From Graph to Knowledge Graph: Algorithms and Applications

Module 4: Knowledge Graph Fundamentals and Construction

Outline

- Knowledge graph fundamentals
 - A brief history of knowledge graph
 - Knowledge graph representation
- Knowledge graph construction
 - How to identify / recognize entities (nodes)
 - Named Entity Recognition
 - Entity Linking
 - How to obtain relationships (edges)
 - Relation extraction

Outline

Knowledge graph fundamentals

- A brief history of knowledge graph
- Knowledge graph representation
- Knowledge graph construction

• Charles Peirce's existential graphs (1882 - 1914)

https://en.wikipedia.org/wiki/Existential_graph

Semantic network (name coined at 1956 by Richard Richens)

Image credit: https://en.wikipedia.org/wiki/Semantic network

• Linked Data (name coined at 2006 by Tim Berners-Lee)

Semantic Web project

World Wide Web Consortium (W3C)

Image credit: https://en.wikipedia.org/wiki/Linked_data

Expert systems (1970s)

Knowledge Base

Inference Engine

Knowledge base

A knowledge base (KB) is a technology used to store complex structured and unstructured information used by a computer system. The initial use of the term was in connection with expert systems which were the first knowledge-based systems.

Knowledge base - Wikipedia https://en.wikipedia.org/wiki/Knowledge_base

- Knowledge Graph (by Google in 2012)
 - Google's knowledge base

- Knowledge graph
 - Ontology (information science)

Outline

- Knowledge graph fundamentals
 - A brief history of knowledge graph
 - Knowledge graph representation
- Knowledge graph construction

Knowledge Graph Representation

- Graph
 - Adjacency matrix
- Database
 - Table Schema (SQL) vs. Schema-less (Non-SQL)
- Knowledge graph
 - (<u>Subject</u>, <u>Predicate</u>, <u>Object</u>) ["schema" + "data"] [Resource Description Framework (RDF)]

Knowledge Graph Representation

- Graph
 - Node
 - Attribute1
 - Attribute2
 - Attribute3
 - •
 - Edge
 (Node1, Node2, weights)

Homogeneous vs Heterogeneous

Node: 1 table

Edge: 1 table

Node: multiple tables

Edge: multiple tables

- (<u>S</u>ubject, <u>P</u>redicate, <u>O</u>bject)
 - Each *node* has an universal id (<u>s</u>)
 - It's attribute is represented as:
 (<u>S</u>, attributeName (<u>P</u>), attributeValue(<u>O</u>))
 - An edge connected two nodes (e.g. <u>\$1</u>, <u>\$2</u>)
 (<u>\$1</u>, relationName (<u>P</u>), <u>\$2(O</u>))

```
Homogeneous vs Heterogeneous

Node + Edge: SINGLE table
```

Knowledge Graph Representation: Example

Traditional database representation

Paper table

PaperId	Title	Year	Venueld
100001	Deep learning	2015	300001
100002	Mastering the game of Go without human knowledge	2017	300001

Journal table

Journalld1	Name
300001	Nature

Citation table

PaperId1	PaperId2
100002	100001

Knowledge graph (S, P, O) representation

S	P	0		
100001	Object.Type	Paper		
100001	Øbject.Name	Deep learning		
100001	Paper.Venue	300001		
100001	Paper.Year	2015		
100002	Object.Type	Paper		
100002	Object.Name	Mastering the game of Go without human knowledge		
100002	Paper.Venue	300001		
100002	Paper.Year	2015		
300001	Object.Type	Journal		
300002	Object.Name	Nature		
100002	Paper.Reference	100001		

Knowledge Graph Representation

- (Subject, Predicate, Object)
 - Pros:
 - Universal
 - Simple
 - Schema-less on the form ("Schema" defined in Ontology)
 - Cons:
 - Could be very complex for "simple / direct" relationship

Outline

- Knowledge graph fundamentals
- Knowledge graph construction

KG construction overview

- NLP overview and basics
- How to identify / recognize entities (nodes)
- How to obtain relationships (edges)

- Overview

Unstructured Documents

Natural language processing (NLP)

Existing Relational Databases

Data pipeline processing

Common sense is NOT so COMMON.

Human Common Sense

Manual efforts

Knowledge in the *graph* form

- NLP Fundamentals

What is Natural Language Processing (NLP)

Named Entity Recognition (WHO)

Entity Linking (WHO / WHAT)

• Relation Extraction (HOW)

Knowledge in the *Graph* Form

- Challenges:
 - Incomplete
 - Inconsistent
 - Ambiguous

Precision Slow

Supervised

Torso

Semi-supervised (Distantly-supervised)

Long Tail

Unsupervised

Recall Fast

Outline

- Knowledge graph fundamentals
- Knowledge graph construction
 - KG construction overview

NLP overview and basics

- How to identify / recognize entities (nodes)
- How to obtain relationships (edges)

What is Natural Language Processing (NLP)

An area concerned with the understanding of natural language

- Unstructured
- Ambiguous / noisy
- Huge volume
- Growing

- Structured
- Precise / clean
- Indexable
- Actionable

What is Natural Language Processing (NLP)

Sentence level

Document level (across sentences)

Information extraction

Typical NLP problems - Sentence level

Part-of-speech tagging (POS tagging)

Named entity recognition

Dependency Parsing

Typical NLP Problems – Document level

Coreference resolution

Typical NLP Problems – Information Extraction

- Entity Resolution
- Entity Linking
- Relation Extraction

Outline

- Knowledge graph fundamentals
- Knowledge graph construction
 - KG construction overview
 - NLP overview and basics
 - How to identify / recognize entities (nodes)
 - Named Entity Recognition
 - Entity Linking
 - How to obtain relationships (edges)

 Identify entity mentions in text, and then classify them into predefined set of types of interest

Super important for digital assistant!

Problem settings

	IO encoding	IOB encoding
Fred	PER	B-PER
showed	O	O
Sue	PER	B-PER
Mengqiu	PER	B-PER
Huang	PER	I-PER
's	0	0
new	0	0
painting	0	0

Traditional approach

- Extract features
 - Words Feature: Current Word (essentially like a learned dictionary), Previous/next word (context)
 - Other kind of inferred linguistic feature: Part-of-speech tags
 - Label context: Previous (and perhaps next) label
 - Word Shapes: map "mRNA" to "xXXX", map "CPA1" to "XXXd", etc.
- Algorithms
 - Naïve Bayes (NB)
 - Hidden Markov Model (HMM)
 - Conditional Random Field (CRF)

NER - A deep learning approach

Chiu et al., TACL'16. Named entity recognition with bidirectional LSTM-CNNs.

Outline

- Knowledge graph fundamentals
- Knowledge graph construction
 - KG construction overview
 - NLP overview and basics
 - How to identify / recognize entities (nodes)
 - Named Entity Recognition
 - Entity Linking
 - How to obtain relationships (edges)

Why is Entity Linking important?

- Enable Semantic Search experience
- Used for Knowledge Graph population
- Used as feature for improving:
 - Classification
 - Retrieval
 - Question and answering
 - Semantic similarity

Entity Linking – Problem Definition

- Linking free text to entities
 - Any piece of text
 - News document
 - Blog posts
 - Tweets
 - Queries
- Entities taken from a knowledge base
 - Freebase
 - Wikipedia

Entity Linking – Common Steps

- Determine "linkable" phrases
 - Mention detection
- Select candidate entity links
 - Link generation
 - May include NILs
 (null values, i.e., no target in KB)
- Use "context" to disambiguate/filter/improve

Entity Linking – An Example

Depth-first search

From Wikipedia, the free encyclopedia

Depth-first search (DFS) is an algorithm for traversing or searching a tree tree structure or graph. One starts at the root (selecting some node as the root in the graph case) and explores as far as possible along each branch before backtracking.

Formally, DFS is an uninformed search that progresses by expanding the first child node of the search tree that appears and thus going deeper and deeper until a goal node is found, or until it hits a node that has no children. Then the search backtracks, returning to the most recent node it hadn't finished exploring. In a non-recursive implementation, all freshly expanded nodes are added to a LIFO stack for exploration.

sense	commonness	relatedness
Tree	92.82%	15.97%
Tree (graph theory)	2.94%	59.91%
Tree (data structure)	2.57%	63.26%
Tree (set theory)	0.15%	34.04%
Phylogenetic tree	0.07%	20.33%
Christmas tree	0.07%	0.0%
Binary tree	0.04%	62.43%
Family tree	0.04%	16.31%
(···		6

