The point decomposition problem in Jacobian varieties

Alexandre Wallet

ENS Lyon, Laboratoire LIP, Equipe AriC

- Generalities
 - Discrete Logarithm Problem
 - Short State-of-the-Art for curves
 - About Index-Calculus
- 2 Harvesting and Decomposition attacks
- 3 Degree reduction and practical computations
- Summation Ideals
- 5 A geometric recreation: harvesting by sieving

Discrete Logarithm Problem (DLP)

Let
$$g, h = [x] \cdot g \in (G, +)$$
, with $x \in \mathbb{Z}$. Compute x .

Is this a hard problem?

Classic

- Generic group: **yes**
- For some groups: **no**
- Cryptography: "yes"

Quantum

"NO"

Security basis for Diffie-Hellman, El-Gamal, Digital Signatures,...

Today's groups:

Elliptic curves $E(\mathbb{F}_q)$

Jacobian of algebraic curves $\mathcal{J}_{\mathbb{F}_q}(\mathcal{C})$

Computing Discrete Logs

exp. time ----- DLP ON CURVES

Generic alg.

g: genus q: #Field

Index Calculus

"Small genus"

lower bound: $\Omega(q^{rac{g}{2}})$

 $\begin{array}{c} \text{Baby-steps} \\ \text{Giant-steps} \\ \rho\text{-Pollard} \end{array} O(q^{\frac{g}{2}})$

 $g \ge 2$

$$\sim O(q^{2-\frac{2}{g}})$$

[G'00], [D'07] [GTTD'07] Decomposition $a = \mathbf{q}^n$

$$O(\mathbf{q}^{2-\frac{2}{ng}})$$

[G'09,D'11],[N'10] [GTTD'07]

subexp. time

"Large genus" $L_{a^g}(1/2)$

[ADH'99], [EGS'02]

"Large degree"

 $L_{q^g}(1/3)$

[EGTT'13]

poly. time

Situation for elliptic curves

For cryptography: mostly elliptic curves (g = 1)

About Index-Calculus

Today's target: harvesting in Index-Calculus for curves over \mathbb{F}_{q^n} .

Motivations:

Algorithmic Number Theory Computational Algebraic Geometry

Cryptography

Compute discrete logs in abelian varieties. How efficient can we be ?

Transfer attacks!

- Generalities
- 2 Harvesting and Decomposition attacks
 - What is a relation ?
 - How to find a relation ?
 - Complexity and Polynomial System Solving
- 3 Degree reduction and practical computations
- Summation Ideals
- 5 A geometric recreation: harvesting by sieving

Algebraic curves, Jacobian varieties, group law

 $\mathcal{C}: P(x,y) = 0$, for some $P \in \mathbb{F}_q[X,Y]$, algebraic curve of **genus** g.

$$g=1$$
: elliptic: $y^2=x^3+Ax+B,A,B\in\mathbb{F}_q$

$$g=2$$
: hyperelliptic: $y^2+h_1(x)y=x^5+\dots$ $h_1\in\mathbb{F}_q[x], \deg h_1\leq 2$

$$g \geq 3$$
: hyperelliptic: $y^2 + h_1(x)y = x^{2g+1} + \dots$ $h_1 \in \mathbb{F}_q[x], \deg h_1 \leq g$

Non-hyperelliptic (all the rest).

Algebraic curves, Jacobian varieties, group law

 $\mathcal{C}: P(x,y) = 0$, for some $P \in \mathbb{F}_q[X,Y]$, algebraic curve of **genus** g.

Fix a point \mathcal{O} . $\mathcal{J}(\mathcal{C})$: Jacobian variety

 $\mathcal{J}(\mathcal{C})$ is a quotient group.

Its elements are "reduced divisors".

In practice, a reduced divisor is

$$D = \sum_{i=1}^{k} P_i - k\mathcal{O}.$$

for some $P_1, \ldots, P_k \in \mathcal{C}$, $\mathbf{k} \leq \mathbf{g}$

Ex: g=1, $\emph{\textbf{E}}$ elliptic, point at infinity $\mathcal O$

Line through P_1 , P_2 : f(x,y) = 0. In $\mathcal{J}(E)$: $P_1 + P_2 + P_3 - 3\mathcal{O} = 0$, so that $(P_1 - \mathcal{O}) + (P_2 - \mathcal{O}) = ([-P_3] - \mathcal{O})$.

Algebraic curves, Jacobian varieties, group law

 $\mathcal{C}:P(x,y)=0$, for some $P\in\mathbb{F}_q[X,Y]$, algebraic curve of **genus** g.

Fix a point \mathcal{O} . $\mathcal{J}(\mathcal{C})$: Jacobian variety

 $\mathcal{J}(\mathcal{C})$ is a quotient group.

Its elements are "reduced divisors".

In practice, a reduced divisor is

$$D = \sum\limits_{i=1}^k P_i - k\mathcal{O}.$$
 for some $P_1, \ldots, P_k \in \mathcal{C}$, $\mathbf{k} \leq \mathbf{g}$

Ex: g=2, $\mathcal H$ hyperelliptic, point at infinity $\mathcal O$

Cubic through
$$P_1, \dots, P_4: f(x, y) = 0$$

In $\mathcal{J}(\mathcal{H}): P_1 + \dots + P_6 - 6\mathcal{O} = 0$
so that:
$$\underbrace{\begin{array}{c} (P_1 + P_2 - 2\mathcal{O}) \\ D_1 \end{array}}_{D_1} + \underbrace{\begin{array}{c} (P_3 + P_4 - 2\mathcal{O}) \\ D_2 \end{array}}_{D_2}$$

$$= \underbrace{\begin{array}{c} [-P_5] + [-P_6] - 2\mathcal{O} \end{array}}_{D_2}$$

Point m-Decomposition Problem (PDP $_m$)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Harvesting = solving multiple PDP $_m$ instances, for some fixed m.

