

Exame Nacional do Ensino Secundário 2012

- 2.ª FASE -

DOCUMENTO GAVE

DISCIPLINA: MATEMÁTICA A _ PROVA 635

Grupo II

Item 1.1. (15 pontos)

<u>Situação 1</u>: O examinando escreve apenas $i^{4n-6} = -1$

<u>Classificação proposta:</u> 1(1(0+0+1)+0+0)+0

Situação 2: O examinando escreve $i^{4n-6}=i^{-6}=-1$, calcula $2cis\left(-\frac{\pi}{6}\right)$ na forma algébrica, obtém o numerador na forma algébrica e calcula $\frac{-i}{2cis\left(\frac{\pi}{5}\right)}$ na forma trigonométrica.

Classificação proposta: 15

forma trigonométrica e efetua corretamente as divisões na forma trigonométrica.

Classificação proposta: 3 (3+0+0)+6

Item 1.2. (15 pontos)

Situação 1: O examinando escreve $z_2 = cis\left(\alpha + \frac{\pi}{2}\right) = i\,cis\alpha$, resolve corretamente e conclui o pretendido (a imagem geométrica de $z_1 + z_2$ pertence ao 2.º quadrante).

Classificação proposta: 15 (CG4)

Adaptação do critério específico

Escrever $z_1 + z_2 = cis\alpha + cis(\alpha + \frac{\pi}{2})$	1 ponto
Escrever $cis(\alpha + \frac{\pi}{2}) = cis\alpha \times cis(\frac{\pi}{2})$	2 pontos
Escrever $cis\left(\frac{\pi}{2}\right) = i$	1 ponto
Escrever $z_1 + z_2 = cis\alpha + i cis\alpha$	1 ponto
Obter $z_1 + z_2 = cis\alpha (1+i)$	1 ponto
Escrever $1 + i = \sqrt{2} \operatorname{cis} \left(\frac{\pi}{4} \right)$	1 ponto
Obter $z_1 + z_2 = \sqrt{2} cis \left(\alpha + \frac{\pi}{4}\right)$	2 pontos
Concluir que, se $\alpha \in \left] \frac{\pi}{4}, \frac{\pi}{2} \right[\text{ então } \alpha + \frac{\pi}{4} \in \left] \frac{\pi}{2}, \frac{3\pi}{4} \right[\dots \right]$	4 pontos
Concluir que $\alpha + \frac{\pi}{4}$ pertence ao 2.ºquadrante	1 ponto
Concluir o pretendido	1 ponto

Item 2.1. (15 pontos)

<u>Situação 1</u>: O examinando utiliza um arredondamento incorreto, escreve, por exemplo, $P(5,7 < Y < 7,3) \approx 0.9$, escreve a expressão que dá o valor pedido e calcula o valor pedido.

Classificação proposta: 14 (CG13)

<u>Situação 2</u>: O examinando escreve, por exemplo, P(5,7 < Y < 7,3) = 0,4, e utiliza esse valor para determinar o valor aproximado da probabilidade pedida.

Classificação proposta: 0(CG11)+8+2

Item 3. (15 pontos)

<u>Situação</u> 1: O examinando conclui o pretendido, utilizando a propriedade $P(\overline{A \cap B} | B) = 1 - P(A \cap B | B)$

Classificação proposta: 15 (CG4)

Adaptação do critério específico

A resposta do examinando deve incluir os pontos seguintes.

•
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 ou $P(A \cap B \mid B) = \frac{P((A \cap B) \cap B)}{P(B)}$

•
$$P(\overline{A \cap B} | B) = 1 - P(A \cap B | B)$$

•
$$(A \cap B) \cap B = A \cap B$$

Níveis	Descritores do nível de desempenho no domínio específico da disciplina	Pontuação
4	A resposta apresenta corretamente os três pontos e a conclusão pretendida.	15
3	A resposta apresenta corretamente os três pontos, mas não apresenta a conclusão pretendida	11
2	A resposta apresenta corretamente apenas dois dos três pontos.	7
1	A resposta apresenta corretamente apenas um dos três pontos.	3

<u>Situação 2</u>: O examinando escreve $P(\overline{A \cap B} \cap B) = P(B) - P(A \cap B)$, ilustrando com um Diagrama de Venn, e conclui o pretendido.

<u>Classificação proposta:</u> 15 (CG4)

Adaptação do critério específico

A resposta do examinando deve incluir os pontos seguintes.

