

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43)Date of publication of application: 04.08,1995

(51)Int.CL

H01C 7/04 C01G 49/00 CO4B 35/495

(21)Application number: 05-350190

(71)Applicant:

NGK SPARK PLUG CO LTD

(22)Date of filing:

29.12.1993

(72)Inventor:

IWATANI MASAKI

HAYASHI KYOHEI

(30)Priority

Priority number: 05321428

Priority date: 25.11.1993

Priority country: JP

(54) PORCELAIN COMPOSITION FOR THERMISTOR

PURPOSE: To obtain the resistance value in a wide range by adjusting the compo sition of material, consisting of the mixture of a Ptype semiconductor YCrO3 and an N-type semiconductor

CONSTITUTION: The porcelain composition, used for a thermistor, is a chemical compound indicated by the formula (Y1-XSrX) (Cr1-Y−ZFeYTiZ)O3 in the form of 0.351≥X≥0.01, 0.4≥Y/(1−Y−Z)≥0.05, and 0.35≥Z≥0.25. Also, in the chemical compound indicated by the formula (Y1-XSrX) (Cr1-Y-X-ZFeYTiZ)O3 a part or all of Y is replaced by Sm, and the relations of X, Y and Z are formed as follows: 0.35≥X≥0.01, 0.4≥Y/(1-Y-Z)≥0.05, and 0.35≥Z≥0.025. As a result, the change of resistance value characteristics is little even when the composition is used in a wide temperature range, and it can be brought into practical use, and a thermistor element, having the stabilized resistance value against thermal history, can be obtained.

LEGAL STATUS

[Date of request for examination]

24.05.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

3254595 30.11.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 特 許 公 報 (B2)

(11)特許番号

特許第3254595号

(P3254595)

(45)発行日 平成14年2月12日(2002.2.12)

(24)登録日 平成13年11月30日(2001.11.30)

(51) Int.Cl.'		識別記号	FΙ		
H01C	7/04		H01C	7/04	
C01G	49/00		C01G	49/00	A
C 0 4 B	35/495		C 0 4 B	35/00	J

請求項の数5(全 6 頁)

(21)出闢番号 特膜平5-350190 (73)特許権者 000004547 日本特殊陶業株式会社 (22) 出顧日 平成5年12月29日(1993, 12, 29) 爱知県名古屋市瑞穂区高辻町14番18号 (72)発明者 岩谷 雅樹 (65)公開番号 特別平7-201526 爱知県名古屋市瑞穂区高辻町14番18号 (43)公開日 平成7年8月4日(1995.8.4) 日本特殊陶業株式会社内 審查請求日 平成12年5月24日(2000.5.24) (72)発明者 林 恭平 (31) 優先権主張番号 特顯平5-321428 愛知県名古屋市瑞穂区高辻町14番18号 (32) 優先日 平成5年11月25日(1993.11.25) 日本特殊陶業株式会社内 (33)優先權主張国 日本 (JP) 審査官 江畠 博 (56)参考文献 特開 昭49-76097 (JP, A) (58)調査した分野(Int.Cl.', DB名) H01C 7/02 - 7/22

(54) 【発明の名称】 サーミスタ用磁器組成物

(57)【特許請求の範囲】

【請求項1】 化学式(Y1-xSrx)(Cr1-Y -ZFeYTiz)O3で表わされる化合物において、

- X, YおよびZが
- $0.351 \ge X \ge 0.01$
- 0. 4≧Y/(1-Y-Z)≧0.05、および
- $0.35 \ge Z \ge 0.025$

であることを特徴とするサーミスタ用磁器組成物。

【請求項2】 化学式 { (Y1-wSmw) 1-xSr x } {Crl-Y-Z·FeY·Tiz} O3で表わさ 10 【発明の詳細な説明】 れる化合物において、W、X、YおよびZが

- 1. $0 \ge W \ge 0$
- $0.351 \ge X \ge 0.01$
- 0. 4≥Y/(1-Y-Z)≥0.05、および
- $0.35 \ge Z \ge 0.025$

