Determinants - Class XII

Related Questions with Solutions

Questions

Quetion: 01

A 3 imes 3 square matrix $M=[a_{ij}]$ is taken, where value of each element is determined as $a_{ij} = i \times j$, then the largest value of the minors of given elements is

B. 0

C. 1

D. 4

Quetion: 02

The value of $\begin{vmatrix} 1 & 2 & 3 \\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix}$ is

A. 213

B. -231

C. 231

D. 39

Quetion: 03

Let
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 , then $|2A|$ is equal to

A. $4\cos 2\bar{\theta}$ B. 1

C. 2

D. 4

Quetion: 04

The value of the determinant

A. 1

B. $\log_a b$

 $C. \log_b a$

D. 0

Quetion: 05

If
$$\begin{vmatrix} e^x & \sin x \\ \cos x & \ln(1+x) \end{vmatrix} = A + Bx + Cx^2 + \dots$$
, then find the value of $A+B$.

A. 2

B. -1

C. 0

D. -2

Solutions

Solution: 01

Clearly,
$$M = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

Since minor of each element is 0, therefore largest value of the minors is 0.

Solution: 02

$$\begin{vmatrix} 1 & 2 & 3 \\ -4 & 3 & 6 \\ 2 & -7 & 9 \end{vmatrix} = 1 \begin{vmatrix} 3 & 6 \\ -7 & 9 \end{vmatrix} - 2 \begin{vmatrix} -4 & 6 \\ 2 & 9 \end{vmatrix} + 3 \begin{vmatrix} -4 & 3 \\ 2 & -7 \end{vmatrix}$$
$$= [27 + 42] - 2[-36 - 12] + 3[28 - 6] = 231$$

Solution: 03

$$|A| = \cos^2 \theta + \sin^2 \theta = 1, |2A| = 2^2 \cdot |A| = 4$$

Solution: 04

$$\Delta = 1.1 - \log_b a \times \log_a b$$

$$= 1 - 1 = 0$$

Solution: 05

Given:
$$\begin{vmatrix} e^{x} & \sin x \\ \cos x & \ell n(1+x) \end{vmatrix} = A + Bx + Cx^{2} + \dots$$

$$\Rightarrow e^{x} \cdot \ln(1+x) - \cos x \cdot \sin x = A + Bx + Cx^{2} + \dots$$

$$\Rightarrow (1+x+\dots) \left(x - \frac{x^{2}}{2} + \dots\right) - \frac{1}{2} \sin 2x = A + Bx + Cx^{2} + \dots$$

$$\Rightarrow (1+x+\dots) \left(x - \frac{x^{2}}{2} + \dots\right) - \frac{1}{2} \left(2x - \frac{(2x)^{3}}{3!} + \dots\right) = A + Bx + Cx^{2} \dots$$

On comparing constant term, A=0 On comparing coefficient of x,B=0

Correct Options

Answer:01

Correct Options: B

Answer:02

Correct Options: C

Answer:03

Correct Options: D

Answer:04

Correct Options: D

Answer:05

Correct Options: C