PAGE 3

Amendments to the Claims:

This listing of claims will replace all prior version, and listings, of claims in the application:

9252490111;

Listing of Claims:

5

3

4 5

6 7

8

1

1 2

WE CLAIM:

- 1 1. (original) A system for measuring optical characteristics of an optical device under test (DUT), said system comprising: 2
 - a light source for generating an optical signal applied to the optical DUT;
 - a reference interferometer and a test interferometer, said interferometers being optically coupled to said light source; and
 - a computing unit coupled to said interferometers, said computing unit utilizing amplitude and phase computational components to aid in the determination of optical characteristics of the optical DUT;

wherein the amplitude and phase computational components are orthogonal filters.

- 2. (canceled)
- 3. (original) The system according to claim 1, wherein the optical characteristics Į include at least one of the following: 2
- a reflective transfer function, 3
- a transmissive transfer function, and 4
- group delay. 5
 - 4. (original) The system according to claim 1, wherein said light source is a tunable laser source.
- 5.` (original) The system according to claim 1, wherein the computing unit further 1 computes an amplitude and a phase of a heterodyne beat signal produced by said test 2 interferometer. 3
- 6. į (original) The system according to claim 1, wherein said reference interferometer is non-dispersive or dispersion compensated.

1	7.	(previously presented) The system according to claim 1, wherein the
2	computing u	nit includes orthogonal filters that are applied to a signal produced by at least one
3	of the test or	reference interferometers.
	8.	(manipular managed) The quaters according to aloise 7 askumin asid
1		(previously presented) The system according to claim 7, wherein said
2	computing u	
3		a first computing element for computing at least one of phase and amplitude of
4	a heterodyne	beat signal produced by said reference interferometer,
.5		a second computing element for computing at least one of phase and
6	amplitude of	a heterodyne beat signal produced by said test interferometer, and
7		a third interferometer computing element for computing a group delay based
8	on the phase computations of the first and the second computing elements.	
1	9.	(previously presented) The system according to claim 1, wherein the
2	computing unit includes orthogonal filters, the orthogonal filters including:	
3	,	in-phase and quadrature filters that filter in the time domain,
4		in-phase and quadrature filters that filter in the frequency domain,
5		a single sided filter, and
6		an all-pass filter using a Hilbert transform.
1	10.	(currently amended) A method for measuring optical characteristics of an
2	optical device under test (DUT), said method comprising:	
3		generating a light signal;
4		transmitting the light signal on an optical test interferometer;
5		receiving a reference optical signal and a test optical signal, the reference
6	optical signal	being generated by a reference interferometer; and
7		computing the optical characteristics of the optical DUT by utilizing at least
8	one amplitud	e and phase computational component;
9		wherein the amplitude and phase computation component is a pair of
10	ortho	gonal filters.

1

(cance	

- 1 12. (original) The method according to claim 10, wherein the optical
- 2 characteristics include at least one of the following:
- 3 a reflective transfer function,
- 4 a transmissive transfer function, and
- 5 group delay.
- 1 13. (original) The method according to claim 10, wherein the reference and test signals are heterodyne beat signals.
- 1 14. (original) The method according to claim 10, wherein the light source is a tunable laser source.
- 1 15. (original) The method according to claim 10, wherein said computing the optical characteristics further includes computing amplitude and phase of at least one heterodyne beat signal.
- 1 16. (original) The method according to claim 10, wherein the reference 2 interferometer signal is non-dispersive or compensated for dispersion.

1	17. (original) A system for measuring optical characteristics of an optical	
2	component, said system comprising:	
3	means for illuminating the optical component with an optical signal;	
4	first means for determining an optical frequency of the optical signal	
5	generated by said means for illuminating;	
6	second means for determining amplitude and phase of the optical signal	
7	generated by said means for illuminating and in response to illumination of the optical	
8	component, said second means including orthogonal filters; and	
9	means for computing optical characteristics of the optical component utilizing	
10	the phase of the optical signal generated by said means for illuminating and the amplitude	
	and phase of the entired gional in response to illumination of the entirel community	

9252490111;

ŀ	18.	(original) A method for measuring optical characteristics of an optical device
2	under test (D	OUT), comprising:
3		generating an input optical signal having a time-varying frequency;
4		illuminating the optical DUT with the input optical signal;
5		measuring a heterodyne beat signal generated in response to the optical DUT
6	being illumir	nated by the input optical signal;
7		computing amplitude and phase of the heterodyne beat signal using orthogonal
8	filters;	
9		detecting a reference phase of the input optical signal; and
0		computing the optical characteristics based on the amplitude and phase of the
11	heterodyne b	eat signal and the reference phase of the input optical signal.
1	19.	(original) The method according to claim 18, wherein the response of the input
2	optical signal	from the optical DUT is at least one of a reflection or a transmission response.
1	20.	(original) The method according to claim 18, wherein the reference phase of
2	the input opti	cal signal is used to compute an optical frequency of the input optical signal.
1	21.	(original) The method according to claim 18, wherein the optical frequency is
2	used to determ	mine a true optical frequency scale.
ı	22.	(original) The method according to claim 21, further comprising displaying
2	the optical	characteristics of the optical DUT on the true optical frequency scale,
1	23.	(original) The method according to claim 18, wherein the orthogonal filters are
2	performed by	at least one of the following:
3		an in-phase and quadrature filter in the time domain,
4		an in-phase and quadrature filter in the frequency domain,
5		a single sided filter, and

6

an all-pass filter using a Hilbert transform.

l	24.	(original) The method according to claim 18, wherein the optical
2	characteristic	s include at least one of the following:
3		a transmissive transfer function,
4		a reflective transfer function, and
5		group delay.
ı	25.	(original) The method according to claim 24, wherein the computation of the
2	group delay includes at least one of the following operations:	
3		subtraction of the reference phase from the phase of the heterodync beat
1	signal, and	·
5		division of the phase of the heterodyne signal by the reference phase.

28.

frequency counter is a reference interferometer.

1	26.	(original) A system for measuring optical characteristics of an optical device
2	under test (DUT), comprising:	
3		a light source that generates an input optical signal having a time-varying
4	frequency;	
5		a test interferometer optically coupled to said light source to receive the input
5	optical signal, said test interferometer including the optical DUT;	
7		a first optical detector optically coupled to said test interferometer to receive a
В	heterodyne beat signal from said test interferometer; and	
•		a processing unit coupled to said optical detector, and configured to calculate
)	the optical characteristics of the DUT utilizing orthogonal filters.	
I	27.	(previously presented) The system according to claim 26, further comprising
2	an optical fre	quency counter coupled to said light source.

9252490111;

2 2

3

1

l

29. (currently amended) The system according to claim 286, further comprising a second optical detector optically coupled to said reference interferometer to receive a heterodyne beat signal from said reference interferometer.

(currently amended) The system according to claim 276, wherein said optical