であることを特徴とするサーミスタ用磁器組成物。

【請求項3】 請求項1又は請求項2に記載の前記サー <u>ミスタ用磁器組成物からなることを特徴とするサーミス</u> タ素子。

【請求項4】 請求項1又は請求項2に記載の前記サー ミスタ用磁器組成物に焼結助剤を混合して、焼成された <u>ことを特徴とするサーミスタ素子。</u>

【請求項5】 前記焼結助剤はシリカ又はムライトであ <u>る事を特徴とする請求項4記載のサーミスタ素子。</u>

[0001]

【産業上の技術分野】本願発明は髙温における安定性の 髙い、特に300℃から1100℃で使用するに好適な 負の温度係数を持つサーミスタ用材料に関するものであ る。

3

[0002]

【従来の技術】高温で使用できるサーミスタ用材料とし て従来から、(a)Al,〇,、Cr,〇,を主成分と するコランダム型結晶構造を主体とする材料(例えば特 開昭50-118294号公報)、(b)MgAl₂O 。、MgCr,O。、MgFe,O。等よりなるスピネ ル型結晶構造化合物を主体とした材料(例えば特開昭4 9-63995号公報)、(c)Y,O,等で安定化さ せたZrO,を主体とする材料(例えば「内燃機関」第 30巻第8号第98頁)、(d) 高融点で導電性をもつ 10 ペロブスカイト型結晶構造化合物を主体とした材料、例 えばLa (Al_{1-x} Cr_x)O, 系の組成をもつ材料 (例えば特開昭51-108298号公報)、絶縁基板 上にLaCrO,を薄膜化して用いる材料(例えば特開 昭61-161701号公報)、LaCrO, とMgA 1, O, とを混合した材料(例えば特開昭51-952 97号公報、特開昭51-23691号公報)等が使用 されてきた。

[0003]

【発明が解決しようとする課題】ところが、(a)コラ 20 ンダム型結晶構造を主体とする材料は抵抗 - 温度特性に バリエーションをもたせるために他元素を添加するが、その添加量を多くすると熱安定性が劣化する等の問題が あった。(b)スピネル型結晶構造化合物を主体とした 材料は、温度勾配定数(β)が大きいため広い温度域で 使用できない等の問題があった。また、 $NiAl_{2}O_{4}$ 系材料(特開昭 49-29493 号公報等)、 $CoAl_{2}O_{4}$ 系材料(特開昭 48-705 号公報等)がある が、いずれも耐熱性が低くく、高温で使用できないとい 5問題があった。

【0004】(c) ジルコニア系系材料は、還元性雰囲気では抵抗値が不安定であり実用上使用できないという問題があり、(d) ペロブスカイト型結晶構造化合物系材料は、Laの酸化物が未反応のまま残った場合、その未反応物が大気中の水分と反応して不安定なLa(OH)」となり、素子が崩壊してしまうとか、抵抗値が不安定になる等の問題があった。

【0005】本願発明の課題は、これらの問題を解消し、材料の組成を調整することにより広い範囲の抵抗値を得ることができ、吸湿性の物質を含まず、雰囲気の湿度とか熱履歴による特性の劣化が少なく、室温から1100°Cまでの広い温度域で使用可能なサーミスタ用磁器組成物を提供することにある。

[0006]

【課題を解決するための手段】本願発明者らは鋭意研究の結果、化学式(Y_{1-x} Sr_x)(Cr_{1-v-z} Fe_vT_i))O,で表される化合物において、X、YおよびZが、 $0.351 \ge X \ge 0.01$ 、 $0.4 \ge Y/(1-Y-Z) \ge 0.05$ 、かつ、 $0.35 \ge Z \ge 0.025$ であることを特徴とするサーミスタ用磁器組成物とするこ

とにより、上記の問題を解消し、好適なサーミスタを提供できることがわかった。

[0008]特に、より好ましくは上記のサーミスタ用磁器組成物に焼結助剤を加えて焼結性を向上させることにより、低温で焼成することができて、強度の高い素子を得ることができる。ここで、焼結助剤としては粒界に液相を生成し、マトリックスを成して磁器の焼結性を高めるものであれば良く、例えばシリカ、ムライト等が好ましく、その添加量は0.5~10重量%、特に好ましくは0.8~5重量%が良い。更に、より好ましくは焼成後大気中で100℃~1200℃で100~300時間放置することによりエージングを行い、抵抗値をより一層安定化させることができる。

