Zadania z Analizy danych

zestaw 4

Zadanie 1

Znajdź funkcję generującą momenty rozkładu Poissona.

Wskazówka:

W przypadku rozkładów dyskretnych jakim jest rozkład Poissona funkcję generującą momenty wyznaczamy ze wzoru $\varphi(t) = \sum_{k=0}^{\infty} e^{kt} P(X=k)$. Następnie skorzystaj z tożsamości: $\sum_{k=0}^{\infty} e^{tk} \frac{\lambda^k}{k!} = e^{\lambda e^t}$.

$$\varphi(t) = \sum_{k=0}^{\infty} e^{tk} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} e^{\lambda e^t} = e^{\lambda(e^t - 1)}$$

Zadanie 2

Korzystając z wyniku poprzedniego zadania oraz własności funkcji generującej momenty, znajdź wartości oczekiwane E(k) oraz $E(k^2)$ rozkładu Poissona $\frac{e^{-\lambda}\lambda^k}{k!}$. Następnie, korzystając z obu wyników wylicz wariancję rozkładu Poissona.

$$\varphi'(t) = \frac{d\varphi(t)}{dt} = \lambda e^t e^{\lambda(e^t - 1)},$$

$$\varphi''(t) = \frac{d^2 \varphi(t)}{dt^2} = \lambda e^t \cdot e^{\lambda(e^t - 1)} + \lambda e^t \lambda e^t e^{\lambda(e^t - 1)} = \lambda e^t e^{\lambda(e^t - 1)} (1 + \lambda e^t)$$

$$\varphi'(0) = \hat{k} = \lambda e^0 e^{\lambda(e^0 - 1)} = \lambda.$$

$$\varphi''(0) = \hat{k}^2 = (1 + \lambda e^0) \lambda e^0 e^{\lambda(e^0 - 1)} = (1 + \lambda) \lambda$$

$$\sigma^2(k) = \hat{k}^2 - (\hat{k})^2 = (1 + \lambda) \lambda - \lambda^2 = \lambda.$$

Zadanie 3

Znajdź funkcję generującą momenty rozkładu Gaussa.

$$\varphi(t) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \begin{pmatrix} u = \frac{x-\mu}{\sqrt{2}\sigma} \\ dx = \sqrt{2}\sigma du \end{pmatrix} = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{t(u\sqrt{2}\sigma+\mu)} e^{-u^2} \sqrt{2}\sigma du = \frac{1}{\sqrt{\pi}} e^{t\mu} \int_{-\infty}^{\infty} e^{-u^2 + ut\sqrt{2}\sigma} du = \frac{1}{\sqrt{\pi}} e^{t\mu} \int_{-\infty}^{\infty} e^{-u^2 + ut\sqrt{2}\sigma} \frac{e^{t\mu}}{2} du = \frac{1}{\sqrt{\pi}} e^{t\mu} \int_{-\infty}^{\infty} e^{-\left(u-\frac{\sigma t}{\sqrt{2}}\right)^2} \frac{e^{-u^2}}{2} du = \frac{1}{\sqrt{\pi}} e^{t\mu} \int_{-\infty}^{\infty} e^{-\left(u-\frac{\sigma t}{\sqrt{2}}\right)^2} e^{-\left(u-\frac{\sigma t}{\sqrt{2}}\right)^2} du = \frac{1}{\sqrt{\pi}} e^{t\mu} \frac{e^{t\mu}}{2} \int_{-\infty}^{\infty} e^{-u^2} du = \frac{1}{\sqrt{\pi}} e^{t\mu} \frac{e^{t\mu}}{2} \sqrt{\pi}.$$

$$\varphi(t) = e^{\frac{2t\mu + \sigma^2 t^2}{2}}.$$

Zadanie 4

Korzystając z wyniku poprzedniego zadania oraz własności funkcji generującej momenty, znajdź wartości oczekiwane E(X) oraz $E(X^2)$ rozkładu Gaussa. Następnie, korzystając z obu wyników wylicz wariancję rozkładu Gaussa.

$$\varphi'(t) = \frac{d\varphi(t)}{dt} = (\mu + \sigma^2 t)e^{\frac{2t\mu + \sigma^2 t^2}{2}}.$$

$$\varphi''(t) = \frac{d^2\varphi(t)}{dt^2} = \sigma^2 e^{\frac{2t\mu + \sigma^2 t^2}{2}} + (\mu + \sigma^2 t)(\mu + \sigma^2 t)e^{\frac{2t\mu + \sigma^2 t^2}{2}} =$$

$$e^{\frac{2t\mu + \sigma^2 t^2}{2}}(\sigma^2 + (\mu + \sigma^2 t)^2)$$

$$\varphi'(0) = \hat{x} = \mu.$$

$$\varphi''(0) = \hat{x}^2 = \sigma^2 + \mu^2.$$

$$\sigma^2(X) = \hat{X}^2 - (\hat{X})^2 = \sigma^2 + \mu^2 - \mu^2 = \sigma^2.$$

Zadania 5

Przedstaw graficznie dane zebrane w poniższej tabeli. Jakiego współczynnika korelacji między zmiennymi x, y spodziewasz się? Wylicz kowariancję oraz współczynnik korelacji tych zmiennych.

