Algorytmy geometryczne laboratorium 1 - sprawozdanie

Radosław Rolka Informatyka WI, II rok Gr 6, tydz. A czwartek 13:00

Spis treści

1	Wstęp
2	Wykorzystane narzędzia 2.1 Środowisko 2.2 Sprzęt
3	Przebieg ćwiczeń
4	Klasyfikacja poszczególnych podziałów punktów 4.1 Ustalenie podziału na prostej 4.2 Klasyfikacja pozostałych zbiorów 4.3 Użycie precyzji float32
5	Wnioski 10

1 Wstęp

1.1 Cel ćwiczenia

Ćwiczenie wprowadzające w zagadnienia geometrii obliczeniowej – implementacja podstawowych predykatów geometrycznych, przeprowadzenie testów, wizualizacja i opracowanie wyników.

1.2 Program ćwiczenia

- Przygotuj następujące zbiory punktów (2D, współrzędne rzeczywiste typu double):
 - a) 10⁵ losowych punktów o współrzędnych z przedziału [-1000, 1000],
 - b) 10^5 losowych punktów o współrzędnych z przedziału $[-10^{14}, 10^{14}]$,
 - c) 1000 losowych punktów leżących na okręgu o środku (0,0) i promieniu R=100,
 - d) 1000 losowych punktów o współrzędnych z przedziału [-1000, 1000] leżących na prostej wyznaczonej przez wektor (a, b). Przyjmij a = [-1.0, 0.0], b = [1.0, 0.1].
- Uruchom wizualizację graficzną utworzonych zbiorów punktów.
- Przygotuj program, który dla każdego ze zbioru danych dokona podziału punktów względem ich orientacji w stosunku do odcinka ab (a = [-1.0, 0.0], b = [1.0, 0.1] punkty znajdujące się po lewej stronie, po prawej stronie oraz współliniowe. Obliczenia wykonaj przy pomocy wyznacznika (1) i następnie (2) zaimplementowanego samodzielnie. Wyszukaj w bibliotekach numerycznych procedury obliczania wyznacznika 3x3 i 2x2. Dla każdego zbioru danych porównaj wyniki (podział punktów) uzyskane przy pomocy obu wyznaczników wyliczanych procedurami własnymi i bibliotecznymi. Określ, ile punktów (i jakich) zostało inaczej zakwalifikowanych dla różnych sposobów liczenia wyznacznika. Zbadaj wyniki dla różnej tolerancji dla zera oraz różnych precyzji obliczeń. Odpowiednio zaprezentuj otrzymane wyniki w tabelach.
- Przedstaw graficznie różnice w podziale punktów.
- · Opisz wnioski.

2 Wykorzystane narzędzia

2.1 Środowisko

Ćwiczenie zostało wykonane w Jupyter Notebook wykorzystując język programowania Python oraz dodatkowe biblioteki, które zostały zawarte w projekcie dostarczonym na zajęciach.

2.2 Sprzęt

Do wykonania został wykorzystany procesor Intel(R) Core(TM) I5-10300H 2.50GHz oraz system operacyjny Microsoft Windows 10 64bit ver 22H2.

3 Przebieg ćwiczeń

3.1 Generowanie punktów

Do generowania punktów wykorzystałem funkcję numpy.random.uniform, aby uzyskać równomierny rozkład punktów.

Rysunek 1: Wykresy rozkładów wygenerowanych punktów

3.2 Przygotowanie wyznaczników

Do obliczenia wyznacznika macierzy 2x2 oraz 3x3 wykorzystałem funkcje zaimplementowane przez siebie oraz funkcję numpy.linalg.

4 Klasyfikacja poszczególnych podziałów punktów

4.1 Ustalenie podziału na prostej

Najpierw przystąpię do klasyfikacji zbioru wygenerowanego na prostej ab: y=0.05x+0.05. Według przewidywań wszystkie punkty powinny się zakwalifikować jako punkty na prostej. Punkty oznaczone kolorem fioletowym oznaczają klasyfikację na prostej (prawidłowa), natomiast kolor żółty/zielony oznacza klasyfikację poza prostą.

