N75-21674

Unclas 19382

G3/39

Department of Aerospace and Mechanical Sciences

Princeton University

A PRIMER FOR STRUCTURAL RESPONSE TO RANDOM PRESSURE FLUCTUATIONS[†]

bу

E. H. Dowell and **

R. Vaicaitis

AMS Report No. 1220 April 1975

+This work was supported by NASA Grants NGR 31-001-146 and NSG 1059

Princeton University

Columbia University

*Professor, Department of Aerospace and Mechanical Sciences
Princeton University Princeton, New Jersey.

Princeton University, Princeton, New Jersey.

**Assistant Professor, Department of Civil Engineering,
and Engineering Mechanics, Columbia University, New York, N.Y.

TABLE OF CONTENTS

	NOMENCLATURE	ii
1.	INTRODUCTION	1
2.	INPUT-OUTPUT RELATIONS FOR STRUCTURE	2
	Sharp Resonance or Low Damping Approximation	8
3.	SIMPLIFIED RESPONSE CALCULATIONS	11
	Miles' Approximation for Spatially Well-	11
	Correlated Noise Sources	
	Nearly Uncorrelated Noise Sources	13
	Numerical Example	16
	Metallic Panel Only	16
	Addition of Tiles	17
	Trial Modes	20
	Relationships Between Natural Modes and	21
	Trial Modes	
	Summary	23
4.	SOUND PRESSURE LEVEL IN AN ACOUSTIC CAVITY	25
5.	EMPIRICAL EXPRESSION FOR RANDOM PRESSURE SPECTRA	31
6.	CONCLUDING REMARKS	34
	References	35

NOMENCLATURE

A_F, A_R	Flexible and rigid areas of cavity
a	Plate length
b	Plate width
c	Cavity sound speed
D	$Eh^{3}/_{12(1-v^{2})}$
В	Modulus of elasticity
F _m	m th cavity natural mode
H _n	Plate admittance function
h	Plate thickness
I _n ; I	Plate transfer function; see Eq.(28)
K ² n	$= \frac{m \omega_n^2 a^4}{D}$
Lmr	see equation (62), et. seq.
L _x , L _y	Characteristic lengths of random pressure field
M	Plate generalized mass; also cavity generalized mass
m	Plate mass/area
n	normal
P; P _m	= pa^4 ; see equation (57)
p	Pressure on plate
Q_{m}	Generalized force on plate
q_n	Generalized plate coordinate
R	Correlation function
t	Time
u _c	Pressure field convection velocity
v	Cavity volume
W _m	see equation (57)

w	Plate deflection
x, y, z	Cartesian coordinates
α, β, γ	Empirical constants for random pressure field
∇2	Laplacian
δ*	Boundary layer thickness
Φ	Power spectral density
ρ _m	Plate density
σ	stress
τ	Dummy time
ζm	Modal damping
$^\omega$ m	Modal frequency

1. INTRODUCTION

In the present report we shall treat the response of a structure to a convecting-decaying random pressure field. The treatment follows along conventional lines after Powell and others. That is, the pressure field is modelled as a random, stationary process whose correlation function (and/or power spectra) is determined from experimental measurements. Using this empirical description of the random pressure, the response of the structure is determined using standard methods from the theory of linear random processes. [2,3] The major purpose of the report is to provide a complete and detailed account of this theory which is widely used in practice (in one or another of its many variants). A second purpose is to consider systematic simplifications to the complete theory. The theory presented here is most useful for obtaining analytical results such as scaling laws or even, with enough simplifying assumptions, explicit analytical formulae for structural response. Some of these latter results are thought to be new; however, so many authors have considered various simplified versions of the general theory, the authors hesitate to claim novelty for any specific result. Hence, the title of the present report.

It should be emphasized that, if for a particular application the simplifying assumptions which lead to analytical results must be abandoned, numerical simulation of structural response time histories may be the method of choice. [4,5] Once one is committed to any substantial amount of numerical work (e.g. computer work) then the standard power spectral approach loses much of its attraction.

INPUT-OUTPUT RELATIONS FOR STRUCTURE

In the present section we derive the input-output relations for a flat plate. It will be clear, however, that such relations may be derived in a similar manner for any linear system.

The equation of motion for the small (linear) deformation of a uniform isotropic flat plate is

$$D\nabla^{4}w + m \frac{\partial^{2}w}{\partial t^{2}} = p \tag{1}$$

where w is the plate deflection, p the pressure loading and the other terms are defined in the Nomenclature. Associated with (1) are the natural modes and frequencies of the plate which satisfy

$$D\nabla^{4}\psi_{n} - \omega_{n}^{2}m \psi_{n} = 0 \tag{2}$$

where ω_n is the frequency and $\psi_n(x,y)$ the shape of the nth natural mode. In standard texts it is shown that the ψ_n satisfy an orthogonality condition

$$\iint \psi_n \psi_m \, dxdy = 0 \tag{3}$$
for $m \neq n$

If we expand the plate deflection in terms of the natural modes

$$w = \sum_{n} q_{n}(t) \psi_{n}(x,y)$$
 (4)

then substituting (4) into (1), multiplying by $\psi_{\tilde{m}}$ and integrating over the plate area we obtain

$$M_{m}[q_{m}^{"} + \omega_{m}^{2} q_{m}^{"}] = Q_{m}$$
 (5)

where we have used (2) and (3) to simplify the result. $\rm M_{m}^{}$ and $\rm Q_{m}^{}$ are defined as

$$M_{m} \equiv \iint m \psi_{m}^{2} dxdy$$

$$Q_{m} \equiv \iint p \psi_{m} dxdy$$

$$\vdots \equiv d/_{dt}$$
(6)

For structures other than a plate the final result would be unchanged, (5) and (6); however, the natural modes and frequencies would be obtained by the appropriate equation for the particular structure rather than (1) or (2). Hence, the subsequent development, which depends upon (5) only, is quite general.

