Data Frames

- Data frames are used to store tabular data in R. Hadley Wickham's package dplyr35 has an optimized set of functions designed to work efficiently with data frames.
- Data frames are represented as a special type of list where every element of the list has to have the same length. Each element of the list can be thought of as a column and the length of each element of the list is the number of rows.
- Unlike matrices, data frames can store different classes of objects in each column. Matrices must have every element be the same class (e.g. all integers or all numeric).

Data Frames

- In addition to column names, indicating the names of the variables or predictors, data frames have a special attribute called row.names which indicate information about each row of the data frame.
- Data frames are usually created by reading in a dataset using the read.table() or read.csv(). However, data frames can also be created explicitly with the data.frame() function.

Data Frames: Construction

```
• x < - data.frame(foo = 1:4, bar = c(T, T, F, F))
• X
    foo bar
        TRUE
 2 2 TRUE
 3 3 FALSE
 4 4 FALSE
• nrow(x)
 [1] 4
• ncol(x)
 [1] 2
```

Accessing Data Frame

- vector1 <- c(10,30,40,15); vector1
- vector2 <- vector1 * 2
- df1 <- data.frame(vector1,vector2); df1
- vector3 <- c(1,2,3)
- vector3 < c(1,2,3,4)
- df1 <- data.frame(vector1,vector2,vector3); df1 # gives error
- df1[1,2]
- df1[,2]

Accessing Data Frame

- df1\$vector1 #similar to the use of \$ in the case of list, because df is a list
- df1[df1\$vector1<20,2]
- df1
- df1\$vector1<20
- df1[1:3,2]
- is.list(df1\$vector1[1:2])
- is.vector(df1\$vector1[1:2])
- str(df1)

Removing NAs in Data Frames

```
head(airquality)
good <- complete.cases(airquality)</li>
head(airquality[good, ])
x <- airquality[,-1] # x is a regression design matrix</li>
y <- airquality[, 1] # y is the corresponding response</li>
stopifnot(complete.cases(y) != is.na(y))
ok <- complete.cases(x, y)</li>
sum(!ok) # how many are not "ok" ?
x <- x[ok,]</li>
```

• y < - y[ok]

Reading and Writing Data

There are a few principal functions reading data into R.

- read.table, read.csv, for reading tabular data
- readLines, for reading lines of a text file

Reading and Writing Data

There are analogous functions for writing data to files

- write.table, for writing tabular data to text files (i.e. CSV) or connections
- writeLines, for writing character data lineby-line to a file or connection

read.table – important parameters

- file, the name of a file, or a connection
- header, logical indicating if the file has a header line
- sep, a string indicating how the columns are separated
- colClasses, a character vector indicating the class of each column in the dataset
- na.strings the set of strings to be considered as NA

Reading Data

```
    tab1 <- read.table('house copy.txt')</li>

    tab1

getwd()
str(tab1)
tab1 <- read.table(file='house copy.txt',header = T)</li>
• tab1 <- read.table(file='house copy.txt',header = T, sep = "",colClasses = c('double','double'))
• tab1 <- read.table(file='house copy.txt',header = T, sep = "",colClasses = c('double','double'), na.strings = c('220.0'))
• tab1 <- read.table("home/user/house.txt") #using relative path notation
• #please experiment with relative/absolute path in Windows - use getwd() for hints
• #experiment with read.csv and csv files (comma-separated files like from excel)
vector1 <- c(10,30,40,15); vector1</li>

    vector1

    writeLines(as.character(vector1), 'vector1.txt')

getwd()
write.table(tab1,file = 'area sales.txt',sep=',')
```

write.table(tab1,file = 'area sales.txt',sep=',',quote = F,row.names = F)

Exercise

• Experiment with variations in write.table function (command) to get the data in the original format as shown below:

area, sale. price 694,192 905,215 802,215 1366,274 716,112.7 963,185 821,212 714,220 1018,276 887,260 790,221.5 696,255 771,260 1006,293 1191,375

• Experiment reading CSV files using read.csv function and explore usage of its various parameters (arguments)

Testing and Coercion – compilation

Table 2.3. Functions for testing (is) the attributes of different categories of object (arrays, lists, etc.) and for coercing (as) the attributes of an object into a specified form. Neither operation changes the attributes of the object unless you overwrite its name.

Type	Testing	Coercing
Array	is.array	as.array
Character	is.character	as.character
Complex	is.complex	as.complex
Dataframe	is.data.frame	as.data.frame
Double	is.double	as.double
Factor	is.factor	as.factor
List	is.list	as.list
Logical	is.logical	as.logical
Matrix	is.matrix	as.matrix
Numeric	is.numeric	as.numeric
Raw	is.raw	as.raw
Time series (ts)	is.ts	as.ts
Vector	is.vector	as.vector

Table 2.4. Vector functions used in R.

Operation	Meaning
max(x)	maximum value in x
min(x)	minimum value in x
sum(x)	total of all the values in x
mean(x)	arithmetic average of the values in x
median(x)	median value in x
range(x)	vector of $min(x)$ and $max(x)$
var(x)	sample variance of x
cor(x,y)	correlation between vectors x and y
sort(x)	a sorted version of x
rank(x)	vector of the ranks of the values in x
order(x)	an integer vector containing the permutation to sort x into ascending order
quantile(x)	vector containing the minimum, lower quartile, median, upper quartile, and maximum of x
cumsum(x)	vector containing the sum of all of the elements up to that point
cumprod(x)	vector containing the product of all of the elements up to that point
cummax(x)	vector of non-decreasing numbers which are the cumulative maxima of the values in x up to that point
cummin(x)	vector of non-increasing numbers which are the cumulative minima of the values in x up to that point
pmax(x,y,z)	vector, of length equal to the longest of x, y or z, containing the maximum of x, y or z for the <i>i</i> th position in each
pmin(x,y,z)	vector, of length equal to the longest of x, y or z, containing the minimum of x, y or z for the <i>i</i> th position in each
colMeans(x)	column means of dataframe or matrix x
colSums(x)	column totals of dataframe or matrix x
rowMeans(x)	row means of dataframe or matrix x
rowSums(x)	row totals of dataframe or matrix x