

Impact of Big Data on SoC Design

Memory Design and HBM

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

Memory Design and HBM

Memory Designs	
DDR/mDDR and GDDR	
RAM Cells	
HBM via 2.5D IC and 3D IC	
Discussion	

Market of Memory Design

Prices of six generations of DRAMs

- ■DRAM 16kbit → 64Mbit (1978-2001)
 - \$1/1977 ~ \$2.95/2001
- DRAM 1Mbit

Amazingly

 \bullet >\$5000/1977 \rightarrow \$0.35/2000 \rightarrow \$0.08/2001 (\approx 1977)

■DRAM → NAND Flash

Memory Design Types

- •RAM, ROM
- •SRAM, DRAM
 - DRAM: SDRAM/DDR...
- OTP/MTP
 - MTP: PROM, EPROM, EEPROM (E²PROM)
- Flash (NVRAM): NAND, NOR
 - 3D NAND, Xpoint
- SSD (NAND Flash)

SRAM, Static Random-Access Memory

1T-SRAM Cell sizes (µm²/bit or mm²/Mbit)							
Process node		250 nm	180 nm	130 nm	90 nm	65 nm	45 nm
6T-SRAM	bit cell	7.56	4.65	2.43	1.36	0.71	0.34
	with overhead	11.28	7.18	3.73	2.09	1.09	0.52
1T-SRAM	bit cell	3.51	1.97	1.10	0.61	0.32	0.15
11-SKAW	with overhead	7.0	3.6	1.9	1.1	0.57	0.28
1T-SRAM-Q	bit cell			0.50	0.28	0.15	0.07
11-3KAWI-Q	with overhead			1.05	0.55	0.29	0.14

SRAM is faster and more expensive than DRAM; it is typically used for CPU cache while DRAM is used for a computer's main memory.

DRAM, Dynamic Random-Access Memory ® 作時代以来

DRAM, SDRAM (synchronous) & ADRAM

Difference by the read style Sync. DRAM (SDRAM), Async. DRAM

Difference by the datarate, SDRAM has Single Data Rate (SDR) Double Data Rate (DDR) Quad Data Rate (QDR)

From applications Graphics (GDDR) From power consumption, DDR, LPDDR (mDDR)

DRAM 1T1C Cell
Word Line
Bit Line

When DRAM is integrated with other modules (ex. CPU), it is called embedded DRAM (eDRAM)

Layouts of SRAM and DRAM

•SRAM – 6T

● DRAM - 1T1C

OTP - PROM

- One-Time Programmable (OTP)
- Typical OTP PROM
 - Wen Tsing Chow in 1956
- New OTP
 - Resistive RAM (RRAM | ReRAM)

MTP – EPROM & EEPROM

- Multi-Time Programmable (MTP) Memory
- Erasable Programmable Read-Only Memory, EPROM
- Electrically Erasable Programmable Read-only memory, EEPROM
 - EEPROM or E²PROM, are Floating-Gate Transistors
 - Floating-Gate tech by Simon M. Sze & Dawon Khang, 1967
 - FRAM (or FeRAM), MRAM are new

New Memory: NVRAM

- Ferroelectric RAM (FRAM or <u>FeRAM</u>) → E2PROM
 - popular high-к gate dielectric HfO2 (Sharp, Panasonic)
 - CBRAM (conductive-bridging RAM)
 - PCM (phase-change memory)
- Magnetic RAM (MRAM) → E2PROM
 - In production by <u>Everspin Technologies</u>, GF, Samsung

NAND Flash and NOR Flash

Both NAND & NOR types by Fujio Masuoka, at Toshiba 1985: US 4531203

- NAND Flash
 - Toshiba, 1989; ONFI

- NOR Flash
 - Intel, 1988; XIP Tech

Multi-Level Cell (NAND Flash)

- SLC, Single-level cell, 1 bit/cell, 50k-100k times
- •MLC, Multi-level cell, ECC needed
- TLC, Triple-level cell, used in SSD
- QLC!
- Comparison

The floating-gate MOSFET (FGMOS)

NAND Flash and Floating-Gate

SSD

- Application Areas
 - Notebooks, Desktops, Consumer Electronic
 - Embedded market (vehicle, industry control, commercial)
 - Servers, Storage in D. Ctr, Enterprise
 - Mil, Aero, Med
- Interfaces, indcluing
 - Fibre Channel (128 Gbit/s, in Servers)
 - PCI Express (PCIe Gen3 x 4, 31.5 Gbit/s)
 - SAS (Serial Attached SCSI, 12.0 Gbit/s, Servers)
 - USB (10 Gbit/s) Serial ATA (SATA3.0, 6.0 Gbit/s) etc.

