Limites. Uma introdução intuitiva

4.1 Conceituando limites através de exemplos

Nos capítulos anteriores, fizemos uso de um limite especial para calcular derivadas, a saber o limite $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.

Neste capítulo veremos os limites como ferramentas de estudo do comportamento de funções reais, provendo informações importantes sobre seus gráficos.

A definição formal de *limite* é matematicamente sofisticada, requerendo muitas horas de estudo para ser entendida. O leitor interessado poderá encontrá-la em bons livros-textos de Cálculo¹. Ocorre porém que, em um primeiro curso de Cálculo, a definição de limite tem pouca ou nenhuma serventia quando queremos calcular limites. Faremos uma exploração intuitiva do conceito de limite e de suas propriedades, através de exemplos e interpretações gráficas.

Exemplo 4.1. Considere a função f(x) = 2x + 3. Quando x assume uma sequência de valores aproximando-se mais e mais de 0, o número f(x) = 2x + 3 assume uma sequência de valores aproximando-se de $2 \cdot 0 + 3 = 3$. Por exemplo, suponhamos que x assume sucessivamente os valores da sequência

aproximando-se mais e mais do número 0. Então a função f(x) assumirá sucessivamente os valores da sequência

aproximando-se mais e mais do número 3.

¹Para o leitor interessado, uma referência recomendada é Hamilton Luiz Guidorizzi. Um curso de cálculo: volume 1. 6ª ed. Rio de Janeiro: LTC, 2018.

Dizemos então que o limite de f(x), quando x tende a 0, é igual a 3, e escrevemos

$$\lim_{x\to 0} f(x) = 3$$

Suponhamos que f(x) é uma função real definida em uma reunião de intervalos, e que x_0 é um ponto no interior ou no extremo de um desses intervalos. Os matemáticos dizem que $\lim_{x\to x_0} f(x) = L$ ($L \in \mathbb{R}$) quando podemos fazer f(x) arbitrariamente próximo de L, tomando x suficientemente próximo de x_0 , mantendo $x \ne x_0$. No exemplo em que f(x) = 2x + 3, podemos fazer f(x) próximo de x_0 0 quanto quisermos, bastando tomar x_0 0 bem próximo de x_0 0.

Exemplo 4.2. Aqui temos uma lista de exemplos intuitivos, em que fazemos uso de propriedades intuitivas do cálculo de limites.

- 1. $\lim_{x\to a} x = a$ $(a \in \mathbb{R})$
- 2. $\lim_{x\to a} x^n = a^n$ $(n \in \mathbb{N}, a \in \mathbb{R})$
- 3. Sendo $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, $(n \in \mathbb{N}, a_n, \dots, a_0 \text{ todos reais})$,

$$\lim_{x \to x_0} p(x) = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_1 x_0 + a_0 = p(x_0)$$

4.
$$\lim_{x \to 2} \frac{x^3 - 3}{x^2 + 1} = \frac{\lim_{x \to 2} (x^3 - 3)}{\lim_{x \to 2} (x^2 + 1)} = \frac{8 - 3}{4 + 1} = 1$$

Definição 4.1 (Continuidade de f(x) em x_0). Nos exemplos anteriores, de limites com x tendendo a x_0 , tivemos sempre x_0 no domínio de f e $\lim_{x\to x_0} f(x) = f(x_0)$. Quando isto ocorre, dizemos que f é contínua no ponto x_0 .

No próximo exemplo, é proposto o cálculo de um limite em que $x \to x_0$, mas x_0 não está no domínio de f.

Exemplo 4.3. Calcular $\lim_{x\to 2} \frac{x^3-8}{x-2}$.

Solução. Note que, sendo $f(x) = \frac{x^3 - 8}{x - 2}$, temos que $2 \notin D(f)$. Quando x se aproxima de x0, x3 se aproxima de x5. Um cálculo direto nos dá então

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \frac{8 - 8}{2 - 2} = \frac{0}{0}$$

Este resultado, 0/0, é muito comum no cálculo de limites, e não tem significado como valor de um limite. A expressão 0/0 é um exemplo de um *símbolo de indeterminação* ocorrendo em uma tentativa de cálculo de um limite. A ocorrência desta expressão significa que o limite ainda não foi calculado.

