

CS23336-Introduction to Python Programming

Started on Friday, 18 October 2024, 7:40 PM

State Finished

Completed on Friday, 18 October 2024, 11:10 PM

Time taken 3 hours 30 mins Marks 10.00/10.00

100.00 out of 100.00 Grade

Question 1

Correct Mark 1.00 out of 1.00 \square Flag question

Question text

An array is monotonic if it is either monotone increasing or monotone decreasing.

An array A is monotone increasing if for all $i \le j$, $A[i] \le A[j]$. An array A is monotone decreasing if for all $i \le j$, A[i]

Write a program if n array is monotonic or not. Print "True" if is monotonic or "False" if it is not. Array can be monotone increasing or decreasing.

Input Format:

First line n-get number of elements

Next n Lines is the array of elements

Output Format:

True ,if array is monotone increasing or decreasing.

otherwise False is printed

Sample Input1

Sample Output1

True

Sample Input2

5

Sample Output2

True

```
Sample Input 3
6
7
Sample Output3
False
For example:
Input Result
5
4
      True
Answer:(penalty regime: 0 %)
n=int(input())
arr=[]
for _ in range (n):
arr.append(int(input(
)))
def mono(array):
  inc=dec=True
  for i in
range(1,len(array)):
     if array[i]
<array[i-1]:
        inc=False
array[i]>array[i-1]:
       dec=False
  return "True" if
inc or dec else
Feedback
Input Expected Got
```

```
6
5
True
True
4
3
4
3
5
False
7
4
4
1
6
False
9
2

True
True
4
9
6
True
True
4
2
```

```
2
       False
                  False
Passed all tests!
Correct
Marks for this submission: 1.00/1.00.
Question 2
Correct
Mark 1.00 out of 1.00
\square Flag question
Question text
Given an integer n, return an list of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the
binary representation of i.
Example:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Note: Complete the given function alone
For example:
                           Result
        Test
print(CountingBits(5)) [0, 1, 1, 2, 1, 2]
Answer:(penalty regime: 0 %)
                 def CountingBits(n):
                   ans=[0]*(n+1)
                   for i in
                 range(1,n+1):
                 ans[i]=ans[i>>1]+
                 (i&1)
                   return ans
```

Reset answer

Test Expected Got


```
Answer:(penalty regime: 0 %)

a=int(input())
b=int(input())
arr=[0]*(a+1)
for _ in range (b):

s,e,inc=map(int,input(
).split())
arr[s]+=inc
if e+1<a:
    arr[e+1]-=inc
for i in range(1,a):
arr[i]+=arr[i-1]
print('
'.join(map(str,arr[:a])))
```

Input Expected Got

```
5 3 1 3 2 -2 0 3 5 3 -2 0 3 5 3 2 4 3 0 2 -2
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 4

Correct Mark 1.00 out of 1.00 \square^{∇} Flag question

Question text

The program must accept N integers and an integer K as the input. The program must print every K integers in descending order as the output.

 \underline{Note} : If N % K != 0, then sort the final N%K integers in descending order.

Boundary Condition(s):

```
1 \le N \le 10^4
-99999 \in Array Element Value \in 99999
```

Input Format:

The first line contains the values of N and K separated by a space. The second line contains N integers separated by space(s).

Output Format:

The first line contains N integers.

Example Input/Output 1:

Input:

7 3 48 541 23 68 13 41 6

Output:

541 48 23 68 41 13 6

Explanation:

The first three integers are $48\ 541\ 23$, after sorting in descending order the integers are $541\ 48\ 23$. The second three integers are $68\ 13\ 41$, after sorting in descending order the integers are $68\ 41\ 13$. The last integer is 6.

The integers are **541 48 23 68 41 13 6**Hence the output is **541 48 23 68 41 13 6**.

```
Answer:(penalty regime: 0 %)

n,k=map(int,input().s
plit())
arr=list(map(int,input(
).split()))
for i in range(0,n,k):
    chunk=arr[i:i+k]

chunk.sort(reverse=Tr
ue)
    print(*chunk,end='
')
```

Feedback

7 3 48 541 23 68 13 41 6 541 48 23 68 41 13 6 541 48 23 68 41 13 6

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 5

Correct

Mark 1.00 out of 1.00

 \square Flag question

Question text

Program to print all the distinct elements in an array. Distinct elements are nothing but the unique (non-duplicate)

elements present in the given array.
Input Format:
First line take an Integer input from stdin which is array length n.
Second line take n Integers which is inputs of array.
Output Format:
Print the Distinct Elements in Array in single line which is space Separated
Example Input:
5
1
2
2
3
4
Output:
1 2 3 4
Example Input:
6
1
1
2
2
3
3
Output:
1 2 3
For example:
Input Result
5 1 2 2 1 2 3 4 3 4
6 1 1 2 1 2 3 2 3 3

Answer:(penalty regime: 0 %)

Input Expected Got

