

Chapter 7

噪声 Noise

中科大微电子学院

黄鲁、程林

教材:模拟CMOS集成电路设计

Behzad Razavi

2020/12/15

1

第7章 内容

- 7.1 噪声的统计特性
- 7.2 噪声类型
- 7.3 电路中的噪声表示
- 7.4 单级放大器中的噪声
- 7.5 电流镜中的噪声
- 7.6 差动对中的噪声
- 7.7 运放(高增益或多级)的噪声
- 7.8 噪声与功率的折中
- 7.9 噪声带宽
- 7.10 输入噪声积分的问题

7.1 噪声的统计特性

本章讨论电路内部各元器件产生的随机噪声,不是电路外部的共模噪声(输入共模噪声、地噪声和电源噪声

R上信号平均功率(瓦):
$$P_S = 1 im_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \frac{v^2(t)}{R} dt$$

周期T=
$$\frac{1}{f}$$
正弦信号,平均功率: $P_S = \frac{1}{T} \int_{-T/2}^{T/2} \frac{(A_m \cos \omega t)^2}{R} dt$

$$= \frac{A_{m}^{2}}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{\frac{1}{2} (1 + \cos 2\omega t)}{R} dt = \frac{A_{m}^{2}}{2R} = \frac{\left(\frac{A_{m}}{\sqrt{2}}\right)^{2}}{R}, \frac{A_{m}}{\sqrt{2}} \text{ hf } \text{fb } \text{for } \text{fo$$

R上随机噪声x平均功率(瓦):

$$P_n = 1 \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \frac{x^2(t)}{R} dt$$

随机噪声瞬时值不可预测,均值=0; x为噪声有效值,其统计值可测量(长时间)

引进"电压功率"

信号处理中我们仅关注电压。

为简化计算和电学测量, 引进"电压功率":

平均"电压功率":
$$P_{av} = 1 im_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x^2(t) dt$$
,量纲 V^2

系统性能: 信噪比SNR=Ps/Pn

正弦信号系统的
$$SNR = \frac{A_m^2}{P_{av}}$$

7.1.1 噪声谱 Noise Spectrum

功率谱: 功率的频率分量

噪声"电压功率"谱: V²/Hz@freq

功率谱密度 PSD (power spectral density) 函数Sx(f)

Sx(f)总面积(f积分)得到功率

(a)

白噪声:与频率无关(一段频率范围)

在所关心的频带内噪声功率谱平坦

噪声(或信号)通过线性系统 $\mathbb{H}(f)$ 后输出功率谱:

Figure 7.7 Noise shaping by a transfer function.

$$S_{Y}(f) = S_{X}(f) \left| H(f) \right|^{2}$$

7.1.2 幅值分布

概率密度函数PDF(probability density function):

 $P_X(x) dx = x < X < x + dx$ 的概率

随机信号x的PDF是高斯分布:
$$P_{x}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp \frac{-(x-m)^{2}}{2\sigma^{2}}$$

 σ 是标准差,即噪声的均方根值;m是平均值,噪声的m=0。

7.1.3 相关噪声源和非相关噪声源

噪声相加,

均功率:

噪声相加,
总噪声平
$$P_{av} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} [x_1(t) + x_2(t)]^2 dt$$

均功率:

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x_1^2(t) dt + \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x_2^2(t) dt$$

$$+ \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} 2x_1(t) x_2(t) dt$$

$$= P_{av1} + P_{av2} + \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} 2x_1(t) x_2(t) dt$$

$$= P_{av1} + P_{av2} + \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} 2x_1(t)x_2(t)dt$$

$$X_1$$
和 X_2 不相关时 $P_{av} = P_{av1} + P_{av2}$

7.1.4 信噪比

信噪比SNR=Psig/Pnoise

信号 $A_m \cos \omega t$ 的功率: $P_{sig} = \frac{A_m^2}{2}$,

噪声功率
$$P_{noise} = \int_{-\infty}^{\infty} S_{noise}(f) df$$
,

 $S_{noise}(f)$ 为噪声功率谱,总噪声功率与放大器带宽有关。 任何实数x的频谱是f的偶函数,即为双边噪声谱

噪声大, 功耗大

单边谱是双边谱的2倍

Figure 7.9 (a) Two-sided and (b) one-sided noise spectra.

"电压功率"谱
$$S_x(f): \frac{V^2}{Hz}$$
@ f

信号的双边谱:
$$\cos \omega t = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$

7.1.5 噪声分析步骤

输出端噪声电压(有效值)的计算:

1. 列出各噪声源X(电阻和MOS)的电压功率谱

$$S_{X}(f)$$
: 单位为 V^{2}/HZ

- 2. 求出各噪声源X到输出的传递函数Hx(f);
- 3. 计算各噪声源X到输出的噪声电压功率谱;

$$S_{out}(f) = S_X(f) \left| H_X(f) \right|^2$$

- 4. 对所有输出噪声电压功率谱进行叠加;
- 5. 对总输出噪声电压功率谱从0到无穷大频率进行积分,得到总输出噪声电压功率 (V^2) ,开方得到输出噪声电压 有效值V

输出端噪声可以测量获得。

7.2 噪声类型

7.2.1 热噪声 Thermal Noise

电阻器热 噪声

低温下电阻热 噪声小, 但是,极低温 度时迁移率 由于载流子

冻结而下降

Figure 7.14 Thermal noise of a resistor.