Before proceeding further we must consider the question of (structural) damping. We shall defer a discussion of acoustic or fluid damping to a subsequent section. Restricting ourselves to structural damping only we shall include its effect in a gross way by modifying (5) to read

$$M_{m} \left[q_{m} + 2 \zeta_{m} \omega_{m} \dot{q}_{m} + \omega_{m}^{2} q_{m} \right] \equiv Q_{m}$$
 (7)

where ζ_m is a (non-dimensional) damping coefficient usually determined experimentally. This is by no means the most general form of damping possible. However, given the uncertainty in our knowledge of damping from a fundamental theoretical viewpoint

(see [6]) it is generally sufficient to express our meager knowledge. If damping is inherent in the material properties (stress-strain law) of the structure, the theory of viscoelasticity may be useful for estimating the amount and nature of the damping. However, often the damping is dominated by friction at joints, etc., which is virtually impossible to estimate in any rational way.

Now let us turn to the principal aim of this section, the stochastic relations between loading and response. We shall obtain such results in terms of correlation functions and power spectra.

The correlation function of the plate deflection w is defined as

$$R_{w}(\tau;x,y) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} w(x,y,t)w(x,y,t+\tau)dt$$
 (8)

Using (4) we obtain

$$R_{W}(\tau;x,y) = \sum_{m} \sum_{n} \psi_{m}(x,y)\psi_{n}(x,y) R_{q_{m}q_{n}}(\tau)$$
(9)

where

$$R_{q_{m}q_{n}}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} q_{m}(t)q_{n}(t+\tau)d\tau$$
 (10)

is defined to be the cross-correlation of the generalized coordinates, $\boldsymbol{q}_{\text{m}}.$ Defining power spectra

$$\Phi_{W}(\omega; \mathbf{x}, \mathbf{y}) \equiv \frac{1}{\pi} \int_{-\infty}^{\infty} R_{W}(\tau; \mathbf{x}, \mathbf{y}) e^{\mathbf{i}\omega\tau} d\tau$$
 (11)

$$\Phi_{\mathbf{q_m}\mathbf{q_n}}(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} R_{\mathbf{q_m}\mathbf{q_n}}(\tau) e^{\mathbf{i}\omega\tau} d\tau$$
 (12)

we may obtain from (9) via a Fourier Transform

$$\Phi_{\mathbf{w}}(\omega;\mathbf{x},\mathbf{y}) = \sum_{\mathbf{m}} \sum_{\mathbf{n}} \psi_{\mathbf{m}}(\mathbf{x},\mathbf{y}) \psi_{\mathbf{n}}(\mathbf{x},\mathbf{y}) \Phi_{\mathbf{q}_{\mathbf{m}}} \mathbf{q}_{\mathbf{n}}(\omega)$$
(13)

(9) and (13) relate the physical deflection $\,w\,$ to the generalized coordinates or displacements $\,q_{\rm m}^{}.$

Consider next similar relations between physical load $\,\,p\,\,$ and generalized force $\,Q_{m}^{}.\,\,$ Define the cross-correlation

$$R_{Q_{m}Q_{n}}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} Q_{m}(t)Q_{n}(t+\tau) dt$$
 (14)

Using the definition of generalized force (6)

$$Q_m(t) \equiv \iint p(x,y,t) \psi_m(x,y) dxdy$$

$$Q_{n}(t+\tau) \equiv \iint p(x^{*},y^{*},t+\tau) \psi_{n}(x^{*},y^{*}) dx^{*}dy^{*}$$

and substituting into (14) we obtain

$$R_{Q_{m}Q_{n}}(\tau) = \iiint \psi_{m}(x,y)\psi_{n}(x^{*},y^{*})$$

$$\bullet R_{p}(\tau;x,y,x^{*},y^{*}) dxdydx^{*}dy^{*}$$
(15)

where we define the pressure correlation

$$R_{p} (\tau; x, y, x^{*}, y^{*}) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} p(x, y, t) p(x^{*}, y^{*}, t + \tau) dt$$
 (16)

Note that a rather extensive knowledge of the spatial distribution of the pressure is implied by (16).

Again defining power spectra

$$\Phi_{Q_{\mathbf{m}}Q_{\mathbf{n}}}(\omega) \equiv \frac{1}{\pi} \int_{-\infty}^{\infty} R_{Q_{\mathbf{m}}Q_{\mathbf{n}}}(\tau) e^{\mathbf{i}\omega\tau} d\tau$$
(17)

$$\Phi_{p} (\omega; x, y, x^{*}, y^{*}) \equiv \frac{1}{\pi} \int_{-\infty}^{\infty} R_{p}(\tau; x, y, x^{*}, y^{*}) e^{i\omega\tau} d\tau$$
 (18)

we may obtain from (15)

$$\Phi_{Q_{\mathbf{m}}Q_{\mathbf{n}}}(\omega) = \iiint \psi_{\mathbf{m}}(\mathbf{x}, \mathbf{y})\psi_{\mathbf{n}}(\mathbf{x}^*, \mathbf{y}^*)$$

$$\Phi_{\mathbf{p}}(\omega; \mathbf{x}, \mathbf{y}, \mathbf{x}^*, \mathbf{y}^*) \ d\mathbf{x}d\mathbf{y} \ d\mathbf{x}^*, d\mathbf{y}^*$$
(19)

Finally, we must relate the generalized coordinates to the

generalized forces. From (7) we may formally solve (see [2]), for example)

$$q_n(t) = \int_{-\infty}^{\infty} H_n(t-t_1) Q_n(t_1) dt_1$$
 (20)

where

$$H_{n}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} I_{n}(\omega) e^{i\omega t} d\omega$$
 (21)

and the "transfer function",

$$I_{n}(\omega) = \frac{1}{M_{n} \left[\omega_{n}^{2} + 2 \zeta_{n} i \omega_{n} \omega - \omega^{2}\right]}$$

A1so

$$I_n(\omega) = \int_{-\infty}^{\infty} H_n(t) e^{-i\omega t} dt$$

which is the other half of the transform pair, cf (21).

