

Europäisches Patentamt
European Patent Office
Office européen des brevets



(11) EP 0 881 808 A2

(12)

Ì

#### **EUROPEAN PATENT APPLICATION**

(43) Date of publication: 02.12.1998 Bulletin 1998/49

(51) Int Cl.6: H04L 29/06, H04L 12/56

(21) Application number: 98303419.0

(22) Date of filing: 30.04.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 30.05.1997 US 865962

(71) Applicant: SUN MICROSYSTEMS, INC. Palo Alto, California 94303 (US)

(72) Inventor: Nielsen, Jakob Atherton, CA 94027 (US)

 (74) Representative: Read, Matthew Charles et al Venner Shipley & Co.
 20 Little Britain London EC1A 7DH (GB)

#### (54) Latency-reducing bandwidth-prioritization for network servers and clients

(57) Communications bandwidth available to network servers and computers running client processes is allocated among connections available to those devices based on sets of priorities. Those priorities include type ci information being retrieved, how fast user connections can receive information, which part of a document is being transmitted, user identity, stored indicia indicat-

ing importance of the document and the state of application processes running on said computer. Bandwidth is reallocated on an event driven basis upon arrival of a new request for retrieval, finishing sending information in response to a retrieval request, cancellation of a retrieval request, detection of the inability of a user connection to use all of the bandwidth allocated to it, a change of priority and timeout of a timer.



Figure 3

30

40

45

#### Description

#### BACKGROUND OF THE INVENTION

#### Field of the Invention

The invention relates to communication systems and more particularly to client server communication systems in which communications resources provided to a retrieval request or to a connection to a particular server can be adjusted to reflect priorities.

#### Description of Related Art

Accessing the content of servers on a network, such as the World Wide Web (WWW), is often agonizingly slow. Response time may be so slow that users cancel their request for a page and select another page, perhaps that of a competitor. Getting enough text to the user quickly so that he may begin reading is important to prevent him from canceling his request. Reducing the initial latency from request to delivery of readable text will result in a more satisfying browsing experience for the user.

Data compression is known. Various data compression algorithms may be employed depending upon the type of data (text, image, video, audio) to be transmitted. Fortunately, many if not most network servers employ compression. Unfortunately, the latency problems associated with retrieving server pages continue to grow worse with increasing network usage.

#### SUMMARY OF THE INVENTION

The present system provides apparatus, systems, methods and computer program products which will allow improved average response time in client server technology. This is accomplished by prioritizing the content of network pages and allocating server or client bandwidth accordingly. The prioritization scheme is driven by the need to render a viewable page as quickly as possible so that the user may begin reading it. In the prior art, all files that make up the final appearance of a WWW page (text, style sheets, graphics, audio etc.) are sent with equal priority. By using a prioritization scheme, it is possible to dramatically reduce the latency perceived by the user which, in turn, increases the perceived usability of the web site.

Two mechanisms facilitate this. First, the order in which information is displayed to the user "hides" some of the latency thus creating the perception of faster response time. Second, by monitoring individual connections it is possible to determine which connections are not currently utilizing the bandwidth initially made available to them. When this occurs, the unused bandwidth is allocated to all other existing connections which might be able to use it.

The same concepts can be applied to the client-side

(the user) in one form by allowing the client to indicate to the server the speed with which the client will accept information. In another form, a client that has multiple browsers connected to respective multiple network servers can prioritize each connection to insure, for example, that the current browser window's connection is allocated more bandwidth than a minimized browser window's connection. This is not possible using the prior art since all connections are given the same priority.

The invention is directed to computer apparatus, such as that found at a server, for allocating communications bandwidth to a plurality of user connections. The apparatus includes a processor configured to allocate communications bandwidth to said user connections based on at least one set of priorities.

The invention is also directed to computer apparatus, such as that running a client process, for allocating communications bandwidth to a plurality of server connections based on at least one set of priorities.

The invention is also directed to a communications system operating on a network and having at least one server and at least one computer running a client process in which said at least one server or said at least one computer allocates bandwidth to a plurality of network connections based on at least one set of priorities.

The invention is also directed to methods for operating servers and clients to allocate bandwidth to connections based on at least one set of priorities.

The invention also relates to computer program products useful for carrying out the methods and for implementing the apparatus described.

The foregoing and other features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

#### BRIEF DESCRIPTION OF THE DRAWINGS

The object, features and advantages of the system of the present invention will be apparent from the following descriptions, in which:

Figure 1A illustrates a computer of a type suitable for carrying out the invention as either a client or a server

Figure 1B illustrates a block diagram of the computer of Figure 1A.

Figure 1C illustrates an exemplary memory medium containing on or more programs usable with the computer of Figure 1A.

Figure 2A is an illustration of one exemplary form of implementing the invention using a network such as an intranet.

Figure 2B is an illustration of another exemplary form of implementing the invention using a typical internet arrangement.

Figure 3 is an illustration of bandwidth allocation from a network server to several clients.

35

4

Figure 4 is a database schema organized as an exemplary way for storing file-type priorities.

Figure 5 is a database schema of an exemplary way for storing current connection information, namely in an Allocated Utilization Table (AUT).

Figure 6 is a flowchart of a process to initiate dynamic bandwidth allocation by the server.

