

Todays focus

- Free energy
- FEP Free Energy Perturbation

2

Why free energy?

- Gibbs energy: G = H TS
- Qualitative results: Free energy predicts reactions
 - $-\Delta G < 0 =>$ Reaction will be spontaneous
- Quantitative results: Free energy predicts binding strengths
 - Which of the 10 ligands binds best?

Example: Solvation	
-	
 Free energy of solvation 	
Lennard-Jones interactions	Na+
between solute and solvent	5.
	6+ 6+
$\Delta G_{sol} = \Delta G_{vdw} + \Delta G_{cav}$	$+\Delta G_{elec}$
joi van car	1
Cost for creating cavity in water (Surface entension / tropy)	Electrostatic interactions
(Surface Citation) (1994)	interactions

Free energies of biomolecules

- Gibbs free energy G is defined in the NPT ensemble
- Helmholtz free energy H is defined in the NVT ensemble
- Practice normally to have a pressure-volume work that is zero in biological systems

=> H = G

5

Free energy landscape Free energy depend only on the state, not on how we get there

The sampling problem

- To get average values we need to sample the entire phase space
- · Simulations typically sample low-energy regions
- Large errors due to poor sampling of high-energy regions

7

Absolute free energy

- Very difficult to obtain from simulations entropy is a problem
- · Sometimes possible to estimate
 - Cavity sizes in water when solvating ions can be calculated
 - Loss of entropy when a bond cannot rotate anymore can be approximated
- Normally we do not need absolute energies

8

Relative free energies

- What is the difference in free energy when binding a sodium ion vs potassium ion here?
- · Alternative formulation for binding:
 - What is the difference between having this ligand in water and having it bound in the receptor?
- Compare different system setups

q

Computational alchemy

• Literally means "the art of transforming"

• Same "coordinates" but different interactions

10

Free energy perturbation (FEP)

- Let us consider two systems A and B described by Ua and $_{\mbox{\scriptsize IB}}$

$$F = -kT \ln Q = \int ... \int e^{-U_{pol}/kT} d\vec{r}_1 ... d\vec{r}_N / \Lambda^{3N}$$

$$\Delta F = -kT \ln \frac{Q_B}{Q_A}$$
 Configurational integral, z
$$= -kT \ln \frac{Z_B}{Z_A} = -kT \ln \frac{\int e^{-U_B/kT} d\Gamma}{\int e^{-U_A/kT} d\Gamma}$$

11

Free energy perturbation (FEP)

$$\Delta F = -kT \ln \frac{\int e^{-U_B/kT} e^{tU_A/kT} e^{-U_A/kT} d\Gamma}{\int e^{-U_A/kT} d\Gamma}$$

$$= -kT \ln \frac{\int e^{-(U_B-U_A)} e^{-U_A/kT} d\Gamma}{e^{-U_A/kT}}$$

$$= -kT \ln \left\langle e^{-(U_B-U_A)/kT} \right\rangle_A$$

FEP (Zwanzig's formula)

Free energy perturbation (FEP)

- We must have reasonable overlap between the two phase spaces
- · Similar states should be favored
- Otherwise we get an average of extremely large positve/negative values and low accuracy

13

Free energy perturbation (FEP)

Fixing the sampling issue:

- introduce artificial intermediate states described by

$$U_{m} = (1 - \lambda_{m})U_{A} + \lambda_{m}U_{B} = U_{A} + \lambda_{m}\Delta U$$

$$\Delta U = U_{_B} - U_{_A}$$

14

Free energy perturbation (FEP)

$$U_{m} = (1 - \lambda_{m})U_{A} + \lambda_{m}U_{B} = U_{A} + \lambda_{m}\Delta U$$

$$\Delta G = G_B - G_A = -\beta^{-1} \ln \left\langle \exp(-\beta \Delta U) \right\rangle_A$$

$$\Delta U = U_R - U_A$$

$$\Delta U = U_B - U_A$$

$$\Delta G = G_B - G_A = -\beta^{-1} \sum_{m=1}^{n-1} \ln \left\langle \exp\left[-\beta (U_{m+1} - U_m)\right]\right\rangle_m$$

