Lecture 11: Repeated Measures ANOVA

• 11. 1 **Purpose**

- A special case of ANOVA when assessments are repeated over time
- Also called *Profile Analysis* because it analyzes a profile of scores across the levels of a repeated-measures factor
- DVs are same variables over time (using same scaling)

• 11. 2 Research Questions

- Groups Hypothesis
 - do groups score similarly on the collected set of measures?
 - main effect for the (between-subjects) grouping factor
- Flatness Hypothesis
 - is the DV similar across assessments?
 - main effect for the repeated-measures factor
 - the optimal linear combination of orthogonal contrasts that capture the profile of scores
- Parallelism Hypothesis (If grouping variable)
 - do different groups have parallel profiles?
 - interaction between the grouping and the repeated measures factor

• 11. 3 Practical Issues

- Robust to departures of multivariate normality
- Very sensitive to outliers
- Homogeneity of variance-covariance matrices is not a problem unless sample sizes are highly unequal
- Linearity of relationships among DVs is assumed

• 11.4 Data

. •	• .
timo	naint
une	point

group	subject	1	2		p
1	1	<i>y</i> 111	<i>y</i> ₁₂₁		У1 <i>p</i> 1
1	2	<i>y</i> 211	<i>y</i> 221		y_{2p1}
1					
1	n_1	<i>y</i> _{n1 11}	<i>y</i> _{n1 21}		$y_{n1 p1}$
g	1	y_{11g}	y_{12g}		y_{1pg}
g	2	y_{21g}	y_{22g}		y_{2pg}
g	•	•	•		•
g	n_g	y_{ng1g}	y_{ng2g}	• • • •	y_{ngpg}

 $i = 1, ..., n_k$ subjects in group k(with $n = \sum_k n_k$) j = 1, ...p time points k = 1, ...g groups

• 11.5 Model

$$Y_{ijk} = \mu + \alpha_k + \beta_j + \alpha \beta_{kj} + \epsilon_{ijk}$$

$$\mu = \text{grand mean}$$

$$\alpha_k = \text{effect of group } k \ (\Sigma k \ \alpha_k = 0)$$

$$\beta_j = \text{effect of time } j \ (\Sigma j \ \beta_j = 0)$$

$$(\alpha \beta)_{kj} = \text{interaction effect of time } j \text{ and group } k \ [\Sigma_j \Sigma_k (\alpha \beta)_{kj} = 0]$$

$$\epsilon_{ijk} = \text{error for subject } i \text{ in group } k \text{ at time } j$$

$$\epsilon_{ijk} \sim N(0, \sigma_e^2)$$

11. 6 Equations: Test of Levels

- Main effect for the (between-subjects) grouping factor

$$\Sigma_{i} \Sigma_{k} (Y_{ik} - \overline{Y}_{.})^{2} = np \Sigma_{k} (\overline{Y}_{k} - \overline{Y}_{.})^{2} + p \Sigma_{i} \Sigma_{k} (Y_{ik} - \overline{Y}_{k})^{2}$$

$$df_{b} = k - 1$$

$$df_{w} = N - k$$

11. 7 Equations: Test of Flatness

- Hypothesis of GM of segments different from zero

$$SS_{bj} = \Sigma_{j} n \cdot (\overline{Y}_{j} - \overline{Y}_{.})^{2}$$

$$SS_{w} = \Sigma_{i} \Sigma_{j} (Y_{ij} - \overline{Y}_{j})^{2}$$

- Useful to introduce transformations (contrasts) to examine specific hypotheses (e.g., linear, quadratic, cubic)

11. 8 Equations: Test of Parallelism

- Hypotheses are segments (adjacent different scores)
- Equivalent to one-way ANOVA on the segments

$$SS_b = \Sigma_j n \cdot (\overline{Y}_j - \overline{Y}_.)^2$$

$$SS_w = \sum_i \sum_j (Y_{ij} - \overline{Y}_j)^2$$

- if H_0 is rejected:
 - group curves across time are not parallel
 - group differences are not the same across time

• 11.9 Example

- Data are from 204 children on the WISC measured at four time points.
 - Question 1. Are there differences in the WISC scores across measurement occasions? If so, what is the form of the trend?
 - Question 2. Are there group differences in the trend?

