移动电源专用管理IC(PowerBank IC)

概述

ZS6300 是一款应用于移动电源,集成了锂电池开关充电管理,DC-DC同步升压恒流恒功率,电池电量显示,按键控制及锂电保护为一体的便携式电源管理IC。

ZS6300 是以开关方式进行充电,集成了包括涓流充电,恒流充电和恒压充电全过程的充电方式,浮充电压精度在全温度范围内为±1%,并且具有充电电流纹波小,充电效率高,充电温度低等优点,配合适当的外围器件可以达到2A甚至更高的充电电流。

ZS6300 的DC-DC同步升压输出电压为±1%的精度,可以提供高达94%以上的升压转换效率,同时具有精确的升压恒流恒功率功能。

ZS6300 配置了4个LED恒流驱动端口,智能显示电池电量,芯片内置逻辑锁定功能,防止电量指示的状态不稳,同时集成了电池真实电压追踪技术,跟踪电芯内部真实电量,防止充放电造成的电压偏差。

ZS6300 为电池充电时电量指示灯跑马检测一次后按当前电量闪烁指示,充饱常亮,外部输入电源去掉时,电路会自动转为升压。如检测到移动电源没有向外部供电流,则80S以内自动进入待机状态,待机电流为20uA,可有效延长电池静态放置时间。此时,短按按键可启动升压同时点亮电量指示灯,指示灯可通过短按按键控制熄灭或5S自动熄灭。

ZS6300 具有多重保护设计,包括负载过流保护,短路保护,软启动保护等,同时芯片端口设计了高性能的ESD保护电路,使得该款芯片具有极高的可靠性。电池放电在2.9V时关断,有效保护和延长电池充放次数和寿命。

芯片外挂整流硬件驱动信号加入独有的抖频技术,有效抑制开关尖峰,便于产品通过EMI认证。

ZS6300 提供了SOP-16封装。

主要特点

- 输入耐电压高达10V和报警功能
- 待机电流20uA
- 电池 2.9V 过放保护
- 电池过充电保护4.2V
- 軟启动功能
- 涓流/恒流/恒压三段式充电
- 充电电流1A、2A、3A(电池端)
- 充电浮充电压精度±1%
- 按键边充边放功能
- 输入电源掉电电池自动升压输出
- 升压效率高达94%(1A)92%(2A)
- 输入输出高精度电流采样
- 升压恒流恒功率输出功能,小电流产品也可 兼容大电流设备
- 负载过流及短路硬件保护
- USB 输出过压保护,防止损坏设备
- 手电筒功能/长按关机功能二选一
- 输出空载检测关断省电功能
- 精确逻辑控制的四格电量显示
- 先进的电池真实电压追踪技术
- 电池低电压LED报警功能
- 升压输出开关频率500K
- 独有开关抖频技术,便于通过EMI

用途

- 移动电源
- UPS
- IPAD,MID备用电源
- MP3,MP4,游戏机,数码相机等其他移动电源

引脚排列图

1	NGATE	SNS	16
2	SYS	BAT	15
3	PGND		14
4	PGATELI	CTR	13
5			12
6		ED050	11
7		ED075	10
8	TOO THE LOCK OF THE PARTY OF TH	ED100 TAP	9
	CS	IAP	

引脚功能分配

引脚符号	引脚名称	引脚功能
1	NGATE	PWM同步整流 NMOS 管的硬件控制引脚
2	SYS	芯片系统电源引脚
3	PGND/CSN	芯片功率地引脚 RCS电阻负载回路电流检测引脚负端(RCS负极靠近此引脚)
4	PGATE	PWM同步整流PMOS管的硬件控制引脚
5	VIN	输入电源检测引脚
6	WLED	手电筒引脚,接 LED 负极 接地为长按手动关机功能
7	REV	输入防反灌PMOS管的控制引脚
8	CS	RCS电阻负载回路电流检测引脚正端
9	TAP	按键信号输入引脚
10	LED100	电量显示LED的驱动引脚4
11	LED075	电量显示LED的驱动引脚3
12	LED050	电量显示LED的驱动引脚2
13	LED025	电量显示LED的驱动引脚1
14	BATCTR	关闭USB输出NMOS的硬件控制引脚
15	BAT	电池正极引脚,检测电池电压和充电电流采样引脚
16	SNS	高端电流采样引脚

选型信息

型号	电池过冲保护电压	放电时电量显示方式	空载检测采样方式
ZS6300	4.2V	按键亮 8S 后自动熄灭	跳频采样(RCS=10mR@2A)

极限参数

参数	符号	典型值	单位
输入电压	V_{IN}	-0.3~10	V
输入电压	V_{SYS}	-0.3~10	V
工作温度范围	T _{OP}	-40~85	°C
工作结温范围	T_J	-40~150	°C
储存温度	T _{ST}	-55~150	°C
引脚焊接温度(10 sec)	T _{LEAD}	300	°C

推荐工作状态

参数	符号	典型值	单位
输入电压	V _{IN}	5~5.2	V
工作温度范围	T _{OP}	0~85	°C

电气特性

(测试条件: $T_A=25^{\circ}C$, $V_{IN}=5V$, 除特别指定)

符号	特性	测试条件	最小	经典	最大	单 位
V _{IN}	输入电压范围		4.5	5	10	V
I _{CC}	芯片工作电流	V _{IN} =5V 充电状态 V _{IN} =0V 升压状态 V _{IN} =0V 关闭状态	1.5 1.5 20	3 3 26	5 5 32	mA mA uA
V _{UVLO}	电源欠压门槛	V _{IN} 从低到高 V _{IN} 从高到低		4.35 3.80		V V
		负载电容 1000PF				
T_{N_DRIVE}	NGATE 驱动	上升沿时间		76		nS
		下降沿时间		38		nS
		负载电容 1000PF				
T _{P_DRIVE}	PGATE 驱动	上升沿时间		38		nS
		下降沿时间		76		nS
I _{LED}	LED025~LED050 端口电流	LED025~LED050 端口电压高于 1V	1.75	2.5	3.25	mA

符号	特性	测试条件	最小	经典	最大	单位
V _{IN-OVP}	输入过压保护电压	输入电压升高板端电压 I _{BAT} =0mA		6	6.5	V
I _{TAP}	TAP 端口电流	端口接到 GND V _{IN} =5V V _{IN} =0V ,V _{BAT} =4.2V	4.60 6.5	4.85 8.5	5.00 10.5	uA uA
V _{TAP}	TAP 端口电压	端口悬空 V _{IN} =5V V _{IN} =0V ,V _{BAT} =4.2V	4.60	4.85 4.10	5.00	V
V _{BAT}	浮充门槛电压	4.2V 4.35V	4.158 4.308	4.2 4.35	4.242 4.392	V
I _{CONST}	恒流充电电流(电池端)	Rs=0.02Ω	0.95	1.00	1.05	Α
I _{TRKL}	涓流充电电流	Rs=0.02Ω	100	125	150	mA
I _{FULL}	充电判饱电流	Rs=0.02Ω	80	100	120	mA
V _{TRKL}	涓流转恒流 充电电压门槛	V _{BAT} 从低到高 V _{BAT} 从高到低	2.9 2.7	3 2.8	3.1 2.9	V
V _{RECHG}	复充门槛电压	V _{BAT} 从高到低 V _{BAT} 从低到高	3.94 4.00	3.99 4.05	4.04 4.10	V
V _{CUR_BALANCE}	充电电流调整的电压门槛 Vcs-Vcsn	V _{CS} 由低到高 V _{CS} 由高到低	6 4.5	6.5 5	7	mV mV
F _{LED}	充电时 LED 闪烁频率	单灯闪烁方式	0.9	1	1.1	Hz
T _{TAP}	手动按键短按时间		16	32	48	mS
T _{BSTDEL}	自动升压启动延时时间		16	32	48	mS
T _{HOLD}	升压电量显示的保持时间		-	5	8	S
V _{NOLOADOFF}	空载检测电流门槛		40	60	80	mA
T _{NOLOADOFF}	空载关闭升压系统的等待时间	V _{CS} -V _{CSN} <2.0mV	60	80	100	S
V_{BSTL}	升压空载启动最低电压			2.95		
$V_{LOWQOFF}$	放电时关机电压		2.80		2.95	٧
T _{LOWQOFF}	电池电量不足关闭升压系统的延时 时间		16	32	48	mS
V _{LOWQ_FLASH}	电池电量不足 LED 闪烁电压	V _{BAT} <3.35V	3.3	3.35	3.45	V
F _{LOWQ_FLASH}	电池电量不足 LED 闪烁频率	V _{BAT} <3.4V	1	2	3	Hz
T _{OFF_SLEEP}	升压系统关闭后进入待机状态的延 时时间		3	5	7	S
V _{LOAD-LIMC}	负载限流时的电压检测门槛 Vcs – Vcsn		20	22	24	mV
V _{LOAD-OVC}	负载过流时的电压检测门槛 Vcs – Vcsn		22	24	26	mV
T _{OVC-OFF}	负载过流关闭升压等待时间	V _{CS} -V _{CSN} >60mV	0.5	1	1.5	S

