NIM : 123190059

PLUG : C

RESPONSI PRAKTIKUM SCPK

(Jum'at, 25 Juni 2021 – Sabtu, 26 Juni 2021)

- 1. Weighted Product (WP)
 - a. Link Github WP:

https://github.com/PekumMaster/SCPK/tree/main/C_123190059_Responsi/WP

b. Langkah pembuatan program dan penjelasan

```
function view_Callback(hObject, eventdata, handles)
            handle to view (see GCBO)
₽% hObject
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 opts = detectImportOptions('Real Estate.xlsx');%mengimport file xlsx
 opts.SelectedVariableNames = (1:5);
 data = readmatrix('Real Estate.xlsx', opts);
set(handles.tableData,'data',data',visible','on'); %membaca file Real_Estate.xlsx dan menampilkan data pada tabel GUI
   --- Executes on button press in procces
function process Callback(hObject, eventdata, handles)
8 hObject handle to procces (see GCBO)
8 eventdata reserved - to be defined in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)
 opts = detectImportOptions('Real_Estate.xlsx'); %mengimport file xlsx
 opts.SelectedVariableNames = (2:5);
 data = readmatrix('Real_Estate.xlsx', opts);
  k=[0.0.1.0]; %benefit dan cost
 w=[3,5,4,1]; %bobot masing2 kriteria
  [m n]=size (data); %inisialisasi ukuran matriks
  w=w./sum(w); %membagi bobot masing2 kriteria dengan jumlah total seluruh bobot
for j=1:n, %perhitungan vektor(S) per baris (alternatif)
     if k(j) == 0, w(j) =-1*w(j);
     end;
 end;
\exists for i=1:m,
     S(i)=prod(data(i,:).^w);
 V= S/sum(S) %perhitungan nilai vektor V
 opts = detectImportOptions('Real_Estate.xlsx');
  opts.SelectedVariableNames = (1);
 baru = readmatrix('Real_Estate.xlsx', opts);
  xlswrite('wpResult.xlsx', baru, 'Sheet1', 'A1'); %menulis data pada file colom A1
 V=V'; %merubah data hasil perhitungan dari matriks horizontal menjadi matriks vertikal
 xlswrite('wpResult.xlsx', V, 'Sheet1', 'B1'); %menulis data pada file colom B1
  opts = detectImportOptions('wpResult.xlsx');
  opts.SelectedVariableNames = (1:2);
 data = readmatrix('wpResult.xlsx', opts); %membaca file wpResult.xlsx
  X=sortrows(data,2,'descend'); %mengurutkan kolom kedua dari data dengan nilai paling besar
  set(handles.tableResult, 'data', X, 'visible', 'on'); %menampilkan data yang telah diurutkan pada tabel GUI
```

Listing Program WP

NIM : 123190059

PLUG : C

c. Screenshoot GUI

d. Pembuktian

Bobot Kriteria

Kode	Nama	Atribut
C1	House Age	Cost
C2	Nearest MRT	Cost
C3	Convenience Stores	Benefit
C4	Price	Cost

No	C1	C2	C3	C4
20	1.5	23.38284	7	47.7
12	6.3	90.45606	9	58.1
17	1	292.9978	6	70.1
1	32	84.87882	10	37.9
27	3.1	383.8624	5	56.2

NIM : 123190059

PLUG : C

Normalisasi:

$$W1 = 3/(3+5+4+1) = 3/13$$

$$W2 = 5/(3+5+4+1) = 5/13$$

$$W3 = 4/(3+5+4+1) = 4/13$$

$$W4 = 1/(3+5+4+1) = 1/13$$

Karena W1, W2, W4 cost, maka nilainya dikalikan -1 saat menghitung S

$$S1 = (1.5^{-3/13}) * (23.38284^{-5/13}) * (7^{4/13}) * (47.7^{-1/13}) = 0.36625029064524395$$

$$S2 = (6.3^{-3/13}) * (90.45606^{-5/13}) * (9^{4/13}) * (58.1^{-1/13}) = 0.1663290066794$$

$$S3 = (1^{-3/13})*(292.9978^{-5/13})*(6^{4/13})*(70.1^{-1/13}) = 0.14081822328715699$$

$$S4 = (32^{-3/13})*(84.87882^{-5/13})*(10^{4/13})*(37.9^{-1/13}) = 0.12504614921091536$$

$$S5 = (3.1^{-3/13}) * (383.8624^{-5/13}) * (5^{4/13}) * (56.2^{-1/13}) = 0.09400863567362659$$

Menentukan Nilai Vektor V

$$V1 = 0.36625029064524395/0.89245230549634289 = 0.410$$

$$V2 = 0.1663290066794/0.89245230549634289 = 0.186$$

$$V3 = 0.14081822328715699/0.89245230549634289 = 0.157$$

$$V5 = 0.09400863567362659/0.89245230549634289 = 0.105$$

Meranking Nilai Vektor V

Real estate no
$$20 \text{ (V1)} = \text{peringkat } 1$$

Real estate no
$$12 (V2) = peringkat 2$$

Real estate no
$$7 (V3) = peringkat 3$$

Real estate no
$$27 \text{ (V5)} = \text{peringkat 5}$$

NIM : 123190059

PLUG : C

2. SAW

a. Link Github WP:

https://github.com/PekumMaster/SCPK/tree/main/C_123190059_Responsi/SAW

b. Langkah pembuatan program dan penjelasan

```
% --- Executes on button press in view
function view Callback(hObject, eventdata, handles)
₿% hObject
            handle to view (see GCBO)
 % eventdata reserved - to be defined in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)
 opts = detectImportOptions('Real Estate.xlsx'); % mengimport file xlsx
 opts.SelectedVariableNames = (1:5);
 data = readmatrix('Real_Estate.xlsx', opts);
 set(handles.tableData,'data',data',visible','on'); %membaca file Real_Estate.xlsx dan menampilkan data pada tabel GUI
 % --- Executes on button press in procces.
function process Callback(hObject, eventdata, handles)
% hObject handle to procces (see GCBO)
 % eventdata reserved - to be defined in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)
 opts = detectImportOptions('Real_Estate.xlsx'); %mengimport file xlsx
 opts.SelectedVariableNames = (2:5);
 data = readmatrix('Real Estate.xlsx', opts);
 k=[0,0,1,0]; %benefit dan cost
 w=[3,5,4,1]; %bobot masing2 kriteria
  [m n]=size (data); %inisialisasi ukuran matriks
 w=w./sum(w); %membagi bobot masing2 kriteria dengan jumlah total seluruh bobot
for j=1:n, %perhitungan vektor(S) per baris (alternatif)
     if k(j) ==0, w(j) =-1*w(j);
     end;
 end;
for i=1:m,
     S(i) = prod(data(i,:).^w);
 V= S/sum(S) %perhitungan nilai vektor V
 opts = detectImportOptions('Real_Estate.xlsx');
 opts.SelectedVariableNames = (1);
 baru = readmatrix('Real Estate.xlsx', opts);
 xlswrite('wpResult.xlsx', baru, 'Sheet1', 'A1'); %menulis data pada file colom A1
 V=V'; %merubah data hasil perhitungan dari matriks horizontal menjadi matriks vertikal
 xlswrite('wpResult.xlsx', V, 'Sheet1', 'B1'); %menulis data pada file colom B1
 opts = detectImportOptions('wpResult.xlsx');
 opts.SelectedVariableNames = (1:2);
 data = readmatrix('wpResult.xlsx', opts); %membaca file wpResult.xlsx
 X=sortrows(data,2,'descend'); %mengurutkan kolom kedua dari data dengan nilai paling besar
 set(handles.tableResult,'data',X,'visible','on'); %menampilkan data yang telah diurutkan pada tabel GUI
```

Listing Program SAW

NIM : 123190059

PLUG : C

c. Screenshoot GUI

d. Pembuktian

Bobot kriteria:

Kode	Nama	Atribut	Bobot
C1	Harga	Cost	0.3
C2	Luas Bangunan	Benefit	0.2
C3	Luas Tanah	Benefit	0.23
C4	Jumlah Kamar Tidur	Benefit	0.1
C5	Jumlah Kamar Mandi	Benefit	0.07
C6	Jumlah Garasi	Benefit	0.1
Jumlah			1

No Rumah	C1	C2	C3	C4	C5	C6
568	35000000000	1000	1400	10	7	7
862	25000000000	600	1000	10	10	10
103	15000000000	800	1225	6	9	2
475	55000000000	1126	1224	4	4	2
293	22900000000	600	1039	7	5	10

Normalisasi:

NIM : 123190059

PLUG : C

i Untuk C1:

$$568 = 430.000.000/35.000.000.000 = 0.012$$

$$862 = 430.000.000/25.000.000.000 = 0.017$$

$$103 = 430.000.000/15.000.000.000 = 0.029$$

$$475 = 430.000.000/55.000.000.000 = 0.009$$

$$293 = 430.000.000/25.900.000.000 = 0.017$$

ii Untuk C2:

$$568 = 1000/1126 = 0.888$$

$$862 = 600/1126 = 0.533$$

$$103 = 800/1126 = 0.711$$

$$293 = 600/1126 = 0.533$$

iii Untuk C3

$$568 = 1400/1400 = 1$$

$$862 = 1000/1400 = 0.714$$

$$103 = 1225/1400 = 0.875$$

$$475 = 1224/1400 = 0.874$$

$$293 = 1039/1400 = 0.742$$

iv Untuk C4

$$568 = 10/10 = 1$$

$$862 = 10/10 = 1$$

$$103 = 6/10 = 0.6$$

$$475 = 4/10 = 0.4$$

$$293 = 7/10 = 0.7$$

v Untuk C5

$$568 = 7/10 = 0.7$$

$$862 = 10/10 = 1$$

$$103 = 9/10 = 0.9$$

$$475 = 4/10 = 0.4$$

: Radya Adi Anggara : 123190059 NAMA

NIM

PLUG : C

293 = 5/10 = 0.5

vi Untuk C6

568 = 7/10 = 0.7

862 = 10/10 = 1

103 = 2/10 = 0.2

475 = 2/10 = 0.2

293 = 10/10 = 1

Perhitungan

No	C1	C2	C3	C4	C5	C6	Total	Rangking
568	0.012	0.888	1	1	0.7	0.7	0.6303	1
862	0.017	0.533	0.714	1	0.1	1	0.54592	2
103	0.029	0.711	0.875	0.6	0.9	0.2	0.49515	3
475	0.009	0.1	0.874	0.4	0.4	0.2	0.49172	4
293	0.017	0.533	0.742	0.7	0.5	1	0.48736	5