Architecture de la matière

Raphaël Jamann Janvier 2025

Résumé de Cours?

Le cours condensé pour préparer tes IE avec des exercices d'application inséré au milieu du cours! C'est la deuxième version mais il manque toujours des exercices d'applications. (En cristallo par exmemple)

Pour faire avancer le poly, n'hésite pas à faire des remarques ¹ que j'essaierai de prendre en compte!

^{1.} par mail par exemple : raphael.jamann@insa-lyon.fr

Table des matières

I	Le Modèle Quantique	Ę
1	Radiation électromagnétique	Ę
	1.a Aspect Ondulatoire	
	1.b Aspect Corpusculaire	
2	Spectroscopie	
_	2.a Spectroscopie en émission	
	2.b Spectroscopie en absorption	
3	Résultats expérimentaux dans le cas de l'atome d'hydrogène	
9	3.a Spectre d'absorption	
	3.b Spectre d'émission	
1	Cas particulier des hydrogénoïdes	
4		
5	Le modèle de Bohr pour l'atome d'hydrogène	
6	Limites de la théorie de Bohr	1(
II	Le Modèle Ondulatoire de l'atome	11
1	Édification de la mécanique quantique	
2	Relation de Bröglie	
3	Notion d'orbitale	
9	3.a Principe d'indétermination d'Heisenberg	
	3.b Densité de probabilité de présence dans l'orbitale	
	3.c Fonction d'onde et quantification d'énergie	
	3.d Les nombres quantiques	
	3.e Nomenclature et représentation des orbitales	
	3.f Le nombre de spin	13
III	Atomes Polyélectroniques - Configuration électronique	14
1	Approximation monoélectronique, charge nucléaire effective	
2	Organisation du nuage atomique	
_	2.a Le nuage électronique	
	2.b La configuration électronique	
	2.c Les électrons de valences	
	2.c Les elections de vaiences	10
IV	Classification Périodique des Elements	16
1	Présentation	16
2	Les périodes	16
3	Les colonnes (ou familles)	
	3.a Eléments du groupe principal	
	3.b Les gazs rares	
	3.c Les éléments de transition	
	3.d Les lanthanides et les actinides : éléments de transition interne	
4	Les blocs	
4	Les blocs	1 (
\mathbf{V}	Propriétés physiques des éléments	18
1	Rayon atomique	18
2	v i	18
3		18
VI	Spectroscopie des Rayon X	19
1	Nature et production des Rayons X	19
2	Spectre d'émission des rayons X	19
	2.a Le fond continu	19
	2.b Le spectre de raies caractéristiques	20
	2.c Les règles de transitions	
3	Loi de Moseley pour les rayons X	
4	Atténuation des rayons X	
_		<

	4.a Loi d'atténuation exponentielle : loi de Beer-Lambert	
	4.0 Conditions de monochromanisation d'un signar	20
VII	Liaison Covalente	24
1	Théorie de Lewis	24
	1.a Polarisation de la liaison covalente	24
2	Géométrie des molécules : méthode VSEPR	25
VIII	Oxydoréduction	26
1	Rappels Oxydoréduction	26
2	Degré d'oxydation	26
IX	1.10 dolo da crista partar	27
1	L'architecture du cristal	27
	1.a Vocabulaire	27
	1.b Les sept systèmes cristallins et les 14 réseaux de Bravais	27
	1.c Éléments et opérations de symétrie	27
	1.d Sites interstitiels dans un réseau cubique toutes faces centrées	27
	1.e Coordinence	28
	1.f Coordonnées réduites	
	1.g Remarques	
2	Cas pratique, exercice corrigé	
X	Formulaire, Constantes et Unités	30
1	Formules	30
2	Constantes et Unités	

I Le Modèle Quantique

1 Radiation électromagnétique

1.a Aspect Ondulatoire

La radiation (ou onde) électromagnétique est l'une des formes de déplacement de l'énergie dans l'espace. Toutes radiations adoptent le même type de comportement ondulatoire et se déplacent, dans le vide, à la vitesse de la lumière. Ces ondes sinusoïdales sont caractérisées par :

- * leur vitesse de propagation c (dans le vide $2.998 \times 10^8 \,\mathrm{m\,s^{-1}}$)
- * leur fréquence ν (se lit "nu"), ou son inverse la période T ($\nu = \frac{1}{T}$)
- * leur longueur d'onde λ ("lambda")
- * leur amplitude

On utilisera souvent la relation liant la vitesse de la lumière dans le vide c, la fréquence ν ainsi que la longueur d'onde λ :

 $c = \lambda \nu$

La figure 1 montre notamment la lumière visible dans le spectre général des ondes électromagnétique qui s'étend de 380 nm (violet) à 780 nm (rouge) en longueur d'onde.

FIGURE 1 – Domaines du spectre électromagnétique (Par Benjamin ABEL, ici)

1.b Aspect Corpusculaire

Si la théorie ondulatoire explique bien des phénomènes comme la diffraction ou les interférences, elle est incapable, en revanche, d'expliquer l'effet photoélectrique ou la distribution en longueur d'onde de la lumière émise par un corps chauffé (autrement dit sa couleur).

Planck (1858-1947) a introduit la notion de discontinuité de la lumière en parlant de "photon" ("grain d'énergie") associé à la lumière. A une radiation donnée, de fréquence ν , est associé un photon (ou quantum) d'énergie :

$$E=h
u=rac{hc}{\lambda}$$

h est la constante de Planck; elle vaut $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$.

L'intensité de la lumière (on parle aussi de puissance radiative ou de flux photonique) est alors directement proportionnelle au nombre de photons. L'énergie lumineuse ne peut s'échanger que par nombre entier de photons. L'énergie d'un photon est exprimée en électron-volt, c'est-à-dire l'énergie d'un électron accéléré sous une différence de potentiel de 1 Volt; on en déduit : $1\,\mathrm{eV} = 1.602 \times 10^{-19}\,\mathrm{J}$.

Il est important de noter que lorsque la longueur d'onde augmente, l'énergie du photon associé diminue. Ces deux grandeurs sont inversement proportionnelles.

Exercice d'application : Calculez $E_{(eV)} \times \lambda_{(\mathring{\Lambda})}$

$$\textbf{66ponse}: \quad \mathbb{E}_{(\delta V)} \times \lambda_{(\mathbb{A})} = \frac{hc\lambda_{(\mathbb{A})}^{(\delta V)} \times \lambda_{(\mathbb{A})}}{1.602 \times 10^{-19} \times \lambda_{(\mathbb{A})}} \times \lambda_{(\mathbb{A})} = \frac{hc\lambda_{(\mathbb{A})} \times \lambda_{(\mathbb{A})} \times \lambda_{(\mathbb{A})} \times \lambda_{(\mathbb{A})}}{1.602 \times 10^{-19} \times 10^{-10}} = \frac{hc\lambda_{(\mathbb{A})} \times \lambda_{(\mathbb{A})} \times \lambda_{(\mathbb{A})}}{1.602 \times 10^{-10} \times 10^{-10}} = 124400$$

2 Spectroscopie

La spectroscopie nécessite de disposer d'un système dispersif (prisme, réseau, ...) et d'un système détecteur (plaque photographique, photomultiplicateur, ...). Un rayonnement électromagnétique, émis par un corps excité (chauffé, éclairé, ...) peut soit :

- * comporter toutes les fréquences (spectre continu : c'est le cas de la lumière solaire)
- * ne comporter que quelques longueurs d'onde (spectre discontinu ou spectre de raies, c'est le cas de la lumière émise par les atomes contenus dans une vapeur métallique excitée).

