Sensor Fusion for Irregularly Sampled Systems

Taiguara Tupinambás

Orientador por: Prof. Dr. Bruno Teixeira e Prof. Dr. Leonardo Tôrres

Laboratório de Modelagem, Análise e Controle de Sistemas Não-Lineares (MACSIN) Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) Universidade Federal de Minas Gerais (UFMG)

21 de Fevereiro, 2019

- 🚺 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- Conclusões

- 🕕 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Crescimento do Mercado Global de Sensores

- CAGR de 11.3% a.a. no período 2016-2022
- USD 241 bilhões em 2022

Fonte: Allied Market Research, 2016

Fonte: Postscape, 2015

Tendências

Internet das Coisas

Fonte: Business Insider

Redes Complexas de Sensores

Fonte: Libelium

Desafios

Aplicações de fusão sensorial clássicas consideram que as informações são recebidas de forma regular. Caso não sejam, é possível adaptar os algoritmos considerando os carimbos de tempo correta.

Falta de sincronização entre os múltiplos sensores da rede pode levar a amostragem irregular sem informação confiável de carimbo de tempo

Soluções:

- Investir em sincronização e em capacidade computacional
- Deslocar os instantes de tempo

Efeitos de se deslocar os instantes de tempo

Efeitos de se deslocar os instantes de tempo

Evolução do erro de estimação de um estado, para estimadores que consideram o carimbo de tempo (vermelho) e não consideram (azul)

Taiguara Tupinambás

Vale a pena investir em sincronização e capacidade computacional?

- Qual a relevância do erro para os objetivos da fusão sensorial?
- Quais são os fatores que influenciam o desempenho?

Fusão sensorial resumido ao problema de *estimação de estados* de sistemas amostrados *aperiodicamente*

- 🚺 Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Objetivos

- 1. Revisar os métodos de **fusão sensorial** e o problema de **amostragem irregular**;
- 2. Discutir os algoritmos e suas **adaptaçãos** ao modelo de amostragem aperiódica;
- Desenvolver uma metodologia para estudar os efeitos de desconsiderar os carimbos de tempo;
- 4. Aplicar a metodologia em um sistema linear e outro não-linear, utilizando testes numéricos para **avaliar precisão e consistência** das estimativas;

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Taiguara Tupinambás Defesa de Mestrado Fevereiro 2019 7/34

Modelo de Amostragem: Aperiódica

Instantes de amostragem modelados por um processo de Poisson:

$$\rho_{h_k}(t) = \lambda e^{-\lambda t}$$

 $\lambda
ightarrow {
m frequência}$ média de amostragem

Taiguara Tupinambás

8/34

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Estimação de Estados

Etapa de predição:

$$\rho(x_k|(y_1,...,y_{k-1})) = \int_{\mathbb{R}^n} \rho(x_k|x_{k-1})\rho(x_{k-1}|y_1,...,y_{k-1})dx_{k-1}$$

Etapa de assimilação de dados:

$$\rho(x_k|(y_1,...,y_k)) = \frac{\rho(y_k|x_k)\rho(x_k|(y_1,...,y_{k-1}))}{\rho(y_k|(y_1,...,y_{k-1}))}$$

Sistemas Amostrados Não Lineares

$$\dot{x}(t) = f(x(t), u(t), w(t), t)$$
$$y(t_k) = g(x(t_k), v(t_k), t_k)$$

Discretizado por Runge-Kutta:

$$x(t_{k+1}) = x(t_k) + \frac{1}{6} (k_1 + 2k_2 + 3k_3 + k_4),$$

$$t_{k+1} = t_k + h_k,$$

Sistemas Amostrados Lineares

$$\dot{x}(t) = Ax(t) + Bu(t) + Gw(t)$$

$$y(t_k) = Cx(t_k) + v(t_k)$$

Discretizado por:

$$x(t_{k+1}) = A_d(t_k, t_{k+1})x(t_k) + B_d(t_k, t_{k+1})u(t_k) + w_d(t_k, t_{k+1})$$

Formulação do Problema

Queremos estimar o vetor de estados x(iT) e sua covariância de forma recursiva, em intervalos igualmente espaçados T, considerando:

- Instantes de tempo das observações t_k é definido pelo intervalo:
 - $\rightarrow h_k \triangleq t_k t_{k-1}$
 - $\rightarrow h_k \sim \mathcal{E}(\lambda)$
- Entrada u(t) é atualizada em intervalos de tempo constantes T:

$$\rightarrow u(t) = u(iT)$$
, para $iT \le t < (i+1)T$

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Instantes de Estimação e de Observação

