POLITECHNIKA WROCŁAWSKA

Zespół Inżynierii Oprogramowania i Inteligencji Obliczeniowej Katedra Informatyki Technicznej

Projektowanie efektywnych algorytmów - projekt Kurs: INEK032

Sprawozdanie z projektu

Wykonał:	Michał Madarasz, 238903
Termin:	Czwartek 17:05
Prowadzący:	Mgr inż. Antoni Sterna
Data oddania sprawozdania:	28.01.2019
Ocena:	

U	wagi prowadzącego:			

1. Wstęp

Celem projektu jest zastosowanie 2 algorytmów dla wcześniej wybranego zagadnienia, w tym przypadku problemu komiwojażera a następnie porównanie wyników otrzymanych przy użyciu każdego z nich. W trzecim zadaniu projektowym zbadane zostało działanie algorytmu genetycznego na podstawie napisanego algorytmu, badając go w zależności od najbardziej istotnych parametrów dla wcześniej wybranych instancji testowych. Uzyskane wyniki zostaną potem porównane ze sobą pod względem dokładności otrzymanego wyniku oraz porównane z metodą z poprzedniego etapu projektu, czyli Tabu Search.

2. Algorytm genetyczny

Algorytm genetyczny jest heurystyką przeszukującą przestrzeń alternatywnych rozwiązań bazującą na zjawisku ewolucji biologicznej. Zadaniem algorytmu jest symulowanie populacji danego rozwiązania dążącego do jak największego przystosowania się do otoczenia, czyli do uzyskania jak najlepszego rozwiązania badanego problemu. Wykorzystując naturalne mechanizmy takie jak rozmnażanie czy mutację osobników staramy się przystosować kolejne pokolenia rozwiązań by coraz bardziej zbliżać się do optymalnego rozwiązania (jednak nie mamy żadnej gwarancji na jego odnalezienie).

Podstawą algorytmu jest **populacja**, czyli grupa osobników danego problemu. To na jej podstawie przebiega dalsze dostosowywanie się osobników do otoczenia, gdyż jest ona bazą dla wykonywanego rozmnażania. Początkowa populacja generowana jest zazwyczaj losowo. Kiedy istnieje już populacja, następuje właściwa część algorytmu zaczynając od **selekcji**. Polega ona na wybraniu jak najbardziej optymalnych osobników do późniejszego rozmnożenia. Zazwyczaj są to osobniki najlepiej przystosowane, jednak nie jest to regułą.

Po przeprowadzeniu selekcji wybrane osobniki przystępują do **rozmnażania**, podczas którego "krzyżują się" wyselekcjonowane wcześniej osobniki. Zazwyczaj brane do krzyżowania są dwa osobniki, z których powstają dwa kolejne (dzieci). Dzięki temu otrzymujemy osobniki nowe, będące przemieszaniem się rozwiązań rodziców, co po wielokrotnym wykonaniu daje nam 2 nową pulę osobników z innym rozwiązaniem. Dodatkowym elementem mogącym zwiększyć różnorodność otrzymanych osobników jest **mutacja**. Pojawia się ona rzadko i zazwyczaj nie wprowadza wielkich zmian, jednak może pomóc w poprawieniu rozwiązania, gdy krzyżowane osobniki nie mogą poprawić rozwiązania przez dłuższy czas. Jako że mutacja przebiega losowo, może ona zarówno poprawić, jak i pogorszyć przystosowanie osobnika. Ostatnim elementem algorytmu jest wybór **nowej populacji**, będącej następną generacją algorytmu. Polega ona na stworzeniu nowej grupy osobników, z do której należy część poprzedniej populacji oraz nowo wygenerowane dzieci skrzyżowanych osobników.

Po wybraniu nowej populacji powtarzana jest cała sekwencja dla nowych osobników, w celu utworzenia kolejnej generacji rozwiązań. Całość algorytmu powtarza się aż do spełnienia warunków zakończenia, wybierając jako wynik końcowy najlepiej przystosowanego osobnika, czyli rozwiązanie z najlepszym uzyskanym wynikiem.

3. Implementacja algorytmu

Napisany algorytm został napisany na podstawie standardowego schematu Algorytmu genetycznego:

- 1. wybór populacji początkowej chromosomów (losowy)
- 2. sprawdzanie warunku zatrzymania
 - a. krzyżowanie chromosomów z populacji rodzicielskiej
 - **b.** mutacja może być również wykonana przed krzyżowaniem
 - d. ocena przystosowania chromosomów
 - e. utworzenie nowej populacji
- 3. wyprowadzenie "najlepszego" rozwiązania

Algorytm po wczytaniu danych z plików testowych generuje wektor **nowej populacji**. Populacja wygenerowana zostaje w ilości określonej przez użytkownika całkowicie losowo (tworząc drogę z losowo wybranych miast), po czym obliczana jest droga każdego wygenerowanego rozwiązania. Na końcu populacja jest sortowana pod kątem długości drogi, czyli najlepszego wyniku wylosowanej drogi. Każda droga zaczyna się od wierzchołka startowego o indeksie 0.

