Corrigé du Concours National Commun

Épreuve de Mathématiques II Session 2022 - Filière MP

m.laamoum@gmail.com

Exercice

Construction d'une base orthonormée d'un sous-espace vectoriel de \mathbb{R}^n

0.1

- **0.1.1** ψ est linéaire à valeurs dans \mathbb{R} et $\psi(1,\ldots,1)=n$ donc ψ est une forme linéaire non nulle sur \mathbb{R}^n .
- **0.1.2** $H = \ker \psi$ donc H est un sous-espace vectoriel de \mathbb{R}^n . On a $\operatorname{Im} \psi \subset \mathbb{R}$ donc $0 \leq \dim \operatorname{Im} \psi \leq 1$, comme ψ est non nulle alors $\dim \operatorname{Im} \psi = 1$, le théorème du rang donne $\dim H = n 1$, H est un hyper plan.
- **0.2** (v_1,\ldots,v_{n-1}) est une famille de H. La matrice de (v_1,\ldots,v_{n-1}) dans (e_1,\ldots,e_n) est

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ -1 & 1 & \ddots & \vdots \\ 0 & -1 & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & -1 \end{pmatrix}$$

elle est de rang n-1 donc (v_1,\ldots,v_{n-1}) est libre par suite c'est une base de H.

0.3

0.3.1 Soit $(j, k) \in \{1, \dots, n-1\}^2$, on a

$$\begin{array}{lll} (v_{j} \mid v_{k}) & = & (e_{j} - e_{j+1} \mid e_{k} - e_{k+1}) \\ & = & (e_{j} \mid e_{k}) - (e_{j+1} \mid e_{k}) - (e_{j} \mid e_{k+1}) + (e_{j+1} \mid e_{k+1}) \\ & = & \delta_{j,k} - \delta_{j+1,k} - \delta_{j,k+1} + \delta_{j+1,k+1} \\ & = & 2\delta_{j,k} - \delta_{j+1,k} - \delta_{j,k+1} \end{array}$$

donc

$$(v_j \mid v_k) = \begin{cases} -1 & \text{si } k \in \{j-1, j+1\} \\ 2 & \text{si } k = j, \\ 0 & \text{si } k \neq \{j-1, j, j+1\} \end{cases}$$

 $\textbf{0.3.2} \ \text{La base orthogonale } (\varepsilon_1,\dots,\varepsilon_{n-1}), \ \text{de H est obtenue par procédé de Schmidt à partir de } (v_1,\dots,v_{n-1}) \ \text{donc}$ $\varepsilon_1=v_1 \ \text{et pour } k\in\{2,\dots,n-1\}, \\ \varepsilon_k=v_k-\sum_{i=1}^{k-1}\frac{(v_k|\varepsilon_i)}{\|\varepsilon_i\|^2}\varepsilon_i=v_k-p_{k-1}\left(v_k\right).$

0.3.3

(i) Soit $k \in \{2, ..., n-1\}$; on pose $\varepsilon_k = v_k - \sum_{j=1}^{k-1} \alpha_j v_j$. On a $\varepsilon_k = v_k - p_{k-1}(v_k) \in F_{k-1}^{\perp}$ donc $(v_j \mid \varepsilon_k) = 0$ pour tout $j \in \{1, ..., k-1\}$ qui s'écrit

$$\begin{cases} (v_1 \mid v_k) - \sum_{j=1}^{k-1} \alpha_j (v_1 \mid v_j) &= 0 \\ (v_2 \mid v_k) - \sum_{j=1}^{k-1} \alpha_j (v_2 \mid v_j) &= 0 \\ \vdots \\ (v_{k-1} \mid v_k) - \sum_{j=1}^{k-1} \alpha_j (v_{k-1} \mid v_j) &= 0 \end{cases}$$

Ainsi $(\alpha_1, \ldots, \alpha_{k-1})$ est solution du système linéaire $A_k X = B_k$, où $A_k = ((v_j \mid v_\ell))_{1 \leq j, \ell \leq k-1}$ et B_k est le vecteur colonne de composantes $(v_1 \mid v_k), \ldots, (v_{k-1} \mid v_k)$.

