

Algorithms – I (CS29003/203)

Autumn 2022, IIT Kharagpur

Dynamic Programing

Dynamic Programing

"Life can only be understood going backwards, but it must be lived going forwards."
- S. Kierkegaard, Danish Philosopher.

The first line of the famous book by Dimitri P Bertsekas.

Image taken from: amazon.com

Dynamic Programing

- Dynamic Programing (DP), like Divide-and-conquer, solves problems by combining solutions to subproblems
- It was invented as a general method for optimizing multistage decision processes in the 1950s by prominent US Mathematician Richard Bellman

Richard Bellman

- Why is it named programing?
 - 'Programing' here refers to a tabular method for solving an optimization problem as opposed to writing computer code
 - Much like linear programing or quadratic programing

Dynamic Programing

- It has similarity with a divide and conquer approach. However, unlike divide and conquer, DP applies when the subproblems overlap – i.e., when subproblems share subsubproblems
- Divide and conquer may work more than necessary, repeatedly solving the same subsubproblems
- A DP algorithm solves each subsubproblem only once and caches the answer to be reused later, thereby avoiding recomputation
- We shall start by revisiting the beautiful Fibonacci number and sequence
- The Fibonacci numbers are the elements of the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Fibonacci Number Recursive Algorithm

• The Fibonacci numbers are the elements of the sequence 0.1.1.2.3.5.8.13.21.34

- This can be defined by the following simple recurrence F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)
- A recursive algorithm to compute the Fibonacci number can be

```
//Input (n): A nonnegative integer
//Output: The n<sup>th</sup> Fibonacci number
Fib(n)
  if ((n==0) or (n==1))
    return n
  return Fib(n-1) + Fib(n-2)
```


Fibonacci Number Recursive Algorithm

- Runtime complexity?
- Its exponential
- Intuitive explanation: Every node needs a sum and number of nodes is roughly 2^n

Fibonacci Number – Efficient Computation

- It does a lot of duplicate computations
- How can we avoid that?
- · We compute each subproblem only once and reuse them
- Lets take a bottom-up approach rather than a top-down approach
- That is instead of starting from top of the tree why don't we start small (the base cases, n=0 or 1) and use the solutions of the smaller problems to get the solution to the bigger problems

```
Fib(n)
    Create an array A of size n+1 // 0-based index
A[0] = 0
A[1] = 1
for i=2 to n:
    A[i] = A[i-1] + A[i-2]
return A[n]
```


Fibonacci Number – Efficient Computation

- What makes it efficient is we are solving the smaller problems first and storing them in a table (array)
- Whenever we need the solution of a smaller subproblem, instead of recomputing, we are looking up the solution in the table and reusing it
- Runtime?
- $\Theta(n)$

```
Fib(n)
    Create an array A of size n+1 // 0-based index
A[0] = 0
A[1] = 1
for i=2 to n:
    A[i] = A[i-1] + A[i-2]
return A[n]
```


Unlimited Number Knapsack

- Overall weight limit: 8 lb, we can take an unlimited number of each item
- Item a: 5 lb, \$150
- Item b: 4 lb, \$100
- Item c: 2 lb, \$10
- Expensive first: Item a + Item c, value: \$160
- Lightest first: Item c, 4 times, value: \$40
- Optimal: Item b, 2 times, value: \$200
- Greedy strategy does not provide the optimal solution
- A naive solution? Try all possibilities!

A Naïve Algorithm

- Item a: 5 lb, \$150
- Item b: 4 lb, \$100
- Item c: 2 lb, \$10

```
suitcase(leftWeight)
```

curBest = 0

```
foreach item of (weight, val) • max(0,10+150)=160
  if (leftWeight >= weight)
```

return curBest

```
suitcase(8)
```

- suitcase(3)+150 //a fits
 - suitcase(1)+10 //Only c fits
 - 0 //Nothing fits
 - max(0,0+10)=10

curBest = max(curBest, suitcase(leftWeight-weight)+val)

Recursive call

```
// Calling the function
answer = suitcase(8)
```


Execution Recurrence Tree

Source: UC Riverside, CS141 course, Fall 2021

Execution Recurrence Tree

Source: UC Riverside, CS141 course, Fall 2021

Execution Recurrence Tree

An Efficient Algorithm

Item a: 5 lb, \$150, Item b: 4 lb, \$100, Item c: 2 lb, \$10

```
suitcase(leftWeight)
  curBest = 0
    foreach item of (weight, val)
    if (leftWeight >= weight)
      curBest = max(curBest, suitcase(leftWeight-weight)+val)
  return curBest

// Calling the function
answer = suitcase(8)
```


