

Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas Lista 1 de Astronomia

Nome:
NAMO'

Data de entrega e resolução em aula: 02/05/2022

Valor: 3,0

Obs.: os problemas que deverão ser entregues serão informados no dia 18/04.

Problemas para entregar: 2, 3, 5, 9, 15, 17, 19, 20, 21, 22

1) Mostre que:

a) $1 \, ano - luz = 9,46 \times 10^{12} \, km$.

b) $1 \ parsec = 3,26 \ anos - luz = 3,08 \times 10^{13} \ km$.

- **2)** Quando o Sol se põe, decorrem aproximadamente 2 minutos entre o instante em que o disco solar encosta no horizonte e sua ocultação completa. A partir deste dado, estime o diâmetro angular aparente do Sol visto da Terra, em graus.
- **3)** No dia do solstício de verão (o mais longo do ano), na cidade de Siena, ao meio dia, os raios solares eram exatamente verticais. Neste dia e hora, Eratóstenes mediu a sombra projetada por uma estaca vertical na cidade de Alexandria e descobriu que ela tinha um oitavo da altura da estaca. Além disso, a distância entre as duas cidades já era conhecida como 5000 estádios (1 estádio aproximadamente 157 metros). Com estes dados, calcule o raio da Terra.

4) O diâmetro angular da Lua pode ser determinado com o auxílio de uma régua. Estique um braço com a régua na mão e alinhe a extremidade superior da régua com a extremidade superior da Lua, assim como mostra a figura abaixo. Coloque o polegar no ponto da régua que coincide com a extremidade inferior da Lua, conforme a figura abaixo.

- **(a)** Em termos de d e x, quanto vale o diâmetro angular da Lua? Resultados típicos da razão x/d giram em torno de 1/110.
- **(b)** Como poderíamos utilizar as informações acima para calcular a razão entre a distância da Lua e seu diâmetro.
- **5)** No século III A.C., o astrônomo grego Aristarco de Samos estimou a razão d_s/d_L entre a distância (d_s) da Terra ao Sol e a distância (d_L) da Terra à Lua medindo o ângulo θ entre as retas Terra Sol e Terra Lua, conforme a figura. O valor que obteve foi $\theta = 87^\circ$.
- (a) Encontre a estimativa de Aristarco para d_S/d_L.
- **(b)** Com base nos valores atualmente conhecidos, $d_S/d_L \sim 389$. Determine o valor atual de θ e argumente porque o método de Aristarco não produz um bom resultado.

- **6)** Deduza a forma que a latitude de um observador se relaciona com a altura do polo elevado.
- **7)** Verifica-se que, em um certo lugar do hemisfério sul, os círculos diurnos das estrelas fazem um ângulo de 50° com o horizonte.
 - a. Qual a latitude do lugar?
 - b. Qual o pólo elevado (norte ou sul) e qual a sua altura (elevação acima do horizonte)?
- 8) Para um observador no equador da Terra:
 - a. Qual a altura do pólo celeste norte?
 - b. E do pólo celeste sul?
 - c. Como é o movimento das estrelas nesse lugar, com relação ao horizonte?
 - d. Existem estrelas circumpolares nesse lugar?
- **9)** Desenhe um circulo representando a esfera celeste para um observador localizado em uma lugar de latitude 20° N. Nesse círculo marque:
 - a. A localização do zênite.
 - b. A localização do polo elevado, e o ângulo que ele faz com o horizonte.
 - c. o plano do equador
 - d. O plano do horizonte, com os pontos cardeais N,S,L,O
 - e. A calota das estrelas circumpolares visíveis
 - f. O círculo diurno de uma estrela de declinação $\delta = +40^{\circ}$.
- **10)** Entre as estrelas na tabela abaixo, escolha:
 - a. As que pertencem ao hemisfério sul celeste
 - b. As que nunca podem ser vistas em Oslo (latitude = 59° N)
 - c. A(s) que é (são) circumpolar(es) em Porto Alegre (latitude = 30° S)
 - d. A que faz sua passagem meridiana mais próxima do zênite em Porto Alegre