(ii) D'après 0.3.1 on a

• Si i=1.

$$(v_1 \mid v_k) - \sum_{j=1}^{k-1} \alpha_j (v_1 \mid v_j) = -(v_1 \mid v_1) \alpha_1 - (v_1 \mid v_2) \alpha_2$$

$$= -2\alpha_1 + \alpha_2$$

• Si $i \in \{2, ..., k-2\}$

$$(v_i \mid v_k) - \sum_{j=1}^{k-1} \alpha_j (v_i \mid v_j) = -\alpha_{i-1} (v_i \mid v_{i-1}) - \alpha_i (v_i \mid v_i) - \alpha_{i+1} (v_i \mid v_{i+1})$$

$$= \alpha_{i-1} - 2\alpha_i + \alpha_{i+1}$$

• Si i = k - 1

$$(v_i \mid v_k) - \sum_{j=1}^{k-1} \alpha_j (v_i \mid v_j) = (v_{k-1} \mid v_k) - \alpha_{k-2} (v_{k-1} \mid v_{k-2}) - \alpha_{k-1} (v_{k-1} \mid v_{k-1})$$

$$= -1 + \alpha_{k-2} - 2\alpha_{k-1}$$

Ainsi le système $A_k X = B_k$ s'écrit

$$\begin{cases} 2x_1 - x_2 & = 0 \\ -x_1 + 2x_2 - x_3 & = 0 \\ \vdots & & \\ -x_{k-3} + 2x_{k-2} - x_{k-1} & = 0 \\ -x_{k-2} + 2x_{k-1} & = -1 \end{cases}$$

(iii) La première équation donne $x_2=2x_1$, et de la deuxième $x_3=3x_1$. Soit $j\in\{2,..,k-1\}$ supposons que $x_i=ix_1$ pour tout $i\in\{2,..,j-1\}$, on a $-x_{j-2}+2x_{j-1}-x_j=0$ donc $x_j=(-(j-2)+2(j-1))\,x_1=jx_1$. De la dernière équation on a $(-(k-2)+2(k-1))\,x_1=-1$ soit $x_1=\frac{-1}{k}$, ainsi $x_j=\frac{-j}{k}$ pour $j\in\{1,..,k-1\}$.

On a donc $\varepsilon_k = v_k + \sum_{j=1}^{k-1} \frac{j}{k} v_j$, puis on exprime les v_j dans la base $(e_1, ..., e_n)$:

$$\varepsilon_{k} = e_{k} - e_{k+1} + \sum_{j=1}^{k-1} \frac{j}{k} (e_{j} - e_{j+1})$$

$$= e_{k} - e_{k+1} + \sum_{j=1}^{k-1} \frac{j}{k} e_{j} - \sum_{j=2}^{k} \frac{j-1}{k} e_{j}$$

$$= \frac{1}{k} e_{1} + \sum_{j=2}^{k-1} \left(\frac{j}{k} - \frac{j-1}{k} e_{j} \right) - e_{k+1}$$

$$= \sum_{j=1}^{k-1} \frac{1}{k} e_{j} - e_{k+1}$$

On en déduit que $\varepsilon_k = \left(\frac{1}{k}, \dots, \frac{1}{k}, -1, 0, \dots, 0\right)$ dans la base (e_1, \dots, e_n) .

0.4 On a $\|\varepsilon_k\| = \sqrt{1 + \frac{1}{k}}$, la famille $\left(\frac{1}{\|\varepsilon_k\|}\varepsilon_k\right)_{1 \leq k \leq n}$ une base orthonormée de H. (Comme application : chercher la distance de X^n à H)

Problème

Étude des morphismes de la \mathbb{C} -algèbre $\mathcal{M}_n(\mathbb{C})$. Notations et rappels $\mathbf{1}^{\mathrm{ère}}$ Partie

Quelques résultats préliminaires sur les matrices C_n et D_n

1.1

1.1.1

$$C_3 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $D_n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}$.