2.a Spectroscopie en émission

On cherche les caractéristiques des raies émises par une source (présentant un spectre discontinu). La position des raies sur une plaque photographique, après dispersion par un réseau ou un prisme de la lumière émise, permet par exemple de calculer leur longueur d'onde (ou leur nombre d'onde, ou leur fréquence ou leur énergie, toutes ces grandeurs étant reliées).

Figure 2 – Principe d'obtention d'un spectre d'émission

2.b Spectroscopie en absorption

Lorsqu'une lumière présentant un spectre continu, traverse un milieu constitué par des atomes à l'état fondamental (cas d'une vapeur métallique), elle subit des absorptions pour des longueurs d'onde bien particulières, caractéristiques du milieu traversé : il s'agit des raies d'absorption. Ces absorptions par la matière (ici les atomes du métal) entraînent un passage à l'état excité.

Figure 3 – Principe d'obtention d'un spectre d'absorption

3 Résultats expérimentaux dans le cas de l'atome d'hydrogène

C'est le cas le plus simple (Z = 1; un seul électron gravite autour du noyau).

3.a Spectre d'absorption

Dans l'expérience précédente (3), l'échantillon est constitué de vapeur d'hydrogène monoatomique. On observe alors sur l'écran le spectre continu de la source, dont certaines fréquences (ou longueurs d'onde) sont absentes (raies sombres). L'ensemble de ces raies sombres constitue le spectre d'absorption de l'hydrogène, qui se caractérise par une série de raies situées dans l'ultraviolet lointain :

$$900 \, \text{Å} < \lambda < 1250 \, \text{Å}$$

La mesure expérimentale de la longueur d'onde de ces raies a montré qu'ils obéissent à la loi empirique :

$$\frac{1}{\lambda} = R_H \left(1 - \frac{1}{n^2} \right)$$

avec un entier $n \ge 2$, et R_H une constante appelée constante de Rydberg qui vaut, pour l'hydrogène : $R_H = 109\,677.80\,\mathrm{cm}^{-1}$.

3.b Spectre d'émission

Pour étudier le spectre d'émission de l'hydrogène, on utilise le montage expérimental de la Figure 2, en remplaçant la source par une vapeur d'hydrogène monoatomique excitée. On observe alors sur l'écran plusieurs séries de raies, dont les longueurs d'onde obéissent à nouveau à des lois empiriques. On distingue plusieurs séries :

* la **série de Lyman** (dans l'ultraviolet) :

$$\frac{1}{\lambda} = R_H \left(1 - \frac{1}{n^2} \right), \quad n \ge 2$$

* la série de Balmer (dans le visible) :

$$\frac{1}{\lambda} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right), \quad n \ge 3$$

* la série de Paschen (dans l'infra-rouge) :

$$\frac{1}{\lambda} = R_H \left(\frac{1}{3^2} - \frac{1}{n^2} \right), \quad n \ge 4$$

* et ainsi de suite (séries de Brackett, Pfund, etc...)

Le spectre complet peut donc se représenter par une formule générale, empirique, dite formule de Ritz-Balmer ou de Rydberg :

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n'^2} - \frac{1}{n^2} \right) \tag{1}$$

 $n, n' \in \mathbb{N}$ tels que n' < n.

Lorsque n augmente, les raies se rapprochent les unes des autres et tendent vers une raie limite λ_{lim} :

$$\frac{1}{\lambda_{lim}} = \frac{R_H}{n'^2}$$

Une série de raies correspond à un ensemble de raies observées dans un spectre d'émission pour lesquelles le niveau d'arrivée n' est le même. La raie de tête d'une série correspond à une transition du niveau n=n'+1 vers le niveau n'. La raie limite d'une série correspond à une transition du niveau $n=+\infty$ vers le niveau n'. On peut représenter toutes ces transitions et niveaux d'énergie sur un diagramme de Grotrian comme celui de la Figure 4.

FIGURE 4 – Diagramme de Grotrian des niveaux d'énergie de l'atome d'hydrogène

4 Cas particulier des hydrogénoïdes

Il existe un cas particulier : celui des hydrogénoïdes, c'est-à-dire des systèmes (en général des ions) qui ne possèdent qu'un seul électron : He^+ , Li^{2+} , Be^{3+} , B^{4+} , Dans ce cas, les nombres d'onde correspondant aux transitions observées obéissent à la loi empirique suivante, appelé **Ritz-Balmer généralisée** :

$$\left| \frac{1}{\lambda} = Z^2 R_X \left(\frac{1}{n'^2} - \frac{1}{n^2} \right) \right| \tag{2}$$

 $n, n' \in \mathbb{N}$ tels que n' < n.

les symboles n, n' et R_X ayant la même signification que précédemment, Z étant le numéro atomique de l'élément considéré; R_X se rapporte au système X étudié. Pour les ions cités précédemment, R_X est très voisin de R_H .

Exercice d'application : Spectre d'émission de l'hydrogène

FIGURE 5 – Spectre de l'Hydrogène

- 1. Calculez les fréquences (en Hz) et les longueurs d'onde (en Å) des 4 premières raies du spectre d'émission de l'hydrogène dans le visible.
- 2. Quelles sont les longueurs d'onde λ_{lim} et $\lambda_{\text{tête}}$ de la raie limite et de la raie de tête pour chacune des quatre séries (n') variant de 1 à 4)?

$$\frac{1}{\lambda_{\rm tôte}} = R_H \left(\frac{1}{n'} - \frac{1}{(n'+1)^2} \right) \quad \text{D'où} \quad \lambda_{\rm tôte(Å)} = \frac{10^8}{R_H \left(\frac{1}{n'} - \frac{1}{(n'+1)^2} \right)} = \frac{R_H (2n'+1)^2 \times 10^8}{R_H (2n'+1)^2 \times 10^8}$$

$$\mathbf{2.} \quad \mathbf{L}_{H} = \mathbf{R}_{H} = \mathbf{L}_{H} = \mathbf$$

A 729.2014 : b = a A 227.1484 : b = a A 827.2384 : b = a A 883.4353 : b = a : fraction of the following states b = a and b = a

$$A_{(A)} = \frac{1 \times 10^8}{109 \, \text{GeV}} = \frac{1 \times 10^8}{\left(\frac{1}{5n} - \frac{1}{4}\right) \times 1^{-100} \, \text{Os.} \, 775 \, \text{et 6}} = \frac{1}{100 \, \text{GeV}} =$$

 $D^{\flat}o\dot{u}: \quad \lambda_{(\dot{A})} = \frac{1\times 10^8}{R_H\left(\frac{1}{4}-\frac{1}{n^2}\right)} \quad \text{on multipli par } 10^8 \text{ pour obtenir le résultat en } \dot{\Lambda} \text{ et pas en cm}^{-1}.$

On a donc d'après Ritz-Balmer :
$$\frac{1}{\lambda}=R_H\left(\frac{1}{2\Omega}-\frac{1}{2\Omega}\right)$$
, $n \geq 3$.

Les raies d'émissions du spectre de l'hydrogène dans le visible correspondent à la série de Balmer (cours).

Réponse:

5 Le modèle de Bohr pour l'atome d'hydrogène

Le modèle le plus simple permettant d'expliquer les résultats expérimentaux présentés ci-dessus, est le modèle de Bohr (1913) pour l'atome d'hydrogène. Il repose sur trois hypothèses majeures :

* l'électron (masse m) de l'atome d'hydrogène gravite autour du noyau sur une trajectoire circulaire de rayon r, à la vitesse v.

L'énergie totale de l'électron est proportionnelle à la distance r entre l'électron et le noyau. Cette énergie est négative!

* Seules certaines valeurs de r sont admises en raison de la quantification du moment cinétique de l'électron.

$$r = \frac{\varepsilon_0 h^2}{\pi m e^2} n^2$$
, avec n entier.

