

PCB板厚0.8mm 模块最高厚度1.7mm 电阻电容采用0402封装 晶振采用3225封装

1.5mm厚

1.7mm厚

24L01-M接口说明

+3.3V GND CE CSN SCK MOSI MISO IRQ 名 称: 微型2.4G无线模块

型 号: 24L01-M 供电电压: 1.9~3.6V

接收灵敏度:

2Mbps - -83dB; 1Mbps - -87dB; 250kbps - -96dB

接收电流:

2Mbps - 15mA; 1Mbps - 14.5mA; 250kbps - 14mA

待机电流: 15 µ A 掉电电流: 700nA

工作温度: -20℃ ~ +55℃

存储温度: -40℃ ~ +125℃

集成PCB天线, 更小巧

发射功率: (max)

台产4.5: +7dB 进口6.5: +0dB

接收灵敏度: ≦-90dB

传输距离: (250kbps) 台产4.5: ~250米 进口6.5: ~100米

超低功耗高性能 2.4GHz GFSK 无线收发芯片

主要特性

- 工作在 2.4GHz ISM 频段
- 调制方式: GFSK/FSK
- 数据速率: 2Mbps/1Mbps/250Kbps
- 超低关断功耗: 0.7uA
- 超低待机功耗: 15uA
- 快速启动时间: < 130uS
- 内部集成高 PSRR LDO
- 宽电源电压范围: 1.9-3.6V
- 宽数字 I/0 电压范围:1.9-5.25V
- 低成本晶振: 16MHz±60ppm
- 接收灵敏度: -83dBm @2MHz
- 最高发射功率: 7dBm
- 接收电流 (2Mbps): 15mA
- 发射电流(2Mbps): 12mA (0dBm)
- 最高 10MHz 四线 SPI 接口
- 内部集成智能 ARQ 基带协议引擎
- 收发数据硬件中断输出
- 支持 1bit RSSI 输出
- 极少外围器件,降低系统应用成本
- QFN20 封装或 COB 封装

应用范围

- ◆ 无线鼠标、键盘
- ◆ 无线遥控、体感设备
- ◆ 有源 RFID、NFC
- ◆ 智能电网、智能家居
- ◆ 无线音频
- ◆ 无线数据传输模块
- ◆ 低功耗自组网无线传感网节点

封装图

结构框图

Preliminary

术语缩写

术语	描述	中文描述
ARQ	Auto Repeat-reQuest	自动重传请求
ART	Auto ReTransmission	自动重发
ARD	Auto Retransmission Delay	自动重传延迟
BER	Bit Error Rate	误码率
CE	Chip Enable	芯片使能
CRC	Cyclic Redundancy Check	循环冗余校验
CSN	Chip Select	片选
DPL	Dynamic Payload Length	动态载波长度
GFSK	Gaussian Frequency Shift Keying	高斯频移键控
IRQ	Interrupt Request	中断请求
ISM	Industrial-Scientific-Medical	工业-科学-医学
LSB	Least Significant Bit	最低有效位
Mbps	Megabit per second	兆位每秒
MCU	Micro Controller Unit	微控制器
MHz	Mega Hertz	兆赫兹
MISO	Master In Slave Out	主机输入从机输出
MOSI	Master Out Slave In	主机输出从机输入
MSB	Most Significant Bit	最高有效位
PA	Power Amplifier	功率放大器
PID	Packet Identity	数据包识别位
PLD	Payload	载波
RX	RX	接收端
TX	TX	发射端
PWR_DWN	Power Down	掉电
PWR_UP	Power UP	上电
RF_CH	Radio Frequency Channel	射频通道
RSSI	Received Signal Strength Indicator	信号强度指示器
RX	Receiver	接收机
RX_DR	Receive Data Ready	接收数据准备就绪
SCK	SPI Clock	SPI 时钟
SPI	Serial Peripheral Interface	串行外设接口
TX	Transmitter	发射机
TX_DS	Transmit Data Sent	已发数据
XTAL	Crystal	晶体振荡器

目 录

1	简介	4
2	引脚信息	5
3	工作模式	6
	3.1 状态转换图	6
	3.1.1 Shutdown工作模式	7
	3.1.2 Standby工作模式	7
	3.1.3 Idle-TX工作模式	7
	3.1.4 TX工作模式	7
	3.1.5 RX 工作模式	
4	寄存器映射表	9
5	主要参数指标	10
	5.1 极限参数	10
	5.2 电气指标	10
6	封装	12
7	典型应用原理图	14
	7.1 典型应用原理图	14
	7.2 PCB布线	15
8	订单信息	17
9	技术支持与联系方式	18
附	: 典型配置方案	19

1 简介

本RF芯片是一颗工作在 2. 4GHz ISM 频段,专为低功耗无线场合设计,集成嵌入式 ARQ 基带协议引擎的无线收发器芯片。工作频率范围为 2400MHz-2525MHz,共有 126 个 1MHz 带宽的信道。

采用 GFSK/FSK 数字调制与解调技术。数据传输速率与 PA 输出功率都可以调节,支持 2Mbps, 1Mbps, 250Kbps 三种数据速率。高的数据速率可以在更短的时间完成同样的数据收发,因此可以具有更低的功耗。

针对低功耗应用场合进行了特别优化,在关断模式下,所有寄存器值与FIF0 值保持不变,关断电流为 0.7uA;在待机模式下,时钟保持工作,电流为 15uA,并且可 以在最长 130uS 时间内开始数据的收发。

操作方式非常方便, 只需要微控制器 (MCU) 通过 SPI 接口对芯片少数几个寄存器配置即可以实现数据的收发通信。嵌入式 ARQ 基带引擎基于包通信原理,支持多种通信模式,可以手动或全自动 ARQ 协议操作。内部集成收发 FIFO,可以保证芯片与 MCU 数据连续传输,增强型 ARQ 基带协议引擎能处理所有高速操作,因此大大降低了MCU 的系统消耗。

具有非常低的系统应用成本,只需要一个 MCU 和少量外围无源器件即可以组成一个无线数据收发系统。内部集成高 PSRR 的 LDO 电源,保证 1.9-3.6V 宽电源范围内稳定工作;数字 I/0 兼容 2.5V/3.3V/5V 等多种标准 I/0 电压,可以与各种 MCU 端口直接连接。

图 1-1 芯片结构框图

2 引脚信息

引脚信息图 (QFN20 4×4 封装)

表 2.1 引脚功能描述

端口	端口名称	端口类型	功能描述
1	CE	DI	芯片开启信号,激活 RX 或 TX 模式
2	CSN	DI	SPI 片选信号
3	SCK	DI	SPI 时钟信号
4	MOSI	DI	SPI 输入信号
5	MISO	DO	SPI 输出信号
6	IRQ	DO	可屏蔽中断信号,低电平有效
7, 15,	VCC	Power	电源(+1.9~+3.6V,DC)
18			
8, 14,	VSS	Power	地 (0V)
17, 20			
9	XO	AO	晶体振荡器输出引脚
10	XI	AI	晶体振荡器输入引脚
11	VDD_PA	Power	给内置 PA 供电的电源输出引脚(+1.8 V)
12	RFP	RF	天线接口1
13	RFN	RF	天线接口 2
16	IREF	AI	基准电流
19	VDD_D	PO	内部数字电路电源,须接去耦电容
	Die exposed	Power	地 (0V),推荐与 PCB 大面积地相连

3 工作模式

3.1 状态转换图

芯片内部有状态机,控制着芯片在不同工作模式之间的转换。

可配置为 Shutdown、Standby、Idle-TX、TX 和 RX 五种工作模式。状态转换图如图 3-1 所示。

图 3-1 Si24R1 工作模式切换图

3.1.1 Shutdown 工作模式

在 Shutdown 工作模式下, 所有收发功能模块关闭,芯片停止工作,消耗电流最小,但所有内部寄存器值和 FIFO 值保持不变,仍可通过 SPI 实现对寄存器的读写。设置 CONFIG 寄存器的 PWR UP 位的值为 0,芯片立即返回到 Shutdown 工作模式。

3.1.2 Standby 工作模式

在 Standby 工作模式,只有晶体振荡器电路工作,保证了芯片在消耗较少电流的同时能够快速启动。设置 CONFIG 寄存器下的 PWR_UP 位的值为 1, 芯片待时钟稳定后进入 Standby 模式。芯片的时钟稳定时间一般为 1.5~2ms,与晶振的性能有关。当引脚 CE=1 时,芯片将由 Standby 模式进入到 Idle-TX 或 RX 模式,当 CE=0 时,芯片将由 Idle-TX、TX 或 RX 模式返回到 Standby 模式。

3.1.3 Idle-TX 工作模式

在 Idle-TX 工作模式下,晶体振荡器电路及时钟电路工作。相比于 Standby 模式,芯片消耗更多的电流。当发送端 TX FIFO 寄存器为空,并且引脚 CE=1 时,芯片进入到 Idle-TX 模式。在该模式下,如果有新的数据包被送到 TX FIFO 中,芯片内部的电路将立即启动,切换到 TX 模式将数据包发送。

