Activity Browser Recent developments

Daniel de Koning - Software developer - CML

Major changes over the year

Versions **2.3.3** through **2.6.1**

- 1. Expanded dataset importing
- 2. Parameters
- 3. Uncertainty
- 4. Presamples & Scenarios
- 5. Global Sensitivity Analysis
- 6. Many background changes!

Importing and manipulating data

- BW2Package and Excel
 - Adapted from brightway2-data.
- Linking and relinking exchanges
 - Improve importing of shared datasets
 - Change background database(s)
- Exporting/Importing parameters
 - Share parameterized models (excel)

Parameters in AB

- All three layers of parameters
- Renaming and deleting parameters in brightway2
- More restrictive than brightway2

Uncertainty wizard

- Based on existing code:
 - brightway2-data
 - stats_arrays (https://stats-arrays.readthedocs.io/en/latest/)
 - pedigree_matrix (https://bitbucket.org/cmutel/pedigree-matrix/)

Visualization of uncertainty distribution

Presamples

- Presamples (https://github.com/PascalLesage/presamples)
- Create presamples arrays in brightway2 code.
- Select and use them in AB

Scenario files

- Structured excel file for:
 - Parameter scenarios
 - 'Flow' scenarios
- Converts excel files into presamples-like matrices
- Follows the same logic as presamples during LCA calculations

Superstructures

- <u>Problem</u>: storing an entire database for each future scenario requires large storage and is computationally inefficient for LCA calculations
- <u>Solution</u>: (based on presamples concept)
- 1. A "superstructure" database, which contains all activities and flows that occur *across* all future scenarios. This is a "template" for the future product system.

Only 1 future BG database is required, which enables fast LCA calculations and avoids unnecessary data storage. A spreadsheet contains the scenario data. New scenarios can easily be added.

1. Superstructure database

1. Scenario superstructur e database

2. Scenario data (spreadsheet)

Flows	Values Scenario 1	Values Scenario 2
electricity	1.3	1.7
steel	0.3	0.1
CO2	14	20
•••	•••	•••

Fast scenario LCAs

Steubing, Koning et al. (unpublished)

Combining FG and BG scenarios is possible in the AB

Global Sensitivity Analysis (GSA)

- One possible implementation for GSA.
 - Uses Monte Carlo LCA results
 - Filters flows by impact
- The flow or parameter that has the most influence on the result of the functional unit and LCIA method.
- Cucurachi, Blanco, Steubing, Heijungs, (in preparation)
- https://github.com/bsteubing/lca-global-sensitivity-analysis

Global Sensitivity Analysis

Changes in the background

- Licence change from GPL3 to LGPL
 - PyQt5 to PySide2
- Bugfixes
- Reworked and refactored code
 - Tables
 - LCA Results tabs
- Added tests

• ...

Questions?