Ainsi, l'énergie de l'électron est quantifiée puisqu'elle dépend du rayon r.

Le nombre entier n est appelé nombre quantique principal.

* Lorsque l'électron se déplace sur une orbite de rayon bien défini (r constant), il ne rayonne pas d'énergie; on dit qu'il se trouve dans un état stationnaire. **Toute variation de l'énergie de l'électron respecte la théorie des quanta :** toute absorption ou émission d'un rayonnement ne peut avoir lieu que sous forme de multiples entiers d'une quantité minimale d'énergie égale à un quantum.

En l'absence d'excitation, l'électron de l'hydrogène est dans son état de plus basse énergie, appelé état fondamental, caractérisé par n=1. Une excitation conduit l'électron à occuper un état d'énergie plus élevé, **appelé état excité**. Il occupe alors une trajectoire plus éloignée du noyau. Pour une transition entre un niveau d'énergie E_n et un niveau d'énergie E_n' :

$$\frac{1}{\lambda} = \frac{me^4}{8\varepsilon_0^2 h^3 c} \left| \frac{1}{n^2} - \frac{1}{n'^2} \right|$$

On retrouve la formule de Ritz-Balmer (2) avec $R_{\infty} = \frac{me^4}{8\varepsilon_0^2 h^3 c} \approx R_H$.

6 Limites de la théorie de Bohr

Le modèle de Bohr n'est pas capable d'expliquer 3 phénomènes expérimentals :

- * les raies ne sont pas simples mais correspondent à un ensemble de raies de longueurs d'onde très voisines
- * placé dans un champ magnétique ou un champ électrique intense, un atome d'hydrogène voie son spectre d'émission modifié
- * ne fonctionne pas pour les atomes polyélectroniques

Donc, même si le modèle de Bohr présente un intérêt certain pour une représentation simple de l'atome d'hydrogène, il est nécessaire d'envisager une autre description de l'atome : c'est ce que propose le modèle ondulatoire.

II Le Modèle Ondulatoire de l'atome

1 Édification de la mécanique quantique

Les modèles "classiques" de l'atome étant incapables d'expliquer correctement le comportement microscopique de la matière, il était nécessaire de définir les bases d'une nouvelle théorie se devant de concilier le double aspect ondulatoire et corpusculaire de la matière et du rayonnement.

De plus, cette théorie se devait de retrouver la mécanique classique comme limite et être applicable essentiellement aux systèmes microscopiques (molécules, atomes, électrons ...).

Si un quantum $h\nu$ ($h = 6.626 \times 10^{-34} \, \mathrm{J} \, \mathrm{s}$) a un effet non mesurable sur un système (systèmes macroscopiques), alors une description "classique" des phénomènes est suffisante. Par contre, si ce même quantum provoque un effet important sur un système (cas des atomes et des molécules) alors la description quantique est indispensable.

2 Relation de Bröglie

Les électrons sont en général considérés comme des particules, puisqu'ils possèdent une masse. Cependant, il est également possible d'obtenir la diffraction d'un faisceau d'électrons comme on peut le faire avec une radiation électromagnétique.

Ainsi, Louis de Bröglie (en 1924) a proposé d'étendre à toute particule microscopique de masse m se déplaçant à une vitesse v cette dualité onde-corpuscule bien établie pour le photon. Ainsi, à la particule, on peut associer une longueur d'onde λ telle que :

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$

Pour les photons qui ont une masse nulle, on utilise leur quantité de mouvement p.

3 Notion d'orbitale

3.a Principe d'indétermination d'Heisenberg

Dans le modèle de Bohr de l'hydrogène, la position de l'électron et sa vitesse sont parfaitement déterminées. Dans la théorie quantique, la position et la vitesse ne sont pas déterminés. On peut déterminer une région de l'espace et un intervalle de vitesse dans lesquels l'électron a une certaine probabilité de se trouver. La relation d'Heisenberg stipule que les incertitudes Δx et $\Delta(mv)$ sont liées par la relation :

$$\Delta x \Delta(mv) \ge \frac{h}{4\pi}$$

Ainsi, si la position est connue avec précision (Δx faible) alors la vitesse est affectée d'une grande incertitude ($\Delta(mv)$ grand), et réciproquement. L'objet quantique n'a plus de localisation ni de vitesse parfaitement déterminée.

3.b Densité de probabilité de présence dans l'orbitale

Le manque d'information sur la vitesse ou la position de l'électron nécessite l'introduction de la notion de probabilité de trouver l'électron à une position donnée. On appelle cela la densité électronique, ou densité de probabilité de présence en ce point. Une orbitale atomique est un espace délimité qui donne la probabilité de présence d'un électron.

On la représente ainsi souvent à l'aide de surfaces qui délimitent la région à l'intérieur de laquelle la probabilité de présence de l'électron est supérieure à un seuil donné (par exemple 90 %).

3.c Fonction d'onde et quantification d'énergie

L'équation de Schrödinger lie l'énergie d'un électron et sa probabilité de présence en différents points, avec la fonction d'onde $\Psi(x,y,z)$:

$$H^2\Psi = E\Psi$$

^{2.} H est un opérateur mathématique (Hamiltonien).

Les solutions à cette équation sont chacune une fonction d'onde Ψ , caractérisée par une valeur particulière, quantifiée, de E. Ψ^2 représente la densité électronique au point M(x, y, z).

La notion d'orbitale introduite précédemment englobe ainsi la fonction d'onde et l'énergie qui lui correspond.

Cette fonction d'onde Ψ à des conditions aux limites :

- * La probabilité de présence de la particule en un point de l'espace ne peut prendre qu'une seule valeur.
- * la probabilité de présence de la particule ne peut pas présenter de discontinuité.
- * en explorant tout l'espace, la probabilité de présence doit être égal à 1 (condition de normation).

3.d Les nombres quantiques

Chaque solution de l'équation de Schrödinger correspond à une valeur quantifiée de l'énergie et ne peut être obtenue que par la prise en compte de trois nombres quantiques qui lui sont spécifiques : n, l et m_l (Tableau 1).

Symbole	Nom	Valeurs possibles $n, l, m_l \in \mathbb{N}$
n	principal	$n \ge 1$
l	secondaire (ou azimutal)	$0 \le l \le n - 1$
m_l	magnétique orbital	$-l \le m_l \le +l$

Table 1 – Caractéristiques des trois nombres quantiques

- * n : Nombre quantique principal. Lié à la "taille" de l'orbitale. Numérote la couche électronique.
- * l: Nombre quantique secondaire. Lié à la forme de l'orbitale. Numérote la sous-couche.
- * m_l : Nombre quantique orbital (ou magnétique). Lié à l'orientation de l'orbitale. Le nombre de valeurs possible de m_l correspond au nombre d'orbitales sur une sous-couche l.

3.e Nomenclature et représentation des orbitales

Les orbitales sont nommées (comme les sous-couches électroniques) d'après les valeurs des nombres quantiques. La première partie du nom est le nombre quantique principal, la seconde partie est liée au nombre quantique secondaire (Tableau 2).

l	1	2	3	4
0	1s	2s	3s	4s
1	-	2p	$\frac{3p}{3d}$	4p
2	-	-	3d	4d
3	-	-	-	4f

Table 2 – Noms des orbitales en fonction de n et l

$\begin{array}{c} \text{Nombre quantique} \\ \text{secondaire } l \end{array}$	Nom de la sous-couche	Nombre d'orbitales	Origine du nom
0	s	1	sharp
1	p	3	principal
2	d	5	diffuse
3	f	7	fundamental

Table 3 – Nombre d'orbitales par sous-couches

Exercice d'application : Déterminez le nombre de cases quantiques et d'électrons que peut contenir une sous-couche p, d puis f.

```
Réponse : p: l = 1 donc m_l = \{-1,0,1\}. Il y a 3 cases quantiques donc 6 électrons maximum. d: l = 2 donc m_l \{-2,-1,0,1,2\}. IL y a 5 cases quantiques donc 10 électrons max. f: l = 3 donc m_l \{-3,-2,-1,0,1,2,3\}. IL y a 7 cases quantiques. I4 électrons max.
```

Il existe plusieurs façons de représenter une orbitale :

- * Tracer des surfaces d'isodensité électronique, constituées de l'ensemble des points de l'espace en lesquels la densité de probabilité de présence a la même valeur (Voir 6a).
- * Tracer des surfaces d'isodensité électronique délimitant des volumes à l'intérieur desquels la probabilité de présence de l'électron a une certaine valeur (50%, 95% par exemple) (Voir 6b).

