Problem 9

Theorem 1.1. A hypercube Q_n is Hamiltonian. It has a girth of 4 for $n \geq 2$ and ∞ otherwise. It's diameter is n, it's order 2^n and it has a size of $2^{n-1} \cdot n$.

Proof. Let S be a set of cardinality |S| = n. We construct $Q_n = (V_Q, E_Q)$ by creating a vertex for each subset of S and moreover add edges between those subsets which differ by only one element. In the following, we may use binary representations of the vertices of Q_n since $V_Q = \mathcal{P}(S) \cong (\mathbb{Z}/2\mathbb{Z})^n$ (we can denote a 1 for including an element and a 0 for excluding an element in a subset).

Order: Since $V_Q = \mathcal{P}(S)$ and $|\mathcal{P}(S)| = 2^n$, the order of Q_n is 2^n .

Size: Each of the 2^n vertices is adjacent to n other vertices since we can insert / remove each of the n elements of S. For undirected edges, we have $\frac{2^n \cdot n}{2} = 2^{n-1} \cdot n$ edges. Thus, the size of Q_n is $2^{n-1} \cdot n$.

Girth: We differ between two cases

- Case 1: n = 1. Our graph contains exactly one edge and is therefore acyclic. Hence, the girth is ∞ for n = 1.
- Case 2: n ≥ 2 Our graph contains the cycle (Ø, {a}, {a,b}, {b}, Ø) (a,b∈S) which has length 4.
 A shorter cycle (A, B, C, A) (A, B, C ∈ V_Q) does not exist due to the property that two adjacent vertices differ by exactly one element. For such a cycle, B and A differed by one element, and hence A and C differed by two or are equal. However, a difference of zero or two elements between two consecutive elements renders any walk invalid. The edge {C, A} could not be contained in Q_n.

From these considerations, for $n \geq 2$, the girth is 4.

Diameter: For any set $A \in V_Q$, we are able to get to any other element $B \in V_Q$ by inserting or removing a maximum of n elements. Thus, a path of length n is sufficient to walk from any A to any B. Furthermore, there exist A and B such that a path of length n is the shortest path between them. E.g. $A = \emptyset \in V_Q$, $B = S \in V_Q$. Thus, the diameter of Q_n is n.

Hamiltonian: A Hamiltonian cycle is equivalent to an enumeration of $(\mathbb{Z}/2\mathbb{Z})^n$ in which consecutive elements differ by exactly one element. We provide such an enumeration: the *Gray Code^a*. Thus, there exists a Hamiltonian cycle and Q_n is Hamiltonian.

^aFor n=2: 00,01,11,10,00. Generally, the k'th vertex in the Hamiltonian cycle is $k\otimes \lfloor \frac{k}{2}\rfloor$ whereby $\cdot\otimes\cdot$ denotes the exclusive or.

Theorem 1.2. A complete bipartite graph $K_{m,n}$ is Hamiltonian iff m = n. It's girth is 4 for $m, n \neq 1$ and and ∞ otherwise. It's diameter is 1 for m = n = 1 and 2 otherwise. The graph's order is m + n and it's size is $m \cdot n$.

Proof. Let $V = \{v_1, ..., v_m\}$ and $W = \{w_1, ..., w_n\}$ denote the two partitions of $K_{m,n} = (V_K, E_K)$.

Order: The first partition has m elements, the second n elements. Thus, $K_{m,n}$ has an order of m+n.

Size: Each of the m elements of the first partition are connected to each of the n elements in the second partition. Thus, $K_{m,n}$ has a size of $m \cdot n$.

Girth: If either m=1 or n=1, then all vertices of one partition are indicent to and only to the single vertex of the other partition. Hence, there is no cycle in $K_{1,n}$ or $K_{m,1}$ and the girth of $K_{m,n}$ is ∞ if n=1 or m=1.

If $m, n \neq 1$, each cycle must have even length since any two consectuive vertices in a path of $K_{n,m}$ are in different partitions. Thus, we require an even amount of edge-crossings to enclose a walk. Any cycle has a length of at least 3, thus the girth of $K_{m,n}$ has to exceed or be equal to 4.

Furthermore, we find such a cycle of length 4 easily since both partitions V, W have at least 2 vertices: $(v_1, w_1, v_2, w_2, v_1)$. From these considerations, the girth of $K_{m,n}$ must be equal to 4.

Diameter: For m = n = 1, there are exactly two vertices in different partitions. They have a distance of 1 and thus, the diameter of $K_{1,1}$ is 1.

Since two consectuive vertices in a path of $K_{n,m}$ are in different partitions V, W the distance between two vertices in the same partition has to be at least 2. Moreover, we find a path of distance 2 between $v_1 \in V$ to $v_2 \in V$: (v_1, w, v_2) for any $w \in W$. Thus, the diameter does not deceed 2.

For any two vertices in different partitions V, W, they are directly connected by a path of length 1. Hence, the diameter of $K_{m,n}$ is 2 if not m = n = 1.

Hamiltonian: For m=n, we find always find a Hamiltonian cycle: $(v_1, w_1, v_2, w_2, ..., v_n, w_n, v_1)$. However, for $m \neq n$, there can not exist a Hamiltonian cycle. We assume such a Hamiltonian cycle $c=(u_1, u_2, ..., u_{n+m}, u_1)$ existed for $m \neq n$.

- Case 1: m + n odd. Then, u_{n+m} and u_1 were in the same partition which rendered the edge $\{u_{n+m}, u_1\}$ invalid. Hence, $K_{m,n}$ is not Hamiltonian for an odd n + m.
- Case 2: m + n is even. Then, there was an $n_0 < n + m$ such that $(u_1, ..., u_{n_0})$ is the shortest sub walk that covers one partition but not both. Again, we inspect two cases.
 - $-\mathbf{n_0} = \mathbf{m} + \mathbf{n} \mathbf{1}$. Then, both partitions have the same number of vertices which is contradictory to our precondition that $m \neq n$.
 - $-n_0 < m+n-1$. Then, we are trapped in one partition for we are not able to cover two vertices of the same partition consecutively.

