Álgebra Linear e Geometria Analítica

— Atividade de Recuperação da Aprendizagem — Abril/2019

Nome:		
C		
Curso:		

1 Instruções importantes

Esta Atividade de Recuperação da Aprendizagem consiste de 86 questões, das quais 13 são obrigatórias (as outras questões são opcionais). O enunciado de cada questão indica o tipo (obrigatória ou opcional). Obviamente as questões opcionais são importantes para o correto e completo entendimento da matéria, portanto é indicado que o aluno também as resolva. Algumas regras devem ser observadas:

- 1. A atividade só poderá ser realizada durante os horários da monitoria;
- 2. O monitor não dará respostas, mas explicará a matéria e esclarecerá dúvidas tantas vezes quanto necessário;
- 3. As respostas serão escritas em folhas de papel almaço, disponibilizadas pelo monitor. Não se esqueça de escrever seu nome nas folhas;
- As questões de verdadeiro ou falso (V ou F) e/ou questões objetivas podem ser resolvidas na própria folha de questões. Questões discursivas devem ser resolvidas nas folhas de papel almaço;
- Ao final de cada monitoria o monitor recolherá as questões e as folhas de papel almaço com as respostas. Na próxima monitoria as questões e as folhas serão devolvidas para que os alunos continuem a resolução;
- 6. O Prof. Rober estabelecerá o prazo para o término da atividade;
- 7. A atividade *não é obrigatória*, cabe a cada aluno decidir se deseja fazer. Entretanto, caso o aluno opte por realizar a atividade, pelo menos as questões obrigatórias devem ser feitas;
- 8. As questões obrigatórias são as de número: 12, 14, 15, 45, 46, 72, 73, 74, 75, 83, 84, 85 e 86;
- 9. É permitido a consulta de qualquer material bibliográfico, impresso ou online, e também é permitido o uso de calculadoras (desde que o desenvolvimento de todas as contas esteja descrito);
- DICA: inicie pelas questões obrigatórias e, caso tenha dificuldade, faça as questões opcionais referentes aos conteúdos que você não está dominando bem. Isso lhe proporcionará revisar e aprender os conteúdos necessários;
- 11. Essa atividade servirá para recuperar, além da aprendizagem, uma parte da nota da primeira avaliação. As regras para isso ainda serão definidas pelo Prof. Rober. Observação: recuperar a nota é a conseqüência, o objetivo é recuperar a aprendizagem!

2 Matrizes: conceitos fundamentais

- 1. (OPCIONAL) De forma geral, o que é uma matriz?
- 2. (OPCIONAL) Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Em geral, as matrizes são identificadas por letras minúsculas
 - (b) ___ As matrizes só podem ser delimitadas por parênteses ou colchetes
 - (c) ___ A representação "A = [-3]" indica uma matriz chamada A que contém um único elemento, -3.
 - (d) ___ Os números que formam a matriz são chamados de elementos.
 - (e) ___ A seguinte matriz é uma matriz coluna: $C = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}$
- 3. (OPCIONAL) O que é a ordem (ou tipo) de uma matriz? Como a ordem é representada?
- 4. (OPCIONAL) Qual a ordem da matriz $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$?
- 5. (OPCIONAL) Qual o tipo da matriz $B = \begin{pmatrix} 1 & -3 & 0 & 7 & 2 \\ 2 & -2 & 4 & 5 & \sqrt{3} \\ 3 & -1 & 6 & 3 & 9 \end{pmatrix}$?
- 6. (OPCIONAL) O que é uma matriz quadrada de ordem n?
- 7. (OPCIONAL) Em uma matriz quadrada A de ordem n, podemos afirmar que sua *diago-* $nal\ principal\ \acute{e}$ formada pelos elementos $a_{11}, a_{22}, a_{33}, \cdots, a_{nn}$? Por quê?
- 8. (OPCIONAL) Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Matrizes que não são quadradas, não têm diagonal principal
 - (b) ___ Matrizes que não são quadradas, não têm diagonal secundária
 - (c) ___ Toda matriz tem uma, e somente uma, diagonal principal
 - (d) ___ Toda matriz tem uma, e somente uma, diagonal secundária
 - (e) ___ Matriz quadrada de ordem n não têm diagonal secundária
 - (f) ____ Os elementos formados pelos números "1" na matriz $E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, representam sua diagonal principal
 - (g) ___ Os elementos formados pelos números "1" na matriz $F = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, representam sua diagonal principal
 - (h) ___ Uma matriz com ordem $1\times n$ é uma matriz linha
 - (i) ____ Uma matriz com ordem $m \times 1$ é uma matriz coluna
 - (j) ____ Uma matriz com ordem 7×5 tem 75 elementos
 - (k) ___ Em uma matriz quadrada de ordem n, os elementos tais que i+j=n+1 formam a diagonal secundária

