T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte II)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Anteriormente, vimos alguns exemplos de aplicação de algoritmos de *classificação*:
 - Detecção de spam.
 - Análise de sentimentos.
 - Reconhecimento de objetos, faces, letras/dígitos.
- Definimos o problema da classificação e concluímos que ele também é um problema de *aprendizado supervisionado*.
- Aprendemos que as classes são separadas através de *funções discriminantes* e que o desafio é encontrar funções adequadas e seus respectivos pesos.
- A partir desta aula, começaremos a discutir como encontrar os pesos.

- Como vimos, o objetivo da *classificação* é usar as características (i.e., vetores de atributos, x) de, por exemplo, um e-mail ou imagem, para identificar a qual classe ele pertence.
- Um classificador linear atinge esse objetivo tomando uma decisão (e.g., os ifs e elses) com base no valor de combinações lineares dos atributos em relação aos pesos, ou seja, na saída de uma ou mais funções discriminantes lineares.

• Portanto, a saída de um *classificador linear* é dada por

$$\hat{y} = h_{a}(x) = f(g(x)) = f(a_{0} + \dots + a_{K}x_{K}) = f(\sum_{k=0}^{K} a_{k}x_{k}) = f(a^{T}x)$$
, onde $h_{a}(x)$ é conhecida como **função hipótese de classificação**, $x = \begin{bmatrix} 1, x_{1}, \dots, x_{K} \end{bmatrix}^{T}$ é o vetor de atributos com o primeiro elemento sendo o atributo de *bias*, $x_{0} = 1$, e $f(.)$ é uma **função de limiar de decisão**.

- Função de limiar de decisão é uma função que mapeia a saída da função discriminante linear, g(x), na saída desejada, ou seja, na classe C_q , $q=1,\ldots,Q$, do objeto.
- Ela é apenas uma formalização matemática para os ifs e elses que usamos para decidir as classes dos exemplos (i.e., atributos) de entrada.
- Na teoria original dos classificadores lineares, as *funções discriminantes* seguiam equações de hiperplanos: $\sum_{k=0}^{K} a_k x_k$.

Classes linearmente separáveis.

Classes não-linearmente separáveis.

- Dado um *conjunto de treinamento*, a tarefa do *classificador* é a de *aprender* uma *função hipótese de classificação*, $h_a(x)$, que receba um exemplo de entrada (e.g., x_1 e x_2) e retorne a classe do exemplo.
- Para que um classificador linear aprenda uma boa separação, as classes devem ser linearmente separáveis.
- Isso significa que as classes devem ser suficientemente separadas umas das outras para garantir que a superfície de decisão seja um hiperplano.

Classes linearmente separáveis.

Classes não-linearmente separáveis.

- Classes que podem ser separadas por um hiperplano são chamadas de linearmente separáveis.
- Na primeira figura, a fronteira de decisão é definida por uma função discriminante que tem formato de uma reta:

$$g(\mathbf{x}) = 1 - x_1 - x_2.$$

- Na segunda figura, devido à proximidade das classes, não existe um *hiperplano* que as separe.
- Originalmente, classificação linear é usada quando as classes podem ser separadas por superfícies de decisão lineares.
- Ou seja, as funções discriminantes são hiperplanos: $\sum_{k=0}^{K} a_k x_k$.

- Mas e se não pudermos separar as classes com um *hiperplano*, ou seja, se elas não forem *linearmente separáveis*?
- Nestes casos, usamos funções discriminantes não-lineares, como, por exemplo, polinômios:
 - $g(x) = (x_1 a)^2 + (x_2 b)^2 r^2$, Círculo centrado em (a, b) e com raio r.
 - $g(x) = \frac{(x_1-a)^2}{c^2} + \frac{(x_2-b)^2}{d^2} 1$, Elipse centrada em (a,b), com largura 2c e altura 2d.
 - $g(x) = (x_1 a)(x_2 b) c$, Hipérbole retangular com eixos paralelos às suas assíntotas.

• As função discriminantes não-lineares aplicam transformações não-lineares aos atributos originais, levando ao aumento das dimensões de entrada. Por exemplo:

$$g(x) = (x_1 - a)^2 + (x_2 - b)^2 - r^2$$

$$= x_1^2 - 2ax_1 + x_2^2 - 2bx_2 + (a^2 + b^2 - r^2)$$

$$= a_1 z_1 + a_2 z_2 + a_3 z_3 + a_4 z_4 + a_0$$

• Essas transformações realizam *mapeamentos não-lineares dos atributos* para um *espaço de dimensão superior* onde as classes possam ser mais facilmente separadas.

