Interpolacja wielomianowa

różniczkowanie numeryczne

interpolacja wielomianowa

punktu materialnego

schem Eulera

równar

metod

metod Newto

frakta

krok w schemaci niejawnyr

układy równań nieliniowych wzory na pochodne: zamiast rozwinięcia w szereg Taylora - można wykorzystać interpolację wielomianową (potrzebna do: całkowania Gaussa, metody elementów skończonych, etc.)

- problem: zbiór punktów $\{x_i, y_i, i = 1, 2, ..., N\}$, podać wielomian P(x), taki że $f(x_i) = y_i$
- wielomian węzłowy Lagrange'a: $l_i(x) = \prod_{j=1, j \neq i}^N \frac{x-x_j}{x_j-x_j}$
- lacksquare podstawowa własność: $l_i(x_j) = \delta_{ij}$
- wielomian interpolacyjny $P(x) = \sum_{i=1}^{N} y_i I_i(x)$
- jeśli wartości x_i , y_i to wynik próbkowania dowolnej funkcji $f(x) \in C^{n+1}$ w przedziale [a, b], to $f(x) = P(x) + \frac{f(N)(\xi(x))}{f(N)} \prod_{i=1}^{N} (x x_i)$, gdzie $\xi \in [a, b]$

pochodne z interpolacji wielomianowej

różniczkowanie

interpolacia wielomianowa

$$P(x) = f(x_1)l_1(x) + f(x_2)l_2(x) + f(x_3)l_3(x) + \frac{f^3(\xi)}{3!}(x - x_1)(x - x_2)(x - x_3)$$

$$I_1'(x) = \frac{2x - x_2 - x_3}{(x_1 - x_2)(x_1 - x_3)}$$

$$I_3'(x) = \frac{2x - x_1 - x_2}{(x_3 - x_1)(x_3 - x_2)}$$

weźmy równoodległe punkty
$$x_1 = x_0$$
, $x_2 = x_0 + h$, $x_3 = x_0 + 2h$

$$f(x) = f(x_1)l_1(x) + f(x_2)l_2(x) + f(x_3)l_3(x) + \frac{f^3(\xi)}{3!}(x - x_1)(x - x_2)(x - x_3)$$

$$I_1'(x) = \frac{2x - 2x_0 - 3h}{2h^2}$$

$$l_2'(x) = \frac{-2x + 2x_0 + 2h}{h^2}$$

$$I_3'(x) = \frac{2x - 2x_0 - h}{2h^2}$$

możemy przybliżyć pochodną w każdym z trzech punktów:

$$f'(x_0+h) = \frac{1}{2h} \left(f(x_0+2h) - f(x_0) \right) - \frac{h^2}{6} f^3(\xi_0)$$

$$f'(x_0) = \frac{1}{2h} \left(-f(x_0 + 2h) + 4f(x_0 + h) - 3f(x_0) \right) + \frac{h^2}{3} f^3(\xi_1)$$

$$f'(x_0 + 2h) = \frac{1}{2h} \left(3f(x_0 + 2h) - 4f(x_0 + h) + f(x_0) \right) + \frac{h^2}{3} f^3(\xi_2)$$

pochodne z interpolacji wielomianowej

różniczkowanie numeryczne

interpolacja wielomianowa

dynamika punktu material-

nego

Eulera

równania nieliniow

biseko

Newto

krok w

schemaci niejawnyr układy

układy równań nieliniowych

■ 5 punktów:
$$x_0 - 2h$$
, $x_0 - h$, x_0 , $x_0 + h$, $x_0 + 2h$

$$f'(x_0) = \frac{1}{12h} \left(\mp f(x_0 \pm 2h) \pm f(x_0 \pm h) \right) + \frac{h^4}{30} f^5(\xi)$$

$$f'(x_0 - 2h) = \frac{1}{12h} (-25f(x_0 - 2h) + 48f(x_0 - h) - 36f(x_0) + 16f(x_0 + h) - 3f(x_0 + 2h)) + \frac{h^4}{5} f^5(\xi)$$

druga pochodna dla 3 punktów:

$$I_1''(x) = \frac{2}{(x_1-x_2)(x_1-x_3)}$$

$$I_3''(x) = \frac{2}{(x_3-x_1)(x_3-x_2)}$$

• weźmy równoodległe punkty
$$x_1 = x_0 - h$$
, $x_2 = x_0$, $x_3 = x_0 + h$

$$f''(x_0) = \frac{1}{h^2} (f(x_0 - h) - 2f(x_0) + f(x_0 + h)) - \frac{h^2}{12} f^{(iv)}(\xi)$$

uzupełnienie: całkowanie numeryczne, kwadratury NC

Bartłomiej Szafran

3 marca 2020

- problem początkowy: $\frac{dy}{dt} = f(t, y), y(t_0) = y_0$
- najprostszy przypadek $\frac{dy}{dt} = f(t) \rightarrow y(t) = y(t_0) + \int_{t_0}^{t} f(t)dt$
- definicja całki oznaczonej $\int_a^b f(t)dt = \lim_{\Delta t \to 0} \sum_{i=0}^N f(i\Delta t + t_0)\Delta t$, gdzie $\Delta t = \frac{b-a}{N+1}$

$$\int_a^b f(t)dt = \lim_{\Delta t \to 0} \sum_{i=0}^N f(i\Delta t + t_0)\Delta t, \\ \text{gdzie } \Delta t = \frac{b-a}{N+1}$$

- pojedynczy segment $\int_a^b f(t)dt \simeq f(a)\Delta t$ (wzór prostokątów)
- Metoda działa dokładnie dla funkcji stałej.
 Myli się dla funkcji liniowej, z której całka jest rzędu Δt² błąd popełniony (b a)/Δt razy, ogólnie błąd liniowy z Δt

2.861022267097886E-006

4194304

0.886228355963241

- pojedynczy segment $\int_a^b f(t)dt$
- $f(t) \simeq f(a) \frac{t-b}{a-b} + f(b) \frac{t-a}{b-a} = g(t)$
- $\int_a^b g(t)dt = \frac{b-a}{2}f(a) + \frac{b-a}{2}f(b) = \frac{f(a)+f(b)}{2}(b-a)$

• kwadratura trapezów:dokładna dla funkcji liniowej, myli się przy paraboli, błąd z jednego segmentu $O(\Delta t^3)$, błąd kwadratury złożonej $O(\Delta t^2)$

4194304

0.886226925452103

2.861022267097886F-006

- pojedynczy segment $\int_a^b f(t)dt$, c = (b+a)/2
- int.parabola $f(t) \simeq f(a) \frac{(t-b)(t-c)}{(a-b)(a-c)} + f(c) \frac{(t-a)(t-b)}{(c-a)(c-b)} + f(b) \frac{(t-a)(t-c)}{(b-a)(b-c)} = g(t)$
- $\int_{a}^{b} g(t)dt = \frac{(b-a)}{6} \left(f(a) + 4f(\frac{a+b}{2}) + f(b) \right)$
- regula Simpsona
- dokładna dla funkcji kwadratowej, myli się przy funkcji sześciennej, błąd z jednego segmentu O(Δt⁴), błąd kwadratury złożonej O(Δt³)

$$\int_0^{12} exp(-t^2) dt$$

•	$\int_0^{12} t^2$	2 = 5	576 prostokąty	
	0	12.0	0000000000000	0.00000000000000E+000
	1	6.0	0000000000000	216.000000000000
	4		000000000000	414.720000000000
	9		000000000000	492.480000000000
	16		5882352941177	526.173010380623
•	25		1538461538462	543.195266272189
	36		4324324324324	552.859021183346
	49		000000000000	558.835200000000
	64		4615384615385	562.775857988166
	81		6341463414634	565.506246281975
	100	0.11	8811881188119	567.473777080678
	trapezy	0	12.000000000000	000 864.000000000000
		1	6.000000000000	000 648.000000000000
		4	2.4000000000000	000 587.520000000000
		9	1.2000000000000	000 578.880000000000
		16	0.705882352941	177 576.996539792388
•		25	0.461538461538	462 576.426035502959
		36	0.324324324324	324 576.210372534697
		49	0.240000000000	000 576.115200000000
		64	0.184615384615	
		81	0.146341463414	
		100	0.118811881188	119 576.028232526223
	Simpson	0	12.00000000000	000 576.000000000000
		1	6.000000000000	000 576.000000000000
•		4	2.400000000000	000 576.000000000000
		9	1.2000000000000	000 576.000000000000
		16	0.705882352941	177 576.000000000000
		25	0.461538461538	
		36	0.324324324324	324 576.000000000000

•	$\int_0^{12} t^4$	‡ = 4	19766.4 prostokąty	
	0	12.0	0.0000000000000000000000000000000000000	0000000000000E+000
•	1	6.00	000000000000	7776.00000000000
	4		000000000000	28187.6889600000
	9		000000000000	38153.4105600000
	16		5882352941177	42734.7159157577
	25		1538461538462	45103.8493049963
	36		4324324324	46464.3882697378
	49		000000000000	47311.2562728960
	64		4615384615385	47871.9389436280
	81		6341463414634	48261.4670384367
	100	0.11	8811881188119	48542.6893036862
	trapezy	0	12.00000000000000	124416.000000000
•		1	6.00000000000000	69984.0000000000
		4	2.400000000000000	53070.8889600000
		9	1.200000000000000	50595.0105600000
		16	0.705882352941177	50053.3041510519
		25	0.461538461538462	49889.0800742271
		36	0.324324324324324	49826.9828643324
		49	0.2400000000000000	49799.5762728960
		64	0.184615384615385	49786.0312513203
		81	0.146341463414634	49778.7353311196
		100	0.118811881188119	49774.5308878446
	Simpson	0	12.00000000000000	51840.00000000000
		1	6.000000000000000	49896.0000000000
		4	2.400000000000000	49769.7177600000
•		9	1.200000000000000	49766.6073600000
		16	0.705882352941177	49766.4248272890
		25	0.461538461538462	49766.4045376563
		36	0.324324324324324	49766.4011064151
		49	0.2400000000000000	
		64	0.184615384615385	
		81	0.146341463414634	49766.4000458637
		100	0.118811881188119	49766.4000199269

kwadratury Newtona-Cotesa

- interpolujemy funkcje podcałkową wielomianem Lagrange'a z równoodległymi wezłami, następnie go całkujemy, tzw.kwadratury Newtona-Cotesa
- $\int_{-b}^{b} f(t)dt \simeq (b-a)f(a)$, (wzór prostokątów), dokładne dla wielomianu stopnia n=0

•
$$\int_a^b f(t)dt \simeq \frac{b-a}{2}(f(a)+f(b))$$
, (trapezów), $n=1$

•
$$\int_{a}^{b} f(t)dt \simeq \frac{b-a}{6} \left(f(a) + 4f(\frac{a+b}{2}) + f(b) \right), \text{ (wzór Simpsona)}, n = 2$$

•
$$\int_{a}^{b} f(t)dt \simeq \frac{(b-a)}{8} (f(a) + 3f(a + (b-a)/3) + 3f(a + 2(b-a)/3) + f(b)),$$
 (Simpsona 3/8), $n=3$

- błąd jednego przedziału rzędu O((b a)ⁿ⁺²)
- wielomian Lagrange'a interpolowany na (n + 1), po scałkowaniu n + 2 i to daje rząd błędu
- kwadratury są zamknięte (wywołują funkcję podcałkową na końcach przedziału). Nie nadają się do całkowania osobliwości.
- kwadratury otwarte i bardziej inteligentne niż równoodległe umiejscowienie węzłów kwadratury Gaussa w dalszej części wykładu.

kwadratury Gaussa-Legendra do całkowania elementów macierzowych

Gauss= najbardziej efektywna metoda dla MES funkcje kształtu są wielomianami(!), a Gauss całkuje je dokładnie

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i) + E$$

ważona suma funkcji podcałkowej w wybranych punktach x_i

Chcemy wybrać tak wagi i punkty aby kwadratura była dokładna dla wielomianu jak najwyższego stopnia (funkcje kształtu będą wielomianami)

Na pewno uda nam się skonstruować kwadraturę dokładną dla wielomianu stopnia *n-1*

Próbkując funkcję w *n* <u>dowolnych</u> punktach: na pewno uda się skonstruować kwadraturę dokładną dla wielomianu stopnia *n-1*

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i) + E$$

Na przedziale -1,1 wybieramy (dowolnie) n – punktów i prowadzimy przez nie wielomian interpolacyjny Lagrange'a funkcji f(x)

$$y(x) = \sum_{i=1}^{n} f(x_i)l_i(x) \qquad l_i(x) = \prod_{j=0; j \neq i}^{n} \frac{x - x_j}{x_i - x_j} \qquad w_i = \int_{-1}^{1} l_i(x)dx$$

Jeśli f(x) – wielomian stopnia nie większego niż n-1 f(x)=y(x) (interpolując wielomian dostaniemy ten sam wielomian)

Dla równoodległych puntków cakowania – dostajemy kwadratury Newtona-Cotesa

Próbkując funkcję w *n* dowolnych punktach: na pewno uda się skonstruować kwadraturę dokładną dla wielomianu stopnia *n-1*

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i) + E$$

Na przedziale -1,1 wybieramy (dowolnie) n – punktów i prowadzimy przez nie wielomian interpolacyjny Lagrange'a funkcji f(x)

$$y(x) = \sum_{i=1}^{n} f(x_i)l_i(x) \qquad l_i(x) = \prod_{j=0; j \neq i}^{n} \frac{x - x_j}{x_i - x_j} \qquad w_i = \int_{-1}^{1} l_i(x)dx$$

Jeśli f(x) – wielomian stopnia nie większego niż n-1 f(x)=y(x) (interpolując wielomian dostaniemy ten sam wielomian)

Dla równoodległych puntków cakowania – dostajemy kwadratury Newtona-Cotesa

Gauss: na wyborze punktów x_i można zyskać dokładność dla n stopni więcej

kwadratury Gaussa-Legendra

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i) + E$$

Wybieramy wagi i punkty Gaussa, tak aby dokładnie scałkować wielomian stopnia 2n-1

[2n współczynników, 2n wag i punktów]

Przykład: n=2 – dokładnie scałkujemy wielomian stopnia 3 Zamiast funkcji liniowej jak w metodzie Newtona-Cotesa

$$\int_{-1}^{1} f(x)dx = w_1 \times f(x_1) + w_2 \times f(x_2)$$

$$f(x) = a + bx + cx^2 + dx^3$$

$$\int_{-1}^{1} f(x)dx = a \int_{-1}^{1} dx + b \int_{-1}^{1} x dx + c \int_{-1}^{1} x^{2} dx + d \int_{-1}^{1} x^{3} dx$$

kwadratury Gaussa-Legendra

$$f(x) = a + bx + cx^2 + dx^3$$

$$\int_{-1}^{1} f(x)dx = a \int_{-1}^{1} dx + b \int_{-1}^{1} x dx + c \int_{-1}^{1} x^{2} dx + d \int_{-1}^{1} x^{3} dx$$

a,b,c,d – dowolne. Każda z powyższych całek musi zostać policzona dokładnie. wstawiamy po kolei 1 za jeden z a,b,c,d=reszta 0.

$$\int_{-1}^{1} dx = 2 = w_1 \times 1 + w_2 \times 1$$

$$\int_{-1}^{1} x dx = 0 = w_1 \times x_1 + w_2 \times x_2$$

$$\int_{-1}^{1} x^2 dx = \frac{2}{3} = w_1 \times x_1^2 + w_2 \times x_2^2$$

$$\int_{-1}^{1} x^3 dx = 0 = w_1 \times x_1^3 + w_2 \times x_2^3$$

$$\int_0^1 f(x)dx = w_1 f(x_1) + w_2 f(x_2)$$

[kwadratura ma działać również dla f(-x)] x_1 oraz x_2 będą rozłożone symetrycznie względem 0 (x_1 =- x_2) wtedy z (2) w_1 = w_2 =1 (z 1) (4) - zawsze spełnione

$$2/3=x_2^2+x_2^2 z (3)$$

 $x_2=\pm (1/3)^{1/2}$ (jeśli plus to minus w x_1]

kwadratura Gaussa dokładna dla wielomianów stopnia 3:

$$w_1 = w_2 = 1$$
, $x_1 = (1/3)^{1/2}$ $x_2 = -(1/3)^{1/2}$

wystarczy dodać wartości funkcji w dwóch punktach aby uzyskać dokładną całkę dla wielu różnych wielomianów w konsekwencji: jeśli dwa wielomiany stopnia <4 przyjmują te same wartości w punktach Gaussa to ich całki po przedziale –1,1 również identyczne: np

Dalej o wyborze punktów Gaussa: Tw. Jakobiego:

kwadratura
$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i) + E$$

oparta na wielomianie interpolacyjnym Lagrange'a

$$y(x) = \sum_{i=1}^{n} f(x_i)l_i(x) \qquad l_i(x) = \prod_{j=0; j \neq i}^{n} \frac{x - x_j}{x_i - x_j} \qquad w_i = \int_{-1}^{1} l_i(x)dx$$

jest dokładna dla wielomianów stopnia 2n-1, jeśli punkty x_i wybrane tak, że wielomian stopnia n

$$z(x) = \prod_{i=1}^{n} (x - x_i)$$
 jest ortogonalny do wszystkich wielomianów stopnia (n-1)

Dla funkcji całkowalnych z kwadratem iloczyn skalarny do całka z iloczynu funkcji:

$$\int_{-1}^{1} z(x)p_{n-1}(x) = 0 \longrightarrow \int_{-1}^{1} f_{2n-1}(x)dx = \sum_{i=1}^{n} w_i f_{2n-1}(x_i)$$

kwadratury Gaussa-Legendra

dla dowolnego wielomianu stopnia n i dowolnej liczby r istnieje taki wielomian o stopniu o jeden niższym i taka liczba R, że: $P_n(x)=(x-r)\ P_{n-1}(x)+R$

przykład:

 $1+x+x^2=(x-2)(ax+b)+c=c-2b+(b-2a)x+ax^2-$ wyliczymy sobie a,b, oraz c

$$z(x) = \prod_{i=1}^{n} (x - x_i)$$

$$f_{2n-1}(x) = (x-x_1) f_{n-2}(x) + r_0$$

$$f_{2n-1}(x) = (x-x_1) [(x-x_2) f_{n-3}(x) + r_1] + r_0 = (x-x_1)(x-x_2) f_{n-3} + r_0 + r_1(x-x_1)$$

$$q_1(x)$$

$$f_{2n-1}(x)=Z_n(x)f_{n-1}(x)+q_{n-1}(x)$$

$$f_{2n-1}(x)=z_n(x)f_{n-1}(x)+q_{n-1}(x)$$

$$\int_{-1}^{1} f_{2n-1}(x)dx = \int_{-1}^{1} q_{n-1}(x)dx + \int_{-1}^{1} z_n(x)f_{n-1}(x)dx$$

całka oparta o przepis interpolacyjny będzie dokładna dla każdego wielomianu stopnia *n-1*

Problem: jak wybrać z(x) aby ortogonalny dla każdego wiel. stopnia n-1

Problem: jak wybrać z(x) aby ortogonalny dla każdego wiel. stopnia n-1

$$z(x) = \prod_{i=1}^{n} (x - x_i)$$

wybrać zera znaczy wybrać wielomian (co do stałej multiplikatywnej)

każdy wielomian można zapisać w postaci sfaktoryzowanej

$$P_n(x) = a \prod_{i=1}^n (x - x_i) = a z_n(x)$$

wielomian Legendra stopnia *n*

- -ortogonalny na przedziale [-1,1] do wszystkich wielomianów stopnia n-1.
- -zera tego wielomianu wyznaczą optymalne punkty Gaussa

Ortogonalizacja Grama-Schmidta

Przedział [-1,1].

Mamy zbiór niezaleznych liniowo funkcji $h_0=1$, $h_1=x$, $h_2=x^2$, $h_3=x^3$, ...

które nie są ortogonalne [iloczyn skalarny określony z funkcją wagową w(x)].

Chcemy skonstruować bazę wielomianów ortogonalnych.

funkcje bazowe dla tego przedziału, z wagą w(x)=1 są to wielomiany Legendre'a.

$$u_0 = 1$$

 $u_1 = a + x$

Jakie *a* aby $(u_0, u_1)=0$?: odp.: a=0

$$u_1=x$$

 $u_2=x^2+bx+c$
 $(u_2,u_0)=2/3+2c=0$
 $(u_2,u_1)=0 \rightarrow b=0$

W literaturze wielomiany Legendre'a normalizowane tak aby $P_k(1)=1:1,x,3/2$ ($x^2-1/3$)

kwadratury Gaussa-Legendra

W bazie $P_0, P_1, ..., P_{n-1}$ można opisać wszystkie wielomiany stopnia n-1, P_n ortogonalny do wszystkich wektorów bazy, więc i do wszystkich wielomianów stopnia n-1

Punkty Gaussa zapewniające maksymalną dokładność (do wielomianu stopnia *2n-1*): zera *n-*tego wielomianu Legendra

$$P_2 = \frac{3}{2}(x^2 - \frac{1}{3})$$
 \rightarrow Dla 2*n-1*=3 [punkty Gaussa tam gdzie wcześniej wyliczyliśmy]

 $I_1 = (x+1/sqrt(3))/(2/sqrt(3))$. całka z niego od od -1 do 1 = 1

$$l_i(x) = \prod_{j=1, j \neq i}^n \frac{x - x_i}{x_j - x_i} \qquad w_i = \int_{-1}^1 l_i(x) dx$$

Wagi i punkty Gaussa

Dokładne do wielomianów stopnia 3

stopnia 5 stopnia 11

Kwadratury Gaussa – otwarte (nie wzywają funkcji na krańcach przedziału całkowania), nadają się do funkcji z całkowalną osobliwością na końcu przedziału :

Całkowanie kwadraturą Gaussa funkcji z logarytmiczną osobliwością

$$\int_0^a \ln(x)dx = a(\ln(a) - 1)$$

niebieski: Gauss numeryczny 32 punkty

czerwony: analityczny

czarny: błąd [analitycznynumeryczny]

całkowanie MC

Bartłomiej Szafran

3 marca 2020

całkowanie Gaussa

- całkowanie Gaussa jest świetną metodą, o ile w przedziale całkowania funkcja daje się opisać przy pomocy wielomianu rzędu 2n-1 (ciągła, gładka klasy Cⁿ, gdzie n wysokie)
- kilka problemów: (1) Gaussian

•
$$\int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi} = 1.77245$$

 całkowanie Gaussa - wg oryginalnego przepisu w przedziale [-1,1], dla niego zdefiniowane punkty i wagi

•
$$\int_{a}^{b} f(x)dx = \begin{vmatrix} x' = \frac{2x - a - b}{b - a} \\ x = \frac{b - a}{2}x' + \frac{b + a}{2} \end{vmatrix} = \frac{b - a}{2} \int_{-1}^{1} f(\frac{b - a}{2}x + \frac{b + a}{2})dx' \simeq \frac{b - a}{2} \sum_{i=1}^{n} w_{i}f(\frac{b - a}{2}x_{i} + \frac{b + a}{2})$$

całkowanie Gaussa funkcji Gaussa

- $\int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi} = 1.77245$
- $\int_{-b}^{b} \exp(-x^2) dx$

•	b	Gauss 8	Gauss 16
	1.	1.493648	1.493648
	2.	1.764137	1.764163
	2.5	1.771277	1.771732
	3.	1.768831	1.772415
	3.5	1.756364	1.772453
	4.	1.723884	1.772451
	4.5	1.661922	1.772427
	5.	1.567003	1.772279
	5.5	1.442495	1.771671
	8.	0.6735966	1.719252
	10.	0.2507452	1.537600

• grupa: skąd ten problem i jak go rozwiązać ...

całkowanie Gaussa funkcji schodkowej

grupa: skąd ten problem i jak go rozwiązać ...

