Improving the performance of WCET analysis in the presence of variable latencies XDD: a new structure to perform pipeline analysis

Zhenyu Bai, Hugues Cassé, Marianne De Michiel, Thomas Carle, Christine Rochange

CNRS - IRIT - University of Toulouse

COMPAS 2021

Introduction

- Critical real time system requires to ensure temporal properties.
- Worst Case Execution Time (WCET) on specific hardware
- Compute a safe upper bound of WCET by static analysis

WCET analysis: A typical structure

Figure: A typical WCET analysis structure

• Execution Graph $XG=(V_{XG}, E_{XG})$ is a DAG representing the **dependencies** between pipeline stages;

- $\delta=1$: solid edge; $\delta=0$: dotted edge
- ullet λ : latency of node

Definition

The start time of node v, d_v^{start} can be computed by

$$d_{v}^{\mathit{start}} = \max_{w
ightarrow v \in E_{XG}} d_{w}^{\mathit{start}} + \delta(v
ightarrow w) imes \lambda(v)$$

A basic exemple

Events

- Hardware effects involve timing variation
- Branch predictions, cache access, etc.
- ullet Event $e \in \mathcal{E}$: binary variable representing the occurrence of a variable XG node processing time

An exemple with events

BB execution time

Enumeration of BB execution time

 $2^{|\mathcal{E}|} = 16$ configurations but only 5 times .

<i>e_{IC₀}</i>	e_{IC_1}	e_{IC_2}	e_{DC_3}	C_{BB}
*	0	0	0	6
*	0	0	1	16
*	0	1	0	16
*	0	1	1	25
*	1	0	0	15
*	1	0	1	24
*	1	1	0	16
*	1	1	1	25

BB execution time

BB execution time by decision tree

Figure: Full tree representation

BB execution time

XDD representation of BB execution time

Canonicity:

- ullet The depth of events depends on a total order (\mathcal{E},\prec)
- \bullet For a given total order (\mathcal{E}, \prec) on events, there is a unique XDD tree representation.

Figure: Execution Decision Diagram(XDD) representation

XDD in XG computation

Compatible with XG:

$$d_v^{start} = \max_{w o v \in E_{XG}} d_w^{start} + \delta(v o w) imes (\lambda(v))$$

becomes:

$$d_{v}^{\#} = \bigoplus_{w
ightarrow v \in E_{XG}} d_{w}^{\#} \otimes (\lambda^{\#}(w) imes \delta(w
ightarrow v))$$

$$(\oplus \simeq \max; \otimes \simeq +)$$

- Represent all possible times at each XG node
- Analysis in one pass instead of $2^{|\mathcal{E}|}$ passes

Experiments

Figure: Number of nodes with respect to the number of events

Experiments

Figure: Analysis time

Conclusion

XDD

- compact structure to represent timing variation;
- offers an efficient way to perform pipeline analysis with XG;
- Performance of XDD relies on the pipeline absorption effect;
- Experiments show the impressive compress ratio;
- Up to 1000 times faster than current exhaustive approach.

Future Works

- Using XDD to model out-of-order pipeline;
- Experiment on different hardware architecture;