

MAT1610 - Clase 12

Derivación funciones exponenciales

Diego De la Vega

Facultad de Matemáticas Pontificia Universidad Católica de Chile

05 de abril del 2024

Objetivo

> Revisar derivada de funcione exponenciales

Ejercicios

- I) Encuentre los puntos sobre la curva $y = x^4 6x^2 + 4$ donde la recta tangente es horizontal.
- 2) La ecuación de movimiento de una partícula es $s = 2t^3 5t^2 + 3t + 4$, donde s se mide en centímetros y t en segundos. Hallar la aceleración como una función del tiempo. ¿Cúal es la aceleración después de 2 segundos?

Funciones exponenciales

Sea $f(x) = a^x$. Al calcular derivada de la función, se tiene que

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$

$$= a^x \lim_{h \to 0} \frac{(a^h - 1)}{h}$$

$$= a^x f'(0)$$

$$f'(x) = f'(0) a^x$$

Definición del número e

e es el número tal que

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

Derivada de la función exponencial natural

$$\frac{d}{dx}(e^x) = e^x$$

Ejercicio: Si $f(x) = e^x - x$, encuentre f' y f''

Ejercicio: ¿En qué punto de la curva $y = e^x$, la recta es paralela a la recta y = 2x?

Conclusión

➤ Vimos derivada de funciones exponenciales

Libro guía

> Págs. 179-181.