SPSS Input File

MANOVA wisc1 to wisc4 BY group(1,2)

/WSFACT = time(4)

/PRINT = cellinfo(means) TRANSFORM homog (bart boxm) sign(univ) signif (hf gg hypoth eigen dimenr) error(sscp)

/DISCRIM STAN COR

/CONTR (time) = poly

/RENAME = const lin quad cubic .

Cell Means and Standa Variable TOTAL1	rd Deviations			
FACTOR	CODE	Mean	Std. Dev.	N
GROUP	1	15.516	5.642	104
GROUP	2	22.177		100
For entire sample		18.781	6.376	204
Variable TOTAL2				
FACTOR	CODE	Mean	Std. Dev.	N
GROUP	1	23.448		104
GROUP	2	29.781		100
For entire sample		26.552	7.255	204
Variable TOTAL3				
FACTOR	CODE	Mean	Std. Dev.	N
GROUP	1	33.111	7.486	104
GROUP	2	38.969		100
For entire sample		35.982	7.763	204
Variable TOTAL4				
FACTOR	CODE	Mean	Std. Dev.	N
GROUP	1	44.020	10.295	104
GROUP	2		9.358	100
For entire sample		47.341	10.393	204

These are the means by measurement occasion and group level. They indicate an increase in WISC scores over time and differences between the two groups across all times. Such differences seem to be constant across the occasions (i.e., lack of interaction). But this visual inspection needs to be formally tested.

Univariate Homogeneity of Variance Tests Variable .. TOTAL1 Bartlett-Box F(1,122284) =.56213, P = .453Variable .. TOTAL2 .25146, P = .616Bartlett-Box F(1,122284) =Variable .. TOTAL3 .66898, P = .413Bartlett-Box F(1,122284) =Variable .. TOTAL4 Bartlett-Box F(1,122284) =.91168, P = .340

These are the Box's M tests of homogeneity of the var-cov matrices of the groups, indicating we are not violating the assumption of symmetry.

This test calculates the determinant of the var-cov matrix for each group and then compares them.

Orthonormalized Transformation Matrix (Transposed)

	CONST	LIN	QUAD	CUBIC
TOTAL1	.500	671	.500	224
TOTAL2	.500	224	500	.671
TOTAL3	.500	.224	500	671
TOTAL4	.500	.671	.500	.224

This is the transformation matrix. It contains orthogonal contrasts (as many as WS levels – 1) that serve as the dependent variables in the WS analysis (time in this example). The first one (CONST) is the contrast that SPSS uses for testing the BS effect. The others are linear, quadratic, and cubic contrasts because we specified to use POLYNOMIAL contrasts. But we can specify other SPSS contrasts, or write our own ones that represent specific hypotheses.

This part is the Between-Subjects test

Order of Variables for Analysis

Variates Covariates CONST

- 1 Dependent Variable
- 0 Covariates

Tests of Between-Subjects Effects.

Tests of Significance Source of Variation	for CONST	using UNIQUE DF	sums of MS	-	Sig of F
WITHIN CELLS GROUP	36277.62 8370.78		79.59 70.78	46.61	.000

If we average across trials, there are reliable differences in WISC scores between groups. Because there are only two groups, the interpretation is easy.

```
Estimates for CONST
--- Individual univariate .9500 confidence intervals

GROUP
Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

2 -6.4069509 .93845 -6.82715 .00000 -8.25737 -4.55653
```

And this one is the Within-Subjects test.

```
Order of Variables for Analysis
Variates Covariates

LIN
QUAD
CUBIC

3 Dependent Variables
0 Covariates
```

These three DVs are really orthogonal contrasts (i.e., the weights are not correlated) of the original four levels of the TIME variable. This is a multivariate procedure that considers the 3 variables simultaneously.

Tests involving 'TIME' Within-Subject Effect.

```
Mauchly sphericity test, W = .63406
Chi-square approx. = 91.45077 with 5 D. F.
Significance =
                                         .000
Greenhouse-Geisser Epsilon = .74873
Huynh-Feldt Epsilon =
Lower-bound Epsilon =
                                       .76131
Lower-bound Epsilon =
                                        .33333
```

AVERAGED Tests of Significance that follow multivariate tests are equivalent

univariate or split-plot or mixed-model approach to repeated measures. Epsilons may be used to adjust d.f. for the AVERAGED results.

Mauchly test is significant, indicating sphericity (i.e., lack of homogeneity) in of the var-cov matrix of the transformed variables. This matrix is now decomposed into the E matrix and the H matrix (for the group by time and time tests). Then, we generate the eigenstructure of the **HE**⁻¹ matrix, and this is evaluated for multivariate "significance."

This is the **E** matrix.

WITHIN CELLS Sum-of-Squares and Cross-Products

	LIN	QUAD	CUBIC	
LIN	4779.577	1005 500		
QUAD	858.060	1905.500		
CUBIC	541.908	146.697	1741.202	

And this is the **H** matrix for the TIME effect (flatness in T & F's book).

```
EFFECT .. TIME
```

Adjusted Hypothesis Sum-of-Squares and Cross-Products

	LIN	QUAD	CUBIC			
LIN QUAD	92228.440 7804.877	660.492				
CUBIC	275.958	23.353	.826			
Multivariat	e Tests of S	ignificance	(S = 1, M =	1/2, N = 9	9)	
Test Name	Value	Exact F	Hypoth. DF	Error DF	Sig. of F	
Pillais	.95329	1360.54208	3.00	200.00	.000	
Hotellings	20.40813	1360.54208	3.00	200.00	.000	
Wilks	.04671	1360.54208	3.00	200.00	.000	
Roys	.95329					
Note F st	atistics are	exact.				

Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 20.408 100.000 100.000 .976

EFFECT .. TIME (Cont.)

Univariate F-tests with (1,202) D. F.

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F

LIN 92228.4398 4779.57675 92228.4398 23.66127 3897.86498 .000 QUAD 660.49161 1905.50001 660.49161 9.43317 70.01800 .000 CUBIC .82570 1741.20241 .82570 8.61981 .09579 .757

EFFECT .. TIME (Cont.)

Standardized discriminant function coefficients Function No.

Function No.

Variable 1
LIN 1.050
QUAD -.154
CUBIC -.180

Correlations between DEPENDENT and canonical variables
Canonical Variable

Variable 1 LIN .972 QUAD .130 CUBIC .005

And this is the **H** matrix for the interaction effect (parallelism in T & F's book).

EFFECT .. GROUP BY TIME Adjusted Hypothesis Sum-of-Squares and Cross-Products

	LIN	QUAD	CUBIC
LIN QUAD	.045 942	19.740	
CUBIC	520	10.900	6.019

Multivariate	Tests of Sig	nificance	(S = 1,	M =	1/2, N	= 99)		
Test Name	Value	Exact F	Hypoth.	DF	Error	DF	Sig.	of !	F

1000 Ivaile	varac	Diace i ii	nypoem. Di	DIIOI DI	019. 01 1
Pillais	.01455	.98448	3.00	200.00	.401
Hotellings	.01477	.98448	3.00	200.00	.401
Wilks	.98545	.98448	3.00	200.00	.401
Roys	.01455				

Note.. F statistics are exact.

Eigenvalues and Canonical Correlations

Root No.	Eigenvalue	Pct.	Cum. Pct.	Canon Cor.	
1	.015	100.000	100.000	.121	

EFFECT .. GROUP BY TIME (Cont.)

Univariate F-tests with (1,202) D. F.

Variable	Hypoth. SS	Error SS	Hypoth. MS	Error MS	F	Sig. of F
LIN QUAD	19.73998	4779.57675 1905.50001	.04494	23.66127 9.43317	.00190	.965 .150
CUBIC	6.01907	1741.20241	6.01907	8.61981	.69828	.404

EFFECT .. GROUP BY TIME (Cont.)

>Note # 12188

It seems that the increase of WISC scores over time is mostly linear (as we inferred from the plot).

>Because there are no functions significant at level alpha, MANOVA will not >report any canonical discriminant or correlation analysis for this effect.

Tests involving 'TIME' Within-Subject Effect.

