

통계·데이터고학과 이기째 교수

❤ 한국방송통신대학교 대학원

- □ 제 6장. 로지스틱회귀모형(2)
 - 범주형 예측변수들을 갖는 로지스틱회귀모형
 - 2 다중 로지스틱회귀모형
 - 3 로지스틱회귀모형의 효과에 대한 요약
 - 4 예측력 요약: 분류표, ROC 곡선

自計別以料理

지난 강의에서는 이항자료 분석에서 널리 사용되는 로지스틱회귀분석을 GLM 관점에서 살펴보고, 로지스틱회귀모형의 해석과 통계적 추론에 대해서 공부했습니다. 이번 강의는 지난 강의에 이어서 로지스틱회귀모형의 구축과 활용에 대해 살펴보겠습니다.

- 범주형 설명변수를 갖는 로지스틱회귀모형을 적용할 수 있다.
- 2 다중 로지스틱회귀모형을 적용할 때 효과에 대한 요약, 예측력 요약 등을 설명할 수 있다.
- 3 다중 로지스틱회귀모형을 실제 데이터에 적용하고 그 결과를 해석할 수 있다.

(2) 전대 6광. 로**지스틱회귀모형(2)**

- 범주형 예측변수들을 갖는 로지스틱회귀모형
- 2 다중 로지스틱회귀모형
- 3 로지스틱회귀모형의 효과에 대한 요약
- 4 예측력 요약: 분류표, ROC 곡선

01

제 6장. 로지스틱회귀모형(2)

범주형

예측변수들을 갖는 로지스틱회귀모형

■ 로지스틱회귀모형이란?

- 로지스틱회귀모형은 회귀모형과 마찬가지로 여러 설명변수를 갖는 모형으로 확장 가능함
- 예측변수 中 일부 또는 전부가 질적변수(범주형 변수)일 수 있음

- 두 개의 예측변수 X, Z 와 반응변수 Y 가 각각 (0,1)의 값을 갖는 이항변수인 경우
- ullet X와 Z의 주효과를 갖는 로지스틱회귀모형 $\log it [P(Y=1)] = \alpha + \beta_1 x + \beta_2 z$

x, z: 지시변수 또는 가변수(Dummy Variable)

- 모형 $\log it[P(Y=1)] = \alpha + \beta_1 x + \beta_2 z$ 에서 가변수 값에 따른 로짓값

x	z	로짓
0	0	α
1	0	$\alpha + \beta_1$
0	1	$\alpha + \beta_2$
1	1	$\alpha + \beta_1 + \beta_2$

• Z 가 주어졌을 때 x=1 에서 "성공"일 오즈는 x=0 에서 "성공"일 오즈의 $\exp(\beta_1)$ 배임

$$\frac{\exp(\alpha + \beta_1)}{\exp(\alpha)} = \exp(\beta_1) \quad \frac{\exp(\alpha + \beta_1 + \beta_2)}{\exp(\alpha + \beta_2)} = \exp(\beta_1)$$

■모형에서 교호작용이 없다는 것은 ☑의 두 수준에서 구한 부분 분할표에 대한 오즈비 값들이 동일하다는 것을 의미함

동질연관성 만족

Note

- 오하이오 데이톤 근처의 고등학교 고학년 학생 대상 조사
- 그룹화 자료를 통해 마리화나 사용여부(1=예, 0=아니오)를 예측 목적
- 성별과 인종의 주효과를 갖는 로지스틱회귀모형을 적합시킨 결과

인종	서버	마리화나 사용		
	성별	예	아니오	
백인	여자	420	620	
	남자	483	579	
다른 인종	여자	25	55	
	남자	32	62	

X = 성별

Z = 인종

Y =마리화나 사용 (1=예, 0=아니오)

■ SAS 프로그램

DATA marijuana;

```
INPUT RACE $ GENDER $ yes n @@;
CARDS;
white M 483 1062 white F 420 1040
black M 32 94 black F 25 80
RUN;

PROC GENMOD order=data;
class RACE GENDER;
model yes/n = GENDER RACE/ dist=bin type3 lrci residuals obstats;
RUN;
```