An Efficient Algorithm

Item a: 5 lb, \$150, Item b: 4 lb, \$100, Item c: 2 lb, \$10

```
suitcase(leftWeight)
  if (ans[leftWeight] != -1)
    return ans[leftWeight]
  curBest = 0
  foreach item of (weight, val)
    if (leftWeight >= weight)
      curBest = max(curBest, suitcase(leftWeight-weight)+val)
  ans[leftWeight] = curBest
  return curBest
// Calling the function
ans [0, ..., 8] = \{-1, ..., -1\}
answer = suitcase(8)
```


An Efficient Algorithm

Item a: 5 lb, \$150, Item b: 4 lb, \$100, Item c: 2 lb, \$10

```
suitcase(leftWeight)
  if (ans[leftWeight] != -1)
    return ans[leftWeight]
  curBest = 0
  foreach item of (weight, val)
    if (leftWeight >= weight)
      curBest = max(curBest, suitcase(leftWeight-weight)+val)
  ans[leftWeight] = curBest
  return curBest
// Calling the function
                                            COMPLEXITY??
ans [0, ..., 8] = \{-1, ..., -1\}
```

Source: UC Riverside, CS141 course, Fall 2021

answer = suitcase(8)

Overlapping Subproblems and Optimal Substructure

- Dynamic Programing addresses a bigger problem by breaking it down as subproblems and then
 - Solving the subproblems
 - Combining solutions to subproblems
- Dynamic Programing is based on the <u>principle of optimality</u>

Principle of Optimality

Let $\{a_0^*, a_1^*, \cdots, a_{(N-1)}^*\}$ be an optimal action sequence with a corresponding state sequence $\{s_1^*, s_2^*, \cdots, s_N^*\}$. Consider the tail subproblem that starts at s_k^* at time k and maximizes the 'reward to go' from k to N over $\{a_k, \cdots, a_{(N-1)}\}$, then the tail optimal action sequence $\{a_k^*, \cdots, a_{(N-1)}^*\}$ is optimal for the tail subproblem.

Requirements of Dynamic Programing

- Optimal substructure i.e., principle of optimality applies.
- Overlapping subproblems, i.e., subproblems recur many times and solutions to these subproblems can be cached and reused
- In the previous example, the problem is to find the optimal value S_w for a total weight of w and the options are: **suitcase(8)**
 - Case 1: First put item a. Total value = suitcase(3) + 150
 - Case 2: First put item b. Total value = suitcase(4) + 100
 - Case 3: First put item c. Total value = suitcase(6) + 10
 - Best = max of the above three
- The subproblems are same problem with new weight limit $w w_i$
- The subproblems must be the corresponding optimal solutions, otherwise the bigger problem is not going to be optimal

0/1 Knapsack Problem

Item a: 5 lb, \$150, Item b: 4 lb, \$100, Item c: 2 lb, \$10

```
suitcase(leftWeight)
  if (ans[leftWeight] != -1)
                                     Will the solution work
    return ans[leftWeight]
                                     if we only allow to use
  curBest = 0
                                     an item once?
  foreach item of (weight, val)
    if (leftWeight >= weight)
      curBest = max(curBest, suitcase(leftWeight-weight)+val)
  ans[leftWeight] = curBest
  return curBest
// Calling the function
ans [0, ..., 8] = \{-1, ..., -1\}
answer = suitcase(8)
```


0/1 Knapsack Problem

- No
- Optimal subproblem for "unlimited knapsack"
- After we chose item j, the leftover problem is "best value when weight capacity is $k-w_j$ " [We changed k to denote the current capacity]
- In 0/1 Knapsack problem, leftover problem is "best value when weight capacity is $k-w_i$ and we can not use item j again"
- How can we change the state to accommodate this?
- The subproblem we use must not contain item j
- Add another dimension to the problem

0/1 Knapsack Problem

- Let s[i, j] be the optimal value for total weight i using only the first j items
- How to calculate s[i,j]? For any item, there are really two options
 - Use the item j (value of j + best solution of weight limit $i w_j$ using first j-1 items)

$$s[i-w_j,j-1]+v_j$$

- Do not use item j (best solution of weight limit i using first j-1 items) s[i, j-1]
- The boundary case: s[i, 0] = 0

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0				
1				
2				
3				
4				
5				
6				
7				
8				

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0			
1	0			
2	0			
3	0			
4	0			
5	0			
6	0			
7	0			
8	0			

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0			
1	0			
2	0			
3	0			
4	0			
5	0			
6	0			
7	0			
8	0			

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0		
1	0	0		
2	0	0		
3	0	0		
4	0	0		
5	0			
6	0			
7	0			
8	0			

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0		
1	0	0		
2	0	0		
3	0	0		
4	0	0		
5	0			
6	0			
7	0			
8	0			

$$Opt1 + V_j = Opt2 =$$

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0		
1	0	0		
2	0	0		
3	0	0		
4	0	0		
5	0			
6	0			
7	0			
8	0			

