CLAIMS

What is claimed is:

1	1.	A pro	cess of roll forming a tubular metallic body for a fluid connector,
2	compri	ising the	e steps of:
3		i.	affixing a tubular metallic body of substantially constant diameter in a roll
4			forming machine;
5		ii.	positioning a series of freely rotatable independent tools in a
6			circumferential pattern surrounding said tubular body;
7		iii.	together rotating said series of tools within a predetermined velocity range;
8		iv.	applying minimal radial contact between said series of tools and said
9			tubular body;
10		v.	forming at least one annular radial groove in said tubular body;
11		vi.	smoothing the outer surface of said tubular body;
12		vii.	decreasing the outside diameter of a portion of said tubular body for a
13			predetermined distance along its periphery at a constant, uniform rate; and
14		viii.	rounding a proximate end of the decreasing-diameter portion of said
15			tubular body.

- 1 2. The process as in claim 1 further including:
- during the forming step, moving material to said proximate end and forming a rounded, rolled-over nipple nose thereat.
- 1 3. The process as in claim 1 wherein said rotational velocity of said series of tools is 2 in the range of 300-800 rpm.

- 1 4. The process as in claim 1 wherein said series of tools is comprised of three
- essentially equally spaced parallel rollers each having at least one protrusion extending
- from its outer peripheral surface and said minimal contact occurs substantially
- simultaneously between each of said at least one protrusion and said tubular body.
- 1 5. The process as in claim 1 wherein said decreasing diameter portion extends from
- one of said at least one annular groove toward said proximate end.
- 1 6. The process as in claim 1 wherein said metallic tubular body is fabricated from a
- 2 5000 series aluminum alloy.
- 7. The process as in claim 5 wherein said decreasing diameter portion has an about
- 2 2° pitch.
- 1 8. The process as in claim 5 wherein said at least one annular groove includes two
- 2 axially-spaced, parallel, substantially similar grooves.
- The process as in claim 1 further including the step of smoothing said tubular
- body excluding said grooves, said decreasing diameter portion and said rounded
- 3 proximate end.