

Resumen Ayudantía 1

Termodinámica

José Antonio Rojas Cancino – jrojaa@uc.cl

Clase 1 Introducción

1.1 Conceptos

Vamos a tener como conceptos iniciales los siguientes:

- Sistema: Región del espacio o cantidad de materia que se aísla para su estudio.
- Entorno: Todo lo que rodea al sistema.
- Frontera: Superficie que separa al sistema de su entorno.
- **Propiedades:** Características que definen al sistema. Pueden ser **intensivas** (independientes de la masa) o **extensivas** (dependientes/proporcionales a la masa).
- Estado Termodinámico: Conjunto de valores de todas las variables/propiedades que definen a un sistema. Lo vamos a pensar con las propiedades de Volumen, Presión y Temperatura.
- Proceso Termodinámico: Cambio de estado de un sistema. Estos cambios pueden ser:
 - **Isotérmico:** Temperatura constante.
 - Isobárico: Presión constante.
 - Isocórico/Isovolumétrico: Volumen constante.
 - Adiabático: Sin transferencia de calor.
- Equilibrio Termodinámico: Estado en el que las propiedades de un sistema no cambian con el tiempo.
- Ciclo Termodinámico: Secuencias de procesos que llevan a un sistema a su estado inicial.

1.2 Tipos de Sistemas

Existen varias clasificaciones de sistemas, entre las cuales se encuentran:

	Intercambio de	Intercambio de	Intercambio de
	energía (calor)?	energía (trabajo)?	materia (masa)?
Aislado	No	No	No
Cerrado	Sí	Sí	No
Abierto	Sí	Sí	Sí
Adiabático	No	Sí	No

1.3 Leyes de la Termodinámica

Las leyes de la termodinámica son las siguientes:

- Ley 0: Cuando dos cuerpos están en equilibrio térmico con un tercero, están en equilibrio térmico entre sí.
- Ley 1: La energía no se crea ni se destruye, solo se transforma.
- Ley 2: La energía fluye de tal manera que aumenta la entropía
- Ley 3: La entropía de un cristal puro perfecto es cero a 0 K.

Clase 2 Temperatura y Ley Cero

2.1 Temperatura

Vamos a definir la temperatura como una forma de describir cuantitativamente las cosas. Vamos a ocupar una nueva definición para la Ley 0, reemplazando el tercer cuerpo por un termómetro:

Dos cuerpos están en equilibrio térmico si poseen la misma medición de temperatura, aún si no están en contacto

Como definición más fórmal, la temperatura refleja la **energía cinética promedio de un material**. Ésta **no** tiene unidades de energía, y es una **propiedad intensiva**.

La **energía térmica**, por otro lado, es la energía cinética **total** de un material, y es una propiedad extensiva.

Finalmente, el **calor** es una forma de **transferencia de energía** que cruza la frontera entre dos sistemas termodinámicos, y se debe a una **diferencia de temperatura**. Al ser una transferencia de energía entre dos sistemas, **no es una propiedad**, y por tanto un sistema no *posee* calor.

Escala de Temperatura

Una escala de temperatura es una **asignación de valores numéricos**, o **cuantificación**, a la temperatura. Para tener una escala, se necesitan:

• Dos puntos de referencia: Dos estados fijos, normalmente fácilmente reproducibles, como lo son los puntos de congelación y ebullición del agua, el triple punto del agua, o el denominado Cero absoluto

• **Graduación:** Donde uno hace las "divisiones correspondientes" al asignar valores numéricos a los puntos de referencia.

Los típicos que nos encontramos son:

- Celsius: Donde 0°C es temperatura de congelación del agua y 100°C temperatura de ebullición, con 100 grados entre estos puntos.
- Farenheit: Donde 32°F es temperatura de congelación del agua y 212°F temperatura de ebullición, con 180 grados entre estos puntos.

¿Cómo cambiar entre escalas? La forma más fácil es justamente ocupando estos puntos de congelación o ebullición, y dándose cuenta que la la variación en uno y la variación en otro se obtiene al calcular una pendiente entre los puntos fijos conocidos.

