

Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

1. (Original) A composition comprising a synergistically effective active compound combination of anthranilamides of the formula (I)

in which

A¹ and A² independently of one another represent oxygen or sulfur,

X¹ represents N or CR¹⁰,

R¹ represents hydrogen or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₄-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino and R¹¹,

R² represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,

R³ represents hydrogen, R¹¹ or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, each of which is optionally mono- or

polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or

R² and R³ may be attached to one another and form the ring M,

R⁴ represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-trialkylsilyl or represents phenyl, benzyl or phenoxy, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-(alkyl)cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl, C₃-C₈-dialkylaminocarbonyl and C₃-C₆-trialkylsilyl,

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl,

C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkylthio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, cyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

G in each case independently of one another represents a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring which may optionally contain one or two ring members from the group consisting of C(=O), SO and S(=O)₂ and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy, or independently of one another represents C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₇-cycloalkyl, (cyano)-C₃-C₇-cycloalkyl, (C₁-C₄-alkyl)-C₃-C₆-cycloalkyl, (C₃-C₆-cycloalkyl)-C₁-C₄-alkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)alkyl may optionally be substituted by one or more halogen atoms,

J in each case independently of one another represents an optionally substituted 5- or 6-membered heteroaromatic ring, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

R⁶ independently of one another represents -C(=E¹)R¹⁹, -LC(=E¹)R¹⁹, -C(=E¹)LR¹⁹, -LC(=E¹)LR¹⁹, -OP(=Q)(OR¹⁹)₂, -SO₂LR¹⁸ or -LSO₂LR¹⁹, where each E¹ independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, N-S=O, N-CN or N-NO₂,

R⁷ represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-

alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl,

R⁹ represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulfinyl or halogen,

R¹⁰ represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, cyano or C₁-C₄-haloalkoxy,

R¹¹ in each case independently of one another represents in each case optionally mono- to trisubstituted C₁-C₆-alkylthio, C₁-C₆-alkylsulphenyl, C₁-C₆-haloalkylthio, C₁-C₆-haloalkylsulphenyl, phenylthio or phenylsulphenyl, where the substituents independently of one another may be selected from the list W, -S(O)_nN(R¹⁶)₂, -C(=O)R¹³, -L(C=O)R¹⁴, -S(C=O)LR¹⁴, -C(=O)LR¹³, -S(O)_nNR¹³C(=O)R¹³, -S(O)_nNR¹³C(=O)LR¹⁴ or -S(O)_nNR¹³S(O)₂LR¹⁴,

L in each case independently of one another represents O, NR¹⁸ or S,

R¹² in each case independently of one another represents -B(OR¹⁷)₂, amino, SH, thiocyanato, C₃-C₈-trialkylsilyloxy, C₁-C₄-alkyl disulfides, -SF₅, -C(=E¹)R¹⁹, -LC(=E¹)R¹⁹, -C(=E¹)LR¹⁹, -LC(=E¹)LR¹⁹, -OP(=Q)(OR¹⁹)₂, -SO₂LR¹⁹ or -LSO₂LR¹⁹,

Q represents O or S,

R¹³ in each case independently of one another represents hydrogen or represents in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino or (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino,

R¹⁴ in each case independently of one another represents in each case optionally mono- or polysubstituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino and (C₁-C₄-alkyl)-

C₃-C₆-cycloalkylamino or represent optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

R¹⁵ in each case independently of one another represents hydrogen or represents in each case optionally mono- or polysubstituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or N(R¹⁵)₂ represents a cycle which forms the ring M,

R¹⁶ represents C₁-C₁₂-alkyl or C₁-C₁₂-haloalkyl, or N(R¹⁶)₂ represents a cycle which forms the ring M,

R¹⁷ in each case independently of one another represents hydrogen or C₁-C₄-alkyl, or B(OR¹⁷)₂ represents a ring in which the two oxygen atoms are attached via a chain having two to three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C₂-C₆-alkoxycarbonyl,

R¹⁸ in each case independently of one another represents hydrogen, C₁-C₆-alkyl or C₁-C₆-haloalkyl, or N(R¹³)(R¹⁸) represents a cycle which forms the ring M,

R¹⁹ in each case independently of one another represents hydrogen or represents in each case mono- or polysubstituted C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, CO₂H, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-

trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W, C₁-C₆-haloalkyl, C₃-C₆-cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by W,

M in each case represents an optionally mono- to tetrasubstituted ring which, in addition to the nitrogen atom attached to the substituent pair R¹³ and R¹⁸, (R¹⁵)₂ or (R¹⁶)₂, contains two to six carbon atoms and optionally additionally a further nitrogen, sulfur or oxygen atom, where the substituents independently of one another may be selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy,