Point m-Decomposition Problem (PDP $_m$)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Harvesting = solving multiple PDP_m instances, for some fixed m.

Let
$$R = \sum_{i} (x_{R_i}, y_{R_i}) - g\mathcal{O} \in \mathcal{J}(\mathcal{H})$$
.

$$R = \sum_{i,j} (x_{D_{ij}}, y_{D_{ij}}) - mg\mathcal{O} \Leftrightarrow \exists f(x, y) \text{ s.t.}$$

$$f(\mathbf{x}_{R_i}, \mathbf{y}_{R_i}) = f(\mathbf{x}_{D_{ij}}, \mathbf{y}_{D_{ij}}) = 0.$$

Such f's form a linear space of finite dim:

$$f \in \mathsf{Span}(f_1, \dots, f_d) \Rightarrow f = \sum_{i=1}^d \mathbf{a}_i f_i$$

Goal: find $(a_i)_{i \leq d}$.

Point m-Decomposition Problem (PDP $_m$)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Harvesting = solving multiple PDP_m instances, for some fixed m.

Let
$$R = \sum_{i} (x_{R_i}, y_{R_i}) - g\mathcal{O} \in \mathcal{J}(\mathcal{H})$$
.

$$R = \sum_{i,j} (x_{D_{ij}}, y_{D_{ij}}) - mg\mathcal{O} \Leftrightarrow \exists f(x,y) \text{ s.t.}$$

$$f(\mathbf{x}_{R_i}, \mathbf{y}_{R_i}) = f(\mathbf{x}_{D_{ij}}, \mathbf{y}_{D_{ij}}) = 0.$$

Such f's form a linear space of finite dim:

$$f \in \mathsf{Span}(f_1, \dots, f_d) \Rightarrow f = \sum_{i=1}^d \mathbf{a}_i f_i$$

Goal: find $(a_i)_{i < d}$.

Point m-Decomposition Problem (PDP $_m$)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Harvesting = solving multiple PDP_m instances, for some fixed m.

Let
$$R = \sum_{i} (x_{R_i}, y_{R_i}) - g\mathcal{O} \in \mathcal{J}(\mathcal{H})$$
.

$$R = \sum_{i,j} (x_{D_{ij}}, y_{D_{ij}}) - mg\mathcal{O} \Leftrightarrow \exists f(x,y) \text{ s.t.}$$

$$f(x_{R_i}, y_{R_i}) = f(x_{D_{ij}}, y_{D_{ij}}) = 0.$$

Such f's form a linear space of finite dim:

$$f \in \mathsf{Span}(f_1, \dots, f_d) \Rightarrow f = \sum_{i=1}^d \mathbf{a}_i f_i$$

Goal: find $(a_i)_{i < d}$.

Solving PDP_m [G'09], [N'10], [D'11]

Goal: Find $(a_i)_{i\leq d}$ "in a smart way" Assume base field is $\mathbb{F}_{q^n}=\mathsf{Span}_{\mathbb{F}_q}(1,\mathbf{t},\ldots,\mathbf{t}^{n-1})$

Solving PDP_m [G'09], [N'10], [D'11]

Goal: Find $(a_i)_{i < d}$ "in a smart way"

Assume base field is $\mathbb{F}_{{m q}^n} = \mathsf{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t}^{n-1})$

Restriction of scalars

Write
$$\mathbf{x} = \sum_{j} x_{j} \mathbf{t}^{j}$$
, $x_{j} \in \mathbb{F}_{q}$, $\bar{\mathbf{x}} = (x_{1}, \dots, x_{n})$:
 $(\mathbf{x}, \mathbf{y}) \in \mathcal{H} \Leftrightarrow (\bar{\mathbf{x}}, \bar{\mathbf{y}}) \in \mathcal{W}$

where \mathcal{W} : Weil Restriction of \mathcal{H} over \mathbb{F}_q

Factor base:

$$\mathcal{F} = \{P - \mathcal{O} : P \in \mathcal{H}, x(P) \in \mathbb{F}_q\}$$
$$= \mathcal{W} \cap \{x_j = 0\}_{j>0}$$

Solving PDP_m [G'09], [N'10], [D'11]

Goal: Find $(a_i)_{i < d}$ "in a smart way"

Assume base field is $\mathbb{F}_{{m q}^{m n}}=\mathsf{Span}_{\mathbb{F}_q}(1,{f t},\ldots,{f t}^{{f n}-{f 1}})$

Restriction of scalars

Write
$$\mathbf{x} = \sum_{j} x_{j} \mathbf{t}^{j}$$
, $x_{j} \in \mathbb{F}_{q}$, $\bar{\mathbf{x}} = (x_{1}, \dots, x_{n})$:
 $(\mathbf{x}, \mathbf{y}) \in \mathcal{H} \Leftrightarrow (\bar{\mathbf{x}}, \bar{\mathbf{y}}) \in \mathcal{W}$

where \mathcal{W} : Weil Restriction of \mathcal{H} over \mathbb{F}_q

Factor base:

$$\mathcal{F} = \{P - \mathcal{O} : P \in \mathcal{H}, x(P) \in \mathbb{F}_q\}$$
$$= \mathcal{W} \cap \{x_j = 0\}_{j>0}$$

Decomposition Polynomial DP_R

$$DP_{R}(x) = \frac{\text{Res}_{y}(\mathcal{H}, f)}{\prod (x - x_{R_{i}})} = x^{m} + \sum_{i=0}^{m-1} N_{i}((a_{i}))x^{i}$$
If f describes $R = \sum_{i:j} (x_{ij}, y_{ij}) - m\mathcal{O}$:

 $DP_{\mathbb{R}}(x_{ii}) = 0, \ \forall i \leq m, \ \forall j \leq n-1$

Write
$$N_i((a_i)) = \sum_{j \geq 0} N_{ij}((\bar{a}_i))\mathbf{t}^j$$
:
 $D_1, \dots, D_m \in \mathcal{F} \Rightarrow DP_R(x) \in \mathbb{F}_q[x]$
 $\Leftrightarrow N_{ij}((\bar{a}_i)) = 0, \forall i, \forall j > 0$

Solving PDP_m [G'09], [N'10], [D'11]

Goal: Find $(a_i)_{i < d}$ "in a smart way"

Assume base field is $\mathbb{F}_{q^n} = \mathsf{Span}_{\mathbb{F}_q}(1,t,\ldots,t^{n-1})$

Restriction of scalars

Write
$$\mathbf{x} = \sum_{j} x_j \mathbf{t}^j$$
, $x_j \in \mathbb{F}_q$, $\bar{\mathbf{x}} = (x_1, \dots, x_n)$:
 $(\mathbf{x}, \mathbf{y}) \in \mathcal{H} \Leftrightarrow (\bar{\mathbf{x}}, \bar{\mathbf{y}}) \in \mathcal{W}$

where \mathcal{W} : Weil Restriction of \mathcal{H} over \mathbb{F}_q

Factor base:

$$\mathcal{F} = \{P - \mathcal{O} : P \in \mathcal{H}, x(P) \in \mathbb{F}_q\}$$
$$= \mathcal{W} \cap \{x_j = 0\}_{j>0}$$

Decomposition Polynomial DP_R

$$\begin{split} DP_{R}(x) &= \frac{\text{Res}_{y}(\mathcal{H}, f)}{\prod (x - x_{R_{i}})} = x^{m} + \sum_{i=0}^{m-1} N_{i}((a_{i}))x^{i} \end{split}$$
 If f describes $R = \sum_{i,j} (x_{ij}, y_{ij}) - m\mathcal{O}$:

 $DP_{\mathbb{R}}(x_{ii}) = 0, \ \forall i \leq m, \ \forall i \leq n-1$

Write
$$N_i((a_i)) = \sum_{j \geq 0} N_{ij}((\bar{a}_i))\mathbf{t}^j$$
:
 $D_1, \dots, D_m \in \mathcal{F} \Rightarrow DP_R(x) \in \mathbb{F}_q[x]$
 $\Leftrightarrow N_{ij}((\bar{a}_i)) = 0, \forall i, \forall j > 0$

Finding relations \sim solving Polynomial systems.

For $\mathbf{m} = \mathbf{ng}$, $\{N_{ij}(\bar{a}_i) = 0\}_{i \leq m, j > 0}$ is generally 0-dimensional.

Solving 0-dimensional systems with Gröbner Bases tools

 ω : lin. alg. exponent

Solving 0-dimensional systems with Gröbner Bases tools

+ Proba that all roots of DP_R in $\mathbb{F}_q \sim 1/(ng)!$

D is the main complexity parameter.

Can we reduce it?

Situation

Known reductions:

[FGHR'14], [FHJRV'14], [GG'14] Uses Summation polynomials and symmetries (invariant theory) only for g = 1 (elliptic curves).

Higher genus:

No reduction known before

Ex:
$$g = 2$$
, $n = 3$, $\log q = 15$
Find 1 relation ~ 12 days.

Contributions¹:

- Reduction of D for hyperelliptic curves of all genus, if $q = 2^n$.
- Practical harvesting on a meaningul curve (# $\mathcal{J}(\mathcal{H}) \sim 184$ bits prime).

¹J-C. Faugère, A.W., *The Point Decomposition Problem in Hyperelliptic Curves*. Designs, Codes and Cryptography [In revision]

- Generalities
- Harvesting and Decomposition attacks
- 3 Degree reduction and practical computations
 - \bullet Structure of DP_R
 - Degree reduction
 - Impact, comparisons
- 4 Summation Ideals
- 5 A geometric recreation: harvesting by sieving

Structure of DP_R in even characteristic, part 1

 $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$ hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}$, fix $R \in \mathcal{J}(\mathcal{H})$.

$$DP_{\mathbf{R}}(x) = x^m + \sum_{i=0}^{m-1} N_i(\mathbf{a}) x^i \quad \& \quad \forall i, \deg N_i(\mathbf{a}) = 2.$$

With $\mathbb{F}_{2^{kn}} = \mathsf{Span}_{\mathbb{F}_{2^k}}(\mathbf{t}^j)_{j \leq n-1}, \ N_i(\mathbf{a}) = \sum_j N_{ij}(\mathbf{\bar{a}})\mathbf{t}^j.$

Reminder: solving PDP_{ng} = solving $\{N_{ij}(\bar{\mathbf{a}}) = 0\}_{j>0, i \leq ng}$ over \mathbb{F}_{2^k} .

Structure of DP_R in even characteristic, part 1

 $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$ hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}$, fix $R \in \mathcal{J}(\mathcal{H})$.

$$DP_{R}(x) = x^{m} + \sum_{i=0}^{m-1} N_{i}(\mathbf{a})x^{i}$$
 & $\forall i, \deg N_{i}(\mathbf{a}) = 2$.

With $\mathbb{F}_{\mathbf{2}^{kn}} = \mathsf{Span}_{\mathbb{F}_{\mathbf{2}^k}}(\mathbf{t}^j)_{j \leq n-1}$, $N_i(\mathbf{a}) = \sum_j N_{ij}(\mathbf{\bar{a}})\mathbf{t}^j$.

Reminder: solving PDP_{ng} = solving $\{N_{ij}(\mathbf{\bar{a}}) = 0\}_{j>0, i \leq ng}$ over \mathbb{F}_{2^k} .

