## IN THE CLAIMS:

1. (Currently Amended) A method, comprising:

determining that a fluctuation of a predetermined parameter related to a radio uplink channel transmission exists,

<u>further determining</u> a frame or block error rate of said radio uplink channel, and

changing a spreading factor used for uplink channel spreading to counteract said fluctuation in order to keep the predetermined parameter related to said fluctuation in a predetermined range substantially near a threshold value reference by a low value and a high value, by increasing or decreasing said spreading factor, wherein said changing the spreading factor is carried out only if said frame or said block error rate meets a selected criterion.

- 2. (Canceled)
- (Canceled)
- 4. (Previously Presented) The method of claim 1, wherein said determining is carried out in a radio network and wherein said method further comprises: sending a spreading factor control signal from said network to a mobile station followed by said mobile station carrying out said changing said spreading factor.
- 5. (Canceled)
- 6. (Canceled)
- 7. (Canceled)

- 8. (Canceled)
- 9. (Canceled)
- 10. (Cancelled) The method of claim 1, wherein said step of determining further comprises the step of determining a frame or block error rate of said radio uplink channel and wherein said step of changing the spreading factor is carried out only if said frame or block error rate meets a selected criterion.
- 11. (Previously Presented) The method of claim 1, wherein said determining comprises the detecting in a radio network said fluctuation in said radio uplink channel from a mobile station to a network, and wherein said method further comprises: transmitting a transmit power control signal from said network to said mobile station commanding a change in said spreading factor to counteract said fluctuation.
- 12. (Canceled)
- 13. (Canceled)
- 14. (Canceled)
- 15. (Canceled)
- 16. (Canceled)
- 17. (Canceled)
- 18. (Canceled)

- 19. (Canceled)
- 20. (Canceled)
- 21. (Canceled)
- 22. (Canceled)
- 23. (Canceled)
- 24. (Canceled)
- 25. (Canceled)
- 26. (Canceled)
- 27. (Canceled)
- 28. (Canceled)
- 29. (Currently Amended) An apparatus, comprising:

means for determining that a fluctuation of a predetermined parameter related to a radio uplink channel transmission exists,

means for further determining a frame or block error rate of said radio uplink channel and

means for changing a spreading factor used for uplink channel spreading to counteract said fluctuation in order to keep a the predetermined parameter related to said fluctuation substantially near a threshold value in a predetermined range, defined by a low value and a high value, by increasing or decreasing said spreading factor, wherein said changing the spreading factor is carried out only if a frame or block error rate meets a selected criterion.

- 30. (Canceled)
- 31. (Canceled)
- 32. (Previously Presented) The apparatus of claim 29, wherein means for determining is located in a radio network and wherein said apparatus further comprises means for sending a spreading factor control signal from said network to a mobile station to means for deciding a change in spreading factor.
- 33. (Canceled)
- 34. (Canceled)
- 35. (Canceled)
- 36. (Canceled)
- 37. (Canceled)
- 38. (Cancelled) The apparatus of claim 29, wherein said step of determining further comprises means for determining a frame or block error rate of said radio uplink channel and wherein said means for changing the spreading factor changes the spreading factor only if said frame or block error rate meets a selected criterion.
- 39. (Previously Presented) The apparatus of claim 29, wherein said determining comprises detecting in a radio network said fluctuation in said radio uplink channel from said apparatus to a network, and wherein said apparatus further comprises means for transmitting a transmit power control signal from said network to

## Attorney Docket No. 944-003.103-2

said apparatus commanding a change in said spreading factor to counteract said fluctuation.

- 40. (Canceled)
- 41. (Canceled)
- 42. (Canceled)
- 43. (Canceled)
- 44. (Canceled)
- 45. (Canceled)
- 46. (Canceled)
- 47. (Canceled)
- 48. (Canceled)
- 49. (Canceled)
- 50. (Canceled)
- 51. (Canceled)
- 52. (Canceled)
- 53. (Canceled)
- 54. (Canceled)

- 55. (Canceled)
- 56. (Canceled)
- 57. (Cancelled) The method of claim 1, wherein the low value and the high value are equal.
- 58. (Previously Presented) The method of claim 1, wherein the predetermined parameter is a signal-to-interference ratio.
- 59. (Cancelled) The method of claim 58, wherein the low value of the signal to interference ratio equals to the high value of said signal to interference ratio.
- 60. (Cancelled) The method of claim 29, wherein the low value and the high value are equal.
- 61. (Previously Presented) The apparatus of claim 29, wherein the predetermined parameter is a signal-to-interference ratio.
- 62. (Cancelled) The apparatus of claim 61, wherein the low value of the signal to interference ratio equals to the high value of said signal to noise interference.