在 Standby 和 Idle-TX 工作模式下,所有内部寄存器值和 FIFO 值保持不变,仍可通过 SPI 实现对寄存器的读写。

3.1.4 TX 工作模式

当需要发送数据时,需要切换到 TX 工作模式。芯片进入到 TX 工作模式的条件为: TX FIFO 中有数据, CONFIG 寄存器的 PWR_UP 位的值为 1,PRIM_RX 位的值为 0,同时要求引脚 CE 上有一个至少持续 10us 的高脉冲。芯片不会直接由 Standby 模式直接切换到 TX 模式,而是先立即切换到 Idle-TX 模式,再由 Idle-TX 模式自动切换到 TX 模式。Idle-TX 模式切换到 TX 模式的时间为 120us~130us 之间,但不会超过 130us。单包数据发送完成后,如果 CE=1,则由 TX FIFO 的状态来决定芯片所处的工作模式,当 TX FIFO 还有数据,芯片继续保持在 TX 工作模式,并发送下一包数据; 当 TX FIFO 没有数据,芯片返回 Idle-TX 模式;如果 CE=0,立即返回 Standby 模式。数据发射完成后,芯片产生数据发射完成中断。

3.1.5 RX 工作模式

当需要接收数据时,需要切换到RX工作模式。芯片进入到RX工作模式的条件为:

设置寄存器 CONFIG 的 PWR_UP 位的值为 1, PRIM_RX 位的值为 1, 并且引脚 CE=1。 芯片由 Standby 模式切换到 RX 模式的时间为 120~130us。当接收到数据包的地址与芯片的地址相同,并且 CRC 检查正确时,数据会自动存入 RX FIFO, 并产生数据接收中断。芯片最多可以同时存三个有效数据包,当 FIFO 已满,接收到的数据包被自动丢掉。

在接收模式下,可以通过 RSSI 寄存器检测接收信号功率。当接收到的信号强度大于-60dBm 时,RSSI 寄存器的 RSSI 位的值将被设置为 1。否则,RSSI=0。。RSSI 寄存器的更新方法有两种: 当接收到有效的数据包后,RSSI 会自动更新,此外,将芯片从RX 模式换到 Standby 模式时 RSSI 也会自动更新。RSSI 的值会随温度的变化而变化,范围在±5dBm 以内。

4 寄存器映射表

Address (Hex)	Mnemonic	Bit	Reset Value	Туре	Description		
00	CONFIG				配置寄存器		
00	CONFIG				配 直句仔裕		
01	EN AA				使能自动确认		
01	EN_AA				文形 自		
	EM DWADDD				计外控护机构		
02	EN_RXADDR				使能接收数据管道地址		
					In the share m		
03	SETUP_AW				地址宽度配置		
					ZYA		
04	SETUP_RETR				自动重发配置		
05	RF_CH				射频信道		
					Y		
06	RF_SETUP				射频配置		
	CONT WAVE	7	0	R/W	为'1'时,使能恒载波发射模式,用来		
	CONT_WAVE				测试发射功率		
	Reserved	6	0	R/W	保留		
	DE DR LOW	5	0	R/W	设置射频数据率为250kbps 、1Mbps或		
	RF_DR_LOW				2Mbps,与RF_DR_HIGH共同控制		
	PLL_LOCK /	4	0	R/W			
		3	1	R/W	设置射频数据率		
	1				[RF_DR_LOW, RF_DR_HIGH]:		
	- 2(1)				00: 1Mbps		
	RF_DR_HIGH				01: 2Mbps		
					10: 250kbps		
4					11: 保留		
		2:0	110	R/W	设置TX发射功率		
			-		111: 7dBm 110: 4dBm		
	RF_PWR				101: 3dBm 100: 1dBm		
					011: 0dBm 010:-4dBm		
					001:-6dBm 000:-12dBm		
				†	330.1242		
07					状态寄存器(SPI操作的第一个字节,状		
01	STATUS				态寄存器值通过MISO串行输出)。		

5 主要参数指标

5.1 极限参数

工作条件	最小值	最大值	单位			
电源电压						
VDD	-0.3	3.6	V			
VSS		0	V			
输入电压			213			
VI	-0.3	5.25	V			
输出电压		,				
VO	VSS to VDD	VSS to VDD	V			
总功耗		7 -				
		100	mW			
温度	温度					
工作温度范围	-40	+85	\mathbb{C}			
存储温度	-40	+125	\mathbb{C}			
ESD 性能	HBM(Human Body Model): Class 1C					