Para evitar o símbolo de indeterminação 0/0, neste exemplo fazemos

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2}$$

$$= \lim_{x \to 2} (x^2 + 2x + 4)$$

$$= \lim_{x \to 2} (x^2 + 2x + 4)$$

$$= 2^2 + 2 \cdot 2 + 4 = 12$$
(pois $x \neq 2$)

Exemplo 4.4 (Cálculo de um limite com mudança de variável).

$$\lim_{x \to 0} \frac{\sqrt[3]{x+1} - 1}{x} = ?$$

Um cálculo direto nos dá 0/0, uma indeterminação.

Podemos fazer a mudança de variável. $y = \sqrt[3]{x+1}$.

Temos então $y^3 = x + 1$, e portanto $x = y^3 - 1$.

Quando x tende a 0, y tende a 1 (em símbolos: se $x \to 0$, então $y \to 1$). E aí temos

$$\lim_{x \to 0} \frac{\sqrt[3]{x+1} - 1}{x} = \lim_{y \to 1} \frac{y - 1}{y^3 - 1}$$

$$= \lim_{y \to 1} \frac{y - 1}{(y - 1)(y^2 + y + 1)}$$

$$= \lim_{y \to 1} \frac{1 \cdot (y - 1)}{(y - 1)(y^2 + y + 1)}$$

$$= \lim_{y \to 1} \frac{1}{y^2 + y + 1} = \frac{1}{3}$$

4.2 Limites infinitos. Limites no infinito

Consideremos agora a função $f(x) = \frac{1}{x^2}$. Temos que o domínio de f é o conjunto dos números reais diferentes de 0, simbolicamente $D(f) = \mathbb{R} - \{0\}$. Observe a tabela 4.1. Ali fizemos uso do fato de que f é uma função par: f(-x) = f(x) para todo $x \in D(f)$.

Na primeira coluna da tabela 4.1, temos valores de x (positivos e negativos) cada vez mais próximos de 0. Na última coluna, vemos que os valores correspondentes de f(x)

tornam-se cada vez maiores. Neste exemplo, podemos fazer f(x) maior que qualquer número real positivo, tomando x suficientemente próximo de 0. Dizemos que o limite de f(x), quando x tende a 0 é "+ *infinito*", e escrevemos

$$\lim_{x\to 0} f(x) = +\infty$$

ou seja,

$$\lim_{x\to 0}\frac{1}{x^2}=+\infty$$

Tabela 4.1.

<u>x</u>	x^2	$f(x) = \frac{1}{x^2}$
±1	1	1
±0,5	0,25	4
±0, 2	0,04	25
±0, 1	0,01	100
±0,01	0,0001	10000
±0,001	0,000001	1000000

A interpretação geométrica de $\lim_{x\to 0} (1/x^2) = +\infty$ pode ser visualizada na figura 4.1, em que temos um esboço do gráfico da curva $y = 1/x^2$.

Agora observe a tabela 4.2. Notamos agora que, à medida que x cresce indefinidamente, assumindo valores positivos cada vez maiores, $f(x) = \frac{1}{x^2}$ torna-se cada vez mais próximo de 0. Isto também é sugerido pela figura 4.1. Neste caso, dizemos que o limite de f(x), quando x tende a "+ infinito", é igual a 0, e escrevemos

$$\left[\lim_{x\to+\infty}\frac{1}{x^2}=0\right]$$

Nas tabelas 4.1 e 4.2 também ilustramos:

$$\lim_{x \to 0} x^2 = 0 \qquad \qquad \lim_{x \to +\infty} x^2 = +\infty$$

Também podemos facilmente inferir

$$\lim_{x \to -\infty} x^2 = +\infty \qquad \qquad \lim_{x \to -\infty} \frac{1}{x^2} = 0$$

Figura 4.1. $\lim_{x\to 0} 1/x^2 = +\infty$, ou seja, à medida que x se aproxima de 0, y = f(x) torna-se cada vez maior. Também $\lim_{x\to +\infty} 1/x^2 = 0$, ou seja, à medida que x cresce, tomando valores cada vez maiores, f(x) aproxima-se de 0. E ainda $\lim_{x\to -\infty} 1/x^2 = 0$.

