

Improving Fairness Generalization Through a Sample-Robust Optimization Method

Julien Ferry¹, Ulrich Aïvodji², Sébastien Gambs³, Marie-José Huguet¹ and Mohamed Siala¹

¹LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France ²École de Technologie Supérieure, Montréal, Canada ³Université du Québec à Montréal, Montréal, Canada

January 3, 2023

- Context
- 2 Our Approach
- 3 Heuristic Formulation
- 4 Experimental Evaluation
- Conclusion

- Context
- Our Approach
- 3 Heuristic Formulation
- 4 Experimental Evaluation
- Conclusion

- The paper is published in the Machine Learning journal, in July 2022
- Link to the paper link.springer.com/article/10.1007/s10994-022-06191-y
- Preprint: https://hal.archives-ouvertes.fr/hal-03709547
- Open source code https://github.com/ferryjul/FairnessSampleRobustness

- Fairness in machine learning
- Statistical measures
- Generalisation of fairness on unseen data is one of the open challenges for trustworthy machine learning

The COMPAS Example [Angwin et al., 2016]

- Binary classification task: Recidivism within two years
- Sensitive attribute: Ethnicity (African-American/Caucasian)
- Protected Groups:
 - A: African-American individuals;
 - ▶ B : Caucasian individuals;

Statistical Fairness

- ullet Principle: ensure that some measure ${\mathcal M}$ differs by no more than ϵ between several protected groups
- In the particular case of two protected groups (\mathcal{A}) and (\mathcal{B}), one need to ensure that $|\mathcal{M}(\mathcal{A}) \mathcal{M}(\mathcal{B})| < \epsilon$

Fairness in Supervised Machine Learning I

Supervised Fair Learning: A Bi-Objective Optimization Problem

- Notation: \mathcal{D} initial dataset, h prediction model, ϵ unfairness tolerance
- Let unf(·) be an unfairness oracle. A common formulation of the Fair Learning problem is:

$$\underset{h \in \mathcal{H}}{\text{arg min}} \qquad f_{obj}(h, \mathcal{D}) \tag{1}$$
s.t.
$$\text{unf}(h, \mathcal{D}) < \epsilon$$

where one wants to build model h minimizing objective function f_{obj} and exhibiting

- unfairness withing an ϵ threshold (on training dataset \mathcal{D})

 The fairness constraint does not generalize well in practice [Cotter et al., 2018, 2019]
- Existing approaches are essentially adhoc without a theoretical framework [Cotter et al., 2018, 2019; Chuang and Mroueh, 2021; Huang and Vishnoi, 2019; Mandal et al., 2020; Sagawa et al., 2019; Taskesen et al., 2020; Wang et al., 2021]

- Context
- 2 Our Approach
 - Distributionally Robust Optimization (DRO)
 - Quantifying Fairness Sample-Robustness
- 3 Heuristic Formulation
- 4 Experimental Evaluation
- Conclusion

Distributionally Robust Optimization (DRO)

• Instead of minimizing objective function f_{obj} for a given distribution \mathcal{P} , DRO aims at minimizing f_{obj} for a worst-case distribution among a *perturbation set* of \mathcal{P} [Sagawa et al., 2019] $\mathcal{B}(\mathcal{P})$

Perturbation Set based on the Jaccard Distance

- Let \mathcal{D}_1 and \mathcal{D}_2 be two sample sets. The Jaccard distance between \mathcal{D}_1 and \mathcal{D}_2 is defined as follows: $J_{\delta}(\mathcal{D}_1,\mathcal{D}_2) = 1 \frac{|\mathcal{D}_1 \cap \mathcal{D}_2|}{|\mathcal{D}_1 \cup \mathcal{D}_2|}$
- Let $a \in [0,1]$, we define a perturbation set $\mathcal{B}(\mathcal{D},a)$ as the set of subsets of \mathcal{D} whose Jaccard distance from the \mathcal{D} is less than or equal to a.

Figure: Example of perturbation sets for a dataset \mathcal{D} with 5 examples and two protected groups a $(\{e_1, e_2, e_3\})$ and b $(\{e_4, e_5\})$. Subsets that can not be used to audit a model's fairness with respect to protected groups a and b are not represented.

