MATLAB - FMINUNC

(algoritmo de Quasi-Newton)

No planeamento da produção de dois produtos, uma determinada companhia espera obter lucros iguais a P:

$$P(x_1, x_2) = \alpha_1(1 - e^{-\beta_1 x_1}) + \alpha_2(1 - e^{-\beta_2 x_2}) + \alpha_3(1 - e^{-\beta_3 x_1 x_2}) - x_1 - x_2,$$

em que x_1 é a quantia gasta para produzir e promover o produto 1, x_2 é a quantia gasta para produzir e promover o produto 2 e os α_i e β_i são constantes definidas. P, x_1 e x_2 estão em unidades de 10^5 euros. Calcule o lucro máximo para as seguintes condições:

$$\alpha_1 = 3$$
, $\alpha_2 = 4$, $\alpha_3 = 1$, $\beta_1 = 1.2$, $\beta_2 = 1.5$, e $\beta_3 = 1$.

Comandos:			
M-file:			
Solução x*:			
Máximo:			
O processo iterativo convergiu? Porquê?			
№ de iterações:			
№ de cálculos da função:			
Altere para DFP (aproximação da Hessiana - Hessupadate)			
Nº de iterações:			
Nº de cálculos da função:			

. Resolva o problema Epistatic Michalewicz

$$\min_{x} f(x) \equiv -\sum_{i=1}^{n} \sin(y_i) \left(\sin\left(\frac{iy_i^2}{\pi}\right) \right)^{2m}$$

$$y_i = \begin{cases}
x_i \cos(\theta) - x_{i+1} \sin(\theta), & i = 1, 3, 5, \dots, < n \\
x_i \sin(\theta) + x_{i+1} \cos(\theta), & i = 2, 4, 6, \dots, < n \\
x_i & i = n
\end{cases}$$

pelo método quasi-Newton (sem fornecer derivadas) para n=5 e para n=10. Considere

$$\theta = \frac{\pi}{6}, m = 10 \text{ e o valor inicial } x^{(1)} = \begin{cases} 2, & i = 1, 3, 5, \dots, \le n \\ 1, & i = 2, 4, 6, \dots, \le n \end{cases}$$

- - -

		1	
Cor	മാ	na	\sim c .
COI	Ha	ı ı u	os.

M-file:

n=5

Solução x*:

Mínimo:

O processo iterativo convergiu? Porquê?

Nº de iterações:

Nº de cálculos da função:

Repetir para n=10