Scope Sensitivity & Charitable Giving

I. Introduction

A. What was the purpose of your study?

- 1. We are interested in studying charitable giving patterns, specifically what methods help people to overcome the scope insensitivity bias as it relates to charitable giving and the impact of their money.
- 2. We are specifically studying the use of a math/calculation activity as a potential means of reducing scope insensitivity. Several previous studies explored the difference between scope sensitivity in participants who completed 'calculation' versus 'emotional' activities (Hsee & Rottenstreich, 2004; Hasford et al., 2015).

B. What was your hypothesis of results?

1. We believed that participants who complete the math activity would have a more consistent willingness to pay per life than participants who complete the grammar activity. Therefore, their accuracy scores should be lower (closer to zero).

C. What was the motivation for studying this topic and why is it useful?

1. Identifying strategies to help people overcome the scope insensitivity bias could help charities to elicit more donations or help people to more effectively allocate their charitable giving.

D. Why is this topic important?

- 1. Scope insensitivity is a very common but easily avoidable bias.
- 2. It could have large impacts on the amount of money people are willing to donate and the optimal allocation of their donations.
- 3. Past literature has identified that scope insensitivity exists, but there is less agreement about the best ways to overcome it.

E. How does it contribute to the literature already written on this topic?

- 1. Prior literature has established that people are scope insensitive (they demonstrate the scope insensitivity bias) when making charitable giving decisions. Our study confirms the existence of this bias.
- 2. Prior literature has established that the order questions are asked in scope sensitivity studies could affect results. We varied the question order to control for this (Bateman et al. 2004; Carson & Mitchell 1995).
- 3. We investigate altruistic scope insensitivity for humans, turtles, and birds which occurs in fewer studies and may give more comprehensive results (Desvousges et al., 2010).
- 4. We control for demographic variables like education and race to account for differences in scope sensitivity between groups (Kogut et al., 2015; Dickert et al., 2015).

II. Literature Review

- A. Imas, A., & Loewenstein, G. (2018, May). Is altruism sensitive to scope? The role of tangibility. In *AEA Papers and Proceedings* (Vol. 108, pp. 143-47).
 - 1. This study focused on the role of tangibility in scope sensitivity and altruism. They found that scope sensitivity "depends critically on its tangibility" and that increasing tangibility causes people to become more sensitive to scope.

- B. <u>Hasford, J., Farmer, A., & Waites, S. F. (2015). Thinking, feeling, and giving: the effects of scope and valuation on consumer donations. *International Journal of Research in Marketing*, 32(4), 435-438.</u>
 - 1. This study replicated Hsee and Rottenstreich (2004). They studied the role of scope sensitivity on donation behavior. They found that people were more sensitive to scope when they made donations based on calculations and less sensitive to scope when they made donations based on emotion. Our study is similar in that it studies the role of scope sensitivity on charitable donations.
- C. Hsee, C. K., & Rottenstreich, Y. (2004). Music, pandas, and muggers: on the affective psychology of value. *Journal of Experimental Psychology: General*, 133(1), 23.
 - 1. This is an early and heavily cited paper that studied the difference between emotion-based and calculation-based valuation.
 - 2. Studies valuations based on calculation vs valuation based on feeling.
 - 3. Finds that feelings-based valuations lead to less scope sensitivity, whereas calculation-based evaluations "reveal relatively more constant sensitivity to scope."
 - 4. Our study looks at calculation but uses a grammar activity rather than an 'emotional' activity.
- D. Bateman, I. J., Cole, M., Cooper, P., Georgiou, S., Hadley, D., & Poe, G. L. (2004). On visible choice sets and scope sensitivity. *Journal of environmental economics and management*, 47(1), 71-93.
 - 1. This study contributes to the literature by studying the presentation of choices and information in scope sensitivity studies. They believe that there is a significant difference between studies that use a stepwise model (presenting options one at a time) and studies that present the entire choice set at once. They find that scope sensitivity "is substantially and significantly affected by the order in which goods are presented" when the stepwise model is used.
- E. Baron, J., & Greene, J. (1996). Determinants of insensitivity to quantity in valuation of public goods: Contribution, warm glow, budget constraints, availability, and prominence. *Journal of Experimental Psychology: Applied*, 2(2), 107.
 - 1. Explored how people value public goods and found "insensitivity to numerical quantity."
 - 2. Lit review that identifies several types/mechanisms of scope insensitivity: warm glow, budget constraints.
 - 3. Performed 11 different studies of various public goods to look for evidence of different mechanisms.
- F. Cameron, C. D., & Payne, B. K. (2011). Escaping affect: how motivated emotion regulation creates insensitivity to mass suffering. *Journal of personality and social psychology*, 100(1), 1.
 - 1. Offers a theory for why people experience/use scope insensitivity specifically when dealing with mass suffering.
 - 2. 'Collapse of compassion' effect occurs when people are overwhelmed by large numbers of people suffering and feel less compassion.

- G. Fetherstonhaugh, D., Slovic, P., Johnson, S., & Friedrich, J. (1997). Insensitivity to the value of human life: A study of psychophysical numbing. *Journal of Risk and uncertainty*, 14(3), 283-300.
 - 1. Find evidence for 'psychophysical numbing' the phenomenon that increasing numbers of lives at risk cause people to exhibit "diminished sensitivity in valuing lifesaving interventions."
 - 2. Basically evidence for scope insensitivity without using the same language.
 - 3. Specific to value of human life.
- H. Kogut, T., Slovic, P., & Västfjäll, D. (2015). Scope insensitivity in helping decisions: Is it a matter of culture and values?. *Journal of Experimental Psychology: General*, 144(6), 1042.
 - 1. Finds that "The singularity effect of identifiable victims refers to people's greater willingness to help a single concrete victim compared with a group of victims experiencing the same need."
 - 2. Look at differences between individualist and collectivist cultures.
- I. <u>Carson, R. T., & Mitchell, R. C. (1995). Sequencing and nesting in contingent valuation</u> surveys. Journal of environmental economics and Management, 28(2), 155-173.
 - 1. Finds issues with common experimental designs of contingent valuation surveys.
 - 2. Order of options presented can affect results.
 - 3. Finds evidence against/lack of evidence for scope insensitivity.
 - 4. Rationale for mixing up the ordering of our questions.
- J. Dickert, S., Västfjäll, D., Kleber, J., & Slovic, P. (2015). Scope insensitivity: The limits of intuitive valuation of human lives in public policy. *Journal of Applied Research in Memory and Cognition*, 4(3), 248-255.
 - 1. Evidence that people exhibit diminishing marginal utility in regards to number of lives saved.
 - 2. Focus on the psychological processes involved in scope insensitivity and inconsistent valuation of life.
 - 3. Motivation for studying this topic.
- K. Bateman, I. J., Cooper, P., Georgiou, S., Navrud, S., Poe, G. L., Ready, R. C., Riera, P., Ryan, M., & Vossler, C. A. (2005). Economic valuation of policies for managing acidity in remote mountain lakes: Examining validity through scope sensitivity testing. *Aquatic Sciences*, 67(3), 274–291. https://doi.org/10.1007/s00027-004-0744-3
 - 1. Participants were scope sensitive to environmental changes that they cared about. When participants don't really care, they are not scope sensitive. Whether participants in a focus group care can be determined by qualitative analysis.
- L. <u>Hsee, C. K., Zhang, J., Lu, Z. Y., & Xu, F. (2013). Unit Asking. *Psychological Science*, 24(9), 1801–1808. https://doi.org/10.1177/0956797613482947</u>
 - 1. "Unit-asking," (asking donors to choose a hypothetical amount to donate to help one person before they decide how much to donate for everyone) significantly increases scope sensitivity, and with it, group donations.
- M. Small, D. A., Loewenstein, G., & Slovic, P. (2007). Sympathy and callousness: The impact of deliberative thought on donations to identifiable and statistical victims.

Organizational Behavior and Human Decision Processes, 102(2), 143–153. https://doi.org/10.1016/j.obhdp.2006.01.005

- 1. When teaching or priming people to notice the scope insensitive difference between their valuation of individuals vs. groups, they decrease giving to identifiable victims and maintain but do not increase giving to groups.
- N. <u>Dunn, E. W., & Ashton-James, C. (2008)</u>. On emotional innumeracy: Predicted and actual affective responses to grand-scale tragedies. *Journal of Experimental Social Psychology*, 44(3), 692–698. https://doi.org/10.1016/j.jesp.2007.04.011
 - 1. People expect that they will be emotionally scope sensitive (e.g. feel worse about a disaster that kills 1000 people than one that kills 5), but they are not, unless numbers are translated into concrete images.
- O. Harel, I., & Kogut, T. (2021). The Effect of the Number and Identification of Recipients on Organ-Donation Decisions. *Frontiers in Psychology*, 12. https://doi.org/10.3389/fpsyg.2021.794422
 - 1. Participants who learned about more people that were saved by the organs of a donor do not increase willingness to donate.
- P. Erlandsson, A., Västfjäll, D., Sundfelt, O., & Slovic, P. (2016). Argument-inconsistency in charity appeals: Statistical information about the scope of the problem decrease helping toward a single identified victim but not helping toward many non-identified victims in a refugee crisis context. *Journal of Economic Psychology*, 56, 126–140. https://doi.org/10.1016/j.joep.2016.06.007
 - 1. Statistical information may not affect or have a slightly positive impact on willingness to help groups. When statistical information is combined with emotional arguments, donations can decrease.
- Q. Chang, H. H., & Hung, I. W. (2018). Mirror, Mirror on the Retail Wall: Self-Focused Attention Promotes Reliance on Feelings in Consumer Decisions. *Journal of Marketing Research*, *55*(4), 586–599. https://doi.org/10.1509/jmr.15.0080
 - 1. When donors have greater self-focused attention, scope insensitivity is amplified in both a hypothetical study and a real-life donation.
- R. <u>Dickert, S., Kleber, J., Peters, E., & Slovic, P. (2011). Numeracy as a precursor to pro-social behavior: The impact of numeracy and presentation format on the cognitive mechanisms underlying donation decisions. *Scholarsbank.uoregon.edu*. http://hdl.handle.net/1794/22050</u>
 - Less numerate people change their donation choices when numeric presentation format is changed more than numerate individuals. The mental image of victims influenced less numerate people only. Estimated impact was correlated with donation amounts for all.
- S. Dickert, S., Västfjäll, D., Kleber, J., & Slovic, P. (2012). Valuations of human lives: normative expectations and psychological mechanisms of (ir)rationality. *Synthese*, 189(S1), 95–105. https://doi.org/10.1007/s11229-012-0137-4
 - 1. Scope insensitivity can be explained by the mechanisms that influence emotional reactions.

- T. Czajkowski, M., & Hanley, N. (2009). Using Labels to Investigate Scope Effects in Stated Preference Methods. *Environmental and Resource Economics*, 44(4), 521–535. https://doi.org/10.1007/s10640-009-9299-z
 - 1. Labels affect scope sensitivity ("controlling for the effects of a label—in this case, national park designation—leads to significant increase in the scope sensitivity of welfare measures.").
- U. <u>Desvousges, W., Johnson, F. R., Dunford, R., Boyle, K., Hudson, S., & Wilson, K. N.</u> (2010). <u>Measuring Nonuse Damages Using Contingent Valuation: An Experimental Evaluation of Accuracy</u>, https://doi.org/10.3768/rtipress.2009.bk.0001.1009
 - 1. Found inconsistent per-life valuations of migratory waterfowl and questioned contingent valuation methodology in specific contexts.

III. Experimental Design: Describe your experimental design: please see resources I posted in the project modules, especially https://www.statisticshowto.com/experimental-design/.

A. Sampling technique:

1. Desired sample size by level and treatment:

a) In our proposal, we planned to have sixty total participants with roughly thirty in each treatment group. We were able to collect data for a total of 77 participants but only used 65 in our regressions. We removed one response because the respondent stated that they were under the age of 18 and 11 that were incomplete.

2. Describe each treatment.

- a) Subjects were assigned either to a math activity (treatment) or to a grammar activity (control).
- b) In the math activity, participants completed simple multiple-choice math questions designed to get them to do 'scaling' activities.
- c) In the grammar activity, participants completed multiple-choice questions about grammatical structure and errors.

3. How did you assign subjects to treatments?

a) Our survey software randomly assigned subjects to either the math activity or the grammar activity. A roughly equal number of participants were assigned to the treatment and control activities over the course of the experiment.

4. Did you use a within or between subjects design?

- a) We are using a between-subjects design to compare the consistency of the math participants with the consistency of the grammar participants.
- b) We are collecting within-subjects data, but this is not ultimately what we are comparing in the analysis. We used our within-subjects data (different valuation calculations) to calculate our

5. Could your experiment be easily replicated and verified by another researcher?

a) Our experiment could easily be replicated. It was in part a replication (with modifications) of earlier studies that also explored the effect of performing calculations on scope sensitivity in altruistic contexts.

B. Describe the methodology fully:

1. What independent and dependent variables did you record from your experiments?

- a) The primary independent variable is the math activity intervention. Additional independent variables tested are annual income, essential spending, non-essential spending, charity-givers, and demographic info such as age, gender and race.
- b) The dependent variable is the scope-scaling accuracy score.

2. How do you define each?

- a) The math activity intervention is a binary variable equal to one if the participant was randomly assigned to the treatment group; equal to zero if randomly assigned to the control group.
- b) The "accuracy score" was calculated using the valuations provided by participants. The formula is described in the analysis document. Lower scores indicate more consistency between a participant's per-life valuations. The accuracy score is separate from the activity score, which indicates what proportion of the grammar or math activity questions the participant got correct.
- c) Income, essential spending, and non-essential spending were numeric values provided by the participants. The exact question wording is available in our survey content in the appendix.
- d) We used dummy variables to include our gender and race variables.
- e) We used binary variables to indicate whether a participant responded 'yes' (1) or 'no' (0) to the questions about their charity donation behavior.

3. Do you potentially have any confounding variables that should be addressed?

a) We controlled for confounding variables such as income or education level by including them in our regressions.

4. What methods did you use to record these data?

a) We used a Qualtrics survey to collect data.

5. Do you encounter any issues in getting clean data?

a) Yes, there were issues with having participants answer honestly. Additionally, given that we asked hypothetical questions and were not available to consult, some participants may have been confused and therefore not answered accurately.

6. How did you statistically test your data to determine your results?

a) We ran a multivariate linear regression in STATA.

7. How did you present your results so that they are clear?

a) We will use the relevant tables and other outputs from STATA to show significant and non-significant variables.

8. What were the limitations of your study?

- a) Since the grammar activity was more difficult than the math activity, it serves as an imperfect control to compare with.
 - (1) Frustration from knowing fewer correct answers may affect

- willingness to pay.
- (2) Non-response bias more participants who received the grammar activity chose to not complete the survey compared with participants who received the math activity.
- b) Our results cannot be generalized to the United States population due to a disproportionate number of young people, men, and people with some higher education.
- c) Incomplete/insufficient responses result in not meeting the Central Limit Theorem's requirement of 30 minimum responses for approximately normal distribution.
 - (1) Results from comparisons between the 6 different form types might not accurately reflect the true nature of the differences.

C. Ethics

1. Were there any ethical concerns for participants?

a) We do not believe there are any ethical concerns for participants. We made efforts to inform them about the nature of the study as much as possible and reduce any risk of distress.

2. Were participants subjected to any risk above minimal risk?

a) No, participants were not subjected to any risk above minimal risk. They were easily able to withdraw from the survey at any time and for any reason.

3. Was there any deception of participants involved in the study?

a) We were intentionally vague about the purpose of our study, but otherwise did not deceive participants in any way.

D. Additional materials/appendices

- 1. Attach a list of materials needed and descriptions. (These may need to be part of the methodology or they may work best in the appendix.)
 - a) No materials were needed for the survey itself. We used Qualtrics to create the survey and distributed it online and using fliers with a QR code.

2. Attach any surveys/questionnaires/tasks that participants will participate in.

a) Please see appendix III for the survey our participants filled out.

IV. Results

A. What does your data show?

- Our data analysis showed that the independent variables we chose to run a regression on are NOT significantly related to our dependent variable (scope-scaling accuracy) in any way. Additionally, we eliminated order bias.
- B. Here is where you include any charts, stats, graphs or other representations of your data. I encourage you to use Tableau, Excel, PPT, etc to show your results in a visually pleasing way. If you used regression analysis, this is the place to put the regression tables.
 - 1. We ran multiple different types of regressions. Please see appendix II for all of the STATA output tables and our analysis.

V. Conclusions

A. What can we conclude from the work?

In conclusion, we cannot confidently say that participating in a relevant
mathematical activity before answering scope-scaling questions will nudge
individuals into more accurately adjusting their WTP for donations to charities of
various causes.

B. What were the limitations of the study and thus what do we need to consider when interpreting results?

- 1. Sample size.
- 2. Mostly college students.
- 3. Results may have been impacted by the specifics of the questions (e.g. perhaps people are less sympathetic to birds, sea turtles, etc.).

C. What other questions remain to be answered?

- 1. How do different 'victims' affect valuations and why?
- 2. How would the introduction of budget constraints change participant responses?
- 3. Would participant answers change if social pressures were introduced (i.e. if the questions were asked by a person rather than a survey)?

D. What is the importance of the work done? Any policy implications based on the conclusions?

- 1. Further research is needed to determine the impact of calculation exercises on scope sensitivity. Given that our results show no statistically significant effect, there are no notable policy implications at this time.
- 2. Our study is consistent with earlier literature which indicates that people are insensitive to scope. Policies should be scope-sensitive and correct for this bias.

Appendices

- I. Descriptive Statistics
- II. STATA Analysis
- III. Bibliography
- IV. Survey Content
- V. Raw Data

Appendix I. Descriptive Statistics

Per-Life Valuations

		Mean	Median	Mode	Minimum	Maximum
	Small	\$14.17	\$.03	\$0	\$0	\$500
Bird	Medium	\$7.89	\$.10	\$.001	\$0	\$500
	Large	\$6.83	\$.001	\$.001	\$0	\$500
	Small	\$365	\$1.25	\$100	\$0	\$25,000
Turtle	Medium	\$75.67	\$.50	\$5	\$0	\$5,000
	Large	\$16.93	\$.10	\$.05	\$0	\$1,000
	Small	\$144,044	\$50	\$100	\$0	\$10,000,000
Human	Medium	\$78,744	\$5	\$5	\$0	\$5,000,000
	Large	\$1,421	\$.62	\$.25	\$0	\$50,000

	Grammar Activity	Math Activity	Differential
Bird	7.24	.356	20.33
Turtle	351	4.83	72.67
Human	144,478	562	257.08

Group 1: Scope Insensitivity 11

Appendix II: STATA Analysis

Section 1: Analysis on Overall Accuracy Score

Overall accuracy score (accuracy_score) is a measurement of participants' response accuracy in keeping their per life valuations proportional with increasing quantities of lives by averaging the differences between each of their per life valuations from small to medium and from medium to large scope questions for all three life forms: birds, turtles, and humans. A score of zero indicates that the participant's valuations were perfectly proportional. The higher the score, the less accurate the participant's valuations

Sample Calculation

1) Participant Responses

were.

Small: Amount willing to pay to save 200 birds: \$20

Medium: Amount willing to pay to save 2,000 birds: \$25

Large: Amount willing to pay to save 20,000 birds: \$40

2) Per Life Valuations

Small: \$20 / 200 birds = \$.10 per bird

Medium: \$25 / 2,000 birds = \$.0125 per bird

Large:\$40 / 20,000 birds = \$.002 per bird

3) Difference Calculations

Absolute value of the small valuation minus the medium valuation: \$.10 - \$.0125 = \$.0875Absolute value of the medium valuation minus the large valuation: \$.0125 - \$.002 = \$.0105

4) Score calculation

Average difference: (\$.0875 + \$.0105) / 2 = .098

This number was multiplied by 1,000 to avoid reporting the small decimals that were often present and are known to confuse readers.

This participant's accuracy score would be 980.

The process was repeated for the turtle and human questions, then added for each participant to calculate their final accuracy score.