Thermodynamic integration

• Let $U(\lambda = 0) = U_A$ and $U(\lambda = 1) = U_B$:

$$\begin{split} \Delta F &= \int_0^1 \frac{\partial F}{\partial \lambda} d\lambda \\ \frac{\partial F(\lambda)}{\partial \lambda} &= -kT \frac{\partial \ln Z(\lambda)}{\partial \lambda} = -kT \frac{1}{Z} \frac{\partial Z(\lambda)}{\partial \lambda} \\ &= -kT \frac{1}{Z} \frac{\partial}{\partial \lambda} \int e^{-U(\lambda)kT} d\Gamma = \frac{\int \frac{\partial U(\lambda)}{\partial \lambda} e^{-U(\lambda)kT} d\Gamma}{\int e^{-U(\lambda)kT} d\Gamma} \end{split}$$

16

Thermodynamic integration $\frac{\partial F(\lambda)}{\partial \lambda} = \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle_{\lambda} \qquad \text{Calculated from MD simulations}$ $\Delta F = \int_0^1 \frac{\partial F}{\partial \lambda} d\lambda = \int_0^1 \left\langle \frac{\partial U}{\partial \lambda} \right\rangle_{\lambda} d\lambda$ TI (integration formula)

17

FEP is actually equivalent to TI

Requires close λ-spacing

$$\Delta G = G_B - G_A = -\beta^{-1} \sum_{m=1}^{n-1} \ln \left\langle \exp\left[-\beta (U_{m+1} - U_m)\right] \right\rangle_m$$

$$\Delta G = -\beta^{-1} \sum_{m=1}^{n-1} \ln \left\langle \exp\left[-\beta \Delta U \Delta \lambda_m\right] \right\rangle_m$$

$$\Delta U = U_B - U_A$$

$$U_m = (1 - \lambda_m)U_A + \lambda_m U_B$$

$$\Delta G = \sum_{i=1}^{n-1} \left\langle \frac{\partial U_m}{\partial \lambda} \right\rangle \Delta \lambda_n$$

$$\Delta G = \int_{0}^{1} \left\langle \frac{\partial U(\lambda)}{\partial \lambda} \right\rangle d\lambda$$

19

Practical problems with FEP/TI

- Appearing or vanishing atoms
- Numerical problems with infinite energies (and forces in MD) $_{\parallel}$
- Sampling problem "pin-ball" effect
- Timescale problem with large conformational changes

20

How to deal with these problems?

- Transform Lennard-Jones potential into a softer potential
- · Shrink bonds to vanishing atoms

FEP/TI and ligand b	inding
One simulation series in water	
V_{A} V_{B} ΔG^{w}_{mut} $\Delta G_{tatad}(B)$	△ ΔGP _{met}
	and one simulation series in the solvated receptor
$\Delta \Delta G_{bind} = \Delta G_{bind}(L') - \Delta G_{bind}(L) =$	$= \Delta G_{mut}^p - \Delta G_{mut}^w$

Improving TI

- Start N simulations at separate λ values
- Calculate ∂G/∂λ from each
- Approximate integral with a sum
- Typically 10-20 values are used

26

Potential of mean force

- Sometimes free energies correspond to closely to a physical process, for instance pulling a ligand out of a binding pocket or bringing a side-chain into a membrane
- Instead of measuring G directly, we can compute the work required to accomplish the change (work = force x distance)
- Potential of mean force

Barrier problem

- If we pull a side-chain, it will cross barriers very quickly giving rise to bad sampling
- How can we achieve good sampling in the high energy regions?
- We force the particles to stay there!
- · Umbrella sampling

28

Umbrella sampling

- Modify the interaction with a biasing potential W: $V'{=}V{+}W$
- Set the biasing potential to "cancel" the barrier, so that the net free energy will be low there
- Typically accomplished with harmonic potentials
- An umbrella potential will affect sampling
 - We can adjust the final free energy for the basis

29

