Aula 25: Computadores de Bordo Empregados em Determinação, Navegação e Controle de Atitude. Referências bibliográficas.

Computadores de Bordo

Em geral, o controle de atitude a bordo é obtido combinando sensores e atuadores através de uma *lei de controle* ou uma estratégia de controle, que é implementada através de eletrônica analógica ou de um computador digital. Uma vez que os sistemas de controle de atitude são projetados levando em conta principalmente às questões de confiabilidade e custo, leis de controle que são implementadas facilmente com eletrônica analógica foram usadas extensivamente. Sensores tais como sensores solares analógicos e sensores de horizonte montados na roda servem bem para tais aplicações uma vez que a saída do sensor é relacionada simplesmente a um ângulo que deve ser controlado. Rodas de reação, Volantes de inércia ou jatos são atuadores preferidos porque em muitas aplicações há uma relação simples entre erros de atitude e os comandos apropriados de torque. Além disso, as bobinas magnéticas são geralmente usadas em conjunto com um magnetômetro.

Os requisitos cada vez mais restritos de controle de atitude e de autonomia dos satélites resultaram na necessidade dos *computadores de bordo* (OBCs) ou processadores digitais. Os processadores digitais têm várias vantagens em relação aos sistemas analógicos (Schmidtbauer *et al.*, 1973), incluindo a capacidade de processar tipos complexos de dados - tais como dados de sensores de estrelas, giroscópio, ou sensores solares digitais - e de modificar leis de controle programáveis via comando de Terra.

Numa tentativa de padronizar equipamento de vôo, o centro espacial Goddard da NASA desenvolveu um padrão para computadores para satélites - *NASA Standard Spacecraft Computer*, NSSC - que foi derivado do computador de bordo do satélite OAO-3 e é similar àquele do IUE. O NSSC-I voou na *Solar Maximum Mission* (SMM) e em vôos subseqüentes da série *Multi-mission Modular Spacecraft*. Uma segunda versão, o NSSC-II foi usada para cargas úteis do laboratório espacial e do telescópio espacial. As especificações para os processadores digitais NSSC-I, NSSC-II, e o do HEAO são mostradas na tabela 13. As estimativas de temporização para o NSSC-I e o NSSC-II são dadas na tabela 14.

NSSC-I. Este computador usa palavras de 18 *bits* e aritmética de ponto fixo com complemento de dois. Dispõe de um conjunto de 55 instruções com um ciclo básico de 1,25 µs e requisito de 5 µs para operação de soma (estes valores são ainda incertos e podem ser revisados em versões subseqüentes do computador). Uma descrição detalhada do conjunto de instruções é dada em Merwarth (1976).

Foi projetado um conjunto de sub-rotinas matemáticas para o NSSC-I para prover operações elementares de 18 e 36 bits (DeMott, 1976). As estimativas de temporização são dadas na tabela 14. A eficiência de codificação do NSSC-I é limitada porque tem somente três registradores: um acumulador e um acumulador estendido (que são combinados em um registrador de comprimento duplo para produtos e dividendos na multiplicação e divisão) e um registrador de índice. O pequeno tamanho da palavra que permite somente 12 bits para endereços de operando nas instruções adiciona uma complicação. O NSSC-I usa conseqüentemente um registrador de página para especificar o banco lógico, uma região de $2^{12} = 4096$ palavras de 18 bits, de onde se recupera o operando. Carregar, recarregar, e

(especialmente) salvar e restaurar o registrador de página é incomodo, assim os programas do NSSC-I podem endereçar diretamente somente 4096 palavras de dados e somente dados definidos dentro do módulo montado independentemente.

