HOCHSCHULE ALBSTADT-SIGMARINGEN Studiengang Technische Informatik

Praktikum Elektrotechnik

Versuch 1

Stromversorgungs schaltung

Inhaltsverzeichnis

1	Einv	veggleichrichtung	3					
	1.1	Einweggleichrichtung mit ohmscher Belastung ohne Kondensator	;					
		1.1.1 Messaufgaben						
		1.1.2 Auswertung	4					
	1.2	Einweggleichrichtung mit Glättungskondensator	4					
		1.2.1 Messaufgaben						
		1.2.2 Auswertung						
2	Brü	ckengleichrichtung	7					
	2.1	Brückengleichrichtung ohne Glättungskondensator	7					
		2.1.1 Messaufgaben	7					
		2.1.2 Auswertung	7					
	2.2	Brückengleichrichtung mit Glättungskondensator	8					
		2.2.1 Messaufgaben	Ć					
		2.2.2 Auswertung	Ć					
3	Sieb	Siebschaltungen 1						
	3.1	RC-Siebung	10					
		3.1.1 Messaufgaben	10					
4	Spa	nnungsstabilisierung	11					
	4.1	Spannungsserienstabilisierung mit einem längsgeregeltem DC/DC-Wandler	11					
		4.1.1 Messaufgaben	11					
		4.1.2 Auswertung	12					
5	Anh	ang	14					
	5.1	Glättungsfaktor G	14					
	5.2	Welligkeit einer Mischspannung						
	5.3	Stromflusswinkel " a "						
	5.4		15					

1 Einweggleichrichtung

1.1 Einweggleichrichtung mit ohmscher Belastung ohne Kondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \,\Omega$
- 1 Diode V1, Typ 1N4001

Tabelle 1.1: Oszillographeneinstellung

Kanal Y1	5 V pro Teil, Signal bei $u_1(t)$
Kanal Y1	$5\mathrm{V}$ pro Teil, Signal bei $su_2(t)$
Kopplung	DC
Trigger	Y1, in, norm, level
Darstellung	Chopped
Zeitablenkung	5 µs

1.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Skizzieren Sie die Spannungs- und Stromverläufe $U_1(t)$, $U_2(t)$ und $I_1(t)$.

Durchführung: Schaltung aufbauen. $U_1 = 16 \text{ V}$ einstellen mit Regler am roten Netztrafo. Oszillograph anschließen. Messen Sie den Diodenstrom $I_D(t)$ indirekt am Messwiderstand R_m .

Messaufgabe 2

Aufgabe: Zeichen Sie die Spannungsverläufe auf

Messaufgabe 3

Aufgabe: Messen Sie mit dem Oszillograph und Multimeter

Tabelle 1.2: Messergebnisse Einweggleichrichtung ohne Kondensator

Messgröße		Messergebnis
Oszillograph:		
Frequenz der Eingangsspannung	f	
Brummspannungsfrequenz	f_{br}	
Scheitelwerte	$U_{1_{max}}$	
Scheitelwert	$U_{2_{max}}$	
Stromflusswinkel	α [°]	
Brummspannung	U_{brmax}	
Multimeter:		
Effektivwert	U_1	
Gleichspannung	U_{2-}	

1.1.2 Auswertung

Aufgabe 1: Berechnen Sie aus den Messwerten das Verhältnis $\frac{U_1}{U_{2-}}$. Geben Sie den gemessenen und den theoretischen Wert an (mit Herleitung).

Aufgabe 2: Erklären Sie die indirekte Strommessung mit dem Oszillograph, und geben Sie den gemessenen und errechneten Wert an. Begründen Sie den Unterschied zwischen den Werten.

1.2 Einweggleichrichtung mit Glättungskondensator

Messaufbau

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \,\Omega$
- 1 Diode V1, Typ 1N4001
- 1 Kondensator $C = 100 \,\mu F, 40 \, VElektrolyt$

1.2.1 Messaufgaben

Messaufgabe 1

Aufgabe: Messen Sie die Spannungs- und Stromverläufe $U_1(t), U_2(t), I_2(t) = \frac{U_2(t)}{R}$ mit dem Oszillographen.

Durchführung: Schaltung aufbauen. $U_1 = 16 V$ einstellen.

