Clustering et étiquetage de clusters

Nicolas Dugué - Master ATAL

14 octobre 2020

- Les données : $\{x_1, x_2, \dots, x_n\}$ avec $\forall i, x_i \in \mathbb{R}^p$, les x_i les individus (documents) décrits par p attributs (termes), soit la matrice X à n lignes et p colonnes;
- Ce qu'on veut minimiser : $||X A \cdot \mu||^2$ avec
 - A une matrice d'affectation à n lignes et k colonnes t.q. $A_{ij} = 1$ si x_i appartient au cluster j, et 0 sinon;
 - μ est une matrice à k lignes et p colonnes représentant les k centroïdes.

- Les données : $\{x_1, x_2, \dots, x_n\}$ avec $\forall i, x_i \in \mathbb{R}^p$, les x_i les individus (documents) décrits par p attributs (termes), soit la matrice X à n lignes et p colonnes;
- Ce qu'on veut minimiser : $||X A \cdot \mu||^2$

$$\mathcal{L}(A, \mu) = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \sum_{d=1}^{p} (X_{id} - \mu_{kd})^{2}$$

$$\underset{A,\mu}{argmin} \ \mathcal{L}(A,\mu) = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \sum_{d=1}^{p} (X_{id} - \mu_{kd})^{2}$$

Méthode type *EM* :

- Initialisation aléatoire de μ puis, jusqu'à convergence :
 - Mettre à jour A en considérant μ fixée
 - Mettre à jour μ en considérant A fixée

$$\underset{A,\mu}{\operatorname{argmin}} \ \mathcal{L}(A,\mu) = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \sum_{d=1}^{p} (X_{id} - \mu_{kd})^{2}$$

Méthode type *EM* :

- lacksquare Initialisation aléatoire de μ puis, jusqu'à convergence :
 - Mettre à jour A en considérant μ fixée : $A_{ij} = \underset{i}{argmin} ||X_i \mu_j||_2$
 - Mettre à jour μ en considérant A fixée : Comment calculer la matrice μ optimale ?

K-moyennes : calculer μ optimal

$$\frac{\delta}{\delta \mu_{ml}} \mathcal{L} = \frac{\delta}{\delta \mu_{ml}} \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \sum_{d=1}^{p} (X_{id} - \mu_{kd})^{2}$$

$$= \frac{\delta}{\delta \mu_{ml}} \sum_{i=1}^{n} A_{im} \sum_{d=1}^{p} (X_{id} - \mu_{md})^{2}$$

$$= \frac{\delta}{\delta \mu_{ml}} \sum_{i=1}^{n} A_{im} (X_{il} - \mu_{ml})^{2}$$

$$= \sum_{i=1}^{n} A_{im} \frac{\delta}{\delta \mu_{ml}} (X_{il} - \mu_{ml})^{2}$$

$$= \sum_{i=1}^{n} A_{im} \frac{\delta}{\delta \mu_{ml}} (X_{il}^{2} - 2X_{il}\mu_{ml} + \mu_{ml}^{2})$$

$$= \sum_{i=1}^{n} A_{im} (-2X_{il} + 2\mu_{ml})$$

K-moyennes : calculer μ optimal

$$\frac{\delta}{\delta \mu_{ml}} \mathcal{L} = \sum_{i=1}^{n} A_{im} (-2X_{il} + 2\mu_{ml}) = 0$$

$$2 \sum_{i=1}^{n} A_{im} \mu_{ml} - 2 \sum_{i=1}^{n} A_{im} X_{il} = 0$$

$$\sum_{i=1}^{n} A_{im} \mu_{ml} = \sum_{i=1}^{n} A_{im} X_{il}$$

$$\mu_{ml} = \frac{\sum_{i=1}^{n} A_{im} X_{il}}{\sum_{i=1}^{n} A_{im}}$$

Plan

- Clustering
 - K-moyennes
 - NMF
- Étiquetage des clusters
 - Avec les titres des documents

 - Mutual Information
 - Feature F-mesure

NMF: Non Negative Matrix Factorization

argmin
$$||X - W \cdot H||$$

 W,H

avec W et H qui ne contiennent que des valeurs positives;

- Factorisation de matrice : lien avec approche Glove ;
- Lien avec le clustering;
- Interprétabilité: W à n lignes et k colonnes la matrice document-thématique, et H à k lignes et n colonnes la matrice thématique-terme.

NMF: Non Negative Matrix Factorization

$$\underset{W,H}{\operatorname{argmin}} \mathcal{L}(W,H) = \underset{W,H}{\operatorname{argmin}} \sum_{i=1}^{n} \sum_{d=1}^{p} (X_{id} - \sum_{j=1}^{k} W_{ij} H_{jd})^{2}$$

Comment apprendre *W* et *H*?

Initialiser aléatoirement W et H avec des valeurs positives et alterner :

- Mise-à-jour de W;
- Mise-à-jour de H.

