Dept. Teoria del Senyal i Comunicacions

ComI. 16-01-2009

Examen Final - Durada: 3h

Notes provisionals: 23 de Gener, a les 12h

Data límit al·legacions: 26 de Gener

1

Normes per a la realització de l'examen

- Es prohibeix l'ús de telèfons mòbils i de calculadores durant la realització de l'examen. No es poden utilitzar ni com a rellotges.
- Inicieu tots els fulls que utilitzeu escrivent el nom a la capçalera, fins i tot les utilitzades com a borradors.

Exercici 1: Es tenen dos senvals x(t) i y(t) pas baix amb ample de banda B = 15 KHz, estacionàries, independents entre sí i de mitjana nul·la que es transmeten conjuntament.

Amb aquest objectiu es construeix el senyal z(t) com

$$z(t) = x(t) + u(t)$$

$$u(t) = -\hat{y}(t)\cos[2\pi 2Bt] + y(t)\sin[2\pi 2Bt]$$

a on el senyal $\hat{y}(t)$ és la transformada de Hilbert del senyal y(t).

a) Utilitzant el formulari entregat amb l'examen, calculeu la mitjana i l'autocorrelació del senyal z(t). A partir de l'autocorrelació calculada, desenvolupeu la densitat espectral de potència i la potència mitjana del senyal z(t).

El senyal z(t) $(z(t))_{max} = 1$), es modula en FM amb una sensibilitat en freqüència de $f_{\Delta} = 75$ KHz, generant el senyal s(t):

$$s(t) = A_c \cos \left[2\pi f_c t + 2\pi f_\Delta \int z(\lambda) d\lambda \right]$$

Aquest senyal s(t) es transmet a través d'un canal que presenta una atenuació en potència de 50 dBs i un soroll blanc, additiu, independent del senyal z(t) i de densitat espectral de potència $S_w(f) = N_0/2$ amb $N_0 = 3.10^{-8} \text{ W/Hz}.$

b) Calculeu l'amplitud A_c mínima necessària en transmissió del senyal modulat en FM per a garantir la seva correcta demodulació. Utilitzeu únicament en aquest apartat els valors numèrics dels paràmetres. A la resta d'apartats, utilitzeu les variables genèriques.

A PARTIR D'AOUEST PUNT. RESOLEU L'EXERCICI EN UN FULL DIFERENT

- c) Prenent la sortida del demodulador de FM com $f_{\Delta}z(t) + \frac{1}{2\pi A}\frac{dq_n(t)}{dt}$, essent A l'amplitud del senyal FM rebut, dibuixeu la densitat espectral de potència de soroll a la sortida del receptor de FM (després del filtre $H_2(f)$) y calculeu la relació de potència de senyal a potència de soroll en aquest punt.
- **d**) Dissenyeu els filtres del sistema proposat per a recuperar els senyales x(t) i y(t) separadament després del receptor de FM. Dibuixeu la densitat espectral de potència de soroll a cada sortida del sistema proposat.
- e) Calculeu la relació de potència de senyal a potència de soroll per cada un dels dos senyals x(t) i y(t) i compareu-les.

Exercici 2. RESOLEU L'EXERCICI EN UN FULL DIFERENT

Considereu un sistema de comunicació digital que transmet el senyal PAM

$$s(t) = \sum_{n = -\infty}^{\infty} a[n] \cdot p(t - nT)$$

on $a[k] \in \{\pm A\}$ equiprobables, T és el període de símbol i el pols conformador utilitzat és

$$p(t) = \frac{1}{\sqrt{T}} \prod \left(\frac{t - \frac{T}{2}}{T} \right)$$

El senyal PAM es transmet per un canal ideal amb atenuació en potència L i retard t_c , i amb un soroll w(t) additiu, estacionari, gaussià, de mitjana nul·la, densitat espectral de potència $S_w(f) = \frac{N_0}{2}$ i incorrelat amb el senyal transmès. L'esquema del receptor és el següent.

- a) Indiqueu l'expressió del senyal detectat, y(t), en funció de l'autocorrelació del pols.
- b) Suposant que el sistema de sincronisme no estima correctament l'instant de mostratge de manera que $t_k = t_c + (k+1)T + 0.2T$, obteniu l'expressió de $y(t_k)$ identificant el terme de senyal útil, de ISI i de soroll. Caracteritzeu el soroll resultant. **Nota:** un dibuix de l'autocorrelació del pols pot ser d'utilitat.
- c) Suposant que el llindar del sistema detector de símbol està a l'origen, $\gamma=0$, trobeu la probabilitat d'error en detecció i expresseu-la en funció de la E_b/N_0 .
- d) Per a resoldre aquest apartat, assumiu que L=1. Sabent que la probabilitat d'error quan no hi ha error de sincronisme és $Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$, compareu les dues probabilitats d'error per $\frac{E_b}{N_0}=4,5$. Entregueu la gràfica de Q(x) que se es proporciona si l'utilitzeu.

Nota:

$$Q(x) = \int_{1}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\lambda^2}{2}} d\lambda$$

Expressions trigonomètriques:

$$\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)] \qquad \sin a \cos b = \frac{1}{2} [\sin(a-b) + \sin(a+b)]$$

$$\cos a \cos b = \frac{1}{2} [\cos(a-b) + \cos(a+b)]$$

Relacions entre correlacions creuades d'un senyal i la seva transformada de Hilbert:

$$R_{\hat{r}r}(\tau) = \hat{R}_{r}(\tau) = -R_{r\hat{r}}(\tau)$$

Autocorrelació d'un procés pas banda amb components en fase i quadratura $(i_s(t) i q_s(t))$ conjuntament estacionàries:

$$R_{s}(t+\tau,t) = \frac{1}{2}R_{is}(\tau)\left[\cos 2\pi f_{c}\tau + \cos 2\pi f_{c}(2t+\tau)\right] + \frac{1}{2}R_{qs}(\tau)\left[\cos 2\pi f_{c}\tau - \cos 2\pi f_{c}(2t+\tau)\right] + \frac{1}{2}R_{isqs}(\tau)\left[\sin 2\pi f_{c}(\tau) - \sin 2\pi f_{c}(2t+\tau)\right] - \frac{1}{2}R_{qsis}(\tau)\left[\sin 2\pi f_{c}\tau + \sin 2\pi f_{c}(2t+\tau)\right]$$

Autocorrelació i correlació creuada de les components en fase i quadratura d'un procés pas banda n(t) estacionari:

$$R_{i_n}(\tau) = R_n(\tau)\cos 2\pi f_c \tau + \hat{R}_n(\tau)sen2\pi f_c \tau = R_{q_n}(\tau)$$

$$R_{iq}(\tau) = R_n(\tau)sen2\pi f_c \tau - \hat{R}_n(\tau)\cos 2\pi f_c \tau = -R_{iq}(\tau)$$

Densitat espectral de potència de les components en fase i quadratura d'un procés pas banda n(t) estacionari i densitats espectrals de potència creuades:

$$S_{in}(f) = S_n(f - f_c)U(-f + f_c) + S_n(f + f_c)U(f + f_c) = S_{qn}(f)$$

$$S_{iq}(f) = jS_n(f + f_c)U(f + f_c) - jS_n(f - f_c)U(-f + f_c) = S_{qi}(f)$$

Equacions dels Filtres Terminals Òptims:

$$\begin{split} \left| H_{R_{FTO}}(f) \right|^2 &= \frac{1}{\left| H_c(f) \right|} \sqrt{\frac{S_x(f)}{S_n(f)}} \,, \\ \frac{S}{N} \bigg|_{FTO} &= \frac{S_T P_x}{\left| \int \frac{\sqrt{S_n(f)} \sqrt{S_x(f)}}{H_c(f)} \, df \right|^2} \end{split}$$

- a) > E{2(+) | = E{x(+) \$(+) (0) [2128t] + y(+) sen [2128t] } =
 - = = = = = = [2 = = = [2 = = =] + = = [2 = =] + = [sev [-7 y w. [-1 Deter.] =
 - = [× 41 E > 41 DE MEDIM NULL] = EXX(4) 6 -
 - = [\$(+) = y (+) + he(+) con le(+) DETERMINISTA] = E/ y (+) + he(+) / con [2728]=
 - = [E] Y(4) + + 60(4)]. cos [27284] = 0. => [E] Z(4) |=0]
- [x(4)- g (+1 cos[2728+] + y (+1 den[2728+] } =
- = E{ x(t+p) x(4)} E{ x(t+p) \$(t) cox[2728t] + E{ x(t+p) y(t) decc[2728t] } +
- E 2 9 (t+2) 6, [2728(+2)] } x(+) } + E2 4 (t+2) seu[2728(t+2)] x(+) } +
- + E { [y (t+2) ws [2728 (t+2)] + y (t+2) sw [2728 (t+2)] [-y (t) ws [2728t] + y (t) sw [2728]
- Ed y istractor and Efx(.) x (+) f (5) ANNON FOR SER ENDERNOUS A DE

MEDIA AULA] = Rx(t+z,t) + Ru(t+z,t)

Dende U(+) = - \(\chi^{\text{(+)}} \cos [2\pi 2\beta 2\beta] + \(\chi^{\text{(+)}} \text{den} [2\pi 2\beta 2\beta] \) \(\frac{\text{ENDL}}{8\text{AUDA}} \).

ests sende u(t) There so who was an fase in (t) = - \$ (t)

on polenie en washing en (t) = - y (t)

UTILIZANDO ALLOPS LAS EXPRESSIONES DEL FORMULARIO:

Y SUBSTITU YENDO: (fc= 23)

$$R_{V}(t+2,t) = \frac{1}{2} R_{V}(z) \left[\cos \left(2\pi f_{z}z\right) + \cos \left(2\pi f_{z}(z+2)\right) + \frac{1}{2} R_{V}(z) \left[\cos \left(2\pi f_{z}z\right) - \cos \left(2\pi f_{z}(z+2)\right) + \frac{1}{2} R_{V}(z) \left[\sin \left(2\pi f_{z}z\right) - \sin \left(2\pi f_{z}(z+2)\right) + \frac{1}{2} R_{V}(z) \left[\sin \left(2\pi f_{z}z\right) + \sin \left(2\pi f_{z}(z+2)\right) \right] + \frac{1}{2} R_{V}(z) \left[\sin \left(2\pi f_{z}z\right) + \sin \left(2\pi f_{z}(z+2)\right) \right] = R_{V}(z) \cos \left[2\pi f_{z}z\right] + R_{V}(z) \sin \left[2\pi f_{z}z\right] = R_{V}(z)$$

POR TILNTO:

LY ABONE DS WALLAND DS BARANT DS 65 DERR HORRES

LA POTENCIA DE LA SENDI SE PUEDB CALMIAR COTRO:

s(4)= Ac cor [2xfet + 2x fa] = (x) dx]

(A)

PARS TRANS TITUR ESTA SENAL, CON fa = 75KHz y SABIBNDO QUE
2(4) | 40 = 1 , SE DEBE UTILIZAR UN AUCHO DE BANDA:

$$D = \frac{75}{30} = 7,5$$
 ($B_2 = 30 \times H_2$) => $B_7 = 2[D+2]B_2 = 270 \times H_2$

ESTE SERA EL ANCHO DE BLADA DEL FETTRO EN RECEPCION H. (4)

Y, POR TILNTO, LA POTENCIA DE PUIDO TRAS EL FETTRO:

PARA PODER DEMODOLAR CORRECTATIONIS SE DEBE TENER 10 dB DE SÍN

EN RECEPCION. A SU 182, 24 POTENCIA DE SEÑOL ES

 $\frac{2}{3}$ \leq_{R} : $\frac{A^{2}}{2}$. 10^{-5} YA RVE SE TORUE UNA ATEMUACIÓN DE TOUBE Y LA POTEN CSA DE UNA SEÑOL DE FH ES:

MINA: MILLIAMENTA . MINAME

s(+) = dox cos [2 = fet + d(+)] = dc [cos x(+) cos [2 = fet] - sec x(+) rec[2 = fet]]

$$P_{S} = \frac{P_{i} + P_{q}}{2} = \frac{E_{i}^{2} A_{c}^{2} \cos \beta(A_{i}^{2} + E_{i}^{2} A_{c}^{2} \cos \beta(A_{i}^{2})}{2} = \frac{A_{c}^{2}}{2} E_{i}^{2} \cos \beta(A_{i}^{2} + \sin^{2} \beta(A_{i}^{2}) = \frac{A_{c}^{2}}{2}$$

$$\frac{A_{c}^{2}}{2} \cdot 10^{-5}$$

$$= 10 \implies A_{c}^{2} = 2 \cdot 10^{5} \cdot 3 \cdot 10^{-8} \cdot 270 \cdot 10^{4}$$

EZ FILTRO $H_2(f)$ TRAS EZ DETRO DUADOR ELEMANA TODAS LAS GOTTONOMAN DE RUADO PE LA SEÑAL $R_2 = 2R$ COTO LA GOTTON ENTE DEZ RUADO PE $\frac{1}{2\pi A_C}$ $\frac{1}{clt}$ A LA RIJAN

DEL PETENDULDOR SE TENE :

$$\leq n(\xi) = \leq n(\xi) |n(\xi)|^2 = \leq n(\xi) |n(\xi)|^2$$

$$= \frac{8\tau}{2} = \frac{8\tau}{2}$$

$$= \frac{8\tau}{2} = \frac{8\tau}{2} = \frac{8\tau}{2}$$

Segui er FORMULARESO: Squel = Su(f-fi) Ul-f+fe) + Su(f+fi) U(f+fe)

Y , 702 TANTO :

A LA SALIDA DER DETRODUMEN ER LA SENDL 1 dqu (1)

ZAAL dt TRENT DENSADAD

espec tril

F

SE TIENE FINALITENTE

LA POTENCIA DE RUDO ES POR TANTO:

$$N_{D_2} = \int c_{n_2}(t) dt = \int_{SB} \frac{V_0}{V_0} t_3 dt = \frac{V_0}{V_0} \frac{1}{3} t_3 \Big|_{S^5} = \frac{3}{5} \frac{V_0}{V_0} R_3^5$$

MENTRES QUE 44 POTENCIA DE SENSE:

$$\frac{5}{N}\Big|_{P_{2}} = \frac{3}{2} \frac{A^{2} f_{0}^{2}}{N_{0} g_{2}^{3}} P_{2} = 3 \frac{A^{2}}{2} \frac{f_{0}^{2}}{g_{2}^{2}} \frac{P_{2}}{N_{0} g_{2}} = 3 S_{R} D^{2} \frac{P_{2}}{N_{0} g_{2}}$$

d) LOS FILTERS DE LA SECURDA ETARA DEREN:

TRAS HS(f) => COTO 25 TRAI UN DOTTODU LADOR COURSEAUTE QUE RETURBRA

LA COTRONOUTE EN CUBRATURA DE LA 180AL, 52 TENDRA

LA COTRONOUTE EN CUBRATURA DEL RUEDO A LA ENTRADA:

Squaff): Suz (f-fc) U(-f,fc) + Suz (f+fc) Ulfife)

e) $\frac{1}{2} \frac{1}{2} \frac$

$$\frac{S_D}{N_D}\Big|_{SUP} = \frac{f_0^2 P_x}{N_0 g^3} \frac{3A^2}{2} = 3 \frac{f_0^2 P_x}{N_0 g^3} S_P$$

$$N_D = \int _{\frac{\pi}{2}} _{\frac{\pi}{2}} (\xi) d\xi = 2 \int_{\frac{\pi}{2}} _{\frac{\pi}{2}} \frac{N_0}{4^2} |\xi|^2 d\xi = 2 \frac{N_0}{4^2} |\xi|^2 |\xi|^2$$

$$= 2 \frac{N_0}{A^2} \left[\frac{88^3}{3} - \frac{8^3}{5} \right] = 2 \frac{N_0}{N_0} + \frac{3}{5}$$

$$ROR TENTO: \frac{5}{ND_{ENF}} = \frac{f_{0}^{2} P_{y}}{N_{0} B^{3}} = \frac{3}{7 \cdot 2} = \frac{3}{7} + \frac{f_{0}^{2} P_{y}}{N_{0} B^{3}} S_{R}$$

SUPONSENDO QUE
$$P_x = P_y$$
 SE TIBUE $\frac{S}{N}\Big|_{D_x} = 7 \frac{S}{N}\Big|_{D_y}$

DEBIDO A LA FORM PARIBULD (A DEL RUSDO YA QUE NOT LA

TRANSPICED DU BARDA BASS NI DU BADA ZAPERIL CENTRA PONDITAN

LA SUL

Problema 3. Començar en un full nou

Consideri un sistema de comunicació digital que transmet el senyal PAM

$$s(t) = \sum_{n = -\infty}^{\infty} a[n] \cdot p(t - nT)$$

on $a[k] \in \{\pm A\}$ equiprobables, T és el període de símbol i el pols conformador utilitzat és

$$p(t) = \frac{1}{\sqrt{T}} \prod \left(\frac{t - \frac{T}{2}}{T} \right)$$

El senyal PAM es transmet per un canal ideal amb atenuació L i retard t_c , i amb un soroll w(t) additiu, estacionari, gaussià, de mitjana nul·la, densitat espectral de potència $S_w(f) = \frac{N_0}{2}$ i incorrelat amb el senyal transmès. L'esquema del receptor és el següent.

a) Indiqueu l'expressió del senyal detectat, y(t), en funció de l'autocorrelació del pols.

$$y(t) = \left[\frac{1}{\sqrt{L}}s(t-t_c) + w(t)\right] * p(T-t) = \frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} a[n] \cdot p(t-nT) * p(T-t) + \underbrace{w(t) * p(T-t)}_{n(t)} =$$

$$= \frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} a[n] \cdot R_p(t-t_c-T-nT) + n(t)$$
(0)

b) Suposant que el sistema de sincronisme no estima correctament l'instant de mostratge de manera que $t_k = t_c + (k+1)T + 0.2T$, obteniu l'expressió de $y(t_k)$ identificant el terme de senyal útil, de ISI i de soroll. Caracteritzeu el soroll resultant. **Nota:** un dibuix de l'autocorrelació del pols pot ser d'utilitat.

$$y(t_{k}) = y(t)\Big|_{t_{k}=t_{c}+(k+1)T+0.2T} = \frac{1}{\sqrt{L}} \sum_{n=-\infty}^{\infty} a[n] \cdot R_{p}((k-n)T+0.2T) + n(t_{k})$$

$$= \left\{R_{p}(t) = \Lambda\left(\frac{t}{2T}\right)\right\} = \frac{a[k]}{\sqrt{L}} R_{p}(0.2T) + \frac{a[k+1]}{\sqrt{L}} R_{p}(-0.8T) + n(t_{k}) =$$

$$= \frac{a[k]}{\sqrt{L}} 0.8 + \underbrace{\frac{a[k+1]}{\sqrt{L}}}_{Senval útil} 0.2 + \underbrace{\frac{n(t_{k})}{\sqrt{L}}}_{Soroll}$$
(1)

