第 7 章 電 気 事 業

第1節	沿革と現状 ・・・・・・・ 99
第2節	主な取組 ・・・・・・・・100
1	営業の概要 ・・・・・・・・100
2	電気事業における安全対策・・・・100
(1)	施設の保守・点検 ・・・・・・100
(2)	異常時の対応 ・・・・・・・100
3	再生可能エネルギーで発電した電気の
	供給・・・・・・・・・・100
4	大規模更新 • • • • • • • • 100

第1節 沿革と現状

交通局では、昭和32年以降、多摩川の流水を利用した水力発電による電気事業を経営している。

この電気事業の歴史は、明治44年に当時の東京市が、 軌道事業(路面電車)と電気供給事業とを行う電気局 (交通局の前身)を創業した時に始まる。当時は、品 川、深川及び渋谷の3か所に設置した火力発電所によ り電気を供給していた。

昭和7年、小河内ダムの建設計画(東京市第二水道 拡張事業計画)が東京市会で議決されたことに併せて、 電気局では、水力発電所の建設計画を策定した。しか し、戦時下における配電統制令の施行(昭和16年)に 伴い、昭和17年4月、東京市は電気供給事業を特殊会 社である関東配電㈱(東京電力㈱の前身)に出資した。 これにより東京市営の電気供給事業は終了し、電気局 は、昭和18年7月の東京都制施行の際に交通局に改称 した。

その後、戦争の影響により小河内ダムの建設も一時 中止された。

戦後、小河内ダムの建設が再開され、昭和29年、地方公営企業法に基づき、都議会で「東京都電気事業基本計画」(多摩川の流水を利用して発電を行い、東京都の施設並びに東京都を供給区域とする一般電気事業者に電力を供給し、もつて都民の福祉増進に資する。)が議決された。この電気事業は戦前の経緯もあることから交通局が所管することになった。

また、昭和41年には、地方公営企業法の改正を受け、「東京都地方公営企業の設置等に関する条例」(多摩川の流水を利用して発電を行い、都の施設及び都の区域をその供給区域に含む一般電気事業者に電力の供給を行う。)が制定された。

交通局の水力発電所は、昭和32年12月に多摩川第一発電所、昭和38年2月には多摩川第三発電所の運転を開始した。さらに、平成12年11月からは、白丸調整池

ダムの河川維持放流等を利用した白丸発電所の運転を 開始した。これら3か所の水力発電所の最大出力の合 計は、36,500kWである。

交通局は、条例に基づき、一般電気事業者である東京電力(㈱に電気の供給を行ってきた。しかし、東日本大震災以降の電気事業を取り巻く環境の変化などを踏まえ、平成24年10月に、「一般電気事業者」の文言を「電気事業者」に改める条例改正を行い、ほかの電気事業者にも電気を供給することを可能にした(改正後の条例:多摩川の流水を利用して発電を行い、都の施設及び都の区域内に電気を供給する電気事業者に電気の供給を行う。)。

条例改正後の平成25年4月からは、公募で決定した電気事業者に発電した電気を供給している。令和3年4月からは、「東京産水力発電の環境価値」に着目したプロポーザルにより決定した小売電気事業者と3年間の供給契約を締結しており、交通局の再生可能エネルギー導入の率先行動として、都営バスの全営業所でこの電気を使用している。

また、平成29年度から令和3年度にかけて、電気事業の運営手法について、コンセッション手法の採用や、事業譲渡等の可能性も視野に入れ、外部有識者等から意見を聴取しながら検討を行った。この結果、長期的に安定した経営が見込まれる中、交通局による電気事業の運営を環境施策として評価する意見があったこと等から、引き続き、都庁の一員である交通局が自ら電気事業の運営を担うことで、環境にやさしい電力を供給するとともに、都内における再生可能エネルギーの普及・拡大に貢献していくこととした。

令和3年11月には、白丸調整池ダムに隣接する場所に再生可能エネルギーPR館を開館した。愛称は、地元奥多摩町の小学生が考案した「エコっと白丸」であり、館内では、再生可能エネルギーの意義や水力発電の仕組みなどを分かりやすく伝えるとともに、奥多摩町の観光スポット等も紹介している。