1.1.2

- $D_3^3 = diag(1, j^3, j^6) = I_3$.
- $C_3^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ et $C_3^3 = I_3$

•
$$D_3C_3 = \begin{pmatrix} 0 & 0 & 1 \\ j & 0 & 0 \\ 0 & j^2 & 0 \end{pmatrix}$$
, $C_3D_3 = \begin{pmatrix} 0 & 0 & j^2 \\ 1 & 0 & 0 \\ 0 & j & 0 \end{pmatrix} = j^2D_3C_3$ et $D_3C_3 = jC_3D_3$.

1.1.3 Soie a, b et c tels que $aI_3 + bD_3 + cD_3^2 = 0$ alors

$$\begin{cases} a+b+c=0\\ a+jb+j^2c=0\\ a+j^2b+jc=0 \end{cases}$$

la somme des trois équations donne a=0 , le système devient

$$\begin{cases} b+c=0\\ b+jc=0\\ b+j^2c=0 \end{cases}$$

on déduit b = c = 0, donc (I_3, D_3, D_3^2) est libre.

Le sous-espace vectoriel \mathcal{D}_3 des matrices diagonales de $\mathcal{M}_3(\mathbb{C})$ est de dimension 3 et (I_3, D_3, D_3^2) est libre dans \mathcal{D}_3 donc c'est une base .

1.1.4 On a

$$\chi_{C_{3}}(\lambda) = \begin{vmatrix} \lambda & 0 & -1 \\ -1 & \lambda & 0 \\ 0 & -1 & \lambda \end{vmatrix}$$

$$C_{1} \leftarrow C_{1} + C_{2} + C_{3} = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ \lambda - 1 & \lambda & 0 \\ \lambda - 1 & -1 & \lambda \end{vmatrix}$$

$$\begin{vmatrix} L_{2} \leftarrow L_{2} - L_{1} \\ L_{3} \leftarrow L_{3} - L_{1} \end{vmatrix} = (\lambda - 1) \begin{vmatrix} 1 & 0 & -1 \\ 0 & \lambda & 1 \\ 0 & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 1) (\lambda^{2} - \lambda + 1)$$

donc $\chi_{C_3}(\lambda) = \lambda^3 - 1$.

 C_3 admet 3 valeurs propres distinctes donc elle est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$.

1.2

- **1.2.1** $D_n^n = diag(1, w^n, ..., w^{n(n-1)}) = I_n$.
- 1.2.2 On vérifie que

$$C_n D_n = \begin{pmatrix} 0 & 0 & 0 & \cdots & w^{n-1} \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & w & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & w^{n-2} & 0 \end{pmatrix} \text{ et } D_n C_n = \begin{pmatrix} 0 & 0 & 0 & \cdots & 1 \\ w & 0 & 0 & \cdots & 0 \\ 0 & w^2 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & w^{n-1} & 0 \end{pmatrix}$$

donc $D_n C_n = w C_n D_n$.

1.2.3 Soit $a_0, ..., a_{n-1}$ tels que $a_0I_n + ... + a_{n-1}D_n^{n-1} = 0$ donc le polynôme $P = a_0 + ... + a_{n-1}X^{n-1}$ est annulateur de D_n , le polynôme minimal de D_n est $X^n - 1$, il divise P donc P = 0 et $a_0 = ... = a_{n-1} = 0$, ainsi la famille $(I_n, ..., D_n^{n-1})$ est libre dans \mathcal{D}_n , le sous-espace vectoriel des matrices diagonales de $\mathcal{M}_n(\mathbb{C})$, qui est de dimension n donc $(I_n, ..., D_n^{n-1})$ est une base de \mathcal{D}_n .