 $N_i(\mathbf{a})$ square $\Rightarrow \forall j, N_{ij}(\mathbf{\bar{a}})$ squares \Rightarrow replace quadratic eqs by linear eqs

Proposition: Number of squares

Let $h_1(x) = \sum_{i=t}^{s} \alpha_i x^i$, and let $\mathbf{L} = \mathbf{s} - \mathbf{t} + \mathbf{1}$ be the **length** of $h_1(x)$.

There are exactly $\mathbf{g} - \mathbf{L} - \mathbf{1}$ squares among the $N_i(\mathbf{a})$.

Consequence: $(\mathbf{n} - \mathbf{1})(\mathbf{g} - \mathbf{L} - \mathbf{1})$ replacements in $\{N_{ij}(\mathbf{\bar{a}}) = 0\}_{j>0, i \leq ng}$. Find $\mathbf{n} - \mathbf{1}$ more if $\alpha_s \in \mathbb{F}_{2^k}$.

Structure of DP_R in even characteristic, part 2

In $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$, we usually have $h_1(x)$ monic.

Proposition: N_{m-1} is univariate

Let $\mathbf{a}=(a_1,\ldots,a_d)$. Then $N_{m-1}(a_d)=a_d^2+a_d+\lambda$ for some $\lambda\in\mathbb{F}_{2^{kn}}$.

Rewrite:
$$N_{m-1}(a_d) = a_{d,0}^2 + a_{d,0} + \lambda_0 + \sum_{j \geq 1} a_{d,j}^2 \mathbf{t}^{2j} + \sum_{j \geq 1} (a_{d,j} + \lambda_j) \mathbf{t}^j$$

= $N_{m-1,0}(\bar{a_d}) + \sum_{j \geq 1} N_{m-1,j}(a_{d,1}, \dots, a_{d,n-1}) \mathbf{t}^j$.

Proposition: "presolving"

 $\{N_{m-1,j}(a_{d,1},\ldots,a_{d,n-1})\}_{j\geq 1}$ is 0-dimensional and has a solution in \mathbb{F}_{2^k} whp.

Consequence: determines n-1 vars in the full system, removes n-1 eqs.

Analysis of degree reduction

Base field $\mathbb{F}_{2^{kn}}$, m = ng. Implies d = (n-1)g. Let **L** be the length of h_1 .

Genericity assumption:

 PDP_{ng} systems behave like regular systems of dimension 0.

Before reduction:

- $\#\bar{a} = n(n-1)g$
- #eqs = n(n-1)g
- Eqs have deg = 2
- $\Rightarrow d_{old} = 2^{n(n-1)g}$

After reduction:

- n-1 determined vars
- $(n-1)(g-\mathbf{L}-1)$ linear eqs
- remaining have deg = 2

$$\Rightarrow d_{new} = 2^{(n-1)((n-1)g+L-2)}$$

$$2^{(n-1)((n-1)g-1)} \le d_{new} \le 2^{(n-1)(ng-1)}$$

factor

 $2^{(n-1)(g+1)}$

 $\frac{d_{old}}{d_{now}}$

 2^{n-1}

Impact of the reduction

For
$$g = 2$$
, $n = 3$, $\frac{d_{old}}{d_{old}} = 2^{12} = 4096$, $\frac{d_{new}}{d_{new}} = 2^6 = 64$.

• Toy-example for one PDP₆ instance:

• \mathcal{H} with $L_{h_1}=1$, over $\mathbb{F}_{2^{93}}=\mathbb{F}_{2^{31\cdot 3}}$ and $\#\mathcal{J}(\mathcal{H})=2\times 3\times p$, with $\log p=184$.

• comparison with recent DL over 768 bits finite field:

²F5 with code gen., Sparse-FGLM [FM'11], NTL lib.

Situation

Target: harvesting in Index-Calculus for hyperelliptic curves over \mathbb{F}_{q^n} .

Results:

- degree reduction if $q = 2^k$ for hyperelliptics
- practical, meaningful computations in genus 2

Questions:

- What about q odd?
- What about non-hyperelliptics ?
- Reduction of \mathcal{F} 's size ?

Situation

Target: harvesting in Index-Calculus for hyperelliptic curves over \mathbb{F}_{q^n} .

Results:

- degree reduction if $q = 2^k$ for hyperelliptics
- practical, meaningful computations in genus 2

Questions:

- What about q odd?
- What about non-hyperelliptics?
- Reduction of \mathcal{F} 's size ?

- For elliptic curves, reduction achieved using **Summation polynomials**.
- Works for even and odd characteristic.
- Enables factor basis reduction ⇒ faster linear algebra

Let's see how it is done.

- Generalities
- 2 Harvesting and Decomposition attacks
- 3 Degree reduction and practical computations
- Summation Ideals
 - Summation polynomials ?
 - Generalization, Analysis for Index Calculus
 - Degree Reduction in even characteristic
- 5 A geometric recreation: harvesting by sieving

Summation polynomials for elliptic curves

Let *E* be an elliptic curve over \mathbb{F} with point at infinity \mathcal{O} , and $m \geq 3$.

Definition

The m^{th} summation polynomial for E is $S_m \in \mathbb{F}[X_1, \dots, X_m]$ generating the projection of the "group law ideal" over a set of coordinates:

$$S_m(x_1,\ldots,x_m)=0 \Leftrightarrow \exists y_1,\ldots,y_m \in \overline{\mathbb{F}} \text{ s.t. } P_i=(x_i,y_i) \in E \text{ and } P_1+\cdots+P_m=\mathcal{O}.$$

Projection of the group law on the x-line

$$P_1 + P_2 + P_3 = \mathcal{O}$$

algebra $\downarrow \uparrow$ geometry
 $S_3(x_1, x_2, x_3) = 0$

Solving PDP_m for elliptic curves, [G'09], [D'11]

```
Goal: Find decomposition P_1+\cdots+P_m of R\in E(\mathbb{F}_{q^n}) geometry algebra R=P_1+\cdots+P_m \Leftrightarrow S_{m+1}(x_R,x_1,\ldots,x_m)=0 New goal: Find x_1,\ldots,x_m i.e. solve S_{m+1}(x_R,X_1,\ldots,X_m)
```