R上热噪声的单边谱密度:

$$S_{v}(f) = 4kTR = \overline{V_{n}^{2}}$$
 平方的平均, $f \geq 0$, 单位: V_{Hz}^{2}

波尔兹曼常数:
$$k = 1.38 \times 10^{-23} J_K$$

T: 绝对温度, 27℃为300K

电阻器上的热噪声

常温300K下,1欧姆电阻器上的电压功率谱密度约为

$$4kTR=4 \times 1.38 \times 10^{-23} \times 300 \times 1=1.656 \times 10^{-20} \frac{V^2}{Hz}$$

= $(0.1287 nV / \sqrt{Hz})^2$

乘以R得到电阻器的电压功率谱密度。

300K常温下,1K欧姆电阻器E = 14E = 16.56 × 10⁻²⁰ × 1000 × 1 = 16.56 × 10⁻¹⁸ $V^2 \approx (4nV)^2$

300 R常温下,1 K 欧姆电阻器 在<math>1 M H z 带宽上的热噪声电压功率:

 $4kTR\Delta f=1.656 \times 10^{-20} \times 1000 \times 10^{6} = 16.56 \times 10^{-12}V^{2} \approx (4\mu V)^{2}$

括号内为噪声电压的均方根值 = 有效值 平均值 = 0

2020/12/15

例7.3 RC低通电路的输出噪声电压

$$S_{out}(f) = S_R(f) \left| \frac{V_{out}}{V_R} (j\omega) \right|^2 = 4kTR \frac{1}{(RC2\pi f)^2 + 1}$$

- $\because \int \frac{dx}{x^2 + 1} = \arctan x, \ \ 也可记为 \tan^{-1} x$
- :: 输出噪声电压功率

$$P_{n,out} = \int \frac{4kTR}{(2\pi RCf)^2 + 1} df = \frac{2kT}{\pi C} \tan^{-1} u \Big|_0^{\infty} = \frac{kT}{C} \quad (V^2)$$

300K下1pf电容RC低通滤波器的热噪声电压功率

= $4140 \times 10^{-12} V^2$, 即*热噪声电压* (有效值rms) = 64.343 uV

一阶RC低通电路的输出总噪声与R无关

Figure 7.16 Noise spectrum shaping by a low-pass filter.

输出噪声电压功率

$$P_{n,out} = \frac{kT}{C} \quad (V^2)$$

R增大带宽减小

电流源表示噪声

电阻器噪声电流功率谱

$$\overline{I_n^2} = \frac{\overline{V_n^2}}{R^2}$$
 平方的平均,单位 A^2/Hz

电阻器的并联(电流功率谱):

$$\overline{I_{n,tot}^2} = \overline{I_{n1}^2} + \overline{I_{n2}^2}$$
$$= 4kT \left(\frac{1}{R_1} + \frac{1}{R_2}\right).$$

(b)
$$\overline{V_{n,tot}^2} = \overline{I_{n,tot}^2} (R_1 || R_2)^2 = 4kT(R_1 || R_2),$$

MOSFETs

输出端(1)沟道电流热噪声+(2)栅极电阻热噪声+(3)1/f噪声(等效为栅极噪声电压)

沟道热噪声电流功率谱: $\overline{I_n^2} = 4kT\gamma g_m$, 系数 γ 与工艺有关(不是体效应系数), L 为长沟道(大于亚微米)时 $\gamma = 2/3$.

$$\overline{I_n^2} = 4kT\gamma g_m = 4kT\gamma \times \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$= 4kT\gamma \times 深线性区 \frac{1}{R} = 4kT\gamma \times 深线性区 g_{ds}$$

MOS沟道热噪声 电流功率谱

线性区
$$I_d = \mu C_{ox} [(V_{GS} - V_{TH})V_{ds} - \frac{1}{2}V_{ds}^2] \approx \mu C_{ox} [(V_{GS} - V_{TH})V_{ds}]$$

例7.5 MOS管产生的最大噪声电压

负载是电流源时输出端有最大噪声电压。

沟道热噪声电流在输出端产生的噪声电压功率谱:

$$\overline{V_n^2} = \overline{I_n^2} r_o^2 = 4kT \gamma g_m r_o^2,$$

系数 γ 与工艺有关,现代工艺> $\frac{2}{3}$ r不是实际电阻器,本身不产生热噪声。

电路内部器件产生的噪声与输入信号无关!

栅极电阻产生噪声 R1=RG/3

 $\frac{HM ext{total HM total R1 Amp}}{W ext{total P total R1 Amp}} = 4 k T \frac{R_G}{3} (g_m r_o)^2$

当沟道热噪声电流的电压功率谱大于栅极电阻热噪声时: $4kT\gamma g_{m}r_{o}^{2} > 4kTR_{1}(g_{m}r_{o})^{2}$,即 $\gamma >> R_{1}g_{m}$ 时栅极电阻 热噪声可忽略不计

