Interim Design Report

Micromouse Sensor Subsystem

Prepared by:

Shaw Campbell

Prepared for:

EEE3088F

Department of Electrical Engineering University of Cape Town

Declaration

- 1. I know that plagiarism is wrong. Plagiarism is to use another's work and pretend that it is one's own.
- 2. I have used the IEEE convention for citation and referencing. Each contribution to, and quotation in, this report from the work(s) of other people has been attributed, and has been cited and referenced.
- 3. This report is my own work.
- 4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as their own work or part thereof.

April 21, 2024

Name Surname Date

Contents

T	Intr	oduction	
	1.1	Problem Description	1
	1.2	Scope and Limitations	
	1.3	GitHub Link	
2	Rec	quirements Analysis	:
	2.1	Requirements	
	2.2	Specifications	:
	2.3	Testing Procedures	
	2.4	Traceability Analysis	
		2.4.1 Traceability Analysis 1	
		2.4.2 Traceability Analysis 2	
		2.4.3 Traceability Analysis 3	;
		2.4.4 Traceability Analysis 4	;
		2.4.5 Traceability Analysis 5	
		2.4.6 Traceability Analysis 6	
3	Sub	esystem Design	
	3.1	Design Decisions	
		3.1.1 Design Decision Process	,
		3.1.2 Decide on general Transducer Circuit	
		3.1.3 Build Breadboard Prototype Using On Hand Components to Decide on Appro-	
		priate Radiant Intensity and Reverse Light Current vs. Irradiance Curve for	
		Photodiode	
		3.1.4 Decide Between Various Options for Infrared Emitter and Receiver	
		3.1.5 Deciding on How Many Emitter-Transmitter Pairs to use and in What Layout	
		3.1.6 Deciding on Final Components	
		3.1.7 Final Design	
	3.2	Failure Management	
	3.3	System Integration and Interfacing	
4	Acc	eptance Testing	1
	4.1	Critical Analysis of Testing	1
		4.1.1 AT01	1
5	Cor	nclusion	1
	E 1	Pagammandations	1

	•				
(\cap	m	te	m	T.S

Bibliography 15

Figure 1.1: Context Diagram for Sensing Subsystem

Figure 1.2
Typical
Maze for
Micromouse

Introduction

1.1 Problem Description

This report concerns the sensing subsystem of a micro-mouse robot that can navigate and solve a maze. This subsystem must interface with an already existing motherboard (having a microprocessor and power subsystem) and housing. A context diagram and example of the type of maze that will be used for testing are shown in Figure 1.1 and Figure 1.2 respectively. The sensor must use infrared light to sense wooden maze walls around it so that the microprocessor can make decisions on how to navigate and solve the maze using two motors attached to the housing.

1.2 Scope and Limitations

The sensor has two functions that must be designed for, using the peripherals of the microprocessor on the micro-mouse:

- 1. Radiate infrared light to the environment such that the intensity of the light is high enough that it will be reflected with enough energy to be detected, but low enough to not over-saturate the subsystem receiver.
- 2. Convert reflected infrared light into voltages that can be used by the GPIO peripherals of the microprocessor to create a high-enough resolution map of the environment to navigate the maze.

This must be done within a defined budget and should be made energy-efficient. At this level, how the sensing data will be used is unknown.

1.3 GitHub Link

Click here to view the Github repository for this report.

Requirements Analysis

2.1 Requirements

The requirements for a micro-mouse sensing module are described in Table 2.1.

Table 2.1: User and functional requirements of the power subsystem.

Requirement ID	Description
R01	Detect whether there is a wall in front and on the sides of robot
R02	Have switching means to save power when not in operation
R03	System must be reliable
R04	Must not drain the battery too quickly such that the micro-mouse cannot finish maze
R05	Cost of solution must fall within budget
R06	PCB must not be to large

2.2 Specifications

The specifications, refined from the requirements in Table 2.1, for the micromouse sensing module are described in Table 2.2.

2.3 Testing Procedures

A summary of the testing procedures detailed in chapter 4 is given in Table 2.3.

2.4 Traceability Analysis

The show how the requirements, specifications and testing procedures all link, Table 2.4 is provided.

2.4.1 Traceability Analysis 1

R01 concerns how well each transmitter-receiver pair can measure distance, which is consistent with SP08. AT04 unit tests each pair to ensure they are consistent with SP08.

2.4.2 Traceability Analysis 2

R02 requires a way to toggle the infrared emitter functionality of the sensor, which is solved by SP11. AT07 ensures that the sensor integrates with the PWM peripheral of the microcontroller.

Table 2.2: Specifications of the sensing subsystem derived from the requirements in Table 2.1.

Specification ID	Description		
SP01	Must have 2x14 (2.54mm pin pitch) connection pinouts to connect to motherboard		
SP02	Must not be more than 115mm width of motherboard to avoid.		
	knocking walls.		
SP03	Must not take any space behind the pinout to avoid interfering with other hardware.		
	on the micro-mouse.		
SP04	Must not be longer than 45mm to avoid reducing micro-mouse turning radius.		
SP05	Keep maximum discharge at 0.5C, implying a maximum current draw of 400mA.		
	from full to fully discharge in two hours.		
SP06	Complete PCB manufacture must not exceed. \$30		
SP07	Must not require more than 3.3V that will be available at certain microprocessor.		
	pins.		
SP08	Sensor output voltage range must be at least 0.5V between 60mm and 180mm away		
	from wall, and does not experience voltage changes from 180mm from wall.		
SP09	Sensor must experience at most 50mV difference when rotated 15 and -15		
	degrees relative to wall.		
SP10	Sensor must not experience larger than 1mV output voltage changes when slightly		
	jiggled.		
SP11	Use the PWM peripheral circuitry in the microcontroller to toggle when the sensor		
	radiates infrared light.		

2.4.3 Traceability Analysis 3

R03 can be approximated by SP10 and SP09, which outline non-ideal conditions in which the sensor may operate in. AT05 and AT06 unit tests each emitter-receiver pair in these non-ideal conditions.

2.4.4 Traceability Analysis 4

R04 concerns the integration between the sensor and power system. SP07 and SP05 outline this in terms of measurable quantities that AT03 verifies are correct.

2.4.5 Traceability Analysis 5

R05 concerns the budget of the final PCB, which is strictly defined by SP06. AT08 is to ensure that the total cost did not exceed the budget.

2.4.6 Traceability Analysis 6

R06 exists to ensure that the PCB has an appropriate size, which is more extensively explained by SP01, SP02, SP03 and SP04. AT01 and AT02 are an integration test for the sensing subsystem PCB and the rest of the hardware of the micro-mouse.

Table 2.3: CAPTION

Acceptance Test ID	Description
AT01	Verify that PCB properly connects to motherboard pins and fits onto motherboard
	without mechanically interfering with other systems.
AT02	Verify that PCB size does not dramatically reduce turning radius of micro-mouse.
AT03	Verify that input current and voltage are not too high.
AT04	Verify that output voltage is appropriate at given distances.
AT05	Verify that output voltage does not vary drastically when rotated through small
	angles.
AT06	Verify that output voltage does not vary drastically when slightly jiggled.
AT07	Verify that sensor turns on and off based on microcontroller PWM pin.
AT08	Verify that cost of PCB manufacture is below \$30.

Table 2.4: Requirements Traceability Matrix

#	Requirements	Specifications	Acceptance Test
1	R01	SP08	AT04
2	R02	SP11	AT07
3	R03	SP10,SP09	AT05, AT06
4	R04	SP07,SP05	AT03
5	R05	SP06	AT08
6	R06	SP01,SP02,SP03,SP04	AT01,AT02

Subsystem Design

3.1 Design Decisions

3.1.1 Design Decision Process

The flow chart in Figure 3.1 outlines the process taken to get to a final design in this instance.

The following sections outline each of the stages in Figure 3.1

3.1.2 Decide on general Transducer Circuit

Image Figure 3.2 shows a general circuit schematic was inspired by a lecture by UCLA on micro-mouse sensing [1]. This circuit is used throughout the design because it is simple and proven to work by the precedence of other engineers using it.

3.1.3 Build Breadboard Prototype Using On Hand Components to Decide on Appropriate Radiant Intensity and Reverse Light Current vs. Irradiance Curve for Photodiode

Due to the electromagnetic component of sensing, trying to use mathematics to deduce component values is hard. For this reason, a breadboard prototype was built to deduce ball-park parameters of the circuit.

At this stage, there were two options for how to realise the circuit with components on hand. It could be done with a single package infrared transducer (QRD1114-D), or a photodiode (SFH 205) and infrared LED (TSAL6100). It was decided to use the two discrete components because the distance between them could be changed, which may have been an important parameter to alter. It turned out that the most important component value in the circuit was R2 from Figure 3.2, and the distance between the components did not meaningfully change the circuit behaviour. R2 was chosen using trial an error from Table 3.1, and D1 from Figure 3.2 was driven at an arbitrary 10mA. This resulted in the circuit showed in Figure 3.5 having a voltage range of 700mA when moved from 60mm to 180mm

Figure 3.1: Flow Chart for Design Decision Process

Figure 3.2: Simple Infrared Transducer Circuit

Figure 3.3: Radiant Intensity vs. Forward Current

Figure 3.4: Reverse Light Current vs. Irradiance

from a wooden wall. These values satisfy SP05, SP07 and SP08. The circuit also satisfied SP09 when rotated through small angles and SP10 when slightly jiggled.

