# Predicting Credit Worthiness

Presented by: Pablo Macaraeg

Jennifer Macaraeg

John-Derek Requejo



## I want to buy a new car





I want to buy a new house



## Where do you go to get a loan?











# Defining "Credit Worthiness"

- Annual Income ?
- Credit Score ?
- Home Ownership?
- Current Loan Amount ?
- Term ?





#### **Credit Score Scale**





#### **Dataset Source**

# lkaggle

DATA





Drop the rows with null values such Loan\_ID, Customer\_ID etc

```
dfLoan = df_train[df_train['Loan_ID'].notnull()]
```

- 1 #check if there are rows where Loan\_ID is null
- 2 dfLoan.Loan\_ID.isnull().sum()



#Replacing Loan\_Status description to binary integer classification (0 for Charged Of
df\_train["Loan\_Status"].replace(['Fully Paid', 'Charged Off'], [1, 0], inplace=True)

#### **DATASETS**

▶ The refined train and test datasets are used in order to build the Model.

#### Predictive Modeling and Classification

- Logistic Regression
- Naïve Bayes
- K Nearest Neighbors
- Random Forests
- Decision Tree
- Support Vector Machine

We built the Machine Learning Model and fit them in dataset.

# Predictive Modeling and Classification

|           | LogisticRegression | GaussianNB | KNeighborsClassifier | RandomForestClassifier | <b>DecisionTreeClassifier</b> | SVC      |
|-----------|--------------------|------------|----------------------|------------------------|-------------------------------|----------|
| Accuracy  | 0.558005           | 0.511296   | 0.708864             | 0.860501               | 0.812796                      | 0.558513 |
| Precision | 0.556717           | 0.589008   | 0.876905             | 0.886950               | 0.880754                      | 0.560882 |
| Recall    | 0.502307           | 0.042300   | 0.475449             | 0.821385               | 0.716868                      | 0.475975 |
| F1        | 0.528101           | 0.070063   | 0.616585             | 0.852903               | 0.790397                      | 0.514823 |
| AUC       | 0.557169           | 0.504257   | 0.705361             | 0.859914               | 0.811356                      | 0.557274 |





# **Balancing of Data**

Based on the given dataset, the data is imbalance based on loan Status, hence, we need to balance the data to have more accurate prediction. To balance the data, we replicated the charged off multiple times until the data become balanced.



#### Before and After Balancing of Data



# Summary



