Complementary Silicon Plastic Power Transistors

Designed for use in general purpose amplifier and switching applications.

Features

- Collector-Emitter Saturation Voltage -
 - $V_{CE(sat)} = 1.2 \text{ Vdc (Max)} @ I_C = 3.0 \text{ Adc}$
- Collector-Emitter Sustaining Voltage -

 $V_{CEO(sus)} = 40 \text{ Vdc (Min)} - \text{TIP31}, \text{TIP32}$

= 60 Vdc (Min) - TIP31A, TIP32A

= 80 Vdc (Min) - TIP31B, TIP32B

= 100 Vdc (Min) - TIP31C, TIP32C

• High Current Gain - Bandwidth Product

 $f_T = 3.0 \text{ MHz (Min)} @ I_C = 500 \text{ mAdc}$

- Compact TO-220 AB Package
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage TIP31, TIP32 TIP31A, TIP32A TIP31B, TIP32E TIP31C, TIP32C	3	40 60 80 100	Vdc
Collector-Base Voltage TIP31, TIP32 TIP31A, TIP324 TIP31B, TIP326 TIP31C, TIP320		40 60 80 100	Vdc
Emitter-Base Voltage	V_{EB}	5.0	Vdc
Collector Current Continuous Peak	I _C	3.0 5.0	Adc
Base Current	Ι _Β	1.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	40 0.32	W W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	2.0 0.016	W W/°C
Unclamped Inductive Load Energy (Note 1)	Е	32	mJ
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_C = 1.8 A, L = 20 mH, P.R.F. = 10 Hz, V_{CC} = 10 V, R_{BE} = 100 Ω

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

3 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 40-60-80-100 VOLTS, 40 WATTS

MARKING DIAGRAM

TIP3xxG AYWW

CASE 221A STYLE 1

TO-220AB

2. COLLECTOR
3. EMITTER
4. COLLECTOR

TIP3xx = Device Code xx = 1, 1A, 1B, 1C, 2, 2A, 2B, 2C, A = Assembly Location Y = Year WW = Work Week G Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	62.5	°C/W
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	3.125	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 2) (I _C = 30 mAdc, I _B = 0)	TIP31, TIP32 TIP31A, TIP32A TIP31B, TIP32B TIP31C, TIP32C	V _{CEO(sus)}	40 60 80 100	- - -	Vdc
Collector Cutoff Current ($V_{CE} = 30 \text{ Vdc}$, $I_B = 0$) ($V_{CE} = 60 \text{ Vdc}$, $I_B = 0$)	TIP31, TIP32, TIP31A, TIP32A TIP31B, TIP31C, TIP32B, TIP32C	I _{CEO}		0.3 0.3	mAdc
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{EB} = 0) (V _{CE} = 60 Vdc, V _{EB} = 0) (V _{CE} = 80 Vdc, V _{EB} = 0) (V _{CE} = 100 Vdc, V _{EB} = 0)	TIP31, TIP32 TIP31A, TIP32A TIP31B, TIP32B TIP31C, TIP32C	I _{CES}	- - -	200 200 200 200	μAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	_	1.0	mAdc
ON CHARACTERISTICS (Note 2)					
DC Current Gain (I_C = 1.0 Adc, V_{CE} = 4.0 Vdc) (I_C = 3.0 Adc, V_{CE} = 4.0 Vdc)		h _{FE}	25 10	- 50	-
Collector-Emitter Saturation Voltage (I _C = 3.0 Adc,	I _B = 375 mAdc)	V _{CE(sat)}	_	1.2	Vdc
Base-Emitter On Voltage (I _C = 3.0 Adc, V _{CE} = 4.0	Vdc)	V _{BE(on)}	_	1.8	Vdc
DYNAMIC CHARACTERISTICS				•	
Current-Gain - Bandwidth Product (I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 1.0 MHz)		f _T	3.0	-	MHz
Small-Signal Current Gain (I _C = 0.5 Adc, V _{CE} = 10	Vdc, f = 1.0 kHz)	h _{fe}	20	_	-

^{2.} Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

Figure 1. Darlington Circuit Schematic

ORDERING INFORMATION

Device	Package	Shipping
TIP31	TO-220	50 Units / Rail
TIP31G	TO-220 (Pb-Free)	50 Units / Rail
TIP31A	TO-220	50 Units / Rail
TIP31AG	TO-220 (Pb-Free)	50 Units / Rail
TIP31B	TO-220	50 Units / Rail
TIP31BG	TO-220 (Pb-Free)	50 Units / Rail
TIP31C	TO-220	50 Units / Rail
TIP31CG	TO-220 (Pb-Free)	50 Units / Rail
TIP32	TO-220	50 Units / Rail
TIP32G	TO-220 (Pb-Free)	50 Units / Rail
TIP32A	TO-220	50 Units / Rail
TIP32AG	TO-220 (Pb-Free)	50 Units / Rail
TIP32B	TO-220	50 Units / Rail
TIP32BG	TO-220 (Pb-Free)	50 Units / Rail
TIP32C	TO-220	50 Units / Rail
TIP32CG	TO-220 (Pb-Free)	50 Units / Rail

Figure 2. Power Derating

Figure 3. Switching Time Equivalent Circuit

Figure 4. Turn-On Time

Figure 5. Thermal Response

Figure 6. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 5. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 7. Turn-Off Time

Figure 8. Capacitance

Figure 9. DC Current Gain

Figure 10. Collector Saturation Region

Figure 11. "On" Voltages

Figure 12. Temperature Coefficients

Figure 13. Collector Cut-Off Region

Figure 14. Effects of Base-Emitter Resistance

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AG**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE ALL **BODY AND LEAD IRREGULARITIES ARE** ALLOWED

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.036	0.64	0.91
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 1:

PIN 1. BASE

- COLLECTOR
- **EMITTER**
- COLLECTOR

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) as Solitude services are injected in an expectation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative