Q4. The visible spectrum ranges from 4000A⁰ to 7000A⁰. Find the angular breath of the first order visible spectrum produced by a plane grating having 6000 lines/cm when light is incident normally on the grating.

Given:-
$$11 = 4000A = 4 \times 10^{-5}$$
 cm $12 = 7000A = 7 \times 10^{-5}$ cm $n=1$ a+b=1/6000lines per cm

Formula:- $(a + b)\sin \theta = n \lambda$

Solution:- $(a + b)\sin \theta_1 = \lambda_1$

$$\theta_1 = \sin^{-1}\frac{\lambda_1}{a+b} = \sin^{-1}(4 \times 10^{-5} \times 6000) = 13.88^{\circ}$$

$$(a + b)\sin \theta_2 = \lambda_2$$

$$\theta_2 = \sin^{-1}\frac{\lambda_2}{a+b} = \sin^{-1}(7 \times 10^{-5} \times 6000) = 24.83^{\circ}$$

$$\theta_2 - \theta_1 = 24.83 - 13.88 = 10.95^{\circ}$$

Ans :- The Angular separation = 10.95®