| Prop1 | Prop2 | Conjunção | Disjunção | Negação | Implicação | Equivalência |
|-------|-------|-----------|-----------|---------|------------|--------------|
| р     | q     | pΛq       | pvq       | ~ p     | p→q        |              |
| ٧     | ٧     | ٧         | ٧         | F       | ٧          |              |
| ٧     | F     | F         | ٧         | F       | F          |              |
| F     | ٧     | F         | ٧         | V       | ٧          |              |
| F     | F     | F         | F         | ٧       | ٧          |              |

Aula05: Forma normal



Disciplina: Matemática Discreta

Profa. Kênia Arruda kenia.costa@uniube.br

- É conveniente adotar certa padronização na notação a fim de poder expressar as fórmulas de uma maneira única; a padronização (referenciada como forma) facilita tanto a identificação de uma fórmula quanto a comparação entre duas ou mais fórmulas.
- Duas formas são particularmente utilizadas Forma Normal Conjuntiva (FNC) e Forma Normal Disjuntiva (FND). Dada uma expressão da LP, é sempre possível colocá-la na forma normal conjuntiva, bem como na forma normal disjuntiva; as três representações são expressões equivalentes.

- Uma fórmula da Lógica Proposicional está na forma normal (FN) se e somente se, quando muito, contém os conectivos ¬, ∧ e ∨.
- Exemplos:
  - $\circ$   $\neg p \land q$
  - $\circ \neg (\neg p \lor \neg q)$
  - $(p \land q) \lor (\neg q \lor r)$
- Quando há → ou ↔ tem que se transformar, podese utilizar álgebra ou tabela verdade (algoritmo)

- Uma fórmula H está na forma normal disjuntiva, se é uma disjunção de conjunções de literais.
  - Exemplo:
    - $= H = (p \land q) \lor (r \land p) \lor (\neg p \land \neg q)$
    - $(p \land q) \lor (p \land \neg q)$
    - p V verdade
    - ¬p V (¬q Λ ¬r) V s
    - p V (q Λ r Λ s)
    - $(p \land q) \lor (r \land p \land \neg q) \lor (\neg s)$

- Determinar a FND da fórmula:  $H = (p \rightarrow q) \land (q \rightarrow p) H =$  $(p \rightarrow q) \land (q \rightarrow p)$ 
  - $\Rightarrow (\neg p \lor q) \land (\neg q \lor p) \longrightarrow transforma \rightarrow$
  - $\Rightarrow$  (( $\neg p \lor q$ )  $\land \neg q$ )  $\lor$  (( $\neg p \lor q$ )  $\land p$ ) --> transforma o  $\land$
  - $\Rightarrow (\neg p \land \neg q) \lor (q \land \neg q) \lor (\neg p \land p) \lor (q \land p) -->$  simplifica sempre F
  - $\circ \Leftrightarrow (\neg p \land \neg q) \lor (q \land p)$
  - $\mathsf{FND}(\mathsf{H}) = (\neg \mathsf{p} \land \neg \mathsf{q}) \lor (\mathsf{q} \land \mathsf{p})$

Demonstrem que  $(p \rightarrow q) \land (q \rightarrow p) H = (p \rightarrow q) \land (q \rightarrow p) \equiv = (\neg p \land \neg q) \lor (q \land p)$ 

Via álgebra

- Determinar a FND da fórmula:  $H = (p \rightarrow q) \land (q \rightarrow p) H =$  $(p \rightarrow q) \land (q \rightarrow p)$ 
  - $\Rightarrow (\neg p \lor q) \land (\neg q \lor p) \longrightarrow transforma \rightarrow$
  - $\Rightarrow$  (( $\neg p \lor q$ )  $\land \neg q$ )  $\lor$  (( $\neg p \lor q$ )  $\land p$ ) --> transforma o  $\land$
  - $\Rightarrow (\neg p \land \neg q) \lor (q \land \neg q) \lor (\neg p \land p) \lor (q \land p) -->$  simplifica sempre F
  - $\circ \Leftrightarrow (\neg p \land \neg q) \lor (q \land p)$
  - $\bullet \quad \mathsf{H}_{\mathsf{fnd}} = (\neg \mathsf{p} \land \neg \mathsf{q}) \lor (\mathsf{q} \land \mathsf{p})$

Demonstrem que  $(p \rightarrow q) \land (q \rightarrow p) H = (p \rightarrow q) \land (q \rightarrow p) \equiv = (\neg p \land \neg q) \lor (q \land p)$ 



- Via tb verdade
- Determinar a FND da fórmula:  $H = (p \rightarrow q) \land (q \rightarrow p) H = (p \rightarrow q) \land (q \rightarrow p)$ 
  - Constrói tabela-verdade
  - 2. Extrais I(H) = V.
  - 3. Para cada uma dessas interpretações li (1 ≤ i ≤ 2n) constrói-se uma conjunção da seguinte maneira:
    - se na interpretação li o átomo p da fórmula α é avaliado v, toma-se p
    - se for avaliado f, toma-se ¬p.

2)

4. Constrói-se então a FND como a disjunção das conjunções obtidas em cada uma das interpretações li.

| ) | p | q | p→q | q→p | Н |  |
|---|---|---|-----|-----|---|--|
|   | V | ٧ | ٧   | ٧   | V |  |
|   | V | F | F   | ٧   | F |  |
|   | F | ٧ | ٧   | F   | F |  |
|   | F | F | V   | V   | ٧ |  |

| p | q | Н |
|---|---|---|
| ٧ | ٧ | ٧ |
| F | F | ٧ |

$$\begin{array}{c} 3) \\ (p \wedge q) \\ (\neg p \wedge \neg q) \end{array}$$
 
$$\begin{array}{c} 4) \\ (p \wedge q) \vee (\neg p \wedge \neg q) \\ H_{fnd} = (p \wedge q) \vee (\neg p \wedge \neg q) \end{array}$$



- Determinar a FND da fórmula:  $H = (p \rightarrow q) \land r$ , utilizando algoritmo.
  - Constroi tabela-verdade
  - 2. Extrais I(H) = F.
  - 3. Para cada uma dessas interpretações Ii (1 ≤ i ≤ 2n) constrói-se uma conjunção da seguinte maneira:
    - se na interpretação li o átomo p da fórmula α é avaliado v, toma-se p
    - se for avaliado f, toma-se ¬p.
  - Constrói-se então a FND como a disjunção das conjunções obtidas em cada uma das interpretações li.

Determinar a FND da fórmula:  $H = (p \rightarrow q) \land r$ , utilizando algoritmo.

$$H_{fnd} = (p \land q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land r)$$

- Uma formula H está na forma normal conjuntiva (fnc), se é uma conjunção de disjunção de literais.
- Exemplos:
  - $\bullet H = (\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$
  - $O H = (p \land q)$
  - $\bullet \quad H = p \land (\neg q \lor r)$

- Determinar a FNC da fórmula:  $H = (p \rightarrow q) \land (q \rightarrow p)$ , utilizando um algoritmo.
  - Constrói tabela-verdade
  - Extrais I(H) = F.
  - Para cada uma dessas interpretações li  $(1 \le i \le 2n)$  constrói-se uma conjunção da seguinte maneira:
    - se na interpretação li o átomo p da fórmula  $\alpha$  é avaliado F, toma-se  $\,$  p
    - se for avaliado V, toma-se  $\neg$  p.

2)

Constrói-se então a FND como a disjunção das conjunções obtidas em cada uma das interpretações li.

| p | q | $p \rightarrow q$ | q→p | Н |
|---|---|-------------------|-----|---|
| ٧ | ٧ | ٧                 | ٧   | ٧ |
| ٧ | F | F                 | ٧   | F |
| F | ٧ | ٧                 | F   | F |
| F | F | V                 | V   | ٧ |

| p | q | Н | 3)          |
|---|---|---|-------------|
| ٧ | F | F | (¬ p ∨ q )  |
| F | ٧ | F | ( p ∨ ¬ q ) |

$$(\neg p \lor q) \land (p \lor \neg q)$$

$$H_{fnc} = (\neg p \lor q) \land (p \lor \neg q)$$

 Determinar a FNC da fórmula: H = (p →q) ∧ r, utilizando algoritmo.

Determinar a FNC da fórmula:  $H = (p \rightarrow q) \land r$ , utilizando algoritmo.



$$H_{fnc} = (\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r)$$
$$\land (p \lor \neg q \lor r) \land (p \lor q \lor r)$$

- Determinas uma FNC (Forma Normal Conjuntiva) equivalente p→q:
- Determinar uma FNC equivalente a  $\neg p \lor \neg q$ :
  - p ∨ d ¬p ∨ ¬ d
- Determinar uma forma normal conjuntiva (FNC) ( $(-p \lor -q) \leftrightarrow p$ ):

  - a) p∧ (p∨q) ∧ (¬p∨¬q)
     b) ¬p∧ (¬p∨¬q) ∧ (p∨q)
     c) p ∨(p∧q) ∨ (¬p∧¬q)
     d) ¬p ∨(¬p∧¬q) ∨ (p∧q)

## Uniube - Responda

- Determinas uma FND (Forma Normal Disjuntiva) equivalente ( $(p \rightarrow q) \land \neg p$ ):

  - a) p ∧ (p ∨ ¬ q)
     b) ¬ p ∧ (¬ p ∨ q)
     c) p ∨ (p ∧ ¬ q)
     d) ¬ p ∨ (¬ p ∧ q)
- Determinar uma FND equivalente a  $((p \rightarrow q) \lor \neg p)$ :

  - p∨¬q ¬p∨q ¬p∧ q
- Determinar as formas normais disjuntiva e conjuntiva associadas as formulas abaixo:
  - H =  $(p \rightarrow q) \leftrightarrow (p \land q)$ C =  $(p \leftrightarrow q) \rightarrow (p \lor q)$



- A FNC é de particular interesse no entendimento e uso da linguagem de programação Prolog.
- Uma das vantagens de se ter a FNC de uma dada fórmula α é poder garantir que se a avaliação de α em uma determinada interpretação for v, então cada cláusula separadamente é também interpretada v, uma vez que a FNC é uma conjunção de cláusulas. Este fato torna a fórmula mais facilmente manipulável.

- Como a FNC de uma fórmula α da Lógica Proposicional é sempre uma conjunção de cláusulas, a ordem em que estas cláusulas são escritas é irrelevante pela propriedade associativa da conjunção (Λ).
- Pode-se dizer que a FNC é uma coleção de cláusulas.
   Escreve-se, então, a FNC de uma fórmula α como:
  - {C1, C2, ..., Cn}

## Uniube – Notação Clausal

- Exemplo: Seja
  - $\alpha$ :((¬p V q)  $\wedge$  (¬p V r))  $\rightarrow$  s
  - e seja β a FNC(α),
  - $\beta$ :(p V ¬q V s)  $\Lambda$  (¬p V ¬r V s)  $\Lambda$  (¬q V ¬r V s)
- Pode-se escrever que:
  - $\beta$ :C1  $\wedge$  C2  $\wedge$  C3 tal que
    - C1:(p V ¬q V s)
    - C2:(¬p V ¬r V s) e
    - C3:(¬q V ¬r V s)



 Escreva as formulas do exercício antigo na forma clausal.