Lecture-35

Sushrut Tadwalkar; 55554711

April 10, 2024

Quotes of the day: Dr. Joshua Zahl 04/10/2024

"There is a proof there, which I'm not going to give it to you, because I want to get through this in finite time."

"This is 'NON STANDARD NOTATION!' *wrote this on the blackboard*; never use this again."

"I don't think any of you are old enough to remember the Bill Clinton trial from '94."

Let $\mathfrak{F}: L^2([0,1]) \to \ell^2(\mathbb{Z})$. Parseval's tells us that this map is distance preserving. However, note that this map cannot be surjective, since $\ell^2(\mathbb{Z})$ is complete, whereas $L^2([0,1])$ is not. Recall that if $(c_n) \in \ell^2(\mathbb{Z})$, then $\sum_{n \in \mathbb{Z}} |c_n|^2 < \infty$, where $c_n \in \mathbb{C}$ and $n \in \mathbb{Z}$.

Food for thought 1. Is the image of \mathfrak{F} dense in $\ell^2(\mathbb{Z})$? That is, if $(c_n) \in \ell^2(\mathbb{Z})$, does there exist $f \in L^2([0,1])$ such that $d(\hat{f},(c_n)) = \sum_{n \in \mathbb{Z}} |\hat{f}(n) - c_n|^2 < \varepsilon^2$.

Solution. This is a true fact.

Fix $(c_n) \in \ell^2(\mathbb{Z})$. Let $f_N(x) = \sum_{n=-N}^N c_n e^{2\pi i n x}$. We have from Parseval's that $\|f_N\|_2 = \sum_{n=-N}^N |c_n|^2$. Hence, we have

$$\left(\sum_{n\in\mathbb{Z}}|\hat{f}_N(n)-c_n|^2\right)^{1/2}=\left(\sum_{\substack{n\in\mathbb{Z}\\|n|>N}}|c_n|^2\right)^{1/2}\to 0 \text{ as } N\to\infty.$$

Note. It makes sense that this image of \mathfrak{F} is dense here, since the set sequences that are zero after finitely many terms is dense in $\mathrm{Im}(\mathfrak{F})$, and this is a subset of $\ell^2(\mathbb{Z})$.

Definition: Isometry

A map $f: \mathcal{X} \to \mathcal{Y}$ $((\mathcal{X}, d_{\mathcal{X}}), (\mathcal{Y}, d_{\mathcal{Y}})$ metric spaces) is an **isometry**, if it is a bijection such that $d_{\mathcal{X}}(x_1, x_2) = d_{\mathcal{Y}}(f(x_1), f(x_2))$. Restated, we could also say that it is a distance preserving bijection.

Specifically, this is an isomorphism for metric spaces.

Theorem: D

Let (\mathcal{X}_1, d_1) and (\mathcal{X}_2, d_2) be metric spaces. Suppose (\mathcal{X}_2, d_2) is complete. Let $g: \mathcal{X}_1 \to \mathcal{X}_2$ be distance preserving, i.e., $d_1(x_1, x_2) = d_2(g(x_1), g(x_2))$, for all $x_1, x_2 \in \mathcal{X}_1$.

Suppose that the image of g is dense. Then, g extends to an isometry \tilde{g} from $(\tilde{\mathcal{X}}_1, \tilde{d}_1)$ – the completion of (\mathcal{X}_1, d_1) – to (\mathcal{X}_2, d_2) .

For a metric space (\mathcal{X}_1, d_1) , let its completion be $(\tilde{\mathcal{X}}_1, \tilde{d}_1)$. Hence,

$$\tilde{\mathcal{X}}_1 := \mathrm{CS}(\mathcal{X}_1)/\sim,$$

where $(x_n) \sim (y_n)$ iff $\lim_{n \to \infty} d(x, y_n) = 0$. Note that because of this equivalence relation,

$$\tilde{d}_1([(x_n)], [(y_n)]) = \lim_{n \to \infty} d_1(x_n, y_n),$$

does not depend on the choice of representative and hence is well defined. This is just a recollection of what has already been shown in MATH 320, only there we noted this specifically for \mathbb{Q} and its completion, \mathbb{R} . We now prove the theorem.

Proof sketch. Define
$$\tilde{g}: \tilde{\mathcal{X}}_1 \to \mathcal{X}_2$$
 as follows: Let $[(x_n)] \in \tilde{\mathcal{X}}_1$. Define $\tilde{g}(\underbrace{[(x_n)]}_{\in \tilde{\mathcal{X}}_1}) = y$.

Step-1: We need to verify that the map is well-defined: If $[(x_n)] = [(y_n)]$, i.e., if $(x_n) \sim (y_n)$, then $\lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} g(y_n)$.

Step-2: We need to show that \tilde{g} is distance preserving, i.e.,

$$\tilde{d}_1([(x_n)],[(y_n)]) = d_2(\tilde{g}([(x_n)]),\tilde{g}([(y_n)])).$$

Hence, we need to check

$$\lim_{n \to \infty} d_1(x_n, y_n) = d_2(\lim_{n \to \infty} g(x_n), \lim_{n \to \infty} g(y_n)).$$

Final step: We need to show that \tilde{g} is surjective. Let $y \in \mathcal{X}_2$; since $g(\mathcal{X}_1)$ is dense in \mathcal{X}_2 , there exists a sequence $(x_n) \subseteq \mathcal{X}_1$, such that $g(x_n) \to y$. In particular, $(g(x_n))$ is Cauchy. Therefore, (x_n) is complete, since g is distance preserving. Finally, we just need to verify that $\tilde{g}([(x_n)]) = y$.

Note (Motivation for this theorem). As an immediate consequence of the theorem, if we have a distance preserving map from a metric space \mathcal{X} that is not an isometry, and we really want it to be for some reason, we work in the completion of the metric space, $\tilde{\mathcal{X}}$, and it will be an isometry here.

Note ("Moral of the story"). Let $\tilde{L^2}([0,1])$ be the completion of $L^2([0,1])$. The professor states that this is non standard notation (*very* non standard, since he said to never use this again.) Then, \mathfrak{F} is a isometry from $\tilde{L^2}([0,1])$ to $\ell^2(\mathbb{Z})$. Futhermore, $\langle f,g\rangle = \left\langle \hat{f},\hat{g}\right\rangle$ is morally true.

Definition: MATH 420 definition of the completion of L^2

If we define this for $\tilde{L}^2([0,1])$, these are the equivalence classes of *Lebesgue* integrable functions $f:[0,1]\to\mathbb{C}$, with

$$\int_0^1 |f|^2 < \infty.$$

This all makes sense, only we don't know what the Lebesgue integral is. One way to think about this is to think of Lebesgue integral as a "convergent limit" of Riemann integrals.