Roteiro da Aula 4

Roteiro

Expressões Regulares

Situação Atua

Linguagens não-regulares Expressões Regulares Exemplos e exercícios Equivalência AFN/Expressões Regulares

- 2 Situação Atual
- 3 Linguagens não-regulares Pumping Lemma

Operações regulares - Semântica

Roteiro

Expressões Regulares

Exemplos e exercícios Equivalência AFN/Expressi Regulares

Situação Atua

Linguagens não-regulare Seja Σ um alfabeto e L, L_1 e L_2 linguagens sobre Σ :

- União: $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ ou } x \in L_2\};$
- Concatenação: $L_1L_2 = \{xy \mid x \in L_1 \text{ e } y \in L_2\};$
 - Se $L_1 = \{00, 01, 10, 11\}$ e $L_2 = \emptyset$, quem é L_1L_2 ?
 - Por definição: $L^1=L$, $L^2=LL$, $L^3=LLL$, ...; • e $L^0=\{\varepsilon\}$;
- Kleene closure: $L^* = \bigcup_{i=0}^{\infty} L^i$.

Roteiro

Expressões Regulares

Exemplos e exercícios

AFN/Expre

Situação Atu

Linguagens não-regulare

Exemplos

- $L_1 = \{bad, good\} e L_2 = \{boy, girl\}$:
 - $L_1L_2 = \{ badgirl, badboy, goodgirl, goodboy \};$

• $\Sigma = \{0,1\}$, $\Sigma^* = \{\varepsilon,0,1,00,01,10,11,000,001,\dots\}$;

• $\emptyset^* = \{\varepsilon\};$

Roteiro

Expressões Regulares

Exemplos e exercícios Equivalência

AFN/Expressõe Regulares

Jituação Att

Linguagens não-regulare

Expressões Regulares

São expressões (seqüências de símbolos), definidas recursivamente, que representam linguagens sobre um alfabeto Σ

Expressões Regulares

Expressão regular	representa a linguagem
Ø	vazia
arepsilon	$\{arepsilon\}$
a	$\{a\}$, para cada $a\in \Sigma$
$(m{r}+m{s})$	$R \cup S$
$(m{rs})$	RS
(r^*)	R^*

onde ${m r}$ e ${m s}$ são expressões regulares representando as linguagens ${\cal R}$ e ${\cal S}$

Roteiro

Expressões Regulares

Exemplos e exercícios Equivalência

Situação Atua

Linguagens não-regulare

Exemplos

Se
$$\Sigma = \{0, 1\}$$
:

- $(0+1)^*$;
- $((\mathbf{0}(\mathbf{1}^*)) + \mathbf{0});$
 - abreviando como $01^* + 0$;
 - * precede concatenação, que precede +;
- (0+1)*1(0+1)(0+1);
- rr^* é abreviado como r^+ ;

Usamos $\mathcal{L}(r)$ para denotar a linguagem representada pela expressão regular r.

Roteire

Expressõe: Regulares

Exemplos e exercícios Equivalência AFN/Express

Situação Atua

Linguagens não-regulare

Exercícios

Escreva expressões regulares para as seguintes linguagens sobre $\{0,1\}$:

- as palavras que têm exatamente um 1;
- as palavras que têm pelo menos um 1;
- as palavras que têm tamanho par;
- as palavras que começam e terminam com o mesmo símbolo;
- ullet as palavras que têm um número par de 0's e/ou de 1's.

Expressões Regulares Exemplos e

exercícios Equivalência AFN/Expressões Regulares

Situação Atua

Linguagens não-regulare

Equivalência entre AFN e Exp. Reg.

Teorema

Para toda expressão regular r, existe AFN A, tal que $\mathcal{L}(A) = \mathcal{L}(r)$.

Linguagem Regular

Uma linguagem $\mathcal{L} \subseteq \Sigma^*$ é Regular se existe uma expressão regular r tal que $\mathcal{L}(r) = \mathcal{L}$.

