## EECS 545: Machine Learning

## Lecture 2. Linear Regression

Honglak Lee 1/10/2011





#### Outline

- Recap: ML, Supervised Learning
- Linear Regression

#### Informal definition of ML

 Algorithms that improve their <u>performance</u> at some <u>task</u> with <u>experience</u>.



## Supervised Learning

- Goal:
  - Given data X in feature space and the labels Y
  - Learn to predict Y from X
- Labels could be discrete or continuous
  - Discrete labels: classification
  - Continuous labels: regression

## Supervised Learning - Regression



"Learning regression function f(X)"

## Supervised Learning - Regression



Slide credit: Aarti Singh

## Example: Housing price prediction

 Given statistics about houses in a local area, predict median value of homes.

#### Features:

- 1. Average number of rooms per dwelling
- 2. Average area (in square foot)
- 3. Per capita crime rate by town
- 4. Proportion of residential land zoned for lots
- 6. Proportion of non-retail business acres per town
- 7. Nitric oxides concentration (parts per 10 million)

**—** .....

Label: median value of the houses

## Overview of linear regression

- In this lecture, we will assume
  - Data (or features): vector or scalar representation
  - Learning algorithm: linear regression to predict y from X (parameterized by w)
  - Performance: measured by sum of squared errors between prediction and labels (objective function)



#### Outline

- Recap: ML, Supervised Learning
- Linear Regression

#### **Notation**

- In this lecture, we will use
  - x: data (scalar or vector)
  - $-\phi(x)$ : features for x
  - t (or y): continuous-valued labels (target values)
- We will interchangeably use
  - $-x^{(n)} \stackrel{\text{def}}{=} x_n$  to denote n-th training example.
  - $-t^{(n)} \stackrel{\text{def}}{=} t_n$  to denote n-th target value.

## Regression

Given a set of observations

$$- \mathbf{x} = \{ x_1 \dots x_N \}$$

And corresponding target values:

$$-\mathbf{t}=\{t_1\ldots t_N\}$$

 We want to learn a function y(x,w)=t to predict future values.



$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{\infty} w_j x^j$$

# Oth Order Polynomial



 $\boldsymbol{x}$ 

0

## 1<sup>st</sup> Order Polynomial



# 3<sup>rd</sup> Order Polynomial

 $y(x) = \omega_0 + \omega_1 x + \omega_2 x^3$ 



## **Linear Regression**

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

- The function y(x,w) is linear in parameters w.
  - Goal: find the best value for the weights, w.
- For simplicity, add a bias function  $\phi_0(\mathbf{x}) = 1$

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

$$\mathbf{w} = (w_0, \dots, w_{M-1})^T$$
  $\phi = (\phi_0, \dots, \phi_{M-1})^T$ 

#### **Basis Functions**

• The basis functions  $\phi_j(\mathbf{x})$  need not be linear

$$\phi_{j}(x) = x^{j}$$

$$\phi_{j}(x) = \exp\left\{-\frac{(x - \mu_{j})^{2}}{2s^{2}}\right\} \qquad \sigma(a) = \frac{1}{1 + \exp(-a)}$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

$$0.25$$

## Sum-of-Squares Error Function



$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

## Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j(x^{(n)}) - t^{(n)} \right)^2$$



$$\frac{\partial E(\mathbf{w})}{\partial w_{j}} = \frac{\partial}{\partial w_{j}} \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)})^{2}$$

$$= \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)}) \frac{\partial}{\partial w_{j}} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)})$$

$$= \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)}) \phi_{j}(x^{(n)})$$

$$= \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_{j} \phi_{j}(x^{(n)}) - t^{(n)}) \phi_{j}(x^{(n)})$$

## Least squares problem

Gradient (compact, vectorized form)

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} (\sum_{j'=0}^{M-1} w_{j'} \phi_{j'}(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

$$= \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

$$= \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

$$= \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

#### **Batch Gradient Descent**

- Given data (x, y), initial w
  - Repeat until convergence

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w})$$

where

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} (\sum_{j'=0}^{M-1} w_{j'} \phi_{j'}(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$
$$= \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

#### Stochastic Gradient Descent

- Main idea: instead of computing batch gradient (over entire training data), just compute gradient for individual example and update
- Repeat until convergence

$$-$$
 for n=1,...,N

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w} | x^{(n)})$$

where

$$\nabla_{\mathbf{w}} E(\mathbf{w}|x^{(n)}) = (\sum_{j'=0}^{M-1} w_{j'} \phi_{j'}(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$

$$= (\mathbf{w}^{T} \phi(x^{(n)}) - t^{(n)}) \phi(x^{(n)})$$



#### Closed form solution

- Main idea:
  - Compute gradient and set gradient to 0.
     (condition for optimal solution)
  - Solve the equation in a closed form
- Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \sum_{j=0}^{M-1} w_j \phi_j(x^{(n)}) - t^{(n)} \right)^2$$

We will derive the gradient from matrix calculus

#### Closed form solution

Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(x^{(n)}) - t^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(x^{(n)}) - t^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(x^{(n)}))^2 - \sum_{n=1}^{N} t^{(n)} \mathbf{w}^T \phi(x^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} t^{(n)2}$$

$$= \frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{t} + \frac{1}{2} \mathbf{t}^T \mathbf{t}$$

Recap: matrix calculus (check previous review session)

$$W^{T} \phi(x^{(n)}) = \sum_{j=0}^{M} w_{j} \phi_{j}(x^{(n)})$$

$$= \sum_{j=0}^{M} w_{j} \phi_{j}(x^{(n)})$$

#### The Data

- The design matrix is an NxM matrix, applying
  - the M basis functions (across)
  - to N data points (down)

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \hline \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$
example
$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \hline \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

$$\Phi \mathbf{w} \approx \mathbf{t}$$

Slide credit: Ben Kuipers

# Recap on Matrix Calculus

#### The Gradient

Suppose that f: R<sup>m×n</sup> → R is a function that takes as input a matrix A of size m × n and returns a real value (scalar). Then the gradient of f (with respect to A ∈ R<sup>m×n</sup>) is the matrix of partial derivatives, defined as:

$$\nabla_{A} f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

. . .

