Day 15 | KNN Imputer

Import Library

```
In [1]: import numpy as np
        import pandas as pd
        from sklearn.model_selection import train_test_split
        from sklearn.impute import KNNImputer,SimpleImputer
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import accuracy_score
```

Import Dataset

```
In [2]: df = pd.read_csv('train.csv')[['Age', 'Pclass', 'Fare', 'Survived']]
In [3]: | df.head()
Out[3]:
```

	Age	Pclass	Fare	Survived
0	22.0	3	7.2500	0
1	38.0	1	71.2833	1
2	26.0	3	7.9250	1
3	35.0	1	53.1000	1
4	35.0	3	8.0500	0

Check Missing Value

```
In [4]: df.isnull().mean() * 100
Out[4]: Age
                    19.86532
        Pclass
                    0.00000
        Fare
                     0.00000
        Survived
                     0.00000
        dtype: float64
```

Define X & Y

```
In [5]: | X = df.drop(columns=['Survived'])
        y = df['Survived']
```

Train Test Split

```
In [6]: X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=2)
```

In [7]: X_train

Out[7]:

	Age	Pclass	Fare
30	40.0	1	27.7208
10	4.0	3	16.7000
873	47.0	3	9.0000
182	9.0	3	31.3875
876	20.0	3	9.8458
534	30.0	3	8.6625
584	NaN	3	8.7125
493	71.0	1	49.5042
527	NaN	1	221.7792
168	NaN	1	25.9250

712 rows × 3 columns

Apply KNN Imputer

```
In [19]: knn = KNNImputer(n_neighbors=10,weights='distance')
X_train_trf = knn.fit_transform(X_train)
X_test_trf = knn.transform(X_test)
```

Convert in Data Frame

In [16]: pd.DataFrame(X_train_trf,columns=X_train.columns)

Out[16]:

	Age	Pclass	Fare
0	40.000000	1.0	27.7208
1	4.000000	3.0	16.7000
2	47.000000	3.0	9.0000
3	9.000000	3.0	31.3875
4	20.000000	3.0	9.8458
707	30.000000	3.0	8.6625
708	26.151292	3.0	8.7125
709	71.000000	1.0	49.5042
710	32.666667	1.0	221.7792
711	49.762895	1.0	25.9250

712 rows × 3 columns

In [17]: pd.DataFrame(X_train_trf,columns=X_train.columns).sample(10)

Out[17]:

	Age	Pclass	Fare
607	63.0	3.0	9.5875
394	52.0	1.0	30.5000
537	16.0	2.0	10.5000
694	22.0	3.0	7.8958
373	19.0	2.0	36.7500
364	19.0	2.0	13.0000
359	21.0	3.0	7.7500
583	16.0	3.0	8.0500
460	33.0	3.0	15.8500
160	22.0	3.0	9.3500

Apply Logistic Regression

```
In [20]: lr = LogisticRegression()
lr.fit(X_train_trf,y_train)
y_pred = lr.predict(X_test_trf)
accuracy_score(y_test,y_pred)
```

Out[20]: 0.7039106145251397

```
In [ ]:
```