9. (OPCIONAL) A representação da seguinte matriz está correta? Por quê?

$$A = \begin{bmatrix} -1 & 7 & 2 \\ 0 & 5 & -5 \end{bmatrix}_{3 \times 2}$$

- 10. (OPCIONAL) O que significa dizer que uma determinada matriz tem 2 elementos nulos?
- 11. (OPCIONAL) Uma matriz A pode ser representada pela notação $A = (a_{ij})_{m \times n}$ onde a_{ij} ou $[A]_{ij}$ é o elemento na linha i e coluna j dessa matriz. Em relação a essa forma de notação, marque a resposta correta:
 - \bigcirc Se uma matriz B tem ordem 3×2 , o elemento b_{42} estará localizado em alguma das diagonais da matriz (principal ou secundária)
 - \bigcirc Uma matriz C com ordem 4×2 não pode ter um elemento na posição c_{31}
 - O Não existe como indicar todos os elementos da j-ésima coluna de uma matriz
 - \bigcirc A i-ésima linha de uma matriz A qualquer, com ordem $m \times n$, corresponde aos elementos $a_{i1}, a_{i2}, a_{i3}, \cdots, a_{in}$
 - \bigcirc A j-ésima linha de uma matriz A qualquer, com ordem $m \times n$, corresponde aos elementos $a_{1j}, a_{2j}, a_{3j}, \cdots, a_{mj}$
- 12. **(OBRIGATÓRIA)** Chama-se *traço* de uma matriz quadrada a soma dos elementos da diagonal principal. Determine o traço de cada uma das matrizes:

$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 0 & 1 \\ \sqrt{2} & 3 & -5 \\ -1 & 0 & -1 \end{pmatrix}$$

3 Matrizes: construção a partir de regras

13. (OPCIONAL) Sabendo-se que uma matriz qualquer A de ordem $m \times n$ tem a forma genérica

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix},$$

$$(a_{m1} \ a_{m2} \ a_{m3} \ \cdots \ a_{mn})$$
construa a matriz $B = (b_{ij})_{5 \times 4}$, onde $b_{ij} =$

$$\begin{cases} i \times j & \text{se } i < j \\ j \div i & \text{se } i > j \\ i + j & \text{se } i = j \end{cases}$$

14. **(OBRIGATÓRIA)** Escreva a matriz $C = (c_{ij})_{4\times 1}$, onde $c_{ij} = i^2 + j$.

15. **(OBRIGATÓRIA)** Escreva a matriz
$$A = (a_{ij})_{2\times 3}$$
, onde: $a_{ij} = \begin{cases} 2i+j & \text{se } i \geq j \\ i-j & \text{se } i < j \end{cases}$

4 Matrizes especiais

	1
	1
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
17.	(OPCIONAL) O que é uma <i>matriz nula</i> ? Que letra geralmente é utilizada para representar tal matriz?
18.	(OPCIONAL) A matriz nula ${\cal O}=(0)$ é uma matriz quadrada, uma matriz linha ou uma matriz coluna?
19.	(OPCIONAL) O que é uma matriz diagonal?
20.	(OPCIONAL) O que é uma matriz triangular?
21.	(OPCIONAL) Indique se a sentença é verdadeira (V) ou falsa (F):
	(a) Em situações especiais, como na multiplicação de matrizes, uma matriz nula pode conter um elemento com o valor 1
	(b) Uma matriz retangular de ordem $m \times n$ com $m \neq n$ não pode ser nula
	(c) Uma matriz diagonal é uma matriz retangular de ordem $m \times n$ com $m \neq n$, na qual todos os elementos que não estão na diagonal principal são nulos
	(d) Uma matriz diagonal pode ter a diagonal principal com todos os elementos nulos
	(e) Uma matriz triangular de ordem n é aquela onde todos os elementos que es tão acima da diagonal principal, E MAIS todos os elementos que estão abaixo da diagonal principal, são nulos.
	(f) Para que uma matriz seja considerada triangular, todos os elementos que estão
	acima OU abaixo da diagonal principal (não simultaneamente) devem ser nulos.