From (20) and (10)

$$\mathbf{R}_{\mathbf{q_m}\mathbf{q_n}}(\tau) = \lim_{T \to \infty} \ \frac{1}{2T} \iint_{-T}^{T} \mathbf{H_m}(\mathbf{t} - \mathbf{t_1}) \ \mathbf{H_n}(\mathbf{t} + \tau - \mathbf{t_2}) \mathbf{Q_m}(\mathbf{t_1}) \mathbf{Q_n}(\mathbf{t_2})$$

$$\bullet$$
 dt₁ dt₂ dt

Performing a change of integration variables and noting (14),

$$R_{q_m q_n}(\tau) = \int_{-\infty}^{\infty} H_m(\xi) H_n(\eta) R_{Q_m Q_n}(\tau - \eta + \xi) d\xi d\eta$$
 (22)

Taking a Fourier Transform of (22) and using the definitions of power spectra (12) and (17), we have

$$\Phi_{\mathbf{q}_{\mathbf{m}}\mathbf{q}_{\mathbf{n}}}(\omega) = \mathbf{I}_{\mathbf{m}}(\omega) \mathbf{I}_{\mathbf{n}}(-\omega) \Phi_{\mathbf{Q}_{\mathbf{m}}\mathbf{Q}_{\mathbf{n}}}(\omega)$$
(23)

Summarizing the relations for correlation functions are (9), (15), and (22) and for power spectra (13), (19) and (23).

For example, substituting (19) into (23) and the result into (13) we have

$$\Phi_{W}(\omega;x,y) = \sum_{m} \sum_{n} \psi_{m}(x,y) \psi_{n}(x,y) I_{m}(\omega) I_{n}(-\omega)$$

•
$$\iiint \psi_{m} (x,y) \psi_{n} (x^{*},y^{*})$$
 (24)

•
$$\Phi_{p}$$
 (ω ; x, y, x*, y*) dxdydx*dy*

This is the <u>desired final result</u> relating the physical loading to the physical response in stochastic terms.

Sharp Resonance or Low Damping Approximation

Often (24) is approximated further. Two approximations are particularly popular and useful. The first is the "neglect of

off-diagonal coupling". This means omitting all terms in the double sum except those for which m=n. The second is the "white noise" approximation which assumes that ϕ_p is essentially constant relative to the rapidly varying transfer functions $I_m(\omega)$. Making both of these approximations in (24) we may obtain the mean square response

$$\overline{w}^2(x,y) \equiv R_W(\tau=0;x,y) = \int_0^\infty \Phi_W(\omega;x,y) d\omega$$

$$\approx \frac{\pi}{4} \sum_{m}^{\Sigma} \frac{\psi_{m}^{2}(x,y)}{M_{m}^{2} \omega_{m}^{3} \zeta_{m}} \qquad \iiint \psi_{m}(x,y) \qquad \psi_{m}(x^{*},y^{*})$$

$$^{\bullet}\Phi_{p} (\omega_{m}; x, y, x^{*}, y^{*}) dxdydx^{*}dy^{*}$$
 (25)

Of course, only one or the other of these approximations may be made, rather than both. However, both stem from the same basic physical idea: The damping is small and hence, I_m has a sharp maximum near $\omega = \omega_m$. That is

$$I_{m}(\omega_{m}) I_{n}(-\omega_{m}) << | I_{m}(\omega_{m}) |^{2}$$

$$I_{m}(\omega_{n}) I_{n}(-\omega_{n}) << | I_{n}(\omega_{n}) |^{2}$$

and the "neglect of off-diagonal coupling" follows.

Also

$$\int \Phi_{\mathbf{p}} \mid \mathbf{I}_{\mathbf{m}}(\omega) \mid^{2} d\omega \stackrel{\sim}{\sim} \Phi_{\mathbf{p}}(\omega_{\mathbf{m}}) \int \mid \mathbf{I}_{\mathbf{m}}(\omega) \mid^{2} d\omega$$

and (25) follows by simple integration.

Note that if we take the spatial mean square of (24) then using orthogonality (for a uniform mass distribution) one may show that the off-diagonal terms do not contribute (see Powell^[1]).

Finally note that if we desire stress rather than deflection, then it may be shown that analogous to (25) one obtains

$$\overline{\sigma}^{2} = \frac{\pi}{4} \sum_{m} \frac{\sigma_{m}^{2}(x,y)}{M_{m}^{2}\omega_{m}^{3}\zeta_{m}} \iiint_{m} \psi_{m}(x,y) \psi_{m}(x^{*},y^{*})$$

$$\bullet \Phi_{p} (\omega_{m}; x,y,x^{*},y^{*}) dxdydx^{*}dy^{*}$$
(26)

where σ_{m} is stress due to $w = \psi_{m}$.

3. SIMPLIFIED RESPONSE CALCULATIONS

Miles' Approximation for Spatially Well-Correlated Noise Sources
(Acoustic source characteristic length is large compared to
structural dimensions)

One sometimes makes the further simplifying assumption that the acoustic pressure loading is perfectly correlated over the plate, i.e.

$$\Phi_{\mathbf{p}} (\omega; \mathbf{x}, \mathbf{y}, \mathbf{x}^*, \mathbf{y}^*) = \Phi_{\mathbf{p}} (\omega)$$
 (27)

and the power spectra is independent of spatial coordinates. This is reasonable provided the characteristic length associated with the acoustic source is large compared to the plate length and width. For jet engine noise the characteristic length is on the order of the engine diameter and this assumption is particularly useful. For boundary layer noise, where the characteristic length is much smaller (on the order of the boundary layer thickness), it is less so. It is normally a conservative assumption in that the plate response is overestimated.

