Cálculo Avanzado

Segundo Cuatrimestre — 2019

Práctica 2: Cardinalidad

Conjuntos

1. Si *B* es un conjunto y $(A_i)_{i \in I}$ una familia de conjuntos con $I \neq \emptyset$, entonces

$$B\setminus \bigcup_{i\in I}A_i=\bigcap_{i\in I}(B\setminus A_i),\quad B\setminus \bigcap_{i\in I}A_i=\bigcup_{i\in I}(B\setminus A_i),\quad \bigcup_{i\in I}(B\cap A_i)=B\cap \bigcup_{i\in I}A_i.$$

Solución. Probemos cada una de las igualdades por separado.

- Sea $x \in B \setminus \bigcup_{i \in A} A_i$. Es $x \in B$ y $x \notin \bigcup_{i \in I} A_i$: si $i \in I$, entonces es $x \in B$ y $x \notin A_i$, así que $x \in B \setminus A_i$. De esto se deduce que $x \in \bigcap_{i \in I} (B \setminus A_i)$. Sea, por otro lado, $x \in \bigcap_{i \in I} (B \setminus A_i)$. Como $I \neq \emptyset$, existe $j \in I$ y, por lo tanto, $x \in B \setminus A_j$: en particular, vemos que $x \in B$. Por otro lado, si $i \in I$, entonces $x \in B \setminus A_i$ y, por lo tanto, $x \notin A_i$. Esto nos dice que $x \notin \bigcup_{i \in I} A_i$ y, en definitiva, que $x \in B \setminus \bigcup_{i \in I} A_i$.
- Sea $x \in B \setminus \bigcap_{i \in I} A_i$, de manera que $x \in B$ y $x \notin \bigcap_{i \in I} A_i$. Esto último implica que existe $j \in I$ tal que $x \notin A_j$ y, por lo tanto, que $x \in B \setminus A_j$. Vemos así que $x \in \bigcup_{i \in I} (B \setminus A_i)$. Por otro lado, sea $x \in \bigcup_{i \in I} (B \setminus A_i)$. Existe entonces $j \in I$ tal que $x \in B \setminus A_i$ y, por lo tanto, $x \in B$ y $x \notin A_j$. De esto último se deduce que $x \notin \bigcap_{i \in I} A_i$ y, en definitiva, que $x \in B \setminus \bigcap_{i \in I} A_i$.
- Si $j \in I$, entonces $A_j \subseteq \bigcup_{i \in I} A_i$, así que $B \cap A_j \subseteq B \cap \bigcup_{i \in I} A_i$. Como esto es así cualquiera sea j, tenemos que $\bigcup_{i \in I} (B \cap A_j) \subseteq B \cap \bigcup_{i \in I} A_i$. Por otro lado, si $x \in B \cap \bigcup_{i \in A_i}$, se tiene que $x \in B$ y $x \in \bigcup_{i \in I} A_i$, de manera que existe $j \in I$ tal que $x \in A_i$: vemos entonces que $x \in B \cap A_j \subseteq \bigcup_{i \in I} (B \cap A_j)$.
- **2.** Sea $(A_n)_{n\geq 1}$ una sucesión de conjuntos y sea $A=\bigcup_{n\geq 1}A_n$. Encuentre una sucesión de conjuntos $(B_n)_{n\geq 1}$ que satisfaga las siguientes tres condiciones:
 - $B_n \subseteq A_n$ para todo $n \in \mathbb{N}$;
 - $B_n \cap B_m = \emptyset$ siempre que $n, m \in \mathbb{N}$ y $n \neq m$;
 - $\bullet \ A = \bigcup_{n>1} B_n.$

Solución. Para cada $n \in \mathbb{N}$ sea $B_n := A_n \setminus \bigcup_{i=1}^{n-1} A_n$. Veamos que se satisfacen las tres condiciones del enunciado.

- Es evidente que $B_n \subseteq A_n$ cualquiera sea $n \in N$.
- Sean n y m dos elementos distintos de $\mathbb N$ y supongamos que, por ejemplo, n < m. Como $B_n \subseteq A_n \subseteq \bigcup_{i=1}^{m-1} A_i$, es claro que $B_n \cap B_m = B_n \cap (A_n \setminus \bigcup_{i=1}^{m-1} A_i) = \emptyset$.
- Si $a \in A$, entonces el conjunto $\{i \in \mathbb{N} : a \in A_i\}$ no es vacío y podemos considerar su elemento mínimo m: tenemos entonces que $a \in A_m$ y que $a \notin A_i$ si $i \in [m-1]$, así

que $a \in A_m \setminus \bigcup_{i=1}^{m-1} = B_m \subseteq \bigcup_{n \ge 1} B_n$. Por otro lado, en vista de la primera propiedad, tenemos que $\bigcup_{n \ge 1} B_n \subseteq \bigcup_{n \ge 1} A_n = A$.

- **3.** Sea $f: X \to Y$ una función.
- (a) Si A y B son subconjuntos de X, entonces

$$f(A \cup B) = f(A) \cup f(B), \qquad f(A \cap B) \subseteq f(A) \cap f(B).$$

¿Vale siempre la igualdad en la segunda de estas inclusiones?

(b) Generalice la parte anterior al caso de uniones e intersecciones arbitrarias.

Solución. (a) Sean A y B dos subconjuntos de X.

• Si $y \in f(A \cup B)$ entonces existe $x \in A \cup B$ tal que y = f(x): si $x \in A$, entonces $y = f(x) \in f(A)$, y si $x \in B$, entonces $y = f(x) \in f(B)$. En cualquier caso, vemos que $y \in f(A) \cup f(B)$: esto muestra que $f(A \cup B) \subseteq f(A) \cup f(B)$.

Por otro lado, si $y \in f(A) \cup f(B)$ tenemos que o bien $y \in f(A)$ o bien $y \in f(B)$. En el primer caso existe $x \in A$ tal que y = f(x), y en el segundo existe $x \in B$ tal que y = f(x): en cualquiera de los casos, entonces, existe $x \in A \cup B$ tal que y = f(x) y, por lo tanto, $y \in f(A \cup B)$. Esto muestra que $f(A) \cup f(B) \subseteq f(A \cup B)$ y, junto con la inclusión que vimos antes, que, de hecho, vale la igualdad.

• Sea ahora $y \in f(A \cap B)$, de manera que existe $x \in A \cap B$ tal que y = f(x). Como $x \in A$, es $y = f(x) \in f(A)$, y como $x \in B$ es $y = f(x) \in f(B)$: vemos así que $y \in f(A) \cap f(B)$, y, como afirma el enunciado, que $f(A \cap B) \subseteq f(A) \cap f(B)$.

En general no vale la igualdad en la segunda inclusión. Por ejemplo, si $X = \{1, 2\}$, $Y = \{3\}$, $f: X \to Y$ es la función constante de valor 3 y tomamos $A = \{1\}$ y $B = \{2\}$, se tiene que $f(A \cap B) = f(\emptyset) = \emptyset$ mientras que $f(A) \cap f(B) = \{3\}$, de manera que la inclusión es, en este caso, estricta.

(b) Sea $(A_i)_{i \in I}$ una familia de conjuntos. Mostremos que

$$f\left(\bigcup_{i\in I}A_i\right) = \bigcup_{i\in I}f(A_i), \qquad f\left(\bigcap_{i\in I}A_i\right) \subseteq \bigcap_{i\in I}f(A_i).$$

• Sea $y \in f\left(\bigcup_{i \in I} A_i\right)$, de manera que existe $x \in \bigcup_{i \in I} A_i$ tal que y = f(x). Como x pertenece a esa unión, existe $j \in I$ tal que $x \in A_i$ y, por lo tanto, $y = f(x) \in f(A_j) \subseteq \bigcup_{i \in I} f(A_i)$. Esto muestra que $f\left(\bigcup_{i \in I} A_i\right) \subseteq \bigcup_{i \in I} f(A_i)$.

Sea ahora $y \in \bigcup_{i \in I} f(A_i)$, de manera que existe $j \in I$ tal que $y \in f(A_j)$ y, por lo tanto, $x \in A_j$ tal que y = f(x). Tenemos entonces que $x \in \bigcup_{i \in I} A_i$, así que $y = f(x) \in f(\bigcup_{i \in I} A_i)$. Esto muestra que $f(\bigcup_{i \in I} A_i) \supseteq \bigcup_{i \in I} f(A_i)$.

- Sea $y \in f\left(\bigcap_{i \in I} A_i\right)$, de manera que existe $x \in \bigcap_{i \in I} A_i$ tal que y = f(x). Si $i \in I$, entonces tenemos que $x \in A_i$ y, por lo tanto, que $y = f(x) \in f(A_i)$: vemos así que $y \in \bigcap_{i \in I} f(A_i)$. Esto prueba que $f\left(\bigcap_{i \in I} A_i\right) \subseteq \bigcap_{i \in I} f(A_i)$.
- **4.** Sea $f: X \to Y$ una función.
- (a) Para todo subconjunto A de X se tiene que $A \subseteq f^{-1}(f(A))$.