El procés aleatori (PA) n(t) és el resultat de filtrar w(t) amb un SLI. Llavors, per ser w(t) un PA estacionari, gaussià i de mitjana nul·la, n(t) també és gaussià, estacionari i de mitjana nul·la. A més la densitat espectral de potència del PA n(t) és

$$S_n(f) = S_w(f) \left| P(f) \right|^2 = \frac{N_0}{2} \left| P(f) \right|^2$$
 on $P(f) = TF \left[p(t) \right]$

La mostra de soroll en l'instant t_k és una variable aleatòria gaussiana $n(t_k) \square N(0, \sigma_n^2)$

$$\sigma_{n}^{2} = E\left[\left|n(t_{k}) - E\left[n(t_{k})\right]\right|^{2}\right] = E\left[\left|n(t_{k})\right|^{2}\right] = \int_{-\infty}^{n(t) \text{ és estacionari}} \int_{-\infty}^{+\infty} S_{n}(f) df = \frac{N_{0}}{2} \int_{-\infty}^{+\infty} \left|P(f)\right|^{2} df$$

$$\stackrel{Parseval}{=} \frac{N_{0}}{2} \int_{-\infty}^{+\infty} \left|p(t)\right|^{2} dt = \frac{N_{0}}{2} E_{p} = \left\{E_{p} = 1\right\} = \frac{N_{0}}{2}$$

c) Suposant que el llindar del sistema detector de símbol està a l'origen, $\gamma = 0$, trobeu la probabilitat d'error en detecció i expressi-la en funció de la E_b/N_0 .

Notació: $a[k] = a_k$, error = er, i $y(t_k) = y_k$, $P_{er} = Probabilitat$ d'error

La probabilitat d'error global és igual a

$$P_{er} = P(er/a_k = A) \cdot P(a_k = A) + P(error/a_k = -A) \cdot P(a_k = -A) =$$

$$= \frac{1}{2} [P(er/a_k = A) + P(error/a_k = -A)]$$
(2)

Les probabilitats d'error condicionades són

$$P(er/a_{k} = A) = P(er/a_{k} = A, a_{k+1} = A) \cdot P(a_{k+1} = A) + P(er/a_{k} = A, a_{k+1} = -A) \cdot P(a_{k+1} = -A) = \frac{1}{2} [P(er/a_{k} = A, a_{k+1} = A) + P(er/a_{k} = A, a_{k+1} = -A)]$$
(3)

$$P(er/a_k = -A) = \{ \text{Igual que a (3)} \} = \frac{1}{2} [P(er/a_k = -A, a_{k+1} = A) + P(er/a_k = -A, a_{k+1} = -A)]$$
(4)

Anem a trobar cada probabilitat d'error per separat

(c.1) $P(er/a_k = A, a_{k+1} = A)$. Quan $a_k = A, a_{k+1} = A$, substituint a (1) tenim que $y_k = \frac{A}{\sqrt{L}} + n(t_k) \square N(\frac{A}{\sqrt{L}}, \sigma_n^2)$ i la P_{er} suposant que el llindar està a l'origen és:

$$P(er/a_{k} = A, a_{k+1} = A) =$$

$$= P(y_{k} < 0/a_{k} = A, a_{k+1} = A) = \left\{ y_{k} = \frac{A}{\sqrt{L}} + n(t_{k}) \square N(\frac{A}{\sqrt{L}}, \sigma_{n}^{2}) \right\} =$$

$$= \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}\sigma_{n}} \cdot e^{-\frac{1}{2}\left(\frac{y_{k} - A/\sqrt{L}}{\sigma_{n}}\right)^{2}} dy_{k} = \left\{ \lambda = \frac{y_{k} - A/\sqrt{L}}{\sigma_{n}} \right\} =$$

$$d\lambda = \frac{1}{\sigma_{n}} dy_{k}$$

$$(5)$$

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\frac{-A/\sqrt{L}}{\sigma_n}} \mathrm{e}^{-\frac{1}{2}\lambda^2} \, d\lambda \stackrel{\text{Per simetria}}{=} \frac{1}{\sqrt{2\pi}} \int_{\frac{A/\sqrt{L}}{\sigma_n}}^{+\infty} \mathrm{e}^{-\frac{1}{2}\lambda^2} \, d\lambda = Q\left(\frac{A}{\sigma_n\sqrt{L}}\right)$$

(c.2) $P(er/a_k = A, a_{k+1} = -A)$. Quan $a_k = A, a_{k+1} = -A$, substituint a (1) tenim que $y_k = 0.6 \frac{A}{\sqrt{L}} + n(t_k) \square N(\frac{A}{\sqrt{L}}, \sigma_n^2)$ i la probabilitat d'error amb $\gamma = 0$ és:

$$\begin{split} P(er/a_k = A, a_{k+1} = -A) &= \\ &= P(y_k < 0/a_k = A, a_{k+1} = -A) = \left\{ y_k = \frac{0.6A}{\sqrt{L}} + n(t_k) \square N(\frac{0.6A}{\sqrt{L}}, \sigma_n^2) \right\} = (6) \\ &= \int_{-\infty}^0 \frac{1}{\sqrt{2\pi}\sigma_n} \cdot \mathrm{e}^{-\frac{1}{2}\left(\frac{y_k - 0.6A/\sqrt{L}}{\sigma_n}\right)^2} \, dy_k &= Q\left(\frac{0.6A}{\sigma_n\sqrt{L}}\right) \end{split}$$

(c.3) $P(er/a_k = -A, a_{k+1} = -A)$. Quan $a_k = -A, a_{k+1} = -A$, substituint a (1) tenim que $y_k = -\frac{A}{\sqrt{L}} + n(t_k) \square N(-\frac{A}{\sqrt{L}}, \sigma_n^2)$ i la probabilitat d'error amb $\gamma = 0$ és:

$$P(er/a_{k} = -A, a_{k+1} = -A) =$$

$$= P(y_{k} > 0/a_{k} = -A, a_{k+1} = -A) = \left\{ y_{k} = -\frac{A}{\sqrt{L}} + n(t_{k}) \square N(-\frac{A}{\sqrt{L}}, \sigma_{n}^{2}) \right\} =$$

$$= \int_{0}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma_{n}} \cdot e^{-\frac{1}{2} \left(\frac{y_{k} + A/\sqrt{L}}{\sigma_{n}}\right)^{2}} dy_{k} = \left\{ \lambda = \frac{y_{k} + A/\sqrt{L}}{\sigma_{n}} \right\} =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{A/\sqrt{L}}{\sigma_{n}}}^{+\infty} e^{-\frac{1}{2}\lambda^{2}} d\lambda = Q\left(\frac{A}{\sigma_{n}\sqrt{L}}\right)$$

$$(7)$$

 $(c.4) P(er/a_k = -A, a_{k+1} = +A). \quad Quan \quad a_k = -A, a_{k+1} = +A, \quad aleshores \quad substituint \quad a \quad (1) \quad tenim$ $y_k = -\frac{0.6A}{\sqrt{L}} + n(t_k) \, \Box \, N(-\frac{0.6A}{\sqrt{L}}, \sigma_n^2) \quad i \; la \; probabilitat \; d'error \; amb \quad \gamma = 0 \; \acute{e}s:$

$$\begin{split} P(er/a_k &= -A, a_{k+1} = A) = \\ &= P(y_k > 0/a_k = -A, a_{k+1} = A) = \left\{ y_k = -\frac{0.6A}{\sqrt{L}} + n(t_k) \square N(-\frac{0.6A}{\sqrt{L}}, \sigma_n^2) \right\} = \\ &= \int_0^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{1}{2} \left(\frac{y_k + 0.6A/\sqrt{L}}{\sigma_n}\right)^2} dy_k \overset{\text{Fent el canvi de variable igual que abans en (7)}}{=} Q\left(\frac{0.6A}{\sigma_n\sqrt{L}}\right) \end{split}$$