UFS (Universal Flash Storage) and UFS Card

- Consumer Electronics
 - digital cameras, mobile phones & consumer electronic devices
 - Nokia, Sony Ericsson, TI, STM, Samsung, Micron, SK Hynix.
- SCSI Archi. Model; MIPI Alliance/M-PHY
- To replace <u>eMMCs</u> and <u>SD cards</u>; also eUFS
- JEDEC: 2011 V1.0 | 2013 V2.0 | 2018 V3.0
 - Total Bandwidth: 0.3GB/s, 1.2GB/s, 2.9GB/s
 - max. 5.8Gbit/s per lane ...
- JEDEC: UFS Card: 2016 V1.0, 2018 V1.1

Memory Design & HBM

- Memory Designs: SRAM, DRAM, Flash
- DDR/mDDR & GDDR: SDRAM, LPDDR, GDDR
- RAM Cells: SRAM, DRAM, Flash
- HBM via 2.5D IC and 3D IC: Interposer, TSV
- Discussion: Applications

DDR

- Gen1 SDR (single datarate SDRAM)
- Gen2 DDR (SDRAM DDR)
- Gen3 DDR2
- Gen4 DDR3
- Gen5 DDR4
- **2017 DDR5**

mDDR (LPDDR)

Low Power DDR, LPDDR

 Synchronous DRAM, LPDDR SDRAM, used in mobile, mDDR or Mobile DDR

LPDDR/2/3/4

- <u></u>			
43	LPDDR2₽	LPDDR3₽	LPDDR4₽
内部核心时钟 (MHz)。	200₽	200₽	200₽
总线时钟 (MHz)₽	400₽	800₽	1600₽
数据速率 (Mbps)₽	800₽	1600₽	3200₽
带宽 (GB/s)₽	6. 4₽	12. 8₽	25. 6₽
预取 (prefetch)↓	4n₽	8n₽	16n₽
电压 VDD2/VDDQ/VDD1@	1. 2V/1. 2V/1. 8V	1. 2V/1. 2V/1. 8V	1. 1V/1. 1V/1. 8V
指令/地址总线。	10 bits, DDR	10 bits, DDR₽	6 bits, SDR₽
Bank 数₽	4/8₽	8₽	8/ch (16)
容量₽	64Mb~8Gb∂	4Gb~32Gb₽	8Gb~32Gb₽
接口。	HSUL_12₽	HSUL_12(可选 ODT)₽	LVSTL₽
I/0 类型。	x16/x32₽	x16/x32	2ch x16₽
封装₽	MCP/PoP₽	MCP/PoP₽	MCP/PoP

注: 预取(prefetch)代表缓存大小(buffer size)。例如上表中 LPDDR3, 其。 prefetch 为 8n, 代表每个预取的"数据字数(datawords)"为 8。。

GDDR

Graphics Double Data Rate, GDDR

性能↩	GDDR3₽	GDDR5₽	
电压 VDD, VDDQ₽	1.5V, 1.35V₽	1.5V, 1.35V₽	ę.
时钟(MHz)₽	800/9000	1750₽	٥
数据倍率。	2.0	4.0	ته
数据传输率(Gbps)↓	1. 6/1. 84	6, 7, 8₽	ę.
I/0 宽度₽	(4), 8,164	32/16₽	٥
存储块(Bank)数&	8₽	16₽	Ç
预取↩	8n₽	8n₽	Þ
突发长度ҫ	4(Burst Chop),8₽	8₽	٠
典型颗粒容量(Gb)₽	1~2.	2~8₽	ت
循环冗余检验(Cyclic			Ç
Redundancy Check, CRC)↓	<mark>¥/A-</mark> 不适用₽	Yes 适用↩	
封装。	BGA-78/96	BGA170₽	Ç

Memory Design & HBM

- Memory Designs: DRAM, SRAM, Flash
- DDR/mDDR & GDDR: sdram, lpddr, gddr

- HBM via 2.5D IC and 3D IC: Interposer, TSV
- Discussion: Applications

Digital Standard Cells and Memory Cells

- Combinational (or non-regenerative) logic
 - AND, OR, BUF; NAND, NOR, INV
 - Decoder/Encoder; Mux; XOR/XNOR; Add/Sub/ALU
 - PUN (pull-up network), PDN (pull-down network)
- Sequential (or regenerative) logic
 - Latches/FFs; registers (D/FF), counters, oscillators,
 - State-Machine; Memory
 - Memory: ROM, RAM (SRAM, DRAM)

