UMSSM, right-handed sneutrino and cold dark matter

Jonathan Da Silva

Laboratoire d'Annecy-le-Vieux de Physique Théorique

Internal seminar, Institute for Particle Physics Phenomenology, Durham University, UK, January 20, 2012

G. Bélanger, J. Da Silva and A. Pukhov arXiv:1110.2414 [hep-ph], to appear in JCAP (2012)

Outline

- 1 Motivations
 - Need of dark matter (DM)
 - Need of supersymmetry
- 2 Candidates
 - Some candidates
 - Sneutrino
- 3 The UMSSM
 - Contents
 - Constraints
- 4 CDM-SM interactions
 - WIMP annihilation
 - Scattering on nucleons
 - Global scan
 - Characteristics
 - Results
- 6 Conclusion and perspectives

Motivations

- 1 Motivations
 - Need of dark matter (DM) •
 - Need of supersymmetry
 - Candidate
 - Some candidates
 - Sneutring
 - The UMSSN
 - Contents
 - Constraint
 - CDM-SM interactions
 - WIMP annihilation
 - Scattering on nucle
 - Global scan
 - Characteristic
 - Results.
 - Conclusion and perspectives

Since 1933 and Zwicky observations, we accumulated evidences for DM existence:

Galaxy scale: rotation curves of galaxies

K. G. Begeman, A. H. Broeils and R. H. Sanders, 1991, MNRAS, 249, 523

Circular velocity $v(r) = \sqrt{\frac{GM(r)}{r}}$ expected to fall in $\frac{1}{\sqrt{r}}$, observed approximately constant (! ?)

 \Rightarrow need of a halo with M(r) α r

Since 1933 and Zwicky observations, we accumulated evidences for DM existence:

- Galaxy scale: rotation curves of galaxies
- Galaxy clusters scale : example of the bullet cluster

A direct empirical proof of the existence of dark matter, D. Clowe et al., Astrophys. J. 648 L109-L113, 2006

Study of X-rays and gravitational lensing effect of this cluster : discrepancy between baryonic matter and gravitational potential

⇒ non-negligible non-colliding component of clusters

Since 1933 and Zwicky observations, we accumulated evidences for DM existence:

- Galaxy scale: rotation curves of galaxies
- Galaxy clusters scale : example of the bullet cluster
- Cosmological scale : the Cosmic Microwave background (CMB)

To match a cosmological model with the CMB power spectrum

$$\Rightarrow \Omega_{_{DM}} h^2 = 0.0226 \pm 0.0005$$
 and $\Omega_{_{DM}} h^2 = 0.1123 \pm 0.0035$

Since 1933 and Zwicky observations, we accumulated evidences for DM existence:

- Galaxy scale: rotation curves of galaxies
- Galaxy clusters scale : example of the bullet cluster
- Cosmological scale : the Cosmic Microwave background (CMB)
- Large scale structures, ...

DM has to be stable and weakly charged under the standard model gauge group (otherwise we should have seen it)

Conservation of DM structures ⇒ warm vs. cold DM

here we choose CDM

- Motivations

 - Need of supersymmetry

 - CDM-SM interactions

 - Scattering on nuclear
 - Global scan

Hierarchy problem

No symmetry protects higgs mass :

 $\Delta \mathrm{m}_{\mathrm{H}}^2 = -rac{\left|\lambda_{\mathrm{f}}
ight|^2}{8\pi^2}\Lambda^2$

Supersymmetry, symmetry between fermions and bosons (thanks to Poincaré group extension) plays this role by adding one-loop corrections:

$$\Delta m_{H}^{2} = \frac{|\lambda_{S}|^{2}}{16\pi^{2}}\Lambda^{2} + \dots$$

Cancellation of quadratic divergence

- Hierarchy problem
- Gauge coupling unification

Modification of RGEs in the supersymmetry framework

⇒ Supersymmetry allows unification at GUT scale

- Hierarchy problem
- Gauge coupling unification
- LSP/DM

No supersymmetric particles seen at the same mass as their standard partners ⇒ supersymmetry is broken, new particles (at least) at TeV scale

Supersymmetric terms give us proton decay

- \Rightarrow need of R-Parity to forbid them $P_R \stackrel{<}{=} (-1)^{3(B-L)+2s}$
- ⇒ Result : the lightest supersymmetric particle (LSP) is stable

