1 Basic Properties

- 1. $E(X) = \sum xp(x)$
- 2. $Var(X) = \sum (x \mu)^2 f(x)$
- 3. X is around E(X), give or take SD(X)
- 4. E(aX + bY) = aE(X) + bE(Y)
- 5. $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$
- 6. $Var(X) = E(X^2) [E(X)]^2$
- 7. $Cov(X_1, X_2) = E(X_1X_2) E(X_1)E(X_2)$
- 8. P(AB) = P(A)P(B) if A and B independent
- 9. RV is centered when E(X) = 0, and any RV can be centered via Y = X - E(X). with SD and variance unaffected
- 10. In $X = \mu + \epsilon$, μ is the unknown constant of interest, and ϵ represents random measurement error.
- 11. if X, Y are independent:
 - (a) $M_{X+Y}(t) = M_X(t)M_Y(t)$
 - (b) E(XY) = E(X)E(Y), converse is true if X and Y are bivariate normal, extends to multivariate normal

Approximations

2.1 Law of Large Numbers

Let $X_1, X_2, ..., X_n$ be IID, with expectation μ and variance σ^2 . $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{\infty}$ μ . Let $x_1, x_2, ..., x_n$ be realisations of the random variable $X_1, X_2, ..., X_n$, then $\overline{x_n} =$ $\frac{1}{n}\sum_{i=1}^n x_i \xrightarrow{\infty} \mu$

2.2 Central Limit Theorem

Let $S_n = \sum_{i=1}^n X_i$ where $X_1, X_2, ..., X_n$ IID. $\frac{S_n - n\mu}{\sqrt{n}\sigma} \xrightarrow[n]{\infty} \mathcal{N}(0,1)$

Distributions

3.1 Normal $X \sim \mathcal{N}(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), -\infty < x < \infty$$

- 1. When $\mu = 0$, f(x) is an even function, and $E(X^k) = 0$ where k is odd
- 2. $Y = \frac{X E(X)}{SD(X)}$ is the standard normal

3.2 Gamma Γ

$$g(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\lambda t}, t \ge 0$$

3.3 χ^2 Distribution

Let $\mathcal{Z} \sim \mathcal{N}(0,1)$, $\mathcal{U} = \mathcal{Z}^2$ has a χ^2 distribution $\sigma^2 = \sum_{i=1}^N (x_i - \mu)^2 \frac{1}{N} \sum_{i=1}^n x_i^2 - \mu^2$

$$f_{\mathcal{U}}(u) = \frac{1}{\sqrt{2\pi}} u^{-\frac{1}{2}} e^{-\frac{u}{2}}, u \ge 0$$

$$\chi_1^2 \sim \Gamma(\alpha = \frac{1}{2}, \lambda = \frac{1}{2})$$

is χ_n^2 with n degree freedom, $V \sim \Gamma(\alpha = | \mu = p, \sigma^2 = p(1-p))$

$$E[\hat{E}(\chi_n^2)] = n, Var(\chi_n^2) = 2n$$

$$M(t) = (1 - 2t)^{-\frac{n}{2}}$$

3.4 t-distribution

Let $\mathcal{Z} \sim \mathcal{N}(0,1)$, $\mathcal{U}_n \sim \chi_n^2$ be independent, $t_n = \frac{\mathcal{Z}}{\sqrt{U_n/n}}$ has a t-distribution with n d.f.

$$f(t) = \frac{\Gamma([(n+1)/2])}{\sqrt{n}\pi\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$$

- 1. t is symmetric about 0
- 2. $t_n \xrightarrow{\infty} \mathcal{Z}$

3.5 F-distribution

Let $U \sim \chi_m^2, V \sim \chi_n^2$ be independent, W = $\frac{U/m}{V/n}$ has an F distribution with (m,n) d.f.