- Com carimbo:
 - 1. predição, de T a 2T;

- Sem carimbo:
 - 1. predição, de T a 2T;

Instantes de Estimação e de Observação

Com carimbo:

- 1. completo, de 3T a t_1 ;
- 2. predição, de t_1 a 4T;

Sem carimbo:

1. completo, de 3T a 4T, com $t_1 = 4T$;

Instantes de Estimação e de Observação

Com carimbo:

- 1. completo, de 8T a t_2 ;
- 2. completo, de t_2 a t_3 ;
- 3. predição, de t_3 a 9T;

Sem carimbo:

1. completo, de 8T a 9T, com $t_3 = 9T$;

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Diretamente proporcional à derivada do sinal

Para um modelo de medição linear e $\delta_k = nT - t_k$,

$$e_{k} = C[x(t_{k}) - x(t_{k} + \delta_{k})],$$

$$e_{k} = C\left(\frac{[x(t_{k}) - x(t_{k} + \delta_{k})]}{\delta_{k}}\right)\delta_{k},$$

$$e_{k} \approx -C\frac{dx}{dt}\delta_{k},$$

$$e_{k} \approx -\frac{dy}{dt}\delta_{k}.$$

Diretamente proporcional à derivada do sinal

Em função do ruído e da frequência média de amostragem

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Parâmetros variados

Símbolo	Definição	Objetivo
λ	$h_k \sim \mathcal{E}(\lambda)$	Influência da dinâmica do sinal de saída
α	$\frac{1}{\lambda} \triangleq \alpha T$	Influência da relação entre amostragens
SNR	$\mathit{SNR}_{ ext{dB}} riangleq 10 \log_{10} rac{P_{ ext{signal}}}{P_{ ext{noise}}}$	Influência do ruído

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Descrição do Sistema

Dois modos subamortecidos, um passa-baixas e outro passa-altas:

$$G_{\rm lp}(s) = \frac{100}{s^2 + 2s + 100}$$

$$G_{\rm hp}(s) = \frac{s^2 - 0.001s}{s^2 + 200s + 10^6}$$

Taiguara Tupinambás

Descrição do Sistema

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$A = \begin{bmatrix} -100 & 994.99 & 0 & 0 \\ -994.99 & -100 & 0 & 0 \\ 0 & 0 & -1 & 9.949 \\ 0 & 0 & -9.949 & -1 \end{bmatrix}$$

Entrada:

Estimativas para uma Realização

Estado do modo passa-alta:

Estado do modo passa-baixa:

Resultados - Variação do Nível de Ruído do Sistema (SNR)

Scenarios		State 1 (RMSE difference)		State 4 (RMSE difference)	
		$\mu_{ m D}$	Cohen's d	μ_{D}	Cohen's d
SNR (dB)	10 20 40 50 60		[0.39, 0.97] [0.97, 1.6] [1.6, 2.3] [1.9, 2.6] [1.6, 2.3]	$ \begin{bmatrix} [2.3, & 3.8] \times 10^{-3} \\ [11, & 14] \times 10^{-3} \\ [18, & 21] \times 10^{-3} \\ [18, & 21] \times 10^{-3} \\ [18, & 21] \times 10^{-3} \end{bmatrix} $	[0.52, 1.1] [1.6, 2.3] [2.3, 3.1] [2.8, 3.7] [2.6, 3.4]

Resultados - Variação da Frequência Média da Saída (λ)

Scenari	os	State 1 (RMSE difference)		State 4 (RMSE di	State 4 (RMSE difference)	
		$\mu_{ m D}$	Cohen's d	$\mu_{ m D}$ Cohen's		
λ (kHz)	0.1 0.3 0.5 1		[0.58, 1.2] [1.4, 2.0] [1.1, 1.7] [0.46, 1.0]		[2.0, 2.7] [2.1, 2.9] [2.3, 3.1] [2.0, 2.7]	

Resultados - Variação da Relação Entre Frequências (α)