Opt1 +
$$V_j = 0 + $150$$

Opt2 = 0

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0		
1	0	0		
2	0	0		
3	0	0		
4	0	0		
5	0	150		
6	0			
7	0			
8	0			

Opt1 +
$$V_j = 0 + $150$$

Opt2 = 0

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0		
1	0	0		
2	0	0		
3	0	0		
4	0	0		
5	0	150		
6	0	150		
7	0			
8	0			

Opt1 +
$$V_j = 0 + $150$$

Opt2 = 0

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0		
1	0	0		
2	0	0		
3	0	0		
4	0	0		
5	0	150		
6	0	150		
7	0	150		
8	0	150		

Opt1 +
$$V_j = 0 + $150$$

Opt2 = 0

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	0	0	
4	0	0		
5	0	150		
6	0	150		
7	0	150		
8	0	150		

Opt1 +
$$V_j = 0 + $100$$

Opt2 = 0

- /				
i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	0	0	
4	0	0	100	
5	0	150		
6	0	150		
7	0	150		
8	0	150		

Opt1+
$$V_j = 0 + $100$$

Opt2= 0

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	0	0	
4	0	0	100	
5	0	150	150	
6	0	150		
7	0	150		
8	0	150		

Opt1 +
$$V_j = 0 + $100$$

Opt2 = 150

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	0	0	
4	0	0	100	
5	0	150	150	
6	0	150	150	
7	0	150	150	
8	0	150	150	

$$\begin{aligned} \text{Opt1} + V_j &= 0 + \$100 \\ \text{Opt2} &= 0 \end{aligned}$$

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	
3	0	0	0	
4	0	0	100	
5	0	150	150	
6	0	150	150	
7	0	150	150	
8	0	150	150	

Opt1 +
$$V_j = 0 + $10$$

Opt2 = 0

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	10
3	0	0	0	
4	0	0	100	
5	0	150	150	
6	0	150	150	
7	0	150	150	
8	0	150	150	

Opt1 +
$$V_j = 0 + $10$$

Opt2 = 0

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	10
3	0	0	0	10
4	0	0	100	
5	0	150	150	
6	0	150	150	
7	0	150	150	
8	0	150	150	

Opt1 +
$$V_j = 0 + $10$$

Opt2 = 100

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	10
3	0	0	0	10
4	0	0	100	100
5	0	150	150	
6	0	150	150	
7	0	150	150	
8	0	150	150	

Opt1 +
$$V_j = 0 + $10$$

Opt2 = 100

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	10
3	0	0	0	10
4	0	0	100	100
5	0	150	150	150
6	0	150	150	150
7	0	150	150	160
8	0	150	150	

Opt1 +
$$V_j = 150 + $10$$

Opt2 = 150

i	No item	Item 1	Item 1 & 2	Item 1, 2 & 3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	10
3	0	0	0	10
4	0	0	100	100
5	0	150 150		150
6	0	150	150	150
7	0	150	150	160
8	0	150	150	160

Opt1 +
$$V_j = 150 + $10$$

Opt2 = 150

0/1 Knapsack Problem Pseudocode

```
suitcase(i,j) //i is the capacity, j is the item
  if (ans[i][j] != -1)
    return ans[i][j] //If soln to subproblem already exists
  if (j==0) //Base case
    ans[i][j] = 0
    return ans[i][j]
 best = suitcase(i,j-1) //If j is not taken
  if (i >= weight[j]) //If item j is taken
     best = max(best, suitcase(i-weight[j],j-1)+val[j])
  ans[i][j] = best
  return ans[i][j]
// Calling the function
ans [k][n] = \{-1, ..., -1\}
answer = suitcase(8,3)
```

41

0/1 Knapsack Problem Pseudocode

getitems() i = k for j=n downto 1 if ans[i][j] > ans[i][j-1]

i = i - weight[j] //Move to the right row

- A strand of DNA can be viewed as a string of bases {A, C, G, T}
 - S₁=ACCGGTCGAGT
 - S₂=GTCGTTCGGAATGC
- Biological applications often need to compare the DNA of two or more organisms to determine how "similar" they are as some measure of how closely related the two organisms are
- Two strands are similar if
 - One is a substring of another
 - Number of changes needed to turn one into the other is small
 - A third string is long enough and has bases appearing in each of the original two in the same order, but not necessarily consecutively
- Longest Common Subsequence (LCS) deals with the third way

Source: UC Riverside, CS141 course, Fall 2021

Source: UC Riverside, CS141 course, Fall 2021

Problem Definition

- Input: Two sequences X and Y. For example,
 - X = < A, B, C, B, D, A, B >
 - $Y = \langle B, D, C, A, B, A \rangle$
- Output: Longest common subsequence Z of X and Y
 - For X and Y above, the longest common subsequence is $Z = \langle B, C, B, A \rangle$
- What will be a naïve way to solve it?
- What are the "Subproblems" here?
- What is the possible "last move"?
 - For ABCBDAB and BDCABA, we want to know, given the LCS between "ABCBDA" and "BDCAB", how should we deal with the last element 'B' and 'A' respectively?