Função de limiar de decisão

 Para o exemplo ao lado, podemos definir a função hipótese de classificação como duas condições:

$$\hat{y} = h_{a}(x) = \begin{cases} 0, & g(x) = x^{T} a < 0 \text{ (Classe 1)} \\ 1, & g(x) = x^{T} a \ge 0 \text{ (Classe 2)} \end{cases}$$
if each of the proof of the pr

- Percebam que a saída da função hipótese de classificação é binária, ou seja, como temos 2 classes, temos apenas 2 possíveis valores de saída, 0 ou 1.
- O mapeamento entre o valor da função discriminante, g(x), e a saída 0 ou 1 é feito através da **função de limiar de decisão**, f(g(x)).
- Como implementar essas *condições* através de uma função matemática?

Função de limiar de decisão rígido

- Uma função de limiar de decisão simples que faz o mapeamento do valor de g(x) em 2 valores de saída é chamada de função de limiar de decisão rígido.
- A *função de limiar de decisão rígido* é mostrada na figura ao lado e é definda como

$$f(g(\mathbf{x})) = \begin{cases} 0, & g(\mathbf{x}) < 0 \\ 1, & g(\mathbf{x}) > 0 \end{cases}$$
Indeterminado,
$$g(\mathbf{x}) = 0$$

Conhecida também como função heaviside ou degrau unitário.

• Agora que a função hipótese de classificação, $h_a(x)$, tem uma forma matemática bem definida, precisamos pensar em como encontrar os pesos, a.

- Nós queremos encontrá-los de tal forma que o erro de classificação seja minimizado, i.e., que os exemplos sejam classificados corretamente.
- No caso da *regressão linear*, nós fizemos isso de duas maneiras:
 - i. de forma fechada (através da equação normal) fazendo a derivada parcial do erro em relação aos pesos igual a zero e resolvendo a equação para os pesos;
 - ii. e através do algoritmo do *gradiente descendente*.
- Entretanto, com a função de limiar rígido, nenhuma das duas abordagens é possível devido à derivada de f(g(x)) ser igual a zero em todos os pontos exceto em g(x) = 0, onde ela é indeterminada.

Portanto, como podemos encontrar os pesos com essa limitação?

- Uma possível abordagem para o problema da aprendizagem quando utilizamos o limiar de decisão rígido é utilizar uma regra intuitiva de atualização dos pesos que converge para uma solução dado que exista uma função discriminante adequada e que as classes não se sobreponham.
- Essa *regra intuitiva de atualização dos pesos* é dada pela seguinte equação

$$a = a + \alpha (y(i) - h_a(x(i)))x(i), \forall i,$$

onde α é o passo de aprendizagem, o qual é sempre maior do que zero.

• A regra é idêntica à regra de atualização dos pesos para a *regressão linear* quando utilizamos o *gradiente descendente estocástico*.

$$a = a + \alpha (y(i) - h_a(x(i)))x(i), \forall i.$$

- Por razões que discutiremos mais adiante, esta regra é chamada de *regra* de aprendizagem do perceptron.
- Essa regra de aprendizagem é aplicada a um exemplo por vez, escolhido de forma aleatória, assim como fizemos com o gradiente descendente estocástico.
 - Ou seja, atualiza-se os pesos usando-se apenas um exemplo, tomado de forma aleatória do conjunto de treinamento, por vez.
- Como estamos considerando classificadores, os quais têm valores de saída iguais a 0 ou 1, o comportamento da regra de atualização será diferente do comportamento para a regressão linear, como veremos a seguir.

• Observem a equação de atualização dos pesos

$$\boldsymbol{a} = \boldsymbol{a} + \alpha \left(y(i) - h_{\boldsymbol{a}} (\boldsymbol{x}(i)) \right) \boldsymbol{x}(i),$$
 onde $\boldsymbol{a} = [a_0 \quad a_1 \quad \cdots \quad a_K]^T \in \boldsymbol{x}(i) = [x_0(i) \quad x_1(i) \quad \cdots \quad x_K(i)]^T.$

- Ambos, o valor esperado, y, e a saída da função hipótese de classificação, $h_a(x)$, assumem os valores 0 ou 1. Portanto, existem apenas 3 possibilidades.
- Primeira possibilidade
 - Se o valor de saída do classificador for igual ao esperado, i.e., $h_a(x(i)) = y(i)$, então $y(i) h_a(x(i)) = 0$.
 - Portanto, os pesos não são atualizados.