$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}.$$

1/7/2011

#### The Gradient

Note that the size of  $\nabla_A f(A)$  is always the same as the size of A. So if, in particular, A is just a vector  $x \in \mathbb{R}^n$ ,

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}.$$

- For  $t \in \mathbb{R}$ ,  $\nabla_x(t f(x)) = t\nabla_x f(x)$ .

1/7/2011 36

# Gradients and Hessians of Quadratic and Linear Functions (Recap)

$$\bullet \nabla_x b^T x = b \quad \frac{\partial}{\partial x_1} \left( \frac{\partial}{\partial x_2} b_1 x_2 \right) = b_1$$

• 
$$\nabla_x x^T A x = 2Ax$$
 (if A symmetric)

• 
$$\nabla_x^2 x^T A x = 2A$$
 (if A symmetric)

$$\frac{\partial}{\partial x_{1}} \left( \begin{array}{c} x_{1} \\ \overline{y} \\ \end{array} \right) = 2 \underbrace{\overline{z}}_{1} A_{\overline{1}} \underbrace{\overline{y}}_{1} X_{\overline{2}} I$$

#### Gradient via matrix calculus

Compute gradient and set to zero

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \frac{1}{2} \underline{\mathbf{w}}^T \Phi^T \Phi \underline{\mathbf{w}} - \mathbf{w}^T \Phi^T \mathbf{t} + \frac{1}{2} \mathbf{t}^T \mathbf{t}$$

$$= \Phi^T \Phi \mathbf{w} - \Phi^T \mathbf{t}$$

Solve the resulting equation (normal equation)

$$\mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} = \mathbf{\Phi}^T \mathbf{t}$$

$$\mathbf{w}_{ML} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

This is the Moore-Penrose pseudo-inverse:  ${f \Phi}^\dagger = ({f \Phi}^T {f \Phi})^{-1} {f \Phi}^T$ 

applied to:  $\mathbf{\Phi}\mathbf{w}pprox\mathbf{t}$ 



## Geometric Interpretation

- Assuming many more observations (N) than the M basis functions  $\phi_j(\mathbf{x})$
- View the observed target values  $t=\{t_1 \dots t_N\}$  as a vector in an N-dimensional space.
- The M basis functions  $\phi_j(\mathbf{x})$  span an M-dimensional subspace.
- $y(x,w_{ML})$  is the point in the subspace with minimal squared error from t.
- It's the projection of t onto that subspace.

## Geometric Interpretation

•  $y(x,w_{ML})$  is the projection of t onto the subspace spanned by the M basis functions  $\phi_j(\mathbf{x})$ 



Slide credit: Ben Kuipers

# Back to curve-fitting examples

# Polynomial Curve Fitting



$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

# Oth Order Polynomial



## 1<sup>st</sup> Order Polynomial



# 3<sup>rd</sup> Order Polynomial



# 9<sup>th</sup> Order Polynomial



### Over-fitting



Root-Mean-Square (RMS) Error:  $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$ 

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

### **Polynomial Coefficients**

|                          | M=0  | M = 1 | M = 3  | M = 9       |
|--------------------------|------|-------|--------|-------------|
| $\overline{w_0^{\star}}$ | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1^{\star}$            |      | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$            |      |       | -25.43 | -5321.83    |
| $w_3^{\star}$            |      |       | 17.37  | 48568.31    |
| $w_4^{\star}$            |      |       |        | -231639.30  |
| $w_5^{\star}$            |      |       |        | 640042.26   |
| $w_6^{\star}$            |      |       |        | -1061800.52 |
| $w_7^{\star}$            |      |       |        | 1042400.18  |
| $w_8^{\star}$            |      |       |        | -557682.99  |
| $w_9^{\star}$            |      |       |        | 125201.43   |

#### Data Set Size: N = 15

#### 9<sup>th</sup> Order Polynomial



#### Data Set Size: N = 100

#### 9<sup>th</sup> Order Polynomial



### Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

### Regularized Least Squares

Add a regularization term to the error function

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Usual choices (sums of squares):

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(x_n)\}^2 \qquad E_W(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

• Total error function becomes:

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(x_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

Can still solve explicitly:

$$\mathbf{w}_{ML} = (\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

### Regularization: $\ln \lambda = -18$



## Regularization: $\ln \lambda = 0$



### Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$



## **Polynomial Coefficients**

|               | $\ln \lambda = -\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|---------------|-------------------------|---------------------|-------------------|
| $w_0^{\star}$ | 0.35                    | 0.35                | 0.13              |
| $w_1^{\star}$ | 232.37                  | 4.74                | -0.05             |
| $w_2^{\star}$ | -5321.83                | -0.77               | -0.06             |
| $w_3^{\star}$ | 48568.31                | -31.97              | -0.05             |
| $w_4^{\star}$ | -231639.30              | -3.89               | -0.03             |
| $w_5^{\star}$ | 640042.26               | 55.28               | -0.02             |
| $w_6^{\star}$ | -1061800.52             | 41.32               | -0.01             |
| $w_7^{\star}$ | 1042400.18              | -45.95              | -0.00             |
| $w_8^{\star}$ | -557682.99              | -91.53              | 0.00              |
| $w_9^{\star}$ | 125201.43               | 72.68               | 0.01              |