☑ 분석 결과

		- 1	Analysis O	f Maximum	Likelihood P	arameter	Estimates	
Parameter		DF	Estimate	Standard Error	Likelihood F Confidenc		Wald Chi-Square	Pr > ChiSq
Intercept		1	-0,8303	0,1685	-1.1669	-0.5050	24.27	<.0001
GENDER	М	1	0.2026	0.0852	0.0358	0.3697	5.66	0.0174
GENDER	F	0	0,0000	0,0000	0.0000	0.0000	7	
RACE	white	1	0.4437	0.1677	0.1199	0.7783	7.00	0.0081
RACE	black	0	0,0000	0.0000	0.0000	0.0000	4.5	
Scale		0	1.0000	0.0000	1.0000	1.0000		

LR Sta	tistic	s For Type 3	Analysis
Source	DF	Chi-Square	Pr > ChiSq
GENDER	1	5.67	0.0173
RACE	1	7.28	0.0070

☑ 적합 결과

$$logit(\hat{\pi}) = -0.8303 + 0.2026 \times GENDER + 0.4437 \times RACE$$

마리화나 사용과 성별 사이의 조건부 오즈비는 $\exp(0.2026) = 1.22$ 로 추정됨

☑ R 프로그램

```
> Marijuana <- read.table("http://www.stat.ufl.edu/~aa/cat/data/Marijuana.dat",
                          header=TRUE)
+
> Marijuana
  race gender yes no
1 white female 420 620
2 white male 483 579
3 other female 25 55
4 other male 32 62
> fit <- qlm(yes/(yes+no) ~ gender + race, weights = yes + no,
            family=binomial, data=Marijuana)
                                                     H_0: \beta_1 = \beta_2 = 0을 검정하기 위한 가능도비 검정통계량
> summary(fit)
                                                       → 영이탈도와 잔차 이탈도의 차이값, 12.75-0.06, 자유도 df=3-1
             Estimate Std. Error z value Pr(>|z|)
                                                       The Null deviance and the residual deviance are defined as:
             -0.83035 0.16854 -4.927 8.37e-07
(Intercept)
gendermale
             0.20261 0.08519
                                    2.378
                                            0.01739
                                                                           NullDeviance = 2(ll(SaturatedModel) - ll(NullModel))
racewhite
          0.44374
                      0.16766
                                    2.647
                                            0.00813
                                                       with df = df_{Sat} - df_{Null}.
                                                                       Residual Deviance = 2(ll(Saturated Model) - ll(Proposed Model))
   Null deviance: 12.7528 on 3 degrees of freedom
                                                       with df = df_{Sat} - df_{Res}.
Residual deviance: 0.0580 on 1 degrees of freedom
```

3.2 X 2 X K 분할표에 대한 검정법

■ Cochran-Mantel-Haenszel 검정법

- Multi-center clinical trials 사례

Center(Z)	처리(X)	반응(<i>Y</i>)	
Center(Z)	시니(<i>A)</i>	S	F
1	1		
	2		
2	1		
	2		
:	:		
K	1		
	2		

$$\log it \left[P(Y=1)\right] = \alpha + \beta x + \beta_1 c_1 + \beta_2 c_2 + \dots + \beta_{k-1} c_{k-1}$$

여기서 x는 X의 두 수준에 대한 가변수임

3.2 X 2 X K 분할표에 대한 검정법

■ Cochran-Mantel-Haenszel 검정법

- 모형에 대한 다른 형태 표현
 - $logit[P(Y=1)] = \alpha + \beta x + \beta_k^z$
 - eta_k^z : 센터 K 의 효과 (보통 마지막 센터에 대한 상대적 크기로 표현)
 - x:X의 두 수준에 대한 가변수