Figure 1: Overall Participant Accuracy - Full Regression & F-Test of Joint Significance on Form Type

							. test	msl	slm lsm lms	s mls	
Source SS Model 1.1973e+1	df 1 25 4.7	MS 	Number of F(25, 30) Prob > F	obs = = =	56 1.05 0.4449		(1) (2) (3) (4)	msl slm lsm lms	= 0 = 0		
Residual 1.3681e+1		602e+09	R-squared	=	0.4667		(5)	mls	= 0		
Total 2.5653e+1	1 55 4.6	642e+09	Adj R-squa Root MSE	ared = =	0.0223 67529		(3)		5, 30) :		1.11 0.3761
accuracy_scor	e Coefficient	Std. err.	t	P> t	[95% conf.	interval]			FIOD / I .	-	0.5701
math_activit		28731.34	0.29	0.770	-50204.96	67149.5					
activity_scor ms		55956.62 43419.91	-1.77 0.27	0.087 0.786	-213332.3 -76773.57	15225.04 100577	. dı	invi	Ftail(5,	30,	.05)
ms sl		52416.1	0.27	0.422	-64406.51	149689.4	2.533	554	5		
1s		41263.98	1.90	0.067	-5789.428	162755.2					
1m		42723.91	0.42	0.674	-69105.02	105402.7					
ml	I	41669.54	0.89	0.379	-47871.18	122329.9					
ag	e -1925.927	1470.559	-1.31	0.200	-4929.21	1077.355					
mal	e 1011.532	36085.67	0.03	0.978	-72685.23	74708.3					
femal		39643.89	0.32	0.751	-68245.19	93682.06					
black_or_africanamerica		78527.84	1.95	0.061	-7293.166	313457.3					
hispanic_or_latni		88413.99	0.50	0.623	-136708.2	224422.7					
asian_or_pacificislande		82230.5	0.06	0.953	-163092.2	172781.9					
whit		71031	0.41	0.686	-116051.7	174077.6					
completed_graduate_degre		72262.06	0.15	0.879	-136476.5	158681.1					
completed_bachelors_degre		71250.94	-0.69	0.493	-194963.4	96064.27					
current_undergra		69490.08 76262.28	-0.39	0.700 0.548	-168956.7 -202120.3	114878.7 109376.4					
high_school_diplom incomplete high schoo		120014.9	-0.61 -0.83	0.412	-345058.1	145148.2					
current_graduatest		89924.72	0.37	0.716	-150678.3	216623.3					
annual incom		.096951	1.04	0.309	0975645	.2984363					
ess_spen		.0946893	0.05	0.960	1885421	.1982207					
noness spen		.6232201	-0.51	0.614	-1.590612	.9549582					
charity pas		78368.24	0.40	0.691	-128565.9	191532.8					
charity futur		43137.88	-0.57	0.574	-112635.5	63563.09					
_con	I	99845.27	0.67	0.509	-137152.6	270669.9					

Since the calculated F-static of 1.11 is less than the calculated critical F-statistic of 2.5335545, and it has a corresponding p-value of 0.3761, which is greater than the critical p-value of 0.05, I fail to reject the null hypothesis at alpha levels of 0.05. Given the sample, there is insufficient evidence to conclude that the different form types MSL, SLM, LSM, LMS, and MLS are jointly significant. Therefore, form type does not have a jointly significant effect on accuracy score.

Figure 2: Figure 1 Regression without Form Type

Source	SS	df		MS	Number of	obs	=	56	
					F(19, 36)		=	1.04	
Model	9.1124e+10	19		'960e+09	Prob > F		=	0.4413	
Residual	1.6541e+11	36	4.5	947e+09	R-squared		=	0.3552	
				-	Adj R-squa	red	=	0.0149	
Total	2.5653e+11	55	4.6	642e+09	Root MSE		=	67784	
ac	curacy_score	Coeffici	ent	Std. err.	t	P> :	t	[95% conf.	interval]
n	math_activity	22195.	29	27359.46	0.81	0.4	23	-33292.27	77682.85
ac	tivity_score	-114852	.9	53983.39	-2.13	0.0	40	-224336.2	-5369.489
	male	1237.7	04	34017.96	0.04	0.9	71	-67753.92	70229.33
	female	17425.	82	35972.71	0.48	0.6	31	-55530.21	90381.86
black_or_afr	icanamerican	143350	.7	71725.09	2.00	0.0	53	-2114.484	288816
hispar	nic_or_latnix	29461.	35	84349.29	0.35	0.7	29	-141606.9	200529.6
asian_or_pac	ificislander	19730.	17	74682.7	0.26	0.79	93	-131733.4	171193.7
	white	35796	.8	61419.41	0.58	0.5	64	-88767.54	160361.1
completed_gra	duate_degree	3579.4	79	68681.5	0.05	0.9	59	-135713.1	142872
completed_back	elors_degree	-49143.	76	67086.25	-0.73	0.4	69	-185201	86913.46
curre	nt_undergrad	-1363.8	63	67343.39	-0.02	0.9	84	-137942.6	135214.9
high_so	:hool_diploma	-21550.	61	71611.25	-0.30	0.7	65	-166784.9	123683.7
incomplete	_high_school	-56448.	27	109967	-0.51	0.6	11	-279471.8	166575.2
current	_graduatestu	22857.	48	86714.53	0.26	0.79	94	-153007.7	198722.7
ā	nnual_income	.09344	75	.0898351	1.04	0.3	0 5	0887465	.2756414
	ess_spend	00020	35	.0789491	-0.00	0.99	98	1603197	.1599127
	noness_spend	45016	91	.5778402	-0.78	0.4	41	-1.622083	.7217451
	charity_past	7032.4	108	61954.26	0.11	0.9	10	-118616.6	132681.5
ch	marity_future	1709.4	64	39204.18	0.04	0.9	65	-77800.31	81219.23
	_cons	30563.	76	88824.75	0.34	0.7	33	-149581.2	210708.7
		ı							

Figure 3: Condensed Education Regression without Form Type & F-Test of Joint Significance on Charity Variables

Condensed education variable: other education2 = other education + incomplete high school + current graduatestu + high school diploma

Source SS	df	MS	Number of	ohs	=	56		
			F(16, 39)		=	1.28		
Model 8.8342e+10	16 5	5.5214e+09	Prob > F		=	0.2575		
Residual 1.6819e+11	39 4	.3126e+09	R-squared			0.3444		. test cha
			Adi R-squa	ared	=	0.0754		
Total 2.5653e+11	55 4	1.6642e+09	Root MSE		=	65670		(1) cha
								(2) cha
accuracy_score	Coefficien	nt Std. err	. t	P> t		[95% conf.	interval]	F(
math activity	19465.93	25068.38	0.78	0.442		31239.64	70171.51	
activity score	-104570.3	49912.73	-2.10	0.043		205528.3	-3612.292	. di invFt
male	2012.905	32228.55	0.06	0.951		63175.49	67201.3	3.2380961
female	20832.27	34274.55	0.61	0.547		48494.55	90159.09	
black or africanamerican	123291.9	62952.59	1.96	0.057		4041.697	250625.5	
hispanic or latnix	-6083.965	68699.19	-0.09	0.930		145041.2	132873.3	
asian or pacificislander	1566.865	65923.1	0.02	0.981		131775.2	134908.9	
white	18059.94	52042.31	0.35	0.730		87205.57	123325.5	
completed_graduate_degree	10126.03	33730.83	0.30	0.766	-	58101.01	78353.07	
completed_bachelors_degree	-39010.05	33681.64	-1.16	0.254	-	107137.6	29117.49	
current_undergrad	6084.222	37827.41	0.16	0.873	-	70428.94	82597.38	
annual_income	.0838594	.085847	0.98	0.335	-	.0897826	.2575013	
ess_spend	0152337	.0720981	-0.21	0.834		.1610659	.1305986	
noness_spend	3950996	.552589	-0.71	0.479	-	1.512816	.7226173	
charity_past	12331.25	46504.8	0.27	0.792	-	81733.58	106396.1	
charity_future	668.8173	35449.89	0.02	0.985	-	71035.35	72372.98	
_cons	29813.93	79014.67	0.38	0.708	-	130008.3	189636.2	

```
harity_past charity_future
harity_past = 0
harity_future = 0
  2, 39) = 0.04
Prob > F = 0.9646
tail(2, 39, .05) // 3.2380961
```

Education was condensed because the number of participants characterized by the incomplete_high_school, current_graudatestu, and high_school_diploma variables are less than 5 each. After condensing the variables, the number of participants denoted by other_education2 is 12. Since the calculated F-static of 0.04 is less than the calculated critical F-statistic of 3.23, and it has a corresponding p-value of 0.9646 which is greater than the critical p-value of 0.05, I fail to reject the null hypothesis at alpha levels of 0.05. Given the sample, there is insufficient evidence to conclude that the charity variables: charity_past and charity_future, are jointly significant. Therefore, the charity variables do not have a jointly significant effect on accuracy score.

Figure 4: Figure 3 Regression without Charity Variables & F-Test of Joint Significance on Spending Variables

								(1)	ess_s	pend = (ð	
Source	SS	df	MS	Number of	obs =	67		(2)	nones	s_spend	= 0	
				F(14, 52)	=	1.17						
Model	9238e+12	14	4.2313e+11	Prob > F	=	0.3232			F(2	, 52) =	0.39
Residual	8761e+13	52	3.6079e+11	R-squared	=	0.2400			1	Prob > F	F =	0.6786
				Adj R-squ	ared =	0.0354						
Total	4685e+13	66	3.7401e+11	Root MSE	=	6.0e+05		. di i	nvFtai	1(2, 52	, .05)	// 3.1751
								3.1751	L 41			
a	icy_score	Coefficie	nt Std. er	r. t	P> t	[95% conf.	interval]					
1	activity	-31603.3	9 199287.8	8 -0.16	0.875	-431503.7	368296.9					
a	ty_score	-203274.	3 389296.2	1 -0.52	0.604	-984454.2	577905.5					
	male	-87062.1	9 261287.7	7 -0.33	0.740	-611374.2	437249.9					
	female	-26135	0 267887.0	6 -0.98	0.334	-798905.8	276205.9					
black_or_af	american	271997.	8 533144.0	6 0.51	0.612	-797835.1	1341831					
hispa	r_latnix	145600.	5 540198.3	1 0.27	0.789	-938386.2	1229587					
asian_or_pa	islander	112963	7 547904.4	4 2.06	0.044	30186.67	2229088					
	white	295343.	7 460131.1	0.64	0.524	-627976.8	1218664					
ompleted_gr	e_degree	291205.	5 263013.7	7 1.11	0.273	-236570.1	818981.1					
mpleted_bac	s_degree	-18290.9	7 259358	-0.07	0.944	-538730.8	502148.8					
curr	ındergrad	-45232	9 31302	3 -1.45	0.154	-1080456	175797.6					
	l_income	254589			0.717	-1.658046	1.148866					
	ss_spend	.094051	.6459308	0.15	0.885	-1.202104	1.390206					
	ss_spend	-4.38392			0.381	-14.34	5.572149					
	_cons	60563.6	9 49417	0.12	0.903	-931066.9	1052194					
	ss_spend ss_spend	.094051 -4.38392	.6459308 8 4.961549	8 0.15 9 -0.88	0.885 0.381	-1.202104 -14.34	1.390206 5.572149					

Since the calculated F-static of 0.39 is less than the calculated critical F-statistic of 3.23, and it has a corresponding p-value of 0.6786 that is greater than the critical p-value of 0.05, I fail to reject the null hypothesis at alpha levels of 0.05. Given the sample, there is insufficient evidence to conclude that the

spending variables: ess_spend and noness_spend, are jointly significant. Therefore, the spending variables do not have a jointly significant effect on accuracy score.

Figure 5: Figure 4 Regression without the Spending variables & F-Tests of Joint Significance on Ethnicity and Gender

Source SS	df MS 12 4.7016e+11 54 3.5265e+11 66 3.7401e+11	Number of obs = F(12, 54) = Prob > F = R-squared = Root MSE = F	67 1.33 0.2277 0.2286 0.0571 5.9e+05	<pre>(1) black_or_africanamerican = 0 (2) hispanic_or_latnix = 0 (3) asian_or_pacificislander = 0 (4) white = 0 F(4, 54) = 2.61</pre>
accuracy_score	Coefficient Std. err	r. t P> t	[95% conf. interval]	
				(1) completed_graduate_degree = 0
math_activity	-39395.94 195729.5	5 -0.20 0.841	-431810.1 353018.2	(2) completed_bachelors_degree = 0
activity_score	-151807.3 379891.9	9 -0.40 0.691	-913444.8 609830.2	(3) current_undergrad = 0
male	-117431.4 253113.4	4 -0.46 0.645	-624893.3 390030.4	
female	-254386 258076.9	9 -0.99 0.329	-771799 263027	F(3, 54) = 2.74
black_or_africanamerican	210623.1 447846	0.47 0.640	-687254.1 1108500	Prob > F = 0.0520
hispanic or latnix	98054.02 481375.1	0.20 0.839	-867045 1063153	
asian or pacificislander	1076360 468869.8	3 2.30 0.026	136332.8 2016388	
white	226531 372617.	0.61 0.546	-520521.6 973583.6	(1) male = 0
completed_graduate_degree	248517.2 249673.7	7 1.00 0.324	-252048.5 749082.9	
completed bachelors degree	-21195.29 253797.5	-0.08 0.934	-530028.6 487638.1	(2) female = 0
current undergrad	-466129 305547	7 -1.53 0.133	-1078714 146455.9	
annual income	2493751 .6910017	7 -0.36 0.720	-1.63475 1.136	F(2, 54) = 0.61
_cons	103211.2 448986.4	0.23 0.819	-796952.3 1003375	Prob > F = 0.5468

Since the calculated F-statistics for education and gender are both less than their respective calculated critical F-statistics of 2.78 and 3.17 respectively, and both of their calculated p-values are greater than the critical p-value of 0.05, I fail to reject the null hypotheses at alpha levels of 0.05. Given the sample, there is insufficient evidence to conclude that the education and gender variables are respectively jointly significant. Therefore, the variables do not have a significant effect on accuracy score.

Alternatively, since the calculated F-static for the ethnicity variables is 2.61, which is greater than the calculated critical F-statistic of 2.54, and the calculated p-value of 0.0452 is less than the critical p-value of 0.05, there is evidence that the null hypothesis is incorrect. Given the sample, there is evidence that the ethnicity variables are jointly significant.

Figure 6: Figure 5 without the Education and Gender Variables & F-Test of Joint Significance on Ethnicity

Source SS	df	MS	Number of		= 67 = 0.95		(1) (2) (3)	<pre>black_or_africanamerican = 0 hispanic_or_latnix = 0 asian_or_pacificislander = 0</pre>
Model 2.5089e-	12 7	3.5841e+11	Prob >	•	= 0.4732		(4)	white = 0
Residual 2.2176e-	13 59	3.7587e+11	R-squar	ed	= 0.1016		(4)	milet = 0
			Adj R-s	quared	= -0.0049			F(4, 59) = 1.27
Total 2.4685e-	13 66	3.7401e+11	Root MS	E	= 6.1e+05			Prob > F = 0.2905
accuracy_score math_activity activity_score black_or_africanamerican hispanic_or_latnin asian_or_pacificislanden white annual_income	-30466.32 -384505.5 60315.41 -127545.8 489789.5 36098.28	378321.4 438056.6 476228 412711.3 371441.2 .6900283	-0.15 -1.02 0.14 -0.27 1.19 0.10 -0.09	P> t 0.880 0.314 0.891 0.790 0.240 0.923 0.926 0.489	-433748.2 -1141525 -816233.7 -1080476 -336043.9 -707153.8 -1.44532 -526892.3	372815.6 372513.7 936864.5 825384.3 1315623 779350.3 1.316167 1089279		

Since the calculated F-static of 1.27 is less than the calculated critical F-statistic of 2.53, and it has a corresponding p-value of 0.2905 that is greater than the critical p-value of 0.05, I fail to reject the null hypothesis at alpha levels of 0.05. Given the sample, there is insufficient evidence to conclude that the ethnicity variables are jointly significant. Therefore, the ethnicity variables do not have a jointly significant effect on accuracy score.

Figure 7: Activity Variables Only Regression

Source	SS	df	MS	Number of	obs =	77
				F(2, 74)	-	0.73
Model	4.7665e+11	2	2.3833e+11	Prob > F	-	0.4869
Residual	2.4266e+13	74	3.2792e+11	R-squared	-	0.0193
				Adj R-squa	red =	-0.0072
Total	2.4743e+13	76	3.2556e+11	Root MSE	-	5.7e+05
accuracy_score	Coefficient	Std. er	r. t	P> t [95% cor	nf. interval]
math_activity	-102635.9	158156.	5 -0.65	0.518 -4	17769.6	212497.8
activity_score	-129779.5	274875.7	7 -0.47	0.638 -6	77481.3	417922.2
_cons	219965.8	184267.	8 1.19	0.236 -1	47195.8	587127.3

Since the base regression T-statistics are small, the calculated T-test p-values are greater than the critical p-value of 0.05, and 0 is within the 95% confidence intervals for all three variables, there is insufficient evidence to conclude significance in the sample for a relationship between participants taking the intervention, their respective activity score, and the scope sensitivity measurement, accuracy score.

Note: After identified bad responses and outliers were removed, **no significant change occurred** to the results, so those regressions have been omitted to reduce redundancy. Also, since no significance has been identified, additional tests such as tests for heteroscedasticity have not been applied.

Section 2: Analysis on the Accuracy Scores for Birds, Turtles, and Humans

/ 1\ msl = 0

SUMMARY

Contains data from ScopeSensitivityData.dta

Observations: 77

Variables: 67 21 Nov 2022 21:23

FIGURE 8: Accuracy Score For Birds Linear-Linear Regression Model

Source	SS	df	MS	Number of				(1)		= 0 = 0		
				F(25, 30)	-			(3)		= 0		
Model	27985.93		1119.4372	Prob > F	-					= 0		
Residual	32050.8491	30 1	068.36164	R-squared				(4)				
T-4-1	50035 770		4004 5770	Adj R-squa				(5)	mis	= 0		
Total	60036.779	55	1091.5778	Root MSE	-	32.686						
									F(5,	30) =	1.09
	accuracy_bird	Coefficien	t Std. err.	t	P> t	[95% conf.	interval]			Prol	b > F =	0.3869
r	math_activity	4.605184	13.90668	0.33	0.743	-23.79604	33.00641					
ac	ctivity_score	-47.61178	27.08438	-1.76	0.089	-102.9255	7.701901					
	msl	4.835984	21.0163	0.23	0.820	-38.08503	47.757					
	slm	18.98458	25.37068	0.75	0.460	-32.82926	70.79842					
	lsm	37.07708		1.86	0.073	-3.712785	77.86694					
	lms	8.421516	20.67942	0.41	0.687	-33.8115	50.65453					
	mls	18.22337		0.90	0.373	-22.96739	59.41413					
	age	9047687		-1.27	0.213	-2.358431	.5488939					
	male	.2896857		0.02	0.987	-35.38136	35.96073					
	female	6.377469		0.33	0.742	-32.81091	45.56585					
	ricanamerican	73.05328		1.92	0.064	-4.572277	150.6788					
	nic_or_latnix	18.35578		0.43	0.671	-69.04233	105.7539					
asian_or_pa	cificislander	1.595348		0.04	0.968	-79.69032	82.88102					
	white	12.149		0.35	0.726	-58.06586	82.36385					
completed_gra		5.276859	34.97661	0.15	0.881	-66.15492	76.70863					
completed_back	nelors_degree	-23.25382	34.4872	-0.67	0.505	-93.68609	47.17844					
	ent_undergrad	-12.77147	33.63491	-0.38	0.707	-81.46311	55.92017					
high_so	chool_diploma	-21.03341	36.91282	-0.57	0.573	-96.41944	54.35262					
incomplete	e_high_school	-46.98847	58.09016	-0.81	0.425	-165.6244	71.64747					
current	t_graduatestu	14.44663	43.52577	0.33	0.742	-74.44486	103.3381					
ā	annual_income	.0000466	.0000469	0.99	0.329	0000493	.0001424					
	ess_spend	7.42e-08	.0000458	0.00	0.999	0000935	.0000937					
	noness_spend	0001496		-0.50	0.624	0007656	.0004665					
	charity_past	13.85426	37.93215	0.37	0.717	-63.61353	91.32205					
cl	narity_future	-11.45895		-0.55	0.587	-54.10117	31.18328					
	_cons	34.45097	48.32756	0.71	0.481	-64.24708	133.149					

In the regression seen above (Figure 8), there are no t-values greater than the critical value of 1.96 and there are no p-values less than the critical value of 0.05 which means we can not say that any of these variables have a significant relationship with the dependent variable, 'accuracy bird.' Additionally, with

an R-squared value of 0.466, we can infer that perhaps a linear-linear model is not that best fit. Therefore, I tested additional regression models to see if they held any compelling results. Additionally, we can see that form-type is not significant due to the joint-significance test outputting a F-stat of 1.09 which is less than the critical value of 1.96 and a p-value of 0.387 which is greater than the critical value of 0.05. This means that the order in which the scope-scaling questions was not significant.