Tabela 4.2.

χ	χ^2	$f(x) = \frac{1}{x^2}$
1	1	1
2	4	$\frac{1}{4} = 0,25$
5	25	$\frac{1}{4} = 0, 25$ $\frac{1}{25} = 0, 04$ $0, 01$
10	100	0,01
100	10000 10 ⁶	0,0001 10 ⁻⁶
10^{3}	106	10-6

Com estes exemplos simples iniciamos uma álgebra de limites com o símbolo ∞:

$$(+\infty) + (+\infty) = +\infty \qquad (-\infty) + (-\infty) = -\infty$$
$$(\pm \infty)^2 = +\infty \qquad (+\infty)(-\infty) = -\infty$$
$$(+\infty)^3 = +\infty \qquad (-\infty)^3 = -\infty$$

AULA 4

$$\begin{array}{ll} (-\infty)^{(\text{inteiro positivo par})} = +\infty & (-\infty)^{(\text{inteiro positivo impar})} = -\infty \\ (\pm \infty)^{-n} = \frac{1}{(\pm \infty)^n} = \frac{1}{\pm \infty} = 0 \ (n > 0, n \in \mathbb{Z}) & \frac{c}{\pm \infty} = 0 \ (c \ \text{constante}) \\ +\infty + c = +\infty \ (c \ \text{constante}) & -\infty + c = -\infty \ (c \ \text{constante}) \\ \end{array}$$

$$c \cdot (+\infty) = \begin{cases} +\infty & \text{se } c > 0 \\ -\infty & \text{se } c < 0 \end{cases} \qquad c \cdot (-\infty) = \begin{cases} +\infty & \text{se } c < 0 \\ -\infty & \text{se } c > 0 \end{cases}$$
$$\frac{+\infty}{c} = \begin{cases} +\infty & \text{se } c > 0 \\ -\infty & \text{se } c < 0 \end{cases} \qquad \frac{-\infty}{c} = \begin{cases} +\infty & \text{se } c < 0 \\ -\infty & \text{se } c > 0 \end{cases}$$

Mas atenção! Cautela com essa nova "aritmética"! Os "resultados"

$$\frac{\pm \infty}{+\infty} \qquad (+\infty) - (+\infty) \qquad (-\infty) + (+\infty) \qquad 0 \cdot (\pm \infty)$$

são novos símbolos de indeterminação. Nada significam como valores de limites. Se chegarmos a algum deles no cálculo de um limite, temos que repensar o procedimento de cálculo.

Exemplo 4.5. *Calcular*
$$\lim_{x \to +\infty} \frac{3x^2 - 2x - 1}{x^3 + 4}$$

Solução. Uma substituição direta nos dá

$$\lim_{x \to +\infty} \frac{3x^2 - 2x - 1}{x^3 + 4} = \frac{+\infty - (+\infty) - 1}{+\infty + 4}$$

Para evitarmos símbolos de indeterminação, fazemos

$$\lim_{x \to +\infty} \frac{3x^2 - 2x - 1}{x^3 + 4} = \lim_{x \to +\infty} \frac{x^2 \left(3 - \frac{2}{x} - \frac{1}{x^2}\right)}{x^3 \left(1 + \frac{4}{x^3}\right)}$$

$$= \lim_{x \to +\infty} \frac{3 - \frac{2}{x} - \frac{1}{x^2}}{x \left(1 + \frac{4}{x^3}\right)} = \frac{3 - \frac{2}{+\infty} - \frac{1}{+\infty}}{+\infty \left(1 + \frac{4}{+\infty}\right)}$$

$$= \frac{3 - 0}{+\infty \cdot (1 + 0)} = \frac{3}{+\infty} = 0$$

Exemplo 4.6. Calcular $\lim_{x \to -\infty} (x^5 - x^3)$

Temos

 $\lim_{x\to-\infty}(x^5-x^3)=(-\infty)^5-(-\infty)^3=(-\infty)-(-\infty)=(-\infty)+(+\infty), \text{ portanto chegamos a um símbolo de indeterminação.}$