- $\exp(\beta)$: K 개 분할표에서 Z 를 통제했을 때의 X, Y 의 공통 오즈비
- Z를 통제했을 때 X, Y간 조건부독립성 성립 $\Leftrightarrow \beta = 0$ (X, Y의 오즈비 = 1)

3.2 X 2 X K 분할표에 대한 검정법

■ Cochran-Mantel-Haenszel 검정법

- " H_0 : $\beta=0$ "에 대한 검정을 통해서 조건부 독립성 검정 가능
 - 가능도비 검정
 - Wald 검정
 - Cochran-Mantel-Haenszel 검정 (CMH검정)

제 6장. 로지스틱회귀모형(2)

다중

로지스틱회귀모형

개Ω

□ 다중 로지스틱회귀모형이란?

- Y: 이항반응변수, $\pi = P(Y=1)$
- x_1,x_2,\cdots,x_k 개의 설명변수가능도비 검정 $\log it[P(Y=1)]=\alpha+\beta_1x_1+\beta_2x_2+\cdots+\beta_kx_k$

$$\pi = \frac{\exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}{1 + \exp(\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}$$

- β_i : 다른 변수들을 통제할 경우, x_i 가 미치는 효과
- e^{eta_i} : 다른 설명변수가 고정되었을 때 X_i 가 한 단위 증가할 때 오즈의 증가 비(Ratio)

$$Y = \begin{cases} 1, & \text{한 마리 이상의 부수체를 보유한 경우} \\ 0, & \text{부수체가 없는 경우} \end{cases}$$

x : 너비

색깔에 대한 가변수 : 밝은색, 약간 밝은색, 중간색, 약간 어두운색, 어두운 색

- C_2 = 1 \rightarrow 중간색, 그렇지 않은 경우 "0"
- $c_3 = 1 \Rightarrow$ 약간 어두운색, 그렇지 않은 경우 "0"
- ^C4 = 1 → 어두운색, 그렇지 않은 경우 "0"

참고

- 밝은 색의 참게 : 없음
 - → 나이가 많을수록 어두운 색을 띔
- 약간 밝은 색인 경우는 $c_2 = c_3 = c_4 = 0$ 인 경우임

```
> fit <- qlm(y ~ width + factor(color), family=binomial, data=Crabs)</pre>
> summary(fit)
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.38519 2.87346 -3.962 7.43e-05
width
     0.46796 0.10554 4.434 9.26e-06
factor(color)2 0.07242 0.73989 0.098 0.922
factor(color)3 -0.22380 0.77708 -0.288 0.773
factor(color)4 -1.32992 0.85252 -1.560 0.119
   Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.46 on 168 degrees of freedom
```

- $-\log it[P(Y=1)] = \alpha + \beta_1 x + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4$
 - $\log it [\hat{P}(Y=1)] = -11.385 + 0.468x + 0.072c_2 0.224c_3 1.330c_4$
 - 어두운 색 참게에 대한 예측결과 $(c_2 = c_3 = 0, c_4 = 1)$
 - $-\log it[\hat{P}(Y=1)] = (-11.385 1.330) + 0.468x$
 - $x = \bar{x} = 26.3$ 인 어두운 색 참게가 부수체를 가질 확률

$$\hat{P}(Y=1) = \frac{\exp[-12.715 + 0.468(26.3)]}{1 + \exp[-12.715 + 0.468(26.3)]} = 0.399$$

■ 너비와 색깔을 예측변수로 갖는 로지스틱회귀모형 분석결과

• 참게의 너비가 주어진 경우 "중간색" 참게가 부수체를 가질 오즈는 "약간 밝은 색" 참게에 비해서 1.075배 큼

$$\hat{\beta}_2 = 0.0724, \ e^{0.0724} = 1.075$$

Note

- $\log it[P(Y=1)] = \alpha + \beta_1 x + \beta_2 c_2 + \beta_3 c_3 + \beta_4 c_4$
- 색깔과 너비 사이의 교호작용이 없는 것으로 간주하여 분석한 것임
- 즉, 참게의 너비(x)가 π 에 미치는 영향은 색깔과 무관하게 동일하다고 가정한 것임