Tabela 13 - Especificações para o padrão NASA de computadores NSSC-I, NSSC-II e do Processador Digital do HEAO

Parâmetro	NSSC-I ¹	NSSC-II	Processador Digital			
			do HEAO			
Potência (W)	38 max (6 standby)	130 a 242 ³	15			
Massa (kg)	6,4	8,3 (32K BYTE)	4,5			
Volume (litros)	9,4	6,4	2,4			
Comprimento de palavra (bits)	18	8, 16, 32 ou 64	16			
Número de instruções	55	121	42			
Memória	Módulos de 8K até 64K (32K nominal) ²	16K BYTES ⁴ (expansível em incrementos de 16K)	Palavras de 8K			

¹32K de memória

Tabela 14. Estimativas de temporização para o NSSC-I e o NSSC-II

Operação	Precisão Simples		Precisão Dupla		
	NSSC-I ¹	NSSC-II ²	NSSC-I ¹	NSSC-II ²	
Soma/Subtração	15	17	63/83	2	
Multiplicação	57	83	233	33.5	
Divisão	85	16,9	2500	54,9	
Seno/Coseno	375	-	1600	-	
Raiz Quadrada	540 a 840	-	3530 a 4920	-	

¹As estimativas consideram um carregamento e armazenagem que requerem cerca de 13 μs. Multiplicar ou dividir por potências de 2 leva aproximadamente um décimo do tempo de multiplicação nominal.

²Cada módulo de 8K é dividido em 2 bancos de 4K

³Dependendo da configuração

⁴Bytes de 8 bits

²As estimativas são para registrador-registrador somente.

Um sistema de interrupção permite 16 interrupções de *hardware* e uma interrupção programável. São fornecidas entrada e a saída para 16 dispositivos (Merwarth, 1976). O computador de bordo transmite dados para a Terra numa taxa de uma palavra por quadro de telemetria e recebe comandos numa taxa de 2000 *bits* por segundo (um comando de 48 *bits* a cada 24 ms). *Dump* de memória, através da banda S, é disponível a uma taxa de 32.000 bits por segundo.

A memória para o NSSC-I é expansível em módulos de 8192 palavras a um máximo de 8 módulos. É fornecida uma proteção de *hardware* contra troca de dados ou de instruções dentro dos limites selecionados de endereço. A disposição proposta de memória para o MMS é mostrada na Fig. 51. Um vôo executivo é usado programar as várias tarefas do computador de bordo. Estas tarefas incluem as operações de controle de atitude de alta prioridade (provavelmente a cada 128 ms para o SMM) além das tarefas domésticas de baixa prioridade. Estas últimas incluem executar funções fornecidas normalmente por dispositivos analógicos tais como os termostatos e por outros *hardwares* do satélite.

0	4096	8192	12288	16384	20480	24576)	28672	2	
Banco1	Banco2	Banco3	Banco4	Banco5	Banco6	Banco7		Ban	Banco8	
	Comandos armazena- dos	Buffer de Status	Processa- dor de Comandos Executi- vos e armazena- dos	Funções c -Atitude -Potência -Térmico Seguranç: Operaçõe Espec. da	a s		Spar	re		

Fig. 51 - Disposição da memória do NSSC-I para o satélite MMS. Os requisitos do sistema de controle de atitude do MMS são 10 K a 16 K palavras de programa e de armazenamento de dados; 10 a 1000 estrelas a 4 palavras por estrela; e 100 a 3000 palavras para 72 horas de dados de calendário astronômico.

NSSC-II. Este computador é um computador genérico microprogramado que é compatível com o conjunto de instruções padronizadas dos sistemas de computadores baseados em Terra IBM S/360 (NASA, 1977). O microcódigo de máquina implementa um total de 171 instruções incluindo instruções de ponto fixo de 16, 32 e 64 *bits* e instruções de ponto flutuante de 32 *bits*. Além disso, o projeto acomoda 512 palavras de capacidade de memória de microcódigo para as instruções especiais ou as rotinas programadas ou especificadas pelo usuário. A memória de semicondutor é expansível em incrementos de 16 *Kbyte* (*byte* de 8 *bits*).