版图并联减小栅极电阻

$$R_G^{'} \approx \frac{R_G}{4}$$

栅极电阻积

$$= \frac{R_G}{3 \times 4} = \frac{R_G}{12}$$

$$R_G^{''} \approx \frac{R_G}{16}$$

栅极电阻R

$$= \frac{R_G}{3 \times 16} = \frac{R_G}{48}$$

栅极电阻RI在输出端的最大电压噪声功率谱

$$=4kTR_1(g_m r_o)^2$$

输出端的栅极电阻热噪声

栅极电阻 $R_1 = \frac{R_G}{3}$ 在输出端的最大电压噪声功率谱

$$=4kT \frac{R_{G}}{3} \left[g_{m}(R_{D} \mid | r_{o})\right]^{2}$$

栅极电阻R。与版图有关,需要自己计算噪声。

计算噪声时,不可与信号源电阻 R_s (无热噪声)合并;但是,计算极点时可以合并。

7.2.2 闪烁噪声1/f

栅极主要低频噪声

$$\overline{V_{n,1/f}^2} = \frac{K}{C_{ox}WLf}$$

闪烁噪声电压源是与栅极串联 的电压功率谱

输出电流中闪烁噪声的计算

例7.8 计算1K到1MHz频带内的漏极热噪声电流功率和1/f噪声电流功率。

$$\overline{I_{n,th,tot}^2} = 4kT\gamma g_m (10^6 - 10^3)$$

$$\approx 4kT\gamma g_m \times 10^6 \text{ A}^2$$
电路

电路带宽大则噪声大

The total 1/f noise is

$$\overline{I_{n,1/f,tot}^2} = \frac{Kg_m^2}{C_{ox}WL} \int_{1 \text{ kHz}}^{1 \text{ MHz}} \frac{df}{f}
= \frac{Kg_m^2}{C_{ox}WL} \ln 10^3 = \frac{6.91Kg_m^2}{C_{ox}WL}.$$

闪烁噪声电压源与栅极串 联,漏极输出1/f噪声 电流总功率

1/f (闪烁)噪声转角频率

1/f 噪声转角频率:

$$4kT\gamma g_{m} = \frac{K}{C_{ox}WLf_{C}} g_{m}^{2}$$

$$\frac{1}{f}$$
 转角频率 $f_{C} = \frac{K}{C_{ox}WL} g_{m} \frac{1}{4kT\gamma}$

在1/f 噪声转角频率之下,MOS热噪声可忽略不计。 可由测得的转角频率反推K的数值,例7.9: $K = 1.06 \times 10^{-25} \text{ V}^2\text{F}$.

低频噪声属于直流漂移,对真实的高频信号几乎没影响。

7.3 电路中的噪声表示

沟道热电流 $I_{n,th}^2 = 4kT\gamma g_m$

栅极1/f 噪声电压成为漏极 输出噪声电流功率谱:

$$\overline{I_{n,1/f}^2} = \frac{K}{C_{ox}WLf} g_m^2 \qquad (A^2 / Hz)$$

$$\overline{V_{n,out}^2} = 总的输出噪声电压功率谱=(4kT\gamma g_{_{\it m}} + \frac{K}{C_{_{ox}}WLf}g_{_{\it m}}^2 + \frac{4kT}{R_{_{\it D}}})R_{_{\it D}}^2$$

(V2 / Hz, 不包括栅极电阻噪声)

输入参考噪声Vn,in(排除增益用于比较)

性能比较:

输出信噪比下降

Figure 7.31 Determination of input-referred noise voltage.

输入参考噪声Vn,in是计算出来的,不能测量!

2020/12/15

例 7.11 计算输入参考噪声电压功率谱

忽略ro的负载作用

$$\begin{split} \overline{V_{n,in}^2} &= \frac{\overline{V_{n,out}^2}}{A_v^2} \\ &= \left(4kT\gamma g_m + \frac{K}{C_{ox}WL} \cdot \frac{1}{f} \cdot g_m^2 + \frac{4kT}{R_D}\right) R_D^2 \frac{1}{g_m^2 R_D^2} \\ &= 4kT\frac{\gamma}{g_m} + \frac{K}{C_{ox}WL} \cdot \frac{1}{f} + \frac{4kT}{g_m^2 R_D} \end{split}$$

 V^2/Hz

减小电路内部噪声的方法:

减小带宽或温度,增大输入管 g_m 、增大输入管MOS尺寸WL、增大负载电阻 R_D ;低频时增大f(调制到高频)。

输入参考热噪声应与信号源电阻R1无关

内部噪声应与R1无关

$$\overline{V_{n,X}^{2}} = \overline{V_{n,in}^{2}} \left(\frac{\overline{C_{in}\omega}}{1} \right)^{2} = \overline{V_{n,in}^{2}} \left(\frac{1}{1 + R_{1}C_{in}\omega} \right)^{2}$$
 变小了!错误

2020/12/15

输入短路求Vn,in,输入开路求In,in

输入参考电压噪声V_{n,in}不包括 输入偏置电路的噪声

内部噪声与输入无关

输入短路和开路, 均可能改变工作点, 故 $V_{n,in}^2$ 和 $I_{n,in}^2$ 不一定 代表全部噪声。

Figure 7.34 Calculation of input-referred noise (a) voltage and (b) current.

例 7.12 计算输入参考噪声电压和电流

输入参考噪声电压功率谱(先不计 $\frac{1}{f}$ 噪声)

$$\overline{V_{n,in}^2} = 4kT \frac{\gamma}{g_m} + \frac{4kT}{g_m^2 R_D}$$

$$V^2/Hz$$

计算输入参考噪声电压功率谱

计算输入参考噪声电流功率谱

例 7.12(续)输入参考噪声电流功率谱

输出端噪声电流功率谱

$$\overline{V_{n,out}^2} = \overline{I_{n,in}^2} \left(\frac{1}{C_{in}\omega}\right)^2 g_m^2 R_D^2$$

应约等于
$$\overline{V_{n,out}^2} = (4kT\gamma g_m + \frac{4kT}{R_D})R_D^2$$

$$\Rightarrow \overline{I_{n,in}^2} \approx (C_{in}\omega)^2 \frac{4kT}{g_m^2} (\gamma g_m + \frac{1}{R_D})$$

