Tarea 3 - Intérprete de MT en Haskell

Teoría de la Computación Universidad ORT Uruguay

Marzo 2022

El objetivo de esta tarea es embeber en Haskell las MT, estudiadas en el curso como modelo imperativo de computabilidad. Ello incluye:

- Representación de la memoria y el código.
- Reglas de transición de un estado a otro.
- Reglas de ejecución completa de programas.

tal como se han visto en clase y descriptas en los repartidos publicados.

Se pide, concretamente:

- 1. Definir un tipo (type) infinito, apropiado para representar los símbolos (Symbol) del lenguaje y declarar la constante blank que representará al símbolo reservado blanco (#), además un tipo para las cintas (Tape).
- 2. Definir el tipo (type) del código de los programas (Code), para ello debe definir previamente, un tipo (type) para los estados (State) y un tipo (data) para las acciones (Action). Declarar las constantes init y halt, como estados reservados del lenguaje.
- 3. Declarar un tipo (type) para las configuraciones (Config), las cuales son una pareja con un estado y una cinta. Nos servirá para saber que momento del código estamos ejecutando y como se encuentra la cinta en ese momento.
- 4. Definir la función parcial, step::Code->Config->Config, que ejecuta la transición de un estado a otro en el programa.
- 5. Definir la función parcial exec:: Code -> Tape -> Tape que realiza la ejecución completa de un programa (Comenzando desde el estado init, hasta llegar a halt).

- 6. Codificar en MT embebido en Haskell los programas:
 - par: que determina si un natural dado es o no par.

$$\begin{split} \sum_{\substack{entrada:\\ ...|\#[I|I...|I|\#|...\\ }} &= \{\ I\ ,T\ ,F\ ,\#\ \}\\ \underbrace{entrada:}_{\substack{v...|\#[I|I...|I|\#|T|\#|...\\ }} &: \\ &salida:\\ &\underbrace{\begin{bmatrix} ...|\#|I|I...|I|\#|F|\#|...\\ \end{bmatrix}}_{\substack{v...|\#|I|I...|I|\#|F|\#|...}} &Si\ n = \dot{2} \end{split}$$

• shift-right: que mueve una secuencia de símbolos (considerar un lenguaje que contenga solo 3 símbolos σ_1 , σ_2 y σ_3) un lugar a la derecha.

$$\sum_{\substack{entrada:\\ ... |\#|\sigma_1|\sigma_1|...|\sigma_3|\#|...\\ salida:\\ ... |\#|\#|\sigma_1|\sigma_1|...|\sigma_3|\#|...}} = \{ \sigma_1, \sigma_2, \sigma_3, \# \}$$

• reverse: que dada una secuencia de símbolos (considerar un lenguaje que contenga solo 3 símbolos σ_1 , σ_2 y σ_3), la retorna invertida.

$$\begin{split} \sum_{entrada:} &= \{ \ \sigma_1 \ , \sigma_2 \ , \sigma_3 \ , X \ , \# \ \} \\ entrada: & & & & & \\ & ... \# |\sigma_1|\sigma_1|...|\sigma_2|\sigma_3|\#|... \\ salida: & & & & & \\ & ... \# |\sigma_3|\sigma_1|...|\sigma_2|\sigma_3|\#|\sigma_3|\sigma_2|...|\sigma_1|\sigma_3|\#|... \end{split}$$