





# Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas

# Disciplina: Sistemas Operacionais I

Aula 04: Estruturas dos Sistemas Operacionais P2

Prof. Diogo Branquinho Ramos

diogo.branquinho@fatec.sp.gov.br

São José dos Campos - SP

## Roteiro

- Estrutura Simples
- Estrutura em Camadas
- Estrutura em Microkernel
- Estrutura em Módulos
- Máquinas Virtuais



## Simples

#### MS-DOS

- Escrito para oferecer o máximo de funcionalidade no menor espaço.
- Não é dividido em módulos.
- Suas interfaces e níveis de funcionalidade não são bem separados.



#### Sistema em Camadas

- Cada uma montada sobre camadas inferiores (hierarquia).
- A camada mais baixa (camada 0) é o hardware.
- A mais alta (camada N) é a interface com o usuário.
- Com a modularidade, as camadas são selecionadas de modo que cada uma use funções (operações) e serviços apenas de camadas de nível inferior.
  - Camadas inferiores ocultam a existência de certas estruturas de dados, operações e hardware de camadas superiores.



#### Sistema em Camadas





#### Sistemas em Camadas

- Problemas
  - A camada só pode usar a camada inferior.
    - A definição apropriada de cada camada é difícil.
    - →Ex.: armazenamento de apoio acima do escalonador de CPU: o driver pode precisar de E/S e a CPU pode ser reescalonada nesse tempo.
    - →E se a CPU tiver mais informações sobre todos os processos ativos do que poderiam caber na RAM? Essa informação precisa ir pra RAM, exigindo que o driver de armazenamento fique abaixo do escalonador de CPU!
  - Muitas camadas degradam performance.
- Exemplos: THE (Dijkstra), Multics, NT, Mac OS X, UNIX



#### Microkernel

- Expansão do UNIX
  - Grande e de difícil gerenciamento.
- Desenvolvimento do Mach
  - Meados de 1980 na Carnegie Mellon University.
  - Técnica de microkernel.
- Transfere componentes não essenciais do kernel para o espaço do "usuário" ou sistema.
- Oferecem gerenciamento mínimo de processo e memória, além de comunicação entre processos.
  - Troca de mensagens.



#### Microkernel

- Benefícios?
  - Mais fácil de estender o SO
  - Mais fácil de portar o SO para novas arquiteturas
  - Mais confiável
    - Menos código executando no modo kernel.
  - Mais seguro
    - A maioria dos serviços está executando como processos do usuário.

### Desvantagem?

- Overhead de desempenho da comunicação entre espaço do usuário e espaço do kernel.
  - Exemplo do NT x 95. Solução: híbrido de microkernel com camadas.



### Mac OS X



#### Microkernel





#### Módulos

- Uma das melhores metodologias da atualidade
  - A maioria dos SOs modernos implementa essa técnica.
  - Cada componente do núcleo é separado.
  - Cada um fala com os outros por interfaces conhecidas.
  - Cada um é carregável conforme a necessidade dentro do kernel.
- Semelhante a camadas, mas com mais flexibilidade.
  - Qualquer módulo pode chamar qualquer módulo.
- Semelhante a microkernel, mas com mais eficiência.
  - Módulos não forçam a mudança de modo.



#### Módulos





## Máquinas virtuais

- Trata o hardware e o kernel do sistema operacional como se fossem tudo hardware.
- Uma máquina virtual oferece uma interface idêntica ao hardware básico.
- O SO cria a ilusão de múltiplos processos, cada um executando em seu próprio processador com sua própria memória.
  - O escalonamento de CPU permite parecer que os usuários têm sua própria CPU, memória e dispositivos.



## Máquinas virtuais



Máquina não virtual

Máquina virtual



## Máquinas virtuais

