Product Recommendation System based on Amazon Review

Mahisha Ramesh - MT23121

Questions

2) Choose a product of your choice. Let's say 'Headphones'.

```
# Function to process and write a chunk of data to CSV

def process_chunk(chunk, csv_writer):
    for data in chunk:
        if 'Electronics' in data.get('category', []) and 'Headphones' in data.get('category' csv_writer.writerow(data)

# Open the input JSON file
with open('/kaggle/input/meta-electronics-dataset/meta_Electronics.json', 'r', encoding='utf # Initialize CSV writer and open output CSV file
```

Output:-

["['Electronics', 'Headphones']", ", "['Use these high quality headphones for internet chatting and enjoy the comfort and ease of the headphones with the microphone and in-line volume control. Works with: Skype msn AIM YAHOO! Windows Live']", ", 'Polaroid Pbm2200 PC / Gaming Stereo Headphones With Microphone & Eamp; In-line Volume', '[]', ", 'Polaroid', "['Ideal for PC Internet chatting, PC / Console gaming and music', 'In-line volume control', 'Optimal performance for VoIP usage', 'Enhanced soft-cushioned ear pads']", "['>#3,548,269 in Cell Phones & Eamp; Accessories (See Top 100 in Cell Phones & Eamp; Accessories)', '>#122,201 in Cell Phones & Eamp; Accessories & Electronics &

"['https://images-na.ssl-images-amazon.com/images/l/21rEirndRLL.jpg']"]

["['Electronics', 'Headphones', 'Earbud Headphones']", ", "['Barnes and noble official nook earphones.']", ", 'Official Nook Audio le250 Earphones', '[]', ", 'Nook', '[]', "['>#4,167,961 in Cell Phones & Earphones & Earphones & Earphones & Earphones & Earbud Headphones & Earphones & Earphones & Earbud Headphones', '>#403,963 in Electronics & Elect

3)Report the total number of rows for the product. Perform appropriate pre-processing as handling missing values, duplicates and other

```
Number of rows after processing: 31115
Processed data saved to processed_headphone.csv
```

4. Obtain the Descriptive Statistics of the product as : -

```
a. Number of Reviews: 32908
b. Average Rating Score: 3.814239698553543
c. Number of Unique Products: 3413
d. Number of Good Ratings: 26018
e. Number of Bad Ratings: 6890
f. Number of Reviews corresponding to each Rating:
overall
1.0
      2821
2.0
      3839
3.0
      6604
4.0
5.0 15575
Name: count, dtype: int64
```

5) Preprocess the Text

```
# Define a function to preprocess text combining all the steps

def preprocess_text(text):
    text = remove_html_tags(text)
    text = remove_accented_chars(text)
    text = expand_headphones_acronyms(text)
    text = remove_special_characters(text)
    text = remove_punctuation_and_stopwords(text)
    text = lemmatize_text_with_spacy(text) # Use spaCy for lemmatization
    return text
```

- 6)To extract relevant statistics, perform the following EDA -
- a. Top 20 most reviewed brands in the category that you have chosen.

brand		
Sony	4864	
Sennheiser	4698	
Koss	1759	
Audio-Technica	1169	
Bose	1140	
JVC	1044	
Philips	906	
Panasonic	800	
beyerdynamic	716	
Shure	675	
Klipsch	673	
V-MODA	668	
Plantronics	659	
Skullcandy	563	
JLAB	523	
Beats	508	
Etymotic Research	441	
AKG	424	
Ultimate Ears	413	
Monster	355	
Name: count, dtype	: int64	

b. Top 20 least reviewed brands in the category you have chosen.

```
      brand

      TYLT
      1

      BLUETTEK
      1

      Spark
      1

      Pengaz
      1

      Doosl
      1

      netjnp
      1

      ECCPE
      1

      SeattleTech
      1

      Haldirect
      1

      jarv
      1

      Fonus
      1

      Gearonic TM
      1

      Blackcell
      1

      Sades
      1

      fitTek
      1

      KickBot
      1

      Sunweb
      1

      HeadGear
      1

      Extreme 80s
      1

      Sunnice
      1

      Name: count, dtype: int64
```

c. Which is the most positively reviewed 'Headphone' (Or for any other electronic product you have selected)

Most positively reviewed ASIN ID: B00004TZJI

d. Show the count of ratings for the product over 5 consecutive years.

