# PAPER ANALYSIS



Presented by Yannis He

-

Paper: Deep Visual Domain Adaptation: A Survey

Authors: Mei Wang, Weihong Deng | Beijing University of Posts and Telecommunications

https://arxiv.org/abs/1802.03601

## **ABSTRACT**

#### Main Ideas:

- Domain Adaptation (DA) is a subtopic of Transfer Learning (TL)
- Introducing deep domain adaptation methods for computer vision applications
  - Taxonomy of Different deep domain adaptation scenarios
  - O Deep domain adaptation approaches
  - O Computer vision applications
  - O Potential deficiencies of current methods and future directions

### INTRO: MOTIVE AND BACKGROUND

- Motive: Getting data is too expensive
- Machine learning → shallow DA to solve domain shift between the source and target domain
  - Instance-based DA
    - Reduces discrepancy by reweight the source samples and train on the weighted source samples
  - Feature-based DA
    - Learning a common shared space, which the distributions of the two datasets are matched
  - o Shallow DA SOTA:
    - [G. Csurka. Domain adaptation for visual applications: A comprehensive survey]
- Neural-network based Deep Learning → Deep DA
  - O Existing architectures:
    - Convolutional Neural Networks (CNNs)
    - Deep Belief Networks (DBNs)
    - Stacked Autoencoders (SAEs)
  - o Pros:
    - Learn more transferable representations
  - O Cons:
    - Domain shift still affects their performance
    - Deep features transfer from general to specific
    - Transferability of the representations sharply decreases in higher layers

## INTRO: MOTIVE AND BACKGROUND CONT'

- 3 Deep DA subsetting based on training loss:
  - Classification loss
  - Discrepancy loss
  - Adversarial loss
- Transfer Learning:
  - O Three subsettings (only for homogeneous features spaces:
    - Introductive TL
      - Transductive TL
      - Unsupervised TL
  - Two TL categories:
    - Feature-representation-level knowledge transfer
    - Classifier-level knowledge transfer
- Coming UP:
- Taxonomy of different Deep DA based on properties of data that define how two domains are diverged (Section II)
  - Introduce 3 subsetting for deep DA and summarize the uses in different DA scenes (Section III)
  - o Introduce One-step DA methods (Section IV): Assume source and target domains are directly related
  - Introduce Multi-step DA methods (Section V)
    - Handcrafted
    - Feature-based
    - Representation-based
  - Survey of computer vision applications (Section VI)

### **SECTION II: OVERVIEW**

#### Notations:

- Feature space, X
- Marginal probability distribution P(X),  $X = (x_1, x_2, ..., x_n)$
- o Domain,  $D = \{X, P(X)\}$
- O Task, T, consists of a feature space, Y
- Objective predictive function f(), which can be viewed as P(Y|X)
- o Labeled data:  $\{x_i, y_i\}, x_i \in X, y_i \in Y$ ,
  - There are source labeled data
  - There are target labeled data
  - There are unlabeled data
- O Source domain:  $D^s = X^s + P(X)^s$
- O Target domain:  $D^t = X^t + P(X)^t$
- o  $D^t = D^{tl} \cup D^{tu}$ , where  $D^{tl}$  is partially labeled part,  $D^{tu}$  is unlabeled part
- O Attribute representation for class c,  $\alpha^c = (\alpha^c_{l'} \alpha^c_{2'}, ..., \alpha^c_{m})$ 
  - A fixed-length binary values with m attributes in all the classes

## **SECTION II: OVERVIEW CONT'**

- Traditional Machine Learning:  $D^s = D^t$  and  $T^s = T^t$
- Different Setting of DA:
  - Domain Divergence:  $D^s \neq D^t$  (distribution shift or feature space difference
  - Task divergence:  $T^s \neq T^t$  (conditional distribution shift or label space difference)
  - Or both
- 3 main groups of TL:
  - Inductive:  $D^s \neq D^t$  and  $T^s = T^t$
  - Transductive
  - Unsupervised TL

but not sufficient for tasks Labeled data are available in Supervised target domain Labeled+unlabeled data are Semi-Supervised available in target domain No labeled data in target Unsupervised domain Labeled data are available in

Small amount of labeled data available



### **SECTION II: OVERVIEW CONT'**

- If source and target domains are directly related
  - One-step DA
- Else: Multi-step DA
  - O Use a series of intermediate domains to connect two seemingly unrelated domains



Fig. 3. Different learning processes between (a) traditional machine learning, (b) one-step domain adaptation and (c) multi-step domain adaptation [83].