(a) Densité de probabilité de l'électron

(b) Probabilité de présence de l'électron dans un volume

Figure 7 – Représentation des orbitales s à d

* Tracer des cases quantiques qui représentent chacune une orbitale constituée au maximum de deux électrons. Chaque triplet de valeur (n, l, m_l) a une case quantique associée. Les flèches représentent les électrons et leur spin (Voir 3.f).

3.f Le nombre de spin

Chaque orbitale ne peut être occupée que par deux électrons au maximum. Lorsque deux électrons occupent une orbitale, on différencie ces électrons par leur nombre de spin s (ou m_s), qui traduit la quantification de leur moment cinétique intrinsèque (représentatif du mouvement de rotation de l'électron sur luimême) ou encore l'orientation de l'électron dans un champ magnétique.

Il ne peut prendre que deux valeurs : $s=\pm\frac{1}{2}$

III Atomes Polyélectroniques - Configuration électronique

1 Approximation monoélectronique, charge nucléaire effective

Contrairement aux atomes monoélectroniques, un électron d'un atome polyélectronique interagit à la fois avec le noyau et les autres électrons qui l'entourent (interaction électrostatique).

Les niveaux d'énergie sont démultipliés, car décomposés par la présence d'électrons entre le noyau et l'électron considéré, qui est perçue différemment selon le type d'orbitale à laquelle appartient l'électron. Par exemple, comme le montre la Figure 9 ci-dessous, un électron 3s ressentira davantage la charge du noyau qu'un électron 3p ou 3d; on dit alors que l'orbitale 3s est plus pénétrante que l'orbitale 3p (ou 3d).

FIGURE 9 – Densité de probabilité radiale pour les orbitales 3s, 3p, 3d

Au plan théorique, la résolution rigoureuse de l'équation de Schrödinger s'avère impossible. On est ainsi amené à faire des hypothèses simplificatrices. Dans l'approximation monoélectronique, pour un électron donné, on remplace l'ensemble (noyau + autres électrons) par une charge nucléaire effective Z^* .

La charge nucléaire effective est la charge d'un noyau fictif qui exercerait sur un électron, en l'absence des autres électrons, la même influence que l'ensemble réel (noyau de charge Z+ autres électrons). Les autres électrons exercent donc, sur un électron particulier, un effet d'écran représenté par une constante d'écran σ . C'est l'hypothèse de Slater, qui permet d'estimer des valeurs de Z^* sachant que $Z^* = Z - \sigma$.

Orbitale de l'électron	n' < n-1	n' = n - 1	n'=n	n' > n
1s	1.00	0.85	0.30	0
ns, np	1.00	0.85	0.35	0
nd	1.00	1.00	$\begin{array}{c} 1.00 \text{ pour } s \text{ et } p \\ 0.35 \text{ pour } d \end{array}$	0

Table 4 – Contributions des électrons des orbitales selon la règle de Slater

2 Organisation du nuage atomique

2.a Le nuage électronique

L'ensemble des électrons ayant la même valeur de n constitue une couche électronique; des symboles ont été attachés aux valeurs de n caractérisant les couches (Tableau 5).

n	1	2	3	4	5	6
Symbole	K	L	M	N	О	P

Table 5 – Symboles attachés aux différentes couches

A l'intérieur d'une couche donnée (n=cste), les électrons sont répartis en différents types de souscouches, caractérisées par différentes valeurs du nombre quantique secondaire l. Des symboles sont attachés à ces sous-couches (Voir 2). On retrouve à l'intérieur des sous-couches des **orbitales** ou **cases quantiques** associées aux valeurs possible de m_l . Voir le tableau 3 qui dénombre le nombre de cases quantiques par sous-couche (Il y a maximum deux fois plus d'électrons que de cases quantiques).

2.b La configuration électronique

L'arrangement énergétique des électrons dans l'atome fait appel à plusieurs règles. Le principe général est, à l'état fondamental, d'occuper tous les états de plus basse énergie, il n'est donc pas possible de disposer tous les électrons de façon quelconque et 3 règles ont été établis :

- * **Principe de Pauli :** "Un atome ne peut pas avoir deux électrons ayant les 4 mêmes nombres quantiques $(n, l, m_l \text{ et } m_s)$ ". Il ne peut y avoir que 2 électrons par cases quantiques (ou orbitales). Case vide : \Box Case à demi remplie : \Box Case pleine : \Box
- * Règle de Klechkowski : Les niveaux sont remplis par ordre d'énergie croissante. La technique consiste à faire un remplissage à (n+l) croissant et, pour deux mêmes valeurs de (n+l), à n croissant. Voir 10.
- * Règle de Hund : Le fait d'apparier des électrons de spin opposé coûte de l'énergie; il en découle que toutes les orbitales d'une sous-couche doivent être occupées chacune par un électron célibataire avant que l'une d'elles puisse être occupée par deux électrons appariés. Les électrons célibataires sont nécessairement à spins parallèles.

* Exceptions aux règles de remplissage : Il existe des exceptions à la règle de Klechkowski en raison de la stabilité de certaines sous-couches à demies-remplies ou totalement remplies. Par exemple, au lieu d'avoir $3d^4 4s^2$ on aura $3d^5 4s^1$ pour le Chrome (Cr).

Figure 10 – Règle de Klechkowski

2.c Les électrons de valences

Les électrons de valence d'un atome sont :

- * Les électrons de plus grand nombre quantique principal n.
- * Les électrons d'une sous-couche (n inférieur) non totalement remplie.

Ce sont ces électrons qui pourront être mis en jeu dans la formation des liaisons covalentes (cf chapitre VII).

IV Classification Périodique des Elements

1 Présentation

La classification périodique moderne classe les éléments par numéro atomique Z croissant (pas par masse atomique croissante). Elle fait apparaître un peu plus de 100 éléments dont 90 (de Z=1 à Z=92 exception faite de Z=43 et Z=61) existent dans la nature. Les autres ont été préparés artificiellement.

2 Les périodes

Parmi les dispositions possibles pour présenter la classification périodique, nous nous bornerons au tableau à 18 colonnes, qui est le plus courant. Dans cette présentation, les lanthanides (de la 6ème période) et les actinides (de la 7ème période) sont reportés au bas du tableau.

3 Les colonnes (ou familles)

3.a Eléments du groupe principal

- * les alcalins (groupe 1), structure électronique externe en (ns^1) .
- * les alcalino-terreux (groupe 2), structure électronique externe en (ns^2) .
- * les chalcogènes (groupe 16), structure électronique externe en (ns^2, np^4) .
- * les halogènes (groupe 17), structure électronique externe en (ns^2, np^5) . Eléments très réactif (d'où leurs dangerosités).
- * les autres groupes (13 à 15) du bore à l'azote (ns^2, np^1) à (ns^2, np^3)

3.b Les gazs rares

Dernière colonne du tableau, (groupe 18). On les appelle aussi **gaz nobles** ou gaz "inertes". Toutes les couches sont saturées. A l'exception du premier (He : 1s2), leur structure électronique externe est (ns2, np6) les rends très peu réactif.