- Lets compare the last character X[i] and Y[j]
- What if X[i] = Y[j]?
 - ABCBDA and BDCABA
- What if $X[i] \neq Y[j]$?
 - ABCBDAB and BDCABA
- Let us take a closer look at this

Good news. Whatever was the LCS between the two prefixes, considering the last elements of the two, increases it by 1

We already have found the LCS for X[0..i-1] and Y[0..j-1]

Let us see if we add the elements what happens. Lets first consider the pair X[0..i] and Y[0..j-1]This will either produce one additional match or not

- Lets compare the last character X[i] and Y[j]
- What if X[i] = Y[j]?
 - ABCBDA and BDCABA
- What if $X[i] \neq Y[j]$?
 - ABCBDAB and BDCABA
- Let us take a closer look at this

Good news. Whatever was the LCS between the two prefixes, considering the last elements of the two, increases it by 1

We already have found the LCS for X[0..i-1] and Y[0..j-1]

Let us see if we add the elements what happens. Lets first consider the pair X[0..i] and Y[0..j-1] This will either produce one additional match or not Lets now consider the pair X[0..i-1] and Y[0..j] This will either produce one additional match or not

- Lets compare the last character X[i] and Y[j]
- What if X[i] = Y[j]?
 - ABCBDA and BDCABA
- What if $X[i] \neq Y[j]$?
 - ABCBDAB and BDCABA
- Let us take a closer look at this

Good news. Whatever was the LCS between the two prefixes, considering the last elements of the two, increases it by 1

We already have found the LCS for X[0..i-1] and Y[0..j-1]

Let us see if we add the elements what happens. Lets first consider the pair X[0..i] and Y[0..j-1] This will either produce one additional match or not Lets now consider the pair X[0..i-1] and Y[0..j] This will either produce one additional match or not

Do we now compare X[0..i] and Y[0..j]? No. As, given we have compared the other two cases, this will only make any difference only if X[i] and Y[j] are equal – which we assume are not

- Lets compare the last character X[i] and Y[j]
- What if X[i] = Y[j]?
 - ABCBDA and BDCABA
- What if $X[i] \neq Y[j]$?
 - ABCBDAB and BDCABA
- Let us take a closer look at this

So, in summary, we have to compare X[0..i-1] and Y[0..j] and also X[0..i] and Y[0..j-1] to get the LCS between X[0..i] and Y[0..j] Now, do we need to scan and check every element of the other sequence to know if any match is being added? No – as both the comparisons (X[0..i-1] with Y[0..j] and X[0..i] with Y[0..j-1]) have been made already and stored. We can reuse them. We have to take the maximum out of the two cases

- Lets use s[i,j] to denote the LCS of the first i characters in X and first j characters in Y
- If X[i] = Y[j]

•
$$s[i,j] = s[i-1,j-1] + 1$$

LCS of "ABCB" and "BDCAB" must be: (the LCS of "ABC" and "BDCA") + "B"

- Lets use s[i,j] to denote the LCS of the first i characters in X and first j characters in Y
- If $X[i] \neq Y[j]$
 - $s[i,j] = \max(s[i-1,j], s[i,j-1])$

Index	1	2	3	4	5	6	7				
X=	Α	В	С	В	D	Α	В				
↑											
Y=	В	D	С	Α	В	Α					

- $s[3,5] = \max(s[2,5], s[3,4])$
- There are really three choices
 - Add X[i] as the new entry to the LCS
 - Add Y[j] as the new entry to the LCS
 - Discard both X[i] and Y[j]

LCS of "ABC" and "BDCAB" can be: the LCS of "AB" and "BDCAB" the LCS of "ABC" and "BDCA" the LCS of "AB" and "BDCA" (included above)

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

	→ j	0	1	2	3	4	5	6
i		None	В	D	С	Α	В	Α
0	None							
1	Α							
2	В							
3	С							
4	В							
5	D							
6	Α							
7	В							

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

	→ j	0	1	2	3	4	5	6
		None	В	D	С	Α	В	Α
0	None	0	0	0	0	0	0	0
1	Α	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

	→ j	0	1	2	3	4	5	6
i		None	В	D	С	Α	В	Α
0	None	0	↑ 0	0	0	0	0	0
1	Α	0	0					
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