O NSSC-II usa palavras de dados de ponto fixo de 8, 16, 32 ou 64 *bits* como opção. O ciclo de temporização básico para a máquina é 440 ns. O sistema tem 16 registradores gerais. O tamanho de palavra permite endereçar operandos de 20 *bits* nas instruções; assim, os programas do NSSC-II podem endereçar diretamente até 1 *Mbyte* de palavras de dados.

Computador do HEAO. O processador digital empregado no satélite HEAO processa dados de giroscópios e calcula comandos de jato (a cada 320 ms) para o HEAO-1 e C e processa dados de giroscópios e de rastreadores de estrelas para calcular comandos de jato para o HEAO-B (Hoffman, 1976). As especificações para o processador digital do HEAO são dadas na Tabela 13.

Referências Bibliográficas

- 1. Adams, D. J., *Hardware Technical Summary for IUE Fine Error Sensor*, Ball Brothers Research Corp., TN74-51, Oct. 1974.
- 2. Adcole Corp., Sun Angle Sensor Systemu Short Form Catalog, Feb. 1975.
- 3. Adcole Corp., Design Review Data Package Fine Pointing Sun Sensor for Solar Maximum Mission, Oct. 1977.
- 4. Astheimer, Robert W., "Instrumentation for Infrared Horizon Sensing," *Proceedings of the Symposium on Spacecraft Attitude Determination, Sept. 30, Oct. 1-2, 1969,* El Segundo, CA; Air Force Report No. SAMSO-TR-69-417, Vol. I; Aerospace Corp. Report No. TR-0066(5306)-12, Vol. I, 1969.
- 5. Au, G. F. and S. F. J. Baumgarth, "Ion Thruster ESKA 8 for North-South Stationkeeping of Synchronous Satellites," *J. Spacecraft*, Vol. 11, p. 618-620, 1974.
- 6. Barnes Engineering Co., *Infrared Detectors, Thermal and Photon*, Barnes Engineering Bulletin 2-35OA, 1976.
- 7. Bloom, A. L., "Principles of Operation of the Rubidium Vapor Magnetometer," *Applied Optics*, Vol. 1, p. 61-68, 1962.
- 8. Chubb, W. B., H. F. Kennel, C. C. Rupp and S. M. Seltzer, "Flight Performance of Skylab Attitude and Pointing Control System," *J. Spacecraft*, Vol. 12, p. 220-227, 1975.
- 9. Cleavinger, R. L., and W. F. Mayer, *Attitude Determination Sensor for Explorer 53*, AIAA Paper No. 76-114, AIAA 14th Aerospace Sciences Meeting, Wash. DC, Jan. 1976
- 10. Coon, T. R., and J. E. Irby, "Skylab Attitude Control System," *IBM Journal of Research and Development*, Jan. 1976.
- 11. Dehmelt, H. G., "Modulation of a Light Beam by Precessing Absorbing Atoms," *Phys. Rev. 2nd Series*, Vol. 105, p. 1924-1925, 1957.
- 12. DeMott, A., *Preliminary Study of Onboard Attitude Control for the Multi-Mission Modular Spacecraft.* Comp. Sc. Corp., Feb. 1976.
- 13. Ebel, B., In Flight Performance of the French German Three-Axis Stabilized Telecommunications Satellite SYMPHONIE, AIAA Paper No. 75-099, AAS/AIAA Astrodynamics Specialist Conference, Nassau, Bahamas, July 1975.
- 14. Farthing, W. H. and W. C. Folz, "Rubidium Vapor Magnetometer for Near Earth Orbiting Spacecraft," *Rev. Sci Instr.*, Vol. 38, p. 1023-1030, 1967.
- 15. Fontana, R., R. Baldassini, and G. Simoncini, Attitude Sensors Review and General Applications, Vol. 2 of Study of Detection and Estimation Techniques Applied to Attitude Measurements of Satellites, ESRO, ESRO-CR(P)-551, April 1974.
- 16. Fountain, G. H., SAS-B Star Sensor Telemetry Data, Applied Physics Laboratory, S2P-2-499, Feb. 1972.
- 17. Gates, R. F., and K. J. McAloon, *A Precision Star Tracker Utilizing Advanced Techniques*, AIAA Paper No. 76-113, AIAA 14th Aerospace Sciences Meeting, Wash., DC, Jan. 1976.
- 18. General Electric Space Systems, *Earth Resources Technology Satellite Image Annotation Processing (IAP) Software Description*, Document 7ISD5216, Valley Forge Space Center, Oct. 1971.
- 19. Geyger, W. A., *Non-linear Magnetic Control Devices*. New York: McGraw-Hill, Inc., Chapters 13 and 14, 1964.