•
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 ou $P(\overline{A \cap B} \mid B) = \frac{P(\overline{A \cap B} \cap B)}{P(B)}$

•
$$P(\overline{A \cap B} \cap B) = P(B) - P(A \cap B)$$

Níveis	Descritores do nível de desempenho no domínio específico da disciplina	Pontuação
3	A resposta apresenta corretamente os dois pontos e a conclusão pretendida.	15
2	A resposta apresenta corretamente os dois pontos, mas não apresenta a conclusão pretendida.	11
1	A resposta apresenta corretamente apenas um dos dois pontos.	3

EMAIL: gave-direcao@gave.min-edu.pt • SITE: www.gave.min-edu.pt

Item 4.3. (20 pontos)

<u>Situação 1</u>: O examinando escreve $g'(x) = -\frac{e^{4x}}{x}$, determina g'', estuda a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Classificação proposta: 20 (CG4)

Adaptação do critério específico

Obter $g'(x) = -\frac{e^{4x}}{x}$	3 pontos
Escrever $g''(x) = \left(-\frac{e^{4x}}{x}\right)'$	1 ponto
Determinar g"	8 pontos
Escrever $\frac{(-e^{4x})'x - (-e^{4x})x'}{x^2}$	
Determinar $(-e^{4x})'$	
Determinar $(x)'$	
Obter g''	
Estudar a função g quanto ao sentido das concavidades do	
seu gráfico	6 pontos
Concluir que o gráfico de g tem um ponto de inflexão	

<u>Situação 2</u>: O examinando determina corretamente g'', estuda a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão, recorrendo a um quadro.

Classificação proposta: 20 (CG4)

Adaptação do critério específico

Determinar g"	12 pontos
Estudar a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão, recorrendo a um quadro	
Preencher a primeira linha do quadro (relativa à variável x , de acordo com o domínio da função)	
Indicar o sinal de g''	
Relacionar o sinal de g'' com o sentido da concavidade do gráfico de g	
Concluir que o gráfico de g tem um ponto de inflexão 2 pontos	

Item 5. (15 pontos)

<u>Situação 1</u>: O examinando reproduz a bissetriz dos quadrantes pares e parte do gráfico da função $h(x) = e^x + \ln(x^2) + 3$ de domínio $IR \setminus \{0\}$, assinala dois pontos de interseção, um ponto A no 2.º quadrante e um ponto B no 4.º quadrante, indica as coordenadas dos pontos com arredondamento às centésimas e apresenta o valor da distância entre os pontos assinalados.

<u>Classificação proposta:</u> 3(1+2)+1+1+0+1+1+5

<u>Situação 2</u>: O examinando reproduz a bissetriz dos quadrantes ímpares e parte do gráfico da função $h(x) = e^x + \ln(x^2) + 3$ de domínio $IR \setminus \{0\}$, assinala dois pontos de interseção, um ponto A no 1.º quadrante e um ponto B no 3.º quadrante, indica as coordenadas dos pontos com arredondamento às centésimas e apresenta o valor da distância entre os pontos assinalados.

<u>Classificação proposta:</u> 1(1+0)+1+0+1+1+1+5

Item 6.2 (15 pontos)

<u>Situação 1</u>: O examinando obtém $tg x = \frac{11}{16}$, refere que a função tangente é contínua em

 $\left[\frac{\pi}{12}, \frac{\pi}{5}\right]$ e mostra, recorrendo ao teorema de Bolzano, que existe um valor de x compreendido

entre
$$\frac{\pi}{12}$$
 e $\frac{\pi}{5}$ para o qual $tg x = \frac{11}{16}$

Classificação proposta: 15 (CG4)

Adaptação do critério específico

Escrever $a(x) = 5$	1 ponto
Obter $tg x = \frac{11}{16}$	1 ponto
Calcular $tg\left(\frac{\pi}{12}\right)$	2 pontos
Calcular $tg\left(\frac{\pi}{5}\right)$	2 pontos
Escrever $tg\left(\frac{\pi}{12}\right) < \frac{11}{16} < tg\left(\frac{\pi}{5}\right)$ (ou equivalente)	4 pontos
Referir que a função tangente é contínua	3 pontos
Concluir o pretendido, referindo o teorema de Bolzano	2 pontos

EMAIL: gave-direcao@gave.min-edu.pt • SITE: www.gave.min-edu.pt