Metodi Matematici per l'Informatica (secondo canale)

Soluzioni di: Andrea Princic. Cartella delle soluzioni

12 Febbraio 2019

Es 1.

Per ogni tripla di insiemi $A, B \in C$ tali che A - B = C si ha:

- **A.** $C \neq \emptyset$; **Falso** se $A \subseteq B$
- **B.** $C \cup A = B$; **Falso** $C \cup A = A$
- C. $C \subseteq A$; Vero

Es 2.

Per ogni coppia di insiemi $A \in B$ si ha che:

- **A.** se A è numerabile allora A-B è numerabile; **Falso** A-B potrebbe essere finito
- **B.** se $A \in B$ non sono numerabili allora $A \cap B$ non è numerabile; **Falso** ad esempio se $A = \mathbb{N} \cup 2^{\mathbb{N}}$ e $B = \mathbb{R}$, allora $A \cap B = \mathbb{N}$
- C. se A e B sono numerabili allora $A \times B$ è numerabile; Vero

Es 3.

Si consideri la relazione $D = \{(a, b) \mid a, b \in \mathbb{N} \text{ e } a \text{ divide } b\}.$

- **A.** D è una relazione d'ordine stretto; **Falso** non è antiriflessiva (è riflessiva)
- **B.** D è una relazione d'ordine largo; **Vero**
- C. esiste $x \in \mathbb{N}$ tale che per ogni $y \in \mathbb{N}$ se $x \neq y$ allora $(y, x) \in D$; Vero x = 0

Es 4.

Scrivere una relazione di ordine stretto sull'insieme $A = \{P, L, M, G\}$.

$$\{(P,L),(P,M),(P,G),(L,M),(L,G),(M,G)\}$$

Es 5.

Scrivere la definizione di *chiusura simmetrica* di una relazione.

La chiusura simmetrica di una relazione $R \subseteq A \times A$ è la più piccola relazione simmetrica R_1 tale che $R \subseteq A \times A$

Es 6.

Sia x un numero reale. Dimostrare che per ogni $n \geq 2$ si ha

$$(1-x)\sum_{k=0}^{n-1} x^k = 1 - x^n$$

Caso base n=2:

$$(1-x)\sum_{k=0}^{1} x^k = (1-x)(1+x) = 1-x^2$$

Passo induttivo n+1:

$$(1-x)\sum_{k=0}^{n} x^{k} = (1-x)\sum_{k=0}^{n-1} x^{k} + (1-x)x^{n}$$
$$= 1 - x^{n} + (1-x)x^{n}$$
$$= 1 - x^{n} + x^{n} - x^{n+1}$$
$$= 1 - x^{n+1}$$

Es 7.

Definire il concetto di modello nella logica predicativa.

Un modello è un'interpretazione che rende vera una formula

Es 8.

Vero o Falso? (N.B. Le lettere A, B, C, p_1, p_2, p_3 variano su proposizioni arbitrarie nel linguaggio della logica proposizionale, non necessariamente distinte).

- **A.** $((p_1 \land \neg p_2) \lor (\neg p_3 \land p_2) \lor (\neg p_1 \lor p_3))$ è una tautologia; **Vero** basta fare la tavola di verità
- **B.** Se $A \vDash B \lor C$ e $B \vDash \neg C$ allora $(A \to C) \vDash \neg B$; **Falso** nel caso in cui A = F e B = V
- C. Se $A \wedge \neg B$ è soddisfacibile allora $A \to B$ è insoddisfacibile; Falso perché $A \to B = \neg A \vee B = \neg (A \wedge \neg B)$ e il fatto che $A \wedge \neg B$ sia soddisfacibile non implica che la sua negazione non lo possa essere
- **D.** Se esiste B tale che il tableau di $B \land \neg A$ ha tutti i rami chiusi allora A è una tautologia; **Falso** il fatto che $B \land \neg A$ abbia tutti i rami chiusi significa che $\neg B \lor A$ è una tautologia, ma questo non significa che anche A debba esserlo

Es 9.

I seguenti enunciati sono verità logiche: Vero o Falso?

- **A.** $\exists x \forall y (A(y) \rightarrow \neg B(x))$; **Falso** quando A e B sono entrambe tautologie nel dominio
- **B.** $\exists y(\neg \exists x \neg A(x) \lor \neg A(y))$ **Vero** si può interpretare così: esiste una y per la quale A è falsa, oppure non esiste nessuna x per la quale è falsa. Questo ovviamente è vero perché o A è falsa per qualche y oppure è vera per tutte le x

I tableau si trovano in fondo al documento.

Es 10.

Formalizzare le proposizioni seguenti con enunciati nel linguaggio predicativo \mathcal{L} composto da un simbolo < di relazione a due argomenti.

A. La relazione < ha un elemento minimo.

$$\exists x \forall y (x < y)$$

B. La relazione < non ha un elemento massimo.

$$\neg \exists x \forall y (y < x)$$

C. La relazione < è densa, vale a dire che ogni coppia di elementi nella relazione < possiede un elemento intermedio.

$$\forall x \forall y (x < y \to \exists z (x < z \land z < y))$$

Tableau

$$\neg \exists x \forall y (A(y) \to \neg B(x))$$

$$| \neg \forall y (A(y) \to \neg B(a))$$

$$| \neg (A(b) \to \neg B(a))$$

$$| A(b)$$

$$| B(a)$$

$$\neg \exists y (\neg \exists x \neg A(x) \lor \neg A(y) \\ | \\ \neg (\neg \exists x \neg A(x) \lor \neg A(a)) \\ | \\ \exists x \neg A(x) \\ | \\ A(a) \\ | \\ \neg A(b) \\ | \\ \neg (\neg \exists x \neg A(x) \lor \neg A(b)) \\ | \\ \exists x \neg A(x) \\ | \\ A(b) \\ | \\ \times$$