MODULE THREE: DETERMINING CAUSE AND MAKING RELIABLE FORECASTS

TOPIC 8: SIMPLE LINEAR REGRESSION

Learning Objectives

At the completion of this topic, you should be able to:

- conduct a simple regression and interpret the meaning of the regression coefficients b₀ and b₁
- use regression analysis to predict the value of a dependent variable based on an independent variable
- assess the adequacy of your estimated model
- evaluate the assumptions of regression analysis
- make inferences about the slope and correlation coefficient
- estimate confidence intervals
- comprehend the pitfalls in regression and ethical issues

+Introduction to Regression Analysis

Recall: Correlation Analysis (Topic 3)

Example: Job satisfaction vs productivity

Regression analysis is used to:

- predict the value of a dependent variable (Y) based on the value of at least one independent variable (X)
- explain the impact of changes in an independent variable on the dependent variable e.g. Productivity (Y) Vs Training (X)

Dependent variable (Y): the variable we wish to predict or explain (response variable)

Independent variable (X): the variable used to explain the dependent variable (explanatory variable)

+12.1 Types of Regression Models

Simple Linear Regression Model

+12.1 Types of Regression Models

Simple Linear Regression Model (= Regression Equation)

+12.1 Types of Regression Models

(cont)

Figure 12.2

Examples of types of relationships found in scatter diagrams

No Relationship Linear relationship (Positive/Negative) Non-linear Relationship

+Simple Linear Regression

Simple linear regression:

- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are <u>assumed to be caused</u> by changes in X

8

+12.2 Simple Linear Regression

Equation

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

The simple linear regression equation provides an estimate of the population regression line

+Simple Linear Regression

Example:

A manager of a local computer games store wishes to:

- examine the relationship between weekly sales (Y) and the number of customers making purchases (X) over a 10 week period; and
- use the results of that examination to predict future weekly sales
 - Y weekly sales
 - X number of customers

Weekly sales in \$1,000s (Y)	Number of Customers (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Weekly sales model: scatter plot

	Α	В	С	D	Е	F	G
1	Regression Statistics						
2	Multiple R	0.762113713		The reg	gression equa	tion is:	
3	R Square	0.580817312	XX 11	1 00.0	4022 . 0.100	277 / 4	\
4	Adjusted R Square	0.528419476	Weekly	sales = 98.2	4833 + 0.109	977 (customers)
5	Standard Error	41.33032365					
6	Observations	10					
7							
8	ANOVA						
9		df	ss /	MS/	F	Significance F	
10	Regression	1	18934.93 <i>4</i> 78	18934.93478	11.08475762	0.010394016	
11	Residual 🗘	8	13665,56522	<i>17</i> 08.195653			
12	Total	9	32600.5				
13							
14		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541

Weekly sales model: scatter plot and regression line

Weekly sales = 98.24833 + 0.10977 (customers)

```
Weekly sales = 98.24833 + 0.10977 (customers)
```

 b_0 is the <u>estimated average value</u> of Y when the value of X is zero (if X = 0 is in the range of observed X values)

• Here, for no customers, b_0 = 98.2483 which appears nonsensical. However, the intercept simply indicates that over the sample size selected, the portion of weekly sales not explained by number of customers is \$98,248.33. Also note that X=0 is outside the range of observed values

b₁ measures the <u>estimated change in the average value</u> of Y as a result of a <u>one-unit change</u> in X

• Here, $b_1 = .10977$ tells us that the average value of weekly sales increases by .10977(\$1,000) = \$109.77, on average, for each additional customer

Predict the weekly sales for the local store for **2,000** customers:

```
Weekly sales = 98.25 + 0.1098 (2000)
= 98.25 + 0.1098(2000)
= 317.85
```

The predicted weekly sales for the local computer games store for 2,000 customers is 317.85 (\$1,000s) = \$317,850

+The Least-Squares Method

 β_0 and β_1 are obtained by finding the values of b_0 and b_1 that minimise the sum of the squared differences between actual values (Y) and predicted values (\hat{Y})

min
$$\sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

b₀ is the <u>estimated average value of Y</u> when the value of X is zero

b₁ is the <u>estimated change in the average value of Y</u> as a result of a <u>one-unit</u> <u>change</u> in X

+The Least-Squares Method

Figure 12.5

Microsoft Excel scatter diagram and prediction line for the Human Development Index data

Microsoft® product screen shots are reprinted with permission from Microsoft Corporation.

