Dados espaciais Árvores R

Estrutura de Dados II

Jairo Francisco de Souza

(baseado no material do Prof Leonardo Guerreiro/UNIRIO)

Dados espaciais

- Dados espaciais são dados que representam o espaço
- Exemplos:

Objetos espaciais

- Objetos espaciais são objetos que descrevem localizações ou formas geométricas
 - Exemplo: localização de um hidrante ou um poço, estradas, rios, redes de esgotos, florestas, parques, municípios, lagos.
- Os 3 tipos básicos de objetos espaciais são:
 - Ponto, Linha e Polígono
- Duas visões:
 - Objetos no espaço
 - Espaço em si

Objetos no espaço

• Dados espaciais geralmente são acompanhados por dados não espaciais

Cidade: Bom

Jardim,

População: 30.000,

Localização:

Cidade: Berlin,

População: 3.000.000

Área da cidade:

Rua: Av. Pasteur, número 380,

rota:

Rio:

Reno,

Rota:

Bacia:

Amazonas,

Leitos dos rios:

Espaço

- Alguma afirmação sobre cada ponto no espaço
 - Uso da terra (mapas temáticos)
 - Partições em cidades, estado e municípios,....

Modelagem

- Devemos considerar:
- 1. Modelagem de um único objeto
- 2. Modelagem de coleções de objetos relacionadas espacialmente

Modelagem

- Modelagem de um único objeto:
 - Ponto
 - Ex: cidade
 - Aspecto geométrico de um objeto para o qual apenas a sua localização é relevante, e não sua extensão
 - Linha (polilinha)
 - Ex: rio, cabo, estrada
 - Movimento no espaço e conexões no espaço são relevantes
 - Polígono (região)
 - Ex: floresta, lago, cidade
 - Abstração de um objeto com extensão é relevante

Modelagem

- Modelagem de coleções de objetos relacionadas espacialmente:
 - Partição:
 - Uso do solo, distritos, mapa de propriedade

- Rede conectada espacialmente (grafo)
 - Autoestradas, estradas, ferrovias, transporte publico, 1108, mapa de redes eleutoas, mapa de redes de telefone

intersects

is_neighbour_of

intersection

overlay

Projection

Projection with merging ("fusion")

• É simples verificar a interseção entre bacia do amazonas e os municípios do Brasil?

- Reduzindo a complexidade dos objetos
- Fazendo testes mais simples primeiro

Minimum bounding Rectangle (MBR) ou

Menor Retângulo Envolvente (MBE)

Comparando-se MBR podemos dizer que P1 e P2 têm interseção?

Se MBRs têm interseção, em geral, não se pode inferir que objetos têm interseção.

Após o teste de MBR, é necessário testar os objetos reais.

Passo mais custoso. \$\$\$\$

ÁRVORES R (R-Trees)

- Proposta por Guttman em 1984
 - A. Guttman, R-trees: a dynamic index structure for spatial searching, *Proceedings of the SIGMOD Conference*, Boston, June, 1984, pp. 47-57.
- Estrutura de dados hierárquica derivada da árvore B (Comer, 1979)
- Entradas dos nós correspondem à retângulos em d-dimensão

Cada entrada de nó folha:

Cada entrada de nó folha:

- Frequentemente, nós correspondem à páginas do disco
- Parâmetros definindo o número mínimo e máximo de nós se aplicam
 - São escolhidos a fim do menor número de nós sejam visitados durante durante a busca.
- Importante:
 - Diferentemente da árvore B, entradas de nós diferentes podem ter sobreposição
 - Ou seja, retângulos das entradas podem ter sobreposição

Exemplo de sobreposição

Exemplo de sobreposição

A consulta espacial pode requerer que vários nós sejam visitados antes de garantir a presença ou ausência de um retângulo em particular.

- Regras semelhantes às da árvore-B
 - Todos os nós folha aparecem no mesmo nível
 - Cada entrada de um nó folha corresponde à tupla (R, O)
 - O é um ponteiro para o objeto real
 - R é o menor retângulo que espacialmente contém o objeto apontado por O
 - Cada entrada de um nó interno corresponde à tupla (R, P)
 - *P* é um ponteiro para um filho
 - *R* é o menor retângulo que espacialmente contém os retângulos no filho apontado por *P*.
 - Uma árvore-R de ordem (m, M) é tal que
 - Cada nó contém entre m \leq Ceiling[M/2] e M entradas, com exceção da raiz
 - A raiz tem pelo menos 2 entradas, ao menos que ela seja nó folha

Árvore-R - Inserção

- Uma árvore-R não é única
 - Ela depende da ordem em que os retângulos são inseridos (e possivelmente removidos)
- Algoritmo para inserção de um nó é análogo ao algoritmo de inserção em árvore B
 - Novos retângulos são adicionados a nós folha
 - O nó folha apropriado é determinado pela
 - Navegação na árvore iniciando no nó raiz
 - A cada passo escolhe-se a subárvore cujo retângulo correspondente terá o menor acréscimo de área possível
 - Se ao inserir o nó ocorrer overflow, então executar split
 - M+1 registros devem ser distribuídos entre dois nós
 - Split pode propagar até a raiz

Exemplo (M=3 e m=2)

Exemplo (M=3 e m=2)

Exemplo (M=3 e m=2)

Inserir A

Δ

4

Inserir E

A 1 E

A 1 E

Overflow!

Dividir as entradas em dois nós.

Considerar na divisão as entradas cujo MBR envolvente das mesmas tenha a menor área.

A 1

Overflow!

Dividir as entradas em dois nós.

