Time: 1 hr

Max. Marks: 20

PART-A

(Answer All Questions, Each question carries 2.5 marks)

- Consider the following relation on {1,2,3,4,5,6}. R = {(i,j); |i-j| = 2}, Is R reflexive? Symmetric? Transitive? Justify.
- 2. If $R = \{(1,2),(4,3),(2,2),(2,1),(3,1)\}$ be a relation on $S = \{1,2,3,4\}$, find the symmetric closure of R.
- 3. Find the rank of the matrix

$$A = \begin{bmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{bmatrix}$$

4. Solve the system, x + y - z = 9, 8y + 6z = -6, -2x + 4y - 6z = 40

(Total: 4*2.5= 10 marks)

PART-B

(Each question carries 5 marks)

5. Let $A = \{1,2,3,4\}$, for the relation R whose matrix is given below. Find the matrix of transitive closure by using Warshall's algorithm.

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 6. Prove that if A is a non-empty set and R is an equivalence relation on A, then the distinct equivalence classes of R form a partition of A.
- 7. Determine the values of λ and μ such that the following system of equations has no solution, unique solution and infinite number of solutions.

$$2x - 5y + 2z = 8$$
, $2x + 4y + 6z = 5$, $x + 2y + \lambda z = \mu$

8. Express the polynomial $v=t^2+4t-3$ as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$, $p_3 = t + 1$

(Total: 2*5-10 marks)

Question No	,	2	3.		5	6	7	,
Course Outcome	CO-1	CO-1	CO-2	co-2	€0-1	CO-1	CO-2	CO-2
Knowledge level								