•
$$s[i, 0] = 0; s[0, j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

	→ j	0	1	2	3	4	5	6
i		None	В	D	C	Α	В	Α
0	None	0	O	O	O	0	0	0
1	Α	0	0	0	0			
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	А	0						
7	В	0						

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

	→ j	0	1	2	3	4	5	6
i		None	В	D	С	Α	В	Α
0	None	0	O	O	0	0	0	0
1	Α	0	0	0	0	1		
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	А	0						
7	В	0						

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

. [→ j	0	1	2	3	4	5	6
$i \mid \cdot \mid$		None	В	D	С	Α	В	Α
0	None	0	↑ 0	↑ 0	0	0	0	0
1	Α	0	0	0	0	1	1	
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	А	0						
7	В	0						

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

,		_	_	_				
	→ j	0	1	2	3	4	5	6
i		None	В	D	С	Α	В	Α
0	None	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

. [→ j	0	1	2	3	4	5	6
i		None	В	D	C	Α	В	Α
0	None	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	_ 1	1
2	В	0	1					
3	С	0						
4	В	0						
5	D	0						
6	А	0						
7	В	0						

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

	→ j	0	1	2	3	4	5	6
i		None	В	D	C	Α	В	Α
0	None	0	O	O	O	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1		
3	С	0						
4	В	0						
5	D	0						
6	А	0						
7	В	0						

•
$$s[i, 0] = 0; s[0, j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

	→ j	0	1	2	3	4	5	6
i		None	В	D	C	Α	В	Α
0	None	0	O	O	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	_ 2
3	С	0						
4	В	0						
5	D	0						
6	А	0						
7	В	0						

•
$$s[i,0] = 0; s[0,j] = 0$$

•
$$s[i,j] = \begin{cases} s[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \\ \max(s[i-1,j],s[i,j-1]), & \text{if } X[i] \neq Y[j] \end{cases}$$

Г	<u></u> j	0	1	2	3	4	5	6
		None	В	D	С	Α	В	Α
0	None	0	O	O	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	_ 2
3	С	0	1	1	2	_ 2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

LCS(X,Y)=4

2,		0	1	2	3	4	5	6
		None	В	D	C	Α	В	Α
0	None	0	.0	.0	.0	0	0	0
1	Α	0	0	0	0	1 1	1	1
2	В	0	, 1 +	41	1	1	2 *	, 2
3	С	0	1	1	, 2	4 2 k	2	2
1	В	0	.1	1	2	₄ 2	3 *	, 3
5	D	0	. 1	, 2	, 2 ,	2	3	3
5	A	0	1	2	. 2	4 3	3	. 4
7	В	0	1	2	2	3	4	4

- How do we know which characters are in the LCS?
- The ones with diagonal arrow are taken
- Even without storing arrow directions separately, how can we know whether a cell has diagonal arrow?
- Compare the characters
- The LCS is BCBA

Solution to LCS – Pseudocode

```
LCS(X,Y)
```

```
m = X.length, n = Y.length
Create 2-D array s with m+1 rows and n+1 columns
for i=1 to m //Fill up the first column with 0's
  s[i,0] = 0
for j=1 to n //Fill up the first row with 0's
  s[0,j] = 0
                                    What is the time complexity?
for i=1 to m
                                               \Theta(mn)
  for j=1 to n
    if X[i] == Y[i]
      s[i,j] = s[i-1,j-1] + 1
    else
      if s[i-1,j] >= s[i,j-1]
        s[i,j] = s[i-1,j]
      else
        s[i,j] = s[i,j-1]
```


Solution to LCS – Pseudocode

```
ConstructLCS(X,Y,s)
```

```
m = X.length, n = Y.length
i = m, j = n //Start at the last cell of s
while (i>0 \mid i>0)
  if X[i] == Y[i]
    Add X[i] to LCS string
    i--; j--
  else
    if s[i-1,j] >= s[i,j-1]
      i --
    else
      j--
```

What is the time complexity? O(m+n)

Matrix Chain Multiplication

- How long does it take to multiply matrices?
- Lets consider $C = A \times B$, where A is an $m \times p$ and B is an $p \times n$ matrix
- Then, C is an $m \times n$ matrix and $c_{ij} = \sum_k a_{ik} * b_{kj}$
- That means for each entry of C, we need to multiply p times and there are mn terms. So there needs to be mpn multiplications
- Next suppose that we want to multiply three matrices A₁A₂A₃
- We can do it in two different ways, $A_1(A_2A_3)$ or $(A_1A_2)A_3$
- How long does it take?

Example

• Let A_1 is 2×3 , A_2 is 3×4 and A_3 is 4×2

$$A_1 \times A_2 \times A_3$$
 $2 \quad 3 \quad 3 \quad 4 \quad 4 \quad 2$
 $d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3$

$$A_1 \times (A_2 \times A_3)$$
 $A_1 \times (A_2 \times A_3)$
 $A_1 \times (A_2 \times A_3)$
 $A_2 \times A_3 \times A_4 \times A_4 \times A_3 \times A_4 \times A_5 \times A_5$

Multiplication order matters!!

