

Introduction

In the world of **Artificial Intelligence** and advancement in technologies, many researchers and big companies are working on autonomous vehicles and self-driving cars.

So, for achieving accuracy in this technology, the vehicles should be able to interpret traffic signs and make decisions accordingly.

Problem Statement

Given a various traffic signs along with images dataset, we are challenged to classify traffic signs present in the image into different categories.

Dataset

Contains different traffic signs. classified into 43 different classes.

size

50,000 images

Source

From Kaggle

Tools

Data manipulation and Preprocessing ML libraries:

Visualization libraries:

Deep learning:

02

Image Preprocessing

- Set height and width to be 32x32
- Normalization, Divide by 255

Model Preprocessing

- Splitting the Data
- Sets the labels and check the distribution.
- Labels Encoded

Class Imbalance Struggle

Baseline Model

Logistic Regression

- Reshape the image size to be in 2d array
- Scaling using Stander Scaler

Convolutional Neural Networks

hyperparameter

Hidden layer:

- Three Convolution Layers

- Two simple NN layers

Kernel size: 3 Dropout: 0.25

Activation Function:

- Relu

- Softmax

Epochs: 15

Class Weight:

- Balanced

Val Accuracy: **0.9920**Test Accuracy: **0.9843**

Convolutional Neural Networks

Loss: Categorical Crossentropy

Optimizer: Adam Metrics: Accuracy

Applying Transfer Learning

Applying Transfer Learning

VGG16: (CNN) architecture which was used to win ILSVR(ImageNet) competition in 2014. It is considered to be one of the excellent vision model architecture till date.

val Accuracy:

0.99

Test Accuracy:

0.99

MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications

val Accuracy:

0.91

Test Accuracy:

0.96

Predicting with one Image from Test Dataset

JUPITER

SATURN

```
In [83]: image_index = 11
In [84]: plt.imshow(X test[image index])
         n = np.array(X test[image index])
         print(n.size)
         p = n.reshape(1, 32, 32, 3)
         pred = classes[model.predict(p).argmax()]
         print("The predicted image is {}".format(pred))
         3072
         The predicted image is Right-of-way at intersection
           5
          10
          15
          20
          25
          30
                        15
```

Future Work

- Increase the obtained result by using different DL approaches which are supported by extra feature extraction methods.
- Autonomous car system to Recognize Traffic Signs.