This LSP, stable, at TeV scale, can be weakly charged under the SM gauge group

⇒ DM candidates in supersymmetric models

Candidates

- Motivations
 - Need of dark matter (DN
- **Candidates**
 - Some candidates

 - CDM-SM interactions

 - Scattering on nu
 - Global scan

Some candidates

- Assuming R-parity, 2 CDM (WIMPs) candidates in the MSSM :
 - ▶ Lightest neutralino : a lot of studies ⇒ good DM candidate
 - ▶ Left-handed (LH) sneutrino : too high counling with $Z^0 \Rightarrow$ don't satisfy
 - experimental constraints on spin independent direct detection \Rightarrow bad DN

Others SUSY candidates to DM: Gravitino, axino, ...

Sneutrino

- Motivations
- Need of dark matter (DN
- **Candidates**

 - Sneutrino
 - - CDM-SM interactions

 - Scattering on nu
 - Global scan

Sneutrino

- Neutrino oscillations indicative of massive neutrinos ⇒ possibility to add a right-handed (RH) neutrino field
 - ⇒ Extensions of the MSSM with RH (s)neutrino can provide DM candidate
- Different mechanisms appear to obtain sneutrino DM
 - ► Mixing between LH and RH sneutrinos •
 - Sneutrino in inverse see-saw mechanism models
 - RH sneutrino extension in the NMSSM
- Here RH neutrino mass generated by introducing Dirac mass terms
 - ⇒ supersymmetric partner can be at the TeV scale
- This candidate couples to new vector, scalar field by adding a new abelian gauge group, it's the UMSSM

The UMSSM

- Motivations
 - Need of dark matter (DN
- The UMSSM
 - **Contents**

 - CDM-SM interactions

 - Scattering on nu
 - Global scan

Contents

- Extending the SM gauge group is well-motivated in superstrings and grand unified theories M. Cvetič and P. Langacker, Phys. Rev. D 54, 3570 (1996)
- Symmetry group: $SU(3)_c \times SU(2)_L \times U(1)_Y \times U'(1)$

Coupling constants : g_3 , g_2 , g_Y and $g'_1 = g_1 = \sqrt{\frac{5}{2}}g_Y$

U'(1) stems from the breaking of E_6 $\mathsf{E_6} \to \mathsf{SU}(3)_\mathsf{c} \times \mathsf{SU}(2)_\mathsf{L} \times \mathsf{U}(1)_\mathsf{Y} \times \mathsf{U}(1)_\chi \times \mathsf{U}(1)_\psi \Rightarrow \mathsf{U}'(1)$ charge :

$$\mathbf{Q}' = \cos\theta_{\mathsf{E}_6} \mathbf{Q}_\chi + \sin\theta_{\mathsf{E}_6} \mathbf{Q}_\psi, \qquad \theta_{\mathsf{E}_6} \in [-\pi/2, \pi/2]$$

- As the NMSSM, this model solves the μ problem, since it's related to the v.e.v of the singlet responsible of the breaking of the new abelian gauge group
- Superpotential:

$$\mathbf{W}_{\mathsf{MSSM}} = \mathbf{\bar{u}}_{\mathsf{Ju}} \mathbf{Q} \mathbf{H}_{\mathsf{u}} - \mathbf{\bar{d}}_{\mathsf{Jd}} \mathbf{Q} \mathbf{H}_{\mathsf{d}} + \mathbf{\bar{e}}_{\mathsf{Je}} \mathbf{L} \mathbf{H}_{\mathsf{d}} + \mu \mathbf{H}_{\mathsf{u}} \mathbf{H}_{\mathsf{d}}$$
 $\mathbf{W}_{\mathsf{UMSSM}} = \mathbf{W}_{\mathsf{MSSM}}|_{\mu=0} + \lambda \mathbf{S} \mathbf{H}_{\mathsf{u}} \mathbf{H}_{\mathsf{d}} + \bar{\nu} \mathbf{y}_{\nu} \mathbf{L} \mathbf{H}_{\mathsf{u}}$

Q' choice	Q	ū	d:	L	ē	$\bar{\nu}$	Hu	′ H _d	S
$\sqrt{40} Q_{\chi}$	-1	-1•	3	3	-1	-5	2	-2	0
$\sqrt{24} Q_{\psi}$	1	1	1	1	1	1	-2	-2	- 4

Contents

Some differences with the MSSM :