Entity Linking – An Example

Commonness

sense	commonness	relatedness
Tree	92.82%	15.97%
Tree (graph theory)	2.94%	59.91%
Tree (data structure)	2.57%	63.26%
Tree (set theory)	0.15%	34.04%
Phylogenetic tree	0.07%	20.33%
Christmas tree	0.07%	0.0%
Binary tree	0.04%	62.43%
Family tree	0.04%	16.31%

Entity Linking – An Example

Relatedness

Fossil

Fuel

Century

Emission

Petrol

Milne, et al., AAAI'08. An Effective, Low-Cost Measure of Semantic Relatedness Obtained from Wikipedia Links

Outline

- Knowledge graph fundamentals
- Knowledge graph construction
 - KG construction overview
 - NLP overview and basics
 - How to identify / recognize entities (nodes)
 - Named Entity Recognition
 - Entity Linking
 - How to obtain relationships (edges)
 - Relation extraction

Relation Extraction

William Henry Gates III (born October 28, 1955) is an American business magnate, investor, author, philanthropist, humanitarian, and principal founder of Microsoft Corporation. [2][3]

Found?

- Extract semantic relationships between entities
 - Undefined vs pre-defined set of relations
 - Binary vs multiple relations
 - Supervised vs unsupervised vs distant-supervision

Bootstrapping Method

• Requires:

• Seed instances of the relationship of interest

Unannotated text or document

A semi-supervised approach

Seed

Patterns

Bootstrapping Method

- Targeted relations: Acquisition
- Seed relation: (Microsoft, LinkedIn)

Seed

- Search "Microsoft" and "LinkedIn" using search engines:
 - "Microsoft has acquired LinkedIn"
 - "Microsoft purchase of LinkedIn"
 - "Microsoft buys LinkedIn"

- → X has acquired Y
- → X's purchase of Y
- → X buys Y

Use these new patterns to find new tuples

Bootstrapping Limitations

Need to use seeds for each relation

• Semantics might be drifted after several iterations

Hard to control precisions

• No probabilistic interpretations

Seed

Supervised Relation Extraction

- Utilizing labels of relation mentions
 - Elon Musk is the founder, CEO,
 and lead designer of SpaceX → (ElonMusk, CEO, SpaceX)
 - Elon Musk has stated the goals of SpaceX, Tesla and SolarCity. → NIL
- Traditional relation extraction datasets
 - ACE 2004
 - MUC-7
 - Biomedical datasets
- Learn classifiers from those positive and negative examples

Supervised Relation Extraction – at a glance

Typical features

- Bags of words & bigrams between, before, and after the entities
- POS tags
- The types of the entities
- Dependency path between entities
- Distance between entities
- Tree distance between the entities
- NER tags

Classifiers

(any classifiers that supports multiclass prediction)

- SVM
- Multiclass logistic regression
- Naïve Bayes

Pros

versus

Cons

- Higher accuracy
- Explicit negative examples

- Very expensive to label data
- Doesn't generalize well to different relations

- Basic assumption:
 - Existing knowledge base has rich information
 - Existing knowledge base + unlabeled text
 - → generate training examples
 - Locate pairs of related entities in text
 - Hypothesizes that the relation is expressed

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care

Table 2: The 23 largest Freebase relations we use, with their size and an instance of each relation.

Collection training data

Corpus text

Bill Gates founded Microsoft in 1975. Bill Gates, founder of Microsoft, Bill Gates attended Harvard from ... Google was founded by Larry Page ...

Training data

Knowledge graph (Freebase)

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Collection training data

Collection training data

Collection training data

Collection training data

Experiment

Pros Cons

versus

- Can scale since no supervision required
- Leverage rich and reliable data from knowledge base
- Leverage unlimited amounts of text data
- Can generalize to different domains

Needs high quality entity matching

Summary

- Knowledge Graph Fundamental
 - A brief history
 - Existential graph -> Semantic network -> Linked data -> Knowledge graph
 - Expert system -> Knowledge base
 - Representation (<u>S</u>, <u>P</u>, <u>O</u>)
- Knowledge Graph Construction
 - NLP fundamental (why need NLP here?)
 - To understand text, extract information and build knowledge graph
 - Knowledge graph construction
 - Challenges
 - Key steps -> can be phrased into diff. NLP problems

Summary

- Knowledge graph construction -> Key <u>NLP</u> problems
 - Name Entity Recognition (NER)
 - Entity Linking
 - Relation Extraction

