My Private FLAC3D Repository

Kyeong Sun Kim

Civil and Environmental Engineering

Seoul National University

Sept, 2021

1	Working with FISH in FLAC3D					
2	Usi	ng Python with FLAC3D	2			
	2.1	Geometry, Grid, Zone	2			
	2.2	Group, Range	4			
	2.3	Constitutive Model	4			
	2.4	B.C. and I.C	4			
	2.5	Step to Equilibrium	4			
	2.6	Support, Structure, Restore	4			
	2.7	Plot	4			
3	Illu	strative Model – Mechanics of FLAC3D	5			
	3.1	Geometry, Grid, Zone	6			
	3.2	Group, Range	6			
	3.3	Constitutive Model	6			
	3.4	B.C. and I.C	6			
	3.5	Step to Equilibrium	6			
	3.6	Support, Structure, Restore	6			
	3.7	Plot	6			
4	Axi	al and Lateral Loading of a Concrete Pile	7			
	4.1	Geometry, Grid, Zone	8			
	4.2	Group, Range	8			
	4.3	Constitutive Model	8			
	4.4	B.C. and I.C	8			
	4.5	Step to Equilibrium	8			
	4.6	Support, Structure, Restore	8			
	4.7	Plot	8			

5	Smo	ooth Circular Footing on an Associated Mohr-Coulomb Mate-	
	rial		9
	5.1	Geometry, Grid, Zone	10
	5.2	Group, Range	10
	5.3	Constitutive Model	10
	5.4	B.C. and I.C.	10
	5.5	Step to Equilibrium	10
	5.6	Support, Structure, Restore	10
	5.7	Plot	10

Working with FISH in FLAC3D

Using Python with FLAC3D

2.1	Geometry, Grid, Zone	2
2.2	Group, Range	1
2.3	Constitutive Model	1
2.4	B.C. and I.C	1
2.5	Step to Equilibrium	1
2.6	Support, Structure, Restore	1
2.7	Plot	1

2.1 Geometry, Grid, Zone

The itasca module defines functions and classes for interaction between Python and FLAC3D.

2. Using Python with FLAC3D

```
import itasca as it
it.command("python-reset-state false")
"""
```

The it.command function is used to issue a series of FLAC3D commands.

The it.zone.count function creates 1000 zones

```
it.zone.count() # outputs 1000
"""
```

The it.zone.find(1) returns a Zone object with id 1. The object is assigned to the Python variable z.

```
"""
z = it.zone.find(1)
print z # outputs <itasca.zone.Zone object at 0x00000001B388600, ID : 1>
z.pos() # outputs vec3(( 5.00000e-01, 5.00000e-01, 5.00000e-01))
"""
```

The variable z is a Zone object (FLAC3D zone)

pos method of this object returns the zone centroid.

for statement is used to iterate over sequences of things, Loop over all FLAC3D zones.

```
volume_sum = 0.0
for z in it.zone.list():
  volume_sum += z.vol()
"""
```

Check that the sum of the zone volumes is what we expect.

2. Using Python with FLAC3D

```
print volume_sum # outputs 1000.0

print z.vol() * it.zone.count()

assert volume_sum == z.vol() * it.zone.count() # outputs 1000.0

"""
```

Let's find a zone near the center of the model

```
"""
z = it.zone.near ((5,5,5))
#confirm position with pos method
z.pos() # outputs vec3(( 4.500000e+00, 4.500000e+00, 4.500000e+00))
"""
```

2.2 Group, Range

```
"""
"""
```

- 2.3 Constitutive Model
- 2.4 B.C. and I.C.
- 2.5 Step to Equilibrium
- 2.6 Support, Structure, Restore
- 2.7 Plot

Illustrative Model – Mechanics of FLAC3D

3.1	Geometry, Grid, Zone 6
3.2	Group, Range 6
3.3	Constitutive Model 6
3.4	B.C. and I.C
3.5	Step to Equilibrium 6
3.6	Support, Structure, Restore 6
3.7	Plot

- 3. Illustrative Model Mechanics of FLAC3D
- 3.1 Geometry, Grid, Zone
- 3.2 Group, Range
- 3.3 Constitutive Model
- 3.4 B.C. and I.C.
- 3.5 Step to Equilibrium
- 3.6 Support, Structure, Restore
- 3.7 Plot

Axial and Lateral Loading of a Concrete Pile

4.1	Geometry, Grid, Zone	8
4.2	Group, Range	8
4.3	Constitutive Model	8
4.4	B.C. and I.C	8
4.5	Step to Equilibrium	8
4.6	Support, Structure, Restore	8
4.7	Plot	8

				T 1.		~ .	D. 47
4.	Axial	and	Lateral	Loading	of a	Concrete	Pile

4.1 Geometry, Grid, Zone

4.2 Group, Range

4.3 Constitutive Model

4.4 B.C. and I.C.

4.5 Step to Equilibrium

4.6 Support, Structure, Restore

4.7 Plot

Smooth Circular Footing on an Associated Mohr-Coulomb Material

5.1	Geometry, Grid, Zone	10
5.2	Group, Range	10
5.3	Constitutive Model	10
5.4	B.C. and I.C	10
5.5	Step to Equilibrium	10
5.6	Support, Structure, Restore	10
5.7	Plot	10

- 5. Smooth Circular Footing on an Associated Mohr-Coulomb Material
- 5.1 Geometry, Grid, Zone
- 5.2 Group, Range
- 5.3 Constitutive Model
- 5.4 B.C. and I.C.
- 5.5 Step to Equilibrium
- 5.6 Support, Structure, Restore
- 5.7 Plot