Lecture 10 - WILL Asymptotics
Theorem: Central Limit Theorem
If X_n one iid $w/E[x_n] = u$ and $Var(x_n) = 6^2 < \infty$
the v
$\sqrt{N}\left(\frac{X_N-U}{6}\right) \xrightarrow{d} N(0,1)$.
Theorem: A-method
If (Y/n) is a seg of RVs where
$JN(Y_n-0) \stackrel{d}{\longrightarrow} N(0, Y^2)$
then if g is differtiable and g'(0) ≠0
then $N(g(Y_n) - g(\theta)) \stackrel{d}{\rightarrow} N(o, [g(o)]^2 Y^2)$
Ex. Variance - Stabilizing Transformation
Y~AN(0, Y ² N) may depend on 0
Q' 15 there a tronsfarentia q so that
g(Y) ~ AN(g(O), ~) depend on O

depend on	0
Soln! Use A-method b/c it says!	
$g(y) \sim AN(g(0), [g(0)]^2 P_0^2)$	
went to find a g so that	
$\left[g'(0)\right]^2 Y(0)^2 = \text{constant}$	
So we get a carelitur that says choose g	s.t,
$\left(g'(0)\right)^2 \varphi(0)^2 = C'$ some constant.	
ODF	
Ex. Xn ~ Pors(x)	
then the CLT says:	
$\overline{W}(\overline{X_N-X}) \xrightarrow{d} N(0,1) \qquad \overline{X_N} \sim AN(\overline{X}, \overline{Y_N})$	
D- wolled says?	
A-wolled saps $g(X_n) \sim AN(g(x), g'(x))^2 \times_{N})$	
Choose of to make	l

Lecture Notes Page 2

$$\left(\frac{dq}{dx}\right)^2 = C$$

$$\Rightarrow dg = CN$$

$$\Rightarrow g = \int dg \times \int \frac{1}{\sqrt{\lambda'}} d\lambda$$

So
$$g(x) = \sqrt{x}$$
 $\Rightarrow dg = 2\sqrt{x}$

$$\left[g(x)\right]^{2} \frac{\lambda}{N} = \left(\frac{1}{2\sqrt{N}}\right)^{2} \frac{\lambda}{N} = \frac{1}{4N}$$

1.e.
$$\sqrt{x} \sim AN(\sqrt{x}, \frac{1}{4N})$$

Theorem: Second-Order D-method

$$|f| \sqrt{N}(y_h - Q) \xrightarrow{d} N(0, \Psi^2)$$

ad g is twice-differtable but g(0) = 0. $N\left(g(y_N) - g(0)\right) \xrightarrow{d} \frac{p_g^2(0)\chi^2(0)}{2}$ Ex. let Xn ~ Bernalli(p) ad let $g(t) = t \log(t/p) - (1-t) \log(\frac{1-t}{1-p})$ What Can we say about

9 (Xn)? SKL-diverplace dist blum Bern(p) and Ben(t) $\underline{CLT}: VN(X-P) \xrightarrow{d} N(0, P(1-p))$ notice that $g(t) = \left| g\left(\frac{t}{1-t}\right) - \left| g\left(\frac{P}{1-p}\right) \right| \right|$ and $g(p) = log(\frac{p}{1-p}) - log(\frac{p}{1-p}) = 0$.

$$g(t) = \frac{1}{t} + \frac{1}{1-t} = \frac{1}{t(1-t)}$$

Second Order D- Method says

$$h\left(g(\overline{\chi})-g(p)\right) \stackrel{d}{\to} \frac{\Psi^2 g'(p)}{z} \chi'(1)$$

here
$$Y^2 = P(1-p)$$

$$g''(p) = \frac{1}{p(1-p)}$$

$$\frac{80}{2} \frac{d}{2} \chi(1)$$

Taylor Expansion:
$$g(Y_{N}) \approx g(0) + g(0)(Y_{N} - 0) + \frac{1}{2}g'(0)(Y_{N} - 0)^{2} + \cdots$$

$$n(g(y_n) - g(0)) \approx \frac{1}{2}g'(0)(n(y_n - 0))^2$$

Back to estimation ...

For a finite somple

Q: what is the best estimated?

Tooked for unbiased ests. w/ small

Variences

Asymptoticelly -- same Q

Considu!

- Dasymptotic unbicadres (consisterey)
- (2) desymptotic varvance (this point)

Defn: Consistency

We say $\hat{\theta}$ is consistent for \hat{Q} if $\hat{\theta} \stackrel{P}{\longrightarrow} \hat{Q}$.

