ECE 598NSG/498NSU Deep Learning in Hardware Fall 2020

Training DNNs – The LMS Algorithm

Naresh Shanbhag Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

http://shanbhag.ece.uiuc.edu

COLLEGE OF ENGINEERING

Today

- Overview of DNN training the big picture
- The Stochastic Gradient Descent (SGD) training algorithm
- A simple learner: the least mean-squared (LMS) algorithm

Supervised Training

- Sample: z = (x, y) = (data, label);
- Training sample (example): samples used in training.
- Loss function: $L(\hat{y} = f_w(x), y)$; sample-specific value
- Family of functions parametrized by $w: \mathcal{F}: f_w(x) = \hat{y}$
- Loss function evaluated on the training set: Q(w)
- learning (convergence) curves; learning rate; stability

The LMS Algorithm

Least-Mean Square (LMS) Algorithm

$$e[n] = d[n] - \mathbf{W}^{T}[n]\mathbf{X}[n] \qquad \text{(dot product)}$$

$$W[n+1] = W[n] + \mu e[n]X[n]$$
 (weight update)

- two steps per iteration (n: iteration index)
- dot product step: takes dot-product and calculates error e[n]
- weight update step: weight vector w[n] updated using e[n]
- minimizes mean squared error (MSE): $E[e^2[n]] = J(w)$

Example: 3-Tap LMS Adaptive Filter

D: one sample delay (register)

- complexity: ~ 6 MACs, 6 registers, and 1 adder
- critical path delay:

$$T_{cp} = 2T_m + 4T_A$$

- throughput $\propto 1/T_{cp}$
- T_{cp} can be reduced via retiming, pipelining and parallelization
- latency = $2T_m + 4T_A = T_{cp}$ of architecture without pipelining/parallelization

Example - Predictor

AR model

fixed predictor

- signal generation model is unknown to the predictor
- predictor 'sees' x[n] = d[n] and computes a prediction $\hat{d}[n]$
- find coefficients w_0 and w_1 which will minimize the mean squared error $E[e^2[n]]$ just by observing data x[n]
- knowledge of the parameters of the AR model is not needed

Example

$$\mathbf{R} = \begin{bmatrix} 2.8 & 2.24 \\ 2.24 & 2.8 \end{bmatrix} \qquad \mathbf{p} = \begin{bmatrix} 2.24 \\ 1.8 \end{bmatrix} \quad \mathbf{W}_{opt} = \begin{bmatrix} 0.8 \\ 0.008 \end{bmatrix}$$

$$J_{min} = \sigma_d^2 - \boldsymbol{p}^T \boldsymbol{W}_{opt}$$

•
$$J_{min} = \sigma_x^2 - (1.8 - 0.01) = 2.8 - 1.81 = 0.99$$

LMS Predictor

fixed predictor

can be used only when data statistics are known in advance

LMS adaptive (learning) predictor

• would like to see $w_0[n] \to 0.8$ and $w_1[n] \to 0$ and $E[e^2[n]] \to 0.99$ as $n \to \infty$ and $\mu \to 0$

Convergence Curves – Predictor Weights

- convergence curves plot the evolution of the predictor coefficients
- $E\{w_0[n]\} \to 0.8$ and $E\{w_1[n]\} \to 0.008$ as $n \to \infty$
- $w_0[n] \rightarrow 0.8$ and $w_1[n] \rightarrow 0.008$ as $n \rightarrow \infty$ and $\mu \rightarrow 0$

Convergence Curves – MSE

- convergence curves plot the evolution of MSE $E[e^2[n]]$
- MSE reduces over $n \to LMS$ filter is converging
- minimum MSE = 1 as expected why? (e[n] = u[n]) after convergence)

Ensemble Averaging

- these convergence curves are obtained via ensemble averaging
- input is treated as a random process infinite sequence of RVs
- simulate independent runs and average (vertically) across each run to obtain $E[e^2[n]], E[w_0[n]],$ and $E[w_1[n]]$

RPs and Ensemble Averaging


```
%clear data clear; clc
%loop for sample runs for run=1:50
```

run;

%Generate correlated data

x=randn(1,100000);y=filter(1,[1-0.8],x);