FIGURE 9: Accuracy Score for Birds Log-Linear Regression Model

Source Model Residual	221.73369 118.00934 339.74303	23	MS 8.86934759 5.13084088 7.07797979	Number of F(25, 23) Prob > F R-squared Adj R-squa Root MSE	=	49 1.73 0.0956 0.6527 0.2751 2.2651		(1) (2) (3) (4) (5)	slm lsm lms	= 0 = 0 = 0 = 0		
ac black_or_afr:	ic_or_latnix ificislander white	2.39047 -4.68588 -824936 -1.00198 -099497 -6.11808 2.56755 -577131 -1.9886 1.02445 -5.21849 -2.21532 -2.40928 1.67021	11 2.166572 16 1.624583 12 2.023733 19 1.631194 19 1.540024 10 1.631194 10 1.	2.04 -2.16 -0.51 -0.50 -0.05 -0.38 1.66 1.15 -0.45 -0.15	P> t 0.053 0.041 0.616 0.625 0.957 0.711 0.110 0.262 0.656 0.885 0.728 0.189 0.456 0.341 0.669	[95% conf0346022 - 9.167776 -4.185637 -5.188309 -3.903054 -3.986189 -6.245937055648 -3.220677 -3.014624 -4.996523 -13.19738 -8.263699 -7.535857 -6.314487	1.815546 203986 203986 2 .535776 3 .184421 3 .70406 2 .762573 5 .746973 1.951586 2 .066414 2 .616895 7 .045434 2 .760392 3 .833043 2 .717296		F(5, Prob	23) = > F =	2.32 0.0759
completed_bach current high_scl incomplete current an		-1.10056 .966122 1.41526 .161928 -2.23074 -4.68e-6 -9.69e-6 000022 1.19454 1.62416 -3.05369	88 3.865159 3 3.601915 39 3.797162 4.917802 4.23902 6 4.390e-06 6 3.35e-06 67 .0000462 67 2.942731 1.935792	-0.28 0.27 0.37 0.03 -0.53 -1.20 -2.89 -0.49 0.41 0.84	0.778 0.778 0.791 0.713 0.974 0.604 0.243 0.008 0.628 0.689 0.410 0.436	-9.096258 -6.485007 -6.439759 -10.01132 -10.99983 0000128 00001183 -4.892956 -2.380326 -11.01669	6.895122 8.417251 9.270297 10.33518 6.538351 3.39e-06 -2.76e-06 .0000729 7.282051 5.628657 4.909292					

The R-squared value for this regression (Figure 9) is 0.653, which is worse than before. This means the log-linear model is a worse fit for our data. There are two variables that show a significant relationship with the dependent variable: 'activity_score' and 'ess_spend'. This implies that the performance on the activity (math or grammar) correlates with the participants' ability to accurately scale scope when it comes to donations that would hypothetically save birds. It also implies that essential spending is significantly related. However, since this model does not fit the data well, I am not confident in these findings. Another thing to note is that the variable 'math_activity' is very close to being significant, but since the p-value of 0.053 is greater than the critical value of 0.05, it is not significant. Finally, a

joint-significance test for form-type shows that the order in which we asked the scope-scaling questions doesn't matter.

FIGURE 10: Accuracy for Bird Linear-Log Regression Model

Source Model Residual	SS 29189.0836 30801.0762		MS 1167.56334 1100.03843	Number of F(25, 28) Prob > F R-squared	=	1.06 0.4368 0.4866		(1) (2) (3)	slm lsm	= 0 = 0 = 0		
Total	59990.1598	53	1131.88981	Adj R-squa Root MSE	ared =			(4)		= 0 = 0		
ā	accuracy_bird	Coefficie	ent Std. err	. t	P> t	[95% conf.	interval]		F(5,	28) =	1.18
n	math_activity logActSco	9.92392 -32.4593		0.67 -2.02	0.510 0.053	-20.56031 -65.30311	40.40816 .3844646			Prob) > F =	0.3446
	msl	8.91013		0.42	0.678	-34.52183	52.34211					
	slm	25.48		0.94	0.355	-29.96289	80.93088					
	lsm	41.4673		2.04	0.051	1110347	83.04572					
	lms	18.9808		0.87	0.389	-25.46464	63.42635					
	mls	27.127		1.25	0.222	-17.38515	71.64014					
	age	806364		-1.06	0.298	-2.365038	.7523093					
	male	.849702		0.04	0.965	-38.0294	39.7288					
	female ricanamerican	7.11011 66.7207		0.33	0.745 0.062	-37.18491 -3.650635	51.40515 137.0921					
	nic or latnix	17.0126		1.94 0.39	0.696	-71.30393	105.3292					
	ificislander	-4.70364		-0.11	0.996	-93.32885	83.92156					
astan_or_pac	white	4.24339		0.13	0.899	-63.86641	72.35321					
completed gra	aduate degree	-2.84505		-0.07	0.942	-81.88294	76.19283					
completed_back		-28.4623		-0.76	0.454	-105.2443	48.31965					
	ent undergrad	-15.545		-0.44	0.661	-87.48548	56.39488					
	chool diploma	-26.5012		-0.68	0.503	-106.4238	53.42127					
	high school	-42.7585		-0.55	0.584	-200.9975	115.4804					
	t graduatestu	5.78487		0.13	0.895	-83.08913	94.65888					
	logAnnInc	3.5053		0.57	0.572	-9.057332	16.06809					
	logEssSpe	-1.71986		-0.27	0.789	-14.78838	11.34866					
	logNEssSpe	1.28368	34 5.29303	0.24	0.810	-9.558596	12.12596					
	charity_past	15.9371	13 40.52092	0.39	0.697	-67.0662	98.94047					
ch	narity_future	-13.6804	21.45875	-0.64	0.529	-57.63668	30.27584					
	_cons	-42.1555	55 81.48322	-0.52	0.609	-209.0663	124.7553					

The regression seen in Figure 10 has an R-squared value of 0.487 which is better than the log-linear regression model, but slightly worse than the linear-linear regression model. In this model, there are no significant variables as all have t-scores above the critical value of 1.96 and p-values below the critical value of 0.05. Additionally, the form type is not significant.

FIGURE 11: Accuracy for Birds Log-Log Regression Model

Source SS Model 212.017025 Residual 123.46468 Total 335.481705	21 5.8	MS 3.480681 37927049 9308055	Number of F(25, 21) Prob > F R-squared Adj R-squa Root MSE	=	1.44 0.1986 0.6320 0.1939		(1) (2) (3) (4) (5)	slm lsm lms	= 0 = 0 = 0 = 0 = 0		
logAccBird	Coefficient	Std. err	. t	P> t	[95% conf.	interval]		E/	_	21\ -	4 02
								F(5,	21) =	1.92
math_activity	1.997192	1.354835	1.47	0.155	8203411	4.814726			Prob	> F =	0.1336
logActSco	-2.241399	1.294431	-1.73	0.098	-4.933317	.4505182					
msl	.6244443	1.848924	0.34	0.739	-3.220603	4.469492					
slm	1.824678	2.416129	0.76	0.459	-3.199936	6.849293					
lsm	.9538382	1.9979	0.48	0.638	-3.201022	5.108699					
lms	.906763	1.961357	0.46	0.649	-3.172103	4.985629					
mls	4.313914	1.909713	2.26	0.035	.3424477	8.28538					
age	0300483	.0734026	-0.41	0.686	1826973	.1226008					
male	-1.671888	1.43378	-1.17	0.257	-4.653596	1.30982					
female	9585592	1.609252	-0.60	0.558	-4.305181	2.388063					
black_or_africanamerican	1.672254	2.916624	0.57	0.572	-4.393198	7.737707					
hispanic_or_latnix	-6.40283	4.629719	-1.38	0.181	-16.03086	3.225197					
asian_or_pacificislander	-3.395672	3.710784	-0.92	0.371	-11.11267	4.321326					
white	-2.359901	2.787242	-0.85	0.407	-8.156289	3.436487					
completed_graduate_degree	0390465	4.397529	-0.01	0.993	-9.184208	9.106115					
completed_bachelors_degree	-2.055524	4.392776	-0.47	0.645	-11.1908	7.079755					
current_undergrad	9064357	3.916052	-0.23	0.819	-9.050313	7.237441					
high_school_diploma	.3154014	4.235516	0.07	0.941	-8.492837	9.12364					
incomplete_high_school	-5.668148	6.738067	-0.84	0.410	-19.68073	8.344429					
current_graduatestu	-2.417283	4.678551	-0.52	0.611	-12.14686	7.312297					
logAnnInc	6720118	.5112259	-1.31	0.203	-1.735164	.3911408					
logEssSpe	7322098	.5654079	-1.30	0.209	-1.90804	.4436202					
logNEssSpe	1.09437	.4490617	2.44	0.024	.1604949	2.028245					
charity_past	3.808791	3.290118	1.16	0.260	-3.033384	10.65097					
charity_future	1.218737	2.119937	0.57	0.571	-3.189914	5.627388					
_cons	.0501115	6.746951	0.01	0.994	-13.98094	14.08116					

Figure 11 shows a poorly-fitted model where the variable 'logNEssSpe' is significant. This variable is the self-reported money spent on non-essential things every month. However, due to the R-squared value of 0.632, I am not confident that any impactful conclusion can be drawn from this correlation. Additionally, the form-type is once again, not significant.

FIGURE 12: Accuracy Score for Turtles Linear-Linear Regression Model

Model Residual	SS 66062366.3 75273619.6 141335986		MS 2642494.65 2509120.65 2569745.2	Number of F(25, 30) Prob > F R-squared Adj R-squa Root MSE	red :	= 56 = 1.05 = 0.4421 = 0.4674 = 0.0236 = 1584		(1) (2) (3) (4) (5)	slm lsm lms	= 0 = 0 = 0 = 0 = 0		
acc	uracy_turtle	Coefficie	ent Std. err	. t	P> t	[95% conf.	interval]	. ,				
black_or_aff hispar asian_or_pac completed_grac completed_bach curren high_sc incomplete curren	math_activity ctivity_score msl slm lsm mls age male female ricanamerican nic_or_latnix rificislander white	203.593 -2300.62 258.221 961.567 1816.86 406.008 851.163 -44.8662 19.5833 292.585 3616.03 1007.401 666.26 249.0007 -1151.22 -633.057 -1074.63 -2318.441 746.216 .002338 .000103 -007475 725.201	673.9458 24 1312.564 19 1018.493 11 1229.515 267.9216 261 1002.167 27 977.4346 21 34.49464 268 464.548 29.9194 2073.91 21 1928.865 267 1666.161 2695.038 261.662.163 261.663.016 261.663.016 261.663.016 261.663.016 261.663.016 261.663.016 261.663.016 261.663.016 261.663.016 261.663.016 261.01	0.30 -1.75 0.25 0.78 1.88 0.41 0.87 -1.30 0.02 0.31 1.96 0.48 0.06 0.40 0.15 -0.69 -0.39 -0.60 -0.82 0.35 1.03 0.05 -0.51	0.765 0.990 0.802 0.440 0.070 0.688 0.391 0.952 0.651 0.695 0.692 0.755 0.692 0.750 0.691 0.750	-1172.787 -4981.238 -1821.818 -1549.437 -159.9564 -1640.689 -1145.024 -115.3137 -1709.108 -1606.559 -145.8554 -3230.187 -3831.868 -2736.488 -3212.722 -4564.534 -3961.994 -4727.996 -8067.753 -3561.652 -0023064 -0044331 -0373306 -3029.046	1579.975 379.9892 2338.262 3472.571 3793.563 2452.706 2847.352 25.58123 1748.275 2191.738 7377.929 5240.793 4046.67 4069.022 3710.737 2662.047 2695.879 2578.724 3430.925 5054.073 .0069826 .0046392 .0023804 4479.448		F(5, Prob	30) = > F =	1.09 0.3846
Ci	_cons	-548.466 1566.16		-0.54 0.67	0.592 0.509	-2614.989 -3216.943	1518.069 6349.274					

Figure 12 shows no significant variables - either the t-score is less than 1.96 or the p-value is greater than 0.05 or both. Additionally, the joint-significance test for form-type shows that the order in which we asked the questions did not have a significant effect in this model. The R-squared value of 0.467 could be better, so different regression models were tested just like for birds.

FIGURE 13: Accuracy for Turtles Log-Linear Regression Model

Model 143.3 Residual 129.3 Total 272.6	26018	23	MS 5.73235824 5.62287035 5.67989529	Number of F(25, 23) Prob > F R-squared Adj R-squa Root MSE	= =	49 1.02 0.4837 0.5256 0.0100 2.3713		(1) (2) (3) (4)	slm lsm lms	= 0 = 0 = 0 = 0		
logAccT	urtle	Coefficier	nt Std. err	. t	P> t	[95% conf.	interval]	(5)	F(= v 5,	23) =	0.60
math_act activity_	- 1	1.351119	1 2.220769	1.13 -1.45 0.63	0.269 0.161 0.534	-1.114125 -7.808011	3.816363 1.380009 4.280284			Prob	> F =	0.6991
	slm lsm	1.000688 2.094692 1.324814	2 2.01636 4 1.669128	1.04 0.79	0.310 0.435	-2.278909 -2.076465 -2.128039	6.26585 4.777668					
	lms mls age	.1331214 1.852582 0129828	1.591553 8 .0574347	0.08 1.16 -0.23	0.935 0.256 0.823	-3.18623 -1.439796 1317956	3.452473 5.14496 .1058299					
black_or_africaname		768191 6425891 .48089	1 1.475205 9 2.841332	-0.57 -0.44 0.17	0.576 0.667 0.867	-3.56634 -3.694283 -5.396852	2.029958 2.409105 6.358632					
	ander white	-1.49446 -1.206148 -1.658287	3.006153 7 2.543553	-0.34 -0.40 -0.65	0.738 0.692 0.521	-10.61271 -7.424849 -6.920028	7.623793 5.012554 3.603453					
completed_graduate_d completed_bachelors_d current_unde	egree rgrad	2.91928 .5869016 .3374147	4.026796 3.78949	0.72 0.15 0.09	0.480 0.885 0.930	-5.484327 -7.743161 -7.501743	11.32289 8.916964 8.176572					
high_school_di incomplete_high_s current_gradua	chool testu	1.331002 -2.20111 6500828	1 5.102559	0.32 -0.43 -0.14	0.755 0.670 0.886	-7.370236 -12.75656 -9.952929	10.03224 8.354336 8.652764					
annual_i ess_ noness_	spend	-2.19e-06 -3.93e-06 .0000145	3.47e-06	-0.52 -1.13 0.66	0.606 0.270 0.516	0000109 0000111 0000311	6.48e-06 3.26e-06 .0000602					
charity_f charity_f		2.708809 .6405126 -1.20518	5 2.171157	0.85 0.30 -0.28	0.403 0.771 0.779	-3.870873 -3.850869 -9.993292	9.28849 5.131894 7.582931					

Figure 13 shows an R-squared value of 0.526 which is higher than the linear-linear model shown in

Figure 12. There are no significant variables in this model. The form-type is also not significant.

FIGURE 14: Accuracy for Turtles Linear-Log Regression Model

Source	SS	df	MS	Number of F(25, 28)		= 54 = 1.06		(1)	ms]	= 0		
Model	68818312.4	25	2752732.49	Prob > F		= 0.4340		(2)	sln	1 = 0		
Residual	72419492.4	28	2586410.44	R-squared		= 0.4873		/ 21	1	1 = 0		
				Adj R-squa	ared	= 0.0294		(3)	131	1 = 0		
Total	141237805	53	2664864.24	Root MSE		= 1608.2		(4)	1ms	; = 0		
		Casefi ai	ent Std. err		nslat	[05% conf	intervall	(5)	mIs	. = 0		
accur	racy_turtle	Coeffici	ent Sta. err	. t	P> t	[95% CONT.	intervalj					
mat	th activity	467.24	25 721.6121	0.65	0.523	-1010.913	1945.398		F(5,	28) =	1.17
	logActSco	-1568.3		-2.02	0.053		24.22489		. (
	msl	447.69		0.44	0.667		2553.672			Prob	> F =	0.3491
	slm	1249.0	61 1312.519	0.95	0.349	-1439.513	3937.634					
	lsm	2021.8	36 984.2288	2.05	0.049	5.734816	4037.937					
	lms	909.26	99 1052.098	0.86	0.395	-1245.856	3064.395					
	mls	1277.3	95 1053.688	1.21	0.236	-880.9863	3435.776					
	age	-38.90	48 36.89637	-1.05	0.301	-114.4836	36.67399					
	male	54.969	29 920.3324	0.06	0.953	-1830.246	1940.185					
	female	346.33	08 1048.536	0.33	0.744	-1801.499	2494.16					
black_or_afric		3268.6		1.96	0.060	-143.6042	6680.896					
	c_or_latnix	933.70		0.45	0.659		5216.1					
asian_or_paci	ficislander	-223.2	42 2097.905	-0.11	0.916	-4520.605	4074.121					
	white	253.79		0.16	0.876	-3048.788	3556.388					
completed_gradu		-152.69		-0.08	0.936		3679.791					
completed_bache		-1414.3		-0.78	0.443		2308.781					
	t_undergrad	-756.38		-0.44	0.660		2731.931					
	ool_diploma	-1342.6		-0.71	0.484		2532.701					
incomplete_		-2003.7		-0.53	0.597		5669.147					
current_	graduatestu	305.29		0.15	0.886		4614.717					
	logAnnInc	185.81		0.62	0.537		794.966					
	logEssSpe	-82.396		-0.27	0.792		551.2852					
	logNEssSpe	55.421		0.22	0.831		581.1551					
	harity_past	798.32		0.41	0.688		4823.086					
char	rity_future	-654.68		-0.63	0.534		1476.721					
	_cons	-2257.4	15 3951.054	-0.57	0.572	-10350.78	5835.952					

Figure 14 has an R-squared value of 0.487 which is lower than the log-linear model, but higher than the linear-linear model. In this model, there are no significant variables and the form-type is not jointly-significant.

FIGURE 15: Accuracy for Turtles Log-Log Regression Model

Source SS Model 180.085363 Residual 90.9860421 Total 271.071406	df MS 25 7.203414 21 4.332668 46 5.892856	67 R-squared — Adj R-squ	= = =	47 1.66 0.1202 0.6643 0.2648 2.0815		(1) (2) (3) (4) (5)	msl slm lsm lms mls	= 0 = 0 = 0		
logAccTurtle	Coefficient Std.	err. t	P> t	[95% conf.	interval]		F(5,	21) =	
math_activity logActSco msl slm slm lms mls age male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander completed_graduate_degree completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current_graduatestu logAnnInc logEssSpe charity_past charity_futurecons	9527688 1.252811015 1.433557943 2.25 -5.424208 4.33 -4.134926 3.06 -3.369449 2.21 .5597183 3.76 -1.024625 3.35 .5809849 3.77 -5.555745 5.56 -2.26056 3.97 -4.87912 4.837490753 .443	1414 -1.89 1636 1.25 1316 1.79 1858 1.12 17462 0.62 1621 2.28 1621 -0.79 19141 -0.76 1920 -1.62 1921 -1.52 1932 -1.38 15517 -1.52 1237 0.15 15797 -0.34 1281 -0.31 15408 0.15 12428 -1.00 19321 -0.57 1795 -1.01 13037 -1.70 15426 0.41	0.089 0.073 0.223 0.088 0.274 0.541 0.631 0.454 0.876 0.229 0.183 0.343 0.883 0.373 0.679 0.328 0.575 0.324 0.066 0.211 0.666 0.666	3292462 -4.446619 -1.138477 5347228 -2.139809 -3.030786 1362198 -3.55258 -3.55258 -3.55258 -3.55258 -3.55258 -3.55258 -3.55258 -3.561325 -14.53491 -10.38394 -7.976868 -7.222966 -8.966408 -8.966408 -8.906235 -7.270466 -17.08185 -10.52478 -14.92739 -1.4666817 -3655801 -2.280624 -3.319251 -11.73687	4.320498 .2175992 4.599743 7.082136 4.604842 3.963698 6.473796 .0845052 2.69694 4.339737 3.686492 2.114089 1.23797 8.342402 6.446847 5.959984 4.32375 5.970364 6.003661 .5169148 .168666 1.968742 9.73645 4.947945 13.25216			Prob	> F =	0.2182

Figure 15 shows an R-squared value of 0.664 for the log-log regression model. There are no significant variables and the form-type is not significant.

FIGURE 16: Accuracy Score for Humans Linear-Linear Regression Model

_	Model Residual	SS 1.1479e+11 1.2933e+11 2.4413e+11		MS 4.5917e+09 4.3111e+09 4.4387e+09	Number of F(25, 30) Prob > F R-squared Adj R-squ Root MSE	ared	= 56 = 1.07 = 0.4305 = 0.4702 = 0.0287 = 65659		(1) 2) 3) 4) 5)	slm lsm lms	= 0 = 0 = 0 = 0 = 0			
-	ac	curacy_human	Coeffici	ent Std. err	. t	P> t	[95% conf.	interval]							
-											F(5,	30)	=	1.08
	п	math_activity	8515.	35 27935.6	0.30	0.763	-48536.76	65567.46			•	_	> F	_	0.3906
	ac	tivity_score	-94429.			0.093		16684.53				Prob	> F	=	0.5900
		msl	9214.1			0.829		95433.47							
		slm	38581.			0.455		142664.2							
		lsm	74156.			0.074		156094.7							
		lms	15894.			0.705		100732.1							
		mls	34242.			0.405		116986.2							
		age	-1873.2			0.200		1046.81							
		male	976.33			0.978		72632							
		female	120			0.758		90728.26							
		icanamerican	153995			0.053		309929.3							
	•	ic_or_latnix	42639.			0.624		218204.3							
	asian_or_pac	ificislander	6091.6			0.940		169377.6							
		white	29078.			0.677		170126							
		duate_degree	10138.			0.886		153630							
C		elors_degree	-47173.			0.501		94310.6							
		nt_undergrad	-26487.			0.698		111499.7							
		hool_diploma	-44146.			0.556		107287.8							
		_high_school	-95682			0.419		142631.9							
		_graduatestu	30920.			0.726		209485.4							
	ā	nnual_income	.09668			0.313		.2891984							
		ess_spend	.00632			0.946		.1943504							
		noness_spend	29753			0.627		.939996							
		charity_past	29622.			0.700		185239.2							
	cr	marity_future	-21719.			0.608		63939.43							
		_cons	63415.	41 97079.97	0.65	0.519	-134848.3	261679.1							

Figure 16 shows an R-squared value of 0.47 which could be better. The same testing of different models was done for humans just like for birds and turtles. In this model, there are no significant variables and the form-type is not significant.