1.2.4 On développe suivant la première ligne le déterminant χ_{C_n} :

$$\chi_{C_n}(\lambda) = \begin{vmatrix} \lambda & 0 & \cdots & 0 & 1 \\ -1 & \lambda & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & -1 & \lambda & 0 \\ 0 & \cdots & 0 & -1 & \lambda \end{vmatrix} \\
= \lambda \begin{vmatrix} \lambda & 0 & \cdots & 0 \\ \ddots & \ddots & \ddots & \vdots \\ \ddots & -1 & \lambda & 0 \\ \cdots & 0 & -1 & \lambda \end{vmatrix} + (-1)^{n+1} \begin{vmatrix} -1 & \lambda & 0 & \cdots \\ 0 & \ddots & \ddots & \ddots \\ \vdots & \ddots & -1 & \lambda \\ 0 & \cdots & 0 & -1 \end{vmatrix} \\
= \lambda^n - 1$$

donc $\chi_{C_3}(X) = X^n - 1$.

 C_n admet n valeurs propres distinctes donc elle est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.

1.2.5 Le théorème de Cayley-Hamilton on a $C_n^n = I_n$.

1.3

- **1.3.1** La j ième colonne de C_n est constituée des coordonnées de $u(e_j)$ dans (e_1, \ldots, e_n) donc $u(e_1) = e_2$, $u(e_2) = e_3, \ldots, u(e_k) = e_{k+1}$ pour tout $k \in \{1, \ldots, n-1\}$ et $u(e_n) = e_1$.
- **1.3.2** De la question précédente on a : $u(e_1) = e_2$, $u(e_2) = e_3$ donc $u^2(e_1) = e_3$, par récurrence on obtient pour tout $k \in \{1, \dots, n-1\}$ $u^k(e_1) = e_{k+1}$. De plus $u^n(e_1) = u(u^{n-1}(e_1)) = u(e_n) = e_1$.
- **1.3.3** On a $u^n(e_1) = e_1$ et pour tout $k \in \{2, ..., n\}$

$$u^{n}(e_{k}) = u^{n}(u^{k-1}(e_{1}))$$

 $= u^{k-1}(u^{n}(e_{1}))$
 $= u^{k-1}(e_{1})$
 $= e_{k}$

donc u^n et id coïncident sur la base (e_1, \ldots, e_n) donc $u^n = id$ et $C_n^n = I_n$.

- **1.3.4** Soit a_1, \ldots, a_n tels que $a_1 i d_E + \ldots + a_n u^{n-1} = 0$, on applique cette relation à e_1 , on obtient $a_1 e_1 + \ldots + a_n e_n = 0$ donc $a_1 = \ldots = a_n = 0$ et $\left(i d_E, u, \ldots, u^{n-1}\right)$ est libre . $X^n 1$ est annulateur de u, le polynôme minimal π_u de u le divise, si $\deg \pi_u \leq n 1$ alors la famille $\left(i d_E, u, \ldots, u^{n-1}\right)$ est liée ce qui est absurde donc $\deg \pi_u \geq n$ par suite $\pi_u = X^n 1$ et $\pi_{C_n} = X^n 1$.
- **1.3.5** La relation $D_n C_n = w \ C_n D_n$ se traduit par vu = w.uv, D_n est diagonale donc $v(e_k) = w^{k-1}e_k$, pour tout $k \in \{1, \ldots, n\}$.
- **1.3.6** La famille $(C_n{}^kD_n{}^\ell)_{0\leq k,\ell\leqslant n-1}$ contient n^2 éléments , qui est la dimension de $\mathcal{M}_n(\mathbb{C})$, il suffit de montrer qu'elle est libre , pour cela montrons que la famille $(u^kv^\ell)_{0\leq k,\ell\leqslant n-1}$ est libre .

Soit $(a_{k,\ell})_{0 \le k,\ell \le n-1}$ des complexes tels que $\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-1} a_{k,\ell} u^k v^\ell = 0$, on applique cette relation à e_j pour $j \in \{1,\ldots,n\}$ on obtient

$$\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-1} a_{k,\ell} \ u^k v^{\ell}(e_j) = \sum_{k=0}^{n-1} \left(\sum_{\ell=0}^{n-1} a_{k,\ell} \ w^{\ell(j-1)} \right) u^k(e_j) = 0$$

on a $u^k(e_j) = u^k(u^{j-1}(e_1)) = \begin{cases} e_{k+j} & \text{si } j \leq k+j \leq n \\ e_i & \text{si } k+j=n+i \text{ et } 1 \leq i \leq n-1 \end{cases}$, donc la famille $\left(u^k(e_j)\right)_{0 \leq k \leqslant n-1}$ est libre (elle est costituée de tous le e_k pour $k \in \{1,\ldots,n\}$), par suite pour tout $k \in \{0,\ldots,n-1\}$ $\sum_{\ell=0}^{n-1} a_{k,\ell} \ w^{\ell(j-1)} = 0 \ .$