Figure 7A is a flowchart of a process for dynamic bandwidth allocation by the server.

**Figure 7B** is a illustration depicting the result of one iteration of the dynamic bandwidth allocation procedure of **Figure 7A**.

Figure 8A is a database schema organized as an exemplary way for storing client browser-status priorities

Figure 8B is a flowchart of a process for client-side control of bandwidth allocation.

Figure 9 is a flowchart of a process for changing the priority of a connection after a fixed amount of data has been transmitted.

Figure 10A is a database schema organized as an exemplary way for storing a value representing the respective amount of data specific files need to have transmitted at high priority.

Figure 10B is a flowchart of a process for changing the priority of a connection after the variable amount of data indicated in Figure 10A has been transmitted.

**Figure 11 A** is a database schema organized as an exemplary way for storing a list of customer passwords and the corresponding priority multiplier.

Figure 11B is a flowchart of a process for increasing the priority of a connection using the information contained within Figure 11A.

Figure 12A is a database schema organized as an exemplary way for storing a list of documents and their associated priority multipliers.

Figure 12B is a flowchart of a process for increasing the priority of a connection using the information contained within Figure 12A.

#### NOTATIONS AND NOMENCLATURE

The detailed descriptions which follow may be presented in terms of program procedures executed on a computer or network of computers. These procedural descriptions and representations are the means used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art.

A procedure is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. These steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It proves convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the

like. It should be noted, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.

Further, the manipulations performed are often referred to in terms, such as adding or comparing, which are commonly associated with mental operations performed by a human operator. No such capability of a human operator is necessary, or desirable in most cases, in any of the operations described herein which form part of the present invention; the operations are machine operations. Useful machines for performing the operation of the present invention include general purpose digital computers or similar devices.

The present invention also relates to apparatus for performing these operations. This apparatus may be specially constructed for the required purpose or it may comprise a general purpose computer as selectively activated or reconfigured by a computer program stored in the computer. The procedures presented herein are not inherently related to a particular computer or other apparatus. Various general purpose machines may be used with programs written in accordance with the teachings herein, or it may prove more convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these machines will appear from the description given

## DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1A illustrates a computer of a type suitable for carrying out the invention. Viewed externally in Figure 1A, a computer system has a central processing unit 100 having disk drives 110A and 110B. Disk drive indications 110A and 110B are merely symbolic of a number of disk drives which might be accommodated by the computer system. Typically, these would include a floppy disk drive such as 110A, a hard disk drive (not shown externally) and a CD ROM drive indicated by slot 110B. The number and type of drives varies, typically, with different computer configurations. The computer has a display 120 upon which information is displayed. A keyboard 130 and a mouse 140 are typically also available as input devices. Preferably, the computer illustrated in Figure 1A is a SPARC workstation from Sun Microsystems, Inc.

Figure 1B illustrates a block diagram of the internal hardware of the computer of Figure 1A. A bus 150 serves as the main information highway interconnecting the other components of the computer. CPU 155 is the central processing unit of the system, performing calculations and logic operations required to execute programs. Read only memory (160) and random access memory (165) constitute the main memory of the computer. Disk controller 170 interfaces one or more disk drives to the system bus 150. These disk drives may be

floppy disk drives, such as 173, internal or external hard drives, such as 172, or CD ROM or DVD (Digital Video Disks) drives such as 171. A display interface 175 interfaces a display 120 and permits information from the bus to be viewed on the display. Communications with external devices such as a network can occur over communications port 185.

Figure 1C illustrates an exemplary memory medium which can be used with drives such as 173 in Figure 1B or 110A in Figure 1A. Typically, memory media such as a floppy disk, CD ROM, or Digital Video Disk will contain the program information for controlling the computer to enable the computer to performs its functions in accordance with the invention.

Figure 2A is an illustration of one exemplary form of implementing the invention using a network such as an intranet. The network 200 is typically an internal organizational network that connects the client computing device and at least one WWW server.

Figure 2B is an illustration of another exemplary form of implementing the invention using a typical Internet arrangement. The client computing device 250 connects via one network with the client's Internet Service Provider (ISP) 240. The ISP 240 then connects via the Internet 230 to a WWW server 260 requested by the user

Figure 3 is an illustration of bandwidth allocation from a network server to several clients. The network server 300 has a predetermined amount of bandwidth N 310 which it must divide 320, 330, 340 and 350 between multiple clients 360, 370, 380, and 390. Note that the bandwidth allocation each client receives varies. This variance reflects the bandwidth allocation of the prioritized client connections as described in Figures 4-7, hereinafter.

Figure 4 is a database schema organized as an exemplary way for storing file-type priorities. The table has two columns: File Type 400 and Priority 410. An HTML file 420 will have a priority of 4 (430). A style sheet 440 will have a priority of 3 (450). Priority 2 470 is reserved for future use. GIF 480 and JPG files 490 both have priorities of 1 (485 and 495).