FIGURE 17: Accuracy for Humans Log-Linear Regression Model

Source	SS	df	MS	Number of F(25, 25)	obs	=	51 2.55		(1)	msl	= 0			
Model	302.984557	25	12.1193823	Prob > F		=	0.0114		(2)	s1m	= 0			
Residual	118.856937		4.75427749	R-squared		_	0.7182		•	•					
RESIDUAL	110.050557	2.5	4.73427743	Adj R-squ	ared	_	0.4365		(3)	lsm	= 0			
Total	421.841494	50	8.43682988	Root MSE	ui cu	_	2.1804		()	4)	1ms	= 0			
, ocar	421.041454	50	0.43002300	NOOE TISE			2.1004		•	•					
									(5)	mls	= 0			
	logAccHuman	Coeffici	ent Std. err	. t	P> t	I	[95% conf.	interval]							
n	math activity	6158	57 1.023163	-0.60	0.55	3	-2.723101	1.491387			F(5,	25)	=	3.06
	tivity score	-2.3215	42 1.99075	-1.17	0.25	5	-6.421567	1.778484				Prob	> F	=	0.0274
	msl	32634	97 1.464276	-0.22	0.82	5	-3.342082	2.689382							
	slm	3.6987	38 1.733581	2.13	0.04	3	.1283613	7.269115							
	1sm	3.455	32 1.414527	2.44	0.02	2	.5420465	6.368593							
	1ms	2.2313	72 1.49068	1.50	0.14	7	8387417	5.301485							
	mls	1.9708	99 1.46504	1.35	0.19	1	-1.046408	4.988206							
	age	14861	.0605512	-2.45	0.02	1	2733227	0239077							
	male	.71890	88 1.226242	0.59	0.56	3	-1.806585	3.244402							
	female	.33101	05 1.335051	0.25	0.80	6	-2.418579	3.0806							
black_or_afr	ricanamerican	4.5661	73 2.714983	1.68	0.10	5	-1.02544	10.15779							
hispan	nic_or_latnix	1.938	84 3.121078	0.62	0.54	0	-4.489141	8.366822							
asian_or_pac	ificislander	1.4404	07 2.772054	0.52	0.60	8	-4.268744	7.149558							
	white	58935	36 2.32715	-0.25	0.80	2	-5.382208	4.203501							
completed_gra	duate_degree	1.671	35 2.550461	0.66	0.51	8	-3.581421	6.924122							
completed_back	nelors_degree	-1.2402	27 2.412642	-0.51	0.61	2	-6.209157	3.728703							
curre	ent_undergrad	-3.3717	48 2.384928	-1.41	0.17	0	-8.2836	1.540105							
high_so	hool_diploma	-2.7711	44 3.05489	-0.91	0.37	3	-9.062808	3.52052							
incomplete	_high_school	-7.6963	71 4.017848	-1.92	0.06	7	-15.97128	.578542							
current	_graduatestu	-1.4092	74 3.052051	-0.46	0.64	8	-7.69509	4.876542							
ā	nnual_income	4.98e-	06 3.76e-06	1.32	0.19	7	-2.77e-06	.0000127							
	ess_spend	6.90e-	07 3.33e-06	0.21	0.83	8	-6.17e-06	7.55e-06							
	noness_spend	.00003	41 .0000202	1.69	0.10	3	-7.37e-06	.0000757							
	charity_past	2.7938	22 2.729259	1.02	0.31	6	-2.827191	8.414836							
ch	marity_future	60318	66 1.92174	-0.31	0.75	6	-4.561085	3.354711							
	_cons	5.42	96 3.753479	1.45	0.16	0	-2.300835	13.16004							

Figure 17 shows one significant variable, 'age', and form-type turns out to be jointly-significant. Unfortunately, with an R-squared value of 0.718, this is a poor fit for the data. This leads me to the same lack of confidence in a compelling conclusion as before. However, if we ignored the R-squared value these results would imply that age and the order in which we asked the questions has a statistically significant correlation with the dependent variable 'logAccHuman'.

FIGURE 18: Accuracy for Humans Linear-Log Regression Model

Model Residual	5S 1.1965e+11 1.2430e+11 2.4395e+11	28 4.	MS 7859e+09 4393e+09 6028e+09	Number of F(25, 28) Prob > F R-squared Adj R-squared Root MSE		= 54 = 1.08 = 0.4212 = 0.4905 = 0.0355 = 66628		(1) (2) (3) (4) (5)	slm lsm lms	= 0 = 0 = 0 = 0 = 0		
ac	curacy_human	Coefficient	Std. err	. t	P> t	95% conf.	interval]		F(5,	28) =	1.16
n	math_activity	19391.78	29896.08		0.522		80631.13			Prob	> F =	0.3511
	logActSco	-64421.14	32210.11		0.055		1558.273					
	msl	17037.7	42594		0.692		104287.6					
	slm	50712.63	54377.11		0.359		162099.1					
	lsm	82907.64	40776.18		0.052		166433.9					
	lms	36809.87	43587.98		0.406		126095.8					
	mls	51960.86	43653.83		0.244		141381.7					
	age	-1649.684	1528.601		0.290		1481.513					
	male	2304.945	38128.98		0.952		80408.61					
12 1 6	female .	14190.86	43440.41		0.746		103174.5					
	ricanamerican	139046.2 39139.41	69013.66 86612.59		0.655		280414.3 216557.3					
	nic_or_latnix :ificislander	-8057.959	86915.3		0.927		169980					
astau_or_bac	white	11453.95	66795.72		0.865		148278.8					
completed gra		-7513.425	77512.95		0.923		151264.7					
completed back		-58637.53	75300.58		0.443		95608.72					
	ent undergrad	-32330.6	70552.19		0.650		112189					
	chool diploma	-55560.13	78380.53		0.484		104995.1					
	high school	-80804.02	155185.9		0.607		237079.9					
	graduatestu	12246.89	87159.3		0.889		190784.6					
	logAnnInc	7583.461	12320.33		0.543		32820.51					
	logEssSpe	-3066.769	12816.38		0.81		23186.4					
	logNEssSpe	2548.341	10633.09		0.812		24329.24					
	charity past	33651.26	81401.89		0.682		200395.5					
	narity future	-26112.23	43108.18		0.556		62190.88					
	_cons	-96135.82	163690.5		0.562		239168.9					

Figure 18 shows a much better fit than the model in Figure 17 with an R-squared value of 0.491, but this is still a worse fit than the linear-linear model seen in Figure 16. In this model there are no significant variables and the form-type is not significant.

FIGURE 19: Accuracy for Humans Log-Log Regression Model

Source Model Residual	SS 325.419995 94.4688368 419.888832		MS 13.0167998 4.10734073 8.747684	Number of F(25, 23) Prob > F R-squared Adj R-squa Root MSE	=	49 3.17 0.0035 0.7750 0.5305 2.0267		(1) (2) (3) (4) (5)	slm lsm lms	= 0 = 0 = 0 = 0		
	logAccHuman	Coefficie	nt Std. err	. t	P> t	[95% conf.	interval]					
black_or_afr: hispan: asian_or_pac: completed_grac completed_bach currer high_scl	ic_or_latnix ificislander white duate_degree	-1.00343' -1.09676' -536346' 4.11218: 3.82475' 2.66956' 1.97266' -200861' .877630' .179218' 4.81641' 1.61076' 1.86451' -363365' -1.57143' -4.03498' -2.42779' -3.21478'	1 1.039751 5 1.401514 3 1.721761 3 1.721761 3 1.369676 9 1.523124 1 1.485417 1 .055257 5 1.218723 5 1.218723 7 2.19349 1 3.052877 9 2.887918 9 2.266486 1 2.501619 3 2.376121 4 2.250505 8 2.872743	-1.05 -0.38 -2.39 2.79 1.75 1.33 -3.64 0.72 0.13 2.20 0.53 0.65 -0.16 0.35 -0.66 -1.79 -0.85	0.322 0.302 0.705 0.026 0.019 0.093 0.197 0.001 0.479 0.897 0.038 0.503 0.525 0.871 0.732 0.515 0.086 0.086	-3.055238 -3.24765 -3.435598 .5504486 .9913619 -4812522 -1.100158 -315169 -1.643489 -2.664388 .2788375 -4.704597 -4.109594 -4.927831 -4.306147 -6.486813 -8.690509 -8.370521 -14.04722	1.048364 1.054128 2.362905 7.673916 6.658144 5.820391 5.04548 3.39875 3.022825 9.353996 7.926119 7.838632 4.201099 6.043839 3.343946 6.6205414 3.514924		F(5, Prob	23) = > F =	4.23 0.0071
	_graduatestu logAnnInc logEssSpe logNEssSpe charity_past arity_future cons	-1.33227 .001384 .496905 .451185 4.37069 973225 -2.12086	9 .4234105 6 .4115065 3 .3657644 5 2.678347 1 1.799999	0.00 1.21 1.23 1.63 -0.54	0.632 0.997 0.240 0.230 0.116 0.594 0.720	-7.007914 8745065 3543605 305456 -1.169888 -4.696807 -14.22465	4.343363 .8772763 1.348172 1.207827 9.911277 2.750356 9.982926					

Figure 19 shows another poorly-fit model with an R-squared value of 0.775. However, if we ignore this, we see that 'age', 'black_or_africanamerican' are significant variables and form-type is jointly-significant. Again, it is difficult to jump to any compelling conclusions due to the poor fit, but worth mentioning.

```
/***********************************
****
ECON4803: Behavioral Economics - Scope Sensitivity Semester Project
@authors Ethan Nguyen-Tu and Jacqueline Chambers
@version 1.0.2
@date 22 November 2022
**********************************
****/
clear
set more off
*Working Directory
capture cd "\Client\C$\Users\jacki\OneDrive\Desktop\Documents\Georgia Tech\Fall 2022\ECON 4803 -
Behavioral Econ\Project\STATA"
use ScopeSensitivityData.dta, clear
clear
capture cd "C:\Users\enguyentu3\Downloads\ScopeSensitivity"
import excel "ScopeSensitivityResults.xls", firstrow case(preserve)
**# CLEAN DATA #**
describe
summarize
* check gender count
count if black or africanamerican == 1 // 6
count if hispanic or latnix == 1 // 5
count if asian_or pacificislander == 1 // 12
count if white = 1 // 46
* check education count
count if completed graduate degree == 1 // 20
count if completed bachelors degree == 1 // 19
count if current undergrad == 1 // 23
count if high school diploma == 1 // 4
count if incomplete high school == 1 // 1
count if current graduatestu == 1 // 2
count if other education == 1 // 5
// Combine high school diploma, incomplete high school, and current graduatestu with other education
generate other education2 = other education + incomplete high school + current graduatestu +
high school diploma
count if other education2 == 1 // 12
* check charity count
count if charity past == 1 // 66
count if charity future == 1 // 53
```

```
**# REGRESSION #**
** Overall Accuracy Score Regression Framework **
/* Figure 1
DEPENDENT VARIABLE: accuracy score
Variables Left Out:
 Form Type: sml
 Gender: other gender
 Ethnicity: other race
 Education: other education
reg accuracy score math activity activity score msl slm lsm lms mls age male female
black or africanamerican hispanic or latnix asian or pacificislander white completed graduate degree
completed bachelors degree current undergrad high school diploma incomplete high school
current graduatestu annual income ess spend noness spend charity past charity future
* Test form type significance
test msl slm lsm lms mls // msl slm lsm lms mls are are not jointly significant
di invFtail(5, 30, .05) // 2.5335545
/* Figure 2
DEPENDENT VARIABLE: accuracy score
Variables Left Out:
 Form Type: all
 Gender: other gender
 Ethnicity: other race
 Education: other education
reg accuracy score math activity activity score male female black or africanamerican
hispanic or latnix asian or pacificislander white completed graduate degree
completed bachelors degree current undergrad high school diploma incomplete high school
current graduatestu annual income ess spend noness spend charity past charity future
/* Figure 3
DEPENDENT VARIABLE: accuracy score
Variables Left Out:
 Form Type: all
 Gender: other gender
 Ethnicity: other race
 Education: other education2
```

reg accuracy_score math_activity activity_score male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad annual_income ess_spend noness_spend charity_past charity_future

* Test charity variables significance test charity_past charity_future di invFtail(2, 39, .05) // 3.2380961

/* Figure 4

DEPENDENT VARIABLE: accuracy score

Variables Left Out:
Form Type: all
Gender: other_gender
Ethnicity: other_race

Education: other_education2

Charity: charity past & charity future

*

reg accuracy_score math_activity activity_score male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed bachelors degree current undergrad annual income ess spend noness spend

test ess_spend noness_spend di invFtail(2, 52, .05) // 3.175141

/* Figure 5

DEPENDENT VARIABLE: accuracy score

Variables Left Out:
Form Type: all
Gender: other_gender
Ethnicity: other_race
Education: other_education2

Charity: charity_past & charity_future

Spending: ess_spend & noness_spend

*/

reg accuracy_score math_activity activity_score male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad annual_income

* Test Ethnicity

test black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white di invFtail(4, 54, .05) // 2.5429175

* Test Education

test completed_graduate_degree completed_bachelors_degree current_undergrad di invFtail(3, 54, .05) // 2.7757624

* Test Gender test male female di invFtail(2, 54, .05) // 3.168246

```
/* Check Regression 1
DEPENDENT VARIABLE: accuracy score
Variables Left Out:
 Form Type: all
 Gender: all
 Ethnicity: other race
 Education: other education2
 Charity: all
 Spending: all
reg accuracy score math activity activity score black or africanamerican hispanic or latnix
asian or pacificislander white completed graduate degree completed bachelors degree
current undergrad annual income
/* Figure 6
DEPENDENT VARIABLE: accuracy score
Variables Left Out:
 Form Type: all
 Gender: all
 Ethnicity: other race
 Education: all
 Charity: all
 Spending:all
reg accuracy score math activity activity score black or africanamerican hispanic or latnix
asian or pacificislander white annual income
* Test Ethnicity
test black or africanamerican hispanic or latnix asian or pacificislander white
di invFtail(4, 59, .05) // 2.5279066
* Figure 7 - Base Regression
reg accuracy score math activity activity score
/* Overall Accuracy Score Conclusion
Cannot conclude significance.
*/
** Bird Regression Framework **
* linear-linear model
* variables left out: sml, other gender, other race, other education
* dependent var: accuracy bird
```

reg accuracy bird math activity activity score msl slm lsm lms mls age male female black or africanamerican hispanic or latnix asian or pacificislander white completed graduate degree completed bachelors degree current undergrad high school diploma incomplete high school current graduatestu annual income ess spend noness spend charity past charity future

* Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression

- * log-linear model
- * independent vars: no change
- * dependent var: logAccBird

generate logAccBird = ln(accuracy bird)

reg logAccBird math activity activity score msl slm lsm lms mls age male female black or africanamerican hispanic or latnix asian or pacificislander white completed graduate degree completed bachelors degree current undergrad high school diploma incomplete high school current graduatestu annual income ess spend noness spend charity past charity future

* Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression

* linear-log model & log-log model

/* independent vars:

logActSco - newly generated

logAnnInc - newly generated

logEssSpe - newly generated

logNEssSpe - newly generated

generate logActSco = ln(activity score)

generate logAnnInc = ln(annual income)

generate logEssSpe = ln(ess spend)

generate logNEssSpe = ln(noness spend)

* dependent var: accuracy bird

reg accuracy bird math activity logActSco msl slm lsm lms mls age male female black or africanamerican hispanic or latnix asian or pacificislander white completed graduate degree completed bachelors degree current undergrad high school diploma incomplete high school current graduatestu logAnnInc logEssSpe logNEssSpe charity_past charity_future

* Test 'form type' significance

test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545

// form type is not significant in this regression

* dependent var: logAccBird

reg logAccBird math activity logActSco msl slm lsm lms mls age male female black or africanamerican hispanic or latnix asian or pacificislander white completed graduate degree

completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current_graduatestu logAnnInc logEssSpe logNEssSpe charity_past charity_future

* Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression

- ** Turtle Regression Framework **
- * linear-linear model
- * independent variables left out: sml, other gender, other race, other education
- * dependent var: accuracy_turtle
 reg accuracy_turtle math_activity activity_score msl slm lsm lms mls age male female
 black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree
 completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school
 current graduatestu annual income ess spend noness spend charity past charity future
- * Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression
- * log-linear model
- * independent vars: no change
- * dependent var: logAccTurtle generate logAccTurtle = ln(accuracy turtle)

reg logAccTurtle math_activity activity_score msl slm lsm lms mls age male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current graduatestu annual income ess spend noness spend charity past charity future

* Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression

- * linear-log & log-log
- * independent vars: no change
- * dependent var: accuracy turtle

reg accuracy_turtle math_activity logActSco msl slm lsm lms mls age male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current graduatestu logAnnInc logEssSpe logNEssSpe charity past charity future

* Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant

di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression

* dependent var: logAccTurtle

reg logAccTurtle math_activity logActSco msl slm lsm lms mls age male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current_graduatestu logAnnInc logEssSpe logNEssSpe charity_past charity_future

* Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression

- ** Human Regression Framework **
- * linear-linear model
- * variables left out: sml, other_gender, other_race, other_education
- * dependent var: accuracy_human

reg accuracy_human math_activity_activity_score msl slm lsm lms mls age male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current_graduatestu annual_income ess_spend noness_spend charity_past charity_future

* Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression

- * log-linear model
- * independent vars: no change
- * dependent var: logAccHuman

generate logAccHuman = ln(accuracy human)

reg logAccHuman math_activity activity_score msl slm lsm lms mls age male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current_graduatestu annual_income ess_spend noness_spend charity_past charity_future

* Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is significant in this regression!

- * linear-log & log-log
- * independent vars: no change
- * dependent var: accuracy human

reg accuracy_human math_activity logActSco msl slm lsm lms mls age male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current graduatestu logAnnInc logEssSpe logNEssSpe charity past charity future

- * Test 'form type' significance test msl slm lsm lms mls // msl slm lsm lms mls are not jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is not significant in this regression
- * dependent var: logAccHuman reg logAccHuman math_activity logActSco msl slm lsm lms mls age male female black_or_africanamerican hispanic_or_latnix asian_or_pacificislander white completed_graduate_degree completed_bachelors_degree current_undergrad high_school_diploma incomplete_high_school current graduatestu logAnnInc logEssSpe logNEssSpe charity past charity future
- * Test 'form type' significance test msl slm lms mls // msl slm lsm lms mls are jointly significant di invFtail(5, 30, .05) // 2.5335545 // form type is significant in this regression!

