Contents

1.	What is asymptotic notation?	2
2.	Why use asymptotic notation?	2
3.	Types of asymptotic notation	3
	3.1. Big O notation (O-notation)	3
	3.2. Big Omega notation (Ω -notation)	3
	3.3. Theta notation (Θ -notation)	3
	3.4. Little o notation (o-notation)	3
	3.5. Little omega notation (ω -notation)	
4.	Properties	4
	4.1. Transitivity	4
	4.2. Reflexivity	4
	4.3. Symmetry	4
	4.4. Transpose symmetry	4
	4.5. Some useful identities	4
5.	Common types of asymptotic bound	4
6.	Methods for proving asymptotic bounds	5
	6.1. Using definitions	5
	6.2. Substitution method	5
	6.3. Master theorem	5
	6.4. Akra-Bazzi method	5
7.	Finding asymptotic bound of a function in code	6
8	References	7

1. What is asymptotic notation?

2. Why use asymptotic notation?

3. Types of asymptotic notation

3.1. Big O notation (O-notation)

O-notation provides an asymptotic **upper bound**.

Definition 3.1.1:

$$O(g(n)) \coloneqq \{f(n): \exists c, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n), \, \forall n \geq n_0\}$$

Definition 3.1.2:

 $f(n) := O(g(n)) \Leftrightarrow f(n) \in O(g(n))$

3.2. Big Omega notation (Ω -notation)

Example: ln(n) = O(n)

Ω -notation provides an asymptotic **lower bound**.

Definition 3.2.1:

 $\Omega(g(n)) \coloneqq \{f(n): \exists c, n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n), \ \forall n \geq n_0\}$

Definition 3.2.2:

Example:
$$n^2 + n = \Omega(n^2)$$

 $f(n) := \Omega(g(n)) \Leftrightarrow f(n) \in \Omega(g(n))$

 Θ -notation provides an asymptotic **tight bound**.

3.3. Theta notation (Θ -notation)

Definition 3.3.2:

 $o(g(n)) \coloneqq \{f(n) : \forall \varepsilon > 0 : \exists n_0 > 0 \text{ such that } 0 \leq f(n) < \varepsilon g(n), \, \forall n \geq n_0 \}$

 $f(n)\coloneqq \Theta(g(n)) \Leftrightarrow f(n)\in \Theta(g(n))$

o-notation denotes an **upper bound** that is **not asymptotically tight**

Definition 3.4.1:

Example: $\Theta(n^2) = n^2$

3.4. Little o notation (o-notation)

 $g(n)>0 \Rightarrow o(g(n)) = \bigg\{f(n): f(n) \geq 0 \text{ and } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0\bigg\}.$

Definition 3.4.2:

 $f(n) := o(g(n)) \Leftrightarrow f(n) \in o(g(n))$

 $\omega(g(n)) \coloneqq \{f(n) : \forall \varepsilon > 0 : \exists n_0 > 0 \text{ such that } 0 \leq \varepsilon g(n) < f(n), \, \forall n \geq n_0 \}$

Example: ln(n) = o(n)

3.5. Little omega notation (ω -notation) ω -notation denotes an **lower bound** that is **not asymptotically tight**

Definition 3.5.1:

Example: $n^2 = \omega(n)$

Definition 3.5.2:
$$f(n) \coloneqq \omega(g(n)) \Leftrightarrow f(n) \in \omega(g(n))$$

Proposition 3.5.1:
$$f(n):=\omega(g(n))\Rightarrow \lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty\ ,\ \text{if the limit exists}.$$

4. Properties

4.1. Transitivity

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

$$f(n) = O(g(n)) \ \text{ and } g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$

$$f(n) = o(g(n))$$
 and $g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$

$$f(n) = \omega(g(n))$$
 and $g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$

