

Práctica 4: Jerarquía temporal

Compilado: 18 de febrero de 2025

- 1. Probar que las siguientes funciones son time-constructible:
 - (a) f(n) = n.
 - (b) $f(n) = 2^n$.
 - (c) $f(n) = n |\log n|$.
 - (d) $f(n) = \lfloor n^{3/2} \rfloor$.
- 2. Argumentar por cardinalidad que hay funciones que no son time-constructible. Dar un ejemplo de una función f con $f(n) \ge n$ que no sea time-constructible.
- 3. Padding Probar que si P = NP entonces $EXP = NEXP^1$. Ayuda: Para ver que $NEXP \subseteq EXP$ tomar $\Pi \in \text{NTIME}(2^{n^c})$ y considerar el lenguaje

$$\Pi_{pad} = \left\{ \langle x, 01^{2^{|x|^c}} \rangle : x \in \Pi \right\}$$

- 4. Suponiendo que todos los lenguajes unarios² de NP están en P, probar que EXP = NEXP.
- 5. Probar que la función H en la demostración del Teorema de Ladner es computable en tiempo $O(n^3)$.
- 6. Generalizar el Teorema de Ladner. Más puntualmente, probar que si $P \neq NP$ entonces existen problemas $\{\Pi_i\}_{i\in\mathbb{N}}$ tales que $\Pi_i\in\mathsf{NP}\setminus\mathsf{P},\ \Pi_i\nleq_p\Pi_{i+1}\ y\ \Pi_{i+1}\leq_p\Pi_i$ para todo $i\in\mathbb{N}.$

 $^{^{1}}$ Recordar que EXP = $\bigcup_{c\in\mathbb{N}}$ TIME(2^{n^{c}}) y NEXP = $\bigcup_{c\in\mathbb{N}}$ NTIME(2^{n^{c}}) 2 Un lenguaje \mathcal{L} es unario si $\mathcal{L}\subseteq\{1\}^{*}$