Simon Besednjak

Fakulteta za matematiko in fiziko

3.3.2022

$$\mathbf{r}: I \to \mathbb{R}^3, I \subseteq \mathbb{R}, \quad \mathbf{r}(t) = (x(t), y(t), z(t)), \quad t \in I,$$

$$\mathbf{r}:I\to\mathbb{R}^3,I\subseteq\mathbb{R},\quad \mathbf{r}(t)=(x(t),y(t),z(t)),\quad t\in I,$$

$$\mathbf{r}':I\to\mathbb{R}^3,\quad \mathbf{r}'(t)=(x'(t),y'(t),z'(t)),\quad t\in I,$$

$$\begin{split} \mathbf{r}:I&\to\mathbb{R}^3,I\subseteq\mathbb{R},\quad \mathbf{r}(t)=(x(t),y(t),z(t)),\quad t\in I,\\ \\ \mathbf{r}':I&\to\mathbb{R}^3,\quad \mathbf{r}'(t)=(x'(t),y'(t),z'(t)),\quad t\in I,\\ \\ \sigma(t)&=\|\mathbf{r}'(t)\|=\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}, \end{split}$$

$$\begin{split} \mathbf{r}: I &\to \mathbb{R}^3, I \subseteq \mathbb{R}, \quad \mathbf{r}(t) = (x(t), y(t), z(t)), \quad t \in I, \\ \mathbf{r}': I &\to \mathbb{R}^3, \quad \mathbf{r}'(t) = (x'(t), y'(t), z'(t)), \quad t \in I, \\ \sigma(t) &= \|\mathbf{r}'(t)\| = \sqrt{x'^2(t) + y'^2(t) + z'^2(t)}, \\ \mathbf{t} &= \frac{\mathbf{r}'}{\|\mathbf{r}'\|}, \quad \mathbf{p} = \frac{\mathbf{r}' \times \mathbf{r}''}{\|\mathbf{r}' \times \mathbf{r}''\|} \times \frac{\mathbf{r}'}{\|\mathbf{r}'\|}, \quad \mathbf{b} = \frac{\mathbf{r}' \times \mathbf{r}''}{\|\mathbf{r}' \times \mathbf{r}''\|}, \end{split}$$

$$\begin{split} \mathbf{r} : I &\to \mathbb{R}^3, I \subseteq \mathbb{R}, \quad \mathbf{r}(t) = (x(t), y(t), z(t)), \quad t \in I, \\ \mathbf{r}' : I &\to \mathbb{R}^3, \quad \mathbf{r}'(t) = (x'(t), y'(t), z'(t)), \quad t \in I, \\ \sigma(t) &= \|\mathbf{r}'(t)\| = \sqrt{x'^2(t) + y'^2(t) + z'^2(t)}, \\ \mathbf{t} &= \frac{\mathbf{r}'}{\|\mathbf{r}'\|}, \quad \mathbf{p} = \frac{\mathbf{r}' \times \mathbf{r}''}{\|\mathbf{r}' \times \mathbf{r}''\|} \times \frac{\mathbf{r}'}{\|\mathbf{r}'\|}, \quad \mathbf{b} = \frac{\mathbf{r}' \times \mathbf{r}''}{\|\mathbf{r}' \times \mathbf{r}''\|}, \\ \kappa &= \frac{\|\mathbf{r}' \times \mathbf{r}''\|}{\sigma^3} = \frac{\|\mathbf{r}' \times \mathbf{r}''\|}{\|\mathbf{r}'\|^3}, \quad \tau = \frac{(\mathbf{r}' \times \mathbf{r}'') \cdot \mathbf{r}'''}{\|\mathbf{r}' \times \mathbf{r}''\|^2}. \end{split}$$

Krivulje s pitagorejskim hodografom

Definicija

Prostorska polinomska krivulja $\mathbf{r}:I\to\mathbb{R}^3$, $\mathbf{r}(t)=(x(t),y(t),z(t))$, kjer je I zaprt interval v \mathbb{R}^3 , ima pitagorejski hodograf, če obstaja tak realen polinom σ , da velja

$$x'^{2}(t) + y'^{2}(t) + z'^{2}(t) = \sigma^{2}(t), \quad t \in I.$$

Takim krivuljam pravimo tudi PH-krivulje.

Krivulje s pitagorejskim hodografom

Izrek

Prostorska krivulja ${f r}$ je PH-krivulja natanko takrat, ko je njen hodograf oblike

$$\begin{split} x'(t) &= \left(u^2(t) + v^2(t) - p^2(t) - q^2(t)\right)w(t), \\ y'(t) &= 2\big(u(t)q(t) + v(t)p(t)\big)w(t), \\ z'(t) &= 2\big(v(t)q(t) - u(t)p(t)\big)w(t), \end{split}$$

za realne polinome u, v, p, q in w.

Krivulje s pitagorejskim hodografom

Izrek

Prostorska krivulja ${f r}$ je PH-krivulja natanko takrat, ko je njen hodograf oblike

$$\begin{split} x'(t) &= \left(u^2(t) + v^2(t) - p^2(t) - q^2(t)\right) w(t), \\ y'(t) &= 2 \big(u(t)q(t) + v(t)p(t)\big) w(t), \\ z'(t) &= 2 \big(v(t)q(t) - u(t)p(t)\big) w(t), \end{split}$$

za realne polinome u,v,p,q in w. Parametrična hitrost se poenostavi ${\it v}$

$$\sigma(t) = \|\mathbf{r}'(t)\| = (u^2(t) + v^2(t) + p^2(t) + q^2(t))w(t).$$

 $Pri\ tem\ polinom\ w\ predstavlja\ skupni\ faktor\ komponent\ hodografa.$

Ločna dolžina regularne PH-krivulje je v polinomski odvisnosti od parametra t:

$$s(t) = \int_a^t \|\mathbf{r}'(\xi)\| d\xi = \int_a^t \sigma(\xi) d\xi.$$

Ločna dolžina regularne PH-krivulje je v polinomski odvisnosti od parametra t:

$$s(t) = \int_a^t \|\mathbf{r}'(\xi)\| d\xi = \int_a^t \sigma(\xi) d\xi.$$

Vektorsko polje enotskih tangent ${\bf t}$ je racionalno v parametru t.

Ločna dolžina regularne PH-krivulje je v polinomski odvisnosti od parametra t:

$$s(t) = \int_a^t \|\mathbf{r}'(\xi)\| d\xi = \int_a^t \sigma(\xi) d\xi.$$

Vektorsko polje enotskih tangent ${\bf t}$ je racionalno v parametru t. Torzijska ukrivljenost τ je racionalna funkcija parametra t.

Ločna dolžina regularne PH-krivulje je v polinomski odvisnosti od parametra t:

$$s(t) = \int_a^t \|\mathbf{r}'(\xi)\| d\xi = \int_a^t \sigma(\xi) d\xi.$$

Vektorsko polje enotskih tangent ${\bf t}$ je racionalno v parametru t. Torzijska ukrivljenost τ je racionalna funkcija parametra t. V splošnem izrazi za $\kappa, {\bf p}$ in ${\bf b}$ niso racionalno parametrizirani.

$$\mathcal{A}(t) = u(t) + v(t)\mathbf{i} + p(t)\mathbf{j} + q(t)\mathbf{k}.$$

$$\mathcal{A}(t) = u(t) + v(t)\mathbf{i} + p(t)\mathbf{j} + q(t)\mathbf{k}.$$

$$\mathcal{A}^*(t) = u(t) - v(t)\mathbf{i} - p(t)\mathbf{j} - q(t)\mathbf{k}.$$

$$\mathcal{A}(t) = u(t) + v(t)\mathbf{i} + p(t)\mathbf{j} + q(t)\mathbf{k}.$$

$$\mathcal{A}^*(t) = u(t) - v(t)\mathbf{i} - p(t)\mathbf{j} - q(t)\mathbf{k}.$$

$$\begin{split} \mathcal{A}(t)\mathbf{i}\mathcal{A}^*(t) &= \left(u^2(t) + v^2(t) - p^2(t) - q^2(t)\right)\mathbf{i} \\ &+ 2\big(u(t)q(t) + v(t)p(t)\big)\mathbf{j} \\ &+ 2\big(v(t)q(t) - u(t)p(t)\big)\mathbf{k}. \end{split}$$

$$\mathcal{A}(t) = u(t) + v(t)\mathbf{i} + p(t)\mathbf{j} + q(t)\mathbf{k}.$$

$$\mathcal{A}^*(t) = u(t) - v(t)\mathbf{i} - p(t)\mathbf{j} - q(t)\mathbf{k}.$$

$$\begin{split} \mathcal{A}(t)\mathbf{i}\mathcal{A}^*(t) &= \left(u^2(t) + v^2(t) - p^2(t) - q^2(t)\right)\mathbf{i} \\ &+ 2\big(u(t)q(t) + v(t)p(t)\big)\mathbf{j} \\ &+ 2\big(v(t)q(t) - u(t)p(t)\big)\mathbf{k}. \end{split}$$

Velja: $\mathbf{r}' = \mathcal{A}\mathbf{i}\mathcal{A}^*$.

$$\mathcal{A}(t) = u(t) + v(t)\mathbf{i} + p(t)\mathbf{j} + q(t)\mathbf{k}.$$

$$\mathcal{A}^*(t) = u(t) - v(t)\mathbf{i} - p(t)\mathbf{j} - q(t)\mathbf{k}.$$

$$\begin{split} \mathcal{A}(t)\mathbf{i}\mathcal{A}^*(t) &= \left(u^2(t) + v^2(t) - p^2(t) - q^2(t)\right)\mathbf{i} \\ &+ 2\big(u(t)q(t) + v(t)p(t)\big)\mathbf{j} \\ &+ 2\big(v(t)q(t) - u(t)p(t)\big)\mathbf{k}. \end{split}$$

Velja: $\mathbf{r}' = \mathcal{A}\mathbf{i}\mathcal{A}^*$.

$$\begin{split} \|\mathbf{r}'(t)\| &= \sigma(t) = \|\mathcal{A}(t)\|^2 = \mathcal{A}(t)\mathcal{A}^*(t) \\ &= u^2(t) + v^2(t) + p^2(t) + q^2(t). \end{split}$$

Definicija

Hopfova preslikava H je preslikava, ki slika iz $\mathbb{C} \times \mathbb{C} \to \mathbb{R}^3$ in je za $\alpha, \beta \in \mathbb{C}$ določena z naslednjim predpisom:

$$H(\boldsymbol{\alpha}, \boldsymbol{\beta}) = (|\boldsymbol{\alpha}|^2 - |\boldsymbol{\beta}|^2, 2\operatorname{Re}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}}), 2\operatorname{Im}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}})).$$

Definicija

Hopfova preslikava H je preslikava, ki slika iz $\mathbb{C} \times \mathbb{C} \to \mathbb{R}^3$ in je za $\alpha, \beta \in \mathbb{C}$ določena z naslednjim predpisom:

$$\mathrm{H}(\boldsymbol{\alpha},\boldsymbol{\beta}) = (|\boldsymbol{\alpha}|^2 - |\boldsymbol{\beta}|^2, 2\operatorname{Re}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}}), 2\operatorname{Im}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}})).$$

$$\alpha(t) = u(t) + iv(t), \quad \beta(t) = q(t) + ip(t).$$

Definicija

Hopfova preslikava H je preslikava, ki slika iz $\mathbb{C} \times \mathbb{C} \to \mathbb{R}^3$ in je za $\alpha, \beta \in \mathbb{C}$ določena z naslednjim predpisom:

$$H(\boldsymbol{\alpha},\boldsymbol{\beta}) = (|\boldsymbol{\alpha}|^2 - |\boldsymbol{\beta}|^2, 2\operatorname{Re}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}}), 2\operatorname{Im}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}})).$$

$$\alpha(t) = u(t) + iv(t), \quad \beta(t) = q(t) + ip(t).$$

Velja:

$$\begin{split} \mathbf{r}'(t) &= \mathrm{H}(\boldsymbol{\alpha}(t), \boldsymbol{\beta}(t)), \\ \|\mathbf{r}'(t)\| &= |\boldsymbol{\alpha}(t)|^2 + |\boldsymbol{\beta}(t)|^2. \end{split}$$

Preko pretvorbe $\mathcal{A}=\alpha+\mathbf{k}\beta$ lahko iz Hopfove oblike PH-krivulje dobimo kvaternionsko.

Definicija

Hopfova preslikava H je preslikava, ki slika iz $\mathbb{C} \times \mathbb{C} \to \mathbb{R}^3$ in je za $\alpha, \beta \in \mathbb{C}$ določena z naslednjim predpisom:

$$\mathrm{H}(\boldsymbol{\alpha},\boldsymbol{\beta}) = (|\boldsymbol{\alpha}|^2 - |\boldsymbol{\beta}|^2, 2\operatorname{Re}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}}), 2\operatorname{Im}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}})).$$

$$\alpha(t) = u(t) + iv(t), \quad \beta(t) = q(t) + ip(t).$$

Velja:

$$\mathbf{r}'(t) = \mathbf{H}(\boldsymbol{\alpha}(t), \boldsymbol{\beta}(t)),$$

$$\|\mathbf{r}'(t)\| = |\boldsymbol{\alpha}(t)|^2 + |\boldsymbol{\beta}(t)|^2.$$

Definicija

Hopfova preslikava H je preslikava, ki slika iz $\mathbb{C} \times \mathbb{C} \to \mathbb{R}^3$ in je za $\alpha, \beta \in \mathbb{C}$ določena z naslednjim predpisom:

$$\mathrm{H}(\boldsymbol{\alpha},\boldsymbol{\beta}) = (|\boldsymbol{\alpha}|^2 - |\boldsymbol{\beta}|^2, 2\operatorname{Re}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}}), 2\operatorname{Im}(\boldsymbol{\alpha}\bar{\boldsymbol{\beta}})).$$

$$\alpha(t) = u(t) + iv(t), \quad \beta(t) = q(t) + ip(t).$$

Velja:

$$\begin{split} \mathbf{r}'(t) &= \mathrm{H}(\boldsymbol{\alpha}(t), \boldsymbol{\beta}(t)), \\ \|\mathbf{r}'(t)\| &= |\boldsymbol{\alpha}(t)|^2 + |\boldsymbol{\beta}(t)|^2. \end{split}$$

Preko pretvorbe $\mathcal{A} = \alpha + \mathbf{k}\beta$ lahko iz Hopfove oblike PH-krivulje dobimo kvaternionsko.

DPH-krivulje

Definicija

Za prostorsko polinomsko krivuljo ${\bf r}$ pravimo, da je DPH-krivulja, če sta tako $\|{\bf r}'\|$ kot $\|{\bf r}' \times {\bf r}''\|$ polinomski funkciji parametra t, torej če sta izpolnjena pogoja

$$\|\mathbf{r}'\|^2 = x'^2 + y'^2 + z'^2 = \sigma^2,$$

$$\|\mathbf{r}' \times \mathbf{r}''\|^2 = (y'z'' - y''z')^2 + (z'x'' - z''x')^2 + (x'y'' - x''y')^2 = (\sigma\omega)^2$$

za neka polinoma σ in ω .

DPH-krivulje

Definicija

Za prostorsko polinomsko krivuljo ${\bf r}$ pravimo, da je DPH-krivulja, če sta tako $\|{\bf r}'\|$ kot $\|{\bf r}' \times {\bf r}''\|$ polinomski funkciji parametra t, torej če sta izpolnjena pogoja

$$\|\mathbf{r}'\|^2 = x'^2 + y'^2 + z'^2 = \sigma^2,$$

$$\|\mathbf{r}' \times \mathbf{r}''\|^2 = (y'z'' - y''z')^2 + (z'x'' - z''x')^2 + (x'y'' - x''y')^2 = (\sigma\omega)^2$$

za neka polinoma σ in ω .

Frenetovo ogrodje $(\mathbf{t}, \mathbf{p}, \mathbf{b})$ in fleksijska ukrivljenost κ ter torzijska ukrivljenost τ so racionalno parametrizirane v parametru t.

Slika: Graf vijačnice $\mathbf{r}(t) = (5\cos t, \sin t, t)$.

