Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

0.1 Classificazione delle quadriche

1

0.1 Classificazione delle quadriche

Definizione 0.1.1

Dati una quadrica generale Q e il piano improprio α_{∞} Se intersechiamo otteniamo una curva

$$C_{\infty} = Q \cap \alpha_{\infty}$$

detta conica impropria di Q.

Definizione 0.1.2

Una conica generale Q si chiama

- 1. ellissoide, se C_{∞} è irriducibile e priva di punti reali
- 2. **iperboloide**, se C_{∞} è irriducibile con punti reali
- 3. **paraboloide**, se C_{∞} è irriducibile

Osservazione 1: Per C_{∞} non ha senso la distinzione in ellisse, parabola o iperbole perché tutti i suoi punti sono punti impropri.

Osservazione 2: Il paraboloide, avendo C_{∞} riducibile, è tangente con α_{∞} .

Proposizione 0.1.1

Sia $Q: {}^tXAX = 0$ una quadrica irriducibile, allora C_{∞} è riducibile se, e soltanto se, $|A^*| = 0$, dove

$$A^* = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

Dimostrazione: Sia $C_{\infty} = Q \cap \alpha_{\infty}$, quindi

$$C_{\infty}: \begin{cases} a_{11}x_1^2 + a_{22}x_2^2 + 2a_{12}x_1x_2 + a_{33}x_3^2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3 = 0 \\ x_4 = 0 \end{cases}$$
 (1)

(1) è una quadrica Q' tale che la sua intersezione con α_{∞} è proprio la conica impropria C_{∞} di Q. Quindi la matrice della quadrica Q' è

$$A' = \begin{pmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{12} & a_{22} & a_{23} & 0 \\ a_{13} & a_{23} & a_{33} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

|A'| = 0, quindi Q' non è generale perché $\rho(A') \le 3$. Per ipotesi C_{∞} è riducibile, ora partiamo con la dimostrazione vera e propria.

" \Longrightarrow " Supponiamo, per assurdo, che $|A^*| \neq 0 \Longrightarrow \rho(A') = 3 \Longrightarrow Q'$ è un cono o un cilindro. Determiniamo il vertice di Q': A'X = 0. Scrivendo un sistema principale equivalente

s.p.e.:
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 0 \\ a_{12}x_1 + \dots = 0 \\ \dots = 0 \end{cases}$$

troveremo facilmente il V = [(0,0,0,1)], che è il vertice ed è un punto proprio, quindi Q' è un cono. Quindi $C_{\infty} = Q' \cap \alpha_{\infty}$ è la conica impropria di un cono, quindi C_{∞} è irriducibile, che è un **assurdo!**.

" \Leftarrow " Abbiamo per ipotesi che $|A^*| = 0$, $\rho(A') \le 2$, quindi Q' è riducibile, allora $C_{\infty} = Q' \cap \alpha_{\infty}$ è sezione di una quadrica riducibile e quindi C_{∞} è riducibile.

Osservazione:

- 1. Per distinguere un cono o un cilindro abbiamo ora un criterio analitico, cioè
 - $|A^*| = 0 \iff C_{\infty}$ è riducibile $\iff Q$ è cilindro
 - $|A^*| \neq 0 \iff Q$ è cono
- 2. se Q invece è generale abbiamo che
 - $|A^*| = 0 \iff Q$ è paraboloide
 - $|A^*| \neq 0 \iff Q$ è ellissoide o iperboloide

Esempio 0.1.1

$$Q: x^2 - 3y^2 - z^2 - y = 0$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -3 & 0 & -\frac{1}{2} \\ 0 & 0 & -1 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \end{pmatrix}$$

Possiamo dire che

 $|A| \neq 0 \implies Q$ generale $|A^*| = 3 \neq 0 \implies Q$ o ellissoide o iperboloide

$$C_{\infty}: \begin{cases} x_1^2 - 3x_2^2 - x_3^2 - x_2x_4 = 0 \\ x_4 = 0 \end{cases} \begin{cases} x_1^2 - 3x_2^2 - x_3^2 = 0 \\ x_4 = 0 \end{cases}$$

 $P_{\infty} = [(1,0,1,0)] \in C_{\infty}$ il quale è reale $\implies Q$ è un paraboloide

Classificazione dei punti semplici di una quadrica

Sia Q una quadrica irriducibile, sia un punto $P \in Q$ semplice. Chiamiamo α il piano tangente a Q in P e la conica $C = Q \cap \alpha$, la quale è riducibile.