Problem Definition

- Find the order to multiply matrices $A_1A_2A_3 ... A_n$ that requires the fewest total operations
- In particular, assume A_1 is an $d_0 \times d_1$ matrix, A_2 is an $d_1 \times d_2$ matrix, generally, A_k is an $d_{k-1} \times d_k$ matrix
- Let us denote the cost (expressed in number of scalar multiplications) of multiplying matrices $A_iA_{i+1}A_{i+2}...A_j$ as c[i,j]

Observation

Lets go back to our example and try to find some trend

- First of all, we can think of the operations on single matrix costs 0
- Notice that c[1,2] = 24 and c[3,3] = 0
- Strictly speaking, c[3,3] should represent the cost of multiplying A_3 with itself (that gives you A_3^2), but we will slightly abuse it here
- Using these notations, (1) can be written as $c[1,2] + c[3,3] + 2 \times 4 \times 4$ 2 = c[1,3]
- $\Rightarrow c[1,2] + c[3,3] + d_0 \times d_2 \times d_3 = c[1,3]$ Sep 02,07,08, 2022

Observation

Lets go back to our example and try to find some trend

•
$$c[1,2] + c[3,3] + d_0 \times d_2 \times d_3 = c[1,3]$$

- Similarly, (2) can be written as $c[1,1] + c[2,3] + d_0 \times d_1 \times d_3 = c[1,3]$
- $c[1,2] + c[3,3] + d_0 \times d_2 \times d_3 = c[1,3]$ $i \quad k \quad k+1 \quad j \quad d_{i-1} \quad d_k \quad d_j \quad i \quad j$
- $c[1,1] + c[2,3] + d_0 \times d_1 \times d_3 = c[1,3]$ $i \quad k \quad k+1 \quad j \quad d_{i-1} \quad d_k \quad d_j \quad i \quad j$

Observation

•
$$c[1,2] + c[3,3] + d_0 \times d_2 \times d_3 = c[1,3] \dots (1)$$

 $i \quad k \quad k+1 \quad j \quad d_{i-1} \quad d_k \quad d_j \quad i \quad j$

•
$$c[1,1] + c[2,3] + d_0 \times d_1 \times d_3 = c[1,3] \dots (2)$$

 $i \quad k \quad k+1 \quad j \quad d_{i-1} \quad d_k \quad d_j \quad i \quad j$

•
$$c[i,j] = c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j$$

- What are the possible values of k?
- $i \le k < j$
- Finally, we will take the minimum of the c[i, j] over these k's
- $c[i,j] = \min_{i \le k < j} \{c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j\}$
- This gives us the recurrence relation a step closer towards the dynamic programing
- Lets see what this gives for multiplication of 4 matrices

•
$$c[i,j] = \min_{i \le k < j} \{ c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j \}$$

 $A_1 \times A_2 \times A_3 \times A_4$
 $A_1 \times A_2 \times A_3 \times A_4$

- 1. $A_1 (A_2 (A_3 A_4))$
- 2. $A_1((A_2A_3)A_4)$
- 3. $(A_1A_2)(A_3A_4)$
- 4. $(A_1(A_2A_3))A_4$
- 5. $((A_1A_2)A_3)A_4$
- Out of the 5 possible ways to multiply these matrices, we will find the optimum one by using the recurrence relation above

•
$$c[i,j] = \min_{i \le k < j} \{ c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j \}$$

$$A_1 \times A_2 \times A_3 \times A_4$$

$$A_1 \times A_2 \times A_3 \times A_4$$

• We are after c[1,4]

$$c[1,4] = \min_{1 \le k < 4} k = 2 \begin{cases} c[1,1] + c[2,4] + d_0 \times d_1 \times d_4 & A_1(A_2A_3A_4) \\ c[1,2] + c[3,4] + d_0 \times d_2 \times d_4 & (A_1A_2)(A_3A_4) \\ c[1,3] + c[4,4] + d_0 \times d_3 \times d_4 & (A_1A_2A_3)A_4 \end{cases}$$

- Where are the other 2 orders/paranthesizations of multiplication?
- Its inside the subproblems of $A_2A_3A_4$ and $A_1A_2A_3$
- Of the different c[i,j] values, we already know the two base cases c[1,1] and c[4,4]
- We need to expand the others

•
$$c[i,j] = \min_{i \le k < j} \{ c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j \}$$

