Page 2

In the Claims:

1. (previously presented) A dye mixture comprising at least one dye of the formula (1')

$$O_2N$$
 O_2N
 O_2N

and at least one dye of the formula (2')

- 2. (previously presented) A dye mixture according to Claim 1, wherein said dye mixture comprises up to 60% by weight of the dye of formula (1') based on the sum total weight of the dyes (1') and (2').
- 3. (currently amended) A dye mixture according to Claim 1, wherein said mixture further comprises at least one of the following dyes:

where<u>in</u>

Page 3

 R_{13} is C_1 - C_4 -alkyl, R_{14} is C_1 - C_4 -alkyl and Halogen is a halogen,

$$\begin{array}{c|c}
\hline
A & N \\
\hline
O_2N
\end{array}$$

$$\begin{array}{c|c}
SO_2-NH \\
\hline
\end{array}$$
(4)

wherein the rings A and B may be further substituted,

$$O = \begin{array}{c|c} NH - & C \\ \hline R_{15} & HO \end{array}$$

wherein

 R_{15} is C_1 - C_4 -alkyl and the rings C and D may be further substituted,

$$R_{32} \longrightarrow N \longrightarrow N_{16} \longrightarrow N_{17}$$

$$R_{33} \longrightarrow N_{17} \longrightarrow N_{17}$$

$$(6)$$

wherein

 R_{16} is unsubstituted or hydroxyl- or cyano-substituted C_1 - C_4 -alkyl, R_{17} is unsubstituted C_1 - C_4 -alkyl or C_1 - C_4 -alkyl which is substituted by the radical -O-COR₁₈, where R_{18} is C_1 - C_4 -alkyl, R_{32} is nitro, C_1 - C_4 -alkoxy or the radical -SO₂CH₃ and R_{33} is hydrogen or C_1 - C_4 -alkyl,

$$\begin{array}{c|c}
R_{19} \\
R_{20}
\end{array}
N$$

$$\begin{array}{c|c}
N \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c|c}
S \\
N \\
N
\end{array}$$

$$\begin{array}{c|c}
N \\
N
\end{array}$$

$$\begin{array}{c|c}
(7)
\end{array}$$

where in

Page 4

 R_{19} is C_1 - C_4 -alkyl, R_{20} is C_1 - C_4 -alkyl, R_{21} is C_1 - C_4 -alkyl and R_{22} is C_1 - C_4 -alkyl or the radical -NHCOR₂₃, where R_{23} is C_1 - C_4 -alkyl,

wherein R₂₄ is halogen,

wherein

 R_{25} is cyano, nitro or halogen, R_{26} is halogen, R_{27} is unsubstituted or hydroxyl-substituted C_1 - C_4 -alkyl and R_{28} is unsubstituted or hydroxyl-substituted C_1 - C_4 -alkyl and the naphthyl ring E may be further substituted,

Page 5

and/or

wherein

 R_{29} is C_1 - C_4 -alkyl or the radical NHCOR₁₇, where R_{17} is C_1 - C_4 -alkyl, R_{30} is C_1 - C_4 -alkyl or C_1 - C_4 -alkyl and R_{31} is C_1 - C_4 -alkyl or C_1 - C_4 -alkyl.

4. (cancelled)

- 5. (previously presented) A method for dyeing or printing a semisynthetic or synthetic hydrophobic fibre material comprising cellulose acetate, comprising the step of contacting a dye mixture according to Claim 1 with the semisynthetic or synthetic hydrophobic fibre material comprising cellulose acetate.
- 6. (previously presented) A method for dyeing or printing a fibrous structure comprising polyester and/or cellulose secondary acetate, comprising the step of contacting a dye mixture according to Claim 1 with the fibrous structure comprising polyester and/or cellulose secondary acetate.
- 7. (previously presented) A fibrous structure dyed or printed with a dye mixture according to Claim 1.
- 8. (previously presented) A semisynthetic or synthetic hydrophobic fibre material dyed or printed with a dye mixture according to Claim 1.