```
5
1
2
2
1 2 3 4 1 2 3 4
3
4
6
1
1
2
1 2 3 1 2 3
1 2 3
3
3
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 6

Correct Mark 1.00 out of 1.00 □ Flag question

Question text

Given a matrix mat where every row is sorted in **strictly increasing** order, return the **smallest common element** in all rows.

If there is no common element, return -1.

Example 1:

Input:

4 5

12345

2 4 5 8 10

Output:

5

Constraints:

- 1 <= mat.length, mat[i].length <= 500
- $1 \le mat[i][j] \le 10^4$
- mat[i] is sorted in strictly increasing order.

Answer:(penalty regime: 0 %)

```
rows,col=map(int,in
put().split())
matrix=
[list(map(int,input().
split()))for in
range(rows)]
count={}
for elem in
matrix[0]:
  count[elem]=1
for i in
range(1,rows):
  for elem in
matrix[i]:
     if elem in count
count[elem]==i+1-
```

Feedback

Input Expected Got

```
4 5
1 2 3 4 5
2 4 5 8 10 5 5
3 5 7 9 11
1 3 5 7 9
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 7

Correct Mark 1.00 out of 1.00 \square Flag question

Question text

Given two arrays of positive integers, for each element in the second array, find the total number of elements in the first array which are *less than or equal to* that element. Store the values determined in an array.

For example, if the first array is [1, 2, 3] and the second array is [2, 4], then there are 2 elements in the first array less than or equal to 2. There are 3 elements in the first array which are less than or equal to 4. We can store these answers in an array, answer = [2, 3].

Program Description

The program must return an array of m positive integers, one for each maxes[i] representing the total number of elements nums[j] satisfying $nums[j] \le maxes[i]$ where $0 \le j < n$ and $0 \le i < m$, in the given order.

The program has the following:

nums[nums[0],...nums[n-1]]: first array of positive integers
maxes[maxes[0],...maxes[n-1]]: second array of positive integers

Constraints

- $\cdot 2 \le n, m \le 10^5$
- · $1 \le nums[j] \le 10^9$, where $0 \le j < n$.
- · $1 \le maxes[i] \le 10^9$, where $0 \le i < m$.

Input Format For Custom Testing

Input from stdin will be processed as follows and passed to the program.

The first line contains an integer *n*, the number of elements in *nums*.

The next n lines each contain an integer describing nums[i] where $0 \le i < n$.

The next line contains an integer m, the number of elements in maxes.

The next m lines each contain an integer describing maxes[i] where $0 \le i < m$.

Sample Case 0

Sample Input 0

Sample Output 0

2

Explanation 0

We are given n = 4, nums = [1, 4, 2, 4], m = 2, and maxes = [3, 5].

- 1. For maxes[0] = 3, we have 2 elements in nums(nums[0] = 1 and nums[2] = 2) that are $\leq maxes[0]$.
- 2. For maxes[1] = 5, we have 4 elements in nums(nums[0] = 1, nums[1] = 4, nums[2] = 2, and <math>nums[3] = 4) that are $\leq maxes[1]$.

Thus, the program returns the array [2, 4] as the answer.

Sample Case 1

Sample Input 1

```
5
2
10
5
4
8
4
3
```

Sample Output 1

Explanation 1

```
We are given, n = 5, nums = [2, 10, 5, 4, 8], m = 4, and maxes = [3, 1, 7, 8].
```

- 1. For maxes[0] = 3, we have 1 element in nums(nums[0] = 2) that is $\leq maxes[0]$.
- 2. For maxes[1] = 1, there are 0 elements in nums that are $\leq maxes[1]$.
- 3. For maxes[2] = 7, we have 3 elements in nums(nums[0] = 2, nums[2] = 5, and <math>nums[3] = 4) that are $\leq maxes[2]$.
- 4. For maxes[3] = 8, we have 4 elements in nums(nums[0] = 2, nums[2] = 5, nums[3] = 4, and nums[4] = 8) that are $\leq maxes[3]$.

Thus, the program returns the array [1, 0, 3, 4] as the answer.

Answer:(penalty regime: 0 %)