If $X \sim t_n$, $X^2 = \frac{Z/1}{U_n/n}$ is an F distribution with (1,n) d.f, with $w \geq 0$:

$$f(w) = \frac{\Gamma([(n+1)/2])}{\Gamma(m/2)\Gamma(n/2)} \frac{m^{\frac{m}{2}}w^{\frac{m}{2}-1} \left(1 + \frac{m}{n}w\right)^{-\frac{m+n}{2}}}{\Pr(n > 2, E(W)) = \frac{n}{n-2}}$$

Sampling

Let $X_1, X_2, ..., X_n$ be IID $\mathcal{N}(\mu, \sigma^2)$. sample mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ sample variance, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

4.1 Properties of \overline{X} and S^2

- 1. \overline{X} and S^2 are independent
- 2. $\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$
- 3. $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$
- 4. $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$

4.2 Survey Sampling

In population of size N, we are interested in a variable x. The ith individual has fixed value $SD(\overline{x}) = \frac{\sigma}{\sqrt{n}}$

mean of population =
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

total of population = $\tau = \sum_{i=1}^{N} x_i = \mu N$

SD of population =
$$\sigma$$

$$\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2 \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2$$

4.2.1 Dichotomous case

 $\chi_1^2 \sim \Gamma(\alpha = \frac{1}{2}, \lambda = \frac{1}{2})$ Let $U_1, U_2, ..., U_n$ be χ_1^2 IID, then $V = \sum_{i=1}^n U_i$ Population are members with value 0 or 1. Let $U_1, U_2, ..., U_n$ be χ_1^2 IID, then $V = \sum_{i=1}^n U_i$ Population are members with value 1. Population are members with value 0 or 1. Let

4.3 Simple Random Sampling (SRS)

Assume n random draws are made without replacement. (Not SRS, will be corrected for

|4.3.1| Lemma A

The draws X_i have the same distribution, and denote $\xi_1, \xi_2, ... \xi_n$ as values assumed by the population, and let the number of members with value ξ_i be n_i

$$P(X_i = \xi_j) = \frac{n_j}{N}$$

$$E(X_i) = \mu, Var(x_i) = \sigma^2$$

4.3.2 Lemma B

For
$$i \neq j$$
, $Cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$

We use sample mean \overline{X} to estimate μ :

 $E(\overline{X}) = \mu$ from Lemma A, and

 $Var(\overline{X}) = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$ from Lemma B, where $\frac{N-n}{N-1}$ is the finite population correction factor In 0-1 population, let \hat{p} be proportion of 1s in the sample:

$$E(\hat{p}) = p, SD(\hat{p}) = \sqrt{\frac{p(1-p)}{n} \frac{N-n}{N-1}}$$

4.3.3 Estimation Problem

Let $X_1, X_2, ..., X_n$ be random draws with replacement. Then \overline{X} is an estimator of μ . and the observed value of \overline{X} , \overline{x} is an estimate of μ .

4.3.4 Standard Error (SE)

Since $E(X) = \mu$, the estimator is unbiased. The error in a particular estimate \overline{X} is unknown, but on average its size is about

Standard error of an \overline{X} is defined to be $SD(\overline{X})$ An unbiased estimator for σ^2 is s^2 $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

$$\begin{array}{cccc} \text{param} & \text{est} & \text{SE} & \text{Est. SE} \\ \mu & \overline{X} & \frac{\sigma}{\sqrt{n}} & \frac{s}{\sqrt{n}} \\ p & \hat{p} & \sqrt{\frac{p(1-p)}{n}} & \sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}} \end{array}$$

4.3.5 Without Replacement

SE is multiplied by $\frac{N-n}{N-1}$, because s^2 is biased for σ^2 : $E(\frac{N-1}{N}s^2) = \sigma^2$, but N is normally

4.3.6 Confidence Interval

An approximate $1 - \alpha$ CI for μ is $(\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}})$

4.4 Measurement Error

Let $x_1, x_2, ..., x_n$ be independent measurements of unknown constant μ . $X_i = \mu + \epsilon_i$. The errors are IID with expectation 0, and variance σ^2 . $x_i = \mu + e_i$, where x_i and e_i are realisations of the RV. Then \overline{x} is an estimate of μ , with SE $\frac{\sigma}{\sqrt{n}}$.