całkowanie Monte Carlo: metoda hit or miss

- mamy do dyspozycji generator liczb losowych z rozkładem równomiernym
- chcemy oszacować całkę jako pole pod krzywą
 y = f(x) w przedziale zamkniętym
- metody Monte-Carlo (Stanisław Ulam, Nicholas Metropolis)
- przedstawienie problemu matematycznego w formie probabilistycznej, rozwiązanie z wykorzystaniem liczb losowych (pseudolosowych)
- $\int_0^1 f(x) dx = Ap$, gdzie A to pole powierzchni prostokąta (rysunek), a p prawdopodobieństwo, że dla wylosowanej pary punktów x, y spełniony jest warunek y < f(x).

- p szacujemy na podstawie N losowań.
- r = 0
- pętla po i od 1 do N, losujemy x_i, y_i
- jeśli $y_i < f(x_i)$ r=r+1
- koniec petli
- oszacowanie p = r/N

całkowanie Monte Carlo:hit or miss

 całka z gaussianu : losowanie w przedziale [-4,4] × [0,1]

 całka z funkcji schodkowej : losowanie w przedziale [-4, 4] × [0, 1]

- na rysunkach : losowanie z historią (dokładamy kolejne punkty)
- naszą zmienną losową jest C estymator dokładnej całki
- wariancja oszacowania $C: \sigma^2(C) = \frac{1}{N-1} \sum_{i=1}^{N} (C_i \langle C \rangle)^2$
- dla dużych N błąd oszacowania maleje jak $\frac{1}{\sqrt{N}}$

całkowanie Monte Carlo: hit or miss

• znany przykład: liczymy liczbę π jako czterokrotność całki pod okręgiem jednostkowym w pierwszej ćwiartce $f(x) = \sqrt{1-x^2}$.

całkowanie Monte Carlo: hit or miss

•
$$\frac{pi}{4} = \int_0^1 \sqrt{1 - x^2} dx$$

ullet trzy linie: wynik, oraz wynik \pm sigma

całkowanie Monte Carlo: metoda wartości średniej

- twierdzenie o wartości średniej, f(x) ciągła
- $\int_{a}^{b} f(x) dx = (b a) \langle f \rangle$
- metoda: losujemy x, liczymy f(x), szacujemy średnią, mnożymy przez długość (objętość przedziału), blędy szacujemy jak poprzednio

•
$$I = \int_{-\infty}^{\infty} x^2 \exp(-x^2) dx = \frac{\sqrt{\pi}}{2}$$

- jeśli potrafimy wygenerować zmienną losową o rozkładzie normalnym $h(x)=\frac{\exp(-x^2)}{\sqrt{\pi}}$
- $I = \langle \sqrt{\pi} x^2 \rangle_{h(x)}$, czyli średnia wartość z $\sqrt{\pi} x^2$ dla h(x) podlegającego rozkładowi normalnemu

rozkład normalny

- rozkład gaussowski (normalny)
- $N_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{x^2}{2\sigma^2})$
- Centralne Twierdzenie Graniczne: próba losowa $(x_1,x_2,\dots x_n)$, losowana z rozkładów dających średnia 0 oraz wariancję σ
- Średnia $s_n = \frac{\sum_{i=1}^n x_i}{n}$
- $\lim_{n\to\infty} \sqrt{n} s_n = N_{\sigma}(x)$
- weźmy rozkład jednorodny od -a do a, $f_j = \frac{1}{2a}$
- wariancja $\sigma^2 = \int_{-a}^{a} f_j(x-0)^2 dx = \frac{a^2}{3}$
- dla generacji rozkładu normalnego ze średnią 0 i $\sigma^2=1$ bierzemy $a=\sqrt{3}$, i generator $g\equiv\sqrt{3}\times2\times(rand()-0.5)$, gdzie rand() jednorodny z rozkładem od 0 do 1

- fioletowa krzywa oczekiwana liczba zliczeń dla 200k losowań.
- 1 losowanie to wyliczenie przeskalowanej średniej z n krotnym użyciem rand().
- punkty łapane w przedziały o długości 1/30.
- n = 1, n = 2, n = 3, n = 10.