(b) Si B es un subconjunto de Y, entonces

$$f(f^{-1}(B)) \subseteq B$$
, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.

(c) Si B_1 y B_2 son subconjuntos de Y, entonces

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2), \qquad f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2).$$

(*d*) ¿De qué manera se generaliza el resultado de la parte anterior al caso de uniones e intersecciones arbitrarias?

Solución. (a) Sea A un subconjunto de X. Si $x \in A$, entonces $f(x) \in f(A)$, así que $x \in f^{-1}(f(A))$. Esto muestra que $A \subseteq f^{-1}(f(A))$.

- (b) Sea B un subconjunto de Y.
- Sea $y \in f(f^{-1}(B))$, de manera que existe $x \in f^{-1}(B)$ tal que y = f(x). Como $x \in f^{-1}(B)$, tenemos que $y = f(x) \in B$. Esto nos dice que $f(f^{-1}(B)) \subseteq B$.
- Sera $x \in f^{-1}(Y \setminus B)$, de manera que existe $f(x) \in Y \setminus B$. Tenemos entonces que $f(x) \notin B$, así que $x \notin f^{-1}(B)$ y, por lo tanto, que $x \in X \setminus f^{-1}(B)$. Esto muestra que $f^{-1}(Y \setminus B) \subseteq X \setminus f^{-1}(B)$). Sea, por otro lado, $x \in X \setminus f^{-1}(B)$. Como $x \notin f^{-1}(B)$, es $f(x) \notin B$ y, por lo tanto, $f(x) \in Y \setminus B$. Esto nos dice que $x \in f^{-1}(Y \setminus B)$ y, por lo tanto, que $X \setminus f^{-1}(B) \subseteq X \setminus f^{-1}(B)$.
- (c) Sean B_1 y B_2 subconjuntos de Y.
- Sea $x \in f^{-1}(B_1 \cup B_2)$, de manera que $f(x) \in B_1 \cup B_2$. Tenemos entonces que o bien $f(x) \in B_1$ y, por lo tanto, que $x \in f^{-1}(B_1)$, o bien $f(x) \in B_2$ y, por lo tanto, que $x \in f^{-1}(B_2)$. En cualquier caso, es $x \in f^{-1}(B_1) \cup f^{-1}(B_2)$. Esto nos dice que $f^{-1}(B_1 \cup B_2) \subseteq f^{-1}(B_1) \cup f^{-1}(B_2)$.

Sea ahora $x \in f^{-1}(B_1) \cup f^{-1}(B_2)$. Si $x \in f^{-1}(B_1)$, entonces $f(x) \in B_1$, y si $x \in f^{-1}(B_2)$ entonces $f(x) \in B_2$: en cualquiera de los dos casos tenemos que $f(x) \in B_1 \cup B_2$ y, por lo tanto que $x \in f^{-1}(B_1 \cup B_2)$. Vemos así que $f^{-1}(B_1) \cup f^{-1}(B_2) \subseteq f^{-1}(B_1) \cup f^{-1}(B_2)$.

• Sea $x \in f^{-1}(B_1 \cap B_2)$, de manera que $f(x) \in B_1 \cap B_2$. Es $f(x) \in B_1$, así que $x \in f^{-1}(B_1)$, y es $f(x) \in B_2$, así que $x \in f^{-1}(B_2)$: vemos, por lo tanto que $f^{-1}(B_1) \cap f^{-1}(B_2)$ y, en definitiva, que $f^{-1}(B_1 \cap B_2) \subseteq f^{-1}(B_1) \cap f^{-1}(B_2)$.

Sea, en segundo lugar, $x \in f^{-1}(B_1) \cap f^{-1}(B_2)$. Como $x \in f^{-1}(B_1)$, es $f(x) \in B_1$, y como $x \in f^{-1}(B_2)$, es $f(x) \in B_2$: así, es $f(x) \in B_1 \cap B_2$ y, por lo tanto $x \in f^{-1}(B_1 \cap B_2)$. Esto nos dice que $f^{-1}(B_1) \cap f^{-1}(B_2) \subseteq f^{-1}(B_1 \cap B_2)$.

(d) Sea $(B_i)_{i\in I}$ una familia de subconjuntos de Y. Mostremos que

$$f^{-1}\left(\bigcup_{i\in I}B_i\right) = \bigcup_{i\in I}f^{-1}(B_i), \qquad f^{-1}\left(\bigcap_{i\in I}B_i\right) = \bigcap_{i\in I}f^{-1}(B_i).$$

• Sea $x \in f^{-1}(\bigcup_{i \in I} B_i)$, de manera que $f(x) \in \bigcup_{i \in I} B_i$ y, por lo tanto, existe $j \in I$ tal que $f(x) \in B_j$: tenemos entonces que $x \in f^{-1}(B_j) \subseteq \bigcup_{i \in I} f^{-1}(B_i)$. Esto muestra que $f^{-1}(\bigcup_{i \in I} B_i) \subseteq \bigcup_{i \in I} f^{-1}(B_i)$.

Por otro lado, sea $x \in \bigcup_{i \in I} f^{-1}(B_i)$. Existe entonces $j \in I$ tal que $x \in f^{-1}(B_j)$ y, por lo tanto, $f(x) \in B_j \subseteq \bigcup_{i \in I} B_i$: esto nos dice que $x \in f^{-1}(\bigcup_{i \in I} B_i)$. Concluimos así que $f^{-1}(\bigcup_{i \in I} B_i) \supseteq \bigcup_{i \in I} f^{-1}(B_i)$.

• Sea $x \in f^{-1}(\bigcap_{i \in I} B_i)$, de manera que $f(x) \in \bigcap_{i \in I} B_i$. Si $j \in I$, entonces $f(x) \in B_i$ y, por lo tanto, $x \in f^{-1}(B_j)$: esto nos dice que $x \in \bigcap_{i \in I} f^{-1}(B_i)$ y, en definitiva, que $f^{-1}(\bigcap_{i \in I} B_i) \subseteq \bigcap_{i \in I} f^{-1}(B_i)$.

Sea $x \in \bigcap_{i \in I} f^{-1}(B_i)$. Si $j \in I$, entonces $x \in f^{-1}(B_j)$ y, por lo tanto, $f(x) \in B_j$: vemos así que $f(x) \in \bigcap_{i \in I} B_i$ y, en consecuencia, que $x \in f^{-1}(\bigcap_{i \in I} B_i)$. Esto nos dice que $f^{-1}(\bigcap_{i \in I} B_i) \supseteq \bigcap_{i \in I} f^{-1}(B_i)$.

5. Una función $f: X \to Y$ es sobreyectiva si y solamente si para todo subconjunto B de Y se tiene que $f(f^{-1}(B)) = B$.

Solución. Mostremos primero la necesidad de la condición. Supongamos que la función f es sobreyectiva y sea B un subconjunto cualquiera de Y. Del Ejercicio 4 sabemos que $f(f^{-1}(B)) \subseteq B$. Por otro lado, si $y \in B$, porque la función f es sobreyectiva existe $x \in X$ tal que y = f(x) y, por lo tanto, $x \in f^{-1}(B)$ e $y = f(x) \in f(f^{-1}(B))$: esto muestra que también $B \subseteq f(f^{-1}(B))$.

Veamos ahora la suficiencia de la condición. Sea $f: X \to Y$ una función tal que para todo subconjunto B de Y se tiene que $f(f^{-1}(B)) = B$ y sea $y \in Y$. La hipótesis nos dice que $y \in \{y\} = f(f^{-1}(\{y\}))$, así que existe $x \in f^{-1}(\{y\})$ tal que y = f(x): por supuesto, esto nos dice, en particular, que $y \in f(X)$ y, en definitiva, que la función f es sobreyectiva. \square

- **6.** Sea $f: X \to Y$ una función. Las siguientes afirmaciones son equivalentes:
- (i) La función f es inyectiva.
- (ii) Cada vez que $A, B \subseteq X$ se tiene que $f(A \cap B) = f(A) \cap f(B)$.
- (iii) Para todo $A \subseteq X$ se tiene que $f^{-1}(f(A)) = A$.
- (iv) Cada ver que $A, B \subseteq X$ y $A \cap B = \emptyset$ se tiene que $f(A) \cap f(B) = \emptyset$.
- (v) Si A y B son subconjuntos de X tales que $A \supseteq B$, entonces $f(A \setminus B) = f(A) \setminus f(B)$.