%length of predictor

M=2;

%Calculate Wiener-Hopf Coefficients

%Find correlation matrices

%R: Toeplitz matrix with elements r(0),...r(M-1)

%r: = [r(1); ...; r(M)]

ſΥ

corMat]=corrmtx(y,M);R=corMat(1:M,1:M);r=cor Mat(2:M+1,1);

%Wiener-Hopf Equation

Wopt=inv(R)*r;
y_est = filter([0 Wopt(2:end)],1,y);

%LMS Adaptive predictor

%initialize weight vector and step-size iter =10000;W=zeros(M,iter); u=0.001; y=[zeros(1,M) y];

%update taps

```
for i= M+1 : iter
  y_est(i)=y(i-M:i-1)*W(:,i);
  e(i)=y(i)-y_est(i);
  W(:,i+1) = W(:,i) + u*e(i)*y(i-M:i-1)';
end
  W_av0(run,:) = W(2,:);W_av1(run,:) = W(1,:);
  MSE(run,:) = e(M+1 : iter).^2;
```

end %run loop

% Take ensemble average before plotting

W_av0=mean(W_av0);W_av1=mean(W_av1);MSE=
mean(MSE);

% Plotting commands follow

Classroom Discussion

• for each of the following, determine the **input** signal, **desired** signal, **predicted** signal, and the **prediction error** the LMS learner.

channel equalizer

channel estimator

near-end cross-talk canceller

adaptive differential pulse-code modulation (ADPCM) coder

Convergence Properties of the LMS Algorithm

• LMS is an iterative algorithm and hence its convergence properties are important to study

- Key convergence properties are:
 - stability (does it oscillate or diverge?)
 - rate of convergence (how fast does it settle?)
 - accuracy (how close is it to the MMSE solution?)

Stability Bounds

$$e[n] = d[n] - \mathbf{W}^{T}[n]\mathbf{X}[n]$$

$$W[n+1] = W[n] + \mu e[n]X[n]$$

- the step-size μ should be small enough for LMS to converge
- too small $\mu \rightarrow$ slow convergence
- too large $\mu \rightarrow$ instability
- stability bounds on μ

$$0 < \mu < \frac{2}{N\sigma_x^2}$$

Example – Stability Bounds for LMS Predictor

$$0 < \mu < \frac{2}{N\sigma_x^2}$$

•
$$N=2$$
; $\sigma_x^2=2.8 \Rightarrow$

$$\mu_{max} = \frac{2}{5.6} = 0.36$$

%LMS Adaptive predictor

%initialize weight vector and step-size iter =10000; W=zeros(M,iter); u=0.001; y=[zeros(1,M) y];

Rate of Convergence and Accuracy

- convergence rate: number of iterations needed to settle
- (in)accuracy (misadjustment)

$$\eta = \frac{J(\infty) - J_{min}}{J_{min}} = \mu \operatorname{tr}(R)$$

- step-size μ tradeoffs convergence rate with accuracy
- larger $\mu \rightarrow$ faster convergence but lower accuracy (higher η)

LMS's Loss Landscape

LMS Variants

Stochastic Gradient Descent (SGD)

- SGD is an optimization algorithm → source of many popular training algorithms, e.g., backprop for DNNs
- LMS is a special case of SGD

$$\mathbf{w}_{n+1} = \mathbf{w}_n + \mu(-\widehat{\mathbf{\nabla}}_n)$$

- LMS minimizes the mean squared error $J(w) = E[e^2[n]]$
- $\widehat{\nabla}_n = \frac{\partial \widehat{J}(w_n)}{\partial w_n} = \frac{\partial e^2(n)}{\partial w_n}$ \Rightarrow is the gradient of the instantaneous (stochastic) value $e^2[n]$ of J(w)
- many variants of LMS/SGD possible ightarrow just modify $\widehat{f \nabla}_n$

- easy to obtain a variety of LMS variants → SGD is robust to approximations
- Most/all variants are reduced complexity or robust versions of LMS. Use the simplest LMS algorithm that meets both accuracy and complexity/resource requirements
- LMS minimizes MSE. But many of its variants may minimize some other cost/loss function
- one simple variant monitor the convergence of the MSE then power down the WUD-block (saves power)
- another variant (burst-mode LMS): turn on the **WUD**-block for L samples/updates in a block of M samples/updates (adjust ratio L/M to match changing data statistics).
- note: in all variants of LMS the F-block is always operational.

