Vorlesung 7 (Montag 26.2.2018)

6.4 Zurückweisungsmethode

Für (analytisch) nicht-integrable W.-Dichten, oder (analytisch) nicht-invertierbare Verteilungen.

Bedingung: W-Dichte p(x) passt in Kasten $[x_0, x_1) \times [0, p_{\text{max}}]$, d.h. p(x) = 0 für $x \notin [x_0, x_1]$ und $p(x) \leq p_{\text{max}}$.

Grundidee: Erzeuge zufällige Paare (x, y), gleichverteilt in $[x_0, x_1) \times [0, p_{\text{max}})$. Akzeptiere nur die x mit $y \leq p(x)$, d.h. die Paare unterhalb p(x), siehe Abb. 16.

Figure 16: Zurückweisungsmethode: Punkte (x, y) sind gleichmäßig in dem Rechteck verteilt. Die Wahrscheinlichkeit, dass $y \leq p(x)$ ist proportional zu p(x).

Implementierung als Funktion (Programm reject.c): /** gerenates random number for 'pdf' in the range **/ /** ['x0', 'x1'). condition: $pdf(x) \le p_max'$ in //* the range ['x0', 'x1') **/ double reject(double p_max, double x0, double x1, double (* pdf)(double)) { int found; /* flag if valid number has been found */ double x,y; /* random points in [x0,x1]x[0,p_max] */ found = 0; while(!found) /* loop until number is generated */ x = x0 + (x1-x0)*drand48();/* uniformly on [x0,x1] */ /* uniformly in [0,p_max] */ $y = p_max *drand48();$ $if(y \le pdf(x))$ /* accept ? */ found = 1; return(x); } Beispiel: /** artifical pdf **/ double pdf(double x) { if((x<0)|| ((x>=0.5)&&(x<1))||(x>1.5)return(0); else if((x>=0)&&(x<0.5)) return(1); else return(4*(x-1)); }

ergibt bei 100000 Zufallszahlen:

Nachteil: Es müssen unter Umständen viele Zufallszahlen weggeworfen werden. Effizienz $1/(2p_{\max}(x_1-x_0))$. (Faktor 1/2 da man mind. 2 Zahlen (x,y) für eine Zufallszahl braucht).

Figure 17: Zurückweisungsmethode: Histogramm für die angegebene W. Dichte.

6.5 Gaußverteilung

Gaußverteilung mit Erwatungswert m und Standardabweichung σ , die am meistverbreitete Verteilung in Physiksimulationen. W.-Dichte (siehe auch Abb. 18):

$$p_G(z) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(z-m)^2}{2\sigma^2}\right)$$
 (37)

Im Folgenden: z sei standard-normalverteilt ($m=0,\ \sigma=1$). Allgemeiner Fall: Benutze $\sigma z + m$.

_____ [Selbsttest] _

Nennen Sie Möglichkeiten (nährungsweise) normalverteilte Werte zu erzeugen

Hier:

<u>Box-Müller Methode</u>: Nehme zwei [0,1) gleichverteilte Zahlen u_1, u_2 und setzte:

$$n_1 = \sqrt{-2\log(1 - u_1)}\cos(2\pi u_2)$$

$$n_2 = \sqrt{-2\log(1 - u_1)}\sin(2\pi u_2)$$

dann sind n_1, n_2 standard-normalverteilt.

Beweis [4, 2]: Wir schreiben n_1, n_2 in Polarkoordinaten (r, θ) , d.h. $(r, \theta) = f(n_1, n_2)$, das Inverse ist:

$$n_1 = r\cos(\theta)$$

$$n_2 = r\sin(\theta)$$

Gesucht: W.-Dichte für (r, θ) .

Allgemeiner Fall (W, Z) = f(X, Y) (also $(X, Y) \leftrightarrow (n_1, n_2)$), $p_{X,Y}$ sei die (gemeinsame) W. Dichte für (X, Y). Dann gilt:

$$p_{W,Z}(w,z) = p_{X,Y}(f^{-1}(w,z))|\mathbf{J}^{-1}|,$$
 (38)

mit $|\mathbf{J}^{-1}|$ ist die Jacobi Determinante der inversen Transformation.

Hier ist:

$$|\mathbf{J}^{-1}| = \begin{vmatrix} \frac{\partial n_1}{\partial r} & \frac{\partial n_1}{\partial \theta} \\ \frac{\partial n_2}{\partial r} & \frac{\partial n_2}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{vmatrix} = r\cos^2(\theta) + r\sin^2(\theta) = r \quad (39)$$

Da n_1, n_2 Gauß-verteilt sein sollen:

$$p_{R,\Theta}(r,\theta) = \frac{r}{2\pi} e^{-n_1^2/2 - n_2^2/2} = \frac{r}{2\pi} e^{-r^2/2}$$
(40)

Faktorisiert! Wir nehmen θ gleichförmig in $[0, 2\pi)$ verteilt (d.h. Erzeugung $\theta = 2\pi u_2$). Es bleibt $p_R(r) = re^{-r^2/2}$ (*) übrig. Wie erzeugt man Zufallszahlen gemäß p_R ?

Verteilungsfunktion (leicht zu integrieren) $F_R(r) = 1 - \exp(-r^2/2)$ $(r \ge 0)$ \rightarrow Inversion $r = \sqrt{-2\log(1-u)}$ \rightarrow gewünschte Verteilung für r. QED.

6.6 Grundlagen Datenanalyse

Gegeben: n Messpunkte ("Stichprobe") $\{x_0, x_1, \ldots, x_{n-1}\}$

Problem: zugrundeliegende Verteilung F(x) meistens unbekannt.