RAM Cell Structure and Timing

- SRAM
 - Inputs/Outputs
 - Structure (RAM Cell): add (decoder), bit-line, word-line
 - Timing
 - For read: t_AA, t_ACS, t_OE, t_OZ, t_OH
 - (Access from add/chip_sel/out_en/out_dis/out_hold)
 - For write: t_AS, t_AH, t_CSW, t_WP, t_DS, t_DH
 - (Access_setup_before/acc_hold_after/chip_sel_before/write_pulse/ data setup before/data hold after)
- DRAM

3D NAND Cell

3D NAND Controller IC

	型묵	制程	DRAM	支持 Flash	Flash 通道	支持接口	接回协议	ECC
	88NV1160	28nm	N	2D/3D TLC	4	PCIe3.0 x2	AHCI & NVMe1.3	LDPC
	88NV1120	28nm	N	2D/3D TLC	2	SATA 3.0	AHCI	LDPC
Marvell	88551084	28nm	Υ	3D TLC/QLC	4	PCle3.0 x4	NVMe1.3	LDPC
	88551100	28nm	Y	3D TLC/QLC	8	PCIe3.0 x4	NVMe1.3	LDPC
	SM2263XT	28nm	N	3D TLC/QLC	4	PCle3.0 x4	NVMe1.3	LDPC
慧荣	SM2258XT	40nm	N	3D TLC	4	SATA 3.0	AHCI	LDPC
	SM2262EN	28nm	Y	3D TLC/QLC	8	PCIe3.0 x4	NVMe1.3	LDPC
	PS5008-E8T	40nm	N	2D/3D TLC	4	PCle3.0 x2	NVMe1.2	SmartECC
群联	PS3111-S11	40nm	N	2D/3D TLC	2	SATA 3.0	AHCI	LDPC
PS56	PS5012-E12	28nm		3D TLC/QLC	14.	いの微信	号: chinaflash	nræncke

来源:中国闪存市场网 www. chinaflashmarket.com

Memory Design & HBM

- Memory Designs: DRAM, SRAM, Flash
- DDR/mDDR & GDDR: sdram, lpddr, gddr
- RAM Cell: SRAM, DRAM, Flash
- HBM via 2.5D IC and 3D IC: Interposer, TSV
- Discussion: Applications

HBM via 3D IC

- Existing 4 Packaging Standards
 - Wide-IO (Samsung); HBM (AMD, Nvidia, Hynix);
 - HMC (Micron); CoWoS & InFO (TSMC)
- HBM via 3D IC and HBM via 2.5D IC
 - 3D IC (TSV + μBumps); 2.5D IC (Interposer, w/ KGD)
 - Components: DRAMs (DDR, SDRAM), GPU, ...
 - FC and BGA
- HBM via FPGA (ex. Xilinx)

HBM for AI (RAM+GPU/CPU) Available

- HBM for CPU/GPU
- Gen1
- Gen2
 - 1024-bit word? 256 Gbps band
- Gen3? X4
 - 4096-bit word? 1024 Gbps band (>1 Tbps)

HBM via 3D IC and 2.5D IC

HBM at Samsung

- Samsung HBM2 Flarebolt's performance: 2.0Gbps at 1.35V
- HBM2 GDDR5 data transmission speed calculation
 - 8GB HBM2 package's data bandwidth:

• 2.4Gbps per pin x 1024bit bus = 307.2GBps

- 4 HBM2 package in a system:
 - 307.2GBps x 4 = appr. 1.2TBps
 - 8Gb GDDR5 die's data bandwidth:
 - 8Gbps per pin x 32bit bus = 32GBps

Memory Design & HBM

- Memory Designs: DRAM, SRAM, Flash
- DDR/mDDR & GDDR: sdram, lpddr, gddr
- RAM Cell: SRAM, DRAM, Flash
- HBM via 2.5D IC and 3D IC: Interposer, TSV
- Discussion: Applications

Applications of Memory Cells

- DRAM Market
 - Old: PC 10% decrease
 - New: Mobile, Server, Auto
 - Future: Al Edge Computing (Video Survelliance)
 - MEC (Mobile Edge Computing)
 - Related: Grid Computing
- NAND Market
 - SSD
 - Mobile

3D NAND

Global Number of Leading Inventors on 3D NAND Flash

