NASA TECHNICAL NOTE

NASA TN D-5711

01

LOAN COPY: RETURN 1
AFWL (WLOL)
KIRTLAND AFB, N ME

ECH LIBRARY KAFB, NM

SPATIAL BIAS CORRECTION FOR SPORADIC METEORS PHOTOGRAPHED IN NEW MEXICO

by Lynn U. Albers and George Diedrich Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. - SEPTEMBER 1970

	•	ì			07353
1.	Report No. NASA TN D-5711	2. Government Ac	cession No.	3. Recipient's Catal	
4.	Title and Subtitle	'	Ţ.	5. Report Date	<u>.</u>
	SPATIAL BIAS CORRECTI	ON FOR SPOR	ADIC	September 19	
	METEORS PHOTOGRAPHI		i ·	6. Performing Organi	ization Code
7.	Author(s) Lynn U. Albers and George	e Diedrich		8. Performing Organi E-5096	ization Report No.
9.	Performing Organization Name and A Lewis Research Center	Address	[1	0. Work Unit No. 125-23	
	National Aeronautics and S	pace Administi	ration	1. Contract or Grant	No.
	Cleveland, Ohio 44135		1	3. Type of Report ar	nd Period Covered
2.	Sponsoring Agency Name and Address National Aeronautics and S		ration	Technical No	te
	Washington, D.C. 20546		Ļ	4. Sponsoring Agenc	:y Code
5.	Supplementary Notes		1		
	and observing intervals. Find the bias was computed. It is a same relative velocity vect	measure of th	e likelihood of en	countering a me	teor with the
7.	Key Words (Suggested by Author	(s))	18. Distribution State	ement	
:	Meteor Correction Meteoroid Velocity Space Hazard		Unclassified	- unlimited	
	Bias Security Classif. (of this report)	20. Security Class	sif. (of this page)	21. No. of Pages	22. Price*
	Unclassified	Uncla	ssified	40	\$3.00

SPATIAL BIAS CORRECTION FOR SPORADIC METEORS PHOTOGRAPHED IN NEW MEXICO by Lynn U. Albers and George Diedrich

Lewis Research Center

SUMMARY

The McCrosky and Posen data for the sporadic Super-Schmidt meteors photographed in New Mexico were studied for spatial bias. This bias is a function of the meteor direction and velocity relative to Earth, the location of cameras in New Mexico, and the observing intervals.

For each meteor, a number A useful in correcting for spatial bias was computed. It is the time-average over all observing intervals of a measure L of the momentary likelihood of encounter of a meteor with the same relative velocity vector, where L is a ratio of possible source area for such meteors to the actual impact area under scrutiny. The data for each meteor should be weighted with the reciprocal of A to correct for spatial bias.

Such a weighting factor has been used in statistical analysis at Lewis. The values of this factor may be useful for others who might make similar or related analyses.

INTRODUCTION

McCrosky and Posen give data in reference 1 for 2048 sporadic meteors photographed simultaneously at two sites in New Mexico by Super-Schmidt cameras over a 30-month period from February 1952 to July 1954. A statistical study of the data was undertaken at Lewis for the insight it might provide regarding the hazard for space vehicles of possible collision with meteoroids. One of the several biasing effects involved in the meteor photography, which needed to be considered in the study, was that resulting from the location of the camera sites and the periods during which cameras were operated. The computation of numbers (one for each meteor) useful in correcting for this spatial bias is described in this report.

2 .

The following sketch will be useful in explaining the principles underlying the computation:

It displays the base vectors of the orbital system, a system which moves along with the Earth. The X-axis is in the direction of the forward tangent to Earth's orbit. It points toward the apex. The Y-axis is in the ecliptic plane and is the cis-solar normal to Earth's orbit. The Z-axis is the northerly normal to the ecliptic plane. The sketch further shows four quadrants in which a vector may lie. Because New Mexico is in the northern hemisphere and the cameras operated at night, most of the meteors came from quadrant 1. The number of meteors from each quadrant was as follows:

- (1) Quadrant 1 (outside, above), 1282
- (2) Quadrant 2 (inside, above), 225
- (3) Quadrant 3 (inside, below), 32
- (4) Quadrant 4 (outside, below), 509

Every vector in the orbital system is characterized by two angles, β and φ . (All symbols are defined in appendix A.) The following sketch displays these angles:

The four quadrants have the following ranges of orbital declination and longitude:

- (1) Quadrant 1: $0^{\circ} < \beta < 90^{\circ}$, $0^{\circ} < \varphi < 180^{\circ}$
- (2) Quadrant 2: $0^{\circ} < \beta < 90^{\circ}$, $180^{\circ} < \phi < 360^{\circ}$
- (3) Quadrant 3: $-90^{\circ} < \beta < 0^{\circ}$, $180^{\circ} < \varphi < 360^{\circ}$
- (4) Quadrant 4: $-90^{\circ} < \beta < 0^{\circ}$, $0^{\circ} < \varphi < 180^{\circ}$

The direction from which a meteor comes is called its true radiant. For each meteor, whatever its true radiant, we pose the question: Given the history of camera usage, what is the likelihood of photographing, during the 30-month period, a meteor with the same velocity vector relative to this moving orbital system? A study of meteor orbits, discussed in the section ANALYSIS, gives a measure of this likelihood at any instant. It is the ratio of the cross-sectional area perpendicular to the meteor path at a great distance from Earth, through which the meteor might have passed, divided by the corresponding area on the surface of the Earth at the camera sites in New Mexico within which the meteor might have arrived. This ratio will be seen to depend on the magnitude G of the meteor velocity vector and on the angle θ between the true radiant vector and the instantaneous local zenith vector.

The ratio so determined for each hour was weighted with the number of minutes of camera operation within that hour. The sum of such weighted ratios, divided by the total number of minutes of operation of the cameras, is a measure of the likelihood asked for above. A table of this likelihood, denoted by A, and called the spatial bias correction number, appears in appendix C along with orbital declination, orbital longitude, and the associated quadrant number. The table is arranged in order of the meteor serial number.

The material contained in this report is presented in the following order: an introduction to the process of computing the spatial bias correction number A; information about coordinate systems and their interrelations, and the derivation of needed meteor orbit equations; a more detailed description of the process of computing the spatial bias correction number A; samples of input data, namely sidereal data and camera usage history (appendix B); a table of results (appendix C).

PRELIMINARY DESCRIPTION OF COMPUTING PROCESS

Each of the 2048 sporadic meteors had a velocity vector $-G\vec{v}$ relative to the Earth before capture by the Earth. The unit vector \vec{v} is called the true radiant of the meteor.

Each of the 1772 observing intervals has associated with it a time t, a duration d, and a unit vector \vec{z} . Let P be the point halfway between the two cameras. Then \vec{z} is the vector pointing upward from P at time t. It is called the zenith vector of the interval. Let θ be the angle between a true radiant vector and a zenith vector.

It will be shown that the momentary likelihood of encountering a meteor with velocity

vector $-G\vec{v}$ at point P at time t is a function of θ and G. Let $L(\theta_j, k, G_j)$ denote the measure of this likelihood for a given meteor j during an observing interval k. It is a ratio of possible source area for such meteors to actual impact area under scrutiny by the cameras.

The next section discusses coordinate systems and how to change a true radiant vector from sidereal coordinates to orbital coordinates, when the time is known. For each meteor, the data includes the time of photographing t, the velocity G, and the true radiant vector in terms of its sidereal angles. We carry this fixed vector $\vec{\mathbf{v}}$, converted to orbital coordinates, with Earth through the 30-month span of time, computing for each observing interval k the likelihood measure L. The time average of L is given by

$$A_{j} = \frac{\sum_{k=1}^{1772} d_{k}L(\theta_{j,k}, G_{j})}{\sum_{k=1}^{1772} d_{k}}$$
(1)

The proposed weight that should be given to meteor $\,j\,$ to correct its spatial bias is F_j , the reciprocal of $\,A_j$; that is,

$$F_{j} = \frac{1}{A_{j}} \tag{2}$$

11 11

Use of the weighting factor F_j , however, can correct spatial bias only if the population of meteors to be studied is of adequate size and is restricted to values of \vec{v} within a suitable solid angle and values of G within a suitable range such that no observed meteors can exist with $A_i = 0$.

A study of coordinate systems is needed to show how to compute zenith and true radiant vectors in orbital coordinates. A study of hyperbolic geocentric orbits is needed to derive the formula for L as a function of θ and G. These two topics are the subject of the following section.

ANALYSIS

Four Coordinate Systems

We need to consider four coordinate systems, which will be called geographical,

local, sidereal, and orbital. In each system, the coordinates are denoted by X, Y, and Z, and unit base vectors by \vec{U} , \vec{V} , and \vec{W} . The following sketch is an aid to understanding these systems.

System 1 - geographical

System 2 - local

System 3 - sidereal (U₃ points at Sun on vernal equinox of 1950)

System 4 - orbital

System 1 (the geographical) is Earth-centered with \vec{W}_1 pointing from Earth center to the North Pole, the \vec{U}_1 vector pointing to zero longitude, and the \vec{V}_1 vector to 90° east longitude.

System 2 (the local) is centered at P, the point midway between camera sites S_1 and S_2 . Site 1 has latitude 32° 30' 15.5" N and longitude 7^h 7^m 11.9° W. Site 2, about 28.6 kilometers southeast, has latitude 32° 18' 20.0" N and longitude 7^h 6^m 26.8° W. The \vec{U}_2 vector points toward S_2 , the \vec{W}_2 vector points to the zenith, and the \vec{V}_2 vector is $\vec{W}_2 \times \vec{U}_2$.

System 3 (the sidereal) is Earth-centered with the \vec{U}_3 vector pointing at the equator at a position whose longitude is that of the vernal equinox of 1950. This longitude is simply related to the momentary hour angle of the Sun. The \vec{W}_3 vector equals \vec{W}_1 , and the \vec{V}_2 vector is $\vec{W}_3 \times \vec{U}_3$.

System 4 (the orbital) is Earth-centered with the \vec{U}_4 vector being the forward tangent to the Earth's orbit, the \vec{V}_4 vector the interior normal to \vec{U}_4 in the ecliptic plane, and the \vec{W}_4 vector equal to $\vec{U}_4 \times \vec{V}_4$.

The sidereal system includes two important angles, called the declination and the right ascension. The declination δ is the angle with the equatorial plane. The right ascension α is the angle between \vec{U}_3 and $(X_3, Y_3, 0)$. A unit vector \vec{v} then has components

The orbital system includes two important angles, denoted here by β and φ . The angle β is measured from the ecliptic plane; φ is the angle between \vec{U}_4 and $(X_4, Y_4, 0)$. A unit vector \vec{v} then has components

$$X_{4} = \cos \beta \cos \varphi$$

$$Y_{4} = -\cos \beta \sin \varphi$$

$$Z_{4} = \sin \beta$$
(4)

Later analysis will require knowledge of the relations between the local and geo-

graphical systems, as well as of relations between the sidereal and orbital systems. The procedure used is to express base unit vectors in one system in terms of the base unit vectors of the other system. With the coefficients thus obtained, any vector can be converted from one system to the other.

Let us first examine the relations between systems 1 and 2. If we use the approximation of a spherical Earth, the geographical coordinates of a unit zenith vector \vec{N}_i at a point S_i with north latitude λ and west longitude μ are given by

$$X_{i} = \cos \lambda \cos \mu$$

$$Y_{i} = -\cos \lambda \sin \mu$$

$$Z_{i} = \sin \lambda$$
(5)

If \vec{N}_1 and \vec{N}_2 are such vectors for the camera sites S_1 and S_2 , their sum is in the direction of W_2 . Dividing their sum vector by its length yields the unit vector \vec{W}_2 . The vector difference $\vec{N}_2 - \vec{N}_1$ is in the direction of \vec{U}_2 . Again dividing by the vector length yields the unit vector \vec{U}_2 . Then \vec{V}_2 is $\vec{W}_2 \times \vec{U}_2$. At this stage we may summarize by writing

$$\vec{\mathbf{U}}_{2} = \mathbf{b}_{11} \vec{\mathbf{U}}_{1} + \mathbf{b}_{12} \vec{\mathbf{V}}_{1} + \mathbf{b}_{13} \vec{\mathbf{W}}_{1}$$

$$\vec{\mathbf{V}}_{2} = \mathbf{b}_{21} \vec{\mathbf{U}}_{1} + \mathbf{b}_{22} \vec{\mathbf{V}}_{1} + \mathbf{b}_{23} \vec{\mathbf{W}}_{1}$$

$$\vec{\mathbf{W}}_{2} = \mathbf{b}_{31} \vec{\mathbf{U}}_{1} + \mathbf{b}_{32} \vec{\mathbf{V}}_{1} + \mathbf{b}_{33} \vec{\mathbf{W}}_{1}$$

$$(6)$$

where $b_{i,i}$ is a general element in the coefficient matrix B.

The matrix version of these equations is $Q_2 = BQ_1$, where Q is the column vector (U, V, W). Because each set of base vectors is right-handed and mutually perpendicular, the coefficient matrix for the conversion in the opposite direction is the transpose of B, denoted by B^* ; that is,

$$\vec{\nabla}_{1} = b_{11}\vec{\nabla}_{2} + b_{21}\vec{\nabla}_{2} + b_{31}\vec{\nabla}_{2}
\vec{\nabla}_{1} = b_{12}\vec{\nabla}_{2} + b_{22}\vec{\nabla}_{2} + b_{32}\vec{\nabla}_{2}
\vec{\nabla}_{1} = b_{13}\vec{\nabla}_{2} + b_{23}\vec{\nabla}_{2} + b_{33}\vec{\nabla}_{2}$$
(7)

In matrix language, $Q_1 = B^*Q_2$. The same two matrices, B and B*, serve to express the coordinates in either system in terms of the other. To be specific, equation

$$X_{2} = b_{11}X_{1} + b_{12}Y_{1} + b_{13}Z_{1}$$

$$Y_{2} = b_{21}X_{1} + b_{22}Y_{1} + b_{23}Z_{1}$$

$$Z_{2} = b_{31}X_{1} + b_{32}Y_{1} + b_{33}Z_{1}$$
(8)

converts coordinates from geographical to local. And equation

$$X_{1} = b_{11}X_{2} + b_{21}Y + b_{31}Z$$

$$Y_{1} = b_{12}X_{2} + b_{22}Y + b_{32}Z$$

$$Z_{1} = b_{13}X_{2} + b_{23}Y + b_{33}Z$$
(9)

converts coordinates from local to geographical. The matrix version of all four sets of equations is

$$Q_{2} = BQ_{1}$$

$$Q_{1} = B^{*}Q_{2}$$

$$E_{2} = BE_{1}$$

$$E_{1} = B^{*}E_{2}$$
(10)

Let us next examine the relations between sidereal and orbital coordinates. Sidereal data in the nautical almanac of 1952 to 1954 (ref. 2) provided Earth-to-Sun vectors $\vec{V}(t)$ at five times each month; that is, at 0^h universal time (7 hr later than mountain standard time) on the first day of the month, and weekly thereafter. Lagrangian five-point interpolation formulas yielded the sidereal coordinates of this vector at any time t. Let $\vec{V}(t_1)$ and $\vec{V}(t_2)$ be the vectors associated with times 12 hours before and 12 hours after time t. Then normalizing the vector difference $\vec{V}(t_2) - \vec{V}(t_1)$ yields the unit vector \vec{U}_4 . Normalizing the cross product of \vec{U}_4 and either $\vec{V}(t_1)$ or $\vec{V}(t_2)$ yields the unit vector \vec{W}_4 . Then \vec{V}_4 is $\vec{W}_4 \times \vec{U}_4$. If the coefficient matrix of equation

$$\vec{\nabla}_{4} = b_{11}\vec{\nabla}_{3} + b_{12}\vec{\nabla}_{3} + b_{13}\vec{W}_{3}$$

$$\vec{\nabla}_{4} = b_{21}\vec{\nabla}_{3} + b_{22}\vec{\nabla}_{3} + b_{23}\vec{W}_{3}$$

$$\vec{W}_{4} = b_{31}\vec{\nabla}_{3} + b_{32}\vec{\nabla}_{3} + b_{33}\vec{W}_{3}$$
(11)

is denoted by B, then the matrix versions of equation (11) and the other three sets of equations relating sidereal and orbital coordinates are

$$Q_{4} = BQ_{3}
Q_{3} = B^{*}Q_{4}
E_{4} = BE_{3}
E_{3} = B^{*}E_{4}$$
(12)

This completes the required analysis of coordinate systems.

Hyperbolic Orbits

A good approximation to the part of a meteor path within Earth's sphere of influence is a hyperbola with focus at Earth's center. Meteors with a relative velocity G move along one of a family of possible paths. This section presents the equations for these curves and discusses the relation between meteoroid velocity vectors and the likelihood of such meteoroids being photographed. Recall that θ is the angle between the true radiant vector of the meteoroid and the vector pointing straight up at the point midway between camera sites.

Consider all paths for meteors of a given true radiant vector and given velocity G. The following sketch shows four such paths:

One, from R_1 to P_1 , strikes the Earth perpendicularly, along what we call the axis of the tube of possible paths. One, from R_4 to P_4 , grazes the Earth along a path which lies on the surface of the tube. The other two, from R_2 to P_2 and from R_3 to P_3 , are intermediate paths. The angle θ appears here as the angle $\angle P_1CP_3$, where P_3 is thought of as the point of impact. All R points are meant to be at a distance of 145 Earth radii from C.

Meteors that have their source in an annulus between R_2 and R_3 impact on a spherical zone on the Earth between P_2 and P_3 . The ratio of the annulus area A_a to the zone area A_z is

$$L(\theta, G) = \frac{A_a}{A_z}$$
 (13)

It is a measure of the relative likelihood that a meteor of a given type will be encountered within the impact area.

If lengths are measured in terms of Earth radii, the two areas $\, A_a \,$ and $\, A_z \,$ can be seen to be

$$A_{a} = \pi \left[\left(\overline{R_{3}R_{1}} \right)^{2} - \left(\overline{R_{2}R_{1}} \right)^{2} \right]$$
 (14)

and

$$A_{z} = 2\pi(\cos\theta_{2} - \cos\theta_{3}) \tag{15}$$

In the following sketch the meteor path is arranged so that it is a central conic with the Earth's center C on the positive X-axis:

The axis of the tube is again $\operatorname{CP}_1\operatorname{R}_1$, as in the preceding sketch. The angle between the X-axis and the tube axis will differ for different source points R. The equation of the path is

$$\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1 \tag{16}$$

with x and y positive. The center of the Earth is at C with coordinates a + r, Q. The source point R is at x_2, y_2 . The impact point P is at x_1, y_1 . Because

$$a^2 + b^2 = (a + r)^2 (17)$$

b can be removed from equation (16), and the point on the incoming path at any arbitrary distance w (Earth radii) from C is found to have coordinates x, y satisfying

$$x(a + r) = a(a + w) \tag{18}$$

and

$$y^{2} = w^{2} - \frac{(aw - 2ar - r^{2})^{2}}{(a + r)^{2}}$$
 (19)

The coordinates of P and R result from using w = 1 and w = 145 in equations (18) and (19). These values, in turn, lead to the equation for θ

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} \tag{20}$$

where m_1 is the slope of the line \overline{CP} and m_2 is the slope of the line $\overline{CR_1}$. We assert the following theorem:

Theorem I: The parameter a depends on G only.

Proof will be given at the end of this section. By using equations (16) to (20), r can be varied from 0 to 1, and a table of $\cos \theta$ and $L(\theta, G)$ against r can be compiled for fixed G. Doing this for a sequence of G values results in the desired table of $L(\theta, G)$.

The zenith angle $\mathbf{Z}_{\mathbf{R}}$ is the angle between the line $\overline{\mathbf{CP}}$ and the tangent to the orbit at $\ \mathbf{P}$. It satisfies the equation

$$\tan Z_{R} = \frac{m_1 - m_3}{1 + m_1 m_3} \tag{21}$$

where the slope m_3 of the tangent line is given by

$$m_3 = \left(\frac{b}{a}\right)^2 \cdot \left(\frac{X_1}{Y_1}\right) \tag{22}$$

Proof of Theorem I: Let $V_E(s)$ be the velocity of escape from Earth at s units from C in the preceding sketch. Let V_m equal the velocity the meteor would have if it came to point \mathscr{S} , the vertex of the hyperbolic path. Then a kinetic energy balance at the vertex yields

$$0.5 \text{ mV}_{\text{m}}^2 = 0.5 \text{ mG}^2 + 0.5 \text{ mV}_{\text{E}}^2(\text{r})$$
 (23)

The balance of potential and kinetic energy gives

$$\frac{\mathrm{Km}}{\mathrm{r}} = 0.5 \,\mathrm{mV_E(r)} \tag{24}$$

at the vertex, and

$$\frac{\text{Km}}{1} = 0.5 \text{ mV}_{\text{E}}(1)$$
 (25)

at the point P, where K is a constant. Finally, the balancing of centrifugal and gravitational forces at the vertex gives

$$\frac{\mathrm{Km}}{\mathrm{r}^2} = \mathrm{m} \, \frac{\mathrm{V_m^2}}{\rho} \tag{26}$$

where ρ is the radius of curvature of the path at the vertex. Multiplying equation (26) by r and using equation (24) gives one equation for ρ , namely

$$\rho = 2r \frac{V_{\rm m}^2}{V_{\rm E}^2(r)} \tag{27}$$

Differentiating equation (16) twice with respect to y gives another equation for ρ , namely

$$\rho = \frac{1}{x''} = \frac{b^2}{a} \tag{28}$$

Factoring 0.5 m out of equation (23) yields

$$V_{\rm m}^2 = G^2 + V_{\rm E}^2(r) \tag{29}$$

Dividing equation (25) by equation (24) gives

$$V_{\rm E}^2(1) = rV_{\rm E}^2(r) \tag{30}$$

Equating the two formulas for ρ gives

$$b^2 V_E^2(r) = 2ar V_m^2 (31)$$

Using equations (17), (29), and (31) yields

$$(2ar + r^2)V_E^2(r) = 2ar(G^2 + V_E^2(r))$$
 (32)

From equations (30) and (32),

$$V_{\rm E}^2(1) = 2aG^2 \tag{33}$$

and finally,

$$a = 0.5 \left(\frac{V_E(1)}{G} \right)^2$$
 (34)

which displays a as a function of G only.

COMPUTING PROCESS

Preliminary Table Preparation

Two tables were prepared for repeated use in the program (see appendix B for samples). One was a table of sidereal data: the hour angle τ and the coordinates of the Sun. The other was a table of camera-operating intervals.

The nautical almanac of 1952 to 1954 (ref. 2) lists the sidereal coordinates of the Sun relative to the vernal equinox of 1950 for every day at 0^h universal time. These were copied to a rounded accuracy of five decimal places for the first, eighth, 15th, 22nd, and 29th of each month. The hour angle τ associated with the longitude of the vernal equinox of 1950 at 0^h universal time was also copied for the same five days of each month. Sidereal data were read into the program by means of punched cards.

The camera data were sent to us by Professor McCrosky, one of the authors of reference 1. There were 1772 hours spread over 349 nights, during which the two cameras were in use. For each of these hour intervals, the duration d of camera operation time was given in minutes. Observing always took place in the 12 hours from 6 P.M. to 6 A.M., mountain standard time. In universal time, this is 1^h to 13^h. Camera data were also read in by means of punched cards.

Processing of Camera Data

The raw camera data for each of the observing nights include the month, the day of the month, and 12 d numbers for the 12 hours of the night. There were 1772 1-hour intervals for which d was nonzero. For each of these, the program computes the three orbital coordinates of the associated zenith vector \vec{z} .

In a given hour, among other possibilities, the d-minute observing interval could have been the first d minutes, the last d minutes, or the middle d minutes of that hour. Early versions of the program tested the effect of this choice on the average A defined in equation (1) of the INTRODUCTION. The effect was slight. Thereafter, with a few exceptions the entire period was treated as the middle d minutes of the 1-hour observing interval.