第2節 主な取組

1 営業の概要

3か所の水力発電所が一年間に発電する電力量は、 おおむね一般家庭35,000世帯分の使用量に相当してい る。直近3か年の販売電力量は、次のとおりである。

年度別販売電力量

年度	販売電力量 (MWh)
令和元年度	116, 956
令和2年度	151,019
令和3年度	116, 188

2 電気事業における安全対策

(1) 施設の保守・点検

安定した発電を行うために、定期的に発電機、ダム、 導水路などの設備の保守・点検を行っている。

また、施設・設備の修繕や改修を逐次実施している。

(2) 異常時の対応

大雨等によりダムの水位が急増した場合、ダムの ゲートから放流を行うことがある。その際、下流河川 の水量が急激に増加しないように段階的に放流水量を 増加させているほか、必要に応じてサイレンによる警 報や巡回を行うことで、河川の事故防止に努めてい る。

3 再生可能エネルギーで発電した電気の供給

水力発電は、発電する際にCO2を排出することがなく、水の循環サイクルによって再利用が可能なエネルギーである。交通局では、自然の恵みを活かした水力発電により、今後とも安定的な電気の供給に貢献していく。

4 大規模更新

発電施設・設備は、その大半が運用開始から60年程 度経過し、老朽化が進んでいることから、今後、施設・ 設備の大規模更新が必要な状況であり、水車設備や変 電設備等の更新を行うことを内容とする多摩川第一発 電所の更新計画を平成30年度に策定した。

また、令和2年度には、多摩川第三発電所の更新計画を策定した。

施設の概要

(令和4年4月1日現在)

				(日相五十五月1日90年)	
発 電	所 名	多摩川第一発電所	多摩川第三発電所	白 丸 発 電 所	
使 用 [開 始 日	昭和32年12月22日	昭和38年2月23日	平成12年11月11日	
発 電	方 式	ダム式・ダム水路式	ダム水路式	ダ ム 式	
監 視 制 御 方 式 遠隔常時監視制御		常時監視制御	遠隔常時監視制御		
流 域 面 積		263. 0 k m²	397.0k m²	397. 0 k m²	
出力(最大)		19, 000 k W	16, 400 k W	1, 100 k W	
使 用 水 量(最大)		21.50 m³∕s	28.00 m³∕s	5.30 m³∕s	
有 効 落	差 (最大)	106. 74m	70. 55 m	24. 05 m	
	名 称	小 河 内 ダ ム〔水道局〕	白丸調整池ダ	ム〔交通局〕	
ダム	高 さ 149.0m		30. 3m		
グ ム 長 さ		353. 0m	61.0m		
	体 積	$1,675,680\mathrm{m}^3$	14, 1	61 m³	
	名 称	小 河 内 貯 水 池〔水道局〕	白丸調整	池〔交通局〕	
港 水 面 積		4. 25 k m²	0. 09 k m²		
又は			892, 900 m³		
調 整 池	有効貯水量 (発電)	153, 400, 000 m ³	300, 000 m³		
利用水深		56. 5 m	3. 7m		
導水路〔圧力トンネル〕		取水口② 999.584m	延長 5,085m	58. 118m	
水	車	立軸フランシス型 出力 10,000kW 2台	立軸フランシス型 出力 8,500kW 2台	横軸フランシス型 出力 1,114kW (1台) 出力 160kW (1台) 大小各1台 (計2台)	
発	電機	立軸三相同期 容量 10,000 k V A 電圧 11,000 V 2 台	立軸三相同期 容量 9,500 k V A 電圧 11,000 V 2 台	横軸三相同期 容量 1,100 k V A 電圧 6,600 V 1台	

	支	持 物	四角鉄塔 17基		
送	電	線	電	線	鋼心アルミより線 120m㎡ 亘長 6.08 k m
[方	式	三相3線 66,000V(1回線)		

~水力発電の仕組み~