Solución. $(i \Rightarrow ii)$ Supongamos que la función f es inyectiva y sean A y B dos subconjuntos de X. Del ejercicio **3** sabemos que $f(A \cap B) \subseteq f(A) \cap f(B)$. Por otro lado, sea $y \in f(A) \cap f(B)$. Como $y \in f(A)$, existe $a \in A$ tal que f(a) = y, y como $y \in f(B)$ existe $b \in B$ tal que f(b) = y: ahora bien, como f(a) = f(b) y la función f es inyectiva, tenemos que a = b y, por lo tanto, que $a \in A \cap B$ y, en consecuencia, que $y = f(a) \in f(A \cap B)$. Vemos así que $f(A) \cap f(B) \subseteq f(A \cap B)$ y, en definitiva, que $f(A) \cap f(B) = f(A \cap B)$, como queríamos.

 $(ii \Rightarrow iii)$ Supongamos que la función f satisface la condición (ii) y sea A un subconjunto de X. Si $a \in A$, entonces $f(a) \in f(A)$ y, por lo tanto, $a \in f^{-1}(f(A))$. Por otro lado, si $b \in f^{-1}(f(A))$, entonces $f(b) \in f(A)$ y existe $a \in A$ tal que f(b) = f(a). Tenemos entonces, de acuerdo a la hipótesis, que $f(\{a\} \cap \{b\}) = f(\{a\}) \cap f(\{b\}) = \{f(a)\} \neq \emptyset$ y, por lo tanto, tiene que ser $\{a\} \cap \{b\} \neq \emptyset$, esto es, tiene que ser $b = a \in A$. Vemos así que $f^{-1}(f(A)) = A$.

(iii \Rightarrow iv) Supongamos ahora que la función f satisface la condición (iii) y sean A y B dos subconjuntos de X tales que $A \cap B = \emptyset$. Si $x \in f(A) \cap f(B)$, entonces existen $a \in A$ y $b \in B$ tales que f(b) = x = f(a) y, usando la hipótesis, tenemos que $b \in f^{-1}(\{x\}) = f^{-1}(f(\{a\})) = \{a\}$, de manera que b = a y, por lo tanto, $a \in A \cap B = \emptyset$.

Esto es, por supuesto, absurdo, y esta contradicción muestra que debe ser $f(A) \cap f(B) = \emptyset$, como queremos.

 $(iv \Rightarrow v)$ Supongamos que la función f satisface la condición (iv) y sean A y B dos subconjuntos de X tales que $A \supseteq B$. Si $y \in f(A) \setminus f(B)$, entonces existe $a \in A$ tal que y = f(a) y, como $f(a) = y \notin f(B)$, es $a \notin B$, de manera que $a \in A \setminus B$: esto muestra que $y = f(a) \in f(A \setminus B)$ y, en definitiva, que $f(A) \setminus f(B) \subseteq f(A \setminus B)$.

Sea, por otro lado, $y \in f(A \setminus B)$. Como $A \setminus B \subseteq A$, es claro que $y \in f(A)$. Como $(A \setminus B) \cap B = \emptyset$, la hipótesis nos dice que $f(A \setminus B) \cap f(B) = \emptyset$: como y pertenece a $f(A \setminus B)$, tenemos que $y \in f(B)$. Vemos así que $y \in f(A) \setminus f(B)$. Con esto vemos que $f(A \setminus B) \subseteq f(A) \setminus f(B)$ y, juntando todo, que, de hecho, $f(A \setminus B) = f(A) \setminus f(B)$.

 $(v \Rightarrow i)$ Supongamos que la función f satisface la condición (v) y sean x y x' dos elementos de X tales que f(x) = f(x'). De acuerdo a la hipótesis, tenemos que $f(\{x,y\}\setminus\{x\}) = f(\{x,y\})\setminus f(\{y\}) = \emptyset$, así que tiene que ser $\{x,y\}\setminus\{x\} = \emptyset$ y, por lo tanto, x = y. Vemos así que la función f es inyectiva.

7. Sea *A* un conjunto. Si *S* es un subconjunto de *A*, entonces la *función característica* de *S* en *A* es la función $\chi_S: A \to \{0,1\}$ que sobre cada $a \in A$ toma el valor

$$\chi_S(a) = \begin{cases} 1 & \text{si } a \in S; \\ 0 & \text{si no.} \end{cases}$$

Muestre que si S y T son dos subconjuntos de A, entonces

$$\chi_{S\cap T}=\chi_S\cdot\chi_T, \qquad \chi_{A\setminus S}=\chi_A-\chi_S, \qquad \chi_S+\chi_T=\chi_{S\cup T}+\chi_{S\cap T}.$$

Solución. Sean S y T dos subconjuntos de A y sea $a \in A$.

- Si $a \in A \cap B$, entonces $\chi_{S \cap T}(a) = 1$ y, como $\chi_S(a) = 1$ y $\chi_T(a) = 1$, $\chi_S(a)\chi_T(a) = 1$. Si, en cambio, $a \notin S \cap T$, entonces o bien $a \notin S$, de manera que $\chi_S(a) = 0$, o bien $a \notin T$, de manera que $\chi_T(a) = 0$: en cualquiera de los dos casos tenemos que $\chi_S(a)\chi_T(a) = 0 = \chi_{S \cap T}(a)$.
- Si $a \in A \setminus S$, entonces $a \in A$ y $a \notin S$, así que $\chi_A(a) \chi_S(a) = 1 0 = 1 = \chi_{A \setminus S}(a)$. Si, en cambio, $a \notin A \setminus S$, es $a \in S$ y, por lo tanto, $\chi_A(a) \chi_S(a) = 1 1 = 0 = \chi_{A \setminus S}(a)$.
- Es $A \supseteq S \cup T \supseteq S \supseteq S \cap T$, así que basta considerar los siguientes cuatro casos:
 - ▶ Si $a \notin S \cup T$, entonces a tampoco pertenece a los conjuntos S, T, $S \cap T$ y $\chi_S(a) + \chi_T(a) = 0 + 0 = \chi_{S \cup T}(a) + \chi_{S \cap T}(a)$.
 - ▶ Si $a \in S \cup T$ pero $a \notin S$, entonces se tiene que $a \in T$ y $a \notin S \cap T$, así que $\chi_S(a) + \chi_T(a) = 0 + 1 = 1 + 0 = \chi_{S \cup T}(a) + \chi_{S \cap T}(a)$.
 - ▶ Si $a \in S$ pero $a \notin S \cap T$, entonces necesariamente tenemos que $a \in S \cup T$ y $a \notin T$, y $\chi_S(a) + \chi_T(a) = 1 + 0 = \chi_{S \cup T}(a) + \chi_{S \cap T}(a)$.
 - ► Finalmente, si $a \in S \cap T$, entonces a pertenece a los tres conjuntos S, S y $S \cup T$, así que $\chi_S(a) + \chi_T(a) = 1 + 1 = \chi_{S \cup T}(a) + \chi_{S \cap T}(a)$.
- **8.** Sea *A* un conjunto, sea \sim una relación de equivalencia en *A* y para cada $a \in A$ escribamos S_a a la clase de equivalencia de a en A, esto es, al conjunto $\{b \in A : a \sim b\}$.
- (a) Si a y b son elementos de A, entonces o bien $S_a = S_b$ o bien $S_a \cap S_b = \emptyset$.

- (b) $A = \bigcup_{a \in A} S_a$.
- †(c) Sea $\bar{A} = \{S_a : a \in A\}$ el conjunto de las clases de equivalencia. Si $f : A \to X$ es una función tal que cada vez que a y b son elementos de A se tiene que

$$a \sim b \implies f(a) = f(b),$$

entonces existe una y una única función $\bar{f}: \bar{A} \to X$ tal que

$$\bar{f}(S_a) = f(a)$$

para todo $a \in A$.

Solución. (a) Sean a y b dos elementos de A y supongamos que existe $c \in S_a \cap S_b$, de manera que $a \sim c$ y $b \sim c$. Si $x \in S_a$, entonces $a \sim x$ y, como $b \sim c \sim a \sim x$ y \sim es una relación de equivalencia, tenemos que $b \in x$, esto es, que $x \in S_b$: esto muestra que $S_a \subseteq S_b$. Por supuesto, un razonamiento simétrico intercambiando los roles de a y de b muestra que $S_b \subseteq S_a$, así que, en definitiva, tenemos que $S_a = S_b$, como queremos.

(b) Si $b \in A$, entonces $b \in S_b$ porque la relación \sim es reflexiva, y, por lo tanto, $b \in \bigcup_{a \in A} S_a$. Esto muestra que $A \subseteq \bigcup_{a \in A} S_a$ y, por lo tanto, que vale, de hecho, la igualdad.