The vector \vec{z} is (0,0,1) in local coordinates. Its conversion to geographical coordinates always yields the same vector. Its conversion to sidereal coordinates involves a rotation through an angle related to the time t_{lr} . The equations for this are

$$X_3 = X_1 \cos \tau - Y_1 \sin \tau \tag{35}$$

$$Y_3 = X_1 \sin \tau + Y_1 \cos \tau \tag{36}$$

where τ is obtained by linear interpolation from the hour angles of the sidereal data table. The hour angle goes through seven-and-a-fraction revolutions each week. If, for example, the time t_k were 17.23, meaning 0.23 day after 0^h universal time of the 17th of the pertinent month, the hour angle τ_t corresponding to the time t_k would be found by linear interpolation between the values τ_{15} and τ_{22} + 14 π , where τ_{15} and τ_{22} are the recorded hour angles for 0^h universal time for the 15th and 22nd of that month. From the result of the interpolation, the largest multiple of 2π would be deducted, and the remainder would be used as τ_{t_1} .

The remaining step in the computation of the orbital coordinates of the zenith vector \vec{z} is the conversion from sidereal coordinates to orbital. This results from the use of equation (12) derived in the ANALYSIS section.

A table of processed camera data, including the three orbital coordinates for each of the 1772 zenith vectors is thus ready for repeated use (once for each of the 2048 sporadic meteors) in the formula of equation (1).

Momentary Likelihood Table

One more table is needed before equation (1) may be applied to any meteor. It is a table of the momentary likelihood number $L(\theta, G)$ for a range of possible angles θ between the zenith vectors and the true radiant vector, and possible relative meteoroid velocities G. This table was stored in the computer once it was generated.

The equations for L and other numbers needed to compute it are derived in the section ANALYSIS. In particular, for fixed G, as the parameter r of equation (18) is varied from 0 to 1, $\cos\theta$, $\cos Z_R$, and R source coordinates are obtained for all possible orbits. These, in turn, lead to values of L as a function of $\cos\theta$ for fixed G.

Possible G values ranged from 0.8 to 78.0 kilometers per second. Eighty G classes result from dividing the interval from log (0.8) to log (78.0) into 80 equal parts. For a fixed G, at the center of its class, the preceding paragraph describes how to construct a table of L and cos $\mathbf{Z}_{\mathbf{R}}$ as a function of cos θ . As cos $\mathbf{Z}_{\mathbf{R}}$, the zenith angle

cosine, varies from 1 (for a meteor on the tube axis) to zero (for a meteor in grazing orbit), $\cos \theta$ varies from 1 to some negative value.

For each G class, there are 50 to 100 $\cos\theta$ classes, each of width 0.02. The L value is set to zero for any class where all the associated $\cos Z_R$ values are below 0.2. Smaller G values require more $\cos\theta$ classes.

Finding Orbital Coordinates of a True Radiant Vector

For each sporadic meteor with relative velocity vector $-G\vec{v}$, the meteor data include a sighting time t, the cosine of the zenith angle Z_R , and sidereal angles associated with the true radiant vector \vec{v} . These angles are the declination δ and the right ascension α . Equation (3) shows how to compute the sidereal coordinates of the true radiant vector \vec{v} . The conversion to orbital coordinates is the same as for the zenith vector \vec{z} (see section Processing of Camera Data).

Since the time of sighting determines the zenith vector \vec{z} and therefore the angle θ between \vec{z} and \vec{v} , the computed value of $\cos Z_R$ for a given meteor may be compared with the meteor data value. Comparison was good in the cases checked this way. This was a check that the program was correct and the data consistent.

Averaging Process

Let j be a meteor index, running from 1 to 2048. Then \vec{v}_j is the true radiant vector associated with meteor j. The method of the preceding paragraph yields \vec{v}_j in orbital coordinates. Let k be the index of a 1-hour camera-operating interval, with associated zenith vector z_k . If $\theta_{j,k}$ is the angle between \vec{z}_k and \vec{v}_j , then $\cos\theta_{j,k}$ is easily found as the scalar product of these two vectors.

The value G_j lies in a certain G class, and $\cos\theta_{j,k}$ lies in a certain $\cos\theta$ class. This determines a specific $L(\cos\theta,G)$ value from the momentary likelihood table. The sum of products in equation (1) may now be evaluated.

The number A_j is then a time average, over all camera-operating intervals, of the relative likelihood of a meteor with the same orbital coordinates and the same true radiant vector as meteor j being encountered, given the passage of such a meteor in the vicinity of Earth. The relative likelihood is high for a common event deserving low weight; it is low for a rare event deserving high weight. Thus the weighting factor F_j is computed by equation (2) as the reciprocal of A_j . Observed frequency of meteors like j should be multiplied by weighting factor F_j to compensate relatively for the spatial bias affecting its rarity.

The averaging process for the first meteor began as follows:

- (1) Meteor 1 with serial number 2982 was sighted at February 24.32, 1952. This is about 7^h 41^m universal time on the 24th. Other meteor data are $\cos Z_R = 0.88$, G = 20.6, $\alpha = 153^O$, and $\delta = 12^O$.
- (2) The orbital coordinates of the true radiant vector $\vec{\mathbf{v}}$ turn out to be (-0.059, -0.998, 0.014). The orbital angles are $\beta = 0^{\text{O}}$, $\varphi = 93^{\text{O}}$. It is very close to the antisolar normal to the Earth's orbit. The meteor falls within the 77th G class from 19.5 to 22.5.
- (3) The first camera-operating interval was 9 to 10 p.m. mountain standard time on February 16, 1952, with a duration of 27 minutes. The associated $\cos \theta$ value is 0.766, which is in the $\cos \theta$ class centered about 0.77. The L value for this cell is 0.904, and the L×d product is 24.408.

A 25-minute interval in the next hour is associated with the 0.87 $\cos\theta$ cell and an L of 1.005. This contributes a product of 25.125. The third camera-operating interval is 23 minutes in the hour after midnight in the early morning of February 24th. This is associated with the 0.93 $\cos\theta$ cell and an L of 1.066. This contributes a product of 24.518. The next 4 hours contain operating intervals of 42, 45, 45, and 12 minutes. The right $\cos\theta$ cells are 0.89, 0.77, 0.63, and 0.45. The right L values are 1.022, 0.904, 0.764, and 0.581. The sum of products after these four steps is about 199.

CONCLUDING REMARKS

The principal purpose of this computation of spatial bias correction numbers was for use in statistical studies that are outside the scope of this report. Appendix C contains a table of such numbers computed for all 2048 sporadic meteors observed from 1952 to 1954. The A number listed for each meteor is proportional to the probability of impact of such a meteor - one with the same true radiant vector relative to the orbital system and the same velocity - upon the atmosphere above the camera sites. The A number is the reciprocal of the weighting factor F that should be given to that meteor to correct for spatial bias.

The use of the weighting factor on a particular meteor is without meaning if a fast meteor from that direction were never photographable at New Mexico throughout the 30-month viewing period. The shaded region in the following sketch shows the direction from which the fastest meteors could never be photographed:

X-Z Projections of the four quadrants

By limiting analyses to data for meteors from quadrant 1, the spatial bias present in data from the other three quadrants can be avoided.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, June 1, 1970,
125-23.

APPENDIX A

SYMBOLS

Α average likelihood of meteor with velocity vector -Gv being photographed during 30-month observing period $\mathbf{A_a}$ annulus area impact zone area $\mathbf{A}_{\mathbf{z}}$ semitransverse axis of hyperbola a coefficient matrix in equations relating two different coordinate systems В \mathbf{C} center of Earth d duration of camera-operating-time interval, min $\mathbf{E}_{\mathbf{n}}$ column vector (X_n, Y_n, Z_n) \mathbf{F} factor to correct for spatial bias, 1/A velocity of meteor relative to Earth, km/sec G measure of momentary likelihood of meteor with velocity vector -Gv being \mathbf{L} encountered mass of meteoroid m Ň, vector from Earth center to camera site S; \mathbf{P} approximate point of impact of meteor, halfway between two cameras column vector $(\vec{U}, \vec{V}, \vec{W})$ Q R source point of meteor at distance of 145 Earth radii R_1 R for meteor striking Earth perpendicularly, at P₁ R_2, R_3 R for meteors following paths between those for R_1 and R_4 R for meteor grazing Earth, at P_{Δ} R_{Δ} distance from vertex to focus of hyperbola, Earth radii ${f r}$ \mathscr{G} vertex of hyperbola site of camera 1, longitude 7^h 7^m 11.9^s W, latitude 32^o 30' 15.5" N S_1 site of camera 2, longitude 7^h 6^m 26.8 W, latitude 32^O 18' 20.0" N S_2 t time at center of camera-operating interval

 $\vec{U}, \vec{V}, \vec{W}$ unit vectors in given system

- V_{∞} velocity of meteor at camera site corrected for atmospheric drag, km/sec
- v true radiant unit vector of meteor with velocity -Gv
- w arbitrary distance, Earth radii
- X, Y, Z components of vector
- **Z**_R zenith angle of meteor
- zenith unit vector at camera site at time t
- α sidereal angle of right ascension for meteor radiant
- β orbital angle with ecliptic plane
- δ sidereal angle of declination for meteor radiant
- θ angle between zenith vector \vec{z} and true radiant vector \vec{v}
- λ north latitude
- μ west longitude
- au hour angle associated with time t, fraction of revolution
- φ angle between (X, Y, 0) and (1, 0, 0) in orbital system

Subscripts:

- i camera site, i = 1, 2
- j meteor index from 1 to 2048
- k time index for camera-operating interval from 1 to 1772
- 1 geographic system
- 2 local system centered at $P(W_2 = \vec{z})$
- 3 sidereal system
- 4 orbital system

APPENDIX B

SAMPLES OF SIDEREAL AND CAMERA DATA

Sidereal data rounded from five places to three are given for March, April, and May of 1952.

Month			Day		
	1	8	15	22	29
		X ₃ of Su	n		
March, 1952	0.933	0.969	0.990	0.996	0.988
April, 1952	. 980	. 952	.910	. 855	. 787
May, 1952	. 766	. 684	. 593	. 494	. 387
		Y ₃ of Su	n		
March, 1952	-0.306	-0.200	-0.090	0.021	0.131
April, 1952	. 178	. 285	. 388	. 486	. 576
May, 1952	. 601	. 681	. 751	. 811	. 859
		Z ₃ of Su	n		
March, 1952	-0.133	-0.087	-0.039	0.009	0.057
April, 1952	.077	. 124	. 168	. 211	. 250
May, 1952	.261	. 295	. 326	. 352	. 373
Hour ang	le $ au$ of	Sun – fra	ction of a	revoluti	on
March, 1952	0.441	0.460	0.479	0.498	0.518
April, 1952	. 526	. 545	. 564	. 583	. 602
Мау, 1952	. 608	. 627	. 646	. 665	. 685

Camera Data for Twelve Nights

The 1772 camera-operating-time intervals were spread over 349 nights. Data are given in the following table for 12 of those nights. Each night is close as possible to the 22nd of the month, subject to having at least 6 consecutive hours of viewing.

Date						n standa									
	18-19	19-20	20-21	21-22	22-23	23-24	24-1	1-2	2-3	3-4	4-5	5-6			
				<u>.</u>	Univ	ersal ti	me	•	•	•		•			
	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13			
	Number of minutes of camera use														
2/26/52	0	0	0	0	11	44	43	47	47	24	0	0			
3/20/52	ı	1	12	48	44	42	34	22	42	11	0	1 1			
4/23/52		'	0	0	19	46	46	46	46	46	12				
5/21/52			0	12	12	5	33	45	45	34	0				
6/22/52			0	33	44	46	46	46	45	23	0				
7/26/52			12	46	46	1	Ī	34	12	0	0				
8/21/52	'	1 1	20	46	46		'	46	46	46	12				
9/19/52		†	0	44	46	🕴	*	46	46	46	24				
10/22/52		12	46	46	42	48	48	48	48	48	48	🕴			
11/20/52	▼	0	0	0	0	11	46	46	44	45	47	24			
12/14/52	12	48	48	48	48	48	48	48	48	48	48	24			
1/17/53	0	24	48	48	48	48	48	48	48	0	0	0			

Zenith Vectors for Twelve Nights

Orbital coordinates were computed for zenith vectors for all 1772 camera-operating intervals. The X,Z pairs, multiplied by 100, appear in the following table for the 12 nights of the last section:

Date					Mounta	in standa	rd time						
	18-19	19-20	20-21	21-22	22-23	23-24	24-1	1-2	2-3	3-4	4-5	5-6	
					Uni	iversal ti	me						
	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	
					Orbital	coordina	tes × 100						
	X, Z	\mathbf{X}, \mathbf{Z}	X,Z	X, Z	\mathbf{X}, \mathbf{Z}	X, Z	X, Z	\mathbf{X}, \mathbf{Z}	X, Z	X,Z	X, Z	X, Z	
2/26/52					-42,26	-30,30	-10,38	10,47	28, 56	38,61			
3/20/52			-80,23	-71,27	-54, 34	-35,42	-15,51	5,60	23,68	32,72			
4/23/52				-48,56	-35,62	-14,69	6,76	25,80	41,82	48,83			
5/21/52				-59,64	-48,68	-28,75	-6,80	15,82	34,83	48,81			
6/22/52				-49,77	-35,80	-13, 82	9,83	70,80	50,76	61,72			
7/26/52			-47,82	-37,83	-19,82	2,80	24,75	45,69	56,64	78,52			
8/21/52			-39,82	-29,8 1	-11,77	10,71	30,63	50,55	68,46	82,37	89,33		
9/19/52			ĺ	-24, 70	-9,64	11,56	31,47	50,38	68,30	82,24	89,16		
10/22/52		-53,67	-47,63	-33, 54	-15,45	4,37	25,29	45,23	63, 1 8	79,16	89,16		
11/20/52						5,21	17, 19	38, 16	58,16	74,18	86,22	91,26	
12/14/52	-80,47	-76,41	-66,33	-51,26	-32,20	-11,17	11,16	32,17	52,20	68,25	79,32	85,37	
1/17/53		-84,23	-75, 19	-60,16	-41,16	-20,17	1,21	22,26	39,33				
$11/2/53^{a}$	-63,69	-60,65	-50,57	-36,48	-19,39	1,31	22,25	43, 19	56,17				

^aThe 13th night appears because the other November date had only late slots.

APPENDIX C

PROBABILITIES OF IMPACT

Table I lists the A number of each meteor - a number proportional to the probability of impact of a meteor of the same direction and velocity upon the atmosphere above the camera sites during the 30-month period of viewing. The table is arranged in the order of serial number, with 280 meteors per page in four columns. The table also contains the orbital angles φ and β for each meteor, as well as the quadrant number. The A number is scaled to be in the 1 to 9999 range. The angles are given in degrees.

TADII	C T	DDC	DADIT	TTV OF	IMPACT
TABLI	P. I	~ PRU	ІВА ВП	TITY CIP	INIPACT

Serial num- ber	an	bital gles, leg	Quad- rant	- A	Serial num- ber	Orbit angle deg	s,	Quad- rant	A	Serial num- ber	ar	rbital igles, deg	Quad- rant	A	Serial num- ber	ал	bital gles, deg		- A
	φ	β				φ	β				φ	В				φ	β		
2982 2988 2991 2993 2995	93 70 88 37 25	1 16 -3 6 -9	1 1 4 1 4	369 435 644 258 167	3242 3244 3246 3250 3251	24 65 104 - 85 95	49 2 12 10 -4	1 1 4 1 4	311 364 329 391 348	3434 3443 3445 3464 3466	101 66 352 346 78	-16 44 -17	1 4 2 3 1	374 226 188 43 416	3837 3841 3844 3847 3848	113 15 16 0 28	17 13 -22 42 -14	1 1 4 1 4	463 202 96 212 153
2996 3000 3001 3005 3007	0 344 84 115 60	50 59 41 32 0	1 2 1 1	225 195 416 355 297	3257 3259 3261 3265 3268	339 309	1 27 14 57 39	1 1 2 2 1	355 485 85 111 251	3474 3476 3480 3482 3484	1 66 351 348 87	35 -6 39 38 16	1 4 2 2 1	199 278 177 162 424	3850 3852 3854 3856 3861	76 64 0 0 22	13 -1 11 -6 48	1 4 1 4	517 299 143 102 290
3009 3011 3013 3015 3019	39 34 244 93 47	5 82 42 -8 64	1 1 2 4 1	258 306 151 331 335	3272 3277 3280 3282 3288	9 93 133	37 56 7 6 22	1 1 1 1	226 256 376 723 259	3491 3497 3568 3573 3574	321 299 73 60 61	26 81 81 9 7	2 2 1 1	56 228 328 345 340	3864 3870 3872 3877 3878	53 345 356 65 79	-6 19 -3 4 71	4 2 3 1 1	269 111 96 353 423
3021 3024 3025 3028 3032	75 8 70 50 12	9 16 37 45 56	1 1 1 1	383 184 395 378 265	3292 3295 3296 3300 3303	72 5	55 16 41 38 6	1 1 1 1	389 385 229 526 436	3578 3586 3597 3601 3604	3 47 83 33 106	37 -9 7 -75 88	1 4 1 4	210 239 365 0 274	3881 3883 3890 3892 3894	16 321 328 336 62	68 28 28 24 25	1 2 2 2 1	274 61 79 94 373
3034 3037 3038 3040 3042	80 35 0 85 90	60 -26 45 49 55	1 4 1 1	570 120 218 425 470	3304 3307 3308 3312 3313	171 141 - 188	26 69 18 55	1 1 4 2 1	440 315 231 293 735	3605 3607 3615 3623 3633	50 57 76 9 140	1 24 9 44 82	1 1 1 1	291 363 370 244 317	4004 4008 4010 4012 4016	359 201 71 89 129	64 37 34 14 -19	2 2 1 1	362 253 412 417 157
3046 3048 3050 3053 3054	84 103 97 148 145	42 28 9 -42 6	1 1 4 1	488 466 474 116 484	3317 3319 3323 3327 3332	55 316 72	58 46 -5 -2 29	1 3 4	374 481 231 322 441	3640 3646 3648 3652 3655	154 81 25 104 96	34 4 31 70 11	1 1 1	387 487 280 365 386	4018 4020 4084 4086 4088	128 21 259 92 11	-18 45 15 -8 70	4 1 2 4 1	416 285 576 475 264
3056 3058 3060 3067 3069	95 69 97 102 116	41 3 -4 60 62	1 1 4 1	445 323 402 412 392	3334 3335 3340 3342 3344	116 16 106 -	38 43 33 20 58	1 1 4	346 430 250 273 263	3657 3660 3663 3664 3667	340 358 71 100 62	44 21 4 14 14	2 1 1	151 161 347 407 602	4090 4092 4094 4096 4103	84 48 55 330 126	35 73 46 57 60	1 1 1 2 1	451 328 372 696 415
3072 3074 3076 3077 3079	59 48 122 35 224	5 -17 21 24 84	1 4 1 1 2	313 194 463 299 243	3346 3348 3356 3361 3365	48 -2 45 67	77 24 20 6	4 1 1	238 327 353 331 433	3786 3787 3795 3798 3800	91 42 66 119 346	-5 88 -11 20 73	1 4 1	361 288 271 475 224	4104 4106 4108 4111 4112	139 158 147 121 169	68 64 52 -13 69	1 1 1 4 1	324 359 421 328 359
3085 3088 3204 3206 3210	141 249 148 200 79	32 83 6 -18 4	1 2 1 3 1	661 226 183 65 351	3367 3373 3377 3380 3389	257 8 7 148 3	32 38 30 32 36	2 1 1	317 406 213 428 422	3802 3804 3810 3813 3816	125 8 360 199 83	36 -4 20 83 23	4 2 2	439 128 164 270 422	4114 4125 4128 4131 4133	142 128 88 50 28	31 49 9 21 51	1 1 1 1	454 438 404 354 308
3212 3228 3231 3234 3239	83 40 96 77 98	64 66 44 14 28	1 1 1 1	510 318 544 400 436	3393 3402 3417 3419 3431	356 4 95 2 71	8 7 9 7 8	2 1 1 1 1 1	414 208 408 340 375	3827 3829 3831	132 65 6 14 114	-39 -6 30 11	1 1	259 279 208 193 382	4141 4143	23 347 217 84 113	48 15 53 14 -13	1 2 2 1 4	293 109 204 385 336

TABLE I. - Continued. PROBABILITY OF IMPACT

Serial num- ber	Orbital angles, deg		- A	Serial num- ber		ital (Quad-	A	TROD	Serial num- ber	Orl ang	oital les, eg	Quad- rant	- A	Serial num- ber	ang	bital gles, eg	Quad rant	- A
	φ β				φ	β					φ	β				φ	β		
4147 4148 4151 4153 4154	96 6 108 31 352 10 105 6 167 9	1 2	387 440 115 387 1018	4340 4341 4351 4352 4355	97 2	-10 73 -15 -24	4 1 4 4 2	314 263 298 69 105		4467 4469 4472 4476 4478	9 86 159 80 81	-17 22 80 -0 -2	4 1 1 4 4	96 419 303 335 344	4605 4607 4605 4618 4622	83 71 12 101 352	-6 32 -12 -3 24	4 1 4 4 2	327 415 119 360 146
4156 4158 4161 4167 4169	101 19 63 58 89 -12 106 13 96 13	1 4	365 776 315 409 409	4357 4360 4363 4369 4370	170 53 79 90 81	34 36 8 -3	1 1 1 1 4	361 363 367 380 326		4482 4484 4486 4492 4494	98 81 38 114 37	-1 -11 13 -1 15	4 4 1 4	354 287 280 373 284	4624 4625 4627 4625 4633	90 98 100 359	5 -0 21 30 17	1 1 1 2	398 368 462 453 154
4171 4173 4175 4177 4181	86 60 53 3 95 3 6 37 86 12	1 1	478 293 377 222 379	4372 4374 4378 4380 4382	117 43 73 9 10	4 36 14 74 23	1 1 1 1	524 1094 738 275 207		4496 4498 4501 4505 4507	21 73 23 92 75	26 -4 2 -2 -7	1 4 1 4 4	257 329 197 342 320	4637 4639 4645 4646 4648	86 74 37 37 360	20 29 -27 27 -28	1 4 1 3	398 394 116 316 50
4184 4186 4188 4190 4192	344 5 19 -3 111 10 107 35 291 36	1 1	80 325 445 628 19	4385 4388 4391 4394 4398	95 134 80 75 64	5 11 ~1 -3 -22	1 4 4 4	507 407 332 319 381		4508 4510 4516 4518 4520	68 71 84 21 79	-12 -3 3 20 -4	4 4 1 1 4	253 317 350 242 319	4650 4652 4654 4657 4659	18 60 349 96 89	-12 8 48 -9 -13	4 1 2 4 4	136 326 190 319 366
4194 4196 4200 4203 4205	327 19 2 44 23 37 117 33 102 12	1 1 1	60 224 282 419 396	4400 4402 4404 4406 4408	16 4 91 67 19	-5 5 -25 14 19	4 1 4 1	155 143 1471 374 234		4522 4524 4526 4528 4531	31 100 152 201 91	48 53 -4 73 7	1 4 2 1	315 485 470 251 375	4660 4662 4666 4668 4671	1 7 66 77 14 76	14 16 -6 12 -13	1 4 1 4	212 377 309 194 271
4207 4211 4213 4216 4219	168 33 76 ~19 157 68 2 40 64 7) 4 1 1 1	340 221 307 214 332	4410 4412 4414 4416 4418	17 304 33 358 73	-12 29 24 -35 9	4 2 1 3 1	132 40 293 37 366		4534 4535 4537 4539 4542	45 171 99 89 89	79 2 -25 -18 -7	1 1 4 4	305 754 258 259 336	4673 4677 4675 4683 4684	82 0 122 351 80	37 73 8 27 2	1 1 2 1	417 245 399 148 344
4229 4286 4289 4290 4292	311 70 131 33 119 15 66 26 103 8	1 1 1	174 460 415 382 398	4420 4422 4424 4426 4428	338 345 118 60 334	28 10 12 47 68	2 2 1 1 2	109 95 300 394 207		4544 4546 4548 4550 4552	94 71 358 57 8	6 -5 -17 40 -35	1 4 3 1 4	387 308 67 376 49	4688 4690 4692 4694 4696	73 63 3 19 8 344	-9 15 5 28 6	4 1 2 1 2	290 355 67 211 82
4294 4298 4300 4302 4304	115 8 104 6 106 18 73 28 133 56	1 1 1	449 429 634 392 423	4430 4432 4434 4436 4439	143 110 68 79 60	17 1 6 -28 7	1 1 1 4	603 375 348 272 337		4554 4556 4558 4560 4565	354 64 25 73 338	19 21 1 -23	2 1 1 1 3	141 325 260 338 25	4698 4722 4724 4728 4730	86 148 106 91 53	19 1 -0 2 10	1 4 1 1	430 300 380 358 1012
4307 4311 4313 4318 4325	118 46 107 -23 139 27 93 34 138 70	1 4 I	444 254 458 412 306	4442 4444 4446 4448 4453	69 81 33 12 355	-7 27 36 -8 19	4 1 1 4 2	297 427 398 132 145		4567 4571 4575 4577 4582	347 99 91 90	16 14 1 24 3	2 1 1 1	111 407 370 518 364	4732 4734 4736 4735 4740	78 128 99 99 10	-5 47 70 -8 84	4 1 1 4 1	332 481 385 321 269
4328 4330 4331 4335 4337	95 19 15 30 120 25 113 40 65 50	1 1 1	408 242 507 455 383	4454 4455 4457 4460 4464	357 71 72 357 97	22 -6 -14 21 12	2 4 4 2 1	159 321 243 155 421		4586 4596 4597 4599 4603	30 100 14 9 357	63 -11 -25 -20	1 1 4 4 3	225 407 128 72 60	4742 4744 4747 4750 4752	73 62 75 5	-15 23 -4 59 6	4 1 4 1 1	260 386 315 249 326
4754 4756 4760 4762 4767	75 -4 159 17 75 41 159 -19 88 2	1 1 4	31 7 33 1 41 5 23 8 36 1	4966 4967 4974 4977 4987	86 94 24 95 94	-8 8 -18 7 -4	4 1 4 1 4	318 394 128 391 347		5250 5254 5262 5266 5268	105 112 14 35 27	-8 -24 15 -9 -7	4 1 4 4	326 252 204 193 178	5477 5479 5485 5487 5489	65 84 49 316 35	-8 -46 11 -15 22	4 1 3 1	265 129 308 3984 295
4774 4778 4781 4783 4787	88 10 80 -11 26 22 89 40 131 35	1 1	387 1301 263 431 506	4992 4997 4999 5003 5007	73 103 85 82 98	24 -20 -8 -4 56	1 4 4 4 1	611 303 315 336 463		5270 5284 5289 5292 5294	56 348 323 93 31	14 -6 -1 24 52	1 3 3 1	352 69 22 453 316	5491 5495 5499 5503 5505	16 23 87 105 359	-16 23 -1 -0 -13	4 1 4 4 3	117 255 350 382 81
4791 4793 4795 4799 4813	132 -28 82 -0 76 -8 81 53 87 22	4	194 335 411 402 561	5009 5019 5027 5029 5031	59 88 48 31 24	7 -9 -40 21 24	1 4 4 1	320 309 83 279 262		5298 5304 5313 5315 5319	74 8 33 8 75	-5 -28 -15 44 8	4 4 1 1	310 63 163 242 365	5508 5523 5527 5529 5531	81 65 115 82 96	-1 15 17 -8 8	4 1 1 4	721 372 480 298 470
4817 4824 4827 4832 4839	83 ~29 37 15 347 5 77 -4 93 8	2 4	169 284 88 316 394	5034 5045 5047 5048 5050	36 22 106 102 227	24 62 -11 35 52	1 1 4 1 2	304 290 412 515 160		5323 5325 5327 5329 5332	31 65 27 6 100	38 26 -7 20 32	4	310 1514 180 184 438	5535 5537 553; 5541 5546	127 82 86 111 138	15 -5 39 -33 -3	1 4 1 4 4	429 313 744 134 399

