational Complexity

- All hierarchical clustering methods need to compute distance of all pairs of n individual instances which is $O(n^2)$
- There are n-1 iterations, at each iteration after the merge we must compute the distance between new cluster and all other clusters

$$\sum_{i=2}^{n-1} n - i = O(n^2)$$

• In order to maintain an overall $O(n^2)$ performance, distance update must be done in constant time – trivial for complete-link and single-link

Partitional Clustering

- Given a data set of n points, we know that there are k clusters in the data, how to find these clusters?
- Roughly speaking there are $O(k^n)$ ways to partition the data, Which one is better?
- One intuition says that we want tight clusters, i.e., points should be in a tight ball
- This leads to the following objective function

$$\sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$
 --- squared distance between data point x and its cluster center

- Optimizing this objective is a combinatorial optimization problem
 - Exhaustive search for an optimal solution is not feasible

Combinatorial optimization: An iterative solution

- Initialization: Start with a random partition of the data
- *Iterative step*: the cluster assignments and cluster centers are updated to improve the objective
- **Stopping criterion**: if no improvement can be achieved.

Iterative greedy descent

convergence is guaranteed, but to local optimal

K-Means

Algorithm

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

Iterate -

- 1. Assigning each of the N data points to its nearest cluster centers
- 2. Re-estimate the cluster center by assuming that the current assignment is correct

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Termination -

If none of the data points changed membership in the last iteration, exit. Otherwise, go to 1

K-Means Example (K=2)

Computational Complexity

- At each iteration:
 - Reassigning clusters: O(kn) distance computations
 - Computing centroids: Each instance vector gets added once to some centroid: O(n)
- Assume these two steps are each done once for I iterations: O(Ikn).
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than O(n²) HAC
- Does it always converge?

Kmeans Convergence

Objective

$$\min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

Fix μ , optimize *C*:

optimize
$$C$$
:
$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2 = \min_{C} \sum_{i} |x_i - \mu_{x_i}|^2$$

$$Step 1 of kmeans$$

2. Fix C, optimize μ :

$$\min_{u} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

Take partial derivative of μ_i and set to zero, we have

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Step 2 of kmeans

Kmeans takes an alternating optimization approach, each step is guaranteed to decrease the objective – thus guaranteed to converge

Impact of Initial Seeds

Highly sensitive to the initial seeds

- Multiple random trials: choose the one with best sum of squared loss (important!)
- Heuristics for choosing better centers
 - choose initial centers to be far apart furthest first traversal
 - Initialize with results of other clustering method

More Comments

- K-Means is exhaustive:
 - Cluster every data point, no notion of outlier
 - Outliers cause problems
 - Become singular clusters
 - Bias the centroid estimation
- K-medoids methods is more robust to outliers
 - Cluster medoid: the point that has minimum sum squared distance to all data points in the cluster
 - More expensive to compute
 - For each pt: sum squared dist with all other pts in cluster $O(|C|^2)$
- Need to specify k: difficult in practice
 - Automatically deciding k? more on this later...

Soft Clustering

- Hard clustering:
 - Data point is deterministically assigned to one and only one cluster
 - But in reality clusters may overlap
- Soft-clustering:
 - Data points are assigned to clusters with certain probabilities
- Model-based clustering

Side track: Gaussian Bayes Classifier

- We have k classes in our data
- Each class contains data generated from a particular Gaussian distribution
- Data is generated by
 - first randomly select one of the classes according to class prior p(y)
 - draw random samples from the Gaussian distribution of that particular class

$$P(\mathbf{x}, y) = P(\mathbf{x} | y)P(y)$$

$$P(\mathbf{x} | y = i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu_i)^T \sum_i^{-1} (\mathbf{x} - \mu_i)}$$

Back to Unsupervised Learning

- Now assume we know our data is generated in the same way
- If we know the labels, we can estimate the mean and covariance of the each class using ML estimation
 - Bayes Gaussian Classifier
 - If assuming shared covariance, this leads to LDA
- But for unsupervised learning, we don't have the labels
- How can we learn the correct model from the incomplete data?

Gaussian Mixture Model

$$P(\mathbf{x}) = \sum_{\substack{i=1\\k}}^k P(\mathbf{x} \mid y = i)$$

$$= \sum_{\substack{i=1\\k}}^k P(\mathbf{x} \mid y = i) P(y = i)$$

$$= \sum_{\substack{i=1\\k}} \alpha_i P(\mathbf{x} \mid \theta_i)$$

$$\underline{\alpha_i} = p(y=i): \text{ the class prior}$$

$$\underline{Mixing parameter}$$

$$\theta_i = \{\mu_i, \Sigma_i\}$$

Goal of unsupervised learning:

- Given a set of x's, estimate $\{\alpha_1, \dots, \alpha_k, \theta_1, \dots, \theta_k\}$
- Once the model is identified, we can compute $p(y = i | \mathbf{x})$ for $i = 1, \dots, k$,

Maximum Marginal Likelihood

$$\arg \max_{\theta} \prod_{j} P(\mathbf{x}^{j}) = \arg \max_{\theta} \prod_{j} \sum_{i=1}^{k} P(\mathbf{x}^{j}, y^{j} = i)$$

$$= \arg \max_{\theta} \sum_{j=1}^{n} \log \sum_{i=1}^{k} P(\mathbf{x}^{j}, y^{j} = i)$$

log sum is difficult to optimize!

