MATH 660 Information on the final exam

The final in MATH 660 is Friday, **May 4 at 8am**. You should bring a (dumb) calculator so that you can do some elementary arithmetic quickly if need be. The exam will *heavily* emphasize ideas since the midterm. That is, the emphasis will be on chapters 6-13 in the notes. You do, however, need to know things like what problem NJ is trying to address (closest taxa metrically may not be sister), MC, parsimony informative site, etc. You will not, for example, be asked to do a weighted parsimony analysis. Computational questions will focus on things like estimating model parameters or performing an ML maximization problem or computing the expected time to coalescence under Kingman's coalescent model of n gene lineages.

You may bring a cheat sheet with you to the exam where you write all the formulas for the pairwise distances we learned. If you think you need to have something else written down, let me know in advance and I will make a decision and let other students know if needed.

The sort of computations/numerical questions you should expect will be modeled on those in the HW or examples from class. For instance, given a joint distribution of patterns for two sequences, argue which model might be a good fit for the data and compute a distance from the table. Something like finding a maximizer of a log-Likelihood is fair too. Being about to compute a simple posterior distribution (with either a discrete of continuous prior) may also be asked. Understanding NNI, SPR, and TBR moves in tree space will be tested. There are sure to be questions on the coalescent model.

The other information you need to know are definitions and statements of important results. This includes what it means for an estimator $\hat{\theta}_n$ to be consistent, and which of our methods for tree reconstruction are consistent. It is also important that you can discuss clear and concisely the difference between a 'statistically good' property (theoretical property) and practical questions (okay, so $\hat{T}_{MLE,n}$ is consistent, but how big should n be?) There will most certainly be questions asking you to compare and contrast various methods of tree construction.

iv CONTENTS

5	\mathbf{Dis}	tance Methods 61			
	5.1	Dissimilarity Measures 61			
	5.2	An Algorithmic Construction: UPGMA 64			
	5.3	Unequal Branch Lengths			
	5.4	The Four-point Condition			
	5.5	The Neighbor Joining Algorithm			
	5.6	Additional Comments			
	5.7	Exercises			
6	Probabilistic Models of DNA Mutation 85				
	6.1	A first example			
	6.2	Markov Models on Trees			
	6.3	Jukes-Cantor and Kimura Models			
	6.4	Time-reversible Models			
	6.5	Exercises			
7	Model-based Distances 109				
	7.1	Jukes-Cantor Distance			
	7.2	Kimura and GTR Distances			
	7.3	Log-det Distance			
	7.4	Exercises			
8	Ma	ximum Likelihood 121			
	8.1	Probabilities and Likelihoods			
	8.2	ML Estimators for One-edge Trees			
	8.3	Inferring Trees by ML			
	8.4	Efficient ML Computation			
	8.5	Exercises			
9	Tre	e Space 137			
	9.1	What is Tree Space?			
	9.2	Moves in Tree Space			
	9.3	Searching Tree space			
	9.4	Metrics on Tree Space			
	9.5	Metrics on Metric Tree Space			
	9.6	Additional Remarks			
	9.7	Exercises			
10	Rat	e-variation and Mixture Models 153			
		Invariable Sites Models			
		Rates-Across-Sites Models			
		The Covarion Model			
		General Mixture Models			
		Exercises			

CONTENTS	V
----------	---

11 Consistency and Long Branch Attraction	165			
11.1 Statistical Consistency	166			
11.2 Parsimony and Consistency				
11.3 Consistency of Distance Methods				
11.4 Consistency of Maximum Likelihood				
11.5 Performance with Misspecified models				
11.6 Performance on Finite-length Sequences				
11.7 Exercises	174			
12 Bayesian Inference	177			
12.1 Bayes' theorem and Bayesian inference				
12.2 Prior Distributions	182			
12.3 MCMC Methods	183			
12.4 Summarizing Posterior Distributions	185			
12.5 Exercises	187			
13 Gene trees and species trees 189				
13.1 Gene Lineages in Populations	190			
13.2 The Coalescent Model	193			
13.3 Coalescent Gene Tree Probabilities	198			
13.4 The Multispecies Coalescent Model	200			
13.5 Inferring Species Trees	205			
13.6 Exercises	212			
14 Notation	215			
15 Selected Solutions	217			
Bibliography				