- ullet In order to evaluate the robustness of a given model, we need an efficient way to find the largest perturbation set ${\mathcal P}$ such that h is fair on each element in ${\mathcal P}$
- The value corresponding to this set is denoted by $\mathcal{SR}(h, \mathcal{D}, \epsilon)$
- The sample-robust fair learning problem is such that

$$\underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \qquad f_{obj}(h, \mathcal{D}) \tag{2}$$

s.t.
$$\mathcal{SR}(h, \mathcal{D}, \epsilon) > d$$

- To build a Pareto frontier, start with d=0, then at each iteration increase the value of d with respect to the last solution
- Instead of using brute force, we propose an integer programming approach to find the robustness value $\mathcal{SR}(h, \mathcal{D}, \epsilon)$
- We show that our approach is flexible and efficient in practice
- For the sake of scalability, we also propose a linear time greedy approach

- ullet Let \mathcal{D}' be the subset of \mathcal{D} where the colored sets are removed
- If h is not fair on \mathcal{D}' , then h is not robust on the perturbation set defined with the distance between \mathcal{D} and \mathcal{D}'

s.t.
$$n = x_a + x_b + y_a + y_b$$
(4)
$$\left| \frac{M_a - x_a}{N_a - x_a - y_a} - \frac{M_b - x_b}{N_b - x_b - y_b} \right| > \epsilon$$
(5)
$$0 \le x_a \le M_a$$
$$0 \le x_b \le M_b$$
$$0 \le y_a \le M_a - M_a$$
$$0 \le y_b \le N_b - M_b$$
$$x_a + y_a < N_a$$
$$x_b + y_b < N_b$$

n

min

s.t.

 The optimal value can be used to identified the largest perturbation set where the robustness constraint is satisfied

(3)

- Context
- 2 Our Approach
- 3 Heuristic Formulation
 - Principle
 - Formulation
- 4 Experimental Evaluation
- Conclusion

- Instead of ensuring fairness on each subset of $\mathcal D$ up to Jaccard distance d, we enforce the fairness constraint on a number of randomly generated subsets $\mathcal B_\omega(\mathcal D)$ including $\mathcal D$
- Our formulation of the Heuristic Sample-Robust Fair Learning problem is:

$$\underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \qquad \qquad f_{obj}(h, \mathcal{D}) \tag{6}$$

s.t.
$$\forall \mathcal{D}' \in \mathcal{B}_{\omega}(\mathcal{D}), \text{ unf}(h, \mathcal{D}') \leq \epsilon$$

- Context
- Our Approach
- 3 Heuristic Formulation
- Experimental Evaluation
 - Experiments using FairCORELS
 - Experiments using TFC0(Heuristic Method)
- Conclusion

- 4 Experimental Evaluation
 - Experiments using FairCORELS
 - Experiments using TFC0(Heuristic Method)

Setup description

- We compare:
 - ► The original FairCORELS [Aïvodji et al., 2019]
 - ► The exact approach with and without validation set
 - ► The heuristic approach with 10 and 30 subsets
- Four fairness metrics:
 - ► Statistical Parity [Dwork et al., 2012]
 - Predictive Equality [Chouldechova, 2017]
 - ► Equal Opportunity [Hardt et al., 2016]
 - ► Equalized Odds [Hardt et al., 2016]
- Four biased datasets:
 - ► Adult Income dataset [Frank and Asuncion, 2010]
 - ► COMPAS dataset [Angwin et al., 2016]
 - ▶ Default Credit dataset [Yeh and Lien, 2009]
 - ▶ Bank Marketing dataset [Moro et al., 2014]
- A wide range of unfairness tolerances
- The Integer Program is solved using the constraint programming solver OrTools

Figure: Fairness sample-robustness of models generated by FairCORELS using our exact and heuristic sample-robust fair methods (Statistical Parity metric, $\epsilon=0.01$) for the adult dataset

Figure: Test error and unfairness of models generated by FairCORELS using our exact and heuristic sample-robust fair methods (Statistical Parity metric, $\epsilon = 0.01$)

- Experimental Evaluation
 - Experiments using FairCORELS
 - Experiments using TFC0(Heuristic Method)
 - Integration into TFCO
 - Results

TensorFlow Constrained Optimization

- TensorFlow Constrained Optimization (TFCO) is a Python library for optimizing inequity-constrained problems in TensorFlow to produce machine learning models (not restricted to the fair learning problem)
- Implementing our heuristic sample-robust fair method into TFCO simply requires declaring additional constraints (one per protected group per subset)

ahttps://github.com/google-research/tensorflow constrained optimization

Compared Methods

We build on the setup of Cotter et al. [2019] and compare the following approaches:

- unconstrained trains is the default model without enforcing fairness constraints
- baseline is the standard fair learning approach
- validation is a state-of-the-art approach proposed in Cotter et al. [2018, 2019] to improve fairness generalization.
- dromasks-n is the integration of our method into baseline, using n subset (in practice, we use $n \in \{10, 30, 50\}$).