Podemos no entanto fazer

$$\lim_{x \to -\infty} (x^5 - x^3) = \lim_{x \to -\infty} x^5 (1 - \frac{1}{x^2}) = (-\infty)^5 \cdot (1 - \frac{1}{+\infty}) = (-\infty) \cdot (1 - 0) = -\infty.$$

Nos limites da forma $\lim_{x\to\pm\infty}\frac{p(x)}{q(x)}$, em que p(x) e q(x) são polinômios em x, prevalecem os termos de maior grau de ambos os polinômios, ou seja, se

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

então
$$\lim_{x\to\pm\infty}\frac{p(x)}{q(x)}=\lim_{x\to\pm\infty}\frac{a_nx^n}{b_mx^m}.$$

Deixamos a dedução disto para o leitor, como um exercício.

Por exemplo, no exemplo 4.5 estudado anteriormente, poderíamos ter feito

$$\lim_{x \to +\infty} \frac{3x^2 - 2x - 1}{x^3 + 4} = \lim_{x \to +\infty} \frac{3x^2}{x^3} = \lim_{x \to +\infty} \frac{3}{x} = \frac{3}{+\infty} = 0$$

Mas atenção. Isto só vale para limites de quocientes de polinômios, em que $x \to \pm \infty$.

Exemplo 4.7. Calcular $\lim_{x\to 0} \frac{1}{x}$.

Solução. Aqui podemos ser induzidos a dizer, tal como no exemplo do limite $\lim_{x\to 0}\frac{1}{x^2}$, que $\lim_{x\to 0}\frac{1}{x}$ é infinito. Ok, mas qual "infinito"? $+\infty$ ou $-\infty$? A resposta é, neste caso, nenhum dos dois!

Se x se aproxima de 0 por valores positivos, então 1/x tende a $+\infty$. Porém se x se aproxima de 0 assumindo somente valores negativos, então 1/x tende a $-\infty$ (|1/x| fica cada vez maior, porém 1/x mantém-se sempre < 0).

Neste caso, dizemos que não existe o limite $\lim_{x\to 0} \frac{1}{x}$.

O comportamento da função $f(x) = \frac{1}{x}$, nas proximidades de x = 0, será melhor estudado na próxima aula, quando introduziremos o conceito de limites laterais.

4.3 Ilustrações geométricas da ocorrência de alguns limites

Na figura 4.2 temos um exemplo de esboço de um gráfico de uma função definida no conjunto $\mathbb{R} - \{x_0\}$, para a qual $\lim_{x \to x_0} f(x) = \alpha$ e $\lim_{x \to x_1} f(x) = b = f(x_1)$.

Figura 4.2. x_0 não está no domínio de f, $\lim_{x \to x_0} f(x) = a$, e $\lim_{x \to x_1} f(x) = b = f(x_1)$.

Na figura 4.3 temos um exemplo de esboço de um gráfico de uma função definida em todo o conjunto \mathbb{R} , para a qual $\lim_{x\to +\infty} f(x) = a$ e $\lim_{x\to -\infty} f(x) = b$.

Figura 4.3. $\lim_{x \to +\infty} f(x) = a$, $\lim_{x \to +\infty} f(x) = b$.

Na figura 4.4, página 42, temos um exemplo de esboço de um gráfico de uma função definida em $\mathbb{R}-\{\alpha\}$, para a qual $\lim_{x\to\alpha}f(x)=+\infty$.

Na figura 4.5, página 42, temos um exemplo de esboço de um gráfico de uma função definida em $\mathbb{R} - \{\alpha\}$, para a qual $\lim_{x \to \alpha} f(x) = -\infty$.

Na figura 4.6, página 42, ilustramos um exemplo de esboço de um gráfico de uma função definida em $\mathbb{R}-\{\alpha\}$, para a qual $\lim_{x\to\alpha}f(x)=-\infty$, $\lim_{x\to-\infty}f(x)=b$ e $\lim_{x\to+\infty}f(x)=-\infty$.

