Evidencia de MLflow - Monitoreo de Experimentos en Machine Learning

Estudiantes: Jose Pérez (2244679)

Leidy Correa (2245158) Diego Juvinao (2250022)

1. Introducción

En este proyecto utilizamos **MLflow** para registrar y monitorear experimentos de Machine Learning. Se entrenaron tres modelos de clasificación (**Árbol de Decisión, Random Forest y XGBoost**) utilizando el dataset **'Forest Cover Type'**. **MLflow** nos permite almacenar métricas, parámetros y versiones del modelo, facilitando la trazabilidad del entrenamiento. A continuación, se presentan las capturas de la plataforma **MLflow** con la información

2. Experimentos registrados en MLflow

En la imagen se muestra el experimento 'Forest Cover Classification', donde se registraron tres modelos:

- Árbol de Decisión
- Random Forest
- XGBoost

Cada modelo tiene asociadas métricas como Accuracy, Precision, Recall y F1-Score, permitiendo comparar su desempeño.

La imagen muestra la página principal de MLflow, donde se registra el experimento "Forest Cover Classification", que almacena las métricas de los modelos entrenados.

3. Detalles de un experimento

En la imagen se pueden observar las métricas registradas para el modelo XGBoost.

Accuracy: 0.874
Precision: 0.872
Recall: 0.874
F1-Score: 0.872

Estas métricas nos permiten evaluar la calidad del modelo y compararlo con otros algoritmos.

En esta imagen se pueden observar las métricas registradas en MLflow para el modelo XGBoost. Estas métricas permiten evaluar la calidad del modelo y compararlo con otros algoritmos.

Aquí también se pueden observar las métricas del modelo XGBoost.

4. Modelos guardados

MLflow nos permite almacenar los modelos entrenados para su posterior uso. En la imagen se observa el modelo 'XGBoost' guardado, que puede ser cargado y utilizado en futuras predicciones sin necesidad de reentrenarlo.

En esta imagen se observa que MLflow ha almacenado el modelo XGBoost con su esquema de entrada y salida. Esto permite reutilizarlo sin necesidad de volver a entrenarlo y facilita su despliegue en producción.

5. Conclusión

Gracias a MLflow, pudimos registrar de forma estructurada los experimentos de Machine Learning. Esto facilita la comparación de modelos y su monitoreo, asegurando que tengamos un historial claro del rendimiento obtenido. Además, la capacidad de almacenar modelos en MLflow permite su reutilización sin necesidad de reentrenamiento.