3.c Les éléments de transition

Les deux couches externes ne sont ni saturées, ni pseudo-saturées. Ils sont caractérisés par un niveau d dans l'avant dernière couche non complètement rempli (n-1). Les électrons de la dernière couche (ns) y sont faiblement retenus. Les propriétés chimiques de ces éléments varient peu entre eux.

3.d Les lanthanides et les actinides : éléments de transition interne

Les 3 couches externes ne sont ni saturées, ni pseudo-saturées. Ces éléments sont caractérisés par un niveau f non complètement rempli dans l'antépénultième couche. Les propriétés chimiques seront pratiquement les mêmes pour tous les lanthanides (appelés parfois terres rares) et pour tous les actinides.

4 Les blocs

On découpe souvent le tableau en "blocs" comme on le voit sur le tableau ci-dessous :

- * le bloc s regroupe les colonnes 1 et 2.
- * le bloc p regroupe les colonnes 13 à 18.
- * le bloc d regroupe les colonnes 3 à 12.
- * le bloc f regroupe les lanthanides et les actinides.

V Propriétés physiques des éléments

1 Rayon atomique

 $r \propto \frac{n^2}{Z^*}$ n correspond à la période.

2 Energie d'ionisation

C'est l'énergie qui correspond à la réaction : $A_{(gaz)} \to A_{(gaz)}^+ + e^-$ Le deuxième ionisation demande plus d'énergie (ainsi de suite pour la $n^{\rm ème}$) :

$$A^{+}_{(gaz)} \to A^{2+}_{(gaz)} + e^{-}$$

3 Electronégativité

L'électronégativité correspond à la tendance qu'a un élément à attirer vers lui un doublet de liaison. L'électropositivité sera la tendance inverse. On note que l'électronégativité du fluor, élément le plus électronégatif, est égale à 4, celle du césium, élément le moins électronégatif, à 0,7 et celle de l'hydrogène à 2,1. Voir le tableau ?? sur la 3ème de couverture.

VI Spectroscopie des Rayon X

1 Nature et production des Rayons X

Les rayons X sont des radiations électromagnétiques comme la lumière, mais d'une longueur d'onde bien plus courte (< 10nm), ce qui correspond à des énergies supérieures ($0.1 \,\mathrm{keV}$ à MeV).

La source de rayons X la plus utilisée est le tube à rayons X (Figure 11) qui comprend :

- * Une source d'électrons appelée cathode (filament qui éjecte des e^- par agitation thermique).
- * une cible métallique appelée anticathode (AC), ou anode (souvent en tungstène ou molybdène).

On applique une forte différence de potentiel (plusieurs dizaines de kV) entre la cathode et l'anode afin d'accélérer les électrons. Lors de l'impact des électrons sur la cible (AC), des rayons X sont émis.

Figure 11 – Tube à rayons X

2 Spectre d'émission des rayons X

2.a Le fond continu

Il est émis par les électrons ralentis dans la cible lorsque qu'ils sont brusquement freinés dans le champ électrique (on dit alors qu'ils sont diffusés, voir figure 12a). L'énergie $\frac{h\nu}{e}$ (en eV) des rayons X ainsi produits étant au plus égale à l'énergie des électrons incidents (E_{cin}) , avec U étant la tension d'accélération en volt, on en déduit que :

$$\frac{hc}{\lambda e} \le U \quad \Longleftrightarrow \quad \lambda \ge \frac{hc}{eU}$$

Comme les électrons perdent inégalement leur énergie dans la matière de l'anticathode, le rayonnement X a un spectre continu de radiations au-delà d'un seuil de longueur d'onde, dont la valeur λ_0 est tout simplement égale à $(\frac{hc}{eU})$.

L'allure de ce fond continu dépend de la tension d'accélération, comme l'indique la Figure 12b.

(a) L'origine du fond continu

(b) Allure du fond continu en fonction de la tension accélératrice

2.b Le spectre de raies caractéristiques

Les raies caractéristiques sont émises par les atomes constituant l'anticathode si la tension accélératrice est suffisante (sinon on a seulement un fond continu). Le photon ou l'électron lancé sur l'anticathode ionise un électron de la couche K (voir figure 13b). Le vide est alors comblé par un électron d'une couche supérieure $L, M \dots$ C'est ce replacement d'électron au sein de l'anticathode qui est à l'origine de l'émission d'un photon d'énergie importante (rayonnement X). Les spectres de tout les éléments sont analogues : constitués de séries de raies nommées K, L, M, \dots

Pour expliquer ces spectres, on introduit un nouveau nombre quantique noté j qui modélise un **couplage spin-orbite** de l'électron (à la fois le moment cinétique autour du noyau et autour de lui même).

$$j = \left| l \pm \frac{1}{2} \right|$$

L'introduction de ce couplage spin-orbite permet d'interpréter la structure fine des spectres, car il introduit une perturbation de l'énergie du système. Cette perturbation dépend de la valeur de j et est d'autant plus grande que le numéro atomique Z de l'élément est élevé. Chaque niveau d'énergie, caractérisé par un couple de valeurs (n,l) est donc dédoublé (sauf pour les niveaux ns) en deux sous-niveaux d'énergie différente, notés nl_j .

reaux d'énergie différente, notés
$$nl_j$$
.
Exemple : $l=2$ $j=2\pm\frac{1}{2}$ \rightarrow $\underbrace{j=\frac{5}{2}}_{nd_{5/2}}$ ou $\underbrace{j=\frac{3}{2}}_{nd_{3/2}}$

(a) Allure d'un Spectre RX

(b) L'origine des raies caractéristiques

2.c Les règles de transitions

Comme le montre la figure 13b, les RX sont produit lorsqu'un électron d'une couche périphérique va vers la couche K de l'anticathode. Ces transitions sont identifiées par deux lettres correspondant aux niveaux d'arrivée puis de départ de l'électron. Les indices 1, 2, 3, ... caractérisent les sous-niveaux. Par exemple, la raie K- L_3 correspond à une transition entre L_3 $(2p_{3/2})$ et K $(1s_{1/2})$.

Les propriétés de l'électron (en particulier son moment cinétique de spin) font que seules seront permises les transitions pour lesquelles (voir aussi figure 14) :

$$\Delta l = \pm 1 \quad et \quad \Delta j = \{0, \pm 1\}$$

FIGURE 14 – Transitions possibles entre les différents niveaux

3 Loi de Moseley pour les rayons X

Moseley (1887-1915) constate que la fréquence ν d'une des raies de chacun des spectres étudiés (par exemple K-L2) était liée au numéro atomique Z de cet élément par la relation :

$$\sqrt{\nu} = a(Z - b) = AZ + B$$

FIGURE 15 – Tracé expérimental de Moseley

Exercice d'application : Loi de Moseley et Spectre RX

Elément	V	\mathbf{Cr}	Mn	Fe	Co	Ni	Au
\mathbf{Z}	23	24	25	26	27	28	?
$E_{K(eV)}$	-5465.0	?	-6540.0	-7114.2	-7711.4	-8332.8	-80724
$\Delta E_{K ext{-}L_{2,3}(eV)}$	-4950.1	-5412.5	-5895.5	-6398.3	-6923.5	?	-68201
$\Delta E_{K-M_{2,3}(eV)}$	-5429.1	-5947.2	-6492.1	-7057.5	-7649.6	-8261.2	-77845

1. Calculer les valeurs d'énergie manquantes pour le Chrome et le Nickel. Calculer le numéro atomique Z de l'or et vérifiez sa validité avec le tableau périodique. Commentez.

