PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-213628

(43)Date of publication of application: 06.08.1999

(51)Int.Cl.

G11B 27/00 G11B 7/00 G11B 20/12 G11B 20/12

(21)Application number: 10-009906

(71)Applicant: TOSHIBA CORP

TOSHIBA AVE CO LTD

(22)Date of filing:

21.01.1998

(72)Inventor: HISATOMI SHUICHI

ILUY OTI

KIKUCHI SHINICHI TAIRA KAZUHIKO ANDO HIDEO

(54) RECORDING MEDIUM AND ITS REPRODUCING APPARATUS AND RECORDING AND REPRODUCING APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a recording and reproducing apparatus utilizing an optical disk assuring recording and reproducing operation which is available for retrieval and edition without requiring generation of complicated menu data. SOLUTION: This recording and reproducing apparatus generates, for retrieving an image recorded on an optical disk 10, a registration trigger automatically or based on user instruction with a microcomputer block, records a pointer indicating the recording position of main image as the index image to the predetermined area of the optical disk 10 via the data processor 36 and disk drive 32, moreover generates a compressed image data as the index image in an encoder section 50 and records this image data to a user menu file on the optical disk 10 from a compressed image buffer memory 59 via the formatter 56, data processor 36, disk drive 32.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-213628

(43)公開日 平成11年(1999)8月6日

(51) Int.CI.6	徽別記号	Fl
G11B 27/00		G11B 27/00 D
7/00		7/00 Q
20/12		20/12
	103	1 0 3
		27/00 D
		審査請求 未請求 請求項の数11 OL (全 26
(21)出願番号	特願平10-9906	(71)出頃人 000003078
		株式会社東芝
(22)出潁日	平成10年(1998) 1 月21日	神奈川県川崎市幸区堀川町72番地
		(71)出願人 000221029
		東芝エー・ブイ・イー株式会社
		東京都港区新橋 3 丁目 3 番 9 号
		(72)発明者 久富 秀一
		東京都港区新橋3丁目3番9号 東芝コ
		ー・ブイ・イー株式会社内
		(72)発明者 伊藤 雄司
		神奈川県川崎市幸区柳町70番地 株式会
		東芝柳町工場内
		(74)代理人 弁理士 鈴江 武彦 (外6名)
		最終頁に約

(54)【発明の名称】 記録媒体とその再生装置および記録再生装置

(57)【要約】

【課題】繁雑なメニューデータの作成を必要とせずに検索や編集を容易に行うことができる記録再生可能な光ディスクを用いた記録再生装置を提供する。

【解決手段】光ディスク10上に記録された画像の検索のために、マイクロコンピュータブロック30で自動的にまたはユーザの指示に基づき登録トリガを発生して、インデックス画像となる主画像の記録位置を示すポインタをデータプロセッサ36およびディスクドライブ32を介して光ディスク10の所定の領域に記録し、さらにエンコーダ部50内でインデックス画像となる縮小画像データを生成して、縮小画像バッファメモリ59からフォーマッタ56、データプロセッサ36およびディスクドライブ32を介して光ディスク10上のユーザメニューファイルに記録する。

【特許請求の範囲】

【請求項1】画像および音声の少なくとも一方の情報を含む主記録データを記録する記録再生可能な記録媒体において、

前記主記録データ中の特定の情報の記録位置を示す位置 情報が記録されていることを特徴とする記録媒体。

【請求項2】画像および音声の少なくとも一方の情報を含む主記録データを記録する記録再生可能な記録媒体において。

前記主記録データ中の特定の情報の記録位置を示す位置 10 情報が記録され、さらに前記主記録データ中の特定の情報を圧縮した圧縮情報が前記主記録データの記録エリア と異なる圧縮情報記録エリアに記録されていることを特徴とする記録媒体。

【請求項3】記録再生可能な記録媒体に記録された画像および音声の少なくとも一方の情報を含む主記録データを再生する再生装置において、

前記記録媒体に記録された、前記主記録データ中の特定 の情報の記録位置を示す位置情報を再生する手段を備え たことを特徴とする再生装置。

【請求項4】記録再生可能な記録媒体に記録された画像および音声の少なくとも一方の情報を含む主記録データを再生する再生装置において、

前記記録媒体に記録された、前記主記録データ中の特定の情報の記録位置を示す位置情報と、前記記録媒体の前記主記録データの記録エリアと異なる圧縮情報記録エリアに記録された、前記主記録データ中の特定の情報を圧縮した圧縮情報が再生する手段を備えたことを特徴とする再生装置。

【請求項5】記録再生可能な記録媒体を用いて、画像お 30 よび音声の少なくとも一方の情報を含む主記録データの 記録再生を行う記録再生装置において、

前記主記録データ中の特定の情報の記録位置を示す位置 情報を前記記録媒体上に記録する位置情報記録手段を備 えたことを特徴とする記録再生装置。

【請求項6】記録再生可能な記録媒体を用いて、画像および音声の少なくとも一方の情報を含む主記録データの記録再生を行う記録再生装置において、

前記主記録データ中の特定の情報の記録位置を示す位置 情報を前記記録媒体上に記録する位置情報記録手段と、 前記主記録データ中の特定の情報を圧縮した圧縮情報を 前記記録媒体上の前記主記録データの記録エリアと異な る圧縮情報エリアに記録する圧縮情報記録手段とを備え たことを特徴とする記録再生装置。

【請求項7】前記位置情報記録手段は、前記記録媒体上 に前記主記録データを記録する際、前記特定の情報を予 め定められた基準に従って自動的に検出し、この検出し た特定の情報の記録位置を示す位置情報を前記記録媒体 上に記録することを特徴とする請求項5または6記載の 記録再生装置。 【請求項8】前記圧縮情報記録手段は、前記記録媒体上に前記主記録データを記録する際、前記特定の情報を予め定められた基準に従って自動的に検出し、この検出した特定の情報を圧縮した圧縮情報を前記記録媒体上の前記圧縮情報記録エリアに記録することを特徴とする請求項6記載の記録再生装置。

【請求項9】前記位置情報記録手段は、前記記録媒体上 に前記主記録データを記録する際、前記特定の情報をユ ーザの指示により抽出し、この抽出した特定の情報の記 録位置を示す位置情報を前記記録媒体上に記録すること を特徴とする請求項5または6記載の記録再生装置。

【請求項10】前記圧縮情報記録手段は、前記記録媒体 上に前記主記録データを記録する際、前記特定の情報を ユーザの指示により抽出し、この抽出した特定の情報を 圧縮した圧縮情報を前記記録媒体上の前記圧縮情報記録 エリアに記録することを特徴とする請求項6記載の記録 再生装置。

【請求項11】前記特定の情報は特定の画像情報であり、前記圧縮情報記録手段は該画像情報を縮小処理して記録することを特徴とする請求項6、8、10のいずれか1項記載の記録再生装置。

【発明の詳細な説明】

[00001]

【発明の属する技術分野】本発明は、記録媒体とその再生装置および記録再生装置に係り、特にDVD-RAMのような記録再生可能な記録媒体およびこれを用いて画像や審声の記録再生を行う録再型DVDプレーヤに適用可能な記録再生装置に関する。

[00002]

【従来の技術】画像や音声のデータを記録した再生専用 光ディスクは、音楽用CD、レーザディスク、ビデオC Dなどとして既に実用化されている。また、動画像圧縮 の国際標準規格であるMPEG2 (Moving Picture Exp erts Group Phase2)およびAC3オーディオ圧縮方式を 用いたDVD規格が制定され、DVDビデオとして実用 化された。DVD規格は当初、再生専用、すなわちユー ザによる記録が不可能なROM型ディスクを想定してい たが、最近になり再生はもちろん、ユーザによる記録が 可能なDVD-RAM規格も制定された。

【0003】DVD-RAM規格は現在、コンピュータ 用のデータ記録再生装置に実用化されているが、当然の ことながら動画像や音声の記録再生を行うDVD記録再 生装置への応用も検討されている。DVD記録再生装置 へのDVD-RAM規格の応用を考えたとき、再生専用 であるDVD規格を基本としたDVDビデオやDVDオ ーディオの規格と同様にサーチを行うことができること が望まれる。

【0004】DVDビデオ規格では、ディスクタイトル 制作会社のためにVMG・VTSメニューを用意してい 50 る。これらのメニューは専用オーサリング機器を使用し て制作される。そして、再生時には通常のビデオデータ に加えてディスクの記録内容をメニュー表示させ、副映 像を利用したボタン表示等でユーザに選択させること で、希望個所の検索を可能としている。

【0005】一方、DVD-RAMを用いた動画像の記 録を行う場合、タイトルの制作をユーザが行うことにな り、またDVDビデオ規格でいうところのVMG・VT Sメニューデータを採用するとすれば、これらもユーザ が作成することになる。しかし、VMG・VTSメニュ ーデータを一般のユーザが作成することは、そのデータ 10 量の多さや、メニューデータ作成のために用意しなけれ ばならない必要機器等を考慮すると非常に困難であり、 現実的でない。さらに、記録再生可能なDVDの場合、 **主記録データ(映像・音声データ)を記録し直すという** 行為も頻繁に発生するが、VMG・VTSメニューデー タを用いると、主記録データを書き替える都度これらの メニューデータも書き替えなければならないことにな り、そのための作業量は膨大となってしまう。

[0006]

【発明が解決しようとする課題】上述したように、DV **D-RAMを用いて動画像や畜声の記録を行う場合、検** 索や編集の目的のために、主記録データの書き替えを想 定していないDVDビデオ規格で使用されているような VMG・VTSメニューデータを用いることは、ユーザ の負担が非常に大きく、実用的でないという問題があっ 1:0

【0007】本発明は、このような問題点を解消し、緊 維なメニューデータの作成を必要とせずに検索や編集を 容易に行うことができる記録再生可能な記録媒体とその 再生装置および記録再生装置を提供することを目的とす。30。 종 ·

[0008]

【課題を解決するための手段】上記の課題を解決するた め、本発明に係る記録媒体は、画像および音声の少なく とも一方の情報を含む主記録データを記録する記録再生 可能な記録媒体であって、主記録データ中の特定の情報 の記録位置を示す位置情報が記録されていることを特徴 とする。

【0009】また、本発明に係る記録媒体は、上記位置 情報に加えて、さらに主記録データ中の特定の情報を圧 40 縮した圧縮情報が主記録データの記録エリアと異なるエ リアに記録されていることを特徴とする。

【0010】本発明に係る再生装置は、記録媒体に記録 された、主記録データ中の特定の情報の記録位置を示す 位置情報を再生する手段を備えたことを特徴とする。

【0011】本発明に係る他の再生装置は、記録媒体に 記録された、主記録データ中の特定の情報の記録位置を 示す位置情報と、記録媒体の主記録データの記録エリア と異なる圧縮情報記録エリアに記録された、主記録デー 備えたことを特徴とする。

【0012】本発明に係る記録再生装置は、画像および 音声の少なくとも一方の情報を含む主記録データの記録 再生を行う記録再生装置において、主記録データ中の特 定の情報の記録位置を示す位置情報を記録媒体上に記録 する位置情報記録手段を備えたことを特徴とする。

【0013】また、本発明に係る記録再生装置は、さら に主記録データ中の特定の情報を圧縮した圧縮情報を記 録媒体上の主記録データの記録エリアと異なるエリアに 記録する圧縮情報記録手段を備えたことを特徴とする。 特定の情報とは典型的には特定の画像情報であり、圧縮。 情報記録手段は該画像情報を縮小処理して縮小画像とし て記録する。

【0014】位置情報記録手段は、記録媒体上に主記録 データを記録する際、特定の情報を予め定められた基準 に従って自動的に検出し、この検出した特定の情報の記 録位置を示す位置情報を記録媒体上に記録してもよい。 し、特定の情報をユーザの指示により抽出し、この抽出 した特定の情報の記録位置を示す位置情報を記録媒体上 に記録するようにしてもよい。

【0015】圧縮情報記録手段は、記録媒体上に前記主 記録データを記録する際、特定の情報を予め定められた 基準に従って自動的に検出し、この検出した特定の情報 を圧縮した圧縮情報を記録媒体上の圧縮情報記録エリア に記録してもよいし、特定の情報をユーザの指示により 抽出し、この抽出した特定の情報を圧縮した圧縮情報を 記録媒体上の圧縮情報記録エリアに記録するよいにして もよい。

【0016】本発明によると、記録媒体上に主記録デー タ中の特定の情報の記録位置を示す位置情報を記録した り、あるいは主記録データ中の特定の情報を圧縮した圧 縮情報を記録することにより、位置情報で示される記録 位置に記録された画像や音声の情報、あるいは圧縮情報 を再生時にメニューとして利用することで、ユーザが記 録媒体上の記録情報を直観的に把握することができる。 【0017】従って、このメニューからユーザが希望す る個所の検索を迅速に行うことが可能となり、また記録 媒体上の任意のエリアの情報の消去や置換などの編集作 業も効率的に行うことができる。

[0018]

【発明の実施の形態】以下、図面を参照して本発明の実 施の形態を説明する。本発明に係る記録再生装置の代表 的な一実施形態として、MPEG2に基づきエンコード された動画を可変ピットレートで記録・再生する装置、 例えばDVDディジタルビデオレコーダがある。

【0019】図1は、このDVDディジタルビデオレコ ーダに使用される記録可能な光ディスク 10の構造を説 明する斜視図である。図上に示すように、この光ディス クエロは、それぞれ記録磨エアが設けられた一刻の透明 タ中の特定の情報を圧縮した圧縮情報が再生する手段を 50 基板14を接稿層20で貼り合わせた構造を持つ。各基

.5

板 1.4 は 0. *6 mm厚のポリカーボネートで構成することができ、接着層 2.0 は極薄(例えば 4.0 μ m厚)の紫外線硬化性樹脂で構成することができる。これら一対の0.6 mm基板 1.4 を記録層 1.7 が接着層 2.0 の而上で接触するようにして貼り合わすことにより、1.2 mm厚の大容量光ディスク 1.0 が得られる。

【0020】光ディスク10には中心孔22が設けられており、ディスク両面の中心孔22の周囲には、この光ディスク10を回転駆動時にクランプするためのクランプエリア24が設けられている。中心孔22には、図示 10 しないディスクドライブ装置に光ディスク10が装填された際に、ディスクモータのスピンドルが挿入される。そして、光ディスク10は、そのクランプエリア24において、図示しないディスククランパにより、ディスク回転中クランプされる。

【0021】光ディスク10は、クランプエリア24の 周囲にビデオデータ、オーディオデータその他の情報を 記録することができる情報エリア25を有している。情 報エリア25のうち、外周側にはリードアウトエリア2 6が設けられており、クランプエリア24に接する内周 20 側にはリードインエリア27が設けられている。そし て、リードアウトエリア26とリードインエリア27と の間にデータ記録エリア28が定められている。

【0022】情報エリア25の記録層17には、記録トラックが例えばスパイラル状に連続して形成されている。その連続トラックは複数の物理セクタに分割され、これらのセクタには連続番号が付されている。このセクタを記録単位として、光ディスク10に種々なデータが記録される。

【0023】データ記録エリア28は、実際のデータ記 30 録領域であって、記録・再生情報として、映画等のビデ オデータ(主映像データ)、字幕・メニュー等の副映像 データおよび台詞・効果音等のオーディオデータが例え ば相変化マークとして記録されている。

【0024】光ディスク I 0 は記録・再生用のRAMディスクであり、記録層 I 7 は例えば2 つの硫化亜鉛・酸化シリコン混合物(2 n S・S I O2)の層によって例えば6 e2 S b2 T e5 層からなる相変化記録材料層を挟み込んだ3 重層により構成できる。記録・再生用の記録層 I 7を有する基板 I 4には、連続のグループが刻まれており、このグループに相変化記録層が設けられる。また、通常はグループの他にランド部分の相変化記録層も情報記録に利用される。

【0025】後述するDVDディジタルビデオレコーダは、DVD-RAMディスク(またはDVD-RWディスク)に対する反復記録・反復再生(読み書き)およびDVD-ROMディスクに対する反復再生が可能なように構成される。

【 0.0.2.6】 図 2 は、図 1 の光ディスク(D V D -R ん の がいまび D V D -R (追記型の D V D ディスク)など M) 1.0 のデータ記録エリア 2.8 とここに記録されるデ 50 のディスクタイプ、ディスクサイズ、記録密度、記録開

ータの記録トラックとの対応関係を説明する図である。ディスク L OがD V DーR A Mの場合は、デリケートなディスク面を保護するためにディスク L Oの本体がカートリッジ L L に収納される。D V DーR A M ディスク L Oがカートリッジ L L ごと後述する D V D ビデオレコーダのディスクドライブに挿入されると、カートリッジ L L からディスク L Oが引き出されて図示しないスピンドルモータのターンテーブルにクランプされ、図示しない光ペッドに向き合うようにして回転駆動される。

【0027】図1に示した情報エリア25の記録層17には、データ記録トラックがスパイラル状に連続して形成されている。その連続するトラックは図2に示すように一定記憶容量の複数論理セクタ(最小記録単位)に分割され、この論理セクタを基準にデータが記録されている。1つの論理セクタの記録容量は、後述する1パックデータ長と同じ2048バイト(あるいは2kバイト)に決められている。

【0028】データ記録エリア28は、実際のデータ記録領域であって、管理データ、主映像(ビデオ)データ、副映像データおよび音声(オーディオ)データが同様に記録されている。

【0029】図3は、図上および図2に示される映像情報や音楽情報の録再可能な情報記憶媒体としての光ディスク10に記録されるデータの階層構造を示している。光ディスク10に形成されたデータ記録エリア28は、図3に示すようなデータの階層構造を有している。この構造の論理フォーマットは、例えば標準規格の1つである1809660およびユニバーサルディスクフォーマット(UDF)ブリッジに準拠して定められている。

【0030】図3に示されるように、光ディスク10の内間側にリードインエリア27が設けられ、その外周側にリードアウトエリア26が設けられ、リードインエリア27からリードアウトエリア26までの間のデータ記録エリア28は、ボリュームスベース28として割り当てられ、このボリュームスペース28は、ボリュームおよびファイル構造の情報のための空間(ボリューム/ファイル管理領域70)およびDVD規格のアプリケーションのための空間(DVDデータ領域71)を有している。

70 【0031】リードインエリア27は、光反射面が凹凸形状をした読み出し専用のエンボス・ゾーン、表面が平坦な鏡面で形成されたミラー・ゾーン、情報の書き換えが可能な書換データ・ゾーンを有している。また、リードアウト領域26は、情報の書き換えが可能な書換データ・ゾーンで構成されている。

【0032】リードイン領域27のエンボス・データ・ ゾーンには、DVD-ROM(読み出し専用のDVDディスク)、DVD-ROM(記録再生用のDVDディスク)およびDVD-R(追記型のDVDディスク)などのディスクタイプ。ディスクサイブ、記録率度、記録問

始/記録終了位置を示す物理セクタ番号などの情報記憶 媒体全体に関する情報が記録され、また記録層17にデ ータを記録するに必要な記録パワーおよび記録パルス 幅、記録層17に記録されたデータを消去するに必要な 消去パワー、記録層17に記録されたデータを再生する に必要な再生パワー、および記録・消去時の線速などの 記録・再生・消去特性に関する情報が記録されている。 さらに、リードイン領域27のエンボス・データ・ゾー ンには、製造番号などそれぞれ上枚ずつの情報記憶媒体 の製造に関する情報が事前に記録されている。リードイ ンの書換データ・ゾーン27とリードアウト26の書換 データ・ゾーンには、それぞれ各情報記憶媒体毎の固有 ディスク名を記録するための記録領域、記録消去条件で 記録および消去が可能かを確認するための確認用試し記 **録領域、データ領域72内の欠陥領域の有無並びにその** 領域のアドレスに関する管理情報記録領域を有し、デー **夕領域72へのデータの記録を可能とするための予備処** 理がこの領域でなされ、また、その後のデータの記録、 消去並び再生に必要な情報が記録される。

【0033】ボリュームスペース28は、多数のセクタに物理的に分割され、それらの物理的セクタには連続番号が付されている。このボリュームスペース(データ記録エリア)28に記録されるデータの論理アドレスは、1809660およびUDドブリッジで定められるように、論理セクタ番号を意味している。ここでの論理セクタサイズは、物理セクタの有効データサイズと簡様に、2048バイト(2kバイト)とされ、論理セクタ番号は、物理セクタ番号の昇順に対応して連続番号が付加されている。

【0034】ボリュームスペース28は階層構造を行し、ボリューム/ファイル管理領域70、1以上のビデオ・オブジェクトからなるデータ領域72を含んでいる。これら領域70、72は、論理セクタの境界上で区分されている。ここで、1論理セクタは2048バイトと定義され、1論理プロックも2048バイトと定義されている。従って、1論理セクタは1論理プロックと同等と定義される。

【0035】ボリューム/ファイル管理領域70は、ユス圧縮された副映像データーザによる記録・書き換えが可能な書換データ・ゾーンであって、1809660 およびUDFブリッジに定め 40 92)が格納されている。 5 1809660 およびUDFブリッジに定め 40 92)が格納されている。 1 20039】ビデオ・オフス・オーディオ・ビデオデータのファイルまたはボリュオ・オブジェクト8 0 で設立した住職のシステムメモリ(図示せず)に格納される。通常、このボリューム/ファイル管理領域70は、1 20 合には、オーディオパックタ1 8 8 およびまたは副映像

【0.036】データ領域7.2には、図3に示すようにコ データ構造を有し、またビデオ・オブジェクト・セット ンピュータ・データとオーディオ・ビデオの混在記録が 8.0がオーディオ・オブジェクト 8.6 で構成される場合 には、ビデオ・パック 8.8 および副映像パック 9.2 を含 オーディオ・ビデオの記録順序、各記録情報サイズは任 50 まないオーディオバック 9.0 のみで構成されるデータ構

意で、コンピュータ・データが記録されている領域をコンピュータ・データ領域74-1、74-2と称し、また、オーディオ・ビデオ・データが記録された領域をオーディオおよびビデオ・データ領域76と称する。コンピュータ・データ領域74-1、74-2は、記録領域72にオーディオおよびビデオ・データのみが記録される場合には、その性質から特に設けられなくとも良く、同様にオーディオおよびビデオ・データのみが記録される場合には、その性質から特に設けられなくとも良い。コンピュータ・データ領域74-1、74-2およびオーディオおよびビデオ・データ領域76は、それぞれ1または複数ファイルで構成される。

【0037】オーディオおよびビデオ・データ領域76 には、図3に示すように録画(録音)、再生、編集およ び検索の各処理を行う時に必要な制御情報78および再 生対象、すなわち、コンテントとしての1または、複数 のビデオ・オブジェクト82、84、86からなるビデ オ・オブジェクト・セット80が記録される。ビデオ・ オブジェクト80には、コンテントがビデオ・データで あるビデオ・オブジェクト80、コンテントがスチル・ スライドなどの静止画、或いは、ビデオ・データ内の規 たい場所、検索用または編集用サムネール等のピクチャ ・データであるピクチャ・オブジェクト84、およびコ ンテントがオーディオ・データであるオーディオ・オブ ジェクト86がある。明らかなように、ビデオ・オブジ ェクト・セット80は、これらオブジェクト82.8 4、86の少なくとも上つで構成されれば十分であり、 全てのオブジェクト82、84、86を備える必要はな 30 い。 間様に、オブジェクト82,84,86は、それぞ れ工または複数ファイルで構成される。

【0038】1または複数のオブジェクト82、84、86で構成されるビデオ・オブジェクト・セット80は、図4に示されるようにMPEG2規格により圧縮されたビデオデータ(後述するビデオパック88)、所定規格により圧縮されあるいは非圧縮のオーディオデータ(後述するオーディオパック90)、およびランレングス圧縮された副映像データ(後述する1両素が複数ビットで定義されたビットマップデータを含む副映像パック92)が格納されている。

【0039】ビデオ・オブジェクト・セット80がビデオ・オブジェクト80で構成される場合には、図4に示すようなデータ構造を有し、ビデオ・オブジェクト・セット80がピクチャ・オブジェクト84で構成される場合には、オーディオパック90を含まないビデオ・パック88およびまたは副映像パック92のみで構成されるデータ構造を有し、またビデオ・オブジェクト・セット80がオーディオ・オブジェクト86で構成される場合には、ビデオ・パック88および副映像パック92を含まないオーディオバック90のみで構成されるデータ構造ないオーディオバック90のみで構成されるデータ構

造を有することとなる。

【0040】図4に示すように、論理上、ビデオ・オブ ジェクト・セット80、すなわちビデオ、ピクチャおよ びオーディオ・オブジェクト82、84、86は、複数 のセル94で構成され、各セル94は工以上のビデオオ ブジェクトユニット(VOBU)96により構成され る。

【0041】セル94内では、原則としてビデオオブジ ェクトユニット(VOBU)96はそのセル94内での オオブジェクトコニット85は、ビデオパック(Vパッ ク)88、副映像パック(SPパック)92、およびオ ーディオパック (A パック) 90の集合体 (パック列) であって、一定期間、例えば0.5から1.2秒の期間 で再生されるデータとして定義される。これらのパック は、データ転送処理を行う際の最小単位であって、論理 土セルを最小単位としてデータが処理される。

【0042】このビデオオブジェクトユニット(VOB U) 96には、識別番号 (IDN#k; k=0~k) が 付され、この識別番号によってビデオオブジェクトユニ 20 ット96を特定することができる。ビデオオブジェクト コニット(VOBU) 96の再生期間は、通常、ビデオ オブジェクトユニット(VOBU)96中に含まれる1 以上の映像グループ(グループオブピクチャ:略してG OP) で構成されるビデオデータの再生時間に相当して いる。通常、IGOPはMPEG2規格では約0.5秒 であって、その間に15枚程度のフレーム画像を再生す るように圧縮された画面データとされる。

【0043】尚、ビデオオブジェクトユニット(VOB U) 96がビデオデータを含む場合には、ビデオバック 30 88、副映像パック90およびオーディオパック91か ら構成されるGOP(MPEG規格準拠)が配列されて ビデオデータストリームが構成される。また、オーディ オおよび/または副映像データのみの再生データにあっ てもビデオオブジェクト・ユニット(VOBU)96を 工単位として再生データが構成される。例えば、ビデオ データのビデオ・オブジェクトVOBの場合と同様に、 そのオーディオデータが属するビデオオブジェクト・ユ ニット(VOBU)85の再生時間内に再生されるべき オーディオ・バック90が、そのビデオオブジェクトユ 40 ニット(VOBU) 96に格納される。

【0044】ビデオオブジェクトセット80を構成する ビデオオブジェクト82、84、86には、識別番号 (11) N#i;i=0~i)が付され、この識別番号に よってそのビデオオブジェクト82、84、86を特定 することができる。また、各セル94には、ビデオオブ ジェクト82、84、86の場合と同様に識別番号(C ___I DN#j) が付されている。

【0045】図5は、ビデオパック88、副映像パック 92 およびオーディオパック90の一般的構造を示して-50 れ、ビデオが再生される。ここでは、ビデオオブジェク

いる。これらのパックは、全て図2の論理セクタと閉様 に、2048バイト単位のデータで構成される。ビデ オ、オーディオおよび副映像パック88、90、92 は、図5に示すようにパックヘッダ98とパケット10 ①で構成されている。パケット100はパケットヘッダ を含み、このパケットヘッダには、デコードタイムスタ ンプ(DST)およびプレゼンテーションタイムスタン ブ(PTS)が記録されている。

【0046】図3に示される制御情報78は、再生時に 配列順序でデコードされ、再生される。そして、各ビデニ10 必要な制御情報を示す再生制御情報 1 () 2 、記録(録画 ・録音) 時に必要な制御情報を示す記録制御情報10 4、編集時に必要な制御情報を示す編集制御情報 106 およびビデオ・データ内の見たい場所検索用または編集 用サムネール(縮図)に関する管理情報を示す縮図制御 情報108を含んでいる。

> 【0047】図3に示される再生制御情報102は、図 6に示されるように管理情報テーブル(P-L-Y_MA T) 1 1 2 およびプログラム・チェーン (PGC) 情報 テーブル(PGCIT)110Y_11T)114を有 する。管理情報テーブル(PLY_MAT)112に は、図7に示すような情報が記述され、このプログラム チェーン(PGC)情報テーブル110は、図8に示 すようなデータ構造を有している。

> 【0048】図8に示されるように、プログラム・チェ ーン(PGC)情報テーブルエエロはインデックスシー ン情報120、PGC情報管理情報122、各PGC情 報をサーチするためのサーチ・ボインタ#1~#n12 4およびPGC情報#1~#n126から構成されてい

【0049】プログラム・チェーン(PGC)情報テー ブル110は、主としてプログラム・チェーン(PG C) とセルの再生順序に関する情報が記述され、ビデオ オブジェクト82に記録されたセル94のデータ、すな わち、ビデオオブジェクト・ユニットり6で構成される 実データとしてのムービー・データは、このプログラム ・チェーン(PGC)情報テーブル110の記述に従っ て再生される。このプログラム・チェーン(PGC)情 報テーブル110は、図8に示されるようにインデック スシーン情報120、PGC情報管理情報122、8P GC情報をサーチするためのサーチ・ポインタ#1~# n 1 2 4およびPGC情報# 1 ~# n 1 2 6から構成さ れている。インデックスシーン情報120には、インデ ックス画像として使用されるシーン(インデックスシー ン)のセル番号が記述される。

【0050】PGC番号が決定されれば、そのサーチボ インタエ24を参照することによってそのPGCの番号 に相当するPGCの再生するためのセルの再生順序が獲 得され、そのセルの再生順序に従ってビデオオブジェク **卜82から実データとしてのセル94のデータが獲得さ**

され、再生される。

ト82について説明したが、ピクチャ・オブジェクト8 4およびオーディオ・オブジェクト86についても同様 にプログラム・チェーン(PGC)情報テーブル110 の記述に従って、実データとしてのセルデータが取り出

【0051】ここで、PGCとはムービーストーリにおけるチャプタに相当し、セルの再生順序を指定した一連の再生を実行する単位を示している。換言すれば、1つのPGCを1本のドラマに例えれば、このPGCを構成する複数のセル9 4 はドラマ中の種々なシーンに対応すると解釈可能である。このPGCの中身(あるいはセルの中身)は、例えばディスク10に記録される内容を制作するソフトウエアプロバイダにより決定される。具体的には、図10(a)に示すようにあるビデオデータストリームがあるとすると、その内部はある一定時間内に再生されるビデオオブジェクト・ユニット96の集合がセル94に定められる。

【0052】ここで、ビデオオブジェクト・ユニット96は、原則的に連続していることから、後に説明するようにPGC情報テーブル110、より具体的には図8に示されるセル再生情報 130では、セルを構成する最初のビデオオブジェクト・ユニット96と最後のビデオオブジェクト・ユニット96でセル94が定義される。すなわち、セル再生情報 130には、図9に示されるようにセルを構成する再生データの開始アドレス134と終了アドレス136で指定した再生区間の情報が記述される。

【0053】こうしてセル94が定まると、そのセルの 再生順序を定めることによってPGCが構成される。例 30 えば、図10(b)に示すようにセルーA、セルーB、 セルーBの順序で再生されるように3つのセル96をセ ル再生情報のテーブルに配列することによってPGC# 」が定義される。同様にセルーD、セルーE、セルーF の順序で再生されるように3つのセル96をセル再生情報のテーブルに配列することによってPGC#2が定義 され、更にセルーQ、セルーR、セルーS、セルーT、 セルーUの順序で再生されるように5つのセル96をセ ル再生情報のテーブルに配列することによってPGC# 3が定義される。

【0054】ここで、PGC#1および#2を互いにリンクさせることによってあるチャプターに相当するPGC#2が再生される。換書すれば、連続してセルーAからセルー下が連続して再生される。PGC内では、その配列順序でセル94が再生されるが、PGCの構成の仕方およびPGCの再生順序は、任意であるので、例えば、あるPGCを他のPGCを構成するセル定義でき、また、リンクの仕方、すなわち、リンク情報を任意に定めることができることから、種々のストーリを作成、或いは、編

12

集することが可能となる。例えば、PGC#1に続いて PGC#3をリンクすることができ、また、PGC#1 とPGC#2に同一のセル、例えば、セルGを加えて異なるチャプターとすることができ、ユーザの選択によってPGC#1或いはPGC#2に続いてPGC#3をリンクさせることによって任意のストーリーを再現できることとなる。

【0055】図7に示すように再生管理テーブル112 には、再生制御情報である旨の識別子IDが記述され、 ビデオオブジェクトセット80の開始アドレス(VOB S SA)および終了アドレス(VOBS EA)が記 述され、制御情報 (CTLI) 102の終了アドレス (CTLI_EA) および再生制御情報 (PLYI) I 02の終了アドレス (PLYI__EA) が記述されてい る。また、この再生管理テーブル122には、この管理 情報が記録再生用DVDのフォーマットに属する旨の属 性(CAT)が記述され、オーディオ・ビデオ・データ 領域76に記録されるビデオオブジェクトセット中のビ デオの属性、例えば、NTSC方式、ワイド等の属性が 記述され、同様に記録されたビデオオブジェクトセット 中のオーディオストリームの数 (AST_Ns) 並びに その属性、例えば、圧縮方式等を記述したテーブル(A ST_ATR)が記述され、さらに、同様に記録された ビデオオブジェクトセット中の副映像ストリームの数。 (SPST_Ns) 並びにその属性等を記述したテープ ル (SPST ATR) が記述されている。また、オー ディオ・ビデオ・データ領域76にユーザがメニュー画 像データ、動画あるいは静止画のデータを独立したファ イルとして記録している場合には、ユーザメニューがあ る旨のフラグ(01)およびそのようなメニューがない 場合には、ユーザメニューがない旨のフラグ(00)が 記述され、オーディオ・ビデオ・データ領域76に縮小 画像が記録されている場合には、その縮小画像の代表的 なものであってその縮小画像の基となったPGCの番号 が記述されている。さらに、予約および制御情報78で 再生制御されるビデオオブジェクトセットのユーザによ る再生が終わっているか否かを示すフラグ(0:未再 生、1:再生済み)が記述されている。

【0056】図8に示すPGC情報管理情報(PGC_40 MAI)122には、図11に示すようにPGCの総数を示す情報が含まれ、PGC情報のサーチ・ボインタ124には、既に述べたように各PGC情報の先頭をボイントする情報が含まれ、PGCのサーチを容易にしている。PGC情報126は、図8に示されるPGC一般情報128および図8に示される1つ以上のセル再生情報130から構成されている。

(PGC_MAI_EA)、PGC情報のサーチ・ポインタ(PGC_SRP) 124の開始アドレス(PGC_SRP SRP SA) および終了アドレス(PGC_SRP EA)、全てのPGC情報(PGCI) 126の開始アドレス(PGCI_SA) および終了アドレス(PGCI_EA) 並びに全てのPGCの数(PGC_Ns) が記述されている。

【0058】PGC一般情報(PGC__GI) 128には、図12に示されるようにPGCの再生時間やセルの数を示す情報が含まれている。すなわち、PGC一般情報(PGC__GI) 128には、当該PGCの数、セルの数を記述したPGCの内容(PGC__CNT)、当該PGCの再生時間(C__SRP__SA)および終了アドレス(PGC__SRP__EA)、全てのPGC情報(PGCI) 126の開始アドレス(PGCI__SA)および終了アドレス(PGCI__SA)および終了アドレス(PGCI__SA)および終了アドレス(PGCI__SA)が記述されている。

【0059】PGC一般情報(PGC_GI)128には、図12に示されるようにPGCの再生時間やセルの数を示す情報が含まれている。すなわち、PGC一般情報(PGC_GI)128には、当該PGCの数、セルの数を記述したPGCの内容(PGC_CNT)、当該PGCの再生時間(PGC_PB_TM)、当該PGCに含まれるオーディオストリームを制御する情報が記述されたテーブル(PGC_AST_CTL)、当該PGCに含まれる副映像ストリームを制御する情報が記述されたテーブル(PGC_SPST_CTL)が記述されたテーブル(PGC_SPST_CTL)が記述されている。