Rysunek 2: Klasyfikacje dla epsilona równgo 0

Rysunek 3: Klasyfikacje dla wyznacznika $\mathrm{mat_det_3x3}$

Rysunek 4: Klasyfikacje dla wyznacznika mat_det_2x2

Rysunek 5: Klasyfikacje dla wyznacznika $\mathrm{mat_det_3x3_lib}$

Rysunek 6: Klasyfikacje dla wyznacznika $\mathrm{mat_det_2x2_lib}$

Wszystkie wyniki zebrałem w poniższej tabeli z uwzględnieniem procentowej zgodności klasyfikacji dla poszczególnych epsilonów. Gdzie zgodność oznacza stosunek poprawnie sklasyfikowanych punktów przez liczbę wszystkich punktów

Determinant 💌	0.00e-00 ×	1.00e-08 ×	1.00e-10 ×	1.00e-12 💌	1.00e-14 ×
mat_det_3x3	0,43	1,00	1,00	1,00	1,00
mat_det_2x2	0,70	1,00	1,00	0,84	0,74
mat_det_3x3_lib	0,30	1,00	1,00	1,00	0,83
mat_det_2x2_lib	0,67	1,00	1,00	0,82	0,73

Kolejność "sprawności" wyznaczników na podstawie przeprowadzonych klasyfikacji:

- \bullet mat det 3x3
- \bullet mat_det_3x3_lib
- $\bullet \ \ \mathrm{mat_det_2x2}$
- \bullet mat det 2x2 lib

4.2 Klasyfikacja pozostałych zbiorów

Teraz sprawdzę klasyfikację pozostałych zbiorów dla wszystkich czterech wyznaczników oraz dla epsilonów równych $0, 10^{-8}, 10^{-10}, 10^{-12}, 10^{-14}$.

Determinant 💌	0.00e-00	_	1.00e-08	~	1.00e-10	~	1.00e-12	1.00e-14	~
mat_det_3x3	(50030, 0,	49970)	(50030, 0,	49970)	(50030, 0,	49970)	(50030, 0, 49970)	(50030, 0, 4997	70)
mat_det_2x2	(50030, 0,	19970)	(50030, 0,	49970)	(50030, 0,	49970)	(50030, 0, 49970)	(50030, 0, 4997	70)
mat_det_3x3_lib	(50030, 0,	19970)	(50030, 0,	49970)	(50030, 0,	49970)	(50030, 0, 49970)	(50030, 0, 4997	70)
mat_det_2x2_lib	(50030, 0,	49970)	(50030, 0,	49970)	(50030, 0,	49970)	(50030, 0, 49970)	(50030, 0, 4997	70)

Rysunek 7: Klasyfikacja dla pierwszego zbioru [-1000, 1000]

Determinant	0.00e-00	1.00	e-08	1.00e-10	1.00e-12	1.00e-14
mat_det_3x3	(50139, 0, 498	51) (501	39, 0, 49861)	(50139, 0, 49861)	(50139, 0, 49861)	(50139, 0, 49861)
mat_det_2x2	(50137, 4, 498	59) (501	37, 4, 49859)	(50137, 4, 49859)	(50137, 4, 49859)	(50137, 4, 49859)
mat_det_3x3_lik	(50139, 0, 498	51) (501	39, 0, 49861)	(50139, 0, 49861)	(50139, 0, 49861)	(50139, 0, 49861)
mat_det_2x2_lik	(50136, 6, 498	58) (501	36, 6, 49858)	(50136, 6, 49858)	(50136, 6, 49858)	(50136, 6, 49858)

Rysunek 8: Klasyfikacja dla drugiego zbioru $[-10^{14}, 10^{14}]$

Determinant	0.00e-00	▼ 1.00e-08	▼ 1.00e-10	▼ 1.00e-12	▼ 1.00e-14	~
mat_det_3x3	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	
mat_det_2x2	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	
mat_det_3x3_lib	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	
mat_det_2x2_lib	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	

Rysunek 9: Klasyfikacja dla trzeciego zbioru [okrąg]

Rysunek 10: Przedstawienie Klasyfikacja zbiorów

Wszystkie wyznaczniki poradziły sobie jednakowo. Jednakże pojawiły się niespodziewane klasyfikacje na linii dla zbioru $[10^{-14}, 10^{14}]$.

Rysunek 11: Przedstawienie odstających punktów

4.3 Użycie precyzji float32

Dla zmniejszonej precyzji float
32 (Python używa domyślnie float
64) wygeneruję punkty i zklasyfikuje w taki sam sposób jak powyżej.

