Exercise Solutions for Math 20

Factoring Polynomials and Simplifying Rational Expressions

Nile Jocson <novoseiversia@gmail.com>

November 14, 2024

1 Factor the following completely.

1.1 $16x^4 - 1$

$\Rightarrow (4x^2 - 1)(4x^2 + 1)$	Factor using difference of two squares.
$\Rightarrow (2x-1)(2x+1)(4x^2+1)$	Final answer. Factor using difference of two squares.

1.2 $8j^3 - 125k^6$

$\Rightarrow (2j - 5k^2)(4j^2 + 10jk^2 + 25k^4)$	Final answer. Factor using difference of two cubes.

1.3 $s^2 + 7s + 10$

$\Rightarrow (s+2)(s+5)$	Final answer. Factor by grouping.

1.4 $4n^2 - 12n + 9$

$\Rightarrow 4n^2 - 6n - 6n + 9$	Factor by grouping.
$\Rightarrow 2n(2n-3) - 3(2n-3)$	
$\Rightarrow (2n-3)^2$	Final answer.

1.5 $x^3 - x^2 - x + 1$

$$\Rightarrow x^2(x-1) - 1(x-1)$$
 Factor by grouping.

$$\Rightarrow (x^2 - 1)(x-1)$$

$$\Rightarrow (x-1)(x+1)(x-1)$$
 Factor using difference of two squares.

$$\Rightarrow (x-1)^2(x+1)$$
 Final answer.

1.6 $48 - 13q - q^2$

$\Rightarrow -q^2 - 13q + 48$	Rewrite in standard form.
$\Rightarrow -(q^2 + 13q - 48)$	
$\Rightarrow -(q-3)(q+16)$	Final answer. Factor by grouping.

2 Reduce the following rational expressions to lowest terms.

2.1 $\frac{a^2-b^2}{a^3-b^3}$

$\Rightarrow \frac{(a-b)(a+b)}{a^3-b^3}$	Factor using difference of two squares.
$\Rightarrow \frac{(a-b)(a+b)}{(a-b)(a^2+ab+b^2)}$	Factor using difference of two cubes.
$\Rightarrow \frac{a+b}{a^2+ab+b^2}$	Final answer.
	•

$2.2 \quad \frac{x^3 - x^2y + xy^2 - y^3}{x^6 + y^6}$

3 Perform the following operations and simplify.

3.1
$$\left(\frac{x}{x^2-1}-\frac{3}{x+1}\right) \div \frac{2x^2-x-3}{x^3-1}$$

3.2
$$\left(\frac{x}{x+y} + \frac{y}{x-y}\right) \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2}$$

$$\Rightarrow \left(\frac{x(x-y)}{(x-y)(x+y)} + \frac{y(x+y)}{(x-y)(x+y)}\right) \cdot \frac{x^2-xy}{x^4-y^4} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x(x-y)+y(x+y)}{(x-y)(x+y)} \cdot \frac{x^2-xy}{x^4-y^4} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x^2-xy+xy+y^2}{(x-y)(x+y)} \cdot \frac{x^2-xy}{x^4-y^4} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x^2-xy}{(x^2-y^2)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x^2-xy}{(x-y)(x+y)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$
Factor using difference of two squares.
$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x^2-xy}{(x-y)(x+y)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x(x-y)}{(x-y)(x+y)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)} \cdot \frac{x}{x^2+2xy+y^2}$$
Factor using difference of two squares.
$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x(x-y)}{(x-y)(x+y)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \div \frac{x}{x^2+2xy+y^2}$$
Factor using perfect square trinomial.
$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \cdot \frac{(x+y)^2}{x}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \cdot \frac{(x+y)^2}{x}$$
Final answer.

3.3
$$\frac{\frac{3}{p+q} + \frac{1}{p-2q}}{1 + \frac{p-q}{p-2q}}$$

$$\Rightarrow \frac{\frac{3(p-2q)}{(p+q)(p-2q)} + \frac{p+q}{(p+q)(p-2q)}}{1 + \frac{p-q}{p-2q}}$$

$$\Rightarrow \frac{\frac{3(p-2q)+p+q}{(p+q)(p-2q)}}{1 + \frac{p-q}{p-2q}}$$

$$\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{1 + \frac{p-q}{p-2q}}$$

$$\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{p-q}{p-2q}}$$

$$\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{p-q}{p-2q}}$$

$$\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{p-2q}{p-2q}}$$

$$\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{p-2q}{p-2q}}$$

$$\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{p-2q}{p-2q}}$$

$$\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{2p-3q}{p-2q}$$

$$\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{2p-3q}{2p-3q}$$

$$\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{p-2q}{2p-3q}$$

$$\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{p-2q}{2p-3q}$$

$$\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{p-2q}{2p-3q}$$
Final answer.