文件	型号	YM12864I
文件	类型	服务文件
版	本	02.3

图形点阵液晶显示模块使用手册 YM128641

深圳市锦华电子有限公司

地址:深圳新亚洲电子商城三楼 3A050 室 邮编:518031

电话: 0755-61306661 传真: 0755-61306662

http://szjinhua.hqew.com E-mail:jinhuamarket@vip.163.com

一. 概述

YM12864I 是一种图形点阵液晶显示器。它主要采用动态驱动原理由行驱动—控制器和列驱动器两部分组成了128(列)×64(行)的全点阵液晶显示。此显示器采用了 COB 的软封装方式,通过导电橡胶和压框连接 LCD,使其寿命长,连接可靠。

二.特性

- 1.工作电压为+5V±10%,可自带驱动 LCD 所需的负电压。
- 2.全屏幕点阵,点阵数为 128(列) x 64(行),可显示 8(/行) x 4(行)个(16 x 16 点阵)汉字,也可完成图形,字符的显示。
- 3.与 CPU 接口采用 5 条位控制总线和 8 位并行数据总线输入输出,适配 M6800 系列时序。
- 4.内部有显示数据锁存器,自带 EL 驱动。
- 5.简单的操作指令 显示开关设置,显示起始行设置,地址指针设置和数据读/写等指令。

三.外形尺寸

1.外形尺寸图

2.主要外形尺寸

项目	标 准 尺 寸	单 位
模块体积	54.0×50.0×6.5	mm
定位尺寸	49.0 × 45.0	mm
视 域	43.5 × 29	mm
行 列 点 阵 数	128 × 64	dots
点 距 离	0.32×0.39	mm
点 大 小	0.28 × 0.35	mm

四.硬件说明

1.引脚特性

引脚号	引脚名称	级别	引 脚 功 能 描 述
1	VSS	٥V	电源地
2	VDD	+5V	电源电压
3	VLCD	0 ~ -10V	LCD 驱动负电压,要求 VDD-VLCD=13V
4	RS	H/L	寄存器选择信号
5	R/W	H/L	读/写操作选择信号
6	Е	H/L	使能信号
7	DB0		
8	DB1		
9	DB2		
10	DB3	H/L	 八位三态并行数据总线
11	DB4	П/С	八位二念开门数据总线
12	DB5		
13	DB6		
14	DB7		
15	CS1	H/L	片选信号 , 当 CS1+H 时,液晶左半屏显示
16	CS2	H/L	片选信号 , 当 CS2=H 时,液晶右半屏显示
17	/RES	H/L	复位信号, 低有效
18	VEE	-10V	输出-10V 的负电压(单电源供电)
19	ELEN	H/L	ELEN=H 时,EL 能发光
20	AC	~ 60V	EL 驱动的输入交流信号

2.原理简图

3.主要各部分详解

1)显示数据 RAM(DDRAM)

DDRAM(64×8×8 bits)是存储图形显示数据的。此 RAM 的每一位数据对应显示面板上一个点的显示(数据为 H)与不显示(数据为 L)。DDRAM 的地址与显示位置关系对照图(见附录一)

2) I/O 缓冲器(DBO~DB7)

I/O 缓冲器为双向三态数据缓冲器。是 LCM (液晶显示模块)内部总线与 MPU 总线的结合部。其作用是将两个不同时钟下工作的系统连接起来,实现通讯。I/O 缓冲器在片选信号 CS 有效状态下,I/O 缓冲器开放,实现 LCM (液晶显示模块)与 MPU 之间的数据传递。当片选信号为无效状态时,I/O 缓冲器将中断 LCM (液晶显示模块)内部总线与 MPU 数据总线的联系,对外总线呈高阻状态,从而不影响 MPU 的其他数据操作功能。

3)输入寄存器

输入寄存器用于接收在 MPU 运行速度下传送给 LCM (液晶显示模块)的数据并将其锁存在输入寄存器内,其输出将在 LCM (液晶显示模块)内部工作时钟的运作下将数据写入指令寄存器或显示存储器内。

4)输出寄存器

输出寄存器用于暂存从显示存储器读出的数据,在 MPU 读操作时,输出寄存器将当前锁存的数据通过 1/0 缓冲器送入 MPU 数据总线上。

5)指令寄存器

指令寄存器用于接收 MPU 发来的指令代码,通过译码将指令代码置入相关的寄存器或触发器内。

6) 状态字寄存器

状态字寄存器是 LCM (液晶显示模块)与 MPU 通讯时唯一的"握手"信号。状态字寄存器向 MPU 表示了 LCM (液晶显示模块)当前的工作状态。尤其是状态字中的"忙"标志位是 MPU 在每次对 LCM (液晶显示模块)访问时必须要读出判别的状态位。当处于"忙"标志位时,I/O 缓冲器被封锁,此时 MPU 对 LCM (液晶显示模块)的任何操作(除读状态字操作外)都将是无效的。

7) X 地址寄存器

X 地址寄存器是一个三位页地址寄存器,其输出控制着 DDRAM 中 8 个页面的选择,也是控制着数据传输通道的八选一选择器。X 地址寄存器可以由 MPU 以指令形式设置。X 地址寄存器没有自动修改功能,所以要想转换页面需要重新设置 X 地址寄存器的内容。

8)Y地址计数器

Y 地址计数器是一个 6 位循环加一计数器。它管理某一页面上的 64 个单元。Y 地址计数器可以由 MPU 以指令形式设置,它和页地址指针结合唯一选通显示存储器的一个单元,Y 地址计数器具有自动加一功能。在显示存储器读/写操作后 Y 地址计数将自动加一。当计数器加至 3FH 后循环归零再继续加一。

9) Z 地址计数器

Z 地址计数器是一个 6 位地址计数器,用于确定当前显示行的扫描地址。Z 地址计数器具有自动加一功能。它与行驱动器的行扫描输出同步,选择相应的列驱动的数据输出。

10)显示起始行寄存器

显示起始行寄存器是一个 6 位寄存器, 它规定了显示存储器所对应显示屏上第一行的行号。该行的数据将作为显示屏上第一行显示状态的控制信号。

11)显示开/关触发器

显示开/关触发器的作用就是控制显示驱动输出的电平以控制显示屏的开关。在触发器输出为"关"电平时,显示数据锁存器的输入被封锁并将输出置"0",从而使显示驱动输出全部为非选择波形,显示屏呈不显示状态。在触发器输出为"开"电平时,显示数据锁存器被控制,显示驱动输出受显示驱动数据总线上数据控制,显示屏将呈显示状态。

12)复位端/RES

复位端/RES 用于在 LCM (液晶显示模块)上电时或需要时实现硬件电路对 LCM (液晶显示模块)的复位。该复位功能将实现:

- 设置显示状态为关显示状态
- 显示起始寄存器清零。显示 RAM 第一行对应显示屏上的第一行。
- 在复位期间状态字中 RESET 位置"1"。

初始化条件:

项目	名称	最小值	标准值	最大值	单位
Reset Time	trs	1.0	-	-	us
Rise Time	t _R	-	-	200	ns

4. 背光接线图

五.电气特性

1.限定参数

项目	名称	值	单位	备 注
Operating Voltage	VDD	-0.3 to +5.5	V	*1
Supply Voltage	VEE	VDD-19.0 to VDD+0.3	V	*2
Driver Supply Voltage	V_{B}	-0.3 to VDD+0.3	V	*1,*3
Operating Temperature	Topr	-20 to +70		
Storage Temperature	T _{STG}	-30 to +80		

- *1.Based on VSS=0V
- *2.Applies to V_{LCD}
 *3.Applies to CS,E, R/W,RS,DB0~DB7

2. 直流特性 (VDD=+5V ± 10% , VSS=0V , VDD-VLCD=8~17V , Ta=-20~+70

项目	名称	测试条件	Min	Тур	Max	単位	备注
Input High Voltage	VIH	-	2.0	-	VDD	V	*1
Input Low Voltage	VIL	-	0	-	0.8	V	*1
Output High Voltage	VoH	I _{0H} =-200uA	2.4	-	-	V	*2
Output Low Voltage	V _O L	I _{OL} =1.6mA		-	0.4	V	*2
Input Leekege Current	ILKG	VIN=VSS~VDD	-1.0	-	1.0	uA	*3
Three-state(OFF) input Current	ITSL	VIN=VSS~VDD	-5.0	-	5.0	uA	*4
Operating Current	I _{DD1}	During Display	-	-	0.5	mA	*5
quality wild it	I _{DD2}	During Access			2	mA	*5
On Resistance	Ron		ı	-	7.5	K	*6

