Série d'exercices 2

Mars 2020

Unconstrained and constrained optimization

Exercice 1

Find the maximum and minimum values of f in the following cases:

- 1. $f(x,y) = 81 x^2 + y^2$ s.t. $4x^2 + y^2 = 9$.
- 2. $f(x,y) = 8x^2 2y$ s.t. $x^2 + y^2 = 1$.
- 3. $f(x, y, z) = y^2 10z$ s.t. $x^2 + y^2 + z^2 = 36$.
- 4. f(x, y, z) = xyz s.t. $x + 9y^2 + z^2 = 4$. Assume that $x \ge$ for this problem. Why is this assumption needed?
- 5. $f(x, y, z) = 3x^2 + y$ s.t. 4x 3y = 9 and $x^2 + z^2 = 9$.
- 6. f(x, y, z) = 4y 2z s.t. 2x y z = 2 and $x^2 + y^2 = 1$.

Exercice 2

Find the maximum and minimum values of $f(x,y) = 4x^2 + 10y^2$ on the disk $x^2 + y^2 \le 4$.

Exercice 3

Given $(n_i)_{i=1,\ldots,N} \in \mathbb{N}^*$ and P > 0, solve the following problem

$$\begin{array}{ll} \underset{(p_1,\ldots,p_n)}{\operatorname{maximize}} & \sum_{i=1}^N \ln\left(1+\frac{p_i}{n_i}\right) \\ \text{subject to} & \sum_{i=1}^N p_i \leq P, \\ & p_i > 0, \forall \, i = 1, ... N \end{array}$$

Exercice 4

Given A, b, and m, use the SVD algorithm to find a vector x with $||x||_2 < m$ minimizing $||Ax - b||_2$.

Exercice 5

We want to find a normal $n \times 1$ vector h satisfying Ah = 0, where A is $m \times n$ matrix, $m \ge n$, and rank(A) = n. We consider the following problem:

1. Using Lagrange multipliers, derive a characteristic equation. Derive h in terms of eigenvector of (A^TA) .

- 2. Let $A = USV^T$ the SVD decomposition.
 - a. Show that $\|USV^Th\| = \|SV^Th\|$ and $\|Vh\| = \|h\|$.
 - b. Express the minimization problem in terms of $y = V^T h$.
 - c. Deduce that $y = [0, 0, ..., 1]^T$ and the corresponding vector h.

Exercice 6

Find the solution x to the least squares problem:

$$\underset{x}{\operatorname{argmin}} \|\mathbf{y} - A\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{b} - \mathbf{x}\|_{2}^{2}$$

Exercice 7 Problem

Find a circle that approximates given m points $\mathbf{a}_1, \dots, \mathbf{a}_m$ of \mathbb{R}^n .

Exercice 8 Problem

Consider a noisy image $Y \in \mathbb{R}^{n \times n}$ and its associated vectorial representation \boldsymbol{y} . As in the previous section, we express the denoising of \boldsymbol{y} as the following least squares problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} \|\boldsymbol{x} - \boldsymbol{y}\|^2 + \lambda R(\boldsymbol{x}), \tag{II.13}$$

where λ is a given regularization parameter, $N=n^2$, and $R(\boldsymbol{x})$ is a regularization term.

- 1. Express R in terms of the Frobenius nor mof the gradient norm matrix.
- 2. Write the denoising problem as a least squres problem.
- 3. Grive the explicit solution of the minimization problem.