Similitude Siegel-Weil Formula

Nick Pilotti

February 4, 2025

Let $k = \mathbb{Q}$. Let V be a m dimensional quadratic space over k, and W a 2n dimensional symplectic space over k. Let $H = \operatorname{GO}(V)$ and let $H_1 = \operatorname{O}(V)$ be the kernel of the similitude map λ . If m is even, let $G' = \operatorname{GSp}(W)$. If m is odd, let G' be $\widehat{\operatorname{GSp}(W)}$, a certain the two-fold cover of $\operatorname{GSp}(W)$. For $g \in G'$, let $\lambda(g)$ be the similitude factor of the projection of g to $\operatorname{GSp}(W)$. Let G subgroup of $g \in G'$ such that $\lambda(g) \in \lambda(H)$. Let G_1 be the subgroup of $g \in G$ such that $\lambda(g) = 1$.

Let $\mathbb{W} = V \otimes_k W$. GMp (\mathbb{W}) is a certain extension of GSp (\mathbb{W}) by \mathbb{C}^1 , called the metaplectic cover of GSp (\mathbb{W}). The typical element of GMp (\mathbb{W}) will be denoted by (g, ϵ) , where $g \in \text{GSp}(\mathbb{W})$ and $\epsilon \in \mathbb{C}^1$. p is the projection from GMp (\mathbb{W}) to GSp (\mathbb{W}). There are inclusions

$$H \hookrightarrow \mathrm{GSp}(\mathbb{W}), \ G \hookrightarrow \mathrm{GSp}(\mathbb{W}).$$

These are inclusions are selected so that their preimages in GMp (W) are nice. $p^{-1}(H)$ is trivial as an extension of H. If m is even, then $p^{-1}(G)$ is trivial as an extension of G. If m is odd, then $p^{-1}(G)$ is the metaplectic cover of GSp (Y).

Let ψ be a fixed additive character of k and $\omega = \omega_{\psi}$ the standard Weil representation of $H_1(\mathbb{A}) \times G_1(\mathbb{A})$ on the Schwartz space $S(V(\mathbb{A})^n)$. Let

$$R = \left\{ \left(h, g \right) \in H \times G \mid \nu \left(h \right) = \nu \left(g \right) \right\}.$$

There is a representation of $R(\mathbb{A})$ on $S(V(\mathbb{A})^n)$ given by

$$\omega(h, g) \varphi(x) = |\nu(h)|^{-\frac{nm}{4}} (\omega(g_1) \varphi) (h^{-1}x).$$

We call ω the extended Weil representation.

The theta kernel, defined for $(h, g) \in R(\mathbb{A})$ by

$$\theta\left(h, g; \varphi\right) = \sum_{x \in V(k)^n} \omega\left(h, g\right) \varphi\left(x\right)$$

is left R(k) invariant. The theta integral is defined (when convergent) by

$$I(g,\varphi) = \int_{H_1(k)\backslash H_1(\mathbb{A})} \theta(h_1 h, g; \varphi) dh_1$$

where $g \in G(\mathbb{A})$, $h \in H(\mathbb{A})$ with $\lambda(h) = \lambda(g)$, and $\varphi \in S(V(\mathbb{A})^n)$. It does not depend on the choice of h. A technical procedure is needed to define the theta integral in all cases.

 λ_s is a certain character of Siegel parabolic P in G. Let $I(s) = I_P^G(\lambda_s)$ be the normalized induced representation of $G(\mathbb{A})$. The Eisenstein series associated to a section $\Phi_s \in I(s)$ is defined for Re(s) > 1 by

$$E\left(g, s, \Phi_{s}\right) = \sum_{\gamma \in P(k) \backslash G(k)} \Phi_{s}\left(\gamma g\right),$$

and the normalized Eisenstein series is

$$E^* (g, s, \Phi_s) = b_G(s) \cdot E(g, s, \Phi_s)$$

where $b_G(s)$ is a certain function of s.

The Siegel-Weil formula says that for a section $\Phi_s \in I(s)$ with $\Phi_0 \in \Pi(V)$

so that $\Phi_{0} = [\varphi]$ for some $\varphi \in S(V(\mathbb{A})^{n})$,

$$E(g,0,\Phi_s) = 2I(g,\varphi).$$