Incident Response Lab Report: Initial Home Lab and SIEM Setup

By Marcus Dunn

Executive Summary

This report documents a practical incident response lab involving the deployment, compromise, and monitoring of a Windows 10 virtual machine (ENDUSER01-Win, referenced as ENDUSER01-LOGS in logs) using Splunk and Sysmon. The goal was to simulate a real-world cyber attack, demonstrate end-to-end detection, and reflect on problem-solving and technical learning throughout the process.

Lab Overview and Objectives

- Set up a segmented internal network using Oracle VirtualBox
- Deploy Splunk Universal Forwarder and configure custom input.conf for detailed Windows event log forwarding
- Install and configure Sysmon for granular endpoint monitoring
- Simulate attacker actions: Nmap reconnaissance followed by Meterpreter reverse shell via Metasploit
- Detect and analyze all activity in Splunk
- Document troubleshooting, challenges, and key lessons learned for technical growth

Environment Architecture

- Two VMs: Windows 10 target (ENDUSER01-Win/LOGS), Kali Linux attacker
- Network: Internal VirtualBox network (lab-internal-net), static IPs set manually
- Tools: Splunk Enterprise, Sysmon, Metasploit, Nmap, Windows Firewall

Lab Setup & Configuration

The following configuration steps ensured reliable log forwarding, comprehensive event capture, and safe segmentation for offensive/defensive operations.

Splunk input.conf (Final Version)

This updated configuration captures all essential Windows logs including Sysmon, Security, Application, System, PowerShell, and Windows Defender.

Splunk and Sysmon Setup

Configuring Splunk to monitor Windows Event Logs

Splunk: Configuring TCP receiving port for data

Sysmon official download and executable files

Sysmon visible in Event Viewer and Services

Sysmon installed via PowerShell with custom config

Sysmon config file placed and PowerShell in target directory

Attack Simulation Sequence

The lab attack scenario followed the sequence of real-world adversaries: initial reconnaissance, delivery of a malicious payload, and post-exploitation monitoring.

- **Reconnaissance:** Nmap scan against Windows host to identify open ports
- **Delivery:** Meterpreter payload created with msfvenom and delivered via HTTP server on Kali
- **Exploitation:** Payload executed on Windows, establishing a reverse TCP shell

Reconnaissance with Nmap

Nmap was used to scan the Windows target for open ports. No open ports were visible, indicating the system was not externally exposed.

Payload Generation & Delivery

Using msfvenom, a Windows Meterpreter reverse TCP payload was generated.

Kali's built-in HTTP server hosted the payload for download by the Windows victim.

Network Configuration & Verification

Verifying Windows VM IP after network placement

Confirming IP assignment for Kali after internal network placement

Testing connectivity between Windows and Kali

Ping test verifying ICMP connectivity

Enabling ICMP on Windows Firewall

Exploitation & Post-Exploitation

Metasploit handler received a reverse shell from the compromised Windows host.

Detection, Logging & Analysis

Splunk successfully ingested logs from the attack. Events from Sysmon and Security logs provided full visibility into malicious activity.

Troubleshooting & Problem Solving

During the project, several issues were identified and resolved, such as:

- Network communication problems between VMs (solved by double-checking internal network adapter settings and manually assigning IPs)
- Splunk log ingestion gaps (resolved by reviewing and updating the input.conf to include missing channels and enable XML rendering)
- No logs in Splunk dashboard (required validation of Universal Forwarder connection and permissions)
- Ensuring correct order of attack simulation (Nmap before Metasploit for proper adversary emulation)

Troubleshooting Example: When logs did not appear in Splunk, revisited both input.conf content and Universal Forwarder service status. Asked targeted questions about Splunk's expected sources and corrected the configuration by referencing Splunk documentation.

Lessons Learned

- Learned step-by-step deployment of enterprise logging with Splunk and Sysmon
- Developed practical troubleshooting skills by resolving common but real-world problems (network, log, and tool configuration)
- Gained hands-on red team/blue team experience simulating attacker workflow and validating detection pipeline
- Improved confidence with parsing Windows event logs and forensic artifact review in Splunk
- Learned the value of iterative configuration and validation for all tools in the chain