[0009]

【発明の作用】本願発明によるサーミスタ用材料はペロブスカイト構造であり、イオン半径が近い原子同士でお互いに容易に置換できるため、その置換された組成が安定に存在するため広い範囲で連続的に組成比を変えて抵抗値や抵抗値の温度係数(β)を調整することができる。さらに、Laを含んでいないため吸湿により変質する等の影響を受けることもない。高温安定性も高く、3 00℃以上の温度においても長時間安定して使用することができる。本願発明によるサーミスタ用磁器組成物はp型半導体とn型半導体を混合したものであり、熱に対して不安定な酸素イオンとか金属イオンの格子欠陥が少なくなっており、熱履歴を受けても抵抗値の変化が少ないサーミスタ素子を得ることができる。

【0010】また、p型半導体とn型半導体の酸素分圧に対する依存性が逆であり、この両者を混合することにより、お互いにその特性が相殺されて酸素分圧に対して安定な特性をなすこととなる。従って、雰囲気の酸素分圧による影響を受けることが少なくなり、金属チューブ内にサーミスタ素子を組み込んで使用する自動車用センサとして広く使用することができる。

[0011]

【実施例1】本発明の第1の実施例を説明する。まず、純度が99.9%以上で平均粒径が1μmのY, O, と、純度が98.5%以上で平均粒径が1μm以下のSrCO, と、純度が98.5%以上で平均粒径が1μ。以下のCr, O, と、純度が98.5%以上で平均粒径が1μm以下のFe, O, 、純度が98.5%以上で平均粒径が1μm以下のFiO, を、(Y_{1-x} Sr_x)

(Cr_{1-v-2} Fev Ti₁) O, と表したとき、X、Y、Zが表1の組成の欄に示す割合になるように秤量し、湿式により混合し、乾燥し、その後、1400℃で2時間保持することにより仮焼する。仮焼された粉末に平均粒径0.6μmのSiO,粉末を1重量%加えて湿式により混合する。混合したスラリーを200メッシュの篩を通してから乾燥する。乾燥後PVBが15重量 **

*%、DBPが10重量%、MEKが50重量%及びトルエンが25重量%よりなるバインダーを添加して、プレス成形用粉末を造粒する。なお、表1中、試料番号1、3、17および33は比較例である。 【0012】

