Theorems and Proofs

Previous Lecture

- Quantifiers and compound statements
- Definitions, rules, and theorems
- Universe and interpretations
- Equivalent predicates
- Equivalent quantified statements
- Quantifiers and conjunction/disjunction

More Equivalences

- $\forall x (P(x) \lor Q(x))$ is not equivalent to $(\forall x P(x)) \lor (\forall x Q(x))$

Find a counter-example!

Much More Equivalences

If $\Phi \Leftrightarrow \Psi$ is a pair of logically equivalent compound statements, and $\Phi(x)$, $\Psi(x)$ denote the open compound statements obtained from Φ and Ψ by replacing every propositional variable occurring in these statements (p,q,r,...) with open statements (P(x),Q(x),R(x),...). Then

$$\forall x \Phi(x) \Leftrightarrow \forall x \Psi(x) \text{ and } \exists x \Phi(x) \Leftrightarrow \exists x \Psi(x)$$

Much More Equivalences (cntd)

DeMorgan's law

$$\exists x \ (P(x) \lor (Q(x) \lor R(x)) \iff \exists x \ ((P(x) \lor Q(x)) \lor R(x))$$
 associativity
$$p \lor (q \lor r) \iff (p \lor q) \lor r$$

Quantifiers and Negation

• As we saw $\forall x P(x)$ is false if and only if there is a such that P(a) is false.

This means that $\neg(\forall x P(x)) \iff \exists x \neg P(x)$

• Similarly, $\neg(\exists x P(x)) \iff \forall x \neg P(x)$

- "Not all lions are fierce" ⇔ "There is a peaceful lion"
- "Not all people like coffee" \Leftrightarrow "Some people don't like coffee"
- "There is no number such \Leftrightarrow "For all numbers $a^2 \neq -1$ " that $a^2 = -1$ "

Multiple Quantifiers and Equivalences

- Logic equivalences for statements with multiple quantifiers are similar to those with one quantifier.
 - $\forall x \ \forall y \ (P(x) \land (Q(y) \lor R(x,y))) \iff$ $\forall x \ \forall y \ ((P(x) \land Q(y)) \lor (P(x) \land R(x,y)))$
 - $\exists x \ \forall y \ \neg(P(x,y) \land Q(y,x)) \iff \exists x \ \forall y \ (\neg P(x,y) \lor \neg Q(y,x))$
 - $\exists x \exists y \exists z (P(x) \lor (Q(y) \lor R(z)) \Leftrightarrow$ $\exists x \exists y \exists z ((P(x) \lor Q(y)) \lor R(z))$
 - $\neg (\exists x \ \forall y \ P(x,y)) \iff \forall x \ \exists y \ \neg P(x,y)$
 - $-(\forall x \exists y \ \forall z \ P(x,y,z)) \iff \exists x \ \forall y \ \exists x \ \neg P(x,y,z)$

Permutation of Quantifiers

As is easily seen

$$\forall x \ \forall y \ P(x,y) \iff \forall y \ \forall x \ P(x,y)$$

 $\exists x \ \exists y \ P(x,y) \iff \exists y \ \exists x \ P(x,y)$

Indeed, $\forall x \forall y P(x,y)$ means that whatever values a,b from the universe are P(a,b) is true. Statement $\forall y \forall x P(x,y)$ means exactly the same.

For $\exists x \exists y P(x,y) \iff \exists y \exists x P(x,y)$ the argument is similar.

Permutation of Quantifiers (cntd)

However, statements

 $\forall x \exists y P(x,y)$ and $\exists y \forall x P(x,y)$

are not equivalent

Let P(x,y) mean "y is the mother of x"

Then $\forall x \exists y P(x,y)$ means "Everyone has a mother"

While $\exists y \ \forall x \ P(x,y)$ can be translated as "There is a person who is the mother of everyone"

What is a Theorem?

