

Sri Chaitanya IIT Academy., India.

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

Central Office, Bangalore

AREA UNDER THE CURVE

EXERCISE - II

NUMERICAL/INTEGER ANSWER TYPE QUESTIONS

Area bounded by curve and axes:

1. Area of the region bounded by the curve y = (x-1)(x-2)(x-3) lying between the ordinates x = 0 and x = 3 is

PRACTICE QUESTIONS

2. The area bounded by the curve $y = \sin^{-1} x$ and the line $x = 0, |y| = \frac{\pi}{2}$ is ... sq. units

Area bounded by curve and line:

3. If the area of the region bounded by the curves $y^2 - 2y = -x$, x + y = 0 is A, then 8A is equal to [Mains_2023]

PRACTICE QUESTIONS

4. If the area between the curves $y = x - x^2$ and y = mx is $\frac{9}{2}$, then the sum of all values of *m* is [Adv. 1993]

Area bounded between standard geometrical figures:

- 5. Let $f(x) = \max\{|x-1|, |x+2|, ..., |x+5|\}$. Then $\int_{-6}^{0} f(x)dx$ is equal to [Main 2022]
- 6. For real numbers a, b (a > b > 0), let

Area
$$\left\{ (x,y): x^2 + y^2 \le a^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \ge 1 \right\} = 30\pi \text{ and}$$

Area $\left\{ (x,y): x^2 + y^2 \ge b^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} = 18\pi$

Then the value of $(a-b)^2$ is equal to

(Main June 29, 2022)

PRACTICE QUESTIONS

- 7. If the area enclosed by the curve $|x| + |y| \le k$ is f(k) sq. unit, then the value of $\frac{f(10)}{100}$ must be
- 8. The area of the region bounded by $1-y^2 = |x|$ and |x|+|y|=1 is ... sq. units

Area bounded by two or more curves:

- 9. Let S be the region bounded by the curves $y = x^3$ and $y^2 = x$. The curve y = 2|x| divides S into two regions of area R_1 and R_2 . If max $\{R_1, R_2\} = R_2$, then $\frac{R_2}{R_1}$ is equal to (Main 2022)
- 10. Let the area enclosed by the lines x + y = 2, y = 0, x = 0 and the curve $f(x) = \min \left\{ x^2 + \frac{3}{4}, 1 + [x] \right\} \text{ where [x] denotes the greatest integer } \le x \text{, be A. Then the value of 12A is }$ [Main 2023]
- 11. If A is the area in the first quadrant enclosed by the curve $C: 2x^2 y + 1 = 0$, the tangent to C at the point (1, 3) and the line x + y = 1, then the value of 60A is [M- 2023]
- 12. Let α be the area of the larger region bounded by the curve $y^2 = 8x$ and the lines y = x and x = 2, which lies in the first quadrant. Then the value of 3α is equal to _____
- 13. Let A be the area bounded by the curve y=x|x-3|, the x-axis and the ordinates x=-1 and x=2. Then 12A is equal to _____ [Main 2023]
- 14. The area of the region enclosed between the curves $x = y^2 1$ and $x = |y| \sqrt{1 y^2}$ is Sq. units
- 15. If the area of the region enclosed by the curves $y = x \log x$ and $y = 2x 2x^2$ is K. then $[K] \dots ([.]]$ denotes GIF)
- 16. Consider two curves $C_1: y^2 = 4\left[\sqrt{y}\right]x$ and $C_2: x^2 = 4\left[\sqrt{x}\right]y$, where [.] denotes the greatest integer function. The area of region enclosed by these two curves within the square formed by the lines x = 1, y = 1, x = 4, y = 4 is l then 3l 11 is

