Analisis Asosiasi

CS 4333 Data Mining Imelda Atastina

Analisis Asosiasi

- Adalah sebuah metodologi untuk mencari relasi istimewa/menarik yang tersembunyi dalam himpunan data (data set) yang besar
- Relasi yang tersembunyi ini dapat direpresentasikan dalam bentuk aturan asosiasi (association rules) atau himpunan barang yang seringkali muncul (frequent itemset)

Menambang Aturan Asosiasi

 Berdasarkan data set transaki, akan dicari aturan yang dapat memprediksi kejadian bersama sebuah item, berdasarkan kejadian bersama dari item-item lainnya dalam transaksi

Market-Basket transactions

TID	Items
1	Roti, Susu
2	Roti, Diaper, Bir, Telur
3	Susu, Diaper, Bir, Coke
4	Roti, Susu, Diaper, Bir
5	Roti, Susu, Diaper, Coke

Contoh Aturan Asosiasi

```
{Diaper} \rightarrow {Bir},

{Susu, Roti} \rightarrow {Telur, Coke},

{Bir, Roti} \rightarrow {Susu},
```

Tanda implikasi diatas berarti kejadian bersama, bukan sebab akibat!

Beberapa Istilah

- Itemset : Koleksi dari sejumlah (satu/lebih)item
 - Contoh: {Bir}, { Susu,Roti, Diaper}
 - k-itemset
 - Item set yang terdiri dari k item
 - Contoh: 3 item set = { Susu,Roti, Diaper}

Support count (σ)

- Frekuensi terjadinya sebuah itemset dalam data set
- Contoh : σ({Milk, Bread, Diaper}) =

Support (s)

- Perbandingan terjadinya sebuah itemset terhadap jumlah seluruh itemset dalam dataset
- \Box E.g. s({Milk, Bread, Diaper}) = 2/5

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Beberapa Istilah (2)

Frequent Itemset

Itemset yang nilai
 supportnya lebih besar atau
 sama dengan " minsup
 threshold" Support Count

Associaton Rule

adalah ekspresi implikasi (X ->Y), dimana X dan Y adalah itemset yang saling disjoint contoh : {Milk, Diaper} → {Beer}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Parameter Pengevaluasi Aturan

- Support (s)
 - Perbandingan transaksitransaksi yang mengandung X dan Y
- Confidence (c)
 - Menunjukkan kekerapan munculnya item-item dalam Y pada transaksi yang mengandung X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Contoh

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Strategi Algoritma Analisis Asosiasi

- Ada 2 langkah besar yang diambil, yaitu :
 - Frequent Itemset Generation
 - Mengoleksi semua itemset yang memenuhi syarat
 support ≥ minsup. Itemset-itemset ini disebut frequent itemset

2. Rule Generation

- Bertujuan membentuk aturan dengan nilai confidence yang tingi dari frequent itemset yang telah diperoleh sebelumnya.
 Aturan ini disebut strong rules
- Mengenerate frequent itemset merupakan tahapan yang berat dari sudut pandang komputasi!!!

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Setiap itemset dalam jaring adalah candidate frequent itemset
 - Hitung support dari setiap kandidat dengan scanning database

- Bandingkan setiap transaksi terhadap setiap kandidat
- □ Kompleksitas ~ O(NMw) => Expensive since M = 2^d !!!

Kompleksitas Komputasional

- Jika terdapat d item yang berbeda, maka:
 - □ Total itemsets = 2^d
 - Total association rules yang mungkin :

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

Jika d=6, R=602 rules

Strategi Pembentukan Frequent Itemset

- Mereduksi jumlah kandidat (M)
 - Gunakan prinsip Apriori
- Mereduksi jumlah perbandingan (NM)
 - Gunakan struktur data yang efisien untuk menyimpan kandidat atau transaksi
 - Tidak perlu membandingkan semua kandidat terhadap setiap transaksi

Mereduksi jumlah kandidat (M)

 Prinsip Apriori : Jika sebuah itemset merupakan frequent itemset maka subsetnya pun merupakan frequent itemset

Contoh: {Susu, Bir, Roti, Diaper} merupakan frequent item set, maka {Susu},{Roti},{Roti, Diaper}, {Susu,Bir,Roti}, dst juga merupakan frequent itemset

Sifat anti-monotone

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

 Support dari sebuah itemset tidak akan lebih besar dari support subsetnya

Ilustrasi Prinsip Apriori

Ilustrasi Prinsip Apriori (2)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
With support-based pruning,
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

Algoritma Apriori

- Misalkan k=1
- Bentuk frequent itemsets yang terdiri dari k item
- Ulangi hingga tidak ada lagi frequent itemsets yang baru
 - Bentuk kandidat itemset dengan panjang (k+1) dari frequent itemset dengan panjang k
 - Buang kandidat itemsets yang berisi subset dengan panjang k yang tidak frequent
 - Hitung support dari setiap kandidat dengan scannding basisdata
 - Eliminasi kandidat yang infrequent

Pembentukan Rule (1)

- Misalkan ada frequent itemset L, cari subsets yang tidak hampa f ⊂ L sedemikian sehingga f → L – f memenuhi nilai minimum confidence
 - Mis {A,B,C,D} adalah frequent itemset, maka kandidat rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

■ Jk |L| = k, maka akan terdapat $2^k - 2$ kandidat association rules (tanpa L $\rightarrow \emptyset$ and $\emptyset \rightarrow$ L)

Pembentukan Rule(2)

- Bagaimana membentuk rules dari frequent itemset dengan efisien?
 - Secara umum, confidence tidak bersifat anti-monotone
 c(ABC →D) dapat lebih besar/kecil c(AB →D)
 - Tetapi nilai confidence dari rules yg berasal dari itemset yang sama bersifat anti-monotone
 - \Box e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

Pembentukan Rule Algoritma Apriori

Pembentukan Rule Algoritma Apriori

 Kandidat rule dibentuk dengan cara menggabungkan 2 rules yang memiliki prefix yang sama sebagai konsekuennya

join(CD=>AB,BD=>AC) sehingga terbentuk rule D => ABC

 Buang rule D=>ABC jika ia mempunyai subset AD=>BC dengan nilai confidence D=>ABC

Contoh:

Gunakan algoritma apriori untuk membentuk aturan analisis asosiasi pengklasifikasi dari data pada tabel Gunakan minimum support = 3dan min conf = 70%

TID	List of item
T100	l1,l2,l5
T200	12,14
T300	12,13
T400	11,12,14
T500	I1,I3
T600	12,13
T700	I1,I3
T800	11,12,13,15
T900	l1,l2,l3

Algoritma FP-Growth

 Gunakan representasi terkompresi basis data dengan memanfaatkan FP-tree

 Setelah FP-tree terbentuk, gunakan teknik divide-and-conquer secara rekursif untuk menambang frequent itemsets

Pembentukan FP-tree

L1 : Susun 1-item dgn nilai support count menurun

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Setelah membaca TID=1:

Setelah membaca TID=2:

FP-Tree Construction

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Header table

Item	Pointer
Α	
В	
С	
D	
Е	

Pointers digunakan sbg bantuan dalam menelusuri pohon frequent pattern

FP-growth

Conditional Pattern base untuk D:

```
P = {(A:1,B:1,C:1),
(A:1,B:1),
(A:1,C:1),
(A:1),
(B:1,C:1)}
```

Secara rekursif terapkan proses FP-Growth pada P

Mis minsup=1,maka

Frequent Itemsets yang diperoleh:
AD, BD, CD, ACD, BCD