[{'asin': 'B0000010MI', 'year_range': '2007-2011', 'count': 2}, {'asin': 'B0000010MI', 'year_range': '2008-20
12', 'count': 2}, {'asin': 'B0000010MR', 'year_range': '2005-2009', 'count': 1}, {'asin': 'B0000010MR', 'year_range': '2007-2011', 'count': 0}, {'asin': 'B0000010MR', 'year_range': '2007-2011', 'count': 0}, {'asin': 'B0000010MR', 'year_range': '2009-2013', 'count': 0}, {'asin': 'B0000011EJ', 'year_range': '2001-2005', 'count': 4}, {'asin': 'B0000011EJ', 'year_range': '2002-2006', 'count': 5}, {'asin': 'B0000011EJ', 'year_range': '2003-2007', 'count': 6}, {'asin': 'B0000011EJ', 'year_range': '2005-2009', 'count': 14}, {'asin': 'B00000011EJ', 'year_range': '2005-2009', 'count': 14}, {'asin': 'B00000011EJ', 'year_range': '2005-2009', 'count': 14}, 'asin': 'B00000011EJ', 'year_range': '2008-2012', 'count': 10}, 'asin': 'B0000011EJ', 'year_range': '2008-2012', 'count': 10}, 'asin': 'B000011EJ', 'year_range': '2008-2007', 'count': 10}, 'asin': 'B000011EJ', 'year_r

e. Form a Word Cloud for 'Good' and 'Bad' ratings. Report the most commonly used words for positive and negative reviews by observing the good and bad word clouds.

Good Reviews Word Cloud

Bad Reviews Word Cloud

F. Plot a pie chart for Distribution of Ratings vs. the No. of Reviews.

G. Report in which year the product got maximum reviews.

In the year 2014, the product received the maximum reviews: 6217 reviews.

h. Which year has the highest number of Customers?

In the year 2014, there were the highest number of customers: 5434 customers.

year	
2000	15
2001	29
2002	52

```
2003
       84
2004
       203
2005
       564
2006
      896
2007
      1323
2008
      1346
2009
      1466
2010
      1550
2011
      2141
2012
      3017
2013
     4544
2014
      5434
2015
      2921
2016
      1847
2017
      906
2018
       99
```

Name: reviewerID, dtype: int64

7. Use a relevant feature engineering technique to model review text as Bag of Words model, TF-IDF, Hashing Vectorizer or Word2Vec.

```
[{'buy': 0.04828998481044271, 'son': 0.17756230619433183, 'want': 0.06273959473973903, 'headphone': 0.021935256490506358, 'go': 0.05092156185353742, 'ear': 0.030964737705080004, 'like': 0.03552669075710617, 'school': 0.20153581223198025, 'good': 0.05318245282440118, 'price': 0.09730947530087833, 'really': 0.05424879540088827, 'sound': 0.013413511063846336, 'quality': 0.036306258242803174, 'horrible': 0.17116502591848906, 'wiggle': 0.23356622313722825, 'cord': 0.07448352548448908, 'often': 0.135838949105822, 'package': 0.13630339128186006, 'say': 0.060080823219720386, 'wow': 0.16699121445581613, 'glad': 0.16326135622637586, 'break': 0.0889994570849165}
```

8.Compare the performance of 5 Machine Learning based models on the basis of

Precision, Recall, F-1 Score and Support for each of the 3 target classes distinctly.

1) Random Forest

Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.93	0.91	0.92	5491
1	0.81	0.85	0.83	5570
2	0.82	0.79	0.81	5572
accuracy			0.85	16633
macro avg	0.85	0.85	0.85	16633
weighted avg	0.85	0.85	0.85	16633

2) SUPPORT VECTOR CLASSIFIER¶

Classificatio	precision	recall	f1-score	support
0	0.44	0.47	0.45	869
1	0.39	0.57	0.46	827
2	0.43	0.20	0.27	804
accuracy			0.41	2500
macro avg	0.42	0.41	0.40	2500
veighted avg	0.42	0.41	0.40	2500

3) GRADIENT BOOSTING

Classificatio	n Report: precision	recall	f1-score	support
0	0.61	0.65	0.63	1244
1	0.57	0.59	0.58	1257
2	0.61	0.54	0.57	1249
accuracy			0.60	3750
macro avg	0.60	0.60	0.59	3750
weighted avg	0.60	0.60	0.59	3750

4) DECISION TREE

Classificatio	n Report: precision	recall	f1-score	support	
0	0.53	0.54	0.54	1303	
1	0.46	0.50	0.48	1205	
2	0.46	0.40	0.43	1242	
accuracy			0.48	3750	
macro avg	0.48	0.48	0.48	3750	
weighted avg	0.48	0.48	0.48	3750	

5) KNN

Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.47	0.83	0.60	1229
1	0.55	0.63	0.58	1250
2	0.57	0.07	0.13	1271
accuracy			0.51	3750
macro avg	0.53	0.51	0.44	3750
weighted avg	0.53	0.51	0.44	3750

