Category Theory

October 11, 2018

C	ONTENTS	2
C	Contents	
0	Introduction	3
1	Definitions and examples	4

3

0 Introduction

I didn't go to the first 3 lectures, so no intro – sorry. I have no idea on what this course is about, let's see

1 Definitions and examples

Definition. (1.1)

A category C consists of:

- (a) a collection ob C of objects A, B, C;
- (b) a collection mor C of morphisms f, g, h;
- (c) two operations domain, codomain assigning to each $f \in \text{mor } \mathcal{C}$, a pair of objects, it's *domain* and *codomain*; we write $A \xrightarrow{f} B$ to mean f is a morphism and dom f = A, cod f = B;
- (d) an operation assigning to each $A \in \text{ob } \mathcal{C}$ a morphism $A \xrightarrow{1_A} A$;
- (e) a partial binary operation $(f,g) \to fg$ on morphisms, such that fg is defined iff dom $f = \operatorname{cod} g$, and dom $(fg) = \operatorname{dom} g$, $\operatorname{cod}(fg) = \operatorname{cod}(f)$ if fg is defined, satisfying:
- (f) $f1_A = f = 1_B f$ for any $A \xrightarrow{f} B$;
- (g) (fg)h = f(gh) whenever fg and gh are defined.

Remark. (1.2)

- (a) This definition is independent of any model of set theory. If we're given a particular model of set theory, we call \mathcal{C} small (nice name?) if ob \mathcal{C} and mor \mathcal{C} are sets.
- (b) Some texts say fg means f followed by g, i.e. fg is defined iff $\operatorname{cod} f = \operatorname{dom} g$.
- (c) Note that a morphism f is an identity iff fg = g and hf = h whenever the composites are defined. So we could formulate the definition entirely in terms of morphisms.

Example. (1.3)

(a) The category set has all sets as objects, and all functions between sets as morphisms.

Strictly speaking, morphisms $A \to B$ are pairs (f, B) where f is a set-theoretic function. (?)

(b) The category Gp has all groups as objects, group homomorphisms as morphisms.

Similarly, Ring is the category of rings, Mod_R is the category of R-modules.

(c) The cateogry Top has all topological spaces as objects, and continuous functions as morphisms.

Similarly, Unif has all uniform spaces and uniformly continuous functions as morphisms, Mf has all manifolds and smooth maps correspondingly.

- (d) The category Htpy has the same objects as Top, but morphisms are homotopy classess of continuous functions. More generally, given \mathcal{C} , we call an equivalence relation \simeq on mor \mathcal{C} a congruence if $f \simeq g \implies \mathrm{dom}\, f = \mathrm{dom}\, g$ and $\mathrm{cod}\, f = \mathrm{cod}\, g$, and $f \simeq g \implies fh \simeq gh$ and $kf \simeq kg$ whenever the composites are defined. Then we have a category \mathcal{C}/\simeq with the same objects as \mathcal{C} , but congruence classes as morphisms instead.
- (e) Given C, the *opposite category* C^{op} has the same objects and morphisms as C, but dom and cod are interchanged, and fg in C^{op} is gf in C.

This leads to the *duality principle*: if P is a true statement about categories, so is the statement P^* obtained from P by reversing all arrows.

(f) A small category with one object is a *monoid*, i.e. a semigroup with 1. In particular, a group is a small cat (nice abbreviation) with one object in which

every morphism is an isomorphism (i.e. for all $f, \exists g$ s.t. fg and gf are identities). (g) A groupoid is a category in which every morphism is an isomorphism. For example, for a topological space X, the fundamental groupoid $\pi(x)$ has all points of X as objects, and morphisms $x \to y$ are homotopy classes $rel\{0,1\}$ of paths $u:[0,1] \to X$ with u(0) = x, u(1) = y (if you know how to prove that the fundamental group is a group, you can prove that $\pi(x)$ is a groupoid).

(h) A discrete cat is one whose only morphism are identities.

A preorder is a cat C in which, for any pair (A, B), \exists at most 1 morphism $A \to B$.

A small preoder is a set equipped with a binary relation which is reflexive and transitive.

In particular, a partially ordered set is a small preorder in which the only isomorphisms are identities.

(i) The category Rel has the same objects a set (???), but morphisms $A \to B$ are arbitrary relations $R \subseteq A \times B$. Given R and $S \subseteq B \times C$, we define $S \cdot R = \{(a,c) \in A \times C | (\exists b \in B)((a,b) \in R, (b,c) \in S)\}.$

The identity $1_A: A \to A$ is $\{(a, a) | a \in A\}$.

Similarly, the category Part are for sets and partial functions (i.e. relations s.t. $(a,b) \in R$ and $(a,b') \in R \implies b=b'$).