5.2 电气指标

条件: VDD=3V, VSS=0V TA=27℃, 晶振 CL=12pF

来 T: VDD-3V, V33-0V IA-27 C, 田東 CL-12pl						
符号	参数	最小值	典型值	最大值	单位	备注
OP 参数						
VDD	电源电压范围	1.9		3.6	V	
I _{SHD}	Shutdown 模式电流		0.7		μΑ	
I_{STB}	Standby 模式电流		15		μΑ	
I _{IDLE}	Idle-TX 模式电流		380		μΑ	
I _{RX} @2MHZ	RX 模式电流		15		mA	
	@2Mbps					
I _{RX} @1MHZ	RX 模式电流		14.5		mA	
*	@1Mbps					
I _{RX} @250kbps	RX 模式电流		14		mA	
	@250kbps					
I _{TX} @7dBm	TX 模式电流		25		mA	
	@7dBm					
I _{TX} @4dBm	TX 模式电流		16		mA	
	@4dBm					
I _{TX} @0dBm	TX 模式电流		12		mA	
	@0dBm					

Preliminary

		I	1	I	ı	
I _{TX} @-6dBm	TX 模式电流		9.5		mA	
	@-6dBm					
I _{TX} @-12dBm	TX 模式电流		8.5		mA	
	@-12dBm					
RF 参数						
F _{OP}	RF 频率范围	2400		2525	MHz	
F _{CH}	RF 信道间隔	1			MHz	2Mpbs 时至
						少为 2MHz
$\Delta F_{MOD}(2Mbps)$	调制频率偏移		±330		KHz	_
$\Delta F_{MOD}(1M/250Kbps)$	调制频率偏移		±175		KHz	
R _{GFSK}	数据速率	250		2000	Kbps) <
RX 参数			•			
RX _{SENS} @2Mbps	灵敏度@2Mbps		-83		dBm	BER=0.1%
RX _{SENS} @1Mbps	灵敏度@1Mbps		-87		dBm	BER=0.1%
RX _{SENS} @250Kbps	灵敏度@250kbps		-96	47	dBm	BER=0.1%
C/I _{CO} @2Mbps	同信道选择性		6		dB	
C/I _{1st} @2Mbps	1 st 邻道选择性		0		dB	
Transie Transie	2MHz				-	
C/I _{2ND} @2Mbps	2 nd 邻道选择性		-20		dB	
21120 1	4MHz					
C/I _{3RD} @2Mbps	3 rd 邻道选择性		-26		dB	
31150 1	6MHz					
C/I _{CO} @1Mbps	同信道选择性		7		dB	
C/I _{1st} @1Mbps	1st 邻道选择性		6		dB	
1310	2MHz					
C/I _{2ND} @1Mbps	2 nd 邻 道 选 择 性		-21		dB	
21120 1	4MHz					
C/I _{3RD} @1Mbps	3 rd 邻 道 选 择 性		-30		dB	
SADO 1	6MHz					
TX 参数					ļ	
P _{RF}	RF 输出功率	-30		7	dBm	
P _{BW} @2Mbps	调制带宽		2.1		MHz	
P _{BW} @1Mbps	调制带宽		1.1		MHz	
P _{BW} @250Kbps	调制带宽		0.9		MHz	
P _{RF1}	1 st 邻道功率 2MHz		4.5	-20	dBm	
P _{RF2}	2 nd 邻道功率 4MHz			-46	dBm	
晶振参数	- 10.0.77 101112		<u> </u>	1	,	
F _{XO}	晶振频率		16		MHz	
ΔF	频偏		±60		ppm	
ESR	等效损耗电阻		100		Ω	
EOK	可从现代电阻		100		2.2	

6 封装

SYMBOL MILLIMETER NOM MAX MIN 0.75 0.70 0.80 A **A1** 0.02 0.05 0.25 0.30 b 0.18 D 3.90 4.00 4.10 2.65 D2 2.55 2.75 0.50BSC e **E2** 2.55 2.65 2.75 E 3.90 4.00 4.10 2.00BSC Ne 2.00BSC Nd L 0.35 0.40 0.45 0.30 0.40 h 0.35 \mathbf{U} 0.20 REF. L/F 载体尺寸(mil) 114×114

图 8-2 封装尺寸

图 9-3 片上天线顶层布线图 (0402 元件)

