## **Assignments (Week 3)**

- **2.4**
- **2.6**
- 2.19
- 2.21 (c) (d)

## **Tutorial Problems (Week 4)**

- Basic Problems with Answers 2.3, 2.7, 2.13
- Basic Problems 2.24, 2.26



## Ch 1 Review (1)

### Time-shift and flip



What is the plot for h[n-k]?? n is a constant

$$h[k] \xrightarrow{\text{Flip}} h[-k] \xrightarrow{\text{Slide}} h[n-k]$$





## Ch 1 Review (2)

Unit impulse function (unit sample function)

$$\delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$



 We can use unit impulse function to represent any other different signals, or it is a building function (or basic signal).

## Ch 1 Review (3)

### System properties:

1. With memory or memoryless

$$y(n)=f(x(n))$$

#### 2. Invertible

for a system  $x \rightarrow y$ , if  $x_1 \neq x_2$ , then  $y_1 \neq y_2$ 

3. Causal

... up to that time n ...

### 4. Stable

either prove the system is table, or find a specific counterexample

## Ch 1 Review (4)

### 5. Time-invariant

If 
$$x[n] \rightarrow y[n]$$
  
then  $x[n - n_0] \rightarrow y[n - n_0]$ .

#### 6. Linear

A (CT) system is linear if it has the superposition property:

If 
$$x_1(t) \rightarrow y_1(t)$$
 and  $x_2(t) \rightarrow y_2(t)$   
then  $ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$ 

## **Chapter 2**

# **Linear Time-invariant (LTI) Systems**

### **Exploiting Superposition and Time-Invariance**

If we have 
$$x_k[n] \rightarrow y_k[n]$$
, then
$$x[n] = \sum_k a_k x_k[n] \xrightarrow{\text{System}} y[n] = \sum_k a_k y_k[n]$$

**Question:** Are there sets of "basic" signals  $x_k[n]$  such that

- a) We can represent *any* signals as linear combinations of these building block signals.
- b) The response of LTI Systems to these basic signals are both *simple* and *insightful*.

**Fact:** For LTI Systems (CT or DT) there are two natural choices for these building blocks

Focus for now: DT Shifted unit samples  $\delta[n-n_o]$ 

Next time: CT Shifted unit impulses  $\delta(t-t_o)$ 

## Representation of DT Signals Using Unit Samples



#### That is ...

$$x[n] = \dots + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$$



- Sifting property of the unit impulse: looked at the index k,  $\delta[n-k]$  is nonzero only at k=n, which "sifts" the value x[n] out of the function x[k].

### **Unit Impulse Response (Unit Sample Response)**

• Define the output for an unit impulse input as the unit impulse response



Example: y[n]=x[n]+2x[n-1]+4x[n-2]What is unit impulse response?



### **Response of DT LTI Systems**



• Now suppose the system is **LTI**, and define the *unit impulse*  $response h[n]: \delta[n] \longrightarrow h[n]$ 



From Time-Invariance:

$$\delta[n-k] \longrightarrow h[n-k]$$

From Linearity:

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \, \delta[n-k] \longrightarrow y[n] = \sum_{k=-\infty}^{+\infty} x[k] \, h[n-k] = x[n] * h[n]$$

$$convolution sum$$

The output for an arbitrary input signal is the superposition of a series of "shifted, scaled unit impulse response"

### **Input/Output Relation**



Example





y[n]=0.5h[n]+2h[n-1]

**Figure 2.3** (a) The impulse response h[n] of an LTI system and an input x[n] to the system; (b) the responses or "echoes," 0.5h[n] and 2h[n-1], to the nonzero values of the input, namely, x[0] = 0.5 and x[1] = 2; (c) the overall response y[n], which is the sum of the echos in (b).



# Hence a Very Important Property of LTI Systems:

The output of *any* DT LTI System is a convolution of the input signal with the unit-sample response, *i.e.* 

Any DT LTI 
$$\iff$$
  $y[n] = x[n] * h[n]$ 
$$= \sum_{k=-\infty}^{+\infty} x[k] h[n-k]$$

As a result, any DT LTI Systems are *completely characterized* by its unit sample response

# Graphic View of the Convolution Sum Response of DT LTI systems



- A different way to visualize the convolution sum
  - looked at on the index k



- on the dummy index k, h[k] is flipped over and shifted to k=n, weighted by x[k], and summed to produce an output sample y[n] at time n

### **Example: Flip h[n]**



# Calculating Successive Values: Shift, Multiply, Sum



$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$



$$y[n] = 0$$
 for  $n < y[-1] = y[0] = y[1] = y[1] = y[2] = y[3] = y[4] = y[n] = 0$  for  $n > y[n] = 0$ 

### Convolution operation procedure:

$$h[k] \xrightarrow{\text{Flip}} h[-k] \xrightarrow{\text{Slide}} h[n-k] \xrightarrow{\text{Multiply}} x[k]h[n-k]$$

$$FSMS \xrightarrow{\text{Sum}} \sum_{k=\infty}^{\infty} x[k]h[n-k]$$





Any DT LTI 
$$\iff$$
  $y[n] = x[n] * h[n]$ 
$$= \sum_{k=0}^{+\infty} x[k] h[n-k]$$

x[n]: input

y[n]: output

h[n]: impulse response of the system



### **Examples of Convolution and DT LTI Systems**

**Ex.** #1: 
$$h[n] = \delta[n]$$

$$y[n] = x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
$$= x[n] - \text{An Identity system}$$



 sifting property, i.e., convolution sum (or integral) with an unit impulse function gives the original signal

