Decision Tree Induction

Non-metric Methods

Numerical Attributes

- Nearest-neighbor -- distance
- Neural networks: two similar inputs leads to similar outputs
- SVMs: Dot Product

Non-metric data

- Nominal attributes
- Color, taste
- Strings: DNA

- Probability based
 - Naïve Bayes
- Rule based
 - Decision trees

Decision Tree

Rules in the form of a hierarchy.

Why are decision trees so popular?

- Why are decision trees so popular?
- Interpretability
 - You can give human understandable explanation for the decision being made.

We need to work with a training set

You need to work with a training set

age	income	student	cred_rati	buys_comp
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys_computer"

How to create a Decision Tree

- From root to leaves it is created
- For root, choose the attribute to be used for testing. This gives child nodes for the root.
- For each child, again choose the attribute to be tested.

Issues

- Criteria for choosing an attribute?
- You can achieve 100% accuracy with training set?!
 - Overfitting
- When you stop building the tree?

 Are there various types of DT induction methods?? ID3, C4.5 and CART.

Decision tree induction

 They adopt a greedy (i.e., nonbacktracking), top-down recursive divide-and-conquer approach.

- Node subset of training patterns
- Root → training set.
- Leaf → class label.

Impurity measures

Entropy impurity (information impurity)

$$i(N) = -\sum_{j} P(\omega_j) \log_2 P(\omega_j)$$

Gini impurity (variance impurity)

$$i(N) = 1 - \sum_{j} P^{2}(\omega_{j})$$

Misclassification impurity

$$i(N) = 1 - \max_{j} P(\omega_{j})$$

For a two category case

- That which drops the impurity greater.
 - Try to become pure quickly.

$$\Delta i(N) = i(N) - (P_L i(N_L) + (1 - P_L) i(N_R)),$$

- That which drops the impurity greater.
 - Try to become pure quickly.

$$\Delta i(N) = i(N) - (P_L i(N_L) + (1 - P_L) i(N_R)),$$

where N_L and N_R are the left and right descendent nodes, $i(N_L)$ and $i(N_R)$ their impurities, and P_L is the fraction of patterns at node N that will go to N_L

- That which drops the impurity greater.
 - Try to become pure quickly.

$$\Delta i(N) = i(N) - (P_L i(N_L) + (1 - P_L) i(N_R)),$$

where N_L and N_R are the left and right descendent nodes, $i(N_L)$ and $i(N_R)$ their impurities, and P_L is the fraction of patterns at node N that will go to N_L

Then the "best" test value s is the choice for T that maximizes $\Delta i(T)$.

- That which drops the impurity greater.
 - Try to become pure quickly.

$$\Delta i(N) = i(N) - (P_L i(N_L) + (1 - P_L) i(N_R)),$$

- That which drops the impurity greater.
 - Try to become pure quickly.

$$\Delta i(N) = i(N) - (P_L i(N_L) + (1 - P_L) i(N_R))$$

Information gain

- This is drop in entropy impurity !!
- For an attribute A, often written as Gain(A)

Gain(age) ??

age	income	student	cred_rati	buys_comp
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

(yes, no) = (9, 5)

Gain(age) ??

age	income	student	cred_rati	buys_comp
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$(yes, no) = (9, 5)$$

$$i(root) = I(9,5)$$

$$I(9,5) = -\frac{9}{14} \log \frac{9}{14} - \frac{5}{14} \log \frac{5}{14}$$

$$= 0.94$$

age	Yes	No	I mpurity
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

$$\Delta i(age) = 0.94 - \left(\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2)\right)$$
$$= 0.69$$

We call this Gain(age) = 0.69.

For other attributes, their GAIN

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

So we choose age as the splitting attribute.

Similarly one can use other impurity measures

Gini Index (IBM IntelligentMiner)

 If a data set T contains examples from n classes, gini index, gini(T) is defined as

$$gini(T)=1-\sum_{j=1}^{n} p_{j}^{2}$$

 $gini(T) = 1 - \sum_{j=1}^{n} p_{j}^{2}$ where p_{j} is the relative frequency of class j in T.

• If a data set T is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the *gini* index of the split data contains examples from n classes, the gini index gini(T) is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

• The attribute provides the smallest $gini_{split}(T)$ is chosen to split the node (need to enumerate all possible splitting points for each attribute).

But, there is one drawback with this approach!

- A split with large branching factor is often chosen.
 - So, telephone number is chosen.

$$\Delta i(s) = i(N) - \sum_{k=1}^{B} P_k i(N_k)$$

$$\sum_{k=1}^{B} P_k = 1.$$

So, we penalize large branching factors

• This is called *gain ratio* (very often used with information gain).

$$\Delta i_B(s) = \frac{\Delta i(s)}{-\sum_{k=1}^B P_k \log_2 P_k}.$$

 Branching factor is more, the denominator is more.

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand
- Example

```
IF age = "<=30" AND student = "no" THEN buys_computer = "no"
IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"
IF age = "31...40" THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "no"
```

October 27, 2022

31

Avoid Overfitting in Classification

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in classification?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - can use SQL queries for accessing databases
 - comparable classification accuracy with other methods

Scalable Decision Tree Induction Methods in Data Mining Studies

- SLIQ (EDBT'96 Mehta et al.)
 - builds an index for each attribute and only class list and the current attribute list reside in memory
- SPRINT (VLDB'96 J. Shafer et al.)
 - constructs an attribute list data structure
- PUBLIC (VLDB'98 Rastogi & Shim)
 - integrates tree splitting and tree pruning: stop growing the tree earlier
- RainForest (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - separates the scalability aspects from the criteria that determine the quality of the tree
 - builds an AVC-list (attribute, value, class label)

Drawbacks

- What we discussed are axis parallel
- For continuous valued attributes cut-points can be found.
 - Can be discretized (CART does).