PRACTICE QUESTIONS

- 17. Find the area bounded by the x-axis, part of the curve $y = \left(1 + \frac{8}{x^2}\right)$ and the ordinate at x = 2 and x = 4. If the ordinate at x = a divides the area into two equal parts, find a (Adv.1983)
- 18. If the area enclosed by the parabolas $P_1:2y=5x^2$ and $P_2:x^2-y+6=0$ is equal to the area enclosed by P_1 and $y=\alpha x$, $\alpha>0$, then α^3 is equal to _____ [Main 2023]
- 19. Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve $4x^3 3y^2 + 6x^2 5xy 8y^2 + 9x + 14 = 0$ at the point (-2, 3) be A. Then 8A is equal to (Main 2023)
- 20. The area bounded by the curves $y = -\sqrt{4 x^2}$, $x^2 = -\sqrt{2}y$ and x = y is ℓ then $[\ell]$ (where [.] denotes G.I.F) =
- 21. If the area included between the two parabolas $y^2 = 4a(x+a)$ and $y^2 = 4b(b-x)$ is $\frac{16}{3}$. Then the product of A.M. and the G.M. of *a* and *b* is

22.	If the line $y = mx$ bisects the area enclosed by the lines $x = 0, y = 0, x = \frac{3}{2}$ and the curve
	$y = 1 + 4x - x^2$. Then the value of $m = \dots$ Sq. units.

Area bounded by two or more cure inequalities:

- 23. If for some $\alpha > 0$, the area of the region $\{(x,y): |x+\alpha| \le y \le 2-|x|\}$ is equal to $\frac{3}{2}$, then the area of the region $\{(x,y): 0 \le y \le x+2\alpha, |x| \le 1\}$ is equal to [Main 2022]
- 24. Let y = p(x) be the parabola passing through the points (-1, 0), (0, 1) and (1, 0). If the area of the region $\{(x, y): (x+1)^2 + (y+1)^2 \le 1, y \le p(x)\}$ is A, then $12(\pi 4A)$ is equal to
- 25. If the area of region $\{(x, y): |x^2 2| \le y \le x\}$ is A, then $6A + 16\sqrt{2}$ is equal to _______ [Main 2023]
- 26. Let A be the area of the region $\{(x,y): y \ge x^2, y \ge (1-x)^2, y \le 2x(1-x)\}$ then 540 A is equal to [Main 2023]
- 27. Let for $x \in R$; $f(x) = \frac{x + |x|}{2}$ and $g(x) = \begin{cases} x, & x < 0 \\ x^2, & x \ge 0 \end{cases}$.

 Then area bounded by the curve $y = (f \circ g)(x)$ and the lines y = 0, 2y x = 15 is equal to _____ [Main 2023]

PRACTICE QUESTIONS

- 28. If the area of the region $S = \{(x, y): 2y y^2 \le x^2 \le 2y, x \ge y\}$ is equal to $\frac{n+2}{n+1} \frac{\pi}{n-1}$, then the natural number n is equation _____ [Main 2023]
- 29. The area of region for which $0 < y < 3 2x x^2$ and x > 0 is ... sq. units
- 30. Let the area of the region $\{(x,y): |2x-1| \le y \le |x^2-x|, 0 \le x \le 1\}$ be A. Then $(6A+11)^2$ is equal to _____ [Main 2023]
- 31. The area of the region given by $A = \{(x, y): x^2 \le y \le \min\{x + 2, 4 3x\}\}$ is:

 [Main 2022]
- 32. A farmer F_1 has a land in the shape of a triangle with vertices at P(0, 0), Q(1, 1) and R(2, 0). From this land, a neighbouring farmer F_2 takes away the region which lies between the side PQ and a curved the form $y = x^n (n > 1)$. If the area of the region taken away by the farmer F_2 is exactly 30% of the area of ΔPQR , then the value of n is (Adv.2018)
- 33. Let A be the area bounded by the curve y = x|x-3|, the x-axis and the ordinates x = -1 and x = 2. Then 12A is equal to _____ [Main 2023]
- 34. Area of region defined by $1 \le |x| + |y|$ and $x^2 2x + 1 \le 1 y^2$ is $k\pi$ sq. units, then $k = \dots$

35. Consider the functions $f,g:\mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + \frac{5}{12}$ and

$$g(x) = \begin{cases} 2\left(1 - \frac{4|x|}{3}\right), |x| \le \frac{3}{4} \\ 0, & |x| > \frac{3}{4} \end{cases}$$
 If α is the area of the region