图 9-4 片上天线底层布线图

8 订单信息

封装标志

PYYMMLL

P:固定为P

YY:封装年代码 MM:封装月代码

LL:晶圆代码

表 10-1 订单信息表

订单代码	封装	包装	最小单位
	4×4 mm	Box/Tu	5
	4×4mm 20−pin QFN	Tray	1K_
	4×4mm 20−pin QFN	Tape and reel	1K

附: 典型配置方案

模式一: ACK 通信

发射方配置:

```
spi_rw_reg(SETUP_AW, 0x03);
                           // 设置地址宽度为 5bytes
spi write buf(TX ADDR, TX ADDRESS, 5);
                                      // 写入发送地址,5字节
spi_write_buf(RX_ADDR_P0, TX_ADDRESS, 5); //接收通道 0 地址和发射地址相同
spi write buf(W TX PAYLOAD, buf, TX PLOAD WIDTH);
                                                // 写 TX FIFO
spi_rw_reg(FEATURE, 0x04);
                        //使能动态负载长度
spi_rw_reg(DYNPD, 0x01);
                       //开启 DPL P0
spi rw reg(SETUP RETR, 0x15);
                               //自动重发延时等待 500us,自动重发 5 次
                       // 选择射频信道
spi rw reg(RF CH, 0x40);
spi rw reg(RF SETUP, 0x0e);
                           // 数据传输率 2Mbps 及功率
                       //配置为发射模式、CRC、可屏蔽中断
spi rw reg(CONFIG, 0x0e);
CE = 1;
```

接收方配置:

```
spi_write_buf(RX_ADDR_P0, TX_ADDRESS, 5); //接收通道 0 地址和发射地址相同 spi_rw_reg(EN_RXADDR, 0x01); // 使能接收通道 0 spi_rw_reg(RF_CH, 0x40); // 选择射频信道 spi_rw_reg(RX_PW_P0, TX_PLOAD_WIDTH); //设置负载长度,使用 PIPE0 接收 spi_rw_reg(SETUP_AW, 0x03); // 设置地址宽度为 5bytes spi_rw_reg(FEATURE, 0x04); //使能动态负载 spi_rw_reg(DYNPD, 0x01); //开启 DPL_P0 spi_rw_reg(RF_SETUP, 0x0e); // 数据传输率 2Mbps 及功率 spi_rw_reg(CONFIG, 0x0f; //配置为发射模式、CRC、可屏蔽中断 CE = 1;
```

模式二: NOACK 通信

发射方配置:

```
接收方配置:
```

```
spi_write_buf( RX_ADDR_P0, TX_ADDRESS, 5); // 接收地址
spi_rw_reg( EN_RXADDR, 0x01); // 使能接收通道 0
spi_rw_reg( RF_CH, 0x40); // 选择射频信道
spi_rw_reg( RX_PW_P0, TX_PLOAD_WIDTH); //设置接收通道 0 负载数据宽度
spi_rw_reg( RF_SETUP, 0x08); // 数据传输率 2Mbps,-18dbm TX power
spi_rw_reg( CONFIG, 0x0f); // 配置为接收方、CRC 为 2Bytes
CE = 1;
```

模式三:接收方开启多个通道

动态负载:

```
spi_rw_reg(FEATURE, 0x04);
   spi_rw_reg(DYNPD, 0x3F);
                            //开启所有通道动态负载长度
   spi rw reg(EN RXADDR, 0x3F);
                                  //开启所有通道
                             // 选择射频通道 0x40
   spi rw reg(RF CH, 0x40);
   spi rw reg(SETUP AW, 0x03); // 5 byte Address width
   spi rw reg(CONFIG, 0x0B); //配置为接收方
   CE = 1;
静态负载:
   spi rw reg(RX PW P0, 0x20); //设置通道 0 接收数据宽度
   spi rw reg(RX PW P1, 0x20);
   spi_rw_reg(RX_PW_P2, 0x20);
   spi_rw_reg(RX_PW_P3, 0x20);
   spi_rw_reg(RX_PW_P4, 0x20);
   spi_rw_reg(RX_PW_P5, 0x20);
   spi_rw_reg(EN_RXADDR, 0x3F);
                                 //开启所有通道
                              // 选择射频通道 0x40
   spi_rw_reg(RF_CH, 0x40);
```

spi rw reg(SETUP AW, 0x03); // 设置地址宽度

//配置为接收方

spi_rw_reg(CONFIG, 0x0F);

CE = 1;