

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №3 по дисциплине "Анализ алгоритмов"

Гема <u>Алгоритмы сортировки</u>
Студент <u>Романов А.В.</u>
Группа <u>ИУ7-53Б</u>
Оценка (баллы)
Преподаватели Волкова Л.Л., Строганов Ю.В.

Оглавление

B	Введение 2 Аналитическая часть 3			
1	Аналитическая часть			
	1.1	Сортировка пузырьком	3	
	1.2	Сортировка вставками	3	
	1.3	Быстрая сортировка	3	
	1.4	Вывод	3	
2	Конструкторская часть			
	2.1	Схемы алгоритмов	4	
	2.2	Модель вычислений	4	
	2.3	Трудоёмкость алгоритмов	4	
		2.3.1 Алгоритм сортировки пузырьком	4	
		2.3.2 Алгоритм сортировки вставками	4	
	2.4	Вывод	4	
3	Технологическая часть 5			
	3.1	Требование к ПО	5	
	3.2		5	
	3.3	Реализация алгоритмов	5	
	3.4	Тестовые данные	6	
	3.5	Вывод	6	
4	Исследовательская часть			
	4.1	Технические характеристики	7	
	4.2	Время выполнения алгоритмов	7	
	4.3	Вывод	7	
За	клю	очение 	8	
Л	итер	atyna	8	

Введение

Задачи лабораторной работы:

1 Аналитическая часть

- 1.1 Сортировка пузырьком
- 1.2 Сортировка вставками
- 1.3 Быстрая сортировка
- 1.4 Вывод

2 Конструкторская часть

2.1 Схемы алгоритмов

Рис. 2.1: Схема стандартного алгоритма умножения матриц

2.2 Модель вычислений

Для последующего вычисления трудоемкости введём модель вычислений:

1. Операции из списка (2.1) имеют трудоемкость 1.

$$+, -, /, \%, ==, !=, <, >, <=, >=, [], ++, --$$
 (2.1)

2. Трудоемкость оператора выбора if условие then A else B рассчитывается, как (2.2).

$$f_{if} = f_{\text{условия}} + \begin{cases} f_A, & \text{если условие выполняется,} \\ f_B, & \text{иначе.} \end{cases}$$
 (2.2)

3. Трудоемкость цикла рассчитывается, как (2.3).

$$f_{for} = f_{\text{инициализации}} + f_{\text{сравнения}} + N(f_{\text{тела}} + f_{\text{инкремента}} + f_{\text{сравнения}})$$
 (2.3)

4. Трудоемкость вызова функции равна 0.

2.3 Трудоёмкость алгоритмов

Пусть размер массивов - N

- 2.3.1 Алгоритм сортировки пузырьком
- 2.3.2 Алгоритм сортировки вставками
- 2.4 Вывод

3 Технологическая часть

В данном разделе приведены средства реализации и листинги кода.

3.1 Требование к ПО

К программе предъявляется ряд требований:

- На вход ПО получает массив сравнимых элементов;
- На выходе тот же массив, но отсортированный в заданном порядке.

3.2 Средства реализации

Для реализации ПО я выбрал язык программирования OCaml [1]. Данный выбор обусловлен моим желанием расширить свои знания в области применения данного язкыа программирования.

3.3 Реализация алгоритмов

Листинг 3.1: Функция сортировки массива пузырьком

Листинг 3.2: Функция сортировки массива вставками

Листинг 3.3: Функция быстрой сортировки

3.4 Тестовые данные

3.5 Вывод

4 Исследовательская часть

4.1 Технические характеристики

Ниже приведены технические характеристики устройства, на котором было проведено тестирование ПО:

- Операционная система: Debian [2] Linux [3] 11 «bullseye» 64-bit.
- Оперативная память: 12 GB.
- Процессор: Intel(R) Core(TM) i5-3550 CPU @ 3.30GHz [4].

4.2 Время выполнения алгоритмов

Время выполнения алгоритм замерялось с помощью применения технологии профайлинга [?]. Данный инстрмуент даёт детальное описание количества вызовов и количества времени CPU, занятого каждой функцией.

4.3 Вывод

Тут какой то вывод..

Заключение

В рамках данной лабораторной работы:

1. 123

Литература

- [1] OCaml is an industrial strength programming language supporting functional, imperative and object-oriented styles [Электронный ресурс]. Режим доступа: https://ocaml.org/. Дата обращения: 01.10.2020.
- [2] Debian универсальная операционная система [Электронный ресурс]. Режим доступа: https://www.debian.org/. Дата обращения: 20.09.2020.
- [3] Linux Getting Started [Электронный ресурс]. Режим доступа: https://linux.org. Дата обращения: 20.09.2020.
- [4] Процессор Intel® CoreTM i5-3550 [Электронный ресурс]. Режим доступа: https://ark.intel.com/content/www/ru/ru/ark/products/65516/intel-core-i5-3550-processor-6m-cache-up-to-3-70-ghz.html. Дата обращения: 20.09.2020.