 $\left\{ (x,y) \in \mathbb{R} \times \mathbb{R} : |x| \le \frac{3}{4}, 0 \le y \le \min \left\{ f(x), g(x) \right\} \right\}$, then the value of 9α is _____

Miscelleneous based on area bounded by two or more curves:

- 36. Let $F(x) = \int_{x}^{x^2 + \frac{\pi}{6}} 2\cos^2 t(dt)$ for all $x \in R$ and $f: \left[0, \frac{1}{2}\right] \to [0, \infty)$ be a continuous function. For $a \in \left[0, \frac{1}{2}\right]$, if F'(a) + 2 is the area of the region bounded by x = 0, y = 0, y = f(x) and x = a, then f(0) is (Adv.2015)
- 37. If the area bounded by the curve $2y^2 = 3x$, lines x + y = 3, y = 0 and outside the circle $(x-3)^2 + y^2 = 2$ is A, then $4(\pi + 4A)$ is equal to _____ [Main 2023]
- 38. A point P moves in xy plane in such a way that [|x|] + [|y|] = 1, where [.] denotes the greatest integer function. Area of the region representing all possible positions of the point P is equal to
- 39. The area of the figure bounded by x = -1, x = 2 and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x 1, & x > 1 \end{cases}$ then $[\lambda] =$ ____(where [.] is G.I.F)
- 40. A curve passing through (2, 3) and satisfying $\int_{0}^{x} t \ y(t)dt = x^{2}y(x); \ x > 0$ is $xy = \lambda$ then λ
- 41. If A is the approximate area of the region bounded by $f(x) = e^{-x^2}$ with y-axis the positive x-axis and $B = \int_0^\infty e^{-x^2} \cos(2020x) dx$ and $\sqrt{\log(\frac{A}{B})} 1002 = k$, then the value of k is equal to
- 42. If the area bounded by y = f(x), $x = \frac{1}{2}$, $x = \frac{\sqrt{3}}{2}$ and x-axis is A sq. units where $f(x) = x + \frac{2}{3}x^3 + \frac{2}{3}\frac{4}{5}x^5 + \frac{2}{3}\frac{4}{5}\frac{6}{7}x^7 + \dots + \infty, |x| < 1$; then the value of [4A] is (where [.] is G.I.F)
- 43. If the area bounded by the curves $y = -x^2 + 6x 5$, $y = -x^2 + 4x 3$ and the line y = 3x 15 is $\frac{73}{\lambda}$, then the value of λ is

44. A point P(x, y) moves is such a way that [x + y + 1] = [x] (where [.] greatest integer function) and $x \in (0, 2)$. Then the area representing all the possible positions of P equals.

PRACTICE QUESTIONS

- 45. Let a and b respectively be the points of local maximum and local minimum of the function $f(x) = 2x^3 3x^2 12x$. If A is the total area of the region bounded by y = f(x) the x-axis and the lines x = a and x = b, then 4A is equal to ____ [M-2021]
- 46. If $\begin{bmatrix} 4a^2 & 4a & 1 \\ 4b^2 & 4b & 1 \\ 4c^2 & 4c & 1 \end{bmatrix} \begin{bmatrix} f(-1) \\ f(1) \\ f(2) \end{bmatrix} = \begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix}$, f(x) is a quadratic function and its maximum

value occurs at a point V. A is a point of intersection of y = f(x) with x-axis and point B is such that chord AB subtends a right angle at V. Find the area enclosed by f(x) and chord AB.

