Real World Reinforcement Learning Fundamentals

John Langford

NeurIPS 2019, Dec 8

https://vowpalwabbit.org/neurips2019/

Why?

Which News?

28% lift

Which Game?

40% lift

The Baseline: Supervised Learning

Supervised Learning is cool

How about news?

A standard pipeline

- 1. Collect (user, article) information.
- 2. Hire editor to judge *relevance*(*user*, *article*)
- 3. Learn relevance(user, article)
- 4. Act with best article from relevance (user, article)
- 5. Deploy in A/B test for 2 weeks
- 6. A/B test fails 😊

Q: What goes wrong?

Is Ukraine

interesting to John

A: Need Right Signal for Right Answer

What goes wrong?

What is the probability of click on a food article

If you only display a space article?

We must avoid "self-fulfilling prophecy"

What else goes wrong?

The world changes!

Reinforcement Learning can do this!

Goal: Find a policy maximizing the sum of rewards

Q: One last Why...

Al: A function programmed with data

Al: An economically viable digital agent that explores, learns, and acts

Content

Layout

Creative

"Book Your Vacation to Hawaii"

Wellness

[ZKZ '09, SLLSPM '11, NSTWCSM '14, PGCRRH '14, NHS '15, KHSBATM '15, HFKMTY '16]

Bots

I'm Microsoft's Virtual Agent. I'd love to help you. You can also ask to talk to a person at any time. Please briefly describe your issue below.

My printer isn't wo

Check power and connection

If you are unable to print or connect to your printer in Windows 10, first try this:

- 1. Make sure that your printer is plugged into the power supply and turned on.
- 2. Check the USB connection (for wired printers) or the wireless connection (for wireless printers).

Did that solve the problem?

Yes

No, show solution 2 of 5

Other Real-world Applications

Ad Choice: [BPQCCPRSS '12]

Ad Format: [TRSA '13]

Education: [MLLBP '14]

Music Rec: [WWHW '14]

Robotics: [PG '16]

Formalism: Contextual Bandits

Repeatedly:

- 1. Observe features x
- 2. Choose action $a \in A$
- 3. Observe reward r

Goal: Maximize expected reward

Policies

Policy maps features to actions.

Policy = Classifier that *acts*.

Why does it work?

"How much should I explore to discover how to best perform?"

Explore to discover new things

Counterfactual Evaluation

Read

Read

Read

Ignored

Tests can use the same events!

Later evaluate Cocationule: e:

Engineer Engineer Engineer Seattle

Texas

A/B vs. Counterfactual

A/B Test:

- 1. Design the Right Experiment,
- 2. Test online once
- 3. Start over

x100,000

Offline Experiment:

- 1. Use models that exploit and explore
- 2. Record User Interaction
- 3. Find the policy and model that fits reality

Inverse Propensity Score(IPS)

Given experience $\{(x, a, p, r)\}$ and a policy $\pi: x \to a$, how good is π ?

$$V_{\text{IPS}}(\pi) = \frac{1}{n} \sum_{\substack{(x,a,p,r)}} \frac{rI(\pi(x) = a)}{p}$$
Propensity Score

What do we know about IPS?

Theorem: For all π , for all $D(x, \vec{r})$

$$E\left[r_{\pi(x)}\right] = E\left[V_{\text{IPS}}(\pi)\right] = E\left[\frac{1}{n}\sum_{(x,a,p,r)}\frac{rI(\pi(x)=a)}{p}\right]$$

Proof: For all
$$(x, \vec{r})$$
, $E_{a \sim \vec{p}} \left[\frac{r_a I(\pi(x) = a)}{p_a} \right]$

$$= \sum_{a} p_a \frac{r_a I(\pi(x) = a)}{p_a}$$

$$= r_{\pi(x)}$$

Better Evaluation Techniques

Double Robust: [DLL '11]

Weighted IPS: [K '92, SJ '15]

Clipping: [BL '08]

Empirical Likelihood: [MKL '19]

Learning from Exploration

Given Data $\{(x, a, p, r)\}$ how to maximize $E[r_{\pi(x)}]$?

Maximize $E[V_{IPS}(\pi)]$ instead!

$$r_a = \begin{cases} r/p & \text{if } \pi(x) = a \\ 0 & \text{otherwise} \end{cases}$$

Equivalent to:

$$r_a' = \begin{cases} 1 & \text{if } \pi(x) = a \\ 0 & \text{otherwise} \end{cases}$$

with importance weight $\frac{r}{p}$

Importance weighted multiclass classification!

Better Learning from Exploration

Policy Gradient: [W '92]

Offset Tree: [BL '09]

Double Robust for learning: [DLL '11]

Multitask Regression: [BAL '18]

Weighted IPS for learning: [SJ '15]

Evaluating Online Learning

Problem: How do you evaluate an online learning algorithm Offline?

Answer: Use Progressive Validation [BKL '99, CCG '04]

Theorem:

- 1) Expected PV value = Uniform expected policy value.
- 2) Trust like a **test** set error.

How do you do Exploration?

Simplest Algorithm: ϵ -greedy.

With probability *e* act uniform random

With probability $1 - \epsilon$ act greedily

Better Exploration Algorithms

Better algorithms maintain ensemble and explore amongst actions of this ensemble.

Thompson Sampling: [T '33]

EXP4: [ACFS '02]

Epoch Greedy: [LZ '07]

Polytime: [DHKKLRZ '11]

Cover&Bag: [AHKLLS '14]

Bootstrap: [EK '14]

More Details!

Personalizer Service: http://aka.ms/personalizer

Vowpal Wabbit: http://vowpalwabbit.org

ICML tutorial: http://hunch.net/~rwil

We are hiring: http://aka.ms/rl hiring