AVERAGED Tests of Signi Source of Variation	ficance f SS	or TOTAL DF	using UNI MS	QUE sums o F	f squares Sig of F
WITHIN CELLS (Greenhouse-Geisser) (Huynh-Feldt) (Lower bound)	8426.28	606 453.73 461.35 202.00	13.90		
TIME (Greenhouse-Geisser) (Huynh-Feldt) (Lower bound)	92889.76	3 2.25 2.28 1.00	30963.25	2226.81 2226.81 2226.81 2226.81	.000 .000 .000
<pre>GROUP BY TIME (Greenhouse-Geisser) (Huynh-Feldt) (Lower bound)</pre>	25.80	3 2.25 2.28 1.00	8.60	.62 .62 .62	.603 .557 .560 .432

Although Mauchly's test showed violation of (non) sphericity, the results do not differ.

These are contrasts of the transformed variables (linear, quadratic, cubic) examined one at a time. In case one cares, the p-values reported are not corrected for multiple testing. In any case, they indicate the same results than before: a clear linear effect (with some quadratic component) without a time by group interaction.

Estimates for LIN --- Individual univariate .9500 confidence intervals TIME Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 21.2667365 .34063 62.43288 .00000 20.59508 21.93839 GROUP BY TIME Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper Parameter 2 .014845647 .34063 .04358 .96528 -.65681 .68650 Estimates for OUAD --- Individual univariate .9500 confidence intervals TIME Coeff. Std. Err. t-Value Parameter Sig. t Lower -95% CL- Upper 1 1.79970810 .21508 8.36768 .00000 1.37562 2.22380 GROUP BY TIME Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper -.31112996 .21508 -1.44659 .14956 -.73522 .11296 Estimates for CUBIC --- Individual univariate .9500 confidence intervals TIME Parameter Coeff. Std. Err. Sig. t Lower -95% CL- Upper t-Value .063632435 .20560 .30950 .75726 -.34176 .46902 GROUP BY TIME Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 2 -.17180400 .20560 -.83563 .40435 -.57720 .23359

11. 10 Individual Data

11. 11 Limitations of RM ANOVA

- Group effects vs. individual change or growth
- Needs balanced designs
 - same number of observation per subject
 - same interval across assessments (and across subjects)
- ANOVA assumes sphericity
- ANOVA can't handle missing data
- Time is treated as a categorical variable
- Limited handling of covariates
- Other approaches are now available (e.g., mixed models)

• 11. 13 Comparing ANOVA vs. RM ANOVA

0bs	id	wisc1	wisc2	wisc3	wisc4	group
1	1	9.17	12.91	18.10	26.10	1
2	2	6.67	13.86	19.73	30.93	1
3	3	7.89	14.19	19.94	31.36	1
4	4	22.13	24.97	41.76	49.91	2
5	5	30.03	39.27	40.65	63.95	2
6	6	27.93	41.12	53.27	67.59	2

Variable	N	Mean	group=1 Std Dev	Minimum	Maximum
wisc1	3	7.9100000	1.2501200	6.6700000	9.1700000
wisc2 wisc3	3 3	13.6533333 19.2566667	0.6645550 1.0071908	12.9100000 18.1000000	14.1900000 19.9400000
wisc4	3	29.4633333	2.9206563	26.1000000	31.3600000

Variable	N	Mean	Std Dev	Minimum	Maximum
wisc1	3	26.6966667	4.0918618	22.1300000	30.0300000
wisc2	3	35.1200000	8.8386933	24.9700000	41.1200000
wisc3	3	45.2266667	6.9878060	40.6500000	53.2700000
wisc4	3	60.4833333	9.3358949	49.9100000	67.5900000

			total		
Variable	N	Mean	Std Dev	Minimum	Maximum
wisc1	6	17.3033333	10.6397419	6.6700000	30.0300000
wisc2	6	24.3866667	13.0257816	12.9100000	41.1200000
wisc3	6	32.2416667	14.9087161	18.1000000	53.2700000
wisc4	6	44.9733333	18.0816976	26.1000000	67.5900000
wisc	24	29.7262500	17.0552921	6.6700000	67.5900000

• Time only (no groups)

ANOVA Model

The GLM Procedure

Dependent Variable: wisc

		Sum of		
Source	DF	Squares	Mean Square	F Value
Model	3	2529.845279	843.281760	4.05
Error	20	4160.463483	208.023174	
Corrected Total	23	6690.308762		