(c) Sea $f:A\to X$ una función que satisface la condición del enunciado y consideremos el conjunto $\bar f=\{(S_a,f(a))\in \bar A\times X:a\in A\}$. Afirmamos que $\bar f$, que en principio es solamente una relación del conjunto $\bar A$ al conjunto X es una función $\bar A\to X$.

- Si $S \in \bar{A}$, entonces existe $a \in A$ tal que $S = S_a$ y, de acuerdo a la definición de \bar{f} , es $(S_a, f(a)) \in \bar{f}$.
- Supongamos que S ∈ Ā y x, y ∈ X son tales que los pares (S,x) y (S,y) pertenecen a f̄. En vista de la definición de f̄, existen entonces elementos a y b en A tales que (S,x) = (S_a,f(a)) y (S,y) = (S_b,f(b)). En particular, es S_a = S = S_b y, por lo tanto, a ~ b: la hipótesis que hicimos sobre f, entonces, nos dice que x = f(a) = f(b) = b.

Tenemos entonces, como dijimos, una función $\bar{f}: \bar{A} \to X$. Si $a \in A$, entonces el par $(S_a, f(a))$ está en \bar{f} y, por lo tanto, $\bar{f}(S_a) = f(a)$: esto significa que la función \bar{f} satisface la condición del enunciado.

Cardinalidad

9. Si *A* es un conjunto finito con *n* elementos, entonces el conjunto de partes $\mathcal{P}(A)$ tiene 2^n elementos.

Solución. Hagamos inducción con respecto a n. Cuando n=0, el conjunto A es vacío, y entonces $\#\mathcal{P}(A) = \#\{\emptyset\} = 1 = 2^0$, así que la afirmación vale en ese caso.

Supongamos entonces que n es un entero positivo y sea A un conjunto finito con n elementos. Como n es positivo, hay un elemento a en A. Sea $B = A \setminus \{a\}$, que es un conjunto finito de n-1 elementos, y consideremos los conjuntos $X = \{P \in \mathscr{P}(A) : a \notin P\}$ e $Y = \{P \in \mathscr{P}(A) : a \in P\}$. Es claro que $X = \mathscr{P}(B)$, así que la hipótesis inductiva nos dice que $\#X = 2^{n-1}$. Por otro lado, la función $\phi : P \in X \mapsto P \cup \{a\} \in Y$ es biyectiva, así que

П

#X = #Y. Finalmente, se tiene que $X \cap Y = \emptyset$ y $X \cup Y = \mathscr{P}(A)$, así que

$$\#\mathcal{P}(A) = \#X + \#Y = \#X + \#X = 2 \cdot 2^{n-1} = 2^n.$$

Esto completa la inducción y, por lo tanto, la prueba.

- **10.** Sea *A* un conjunto. Las siguientes afirmaciones son equivalentes:
- (i) A es infinito, esto es, posee un subconjunto equipotente con \mathbb{N} .
- (ii) Para todo $x \in A$ existe una función biyectiva $f: A \to A \setminus \{x\}$.
- (*iii*) Si $n \in \mathbb{N}$ y x_1, \ldots, x_n son n elementos distintos dos a dos de A, entonces hay una función biyectiva $f: A \to A \setminus \{x_1, \ldots, x_n\}$.
- **11.** Sean A y B dos conjuntos. Si A es numerable y existe una función sobreyectiva $A \rightarrow B$, entonces B es o finito o numerable.

Solución. Supongamos que A es numerable y que $f:A\to B$ es una función sobreyectiva. Como A es numerable, existe una función biyectiva $g:\mathbb{N}\to A$ y podemos considerar la función $h=f\circ g:\mathbb{N}\to B$, que es sobreyectiva.

Si $b \in B$, entonces $S(b) = \{i \in \mathbb{N} : h(i) = b\}$ es un subconjunto no vacío de \mathbb{N} , así que tiene sentido considerar su mínimo. Hay, por lo tanto, una función $\phi : B \to \mathbb{N}$ que para todo $b \in \mathbb{N}$ tiene $\phi(b) = \min S(b)$; en particular, para todo $b \in B$ se tiene que $h(\phi(b)) = b$. Esta función es inyectiva: si b y b' son elementos de b tales que $\phi(b) = \phi(b)$, entonces $\phi(b) \in S_{b'}$ y, por lo tanto, $b = h(\phi(b)) = h(\phi(b')) = b'$. Esto muestra que el cardinal de b es a lo sumo infinito numerable.

12. Muestre que los siguientes conjuntos son numerables:

$$\mathbb{Z}_{\leq -1}$$
, $\mathbb{Z}_{\geq -3}$, $\mathbb{Z} \times \mathbb{N}$, $\mathbb{Q} \times \mathbb{N}$, \mathbb{Q} , \mathbb{N}^m ,

con $m \in \mathbb{N}$.

Solución. Nos ocupamos de cada uno de los conjuntos por separado.

- La función $z \in \mathbb{Z}_{\leq -1} \mapsto -z\mathbb{N}$ es una biyección, que tiene a $n \in \mathbb{N} \mapsto -n \in \mathbb{Z}_{\leq -1}$ como inversa.
- La función $z \in \mathbb{Z}_{\geq -3} \mapsto z+4 \in \mathbb{N}$ es una biyección, que tiene a $n \in \mathbb{N} \mapsto n-4 \in \mathbb{Z}_{\geq -3}$ como inversa.
- La función $z \in 2\mathbb{N} \mapsto z/2 \in \mathbb{N}$ es una biyección, que tiene a $n \in \mathbb{N} \mapsto 2n \in 2\mathbb{N}$ como inversa.
- Es claro que \mathbb{N}^2 es un conjunto infinito y que la función $(n,m) \in \mathbb{N}^2 \mapsto 2^n 3^m \in \mathbb{N}$ es inyectiva: esto implica que el cardinal de \mathbb{N}^2 es infinito numerable.
- Es biyectiva la función

$$f: n \in \mathbb{N} \mapsto (-1)^n \frac{2n-1+(-1)^n}{4} \in \mathbb{Z}.$$

En efecto, si a y b son elementos de \mathbb{N}_0 tales que f(a) = f(b), entonces

$$(-1)^{a} \frac{2a-1+(-1)^{a}}{4} = (-1)^{b} \frac{2b-1+(-1)^{b}}{4}.$$
 (1)

Si a=0, entonces el miembro izquierdo de esta igualdad se anula, así que el derecho también, y es inmediato ver que debe ser b=0. Supongamos entonces que a>0. En ese caso, los numeradores de las dos fracciones que aparecen en la igualdad son estrictamente positivos, así que tomando valor absoluto y signo a ambos lados de la igualdad concluimos que $2a-1+(-1)^a=2b-1+(-1)^b$ y que $(-1)^a=(-1)^b$, y de estas dos igualdades, a su vez, que a=b. Esto muestra que la función es inyectiva. Por otro lado, si $z\in\mathbb{Z}$ es tal que $z\geq0$, entonces

$$f(2z) = (-1)^{2z} \frac{2(2z) - 1 + (-1)^{2z}}{4} = z,$$

mientras que si z < 0 es $-2z + 1 \in \mathbb{N}$

$$f(-2z+1) = (-1)^{-2z+1} \frac{2(-2z+1) - 1 + (-1)^{-2z+1}}{4} = -\frac{-4z + 2 - 1 - 1}{4} = z.$$

Esto muestra que la función f es sobreyectiva.

Es inmediato ahora ver que la función

$$(n,m) \in \mathbb{N}^2 \mapsto (f(n),m)) \in \mathbb{Z} \times \mathbb{N}$$

es una biyección y, como \mathbb{N}^2 es numerable, que $\mathbb{Z} \times \mathbb{N}$ es una numerable.

- La función $(z, n) \in \mathbb{Z} \times \mathbb{N} \mapsto \frac{z}{n} \in \mathbb{Q}$ es sobreyectiva y su dominio numerable, así que su codominio \mathbb{Q} , que es infinito, es numerable.
- Sea $m \in \mathbb{N}$. El conjunto \mathbb{N}^m es claramente infinito y si p_1, \ldots, p_m son m números primos distintos dos a dos la función

$$(n_1,\ldots,n_m)\in\mathbb{N}^m\mapsto p_1^{n_1}\cdots p_m^{n_m\in\mathbb{N}}$$

es inyectiva. Esto nos dice que \mathbb{N}^m es numerable.

- 13. (a) La unión de dos conjuntos contables es contable.
- (*b*) Si $(A_n)_{n\geq 1}$ es una sucesión de conjuntos contables, entonces $\bigcup_{n\geq 1}A_n$ también es contable.
- (c) Si A es un conjunto finito no vacío, entonces el cardinal de $\bigcup_{n>1} A^n$ es \aleph_0 .
- (d) Deduzca de la parte anterior que cualquiera sea el alfabeto utilizado, hay más números reales que palabras para nombrarlos. ¿Cuántos subconjuntos de Ŋ pueden ser definidos en un lenguaje fijo? ¿Cuántos hay en total?

