

ParadisEO-MOEO for a Bi-objective Flow-Shop Scheduling Problem

July 2007

E.-G. Talbi and the ParadisEO team

http://paradiseo.gforge.inria.fr paradiseo-help@lists.gforge.inria.fr

Framework and Tutorial Application

- A framework for the design of metaheuristics for multi-objective optimization (mainly evolutionary algorithms)
- → ParadisEO-MOEO (Multi-Objective Evolving Objects)

- Tutorial application
- → A bi-objective flow-shop scheduling problem

Flow-shop Scheduling Problem

- N jobs to schedule on M machines
- Machines are critical resources
- 2 objectives to optimize (minimize)
 - Makespan (C_{max})
 - Total tardiness (T)

Getting Started

- Go to the first ParadisEO-MOEO's lessons directory
 - > cd paradiseo-moeo/tutorial/Lesson1/
 - FlowShopEA.cpp
 - Main file
 - > cd paradiseo-moeo/examples/flowshop/
 - Component files (*.h, *.cpp)
 - benchs/*
 - Benchmark instances
- Run the EA
 - > cd paradiseo-moeo/build/tutorial/Lesson1/
 - > ./FlowShopEA @FlowShopEA.param

What Should I Get?

First objective (tardiness)
Second objective (makespan)
Scheduling

Initial Population

20

12990 2802

10496 2732

20 19 10 9 17 1 7 15 2 5 16 6 18 13 14 8 4 0 3 12 11 20 19 2 11 17 14 12 18 5 7 8 1 6 3 10 9 4 0 13 15 16

•••

Final Population

20

7184 2453 20 2 15 13 6 8 5 12 0 17 14 19 3 16 9 18 10 1 4 11 7

7191 2482 20 2 15 13 6 8 5 12 0 17 14 19 3 16 9 4 18 10 1 11 7

•••

Final Archive

5

7137 2495 20 2 15 13 8 5 6 11 12 0 17 14 19 3 16 9 4 18 10 1 7

7184 2453 20 2 15 13 6 8 5 12 0 17 14 19 3 16 9 18 10 1 4 11 7

•••

Benchmarks for Flow-shop

- Filename: N_M_i.txt
 - N
 - Number of jobs
 - M
 - Number of machines
 - j
- index
- www.lifl.fr/~liefooga/benchmarks/

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Representation

- In the objective space (objective vector)
- → FlowShopObjectiveVectorTraits
 - Defines the number of objectives and if they have to be minimized or maximized
- → FlowShopObjectiveVector

```
typedef moeoRealObjectiveVector<FlowShopObjectiveVectorTraits>
FlowShopObjectiveVector;
```

- In the decision space
- → FlowShop

```
class FlowShop:
```

public moeoVector<FlowShopObjectiveVector,double,double,unsigned int>

- 1. Representation
- 2. Initialization → FlowShopInit
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Evaluation Function

- → FlowShopEval
- Evaluation in the objective space

```
// creation of an objective vector object
FlowShopObjectiveVector objVector;

// computation of objective values
objVector[0] = tardiness(_eo);
objVector[1] = makespan(_eo);

// setting of the objective vector for the solution under consideration
_eo.objectiveVector(objVector);
```

- 1. Representation
- 2. Initialization
- 3. Evaluation
- Variation operators → FlowShopOp*
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Fitness Assignment: Core Classes

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Diversity Assignment: Core Classes

→ make_algo_moeo.h

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Selection: Core Classes

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria

Replacement: Core Classes

- 1. Representation
- 2. Initialization
- 3. Evaluation
- 4. Variation operators
- 5. Fitness assignment
- 6. Diversity Assignment
- 7. Selection
- 8. Replacement
- 9. Stopping criteria → make_continue_moeo.h

Statistical Tools

→ make_checkpoint_moeo.h

Testing

• Computing Pareto set approximations obtained by two different algorithms on the benchmark 020_05_01.txt (by modifying some parameters)

Testing

- Edit the parameters file FlowShopEA.param (don't forget to delete the "#")
 - > gedit FlowShopEA.param
- Run it
 - > ./FlowShopEA @FlowShopEA.param
- Save the Pareto set approximation for ALGO-1
 - > mv N.front ALGO-1.front
- Modify what you want in the parameters file
 - > gedit FlowShopEA.param
- Run it
 - > ./FlowShopEA @FlowShopEA.param
- Save the Pareto set approximation for ALGO-2
 - > mv N.front ALGO-2.front

How to compare these two fronts?

GUIMOO

a Graphical User Interface for Multi-objective Optimization

http://guimoo.gforge.inria.fr

GUIMOO: Testing

- Create your own project for Flow-shop
 - Name
 - Objectives
- Add the 2 fronts obtained using ParadisEO-MOEO
- Visualize the 2 fronts in 2D

Compute the Contribution and the S metrics

Conclusion

- Thanks to ParadisEO-MOEO, you designed your first multi-objective evolutionary algorithm for the flow-shop scheduling problem
- Thanks to GUIMOO, you analyzed the output of your algorithm for different parameters
- ParadisEO-MOEO is only another step to
 - Hybridization and parallelism using ParadisEO-PEO
- http://paradiseo.gforge.inria.fr
- paradiseo-help@lists.gforge.inria.fr