Intuição sobre o Teorema

 $(0+1)^*10$

Roteiro

Expressões Regulares

Exemplos e exercícios

Equivalência AFN/Expressões Regulares

Situação Atua

Linguagens não-regulare

Roteir

Expressões Regulares

Exemplos e exercícios

Equivalência AFN/Expressões Regulares

Situação Atua

Linguagens não-regulares

Roteir

Expressões Regulares

Exemplos e exercícios

Equivalência AFN/Expressões Regulares

Ortuação 7 tua

Linguagens não-regulare

$$(0+1)^*10$$

1

 $(0+1)$
 $(0+1)$

Roteiro

Expressões Regulares

Exemplos e exercícios

Equivalência AFN/Expressões Regulares

iituação Atua

Linguagens não-regulare

Roteiro

Expressões Regulares

Exemplos exercícios

Equivalência AFN/Expressões Regulares

Situação Atua

Linguagens não-regulares

Roteiro

Expressões

Exemplos e

Equivalência AFN/Expressões Regulares

Situação Atua

Linguagens não-regulares

Roteiro

Expressões Regulares

Situação Atual

Linguagens não-regulares

Situação Atual

Interseção

Roteiro

Expressões Regulares

Situação Atual

Linguagens não-regulares

Situação Atual

Roteiro

Expressõe: Regulares

Situação Atual

Linguagens não-regulares Pumping Lemm

Linguagens Finitas

Teorema

Toda linguagem Finita é Regular.

 Um problema com um número finito de instâncias, a rigor, é trivial do ponto de vista de Computabilidade (e mesmo de Complexidade Computacional)

Roteiro

Expressõe: Regulares

Situação Atua

Linguagens não-regulares Pumping Lemma O autômato é Finito!

 $\mathcal{L} = \{ w \mid \# \text{ de } 1 \text{'s e } \# \text{ de } 0 \text{'s \'e par} \}$

o que acontece se $\left|w\right|>4$?

Pumping Lemma

Roteiro

Expressõe Regulares

Situação Atual

não-regulares

Pumping Lemma

Pumping Lemma

- Para toda linguagem regular L;
- Existe $p \in \mathbb{N}$; tal que
- Para toda palavra $w \in \mathcal{L}$, $|w| \ge p$;
- Existe *x*, *y*, *z*:
 - w = xyz;
 - $|xy| \leq p$;
 - $|y| \ge 1$; tal que
- Para todo $i \ge 0$, $xy^iz \in \mathcal{L}$.

Expressões Regulares

Situação Atua

Linguagens não-regulares

Pumping Lemma

Pumping Lemma

Pumping Lemma

- Para toda linguagem regular \mathcal{L} ;
- Existe $p \in \mathbb{N}$; tal que
- Para toda palavra $w \in \mathcal{L}$, $|w| \ge p$;
- Existe *x*, *y*, *z*:
 - w = xyz;
 - $|xy| \leq p$;
 - $|y| \ge 1$; tal que
- Para todo $i \ge 0$, $xy^iz \in \mathcal{L}$.

Se $\mathcal L$ é regular \Longrightarrow vale o PL para $\mathcal L$ $\downarrow \text{contrapositiva}$ Se não vale o PL para $\mathcal L \Longrightarrow \mathcal L$ não é regular

Roteiro

Expressões Regulares

Situação Atual

não-regulares

Pumping Lemma

Aplicando o PL

Se não vale o PL para ${\cal L}$

- Para todo $p \in \mathbb{N}$;
- Existe palavra $w \in \mathcal{L}$, $|w| \ge p$; tal que
- Para todo x, y, z:
 - w = xyz;
 - $|xy| \leq p$;
 - $|y| \ge 1$;
- Existe $i \geq 0$, tal que $xy^iz \notin \mathcal{L}$.

Roteiro

Expressõe: Regulares

Situação Atual

não-regulares

Pumping Lemma

Aplicando o PL

Se não vale o PL para ${\cal L}$

- Para todo $p \in \mathbb{N}$;
- Existe palavra $w \in \mathcal{L}$, $|w| \geq p$; tal que
- Para todo x, y, z:
 - w = xyz;
 - $|xy| \leq p$;
 - $|y| \ge 1$;
- Existe $i \geq 0$, tal que $xy^iz \notin \mathcal{L}$.

Vamos mostrar que $\{0^n1^n \mid n \geq 0\}$ não é regular...

Roteiro

Expressões Regulares

Situação Atua

Linguagens não-regulares

Pumping Lemma

Exercício

Mostre que $\mathcal{L} = \{w \mid w \in \Sigma^* \ e \ w = w^r\}$ isto é, w é um palíndromo, NÃO é regular