

Hackathon

December 17th, 2023

https://giphy.com/gifs/pokemon-RRKLKJoeDX0Ij TIXCj

Sirfetch'dSirfetch'd

1. Problem description

Problem description

Using a sample from Farfetch's real data:

The goal is to forecast whether an order will lead to a genuine purchase or a fraudulent transaction based on the order's features and historical fraud patterns.

Classification problem

Binary target

2. Workflow

2.1 Data collection

Data Collections

dataset

We

a sample of a real dataset

used

- 195401 transactions
- 16 columns

CSV file

collected from August 2021 to November 2022.

2.2 Data preparation

Data preprocessing

Transformations applied:

• Remove duplicates

- Remove null values in column Label
- In column 'payment_method', for payment_method_2, a 'missing' category was added in columns card_expiration_date, bin_brand,bin_type

Data preprocessing

New columns were

- is_same_country: check billing address country code & shipping address country code
- avg_amount_spent_per_order_180d: email amount spent avg 180d/email orders count 180d
- n_order_items (shipping_method_type)
- year (from order datetime)
- month (order datetime)
- day (order datetime)
- time (order datetime) cosine transformation applied
- shipping_method_type:
- -9 ... -C S Count 9 - Count N
- Count C Count V
- Count_D Count_unknown -D - Unkown
- Count E - V

Items per Order

Many outliers in our numerical features

Encoding for categorical features:

- One-hot encoding

Scaling at numerical data:

RobustScaler

2.3 Model selection

Model selection

- Logistic Regression and Random Forest
- We split our data with a ratio of 70% training and 30% test

- In a perfect world, these results wouldn't arouse suspicion, but that's not the case...

Correlation Matrixes

2.4 Results and discussion

Random Forest

Percentage of correct predictions for label 0: 70.06% Percentage of correct predictions for label 1: 91.85%

Results and discussion

- AUC: 81% (space for improvement)
- This is a fraud detection exercise and so capturing more false positive than false negatives is a good thing!
- It wouldn't be the case if this was an exercise where the output sends someone to prison...

_				
0.0	0.99	0.70	0.82	51925
1.0	0.23	0.92	0.37	5178
accuracy			0.72	57103
macro avg	0.61	0.81	0.60	57103
weighted avg	0.92	0.72	0.78	57103

3. Future Work

Future work

- Try random search and Bayesian search for Hyperparameter tuning
- Test XGBoost models
- Get feature importance (we can use shap.Explainer) and train a model with only the features that have the most information for the prediction.

The End!

Pun!

