Ex: Prove que $2^n >= n^2$ para todo n >= 4

Base da indução: $2^4 >= 4^2 => 16 >= 16 => OK$, provado

Hipótese: assuma que vale para um k qualquer, ou seja, $2^k >= k^2$

Passo da indução: usando a hipótese de indução quero provar que $2^{k+1} >= (k+1)^2$

lembrando que $(k+1)^2 = k^2 + 2k + 1 =$ quero provar que $2^{k+1} > = k^2 + 2k + 1$

Prova do passo:

★ Queremos provar que $3n^2 + 7n \le cn^2$ para todo n suficientemente grande. Critique a seguinte prova: "Se $3n^2 + 7n \le cn^2$ então

 $3n + 7 \le cn$, supondo n > 0. Logo, $c \ge 3 + 7/n$. Logo, $c \ge 3 + 7$ é suficiente. Logo, $c \ge 10$ e n > 0. Fim da prova."

Se n = 1, c =
$$10 \Rightarrow 3*1 + 7 < 10*1 \Rightarrow 10 < 10$$
, OK!

E se n = 0.1, c = 10 =>
$$3*0.1 + 7 \le 10*0.1 => 7.3 \le 1$$
, ABSURDO!!!

A prova correta deveria mencionar c = 10 e $n_0 = 1$ (e não $n > n_0 = 0$)

E no caso de o (o pequeno)

Ex: quero provar que $1000n^2 = o(n^3)$

1) Escrevo a definição:

Para toda constante positiva c, existe um n_0 positivo tal que $|1000n^2| < |cn^3|$ para todo $n >= n_0$

- 2) Para qual n valeria a igualdade? $|1000n^2| = |cn^3| \implies 1000 = |cn| \implies n = 1000/c$
- 3) Então n_0 que faz valer a desigualdade do passo 1 precisa ser maior, por ex: $n_0 = 1000/c + 1$