Mettre à jour : Gradient NMF

$$\begin{split} &\frac{\delta}{\delta W_{ml}} \mathcal{L}(W, H) = \frac{\delta}{\delta W_{ml}} \sum_{i=1}^{n} \sum_{d=1}^{p} (X_{id} - \sum_{j=1}^{k} W_{ij} H_{jd})^{2} \\ &= \frac{\delta}{\delta W_{ml}} \sum_{i=1}^{n} \sum_{d=1}^{p} (X_{id}^{2} - 2X_{id} \sum_{j=1}^{k} W_{ij} H_{jd} + (\sum_{j=1}^{k} W_{ij} H_{jd})^{2}) \\ &= \frac{\delta}{\delta W_{ml}} \sum_{d=1}^{p} (X_{md}^{2} - 2X_{md} \sum_{j=1}^{k} W_{mj} H_{jd} + (\sum_{j=1}^{k} W_{mj} H_{jd})^{2}) \\ &= \frac{\delta}{\delta W_{ml}} (X_{ml}^{2} - 2X_{ml} \sum_{j=1}^{k} W_{mj} H_{jl} + (\sum_{j=1}^{k} W_{mj} H_{jl})^{2}) \\ &= \frac{\delta}{\delta W_{ml}} (X_{ml}^{2} - 2X_{ml} W_{ml} H_{jl} + (W_{ml} H_{jl})^{2}) \\ &= -2X_{ml} H_{jl} + 2W_{ml} H_{jl}^{2} \end{split}$$

Gradient NMF

$$\frac{\delta}{\delta W_{ml}} \mathcal{L}(W, H) = -2X_{ml}H_{jl} + 2W_{ml}H_{jl}^2$$

On a donc les gradients :

$$\nabla_H \mathcal{L}(W,H) = -2W^t X + 2W^t WH$$

et des règles de mise-à-jour :

$$\blacksquare$$
 $W \leftarrow W - \eta_W \cdot \nabla_W$

$$\blacksquare$$
 $H \leftarrow H - \eta_H \cdot \nabla_H$

Mais...

Mais risque d'obtenir des valeurs négatives dans H et W

Gradient NMF

et des règles de mise-à-jour :

$$\blacksquare W \leftarrow W - \eta_W \cdot \nabla_W$$

$$\blacksquare$$
 $H \leftarrow H - \eta_H \cdot \nabla_H$

On fixe $\eta_W = \frac{W}{WHH^t}$ et obtient ainsi la règle :

$$W \leftarrow W - \eta_W \cdot \nabla_W = W + \frac{W}{WHH^t} \cdot (XH^t - WHH^t) = W \frac{XH^t}{WHH^t}$$

NMF

- Le gradient résoud tout!
- Jouer sur le pas d'apprentissage nous permet d'obtenir des règles qui garantissent la positivité;
- Les problèmes d'apprentissage sont connectés : Glove et NMF... Mais aussi K-moyennes qui est un cas particulier de la NMF.

Plan

- Clustering
 - K-moyennes
 - NMF
- Étiquetage des clusters
 - Avec les titres des documents

 - Mutual Information
 - Feature F-mesure

Étiqueter les clusters

Trouver des termes :

- qui décrivent les clusters ;
- qui sont typiques des clusters.

Représentatif VS Discriminant

En choisissant les titres des documents les plus proches des centroïdes

Plan

- Clustering
 - K-moyennes
 - NMF
- Étiquetage des clusters
 - Avec les titres des documents

 - Mutual Information
 - Feature F-mesure

	Cluster 0	Cluster0	
Chaussette	49	27.652	
Chaussette	141	774.106	

	Cluster 0	Cluster0	
Chaussette	49	27.652	27.701
Chaussette	141	774.106	
	190		801.948

	Cluster 0		Cluster0	
Chaussette	49	6,6	27.652	27.701
Chaussette	141		774.106	
	190			801.948

	Cluster 0		Cluster0	
Chaussette	49	6,6	27.652	27.701
Chaussette	141		774.106	
			801.758	801.948

	Cluster 0		Cluster0		
Chaussette	49	6,6	27.652	27.694,4	27.701
Chaussette	141		774.106		
			801.758		801.948

	Cluster 0		Cluster0		
Chaussette	49	6,6	27.652	27.694,4	
Chaussette	141		774.106		774.247
	190				801.948

	Cluster 0		Cluster0		
Chaussette	49	6,6	27.652	27.694,4	
Chaussette	141	183,4	774.106		774.247
	190				801.948

	Cluster 0		Cluster0		
Chaussette	49	6,6	27.652	27.694,4	
Chaussette	141	183,4	774.106		774.247
			801.758		801.948

	Cluster 0		Cluster0		
Chaussette	49	6,6	27.652	27.694,4	
Chaussette	141	183,4	774.106	774.063,6	774.247
			801.758		801.948

	Cluster 0		Cluster0		
Chaussette	49	6,6	27.652	27.694,4	
Chaussette	141	183,4	774.106	774.063,6	

$$\chi^2 = \sum_d \frac{(O_d - E_d)^2}{E_d} = 284$$

	Cluster 0		Cluster0		
Chaussette	49	6,6	27.652	27.694,4	
Chaussette	141	183,4	774.106	774.063,6	

$$\chi^2 = \sum_d \frac{(O_d - E_d)^2}{E_d} = 284$$

Plus le χ^2 est élevé, moins l'hypothèse d'indépendance entre la classe et la présence de l'attribut est probable.

