

深度學習 - RNN, LSTM, Transformer(Self-Attention), ViT

黃志勝 (Tommy Huang) 義隆電子 人工智慧研發部 國立陽明交通大學 AI學院 合聘助理教授 國立台北科技大學 電資學院合聘助理教授

Sequence-to-sequence

Sequence-to-sequence (Seq2seq)

Input a sequence, output a sequence

The output length is determined by model.

Recurrent Neural Network (RNN)

· RNN和一般MLP的差異就是引進了具有記憶功能的「狀態(State)」

RNN

Recurrent Neural Network (RNN)

RNN

在RNN訓練期間,因為梯度會傳遞到最前一層做乘積,在前面課程提過層數一多可能會發生梯度消失和爆炸的問題,在RNN也是,傳遞不但跟層數相關和時間也先關,可以想像時間等於層數的概念,因此在RNN是很可能發生梯度消失/爆炸。

RNN

forget gate

$$f_t = \sigma (W_f x_t + U_f h_{t-1} + b_f)$$

Input gate

$$i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)$$

Cell State

$$c'_{t} = tanh(W_{c}x_{t} + U_{c}h_{t-1})$$

 $c_{t} = (f_{t}c_{t-1} + i_{t}c'_{t})$

Output gate

$$o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)$$

$$h_t = o_t \tanh(c_t)$$

Convolutional Recurrent Neural Network)

來源: https://github.com/qjadud1994/CRNN-Keras

Transformer (Seq2Seq)

- Sequence-to-sequence: Seq2Seq
- Encoder: takes the input sequence and maps it into a higher dimensional space (n-dimensional vector).
- That abstract vector is fed into the Decoder which turns it into an output sequence.

The

but

be

are

<pad>-

The

will

never be

perfect

applicatio

should

just

this

what we

are

missing

opinion

<EOS>

but

Single-Head Attention

Scaled Dot-Product Attention

Multi-Head Attention

Reference: Attention Is All You Need (2017)

Q: Query

K: Key

V: Value

Single-Head Self-Attention

Attention Score

$$\alpha_{00} = < q(0), k(0) >$$

 $\alpha_{01} = < q(0), k(1) >$

•••

$$\alpha_{0T} = < q(0), k(T) >$$

Attention Score at q(0)

Q: Query

K: Key

V: Value

Q: Query

K: Key

V: Value

用大矩陣直接運算QKV

$$q(1)$$
 w^{q}
 w^{k}
 w^{v}
 $x(1)$

$$q(0)=W^qx(0)$$

$$k(0)=W^kx(0)$$

$$v(0)=W^vx(0)$$

$$q(1)=W^qx(1)$$

$$k(1)=W^kx(1)$$

$$v(1)=W^{v}x(1)$$

$$q(T)=W^qx(T)$$

$$k(T)=W^kx(T)$$

$$v(T)=W^{v}x(T)$$

$$\mathbf{Q}_{d \times T} = \begin{bmatrix} \mathbf{q}(0) & \mathbf{q}(1) & \cdots & \mathbf{q}(T) \\ d \times 1 & d \times 1 \end{bmatrix} = \begin{bmatrix} \mathbf{W}\mathbf{q} & \mathbf{x}(0) & \mathbf{x}(1) & \cdots & \mathbf{x}(T) \\ d \times 1 & d \times 1 & d \times 1 \end{bmatrix}_{d \times T}$$

$$\mathbf{K}_{d \times T} = \begin{bmatrix} \mathbf{k}(0) & \mathbf{k}(1) & \cdots & \mathbf{k}(T) \\ d \times 1 & d \times 1 \end{bmatrix} = \begin{bmatrix} \mathbf{W}^{\mathbf{k}} & \mathbf{x}(0) & \mathbf{x}(1) & \cdots & \mathbf{x}(T) \\ d \times 1 & d \times 1 & d \times 1 \end{bmatrix}$$

$$\mathbf{v}_{d \times T} = \begin{bmatrix} \mathbf{v}(0) & \mathbf{v}(1) & \cdots & \mathbf{v}(T) \\ d \times 1 & d \times 1 \end{bmatrix} = \begin{bmatrix} \mathbf{v}(0) & \mathbf{v}(1) & \cdots & \mathbf{v}(T) \\ d \times 1 & d \times 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}(0) & \mathbf{x}(1) & \cdots & \mathbf{x}(T) \\ d \times 1 & d \times 1 \end{bmatrix} d \times T$$

用大矩陣直接運算A

$$\begin{array}{l} \alpha_{00} = < {\it q}(0), {\it k}(0) > \\ \alpha_{01} = < {\it q}(0), {\it k}(1) > \\ ... \\ \alpha_{0T} = < {\it q}(0), {\it k}(T) > \end{array}$$