- 20. Gottlieb, D. M., C. M. Gray, and L. Fallon, *High Energy Astronomy Observatory-A* (HEAO-A) Star Tracker Assembly Description, Comp. Sc. Corp., CSC/TM-75/6203, June 1976.
- 21. Grabbi, R. and C. K. Murch, "High Performance Electrothermal Hydrazine Thruster (Hi PEHT) Development," AIAA Paper No. 76-656, AIAA/SAE Twelfth Propulsion Conference, Palo Alto, CA, July 1976.
- 22. Gray, C. M., L. Fallon, D. M. Gottlieb, M. A. Holdip, G. F. Meyers, J. A. Niblack, and M. Rubinson, *High Energy Astronomy Observatory-A (HEAO-A) Attitude Determination System Specifications and Requirements*, Comp. Sc. Corp., CSC/SD-76/6001, Feb. 1976.
- 23. Greensite, A. L., Control Theory: Volume II, Analysis and Design of Space Vehicle Flight Control Systems. New York: Spartan Books, 1970.
- 24. Grivet, P. A. and L. Malner, "Measurement of Weak Magnetic Fields by Magnetic Resonance," *Advances in Electronics and Electron Physics*. New York: Academic Press, p. 39-151, 1967.
- 25. Hatcher, Norman M., A Survey of Attitude Sensors for Spacecraft, NASA SP-145, 1967.
- 26. Hoffman, D. P., "HEAO Attitude Control Subsystem-A Multimode/Multimission Design," *Proceedings AIAA Guidance and Control Conference*, San Diego, CA, Aug. 1976.
- 27. Holcomb, L., L. Mattson, and R. Oshiro, "The Effects of Aniline Impurities on Monopropellant Hydrazine Thruster Performance," AIAA Paper No. 76-659, AIAA/SAE Twelfth Propulsion Conference, Palo Alto, CA, July 1976.
- 28. Hotovy, S. G., M. G. Grell, and G. M. Lerner, *Evaluation of the Small Astronomy Satellite-3 (SAS-3) Scanwheel Attitude Determination Performance*, Comp. Sc. Corp., CSC/TR-76/6012, July 1976.
- 29. Jackson, John David, *Classical Electrodynamics*. New York: John Wiley & Sons, Inc., 1965.
- 30. Junge, Hinrich J., and Uwe W. Sprengel, "Direct Thrust Measurements and Beam Diagnostics on an 18-cm Kaufman Ion Thruster," *J. Spacecraft*, Vol. 10, p. 101-105, 1973.
- 31. Koso, D. A. and J. C. Kollodge, "Solar Attitude Reference Sensors," *Proceedings of the Symposium on Spacecraft Attitude Determination, Sept. 30, Oct. 1-2, 1969*, El Segundo, CA; Air Force Report No. SAMSO-TR-69-417, Vol. I; Aerospace Corp. Report No. TR-0066(5306)-12, Vol. I, 1969.
- 32. LeGrives, E. and J. Labbe, "French Research on Cesium Contact Ion Sources," *J. Spacecraft*, Vol. 10, p. 113-118, 1973.
- 33. Massart, J. A., A Survey of Attitude Related Problems for a Spin-Stabilized Satellite on a Highly Eccentric Orbit, ESOC Internal Note 152, Aug. 1974.
- 34. Merwarth, A., Multimission Modular Spacecraft (MMS) Onboard Computer (OBC) Flight Executive Definition, NASA S-700-55, March 1976.
- 35. Mobley, F. F., Konigsberg, K.I and Fountain, G. H., *Attitude Control System of the SAS-C Satellite*, AIAA Paper No. 74-901; AIAA Mechanics and Control of Flight Conference, Anaheim, CA, Aug. 1974.
- 36. Moore, W., and W. Prensky, *Applications Technology Satellite, ATS-6, Experiment Check-out and Continuing Spacecraft Evaluation Report,* NASA X 460-74-340, Dec. 1974.