Gradient ascent is doable but very inefficient

Expectation Maximization (EM)

- A highly used approach for dealing with hidden (missing) data
 - Here the cluster labels are hidden
- Much simpler than gradient methods
- It is an iterative algorithm that starts with some initial guess of the model parameters
- Iteratively performs two linked steps:
 - **Expectation (E-step)**: given current model parameters λ_t , compute the expectation for the hidden (missing) data
 - Maximization (M-step): re-estimate the parameters λ_{t+1} assuming that the expected values computed in the E-step are the true values
- We will first show how it works for mixture of Gaussian

EM – simple case

- A simple case:
 - We have unlabeled data x^1, \dots, x^m
 - We know there are k classes
 - We know $\alpha_1 = P(y = 1), \dots \alpha_k = P(y = k)$
 - We don't know $\mu_1 \cdots \mu_k$, but know the common variance σ^2

Start with an initial guess for μ_1, \dots, μ_k ,

1. If we know $\mu_1, ..., \mu_k$, we can easily compute probability that a point x^j belongs to class i:

$$p(y = i|x^j) \propto \exp\left(-\frac{1}{2\sigma^2}|x^j - \mu_i|^2\right)p(y = i)$$

Simply evaluate this, then normalize

E-step

2. If we know *the* probability that each point belongs to each class, we can estimate the μ_1, \dots, μ_k

$$\mu_i = \frac{\sum_{j=1}^m p(y=1|x^j)x^j}{\sum_{j=1}^m p(y=i|x^j)}$$

M-step

EM – Axis-aligned Gaussian

- We have unlabeled data x^1, \dots, x^m
- We know there are k classes
- We know that the Gaussians are axis aligned

$$\Sigma_{i} = \begin{pmatrix} \sigma^{2}_{i,1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^{2}_{i,2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^{2}_{i,3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^{2}_{i,m-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^{2}_{i,m} \end{pmatrix}$$

Start with an initial guess for $\mu_1, \dots, \mu_k, \Sigma_1, \dots, \Sigma_k, \alpha_1, \dots, \alpha_k$,

1. If we know the parameters, we can easily compute probability that a point x^j belongs to class i:

$$p(y = i | x^j) \propto p(x^j | \mu_i, \Sigma_i) p(y = i)$$

E-step

Simply evaluate this, then normalize

2. If we know *the* probability that each point belongs to each class, we can estimate the $\mu_1, \dots, \mu_k, \Sigma_1, \dots, \Sigma_k, \alpha_1, \dots, \alpha_k$,

$$\mu_{i} = \frac{\sum_{j=1}^{m} p(y=1|x^{j})x^{j}}{\sum_{j=1}^{m} p(y=i|x^{j})} \qquad \alpha_{i} = \frac{\sum_{j=1}^{m} p(y=1|x^{j})}{m} \qquad \sigma_{il}^{2} = \frac{\sum_{j=1}^{m} p(y=1|x^{j}) \left(x_{l}^{j} - \mu_{il}\right)^{2}}{\sum_{j=1}^{m} p(y=1|x^{j})}$$

M-step

EM – General Gaussian

Start with an initial guess for $\mu_1, \dots, \mu_k, \Sigma_1, \dots, \Sigma_k, \alpha_1, \dots, \alpha_k$,

1. If we know the parameters, we can easily compute probability that a point x^j belongs to class i:

$$p(y = i | x^j) \propto p(x^j | \mu_i, \Sigma_i) p(y = i)$$

E-step

Simply evaluate this, then normalize

2. If we know *the* probability that each point belongs to each class, we can estimate the $\mu_1, \dots, \mu_k, \Sigma_1, \dots, \Sigma_k, \alpha_1, \dots, \alpha_k$,

$$\mu_i = \frac{\sum_{j=1}^m p(y=1|x^j)x^j}{\sum_{j=1}^m p(y=i|x^j)} \qquad \alpha_i = \frac{\sum_{j=1}^m p(y=1|x^j)}{m}$$

$$\Sigma_{i} = \frac{\sum_{j=1}^{m} p(y=1|x^{j})(x^{j}-\mu_{i})(x^{j}-\mu_{i})^{T}}{\sum_{j=1}^{m} p(y=1|x^{j})}$$

M-step

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Q: Why are these two points red?

Behavior of EM

- It is guaranteed to converge
 - Convergence proof is based on the fact that $P(x|\theta)$ must increase or remain same between iterations (not obvious)
 - But P(x|\theta) can never exceed 1 (obvious)
 - So it should always converge
 - In practice it may converge slowly, one can stop early if the change in log-likelihood is smaller than a threshold
- It converges to a local optimum
 - Multiple restart is recommended