Make Sure to Drop a Like

The Effect of Consumer Rating on Application Success

Authors: Oleg Ananyev, Oren Carmeli, Romain Hardy, Sam Rosenberg

Research Question

The Google Play Store is one of the major hubs for applications for Android mobile phone and tablet users.

Users can download any app for personal consumption.

Using a rich dataset of Google Play Store data, we want to answer the critical question of:

→ Does having a higher consumer rating score lead to more downloads for Google Play Store applications?

Data and Modeling

Data Origin:

We leveraged a rich dataset from Kaggle that was scraped directly from the Google Play Store

Sample Size:

-10,000 unique data points with 11 different variables to use

Initial Variables of Interest:

Consumer rating, Price, Category, Age, Download Size

Modeling Challenges:

Reverse Causality

Initial exploration of the data led us to believe there was a reverse causal relationship between # of downloads and # of reviews

Omitted Variables

We had to consider omitted variables such as brand awareness, application rankings, and total addressable market (and their impact on our results)

Transformations

We had to choose appropriate transformations to apply to each variable and decide how to handle binned data

Modeled Options:

Small Model: Log(# Installs) - Rating

Medium Model: Log(# Installs) - Rating + Log(Size) + Log(Version) + Log(Last Updated) + Free/Paid + Family Category Dummy + Game Category Dummy + Tool Category Dummy + Content Rating: Everyone Dummy

Large Model: Log(# Installs) - Rating + Log(Size) + Log(Version) + Log(Last Updated) + Free/Paid + Content Rating: Everyone Dummy + Rating * Family Category + Rating * Game Category + Rating * Tool Category

Model Output

Dependent Variable: Log(Installs)

	(1) Model Small	(2) Model Medium	(3) Model Large
Rating	0.252*** (0.037)	0.141*** (0.036)	0.137*** (0.045)
Log(Size)		0.701*** (0.038)	0.702*** (0.038)
Log(Current Version)		0.769*** (0.083)	0.768*** (0.083)
Log(Last Updated)		-1.083*** (0.085)	-1.072*** (0.085)
Is Free		1.407*** (0.055)	1.409*** (0.055)
Family Category		0.026 (0.043)	1.113*** (0.382)
Game Category		0.877*** (0.056)	-0.837 (0.570)
Tools Category		0.296*** (0.063)	-0.765* (0.438)
Rating * Family Category			-0.260*** (0.092)
Rating * Game Category			0.402*** (0.137)
Rating * Tools Category			0.264** (0.110)
Rating: Everyone		-0.209*** (0.043)	-0.207*** (0.043)
Constant	3.968*** (0.149)	2.139*** (0.176)	2.150*** (0.209)

Model Statistics

_			
	(1) Model Small	(2) Model Medium	(3) Model Large
Observations	7,226	7,226	7,226
R^2	0.007	0.248	0.251
Adjusted R ²	0.007	0.247	0.250
Residual Std. Error	1.598 (df=7,224)	1.392 (df=7,216)	1.389 (df=7,213)
F Statistic	54.454*** (df=1; 7,224)	263.871*** (df=9; 7,216)	201.697*** (df=12; 7,213)

Note: *p<0.1; **p<0.05; ***p<0.01

Interpreting the Outcome:

- As expected, apps with higher ratings, free apps, and older apps are more likely to be installed
 - Increasing consumer rating by 1 corresponds to a 14.1% increase in the number of downloads
 - o Free applications have 141% more downloads on average than paid applications
- It is surprising that download size has a positive relationship with download count
 - o Given the limited space available on devices, we expected smaller apps to be more successful
 - Download size could be an indicator of production quality
- Apps with **frequent updates** are installed more
 - More responsive to consumer feedback
- Interactions between rating and category may take precedence over standalone variables
 - o Games are positively correlated with downloads, while family apps are negatively correlated
- Our models have relatively low R² values, showing that there is room for improvement
 - New data could mitigate omitted-variable bias, irregularities in the data, and lack of precision in the outcome variable
- This study is valuable to application developers and Google