Gauge sector: Physical abelian gauge bosons: Z_1 and Z_2 , mixing between the Z^0 of the SM and the Z', α_Z is the mixing angle

$$\mathsf{M}_{\mathsf{Z}_{1},\mathsf{Z}_{2}}^{2} = \frac{1}{2} \left(\mathsf{M}_{\mathsf{Z}^{0}}^{2} + \mathsf{M}_{\mathsf{Z}'}^{2} \mp \sqrt{\left(\mathsf{M}_{\mathsf{Z}^{0}}^{2} + \mathsf{M}_{\mathsf{Z}'}^{2} \right)^{2} + 4 \Delta_{\mathsf{Z}}^{4}} \right)$$

$$\sin 2\alpha_{Z} = \frac{2\Delta_{Z}^{2}}{M_{Z_{2}}^{2} - M_{Z_{1}}^{2}}$$

Higgs sector: 1 CP odd higgs A^0 , 5 CP even higgs: h^{\pm} , h_1 , h_2 and h_3 singlet-like higgs (h_2 or h_3) mass near Z_2 mass including pure UMSSM terms + radiative corrections

$$\Rightarrow$$
 m_{h1} above LEP limits

Gauginos sector : 6 neutralinos in the basis $(\widetilde{B},\widetilde{W}^3,\widetilde{H}^0_d,\widetilde{H}^0_u,\widetilde{S},\widetilde{B'})$

Contents

To sum up :

Relevant free parameters:

- WIMP mass M_{pp}
- Higgs sector $\Rightarrow \mu$, \mathbf{A}_{λ} .
- Gauge sector : M_{Z_2} and $\alpha_Z \Rightarrow t_\beta$ constrained
- Gaugino sector : M_1 , M'_1 and again μ (higgsino NLSP)
- Soft terms at 2 TeV ⇒ no sfermion coannihilation

Constraints

- Motivations

- The UMSSM

 - Constraints
 - CDM-SM interactions

 - Scattering on nu
 - Global scan

Constraints

- On our CDM candidate
 - Relic density at 3σ with $\Omega_{WIMP} h^2 = 0.1123 \pm 0.0035$
 - Spin independent direct detection cross section

Constraints

- On our CDM candidate
- On different sectors of the model
 - Higgs mass constraints from LEP and LHC: 114.4 GeV $< m_{h_1} < 144$ GeV

in this talk only 123 GeV
$$< m_{h_{\rm 1}} < 127$$
 GeV

New Z boson mass constraints from ATLAS :

Q' choice		\mathbf{Q}_{N}	\mathbf{Q}_{η}	Q ₁	Q_S	\mathbf{Q}_χ
M _{Z2} (TeV)	1.49	1.52	1.54	1.56	1.60	1.64

- Z^0 properties $\Rightarrow |\alpha_Z| \lesssim 10^{-3} (M_W = \cos \theta_W M_{Z^0}, \text{ not } M_{Z_1}!)$
- ► LEP constraints on sparticles masses (especially charginos)
- $B_{d,s}^0 \bar{B}_{d,s}^0$ mesons physics constraints : $\Delta M_{d,s}$ mass differences with one-loop supersymmetric contribution with charginos and charged higgs
 - ⇒ supersymmetry can increase the difference that appears between observed and standard model expected values :

$$\begin{split} \Delta m_s &= 17.77 \pm 0.12 \text{ ps}^{-1} \text{(CDF)}, \ \Delta m_s^{SM} = \ 20.5 \pm 3.1 \text{ ps}^{-1} \\ \Delta m_d &= 0.507 \pm 0.004 \text{ ps}^{-1} \text{(HFAG)}, \ \Delta m_d^{SM} = \ 0.59 \pm 0.19 \text{ ps}^{-1} \\ \Delta m_s &= 17.63 \pm 0.11 \text{ ps}^{-1} \text{(LHCb)} \end{split}$$

CDM-SM interactions

- Motivations
 - Need of dark matter (DM)
 - Need of supersymmetry
- Candidates
 - Some candidates
 - Sneutrino
- The UMSSN
 - Contents
 - Constraints
- 4 CDM-SM interactions
 - WIMP annihilation
 - Scattering on nucl
 - Global scan
 - Characteristics
 - Results.
 - Conclusion and perspectives

Parameter space regions with $\Omega_{\text{WIMP}}\,\text{h}^2\approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