Réponse:

1. On utilise la loi de Moseley (les éléments sont dans la même période, la loi est valable):

$$\begin{cases} \sqrt{-E_{K_{(V)}}} = AZ_{(V)} + B & (L1) \\ \sqrt{-E_{K_{(Mn)}}} = AZ_{(Mn)} + B & (L2) \\ \sqrt{-E_{K_{(Cr)}}} = AZ_{(Cr)} + B & (L3) \end{cases}$$

Pour exprimer $E_{K_{(Cr)}}$ sans calculer les constantes A et B, on exprime A en l'isolant dans (L1) - (L2) et on fait de même avec (L1) - (L3):

$$A = \frac{\sqrt{-E_{K_{(V)}}} - \sqrt{-E_{K_{(Mn)}}}}{Z_{(V)} - Z_{(Mn)}} = \frac{\sqrt{-E_{K_{(V)}}} - \sqrt{-E_{K_{(Cr)}}}}{Z_{(V)} - Z_{(Cr)}}$$

$$\iff -\sqrt{-E_{K_{(Cr)}}} = \frac{(Z_{(V)} - Z_{(Cr)}) \left(\sqrt{-E_{K_{(V)}}} - \sqrt{-E_{K_{(Mn)}}}\right)}{Z_{(V)} - Z_{(Mn)}} - \sqrt{-E_{K_{(N)}}}$$

$$\iff E_{K_{(Cr)}} = -\left(\sqrt{-E_{K_{(V)}}} - \frac{(Z_{(V)} - Z_{(Cr)}) \left(\sqrt{-E_{K_{(V)}}} - \sqrt{-E_{K_{(Mn)}}}\right)}{Z_{(V)} - Z_{(Mn)}}\right)^{2}$$

$$\underline{AN}: E_{K_{(Cr)}} = -\left(\sqrt{5465} - \frac{(23 - 24) \left(\sqrt{5465} - \sqrt{6540}\right)}{23 - 25}\right)^{2} = -5990.4 \,\text{eV}$$

On fait de même pour $\Delta E_{K-L_{2,3}(Ni)}$ avec les éléments Co et Fe et on obtient $\Delta E_{K-L_{2,3}(Ni)} = -7469.4 \,\text{eV}$ Si on faisait de même pour le numéro atomique de l'or, on trouverait $Z_{(Au)} = 83.5$. En effet, dans ce cas la loi de Moseley ne s'applique pas car l'or à un numéro atomique bien supérieur (pas dans la même période!).

4 Atténuation des rayons X

Pour atténuer l'intensité d'un rayon X, on peut intercaller un filtre qui atténuera certaines longueurs d'ondes. Ce phénomène d'atténuation sélective est notemment utilisé en radiographie.

Les photons qui arrivent sur le filtre interagissent alors avec les atomes par effet photoélectrique et diffusion.

- * Interaction photoélectrique : photon absorbé et électron arraché : $E_{\text{inscident}} = E_{\text{électron}} + E_c$. Lors de la réorganisation des couches, est émis un rayonnement de fluorescence caractéristique du filtre.
- * **Diffusion** : photon absorbé, un électron absorbe une partie de l'énergie et est éjecté, et le reste de l'énergie contribue à l'émission d'un photon secondaire.

4.a Loi d'atténuation exponentielle : loi de Beer-Lambert

 I_0 est l'intensité de la raie intiale et I l'intensité de la raie après filtre de largeur x.

$$I = I_0 \exp\left(-\mu x\right)$$

FIGURE 16 – Intensité d'une raie d'après la loi de Beer-Lambert

4.b Conditions de monochromatisation d'un signal

Il est important de pouvoir monochromatiser un signal (c'est à dire ne garder qu'une seule longueur d'onde) afin d'obtenir des résultats précis pour une mesure. Il faut donc laisser passer la raie la plus intense (K-L) et absorber la raie la moins intense (K-M) qui est la plus énergétique. Le filtre permettant cette monochromatisation doit respecter ces conditions :

- * $\lambda_{K-M(AC)} < \lambda_{K(filtre)} < \lambda_{K-L(AC)}$
- * Pour un métal de numéro atomique Z, une règle générale dit que le filtre doit être un métal de numéro atomique Z-1 pour assurer une bonne monochromatisation.

(a) Atténuation d'un faisceau de photons

(b) Coefficient d'atténuation massique du tungstène (W) en fonction de la longueur d'onde (source : NIST Standard Reference Database).

VII Liaison Covalente

Les atomes se rapprochent de manière à minimiser l'énergie totale. Les atomes s'attirent mutuellement (électrons de A avec noyau de B) mais, quand ils se rapprochent trop, il y a une répulsion entre le noyau de A avec noyau de B.

1 Théorie de Lewis

Électrons de valence : Electrons du plus grand nombre quantique principal n et d'une sous-couche avec n inférieur non totalement remplie.

Liaison covalente : Mise en commun de deux élections pour former une doublet de liaison :

- * Covalence typique : Chacun des deux atomes fournit un électron.
- * Covalence dative ou coordinence : Un atome fournit un doublet déjà constitué, l'autre le reçoit dans une case vide de sa couche externe. On a alors des charges formelles ⁺ pour le donneur et ⁻ pour le receveur.

Longueur des liaisons : Si la liaison est double, la liaison sera plus courte (atomes plus rapprochés). **Règles du duet et de l'octet :** L'Hydrogène sera entouré de deux électrons (duet), puis de 8 électrons pour C, N, O, F. Pour $n \ge 3$, chaque électron de valence peut former un doublet (extension de la règle de l'octet car possibilité d'absorption par la couche d).

Théorie de la mésomérie : Les liaisons double/triples peuvent se délocaliser, ce qui donne des forumules mésomères. Mais les formules mésomères n'ont pas de réalité physique, on définie alors ce qu'est un hybride de résonance. Les formules mésomères les plus probables sont alors celles qui minimisent la séparation des charges et qui attribuent les charges formelles négatives aux atomes les plus électronégatifs.

Valence : Le nombre de liaisons covalentes qu'un élément établit (correspond en général au nombre d'électrons non appariés, en désappariant au maximum les cases quantiques pleines). Voir le tableau 6.

Atome	Configuration	Représentation cases	Représentation de	Représentation de
	électronique	quantiques	Lewis nfondamentale	Lewis usuelle
$_{1}H$	$1s^1$	1s	Н∙	Н∙
₇ N	$1s^1$ 2 s^2 2 p^3	$\begin{array}{c c} \uparrow \downarrow & \uparrow \uparrow \uparrow \\ \hline 2s & 2p \end{array}$	• <u>N</u> •	٠Ņ٠
90	$1s^1$ 2 s^2 2 p^4	$\begin{array}{c c} \uparrow \downarrow & \uparrow \downarrow \uparrow \uparrow \\ 2s & 2p \end{array}$	$ \overline{\mathrm{Q}}\cdot$:Ö·
$_{17}Cl$	$1s^1 2s^2 2p^6 3s^2 3p^5$	$ \begin{array}{c c} \uparrow\downarrow & \uparrow\downarrow \uparrow\downarrow \uparrow\\ 3s & 3p \end{array} $	$ \overline{\mathrm{C}}]$ •	: Ç̈́]·

Table 6 – Valence de différents atomes

1.a Polarisation de la liaison covalente

L'atome le plus électronégatif attire les électrons vers lui : liaison polarisée pour $0,4<\Delta\chi<2$. Moment dipolaire de l'atome le plus électronégatif (χ supérieur, noté δ^-) vers le moins électronégatif : $\mu=q\times d$ où d est la longueur de la liaison et $q=\delta\times e$ (δ pourcentage d'ionicité, dépend de $\Delta\chi$). Molécule apolaire : aucune polarité individuelle. Molécule non polaire : somme des moments dipolaires nuls.