	(h) (m)	(°)
Sírius (α Cão Maior)	6 45	-17
Canopus (α Carina)	6 54	-53
\[Estrela	Ascensão Reta (α)	Declinação (δ)
Antares (α Escorpião)	16 29	-26,5
Betelgeuse (α Orion)	5 55	+7
Deneb (α Cisne)	20 41	+45
Arcturus (α Bootis)	14 15	+19
Acrux (α Crucis)	12 26	-63
Spica (α Virgem)	13 25	-11
Rigelkent (α Centauri)	14 39	-61
Rigel (β Orionis)	5 14	-8

e. As que estão na faixa do zodíaco

- 11) Mostre que um dia sideral é aproximadamente 4 min mais curto que o dia solar.
- **12)** A latitude de Montreal é 48° N.
 - a. Sabendo que a obliquidade da eclíptica é 23,5°, qual a altura máxima do Sol, no verão, em Montreal Faça um desenho explicativo
 - b. Se em Porto Alegre a máxima altura do Sol, no verão, é 83,5 °, calcule a razão entre a insolação recebida em Montreal, no verão, com a insolação recebida em Porto Alegre, no verão.
 - c. Se a obliquidade da eclíptica fosse 33°, qual seria o efeito nas estações, comparado com a obliquidade real, de 23,5°, (a) em Montreal (b) em uma cidade localizada no equador.
- **13)** Um astro realiza, durante o período de um dia, duas passagens meridianas. Considere uma estrela que faz uma passagem meridiana a uma altura de 85°, ao sul do zênite, e uma segunda passagem a uma altura de 45°, ao norte do zênite. Calcule a declinação da estrela e a latitude do observador.
- **14)** Considere a culminação superior de um astro. Deduza uma relação para a distância zenital em termos da declinação dos astro e da latitude do observador. Note que a relação deve ser ligeiramente diferente para culminação ao norte do zênite ou ao sul do zênite.
- **15)** Encontre uma relação entre o módulo da latitude do observador e o módulo da declinação de uma estrela para que esta seja circumpolar.
- **16)** A longitude de Porto Alegre é de, aproximadamente, -51°. Sabendo que Porto Alegre está no fuso -3h, em quanto tempo a sua hora real está atrasada ou adiantada em relação à Hora Legal (hora do fuso).
- **17)** Mostre que o dia sideral é cerca de 4 minutos mais curto que o dia solar. Justifique com cálculos e desenhos.
- **18)** Qual é a fase da Lua se: a) Ela nasce ao pôr do Sol? b) Ela cruza o meridiano superior ao meiodia? c) Ela se põe à meia-noite? d) Ela nasce com o Sol?
- **19)** A Lua, vista da Terra, se movimenta em relação ao fundo de estrelas a uma taxa de 13°10′35″ para leste por dia. Qual a duração do "dia lunar", isto é, o intervalo de tempo decorrido entre duas culminações sucessivas da Lua? Justifique com cálculos e desenhos.
- **20)** O mês lunar (tempo para repetição de uma mesma fase) é de 29,53 dias. Calcular a duração do mês sideral (tempo para dar uma volta completa em torno da Terra). Justifique com cálculos e desenhos.
- **21)** As estações do ano ocorrem devido à mudança na quantidade de radiação solar absorvida pela Terra. Estime a razão das insolações na cidade de Porto Alegre (latitude: 30° Sul):

- (a) Iv / Ii ao meio dia (maior altura do Sol), onde Iv é a insolação no solstício de verão e Ii a insolação no solstício de inverno.
- (b) Ip / Ia, onde Ip é a insolação quando a Terra está no periélio e Ia a insolação quando a Terra está no afélio.
- (c) comparando estes resultados, qual efeito é mais relevante para as estações do ano?
- **22)** Calcule o comprimento da sombra da Terra, considerando se a distância média Terra Sol e sabendo que o raio da Terra vale 6370 km e o raio do Sol 696000 km.