6.6.1 Schätzwerte

Schätzwerte $h = h(x_0, x_1, \dots, x_{n-1})$ sind selber Zufallsgrößen: $H = h(X_0, X_1, \dots, X_{n-1})$

Figure 18: Gaußverteilung mit Mittelwert 0 und Varianz 1. Die Kreise entsprechen einem Histogramm, das aus 10^4 Box-Müller erzeugten Zufallszahlen erstellt wurde.

• <u>Mittelwert</u> (MW) $\overline{x} \equiv \frac{1}{n} \sum_{i=0}^{n-1} x_i \tag{41}$

• Stichprobenvarianz

$$s^{2} \equiv \frac{1}{n} \sum_{i=0}^{n-1} (x_{i} - \overline{x})^{2}$$
 (42)

• Stichproben Standardabweichung

$$s \equiv \sqrt{s^2} \tag{43}$$

MW: Zur Schätzung des Erwartungswertes $\mu=\mathrm{E}[X]$. MW entspricht ZV $\overline{X}=\frac{1}{n}\sum_{i=0}^{n-1}X_i.$ \Rightarrow

$$\mu_{\overline{X}} \equiv E[\overline{X}] = E\left[\frac{1}{n}\sum_{i=0}^{n-1} X_i\right] = \frac{1}{n}\sum_{i=0}^{n-1} E[X_i] = \frac{1}{n}n E[X] = E[X] = \mu$$
 (44)

 \rightarrow der Mittelwert ist <u>erwartungstreu</u>. Verteilung der \overline{X} hat <u>Varianz</u>:

$$\sigma_{\overline{X}}^{2} \equiv \operatorname{Var}[\overline{X}] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=0}^{n-1}X_{i}\right] \overset{\operatorname{Var}[\alpha X] = \alpha^{2}\operatorname{Var}[X]}{=} \frac{1}{n^{2}} \sum_{i=0}^{n-1}\operatorname{Var}[X_{i}]$$

$$= \frac{1}{n^{2}} n \operatorname{Var}[X] = \frac{\sigma^{2}}{n} \tag{45}$$

- \rightarrow wird schmaler für wachsendes n
- \rightarrow Schätzung wird genauer (wobei σ^2 unbekannt)
- \rightarrow gesucht: erwartungstreuer Schätzwert für σ^2 Versuch für $S^2 = \frac{1}{n} \sum_{i=0}^{n-1} (X_i \overline{X})^2$:

$$E[S^{2}] = E\left[\frac{1}{n}\sum_{i=0}^{n-1}(X_{i}-\overline{X})^{2}\right] = E\left[\frac{1}{n}\sum_{i=0}^{n-1}(X_{i}^{2}-2X_{i}\overline{X}+\overline{X}^{2})\right]$$

$$\stackrel{\sum_{i}X_{i}=n\overline{X}}{=} \frac{1}{n}\left(\sum_{i=0}^{n-1}E[X_{i}^{2}]-nE[\overline{X}^{2}]\right) \stackrel{E[Y^{2}]=\sigma_{Y}^{2}+\mu_{Y}^{2}}{=} \frac{1}{n}\left(n(\sigma^{2}+\mu^{2})-n(\sigma_{\overline{X}}^{2}+\mu_{\overline{X}}^{2})\right)$$

$$\stackrel{\sigma_{X}^{2}=\frac{\sigma^{2}}{n}}{=} \frac{1}{n}\left(n\sigma^{2}+n\mu^{2}-n\frac{\sigma^{2}}{n}-n\mu^{2}\right) = \frac{n-1}{n}\sigma^{2}$$
(46)

 S^2 ist
 <u>nicht</u> erwartungstreu, wohl aber $\frac{n}{n-1}S^2$

6.6.2 Fehlerbalken

Definition: Mittlerer quadratischer Fehler (MQF, engl. MSE) eines Schätzwertes $H = h(X_0, X_1, \dots, X_{n-1})$ für den H zugeordneten Parameter θ

$$MSE(H) \equiv E[(H - \theta)^{2}] = E[(H - E[H] + E[H] - \theta)^{2}]$$

$$= E[(H - E[H])^{2}] + E[2(H - E[H])(E[H] - \theta)] + E[(E[H] - \theta)^{2}]$$

$$= E[(H - E[H])^{2}] + 2\underbrace{(E[H] - E[H])}_{=0}(E[H] - \theta) + (E[H] - \theta)^{2}$$

$$= Var[H] + (E[H] - \theta)^{2}$$
(47)

Falls Schätzwert erwartungstreu (E[H] = θ), Fehler durch die Varianz gegeben, nutze ($\sigma_{\overline{X}}^2 = \sigma^2/n$) und (46).

Nachteile: Varianz a priori unbekannt (aber: siehe Resampling); MQF hat keine probabilistische Interpretation.

 \rightarrow Für Mittelwert (ohne Beweis):

$$P\left(\overline{X} - z \frac{S}{\sqrt{n-1}} \le \mu \le \overline{X} + z \frac{S}{\sqrt{n-1}}\right) \approx 1 - \alpha \tag{48}$$

wobe
i $\alpha=\alpha(z)$ die Signifikanz, mit $\alpha=0.32,0.05,0.003$ für
 z=1,2,3.

Forgeschrittene Themen (siehe [5])

- Resampling (kommt später)
- Hypothesentest, insbesondere Vergleich von Verteilungen (χ^2 Test, Kolmogorov-Smirnov Test)
- Korrelationen
- Maximum-likelihood Methoden
- Daten fitten (siehe Gnuplot)