Using (27), (25) and (26) we see that

$$I \equiv \iiint \Phi_{p} \psi_{m}(x,y) \psi_{m}(x^{*},y^{*}) dxdy dx^{*}dy^{*} =$$

$$I_{Miles} \equiv \Phi_{p}(\omega) \left[\iint \psi_{m} dxdy\right]^{2}$$
(28)

Hence (25) and (26) become

$$\overline{w}^{2}(x,y) = \frac{\pi}{4} \sum_{m} \frac{\psi_{m}^{2}(x,y)}{M_{m}^{2}\omega_{m}^{3}\zeta_{m}} \Phi_{p}(\omega_{m}) \left[\iint \psi_{m} dxdy\right]^{2}$$
(29)

$$\overline{\sigma}^{2}(\mathbf{x}, \mathbf{y}) = \frac{\pi}{4} \sum_{\mathbf{m}} \frac{\sigma_{\mathbf{m}}^{2}(\mathbf{x}, \mathbf{y})}{M_{\mathbf{m}}^{2} \omega_{\mathbf{m}}^{3} \zeta_{\mathbf{m}}} \Phi_{\mathbf{p}}(\omega_{\mathbf{m}}) \left[\iint \psi_{\mathbf{m}} \, \mathrm{d} \mathbf{x} \mathrm{d} \mathbf{y} \right]^{2}$$
(30)

These may be interpreted in a particularly helpful way by recognizing that for a <u>uniform</u>, <u>unit</u>, <u>static</u> pressure load (see (5) and (6))

$$q_{m}^{S} = Q_{m}^{S} = \frac{\int \int (1)\psi_{m}}{M_{m}\omega_{m}^{2}} dxdy$$

$$(31)$$

and thus the physical deflection due to this uniform, unit, static load is

$$w^{S} = \sum_{m} q_{m}^{S} \psi_{m} = \sum_{m} \frac{\psi_{m} \iint \psi_{m}}{M_{m} \omega_{m}^{2}} dxdy$$
(32)

and the corresponding stress is

$$\sigma^{S} = \sum_{m} q_{m}^{S} \sigma_{m} = \sum_{m} \frac{\sigma_{m} \int \psi_{m}}{M_{m} \omega_{m}^{2}} dxdy$$
(33)

If the response is dominated by a single mode (both acoustically and due to the static load), then the summations in (29 - 33) may be ignored and (29) and (30) written as

$$\overline{w}^2 = \frac{\pi}{4} \omega_{\overline{m}} \Phi_{\overline{p}} (\omega_{\overline{m}}) (w^S)^2$$
(34)

$$\overline{\sigma}^2 = \frac{\pi}{4} \frac{\omega_m \Phi_p}{\zeta_m} (\omega_m) (\sigma^s)^2$$
 (35)

The above forms are due to Miles [7].

Nearly Uncorrelated Noise Sources

(Acoustic source characteristic length is small compared to structural dimensions)

For some noise sources, e.g. turbulent boundary layers, the assumption of perfect correlation is not satisfactory and a different limiting approximation may be more useful. A typical (empirical) form of the pressure power spectra is [5]

$$\Phi_{\mathbf{p}}(\omega;\mathbf{x},\mathbf{y},\mathbf{x}^{*},\mathbf{y}^{*}) = \Phi_{\mathbf{0}}(\omega) e^{-\left|\frac{\mathbf{x}-\mathbf{x}^{*}}{\mathbf{L}_{\mathbf{x}}}\right|} e^{-\left|\frac{\mathbf{y}-\mathbf{y}^{*}}{\mathbf{L}_{\mathbf{y}}}\right|} \cos \frac{\omega}{U_{\mathbf{C}}} |\mathbf{x}-\mathbf{x}^{*}|$$
(36)

We wish to consider the case where $L_{\chi} << a$, $L_{\gamma} << b$ and

 L_x, L_y - (boundary layer) noise characteristic lengths in x,y directions

a, b - structural lengths in x,y directions $\label{eq:local_local} \text{In Miles' approximation, it was implicitly assumed that L_X} >> a, \\ L_V >> b.$

If we substitute (35) into (25) or (28), the result is

$$I \equiv \iiint \Phi_{p} \psi_{m}(x,y) \psi_{m}(x^{*},y^{*}) dxdy dx^{*}dy^{*}$$
(36)

$$_{\sim}^{\sim}$$
 $^{\Phi}_{0}$ (w) 4 $L_{x}^{}L_{y}^{}$ $\int\!\!\int\,\psi_{m}^{}^{2}$ (x,y) dxdy

To obtain the above we note that if $L_x << a$, $L_y << b$ then only for $x^* \stackrel{\sim}{\sim} x$ and $y^* \stackrel{\sim}{\sim} y$ will the integrand of right hand side of (36) contribute. Thus

$$I \stackrel{\sim}{\sim} \Phi_0 (\omega) \iiint_m^2 (x,y) \left\{ \iint_c^{-\left|\frac{x-x^*}{L_x}\right|} e^{-\left|\frac{y-y^*}{L_y}\right|} \cos^{\left|\omega\right|} \frac{x-x^*}{U_c} dx^* dy^* \right\} \ dx dy$$

Performing the integral over x*, y* (for definiteness consider a rectangular plate of dimensions, a,b)

where
$$k \equiv \omega L_{x/U_{c}}$$

Neglecting $e^{-x/}L_x$, etc. compared to 2, one finally obtains (36). Note this last step is a particularly good approximation

if ψ_m is small near x=0, a and y=0, b. Conversely, if ψ_m had its maxima near the plate edges, the above might require modification (this is not the usual case).