Pr > FSource Model 0.0211

Error

Corrected Total

R-Square Coeff Var Root MSE wisc Mean 0.378136 48.51943 14.42301 29.72625

Source DF Type I SS Mean Square F Value time 3 2529.845279 843.281760 4.05 Source Pr > Ftime 0.0211

RM ANOVA Model

Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

Source	DF	Type III SS	Mean Square	F Value
wisc	3	2529.845279	843.281760	47.62
Error(wisc)	15	265.609546	17.707303	

Adj Pr > F Pr > FG - G H - F Source wisc <.0001 <.0001 <.0001 Error(wisc)

> Greenhouse-Geisser Epsilon 0.6475 Huynh-Feldt Epsilon 1.0525

• Time and Group

ANOVA Model

11110 111110					
		The GL	M Procedure		
Dependent	Variable:				
·			Sum of		
Source		DF	Squares	Mean Square	F Value
Model		7	6205.502163	886.500309	29.26
Error		16	484.806600	30.300412	
Corrected	d Total	23	6690.308762		
		Source	Pr :	> F	
		Model	<.00	001	
		Error			
		Corrected To	tal		
	R-Square	Coeff Var	Root MSE	wisc Mean	
	0.927536	18.51758	5.504581	29.72625	
Source		DF	Type I SS	Mean Square	F Value
time		3	2529.845279	843.281760	27.83
group		1	3546.099704	3546.099704	117.03
group*tin	1е	3	129.557179	43.185726	1.43
		Source	Pr	> F	
		time	<.00	001	
		group	<.00	001	
		group*time	0.2	722	
Source		DF	Type III SS	•	
time		3	27.079027	9.026342	
group		1	3546.099704	3546.099704	117.03
group*tin	1 e	3	129.557179	43.185726	1.43
		Source	Pr	> F	
		time	0.82	264	
		group	<.00	001	

group*time

0.2722

RM ANOVA Model

The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DF	Type III SS	Mean Square	F Value
group	1	3546.099704	3546.099704	40.67
Error	4	348.754233	87.188558	
	Source	Pr	> F	

Source 0.0031 group Error

Univariate Tests of Hypotheses for Within Subject Effects

Source	DF	Type III SS	Mean Square	F Value
wisc	3	2529.845279	843.281760	74.38
wisc*group	3	129.557179	43.185726	3.81
Error(wisc)	12	136.052367	11.337697	

Adj Pr > F G - G Pr > F H-F-L Source <.0001 <.0001 <.0001 wisc 0.0396 0.0694 wisc*group 0.0396 Error(wisc)

> Greenhouse-Geisser Epsilon 0.6615 Huynh-Feldt-Lecoutre Epsilon 1.3101

• 11. 13 Repeated Measures as Mixed Models

TITLE 'Linear Grade';

PROC MIXED NOCLPRINT COVTEST; CLASS id;

MODEL wisc = grade / SOLUTION DDFM=BW CHISQ;

RANDOM INTERCEPT grade / SUBJECT=id TYPE=UN GCORR; RUN;

Subjects	204
Max Obs Per Subject	4
Number of Observations Read	816
Number of Observations Used	816
Number of Observations Not Used	0

Estimated G Correlation Matrix Effect id Col1 Col2

Row	Effect	id	Col1	Col2
1	Intercept	1	1.0000	0.6459
2	grade	1	0.6459	1.0000

Covariance Parameter Estimates

			Standard	Z	
Cov Parm	Subject	Estimate	Error	Value	Pr Z
UN(1,1)	id	31.7680	3.7716	8.42	<.0001
UN(2,1)	id	3.5368	0.5781	6.12	<.0001
UN(2,2)	id	0.9438	0.1686	5.60	<.0001
Residual		10.1043	0.7074	14.28	<.0001

Fit Statistics

-2 Res Log Likelihood	4918.8
AIC (smaller is better)	4926.8
AICC (smaller is better)	4926.8
BIC (smaller is better)	4940.0

Solution for Fixed Effects

Standard

Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	19.6977	0.4302	203	45.78	<.0001
grade	5.5407	0.08935	611	62.01	<.0001