2. 어떤 항이 필요한가를 보는 모형 비교

- $H_0: \beta_2 = \beta_3 = \beta_4 = 0$ 검정 (너비가 주어진 경우, Y는 색깔과 독립)
 - 가능도비 검정 통계량 $2(L_1-L_0)=194.45-187.46=6.99$ df=171-168=3, P- 값=0.07
 - → 참게 색깔의 효과가 뚜렷하지는 않지만 완전히 무시할 수는 없음
 - → 색깔에 대한 예측 변수를 모형에 포함하는 것이 바람직함

2. 어떤 항이 필요한가를 보는 모형 비교

- H_0 : $\beta_1 = 0$ 검정
 - $\hat{\beta}_1 = 0.468$, SE = 0.106, P 3 < 0.001
 - 색깔이 주어진 경우, 너비가 x+1 인 경우의 오즈는 너비가 x 인 경우의 오즈에 비해서 $e^{0.468}=1.597$ 배 큼

2. 어떤 항이 필요한가를 보는 모형 비교

```
> summary(glm(y ~ width, family=binomial, data=Crabs))
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.3508 2.6287 -4.698 2.62e-06
width 0.4972 0.1017 4.887 1.02e-06
   Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 194.45 on 171 degrees of freedom # deviance=187.46 when
                                                 # color also in model
> library(car)
> Anova(glm(y ~ width + factor(color), family=binomial, data=Crabs))
            LR Chisq Df Pr(>Chisq)
width
             24.6038 1 7.041e-07 # LR test of width effect
factor(color) 6.9956 3 0.07204 # LR test of color effect .
```

- $lacksymbol{\square}$ 1. 색깔의 범주점수로 $c = \{1, 2, 3, 4\}$ 를 사용하는 경우
 - 색깔 범주에 단조성을 만족하는 단조점수를 부여하여
 색깔에 대해서 선형효과를 갖도록 함
 - $$\begin{split} & \cdot \, \log it [P(\,Y \! = \! 1\,)] = \alpha + \beta_1 x + \beta_2 c \\ & \Rightarrow \, \log it [\hat{P}(\,Y \! = \! 1\,)] = \! -10.071 + 0.458 x 0.509 c \end{split}$$

```
> fit2 <- qlm(y ~ width + color, family=binomial, data=Crabs)</pre>
> summary(fit2) # color treated as quantitative with scores (1, 2, 3, 4)
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.0708 2.8068 -3.588 0.000333
width 0.4583 0.1040 4.406 1.05e-05
color -0.5090 0.2237 -2.276 0.022860
   Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 189.12 on 170 degrees of freedom
> anova(fit2, fit, test="LRT") # likelihood-ratio test comparing models
Model 1: y ~ width + color
Model 2: y ~ width + factor(color)
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
       170 189.12
1
       168 187.46 2 1.6641 0.4351
```

 $lacksymbol{\square}$ 1. 색깔의 범주점수로 $c = \{1, 2, 3, 4\}$ 를 사용하는 경우

주어진 너비에서 색깔 범주가 하나씩 어두운 쪽으로 변할 때마다 부수체를 가질 오즈는 $\exp(-0.509) = 0.60$ 배씩 감소함

- 각 색깔별로 서로 다른 모수를 갖는 복잡한 모형과의 비교
 - 가능도비 통계량 = $2(L_1 L_0)$ =1.664 df = 2, P 값 = 0.44

간단한 모형 (색깔을 양적 변수로 간주한 경우)이 적합함

■ 2. 색깔 변수를 간단하게 정의하여 적용하는 경우

-
$$c_4 = egin{cases} 1 & \mbox{어두운 색 참게} \\ 0 & \mbox{어두운 색이 아닌 참게} \end{cases}$$