Substituint (5) i (6) a l'equació (3) obtenim

$$P(er/a_{k} = A) = \frac{1}{2} \left[P(er/a_{k} = A, a_{k+1} = A) + P(er/a_{k} = A, a_{k+1} = -A) \right] =$$

$$= \frac{1}{2} \left[Q\left(\frac{A}{\sigma_{n}\sqrt{L}}\right) + Q\left(\frac{0.6A}{\sigma_{n}\sqrt{L}}\right) \right]$$
(9)

Substituint (7) i (8) a l'equació (4) obtenim

$$P(er/a_{k} = -A) = \frac{1}{2} \left[P(er/a_{k} = -A, a_{k+1} = A) + P(er/a_{k} = -A, a_{k+1} = -A) \right] =$$

$$= \frac{1}{2} \left[Q\left(\frac{A}{\sigma_{n}\sqrt{L}}\right) + Q\left(\frac{0.6A}{\sigma_{n}\sqrt{L}}\right) \right]$$
(10)

Substituint (9) i (10) a l'equació (2) tenim que la probabilitat d'error és

$$P_{er} = \frac{1}{2} \left[P(er/a_k = A) + P(error/a_k = -A) \right] = \frac{1}{2} \left[Q\left(\frac{A}{\sigma_n \sqrt{L}}\right) + Q\left(\frac{0.6A}{\sigma_n \sqrt{L}}\right) \right]$$
(11)

Ara cal expressar-ho en funció de la EbNo. Ho farem en funció de la EbNo en transmissió. Sabem que :

$$E_b = R_a(0) \cdot E_p = (\frac{1}{2}A^2 + \frac{1}{2}A^2) \cdot E_p = \left\{ E_p = 1 \right\} = A^2$$
 (12)

$$\sigma_n = \sqrt{N_0/2} \tag{13}$$

Finalment, substituint (12) i (13) a l'equació (11) obtenim,

$$P_{er} = \frac{1}{2} \left[Q \left(\sqrt{\frac{2}{L} \frac{E_b}{N_0}} \right) + Q \left(0.6 \sqrt{\frac{2}{L} \frac{E_b}{N_0}} \right) \right]$$

d) Per a resoldre aquest apartat, assumiu que L=1. Sabent que la probabilitat d'error quan no hi ha error de sincronisme és $Q(\sqrt{2\frac{E_b}{N_0}})$, compareu les dues probabilitats d'error per $\frac{E_b}{N_0}=4,5$. Entregueu la gràfica de Q(x) que se li proporciona si la utilitza.

Probabilitat d'error sense error de sincronisme:

$$P_{er} = Q\left(\sqrt{\frac{2}{L}} \frac{E_b}{N_0}\right) = \begin{cases} L = 1 \\ E_b / N_0 = 4.5 \end{cases} \stackrel{\text{Figura } Q(x)}{=} Q(3) \approx 1.5 \cdot 10^{-3}$$

Probabilitat d'error amb error de sincronisme:

$$P_{er} = \frac{1}{2} \left[Q \left(\sqrt{\frac{2}{L} \frac{E_b}{N_0}} \right) + Q \left(0.6 \sqrt{\frac{2}{L} \frac{E_b}{N_0}} \right) \right] = \begin{cases} L = 1 \\ E_b / N_0 = 4.5 \end{cases} =$$

$$= \frac{1}{2} \left[Q(3) + Q(1.8) \right] \qquad \frac{1}{2} \left[1.5 \cdot 10^{-3} + 3 \cdot 10^{-2} \right] = 1.5 \cdot 10^{-2}$$

La probabilitat d'error resultant és 10 cops major com a conseqüència de la ISI que provoca l'error en el sincronisme.

Nota:

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\lambda^2}{2}} d\lambda$$