Theorem: MLES are consistent. * Some regulary works for

If B is the MLT for T(O) them oxp fundo,
$\hat{Q} \xrightarrow{P} T(Q)$
Defn: Asymptotic Normalety
We say of is asymptically normal
w/ (1) asymptotic mean T(0)
2) asymptotic varionel V(0)
if
$\mathcal{N}(\hat{Q}_N - \mathcal{T}(Q)) \stackrel{d}{\to} \mathcal{N}(Q, \mathcal{V}(Q))$
CY A
În~AN(t(0), V(0)/N).
Defn: Asymptotic Pelatine Efficiency (ARE)
Defr. 180/1/1011 10 com a cofficiency (1100)
let To ad WN are estmators for T(O)
ad $T_N \sim AN(T(0), G_T^2)$
$(\Lambda N(T(0), 6^2)$
$W_N \sim AN(T(0), 6W)$
then the ARE of WN w.r.t TN is

Lecture Notes Page 7

IN THE WALL TO THE TOP TO THE TOT ARE(WN, TN) = 5+ /2 / / / / · ARE(WN, TN) < 1 then we prefer T b/c 5-2 < 5. ARE(WN, TN)> 1 we prefer W Since 67>02. Ex. let Xn ~ Pois(X) $T(\lambda) = P(\lambda = 0) = \frac{\lambda e^{-\lambda}}{0!} = e^{-\lambda}$ Know: X is MLE fa). & e^{-X} is the MLF for $e^{-\lambda} = T(\lambda)$. Cone way $\underline{Att:} \quad T(x) = \mathbb{P}(x_n = 0)$ let $y_n = 1(x_n = 0)$ then $E[y_n] = P(x_n = 0)$ fullere // ~ Bemelli (p)

where p=P(Xh=0)=e-x Carsiller $\sqrt{\frac{1}{N}} = \frac{1}{N} \sum_{n=1}^{N} \sqrt{\frac{1}{N}}$ notice $\mathbb{E}[\sqrt{\frac{1}{N}}] = \mathbb{E}(\sqrt{\frac{1}{N}}) = e^{-\lambda}$ and $Var(7/) = p(1-p) = e^{-(1-e^{-\lambda})}$ a compety a estmator (MLE of Yns) how \$\frac{P}{} T(x) by WUN Which is better? $\left(\right) e^{-X}$? $(2)\overline{Y}$? Mew: $X \sim AN(\lambda, Y_N)$ by CLT So by Δ -wethood $g(x) = e^{-x} \Rightarrow g(x) = -e^{-x}$ $(i) \Rightarrow e^{-\chi} \sim AN(e^{-\chi}(-e^{-\chi})^{2\chi})$ $\sim \left(\lambda N \left(e^{-\lambda} \left(e^{-\lambda} \right)^2 \frac{\lambda}{N} \right) \right)$ (ii) $\sqrt{\frac{P(-p)}{P(-p)}}$ when $p = e^{-\lambda}$

Lecture Notes Page 9

ARE?

$$ARE(Y, e^{-X}) = \frac{(e^{-X})^{2}}{e^{X(1-e^{-X})}}$$
 $ARE(Y, e^{-X}) = \frac{(e^{-X})^{2}}{e^{X(1-e^{-X})}}$
 $ARE(Y, e^{-X}) = \frac{(e^{-X})^{2}}{e^{X(1-e^{X})}}$
 $ARE(Y, e^{-X}) = \frac{(e^{-X})^{2}}{e^{X(1-e^{-X})}}$
 $ARE(Y, e^{-X}) = \frac{(e^{-X})^{2}}{e^{X(1-e^{-X})}}$
 $ARE(Y, e^{-X}) = \frac{(e^{-X})^{2}}{e^{X(1-e^{-X})}}$
 $ARE(Y, e^{-X}) = \frac{(e^{-X$

$$\hat{\theta} \sim AN(T(0), B(0)) \qquad \text{the best extracted asymptotically}$$

$$B(0) = \frac{(21)^2}{NI(0)} = CPLB.$$

Ex. Prev. Example (UX) $e^{-x} \sim AN(e^{-x})(e^{-x})^{\frac{2}{x+1}}$ is this asympteally effect? $log(f(x)) = log(\frac{e^{-\lambda}x^{x}}{x!}) = -\lambda + x log \lambda - log X$ $\frac{\partial}{\partial x}(...) = -1 + \frac{x}{x}$ $\frac{\partial^2}{\partial x^2}(\dots) = -\frac{\chi}{\chi^2}$ $\underline{T}(\chi) = - \underbrace{E\left(\frac{\partial^2(y f(\chi))}{\partial \chi^2}\right)} = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda}$ & $I_N(x) = N$ So the CRUB for $T(x) = e^{-\lambda}$ is $B = \frac{(e^{-\lambda})^2}{I_p(\lambda)} = \frac{(e^{-\lambda})^2}{\lambda}$

So e-X is Asymptotuly efficient.

Theorem: MLES are asymptotully efficient.

The AN(T(0), (30))

T(0).