// Uncomment below if new variables have been added or variables have been modified *export excel using "ScopeSensitivityResults.xls", firstrow(variables) keepcellfmt replace

// END OF DOCUMENT

Appendix III: Bibliography

- (n.d.). Table 2 Sample data for binary logistic regression [Review of Table 2 Sample data for binary logistic regression]. In KDNuggets. Retrieved November 22, 2022, from https://www.kdnuggets.com/2017/10/learn-generalized-linear-models-glm-r.html/2
- Baron, J., & Greene, J. (1996). Determinants of insensitivity to quantity in valuation of public goods: Contribution, warm glow, budget constraints, availability, and prominence. Journal of Experimental Psychology: Applied, 2(2), 107.
- Bateman, I. J., Cole, M., Cooper, P., Georgiou, S., Hadley, D., & Poe, G. L. (2004). On visible choice sets and scope sensitivity. Journal of environmental economics and management, 47(1), 71-93.
- Bateman, I. J., Cooper, P., Georgiou, S., Navrud, S., Poe, G. L., Ready, R. C., Riera, P., Ryan, M., & Vossler, C. A. (2005). Economic valuation of policies for managing acidity in remote mountain lakes: Examining validity through scope sensitivity testing. Aquatic Sciences, 67(3), 274–291. https://doi.org/10.1007/s00027-004-0744-3
- Cameron, C. D., & Payne, B. K. (2011). Escaping affect: how motivated emotion regulation creates insensitivity to mass suffering. Journal of personality and social psychology, 100(1), 1.
- Carson, R. T., & Mitchell, R. C. (1995). Sequencing and nesting in contingent valuation surveys. Journal of environmental economics and Management, 28(2), 155-173.
- Chang, H. H., & Hung, I. W. (2018). Mirror, Mirror on the Retail Wall: Self-Focused Attention Promotes Reliance on Feelings in Consumer Decisions. Journal of Marketing Research, 55(4), 586–599. https://doi.org/10.1509/jmr.15.0080
- Chang, Hannah H, and Pham, Michel Tuan. "Affective Boundaries of Scope Insensitivity." Journal of Consumer Research, Volume 45, Issue 2, August 2018, Pages 403–428, https://doi.org/10.1093/jcr/ucy007 Published 05 March 2018.
- Czajkowski, M., & Hanley, N. (2009). Using Labels to Investigate Scope Effects in Stated Preference Methods. Environmental and Resource Economics, 44(4), 521–535. https://doi.org/10.1007/s10640-009-9299-z
- Desvousges, W., Johnson, F. R., Dunford, R., Boyle, K., Hudson, S., & Wilson, K. N. (2010). Measuring Nonuse Damages Using Contingent Valuation: An Experimental Evaluation of Accuracy. https://doi.org/10.3768/rtipress.2009.bk.0001.1009
- Dickert, S., Kleber, J., Peters, E., & Slovic, P. (2011). Numeracy as a precursor to pro-social behavior: The impact of numeracy and presentation format on the cognitive mechanisms

- underlying donation decisions. Scholarsbank.uoregon.edu. http://hdl.handle.net/1794/22050
- Dickert, S., Västfjäll, D., Kleber, J., & Slovic, P. (2012). Valuations of human lives: normative expectations and psychological mechanisms of (ir)rationality. Synthese, 189(S1), 95–105. https://doi.org/10.1007/s11229-012-0137-4
- Dickert, S., Västfjäll, D., Kleber, J., & Slovic, P. (2015). Scope insensitivity: The limits of intuitive valuation of human lives in public policy. Journal of Applied Research in Memory and Cognition, 4(3), 248-255.
- Duffin, Erin. (2022, September 30). Total population in the United States by gender from 2010 to 2027. Statista.

 https://www.statista.com/statistics/737923/us-population-by-gender/#:~:text=Projection 20estimates%20calculated%20using%20the,US%20Census%20data%20for%202021.
- Dunn, E. W., & Ashton-James, C. (2008). On emotional innumeracy: Predicted and actual affective responses to grand-scale tragedies. Journal of Experimental Social Psychology, 44(3), 692–698. https://doi.org/10.1016/j.jesp.2007.04.011
- Erlandsson, A., Västfjäll, D., Sundfelt, O., & Slovic, P. (2016). Argument-inconsistency in charity appeals: Statistical information about the scope of the problem decrease helping toward a single identified victim but not helping toward many non-identified victims in a refugee crisis context. Journal of Economic Psychology, 56, 126–140. https://doi.org/10.1016/j.joep.2016.06.007
- Fetherstonhaugh, D., Slovic, P., Johnson, S., & Friedrich, J. (1997). Insensitivity to the value of human life: A study of psychophysical numbing. Journal of Risk and uncertainty, 14(3), 283-300.
- Harel, I., & Kogut, T. (2021). The Effect of the Number and Identification of Recipients on Organ-Donation Decisions. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.794422
- Hasford, J., Farmer, A., & Waites, S. F. (2015). Thinking, feeling, and giving: the effects of scope and valuation on consumer donations. International Journal of Research in Marketing, 32(4), 435-438.
- Hsee, C. K., & Rottenstreich, Y. (2004). Music, pandas, and muggers: on the affective psychology of value. Journal of Experimental Psychology: General, 133(1), 23.
- Hsee, C. K., Zhang, J., Lu, Z. Y., & Xu, F. (2013). Unit Asking. Psychological Science, 24(9), 1801–1808. https://doi.org/10.1177/0956797613482947

- Imas, A., & Loewenstein, G. (2018, May). Is altruism sensitive to scope? The role of tangibility. In AEA Papers and Proceedings (Vol. 108, pp. 143-47).
- Kogut, T., Slovic, P., & Västfjäll, D. (2015). Scope insensitivity in helping decisions: Is it a matter of culture and values?. Journal of Experimental Psychology: General, 144(6), 1042.
- Krüg, Kris. "A Deadly Toll." Center for Biological Diversity, https://www.biologicaldiversity.org/programs/public_lands/energy/dirty_energy_develoment/oil_and_gas/gulf_oil_spill/a_deadly_toll.html. Accessed 23 September 2022.
- Lipponen, Matilda. "How can I help save Sea Turtles from Plastic Pollution?" Projects Abroad, 12 July 2022, https://www.projects-abroad.org/blog/how-we-can-help-save-sea-turtles/. Accessed 23 September 2022.
- Serebrisky, Denise. "Pediatric Asthma: A Global Epidemic PMC." NCBI, 22 January 2019, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052318/. Accessed 23 September 2022.
- Small, D. A., Loewenstein, G., & Slovic, P. (2007). Sympathy and callousness: The impact of deliberative thought on donations to identifiable and statistical victims. Organizational Behavior and Human Decision Processes, 102(2), 143–153. https://doi.org/10.1016/j.obhdp.2006.01.005
- United States Census Bureau. (2022, February 24). Census Bureau releases New Educational Attainment Data. Census.gov. Retrieved November 22, 2022, from https://www.census.gov/newsroom/press-releases/2022/educational-attainment.html#:~:t xt=In%202021%2C%20the%20highest%20level,college%20but%20not%20a%20degree.
- "Scope insensitivity: failing to appreciate the number of those who need our help." Effective Altruism Forum.

 https://forum.effectivealtruism.org/s/B79ro5zkhndbBKRRX/p/NmDrpKdmjr. Published 22 August 2022.

Group 1: Scope Insensitivity 40

Appendix IV: Survey Content

Georgia Tech.

Consent Form - A

O 3 cups

O 4 cups

O 9 cups

O 14 cups

Thank you for considering participation in our study! We are completing this study as a class project for ECON 4803, taught by Dr. Whitney Buser at Georgia Tech's School of Economics. We are interested in studying patterns related to charitable giving. To participate, you will complete a short survey consisting of 27 questions that is expected to take no more than 30 minutes total. We will not collect any personally identifying information, and you will remain anonymous. We do not anticipate that you will incur any risks from participating. At any time, you can choose to close the survey and not continue.

By continuing, you agree to the following:

- 1) I am between the ages of 18 and 65.
- 2) I have read and understand the provided information.
- 3) I understand that my participation is voluntary and that I can withdraw my participation at any time and for any reason.
- 4) I voluntarily agree to participate in this study.

I agree to the above statements. I do not agree to the above statements.
Mathematical Activity - B
Please carefully read and answer the following 4 questions.
A rice cooker has a capacity of 12 cups of fully-cooked rice. Uncooked rice triples in volume when cooked. How much uncooked rice can be pu into the rice cooker without making it overflow when cooked?

capability, how much weight would a 200 pound person be able to lift?
○ 250 pounds○ 1,250 pounds○ 10,000 pounds○ 150,000 pounds
An essay is written on an 11 inch tall sheet of paper. There are 1 inch margins on the top and bottom of the page. If each line of text takes up $\frac{1}{2}$ th of an inch, how many lines of text can fit on the page?
○ 18 lines○ 72 lines○ 924 lines○ 6724 lines
The rate at which air is blown through a tuba determines the volume of the sound emitted from it. This relationship can be represented using the equation Volume (in decibels) = 12 X Rate. If the rate is 4, what is the volume?
○ 0.8 decibels○ 48 decibels○ 100 decibels○ 4000 decibels
Linguistic Activity - C
Please carefully read and answer the following 4 questions.
Select the number of commas missing from this sentence: Sarah Jolene, and Mary set out on a walk and they encountered a large statue.

An ant can lift about 50 times its body weight. If humans had the same

○ 1 ○ 2 ○ 3 ○ 4
Name the error in this sentence: This activity, known as "doing a donut," is when a driver drifts a car in a circular, often leaving skid marks on the asphalt.
 Mixed construction Parallelism Naked "this" Inverted structure
Select the word that should be capitalized in this sentence: The oak flooring was installed on a tuesday during the spring of 2017. Oak Tuesday Spring Installed
Name the term that applies to the word "bicycle" in this sentence: The proud owner of the new bicycle beamed at his creation. Output Objective complement Output Article Object of the preposition

Contingent Valuation - D_SML

The next 9 questions will consist of 3 short prompts followed by 3 questions each. Please read each prompt and answer the questions accurately to the best of your ability. The questions asked are purely hypothetical and will not have any effect in the real world.

"At least 102 species of birds are known to have been harmed by the BP oil spill [in 2010], including black skimmers, brown pelicans, clapper rails, common loons, laughing gulls, northern gannets and several species of tern" (krüg). Consider a hypothetical scenario in which birds are dying due to oil spills, but your donation would guarantee the lives of many birds.
How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 2,000 birds?
How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 20,000 birds?

"Plastic waste is everywhere, on the surface of the ocean, underwater and on the beach. It is estimated that more than 1,000 turtles die every year after getting entangled in plastic, and this number is almost certainly a gross underestimate" (Lipponen). Now, consider a hypothetical scenario in which an earth clean-up campaign launched globally could effectively remove all plastic waste from the ocean.

How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 200,000 birds?

How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 40 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 200 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the
lives of around 1,000 sea turtles?
"The global prevalence, morbidity and mortality related to childhood asthma among children has increased significantly over the last 40 years" (Serebrisky). Consider a hypothetical scenario in which increasing the cost of healthcare would definitely reduce the number of childhood deaths related to asthma per year.
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 1 next year?
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 20 next year?

How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 400 next year?
Contingent Valuation - D_SLM
The next 9 questions will consist of 3 short prompts followed by 3 questions each. Please read each prompt and answer the questions accurately to the best of your ability. The questions asked are purely hypothetical and will not have any effect in the real world.
"At least 102 species of birds are known to have been harmed by the Bf oil spill [in 2010], including black skimmers, brown pelicans, clapper rails, common loons, laughing gulls, northern gannets and several species of tern" (krüg). Consider a hypothetical scenario in which birds are dying due to oil spills, but your donation would guarantee the lives o many birds.
How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 2,000 birds?
How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 200,000 birds?

How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 20,000 birds?
"Plastic waste is everywhere, on the surface of the ocean, underwater and on the beach. It is estimated that more than 1,000 turtles die every year after getting entangled in plastic, and this number is almost certainly a gross underestimate" (Lipponen). Now, consider a hypothetical scenario in which an earth clean-up campaign launched globally could effectively remove all plastic waste from the ocean.
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 40 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 1,000 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 200 sea turtles?

"The global prevalence, morbidity and mortality related to childhood asthma among children has increased significantly over the last 40 years" (Serebrisky). Consider a hypothetical scenario in which increasing the cost of healthcare would definitely reduce the number of childhood deaths related to asthma per year.

How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 1 next year?
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 400 next year?
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 20 next year?

Contingent Valuation - D_MSL

The next 9 questions will consist of 3 short prompts followed by 3 questions each. Please read each prompt and answer the questions accurately to the best of your ability. The questions asked are purely hypothetical and will not have any effect in the real world.

oil spil rails, c specie	st 102 species of birds are known to have be [in 2010], including black skimmers, brown pommon loons, laughing gulls, northern gannes of tern" (krüg). Consider a hypothetical sceng due to oil spills, but your donation would poirds.	pelicans, clapper ets and several enario in which birds
	uch would you be willing to pay (in US dollar	, .
	uch would you be willing to pay (in US dollar rtainty and therefore save the lives of around	, .
	ruch would you be willing to pay (in US dollar rtainty and therefore save the lives of around	, .
and or year a certain hypoth	c waste is everywhere, on the surface of the the beach. It is estimated that more than 1,0 ter getting entangled in plastic, and this num ly a gross underestimate" (Lipponen). Now, of etical scenario in which an earth clean-up cay could effectively remove all plastic waste from	000 turtles die every aber is almost consider a ampaign launched

How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 200 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 40 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 1,000 sea turtles?
"The global prevalence, morbidity and mortality related to childhood asthma among children has increased significantly over the last 40 years" (Serebrisky). Consider a hypothetical scenario in which increasing the cost of healthcare would definitely reduce the number of childhood deaths related to asthma per year.
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 20 next year?

How much would you be willing to pay (in US dollars) for this healthcare

to reduce the number of childhood deaths by 1 next year?

How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 400 next year?
Contingent Valuation - D_MLS
The next 9 questions will consist of 3 short prompts followed by 3 questions each. Please read each prompt and answer the questions accurately to the best of your ability. The questions asked are purely hypothetical and will not have any effect in the real world.
"At least 102 species of birds are known to have been harmed by the BP oil spill [in 2010], including black skimmers, brown pelicans, clapper rails, common loons, laughing gulls, northern gannets and several species of tern" (krüg). Consider a hypothetical scenario in which birds are dying due to oil spills, but your donation would guarantee the lives of many birds.
How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 20,000 birds?
How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 200,000 birds?

How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 2,000 birds?
"Plastic waste is everywhere, on the surface of the ocean, underwater and on the beach. It is estimated that more than 1,000 turtles die every year after getting entangled in plastic, and this number is almost certainly a gross underestimate" (Lipponen). Now, consider a hypothetical scenario in which an earth clean-up campaign launched globally could effectively remove all plastic waste from the ocean.
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 200 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 1,000 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 40 sea turtles?

"The global prevalence, morbidity and mortality related to childhood asthma among children has increased significantly over the last 40 years" (Serebrisky). Consider a hypothetical scenario in which increasing the cost of healthcare would definitely reduce the number of childhood deaths related to asthma per year.
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 20 next year?
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 400 next year?
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 1 next year?

Contingent Valuation - D_LMS

The next 9 questions will consist of 3 short prompts followed by 3 questions each. Please read each prompt and answer the questions accurately to the best of your ability. The questions asked are purely hypothetical and will not have any effect in the real world.

are	es of tern" (krüg). Consider a hypothetical scenario in who ing due to oil spills, but your donation would guarantee birds.	
	much would you be willing to pay (in US dollars) to preve ertainty and therefore save the lives of around 200,000	
	much would you be willing to pay (in US dollars) to preve ertainty and therefore save the lives of around 20,000 b	

"At least 102 species of birds are known to have been harmed by the BP oil spill [in 2010], including black skimmers, brown pelicans, clapper rails, common loons, laughing gulls, northern gannets and several

"Plastic waste is everywhere, on the surface of the ocean, underwater and on the beach. It is estimated that more than 1,000 turtles die every year after getting entangled in plastic, and this number is almost certainly a gross underestimate" (Lipponen). Now, consider a hypothetical scenario in which an earth clean-up campaign launched globally could effectively remove all plastic waste from the ocean.

How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 2,000 birds?

How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 1,000 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 200 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 40 sea turtles?
"The global prevalence, morbidity and mortality related to childhood asthma among children has increased significantly over the last 40 years" (Serebrisky). Consider a hypothetical scenario in which increasing the cost of healthcare would definitely reduce the number of childhood deaths related to asthma per year.
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 400 next year?
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 20 next year?

How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 1 next year?
Contingent Valuation - D_LSM
The next 9 questions will consist of 3 short prompts followed by 3 questions each. Please read each prompt and answer the questions accurately to the best of your ability. The questions asked are purely hypothetical and will not have any effect in the real world.
"At least 102 species of birds are known to have been harmed by the BF oil spill [in 2010], including black skimmers, brown pelicans, clapper rails, common loons, laughing gulls, northern gannets and several species of tern" (krüg). Consider a hypothetical scenario in which birds are dying due to oil spills, but your donation would guarantee the lives o many birds.
How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 200,000 birds?
How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 2,000 birds?

How much would you be willing to pay (in US dollars) to prevent oil spills with certainty and therefore save the lives of around 20,000 birds?
"Plastic waste is everywhere, on the surface of the ocean, underwater and on the beach. It is estimated that more than 1,000 turtles die every year after getting entangled in plastic, and this number is almost certainly a gross underestimate" (Lipponen). Now, consider a hypothetical scenario in which an earth clean-up campaign launched globally could effectively remove all plastic waste from the ocean.
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 1,000 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 40 sea turtles?
How much would you be willing to donate (in US dollars) to this campaign if you knew with certainty that your donation would save the lives of around 200 sea turtles?

"The global prevalence, morbidity and mortality related to childhood asthma among children has increased significantly over the last 40 years" (Serebrisky). Consider a hypothetical scenario in which increasing the cost of healthcare would definitely reduce the number of childhood deaths related to asthma per year.

How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 400 next year?
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 1 next year?
How much would you be willing to pay (in US dollars) for this healthcare to reduce the number of childhood deaths by 20 next year?
Demographic Questions - E
What is your age in years?
Which of the following best describes your gender identity?

FemaleMale

Transgender female Transgender male Nonbinary Other. Please specify: Prefer not to say.
Which of the following best describes your ethnic or racial identity? Hispanic or Latnix White Black or African American Native American or Alaska Native Asian or Pacific Islander Other. Please specify: Prefer not to say.
Which of the following best describes your level of education? Incomplete High School High School Diploma Current Undergraduate Completed Bachelor's Degree Current Graduate Student Completed Graduate Degree Other. Please specify: Prefer not to say.
What is your annual household income in US dollars? Here, we are defining household income as the pre-tax, cash income of family members or other individuals sharing most living expenses. If you are a student but your parents or other family members pay for over half of your living expenses, please include their income in your household income. Use your best estimate.

On average, how much do you spend on essential expenses per month in US dollars? Here, we are defining essential expenses as anything necessary to maintain your basic well-being. This includes rent or a mortgage payment, utilities, transportation costs, insurance, groceries, tuition, required textbooks, and any medical expenses. Use your best estimate.
On average, how much do you spend on non-essential expenses per month in US dollars? Non-essential expenses include anything you purchased primarily for enjoyment. Some examples might be restaurant meals, entertainment expenses, or any non-essential travel, material goods, and clothing. Use your best estimate.
Have you ever donated to a charity in the past? The amount does not matter. Yes No
Do you have plans to donate to at least one charity at some point in your future? Yes No