Figure 5 is a database schema organized as an exemplary way for storing connection information about clients actively involved in retrievals. The Allocation Utilization Table (AUT) 500 shown is a data structure used to track the status of each active current connection. For each such active current connection the file name 510, priority 520 (determined from Figure 4), allocated bandwidth 530, utilized bandwidth 540, and a recalculation Boolean variable 550 are stored in the AUT. The AUT is used to provide the data for the bandwidth re-allocation algorithm of Figure 7. In rows 560 and 565 it should be noted that the allocated bandwidth exceeds the utilized bandwidth. When this difference exceeds a threshold, the recalculation variables are automatically set to FALSE to prevent re-allocation of more bandwidth than the connection can utilize.

Figure 6 is a flowchart of a monitoring procedure to initiate dynamic bandwidth allocation by the server. A continuous monitoring loop 600 responds to events affecting bandwidth allocation. One event is a new request (605) for bandwidth. Normally, this will occur when an HTTP GET command is received by the server. Following a new request 605 the requested file name and its associated priority based on its file-type are placed into the AUT and the recalculation variable is set to TRUE (610). Then the recalculation of bandwidth allocation algorithm is invoked (650) which updates the AUT, then the AUT is used to provide parameters to the bandwidth allocator (655) and the monitoring loop resumes 600.

An event indicating the completion or cancellation of a transmission connection (615) will remove the connection from the AUT (620). Then the recalculation of bandwidth allocation algorithm is invoked (650) which updates the AUT, the AUT is then used to provide parameters to the bandwidth allocator (655) and the monitoring loop resumes (600).

An event indicating that the client is not utilizing all of the allocated bandwidth occurs when the average throughput of data (calculated, for example, using the number of ACKs received per unit of time) falls below the allocated bandwidth maximum data rate (625). Various protocols from in the prior art, including Stop-And-Wait Link Utilization and Sliding-Window Flow Control, can be used to calculate the actual data rate. For example, one might add the packet lengths of a number of packets sent over a period of time and divide the total by the length of the period of time to determine effective throughput, or actual data rate. That value is then stored in the AUT and the recalculation variable is set to FALSE so that for the remainder of that retrieval request the bandwidth re-allocation algorithm will not increase that connection's bandwidth (630). Then the recalculation of bandwidth allocation algorithm is invoked (650) which updates the AUT, the AUT is then used to provide parameters to the bandwidth allocator (655) and the monitoring loop resumes (600).

An event indicating a change in the relative priority of a transmission (640) may occur. The priority for that transmission is then updated in the AUT (660). Then the recalculation of bandwidth allocation algorithm is invoked (650) which updates the AUT, the AUT is then used to provide parameters to the bandwidth allocator (655) and the monitoring loop resumes (600).

A scheduled event may be set to occur periodically (645). This event is to handle any situation not handled by the other events. Then the recalculation of bandwidth allocation algorithm is invoked (650) which updates the AUT, the AUT is used to provide parameters to the bandwidth allocator (655) and the monitoring loop resumes (600).

Figure 7A is a flowchart of a procedure for dynamic bandwidth allocation by the server. The procedure begins by initializing several variables: MaxBW is set to the maximum bandwidth available to the server,

55

COUNT is set to the number of rows in the AUT (i.e., the number of current connections), SumOfPriorities is set to zero, and index I (a loop counter) is set to one (700). If index I is not greater than COUNT (705) then there are more rows to process in the AUT. At 710 the MaxBW is decreased by any difference between the allocated bandwidth and the utilized bandwidth. If the AUT recalculation variable for the current row is TRUE then the priority of the current row is added to the SumOfPriorities (720). This action prevents those connections that are being under-utilized from receiving more bandwidth which they have already demonstrated they cannot use. Then index I is incremented by one (725) and the loop continues at 705 until all the rows in the AUT have been processed.

Index I is re-initialized at 730 to one and another loop commences at 735. While index I does not exceed COUNT (735), the recalculation variable of each row is checked 760. If it is FALSE then the current AUT row has its allocated bandwidth set to equal its utilized bandwidth (755) thus reflecting the true state of the system. If it is TRUE, then the current AUT row allocated bandwidth variable is assigned the value of the ratio of the current row's priority to the SumOfPriorities and the utilized value is set to equal the allocated value (765). This assumes that the client connection can utilize the new bandwidth it has been allocated. If it cannot, then it will be detected and corrected via Figure 6 at 625. In either case, index I is incremented (770) and processing the remaining rows in the AUT continues at 735. If all the rows have been processed (735) then the AUT has been completely updated and is ready for use by the bandwidth allocator in Figure 6 at 655 and the process is terminated (750).

Figure 7B is a illustration depicting the result of one iteration of the dynamic bandwidth allocation procedure of Figure 7A. Assume a web server is transmitting an HTLM document and a JPG file to one client and a GIF file to another client. Using the bandwidth allocation algorithm described in Figure 7A and using the priority scheme of Figure 4, the sum of the priorities is 6 so the HTLM document will receive 4/6 (66.7%) of the bandwidth, and both the JPG file and GIF file will receive 1/6 (16.7%) of the bandwidth. Now assume that the second client can only utilize 10% of the total bandwidth (which was determined using the process in Figure 6 at 625). The initial state 780 is shown in rows 781, 782 and 783. Note that 783 has unused bandwidth capacity of 6.7% of the server's total bandwidth. In order for this bandwidth to be used, the bandwidth re-allocation algorithm of Figure 7A is run again.