系统图框

ZS6300 芯片系统框

功能描述

充电管理

1. 充电功能

ZS6300 用开关方式对电池进行涓流/恒流/恒压三段式充电。当电池电压低于 3V 时进行涓流充电;当电池电压高于 3V 时进行恒流充电;当电池电压接近 4.2V 时进行恒压充电,此时充电电流开始逐渐减小,当电流减小到恒流充电电流的 1/10 时,4 个 LED 灯全部常亮,指示电池已经充饱。充饱时,电池终止充电,等待电池电压降低到一定电压(V_{RECHG})时进行复充(Recharge)。

2. 充电电流设定

对电池充电的电流大小由芯片的 SNS 引脚和 BAT 引脚之间的采样电阻 R_S 来设定。恒流充电电流 I_{Charge} 由下式决定: I_{CHARGE} =0.02/ R_S

涓流充电电流为 I_{CHARGE} 的 1/8, 充饱判断电流为 I_{CHARGE} 的 1/10。

3. 充电软启动功能

当电池直接进入恒流充电时,**ZS6300** 会控制充电电流逐渐增大到设定值,避免了瞬间大电流冲击引起的各种问题。

4. 按键边充边放功能

ZS6300 具有按键启动边充边放功能,保证了 USB 端负载的优先供电。如果充电过程中,输出 USB 同时接有负载要给负载供电,可通过按键激活边充边放,ZS6300 会控制系统给电池充电同时供电给负载;如果负载所需电流值超过 V_{RCS}>6.5mV,ZS6300 会控制系统优先供电给负载,同时逐渐减小充电电流直到不充电,让全部输入电流供给负载,同时达到了输入限流的效果,如果 V_{RCS}<5.5mV,芯片会控制恢复电池充电。

当移动电源充电时,短按按键,芯片会控制关闭充电,同时打开输出 USB 端口,检测是否有便携设备接在 USB 口,如果有则优先对其供电,如果没有,经过 15s 后恢复电池充电。

● 升压功能

ZS6300 具有同步升压功能,可将单节锂电池 2.9V 到 4.2V 之间的电压升压到 5V 输出,给负载供电。电池电压低于 2.9V 时,芯片系统将判断为电池电量不足,停止升压。当 VIN 电压低于 3.4V 时,系统将判断为电源适配器掉电,并启动升压电路。

1. 升压恒流功能

升压时, ZS6300 通过 CS 和 CSN 检测负载电流,如果负载电流逐渐增加,到达限流值时输出电压会下降,直到不升压(同步整流 PMOS 常开)。恒流值的计算: I_{IM} =0.02/ R_{CS}

2. 放电过流保护和短路保护功能

负载电流超过恒流电流继续增大,当 CS 与 CSN 两端的压差超过 26mV,且维持时间超过 1S,则系统启动负载过流保护功能,ZS6300 将会关闭 USB 的输出通路 MOS 管,进入待机状态。过流值的计算公式: //oce=0.026/Rcs

3. 升压软启动功能

芯片有升压软启动功能,在启动升压时,电流会逐渐增加到最大值,保证系统工作的稳定。

4. 空载检测功能

当负载电流小于 60mA±20mA 持续 80s 时,芯片判断外部负载消失,关闭输出进入待机状态。

● 保护功能

1. 充电 USB 短路保护

当充电时 USB 发生短路,芯片会关闭 USB 输出,熄灭电量指示灯,短路解除后,短按按键可以解除短路保护状态,USB 输出打开,电量指示灯亮起,15s 后恢复充电。