- jeśli potrafimy wygenerować zmienną losową o rozkładzie normalnym $h(x) = \frac{\exp(-x^2)}{\sqrt{\pi}}$
- $I = \langle \sqrt{\pi} x^2 \rangle_{h(x)}$, czyli średnia wartość z $\sqrt{\pi} x^2$ dla h(x) podlegającego rozkładowi normalnemu
- $N_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{x^2}{2\sigma^2})$
- $\sigma = \frac{1}{\sqrt{2}}$, $a = \sqrt{\frac{3}{2}}$, suma 12 liczb losowych z rozkładu [-a, a] podzielona przez pierwiastek z 12, średnia wartość $\sqrt{\pi}x^2$

r=0
a=sqrt(1.5)
nra=12
pi=4*atan(1.0)
do 1 i=1,nn
xs=0
do 12 ikuk=1,nra
x=(rand/0-0.5)*a*2
XS=XS+X
12 continue
xs=xS/sqrt(nra*1.)
r=t+xS**2*sqrt(pi)
srednia(i)=r/i
1 continue

odch=0 do 2 i=2, m do 2 i=2, m

- jeśli potrafimy wygenerować zmienną losową o rozkładzie normalnym $h(x)=rac{\exp(-x^2)}{\sqrt{\pi}}$
- $N_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{x^2}{2\sigma^2})$
- tutaj: metoda Metropolisa, 10 000 wędrowców, zaczynamy od rozkładu jednorodnego, następnie hodowany rozkład normalny

- ogólnie: całkowanie MC atrakcyjne, gdy problem jest wielowymiarowy
- przykład: objętość 10 wymiarowej hiperkuli o promieniu 1 (wynik dokładny: $\pi^5/5!$)
- losuje współrzędne punktu w 10 wymiarowej przestrzeni, sprawdzam odległość od początku układu współrzędnych - jeśli mniej niż 1 - wynik losowania 1, jeśli nie 0. prawdopodobieństwo mnożę przed objętość 10 wymiarowego hipersześcianu o boku 2


```
do 1 i=1.nn
do 7 i=1.10
xxx(i)=2*(rand()-0.5)
7 continue
rod-0
do 8 i=1.10
rod=rod+xxx(j)**2
8 continue
if(rod lt.1) r=r+1
srednia(i)=r/i*2.**10
1 continue
odch=0
do 2 i=2.nn
odch=odch+(srednia(i)-srednia(nn))**2
a=srednia(i)
b=srednia(i)+sqrt(1./(i-1)*odch)
c=srednia(i)-sqrt(1./(i-1)*odch)
if(mod(i,10),eq.0) write(1,3) i*1.,a,b,c
```

Błąd interpolacji Lagrange'a

 $x_0, x_1, ..., x_n - n + 1$ różnych węzłów f(x) –gładka funkcja interpolowana (klasy co najmniej n+1) x w przedziale interpolacji

$$\Pi_n(x) = \sum_{j=0}^n f(x_j) l_j(x) \qquad l_i(x) = \prod_{j=0; j \neq i}^n \frac{x - x_j}{x_i - x_j}$$

odchylenie funkcji interpolowanej od wielomianu Lagrange'a

$$E_n(x) = f(x) - \Pi_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^n (x - x_j)$$

 ξ należy do (najmniejszego) przedziału, w którym mieszczą się punkty x_i

Wniosek: jeśli interpolujemy na n+1 punktach wielomian n-tego rzędu, to E_n =0, Interpolacja jest jednoznaczna

Efekt Rungego

nieoptymalność interpolacji na równoodległych węzłach robi się drastyczna dla wysokiego rzędu wielomianu interpolacyjnego

3 punkty

5 punktów

11 punktów

im wyższy stopień wielomianu interpolacyjnego tym gorsze przybliżenie [większa norma nieskończoność błędu]

 szczególniej przy brzegach przedziału

$$E_n(x) = f(x) - \Pi_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^n (x - x_j)$$

Węzły Czebyszewa:

[waga gęsto punkty przy brzegu, błąd nie urośnie]

więcej węzłów przy brzegach