TABLE I. - Continued. PROBABILITY OF IMPACT

Serial num- ber	Orbital angles, deg			Serial num- ber	ang	bital G gles, r eg		A	Serial num- ber	ang	bital gles, leg	Qua ran		Serial num- ber	an	bital gles, leg		- A
4842	φ β		366	5058	φ 133	β 5	1	432	5333	φ 239	β -13	3	33	5548	φ 57	β -11	4	239
4847 4852 4854 4856	69 67 16 80 3 82 16	5 l	338 362 366 388	5064 5073 5080 5087	87 124 13 121	-4 60 14 -20	4 1 1 4	354 399 198 327	5335 5339 5351 5357	105 110 88 85	16 23 4 2	1 1 1	420 425 368 362	5551 5554 5557 5558	40 126 104 89	13 -11 -32 -21	1 4 4 4	286 319 160 240
4864 4866 4870 4872 4877	8 -9 70 2 83 1 101 -32 99 -9	2 1 1 1 2 4	118 337 359 245 295	5091 5107 5117 5121 5124	53 31 21 97 86	35 75 -45 69 -6	1 4 1 4	368 378 45 677 325	5363 5380 5382 5384 5388	76 76 109 107 81	-8 9 21 22 -10	4 1 1 1 4	314 368 420 2658 305	5572 5583 5587 5596 5602	146 114 102 69 111	50 -21 -62 28 35	1 4 4 1 1	402 280 79 405 478
4891 4895 4903 4905 4918	79 -7 17 -29 142 37 115 10 101 -19) 4 / 1	322 76 423 557 315	5136 5138 5142 5147 5159	115 71 68 78 99	43 -46 6 -2 24	1 4 1 4	452 424 348 345 485	5390 5392 5394 5400 5402	91 108 108 140 80	-21 21 -4 7 25	4 1 4 1	235 425 322 387 425	5606 5620 5622 5675 5688	159 82 83 96 3	-56 3 3 4 16	4 1 1 1 1	100 364 400 398 167
4920 4924 4926 4928 4930	230 -73 72 -8 115 5 74 -1 48 37	1 4	6 752 438 329 357	5192 5204 5206 5212 5217	63 341 15 14 163	10 -9 28 -25 0	1 3 1 4	354 46 238 84 361	5405 5407 5409 5413 5419	15 82 97 16 75	33 -32 5 -18 5	1 4 1 4	246 152 529 110 353	5699 5725 5742 5750 5752	48 61 98 86 120	13 -11 -28 13 19	1 4 4 1 i	328 246 202 453 465
4933 4938 4940 4942 4948	318 71 82 3 55 +10 31 5 344 -55	1 4 1	174 365 383 234	5221 5225 5227 5231 5234	85 105 152 23 66	14 -36 -20 10 -6	1 4 4 1 4	438 172 544 223 346	5421 5423 5427 5437 5439	61 58 97 343 84	-8 6 14 19 -27	4 1 1 2 4	259 312 409 105 182	5762 5770 5783 5795 5801	114 143 152 87 181	41 59 8 ~6 -12	1 1 1 4 3	472 394 423 325 177
4950 4952 4954 4959 4964	23 62 71 -24 59 -17 47 -57 191 48	4 4	292 1396 227 34 275	5237 5238 5242 5244 5246	95 85 110 73 50	-21 1 7 -2 36	4 1 1 4 1	236 342 398 325 5068	5444 5461 5463 5472 5473	351 56 343 13 109	-1 48 43 59 58	3 1 2 1	89 373 156 270 557	5810 5848 5864 5874 5880	138 95 355 106 96	56 65 40 40 -34	1 1 2 1 4	389 761 188 633 162
5886 5937 5922 5935 5948	88 4 340 -6 69 10 107 48 112 42	3 1 1	367 49 365 527 499	6114 6116 6119 6123 6125	133 88 84 113 145	66 7 18 -24 17	1 1 1 4 1	305 684 448 267 822	6247 6251 6254 6256 6258	80 58 85 96 82	7 -1 2 12 -5	1 4 1 1 4	398 286 361 386 316	6387 6389 6391 6393 6395	99 119 85 101 92	30 -4 8 -8 -32	1 4 1 4 4	455 361 383 337 3815
5962 5970 5972 5974 5980	153 15 122 23 69 -5 98 -14 141 -4	1 4 4	570 449 289 292 183	6129 6131 6133 6135 6137	109 77 110 121 78	35 -50 -41 40 -4	1 4 4 1 4	441 67 100 547 319	6260 6262 6266 6268 6270	88 59 68 133 92	13 8 28 8 15	1 1 1 1	415 323 404 425 741	63 32 6399 6401 6403 6405	99 84 84 62 100	23 14 -9 36 -6	1 1 4 1 4	409 401 311 384 387
5988 5996 5998 6001 6003	27 22 85 66 38 59 96 -9 95 -5	1 1 4 4	26 7 38 5 34 3 12 8 8 6	6139 6143 6145 6147 6150	62 71 344 43 10	-9 -24 78 8 35	4 4 2 1	259 237 244 282 235	6272 6275 6276 6278 6280	111 25 137 69 61	-23 34 45 56 47	4 1 1 1	280 285 427 392 380	6498 6410 6416 6420 6424	52 15 75 78 83	-1 27 21 U -29	4 1 1 1 1 4	306 1092 416 409 167
6007 6011 6015 6023 6025	6 8 33 18 17 -19 110 -11 41 32	1 1 4 4	160 279 109 356 334	6154 6158 6160 6162 6164	67 79 138 96 79	-2 -37 -2 6 -11	4 4 4 1 4	298 1017 329 403 283	6282 6284 6286 6288 6290	63 115 106 355 26	3 1 4 21 -19	1 1 2 4	312 376 380 151 132	6426 6425 6430 6433 6434	7 62 28 2 325	65 67 28 38	1 1 1 2	620 339 298 188 93
6027 6029 6031 6035 6037	25 22 21 -19 351 3 71 -26 32 4	1 4 2 4 1	262 117 94 169 232	6166 6168 6170 6172 6174	65 117 91 75 57	4	4 1 1 1	156 497 386 464 346	6292 6294 6296 6298 6300	84 72 89 163 55	6 30 15 -38 63	1 1 1 4 1	375 426 419 411 498	6437 6438 6440 6443 6441	8 23 90 66 115	-16 34 2 9 1	4 1 1 1 1	98 277 359 357 399
6044 6046	23 21 114 27 32 -14 70 -1 140 31	1 1 4 4 1	252 461 165 307 460	6176 6179 6184 6185 6187	82 98 28 74 64	12 8 6	l	360 439 713 355 356	6302 6304 6310 6312 6315	69 131 64 101 35	-2 39 -6 61 -6	4 1 4 1 4	300 465 276 668 206	6454 6458 6460 6463 6465	90 94 86 88 116	16 -2 16 -4 2	4 1 4	622 358 407 741 404
6059	80 11 81 3 352 -11 64 -30 155 +54	1 1 3 4 4	376 365 67 141 82	6189 6191 6193 6197 6199	83 33 289 78 87	17 79 -1	1 2 4	341 276 212 402 282	6317 6320 6322 6326 6329	4 351 356 83 96	61 -15 37 14 -6	1 3 2 1 4	248 58 189 384 337	6467 6469 6471 6471	86 79 25 91 112		1 1 4	400 414 298 299 543
6069 6071 6076 6081 6083	86 1 7 34 76 36 81 0 113 28	1 1 1 1	358 222 681 338 425	6201 6204 6206 6208 6210		-34 22 60	1	99 95 367 612 350	6338	75 243 100 275 83	62 12 77	4 2 1 2 1	308 176 416 560 444	6484 6486 6408 6491 6491	89 82 61 102 59		1 4 1	399 431 306 436 450

