Übungsblatt 10 zur Homologischen Algebra I

Aufgabe 1. Ein konkretes Modell für endlich-dimensionale Vektorräume Sei k ein Körper. Sei \mathcal{C} die Kategorie mit

$$\operatorname{Ob} \mathcal{C} := \mathbb{N},$$

$$\operatorname{Hom}_{\mathcal{C}}(n, m) := k^{m \times n},$$

wobei die Morphismenverkettung durch die Matrixmultiplikation gegeben ist.

- a) Zeige, dass die Kategorie \mathcal{C} (auf unkanonische Art und Weise) zur Kategorie der endlich-dimensionalen k-Vektorräume äquivalent ist.
 - Tipp: Wähle für jeden endlich-dim. Vektorraum V einen Iso $\eta_V: k^{\dim V} \to V$.
- b) Zeige, dass \mathcal{C}^{op} auf kanonische Art und Weise äquivalent zu \mathcal{C} ist. (Das ist etwas Besonderes!)
- c) Zeige, dass die Kategorie der endlich-dimensionalen k-Vektorräume auf kanonische Art und Weise zu ihrer dualen Kategorie äquivalent ist.

Aufgabe 2. Kategorielle Eigenschaften

Es gibt folgendes Motto: Sei φ eine mathematische Aussage über Kategorien, die sich nur unter Verwendung der Konzepte *Objekt*, *Morphismus*, *Verkettung von Morphismen* und *Gleichheit von Morphismen* formulieren lässt. Sind dann \mathcal{C} und \mathcal{D} zueinander äquivalente Kategorien, so gilt φ genau dann in \mathcal{C} , wenn φ in \mathcal{D} gilt. Beispiele für Aussagen dieser Art sind etwa:

- Die Kategorie besitzt ein initiales Objekt (das ist ein Objekt 0, sodass es zu jedem Objekt X genau einen Morphismus $0 \to X$ gibt).
- Je zwei parallele Morphismen sind gleich.
- Je zwei Endomorphismen eines Objekts vertauschen miteinander.
- Jedes initiale Objekt ist auch terminal.

Beispiele für Aussagen, die über die Reichweite des Mottos hinausgehen und also nicht invariant unter Äquivalenz von Kategorien sind, sind:

- Die Kategorie besitzt genau ein Objekt.
- Die Kategorie besitzt genau ein initiales Objekt.
- Sind zwei Objekte zueinander isomorph, so sind sie schon gleich.
- Je zwei Morphismen (egal zwischen welchen Objekten) sind gleich.
- a) Mache dir klar, wieso das Motto gilt.
- b) Anna und ihre Frau Emma haben die Vermutung, dass die folgenden Kategorien paarweise nicht zueinander äquivalent sind. Jemand ruft ihnen zu: *Mit Teilaufgabe a) ist der Nachweis einfach!*, nickt und fliegt davon. Kannst du ihnen helfen?

Set
$$\operatorname{Set}^{\operatorname{op}} \operatorname{Vect}(\mathbb{R})$$
 Ring Top Man $\operatorname{Sh}(\mathbb{R}^7)$ $B\mathbb{Z}$ Hask

Aufgabe 3. Volltreue Funktoren

- a) Sei $f: P \to Q$ eine monotone Abbildung zwischen Quasiordnungen. Wann ist $Bf: BP \to BQ$ treu? Wann voll? Wann wesentlich surjektiv?
- b) Sei $F: \mathcal{C} \to \mathcal{D}$ ein volltreuer Funktor. Zeige, dass F eine Äquivalenz zwischen \mathcal{C} und einer gewissen vollen Unterkategorie von \mathcal{D} (welcher?) induziert.
- c) Sei $F: \mathcal{C} \to \mathcal{D}$ ein volltreuer und wesentlich surjektiver Funktor. Wenn wir ein genügend starkes Auswahlprinzip zur Verfügung haben, können wir zu jedem Objekt $Y \in \mathcal{D}$ ein Objekt $X_Y \in \mathcal{C}$ und einen Iso $g_Y: F(X_Y) \to Y$ wählen.

