Facultad de Ciencias UNAM Lógica Computacional Práctica 5: Deducción Natural

Profesor: Francisco Hernández Quiroz Ayudante: Valeria Garcia Landa Ayudante de laboratorio: Sara Doris Montes Incin

Entrega: 31 de marzo de 2020 antes de las 11:59 p. m.

1 Introducción

Los argumentos válidos se denominan pruebas o derivaciones del sistema. La forma general de un argumento es inferir una conclusión sobre la base de algunos (o posiblemente no) supuestos. Las derivaciones más grandes se crean inductivamente a partir de las más pequeñas mediante la aplicación de reglas de deducción. Las reglas de deducción (y con las que trabajaremos) son las siguientes:

Reglas de Deducción Natural		
Nombre	Notación	Regla
Introducción \(\lambda \)	Icon	$f_i, f_j / f_i \wedge f_j$
Eliminación \(\lambda \)	Econ1	$g_i \wedge h_i / h_i$
Eliminación \(\lambda \)	Econ2	$g_i \wedge h_i / g_i$
Introducción \rightarrow	Iimp	$[gf_j] / g \to f_j$
Eliminación \rightarrow	Eimp	$f_i, f_i \to h / h$
Introducción ¬	Ineg	$[gF] / g \to F = \neg g$
Eliminación ¬	Eneg	$f_i, f_i \to F / F$
Eliminación ¬¬	E2neg	$\neg\neg f_i \ / \ f_i$
Introducción ∨	Idis1	$f_i / f_i \vee g$
Introducción ∨	Idis2	$f_i / g \vee f_i$
Eliminación ∨	Idis1	$g \to w, h \to w, g \lor h/w$

2 Ejercicios

1. En el archivo DeduccionNatural.hs agregar a la función checkPaso la implementación de:

- (a) Idis1
- (b) Idis2
- (c) E2neg
- 2. En el archivo Deduccion Natural
Ejemplos.hs dar deducciones en donde se usen las 3
reglas implementadas en el ejercicio anterior.

3 Créditos

Código elaborado por el Dr. Miguel Carrillo Barajas y reescrito por Mauricio Esquivel Reyes para el curso de Lógica Computacional 2020-1.

4 Referencias

- (a) Thompson. Type theory and functional programming.
- (b) Huth-Ryan. Logic in computer science.