【0060】また、PGC--般情報(PGC__G1)1 28には、当該PGCにリンクされるべきPGCに関す るリンク情報、例えば、前のPGC、次のPGC或いは 飛び先(GOup)PGCが記述されているPGCナビ ゲーション・コントロール(PGC_NV_CTL)、 副映像のパレットの色等に関する再規情報が記述されて いる副映像パレットテーブル(PGC_SP_PLT) およびPGCを構成するプログラムの一覧が記載された プログラムテーブル(図示せず)の開始アドレス(PG C___P G M A P___ S A)が記述されている。更に、この テーブル (PGC__G1) には、セル再生情報 (CEL L__PLY__1) 120の開始アドレス (CELL__P LY__1_SA)、当該PGCに関するユーザが作成し たメニュー・データがあるか否かのフラグ(01:メニ ュー・データあり、00:メニュー・データなし)、予 約、当該PGCのユーザによる再生が終了したか否かの フラグ(0:朱再生、1:再生済み)および当該PGC を今後も保存することを希望するか否かのフラグ(AR CHIVE Flag)、すなわち、永久保存すること を希望するか否かのフラグ(0:自由〔消去可〕、1: 永久保存)が記述されている。

【0061】図8に示されるインデックスシーン情報 1 50 クス画像として使用されるシーン)のセル番号が含まれ

4

20には、後述するポインタ記録モードによってインデックス画像として登録されるシーンのセル番号Nが記述される。

【0062】図8に示されるセル再生情報(CELL PLY_1)130は、図9に示されるように大きく分けてセル一般情報132とインデックスシーンポインタ情報134からなっている。

【0063】セル一般情報132には、図13に示され るように、セルのカテゴリ(C__CAT)、例えば該セ ルがブロックに属するか、属するならばそのブロックが アングルブロックか等が記述される。ここで、アングル ブブロックとは、アングルを切り替えが可能なブロック を意味している。また、アングル切替とは被写体映像を 見る角度(カメラアングル)を変えることを意味する。 具体的にロックコンサートビデオの例でいえば、同一曲 の演奏シーン (間一イベント) において、ボーカリスト 主体に捕らえたシーン、ギタリスト主体に捕らえたシー ン、ドラマー主体に捕らえたシーン等、様々な角度から のシーンを見ることができることを意味する。アングル 20 切替 (またはアングル変更) がなされるケースとして は、視聴者の好みに応じてアングル選択ができる場合 と、ストーリの流れの中で自動的に同一シーンがアング ルを変えて繰り返される場合(ソフトウエア制作者/プ ロバイダがそのようにストーリを構成した場合:あるい はDVDビデオレコーダのユーザがそのような編集を行 った場合)がある。

【0064】また、セルー般情報132には、図13に 示されるように、当該PGC中におけるセルの再生時間 (絶対時間)が記述され、当該セルのユーザによる再生 30 が終了したか否かのフラグ(0:未再生、土:再生済 み)および当該セルを今後も保存することを希望するか 否かのフラグ(ARCHIVE Flag)、すなわち 永久保存することを希望するか否かのフラグ(0:自由 上消去可1、1:永久保存)が記述されている。

【0065】また、セル一般情報 132には、図13に示されるように、セル開始アドレス(CELL_SA)および終了アドレス(CELL_EA)がセル中の最初と最後のビデオオブジェクトユニット(VOBU)のアドレスがビデオオブジェクトセット80の先頭からの相 対アドレスで記述され、さらにセル再生情報(CELL_PLY_1_EA)も記述されている。このセル再生情報終了アドレス(CELL_PLY_1_EA)も記述されている。このセル再生情報終了アドレス(CELL_PLY_1_EA)は、セルー般情報 132は一定長であるが、インデックスシーンポインタ情報 134の長さが不定のために設けられている。

%.

るPGC情報の光ディスク 10上の物理セクタ番号(これをインデックスシーンポインタアドレス(INDEX PT)という)が記述されている。インデックスシーンポインタアドレスは図 13ではM個あり、このMの数は可変である。

【0068】なお、インデックスシーン情報120へのセル番号の登録、およびインデックスシーンポインタ情報134の登録手順については、後に詳しく説明する。【0069】図3および図6に示される記録簡理テーブル114を含み、この記録管理テーブル114には記録制御情報104の終了アドレス(RECLEA)、記録管理テーブル114の終了アドレス(RECLAATEA)が記述され、記録管理に関する情報を書き込むための空き領域(FREESPACE)が設けられている。さらに、記録管理テーブル114には、このVOBSを保存することを希望するか否かのフラグ(ARCHIVEF1ag)、すなわち永久保存することを希望するか否かのフラグ(0:自由「消去可」、1:永久保存)が記述されている。

【0070】図3に示される縮図制御情報108は、ア 30 ンカー・ポインタ108-Aとピクチャアドレステーブ ル108-Bからなり、ピクチャアドレステーブル10 8-Bは、メニューインデックス情報1NFO1、イン デックスピクチャ情報1NFO2、スライド&スチル情報1NFO3、インフォメーションピクチャ情報1NF 04、欠陥エリア情報1NFO5および壁紙ピクチャ情報1NFO6を含んでいる。

【0071】図15は、図1のディスクに図3〜図14 で説明したような構造の情報を用いてディジタル動画情報を可変記録レートで記録再生する装置(DVDビデオ 40 レコーダ)の構成を例示している。

【0072】このDVDビデオレコーダの装置本体は、 概略的にはDVDーRAMまたはDVDーRディスクである光ディスク10を倒転駆動し、この光ディスク10 に対して情報の読み書きを実行するディスクドライブ部 (ディスクドライブ32、一時記憶部34、データプロセッサ36およびシステムタイムカウンタ38等を含む)と、記録側を構成するエンコーダ部50と、再生側を構成するデコーダ部60と、装置本体の動作を制御するマイクロコンピュータブロック30とで構成されてい 【0073】エンコーダ部50は、ADC (アナログ・ディジタル変換器) 52と、ビデオエンコーダ (Vエンコーダ) 53と、オーディオエンコーダ (Aエンコーダ) 54と、副映像エンコーダ (SPエンコーダ) 55と、フォーマッタ56と、バッファ57と 編小画像生

と、フォーマッタ56と、バッファ57と、縮小画像生成部58および縮小画像パッファメモリ59を備えている。

【0074】ADC52には、AV入力部42からの外部アナログビデオ信号+外部アナログオーディオ信号、あるいはTVチューナ44からのアナログTV信号+アナログ音声信号が入力される。このADC52は、入力されたアナログビデオ信号を例えばサンプリング周波数13.5MHz、量子化ビット数8ビットでディジタル化する。すなわち、輝度成分Y、色差成分Cr(またはY-R)および色差成分Cb(またはY-B)それぞれが8ビットで量子化される。また、ADC52は入力されたアナログオーディオ信号を例えばサンプリング周波数48kHz、量子化ビット数16ビットでディジタル20 化する。

【0075】なお、ADC52にアナログビデオ信号およびディジタルオーディオ信号が入力されるときは、ADC52はディジタルオーディオ信号をスルーパスさせる。このとき、ディジタルオーディオ信号の内容は改変せず、ディジタル信号に付随するジッタだけを低減させる処理、あるいはサンプリングレートや量子化ビット数を変更する処理等は行っても良い。一方、ADC52にディジタルビデオ信号およびディジタルオーディオ信号が入力されるときは、ADC52はディジタルビデオ信号およびディジタルオーディオ信号をスルーパスさせる。これらのディジタル信号に対しても、内容は改変することなく、ジッタ低減処理やサンプリングレート変更処理等は行っても良い。

【0076】 ADC52からのディジタルビデオ信号成分は、ビデオエンコーダ(Vエンコーダ)53を介してフォーマッタ56に送られる。また、ADC52からのディジタルオーディオ信号成分は、オーディオエンコーダ(Aエンコーダ)54を介してフォーマック56に送られる。

(7) 【0077】 Vエンコーダ53は、入力されたディジタルビデオ信号をMPEG2またはMPEG1規格に基づき、可変ピットレートで圧縮されたディジタル信号に変換する機能を有する。

【0078】 Aエンコーダ5 4 は、入力されたディジタルオーディオ信号をMPEGオーディオまたは A C - 3 規格に基づき、固定ビットレートで圧縮されたディジタル信号(またはリニアPCMのディジタル信号)に変換する機能を持つ。

を構成するデコーダ部60と、装置本体の動作を制御す 【0079】図4および図5に示すようなデータ構成のるマイクロコンピュータブロック30とで構成されてい 50 DVDビデオ信号、例えば副映像信号の独立出力端字付

DVDビデオプレーヤからの信号がAV入力部42から入力された場合、あるいはこのようなデータ構成のDVDビデオ信号が放送され、それがTVチューナ44で受信された場合は、DVDビデオ信号中の副映像信号成分(副映像パック)が副映像エンコーダ(SPエンコーダ)55に入力される。SPエンコーダ55に入力された副映像データは、所定の信号形態にアレンジされて、フォーマッタ56に送られる。

【0080】フォーマッタ56は、バッファメモリ57をワークエリアとして使用しながら、入力されたビデオ信号、オーディオ信号、副映像信号等に対して所定の信号処理を行い、前述したようなフォーマット(ファイル構造)に合致した記録データをデータプロセッサ36に出力する。

【0081】ここで、上記記録データを作成するための標準的なエンコード処理内容を簡単に説明しておく。すなわち、図15のエンコーダ部50においてエンコード処理が開始されると、ビデオ(主映像)データおよびオーディオデータのエンコードにあたって必要なパラメータが設定される。次に、設定されたパラメータを利用し 20 て主映像データがプリエンコードされ、設定された平均転送レート(記録レート)に最適な符号量の配分が計算される。こうしてプリエンコードで得られた符号量配分に基づき、主映像のエンコードが実行される。このとき、オーディオデータのエンコードも同時に実行される。

【0082】ブリエンコードの結果、データ圧縮量が不十分な場合、例えば録画しようとするDVDーRAMディスクまたはDVDーRディスクに希望のビデオプログラムが収まり切らない場合には、再度プリエンコードす 30 る機会を持てるなら、すなわち、例えば録画のソースがビデオテーブあるいはビデオディスクなどの反復再生可能なソースであれば、主映像データの部分的な再エンコードが実行され、再エンコードした部分の主映像データがそれ以前にプリエンコードした部分の主映像データがそれ以前にプリエンコードした主映像データ部分と置換される。このような一連の処理によって、主映像データおよびオーディオデータがエンコードされ、記録に必要な平均ビットレートの値が大幅に低減される。同様にして、副映像データをエンコードするに必要なパラメータが設定され、エンコードされた副映像データが作成さ 40 れる。

【0083】以上のようにしてエンコードされた主映像データ、オーディオデータおよび副映像データが組み合わされて、ビデオオブジェクトの構造に変換される。

【0084】すなわち、主映像データ(ビデオデータ)の最小単位としてのセルが設定され、図13に示すようなセル再生情報(C_PLY_1)が作成される。次に、プログラムチェーン(PGC)を構成するセルの構成、主映像、副映像およびオーディオの属性等が設定され(これらの属性情報の一部は、各データをエンコード 50

する時に得られた情報が利用される)、図3および図6を参照して説明した種々な情報を含めた再生制御情報102が作成される。

【0085】エンコードされた主映像データ、オーディオデータおよび副映像データは、図5に示すような一定サイズ(2048バイト)のパックに細分化される。これらのパックには、適宜、PTS(プレゼンテーションタイムスタンプ)、DTS(デコードタイムスタンプ)等のタイムスタンプが記述される。副映像のPTSについては、同じ再生時間帯の主映像データあるいはオーディオデータのPTSより任意に遅延させた時間を記述することができる。

【0086】そして、各データのタイムコード順に再生 可能なように、一定時間内に再生されるデータとしての VOBU96にまとめられ、このVOBU96を配置し ながら各データセルが定義され、複数のセルで構成され るVOBが構成される。このVOBを1以上まとめたV OBS80が、図4の構造にフォーマットされる。

【0087】DVDディスク+0に対して情報の読み書き (録画および/または再生)を実行するディスクドライブ部は、ディスクチェンジャ部+10と、ディスクドライブ32と、一時記憶部34と、データプロセッサ36と、システムタイムカウンタ (またはシステムタイムクロック; STC) 38とを備えている。

【0088】 時記憶部3 4は、ディスクドライブ32を介してディスク10に書き込まれるデータ(エンコーダ部50から出力されるデータ)のうちの一定量分をパッファイリングしたり、ディスクドライブ32を介してディスク10から再生されたデータ(デコーダ部60に入力されるデータ)のうちの一定量分をパッファイリングするのに利用される。