Plan

- Clustering
 - K-moyennes
 - NMF
- Étiquetage des clusters
 - Avec les titres des documents
 - χ^2
 - Mutual Information
 - Feature F-mesure

Étiqueter les clusters avec la Mutual Information

$$PMI = log\Big(\frac{P(x,y)}{P(x)P(y)}\Big)$$

À quel point x et y co-occurrent plus ou moins que par chance?

MI (Mutual Information) : à quel point x apparait plus ou moins dans C qu'ailleurs

$$PMI = \sum_{x \in (Chaussette, \overline{Chaussette})} \sum_{c \in (Cluster0, \overline{Cluster0})} P(x, c) log(\frac{P(x, c)}{P(x)P(c)})$$

	Cluster 0	Cluster0
Chaussette	49	27.652
Chaussette	141	774.106

Plan

- Clustering
 - K-moyennes
 - NMF
- Étiquetage des clusters
 - Avec les titres des documents
 - χ^2
 - Mutual Information
 - Feature F-mesure

Le corpus des conversations de ma grand-mère avec la voisine

- 2 patois : Le berrichon (Be), le bourbonnais (Bo) ;
- 6 conversations dans l'un de ces deux patois;
- 3 mots et leur fréquence.

Tazon	Arcandier	Nigeasson	Classe
9	5	5	Be
9	10	5	Be
9	20	6	Be
5	15	5	Во
6	25	6	Во
5	25	5	Во

Représentativité Versus Typicité

$$lackbox{\bf FP}_c(f) = rac{W_C^f}{W_C}
ightarrow ext{représentativité, dominance}$$

Représentativité Versus Typicité

$$\begin{aligned} & \mathbf{FP}_c(\mathbf{f}) = \frac{W_C^f}{W_C} \to \mathbf{repr\acute{e}sentativit\acute{e}, dominance} \\ & \mathbf{FR}_c(\mathbf{f}) = \frac{W_C^f}{W^f} \to \mathbf{typicit\acute{e}, saillance} \end{aligned}$$

$$ullet$$
 FR $_c(f) = rac{VV_C^{'}}{W^{f}}
ightarrow$ typicité, saillance

Représentativité Versus Typicité

$$\begin{aligned} & \mathbf{FP}_c(\mathbf{f}) = \frac{W_C^f}{W_C} \to \mathbf{repr\acute{e}sentativit\acute{e}, dominance} \\ & \mathbf{FR}_c(\mathbf{f}) = \frac{W_C^f}{W^f} \to \mathbf{typicit\acute{e}, saillance} \end{aligned}$$

$$ullet$$
 FR $_c(f) = rac{VV_C'}{W^f}
ightarrow ext{typicité, saillance}$

■ **FF** la moyenne harmonique.

Tazon	Arcandier	Nigeasson	Classe
9	5	5	Be
9	10	5	Be
9	20	6	Be
5	15	5	Во
6	25	6	Во
5	25	5	Во

$$W_{Be}^{Tazon} = 27$$

Tazon	Arcandier	Nigeasson	Classe
9	5	5	Be
9	10	5	Be
9	20	6	Be
5	15	5	Во
6	25	6	Во
5	25	5	Во

$$W_{Be}^{Tazon} =$$
27

$$W^{Tazon} = 43$$

Tazon	Arcandier	Nigeasson	Classe
9	5	5	Be
9	10	5	Be
9	20	6	Be
5	15	5	Во
6	25	6	Во
5	25	5	Во

$$W_{Be}^{Tazon}=$$
 27 $FR_{Be}(Tazon)=$ $\frac{27}{43}$ $W^{Tazon}=$ 43 $W_{Be}=$ 78 $FP_{Be}(Tazon)=$ $\frac{27}{78}$

Sélection de variables

$$S_c = \left\{ f \in F | FF_c(f) > \overline{FF(f)}, FF_c(f) > \overline{FF} \right\}$$

avec

- \blacksquare FF(f) F-Mesure moyenne de f
- *FF* la F-Mesure moyenne

Sélection de variables

Tazon	Arcandier	Nigeasson	
0.46	0.39	0.3	$FF_{Be}(f)$
0.22	0.66	0.24	$FF_{Bo}(f)$
0.34	0.53	0.27	$\overline{FF(f)}$
			,
0.38			FF

 \rightarrow *Nigeasson* pas sélectionnée

Références

[ASL05] Shadi Al Shehabi and Jean-Charles Lamirel.

Multi-topographic neural network communication and generalization for multi-viewpoint analysis.

In Neural Networks, 2005. IJCNN'05. Proceedings. 2005 IEEE International Joint Conference on, volume 3, pages 1564–1569. IEEE, 2005.

[Lam12] Jean-Charles Lamirel.

A new approach for automatizing the analysis of research topics dynamics : application to optoelectronics research.

Scientometrics, 93(1):151-166, 2012.