 $A_1 \times A_2 \times A_3 \times A_4$
 $d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3 \quad d_3 \quad d_4$

$$c[1,4] = \min_{1 \le k < 4} k = 2 \begin{cases} c[1,1] + c[2,4] + d_0 \times d_1 \times d_4 & A_1(A_2A_3A_4) \\ c[1,2] + \overline{c[3,4]} + d_0 \times d_2 \times d_4 & (A_1A_2)(A_3A_4) \\ c[1,3] + \overline{c[4,4]} + d_0 \times d_3 \times d_4 & (A_1A_2A_3)A_4 \end{cases}$$

$$k = 2 \left(c[2,2] + \overline{c[3,4]} + d_1 \times d_2 \times d_4 \right)$$

•
$$c[2,4] = \min_{2 \le k \le 4} k = 2 \left\{ c[2,2] + c[3,4] + d_1 \times d_2 \times d_4 \right\}$$

•
$$c[1,3] = \min_{1 \le k < 3} k = 1 \begin{cases} c[1,1] + c[2,3] + d_0 \times d_1 \times d_3 \\ c[1,2] + c[3,3] + d_0 \times d_2 \times d_3 \end{cases}$$

- Thus we are going to solve smaller problems again and again
- Not only that, subproblems recur also
- Why don't we start with the smaller problems, cache and reuse it!

•
$$c[i,j] = \min_{i \le k < j} \{ c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j \}$$

 $A_1 \times A_2 \times A_3 \times A_4$
 $3 \quad 2 \quad 2 \quad 4 \quad 4 \quad 2 \quad 2 \quad 5$

• Lets create two tables c-table and k-table

i k	— <i>→ J</i> 1	2	3	4
↓ ₁				
2				
3				
4				

We already know the diagonal values to be 0

0

4

4

i k	$ \begin{array}{c} d_3 & d_4 \\ \longrightarrow j \\ 1 \end{array} $	2	3	4
↓ ₁				
2				
3				
4				

• $c[1,2] = \min_{1 \le k < 2} k = 1\{c[1,1] + c[2,2] + d_0 \times d_1 \times d_2 = 0 + 0 + 24 = 24$

d_3 $i k$	$ \begin{array}{c} d_3 & d_4 \\ \longrightarrow j \\ 1 \end{array} $	2	3	4
↓ ₁		1		
2				
3				
4				

• $c[1,2] = \min_{1 \le k < 2} k = 1\{c[1,1] + c[2,2] + d_0 \times d_1 \times d_2 = 0 + 0 + 24 = 24$

- $c[2,3] = \min_{2 \le k < 3} k = 2\{c[2,2] + c[3,3] + d_1 \times d_2 \times d_3 = 0 + 0 + 16 = 16$
- $c[3,4] = \min_{\text{Sep 02,07,08, 2022}} k = 3 \{c[3,3] + c[4,4] + d_2 \times d_3 \times d_4 = 0 + 0 + 40 = 0 \}$

•
$$c[i,j] = \min_{i \le k < j} \{ c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j \}$$

$$A_1 \times A_2 \times A_3 \times A_4$$

$$3 \quad 2 \quad 2 \quad 4 \quad 4 \quad 2 \quad 2 \quad 5$$

$$d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3 \quad d_3 \quad d_4$$

$d_3 d_3 d_4 \longrightarrow j$					
$i \mid k$	1	2	3	4	
↓ ₁		1			
2			2		
3				3	
4					

•
$$c[1,3] = 1 \begin{cases} c[1,1] + c[2,3] + d_0 \times d_1 \times d_3 = 0 + 16 + 12 = 28 \\ \min_{1 \le k < 3} k = 2 \begin{cases} c[1,2] + c[3,3] + d_0 \times d_2 \times d_3 = 24 + 0 + 24 = 48 \end{cases}$$

•
$$c[i,j] = \min_{i \le k < j} \{ c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j \}$$

$$A_1 \times A_2 \times A_3 \times A_4$$

$$3 \quad 2 \quad 2 \quad 4 \quad 4 \quad 2 \quad 2 \quad 5$$

$$d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3 \quad d_3 \quad d_4$$

$d_3 d_3 d_4$ $\longrightarrow i$					
$i \mid k$	1	2	3	4	
↓ 1		1	1		
2			2		
3				3	
4					

•
$$c[1,3] = 1$$
 $c[1,1] + c[2,3] + d_0 \times d_1 \times d_3 = 0 + 16 + 12 = 28$ $c[1,2] + c[3,3] + d_0 \times d_2 \times d_3 = 24 + 0 + 24 = 48$

