Matrices and Determinants

AI24BTECH11015 - Harshvardhan Patidar

Section-A — JEE Advanced/ IIT-JEE

I. FILL IN THE BLANKS:

- 1) How many 3×3 matrices M with entries from (0,1,2) are there, for which the sum of the diagonal entries of M^TM is 5?
 - (a) 126
 - (b) 198
 - (c) 162
 - (d) 135

(JEE Adv. 2017)

- 2) Let $M = \begin{vmatrix} \sin^4 \theta & -1 \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{vmatrix} = \alpha I + \beta M^{-1}$ Where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ are real numbers, and I is the 2×2 identity matrix. If a* is the minimum of the set $(\alpha(\theta):\theta\in[0,2\pi))$ and b* is the minimum of the set $(\beta(\theta): \theta \in [0, 2\pi))$. Then the value of $a^* + b^*$ is
 - (a) $-\frac{31}{16}$ (b) $-\frac{17}{16}$ (c) $-\frac{37}{16}$ (d) $-\frac{29}{16}$

(JEE Adv. 2019)

II. MCQs with More than One Correct

- 1) The determinant $\begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \end{vmatrix}$ is equal to zero, if
 - (a) a, b, c are in A.P.
 - (b) a, b, c are in G.P.
 - (c) a, b, c are in H.P.
 - (d) α is a root of the equation $ax^2 + bx + c = 0$
 - (e) $(x \alpha)$ is a factor of $ax^2 + bx + c$

(1986-2 Marks)

2) If
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$$
, then

- (a) x = 3, y = 1
- (b) x = 1, y = 3
- (c) x = 0, y = 3
- (d) x = 0, y = 0

(1998-2 Marks)

1

- 3) Let M and N be two 3×3 non-singular skew-symmetric matrices such that MN = NM. If P^T denotes the transpose of P, then $M^2N^2(M^TN^{-1})^{-1}(MN^{-1})^T$ is equal to
 - (a) M^2
 - (b) $-N^2$
 - $(c) -M^2$
 - (d) MN

(2011)

4) If the adjoint of a 3×3 matrix P is $\begin{bmatrix} 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$

, then the possible value(s) of the determinant of P is (are)

- (a) -2
- (b) -1
- (c) 1
- (d) 2

(2012)

- 5) For 3×3 matrices M and N, which of the following statement(s) is (are) NOT correct?
 - (a) N^TMN is symmetric or skew symmetric, according as M is symmetric or skew symmetric
 - (b) MN-NM is skew symmetric for all matrices M and N.
 - (c) MN is symmetric for all symmetric matrices M and N.
 - (d) (adjM)(adjN) = adj(MN) for all invertible matrices M and N.

(JEE Adv. 2013)

6) Let ω be a complex cube root of unity with $\omega \neq 1$ and $P = p_{ij}$ be a $n \times n$ matrix with

 $p_{ij} = \omega^{i+j}$. Then $p^2 \neq 0$, when n =

- (a) 57
- (b) 55
- (c) 58
- (d) 56

(JEE Adv. 2013)

- 7) Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if
 - (a) The first column of M is the transpose of the second row of M
 - (b) The second row of *M* is the transpose of the first column of *M*
 - (c) *M* is a diagonal matrix with non-zero entries in the main diagonal
 - (d) The product of entries in the main:wq diagonal of M is not the square of an integer

(JEE Adv. 2014)

- 8) Let M and N be two 3×3 matrices such that MN = NM. Further, if $M \neq N^2$ and $M^2 = N^4$, then
 - (a) determinant of $(M^2 + N^2)$ is 0
 - (b) there is 3×3 non-zero matrix U such that $(M^2 + MN^2)U$ is the zero matrix
 - (c) determinant of $(M^2 + MN^2) \ge 1$
 - (d) determinant of $(M^2 + MN^2)U$ equals the zero matrix then U is the zero matrix

(JEE Adv. 2014)

9) Which of the following values of α satisfy the equation $\begin{vmatrix} (1+\alpha)^2 & (1+2\alpha)^2 & (1+3\alpha)^2 \\ (2+\alpha)^2 & (2+2\alpha)^2 & (2+3\alpha)^2 \\ (3+\alpha)^2 & (3+2\alpha)^2 & (3+3\alpha)^2 \end{vmatrix} =$

 -648α ?

- (a) -4
- (b) 9
- (c) -9
- (d) 4

(JEE Adv. 2015)

- 10) Let X and Y be two arbitrary, 3×3 , non-zero, skew-symmetric matrices and Z be an arbitrary 3×3 , non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?
 - (a) $Y^3Z^4 Z^4Y^3$
 - (b) $X^{44} + Y^{44}$

(c) $X^4Z^3 - Z^3X^4$

(d) $X^{23} + Y^{23}$

(JEE Adv. 2015)

11) Let $P = \begin{vmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{vmatrix}$, where $\alpha \in \mathbb{R}$. Suppose

Q= $\left[q_{ij}\right]$ is a matrix such that PQ=kI, where k $\in \setminus$, k $\neq 0$ and I is the identity matrix of order 3. If $q_{23} = -\frac{k}{8}$ and $\det(Q) = \frac{k^2}{2}$, then

- (a) a = 0, k = 8
- (b) 4a k + 8 = 0
- (c) $\det (\operatorname{Padj}(Q)) = 2^9$
- (d) $\det(Qadj(P)) = 2^{13}$

(JEE Adv. 2016)

12) Let $a, \lambda, \mu, \in \mathbb{R}$. Consider the system of linear equations

$$ax + 2y = \lambda$$

$$3x - 2y = \mu$$

Which of the following statement(s) is (are) correct?

- (a) If a = -3, then the system has infinitely many solutions for all value of λ and μ .
- (b) If $a \neq -3$, then the system has unique solution for all values of λ and μ .
- (c) If $\lambda + \mu = 0$, then the system has infinitely many solutions for a = -3.
- (d) If $\lambda + \mu \neq 0$, then the system has no solution for a = -3

(JEE Adv. 2016)

- 13) Which of the following is (are) not the square of a 3×3 matrix with real entries?
 - (a) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ (b) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$ (c) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$
 - $\begin{array}{c|cccc}
 (d) & -1 & 0 & 0 \\
 0 & -1 & 0 \\
 0 & 0 & -1
 \end{array}$

(JEE Adv. 2017)