3. Linkage Disequilibrium (LD)

Iván Galván-Femenía 1, Jan Graffelman 1

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

November 17, 2016 ivan.galvan@upc.edu

Master in Innovation and Research in Informatics (MIRI)

Masters in Computer Science and Engineering

- Introduction to LD
- 2 LD statistics
- Stimation of LD
- 4 Computer exercises

0

- LD: an association between the alleles at different sites in the genome.
- Maybe a consequence of the physical closeness of the sites, but not necessarily so.
- LD is an important concept in disease-marker association studies.

Linkage Disequilibrium (LD) and Hardy-Weinberg equilibrium (HWE)

- Both concepts refer to association between alleles
- HWE refers to association between alleles at the same locus (within one marker)
- LD refers to association between alleles at different loci (between markers)

- D (deviation from independence)
- Lewontin's $D' = \frac{D}{D_{max}}$
- R²
- χ^2 statistic of a contingency table
- p-value in a chi-square test or in an exact test
- ...

Haplotype

- A **haplotype** is a combination of alleles at adjacent loci on a chromosome that are transmitted together to the next generation.
- In practice, a haplotype often refers to a set of SNPs on a single chromosome that are statistically associated.
- A haplotype map of the human genome has been constructed (www.hapmap.org).

- Consider a population of *n* individuals
- Consider two sites (two bi-allelic markers)
- One marker with alleles A and a, and one marker with alleles B and b.
- Allele frequencies p_A ; p_a ; p_B and p_b .
- Expected probabilities of each haplotype under independence:

	SNP2			
		В	b	
SNP1	Α	$p_A p_B$	$p_A p_b$	p_A
	а	$p_a p_B$	$p_a p_b$	p_a
		p_B	p_b	1

Observed probabilities of each haplotype in presence of LD

	SNP2			
		В	b	
SNP1	Α	$p_A p_B + D$	$p_A p_b - D$	p_A
	a	$p_a p_B - D$	p_ap_b+D	p_a
		p_B	p_b	1

where D can be:

$$D = p_{AB} - p_A p_B,$$

$$D = -p_{Ab} + p_A p_b,$$

$$D = -p_{aB} + p_a p_B,$$

$$D = p_{ab} - p_a p_b$$

if $D \approx 0$: no LD

How to compute LD?

- $D = p_{AB} p_A p_B$
- p_A and p_B can be estimated by the sample allele frequencies \hat{p}_A and \hat{p}_B .
- However, p_{AB} is unknown.
- Because we have data at the genotype level, and p_{AB} is at the haplotype level.

The data

Observed genotype data

		0	J 1	
		SNP2		
		BB	Bb	bb
SNP1	AA	n_{AABB}	n_{AABb}	n_{AAbb}
	Aa	n_{AaBB}	n_{AaBb}	n_{Aabb}
	aa	n _{aaBB}	n_{aaBb}	n _{aabb}

- This data can be considered a sample from a multinomial distribution with 9 categories, where the probability of each of the 9 categories ultimately depends on the four haplotype probabilities p_{AB}; p_{Ab}; p_{aB} and p_{ab}.
- We will use a maximum likelihood (ML) approach

$$egin{aligned} oldsymbol{ heta} &= (p_{AB}, p_{Ab}, p_{aB}, p_{ab}), & x &= (n_{AABB}, n_{AABb}, ..., n_{aabb}) \ & L(oldsymbol{ heta}|x) &= rac{n!}{n_{AABB}! \cdot n_{aabb}!} \cdot (p_{AB}^2)^{n_{AABB}} \cdot \cdot \cdot (p_{ab}^2)^{n_{aabb}} \ & I(oldsymbol{ heta}|x) &= C + 2n_{AABB} \ln(p_{AB}) + \dots + 2n_{aabb} \ln(p_{ab}) \end{aligned}$$

- The problem can be reparametrized in terms of p_A ; p_B and p_{AB}
- Because $p_A=p_{AB}+p_{Ab},\ p_B=p_{AB}+p_{aB}$ and $p_{AB}=1-p_{Ab}-p_{aB}-p_{ab}$
- Setting $\frac{\partial I}{\partial \theta} = 0$, no closed form solution can be found.
- We maximize the likelihood by a Newton-Raphson algorithm.
- Alternatively the expectation-maximization (EM) algorithm may be used.

