Classe inversée? Lire et faire activités à la maison. Vérification Zéro et addition en classe puis exercices

1 Problématique

Un système $64\ bits$ peut représenter 2^{64} entiers. Pour tant le code ci-après donne la valeur maximale de l'entier représentable :

```
import sys
sys.maxsize
```

Cette valeur correspond à $2^{63} - 1$. Un des 64 bits ne semble pas utilisé.

Comment sont représentés les entiers négatifs en mémoire?

2 Rappel sur les additions

Considérons une machine 8 bits. Elle peut stocker des nombres allant jusqu'à

$$2^7 - 1 = 127_{10} = 01111111_2$$

. Dans ces conditions le nombre 25 serait représenté en mémoire comme ci-après :

$$25_{10} = 00011001_2$$

Activité 1:

- 1. Additionner 25 + 12.
- 2. Encoder ces deux nombres en base 2.
- 3. Effectuer l'addition binaire de ces nombres.
- 4. Convertir le résultat en base 10. Le résultat correspond-il à la première question?

00011001 + 00001100 = 00100101

3 Une représentation naïve des entiers négatifs

3.1 Bit de poids fort

Le bit le plus à gauche de la représentation n'est pour l'instant pas utilisé. C'est le **bit de poids** fort. Une première idée serait d'utiliser ce bit comme marqueur de signe :

- 0 pour un entier positif,
- 1 pour un entier négatif.

Ainsi l'entier -25 serait encodé :

$$-25_{10} = 10011001_2$$

3.2 Inconvénients de la représentation

3.2.1 Le zéro

Dans un système 8 bits le zéro est représenté par 00000000_2 . Cependant 10000000_2 se traduit par -0. Il y a donc deux représentations pour zéro.

3.2.2 Erreur d'addition

Activité 2:

- 1. Effectuer les mêmes étapes de l'activité 1, pour l'addition -25+12
- 2. L'addition est-elle correcte?

$$10011001 + 00001100 = 10011101_2 = 157_{10}$$

4 Le complément à 2 puissance n

4.1 Définition

Cette représentation ne change rien pour les entiers positifs. Ainsi sur 8 bits :

0	1	1	1	1	1	1	1	=	127
0								=	
0	0	0	0	0	0	1	0	=	2
0	0	0	0	0	0	0	1	=	1
0	0	0	0	0	0	0	0	=	0

Par contre la valeur $2^n - |x|$ représente l'entier négatif x. Ainsi sur 8 bits, -1 s'écrit

$$2^8 - 1 = 256 - 1 = 255_{10} = 11111111_2$$

1	1	1	1	1	1	1	1	=	-1	$2^8 - -1 = 255$
1	1	1	1	1	1	1	0	=	-2	$2^8 - -2 = 254$
1								=		
1	0	0	0	0	0	0	1	=	-127	$ 2^8 - -127 = 129$
1	0	0	0	0	0	0	0	=	-128	$ 2^8 - - 128 = 128$
0	1	1	1	1	1	1	1	=	127	
0								=	•••	
0	0	0	0	0	0	1	0	=	2	
0	0	0	0	0	0	0	1	=	1	
0	0	0	0	0	0	0	0	=	0	

4.2 Calculer le complément à 2

Voici le protocole pour une première méthode. Pour coder (-4):

- Prendre le nombre positif 20 : 00010100
- Inverser les bits : 11101011
- Ajouter 1:11101100
- --20:11101100

Un deuxième protocole de garder tous les chiffres depuis la droite jusqu'au premier 1 (compris) puis d'inverser tous les suivants.

- Prendre le nombre positif 20 : 00010100
- Garder la partie à droite telle quelle : 00010100
- Inverser la partie de gauche après le premier un : $\mathbf{11101}100$
- --20:11101100

Vérification que 1 seul zéro : $00000000 \rightarrow 111111111 + 1 = 00000000$ Vérification addition -25+12=11100111+00001100=11110011=243 et $243-2^8=243-256=-13$

