Software Technology of Internet of Things Sampling Physical Phenomena

Aslak Johansen asjo@mmmi.sdu.dk

March 11, 2025

Part 1:

High-Level Overview

continues signal

Part 2:

The Temporal Aspect

Sampling

We can take a single sample ... but usually we want more.

Definition: The *sampling interval* or *sampling period* T is the time between two samples.

Definition: The sampling frequency or sampling rate f_s is the average number of samples obtained within 1 second.

$$f_s = \frac{1}{T}$$

Sampling Theorem

Question: How frequent do you have to sample to be guaranteed to be able to reconstruct a signal?

Answer: Twice as fast as the fastest frequency contained in the original signal.

More info: Look up Nyquist-Shannon sampling theorem.

Sampling Theorem Original Signal

Sampling Theorem Samples

Sampling Theorem Reconstructed Signal

Nyquist Frequency Violations

In Movies: Too low a sampling rate (relative to the rotational speed of [the spokes of] a wheel) can make it appear to rotate the wrong way.

In Photos: When an image of fabric is scaled (without some form of softening) Moiré patterns tend to appear. The same can happen when the pattern of the fabric iterferes with the pattern of the sensors color filter array.

In Audio: The similar effect is called aliasing.

Resampling

Definition: A *timeseries* is a mapping from time to values (e.g., samples): $time \mapsto value$

At times the frequency of a timeseries need to be adapted to a specific purpose.

This operation is referred to as *resampling*:

- **Downsampling** By generating a new timeseries representing the same signal using less samples.
- Upsampling By generating a new timeseries representing the same signal using more samples.

Resampling introduces errors, including (but not limited to)

- Cutting off extreme values.
- Removing fluctuations.

Part 3: Analog to Digital Conversion

Sample and Hold Method

- 1. **Flush** Drain the charge of the capacitor by connecting it to ground.
- 2. Wait Make sure that input is not connected to ground.
- 3. **Sample** Connect the capacitor to the input. Over time this will charge the capacitor.
- 4. **Hold** Given a large enough sample time the capacitor is charged to a voltage matching that of the input.
- Compare This charge can then be compared to multiple known values, once for each output bit.

Compare Step

There are different methods for constructing ADCs.

One comparison is made per bit. Designs spans the spectrum from all-parallel to all-sequential.

The known values (representing bits) may be laid out in either a linear (a *linear* ADC) or a logarithmic (a *logarithmic* ADC) pattern.

Why is this?

All designs have (more or less) common errors.

Analog to Digital Converter

Part 4: Imperfections

Noise and SNR

Noise has many sources:

- ▶ Often the sensor itself produce a noisy signal
- ▶ Analog electrical signals pick up noise from electromagnetical signals
- AD conversion introduces error

The inherent noise in a given situation is known as the *noise floor*.

The *signal to noise ratio* (SNR) is a measurement that tells us how large a fraction of a signal consists of noise.

What happens if you average two samples?

- 1. The signal is doubled.
- 2. Many types of noise will cancel out(ish).
- 3. Accordingly, the SNR goes up ©.

Outliers

What is a outlier?

What makes a sample an outlier?

Definition: An outlier is an observation (aka sample) which lies "far" away from the brunt of the distribution.

Note: This is a fairly vague definition.

In order to avoid giving credence to such outliers by assigning them weight of more than their (expected) rate of occurrence would suggest these samples are often removed in a process known as *outlier removal*.

When Outliers Become Black Swans

What happens if you do analysis on a dataset where removed sample(s) turns out to be significant?

Something may happen that your models simply don't account for; something that they say is impossible.

Such events are known as *black swans*, and they do occur.

Often with serious consequences.

Examples:

- ▶ 2020 COVID-19 pandemic
- ▶ 2011 Fukushima nuclear accident
- 2008 Financial crisis
- ▶ 2001 Dotcom bubble

Part 5: Offloading

Sampling Bandwidth

	1Hz	10Hz	100Hz	1.0kHz	10.0kHz	100.0kHz	1.0MHz
6b	6bps	60bps	600bps	6.0kbps	60.0kbps	600.0kbps	6.0Mbps
7b	7bps	70bps	700bps	7.0kbps	70.0kbps	700.0kbps	7.0Mbps
8b	8bps	80bps	800bps	8.0kbps	80.0kbps	800.0kbps	8.0Mbps
9b	9bps	90bps	900bps	9.0kbps	90.0kbps	900.0kbps	9.0Mbps
10b	10bps	100bps	1.0kbps	10.0kbps	100.0kbps	1.0 Mbps	10.0Mbps
11b	11bps	110bps	1.1kbps	11.0kbps	110.0kbps	1.1 Mbps	11.0Mbps
12b	12bps	120bps	1.2kbps	12.0kbps	120.0kbps	1.2Mbps	12.0Mbps
13b	13bps	130bps	1.3kbps	13.0kbps	130.0kbps	1.3 Mbps	13.0Mbps
14b	14bps	140bps	1.4kbps	14.0kbps	140.0kbps	1.4Mbps	14.0Mbps
15b	15bps	150bps	1.5kbps	15.0kbps	150.0kbps	1.5Mbps	15.0Mbps
16b	16bps	160bps	1.6kbps	16.0kbps	160.0kbps	1.6Mbps	16.0Mbps

Required bandwidth as a function of sampling rate and sample depth. Colored according to what (9600, 38400, 115200, 576k and 5M)b/s can handle.

Streaming Samples

Question: Given a 12 bit ADC with a 2 bit noise floor sampling at 8 kHz, how large a bandwidth is needed for offloading over a UART?

Theoretical answer:

- 1. Each sample contains (12-2)b = 10b information.
- 2. This gives us a required bandwidth of $10b \cdot 8kHz = 10b \cdot 8k/s = 80kb/s$.

Practical answer (UART edition):

- 1. If we assume a frame format of 1 start bit, 8 data bits, 0 parity bit and 2 stop bits, then for each 8b of information we will need to add 3b of control data.
- 2. That is a 37.5% overhead resulting in a practical requirement of $80 \text{kb/s} \cdot 1.375 = 110 \text{kb/s}$.

Given what we have learnt about bit errors on serial lines, what is wrong with this?

Questions?

https://openclipart.org/detail/228687/boy-thinking-of-question