Parameter space regions with $\Omega_{\text{WIMP}}\,\text{h}^2\approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_1}/2$

Parameter space regions with $\Omega_{\text{WIMP}}\,\text{h}^2\approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

• WIMP mass near $m_{h_1}/2$ $\tilde{\nu}_R$

WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$)

Parameter space regions with $\Omega_{\text{WIMP}}\,\text{h}^2\approx 0.1 \Rightarrow \text{need to increase the annihilation cross section}$:

WIMP mass near m_{h1}/2

WIMP mass near M_{Z2}/2 (also m_{hi}/2)

WIMP mass near m_{h:}/2 or above W pair threshold

Parameter space regions with $\Omega_{\text{WIMP}}\,\text{h}^2\approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

WIMP mass near m_{h1}/2

WIMP mass near M_{Z2}/2 (also m_{hi}/2)

WIMP mass near m_{h:}/2 or above W pair threshold

- h₁
- h_i h₁

Coannihilation processes (mainly higgsino-like)

 $\tilde{\nu}_{\mathsf{R}}$

$$\frac{\hat{t}_i}{t_i}$$

Parameter space regions with $\Omega_{\text{WIMP}} \, \text{h}^2 \approx 0.1 \Rightarrow$ need to increase the annihilation cross section :

- WIMP mass near m_{h1}/2
- WIMP mass near M_{Z2}/2 (also m_{hi}/2)
- WIMP mass near m_{hi}/2 or above W pair thresh
- Coannihilation processes (mainly higgsino-like)

- Motivations
- Need of dark matter (DM)
 - Need of supersymmetry
- Candidates
 - Some candidates
 - Sneutrino
- The UMSSM
 - Contents
 - Constraints
- 4 CDM-SM interactions
 - WIMP annihilation
 - Scattering on nucleons
 - Global scan
 - Characteristics
 - Results.
 - Conclusion and perspectives

Mainly abelian gauge bosons contribution, h₁ for LSP mass ≤ 200 GeV

 \Rightarrow for some U'(1) models we can have a good suppression of the gauge boson or/and higgs part

here
$$U(1)_{\psi} \Rightarrow heta_{\mathsf{E}_6} = \pi/2$$

Mainly abelian gauge bosons contribution, h_1 for LSP mass $\lesssim 200$ GeV

 \Rightarrow for some U'(1) models we can have a good suppression of the gauge boson or/and higgs part

here
$$\mathrm{U}(1)_{\psi} \Rightarrow heta_{\mathrm{E}_6} = \pi/2$$

 \Rightarrow for other models, huge constraints on the parameter space appear here U(1)_η \Rightarrow tan $\theta_{\text{E}_6} = -\sqrt{5/3}$

Abelian gauge boson contribution to direct detection:

$$\begin{split} &\sigma_{\bar{\nu}_RN}^{Z_1,Z_2} = \frac{\mu_{\bar{\nu}_RN}^2}{\pi} (g_1'Q_{\bar{\nu}}')^2 [(y(1-4s_W^2)+y')Z + (-y+2y')(A-Z)]^2 \\ &\text{with } y = \frac{g'\sin\alpha_Z\cos\alpha_Z}{4\sin\theta_W} \left(\frac{1}{M_{Z_2}^2} - \frac{1}{M_{Z_1}^2}\right), \ y' = -\frac{g_1'}{2} Q_V^{'d} \left(\frac{\sin^2\alpha_Z}{M_{Z_1'}^2} + \frac{\cos^2\alpha_Z}{M_{Z_2'}^2}\right) \end{split}$$

 \Rightarrow stringent constraints for small $|\theta_{\mathsf{E}_6}|$ because of $\mathsf{Q}_{\mathsf{V}}^{'\mathsf{d}}$ term

Jonathan Da Silva (LAPTH)

UMSSM, $\tilde{\nu}_R$ and CDM

Higgs-CDM contribution:

$$g_{\tilde{\nu}_R\tilde{\nu}_R^*h_i} = -{g_1'}^2Q_{\tilde{\nu}}'\left[v_dQ_{H_d}'Z_{hi1} + v_uQ_{H_u}'Z_{hi2} + v_sQ_S'Z_{hi3}\right]$$

 \Rightarrow increase of the cross section for $heta_{\mathsf{E}_6} < 0$ because of $\mathsf{Q}'_{\overline{\nu}}$

Global scan

- Motivations
- Need of dark matter (D)
- - CDM-SM interactions

 - Scattering on nuclear
- Global scan
- Characteristics

Characteristics

					The state of the s		
Fixed parameters				Free parameters			
	Soft t	terms		Name	Domain of variation		
m _{Qi}	2 TeV	m _{Li}	2 TeV	$M_{ ilde{ u}_R}$	[0, 1.5] TeV		
m _{ūi}	2 TeV	m _{d̄i}	2 TeV	M_{Z_2}	[1.3, 3] TeV		
m _{ēi}	2 TeV	$m_{ar{ u}_{j}}$	2 TeV	μ .	[0.1, 2] TeV		
$i \in$	$\{1, 2, 3\}$, j ∈ {1	1,2 }	A_{λ}	[0, 2] TeV		
Trilir	near cou	plings -	⊦ M _K	θ_{E_6}	$[-\pi/2, \pi/2]$ rad		
At	1 TeV	A _b	0 TeV	α_{Z}	$[-3.10^{-3}, 3.10^{-3}]$ rad		
A _c	0 TeV	A _s .	0 TeV	M_1	[0.1, 2] TeV		
Åu	0 TeV	A_d	0 TeV	M_1'	[0.1, 2] TeV		
A _I	0 TeV	M _K	1 eV	M ₂ =	= $2M_1$ et $M_3 = 6M_1$		

- Motivations

- CDM-SM interactions

 - Scattering on nu
- Global scan

 - Results...

Lower is $|\theta_{E_6}|$, higher are Z_2 processes in direct detection cross section \Rightarrow huge constraint

Large SUSY corrections proportional to $\frac{1}{t^4}$ \Rightarrow small values of t_{β} very constrained by ΔM_s

Conclusion and perspectives

- Motivations
 - Need of dark matter (DM)
 - Need of supersymmetry
- Candidates
 - Some candidates
 - Sneutring
- The UMSSN
 - Contents
 - Constraint
- CDM-SM interactions
- WIMP annihilation
- Scattering on nucle
- Global scan
- Characteristics
- Results
- 6 Conclusion and perspectives

Conclusion and perspectives

RH sneutrino is a viable dark matter candidate in the UMSSM

it respects experimental limits in the case of some annihilation processes :

- Resonance (h₁, Z₂ and singlet-like higgs)
- Coannihilation (neutralinos, charginos, others sfermions)
- ► Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as ΔM_s
- Neutralino can also be a good DM candidate in this gauge extension of the MSSM J. Kalinowski, S.F. King and J.P. Roberts, arXiv :0811.2204
- More careful study of the UMSSM higgs sector to analyse implications of the excesses seen in the $\gamma\gamma$ channels at LHC

Conclusion and perspectives

RH sneutring is a viable dark matter candidate in the UMSSM

it respects experimental limits in the case of some annihilation processes :

- Resonance (h₁, Z₂ and singlet-like higgs)
- Coannihilation (neutralinos, charginos, others sfermions)
- ► Annihilation into W pairs generally with exchange of h₁
- Direct detection experiments strongly constrain the model as well as ΔM_s
- Neutralino can also be a good DM candidate in this gauge extension of the MSSM J. Kalinowski, S.F. King and J.P. Roberts, arXiv :0811.2204
- More careful study of the UMSSM higgs sector to analyse implications of the excesses seen in the $\gamma\gamma$ channels at LHC

Thanks for your attention!