Messaufgabe 2

Aufgabe: Messen sie mit dem Oszillograph und Multimeter

Tabelle 1.3: Messergebnisse Einweggleichrichtung mit Kondensator

Messgröße		Messergebnis
Oszillograph:		
Frequenz der Eingangsspannung	f	
${\bf Brummspannungs frequenz}$	f_{br}	
Scheitelwerte	$U_{1_{max}}$	
Scheitelwert	$U_{2_{max}}$	
Stromflusswinkel	$\alpha[^{\circ}]$	
Brummspannung	U_{brmax}	
Multimeter:		
Effektivwert	U_1	
Gleichspannung	U_{2-}	

1.2.2 Auswertung

Aufgabe 1: Bestätigen Sie die Näherung $U_2 \approx \sqrt{2} \cdot (U_1 - 0, 65) \cdot \cos(\frac{a}{2})$

Aufgabe 2: Bestimmen Sie den Glättungsfaktor G

$$\mathbf{G} = 2 \cdot 3, 14 \cdot f \cdot C \cdot R$$

(siehe Anhang)

2 Brückengleichrichtung

2.1 Brückengleichrichtung ohne Glättungskondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \,\Omega$
- \bullet Brückengleichrichter Typ B80 C1000/1500

2.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Zeichnen Sie die Spannungs- und Stromveräufe $U_1(t), U_2(t)$ und $I_2(t)$ auf

Durchführung: Schaltung aufbauen. $U_1 = 16 \,\mathrm{V}$ einstellen. Oszillograph anschließen.

Messaufgabe 2

Aufgabe: Messen sie mit dem Oszillograph und Multimeter

2.1.2 Auswertung

Aufgabe 1: Berechnen Sie aus den Messwerten das Verhältnis $\frac{U_1}{U_{2-}}$. Geben Sie den theoretischen Wert an (Herleitung, Diodenspannung vernachlässigt).

Tabelle 2.1: Messergebnisse Brückengleichrichtung ohne Glättungskondensator

Messgröße		Messergebnis
Oszillograph:		
Frequenz der Eingangsspannung	f	
Brummspannungsfrequenz	f_{br}	
Scheitelwerte	$U_{1_{max}}$	
Scheitelwert	$U_{2_{max}}$	
Stromflusswinkel	$\alpha[^{\circ}]$	
Brummspannung	U_{brmax}	
Multimeter:		
Effektivwert	U_1	
Gleichspannung	U_{2-}	

2.2 Brückengleichrichtung mit Glättungskondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \,\Omega$
- 1 Kondensator $C = 33 \mu F$, 40 V
- 1 Kondensator $C = 100 \mu F$, 40 V
- 1 Kondensator $C = 220 \mu F$, 40 V
- 1 Kondensator $C = 1000 \mu F$, 40 V
- Brückengleichrichter Typ B80 C 1000/1500

2.2.1 Messaufgaben

Messaufgabe 1

Aufgabe: Messen und skizzieren Sie für C mit 33μ F die Spannungs- und Stromverläufe von $U_2(t)$ und $I_2(t)$ auf.

Durchführung: Schaltung aufbauen. $U_1 = 16 \,\mathrm{V}$ einstellen. Werte messen und aufschreiben. Zeichnung anfertigen.

Messaufgabe 2

Aufgabe: Protokollieren Sie die Werte für verschiedene Größen des Kondensators C_1 in u.a. Tabelle. (Setzen Sie abwechseln die verschiedenen Kondensatoren in die Schaltung ein).

Tabelle 2.2: Messwertetabelle Brückengleichrichtung mit Glättungskondensator

$C_1 \; [\mu { m F}]$	$33\mu\mathrm{F}$	$100\mu\mathrm{F}$	$220\mu\mathrm{F}$	$1000\mu\mathrm{F}$
$f_{Eingang}[\mathrm{Hz}]$				
$f_{br}[\mathrm{Hz}]$				
$U_{brss}[{ m V}]$				
$\frac{U_1}{U_2}$				
$W(10^{-2})$				
$U_1[{ m V}]$				
$U_2[{ m V}]$				
G				

2.2.2 Auswertung

Aufgabe 1: Berechnen Sie die Verhältnisse $\frac{U_1}{U_2}$, $W = \frac{U_{2w}}{U_2}$, sowie den Glättungsfaktor G für obige Messreihe. Rechnen Sie mit $U_{2w} = \frac{U_{2brss}}{2,828}$. Beurteilen Sie die Ergebnisse in Bezug auf die Dimensionierung von Stromversorgungsschaltungen.