【0089】例えば、一時記憶部34が4Mバイトの半導体メモリ(DRAM)で構成されるときは、平均4Mbpsの記録レートでおよそ8秒分の記録または再生データのバッファリングが可能である。また、一時記憶部34が16Mバイトの王王PROM(フラッシュメモリ)で構成されるときは、平均4Mbpsの記録レートでおよそ30秒の記録または再生データのバッファリングが可能である。さらに、一時記憶部34が100Mバイトの超小型HDD(ハードディスク)で構成されるときは、平均4Mbpsの記録レートで3分以上の記録または再生データのバッファリングが可能となる。

【0090】一時記憶部34は、録画途中でディスク10を使い切ってしまった場合において、ディスク10が新しいディスクに交換されるまでの録画情報を一時記憶しておくことに利用できる。また、一時記憶部34はディスクドライブ32として高速ドライブ(2倍速以上)を採用した場合において、一定時間内に通常ドライブより余分に読み出されたデータを一時記憶しておくことにも利用できる。再生時の読み取りデータを一時記憶部3

4にバッファリングしておけば、振動ショック等で図示しない光ピックアップが読み取りエラーを起こしたときでも、一時記憶部34にバッファリングされた再生データを切り替え使用することによって、再生映像が途切れないようにできる。

【0091】図15のデータプロセッサ36は、マイクロコンピュータブロック30の制御に従って、エンコーダ部50からのDVD記録データをディスクドライブ32に供給したり、ディスク10から再生されたDVD再生信号をドライブ32から取り出したり、ディスク10 10に記録された管理情報を書き換えたり、ディスク10に記録されたデータ(ファイルあるいはVTS)の削除をしたりする。

【0092】マイクロコンピュータブロック30は、MPU(またはCPU)、制御プログラム等が書き込まれたROM、およびプログラム実行に必要なワークエリアを提供するRAMを含んでいる。

【0093】MPU30の実行結果のうち、DVDビデオレコーダのユーザに通知すべき内容は、DVDビデオレコーダの表示部48に表示され、またはモニタディス 20プレイにオンスクリーンディスプレイ (OSD) で表示される。

【0094】なお、MPU30がディスクチェンジャ部、ディスクドライブ32、データプロセッサ36、エンコーダ部50および/またはデコーダ部60を制御するタイミングは、STC38からの時間データに基づいて、実行することができる。録画・再生の動作は、通常はSTC38からのタイムクロックに同期して実行されるが、それ以外の処理は、STC38とは独立したタイミングで実行されてもよい。

【0095】デコーダ部60は、図5に示すようなパッ ク構造を育するDVD再生データから各パックを分離し て取り出すセパレータ62と、パック分離その他の信号 処理実行時に使用するメモリ63と、セパレータ62で 分離された主映像データをデコードするビデオデコーダ (Vデコーダ) 6 4 と、セパレータ 6 2 で分離された副 映像データ(副映像パック90の内容)をデコードする 副映像デコーダ(SPデコーダ)65と、セパレータ6 2で分離されたオーディオデータ (図9のオーディオパ ック91の内容)をデコードするオーディオデコーダ (Aデコーダ) 68と、Vデコーダ64からのビデオデ ータに S P デコーダ 6 5 からの副映像データを適宜合成 し、主映像にメニュー、ハイライトボタン、字幕その他 の副映像を重ねて出力するビデオプロセッサ66と、ビ デオプロセッサ66からのディジタルビデオ出力をアナ ログビデオ信号に変換するビデオ・ディジタル・アナロ グ変換器(V・DAC) 67と、Aデコーダ68からの ディジタルオーディオ出力をアナログオーディオ信号に 変換するオーディオ・ディジタル・アナログ変換器(A ・DAC)67を備えている。

【0096】 V・DAC67からのアナログビデオ信号およびA・DAC67からのアナログオーディオ信号は、A V出力部46を介して、図示しない外部コンポーネント(2チャネル~6チャネルのマルチチャネルステレオ装置+モニタT Vまたはプロジェクタ)に供給される。

【0097】次に、本実施形態のDVDビデオレコーダ における基本的なデータ処理動作、すなわち録画処理お よび再生処理について次に説明する。

【0098】録画時のデータ処理時には、まず、ユーザがキー入力することによってマイクロコンピュータブロック30のMPUが録画命令受けると、DVDディスク10からディスクドライブ32を通して必要な管理データを読み込み、書き込む領域を決定する。次に、決定された領域に記録データを書き込むように管理領域に設定し、ビデオデータの書き込みスタートアドレスをディスクドライブ32に設定し、データを記録する準備を行う。

【0099】ここで、設定する管理領域とは、ファイル を管理しているファイル管理部(ISO9660ではディレクトリデコードを指す)および制御情報78を指し、ファイル管理部に必要なバラメータを記録していく。

【0100】次に、マイクロコンピュータブロック30はSTC部38に時間のリセットを行う。ここで、STC38はシステムのタイマーでこの値を基準に緑画、再生を行う。その後、マイクロコンピュータブロック30はその他の各部の設定を実行する。

【0 1 0 1】ここで、ビデオ信号の流れは次のようになる。すなわち、まずTVチューナ部44または外部入力より入力されたAV信号をADC52でA/D変換し、映像信号はビデオエンコーダ53、音声信号はオーディオエンコーダ54、またTVチューナ部44よりクローズドキャプション信号、または文字放送等のテキスト信号をSPエンコーダ55へそれぞれ入力する。

【0102】各エンコーダ53、54、55は、それぞれの入力信号を圧縮してパケット化し(ただし、各パケットはパック化した時にエパック当たり2048パイトになるように切り分けて、パケット化する。)、フォーマッタ部56に入力する。ここで、各エンコーダ53、54、55は、STC38の値に従って各パケットのPTS、DTSを必要に応じて決定して記録する。

【 0 1 0 3 】 フォーマッタ 5 6 は、バッファメモリ 5 7 へパケットデータを一時保存し、その後、人力された各パケットデータをパック化して、G O P 毎にミキシングしてデータプロセッサ 3 6 へ入力する。

【0104】データプロセッサ36は、16パック毎にまとめてECCグループとして、ECCを付けてディスクドライブ32へ送る。ただし、ディスクドライブ32 がディスク10への記録準備が出来ていない場合には、 一時記憶部34へ転送し、データを記録する準備が出来るまで待ち、用意が出来た段階で記録を開始する。ここで、一時記憶部34は、高速アクセスで数分以上の記録データを保持するため、大容量メモリが想定される。

【0105】また、録画終了時に制御情報78の再生制御情報102およびボリューム&ファイル管理領域70に終了後に必要な情報を記録して録画動作を終了する。ただし、マイクロコンピュータブロック30はファイルのボリューム&ファイル管理領域70などを読み書きするために、データプロセッサ36へマイコンバスを通して、読み書きすることが出来る。

【0106】再生時のデータ処理においては、まずユーザがキー入力することによってマイクロコンピュータブロック30は再生命令を受けると、ディスクドライブ32よりデータプロセッサ36を通して、ボリューム&ファイル管理領域70を読み込み、再生するアドレスを決定する。ここで、ボリューム&ファイル管理部を指し、ボリュームディスクリプタとファイル管理部を指し、ボリュームディスクリプタで光ディスク10がDVDディスクかどうかを判断し、ファイル管理部の情報により制御情報78を取り出し、制御情報78より再生するタイトルに相当するビデオオブジェクト82、84、86を決定し、再生を開始するアドレスを決定する。

【0107】マイクロコンピュータブロック30は、次にディスクドライブ32に先ほど決定された再生するデータのアドレスとリード命令を送る。ディスクドライブ32は、送られた命令に従ってディスク10よりセクタデータを読み出し、データプロセッサ36でエラー訂正を行い、バックデータの形にしてデコーダ部60へ出力する。

【0 1 0 8】 デコーダ部 6 0 の内部では、読み出したパ ックデータをセパレータ62が受け取ってパケット化 し、データの目的に応じて、ビデオパケットデータ(M PEGビデオデータ)はビデオデコーダ64へ転送し、 オーディオパケットデータ68はオーディオデコーダ6 8 へ転送し、副映像パケットデータは S P デコーダ 6 5 へ転送する。送られた各パケットデータは、転送開始時 にPTSをSTC38ヘロードして、つまりバック内の PTSをマイクロコンピュータブロック30がSTC3 8ヘセットして、またはビデオデコーダ64が自動的に ビデオデータのPTSをSTC部へセットする。その 後、各デコーダ64、65,68は、パケットデータ内 のPTS (プレゼンテーション・タイム・スタンプ) の 値に問期して(PTSとSTCの値を比較しながら)再 生処理を行い、TVに高声字幕付きの動画を再生するこ とができる。次に、本発明の特徴である光ディスク10 へのインデックスシーンの登録手順について、インデッ クスシーンとして最も多く利用される画像を用いた場合 を例にとって説明する。インデックス画像は光ディスク

22

施形態におけるインデックス画像の登録法には、主記録データ(ビデオデータ)中のインデックス画像の記録位置を示す位置情報(ポインタ)を光ディスク 10 上に記録する方法(ボインタ記録モードという)と、入力されるビデオデータから縮小画像生成部 5 8 で生成された縮小画像データをインデックス画像データとして光ディスク 10 上に記録する方法(縮小画像記録モードという)とがある。

【0109】ポインタ記録モードによると、実際に縮小画像のようなインデックス画像データを特別に持たず、主画像へのポインタのみでインデックス画像を表すことが可能であり、インデックス画像をデコーダ側で作りながら表示し、メニュー表示時にディスクサーチを頻繁に行うため、縮小画像記録モードに比較してユーザメニュー表示に若干時間がかかるが、実際に縮小画像を持たない分、使用するディスク容量が少なくて済む利点が得られる。

【0110】インデックス画像の登録には、ユーザによる指定により上述した三つのモードを選択的に使用して 20 もよいし、両モードを併用してもよい。本実施形態で は、両モードを併用する場合について述べる。

【0+11】インデックス画像の登録は自動的に行うこともでき、記録の開始・終了を装置が自動的に検知し、例えば図16に示すように例えばセルー1の録画開始時にセルー1の画像1、2について登録を行ったり、録画終了時のセルー3の最後のフレームの画像5について登録を行うことができる。また、ユーザが記録中の画像を表示画面上でモニタしながら、キー入力等の手動で行うことも可能であり、その場合は図16中の画像3、4に示すように記録動作中に発生しているセルー2中に任意の複数の画像について登録を行うことができる。

【0112】まず、図17に示すフローチャートを用いて、前者のポインタ記録モードによるインデックス画像登録手順を説明する。ユーザがキー人力部49を通してインデックス画像の登録指令を与えると、マイクロコンピュータブロック30内のMPUは、登録トリガをエンコーダ部50に対して発生すると共に、ステップS101により登録トリガありと判断し、ビデオエンコーダ53からセル毎にGOPの作成開始億号を得て、1ピクチャの生成開始を検知する(ステップS102)。後述するように、この1ピクチャがインデックス画像の登録ポイントとなる。

【0113】なお、MP じからの登録トリガの発生はユーザが登録指令を入力する都度、例えば1回ずつ行ってもよいし、MP Uが光ディスク 10への記録開始/終了時、さらには映像や音声のシーンチェンジ時に自動的に行ってもよい。これらの選択は、キー入力部 49を介してユーザが指定できるようにすることが望ましい。

を例にとって説明する。インデックス画像は光ディスク 【 0 + 1 4 】次に、マイクロコンピュータブロック3 0 + 0 の記録内容の検索や編集のための画像であり、本実 50 内のMP Uは、光ディスク + 0 上の現在記録中の物理セ

20

24

クタ番号Mをディスクドライブ32 およびデータプロセッサ36を介して検知してRAMに保持し(ステップS103)、さらに現在定義しようとしている、つまり1ピクチャをインデックス画像として登録すべきセルのセル番号Nを検知して同様にRAMに保持する(ステップS104)。

【0115】次に、マイクロコンピュータブロック30内のMPUは、ディスクドライブ32およびデータプロセッサ36を介して、またはキー入力部49からの指令によって録画終了の有無を判定し(ステップS105)、録画終了であれば光ディスク10上の図8に示したPGC情報テーブル110のインデックスシーン情報120に、ステップS104で保持されたセル番号Nを登録する(ステップS106)。