Po utworzeniu pierwszej populacji, następuje pętla działając aż nie zostanie spełniony warunek końcowy działania algorytmu. W programie zastosowane zostało **ograniczenie czasowe** ustalane w programie. Wewnątrz tej pętli znajduje się główna część algorytmu.

Po utworzeniu populacji początkowej następuje losowanie par osobników do krzyżowania. Pary są losowane przy użyciu odpowiednio zmodyfikowanej metody rand() oraz współczynnika krzyżowania, który w większości przypadków wynosi 0,8.

Po wylosowaniu dwóch osobników, losowane jest na podstawie podanego w konfiguracji prawdopodobieństwa, czy mają zostać skrzyżowane czy też nie. Jeśli odpowiednia wartość zostanie wylosowana, osobniki przechodzą do **krzyżowania metodą OX**. Metoda ta losuje dwa indeksy, pomiędzy którymi nastąpi krzyżowanie się osobników zgodnie z tą metodą. Po wykonaniu krzyżowania zostaje obliczona droga dla dzieci i przekazywane są one do następnego etapu, którym jest mutacja.

Mutacja podobnie jak samo krzyżowanie wykonywana jest z prawdopodobieństwem określonym przez użytkownika w programie. Gdy zostanie wylosowana dla każdego skrzyżowanego dziecka osobno, następuje jego **mutacja.** Rodzaj mutacji może zostać wybrany przez użytkownika w programie. Do wyboru są dwie metody mutacji: **wstawienie** (insert) oraz **odwrócenie podciągu (invert).** Po mutacji zostaje obliczona nowa wartość drogi dla osobnika.

Po krzyżowaniu oraz po mutacji, bez względu na to czy zaszła czy też nie, utworzony osobnik zostaje dodany do nowej populacji. Po dodaniu wszystkich osobników następuje ich redukcja poprzez posortowanie i ustawienie najlepszych osobników na początku. Następnie wszystkie osobniki wykraczające poza ilość populacji zostają usunięte. Po tym procesie wynik zostaje zapisany do pliku oraz zostaje sprawdzony warunek zakończenia programu.

Czas działania algorytmu jest przede wszystkim uzależniony od czasu ograniczającego podanego w konfiguracji. Z kolei jego główna część wewnątrz pętli ograniczonej czasowo ze względu na wykonywaną metodę krzyżowania daje nam **złożoność obliczeniową O(n²)**.

4. Procedura testowania

Testy przygotowanych zestawów zostały wykonane na prywatnym komputerze. Podczas przeprowadzania testów nie były uruchomione żadne dodatkowe aplikacje. A wszystkie procesy w tle zostały ograniczone do minimum poprzez wyłączenie aplikacji w tle oraz odłączenie komputera od Internetu w celu uzyskania jak najlepszych wyników. Konfiguracja sprzętowa maszyny testującej wygląda następująco:

Procesor: Intel Core i5-5200u 2.2 GHz;

Pamięć RAM: 8,00 Gb;

• Typ systemu: 64-bitowy system operacyjny;

System operacyjny: Windows 10 Home;

Jako danych wejściowych użyłem danych z plików dostępnych na stronie: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/atsp/index.html. Testowane były trzy instancje problemu TSP: tsp_43, tsp_171, tsp_358.

Każdy z plików posiada inny zestaw wierzchołków, w różnej liczbie oraz o różnej odległości względem siebie. Również do każdego z nich dołączona jest znaleziona optymalna ścieżka, co pozwoli nam porównać otrzymane wyniki podczas testów z najlepszymi znalezionymi do tej pory, dzięki czemu będziemy mogli określić czy dany algorytm działa prawidłowo. Pliki są wczytywane z formatu .txt. Aby wczytać plik testowy podaje się jedynie nazwę bez rozszerzenia.

