Auxiliar # 21 Mecánica - FI2001-2

Profesor de Cátedra: Gonzalo Palma Q. Auxiliares: Felipe Isaule - José Zolezzi

Viernes, 7 de Junio de 2013

Problema 1

Una partícula de masa m está unida a un resorte de constante k y largo natural d. La partícula desliza sin roce en una cuerda de un aro circular. El aro rota con velocidad angular constante $\Omega \hat{z}$ en torno a su centro O, y la barra está a una distancia L del centro del aro O.

Elija un sistema de coordenas no inercial adecuado para describir el movimiento de la partícula.

- a) Encuentre una expresión para cada fuerza que actúa sobre la partícula (incluyendo pseudo-fuerzas).
- b)Distinga qué tipo de movimiento tiene la partícula dependiendo del valor de k/m versus Ω^2 .
- c)Si $(k/m) > \Omega^2$, ¿cuál es la posición de equilibrio relativo de la partícula?
- d) Si la partícula parte del reposo con respecto al sistema no inercial, y a una distancia ϵ del punto de equilibrio relativo, determine la posición de la partícula en función del tiempo en el sistema no inercial.
 - e)Determine la fuerza que ejerce la barra sobre la partícula.

Problema 2

Un anillo de masa m desliza sin roce por la barra inclinada de la figura. Para t=0, cuando el anillo se encuentra en reposo, la estructura triangular comienza a moverse armónicamente a lo largo del eje x de modo que toda la estructura oscila según la ecuación: $x(t) = A(1 - \cos(\omega t))$, con A constante conocida.

- a) Encuentre la ecuación de movimiento en la coordenada x'.
- b) Calcule la fuerza normal en y'.
- c) Encuentre la posición x'(t) considerando x'(t=0)=0.