- $\log it [P(Y=1)] = \alpha + \beta_1 x + \beta_2 c_4$ $\hat{\beta}_2 = -1.301 \ (SE=0.526)$
 - ⇒ 주어진 너비에서 "어두운 색이 아닌" 참게가 부수체를 가질 오즈는 "어두운 색" 참게가 부수체를 가질 오즈의 exp(1.301)=3.673배

■ 2. 색깔 변수를 간단하게 정의하여 적용하는 경우

■ 모형 적합 분석

 H_0 : 간단한 모형(가변수가 1개인 경우)

 H_a : 복잡 모형(가변수가 3개인 경우)

가능도비 검정통계량

=187.96 - 187.46=0.501 (df=2)

"간단한 모형이 적합함"

```
> Crabs$c4 <- ifelse(Crabs$color == 4, 1, 0) # indicator for color cat. 4
> # or could use I(Crabs$color == 4) to directly define indicator var.
> fit3 <- qlm(y ~ width + c4, family=binomial, data=Crabs)</pre>
> summary(fit3)
              Estimate Std. Error z value Pr(>|z|)
  (Intercept) -11.6790 2.6925 -4.338 1.44e-05
  width
             0.4782 0.1041 4.592 4.39e-06
  c4 -1.3005 0.5259 -2.473 0.0134
      Null deviance: 225.76 on 172 degrees of freedom
  Residual deviance: 187.96 on 170 degrees of freedom
   > anova(fit3, fit, test="LRT") # likelihood-ratio test comparing models
  Model 1: y ~ width + c4
  Model 2: y ~ width + factor(color)
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
  1
          170
                  187.96
          168 187.46 2 0.50085
                                         0.7785
```

4. 교호 작용을 포함한 모형

$$\log it[P(Y=1)] = \alpha + \beta_1 x + \beta_2 c_4 + \beta_3 (x \times c_4)$$

색깔	너비 효과	가변수 값
어두운 색	$\beta_1 + \beta_3$	$c_4 = 1$
약간 어두운 색	eta_1	$c_4 = 0$
중간색	eta_1	$c_4 = 0$
약간 밝은색	eta_1	$c_4 = 0$

4. 교호 작용을 포함한 모형

$$logit[P(Y=1)] = \alpha + \beta_1 x + \beta_2 c_4 + \beta_3 (x \times c_4)$$

```
> glm(y ~ width + c4 + width:c4, family=binomial, data=Crabs)
```

(Intercept) width c4 width:c4

-12.8117 0.5222 6.9578 -0.3217

Null Deviance: 225.76

Residual Deviance: 186.79

$$\Rightarrow \; \log it [\hat{P}(Y=1)] = -12.812 + 0.522x + 0.6958c_4 - 0.322(x \times c_4)$$

4. 교호 작용을 포함한 모형

- $\blacksquare H_0$: 교호작용 없음($eta_3=0$) 검정
- 가능도비 검정통계량

$$=187.96 - 186.79 = 1.17 (df=1, P=0.28)$$

교호작용에 대한 Weak Evidence!!

4. 교호 작용을 포함한 모형

- 모형의 선택 과정에서 고려사항
 - 자료에 대한 적합성
 - : 모형이 복잡해질수록 유리
 - 적합된 모형의 해석의 용이성
 - : 모형이 간단할수록 유리

확증적(Confirmatory) 연구와 탐색적(Exploratory) 연구 03 제 6장. 로지스틱회귀모형(2) 로지스틱 회귀모형의 효과에 대한 요약

1. 확률에 기초한 해석

Note

• 예측변수 x_j 의 효과 설명 방법 다른 예측변수의 값을 표본평균으로 고정시킨 후 x_j 의 가장 작은 값과 큰 값에서 $\hat{P}(Y=1)$ 을 구해 비교해 보는 것

$$\Rightarrow \, \log it [\hat{P}(\,Y=1)] = -\,12.812 + 0.522x + 0.6958c_4 - 0.322(x \times c_4)$$

2. 주변 효과와 그 평균

Note

- 양적 예측변수의 상대적으로 작은 변화가 확률에 미치는 영향은 근사적으로 직선의 기울기로 사용하여 파악
- 다른 설명변수를 고정했을 때 설명변수 x_j 가 한 단위 증가할 때마다 근사적으로 $\hat{\pi}$ 는 $\hat{\beta}_j \hat{\pi} (1-\hat{\pi})$ 만큼 변화한다.

