Exercice 31 p 87

 Réactifs : fer et dioxygène Produits : oxyde de fer

- 2. Formules chimiques et composition:
 - Fer: Fe (un atome de fer) ;
 - dioxygène : O₂ (deux atomes d'oxygène);
 - oxyde de fer : Fe₂O₃ (deux atomes de fer et trois atomes d'oxygène).
- 3. Le combustible est le fer car le combustible est l'espèce chimique qui brûle lors d'une combustion.
- 4. L'équation:

```
4 Fe + 3 O_2 \rightarrow 2 Fe<sub>2</sub>O_3
```

5. 6. Calculons la masse de dioxygène nécessaire à la transformation et la masse d'oxyde de fer apparu. Il y a conservation de la masse avant et après la transformation :

	4 Fe +	-	3 O ₂	\rightarrow	2 Fe ₂ O ₃
masse	12 g		$1,4 \times 3,6 = 5,04 g$		12 + 5,04 = 17,04 g
volume			3,6 L		

7. Equation avec un autre oxyde de fer :

2 Fe +
$$O_2$$
 \rightarrow 2 FeO

Ex 17 p 66

- 1. La combustion est complète car il se forme CO_2 (trouble l'eau de chaux), H_2O (formation de buée) et la flamme est bleue
- 2. Les produits de la combustion sont le dioxyde de carbone et l'eau car l'eau de chaux rajoutée se trouble et il apparaît de la buée.
- 3. Bilan: butane + dioxygène → dioxyde de carbone + eau

Ex 27 p 68

- 1. Soufre + dioxygène → dioxyde de soufre
- 2. Dioxyde de soufre + eau + dioxygène → acide sulfurique
- 3. Ces réactions chimiques provoquent l'acidification des océans qui provoquent la disparition de certains animaux marins.

Exercice 26 p 68

- 1. Essence + dioxygène → dioxyde de carbone + eau
- 2. C'est une combustion incomplète car d'autres produits se forment que le dioxyde de carbone et l'eau. En particulier le monoxyde de carbone CO.
- 3. Calculons la masse maximale de dioxyde de carbone produite par un véhicule type B essence : $130 \times 15\ 000 = 1\ 950\ 000\ q = 1950\ kg = 1,95\ t$
- 4. Calculons la masse maximale de dioxyde de carbone produite par un véhicule type B diesel : $115 \times 15\ 000 = 1\ 725\ 000\ g = 1725\ kg = 1,725\ t$