- (j) Let K be a field. The cateogry Mat_K has natural numbers as objects, and morphism $n \to p$ are $(p \times n)$ matrices with entries from K. Composition is matrix multiplication.
- (k) We write *Cat* for the category whose objects are all small categories, and whose morphisms are functors between them. (see below for definition of functors)

Definition. (1.4)

Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- (a) a mapping $A \to FA$ from ob \mathcal{C} to ob \mathcal{D} ;
- (b) a mapping $f \to Ff$ from mor $\mathcal C$ to mor $\mathcal D$

such that dom(Ff) = F(dom f), cod(Ff) = F(cod f), $1_{FA} = F(1_A)$, and (Ff)(Fg) = F(fg) whenever fg is defined.

Example. (1.5)

- (a) We have forgetful functors $Gp \to Set$, $Ring \to Set$, $Top \to Set$, $Ring \to AbGp$ (forget \times), $Ring \to Monoid$ (forget +).
- (b) Given a set A, the free group FA has the property:

Given any group G and any function $A \xrightarrow{f} UG$ (?), there's a unique homomorphism $FA \xrightarrow{F} G$ extending f.

F is a functor $Set \to Gp$: given $A \xrightarrow{f} B$, we define Ff to be the unique homomorphism extending $A \xrightarrow{f} B \leftrightarrow UFB$ Functionality follows from uniqueness given $B \xrightarrow{f} C$. F(gf) and (Fg)(Ff) are both momoms extending $A \xrightarrow{f} B \xrightarrow{g} C \to UFC$.

(c) Given a set A, we write PA for the set of all subsets of A.

We can make P into a functor $Set \to Set$, given $A \xrightarrow{f} B$, we defined $Pf(A') = \{f(a) | a \in A'\}$ for $A' \subseteq A$.

But we also have a functor $P^*: Set \to Set^{op}$ defined on objects by P, but $P^*f(B') = \{a \in A | f(a) \in B'\}$ for $B' \subseteq B$.

By a contravariant functor $\mathcal{C} \to \mathcal{D}$, we mean a functor $\mathcal{C} \to \mathcal{D}^{op}$ (or $\mathcal{C}^{op} \to \mathcal{D}$).

A covariant functor is one that doesn't reverse arrows (in op I guess?).

- (d) Let K be a field. We have a functor $*: Mod_K \to Mod_K^{op}$ defined by $V^* = \{ \text{ linear maps } V \to K \}$, and if $V \xrightarrow{f} W$, $f^*(\theta : W \to K) = \theta f$.
- (e) We have a functor $op: Cat \to Cat$, which is the identity on morphisms (note that this is a covariant).
- (f) A functor between monoids is a monoid homomorphism.
- (g) A functor between posets is an order-preserving map.
- (h) Let G be a group. A functor $F \circ G \to Set$ consists of a set A = F* together with an action of G on A, i.e. a permutation representation of G.

Similarly, a funcorr $G \to Mod_K$ is a K-linear representation of G. (i) The construction of the fundamental group $\pi(X,X)$ of a space X with basepoint X is a functor $Top* \to Gp$ where Top* is the category of spaces with a chosen basepoint.

Similarly, the fundamental groupoid is a functor $Top \to Gpd$, where Gpd is the category of groupoids and functors between them.

Definition. (1.6)

Let \mathcal{C} and \mathcal{D} be categories and $F,G:\mathcal{C} \rightrightarrows \mathcal{D}$ (why two arrows?) two functors. A natural transformation $\alpha:F\to G$ consists of an assignment $A\to \alpha_A$ from ob C to mor \mathcal{D} , such that $\mathrm{dom}_{\alpha_A}=FA$ and $\mathrm{cod}_{\alpha A}=GA$ for all A, and for all $A\xrightarrow{f} B$ in \mathcal{C} , the square

$$FA \xrightarrow{Ff} FB$$

$$\downarrow \alpha_A \qquad \downarrow \alpha_B$$

$$GA \xrightarrow{Gf} GB$$

commutes (i.e. $\alpha_B(Ff) = (Gf)_{\alpha A}$).

(1.3) (l) Given categories \mathcal{C} and \mathcal{D} , we write $[\mathcal{C}, \mathcal{D}]$ for the category whose objects are functors $\mathcal{C} \to \mathcal{D}$ and whose morphisms are natural transformations.

Example. (1.7)

(a) Let K be a field, V a vector space over K. There is a linear map $\alpha_V : V \to V^{**}$ given by $\alpha_V(v)\theta = \theta(v)$ for $\theta \in V^*$.