4.2. Reflexivity

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

4.3. Symmetry

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

4.4. Transpose symmetry

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

$$f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$$

4.5. Some useful identities

$$\Theta(\Theta(f(n))) = \Theta(f(n))$$

$$\Theta(f(n)) + O(f(n)) = \Theta(f(n))$$

$$\Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n))$$

$$\Theta(f(n))\cdot\Theta(g(n))=\Theta(f(n)\cdot g(n))$$

5. Common types of asymptotic bound

$$p(n)\coloneqq \sum_{k=0}^d a_k n^k, \, \forall k\geq 0: a_k>0$$

$$1. p(n) = O(n^k), \forall k \ge d$$

$$2. p(n) = \Omega(n^k), \, \forall k \le d$$

3.
$$p(n) = \Theta(n^k)$$
 if $k = d$

$$4. p(n) = o(n^k), \forall k > d$$

$$5. p(n) = \omega(n^k), \forall k < d$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$\log(n!) = \Theta(n\log(n))$$

6. Methods for proving asymptotic bounds

6.1. Using definitions

Example:

$$\ln(n) \leq n \ , \, \forall n \geq 1 \ (c=1, \, n_0=1)$$

$$\Rightarrow \ln(n) = O(n)$$

Example:

$$\begin{split} 0 \leq n^2 \leq n^2 + n \ , \ \forall n \geq 1 \ (c = 1, \ n_0 = 1) \\ \Rightarrow n^2 + n = \Omega \big(n^2 \big) \end{split}$$

Example:

$$\begin{split} 0 \leq n^2 \leq n^2 + n \leq 2n^2, \ \forall n \geq 1 \ (c_1 = 1, \ c_2 = 2, \ n_0 = 1) \\ \Rightarrow \Theta(n^2) = n^2 \end{split}$$

Example:

$$\left. \begin{array}{l} \ln(n) \geq 0, \ \forall n \geq 1 \\ \lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{n \to \infty} \frac{1}{n} = 0 \right\} \Rightarrow \ln(n) = o(n) \end{array}$$

Example:

$$\forall \varepsilon > 0: 0 \le \varepsilon n < n^2 \ , \ \forall n \ge \varepsilon + 1 \ (n_0 = \varepsilon + 1)$$

$$\Rightarrow n^2 = \omega(n)$$

6.2. Substitution method The substitution method comprises two steps:

Guess the form of the solution using symbolic constants.

- Use mathematical induction to show that the solution works, and find the
- constants. This method is powerful, but it requires experience and creativity to make a good

guess. Example:

$$T(n) := \begin{cases} \Theta(1), \ \forall n: 4>n\geq 2\\ T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+d\ (d>0)\ , \ \forall n\geq 4 \end{cases}$$
 To guess the solution easily, we will assume that: $T(n)=T\left(\frac{n}{2}\right)+d$

$$T(n) = T\left(\frac{n}{2}\right) + d$$

$$= T\left(\frac{n}{4}\right) + 2d$$

$$= T\left(\frac{n}{2^k}\right) + (k-1)d$$

$$= T(c) + \left(\log\left(\frac{n}{c}\right) - 1\right)d$$

$$= d\log(n) + (T(c) - \log(c) - d)$$

Define $c := \max\{T(2), T(3), d\}$ Assume $T(n) \le c \log(n)$, $\forall n : k > n$

So we will make a guess: $T(n) = O(\log(n))$

 $T(k) = T\left(\left|\frac{k}{2}\right|\right) + d$

$$\leq c \log \left(\left\lfloor \frac{k}{2} \right\rfloor \right) + d$$

$$\leq c \log \left(\frac{k}{2} \right) + d$$

$$\leq c \log(k) - c + d$$

$$\leq c \log(k) (1)$$

From (1), (2)
$$\Rightarrow$$
 $T(n) = O(\log(n))$
6.3. Master theorem

 $T(n) \le c \log(n) \forall n : 4 > n \ge 2 \quad (2)$

 $T(n) := aT\left(\frac{n}{h}\right) + f(n)$ where:

Theorem 6.3.1 (Master theorem):

• $\exists n_0 > 0 : f(n) > 0, \forall n \geq n_0$

• *a* > 0 • *b* > 1

Theorem 6.3.1)

$$\Rightarrow T(n) = \begin{cases} \Theta(n^{\log_b a}), \text{ if } \exists \varepsilon > 0 : f(n) = O(n^{\log_b a - \varepsilon}) \\ \Theta\left(n^{\log_b a} \log(n)^{k+1}\right), \text{ if } \exists k \geq 0 : f(n) = \Theta\left(n^{\log_b a} \log(n)^k\right) \\ \Theta(f(n)), \text{ if } \begin{cases} \exists \varepsilon > 0 : f(n) = \Omega(n^{\log_b a + \varepsilon}) \\ \exists n_0 > 0, \ c < 1 : a f\left(\frac{n}{b}\right) \leq c f(n), \ \forall n \geq n_0 \end{cases}$$
 Example: Solve the recurrence for merge sort: $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$ We have $f(n) = \Theta(n) = \Theta\left(n^{\log_2 2} \log(n)^0\right)$, hence

6.4. Akra-Bazzi method

 $T(n) = \Theta\left(n^{\log_2 2} \log(n)^1\right) = \Theta(n\log(n))$ (according to 2nd case of

where:

• $0 < b_i < 1, \forall i \ge 1$

• $a_i > 0, \forall i \geq 1$

Theorem 6.4.1 (Akra-Bazzi method):

$$\begin{array}{l} \bullet \ \exists c \in \mathbb{N} : |g'(x)| = O(x^c) \\ \bullet \ |h_i(x)| = O\bigg(\frac{x}{\log(x)^2}\bigg) \end{array}$$

 $T(x) \coloneqq g(x) + \sum_{i=1}^{\kappa} a_i T(b_i x + h_i(x))$

 $\Rightarrow T(x) = \Theta\left(x^p\left(1 + \int_1^x \frac{g(u)}{u^{p+1}} du\right)\right)$

where: $\sum_{i=1}^{k} a_i b_i^p = 1$

Example: Solve the recurrence:
$$T(x) = T\left(\frac{x}{2}\right) + T\left(\frac{x}{3}\right) + T\left(\frac{x}{6}\right) + x\log(x)$$

$$|(x\log x)'| = |\log x + 1| \le x , \forall x \ge 1$$

$$|h_{i(x)}| = 0 = O\left(\frac{x}{\log(x)^2}\right) \quad (2)$$

$$\left(\frac{1}{2}\right)^1 + \left(\frac{1}{3}\right)^1 + \left(\frac{1}{6}\right)^1 = 1 \quad (3)$$

 $\Rightarrow |(q(x))'| = O(x)$ (1)

From (1), (2), and (3), we can apply Theorem 6.4.1 to get:

$$T(x) = \Theta\left(x\left(1 + \int_{1}^{x} \frac{u \log(u)}{u^{2}} du\right)\right)$$

$$= \Theta\left(x\left(1 + \int_{1}^{x} \frac{\log(u)}{u} du\right)\right)$$

$$= \Theta\left(x\left(1 + \frac{1}{2}\log(u)^{2}\Big|_{1}^{x}\right)\right)$$

$$= \Theta\left(x\left(1 + \frac{1}{2}\log(x)^{2}\right)\right)$$

$$=\Theta\left(x+\frac{1}{2}x\log(x)^2\right)$$

 $=\Theta\left(x\log(x)^2\right)$

7. Finding asymptotic bound of a function in code

8. References

- https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/
- https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms)
- https://en.wikipedia.org/wiki/Akra%E2%80%93Bazzi method#Formulation
- https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-fall-2010/b 6c5cecb1804b69a6ad12245303f2af3 MIT6 042JF10 rec14 sol.pdf