Erkläre, wie die Zuordnung $Y \mapsto X_Y$ einen Funktor definiert. Weise die Funktoraxiome explizit nach. Konstruiere einen natürlichen Isomorphismus $G \circ F \to \mathrm{Id}_{\mathcal{C}}$.

Aufgabe 4. Quotientenkategorien

Sei \mathcal{C} eine Kategorie. Seien für je zwei Objekte $X,Y\in\mathcal{C}$ eine Äquivalenzrelation $\sim_{X,Y}$ auf $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ gegeben.

- a) Konstruiere eine Kategorie \mathcal{C}/\sim zusammen mit einem Funktor $Q:\mathcal{C}\to\mathcal{C}/\sim$ mit folgender universeller Eigenschaft:
 - Wenn $f \sim_{X,Y} \tilde{f}$ in C, dann $Q(f) = Q(\tilde{f})$ in C/\sim .
 - Ist $F: \mathcal{C} \to \mathcal{D}$ ein Funktor, der wie Q äquivalente Morphismen auf gleiche schickt, so gibt es genau einen Funktor $G: \mathcal{C}/\sim \to \mathcal{D}$ mit $F=G\circ Q$.

Tipp: Nimm zunächst an, dass für alle passenden Morphismen f, a, b aus $f \sim_{X,Y} \tilde{f}$ schon $afb \sim_{X'Y'} a\tilde{f}b$ folgt.

b) Was ist an Teilaufgabe a) inhaltlich schlecht formuliert?

Aufgabe 5. Morita-Äquivalenz von Ringen

Ein Objekt X einer Kategorie \mathcal{C} heißt genau dann Erzeuger, wenn der Funktor $\operatorname{Hom}_{\mathcal{C}}(X,\underline{\hspace{1em}}):$ $\mathcal{C} \to \operatorname{Set}$ treu ist. Ringe A und B heißen genau dann zueinander Morita-äquivalent, wenn ihre Kategorien von (Rechts-)moduln äquivalent sind.

- a) Welche übersichtliche Menge ist ein Erzeuger von Set?
- b) Welcher Vektorraum ist Erzeuger der Kategorie der k-Vektorräume?
- c) Zeige, dass Morita-äquivalente Ringe isomorphes Zentrum haben.
- d) Zeige, dass isomorphe Ringe Morita-äquivalent sind.
- e) Seien A und B (nicht notwendigerweise kommutative) Ringe mit Eins. Sei P ein Rechts-A-Modul. Sei $\alpha: B \to \operatorname{End}_A(P)$ ein Ringisomorphismus.
 - Sei M ein Rechts-A-Modul. Wie wird $\operatorname{Hom}_A(P,M)$ zu einem Rechts-B-Modul? Sei N ein Rechts-B-Modul. Wie wird $\operatorname{Hom}_B(P^\vee,N)$ zu einem Rechts-A-Modul? Dabei ist $P^\vee := \operatorname{Hom}_A(P,A)$.
- f) Zeige, dass Ringe A, B genau dann zueinander Morita-äquivalent sind, wenn es einen endlich erzeugten projektiven Erzeuger P von Mod-A und einen Ringisomorphismus $B \cong \operatorname{End}_A(P)$ gibt.
 - Tipp: Weise für die schwere Richtung nach, dass die Zuordnung $M \mapsto \operatorname{Hom}_A(P,X)$ eine Äquivalenz $\operatorname{Mod-}A \to \operatorname{Mod-}B$ definiert. Ein $A\operatorname{-Modul}P$ heißt genau dann projektiv, wenn für jede surjektive lineare Abbildung $f:V\to W$ und jede lineare Abbildung $g:P\to W$ eine lineare Abbildung $\bar g:P\to V$ mit $g=f\circ \bar g$ existiert.