[Adv.2005]

- 47. Let f(x) be a continuous function given by $f(x) = \begin{cases} 2x, & |x| \le 1 \\ x^2 + ax + b, & |x| > 1 \end{cases}$ Find the area of the region in the third quadrant bounded by the curves $x = -2y^2$ and y = f(x) lying on the left of the line 8x + 1 = 0 (Adv.1999)
- 48. Let C_1 and C_2 be the graphs of the functions $y = x^2$ and y = 2x, $0 \le x \le 1$ respectively. Let C_3 be the graph of a function y = f(x), $0 \le x \le 1$, f(0) = 0. For a point P on C_1 , let the lines through P, parallel to the axes, meet C_2 and C_3 at Q and R respectively (see figure). If for every position of P (on C_1), the areas of the shaded regions OPQ and ORP are equal, determine the function by f(x) then f(1) is (Adv.1998)

- 49. Let $f(x) = \text{Maximum } \{x^2, (1+x)^2, 2x(1-x)\}, \text{ where } 0 \le x \le 1.$ (Adv.1997)

 Determine the area of the region bounded by the curves y = f(x), x axis, x = 0 and x = 1
- 50. The area of the figure enclosed by the curve $5x^2 + 6xy + 2y^2 + 7x + 6y + 6 = 0$ is k then [k] = (where [.]] denotes G.I.F) is equal to

Area bounded by curves involving standard algebraic function:

- 51. If A is the area enclosed by the curve [x+y]+[x-y]=5 for $x>y, \forall x,y>0$ then 4A is
- 52. P(x,y) be a point which moves in xy plane such that 2[y] = 3[x]. -2 < x < 5, -3 < y < 7, where [.] denotes GIF. If ' λ ' is the area of the region containing the point P(x,y) then the value of $\sqrt{\lambda\sqrt{\lambda\sqrt{\lambda.......\infty}}}$ must be
- 53. The area of the region of the point P(x, y) which satisfy $|x| + |y| + |x + y| \le 1$ is λ . Then $4\lambda =$
- 54. A curve passing through (2, 3) and satisfying $\int_{0}^{x} t \ y(t)dt = x^{2}y(x); \ x > 0$ is $xy = \lambda$ then $\lambda =$

PRACTICE OUESTIONS

- 55. The area bounded by the curves $y = \ln x$, $y = |\ln x|$, $y = |\ln x|$ is
- 56. Let A_k be the finite area bounded by the line y = kx + k and the parabola $y = x^2$, where k is a positive real number. The value of $\lim_{k \to \infty} \frac{A_k}{k^3}$ equals :
- 57. Let a function f(x) be defined in [-2, 2] as $f(x) = \begin{cases} \{x\}, & -2 \le x < -1 \\ |\operatorname{sgn} x|, & -1 \le x \le 1, \\ \{-x\}, & 1 < x \le 2 \end{cases}$

where $\{x\}$ denotes fractional part, then area bounded by graph of f(x) and x-axis is:

- 58. If $f(x) = \begin{cases} \sqrt{\{x\}}, & x \in \mathbb{Z} \\ 1, & x \in \mathbb{Z} \end{cases}$ and $g(x) = \{x\}^2$, (where $\{.\}$ denotes fractional part of x), then area bounded by f(x) and g(x) for $x \in [0,10]$ is
- 59. The area enclosed by $\left[\frac{|3x+4y|}{5}\right] + \left[\frac{|4x-3y|}{5}\right] = 3$ iswhere ([.] denotes GIF)

Area bounded by a function and its Trignometic function:

- 60. The area bounded by the curves $y = \ln x$, $y = \sin^4 \pi x$ and x = 0 is k, then 8k 9 is equal to
- 61. The area bounded by $y = \tan^{-1} x$, $y = \cot^{1} x$ and y-axis in 1st quadrant is ... sq. units **Area bounded by parametric curves and lines**:
- 62. Area bounded by the curves $y^2(2a-x) = x^3$ and the line x = 2a is $k\pi a^2$ then [k] is (where [.] denotes fractional part of x)
- 63. For any real t, $x = \frac{e^t + e^{-t}}{2}$, $y = \frac{e^t e^{-t}}{2}$ is a point on the hyperbola $x^2 y^2 = 1$. Show that the area bounded by this hyperbola and the lines joining its centre to the points corresponding to t_1 and $-t_1$ is Kt_1 . Find K. (Adv. 1982)