Progetto - Fondamenti di informatica

Francesco Andreuzzi IN0500630

Anno 2018-2019

1 Calcolo della funzione

Ricavo i valori assunti dalla funzione f(x,y,z,k) dal resto della divisione del numero di matricola (0500630) per 2^{16} :

 $\begin{array}{cccc} (500630 \mod & 65536) = 41878 \\ 41878_{10} = 1010001110010110_2 \end{array} \longrightarrow$

Х		\mathbf{y}	\mathbf{z}	k	f(x,y,z,k)
C		0	0	0	1
0		0	0	1	0
C)	0	1	0	1
C		0	1	1	0
0)	1	0	0	0
0		1	0	1	0
0		1	1	0	1
0)	1	1	1	1
1		0	0	0	1
1		0	0	1	0
1		0	1	0	0
1		0	1	1	1
1		1	0	0	0
1		1	0	1	1
1		1	1	0	1
1		1	1	1	0

Minterm

Per ottenere la prima forma canonica della funzione, riscrivo le combinazioni (x, y, z, k) in cui la funzione assume valore 1:

x	У	\mathbf{z}	k	f(x,y,z,k)
0	0	0	0	1
0	0	1	0	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

La funzione f(x,y,z,k) si può esprimere come somma di prodotti nel seguente modo:

$$f(x, y, z, k) = (\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot$$

Maxterm

Per ottenere la seconda forma canonica della funzione, riscrivo le combinazioni (x,y,z,k) in cui la funzione assume valore 0:

\mathbf{x}	y	\mathbf{z}	k	f(x,y,z,k)
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	0

La funzione f(x,y,z,k) si può esprimere come prodotto di somme nel seguente modo:

$$f(x,y,z,k) = (x+y+z+\overline{k}) \cdot (x+y+\overline{z}+\overline{k}) \cdot (x+\overline{y}+z+k) \cdot (x+\overline{y}+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k})$$

2 Semplificazione

Semplificazione algebrica

Minterm

$$f(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z},\boldsymbol{k}) = \underline{(\overline{x}\cdot\overline{y}\cdot\overline{z}\cdot\overline{k})} + (\overline{x}\cdot\overline{y}\cdot z\cdot\overline{k}) + (\overline{x}\cdot y\cdot z\cdot\overline{k}) + (\overline{x}\cdot y\cdot z\cdot\overline{k}) + (\underline{x}\cdot\overline{y}\cdot\overline{z}\cdot\overline{k}) + (x\cdot\overline{y}\cdot z\cdot\overline{k}) + (x\cdot\overline{y$$

Maxterm

$$f(x,y,z,k) = \underbrace{(x+y+z+\overline{k}) \cdot (x+y+\overline{z}+\overline{k}) \cdot (x+\overline{y}+z+k) \cdot (x+\overline{y}+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x$$

 $(\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k})$

$$f(x,y,z,k) = \dots$$

$$= \frac{TS}{S} [x + y \cdot (x + z + \overline{k}) + \overline{k}] \cdot (y + z + \overline{k}) \cdot (\overline{y} + z + k) \cdot (\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k}) }{ = \frac{A6}{S} [x + x \cdot y + y \cdot z + k] \cdot (\overline{y} + z + k) \cdot (\overline{y} + z + k) \cdot (\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k}) }{ = \frac{A6}{S} (x + y \cdot z + \overline{k}) \cdot (y + z + \overline{k}) \cdot (\overline{y} + z + k) \cdot (\overline{x} + y + \overline{z} + \overline{k}) }{ = \frac{A6}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{y} + z + k) + z \cdot (\overline{y} + z + k) + \overline{k} \cdot (\overline{y} + z + k) \cdot (\overline{x} + y + \overline{z} + k) }{ = \frac{A6}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{y} + z + k) + z \cdot \overline{k} \cdot (\overline{y} + z + k) + \overline{k} \cdot \overline{k} + y \cdot \overline{z} + \overline{k} }{ = \frac{A6}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{y} + y \cdot z + y \cdot \overline{k} + z + \overline{k} \cdot \overline{k} + \overline{k} \cdot \overline{k} + y \cdot \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{z} + \overline{k} \cdot \overline{k} + \overline{k} \cdot \overline{k} + \overline{y} + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{y} \cdot \overline{k} + y \cdot \overline{k} + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{y} \cdot \overline{k} + y \cdot \overline{x} + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{y} \cdot \overline{k} + y \cdot \overline{k} + \overline{y} \cdot \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{y} \cdot \overline{k} + y \cdot \overline{k} + \overline{y} \cdot \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x \cdot y \cdot k + x \cdot z + x \cdot y \cdot \overline{k} + y \cdot z \cdot k + y \cdot z \cdot \overline{k} + y \cdot z \cdot \overline{k} + y \cdot \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{$$

