EMSE 6035: Marketing of Technology

Modeling Heterogeneous Preferences

John Paul Helveston, Ph.D.

Assistant Professor

Engineering Management & Systems Engineering

The George Washington University

Background: Homogeneous Utility Model

$$\tilde{u}_{j} = \boldsymbol{\beta}' \mathbf{x}_{j} + \tilde{\varepsilon}_{j}$$

$$= \beta_{1} x_{j1} + \beta_{2} x_{j2} + \dots + \tilde{\varepsilon}_{j}$$

Weights that denote the *relative* value of attributes

$$x_{j1}, x_{j2}, \dots$$

This model is a *homogeneous* model: everyone has the <u>same</u> coefficients

Est.	Std. Err.
$\hat{\beta}_1$	σ_1
$\hat{\beta}_2$	σ_2
•	•
\hat{eta}_m	σ_m

Heterogeneous Models

Heterogeneous models allow for *different* people to have *different* coefficients

We will cover two approaches (there are others):

Interaction Models

Group 1		Group 2	
Estimate	Std. Err.	Estimate	Std. Err.
\hat{eta}_1	σ_1	\hat{eta}_1	σ_1
$\hat{\beta}_2$	σ_2	$\hat{\beta}_2$	σ_2
:	:	:	:
$\hat{\beta}_m$	σ_m	$\hat{\beta}_m$	σ_m

Estimate a "mixed" logit (a.k.a. hierarchical) model

Estimate	
$\hat{\beta}_1 \sim N(\hat{\mu}_1, \hat{\sigma}_1)$	
$\hat{\beta}_2 \sim N(\hat{\mu}_2, \hat{\sigma}_2)$	
:	
$\hat{\beta}_m \sim N(\hat{\mu}_m, \hat{\sigma}_m)$	

Interaction models

Homogeneous model:

$$\tilde{u}_j = \beta_1 x_{j1} + \tilde{\varepsilon}_j$$

Two groups: A & B

$$\tilde{u}_j = \beta_1 x_{j1} + \beta_2 x_{j1} \delta^{\mathrm{B}} + \tilde{\varepsilon}_j$$

Where

 $\delta^{\rm B}=1$ if the person is in group B

 $\delta^{\mathrm{B}}=0$ if the person is in group A

Interaction models

$$\tilde{u}_j = \beta_1 x_{j1} + \beta_2 x_{j1} \delta^{B} + \tilde{\varepsilon}_j$$
$$= (\beta_1 + \beta_2 \delta^{B}) x_{j1} + \tilde{\varepsilon}_j$$

Par.	Interpretation	
$\hat{\beta}_1$	Effect of x_{j1} for group A	
\hat{eta}_2	Difference in effect of x_{j1}	
<i>P</i> 2	between groups A and B	

Effect of x_{j1}		
Group A	Group B	
\hat{eta}_1	$\hat{\beta}_1 + \hat{\beta}_2$	

The scale parameter

$$\tilde{u}_j = \beta_1 x_{j1} + \beta_2 x_{j1} \delta^{\mathrm{B}} + \tilde{\varepsilon}_j$$

$$\tilde{\varepsilon}_{j}$$
 ~ Gumbel $\left(0, \sigma^{2} \frac{\pi^{2}}{6}\right)$

Scale parameter

$$\frac{\tilde{u}_j}{\sigma} = \frac{1}{\sigma} \left(\beta_1 x_{j1} + \beta_2 x_{j1} \delta^{\mathrm{B}} + \tilde{\varepsilon}_j \right)$$

Assume $\sigma = 1$

$$\tilde{\varepsilon}_j \sim \text{Gumbel}\left(0, \frac{\pi^2}{6}\right)$$

What if we split the data and separately estimate two models:

$$\tilde{u}_{j}^{A} = \beta_{1} x_{j1} + \tilde{\varepsilon}_{j}^{A}$$

$$\tilde{u}_{i}^{B} = \beta_{1} x_{j1} + \tilde{\varepsilon}_{i}^{B}$$

$$\frac{\tilde{u}_{j}^{A}}{\sigma^{A}} = \frac{1}{\sigma^{A}} \left(\beta_{1} x_{j1} + \tilde{\varepsilon}_{j}^{A} \right)$$
$$\frac{\tilde{u}_{j}^{B}}{\sigma^{B}} = \frac{1}{\sigma^{B}} \left(\beta_{1} x_{j1} + \tilde{\varepsilon}_{j}^{B} \right)$$

Practice Question 1

Suppose we use the following utility model to describe preferences for cars:

$$\tilde{u}_j = \beta_1 x_j^{\text{price}} + \beta_2 x_j^{\text{mpg}} + \beta_3 \delta_j^{\text{elec}} + \varepsilon_j$$

- a) Using interactions, write out a model that accounts for differences in the effects of $x_j^{\rm price}$, $x_j^{\rm mpg}$, and $\delta_j^{\rm elec}$ between two groups: A and B
- b) Write out the effects of x_j^{price} , x_j^{mpg} , and δ_j^{elec} for each group.