Powered by Qualtrics

Group 1: Scope Insensitivity 41

Appendix V: Raw Data

	math_activity	activity_score	0.000 0.0			0.000			consistent_order		birds_M 100.000	birds_L 100.000	perlife_bird_S	perlife_bird_M		0.010	perlife_bird_avg_thousand 10.167		diff_bird
D1018-FSLM-NR4-A57-GFemale-I100000	0.000	0.750					0.000	0.000	0	50.000			0.025	0.005	0.001			0.020	0.00
D1018-FSML-NR4-A30-GMale-I25000	0.000	0.500	1.000 0.0				0.000	0.000	1	100.000	1000.000	10000.000	0.050	0.050	0.050	0.050	50.000	0.000	0.000
D1018-FSML-NR4-A57-GMale-I100000	0.000	0.500	1.000 0.0	00 0	.000	0.000	0.000	0.000	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D1024-FMLS-NR4-A19-GMale-I25000	0.000	1.000	0.000 0.0	00 0	.000	0.000	0.000	1.000	0	20.000	100.000	500.000	0.010	0.005	0.003	0.006	5.833	0.005	0.003
D1025-FMLS-NR4-A30-GMale-I200000	0.000	0.500	0.000 0.0	00 0	.000	0.000	0.000	1.000	0	5000.000	10000.000	11000.000	2.500	0.500	0.055	1.018	1018.333	2.000	0.44
D1025-FMLS-NR4-A35-GMale-I180000	0.000	0.250	0.000 0.0	00 0	.000	0.000	0.000	1.000	0	2000.000	2000.000	1500.000	1.000	0.100	0.008	0.369	369.167	0.900	0.093
D1025-FMSI -NR4-A44-GMale-I88787	0.000	0.250	0.000 1.0	00 0		0.000	0.000	0.000	0	76.000	78.000	75.000	0.038	0.004	0.000	0.014	14.092	0.034	0.004
D1025-FSMI -NR4-A25-GFemale-I4000	0.000	0.250	1.000 0.0			0.000	0.000	0.000	4	100.000	100,000	50,000	0.050	0.004	0.000	0.014	18.417	0.034	0.00
																		0.0.0	
D1025-FSML-NR4-A36-GMale-I126000	0.000	0.500	1.000 0.0			0.000	0.000	0.000	1	2000.000	20000.000	200000.000	1.000	1.000	1.000	1.000	1000.000	0.000	0.000
D1110-FSML-NR4-A18-GMale-I50000	0.000	0.250	1.000 0.0	00 0	.000	0.000	0.000	0.000	1	20.000	20.000	50.000	0.010	0.001	0.000	0.004	3.750	0.009	0.00
D1111-FLMS-NR4-A20-GNonbinary-I0	0.000	0.750	0.000 0.0	00 0	.000	0.000	1.000	0.000	1	25.000	25.000	25.000	0.013	0.001	0.000	0.005	4.625	0.011	0.00
D1111-FLMS-NR4-A22-GFemale-I100000	0.000	0.750	0.000 0.0	00 0	.000	0.000	1.000	0.000	1	25.000	100.000	100.000	0.013	0.005	0.001	0.006	6.000	0.008	0.00
D1111-FLSM-NR4-A23-GNonbinary-I30000	0.000	0.500	0.000 0.0	00 0	.000	1.000	0.000	0.000	0	25.000	2000.000	200.000	0.013	0.100	0.001	0.038	37.833	0.088	0.099
D1111-FMLS-NR4-A19-GMale-I450000	0.000	1.000	0.000 0.0	00 0	.000	0.000	0.000	1.000	0	20.000	200.000	2000.000	0.010	0.010	0.010	0.010	10.000	0.000	0.00
D1111-FMI S-NR6-A42-GMale-I65000	0.000	0.500	0.000 0.0	00 0	000	0.000	0.000	1.000	0			1000000 000	0.000	0.000	5.000	1.667	1666 667	0.000	5.00
D1111-FSI M-NR4-A20-GMale-I60000	0.000	0.500	0.000 0.0					0.000	0	6,000	25 000	100.000	0.003	0.001	0.001	0.002	1.583	0.002	0.00
									-										
D1111-FSLM-NR4-A40-GMale-I200000	0.000	0.750	0.000 0.0				0.000	0.000	0	20.000	50.000	100.000	0.010	0.003	0.001	0.004	4.333	0.008	0.00
112-FMLS-NR4-A31-GTransgender male-I180900	0.000	0.500	0.000 0.0	00 0	.000	0.000	0.000	1.000	0	5200.000	5200.000	5200.000	2.600	0.260	0.026	0.962	962.000	2.340	0.23
D1112-FMSL-NR4-A24-GFemale-I55000	0.000	0.500	0.000 1.0	00 0	.000	0.000	0.000	0.000	0	40.000	40.000	60.000	0.020	0.002	0.000	0.007	7.433	0.018	0.00
D1113-FLSM-NR4-A39-GFemale-I147000	0.000	0.250	0.000 0.0	00 0	.000	1.000	0.000	0.000	0	1000000.000	1000000.000	1000000.000	500.000	50.000	5.000	185.000	185000.000	450.000	45.00
D1113-FMSL-NR4-A36-GFemale-I75000	0.000	0.750	0.000 1.0			0.000	0.000	0.000	0	100.000	1000.000	1000.000	0.050	0.050	0.005	0.035	35.000	0.000	0.04
D1115-FSLM-NR8-A18-GMale-I	0.000	0.750	0.000 0.0			0.000	0.000	0.000	0	20.000	30.000	50.000	0.010	0.002	0.000	0.004	3.917	0.009	0.00
D1117-FI MS-NR12-A-G-I	0.000	0.750	0.000 0.0			0.000	1.000	0.000	4	100,000	2000 000	1000 000	0.010	0.002	0.000	0.004	51.917	0.009	0.00
	0.000		0.000						1										
D1117-FLMS-NR4-A31-GFemale-I30000	0.000	0.750	0.000 0.0				1.000	0.000	1	50.000	50.000	25.000	0.025	0.003	0.000	0.009	9.208	0.023	0.00
D1117-FLMS-NR4-A32-GFemale-I29000	0.000	0.750	0.000 0.0	00 0	.000	0.000	1.000	0.000	1	20000.000	200000.000	2000000.000	10.000	10.000	10.000	10.000	10000.000	0.000	0.00
D1117-FLMS-NR4-A57-GFemale-I150000	0.000	0.250	0.000 0.0	00 0	.000	0.000	1.000	0.000	1	8000.000	750000.000	750000.000	40.000	37.500	3.750	27.083	27083.333	2.500	33.7
D1117-FLSM-NR4-A43-GMale-I44000	0.000	1.000	0.000 0.0	00 0	.000	1.000	0.000	0.000	0	500.000	500.000	500.000	0.250	0.025	0.003	0.093	92.500	0.225	0.02
D1117-FLSM-NR8-A20-GFemale-I	0.000	1.000	0.000 0.0				0.000	0.000	0	1000.000	15000.000	15000.000	0.500	0.750	0.075	0.442	441.667	0.250	0.67
D1117-FLSW-NR6-A20-GF elitale-I D1117-FMLS-NR4-A27-GNonbinary-I80000	0.000	0.500	0.000 0.0			0.000	0.000	1.000	0	1500.000	15000.000	1500.000	0.750	0.750	0.075	0.442	277.500	0.250	0.07
D1117-FSLM-NR12-A-G-I	0.000	0.500	0.000 0.0			0.000	0.000	0.000	0	50.000	70.000	100.000	0.025	0.004	0.001	0.010	9.667	0.022	0.00
D1117-FSLM-NR4-A28-GFemale-I40000	0.000	0.250	0.000 0.0				0.000	0.000	0	5.000	10.000	10.000	0.003	0.001	0.000	0.001	1.017	0.002	0.00
D1117-FSML-NR4-A57-GMale-I150000	0.000	0.500	1.000 0.0	00 0	.000	0.000	0.000	0.000	1	1000000.000	10000000.000	100000000.000	500.000	500.000	500.000	500.000	500000.000	0.000	0.00
D1117-FSML-NR8-A26-GFemale-I	0.000	0.750	1.000 0.0	00 0	.000	0.000	0.000	0.000	1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
D112-FLMS-NR4-A20-GMale-I500000	0.000	0.750	0.000 0.0				1.000	0.000	1	1.000	10.000	100.000	0.001	0.001	0.001	0.001	0.500	0.000	0.00
112-FSML-NR4-A30-GPrefer not to sayI100000	0.000	0.750	1.000 0.0				0.000	0.000	1	10000 000	10000 000	10000 000	5.000	0.500	0.050	1.850	1850.000	4.500	0.00
D116-FLMS-NR4-A31-GFemale-I93000	0.000	0.750	0.000 0.0			0.000		0.000	1	600.000	1200.000	1200.000	0.300	0.060	0.006	0.122	122.000	0.240	0.05
D117-FLSM-NR4-A53-GMale-I100000	0.000	0.750	0.000 0.0			1.000	0.000	0.000	0	100.000	100.000	100.000	0.050	0.005	0.001	0.019	18.500	0.045	0.00
D119-FMSL-NR4-A18-GFemale-I170000	0.000	0.250	0.000 1.0	00 0	.000	0.000	0.000	0.000	0	30.000	100.000	110.000	0.015	0.005	0.001	0.007	6.850	0.010	0.00
D1018-FMSL-NR4-A27-GFemale-I43000	1.000	1.000	0.000 1.0	00 0	.000	0.000	0.000	0.000	0	10.000	50.000	100.000	0.005	0.003	0.001	0.003	2.667	0.003	0.00
D1020-FLMS-NR4-A21-GMale-I600000	1.000	1.000	0.000 0.0	00 n	.000	0.000	1.000	0.000	1	0.000	25.000	100.000	0.000	0.001	0.001	0.001	0.583	0.001	0.00
D1020-FLSM-NR4-A22-GFemale-I20000	1.000	0.750	0.000 0.0			1.000	0.000	0.000	0	5500.000	6000.000	5000.000	2.750	0.300	0.025	1.025	1025.000	2.450	0.27
D1024-FLSM-NR4-A18-GMale-I150000	1.000	1.000	0.000 0.0			1.000	0.000	0.000	0	50.000	50.000	50.000	0.025	0.003	0.023	0.009	9.250	0.023	0.00
D1024-FLSM-NR4-A16-GMale-1150000 D1024-FSI M-NR4-A28-GFemale-156000	1.000	1.000	0.000 0.0			0.000	0.000	0.000	0	1000.000	1000 000	1000 000	0.025	0.003	0.000	0.009	185 000	0.023	0.00
			0.000						U										
D1025-FLMS-NR4-A34-GMale-I145000	1.000	0.750	0.000 0.0			0.000	1.000	0.000	1	100.000	300.000	200.000	0.050	0.015	0.001	0.022	22.000	0.035	0.01
D1025-FLMS-NR4-A35-GMale-I149999	1.000	1.000	0.000 0.0	00 0	.000	0.000	1.000	0.000	1	450.000	200.000	250.000	0.225	0.010	0.001	0.079	78.750	0.215	0.00
D1025-FLSM-NR4-A45-GMale-I145000	1.000	0.500	0.000 0.0	00 0	.000	1.000	0.000	0.000	0	500.000	700.000	1000.000	0.250	0.035	0.005	0.097	96.667	0.215	0.03
D1025-FMSL-NR4-A34-GMale-I135000	1.000	1.000	0.000 1.0	00 n			0.000	0.000	0	500.000	1500.000	1500.000	0.250	0.075	0.008	0.111	110.833	0.175	0.06
D1025-FSML-NR4-A35-GMale-I100000	1.000	1.000	1.000 0.0				0.000	0.000	1	7000.000	8000.000	16000.000	3.500	4.000	0.080	2.527	2526.667	0.500	3.92
D1025-FSML-NR4-A37-GMale-I110000	1.000	1.000	1.000 0.0				0.000	0.000	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
									1										
D1110-FLMS-NR4-A35-GNonbinary-I190000	1.000	1.000	0.000 0.0				1.000	0.000	1	1000.000	1000.000	1000.000	0.500	0.050	0.005	0.185	185.000	0.450	0.04
D1110-FLSM-NR4-A21-GFemale-I125000	1.000	1.000	0.000 0.0				0.000	0.000	0	50.000	500.000	500.000	0.025	0.025	0.003	0.018	17.500	0.000	0.02
D1110-FSLM-NR4-A61-GFemale-I250000	1.000	1.000	0.000 0.0	00 1	.000	0.000	0.000	0.000	0	50.000	50.000	50.000	0.025	0.003	0.000	0.009	9.250	0.023	0.00
110-FSML-NR4-A23-GTransgender female-I7000	1.000	1.000	1.000 0.0	00 n	.000	0.000	0.000	0.000	1	50.000	50.000	50.000	0.025	0.003	0.000	0.009	9.250	0.023	0.00
01111-FLMS-NR4-A19-GPrefer not to sayI1320	1.000	0.250	0.000 0.0			0.000	1.000	0.000	1	100.000	100.000	100.000	0.050	0.005	0.001	0.019	18.500	0.045	0.00
D1111-FLSM-NR13-A44-GMale-I	1.000	1.000	0.000 0.0				0.000	0.000	0	150.000	.00.000	1.000	0.000	0.000	0.000	0.000	0.002	0.000	0.00
	1.000	1.000	0.000 0.0				0.000	0.000		1500.000	1500.000	1500.000	0.750	0.000	0.000	0.000	277.500	0.675	0.00
D1111-FMSL-NR4-A21-GMale-I31000									0										
D1111-FMSL-NR8-A-GPrefer not to sayI	1.000	1.000	0.000 1.0			0.000	0.000	0.000	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
D1111-FSML-NR4-A19-GMale-I60000	1.000	1.000	1.000 0.0	00 0	.000	0.000	0.000	0.000	1	150.000	200.000	300.000	0.075	0.010	0.002	0.029	28.833	0.065	0.00
D1112-FLMS-NR4-A33-GFemale-I11000	1.000	1.000	0.000 0.0	00 0	.000	0.000	1.000	0.000	1	5.000	35.000	30.000	0.003	0.002	0.000	0.001	1.467	0.001	0.00
D1112-FMLS-NR4-A19-GFemale-I3724.48	1.000	1.000	0.000 0.0	00 n	.000	0.000	0.000	1.000	0	20000.000	20000.000	20000.000	10.000	1.000	0.100	3.700	3700.000	9.000	0.90
D1112-FSLM-NR4-A20-GNonbinary-I100000	1.000	1.000	0.000 0.0			0.000	0.000	0.000	0	20.000	25.000	50.000	0.010	0.001	0.000	0.004	3.833	0.009	0.00
D1113-FI SM-NR4-A32-GMale-I260000		1.000						0.000										0.009	
	1.000		0.000				0.000		0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
D1113-FLSM-NR4-A62-GFemale-I50000	1.000	0.750	0.000 0.0				0.000	0.000	0	0.000	10.000	0.000	0.000	0.001	0.000	0.000	0.167	0.001	0.00
D1113-FMLS-NR4-A34-GFemale-I250000	1.000	1.000	0.000 0.0				0.000	1.000	0	1000.000	100.000	1000.000	0.500	0.005	0.005	0.170	170.000	0.495	0.00
D1113-FSML-NR4-A31-GMale-I130000	1.000	1.000	1.000 0.0	00 0	.000	0.000	0.000	0.000	1	75.000	100.000	100.000	0.038	0.005	0.001	0.014	14.333	0.033	0.00
D1114-FLSM-NR8-A19-GPrefer not to sayI	1.000	1.000	0.000 0.0	00 0	.000	1.000	0.000	0.000	0	0.650	0.880	0.950	0.000	0.000	0.000	0.000	0.125	0.000	0.00
D1116-FMLS-NR4-A22-GMale-I150000	1.000	1.000	0.000 0.0			0.000	0.000	1.000	0	400.000	500.000	700.000	0.200	0.025	0.004	0.076	76.167	0.175	0.02
D1117-FMSL-NR4-A43-GMale-I150000	1.000	1.000	0.000 0.0			0.000	0.000	0.000	0	500.000	500.000	5.000	0.250	0.025	0.004	0.070	91.675	0.175	0.02
D1117-FSLM-NR4-A22-GFemale-I300000	1.000	1.000	0.000 0.0			0.000	0.000	0.000	0	10.000	15.000	20.000	0.005	0.001	0.000	0.002	1.950	0.004	0.0
D1117-FSLM-NR8-A30-GFemale-I	1.000	1.000	0.000 0.0	00 1	.000	0.000	0.000	0.000	0	3000.000	3500.000	5000.000	1.500	0.175	0.025	0.567	566.667	1.325	0.1
D1117-FSML-NR12-A-G-I	1.000	0.000	1.000 0.0	00 0	.000	0.000	0.000	0.000	1	9000.000	5000.000	20000.000	4.500	0.250	0.100	1.617	1616.667	4.250	0.1
D1117-FSML-NR4-A45-GMale-I80000	1.000	1.000	1.000 0.0	00 0	.000	0.000	0.000	0.000	1	1000.000	3000.000	5000.000	0.500	0.150	0.025	0.225	225.000	0.350	0.12
D112-FSLM-NR4-A21-GMale-I300000	1.000	1.000	0.000 0.0			0.000	0.000	0.000	0	50.000	450.000	1000.000	0.025	0.023	0.005	0.018	17.500	0.003	0.0
D115-FMSL-NR4-A28-GFemale-I135000	1.000	1.000	0.000 0.0				0.000	0.000	0	500.000	500.000	500.000	0.250	0.025	0.003	0.093	92.500	0.225	0.02
				00 0.															
D116-FMLS-NR4-A25-GMale-I210000	1.000	1.000	0.000 0.0			0.000	0.000	1.000	0	20.000	200.000	400.000	0.010	0.010	0.002	0.007	7.333	0.000	0.00
D118-FSLM-NR4-A7-GMale-I7	1.000	0.250	0.000 0.0				0.000	0.000	0	7.000	7.000	7.000	0.004	0.000	0.000	0.001	1.295	0.003	0.00
D119-FMLS-NR4-A18-GMale-I12000	1.000	1.000	0.000 0.0	00 0	.000	0.000	0.000	1.000	0	100.000	5000.000	10000.000	0.050	0.250	0.050	0.117	116.667	0.200	0.20