Attention Score at q(0)

$$\begin{bmatrix} \alpha_{00} & \alpha_{10} & \cdots & \alpha_{T0} \\ \alpha_{01} & \alpha_{11} & \cdots & \alpha_{T1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{0T} & \alpha_{1T} & \cdots & \alpha_{TT} \end{bmatrix} = \begin{matrix} \text{Attention Score Matrix} \\ = A = < Q, K > = K^T Q \\ = T \times T \end{matrix} = \begin{matrix} T \times T & T \\ T \times T & T \end{matrix} = \begin{matrix} T \times T & T \\ T \times T & T \end{matrix}$$

 K^T $T \times d$

 \mathbf{Q}

Attention Score Matrix

$$\begin{bmatrix} \alpha_{00} & \alpha_{10} & \dots & \alpha_{T0} \\ \alpha_{01} & \alpha_{11} & \dots & \alpha_{T1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{0T} & \alpha_{1T} & \dots & \alpha_{TT} \end{bmatrix} = A$$

$$\xrightarrow{\text{Softmax}} \widehat{A} = \begin{bmatrix} \alpha'_{00} & \alpha'_{10} & \dots & \alpha'_{T0} \\ \alpha'_{01} & \alpha'_{11} & \dots & \alpha'_{T1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha'_{0T} & \alpha'_{1T} & \dots & \alpha'_{TT} \end{bmatrix}$$

$$\widehat{A} = softmax(A)$$

Attention Score at q(0)

 $\forall i = 0,1,...,T$

用大矩陣直接運算O

$$\mathbf{O} = \begin{bmatrix}
\mathbf{o}(0) & \mathbf{o}(1) \\
d \times 1
\end{bmatrix} \underbrace{\mathbf{o}(1)}_{d \times 1} \underbrace{\mathbf{o}(T)}_{d \times 1} \underbrace{\mathbf{o}(T)}_{d \times 1} \underbrace{\mathbf{o}(T)}_{d \times 1} \underbrace{\mathbf{v}(0)}_{d \times 1} \underbrace{\mathbf{v}(1)}_{d \times 1} \underbrace{\mathbf{v}(T)}_{d \times 1} \underbrace{\mathbf{o}'(T)}_{d \times 1} \underbrace{\mathbf{o}'(T)}_{$$

矩陣直接運算Self-Attention

$$Q_{d \times T} = \begin{bmatrix}
q(0) & q(1) & \cdots & q(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
Wq & x(0) & x(1) & \cdots & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
k(0) & k(1) & \cdots & k(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
Wk & x(0) & x(1) & \cdots & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T) \\
d \times 1 & d \times 1
\end{bmatrix} = \begin{bmatrix}
V & x(T) & x(T)$$

$$\widehat{A} = softmax(A)$$

$$O = V\widehat{A}$$

 $O = V \times softmx(K^TQ)$

論文寫法

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

矩陣直接運算Self-Attention

論文寫法

$$O = V \times softmx(K^TQ)$$

差異在矩陣擺法,和一個 $\sqrt{d_k}$

K和Q在不同時間點上

d個維度相乘後的總和。

所以維度越大值越大,因此需要正規化(在右圖的Scale),將每一個值域拉到一致。

最簡單方式有d個維度就除上d

但論文第四頁內提到當維度很大的時候,預防梯度過小的問題,因此開根號。

論文提到的Self-Attention

The two most commonly used attention functions are additive attention [2], and dot-product (multiplicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor of $\frac{1}{\sqrt{d_k}}$. Additive attention computes the compatibility function using a feed-forward network with a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is much faster and more space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code.

Reference: 李宏毅老師

Multi-head Self-attention

· 相關性在不同的位置可能有不同類別,所以需要多Multi-head來讓模型可以得到更多不同位置的表示。

Many of the attention heads exhibit behaviour that seems related to the structure of the sentence.

Multi-head Self-attention

輸入是有訊續的x(0), x(1), ..., x(T),但在前面介紹的Attention是沒有考慮順序性的。

因為架構沒有順序(位置)資料,所以在Transformer中每一個位置給予一個positional vector(e_i , $\forall i=0,1,...,T$),整個過程稱為position encoding。

Transformer Encoder Lx MLP Norm Multi-Head Attention Norm Embedded Patches

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

ViT-L/16表示的是large model使用的是16*16的patch

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	-
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Big Transform: BiT

Input Attention

CNN and Self-Attention

Fig 1: Both <u>images</u> are similar for a CNN as it does not consider the relative positioning of facial features

https://towardsdatascience.com/isthis-the-end-for-convolutional-neuralnetworks-6f944dccc2e9

CNN and Self-Attention

CNN Receptive field

Self - Attention

