Бурмашев Григорий, 208. Дискра-1

1.

Доказать, что:

$$A \vee B \equiv \neg B \to A$$

Построим таблицу истинности:

A	B	$\neg B$	$A \vee B$	$\neg B \to A$
0	0	1	0	0
0	1	0	1	1
1	0	1	1	1
1	1	0	1	1

Заметим, что при любых А, В выражения эквивалентны.

Ч.Т.Д

2.

Выразить $A \triangleleft B$, которое ложно, если A ложно, а B истинно, в остальных случаях оно истинно:

Это выражение вида:

$$A \vee \neg B$$

Построим таблицу истинности:

A	В	$\neg B$	$A \vee \neg B$
0	0	1	1
0	1	0	0
1	0	1	1
1	1	0	1

Из таблицы истинности видно, что это выражение полностью соотвествует условию задачи.

Ответ: $A \vee \neg B$

3.

Ассоциативна ли импликация? Другими словами, равносильны ли высказывания:

$$A \to (B \to C)$$
 и $(A \to B) \to C$

Рассмотрим случай, когда $A=0,\,B=0,\,C=0.\,(0\to(0\to0)).$ При указанных значениях $A,\,B,\,C$ левое выражение принимает истину. (Из лжи следует истина). А правое - принимает ложь (Из истины следует ложь) $((0\to0)\to0).$ Значит, эти высказывания **не** равносильны

Ответ: нет

4.

Выполняется ли дистрибутивность для конъюнкции относительно импликации? Другими словами, равносильны ли высказывания:

$$A \wedge (B \to C)$$
 и $(A \wedge B) \to (A \wedge C)$

При $A=0,\ B=0,\ C=0$ мы получим, что $A\wedge(B\to C)$ ложно (т.к конъюнкция лжи с чем угодно есть ложь), а $(A\wedge B)\to (A\wedge C)$ истинно (т.к из лжи следует ложь есть истина). Значит, эти высказывания **не** равносильны

Ответ: нет

5.

Выполняется ли дистрибутивность для импликации относительно импликации? Другими словами, равносильны ли высказывания:

$$A \to (B \to C)$$
и $(A \to B) \to (A \to C)$

Рассмотрим случай, когда высказывания ложны. Чтобы левое высказывание было ложно, нужно, чтобы A=1, B=1, C=0. $(1 \rightarrow (1 \rightarrow 0)$

Во всех остальных случаях оно будет истинным. При таких значениях A, B, C правое высказывание также принимает ложь $((1 \to 1) \to (1 \to 0)$ Аналогично первому высказыванию, при остальных значениях A, B, C второе высказывание истинно. Значит, эти высказывания равносильны.

Ответ: да

6.

Доказать, что:

$$|x+y| \le |x| + |y|$$

Рассмотрим все возможные случаи:

Если $x, y \ge 0$:

$$|x| = x$$

$$|y| = y$$

$$x + y \le x + y$$

Если x > 0, y < 0:

$$|x| = x$$

$$|y| = -y$$

$$x - y \le x - y$$

Если x < 0, y > 0:

$$\begin{aligned} |x| &= -x \\ |y| &= y \\ -x + y &\leq -x + y \end{aligned}$$

Если x < 0, y > 0:

$$|x| = -x$$

$$|y| = -y$$

$$-x - y \le -x - y$$

Ч.Т.Д

7.

Доказать, что $\forall (a,b,n)>0$:

Из
$$(a \times b = n) \rightarrow (a < \sqrt{n}) \lor (b < \sqrt{n})$$

Воспользуемся законом контрпозиции:

$$(a > \sqrt{n}) \land (b > \sqrt{n}) \rightarrow (a \times b \neq n)$$

Если:

$$\begin{cases} a > \sqrt{n} \\ b > \sqrt{n} \end{cases}$$

To:

$$a \times b > n$$

Тогда абсолютно точно:

$$a \times b \neq n$$

Ч.Т.Д

8.

Доказать, что $\forall \ x,y,z,w \in \mathbb{Z}$:

$$x^2 + y^2 + z^2 = w^2$$

 $A \equiv B$, где:

А - «w чётное» В - «все числа x, y, z чётные»

Рассмотрим случай, когда $A=1,\,B=1,\,$ тогда: чётное $^2+$ чётное $^2+$ чётное $^2=$ чётное 2

Это высказывание **истино**. Чётное число в квадрате чётно, сумма трех чётных чисел также чётна.

Рассмотрим случай, когда $A=0,\,B=0,\,$ тогда: нечётное $^2+$ нечётное $^2+$ нечётное $^2=$ нечётное 2

Это высказывание также **истино**. Потому что нечётное число в квадрате нечётно, а сумма трех нечётных цифр также нечётна.

Значит, $A \equiv B$ **Ч.Т.**Д

9.

Пусть $x = \sqrt{10}$, а $y = \log_{\sqrt{10}} 5$

 $x,\ y$ — иррациональные. Тогда по основному логарифмическому тождеству:

$$x^y = \sqrt{10}^{\log_{\sqrt{10}} 5} = 5$$

При возведении иррационального числа в иррациональную степень мы получили рациональное число.

Ч.Т.Д