TABLE I. - Continued. PROBABILITY OF IMPACT

Serial num- ber	Orbi angle de	es,	Quad rant	- A	I	erial num~ ber		es,	Quad- rant	A	 Serial num- ber	ang	oital (les, eg	Quad ran		Serial num- ber	ang	oital (les, eg		- A
6090 6093 6095 6096 6098	324 4	β -16 64 56 -15 22	4 2 1 4 1	268 164 271 85 419	6	5212 5214 6218 6227 6231	φ 77 36 357 117 175	β -6 9 11 67 -41	4 1 2 1 4	379 263 132 380 79	6346 6348 6350 6355 6359	φ 26 58 82 66 328	β -25 71 -37 35 -38	4 1 4 1 3	955 457 200 459 7	6494 6500 651. 6512 6517	φ /1 9 128 81 353	β 2 -4 -10 -3 54	1 4 4 4 2	340 123 939 529 210
6102 6105 6106 6110 6112	84 332 356 360 21	14 55 42 50 75	1 2 2 2 1	401 154 198 224 290	6 6	6233 6237 6239 6241 6245	110 93 60 359 108	-5 -9 2 57 8	4 4 1 2 1	409 288 301 230 406	6363 6365 6367 6369 6376	86 61 228 123 81	38 7 19 2 -0	1 1 2 1 4	470 642 114 4428 336	6518 6521 6523 652 6527	24 7 58 22 120	28 23 4 66 82	1 1 1 1	271 199 324 460 348
6531 6533 6535 6537 6539	84 62 249 65 60	-4 4 68 29 5	4 1 2 1 1	739 314 157 384 313	6	5915 5918 5921 592 <i>1</i> 5929	107 104 84 103 76	25 -1 47 20 -4	1 4 1 1 4	435 364 596 493 429	7058 7060 7062 7064 7067	86 53 12 66 118	0 -30 8 12 25	1 4 1 1	428 423 178 401 444	7170 7193 7195 7201 7203	94 31 181 94 145	36 69 -6 12 65	1 1 3 1	428 316 1362 427 505
6546 6636 6766 6768 6770	349 39 98 163 123	32 17 6 70 -7	2 1 1 1 4	153 297 421 277 353	6 6	6932 6933 6936 6938 6940	71 103 76 67 101	75 48 24 9 6	1 1 1 1	335 722 439 452 395	7069 7070 7073 7075 7076	91 170 75 138 178	60 68 2 49 14	1 1 1 1	402 295 342 430 301	7205 7207 7210 7211 7211	163 109 194 73 146	-0 -2 14 38 14	4 4 2 1 1	520 406 234 398 408
6772 6774 6776 6778 6788	65 62 99 116 93	-74 6 4 -16 11	4 1 1 4 1	626 341 373 306 423	6 6	5944 5946 5949 5950 5952	89 63 86 77 344	15 32 6 45 26	1 1 1 2	403 454 375 549 124	7078 7080 7082 7084 7088	151 111 172 100 81	-57 23 45 -33 15	4 1 4 1	126 481 2594 610 596	7216 7211 7220 7222 7224	87 108 125 119 86	-17 10 9 55 -2	4 1 1 1 4	249 413 778 1154 346
6790 6795 6801 6802 6805	128 168 33 34 128	-27 60 38 41 6	4 1 1 1	265 346 313 322 372	6 6	5954 5959 5964 5966 5971	50 309 46 86 103	20 40 55 -8 23	1 2 1 4 1	534 56 346 352 437	7090 7097 7098 7102 7104	153 73 91 91 123	36 21 40 9	1 1 1 1	442 397 467 381 359	1226 1227 1231 1231 7240	118 93 99 94 97	15 2 8 31 7	1 1 1 1	487 374 589 544 405
6811 6814 6824 6826 6828	39 114 142 121 64	-8 4 29 -21 48	4 1 1 4 1	209 301 449 329 400	6	6972 6975 6977 6979 6981	140 57 145 87 102	-15 26 3 13	4 1 1 1	395 398 195 399 467	7106 7108 7110 7114 7116	104 64 109 81 85	16 71 -6 1 3	1 4 1	505 348 388 342 365	1244 724 1248 7250 1252	93 75 58 77 180	38 73 -1 3 12	1 1 4 1 2	526 344 304 438 188
6830 6832 6834 6842 6843	90 76 133 37 55	24 14 4 -9 37	1 1 4 1	403 365 570 200 373	6	6983 6985 698 7 6989	7 108 93 89 103	34 48 12 28 16	1 1 1 1	222 525 466 569 404	7118 7120 7124 7126 7128	87 70 102 105 101	13 -4 31 11 72	1 4 1 1	398 309 491 485 377	7254 7257 7259 7261 7263	131 121 71 98 91	52 33 6 42 -14	1 1 1 1 4	451 541 335 424 470
6847 6849 6853 6855 6857	93 77 83 64 27	-2 6 41 3 24	4 1 1 1	325 413 712 624 272	6	6993 6995 6998 6999 7002	64 99 90 236 55	14 1 -11 74 -1	1 1 4 2 4	369 361 285 213 298	7133 7135 7139 7141 7145	98 110 121 105 79	-0 23 2 8 3	4 1 1 1	358 424 427 394 366	1265 1267 1265 1212 1273	133 111 110 79 129	53 16 27 12 74	1 1 1 1	490 466 563 379 425
6859 6861 6853 6869 6875	92 86 57 89 120	42 38 63 4 15	1 1 1 1	678 433 600 367 411	-	7003 7005 7019 7022 7026	317 90 77 110 63	68 2 4 89 51	2 1 1 1	177 378 351 287 380	7149 7151 7153 7155 7158	105 177 103 90 97	38 83 33 38 -1	1 1 1 1 4	451 289 635 449 358	7277 7275 7281 7281 7285	39 87 337 10 120	-7 1 19 14 50	4 1 2 1	215 356 88 187 755
6881 6882 6887 6889 6895	154 160 69 75 358	43 43 -1 -7 14	1 1 4 4 2	592 708 324 339 145	:	7033 7035 7040 7041 7044	99 315 100 222 55	-9 69 36 79 47	4 2 1 2 1	335 299 457 388 372	7161 7162 7164 7166 7169	315 55 181 88 241	47 62 60 68 33	2 1 2 1 2	90 366 352 397 35	7287 7291 729 <i>?</i> 1295 7303	100 93 132 79 101	4 27 37 40 6	1 1 1 1	390 422 459 509 417
6899 6901 6904 6905 6907	96 351 326 28 66	16 54 20 9 23	1 2 2 1 1	433 205 59 236 1192	-	7046 7047 7049 7052 7054	113 64 42 24 91	-13 14 48 47 13	4 1 1 1	317 352 343 294 396	7170 7179 7184 7185 7188	160 133 92 74 70	15 49 2 17 46	1 1 1 1	2112 515 375 424 392	7307 7314 7316 7318 7320	23 112 351 2 75	61 54 47 20	1 1 2 1	292 570 204 226 398
7324 7326 7328 7331 7333	111 162 30 94 81	-6 -6 66 47 2	4 4 1 1	335 9998 301 424 344	-	7465 7467 7469 7471 7474	98 76 92 99 72	18 29 -5 19 -3	1	419 484 329 419 320	7598 7600 7607 7608 7610	16 100 290 74 70	64 14 74 50 -3	1 1 2 1 4	276 505 169 406 318	7737 7742 7744 7745 7750	150 21 105 199 119	81 63 3 40 -3	1 1 1 2 4	509 286 395 220 391
7334 7336 7339 7344 7346	148 97 65 213 79	4 8 -20 61 18	1 1 4 2 1	400 429 202 199 467	:	7476 7478 7480 7481 7485	72 76 112 172 99	6 -10 -2 -6 67	4	353 289 374 471 519	7612 7615 7618 7620 7622	49 90 245 279 91	56 33 72 57 4	1 2 2 1	384 448 179 354 365	7754 7755 7755 7760 7762	95 86 31 19 83	11 56 21 42 66	1 1	421 510 277 275 661

TABLE I. - Continued. PROBABILITY OF IMPACT

Serial num- ber	Orbita angles deg			Serial num- ber			- A	Serial num- ber	ang	oital les, eg			Serial num- ber	an	bital gles, deg	Quad rant	
7348 7352 7356 7358 7360	80 1 36 99 -	β 13 1 3 1 -2 4 29 1 59 2	381 242 366 443 205	7487 7491 7494 7496 7499	φ 64 1 105 5 97 - 195 7 81 1	3 1 1 4 6 7	356 405 375 566 390	7624 7626 7632 7635 7637	φ 107 61 100 83 80	β -54 56 -6 9 -3	4 1 4 1 4	282 6511 498 386 325	7765 1769 7771 177	φ 48 160 16 192 103	β 52 -1 39 17 45	1 4 1 2	405 610 262 134 452
7362 7364 7367 7368 7372	16 3 110 -1 173 2	17 2 31 1 .0 4 .0 1 .6 4	92 248 304 234 344	7500 7504 7506 7508 7512	64 135 4 100 3 61 115 3	9 1 9 1 8 4	296 418 440 279 428	7641 7643 7645 7647 7651	72 105 67 166 113	14 37 60 32 70	1 1 1 1	414 451 773 416 547	7780 7782 7784 7787 779(310 80 47 21 98	65 -8 42 58 60	2 4 1 1	153 302 357 288 400
7375 7377 7379 7381 7383	103 1 94 6 104 3	2 1 3 1 1 1 0 1 0 1	361 596 565 467 489	7520 7522 7524 7527 7529	115 162 7 29 7 71 3 138 3	8 1 5 1	406 319 295 428 415	7655 7659 7661 7664 7666	103 65 149 115 345	22 3 16 8 66	1 1 1 1 2	542 315 424 404 475	77 96 78 02 780 4 780 6 78 0 6	192 89 70 63 80	45 -12 0 24 -4	2 4 1 1 4	325 294 330 372 321
7385 7388 7389 7392 7395	92 111 -5 300 8	5 1 4 1 8 4 3 2 9 1	43 7 38 3 38 5 23 8 35 7	7534 7535 753 <i>1</i> 7541 7543	74 102 5 339 7 /1 5 67 2	4 2 4 1	362 369 228 3409 375	7667 7669 7671 7673 7675	139 101 46 81 32	-8 64 6 14	1 4 1 1	538 667 348 361 266	7813 7815 7820 7821 7823	10 259 139 121 98	83 62 61 75 19	1 2 1 1	270 135 406 578 403
7397 7399 7404 7406 7410	5 6 307 7 75 1	9 1 6 1 2 2 4 1 2 1	733 253 373 418 323	7545 7550 7552 7554 7557	353 4 55 2 125 4 112 2 93 2	2 1 7 1 4 1	188 355 490 483 629	7682 7684 7686 7688 7692	71 329 1 82 122	52 67 70 20 36	1 2 1 1	493 182 246 513 447	7829 7835 7838 7841 7844	151 79 130 7 62	12 50 52 -2 -3	1 1 4 4	535 423 475 133 287
7412 7414 7416 7423 7428	60 4 146 5 293 8	4 1 9 1 8 1 3 2 5 1	471 377 387 217 354	7560 7562 7565 756 <i>1</i> 7569	72 4 93 1 164 6 74 1 51 6	3 1 5 1 7 1	405 395 346 474 341	7694 7696 7700 7702 1707	162 76 139 90 152	44 3 41 40 -15	1 1 1 1 4	355 365 340 449 1 728	7846 7854 7857 7855 7862	321 112 48 100 144	32 68 21 63 2	2 1 1 1 1	77 331 360 407 360
7431 7433 7437 7439 7441	100 5 66 8 332 5 92 3 93 1	3 1 5 2 1 1	408 297 154 463 1433	75/1 7573 7575 7577 7583	98 56 83 39 68 6 105 5 89 13) 1 	759 2147 345 516 377	7713 7715 7719 7721 1726	162 6 116 107 80	-22 73 -8 -1 -2	4 1 4 4	265 269 330 418 329	7866 7866 7871 7873 7874	6 91 82 24 346	56 -24 -8 25 28	1 4 4 1 2	249 362 320 263 134
7455 7457	19 1 301 2 31 -1 74 5 225 3	8 2 3 4 5 1	213 18 170 396 131	7585 7587 7589 7592 7596	80 30 94 22 63 50 183 92 38	2 1 0 1 0 2	709 993 396 289 550	7727 7729 7731 7734 7735	87 105 71 132 148	-2 19 74 -3 44	4 1 1 4 1	343 427 321 379 855	78 7 7 78 82 78 8 ! 78 9 1 78 9 5	359 122 343 117 88	58 46 13 31 -6	2 1 2 1 4	393 432 93 601 327
7897 7899 7902 7906 7914	266 5 86 - 36 1 187 8 16 3	3 4 1 1 2 2	109 342 268 298 250	8120 8124 8127 8138 8143	15 4. 131 79 86 3: 116 14	1 1	261 419 432 593 400	8379 8389 8394 8413 8415	349 12 141 90 146	23 21 16 88 4	2 1 1 1	133 214 464 293 416	8634 8646 8651 8666 8697	27 356 13 17 349	-8 -50 50 50 32	4 3 1 1 2	177 17 172 276 155
7922 7924	116 7 /3 3 100 1 350 1	9 1	374 466 443 128 187	8146 8157 8159 8161 8163	86 34 76 53 36 66 18 206 88	1 1	381 355 474 367 293	8416 8417 8427 8433 8441	69 67 360 61 64	12 11 -1 49 7	1 3 1 1	388 383 114 488 329	871: 8725 8736 8753 8761	65 19 16 348 12	1 48 -9 14 24	1 1 4 2 1	305 282 138 110 220
	27 7: 25 -: 37 8: 102 1: 120 4:	2 4 0 1 2 1	963 192 298 415 458	8165 8169 8176 8180 8182	353 38 115 26 357 48 70 6 124 14	1 2 1	178 456 213 351 461	8447 8457 8464 8470 8472	123 341 357 14 53	52 14 77 33 38	1 2 2 1 1	408 89 258 244 368	8763 8766 8767 8769 8771	95 93 82 90 111	77 -8 -1 20 19		327 331 331 412 452
7947 7965 7972 8003 8005	84	9 1 / 1 D 2	337 455 482 238 274	8184 8189 8192 8193 8199	45 28 105 24 64 -9 104 27 56 40	1 4 1	513 438 292 443 445	8477 8481 8486	128 353 68 113 360	72 41 12 -4 18	1 2 1 4 2	371 186 367 592 160	8773 8777 8782 8781 8790	93 83 88 44 99	-10 -25	4 4 1	438 306 214 348 382
8017 8018	86 22 114 24 103 -4 39 69 127 74	4 1 4 4 9 1	403 687 352 327 472	8202 8210 8215 8227 8229	94 -2 59 8 320 60 112 66 117 -11	1 2 1	338 324 143 389 313	8503 8505 8507	356 27 305 98 127	53 -2	2 1 2 4	174 287 533 350 439	8794 8796 8798 8800 8803	92 73 87 92 72	-4 -4 17 5 -5	4 1 1	636 317 409 370 307
8026 8028 8030 8032 8035	91 8 45 22 57 14 12 42 61 14	2 1	396 360 339 253 362		132 -3 79 1 92 56 149 48 357 43	1 1 1	355 341 410 411 202		347 353 22 4 54	60 -5	2 1 4 1	161 129 291 116 369	8809 8811 8813 8817 8817	69 77 70 345 60	-4 26 16	4 1 2	394 333 387 107 378