If one still assumes the response is dominated by a single mode (a more questionable assumption for $L_{\rm X}<<$ a than $L_{\rm X}>>$ a) we see, comparing the above result for I to Miles' approximation, that the latter may be modified to give the structural response by multiplying by a factor of (square root for rms response)

$$\frac{I}{I_{\text{Miles}}} \sim \frac{4 L_{x} L_{y} \iint \psi_{m}^{2}(x,y) dxdy}{\left[\iint \psi_{m} dxdy\right]^{2}}$$
(37)

For typical $\psi_{\rm m}$, this ratio will be on the order of $4(L_{\rm X}/a)(L_{\rm y}/b)$ and hence, as expected, leads to a reduction in the estimated structural response from that given by the Miles' approximation.

Numerical Example

As an example, we have considered a clamped isotropic plate (with and without tiles) representative of those recently tested in a wind tunnel for Space Shuttle^[8]. Although this was nominally a panel flutter test, some tile failures occured for reasons other than flutter. Hence, it is of interest to assess the possible impact of vibroacoustic response on these panels.

Metallic Panel Only:

The aluminum metallic panel has the following properties

E =
$$10^7$$
 psi a = $24''$
 $\rho_m = .1 \# /_{in} 3$ b = $18''$
h = $.05'$

The first natural mode is approximated by

$$\psi_1 = \begin{bmatrix} 1 - \cos 2\pi x \\ a \end{bmatrix} \begin{bmatrix} 1 - \cos 2\pi y \\ b \end{bmatrix}$$

Using a Rayleigh-Ritz approximation the calculated natural frequency is 37 cps as compared to the measured value of 42 cps [8]. Also it is calculated that

$$w^{S} = .62 inches/psi$$

and
$$\sigma^{s} = 2360 \text{ psi/}_{psi}$$

From Figure 12 of Reference [9], $\Phi_{\rm p}$ = .00305 psi²/_{cps} at 37 cps and it is assumed that $\zeta_{\rm l}$ = .01. Thus, using Miles' approximation,

$$\sqrt{\overline{\sigma}^2} = \sqrt{\frac{\pi}{4\zeta_1}} \left[\omega_1 \, \Phi_p \right]^{1/2} \, \sigma^s$$

$$= 7400 \, \text{psi}$$
(35)

However, from Vaicaitis [5], et. al.,

$$L_{x} = 1.22 \delta^{*}$$
 , $L_{y} = .26 \delta^{*}$

where δ^* is the boundary layer thickness. Taking δ^* = 1 inch and using the previously assumed ψ_1 , we compute from (37)

$$\frac{I}{I_{\text{Miles}}} = 9 \quad \frac{L_{x}}{a} \quad \frac{L_{y}}{b} = .0066$$

which reduces the rms stress to

$$\sqrt{\overline{\sigma^2}}$$
 = 7400 x [.0066]^{1/2} = 600 psi

Addition of Tiles:

The measured value of ω_1 is 85 cps with 1" tiles resting on a soft felt strain isolator which in turn is bonded to the metallic panel^[8]. From Muhlstein^[9], et. al., Φ_p = .00148 at 85 cps.

It is assumed that $\zeta_1 = .02$ and

$$\sigma_{\text{with tiles}}^{\text{S}}$$
 is estimated from

$$\sigma_{\text{with tiles}}^{S} = \frac{(\text{mass x } \omega_{1}^{2})}{\text{no tiles}} \quad \sigma_{\text{no tiles}}^{S}$$

$$\frac{(\text{mass x } \omega_{1}^{2})}{\text{tiles}}$$

(The above could be computed more precisely from the analysis of Reference [10] if it were necessary.)

Now

mass_{no} tiles =
$$.005 \#/_{in}^2$$

mass_{tiles} = $(.005 + .0052) \#/_{in}^2 =$

metallic plate and tiles

 σ^s = $.005 \#/_{psi}^2$

The stress in the metallic plate with tiles added is then

$$\sqrt{\overline{\sigma^2}}$$
 = 655 psi (Miles' approximation)
= 53 psi corrected for L_x, L_y effect.

The bending stress in the tile itself is computed to be 65.5 psi and 5.3 psi respectively. Here, we make the conservative assumption that the isolator is ineffective and the tile bends with the metallic plate, i.e.

$$\frac{\sigma_{s}^{Tile}}{\sigma_{s}^{Aluminum}} = \frac{(Et)_{Tile}}{(Et)_{Aluminum}} = \frac{50,000 \times 1}{10^{7} \times .05} = .1$$

The through the thickness stress (assuming tile moves up and down on isolator with no motion of metallic plate) is computed using the following values

$$\sigma^{s} = 1 psi/psi$$

$$\zeta_1 = .1$$

$$\omega_1$$
 = 680 cps

$$\Phi_{\rm p}$$
 = .0002 psi²/cps

The result is

$$\sqrt{\overline{\sigma}^2}$$
 = 1.2 psi Miles' Approximation

Correcting for L_x , L_y but now using dimensions of tile, a = b = 6", we have

$$\frac{I}{I_{\text{Miles}}} = .079$$
and $\sqrt{\sigma^2} = 1.2 \times [.079]^{1/2} = .34 \text{ psi.}$

$$\frac{\sigma_{s}^{\text{Tile}}}{\sigma_{s}^{\text{Aluminum}}} = \frac{(\text{Et})_{\text{Tile}}}{(\text{Et})_{\text{Aluminum}}} = \frac{50,000 \times 1}{10^{7} \times .05} = .1$$

The through the thickness stress (assuming tile moves up and down on isolator with no motion of metallic plate) is computed using the following values

$$\sigma^{s} = 1 \text{ psi/}_{psi}$$

$$\zeta_1 = .1$$

$$\omega_1 = 680 \text{ cps}$$

$$\Phi_{\rm p} = .0002 \, \mathrm{psi}^2/\mathrm{cps}$$

The result is

$$\sqrt{\overline{\sigma}^2}$$
 = 1.2 psi Miles' Approximation

Correcting for L_x , L_y but now using dimensions of tile, $a=b=6^{\circ}$, we have

$$\frac{I}{I_{\text{Miles}}} = .079$$
and $\sqrt{\overline{\sigma}^2} = 1.2 \times [.079]^{1/2} = .34 \text{ psi.}$

Trial Modes

Sometimes it is convenient to use assumed trial modes rather than the natural modes. To determine the latter may itself involve a rather elaborate calculation.