Considerar na divisão as entradas cujo MBR envolvente das mesmas tenha a menor área.

Criar novo nó raiz com 2 entradas, contendo MBR para os nós folha.

A 1

Overflow!

Dividir as entradas em dois nós.

Considerar na divisão as entradas cujo MBR envolvente das mesmas tenha a menor área.

Criar novo nó raiz com 2 entradas, contendo MBR para os nós folha.

Overflow!

Dividir as entradas em dois nós.

Considerar na divisão as entradas cujo MBR envolvente das mesmas tenha a menor área.

Criar novo nó raiz com 2 entradas, contendo MBR para os nós folha.

Em qual nó folha B deve ser inserido? Nó 1 ou Nó 2?

Em qual nó folha B deve ser inserido? Nó 1 ou Nó 2?

Escolher o nó que cujo MBR das entradas tem o menor acréscimo de área

Nó 1

Em qual nó folha B deve ser inserido? Nó 1 ou Nó 2?

Escolher o nó que cujo MBR das entradas tem o menor acréscimo de área Nó 1

Em qual nó folha C deve ser inserido? Nó 1 ou Nó 2?

Em qual nó folha C deve ser inserido? Nó 1 ou Nó 2?

O aumento de área de R1 ao inserir C no Nó 1 é menor do que o aumento de área de R2 ao inserir C no Nó 2.

Em qual nó folha C deve ser inserido? Nó 1 ou Nó 2?

O aumento de área de R1 ao inserir C no Nó 1 é menor do que o aumento de área de R2 ao inserir C no Nó 2.

Overflow!

Em qual nó folha C deve ser inserido? Nó 1 ou Nó 2?

O aumento de área de R1 ao inserir C no Nó 1 é menor do que o aumento de área de R2 ao inserir C no Nó 2.

Overflow!

qual é a melhor forma de distribuir entradas A1BC?

Em qual nó folha C deve ser inserido? Nó 1 ou Nó 2?

O aumento de área de R1 ao inserir C no Nó 1 é menor do que o aumento de área de R2 ao inserir C no Nó 2.

Overflow!

qual é a melhor forma de distribuir entradas A1BC?

Resp.: A1 e BC

R1 R2

Nó 1

A 1 B E 3

Nó com entradas A1
R1 ser atualizado

Nó com entradas A1 → R1 ser atualizado Nó com entradas BC → incluir nova entrada na folha (R3)

Inserir D

Em qual nó folha D deve ser inserido? Nó 1 ou Nó 2 ou Nó 3?

Inserir D

Em qual nó folha D deve ser inserido? Nó 1 ou Nó 2 ou Nó 3?

R3 terá o menor acréscimo de área

Inserir D

Em qual nó folha F deve ser inserido? Nó 1 ou Nó 2 ou Nó 3?

R3 terá o menor acréscimo de área.

Overflow! → Qual é a melhor distribuição para BCDF?

Resp.: BD e CF

Atualizar R3 e incluir nova entrada na raiz.

Em qual nó folha F deve ser inserido? Nó 1 ou Nó 2 ou Nó 3?

R3 terá o menor acréscimo de área.

Overflow! → Qual é a melhor distribuição para BCDF?

Resp.: BD e CF

Atualizar R3 e incluir nova entrada na raiz.

Overflow na raiz!

Criar novo nó e redistribuir entradas de acordo com a menor área dos MBR resultantes.

Overflow na raiz!

Criar novo nó e redistribuir entradas de acordo com a menor área dos MBR resultantes.

Nó com R1 R2 e nó com R3 e R4

Overflow na raiz!

Criar novo nó e redistribuir entradas de acordo com a menor área dos MBR resultantes.

Nó com R1 R2 e nó com R3 e R4

Nível 1

Nível 2

Nível 3

Níveis 1, 2 e 3.

- A busca em uma árvore-R é semelhante à busca em árvore-B
- Problema:
 - Uma grande quantidade de nós pode ter que ser examinada, pois um retângulo pode estar contido nos retângulos envolventes de muitos nós
 - Mas o seu registro está contido em apenas um nó folha.
 - Exemplo: Retângulo 1 está contido nos retâgulos:
 - o R1
 - o R2
 - o R3
 - o R5

Árvore-R - Remoção

- Remover retângulo R de uma Árvore-R
 - Localizar nó folha L que contém R e remover R de L.
 - Ajustar os retângulos envolventes no caminho de L até a raiz
 - Todos os nós onde ocorrer underflow são armazenados em um conjunto U.
 - Quando a raiz é alcançada
 - Se ela tem apenas um único filho, então o filho se torna a nova raiz
 - Os nós onde ocorreu *Underflow* são reinseridos na árvore
 - ullet Entradas de U que correspondem a nós folha são incluídas em nós folha
 - Outros nós, têm suas entradas posicionadas no nível que faça com que seus nós folha continuem no mesmo nível dos demais.

Remoção: Árvore-R x Árvore-B

- Na árvore B nós sofrem merge com nós adjacentes ou é feita redistribuição
- Na árvore-R nós são reinseridos
- Árvore-R
 - Não existe conceito de adjacência
 - Merge de nós e redistribuição poderiam ser feitas. Entretanto,
 - Reinserção permite que a árvore dinamicamente reflita a mudança de estrutura espacial ao invés de gradualmente sofrer degradações o que poderia ocorrer mantendo parentesco durante o ciclo de vida da árvore.

Aplicações

• Mais direta: banco de dados geográficos

Dim. 2

- Consultas por faixa de valores
 - SQLite: http://www.sqlite.org/rtree.html