This prototype elucidated two characteristics to look for in components for the final circuit, which will give predictable results:

- 1. The TSLA6100 LED radiates 10 mW/sr at 10 mA as can be seen by Figure 3.3 (the 10 mW/sr radiant intensity is the important characteristic).
- 2. The SFH-205-F photodiode has a reverse light current versus Irrandiance plot as shown in Figure 3.4.

Resistor (k\Omega)	Output at 60mm (V)	Output at 180mm (V)	Output at 250mm (V)
50	0.23	0.23	0.23
180	0.39	0.3	0.3
280	0.46	0.42	0.42
390	3.6	3.4	3.4
560	3.9	3.8	3.9
690	3.9	3.5	3.5
820	3.9	3.2	3.2

Table 3.1: Choosing R2 Using Trial and Error

Figure 3.5: Prototype Circuit

Option	Infrared Emitter and Receiver	Response Time of Receiver	Extended Part Cost	Predictability
1	TEFD4300F and TSAL6200 (Infrared Diode and Photodiode)	Very fast compared to the phototransistor found in the other two options.	Both components are only available as extended parts, and hence would cost \$6.	TSAL6200 can radiate 10mW/sr at 3.3V and 22mA. TEFD4300F has a similar reverse light current vs. irradiance curve for photodiode used in prototype. Thus, this combination is very predictable.
2	QRD1113 (Reflective Object Sensor)	Slow compared to first option because it uses a phototransistor.	Only available as an extended part, but because it is a single part will cost \$3.	Datasheets for these types of devices do not provide data that is easily comparable to the components of option 1, hence this device is unpredictable.
3	MHT153PTBT and TSAL6200 (Photodiode and Infrared LED)	Slow compared to first option because it uses a phototransistor.	Phototransistors come in basic varieties, hence only charged an extended fee for LED , amounting to \$3	MHT153PTBT has a similar light current vs. irradiance curve for photodiode used in prototype, and TSAL6200 is the same as the LED used for option 1 - hence this combination is predictable.

Table 3.2

3.1.4 Decide Between Various Options for Infrared Emitter and Receiver

Table 3.2 below summarises reasons to either choose or reject three potential solutions for the emitter component and receiver component for the sensor. Only the extended part cost is included as it is typically an order of magnitude higher than the actual cost. Fast response times for the receiver will make it easier to read the output voltage into the microprocessor. Based on the table, option 1 was chosen because, although it is the most expensive, is the only one to have both a fast receiver response and predictability.

3.1.5 Deciding on How Many Emitter-Transmitter Pairs to use and in What Layout

After trying to fit only three emitter-transistor pairs onto a PCB in Kicad, it was found any more components would make it challenging to make a PCB that was small enough to meet the spacial specifications of the sensor. Hence, only three pairs was decided upon - two on the sides and one in front so that the mouse could use those three readings to identify where it can go.

3.1.6 Deciding on Final Components

The SS8050 BJT transistor was chosen for this circuit, as it can be driven to saturation whilst providing a 22mA current for the TSAL6200 LED. The following calculations show were done using the data sheets of the SS8050 and TSAL6200 to determine the base and collector resistor from Figure 3.2:

$$V_{CE} = 0.25V, I_C = 22mA, I_B = 100\mu A$$

for transistor to be in saturation and for LED to emit 10mW/sr at $V_{CC} = 3.3\text{V}$. LED voltage drop will be 1.2V at this current.

$$V_{CC}$$
 - R_BI_B - V_{BE} = 0
 $3.3V$ - $R_B \times 100\mu A$ - 0.7 = 0
 \therefore R_B = 26000 Ω
 V_{CC} V_D R_CI_C - V_{CE} = 0
 $3.3V$ - 1.2 V - $R_C(800\mu A)$ - 0.25 = 0
 \therefore R_C = 2.3125 Ω

For these, the standard E24 values $27k\Omega$ and 2.2Ω . The slightly higher value for R_B will increase the magnitude of the radiation emitted by the infrared LED and hence slightly increase the measured output voltage, however the slightly lower value chosen for R_C will decrease the measured output voltage. Consistent with the 820Ω resistor that was used for current limiting the photodiode in the prototype, an 800Ω was used.