UMSSM fields

Chiral supermultiplets				
Supermultiplet	s. ′	spin 0	spin 1/2	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$, $U'(1)$
squarks, quarks	Q.	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L d_L)$	$(3, 2, \frac{1}{6}, Q'_Q)$
(3 families)	ū	\widetilde{u}_R^*	\bar{u}_R	$(\bar{3}, 1, -\frac{2}{3}, Q'_{u})$
	ā	\widetilde{d}_R^*	\bar{d}_R	$(\bar{3}, 1, \frac{1}{3}, Q'_d)$
sleptons, leptons	L.	$(\widetilde{\nu}_L \ \widetilde{e}_L)$	(ν _L e _L)	$(1, 2, -\frac{1}{2}, Q'_L)$
(3 families)	$\overline{\nu}$	$\widetilde{ u}_{R}^{*}$	$ar{ u}_R$.	$(1, 1, 0, Q'_{\bar{\nu}})$
	ē	\widetilde{e}_R^*	ē _R '	$(1, 1, \frac{1}{6}, Q'_e)$
higgs, higgsinos	· H _u	(H_{u}^{+}, H_{u}^{0})	$(\widetilde{H}_u^+ \widetilde{H}_u^0)$	$(1, 2, \frac{1}{2}, Q'_{H_u})$
	H _d •	$(H_d^0 \ H_d^-)$	$(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$	$(1, 2, -\frac{1}{2}, Q'_{H_d})$
	S	5	\tilde{S}	$(1, 1, 0, Q'_S)$
Vector supermultiplets.				
Supermultiplets		spin 1/2	spin 1	$SU(3)_c$, $SU(2)_L$, $U(1)_Y PU'(1)$
gluino, gluon		ĝ	g	(8, 1, 0, 0)
winos, W bosons		\widetilde{W}^{\pm} \widetilde{W}^3	$W^{\pm} W^3$	(1, 3, 0, 0)
bino, B boson		\widetilde{B}	В	(1, 1, 0, 0)
bino', B' bosor	1	$\widetilde{B'}$	Β'	(1, 1, 0, 0)

Some new lagrangian terms

Superpotential:

$$\begin{split} W_{MSSM} = & \bar{u}y_u Q H_u - \bar{d}y_d Q H_d - \bar{e}y_e L H_d + \mu H_u H_d \\ W_{VMSSM} = & W_{MSSM}(\mu = 0) + S I_u H_d + \bar{\nu}y_\nu L H_u \end{split}$$

Soft supersymmetry breaking :

$$\begin{split} \mathcal{L}_{\text{soft}}^{MSSM} &= -\frac{1}{2} (M_3 \widetilde{g} \widetilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \widetilde{B} \widetilde{B} + \mathbf{c.c.}) \\ &- (\widetilde{\mu}_R^* a_u \widetilde{Q} H_u - \widetilde{d}_R^* a_d \widetilde{Q} H_d - \widetilde{e}_R^* a_e \widetilde{L} H_d + \mathbf{c.c.}) \\ &- \widetilde{Q}^\dagger m_Q^2 \widetilde{Q} - \widetilde{L}^\dagger m_L^2 \widetilde{L} - \widetilde{u}_R^* m_e^2 \widetilde{u}_R - \widetilde{d}_R^* m_d^2 \widetilde{d}_R - \widehat{e}_R^* m_e^2 \widetilde{e}_R \\ &- m_{H_u}^2 H_u^\dagger H_u - m_{H_d}^2 H_d^\dagger H_d - (b H_u H_d + \mathbf{c.c.}) \\ \mathcal{L}_{\text{soft}}^{UMSSM} &= \mathcal{L}_{\text{soft}}^{MSSM} (b = 0) - \begin{pmatrix} \widehat{1}_L M_1 \widetilde{B} \widetilde{B}' + M_K \widetilde{B} \widetilde{B}' + \widetilde{\nu}_R^* a_\nu \widetilde{L} H_u + c. \widetilde{c.} \\ \widehat{2} M_1 \widetilde{B}' \widetilde{B}' + M_K \widetilde{B} \widetilde{B}' + \widetilde{\nu}_R^* a_\nu \widetilde{L} H_u + c. \widetilde{c.} \end{pmatrix} \\ &- \widetilde{\nu}_R^* m_p^2 \widetilde{\nu}_R - (\lambda A_\lambda S H_u H_d + \dot{c.c.}) - m_S^2 S^* S \end{split}$$

LanHEP, A. Semenov, arXiv :0805.0555 [hep-ph]

Reason of constrained t_{β}

$$\begin{split} M_Z^2 &= M_{Z_1}^2 \cos^2 \alpha_{ZZ'} + M_{Z_2}^2 \sin^2 \alpha_{ZZ'} \\ M_{Z'}^2 &= M_{Z_1}^2 \sin^2 \alpha_{ZZ'} + M_{Z'}^2 \cos^2 \alpha_{ZZ'}. \end{split}$$

$$\tan 2\alpha_{ZZ'} = \frac{2\Delta^2}{M_{Z'}^2 - M_Z^2} \implies \sin 2\alpha_{ZZ'} = \frac{2\Delta^2}{M_{Z_2}^2 - M_Z^2}$$

