Feuille d'exercice n° 13 : Groupes, anneaux, corps

Exercice 1 ($^{\circ}$) Soient G_1 et G_2 deux groupes, dont les lois sont notées multiplicativement. On considère l'ensemble produit $G_1 \times G_2$ sur lequel on considère la loi interne \otimes suivante :

$$\forall ((x_1, x_2), (y_1, y_2)) \in (G_1 \times G_2)^2 \quad (x_1, x_2) \otimes (y_1, y_2) = (x_1 y_1, x_2 y_2).$$

Montrer que $(G_1 \times G_2, \otimes)$ est un groupe. Quel est son neutre?

Exercice 2 () - Un peu de sudoku -

- 1) Soit (G,*) un groupe, $a \in G$. Que peut-on dire de $\varphi_a : G \to G$?
- 2) Montrer qu'il existe une seule table possible pour un groupe d'ordre 3 (c'est-à-dire à trois éléments).
- **3)** Est-ce vrai pour 4?

Exercice 3 ($^{\otimes}$) Soit (G, \times) un groupe, H et K deux sous-groupes de G, $(H_i)_{i \in I}$ une famille de sous-groupes de G.

- 1) Montrer que $\bigcap_{i \in I} H_i$ est un sous-groupe de G.
- **2)** Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 4 (\mathcal{D}) Montrer que les sous-groupes de \mathbb{Z} sont exactement tous les $n\mathbb{Z}$, avec $n \in \mathbb{N}$.

Exercice 5 Quel est le plus petit sous-groupe de $(\mathbb{R}, +)$ contenant 1 ? Contenant 2 ? Même question avec (\mathbb{R}^*, \times) .

Exercice 6 On considère A et B deux sous-groupes de (G, *) et l'on note :

$$A*B = \{ \ x \in G \mid \exists (a,b) \in A \times B, \ x = a*b \ \} = \{ \ a*b \mid (a,b) \in A \times B \ \}.$$

Montrer que A * B est un sous-groupe de (G, *) si et seulement si A * B = B * A.

Indication: pour le sens direct, on commencera par montrer $B * A \subset A * B$.

Exercice 7 (\emptyset Soit G un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$. On pose $\alpha = \inf (\mathbb{R}_+^* \cap G)$

- 1) Montrer que si $\alpha > 0$, alors $G = \alpha \mathbb{Z} = \{ k\alpha \mid k \in \mathbb{Z} \}.$
- 2) Montrer que si $\alpha = 0$, alors G est dense dans \mathbb{R} , c'est-à-dire que pour tout réel x et tout $\varepsilon > 0$, il existe $g \in G$ vérifiant $|x g| \le \varepsilon$.

Exercice 8 Décrire tous les endomorphismes de groupes de $(\mathbb{Z}, +)$. Déterminer ceux qui sont injectifs et ceux qui sont surjectifs.

Exercice 9 (Soit G un groupe noté multiplicativement. Pour $a \in G$, on note τ_a l'application de G vers G définie par $\tau_a : x \mapsto axa^{-1}$.

- 1) Soit $a \in G$, montrer que τ_a est un endomorphisme du groupe (G, \times) .
- **2)** Vérifier que $\forall a, b \in G, \tau_a \circ \tau_b = \tau_{ab}$
- 3) Soit $a \in G$, montrer que τ_a est bijective et déterminer son application réciproque.
- 4) En déduire que $\mathcal{T} = \{\tau_a \mid a \in G\}$ muni du produit de composition est un groupe.

Exercice 10 Soit $(A, +, \times)$ un anneau. On dit que $x \in A$ est nilpotent s'il existe $n \in \mathbb{N}$ tel que $x^n = 0$.

- 1) Montrer que si x est nilpotent alors 1-x est inversible.
- 2) Montrer que si x et y sont nilpotents et commutent, alors xy et x + y sont nilpotents.
- 3) Un corps admet-il des éléments nilpotents non nuls?

Exercice 11 Soit $(A, +, \times)$ un anneau commutatif. Soit a un élément de A. On appelle racine carrée de a dans A, tout élément x de A tel que $x^2 = a$.

- 1) Montrer que si A est intègre, alors tout élément de A admet au maximum 2 racines carrées.
- 2) Prenons maintenant $(A, +, \times) = (\mathcal{F}(\mathbb{R}, \mathbb{R}), +, \times)$. Soit $f : \mathbb{R} \to \mathbb{R}, x \mapsto 1$. Montrer que f admet une infinité de racines carrées.

Exercice 12 Soit $(A, +, \times)$ un anneau, soit $a \in A$. On appelle commutant de a la partie

$$C(a) = \{ x \in A \mid ax = xa \}.$$

On appelle centre de A la partie

$$Z = \{ x \in A \mid \forall a \in A, \ ax = xa \}.$$

Montrer que C(a) et Z sont deux sous-anneaux de A.

Exercice 13 Soit $(A, +, \times)$ un anneau non nul, on considère

$$\varphi: \left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & A \\ n & \longmapsto & n \cdot 1 = \underbrace{1 + 1 + \dots + 1}_{n \text{ fois}} \end{array} \right.$$

- 1) Montrer que φ est le seul morphisme d'anneaux de \mathbb{Z} dans A.
- 2) Dans le cas où φ n'est pas injectif, montrer qu'il existe $c \in \mathbb{N}^*$ unique tel que $\operatorname{Ker}(\varphi) = c\mathbb{Z}$. On se place dorénavant dans ce dernier cas, c est appelé $\operatorname{caract\acute{e}ristique}$ de l'anneau A, et A est supposé intègre et commutatif.
 - 3) Montrer que c est un nombre premier.
 - 4) Montrer que $x \mapsto x^c$ est un endomorphisme de l'anneau A.