Solving PDP_m for elliptic curves, [G'09], [D'11]

Goal: Find decomposition $P_1 + \cdots + P_m$ of $R \in E(\mathbb{F}_{q^n})$

geometry algebra
$$R = P_1 + \dots + P_m \Leftrightarrow S_{m+1}(x_R, x_1, \dots, x_m) = 0$$

New goal: Find x_1, \ldots, x_m i.e. solve $S_{m+1}(x_R, X_1, \ldots, X_m)$

Restriction of scalar:

$$\mathbf{x}_{i} = \sum_{j} \mathbf{x}_{ij} \mathbf{t}^{j}, \ \mathbf{x}_{ij} \in \mathbb{F}_{q}.$$

Set factor base:

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q \}.$$

Then we can write: $S_{n+1}(x_R, X_1, ..., X_n) = \sum_{i=0}^{n-1} s_i(X_{1,0}, ..., X_{n,n-1}) \mathbf{t}^j$

We want $P_i \in \mathcal{F}$:

$$S_{n+1}(\mathbf{x}_{R}, X_{1}, \dots, X_{n}) = 0 \quad \Leftrightarrow \quad W = \begin{cases} s_{1}(X_{1}, \dots, X_{n}) = 0 \\ \vdots \\ s_{n}(X_{1}, \dots, X_{n}) = 0 \end{cases}$$

Known results

Heuristic: W is 0-dimensional. In practice: never failed.

	D	treshold for <i>m</i>	
As presented	$n! \cdot 2^{n(n-1)}$	=4	
			
S_m is symmetric	$2^{n(n-1)}$	< 6	immediate

Known results

Heuristic: W is 0-dimensional. In practice: never failed.

As presented	$ \begin{array}{c c} D\\ n! \cdot 2^{n(n-1)} \end{array} $	treshold for <i>m</i> =4	
S_m is symmetric	$2^{n(n-1)}$	< 6	immediate
1 rational 2-torsion point	$2^{(n-1)^2}$	< 8	$[FGHR'14]^\dagger$, some models
all 2-torsion is rational	$2^{(n-1)(n-2)}$	"= 8"	[FHJRV'14] ^{†*} , any model

Now what about other curves ?

- †: size of factor base is also reduced.
- *: close to threaten Brainpool Curve! (over $\mathbb{F}_{31.5}$).

Summation Variety

J-C. Faugère, A. Wallet, *The Point Decomposition Problem on Hyperelliptic curves*, DCC Journal [In revision]

 \mathcal{H} hyperelliptic curve over \mathbb{F} . $R \in \mathcal{J}(\mathcal{H})$.

Goal: Describe $V_{m,R} = \{ (P_1, \dots, P_m) : \sum_{i=1}^m (P_i) = R \}$ "Summation Variety"

Summation Variety

J-C. Faugère, A. Wallet, *The Point Decomposition Problem on Hyperelliptic curves*, DCC Journal [In revision]

 \mathcal{H} hyperelliptic curve over \mathbb{F} . $R \in \mathcal{J}(\mathcal{H})$.

Goal: Describe
$$V_{m,R} = \{ (P_1, \dots, P_m) : \sum_{i=1}^m (P_i) = R \}$$
 "Summation Variety"

Definition of Decomposition polynomial:

$$R = (P_1) + \cdots + (P_m) \Leftrightarrow \forall i, DP_R(x_i) = 0$$

With $e_i = Sym_i(x_1, \dots, x_m)$:

$$DP_{R}(x) = x^{m} + \sum_{i=0}^{m-1} N_{i}(\mathbf{a})x^{i} = x^{m} + \sum_{i=0}^{m-1} (-1)^{m-i} e_{m-i}x^{i}$$

Summation Variety

J-C. Faugère, A. Wallet, *The Point Decomposition Problem on Hyperelliptic curves*, DCC Journal [In revision]

 \mathcal{H} hyperelliptic curve over \mathbb{F} . $R \in \mathcal{J}(\mathcal{H})$.

Goal: Describe
$$V_{m,R} = \{ (P_1, \dots, P_m) : \sum_{i=1}^m (P_i) = R \}$$
 "Summation Variety"

Definition of Decomposition polynomial:

$$R = (P_1) + \cdots + (P_m) \Leftrightarrow \forall i, DP_R(x_i) = 0$$

With $e_i = \operatorname{Sym}_i(x_1, \ldots, x_m)$:

$$DP_{R}(x) = x^{m} + \sum_{i=0}^{m-1} N_{i}(\mathbf{a})x^{i} = x^{m} + \sum_{i=0}^{m-1} (-1)^{m-i} e_{m-i}x^{i}$$

This gives a polynomial ideal:

$$\mathcal{I}_{m,oldsymbol{\mathcal{R}}} = egin{array}{l} \mathcal{N}_{m-1}(\mathbf{a}) = e_1, \ dots \ \mathcal{N}_0(\mathbf{a}) = (-1)^{m+1}e_m. \end{array}$$

Summation ideals

Theorem

The ideal $\mathcal{I}_{m,R} \subset \mathbb{F}[\mathbf{a},\mathbf{e}]$ is a polynomial parametrization of $\mathcal{V}_{m,R}^{\mathfrak{S}_m}$.

Conditions in $\mathbf{e} = \operatorname{Sym}(x_i)$: eliminate a

Geometry projection onto **e**

Algebra Gröbner basis of $\mathcal{I}_{m,R} \cap \mathbb{F}[\mathbf{e}]$.

mth Summation Ideals

For $m \geq g+1$, the $\mathbf{m^{th}}$ summation ideal for \mathcal{H} is $\mathcal{I}_{m,\mathbb{R}} \cap \mathbb{F}[\mathbf{e}]$.