【81】

泰号		組成			抵抗值	8	R		
	X	Y	Z	300°C		(KΩ)	900°C	300-500	500-900
1	0.0	0, 19	0.05	37.0	18.7	4.14	0.398	4851	5312
2	0.01	0.19	0.05	42.5	21.6	4.71	0. 436	4872	5395
8	0.011	0. 198	0.01	11436	3084	119	0.380	10109	13029
4	0,011	0, 219	0.05	5.74		+		4390	4283
5	0,014	0. 271	0.05	14.5	7, 989			4324	4736
6	0, 018	0, 19	0.05	95, 3	45.4	8.29	0.490	5410	6408
7	0.026	0. 195	0.025	13633	2965	67.1	0. 225	11769	12916
8	0.029	0.19	0.05	2914	812	47.2	0.630	9131	9785
9	0.037	0. 19	0.05	17223	7279	147	0.527	10551	12763
10	0.046	0. 19	0.05	18546	6436	104	0.348	11482	12919
11	0.049	0. 19	0.05	13435	4417	68.0	0, 263	11706	12593
12	0.05	0. 19	0.05	10660	2160	49.2	0. 208	11911	12391
18	0.051	0, 19	0.05	10450	2333	60, 2	0. 235	11420	12571
14	0.051	0. 158	0.05	10670	2216	51.2	0. 198	11825	12593
15	0.051	0.124	0.05	8144	1735	41.8	0.179	11676	12374
16	0.051	0.045	0, 05	1846	440	.14.4	0.132	10746	10639
17	0.051	0.00	0, 05	5, 28	2,48	0.485	0,065	5288	4549
18	0.052	0.19	0.05	12007	2567	62.3	0.234	11652	12659
19	0.054	0.19	0.05	9641	2144	54.9	0.219	11446	12522
20	0,059	0.19	0.05	3535	874	27.8	0. 155	10731	11763
21	0.063	0.19	0.05	723	221	11.4	0.102	9190	10691
22	0.067	0.19	0.05	226	78	5. 43	0.076	8259	9675
23	0.069	0, 271	0.05	439	136	7. 702	0,095	8952	9963
24	0.07	0. 219	0.05	52, 9	21. 9	2, 274	0.061	6972	8202
2 5	0.071	0. 19	0.05	19.5	9, 64	1.55	0.055	5604	7558
26	Q. 101	O. 18	0.10	1593	421	16.3	0. 135	10148	10866
27	Q. 151	0.17	0. 15	2252	522	16.9	0.137	10832	10918
28	0. 154	0.111	0 . 15	706	174	7.24	0.102	10144	9661
29	0. 201	0.16	0. 20	1243	324	12.8	0. 131	10134	10387
30	0.251	0. 15	0.25	832	240	11.2	0. 129	9541	10119
8 1	0.301	0.14	0.30	319	117	8.08	0. 130	8141	9351
82	0. 351	0.13	0.35	138	59.	5.96	0.126	6957	8744
88	0. 401	0.12	0.40	52.8	25,	3.69	0.115	5881	7860

【0013】この粉末をリード線となる直径が0.4m 40 mである白金線を1.2mmの間隙を空けて2本平行に配置した金型に充填して1000Kg/cm²の圧力でプレスすることにより、直径が3mm、厚みが2mmで2本のリード線を有する図1に示す形状に成形する。その成形品を1550℃の大気中で焼成することによりサーミスタ素子を得る。更に、試料番号2、4、5および6については大気中1100℃で200時間放置することによりエージングを行った。上記により得たサーミスタ素子について、300℃、350℃、500℃及び900℃の大気中における抵抗値を測定し、その測定値か 50 4

58を算出した。その結果を表1の抵抗値および8の欄 に併せて示す。

【0014】次に、各試料を1000℃の大気中で300時間保持し、その保持前後の300℃、350℃、500℃及び900℃における抵抗値を測定することにより耐久性能を調べた。その結果を表2に示す。表1中のβおよび表2中の△R率は、

 $\mathcal{B}=1$ n(R \angle R。) \angle ($1\angle$ K $-1\angle$ K。) Δ R率=(R、-R。) \angle R。×100% で表される抵抗値の温度係数(\mathcal{B})、および抵抗値の変

00℃の大気中における抵抗値を測定し、その測定値か 50 化率(△R率)を示す。とこで、1nは常用対数を示

し、R及びR。は各々大気中で絶対温度K及びK。にお ける抵抗値、R、は耐久試験においては耐久試験後の大 気中の絶対温度K、(t=300℃、350℃、500 ℃又は、900℃) における抵抗値を示す。300-5* *00及び500-900とあるは各々300℃と500 ℃、及び500℃と900℃間におけるβを示す。 [0015]