•
$$c[i,j] = \min_{i \le k < j} \{ c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j \}$$

$$A_1 \times A_2 \times A_3 \times A_4$$

$$3 \quad 2 \quad 2 \quad 4 \quad 4 \quad 2 \quad 2 \quad 5$$

$$d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3 \quad d_3 \quad d_4$$

d_3	$d_3 d_4 \longrightarrow i$			
$i \mid k$	1	2	3	4
↓ ₁		1	1	
2			2	3
3				3
4				

• $c[2,4]_{k=2} = 2 \left\{ c[2,2] + c[3,4] + d_1 \times d_2 \times d_4 = 0 + 40 + 40 = 80 \atop 2 \le k < 4 \ k = 3 \left\{ c[2,3] + c[4,4] + d_1 \times d_3 \times d_4 = 16 + 0 + 20 = 36 \right\}$

•
$$c[i,j] = \min_{i \le k < j} \{ c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j \}$$

$$A_1 \times A_2 \times A_3 \times A_4$$

$$3 \quad 2 \quad 2 \quad 4 \quad 4 \quad 2 \quad 2 \quad 5$$

$$d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3 \quad d_3 \quad d_4$$

$$\begin{array}{c} c \begin{bmatrix} 1.4 \\ \text{min} \end{bmatrix}_{k=2}^{k=2} \begin{cases} c \begin{bmatrix} 1.1 \end{bmatrix} + c \begin{bmatrix} 2.4 \end{bmatrix} + d_0 \times d_1 \times d_4 = 0 + 36 + 30 = 66 \\ c \begin{bmatrix} 1.2 \end{bmatrix} + c \begin{bmatrix} 3.4 \end{bmatrix} + d_0 \times d_2 \times d_4 = 24 + 40 + 60 = 124 \\ c \begin{bmatrix} 1.3 \end{bmatrix} + c \begin{bmatrix} 4.4 \end{bmatrix}_{k=2}^{k=2} & 2k \end{bmatrix} \\ c \begin{bmatrix} 1.3 \end{bmatrix} + c \begin{bmatrix} 4.4 \end{bmatrix}_{k=2}^{k=2} & 2k \end{bmatrix} \\ c \begin{bmatrix} 1.3 \end{bmatrix} + c \begin{bmatrix} 4.4 \end{bmatrix}_{k=2}^{k=2} & 2k \end{bmatrix} \\ c \begin{bmatrix} 1.3 \end{bmatrix} + c \begin{bmatrix} 4.4 \end{bmatrix}_{k=2}^{k=2} & 2k \end{bmatrix} \\ c \begin{bmatrix} 1.3 \end{bmatrix} + c \begin{bmatrix} 4.4 \end{bmatrix}_{k=2}^{k=2} & 2k \end{bmatrix} \\ c \begin{bmatrix} 1.3 \end{bmatrix} + c \begin{bmatrix} 4.4 \end{bmatrix}_{k=2}^{k=2} & 2k \end{bmatrix} \\ c \begin{bmatrix} 1.3 \end{bmatrix} + c \begin{bmatrix} 4.4 \end{bmatrix}_{k=2}^{k=2} & 2k \end{bmatrix} \\ c \begin{bmatrix} 1.3 \end{bmatrix}_{k=2}^{k=2} & 2k \end{bmatrix} \\$$

•
$$c[i,j] = \min_{i \le k < j} \{c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j\}$$

$$A_1 \times A_2 \times A_3 \times A_4$$

$$3 \quad 2 \quad 2 \quad 4 \quad 4 \quad 2 \quad 2 \quad 5$$

$$d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3 \quad d_3 \quad d_4$$

$$1 \quad 0 \quad 24 \quad 28 \quad 58$$

$$2 \quad 0 \quad 16 \quad 36$$

$$2 \quad 2 \quad 3$$

$$3 \quad 0 \quad 40 \quad 3 \quad 3$$

• So, the optimum number of scalar multiplications to get $A_1A_2A_3A_4$ is 58

4

• The optimum order can be got from the k-table

0

4

	i		d_0 d_1	d_1 d_2
i C	1	2	3	4
↓ ₁	0	24	28	58
2		0	16	36
3			0	40
4				0

d_3	$d_3 d_4 \rightarrow i$			
$i \mid k$	1	2	3	4
↓ ₁		1	1	3
2			2	3
3				3
4				

- $\bullet \quad \boxed{A_1} A_2 A_3 A_4$
- $(A_1(A_2A_3))A_4$

Matrix Chain Multiplication Pseudocode

• $c[i,j] = \min_{i \le k \le j} \{c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j\}$

```
for i=1 to n c[i,i] = 0 for s=1 to n-1 for i=1 to n-s j=i+s c[i,j] = \min_{i \le k < i} \{c[i,k] + c[k+1,j] + d_{i-1} \times d_k \times d_j\}
```

- Runtime: Half the cells in the c-matrix is filled up -> $O(n^2)$
- Time per cell Need to check $i \le k < j$. Each takes constant time. O(n)
- So, final runtime is $O(n^3)$

Thank you