If $\langle \mathbb{S}_{m,R} \rangle = \mathcal{I}_{m,R} \cap \mathbb{F}[\mathbf{e}]$, then $\mathbb{S}_{m,R}$ is called a set of m-summation polynomials, or a \mathbf{m}^{th} summation set.

Properties of Summation Ideals

 $\mathbb{S}_{m,R}(\mathbf{x})$: evaluation of all $S \in \mathbb{S}_{m,R}$ at \mathbf{x} . \mathcal{H} hyperelliptic curve over \mathbb{F} .

Summation property

$$\mathbb{S}_{m,R}(\mathbf{x}) = 0 \Leftrightarrow \exists y_1, \dots, y_m \in \overline{\mathbb{F}} \text{ s.t. } P_i = (x_i, y_i) \in \mathcal{H} \text{ and}$$

$$(P_1) + \dots + (P_m) = R.$$

Invariance by permutations

 $\langle \mathbb{S}_{m,R} \rangle^{\mathfrak{S}_m} = \langle \mathbb{S}_{m,R} \rangle$, and the modelling computes a symmetrized summation set.

Let
$$\mathbf{V} = V(\mathcal{I}_{m,\mathbf{R}} \cap \mathbb{F}[\mathbf{e}])$$
:

Codim
$$\mathbf{V} = g \Rightarrow \# \mathbb{S}_{m,R} \geq g$$

in practice, $\# \mathbb{S}_{m,R} \gg g$

Heuristic: deg
$$V = 2^{m-g}$$
 [D'11]: proven for $g = 1$

New PDP_m solving for hyperelliptic curve

Let
$$\mathcal H$$
 defined over $\mathbb F_{q^n}=\operatorname{Span}_{\mathbb F_q}(1,\mathbf t,\dots,\mathbf t^{n-1})$, fix $R\in\mathcal J(\mathcal H)$

- 0) Factor base: $\mathcal{F} = \{(P) \in \mathcal{J}(\mathcal{H}) : x(P) \in \mathbb{F}_q\}.$
- 1) Compute ng^{th} Summation Set $\mathbb{S}_{ng,\mathbb{R}} = \{S_1,\ldots,S_r\}$.
- 2) Restriction of scalars $\mathbb{F}_{q^n} o \mathbb{F}_q$ on each $S_i = \sum_j s_{ij}(e_1,\ldots,e_{ng})\mathbf{t}^j$

3) Solve the system
$$W = \begin{cases} s_{11}(e_1, \dots, e_{ng}) = 0 \\ \vdots \\ s_{rn}(e_1, \dots, e_{ng}) = 0 \end{cases}$$

New PDP_m solving for hyperelliptic curve

Let $\mathcal H$ defined over $\mathbb F_{q^n}=\operatorname{Span}_{\mathbb F_q}(1,\mathbf t,\dots,\mathbf t^{n-1})$, fix $R\in\mathcal J(\mathcal H)$

- 0) Factor base: $\mathcal{F} = \{(P) \in \mathcal{J}(\mathcal{H}) : x(P) \in \mathbb{F}_q\}.$
- 1) Compute ng^{th} Summation Set $\mathbb{S}_{ng,R} = \{S_1, \dots, S_r\}$.
- 2) Restriction of scalars $\mathbb{F}_{q^n} o \mathbb{F}_q$ on each $S_i = \sum_j s_{ij}(e_1,\ldots,e_{ng})\mathbf{t}^j$

3) Solve the system
$$W = \begin{cases} s_{11}(e_1, \dots, e_{ng}) = 0 \\ \vdots \\ s_{rn}(e_1, \dots, e_{ng}) = 0 \end{cases}$$

$$r \geq g = \mathsf{Codim} \mathbf{V}$$
 $\deg \mathbf{V} = 2^{(n-1)g}$ \Rightarrow $\deg W = (\deg \mathbf{V})^n = 2^{\mathbf{n}(\mathbf{n}-1)\mathbf{g}}$ $W \subset \mathcal{W}_n(\mathbf{V})$

Same degree as Nagao's approach

Structure of DP_R in even characteristic, the return

$$\mathcal{H}: y^2 + h_1(x)y = h_0(x)$$
 hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}, \ R \in \mathcal{J}(\mathcal{H})$.

$$DP_{R}(x) = x^{m} + \sum_{i=0}^{m-1} N_{i}(\mathbf{a})x^{i} = x^{m} + \sum_{i=0}^{m-1} (-1)^{m-i} e_{m-i}x^{i}$$

Recall: there are squares among the $N_i(\mathbf{a})$!

In Nagao's approach: $N_i(\mathbf{a})$ square $\Rightarrow \sqrt{N_{ij}(\mathbf{\bar{a}})} = 0$ Replaced by linear equations

First part of the talk

In Summation approach: Induces weight system on the e_i 's. "Weighted degree is smaller."

What does this mean?

Square equations and weighted structure

Let \tilde{N}_i be the squares among the $N_i(\mathbf{a})$'s.

$$\mathcal{I}_e = \mathcal{I}_{m, \textcolor{red}{R}} \cap \mathbb{F}[\textcolor{red}{e}]$$

 $\mathcal{J}_e = \mathcal{J}_{m,R} \cap \mathbb{F}[e]$

Square equations and weighted structure

Let \tilde{N}_i be the squares among the $N_i(\mathbf{a})$'s.

$$\mathcal{I}_{m,R}: \begin{cases} \tilde{N}_i^2(\mathbf{a}) = e_i \\ \\ N_i(\mathbf{a}) = e_i \end{cases} \qquad \mathcal{J}_{m,R}: \begin{cases} \tilde{N}_i(\mathbf{a}) = e_i \\ \\ N_i(\mathbf{a}) = e_i \end{cases}$$

$$\mathcal{I}_{e} = \mathcal{I}_{m,R} \cap \mathbb{F}[\mathbf{e}] \qquad \underbrace{\varphi(e_i) = e_i^{w_i}}_{w_i = 2, w_i = 1} \qquad \mathcal{J}_{e} = \mathcal{J}_{m,R} \cap \mathbb{F}[\mathbf{e}]$$

Theorem

With $\varphi(e_i) = e_i^{w_i}, \mathcal{I}_e$ is the radical of $\varphi(\mathcal{J}_e)$.

