

Validation Through Full-Scale Flight Exploration

Objectives These are survivable accidents

IFCS has potential to reduce the amount of skill and luck required for survival

Simulated Failures

Left stab frozen

at 0, -2, and -4

Regain stable platform

- Typically measured in terms of stability margin Stability margin not explicitly fed into adaptation
- Ability to re-establish good handling qualities
- Measured in terms of model following Response should fall within MUAD envelope
 - If successful should provide good handling qualities
- Provide ability to safely land airplane - Stay within maneuver constraints

Longitudinally Destabilized Plant

Apparent plant

Canard

multiplier

Aircraft

Feedback

- Respect structural limitations

Flight Control Design

Flight Results

Closed Loop Frequency Response No Adaption

Simulated Frozen Stabilator

+ Adaptive system reduced the amount of cross coupling Adaptive system also introduced tendency for pilot induced oscillations

Closed Loop Frequency Response With Adaptation

Pilot Ratings With Adaptation Formation Flight Task

Implememtation

Limited Authority System

Adaptation algorithm implemented in

Pilot

inputs

- separate processor Class B software
- Autocoded directly from Simulink
- block diagram - Many configurable settings
- Learning rates
- Weight limits • Thresholds, etc.
- Control laws programmed in Class A, quad-redundant system
- Protection provided by floating limiter

NN Floating Limiter

Sigma pi

Sigma pi commandd

—— Floating limiter boundary

Limited command (fl_drift_flag)

Down mode condition (fl_dmode_flag)

command (pqr) -

on adaptation signals

algorithm Safety limits Research controller 4 Channel 68040 Conventional controller

Upper range limit (down mode)

Lower range limit (down mode)

Floating

limiter-

Rate limit drift,

counter -

start persistence

Single Channel 400 Mhz

Adaptive

Flight Experiment

- Assess handling qualities of
- Gen II controller without failure • Introduce simulated failures
 - Control surface locked
 - ("B matrix failure")
 - Angle of attack to canard feedback gain change ("A matrix failure")
- Assess handling qualities of
- Gen II controller without failure

— Max persistence

Window

counter, downmode

- Re-assess handling qualities with simulated failures and adaptation
- Report on "Real World" experience with adaptive flight control system

Tunable metrics

Window delta

Range limits

Persistence limiter

Drift rate

Flight Results

Open Loop Frequency Response With Adaption

Gen2 and Gen2a Sigma Pi Flight Results

Future Direction

NASA F/A-18 Tail Number 853

- Quad 68040 Research Flight Control System with production control system as backup
- Extensively instrumented for flight
- Wing deflection measurement system Faster, more capable RFCS in work

Future adaptive research areas:

- Adaptively augmenting control by integrating propulsion control
- Assessing integrated adaptive flight management and planning • Sensing and suppressing aero- servoelastic (ASE) interactions
- Integration of static structural load measurements with adaptive controller

Conclusion

- Full scale flight test forces designers to address real-world issues
- Provides high-visibility demonstration
- Adds credibility that adaptation technology can be a viable design option
- Helps to "separate the real from the imagined"