**Ex.** #2: 
$$h[n] = \delta[n - n_0]$$

$$y[n] = x[n] * \delta[n - n_o] = \sum_{k = -\infty}^{\infty} x[k] \delta[n - n_o - k]$$
$$= x[n - n_o] - A \text{ Shift}$$

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

An accumulator

u[n]

Unit Sample response

$$x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

$$h[n] = u[n] \longrightarrow \sum_{k=-\infty}^{n} x[k]$$

## Ex. #4 (Example 2.3)



**Figure 2.5** The signals x[n] and h[n] in Example 2.3.



Figure 2.6 Graphical interpretation of the calculation of the convolution sum for Example 2.3.



Figure 2.7 Output for Example 2.3.

# Characteristics of an LTI system are completely determined by its impulse response.

What if the system is nonlinear?

Consider a discrete-time system with unit impulse response

$$h[n] = \begin{cases} 1 & n = 0,1 \\ 0 & \text{otherwise} \end{cases}$$

If the system is LTI, the input/output relationship is

$$y[n] = x[n] + x[n-1].$$

On the other hand, there are *many* nonlinear systems with the same response to the input  $\delta[n]$ .

$$y[n] = (x[n] + x[n-1])^2,$$
  
 $y[n] = \max(x[n], x[n-1]).$ 

### The Commutative Property of Convolution

#### Example:

Step response s[n] of an LTI system input: unit step function

$$s[n] = u[n] * h[n] = h[n] * u[n]$$

$$\uparrow \qquad \uparrow$$
"Input" Unit Sample response of accumulator
$$s[n] = \sum_{k=0}^{n} h[k]$$

### The Distributive Property of Convolution

$$x[n] * \{h_1[n] + h_2[n]\} = x[n] * h_1[n] + x[n] * h_2[n]$$

### Interpretation



### The Associative Property of Convolution

$$x[n]*(h_1[n]*h_2[n]) = (x[n]*h_1[n])*h_2[n]$$
(Commutativity)

$$x[n]*(h_2[n]*h_1[n]) = (x[n]*h_2[n])*h_1[n]$$

Implication (Very special to LTI Systems)



### **Properties of Convolution**

Combining the Commutative property,

$$y[n] = x[n] * h[n] = h[n] * x[n]$$

Distributive property,

$$x[n] * \{h_1[n] + h_2[n]\} = x[n] * h_1[n] + x[n] * h_2[n]$$

and Associative property,

$$x[n]*(h_1[n]*h_2[n]) = (x[n]*h_1[n])*h_2[n]$$

symbolically, we can treat "\*" as a "x". Easy, piece of cake!

The hard part is the actual calculation of the convolution.

Flip 
$$\rightarrow$$
 Slide  $\rightarrow$  Multiply  $\rightarrow$  Sum.

Soon we will develop a clever way (*transformation*) to perform "x" instead of "\*" operation. **♥** 44 44 44 44 34 3UJTC

### Some Useful Properties of LTI Systems

- 1) Causality  $\Leftrightarrow$  h[n] = 0 for all n < 0
- 2) Stability  $\Leftrightarrow \sum_{k=-\infty}^{+\infty} |h[k]| < \infty$ BIBO Bounded Input  $\Rightarrow$  Bounded Output
  - → Sufficient condition: For  $|x[n]| \le x_{max} < \infty$ .

$$|y[n]| = \left| \sum_{k = -\infty}^{\infty} x[k] h[n - k] \right| \le x_{\max} \left| \sum_{k = -\infty}^{\infty} h[n - k] \right| < \infty.$$

→ Necessary condition: If  $\sum_{k=0}^{\infty} |h[k]| = \infty$ 

Let  $x[n] = h^*[-n]/|h[-n]|$ , then  $|x[n]| \equiv 1$  bounded

But 
$$y[0] = \sum_{k=0}^{\infty} x[k]h[-k] = \sum_{k=0}^{\infty} h^*[-k]h[-k]/|h[-k]| = \sum_{k=0}^{\infty} |h[-k]| = \infty$$

### Memoryless / with Memory

- A linear, time-invariant, causal system is memoryless only

if 
$$h[n] = K\delta[n]$$
  $h(t) = K\delta(t)$   
 $y[n] = Kx[n]$   $y(t) = Kx(t)$ 

if k=1 further, they are identity systems

$$y[n] = x[n] = \sum_{k=-\infty}^{\infty} x[k] \mathcal{S}[n-k] = x[n] * \mathcal{S}[n]$$

$$y(t) = x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau = x(t) * \delta(t)$$

## **Summary**

### Understand the following new concepts:

- 1. Use unit impulse function to represent any function
- 2. Unit impulse response h[n]
  - Given the system input/output equation, how to decide the unit impulse response?
- Convolution, its properties, and calculation steps (FSMS)
  - Understand the meaning of index 'k' and index 'n'
- 4. Decide LTI system property by using unit impulse response h[n]