Корреляционный анализ.

1 (1 балл) Ученые из университета Сантьяго де Чили провели исследование с целью установить зависимость между породой коров в рязанской глубинке и жирностью даваемого ими молока. Они получили следующие результаты:

	0.5%	1.5%	2.5%	3.2%
Голландская	13	35	26	46
Голштинская молочная	22	45	48	75
Джерсейская	18	30	15	47
Холмогорская буренка	44	62	56	68

Стоит ли чилийским специалистам принять гипотезу о независимости породы коровы от жирности её молока на уровне значимости $\alpha = 0.05$?

- **2** (2 балла) Выданы выборки X_1, \ldots, X_n и Y_1, \ldots, Y_n . Определить на уровне значимости $\alpha=0.05$, являются ли они зависимыми.
- 3 (2 балла) Шалтай-Болтай, Брандашмыг, Труляля, Траляля и мистер Фаттахов сидели вместе за столом и пили чай, причем Труляля и Траляля пили из одной чашки. Для каждого гостя Алиса отмечала точное время, когда он наливал себе очередную чашку чая. Кроме того, Алиса заметила, что мистер Фаттахов пьет в два раза больше остальных. Предложить процедуру проверки гипотезы о независимости времени наполнения новой чашки от того, кто её наливает, и проверить её на уровне значимости $\alpha=0.05$ (имеется в виду не промежутки между двумя последовательными наполнениями чашки, а точное время, когда очередная чашка была наполнена). Объяснить, почему метод работает.
- 4 (3 балла) Выдано k выборок $\{X_i^{(1)}\}_{i=1}^n,\ldots,\{X_i^{(k)}\}_{i=1}^n$. Проверить гипотезу о независимости выборок методами корреляционного анализа с помощью статистической процедуры, контролирующей FWER на уровне $\alpha=0.05$. Являются ли выборки независимыми в совокупности? Если нет, укажите пары выборок, которые в результате проведённой статистической процедуры признаны зависимыми.
- **5** (4 балла) Выдано k выборок $\{X_i^{(1)}\}_{i=1}^n,\ldots,\{X_i^{(k)}\}_{i=1}^n$. Пользуясь выборочным коэффициентом корреляции для оценки корреляции между выборками, проверить гипотезу о том, что распределение выборки векторов $X=(X_1,\ldots,X_n)$, где $X_i=(X_i^{(1)},\ldots,X_i^{(k)})^T$, является многомерным нормальным распределением, на уровне значимости $\alpha=0.05$.

Указание. Выборку из векторов следует разделить на 2 части, по первой части "обучать" коэффициенты корреляции, а по второй уже проверять нормальность с учётом оцененных параметров.