22.	(OPCIONAL) O que é uma matriz identidade?	Que letra geralmente é utilizada para
	representar tal matriz?	

- 23. (OPCIONAL) O que é uma matriz transposta? Como é representada?
- 24. (OPCIONAL) Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Uma matriz nula O de ordem 1 pode ser uma matriz identidade
 - (b) ___ Uma matriz identidade não precisa ser quadrada
 - (c) ____ A diagonal secundária de uma matriz identidade tem todos os seus elementos nulos
 - (d) ___ A diagonal principal de uma matriz identidade tem todos os seus elementos unitários
 - (e) ___ Existe uma matriz identidade de ordem 1, ou seja, $I_1 = [1]$
 - (f) Para que uma matriz A seja transposta em A^t , é necessário que ela seja quadrada
 - (g) ___ Dada uma matriz identidade I qualquer, sua transposta I^t não é mais uma matriz identidade
 - (h) ____ A transposta de uma matriz nula O de ordem $m \times n$ com $m \neq n$, também será uma matriz nula O^t com a mesma ordem
 - (i) ___ A matriz transposta B^t de uma matriz B só terá a mesma ordem da matriz B se a matriz B for quadrada
 - (j) $(A^t)^t = A$
- 25. (OPCIONAL) O que é uma matriz oposta? Como é representada?
- 26. (OPCIONAL) O que é uma matriz simétrica?
- 27. (OPCIONAL) Uma matriz de ordem $m \times n$ com $m \neq n$ pode ser simétrica? Por quê?
- 28. (OPCIONAL) O que é uma matriz anti-simétrica?
- 29. (OPCIONAL) Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- Matriz Identidade
- () Matriz Coluna
- Matriz Diagonal
- O Matriz Triangular
- 30. (OPCIONAL) Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$D = (7)$$

- Matriz Identidade
- Matriz Quadrada
- Matriz Linha
- Matriz Coluna

31. (OPCIONAL) Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- Matriz Diagonal
- Matriz Simétrica
- Matriz Triangular
- Matriz Identidade
- 32. (OPCIONAL) Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$F = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- Matriz Identidade
- Matriz Triangular
- Matriz Diagonal
- Matriz Simétrica
- () Matriz Nula
- 33. (OPCIONAL) Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$G = \begin{pmatrix} 0 & -2 & 0 \\ 2 & 0 & 3 \\ 0 & -3 & 0 \end{pmatrix}$$

- Matriz Identidade
- O Matriz Triangular
- Matriz Diagonal
- Matriz Anti-Simétrica
- O Nenhuma das respostas acima
- 34. (OPCIONAL) Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Existe uma matriz nula, quadrada, linha, coluna, diagonal, simétrica e antisimétrica
 - (b) ___ Existe uma matriz nula, diagonal e triangular
 - (c) ____ Toda matriz anti-simétrica tem sua diagonal principal composta por elementos nulos (zeros)
 - (d) ___ Se A=-1B, então B é a oposta de A
 - (e) ___ Se $A = A^t$, então elas não são simétricas
 - (f) ____ Se $B = -(B^t)$, então elas são anti-simétricas
 - (g) $A \neq (A^t)^t$

