Oxthogonal matrices and Gram - Schmidt Last class on orthogonality Vimos: -orthogonal vectors -orthogonal vectors
- orthogonal subspaces (eg. nullspace)
- rouspace) VEREMOS: Lorthogonal basis, outhogonal matrix Orthogonal Jusis 91,..., 9n Oxthogonal matrix Q Gram-Schmidt Every q is orthogonal to every other q. / corthe! qiq; = { 6 se i = j -> NORMAC FOR VECTORS THÍS (9, 4; =1) a norma Varnos tuntar stabachan com orthonormal vectors. I se as columns de A (basis) are not outhonormal, how as I make them so?

tenho uma base ortogonal. Vole encaixar na matriz Q.

$$Q^{T}_{1} Q_{1} \cdots Q_{n}$$

$$Q^{T}_{1} Q_{1} \cdots Q_{n}$$

$$Q^{T}_{1} Q_{1} \cdots Q_{n}$$

$$Q^{T}_{2} Q_{1} \cdots Q_{n}$$

$$Q^{T}_{2} Q_{n} \cdots Q_{n}$$

$$Q^{T}_{2} Q_{n} \cdots Q_{n}$$

$$Q^{T}_{2} Q_{n} \cdots Q_{n}$$

Se temos colunas ortenornais e a matriz n precise ser square.

QTQ, ATA'S asks for all the dot products

n sa implemente outragonal matrices.

matricus w/orthonormal columns:

Or orthonormal matrix (pa suas colunas são octonormais)?

matriz as se for quadrada, orthogonal matrix

Quando Q e' quadrada, senho a inversa dela.
· · · · · · · · · · · · · · · · · · ·
Escamplis: Perm G= 100 det ala de A co
· has unit vectors in its cols, to each other
C: 1] []=2 length squared.
C1 17/17-2 dot products w/ themselves 2.
Ci 1] [1]=2 length squared.
length-square 2. [1 11 1] Adhmar's matrix
Q= 1
1
Pa & born ter matrizes octogonais?
$Q = \begin{bmatrix} 1 & -2 \\ 2 & -1 \\ 2 & 2 \end{bmatrix}$
1 1 ² 42 ² → 9

Se a mostriz é quadrada, cols independentes,
ortonolmais.
colspan in the whole span.
Qual a matriz de projeção no whole space?
The Identity matrix!
Selle to presitando no whole space, every vector b is right where it's supposed to be.
Se Q l'quadrada, QQT = I
P = Q(070) -10T = QQT = I if Qi
P=Q(QTQ)-'QT=QQT=I if Qis square
$Q^T = Q^{-1}$
T_{co} $(\tau_{co})(\tau_{co})$
$(QQ^{T})(QQ^{T}) = QQ^{T}$ $QQ = I p/$
Orthonormal
=
Punsa na equação normal: matrix of inner products ATAJE = ATB
Projeção na i-esima agora: QTQ 2 = QTb lesposta dueta!
product.

Comico com vetores independentes. Quevo torna-co
ortonormais.
Gram-Schmidt.
do elimination (em q o objetivo era transf. em
triangular), agora nosso obj. i transformat
a matriz um ortogonal.
~ Colunas ortonormais
b A a b A
apure produzin veteres ortonormais a partir de
a e B. Oxthogonal A, B. (1 * Orthowormal Q, = A
1 x orthowormal Q1 = A
92=B/1811
/((81)
a can be A. But the second direction (b) is not fine
n'é ortagenal a A. Jua nosso "e" ever vector.
vector.
B48 4
e A a
lomo checo que esta matriz é B=b-p
perpendicular a A? B=b-xA
26 K K - 0, 3c - 12 (
$A^{T}(b - \underbrace{A^{T}b}_{A^{T}A}A) \qquad B = b - \underbrace{A^{T}b}_{A^{T}A}A$
ATA
Atb - Ath ATA = 0/ ATA (Serbindicula)
ATA E perpendicular!

Setula 3 veteres a, b, c -> looking for orthogonal
Setups 3 vetteres $a, b, c \rightarrow looking for orthogonal vectors A_1B_1C \rightarrow lhe third guy will be \frac{C}{100}$
(c)
→ jet tanho formula PIB & PIA· E C?
Comiço com o C, subtrais
C- Componentes em
A e B.
$C = C - A^{T}CA - B^{T}CB$
C= C- A'CA - BTCB
A ^T A B ^T B
the component it is component
its component its component in Advication in Bolivation
C tem que La A e LaB.
Te dou 2 vetores, ve me da a Gram-Schmidt Orthonormal basis.
orthonormal basis.

 $a = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad ATA = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad ATA = \begin{bmatrix} 1 \\ 1$ ache A e B. $B = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\beta = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ sero. B= [1] = [1] = 6 ALB and $q_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad q_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Ortginal: $Q = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad Q = \begin{bmatrix} 1 \\ \sqrt{13} \end{bmatrix} \qquad Pacifity$ $Q = \begin{bmatrix} 1 \\ \sqrt{13} \end{bmatrix} \qquad Pacifity$ $Q = \begin{bmatrix} 1 \\ \sqrt{13} \end{bmatrix} \qquad Q = \begin{bmatrix} 1 \\ \sqrt{13} \end{bmatrix} \qquad Pacifity$ $Q = \begin{bmatrix} 1 \\ \sqrt{13} \end{bmatrix} \qquad Q = \begin{bmatrix} 1$ How's the C(Q) related to c(A)? it's the same. Expression of Graham Schmidt A=QR - R & upper triangular

A=QR > Expressão de Gram-Schridt

Pa é zers? Construí os a s presen perpendiculares as eaxeier vectors

Se lutenho uma mothus de columas indus. Graham - Schmidt produz uma matriz com columas orto normais e a conexão entre el as é uma matriz triangular.

Entender A=GR. Quem (Q?

Khan academy:

Set $B = \{v_1, v_2, ..., v_k\}$ all are orthogonal $\|\vec{\mathcal{G}}_i\| = 1$ for i = 1, 2, ... k.

Other

all the vectors in B have length ! They have all been normalized.

it you dot it w/ itself, se ve pequo vetor e dota elle com approutro, vi.vj. o foi i +j

> 1) 10 Umigulu Malhindint Sir.
3, of ∈B i+j
soi i of saw perpendiculares.
assuma que vi ev; são L.D. como vi; \$0, c\$0
asim, posso expressor vi = c v;
(v) =0
٥(تَحَ . تَحَيَ) = ١ تَحَ ال تَحَ ال عَلَى ال عَلَى العَلَى العَلَى العَلَى العَلَى العَلَى العَلَى العَلَى العَلَى
Como c ≠0, 11 0 112 0
1 vj. 1 streia 9
Contrasi-
assim, eles tim que ser linearmente independents
B is the basis for V
V= Span (0, 02,, 0k)
Bis anort basis for V.
teste: • a novima i 1
· 800 ortogonais entre eles?
and a second and a second and a

V = span(0,) to vector it, is the basis for the subspace lomo saver se é ortonormal? 11 = 01 200 } é base ortogoral poura VI Complicando um pouco. Ve=span (v, v2) / v=11v|1v, subspace = span(ti, 3) Vz = \$\frac{1}{2} = \$\frac{1}{2} + \frac{1}{2} where \$\frac{1}{2}\$ is a member of \$\frac{1}{2}\$, e y if a member of the outhought of the outho a member of V, e y é le if a member of the orthogonal Revie jevi \vec{y}_2 serial $\vec{V}_2 - \vec{z}$ proj \vec{V}_2 onto subspace \vec{V}_1 $\vec{V}_2 = \vec{V}_2 - \text{proj } \vec{V}_2$ V2= span (3, , ,) = span (, , ,) = span (, , ,) = span (, , ,)

u, has orthonormal basis V2= Span(1, 3) g = V2 -prof V2 $\vec{y}_2 = \vec{v}_2 - (\vec{v}_2, \vec{\mu}_1)\vec{v}_1$ To normalize y 2 12 = Span (il, il) V3= span (il, il, V3) -> Para acharma um the subspace is going to be a plane of as comb. lineaus de V3 que é L. I. dos dois primiros of guve um velor ortogenal É um membro do plano. É a projeção de V3 no suvespaço e base out normal - Proj Va $\{\vec{v}_a,\vec{u}_c,\vec{v}_a\}$ ψ₃ = V₃ - (V₃. μ₁)μ₁ + (V₃. μ₂)μ₂
Posso rubstituin V₃ por V₃. (v. . u.,) u.

mas yz ainda to foi normalizado.
M3 = 43
11 3
alsin, V3= Span(u1, u2, u3)
$\vec{y}_3 = \vec{v}_3 - (\vec{v}_3 \cdot \vec{u}_1) \vec{u}_1 + (\vec{v}_3 \cdot \vec{u}_2) \vec{u}_2$
V4= span (m, 12, 12, v4)
/ July
$ \frac{1}{y_4} = \overline{v_4} - P_{roj} \overline{v_4} $
3
Vai crando
basis. Se Chama Graham- basis.
Service.

Mas ainda in tem length 1: $\frac{1}{9} + \frac{1}{6} + 1 = \frac{1}{2} + 1 = \frac{3}{2}$ norma= 135 M2 = 1 [-1 1 0] Esses 2 tem modulo 1 e são ortogonais entre six Span V) Jemos aqui entai uma base ortonor-

mal para o plano.