1 Центральная предельная теорема

Теорема 1.1 (Линдеберга). Пусть $\{\xi_k\}_{k\geq 1}$ — независимые случайные величины, $\forall k$ $\mathsf{E}\xi_k^2 < +\infty$, обозначим $m_k = \mathsf{E}\xi_k$, $\sigma_k^2 = \mathsf{D}\xi_k > 0$; $S_n = \sum_{i=1}^n \xi_i$; $D_n^2 = \sum_{k=1}^n \sigma_k^2 u \, F_k(x)$ — функция распределения ξ_k . Пусть выполнено условие Линдеберга, т.е.

$$\forall \varepsilon > 0 \ \frac{1}{\mathsf{D}_n^2} \sum_{k=1}^n \int_{\{x:|x-m_k| > \varepsilon D_n\}} (x-m_k)^2 dF_k(x) \underset{n \to \infty}{\longrightarrow} 0.$$

Torda: $\frac{S_n - \mathsf{E} S_n}{\sqrt{\mathsf{D} S_n}} \stackrel{d}{\to} \mathcal{N}(0,1), n \to \infty$

2 Гауссовские случайные векторы

Определение 1. Случайный вектор $\vec{\xi} \sim \mathcal{N}(m, \Sigma)$ — гауссовский, если его характеристическая функция $\varphi_{\vec{\xi}}(\vec{t}) = \exp\left(i(\vec{m}, \vec{t}) - \frac{1}{2}(\Sigma \vec{t}, \vec{t})\right)$, $\vec{m} \in \mathbb{R}^n$, Σ — симметричная неотрицательно определенная матрица.

Определение 2. Случайный вектор $\vec{\xi}$ — гауссовский, если он представляется в следующем виде: $\vec{\xi} = A\vec{\eta} + \vec{b}$, где $\vec{b} \in \mathbb{R}^n$, $A \in \mathrm{Mat}(n \times m)$ и $\vec{\eta} = (\eta_1, \ldots, \eta_m) \sim \mathcal{N}(0, 1)$ и независимы.

Определение 3. Случайный вектор $\vec{\xi}$ — гауссовский, если $\forall \lambda \in \mathbb{R}^n$ случайный вектор $(\vec{\lambda}, \vec{\xi})$ имеет нормальное распределение.

Теорема 2.1 (Об эквивалентости определений гауссовского вектора). *Предыдущие три определения эквивалентны.*

3 Задачи по астрономии

Задача 3.1 Венера из Петербурга

Параметры орбиты Венеры: большая полуось a=0.7 а.е., эксцентриситет e=0, наклон к плоскости эклиптики $i=3^{\circ}.5$. Найдите максимально возможную высоту Венеры над горизонтом при наблюдении из Петербурга.

Задача 3.2 Освещение Марса

В далеком будущем для освещения участка поверхности Марса на ареоцентрическую (с центром в центре Марса) стационарную орбиту был

выведен спутник с массой, равной 1 тонне, на котором был установлен постоянно работающий прожектор мощностью 10 МВт, узкий луч которого был направлен вниз, на поверхность Марса. Однако оказалось, что для того, чтобы спутник с прожектором совершал один оборот ровно за одни марсианские сутки (24 часа 37 минут), радиус его орбиты необходимо уменьшить по сравнению с обычным радиусом стационарной орбиты. Насколько потребовалось уменьшить радиус орбиты?

Задача 3.3 Найдите массу

Анализ спектра звезды позволил определить ее эффективную температуру T и ускорение силы тяжести на поверхности g. Из наблюдений известны также видимая звездная величина звезды m и годичный параллакс p (в угловых секундах). Как, имея эти данные, определить массу звезды?

Задача 3.4 Масса облака

Облако в межзвездной среде, состоящее из атомарного водорода, имеет максимальную лучевую концентрацию атомов $3 \cdot 10^{26}~{\rm cm}^{-2}$ (количество атомов, находящихся в «столбе» с основанием $1~{\rm cm}^2$). Облако имеет форму шара, плотность газа в облаке везде одинакова. При наблюдении облака на длине волны $21~{\rm cm}$ обнаружилось, что ширина спектральной линии составляет $0.1~{\rm mm}$. Оцените массу облака.

4 Отзыв

- а. В общих чертах это очень хороший и полезный курс
- b. Возможно, имеет смысл делать больше примеров для сложных команд (или сразу более сложные примеры)
- с. Также, наверное, будет полезно делать отдельно шпаргалку со всеми командами, ибо презентации достаточно объемные.
- d. В плане организации и преподаваемого материала все замечательно