5 Operações com matrizes

- 35. (OPCIONAL) Quais as 2 condições necessárias para afirmarmos que uma matriz A é igual a uma matriz B?
- 36. (OPCIONAL) É possível somar ou diminuir matrizes de ordens diferentes? Por quê?
- 37. (OPCIONAL) Se $A=(a_{ij})_{m\times n}$ e $B=(b_{ij})_{m\times n}$ são matrizes da mesma ordem, então é verdade que $C=(c_{ij})_{m\times n}$ tal que $c_{ij}=a_{ij}+b_{ij}$?
- 38. (OPCIONAL) Se $C=(c_{ij})_{m\times n}$ e $D=(d_{ij})_{m\times n}$ são matrizes da mesma ordem, então é verdade que $E=(e_{ij})_{m\times n}$ tal que $e_{ij}=c_{ij}-d_{ij}$?
- 39. (OPCIONAL) Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ A adição de matrizes é comutativa: A + B = B + A
 - (b) ___ A adição de matrizes não é associativa: $A + (B + C) \neq (A + B) + C$
 - (c) ___ Não existe um elemento nulo tal que: A + O = A
 - (d) Somar uma matriz com sua oposta resulta em uma matriz nula: A + (-A) = O
 - (e) ____ Transposição da soma é diferente da soma das transposições: $(A+B)^t \neq A^t + B^t$
 - (f) ___ Subtrair é somar com a oposta: A B = A + (-B)
- 40. (OPCIONAL) Como é feita a multiplicação de um valor escalar por uma matriz, por exemplo: seja α um número real qualquer, e B uma matriz qualquer de ordem $m \times n$, como é feita a multiplicação $\alpha \times B$?
- 41. (OPCIONAL) Se A e B são matrizes de mesma ordem e α e β são escalares, assinale a(s) propriedades(s) correta(s):
 - \bigcirc Distributiva: $A(\alpha + \beta) = A\alpha\beta$
 - \bigcirc Distributiva: $A(\alpha + \beta) = A\alpha + A\beta$
 - O Distributiva: $\alpha(A+B) = \alpha A + \alpha B$
 - \bigcirc Distributiva: $\alpha(A+B) = \alpha AB$
 - \bigcirc Associativa: $\alpha(\beta A) = \alpha A + \beta$
 - \bigcirc Associativa: $\alpha(\beta A) = (\alpha \beta)A$
- 42. (OPCIONAL) Sejam A e B matrizes quadradas de mesma ordem. Para realizar a multiplicação entre elas, basta que cada elemento a_{ij} seja multiplicado pelo elemento correspondente b_{ij} ?
- 43. (OPCIONAL) As matrizes $A=(a_{ij})_{5\times 3}$ e $B=(b_{ij})_{5\times 3}$ podem ser multiplicadas? Por quê?

- 44. (OPCIONAL) Assinale a(s) alternativa(s) correta(s):
 - \bigcirc A multiplicação de matrizes é comutativa: AB = BA
 - \bigcirc Multiplicar as matrizes $A=(a_{ij})_{50\times 33}$ e $B=(b_{ij})_{33\times 1}$ resultará na matriz $C=(c_{ij})_{50\times 1}$
 - O Para realizar a multiplicação de duas matrizes, o número de linhas em ambas as matrizes deverá ser o mesmo
 - \bigcirc A multiplicação de matrizes é associativa: A(BC) = (AB)C
 - \bigcirc A multiplicação de matrizes não é distributiva: $A(B+C) \neq AB+AC$
 - \bigcirc A multiplicação de uma matriz A por uma matriz Identidade apropriada, resulta na mesma matriz A: AI=A
 - \bigcirc A transposição de um produto de duas matrizes é igual ao produto das transposições: $(AB)^t = A^tB^t$
- 45. **(OBRIGATÓRIA)** Data a matriz $A = \begin{pmatrix} 1 & 2 \\ -1 & -4 \end{pmatrix}$, determine:
 - a. A transposta de A
 - b. A oposta de A
- 46. **(OBRIGATÓRIA)** Dadas as matrizes $A = (a_{ij})_{6\times 4}$, tal que $a_{ij} = i j$, $B = (b_{ij})_{4\times 5}$, tal que $b_{ij} = j i$, e C = AB, determine o elemento c_{42} .

6 Determinantes: conceitos

- 47. (OPCIONAL) O que é o determinante de uma matriz?
- 48. (OPCIONAL) Para que serve o cálculo do determinante de uma matriz?
- 49. (OPCIONAL) Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Nem toda matriz quadrada tem determinante.
 - (b) ____ As matrizes nulas de ordem n terão determinante igual ao número de elementos da matriz.
 - (c) ___ É correto afirmar que A=[2] representa uma matriz, e que $\det(A)=|2|$ representa o determinante da matriz de ordem 1 que contém apenas o elemento 2.
 - (d) ___ A matriz identidade de ordem 1 tem determinante 0.
 - (e) ___ O determinante da matriz nula de ordem 3 também é 3.
 - (f) ____ Não é possível calcular o determinante de uma matriz $A = (a_{ij})_{3\times 4}$.
- 50. (OPCIONAL) Seja a matriz $J=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, de ordem 2, onde a,b,c e d representam números reais. Como podemos calcular o $\det(B)$?

