

UNIVERSIDAD NACIONAL DE ITAPUA – U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

Materia:	Mecánica de Materiales II		Semestre:	Quinto
Ciclo:	Profesional Ingeniería Electromecánica			
Código de la materia:	104			
Horas Semanales:	Teóricas:	3		
	Prácticas:	2		
	Laboratorio:	3		
Horas Semestrales:	Teóricas:	51		
	Prácticas:	34		
	Laboratorio:	51		
Pre-Requisitos:	Mecánica de Materiales I, Tecnología de los Materiales			

I. OBJETIVOS GENERALES:

Que al final del semestre el alumno sea capaz de comprender y manejar los siguientes conceptos: Energía interna de los sistemas deformables.

Condiciones de compatibilidad de deformaciones.

Amortiguamiento estructural.

Criterios dinámicos y estáticos de estabilidad del equilibrio

II. OBJETIVOS ESPECIFICOS:

Aplicar los conocimientos adquiridos a la resolución de problemas y ejercicios de mécanica.

III. CONTENIDO:

Capítulo 1

Piezas curvas solicitadas a flexión:

- 1.- Tensiones circunferenciales. Fórmula de Winkler Bach. Determinación de la Línea Neutra. Esfuerzos combinados. Factores correctivos para la aplicación de la fórmula de vigas rectas.
- 2.- Tensiones radiales.
- 3.- Deformación de vigas curvas de secciones "llenas"
- 4.- Vigas curvas con extremos fijos: Anillo cerrado sometido a carga concentrada o carga uniforme
- 5.- Tensiones en los eslabones de cadenas.

Capítulo 2

Tensiones localizadas - Concentración de tensiones

- 1.- Introducción. Métodos matemático y experimental
- 2.- Factor teórico de concentración. Definición. Determinación de la tensión de concentración por medio de la Teoría matemática de la elasticidad. Casos particulares.
- 3.- Coeficiente efectivo de concentración. Definición. Sensibilidad a la entalla. Métodos para atenuar los efectos perjudiciales de la concentración de tensiones.

Aprobado por:Fecha:	Actualización No.:	Sello y Firma	Página 1 de 2
---------------------	--------------------	---------------	------------------

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

Capítulo 3

Torsión de barras de secciones no circulares

- 1.- Introducción. Analogía de la película de jabón. Analogía hidrodinámica
- 2.- Torsión de tubos huecos de paredes delgadas
- 3.- Torsión de barras de secciones abiertas formadas por rectángulos angostos
- 4.- Torsión de barras de secciones formadas por 2 o más celdas
- 5.- Torsión de vigas T o doble T cuando se impide el alabeo de una sección

Capítulo 4

Cálculo por estados límites

- 1.- Modelo elasto-plástico del material para el cálculo
- 2.- Cálculo de sistemas hiperestáticos que trabajan a tracción o compresión, considerando la plasticidad del material. Tensiones residuales.
- 3.- Torsión plástica de barras de sección circular. Momento torsor último. Tensiones residuales.
- 4.- Flexión plástica de vigas. Rótulas plásticas. Análisis plástico de vigas. Momento plástico. Mecanismo de ruina. Tensiones residuales.

Capítulo 5

Carga dinámica o de impacto

- 1.- Conceptos de energía de deformación y la resistencia a la falla. Carga estática equivalente.
- 2.- Proyecto para cargas de impacto.
- 3.- Barra de masa no despreciable. Efecto de masa.

IV.- METODOLOGÍA

Exposición oral del profesor, resolución de ejercicios y trabajos prácticos por parte del alumno.

V.- EVALUACIÓN

Conforme al Reglamento Académico y Reglamento de Cátedra vigentes.

VI. BIBLIOGRAFÍA

Resistencia de Materiales – S. Timoshenko Mecánica de Materiales – S. Timoshenko Mecánica Técnica – S. Timoshenko Mecánica de Materiales – Popov Resistencia de Materiales - Berrocal

Aprobado por: Re	Actualización No.:	Sello y Firma	Página 2 de 2
------------------	--------------------	---------------	------------------