Applications: Find points in $V(\mathcal{J}_e)$ instead of $V(\mathcal{I}_e)$. "Weighted degree of \mathcal{J}_e is smaller than deg \mathcal{I}_e "

Degree reduction in summation approach over $\mathbb{F}_{2^{kn}}$

Proposition: With
$$\varphi(e_i) = e_i^{w_i}$$
, $\deg_{\mathbf{w}} \mathcal{J}_e = \frac{\deg \varphi(\mathcal{J}_e)}{\prod_{i=1}^n w_i}$.

Let
$$\mathbf{V}_J = V(\mathcal{J}_e)$$
, $\mathbf{V}_I = V(\mathcal{I}_e)$.

Corollary

There is a constant C depending on h_1 s.t. $\deg_{\mathbf{w}}(\mathbf{V}_J) = C \cdot \frac{\deg \mathbf{V}_I}{2^{m-g+L-1}}$.

Degree reduction in summation approach over $\mathbb{F}_{2^{kn}}$

Proposition: With
$$\varphi(e_i) = e_i^{w_i}$$
, $\deg_{\mathbf{w}} \mathcal{J}_{\mathbf{e}} = \frac{\deg \varphi(\mathcal{J}_{\mathbf{e}})}{\prod_{i=1}^n w_i}$.

Let
$$\mathbf{V}_J = V(\mathcal{J}_e)$$
, $\mathbf{V}_I = V(\mathcal{I}_e)$.

Corollary

There is a constant C depending on h_1 s.t. $\deg_{\mathbf{w}}(\mathbf{V}_J) = C \cdot \frac{\deg \mathbf{V}_I}{2^{m-g+L-1}}$.

Let
$$W = \mathcal{W}_n(\mathbf{V}_J) \cap \bigcap_{i,j \geq 1} V(e_{ij})$$
. Experimentally, $C = 2^{L-1}$.

Corollary: In PDP_{ng} instances (m = ng), with $L = \text{length of } h_1$:

$$\deg W = C^n \cdot \frac{d_{old}}{2^{(n-1)(g-L+1)+n(L-1)}} = \frac{d_{old}}{2^{(n-1)(g-L+1)}}.$$

Comparison of approaches after reduction

With additional reductions, same reduction as in the first part of the talk.

	Best reduction	Implementation	Best running time [†]	
Nagao	immediate when ${f L}=0$	Easy	≈ 0.029s.	
Summation	needs $\mathbf{L}=0$ and additional work	Tricky	≈ 0.34s.	

In practice: better use approach of the first part.

†: on toy examples ($\sim \mathbb{F}_{\mathbf{2^{45}}}$)

Perspectives

Limits: if $g \ge 2$, can't reduce degree in odd char.

Why?

- Degree of equations too small to exploit Frobeniuses
- Summation Variety not invariant under Jacobian 2-torsion

"Summation" framework for Abelian varieties

Generalization with Kummer varieties

Arithmetic in g = 2 well-understood (theta functions)

Explicit "Jacobian" summation polynomials

Exploitation of more symmetries for decomposition attacks

ex: set of 2-torsion points is larger in g=2, action expresses linearly Factor base invariant under 2-torsion can be built.

- Generalities
- 2 Harvesting and Decomposition attacks
- 3 Degree reduction and practical computations
- 4 Summation Ideals
- 5 A geometric recreation: harvesting by sieving
 - Old-school smooth harvesting
 - New approach: harvesting by sieving
 - Timings

Old-school harvesting for smooth divisors

non-hyperelliptic case

$$\mathcal{C}: \mathcal{C}(x,y)=0$$
 non-hyperelliptic of genus $g\geq 3$. ([D'08] deg $\mathcal{C}\leq g+1$) Factor base $\mathcal{F}=\{\,P\in\mathcal{C}(\mathbb{F}_q)\,\}$ (rational points).

To find one relation:

Non-hyperelliptic case [D'08]

- Select $P_1, P_2 \in \mathcal{F}$.
- ② Compute $F \in \mathbb{F}_q[x]$ describing $C \cap$ the line (P_1P_2) , with P_1, P_2 removed.
- If F splits over \mathbb{F}_q ("div(P_1P_2) is smooth") Then relation.

Else Try new
$$P_1, P_2$$
.

$$\deg F = g - 1$$
 so probability : $\frac{1}{(g-1)!}$

Old-school harvesting for smooth divisors

non-hyperelliptic case

$$\mathcal{C}: \mathcal{C}(x,y)=0$$
 non-hyperelliptic of genus $g\geq 3$. ([D'08] deg $\mathcal{C}\leq g+1$) Factor base $\mathcal{F}=\{\,P\in\mathcal{C}(\mathbb{F}_q)\,\}$ (rational points).

To find one relation:

Non-hyperelliptic case [D'08]

- Select $P_1, P_2 \in \mathcal{F}$.
- ② Compute $F \in \mathbb{F}_q[x]$ describing $C \cap$ the line (P_1P_2) , with P_1, P_2 removed.
- If F splits over \mathbb{F}_q ("div (P_1P_2) is smooth") Then relation.

