

PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning

Arthur Douillard Matthieu Cord Charles Ollion Thomas Robert Eduardo Valle

@Ar_Douillard arthurdouillard.com

Setting

Incremental Learning

Each new task brings **new classes**

After each task, evaluation is done on all seen classes

Previous task data is available in a limited quantity in a rehearsal memory

Catastrophic Forgetting

Learning new classes with few old classes data produce a

Catastrophic Forgetting

Tradeoff

Rigidity: not forgetting previous knowledge vs Plasticity: learning new knowledge

Existing Solutions

Sub-networks

One **sub-network** per task

Often requires in inference the **task id** to select the taskspecific sub-network.

Sub-network can be uncovered via evolutionary algorithms (Fernando et al, 2017), sparsity (Golkar et al, 2019), or learned masks (Hung et al, 2019).

Two sub-networks **O**& **O** can co-exist in the same network

Rehearsal

Re-using a **limited amount** of previous task data (*Rebuffi* et al, 2017)

Or **generating** previous task data (*Shin et al, 2017*)

Distillation

Constrain the model f^t to be **similar** to the model f^{t-1} Can enforce similarity on the **weights** (*Kirkpatrick et al, 2016*), on the **gradients** (*Lopez-Paz and Ranzato, 2017*), or the network **outputs** (*Li and Hoeim, 2016*).

Training task 1 Training task 2 Training task 3

Training task 2 Training task 3

Constraint Training task 2 Training task 3

Constraint Training task 1 Training task 2 Training task 3

Constraint Training task 2 Training task 3

Constraint Training task 1 Training task 2 Training task 3

Constraint Training task 1 Training task 2 Training task 3

Constraint Training task 2 Training task 3

Our model

Use rehearsal learning

Use distillation on the network outputs

Introduce an architectural change on the classifier

Table of Content

- 1. Local Similarity Classifier
- 2. POD distillation loss
- 3. Results

LSC: Local Similarity Classifier

Based on a cosine classifier

Each centroid represent the **majority mode** of its class

Complex classes are made of multiple modes

The incremental learning **distorts** class embeddings, making the majority mode a poor centroid

Task 1 Task N

Modeling multiple modes per class → more robust to distribution change

One mode per class

Four modes per class

Performance increase mainly because the old classes are less forgotten

+1.18pts and +1.51pts on CIFAR & ImageNet

One mode per class

Four modes per class

POD: Pooled Outputs Distillation

Distillation

Knowledge Distillation constrains probabilities Less-Forget constrains embeddings

POD constrains spatial features

POD Distillation

Naive distance between features doesn't work

 $c \times w \times h$ constraints

- → too rigid
- → sensitive to outliers
- → no spatial prior

POD Distillation

Distance between **spatial statistics**

Balancing rigidity (not forgetting) and plasticity (learning)

POD Distillation

NME

CNN

None52.9853.29POD-pixels 49.7452.34 No pooling, distance directly on pixels POD-channels 57.2154.64 POD-gap 55.9558.80POD-width 57.51 60.92POD-height 60.64 57.50 POD-width + POD-height ◀ POD-spatial 61.40 57.98 GradCam [5] 52.48 54.13Perceptual Style [14] 51.0152.25

Loss

Outperforming SotA with large amount of tasks with little forgetting

(a) 50 steps, 1 class / step

(b) 25 steps, 2 classes / step

	ImageNet100				Imagenet1000	
	50 steps	$25 { m steps}$	10 steps	5 steps	10 steps	5 steps
New classes per step	1	2	5	10	50	100
iCaRL* [30]	_		59.53	65.04	46.72	51.36
iCaRL [30]	54.97	54.56	60.90	65.56		
BiC [35]	46.49	59.65	65.14	68.97	44.31	45.72
$UCIR (NME)^* [13]$	_		66.16	68.43	59.92	61.56
UCIR (NME) [13]	55.44	60.81	65.83	69.07		
$UCIR (CNN)^* [13]$			68.09	70.47	61.28	64.34
UCIR(CNN) [13]	57.25	62.94	67.82	71.04		
PODNet (CNN)	62.48	68.31	74.33	75.54	64.13	$\boldsymbol{66.95}$
	$\pm~0.59$	\pm 2.45	\pm 0.93	\pm 0.26		

Table 4. Effect of the memory size per class M_{per} on the models performance. Results from CIFAR100 with 50 steps, we report the average incremental accuracy

$\overline{M_{per}}$	5	10	20	50	100	200
iCaRL [30]	16.44	28.57	44.20	48.29	54.10	57.82
BiC [35]	20.84	21.97	47.09	55.01	62.23	67.47
UCIR (NME) [13]	21.81	41.92	48.57	56.09	60.31	64.24
UCIR(CNN) [13]	22.17	42.70	49.30	57.02	61.37	65.99
PODNet (NME)	48.37	57.20	61.40	62.27	63.14	63.63
PODNet (CNN)	35.59	48.54	57.98	63.69	66.48	$\boldsymbol{67.62}$

Summary

- 1. LSC: Local Similarity Classifier
- 2. POD: Pooled Outputs Distillation
- 3. Experiments up to 50 tasks

Code is available!

https://github.com/arthurdouillard/incremental_learning.pytorch