Problem Set 20 11.3: The Integral Test

Please indicate the members who are present. Also indicate the group coordinator.

	<u> </u>	0 1
Croun Number		
Group Number:		
Members:		
Members:		

The p- series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges if p > 1 and diverges if $p \le 1$.

Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge n$ and $\sum_{n=1}^{\infty} a_n$ is convergent. If $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx$$

Determine whether the series is convergent or divergent $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{2}}}$

Determine whether the series is convergent or divergent $\sum_{n=1}^{\infty} \frac{\sqrt{n}+4}{n^2}$

Determine whether the series is convergent or divergent $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^{3/2}}$

Determine whether the series is convergent or divergent $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$

Explain why the Integral Test can't be used to determine whether the series is convergent $\sum_{n=1}^{\infty} \frac{\cos \pi n}{\sqrt{n}}.$

Find the values of p for which the series is convergent.

$$\sum_{n=1}^{\infty} n(1+n^2)^p$$

Given that
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 find the sum of $\sum_{n=3}^{\infty} \frac{1}{(n+1)^2}$

How many terms of the series $\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^2}$ would you need to add to find its sum to within 0.01?