【0116】引き続き、マイクロコンピュータブロック30内のMPUは、ディスクドライブ32およびデータプロセッサ36を介して光ディスク10上の図8に示したPGC情報テーブル110から、インデックスシーン情報120に記述されているセル番号Nが含まれるPGC情報を検索する(ステップS107)。

【0117】ここで、マイクロコンピュータブロック3 0内のMPUは、ステップSIO7により検索されたPGC情報が#1であったとすると、このPGC情報が# 1の図9に示されるセル再生情報130、具体的にはセル再生情報130の中のインデックスシーンセル情報1 34に、ステップSIO3でRAMに保持しておいた物理セクタ番号Mを記録する(ステップSIO8)。

【0118】次に、図19に示すフローチャートを用い て縮小画像記録モードによるインデックス画像登録手順 を説明する。基本的に、光ディスク 1 0 上に記録中の映 像は記録停止をしない限り時間軸上で連続しており、連 続した部分は内容的にも同じ種類にグルーピングできる 性質のものである。このグルーピングは前述したセルの 単位で行われる。実際の記録動作を考えると、記録問 始、記録終了の動作でセルが一つ発生する。従って、イ ンデックス画像の位置情報としては、上述のように任意 のセルに対応した物理セクタ番号Mを登録すればよい。 【0119】DVD規格においては、前述のようにビデ オエンコードにMPEG2を採用している。MPEG2 では(MPEGIもそうであるが)、図17に示される。 ようにGOPと呼ばれる周期でエンコードが行われる。 GOP内にはイントラ符号化画面(エピクチャ)と、イ ンター符号化画面(Pピクチャ、Bピクチャ)とがある が、前者は自己の画面内でのみ符号化を行う画面である のに対し、後者は他の画面を参照画面として予測を行う 画面であるため、インデックス画像として用いることは できない。そこで、図17の縮小画像記録モードによる インデックス画像登録手順では、図18に示されるよう に1ピクチャをインデックス画像の位置情報の登録ポイ ントとしている。

【0 1 2 0】ボインタ記録モードの場合と同様に、まずコーザがキー入力部49を通してインデックス画像の登録指令を与えると、マイクロコンピュータブロック30内のMP Uは、登録トリガをエンコーダ部50に対して発生すると共に、ステップ S 2 0 1 により登録トリガありと判断する。MP Uからの登録トリガの発生はユーザが登録指令を入力する都度、例えば1回ずつ行ってもよいし、MP Uが光ディスク 1 0 への記録開始/終了時、さらには映像や高声のシーンチェンジ時に自動的に行ってもよい。これらの選択は、キー入力部49を介してユーザが指定できるようにすることが望ましい。

【0121】次に、マイクロコンピュータブロック30内のMPUは、ステップS201で登録トリガありと判断すると、光ディスク10上の現在記録中の物理セクタ番号Mをディスクドライブ32およびデータプロセッサ36を介して検知してRAMに保持し(ステップS202)、さらに縮小画像生成部58を起動してインデックス画像として登録すべき縮小画像デークを生成する(ステップS203)。そして、生成された縮小画像データを現在のPGN番号と共に縮小画像バッファメモリ59にパケット化して記録する。

【0122】次に、マイクロコンピュータブロック30内のMPUは、ディスクドライブ32およびデータプロセッサ36を介して、またはキー入力部49からの指令によって録画終了の有無を判定し(ステップS205)、録画終了であればディスクドライブ32およびデータプロセッサ36を介して予め取り込んだ光ディスク10上のボリューム&ファイル管理領域70から図20中に示す縮小画像管理領域の論理アドレスを取得する(ステップS206)。そして、この縮小画像管理領域の内容、具体的にはPGN番号N、実際に記録する縮小画像の縮小画像管理領域内のセクタアドレス、元主画像のセクタアドレス等の更新を行う(ステップSS207)。

【0123】次に、マイクロコンピュータブロック30内のMPUは、ステップS203で縮小画像生成部58により生成され縮小画像パッファメモリ59にパケット化されて格納された縮小画像データを読み出してパック化し、ステップS206〜S207により縮小画像管理領域の内容で定義された光ディスク10上のエリアにデータプロセッサ36およびディスクドライブ32を介して記録する(ステップS208)。

【0124】そして、縮小画像バッファメモリ59に格納された縮小画像データを全部読み出したかどうかを判断し(ステップS209)、縮小画像データが残っていれば縮小画像バッファメモリ59内の次のPGC番号Nを指定してステップS207~S208の処理を繰り返し、縮小画像データが全て読み出されると、図3に示される再生制御情報102およびボリューム&ファイル管50 理領域70を順次更新し(ステップS211~S21

2)、処理を終了する。

【0125】次に、インデックス画像(縮小画像)に関 する光ディスク10上のユーザメニューファイルのフォ ーマットについて説明する。このユーザメニューファイ ルのフォーマットは、概念図的には図20に示すような 構成をとることができ、具体的には図21~図22に示 すような構成をとることができる。

【0126】まず、ユーザメニューファイルに入ってい るデータは、図20において上から下へ向かって示すよ うに、第1アンカーポイント、縮小画像管理領域、縮小 10 画像管理領域のバックアップ(図示せず)、縮小画像デ ータ群、第2アンカーポイントの順で記載されている。

【0127】このユーザメニューファイルに最初に入れ てあるのは、第1アンカーポイント(図20では a.

p, b, q)と呼ばれるポインタアドレスで、それぞれ に縮小画像管理領域のスタートアドレス (a) およびエ ンドアドレス(p)、そして縮小画像管理領域のバック アップデータのスタートアドレス(b)およびエンドア ドレス(q)が記載されている。

【0128】第1アンカーボイントの次には縮小画像管。 理領域が設定されており、この縮小画像管理領域は図3 に示すピクチャアドレステーブル108Bに記録され る。この縮小画像管理領域のデータは、後述する「32 k バイトアライン」の処理を受けている。この縮小画像 管理領域の最初にある縮小画像全体情報は、図3に示す ピクチャアドレステーブル108B内のメニューインデ ックス情報 LNFO + に記録されている。縮小画像全体 情報は、AV縮小画像数、ポインタのみの場合の数、欠 陥領域の数および背景画像登録枚数からなっており、こ れらのうち「ポインタのみの場合の数」は、前述したポー インタ記録モードのみによるインデックス画素の登録枚 数を示している。

【0129】縮小画像管理領域内の縮小画像全体情報の 次にあるPGCと縮小画像記録位置間の関連テーブル は、ユーザメニューを構成する各縮小画像に関する実際 のデータであり、PGC番号(PGCN)、タイムコー ド(タイムサーチなどに使用できる)、縮小画像の先頭 アドレス、使用セクタ数(= データ喪)、縮小画像のサ イズ、縮小画像の元ファイル(AVデータ)へのアドレ ス(ボインタ)、検索や表題に使用するテキストデー タ、ファイル内に欠陥領域がある場合の欠陥領域の先頭 アドレスとデータ長、ユーザメニューの背景画像データ に関して登録番号およびその先頭アドレスなどが記録さ れている。

【0130】この関連テーブルのうち、PGC番号、タ イムコード、縮小画像の先頭アドレス、使用セクタ数、 縮小画像のサイズ、縮小画像の元ファイルへのアドレス (ポインタ)、および検索や表題に使用する検索用テキ ストデータは、図3に示すピクチャアドレステーブル1

され、欠陥領域の先頭アドレスとデータ長は図3に示す ピクチャアドレステーブル108B内の欠陥エリア情報 TNFO5に記録され、ユーザメニューの背景画像デー タの登録番号および先頭アドレスは、図3に示すピクチ ヤアドレステーブル108B内の壁紙ピクチャ情報1N **FO6に記録されている。**

【0131】さらに、この関連テーブルの後には、図示 しないが縮小画像管理領域のバックアップが記録されて いる。このバックアップは、縮小画像管理領域の破損に 対する保険のために記録している。

【0132】縮小画像管理領域の後には、図15の縮小 画像データ生成部58で生成された実際の縮小画像デー タ群が記録されている。これらの縮小画像データはパッ ク化されており、図3に示すピクチャオブジェクト8年 に記録されている。ただし、これらのデータは1つの縮 小画像毎に32kバイトアラインされている。さらにそ の後には、ユーザメニューファイルの先頭の第1アンカ ーポイントと同じ第2アンカーポイント (a, p, b, q) が記載されている。このようにするのは、ファイル は通常、アクセスの多い先頭の管理領域から破損してい くことを考えてのことである。ファイルの最後にもアン カーポイント置くことにより、より安全性を高めてい 3

【0133】また、このファイルの各区切りで32kパ イトアラインしているのは、データの変更、追加や削除 時に、32kバイト単位のECCグループ毎にアクセス することができるようにという配慮からである。これに よって、より高速のアクセスが可能となり、図15に示 したデータプロセッサ36の動作が軽減される。

【0134】なお、このユーザメニューファイル中のア 30 ドレス情報は、全てファイルの先頭からの相対アドレス で表されている。

【0135】図20のユーザメニューファイルには、以 下の特徴がある。

(イ) 少なくともビデオデータの一部の静止画を表すと ころのメニュー選択用であるインデックス画像データ (すなわち縮小画像データ) が同一のユーザメニューフ アイル内に工以上記録されている。

(ロ)縮小画像管理領域を有し、光ディスク10 (DV 40 DーRAMディスクまたはDVDーRWディスクまたは DVD-Rディスク) 上に記録した金縮小画像データの 管理(保存場所と対応するビデオ信号の指定)を一括し

【0136】図20のユーザメニューファイルには、具 体的には図21~図22に例示するような内容が書き込 まれる。すなわち、図21および図22に示すように、 ピクチャアドレステーブル用の第1アンカーポインタと して、ピクチャアドレステーブルの開始位置、ピクチャ アドレステーブルの終了位置、予備ピクチャアドレステ **08B内のインデックスメニュー情報INFO2**に記録 50 ーブルの開始位置および予備ピクチャアドレステーブル

録する場合には、全てのデータの記録開始位置と記録終 子位置は、上記「ECCバウンダリー」位置と一致する ように記録される。

の終了位置が記述され、ピクチャアドレステーブル(図 3のDA2142に対応)として、メニューインデック ス情報(INFOI)、インデックスピクチャ情報(I NFO2)、欠陥領域情報(INFO5)、壁紙ピクチ **ャ情報(INFO6)およびパディングデータが記述さ** れ、ピクチャアドレステーブル用の第2アンカーポイン タとして、ピクチャアドレステーブルの開始位置、ピク チャアドレステーブルの終了位置、予備ピクチャアドレ ステーブルの開始位置および予備ピクチャアドレステー ブルの終了位置が記述される。

【0145】各データ量が32kパイトの整数値より若 干少ない場合には図20に示したように「ダミー領域」 を付加して、記録終了位置を「ECCバウンダリー」位 | 髑に一致させる。この「ダミー領域」は図2 1の「パデ ィング』の領域を意味している。

【0 1 3 7】なお、図2 1 および図2 2 のピクチャアド レステーブル内には、図3のインフォメーションピクチ ャ情報INFO4も適宜記述される。

【0146】縮小画像データの記録・消去時には前述し た「ECCバウンダリー」毎に情報の記録・消去を行 う。この場合、ECCグループ内の一部の情報を変更す る必要が無いので、記録時にはECCパウンダリーに合 わせて縮小データを直接重ね書きできる。

【0138】図21のメニューインデックス情報は、イ ンデックスピクチャの数、インフォメーションピクチャ の数、欠陥領域の数および壁紙ピクチャの数を含む。

【0147】以上のような「32kバイトアライン」を 行えば、縮小画像データをECCグループ単位で記録・ 消去するため付加されたエラー訂正情報の修正が不要と なるから、ECCグループ単位の記録・消去処理の高速 化が図れる。

【0139】図21のインデックスピクチャ情報は、内 容特性、インデックスピクチャ用プログラムチェーンの **ID、インデックスピクチャのタイムコード、インデッ** クスピクチャの開始位置、インデックスピクチャ記録の。 使用セクタ数、ピクチャサイズ、オリジナルのオーディ オ・ビデオデータのアドレスおよび検索用テキストデー タを含む。

【0148】図20のユーザメニューファイルは、パー - 20 - ソナルコンピュータ等を利用した別の記録媒体への移植 性を考慮している。そのために、ユーザメニュー用の縮 小画像、背景画像、縮小画像管理領域の保存アドレス は、全てユーザメニューファイル先頭位置からの差分ア ドレス(相対アドレス)で表現している。