(Conventional LMS)

$$e[n] = d[n] - \mathbf{W}^{T}[n]\mathbf{X}[n]$$

$$W[n+1] = W[n] + \mu e[n]X[n]$$

• adjusts μ in response to changes in input power level

$$\mu = \frac{\mu_0}{\alpha + N\sigma_x^2}$$

- α ensures μ doesn't blow up when $\sigma_x \to 0$
- stability bounds change to $0 < \mu < 2$
- equivalent to normalizing $x[n] o \frac{x[n]}{\sqrt{\alpha + N\sigma_x^2}}$, i.e., standard version of an RV \to related

to batch normalization in DNN training

Normalized

LMS

Gear-shifting LMS

- variable step-size LMS (gear shifting) tries to achieve fast convergence and high accuracy simultaneously
- Learning rate schedule
- reduces μ as convergence proceeds
- large initial μ speeds up convergence
- small later μ later results in higher accuracy
- practical initialization:

$$\mu = \frac{1}{N\sigma_x^2}$$
 (half the stability bound)

• reduce μ by factor of 2 until precision limits are reached

Sign LMS Variants

- all reduce LMS complexity:
- Sign-LMS

$$W[n+1] = W[n] + \mu \operatorname{sign}(e[n])X[n]$$

- use sign of error in LMS update:
- minimizes mean absolute error $E\{|e[n]|\}$ (not MSE)
- more stable than LMS
- Sign-sign-LMS

$$W[n+1] = W[n] + \mu \, sign(e[n]) sign(X[n])$$

- LMS update:
- Sign-regressor-LMS
 - LMS update:
 - less stable than sign-LMS

$$W[n+1] = W[n] + \mu e[n] sign(X[n])$$

guaranteed to be stable for Gaussian inputs

Momentum LMS

these control the 'memory' in learning process

update rule

$$W[n+1] = W[n] + U[n]$$

$$U[n] = \theta U[n-1] + \mu e[n]X[n]$$

- $\theta \approx 0.9$
- helps accelerate SGD

Leaky LMS

- implements weight decay
- minimizes:

$$\hat{J}(\boldsymbol{W}) = e^2(n) + \lambda \boldsymbol{W}^T \boldsymbol{W}$$

- ightarrow second term is called a regularizer, i.e., creates a preference for lownorm $oldsymbol{W}$
- update rule:

$$W[n+1] = (1 - \lambda \mu)W[n] + \mu e[n]X[n]$$

Delayed LMS

Feedback loop in LMS limits the throughput

Delayed LMS → enables fine-grain pipelining of LMS feedback loop...(M
is the delay factor)

$$W[n+1] = W[n-M] + \mu e[n-M]X[n-M]$$

Block (Batch) LMS

• Block/batch LMS \rightarrow update weights once in L samples

$$W[Lk+1] = W[Lk] + \frac{\mu}{L} \sum_{i=0}^{L-1} e[Lk-i]X[Lk-i]$$

reduces noise in the gradient estimate and hence the updates

Multi-Stage Network

DNN as a Multi-Stage Predictor

- Optimal coefficients for a single-stage predictor can be calculated. LMS can be used to learn those from data → how about multi-stage predictor? A DNN is a multi-stage non-linear predictor.
- Consider a 2-stage linear predictor

2-Stage Linear Predictor (DLP)

- linear stage 1: $s_n = w_1 x_{n-1} + w_2 x_{n-2}$
- linear stage 2: $\hat{x}_n = w_3 s_n + w_4 s_{n-1}$
- minimize: $L(w_1, w_2, w_3, w_4) = E\left[\left(\frac{1}{2}e_n^2\right)\right] = E\left[\frac{1}{2}(\hat{x}_n x_n)^2\right]$
- $\hat{x}_n = w_1 w_3 x_{n-1} + (w_1 w_4 + w_2 w_3) x_{n-2} + w_2 w_4 x_{n-3} = a_1 x_{n-1} + a_2 x_{n-2} + a_3 x_{n-3}$
- unique values of a_1, a_2, a_3 can be obtained as the Wiener-Hopf solution ${\it R}^{-1}p$
- but how about w_1, w_2, w_3, w_4 ? \rightarrow have underdetermined system of equations \rightarrow 3 equations vs. 4 unknowns \rightarrow infinite number of solutions!
- multi-stage networks, e.g., tend to have multiple solutions

Example

• Assume $x_n = 0.1u_n + 0.5u_{n-1} + 0.1u_{n-2} + 0.5u_{n-3}$

•
$$\mathbf{R} = \begin{bmatrix} 0.52 & 0.15 & 0.26 \\ 0.15 & 0.52 & 0.15 \\ 0.26 & 0.15 & 0.52 \end{bmatrix}$$
, $\mathbf{p} = \begin{bmatrix} 0.15 \\ 0.26 \\ 0.05 \end{bmatrix}$, $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.2284 \\ 0.4792 \\ -0.1562 \end{bmatrix}$

•
$$w_1 = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} c \\ -0.2869c \end{bmatrix}$$
, $w_2 = \begin{bmatrix} w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} \frac{0.2284}{c} \\ \frac{0.5447}{c} \end{bmatrix}$, where c is scalar

•
$$w_1 = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} c \\ 2.3853c \end{bmatrix}$$
, $w_2 = \begin{bmatrix} w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} \frac{0.2284}{c} \\ \frac{-0.0655}{c} \end{bmatrix}$, where c is scalar

• Sweeping c gives rise to many optimum solutions all of which have the same J_{min}

SGD-based Update Rule

- Stage 1: $s_n = w_1 x_{n-1} + w_2 x_{n-2}$; Stage 2: $\hat{x}_n = w_3 s_n + w_4 s_{n-1}$
- Minimize: $L(w_1, w_2, w_3, w_4) = E\left[\left(\frac{1}{2}e_n^2\right)\right] = E\left[\frac{1}{2}(\hat{x}_n x_n)^2\right]$

Weight Gradients for Stage 1

$$\frac{\partial e_n}{\partial w_1} = \frac{\partial e_n}{\partial \hat{x}_n} \left(\frac{\partial \hat{x}_n}{\partial s_n} \frac{\partial \hat{s}_n}{\partial w_1} + \frac{\partial \hat{x}_n}{\partial s_{n-1}} \frac{\partial \hat{s}_{n-1}}{\partial w_1} \right)$$
$$= (\hat{x}_n - x_n)(w_3 x_{n-1} + w_4 x_{n-2})$$

$$\frac{\partial e_n}{\partial w_2} = \frac{\partial e_n}{\partial \hat{x}_n} \left(\frac{\partial \hat{x}_n}{\partial s_n} \frac{\partial \hat{s}_n}{\partial w_2} + \frac{\partial \hat{x}_n}{\partial s_{n-1}} \frac{\partial \hat{s}_{n-1}}{\partial w_2} \right)$$
$$= (\hat{x}_n - x_n)(w_3 x_{n-2} + w_4 x_{n-3})$$

Weight Gradients for Stage 2

$$\frac{\partial e_n}{\partial w_3} = \frac{\partial e_n}{\partial \hat{x}_n} \frac{\partial \hat{x}_n}{\partial w_3} = (\hat{x}_n - x_n) s_n$$
$$= (\hat{x}_n - x_n) (w_1 x_{n-1} + w_2 x_{n-2})$$

$$\frac{\partial e_n}{\partial w_4} = \frac{\partial e_n}{\partial \hat{x}_n} \frac{\partial \hat{x}_n}{\partial w_4} = (\hat{x}_n - x_n) s_{n-1}$$
$$= (\hat{x}_n - x_n) (w_1 x_{n-2} + w_2 x_{n-3})$$

may converge to any one of the infinite possible solutions.....also seen in DNNs

Course Web Page

https://courses.grainger.illinois.edu/ece598nsg/fa2020/https://courses.grainger.illinois.edu/ece498nsu/fa2020/

http://shanbhag.ece.uiuc.edu