低输入阻抗Zin时的电路噪声

Figure 7.36 Effect of input noise current.

$$V_{n,X} = \frac{Z_{in}}{Z_{in} + Z_S} V_{n,in} + \frac{Z_{in}Z_S}{Z_{in} + Z_S} I_{n,in}$$

当高输入阻抗 Z_{in} 时 $\overline{V_{n,X}^2} \approx \overline{V_{n,in}^2}$, 即 $\overline{I_{n,in}^2}$ 可忽略不计

X点噪声会多算吗? (非严谨证明)

 $V_{n,in}$ 和 $I_{n,in}$ 是相关的

内部噪声与外部输入无关。

$$\overline{V_{n,in}^2} = 4kT \frac{\gamma}{g_m} + \frac{4kT}{g_m^2 R_D} \qquad \Rightarrow V_{n,in} = V_{n,M1} + \frac{V_{n,RD}}{g_m R_D}$$

$$\overline{I_{n,in}^2} \times \frac{1}{(C_{in}S)^2} = 4kT \frac{\gamma}{g_{m}} + \frac{4kT}{g_{m}^2 R_{D}} \implies I_{n,in} = C_{in}SV_{n,M1} + C_{in}S \frac{V_{n,RD}}{g_{m}R_{D}}$$

X点噪声会多算吗(非严谨证明,不会)

$$V_{n,X} = \frac{\frac{1}{C_{in}S}}{\frac{1}{C_{in}S} + Z_{S}} V_{n,in} + \frac{\frac{Z_{S}}{C_{in}S}}{\frac{1}{C_{in}S} + Z_{S}} I_{n,in} = \frac{V_{n,in} + Z_{S}I_{n,in}}{1 + Z_{S}C_{in}S}$$

Vn,in 是后级电路的输入参考噪声电压有效值 (X到地), 内部噪声与前级输出阻抗无关

因MOS输入阻抗 号源端计算噪声

7.4 单级放大器中的噪声(低频)

Figure 7.39 Equivalent CS stages.

辅助定律: 图 (a) 和 (b) 等效,则 $\overline{V_n^2} = \frac{I_n^2}{g_m^2}$

$$I_{n,out1} = \frac{I_n}{Z_s(g_m + g_{mb} + \frac{1}{I_o}) + 1} \approx \frac{I_n}{Z_s g_m + 1}$$

证明

Figure 7.39 Equivalent CS stages.

$$G_{m} = \frac{I_{out}}{V_{in}} = \frac{g_{m} r_{o}}{R_{S} + [1 + (g_{m} + g_{mb})R_{S}]r_{o}}, \quad \vec{x} \quad (3.61)$$

$$= \frac{g_{m} r_{o}}{Z_{S} + [1 + (g_{m} + g_{mb})Z_{S}]r_{o}} = \frac{g_{m}}{1 + (\frac{1}{r_{o}} + g_{m} + g_{mb})Z_{S}} \approx \frac{g_{m}}{1 + g_{m}Z_{S}}$$

$$\therefore I_{n,out2} = \frac{g_{m} V_{n}}{1 + Z_{S} g_{m}} \quad V_{n} = \frac{I_{n}}{g_{m}}, \quad \vec{x} \quad \vec$$

7.4.1 共源级

增大电流则g"增大,或增大负载R_n(带宽减小),

或增大f(低频--->调制到高频),可使噪声减小

$$_{\text{(b)}} \qquad \overline{I_n^2} = 4kT\gamma g_{_{m}}$$

例7.15 求输入参考热噪声电压功率谱

设负载电容 C_I ,计算总的输出热噪声;

设输入信号振幅V_m,求输出信噪比。

输出热噪声 电压功率谱

$$\overline{V_{n,out}^2} = 4kT(\gamma g_{m1} + \gamma g_{m2})(r_{O1} || r_{O2})^2$$

*MMOS*和*PMOS* 的γ可能不同

$$\overline{V_{n,in}^2} = 4kT(\gamma g_{m1} + \gamma g_{m2}) \frac{1}{g_{m1}^2} = 4kT\gamma \left(\frac{1}{g_{m1}} + \frac{g_{m2}}{g_{m1}^2}\right)$$

$$\overline{V_{n,out,tot}^2} = \int_0^\infty 4kT \gamma (g_{m1} + g_{m2}) (r_{O1} || r_{O2})^2 \frac{df}{1 + (r_{O1} || r_{O2})^2 C_L^2 (2\pi f)^2}$$

$$= \gamma (g_{m1} + g_{m2})(r_{O1} || r_{O2}) \frac{kT}{C_L}$$

$$SNR_{out} = \left[\frac{g_{m1}(r_{O1} || r_{O2}) V_m}{\sqrt{2}} \right]^2 \cdot \frac{1}{\gamma (g_{m1} + g_{m2})(r_{O1} || r_{O2})(kT/C_L)}$$
$$= \frac{C_L}{2\gamma kT} \cdot \frac{g_{m1}^2(r_{O1} || r_{O2})}{g_{m1} + g_{m2}} V_m^2$$
(7.82)

C₁大则带宽小,宽带低噪声电路设计很难

例7.16 求输入参考热噪声电压功率谱

$$\overline{V_{n, in}^{2}} = \frac{\overline{V_{n, out}^{2}}}{(g_{m1} + g_{m2})^{2} (r_{o1} \mid | r_{o2})^{2}} = \frac{4kT\gamma}{g_{m1} + g_{m2}}$$

