Further PCB Design and Manufacturing

Josh Johnson

12/8/2019

 Josh Johnson
 furtherPCB
 12/8/2019
 1/35

FPGA Workshop?

My proposal is:

- Two workshops
 - WTFpga Implementing a 7 segment decoder at your own pace
 - LED Matrix / UART / Simulation
 - Verilog only (synthesis tools don't support SV/VHDL)
- Requires Linux / Mac, may work on windows.
 - Will provide untested instruction for windows which may require different workflow - pull requests welcomed
- FPGA hardware will be \$50
 - iCE-40 FPGA in feather form factor
 - 7 Segment / DIP switch board
 - 6*6 LED Matrix / Buttons
 - Feather to dual PMOD (PCB only)
 - Want to assemble your own? Can be organised!
- Will get hardware to everyone before next meetup, so you can install toolchains / get to blinky at your own leisure

Overview

- Multilayer PCBs
- Impedance control
- Differential Pairs
- Cutting edge processes
- Panellisation
- Random KiCad things
- Layout Tips
- Layout Review

 Josh Johnson
 furtherPCB
 12/8/2019
 3/35

Multilayer PCBs

PCBs are often 2 or 4 layers, but 8-16 is common for phones / motherboards / GPUs etc. Why?

- Dedicated power / ground planes
 - Allows for low impedance supply and return of currents
 - Not only required for function of devices, but to pass emissions testing
 - Many different stackups, both material, spacing, and layer assignment (signal / gnd / power)
- More layers to route signals
- Required for BGA fanout
- Impedance control

Josh Johnson furtherPCB 12/8/2019 4 / 35

PCB Stackup

PCB Stackup

PCB Stackup

Josh Johnson furtherPCB 12/8/2019 7

Via Technology

Type

What is impedance?

 the effective resistance of an electric circuit or component to alternating current, arising from the combined effects of ohmic resistance and reactance

Why do we care?

- Impedance mismatch results in reflections, which causes power loss and signal degradation
- Mismatches caused by incorrect track width, stubs, lack of termination resistors

Transmission line model

Characteristic Impedance

$$Z_0 = \sqrt{\frac{L}{C}}$$

 Josh Johnson
 furtherPCB
 12/8/2019
 11 / 35

PCB transmission line

To calculate, use tools such as TXLine or Saturn PCB Toolkit

At higher frequencies, (above 2GHz) FR4 has high loss Materials such as PTFE, Rogers 4003C / 4350B (glass reinforced hydrocarbon/ceramics) are better suited to higher frequency applications Packing and orientation of glass weave can also play a part, along with surface roughness due to skin effect

 Josh Johnson
 furtherPCB
 12/8/2019
 12 / 35

Glass Weave

 Josh Johnson
 furtherPCB
 12/8/2019
 13 / 35

I'm designing a digital board, so I don't have to worry about this?

- Bandwidth = $\frac{0.34}{t_{rise}}$
- Dependent on rise / fall times, not frequency (although higher frequencies do require faster edges)

 Josh Johnson
 furtherPCB
 12/8/2019
 14 / 35

Return current?

- Impedance controlled traces must be referenced to an unbroken plane (can be ground or power)
- As return current takes path of least impedance, follows path of outbound current!
- Slots, gaps, cut outs all result in return current taking a long path and emitting EMI

SLOTTED GROUND PLANE

15/35

Path of least impedance

Figure: Currents for a 1kHz signal flow. The ground current primarily flows directly from the load to the source in a straight line, as indicated by the narrow vellow line.

Josh Johnson furtherPCB 12/8/2019 16 / 35

Path of least impedance

Figure: Current for a 50kHz signal flowing primarily along the signal trace and, to a lesser extent, directly from load to source.

Path of least impedance

Figure: Current paths with a 1MHz signal. Virtually all the return ground current is flowing along the path of the signal trace

Josh Johnson further PCB 12/8/2019 18 / 35

Confirming correct Impedance?

- Follow fabricators guidelines (NOT TXLine etc) they know their process best
- Board houses do what is known as 'Etch Compensation' to ensure traces stay at required impedance
- They can also make a test coupon, and measure with a TDR to ensure correct dimensions

Test Coupons

 Josh Johnson
 furtherPCB
 12/8/2019
 20 / 35

Differential Pairs

Used on most high speed signals. Why?

- Minimise crosstalk
- Better functioning in noisy environments
- Reduce electromagnetic interference
- Improvement in SNR
- Isolation from power supplies

21/35

Cutting edge processes

- Blind and buried vias
- Stacked microvias
- Filled and capped vias
- High density interconnect (HDI)
- 2 thou (0.05 mm) trace and space
- Greater than 10:1 aspect ratio vias (6:1 typical)
- Up to 20oz copper (700um, compared to typical 35um)
- Flex and rigid flex
- Distributed element filters
- Embedded passives

 Josh Johnson
 furtherPCB
 12/8/2019
 22 / 35

iPhone

iPhone

High copper thickness

 Josh Johnson
 furtherPCB
 12/8/2019
 26 / 35

Rigid Flex

Josh Johnson furtherPCB 12/8/2019 2

Distributed Element Filters

 Josh Johnson
 furtherPCB
 12/8/2019
 28 / 35

Embedded Passives

12/8/2019

29 / 35

Panellisation

Why do we panellise boards?

- To aide assembly odd shaped or small boards cannot make it through a SMT line
- To aide programming and test boards can be gang programmed / tested
- To get more boards for your money either through sharing tooling charge between multiple people, or getting more boards under a dimension price break

How to break boards out?

- V-Scoring
- Tab and route
- Combination of both

 Josh Johnson
 furtherPCB
 12/8/2019
 30 / 35

Panellisation

Random KiCad Things

- Library Management
- Panellisation using kicad-util
- Interactive HTML BOM

Josh Johnson furtherPCB 12/8/2019 32 / 35

Layout Tips

- Layout is 80% placement, 20% routing
- Don't push design rules because you can bigger is better
- Place mounting holes and components first
- Use polygons where practicable
- Keep traces as short at possible
- Route key signals first
- Snake tracks point to point is not more efficient
- Place decoupling caps close to power pins, smaller value closer
- Series termination resistors close to driver
- Tracks run into center of pads
- No acute angles on traces
- Multiple vias to stitch higher current nets
- Ensure ground / power plane is not cut up, stitch multiple planes together with vias

Layout Review

- 2 layer Keyboard (mechanical constraints)
- 4 layer VNA (RF)
- 4 layer FPGA (somewhat dense)

Josh Johnson furtherPCB 12/8/2019 34 / 35

The End

FPGA Workshop Thoughts?

Say Hello!

BSidesCbr Slack: josh Twitter: @_joshajohnson

Email: josh@joshajohnson.com

Project Files: github.com/joshajohnson/CBRhardware

 Josh Johnson
 furtherPCB
 12/8/2019
 35 / 35