CS 5683: Big Data Analytics

Machine Learning for Graphs: The Basics

Arunkumar Bagavathi

Department of Computer Science

Oklahoma State university

Topics Overview

High. Dim. Data

Data Features

Dimension ality Reduction

Application Rec. Systems **Text Data**

Clustering

Non-linear Dim. Reduction

<u>Application</u> IR **Graph Data**

PageRank

ML for Graphs

Community Detection **Others**

Data Streams Mining

Intro. to
Apache
Spark

ML for Graphs: Importance

 Complex domains have a rich relational structure, which can be represented as a relational graph

 By explicitly modeling relationships we achieve better performance in downstream tasks

• Question: How can we take advantage of the relational structure and deep neural nets for better prediction?

ML for Graphs: Basic Problems

Networks are complex: Arbitrary size and complex structure

No fixed node ordering or reference point

Often dynamic and have multimodal features

Different Graph ML Tasks

Node Level Tasks

- Goal: Characterize the structure and position of a node in the network
 - Node degree
 - Node importance & position
 - No. of shortest paths through nodes
 - Avg. shortest path length to other nodes
 - PageRank
 - Substructures around nodes

Node Classification

Edge Level Tasks

- Goal: Predict new/missing/unknown edges based on the existing edges and graph structure
- Possible formulations:
 - Edges missing at random
 - Edge prediction over time

Edge Prediction Task

Graph Level Tasks

- Goal: Make predictions for an entire graph or subgraph
- Example:
 - Predict how the graph evolves over time
 - Find new subgraph patterns

Machine Learning Lifecycle

- (Supervised) Machine Learning Lifecycle: More than the model to pick, the performance of the model depends on the quality of features represented in the data.
- What features to choose for prediction? Should we choose this feature or that feature every time? This is called *feature* engineering

Feature Learning for Graphs

- Goal: Efficient task-independent feature learning for machine learning in networks/graphs.
- Design a general feature (representation) learning algorithm that produces node features based on their position in the network

Embedding Nodes

Intuition: Map nodes to the d-dimensional space as embeddings so that "similar" nodes in the graph have embeddings that are closer together and "dissimilar" nodes have embeddings far apart

Embedding Nodes

- Setup:
 - A graph G represented in an adjacency matrix A
 - No extra node features or extra information is used!
- Goal: Encode nodes so that similarity in the embedding space approximates similarity of the original network $similarity(u, v) \approx z_u^T z_v$

Steps to Learn Nodes Embeddings

1. Define an encoder function: mapping from nodes of the network to embeddings

2. Define a node similarity function: a measure of similarity in the original network (similarity(u, v))

3. Optimize encoder parameters such that:

$$similarity(u, v) \approx \mathbf{z}_u^T \cdot \mathbf{z}_v$$

Agenda for this Class

- 1. Shallow Embedding model node2vec
- 2. Deep Embedding model GNN (GraphSage)

Questions???

Acknowledgements

Most of the slides are motivated from <a href="https://www.2018.com/ww/www.2018.com/www.2018.com/www.2018.com/www.2018.com/www.2018.com