TITLE 'Quadratic Grade'; PROC MIXED NOCLPRINT COVTEST; CLASS id; MODEL wisc = time time*time/ SOLUTION DDFM=BW ;

RANDOM INTERCEPT time time*time /SUBJECT=id TYPE=UN GCORR; RUN;

Covariance Parameter Estimates

			Standard	Z	
Cov Parm	Subject	Estimate	Error	Value	Pr Z
UN(1,1)	id	33.4131	4.1269	8.10	<.0001
UN(2,1)	id	1.6747	2.0101	0.83	0.4048
UN(2,2)	id	0			
UN(3,1)	id	1.4516	0.7152	2.03	0.0424
UN(3,2)	id	0.07148	0.2284	0.31	0.7543
UN(3,3)	id	0.2882	0.1478	1.95	0.0256
Residual		8.4434	0.5919	14.27	<.0001

Fit Statistics	
-2 Res Log Likelihood	4850.6
AIC (smaller is better)	4862.6
AICC (smaller is better)	4862.7
BIC (smaller is better)	4882.6

Solution for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	18.7947	0.4507	203	41.70	<.0001
time	6.8208	0.3184	610	21.42	<.0001
time*time	0.8967	0.1084	610	8.27	<.0001

TITLE 'Linear Grade Plus Covariate on Level and Slope';

PROC MIXED NOCLPRINT COVTEST; CLASS id;

MODEL wisc = time groupc time*groupc / SOLUTION DDFM=BW SOLUTION;

RANDOM INTERCEPT time / SUBJECT=id TYPE=UN GCORR; RUN;

Estimated G Correlation Matrix

Row	Effect	id	Col1	Col2
1	Intercept	1	1.0000	0.7783
2	grade	1	0.7783	1.0000

Covariance Parameter Estimates

			Standard	Z	
Cov Parm	Subject	Estimate	Error	Value	Pr Z
UN(1,1)	id	21.6545	2.7830	7.78	<.0001
UN(2,1)	id	3.5334	0.5053	6.99	<.0001
UN(2,2)	id	0.9518	0.1698	5.61	<.0001
Residual		10.1043	0.7074	14.28	<.0001

Fit Statistics

-2 Res Log Likelihood	4852.7
AIC (smaller is better)	4860.7
AICC (smaller is better)	4860.7
BIC (smaller is better)	4874.0

Solution for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	19.7604	0.3682	202	53.66	<.0001
grade	5.5408	0.08959	610	61.84	<.0001
groupc	3.1943	0.3682	202	8.67	<.0001
grade*groupc	0.004116	0.08959	610	0.05	0.9634

TITLE4 'Quadratic Grade Plus Covariate on Level and Slopes'; PROC MIXED NOCLPRINT COVTEST; CLASS id; MODEL wisc = grade grade*grade groupc grade*groupc grade*grade*groupc/ SOLUTION DDFM=BW ; RANDOM INTERCEPT grade grade*grade / SUBJECT=id TYPE=UN; RUN;

Covariance Parameter Estimates

			Standard	Z	
Cov Parm	Subject	Estimate	Error	Value	Pr Z
UN(1,1)	id	22.5314	3.1001	7.27	<.0001
UN(2,1)	id	3.1864	1.3051	2.44	0.0146
UN(2,2)	id	0			
UN(3,1)	id	0.1266	0.2594	0.49	0.6254
UN(3,2)	id	0.06584	0.05850	1.13	0.2604
UN(3,3)	id	0.01319	0.02195	0.60	0.2739
Residual		9.6349	0.6762	14.25	<.0001

Fit Statistics

-2 Res Log Likelihood	4843.3
AIC (smaller is better)	4855.3
AICC (smaller is better)	4855.4
BIC (smaller is better)	4875.3

Solution for Fixed Effects

		Standard				
Effect	Estimate	Error	DF	t Value	Pr > t	
Intercept	19.4551	0.3875	202	50.21	<.0001	
grade	6.1374	0.2181	608	28.14	<.0001	
grade*grade	-0.1185	0.04261	608	-2.78	0.0056	
groupc	3.3653	0.3875	202	8.69	<.0001	
grade*groupc	-0.3301	0.2181	608	-1.51	0.1307	
grade*grade*groupc	0.06640	0.04261	608	1.56	0.1197	