Fuzzy C-mean based brain MRI segmentation algorithms

Group Members -Advaid Deepak (20D070006) Sanchit Jindal (200020120)

Objective

- Classify the voxels in an MRI Image of the brain into one of these 3 categories
 - gray matter (GM),
 - ➤ white matter (WM)
 - cerebrospinal fluid (CSF)

- Implemented various extensions of FCM for Image Segmentation allowing pixels to be labeled by the influence of its neighborhood labels.
- The extensions are as follows -
 - FCM_S1 : Modification of objective function by incorporating a spatial penalty
 - O EnFCM: The grey level histogram of pixel values is used to speed up the clustering process
 - o FgFCM: Improves the robustness of the ENFCM Algorithm
 - FLICM: controls the balance between the image details and image noise
- Also implemented FCM Segmentation with bias field correction

FCM S1

- Incorporates neighborhood information in the objective function

• Objective Function is defined as
$$\left\{ \min J_m(\mathbf{U}, \mathbf{V}: \mathbf{X}) = \sum_{i=1}^c \sum_{j=1}^N (u_{ij})^m \left\| x_j - v_i \right\|^2 + \alpha \sum_{i=1}^c \sum_{j=1}^N (u_{ij})^m \left\| \bar{x_j} - v_i \right\|^2 \right.$$
 subject to
$$\sum_{i=1}^c u_{ij} = 1, \ 1 \le j \le N$$

- N is number of pixels, c is number of clusters
- where d is distance between data x_i and centre of the cluster i, v_i
- u is the fuzzy membership of data x_i to cluster with centre v_i .
- m specifies the degree of fuzziness in the clustering
- α is the weight of neighborhood information
- \bar{x}_i is the average of the neighbors of pixel x_j , computed prior to the clustering process

Enhanced FCM (EnFCM)

• Firstly, a linearly-weighted image is obtained from the existing original image, which is defined in terms of local neighbors as:

$$\xi_j = \frac{1}{1+\alpha} \left(x_j + \frac{\alpha}{N_R} \sum_{r \in N_j} x_r \right), \quad 1 \le j \le N$$

- ξ_i represent the gray level value of jth pixel of the new image
- Nj represents the number of neighboring pixels around the centered pixel x_j, NR denotes the cardinality of Nj (4 neighbourhood system is used here)
- α controls the tradeoff effects of the neighboring term.
- The EnFCM algorithm is performed on the gray-level histogram of the image ξ .

Enhanced FCM (contd)

Objective function is defined as

$$\begin{cases} \min J_m(\mathbf{U}, \mathbf{V} : \boldsymbol{\xi}) = \sum_{i=1}^c \sum_{l=1}^q \gamma_l (u_{il})^m (\xi_l - v_i)^2 \\ \text{subject to } \sum_{i=1}^c u_{il} = 1, \quad 1 \le l \le q \end{cases}$$

- q denotes the number of gray levels of image
- $u_{il}(0 \le u_{il} \le 1)$ the membership degree of lth gray-level value to the ith cluster center
- ullet The γ_l represents number of pixels with the gray-level value equal to I and it satisfies

$$\sum_{l=1}^{q} \gamma_l = N$$

Fast generalized FCM (FgFCM)

 Exploits the local spatial information by introducing the local similarity measure S_ij, which is defined as:

$$S_{ij} = \begin{cases} \exp(-\max(|p_i - p_j|, |q_i - q_j|)/\lambda_s - \left| |x_i - x_j| \right|^2 / (\lambda_g \sigma_j^2)) & i \neq j \\ 0 & i = j \end{cases}$$

- The terms (p_j, q_j) and x_j denote the two-dimensional spatial coordinate and gray-level value of the jth pixel respectively.
- The parameters λ s (fixed to 3) and λ g (fixed to 2) denote the scale factors of the spread of local spatial and gray-level relationship respectively.
- The parameter σ j is calculated as

$$\sigma_j = \sqrt{\frac{\sum_{i \in N_j} \left\| x_i - x_j \right\|^2}{N_R}}, \quad 1 \le j \le N$$

where Nj represents the number of neighboring pixels around the centered pixel x_j and NR denotes the cardinality of Nj

Fast generalized FCM (Contd)

• Using the factor S_ij , the newly generated image ξ is computed as:

$$\xi_j = \frac{\sum_{i \in N_j} S_{ij} x_i}{\sum_{i \in N_j} S_{ij}}, \quad 1 \le j \le N$$

• After computing ξ , rest is same as EnFCM.

Fuzzy local information c-means (FLICM)

- Includes a new factor G ij in its optimization function.
- This new factor considers the local spatial information and controls the balance between the image details and image noise, and it does not requires any parameter tuning.

The O
$$\begin{cases} \min J_m(\mathbf{U}, \mathbf{V} : \mathbf{X}) = \sum_{i=1}^c \sum_{j=1}^N (u_{ij})^m \left\| x_j - v_i \right\|^2 + G_{ij} \\ \text{subject to } \sum_{i=1}^c u_{ij} = 1, \quad 1 \le j \le N \end{cases}$$

Fuzzy local information c-means (contd)

• The term G_ij is called as fuzzy factor, which is defined as:

$$G_{ij} = \sum_{\substack{k \in N_j \\ k \neq j}} \frac{1}{d_{jk} + 1} (1 - u_{ik})^m ||x_k - v_i||^2, \quad 1 \leq i \leq c, \ 1 \leq j \leq N$$

- where kth pixel is neighboring pixels around the centered jth pixel
- N_j represents the number of neighboring pixels around the centered pixel x_j
- d_{ik} is the spatial Euclidean distance between jth and kth pixels

FCM Seg. + Bias-Field Correction

Objective function is defined as follows

$$J := \sum_{i=1}^{N} J_i := \sum_{j=1}^{N} \sum_{k=1}^{K} u_{jk}^q \left(\sum_{i=1}^{N} w_{ij} (y_j - c_k b_i)^2 \right)$$

- N is number of pixels, K is number of clusters
- c K is the centre of the cluster i
- b_i is the bias field at pixel i
- w_{ij} is a weight penalty based on distance between pixels i & j (gaussian mask)
- u is the fuzzy membership of data x_j to cluster with centre v_i .
- q specifies the degree of fuzziness in the clustering

Results

Performed standard FCM and FCM with bias correction on bias-corrupted and noise-corrupted MRI of a human brain

Outputs of various extension on clean MRI Image

FCM

FCM_S1

Enhanced FCM (EnFCM)

Fast Generalized FCM (FgFCM)

FCM - Local Information (FLICM)

FCM with bias correction

CONCLUSION

- Each flavor of fcm builds upon the last to optimize the run time or to provide bias correction
- FGFCM converges in about 3-4 iterations, in contrast to about 15 iterations in naive FCM and 6 iterations in ENFCM and FCM_S1
- Bias FCM requires many iterations but works well with biased images
- FCM with local information is quite slow as it requires a lot of computation, as the distance between each pair of neighbours need to be calculated, but provides a better correlation between the pixels of the image