Function Composition

Let A, B and C be arbitrary sets, and let $f: A \to B$ and $g: B \to C$ be functions.

The **composition** of f with g, written $g \circ f : A \to C$, is a function defined by $g \circ f(a) \triangleq g(f(a))$ for every element $a \in A$

It is easy to check that $g \circ f$ is indeed a function. The co-domain of f is the same as the domain of g

Relation vs Function Composition

Notice that compositions of relations is different from functional composition: the functional composition $g \circ f$ reads f followed by g, whereas the relational composition $R \circ S$ reads R followed by S; in other words:

$$\langle a, c \rangle \in g \circ f \iff \exists b (\langle a, b \rangle \in f \land \langle b, c \rangle \in g)$$

whereas

$$(a, c) \in R \circ S \iff \exists b ((a, b) \in R \land (b, c) \in S)$$

(notice the swap)

This is an overloaded notion; the context will make clear which one is intended.

Example

Let
$$A=\{1,2,3\}$$
, $B=\{a,b\}$, $C=\{\alpha,\beta,\gamma\}$, and
$$f:A\to B = \{\langle 1,a\rangle,\langle 2,b\rangle,\langle 3,a\rangle\}$$

$$g:B\to C = \{\langle a,\gamma\rangle,\langle b,\alpha\rangle\}$$

Then

$$g \circ f : A \to C = \{\langle 1, \gamma \rangle, \langle 2, \alpha \rangle, \langle 3, \gamma \rangle\}$$