Define

$$\psi_{m}$$
 - natural mode σ_{m} - stress due to ψ_{m}

$$\phi_j$$
 - trial mode σ_j - stress due to ϕ_j

where, assuming for simplicity that $\ ^{\Phi}p\ (\omega_{m})$ is independent of position,

$$\frac{q_{\rm m}^2}{q_{\rm m}^2} = \frac{\pi}{4} \Phi_{\rm p}(\omega_{\rm m}) \frac{\left[\int \int \psi_{\rm m} \, \mathrm{d}x \mathrm{d}y\right]^2}{M_{\rm m}^2 \omega_{\rm m}^3 \zeta_{\rm m}}$$
(38)

$$M_{m} \equiv \iint m \psi_{m}^{2} dx dy$$

$$\omega_{m}$$
 - m^{th} natural frequency

$$\zeta_m$$
 - m^{th} damping ratio

 $Clarkson^{[11]}$ and others advocate retaining only m = 1.

It will be shown (see equations (41) - (48) that

$$\iint \psi_{m} dxdy = b_{1}^{m} a b$$

$$M_{m} = \max_{j} \sum_{j} (b_{j}^{m})^{2}$$

$$\sigma_{m} = \sum_{j} b_{j}^{m} \sigma_{j}$$
(39)

(38) and (39) may then be used to calculate $\overline{\sigma}^2$, viz.

$$\overline{\sigma}^2 = \sum_{m} \overline{q_m^2} \sigma_m^2$$
 (40)

Here we neglect $q_m q_n$. Call this OPTION I.

Relationships Between Natural Modes and Trial Modes:

We have

$$\psi_{\mathbf{m}} = \sum_{\mathbf{j}} \mathbf{b}_{\mathbf{j}}^{\mathbf{m}} \phi_{\mathbf{j}}$$
 (41)

where b_j^m are the eigenvectors of a natural mode calculation using the trial modes, ϕ_j .

We also know

$$w = \sum_{m} q_{m} \psi_{m} = \sum_{j} a_{j} \phi_{j} **$$
(42)

Using orthogonality property * of ψ_{m} , we determine from (42) that

$$q_{m} = \sum_{j} \frac{a_{j} \int \int \phi_{j} \psi_{m} dx dy}{\int \int \psi_{m}^{2} dx dy}$$
(43)

Using (41) in (43) and orthogonality property * of $\phi_{\,j}$

$$q_{m} = \sum_{j} a_{j} b_{j}^{m}$$

$$\frac{\sum_{j} (b_{j}^{m})^{2}}{\sum_{j} (b_{j}^{m})^{2}}$$
(44)

*Note we are assuming mass distribution is uniform. ** a_i are generalized coordinates associated with ϕ_i . Thus

$$\frac{\overline{q_m q_n}}{\sum_{j=1}^{n} \sum_{k=1}^{n} \overline{a_j a_k} b_j^m b_k^n} [\sum_{k=1}^{n} (b_j^m)^2] [\sum_{k=1}^{n} (b_k^n)^2]$$
(45)

In practice we probably only need consider m = n.

We also need for some purposes to consider

$$M_{m} \equiv \iint m \psi_{m}^{2} dxdy$$
 and $\iint \psi_{m} dxdy$

Using (41)

$$\iint_{m} \psi_{m}^{2} dxdy = m \sum_{kj} b_{k}^{m} b_{j}^{m} \iint_{k} \phi_{j} dxdy$$
or
$$M_{m} = m \sum_{j} (b_{j}^{m})^{2} a b$$
(46)

where a,b are length, width of plate

and
$$\iint \psi_{m} dxdy = \sum_{j} b_{j}^{m} \iint \phi_{j} dxdy$$
$$= b_{1}^{m} a b$$
(47)

Also from (40) and (41)

$$\sigma_{m} = \sum_{j} b_{j}^{m} \sigma_{j}$$
 (48)

cf. (39) and (46) - (48).

* again assuming mass is uniformly distributed.

Summary: -

Note this method is not limited to uniform pressure loading, even though for convenience we have made this assumption up to this point.

OPTION II

Calculate

$$\overline{a_j a_k} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} a_j(t) a_k(t) dt$$
 (49)

The a would have to be determined from a suitable modal dynamic analysis.

Calculate

$$\overline{\sigma^2} = \sum_{j k} \overline{a_j a_k} \sigma_j \sigma_k$$

$$\sigma_{j}$$
 - stress at x, y due to $w = \phi_{j}(x,y)$

OPTION III

Calculate $\overline{a_j a_k}$

Calculate
$$\overline{q_m q_n} = \sum_{\substack{j \ k}} \sum_{\substack{j \ k}} \overline{a_j a_k} b_j^m b_k^n$$

$$[\sum_{j} (b_j^m)^2] [\sum_{k} (b_k^n)^2]$$
(50)

Calculate

$$\overline{\sigma^2} = \sum_{m} \sum_{n} \overline{q_m q_n} \sigma_m \sigma_n$$

 σ_{m} - stress at x, y due to $w = \psi_{m}(x,y)$

Since $\psi_{\tilde{m}}$ are natural modes, it should be possible to approximate

$$\overline{q_m q_n} \quad \underline{\sim} \quad \overline{q_m^2} \quad \delta_{mn}$$

Note $b_j^{\ m}$ are eigenvectors from a trial mode eigenvalue calculation.

