Calcolatori Elettronici Esercitazione 5

M. Sonza Reorda – M. Monetti

M. Rebaudengo – R. Ferrero

L. Sterpone – E. Vacca

Politecnico di Torino Dipartimento di Automatica e Informatica

Esercitazione 5 - Obiettivi

- Stack
- Algoritmi

Stack – Esercizio esempio

```
.data
.text
main:
         li
                   s0, 0xF0
         li
                   s1, 0xF1
          li
                   s2, 0xF2
          addi
                   sp, sp, -12
                   s0,0(sp)
          SW
                   s1,4(sp)
          \mathsf{SW}
                   s2,8(sp)
          \mathsf{SW}
          lw
                   s0,0(sp)
                   s1,4(sp)
          lw
                   s2,8(sp)
          lw
          addi
                   sp, sp, 12
         li a7,10
         ecall
```

Stack

Name	Alias	Value
x0	zero	0×00000000
x1	ra	0×00000000
x2	sp	0x7ffffff0
x3	gp	0×10000000
x4	tp	0×00000000
x5	t0	0×00000000

Console Memory					
Address	Word	Byte 0	Byte 1	Byte 2	Byte 3
0x7ffffff8	Х	Х	Х	Х	Х
0x7ffffff4	Х	Х	Х	Х	Х
0x7ffffff0	Х	Х	Х	Х	Х
0x7fffffec	Х	Х	Х	Х	Х
0x7fffffe8	0×00000000	0×00	0×00	0×00	0×00
0x7fffffe4	0x000000f0	0xf0	0×00	0×00	0×00
0x7fffffe0	Х	Х	Х	Х	Х
0x7fffffdc	Х	X	Х	Х	X

Stack

```
      sub
      sp, sp, 12
      # SP= 7FFFFF0

      sw
      s0, 0(sp)
      # SP= 7FFFFE4
      << S0</td>

      sw
      s1,4(sp)
      # SP= 7FFFFE8
      << S1</td>

      sw
      s2,8(sp)
      # SP= 7FFFFEC
      << S2</td>
```

Address	Word	Byte 0	Byte 1	Byte 2	Byte 3
0x7ffffff4	Х	Х	Х	Х	Х
0x7ffffff0	Х	Χ	Х	Х	Х
0x7fffffec	0x000000f2	0xf2	0×00	0×00	0×00
0x7fffffe8	0x000000f1	0xf1	0×00	0×00	0×00
0x7fffffe4	0x000000f0	0xf0	0×00	0×00	0×00
0x7fffffe0	Х	Χ	Х	Х	Х
0x7ffffdc	Х	Х	Х	Х	Х
0×7fffffd8	Х	Х	Х	Х	Х

- La system call 1 scrive in output un numero intero con segno, compreso fra -2³¹ e 2³¹ - 1.
- Volendo stampare un intero unsigned su 32 bit, non è possibile utilizzare tale system call
 - Che valore è visualizzato se il numero è un intero senza segno compreso fra 2^{32} e 2^{32} 1?
- Data una variabile di tipo word in memoria inizializzata a 3141592653, si realizzi un programma che ne stampi il valore in output.
- Il programma deve scrivere le singole cifre tramite la system call 11.

Implementazione

- Si utilizza un algoritmo in due passi:
 - Scomposizione del numero nelle sue cifre tramite divisioni successive per 10, salvando i resti e ripetendo l'operazione sul quoziente sino a che questo è diverso da zero
 - 2. Visualizzazione dei resti in ordine inverso a quello di generazione, utilizzando lo *stack*
- N.B.: le cifre devono essere convertite in caratteri ASCII prima della stampa.

- Si scriva un programma che verifichi se la stringa introdotta dall'utente è palindroma.
- La lettura dell'input avviene un carattere alla volta tramite la system call 63 e termina quando l'utente introduce '\n'.
- Il numero di caratteri introdotto dall'utente non è noto a priori, quindi si utilizzi lo *stack* per memorizzarli invece di allocare una quantità di memoria costante.

 Si scriva un programma in linguaggio MIPS che dica se un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

abbia o meno soluzioni reali.

- a, b e c sono interi con segno introdotti dall'utente.
- Per i salti condizionati, si utilizzino soltanto le istruzioni s1t, beqz e bnez.
- Sia lecito assumere che i calcoli non diano overflow.

- Sia data una matrice quadrata di word memorizzata per righe (numero di righe pari a DIM, con DIM dichiarato come costante).
- Si scriva un programma che sia in grado di valutare se la matrice quadrata è simmetrica o diagonale. Il programma dovrà stampare a video un valore pari a:
 - 2 se la matrice è diagonale
 - 1 se la matrice è simmetrica
 - 0 se la matrice non è simmetrica.

Esercizio 4 [cont.]

 Si ricorda che in una matrice diagonale solamente i valori della diagonale principale possono essere diversi da 0, mentre una matrice simmetrica ha la proprietà di essere la trasposta di se stessa

• Esempio di matrice diagonale:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

• Esempio di matrice simmetrica: