PMSNEVFR_EL1, Sampling Inverted Event Filter Register

The PMSNEVFR EL1 characteristics are:

Purpose

Controls sample filtering by events. The overall inverted filter is the logical OR of these filters. For example, if PMSNEVFR_EL1.E[3] and PMSNEVFR_EL1.E[5] are both set to 1, samples that have either event 3 (Level 1 unified or data cache refill) or event 5 (TLB walk) set to 1 are not recorded.

Configuration

This register is present only when FEAT_SPEv1p2 is implemented. Otherwise, direct accesses to PMSNEVFR EL1 are undefined.

Attributes

PMSNEVFR_EL1 is a 64-bit register.

Field descriptions

E[<x>], bit [x], for x = 63 to 48, 31 to 24, 15 to 12

E[<x>] is the event filter for implementation defined event <x>.

E[<x>]</x>	Meaning
0b0	Event <x> is ignored.</x>
0b1	Do not record samples that have event $\langle x \rangle == 1$.

An implementation defined event might be recorded as a multi-bit field. In this case, the corresponding bits of PMSNEVFR_EL1 define an implementation defined filter for the event.

This bit is ignored by the PE when \underline{PMSFCR} $\underline{EL1}$. \underline{FnE} == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When event $\langle x \rangle$ is not implemented, or filtering on event $\langle x \rangle$ is not supported, access to this field is **RAZ/WI**.

Bits [47:32]

Reserved, RAZ/WI.

E[23], bit [23]

When FEAT_SPEv1p4 is implemented and event 23 is implemented:

Data not snooped.

E[23]	Meaning
0b0	Data snooped event is ignored.
0b1	Do not record samples that have the Data snooped event == 1.

This field is ignored by the PE when PMSFCR EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[22], bit [22]

When FEAT_SPEv1p4 is implemented and event 22 is implemented:

Not recently fetched.

E[22]	Meaning
0b0	Recently fetched event is
	ignored.
0b1	Do not record samples that have
	the Recently fetched event $== 1$.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[21], bit [21]

When FEAT_SPEv1p4 is implemented and event 21 is implemented:

Cache data not modified.

E[21]	Meaning
0b0	Cache data modified event is
	ignored.
0b1	Do not record samples that have
	the Cache data modified event
	== 1.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[20], bit [20]

When FEAT SPEv1p4 is implemented and event 20 is implemented:

Level 2 data cache hit.

E[20]	Meaning
0b0	Level 2 data cache miss event is
	ignored.
0b1	Do not record samples that have
	the Level 2 data cache miss
	event == 1.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[19], bit [19]

When FEAT SPEv1p4 is implemented and event 19 is implemented:

No level 2 data cache access.

E[19]	Meaning
0b0	Level 2 data cache access event
	is ignored.
0b1	Do not record samples that have
	the Level 2 data cache access
	event == 1.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[18], bit [18]

When FEAT_SVE is implemented and FEAT_SPEv1p1 is implemented:

Not empty predicate.

E[18]	Meaning
0b0	Empty predicate event is ignored.
0b1	Do not record samples that have the Empty predicate event == 1.

This field is ignored by the PE when PMSFCR EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When FEAT SVE is implemented and FEAT SPEv1p1 is implemented:

Not partial predicate.

E[17]	Meaning
0b0	Partial predicate event is
	ignored.
0b1	Do not record samples that have
	the Partial predicate event $== 1$.

This field is ignored by the PE when $\underline{PMSFCR_EL1}$.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[16], bit [16] When FEAT TME is implemented:

Not transactional.

E[16]	Meaning
0b0	Transactional event is ignored.
0b1	Do not record samples that have
	the Transactional event $== 1$.

This field is ignored by the PE when PMSFCR EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[11], bit [11] When FEAT_SPEv1p1 is implemented:

Aligned.

E[11]	Meaning
0b0	Misalignment event is ignored.
0b1	Do not record samples that have the Misalignment event == 1.

This field is ignored by the PE when \underline{PMSFCR} $\underline{EL1}$. \underline{FnE} == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[10], bit [10]

When (FEAT_SPEv1p4 is implemented or filtering on event 10 is optionally supported) and event 10 is implemented:

No remote access.

E[10]	Meaning
0b0	Remote access event is ignored.
0b1	Do not record samples that have
	the Remote access event $== 1$.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[9], bit [9]

When (FEAT_SPEv1p4 is implemented or filtering on event 9 is optionally supported) and event 9 is implemented:

Last Level cache hit.

E[9]	Meaning
0b0	Last Level cache miss event is
	ignored.
0b1	Do not record samples that have
	the Last Level cache miss event
	== 1.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[8], bit [8]

When (FEAT_SPEv1p4 is implemented or filtering on event 8 is optionally supported) and event 8 is implemented:

No Last Level cache access.

E[8]	Meaning
0b0	Last Level cache access event is
	ignored.
0b1	Do not record samples that have
	the Last Level cache access event
	== 1.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[7], bit [7]

Correctly predicted.

E[7]	Meaning
0b0	Mispredicted event is ignored.
0b1	Do not record samples that have
	the Mispredicted event $== 1$.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

E[6], bit [6]

Taken.

E[6] Meaning

0b0	Not taken event is ignored.
0b1	Do not record samples that have
	the Not taken event $== 1$.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

E[5], bit [5]

TLB hit.

E[5]	Meaning
0b0	TLB walk event is ignored.
0b1	Do not record samples that have the TLB walk event == 1.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

E[4], bit [4] When FEAT_SPEv1p4 is implemented or filtering on event 4 is optionally supported:

No TLB access.

E[4]	Meaning
0b0	TLB access event is ignored.
0b1	Do not record samples that have the TLB access event == 1.

This field is ignored by the PE when PMSFCR EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[3], bit [3]

Level 1 data or unified cache hit.

E[3]	Meaning
0d0	Level 1 data or unified cache refill
	event is ignored.
0b1	Do not record samples that have
	the Level 1 data or unified cache
	refill event $== 1$.

This field is ignored by the PE when <u>PMSFCR EL1</u>.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

E[2], bit [2]

When FEAT_SPEv1p4 is implemented or filtering on event 2 is optionally supported:

No Level 1 data cache access.

E[2]	Meaning
0b0	Level 1 data cache access event is
	ignored.
0b1	Do not record samples that have
	the Level 1 data cache access
	event == 1.

This field is ignored by the PE when PMSFCR EL1.FnE == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

E[1], bit [1]

When the PE supports sampling of speculative instructions:

Speculative.

E[1]	Meaning
0b0	Architecturally executed event is
	ignored.

```
Do not record samples that have the Architecturally executed event == 1.
```

This field is ignored by the PE when \underline{PMSFCR} $\underline{EL1}$. $\underline{FnE} == 0$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, RAZ/WI.

Bit [0]

Reserved, RAZ/WI.

Accessing PMSNEVFR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSNEVFR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1001	0b001

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' ||
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0'
then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HDFGRTR EL2.nPMSNEVFR EL1
== '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
```

```
elsif EL2Enabled() && MDCR EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        X[t, 64] = NVMem[0x850];
    else
        X[t, 64] = PMSNEVFR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' | | MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR EL3.EnPMSN == '0'
then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = PMSNEVFR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = PMSNEVFR\_EL1;
```

MSR PMSNEVFR_EL1, <Xt>

op0 op1	CRn	CRm	op2
---------	-----	-----	-----

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0'
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.nPMSNEVFR_EL1
== '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        NVMem[0x850] = X[t, 64];
    else
        PMSNEVFR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0'
then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64 Instructions Index by Encoding

External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.