L5. Proiectarea regulatoarelor utilizând locul rădăcinilor

Exercițiul 1. Pentru un sistem cu funcția de transfer $G(s) = \frac{1}{s^2}$ calculați un regulator cu avans de fază (lead), cu funcția de transfer $G_c(s) = \frac{k(s+z)}{s+p}$, cu 0 < z < p, astfel încât polii dominanți ai sistemului închis să fie localizați la $r_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}j$.

Figura 1: Schema bloc a sistemului

Ex1. Rezolvare. Se calculează zeroul și polul regulatorului astfel încât $r_{1,2}$ să se afle pe locul rădacinilor a sistemului cu regulator (condiția de fază să fie respectată). Dacă $r_{1,2}$ aparțin locului rădăcinilor, se calculează valoarea lui k pentru această locație a polilor sistemului închis (condiția de modul se respectă).

Se desenează planul complex în care se plasează polii (și zerourile, dacă este cazul) cunoscuți ai procesului. Se plasează și $r_{1,2}$. Se plasează zeroul regulatorului sub r_1 (după al doilea pol real al procesului): $-z=-\frac{1}{2}$. Polul necunoscut al regulatorului, -p, se plasează pe axa reală negativă și se calculează. Vezi Figura 2.

Figura 2: Poli și zerouri

Dacă $r_{1,2}$ aparțin locului rădăcinilor, atunci se respectă condiția de fază:

$$\angle G_c(s)G(s)|_{s=r_1} = -180^o$$

sau

$$\langle \frac{k(s+z)}{s+p} \rangle \frac{1}{s^2} |_{s=r_1} = -180^o$$

Relația de mai sus detaliată:

$$(\angle k + \angle (s+z) - \angle (s+p) - 2\angle s)|_{s=r_1} = -180^{\circ}$$

sau

$$(\angle k + \angle (r_1 + z) - \angle (r_1 + p) - 2 \angle r_1) = -180^{\circ}$$

Din Figura 2 rezultă:

$$0 + 90^{\circ} - \theta_p - 2(180^{\circ} - \beta) = -180^{\circ}$$

$$\tan \beta = \frac{\sqrt{3}/2}{1/2} = \sqrt{3}, \ \Rightarrow \ \beta = 60^{\circ}$$

Deci:

$$0 + 90^{\circ} - \theta_p - 2(180^{\circ} - 60^{\circ}) = -180^{\circ}, \Rightarrow \theta_p = 30^{\circ}$$

Din triunghiul cu vârfurile: r_1 , -1/2, -p rezultă:

$$\tan \theta_p = \frac{\sqrt{3}/2}{p-1/2}, \ \tan 30^o = \frac{\sqrt{3}/2}{p-1/2} = \frac{\sqrt{3}}{3}, \ \Rightarrow \ p = 2$$

Regulatorul care asigură că $r_{1,2}$ sunt pe locul rădăcinilor este:

$$G_c(s) = \frac{k(s + \frac{1}{2})}{s + 2}$$

Valoarea lui k pentru care $r_{1,2}$ sunt poli ai sistemului închis se calculează din condiția de modul:

$$|G_c(s)G(s)|_{s=r_1} = 1$$

sau

$$\left| \frac{k(s + \frac{1}{2})}{s + 2} \right|_{s = -1/2 + \sqrt{3}/2j} = 1$$

$$k = \frac{\left|\frac{3}{2} + \frac{\sqrt{3}}{2}j\right| \cdot \left| -\frac{1}{2} + \frac{\sqrt{3}}{2}\right|^2}{\left|\frac{\sqrt{3}}{2}j\right|} = 2$$

Deci

$$G_c(s) = \frac{2(s + \frac{1}{2})}{s + 2}$$

Rezolvare utilizând rltool în Matlab

- Se introduce procesul:
 - >> sys=tf(1, [1 0 0])
 - >> rltool(sys)
- Se marchează polii $r_{1,2}$ astfel: click-dreapta pe LR \rightarrow Design requirements \rightarrow New \rightarrow Region constraint. Completați partea reală -1/2 și partea imaginară -sqrt(3)/2 și sqrt(3)/2. Se obține o linie care are în capete $r_{1,2}$.
- Plasați un zero la -1/2 din tab-ul Root locus editor. Acesta se poate adăuga sau corecta din Compensator editor (in tab Controllers and fixed blocks, dublu click pe C, sau click-dreapta în fereastra LR și selectați Compensator editor).
- Plasați un pol real din *Root locus editor* și modificați-i poziția până când LR trece prin $r_{1,2}$.
- Modificați locația polilor complecși ai sistemului închis (roz) în $r_{1,2}$. Ar trebui să obțineți o figură similară cu Figura 3.
- Verificați în Compensator editor funcția de transfer rezultată a regulatorului. Observați că este scrisă în forma $\frac{k(1+T_1s)}{1+T_2s}$, deci pentru comparație trebuie să o aduceți la forma în care ați calculat regulatorul $G_c(s) = \frac{k(s+z)}{s+n}$.

Figura 3: Locul rădăcinilor