Parametry do testowania algorytmu były ustawiane na stałe dla każdej instancji problemu takie same. Parametry wynosiły odpowiednio:

• Czas działania: 60 sekund;

• Rozmiar populacji początkowej: 50, 100, 150;

• Prawdopodobieństwo krzyżowania: 0.8;

• Prawdopodobieństwo mutacji: 0.01, 0.02, 0.05, 0.1;

Wyniki pomiarów przedstawiają średnią wartość uzyskaną dla badanej kombinacji parametrów. Aby dowiedzieć się jak bardzo wygenerowane rozwiązania różnią się od rozwiązania optymalnego, dla pewnych danych został obliczony błąd względem rozwiązania optymalnego na podstawie wzoru:

|f - fopt| / fopt

gdzie:

f – wartość obliczona przez testowany algorytm

fopt – wartość optymalna – najlepsze znane rozwiązanie

Wyniki optymalne dla poszczególnych instancji:

- tsp_43 5620;
- tsp_171 2755;
- tsp_358 1163;

5. Wynik

5.1. Badanie wpływu wielkości populacji na wyniki dla trzech różnych wartości oraz obu wybranych metod mutacji: inwersji i wstawienia.

5.1.1. Tsp_43

tsp_43 – 60 sekund, inwersja						
Popul	acja – 50	Populacja – 100		Populacja 150		
Czas [s]	Błąd względny	Czas [s]	Błąd względny	Czas [s]	Błąd względny	
0,208501	113%	0,224744	205%	0,36089	205%	
0,487285	111%	0,493084	204%	0,810784	203%	
0,591437	104%	0,818613	118%	1,19718	116%	
0,94396	104%	1,1263	115%	1,50028	111%	
1,04492	104%	1,3084	113%	1,85871	109%	
1,2958	104%	1,51088	111%	3,07445	17%	
1,45452	104%	1,75435	110%	4,20768	16%	
2,1095	103%	1,97569	108%	5,72245	12%	
2,25047	103%	2,64146	18%	6,12078	9%	
2,43021	103%	2,84002	16%	7,32083	8%	
2,67619	102%	3,5368	13%	9,69601	7%	
3,013	102%	4,79934	12%	13,3431	6%	
4,12134	101%	5,22568	12%	16,0869	5%	
5,44689	7%	5,45098	10%	19,7064	4%	
6,34858	6%	6,25285	9%	24,1325	3%	
7,90823	5%	6,45756	8%	31,0287	2%	
12,0495	4%	7,88609	7%	43,5503	1%	
16,2794	3%	12,3976	6%			
20,1661	2%	17,278	5%			
47,8093	1%	22,5421	4%			
59,7091	1%	34,9774	3%			

tsp_43 – 60 sekund, wstawienie							
Populacja – 50		Populacja – 100		Populacja 150			
Czas [s]	Błąd względny	Czas [s] Błąd względny		Czas [s]	Błąd względny		
0,114161	204%	0,220464	205%	0,374468	114%		
0,447583	113%	0,618377	110%	1,65577	20%		
1,09628	106%	1,10118	109%	3,2314	19%		
1,59347	105%	1,28847	18%	3,53995	18%		
2,07597	104%	1,47224	16%	3,85449	14%		
2,22805	103%	1,84562	15%	4,4823	13%		

3,68668	102%	2,04288	14%	4,81668	12%
4,16282	7%	3,01188	12%	5,17343	10%
5,71627	6%	3,56483	10%	6,15788	9%
7,26776	5%	5,47665	9%	7,75096	8%
8,66271	4%	6,98411	8%	8,73621	7%
11,1855	3%	8,28939	7%	10,9872	6%
13,688	2%	9,71545	6%	13,5962	5%
24,6452	1%	14,6913	5%	18,6187	4%
59,6535	1%	22,8163	4%	25,6766	3%
		28,238	3%	32,322	2%
		40,6344	2%	53,1034	1%
		59,9365	1%	60,1113	1%

5.1.2. Tsp 171

3.1.2. 15p_1/1							
tsp_171 – 60 sekund, inwersja							
Popu	lacja – 50	Popula	acja – 100	Popu	lacja 150		
Czas [s]	Błąd względny	Czas [s]	Błąd względny	Czas [s]	Błąd względny		
0,90	787,80%	2,32973	7,72922	3,35835	7,88494		
1,93	783,16%	6,9345	7,63412	10,0821	7,78802		
2,96	774,59%	9,00094	7,61343	13,3304	7,67913		
3,84	768,78%	11,1333	7,56878	16,6059	7,58004		
8,19	754,37%	13,5283	7,46425	23,1188	7,54737		
9,26	753,47%	15,4282	7,26207	29,9522	7,48893		
10,13	752,45%	17,6617	7,23593	33,498	7,48748		
11,17	741,67%	19,7311	7,13503	36,8884	7,42577		
15,69	740,04%	23,8465	7,098	50,3414	7,32341		
18,01	736,37%	26,0826	6,93721	54,0896	7,33866		

