NOM: Prénom: Note:

1. Déterminer le polynôme minimal de A = $\begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}.$

$$\chi_{A} = \begin{vmatrix} X-1 & -2 & 2 \\ -2 & X-1 & 2 \\ -2 & -2 & X+3 \end{vmatrix}$$

$$= \begin{vmatrix} X-1 & -2 & 2 \\ X-1 & X-1 & 2 \\ X-1 & -2 & X+3 \end{vmatrix} \qquad C_{1} \leftarrow C_{1} + C_{2} + C_{3}$$

$$= (X-1) \begin{vmatrix} 1 & -2 & 2 \\ 1 & X-1 & 2 \\ 1 & -2 & X+3 \end{vmatrix}$$

$$= (X-1) \begin{vmatrix} 1 & -2 & 2 \\ 0 & X+1 & 0 \\ 0 & 0 & X+1 \end{vmatrix} \qquad L_{2} \leftarrow L_{2} - L_{1}$$

$$L_{3} \leftarrow L_{3} - L_{1}$$

$$= (X-1)(X+1)^{2}$$

On en déduit que $Sp(A) = \{-1,1\}$. Ainsi -1 et 1 sont les racines de π_A . De plus, π_A divise χ_A et est unitaire donc $\pi_A = (X-1)(X+1)$ ou $\pi_A = (X-1)(X+1)^2$. On remarque $A^2 = I_3$ donc (X-1)(X+1) annule A. Finalement, $\pi_A = (X-1)(X+1)$.

2. Montrer que $F = \{(x, y) \in \mathbb{R}^2, \cos(x + y) \le e^{x^2 + y^2}\}$ est un fermé de \mathbb{R}^2 .

Posons $f:(x,y) \in \mathbb{R}^2 \mapsto e^{x^2+y^2} - \cos(x+y)$. Alors $F = f^{-1}(\mathbb{R}_+)$. L'application $(x,y) \in \mathbb{R}^2 \mapsto x^2+y^2$ est polynomiale donc continue sur \mathbb{R}^2 . De plus, exp est continue sur \mathbb{R} donc $(x,y) \in \mathbb{R}^2 \mapsto e^{x^2+y^2}$ est continue sur \mathbb{R}^2 par composition. De même, $(x,y) \in \mathbb{R}^2 \mapsto x+y$ est polynomiale donc continue sur \mathbb{R}^2 et cos est continue sur \mathbb{R} donc $(x,y) \mapsto \cos(x+y)$ est continue sur \mathbb{R}^2 par composition. On en déduit que f est continue sur \mathbb{R}^2 . Finalement, $F = f^{-1}(\mathbb{R}_+)$ est fermé en tant qu'image réciproque du fermé \mathbb{R}_+ par l'application continue f.

3. La fonction $f:(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \mapsto \frac{xy}{x^2+y^2}$ admet-elle une limite en (0,0)?

Remarquons que $f(t,0) = 0 \xrightarrow[t\to 0]{} 0$ et $f(t,t) = \frac{1}{2} \xrightarrow[t\to 0]{} \frac{1}{2}$. Comme $(t,0) \xrightarrow[t\to 0]{} (0,0)$ et $(t,t) \xrightarrow[t\to 0]{} (0,0)$, f n'admet pas de limite en (0,0).

4. On considère l'espace vectoriel E des suites réelles bornées que l'on munit de la norme infinie $\|\cdot\|_{\infty}$. Montrer que l'application D qui à $(u_n) \in E$ associe la suite $(u_{n+1} - u_n)$ est continue.

D est clairement un endomorphisme de E. De plus, pour tout $n \in \mathbb{N}$,

$$|u_{n+1} - u_n| \le |u_{n+1}| + |u_n| \le 2||u||_{\infty}$$

donc

$$\|\mathbf{D}(u)\|_{\infty} \leq 2\|u\|_{\infty}$$

On en déduit que D est continu via la caractérisation de la continuité pour les applications linéaires.

5. On considère l'espace vectoriel des applications bornées de \mathbb{R} dans \mathbb{R} que l'on munit de la norme infinie. Montrer que $F = \{f \in E, \ \forall x \in \mathbb{R}, \ f(x) \ge 0\}$ est un fermé de E.

Soit (f_n) une suite de vecteurs de F convergeant vers $f \in E$. Alors $\lim_{n \to +\infty} ||f_n - f||_{\infty} = 0$ i.e. (f_n) converge uniformément vers f sur \mathbb{R} . A fortiori, (f_n) converge simplement vers f sur \mathbb{R} . Soit $x \in \mathbb{R}$. Alors $\lim_{n \to +\infty} f_n(x) = f(x)$. Or pour tout $n \in \mathbb{N}$, $f_n(x) \ge 0$ donc $f(x) \ge 0$ par passage à la limite. Ainsi $f \in F$ et F est un fermé de F.

6. Soit f un endomorphisme continu du groupe \mathbb{R}_+ . Montrer que f(r) = f(1)r pour tout $r \in \mathbb{Q}$ puis que f(x) = f(1)x pour tout $x \in \mathbb{R}$.

Soit $r \in \mathbb{Q}$. Il existe donc $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tel que $r = \frac{p}{q}$. Comme f est un endomorphisme de $(\mathbb{R}, +)$,

$$qf(r) = f(qr) = f(p) = pf(1)$$

et donc f(r) = f(1)r. Les applications f et $x \mapsto f(1)x$ sont continues et coïncident sur \mathbb{Q} , qui est dense dans \mathbb{R} , donc elles sont égales i.e. f(x) = f(1)x pour tout $x \in \mathbb{R}$.