Solución. (a) Sean A y B dos conjuntos contables y sean $f: \mathbb{N} \to A$ y $g: \mathbb{N} \to B$ funciones sobreyectivas. Consideremos la función $h: \mathbb{N} \to A \cup B$ tal que parea cada $n \in \mathbb{N}$ es

$$h(n) = \begin{cases} f(n/2) & \text{si } n \text{ es par;} \\ g((n+1)/2) & \text{si } n \text{ es impar.} \end{cases}$$

Esta función es sobreyectiva. En efecto, si $x \in A \cup B$ entonces o bien $x \in A$ o bien $x \in B$. En el primer caso existe $n \in \mathbb{N}$ tal que f(n) = x y es h(2n) = f(n) = x, mientras que en el segundo existe $m \in \mathbb{N}$ tal que g(m) = x y es $2m - 1 \in \mathbb{N}$ y h(2m - 1) = f(m) = x. Así, en cualquier caso es $x \in f(\mathbb{N})$.

(b) Sea $(A_n)_{n\geq 1}$ una sucesión de conjuntos contables y para cada $n\in\mathbb{N}$ sea $f_n:\mathbb{N}\to A_n$ una función sobreyectiva. Consideremos la función

$$f:(n,m)\in\mathbb{N}\times\mathbb{N}\mapsto f_n(m)\in\bigcup_{n\geq 1}A_n.$$

Esta función es sobreyectiva: si $a \in \bigcup_{n \ge 1} A_n$, entonces existe $n \in \mathbb{N}$ tal que $a \in A_n$ y, como f_n es sobreyectiva, existe $m \in \mathbb{N}$ tal que $a = f_n(m)$, así que a = f(n, m).

(c) Si A es un conjunto finito, entonces para todo $n \in \mathbb{N}$ el conjunto A^n es finito. Se sigue de lo que ya hicimos que la unión $\bigcup_{n\geq 1}A^n$ es contable. Por otro lado, como A no es vacío, existe $a\in A$ y podemos considerar la función

$$n \in \mathbb{N} \mapsto (\underbrace{a, \dots, a}_{n \text{ repeticiones}}) \in \bigcup_{n \ge 1} A^n,$$

que es claramente inyectiva: esto deja en claro que el conjunto $\bigcup_{n>1} A^n$ es infinito.

- **14.** Sean *A* y *B* dos conjuntos disjuntos tales que *A* es infinito y *B* numerable.
- (a) Hay una biyección entre $A y A \cup B$.
- (b) Si *A* no es numerable y $B \subseteq A$, entonces hay una biyección entre $A y A \setminus B$.
- (c) ¿Es numerable el conjunto $\mathbb{R} \setminus \mathbb{Q}$?

Solución. (a) Como A es infinito, hay una función inyectiva $f: \mathbb{N} \to A$. Sea $C = f(\mathbb{N})$ y $D = A \setminus C$. Como C y $B \cup C$ son conjuntos numerables, sabemos que hay una biyección $\phi: C \to B \cup C$ y podemos entonces considerar la función $\Phi: A \to A \cup B$ tal que

$$\Phi(x) = \begin{cases} x & \text{si } x \in D; \\ \phi(x) & \text{si } x \in C. \end{cases}$$

Mostremos que se trata de una biyección:

- Sea $y \in A \cup B$. Como $A \cup B = B \cup C \cup D$, tenemos que o bien $x \in D$ o bien $x \in B \cup C$. En el primer caso, $y \in A$ y $\Phi(y) = y$ porque $y \in D$, mientras que en el segundo sabemos que existe $x \in C \subseteq A$ tal que $\phi(x) = y$ y, por lo tanto, $\Phi(x) = y$.
- Sean x y x' dos elementos de A tales que $\Phi(x) = \Phi(x')$.
 - \triangleright Si $x \in D$ y $x' \in D$, entonces $x = \Phi(x) = \Phi(x') = x'$.
 - ▶ Si $x \in C$ y $x' \in D$, entonces $B \cup C \ni \phi(x) = \Phi(x) = \Phi(x') = x' \in D$, de manera que $(B \cup C) \cap D \neq \emptyset$: esto es absurdo.
 - ▶ Si $x \in D$ y $x' \in C$, entonces $B \cup C \ni \phi(x') = \Phi(x') = \Phi(x) = x \in D$, así que otra vez $(B \cup C) \cap D \neq \emptyset$.
 - ▶ Finalmente, si $x \in C$ y $x' \in C$, entonces $\phi(x) = \Phi(x) = \Phi(x') = \phi(x)$ y es x = x' porque la función ϕ es inyectiva.
- (*b*) Supongamos que *A* no es numerable y que $B \subseteq A$. El conjunto $A \setminus B$ es infinito —si fuera finito entonces *A*, que es la unión de *B*, que es numerable, con $A \setminus B$, sería numerable, y no lo es— así que hay un subconjunto *C* de $A \setminus B$ que es numerable. La unión $B \cup C$ es numerable, así que hay una biyección $\phi: C \to B \cup C$, y podemos considerar la función

 $\Phi: A \setminus B \to A$ tal que para cada $x \in A \setminus B$ es

$$\Phi(x) = \begin{cases} x & \text{si } x \notin C; \\ \phi(x) & \text{si } x \in C. \end{cases}$$

Es fácil ver que se trata de una biyección.

- (c) Si $\mathbb{R} \setminus \mathbb{Q}$ fuese numerable, tendríamos que $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$ es numerable, por ser unión de dos conjuntos numerables, y no lo es.
- **15.** El conjunto $\mathbb{Q}[X]$ de los polinomios con coeficientes racionales es numerable.

Solución. Para cada $n \in \mathbb{N}$ escribamos $\mathbb{Q}[X]_{\leq n}$ al subconjunto de $\mathbb{Q}[X]$ de los polinomios f tales que o f = 0 o deg $f \leq n$. Es claro que para todo $n \in \mathbb{N}$ la función

$$(a_0,\ldots,a_n)\in\mathbb{Q}^{n+1}\mapsto\sum_{i=0}^na_iX^i\in\mathbb{Q}[X]_{\leq n}$$

es sobreyectiva, así que $\mathbb{Q}[X]_{\leq n}$ es numerable. Como $\mathbb{Q}[X] = \bigcup_{n \geq 1} \mathbb{Q}[X]_{\leq n}$, esto implica que $\mathbb{Q}[X]$ es numerable. \square

16. Un número complejo $z \in \mathbb{C}$ es *algebraico* si existen enteros $a_0, \ldots, a_n \in \mathbb{Z}$, no todos nulos, tales que

$$a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + a_n z^n = 0.$$

- (a) El conjunto de los números algebraicos es numerable.
- (b) Existen números reales que no son algebraicos.

Llamamos a estos últimos números números trascendentes.

Solución. (a) Si $f \in \mathbb{Q}[X]$ no es nulo, el conjunto $S(f) = \{z \in \mathbb{C} : f(z) = 0\}$ es finito —de hecho, tiene a lo sumo $\deg(f)$ elementos. El conjunto \mathscr{A} de los números algebraicos es igual a

$$\bigcup_{f\in\mathbb{Q}[X]\setminus\{0\}}S(f),$$

una unión de una familia numerable de conjuntos numerables, así que ${\mathscr A}$ es numerable.

- (b) Si todos los números reales fueran algebraicos, tendríamos que $\mathbb{R} \subseteq \mathscr{A}$ y, por lo tanto, que \mathbb{R} es numerable: esto es absurdo.
- 17. Determine el cardinal de los siguientes conjuntos:
- (a) $X_1 = \{[a, b] : a, b \in \mathbb{Q}, a \le b\};$
- (b) $X_2 = \{[a, b] : a, b \in \mathbb{R}, a \le b\};$
- (c) $X_3 = \{(x, y) \in \mathbb{R}^2 : 2x + 2y \ge 7\};$
- (*d*) $X_4 = \mathbb{R}_{>0}$.

Solución. (a) La función $(a,b,c) \in \mathbb{Q} \times \mathbb{N}_0 \times \mathbb{N} \mapsto [a,a+b/c] \in X_1$ es sobreyectiva y la función $n \in \mathbb{N} \mapsto [n,n+1] \in X_1$ es inyectiva así que X_1 es numerable.