- 37. Murch, C. K., R. L. Sackheim, J. D. Kuenzly, and R. A. Callens, "Non catalytic Hydrazine Thruster Development, 0.050 to 5.0 Pounds Thrust," AIAA Paper No. 76-658, AIAA/SAE Twelfth Propulsion Conference, Palo Alto; CA, July 1976.
- 38. NASA, NASA Standard Spacecraft Computer -II (NSSC-II).CAT. NO. 4.006, Standard Equipment Announcement, Revision 1, Aug. 1, 1977.
- 39. NASA, Spacecraft Star Trackers, NASA SP-8026, July 1970.
- 40. NASA, System Design Report for International Ultraviolet Explorer (IUE) GSFC, Greenbelt, MD, April 1974.
- 41. Nutt, W. T., M. C. Phenniger, G. M. Lerner, C. F. Manders, F. E. Baginski, M. Rubinson and G. F. Meyers, *SEASAT-A Attitude Analysis and Support Plan*, NASA X-XXX-78-XXX, April 1978.
- 42. Pugmire, T. K., and T. J. O'Connor, "5 Pound Thrust Non-Catalytic Hydrazine Engine," AIAA Paper No. 76-660, AIAA/SAE Twelfth Propulsion Conference, Palo Alto, CA, July 1976.
- 43. Pye, J. W., "Component Development for a 10-cm Mercury Ion Thruster," J. *Spacecraft*, Vol. 10, p. 106-112, 1973.
- 44. Pyle, E. J., Jr., Solar Aspect System for the Radio Astronomy Explorer, NASA X-711-68-349, Sept. 1968.
- 45. Quasius, G., and F. McCanless, *Star Trackers and Systems Design*. Wash., DC: Spartan Books, 1966.
- 46. RCA Service Company, OSO-I Spacecraft Subsystems Description Document, for GSFC, POB-3SCP/0175, May 1975.
- 47. Rose, R. E., and D. P. Hoffman, *HEA0-B Attitude Control and Determination Subsystem Critical Design Review*, TRW Systems Group, Redondo Beach, CA, Oct. 19, 1976.
- 48. Ryder, J. D., Engineering Electronics. New York: McGraw-Hill, Inc., 1967.
- 49. Sabnis, A. V., J. B. Dendy and F. M. Schmitt, *Magnetically Suspended Large Momentum Wheels*, AIAA Paper No. 74-899, AIAA Mechanics and Control of Flight Conference, Anaheim, CA, Aug. 1974.
- 50. Salmon, P. M. and W. C. Goss, *A Microprocessor-Controlled CCD Star Tracker*, AIAA Paper No. 76-116, AIAA 14th Aerospace Sciences Meeting, Wash., DC, Jan. 1976.
- 51. Sansevero, V. J., Jr., and R. A. Simmons, *International Ultraviolet Explorer Hydrazine Auxiliary Propulsion System Supplied Under Contract NAS 5-20658*, Hamilton Standard Division of United Technologies Corporation, Windsor Locks, CT, Oct. 1975
- 52. Schmidtbauer, B., Hans Samuelsson, and Arne Carlsson, *Satellite Attitude Control and Stabilisation Using On-Board Computers*, ESRO, ESRO-CR-100, July 1973.
- 53. Schonstedt Instrument Company, Reston, Virginia, Private Communication, 1976.
- 54. Schwarz, Frank, and Thomas Falk, "High Accuracy, High Reliability Infrared Sensors for Earth, Lunar, and Planetary Use," *Navigation*, Vol. 13, p. 246-259,1966.
- 55 S. Scott, R. T., and J. E. Carroll, "Development and Test of Advanced Strapdown Components for SPARS," *Proceedings of the Symposium on Spacecraft Attitude Determination Sept. 30, Oct. 1-2, 1969,* El Segundo, CA; Air Force Report No. SAMSO-TR-69-417, Vol. I; Aerospace Corp. Report No. TR0066(5306)-12, Vol. I, 1969.
- 56. Slocum, R. E. and F. N. Reilly, "Low Field Helium Magnetometer," IEEE *Transactions on Nuclear Science*, Vol. NS-10, p. 165-171, 1963.