3. 표준화된 해석

Note

- 예측변수가 여러 개인 경우, 예측 변수의 효과를 비교하기 위하여 $\{\hat{eta}_i\}$ 의 크기를 비교할 수 있음
- 이때 서로 다른 단위를 갖는 양적 예측변수 x_j 들의 효과를 비교하고자 할 때 표준화 계수(Standardized Coefficient)를 사용할 수 있음
- 예측변수 대신에 $(x_j \overline{x_j})/s_{x_j}$ 로 대체하여 적합하게 구함

제 6장. 로지스틱회귀모형(2) 예측력 요약: 분류표, ROC 곡선

1. 예측력 Ω약: 분류표

☑ 분류표 이용

• ' $\hat{\pi} \ge 0.50$ '이면 $\hat{Y} = 1$, ' $\hat{\pi} < 0.50$ '이면 $\hat{Y} = 0$ 으로 예측 예측

실제	$\hat{Y}=1$	$\hat{Y} = 0$	계
Y=1	94	17	111
Y=0	34	28	62

• 민감도(Sensitivity) =
$$P(\hat{Y}=1|Y=1) = \frac{94}{94+17} = 0.85$$

■ 특이도(Specificity) =
$$P(\hat{Y}=0|Y=0) = \frac{28}{62} = 0.45$$

■ ROC 곡선 작성(Receiver Operating Characteristic Curve)

- 분류표

예측

실제	$\hat{Y}=1$	$\hat{Y} = 0$	계
Y = 1	True Positives	False Negatives	Р
Y=0	False Positives	True Negatives	N

- P = True Positives + False Negatives
- TPR = TP / P, FPR = FP/N
- Sensitivity = TPR, Specificity = 1- FPR

■ ROC 곡선 작성(Receiver Operating Characteristic Curve)

- ① ROC 곡선
 - : cutoff 값의 모든 가능한 값에 대해서 민감도를 (1-특이도)의 함수로 나타낸 그림
- ② Cutoff 값의 모든 가능값에 대해서 예측검정력을 구하기 때문에 분할표를 이용하는 것보다 더 많은 정보를 갖게 됨
- ③ ROC 곡선
 - : 일반적으로 좌표 (0,0)과 (1,1)을 연결하는 위로 나타남
- ④ ROC 곡선 아래 면적
 - : 예측검정력의 측도로 사용됨(일치성 지수, concordance index)

■ ROC 곡선 작성 (예시)

TRUTH	Score
1	0.7198
0	0.2460
0	0.1219
0	0.1560
0	0.7527
1	0.3064
0	0.7194
0	0.5531
1	0.2173
0	0.0839
1	0.8429

	LOGISTIC REGRESSION	
THRESHOLD	TP-Rate	FP-Rate
0	1	1
0.1	1	0.8571
0.2	1	0.5714
0.3	0.75	0.4286
0.4	0.5	0.4286
0.5	0.5	0.4286
0.6	0.5	0.2857
0.7	0.5	0.2857
0.8	0.25	0
0.9	0	0
1.0	0	0

■ ROC 곡선 (결과)

3. 예측력 요약: 다중상관성

□ 다중상관성

- 관찰된 반응변수 값 $\{y_j\}$ 와 모형에서 구한 적합값 $\{\mu_j\}$ 간에 구한 상관계수 R
- 선형모형을 적합시키는 경우라면 최소제곱법에서 다중상관계수에 해당함

```
> fit <- glm(y ~ width + factor(color), family=binomial, data=Crabs)
> cor(Crabs$y, fitted(fit))
[1] 0.45221
```


