Reconstrucción de la masa transversa del bosón W en el canal de decaimiento muón, muón-neutrino CMS - OpenData

José Ibáñez, Kevin Platas

Física Experimental de Partículas I Facultad de Ciencias Físico Matemáticas Benemérita Universidad Autónoma de Puebla

22 de noviembre de 2021

Contenido

- Antecedentes
- 2 Eventos
- Procedimiento
- Resultados

Predicción teórica

TEORÍA UNIFICADA DE LA INTERACCIÓN DÉBIL Y ELECTROMAGNÉTICA ENTRE PARTÍCULAS ELEMENTALES.

Figura 1: Sheldon Glashow

Figura 2: Steven Weinberg

Figura 3: Abdus Salam

(Imágenes vía The Nobel Prize)

Descubrimiento

EXPERIMENTOS UA1 [1] Y UA2 [2] DEL CERN.

Figura 4: Simon van der Meer

Figura 5: Carlo Rubbia

(Imágenes vía The Nobel Prize)

Estudio experimental

Figura 6: Tipo de producción y decaimiento estudiado por las colisiones $p\bar{p}$ en los experimentos.

Modos de decaimiento

Figura 7: Decaimiento del bosón W^+ en un par quark-antiquark.

Figura 8: Decaimiento del bosón W^+ en un par leptón-antileptón

Branching Fractions

$$Br(u\bar{d}) : Br(c\bar{s}) : Br(t\bar{b}) : \\ Br(\nu_{e}e^{+}) : Br(\nu_{\mu}\mu^{+}) : Br(\nu_{\tau}\tau^{+}) \\ = 3 : 3 : 3 : 1 : 1 : 1 \\ \downarrow \\ Br(u\bar{d}) : Br(c\bar{s}) : \\ Br(\nu_{e}e^{+}) : Br(\nu_{\mu}\mu^{+}) : Br(\nu_{\tau}\tau^{+}) \\ = 3 : 3 : 1 : 1 : 1 \\ \downarrow \\ Br(hadrones) : \\ Br(\nu_{e}e^{+}) : Br(\nu_{\mu}\mu^{+}) : Br(\nu_{\tau}\tau^{+}) \\ = 6 : 1 : 1 : 1$$

$$Br(\textit{hadrones}) = rac{2}{3} pprox 66.7 \%$$
 $Br(
u_e e^+) = rac{1}{9} pprox 11.1 \%$ $Br(
u_\mu \mu^+) = rac{1}{9} pprox 11.1 \%$ $Br(
u_ au au^+) = rac{1}{9} pprox 11.1 \%$

Propiedades

Tipo	Predicción teórica	Medición experimental
Hadrones	~ 66.7 %	$(67.41 \pm 0.27) \%$
$e^+ \nu_e$	~ 11.1 %	$(10.71 \pm 0.16)\%$
$\mu^+ \nu_{\mu}$	~ 11.1 %	$(10.63 \pm 0.15) \%$
$\tau^+ \nu_{ au}$	~ 11.1 %	$(11.38 \pm 0.21) \%$

Tabla 1: Información del Particle Data Group [3]

Propiedad	Valor promedio				
Masa	$80.379 \pm 0.012 \; \text{GeV}$				
Radio de masa W/Z	0.88147 ± 0.00013				
Diferencia de masa $(W^+ - W^-)$	$-0.029 \pm 0.028 \; \text{GeV}$				
Anchura	$2.085 \pm 0.042 \; \text{GeV}$				

Tabla 2: Información del Particle Data Group [3]

Mediciones actuales para la masa transversa

Figura 9: Masa transversa de W^+ en el canal de decaimiento $\mu^+ \nu$ [4]

Eventos Sample 5

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px

		Run	Event	pt	eta	phi	Q	chiSq	dxy	iso	MET	phiMET
C) 1	73389	489963747	29.3153	-0.1393	1.3561	1	0.8456	-0.0600	0.0000	30.6670	-2.1308
1	1 1	73389	490024840	44.1461	-1.3590	-0.5390	1	1.2943	-0.0126	26.3423	27.9521	-2.6686
2	2 1	73389	490102189	42.7895	-1.0193	2.3390	-1	0.8078	-0.0840	2.9748	5.1565	0.3061
3	3 1	73389	490092121	31.2215	-0.1270	-0.4889	-1	109.9490	0.0723	56.4897	4.2143	-0.1166
4	1 1	73389	490193981	36.9668	1.8557	1.3772	1	1.0597	-0.0676	41.4910	20.9963	-1.6251
999	95 1	71369	55073997	89.2292	1.1032	0.7624	-1	0.5443	-0.0168	0.2016	19.2938	2.3639
999	996 1	71369	55221533	37.6914	-1.3926	-0.6669	-1	0.6061	0.0832	0.5965	7.5065	2.1850
999	997 1	71369	55273989	31.2467	-0.1335	0.3830	-1	0.8857	0.0592	23.6527	23.0953	-3.1020
999	998 1	71369	55354925	42.7469	-0.3049	-0.5734	-1	1.4464	0.0818	24.3723	16.4557	2.1887
999	999 1	71369	55346997	36.4015	2.0057	2.0813	1	1.3507	-0.0880	0.5617	48.3986	-1.2394
100000 rows × 11 columns												

Aislamiento combinado total

Datos útiles (iso < 3)

Nivel de aceptación

Acceptance =

```
48, 773
  100,000
= 0.48773
= 48.773 % de los datos del Sample 5 se definieron como útiles.
```

Número de datos después del corte

Número de datos antes del corte

Momento transverso del muon

Momento transverso del neutrino

Ángulo respecto al eje x > 0 del muon

Ángulo respecto al eje x > 0 del neutrino

Definiciones

Primera definición

La masa invariante de un sistema formado por dos partículas sin masa, cuyos momentos forman un ángulo θ tiene una expresión:

$$M^2 = 2P_1P_2(1-\cos\theta)$$

Segunda definición

Para partículas sin masa, $m_1 = m_2 = 0$, tenemos que $E_T = P_T$ y la masa transversa de un sistema de dos partículas se reduce a:

$$M_T^2 = 2E_{T1}E_{T2}(1-\cos\theta)$$

Donde θ es el ángulo entre las partículas sobre el plano transverso.

Notamos que el llamado ángulo θ no es más que el ángulo $\Delta\phi$ con el que ya estamos familiarizados.

Definiciones

$$ext{Variables} = \left\{ egin{array}{ll} ext{pt} &
ightarrow & P_T^{\mu} \ ext{MET} &
ightarrow & P_T^{miss} \ ext{phi} &
ightarrow & \phi_{\mu} \ ext{phiMET} &
ightarrow & \phi_{miss} \end{array}
ight.$$

Definición	Muon	Neutrino
Coordenadas polares	$ec{P}_T^\mu = (P_T^\mu, \phi_\mu)$	$ec{P}_T^{ extit{miss}} = \left(P_T^{ extit{miss}}, \phi_{ extit{miss}} ight)$
Coordenadas cartesianas	$ec{P}_T^\mu = \left(P_{x}^\mu, P_{y}^\mu ight)$	$\vec{P}_T^{miss} = (P_x^{miss}, P_y^{miss})$
Módulo	$P_T^{\mu} = \sqrt{P_x^{\mu 2} + P_y^{\mu 2}}$	$P_T^{miss} = \sqrt{P_x^{miss^2} + P_y^{miss^2}}$

Relación entre coordenadas polares y cartesianas:

$$\begin{split} P_{x}^{\mu} &= P_{T}^{\mu} \cos \phi_{\mu} & P_{x}^{\textit{miss}} = P_{T}^{\textit{miss}} \cos \phi_{\textit{miss}} \\ P_{y}^{\mu} &= P_{T}^{\mu} \sin \phi_{\mu} & P_{y}^{\textit{miss}} = P_{T}^{\textit{miss}} \sin \phi_{\textit{miss}} \end{split}$$

Ecuaciones

La distancia c entre los puntos (P_x^{μ}, P_y^{μ}) y (P_x^{miss}, P_y^{miss}) está dada por:

$$\begin{split} c^2 &= \left(P_x^{\mu} - P_x^{\textit{miss}}\right)^2 + \left(P_y^{\mu} - P_y^{\textit{miss}}\right)^2 \\ &= P_x^{\mu 2} - 2P_x^{\mu}P_x^{\textit{miss}} + P_x^{\textit{miss}^2} + P_y^{\mu 2} - 2P_y^{\mu}P_y^{\textit{miss}} + P_y^{\textit{miss}^2} \\ &= \left(P_x^{\mu 2} + P_y^{\mu 2}\right) + \left(P_x^{\textit{miss}^2} + P_y^{\textit{miss}^2}\right) - 2\left(P_x^{\mu}P_x^{\textit{miss}} + P_y^{\mu}P_y^{\textit{miss}}\right) \\ &= P_T^{\mu 2} + P_T^{\textit{miss}^2} - 2\left(P_x^{\mu}P_x^{\textit{miss}} + P_y^{\mu}P_y^{\textit{miss}}\right) \end{split}$$

Por el Teorema del coseno, sabemos que:

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Donde el lado c es aquel opuesto al ángulo θ , justo lo que buscamos. Los lados a y b son nuestros vectores de momento, por lo que sustituyendo obtenemos:

$$\begin{split} P_{T}^{\mu 2} + P_{T}^{\textit{miss}^{2}} - 2 \left(P_{x}^{\mu} P_{x}^{\textit{miss}} + P_{y}^{\mu} P_{y}^{\textit{miss}} \right) &= P_{T}^{\mu 2} + P_{T}^{\textit{miss}^{2}} - 2 P_{T}^{\mu} P_{T}^{\textit{miss}} \cos \left(\Delta \phi \right) \\ - 2 \left(P_{x}^{\mu} P_{x}^{\textit{miss}} + P_{y}^{\mu} P_{y}^{\textit{miss}} \right) &= -2 P_{T}^{\mu} P_{T}^{\textit{miss}} \cos \left(\Delta \phi \right) \end{split}$$

Ecuaciones

$$P_{\scriptscriptstyle X}^{\mu}P_{\scriptscriptstyle X}^{\it miss}+P_{\scriptscriptstyle Y}^{\mu}P_{\scriptscriptstyle Y}^{\it miss}=P_{\scriptscriptstyle T}^{\mu}P_{\scriptscriptstyle T}^{\it miss}\cos\left(\Delta\phi\right)$$

De esta expresión, no tenemos los valores explícitos de P_x^μ , P_y^μ , P_x^{miss} y P_y^{miss} , pero con la relación entre coordenadas cartesianas y polares podemos reescribir la expresión como:

$$\begin{split} \left(P_{T}^{\mu}\cos\phi_{\mu}\right)\left(P_{T}^{\textit{miss}}\cos\phi_{\textit{miss}}\right) + \left(P_{T}^{\mu}\sin\phi_{\mu}\right)\left(P_{T}^{\textit{miss}}\sin\phi_{\textit{miss}}\right) &= P_{T}^{\mu}P_{T}^{\textit{miss}}\cos\left(\Delta\phi\right) \\ P_{T}^{\mu}P_{T}^{\textit{miss}}\left(\cos\phi_{\mu}\cos\phi_{\textit{miss}} + \sin\phi_{\mu}\sin\phi_{\textit{miss}}\right) &= P_{T}^{\mu}P_{T}^{\textit{miss}}\cos\left(\Delta\phi\right) \\ \cos\phi_{\mu}\cos\phi_{\textit{miss}} + \sin\phi_{\mu}\sin\phi_{\textit{miss}} &= \cos\left(\Delta\phi\right) \end{split}$$

Y obtenemos una ecuación para el ángulo entre P_T^{μ} y P_T^{miss} totalmente expresada en términos conocidos. Nuestras expresiones finales son:

$$\cos(\Delta\phi) = \cos\phi_{\mu}\cos\phi_{miss} + \sin\phi_{\mu}\sin\phi_{miss} \tag{1}$$

$$\Delta \phi = \arccos\left(\cos\phi_{u}\cos\phi_{miss} + \sin\phi_{u}\sin\phi_{miss}\right) \tag{2}$$

Ángulo entre P_T^μ y P_T^{miss}

Resultados

Masas transversas

Resultados

Comparativas

Referencias personales

Google Colaboratory - GitHub

Figura 10: github.com/joseiban

Figura 11: github.com/KevPlatas

Agradecimientos

Charged pion: *26 nanosecond decay*
Tau lepton: *0.29 picosecond decay*
W boson: *0.0000001 attosecond decay*
Proton:

(Imagen vía Reddit)

Referencias

G. Arnison, A. Astbury, B. Aubert, C. Bacci, G. Bauer, A. Bezaguet, R. Böck, T. Bowcock, M. Calvetti, T. Carroll et al., "Experimental observation of isolated large transverse energy electrons with associated missing energy at $\sqrt{s} = 540 \text{ GeV}$," Physics letters B, vol. 122, no. 1, pp. 103–116, 1983.

M. Banner, R. Battiston, P. Bloch, F. Bonaudi, K. Borer, M. Borghini, J.-C. Chollet, A. Clark, C. Conta, P. Darriulat et al., "Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN pp collider," Physics Letters B, vol. 122, no. 5-6, pp. 476-485, 1983.

P. A. Zyla, (Particle Data Group) et al., "Review of particle physics," Progress of Theoretical and Experimental Physics, vol. 2020, no. 8, p. 083C01, 2020.

The ATLAS Collaboration, "Measurement of the w-boson mass in pp collisions at $\sqrt{s} = 7$ tev with the atlas detector," arXiv preprint arXiv:1701.07240. 2017.