- $*1.CS,E,RW,RS,DB0 \sim DB7$
- *2.DB0 ~ DB7
- *3.Except DB0 ~ DB7
- *4.DB0~DB7 at High Impedance
- *5.1/64 duty, FCLK=250KHZ, Frame Frequency=70HZ, Output: NO Load
- *6.VDD ~ VEE=15.5

3. 交流特性 (VDD=+5V ± 10%, VSS=0V, Ta=-20~+70)

项目	名称	Min	Тур	Max	单 位
E Cycle	t _C	1000	-	-	ns
E Hight Level Width	t _{wH}	450	-	-	ns
E Low Level Width	t w∟	450	-		ns
E Rise Time	t _R	-	-	25	ns
E Fall Time	t _F	-		25	ns

项 目	名 称	Min	Тур	Max	单 位
Address Set-up Time	t ASH	140	-	-	ns
Address Hold Time	t AH	10	-	-	ns
Data Set-up Time	t _{DSU}	200	-	-	ns
Data Delay Time	t _D	-	-	320	ns
Data Delay Time	t DHW	10			ns
Data Delay Time	t DHR	20			ns

MPU Write timing

MPU Read timing

六.软件说明

1.指令表

指令名称	控制	信号			控制	削 代	, ,	码		
1日 4 口 4小	RS	R/W	D7	D6	D5	D4	D3	D2	D1	DO
显示开关设置	0	0	0	0	1	1	1	1	1	D
显示起始行设置	0	0	1	1	L5	L4	L3	L2	L1	LO
页面地址设置	0	0	1	0	1	1	1	P2	P1	P0
列地址设置	0	0	0	1	C5	C4	C3	(2	C1	∞
读取状态字	0	1	BUSY	0	ON/OFF	RESET	0	0	0	0
写显示数据	1	0			数		据			
读显示数据	1	1			数		据			

详细解释各个指令功能

1)读状态字

|--|

状态字是 MPU 了解 LCM (液晶显示模块)当前状态,或 LCM 向 MPU 提供其内部状态的唯一的信息渠道。

BUSY 表示当前 LCM 接口控制电路运行状态。BUSY=1 表示 LCM 正在处理 MPU 发过来的指令或数据。此时接口电路被封锁,不能接受除读状态字以外的任何操作。BUSY=0表示 LCM 接口控制电路已外于"准备好"状态,等待 MPU 的访问。

ON/OFF 表示当前的显示状态。ON/OFF=1 表示关显示状态,ON/OFF=0 表示开显示状态。

RESET 表示当前 LCM 的工作状态,即反映/RES 端的电平状态。当/RES 为低电平状态时,LCM 处于复位工作状态,标志位 RESET=1。当/REST 为高电平状态时,LCM 为正常工作状态,标志位 RESET=0。

在指令设置和数据读写时要注意状态字中的 BUSY 标志。只有在 BUSY=0 时, MPU 对 LCM 的操作才能有效。因此 MPU 在每次对 LCM 操作之前,都要读出状态字判断 BUSY 是否为"0"。若不为"0",则 MPU 需要等待,直至 BUSY=0 为止。

2)显示开关设置

该指令设置显示开/关触发器的状态,由此控制显示数据锁存器的工作方式,从而控制显示屏上的显示状态。D 位为显示开/关的控制位。当 D=1 为开显示设置,显示数据锁存器正常工作,显示屏上呈现所需的显示效果。此时在状态字中 ON/OFF=0。当 D=0 为关显示设置,显示数据锁存器被置零,显示屏呈不显示状态,但显示存储器并没有被破坏,在状态字中 ON/OFF=1。

3)显示起始行设置

校 🛨 1 1	19 11 11	∥ ∩
格式 1 1 L5 L4 L3		

该指令设置了显示起始行寄存器的内容。LCM 通过 CS 的选择分别具有 64 行显示的管理能力,该指令中 L5~L0 为显示起始行的地址,取值在 0~3FH(1~64 行)范围内,它规定了显示屏上最顶一行所对应的显示存储器的行地址。如果定时间隔地,等间距地修改(如加一或减一)显示起始行寄存器的内容,则显示屏将呈现显示内容向上或向下平滑滚动的显示效果。

4) 页面地址设置

	l=		-					
格 式	1	0	1	1	1	P2	P1	P0

该指令设置了页面地址—X 地址寄存器的内容。LCM 将显示存储器分成 8 页,指令代码中 P2~P0 就是要确定当前所要选择的页面地址,取值范围为 0~7H ,代表第 1~8 页。该指令规定了以后的读/写操作将在哪一个页面上进行。

5) 列地址设置

格 式	0	1	C5	C4	C3	C2	C1	CO

该指令设置了 Y 地址数计数器的内容,LCM 通过 CS 的选择分别具有 64 列显示的管理能力,C5~ C 0=0~ 3FH($1\sim64$)代表某一页面上的某一单元地址,随后的一次读或写数据将在这个单元上进行。Y 地址计数器具有自动加一功能,在每一次读/写数据后它将自动加一,所以在连续进行读/写数据时,Y 地址计数器不必每次都设置一次。

页面地址的设置和列地址的设置将显示存储器单元唯一地确定下来,为后来的显示数据的读/写作了地址的选通。

6) 写显示数据

格 式	数			据	
' v	~~			3/1	

该操作将 8 位数据写入先前已确定的显示存储器的单元内。操作完成后列地址计数器自动加一。

7) 读显示数据

14 15	11/2				
权士	赤灯				
イローエし	女义			1 1/占 1	
	P ** *			•••	

该操作将 LCM 接口部的输出寄存器内容读出,然后列地址计数器自动加一。

2.控制时序表

CS1	CS2	RS	R/W	Е	DB7 ~ DB0	功能
Х	Х	Χ	Χ	0	高阻	总线释放
1	1	0	0	下降沿	输入	写指令代码

CS1	CS2	RS	R/W	Е	DB7 ~ DB0	功能
1	1	0	1	1	输出	读状态字
1	1	1	0	下降沿	输入	写显示数据
1	1	1	1	1	输出	读显示数据

3.DDRAM 地址表

	CS1=1						CS2=1					
Y=	0	1		62	63	0	1		62	63	行号	
	DB0	DB0	DB0	DBO	DBO	DBO	DBO	DBO	DBO	DBO	0	
X=0	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	7	
	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	8	
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	55	
X=7	DB0	DBO	DBO	DBO	DBO	DBO	DBO	DBO	DBO	DBO	56	
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	63	

4.LCM 与 MPU 接口及驱动程序

FM12864I 图形液晶显示模块与 MPU 的连接方式有两种:一种为直接访问方式,一种为间接控制方式。

接口电路(以8031为例) 直接访问方式

注:双电源负压直接由 3.VLCD 引入

间接访问方式

注:双电源负压直接由 3. VLCD 引入

七.液晶显示模块使用注意事项

- 1.请勿随意自行加工、整修、拆卸。
- 2.避免对液晶屏表面施加压力。
- 3.不要用手随意去摸外引线、电路板上的电路及金属框。
- 4. 如必须直接接触时, 应使人体与模块保持同一电位, 或将人体良好接地。
- 5.焊接使用的烙铁、操作用的电动改锥等工具必须良好接地,没漏电。
- 6.严防各种静电。
- 7.模块使用接入电源及断开电源时,必须按图时序进行。即必须在正电源 (5±0.25V)稳定接入后,才能输入信号电平。如在电源稳定接入前,或断开后就输入信号电平,将会损坏模块中的集成电路,使模块损坏。

- 8. 点阵模块在调节时,应调整 VEE 至最佳对比度、视角时为止。如果 VEE 调整过高,不仅会影响显示,还会缩短液晶的寿命。
- 9.模块表面结雾时,不要通电工作,因为这将引起电极化学反应,产生断线。
- 10.模块要存储在暗处(避阳光),温度在-10 ~+35 ,湿度在 RH60%以上的地方。如能装入聚乙烯口袋(最好有防静电涂层)并将口封住最好。

附 录 一