Use samples of $\widehat{oldsymbol{eta}}$ to include uncertainty

Effect of x_{i1}

Group A Group B

$$\hat{eta}_1$$

$$\hat{\beta}_1 + \hat{\beta}_2$$

$$eta \sim \mathrm{N}(oldsymbol{eta}, \Sigma)$$

$$\begin{bmatrix} \hat{eta}_1 \\ \hat{eta}_2 \\ \vdots \\ \hat{eta}_n \end{bmatrix} \quad \begin{bmatrix} \sigma_{11}^2 & \cdots & \sigma_{1n}^2 \\ \vdots & \ddots & \vdots \\ \sigma_{1n}^2 & \cdots & \sigma_{jn}^2 \end{bmatrix}$$

$$- \left[\nabla_{oldsymbol{eta}}^2 \ln(\mathcal{L}) \right]^{-1}$$

$$+ \mathrm{Hessian}$$

Example in *R*:

```
> library(MASS)
> beta = c(b1 = -0.7, b2 = 0.1)
> hessian = matrix(c(
      -6000, 50,
       50, -6000),
   ncol=2, byrow=T)
> covariance = -1*(solve(hessian))
> draws = as.data.frame(mvrnorm(10<sup>5</sup>, beta,
covariance))
> b1_A = draws$b1
> b1_B = draws\$b1 + draws\$b2
> mean(b1_A)
[1] -0.7000618
> mean(b1_B)
[1] -0.6000408
> quantile(b1_A, c(0.025, 0.975))
                97.5%
-0.7253724 -0.6748339
> quantile(b1_B, c(0.025, 0.975))
                97.5%
      2.5%
-0.6358317 -0.5642215
```

Practice Question 2

Suppose we estimate the following utility model describing preferences for chocolate bars between two groups: A & B

$$\tilde{u}_j = \beta_1 x_i^{\text{price}} + \beta_2 x_j^{\text{cacao}} + \beta_3 x_i^{\text{price}} \delta_j^{\text{B}} + \beta_4 x_j^{\text{cacao}} \delta_j^{\text{B}} + \varepsilon_j$$

The estimated model produces the following coefficients:

Parameter	Coef.
eta_1	-0.7
eta_2	0.1
eta_3	0.2
eta_4	0.8

Hessian			
-6000	50	60	70
50	-700	50	100
60	50	-300	20
70	100	20	-6000

- a) Use the mvrnorm() function from the MASS library to generate 10,000 draws of the model coefficients.
- b) Use the draws to compute the mean and 95% confidence intervals of the effects of $x_j^{\rm price}$ and $x_j^{\rm cacao}$ for each group (A & B).

Mixed logit models

Homogeneous model:

$$\tilde{u}_j = \beta_1 x_{j1} + \tilde{\varepsilon}_j$$

In mixed logit, we assume that β_1 is distributed across the population:

Parameter	Estimate
eta_1	$\widehat{\mu}_1$
	$\widehat{\sigma}_1$

The mlogit package includes mixed logit functionality

Standard Logit

$$P_j = \frac{e^{v_j}}{\sum_{k=1}^J e^{v_k}}$$

$$P_{j} = \frac{e^{v_{j}}}{\sum_{k=1}^{J} e^{v_{k}}} \qquad P_{j} = \int \left(\frac{e^{v_{j}}}{\sum_{k=1}^{J} e^{v_{k}}}\right) f(\beta) d\beta$$

To estimate mixed logit models, we use simulation:

- 1. Draw a value of β from $f(\beta)$, label it β^r
- 2. Calculate the standard logit fraction using β^r :

$$P_{j}^{r} = \frac{e^{v_{j}^{r}}}{\sum_{k=1}^{J} e^{v_{k}^{r}}}$$

3. Repeat steps 1 & 2 R times and average the results:

$$\widehat{P}_j = \frac{1}{R} \sum_{r=1}^R P_j^r$$

Example in *R*:

$$\tilde{u}_{j} = \beta_{1} x_{j}^{\text{price}} + \beta_{2} x_{j}^{\text{cacao}} + \varepsilon_{j}$$
$$\beta_{1} \sim N(\mu_{1}, \sigma_{1}), \qquad \beta_{2} \sim N(\mu_{2}, \sigma_{2})$$

```
library(mlogit)
data_mlogit = mlogit.data(
    data = data,
   choice = 'choice',
   alt.var = 'alt',
   id.var = 'id')
model_mixed = mlogit(data_mlogit,
    formula = choice ~ price + cacao | 0,
    rpar = c(price = 'n', cacao = 'n'))
```

Practice Question 3

- a) Use the read_csv() function from the tidyverse library and the link in the video description to read in the "yogurt.csv" data frame.
- b) Use the mlogit library to estimate the following homogeneous model:

$$\tilde{u}_j = \beta_1 x_j^{\text{price}} + \beta_2 \delta_j^{\text{feat}} + \beta_3 \delta_j^{\text{dannon}} + \beta_4 \delta_j^{\text{highland}} + \beta_5 \delta_j^{\text{weight}} + \varepsilon_j$$

where the three δ coefficients are dummies for Dannon, Highland, and Weight Watchers brands and Yoplait is the baseline brand.

(<u>Hint</u>: Don't forget to first use the mlogit.data function to format your data!)

c) Use the mlogit library to estimate the same model but with the following mixing distributions:

$$\beta_1 \sim N(\mu_1, \sigma_1)$$

 $\beta_2 \sim N(\mu_2, \sigma_2)$