Day 10: Language Module Introduction

Order of Topics

- 1. Overview of Al
- 2. Intro to Natural Language Processing
- 3. Quantifying Language
- 4. Word Embeddings
- 5. Recurrent Neural Networks (RNN)
- 6. Attention and Transformers

Capstone: Semantic Search

e.g.: input: "A person standing outdoors" \rightarrow math model \rightarrow database

- Multimodel Data
 - Images and text
 - Train your own descriptions with your own neural network (NN)

Overview of AI

- Definition: Artificial Intelligence: The ability of a machine to perform technical tasks normally performed by a human
- Limitations
 - Cant just be any type of machine
 - Technical
 - Image Generation?
 - Songwriting?

- Understanding of human emotions/norms
- "Tasks normally performed by a human"
- Russel and Norvig ~ Artificial Intelligence: A Modern Approach
 - Cognitive Modeling
 - Experimental Psychology
 - Laws of Thought
 - Formal Logic
 - Turing Test
 - Can a human distinguish the ageent from another human?
 - Rational Agent
 - In pursuit of goals in a rational/optimal manner
- Supervised Learning (data → labels, e.g. face recognition)
- Unsupervised Learning (data w/o labels, e.g. face clustering)
- Self-supervised (data → labels (data), e.g. text completion)

Timeline:

- (1956) Dartmouth AI Conference
- (1997) Deep Blue defeats Kasparov in chess
- (2002) Roomba cleans living rooms
- (2004) Spirit and Opportunity autonomously navigate Mars
- (2007) DARPA Urban Challenge
- (2011) Watson (AI) defeats Jennings in Jeopardy
- (2014) Eugene passes Turing Test
- (2016) AlphaGo defeats Lee in Go
- (2019) AlphaStar defeats TLO and MaNa in SC2
- (2022) GPT-3 defeats the school essay

• (2023) GPT-4 defeats the SATs, the bar exams, wine-tasting exams, most APs, etc.

New Turing Test

- Go make me a coffee
- Go assemble this BILLY bookcase

Natural Language Processing

- A set of techniques for making predictions or decisions about language (by a machine); e.g.
 - Q+A
 - Image captioning
 - Translation
 - Sentiment Analysis
 - Named entity recognition
 - Grammar corrections
 - Smart assistant
 - Content generation
 - Spam detection
 - Automated phone trees
 - Text summarization
- Language data (text) is plentiful, easily accessible
- Analyzing Language
 - e.g.: "A dog chasing a boy on the playground."
 - 1. A sequence of characters
 - 2. A sequence of words
 - 3. A sequence of parts of speech (determiners, nouns, verbs, etc.)

- 4. A sequence of constituents of a sentence (noun-phrase, verb-phrase)
- 5. Subject-object relations (dog (animal) \rightarrow chases \rightarrow boy (human))
- n-gram: a sequence of n "chunks" of information
 - notation
 - P(A) ~ probability of event A
 - lacksquare P(A,B) ~ probability of A and B
 - P(A|B) ~ probability of A given B
 - lacksquare P(C|A,B) ~ probability of C given that A and B are true
 - Modeling Language
 - $P(x_n|x_{n-1},x_{n-2},...,x_1)$
 - What is the probability of some x_n being the nth word given that we saw the words $x_{n-1}...x_1$ before it?
 - Example: n-gram: 5-gram
 - $P(x_n|$ "the dog ate my") $\rightarrow P(x_n|$ "my", "ate", "dog", "the")
 - $\qquad \qquad P(\text{``homework''}|...)$
 - $\qquad \qquad P(\text{``dinner''}|...)$
 - $lacksquare P(ext{``of''}|...)$ low probability
 - P("however"|...) low probability
 - Example:
 - corpus (a body of text that we are examining/training on): "the quick black cat raced the slow black lab"
 - \circ 2-gram: $P(ext{"cat"}| ext{"black"})$ = $P(ext{"black cat"})/P(ext{"black"})=1/2$
 - 3-gram:
 - P(``cat''|``quick black'') = P(``quick black cat)/P(``quick black'') = 1/1 = 1
 - P(``cat''|``slow black'') = P(``slow black cat'')/P(``slow black'') = 0/1 = 0

- Applications:
 - autocomplete
 - language ID
 - language translation
- Markov Property ~ evolution of the Markov process in the future depends only on the present state and does not depend on past history
 - \circ E.g.: "the quick black cat chased" $P(\mbox{"quick"}|\mbox{"the"})*P(\mbox{"black"}|\mbox{"quick"})...(\mbox{"chased"}|\mbox{"cat"})$

Generative AI

- n-gram: 4
 - 1. $argmax_x P(x|?,?,?) \rightarrow ???$ the
 - 2. $argmax_x P(x|?,?,the) \rightarrow ??$ the black
 - 3. $argmax_x P(x|?, black, the) \rightarrow ?$ the black cat

Modelling Documents

- How can we build a numerical model for a document
 - Clustering
 - Classification
 - E.g.
 - images → pixels → arrays (CNNs → spacial inductive bias)
 - documents → words? sentences? → ?
 - Bag of Words model
 - Represent documents as an inventory of words
 - Counting word occurrences
 - Ignore word order

Example:

- doc_0: "I am a dog. A dog am I."
- doc_1: "I am a cat."

vocab	index
a	0
am	1
cat	2
dog	3
1	4

Word Frequency

```
doc_0 : [1 2 0 2 2]doc_1 : [1 1 1 0 1]
```

- Term frequency, inverse document-frequency encodings
 - General flow
 - Corpus → remove "stop words" (e.g: ["a", "or", "the"...]) → retain only the top k most common words across documents → final vocab
 - Term-frequency vector
 - For document d and term t:

$$\circ$$
 $f_t^{(d)} = rac{C_t^{(d)}}{\sum_{t \in vocab} C_t^{(d)}}$

* Frequency is normalized so document length does not matter

```
o doc_0: [1 2 0 2 2] → 1/7 2/7 0 2/7 2/7]
o doc_1: [1 1 1 0 1] → [1/4 1/4 1/4 0 1/4]
```

- Inverse document frequency:
 - · Measured across documents
 - ullet IDF for term $t=log_{10}rac{N_{doc}}{n_t}$ where N_{doc} is the total number of documents and n_t is the number of documents containing term t

- Example:
 - "I am a dog. A dog am I"
 - o "I am a cat"
 - $\rightarrow log_{10}[\frac{2}{2}, \frac{2}{2}, \frac{2}{1}, \frac{2}{1}, \frac{2}{2}]$
- $lacksquare \mathsf{TF} ext{-IDF:}\ f_t^{(d)}log_{10}\,rac{N_{doc}}{n_t}$
 - $\bullet \ \ \text{for document} \ d: [f_0log_{10} \, \tfrac{N_{doc}}{n_0}, f_1log_{10} \, \tfrac{N_{doc}}{n_1}, ..., f_{n-1}log_{10} \, \tfrac{N_{doc}}{n_{n-1}}]$