TABLE I. - Continued. PROBABILITY OF IMPACT

Serial num- ber		les,	Quad- rant	A	Serial num- ber	Orbit	al s,	Quad- rant		PROB	Serial num- ber	Ort	oital les, eg	Quad- rant	A	Serial num- ber	ang	oital les, eg	Quad- rant	· A
	φ	β				φ	β					φ	В				φ	β		
8047 8050 8054 8059 8061	35 358 334 3 3	24 32 46 4	1 2 2 1 2	300 186 137 134 188	8247 8249 8257 8261 8284	63 268 36 174 86	27 61 49 41	2 1 1	378 156 327 555 375		8530 8534 8540 8542 8546	334 21 107 46 112	46 12 38 17		137 223 429 320 339	88 21 88 28 88 3 C 88 3 2 88 3 4	91 101 84 90 76	8 32 5 4 -9	1 1 1 1 4	379 537 355 384 292
8063 8065 8069 8074 8076	88 65 25 61 338	9 82 12 52	1 1 1 2	386 337 284 341 163	8294 8304 8312 8314 8320	154 95 131 102 7	33 5 20 0 47	1 1 1	507 400 648 391 243		8558 8560 8565 8572 8575	57 106 344 29 37	12 4 13 -8 -44	1 2 4	364 437 97 181 63	2836 8838 8844 8847 8849	74 95 114 19 72	-5 8 16 24 -4	4 1 1 1 4	311 395 504 243 330
8079 8083 8085 8089 8092	346 25 81 93 72	28 6 2 73 -5	2 1 1 1 4	133 216 347 341 307	8322 8326 8328 8336 8350	63 62 58	-10 7 -12 5 23	1 4 1	255 344 245 361 155		8581 8583 8606 8609 8610	29 20 79 8 65	38 35 2 34 4	1 1 1	30 2 26 9 36 3 22 3 32 2	8853 8855 8857 8859 8863	49 72 82 107 348	-71 -6 19 29 37	4 4 1 1 2	119 305 397 500 159
8098 8106 8108 8109 8113	62 69 358 82 354	-4 -4 66 4 10	4 4 2 1 2	300 309 237 352 120	8361 8363 8368 8369 8371	124 159 86 155 62	34 52 12 62 6	1 1 1	420 363 396 385 323		8616 8619 8626 8630 8632	21 351 71 349 44	-16 4 16 42 -13	2 1 2	131 99 384 173 257	8865 8867 8870 8872 8881	19 353 12 97 209	16 14 -23 3 50	1 2 4 1 2	224 128 82 354 194
8882 8886 8888 8891 8892	118 76 90 69 24	76 - 3 -8 77 32	1 4 4 1 1	334 322 350 325 278	9109 9114 9121 9123 9130	104 95 77 148 207	-9 7 3 58 54	1 1 1	324 562 348 448 200		9385 9387 9390 9392 9396	86 94 59 54 87	-5 -24 10 9 -17	4 1 1	315 252 347 720 269	9804 9805 9814 9815 9833	4 43 53 21 93	5 8 34 37 -28	1 1 1 4	143 282 366 275 201
8899 8917 8918 8920 8922	88 96 8 30 99	-4 -3 -7 35 19	4 4 4 1 1	332 369 121 353 419	9131 9134 9136 9138 9144	67 97 65 72 72	50 -9 9 36 -10	4 1 1	513 319 354 413 281		9398 9400 9402 9404 9406	102 82 78 19 94	14 2 -2 -15 -28	1 4	420 361 326 127 184	9841 9843 5857 9852 9854	118 81 114 126 146	18 26 17 29 36	1 1 1 1	521 523 368 408 381
8924 8926 8930 8938 8948	100 89 100 66 100	44 36 14 1 -1	1 1 1 1	438 415 405 311 353	9147 9149 9156 9162 9164	39 56 130 36 71	22 29 48 60 -4	l l	308 367 1243 322 312		9412 9416 9419 9423 9432	71 87 30 24 93	-11 -8 -12 -18	4 4 4	259 317 170 129 308	9856 9858 9862 9864 9866	34 94 83 36 82	-31 41 4 -16 35	4 1 1 4 1	100 1462 368 167 531
8952 8954 8956 8958 8964	79 74 76 5 46	5 -6 -3 -22 -28	1 4 4 4	354 306 321 72 130	9170 9180 918 <i>2</i> 9192 9198	86 80 58	-41 3 3 -4 -42	1 4	107 381 349 275 62		9436 9452 9454 9467 9483	63 43 62 42 86	-17 -17 7 15 -20	4 1 1	296 182 324 301 247	5873 9875 9877 9880 9881	108 129 114 69 102	-13 6 -41 -67 47	4 1 4 4 1	290 744 281 20 582
8967 8987 8990 8991 8996	93 41 69 104 85	-19 7 -3 34 43	4 1 4 1	250 270 328 450 431	9203 9208 9220 9222 9224	43 34	19 -20 16 -8 -27	4 1 4	233 252 306 195 45		9488 9495 9498 9510 9521	83 87 108 64 79	-9 -10 -14 5 -10	4 4 1	311 637 326 320 270	9883 9885 9686 9889 9891	91 84 135 360 59	21 34 54 67 2	1 1 2 1	556 433 416 242 300
8998 9004 9007 9009 9012	67 77 85 121 /1	1 -5 21 67 20	1 4 1 1	328 314 401 372 411	9226 9235 9241 9243 924 <i>7</i>	85 10 44	-41 69 -66	1 1	41 377 340 23 133		9527 9535 9544 9551 9553	77 62 62 85 95	-17 -21 -9 -29 -24	4 4	300 192 256 282 314	9893 9895 9906 9901 990 -	96 128 102 65 31	-1 10 60 5 -11	4 1 1 1 4	375 408 413 327 174
9016 9023 9025 9027 9030	71 26 83 59 88	-4 -15 4 -24	4 1 4 1	311 145 367 167 391	9252 9258 9262 9272 9276	29 84 61	-6 -21 -40 -2	4	391 26 222 95 346		9559 9561 9589 9593 9615	27 6 329 27 108	19 59 8 23 12	1 2 1	264 251 45 270 422	5911 991: 992: 9926 9930	37 15 88 10 346	47 51 -4 20 51	1 4 1 2	332 271 371 202 185
9035 9037 9039 9041 9046	71 77 96 73 46	-25 -4 23 1 25	4 1 1 1	189 318 511 337 336	92 <i>14</i> 9287 9311 9314 9321	68 63 79	-21 10 26 4 -5	1 1 1	224 347 378 369 298		9659 9674 9702 9714 9720	41 87 37 101 80	~16 3 -28 -5	1 4 4	179 363 116 332 354	9934 9946 9948 9950 9956	17 353 23 34 37	22 59 22 20 22		233 218 254 289 302
9057 9062 9063 9070 9074	22 327 74 84 79	16 -12 -6 4 -4	3	601 19 305 368 320	9323 9325 9328 9335 9346	89 83 38	-9 -0 2 -26 -16	1 1	352 350 346 125 173		9735 9745 9767 9781 9785	97 83 344 28 10	-61 -9 11 5 -0	2	57 310 94 225 146	9940 10001 10007 10013 10015	336 358 65 94 82	65 -13 17 45 -19	1	190 78 364 501 238
9087 9088 9101 9105 9107	95 344 25 25 143	-35 68 -4 -9 15	4	187 212 182 165 378	9348 9358 9360 9362 9364	358 32 64	16 35 -13 -6	2 4	162 190 172 337 153		9789 9794 9798 9800 9802	353 345 78 1 25	-43 28 -5 5	1 2 1 4	22 2 312 131 264	10020 10027 10025 10031 10041	99 108 22 97 86	-14 22 -5 48 -45		304 427 170 640 85

