Math 1431, Calculus I Test 4 Review, Spring 2015.

Shang-Huan Chiu

April 24, 2015

1 Differentiation and Integration Tables

Assume n, a, and C are constants. $(\dagger)1 - x^2 > 0$. $(\ddagger)x^2 - 1 > 0$

Function	Derivative of given function
$x^n, n \neq 0$	$n \cdot x^{n-1}$
$\ln(x)$	$\frac{1}{x}$
e^x	e^x
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\sec^2(x)$
sec(x)	$\sec(x)\tan(x)$
$\cot(x)$	$-\csc^2(x)$
$\csc(x)$	$-\csc(x)\cot(x)$
$\sinh(x)$	$\cosh(x)$
$\cosh(x)$	$\sinh(x)$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
arcsec(x)	$\frac{1}{ x \sqrt{x^2-1}}$
$a^x, a > 0$	$a^x \ln(a)$

U		$a \operatorname{III}(a)$	
Figu	re 1:	Differentiation Table	,

$x^2 - 1 > 0$				
Function	Integral of given function			
x^n	$\int x^n dx = \begin{cases} \frac{x^{n+1}}{n+1} + C, & \text{if } n \neq -1; \\ \ln x + C, & \text{if } n = -1. \end{cases}$			
e^x	$\int e^x dx = e^x + C$			
$\cos(x)$	$\int \cos(x) dx = \sin(x) + C$			
$\sin(x)$	$\int \sin(x) dx = -\cos(x) + C$			
$\sec^2(x)$	$\int \sec^2(x) dx = \tan(x) + C$			
$\sec(x)\tan(x)$	$\int \sec(x)\tan(x)dx = \sec(x) + C$			
$\csc^2(x)$	$\int \csc^2(x) dx = -\cot(x) + C$			
$\csc(x)\cot(x)$	$\int \csc(x)\cot(x)dx = -\csc(x) + C$			
$\cosh(x)$	$\int \cosh(x) dx = \sinh(x) + C$			
$\sinh(x)$	$\int \sinh(x) dx = \cosh(x) + C$			
$\frac{1}{\sqrt{1-x^2}}(\dagger)$	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C$			
$\frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = \arctan(x) + C$			
$\frac{1}{x\sqrt{x^2-1}}(\ddagger)$	$\int \frac{1}{x\sqrt{x^2-1}} dx = \operatorname{arcsec}(x) + C$			
$a^x, a > 0$	$\int a^x dx = \frac{1}{\ln(a)} a^x + c$			

Figure 2: Integration Table