

Camila Barbagallo, Paula García, Juan Gil, Rocío González, Oriol Vall, Valeria Zaldivar

Table of Contents

01

Business

02

Data Pipeline

03

Proof of Concept

04

Environment and Infrastructure

Future Work

01

Business

OUR SOLUTION

Our Customer

- Government
- VTC
- Self-driving vehicle companies
- Web Mapping Companies

DIRECT CUSTOMERS

- Emergency Services
- Average driver

INDIRECT CUSTOMERS

Revenue Model

Revenue

- Personalised Ads
- Pay for service (Platforms implementing it)

Funding

- Government
- Established platforms (exclusivity)
- Investors

02

Data Pipeline

What are our inputs?

Streaming

vehicle_id (string)

latitude (float)

longitude (float)

Vehicle:

Assumptions

Data Flow

data once the motor is on

Traffic (300m)

More than 50 cars per lane going at a speed lower than the roads' minimum

from pyspark import SparkContext
from pyspark.sql import SparkSession, Row
from pyspark.sql.types import StructType
from pyspark.sql.functions import monotonically_increasing_id, row_number
from pyspark.sql.window import Window

import geopy
from geopy.geocoders import Nominatim
from geopy.extira.rate_limiter import RateLimiter
geopy.geocoders.options.default_user_agent = "BDBA"

Read Data

Vehicles Roads

vehic= spark.read.json('vehicles.json')

roads= spark.read.json('roads.json')


```
def road_from_coord(lat, lon):
  coordinates= str(lat)+ ',' +str(lon)
locator = Nominatim(timeout=10)
rgeocode = RateLimiter(locator.reverse, min_delay_seconds=0.001)
location = rgeocode(coordinates)
   return(location.raw['address']['road'])
```

Road names

```
road names = []
for i in tqdm(range(vehic.count())):
     road_names.append(road_from_coord(vehic.collect()[i]['latitude'],vehic.collect()[i]['longitude']))
row = Row("road name")
rdd = spark.sparkContext.parallelize(road names)
rf=rdd.map(row).toDF()
vehic=vehic.withColumn('row index',
row number().over(Window.orderBy(monotonically_increasing_id())))
rf=rf.withColumn('row_index', row_number().over(Window.orderBy(monotonically_increasing_id())))
vehic = vehic.join(rf, ["row_index"],how="inner").drop("row_index")
```

Join of Information

Traffic

Proof of Concept

Use Case

Vehicles Set

Faker

```
datetime_utc: fake.date_time_between_dates(datetime_start, datetime_end=).timestamp()
vehicle_id - digits: str(fake.pyint(min_value=0, max_value=9, step=1))
accelerometer: fake.pyint(min_value=0, max_value=180, step=1)
```

Random

vehicle_type: random.choice(["truck","taxi","bus","private_vehicle"])
vehicle_id - letters: random.choice(CONSONANTS)

• CONSONANTS = list(set(string.ascii_uppercase) - set(list("AEIOU")))/
latitude: random.uniform(40.227240, 40.644740)
longitude: random.uniform(-3.944317, -3.426800)

Roads Set

1979

Geopy

road_name: np.unique(road_from_coord(vehicle['latitude'],vehicle['longitude']))

Faker

number_lanes: fake.pyint(min_value=1, max_value=4, step=1)

Random

min_speed: random.choice([25,50,60])
has_bus_lane: random.choice([0,1]),

Result

	road_name	number_vehicles
0	Camino del Espinar	3
1	Carretera Particular de la Zarzuela	2
2	Avenida de la Pesadilla	1
3	Calle Enrique Casas	1
4	Calle de Valdemorillo	1
84	enlace con M-40	1
85	Calle XX	1
86	Camino del Esparragal	1
87	Calle de los Morales	1
88	Calle de las Acacias	1

Environment and Infrastructure

Resources

Platform to host the application

Real-time vehicle information

World-road database

Production Pipeline

New Vehicles Algorithm Alert Notification Send results to Ingestion of new **Execute Analysis Query** Traffic Jam! stream of data Stream Analytics Job consumer server

Budget

Azure Stream Analytics

\$0.11/ hour

DAILY

WEEKLY

MONTHLY

ANNUALLY

\$2.64

\$18.48

\$81.84

\$982.08

Security

Consensus in society

Secure communication

Information encoding

Future Work

Improvements

Direction

Direction of the vehicle (cardinal points)

Streaming

From static to streaming solution

THANKS!

Any questions?

cbarbagallo.ieu2017@student.ie.edu pgarcia.ieu2018@student.ie.edu jgil.ieu2018@student.ie.edu rgonzalez.ieu2018@student.ie.edu ovall.ieu2018@student.ie.edu vzaldivar.ieu2018@student.ie.edu

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

Please keep this slide for attribution.

