1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (напиональный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № <u>1</u>
Дисциплина Конструирование компиляторов
Тема Распознавание цепочек регулярного языка
Вариант №5
Студент Золотухин А. В.
Группа ИУ7-21М
Преподаватель <u>Ступников А.А.</u>

Задание

Напишите программу, которая в качестве входа принимает произвольное регулярное выражение, и выполняет следующие преобразования:

- 1) Преобразует регулярное выражение непосредственно в ДКА.
- 2) По ДКА строит эквивалентный ему КА, имеющий наименьшее возможное количество состояний.

Указание. Воспользоваться минимизацией ДКА, алгоритм за $O(n^2)$ с построением пар различимых состояний.

3) Моделирует минимальный КА для входной цепочки из терминалов исходной грамматики.

Результаты и выводы

Минимальный ДКА

Входные данные		Результат
Рег.выражение	Строка	
a+b	aaaab	-aaaab -aab -ab -b -да
	bbaaa	-bbaaa -нет
	abab	-abab -bab -ab -нет
	ab	-ab -b -да
	abc	-abc -bc -c -нет

Контрольные вопросы

- 1. Какие из следующих множеств регулярны? Для тех, которые регулярны, напишите регулярные выражения.
 - а. Множество цепочек с равным числом нулей и единиц.

- Не является регулярным множеством (возможно контекстно-зависимая грамматика?)
- b. Множество цепочек из $\{0,1\}^*$ с четным числом нулей и нечетным числом единиц.

$$((00|11)*((01|10)(00|11)*(01|10)(00|11)*)*)1((00|11)*((01|10)(00|11)*((01|10)(00|11)*)*)1((00|11)*((01|10)(00|11)*)*)1((00|11)*)1((0$$

- с. Множество цепочек из $\{0,1\}^*$, длины которых делятся на 3. $((0|1)(0|1)(0|1))^*$
- d. Множество цепочек из $\{0,1\}^*$, не содержащих подцепочки 101. 0*(1|00+)*0*
- 2. Найдите праволинейные грамматики для тех множеств из вопроса 1, которые регулярны.

b	c	d
	$S \rightarrow A$	$S \rightarrow A$
	$A \rightarrow 0B$	$A \rightarrow 0A$
	$A \rightarrow 1B$	$A \rightarrow B$
	$A \rightarrow \epsilon$	$B \rightarrow 1B$
	$B \rightarrow 0C$	$B \rightarrow 0C$
	$B \rightarrow 1C$	$C \rightarrow B$
	$C \rightarrow 0A$	$C \rightarrow 0C$
	$C \rightarrow 1A$	$B \rightarrow D$
		$D \rightarrow 0D$
		$D \rightarrow \epsilon$

3. Найдите детерминированные и недетерминированные конечные автоматы для тех множеств из вопроса 1, которые регулярны b. дка

c.

НКА

ДКА

d.

НКА

ДКА

4. Найдите конечный автомат с минимальным числом состояний для языка, определяемого автоматом $M = (\{A, B, C, D, E\}, \{0, 1\}, d, A, \{E, F\})$, где функция задается таблицей

Состояние	Вход		
	0	1	
A	В	С	
В	Е	F	
С	A	A	
D	F	Е	
Е	D	F	
F	D	Е	

Рисунок 1 -- 4 задание

Использовался метод различимых состояний.

Таблица неэквивалентности:

	A	В	C	D	Е	F
A						
В						
B C						
D						
D E F						
F						

Вектор классов эквивалентности:

A	В	С	D	Е	F
0	1	2	1	3	3

Стартовая вершина: А

Терминальная вершина: Е

Минимальный КА:

