VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

NALAIYA THIRAN

Team ID: PNT2022TMID23189

Team Leader: Seronica S

Team Member: Sherine Santhi SJ

Team Member: Rajalakshmi S

Team Member: Jayavarshini GV

Mentor: Alaimahal A

Topic: EMERGING METHODS ON EARLY DETECTION OF FOREST FIRES

LITERATURE SURVEY:

	TITLE	AUTHOR	
S.NO			ABSTRACT
1.	Early detection of forest fire using unmanned aerial vehicles and lorawan sensors	Georgi Hristov, Jordan Raychev,	Forest fires are occurring throughout the year with an increasing intensity in the summer and autumn periods. These events are mainly caused by the actions of humans, but different nature and environmental phenomena, like lightning strikes or spontaneous combustion of dried leafs or sawdust, can also be credited for their occurrence. Regardless of the reasons for the ignition of the

forest fires, they usually cause devastating damage to both nature and humans. Forest fires are also considered as a main contributor to the air pollution, due to the fact that during every fire huge amounts of gases and particle mater are released in the atmosphere. To fight forest fires, different solutions were employed throughout the years. They ware primary aimed at the early detection of the fires. The simplest of these solutions is the establishment of a network of observation posts - both cheap and easy to accomplish, but also timeconsuming for the involved people. The constant evolution of the information and communication technologies has led to the introduction of a new generation of solutions for early detection and even prevention of forest fires. ICT-based networks of cameras and sensors and even satellite-based solutions were developed and

			used in the last decades. These
			solutions have
			greatly decreased
			the direct
			involvement of
			humans in the
			forest fire
			detection process,
			but have also
			proven to be expensive and
			hard to maintain.
			In this paper we
			will discuss and
			present two
			different
			emerging
			solutions for early detection of forest
			fires. The first of
			these solutions
			involves the use
			of unmanned
			aerial vehicles
			(UAVs) with
			specialized cameras. Several
			different
			scenarios for the
			possible use of
			the drones for
			forest fire
			detection will be
			presented and
			analysed, including a
			solution with the
			use of a
			combination
			between a fixed-
			wind and a
			rotary-wing
		Varanasi LVSKB Kasyap, ¹ D. Sumathi, ¹ Kumarraju	UAVs. Over the last
		<u>Varanasi LVSKB Kasyap, ¹ D. Sumatni, ¹ Kumarraju <u>Alluri</u></u>	few decades,
2	_ , ,	Alluli	forest fires are
	Early detection		increased due
	of forest fire		to
	of forest fire		deforestation
	using mixed		
			and global
	learning		warming. Many trees and
	_		animals in the
	techniques and		
	11 437		forest are
	UAV.		affected by

forest fires. Technology can be efficiently utilized to solve this problem. Forest fire detection is inevitable for forest fire management. The purpose of this work is to propose deep learning techniques to predict forest fires, which would be costeffective. The mixed learning technique is composed of YOLOv4 tiny and LiDAR techniques. Unmanned aerial vehicles (UAVs) are promising options to patrol the forest by making them fly over the region. The proposed model deployed on an onboard UAV has achieved 1.24 seconds of classification time with an accuracy of 91% and an F1 score of 0.91. The onboard CPU is able to make a 3D

			model of the
			forest fire
			region and can
			transmit the
			data in real
			time to the
			ground station.
			The proposed
			model is
			trained on both
			dense and
			rainforests in
			detecting and
			predicting the
			chances of fire.
			The proposed
			model
			outperforms
			the traditional
			methods such
			as Bayesian
			classifiers,
			random forest,
			and support
			vector
			machines.
	An intelligent	B.C. Arrue; A. Ollero; J.R. Matinez de Dios	Forest fires
3	system for		cause many
	false alarm		environmental
	reduction in		disasters,
	infrared		creating
	forest-fire		economical and
	detection		ecological
			damage as well
			as endangering
			people's lives.
			Heightened
			interest in
			automatic
			surveillance
			and early
			forest-fire
			detection has
			taken
			precedence
			over traditional
			human
			surveillance
			because the
			latter's

subjectivity affects detection reliability, which is the main issue for forest-fire detection systems. In current systems, the process is tedious, and human operators must manually validate many false alarms. Our approach, the False Alarm Reduction system, proposes an alternative real-time infrared-visual system that overcomes this problem. The FAR system consists of applying new infrared-image processing techniques and artificial neural networks (ANNs), using additional information from meteorological sensors and from a geographical information database. taking advantage of the information

	1	T	, ,
			redundancy
			from visual and
			infrared
			cameras
			through a
			matching
			process, and
			designing a
			fuzzy expert
			rule base to
			develop a
			decision
			function.
			Furthermore,
			the system
			provides the
			human
			operator with
			new software
			tools to verify
			alarms.
4	A hybrid	DieuTien Bui ^a Quang-ThanhBui ^b Quoc-	This paper
	artificial	PhiNguyen ^c BiswajeetPradhan ^{df} HalehNampak ^d Phan	proposes and
	intelligence	TrongTrinh ^e	validates a
	approach		novel hybrid
	using GIS-		artificial
	based neural-		intelligent
	fuzzy		approach,
	inference		named as
	system and		Particle Swarm
	particle		Optimized
	swarm		Neural Fuzzy
	optimization		(PSO-NF), for
	for forest fire		spatial
	susceptibility		modeling of
	modeling at a		tropical forest
	tropical area		fire
			susceptibility.
			In the
			proposed
			approach, a
			Neural Fuzzy
			inference
			system (NF)
			was used to
			establish the
			forest fire
			model whereas
			Particle Swarm
			Optimization

(PSO) was adopted to investigate the best values for the model parameters. Tropical forest at the province of Lam Dong (Central Highland of Vietnam) was used as a case study. For this purpose, historic forest fires and ten ignition factors (slope, aspect, elevation, land use. Normalized Difference Vegetation Index, distance to road, distance to residence area, temperature, wind speed, and rainfall) were collected from various sources to construct a GIS database, and then, the database was used to develop and validate the proposed model. The performance of the forest model was assessed using the Receiver Operating Characteristic curve, area

under the curve (AUC), and several statistical measures. The results showed that the proposed model performs well, both on the training dataset (AUC = 0.932)and the validation dataset (AUC = 0.916).The usability of the proposed model was further assessed through comparisons with those derived from two benchmark state-of-the art machine learning methods, Random Forests (RF) and Support **Vector Machine** (SVM). Because the performance of the proposed model is better than the two benchmark models, we concluded that the PSO-NF model is a valid alternative tool that should be considered for

	tropical forest
	fire
	susceptibility
	modeling. The
	result in this
	study is useful
	for forest
	planning and
	management in
	forest fire
	prone areas.