- (b) La función $a \in \mathbb{R} \mapsto [a,a+1] \in X_2$ es inyectiva y la función $[a,b] \in X_2 \in (a,b) \in \mathbb{R}^2$ es inyectiva así que, como $\mathbb{R} \sim \mathbb{R}^2$, es $X_2 \sim \mathbb{R}$.
- (c) La función $t \in \mathbb{R} \mapsto (t, 4-t) \in X_3$ es inyectiva y $X_3 \subseteq \mathbb{R}^2$. Como $\mathbb{R} \sim \mathbb{R}^2$, se sigue de esto que $X_3 \sim \mathbb{R}$.
- (d) La función $t \in \mathbb{R} \mapsto e^t \in X_4$ es una biyección, con inversa $s \in X_4 \mapsto \ln s \in \mathbb{R}$, así que $X_4 \sim \mathbb{R}$.
- **18.** ¿Qué cardinal puede tener un conjunto de intervalos abiertos de \mathbb{R} que son disjuntos dos a dos?

Solución. Sea \mathscr{I} una familia de intervalos abiertos no vacíos de \mathbb{R} que son disjuntos dos a dos. Si $I \in \mathscr{I}$, entonces sabemos que $I \cap \mathbb{Q} \neq \emptyset$, Sea $\phi : \mathbb{Q} \to \mathbb{N}$ una biyección y consideremos la función $\Phi : \mathscr{I} \to \mathbb{N}$ tal que para cada $I \in \mathscr{I}$ es

$$\Phi(I) = \min\{i \in \mathbb{N} : \phi(i) \in I\}.$$

Observemos que esto tiene sentido: si $I \in \mathscr{I}$, entonces $\{i \in \mathbb{N} : \phi(i) \in I\}$ es un subconjunto no vacío de \mathbb{N} y tiene, por lo tanto, mínimo. La función Φ es inyectiva: si I y J son dos elementos de \mathscr{I} tales que $\Phi(I) = \Phi(J)$, entonces tenemos que $I \ni \phi(\Phi(I)) = \phi(\Phi(J)) \in J$, así que $I \cap J \neq \emptyset$, así que I = J, porque los elementos de \mathscr{I} son dos a dos disjuntos.

Como la función Φ es inyectiva, vemos que $\#\mathscr{I} \leq \aleph_0$. Por otro lado, si Q es un subconjunto de \mathbb{N} , el conjunto $\{(n,n+1):n\in Q\}$ es claramente una familia de intervalos abiertos de \mathbb{R} disjuntos dos a dos de cardinal igual al de Q.

Concluimos de esta forma que un cardinal es el cardinal de una familia de intervalos abiertos disjuntos dos a dos si y solamente si es a lo sumo numerable. \Box

- **19.** Si *a*, *b* y *c* son cardinales, entonces
- (a) $a \cdot (b+c) = a \cdot b + a \cdot c$;
- (b) $a^{b+c} = a^b \cdot a^c$;
- (c) $(a^b)^c = a^{b \cdot c}$;

Si además $b \le c$, entonces

- (d) $a^b \le a^c \text{ si } a \ne 0$;
- (e) $b^a \leq c^a$.

Solución. Sean A, B y C conjuntos de cardinales a, b y c, respectivamente.

- (a) Supongamos que B y C son disjuntos, de manera que $b+c=\#(B\cup C)$. En ese caso los conjuntos $A\times B$ y $A\times C$ son también disjuntos y es evidente que $A\times (B\cup C)=A\times B\cup A\times C$. Se sigue de esto que $a\cdot (b+c)=\#((A\times (B\times C))=\#(A\times B\cup A\times C)=a\cdot b+a\cdot c$.
- (b) Supongamos que B y C son disjuntos, como antes, y sea $F:A^{B\cup C}\to A^B\times A^C$ la función tal que $F(f)=(f|_B,f|_C)$ para cada $f\in A^{B\cup C}$. Esta función es biyectiva y, por lo tanto, tenemos que $a^{b+c}=\#(A^{B\cup C})=\#(A^B\times A^B)=a^b\cdot a^c$. Probémoslo.
 - Sean f, $g \in A^{B \cup C}$ tales que F(f) = F(g), de manera que $(f|_B, f|_C) = (g|_B, g|_C)$. Si $x \in B \cup C$, entonces o $x \in B$ o $x \in C$: en el primer caso tenemos que

$$f(x) = f|_{B}(x) = g|_{B}(x) = g(x)$$

y en el segundo que

$$f(x) = f|_C(x) = g|_C(x) = g(x).$$

En cualquier caso, entonces, es f(x) = g(x) y, por lo tanto, f = g. Vemos así que la función F es inyectiva.

• Sea ahora $(k,l) \in A^B \times A^C$ y consideremos la función $f \in A^{B \cup C}$ tal que para cada $x \in B \cup C$ es

$$f(x) = \begin{cases} k(x) & \text{si } x \in B; \\ l(x) & \text{si } x \in C. \end{cases}$$

Es claro que F(f) = (k, l), así que la función F es sobreyectiva.

- (c) Consideremos
- la función $F:(A^B)^C \to A^{B \times C}$ tal que para cada $h \in (A^B)^C$ y cada $(b,c) \in B \times C$ es

$$F(h)(b,c) = h(c)(b),$$

• y la función $G: A^{B \times C} \to (A^B)^C$ tal que para cada $k \in A^{B \times C}$, cada $c \in C$ y cada $b \in B$ es

$$G(k)(c)(b) = k(b,c).$$

Mostremos que se trata de funciones inversas. Si $k \in A^{B \times C}$, para cada $(b,c) \in B \times C$, entonces

$$F(G(k))(b,c) = G(k)(c)(b) = k(b,c),$$

así que F(G(k)) = k. Por otro lado, si $g \in (A^B)^C$, para cada $c \in C$ se tiene que

$$G(F(g))(c)(b) = F(g)(b,c) = g(c)(b)$$

para cada $b \in B$, de manera que

$$G(F(g))(c) = g(c)$$

y, por lo tanto G(F(g)) = g.

Como F es una biyección, tenemos que $(a^b)^c = \#((A^B)^C) = \#(A^{B \times C}) = a^{b \cdot c}$.

(d) Supongamos que $b \le c$ y que $a \ne 0$, de manera que hay una función inyectiva $f: B \to C$ y $A \ne \emptyset$. Sea x un elemento de A y sea $F: h \in A^C \mapsto h \circ f \in A^B$. Esta función F es sobreyectiva. En efecto, si $g \in A^B$, entonces podemos considerar la función $k \in A^C$ tal que

$$h(c) = \begin{cases} g(b) & \text{si } c \in f(B) \text{ y } b \in B \text{ es tal que } f(b) = c; \\ x & \text{si } c \notin f(B), \end{cases}$$

y se tiene que F(h)(b) = h(f(b)) = g(b) para todo $b \in B$ y, por lo tanto, que F(h) = g. Como la función F es sobreyectiva, tenemos que $a^c = \#(A^C) \ge \#(A^B) = a^b$.

Observemos que si $a=0,\ b=0$ y c=1 la desigualdad no se cumple: el conjunto \emptyset^{\emptyset} tiene exactamente un elemento, la función vacía, mientras que $\emptyset^{\{1\}}=\emptyset$, así que $\#(\emptyset^{\emptyset}) \not \leq \#(\emptyset^{\{1\}})$.

(e) Supongamos otra vez que $b \le c$, de manera que hay una función inyectiva $f: B \to C$. Podemos ahora considerar la función $F: h \in B^A \mapsto f \circ h \in C^A$, que también inyectiva: en efecto, si h_1 y h_2 son dos elementos de B^S tales que $F(h_1) = F(h_2)$, entonces para cada $b \in B$ es $f(h_1(b)) = F(h_1)(b) = F(h_2)(b) = f(h_2(b))$ y, como f es inyectiva, $h_1(b) = h_2(b)$: esto muestra que, de hecho, $h_1 = h_2$. Concluimos así que $b^a = \#(B^A) \le \#(C^A) = c^a$, como queremos.

20. Sea X un conjunto de números reales positivos. Si existe $C \in \mathbb{R}$ tal que cada vez que $n \in \mathbb{N}$ y x_1, \ldots, x_n son elementos distintos dos a dos de X se tiene que $x_1 + \cdots + x_n \leq C$, entonces X es numerable.

Solución. Supongamos que existe una constante C con la propiedad descripta en el enunciado y, para llegar a un absurdo, que X no es numerable. Como

$$X\subseteq (0,\infty)=\bigcup_{n,m\in\mathbb{N}}\left[\frac{1}{n},m\right],$$

es claro que

$$X = \bigcup_{n,m \in \mathbb{N}} \left(\left[\frac{1}{n}, m \right] \cap X \right)$$

y, por lo tanto, existen n y m en $\mathbb N$ tales que $[\frac{1}{n},m]\cap X$ es infinito: si no fuese ese el caso, todos los conjuntos que aparecen en la unión serían finitos y X numerable, contra nuestra hipótesis. Ahora bien, como la intersección $[\frac{1}{n},m]\cap X$ es infinita, hay una función inyectiva $f:\mathbb N\to [\frac{1}{n},m]\cap X$ y, por otro lado, existe $k\in\mathbb N$ tal que k/n>C. Como $f(i)\geq \frac{1}{n}$ para cada $i\in [n]$ y en vista de la forma en que elegimos C, tenemos que

$$C < \frac{k}{n} \le f(1) + \dots + f(k) \le C.$$

Esto es, por supuesto, imposible.