20,24	732,56%	39,4891	6,86134	60,6893	7,26824
23,65	727,66%	45,8237	6,83485		
31,42	715,43%	47,7665	6,81125		
35,80	710,60%	53,7641	6,75898		
38,80	705,05%	55,9364	6,75717		
41,35	702,80%	60,3961	6,73902		
44,76	701,27%				
45,82	697,24%				
50,53	693,32%				
52,66	692,09%				
55,81	691,62%				
57,03	689,33%				
59,37	685,08%				

tsp_171 – 60 sekund, wstawienie						
Popul	lacja – 50	Populacja – 100		Populacja 150		
Czas [s]	Błąd względny	Czas [s]	Błąd względny	Czas [s]	Błąd względny	
1,16645	770%	2,37824	781%	3,49216	749%	
2,88549	775%	7,50692	776%	6,99359	736%	
4,81828	759%	14,6005	765%	13,9153	726%	
7,44649	755%	19,2473	755%	17,4679	721%	
11,1427	750%	26,1282	742%	31,7107	716%	
15,5056	740%	28,4509	741%	35,1793	703%	
16,7327	739%	30,8992	737%	53,2303	702%	
18,5856	732%	33,1239	730%	56,6451	695%	
23,7655	729%	42,26	729%	60,3106	695%	
24,8457	722%	52,6455	723%			
26,7228	712%	55,2937	715%			
27,8333	709%	58,1737	711%			
30,6861	701%					
42,6724	695%					
46,3202	692%					
47,6493	691%					
49,8103	690%					
56,5734	682%					
59,8128	682%					

5.1.3. Tsp_358

tsp_358 – 60 sekund, inwersja					
Popul	acja – 50	Popula	acja – 100	Popu	lacja 150
Czas [s]	Błąd względny	Czas [s]	Błąd względny	Czas [s]	Błąd względny
5,44985	463%	10,4829	462%	15,1198	462%

10,605	456%	20,7499	456%	30,1394	455%
24,0883	455%	41,7242	451%	60,000	455%
30,5083	451%	60,000	451%		
37,0007	446%				
60,000	446%				

tsp_358 – 60 sekund, inwersja							
Popu	lacja – 50	Populacja – 100		Popu	lacja 150		
Czas [s]	Błąd względny	Czas [s]	Błąd względny	Czas [s]	Błąd względny		
5,93	466%	11,2609	460%	16,79	465%		
11,57	461%	22,4356	455%	34,05	461%		
17,27	458%	56,2261	451%	51,49	458%		
22,78	456%	60,000	443%	60,000	448%		
28,38	457%						
39,47	456%						
56,18	453%						
60,000	453%						

Badanie wpływu współczynnika mutacji na wyniki dla ustalonego 5.2. współczynnika krzyżowania 0,8 oraz populacji o wartości 50

5.2.2. tsp_171

5.2.3. tsp_358

6. Wnioski

Badając wpływ współczynnika mutacji można było zauważyć, że współczynnik powinien być większy niż 0,01. Algorytm dawał lepsze wyniki dla wyższych wartości współczynnika. Jest to prawdopodobnie tym, że dla niższego współczynnika zmiana ścieżki w trakcie trwania algorytmu jest za wolna, nie następuje z optymalną częstotliwością. Natomiast dla wyższych współczynników mutacji następuje znaczne polepszenie wyników.

Jeżeli chodzi o wielkość populacji, podczas porównywania wykresów można zauważyć, że nie należy wybierać dużych populacji początkowych. Najlepsze uśrednione wyniki wychodziły dla populacji o wartości 50.

Metody mutacji także nie zmieniły wiele, chociaż widać, że dla małej populacji metoda inwersji jest nieznacznie lepsza. Za to dla większych populacji daje sobie radę trochę gorzej niż metoda wstawiania.

Ciekawe obserwacje wyniknęły z porównywania wyników dla Algorytmu Genetycznego oraz algorytmu Przeszukiwania Tabu. Algorytm Tabu Search dawał znacznie lepsze wyniki w tym samym czasie wykonania. Poza tym algorytm ten znajdował najmniejsze rozwiązanie w krótkim czasie, a następnie do zakończenia programu nie znajdował już żadnej poprawy.

Ze wszystkich obserwacji dokonanych podczas tworzenia programu oraz testowania go wynika, że nie da się jednoznacznie określić parametrów dla każdej instancji problemu komiwojażera. Każdą z instancji należy traktować osobno i sprawdzać ją dla wielu parametrów oraz współczynników.