3.1.7 Final Design

Figure 3.6, Figure 3.7a, Figure 3.7b and Figure 3.7c display the final PCB design. The final PCB is 111mm by 45mm which obeys SP02 and SP04.

Figure 3.6: Schematic

3.2 Failure Management

Table 3.3 details the failure management processes implemented for the sensor design.

Figure 3.7: PCB

Table 3.3: Failure Management Processes

Name	Description
Multiple resistor values can limit photodiode	Four
	resistances can be
	connected to the
	photodiode using jumpers
	incase this resistance
	needs to be varied due
	to this resistance being
	so important in the prototype.
Test points added to important points	Test points added
	to base and collector
	of transistor to trace
	its operating point.
	Test points are also
	added across the
	photodiode to trace
	the output voltage.

3.3 System Integration and Interfacing

To integrate the subsystem with the rest of the system is shown is Table 3.4

Table 3.4: Interfacing specifications

Interface Description		Pins/Output		
I001	Sensor and microcontroller	 Base of Q3 to PWM13 Base of Q1 to PE15 Base of Q2 to PW14 Anode of D1 to PA3 Anode D2 to PA4 Anode D3 to PA5 		
I002	Sensor to power subsystem	 V_{CC} to 3V3 (microcontroller) GND to GND (microcontroller) 		

Figure 3.8 is a block diagram showing how the sensing subsystem fits into the larger system.

Figure 3.8: Block Diagram of System

Acceptance Testing

Table 4.1 shows the subsystem acceptance tests for the subsystem, how to carry them out and what constitutes a pass or fail.

4.1 Critical Analysis of Testing

4.1.1 AT01

This worked, this did not work. I suspect that is because of x y and z.

Test ID and Description	Testing Procedure	Pass/Fail Criteria
	- Try to fit the male	Pass if sensor fits
AT01: Verify that PCB properly connects to motherboard pins and fits onto motherboard		without occupying
without mechanically interfering with other systems.	pins of the sensor	the space taken
······································	into the female pins	by other components.
	of the motherboard.	
	- Measure the	Pass if measurements
AT02: Verify that PCB size does not dramatically reduce turning radius of micro-mouse.	length and breadth	agree with SP02
	of the sensor PCB.	and SP04.
	- Measure the	
	voltage between	Pass if measurements
Verify that input current and voltage are not too high.	Vcc and GND.	agree with SP05
	- Measure the	and SP07.
	current flowing	
	into the circuit.	D 'f1'
	- Measure the	Pass if voltage
	output voltage of	ranges by at least 0.5V between 60mm
ATTO 4 37 16 11 4 4 4 14 14 14 14 14 14 14 14 14 14	the sensor circuit	
AT04: Verify that output voltage is appropriate at given distances.	at 60mm, 180mm	and 180mm, and
	and 250mm away	if voltage has an
	from a wooden surface.	ambient reading at 250mm.
	- Measure the	at 250mm.
	output voltage of	
	the sensor circuit	Pass if voltage
AT05: Verify that output voltage does not vary drastically when rotated through small	from 60mm from	changes negligibly
angles	the wooden wall	when rotated through
angies	normal to the wall.	15 and -15 degrees.
	and rotated 15 and	15 and -15 degrees.
	-15 degrees.	
	- Measure the output	Pass if output
	voltage of the sensor	voltage changes
AT06: Verify that output voltage does not vary drastically when slightly jiggled.	circuit from 60mm	negligibly when
	from the wooden wall	sensor is slightly
	when slightly jiggled.	jiggled.
	- Program	3 00
	microcontroller to	
	toggle the infrared	Pass if the toggling
ATTOT AT 16 11	emitters at a slow rate	of the infrared LED
AT07: Verify that sensor turns on and off based on microcontroller PWM pin.	and view them	can be seen on the
	through a camera	camera.
	to ensure that it is	
	working.	
AT08: Verify that cost of PCB manufacture is below \$30.	- Calculate the total	Pass if below \$30.
A106. Verny that cost of PCD manufacture is below \$50.	cost of the PCB.	rass ii below \$50.

Table 4.1: Subsystem Acceptance Tests

Table 4.2: Subsystem acceptance test results

Test ID	Description	Result
AT01	Powers on	

Conclusion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.1 Recommendations

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Bibliography

[1] U. IEEE, "Micromouse 2021 lecture 4: Ir sensors," 2021. [Online]. Available: https://www.youtube.com/watch?v=fwOo8e-dVag&t=1419s

 \mathbf{R}