Example data set

- Data from the FAMuSS (Functional SNPs Associated with Muscle Size and Strength) study (Foulkes, 2009)
- n = 1397 individuals and 225 SNPs
- Muscle performance variables

[1] 0.8858385

Computing LD in R

```
> fms <- read.delim("http://www.stat-gen.org/book.e1/data/FMS_data.txt",header=T,sep="\t")
> n <- nrow(fms)
> p <- ncol(fms)
> print(n)
[1] 1397
> print(p)
[1] 347
> attach(fms)
> actn3 r577x[1:10]
[1] CC CT CT CT CC CT TT CT CT CC
Levels: CC CT TT
> actn3 rs540874[1:10]
[1] GG GA GA GA GG GA AA GA GA GG
Levels: AA GA GG
> Actn3Snp1 <- genotype(actn3_r577x,sep="")
> Actn3Snp2 <- genotype(actn3 rs540874.sep="")
> out <- LD(Actn3Snp1,Actn3Snp2)
> class(out)
[1] "LD"
> attributes(out)
$names
[1] "call" "D" "D'" "r" "R^2" "n" "X^2"
[8] "P-value"
$class
[1] "LD"
> out$D
[1] 0.1945726
> out$"D'"
```

LD statistics

lt.	$I(P_{AB}, P_A, P_B x)$	P_{AB}	$P_{\mathcal{A}}$	P_B
0	-1471.8874	0.0100000	0.508276	0.434483
1	-1469.9878	0.0438867	0.503479	0.429587
2	-1460.8970	0.0375485	0.514644	0.441162
3	-1459.0183	0.0297541	0.514183	0.440727
4	-1458.2618	0.0288494	0.508727	0.435198
5	-1458.0022	0.0263196	0.509216	0.435692
6	-1457.9928	0.0257361	0.507443	0.433847
7	-1457.9840	0.0251530	0.509738	0.432716
8	-1457.9716	0.0253836	0.508019	0.434685
9	-1457.9709	0.0257321	0.507963	0.434594
10	-1457.9696	0.0256473	0.508296	0.434473
11	-1457.9696	0.0256113	0.508247	0.434500
12	-1457.9696	0.0256208	0.508278	0.434481
13	-1457.9696	0.0256212	0.508276	0.434483

After convergence:

$$p_{AB} = 0.0256212$$
; $p_{Ab} = p_{ApAB} = 0.4826544$; $p_{aB} = p_B - p_{AB} = 0.408862$;

$$p_{ab} = 1 - p_{Ab} - p_{aB} - p_{AB} = 0.08286239$$

$$D = -0.1952159$$

- $-0.25 \le D \le +0.25$
- D' is an attempt to standarize D

$$D' = \frac{D}{D_{max}}$$

$$D_{max} = \begin{cases} min(p_A p_b, p_a p_B) & D > 0 \\ min(p_A p_B, p_a p_b) & D < 0 \end{cases}$$

- -1 < D' < 1
- $D' \approx 0$: low LD
- |D'| close to 1 : high LD.

- The genotype data can be recoded as indicator data, creating indicators for the carriers of the A and B allele (AA=0, AB=1, BB=2).
- \bullet R^2 is the squared correlation between these indicators.
- R^2 is related to the χ^2 statistic of a 2x2 contingency table: $R^2 = \chi^2 / (2n)$.
- The χ^2 is related to D:

$$R^2 = \chi^2/(2n) = \frac{D^2}{p_A p_B p_a p_b}$$

```
> install.packages("LDheatmap")
> library(LDheatmap)
> Actn3Snp1 <- genotype(actn3_r577x,sep="")
> Actn3Snp2 <- genotype(actn3_rs540874,sep="")
> Actn3Snp3 <- genotype(actn3_rs1815739,sep="")
> Actn3Snp4 <- genotype(actn3_1671064,sep="")</pre>
> ActnAll <- data.frame(Actn3Snp1,Actn3Snp2,Actn3Snp3,Actn3Snp4)
> LD(ActnAll)$"D'"
          Actn3Snp1 Actn3Snp2 Actn3Snp3 Actn3Snp4
                 NA 0.8858385 0.9266828 0.8932708
Actn3Snp1
Actn3Snp2
                 NΑ
                           NA 0.9737162 0.9556019
Actn3Snp3
                 NΑ
                           NΑ
                                      NA 0.9575870
Actn3Snp4
                 NΑ
                           NΑ
                                      NΑ
                                                NΑ
> LDheatmap(ActnAll,LDmeasure="D',")
```

LD heatmap

100 (successive) SNPs on chromosome 1 of a sample of 45 individuals from a Chinese population of the HapMap project (www.hapmap.org), 27 remaining after removing monomorphics.

LD and physical distance

100 successive SNPs on Chromosome 1: n = 1939

Computer exercises

- Install the R packages genetics, HardyWeinberg and LDheatmap.
- Load the database http://www-eio.upc.es/jan/data/bsg/CHBChr2-2000.rda
- 3 Calculate the statistics D; D'; R^2 and χ^2 for SNPs 12 and 13. Interpret the results.
- Repeate the exercise 3 for SNPs 12 and 1000.
- Select the first 100 SNPs from the database that have complete information (no missings).
- Compute 4 matrices of association statistics, for D; D'; R^2 and χ^2 respectively.
- Extract the subdiagonal part of each matrix into a vector.
- Make a scatterplot matrix of the 4 association statistics. Are they related?
- Make an LDheatmap for each of the four association statistics. Are the results similar?