х	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5
у	3,14	4,42	6,21	7,64	8,01	10,18	12,81	13,51	15,46	16,22

Wskazówka

Jako estymatora kowariancji użyj

$$T(cov(X,Y)) = \frac{\sum_{i=1}^{n} (x_i - \hat{x})(y_i - \hat{y})}{n-1}.$$

Jako estymatora współczynnika korelacji użyj

$$T(\rho(X,Y)) = \frac{T(cov(X,Y))}{\sigma(X)\sigma(Y)}$$

lub, co jest równoważne

$$T(\rho(X,Y)) = \frac{\sum_{i=1}^{n} (x_i - \hat{x})(y_i - \hat{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \hat{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \hat{y})^2}}$$

Otrzymane wyniki porównaj z wartościami zwracanymi przez funkcje EXCELA =KOWARIANCJA.PRÓBKI(Tablica_X;Tablica_Y) =WSP.KORELACJI(Tablica_X;Tablica_Y)

1	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N
1														
2	l.p.	X	y	(xi-x_sr)*(yi-y_sr)	(xi-x_sr)^2	(yi-y_sr)^2								
3	1	0	3,14	14,895	5,0625	43,8244								
4	2	0,5	4,42	9,345	3,0625	28,5156								
5	3	1	6,21	4,4375	1,5625	12,6025								
6	4	1,5	7,64	1,59	0,5625	4,4944	18							
7	5	2	8,01	0,4375	0,0625	3,0625	16	•						
8	6	2,5	10,18	0,105	0,0625	0,1764		•						
9	7	3	12,81	2,2875	0,5625	9,3025	14 -	* *						
10	8	3,5	13,51	4,6875	1,5625	14,0625	12 -							
11	9	4	15,46	9,975	3,0625	32,49	10	<u> </u>						
12	10	4,5	16,22	14,535	5,0625	41,7316								
13				62,295	20,625	190,2624	8 -		4	•				
14							6 -		+					
15	Xśr	2,25					4 -	•						
16	Yśr	9,76						•						
17	б(x)	1,5138252					2 -							
18	б(у)	4,5978546					0 -		-	-		1	-	
19							()	1	2		3	4	5
20	suma((xi-xśr)(yi-yśr))/(n-1) 6,9216													
21	=KOWARIANCJA.PRÓBKI(B3:B12;C3:C12) 6,92													
22	cov(X,Y)/(G(X)G(Y))					0,994443 < suma((xi-xśr)(yi-yśr))/Pierwiastek((xi-xśr)²(yi-yśr)²)								
23		=WSP.KORE	LACJI(B3:	312;C3:C12)	0,994443									

Zadanie 6

Przedstaw graficznie dane zebrane w poniższej tabeli. Jakiego współczynnika korelacji między zmiennymi *x*, *y* spodziewasz się? Wylicz ten współczynnik. Jak uzasadnisz otrzymany wynik?

Zadanie 7

Gęstość prawdopodobieństwa dla dwu zmiennych losowych X i Y jest dana wzorem

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y}e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2} - \frac{1}{2}\frac{y^2}{\sigma_y^2}}.$$

Jest to dwuwymiarowy rozkład Gaussa z $\hat{x} = 0$ i $\hat{y} = 0$.

- a) Znajdź brzegowe gęstości prawdopodobieństwa f(x) i f(y).
- b) Pokaż, że zmienne X, Y są niezależne

$$g(y) = \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_x \sigma_y} e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2} - \frac{1}{2}\frac{y^2}{\sigma_y^2}} dx = \frac{1}{2\pi\sigma_x \sigma_y} e^{-\frac{1}{2}\frac{y^2}{\sigma_y^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}} dx = \frac{1}{2\pi\sigma_x \sigma_y} e^{-\frac{1}{2}\frac{y^2}{\sigma_y^2}} \cdot \sqrt{2}\sigma_x \sqrt{\pi}$$
$$= \frac{1}{\sqrt{2\pi}\sigma_y} e^{-\frac{1}{2}\frac{y^2}{\sigma_y^2}}.$$

$$h(x) = \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_x \sigma_y} e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2} - \frac{1}{2}\frac{y^2}{\sigma_y^2}} dy = \frac{1}{2\pi\sigma_x \sigma_y} e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\frac{y^2}{\sigma_y^2}} dy = \frac{1}{2\pi\sigma_x \sigma_y} e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}} \cdot \sqrt{2}\sigma_y \sqrt{\pi}$$
$$= \frac{1}{\sqrt{2\pi}\sigma_x} e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}}.$$

$$f(x,y) = g(x)h(x).$$

Zadanie 8

Dwie zmienne losowe zdefiniowane są jako $X = \sin Z$, $Y = \cos Z$, gdzie zmienna Z jest zmienną losową o rozkładzie jednostajnym na przedziale $[0, \pi]$. Jak widać zmienne X, Y są zależne, gdyż $x^2 + y^2 = \sin^2 z + \cos^2 z = 1$. Pokaż, że pomimo tego, kowariancja jest równa zeru.

Wskazówka:

Zamiast liczyć kowariancję z definicji skorzystaj z zależności: $cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$.

$$E(X) = \frac{1}{\pi} \int_{0}^{\pi} \sin Z \, dz = -\frac{1}{\pi} \cos Z \Big|_{0}^{\pi} = \frac{1}{\pi} (-\cos \pi + \cos 0) = \frac{1}{\pi} (1+1) = \frac{2}{\pi}.$$

$$E(Y) = \frac{1}{\pi} \int_{0}^{\pi} \cos Z \, dz = \frac{1}{\pi} \sin Z \Big|_{0}^{\pi} = \frac{1}{\pi} (\sin \pi - \sin 0) = \frac{1}{\pi} (0-0) = 0.$$

$$E(X \cdot Y) = \frac{1}{\pi} \int_{0}^{\pi} \sin Z \cos Z \, dz = \frac{1}{2\pi} \sin^{2} Z \Big|_{0}^{\pi} = \frac{1}{2\pi} (\sin^{2} \pi - \sin^{2} 0) = \frac{1}{2\pi} (0-0) = 0.$$

$$cov(X, Y) = 0 - \frac{2}{\pi} \cdot 0 = 0.$$