Hence, $K_{m,n}$ $(m \neq n)$ is not Hamiltonian for an even m + n.

All in all, $K_{m,n}$ is Hamiltonian if and only if m = n.

Graph Theory - Sheet 3 - November 12, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Theorem 1.3. The Petersen graph is not Hamiltonian, it has a girth of 5, a diameter of 2, an order of 10 and a size of 15.

Proof. Order: The graph has 10 vertices and thus, it's order is 10.

Size: The graph has 15 edges and thus, it's size is 15.

Girth:

Diameter:

Hamiltonian:

Problem 11

For each even integer k > 1, the complete graph $K_{(n+1)}$ is a k-regular graph without a 1-factor. For each odd k > 1, we are able to construct a k-regular graph without a 1-factor in the following way.

In order to guarantee that the graph has no 1-factor, we can use Tutte's theorem. We construct the graph by starting with a single vertex $v \in V$ connected to k subgraphs S which are not inter-connected. Then, we

Figure 1: Example with k=3

construct S = (V, E) in such a way that |V| is odd and exactly one vertex $u \in V$ has degree k-1 while all other vertices have degree k.

If we then connect u to v, we obtain a k-regular graph. If we removed v we would have k components S with an odd number of vertices. Furthermore, k > 1 and thus, by Tutte's theorem, we know that the resulting graph has no 1-factor.

In order to contruct S we first need the following lemma.

Lemma 2.0.1. For any odd integer k > 1 it is possible to construct a (k-1)-regular graph G = (V, E) with k+1 vertices.

Proof. We can obtain G from K_{k+1} by removing all edges from K_{k+1} which are contained in a perfect matching.

By removing those edges, the degree of every vertex decreases exactly by one. K_{k+1} is by definition k-regular and hence G is k-1-regular.

A perfect matching in K_{k+1} exists, because k+1 is even, and the conditions of Tutte's theorem are always satisfied in a complete graph. Moreover, we find such a matching by randomly choosing edges $\{u, v\}$ and removing u and v from K_{k+1} .

Constructing a connected graph S = (V, E) with |V| = k + 2 and the degree sequence (k, k, ..., k, (k - 1)). First we construct a (k - 1)-regular graph S' = (V', E') with k + 1 vertices as described in the aforementioned way. Then, we can add one vertex to S' and connect it to all except one vertices in V'. Thus, we have a new graph S. Because we have added only one vertex |V| = |V'| + 1 = k + 2 and the degree of the newly added vertex is k, the degree of all the other vertices except of the last one is increased by one.

Hence, S hat the degree sequence (k, k, ..., k, (k-1)) and we have constructed a k-regular graph without a perfect matching.

Figure 2: S' and S for k=3

Problem 12

Theorem 3.1. Any graph G with 2n vertices and $\delta(G) \geq n$ has a 1-factor.

Proof. Let G = (V, E) be a graph with |V| = 2n and $d(v) \ge n \ \forall v \in V$.

In the following, we will prove for nontrivial G that the number of odd components in a graph G-S deceeds the number of vertices in S. By Tutte's Matching Theorem, G then has a 1-factor.

- n = 1 Then, G is a simple graph with two vertices that are connected by one edge. This is of course a perfect matching of G.
- $n \ge 2$ Let $S \subseteq V$ be a set of vertices, G' = (V', E') := G S and k := |S|.

As G' is created by removing all vertices of S and their incident edges from G, we obtain the following properties:

- $\forall v \in V : d(v) \ge n k$
- For any component C of G', $|V(C)| \ge n k + 1$
- the order of G is 2n k

In the following cases, we prove that $\lambda := \#odd\ components \leq k$.

k = 0:

Because G consists of one even component, $\lambda = 0 \le k$

k = 1:

After removing any vertex of G, the degree of a vertex in G' is reduced by one or less. Hence, $\forall v \in V : d(v) >= n-1$. This implies that the size of any component in G' is at least n. As far as |V'| = 2n-1 there can only exist one component in G' with order 2n-1 (which is odd).

All in all, we have shown that $\lambda = 1 \le k$.

 $2 \le k \le n$:

As the minimum size of a component in G' is n-k+1 and |V'|=2n-k, we can bound the amount of components by the following term: $\frac{2n-k}{n-k+1}$.

We now have to prove that $\frac{2n-k}{n-k+1} \le k \iff 2n-k \le k*n-k^2+k \iff 0 \le (k-2)n-k^2+2k =: f(k).$

To prove this inequality, we have to determine the minimum value of f in the defined boundaries.

- * $f'(k) = n 2k + 2 = 0 \iff k = \frac{n}{2} + 1$
- * f''(k) = -2

So f has a maximum but no local minimum. To find the minimum value within the given range, we have to check the borders:

f(2) = 0 = f(n). Thus, $\min(f) = 0 \ge f(k)$ which proves the inequality.

All in all, we have shown that the number of components deceeds or is equal to k. This implies that $\lambda \leq k$.

 $n \le k \le 2n$:

Because removing one vertex can not increase the number of components by more than one and $V' = 2n - k \le n \le k$, there can not be more than k odd components.

Hence, $\lambda \leq k$.

Finally, we have shown that the number of resulting components in G' is bounded by the order of S. In other words: $\forall S \subseteq V(G) : \#odd\ components\ of\ G - S \le |S|$.

Thus, we have shown that all conditions for Tutte's Matching Theorem are satisfied. Hence, G has a pefect matching aka 1-factor.