La famille $(a_{k,\ell})_{0 \leq \ell \leqslant n-1}$ est solution d'un système de matrice $(w^{\ell \cdot (j-1)})_{\substack{0 \leq \ell \leqslant n-1 \\ 1 \leq j \leqslant n}}$, son déterminant est celui de Vandermonde $V(1,w,...,w^{n-1}) = \prod_{\substack{0 \leq k < \ell \leqslant n-1 \\ 0 \leq k < \ell \leqslant n-1}} (w^{\ell} - w^k)$ qui est non nul donc $a_{k,\ell} = 0$ pour tout $\ell \in \{0,\ldots,n-1\}$, ainsi $a_{k,\ell} = 0$ pour tout k et ℓ dans $\{0,\ldots,n-1\}$.

2^{ème} Partie Une question de réduction

- **2.1** On a $det(f)^n = det(g)^n = 1$ donc f et g sont inversibles et $f^{-1} = f^{n-1}$, $g^{-1} = g^{n-1}$.
- **2.2** $X^n 1$ est un polynôme annulateur de f et g, scindé à racines simples donc f et g sont diagonalisables et leurs spectres sont inclus dans l'ensemble de racines de ce polynôme, donc leurs valeurs propres sont des racines n-ièmes de l'unité.
- **2.3** Soit λ une valeur propre de f et $x_0 \in E$ un vecteur propre associé.
 - **2.3.1** On a $f(x_0) = \lambda x_0$ et $f(g(x_0)) = w\lambda g(x_0)$, $x_0 \neq 0$ et g est inversible donc $g(x_0) \neq 0$ et $w\lambda$ est une valeur propre de f de vecteur propre $g(x_0)$.
 - **2.3.2** Par récurrence on a pour tout $k \in \{0, ..., n-1\}$, $fg^k = w^k.g^kf$, par la même méthode que la question précédente on montre que $w^k\lambda$ est une valeur propre de f.
 - **2.3.3** Le cardinal de $\operatorname{Sp}(f)$ et inférieur à n et $0 \notin \operatorname{Sp}(f)$ car f est inversible. Soit $\lambda \in \operatorname{Sp}(f)$ on a $\{w^k \lambda \ , 0 \le k \le n-1\} \subset \operatorname{Sp}(f)$, donc $\operatorname{Sp}(f)$ est de cardinal n, donc $\operatorname{Sp}(f)$ est l'ensemble de toutes les racines n-ièmes de l'unité.
 - **2.3.4** f admet n valeurs propres distinctes donc pour tout $\lambda \in \operatorname{Sp}(f)$, dim $E_{\lambda}(f) = 1$.

2.4

- **2.4.1** D'après 2.3.2 on a pour tout $k \in \{0, ..., n-1\}$, $f(g^k(e)) = w^k g^k(e)$.
- **2.4.2** On déduit de 2.4.1 que que $E_{w^k}(f) = \text{Vect}\left\{g^k(e)\right\}$ et $E = \bigoplus_{k=0}^{n-1} E_{w^k}(f)$ donc $\left(e,g(e),\ldots,g^{n-1}(e)\right)$ est une base de E, adaptée à la somme directe, elle est formée de vecteurs propres de f.
- **2.4.3** $\mathcal{B} = (e, g(e), \dots, g^{n-1}(e))$ base de E. On a $f(g^k(e)) = w^k g^k(e)$ donc $Mat_{\mathcal{B}}(f) = diag(1, w, \dots, w^{n-1}) = D_n$. Pour $k \in \{0, \dots, n-2\}$ on a $g(g^k(e)) = g^{k+1}(e)$ et $g(g^{n-1}(e)) = e$, donc $Mat_{\mathcal{B}}(g) = C_n$.

