Predicting Water Pump Failures in Tanzania

A Machine Learning Project by
Austine Denis Otieno
Phase3

Overview

- . Rural Tanzanians rely heavily on water pumps.
- . Many pumps fail without early warnings, disrupting access to clean water.
- . My goal: Use data and machine learning to predict pump failures and help decision-makers prioritize maintenance.

Business and Data Understanding

- Dataset from Taarifa and DrivenData: 59,000plus water points.
- Problem: Predict the pump's status: Functional,
 Needs Repair, or Non-Functional.
- Business value: Enables proactive maintenance, reducing outages and improving public health.

The Data

- . Features include:
 - 。 GPS coordinates, region, installer
 - Water quality, pump type, extraction method
 - Construction year, quantity of water, etc.
- . Challenges:
 - Many categorical variables
 - Imbalanced class distribution (most pumps functional)

Data Preparation

- . Cleaned missing data and standardized inputs
- Combined rare categories into 'Other' to simplify patterns
- . Applied SMOTE to address class imbalance
- . One-hot encoding used for categorical features

Modeling

- Tried several models: Logistic Regression, Decision
 Trees, Random Forest
- . Random Forest performed best:
 - Handles categorical and numerical data well
 - Robust to overfitting

Logistic regression

Logistic Regression Accuracy: 0.5941077441077441								
	precision	recall	f1-score	support				
0	0.59	0.89	0.71	6452				
1	0.00	0.00	0.00	863				
2	0.60	0.29	0.39	4565				
accuracy			0.59	11880				
macro avg	0.40	0.39	0.37	11880				
weighted avg	0.55	0.59	0.54	11880				

Class 0 has a lot more samples than class $1 \rightarrow$ the model learns to predict class 0 often.

Random Forest	Accuracy:	0.80681818181818			
	precision	recall	f1-score	support	
0	0.81	0.89	0.85	6452	
1	0.52	0.32	0.40	863	
2	0.84	0.78	0.81	4565	
accuracy			0.81	11880	
macro avg	0.72	0.66	0.69	11880	
weighted avg	0.80	0.81	0.80	11880	

Overall accuracy is up to 80.8%—a big jump from 59%.

Accuracy: 0.8084175084175084							
		precision	recall	f1-score	support		
	0	0.79	0.92	0.85	6452		
	1	0.62	0.24	0.35	863		
	2	0.85	0.76	0.81	4565		
accura	асу			0.81	11880		
macro a	avg	0.76	0.64	0.67	11880		
weighted a	avg	0.80	0.81	0.80	11880		

The model strongly predicts class 0 and class 2, which together make up the majority of the dataset.

Evaluation

- . Used Accuracy, Precision, Recall, F1-Score
- . Final Accuracy: 81%
- High performance on Functional and Non-Functional classes
- . Moderate performance on Needs Repair (due to few examples)

Interpretation of Results

- . Class 0 (Functional): Most predictions accurate
- . Class 1 (Needs Repair): Often confused with other classes
- . Class 2 (Non-functional): High recall and precision
- . Indicates value for prioritizing emergency interventions

Recommendations:

- . Use model to highlight pumps at high risk of failure
- . Improve field data quality and consistency
- . Update model regularly with new data
- . Train local staff to interpret and act on predictions

Next Steps

- Integrate model with mobile or web-based reporting tools
- Collaborate with government agencies for deployment
- Explore use of satellite or weather data to enhance predictions

THANK YOU