11) Collaborative Filtering :

a) Create a user-item rating matrix

asin	B0000010MI	B00000JCTO	B00001P4XA	B00001P4XH	B00001P4YG	\
reviewerID						
A118GK08650JY7	0.0	0.0	0.0	0.0	0.0	
A12DQZKRKTNF5E	0.0	0.0	0.0	0.0	0.0	
A13WL1MBY347F7	0.0	0.0	0.0	0.0	0.0	
A149RNR5RH19YY	0.0	0.0	0.0	0.0	0.0	
A166PLPFD2A42H	0.0	0.0	0.0	0.0	0.0	
AWPODHOB4GFWL	0.0	0.0	0.0	0.0	0.0	
AXU3VKZE848IY	0.0	0.0	0.0	0.0	0.0	
AYTGG6XTVUG7G	0.0	0.0	0.0	0.0	0.0	
AZØSIZRQWN7RC	0.0	0.0	0.0	0.0	0.0	
AZXFS8GCTSQ5R	0.0	0.0	0.0	0.0	0.0	
asin	B00001P4ZH	B00001P505	B00001W0ET	B00001WRSJ	B00004SD88	\
reviewerID						
A118GK08650JY7	0.0	0.0	0.0	0.0	0.0	
A12DQZKRKTNF5E	0.0	0.0	0.0	0.0	0.0	
A13WL1MBY347F7	0.0	0.0	0.0	0.0	0.0	
A149RNR5RH19YY	5.0	0.0	0.0	0.0	0.0	
A166PLPFD2A42H	0.0	0.0	0.0	0.0	0.0	

- c) Create a user-user recommender system i.e,
- i) Find the top N similar users, by using cosine similarity. N = 10, 20, 30, 40, 50

\	Nearest_3	Nearest_2	Nearest_1	ReviewerID	
	A1E1BGAH9X4MS3	A25KAWJE80DHJZ	AABY9VMRDRFFE	A1030G69UZTK9	3
	A2SHUDXDYMS9MA	A37PZJH2F13IOR	A2X9SQSKV4WKT0	A118GK08650JY7	L
	A3N4VTNFPMTHEF	A3MTKYOAMWJE9B	A281T8MXBOSWY5	A11MTYZ120N08D	2
	A3KKM0T1KY42HA	A3MU047CT6EQF8	A3MKAP4NUTYKMN	A11X9HWNØ9P7MC	3
	A3MKAP4NUTYKMN	A3LKN9GND01EWJ	ATS2855497V0I	A11ZYI5IG7V00	1
,	Normant 7	Nanana 6	Nanaat E	Non-set 4	
١.	Nearest_7 A2KN1ILG8TABA	Nearest_6	Nearest_5	Nearest_4	
	A2CW9GKMNFAU6R	A3EJDV2RTFROU4	A21KNRUAA5RK5E	A1HM9SAU8TV134	L
	A3LWC833HQIG7J	A3LKN9GND01EWJ	A3LGT6UZL99IW1	A3L1EH8KUWVZB	2
	A3LWC833HQIG7J	A3LKN9GND01EWJ	A3LGT6UZL99IW1	A3L1EH8KUWVZB	3
	A3LGT6UZL99IW1	A3L1EH8KUWVZB	A3KKM0T1KY42HA	A3MUO47CT6EQF8	1
		Nearest 10	Nearest 9	Nearest 8	
		AMS7E10Y00UY0	Nearest_9 A4M61F235UDNL	A28XMCDOV3OUTJ	9
			AYUF7YETYOLNX		L
			A3K91X9X2ARDOK	_	2
		A3NCIN6TNL0MGA	A3MTKYOAMWJE9B	A3K6J60D3LX28Q	3

b) Normalize the ratings, by using min-max scaling on user's reviews

asin	B0000010MI	B00000JCTO	B00001P4XA	B00001P4XH	B00001P4YG	1
reviewerID						
A118GK08650JY7	3.996521	3.996521	3.996521	3.996521	3.996521	
A12DQZKRKTNF5E	3.996521	3.996521	3.996521	3.996521	3.996521	
A13WL1MBY347F7	3.996521	3.996521	3.996521	3.996521	3.996521	
A149RNR5RH19YY	3.900000	3.900000	3.900000	3.900000	3.900000	
A166PLPFD2A42H	4.300000	4.300000	4.300000	4.300000	4.300000	
AWPODHOB4GFWL	4.100000	4.100000	4.100000	4.100000	4.100000	
AXU3VKZE848IY	4.100000	4.100000	4.100000	4.100000	4.100000	
AYTGG6XTVUG7G	4.500000	4.500000	4.500000	4.500000	4.500000	
AZØSIZRQWN7RC	3.900000	3.900000	3.900000	3.900000	3.900000	
AZXFS8GCTSQ5R	3.996521	3.996521	3.996521	3.996521	3.996521	

