Deterministic Policy Gradient Algorithms

Reminders

- Stochastic policy, usually denoted as $\pi(s, a)$ or $\mu(a|s)$, gives us the joint distribution of actions and policies, while the deterministic policy $\mu(s)$ gives us the actual action
- Stochastic policy natural for explorations

Overview

- Continuous actions
- Deterministic policy gradient is the expected gradient of the action-value function
- Stochastic policy gradient integrates over both actions and states \implies needs more samples to estimate
 - Necessary to explare full state and action space (unless environment super noisy)
- compatible function approximation ensures unbiasedness of the gradient
- Stochastic Policy Gradient Theorem [1]:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim d^{\pi}, a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s, a)]$$

- Problem with this algorithms is estimating action-value function $Q^{\pi}(s,a)$
- Stochastic actor critic:
 - Actor adjusts parameters θ of the stochastic policy
 - Critic estimates the action-value function $Q^{\omega}(s,a) \approx Q^{\pi}(s,a)$
 - Critic is in general biased, unless certain conditions are satisfied (which are usually relaxed)
- Importance sampling in the stochastic case used in stochastic off-policy for both actor and critic, while in deterministic it is discarded for the actor (no integral over actions) and for the critic (e.g. by using Q-learning)

Key ingredients

- Proves the existence of the deterministic policy gradient
- Deterministic policy is the limit of the stochastic policy as $\sigma \to 0$
- Deterministic policy gradient theorem:

$$\nabla_{\theta} J(\mu_{\theta}) = \int_{\mathcal{S}} d^{\mu}(s) \nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, \mu_{\theta}(s)) ds = \mathbb{E}_{d^{\mu}} [\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, \mu_{\theta}(s))]$$

- As in the stochastic case, the state-visitation distribution gradient does no go into the policy gradient update
- How to calculate $\nabla_a Q^{\mu}(s, \mu_{\theta}(s))$?
 - $-Q^{\mu}(s,\mu_{\theta}(s))$ an be defined in the linear form from the compatibility function

Comments

- IMO not that well written paper, dry and lacking important insights needed to follow the presented concepts
- After going through [1], it is a lot easier to understand
- Algorithm several orders of magnitude faster than the stochastic counterpart for higher dimensional action spaces

Off topic Can we make any process MDP? Use the whole previous history to represent the state?

[1] Policy Gradient Methods for Reinforcement Learning with Function Approximation, R. Sutton, et. al.