21. Si $f : \mathbb{R} \to \mathbb{R}$ es una función monótona, entonces

 $\#\{x \in \mathbb{R} : f \text{ no es continua en } x\} \leq \aleph_0.$

Solución. Sea $f : \mathbb{R} \to \mathbb{R}$ una función no decreciente y sea D(f) el conjunto de los puntos de \mathbb{R} donde f es discontinua. Si $x \in \mathbb{R}$, entonces los conjuntos no vacíos

$$L_x = \{ f(y) : y \in \mathbb{R}, y < x \},$$
 $R_x = \{ f(z) : z \in \mathbb{R}, z > x \}$

son acotados superior e inferiormente por f(x), respectivamente, así que podemos considerar los números

$$l_x = \sup L_x,$$
 $r_x = \inf R_x.$

Es claro que $l_x \le f(x) \le g(x)$. Mostremos que

$$l_x = r_x \implies f$$
 es continua en x . (2)

Supongamos para ello que $l_x = r_x$, de manera que en particular, $f(x) = l_x = r_x$, y sea $\varepsilon > 0$. Como $f(x) = \sup L_x$, existe $y \in \mathbb{R}$ tal que y < x y $f(x) - \varepsilon < f(y) \le f(x)$;

como $f(x) = \inf R_x$, existe $z \in \mathbb{R}$ tal que z > x y $f(x) \le f(z) < f(x) + \varepsilon$. Pongamos $\delta := \min\{x - y, z - x\}$ y sea $t \in (x - \delta, x + \delta)$ tal que $t \ne x$. Si $t \in (x - \delta, x)$, entonces $y = x - (x - y) \le x - \delta < t < x$ y, como f es no decreciente, $l_x - \varepsilon < f(y) \le f(t) \le f(x)$. Si, en cambio, $t \in (x, x + \delta)$, entonces $x < t < x + \delta \le x + (z - x) = z$ y, como f es creciente, $f(x) \le f(t) \le f(z) \le f(x) + \varepsilon$. Vemos así que en cualquiera de los dos casos tenemos que $f(t) \in (f(x) - \varepsilon, f(x) + \varepsilon)$. Podemos concluir de todo esto que f es continua en f(t).

Se sigue de (2) y de que $l_x \le r_x$ para todo $x \in \mathbb{R}$ que

$$x \in D(f) \Longrightarrow l_x < r_x$$
.

En vista de esto, para cada $x \in D(f)$ podemos considerar el intervalo abierto $I_x = (l_x, r_x)$. Afirmamos ahora que

$$x, y \in D(f), x \neq y \implies I_x \cap I_y = \emptyset.$$

Para verificarlo, sean x e y dos elementos distintos de D(f) y supongamos, sin pérdida de generalidad, que x < y. Para ver que $I_x \cap I_y = \emptyset$ es suficiente con que mostremos que $r_x \le l_y$. Si no fuera ese el caso, tendríamos que $l_y < r_y$ y, si ponemos $z = \frac{1}{2}(x+y)$, que x < z < y, de manera que $r_x \le f(z) \le l_y$, porque $z \in R(x)$ y $z \in L(y)$: juntando todo tendríamos que $r_x \le f(z) \le l_y < r_x$, lo que es absurdo.

Con todo esto podemos concluir que $\mathscr{I} = \{I_x : x \in D(f)\}$ es una familia de intervalos abiertos de \mathbb{R} que son disjuntos dos a dos y que la función $x \in D(f) \to I_x \in \mathscr{I}$ es una biyección. De acuerdo al Ejercicio **18**, entonces, el conjunto D(f) es contable.

22. Si *A* es un conjunto numerable, entonces el conjunto de las partes finitas de *A*, esto es, el conjunto de los subconjuntos finitos de *A*, es él también numerable.

Solución. Sea A un conjunto numerable. Si $n \in \mathbb{N}$, entonces el conjunto A^n es numerable y, por lo tanto, la imagen de la función

$$f_n:(a_1,\ldots,a_n)\in A^n\mapsto \{a_1,\ldots,a_n\}\in \mathscr{P}(A)$$

es contable. Se sigue de esto que el conjunto

$$F:=\{\varnothing\}\cup\bigcup_{n\in\mathbb{N}}f_n(A^n)$$

es contable. Ahora bien, si B es un subconjunto finito y no vacío de A y $\phi: [\![k]\!] \to B$ es una biyección, tenemos que

$$B = f_k(\phi(1), \dots, \phi(k)) \in f_k(A^k) \subseteq F.$$

Como además $\emptyset \in F$, esto muestra que todo subconjunto finito de A es un elemento de F y, por lo tanto, que el conjunto de las partes finitas de A es contable. Por otro lado, como A es numerable, hay una biyección $h: \mathbb{N} \to A$ y para cada $n \in \mathbb{N}$ el conjunto $h(\llbracket n \rrbracket)$ es un subconjunto finito de A de exactamente n elementos: esto muestra que el conjunto de partes finitas de A es infinito, ya que contiene a $\{h(\llbracket n \rrbracket): n \in \mathbb{N}\}$.

23. Determine el cardinal de cada uno de los siguientes conjuntos de sucesiones:

- (a) $X_1 = \{(a_n) : a_n \in \mathbb{N} \text{ para todo } n \in \mathbb{N}\};$
- (b) $X_2 = \{(a_n) : a_n \in \mathbb{N} \text{ y } a_n \leq a_{n+1} \text{ para todo } n \in \mathbb{N}\};$
- (c) $X_3 = \{(a_n) : a_n \in \mathbb{N} \text{ y } a_n \ge a_{n+1} \text{ para todo } n \in \mathbb{N}\};$
- (d) $X_4 = \{(a_n) : a_n \in \mathbb{Q} \text{ para todo } n \in \mathbb{N} \text{ y } \lim_{n \to \infty} a_n = 0\};$
- (e) $X_5 = \{(a_n) : a_n \in \mathbb{Q} \text{ para todo } n \in \mathbb{N} \text{ y } (a_n) \text{ es periódica}\};$
- (f) $X_6(m) = \{(a_n) : a_n \in \mathbb{N} \text{ y } 1 \le a_n \le m \text{ para todo } n \in \mathbb{N}\}, \text{ con } m \in \mathbb{N}.$

Solución. (a) El conjunto $X_1=\mathbb{N}^\mathbb{N}$ tiene cardinal $\aleph_0^{\aleph_0}$. Por un lado, es $\aleph_0^{\aleph_0}\geq 2^{\aleph_0}=\mathfrak{c}$. Por otro, de que $\aleph_0\leq 2^{\aleph_0}$ se deduce que $\aleph_0^{\aleph_0}\leq (2^{\aleph_0})^{\aleph_0}=2^{\aleph_0\cdot\aleph_0}=2^{\aleph_0\cdot\aleph_0}=\mathfrak{c}$. Las dos desigualdad implican que, de hecho, $\#X_1=\aleph_0^{\aleph_0}=\mathfrak{c}$.

- (b) Hay una función $f: X_1 \to X_2$ tal que cada sucesión $a=(a_n)_{n\geq 1}\in X_1$ tiene por imagen f(a) a la sucesión $(b_n)_{n\geq 1}$ con $b_1=a_1$ y $b_n=b_{n-1}+a_n-1$ para cada $n\geq 2$. Como esta función es biyectiva, tenemos que $\#X_2=\mathfrak{c}$.
- (c) Para cada $k \in \mathbb{N}$ sea A_k el subconjunto de X_3 de las sucesiones $a = (a_n)_{n \ge 1}$ tales que $a_n = a_k$ para todo $n \in \mathbb{N}$ con $n \ge k$. Se tiene que

$$X_3 = \bigcup_{k>1} A_k. \tag{3}$$

En efecto, un elemento $a=(a_n)_{n\geq 1}$ de X_3 es una sucesión decreciente de elementos de \mathbb{N} , así que existe $v\in \mathbb{N}$ tal que $a_i=a_v$ para todo $i\geq v$ y, por lo tanto, es $a\in A_v$.

Sea ahora $k \in \mathbb{N}$ y consideremos la función $\phi_k : \mathbb{N}^k \to A_k$ tal que cada elemento $q = (q_1, \ldots, q_k)$ de \mathbb{N}^k tiene por imagen $\phi_k(q)$ a la sucesión $(a_n)_{n \geq 1}$ con $a_i = q_i$ si $i \in \llbracket k \rrbracket$ y $a_i = q_k$ si i > k. Como esta función ϕ_k es biyectiva, vemos que A_k es numerable. En vista de la igualdad (3), entonces, podemos concluir que $\#X_3 = \aleph_0$.