This is the V-component of a natural transformation $1_{Mod_K} \to **: Mod_K \to Mod_K$.

- (b) For any set A, we have a mapping $\sigma_A : A \to PA$ sending a to $\{a\}$. If $f: A \to B$, then $Pf\{a\} = \{f(a)\}$. So σ is a natural transformation $1_{Set} \to P$.
- (c) Let $F:Set \to Gp$ be the free group functor (1.5(b)), and $U:Gp \to Set$ the forgetful functor. The inclusions $A \to UFA$ form a natural transformation $1_{Set} \to UF$.
- (d) Let G, H be groups and $f, g : G \Rightarrow H$ be two homomorphisms. A natural transformation $\alpha : f \to g$ corresponds to an element $h = \alpha_*$ of H, s.t. $hf(x) \to g(x)h$ for all $x \in G$ or equivalently $f(x) = h^{-1}g(x)h$, i.e. f and g are conjugate group homomorphisms.
- (e) Let A and B be two G-sets, regarded as functors: $G \rightrightarrows Set$. A natural transformation $A \to B$ is a function f satisfying $f(g \cdot a) = g \cdot f(a)$ for all $a \in A$, i.e. a G-equivariant map.

Lemma. (1.8)

Let $F, G : \mathcal{C} \rightrightarrows \mathcal{D}$ be two functors, and $\alpha : F \to G$ a natural transforms. Then α is an isomorphism in $[\mathcal{C}, \mathcal{D}]$ iff each α_A is an isomorphism in \mathcal{D} .

Proof. Forward is trivial (ok, I'll check this later). For backward, suppose each α_A has an inverse β_A . Given $f: A \to B$ in \mathcal{C} , we need to show that

$$GA \xrightarrow{Gf} GB$$

$$\downarrow \beta_A \qquad \downarrow \beta_B$$

$$FA \xrightarrow{Ff} FB$$

commutes. But as α is natural,

$$(Ff)\beta_A = \beta_B \alpha_B(Ff)\beta_A = \beta_B(Gf)\alpha_A \beta_A = \beta_B(Gf)$$

Definition. (1.9)

Let \mathcal{C} and \mathcal{D} be categories. By an *equivalence* between \mathcal{C} and \mathcal{D} , we mean a pair of functors $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{C}$ together wish natural isomorphisms $\alpha: 1_{\mathcal{C}} \to GF$ and $\beta: FG \to 1_{\mathcal{D}}$.

We write $\mathcal{C} \cong \mathcal{D}$ if \mathcal{C} and \mathcal{D} are equivalent.

We say a property P of categories is a *categorical property* if whenever C has P and $C \cong D$, then D has P.

For example, being a groupoid or a preorder are categorical properties, but being a group or a partial order are not.

Example. (1.10)

- (a) The category Part is equivalent to the category Set_* of pointed sets (and basepoint, pre(orders?) as functions):
- We define $F: Set_* \to Part$ by $F(A, a) = A \setminus \{a\}$, and if $f: (A, a) \to (B, b)$, then Ff(x) = f(x) if $f(x) \neq b$, and undefined otherwise;
- and $G: Part \to Set_*$ by $G(A) = A^+ = A \cup \{A\}$, and if $f: A \to B$ is a partial function, we define $Gf: A^+ \to B^+$ by Gf(x) = f(x) if $x \in A$ and f(x) defined, and equals B otherwise.

The composite FG is the identity on Part, but GF is not the identity. However, there is an isomorphism $(A,a) \to ((A \setminus \{a\})^+, A \setminus \{a\})$ sending a to $A \setminus \{a\}$ and everything else to itself and this is natural.

Note that there can be no isomorphism from Set_* to Part, since Part has a 1-element isomorphism class $\{\phi\}$ but Set_* doesn't.

- (b) The category $fdMod_K$ of finite-dimensional vector spaces over K is equivalent to $fdMod_K^{op}$, the functors in both directions are $(-1)^*$ (???) and both isomorphisms are the natural transformations of 1.7(a).
- (c) $fdMod_K$ is also equivalent to Mat_K (1.3(j)).

We define $F: Mat_K \to fdMod_K$ by $F(n) = K^n$, and F(A) is the linear map represented by A w.r.t. the standard bases of K^n and K^p .

To define $G: fdMod_K \to Mat_K$, choose a basis for each finite dimensional vector space, and define $G(V) = \dim V$, $G(V \xrightarrow{f} W)$ to be the matrix representing f w.r.t. chosen bases. GF is the identity, provided we choose the standard bases for the spaces K^n ; $FG \neq 1$, but the chosen bases give isomorphisms $FG(V) = K^{\dim V} \to V$ for each V, which form a natural isomorphism.