• Equação de atualização dos pesos

$$a = a + \alpha \left(y(i) - h_a(x(i)) \right) x(i).$$

- Segunda possibilidade
 - Se y(i) = 1, mas $h_a(x(i)) = 0$, então $a = a + \alpha x(i)$.
 - Assim, o k-ésimo peso, a_k , tem seu valor aumentado quando o valor de $a_k \times x_k$ é positivo e diminuído quando o valor de $a_k \times x_k$ é negativo.
 - o Isso faz sentido, pois nós queremos *aumentar* o valor de g(x), de tal forma que g(x) > 0 e, consequentemente, $h_a(x)$ tenha como saída o valor 1.
 - \circ Lembrando que $g(\mathbf{x}) = a_0 + a_1 x_1 + \dots + a_K x_K$.

• Equação de atualização dos pesos

$$a = a + \alpha \left(y(i) - h_a(x(i)) \right) x(i).$$

- Terceira possibilidade
 - Se y(i) = 0, mas $h_a(x(i)) = 1$, então $a = a \alpha x(i)$.
 - Assim, o k-ésimo peso, a_k , tem seu valor **diminuído** quando o valor de $a_k \times x_k$ é positivo e **aumentado** quando o valor de $a_k \times x_k$ é negativo.
 - o Isso faz sentido, pois nós queremos *diminuir* o valor de g(x), de tal forma que g(x) < 0 e, consequentemente, $h_a(x)$ tenha como saída o valor 0.
 - \circ Lembrando que $g(\mathbf{x}) = a_0 + a_1 x_1 + \dots + a_K x_K$.

- A *regra de aprendizagem do perceptron* converge para um *separador perfeito* quando:
 - As classes são suficientemente separadas umas das outras, ou seja, não se sobrepõem.
 - E existe uma *função discriminante adequada para o problema*, mesmo que não seja um *hiperplano*.
 - ✓ Ou seja, não precisa ser um problema linearmente separável.
- **Separador perfeito:** com erro de classificação igual a zero, ou seja, todos os exemplos são perfeitamente classificados.
- Porém, na prática essa situação não é muito comum.

- Quando as classes se sobrepõem, a regra de aprendizagem do perceptron falha em convergir para uma solução perfeita.
- Nesse caso, a regra não converge para uma solução *estável* para *valores fixos do passo de aprendizagem*, α, assim como acontece com o GDE.
- Não há convergência pois o objetivo é encontrar um erro de classificação igual a 0.

- Porém, se α decrescer de acordo com as iterações de treinamento, então a regra tem uma chance de convergir para uma solução de erro mínimo quando os exemplos são apresentados de forma aleatória.
 - Similar ao que fizemos com o GDE.
- Podemos também usar o early-stop e guardar os pesos que resultaram no menor erro de validação.

- Outro problema com classificadores que usam limiar de decisão rígido é a falta de informação sobre a confiança quanto a uma classificação.
- Na figura ao lado, dois exemplos estão bem próximos da *fronteira de decisão* enquanto outros dois estão bem distantes dela.
- Como o classificador com limiar de decisão rígido classificaria esses exemplos?

• Olhando para a função de *limiar de decisão rígido*, percebemos que o classificador faz predições *muito confiantes* sempre iguais 0 para g(x) < 0 e iguais a 1 quando g(x) > 0, independente se o exemplo está distante ou próximo da fronteira de decisão.

- Exemplos mais distantes da fronteira têm uma probabilidade maior de realmente pertencerem à classe da região onde se encontram e não serem outliers.
 - Quanto maior o valor absoluto de g(x), mais distante da fronteira está o exemplo.

Assim, usando *limiar ae aecisao rigiao*, os lois *pontos azuis* são classificados como pertencentes à *classe negativa* (valor 0) e o lois *triângulos vermelhos* classificados compertencentes à *classe positiva* (valor 1), nesmo tendo valores *absolutos de* g(x) *pem diferentes*.

- Pontos muito próximos de fronteira de decisão têm valor absoluto de g(x) próximo de zero.
- Já pontos muito distantes tens valor absoluto de g(x) muito maior do que zero.

- Assim, usando *limiar de decisão rígido*, os dois *pontos azuis* são classificados como pertencentes à *classe negativa* (valor 0) e os dois *triângulos vermelhos* classificados como pertencentes à *classe positiva* (valor 1), mesmo tendo valores *absolutos de* g(x) *bem diferentes*.
 - Pontos muito próximos da fronteira de decisão têm valor absoluto de g(x) próximo de zero.
 - Já pontos muito distantes têm valor absoluto de g(x) muito maior do que zero.

- Em resumo, pontos distantes da fronteira de decisão deveriam ter uma confiança (ou probabilidade) de pertencerem a uma determinada classe bem maior do que pontos próximos.
- Porém, isso não é refletido na saída do classificador com limiar de decisão rígido.
- Entretanto, em muitas situações, nós precisamos de predições mais graduadas, que indiquem incertezas quanto à predição.

Tarefas

- Quiz: "T320 Quiz Classificação (Parte II)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #2.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.

Obrigado!