TABLE I. - Continued. PROBABILITY OF IMPACT

Serial num- ber	ang	bital gles, eg	Quad rant		Ser: nun be:	1- a	rbital ngles, deg	Quad rant	- A	Seria num- ber	an	bital gles, leg	Qua rai	ad- A nt	Seria num ber	-	rbital ngles, deg		ıd- A nt
10059 10051 10064 10067 10073	φ 56 61 81 64 348	β -17 -7 -14 -10	4 4 4 2	206 102 287 272 113	1030 1030 1030 1031 1031	7 95 9 100 3 143	5 56 1 46 1 46		429 628 544 350 561	10508 10512 10516 10519 10522	φ 95 78 153 72 67	β 15 -0 49 -1 56	1 4 1 4	414 426 465 326 4087	11790 11794 11797 11801	φ 49 115 82 31 77	β 59 13 23 36 -1		362 537 614 308 333
10081 10085 10088 10090 10094	6 21 10 88 315	69 50 24 3 46	1 1 1 2	254 414 212 399 88	1031 1031 1032 1033 1034	9 86 1 70 0 113	13 5	1 1	430 398 350 1671 629	10524 10531 10534 10536 10538	87 21 239 45 124	8 54 67 50 46	1 2 1 1	383 288 173 351 407	11805 11807 11805 11811 1181 :	86 86 86 91 250	30 30 18 31 34	1 1 1 1 2	448 413 410 446 7
10098 10102 10108 10117 10120	60 12 30 46 70	33 32 17 43 3	1 1 1 1	379 237 265 354 326	1034 1035 1035 1035 1036	0 121 3 85 9 71	13	1	400 445 358 543 596	10542 10545 10552 10555 10556	108 36 72 178 88	2 1 11 62 -11	1 1 1 4	365 237 371 304 337	11817 11820 11822 11826 11828	209 110 86 155 180	11 23 -43 57 67	2 1 4 1 2	80 426 227 402 329
10127 10130 10135 10138 10145	68 344 338 333 339	17 49 19 3	1 2 2 2 2	384 174 89 48 72	1037 1037 1037 1038 1038	3 5 7 109 0 66	27 -12 -30 -8 26	4 4 4	407 101 185 268 564	10567 10570 10576 10584 10589	142 324 118 92 93	75 43 6 12 54	1 2 1 1	310 101 431 392 451	11830 11832 11834 11836 1183	77 64 85 174 358	32 4 41 82 75	1 1 1 2	414 317 433 1263 258
10147 10149 10151 10155 10160	23 179 123 103 89	47 61 -23 -27 -2	1 4 4 4	292 319 328 184 345	1038 1039 1039 1040 1040	84 355 103	-2 32 39 51 9	1 2 1	326 416 170 428 176	10594 10597 11156 11164 11166	73 342 161 77 127	13 9 69 63 65	1 2 1 1	363 82 120 379 426	11840 11848 11855 11857 11856	104 67 31 125 73	26 68 8 58 48	1 1 1 1	573 476 303 736 408
10162 10164 10168 10178 10187	6 94 93 169 73	58 9 -7 -29 10	1 4 4 1	979 398 336 204 634	1040 1041 1041 1041 1042	121 131 113	-2 10 -40 -33 65	4 1 4 4 1	397 507 146 209 500	11168 11174 11178 11180 11183	135 98 128 281 84	26 22 72 35	1 1 2 1	375 433 300 275 417	11861 11863 11865 11874 11887	333 99 125 88 104	-1 32 77 -8 -11	3 1 1 4 4	40 434 421 298 976
10189 10193 10196 10200 10204	19 98 82 75 86	-25 14 34 2 6	4 1 1 1	195 408 1112 342 376	10424 10426 10436 10436 10438	128 86 129	34 26 7 58 -4	1 1 1 4	540 434 378 411 317	11188 11190 11194 11196 11198	145 105 114 220 101	-3 11 35 54 46	4 1 1 2 1	315 424 560 234 401	11882 11884 11886 11885 11890	229 203 87 94 102	60 56 -13 7 56	2 4 1 1	198 312 274 372 779
10213 10215	102 76 140 108 10	6 -4 -8 -21 51	1 4 4 4 1	413 315 496 282 256	10441 10447 10454 10456 10458	77 148 29	-11 76 -8 28	1 4 1 4	413 281 338 180 248	11200 11706 11208 11213 11215	58 138 224 156 99	53 25 55 ~6 ~5	1 1 2 4 4	370 411 251 472 319	11892 11894 11898 11901 11903	129 29 113 96 66	34 21 23 -4 3	1 1 4 1	488 271 547 400 337
10237 10241 10243 10266 10270	92 81 73 79 97	36 -7 52 -5	1 4 1 4 1	430 341 402 480 395	10462 10464 10478 10480 10488	136 102 97 101 121	-7 11 -26 -46 61	1 4 4 1	530 410 213 36 532	11218 11223 11229 11231 11238	84 340 91 27 91	-4 59 23 78 20	4 2 1 1 1	354 703 561 293 468	11907 11910 11923 11924 11929	139 94 97 77 341	73 63 18 27 4	1 1 1 1 2	373 392 520 436 70
10276 10285 10295 10297 10299	10 4 115 94 79	39 34 3 -16 20	1 1 1 4 1	241 211 409 268 582	10490 10492 10496 10498 10506	68 271 195 56 121	35 58 85 27 4	1 2 2 1 1	840 243 405 416 435	11240 11778 11781 11783 11788	4 75 67 73 124	62 11 63 36 21	1 1 1 1	713 374 409 414 397	11935 11938 11941 11947 11951	72 335 331 99 178	-2 4 25 -7 -51	4 2 2 4 4	324 54 98 309 30
11957 11960	83 116 86 158 132	12 0 60 11 -9	1 1 1 1 4	394 415 404 312 326	12182 12185 12187 12193 12195	117 112 81 117 107	23 15 6 17 20	1 1 1 1 1	467 441 359 390 531		112 91 33 124 113	-19 15 73 45 45	4 1 1 1	326 400 294 447 565	12534 12536 12541 12547 12548	107 88 79 106 84	40 4 13 17 79	1 1 1 1	467 368 383 438 334
11970 11972 11974	104 355 49 72 117	72 47	1 2 1 1	487 236 359 466 363	12197 12212 12214 12221 12225	230 110 102 82 275	-1 12 36 45 66	3 1 1 1 2	95 396 666 808 120	12390 12392	158 144 79 120 92	14 76	1 1 1 1	335 394 347 435 447	12552 12554 12557 12559 12561	3 66 78 71 63	49 / 0 15 24	1 1 1 1	232 366 338 400 373
11983 11987 11989 11991 11994	75 351 74 85 11	43 25 15	1 2 1 1	343 184 405 523 261	12231 12233 12235 12237 12239	81 96 62 65 23	6 21 27 1 37	1 1	361 464 376 306 281	12405	104 104 281 6 85	49 72 41	1 1 2 1	382 448 142 230 419	12568 1257 12572 12572 12574 12580	20 108 60 81 80	72 73 8	1 1 1 1	220 355 321 368 416
12050 12062 1	71 108 79 117 316		1 1 1 2	380 409 384 306 91	12241 12243 12256 12260 12262	63 6 292 171 52	14 30 70 55 49	1 2 1	349 209 488 348 364		73 87 199 277 87	45 56 64	1 1 2 2 1	358 527 264 134 414	12583 12585 12585 12587 12535	85 117 127 96 131	2 75 22		1510 1443 329 413 314

						TABL	E I	Con	cluded.	PRO	BABILIT	Y OF	IMP	ACT						
Serial num- ber	Orbi angle de	es,	Quad- rant	A	Serial num- ber		ital C les, r g		A		Serial num- ber	Orb angl de	es,	Quad- rant	· A	Serial num- ber	ang	oital gles, eg		- А
12068 12076 12080 12084 12089	φ 14 89 212 56 71	β 64 7 83 45 -0	1 1 2 1 4	270 378 464 374 329	12264 12266 12274 12277 12280	φ 106 253 50 69 41	β 28 37 69 0 51	1 2 1 1	502 82 342 329 339		12434 12436 12442 12444 12446	φ 115 98 237 0 95	β 10 5 66 62 56	1 1 2 1 1	374 379 202 240 409	12603 12609 12618 1262: 12624	φ 121 106 77 68 101	β 21 -4 -1 12 48	1 4 4 1 1	424 342 329 354 558
	42 336 337 5 87	46 9 10 29 37	1 2 2 1	345 66 70 205 509	12284 12286 12288 12290 12292	209 99 335 86 95	71 80 30 21 57	2 1 2 1	289 327 103 384 426		12448 12452 12454 12456 12462	85 72 44 358 124	8 81 49 21 68	1 1 2 1	365 323 349 160 349	12651 12655 12659 12663 12667	117 101 34 356 6	1 59 ~5 39 81	1 1 4 2 1	461 1645 208 190 268
12117	140 108 107 81 81	27 17 -8 -15 20	1 1 4 4 1	407 499 343 280 433	12296 12298 12304 12308 12318	262 93 100 303 88	32 -4 13 64 68	2 4 1 2 1	19 347 421 137 380		12468 12470 12474 12478 12480	89 148 76 95 335	22 45 6 12 77	1 1 1 1 2	559 410 343 388 229	12670 12672 12677 12680 12682	75 75 69 98 97	3 -0 42 13 19	1 4 1 1	381 333 409 444 421
12138 12140 12142	155 96 55 122 248	57 -2 76 40 52	1 4 1 1 2	585 353 322 452 91	12322 12324 12326 12328 12335	71 129 240 79 90	-6 50 69 10 -14	4 1 2 1 4	304 395 251 373 282		12484 12486 12490 12492 12495	74 110 135 57 200	-6 15 63 59 72	4 1 1 1 2	308 443 744 358 250	1 268 4 1 2688 1 269 t 1 26 92 1 26 9 4	61 124 83 93 80	-10 50 17 37 18	4 1 1 1	264 426 393 466 530
12152 12156	124 131	-12 4 59 -20	4 1 1 4 1	396 445 567 321 405	12339 12341 12343 12347 12349	23 99 199 64 85	52 -1 34 5 -6	1 4 2 1 4	294 355 359 325 329		12499 12501 12508 12513 12515	64 159 101 145 197	35 78 -5 60 71	1 4 1 2	388 362 350 411 268	12696 12700 12702 12704 12705	101 115 120 236 223	38 24 -4 84 77	1 1 4 2 2	439 432 336 238 244
12169 12171 12175 12177 12180	117 97 202 81 76	47 24 12 2 24	1 1 2 1 1	764 451 166 343 405	12353 12355 12358 12360 12362	94 137 102 109 150	7 58 13 -19 -34	1 1 4 4	182 432 382 239 116		12517 12519 12528 12530 12532	96 11 66 353 106	16 32 6 25 61	1 1 1 2 1	415 230 331 151 486	12711 12713 12715 12720 12722	150 87 178 87 51	63 20 -13 8 55	1 1 4 1 1	378 433 115 383 372
12726 12728 12732 12734 12738	55 93 13 92 115	20 39 66 13 22	1 1 1 1	366 396 489 395 447																
12744 12750 12754 12758 12763	120 33 107 138 11	10 34 37 28 50	1 1 1 1	358 310 752 438 260																
12765 12771 12773 12864 12870	100 53 86 90 101	-1 7 3 21 21	4 1 1 1	411 321 363 415 403																
12872 12874 12878 12886 12890	105 113 110 63 74	-5 46 -17 45 66	4 1 4 1	343 474 282 385 368																
12893 12895 12897 12900 12904	36 101 115 91 122	21 65 70 -9 70	1 1 1 4 1	297 381 355 308 346																
12908 13278 13288 13293 13295	6 12 296 91 103	11 17 68 5 -19	1 2 1 4	167 617 144 425 306																
13299 13301 13307 13309 13317	107 76 355 18 71	-10 29 38 -6 3	4 1 2 4 1	353 412 187 157 379																
13319 13324 13328 13332 13335	65 127 74 65 6	-17 12 20 -0 46	1 4	327 640 380 302 239																
13339 16359 16771 16775 16777	5 201 52 13 87	26 17 40 9	I I	199 207 400 182 324																
16787 16789 16791	51 105 89	31 ~10 14	4	393 358 417																

APPENDIX D

COMPUTER RESULTS FOR SELECTED METEORS

In this appendix are presented 18 prints, made from 35-millimeter film, which were produced by the Control Data Corporation DD280 microfilm unit attached to the Lewis IBM 360/67.

The output information from the calculations was plotted in various combinations partly to serve as a check to see if logical results had been obtained and to spot any glaring inconsistencies if such should occur. Figures 1 to 6 are plots of the meteors from reference 2. In figures 1 to 3 the first plot is of all 2048 meteors, and hence all four quadrants, while the second plot is of the first quadrant only and thus contains only 1282 meteors. In figures 4 to 6 the top two plots are of all 2048 meteors with the second plot having the spatial bias correction factor (SBCF) limited to 2.0; that is, all meteors with SBCF of over 2.0 are plotted at 2.0. The bottom two plots are of the 1282 meteors with the second plot again having the SBCF limited to 2.0.

In figures 1(a) and (b), to prevent the inordinate spreading of data near the North Pole (as in Mercator projections), the orbital longitude φ was multiplied by $\cos \beta$ before plotting it against the orbital declination angle β .

Figure 1. – Distribution of meteors in the space of orbital longitude (times $\cos\beta)$ versus orbital declination $\,\beta.$

Figure 2. – Distribution of meteors in the space of velocity of meteor at camera site (corrected for atmospheric drag) V_∞ versus orbital longitude φ .

Figure 3. - Distribution of meteors in the space of velocity of meteor at camera site (corrected for atmospheric drag) V_∞ versus orbital declination β .

Figure 4. – Distribution of meteors in the space of orbital longitude $\, \varphi \,$ versus spatial bias correction factor (SBCF).

Figure 5. - Distribution of meteors in the space of spatial bias correction factor (SBCF) versus orbital declination β .

Figure 6. - Distribution of meteors in the space of velocity of meteor at camera site (corrected for atmospheric drag) V_{∞} versus spatial bias correction factor (SBCF).

REFERENCES

- McCrosky, Richard E.; and Posen, Annette: Orbital Elements of Photographic Meteors. Smithsonian Contributions to Astrophysics, vol. 4, no. 2, 1961, pp. 15-84.
- 2. U.S. Naval Observatory: The American Ephemeris and Nautical Almanac for the years 1952, 1953, and 1954. U.S. Government Printing Office, Washington, D.C.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546

OFFICIAL BUSINESS

FIRST CLASS MAIL

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

13U 001 55 51 3DS 70240 00903 AIR FORCE WEAPONS LABORATORY /WLOL/ KIRTLAND AFB, NEW MEXICO 87117

ATT E. LOU BOWMAN, CHIEF, TECH. LIBRARY

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546