Knowing that

$$\Delta^2 = rac{g_1' \sqrt{{g'}^2 + g_2^2}}{2} v^2 (Q_2' s_eta^2 - Q_1' c_eta^2),$$
 $\downarrow \downarrow$
 $c_eta^2 = rac{1}{Q_1' + Q_2'} \left(rac{\sin 2lpha_{ZZ'} (M_{Z_1}^2 - M_{Z_2}^2)}{v^2 g_1' \sqrt{{g'}^2 + g_2^2}} + Q_2'
ight)$

Higgs masses

$$\begin{split} m_{AQ}^2 &= \frac{\lambda A_{\lambda} \sqrt{2}}{\sin 2\phi} \, v + \dot{\Delta}_{EA} & \tan \phi = \frac{v \sin 2\beta}{2v_s} \\ m_{H\pm}^2 &= \frac{\lambda A_{\lambda} \sqrt{2}}{\sin 2\beta} \, v_s - \frac{\lambda^2}{2} \, v^2 + \frac{g_2^2}{2} \, v^2 + \Delta_s & \tan \beta = \frac{v_u}{v_d} \\ M_{CPeven}^2 &: \\ \left(\mathcal{M}_+^0\right)_{11} &= \left[\frac{(g'^2 + g_2^2)^2}{4} + Q_1'^2 g_1'^2 \right] (vc_{\beta})^2 + \frac{\lambda A_{\lambda} t_{\beta} v_s}{\sqrt{2}} + \dot{\Delta}_{11} \\ . & \left(\mathcal{M}_+^0\right)_{12} &= -\left[\frac{(g'^2 + g_2^2)^2}{4} - \lambda^2 + Q' Q_2' g_1'^2 \right] v^2 s_{\beta} \dot{c}_{\beta} - \frac{\lambda A_{\lambda} v_s}{\sqrt{2}} + \dot{\Delta}_{12} \\ . & \left(\mathcal{M}_+^0\right)_{13} &= \left[\lambda^2 + Q_1' Q_3' g_1'^2 \right] vc_{\beta} v_s - \frac{\lambda A_{\lambda} v s_{\beta}}{\sqrt{2}} + \dot{\Delta}_{13} \\ & \left(\mathcal{M}_+^0\right)_{22} &= \left[\frac{(g'^2 + g_2^2)^2}{4} + Q_2'^2 g_1'^2 \right] (vs_{\beta})^2 + \frac{\lambda A_{\lambda} v_1}{t_{\beta} \sqrt{2}} + \Delta_{22} \\ & \left(\mathcal{M}_+^0\right)_{23} &= \left[\lambda^2 + Q_2' Q_3' g_1'^2 \right] vs_{\beta} v_s - \frac{\lambda A_{\lambda} v c_{\beta}}{\sqrt{2}} + \Delta_{23} \\ & \left(\mathcal{M}_+^0\right)_{33} &= Q_3'^2 g_1'^2 v_s^2 + \frac{\lambda A_{\lambda} v^2 s_{\beta} c_{\beta}}{v_s \sqrt{2}} + \Delta_{33} \end{split}$$

Vernon Barger, Paul Langacker, Hye-Sung Lee and Gabe Shaughnessy, arXiv :hep-ph/0603247

Coannihilation with sfermions

Sparticles sector:

$$M_{\tilde{f}}^2 = \begin{pmatrix} m_{\text{soft}}^2 + m_{\tilde{t}}^2 + M_{Z^0}^2 \cos 2\beta (l_f^3 - e_f \sin^2 \theta_W) + \Delta_f & m_f (A_f - \mu(t_\beta)^{-2l_f^3}) \\ m_f (A_f - \mu(t_\beta)^{-2l_f^3}) & m_{\tilde{soft}}^2 + M_{Z^0}^2 \cos 2\beta (l_f^3 - e_f \sin^2 \theta_W) + m_f^2 + \Delta_{\tilde{f}} \end{pmatrix}$$

where $\Delta_f = \frac{1}{2} g_1'^2 Q_f'(Q_{H_d}' v_d^2 + Q_{H_d}' v_u^2 + Q_S' v_s^2) \Rightarrow \text{Coannihilations}:$

$$heta_{ extsf{E}_6} > extsf{0}$$
 : generally $ilde{t_1}$

 $\theta_{E_6} < 0$: generally RH down sqarks