- 57. Smith, B. S., *Hardware Technical Summary Fine (Digital) Sun Sensor System (FSS)* (*IUE*), Adcole Corp., QDIOI53, Jan. 1975.
- 58. Sonett, C. P., "The Distant Geomagnetic Field II, Modulation of a Spinning Coil EMF by Magnetic Signals," *J. Geophys. Res.* Vol. 68, p. 1229-1232, 1963.
- 59. Spetter, D. R., *Coarse Detector Output Model*, TRW Systems Group, HEAO74-460-204, Dec. 1974.
- 60. Susskind, Alfred K., *Notes on Analog-Digital Conversion Techniques*. The Technology Press of MIT, Cambridge, MA, 1958.
- 61. Thomas, J. R., Derivation and Statistical Comparison of Various Analytical Techniques Which Define the Location of Reference Horizons in the Earths Horizon Radiance Profile, NASA CR-726, April 1967.
- 62. Thomson, William Tyrrell, *Introduction to Space Dynamics*. New York: John Wiley & Sons, Inc., 1963.
- 63. Trudeau, N. R., F. W. Sarles, Jr. and B. Howland, *Visible Light Sensors for Circular Near Equatorial Orbits*, AIAA Paper 70-477, Third Communications Satellite Systems Conference, Los Angeles, CA, 1970.
- 64. Tsao, H. H., and H. B. Wollman, *Photon Counting Techniques Applied to a Modular Star Tracker Design*, AIAA Paper No. 76-115, AIAA 14th Aerospace Sciences Meeting, Wash., DC, Jan. 1976.
- 65. Vondra, R. J. and K. I. Thomassen, "Flight Qualified Pulsed Electric Thruster for Satellite Control," *J. Spacecraft*, Vol. 11, p. 613-617, 1974.
- 66. Werking, R. D., R. Berg, T. Hattox, G. Lerner, D. Stewart, and R. Williams, *Radio Astronomy Explorer-B Postlaunch Attitude Operations Analysis*, NASA X-581-74-227, July 1974.
- 67. Wertz, J. R., C. F. Gartell, K. S. Liu, and M. E. Plett, *Horizon Sensor Behavior of the Atmosphere Explorer-C Spacecraft*, Comp. Sc. Corp., CSC/TM75/6004, May 1975.
- 68. Wetmore, R., S. Cheuvront, K. Tang, R. Bevacqua, S. Dunker, E. Thompson, C. Miller, and C. Manders, *OSO-I Attitude Support System Specification and Requirements*, Comp. Sc. Corp., 3000-26900-01TR, Aug. 1974.
- 69. Wetmore, R., J. N. Rowe, G. K. Tandon, V. H. Tate, D. L. Walter, R. S. Williams, and G. D. Repass, *International Sun-Earth Explorer-B (ISEE-B) Attitude System Functional Specifications and Requirements*, Comp. Sc. Corp., CSC/SD-76/6091, Sept. 1976.