Theorem Let f: R - C be periodic & piecewise smooth:

(or [-T, T) c'except at finitely maypts, and f(0+), f(0-), f'(0+), f'(0-) exist \$t0)

Then the fourier series of the function always conveyes to iff(0+)+f(0-)].

Proof: Last time we showed that if S, (0) = \(\int \text{Cne} \) (ne

tuen $S_{N}^{f}(\theta) - \frac{1}{2}[f(\theta+)+f(\theta-)] = \frac{1}{2\pi}\int_{0}^{\pi}g_{\theta}(y)\left(e^{(N+1)iy}\right) - e^{-Niy}\int_{0}^{\pi-N}dy = C_{N}^{f}(\theta)$

where C'_{i} are four i'er coeffs of $g_{\theta}(p) = \begin{cases} \frac{f(\theta+p) - f(\theta-)}{e^{i\theta} - 1} & \text{if } e^{i\theta} - 1 \end{cases}$ $f(\theta+y) - f(\theta+y) = \begin{cases} \frac{f(\theta+p) - f(\theta+y)}{e^{i\theta} - 1} & \text{if } e^{i\theta} - 1 \end{cases}$

then C'_N_I, C'N > 0 and the fourier series for f converges asclaimed.

 g_{θ} integrable $\Leftrightarrow g_{\theta}(q)$ is bounded (only need to check around p=0)

Follows: Use l'H: Lim 9 (9) = $\lim_{\gamma \to 0^-} \frac{f(\theta + \gamma) - f(\theta - 1)}{e^{i\theta} - 1} = \lim_{\gamma \to 0^-} \frac{f(\theta + \gamma)}{(e^{i\gamma})} = \frac{f'(\theta - 1)}{(e^{i\gamma})}$

Problem: L'H does not hold for complex-valued functions of a real voviable.

$$\lim_{t\to 0} \frac{t}{te^{i/2}} \stackrel{?}{=} \lim_{t\to 0} \frac{1}{e^{i/2} + 1} \frac{te^{i/2}}{t^2} e^{i/k} \frac{te^{i/2}}{te^{i/2}}$$

$$= \lim_{t\to 0} \frac{t}{t-i} e^{-i/k}$$

$$= \lim_{t\to 0} \frac{t(t+i)}{t^2+1} \left(\cos\left(\frac{1}{t}\right) - i\sin\left(\frac{1}{t}\right)\right)$$

= 0 by squeze theorem

On the other how, $\lim_{t\to 0} \frac{t}{te^{it}} = \lim_{t\to 0} \frac{1}{e^{it}} = \lim_{t\to 0} \left(\cos(\frac{t}{t}) - i\sin(\frac{t}{t}) \right)$

Proposition (Left-hand Version): Suppose
$$f, g: [a,b] \rightarrow ($$
 continuous, $f(b) = g(b) = 0$ and $f(b-)$ exists, $g'(b-) \neq 0$, then on (a,b) .

$$\lim_{t \to b^-} \frac{f(t)}{g(t)} = \frac{f'(b-)}{g'(b-)}$$

Proof: Apply MVT to real f imaginary parts of f f g.

If $t \in (a_1b)$ thun $f(t) = f(t) - f(b) = (f_1(t) - f_1(b)) + i(f_2(t) - f_2(b))$ $= f'_1(\alpha_1)(t-b) + i f'_2(\alpha_2)(t-b)$ $= (f'_1(\kappa_1) + i f_2(\alpha_2))(t-b) \quad \text{where } \alpha_1, \alpha_2 \in (t,b)$ Similarly $g(t) = (g'_1(p_1) + i g'_2(p_2))(t-b) \quad \text{where } p_1, p_2 \in (t,b)$

So $(vm \quad \frac{f(t)}{g(t)}) = \lim_{t \to b} \frac{f'_1(\alpha_1) + if_2(\alpha_2)}{g'_1(\beta_1) + ig'_2(\beta_2)} = \frac{f'_2(b-1)}{g'_2(b-1)} \quad \text{since } t \to b^-$

So applying the proposition we get desired result. D

The proof required for convergence of tourier series that f is piecewise C' and $f(\theta+)$, $f(\theta-)$, $f'(\theta+)$, $f'(\theta-)$ exist.

Example: A periodic everywhere continuous function whose fourier serves does not converge everywhere:

$$f(\theta) = \sum_{j=1}^{\infty} \frac{1}{j^2} \sin \left(2^{j^3} + 1 \right) \frac{|x|}{2}$$

This is continuous everywhere by the weierstones M-test:

$$\left| \sum_{i=j}^{\infty} \frac{1}{j^2} \sin \left((2^{j^3} + 1) \frac{|x|}{2} \right) \right| \leq \sum_{i=j}^{\infty} \frac{1}{2} \rightarrow 0 \text{ as } J \rightarrow \infty$$

however the fourier series of the function diverges at o.

M-tests if $M_n>0$, $\geq M_n<\infty$, and $|f_n(\alpha)|\leq M_n$ then $\geq f_n(\alpha)$ converges absidually

Theorem (carleson) If $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\theta)|^2 d\theta$ is defined then Fourier series of f converges almost everywhere.

In particular, continuous functions

on the other hand, I set of measure zero, can fine a cts function whose Fourier series diverge, on that set.

Remark: if f piecewise cts 4 the forrier series (onverges at 0, then it must converge to $\frac{1}{2}[f(0+)+f(0-)].$