Topic 7 Tree (Part I)

資料結構與程式設計 Data Structure and Programming

11/14/2018

In addition, complexity tradeoffs ---

 Remember in "List and Array" topic we compare the complexity of the following functions

	DList	Array	
Insert (any pos)	O(1)	O(n) or O(1)	
Erase (any pos)	O(1)	O(n) or O(1)	
Find	O(n)	O(n log n) to sort the array, O(log n) to find	
Memory Overhead	16*n + 16	24	
Data Structure and Programming	Prof. Chung-Yang (Ric) Huang		3

What we have learned before...

- ◆ We have learned some linear type data structures --- list, array, queue, stack, etc.
- However, in real life, many data types are NOT stored in a linear sequence. For example,
 - Directories and files
 - Employee structure in a company

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Remember the difference between

 \rightarrow O(1), O(log n), O(n)

- ◆ To have better "find" performance
 - → Data needs to be sorted
- ◆ List → fast in insert/erase, slow in find
 - · Data cannot be sorted efficiently
- ◆ Array → not good in insert/erase, OK in find
 - Takes O(n log n) to update the order
- ◆ What if we need to
 - Many "find()" operations
 - Some "insert/erase" operation from time to time

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Better DS for "find"

- ◆ We will introduce several data types that have good "find" complexity (O(log n)), and OK "insert/erase" complexity (also O(log n))
 - Heap
 - Set
 - Map
- → They are all different variations of "Tree" data structure

Data Structure and Programming

Definition of a Tree

- ♦ This definition is "recursive" and "constructive".
 - 1) A single node is a tree. It is "root."
 - 2) Suppose N is a node and T_1 , T_2 , ..., T_k are trees with roots n_1 , n_2 , ..., n_k , respectively. We can construct a new tree T by making N the parent of the nodes n_1 , n_2 , ..., n_k . Then, N is the root of T, and T_1 , T_2 , ..., T_k are subtrees.

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

10

Trees Implementation (2)

```
struct TreeNode
{
   MyClass _data;
   TreeNode* _child1; // head to a list
   TreeNode* _sibling; // head to a list
};
```

- Flexible in number of children
- Save memory?
 - Mem usage: d * n + 8 * 2n
- Problem
 - · Not straightforward in interpretation
 - · Not friendly in child and sibling traversal

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Trees Implementation (4) template <class T> class TreeNode {

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Trees Implementation (3)

```
class TreeNode
{
    MyClass     _data;
    Array<TreeNode *> _children;
};
```

- ◆ Straightforward view
- ◆ Flexible in number of children
- ◆ Mem usage: d * n + 8 * (3n 1) (why?)
- ◆ Problem
 - Not easy to access siblings (but is that really a problem?)

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

14

Traversal of Trees

- 1. Preorder: Process the node, then recursively process the left and right subtrees.
- 2. Inorder: Process the left subtree, the node, and the right subtree. ← for binary tree
- 3. Postorder: Process the left subtree, the right subtree, and the node.
- 4. Levelorder: top-to-bottom, left-to-right order

Prof. Yen, "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Tree Traversal: InOrder

In Order is easily described recursively:

- •Visit left subtree (if there is one) In Order
- Visit root
- •Visit right subtree (if there is one) In Order

algorithm inorder (FreeNode t)

Impute: a tree mode (can be considered to be a tree) outsute: None.

iff t has a left child of t) inorder(left child of t) Visit node t iff t has a right child inorder(right child of t)

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Tree Traversal: PostOrder

PostOrder traversal also goes as deep as possible, but only visits internal nodes during backtracking.

- •Visit left subtree in PostOrder
- •Visit right subtree in PostOrder
- Visit root

algorithm postorder (TreeNode t)

Impute: a terra moda (cam ha considered to ha a terra) Outquit: Noma.

iff thas a last childe postorder (last childe of t) iff thas a right childe postorder (right childe of t) Visit node t

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Tree Traversal: PreOrder

Another common traversal is PreOrder.

It goes as deep as possible (visiting as it goes)

- •Visit root
- •Visit left subtree in PreOrder
- •Visit right subtree in PreOrder

Imputo: a tree mode (can be considered to be a tree) Outputo: Novie.

Wisit note t // Numbering, action, etc.
if t has a left childs
preorder(left childs of t)
if t has a right childs
preorder(right childs of t)

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

LevelOrder Traversal

How to prove the correctness of this algorithm?

algorithm level Order (Free Node t)

Impute: a terre mode (can be considered to be a terre) outpute: None.

iset Q he a Queue Q enqueue(ti) white the Q is not empty n = Q decqueue() Visit node n

> iff n has a left child Senguene (left child of n)

iff tree has a right child of n)

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Quiz!!

- ◆ Given a tree and we like to perform tree traversal, numbering from 1 to n...
- 1. If the number in a node should be smaller than its children (i.e. patent first)...
 - → Pre-order traversal
- 2. If the number in a node should be greater than its children (i.e. children first)...
 - → Post-order traversal

Data Structure and Programming Prof. Chung-Yang (Ric) Huang

Not just learn. Use smartly...

- ◆ Which kind of tree traversal to use?
 - Pre-order
 - Post-order
 - In-order
 - Level-order

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

22

Do we need the "_sibling" field?

- ◆ For tree traversal, NO. All we need to know is "_children".
- ♦ How about other functions?
 - Insert?
 - Erase?

Where?????

- → How do these functions operate in a Tree?
- ♦ What if TreeNodes need to be sorted?
 - → We will discuss general sorted tree later.
- We will look at one special kind of sorted tree
 Binary Tree first

_...,

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Special Binary Trees

- 1. Full / Complete binary tree
- 2. Binary Search Tree (BST)
- 3. (Balanced) Binary Search Tree

Data Structure and Programming Prof. Chung-Yang (Ric) Huang 27

Full Binary Tree

- ◆ A full binary tree of height h is a binary tree of height h having exactly 2^(h+1) - 1 nodes
 - All external nodes have same depth = h
 - All internal nodes have non-empty left and right children

height = 2 #nodes = 7

28

Data Structure and Programming

Complete Binary Tree

◆ A complete binary tree is a special case of a binary tree, in which all the levels, except perhaps the last, are full; while on the last level, any missing nodes are to the right of all the nodes that are present.

Data Structure and Programming

 Since the number of children of a binary tree is fixed, we can implement it as

Binary Tree Implementation (2)

- ◆ If a binary tree is complete
 - → Use array for implementation
- ◆ Let the height of the tree = 'h'
 - #nodes must $>= 2^h$ and $<= 2^{(h+1)} 1$
 - root has index = 1
 - A node with index t
 - index of left child = 2t
 - index of right child = 2t + 1
 - Index of parent = t / 2

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Search in BST

◆ A binary search tree T is a *decision tree*. where the question asked at an internal node v is whether the search key k is less than, equal to, or greater than the key stored at v.

> if v is an external node then **return** v // mean the key should be inserted here $\mathbf{if} \mathbf{k} = \text{kev}(\mathbf{v}) \mathbf{then}$ return v // find a match else if k < kev(v) then **return** TreeSearch(k, T.leftChild(v)) else $\{ k > key(v) \}$ return TreeSearch(k, T.rightChild(v))

> > Prof. Yen, "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Binary Search Trees (BST)

- ◆ A binary search tree is a binary tree T such that
 - each internal node stores an item (k, e) of a dictionary.
 - kevs stored at nodes in the left subtree of v are less than or
 - keys stored at nodes in the right subtree of v are greater than or
 - external nodes do not hold elements but serve as place holders.

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Search Example I

Successful findElement(76)

What is the running time?

♦ A successful search traverses a path starting at the root and ending at an internal node

Prof. Yen, "Data Structure" class

Data Structure and Programming

Deletion (3) - Two Children Case

Always easy to delete the successor – always has either 0 or 1 children!

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

45

Cost of the Operations

- igspace find, insert, delete : time = O(height(T))
- ◆ Need to compute height(T)
- ◆ For a tree T with n nodes:
 - height(T) \leq n
 - height(T) $\geq \log_2(n)$ (why ?)

Prof. Yen, "Data Structure" class

Data Structure and Programming Prof. Chung-Yang (Ric) Huang

Deletion (3) - Two Child Case

Delete(5)

Finally copy data value from deleted successor into original node

What is the cost of a delete operation?

Prof. Yen, "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

46

Height of the Binary Search Tree

- Height depends critically on the order in which we insert the data:
 - E.g. 1,2,3,4,5,6,7 or 7,6,5,4,3,2,1, or 4,2,6,1,3,5,7

Which insertion order corresponds to what tree? Which tree do we prefer and why?

Prof. Yen, "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Time Complexity

 The height of binary search tree is n in the worst case, where a binary search tree looks like a sorted sequence

◆ To achieve good running time, we need to keep the tree *balanced*, i.e., with O(logn) height.

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

51

Average cost

- The average, amortized cost of n insert/find operations is O(log(n))
- But the average, amortized cost of n insert/find/delete operations can be as bad as sqrt(n)
 - log 10000 vs. sqrt(10000)
 - Deletions make life harder
 - Read the book for details
- ◆ Need guaranteed cost O(log n)

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

50

Self Adjusting Binary Search Trees

- Insertions/removals may "deepen" and "unbalance" a binary search tree.
- Self-adjusting binary search trees automatically restore balance after each insertion/removal by performing <u>a series</u> of *rotations*.
- Self-adjusting binary search trees insure good worst-case performance.

Balanced Binary Search Trees

Prof. Yen, "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

AVL Tree

- ◆ G. M. Adel'son-Vel'skii and E. M. Landis, "An Algorithm for the Organization of Information," *Soviet Math. Doklady* **3** (1962), pp. 1259—1262.
- ♦ AVL trees are balanced.
- ◆ An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1.