+Predictions in Regression Analysis: Interpolation versus Extrapolation

When using a regression model for prediction, only predict within the relevant range of data

+12.3 Measures of Variati

Total variation is made up of two parts:

$$SST = SSR + SSE$$

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (Y_i - \overline{Y})^2$$

$$SSR = \sum (\hat{Y_i} - \overline{Y})^2$$

$$SSE = \sum (Y_i - \hat{Y_i})^2$$

Measures the variation of the Y_i values around their mean Y

Explained variation attributable to the relationship between X and Y

Variation attributable to factors other than the relationship between X and Y

+The Coefficient of Determination, r²

The Coefficient of Determination (r^2) is equal to the regression sum of squares (i.e. the explained variation) divided by the total sum of squares (i.e. the total variation)

$$r^2$$
 = regression sum of squares = $\frac{SSR}{SST}$

It measures the proportion of the variation in Y that is explained by the Independent variable X in the regression model

+The Coefficient of Determination, r² (Cont)

- Perfect linear relationship between X and Y
- 100% of the variation in Y is explained by variation in X

- No linear relationship between X and Y
- The value of Y does not depend on X (none of the variation in Y is explained by variation in X)

+The Coefficient of Determination, r^2 (Cont)

 $0 < r^2 < 1$

Moderate/Weaker linear relationships between X and Y:

Some, but not all, of the variation in Y is explained by variation in X

+The Coefficient of Determination, r² (Cont)

	А	В	С	D	Е	F	G	
1	Regression Statistics							
2	Multiple R	0.762113713	SSF	R _ 18934.9	$\frac{9348}{348} = 0.58$	USO		-
3	R Square	0.580817312		$\Gamma = \frac{1}{32600.5}$		002		
4	Adjusted R Square	0.528419476	/					
5	Standard Error	41.33032365		58 08% of	the variation i	n weekly sales is		About 42% is
6	Observations	10				number of cust		explained by other
7				oxpiailled i	y variation in	Trainibol of cas	Comors	factors
8	ANOVA							
9		df	/ ss	MS	F	Significance F		
10	Regression	1	18934.93478	18934.93478	11.08475762	0.010394016		_
11	Residual	8	13665.56522	1708.195653				
12	Total	9	32600.5					
13								
14		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711	
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541	

+Standard Error of the Estimate

The standard deviation of the variation of observations around the regression line is estimated by:

$$S_{YX} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}}$$

Where:

SSE = error sum of squares n = sample size

+Standard Error of the Estimate (Cont)

Excel Output:

+Standard Error of the Estimate - Comparing Standard Errors

 $S_{\gamma\chi}$ is a measure of the variation of observed Y values from the regression line

The magnitude of S_{YX} should <u>always be judged relative</u> to the size of the Y <u>values</u> in the sample data

i.e. S_{YX} = \$41.33K is moderately small relative to weekly sales in the \$200K - \$300K range

+12.4 Assumptions

Use the acronym LINE:

Linearity

The underlying relationship between X and Y is linear

Independence of errors

Error values are statistically independent

Normality of error

Error values (ε) are normally distributed for any given value of X

Equal variance (homoscedasticity)

The probability distribution of the errors has constant variance

+12.5 Residual Analysis

The residual for observation i, e_i , is the difference between its observed and predicted value $e_i = Y_i - \hat{Y}_i$

Check the assumptions of regression by examining the residuals:

- Examine for linearity assumption
- Evaluate independence assumption
- Evaluate normal distribution assumption
- Examine for constant variance for all levels of X (homoscedasticity)

Graphical Analysis of Residuals

Can plot residuals vs. X

+12.5 Residual Analysis for Linearity

+12.5 Residual Analysis for Independence

+12.5 Residual Analysis for Normality

A normal probability plot of the residuals can be used to check for normality:

+12.5 Residual Analysis for Equal Variance (Homoscedasticity)

+12.5 Residual Analysis – Excel Residual Output

	RESIDUAL OUTPUT							
	Predicted Weekly Sales	Residuals						
1	251.92316	-6.923162						
2	273.87671	38.12329						
3	284.85348	-5.853484						
4	304.06284	3.937162						
5	218.99284	-19.99284						
6	268.38832	-49.38832						
7	356.20251	48.79749						
8	367.17929	-43.17929						
9	254.6674	64.33264						
10	284.85348	-29.85348						

