Calculus 3.3 Key Points

Derivative Notations:

	1st derivative	2nd derivative	3rd derivative	nth derivative
Lagrange:	f'(x)	f''(x)	f'''(x)	$f^{(n)}(x)$
Leibniz:	$\frac{dy}{dx}$	$\frac{d^2y}{dx^2}$	$\frac{d^3y}{dx^3}$	$\frac{d^n y}{dx^n}$

Curve Analysis:

Global Minimum: The smallest y-value on an interval Global Maximum: The largest y-value on an interval

1st Derivative Intervals	Slope	2nd Derivative Intervals	Concavity
f'(x) > 0	Positive	f''(x) > 0	Up
f'(x) = 0	Zero/flat	f''(x) = 0	Possible Inflection Point
f'(x) < 0	Negative	f''(x) < 0	Down

Calculus 3.3 Key Points

Critical Points	1st derivative	2nd derivative	Concavity
Local Maximum:	f'(x) = 0	f''(x) < 0	Concave Down
Local Minimum:	f'(x) = 0	f''(x) > 0	Concave Up
Point of Inflection	f'(x) can be positive or negative	f''(x) = 0	Point where concavity changes