Definizione 0.1.3

Se C si riduce in due rette coincidenti, P si dice punto **parabolico**.

Proposizione 0.1.2

Se una quadrica irriducibile ha un punto semplice parabolico, allora tutti i punti semplici sono parabolici.

Teorema 0.1.1

Una quadrica irriducibile è un cono o un cilindro se, e soltanto se, i suoi punti semplici sono parabolici.

Dimostrazione: " ⇒ " Sappiamo per ipotesi che Q è un cono o un cilindro. Sia $P \in Q$, un punto semplice, quindi $P \neq V$, chiamiamo α il piano tangente in P. La conica $C = Q \cap \alpha = r \cup s \subseteq Q$, di conseguenza $r \subseteq Q \implies V \in r$ e $s \subseteq Q \implies V \in s$. Inoltre $P \in r$ e $P \in s$. Ma quindi necessariamente $r = \overline{PV} = s$. Quindi P è un punto parabolico.

" \Leftarrow " Per ipotesi abbiamo i punti semplici parabolici. Chiamiamo P un punto semplice di Q e α il piano tangente a Q in P. Allora

$$C = Q \cap \alpha = r \cup r$$

se $P' \in r$ e semplice, allora α è un piano passante per P' tale che $Q \cap \alpha$ è riducibile in due rette passanti per P'. Questo ci dice che allora α è il piano tangente a Q anche in P'. Sia β un piano con $\beta \neq \alpha$ e tale che $r \subseteq \beta$. Chiamiamo inoltre $C' = Q \cap \beta$, sicuramente $r \subseteq C'$, questo significa che C' è riducibile, cioè $C = r \cup s$. Ma $r \neq s$ perché se fosse, per assurdo r = s, allora in P avrei due piani tangenti distinti α e β , assurdo! (contro l'unicità del piano tangente). Sia $\{V\} = r \cap s$. Sicuramente V è un punto doppio, perché se fosse semplice per V avremmo due piani tangenti distinti (nuovamente contro l'unicità del piano tangente). Su Q non possono esserci altri punti doppi distinti da V (perché per ipotesi Q è irriducibile). Quindi Q ammette esattamente un punto doppio, cioè Q è un cono o un cilindro.

Osservazione: Se Q è generale, sicuramente i suoi punti semplici non sono parabolici

Definizione 0.1.4

Sia Q una quadrica irriducibile, $P \in Q$ un punto semplice reale, α il piano tangente in P a Q e $C = Q \cap \alpha$ riducibile. Abbiamo che un punto P è

- 1. parabolico, se, e soltanto se, C si riduce in due rette coincidenti
- 2. iperbolico, se, e soltanto se, C si riduce in due rette reali e distinte
- 3. ellittico, se, e soltanto se, C si riduce in due rette immaginarie e coniugate

Proposizione 0.1.3

Se una quadrica irriducibile Q ha un punto semplice reale parabolico, iperbolico o ellittico, allora tutti i suoi punti semplici reali sono dello stesso tipo.

Definizione 0.1.5

La quadrica Q si dice

- 1. **parabolica** se i suoi punti semplici reali sono parabolici
- 2. iperbolica se i suoi punti semplici sono iperbolici
- 3. ellittica se i suoi punti semplici reali sono ellittici

Proposizione 0.1.4

I punti semplici reali di un ellissoide sono necessariamente ellittici.

Dimostrazione: Sia Q un ellissoide, P un punto semplice reale e supponiamo, per assurdo, che P sia iperbolico. Chiamiamo α il piano tangente in P e $C = Q \cap \alpha = r \cup s$ con r, s reali e distinte. Sappiamo che $r \subseteq Q$ e

$${P_{\infty}}r \cap \alpha \subseteq Q \cap \alpha_{\infty} = C_{\infty}$$

sarebbe un punto reale sulla C_{∞} di un ellissoide, **assurdo!** Quindi P è ellittico.

Osservazione: Ricapitolando abbiamo che, se Q è generale, allora può essere

- 1. ellissoide (ellittico)
- 2. iperboloide
 - (a) ellittico
 - (b) iperbolico
- 3. paraboloide
 - (a) ellittico
 - (b) iperbolico