Scei	$\begin{array}{c} {\sf Scenarios} & {\sf State 1 (RMSE \ difference)} \\ {\mu_{\rm D}} & {\sf Cohen's \ c} \end{array}$		`		ifference) Cohen's <i>d</i>
α	1 2 3 5		[1.1, 1.8] [0.96, 1.6] [0.56, 1.1] [0.088, 0.65]		[2.5, 3.2] [1.9, 2.6] [1.7, 2.4] [1.3, 2.0]

- Motivação
 - Popularização de Redes de Sensores
 - Objetivos
- 2 Metodologia
 - Modelo de Amostragem: Aperiódica
 - Estimação de Estados de Sistemas Amostrados
 - Estimação com Amostragem Aperiódica
- Resultados Numéricos
 - Análise do Erro
 - Cenários de Simulação
 - Sistema Linear
 - Sistema Não-Linear
- 4 Conclusões

Descrição do sistema

Considere o sistema de um robô móvel não-holonômico:

$$\dot{p}_{\mathrm{x}} = v \cos(\theta),$$

 $\dot{p}_{\mathrm{y}} = v \sin(\theta),$
 $\dot{\theta} = u_{1}(t),$
 $\dot{v} = u_{2}(t),$

em que:

 p_{x} e p_{y} : coordenadas de posição,

 $\hat{\theta}$: orientação angular,

v: velocidade linear,

 u_1 : entrada: velocidade angular (ω) , u_2 : entrada: aceleração linear (a)

Robô Móvel não-Holomônico

Vetor de estados:

$$x_i \stackrel{\Delta}{=} [p_{x,i} \ p_{y,i} \ \theta_i \ v_i]^T.$$

Modelo de observações:

$$y(t_k) = egin{bmatrix} p_{\mathrm{x}}(t_k) \ p_{\mathrm{y}}(t_k) \end{bmatrix} + v(t_k), \quad v(t_k) \sim \mathcal{N}(0, R_{t_k}).$$

Vetor de entradas:

$$u_i = [\omega_i \ a_i]^T,$$

$$u_i = \tilde{u}_i - w_i, \ w \sim \mathcal{N}(0, Q_i).$$

Entradas e Realização Única

Resultados - Variação do Nível de Ruído da Saída SNR_{obs}

Scenarios		Position (RMSE difference) μ_{D} (cm) Cohen's d	
SNR (dB)	10	[3.0, 3.4]	[0.76, 0.94]
	20	[4.2, 4.8]	[0.83, 1.0]
	40	[7.8, 8.7]	[1.0, 1.2]
	60	[9.8, 11]	[1.2, 1.4]
	80	[11, 13]	[1.2, 1.4]
	100	[16, 18]	[1.2, 1.3]

Taiguara Tupinambás

Resultados - Variação da Frequência Média da Saída (λ)

Scenarios		Position (RMSE difference) μ_{D} (cm) Cohen's d	
λ (kHz)	1.67	[10, 12]	[1.1, 1.3]
	2	[9.1, 10]	[1.0, 1.2]
	2.5	[8.4, 9.7]	[0.82, 1.0]
	3.33	[6.9, 7.9]	[0.79, 0.97]
	5	[6.0, 6.9]	[0.78, 0.96]
	10	[7.7, 8.7]	[1.0, 1.2]

Taiguara Tupinambás

Resultados - Variação da Relação Entre Frequências (α)

Scenarios			MSE difference) Cohen's d
α	1	[6.2, 6.8]	[1.2, 1.4]
	2	[7.4, 8.3]	[1.0, 1.2]
	5	[17, 18]	[1.3, 1.5]
	10	[33, 35]	[1.9, 2.1]

Principais Resultados e Contribuições

Cenários com maior influência no desempenho do estimador:

- Baixo ruído nos sinais;
- Baixa frequência média da amostragem irregular;
- Menor relação entre a requência média da amostragem irregular e a frequência de estimação, quando SNR das observações é maior que o do modelo de processo.

Abordagem útil para a tomada de decisão sobre investimento em sincronização e em capacidade computacional.

Trabalhos Futuros

- Investigação sobre algoritmos que compensam o erro de deslocar instantes de tempo;
- Desenvolvimento de rotinas de sintonia do estimador ad hoc, aumentando o traço da matriz de covariância do modelo de observação, para estimativas mais consistentes;
- Estudo dos efeitos de amostragem irregular com a introdução de atraso de tempo;
- Utilização de outros métodos de filtragem, como o baseado em partículas, com potencial de ser mais robustos a ruídos não gaussianos;

OBRIGADO

e-mail: tatatupi@gmail.com.br