## SECTION III: APPROACHES OF DEEP DA BACKGROUND & ONE-STEP

- Background
  - Deep DA: Use Shallow DA method on deep features
    - Deep networks only extract vectorial features and not helpful for transferring knowledge directly
  - O Intuitive idea: embed DA into the process of learning representation and to learn a deep feature representation that is both semantically meaningful and domain invariant
  - o In this paper, we focus on "how to utilize deep networks to learn "good" feature representations with extra training criteria
- One-step DA

| One-step DA<br>Approaches | Brief Description                                                                                  | Subsettings                                                                                                                                                                                                                                                  |  |
|---------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Discrepancy-based         | fine-tuning the deep network with labeled or<br>unlabeled target data to diminish the domain shift | class criterion [118], [86], [79], [98] [53], [45], [75], [139], [130], [29], [118], [28]  statistic criterion [74], [130], [73] [75], [120], [32], [109], [87], [144]  architecture criterion [69], [54], [68], [95], [128], [89]  geometric criterion [16] |  |
| Adversarial-based         | using domain discriminators to encourage domain confusion through an adversarial objective         | generative models [70], [4], [57]<br>non-generative models [119], [118], [26], [25], [117]<br>[85]                                                                                                                                                           |  |
| Reconstruction-<br>based  | using the data reconstruction as an auxiliary task to ensure feature invariance                    | encoder-decoder reconstruction [5], [33], [31], [144] adversarial reconstruction [131], [143], [59]                                                                                                                                                          |  |

## SECTION III: APPROACHES OF DEEP DA ONE-STEP

- 4 major techniques for performing fine-tuning for discrepancy-based deep DA, which assumes fine-tuning deep network with target data can diminish the shift between two domains
  - O Class Criterion: use class label information
  - O Statistic Criterion: align statistical distribution
  - O Architecture Criterion: improve abilities of learning more transferable features by adjusting network architectures
  - O Geometric Criterion: Bridges source and target domains based on their geometrical properties
    - This assumes relationship of geometric structures can reduce domain shift
- 2 categories for adversarial-based deep DA
  - o Generative models: based on Generative Adversarial Networks (GANs)
  - O Non-generative Models: feature extractor learns a discriminative representation using labels in source domain and maps target to the same space through domain-confusion loss to results in domain-invariant representations
- 2 categories for Reconstruction-based DA approach, which assumes data reconstruction of samples can be helpful
  - \* The reconstructor can ensure specificity of intra-domain representations and indistinguishability of inter-domain representations
  - Encoder-Decoder Reconstruction: using SAEs for data reconstruction
  - Adversarial Reconstruction: reconstruction error is measured by similarity between original and reconstructed images by a cyclic mapping via GAN discriminator

## SECTION III: APPROACHES OF DEEP DA - MULTI-STEP

- First determine the intermediate result is more related than direct connection
- The sum of all intermediate transferring has lower information loss
- Key of multi-step DA: how to select and utilize intermediate domain
- 3 categories:
  - O Hand-crafted: based on users' experience
  - Instance-based: select certain parts from auxiliary datasets
  - O Representation-based: freezing previously trained network and use their intermediate representation as input

## SECTION IV: ONE-STEP DA [BACKGROUND & HOMOGENEOUS DA(DISCREPANCY-BASED)]

- Background
  - Most works focus on unsupervised learning as supervised DA has its limitation:
    - When only few labeled data in the target domain are available, training tends overfit to source distribution
  - O Discrepancy-based has many research works
  - O Adversarial-based and reconstruction-based are relatively new research topic

#### Homogeneous DA:

- Discrepancy-based: has limitation due to fragile co-adaptation and representation
  - O Class Criterion (most basic training loss in deep DA):
    - Mostly represented with negative log likelihood with softmax, aka, softmax loss.
      - Sometimes also use semantic alignment loss or separation loss
    - Using soft label rather than hard labels can preserve the relationships between classes across domain

|                      |                        | Supervised DA | Unsupervised DA |
|----------------------|------------------------|---------------|-----------------|
|                      | Class Criterion        |               |                 |
| Discrepancy-based    | Statistic Criterion    |               |                 |
| Discrepancy-based    | Architecture Criterion |               |                 |
|                      | Geometric Criterion    |               |                 |
| Adversarial-based    | Generative Model       |               |                 |
| Auversariai-baseu    | Non-Generative Model   |               | V               |
| Reconstruction-based | Encoder-Decoder Model  |               | <b>√</b>        |
| Reconstruction-based | Adversarial Model      |               | V               |

#### What is soft label?

ANS: label with value (prob, likelihood, etc.) attached to it.

### Hard label?

The assigned class is binary pseudo label?

Model predicted labels for unlabeled data

## SECTION IV: ONE-STEP DA [HOMOGENEOUS DA(DISCREPANCY-BASED)]

#### Homogeneous DA cont':

- Discrepancy-base (cont'):
  - O Statistic Criterion:
    - An effective metric for comparing dataset distribution: Maximum Mean Discrepancy (MMD)
      - By a kernel two-sample test
    - Residual Transfer Network (RTNs) adds a gated residual layer for classifier adaptation
  - O Architecture Criterion:
    - Optimize architectures of network to minimize distribution discrepancy
  - O Geometric Criterion:
    - Mitigates the domain shift by integrating intermediate subspaces on **geodesic** path from source to target domain
    - Sampling subspaces along the geodesic to form intermediate subspaces to help to find the correlations between domains
    - Data on source and target domain are projected to obtain alignment with intermediate subspace distribution

