Trabalho BFO - Construção e Implementação de Ontologia de Domínio com a BFO

Gustavo A. de Lima, Lívia Cristina S. Nascimento

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre – RS – Brasil

1) Texto de ~10 linhas com visão geral do domínio de conhecimento. Descrição textual breve dos processos modelados e suas consequências.

O método de cultura hidropônica consiste em cultivar plantas sem uso de solo, desta forma as raízes das plantas ficam imersas em soluções nutritivas que fornecem os nutrientes essenciais para o seu crescimento. A produção desta solução nutritiva é feita através da mistura de água com fertilizantes e para esse processo é necessário o controle de PH e EC em cada ciclo de produção desta solução. Neste trabalho a proposta é o desenvolvimento de uma ontologia que atenda a produção de solução nutritiva para este tipo de cultura de plantas. O sistema que gerencia a produção desta solução é composto por Sensores e Atuadores, aqui chamados de Industrial Assets, que são controlados por dispositivos IoT utilizando diferentes tipos de protocolos de comunicação, sendo assim a ontologia proposta tem o objetivo de a interoperabilidade do sistema e fornecer também de forma clara a estrutura física do sistema para

Para isto, a Ontologia tem que atender as seguintes questões de competência:

- 1. Tipologia de dispositivos
- 2. Relações entre dispositivos
- 3. Estrutura de dados de cada dispositivo
- 4. Protocolos associados
- 5. Tipologia protocolos
- 6. Tipologia industrial assets
- 7. Configuração física
- 8. Unidade de medidas

Os processos modelados foram os de medidas das qualidades (ECMeasure, PHMeasure e LevelMeasure) que são processos que envolvem o fluido, o dado gerado pela medição e o

sensor específico de cada qualidade. Quando esse processo é realizado a medida da qualidade do fluido é gerada.

Também foi modelado o processo de troca de mensagens, que abrange o Gateway, os IoTDevices e a mensagem em si.

2) Lista de entidades modeladas: continuantes dependentes, independentes e relações.

Entidade	Tipo
Fluid	independent continuant
LiquidFertilizerSolution	independent continuant
LiquidPhosphoticAcidSolution	independent continuant
Water	independent continuant
NutrientSolution	independent continuant
GatewayDevice	independent continuant
IoTDevices	independent continuant
Compressor	independent continuant
AirCompressor	independent continuant
Filter	independent continuant
InverseOsmosisFilter	independent continuant
Pump	independent continuant
Sensor	independent continuant
DigitalECSensor	independent continuant
DigitalLevelSensor	independent continuant
DigitalPHSensor	independent continuant
Tank	independent continuant
Valve	independent continuant
SolenoidValve	independent continuant
NutrientSolutionModule	independent continuant
Filters	specifically dependent continuant
Pumps	specifically dependent continuant
Sensing	specifically dependent continuant
EC	specifically dependent continuant
Level	specifically dependent continuant
PH	specifically dependent continuant
BinaryScale	scale (Fora da BFO)
PotentialOfHydrogen	scale (Fora da BFO)
CommunicationProtocol	generically dependent continuant
DDS	generically dependent continuant

MQTT	generically dependent continuant
OPCUA	generically dependent continuant
Message	generically dependent continuant
SensorData	generically dependent continuant
LevelData	generically dependent continuant
PHSensorData	generically dependent continuant
SensorDataStructure	generically dependent continuant
formatted_according	relation
stores	relation
Message_Exchange	process
communicates	relation
ECMeasure	process
LevelMeasure	process
PHMeasure	process
MeasuredValue	process

3) Print da árvore com a visão geral do modelo na BFO.

Genericamente Dependentes:

Continuantes Independentes:

Fora da BFO (Medidas):

Individuals:

4) URL do GitHub com o endereço do arquivo PROTEGE com o OWL do modelo. A carga do modelo deve cobrir todas as demais ontologias importadas.

5) Descrição das informações ou inconsistências inferidas com o raciocinador Hermit.

Todo processo de aplicação do raciocinador levou mais de 20 minutos, não apresentando nenhuma inconsistência, como visto na imagem a seguir:

O raciocinador inferiu corretamente relações que não foram explicitamente inseridas nos individuais. Um exemplo visto é na instancia C200, do compressor de ar:

A mesma apenas possuía as relações feedsFluidTo, porém como a mesma é sub property de outras relações, as mesmas foram inferidas e adicionadas aos atributos.