中国科学院大学 2014-2015 学年第一学期"数学分析 IA"期末

共九道大题 满分 100 分 时间 180 分钟

- 1, (16 points) Calculate the following:

- (1) $\lim_{x \to 1} \ln x \ln(1-x)$; (2) $\lim_{x \to \infty} (\cos \frac{1}{x})^x$; (3) $\lim_{x \to 0} \frac{\cos x e^{-\frac{x^2}{2}}}{x^4}$;
- (4) Choose numbers a and b so that the function $f(x) = e^x \frac{1+ax}{1+bx}$ is an infinitesimal of highest possible order as $x \to 0$.
- 2. (12 points) Investigate the behavior (convergence or divergence) of $\sum_{n=0}^{\infty} a_n$ if
- (1) $a_n = \frac{1}{3^n + n}$; (2) $a_n = \frac{n^2}{2^n}$; (3) $a_n = (-1)^n \frac{\ln n}{n}$.
- 3. (8 points) Sketch the graph or the function $f(x) = \frac{x^2 5x + 8}{x 4}$ and discuss its critical points, max./min., monotonicity, convexity, inflection points and asymptotes...
- 4、(16 points) Calculate the following:

- $(1) \int x^2 \arctan x dx : \qquad (2) \int x^2 \sqrt{1 x^2} dx : \qquad (3) \int \sqrt{e^x 1} dx : \qquad (4) \int e^x \left(\frac{1 x}{1 + x^2}\right)^2 dx .$
- 5. (8 points) Assume that a function f on \mathbf{R} is differentiable and $f' \leq 1/2$. Prove that there exists $x \in \mathbb{R}$ such that f(x) = x, and such x is unique.
- 6. (8 points) Consider a mirror the shape of a parabola $y=3x^2$.
- (1) Compute the equation of the line tangent to the parabola at x=1;
- (2) Find the position of a light source so that the light rays after refection on the mirror are parallel to the y-axis.
- 7. (8 points) For a function f that is differentiable on [0,1], Assume f' is continuous on (0,1) and $\{x \in (0,1) | f'(x) > 0\}$ is dense in [0,1], then f is increasing in [0,1].

- 8. (16 points) Let $f:[a,b] \to R$ be a function such that $g(x_0) = \lim_{x \to x_0} f(x)$ exists for every $x_0 \in [a,b]$. Prove that:
- (1) For any $x_0 \in [a,b]$ there exists $\delta > 0$ such that f(x) is bounded on $[a,b] \cap U_{\delta}(x_0)$;
- (2) f(x) is bounded on [a,b];
- (3) The function g(x) is continuous on [a,b];
- (4) $f(x) \neq g(x)$ for at most countably many $x \in [a,b]$.
- 9.(8 points each only the higher score of the two will be taken)Assume that f is differentiable on [0,1]. Then
- (1) f' defined on (0,1) satisfies the intermediate value theorem (i.e. for any $\inf_{x \in (0,1)} f' < c < \sup_{x \in (0,1)} f'$, there exists such that $f'(\xi) = c$).
- (2) f' is mean continuous (i.e for any $x_0 \in (0,1)$, and closed intervals $I_n = [a_n,b_n] \subset (0,1)$ containing x_0 with $\lim_{n\to\infty} (b_n-a_n)$, the mean value $\frac{f(a_n)-f(b_n)}{a_n-b_n}$ of f' on I_n converges to $f'(x_0)$ as $n\to\infty$).