2 Géométrie des molécules : méthode VSEPR

 \mathbf{VSEPR} : Valence Shell Electron Pair Repulsion.

Formule AX_nE_p	Géométrie	Exemple	Représentation spatiale	Angle
AX_2	Linéaire	CO_2	O — C — O	180°
AX_3	Trigonale plane	AlCl_3	Cl Al—Cl Cl	120°
AX_2E_1	Coudée en V	SO_2	S O O	< 120°
AX_4	Tétraédrique	CH_4	H C	109.5°
AX_3E_1	Pyramidale à base trigonale	NH_3	HHIII. H	< 109.5°
AX_2E_2	Coudée	$ m H_2O$	H H	< 109.5°
AX_5	Bipyramidale trigonale	PCl_5	Cl Cl Cl Cl Cl Cl	120° horizontal 90° vertical
AX_6	Octaédrique	SF_6	FILE S	90°
AX_4E_2	Plan carré	${ m XeF_4}$	F//, Xe WF	90°

VIII Oxydoréduction

1 Rappels Oxydoréduction

 $Ox + ne^- \rightleftharpoons Red$

2 Degré d'oxydation

On calcule le nombre d'électrons après une ionisation fictive :

- * Liaisons polarisées : L'atome le plus électronégatif prend tous les électrons de la liaison.
- * Liaison non polarisée : Chaque atome garde ses électrons (moitié-moitié).

Nombre d'oxydation = Électrons de valence - Électrons après ionisation fictive

Ainsi, H aura souvent n.o. = 1, avec une valence ayant un électron de plus que son nombre d'électrons fictifs.

Dans une rédox, l'oxydant a le n.o. le plus élevé.

Pour un ion, il s'agit de la charge de l'ion.

Pour une molécule formée d'atome identiques, n.o. = 0.

Le Fluor sera toujours —I sauf s'il est liée à lui-même, et l'Oxygène —II, sauf s'il est lié au Fluor ou à lui même.

La somme des n.o. dans une molécule est nulle (ou vaut la charge de l'ion polyatomique).

IX Modèle du cristal parfait

1 L'architecture du cristal

1.a Vocabulaire

Motif : unité élémentaire répétée dans le cristal, composé de $\frac{N_X}{m}$ molécules (m : multiplicité de la maille).

Réseau : ensemble de points répétés à l'infini, où chaque point est un motif. Son origine n'a pas d'importance. Le réseau peut être défini par trois vecteurs de base partant d'un point arbitraire.

Noeud : point obtenu par combinaison linéaire des vecteurs de la base du réseau.

Maille : parallélépipède construit sur un vecteur \vec{V} , contenant N_X molécules. Les longueurs a, b, c et les angles α , β et γ sont les paramètres de la maille.

Maille simple ne contient des noeuds qu'en ses huit sommets : ne contient qu'un noeud en moyenne. Maille multiple contient en moyenne plus d'un noeud : on parle de multiplicité m. Une maille multiple aura un volume m fois plus grand que celui de la maille simple correspondante.

1.b Les sept systèmes cristallins et les 14 réseaux de Bravais

On classe les parallélépipèdes constitutifs du réseau de translation tri-périodique en sept systèmes cristallins. Bravais a démontré que pour certains systèmes, on peut avoir une maille multiple. On a donc en plus des mailles simples, des mailles à intérieur centrée, à bases centrées et à toutes faces centrées. Tout cela définit les modes de réseau. Il y a 14 réseaux de Bravais représentés figure 21.

1.c Éléments et opérations de symétrie

La symétrie explique pourquoi on a que 14 réseaux de Bravais et non 28 (7 systèmes \times 4 modes de réseaux).

Un axe de rotation peut être A_2 , A_3 , A_4 ou A_6 (ordre $n \to (\frac{2\pi}{n})^{\circ}$ de rotation)

Les axes de symétrie du cube sont : $3A_4$, $4A_3$ et $6A_2$ (Les axes A_4 n'existent que s'il y a des faces carrées).

1.d Sites interstitiels dans un réseau cubique toutes faces centrées

La maille cubique contient 8 sites tétraédriques en propre (formé à partir des sommets), et 4 sites octaédriques (un quart par arête).

Les sites tétraédriques se trouvent à une distance égale à $\frac{a\sqrt{3}}{4} = a\sqrt{3} \times \frac{1}{3} \times \frac{3}{4}$ de chaque sommet du cube. a étant le paramètre de maille.

Ces sites peuvent accueillir des atomes, ions ou molécules en leur centre.

(a) Sites Octaédriques dans une maille cubique faces centrées (1 seul octaèdre représenté)

(b) Sites Tétraèdriques dans une maille CFC (un seul tétraèdre représenté)

1.e Coordinence

La coordinence ou le nombre de coordination CN est le nombre de plus proches voisins équidistants de l'atome.

e.g. un cube en maille intérieur centrée, est CN8.

1.f Coordonnées réduites

Informations minimum pour représenter une maille. On retire toutes les coordonnées pouvant être obtenues par translations entières (l'origine du repère n'a aucune importance). On a besoin d'autant de coordonnées que de nombre d'espèces appartenant en propre à la maille.

Les coordonnées réduites sont alors :

*
$$(0,0,0)$$
.
* $(1/2,0,0)$, $(0,1/2,0)$, $(0,0,1/2)$

FIGURE 19 – Coordonnées des noeuds dans une maille cubique toutes faces centrées.

1.g Remarques

Plusieurs informations utiles pour les exercices :

- * Métal \rightarrow tangence
- * Empilement compact \rightarrow C = 0.74
- * Empilement semi-compact \rightarrow C = 0.68
- * Maille électriquement neutre \rightarrow autant de cation que d'anion dans Na $^+$ Cl $^-$ par exemple.
- * Composition motif = $\frac{\text{contenu maille}}{\text{nb noeuds}}$
- * Formule très utile : $\rho = \frac{m}{V_{\text{maille}}} = \frac{M_X n_X}{a^3} = \frac{M_X N_X}{\mathcal{N}a^3}$

2 Cas pratique, exercice corrigé

A l'état solide, le soufre $(M_S=32.06\,\mathrm{g\,mol^{-1}},\ \rho=2.087\,\mathrm{g\,cm}-3)$ est constitué de molécules cycliques de formule S_8 et forme des cristaux jaunes appartenant au système orthorhombique $(\alpha=\beta=\gamma=90^\circ)$. Les paramètres cristallins, déterminés par une étude radiocristallographique, ont pour valeurs :

$$a = 10.437 \,\text{Å}$$
 $b = 12.845 \,\text{Å}$ $c = 24.369 \,\text{Å}$

a) Quelle serait la composition du motif en nombre de molécules S_8 de la structure dans chacun des modes de réseau possibles (primitif P, base centrée S, intérieur centré I et toutes faces centrées F)? b) Tracez les axes de symétrie du système orthorhombique. Préciser l'ordre de symétrie des axes.

Réponses:

a) Composition motif = $\frac{\text{contenu maille}}{\text{nb noeuds}}$ $\rho_{\text{soufre}} = \frac{8M_S N_{S_8}}{\mathcal{N}(abc)^3} \iff N_{S_8} = \frac{\mathcal{N} \rho_{\text{S}(abc)^3}}{8M_S} = 16$ Ainsi il y a 16 S_8 par maille. Le nombre de noeuds dépend du mode de réseau : (P:1), (S:2), (I:2) ou (F:4).

