Floating point

Jinyang Li

based on Tiger Wang's slides

Representing Real Numbers using bits

Representing Real Numbers using bits

What we have studied

Representing Real Numbers using bits

Today: How to represent fractional numbers?

Decimal Representation

Decimal Representation

```
Real Numbers Decimal Representation (Expansion) 11/2 (5.5)_{10} 1/3 (0.3333333...)_{10} \sqrt{2} (1.4128...)_{10}
```

$$(5.5)_{10} = 5 * 10^{0} + 5 * 10^{-1}$$

 $(0.3333333...)_{10} = 3 * 10^{-1} + 3 * 10^{-2} + 3 * 10^{-3} + ...$
 $(1.4128...)_{10} = 1 * 10^{0} + 4 * 10^{-1} + 1 * 10^{-2} + 2 * 10^{-3} + ...$

Decimal Representation

Real Numbers Decimal Representation (Expansion)
$$11/2 \qquad (5.5)_{10} \\ 1/3 \qquad (0.3333333...)_{10} \\ \sqrt{2} \qquad (1.4128...)_{10} \\ (5.5)_{10} = 5*10^0 + 5*10^{-1} \\ (0.3333333...)_{10} = 3*10^{-1} + 3*10^{-2} + 3*10^{-3} + ... \\ (1.4128...)_{10} = 1*10^0 + 4*10^{-1} + 1*10^{-2} + 2*10^{-3} + ... \\ r_{10} = (d_m d_{m-1}...d_1 d_0 \cdot d_{-1} d_{-2}...d_{-n})_{10} \\ = \sum_{i=0}^{m} 10^i \times d_i$$

$$(5.5)_{10} = 4 + 1 + 1 / 2$$

= 1 * 2² + 1 * 2⁰ + 1 * 2⁻¹

$$(5.5)_{10} = 4 + 1 + 1 / 2$$

= 1 * 2² + 0 * 2¹ + 1 * 2⁰ + 1 * 2⁻¹

$$(5.5)_{10} = 4 + 1 + 1 / 2$$

= 1 * 2² + 0 * 2¹ + 1 * 2⁰ + 1 * 2⁻¹
= (101.1)₂

$$(5.5)_{10} = 4 + 1 + 1 / 2$$

= 1 * 2² + 0 * 2¹ + 1 * 2⁰ + 1 * 2⁻¹
= (101.1)₂

$$(0.333333...)_{10} = 1/4 + 1/16 + 1/64 + ...$$

= $(0.01010101...)_2$

$$r_{10} = (d_{m}d_{m-1}d_{1}d_{0} \cdot d_{-1}d_{-2}...d_{-n})_{10}$$

$$= (b_{p}b_{p-1}b_{1}b_{0} \cdot b_{-1}b_{-2}...b_{-q})_{2}$$

$$\begin{array}{c} 2^{p} \\ 2^{p-1} \\ \\ b_{p}b_{p-1} \cdots b_{1}b_{0} \cdot b_{-1}b_{-2} \cdots b_{-q} \\ \\ 1/2 \\ 1/4 \end{array} = \sum_{i=-q}^{p} 2^{i} \times b_{i}$$

Exercise

Binary Expansion 10.011₂ Formula

Decimal

$$2^{-3} + 2^{-4} + 2^{-6}$$

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-4}$$

Exercise

Binary Expansion	Formula	Decimal
10.011 ₂	$2^1 + 2^{-2} + 2^{-3}$	2.375 ₁₀
0.001101 ₂	$2^{-3} + 2^{-4} + 2^{-6}$	0.203125 ₁₀
0.1111 ₂	$2^{-1} + 2^{-2} + 2^{-3} + 2^{-4}$	0.9375 ₁₀

Intuitive Idea

Intuitive Idea

 $(10.011)_2$

0 00000000000010

0110000000000000

Problems of Fixed Point

Limited range and precision: e.g., 32 bits

- Largest number: 2¹⁵ (011...111)₂
- Highest precision: 2-16

→ Rarely used (No built-in hardware support)

The idea

- Limitation of fixed point notation:
 - Represents evenly spaced fractional numbers
 - → hard tradeoff between high precision and high magnitude
- How about un-even spacing between numbers?

