Finding the minimal cover:

 $S = \{A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$

Step 1: Transform the FDs, so that each RHS contains only one attribute

Result of Step 1 = $\{A \rightarrow B, A \rightarrow D, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$

Step 2: Remove redundant attributes on LHS of each FD (check only those with > 1 LHS)

- For each FD (with > 1 LHS), cover each attribute and check if it can derive from S

AB→C:

- 1) Cover A, so we will have $B\rightarrow C$:
 - a. Check if $B\rightarrow C$ can be implied by S
 - b. $B \rightarrow C$ is not covered by S, so we will need A
- 2) Cover B, so we will have A \rightarrow C:
 - a. Check if $A \rightarrow C$ can be implied by S
 - b. Since $A \rightarrow BCD$, therefore $A \rightarrow C$ can be implied by S, so B is **redundant** in $AB \rightarrow C$

BC→D:

- 1) Cover B, so we will have $C \rightarrow D$:
 - a. Check if $C \rightarrow D$ can be implied by S
 - b. $C \rightarrow D$ is implied by S, so B is **redundant** in $BC \rightarrow D$
- 2) Cover C, so we will have $B \rightarrow D$:
 - a. Check if $B \rightarrow D$ can be implied by S
 - b. $B \rightarrow D$ is not covered by S, so we will need C.

Result of Step 2 = $\{A \rightarrow B, A \rightarrow D, A \rightarrow C, C \rightarrow D\}$

Step 3: Remove redundant FDs by covering each FD, then check if it can be implied by the remaining

- For each FD, cover the FD and see whether it can be implied from the remaining FDs
- 1) Cover A→B
 - $\circ \{A \rightarrow D, A \rightarrow C, C \rightarrow D\}$
 - We are left with $\stackrel{A}{\rightarrow}$ CD, which does not imply $\stackrel{A}{\rightarrow}$ B. So we keep $\stackrel{A}{\rightarrow}$ B.
- 2) Cover $A \rightarrow D$
 - $\circ \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
 - We are left with $A \rightarrow BCD$, which implies $A \rightarrow D$. So we **remove** $A \rightarrow D$.
- 3) Cover $A \rightarrow C$
 - $\circ \quad \{A \rightarrow B, \qquad , \qquad , C \rightarrow D\}$
 - \circ We are left with $A \rightarrow B$, which does not imply $A \rightarrow C$. So we keep $A \rightarrow C$.
- 4) Cover $\longrightarrow D$
 - $\circ \quad \{A \rightarrow B, \quad A \rightarrow C, \quad \}$
 - We are left with $C \rightarrow$ nothing, which does not imply $C \rightarrow D$. So we keep $C \rightarrow D$.

Final Results = $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\} = \{A \rightarrow BC, C \rightarrow D\}$