Αναγνώριση ιδιομορφών υποβρύχιου ακουστικού σήματος με χρήση συνελικτικών νευρωνικών δικτύων

Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών, Πανεπιστήμιο Κρήτης

Κώστας Σμαραγδάκης, Ιωάννης Μαρής, Μιχάλης Ταρουδάκης

Σάββατο 15.10.2022

Κίνητρο

- Χρήση καμπύλων διασποράς ως δεδομένα ενός αντίστροφου προβλήματος σε εφαρμογές ακουστικής ωκεανογραφίας.
- Οι καμπύλες διασποράς προκύπτουν από το φασματογράφημα ενός ακουστικού σήματος που λαμβάνεται στο θαλάσσιο περιβάλλον.
- Σε προβλήματα ακουστικής τομογραφίας ή αναγνώρισης πυθμένα, οι καμπύλες διασποράς συγκρίνονται με θεωρητικές καμπύλες που προκύπτουν από την εφαρμογή ενός μοντέλου ακουστικής διάδοσης στο θαλάσσιο περιβάλλον.
- ► Είναι απαραίτητο οι καμπύλες διασποράς του μετρούμενου σήματος να αναγνωρισθούν ως προς τις ιδιόμορφες στις οποίες αντιστοιχούν.

Αυτόματη αναγνώριση καμπυλών διασποράς

Σήμα
$$\to$$
 Φασματογράφημα \to ANN \to παράμετροι καμπυλών διασποράς

- ► Εφαρμογή για την αναγνώριση των τριών πρώτων ιδιομορφών από μια οικογένεια συνθετικών σημάτων
- ► Εκπαίδευση του μοντέλου σε ένα σύνολο σημάτων (training set)
- Αξιολόγηση της απόδοσης του μοντέλου σε ανεξάρτητο σύνολο σημάτων (testing set)

Διάδοση κανονικών ιδιομορφών

Θεωρητικές καμπύλες διασποράς

Από την εκτέλεση ενός κώδικα κανονικών ιδιομορφών (normal mode) μπορούμε να προσεγγίσουμε τις καμπύλες διασποράς από τα σημεία $(\tau_i = t^{(n)}(f_i), f_i), i = 1, \ldots, n$

Χρόνος άφιξης της n-οστής ιδιόμορφης για την συχνότητα f

$$t^{(n)}(f)=rac{r}{v_q^n(f)}, \quad v_g^{(n)}=rac{\partial \omega}{\partial k^{(n)}}igg|_{\omega=2\pi f}$$
(ταχύτητα ομάδας)

Παράμετροι

$$\mathbf{a}^{(n)} = [a_0^{(n)}, a_1^{(n)}, a_2^{(n)}, a_3^{(n)}, a_4^{(n)}, a_5^{(n)}]$$

▶ Πολυωνυμική περιγραφή της n-οστής καμπύλης διασποράς

$$\hat{t}^{(n)}(f) = a_5^{(n)} f^5 + a_4^{(n)} f^4 + a_3^{(n)} f^3 + a_2^{(n)} f^2 + a_1^{(n)} f + \varepsilon a_0^{(n)}, \quad \varepsilon = 0.1$$

Προσαρμογή των παραμέτρων (συντελεστών των πολυωνύμων)

$$\mathbf{a}_*^{(n)} = \arg\min_{\mathbf{a}} \sum_i (\hat{t}^{(n)}(f_i) - t^{(n)}(f_i))^2$$

 ► Το νευρωνικό δίκτυο που θα εισάγουμε στη συνέχεια, θέλουμε να προσεγγίσει το διανύσματα των συντελεστών.

Φασματογράφημα - Spectrogram

Παραθυρικός μετασχηματισμός Fourier

$$\mathsf{STFT}_h(s;\tau,f) = \int_{-\infty}^{\infty} s(t)h(t-\tau)e^{-i2\pi ft}dt$$

Φασματογράφημα

$$SP_h(s; \tau, f) = |STFT_h(\tau, f)|^2$$

Προσεγγίζουμε σε διακριτούς χρόνους και διακριτές συχνότητες

Το σύνολο δεδομένων

Δειγματοληψία 4096 τυχαίων σετ παραμέτρων

► Training set (80 %), Testing set (20 %) - Τυχαίος διαμερισμός

Το σύνολο δεδομένων

Το σήμα αναφοράς

Νευρωνικό δίκτυο

- Είσοδος: log(SP + 1) (Φασματογράφημα σε λογαριθμική κλίμακα)
- Έξοδος: $(a_*^{(1)}, a_*^{(2)}, a_*^{(2)})$ (3*6 = 18 παράμετροι)
- Συνάρτηση απώλειας: Μέσο τετραγωνικό σφάλμα (mean squared error)

Αποτελέσματα

Συντελεστές πολυωνύμου για τις 3 πρώτες καμπύλες διασποράς

- 1. 0.1925, -0.0279, 0.0731, -0.1039, 0.0727, -0.0201,
- 2. 0.3702, -1.1324, 3.1526, -4.5516, 3.3233, -0.9606,
- 3. 0.3857, -0.8043, 1.6648, -1.9313, 1.1617, -0.2713

Συντελεστές πολυωνύμου που προκύπτουν από το νευρωνικό δίκτυο

- 1. 0.1725, -0.0277, 0.0753, -0.1055, 0.0752, -0.0215,
- 2. 0.3739, -1.3339, 3.7522, -5.4873, 4.0550, -1.1950,
- 3. 0.4067, -1.1110, 2.5854, -3.3142, 2.2223, -0.6082
- Η εικόνα των δυο πρώτων σχεδόν ταυτίζεται
- Παρουσιάζουμε την τρίτη καμπύλη που παρουσιάζει τις μεγαλύτερες διαφορές

Αποτελέσματα

Αποτελέσματα

Εύρεση του κοντινότερου σήματος στο σήμα αναφοράς

- Σύγκριση του σήματος αναφοράς (αναγνώριση πολυωνύμων από το NN) με όλα τα υπόλοιπα σήματα (χρήση θεωρητικών καμπυλών)
- Οι συγκρίσεις πραγματοποιούνται συγκρίνοντας τα αντίστοιχα πολυώνυμα

r(km)

 $c_{w1} (m/s)$

 $c_{w2} (m/s)$

 $c_{w3} (m/s)$

 $z_{min}(m)$

 $h_1(m)$

 $h_2(m)$

 $z_s(m)$

 $z_r(m)$

 $c_b (m/s)$

 $c_{sb} (m/s)$

ακουστική 2@22

πεο

περιβάλλον αναφοράς

18.834

1500

1485

1506

23

112

133

48

20

1653

1812

Αποτελέσματα

ανακτώμενο περιβάλλον

18.994

1503

1488

1505

24

105

126

43

31

1659

1780

0.16/2

3/5

3/5

1/5

1/10

7/40

7/50

5/40

11/40

6/100

32/150

απόλυτη διαφορά/εύρος τιμών

13/15

Συμπεράσματα - Επεκτάσεις

- Πρώτη προσπάθεια αναγνώρισης ιδιομορφών με χρήση κατάλληλου νευρωνικού δικτύου
- ▶ Εφαρμογή σε μια συνθετική οικογένεια θαλάσσιων κυματοδηγών

Σε επόμενο στάδιο της έρευνας

- Επέκταση για την αναγνώριση περισσότερων ιδιομορφών
- Εφαρμογή σε μεγαλύτερη βάση δεδομένων
- Χρήση σε αντίστροφα προβλήματα σε εφαρμογές ακουστικής ωκεανογραφίας

Ευχαριστώ για την προσοχή σας