DS N°11 du 9 juin

THERMODYNAMIQUE

PROBLEME 1

MACHINE FROGORIFIQUE

- **1.** On considère un cycle de transformations réversibles DABCD réalisé à partir du point D sur la courbe de rosé pour une masse unité de fluide :
 - DA: liquéfaction totale isotherme à la température T₁.
 - AB : détente isentropique qui amène le fluide dans l'état B défini par la température T₀ et une fraction massique en gaz x_B. (T₀<T₁)
 - BC : vaporisation partielle isotherme jusqu'à l'intersection C avec la courbe isentropique passant par D, l'état C est caractérisé par la température T₀ et une fraction massique en gaz x_C.
- a. Représenter le cycle DABCD sur un diagramme de Clapeyron
- **b.** Exprimer la fractions massiques x_B en fonction de T_0 , T_1 , de la capacité thermique massique c du liquide et des enthalpies de vaportisation L_{vap} (T_0) et L_{vap} (T_1) aux températures T_0 et T_1 .
- **c.** Exprimer la fractions massiques x_C en fonction de T_0 , T_1 , de la capacité thermique massique c du liquide et des enthalpies de vaportisation L_{vap} (T_0) et L_{vap} (T_1) aux températures T_0 et T_1 .
- **d.** Donner les expressions des transferts thermiques massiques q_{BC} et q_{DA} avec le milieu extérieur au cours des transformations isothermes BC et DA en fonction de T_0 , T_1 , de la capacité thermique massique c du liquide et des enthalpies de vaportisation L_{vap} (T_0) et L_{vap} (T_1) aux températures T_0 et T_1 . .
- **e.** En déduire le travail w reçu par l'unité de masse du fluide au cours du cycle en fonction de T_0 , T_1 , de la capacité thermique massique c du liquide et des enthalpies de vaportisation L_{vap} (T_0) et L_{vap} (T_1) aux températures T_0 et T_1 .
- **2.** Le cycle précédent peut être utilisé pour faire fonctionner une machine frigorifique. Exprimer l'efficacité e de cette machine frigorifique en fonction de T_0 , T_1 , de la capacité thermique massique c du liquide et des enthalpies de vaportisation L_{vap} (T_0) et L_{vap} (T_1) aux températures T_0 et T_1 . Commenter le résultat obtenu.

On donne:

Pour un gaz parfait
$$\Delta S = mc_v ln\left(\frac{T_F}{T_I}\right) + \frac{m}{M}R ln\left(\frac{V_F}{V_I}\right) = mc_p ln\left(\frac{T_F}{T_I}\right) - \frac{m}{M}R ln\left(\frac{P_F}{P_I}\right)$$

Pour un liquide $\Delta S = mcln\left(\frac{T_F}{T_I}\right)$

Problème 2

REFREGERATEUR TRITHERME

Un réfrigérateur à absorption est une machine frigorifique tritherme sans échange de travail avec l'extérieur. L'énergie est fournie sous forme thermique, et à haute température T_0 , par un bouilleur. L'évaporateur est en contact thermique avec la source froide, de température T_2 . Le condenseur est en contact thermique avec le milieu extérieur, de température T_1 . Ces diverses températures sont telles que $T_2 < T_1 < T_0$.

On ne décrit pas les mécanismes physiques qui permettent de faire en sorte que le fluide reçoive de l'énergie par transfert thermique au niveau de l'évaporateur.

Définir et calculer l'efficacité frigorifique maximale, fonction des trois températures T₀, T₁ et T₂.

