

Inversão não-linear: Métodos Heurísticos

Prof. André L. A. dos Reis

Objetivos da aula

- * Os métodos por gradiente (revisão)
- * Métodos Heurísticos
- * Exemplos:
 - Algoritmo genético
 - Simulated annealing

Os métodos por gradiente

Modelagem direta: sintoniza manualmente o conjunto de parâmetros e compara com os dados observados

 $\mathbf{p} = egin{bmatrix} p_1 \ dots \ p_M \end{bmatrix} \qquad \mathbf{d}^p = egin{bmatrix} d_1^p \ dots \ d_N^p \end{bmatrix}$

 $\mathbf{d}^o = egin{bmatrix} d_1^o \ dots \ d_N^o \end{bmatrix}$

 $\nabla \psi(\mathbf{p}) = \mathbf{0}$ O gradiente da função de ajuste

Vetor de dados observados

Função de ajuste

Curvas de nível

 $\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{d}^p\|_2^2 \text{ Achar o mínimo dessa função iterativamente}$

Existem dois tipos de métodos que minimizam estas funções:

Métodos por gradiente (Determinísticos)

Métodos por gradiente :

- Steepest descent
- Newton
- Gauss-Newton
- Levenberg-Marquardt

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$$

Sistema de equações

Steepest Descent : 1/η

Newton : $\mathbf{H}(\mathbf{p}_0)$

Gauss-Newton : $\mathbf{J}^{\mathsf{T}}(\mathbf{p}_0)\mathbf{J}(\mathbf{p}_0)$

Levenberg-Marquardt : $\mathbf{J}^{\mathsf{T}}(\mathbf{p}_0)\mathbf{J}(\mathbf{p}_0) + \lambda\mathbf{I}$

Métodos heurísticos

Os métodos heurísticos

Existem dois tipos de métodos que minimizam estas funções:

Métodos por gradiente (Determinísticos)

Métodos Heurísticos

Os métodos heurísticos

Métodos Heurísticos:

- Simulated Annealing
- Colônia de formigas
- Algoritmo Genético
- Busca Tabu
- Busca dispersa

São métodos por busca feitos por algoritmos para encontrar soluções para um dado problema.

A vantagem é que neste tipo de otimização alguns procedimentos matemáticos são dispensados, tais como derivadas e outros cálculos.

Algoritmo genético (AG)

seleção natural das espécies, no qual aqueles indivíduos mais aptos tem mais chance de sobrevivência.

E uma ferramenta de otimização que se baseia na

AG em algumas etapas...

- 1. **Definição da população inicial** : Um conjunto de indivíduos escolhidos aleatoriamente dentro dos limites de busca;
- 2. Avaliação da população: Aptidão desta população inicial em minimizar a função objetivo;
- 3. **Seleção dos pais**: Selecionar os indivíduos mais aptos dentre os membros da população.
- 4. **Crossover** : A etapa de cruzamento é onde os pais são pareados e gerarão uma geração de indivíduos mais aptos geneticamente.
- 5. Mutação: Aqui alguns indivíduos irão sofre mutação de forma aleatória.
- 6. **Avaliação da população** : O mesmo da etapa 2.
- 7. **Elitismo**: A replicação dos indivíduos mais aptos.

Simulated annealing (SA)

procura simular o resfriamento de um conjunto de átomos aquecidos.

Tem como fundamento a termodinâmica que

Até breve!