【表2】

		温度換算值 (°C)						
書号	300°C	350°C	500°C	900°C	300°C	350°C	500°C	900°C
1	19.6	15.9	18, 7	8.0	- 12	- 12	- 19	- 20
2	15.0	12, 5	10.8	4.6	- 9	- 9	- 11	- 11
8	45.0	30, 5	26.3	16.8	- 12	- 10	- 11	- 16
4	12.5	5.5	5.7	3.0	- 9	- 5	- 8	- 9
6	13.0	11.3	7. 5	3.0	– 9	- 9	- 9	- 9
8	10.0	12.3	14.5	5.5	– 6	– 8	- 12	- 11
7	29	4.5	5.0	3.5	- 1	- 1	- 2	- 4
8	15, 6	13.6	13. 2	5.6	- 5	- 5	- 7	- 8
9	- 3.6	- 47	- 24	- 1.4	1	2	1	2
10	9.0	6,0	- 27	- 27	- 2	- 2	1	3
11	3.9	4.0	- 21	- 3.8	- 1	- 1	1	4
12	0.6	0.2	- 25	- 20	0	0	1	2
1 3	1.8	1.6	0.3	1.8	- 1	- 1	0	- 2
14	4.4	0.5	- Q.6	- 0.5	- 1	0	0	1
15	5.3	0.8	- Q. 8	- 2.2	- 1	0	0	2
18	- 9. 1	-11.0	- 9.1	- 7.8	3	4	5	11
17	-29.8	-29, 3	-32,1_	- 9.5	23	27	54	31
18	0,9	1.3	0.5	1.3	0	0	0	<u> </u>
1 9	8.7	5.1	3.7	4.7	- 2	<u> </u>	- 2	- 5
20	5, 9	5.1	6.6	4.6	- 2	- 2	- 3	- 5
21	2.3	5.4	7.7	- LO	- 1	- 2	- 4	1
22	2.1	2.5	5.8	0.0	- 1	- 1	- 3	0
2 3	9, 5	9.6	8.2	4.5	- 3	- 4	- 5	<u> </u>
2 4	2.6	2.6	3.5	5.7	- 1	<u> </u>	<u> </u>	<u> </u>
2 5	- 9.0	- 8,5	- 47	5,0	6	6	4	– 9
2 6	- 1,6	7. 2	6.4	5,7	1	- 3	- 3	- 7
2 7	-10.2	1.3	0, 8	2.3	3	0	0	- 3
28	-10, 3	2.2	2.5	2.4	4	- 1	- 2	- 3
29	-14.6	-10.4	- 7.0	- 0.8	5	4	4	11_
80	-19.8	-17.7	-11.4	- 33	8	8	7	5
9 1	-25.2	-22,9	-14.7	- 5.1	12	13	10	8
3 2	-20.5	-22,0	-12.1	- 6.0	11	14	9	10
8 3	-30.0	-25, 2	-20.0	-12.0	21	20	17	<u> 23</u>

【0016】表2に、AR率の温度換算値を示す。該温※ ※度換算値は次の式で定義される。 温度換算值= $\beta \times K_o / (ln(R_t/R_o) \times K_o + \beta) - K_o$

さらに、試料番号7、8、12、23、24、25およ び27について、大気中1100℃中に2時間放置し て、その放置の前後の抵抗値を測定することにより、高 40 の高いサーミスタ素子とすることができる。 温耐久試験を行った結果、いずれもΔR率の温度換算値 は15℃以内と良好な結果を得た。

【0017】表1から、(Y_{1-x} Sr_x)(Cr_{1-y-z} Fe, Ti,)O, と表される組成において、各元素の 混合比を選定することにより、抵抗値を大幅に調整する ことができることがわかる。また、本願発明の磁器組成 物は、単純な置換固溶反応によるものを主体とするもの であるため副生成物の生成が少なく、特にSrの置換量 が30%以下の場合には単純な置換固溶反応によるもの となり、副生成物の生成がなく、1600℃以下の温度 50

で焼成することができて、サーミスタ素子に埋込んだり ード線の劣化を防ぐことができるとともに、機械的強度

【0018】表1からわかるように、SrのYに対する 置換量が1~35.1モル%、および、Cェに対するF eの置換量はFe/Cr=0.05~0.40とし、T iの置換量を2.5~35モル%である組成比である試 料の抵抗値は、300℃ないしは900℃において実用 できる範囲となり、かつ耐久性能においても△R率が小 さく、温度換算値が小さくなっており、300℃から1 000℃において使用するに好適なサーミスタ用材料で ある。Sr、Fe、Ti、のいずれかの置換量が少ない (試料番号1、3、17)または、Sr、Tiの置換量

が多い(試料番号33)と、耐久性能において、500 *Cまたは900°Cの温度換算値が15°Cを越えて変化し ており、500℃より高い温度で使用するには適さない といえる。

【0019】本願発明によるサーミスタ磁器組成物は、 耐久試験の結果からわかるとおり熱履歴に対して非常に 安定な特性を示している。これは、本願発明の磁器組成 物はp型半導体であるYCrO,とn型半導体であるF e、O、との混合物であるため熱履歴に対して不安定な 酸素イオン欠陥や金属イオン欠陥が少なくなっていると 10 す。 とによるものと考えられる。また、Tiの置換量を2. 5%より少なくすると、焼結性がやや劣ったものとな る。

* [0020]

【実施例2】実施例1と同一の原料および、純度が9 9. 9%以上で平均粒径が 1 μm 以下のSm. O, を用 いて、{ (Y_{1-v} Sm_v)_{1-x} Sr_x } {Cr_{1-v-z} F e, Ti.)O, と表したとき、W、X、Y、Zの値が 表3の組成の欄に示す割合になるように秤量し、実施例 1と同様の方法で試料を作成し、得られたサーミスタ素 子の抵抗値および耐久性能を実施例1と同様の方法によ り行い測定した。その結果を表3および表4に併せて示

10

[0021] 【表3】

越料		組版	R.		担	. 抗 信	β			
番号	w	Y	V	2	300°C	350°C	500°C	900°C	300-500	500-900
		0.051	0. 19	0.05	12.7	3.74	0.299	0,023	8303	5814
41	1.0	0. 054	0. 19	0.05	21. 9	6.41	0.471	0.026	8503	6566
42	10			0.05	188	50.8	2.331	0.046	9723	8898
4 8	0, 50	0.054			1341	301	9 173	0.082	11041	10693
44	0.20	0.054	0, 19				19.8	0. 121	11472	11555
45	I N 10	0.054	i 0. 19	0.05	3519	752	13.0	0. 161	11310	

[0022]

※ ※【表4】

試料		ΔRS	E (96)		温度換算値(℃)					
番号	300°C	350°C	500°C	900°C	300℃	350℃	500°C	900℃		
4 1	-11.8	- 13. B	- 9.0	- 3.2	5	7	10	8		
4 2	- 8.9	- 2.9	- 3.0	0	4	1	3	0		
4 8	4. 8	6. 0	2.9	0	- 2	- 2	- 2	0		
4 4	- 4.7	- 2, 4	0.5	- 3.0	1	1	0	4		
4 5	6. 1	8. 3	7. 5	3.8	– 2	– 3	- 4	- 4		

【0023】表3および表4からわかるとおり、化学式 30 $\{ (Y_{1-v} Sm_v)_{1-x} Sr_x \} \{ Cr_{1-v-z} Fe_v T$ i,)O, と表される組成物において、YをSmに置換 すると抵抗値は小さくなり、低温で使用するに適したサ ーミスタ素子となり、同時に耐久性能も優れたたサーミ スタ素子とすることができる。さらに、試料番号42、 43について、大気中1100℃中に2時間放置して、 その放置の前後の抵抗値を測定することにより、高温耐 久試験を行った結果、いずれも△R率の温度換算値が1 5℃以内と良好な結果を得た。この実施例より300℃ から1100℃の温度範囲で使用しても温度・抵抗値特 40 性の変化が少なく、実用的に使用可能で、熱履歴に対し て抵抗値の安定したサーミスタ素子を提供することがで きることがわかった。

[0024]

- 【発明の効果】本願発明により広い温度範囲で使用して も温度・抵抗値特性の変化が少なく、実用的に使用可能 で、熱履歴に対して抵抗値の安定したサーミスタ素子を 提供することができたものである。そのため、機械的強 度が強く、例えば自動車の排気ガスの浄化用触媒の過熱 検知装置とか、排気ガス還流装置の還流ガス温の検知装 置等髙温のガス温の測定装置又は振動の激しい場所での 測定装置、その他各種の炉の温度検出装置として使用で きるサーミスタ用磁器組成物を提供することができた。 【図面の簡単な説明】
- 【図1】本願発明の実施例を示す図 【符号の説明】
 - サーミスタ素子
 - リード線 2

[図1]