51.	(OPCIONAL) Sobre a <i>Regra de Sarrus</i> , indique se as sentenças abaixo são verdadeiras (V) ou falsas (F):		
	(a) O determinante da matriz identidade de ordem 3 é igual a 1.		
	(b) Podemos aplicar a Regra de Sarrus para matrizes de ordem 4.		
	(c) Não é possível utilizar a Regra de Sarrus para encontrar o determinante de uma matriz nula de ordem 3.		
	(d) A Regra de Sarrus só pode ser aplicada para matriz quadradas de ordem 3.		
52.	(OPCIONAL) Para calcular o determinante de uma matriz quadrada de qualquer or dem, podemos utilizar o <i>Teorema de Laplace</i> , que obtém o determinante através do cál culo do <i>menor complementar</i> e do <i>cofator</i> de cada elemento da matriz. Explique o que é o <i>menor complementar</i> e o <i>cofator</i> .		
53.	(OPCIONAL) Qual o determinante da matriz identidade de ordem 4?		
54.	(OPCIONAL) O que é o Teorema de Laplace? O que ele diz?		
55.	(OPCIONAL) Por que devemos escolher uma linha (ou uma coluna) com o maior número de elementos 0 (zero) no cálculo do determinante pelo método de Laplace?		
56.	(OPCIONAL) Existem 4 situações nas quais podemos afirmar, com certeza, que o determinante de uma matriz é 0 (zero). Quais são essas situações (propriedades)?		
	1		
	2		
	3		
	4		
57.	(OPCIONAL) O que ocorre com o determinante de uma matriz cada vez que permutamos (trocamos de lugar) duas linhas (ou colunas)?		
58.	(OPCIONAL) É correto dizer que quando multiplicamos todos os elementos de uma única linha (ou uma única coluna) de uma matriz A por um número real k qualquer, obtém-se uma matriz B cujo determinante é igual ao determinante da matriz A multiplicado por k , ou seja, $det(B) = k \times det(A)$? Sim ou não? Se sim, demonstre que a propriedade é verdadeira em uma matriz quadrada de ordem 2 qualquer. Se não, vá para a próxima questão.		
59.	(OPCIONAL) Se multiplicarmos todos os elementos de uma matriz C quadrada qualquer de ordem n por um escalar k , o que podemos dizer do determinante $\det(kC)$?		
60.	(OPCIONAL) Um aluno afirmou que o determinante de uma matriz transposta A^t é o		
	inverso do determinante de matriz A , ou seja, ele afirmou que $det(A^t) = \frac{1}{det(A)}$. A		
	justificativa que o aluno deu foi a seguinte: "já que a matriz transposta é uma espécie de inversão de linhas por colunas, então o determinante da matriz transposta também será uma espécie de inverso do determinante da matriz original". Você concorda com esse aluno? Por quê?		

61. (OPCIONAL) Como calcular o determinante de uma matriz triangular qualquer?

62. (OPCIONAL) O que é o Teorema de Jacobi?

- 63. (OPCIONAL) Podemos afirmar que o determinante do produto de duas matrizes, A e B, é igual ao produto dos determinantes das matrizes individuais, ou seja, podemos afirmar que $det(AB) = det(A) \times det(B)$?
- 64. (OPCIONAL) Existe uma propriedade dos determinantes que diz: $det(A^{-1}) = \frac{1}{det(A)}$. O que isso quer dizer?
- 65. (OPCIONAL) Para que serve a Regra de Chió?

7 Determinantes: cálculo

- 66. (OPCIONAL) Seja a matriz A = [-2], de ordem 1. Calcule o det(A), ou seja, o determinante dessa matriz.
- 67. (OPCIONAL) Seja a matriz $B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 0 & 4 \end{pmatrix}$. Calcule o $\det(B)$.
- 68. (OPCIONAL) Se $\begin{vmatrix} 1 & x \\ 5 & 7 \end{vmatrix} = 2$, qual é o valor de x?
- 69. (OPCIONAL) A *Regra de Sarrus* é utilizada para calcular o determinantes de matrizes quadradas de ordem 3. Data a matriz genérica abaixo, calcule seu determinante aplicando a Regra de Sarrus:

$$G = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix}$$

- 70. (OPCIONAL) Calcule o determinante da matriz $F = \begin{pmatrix} 2 & 3 & 1 \\ -1 & -4 & -1 \\ 6 & 0 & 7 \end{pmatrix}$:
- 71. (OPCIONAL) Se $\begin{vmatrix} 1 & 0 & -2 \\ 2 & y & 1 \\ -1 & 3 & 7 \end{vmatrix} = 10$, qual é o valor de y?
- 72. **(OBRIGATÓRIA)** (FEI-SP) As faces de um cubo foram numeradas de 1 a 6; depois, em cada face, foi registrada uma matriz de ordem 2, com elementos definidos por $a_{ij} = \begin{cases} 2i+f & \text{se } i=j \\ j & \text{se } i\neq j \end{cases}$ onde f é o valor associado à face correspondente. Qual o valor do determinante da matriz registrada na face 5?
- 73. **(OBRIGATÓRIA)** Seja $S = (s_{ij})$ a matriz de ordem 3 em que $s_{ij} = \begin{cases} 0 & \text{se } i < j \\ i+j & \text{se } i=j. \\ i-j & \text{se } i > j \end{cases}$ Calcule o determinante de S.
- 74. **(OBRIGATÓRIA)** (FUVEST-SP) Calcule $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix}$