Else Try new P_1, P_2 .

$$\deg F = g - 1$$
 so probability : $\frac{1}{(g-1)!}$

- "Free"
- Cheap

95% of time: checking if smooth or not

and duplicate relations

$$\#\mathcal{F}pprox q imes (g-1)!$$
 tries for a relation \Rightarrow harvesting in $pprox (g-1)!q(g^2\log q)$

New approach: Harvesting by Sieving

V.Vitse, A.Wallet, Improved Sieving on Algebraic curves, LatinCrypt 2015

Sieving = time-memory trade-off.

Theory: Add **one degree of freedom** in decompositions.

Practice: Store results of cheap computations. Smoothness checks

Existing:

[SS'14]: hyperelliptic only

Cons:

sort, backtracking, hyperelliptic only

Our contribution:

- Adapt sieve to all curve types
- Suitable for other Index-calculus variants
- Compared to [SS'14]: skip computations, better memory efficiency, no sorting.

$$\mathcal{C}: \mathcal{C}(x,y) = 0$$
 non-hyperelliptic of genus $g \geq 3$. ([D'08] deg $\mathcal{C} \leq g+1$)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P: \lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$$
 (cheap!)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$T= \begin{bmatrix} 0 & 0 & 0 & \dots \end{bmatrix}$$

$$C: C(x,y) = 0$$
 non-hyperelliptic of genus $g \ge 3$. ([D'08] deg $C \le g+1$)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P: \lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$$
 (cheap!)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$T= \begin{bmatrix} & 1 & & 0 & & 0 & \dots \end{bmatrix}$$

$$C: C(x,y) = 0$$
 non-hyperelliptic of genus $g \ge 3$. ([D'08] deg $C \le g+1$)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P: \lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$$
 (cheap!)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$C: C(x,y) = 0$$
 non-hyperelliptic of genus $g \ge 3$. ([D'08] deg $C \le g+1$)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P: \lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$$
 (cheap!)

$$\lambda_P(P_1) \quad \lambda_P(P_2) \quad \lambda_P(P_3) \quad \dots$$

$$T= \begin{bmatrix} & 1 & & 1 & & 1 & & \dots \end{bmatrix}$$

$$C: C(x,y) = 0$$
 non-hyperelliptic of genus $g \ge 3$. ([D'08] deg $C \le g+1$)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P: \lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$$
 (cheap!)

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$T = \begin{bmatrix} \mathbf{2} & \mathbf{1} & \mathbf{1} & \dots \end{bmatrix}$$

$$\lambda_P(P_i) = \lambda_P(P_j) \Leftrightarrow P, P_i, P_j \text{ lined up.}$$

$$C: C(x,y) = 0$$
 non-hyperelliptic of genus $g \ge 3$. ([D'08] deg $C \le g+1$)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P: \lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$$
 (cheap!)

Loop over \mathcal{F} , compute $\lambda_P(P_i)$'s:

$$\lambda_P(P_1)$$
 $\lambda_P(P_2)$ $\lambda_P(P_3)$...

$$T = \begin{bmatrix} 2 & 1 & 1 & \dots \end{bmatrix}$$

$$\lambda_P(P_i) = \lambda_P(P_j) \Leftrightarrow P, P_i, P_j \text{ lined up.}$$

When
$$T[\lambda_i] = g \Rightarrow Relation!$$

Next round: remove P from \mathcal{F} , start again with P_1 .

Analysis in the non-hyperelliptic case

For one loop:

- O(q) multiplications + O(q) storage. \Rightarrow Harvesting in $\approx g!q$.
- Expect $\approx \frac{\mathbf{q}}{\mathbf{g}!}$ relations.

Overall:

Old-school: $pprox (g-1)! q(g^2 \log q)$ \Rightarrow Spec

Speed-up $\approx g \log q$.

Relations management:

Loop on *P* uses all lines through *P*: **no duplicate relations.**

Timings

q		78137	177167	823547	1594331
Genus 3, degree 4	Diem	11.5	27.5	135.1	266.1
	Sieving	3.6	9.3	46.9	94.6
	Ratio	3.1	2.9	2.8	2.8
Genus 4, degree 5	Diem	51.8	122.4	595.8	1174
	Sieving	15.5	40.1	195.1	387.6
J	Ratio	3.3	3.1	3.1	3
Genus 5, degree 6	Diem	229.4	535.8	2581	5062
	Sieving	75.6	199	969.3	1909
	Ratio	3	2.6	2.6	2.6
	Diem	1382	3173	14990	29280
Genus 7, degree 7	Sieving	458.5	1199	5859	11510
	Ratio	3	2.6	2.5	2.5

Implementation in Magma; CPU Intel $^{\odot}$ Core i5@2.00Ghz processor. Time to collect 10000 relations, expressed in seconds.

Timings

> fix a singular point to start the sieving

[Diem-Kochinke]: \Rightarrow degree of polynomial \setminus by multiplicity

> no more singular points? "jump to another model"

q	78137	177167	823547	1594331
Diem & Kochinke	1.58	1.60	1.69	1.76
Sieving	0.43	0.45	0.52	0.61
Ratio	3.67	3.60	3.23	2.90
Diem & Kochinke	8.59	8.68	8.97	9.20
Sieving	1.21	1.25	1.56	1.93
Ratio	7.13	6.96	5.74	4.77
	Sieving Ratio Diem & Kochinke Sieving	Diem & Kochinke 1.58	Diem & Kochinke 1.58 1.60 Sieving 0.43 0.45 Ratio 3.67 3.60 Diem & Kochinke 8.59 8.68 Sieving 1.21 1.25	Diem & Kochinke 1.58 1.60 1.69 Sieving 0.43 0.45 0.52 Ratio 3.67 3.60 3.23 Diem & Kochinke 8.59 8.68 8.97 Sieving 1.21 1.25 1.56

 $\label{eq:marginal_loss} \mbox{Implementation in Magma; CPU Intel}^{\textcircled{\tiny CPU Intel}} \mbox{ Core i5@2.00Ghz processor.} \\ \mbox{Time to collect 10000 relations, expressed in seconds.}$