КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра прикладних інформаційних систем

Звіт до лабораторної роботи №4

з курсу

«Системний аналіз та теорія прийняття рішень»

Студентки 3 курсу групи ПП-33 спеціальності 122 «Комп'ютерні науки» ОП «Прикладне програмування» Матвіїв Анастасії Юріївни

Викладач: Білий Р.О. **Тема.** Прийняття рішень в умовах повної невизначеності. Підтримка прийняття рішень з використанням електронних таблиць.

Мета і завдання лабораторного заняття: набуття практичних навичок знаходження оптимального управлінського рішення в умовах невизначеності з використанням критеріїв Лапласа, Вальда, максимального оптимізму, Севіджа, Гурвіца.

Варіант 3.

Є 5 варіантів вибору проєкту охоронної системи підприємства: А1, А2, А3, А4, А5. В якості критеріїв виступають: К1 вартість (тис. грн.), К2 надійність, вірогідність безвідмовної роботи протягом терміну експлуатації, К3 - споживча потужність (кВт), К4 - електробезпека (бал).

Оцінки альтернатив за всіма критерієм та ваги критеріїв:

Критерій	К1	К2	К3	К4
Альтернатива				
A1	540	0,28	22	7
A2	480	0,22	10	6
A3	390	0,15	5	3
A4	500	0,24	13	8
A5	350	0,12	7	5
Вага	7	8	6	5

Яку охоронну систему потрібно встановлювати?

Хід роботи

1. Нормалізуємо показники

Критерії К1(вартість) і К3(енергоспоживання) мінімізуємо, інші максимізуємо.

Знайдемо мінімізовані та максимізовані критерії віднявши максимальне значення від мінімального. Нормалізуємо за формулою:

$$max(a_{ij}) - a_{ij}/K_j$$

Отримаємо нормалізований результат:

K1min	K2max	K3min	K4max
190	0.16	17	5
K1	K2	К3	K4
0	0	0	0.2
0.31579	0.375	0.70588	0.4
0.78947	0.8125	1	1
0.21053	0.25	0.52941	0
1	1	0.88235	0.6
7	8	6	5
	K1 0 0.31579 0.78947 0.21053	190 0.16 K1 K2 0 0 0.31579 0.375 0.78947 0.8125 0.21053 0.25 1 1	K1 K2 K3 0 0 0 0.31579 0.375 0.70588 0.78947 0.8125 1 0.21053 0.25 0.52941 1 1 0.88235

Знайдемо оптимальні альетрнативи різними способами.

За критер	ієм Лаплас	a		
F(A1)	0.05			
F(A2)	0.44917			
F(A3)	0.90049			
F(A4)	0.24748			
F(A5)	0.87059			
Fmax	0.90049		Результат	A3

За крите	рієм Вальда		
F(A1)	0		
F(A2)	0.31579		
F(A3)	0.78947		
F(A4)	0		
F(A5)	0.6		
Fmax	0.78947	Результат	A3

за крите	рієм максим	ального	ОПТИМІЗМУ	
Fmax	1		Результат	A3, A5
За крите	рієм песиміз	му		
F(A1)	0			
F(A2)	0.31579			
F(A3)	0.78947			
F(A4)	0			
F(A5)	0.6			
Fmin	0		Результат	A1, A4

За крите	рієм песимізму		
F(A1)	0		
F(A2)	0.31579		
F(A3)	0.78947		
F(A4)	0		
F(A5)	0.6		
Fmin	0	Результат	A1, A4
За крите	рієм оптимізму		
F(A1)	0		
F(A2)	0.31579		
F(A3)	0.78947		
F(A4)	0		
F(A5)	0.6		
Fmax	0.78947	Результат	A3

Критері	й Севіджа				
Матриц	ця ризиків				
	K1	K2	К3	K4	
A1	1	1	1	0.8	
A2	0.68421	0.625	0.29412	0.6	
A3	0.21053	0.1875	0	0	
A4	0.78947	0.75	0.47059	1	
A5	0	0	0.11765	0.4	
W	7	8	6	5	
В					
A1	1				
A2	0.68421				
A3	0.21053				
A4	1				
A5	0.4				
Bmin	0.21053		Результат	A3	

	K1	K2	K3	K4	
A1	0	0	0	0.2	
A2	0.31579	0.375	0.70588	0.4	
A3	0.78947	0.8125	1	1	
A4	0.21053	0.25	0.52941	0	
A5	1	1	0.88235	0.6	
W	7	8	6	5	
За крите	ерієм Гурвіца				
•	. , , ,				
a	0.5				
F(A1)	0.1				
F(A2)	0.51084				
F(A3)	0.89474				
F(A4)	0.26471				
F(A5)	0.8				
Fmax	0.89474		Результат	۸2	

Розв'язок викононаний програмно:

https://github.com/GlebKarpenko/SATPR_Karpenko

Висновок

Отже, в результаті виконання лабораторної роботи я дослідив різні способи прийняття рішень в умовах невизначеності. Практично використав електронні таблиці MS Excel та засоби програмування Python для отримання оптимальної альтерантиви для вибору в процесі прийняття рішення.