Determinant 💌	0.00e-00 ×	1.00e-08 💌	1.00e-10 ×	1.00e-12 💌	1.00e-14 ×
mat_det_3x3	0,43	1,00	1,00	1,00	1,00
mat_det_2x2	0,70	1,00	1,00	0,84	0,74
mat_det_3x3_lib	0,30	1,00	1,00	1,00	0,83
mat_det_2x2_lib	0,67	1,00	1,00	0,82	0,73

Rysunek 12: Klasyfikacja float32 dla prostej

Determinant	▼ 0	.00e-00	-	1.00e-08	-	1.00e-10	¥	1.00e-12	1.00e-14	-
mat_det_3x3	(!	50030, 0, 49	970)	(50030, 0, 49	970)	(50030, 0, 49	970)	(50030, 0, 49970) (50030, 0, 499	70)
mat_det_2x2	(!	50030, 0, 49	970)	(50030, 0, 49	970)	(50030, 0, 49	970)	(50030, 0, 49970) (50030, 0, 499	70)
mat_det_3x3_li	b (5	50030, 0, 49	970)	(50030, 0, 49	970)	(50030, 0, 49	970)	(50030, 0, 49970) (50030, 0, 499	70)
mat_det_2x2_li	b (5	50030, 0, 49	970)	(50030, 0, 49	970)	(50030, 0, 49	970)	(50030, 0, 49970) (50030, 0, 499	70),

Rysunek 13: Klasyfikacja float32 dla pierwszego zbioru [-1000, 1000]

Determinant 💌	0.00e-00	-	1.00e-08	-	1.00e-10	-	1.00e-12 ×	1.00e-14	-
mat_det_3x3	(50139, 0, 49	861)	(50139, 0,	49861)	(50139, 0,	49861)	(50139, 0, 49861)	(50139, 0, 49	861)
mat_det_2x2	(50136, 6, 49	858)	(50136, 6,	49858)	(50136, 6,	49858)	(50136, 6, 49858)	(50136, 6, 49	858)
mat_det_3x3_lib	(50139, 0, 49	861)	(50139, 0,	49861)	(50139, 0,	49861)	(50139, 0, 49861)	(50139, 0, 49	861)
mat_det_2x2_lib	(50136, 6, 49	858)	(50136, 6,	49858)	(50136, 6,	49858)	(50136, 6, 49858)	(50136, 6, 49	858)

Rysunek 14: Klasyfikacja float
32 dla drugiego zbioru $[-10^{14}, 10^{14}]$

Determinant 🔽	0.00e-00	▼ 1.00e-08	▼ 1.00e-10	▼ 1.00e-12	▼ 1.00e-14	¥
mat_det_3x3	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	
mat_det_2x2	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	
mat_det_3x3_lib	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	
mat_det_2x2_lib	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	(488, 0, 512)	

Rysunek 15: Klasyfikacja float32 dla trzeciego zbioru [okrąg]

Wszystkie wyniki są identyczne, oprócz drobnych różnic w zbiorze drugim dla $\mathrm{mat_det_2x2}$

5 Wnioski

Klasyfikacje zbiorów w znacznej większości były w większości przypadków wręcz identyczne, róznice między poszczególnymi wynikami różniły się o < 0.01%. Wybrany epslion (tolerancja) nie miała wpływu wyniki, jedynie w klasyfikacji punktów leżących na prostej. W tym najbardziej wymagającym dokładności przypadku można dojść do wniosku, że epsilon rzędu 10^{-10} będzie prawdopodobnie wystarczającą tolerancją w obliczeniach (co przy dokładności float64, która może maksymalnie zawierać 15-17 cyfr po przecinku, jest rezultatem całkiem racjonalnym).

Przy klasyfikacji punktów na prostej można zauważyć, że punkty sklasyfikowane błędnie w znacznej większości były tymi o większej odległości od środka układu współrzędnych. Jest to spowodowane tym, że klasyfikacja wymaga dużej dokładności, która jest tracona z powodu dużych wartości współrzędnych.

Epsilon równy zero nie ma racji bytu ze względu na tracone wartości poprzez ograniczoną pamięć komputera. Z tego powodu poprawność klasyfikacji punktów na prostej nie przekraczała 70%, a średni wynik dla wszystkich wyznaczników jest gorszy o conajmniej (!) 30%.

W klasyfikacji spośród czterech wyznaczników, tymi lepiej spełniającymi swoje zadanie były wyznaczniki własnoręcznie zaimplementowane, dodatkowo są one zauważalnie szybsze w obliczeniach. Jest to spowodowane przeznaczeniem funkcji bibliotecznych, które są w stanie obliczyć wyznacznik znacznie większych macierzy, przy których implementacja własnego wyznacznika będzie zbyt zasobochłonna.

Wyniki klasyfikacji przy zmniejszonej precyzji float32 były gorsze niż ich 64-bitowy odpowiednik, co było przewidywalne ze względu na ilość danych jaką mogą pomieścić. Ich wyniki w zbiorach 1,2,3 są identyczne, co jest spowodowane wykraczeniem epsilona poza zakres tych liczb (float32 może mieć maksymalnie 5-7 cyfr po przecinku).