		accuracy_bird	turtle_S	turtle_M	turtle_L				perlife_turtle_avg [1]	perlife_turtle_avg_thousand				human_S	human_M	human_L
D1018-FSLM-NR4-A57-GFemale-I100000	0.000	0.012	50.000	100.000	100.000	1.250	0.500	0.100	0.617	616.667	0.750	0.400	0.575	300.000	200.000	300.000
D1018-FSML-NR4-A30-GMale-I25000	0.000	0.000	100.000	500.000	2500.000	2.500	2.500	2.500	2.500	2500.000	0.000	0.000	0.000	100.000	2000.000	4000.000
D1018-FSML-NR4-A57-GMale-I100000	0.000	0.000	20.000	20.000	20.000	0.500	0.100	0.020	0.207	206.667	0.400	0.080	0.240	100.000	100.000	100.000
D1024-FMLS-NR4-A19-GMale-I25000	0.000	0.004	10.000	50.000	75.000	0.250	0.250	0.075	0.192	191.667	0.000	0.175	0.088	10.000	20.000	50.000
D1025-FMLS-NR4-A30-GMale-I200000	0.000	1.223	200.000	1000.000	1500.000	5.000	5.000	1.500	3.833	3833.333	0.000	3.500	1.750	500.000	10000.000	15000.000
D1025-FMLS-NR4-A35-GMale-I180000	0.000	0.496	1500.000	1500.000	1500.000	37.500	7.500	1.500	15.500	15500.000	30.000	6.000	18.000	2500.000	2500.000	2500.000
D1025-FMSL-NR4-A44-GMale-I88787	0.000	0.019	65.000	67.000	56.000	1.625	0.335	0.056	0.672	672.000	1.290	0.279	0.785	5.000	45.000	7.000
D1025-FSMI -NR4-A25-GFemale-I4000	0.000	0.025	100.000	100.000	50,000	2.500	0.500	0.050	1.017	1016.667	2 000	0.450	1 225	50.000	100 000	250,000
D1025-FSML-NR4-A36-GMale-I126000	0.000	0.000	400.000	200.000	1000.000	10.000	1.000	1.000	4.000	4000.000	9.000	0.000	4.500	2000.000	1000.000	4000.000
D1110-FSML-NR4-A18-GMale-I50000	0.000	0.005	40.000	40.000	60.000	1.000	0.200	0.060	0.420	420.000	0.800	0.140	0.470	50.000	100.000	200.000
D1111-FLMS-NR4-A20-GNonbinary-I0	0.000	0.006	25.000	15.000	25.000	0.625	0.075	0.025	0.242	241.667	0.550	0.050	0.300	15.000	15.000	25.000
D1111-FLMS-NR4-A22-GFemale-I100000	0.000	0.006	15.000	20.000	50.000	0.025	0.075	0.050	0.242	175 000	0.330	0.050	0.300	100,000	100,000	100.000
	0.000	0.006	15.000	30.000	100.000	0.375	0.150	0.100	0.175	208.333	0.275	0.050	0.103	10.000	20.000	30.000
D1111-FLSM-NR4-A23-GNonbinary-I30000																
D1111-FMLS-NR4-A19-GMale-I450000	0.000	0.000	0.400	2.000	10.000	0.010	0.010	0.010	0.010	10.000	0.000	0.000	0.000	4000.000	8000.000	1600000.000
D1111-FMLS-NR6-A42-GMale-I65000	0.000	2.500	200.000	1000.000	5000.000	5.000	5.000	5.000	5.000	5000.000	0.000	0.000	0.000	50000.000	1000000.000	
D1111-FSLM-NR4-A20-GMale-I60000	0.000	0.001	5.000	6.000	15.000	0.125	0.030	0.015	0.057	56.667	0.095	0.015	0.055	500.000	200.000	600.000
D1111-FSLM-NR4-A40-GMale-I200000	0.000	0.005	200.000	50.000	5000.000	5.000	0.250	5.000	3.417	3416.667	4.750	4.750	4.750	20.000	250.000	10000.000
01112-FMLS-NR4-A31-GTransgender male-I180900	0.000	1.287	1000.000	1000.000	1500.000	25.000	5.000	1.500	10.500	10500.000	20.000	3.500	11.750	95.000	500.000	600.000
D1112-FMSL-NR4-A24-GFemale-I55000	0.000	0.010	20.000	40.000	50.000	0.500	0.200	0.050	0.250	250.000	0.300	0.150	0.225	1.000	40.000	40.000
D1113-FLSM-NR4-A39-GFemale-I147000	0.000	247.500	1000000.000	1000000.000	1000000.000	25000.000	5000.000	1000.000	10333.333	10333333.333	20000.000	4000.000	12000.000	1000000.000	20000000.000	1000000.000
D1113-FMSL-NR4-A36-GFemale-I75000	0.000	0.023	400.000	2000.000	1000.000	10.000	10.000	1.000	7.000	7000.000	0.000	9.000	4.500	100.000	100.000	500.000
D1115-FSLM-NR8-A18-GMale-I	0.000	0.005	5.000	7.300	10.000	0.125	0.037	0.010	0.057	57.167	0.089	0.027	0.058	100.000	500.000	1000.000
D1117-FLMS-NR12-A-G-I	0.000	0.073	20.000	50.000	500.000	0.500	0.250	0.500	0.417	416.667	0.250	0.250	0.250	50.000	100.000	400.000
D1117-FLMS-NR4-A31-GFemale-I30000	0.000	0.012	25.000	25.000	50.000	0.625	0.125	0.050	0.267	266.667	0.500	0.075	0.288	25.000	50.000	50.000
D1117-FLMS-NR4-A31-GFemale-I30000 D1117-FLMS-NR4-A32-GFemale-I29000	0.000	0.012	400.000	20000.000	10000.000	10.000	100.000	10.000	40.000	40000.000	90.000	90.000	90.000	20.000	300.000	50000.000
D1117-FLMS-NR4-A32-GFemale-I29000 D1117-FLMS-NR4-A57-GFemale-I150000	0.000	18.125	100000.000	100000.000	200000.000	2500.000	500.000	200.000	1066.667	1066666.667	2000.000	300.000	1150.000	0.000	0.000	0.000
		0.125												100 000		1000.000
D1117-FLSM-NR4-A43-GMale-I44000	0.000		500.000	500.000	500.000	12.500	2.500	0.500	5.167	5166.667	10.000	2.000	6.000		200.000	
D1117-FLSM-NR8-A20-GFemale-I	0.000	0.463	200.000	200.000	1000.000	5.000	1.000	1.000	2.333	2333.333	4.000	0.000	2.000	200.000	200.000	0.000
D1117-FMLS-NR4-A27-GNonbinary-I80000	0.000	0.371	500.000	2000.000	2500.000	12.500	10.000	2.500	8.333	8333.333	2.500	7.500	5.000	500.000	2000.000	3000.000
D1117-FSLM-NR12-A-G-I	0.000	0.012	20.000	20.000	30.000	0.500	0.100	0.030	0.210	210.000	0.400	0.070	0.235	2.000	5.000	10.000
D1117-FSLM-NR4-A28-GFemale-I40000	0.000	0.001	20.000	3.000	30.000	0.500	0.015	0.030	0.182	181.667	0.485	0.015	0.250	1.000	7.000	5.000
D1117-FSML-NR4-A57-GMale-I150000	0.000	0.000	400.000	800.000	1200.000	10.000	4.000	1.200	5.067	5066.667	6.000	2.800	4.400	10000000.000	100000000.000	0 9999999.000
D1117-FSML-NR8-A26-GFemale-I	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D112-FLMS-NR4-A20-GMale-I500000	0.000	0.000	0.040	0.200	1.000	0.001	0.001	0.001	0.001	1.000	0.000	0.000	0.000	1000.000	20000.000	400000.000
D112-FSML-NR4-A30-GPrefer not to sayI100000	0.000	2.475	1000.000	10000.000	10000.000	25.000	50.000	10.000	28.333	28333.333	25.000	40.000	32.500	100.000	2000.000	10000.000
D116-FLMS-NR4-A31-GFemale-I93000	0.000	0.147	100.000	200.000	800.000	2.500	1.000	0.800	1.433	1433.333	1.500	0.200	0.850	200.000	400.000	1200.000
D117-FLSM-NR4-A53-GMale-I100000	0.000	0.025	100.000	100.000	100.000	2.500	0.500	0.100	1.033	1033.333	2.000	0.400	1.200	100.000	100.000	100.000
D119-FMSL-NR4-A18-GFemale-I170000	0.000	0.007	20.000	50.000	60.000	0.500	0.250	0.060	0.270	270.000	0.250	0.190	0.220	10.000	10.000	20.000
D1018-FMSL-NR4-A27-GFemale-I43000	1.000	0.002	15.000	25,000	50.000	0.375	0.125	0.050	0.183	183 333	0.250	0.075	0.163	5.000	10 000	25,000
D1020-FLMS-NR4-A21-GMale-I600000	1.000	0.002	0.000	0.000	25.000	0.000	0.000	0.025	0.008	8.333	0.000	0.025	0.013	100.000	250.000	500.000
D1020-FLSM-NR4-A22-GFemale-I20000	1.000	1.363	3000.000	1000.000	10000.000	75.000	5.000	10.000	30.000	30000.000	70.000	5.000	37.500	800.000	1500.000	2000.000
D1020-FLSM-NR4-A22-GFelfiale-I20000 D1024-FLSM-NR4-A18-GMale-I150000	1.000		15.000	20.000	50.000	0.375	0.100	0.050	0.175	175.000	0.275	0.050		40.000	200.000	400.000
D1024-FLSM-NR4-A18-GMale-1150000 D1024-FSI M-NR4-A28-GFemale-156000	1.000	0.012	500,000	1000 000		12.500			6.167	6166 667	7.500	4 000	0.163 5.750	1500 000	1000.000	2000.000
					1000.000		5.000	1.000								
D1025-FLMS-NR4-A34-GMale-I145000	1.000	0.025	40.000	40.000	120.000	1.000	0.200	0.120	0.440	440.000	0.800	0.080	0.440	6.000	8.000	48.000
D1025-FLMS-NR4-A35-GMale-I149999	1.000	0.112	220.000	120.000	100.000	5.500	0.600	0.100	2.067	2066.667	4.900	0.500	2.700	240.000	120.000	120.000
D1025-FLSM-NR4-A45-GMale-I145000	1.000	0.123	500.000	300.000	5000.000	12.500	1.500	5.000	6.333	6333.333	11.000	3.500	7.250	2000.000	480.000	900.000
D1025-FMSL-NR4-A34-GMale-I135000	1.000	0.121	500.000	1000.000	1000.000	12.500	5.000	1.000	6.167	6166.667	7.500	4.000	5.750	500.000	400.000	400.000
D1025-FSML-NR4-A35-GMale-I100000	1.000	2.210	2000.000	5000.000	1000.000	50.000	25.000	1.000	25.333	25333.333	25.000	24.000	24.500	10000.000	100000.000	10000000.000
D1025-FSML-NR4-A37-GMale-I11000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	2.000	5.000
D1110-FLMS-NR4-A35-GNonbinary-I190000	1.000	0.248	200.000	500.000	500.000	5.000	2.500	0.500	2.667	2666.667	2.500	2.000	2.250	50.000	500.000	1000.000
D1110-FLSM-NR4-A21-GFemale-I125000	1.000	0.011	5.000	5.000	50.000	0.125	0.025	0.050	0.067	66.667	0.100	0.025	0.063	5.000	10.000	500.000
D1110-FSLM-NR4-A61-GFemale-I250000	1.000	0.012	50.000	50.000	50.000	1.250	0.250	0.050	0.517	516.667	1.000	0.200	0.600	0.000	0.000	0.000
01110-FSML-NR4-A23-GTransgender female-I7000	1.000	0.012	40.000	100.000	100.000	1.000	0.500	0.100	0.533	533.333	0.500	0.400	0.450	0.000	20.000	100.000
D1111-FLMS-NR4-A19-GPrefer not to sayI1320	1.000	0.025	100.000	100.000	100.000	2.500	0.500	0.100	1.033	1033.333	2.000	0.400	1.200	100.000	100.000	100.000
D1111-FLSM-NR13-A44-GMale-I	1.000	0.025	.55.000	100.000	1.000	0.000	0.000	0.001	0.000	0.333	0.000	0.001	0.001	.55.000	.55.000	1.000
D1111-FLSM-NR13-A44-GMale-I D1111-FMSL-NR4-A21-GMale-I31000	1.000	0.000	3000.000	3000.000	3000.000	75.000	15.000	3.000	31.000	31000.000	60.000	12.000	36.000	0.000	0.000	10.000
D1111-FMSL-NR8-A-GPrefer not to sayI	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D1111-FSML-NR4-A19-GMale-I60000	1.000	0.037	30.000	100.000	200.000	0.750	0.500	0.200	0.483	483.333	0.250	0.300	0.275	30.000	40.000	100.000
D1112-FLMS-NR4-A33-GFemale-I11000	1.000	0.001	5.000	19.000	45.000	0.125	0.095	0.045	0.088	88.333	0.030	0.050	0.040	1.000	10.000	50.000
D1112-FMLS-NR4-A19-GFemale-I3724.48	1.000	4.950	400.000	2000.000	10000.000	10.000	10.000	10.000	10.000	10000.000	0.000	0.000	0.000	100.000	200.000	4000.000
D1112-FSLM-NR4-A20-GNonbinary-I100000	1.000	0.005	10.000	10.000	15.000	0.250	0.050	0.015	0.105	105.000	0.200	0.035	0.118	0.000	5.000	20.000
D1113-FLSM-NR4-A32-GMale-I260000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D1113-FLSM-NR4-A62-GFemale-I50000	1.000	0.001	10.000	100.000	10.000	0.250	0.500	0.010	0.253	253.333	0.250	0.490	0.370	25.000	50.000	2.000
D1113-FMLS-NR4-A34-GFemale-I250000	1.000	0.248	1000.000	1000.000	1000.000	25.000	5.000	1.000	10.333	10333.333	20.000	4.000	12.000	15.000	500.000	1000.000
D1113-FSML-NR4-A31-GMale-I130000	1.000	0.019	40.000	60.000	80.000	1.000	0.300	0.080	0.460	460.000	0.700	0.220	0.460	0.000	10.000	10.000
D1114-FLSM-NR8-A19-GPrefer not to sayI	1.000	0.000	1.000	2.000	2.000	0.025	0.010	0.002	0.012	12.333	0.015	0.008	0.012	0.020	0.780	3.000
D1116-FMLS-NR4-A22-GMale-I150000	1.000	0.098	300.000	400.000	600.000	7.500	2.000	0.600	3.367	3366.667	5.500	1.400	3.450	150.000	1000.000	5000.000
D1117-FMSL-NR4-A43-GMale-I45000	1.000	0.125	500.000	500.000	500.000	12.500	2.500	0.500	5.167	5166.667	10.000	2.000	6.000	200.000	200.000	200.000
	1.000	0.125	10.000	15.000	20.000	0.250	0.075	0.020	0.115		0.175	0.055	0.115	7.000	5.000	20.000
D1117-FSLM-NR4-A22-GFemale-I300000										115.000						
D1117-FSLM-NR8-A30-GFemale-I	1.000	0.738	1000.000	5000.000	10000.000	25.000	25.000	10.000	20.000	20000.000	0.000	15.000	7.500	10000.000	25000.000	50000.000
D1117-FSML-NR12-A-G-I	1.000	2.200	250.000	500.000	10000.000	6.250	2.500	10.000	6.250	6250.000	3.750	7.500	5.625	1550.000	10000.000	600000.000
D1117-FSML-NR4-A45-GMale-I80000	1.000	0.238	2000.000	1000.000	1500.000	50.000	5.000	1.500	18.833	18833.333	45.000	3.500	24.250	500.000	1000.000	1500.000
D112-FSLM-NR4-A21-GMale-I300000	1.000	0.010	75.000	85.000	250.000	1.875	0.425	0.250	0.850	850.000	1.450	0.175	0.813	500.000	1000.000	5000.000
D115-FMSL-NR4-A28-GFemale-I135000	1.000	0.124	200.000	450.000	650.000	5.000	2.250	0.650	2.633	2633.333	2.750	1.600	2.175	150.000	100.000	800.000
D116-FMLS-NR4-A25-GMale-I210000	1.000	0.004	50.000	200.000	300.000	1.250	1.000	0.300	0.850	850.000	0.250	0.700	0.475	0.000	100.000	200.000
	1.000	0.002	7.000	7.000	7.000	0.175	0.035	0.007	0.072	72.333	0.140	0.028	0.084	7.000	7.000	7.000
D118-FSLM-NR4-A7-GMale-I7																

response id	math activity	perlife human S	perlife human M	perlife human L	perlife human avg	perlife_human_avg_thousand	perlife unit avg	perlife unit avg thousand	diff human SM	diff human ML	accuracy human	accuracy score	age m	nale
D1018-FSLM-NR4-A57-GFemale-I100000	0.000	300.000	10.000	0.750	103.583	103583.333	34.737	34736.722	290.000	9.250	149.625	150.212	57.000 0.0	
D1018-FSML-NR4-A30-GMale-I25000	0.000	100.000	100.000	10.000	70.000	70000.000	24.183	24183.333	0.000	90.000	45.000	45.000	30.000 1.0	.000
D1018-FSML-NR4-A57-GMale-I100000	0.000	100.000	5.000	0.250	35.083	35083.333	11.763	11763.333	95.000	4.750	49.875	50.115	57.000 1.0	.000
D1024-FMLS-NR4-A19-GMale-I25000	0.000	10.000	1.000	0.125	3.708	3708.333	1.302	1301.944	9.000	0.875	4.938	5.029	19.000 1.0	.000
D1025-FMLS-NR4-A30-GMale-I200000	0.000	500.000	500.000	37.500	345.833	345833.333	116.895	116895.000	0.000	462.500	231.250	234.223	30.000 1.0	.000
D1025-FMLS-NR4-A35-GMale-I180000	0.000	2500.000	125.000	6.250	877.083	877083.333	297.651	297650.833	2375.000	118.750	1246.875	1265.371		.000
D1025-FMSL-NR4-A44-GMale-I88787	0.000	5.000	2.250	0.018	2.423	2422.500	1.036	1036.197	2.750	2.233	2.491	3.295		.000
D1025-FSML-NR4-A25-GFemale-I4000	0.000	50.000	5.000	0.625	18.542	18541.667	6.526	6525.583	45.000	4.375	24.688	25.937	25.000 0.0	
D1025-FSML-NR4-A36-GMale-I126000 D1110-FSML-NR4-A18-GMale-I50000	0.000	2000.000 50.000	50.000 5.000	10.000 0.500	686.667 18.500	686666.667 18500.000	230.556 6.308	230555.556 6307.917	1950.000 45.000	40.000 4.500	995.000 24.750	999.500 25.225	36.000 1.0 18.000 1.0	.000
D1111-FSML-NR4-A18-GMale-I50000 D1111-FLMS-NR4-A20-GNonbinary-I0	0.000	15.000	0.750	0.500	18.500 5.271	5270.833	1.839	1839.042	45.000 14.250	0.688	7.469	25.225 7.775	20.000 0.0	
D1111-FLMS-NR4-A20-GNorbinary-io	0.000	100.000	5.000	0.063	35.083	35083.333	11.755	11754.778	95.000	4.750	49.875	50.044	22.000 0.0	
D1111-FLSM-NR4-A23-GNonbinary-I30000	0.000	10.000	1.000	0.230	3.692	3691.667	1.313	1312.611	9.000	0.925	4.963	5.193		.000
D1111-FMLS-NR4-A19-GMale-I450000	0.000	4000.000	4000.000	4000.000	4000.000	400000.000	1333.340	1333340.000	0.000	0.000	0.000	0.000		.000
D1111-FMLS-NR6-A42-GMale-I65000	0.000	50000.000	50000.000	50000.000	50000.000	5000000.000	16668.889	16668888.889	0.000	0.000	0.000	2.500	42.000 1.0	
D1111-FSLM-NR4-A20-GMale-I60000	0.000	500.000	10.000	1.500	170.500	170500.000	56.853	56852.750	490.000	8.500	249.250	249.306	20.000 1.0	.000
D1111-FSLM-NR4-A40-GMale-I200000	0.000	20.000	12.500	25.000	19.167	19166.667	7.529	7529.222	7.500	12.500	10.000	14.755	40.000 1.0	.000
D1112-FMLS-NR4-A31-GTransgender male-I180900	0.000	95.000	25.000	1.500	40.500	40500.000	17.321	17320.667	70.000	23.500	46.750	59.787	31.000 0.0	.000
D1112-FMSL-NR4-A24-GFemale-I55000	0.000	1.000	2.000	0.100	1.033	1033.333	0.430	430.256	1.000	1.900	1.450	1.685	24.000 0.0	.000
D1113-FLSM-NR4-A39-GFemale-I147000	0.000	1000000.000	1000000.000	2500.000	667500.000	667500000.000	226006.111	226006111.111	0.000	997500.000	498750.000	510997.500	39.000 0.0	.000
D1113-FMSL-NR4-A36-GFemale-I75000	0.000	100.000	5.000	1.250	35.417	35416.667	14.151	14150.556	95.000	3.750	49.375	53.898		.000
D1115-FSLM-NR8-A18-GMale-I	0.000	100.000	25.000	2.500	42.500	42500.000	14.187	14187.028	75.000	22.500	48.750	48.812		.000
D1117-FLMS-NR12-A-G-I	0.000	50.000	5.000	1.000	18.667	18666.667	6.378	6378.333	45.000	4.000	24.500	24.823		.000
D1117-FLMS-NR4-A31-GFemale-I30000 D1117-FI MS-NR4-A32-GFemale-I29000	0.000	25.000 20.000	2.500 15.000	0.125 125.000	9.208 53.333	9208.333 53333.333	3.161 34.444	3161.403 34444.444	22.500 5.000	2.375	12.438 57.500	12.737 147.500		000
D1117-FLMS-NR4-A32-GFemale-I29000 D1117-FLMS-NR4-A57-GFemale-I150000	0.000	0.000	0.000	0.000	0.000	0.000	34.444	34444.444	0.000	0.000	0.000	147.500 1168.125	57.000 0.0	
D1117-FLSM-NR4-A57-GFeffiale-1150000	0.000	100.000	10.000	2.500	37.500	37500.000	14.253	14253.056	90.000	7.500	48.750	54.874	43.000 1.0	
D1117-FLSM-NR8-A20-GFemale-I	0.000	200.000	10.000	0.000	70.000	70000.000	24.258	24258.333	190.000	10.000	100.000	102.463	20.000 0.0	
D1117-FMLS-NR4-A27-GNonbinary-I80000	0.000	500.000	100.000	7.500	202.500	202500.000	70.370	70370.278	400.000	92.500	246.250	251.621	27.000 0.0	
D1117-FSLM-NR12-A-G-I	0.000	2.000	0.250	0.025	0.758	758.333	0.326	326.000	1.750	0.225	0.988	1.235	0.9	.000
D1117-FSLM-NR4-A28-GFemale-I40000	0.000	1.000	0.350	0.013	0.454	454.167	0.212	212.283	0.650	0.338	0.494	0.745	28.000 0.0	.000
D1117-FSML-NR4-A57-GMale-I150000	0.000	10000000.000	5000000.000	24999.998	5008333.333	5008333332.500	1669612.800	1669612799.722	5000000.000	4975000.003	4987500.001	4987504.401	57.000 1.0	.000
D1117-FSML-NR8-A26-GFemale-I	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.000 0.0	.000
D112-FLMS-NR4-A20-GMale-I500000	0.000	1000.000	1000.000	1000.000	1000.000	1000000.000	333.334	333333.833	0.000	0.000	0.000	0.000	20.000 1.0	.000
D112-FSML-NR4-A30-GPrefer not to sayI100000	0.000	100.000	100.000	25.000	75.000	75000.000	35.061	35061.111	0.000	75.000	37.500	72.475	30.000 0.0	
D116-FLMS-NR4-A31-GFemale-I93000	0.000	200.000	20.000	3.000	74.333	74333.333	25.296	25296.222	180.000	17.000	98.500	99.497	31.000 0.0	
D117-FLSM-NR4-A53-GMale-I100000	0.000	100.000	5.000	0.250	35.083	35083.333	12.045	12045.056	95.000	4.750	49.875	51.100	53.000 1.0	
D119-FMSL-NR4-A18-GFemale-I170000 D1018-FMSI -NR4-A27-GFemale-I43000	0.000	10.000 5.000	0.500	0.050	3.517 1.854	3516.667 1854.167	1.265 0.680	1264.506 680.056	9.500 4.500	0.450	4.975 2.469	5.202 2.634	18.000 0.0 27.000 0.0	
D1020-FLMS-NR4-A21-GMale-I600000	1.000	100 000	12.500	1.250	37.917	37916.667	12.642	12641.861	4.500 87.500	11.250	49.375	49 389		000
D1020-FLSM-NR4-A22-GFemale-I20000	1.000	800.000	75.000	5.000	293.333	293333.333	108.119	108119.444	725.000	70.000	397.500	436.363		.000
D1024-FLSM-NR4-A18-GMale-I150000	1.000	40.000	10.000	1.000	17.000	17000.000	5.728	5728.083	30.000	9.000	19.500	19.675		.000
D1024-FSLM-NR4-A28-GFemale-I56000	1.000	1500.000	50.000	5.000	518.333	518333.333	174.895	174895.000	1450.000	45.000	747.500	753.498		.000
D1025-FLMS-NR4-A34-GMale-I145000	1.000	6.000	0.400	0.120	2.173	2173.333	0.878	878.444	5.600	0.280	2.940	3.405	34.000 1.0	.000
D1025-FLMS-NR4-A35-GMale-I149999	1.000	240.000	6.000	0.300	82.100	82100.000	28.082	28081.806	234.000	5.700	119.850	122.662	35.000 1.0	.000
D1025-FLSM-NR4-A45-GMale-I145000	1.000	2000.000	24.000	2.250	675.417	675416.667	227.282	227282.222	1976.000	21.750	998.875	1006.248	45.000 1.0	.000
D1025-FMSL-NR4-A34-GMale-I135000	1.000	500.000	20.000	1.000	173.667	173666.667	59.981	59981.389	480.000	19.000	249.500	255.371		.000
D1025-FSML-NR4-A35-GMale-I100000	1.000	10000.000	5000.000	25000.000	13333.333	13333333.333	4453.731	4453731.111	5000.000	20000.000	12500.000	12526.710		.000
D1025-FSML-NR4-A37-GMale-I11000	1.000	1.000	0.100	0.013	0.371	370.833	0.124	123.611	0.900	0.088	0.494	0.494		.000
D1110-FLMS-NR4-A35-GNonbinary-I190000	1.000	50.000	25.000	2.500	25.833	25833.333	9.562	9561.667	25.000	22.500	23.750	26.248		.000
D1110-FLSM-NR4-A21-GFemale-I125000 D1110-FSLM-NR4-A61-GFemale-I250000	1.000	5.000 0.000	0.500 0.000	1.250 0.000	2.250 0.000	2250.000 0.000	0.778 0.175	778.056 175.306	4.500 0.000	0.750	2.625 0.000	2.699 0.612		.000
D1110-FSML-NR4-A01-GFelfiale-I250000 D1110-FSML-NR4-A23-GTransgender female-I7000	1.000	0.000	1.000	0.250	0.000	416.667	0.175	319.750	1.000	0.000	0.000	1.337	23.000 0.0	
D1111-FLMS-NR4-A23-G Transgender lemale-17000 D1111-FLMS-NR4-A19-GPrefer not to savI1320	1.000	100.000	5.000	0.250	35.083	35083.333	12.045	12045.056	95.000	4.750	49.875	51.100	19.000 0.0	
D1111-FLSM-NR13-A44-GMale-I	1.000	0.000	0.000	0.003	0.001	0.833	0.000	0.389	0.000	0.003	0.001	0.002	44.000 1.0	
D1111-FMSL-NR4-A21-GMale-I31000	1.000	0.000	0.000	0.025	0.008	8.333	10.429	10428.611	0.000	0.025	0.013	36.384	21.000 1.0	
D1111-FMSL-NR8-A-GPrefer not to sayI	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		.000
D1111-FSML-NR4-A19-GMale-I60000	1.000	30.000	2.000	0.250	10.750	10750.000	3.754	3754.056	28.000	1.750	14.875	15.187	19.000 1.0	.000
D1112-FLMS-NR4-A33-GFemale-I11000	1.000	1.000	0.500	0.125	0.542	541.667	0.210	210.489	0.500	0.375	0.438	0.479		.000
D1112-FMLS-NR4-A19-GFemale-I3724.48	1.000	100.000	10.000	10.000	40.000	40000.000	17.900	17900.000	90.000	0.000	45.000	49.950		.000
D1112-FSLM-NR4-A20-GNonbinary-I100000	1.000	0.000	0.250	0.050	0.100	100.000	0.070	69.611	0.250	0.200	0.225	0.347		.000
D1113-FLSM-NR4-A32-GMale-I260000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		.000
D1113-FLSM-NR4-A62-GFemale-I50000	1.000	25.000 15.000	2.500	0.005 2.500	9.168 14.167	9168.333	3.141 8.223	3140.611	22.500 10.000	2.495 22.500	12.498 16.250	12.868 28.498	62.000 0.0 34.000 0.0	.000
D1113-FMLS-NR4-A34-GFemale-I250000			25.000			14166.667		8223.333						
D1113-FSML-NR4-A31-GMale-I130000 D1114-FLSM-NR8-A19-GPrefer not to sayI	1.000	0.000	0.500	0.025	0.175 0.022	175.000 22.167	0.216 0.012	216.444 11.542	0.500 0.019	0.475	0.488 0.025	0.966 0.037	31.000 1.0 19.000 0.0	
D1114-FLSM-NR6-A19-GPTeTeT NOT to SayI	1.000	150 000	50,000	12.500	70.833	70833.333	24 759	24758.722	100 000	37.500	68.750	72.298	22 000 1.0	
D1117-FMSL-NR4-A43-GMale-I45000	1.000	200.000	10.000	0.500	70.167	70166.667	25.142	25141.669	190.000	9.500	99.750	105.875		.000
D1117-FSLM-NR4-A22-GFemale-I300000	1.000	7.000	0.250	0.050	2.433	2433.333	0.850	850.094	6.750	0.200	3.475	3.592		.000
D1117-FSLM-NR8-A30-GFemale-I	1.000	10000.000	1250.000	125.000	3791.667	3791666.667	1270.744	1270744.444	8750.000	1125.000	4937.500	4945.738		.000
D1117-FSML-NR12-A-G-I	1.000	1550.000	500.000	1500.000	1183.333	1183333.333	397.067	397066.667	1050.000	1000.000	1025.000	1032.825	0.9	.000
D1117-FSML-NR4-A45-GMale-I80000	1.000	500.000	50.000	3.750	184.583	184583.333	67.881	67880.556	450.000	46.250	248.125	272.613		.000
D112-FSLM-NR4-A21-GMale-I300000	1.000	500.000	50.000	12.500	187.500	187500.000	62.789	62789.167	450.000	37.500	243.750	244.573	21.000 1.0	
D115-FMSL-NR4-A28-GFemale-I135000	1.000	150.000	5.000	2.000	52.333	52333.333	18.353	18353.056	145.000	3.000	74.000	76.299	28.000 0.0	
D116-FMLS-NR4-A25-GMale-I210000	1.000	0.000	5.000	0.500	1.833	1833.333	0.897	896.889	5.000	4.500	4.750	5.229	25.000 1.0	
D118-FSLM-NR4-A7-GMale-I7	1.000	7.000	0.350	0.018	2.456	2455.833	0.843	843.154	6.650	0.333	3.491	3.577		.000
D119-FMLS-NR4-A18-GMale-I12000	1.000	5.000	0.250	0.025	1.758	1758.333	0.664	663.889	4.750	0.225	2.488	2.788	18.000 1.0	.000