例7.17 求输入参考噪声电压功率谱

$$\overline{V_{n,in}^2} = 4kT\gamma \left(\frac{g_{m2}}{g_{m1}^2} + \frac{1}{g_{m1}}\right) + \frac{1}{C_{ox}} \left[\frac{K_P g_{m2}^2}{(WL)_2 g_{m1}^2} + \frac{K_N}{(WL)_1}\right] \frac{1}{f} + \frac{4kT}{g_{m1}^2 R_D}$$

到例7.18 电路设计时过驱动电压基本不变

the drain flicker noise current of a MOS device

$$[K/(WLC_{ox}f)]g_m^2 = [K/(WLC_{ox}f)] (\sqrt{2\mu_n C_{ox}(W/L)I_D})^2$$
$$= 2K\mu_n I_D/(L^2 f)$$

1/f 噪声与W无关? 错!

$$[K/(WLC_{ox}f)]g_m^2 = [K/(WLC_{ox}f)](4I_D^2)/(V_{GS} - V_{TH})^2$$

1/f 噪声随WL减小而增大

42

例7.19设计电路RD和gm

总输入参考噪声电压为100μV_{rms}; 功耗1mW;

带宽1GHz, 电源电压1V。

忽略沟道长度调制和闪烁噪声,负载电容已知。

输出噪声电压功率谱:

$$\overline{V_{n,out}^{2}} = (\overline{V_{n,RD}^{2}} + R_{D}^{2} \overline{I_{n,M1}^{2}}) \frac{1}{R_{D}^{2} C_{L}^{2} \omega^{2} + 1}$$

$$= (4kTR_{D} + 4kT\gamma g_{m} R_{D}^{2}) \frac{1}{R_{D}^{2} C_{L}^{2} \omega^{2} + 1}$$

例7.19 (续1) 设计电路RD和gm

$$\overline{V_{n,out}^2} = \frac{4kTR_D}{R_D^2 C_L^2 \omega^2 + 1} + \gamma g_m R_D \frac{4kTR_D}{R_D^2 C_L^2 \omega^2 + 1}$$

输出噪声电压功率谱

Integration from 0 to ∞ thus gives

$$\overline{V_{n,out,tot}^2} = \frac{kT}{C_L} + \gamma g_m R_D \frac{kT}{C_L}$$

$$= (1 + \gamma g_m R_D) \frac{kT}{C_L}$$

This noise must be divided by $g_m^2 R_D^2$ and equated to $(100 \,\mu V_{\rm rms})^2$.

对于一般的通信系统,信号电压幅度达1mV以上的无需进行低噪声电路设计。

2020/12/15

44

例7.19 (续2) 设计电路RD和gm

$$\overline{V_{n,out,tot}^2} = (1 + \gamma g_m R_D) \frac{kT}{C_L}$$

$$\frac{1 + \gamma g_m R_D}{g_m^2 R_D} \cdot \frac{2\pi kT}{2\pi R_D C_L} = (100 \,\mu\text{V}_{\text{rms}})^2$$

$$1/(2\pi R_D C_L) = 1 \text{ GHz}$$

$$kT = 4.14 \times 10^{-21} \text{ J}$$

$$\frac{1}{g_m} \left(\frac{1}{g_m R_D} + \gamma \right) = 384 \ \Omega$$

7.4.2 共栅级(低输入阻抗)的噪声

Figure 7.46 (a) CG stage; (b) circuit including noise sources.

RD上的噪
$$\left(4kT\gamma g_m + \frac{4kT}{R_D}\right)R_D^2 = \overline{V_{n,in}^2}(g_m + g_{mb})^2 R_D^2$$

输入参考噪声电
$$\overline{V_{n,in}^2} = \frac{4kT(\gamma g_m + 1/R_D)}{(g_m + g_{mb})^2}$$

CG输入端阻抗低,需用电流源补充建模

In,in是等效出来的, 并非实际存在 无M1的噪声!

$$I_{n1}+I_{D1}=0.$$

$$\overline{I_{n,in}^2}R_D^2 = 4kTR_D$$

$$\overline{I_{n,in}^2} = \frac{4kT}{R_n} = \frac{4kT}{R_n}$$
与M1沟道热噪声电流 I_{n1} 无关

实际CG电路中偏置电流源的噪声影响

Figure 7.48 Noise contributed by bias-current source.

M2的沟道热噪声电流在RD ____ 上成为输出噪声电压功率: $I_{n2}^2 R_D^2$

CG缺点:输入噪声直接引起负载噪声。 亦即M2的沟道热噪声电流直接成为输入 参考噪声电流。

$$\overline{I_{n2}^{2}} = 4kT\gamma g_{m2} = 4kT\gamma \times \mu C_{ox} \frac{W}{L} (V_{GS2} - V_{TH2})$$

$$= 4kT\gamma \frac{2I_{D2}}{V_{GS2} - V_{TH2}}$$

对于给定电流源M2,提高 VOD有利于减小噪声(输入动态范围也小),使M2跨导尽量小。

输入参考电压噪声V_{n,in}不包括输入偏置电路M2的噪声(输入短路到地)

例7.20 CG输入参考热噪声电压和电流

(1) 计算输入参考热噪声 电压功率谱: Vin短路到地

$$\overline{V_{n1,out}^2} = 4kT\gamma (g_{m1} + g_{m3})(r_{O1}||r_{O3})^2$$

Vin=0导致了未计输入偏置电路M2的In2影响

输出端有M1和M3沟道热噪声电流

the input-referred noise voltage, $V_{n,in}$, must satisfy this relationship:

$$\overline{V_{n,in}^2}(g_{m1} + g_{mb1})^2 (r_{O1} || r_{O3})^2 = 4kT \gamma (g_{m1} + g_{m3})(r_{O1} || r_{O3})^2$$

$$\overline{V_{n,in}^2} = 4kT\gamma \frac{(g_{m1} + g_{m3})}{(g_{m1} + g_{mb1})^2}$$