The results of the reallocation are shown in the final state **790**. Since the recalculation variable of the AUT row for the JPG file would have been set to FALSE, the sum of the priorities is now 5 and the proportional distribution of the spare bandwidth would be 4/5 for the HTML document **791** and 1/5 for the GIF document **792**. So, 4/5 of the 6.7% available bandwidth is re-allocated

to the HTML document, resulting in a final bandwidth utilization of 72.0%. Repeating the process for the GIF documents lead to a final bandwidth utilization of 18.0%. The JPG file retains the 10.0% share it could use prior to the re-allocation.

Figure 8A is a database schema organized as an exemplary way for storing client browser-status priorities. Each browser has an ID 800, a Status 810 and a Priority 815. The row 820 has an ID of A, a status of "Has Focus" (i.e., is the user's active browser) and a high priority of 4. Browser ID B 821 does not have the focus but is visible on the screen and has a priority of 2. Browser ID C 823 does not have the focus and is not visible (perhaps minimized) and has a low priority of 1.

Figure 8B is a flowchart of a procedure for clientside control of bandwidth allocation. Similar to the algorithm of Figure 7A, this procedure utilizes the ratio of a
process priority to that of the sum of the priorities of all
active process. The MaxBW constant is initialized at 830
with the maximum bandwidth the client has available to
manage. The priorities of the browsers in use are
summed (840) and that sum is then used as the divisor
of the individual browser priorities to determine the
bandwidth to be allocated to each browser (850). Next,
the bandwidth is allocated, e.g. by controlling the
number of packets acknowledged to the server to obtain
the desired throughput rate (860) (as described in Figure 6 at 625) and the process terminates (870).

Figure 9 is a flowchart of a procedure for changing the priority of a connection after a fixed amount of data has been transmitted. As an alternative or a supplement to the preferred embodiment, an HTML file could be assigned a high priority only during the transmission of the first N KB. This approach might be used when only the first screen or part of the first screen of text must be delivered as rapidly as possible. The process begins by initializing N to the number of KB to transmit at high priority (900). Then the New Request event (910) (Figure 6 at 605) is triggered. The number of KB transmitted is monitored (920) and when the number transmitted equals N (930) the AUT is updated to reflect a lower priority by triggering the Change Priority event (950) (Figure 6 at 640).

Figure 10A is a database schema organized as an exemplary way for storing a value representing the variable amount of data a specific file needs have transmitted at high priority. As another alternative or supplement to the preferred embodiment, an HTML file could be examined (e.g., using a browser) to determine the number of bytes necessary to render the first page. This number of bytes would then be stored (1005) in a database along with the HTML file name 1000. The database rows 1006, 1007 and 1008 are examples of the name and byte tuples required.

Figure 10B is a flowchart of a procedure for changing the priority of a connection after the variable amount of data indicated in Figure 10A has been transmitted. The variable N is set, via a database lookup of the file

name, to the number of bytes that need to be transmitted with high priority 1010. The New Request event is triggered (1020) (Figure 6 at 605) and the number of bytes transmitted is monitored (1030). When the number of bytes transmitted equals N (1040) the Change Priority event is triggered (1060) (Figure 6 at 640) which then updates the AUT table and begins the bandwidth re-allocation process and this process is terminated (1070).

Figure 11A is a database schema organized as an exemplary way for storing a list of customer passwords and a corresponding priority multiplier. As another supplement or alternative to the preferred embodiment, the priority given to web pages could be based on information about the person requesting them. For example, valued customers can be given higher priority. When implemented in a log-in type website, a list of passwords that have higher than normal priority could be kept in the form of the tuple Customer Password 1100 and Priority Multiplier 1105, As rows 1106, 1107 and 1108 show, the multiplier can be different based on how valued the customer is. In another approach, a list of network addresses of valued customers is maintained and checked against the address of client's connections to the server to determine priorities.

Figure 11B is a flowchart of a procedure for increasing the priority of a connection using the information contained within Figure 11A. A customer accesses a website and enters his password (1110). If the password is in the priority database of Figure 11A (1120) then the priority for the document requested is set to the standard priority for that type of document multiplied by the priority multiplier 1130. For example, if an HTLM document has a priority of 4 and the multiplier is 2 the new priority would be 8. Then the New Request event is triggered (1140) (Figure 6 at 605) and this process is terminated (1140).

Figure 12A is a database scheme organized as an exemplary way for storing a list of documents and their associated priority multipliers. As another supplement or alternative to the preferred embodiment, the priority given to web pages could be based on content of the pages themselves and their value to the web page owner. Providing an order form on the user's screen may be deemed to have a higher priority than delivering product information. The tuples of HTLM page name 1200 and Priority Multiplier 1205 can be stored in the database. As rows 1206, 1207 and 1208 show, the multiplier can be different based on how important a particular HTML document is.

Figure 12B is a flowchart of a procedure for increasing the priority of a connection using the information contained within Figure 12A. The user requests an HTML page (1210). If the page name is found in the priority database (1220) then the transmission priority becomes the normal transmission priority multiplied by the priority multiplier (1230). Then the New Request event is triggered (1240) (Figure 6 at 605) and this process is terminated (1250).

There has thus been described a communication

system in which communication resource allocated by either servers or clients can be adapted based on priority of various types. As a result, user satisfaction with the network is enhanced by obtaining desired information in a prompt fashion and server and client resources are prioritized to enhance throughput of the network.

Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

#### 15 Claims

 Computer apparatus for allocating communications bandwidth to a plurality of user connections, comprising:

a. a bus;

b. at least one communications interface connected to said bus;

c. a processor connected to said bus, said processor configured to allocate communications bandwidth to said user connections serviced by said at least one communications interface based on at least one set of priorities.

- The apparatus of claim 1, in which one set of priorities comprises priorities based on type of information being retrieved.
- The apparatus of claim 2 in which said type of information includes at least one of information in HTML format, information in a style sheet format, information in a GIF image format and information in a JPEG image format.
- The apparatus of claim 1, in which one set of priorities comprises priorities based on how fast user connections can receive information.
- The apparatus of claim 1, in which one set of priorities comprises priorities based on which part of a document is being transmitted.
  - The apparatus of claim 1, in which one set of priorities comprises priorities based on user identity.
  - The apparatus of claim 1, in which one set of priorities comprises priorities based on stored indicia indicating importance of the document.
- 55 8. Computer apparatus for allocating communications bandwidth to a plurality of server connections, comprising:

25

40

45

a. a bus;

b. at least one communications interface connected to said bus;

c. a processor connected to said bus, said processor configured to allocate communications bandwidth to server connections serviced by said at least one communications interface based on at least one set of priorities.

- The apparatus of claim 8, in which one set of priorities comprises priorities based on the state of application processes running on said processor.
- 10. The apparatus of claim 9, in which the state of application processes comprises the foreground or background state of a process.
- 11. The apparatus of claim 9, in which the state of application processes comprises the degree to which a window in which a process is running is ready for use by a user.
- 12. A method of operating a server on a network, comprising the step of:

 a. providing an element for allocating communications bandwidth at a server to a plurality of user connections based on at least one set of priorities.

- 13. The method of claim 12 in which said set of priorities includes at least one of: type of information being retrieved, how fast user connections can receive information, which part of a document is being transmitted, user identity and stored indicia indicating importance of the document.
- 14. The method of claim 12 in which bandwidth is allocated to a user connection based on the ratio of priority that user connection bears to the sum of priorities of all user connections.
- 15. The method of claim 13 in which bandwidth allocation is recalculated on an event driven basis.
- 16. The method of claim 14 in which events triggering recalculation include at least one of: arrival of a new request for retrieval, finishing sending information in response to a retrieval request, cancellation of a retrieval request, detection of the inability of a user connection to use all of the bandwidth allocated to it, a change of priority and timeout of a timer.
- 17. A method of controlling communications by a process on a computer connected to a network, comprising the step of:
  - a. providing an element for allocating commu-

nications bandwidth to a plurality of server connections in use by said process based on at least one set of priorities.

- The method of claim 17 in which said priorities are based on the state of application processes running on said processor.
- 19. A communications system, comprising:
  - a. a network;
  - b. at least one server connected to said network; and
  - c. at least one computer running at least one process connected to said network,

in which said at least one server or said at least one computer allocates bandwidth to a plurality of network connections based on at least one set of priorities.

- 20. The system of claim 19 in which said set of priorities includes at least one of: type of information being retrieved, how fast user connections can receive information, which part of a document is being transmitted, user identity, stored indicia indicating importance of the document and the state of application processes running on said computer.
- 30 21. A computer program product, comprising:
  - a. a memory medium;
  - b. a computer program, stored on said memory medium, said computer program comprising instructions for allocating communications bandwidth at a server to a plurality of user connections based on at least one set of priorities.
  - 22. A computer program product, comprising:
    - a. a memory medium;
    - b. a computer program, stored on said memory medium, said computer program comprising instructions for allocating communications bandwidth to communications connections based on at least one set of priorities.



Figure 1A





Figure 1C



Figure 2A



Figure 2B



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7A



|     | FILE<br>TYPE | PRIORITY | ALLOCATED<br>BANDWIDTH<br>RATIO | ALLOCATED<br>BANDWIDTH<br>PERCENT | UTILIZED<br>BANDWIDTH<br>PERCENT | UNUSED<br>BANDWIDTH<br>PERCENT |
|-----|--------------|----------|---------------------------------|-----------------------------------|----------------------------------|--------------------------------|
| 781 | HTML         | 4        | 4/6                             | 66.7%                             | 66.7%                            | 0%                             |
| 782 | GIF          | 1        | 1/6                             | 16.7%                             | 16.7%                            | 0%                             |
| 783 | JPG          | 1        | 1/6                             | 16.7%                             | 10.0%                            | 6.7%                           |

# FINAL CONDITION AFTER RECALCULATION

|        | FILE<br>TYPE | PRIORITY | ALLOCATED<br>BANDWIDTH<br>RATIO | ORIGINAL<br>ALLOCATED<br>BANDWIDTH<br>PERCENT | ADDITIONAL<br>BANDWIDTH<br>ADDED<br>PERCENT | FINAL<br>BANDWIDTH<br>PERCENT |
|--------|--------------|----------|---------------------------------|-----------------------------------------------|---------------------------------------------|-------------------------------|
| 791 -> | HTML         | 4        | 4/5                             | 66.7%                                         | 4/5 x 6.7% = 5.3                            | 72.0%                         |
| 792    | GIF          | 1        | 1/5                             | 16.7%                                         | 1/5 x 6.7% = 1.3                            | 18.0%                         |
| 793    | JPG          | 1        | N/A                             |                                               |                                             | 10%                           |

