Probabilidad y estadística

Clase 1

Cronograma

Clase 1	Repaso de probabilidad y v.a.
Clase 2	Transformación de variables aleatorias
Clase 3	Variables condicionadas
Clase 4	Estimadores puntuales
Clase 5	Estimación por intervalo y test de hipótesis
Clase 6	Enfoque bayesiano
Clase 7	Repaso + procesos estocásticos (opcional)
Clase 8	Examen

Repaso de algunos conceptos

¿Qué es la probabilidad?

El término **probabilidad** se refiere al estudio del azar y la incertidumbre en cualquier situación en la que varios escenarios pueden ocurrir.

Algunos elemento de la probabilidad

Un **experimento aleatorio:** acciones o procesos en los cuales conocemos todos los resultados posibles pero no sabemos con certeza cuál va a ocurrir.

Llamamos **espacio muestral** (Ω) al conjunto de resultados posibles de mi experimento aleatorio.

Un **evento o suceso** es cualquier subconjunto de resultados en el espacio muestral

Una primera aproximación a las probabilidades

La **probabilidad** de un evento A es un número positivo (o nulo) que se le asigna a cada suceso o evento del espacio muestral que nos habla de la certeza que se tiene sobre ese evento.

Supongamos que realizamos un experimento n veces, y estamos interesados en un evento particular A. Luego podemos definir:

- Frecuencia absoluta: Cantidad de veces que ocurre A en mis n experimentos
- Frecuencia relativa (f_A): la proporción de veces que ocurrió A entre mis n experimentos.

Si la cantidad de ensayos es lo suficientemente grande, esperamos que $f_A pprox \mathbb{P}(A)$

Más rigurosamente, $f_A \overset{n \to \infty}{\to} \mathbb{P}(A)$

Álgebra de eventos

Dado un Ω , definimos al **álgebra de eventos** (\mathcal{A}) como una familia de subconjuntos de Ω que satisface:

- 1. $\Omega \in \mathcal{A}$
- $B \in \mathcal{A} \Rightarrow B^c \in \mathcal{A}$
- 3. $B, C \in \mathcal{A} \Rightarrow B \cup C \in \mathcal{A}$

El álgebra representa los resultados "medibles" del experimento.

Corolario:

- $lacksquare \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c) = 1 \Rightarrow \mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- $lacksquare \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Def: una probabilidad es una función $\mathbb{P}: \mathcal{A} \to [0,1]$ que satisface:

- $ullet 0 \leq \mathbb{P}(A) \leq 1, \ orall A \in \mathcal{A}$
- lacksquare $\mathbb{P}(\Omega)=1$
- Si $A \cap B = \emptyset$, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$

El conjunto $(\Omega, \mathcal{A}, \mathbb{P})$ define lo que se conoce como **espacio de probabilidad**

Espacios equiprobables

Si es estamos en presencia de un espacio **equiprobable**, es decir donde todos los elementos tienen las mismas chances de ocurrir, las probabilidades pueden calcularse como la proporción entre la cantidad de casos donde ocurre el experimento y la cantidad de elementos que existen en el espacio muestra. A esto se lo conoce como regla de **Laplace**

$$\mathbb{P}(A) = rac{\#A}{\#\Omega} = rac{\# ext{"casos favorables"}}{\# ext{casos totales}}$$

Algunas nociones de conteo

Probabilidades condicionales y proba. total

Def: Se llama probabilidad condicional de A dado B ($\mathbb{P}(A|B)$) a la probabilidad de que ocurra el evento A sabiendo que B ha ocurrido, y está definida por

$$\mathbb{P}(A|B) = rac{\mathbb{P}(A \cup B)}{\mathbb{P}(B)}$$

Def: Diremos que los eventos $B_1, \ldots B_n$ forman una partición si $B_i \cap B_j = \emptyset \ \forall i,j$

y
$$\bigcup_{i=1}^n B_j = \Omega$$
 .

Luego podemos describir al evento A como $A=(A\cap B_1)\cup\ldots\cup(A\cap B_n)$ de forma que

$$\mathbb{P}(A) = \mathbb{P}(A \cap B_1) + \ldots + \mathbb{P}(A \cap B_n) = \mathbb{P}(A|B_1)\mathbb{P}(B_1) + \ldots + \mathbb{P}(A|B_n)\mathbb{P}(B_n)$$

Teorema de Bayes e independencia

Teorema de Bayes: Sean $B_1, \ldots B_n$ una partición de Ω , y A un evento con probabilidad positiva:

$$\mathbb{P}(B_i|A) = rac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum_{i=1}^n \mathbb{P}(A|B_i)mathbb{P}(B_i)}$$

Def: Diremos que dos eventos A y B son independientes si y sólo sí vale que $\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B)$

Variables aleatorias

Variables aleatorias

Una variable aleatoria (v.a.) es una función que mapea cada elemento ω del espacio muestral Ω a los números reales a un número real $X(\omega)$

Def: Dado un espacio muestral $(\Omega,\mathcal{A},\mathbb{P})$ y una función $X:\Omega\to\mathbb{R}$ diremos que X es una variable aleatoria si $X^{-1}(B)\in\mathcal{A}$

Def: Dado un $(\Omega, \mathcal{A}, \mathbb{P})$ y X una v.a., se define su función de distribución como

$$F_X(x)=\mathbb{P}(X\leq x), \quad orall\, x\in \mathbb{R}$$

$$\mathbb{P}(a < X \leq b) = F_X(b) - F_X(a) \ orall a \leq b$$

Propiedades de la función de distribución

Sea $F_X(x)$ una función de distribución asociada a la v.a. X.

Propiedades:

- $lacksquare F_X(x) \in [0,1] \ orall \ x \in \mathbb{R}$
- $F_X(x)$ es monótona no decreciente
- $F_X(x)$ es continua a derecha
- $igl| \lim_{x o -\infty} F_X(x) = 0 \quad \mathsf{Y} \ \lim_{x o \infty} F_X(x) = 1 \, .$

Variables aleatorias discretas

Si X es una variable aleatoria **discreta**, entonces su función de distribución $F_X(x)$ es monótona no decreciente de a saltos (es escalonada). Llamamos **átomos** (A) al conjunto de puntos donde la función de distribución tiene saltos

Además tiene asociada una función (de masa) de probabilidad

$$p_X(x) = \mathbb{P}(X=x)$$

Propiedades:

- $p_X(x) > 0$
- $igcup_{x\in A} p_X(x) = 1$
- ullet $\mathbb{P}(X \in B) = \sum_{x \in B} p_X(x)$

Algunas distribuciones conocidas

Bernoulli: diremos que $X \sim Ber(p)$ si X toma valores 1 (éxito) o 0 (fracaso) y

$$p_X(x) = \left\{egin{array}{ll} p & x=1 \ 1-p & x=0 \end{array}
ight.$$

Binomial: cuenta la cantidad de éxitos en n ensayos independientes.
 Diremos que $X \sim Bin(n,p)$ y

$$p_X(x) = inom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots, n$$

• Geométrica: cuenta la cantidad de ensayos hasta el primer éxito. Diremos que $X \sim \mathcal{G}(p)$ y

$$p_X(x) = (1-p)^{x-1}p, x = 1, 2, \dots$$

Variables aleatorias continuas

Si X es una variable aleatoria continua, entonces su función de distribución $F_X(x)$ es monótona estrictamente creciente (no presenta saltos).

Además tiene asociada una función de densidad $f_X(x) = \mathbb{P}(X \leq x)$

Propiedades:

- $ullet f_X(x) \leq 0 \quad orall x \in \mathbb{R}$
- ullet $\int_{\mathbb{R}} f_X(x)) = 1$
- ullet $\mathbb{P}(X\in A)=\int_{x\in A}f_X(x)dx$

Algunas variables importantes

• Uniforme: todos los puntos son equiprobables. $X \sim \mathcal{U}(a,b)$

$$f_X(x) = rac{1}{b-a} \mathbf{I}\{a < x < b\}$$

 Exponencial: sirve para modelar tiempos hasta eventos que no tienen memoria. Por ejemplo fallas casuales. $X \sim \mathcal{E}(\lambda)$

$$f_X(x) = \lambda e^{-\lambda x} \mathbf{I}\{x>0\}$$

ullet Normal (gaussiana). $X \sim \mathcal{N}(\mu, \sigma^2)$

$$f_X(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}}$$

Propiedades:
$$X \sim \mathcal{N}(\mu_X, \sigma_X^2), \ Y \sim \mathcal{N}\mu_Y, \sigma_Y^2) \to X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

$$X \sim \mathcal{N}(\mu, \sigma^2) \to \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1) \text{ (estandarización)}$$

Distribución conjunta y marginales

Si tenemos dos variables X e Y se define su función de distribución conjunta como $F_{X,Y}(x,y) = \mathbb{P}(X < x,Y < y)$

En este caso, vale la regla del rectángulo

$$\mathbb{P}(a < X \leq b, c < Y \leq d) = F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c)$$

Caso continuo: $f_{X,Y}(x,y)$ es la función de densidad conjunta y se definen las funciones de densidad marginales como $f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) dy$ y $f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx$

Caso discreto: $p_{X,Y}(x,y)$ es función de probabilidad conjunta y se definen las funciones de probabilidad marginal como $p_X(x) = \sum_y p_{X,Y}(x,y)$ $p_Y(y) = \sum_x p_{X,Y}(x,y)$

Independencia de v.a.

Diremos que dos v.a. X e Y son independientes si vale que

$$F_{X.Y}(x,y) = F_X(x) F_Y(y) \quad orall \, x,y \in \mathbb{R}$$

Caso discreto:

$$p_{X.Y}(x,y) = p_X(x)p_Y(y) \quad orall \, x,y \in \mathbb{R}$$

Caso continuo:

$$f_{X.Y}(x,y) = f_X(x) f_Y(y) \quad orall \, x,y \in \mathbb{R}$$

Distribuciones condicionales

Al igual que como definimos probabilidades condicionales para eventos podemos definir distribuciones condicionales para variables aleatorias.

Caso discreto:

$$p_{Y|X=x}(y)=rac{p_{X,Y}(x,y)}{p_X(x)}$$

Caso continuo:

$$f_{Y|X=x}(y)=rac{f_{X,Y}(x,y)}{f_{X}(x)}$$

Momentos

Esperanza

La esperanza o media es el valor esperado de la variable aleatoria. Es un promedio ponderado de los valores que puede tomar la variable.

Caso discreto: $\mathbb{E}[X] = \sum_{x \in A} x \, p_X(x)$

Caso continuo: $\mathbb{E}[X] = \int_{\mathbb{R}} x f_X(x) dx$

Propiedades:

- ullet $\mathbb{E}[aX+bY]=a\mathbb{E}[X]+b\mathbb{E}[Y]$ (linealididad)
- ullet Si X,Y son independientes $\mathbb{E}[X\,Y]=\mathbb{E}[X]\mathbb{E}[Y]$
- ullet Si Y=g(X) vale que $\mathop{\mathbb{E}}[Y]=\mathop{\mathbb{E}}[g(X)]=\sum_{x\in A}g(x)p_X(x)$ (si X es v.a.c)

$$\mathbb{E}[Y] = \mathbb{E}[g(X)] = \int_{\mathbb{R}} g(x) f_X(x) \, df$$
 (si X es continua)

Varianza

La varianza de una v.a. X mide su dispersión respecto de la media, y se define como

$$var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Propiedades:

- $ullet var(aX+b)=a^2var(X)$
- Si X , Y son independientes, var(X+Y) = var(X) + var(Y)

Se define también el desvío estándar como

$$\sigma_X = \sqrt{var(X)}$$

Vectores aleatorios:

Para el caso del vector aleatorio (X,Y) definimos la esperanza como

$$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$$
 (caso discreto)

$$\mathbb{E}[g(X,Y)] = \int_{\mathbb{R}} \int_{\mathbb{R}} g(x,y) f_{X,Y}(x,y) dx dy$$
 (caso continuo)

Definimos la covarianza entre dos v.a. X, Y como:

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

La covarianza mide la relación lineal entre las variables.

El coeficiente de correlación entre ambas variables se define como

$$ho = rac{cov(X,Y)}{\sqrt{var(X)var(Y)}}$$

Covarianza

Propiedades de la covarianza:

- $ullet cov(aX+bY,cZ) = ac\, cov(X,Z) + bz\, cov(Y,Z)$
- ootnotesize cov(X,X) = var(X)
- ullet var(X+Y) = var(X) + var(Y) + 2cov(X,Y)
- Si cov(X,Y)=0 diremos que las variables están descorrelacionadas
- Si X,Y son independientes, entonces cov(X,Y)=0 (Cuidado! No vale para el otro lado)

Momentos

En general, definimos el *n*-ésimo momento de la v.a. X como $\mathbb{E}[X^n]$

Se define la función generadora de momentos como

$$M_X(t) = \mathbb{E}[e^{tX}]$$

Si que $\mathbb{E}[e^{tX}]$ existe (es finita) para algún intervalo que contiene al cero, se puede calcular el n-ésimo momento de X como la derivada n-ésima de $M_X(t)$ evaluada en 0:

$$\mathbb{E}[X^n] = rac{d}{dt} M_X(t)|_{t=0}$$