An example of an AVL tree where the heights are shown next to the nodes:

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Height Of An AVL Tree

The height of an AVL tree that has n nodes is at most 1.44 log₂ (n+2).

The height of every n node binary tree is at least log₂ (n+1).

 $\log_2 (n+1) \le \text{height} \le 1.44 \log_2 (n+2)$

O(log(n))

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

57

The "outie" case \$\Delta \text{ z - the nearest} \text{ ancestor which is out of balance} \text{ n - the newly inserted node} \text{ height of T1, T2, and T3 are all the same, say } \text{ n - the same, say } \text{ n - the newly inserted node} \text{ height of T1, T2, and T3 are all the same, say } \text{ n - the newly inserted node} \text{ node} \text{ height of T1, T2, and T3 are all the same, say } \text{ n - the newly inserted node} \text{ node} \tex

Insertion

- A binary search tree T is called balanced if for every node v, the height of v's children differ by at most one.
- Inserting a node into an AVL tree involves performing an expandExternal(w) on T, which changes the heights of some of the nodes in T.
 - If an insertion causes T to become unbalanced, we travel up the tree from the newly created node until we find the first node x such that its grandparent z is unbalanced node.
 - Since z became unbalanced by an insertion in the subtree rooted at its child y, height(y) = height(sibling(y)) + 2
 - Now to rebalance...

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

The other rotations

- ◆ These two demonstrations show the Single Left rotation and the Double Left rotation (used when the nearest out-of-balance ancestor is too heavy on the right)
- ◆ Similar rotations are performed when the nearest out-of-balance ancestor is heavy on the left -- these are called Single Right and Double Right Rotations

Prof. Yen, "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

67

Deletion from an AVL Tree

- ◆ Deletion of a node from an AVL tree requires the same basic ideas, including single and double rotations, that are used for insertion
- We are NOT going into details here....
 (Don't need to memorize the steps; understand the principles!!)
 - Please refer to any DS books or the appendix slides at the end

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Building an AVL Tree

Input: sequence of n keys (unordered)

19 3 4 18 7

Insert each into initially empty AVL tree

$$\sum_{i=1}^{n} \log i \le \sum_{i=1}^{n} \log n = O(n \log n)$$

But, suppose input is already sorted ...

3 4 7 18 19

Can we do better than $O(n \log n)$?

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

69

BuildTree Example 5 8 10 15 17 20 30 35 40 5 8 10 15 17 20 30 35 40 5 8 10 15 2 2 20 30 35 40 5 8 1 0 0 20 30 1 0 0 Prof. Yen, "Data Structure" class Data Structure and Programming Prof. Chung-Yang (Ric) Huang 71

AVL BuildTree

5 8 10 15 17 20 30 35 40

Divide & Conquer

- Divide the problem into parts
- Solve each part recursively
- Merge the parts into a general solution

How long does divide & conquer take?

Data Structure and Programming

5 8 1015 20303540 Prof. Yen. "Data Structure" class

Prof. Chung-Yang (Ric) Huang

.

Thinking About AVL

Observations

- + Worst case height of an AVL tree is about 1.44 log
- + Insert, Find, Delete in worst case O(log n)
- + Only one (single or double) rotation needed on insertion
- + Compatible with lazy deletion
- O(log n) rotations needed on deletion
- Height fields must be maintained (or 2-bit balance)

Coding complexity?

Prof. Yen, "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

AVL Performance

Method	Worst Case
void insert(Comparable element)	O(Log N)
boolean contains(Comparable element)	O(Log N)
void delete(Comparable element)	O(Log N)
int size()	O(1)
boolean isEmpty()	O(1)

Prof. Yen. "Data Structure" class

Data Structure and Programming Prof. Chung-Yang (Ric) Huang 73

One more note about the Tree ADT

- ◆ A good DS for representing hierarchy or relationship
- ◆ Important variations: binary tree, binary search tree, balanced binary search tree
- ◆ Balanced Binary Search Tree
 - All operations are equal or less than O(log(n))
 - Good example for "Abstract" DT

Pros and Cons of AVL Trees

Pro:

- All operations guaranteed O(log N)
- The height balancing adds no more than a constant factor to the speed of insertion

Con:

- Space consumed by height field in each node
- Slower than ordinary BST on random data

Can we guarantee O(log N) performance with less overhead?

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

74

Alternatives to AVL Trees

- ◆ Weight balanced trees
 - keep about the same number of nodes in each subtree
 - not nearly as nice
- Others
 - Splay trees
 - 2-3-4 trees
 - red-black trees
 - B-Tree
 - → Will be covered in "Tree Part II" later!

Prof. Yen, "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

Appendix Slides

Steps in deleting X in an AVL tree

- ◆ Reduce the problem to the case where X has only one child
- ◆ Delete the node X. The height of the subtree formerly rooted at X has been reduced by one
- We must trace the effect on the balance from X all the way back to the root until we reach a node which does not need adjustment

Prof. Yen. "Data Structure" class

Data Structure and Programming

Prof. Chung-Yang (Ric) Huang