4.4 Problemas

1. Calcule os limites.

(a)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$

(b)
$$\lim_{x\to 1} \frac{x^2 - x}{2x^2 + 5x - 7}$$

(c)
$$\lim_{k\to 4} \frac{k^2 - 16}{\sqrt{k} - 2}$$

(d)
$$\lim_{h\to 0} \frac{(x+h)^3 - x^3}{h}$$

(e)
$$\lim_{h \to -2} \frac{h^3 + 8}{h + 2}$$

(f)
$$\lim_{z\to 10} \frac{1}{z-10}$$

(g)
$$\lim_{x\to 1} \frac{1}{(x-1)^4}$$

(h)
$$\lim_{x \to \sqrt{2}} (x^2 + 3)(x - 4)$$

(i)
$$\lim_{x \to \sqrt{2}} 15$$

(j)
$$\lim_{x\to 1/2} \frac{2x^2 + 5x - 3}{6x^2 - 7x + 2}$$

(k)
$$\lim_{x\to -2} \frac{x^3+8}{x^4-16}$$

(I)
$$\lim_{s\to 4} \frac{6s-1}{2s-9}$$

(m)
$$\lim_{x\to 1} \left(\frac{x^2}{x-1} - \frac{1}{x-1} \right)$$

$$(n) \lim_{h\to 0} \frac{4-\sqrt{16+h}}{h}$$

(o)
$$\lim_{t\to -1} \frac{(4t^2+5t-3)^3}{(6t+5)^4}$$

(p)
$$\lim_{h\to 0} \frac{(2+h)^{-2}-2^{-2}}{h}$$

2. Demonstre que se

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, e$$

$$q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

sendo $a_0,\ldots,a_n,b_0,\ldots,b_n$ números reais com $a_n\neq 0$ e $b_m\neq 0$, então

(a)
$$\lim_{x \to \pm \infty} p(x) = \lim_{x \to \pm \infty} a_n x^n$$

(b)
$$\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

AULA 4

Figura 4.4. $\lim_{x\to a} f(x) = +\infty$.

Figura 4.5. $\lim_{x\to a} f(x) = -\infty$.

Figura 4.6. $\lim_{x\to a} f(x) = -\infty$, $\lim_{x\to -\infty} f(x) = b$, $\lim_{x\to +\infty} f(x) = -\infty$.

3. Calcule os limites.

(a)
$$\lim_{x \to +\infty} \frac{2x+3}{x+\sqrt[3]{x}}$$

(b)
$$\lim_{x \to +\infty} \frac{\sqrt[3]{x^2 + 1}}{x + 1}$$

(c)
$$\lim_{x \to +\infty} \frac{2x^2 - x + 3}{x^3 - 8x - 5}$$

(d)
$$\lim_{x \to -\infty} \frac{2x^2 - 3x - 4}{\sqrt{x^2 + 1}}$$

(e)
$$\lim_{x \to +\infty} \frac{(2x+3)^3(2-3x)^2}{x^5+5}$$

(f)
$$\lim_{x \to +\infty} (\sqrt{x+a} - \sqrt{x})$$

(g)
$$\lim_{x\to+\infty} (\sqrt{x^2+\alpha x}-x)$$

(h)
$$\lim_{x \to +\infty} (x + \sqrt[3]{1 - x^3})$$

(i)
$$\lim_{x \to +\infty} (\sqrt[3]{x + 8x^3} - 2x)$$

(j)
$$\lim_{x \to +\infty} x(\sqrt{x^2+1}-x)$$

4. Considerando as duas primeiras colunas da tabela 4.1, de valores para a função $g(x)=x^2$, Joãozinho argumentou que, quanto mais próximo de 0 é o valor de x, mais próximo de -1 fica g(x). Explique por que Joãozinho está certo. Isto quer dizer que $\lim_{x\to 0}g(x)=-1$? Explique.

