Memory OS of AI Agentarxiv.org/abs/2506.06326

Jiazheng Kang

Beijing University of Posts and Telecommunications

kjz@bupt.edu.cn

开源代码: https://github.com/BAI-LAB/MemoryOS

Zhe Zhao

Tencent AI Lab nlpzhezhao@tencent.com Ting Bai *

Mingming Ji

Tencent AI Lab

matthhewj@tencent.com

Beijing University of Posts and Telecommunications baiting@bupt.edu.cn

本文提出MemoryOS,一种借鉴操作系统中段页式内存管理思想的memory管理方案。MemoryOS构建 了由短期记忆(STM)、中期记忆(MTM)和长期记忆(LPM)组成的分层结构,分别用于保持当前对话上下 文、聚合历史话题信息与建构用户个性画像,以页(page)为基本单位表示单轮对话内容,并在中期记忆 中通过语义聚类将多个相关对话页组织成<mark>段(segment)</mark>,实现基于话题的记忆组织与存储。为了支持动 态的记忆更新,MemoryOS引入了基于热度评分(heat score)的淘汰与转移机制,根据记忆的访问频 率、交互活跃度与时间衰减等因素,将中期记忆转为长期记忆或者去掉某个中期记忆。MemoryOS同时 从STM、MTM和LPM 三类记忆中检索相关信息,辅助生成上下文一致且个性化的response。

背景

Memory在Agent系统中的重要性已经不需要多说 了,近期已经有越来越多的研究工作开始关注 memory方向,因为发展演化的快,所以还没有 比较统一确定的memory系统架构。本文作者受 到操作系统领域中段页式存储结构(segmented paging的启发,提出了一种基于层级memory架 构的存储与组织方案,让我们一起学习下。

实验设置

- 数据集: GVD和LoCoMo
- backbone模型: GPT-4o-mini和Qwen2.5-7B
- 用如下方式计算page和segment相似度,将page 添加到最相似的segment中。考虑向量语义相似度 和Jacard相似度

$$\mathcal{F}_{\text{score}} = \cos(\mathbf{e}_s, \mathbf{e}_p) + \mathcal{F}_{Jacard}(K_s, K_p),$$

MemoryOS学

- 短期记忆(STM)用一个固 定大小的队列(queue)实 现,每个队列元素称为 一个page,包含 (query, response, 时间 戳和可选的IIm生成的上 下文摘要)
- 中期记忆(MTM)负责对 page进行按主题分类存 储,换句话说, MemoryOS是按照主题 (topic)分类管理历史交 互信息的
- 长期记忆(LTM)主要是用 户/Agent个性化因素

部分实验结果

Table 2: LoCoMo dataset comparison with per-category scores and average ranks. A-Mem refers to the results reported in the original paper. A-Mem* represents our implementation results under the same experimental environment as our model.

Model	Method	Single F1 ↑	e Hop BLEU-1↑	Mult F1 ↑	i Hop BLEU-1 ↑	Tem F1 ↑	poral BLEU-1 ↑	Open I F1 ↑	Domain BLEU-1↑	Avg. Rank ↓ (F1)	Avg. Rank ↓ (BLEU-1)
GPT-4o-mini	TiM	16.25	13.12	18.43	17.35	8.35	7.32	23.74	22.05	3.8	4.0
	MemoryBank		4.77	9.68	6.99	5.56	5.94	6.61	5.16	5.0	5.0
	MemGPT	26.65	17.72	25.52	19.44	9.15	7.44	41.04	34.34	2.2	2.5
	A-Mem	27.02	20.09	45.85	36.67	12.14	12.00	44.65	37.06	_	_
	A-Mem*	22.61	15.25	33.23	29.11	8.04	7.81	34.13	27.73	3.0	2.5
	Ours	35.27	25.22	41.15	30.76	20.02	16.52	48.62	42.99	1.0	1.0
Improvement (%)		32.35%↑	42.33%↑	23.83%↑	5.67%↑	118.80%↑	111.52%↑	18.47%↑	25.19%↑	-	-

从消融实验结果来看,中期记忆对效果提升 最大,说明本文提出的以话题(topic)的方式 组织历史交互数据是有效的,并且重要程度 比用户/Agent persona信息更重要。我们是 否可以再发散思考下,有没有其他更好的方 式组织这么多轮的(query, response)数据 呢? 比如事件(event)? 知识图谱? 或者 balabala。另一个问题是memory的基本单 元用哪种数据结构更合理,是原始的(query, response)还是需要对(q, r)做一步提取/摘