Name

1.1

Date

Instructor

EXPERIMENT 25

Lab Report

Part A - Preparation of Five Standard Fe(SCN)²⁺ Solutions

0.0015 M = 0.005 L = 3.00 X 6 -4

reactant & [Fe(SCN) = - [KSCN]

2.40 X10-4

4) 1.20×10-4

5) 6.00 x10-5

Part B - Absorption Measurements for the Standard Solutions and Preparation of the Beer-Lambert Curve

Should you determine the absorbance of each standard solution from the tab delimited files saved in Step 4? Should your λ_{max} be in the 450–460 nm region of the absorbance spectrum of each standard solution? Why or why not?

Yes - we want to kind relationship between Concentration and who surbonce

Yes-thats a local max with minimal roise

Part C – Equilibrium Solution Preparation and Absorption Measurements: Finding $K_{\rm c}$

Should you determine the absorbance of each equilibrium mixture from the tab delimited files saved in Step 11? Should your λ_{max} be in the 450–460 nm region of the absorbance spectrum of each equilibrium mixture? Why or why not?

Yes - we can use absorbance to Find concentration.

Yes-that's a local max with minimal noise.

Prepare an "ICE" table for each equilibrium mixture.

The same real edge and	inclure.
1) Fest S(N Fes(N)2+ 1 7.5x6-4 3x6-4 0	0-061=2953.5x -0.057 :X=MOX10-5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3) F_e st $S(N)$ $F_e(S(N)^{2+})$ $\frac{1}{7.5\times10^{-14}}$ 6×10^{-14} O $\frac{1}{6}$ $\frac{1}{5.5\times10^{-14}}$ $\frac{1}{5.$

Determine K_c for each of the three equilibrium solutions.

Determine the average K_c value for the equilibrium mixtures.

Beakers 1 and 2 were observed to have similar absorbances.