4.4.1 Biased Measurements

Let $X = \mu + \epsilon$, where $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$ Suppose X is used to measure an unknown constant a, $a \neq \mu$. $X = a + (\mu - a) + \epsilon$, where $\mu - a$ is the bias.

Mean square error (MSE) is $E((X-a)^2) =$ $\sigma^2 + (\mu - a)^2$

with n IID measurements, $\overline{x} = \mu + \overline{\epsilon}$

$$E((x-a)^2) = \frac{\sigma^2}{n} + (\mu - a)^2$$

 $MSE = SE^2 + bias^2$, hence \sqrt{MSE} is a good measure of the accuracy of the estimate \overline{x} of

4.5 Estimation of a Ratio

Consider a population of N members, and two characteristics are recorded: $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n), r = \frac{\mu_y}{\mu_x}.$

An obvious estimator of r is $R = \frac{\overline{Y}}{\overline{Y}}$

 $Cov(\overline{X}, \overline{Y}) = \frac{\sigma_{xy}}{n}$, where

 $\sigma_{xy} := \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)(x_i - \mu_y)$ is the population covariance.

4.5.1 Properties

With SRS, the approx variance of $R = \overline{Y}/\overline{X}$

$$\begin{split} Var(R) &\approx \frac{1}{\mu_x^2} \left(r^2 \sigma_{\overline{X}}^2 + \sigma_{\overline{Y}}^2 - 2r \sigma_{\overline{XY}} \right) \\ &= \frac{1}{n} \frac{N-n}{N-1} \frac{1}{\mu_x^2} \left(r^2 \sigma_{\overline{X}}^2 + \sigma_{\overline{Y}}^2 - 2r \sigma_{\overline{XY}} \right) \end{split}$$

Population coefficient $\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$

$$E(R) \approx r + \frac{1}{n} \left(\frac{N-n}{N-1} \right) \frac{1}{\mu_x^2} \left(r \sigma_x^2 - \rho \sigma_x \sigma_y \right)$$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)$$

4.5.2 Ratio Estimates

$$\overline{Y}_R = \frac{\mu_x}{\overline{X}} \overline{Y} = \mu_x R$$
 $Var(\overline{Y}_R) \approx \frac{1}{n} \frac{N-n}{N-1}$

$$Var(\overline{Y}_R) \approx \frac{1}{n} \frac{N-n}{N-1} (r^2 \sigma_x^2 + \sigma_y^2 - 2r\rho \sigma_x \sigma_y)$$

$$E(\overline{Y}_R) - \mu_y \approx \frac{1}{n} \frac{N-n}{N-1} \frac{1}{\mu_x} (r\sigma_x^2 - \rho \sigma_x \sigma_y)$$
The bias is of order $\frac{1}{n}$, small compared to its

$$E(\overline{Y}_R) - \mu_y \approx \frac{1}{n} \frac{\overline{N} - n}{N - 1} \frac{1}{\mu_x} \left(r \sigma_x^2 - \rho \sigma_x \sigma_y \right)$$

standard error.

 \overline{Y}_R is better than \overline{Y} , having smaller variance, when $\rho > \frac{1}{2} \left(\frac{C_x}{C_y} \right)$, where $C_i = \sigma_i / \mu_i$

Variance of
$$\overline{Y}_R$$
 can be estimated by $s_{\overline{Y}_R}^2 = \frac{1}{n} \frac{N-n}{N-1} \left(R^2 s_x^2 + s_y^2 - 2R s_{xy} \right)$

An approximate $1 - \alpha$ C.I. for μ_y is $\overline{Y}_R \pm$ $z_{\alpha}/2s_{\overline{Y}_{R}}$