Digital Systems

Physics 5430

State Counter and

"The Traffic Light ASM from Hell"

State Sequencing with Counter

Replace state reg with state counter.

Counter sequences ASM through states in order.

4-bit counter matches 16
States, but we only have 10.
So must load counter with
6 every time it tries to roll
over to count 0.

Tie active-high CO to active-low LD through an Inverter.

For LIMITED branching (out of state 15 only) to either state 6 or state 7, can connect input YI to counter load line A. Or other inputs to other load lines.

Flexible Branching with State Counter

Figure 3-34 Loading an arbitrary next state when using a counter for the state register. Connect counter outputs to ROM address lines as before.

Connect 4 ROM outputs to the 4 counter inputs.

Connect a ROM output to the counter load pin (LD).

LSVLD is a NEXT STATE output, so acts like delayed output.

Figure 3-35 ASM chart that loads arbitrary next state into state variable counter.

Flexible Branching ASM Chart

Counter sequences through states 0 to 9.

State 9 has an input YI.

If YI = 0, counter keeps sequencing to states 10, 11, 12. In state 12, ROM loads 0 into the counter, so goes to state 0 next.

If YI = 1, ROM loads 14 into the counter, so goes to 14 next. Then counts to 15 and rollsover to 0.

Flexible Branching Circuit

Using a state counter is much more difficult than a state register.

More importantly, this design uses 5 ROM outputs for the ASM next state instead of 4 without a state counter!

Why would we ever use a state counter?

Why would we ever use a state counter?

Answer

It makes sense if you also use the group of 4 state counter ROM outputs for other things. For example, output registers.

You can think of them as a data bus.

State Counter with Shared Data Bus

Use data bus and the load signals to load the registers or state counter one at a time.

Requires extra states to load registers.

ASM chart branching may require extra states. (Can't change states and load outputs at same time.)

State Counter with Shared Data Bus

How many ROM outputs would using a 1 to 4 decoder for the load signals save?

ANSWER: It saves 4 - 3 = 1,

ASM has 8-bit ROM, 12 outputs and up to 16 states.

Standard ASM with 8-bit ROM would only have 4 outputs with up to 16 states.

It would need a 16-bit ROM to have 12 outputs.

How many ROM outputs does the state counter save (not counting the ones the registers save)?

ANSWER: It saves 4 - 1 = 3. D4-D7 minus LSVLD

or 4 - 2 = 2 if tie EN to gnd. But don't need to save any more (8-bit ROM)

"Traffic Light ASM from Hell"

Figure 3-41 Traffic-light controller circuit.

Traffic Light Controller Design Features

This design uses:

MUX inputs, and a direct input.

Decoders on the outputs.

A timer,

A state counter,

Registers on the outputs.

Does not show registers on the inputs (no need to take a "snapshot" of the lines as discussed previously.) However, all inputs are assumed to be synchronized with the clock (using a FF).

"Traffic Light ASM from Hell"

NS is busy street.

EW has traffic sensors.

Has emergency input. Goes to NSG/EWR when over.

Timer has adjustable delay times.

Traffic Light Controller (cont'd)

Data bus connected to state counter, timer, and output register. Load signals are: LLNS, LLT, and HLO.

So extra states will be needed to use the data bus for 3 things.

ASM chart branching by loading state counter.

Active-low decoders allow 4 ROM outputs to control six lights.

Yemer is not multiplexed.

E/W sensor (YEWS) and timer output (YTO) are multiplexed.

HSTO = 0 selects YEWS

HSTO = 1 selects YTO.

More Traffic Light Controller Specs

- East/West inputs are OR'ed together.
- The MUX select line (HSTO) must be asserted early.
- Note that LOAD's are color-coordinated in the previous figures.
- Decoders are always enabled. (Notice the unused output D0 on the decoders.)
- Uses 1.25 second clock: 16 states = 20 s; 4 states = 5 s
- Register stores both decoder's binary select values.

Traffic Light Controller ASM Chart

Traffic Light Controller ROM Table

Table 3-5	Traffic light	control	ROM	contents
-----------	---------------	---------	-----	----------

	Curren	t state		YE	YEWS YTO	HSTO	HLO	LLNS	LLT	D	С	В	
_	4.												A
A ₅	A4	A_3	A_2	A_1	A_0	D_7	D_6	D ₅	D_4	D_3	D_2	D_1	D_0
0	0	0	0	X	X	0	1	1	1	1	1	0	1
0	0	0	1	X	X	1	0	1	0	0	0	1	14.
0	0	1	0	1	X	0	0	0	1	1	1	0	1
0	0	1	0	0	0	1	0	0	1	0	Õ	1	0 -
0	0	1	0	0	1	0	0	1	1	X	X	X	X
0	0	1	1	1	X	0	0	0	1	1	1	0	1
0	0	1	1	0	0	0	0	0	1	0	0	0	0 -
0	0	1	1 -	. 0	1 -	0	0	1	1	X	X	X	X
0	1	0	0	X	X	0	1	1	1	1	0	0	1
0	1	0	1	X	X	1	0	1	0	1	1	1	0
0	1	1	0	1	X	1	0	0	1	1	1	ó	1
0	1	1	0	0	0	1	0	0	1	0	1	1	0
0	1	1	0	0	1	1	0	1	1	X	X	X	X
0	1	1	.1	X	X	0	1	1	1	0	1	1	1
0 1 1	0	0	0	X	X	1	0	1	0	0	0	1	0
	0	0	1	1	X	1	0	0	1	1	1	o	1
1	0	Ò	1	0	0	1	0	0	1	1 -	0	0	1
1	0	0	1	0	1 -	1	0	1	1	X	X	X	X
1	0	1	0	X	X	0	1	1	1	0	1	1	0
1	0	1	1	X	X	1	0	1	0	1	1.	1	0
1	1	0	0	1	`X	1	0	1	1	X	X	X	X
1	1	0	0	0	0	1	0	0	1	1	1	0	0
1	1	0	0	0	1	1	0	0	1	0	0	0	0
1	1	0	1.	X	X	0	1	1	1	0	1	0	1
1	1	1	0 .	X	\boldsymbol{X}	1	0 -	1	0	1	1	1	0
1	1	1	1 .	1	X	1.	0	0	1	1	1	0	1
1	1	. 1	1	0	0	1	0	0	1	1	1	1	1
1	1	1	1	0	1 -	1	0	1	1,	X	X	X	X