## SECTION IV: ONE-STEP DA [HOMOGENEOUS DA (ADVERSARIAL-BASED)]

#### Homogeneous DA cont':

- Adversarial-based approaches:
  - Recently success by GAN: estimate generative models via adversarial process
    - Generative model, G, that extracts data distributions
    - Discriminative model, D, that distinguishes where samples is from G or training data
  - Pros:
    - Ensure network cannot distinguish between source and target domain
  - Two categories:
    - Generative, non-generative
  - Generative Models
    - Utilized synthetic target data with ground-truth annotations
    - Able to learn transformation in an unsupervised manner based on GAN
    - CoGAN: generate synthetic target data that are paired with synthetic source data
      - Achieve a domain-invariant feature space without supervision
      - Adapt input noise vector to paired images from two distributions and share the labels, i.e. can be used
        to train the target model
  - O Non-Generative Models:
    - Domain-adversarial (DANN), gradient reversal layer (GRL), Adversarial discriminative domain adaptation (ADDA), Selective Adversarial network (SAN)

Presented by Yannis He

## SECTION IV: ONE-STEP DA [HOMOGENEOUS DA (RECONSTRUCTION-BASED & HYBRID)]

• Reconstruction-based approaches:

Homogeneous DA cont':

- Data reconstruction is an auxiliary task that focuses on creating a shared representation between domains and keep the individual characteristics of each domain
- Encoder-Decoder Reconstruction:
  - Encode input to hidden representation, then decodes them back to reconstruct vision
    - Learn domain-invariant by shared encoder and maintain domain-special representation by a reconstruction loss in source and target domain
  - Stacked denoising autoencoder (SDA): extract high-level representation
  - Marginalized SDA (mSDA): can be computed in closed-form and do not required SGD
  - Deep reconstruction classification network (DRCN)- CNN architecture with two pipelines with shared encoder:
    - First pipeline: convolutional network, supervised classification with source labels
    - Second pipeline: Deconvolutional network, optimize for unsupervised reconstructions with target data
  - Transfer Learning with Deep Autoencoder (TLDA): two encoder layers. Minimizing distance in domain distributions
- Adversarial Reconstruction:
  - Cycle GAN [Zhu et al.]: translate characteristics of one image domain into the other in absence of any paired training examples.
    - Use 2 generators, rather than translator, and 2 discriminators
- Hybrid approaches:
  - Method being used Simultaneously

Presented by Yannis He

### **SECTION IV: ONE-STEP DA**

### [HETEROGENEOUS DA (BACKGROUND & DISCREPANCY-BASED)]

#### Heterogenous DA cont':

- Background:
  - Feature spaces of source and target are not the same
  - O Dimensions of features spaces may be different
  - O Divided into 2 scenarios:
    - Both contain images, divergence mainly caused by different sensory devices or style of images
    - lacksquare Different types of media in source and target (text ightarrow image, etc.)
  - O 2 categories for shallow DA:
    - Symmetric: learn feature transformations to project source and target features onto common subspace
    - Asymmetric transformation: transform one of the source and target features to align with other
  - O 3 categories for deep DA:
    - Discrepancy-based: share first n layers between source and target domains
      - In scenario l, we can still use class or statistic criterion by resizing images into same dimension
      - In scenario 2, where features cannot be resizing into same dimension, we need extra process, such as Transfer Neural Trees (TNTs)
    - Adversarial-based: can be used on Heterogenous
    - Reconstruction based: can be used on Heterogenous

### **SECTION V: MULTI-STEP DA**

- Background:
  - Intermediate domains and strategy selections are problem specific
- Hand-crafted Approach:
  - Intermediate domain selected by experience
  - When many intermediate domains are required, automatic selection criterion should be considered
- Instance-based Approach:
  - O Distance domain transfer learning (DDTL)
    - Gradually select unlabeled data from intermediate domains by minimizing reconstruction errors on selected instance
  - O DLID (Geometric Criterion): construct intermediate domains with subset of source and target domains
- Representation-based Approach:
  - Freeze previously trained network and use their intermediate representations as input to new network
  - Progressive Network: able to accumulate and transfer knowledge to new domains over sequence of experiences
    - New neural network for each domain



Fig. 16. The progressive network architecture. [96]

## SECTION VI: DA APPLICATIONS & VII: CONCLUSION

#### • Application Areas:

- Image classifications
- Object recognitions
- Face recognitions
- Object detection
- Style translations
- Semantic Segmentation
  - Fully convolutional network (FCNs) for dense prediction is good for evaluating semantic segmentation
    - Performance degraded under domain shift
- Image to image translation
- Person Re-identification
- Image Captioning
- o Etc.
- Issues remaining in the field:
  - Most algorithms focus on homogeneous deep DA
  - Limited papers on adaptation beyond classification and recognition
  - Current approach commonly assume shared label space across the source and target domains
    - May be from different set of categories in reality