【0140】なお、インデックスピクチャ情報に含まれ る内容特性には、ユーザメニューに利用される静止画が 記録済みなら「1」が記述され、この静止画の記録位置 (アドレス)のみを記録しているなら「0」が記述され

【0149】図20の縮小画像管理領域内のPGCと縮 小画像記録位置間の関連テーブルの中では、PGC番号 から検索用テキストデータサイズまでの2行が工組の対 応テーブルを表している。この場合、ビデオ信号のタイ ムコードと先頭アドレスとの組の対応により記録された 縮小画像データとビデオ信号との関係が分かる。また、 この関連テーブル全体を検索する事により、ユーザメニ ューファイル内の未記録領域または消去後縮小画像デー **夕の消去された位置が分かり、この領域に新規な縮小画** 像データを記録することができる。

【0141】アドレスのみでユーザメニュー用画像を指 定する場合のインデックスピクチャ情報は、図22に示。 すように「0」が記述された内容特性と、スライド&ス チルピクチャ用のプログラムチェーンPGCのIDと、 オリジナルのオーディオ・ビデオデータのアドレスと、 スライド&スチルピクチャのタイムコードを含む。

> 【0150】図20のユーザメニューファイルにおいて は、オーディオ・ビデオデータを含むAVファイル上の 位置と縮小画像記録位置間の関連テーブルの中で、欠陥 領域の管理を行うようにしている。

【0142】図22の壁紙ピクチャ情報は、ユーザメニ ューの背景画像として利用できる壁紙ピクチャの数(登 録された背景画像の番号)と、壁紙ピクチャの開始位置 と、壁紙ピクチャが記録されている領域の使用セクタ数 を含み、図22のパディングデータは、インデックスピ 容等を含む。

【0154】ここで、ディスク(記録媒体)10の表面 **クチャの内容、欠陥領域の内容および壁紙ピクチャの内 40 に付着したゴミや傷により縮小画像管理領域が破損した** 場合の具体的処理方法に付いて説明する。

【0143】次に、前述した「32kパイトアライン」 について説明する。図20~図22に示したユーザメニ ューファイル内は、既記録領域と未記録領域のいかんに 関わらず、すべてエラー訂正コードの単位(ECCグル ープで)ある32kバイト毎に分割され、その境界部分 である「ECCバウンダリー」の位置が事前に確定して

【0152】まず、ディスク(記録媒体)表面のゴミや 傷による縮小画像管理領域の破損を検出する。(破損し ているかどうかはECCグループのエラー訂正が失敗し たかどうかで判定できる。)破損が検出された場合は、 アンカーポイントの情報を読み、縮小画像管理領域のバ ックアップデータアドレスを調べ、縮小画像管理領域の バックアップデータを読み込む。

【0 1 4 4】各縮小画像データ、アンカーポイント、縮 小画像管理領域と縮小画像管理領域のバックアップを記』 50 テーブルから、ユーザメニューファイル内の未記録領域

【0153】次に、図20の縮小画像記録位置間の関連

30

を探す。そして、ユーザメニューファイル内の未記録領 域に縮小画像管理データを記録し、アンカーポイントの アドレス情報を更新する。

【0154】続いて、ディスク(記録媒体)表面のゴミや傷により縮小画像管理領域が破損した場所を、図20の縮小画像記録位置間の関連テーブル内に、欠陥領域として登録する。

【0155】図20~図22のユーザメニューファイルフォーマットを採用すると、以下の効果が期待できる。

- (a) 前記「32 kバイトアライン」によって、縮小画 像データの追加・検索とアクセス高速化が図れる、
- (b) 図示しないモニタディスプレイの表示部に一度に複数枚の縮小画像を表示する場合、各縮小画面毎に記録媒体上の該当する縮小画像データ位置にアクセスする必要がある。記録媒体上にこの縮小画像データが点在(散在)する場合には、アクセスに時間がかかり、複数枚の縮小画像を表示するための所要時間が長くなるとい弊害がある。ところが、図20に例示するように、複数の縮小画像データを同一のユーザメニューファイル内にまとめて配置すれば、このユーザメニューファイルを再生するだけで高速に複数枚の縮小画像を表示させることができる。

【0156】(c)縮小画像管理領域での全縮小画像データを一括管理することにより、縮小画像データの削除や追加処理の管理が容易となる。すなわち、ユーザメニューファイル内の未記録領域(または縮小画像データ削除領域)の検索が容易となり、新規の縮小画像データの追加登録を高速に行なうことが可能となる。

【0157】(d) 図15に示したDVDビデオレコーダでは、データプロセッサ36で16パック(=32kパイト)毎にまとめてECCグループとしてエラー訂正 情報を付けて光ディスク(DVD-RAM、DVD-RWまたはDVD-R)10に記録している。従って、もしECCグループ内の一部の情報を変更した場合には、付加されたエラー訂正情報の修正が必要となり、処理が類雑になるとともに情報変更処理に多大な時間がかかるようになる。ところが、前記「32kパイトアライン」を行うことによって、縮小画像データをECCグループ単位で記録・消去する際に付加されるエラー訂正情報の修正が不要となり、ユーザメニューデータの記録と消去が高速に処理可能となる。

【0158】(e) 以下の方法により、アンカーポイントと縮小脚像管理領域、縮小画像管理領域のバックアップデータの高信頼性を確保できる。

- *縮小画像管理領域の信頼性確保
- …縮小画像管理領域のバックアップ領域を設け、万一の 縮小画像管理領域欠陥に備えるとともに欠陥発生時には 記録場所移動を可能とする。
- *縮小画像管理領域の記録場所を示すアンカーポイント 情報の信頼性確保

…単独でECCプロックを構成し、データ変更回数を少なくするとともに2ヶ所に記録する(図20の第1および第2アンカーポイント)。

*欠陥管理処理

…光ディスク(記録媒体) 表面のゴミや傷により縮小画像管理領域やアンカーポイントからの情報再生が不能になった場合、前述したバックアップ部からデータを読み直して、別位置に再記録できるようにする。これにより、欠陥領域を登録して誤ってその欠陥場所を再び使用してしまうことを防止できる。

【0 1 5 9】なお、ユーザメニューに用いる縮小画像データには、その元画像にクローズドキャプションや多重文字が重量されているケースがある。そのような場合には、文字を多重後、縮小画像を構成しても良い。また、この文字データだけで縮小画像を構成する事も考えられる。

【0160】図23に、本実施形態において光ディスク10に登録されたインデックス画像を利用して得られるメニュー画面の具体的な表示例を示す。この例では画像1としてアフリカ全体の地図、画像2、3、一として各類別の地図の画像が一覧的に表示されている。このメニュー画面は、ユーザがキー人力部 19のメニューキーを押すことで表示される。ユーザは、この画面の中から所望の番号の画像を選択することで、この画像が記録された光ディスク 10上の位置にサーチしたり、編集したりすることが可能となる。また、各画像1、2、一には図に示されるように先頭からのタイムコードも併せて表示することで、記録されている画像から再生開始時点からどの程度経過した段階で表示するかも把握できる。

【0161】なお、以上の実施形態ではインデックス画像の登録について説明したが、特定の音声データの登録 にも本発明を同様に適用することができる。

【 0 1 6 2 】さらに、本発明は記録再生装置のみならず、再生装置、つまり記録機能を持たない再生専用の装置として構成することも可能である。

[0163]

【発明の効果】以上説明したように、本発明によれば記録媒体上に主記録データ中の特定の情報の記録位置を示す位置情報(ポインタ)を記録したり、あるいは主記録データ中の特定の情報を圧縮した圧縮情報、例えば縮小画像データを記録することにより、位置情報で示される記録位置に記録された画像や音声の情報、あるいは圧縮情報を再生時にメニューとして利用することで、ユーザが記録媒体上の記録情報を直観的に把握することができる。従って、このメニューからユーザが希望する個所の検索を迅速に行うことができるようなり、また記録媒体上の任意のエリアの情報の消去や置換などの編集作業も効率的に行うことが可能となる。

【図面の簡単な説明】

50 【図1】本発明に係る記録再生可能な光ディスク (DV

D-RAMまたはDVD-RWディスク)の構造を説明 する斜視図

【図2】図1の光ディスク(DVD-RAM)のデータ 記録領域とそこに記録されるデータの記録トラックとの 対応関係を説明する図

【図3】図1および図2の光ディスクに記録される情報のディレクトリ構造を説明する図

【図4】図3に示したビデオオブジェクトセットのデータ構造を示す図

【図5】図4に示したデータパックの構造を示す図

【図6】図4に示した制御情報のデータ構造を示す図

【図7】図6に示した再生管理テーブルの内容を示す図

【図8】図6に示したPGC情報テーブルのデータ構造 を示す図

【図9】図8に示したセル再生情報の概略的な内容を示す図

【図 1 0】図 8 に示した P G C の概念を説明するための 図

【図11】 図8に示したPGC情報管理情報の内容を示す図

【図12】図8に示したPGC一般情報の内容を示す図

【図13】図8に示したセル再生情報の内容を示す図

【図14】図8に示したPGC情報管理情報の内容を示す図

【図 1 5】本発明の一実施形態に係る記録再生装置としてのD V D ビデオレコーダの構成を説明するプロック図【図 1 6】インデックス画像の登録タイミング例を示す図

【図17】同実施形態におけるポインタ記録モードによるインデックス画像登録手順を示すフローチャート

【図18】ポインタ記録モードによるインデックス画像 登録時の登録ポイントについて説明する図

【図19】同実施形態における縮小画像記録モードによるインデックス画像登録手順を示すフローチャート

【図20】同実施形態におけるユーザメニューファイルフォーマットを概念的に示す図

【図21】図2()のユーザメニューファイルフォーマットをさらに詳細に示す図

【図22】図20のユーザメニューファイルフォーマットをさらに詳細に示す図

【図23】同実施形態におけるメニュー画面の表示例を 示す図

【符号の説明】

IO…記録・再生可能光ディスク(DVD-RAMまたはDVD-R);

11…カートリッジ(DVD-RAM用)

14…透明基板(ポリカーボネート)

16…光反射層

17…記録層

19…読み出し面

20…接着層

22…中心化

10 2 4…クランピングエリア

25…情報エリア

26…リードアウトエリア

27…リードインエリア

28…データ記録エリア

3 ()…マイクロコンピュータブロック(MP U/R OM /R A M)

32…ディスクドライブ

3 4 … 時記憶部

36…データプロセッサ

20 38…システムタイムカウンタ

- 42… A V 入力部

44…TVチューナ (地上放送/衛星放送チューナ)

4.6 ··· A V出力部

48…DVDビデオレコーダ表示部(液晶または蛍光表示パネル)

50…エンコーダ部

52 ··· ADC

-5-3…ビデオエンコーダ

5 4…オーディオエンコーダ

30 55…副映像エンコーダ

56…フォーマッタ

57…バッファメモリ

5.8 …縮小画像生成部

5.9 …縮小画像バッファメモリ

60…デコーダ部

62…セパレータ

63…メモリ

64…ビデオデコーダ

6.5…副映像デコーダ

10 - 6.6…ビデオプロセッサ

67…ビデオDAC

68-オーディオデコーダ

69…オーディオDAC

[|X| | |]

PGC_MAI パイト数 内容 RBP 4パイト PGCL_TABLEの終了アドレス 0 to 3 PGCI_TABLE_EA 4/17 F PGC MAI EA PGCI_MAIの終了アドレス 4 to 7 4バイト PGC_SRPの開始アドレス 8 to 11 PGC_SRP_SA 4/17 h PGC_SRPの終了アドレス PGC_SRP_EA 12 to 15 4バイト PGCIの開始アドレス 16 to 19 PGCI_SA 4/51 1 PGCIの終了アドレス PGCI_EA 20 to 23 2111 1 24 to 25 PGC_Ns PGCの総数