4.4.1Respostas e sugestões

1. (a) 4 (b) 1/9 (c) 32 (d) $3x^2$ (e) 12 (f) não existe (g) $+\infty$ (h) $5\sqrt{2}-20$ (i) 15 (j) -7 (k) -3/8 (l) -23 (m) 2 (n) -1/8 (o) -64 (p) -1/4

2. (b)

$$\begin{split} \lim_{x \to \pm \infty} \frac{p(x)}{q(x)} &= \lim_{x \to \pm \infty} \frac{a_n x^n \left(1 + \frac{a_{n-1}}{a_n x} + \dots + \frac{a_1}{a_n x^{n-1}} + \frac{a_0}{a_n x^n}\right)}{b_m x^m \left(1 + \frac{b_{m-1}}{b_m x} + \dots + \frac{b_1}{b_m x^{m-1}} + \frac{b_0}{b_m x^m}\right)} \\ &= \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m} \cdot \lim_{x \to \pm \infty} \frac{1 + \frac{a_{n-1}}{a_n x} + \dots + \frac{a_1}{a_n x^{n-1}} + \frac{a_0}{a_n x^n}}{1 + \frac{b_{m-1}}{b_m x} + \dots + \frac{b_1}{b_m x^{m-1}} + \frac{b_0}{b_m x^m}} \\ &= \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m} \cdot \lim_{x \to \pm \infty} \frac{1 + \frac{a_{n-1}}{b_m x} + \dots + \frac{a_1}{\pm \infty} + \frac{a_0}{\pm \infty}}{1 + \frac{b_{m-1}}{b_m} + \dots + \frac{b_1}{b_m} + \frac{b_0}{\pm \infty}} \\ &= \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m} \cdot \frac{1 + 0 + \dots + 0}{1 + 0 + \dots + 0} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m} \end{split}$$

3. (a) 2 (b) 0 (c) 0 (d)
$$+\infty$$
.

Sugestão.
$$\lim_{x \to -\infty} \frac{2x^2 - 3x - 4}{\sqrt{x^2 + 1}} = \lim_{x \to -\infty} \frac{x^2 \left(2 - \frac{3}{x} - \frac{4}{x^2}\right)}{\sqrt{x^2 \left(1 + \frac{1}{x^2}\right)}} = \lim_{x \to -\infty} \frac{x^2 \left(2 - \frac{3}{x} - \frac{4}{x^2}\right)}{|x| \sqrt{1 + \frac{1}{x^2}}}.$$

Agora, como $x \to -\infty$, temos x < 0, e então |x| = -x.

(e) 72

(f) 0.

Sugestão.
$$\sqrt{x+\alpha} - \sqrt{x} = \frac{\left(\sqrt{x+\alpha} - \sqrt{x}\right)\left(\sqrt{x+\alpha} + \sqrt{x}\right)}{\sqrt{x+\alpha} + \sqrt{x}}$$
.

(g) a/2 (h) 0.

$$\label{eq:Sugestão.Para contornar a indeterminação} \begin{aligned} &Sugestão. \text{ Para contornar a indeterminação } +\infty -\infty, \text{ faça} \\ &x + \sqrt[3]{1-x^3} = \frac{\big(x+\sqrt[3]{1-x^3}\big)\big[x^2-x\cdot\sqrt[3]{1-x^3}+\big(\sqrt[3]{1-x^3}\big)^2\big]}{x^2-x\cdot\sqrt[3]{1-x^3}+\big(\sqrt[3]{1-x^3}\big)^2}, \text{ e use a identidade} \\ &(a+b)\big(a^2-ab+b^2\big) = a^3+b^3. \end{aligned}$$

(i) 0.

Sugestão. Aproveite a idéia usada na solução do problema anterior, agora fazendo uso da identidade $(a - b)(a^2 + ab + b^2) = a^3 - b^3$.

4. Joãozinho está certo, pois x^2 , sendo positivo, ao se tornar cada vez mais próximo de 0 fica também cada vez mais próximo de -1. Podemos notar que a seguência de quadrados que aparece na tabela 4.1 é a sequência 1 0,25 0,04 0,01 0,0001 0,000001... Cada termo a partir do segundo está mais próximo de -1 que seu antecessor! Mas isto não quer dizer que o limite de x^2 quando x tende a 0 seja -1. "Cada vez mais próximo" não quer dizer "arbitrariamente próximo", que é o termo correto no contexto de limites.