2. 升压 USB 短路保护

当电池升压时, USB 发生短路, 芯片会关闭升压, 进入待机状态; 短按按键可以解除短路保护状态。

3. 二级短路保护

在某些极限状态下发生 USB 短路,芯片检测不到短路状态,但仍然可以关闭 USB 输出,短路解除后会自动恢复原来状态,保护器件不被损坏,电池端也不会出现大电流,保护器件不会损坏。

4. USB 过压保护

输入电压过高,超过 6V 时(板端采电压),芯片会控制关闭 USB 输出,停止充电,防止接在 USB 的便携设备因为过压而损坏,指示灯闪烁,提示输入电压异常。输入电压正常后状态解除。

● 电池电量智能显示功能

ZS6300 可以恒流驱动 4 路 LED 灯,每路电流为 2.5mA, LED 灯的亮灭变化表示电池电量。

1. 电池充电显示方式:

电池电压	电量	LED025	LED050	LED075	LED100	频率
<3.62V	0%~25%	闪烁	灭	灭	灭	1Hz
3.62V~3.82V	25%~50%	常亮	闪烁	灭	灭	1Hz
3.82V~4.03V	50%~75%	常亮	常亮	闪烁	灭	1Hz
4.03V~4.2V	75%~100%	常亮	常亮	常亮	闪烁	1Hz
4.2V	100%	常亮	常亮	常亮	常亮	

2. 电池放电显示方式:

电池电压	电量	LED025	LED050	LED075	LED100	频率
>4.03V	75%~100%	常亮	常亮	常亮	常亮	
3.82V~4.03V	50%~75%	常亮	常亮	常亮	灭	
3.70V~3.82V	25%~50%	常亮	常亮	灭	灭	
2.95V~3.70V	1%~25%	常亮	灭	灭	灭	
<3.4V	<10%	闪烁	灭	灭	灭	2Hz

● 手电筒功能

长按按键可以控制 WLED 引脚切换状态,从而点亮手或关闭外接电筒。如果不需要此功能,也可将 WLED 脚接地则长按按键为手动关机功能。

● 系统其他控制功能

当一个灯以 2Hz 频率开始闪烁时,表示系统内部电池电量不足(即电池电压已经低于 3.4V),需要充电,当电池继续放电至 2.9V,这时升压系统将自动关闭,LED 灯闪烁停止并灭掉,系统进入待机状态。

在无电源的情况下,短按按键,启动 5V 升压系统给负载供电,同时 LED 灯显示当前电量,输出空载时维持时间约为 80 秒钟,之后 LED 灯 5s 自动熄灭,80s 无负载关闭 5V 升压输出,如果在 80 秒钟内灯熄灭的时候再一次短按开关,电量会马上重新显示,空载关机时间将重新计时。

典型应用举例(1A)

典型应用举例(2A)

典型应用举例(3A)

● 电阻的选择

RS 和 RCS 的精度影响采样电流的精度,因此推荐使用 1%精度的电阻;对于封装,请根据电阻实际的功率计算,也可以用两个并联的形式分散热量。例如:RS 在升压时流过电流最大为 4A,则它最大功耗是 $4 \times 4 \times 0.01\Omega = 0.16W$

● 电容的选择

CBAT,CSYS,COUT 电容为大电流的滤波电容,要使用瓷片电容(ESR 要控制在 0.1Ω 以内)、或电解电容+瓷片电容组合,针对 1A 系统推荐使用 22uF 或 10uF X 2 的容值,在成本允许的条件下,增大 CSYS 会使系统更加稳定;如果对升压输出纹波要求不高,也可略微减小 COUT;如果针对更大电流系统,推荐将电容相应增大。体积允许情况下可替换成相应或更大容值的电解电容。任何情况下,选择质量较差的电容都会引起整个系统性能下降甚至无法正常工作,所以请慎重选择电容。

● U2(P+N) 的选择:

对于 U2(P+N),因为他工作在开关条件下,要考虑他们的导通电阻和寄生电容,导通电阻小,直流损耗小;寄生电容小,开关损耗小;然而这两个量恰恰是矛盾的,即导通电阻越小,往往寄生电容越大,因此要采取折中的办法选取。针对 1A 的系统推荐使用导通电阻约为 50mΩ 或更小,寄生电容小于 500pF的 MOS 管。1A 使用单颗 PMOS 和单颗 NMOS 即可。请慎重选择 MOS,因为它之间影响系统的性能和寿命。

● U3,Q1 的选择:

对于 U3 和 Q1,因为他们工作在直流条件下,因此只需考虑导通电阻足够小即可,推荐使用导通电阻小于 $40m\Omega$ 的 MOS 管,针对大电流应用则选择内阻相对更小的 MOS 管为宜。

● 电感 L1 的选择:

对于 1A 充电 1A 升压的系统,推荐使用 2.2uH~3.3uH 的电感,如果针对更大的电流,如 2A 或 3A,可以使用 1.8uH 或 2.2uH 的电感。电感最好使用屏蔽电感,这样会对布板和生产的要求降低。非屏蔽的电感会产生电磁场,电感绕线的方向会改变磁场的方向,干扰芯片的环路。如果一定要使用非屏蔽电感,需要 SNS 和 BAT 走线尽量远离电感。

● 升压带载测试:

因为芯片增加了两级短路保护和软启动,所以对升压带载测试时有一定要求:如果 USB 接大电容负载(某些型号的负载仪电容非常大),有可能误判短路保护。用电压源模拟电池时,各种型号电源的瞬态响应不同,电源线的阻抗也可能比较大,在升压带 CC 或 CR 负载或者带载启动时,也有可能出现短路保护的情况,带 CV 负载不会出现这种情况。实际应用时,由于接的是电池,CC 或 CR 的情况会改善,CV 仍然不会有问题。一般手机或便携数码设备输入电容都比较小,同时它们会检测输入电压,如果输入电压不够时不会充电,因此表现的是类似 CV 的特性,所以实际移动电源成品给手机或便携数码设备充电时不会出现误判短路的情况。如果确实需要带这种负载,可以在 CTR 对 PGND 接一电容改善带载情况,推荐取值 100nF,取值越大带载效果会更优,但是短路保护效果会变差,建议谨慎使用,更大的取值强烈不推荐,取值应不大于 1uF。

PCB 布板注意事项

● 大电流回路

大电流回路指开关时走大电流的器件和走线,在此系统中由 U3, U2, Q1, U4, L1, RS, RCS, CBAT, CSYS, COUT 及他们之间的连线构成,他们的布线要尽量宽和短,高频开关(电流不连续)通路千万不能过通孔,及 CBAT, CSYS, U2, U4, Q1, L1, RS 尽量在 PCB 的同一面,且要放在一起。

● SYS 和 PGND

ZS6300 的 SYS 和 PGND 引脚分别是芯片驱动部分的电源和地,在开关工作时会有瞬间大电流流入和流出,因此布板时 CSYS 要尽量靠近芯片的 SYS 和 PGND 同时靠近 U2,U4 滤波续流,如布局不允许,请将 CSYS 优先靠近 U2,U4,芯片的 SYS 和 PGND 端口留一颗 100nF~1uF 的电容即可。SYS 和 PGND 分别单独抽头引线到 CSYS 的正端和负端,中间不能穿过大电流回路,布线尽量宽和短,尽量不要过通孔。

● SNS 和 BAT

SNS 和 BAT 采样充电电流,要从 RS 正负端单独引线并行到芯片,中间不能引线到其它部分。SNS 和 BAT 要远离高频信号线或通过地线隔离,如 PGATE, NGATE, SW 等。

● CS和CSN

CS 和 CSN 采样负载电流,要从 RCS 单独引线,具体与 SNS 和 BAT 同理,由于 RCS 负极 CSN 采样和芯片 PGND 同个脚位,所以为了采样精准,建议布板时候将 RCS 电阻负极尽量靠近芯片的 PGND。

● 其它说明

- 1. RLED 正端要从 CSYS 正端节点引出
- 2. 芯片整体部分以模拟信号为主,因此尽量远离开关节点,若无法远离,请以地线隔离为佳

封装信息

SOP16

S Package 16-Lead Plastic SOIC

0.386 - 0.394*

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).