CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 6 NOVEMBRE 2023

α 1	•	, •	
Svolgere	1	seguenti	esercizi.

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo** di **appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Siano φ e ψ due forme proposizionali. Se ψ è una tautologia, lo è anche $\varphi \to \psi$?

Esercizio 2. Fornire definizioni di: (i) Numero primo in \mathbb{Z} . (ii) Relazione binaria in un insieme a. (iii) Campo. (iv) Algebra di Boole. (v) Grafo.

Esercizio 3. Sia $A = \{n \in \mathbb{Z} \mid |n| < 10\}$. Esprimere (non calcolare):

- (i) il numero delle permutazioni di A;
- (ii) $|\{x \subseteq A \mid |x| = 5 \land x \setminus \mathbb{N} = \{-1, -4\}\}|;$
- (iii) $|\{x \subseteq A \mid |x| = 5 \land |x \setminus \mathbb{N}| = 2\}|;$
- (iv) il numero delle 7-ple di elementi di A in cui appaiano interi negativi in esattamente due posizioni.

Esercizio 4. Sia $S = \{a, b, c, d, e, f, g\}$, dove $a = \emptyset$, $b = \{1\}$, $c = \{2, 3\}$, $d = \{4\}$, $e = \mathbb{N} \setminus 2\mathbb{N}$, $f = \{2^n \mid n \in \mathbb{N}\} \in g = \mathbb{N}$.

- (i) Disegnare il diagramma di Hasse di (S, \subseteq) .
- (ii) (S,\subseteq) è un reticolo? Nel caso lo sia, è distributivo, complementato, booleano?
- (iii) (S,\subseteq) è un sottoreticolo di $(\mathcal{P}(\mathbb{N}),\subseteq)$?
- (iv) Determinare, se esiste, un $h \in \mathcal{P}(\mathbb{N})$ tale che $(S \cup \{h\}, \subseteq)$ sia un reticolo booleano.

Esercizio 5. Determinare l'insieme dei numeri interi n tali che $16(1-n) \equiv_{36} 12n + a$ per almeno un $a \in \{6, 7, 8, 9\}$.

Esercizio 6. Sia ρ la relazione binaria su $\mathbb{N} \times \mathbb{N}$ definita ponendo, per ogni $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$, $(a,b) \rho (c,d) \longleftrightarrow a+d=b+c$.

- (i) Mostrare che ρ è una relazione di equivalenza e descrivere $[(2,2)]_{\rho}$.
- (ii) Dare la definizione di congruenza e dimostrare che ρ è una congruenza rispetto all'operazione $+: ((a,b),(c,d)) \in (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) \mapsto (a+c,b+d) \in \mathbb{N} \times \mathbb{N}.$
- (iii) Stabilire se l'operazione indotta da + su $(\mathbb{N} \times \mathbb{N})/\rho$ è commutativa e se è associativa, ...
- (iv) ... se $((\mathbb{N} \times \mathbb{N})/\rho, +)$ ha un elemento neutro, e ...
- (v) ... quali suoi elementi sono simmetrizzabili e quali cancellabili.
- (vi) Che tipo di struttura algebrica è $((\mathbb{N} \times \mathbb{N})/\rho, +)$?

Esercizio 7. (i) Dare la definizione di polinomio associato ad un polinomio f in $\mathbb{Z}_{22}[x]$.

- (ii) Sia S l'insieme dei polinomi associati ad un assegnato polinomio f in $\mathbb{Z}_{22}[x]$. Per quali scelte di f si ha che (S, +) è un sottogruppo di $(\mathbb{Z}_{22}[x], +)$? E per quali (S, \cdot) è un sottomonoide di $(\mathbb{Z}_{22}[x], \cdot)$?
- (iii) Quanti divisori monici in $\mathbb{Z}_7[x]$ possiede il polinomio $x^3 x^2 + \overline{4}x + \overline{3} \in \mathbb{Z}_7[x]$? E quanti divisori (monici o non monici) irriducibili?