	B0000010MI	B00000JCTO	B00001P4XA	B00001P4XH	B00001P4YG	\
reviewerID						
A118GK08650JY7	0.522153	0.609179	0.74913	0.739452	0.609179	
A12DQZKRKTNF5E	0.522153	0.609179	0.74913	0.739452	0.609179	
A13WL1MBY347F7	0.522153	0.609179	0.74913	0.739452	0.609179	
A149RNR5RH19YY	0.476190	0.555556	0.72500	0.703704	0.555556	
A166PLPFD2A42H	0.666667	0.777778	0.82500	0.851852	0.777778	
AWPODHOB4GFWL	0.571429	0.666667	0.77500	0.777778	0.666667	
AXU3VKZE848IY	0.571429	0.666667	0.77500	0.777778	0.666667	
AYTGG6XTVUG7G	0.761905	0.888889	0.87500	0.925926	0.888889	
AZØSIZRQWN7RC	0.476190	0.555556	0.72500	0.703704	0.555556	
AZXFS8GCTSQ5R	0.522153	0.609179	0.74913	0.739452	0.609179	
	B00001P4ZH	B00001P505	B00001WRSJ	B00004SD88	B00004SY4H	\
reviewerID						
A118GK08650JY7	0.522153	0.522153	0.665507	0.609179	0.522153	
A12DQZKRKTNF5E	0.522153	0.522153	0.665507	0.609179	0.522153	
A13WL1MBY347F7	0.522153	0.522153	0.665507	0.609179	1.000000	
A149RNR5RH19YY	1.000000	0.476190	0.633333	0.555556	0.476190	

Normalized ratings between 0 and 1

- c) ii) Use K-folds validation. K = 5. Explanation: Create 5 subsets, and take 1 of them as the validation set. Take the rest 4 to be the training set.
- iii) Use the training set to predict the missing values, and use the validation set to calculate the error. (Error = |actual_rating predicted_rating|)

Code:-

```
# Define the number of folds
k_folds = 5

# Initialize KFold cross-validator
kf = KFold(n_splits=k_folds)

# Initialize list to store errors for each fold
errors = []

# Iterate over folds
for train_index, val_index in kf.split(user_item_matrix):
    # Split data into training and validation sets
    train_set = user_item_matrix.iloc[train_index]
    val_set = user_item_matrix.iloc[val_index]

# Predict missing values using training set
predicted_ratings = train_set.mean(axis=0) # Use mean ratings as predictions

# Calculate error for the validation set
error = np.abs(val_set - predicted_ratings)
```

Average error across 5 folds: 0.1043198605448111

d) Create an item-item recommender system. Use the same steps as above.

Item-item Similarity

```
B0000010MI B00000JCTO B00001P4XA B00001P4XH B00001P4YG \
B0000010MI 1.000000 -0.005682 -0.011913 -0.005682 -0.005682
B00000JCTO -0.005682 1.000000 0.484234 -0.005682 -0.005682
B00001P4XA -0.011913 0.484234 1.000000 -0.011913 -0.011913
B00001P4XH -0.005682 -0.005682 -0.011913 1.000000 -0.005682
B00001P4YG -0.005682 -0.005682 -0.011913 -0.005682 1.000000
B00KTCMJKI -0.005682 -0.005682 -0.011913 -0.005682 -0.005682
B00KVT00UW -0.005682 -0.005682 -0.011913 -0.005682 -0.005682

        BØØKWKKGGG
        -0.005682
        -0.005682
        -0.011913
        -0.005682
        -0.005682

        BØØKWMNDDM
        -0.005682
        -0.005682
        -0.011913
        -0.005682
        -0.005682

            B00001P4ZH B00001P505 B00001W0ET B00001WRSJ B00004SD88 ... \
B0000010MI -0.02092 -0.011413 1.000000 -0.015768 -0.005682 ...
B00000JCTO -0.02092 -0.011413 -0.005682 -0.015768 -0.005682 ...
              0.34316 -0.023930 -0.011913 -0.033060 -0.011913
B00001P4XA
B00001P4XH -0.02092 -0.011413 -0.005682 -0.015768 -0.005682 ...
B00001P4YG -0.02092 0.413883 -0.005682 0.333092 -0.005682 ...
BOOKTCMJKI -0.02092 -0.011413 -0.005682 -0.015768 -0.005682
B00KVTOOUW -0.02092 -0.011413 -0.005682 -0.015768 -0.005682 ...
B00KWKKG6G -0.02092 -0.011413 -0.005682 -0.015768 -0.005682 ...
B00KWMNDDM -0.02092 -0.011413 -0.005682 -0.015768 -0.005682 ...
```