Modul 2: Persamaan Diferensial Biasa Orde Pertama Metode Solusi dan Aplikasi Rangkaian

Novalio Daratha/Universitas Bengkulu

Departemen Teknik Elektro

June 29, 2025

Ikhtisar Modul 2

- Skenario Pembelajaran Berbasis Masalah (PBL)
- Metode Solusi Analitis
 - Persamaan Terpisah dan Homogen
 - PD Linear Orde Pertama
- Aplikasi dan Analisis Lanjutan
 - Analisis Rangkaian dan Konstanta Waktu
 - Pengenalan Metode Numerik

PBL: Penyimpanan Energi Terbarukan

Skenario Utama Modul Ini

Sebuah instalasi surya *off-grid* menggunakan panel PV untuk mengisi bank baterai. Tugas kita adalah memodelkan dan menganalisis perilaku pengisian dan pengosongan sistem ini untuk menentukan bagaimana tegangan baterai berubah dari waktu ke waktu.

Model Rangkaian RC Sederhana

- Panel Surya: Sumber tegangan $V_{solar}(t)$.
- Baterai: Dimodelkan sebagai kapasitor besar (C).
- Resistansi Rangkaian:
 Dimodelkan sebagai resistor (R).

Persamaan yang mengatur adalah PDB linear orde pertama:

Figure: Diagram rangkaian RC untuk' memodelkan sistem.

Metode 1: Persamaan Terpisah (Separable Equations)

Definisi

Persamaan diferensial yang dapat dimanipulasi secara aljabar ke dalam bentuk:

$$g(y)dy = f(x)dx$$

Prosedur Solusi

- lacktriangle Pisahkan variabel y dan x ke sisi yang berlawanan.
- Integralkan kedua sisi secara terpisah:

$$\int g(y)dy = \int f(x)dx$$

3 Selesaikan untuk y jika memungkinkan.

Metode ini adalah fondasi dasar, meskipun tidak berlaku langsung untuk model RC linear kita.

Metode 2: PD Linear Orde Pertama

Bentuk Standar

Kelas PDB yang sangat penting dalam teknik elektro, dapat ditulis dalam bentuk:

$$\frac{dy}{dx} + P(x)y = Q(x)$$

Koneksi ke Skenario PBL

Persamaan model baterai kita, $RC\frac{dv_c}{dt} + v_c = V_{source}(t)$, dapat diubah ke bentuk standar:

$$\frac{dv_c}{dt} + \frac{1}{RC}v_c = \frac{V_{source}(t)}{RC}$$

Di sini,
$$P(t) = \frac{1}{RC}$$
 dan $Q(t) = \frac{V_{source}(t)}{RC}$.

Teknik Solusi: Faktor Integrasi

Pendekatan Flipped Classroom

- **Pra-Kelas:** Anda akan menonton video singkat tentang penurunan teori faktor integrasi.
- **Di Kelas:** Kita akan fokus pada aplikasi dan pemecahan masalah kolaboratif untuk skenario PBL.

Metode Faktor Integrasi $(\mu(x))$

1. Hitung faktor integrasi: $\mu(x) = e^{\int P(x)dx}$. 2. Kalikan seluruh PDB dengan $\mu(x)$. Sisi kiri akan menjadi turunan dari sebuah produk:

$$\frac{d}{dx}[\mu(x)y] = \mu(x)Q(x)$$

3. Integralkan kedua sisi dan selesaikan untuk y.

Analisis Solusi: Transien dan Keadaan Tunak

Solusi untuk PDB linear orde pertama sering kali terdiri dari dua bagian:

Solusi Transien

- Bagian dari solusi yang meluruh menuju nol seiring waktu $(t \to \infty)$.
- Mewakili respons awal sistem terhadap perubahan.
- Contoh: Proses pengisian awal kapasitor.

Solusi Keadaan Tunak (Steady-State)

- Bagian dari solusi yang tersisa setelah transien mereda.
- Mewakili perilaku jangka panjang sistem.
- Contoh: Tegangan kapasitor setelah terisi penuh.

Konsep Kunci: Konstanta Waktu (τ)

Definisi untuk Rangkaian RC

Konstanta waktu, dilambangkan dengan au (tau), didefinisikan sebagai:

$$\tau = RC$$

(Untuk rangkaian RL, $\tau = L/R$)

Makna Fisik

- Mengukur seberapa cepat sistem merespons perubahan.
- Dalam satu konstanta waktu (τ) , tegangan kapasitor akan mencapai sekitar **63.2%** dari nilai akhirnya saat mengisi daya.
- ullet Semakin kecil au, semakin cepat rangkaian mencapai keadaan tunak.
- \bullet Dalam konteks PBL: τ menentukan seberapa cepat baterai kita dapat diisi.

Pengantar Metode Numerik: Metode Euler

Mengapa Perlu Metode Numerik?

Banyak masalah rekayasa dunia nyata tidak memiliki solusi analitis yang sederhana, terutama jika melibatkan:

- Persamaan non-linear (misalnya, model baterai yang lebih akurat).
- Input yang kompleks (misalnya, profil iradiasi surya yang realistis).

Di sinilah simulasi numerik berperan.

Metode Euler

Metode paling sederhana untuk mendekati solusi IVP dy/dt = f(t, y) dengan $y(t_0) = y_0$.

$$y_{n+1} = y_n + \Delta t \cdot f(t_n, y_n)$$

Di mana Δt adalah ukuran langkah waktu yang kecil. Ini adalah langkah pertama kita ke dunia rekayasa komputasi.

Rangkuman Modul 2

Keterampilan yang Dikuasai

- Mengidentifikasi dan menyelesaikan PDB orde pertama menggunakan metode analitis (persamaan terpisah, faktor integrasi).
- Menerapkan teknik ini untuk memodelkan dan menganalisis masalah rekayasa praktis (PBL penyimpanan energi).
- Memahami dan menafsirkan makna fisik dari komponen solusi (transien, keadaan tunak) dan parameter sistem (konstanta waktu τ).
- Mendapatkan pengenalan awal tentang bagaimana metode numerik (Metode Euler) digunakan untuk mendekati solusi.

Selanjutnya di Modul 3

Kita akan meningkatkan kompleksitas ke Persamaan Diferensial Orde Kedua, yang akan memungkinkan kita untuk memodelkan sistem dengan osilasi dan resonansi, seperti rangkaian RLC.