Homework 6

Section 2.6

- a) What size is A?

b) What is the third column of A?

c) What is the second row of A?

d) What is the element of $\bf A$ in the (3, 2)th position?

1

e) What is A^t ?

5. Find a matrix A such that

$$\begin{bmatrix} 2_{\bullet} & 3 \\ 1 & 4 \end{bmatrix} \mathbf{A} = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}$$

[*Hint:* Finding **A** requires that you solve systems of linear equations.]

System of linear EQi

$$2a_{11} + 3a_{21} = 3$$

$$2a_{12} + 3a_{22} = 0$$

$$1a_{11} + 4a_{21} = 1 \rightarrow 1a_{11} = 1 - 4a_{21}$$

$$1a_{12} + 4a_{22} = 2 \rightarrow a_{12} = 2 - 4a_{22}$$

$$\begin{array}{c}
2(1-4a_{2})+3a_{21}=3 \\
2-8a_{21}+3a_{21}=3 \\
-5a_{21}=1 \\
a_{11}=1-4(-\frac{1}{5}) \\
a_{11}=\frac{4}{5}
\end{array}$$

$$\begin{array}{c}
2a_{12}+3a_{22}=0 \\
2(2-4a_{22})+3a_{22}=0 \\
4-8a_{22}+3a_{22}=0 \\
4-5a_{22}=0
\end{array}$$

$$\begin{array}{c}
2a_{12}+3a_{22}=0 \\
2a_{12}+3(\frac{1}{5})=0 \\
2a_{12}+\frac{12}{5}=0 \\
a_{12}=\frac{(-12/5)}{2}
\end{array}$$

$$\begin{array}{c}
4=5a_{22} \\
4=5a_{22}
\end{array}$$

$$\begin{array}{c}
4=5a_{22} \\
4=5a_{22}
\end{array}$$

$$\begin{array}{c}
4=5a_{22} \\
4=5a_{22}
\end{array}$$

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 4/s & -6/s \\ -4/s & 4/s \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Find a formula for A^n , whenever n is a positive integer.

Computing An for n=1 to n=5:

- A = 1 1
- A
- A⁵. 0 1

19. Let A be the 2×2 matrix

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Show that if $ad - bc \neq 0$, then

$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix}.$$

At is the inverse of A if At A = AAT = In

$$A^{-1} A = \begin{bmatrix} \frac{1}{a_1 - b_2} & \frac{b}{a_1 - b_2} \\ \frac{c}{a_1 - b_2} & \frac{a}{a_1 - b_2} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

The (i, j) the element of the product AB is the sum of the products of each element in the ith rou of A with the corresponding element in the jth Column of R

$$-\frac{a_1-p_1}{a_1-p_2} + \frac{a_2}{a_1-p_2} - \frac{a_1-p_2}{a_1-p_2} + \frac{a_1-p_2}{a_1-p_2}$$

$$= \begin{array}{c} 0 & \frac{ad-bc}{ad-bc} \\ 0 & \frac{ad-bc}{ad-bc} \end{array}$$

27. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{and} \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

- a) $A \vee B$. b) $A \wedge B$. c) $A \odot B$.

a) A ∨ B.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} V B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} .$$

c) A ⊙ B.

28. Find the Boolean product of $\bf A$ and $\bf B$, where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

$$\textbf{A} \odot \textbf{B} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$

- = 1 0 1 1 1 1

Section 3.2

8. Find the least integer n such that f(x) is $O(x^n)$ for each

a)
$$f(x) = 2x^2 + x^3 \log x$$

b)
$$f(x) = 3x^5 + (\log x)^4$$

a)
$$f(x) = 2x^2 + x^3 \log x$$

b) $f(x) = 3x^5 + (\log x)^4$
c) $f(x) = (x^4 + x^2 + 1)/(x^4 + 1)$
d) $f(x) = (x^3 + 5 \log x)/(x^4 + 1)$

d)
$$f(x) = (x^3 + 5\log x)/(x^4 + 1)$$

$$|f(x)| \leq C|g(x)|$$
 Whenever $x > k$

$$a) \quad f(x) = 2x^2 + x^3 \log x$$

$$|f(x)| \le |2x^2 + x^3 \log x|$$

 $\le |2x^2 + x^4|$
 $\le |2x^4 + x^4|$

b)
$$f(x) = 3x^5 + (\log x)^4$$

$$f(x) = 3x^{5} + (\log x)^{4}$$

$$|f(x)| \leq |3x^{5} + (\log x)^{4}| \qquad |o_{5}x \rightarrow x|$$

$$|f(x)| \leq |3x^{4} + (x)^{4}|$$

$$n = 5$$

c)
$$f(x) = (x^4 + x^2 + 1)/(x^4 + 1)$$

14. Determine whether
$$x^3$$
 is $O(g(x))$ for each of these functions $g(x)$

a)
$$g(x) = x^2$$

c) $g(x) = x^2 + x^3$
e) $g(x) = 3^x$

b)
$$g(x) = x^3$$

c)
$$g(x) = x^2$$

e) $g(x) = 3^x$

f)
$$g(x) = x + x$$

f) $g(x) = x^3/2$

a)
$$g(x) = x^2$$

$$|x^3| \not\propto \langle |x^2|$$
 No!

b)
$$g(x) = x^3$$

$$|x^3| \leq \langle |x^3|$$
 YES

c)
$$g(x) = x^2 + x^3$$

$$|x^3| \leq C |x^2 + x^2|$$
 Yes

d)
$$g(x) = x^2 + x^4$$

$$|x^3| \leq c |x^2 + x^4|$$
 Yes

e)
$$g(x) = 3^x$$

f)
$$g(x) = x^3/2$$

$$|x^3| \leq C \left| \frac{x^3}{2} \right|$$
 Ves with $C > 2$

22. Arrange the function $(1.5)^n$, n^{100} , $(\log n)^3$, $\sqrt{n} \log n$, 10^n , $(n!)^2$, and $n^{99} + n^{98}$ in a list so that each function is big-O of the next function.

30. Show that each of these pairs of functions are of the same order.
a) 3x + 7, x
b) 2x² + x - 7, x²

- c) [x + 1/2], x
- **d)** $\log(x^2 + 1), \log_2 x$
- **e)** $\log_{10} x, \log_2 x$
- **a)** 3x + 7, x
- **b**) $2x^2 + x 7$, x^2
- c) [x + 1/2], x
- **d**) $\log(x^2 + 1), \log_2 x$
- **e**) $\log_{10} x, \log_2 x$

32. Show that if f(x) and g(x) are functions from the set of real numbers to the set of real numbers, then f(x) is O(g(x)) if and only if g(x) is $\Omega(f(x))$.