Solución Prueba N°1 IME 006 Álgebra Ingenierías Civiles Plan Anual

Profesores: M. T. Alcalde, R. Benavides, C. Burgueño, M. Carrillo, F. Salazar, A. Sepúlveda.

09 de abril de 2008

1. Si la proposición p es Falsa, determine el valor de verdad de:

$$\{(p \Rightarrow q) \lor [r \Rightarrow (\overline{q} \land p)]\} \Rightarrow (r \land p \land q).$$

Solución.

Como $p \equiv F$, entonces $(p \Rightarrow q) \equiv V$ y $(r \land p \land q) \equiv F$. Luego, independiente del valor de verdad de $[r \Rightarrow (\overline{q} \land p)]$ tenemos que $\{(p \Rightarrow q) \lor [r \Rightarrow (\overline{q} \land p)]\} \equiv V$. Así, tenemos $V \Rightarrow F$, lo que es Falso.

2. Traduzca a lenguaje simbólico y niegue la proposición siguiente:

"Cuando el producto de dos números reales positivos cualesquiera es mayor que veinticinco, podemos concluir que uno de los números debe ser mayor que cinco."

Solución.

La escritura simbólica de la proposición es

$$\forall x, y \in \mathbb{R}^+; x \cdot y > 25 \Rightarrow x > 5 \lor y > 5.$$

Para su negación recordemos previamente que $\overline{p \Rightarrow q} \equiv p \wedge \overline{q}$. Con esto tenemos,

$$\exists x, y \in \mathbb{R}^+; x \cdot y > 25 \land (x \le 5 \land y \le 5).$$

- 3. Estudie el valor de verdad de cada una de las siguientes proposiciones y luego niéguelas.
 - a) $\exists ! m \in \mathbb{Z}; 3 + m^2 = 12.$
 - b) $\forall x \in \mathbb{Z}, \exists n \in \mathbb{N}; x + 7 > n.$

Solución.

a) La proposición $\exists ! m \in \mathbb{Z}; 3+m^2=12$ es Falsa, pues $m=\pm 3 \in \mathbb{Z}$ cumplen el enunciado. Su negación es

$$(\forall m \in \mathbb{Z}; 3 + m^2 \neq 12) \lor (\exists m, n \in \mathbb{Z}; 3 + m^2 = 12 \land 3 + n^2 = 12 \land m \neq n).$$

Notemos que el primer paréntesis es Falso y el segundo es Verdadero, luego $F \vee V \equiv V$.

b) La proposición $\forall x \in \mathbb{Z}, \exists n \in \mathbb{N}; x+7 > n$ es Falsa. Su negación es

$$\exists x \in \mathbb{Z}, \forall n \in \mathbb{N}; x + 7 \le n,$$

con valor de verdad V, pues basta tomar cualquier $x \in \mathbb{Z}$ tal que x < -7.

4. Todos los 360 alumnos que toman el curso de álgebra deciden practicar deporte. 160 juegan volleyball, 180 football, 220 natación, 70 juegan volleyball y football, 84 juegan football y practican natación, 64 juegan volleyball y practican natación ¿Cuántos practican los los tres deportes? ¿Cuántos practican sólo volleyball? ¿Cuántos sólo football? ¿Cuántos sólo natación?

Solución.

Definamos los conjuntos

 $U = \{ \text{Todos los alumnos que toman el curso de álgebra} \},$

 $V = \{ \text{Los alumnos que juegan volleyball} \},$

 $F = \{ \text{Los alumnos que juegan football} \},$

 $N = \{ \text{Los alumnos que practican natación} \}.$

De acuerdo al enunciado tenemos $|U|=360, |V|=160, |F|=180, |N|=220, |V\cap F|=70, |F\cap N|=84$ y $|V\cap N|=64$. Llamando $x=|V\cap F\cap N|$ y de acuerdo a la cardinalidad de la unión de tres conjuntos tenemos

$$360 = 160 + 180 + 220 - 70 - 84 - 64 + x$$

lo que implica x = 18. Llevando a un diagrama de Venn-Euler tenemos

Así, 18 realizan los tres deportes, 44 alumnos juegan sólo volleyball, 44 juegan sólo football y 90 sólo practican natación.

5. Sean $A, B \subset U$. Demuestre que,

$$B \subset A \Leftrightarrow A \cap B = B$$
.

Solución.

- (\Leftarrow) Sea $x \in B \Rightarrow x \in A \cap B \Rightarrow (x \in A \land x \in B) \Rightarrow x \in A$.
- (\Rightarrow) Mostremos primero que $B \subseteq A \cap B$. En efecto, sea $x \in B \Rightarrow (x \in B \land x \in A) \Rightarrow x \in A \cap B$.

Para la inclusión $A \cap B \subseteq B$ tenemos, $x \in A \cap B \Rightarrow (x \in A \land x \in B) \Rightarrow x \in B$.