Figure 7B

|     | 800<br>V<br>ID | BROWSER STATUS    | PRIORITY |
|-----|----------------|-------------------|----------|
| 820 | Α              | HAVE FOCUS        | 4        |
| 821 | В              | NO FOCUS, VISIBLE | 2        |
| 823 | С              | NO FOCUS, HIDDEN  | 1        |

Figure 8A



Figure 8B



Figure 9



Figure 10A



Figure 10B



Figure 11A



Figure 11B



Figure 12A



Figure 12B

(11) EP 0 881 808 A3

(12)

#### **EUROPEAN PATENT APPLICATION**

(88) Date of publication A3: 05.04.2000 Bulletin 2000/14

(51) Int Cl.7: H04L 29/06, H04L 12/56

- (43) Date of publication A2: 02.12.1998 Bulletin 1998/49
- (21) Application number: 98303419.0
- (22) Date of filing: 30.04.1998
- (84) Designated Contracting States:
  AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
  MC NL PT SE
  Designated Extension States:
  AL LT LV MK RO SI
- (30) Priority: 30.05.1997 US 865962
- (71) Applicant: SUN MICROSYSTEMS, INC. Palo Alto, California 94043 (US)
- (72) Inventor: Nielsen, Jakob Atherton, CA 94027 (US)
- (74) Representative: Read, Matthew Charles et al Venner Shipley & Co.
   20 Little Britain London EC1A 7DH (GB)

#### (54) Latency-reducing bandwidth-prioritization for network servers and clients

(57) Communications bandwidth available to network servers and computers running client processes is allocated among connections available to those devices based on sets of priorities. Those priorities include type of information being retrieved, how fast user connections can receive information, which part of a document is being transmitted, user identity, stored indicia indicating importance of the document and the state of application processes running on said computer. Bandwidth is reallocated on an event driven basis upon arrival of a new request for retrieval, finishing sending information in response to a retrieval request, cancellation of a retrieval request, detection of the inability of a user connection to use all of the bandwidth allocated to it, a change of priority and timeout of a timer.



Figure 3

EP 0 881 808 A



Application Number

|                                | Control of document with in                                                                                                                                                                                          |                                                            | Relevant                                                                                                        | CLASSIFICATION OF THE                   |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Category                       | Crtation of decument with in                                                                                                                                                                                         |                                                            | to claim                                                                                                        | APPLICATION (Int.Cl.6)                  |
| x                              | EP 0 632 671 A (IBM)<br>4 January 1995 (1995                                                                                                                                                                         |                                                            | 1,2,8,<br>12,13,<br>17,19-2                                                                                     | H04L29/06<br>H04L12/56                  |
| Y                              | * abstract *                                                                                                                                                                                                         |                                                            | 3-7,<br>9-11,<br>14-16,1                                                                                        |                                         |
|                                | * column 1, line 32<br>* column 4, line 7 -<br>* column 12, line 13                                                                                                                                                  | - column 8, line 58                                        | *                                                                                                               |                                         |
|                                | * figures 1,2,4 *                                                                                                                                                                                                    |                                                            |                                                                                                                 |                                         |
| Υ                              | GB 2 301 260 A (IBM<br>27 November 1996 (19<br>* abstract *<br>* page 7, line 33 ~                                                                                                                                   | 996-11-27)                                                 | 3                                                                                                               |                                         |
| A                              | US 5 414 697 A (OSA)<br>9 May 1995 (1995-05                                                                                                                                                                          | _                                                          | 1,2,8,<br>12,13,<br>17,19-2                                                                                     | 2                                       |
|                                | * abstract * * column 1, line 6 figures 3,4 *                                                                                                                                                                        | - column 7, line 21;                                       |                                                                                                                 | TECHNICAL FIELDS<br>SEARCHED (Int.CI.6) |
| Y                              | US 5 153 877 A (ESA)<br>6 October 1992 (199<br>* abstract *<br>* column 1, line 7-<br>* column 2, line 59                                                                                                            | 2-10-06)<br>50 *                                           | 4                                                                                                               | G06F                                    |
|                                |                                                                                                                                                                                                                      | -/                                                         |                                                                                                                 |                                         |
|                                |                                                                                                                                                                                                                      |                                                            |                                                                                                                 |                                         |
|                                | The present search report has                                                                                                                                                                                        |                                                            |                                                                                                                 |                                         |
|                                | Place of search                                                                                                                                                                                                      | Data of completion of the se                               |                                                                                                                 | Examiner V                              |
|                                | THE HAGUE                                                                                                                                                                                                            | 5 January 20                                               |                                                                                                                 | ievens, K                               |
| X par<br>Y par<br>dox<br>A tec | CATEGORY OF CITED DOCUMENTS<br>incularly relevant if taken sione<br>incularly relevant if combined with anot<br>current of the same category<br>innological background<br>n-written disclosure<br>armsolate document | E earlier pe<br>after the i<br>ther D documer<br>L documen | principle underlying their document, but politing date it case in the applicabilities of the same patent failt. | ubitshed on or<br>on<br>ns              |

