Lecture 2 — Introduction to Signals and Systems

Michael Brodskiy

Professor: I. Salama

September 12, 2024

- Signal Power and Energy
 - Definition
 - * Consider signal x(t) representing the voltage or current in a unit resistance. The signal power is defined as $p(t) = |x(t)|^2$
 - * It is a common terminology to refer to $|x(t)|^2$ or $|x[n]|^2$ as the signal power even if the signal does not represent voltage or current
 - Total energy in a finite duration interval
 - * The total energy in an interval $T = t_2 t_1$ is given by:

Continuous Time
$$\to E = \int_{t_1}^{t_2} \underbrace{|x(t)|^2}_{p(t)} dt$$

Discrete Time
$$\to E = \Delta T \sum_{n=n_1}^{n_2} \underbrace{|x[n]|^2}_{p(t)}$$
 where $T = (n_2 - n_1 + 1)\Delta T$

- The average power in a finite duration interval

$$P_{avg} = \frac{E}{t_2 - t_1} = \frac{1}{t_1 - t_2} \int_{t_1}^{t_2} |x(t)|^2 dt$$
or

$$P_{avg} = \frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2$$

• Power and Energy over an infinite time interval

- Energy

Continuous Time
$$\to E_{\infty} = \lim_{T \to \infty} \int_{-T}^{T} \underbrace{|x(t)|^2}_{p(t)} dt$$

Discrete Time
$$\to E_{\infty} = \lim_{N \to \infty} \Delta \mathcal{T} \sum_{n=-N}^{N} \underbrace{|x[n]|^2}_{y(t)}$$

Power

$$P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \underbrace{|x(t)|^2}_{p(t)} dt$$

or

$$P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{2N+1} = \lim_{T \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \underbrace{|x[n]|^2}_{p(t)}$$

- Energy Signals versus Power Signals
 - The energy or power of a signal quantifies the magnitude of the signal. For this measure to be meaningful, it must be finite. This requirement leads to the following classification of signals:
 - * Energy
 - · Signals with finite total energy $(E_{\infty} < \infty)$
 - · They have zero average power

$$P_{\infty} = \lim_{T \to \infty} \frac{E_{\infty}}{2T} = 0$$

$$P_{\infty} = \lim_{N \to \infty} \frac{E_{\infty}}{2N+1} = 0$$

- * Power
 - · Signals with finite average power $(P_{\infty} < \infty)$
 - · They have infinite energy

$$E_{\infty} = \lim_{T \to \infty} 2T(P_{\infty}) \to \infty$$
$$E_{\infty} = \lim_{N \to \infty} (2N+1)(P_{\infty}) \to \infty$$

- * Any finite signal is automatically an energy signal (think: some value in range, 0 otherwise)
- Periodic Signals

- Periodic signals are classified as power signals because they possess an infinite amount of energy
- The average power of a periodic signal can be determined by averaging its power over one period:

$$P_{\infty} = P_{avg} = \frac{1}{T_o} \int_{-T_o/2}^{T_o/2} |x(t)|^2 dt$$

- Signals with neither finite power nor energy
 - Some signals have neither finite power nor energy
 - An example is a ramp signal, where $x(t) = t, t \ge 0$
 - Neither the energy nor the power can be defined for such signals
- Transformation of the independent variable
 - In this section, we will explore key elementary signal transformations that involve basic modifications of the independent variable for both discrete and continuoustime signals. These transformations include:
 - * Time shifting
 - * Time scaling
 - * Time reversal
 - * Combined operations
- Time Shifting
 - Given a signal x(t), a shift could be written as $y(t) = x(t t_o)$. This would mean that:

$$x(t-t_o) = x(t_{old})$$
 at $t = t_{old} + t_o$

- For shift $x(t-t_o)$ the signal is shifted to the right, and for shift $x(t+t_o)$ the signal is shifted to the left
- For discrete time, a shift has the same effect
- Time Reversal
 - Time reversal is performed using a 180° rotation around the vertical axis. If x(t) represents an audio recording, x(-t) is the audio recording played backward
 - For example x(t) = t, a linear line with slope one, would become x(-t) = -t upon reversal, with slope negative one (reflected about vertical axis)
- Time Scaling