Does not appear to violate any regression assumptions

+12.7 Inferences About the Slope

The standard error of the regression slope coefficient (b₁) is estimated by:

$$\left|S_{b_1}\right| = \frac{S_{YX}}{\sqrt{SSX}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

where:

 S_{b_1} = Estimate of the standard error of the least squares slope

$$S_{YX} = \sqrt{\frac{SSE}{n-2}}$$
 = Standard error of the estimate

+12.7 Inferences About the Slope – Excel Output

	A	В	С	D	Е	F	G
1	Regression Statistics						
2	Multiple R	0.762113713					
3	R Square	0.580817312				~~	
4	Adjusted R Square	0.528419476		$b_{b_1} = 0$	1 (132	9/	
5	Standard Error	41.33032365		′b₁).UUL	.01	
6	Observations	10		<u> </u>			
7				1			
8	ANOVA						
9		df	SS	<i>n</i> /is	F	Significance F	
10	Regression	1	18934.93478	1893/4.93478	11.08475762	0.010394016	
11	Residual	8	13665.56522	1708.195653			
12	Total	9	32600.5				
13							
14		Coefficients	Standard Error	/ t Stat	P-value	Lower 95%	Upper 95%
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541

+t Test for the Slope (β_1)

t test for a population slope

Is there a linear relationship between X and Y?

Null and alternative hypotheses:

 H_0 : $\beta_1 = 0$ (no linear relationship)

 H_1 : $\beta_1 \neq 0$ (linear relationship does exist)

Test statistic with d.f. = n-2

$$t = \frac{b_1 - \beta_1}{S_{b_1}}$$

Where: b_1 = regression slope coefficient

 β_1 = hypothesised slope (population)

S_b = standard error of the slope

+t Test for the Slope (β_1)

Weekly sales = 98.25 + 0.1098 (customers)

 $H_0: \beta_1 = 0$

 H_1 : $\beta_1 \neq 0$

The slope of this model is 0.1098 Does number of customers affect weekly sales?

Coefficients Standard Error t Stat P-value		b_1	S	S _{b1}			
Intercept 98.24833 58.03348 1.69296 0.12892 Number of				3	1		
Number of		Coeffi	cients		Frror	t Stat	P-value
	Intercept	98	3.24833		\$8.03348	1.69296	0.12892
customers 0.10977 0.03297 3.32938 0.01039	Number of		1		+	,	
	customers		0.10977		0.03297	3.32938	0.01039

P-value = 0.01039

 $\alpha = 0.05$

P-value $< \alpha$

 $t = \frac{b_1 - \beta_1}{S_{b_1}} = \frac{0.10977 - 0}{0.03297} = 3.32938$

P-value Approach

If P-value $< \alpha$, reject H₀ If P-value $> \alpha$, fail to reject H₀ **Decision:** Reject H₀

Conclusion: There is sufficient

evidence that number of customers

affects weekly sales

+t Test for the Slope (β_1)

 H_0 : $\beta_1 = 0$

 H_1 : $\beta_1 \neq 0$

Critical value Approach

If t test statistic < -t $_{\alpha/2}$ or t test statistic > t $_{\alpha/2}$, reject H $_0$ Otherwise, fail to reject H $_0$

t Test Statistic: t = 3.329

t critical values = +/-2.3060 (from t tables)

Decision: Reject H₀

Conclusion: There is

sufficient evidence that

number of customers affects

weekly sales

+F Test for Significance

F Test statistic

$$F = \frac{MSR}{MSE}$$
 where:
$$MSR = \frac{SSR}{k}$$

$$MSE = \frac{SSE}{n-k-1}$$

F follows an F distribution with k numerator and (n - k - 1) denominator degrees of freedom (Table E.5)

k = the number of independent (explanatory) variables in the regression model

+*F* Test for Significance – Excel Output

	А	В	С	D	Е	F	G
2	Multiple R	0.762113713					
3	R Square	0.580817312	MS	SR 189	34.9348		
4	Adjusted R Square	0.528419476	 - =	=_		= 11.0848	
5	Standard Error	41.33032365	M:	SE 170	08.1957		
6	Observations	10			1		
7 _			With 1 and 8 de	grees of freedo	m	P-value	for the F Test
8	ANOVA		7				1
9		df /	ss	MS	/ F	Significance F	/
10	Regression	1 /	18934.93478	18934.93478	11.08475762	0.010394016	
11	Residual	8 ′	13665.56522	1708.195653			
12	Total	9					
13							
14		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541