75. (OBRIGATÓRIA) Calcule os determinantes usando Chio e Laplace:

a.
$$\begin{vmatrix} 2 & 3 & -1 & 0 \\ 4 & -2 & 1 & 3 \\ 1 & -5 & 2 & 1 \\ 0 & 3 & -2 & 6 \end{vmatrix}$$
b.
$$\begin{vmatrix} 2 & 3 & 0 & -1 \\ 5 & -6 & 2 & 4 \\ 2 & -1 & 0 & 3 \\ 3 & 2 & 1 & 5 \end{vmatrix}$$

8 Matriz inversa: conceitos

- 76. (OPCIONAL) O que é uma matriz inversa? Como é representada?
- 77. (OPCIONAL) Indique se a sentença é verdadeira (V) ou falsa (F):

(a) ____ Se
$$B = A^{-1}$$
, então $B = \frac{1}{A}$

(b) ____ Se
$$AB = BA = I_n$$
, então $B = A^{-1}$

(c) ___ Se
$$A$$
 e B são matrizes inversíveis, então $(AB)^{-1} = \frac{1}{AB}$

(d) ___ Se
$$A$$
 e B são matrizes inversíveis, então $(AB)^{-1} = A^{-1} + B^{-1}$

(e) ____ Se
$$A$$
 e B são matrizes inversíveis, então $(AB)^{-1}=A^{-1}B^{-1}$

- (f) ___ Matrizes que não são quadradas são inversíveis
- 78. (OPCIONAL) Por que é importante calcular uma matriz inversa?
- 79. (OPCIONAL) É correto dizer que toda matriz quadrada possui inversa? Por quê?
- 80. (OPCIONAL) Para o cálculo da inversa de uma matriz quadrada A qualquer é necessário encontrarmos a adjunta de A, simbolizada por adj(A), pois a matriz inversa é dada pela equação $A^{-1} = \frac{1}{det(A)} \times adj(A)$. O que é a ajunta de uma matriz?

9 Matriz inversa: cálculo

- 81. (OPCIONAL) Decida se a matriz $F = \begin{pmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{pmatrix}$ é inversível e, se for, calcule sua inversa.
- 82. (OPCIONAL) Decida se a matriz $H=\begin{pmatrix}2&0&0\\8&1&0\\-5&3&6\end{pmatrix}$ é inversível e, se for, calcule sua inversa.

Sistemas de Equações Lineares 10

83. **(OBRIGATÓRIA)** Resolva o sistema utiliando Gauss:
$$\begin{cases} x+y+2z=-1\\ 4x+y+4z=-2\\ 2x-y-2z=-4 \end{cases}$$

84. **(OBRIGATÓRIA)** Resolva o sistema utilizando Gauss-Jordan:
$$\begin{cases} 2x + y + 4z = -2 \\ 2x - y - 2z = -4 \end{cases}$$
84. **(OBRIGATÓRIA)** Resolva o sistema utilizando Gauss-Jordan:
$$\begin{cases} x + y + z + t = 0 \\ 2x - y + t = 1 \\ y + z - 2t = 0 \\ 4y + 3z = 7 \end{cases}$$

85. **(OBRIGATÓRIA)** Resolva o sistema pela Regra de Cramer:
$$\begin{cases} x + 2y - z = -1 \\ 2x + y + z = 4 \\ x - y + 5z = 5 \end{cases}$$

86. (OBRIGATÓRIA) (UFU-MG) Um sitiante utiliza milho, farelo de trigo e alfafa para alimentar seus porcos. O número de unidades de cada tipo de ingrediente nutricional básico encontrado num quilo de cada alimento é dado na tabela abaixo, juntamente com as necessidades diárias de cada porco:

Ingredientes	Carboidratos	Proteínas	Vitaminas
Quilo de milho	40	30	10
Quilo de farelo de trigo	20	40	20
Quilo de alfafa	20	40	40
Necessidade diária	110	120	70

Determine quantos quilos de milho, farelo de trigo e alfafa cada porco deve consumir por dia para satisfazer suas necessidades de nutrientes.