- The word `theorem' is understood in two ways
- First, a theorem is a mathematical statement of certain importance
 - ``Every statement is equivalent to a certain CNF"
 - "A quadratic equation $ax^2 + bx + c = 0$ has at most 2 solutions"
- Second, a theorem is any statement inferred within an axiomatic theory
 - "Prove that the computer chip design is correct"

Axioms

- In both cases, to infer a theorem we need to start with something.
- Such starting point is a collection of axioms
- Two understandings of axioms:
 - self evident truth
 - "Two non-parallel lines intersect"
 - "There is something outside me"
 - statements we assume as true, facts from experiment or observation, something we suggest and want to see implications

Axioms (cntd)

Self evident truths are usually not quite truths, so we are left with

For any two points there
is only one line that goes
through them

Proving Theorems

- To prove theorems we use rules of inference.
 Usually implicitly
- In axiomatic theories it is done explicitly:
 - Specify axioms
 - Specify rules of inference
- Elementary geometry is an axiomatic theory.
- Axioms are Euclid's postulates

Proving Theorems

- We know rules of inference to reason about propositional statements. What about predicates and quantified statements?
- The simplest method is the method of exhaustion:

To prove that $\forall x P(x)$, just verify that P(a) is true for all values a from the universe.

To prove that $\exists x P(x)$, by checking all the values in the universe find a value a such that P(a) is true

[&]quot;Every car in lot C is red"

^{``}There is a blue car in lot C"

Rule of Universal Specification

Reconsider the argument

Every man is mortal. Socrates is a man.

- .. Socrates is mortal
- In symbolic form it looks like

$$\frac{\forall x (P(x) \to Q(x))}{P(Socratos)}$$

∴ Q(Socrates)

where

P(x) stands for x is a man, and

Q(x) stands for x is mortal

Rule of Universal Specification (cntd)

If an open statement becomes true for all values of the universe, then it is true for each specific individual value from that universe

Example

Premises: $\forall x (P(x) \rightarrow Q(x))$, P(Socrates	Premises:	$\forall x (P(x) -$	$\rightarrow Q(x)),$	P(Socrates)
--	-----------	---------------------	----------------------	-------------

Step	Reason
1. $\forall x (P(x) \rightarrow Q(x)),$	premise
2. $P(Socrates) \rightarrow Q(Socrates)$,	rule of universal specification
3. P(Socrates)	premise
4. Q(Socrates)	modus ponens

Rule of Universal Generalization

Let us prove a theorem:

If
$$2x - 6 = 0$$
 then $x = 3$.

Proof

Take any number c such that 2c - 6 = 0. Then 2c = 6, and, finally c = 3. As c is an arbitrary number this proves the theorem. Q.E.D

- Look at the first and the last steps.
 - In the first step instead of the variable we start to consider its generic value, that is a value that does not have any specific property that may not have any other value in the universe
 - In the last step having proved the statement for the generic value we conclude that the universal statement is also true

Rule of Universal Generalization (cntd)

- If an open statement P(x) is proved to be true when x is assigned by any arbitrary chosen (generic) value from the universe, then the statement $\forall x P(x)$ is also true.
- Example: ``If 2x 6 = 0 then x = 3."
- Notation: P(x) ``2x 6 = 0", Q(x) ``2x = 6", R(x) ``x = 3"
- Premises: $\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x))$
- Conclusion: $\forall x (P(x) \rightarrow R(x)),$

Ston

Sieh		1/603011	
	1. $\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x))$	premises	
	2. $P(c) \rightarrow Q(c)$, $Q(c) \rightarrow R(c)$,	rule of univ. specification	
	3. $P(c) \rightarrow R(c)$	rule of syllogism	
	4. $\forall x (P(x) \rightarrow Q(x))$	rule of univ. generalization	

Daggan

Existential Rules

Rule of Existential Specification.

If $\exists x P(x)$ is true in a given universe, then there is value a in this universe with P(a) true.

Rule of Existential Generalization.

If P(a) is true for some value a in a given universe, then $\exists x P(x)$ is true in this universe.

Homework

Exercises from the Book:

No. 5, 9, 11, 13, 15, 17 (page 116-117)