【図7】

PLY .	MAI
-------	-----

RBP		内 容	パイト数
0 to 11	ID	以 別子	12バイト
12 to 15	VOBS_SA	VOBSの開始アドレス	4バイト
16 to 19	VOBS_EA	VOBSの終了アドレス	4バイト
20 to 23	CTLI_EA	CTLIの終了アドレス	4パイト
24 to 24	PLYCI_EA	PLYCIの終了アドレス	4パイト
25 to 28	CAT	カテゴリ	4パイト
29 to 30	V_ATR	ビデオ属性	2バイト
31 to 32	AST_Ns	オーディオストリーム数	2/17 }
33 10 34	AST_ATRT	オーディオストリーム属性テーブル	2バイト
35 to 36	SPST_Ns	副映像ストリーム数	2バイト
37 to 38	SPST_ATRT	副映像属性テーブル	2バイト
39 to 39	User Menu Exist Flag	ユーザーメニューファイル有り/無しフラグ 01:ファイル有り、00:ファイル無し	1パイト
40 to 40	MAIN PCG Number	代表の縮小画像のPGC番号	2バイト
41 to 44	reserved	予約	4151 1
45 to 45	PLAY_END Flag	再生終了のFLAG 0:未再生 1:再生済み	1バイト

[[8] | 0]

ſ	h١
١.	u

PGC#1	
構成セ	ル数 = 3
#1	Cell-A
#2	Cell-B
#3	Cell-C

PGC#2

構成セル故=3			
#1	Cell-D		
#2	Cell-E		
#3	Cell-F		

PGC#3

1 -1 -11		
構成セル数 = 5		
#1	Coll-Q	
#2	Cell-R	
#3	Coll-S	
# 4	Cell-T	
# 5	Call-U	

[図14]

REC_MAT

RBP		内容	バイト数
0 to 3	RECI_EA	RECIの終了アドレス	4//イト
4 lo 7	REC_MAT_EA	REC_MATの終了アドレス	4バイト
8 to 11	FREE_SPACE	空き容量	4バイト
12 to 12	ARCHIVE Flag	永久保存のFLAG 0:自由 1:永久保存	1バイト

【図12】

PGC_GI

RBP		内容	バイト粒
0 to 3	PGC_CNT	PGC内容	4バイト
4 to 7	PGC_PB_TM	PGC再生時間	4バイト
8 to 23	PGC_AST_CTLT	PGCオーディオストリーム制仰テーブル	16バイト
24 to 151	PGC_SPST_CTLT	PGC副映像ストリーム制御テーブル	128/<-(ト
152 to 159	PGC_NV_CTL	PGCナビゲーションコントロール	8バイト
160 to 223	PGC_SP_PLT	副映像パレットテーブル	64157 F
224 to 225	PGC_PGMAP_SA	プログラムテーブルの開始アドレス	2バイト
226 to 227	CELL_PLY_I_SA	CELL_PLY_Iの開始アドレス	2/17 }
228 to 229	CELL_Ns	使用CELLの数	2バイト
230 10 230	PGC Menu Data Exist Flag	ユーザーメニュー用データ有り/無しフラグ 01:データ有り、00:データ無し	1バイト
231 to 234	reserved	予約	4/17 ト
235 to 235	PLAY_END Flag	再生終了のFLAG O:未再生 1:再生済み	1パイト
236 to 236	ARCHIVE Flag	永久保存のFLAG の自由 1:永久保存	コバイト

【図13】

CELL_PLY_I

RBP		内 容	パイト数
0 to 3	C_CAT	CELLのカテゴリ	4/5:1
4 to 7	С_РВТМ	CELLの再生時間	415.1 h
8 to 8	PLAY_END Flag	再生終了のFLAG 0:未再生 1:再生済み	1バイト
9 to 9	ARCHIVE Flag	永久保行のFLAG 0:自由 1:永久保存	1パイト
10 to 12	CELL_SA(1072)	CELLの開始アドレス	4/11/
13 to 16	CELL_EA(1073)	CELLの終了アドレス	4/11
17 to 20	CELL_PLY_LEA	CELL_PLY_Iの終了アドレス	4/11 h
21 lo 24	1st_INDEX_PT	インデックスシーンポインタアドレスイ	4157 1
!	 	!	
n to n+4		インデックスシーンポインタアドレス·M	4バイト

【图15】

[図18]

【図20】

【図21】

泥述子	内容	ハイト数
ピクチ	ャアドレステーブル用第1アンカーポインタ(32k	bytes)
	ピクチャアドレステーブル開始位置 (先頭位置 のメニューファイル先頭からの論理セクタ番号)	2
	ピクチャアドレステーブル終了位置(終了位置 のメニューファイル先照からの管理セクタ推写)	2
	予偽ピクチャアドレステーブル開始位置 (先頭 のメニューファイル先頭からの論理セクタ番号)	2
	予備ピクチャアドレスデーブル終了位置 (終了 のメニューファイル先頭からの設理セクタ番号)	2
_	パティング	32k 8
	ピクチャアドレステーブル(32k bytes x N)	
	メニューインデックス情報	
	インテックスピクチャの数	2
	インフォメーションピクチャの数	2.
	スライド&スチルピクチャの数	2.
	欠陥領域の数	2
	燥紙ピクチャの数	1
	インデックスピクチャ情報	
	内容特性=1(1では静止順情報記録済み: 0ではVTS内アドレス指定ポインタのみ)	1
	インテックスピクチャ用PGCの1D	4
	インデックスピクチャのタイムコード (イン デックスピクチャ指定位後のタイムコード)	4
	インデックスピクチャ開始位置(記録先頭位置 のメニューファイル先頭からの論理セクタ番号)	2.
	インデックスピクチャ記録の使用セクタ数	;
İ	ピクチャサイズ(画像サイズ:X、Y)	6
	オリジナルAVアークのアドレス	4
	テキストテータ (検索用)	40
	インデックスピクチャ情報(内容は同上)(66 byc	es)

[图22]

i		
	プンデックスピクチャ情報(内容は同正)(66 by	ies)
	プンデックスピクチャ情報(内容は同止)(66 by	
1	ンデックスピクチャ情報(アドレスのみで面像書	(ME)
	内容特性=0 (0ではVTS内アドレス指定 ポインクのみ;1では静止が情報電域済み)	ı
-		
	スライド&スチルピクチャ川PCCのID	4
_	オリジナルAVデータのアドレス	1
	スライド&スチルピクチャのタイムコード (記録位置を示すVTS内のタイムコード値)	4
	欠陥領域情報	
	壁紙ピクチャ情報	
Ĺ.,	壁紙ピクチャ数(背景画像の発録番号)	1
1	環紙ピクチャ開始位置(被当螺蜞記録先頭位置 のメニューファイル先頭からの領理セクタ番号)	. 2
	経紙ピクチャが記録されている領域の 使用セクタ数	i
バディ	ング(ピクチャアトレステーブル内の32k x Nbyt	es[編集用]
,1-	インデックスピクチャの内容	32k
]-	インテックスピクチャの内容	32k
	インデックスピクチャの内容	64k
	インデックスピクチャの内容	321
[_	欠猶領域	32k
	型紙ビクチャの内容	96k
ピクチャ	アドレステーブル用第 2 アンカーボインタ(10 년	yies)
	ビクチャアドレステーブル研始位後(先頭位後 のメニューファイル先頭からの誇理セクタ排号)	2
1	イクチャアドレステーブル終了位置(終了位置 クメニューファイル先頭からの設理セクタ背号)	ž
6	予約ピクチャアドレステーブル開始位設(先頭 ウメニューファイル先頭からの設理セクク音号)	2.
	予約ピクチャアドレステーブル終了位置(終了 ウメニューファイル先頭からの設理セクタ群号)	2

【图23】

フロントページの続き

(72)発明者 菊地 伸一 東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内 (72)発明者 平良 和彦 東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内

(72)発明者 安東 秀夫 神奈川県川崎市幸区柳町70番地 株式会社 東芝柳町工場内 【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第4区分 【発行日】平成14年2月28日(2002.2.2.28)

【公開番号】特別平11-213628

【公開日】平成11年8月6日(1999.8.6)

【年通号数】公開特許公報11-2137

【出願番号】特願平10-9906

【国際特許分類第7版】

G118 27/00 7/00 20/12

103

[FI]

G11B 27/00 D 7/00 Q 20/12

103

【手続補田書】

【提出日】平成13年9月6日(2001.9.6)

【手続補正工】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正內容】

【特許請求の範囲】

【請求項1】 主記録データを管理する管理単位として 複数のセルを定義し、前記複数のセルの再生順序を管理 する単位としてプログラムチェーンを定義している記録 再生可能な記録媒体において、

前記主記録データ内の登録すべき特定画像を独立して指定するセル情報を前記プログラムチェーン情報の情報とともに前記記録媒体上の特定画像位置情報記録エリアに記録していることを特徴とする記録媒体。

【請求項2】 主記録データを管理する管理単位として 複数のセルを定義し、前記複数のセルの再生順序を管理 する単位としてプログラムチェーンを定義している記録 再生可能な記録媒体において、

前記主記録データ内の特定すべき特定画像を独立して指定するセクタ番号及びセル情報を前記記録媒体上のインデックス情報記録エリアに記録していることを特徴とする記録媒体。

【請求項3】 主記録データを管理する管理単位として 複数のセルを定義し、前記複数のセルの再生順序を管理 する単位としてプログラムチェーンを定義している記録 再生可能な記録媒体において、

前記主記録データ内の特定すべき特定画像を独立して指 定するセル情報を前記プログラムチェーン情報の識別情 報とともに管理情報領域に記録したことを特徴とする記 録媒体。

【請求項4】 主記録データを管理する管理単位として 複数のセルを定義し、前記複数のセルの再生順序を管理 する単位としてプログラムチェーンを定義している記録 再生可能であり、前記主記録データ内の特定すべき特定 画像を独立して指定するセル情報が前記プログラムチェーン情報の識別情報とともに管理情報領域に記録された 記録媒体を再生する装置であって、

前記プログラムチェーン情報の識別情報を認識する手段 と

認識された識別情報から前記プログラムチェーン情報を 読み取る手段と、

読取った前記プログラムチェーン情報に含まれる前記特 定画像を独立して指定するセル情報から前記特定画像の 位置情報を認識する手段と、

前記特定画像の位置情報に基づき前記特定画像を再生する手段と

を具備したことを特徴とする情報再生装置。

【請求項5】 主記録データを管理する管理単位として 複数のセルを定義し、前記複数のセルの再生順序を管理 する単位としてプログラムチェーンを定義している記録 再生可能であり、前記主記録データ内の特定すべき特定 画像を独立して指定するセル情報が前記プログラムチェーン情報の識別情報とともに管理情報領域に記録された 記録媒体を再生する方法であって、

前記プログラムチェーン情報の識別情報を認識し、

認識された識別情報から前記プログラムチェーン情報を 読み取り、

読取った前記プログラムチェーン情報に含まれる前記特 定画像を独立して指定するセル情報から前記特定画像の 位置情報を認識し、

前記特定画像の位置情報に基づき前記特定画像を再生することを特徴とする情報再生方法。

【請求項6】 記録再生可能な記録媒体を用いて、画像および音声の少なくとも一方の情報を含む主記録データの記録再生を行う記録再生装置において、

前記主記録データ中の特定の情報の記録位置を示す位置 情報を前記記録媒体上に記録する位置情報記録手段を備 えたことを特徴とする記録再生装置。

【請求項7】 記録再生可能な記録媒体を用いて、画像および音声の少なくとも一方の情報を含む主記録データの記録再生を行う記録再生装置において、

前記主記録データ中の特定の情報の記録位置を示す位置 情報を前記記録媒体上に記録する位置情報記録手段と、 前記主記録データ中の特定の情報を圧縮した圧縮情報を 前記記録媒体上の前記主記録データの記録エリアと異な る圧縮情報エリアに記録する圧縮情報記録手段とを備え たことを特徴とする記録再生装置。

【請求項8】 前記位置情報記録手段は、前記記録媒体

上に前記主記録データを記録する際、前記特定の情報を 予め定められた基準に従って自動的に検出し、この検出 した特定の情報の記録位置を示す位置情報を前記記録媒 体上に記録することを特徴とする請求項6または7記載 の記録再生装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

[00008]

【課題を解決するための手段】この発明は、主記録データを管理する管理単位として複数のセルを定義し、前記複数のセルの再生順序を管理する単位としてプログラムチェーンを定義している記録再生可能な記録媒体において、前記主記録データ内の登録すべき特定画像を独立して指定するセル情報を商記プログラムチェーン情報の情報とともに前記記録媒体上の特定画像位置情報記録エリアに記録するようにしたものである。