W in each case independently of one another represents C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, CO₂H, C₂-C₆-alkylaminocarbonyl, C₃-C₈-dialkylaminocarbonyl or C₃-C₆-trialkylsilyl,

n in each case independently of one another represents 0 or 1,

p in each case independently of one another represents 0, 1 or 2,

where, if (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or halogen and (b) R⁸ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, halogen, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈-dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹ and R¹² if present and (d) if R¹² is not present, at least one of the radicals R⁶ and R¹¹ is different from C₂-C₆-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl and C₃-C₈-dialkylaminocarbonyl, and where the compound of the general formula (I) may also be an N-oxide or salt,

and at least one insecticidally active compound from groups 2 below, selected from

A) benzoylureas, preferably

(2-1) chlorfluazuron (known from DE-A 28 18 830)

and/or

(2-2) diflubenzuron (known from DE-A 21 23 236)

and/or

(2-3) lufenuron (known from EP-A 0 179 022)

and/or

(2-4) teflubenzuron (known from EP-A 0 052 833)

and/or

(2-5) triflumuron (known from DE-A 26 01 780)

and/or

(2-6) novaluron (known from US 4,980,376)

and/or

(2-7) hexaflumuron (known from EP-A 0 071 279)

and/or

(2-8) bistrifluoruron (DBI-3204) (known from WO 98/00394)

and/or

(2-22) flufenoxuron (known from EP-A 0 161 019)

and/or

B) macrolides, preferably

(2-9) emamectin (known from EP-A 0 089 202)

and/or

C) diacylhydrazines, preferably

(2-10) methoxyfenozide (known from EP-A 0 639 559)

and/or

(2-11) tebufenozide (known from EP-A-339 854)

and/or

(2-12) halofenozide (known from EP-A 0 228 564)

and/or

(2-13) chromafenozide (ANS-118) (known from EP-A 0 496 342)

and/or

(2-14) Trichogramma spp. (known from The Pesticide Manual, 11th Edition, 1997, p. 1236)

and/or

(2-15) Verticillium lecanii (known from The Pesticide Manual, 11th Edition, 1997, p. 1266)

and/or

(2-16) fipronil (known from EP-A 0 295 117)

and/or

(2-17) ethiprole (known from DE-A 196 53 417)

and/or

(2-18) cyromazine (known from DE-A 27 36 876)

and/or

(2-19) azadirachtin (known from The Pesticide Manual, 11th Edition, 1997, p. 59)

and/or

(2-20) diofenolan known from DE-A 26 55 910)

and/or

(2-21) indoxacarb (known from WO 92/11249)

2. (Original) The composition as claimed in claim 1 comprising at least one active compound from the group of the anthranilamides of the formula (I-1) in which

in which

R² represents hydrogen or C₁-C₆-alkyl,
R³ represents C₁-C₆-alkyl which is optionally substituted by one R⁶,
R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
R⁶ represents -C(=E²)R¹⁹, -LC(=E²)R¹⁹, -C(=E²)LR¹⁹ or -LC(=E²)LR¹⁹, where each E² independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of one another represents O or NR¹⁸,
R⁷ represents C₁-C₄-haloalkyl or halogen,
R⁹ represents C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, S(O)_p-C₁-C₂-haloalkyl or halogen,
R¹⁵ in each case independently of one another represents hydrogen or represents in each case optionally substituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl and C₁-C₄-haloalkylsulfonyl,
R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
R¹⁹ in each case independently of one another represents hydrogen or C₁-C₆-alkyl,
p independently of one another represents 0, 1, 2.

3. (Currently Amended) The composition as claimed in claim 1 ~~or 2~~ comprising at least one active compound of group 2 selected from
 - (2-5) triflumuron
 - (2-22) flufenoxuron
 - (2-9) emamectin
 - (2-10) methoxyfenozide
 - (2-16) fipronil
 - (2-17) ethiprole
 - (2-21) indoxacarb.
4. (Currently Amended) The composition as claimed in claim 1, ~~2 or 3~~ comprising anthranilamides of the formula (I) and at least one active compound from group 2 in a ratio of 200:1 to 1:200.
5. (Canceled))
6. (Currently Amended) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 1, ~~2, 3 or 4~~ is mixed with extenders and/or surfactants.
7. (Currently Amended) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 1, ~~2, 3 or 4~~ are allowed to act on animal pests and/or their habitat.
8. (New) The composition as claimed in claim 2 comprising anthranilamides of the formula (I) and at least one active compound from group 2 in a ratio of 200:1 to 1:200.
9. (New) The composition as claimed in claim 3 comprising anthranilamides of the formula (I) and at least one active compound from group 2 in a ratio of 200:1 to 1:200.

10. (New) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 2 is mixed with extenders and/or surfactants.
11. (New) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 3 is mixed with extenders and/or surfactants.
12. (New) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 4 is mixed with extenders and/or surfactants.
13. (New) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 8 is mixed with extenders and/or surfactants.
14. (New) A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 9 is mixed with extenders and/or surfactants.
16. (New) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 2 are allowed to act on animal pests and/or their habitat.
17. (New) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 3 are allowed to act on animal pests and/or their habitat.
18. (New) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 4 are allowed to act on animal pests and/or their habitat.
19. (New) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 8 are allowed to act on animal pests and/or their habitat.
20. (New) A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 9 are allowed to act on animal pests and/or their habitat.