Motif:
$$(P) = \frac{16}{1} = 16$$
 $(S) = \frac{16}{2} = 8$ $(I) = \frac{16}{2} = 8$ $(F) = \frac{16}{4} = 4$

(a) Axes de symétries du système orthorhombique

(b) orthorhombique base centré

FIGURE 21 – Les 7 systèmes cristallins et les 14 réseaux de Bravais

X Formulaire, Constantes et Unités

1 Formules

* Conversion d'Energie :

$$E_{eV} = \frac{E_J}{1.602 \times 10^{-19}} \iff E_J = E_{eV} \times 1.602 \times 10^{-19}$$

* Ritz-Balmer généralisée (pour les hydrogénoïdes) :

$$\frac{1}{\lambda} = Z^2 R_X \left(\frac{1}{n'^2} - \frac{1}{n^2} \right)$$

 $n, n' \in \mathbb{N}$ tels que n' < n.

* Relation liant E, ν et λ :

$$E = h\nu = \frac{hc}{\lambda}$$

* Loi de Moseley:

$$\sqrt{\nu} = a(Z - b) = AZ + B$$

* Loi de Beer Lambert :

$$I = I_0 \exp\left(-\mu x\right)$$

* Charge effective:

$$Z_i^* = Z - \sigma_i$$

* Règles de Slater :

Contributions des électrons des orbitales n' à la constante d'écran σ agissant sur un électron donné d'une orbitale n.

Orbitale de l'électron	n' < n-1	n' = n - 1	n'=n	n' > n
1s	1.00	0.85	0.30	0
ns, np	1.00	0.85	0.35	0
nd	1.00	1.00	$\begin{array}{c} 1.00 \text{ pour } s \text{ et } p \\ 0.35 \text{ pour } d \end{array}$	0

Table 4 – Contributions des électrons des orbitales selon la règle de Slater

2 Constantes et Unités

Symboles	Noms	Valeurs
\mathcal{N}	Nombre d'Avogadro	$\approx 6.022 \times 10^{23} \mathrm{mol}^{-1}$
e	Charge élémentaire	$\approx 1.602 \times 10^{-19} \mathrm{C}$
m_e	Masse de l'électron au repos	$\approx 9.109 \times 10^{-31} \mathrm{kg}$
h	Constante de Plank	$\approx 6.626 \times 10^{-34} \mathrm{Js}$
R_h	Constante de Rydberg pour l'hydrogène	$\approx 109677.80\mathrm{cm}^{-1}$
R_{∞}	Constante de Rydberg pour un noyau de masse infinie	$\approx 109737.31 \mathrm{cm}^{-1}$
c	Vitesse de la lumière dans le vide	$\approx 2.998 \times 10^8 \mathrm{ms}^{-1}$

Table 7 – Constantes Fondamentales

Électronégativité des éléments du Tableau Périodique VIIIA IA He SC IIIA **IVA** ۷A VIA IΙΑ en VIIA gazeux hélium hydrogène 10 Ne 0 SC: Symbole Chimique en: Électronégativité N: Nom 2.04 2.55 3.04 3.98 0.98 1.57 3.44 béryllium fluor lithium carbone azote oxygène néon bore 17_{CI} 18 Ar 12 13 14 15 16 0.93 1.31 1.61 2.19 2.58 3.16 IIIB **IVB** ٧B **VIB VIIB** VIIIB ΙB IIB magnésium aluminium sodium silicium phosphore soufre chlore argon 36 Kr 23 26 20 21 22 24 25 27 28 29 *30* 31 32 33 34 *35* Ca Mn Ga 0.82 1.36 1.54 1.63 1.66 1.55 1.83 1.88 1.91 1.9 1.65 1.81 2.01 2.55 2.96 1 2.18 3 potassium calcium scandium titane vanadium chrome manganèse fer cobalt nickel cuivre zinc gallium germanium arsenic sélénium brome krypton 51 Sb 54 Xe 38 *39* 47 48 49 *50* 52 *53* Mo 1.22 2.2 0.82 0.95 1.33 1.6 2.16 1.9 2.28 2.2 1.93 1.69 1.78 1.96 2.05 2.1 2.66 2.6 rubidium strontium yttrium zirconium niobium molybdène technétium ruthénium rhodium palladium cadmium indium étain antimoine tellure iode argent xénon 86 Rn 80 Hg *57–71 85 73* 76 81 *82* 83 84 Po Bi Ba Os ıa lanthanoïdes 1.3 1.5 2.28 2.54 1.62 2.2 0.79 0.89 2.36 1.9 2.2 2.2 1.87 2.02 2 2.2 césium baryum hafnium tantale tungstène rhénium osmium iridium platine or mercure thallium conduire bismuth polonium astatine radon 89–103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Ra actinoïde 0.9 francium radium rutherfordium dubnium seaborgium bohrium hassium meitnerium darmstadtium roentgenium copernicium nihonium flerovium moscovium livermorium tennessine oganesson

	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 DV	67 Ho	68 Er	69 Tm	70 Yb	<i>71</i> Lu
6	1.1	1.12	1.13	1.14	1.13	1.17	1.2	1.2	1.2	1.22	1.23	1.24	1.25	1.1	1.27
	lanthane	cérium	praséodyme	néodyme	prométhium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutétium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
_		Th	Pa		Np		Am	Cm		Cf	Es		Md		Lr
7	1.1	1.3	1.5	1.38	1.36	1.28	1.13	1.28	1.3	1.3	1.3	1.3	1.3	1.3	1.3
	actinium	thorium	protactinium	uranium	neptunium	plutonium	américium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium

^{3.} Retourner à la sous-section 3.

Tableau Périodique des Éléments

2	hydrogène Li lithium 11 Na	Be béryllium		Z N Z: Numéro Alt SC: Symbole (N: Nom	solide liquide gazeux synthéti chimique	ique						ı	IIIA 5	IVA	VA	VIA	VIIA	He hélium
2	Jithium	Be béryllium		N Z: Numéro At	liquide gazeux synthéti	ique									VA 7			
2	Li lithium	Be béryllium		Z: Numéro Ato	synthéti	ique							5	6	7	8	9	10
	11	béryllium		Z: Numéro Ate SC: Symbole (N: Nom	mique Chimique										N.I.			
	11	12											В	C	N	0	F	Ne
													bore	carbone	azote	oxygène	fluor	néon
2	l Na l	IVIQ											13	14	15	16	17	18
3													AI	Si	Р	5	CI	Ar
	sodium	magnésium	IIIB	IVB	VB	VIB	VIIB		– VIIIB -		IB	IIB	aluminium	silicium	phosphore	soufre	chlore	argon
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	potassium	calcium	scandium	titane	vanadium	chrome	manganèse	fer	cobalt	nickel	cuivre	zinc	gallium	germanium	arsenic	sélénium	brome	krypton
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Те	1	Xe
	rubidium	strontium	yttrium	zirconium	niobium	molybdène	technétium	ruthénium	rhodium	palladium	argent	cadmium	indium	étain	antimoine	tellure	iode	xénon
	55	56	<i>57–71</i>	72	73	74	<i>75</i>	76	77	<i>78</i>	79	80	81	82	83	84	85	86
6	Cs	Ba	lanthanoïdes	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	césium	baryum		hafnium	tantale	tungstène	rhénium	osmium	iridium	platine	or	mercure	thallium	conduire	bismuth	polonium	astatine	radon
	87		89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
			actinoïde	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
7	Fr	Ra	aounoido		dubnium	seaborgium	bohrium	hassium	meitnerium				nihonium					oganesson
٠	césium	baryum	89–103		105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 DS	Rg	mercure	113 Nh	114	115		116 Lv	116 117

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
6	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
١										,					
	lanthane	cérium	praséodyme	néodyme	prométhium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutétium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
_	Ac	Th	Pa		No		Δm		Bk	Cf		Fm	Md		Lr
′					1 4		2 4444								
	actinium	thorium	protactinium	uranium	neptunium	plutonium	américium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium