Introduction to Numerical Methods

Numerical Analysis/Methods

- What is numerical analysis/method?
 - Analysis and design of algorithms for numerically solving mathematical problems in science and engineering

- Why do we care about numerical analysis?
 - Simulation of real-world phenomena and events
 - Virtual prototyping of engineering designs

Why use Numerical Methods?

To solve problems that cannot be solved exactly

Solving an Engineering Problem

How do we solve an engineering problem?

Analysis vs. Numerical Analysis

- Consider solving $x^2=2$
- Analytically, we know that is a root of the equation
- Numerically, how do we find the root of the equation using a computer program?
- Computer can only do arithmetic operations
- Design a procedure consisting of only arithmetic operations to find the root

Mathematical Procedures

- Root finding (Nonlinear Equations)
 - Bracketing
 - Open
- Curve Fitting
 - Interpolation
 - Regression
- Differentiation/Integration
- Simultaneous Linear Equations
 - LU Decomposition
- Ordinary Differential Equations
- Partial Differential Equations

Nonlinear Equations

How much of the floating ball is under water?

Diameter=0.11m Specific Gravity=0.6

$$x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$$

Nonlinear Equations

How much of the floating ball is under the water?

$$f(x) = x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$$

Curve fitting

- Interpolation and curve fitting
- Find intermediate values from a table of data
- Fit curves to data
- If the curve passes all data points, we call it interpolation.

Interpolation

What is the velocity of the rocket at t=7 seconds?

Time (s)	5	8	12
Vel (m/s)	106	177	600

Regression

Thermal expansion coefficient data for cast steel

Differentiation

What is the acceleration at t=7 seconds?

$$v(t) = 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 5000t} \right) - 9.8t \qquad a = \frac{dv}{dt}$$

Differentiation

What is the acceleration at t=7 seconds?

Time (s)	5	8	12
Vel (m/s)	106	177	600

Integration

Finding the diametric contraction in a steel shaft when dipped in liquid nitrogen.

$$\Delta D = D \int_{T_{room}}^{T_{fluid}} \alpha \ dT$$

Simultaneous Linear Equations

Find the velocity profile, given

Time (s)	5	8	12
Vel (m/s)	106	177	600

$$v(t) = at^2 + bt + c, 5 \le t \le 12$$

Three simultaneous linear equations

$$25a + 5b + c = 106$$
$$64a + 8b + c = 177$$
$$144a + 12b + c = 600$$

Ordinary Differential Equations

How long does it take a trunnion to cool down?

$$mc\frac{d\theta}{dt} = -hA(\theta - \theta_a), \ \theta(0) = \theta_{room}$$

Partial Differential Equations

PDEs are used to model many systems in many different fields of science and engineering. Modelling in Industry: Automobiles, Aerospace, Electronics

Accuracy and Precision

increasing accuracy

Error Definitions

 Round off error - originate from the fact that computers retain only a fixed number of significant figures caused by representing a number approximately

$$\frac{1}{3} \cong 0.3333333$$
 $\sqrt{2} \cong 1.4142...$

• Truncation errors - errors that result from using an approximation in place of an exact mathematical procedure. Taking only a few terms of e^x

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

If only 3 terms are used,

Truncation
$$Error = e^x - \left(1 + x + \frac{x^2}{2!}\right)$$

Taylor Series Expansion

$$f(x_{i+1}) \cong f(x_{i}) + f'(x_{i})h + \frac{f''(x_{i})}{2!}h^{2} + \frac{f'''(x_{i})}{3!}h^{3} + \dots + \frac{f''(x_{i})}{n!}h^{n} + R_{n}$$

$$R_{n} = \frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1} \quad x_{i} < \xi < x_{i+1} \quad where \quad h = step \quad size = x_{i+1} - x_{i}$$

Solution

True Error

 Defined as the difference between the true value in a calculation and the approximate value found using a numerical method etc.

True Error = True Value – Approximate Value

Relative True Error

 Defined as the ratio between the true error, and the true value.

Relative True Error
$$(\in_t) = \frac{\text{True Error}}{\text{True Value}}$$

Approximate Error

 Approximate error is defined as the difference between the present approximation and the previous approximation.

Approximate Error (E_a) = Present Approximation – Previous Approximation

Relative Approximate Error

• Defined as the ratio between the approximate error and the present approximation.

Relative Approximate Error
$$(\in_a) = \frac{\text{Approximate Error}}{\text{Present Approximation}}$$

How a Decimal Number is Represented?

$$257.76 = 2 \times 10^{2} + 5 \times 10^{1} + 7 \times 10^{0} + 7 \times 10^{-1} + 6 \times 10^{-2}$$

Base 2

$$(1011.0011)_{2} = \begin{pmatrix} (1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}) \\ + (0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}) \end{pmatrix}_{10} = 11.1875$$

Converting a base-10 integer to binary representation.

Number	Quotient	Remainder
11/2	5	$1 = a_0$
5/2	2	$1 = a_1$
2/2	1	$0 = a_2$
1/2	0	$1 = a_3$

Hence
$$(11)_{10} = (a_3 a_2 a_1 a_0)_2 = (1011)_2$$

Converting a base-10 fraction to binary representation.

Fractional	Number	After decimal	Before decimal
0.1875×2	0.375	0.375	$0 = a_{-1}$
0.375×2	0.75	0.75	$0 = a_{-2}$
0.75×2	1.5	0.5	$1 = a_{-3}$
0.5×2	1.0	0.0	$1 = a_{-4}$

Hence
$$(0.1875)_{10} = (a_{-1}a_{-2}a_{-3}a_{-4})_2 = (0.0011)_2$$

Converting a base-10 fraction to approximate binary representation.

	Number	Number after decimal	Number before Decimal
0.3×2	0.6	0.6	$0 = a_{-1}$
0.6×2	1.2	0.2	$1 = a_{-2}$
0.2×2	0.4	0.4	$0 = a_{-3}$
0.4×2	0.8	0.8	$0 = a_{-4}$
0.8×2	1.6	0.6	$1 = a_{-5}$

$$(0.3)_{10} \approx (a_{-1}a_{-2}a_{-3}a_{-4}a_{-5})_2 = (0.01001)_2 = 0.28125$$

Another Way to Look at Conversion

Convert $(11.1875)_{10}$ to base 2

$$(11)_{10} = 2^{3} + 3 = 2^{3} + 2^{1} + 1 = 2^{3} + 2^{1} + 2^{0}$$

$$= 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= (1011)_{2}$$

$$(0.1875)_{10} = 2^{-3} + 0.0625 = 2^{-3} + 2^{-4}$$

$$= 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$

$$= (.0011)_{2}$$

$$(11.1875)_{10} = (1011.0011)_{2}$$

Floating Decimal Point Scientific Form

256.78 is written as
$$+2.5678\times10^{2}$$

$$0.003678$$
 is written as $+3.678 \times 10^{-3}$

$$-256.78$$
 is written as -2.5678×10^{2}

Example: The form is $sign \times mantissa \times 10^{exponent}$

or
$$\sigma \times m \times 10^e$$

Example: For
$$-2.5678 \times 10^2$$
 $\sigma = -1$ $m = 2.5678$ $e = 2$

Floating Point Format for Binary Numbers

$$y = \sigma \times m \times 2^{e}$$

 $\sigma = \text{sign of number } (0 \text{ for + ve, 1 for - ve})$
 $m = \text{mantissa} [(1)_{2} < m < (10)_{2}]$

1 is not stored as it is always given to be 1.

e = integer exponent

Example

9 bit-hypothetical word

- •the first bit is used for the sign of the number,
- •the second bit for the sign of the exponent,
- •the next four bits for the mantissa, and
- •the next three bits for the exponent

$$(54.75)_{10} = (110110.11)_2 = (1.1011011)_2 \times 2^5$$

 $\cong (1.1011)_2 \times (101)_2$

We have the representation as

IEEE-754 Format Single Precision

32 bits for single precision Value = $(-1)^s \times (1 \cdot m)_2 \times 2^{e'-127}$

Value =
$$(-1)^s \times (1.m)_2 \times 2^{e'-127}$$

= $(-1)^1 \times (1.101000000)_2 \times 2^{(10100010)_2-127}$
= $(-1) \times (1.625) \times 2^{162-127}$
= $(-1) \times (1.625) \times 2^{35} = -5.5834 \times 10^{10}$