3^{ème} Partie

Application à la détermination des endomorphismes de l'algèbre $\mathcal{M}_n(\mathbb{C})$

Soit $\Phi: \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathcal{M}_n(\mathbb{C})$ un morphisme d'algèbres, donc il est linéaire, vérifie $\Phi(I_n) = I_n$ et

$$\forall (A, B) \in \mathcal{M}_n(C)^2, \quad \Phi(AB) = \Phi(A)\Phi(B).$$

- 3.1 Par récurrece sur p.
- **3.2** On a $D_nC_n=w$ C_nD_n , $D_n^n=I_n$ et C_n^n , la définition de Φ et la question précédente donnent

$$\Phi(D_n)^n = \Phi(C_n)^n = I_n$$
 et $\Phi(D_n)\Phi(C_n) = w, \Phi(C_n)\Phi(D_n)$.

- **3.3** On note f_1 et g_1 les endomorphismes de $\mathcal{M}_{n,1}(\mathbb{C})$ canoniquement associés aux matrices $\Phi(D_n)$ et $\Phi(C_n)$ respectivement.
 - **3.3.1** Les relations de la question 3.2 se traduisent par

$$f_1^n = g_1^n = id_{\mathcal{M}_n(\mathbb{C})}$$
 et $f_1g_1 = w.g_1f_1$

- **3.3.2** D'après la question 2.4.3 il existe une base \mathcal{B} de $E = \mathcal{M}_{n,1}(\mathbb{C})$ dans laquelle la matrice de f_1 est D_n et celle de g_1 est C_n .
- **3.3.3** Soit P la matrice de passage de la base canonique vers la base \mathcal{B} de E alors on a $\Phi(D_n) = PD_nP^{-1}$ et $\Phi(C_n) = PC_nP^{-1}$.
- **3.4** D'après la question 1.3.6 la famille $(C_n{}^kD_n{}^\ell)_{0 \le k,\ell \le n-1}$ est une base de $\mathcal{M}_n(\mathbb{C})$. Soit $M \in \mathcal{M}_n(\mathbb{C})$ il existe $(a_{k,\ell})_{0 \le k,\ell \le n-1}$

des complexes tels que $M=\sum\limits_{k=0}^{n-1}\sum\limits_{\ell=0}^{n-1}a_{k,\ell}~C_n^{~k}D_n^{~\ell}$. Les propriétés démontrée de Φ donnent :

$$\Phi(M) = \sum_{k=0}^{n-1} \sum_{\ell=0}^{n-1} a_{k,\ell} \Phi(C_n)^k \Phi(D_n)^{\ell}
= \sum_{k=0}^{n-1} \sum_{\ell=0}^{n-1} a_{k,\ell} (PC_nP^{-1})^k (PD_nP^{-1})^{\ell}
= \sum_{k=0}^{n-1} \sum_{\ell=0}^{n-1} a_{k,\ell} P.C_n^k.P^{-1} P.D_n^{\ell} P^{-1}
= P.\left(\sum_{k=0}^{n-1} \sum_{\ell=0}^{n-1} a_{k,\ell} C_n^k.D_n^{\ell}\right) P^{-1}$$

D'où $\Phi(M) = PMP^{-1}$.

3.5 Soit $\Phi: \mathcal{M}_n(C) \longrightarrow \mathcal{M}_n(\mathbb{C})$, $\Phi(M) = PMP^{-1}$ avec P une matrice inversible . Φ est linéaire , vérifie $\Phi(I_n) = I_n$ et $\forall (A,B) \in \mathcal{M}_n(C)^2$, $\Phi(AB) = \Phi(A)\Phi(B)$, donc c'est un morphisme de la \mathbb{C} -algèbre $\mathcal{M}_n(\mathbb{C})$.

FIN DE L'ÉPREUVE