3 Siebschaltungen

Die Ausgangsspannungen und -Ströme der Gleichrichterschaltungen enthalten noch relativ große Wechselanteile (Brummanteile). Mit Hilfe von Siebschaltungen (Tiefpass Netzwerke) können diese Wechselanteile nochmals reduziert werden.

3.1 RC-Siebung

Messaufbau:

- 1 Widerstand $R = 470 \,\Omega$
- 1 Widerstand $R_s = ? \Omega$
- 1 Kondensator $C_1 = 22 \,\mu\text{F}, 40 \,\text{V}$
- 1 Kondensator $C_s = ? \mu F, 40 V$
- Brückengleichrichter Typ B80 C 1000/1500

3.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Für die Gleichrichterschaltung aus 2.2 ist ein RC-Siebglied auszulegen. Dimensionieren Sie den Serienwiderstand R_s (Widerstand, Leistung) und den Siebkondensator C_s so, dass der Siebfaktor $s=\frac{U_{2w}}{U_{3w}}$ ca. 10 beträgt. Rechnen Sie mit der im Anhang angegebenen Näherungsformel für RC-Siebung. Folgende Randbedingungen sind einzuhalten: der zusätzliche Spannungsabfall am Serienwiderstand Rs darf 10 % der Ausgangsspannung (bei Nennstrom) nicht überschreiten. maximale Ausgangslast $R=470\,\Omega$. Messen Sie die Verhältnisse bei einer Belastung von $R=470\,\Omega$ mit dem Oszillograph nach.

Durchführung: Schaltung aufbauen, Messwerte (Restwelligkeit) protokollieren und graphisch darstellen (U_1, U_2, U_3) .

4 Spannungsstabilisierung

4.1 Spannungsserienstabilisierung mit einem längsgeregeltem DC/DC-Wandler

Messaufbau:

- 1 Widerstand $R_{Last} = 56 \,\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_{Last} = 220 \,\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_{Last} = 470 \,\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_{Last} = 1.2 \,\mathrm{k}\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_1 = 6.7 \Omega, 10 \%$
- 1 Kondensator $C_1 = 100 \,\mu\text{F}, 40 \,\text{V}$
- 1 Kondensator $C_2 = 22 \,\mu\text{F}, 40 \,\text{V}$
- 1 Kondensator $C_3 = 0.47 \,\mu\text{F}, 40 \,\text{V}$
- Brückengleichrichter Typ B80 C 1000/1500
- Spannungsregler IC1, 7805

4.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Ausgangskennlinie $U_3 = f(R_{Last})$. Messen Sie mit dem Multimeter: U_{2-} und U_{3-} . Beobachten Sie mit dem Oszillograph Ausgangsspannung U_{3-} .

Durchführung: Schaltung aufbauen. $U_1 = 16 \,\mathrm{V}$ einstellen. Messwerte für die verschiedenen Widerstände in die Tabelle 4.1 eintragen.

Messaufgabe 2

Aufgabe: Spannungsregler - Wirkungsgrad. Lastwiderstand $R_{Last} = 100 \,\Omega$ Messen Sie mit dem Multimeter: U_{2-} und U_{3-} , Werte notieren.

Tabelle 4.1: Messwertetabelle Spannungsserienstabilisierung

$R_{Last}[\Omega]$	1200	470	220	56
$U_{2-}[V]$				
$U_{3-}[V]$				
$U_{3brss}[\mathrm{mV}]$				
$P_v[W]$				
Wirkungsgrad in $\%$				

Messaufgabe 3

Aufgabe: Ermitteln Sie die Eingangsspannung U_1 bei der die Schaltung für $R_{Last} = 56\,\Omega$ noch einwandfrei regelt und geben Sie den Spannungswert an. Beobachten Sie dazu die Ausgangsspannung $U_3(t)$ mit dem Oszillograph. Stellen Sie zum Messen von U_{3brss} den Oszillograph auf AC-Kopplung, um den Gleichspannungsanteil zu unterdrücken.