例7.20续 Vin开路输入参考热噪声电流功率谱

图7.49

例如,上图中 $\overline{I_{n,in}^2} = \frac{4kT}{R_D}$

与M1沟道热噪声电流无关

M1沟道热噪声电流In1对In,in无贡献

图7.49中 若输入开路,则

$$R_{out} = r_{o3} | | [r_{o2} + (g_{m1} + g_{mb1})r_{o1}r_{o2} + r_{o1}] \approx r_{o3}$$

例7.20续2输入参考热噪声电流功率谱

图 7.49中 设输入开路, 先不计M2 的噪声,

M3单独作用,设输入电流为 $I_{n,in,M3}$,则

輸出电压 $V_{out} = I_{n,in,M3} R_{out}$ $= I_{n,in,M3} \{r_{o3} | | \mathbf{r}_{o2} + (\mathbf{g}_{m1} + \mathbf{g}_{mb1}) r_{o1} r_{o2} + r_{o1} \mathbf{r}_{o1} \}$

 $= I_{n3} R_{out} \approx I_{n3} r_{o3} = 4kT \gamma g_{m3} r_{o3}$

M3对应的输入参考电流功率谱为 $I_{n.in.M3} = I_{n3} = 4kT\gamma g_{m3}$

M2单独作用,其沟道热电流功率直接加在 $I_{n,in}^2$ 上,

$$\overline{I_{n,in}^2} = 4kT\gamma(g_{m3} + g_{m2}) \quad 与M1无关$$

第 + 1/f 闪烁噪声的输入参考噪声电压功率谱

求输入参考1/f 噪声电压功率谱: Vin短路到地

$$\overline{V_{n1,out}^2} = \frac{1}{C_{ox} f} \left[\frac{g_{m1}^2 K_N}{(WL)_1} + \frac{g_{m3}^2 K_P}{(WL)_3} \right] (r_{O1} || r_{O3})^2$$

$$\overline{V_{n,in}^2} = \frac{1}{C_{ox} f} \left[\frac{g_{m1}^2 K_N}{(WL)_1} + \frac{g_{m3}^2 K_P}{(WL)_3} \right] \frac{1}{(g_{m1} + g_{mb1})^2}$$

1/f闪烁噪声:输入参考噪声电流功率谱

输入开路

总输入1/f参考噪声电流功率谱 = M3的1/f噪声电压等效到Vin端电流 + M2的1/f噪声电压跨导到Vin端电流

各种不相关的噪声功率电压和电流功率谱相加后,对0→无 穷大频率进行积分,得到总噪声电压或电流(有效值)

7.4.3 源跟随器的沟道热电流噪声

$$\overline{V_{n,out}^2}|_{M2} = \overline{I_{n2}^2} \left(\frac{1}{g_{m1}} \left\| \frac{1}{g_{mb1}} \right\| r_{O1} \| r_{O2} \right)^2.$$

the total input-referred noise voltage is

$$\overline{V_{n,in}^2} = \overline{V_{n1}^2} + \frac{\overline{V_{n,out}^2}|_{M2}}{A_n^2} = 4kT\gamma \left(\frac{1}{g_{m1}} + \frac{g_{m2}}{g_{m1}^2}\right)$$

Vn1和In2 也可包括沟道热噪声和1/f噪声, 高频时忽略1/f 噪声

7.4.4 cascode共源共栅级的热噪声

设忽略M1的1/f 噪声

$$\overline{V_{n,in}^2}|_{M1,RD} = 4kT \left(\frac{\gamma}{g_{m1}} + \frac{1}{g_{m1}^2 R_D} \right)$$

$$\frac{V_{n,out}}{V_{n2}} \approx \frac{-R_D}{1/g_{m2} + 1/(C_X s)}$$

低频时很小,高频时噪声增加。 一般情况下,低频时Cascode隔 离级的噪声作用可忽略

7.5 电流镜中的噪声: 1/f 噪声Vn,REF

 $(W/L)_1 = N(W/L)_{REF}$.

N, is in the range of 5 to 10:

assume that $\lambda = 0$ and I_{REF} is noiseless

$$\overline{I_{n,out}^2} = \left(\frac{g_{m,REF}^2}{C_B^2 \omega^2 + g_{m,REF}^2} \overline{V_{n,REF}^2} + \overline{V_{n1}^2}\right) g_{m1}^2$$
 (7.114)

MREF在X点产生的噪声与M1的1/f噪声Vn1无关,输出端功率相加(设电流镜不是应用于差动电路的尾电流源)。

电流镜中的噪声: 1/f (续)

flicker noise power spectral density is inversely proportional to the channel area, WL.

$$\overline{V_{n,REF}^2} = N\overline{V_{n1}^2}$$

$$\overline{I_{n,out}^2} = \left(\frac{Ng_{m,REF}^2}{C_B^2\omega^2 + g_{m,REF}^2} + 1\right)g_{m1}^2\overline{V_{n1}^2}$$

$$(7.115)$$

$$M_{REF}$$

$$C_B$$

For the noise of the diode-connected device to be negligible,

$$(N-1)g_{m,REF}^2 \ll C_B^2 \omega^2$$
 hence
$$C_B^2 \gg \frac{(N-1)g_{m,REF}^2}{\omega^2}$$

