Fundamentos de analítica 2: Modelos de pronósticos basados en series de tiempo.

Temas del día

- Introducción
- Estimación de la tendencia
- Pronóstico de la estacionalidad
- Consideraciones finales

Introducción a las series de tiempo

- Ya hemos visto como encontrar un pronóstico por medio de:
 - Media móvil
 - Suavización Exponencial
 - Simple
 - Holt
 - Holt-Winters

• Ahora veremos otra manera de explicar el comportamiento de una serie.

Estimación de tendencia -lineal

• Tendencia: "Evolución lenta y a largo plazo"

$$X_t = \beta_0 + \beta_1 t$$

Estimación de tendencia -lineal

• Entonces el pronóstico será

$$F_{t+m} = \beta_0 + \beta_1 (t+m)$$

$$F_{t+m} = pronóstico (m adelante)$$

Estimación de tendencia - Cuadrática

• No siempre las series tienen una tendencia lineal:

$$X_t = \beta_0 + \beta_1 t + \beta_2 t^2$$

Estimación de tendencia - Cuadrática

• Permite mayor flexibilidad

Estimación de tendencia – Cuadrática

• En este caso:

$$F_{t+m} = \beta_0 + \beta_1 (t+m) + \beta_2 (t+m)^2$$

$$F_{t+m} = pronóstico (t+m)$$

Estimación de la estacionalidad

• Variables dummies:

gender	gender_m	gender_f
male	1	0
female	0	1
male	1	0
male	1	0
female	0	1
male	1	0
female	0	1
male	1	0
female	0	1

Estimación de la tendencia + estacionalidad

• Consideremos que tenemos datos trimestrales:

$$D_{1t} = \begin{cases} 1 & si \text{ 1er trimestre} \\ 0 & caso \text{ contrario} \end{cases}$$

$$D_{3t} = \begin{cases} 1 & si \text{ 3er trimestre} \\ 0 & caso \text{ contrario} \end{cases}$$

$$D_{2t} = \begin{cases} 1 & si \text{ 2do trimestre} \\ 0 & caso \text{ contrario} \end{cases}$$

$$D_{4t} = \begin{cases} 1 & si \text{ 4to trimestre} \\ 0 & caso \text{ contrario} \end{cases}$$

$$X_{t} = \beta_{1}t + \alpha_{1}D_{1t} + \alpha_{2}D_{2t} + \alpha_{3}D_{3t} + \alpha_{4}D_{4t}$$

$$F_{t+m} = X_t = \beta_1 (t+m) + \alpha_1 D_{1(t+m)} + \alpha_2 D_{2(t+m)} + \alpha_3 D_{3(t+m)} + \alpha_4 D_{4(t+m)}$$

- Ya conocemos varias formas de hacer pronósticos.
- ¿Cómo comparar los diferentes modelos?
 - La raíz cuadrada media del error de pronóstico, (RMSE Root Mean Square.)

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (\hat{y}_t - y_t)^2}$$

El mejor modelo es el que tenga un menor Error

- La evaluación se realiza normalmente fuera de la muestra:
 - In sample
 - Out of sample

Nombre	Medida	Breve descripción
Error medio (EM)	$EM = \frac{1}{T} \sum_{t=1}^{T} \left(Y_t - \hat{Y}_t \right)$	Mide el sesgo promedio del pronóstico
Error absoluto MAE promedio (EAP)	$EAP = \frac{1}{T} \sum_{t=1}^{T} \left Y_t - \hat{Y}_t \right $	No tiene en cuenta el sesgo como si lo hace el EM.
Varianza de error (VE)	$VE = \frac{1}{T} \sum_{t=1}^{T} \left[\left(Y_t - \hat{Y}_t \right) - EM \right]^2$	Mide la dispersión de los errores del pronóstico
Error cuadrático promedio (ECP)	$ECP = \frac{1}{T} \sum_{t=1}^{T} \left(Y_t - \hat{Y}_t \right)^2$	penaliza los errores mayores
Error absoluto medio porcentual (EAMP)	$EAMP = \frac{1}{T} \sum_{t=1}^{T} \left \frac{Y_t - \hat{Y}_t}{Y_t} \right $	indica que tan grande son los errores pronosticados
MAPE	$T \stackrel{\angle}{\underset{t=1}{\longleftarrow}} Y_t$	comparado con los datos reales en terminos porcentuales

Nombre	Medida	Breve descripción
Error cuadrático promedio porcentual (ECPP)	$ECPP = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{Y_t - \hat{Y}_t}{Y_t} \right)^2$	penaliza los errores porcentuales mayores
Raíz cuadrada del error cuadrático promedio (RCECP)	$RCECP = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(Y_t - \hat{Y}_t \right)^2}$	conserva las unidades de la variable
Raíz cuadrada del error cuadrático promedio porcentual (RCECPP)	$RCECPP = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(\frac{Y_t - \hat{Y}_t}{Y_t} \right)^2}$	Igualmente penaliza los errores porcentuales mayores
Coeficiente de desigualdad de Theil (U)	$U = \frac{\sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(Y_t - \hat{Y}_t \right)^2}}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(Y_t - \hat{Y}_t \right)^2}}$	mide la RCECP en términos relativos
Theil's U	$C = \frac{1}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} Y_t^2} + \sqrt{\frac{1}{T} \sum_{t=1}^{T} \hat{Y}_t^2}}$	

• Guía para la selección de método de pronóstico apropiado:

4-
de Horizonte de Pronóstico
e cualquiera
a Mediano a largo plazo
cualquiera
largo

• Guía para la selección de método de pronóstico apropiado:

Método de Pronóstico	Patrón de datos	Cantidad de Datos	Horizonte de Pronóstico
Métodos Estadísticos			
Promedio Móvil	cualquiera	Mínimo = a la ventana	Muy Corto
Suavización Exponencial - simple	Sin tendencia ni estacionalidad	5 a 10 datos	Corto plazo
Suavización Exponencial - Holt	Con tendencia	10 a 15 datos	Corto a Mediano plazo
Suavización Exponencial – Holt-Winters	Con tendencia y estacionalidad	Por lo menos 3 o 4 por estación	Corto a Mediano plazo

• Guía para la selección de método de pronóstico apropiado:

Método de Pronóstico	Patrón de datos	Cantidad de Datos	Horizonte de Pronóstico
Métodos Estadísticos			
Estimación de la tendencia	Con tendencia sin estacionalidad	Mínimo 10 datos	Corto a Mediano plazo
Estimación de la tendencia + estacionalidad	Con tendencia y estacionalidad	Mínimo 10 datos con 4 o5 por estacionalidad	Corto a Mediano plazo
Regresión múltiple	No importa	Mínimo 10 por variable explicativa	Corto, Mediano y Largo plazo