4.1.2 Auswertung

Aufgabe 1: Berechnen Sie zu allen Messwerten die Verlustleistung $P_v = P_{ce}$ und den Wirkungsgrad des Spannungsreglers (Eigenverbrauch vernachlässigt). Tragen Sie die Daten in die Tabelle 4.1 ein und geben Sie die Berechnungen nachvollziehbar in der Ausarbeitung an!

Tabellenverzeichnis

1.1	Oszillographeneinstellung	3
1.2	Messergebnisse Einweggleichrichtung ohne Kondensator	4
1.3	Messergebnisse Einweggleichrichtung mit Kondensator	5
2.1	Messergebnisse Brückengleichrichtung ohne Glättungskondensator	8
2.2	Messwertetabelle Brückengleichrichtung mit Glättungskondensator $\ .\ .\ .$.	9
4.1	Messwertetabelle Spannungsserienstabilisierung	12

5 Anhang

Gehört nicht zur Ausarbeitung, deshalb nicht übernehmen!

5.1 Glättungsfaktor *G*

Der Glättungsfaktor G beschreibt bei Brummspannungen U_w das Verhältnis des Eingangs zum Ausgang. Die Spannung am Verbraucher verläuft umso "glatter" je größer die Zeitkonstante tc = CR im Verhältnis zur Periodendauer T der Eingangswechselspannung u (t) ist.

Definition:

$$G = 2 \cdot \pi \cdot f \cdot C \cdot R$$
 mit

R = Lastwiderstand

C = Glättungskondensator

f = Frequenz der Eingangswechselspannung

5.2 Welligkeit einer Mischspannung

Der gleichgerichteten Wechselspannung ist ein nichtsinusförmiger Wechselanteil (Brummspannung) mit der Schwingungsbreite U_{brss} überlagert. Der Effektivwert dieser Spannung kann mittels der Fourieranalyse (franz. Mathematiker) berechnet werden. Die Brummspannung enthält neben der Grundschwingung f_{br} Schwingungsanteile mit geradzahligem Vielfachen der Grundschwingungsfrequenz: $2f_{br}$; $4f_{br}$; $6f_{br}$.

Definition:

$$W = \frac{U_w}{U}$$

 U_2 = effektive Welligkeitsspannung

 $U_{\underline{\ }}=$ arithmetischer Mittelwert der Mischspannung

Welligkeit:

Einweggleichrichtung (ohne C) W = 1,21

Brückengleichrichter (ohne C) W = 0.485

Hinweis: Näherung zur messtechnischen Bestimmung der Welligkeitsspannung U_w aus der Brummspannung U_{brss} bei der Ausnahme, dass U_2 enthält nur den Grundschwingungsanteil f_{br} und $U_{brss} << U_{-}$ dann:

$$U_w = \frac{U_{brss}}{2 \cdot 1,4141}$$

5.3 Stromflusswinkel "a"

Der Gleichspannungsanteil $U_{_}$ am Ausgang einer Gleichrichterschaltung mit Glättungskondensator hängt vom Stromflusswinkel "a", dh. von der Stromführungszeit durch die Gleichrichterdiode (Ladezeit des Kondensators) ab. Es gilt z.B für die Einwegschaltung:

$$U_{2} = 1,4141 \cdot U_{1} \cdot \cos(\frac{a}{2})$$

 U_1 = Effektivwert der sinusförmigen Eingangsspannung

 U_2 = arithmetischer Mittelwert der Ausgangsspannung

Beispiel: Gleichrichterschaltung mit Glättungskondensator und ohne Lastwiderstand.

$$a = 0^0 \implies U_{2} = 1,4141 \cdot U_1 = U_{1 \max}$$

5.4 Siebfaktor S

Siebglieder sind Tiefpassglieder. Der Siebfaktor gibt an, wievielmal größer die Welligkeitsspannung am Eingang U_{w1} der Siebschaltung ist als am Ausgang U_{w2} .

$$S = \frac{U_{1w}}{U_{2w}}$$

Eine Reihenschaltung aus einem Serienwiderstand R_s und einem parallelen Siebkondensator C_s :

$$S = \frac{U_{w1}}{U_{w2}} = \sqrt{\frac{R_s^2 + X_c^2}{X_c}}$$

Näherung für $R_s >> X_c$

$$S = \frac{R_s}{X_c} = 2 \cdot \pi \cdot f_g \cdot C_s \cdot R_s$$

 $f_g = \text{Grundschwingung der Brummspannung}$