### EP 0 881 808 A3



Application Number

EP 98 30 3419



Application Number

EP 98 30 3419

| Category              | Citation of document with it of relevant pass                                                                                                                        | ndication, where appropriate.<br>lages                                                                | Relevant<br>to claim                                             | CLASSIFICATION OF THE APPLICATION (Int.CI.6) |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|
| Y                     | the end of a tether<br>COMPUTER NETWORKS A<br>SYSTEMS,NL,NORTH HO<br>AMSTERDAM,                                                                                      | ND ISDN                                                                                               | 5                                                                |                                              |
| A                     | * page 375, line 1 column, line 35 *                                                                                                                                 | - page 378. left-hand<br>and column, line 38 -<br>column, line 4 *                                    | 7,9-11,<br>18                                                    |                                              |
| Y                     | US 4 642 758 A (TEN<br>10 February 1987 (1<br>* column 1, line 11<br>* column 7, line 5-<br>* column 10, line 2<br>* figures 7-10 *                                  | 987-02-10)<br>column 2, line 26 *<br>48 *                                                             | 6                                                                |                                              |
| Y                     |                                                                                                                                                                      |                                                                                                       | 7                                                                | TECHNICAL FIELDS<br>SEARCHED (Int.Cl.5)      |
| A                     | ADMISSION CONTROL P<br>SERVERS"<br>COMPUTER JOURNAL,GE<br>PRESS, SURREY,<br>vol. 39, no. 9, pa<br>ISSN: 0010-4620                                                    | THRESHOLD-BASED OLICIES FOR MULTIMEDIA COXFORD UNIVERSITY age 757-766 XP000720396                     | 1,6                                                              |                                              |
|                       | * abstract * * page 757, left-ha page 758, right-har                                                                                                                 | and column, line 1 -<br>ad column, line 2 *<br>-/                                                     | í                                                                |                                              |
|                       | The present search report has                                                                                                                                        | been drawn up for all claims                                                                          | .!<br>-<br>                                                      |                                              |
|                       | Place of search                                                                                                                                                      | Date of completion of the search                                                                      | <del></del>                                                      | Ecentrical                                   |
|                       | THE HAGUE                                                                                                                                                            | 5 January 2000                                                                                        | Li                                                               | evens, K                                     |
| X per<br>Y per<br>doc | CATEGORY OF CITED DOCUMENTS<br>including relevant if taken alone<br>ticularly relevant if combined with ano<br>urment of the same category<br>brindograb background. | T theory or princip E earner patent do after the fitting di ther D document cited L document cited to | ocument, but pu<br>ite<br>in the application<br>for other reason | ablashed on, or<br>on                        |



## LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 98 30 3419

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1-3,8,12,13,17,19-22

Method and apparatus for allocating bandwidth to a plurality of user connections according to priorities.

2. Claims: 1,4-7

Apparatus for adapting the speed of receiving data to the capabilities of the receiver and to contextual information.

3. Claims: 8,9-11,17-18

Method and apparatus for using multiple application processes when accessing the internet.

4. Claims: 12-16

Method of recalculating on an event-driven basis the ratios for assigning bandwidth.



EP 98 30 3419

| Category                 | Citation of document with i<br>of relevant pas                                                                                                                   | indication, where appropriate, sages                                                            | Relevant<br>to claim                                                                                                    | CLASSIFICATION OF THE APPLICATION (Int CI 6) |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Y                        | 30 March 1995 (1995<br>* abstract *<br>* page 2, line 5 -<br>* page 4, line 15-2                                                                                 | page 3, line 16 *                                                                               | 9-11,18                                                                                                                 |                                              |
| Α .                      | PATENT ABSTRACTS OF<br>vol. 12, no. 185 (F<br>31 May 1988 (1988-0<br>& JP 62 293310 A (M<br>CORP), 19 December<br>* abstract *                                   | ?-710),<br>05-31)<br>MITSUBISHI ELECTRIC                                                        | 10                                                                                                                      |                                              |
| Y                        | FAIR WEIGHTED FAIR PROCEEDINGS OF INFO IEEE COMP. SOC. PRE VOl. CONF. 15, pag ISBN: 0-8186-7293-5 page 120, left-ha                                              | COM, US.LOS ALAMITOS,<br>ESS,<br>ge 120-128 XP00062230<br>and column *<br>and column, line 40 - | 2                                                                                                                       | TECHNICAL FIELDS<br>SEARCHED (Int.Cl.6)      |
| Y                        | 24 January 1996 (19<br>* abstract *                                                                                                                              | - page 3, line 24 *                                                                             | 15,16                                                                                                                   |                                              |
|                          |                                                                                                                                                                  | -/                                                                                              |                                                                                                                         |                                              |
|                          |                                                                                                                                                                  | -                                                                                               |                                                                                                                         |                                              |
|                          | The present search report has                                                                                                                                    | been drawn up for all claims                                                                    |                                                                                                                         |                                              |
|                          | Place of search                                                                                                                                                  | Date of completion of the sea                                                                   | ech .                                                                                                                   | Extremen                                     |
|                          | THE HAGUE                                                                                                                                                        | 5 January 200                                                                                   | 0 Lie                                                                                                                   | vens, K                                      |
| X part<br>Y part<br>docu | ATEGORY OF CITED DOCUMENTS<br>icularly relevant if taken alone<br>icularly relevant if combined with ano<br>iment of the same category<br>inological background. | E earlier pati<br>after the tit<br>ther D document                                              | innopie underlying the i<br>ent document, but public<br>ing date<br>atted in the application<br>atted for other reasons | nvention<br>shed on, or                      |