- (d) Es $X_4 \subseteq \mathbb{Q}^{\mathbb{N}} \sim \mathbb{N}^{\mathbb{N}}$, así que $\#X_4 \leq \#(\mathbb{N}^{\mathbb{N}}) = \mathfrak{c}$. Por otro lado, podemos considerar la función $\psi: \{0,1\}^{\mathbb{N}} \to X_4$ tal que para cada $a = (x_n)_{n \geq 1} \in \{0,1\}^{\mathbb{N}}$ la imagen $\psi(a)$ es la sucesión $(x_n/n)_{n \geq 1}$: notemos que es claro que esta última sucesión es una sucesión de números racionales que converge a 0, así que se trata de un elemento de X_4 . Es inmediato verificar que la función ψ es inyectiva, así que $\mathfrak{c} = \#(\{0,1\}^{\mathbb{N}}) \leq \#X_4$. Juntando esto con la desigualdad anterior, entonces, concluimos que $\#X_4 = \mathfrak{c}$.
- (e) Para cada $k \in \mathbb{N}$ sea P_k el subconjunto de X_5 de las sucesiones $(a_n)_{n\geq 1}$ tales que $a_{n+k}=a_n$ para todo $n\in \mathbb{N}$. La definición de X_5 hace evidente que $X_5=\bigcup_{n\geq 1}P_k$. Ahora bien, si $k\in \mathbb{N}$, entonces la función $(a_n)_{n\geq 1}\in A_k\mapsto (a_1,\ldots,a_k)\in \mathbb{N}^k$ es claramente biyectiva, así que $\#A_k=\aleph_0$. Podemos concluir, entonces, que $\#X_5=\aleph_0$.
- (f) El conjunto $X_6(1)$ tiene exactamente un elemento, a saber, la sucesión constante $(1,1,1\ldots)$, así que, por supuesto, $\#X_6(1)=1$. Por otro lado, sabemos que $X_6(2)=\mathfrak{c}$. Si $m\geq 2$, tenemos que $X_6(2)\subseteq X_6(m)\subseteq \mathbb{N}^\mathbb{N}$, así que $c=\#X_6(2)\leq \#X_6(m)\leq \#(\mathbb{N}^\mathbb{N})=\mathfrak{c}$ y, por lo tanto, $\#X_6(m)=\mathfrak{c}$.
- **24.** Muestre que para todo $n \in \mathbb{N}_{\geq 2}$ es $n^{\aleph_0} = \aleph_0^{\aleph_0} = c^{\aleph_0} = c$.

Solución. Probamos arriba que $\aleph_0^{\aleph_0} = \#(\mathbb{N}^{\mathbb{N}}) = \mathfrak{c}$ y sabemos que $2^{\aleph_0} = \mathfrak{c}$. Si $n \in \mathbb{N}$ es tal que $n \geq 2$, entonces $[\![2]\!]^{\mathbb{N}} \subseteq [\![n]\!]^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}}$, así que $\mathfrak{c} = 2^{\aleph_0} = \#([\![2]\!]^{\mathbb{N}}) \leq \#([\![n]\!]^{\mathbb{N}}) \leq \#(\mathbb{N}^{\mathbb{N}}) = \mathfrak{c}$ y, por lo tanto, $n^{\aleph_0} = \#([\![n]\!]^{\mathbb{N}}) = \mathfrak{c}$. Finalmente, es $\mathfrak{c}^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0} = \mathfrak{c}$.

25. Una unión numerable de conjuntos de cardinal c tiene ella misma cardinal c.

Solución. Sea $(A_n)_{n\geq 1}$ una sucesión de conjuntos tales que para todo $n\in\mathbb{N}$ es $\#A_n=\mathfrak{c}$, de manera que existe una biyección $\phi_n:\mathbb{R}\to A_n$. La función

$$\phi:(n,t)\in\mathbb{N}\times\mathbb{R}\mapsto\phi_n(t)\in A:=\bigcup_{n\geq 1}A_n$$

es claramente sobreyectiva, así que $\mathfrak{c} = \#(\mathbb{N} \times \mathbb{R}) \ge \#A$. Por otro lado, $\#A \ge \#A_1 = \mathfrak{c}$, así que, en definitiva, es $\#A = \mathfrak{c}$, como queremos.

26. Consideremos los siguientes conjuntos de funciones

$$F(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \}, \qquad F(\mathbb{Q}) = \{ f : \mathbb{Q} \to \mathbb{R} \},$$

$$C(\mathbb{R}) = \{ f \in F(\mathbb{R}) : f \text{ es continua} \}, \qquad C(\mathbb{Q}) = \{ f \in F(\mathbb{Q}) : f \text{ es continua} \}.$$

- (a) Muestre que $\#(F(\mathbb{R})) > \mathfrak{c}$ y determine los cardinales de $F(\mathbb{Q})$ y de $C(\mathbb{Q})$.
- (b) Pruebe que la función $\phi: f \in C(\mathbb{R}) \mapsto f|_{\mathbb{Q}} \in C(\mathbb{Q})$ es inyectiva. ¿Qué significa esto?
- (c) Determine el cardinal de $C(\mathbb{R})$.

Solución. (a) Supongamos, para llegar a un absurdo, que $\#(F(\mathbb{R})) \leq \mathfrak{c}$, de manera que existe una función sobreyectiva $\phi: \mathbb{R} \to F(\mathbb{R})$. Podemos considerar entonces la función $f: t \in \mathbb{R} \mapsto \phi(t)(t) + 1 \in \mathbb{R}$, que es un elemento de $F(\mathbb{R})$: hay entonces un número $s \in \mathbb{R}$ tal que $\phi(s) = f$. Pero en ese caso tenemos que $\phi(s)(s) = f(s) = \phi(s)(s) + 1$, lo que es imposible. Esto prueba la primera afirmación del enunciado.

Claramente $F(\mathbb{Q}) = \mathbb{R}^{\mathbb{Q}}$, así que $\#(F(\mathbb{Q})) = \mathfrak{c}^{\aleph_0} = \mathfrak{c}$, como vimos en el Ejercicio **24**. Por otro lado, es claro que $C(\mathbb{Q}) \subseteq F(\mathbb{Q})$, así que $\#(C(\mathbb{Q})) \leq \#(F(\mathbb{Q})) = \mathfrak{c}$ y, como $C(\mathbb{Q})$ contiene al subconjunto de las funciones $\mathbb{Q} \to \mathbb{R}$ que son constantes, que evidentemente tiene cardinal \mathfrak{c} , tenemos que $\#(C(\mathbb{Q})) = \mathfrak{c}$.

(b) y (c) Supongamos que f y g son dos elementos de $C(\mathbb{R})$ tales que $f|_{\mathbb{Q}} = g|_{\mathbb{Q}}$. Si $x \in \mathbb{R}$, sabemos que existe una sucesión $(q_n)_{n \geq 1}$ de números racionales tal que $\lim_{n \to \infty} q_n = x$ y entonces, como f y g son continuas, tenemos que

$$f(x) = \lim_{n \to \infty} f(q_n) = \lim_{n \to \infty} g(q_n) = g(x).$$

Vemos así que f=g. Esto muestra que la función ϕ del enunciado es inyectiva y esto implica, en particular, que $\#(C(\mathbb{R})) \leq \#(C(\mathbb{Q})) = \mathfrak{c}$. Como $C(\mathbb{R})$ contiene al subconjunto de las funciones $\mathbb{R} \to \mathbb{R}$ que son constantes y este subconjunto claramente tiene cardinal \mathfrak{c} , podemos concluir con todo esto que $\#(C(\mathbb{R})) = \mathfrak{c}$.

27. El conjunto de las partes numerables de \mathbb{R} tiene cardinal \mathfrak{c} .

Solución. Sea P el conjunto de las partes numerables de \mathbb{R} . Como $\{\{t\} \cup \mathbb{N} : t \in (0,1)\}$ es un subconjunto de P que está en biyección con el intervalo (0,1), es claro que $\#P \ge \mathfrak{c}$. Por otro lado, la función $\phi: f \in \mathbb{R}^{\mathbb{N}} \mapsto f(\mathbb{N}) \in \mathscr{P}(\mathbb{R})$ que a cada función $\mathbb{N} \to \mathbb{R}$ le asigna su imagen claramente tiene como imagen al conjunto de partes contables de \mathbb{R} , que contiene a P. Como $\#(\mathbb{R}^{\mathbb{N}}) = \mathfrak{c}$, vemos que $\#P \le \mathfrak{c}$ y, en definitiva, que vale la igualdad.