Por ejemplo, para el caso de transformar entre Celsius y Farenheit son:

$$T_F = \frac{9}{5} \cdot T_C + 32 \iff T_C = \frac{5}{9} \cdot (T_F - 32)$$
 (1.1)

y, con respecto a la diferencia de variación:

$$\Delta T_F (^{\circ}F) = \frac{9}{5} \cdot \Delta T_C (^{\circ}C)$$
 (1.2)

La escala a ocupar: Kelvin (K)

Ésta escala se desarrolla en conjunto con la segunda ley de la termodinámica, donde se crea el Cero absoluto: 0K (=-273.15 °T). Ésta es la menor temperatura posible, donde la presión absoluta en un gas ideal es 0. Lo clave será siempre recordar lo siguiente:

$$T_C(^{\circ}C) = T_K(K) - 273.15 \iff T_K = T_C + 273.15$$
 (1.3)

además de

$$\Delta T(K) = \Delta T(^{\circ}C)$$
 (1.4)

2.2 Termómetros

Los termómetros, en sí, son objetos/instrumentos con una propiedad física medible que cambie con la temperatura. Ésto puede ser volumen de un líquido, dimensiones de un sólido, presión o volumen de un gas, resistencia eléctrica de un material, e incluso el color (variación de longitud de onda de luz) de un objeto.

Clase 3 Presión

3.1 Definición y unidades

Es una magnitud escalar que describa la fuerza normal a la superficie por unidad de área:

$$\vec{P} = \frac{\vec{F}}{A} \tag{1.1}$$

Con F la fuerza normal y A el área de la sección transversal. Vamos a ocupar como undad de medida el **Pascal**, tal que:

1 Pa =
$$1\frac{N}{m^2}$$
.

Podemos encontrarnos con otras unidades, que podemos reconvertir a Pascal tal que:

1 mmHg = 133.3 Pa 1 bar =
$$10^5$$
 Pa $P_{atm} = 1$ atm = 101325 Pa

Siendo lo último la presión atmosférica a nivel del mar, que es necesario conocer.

3.2 Presión y profundidad

En fluidos, comúnmente cuando tenemos tubos, podemos jugar un poco con la definición de presión para tener lo que se conoce como la **presión manométrica**:

$$\vec{P}_{man} = \rho \cdot \vec{g} \cdot h, \tag{2.1}$$

con ρ la densidad del fluido, g la aceleración de gravedad, y h la altura del fluido desde el punto donde estamos estudiándolo. Recordemos que la densidad matemáticamente la podemos escribir como

$$\rho = \frac{m}{V} \tag{2.2}$$

con m la masa y V el volumen. Algunas densidades comunes a tener en cuenta, ya que con éstas podemos comparar líquidos y gases, son las del agua y el aire:

$$\rho_{agua} = 1000 \frac{\text{kg}}{\text{m}^3}$$

$$\rho_{aire} = 1.275 \frac{\text{kg}}{\text{m}^3}$$

3.3 Ley de Dalton y Equilibrio Mecánico

Algo importante a tomar a consideración es la Ley de Presiones Parciales, la cual podemos describir como:

$$\vec{P}_{total} = \sum_{i}^{n} \vec{P}_{i} = \vec{P}_{1} + \vec{P}_{2} + \dots$$

con $\vec{P}_1, \vec{P}_2, \dots$ las presiones que están afectando en el punto.

El equilibrio mecánico, por otro lado, nos dice que si la fuerza neta es 0, entonces la presión es constante:

$$\vec{F}_T = 0 \Longrightarrow \nabla \vec{P} = 0$$

y de la misma manera,

$$\vec{F}_T \neq 0 \Longrightarrow \nabla \vec{P} \neq 0$$

Trabajando con Presiones - Fuerzas externas

Para problemas con, por ejemplo, émbolos, vamos a ocupar la ecuación

$$\vec{P} = \frac{\vec{F}}{A}$$

Tenemos que identificar qué fuerzas (y en qué secciones transversales) se afecta el fluido. También será útil revisar si es que se tiene un equilibrio mecánico o no, y recordar siempre que la fuerza peso que ejerce un cuerpo es:

$$\vec{W} = m \cdot \vec{g}$$

Trabajando con Presiones - Tubos/Manómetros

Para problemas con tubos, donde pueden haber distintas sustancias y/o curvas, ocuparemos la ecuación

$$\vec{P} = \rho \cdot \vec{g} \cdot h.$$

Donde h representa la profundidad del fluido y ρ su densidad. En estos casos, nosotros recorremos el tubo desde un punto específico (donde tengamos la presión, o donde esté abierto) hasta un punto donde querramos tener la presión. Uno puede aprovecharse que:

Dos puntos en un mismo fluido a la misma altura tienen la misma presión

Por tanto, al hacer ecuaciones en distintas secciones, vamos a poder igualar. Éstas ecuaciones provienen de la ecuación anterior para cada medio (con sus distintas densidades y profundidades), y usando

$$\vec{P}_{total} = \sum_{i}^{n} \vec{P}_{i}$$

Si es que nos piden presión manométrica, **no incluímos la presión atmosférica**. En cualquier otro caso (e incluso en teoría también para manométrica), se debe considerar la presión atmosférica.