Marprugu - gedicolog 4 choa

Hexa IFF e (ruenobo) wone, 0,1,60, a^{1} Def. Marpruga A naprovacue radius

c m-paga u 17-cionda e entre a_{2} . G.F. $A = \begin{pmatrix} a_{11} & a_{12} & --a_{111} \\ a_{21} & a_{22} & --a_{211} \\ a_{41} & a_{42} & --a_{441} \end{pmatrix}$ $A = \begin{pmatrix} a_{11} & a_{42} & --a_{441} \\ a_{21} & a_{22} & --a_{241} \\ a_{41} & a_{42} & --a_{441} \end{pmatrix}$ $A = \begin{pmatrix} a_{11} & a_{42} & --a_{441} \\ a_{21} & a_{22} & --a_{241} \\ a_{41} & a_{42} & --a_{441} \end{pmatrix}$ $A = \begin{pmatrix} a_{11} & a_{42} & --a_{441} \\ a_{41} & a_{42} & --a_{441} \\ a_{41} & a_{42} & --a_{441} \end{pmatrix}$

 $P_{p} A = \begin{pmatrix} 123 \\ 012 \end{pmatrix}_{2\times3} \qquad B = \begin{pmatrix} 231 \\ 210 \end{pmatrix}$ $C = \begin{pmatrix} 32 \\ 210 \end{pmatrix}$ $F = \begin{cases} A = (\alpha_g)_{u \times u} \mid \alpha_{uy} \in F \end{cases}$

 $F_{u \times n} = \begin{cases} A = (ag)_{u \times n} / aug \in Ff \\ A, B \in F_{u \times u} \Rightarrow A = B \iff ag = bg. \end{cases}$

 $A_{1}B \in F_{uxu} \Rightarrow A = B \iff A = B \iff A = A = B \iff A = B$

Fuxn, Deformapeur Ordypasse La Marjorage A, B & Fuxn -> C = A+B & Fuxn C = (Cis) uxn = (ay+ by) won $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \end{pmatrix} + \begin{pmatrix} 3 & 1 & 4 \\ 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 7 \\ 1 & 4 & 8 \end{pmatrix}$ MI) асоциативен закон ка "+" нам, Y A,B,CG FWXn! (A+B)+C = A+(B+C) Abo: A=(ag), B=(by), C=(cg) A+B=H=(hg), B+C=K=(kg) (A+B)+C= P=(Ps), A+(B+C)=4=(Us) P=U pij = Uz 18=411 ; 5=417 $P_{ij} = h_{ij} + l_{ij} = (Q_{ij} + l_{ij}) + C_{ij}$ $U_{ij} = Q_{ij} + k_{g} = Q_{ij} + (B_{ij} + C_{g})$ =

H2) They opened (rysels) est b Fux n

yes her range was $0 = \begin{pmatrix} 0 & 0 & - & 0 \\ 0 & 0 & - & 0 \\ \hline 0 & 0 & - & 0 \end{pmatrix}$! A + D = D + A = AM3) + AG Fuxn, F (-A) & Fuxus :
uponilouono po rox
na m. A A + (-A) = (-A) + A = 0 $(-A):=\begin{pmatrix} -\alpha_{11}-\alpha_{12}&-\alpha_{11}\\ -&-&\\ -\alpha_{m_1}-&-&\\ -&\alpha_{m_1}\end{pmatrix}_{m\times n} \begin{pmatrix} A=(\alpha_{ij})_{u_{m_{ij}}}\\ (-A)=(-\alpha_{ij})_{u\times n}\end{pmatrix}$ $A = \begin{pmatrix} 1 & 5 & 6 \\ 2 & 1 & 3 \end{pmatrix} \quad (-A) = \begin{pmatrix} -1 & -5 & -6 \\ -2 & -1 & -3 \end{pmatrix}$ МУ) колизтаться закон на + па ч. HABEFUND ! A+B = B+A (Fuxn, A+B) - aderelo agunibra.

F:
$$L_1\beta$$
, β , β .

Formula and by - —

Deformation to comman yuxorem

We so the Formula wo comman (auxono)

 AEF to congrue scarces:

 $AF = (Aaij)_{min}$ $\frac{npunup}{(12)}$
 $AF = (Aaij)_{min}$ $\frac{npunup}{(36)}$
 $AF = A = (1.agr)$
 $AF = A = (1.agr)$
 $AF = A = (AF)A$

 $\mathcal{L}A + \mathcal{B}A = (\mathcal{L}+\mathcal{B})A$ Fuxon $\frac{2}{7}A + \frac{5}{7}A = (\frac{2}{7}+\frac{5}{7})A$ $\frac{4}{7}A + \frac{5}{7}A = (\frac{2}{7}+\frac{5}{7})A$

M7)
$$\forall A, B \in Fuxh$$
, $\forall \lambda \in F$
 $\lambda A + \lambda B = \lambda (A+B)$
M8) $\forall A \in Fuxh$, $\forall \Delta A \in Fuxh$
 $\exists (S,A) = (J,S) A$
 $\exists (S,A) = (S,S) A$
 $\exists (S,A) = (S,S) A$
 $\exists (S,A) = (S,S) A$
 $\forall A \in Fuxh$
 $\exists (S,A) = (A,S) A$
 $\exists (S,A) = (A,$

A+B, AA, AEF

A=

\[
\begin{align*}
\alpha_{11} \alpha_{12} & \alpha_{11} \\
\alpha_{21} \alpha_{22} & \alpha_{21} \\
\alpha_{11} \alpha_{12} & \alpha_{22} \\
\alpha_{11} \alpha_{12} & \alpha_{11} \\
\alpha_{12} & \alpha_{12} & \alpha_{12} & \alpha_{12} \\
\alpha_{12} & \alpha_{12} & \alpha_{12} \\
\alpha_{12} & \alpha_{12} & \alpha_{12} & \alpha_{12} & \alpha_{12} \\
\alpha_{12} & \alpha_{12} & \alpha_{12} & \alpha_{12} & \alpha_{12} & \alpha_{12} \\
\alpha_{12} & \alpha_{12} & \alpha_{12} & \alpha_{

du

bropy