```
import numpy as np
import pandas as pd
```

import the dataset

dataset=pd.read_csv('/content/drive/MyDrive/Mall_Customers.csv')
dataset.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	1
0	1	Male	19	15	39	'
1	2	Male	21	15	81	
2	3	Female	20	16	6	
3	4	Female	23	16	77	
4	5	Female	31	17	40	

X = dataset.iloc[:, [3, 4]].values

To find the optimal number of clusters

Apply DBSCAN algorithm

from sklearn.cluster import DBSCAN
dbscan=DBSCAN(eps=3,min_samples=4)

fitting the model

model=dbscan.fit(X)
labels=model.labels_
labels

-, -, -, -, -, -, -, -, -, -, -,

-1 is noise

0-8 are clusters

Calculating the number of clusters

```
n_clusters=len(set(labels))- (1 if -1 in labels else 0) n_clusters
```

9

plt.scatter(X[:, 0], X[:,1], c = labels, cmap= "plasma") # plotting the clusters
plt.xlabel("Income") # X-axis label
plt.ylabel("Spending Score") # Y-axis label
plt.show()

• ×