AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

LISTING OF CLAIMS:

- 1. (Canceled)
- (Previously presented) A modulator circuit, comprising:
 a memory for storing interleaved data, the memory having a write address port;
 and

an inverse interleaving address generator coupled to the write address port, wherein the inverse interleaving address generator provides a write address, I, to the memory equal to:

I = k J + P, where J is defined as $3*2^n$ or $9*2^n$; $P = A_i/2^m$ and A_i is the requested address; k = BROm ($A_i \mod 2^m$); and BROm(y) = bit-reversed m-LSBs of y.

- 3. (Previously presented) A modulator as defined in claim 2, wherein the inverse interleaving address generator merges the write and read IS-95 interleaving functions as defined in the IS-2000 standard and combines them into one function.
- (Currently amended) A modulator circuit, comprising:
 a memory for storing interleaved data, the memory having a write address port;
 and

an inverse interleaving address generator coupled to the write address port, wherein the inverse interleaving address generator performs an address mapping function

that takes an original row address (A_{OR}) and transfer number (TN) and provides a new row address (A_n) to the memory which follows the equation:

If TN =
$$0 \sim 5$$
, $A_n = A_{or}*3$;
If TN = $6 \sim 11$, $A_n = [A_{or}*3] + 1$; and
If TN = $12 \sim 17$, $A_n = [A_{or}*3] + 2$.

- (Previously presented) A modulator as defined in claim 2, wherein the modulator comprises a Direct Sequence Spread Spectrum (DSSS) modulator.
- 6. (Previously presented) A modulator circuit, comprising: a memory for storing interleaved data, the memory having a write address port; an inverse interleaving address generator coupled to the write address port, wherein the inverse interleaving address generator performs an address mapping function that takes an original row address (A_{OR}) and transfer number (TN) and provides a new

If TN =
$$0 \sim 5$$
, $A_n = A_{cr}^*3$;
If TN = $6 \sim 11$, $A_n = [A_{cr}^*3] + 1$;
If TN = $12 \sim 17$, $A_n = [A_{cr}^*3] + 2$; and wherein the interleaving address generator comprises: a multiply-by-3 circuit;

row address (A_n) to the memory which follows the equation:

a modulo 3 counter coupled to the modulo-6 counter and the multiply by 3 circuit.

 (Previously presented) A modulator as defined in claim 6, wherein the inverse interleaving address generator provides addresses to the memory compliant with the IS-95 and the IS-2000 interleaving standards.

TI-32201 3

a modulo-6 counter; and

8. (Previously presented) A modulator circuit, comprising:

a memory for storing interleaved data, the memory having a write address port and a read address input port;

an inverse interleaving address generator coupled to the write address port; and a range selector circuit having an input port for receiving a pseudonoise (PN) index or a reverse link frame timing signal and an output port for providing a read address to the memory.

(Previously presented) A modulator circuit, comprising:

a memory for storing interleaved data, the memory having a write address port and a read address input port;

an inverse interleaving address generator coupled to the write address port; and a range selector circuit having an output port for providing a read address to the memory, and the range selector circuit includes a counter and the range selector circuit provides a read address [n:0] = counter [(n+2):2].

- 10. (Previously presented) A modulator as defined in claim 8, wherein the memory includes a data input port and the modulator further comprising:
 - a channel encoder having an input port for receiving data; and

a puncturing circuit having an input port coupled to the channel encoder output port, the puncturing circuit having an output port coupled to the data input port of the memory.

11. (Previously presented) A modulator circuit, comprising:

a memory for storing interleaved data, the memory having a write address port and a data input port;

an inverse interleaving address generator coupled to the write address port; a channel encoder having an input port for receiving data; and

TI-32201

Application No. 10/007,087 Amendment dated June 29, 2007 Reply to Office communication of December 27, 2006

a puncturing circuit having an input port coupled to the channel encoder output port, the puncturing circuit having an output port coupled to the data input port of the memory; and

wherein the inverse interleaving address generator performs an inverse interleaving function in the case IS-2000 compliant interleaving is required and combines the necessary writing by column and reading by row functions in the case IS-95 compliant interleaving is required.

12. (Original) A Direct Sequence Spread Spectrum (DSSS) modulator, comprising:

a memory for storing interleaved data having a read address port; and
a counter having an output port coupled to the read address port, said counter
having a first input port for receiving a pseudonoise (PN) or a reverse link frame timing
signal, and a second input port for receiving a range select signal.

- 13. (Original) A modulator as defined in claim 12, wherein the counter changes state at a rate equal to modulation data duration for a particular frame of data.
- 14. (Previously presented) A modulator as defined in claim 12, wherein depending on the Chip Per Modulation Symbol (CPMS) for a particular frame of data, the addressing of the memory is performed by selecting a particular range select signal provided to the counter.
 - 15. (Previously presented) A method, comprising the steps of: providing a memory <u>device</u>; and sending a write address. I. to the memory device equal to:

 $I=k\ J+P\ , \ where\ J\ is\ defined\ as\ 3^*2^n\ or\ 9^*2^n\ ;\ P=A/2^m\ and\ A_i\ is\ the\ requested$ address; $k=BROm\ (Ai\ mod\ 2^m);\ and\ BROm(y)=bit-reversed\ m-LSBs\ of\ y.$

Application No. 10/007,087

Amendment dated June 29, 2007

Reply to Office communication of December 27, 2006

16. (Currently amended) A method as defined in claim 15, wherein the interleaved data within the write address is compliant with the IS-2000 standard.

 (Currently amended) A method-for interleaving data, comprising the steps of:

providing a memory; and

performing a write address mapping function that takes an original row address (A_{0R}) and transfer number (TN) and provides a new row address (A_n) to the memory which follows the equation:

If TN = 0 ~5,
$$A_n = A_{or}$$
,*3;
If TN = 6-11, $A_n = [A_{or}$,*3]+1; and
If TN = 12 - 17, $A_n = [A_{or}$,*3]+2.

- (Original) A method as defined in claim 17, wherein the interleaved data is compliant with the IS-95 standard.
- (Previously presented) A modulator as defined in claim 4, wherein the modulator comprises a Direct Sequence Spread Spectrum (DSSS) modulator.
- 20. (Previously presented) A modulator as defined in claim 4, wherein the inverse interleaving address generator merges the write and read IS-95 interleaving functions as defined in the IS-2000 standard and combines them into one function.
- 21. (Previously presented) A modulator as defined in claim 2, wherein the inverse interleaving address generator provides addresses to the memory compliant with the IS-95 and the IS-2000 interleaving standards.

Application No. 10/007,087

Amendment dated June 29, 2007

Reply to Office communication of December 27, 2006

- 22. (Previously presented) A modulator as defined in claim 4, wherein the inverse interleaving address generator provides addresses to the memory compliant with the IS-95 and the IS-2000 interleaving standards.
- 23. (Previously presented) A modulator as defined in claim 9, wherein the memory includes a data input port and the modulator further comprising:
 - a channel encoder having an input port for receiving data; and
- a puncturing circuit having an input port coupled to the channel encoder output port, the puncturing circuit having an output port coupled to the data input port of the memory.
- 24. (Currently amended) A modulator as defined in claim 4, further comprising:
 - a contiguous read address generator coupled to the read address port.
 - 25. (Currently amended) A modulator circuit, comprising:
- a memory for storing interleaved data, the memory having a write address port and a read address port;
- an-inverse-interleaving write address generator coupled to the write address port; and
 - a contiguous read address generator coupled to the read address port.