	math_activity			olack_or_africanamerican						completed_bachelors_degree		
D1018-FSLM-NR4-A57-GFemale-I100000	0.000	1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000
D1018-FSML-NR4-A30-GMale-I25000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000
D1018-FSML-NR4-A57-GMale-I100000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000
D1024-FMLS-NR4-A19-GMale-I25000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
D1025-FMLS-NR4-A30-GMale-I200000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1025-FMLS-NR4-A35-GMale-I180000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1025-FMSL-NR4-A44-GMale-I88787	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1025-FSML-NR4-A25-GFemale-I4000	0.000	1.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000
D1025-FSML-NR4-A36-GMale-I126000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1110-FSML-NR4-A18-GMale-I50000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1111-FLMS-NR4-A20-GNonbinary-I0	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1111-FLMS-NR4-A22-GFemale-I100000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1111-FLSM-NR4-A23-GNonbinary-I30000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1111-FMLS-NR4-A19-GMale-I450000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
D1111-FMLS-NR6-A42-GMale-I65000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000
D1111-FSLM-NR4-A20-GMale-I60000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000
D1111-FSLM-NR4-A40-GMale-I200000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000
112-FMLS-NR4-A31-GTransgender male-I180900	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1112-FMSL-NR4-A24-GFemale-I55000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1113-FLSM-NR4-A39-GFemale-I147000	0.000	1.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000
D1113-FMSL-NR4-A36-GFemale-I75000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1115-FSLM-NR8-A18-GMale-I	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1117-FLMS-NR12-A-G-I	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D1117-FLMS-NR4-A31-GFemale-I30000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1117-FLMS-NR4-A32-GFemale-I29000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1117-FLMS-NR4-A57-GFemale-I150000	0.000	1.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000
D1117-FLSM-NR4-A43-GMale-I44000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
D1117-FLSM-NR8-A20-GFemale-I	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1117-FMLS-NR4-A27-GNonbinary-I80000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D1117-FSLM-NR12-A-G-I	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D1117-FSLM-NR4-A28-GFemale-I40000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000
D1117-FSML-NR4-A57-GMale-I150000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000	0.000
D1117-FSML-NR8-A26-GFemale-I	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D112-FLMS-NR4-A20-GMale-I500000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
112-FSML-NR4-A30-GPrefer not to sayI100000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	1.000	0.000	0.000	0.000
D116-FLMS-NR4-A31-GFemale-I93000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D117-FLSM-NR4-A53-GMale-I100000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D119-FMSL-NR4-A18-GFemale-I170000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
D1018-FMSI -NR4-A27-GFemale-143000	1.000	1.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000
D1020-FLMS-NR4-A21-GMale-I600000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1020-FLSM-NR4-A22-GFemale-I20000	1.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
D1024-FLSM-NR4-A18-GMale-I150000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000
D1024-FSLM-NR4-A28-GFemale-I56000	1.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1025-FLMS-NR4-A34-GMale-I145000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1025-FLMS-NR4-A35-GMale-I149999	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1025-FLSM-NR4-A45-GMale-I145000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1025-FMSL-NR4-A34-GMale-I135000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	1 000	0.000	0.000	0.000
D1025-FSML-NR4-A35-GMale-I100000	1.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000
D1025-FSML-NR4-A37-GMale-I11000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000
D1110-FLMS-NR4-A35-GNonbinary-I190000	1.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1110-FLSM-NR4-A21-GFemale-I125000	1.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1110-FSLM-NR4-A61-GFemale-I250000	1.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
110-FSML-NR4-A23-GTransgender female-I7000	1.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
01111-FLMS-NR4-A19-GPrefer not to sayI1320	1.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1111-FLSM-NR13-A44-GMale-I	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1111-FMSL-NR4-A21-GMale-I31000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1111-FMSI -NR8-A-GPrefer not to say-I	1.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000
D1111-FSML-NR4-A19-GMale-I60000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000
D1112-FLMS-NR4-A33-GFemale-I11000	1.000			0.000	0.000	0.000	1.000	0.000			0.000	
		1.000	0.000						0.000	0.000		0.000
D1112-FMLS-NR4-A19-GFemale-I3724.48	1.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
D1112-FSLM-NR4-A20-GNonbinary-I100000	1.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	1.000	0.000
D1113-FLSM-NR4-A32-GMale-I260000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D1113-FLSM-NR4-A62-GFemale-I50000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	0.000	0.000	0.000
D1113-FMLS-NR4-A34-GFemale-I250000	1.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1113-FSML-NR4-A31-GMale-I130000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D1114-FLSM-NR8-A19-GPrefer not to savI	1.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000
D1116-FMLS-NR4-A22-GMale-I150000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
D1117-FMSL-NR4-A43-GMale-I150000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
	1.000		0.000	0.000	0.000	1.000		0.000	0.000	0.000	1.000	0.000
D1117-FSLM-NR4-A22-GFemale-I300000		1.000					0.000			*****		
D1117-FSLM-NR8-A30-GFemale-I	1.000	1.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000
D1117-FSML-NR12-A-G-I	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
D1117-FSML-NR4-A45-GMale-I80000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D112-FSLM-NR4-A21-GMale-I300000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000
D115-FMSI -NR4-A28-GFemale-I135000	1.000	1.000	0.000	0.000	0.000	0.000	1.000	0.000	1.000	0.000	0.000	0.000
D116-FMLS-NR4-A25-GMale-I210000	1.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.000
D116-FMLS-NR4-A25-GMale-I210000 D118-FSLM-NR4-A7-GMale-I7	1.000			0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000				0.000				

response_id	math_activity	incomplete_high_school	current_graduatestu	other_education [4]		ess_spend	noness_spend	charity_past	charity_future
D1018-FSLM-NR4-A57-GFemale-I100000	0.000	0.000	0.000	0.000	100000.000	5000.000	600.000	1.000	0.000
D1018-FSML-NR4-A30-GMale-I25000	0.000	0.000	0.000	0.000	25000.000	1600.000	400.000	1.000	0.000
D1018-FSML-NR4-A57-GMale-I100000	0.000	0.000	0.000	0.000	100000.000	3000.000	700.000	1.000	1.000
D1024-FMLS-NR4-A19-GMale-I25000 D1025-FMLS-NR4-A30-GMale-I200000	0.000	0.000	0.000	0.000	25000.000 200000.000	200.000	100.000 2000.000	1.000	1.000
D1025-FMLS-NR4-A30-GMale-I200000 D1025-FMLS-NR4-A35-GMale-I180000	0.000	0.000	0.000	0.000	180000.000	5000.000	1000.000	1.000	1.000
D1025-FMSL-NR4-A35-GMale-1760000 D1025-FMSL-NR4-A44-GMale-188787	0.000	0.000	0.000	0.000	88787.000	6765.000	7566.000	1.000	1.000
D1025-FSML-NR4-A25-GFemale-I4000	0.000	0.000	0.000	0.000	4000.000	500.000	250.000	1.000	1.000
D1025-FSML-NR4-A36-GMale-I126000	0.000	0.000	0.000	0.000	126000.000	150000.000	120000.000	1.000	1.000
D1110-FSML-NR4-A18-GMale-I50000	0.000	0.000	0.000	0.000	50000.000	100.000	100.000	1.000	1.000
D1111-FLMS-NR4-A20-GNonbinary-I0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000
D1111-FLMS-NR4-A22-GFemale-I100000	0.000	0.000	0.000	0.000	100000.000	2000.000	1000.000	1.000	1.000
D1111-FLSM-NR4-A23-GNonbinary-I30000	0.000	0.000	0.000	0.000	30000.000	1200.000	600.000	1.000	1.000
D1111-FMLS-NR4-A19-GMale-I450000	0.000	0.000	0.000	0.000	450000.000	1500.000	50.000	1.000	1.000
D1111-FMLS-NR6-A42-GMale-I65000	0.000	0.000	0.000	0.000	65000.000	2500.000	1000.000	1.000	0.000
D1111-FSLM-NR4-A20-GMale-I60000	0.000	0.000	0.000	1.000	60000.000	3000.000	400.000	0.000	1.000
D1111-FSLM-NR4-A40-GMale-I200000	0.000	0.000	0.000	0.000	200000.000	3000.000	2000.000	1.000	1.000
D1112-FMLS-NR4-A31-GTransgender male-I180900		0.000	0.000	0.000	180900.000	500.000	150.000	1.000	1.000
D1112-FMSL-NR4-A24-GFemale-I55000	0.000	0.000	0.000	0.000	55000.000	850.000	200.000	1.000	1.000
D1113-FLSM-NR4-A39-GFemale-I147000	0.000	0.000	0.000	0.000	147000.000	5000.000	2000.000	1.000	1.000
D1113-FMSL-NR4-A36-GFemale-I75000	0.000	0.000	0.000	0.000	75000.000	4250.000	1500.000	1.000	1.000
D1115-FSLM-NR8-A18-GMale-I	0.000	0.000	0.000	0.000				0.000	
D1117-FLMS-NR12-A-G-I	0.000	0.000	0.000	0.000	00007	4000	400	0.000	
D1117-FLMS-NR4-A31-GFemale-I30000	0.000	0.000	0.000	0.000	30000.000	1300.000	100.000	1.000	
D1117-FLMS-NR4-A32-GFemale-I29000 D1117-FLMS-NR4-A57-GFemale-I150000	0.000	0.000	0.000	0.000	29000.000 150000.000	1100.000 2000.000	300.000 750.000	1.000	
D1117-FLSM-NR4-A57-GFeffiale-1150000 D1117-FLSM-NR4-A43-GMale-144000	0.000	0.000	0.000	0.000	44000.000	2200.000	400.000	1.000	
D1117-FLSM-NR4-A43-GMale-I44000 D1117-FLSM-NR8-A20-GFemale-I	0.000	0.000	0.000	0.000	44000.000	2200.000	400.000	0.000	
D1117-FMI S-NR4-A27-GNonbinary-I80000	0.000	0.000	0.000	1.000	80000 000	3500 000	900 000	1.000	
D1117-FSLM-NR12-A-G-I	0.000	0.000	0.000	0.000	80000.000	3300.000	900.000	0.000	
D1117-FSLM-NR4-A28-GFemale-I40000	0.000	0.000	0.000	1.000	40000.000	2000.000	500.000	1.000	
D1117-FSML-NR4-A57-GMale-I150000	0.000	0.000	0.000	0.000	150000.000	4000.000	1000.000	1.000	
D1117-FSMI -NR8-A26-GFemale-I	0.000	0.000	0.000	0.000	100000.000	1000.000	1000.000	0.000	
D112-FLMS-NR4-A20-GMale-I500000	0.000	0.000	0.000	0.000	500000.000	2000.000	5000.000	1.000	1.000
D112-FSML-NR4-A30-GPrefer not to sayI100000	0.000	0.000	0.000	0.000	100000.000	3000.000	1000.000	1.000	1.000
D116-FLMS-NR4-A31-GFemale-I93000	0.000	0.000	0.000	0.000	93000.000	3500.000	1500.000	1.000	1.000
D117-FLSM-NR4-A53-GMale-I100000	0.000	0.000	0.000	0.000	100000.000	1000.000	1000.000	1.000	1.000
D119-FMSL-NR4-A18-GFemale-I170000	0.000	0.000	0.000	0.000	170000.000	3000.000	500.000	1.000	1.000
D1018-FMSL-NR4-A27-GFemale-I43000	1.000	0.000	0.000	0.000	43000.000	1600.000	50.000	1.000	1.000
D1020-FLMS-NR4-A21-GMale-I600000	1.000	0.000	0.000	0.000	600000.000	3000.000	200.000	1.000	1.000
D1020-FLSM-NR4-A22-GFemale-I20000	1.000	0.000	0.000	0.000	20000.000	2000.000	2000.000	1.000	1.000
D1024-FLSM-NR4-A18-GMale-I150000	1.000	0.000	0.000	0.000	150000.000	200.000	20.000	1.000	1.000
D1024-FSLM-NR4-A28-GFemale-I56000	1.000	0.000	0.000	0.000	56000.000	2000.000	300.000	1.000	1.000
D1025-FLMS-NR4-A34-GMale-I145000	1.000	0.000	0.000	0.000	145000.000	400.000	350.000	1.000	1.000
D1025-FLMS-NR4-A35-GMale-I149999	1.000	0.000	0.000	0.000	149999.000	5000.000	2000.000	1.000	1.000
D1025-FLSM-NR4-A45-GMale-I145000	1.000	0.000	0.000	0.000	145000.000	50000.000	60000.000	1.000	1.000
D1025-FMSL-NR4-A34-GMale-I135000	1.000	0.000	0.000	0.000	135000.000	20000.000	5000.000	1.000	1.000
D1025-FSML-NR4-A35-GMale-I100000	1.000	0.000	0.000	0.000	100000.000	30000.000	20000.000	1.000	1.000
D1025-FSML-NR4-A37-GMale-I11000	1.000	0.000	0.000	1.000	11000.000	770.000	130.000	1.000	0.000
D1110-FLMS-NR4-A35-GNonbinary-I190000 D1110-FLSM-NR4-A21-GFemale-I125000	1.000	0.000	0.000	0.000	190000.000 125000.000	7000.000 2000.000	2000.000 250.000	1.000 1.000	1.000
D1110-FLSM-NR4-A21-GFemale-I125000 D1110-FSLM-NR4-A61-GFemale-I250000	1.000	0.000	0.000	0.000	250000.000	12000.000	500.000	1.000	1.000
D1110-FSML-NR4-A23-GTransgender female-I7000	1.000	0.000	0.000	0.000	7000.000	1000.000	200.000	1.000	0.000
D1110-FSML-NR4-A23-G Fransgender female-17000 D1111-FLMS-NR4-A19-GPrefer not to sayI1320	1.000	0.000	0.000	0.000	1320.000	1319.000	0.000	1.000	1.000
D1111-FLSM-NR13-A44-GMale-I	1.000	0.000	0.000	0.000	1320.000	1013.000	0.000	1.000	1.000
D1111-FMSL-NR4-A21-GMale-I31000	1.000	0.000	0.000	0.000	31000.000	1100.000	200.000	1.000	1.000
D1111-FMSL-NR8-A-GPrefer not to savI	1.000	0.000	0.000	0.000	2.223.000			1.000	1.000
D1111-FSML-NR4-A19-GMale-I60000	1.000	0.000	1.000	0.000	60000.000	1500.000	100.000	1.000	1.000
D1112-FLMS-NR4-A33-GFemale-I11000	1.000	0.000	1.000	0.000	11000.000	700.000	100.000	1.000	1.000
D1112-FMLS-NR4-A19-GFemale-I3724.48	1.000	0.000	0.000	0.000	3724.480	2000.000	100.000	1.000	1.000
D1112-FSLM-NR4-A20-GNonbinary-I100000	1.000	0.000	0.000	0.000	100000.000	6000.000	1000.000	0.000	1.000
D1113-FLSM-NR4-A32-GMale-I260000	1.000	0.000	0.000	0.000	260000.000	3000.000	500.000	1.000	1.000
D1113-FLSM-NR4-A62-GFemale-I50000	1.000	0.000	0.000	0.000	50000.000	1200200.000	200.000	1.000	1.000
D1113-FMLS-NR4-A34-GFemale-I250000	1.000	0.000	0.000	0.000	250000.000	10000.000	2000.000	1.000	1.000
D1113-FSML-NR4-A31-GMale-I130000	1.000	0.000	0.000	0.000	130000.000	3000.000	2000.000	1.000	1.000
D1114-FLSM-NR8-A19-GPrefer not to sayI	1.000	0.000	0.000	1.000				0.000	
D1116-FMLS-NR4-A22-GMale-I150000	1.000	0.000	0.000	0.000	150000.000	10000.000	800.000	1.000	
D1117-FMSL-NR4-A43-GMale-I45000	1.000	0.000	0.000	0.000	45000.000	2100.000	400.000	1.000	
D1117-FSLM-NR4-A22-GFemale-I300000	1.000	0.000	0.000	0.000	300000.000	1200.000	300.000	1.000	
D1117-FSLM-NR8-A30-GFemale-I	1.000	0.000	0.000	0.000				0.000	
D1117-FSML-NR12-A-G-I	1.000	0.000	0.000	0.000				0.000	
D1117-FSML-NR4-A45-GMale-I80000	1.000	0.000	0.000	0.000	80000.000	3500.000	750.000	1.000	
D112-FSLM-NR4-A21-GMale-I300000	1.000	0.000	0.000	0.000	300000.000	600.000	300.000	1.000	1.000
D115-FMSL-NR4-A28-GFemale-I135000	1.000	0.000	0.000	0.000	135000.000	3000.000	1500.000	1.000	1.000
D116-FMLS-NR4-A25-GMale-I210000	1.000	0.000	0.000	0.000	210000.000	5000.000	2000.000	1.000	1.000
D118-FSLM-NR4-A7-GMale-I7	1.000	1.000	0.000	0.000	7.000	7.000	7.000	0.000	1.000
D119-FMLS-NR4-A18-GMale-I12000	1.000	0.000	0.000	0.000	12000.000	3500.000	50.000	1.000	1.000

- [1] (perLifeTurtleS + perLifeTurtleM + perLifeTurtleL) / 3
- [2] includes PreferNotToSay, TransF, TransM, and NonBinary
- [3] includes PreferNotToSay, Indian, and NativeAmerican/AlaskaNative
- [4] Contains PreferNotToSay, Complete Associate Degree, and Incomplete Degree