Sorteernetwerken van Optimale Grootte

Mathias Dekempeneer Vincent Derkinderen

Begeleider: Tom Schrijvers

Comparator Netwerk

Comparator Netwerk

Representatie comparatoren
 (1 2) (3 4) (5 6) (7 8) (1 3) (5 7)

Sorteernetwerk

- Genereer: toevoegen alle mogelijke comparatoren
- Snoei: subsumes principe

Subsumes

- Beschreven in "Twenty-Five Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten)" (Codish et al.)
- C_a subsumes $C_b \Leftrightarrow C_a$ wordt gedekt door C_b $\Leftrightarrow \pi(Outputs(C_a)) \subseteq Outputs(C_b)$
- Verwijder de netwerken die anderen dekken

Gevonden sorteernetwerk: (1-2) (2-3) (1-2)

- Bottleneck: beslissing subsumes
 ⇒ methoden om sneller te beslissen
- Genereer (uniek, redundant)
- Snoei (kLengte, pLengte, ILengte ...)

Methode uniek

Methode redundant

Beslissingen

Resultaten

Resultaten

Resultaten

Conclusie

WAT?

Resultaten van de paper gereproduceerd

HOE?

Implementatie van paper

Verder bouwen op paper

Conclusie

WAAROM?

Bewijzen / vinden van efficiënt netwerk

WAT VOLGT?

Bekijken reden van verbetering

Implementatie voor meerdere nodes

Verbeteringen voor het algoritme zoeken