A Model for Analyzing Components of Uncertainty Encountered in ${}^{3}\text{H-Standard}$ Efficiency Tracing in $4\pi\beta$ Liquid Scintillation Counting

Brian E. Zimmerman and Ron Collé

Physics Laboratory, National Institute of Standards and Technology Gaithersburg, MD USA

Winter Meeting of the American Nuclear Society Washington, D.C., 13 November 2000

Scope of Presentation

Goals

- Introduce ISO philosophy of uncertainty analysis
- Develop metrological mindset of searching for uncertainty
- Apply ISO guidelines to development of uncertainty model for LS efficiency tracing techniques
- What is not covered
 - How to analyze all the components, experiment design, etc.
 - What to do with correlations
- Example: Standardization of ⁶³Ni (NIST SRM 4226C

What is a *Measurement Model*?

"Formalization of the relationship between input and output quantities involved in a measurement and how the uncertainty in an input quantity leads to an uncertainty in the output quantity"

ISO Recommendations

- Determine mathematical expression for relationship between measurand Y, from individual input quantities X_i .
 - The input quantities may include variables or uncertainty components that are not explicitly needed to calculate the estimated measurand, y.
 - Example: $R = A\varepsilon d \cdot (xyz...)$
- Determine estimated value of estimated input quantities, x_i , and "standard uncertainties", u_i .
 - $-u_i$ are expressed as estimated standard deviations (or standard deviations of the mean).
 - Uncertainty components assumed to correspond to standard deviations, irrespective of evaluation method. (Type A and B).

ISO Recommendations, Cont'd

- Evaluate covariances.
- Calculate y and "combined standard uncertainty", u_c (u_i combined in quadrature)
- Form "expanded uncertainty", $U = k \cdot u_c$, where k is coverage factor. Limits are supposed to correspond to a particular confidence level.
- Report y, u_c (or U), specification of value and assumptions for choice of k, and complete specification of all uncertainty components, u_i .

Simple Case

Component Analysis

- Just because you can think of an effect doesn't mean that the effect is present
 - Statistical analysis required
 - ANOVA can help
- An effect may be present in one experiment and not in another
- Effects may be embodied in other components

Example: LS Composition Effects

- Prepare two sets of six cocktails, each set having different cocktail composition (aqueous fraction, carrier concentration, etc.)
- Repeat for second radionuclide
- Compare within-measurement and betweenmeasurement variabilities to determine presence of effect.
- ANOVA

Example: Test for Composition Effect

Nuclide X

0.3 (0.25 %) 0.2 (0.19 %)

Nuclide Y

1.1 (0.21 %) 1.5 (0.28 %)

Trial	C_A , Comp. A	C_A ,Comp. B	Trial	C_A , Comp. A	C_A ,Comp. B
1	122.6	124.1	1	523.1	523.4
2	123.4	124.5	2	520.3	519.8
3	123.1	124.6	3	521.6	522.1
4	122.8	124.3	4	522.1	523.3
5	123.3	124.7	5	522.4	521.2
6	123.2	124.2	6	520.5	523.5
Mean	123.1	124.4	Mean	521.7	522.2

ANOVA Analysis

Nuclide X

122.6	124.1	Anova: Single Factor	•					
123.4	124.5							
123.1	124.6	SUMMARY						
122.8	124.3	Groups	Count	Sum	Average	Variance		
123.3	124.7	Column 1	6	738.4	123.0667	0.094667		
123.2	124.2	Column 2	6	746.4	124.4	0.056		
		ANOVA						
		Source of Variation	SS	df	MS	F	P-value	F crit
		Between Groups	5.333333	1	5.333333	70.79646	7.55E-06	4.96459)
		Within Groups	0.753333	10	0.075333			
		Total	6.086667	11				

Composition effect present (95 % confidence)

ANOVA Analysis, cont'd

Nuclide Y

523.1	523.4	Anova: Single Factor						
520.3	519.8							
521.6	522.1	SUMMARY						
522.1	523.3	Groups	Count	Sum	Average	Variance		
522.4	521.2	Column 1	6	3130	521.6667	1.202667		
520.5	523.5	Column 2	6	3133.3	522.2167	2.221667		
		ANOVA						
		Source of Variation	SS	df	MS	F	P-value	F crit
		Between Groups	0.9075	1	0.9075	0.53003	0.483293	4.964591
		Within Groups	17.12167	10	1.712167			
		Total	18.02917	11				

No composition effect present (95 % confidence)

Two-Phototube Coincidence Liquid Scintillation Counting with the CIEMAT/NIST Efficiency Tracing Method

$$\varepsilon = \int_{0}^{\text{Emax}} \left\{ 1 - \exp\left[-M^{-1}EQ(E)W(E)\right] \right\}^{2} P(Z, E) dE \times \left(\int_{0}^{\text{Emax}} P(Z, E) dE\right)^{-1}$$

$$\varepsilon = f(M)$$

CIEMAT/NIST Efficiency Tracing Method

- Prepare chemically-matched LS cocktails of ³H and nuclide of interest over some quenching range.
- Experimental ³H efficiency is used to determine a "Figure of Merit", *M*, which is used to calculate the efficiency of nuclide of interest.

CIEMAT/NIST Efficiency Tracing Method

Conclusion

- We have developed a model for analyzing uncertainties encountered using the CIEMAT/NIST efficiency tracing method.
- Model is consistent with ISO Guide to Expression of Uncertainty in Measurement.
- Present model neglects correlated effects
- Model can evolve as more data are collected.