ZIMSKI ISPITNI ROK IZ DIGITALNE LOGIKE

Grupa C

1.	Što od sljedećeg ne vrijedi?							
	a) $A + AB = A$	c) $A \cdot (A + B)$	B(S) = A	e) $AB + A$	$\overline{B} = A$			
	b) $(\overline{A} + B) \cdot (A + \overline{B}) = A$	d) $(A+B)$	$(A + \overline{B}) = A$		navedenoga			
2.	Prijemnik je s komunikacijskog kanala očitao niz bitova 00110101000110100. Označimo poziciju najlijevijeg bita s 1, sljedeću s 2, itd. Ako je poznato da sustavi međusobno komuniciraju razmjenjujući poruke zaštićene Hammingovim kodom uz parni paritet, što možemo zaključiti iz primljenog niza bitova? Pretpostavlja se da nije moguća pojava više od jedne pogreške.							
	a) pogreška je na mjestu 3 b) pogreška je na mjestu 12		e) pogreška	je na mjestu 9 je na mjestu 7				
3.	c) nije došlo do pogreške		f) ništa od r					
3.	Funkciju $f(A, B, C, D) = \sum m(0,1,3,8,11,12,13,15)$ potrebno je ostvariti u obliku minimalne sume							
	produkata i potom ukloniti sve hazarde koji se javljaju pri promjenama ulaza (uz ograničenje da se odjednom može promijeniti samo jedan ulaz). Koliko će u takvoj realizaciji funkcije preostati neiskorištenih primarnih implikanata?							
			d) 3	e) 7	f) ništa od navedenoga			
4.	Ternarno poluzbrajalo koristi sljedeći kod: $0=00$, $1=11$, $2=01$. Neka su ulazi sklopa označeni s x_1x_0 (prva znamenka) i y_1y_0 (druga znamenka) a izlazi r_1r_0 (znamenka rezultata) i c_{out} (prijenos). Koja od ponuđenil funkcija predstavlja $r_0(x_1,x_0,y_1,y_0)$?							
	a) $\sum m(1,3,4,5,12,15) + \sum d(2)$	2,6,8,9,10,11,14)	d) $\sum m(3,5,$	$7,11,14) + \sum d(2)$	2,4,8,9,13,15)			
	b) $\sum m(1,4,5,7,12,15) + \sum d(1,4,5,7,12,15)$	2,6,8,9,10,11,14)	e) $\sum m(2,3,$	$8,10,12,14) + \sum_{i=1}^{n} a_{i}$	d(1,4,5,6,7,9,13)			
	c) $\sum m(1,5,8) + \sum d(3,7,13,14)$	1,15)	f) ništa od na	avedenoga				
5.	Zadana je funkcija $f(A,B,C,D) = B(\overline{A}\overline{C} + A\overline{D}) + \overline{A}\overline{B} + \overline{B}C$. Njezinu dualnu funkciju želimo ostvarit jednim sklopom I te <u>minimalno potrebnim</u> brojem sklopova ILI (broj ulaza sklopova može biti proizvoljan). Koliko sklopova ILI trebamo?							
	a) 0 b) 2	c) 1	d) 3	e) 4	f) ništa od navedenoga			
6.	Hammingovim kôdom uz neparni paritet potrebno je štititi 8-bitni podatak. Koliko takav kod može ispraviti pogrešaka te koliko iznosi redundancija kodiranja? U ponuđenim odgovorima su postotci zaokruženi na najbliži cijeli broj.							
	a) 2; 33% b) 1; 67%	c) 1; 33%	d) 2; 67%	e) 3; 50%	f) ništa od navedenoga			
7.	Kombinacijski sklop izgrađen je od binarnog dekodera $2/4$ te multipleksora $4/1$. Izlazi dekodera o_0 , o_1 , o i o_3 spojeni su na podatkovne ulaze multipleksora d_0 , d_1 , d_2 i d_3 (tim redoslijedom). Adresni ulazi a_1 dekodera i multipleksora spojeni su zajedno i na njih je dovedena varijabla A . Adresni ulazi a_0 dekodera multipleksora spojeni su zajedno i na njih je dovedena varijabla B . Funkcija f očitava se na izlazu multipleksora. Odredite $f(A,B)$.							
	a) \overline{A} b) 0	c) \overline{B}	d) 1	e) $A \oplus B$	f) ništa od navedenoga			
8.	Za neku porodicu logičkih sklo potrebno je odabrati onu vrijed na ulazu biti maksimalni. Kolik	nost uz koju će	granica istosmj	erne smetnje te š	sirina zabranjenog područja			
	a) 3,3V b) 1,4V	c) 2,7V	d) 3V	e) 0,7V	f) ništa od navedenoga			

a) 1

b) 5

c) 4

d) 2

e) 10

f) ništa od navedenoga

24.02.2010.	FARULIEIE	LEKTROTEHNIKE	IKACUNAKSIVA	A ZIR/C-2			
Za dvije skupine logičkih sklopova P_1 i P_2 poznati su podaci prikazani u tablici. Označimo s n_1 faktor grananja skupine P_1 , s n_2 faktor grananja skupine P_2 , te s n_{2-1} faktor grananja prilikom priključenja ulaza sklopova skupine P_2 na izlaz sklopa skupine P_1 . Vrijedi: $n_1/n_2/n_{2-1}$ =							
	I _{OL} [mA]	$I_{IL}[\mu A]$	I _{OH} [μA]	I _{IH} [μA]			
P1	16	1600	200	20			
P2	8	400	400	20			
7			,	f) ništa od navedenoga			
U novoj izvedbi digitalnog sklopa napon napajanja smanjen je za 10%. Ako ukupnu dinamičku disipaciju smijemo povećati za 8%, koliko najviše smijemo povisiti frekvenciju rada sklopa? Ponuđena su rješenja s točnosti ±1%.							
a) 10% b)	50% c) 33	% d) 75%	e) 100%	f) ništa od navedenoga			
Booleovu funkciju $f = (A + BC)(\overline{D} + \overline{E})F$ potrebno je ostvariti tehnologijom CMOS uz minimalni utrošak tranzistora. Koliko je u takvoj realizaciji potrebno p-kanalnih MOSFET-a?							
a) 6 b)	12 c) 10	d) 9	e) 8	f) ništa od navedenoga			
Zadane su tri funkc	ije od <i>A</i> , <i>B</i> , <i>C</i> i <i>D</i> :	$f_1 = \sum m(2,10,13,15)$	$f_2 = \sum m(5,6,7,14)$	·) i			
$f_3 = \sum m(2,5,6,7,10,13,14,15)$. Koje su minimalne dimenzije PLA sklopa tipa NI-NI kojim možemo							
	2	6×3 d) 4×5×3	e) 4×4×3	f) ništa od navedenoga			
Uporabom trobitnog posmačnog registra (serijski ulaz S_{in} , izlazi Q_2 , Q_1 , Q_0 ; smjer posmaka $Q_2 \rightarrow Q_0$) i minimalno potrebnog broja osnovnih logičkih sklopova izgrađen je sekvencijski sklop koji generira ciklus 0 , 4 , 2 , 1 . Nespecificirana stanja riješena su tako da sklop u minimalnom broju koraka uđe u ciklus. Odredite funkciju $S_{in}(Q_2,Q_1,Q_0)$.							
a) $\overline{Q}_2Q_1\overline{Q}_0$ b)	$\overline{Q}_2\overline{Q}_1\overline{Q}_0$ c) Q	$Q_2 + Q_1 \overline{Q}_0$ d) $\overline{Q}_2 \overline{Q}_1 + Q_1 \overline{Q}_1$	$-Q_0$ e) $\overline{Q}_2 + \overline{Q}_1$	f) ništa od navedenoga			
Jednostavna kućna meteorološka postaja opremljena je senzorom za temperaturu te senzorom za tlak. Na temelju tih senzora generiraju se četiri signala (aktivna u 1): TH ako je temperatura previsoka, TL ako je temperatura preniska, PH ako je tlak previsok, PL ako je tlak prenizak. Želimo dodati lampicu koja će svijetliti bilo kada je PH različito od PL ili kada je TH različito od TL. Odredite minimalni kombinacijski sklop u najviše dvije razine logike koji će upravljati žaruljicom (svijetlit će kada je izlaz tog sklopa u 1). Obratite pažnju na situacije koje nisu moguće i iskoristite ih pri minimizaciji. Pretpostavite da na raspolaganju imate signale PH, PL, TH, TL i njihove komplemente. Trebamo: a) 5 I + 1 ILI b) 1 I c) 1 ILI d) 1 I+4 ILI e) 1 I + 3 ILI f) ništa od navedenoga							
			L0 · · · · • •	•••• L9			
tih 10 žaruljica želi su upaljene, zatamn	mo dobiti cikličku	izmjenu uzoraka koj	i su prikazani na slic	ci (desno; svijetle žaruljice			
	Za dvije skupine log grananja skupine Presklopova skupine Presklo	Za dvije skupine logičkih sklopova P_1 grananja skupine P_1 , s n_2 faktor granar sklopova skupine P_2 na izlaz sklopa sklopova skupine P_2 na izlaz sklopa sklopova skupine P_2 na izlaz sklopa sklopa sklopa P_1	Za dvije skupine logičkih sklopova P_1 i P_2 poznati su poda grananja skupine P_1 , s P_2 faktor grananja skupine P_2 , te s P_2 sklopova skupine P_2 na izlaz sklopa skupine P_1 . Vrijedi: P_1	Za dvije skupine logičkih sklopova P_1 i P_2 poznati su podaci prikazani u tablici grananja skupine P_1 , s n_2 faktor grananja skupine P_2 , te s $n_{2,1}$ faktor grananja pr sklopova skupine P_1 , s n_2 faktor grananja pr sklopova skupine P_1 . Vrijedi: $n_1/n_2/n_{2,1} = \frac{I_{OL} [mA]}{P_1} \frac{I_{OL} [mA]}{I_0} \frac{I_{IL} [\mu A]}{I_{OH} [\mu A]} \frac{I_{OH} [\mu A]}{I_{OH} [\mu A]} \frac{I_{OH}$			

16.	Neka se kao osnova za realizaciju automata <i>iz prethodnog zadatka</i> koristi 4-bitno prstenasto brojilo (izlazi su Q ₀ do Q ₃) sa sigurnim startom. Po uključenju sklopa na napajanje prvi se aktivira izlaz Q ₀ (postaje 1), a automat treba na izlazima generirati prvi prikazani uzorak (na slici uz prethodni zadatak prvi uzorak odozgo). Koju Booleovu funkciju ostvaruje sklop koji u automatu upravlja izlazom L8? Lampica će svijetliti kada je na izlazu tog sklopa 1. Napomena: lampice koje ne svijetle na prethodnoj su slici prikazane zatamnjeno.							
	a) $Q_1 + Q_3$	b) $Q_1Q_2 + Q_3$	c) $Q_2 + Q_3$	d) $Q_0 \oplus Q_3$	e) Q_1Q_3	f) ništa od navedenoga		
17.	Sekvencijski sklop izgrađen je od ROM-a 8×3 , 3-bitnog registra s paralelnim ulazima i izlazima te 3-bitnog binarnog zbrajala koje računa $R=N_1+N_2$. Izlazi registra $Q_2Q_1Q_0$ dovode se kao N_2 na zbrajalo te na adresne ulaze memorije (bit veće težine na ulaz veće težine). Izlaz memorije $d_2d_1d_0$ dovodi se kao N_1 na zbrajalo (bit veće težine na ulaz veće težine). Izlaz zbrajala R dovodi se kao paralelni ulaz registra (bit veće težine na ulaz veće težine). Skicirajte ovaj sklop! Sklop na izlazima registra treba ciklički generirati slijed $0\rightarrow3\rightarrow5\rightarrow2\rightarrow1\rightarrow7\rightarrow6\rightarrow4$. Sadržaj memorijskih lokacija 3, 4 i 5 je:							
						f) ništa od navedenoga		
18.	Uporabom 3 bistabila tipa T ostvarite brojilo koje na izlazima $Q_2Q_1Q_0$ ciklički generira slijed $0\rightarrow2\rightarrow4\rightarrow6\rightarrow1\rightarrow3\rightarrow5\rightarrow7$. Ulaz bistabila i je T_i a izlaz Q_i . Minimalni oblik funkcije koja se dovodi na T_0 glasi:							
	a) $Q_{21}\overline{Q}_1 + Q_0$	b) Q_2Q_1	c) $Q_1\overline{Q}_0$	d) $Q_0 \oplus Q_2$	e) $Q_1 + Q_2$	f) ništa od navedenoga		
19.	Sinkrono dvobitno binarno brojilo (izlazi Q_1Q_0) spojeno je s dvobitnim asinkronim binarnim brojilom (izlazi $Q^*_1Q^*_0$) koje okida na padajući brid signala takta na način da je Q_0 doveden kao njegov ulaz. Označimo vektor stanja takvog sustava (Q_1,Q_0,Q^*_1,Q^*_0); promatrajmo lijevi bit kao bit najveće težine. Uključenjem na napajanje svi se bistabili postavljaju u 0. Dio ciklusa u kojem broji takav sustav je:							
	a) 15,6,11	b) 9,13,2	c) 9,4,13	d) 5,6,7	e) 11,6,15	f) ništa od navedenoga		
20.	Asinkrono binarno brojilo <u>unatrag</u> sastoji se od 4 bistabila T koji imaju asinkrone ulaze za postavljanje i brisanje a koji se aktiviraju logičkom 1. Asinkroni ulazi za postavljanje bistabila B_0 i B_2 spojeni su na signal X , a bistabila B_1 i B_3 spojeni su na logičku 0 . Asinkroni ulazi za brisanje bistabila B_1 i B_3 spojeni su na signal X , a bistabila B_0 i B_2 na logičku 0 . Koju funkciju treba obavljati signal X kako bi brojilo radilo u ciklusu s Y 0 stanja? Izlazi bistabila označeni su s Y 1 su signal Y 2 stanja? Izlazi bistabila označeni su s Y 3 su signal Y 4 sako bi brojilo radilo u ciklusu s Y 4 stanja? Izlazi bistabila označeni su s Y 5 stanja?							
	a) $Q_3\overline{Q}_2\overline{Q}_1\overline{Q}_0$	b) $\overline{Q}_3Q_2\overline{Q}_1Q_0$	c) $Q_3\overline{Q}_2Q_1Q_0$	d) $Q_3\overline{Q}_2Q_1\overline{Q}_0$	e) $Q_3Q_2\overline{Q_1}\overline{Q_0}$	f) ništa od navedenoga		
21.	Konstruiran je težinski D/A pretvornik temeljen na operacijskom pojačalu, za kôd s težinama 4321. Poznato je U_{REF} =10V, da broju $a_3a_2a_1a_0$ =0011 odgovara izlazni napon -3V, te da je otpor u težinskoj mreži uz znamenku a_1 5k Ω . Izračunati iznos otpora R_F .							
	a) $1 \text{ k}\Omega$		c) $5 \text{ k}\Omega$		e) 7,5 kΩ f) ništa od n	agyadanoga		
22	b) 10 kΩ	a ga assa	d) 20 kΩ					
22.	Na raspolaganju je dinamička memorija čija je organizacija 2 ½ D. Poznato je da dekoder retka ima 4 adresna ulaza, a demultipleksor stupca 3 adresna ulaza. Ako je duljina fizičke riječi 64 bita, o kojoj se memoriji radi?							
	a) 4x3		c) 128x8		e) 64x8			
	b) 16x8		d) 16x64		f) ništa od n	avedenoga		

Ako se rješavaju, sljedeća dva zadatka <u>moraju biti riješena u unutrašnjosti košuljice</u>, kako je napisano uz svaki od zadataka (ili se neće bodovati). Zadatci se boduju jednako kao i prethodni zadatci (ali nema negativnih bodova). Zadatak mora imati prikazan postupak te konačno rješenje.

Zadatak 23. Riješiti na unutrašnjosti košuljice, s lijeve strane.

Napišite ponašajni VHDL model binarnog poluzbrajala (ha). Potom uporabom tog modela napišite strukturni VHDL model potpunog binarnog zbrajala (fa).

Zadatak 24. Riješiti na unutrašnjosti košuljice, s desne strane.

Napišite ponašajni model sinkronog, padajućim bridom okidanog bistabila (bb) čiji su osnovni ulazi A i B, izlazi Q i \overline{Q} a jednadžba promjene stanja $Q^{n+1} = A\overline{Q}_n + \overline{B}$. Bistabil ima dodatni asinkroni ulaz R za brisanje, koji djeluje visokom razinom. Nije dopuštena uporaba internih signala te ključne riječi INOUT.