Improving Basket Prediction: Enhancing F1 Score with Advanced Feature Engineering and Modeling Techniques

proving Basket Prediction: Enhancing F1 Score with Advanced Feature Engineering Modeling Techniques	1
Problem Statement:	1
Objectives: After extensive communication and refinement of the initial vague problem statement, we defined the following specific objectives for this project:	1
Constraints: This project was conducted with the following limitations:	2
Data Overview:	
Data Preprocessing and Exploration:	2
Modeling:	
Final Model Performance and Future Scope:	7

Problem Statement:

I was tasked with improving the performance of Instacart's current basket prediction algorithm. The initial goal provided was general—"enhance the accuracy of predicting users' next baskets".

Objectives:

After extensive communication and refinement of the initial vague problem statement, we defined the following specific objectives for this project:

- 1. Improve the current algorithm's F1 score, aiming to exceed 0.25 by at least 0.03.
- 2. Identify and analyze patterns in customer purchasing behavior that can provide insights for more informed decision-making.

Data Overview:

The dataset contains approximately 30 million product order records from over 3 million orders made by around 200,000 unique customers. The data is organized across six CSV files:

- 1. **aisle.csv**: Information about product aisles.
- 2. **departments.csv**: Information about product departments.
- 3. **products.csv**: Detailed product information.
- 4. **orders.csv**: Contains order-specific details.
- 5. **prior product orders.csv**: Historical records of prior product orders.
- 6. train_product_orders.csv: Product orders used for model training.

Data Preprocessing and Exploration:

The dataset provided was preprocessed and balanced, with no missing values, as it had been cleaned by a previous team during the creation of the original algorithm. Key findings from data exploration include:

1. **Reordering Patterns**: Users tend to reorder on the same day, the 7th day, or the 30th day after a previous order.

days_since_prior_order w.r.t count

2. **Order Timing**: A significant volume of orders is placed between 8:00 AM and 4:00 PM, indicating peak purchasing hours.

order distribution w.r.t order hour of day

3. **Product Type Preference**: Organic products are reordered 8% more frequently than non-organic items.

product types vs reorder probability

product type (Organic vs Inorganic)

4. **Department Reorder Rates**: Categories like Dairy & Eggs, Produce, Beverages, and Bakery have high reorder rates, exceeding 65%. Conversely, Personal Care and Pantry items have lower reorder rates, below 35%.

reorder percentage w.r.t department

Modeling:-

- **Data Processing**: Started with **Polars** for faster data manipulation; switched to **PySpark** for distributed computing as dataset size grew.
- Feature Engineering: Focused on user, product, user-product relations, and time-based features; most features performed well.
- **Validation**: Created a **time-based validation set** using the latest orders to account for the problem's temporal nature.
- Modeling: Used XGBoost, H2O, and LightGBM with distributed computing and GPU acceleration to handle large data and speed up training.

Final Model Performance and Future Scope:

- **Final Score**: The model achieved an F1 score of **0.30**, surpassing the project's success threshold of **0.27**.
- Future Improvements:
 - Further feature engineering could enhance model performance.
 - Exploring advanced architectures like LSTMs, GRUs, and Transformers may provide additional improvements, especially in capturing sequential patterns.