Audiophobia Big-O Blue - Lecture 15: Prim

Tóm tắt đề bài

Tóm tắt đề bài

Cho một đồ thị các đường đi trong thành phố, mỗi con đường được cho biết mức cường độ âm thanh tính bằng decibel.

Yêu cầu: Ứng với mỗi truy vấn **u, v**, tìm ra con đường có mức âm thanh tối thiểu mà bạn có thể chịu đựng khi đi qua con đường đó.

Mô tả Input/Output

Input

Gồm nhiều test case, mỗi test case:

- Dòng đầu: C, S, Q tương ứng với số đỉnh, số cạnh và số truy vấn
- S dòng tiếp theo, mỗi dòng gồm 3 số c₁ c₂ d (đỉnh đầu, đỉnh cuối và mức âm của cạnh đó)
- Q dòng tiếp theo, mỗi dòng gồm 2 số c₁ c₂

Kết thúc tập tin input ứng với ba số C = 0, S = 0, Q = 0.

Output

Với mỗi truy vấn c1, c2: in ra mức âm thanh tối thiểu.

Nếu không có đường đi từ c_1 đến c_2 thì in ra "**no path**"

Giữa các test case có một dòng trống

Giải thích ví dụ

Ví dụ 1

Input

```
7 9 3
1 2 50
1 3 60
2 4 120
2 5 90
  6 50
  6 80
  7 70
    40
  7 140
```

6 2

Output

Truy vấn (1,7): 80

Ví dụ 1

Input

```
7 9 3
1 2 50
1 3 60
2 4 120
2 5 90
3 6 50
4 6 80
4 7 70
5 7 40
6 7 140
```

6 2

Output

Truy vấn (2,6): 60

Truy vấn (6,2): 60

Ví dụ 2

Input

```
7 6 3
```

1 2 50

1 3 60

2 4 120

3 6 50

4 6 80

5 7 40

7 5

1 7

2 4

Output

Truy vấn (7,5): 40

Truy vấn (1,7): no path

Truy vấn (2,4): 80

Hướng dẫn giải

Nhận xét

Đường đi có mức âm tối thiểu sẽ nằm trên cây khung nhỏ nhất

- ⇒ Đối với một đồ thị bất kì, ta sẽ tìm cây khung nhỏ nhất trước (Prim).
- \Rightarrow Sau khi đã có cây khung nhỏ nhất, áp dụng BFS/DFS để tìm đường đi từ c1 \rightarrow c2.
- \Rightarrow Kết quả sẽ là cạnh có trọng số lớn nhất trên path từ c1 \rightarrow c2.

Lưu ý: đồ thị có thể là một rừng, tức có nhiều đồ thị đơn lẻ, nên ta phải tìm từng cây khung ứng với từng đồ thị.

Các bước giải

B1: Đọc C, S, Q và đọc vào đồ thị

B2: Tìm cây khung nhỏ nhất bằng thuật toán Prim. Nếu đồ thị là rừng → tìm cây khung tương ứng với từng đồ thị. Lưu các cây khung vào một đồ thị mới mstGraph.

B3: Duyệt BFS/DFS trên mstGraph để tìm đường đi từ c1 → c2. Trong path từ c1 → c2, lưu cạnh có chi phí lớn nhất

B4: In kết quả

Độ phức tạp: O(SlogC + Q*C),

- chi phí Prim **O(SlogC)** với S là số cạnh, C là số đỉnh
- chi phí duyệt DFS với Q truy vấn: **O(Q*C)** với Q là số truy vấn, C là số đỉnh ban đầu.

Mã giả

Mã giả

```
#main()
tc = 0
while true:
 read C, S, Q
  if C == 0 and S == 0 and Q == 0
   break
  graph = [[] for i = 0 .. C]
  dist = [INF for i = 0 .. C]
 visited = [False for i = 0 .. C]
 path = [-1 \text{ for } i = 0 .. C]
 mstGraph = [[] for i = 0 .. C]
  for i = 1 ... S:
   read u, v, w
    push (v, w) to graph[u]
    push (u, w) to graph[v]
```

Mã giả

```
function prim(s, graph, dist, path, visited):
 pq = PriorityQueue()
 push (s, 0) to pq
 dist[s] = 0
 while pq not empty:
   u = get top from pq
   if visited[u] == true
     continue
   visited[u] = true
    for (v, w) in graph[u]
      if visited[v] == false and dist[v] > w:
        dist[v] = w
        path[v] = u
        push (v, w) to pq
```

Thank you