4. SOUND PRESSURE LEVEL IN AN ACOUSTIC CAVITY

In many instances the transmission of random pressure fluctuations from an external flow through a flexible wall into an interior cavity is of concern. Given the wall motion, the cavity pressure (sound) field may be determined. However, there also may be a "feedback" in that the cavity pressure modifies the plate motion. There also may be "feedback" due to pressure changes in the external flow as a result of flexible wall motion. Both give rise to acoustic or aerodynamic damping which may substantially modify the wall motion. Although this modification may be significant [4] in some instances, in this elementary discussion we ignore it.

The following analysis follows closely the derivation of Ventres^[4] which is notable for its generality and simplicity. The analysis is valid for arbitrary cavity geometry and time dependent motion. The end result is an expansion for the acoustic pressure within the cavity due to motion of the walls, in terms of the normal modes of the cavity with its walls assumed to be rigid.

Let the cavity occupy a volume V, and be surrounded by a wall surface A, of which the portion A_F is flexible, while the remainder A_R is rigid. If the fluid within the cavity is at rest prior to motion of the wall, the fluid pressure p satisfies

the familiar wave equation, and associated boundary condition:

$$\nabla^2 p - 1/c^2 \frac{\partial^2 p}{\partial t^2} = 0 \tag{51}$$

$$\frac{\partial p}{\partial n} = -\rho \frac{\partial^2 w}{\partial t^2} \quad \text{on} \quad A_{\mathbf{F}}$$
 (52)

$$= 0$$
 on A_R

In these equations p and c are the fluid density and acoustic velocity within the cavity, and w is the displacement of the flexible portion of the wall in the normal direction n (positive outward).

Equation (51) has normal mode solutions $F_m e^{i\omega t}$, m=0,1,2... with the following properties

$$\nabla^2 F_{m} = -\left(\frac{\omega_{m}}{c}\right)^2 F_{m} \tag{53}$$

$$\frac{\partial F}{\partial n} = 0 \quad \text{on} \quad A \tag{54}$$

$$\frac{1}{V} \int_{V} F_{m} F_{n} dV = 0 \qquad m \neq n$$
(55)

$$\equiv M_n \qquad m = n$$

Note that equation (53) has the solution ω_0 = 0, F_0 = 1. All other frequencies ω_m , m = 1,2, . . . are positive, however.

The wave equation (51) can be transformed into a set of ordinary differential equations in time by using Green's Theorem in the form:

$$\int_{V} (p \nabla^{2} F_{m} - F_{m} \nabla^{2} p) dV =$$

$$\int_{A} (p \frac{\partial F_{m}}{\partial n} - F_{m} \frac{\partial p}{\partial n}) dA$$
(56)

By defining

$$P_{m} = \frac{1}{\rho e^{2}V} \int_{V} pF_{m} dV$$

$$W_{m} = \frac{1}{V} \int_{A_{p}} w F_{m} dA$$
(57)

and making use of the fact that p and F_{m} satisfy equations (51) and (53), and boundary conditions (52) and (54), the following ordinary differential equations are obtained from (56):

$$P_{m} + \omega^{2}_{m} P_{m} = -W_{m}$$
 (58)

A dot $(^{\bullet})$ denotes differentiation with respect to time. The quantities P_m and W_m are the coefficients in normal mode expansions for the pressure and plate deflection, e.g.

$$\frac{\mathbf{p}}{\rho c^2} = P = \sum_{m} \frac{P_m}{M_m} F_m$$
 (59)

Since the normal modes F_m satisfy the homogeneous boundary condition (54) on the entire wall surface A, the normal derivative of expression (59) does not converge uniformly on the flexible portion, A_F , of the wall surface. Expression (59) is suitable, however, for calculating the pressure itself throughout the cavity and everywhere on the wall surface, including the flexible portion.

Equations (58) may be easily solved for arbitrary wall motions. The solution appropriate for the usual initial conditions, $p = \frac{\partial p}{\partial t} = 0$, at t = 0 is

$$P_{0} = -W_{0}(t)$$

$$P_{m}(t) = -\int_{0}^{t} \dot{W}_{m}(\tau) \cos \omega_{m}(t-\tau) d\tau$$
(60)

In keeping with the intention that the cavity be in equilibrium at t=0 and for all previous time, it has been specified that w=0 and $\frac{\partial w}{\partial t}=0$ at t=0 in (60).

The wall deflection w is often expressed as a series of the form

$$w = \sum_{m} q_{m} \psi_{m}$$
 (61)

in which the modal functions Ψ_m are defined over the region $A_{\rm F}$, their properties being determined by structural considerations.

In this situation the quantities W_{m} are, from (57)

$$W_{m} = \frac{A_{F}}{V} L_{mr} q_{r}$$
 (62)

where

$$L_{mr} = \frac{1}{A_F} \int_{A_F} F_m \psi_r dA$$

Equations (58) become

$$P_{m} + \omega^{2} P_{m} = - A_{F} L_{mr} q_{r}$$
 (63)

In the present context the relationships between structural motion and cavity pressure power spectra are of interest.

Taking a Fourier Transform of (63), we have

$$(-\omega^2 + \omega_m^2) \overline{P}_m = A_F L_{mr} \omega^2 \overline{q}_r$$
 (64)

Defining power spectra in the usual way, we obtain

$$\Phi_{\underset{m}{p}_{m}} = |H_{\underset{m}{mrs}}|^{2} \Phi_{q_{r}q_{s}}$$
(65)

where
$$H_{mnrs} = H_{mr} H_{ns}$$
 (66)

and
$$H_{mr} = \frac{A_F}{V} = \frac{L_{mr}\omega^2}{(-\omega^2 + \omega_m^2)}$$
 (67)

Alternatively using (60) and (62) one can relate the correlation

functions of P_m and q_r . Subsequently, one can relate q_r to w via (61) and P_m to P via (59). Eventually, we may obtain a relationship between the power spectra of P and W, the desired result. Since much of this analysis parallels that of earlier sections on the relationship of external pressure to structural motion we omit details here.