```
n=int(input())
nums=[int(input()) for
_ in range(n)]
m=int(input())
maxes=[int(input())for
_ in range(m)]
res=[]
for max1 in maxes:
    count=0
    for num in nums:
        if num<=max1:
            count+=1
        res.append(count)
for count in res:
        print(count)
```

Feedback

Input Expected Got

```
1
2
       2
                    2
2
3
5
2
10
5
                    1
4
                    0
       0
8
3
1
7
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 8

Correct

Mark 1.00 out of 1.00

□ Flag question
Question text
Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p^{th} element of the list, sorted ascending. If there is no p^{th} element, return 0.
Example
n = 20
p = 3
The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if $p = 3$, then 4 is returned. If $p > 6$, 0 would be returned.
Constraints
$1 \le n \le 10^{15}$
$1 \le p \le 10^9$
The first line contains an integer n, the number to factor.
The second line contains an integer p, the 1-based index of the factor to return.
Sample Case 0
Sample Input 0
10
3
Sample Output 0
5
Explanation 0
Factoring $n = 10$ results in $\{1, 2, 5, 10\}$. Return the $p = 3^{rd}$ factor, 5 , as the answer.
Sample Case 1
Sample Input 1
10
5
Sample Output 1
0
Explanation 1
Factoring $n = 10$ results in $\{1, 2, 5, 10\}$. There are only 4 factors and $p = 5$, therefore 0 is returned as the answer.
Sample Case 2
Sample Input 2
1
1
Sample Output 2
1
Explanation 2
Factoring $n = 1$ results in $\{1\}$. The $p = 1$ st factor of 1 is returned as the answer.

For example:

Input Result

```
10
1
      1
Answer:(penalty regime: 0 %)
n=int(input())
p=int(input())
def factor (num):
  fact=[]
  for i in
range(1,num+1):
     if num\%i == 0:
        fact.append(i)
  return fact
fact1=factor(n)
if p<=len(fact1):
  print(fact1[p-1])
else:
  print(0)
```

10

Input Expected Got

10 3	5	5
10 5	Θ	0
1	1	1

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 9

Correct Mark 1.00 out of 1.00 □ Flag question

Question text

Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A[i] - A[j] = k, i != j.

Input Format

- 1. First line is number of test cases T. Following T lines contain:
- 2. N, followed by N integers of the array
- 3. The non-negative integer k

Output format

Print 1 if such a pair exists and 0 if it doesn't.

Exampl	e	
Input		
1		
3		
1		
3		
5		
4		
Output	:	
1		
Input		
1		
3		
1		
3		
5		
99		
Output		
0		
For exa	ample:	
Input Result		
1		
3	_	
1 3 5 4	1	
4		
1		
3 1		
1 3 1 3 5	0	
5 99		
Answei	r:(penalty regime: 0 %)	

```
T=int(input())
for test in range (T):
    n=int(input())
    a=[int(input())for_
in range(n)]
    k=int(input())
    res=0
    for i in range(n):
        for j in range(n):
        if i!=j:
            d=a[i]-a[j]
            if d==k:
            res=1
    print(res)
```

Input Expected Got

```
1 3 1 1 1 5 4 4 1 3 1 3 5 999
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Question 10

Correct Mark 1.00 out of 1.00 □ Flag question

Question text

Complete the program to count frequency of each element of an array. Frequency of a particular element will be printed once.

Sample Test Cases

Test Case 1

Input

7

23

45

```
2356452340
```

Output

```
23 occurs 3 times
45 occurs 2 times
56 occurs 1 times
40 occurs 1 times
Answer:(penalty regime: 0 %)
n=int(input())
ele=[]
for in range(n):
ele.append(int(input())
f={}
for n in ele:
   if n in f:
     f[n]+=1
   else:
     f[n]=1
for n,count in
f.items():
   print(f"{n} occurs
{count} times")
```

Feedback

Input Expected Got 7 23 45 23 occurs 3 times 23 occurs 3 times 23 45 occurs 2 times 45 occurs 2 times 56 56 occurs 1 times 56 occurs 1 times 45 40 occurs 1 times 40 occurs 1 times 23 40

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Save the state of the flags

Finish review

Skip Quiz navigation

Quiz navigation

Question 1 This page Question 2 This page Question 3 This page Question 4 This page Question 5 This page Question 6 This page Question 7 This page Question 8 This page Question 9 This page Question 10 This page Show one page at a timeFinish review