06/02/2023 - Architetture dei Sistemi di Elaborazione

D

Nome, MATRICOLA

Domanda 1

Considerando il processore MIPS64 e l'architettura descritta in seguito:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- FP multiplier unit: pipelined 8 stages
- FP divider unit: not pipelined unit that requires 8 clock cycles
- FP arithmetic unit: pipelined 4 stages
- branch delay slot: 1 clock cycle, and the branch delay slot disabled
- forwarding enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.

Usando il frammento di codice riportato, si calcoli il tempo di esecuzione dell'intero programma in colpi di clock e si completi la seguente tabella.

																																						Clock	
	.data																																					cycles	
V1:	.double "100 values"													\perp					\perp								\perp												
V2:	.double "100 values"																																						
V3:	.double "100 values"																																						
V4:	.double "100 values"																																						
V5:	.double "100 values"																																						
	.text						П				\neg								T								Т		\neg										$\overline{}$
main:	daddui r1,r0,0	F) E	M	1 W																																	5	
	daddui r2,r0,100	F	= D	E	М	W																																1	
loop:	l.d f1,v1(r1)		F	D	E	М	W																															1	
	l.d f2,v2(r1)			F	1 -		M	W																														1	
	div.d f4,f1,f2				F	D		/	/	/	7	/	/ /	/ /	/ N	۷IN	N		П								Т											9	
	l.d f3,v3(r1)					F	D	E	М	W																												0	
	add.d f5,f4,f3						F	D	S	S	s	S	s s	s s	3 H	- -	+ +	+	I	Λ	/						Т											4	
	l.d f4,v4(r1)							F	S	S	s	S	s s	s s	s [) I	∃ N	1 V	۷																			0	
	add.d f5,f4,f5														F	= [) s	S	+	+	+	+	N	1 V	V													4	
	s.d f5,v5(r1)															F	= D	E	s	s	s	S	s		ΛV													1	
	daddui r1,r1,8																F	D	S	S	s	S	S			ΛV												1	
	daddi r2,r2,-1																	F	S	S	s	S	s			E N												1	
	bnez r2,loop																							F) s	; E	ΕĮ	М	W								2	
	Halt																								F	s	; -	-	-	-	-							1	
	Total																				6) +	(25	* 1	00)													2506	

06/02/2023 - Architetture dei Sistemi di Elaborazione

D

Nome, MATRICOLA

Domanda 2

Considerando il programma precedente, quali sono le istruzioni che beneficiano principalmente del meccanismo di FORWARDING del processore e perché? motivare la risposta.

In generale quelle che ne beneficiano sono quelle con data hazard(RAW, WAW, ...), perché possono intercettare un valore subito dopo la fase di execute invece di attendere quella di write (2 c.c. in più). Un esempio è add.d f5,f4,f3 che è costretto ad attendere per molti c.c. la div, ma almeno il forwarding contribuisce a ridurre l'effetto dell'hazard. L'istruzione che più beneficia del forwading in questo caso è l.d f4,v4(r1), perché non è costretto ad attendere la terminazione della fase di esecuzione della istruzione precedente (WAR hazard).

Nome, MATRICOLA

Domanda 3

Considerando il programma precedente e l'architettura del processore superscalare descritto in seguito; completare la tabella relativa alle prime 2 iterazioni.

Processor architecture:

- Issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 8 stages
 - v. 1 FP divider unit, which is not pipelined: 8 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 4 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	I.d f1,v1(r1)	1	2m	3	4	5
1	I.d f2,v2(r1)	1	3m	4	5	6
1	div.d f4,f1,f2	2	6d		<mark>14</mark>	15
1	l.d f3,v3(r1)	2	4m	5	6	15
1	add.d f5,f4,f3	3	15a		19	20
1	I.d f4,v4(r1)	3	5m	6	7	21
1	add.d f5,f4,f5	4	20a		24	25
1	s.d f5,v5(r1)	4	6m			25
1	daddui r1,r1,8	5	6i		7	26
1	daddi r2,r2,-1	5	7i		8	26
1	bnez r2,loop	6	9j			27
2	l.d f1,v1(r1)	7	8m	9	10	27
2	I.d f2,v2(r1)	7	9m	10	11	28
2	div.d f4,f1,f2	8	14d		22	28
2	I.d f3,v3(r1)	8	10m	11	12	29
2	add.d f5,f4,f3	9	23a		27	29
2	I.d f4,v4(r1)	9	11m	12	<mark>13</mark>	30
2	add.d f5,f4,f5	10	28a		32	33
2	s.d f5,v5(r1)	10	12m			33
2	daddui r1,r1,8	11	12i		<mark>13</mark>	34
2	daddi r2,r2,-1	11	13i		<mark>14</mark>	34
2	bnez r2,loop	12	15j			35

06/02/2023 – Architetture dei Sistemi di Elaborazione D Nome, MATRICOLA

Domanda 4

Considerando il segmento di codice presentato nella tabella precedente, se assumessimo che il ROB abbia una dimensione di 8 elementi, quale sarebbe la prima istruzione che dovrebbe stallare durante la esecuzione del programma? motivare la risposta.

Stallerebbe alla prima iterazione su daddi r2,r2,-1. Si estraggono 9 istruzioni, ma nel ROB ne saranno 8 al quinto c.c. perché abbiamo una commit.