Floating Point: decimal

Based on exponential notation (aka normalized scientific notation)

$$r_{10} = \pm M * 10^{E}$$
, where 1 <= M < 10

M: significant (mantissa), E: exponent

Floating Point: decimal

Example:

$$365.25 = 3.6525 * 10^{2}$$

$$0.0123 = 1.23 * 10^{-2}$$

Decimal point **floats** to the position immediately after the first nonzero digit.

Floating Point: binary

Binary exponential representation

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_n)_2$

M: significant, E: exponent

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Floating Point

Binary exponential representation

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_n)_2$ Normalized representation of r

M: significant, E: exponent

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Normalization: give a number r, obtain its normalized representation

Exercises

The normalized representation of $(10.25)_{10}$ is ?

Exercises

The normalized representation of $(10.25)_{10}$ is ?

$$(10.25)_{10} = (1010.01)_2 = (1.01001)_2 * 2^3$$

Floating Point

Binary exponential representation

$$r_{10} = \pm M * 2^E$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_n)_2$ Normalized representation of r

M: significant, E: exponent

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

How to represent a normalized number?

Normalized representation

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_n)_2$

M: significant, E: exponent

31 30 23 22 0 s exp (E) sig (M)

$$(1.b_1b_2b_3...b_n)_2$$

Normalized representation in computer

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_{23})_2$

M: significant, E: exponent

31 30 23 22 0 s exp (E) fraction (F)

$$(b_1b_2b_3...b_{23})_2$$

Normalized representation

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_{23})_2$

M: significant, E: exponent

31 30 23 22 0

0 0000 0010 0110 0000 0000 0000 0000 000

$$(b_1b_2b_3...b_{23})_2$$

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Exercise

Given the normalized representation of $(71)_{10}$ and $(10.25)_{10}$

Exercise

Given the normalized representation of $(71)_{10}$ and $(10.25)_{10}$

$$(10.25)_{10} = (1010.01)_2 = (1.01001)_2 * 2^3$$

0 0000 0011 0100 1000 0000 0000 0000

$$(71)_{10} = (1000111)_2 = (1.000111)_2 * 2^6$$

31 30 23 22 0

0 0000 0110 0001 1100 0000 0000 0000

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Largest positive number?

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Largest positive number?

$$(1.11)_2 * 2^7 = 224$$

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Largest positive number: 224

Smallest positive number?

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Largest positive number: 224

Smallest positive number: 1

_5	4	2 1	
S	exp (E)	frac	: (F)

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

Positive number: 1 to 224

Negative number: -224 to -1

No more bit patterns left to represent numbers (-1, 1)

Questions

How to represent

- 1. numbers close or equal to 0?
- 2. special cases:
 - the result of dividing by 0, e.g. 1/0?

 $\infty*0$

Lots of different implementations around 1950s!

IEEE Floating Point Standard

IEEE p754
A standard for binary
floating point representation

Prof. William Kahan University of California at Berkeley Turing Award (1989)

The Only Book Focuses On IEEE Floating Point Standard

Numerical Computing with IEEE Floating Point Arithmetic

Including One Theorem, One Rule of Thumb, and One Hundred and One Exercises

Michael L. Overton

Courant Institute of Mathematical Sciences

New York University

hardware. This degree of altruism was so astonishing that MATLAB's creator Cleve Moler used to advise foreign visitors not to miss the country's two most awesome spectacles: the Grand Canyon, and meetings of IEEE p754."

https://cs.nyu.edu/overton/NumericalComputing/protected/NumericalComputingSIAM.pdf With you nyu netid/password. You can also search the pdf with google.

What we have learnt so far

normalized representation of floating point

- how to represent numbers in range (-1,1)
- how to represent special cases? e.g. ∞

Goals of IEEE Standard

Consistent representation of floating point numbers

 Correctly rounded floating point operations, using several rounding modes.

 Consistent treatment of exceptional situations such as division by zero

Restrictions on Normalized Representation

$$r_{10} = \pm M * 2^{E} M = (1.b_{0}b_{1}b_{2}b_{3}...b_{n})_{2}$$

31 30 23 22 0

s exp (E) fraction (F)

 $(b_0b_1b_2b_3...b_n)_2$

E can not be $(1111 \ 1111)_2$ or $(0000 \ 0000)_0$

 $E_{\text{max}} = ?$ 254, (1111 1110)₂

 $E_{min} = ? 1, (0000 0001)_2$

Exponential Bias

$$r_{10} = \pm M * 2^{E}, M = (1.b_{0}b_{1}b_{2}b_{3}...b_{n})_{2}$$

To represent (-1,1), we must allow negative exponent.

- How to represent negative E?
 - 2's complement
 - use bias

31 30 23 22 0

s exp (E) + 127 fraction (F)

Bias: 127 $(b_0b_1b_2b_3...b_n)_2$

IEEE normalized representation

$$r_{10} = \pm M * 2^{E}, M = (1.b_{0}b_{1}b_{2}b_{3}...b_{n})_{2}$$

31 30 23 22 0

s exp(E) + 127 fraction (F)

 $(b_0b_1b_2b_3...b_n)_2$

Bias: 127

 $E_{max} = 254 - 127 = 127$ Smallest positive number 2⁻¹²⁶

 $E_{min} = 1 - 127 = -126$ Negative number with smallest absolute value: -2^{-126}

Questions

Q1. Why using bias?

Q2. Why is **bias** 127?

Questions

Q1. Why using **bias** instead of 2's complement?

Answer: easier circuitry for comparison.

Questions

Q2. Why is bias 127?

A2. Balance positive numbers (magnitude) and negative numbers (precision)

Example Toy Number System

_5	4	2	1 0
S		exp (E) + 3	frac (F)

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

bias: 3

Smallest positive number?

Toy Number System

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

bias: 3

Smallest positive number: 0.25

Smallest number >0.25?

0 0 0 1	0 0
---------	-----

$$(1.00)_2 * 2^{-2} = 0.25$$

$$(1.01)_2 * 2^{-2} = 0.25 + 0.0625$$

Toy Number System

5	4	2	1	0
S	exp (E) + 3		frac (F)	

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

bias: 3

represent values which are close and equal to 0

IEEE denormalized representation

$$r_{10} = \pm M * 2^{E}$$

Normalized Encoding:

31 30 23 22

S	exp (E) + 127	fraction (F)

$$1 \le M \le 2$$
, $M = (1.F)_2$

Denormalized Encoding:

31 30 23 22 0

s 0000 0000 fraction (F)

$$E = 1 - Bias = -126$$
 $0 \le M \le 1, M = (0.F)_2$

Zeros

+0.0

0	0000 0000	0000 0000 0000 0000 000

-0.0

1 0000 0000 0000 0000 0	000 0000 0000 000
-------------------------	-------------------

Examples

 $(0.1)_2 * 2^{-126}$

0	0000 0000	1000 0000 0000 0000 0000
0	0000 0000	1000 0000 0000 0000 0000 000

 $-(0.010101)_2 * 2^{-126}$

1	0000 0000	0101 0100 0000 0000 0000 000
---	-----------	------------------------------

Toy Number System

6-bit floating point representation

- exponent: 3 bits

- fraction: 2 bits

bias: 3

Denormalized encoding

Special Values

Special Value's Encoding:

31 30 23 22 0

S	1111 1111	fraction (F)

values	sign	frac
+∞	0	all zeros
- ∞	1	all zeros
NaN	any	non-zero

Exercises

representation	E	M	V
0100 1001 0101 0000 0000 0000 0000 0000			
			2.5 * 2 ⁻¹²⁷
			-1.25 * 2 ⁻¹¹¹
1111 1111 1111 1111 0000 0000 0000 0000			
1111 1111 1000 0000 0000 0000 0000 0000			
			1.5 * 2 ⁻¹²⁷

Exercises

representation	E	M	V
0100 1001 0101 0000 0000 0000 0000 0000	146 – 127 = 19	(1.101) ₂ = 1.625	1.625 * 2 ¹⁹
0000 0000 1010 0000 0000 0000 0000 0000	1 – 127 = -126	(1.01) ₂ = 1.25	$2.5 * 2^{-127}$ = $(1.01)_2 * 2^{-126}$
1000 1000 0010 0000 0000 0000 0000 0000	16 – 127 = -111	(1.01) ₂ = 1.125	-1.25 * 2 ⁻¹¹¹
1111 1111 1111 1111 0000 0000 0000	-	-	Nan
1111 1111 1000 0000 0000 0000 0000 0000	-	-	- ∞
0000 0000 0110 0000 0000 0000 0000 0000	-126	(0.11) ₂	$(0.11)_2 * 2^{-126}$ = 1.5 * 2 ⁻¹²⁷

Distribution of Representable Values

Distribution of Representable Values

What if the result of computation is at •?

Rounding

Goal

 Use the "closest" representable value x' to represent x.

Round modes

- Round-down
- Round-up
- Round-toward-zero
- Round-to-nearest (Round to even in text book)

Round down

$$Round(x) = x_{-}(x_{-} <= x)$$

Round(-0.86) = ?

Round(0.55) = ?

Round down

$$Round(x) = x_{-}(x_{-} <= x)$$

$$Round(-0.86) = -0.875$$

$$Round(0.55) = 0.5$$

Round up

Round(x) =
$$x_+$$
 ($x_+ > = x$)

Round up

Round(x) =
$$x_+$$
 ($x_+ > = x$)

Round(-0.86) = ?

Round(0.55) = ?

Round up

Round(x) =
$$x_+$$
 ($x_+ > = x$)

Round
$$(-0.86) = -0.75$$

$$Round(0.55) = 0.625$$

Round towards zero

Round(x) = x_+ if x < 0

Round(x) = x_i if x > 0

Round towards zero

Round(x) =
$$x_+$$
 if x < 0
Round(x) = x_- if x > 0

Round(-0.86) = ?

Round(0.55) = ?

Round towards zero

Round(x) =
$$x_+$$
 if x < 0
Round(x) = x_- if x > 0

Round
$$(-0.86) = -0.75$$

$$Round(0.55) = 0.5$$

Round to nearest

Round(x) either x_+ or x_- , whichever is nearer to x.

Round to nearest

Round(x) either x_+ or x_- , whichever is nearer to x.

Round(-0.86) = ?

Round(0.55) = ?

Round to nearest

Round(x) either x_+ or x_- , whichever is nearer to x.

Round(-0.86) = -0.875

Round(0.55) = 0.5

Round to nearest; ties to even

Round(x) either x_+ or x_- , whichever is nearer to x.

$$Round(-0.86) = -0.875$$

$$Round(0.55) = 0.5$$

In case of a tie, the one with its least significant bit equal to zero is chosen.

single/ double precision

double precision (64 bits)

single/ double precision

	E _{min}	E _{max}	N _{min}	N _{max}
Float	-126	127	≈ 2 ⁻¹²⁶	$pprox 2^{128}$
Double	-1022	1023	≈ 2 ⁻¹⁰²²	$pprox 2^{1024}$

How does CPU know if it is floating point or integers?

By having specific instruction for floating points operation.