电流镜中的噪声: 1/f (续2)

例如,
$$N=5, g_{m,REF} \approx \frac{1}{200\Omega}$$
,最小频率为1MHz,则得到

$$C_B^2 >> \frac{5-1}{(2\pi \times 10^6)^2} \times \left(\frac{1}{200\Omega}\right)^2 = 2.533 \times 10^{-18} F, \quad C_B \approx 5nF$$

改进电路: +低通滤波

The series resistance lowers the filter cutoff frequency to $[(1/g_{m1,REF} + R_B)C_B]^{-1}$

$$\overline{I_{n,out}^2} = \left[\frac{g_{m,REF}^2}{(1 + g_{m,REF}R_B)^2 C_B^2 \omega^2 + g_{m,REF}^2} (\overline{V_{n,REF}^2} + \overline{V_{n,RB}^2}) + \overline{V_{n1}^2} \right] g_{m1}^2$$
 (7.118)

7.6 差动对中的噪声

Figure 7.55 (a) Differential pair; (b) circuit including input-referred noise sources.

差分电路两边器件的噪声不相关,输出噪声功率相加!

低频时,有很大的输入阻抗,可忽略输入参考噪声电流功率谱In,in

例: 差动电路噪声 (半边电路, 但噪声相加)

考察In1热噪声电流的分流

Figure 7.56 Calculation of input-referred noise of a differential pair.

2020/12/15

P点不是虚地

例续1沟道热噪声电流的差动输出电压

$$\overline{I_{n1}^2} = \overline{I_{n2}^2} = \overline{I_n^2}$$

忽略沟道长度调制效应。

MOS沟道热噪声电流 I_{n1} 一半流向 M_2 源极,

经 $R_{02} + R_{01}$ 流回,在 $R_{01} + R_{02} = 2R_0$ 上产生

噪声电压功率谱 $I_{n1}^2 R_n^2$;

同样 I_{n2} —半流向 M_1 源极,经 R_{D1} + R_{D2} 流回,

在 $2R_D$ 上产生噪声电压功率谱 $I_{n2}^2R_D^2$ 。

$$V_{n,out}|_{M1} = \frac{I_{n1}}{2}R_{D1} + \frac{I_{n1}}{2}R_{D2}$$

$$\overline{V_{n,out}^2}|_{M1} = \overline{I_{n1}^2}R_D^2$$
 $\overline{V_{n,out}^2}|_{M2} = \overline{I_{n2}^2}R_D^2$

$$\overline{V_{n,out}^2}\big|_{M1,M2} = \left(\overline{I_{n1}^2} + \overline{I_{n2}^2}\right)R_D^2$$

沟道热噪声在差动输出端噪声电压仅与RD有关

例 (续2): 总输入参考噪声电压功率谱

沟道热噪声电流+RD热噪声:

$$\overline{V_{n,out}^2} = \left(\overline{I_{n1}^2} + \overline{I_{n2}^2}\right) R_D^2 + 2(4kTR_D)$$
$$= 8kT \left(\gamma g_m R_D^2 + R_D\right)$$

$$\overline{V_{n,in}^2} = 8kT \left(\frac{\gamma}{g_m} + \frac{1}{g_m^2 R_D} \right)$$

总噪声=沟道热噪声电流+RD热噪声+1/f 噪声

$$\overline{V_{n,in,tot}^2} = 8kT \left(\frac{\gamma}{g_m} + \frac{1}{g_m^2 R_D} \right) + \frac{2K}{C_{ox}WL} \frac{1}{f}$$

结论: 可用半边电路方法分析, 所有器件的各种噪声功率相加

例7.21 图7.58的输入/输出噪声

Figure 7.58

$$\overline{V_{n,A}^2} = (4kT\gamma g_{m1} + 4kT\gamma g_{m3})\frac{1}{g_{m1}^2} + \frac{K}{(WL)_1C_{ox}}\frac{1}{f} + \frac{K}{(WL)_3C_{ox}}\frac{1}{f}(\frac{g_{m3}}{g_{m1}})^2$$

$$\overline{V_{n,AB}^2} = 8kT\gamma(g_{m1} + g_{m3})\frac{1}{g_{m1}^2} + \frac{2K}{(WL)_1C_{ox}}\frac{1}{f} + \frac{2K}{(WL)_3C_{ox}}\frac{1}{f}(\frac{g_{m3}}{g_{m1}})^2$$

差动对尾电流源的噪声影响:可忽略

仅在输入管失配时或工作状态不一致时,尾电流源的噪声才传递到输出。

where I_n denotes the noise in I_{SS} and $I_n \ll I_{SS}$.

$$\Delta I_{D1} - \Delta I_{D2} = g_m \Delta V_{in}$$

$$= \sqrt{2\mu_n C_{ox} \frac{W}{L} \left(\frac{I_{SS} + I_n}{2}\right)} \Delta V_{in}$$

尾电流源噪声影响: 使gm随噪声电流变化

$$\approx \sqrt{2\mu_n C_{ox} \frac{W}{L} \cdot \frac{I_{SS}}{2}} \left(1 + \frac{I_n}{2I_{SS}} \right) \Delta V_{in}$$
$$= g_{m0} \left(1 + \frac{I_n}{2I_{SS}} \right) \Delta V_{in}$$

where g_{m0} is the transconductance of the noiseless circuit.

