# **Solution** Section 3.5 – Language of Hypothesis Testing

# Exercise

Bottles of Bayer aspirin are labeled with a statement that the tablets each contain 325 mg of aspirin. A quality control manager claims that a large sample of data can be used to support the claim that the mean amount of aspirin in the tablets is equal to 325 mg, as the label indicates. Can a hypothesis test be used to support that claim? Why or Why not?

#### **Solution**

No. Since the claim that the mean is equal to a specific value must be the null hypothesis, the only possible conclusions are to reject that claim or to fail to reject that claim, Hypothesis testing cannot be used to support a claim that a parameter is equal to a particular value.

#### Exercise

In the preliminary results from couples using the Gender Choice method of gender selection to increase the likelihood of having a baby girl, 20 couples used the Gender Choice method with the result that 8 of them had baby girls and 12 had baby boys. Given that the sample proportion of girls is  $\frac{8}{20}$  or 0.4, can the sample data support the claim that the proportion of girls is greater than 0.5? Can any sample proportion less than 0.5 be used to support a claim that the population proportion is greater than 0.5?

## **Solution**

No. Sample data that is not consistent with a claim can't be used to support that claim. In particular, no sample proportion less than 0.5 can ever be used to support a claim that the population proportion is greater than 0.5.

#### Exercise

Express the null hypothesis  $H_0$  and alternative hypothesis  $H_1$  in symbolic form. Be sure to use the correct symbol  $(\mu, p, \sigma)$  for indicated parameter

- a) The mean annual income of employees who took a statistics course is greater than \$60,000.
- b) The proportion of people aged 18 to 25 who currently use illicit drugs is equal to 0.20 (or 20%).
- c) The standard deviation of human body temperatures is equal to 0.62°F.
- d) The majority of college students have credit cards.
- e) The proportion of homes with fire extinguishers is 0.80.
- f) The mean weight of plastic discarded by households in one week is less than 1 kg.

#### **Solution**

a) Original claim:  $\mu > \$60,000$  $H_0: \mu = \$60,000$   $H_1: \mu > \$60,000$  **b**) Original claim: p = 0.20

$$H_0: p = 0.20$$
  $H_1: p \neq 0.20$ 

c) Original claim: p = 0.20

$$H_0: \sigma = 0.62^{\circ}F$$
  $H_1: p \neq 0.62^{\circ}F$ 

d) Original claim: p > 0.5

$$H_0: p = 0.5$$
  $H_1: p > 0.5$ 

e) Original claim: p = 0.80

$$H_0: p = 0.80$$
  $H_1: p \neq 0.80$ 

f) Original claim:  $\mu < 1 kg$ 

$$H_0: \mu = 1 \ kg$$
  $H_1: \mu < 1 \ kg$ 

# Exercise

Assume that the normal distribution applies and find the critical z values.

a) Two-tailed test:  $\alpha = 0.01$ .

f)  $\alpha = 0.005$ ;  $H_1$  is p < 0.8

b) Right-tailed test:  $\alpha = 0.02$ .

g)  $\alpha = 0.05$  for two-tailed test

c) Left-tailed test:  $\alpha = 0.10$ .

h)  $\alpha = 0.05$  for left-tailed test

d)  $\alpha = 0.05$ ;  $H_1$  is  $p \neq 0.4$ 

i)  $\alpha = 0.08$ ;  $H_1$  is  $\mu \neq 3.25$ 

e)  $\alpha = 0.01$ ;  $H_1$  is p > 0.5

# **Solution**

a) Two-tailed test; place  $\frac{\alpha}{2} = \frac{0.01}{2} = 0.005$  in each tail.

$$A = 1 - \frac{\alpha}{2} = 0.995$$

Critical value:  $\pm z_{\alpha/2} = \pm z_{0.005} = \pm 2.575$ 

b) Right-tailed test; place  $\alpha = 0.02$  in the upper tail.  $\Rightarrow A = 1 - \alpha = 0.98$ 

| Z   | I | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2.0 |   | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |

Critical value:  $z_{\alpha/2} = z_{0.02} = 2.05$ 

c) Left-tailed test; place  $\alpha = 0.10$  in the lower tail.  $\Rightarrow A = \alpha = 0.1$ 



Critical value:  $z_{\alpha} = z_{0.1} = -1.28$ 

d) Two-tailed test; place  $\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$  in each tail.  $\rightarrow A = 1 - \frac{\alpha}{2} = 0.975$ 

| z   | 1 | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.9 |   | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |

Critical value:  $\pm z_{\alpha/2} = \pm z_{0.025} = \pm 1.96$ 

e) Right-tailed test; place  $\alpha = 0.01$  in the upper tail.  $A = 1 - \alpha = 0.99$ 

| Z   | 1 | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |  |
|-----|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| 2.3 |   | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |  |

Critical value:  $z_{\alpha} = z_{0.02} = 2.33$ 

f) Left-tailed test; place  $\alpha = 0.005$  in the lower tail.  $\Rightarrow A = 1 - \alpha = 0.995$ 

Critical value:  $-z_{\alpha} = -z_{0.005} = -2.575$ 

| z score | Area   |
|---------|--------|
| 1.645   | 0.9500 |
| 2.575   | 0.9950 |

g) Two-tailed test; place  $\frac{\alpha}{2} = \frac{0.05}{2} = 0.025$  in each tail.

$$A = 1 - \frac{\alpha}{2} = 0.975$$

Critical value:  $\pm z_{\alpha/2} = \pm z_{0.025} = \pm 1.96$ 

**h)** Left-tailed test;  $\alpha = 0.05 \implies A = 1 - \alpha = 0.95$ 

Critical value:  $z_{cr} = z_{0.05} = -1.645$ 

i) Two-tailed test; place  $\frac{\alpha}{2} = \frac{0.08}{2} = 0.04$  in each tail.  $A = \alpha = 0.04$ 