+F Test for Significance - Example

$$H_0: \beta_1 = 0$$
 $H_1: \beta_1 \neq 0$
 $\alpha = .05$
 $df_1 = 1$
 $df_2 = 8$

Critical Value: $F_a = 5.32$

F Test Statistic:

$$F = \frac{MSR}{MSE} = 11.08$$

Conclusion:

Reject H_0 at $\alpha = 0.05$ There is sufficient evidence that number of customers affects weekly sales

Reject H₀

+Confidence Interval Estimation for the Slope (β_1) $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$ $b_1 \pm t_{n-2}S_{b_1}$ d.f. = n - 2 Excel Printout for Weekly sales:

$$b_1 \pm t_{n-2} S_{b_1}$$

	Coefficien ts	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Customers	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95% level of confidence, the confidence interval for the slope is (0.03374, 0.18580); i.e. we are 95% confident that the average impact on weekly sales is between \$33.74 and \$185.80 per customer

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between weekly sales and number of customers at the .05 level of significance

+t Test for the Correlation Coefficient

(-1 < r < 1) r is an estimate of the true correlation coefficient ρ

Hypotheses

 $H_1: \rho \neq 0$

no association (correlation) between X and Y

statistically significant association (correlation) exists

t Test statistic

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

where
$$\frac{1-r^2}{\sqrt{n-2}}$$

$$r = +\sqrt{r^2} \text{ if } b_1 > 0$$

$$r = -\sqrt{r^2} \text{ if } b_1 < 0$$

(with n - 2 degrees of freedom)

+t Test for the Correlation Coefficient(r) – Example

Is there evidence of a significant linear relationship between weekly sales and number of customers at the 5% level of significance?

Decision: Reject H_o **Conclusion:** There is evidence of a significant linear association at the 5% level of significance

+12.9 Pitfalls in Regression and Ethical Issues

- Lacking an awareness of the assumptions underlying leastsquares regression
- Not knowing how to evaluate the assumptions
- Not knowing the alternatives to least-squares regression if a particular assumption is violated
- Using a regression model without knowledge of the subject matter
- Extrapolating outside the relevant range (e.g. Height Vs Age)
- Concluding that a <u>significant relationship in observational</u> study is <u>due</u> to a <u>cause and effect</u> relationship

WORD OF WARNING!

Correlation Isn't Causation!

As ice cream sales increase, the rate of drowning deaths increases sharply.

Therefore, ice cream consumption causes drowning?!

This conclusion is wrong!

"a strong association is not a proof of causation"

EXERCISE: SALES VS ADVERTISING

A company has collected data over the last 10 years relating to its annual expenditure on advertising as well as its total sales (all figures scaled for inflation).

Sales (\$m)	30.2	37.3	29.9	35.2	35	33.5	36	31.1	34.1	36.9
Advertising (\$m)	0.5	1.2	0.6	1.1	1.8	1.4	1	0.7	0.7	1.3

Develop a regression model (Using Excel) and answer the following questions:

- •How well does the model predict sales?
- •Interpret b0 and b1.
- •At the 0.05 level of significance, is there a significant linear relationship between the sales and the expenditure on advertising?
- •What would you estimate sales to be when \$1m is spent on advertising?

Sales^ (\$Million) = 29.414 +4.375*Advertising = 29.414 +4.375*1 = \$33.789 m

Sales vs Advertising

Correlation coefficients

	Advertising\$m	Sales\$m
Advertising\$m	1	
Sales\$m	0.666	1

Regression output

 Regression
 Statistics

 Multiple R
 0.666

 R Square
 0.444

 Adj R Square
 0.374

 Standard Error
 2.136

 Observations
 10

Scatter diagram

H_o: There is no linear relationship between sales and Advertising H₁: There is a linear relationship between sales and Advertising

Sig F

0.035

df. SS MS F Regression 1 29.110 29.110 6.383 Residual 8 36.486 4.561

65.596

	Coefficients	St Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	29.414	1.907	15.423	0.000	25.016	33.812
Advertising\$m	4.375	1.732	2.526	0.035	0.382	8.368

ANOVA

Total