Simon Besednjak

Definicija

Krivulja ${\bf r}$ je vijačnica, če oklepa njena enotska tangenta ${\bf t}$ konstanten kot ψ (kjer je $0<\psi\leq\frac{\pi}{2}$) z nekim fiksnim enotskim vektorjem ${\bf a}$. Vektor ${\bf a}$ predstavlja os vrtenja vijačnice.

Definicija

Krivulja ${\bf r}$ je vijačnica, če oklepa njena enotska tangenta ${\bf t}$ konstanten kot ψ (kjer je $0<\psi\leq\frac{\pi}{2}$) z nekim fiksnim enotskim vektorjem ${\bf a}$. Vektor ${\bf a}$ predstavlja os vrtenja vijačnice.

Ker sta vektorja a in t enotska, potem velja

$$\mathbf{a} \cdot \mathbf{t} = \cos \psi$$
.

Definicija

Krivulja ${\bf r}$ je vijačnica, če oklepa njena enotska tangenta ${\bf t}$ konstanten kot ψ (kjer je $0<\psi\leq\frac{\pi}{2}$) z nekim fiksnim enotskim vektorjem ${\bf a}$. Vektor ${\bf a}$ predstavlja os vrtenja vijačnice.

Ker sta vektorja ${f a}$ in ${f t}$ enotska, potem velja

$$\mathbf{a} \cdot \mathbf{t} = \cos \psi$$
.

Izrek (Lancret)

Krivulja z neničelno fleksijsko ukrivljenostjo je vijačnica natanko takrat, ko je za vse njene točke razmerje med torzijsko in fleksijsko ukrivljenostjo konstantno.

Trditev

Če je krivulja polinomska vijačnica, potem je tudi DPH-krivulja.

Trditev

Če je krivulja polinomska vijačnica, potem je tudi DPH-krivulja.

Izrek

Krivulja stopnje tri ali pet je polinomska vijačnica natanko tedaj, ko je DPH-krivulja.

 Vsaka PH-krivulja stopnje 3 je (polinomska) vijačnica in hkrati DPH-krivulja.

- Vsaka PH-krivulja stopnje 3 je (polinomska) vijačnica in hkrati DPH-krivulja.
- DPH-krivulje stopnje 5 (ki so hkrati tudi polinomske vijačnice) predstavljajo pravo podmnožico množice PH-krivulj stopnje 5.

- Vsaka PH-krivulja stopnje 3 je (polinomska) vijačnica in hkrati DPH-krivulja.
- DPH-krivulje stopnje 5 (ki so hkrati tudi polinomske vijačnice) predstavljajo pravo podmnožico množice PH-krivulj stopnje 5.
- Za stopnje 7 ali več predstavlja množica DPH-krivulj pravo podmnožico množice PH-krivulj. Obstajajo tako vijačne kot nevijačne DPH-krivulje.

Polinom proporcionalnosti

Definicija

Polinomu $\alpha(t)\beta'(t)-\alpha'(t)\beta(t)$, ki ga sestavimo iz polinomov $\alpha(t)=u(t)+\mathrm{i} v(t)$ ter $\beta(t)=q(t)+\mathrm{i} p(t)$ za neke realne polinome u(t),v(t),q(t) ter p(t), pravimo tudi polinom proporcionalnosti polinomov $\alpha(t)$ in $\beta(t)$.

Polinom proporcionalnosti

Definicija

Polinomu $\alpha(t)\beta'(t)-\alpha'(t)\beta(t)$, ki ga sestavimo iz polinomov $\alpha(t)=u(t)+\mathrm{i} v(t)$ ter $\beta(t)=q(t)+\mathrm{i} p(t)$ za neke realne polinome u(t),v(t),q(t) ter p(t), pravimo tudi polinom proporcionalnosti polinomov $\alpha(t)$ in $\beta(t)$.

DPH-pogoj $\|\mathbf{r}' \times \mathbf{r}''\|^2 = (\sigma \omega)^2$ je ekvivalenten pogoju:

$$\alpha \beta' - \alpha' \beta = h \mathbf{w}^2,$$

kjer je h realen polinom, \mathbf{w} pa kompleksen polinom, za katera velja tudi

$$\operatorname{st}(h) + 2\operatorname{st}(\mathbf{w}) = \operatorname{st}(\alpha \beta' - \alpha' \beta) = \operatorname{st}(\alpha) + \operatorname{st}(\beta) - 2.$$

$$\mathbf{z}(t) = \frac{\mathbf{a}_0(1-t) + \mathbf{a}_1 t}{\mathbf{b}_0(1-t) + \mathbf{b}_1 t},$$

kjer so ${\bf a}_0,\,{\bf a}_1,\,{\bf b}_0$ in ${\bf b}_1$ kompleksna števila, za katera velja ${\bf a}_0{\bf b}_1-{\bf a}_1{\bf b}_0 \neq 0.$

$$\mathbf{z}(t) = \frac{\mathbf{a}_0(1-t) + \mathbf{a}_1 t}{\mathbf{b}_0(1-t) + \mathbf{b}_1 t},$$

kjer so ${\bf a}_0,\,{\bf a}_1,\,{\bf b}_0$ in ${\bf b}_1$ kompleksna števila, za katera velja ${\bf a}_0{\bf b}_1-{\bf a}_1{\bf b}_0 \neq 0.$

Dva različna načina za konstrukcijo vijačnic:

$$\mathbf{z}(t) = \frac{\mathbf{a}_0(1-t) + \mathbf{a}_1 t}{\mathbf{b}_0(1-t) + \mathbf{b}_1 t},$$

kjer so ${\bf a}_0,\,{\bf a}_1,\,{\bf b}_0$ in ${\bf b}_1$ kompleksna števila, za katera velja ${\bf a}_0{\bf b}_1-{\bf a}_1{\bf b}_0 \neq 0.$

Dva različna načina za konstrukcijo vijačnic:

• Pomnožimo števec in imenovalec zgornjega izraza s kompleksnim polinomom, da dobimo $\mathbf{z}(t) = \boldsymbol{\alpha}(t)/\boldsymbol{\beta}(t)$. Tako pridobljena $\boldsymbol{\alpha}(t)$ in $\boldsymbol{\beta}(t)$ preslikamo s Hopfovo preslikavo, da dobimo hodograf $\mathbf{r}'(t)$.

$$\mathbf{z}(t) = \frac{\mathbf{a}_0(1-t) + \mathbf{a}_1 t}{\mathbf{b}_0(1-t) + \mathbf{b}_1 t},$$

kjer so ${\bf a}_0,\,{\bf a}_1,\,{\bf b}_0$ in ${\bf b}_1$ kompleksna števila, za katera velja ${\bf a}_0{\bf b}_1-{\bf a}_1{\bf b}_0 \neq 0.$

Dva različna načina za konstrukcijo vijačnic:

- Pomnožimo števec in imenovalec zgornjega izraza s kompleksnim polinomom, da dobimo $\mathbf{z}(t) = \boldsymbol{\alpha}(t)/\boldsymbol{\beta}(t)$. Tako pridobljena $\boldsymbol{\alpha}(t)$ in $\boldsymbol{\beta}(t)$ preslikamo s Hopfovo preslikavo, da dobimo hodograf $\mathbf{r}'(t)$.
- V zgornjem izrazu uporabimo racionalno reparametrizacijo $t o rac{f(t)}{g(t)}$, kjer sta f(t) in g(t) realna polinoma vsaj druge stopnje, ki sta si med seboj tuja. Spet pridobimo izraz oblike $\mathbf{z}(t) = \boldsymbol{\alpha}(t)/\boldsymbol{\beta}(t)$, in preslikamo $\boldsymbol{\alpha}(t)$ in $\boldsymbol{\beta}(t)$ s Hopfovo preslikavo, da dobimo hodograf $\mathbf{r}'(t)$.

Hermitova interpolacija z DPH-krivuljami stopnje 5

Slika: Štiri interpolacijske DPH-krivulje s pripadajočimi kontrolnimi poligoni za podatke $\mathbf{p}_i=(0,0,0),\ \mathbf{p}_f=(1,1,1),\ \mathbf{d}_i=(1,0,1)$ in $\mathbf{d}_f=(0,1,1).$