2020/12/15 64

例7.22 计算输入参考噪声电压功率谱

Vni包括1/f噪声和沟道热噪声 (i=1,2,3,4)

$$\overline{V_{n,in}^2} = 2\overline{V_{n1}^2} + 2\frac{g_{m3}^2}{g_{m1}^2}\overline{V_{n3}^2}$$

可直接得到:

$$\overline{V_{n,in}^2} = 8kT\gamma \left(\frac{1}{g_{m1}} + \frac{g_{m3}}{g_{m1}^2}\right) + \frac{2K_N}{C_{ox}(WL)_1 f} + \frac{2K_P}{C_{ox}(WL)_3 f} \frac{g_{m3}^2}{g_{m1}^2}$$

5管OTA的输入参考噪声电压功率谱

以下不包括1/f噪声,仅沟道热噪声电流

$$\overline{I_{n,out}^2} = 4kT\gamma(2g_{m1,2} + 2g_{m3,4})$$

$$R_{out}^2 \approx (r_{O1,2}||r_{O3,4})^2$$

$$\overline{V_{n,in}^2} = 8kT\gamma \left(\frac{1}{g_{m1,2}} + \frac{g_{m3,4}}{g_{m1,2}^2}\right)$$

7.7 运放(大增益或多级)的噪声计算

- 主要来源:输入管M1、负载电流源M7;
- Cascode屏蔽管M3和M5噪声在低频时影响较小。原因是Vb1端和Vb2端的噪声(还包括沟道噪声电流折合到栅极电压)在输出端Vout的增益相对M1或M7较小(负反馈);但在高频时,由于隔离管源S极寄生电容容抗减小,噪声增加很多;
- 与尾电流源基本无关。

输入参考噪声电压功率谱:

增益=gm1Rout

$$\overline{V_n^2} = 4kT \left(2 \frac{\gamma}{g_{m1,2}} + 2 \frac{\gamma g_{m7,8}}{g_{m1,2}^2} \right) + 2 \frac{K_N}{(WL)_{1,2} C_{ox} f} + 2 \frac{K_P}{(WL)_{7,8} C_{ox} f} \frac{g_{m7,8}^2}{g_{m1,2}^2}$$
(9.88)

折叠cascode 输入参考热噪声电压功率谱

• 增益=gm1Rout

计算方法提示:

 M_7 和 M_9 漏电流绝大部分流向输出端,乘以Rout得到 V_{out} ,再除以增益平方得到输入参考噪声电压功率谱,即2*(M1+M7+M9)漏电流功率谱/ g_{m1}^2 。

M₅、M₃电压增益较小,可忽略

输入参考热噪声电压功率谱:

$$\overline{V_{n,int}^2} = 8kT \left(\frac{\gamma}{g_{m1,2}} + \gamma \frac{g_{m7,8}}{g_{m1,2}^2} + \gamma \frac{g_{m9,10}}{g_{m1,2}^2} \right)$$

两级放大器的输入参考热噪声电压功率谱

(1) 计算热噪声(作 为1级);

(第2级不需要采用输入参考噪声电压 +电流源方法)

(2)加上1/f噪声,得 到总噪声电压功率谱

Figure 9.86 Noise in a two-stage op amp.

$$\overline{V_{n,tot}^2} = 8kT\gamma \frac{1}{g_{m1}^2} \left[g_{m1} + g_{m3} + \frac{g_{m5} + g_{m7}}{g_{m5}^2 (r_{O1} || r_{O3})^2} \right]$$
(9.95)

噪声主要取决于第一级。

第二级噪声折算到输入参考噪声,降低了多少倍?第一级增益!

7.8 噪声与功率的折中

Figure 7.63 (a) Output noise reduction by scaling, (b) equivalent operation,

(c) scaling viewed at layout level.

带宽是应用系统信 号确定的,不能随 意改变大小。

总噪声电压功率是 噪声功率谱对0到无 穷大频率的积分。

7.9 噪声带宽

Figure 7.65 (a) Output noise spectrum of a circuit; (b) concept of noise bandwidth.

$$\overline{V_{n,out,tot}^2} = \int_0^\infty \overline{V_{n,out}^2} df = V_0^2 \cdot B_n$$
 电路带宽大则噪声大

单极点系统
$$B_n = \frac{\pi f_{3dB}}{2}$$

7.10 输入噪声积分的问题

输出总噪声,是<u>0到无穷大频率</u>的电压功率谱积分,与传递 函数形状有关。

输入参考噪声(非测量出的抽象数值),没有传递函数概念,不能对输入功率谱积分。

输入参考噪声低频近似值, 由例7.19:

$$\overline{V_{n,in,tot}^2} = \gamma g_m R_D \frac{kT}{C_L} \cdot \frac{1}{g_m^2 R_D^2}$$

$$= \frac{\gamma}{g_m R_D} \frac{kT}{C_L} \qquad V^2$$

本章知识要点

- 真实器件上的随机噪声均值为0,不相关的噪声功率相加;
- MOS管沟道电流热噪声是白噪声(功率谱与频率无关);
- MOS管1/f 噪声电压加在栅极;
- MOS总噪声功率谱=热噪声功率谱(沟道电流功率+栅阻电压功率)+1/f噪声功率谱;
- 总噪声功率(电压或电流)是输出噪声功率谱0到无穷大频率的积分,系统传递函数频段大则噪声大;
- 采用输入参考噪声比较电路的噪声性能,输入参考噪声是计算数值,避免了不同放大倍数电路的信噪比影响;
- 可通过面积和功耗换取低噪声,一般规律是输入管gm大,负载管gm小;
- 差分电路噪声加倍;
- 级联放大电路的第一级噪声作用最大,后级噪声可忽略。