8.2 换元积分法与分部积分法

一、第一类换元积分法(凑微分法)

定理1: 设 f(u) 在区间 I 上有定义, $u = \varphi(x)$ 在区间 I_x 可导且 $\varphi(I_x) \subset I$. 若 $\int f(u) du = F(u) + C$,则

$$\int f[\varphi(x)] \varphi'(x) dx = \left[\int f(u) du \right]_{u=\varphi(x)}$$
$$= F(\varphi(x)) + C.$$

1、形如 $\int f(ax+b) dx$ 的不定积分

例1、求下列不定积分 (a > 0).

$$(1) \int (2x+1)^{100} dx; \qquad (2) \int \frac{1}{a^2+x^2} dx;$$

(3)
$$\int \frac{1}{\sqrt{a^2-x^2}} dx$$
; (4) $\int \frac{1}{\sqrt{4-3x^2}} dx$.

2、凑中间变量 u.

例2、求下列不定积分.

$$(1)\int \frac{x}{\sqrt{2-3x^2}}dx;$$

(1)
$$\int \frac{x}{\sqrt{2-3x^2}} dx$$
; (2) $\int \frac{x \sin \sqrt{1+x^2}}{\sqrt{1+x^2}} dx$.

(3)
$$\int \frac{2x+1}{x^2+x+1} dx$$
; (4) $\int \frac{e^x}{e^{2x}+1} dx$;

$$(4)\int \frac{e^x}{e^{2x}+1}dx;$$

例3、求下列不定积分.

$$(1)\int \frac{1}{x \ln x \ln \ln x} dx;$$

$$(2)\int \frac{1+\ln x}{(x\ln x)^2}dx;$$

(3)
$$\int \frac{1}{x^2 - a^2} dx \, (a \neq 0)$$
.

3、三角函数的不定积分

例4、求下列不定积分.(凑中间变量 ॥)

$$(1) \int \sin^3 x \cos x dx; \quad (2) \int \frac{\sin x + \cos x}{\sin x - \cos x} dx;$$

$$(3) \int \tan x dx; \qquad (4) \int \sec x dx.$$

例5、求下列不定积分.(降次)

$$(1)\int \sin^2 x dx;$$

$$(2)\int \cos^3 x dx;$$

$$(3) \int \cos^4 x dx;$$

$$(4) \int \sin^2 x \cos^3 x dx;$$

$$(5) \int \sin 3x \sin x dx; \qquad (6) \int \sin 5x \cos x dx;$$

积化 和差

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha - \beta) + \sin(\alpha + \beta)]$$

 $(7) \int \tan^3 x \sec x dx; \quad (8) \int \tan^3 x \sec^4 x dx.$

$$\sec^2 x = \tan^2 x + 1; \quad \int \sec x \tan x dx = \sec x + C$$

$$\int \sec^2 x dx = \tan x + C$$

二、第二类换元积分法

定理2: 设 f(x) 定义在 I 上, $x = \varphi(t)$ 在 I_t 内单调、 $\varphi'(t) \neq 0, 且 \varphi(I_t) = I. 若$ $\int f(\varphi(t)) \varphi'(t) dt = G(t) + C (t \in I_t),$

则

$$\int f(x)dx = G(\varphi^{-1}(x)) + C.$$

第二类换元积分法的基本步骤:

$$\int f(x)dx$$
 換元: $x = \varphi(t)$

$$= \int f(\varphi(t))\varphi'(t)dt$$

$$dx = d\varphi(t) = \varphi'(t)dt$$

$$= F(t) + C$$
 关于 t 积分
$$= F(\varphi^{-1}(x)) + C$$
 回代 $t = \varphi^{-1}(x)$

例6、求下列不定积分.

$$(1)\int \frac{dx}{\sqrt{x}+\sqrt[3]{x}}; \qquad (2)\int \sqrt{e^x-1}\,dx.$$

方法: 去根号。

例7、求不定积分(a>0).

$$(1)\int \sqrt{a^2-x^2}dx.$$

$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{1}{2} x \sqrt{a^2 - x^2} + C$$

$$(2)\int \frac{dx}{\sqrt{x^2+a^2}}.$$

$$(3)\int \frac{dx}{\sqrt{x^2-a^2}}.$$

七个常用的积分公式:

$$1.\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C;$$

$$2.\int \frac{1}{\sqrt{a^2-x^2}} dx = \arcsin \frac{x}{a} + C;$$

$$3.\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C;$$

$$4.\int \sec x dx = \ln|\sec x + \tan x| + C;$$

$$5. \int \csc x dx = \ln|\csc x - \cot x| + C;$$

6.
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + C;$$

$$7.\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left| x + \sqrt{x^2 - a^2} \right| + C.$$

例8、求下列不定积分.

$$(1)\int \frac{1}{\sqrt{x^2-2x+6}} dx; \qquad (2)\int \frac{1}{\sqrt{x^2-x-2}} dx;$$

(3)
$$\int \sqrt{\frac{a+x}{a-x}} dx \ (a>0); \ (4) \int \frac{x^2}{\sqrt{a^2-x^2}} dx.$$

三、分部积分法

定理3: 设 u(x)与v(x)可导, $\int u'(x)v(x)dx$ 存在,则

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx.$$

简写为:
$$\int uv'dx = uv - \int u'vdx$$

$$\int u dv = uv - \int v du$$

分部积分步骤:

$$\int f(x)dx$$

$$=\int uv'dx$$

$$=\int udv$$
 凑微分

$$= uv - \int v du$$
 分部积分

观察

$$= uv - \int vu' dx$$
 积分

原则:

- 1. dv 容易凑出;
- $2.\int vu'dx$ 比 $\int uv'dx$ 容易.

1、恰当选取 u 与 v'(或 dv)

例9、求 (1)
$$\int x \sin x dx$$
; (2) $\int x \ln x dx$.

注:被积函数是两个基本初等函数 u 与 v' 的乘积,

v'按照下列顺序选取:

指数函数≻三角函数≻幂函数≻对数函数≻反三角函数

例10、求
$$\int x^2 e^{-x} dx$$
.

两次分部积分

2、综合使用分部积分与换元积分法

例11、求 $\int \arcsin x \, dx$.

$$\int \arcsin x dx = x \arcsin x + \sqrt{1 - x^2} + C$$

练习: 求 $\int \arccos x \, dx$.

$$\int \arccos x dx = x \arccos x - \sqrt{1 - x^2} + C$$

3、使用分部积分通过方程求解

例12、求 $\int \sec^3 x \, dx$.

方法: 一次分部积分,解一个方程

例13、求 $\int e^x \sin x dx$ 与 $\int e^x \cos x dx$.

方法: 两次分部积分,解一个方程

4、用分部积分法建立递推式

例14、求 (1)
$$I_n = \int \tan^n x dx$$
 的递推式.
$$(2)I_n = \int \frac{1}{(x^2 + a^2)^n} dx$$
 的递推式。

作 业

习题8-2: 1 ((7)-(35)中的奇数题)

2(2)(3)(6),6(3)