Setup

• We run four distinct experiments using different fairness metrics, datasets (including numerical features) and (non-binary) sensitive attributes

	Proxy Lagrangian				Lagrangian			
	Train		Test		Train		Test	
Model	Error	Viol.	Error	Viol.	Error	Viol.	Error	Viol.
Adult Income Dataset								
unconstrained	.122	.072	.144	.071	.122	.072	.144	.071
baseline	.141	0	.154	.009	.141	0	.155	.006
validation	.132	002	.158	.004	.134	0	.157	.004
dromasks-10	.14	003	.156	.003	.143	001	.155	003
dromasks-30	.14	004	.157	001	.148	002	.156	003
dromasks-50	.14	003	.157	001	.151	002	.157	003

Table: Results of the experimental study of the heuristic approach using TFCO (error rates and maximum fairness violations)

- Context
- Our Approach
- 3 Heuristic Formulation
- 4 Experimental Evaluation
- Conclusion

Summary

- We address the problem of fairness generalisation via an approach based on Distributionally Robust Optimization
- Our propositions are flexible enough to be used with different models (even black box models)
- We propose exact and heuristic methodologies
- We empirically show that our approach is competitive to the state-of-the-art with two learning models on many datasets in the literature using different fairness measures

Future Work

- Can we find an efficient way to approximate the best parameters ?
- How to extend the work with other distance functions ?

Thank you!

- Aïvodji, U., Ferry, J., Gambs, S., Huguet, M.-J., and Siala, M. (2019). Learning fair rule lists. arXiv preprint arXiv:1909.03977.
- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., and Rudin, C. (2017a). Learning certifiably optimal rule lists. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 35-44. ACM.
- Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., and Rudin, C. (2017b). Learning certifiably optimal rule lists for categorical data. The Journal of Machine Learning Research, 18(1):8753-8830.
- Angwin, J., Larson, J., Mattu, S., and Kirchner, L. (2016). Machine bias. ProPublica, May, 23.
- Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big data, 5(2):153-163.
- Chuang, C.-Y. and Mroueh, Y. (2021). Fair mixup: Fairness via interpolation. arXiv preprint arXiv:2103 06503
- Cotter, A., Gupta, M., Jiang, H., Srebro, N., Sridharan, K., Wang, S., Woodworth, B., and You, S. (2018). Training fairness-constrained classifiers to generalize.
- Cotter, A., Gupta, M., Jiang, H., Srebro, N., Sridharan, K., Wang, S., Woodworth, B., and You, S. (2019). Training well-generalizing classifiers for fairness metrics and other data-dependent constraints. In International Conference on Machine Learning, pages 1397-1405, PMLR.

- Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In *Proceedings of the 3rd innovations in theoretical computer science conference*, pages 214–226.
- Frank, A. and Asuncion, A. (2010). UCI machine learning repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California. School of information and computer science, 213:2–2.
- Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised learning. arXiv preprint arXiv:1610.02413.
- Huang, L. and Vishnoi, N. (2019). Stable and fair classification. In *International Conference on Machine Learning*, pages 2879–2890. PMLR.
- Mandal, D., Deng, S., Jana, S., Wing, J., and Hsu, D. J. (2020). Ensuring fairness beyond the training data. Advances in Neural Information Processing Systems, 33.
- Moro, S., Cortez, P., and Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing. *Decision Support Systems*, 62:22–31.
- Rivest, R. L. (1987). Learning decision lists. *Machine learning*, 2(3):229–246.
- Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P. (2019). Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731.
- Taskesen, B., Nguyen, V. A., Kuhn, D., and Blanchet, J. (2020). A distributionally robust approach to fair classification. arXiv preprint arXiv:2007.09530.

- Wang, Y., Nguyen, V. A., and Hanasusanto, G. A. (2021). Wasserstein robust support vector machines with fairness constraints. arXiv preprint arXiv:2103.06828.
- Yeh, I.-C. and Lien, C.-h. (2009). The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2):2473-2480.

Figure: Results obtained on the Default Credit dataset, for the Predictive Equality metric

Figure: Results obtained on the COMPAS dataset, for the Statistical Parity metric

Rule Lists: Definition

Rule lists [Rivest, 1987] are classifiers formed by an ordered list of *if-then* rules with antecedents in the *if* clauses and predictions in the *then* clauses. More precisely, a rule list $r = (\{p_{k,k \in \{1...K\}}\}, \{q_{k,k \in \{1...K\}}\}, q_0)$ consists of K distinct association rules $p_k \to q_k$, in which p_k is the antecedent of the association rule and q_k its associated consequent, followed by a default prediction q_0 .

A possible rule list for the example dataset of slide ?? (with 100% accuracy)

```
if [Education:Dropout] then [low]
else if [Gender:Male AND Age>45] then [high]
else [low]
```


FairCORELS Problem Formulation

- Based on the CORELS algorithm [Angelino et al., 2017a,b]
- FairCORELS [Aïvodji et al., 2019] returns rule list r^* that is a solution to the following problem:

where:

- $ightharpoonup \mathcal{R}$ is the space of rule lists
- D denotes the training dataset
- $ightharpoonup K_r$ is the length of rule list r
- lacktriangledown λ is a regularization parameter balancing sparsity and accuracy
- ightharpoonup misc(\cdot) is the misclassification error and unf(\cdot) measures unfairness

FairCORELS search space

- FairCORELS represents the search space of rule lists as a prefix tree (trie)
- FairCORELS leverages several bounds to efficiently explore this search space (including CORELS' original bounds)

Figure: Example prefix tree with 4 attributes