- Continuous Time Signals
 - * $x(\alpha t)$ leads to linear compression if $\alpha > 1$ and linear stretching if $0 \le \alpha \le 1$
 - * If x(t) is an audio recording, the expression x(2t) represents the recording played at twice the speed, and $x(\frac{1}{2}t)$ is the recording played at half the speed
 - * In the time scaling operation, t = 0 serves as a fixed anchor point and remains unchanged, since $x(t) = x(\alpha t)$ at t = 0
 - * The concepts of compression and expansions differ slightly for discrete time signals

Discrete Time Signals

- * Zero remains as an anchor point
- * Take only equivalent values at integer n values, and assume y[n] = 0 for non-integer n values
- * For $x \begin{bmatrix} \frac{n}{L} \end{bmatrix}$, which increases the sampling rate, (resample) the sequence by a factor of L, a process known as up-sampling
- * L-1 zeros are inserted between each consecutive data points
- * Usually followed by a low pass filter to interpolate
- * Compression is much simpler, as a compression would lose information, but will only use integer n values
- * First, a low pass filter is used, and the values are down-sampled
- * For x[Mn], the signal is decimated by a factor of M, which keeps only very M-th sample

• Combined Operations

- For $y(t) = x(\alpha t + \beta) = x(t_{old})$ we can write:

$$t_{old} = \alpha t + \beta$$
$$t = \frac{1}{\alpha} (t_{old} - \beta)$$

* This means the signal was scaled by $1/\alpha$ and shifted to the left β/α

• Euler Formula

$$-Ae^{j(\omega_o t + \phi)} = A \left\{ \cos(\omega_o t + \phi) + j \sin(\omega_o t + \phi) \right\}$$

$$-Ae^{-j(\omega_o t + \phi)} = A \left\{ \cos(\omega_o t + \phi) - j \sin(\omega_o t + \phi) \right\}$$

$$-A\cos(\omega_o t + \phi) = \frac{A}{2} \left\{ e^{j\omega_o t + \phi} + e^{-j(\omega_o t + \phi)} \right\} = \operatorname{Re} \left\{ Ae^{j(\omega_o t + \phi)} \right\}$$

$$-A\sin(\omega_o t + \phi) = \frac{A}{2j} \left\{ e^{j\omega_o t + \phi} - e^{-j(\omega_o t + \phi)} \right\} = \operatorname{Im} \left\{ Ae^{j(\omega_o t + \phi)} \right\}$$

• Sinusoidal Waveform, Discrete Time Case: The Discrete Time Frequency

- The continuous time signal $x(t) = A\sin(\omega_o t + \phi) = A\sin(2\pi f_o t + \phi)$
- The continuous time frequency (f_o) is in cycles/second and ω_o is in radians/second
- The discrete time signal can be expressed as:

$$x[n] = x(nT_s) = A\sin(2\pi f_o nT_s + \phi) = A\sin\left(2\pi \frac{f_o}{f_s}n + \phi\right) = A\sin(2\pi F_s n + \phi)$$

– Where
$$F = \frac{f_o}{f_s} = \frac{T_s}{T_o}$$
 is the discrete time frequency, in cycles/sample
$$\frac{T_o}{T_s} = \text{ number of samples per one cycle of the signal}$$

$$x[n] = A\sin(\Omega n + \phi), \ \Omega \text{ is in radians/sample}, \ \Omega = 2\pi F$$

- $-\Omega = 2\pi \frac{f_o}{f_s}$ is the discrete time frequency in radians/sample
- $-\Omega = \pi$ is the largest discrete time frequency that corresponds to the lowest sampling rate (Nyquist rate)

• Is a Discrete Time Sinusoidal Waveform Always Periodic

- A continuous time sinusoidal signal in the form $A\cos(\omega_o t + \phi)$ is always periodic with a fundamental period $T_o = \frac{2\pi}{\omega_o}$
- For a discrete time sinusoidal signal, $x[n] = A\cos(\omega_o n)$ to be periodic, we must have an integer period N_o where $x[n+N_o] = x[n]$
- $-A\cos(\Omega_o(n+N_o)) = A\cos(\omega_o + 2m\pi), m = 0, 1, 2\cdots$
- $-N_o = \frac{2\pi}{\Omega_o}m$, which requires the ratio $\frac{2\pi}{\Omega_o}$ to be rational

• Exponential and Sinusoidal Waveforms

- These signals occur frequently and serve as fundamental building blocks for constructing more complex signals
- A continuous-time signal would be of form: $x(t) = Ce^{\alpha t}$
- $\alpha > 0 \rightarrow$ rising exponential and $\alpha < 0 \rightarrow$ decaying exponential
- A discrete-time signal would be of form: $x[n] = C\alpha^n$
- $|\alpha| > 1 \rightarrow \text{rising exponential and } |\alpha| < 1 \rightarrow \text{decaying exponential}$
- Imaginary Exponentials: $x(t) = Ce^{j\omega_o t}$, where ω_o is the fundamental frequency in radians/s
 - * $x(t+T_o) = e^{j\omega_o(t+T_o)} = e^{j\omega_o t}e^{j\omega_o T_o} = e^{j\omega_o t}$ if $\omega_o T_o = 2\pi$
 - * This complex exponential signal is periodic with fundamental period $T_o = \frac{2\pi}{\omega_o}$

- Imaginary Exponentials (Discrete Case): $x[n] = Ce^{j\Omega_o n}$
 - * The complex exponential can be expressed using the Euler formula in terms of sinusoidal signals $j\Omega_o n = C \{\cos(\Omega_o n) + j\sin(\Omega_o n)\}$
- Total energy in one period for such an exponential is $|C|^2T_o$
- Total energy is infinite, since there is an infinite number of cycles
- Average power in a period is 1
- Average power in an infinite interval is $|C|^2$

• Harmonically Related Signals

- Continuous Time Case
 - * For a signal form of $\phi_k(t) = e^{jk\omega_o t}$, where $k = 0, \pm 1, \pm 2, \cdots$
 - · The frequency $\omega = k\omega_o$ is an integral multiple of the fundamental frequency, ω_o
 - · The period is $T_k = \frac{2\pi}{|k|\omega_o} = \frac{T_o}{|k|}$
- Discrete Time Case
 - * For a signal of form $\phi_k[n] = e^{jk\Omega_o n}$, where $k = 0, \pm 1, \pm 2, \cdots$
 - . The frequency $\Omega=k\Omega_o$ is an integral multiple of the fundamental frequency, Ω_o
 - · The period is $N_k = \frac{2\pi}{|k|\Omega_o} m = N_o\left(\frac{m}{|k|}\right)$
- Combining Complex Exponentials
 - Example:

$$x(t) = e^{j\omega_1 t} + e^{j\omega_2 t} \to 2e^{.5j(\omega_1 + \omega_2)t} \cos\left(\frac{(\omega_1 - \omega_2)t}{2}\right)$$

- Multiply by a conjugate to more easily find the magnitude:

$$|x(t)|^2 = x(t)x^*(t)$$

- General Complex Exponential
 - Continuous Time
 - * $x(t) = Ce^{\alpha t}$ (both C and α are complex)
 - * $C = |C|e^{j\theta}$ and $\alpha = r + j\omega_o$
 - * $x(t) = |C|e^{j\theta}e^{(r+j\omega_o)t} = |C|e^{rt}e^{j(\omega_o t + \theta)}$