5. EMPIRICAL EXPRESSION FOR RANDOM PRESSURE SPECTRA

From (25) it is seen that the pressure power spectra is required. This quantity is usually determined by measurement with an empirical curve fit made to the data. Here we shall concentrate on boundary layer pressure fluctuations although the results will be qualitatively representative of other random fluid motion such as engine noise, etc.

Let us begin by considering the correlation function (16). Various authors have given empirical equations. Typical is the one given by Y. L. $\text{Lin}^{[3]}$

$$R_{p} (\tau; x,y,x^{*},y^{*}) = \overline{p}^{2} e^{-\alpha |x^{*}-x|}$$

$$\cdot e^{-\beta |(x^{*}-x)-U_{c}\tau|} e^{-\gamma |y^{*}-y|}$$
(68)

$$\overline{p}^2$$
, U_c , α , β , γ

are constants chosen to fit the experimental data. Note that $R_{p} \quad \text{depends only on the } \underline{\text{difference}} \text{ of the spatial coordinates.}$ To the extent that this is an accurate approximation this greatly reduces the amount of experimental information required.

Let us consider for a moment physical interpretations of the constants. From (68)

$$R_{p}(\tau;x,y,x^{*},y^{*}) = R_{p}(\tau;x^{*}-x,y^{*}-y)$$
 (69)

For $x-x^* = y-y^* = 0$,

$$R_{p}(\tau;0,0) = \overline{p}^{2}$$
 (70)

Hence, \overline{p}^2 is is the mean square pressure, see (16), at any point on the plate. The mean square at all points is the same by virtue of the assumption that only the spatial differences appear in (68).

Next consider $|x^*-x| \neq 0$. The second exponential factor of (68) represents a convecting pressure form traveling at velocity U_c . For fixed x^*-x and y^*-y , R_p will have a maximum at $\tau_{max} = (x^*-x)/U_c$.

Finally, the constants α , β , γ may be written

$$\alpha = c_1/\delta *$$

$$\beta = c_{2/\delta}^{*}$$

$$\gamma \equiv c_{3/\delta}^{*}$$

where δ^* is the boundary layer thickness and c_1 , c_2 , c_3 are non-dimensional constants on the order of .01-1. Of course, it is expected on physical grounds that the spatial scale would be roughly of the size of δ^* .

Using the definition of power spectra (18) and the empirical expression (68) we have

$$\Phi_{\mathbf{p}} (\omega; \mathbf{x}^* - \mathbf{x}, \mathbf{y}^* - \mathbf{y}) = \frac{1}{\pi} \int_{-\infty}^{\infty} R_{\mathbf{p}} (\tau; \mathbf{x}^* - \mathbf{x}, \mathbf{y}^* - \mathbf{y}) e^{\mathbf{i}\omega\tau} d\tau$$
 (72)

$$= \frac{\overline{p}^2}{\pi} \left[\frac{2\beta U_c}{(\beta U_c)^2 + \omega^2} \right] e^{-\alpha |x^* - x| - \gamma |y^* - y| - i\omega} (\frac{x^* - x}{U_c})$$

This equation is the input needed for (24) or (25) to carry our analysis further. Alternatively Φ_{p} may be available directly from experimental data.

It should be noted that more complicated correlation and power spectra functions are sometimes used. See (36) and Reference [5].

6. CONCLUDING REMARKS

A review of power spectral methods for determining linear response of structures to random pressure fluctuations has been given. Various simplifying assumptions are made for the purpose of obtaining useful explicit formulae for structural response. The transmission of sound through a flexible structure into an interior cavity is also briefly treated.

REFERENCES

- 1. A. Powell, Chapter 8 in book, <u>Random Vibration</u>, edited by S. H. Crandall, Technology Press, Cambridge, Mass., 1958.
- 2. J. H. Laning and R. H. Battin, Random Processes in Automatic Control, McGraw-Hill, New York, N.Y., 1956.
- 3. Y. K. Lin, <u>Probabilistic Theory of Structural Dynamics</u>,
 McGraw-Hill, New York, N.Y., 1967.
- 4. E. H. Dowell, <u>Aeroelasticity of Plates and Shells</u>, Noordhoff
 International Publishing, Leyden, The Netherlands, 1974.
- 5. R. Vaicaitis, E. H. Dowell, and C. S. Ventres, <u>Nonlinear</u>

 <u>Panel Response by a Monte Carlo Approach</u>, AIAA Journal,

 Vol. 12, No. 5, May 1974, pp. 685-691.
- 6. B. J. Lazan, <u>Damping of Materials and Members in Structural</u>
 Mechanics, Pergamon Press, New York, N.Y., 1968.
- J. W. Miles, On Structural Fatigue Under Random Loading,
 J. Aeronautical Sciences, Vol.21, No. 11, November 1954,
 pp. 753-762.
- 8. M. A. Kotch, <u>Pretest Information for Panel/TPS Flutter Tests</u>
 in the Ames Research Center 2 x 2 foot Transonic Wind Tunnel
 (Model 40-0, Test OS4), SD74-SH-0162, Space Division, Rockwell
 International, May 3, 1974.
- 9. L. Muhlstein, Jr., P. A. Gaspers, and D. W. Riddle, <u>An Experimental Study of the Influence of the Turbulent Boundary Layer on Panel Flutter</u>, NASA TN D-4486, March 1968.

- 10. E. H. Dowell, <u>Vibration and Flutter Analysis of Reusable</u>

 <u>Surface Insulation Panels</u>, J. Spacecraft and Rockets, Vol. 12, No.1,

 January 1975, pp. 44-50
- 11. B. L. Clarkson, Stresses in Skin Panels Subjected to Random Acoustic Loading, AFML-TR-67-199, 1967.