$$f(x,y,z,k) = \dots$$

$$^{1} \stackrel{A6}{=} (x \cdot y \cdot \overline{z} \cdot k + x \cdot \overline{y} \cdot z \cdot k + \overline{x} \cdot y \cdot z + y \cdot z \cdot \overline{k} + \overline{x} \cdot z \cdot \overline{k} + \overline{x} \cdot \overline{y} \cdot z \cdot \overline{k} + \overline{x} \cdot z \cdot$$

- $1.\ Sono$ state omesse le combinazioni che si annullano per l'assioma A7
- $2. \ \,$ La semplificazione può procedere come si è fatto sopra per i minterm

Mappa di Karnaugh

Metodo tabellare di Quine - Mc Cluskey

x	y	\mathbf{z}	k	f(x,y,z,k)
0	0	0	0	1
0	0	1	0	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

	Livello		xyzk	
	0	0	0000	Dr.
	1	2	0010	\D\D
		8	1000	E
	2	6	0110) F
	3	7	0111	
A		11	1011	G
В		13	1101	
		14	1110	\ <u></u>

			$\sqrt{xyk}(z+\overline{z})$
		xyzk	$\sqrt{x(x+\overline{x})\overline{yzk}}$
С	0,2	00-0	$\overline{x}z\overline{k}(y+\overline{y})$
D	0,8	-000	$\overline{x}yz(k+\overline{k})$
E	2,6	0-10	$(x+\overline{x})yz\overline{k}$
F	6,7	011-	, (w w)g~n
G	6,14	-110	

Implicante	Implicati	Espressione
A	11	$x \cdot \overline{y} \cdot z \cdot k$
В	13	$x \cdot y \cdot \overline{z} \cdot k$
G	6,14	$y \cdot z \cdot \overline{k}$
F	6,7	$\overline{x} \cdot y \cdot z$
D	0,8	$\overline{y} \cdot \overline{z} \cdot \overline{k}$
E	0,2	$\overline{x} \cdot z \cdot \overline{k}$

 $Implicanti\ primi\ necessari$

Per coprire il termine 2 è possibile scegliere l'implicante C oppure l'implicante E. Scegliendo l'implicante E l'espressione risultante è identica a quella trovata con il metodo della mappa di Karnaugh.

La funzione ottenuta è la seguente:

$$f(x, y, z, k) = (\overline{y \cdot z \cdot k}) + (x \cdot y \cdot \overline{z} \cdot k) + (x \cdot \overline{y} \cdot z \cdot k) + (\overline{x} \cdot y \cdot z) + (\overline{x} \cdot z \cdot \overline{k}) + (y \cdot z \cdot \overline{k})$$
B
A
B
G

3 Schema logico

Minterm:

$$\begin{split} \boldsymbol{f(x,y,z,k)} &= (\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot z \cdot \overline{k}) +$$

Maxterm:

$$f(x, y, z, k) = (x + y + z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + \overline{y} + z + k) \cdot (x + \overline{y} + z + \overline{k}) \cdot (\overline{x} + y + z + \overline{k}) \cdot (\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + z + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k})$$

Funzione semplificata:

$$\boldsymbol{f(x,y,z,k)} = (\overline{y} \cdot \overline{z} \cdot \overline{k}) + (x \cdot y \cdot \overline{z} \cdot k) + (x \cdot \overline{y} \cdot z \cdot k) + (\overline{x} \cdot y \cdot z) + (\overline{x} \cdot z \cdot \overline{k}) + (y \cdot z \cdot \overline{k})$$

4 Dichiarazione

Il lavoro di cui sopra è stato svolto da me in completa autonomia.

Francesco Andreuzzi Trieste, 22 aprile 2019