EP 98 30 3419

| Category                 | Citation of document with in<br>of relevant pass.                                                                                                                                                                   | dication, where appropriate.<br>ages                                                                                             | Relevant<br>to claim                            | CLASSIFICATION OF THE APPLICATION (IntCI.6) |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|
| A                        | CONNECTION ESTABLISM MULTIMEDIA COMMUNIC OSI APPLICATION LAY COMPREHENSIVE OOS A NL.AMSTERDAM, IOS, XP000754559 ISBN: 9 * abstract *                                                                                | ages T AL: "C-MACSE: A NEW HMENT PROTOCOL FOR ATIONS RESIDING AT THE ER ADOPTING A PPROACH" page 141-150                         |                                                 | TECHNICAL FIELDS SEARCHED (Int.Cl.5)        |
| X part<br>Y part<br>docu | The present search report has of the present search THE HAGUE  ATEGORY OF CITED DOCUMENTS cultarly relevant if toxon alone cultarly relevant if combined with anotiment of the same category mologopical beckground | Date of completion of the search  5 January 2000  T theory or prince E earlier patient of after the fung d ber D document citied | ole underlying the<br>ocument, but publi<br>ste | Examener VENS, K Invention shed on, or      |

#### EP 0 881 808 A3

#### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 30 3419

This annex lists the patent family members relating to the patent documents cited in the above-membered European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way hable for these particulars which are merely given for the purpose of information.

05-01-2000

|      | atent document<br>in search repo | π | Publication date |          | Patent family<br>member(s) | Publication date       |
|------|----------------------------------|---|------------------|----------|----------------------------|------------------------|
| EP ( | 0632671                          | A | 04-01-1995       | US       | 5581703 A                  | 03-12-199              |
|      |                                  |   |                  | JP       | 2601993 B                  | 23-04-199              |
|      |                                  |   |                  | JP       | 7073121 A                  | 17-03-199              |
|      |                                  |   |                  | US       | 5701465 A                  | 23-12 <b>-</b> 199     |
| GB . | 2301260                          | Α | 27-11-1996       | CA       | 2219093 A                  | 28-11-199              |
|      |                                  |   |                  | DE       | 69510472 D                 | 29-07-199              |
|      |                                  |   |                  | EP       | 0830779 A                  | 25-03-199              |
|      |                                  |   |                  | WO       | 9637989 A                  | 28-11-199              |
|      |                                  |   |                  | JP<br>   | 10506773 T                 | 30-06-199              |
| US ! | 5414697<br>                      | A | 09-05-1995       | JP       | 6046082 A                  | 18-02-199              |
| US ! | US 5153877                       | A | 06-10-1992       | JP       | 2831773 B                  | 02-12-199              |
|      |                                  |   |                  | JP       | 3214945 A                  | 20-09-199              |
|      |                                  |   |                  | CA       | 2015085 A                  | 21-10-199              |
|      |                                  |   |                  | DE       | 69033176 D                 | 29-07-199              |
|      |                                  |   |                  | DE       | 69033176 T                 | 02-12-199              |
|      |                                  |   |                  | EP       | 0398037 A                  | 22-11-199              |
|      |                                  |   |                  | JP       | 3048553 A                  | 01-03-199              |
| US - | 4642758                          | Α | 10-02-1987       | NONE     |                            |                        |
| US   | 5428778                          | Α | 27-06-1995       | NONE     |                            |                        |
| WO   | 9508793                          | Α | 30-03-1995       | US       | 5659691 A                  | 19-08-199              |
|      |                                  |   |                  | AU       | 687888 B                   | 05-03-199              |
|      |                                  |   |                  | ΑU       | 7736694 A                  | 10-04-199              |
|      |                                  |   |                  | CA       | 2172535 A                  | 30-03-199              |
|      |                                  |   |                  | EΡ       | 0721614 A                  | 17-07-199              |
|      |                                  |   |                  | JP       | 9503082 T                  | 25-03-199              |
|      |                                  |   |                  | NZ       | 273893 A                   | 27-05-199              |
|      |                                  |   |                  | NZ       | 330003 A                   | 28-10-199              |
|      |                                  |   |                  | US<br>   | 5950202 A                  | 07-09-199              |
| JP   | 62293310                         | A | 19-12-1987       | JP       | 2033600 C                  | 19-03-199              |
|      |                                  |   |                  | JP       | 7060340 B                  | 28-06-199              |
| ΕP   | 0693840                          | Α | 24-01-1996       | บร       | 5734825 A                  | 31-03-199              |
|      |                                  |   |                  | JP<br>US | 8055096 A<br>5968128 A     | 27-02-199<br>19-10-199 |
| -    |                                  |   |                  |          |                            | 19-10-19               |

For more details about this annex see Official Journal of the European Patent Office. No. 12/82