Critical value:  $\pm z_{\alpha/2} = \pm z_{0.04} = \pm 1.75$ 

## Exercise

The claim is that the proportion of peas with yellow pods is equal to 0.25 (or 25%). The sample statistics from one of Mendel's experiments include 580 peas with 152 of them having yellow pods. Find the value

of the test statistic z using 
$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

# **Solution**

$$\hat{p} = \frac{x}{n} = \frac{152}{580} = 0.262$$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{0.262 - 0.250}{\sqrt{\frac{(0.25)(.75)}{580}}} = \frac{0.67}{\sqrt{\frac{10.25}{10.25}}}$$

## Exercise

The claim is that less than  $\frac{1}{2}$  of adults in U.S. have carbon monoxide detectors. A KRC Research survey of 1005 adults resulted in 462 who have carbon monoxide detectors. Find the value of the test statistic z

using 
$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

#### **Solution**

$$\hat{p} = \frac{x}{n} = \frac{462}{1005} = 0.460$$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{0.46 - 0.5}{\sqrt{\frac{(0.5)(.5)}{1005}}} = -2.56$$

#### Exercise

The claim is that more than 25% of adults prefer Italian food as their favorite ethnic food. A Harris Interactive survey of 1122 adults resulted in 314 who say that Italian food is their favorite ethnic food.

Find the value of the test statistic z using  $z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$ 

# **Solution**

$$\hat{p} = \frac{x}{n} = \frac{314}{1122} = 0.28$$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = \frac{0.28 - 0.25}{\sqrt{\frac{(0.25)(.75)}{1122}}} = \frac{2.31}{\sqrt{\frac{0.25}{1122}}}$$

#### Exercise

Find *P*-value by using a 0.05 significance level and state the conclusion about the null hypothesis. (Reject the null hypothesis or fail to reject the null hypothesis)

- a) The test statistic in a left-tailed test is z = -1.25
- b) The test statistic in a right-tailed test is z = 2.50
- c) The test statistic in a two-tailed test is z = 1.75
- d) With  $H_1: p \neq 0.707$ , the test statistic is z = -2.75
- e) With  $H_1: p > \frac{1}{4}$ , the test statistic is z = 2.30
- f) With  $H_1$ : p < 0.777, the test statistic is z = -2.95

#### **Solution**

a) P-value = 
$$P(z < -1.25)$$
  
= 0.1056

| Z    | .00   | .01   | .02   | .03   | .04   | .05  |
|------|-------|-------|-------|-------|-------|------|
| -1.2 | .1151 | .1131 | .1112 | .1093 | .1075 | 1056 |

Since 0.1056 > 0.05, fail to reject  $H_0$ 



b) P-value = 
$$P(z > 2.5)$$
  
= 1-0.9938  
= 0.0062

Since 0.0062 < 0.05, reject  $H_0$ 



c) P-value =  $2 \cdot P(z > 1.75)$ = 2(1-0.9599)= 0.0802

Since 0.0802 > 0.05, fail to reject  $H_0$ 



d) P-value =  $2 \cdot P(z < -2.75)$ = 2(0.003)= 0.006

Since 0.006 > 0.05, reject  $H_0$ 



e) P-value = P(z > 2.3)= 1-0.9893 = 0.0107

Since 0.0107 < 0.05, reject  $H_0$ 



f) P-value = P(z < -2.95)= 0.0016

Since 0.0016 < 0.05, reject  $H_0$ 



## Exercise

The percentage of nonsmokers exposed to secondhand smoke is equal to 41%. Identify the type I error and type II error.

# **Solution**

Original claim: p = 0.41

$$H_0: p = 0.41$$

Type I error: rejecting  $H_0$  when  $H_0$  is actually true rejecting the claim that the percentage of non-smokers exposed to secondhand smoke is 41% when that percentage actually is 41%

Type II error: failing to reject  $H_0$  when  $H_1$  is actually true failing to reject the claim that the percentage is actually different from 41%

# Exercise

The percentage of Americans who believe that life exists only on earth is equal to 20%. Identify the type I error and type II error.

# **Solution**

Original claim: p = 0.20  $H_0: p = 0.20$ 

Type I error: rejecting  $H_0$  when  $H_0$  is actually true rejecting the claim that the percentage of Americans who believe that life exists only on earth is 20% when that percentage actually is 20%

Type II error: failing to reject  $H_0$  when  $H_1$  is actually true failing to reject the claim that the percentage of Americans who believe that life exists only on earth is 20% when that percentage is actually different from 20%

# Exercise

The percentage of college students who consume alcohol is greater than 70%. Identify the type I error and type II error.

# **Solution**

Original claim: p > 0.70  $H_0: p = 0.70$ 

Type I error: rejecting  $H_0$  when  $H_0$  is actually true rejecting the claim that the percentage of college students who use alcohol is 70% when that percentage actually is 70%.

Type II error: failing to reject  $H_0$  when  $H_1$  is actually true failing to reject the claim that the percentage of college students who use alcohol is 70% when that percentage actually is actually greater than 70%

# Exercise

An entomologist writes an article in a scientific journal which claims that fewer than 13 in 10,000 male fireflies are unable to produce light due to a genetic mutation. Use the parameter p, the true proportion of fireflies unable to produce light. Express the null hypothesis and the alternative hypothesis in symbolic form.  $(\mu, p, \sigma)$ 

# **Solution**

$$p = \frac{13}{10,000} = 0.0013$$

Since the claims are fewer than it will be "<"

$$H_0: p = 0.0013$$

$$H_1: p < 0.0013$$