import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
from sklearn import datasets
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

data = pd.read_csv('Downloads/iris.csv')
data

	Unnamed: 0	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	1	5.1	3.5	1.4	0.2	setosa
1	2	4.9	3.0	1.4	0.2	setosa
2	3	4.7	3.2	1.3	0.2	setosa
3	4	4.6	3.1	1.5	0.2	setosa
4	5	5.0	3.6	1.4	0.2	setosa
145	146	6.7	3.0	5.2	2.3	virginica
146	147	6.3	2.5	5.0	1.9	virginica
147	148	6.5	3.0	5.2	2.0	virginica
148	149	6.2	3.4	5.4	2.3	virginica
149	150	5.9	3.0	5.1	1.8	virginica

¹⁵⁰ rows × 6 columns

data1=preprocessing.LabelEncoder()
data['Species']=data1.fit_transform(data['Species'])
data

	Unnamed: 0	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	1	5.1	3.5	1.4	0.2	0
1	2	4.9	3.0	1.4	0.2	O
2	3	4.7	3.2	1.3	0.2	O
3	4	4.6	3.1	1.5	0.2	O
4	5	5.0	3.6	1.4	0.2	O
145	146	6.7	3.0	5.2	2.3	2
146	147	6.3	2.5	5.0	1.9	2
147	148	6.5	3.0	5.2	2.0	2
148	149	6.2	3.4	5.4	2.3	2
149	150	5.9	3.0	5.1	1.8	2

150 rows × 6 columns

x=data.iloc[:,0:5]
y=data['Species']

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=30)

x train.shape,x test.shape,y train.shape,y test.shape

model = DecisionTreeClassifier(criterion='entropy',max_depth=30) model.fit(x_train,y_train)

DecisionTreeClassifier(criterion='entropy', max_depth=30)

tree.plot_tree(model)

fn=['sepal length','sepal width','petal length','petal width']
cn=['setosa','versicolor','virginica']
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(4,4),dpi=300)
tree.plot_tree(model,feature_names=fn,class_names=cn,filled=True)


```
predict=model.predict(x_test)
predict
```

```
array([0, 0, 0, 2, 1, 1, 2, 2, 1, 2, 0, 2, 1, 2, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 2, 2, 1, 2, 0, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2])
```

pd.crosstab(predict,y_test)

Species	0	1	2
row_0			
0	13	0	0
1	0	12	0
2	0	1	19

np.mean(predict==y_test)

0.977777777777777

model = DecisionTreeClassifier(criterion='gini',max_depth=30)
model.fit(x_train,y_train)

DecisionTreeClassifier(max_depth=30)

tree.plot_tree(model)

```
[Text(133.92000000000000, 181.2, 'X[3] <= 2.6\ngini = 0.664\nsamples = 105\nvalue = [37, 37, 31]'), Text(66.9600000000001, 108.72, 'gini = 0.0\nsamples = 37\nvalue = [37, 0, 0]'), Text(200.88000000000002, 108.72, 'X[0] <= 99.0\ngini = 0.496\nsamples = 68\nvalue = [0, 37, 31]'), Text(133.9200000000002, 36.2399999999998, 'gini = 0.0\nsamples = 37\nvalue = [0, 37, 0]'), Text(267.8400000000003, 36.239999999998, 'gini = 0.0\nsamples = 31\nvalue = [0, 0, 31]')]
```

```
X[3] \le 2.6
             gini = 0.664
           samples = 105
         value = [37, 37, 31]
                       X[0] \le 99.0
   gini = 0.0
                       gini = 0.496
 samples = 37
                       samples = 68
value = [37, 0, 0]
                    value = [0, 37, 31]
              gini = 0.0
                                   gini = 0.0
            samples = 37
                                 samples = 31
          value = [0, 37, 0]
                                value = [0, 0, 31]
```

predict=model.predict(x_test)
predict

```
array([0, 0, 0, 2, 1, 1, 2, 2, 1, 2, 0, 2, 1, 2, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 2, 2, 1, 2, 0, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2])
```

pd.crosstab(predict,y_test)

Species	0	1	2
row_0			
0	13	0	0
1	0	12	0
2	0	1	19

np.mean(predict==y_test)

0.977777777777777

data.describe

<bound r<="" th=""><th>method NDFrame</th><th>e.describe of</th><th>Unnamed: 0</th><th>Sepal.Length</th><th>Sepal.Width</th><th>Petal.Length</th><th>Petal.Width</th><th>Species</th></bound>	method NDFrame	e.describe of	Unnamed: 0	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	1	5.1	3.5	1.4	0.2	0		
1	2	4.9	3.0	1.4	0.2	0		
2	3	4.7	3.2	1.3	0.2	0		
3	4	4.6	3.1	1.5	0.2	0		
4	5	5.0	3.6	1.4	0.2	0		
145	146	6.7	3.0	5.2	2.3	2		
146	147	6.3	2.5	5.0	1.9	2		
147	148	6.5	3.0	5.2	2.0	2		
148	149	6.2	3.4	5.4	2.3	2		
149	150	5.9	3.0	5.1	1.8	2		

[150 rows x 6 columns]>