

planetmath.org

Math for the people, by the people.

rational sine and cosine

Canonical name RationalSineAndCosine Date of creation 2013-03-22 17:54:50

Last modified on 2013-03-22 17:54:50

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 8

Author pahio (2872)
Entry type Theorem
Classification msc 26A09
Classification msc 11D09
Classification msc 11A67

Related topic RationalPointsOnTwoDimensionalSphere

Related topic GreatestCommonDivisor

Related topic GeometricProofOfPythagoreanTriplet
Related topic RationalBriggsianLogarithmsOfIntegers

Related topic AlgebraicSinesAndCosines

Theorem. The only acute angles, whose sine and cosine are rational, are those determined by the Pythagorean triplets (a, b, c).

Proof. 1º. When the catheti a, b and the hypotenuse c of a right triangle are integers, i.e. they form a Pythagorean triplet, then the sine $\frac{a}{c}$ and the cosine $\frac{b}{c}$ of one of the acute angles of the triangle are rational numbers.

 2° . Let the sine and the cosine of an acute angle ω be rational numbers

$$\sin \omega = \frac{a}{c}, \quad \cos \omega = \frac{b}{d},$$

where the integers a, b, c, d satisfy

$$\gcd(a, c) = \gcd(b, d) = 1. \tag{1}$$

Since the square sum of sine and cosine is always 1, we have

$$\frac{a^2}{c^2} + \frac{b^2}{d^2} = 1. (2)$$

By removing the denominators we get the Diophantine equation

$$a^2d^2 + b^2c^2 = c^2d^2.$$

Since two of its terms are divisible by c^2 , also the third term a^2d^2 is divisible by c^2 . But because by (1), the integers a^2 and c^2 are coprime, we must have $c^2 \mid d^2$ (see the corollary of Bézout's lemma). Similarly, we also must have $d^2 \mid c^2$. The last divisibility relations mean that $c^2 = d^2$, whence (2) may be written

$$a^2 + b^2 = c^2,$$

and accordingly the sides a, b, c of a corresponding right triangle are integers.