Reg. No.:

Name :

Continuous Assessment Test I (CAT - I) - September 2023

Programme	: B.Tech	Semester	:	FALL 2023-2024
C		Code	:	BMAT201L
Course little	: Complex Variables and Linear Algebra	Slot(s)	: BMAT201L : A1+TA1+TAA1) : CH20232401010	A1+TA1+TAA1
Faculty	: Dr. S. Balaji, Dr. Ashish Kumar Nandi, M Dhivya, Dr.Mohana N, Dr. G. Hannah Grace, Dr. Abhishek Kumar Singh, Dr. Sudip Debnath	Class Nbr(s)		CH2023240101002, 03,04,05,06,07,08.
Duration	: 1 ½ Hours	Max. Marks	:	50

Answer all the Questions (5x10 = 50 marks)

Q.No.	Sub. Sec.	Question Description	Marks	
1		Find the constant 'a' so that $u(x, y) = ax^2 - y^2 + xy$ is harmonic. Find an analytic function $f(z)$ for which u is the real part. Also find its harmonic conjugate.	10	
2		(a) In a two-dimensional fluid flow, the velocity potential $\phi(x,y)$ is given as $4x(3y-4)$. Find the complex potential $w = \phi(x,y) + i \psi(x,y)$ where ψ is the stream function. (b) Verify whether $f(z) = \frac{1}{z-1}$ is analytic at $z = 1 + i$.		
3		Determine the bilinear transformation which maps the points $z = 1, -1, \infty$ into the points $w = 1 + i, 1 - i, 1$ respectively. Find the image of the unit circle $ z = 1$ under this transformation and sketch the image.		
4		(a) Find the points where $w = e^{\cos hz}$ is not conformal.	10	
		(b) Find the image of the circle $ z-1 =1$ under the transformation $w=(\frac{1}{2}e^{i\frac{\pi}{2}})z$.	[5+5]	
5		(a) Find the Taylor series expansion of the given function $f(z) = \frac{z^3 + 1}{(z-3)(z-5)}$ about $z = 2$. Also, discuss the radius of convergence. (b) Find the poles and residues of the given function $f(z) = \frac{1}{z^4 + 5z^2 + 6}$.	10 [5 +5]	