

Eric Blander @EricB10

Image Source: WPDIY

Process

Data

500 Million Dataflows 80+ Features

Explore & Analyze

EDA and Visualizations Machine Learning Classification

Binary Class

Benign vs. Malicious

Multi Class

Benign vs. 11 DDoS Attacks

Each dataflow consists of many packets

Protocol

TCP, UDP, etc

Packets & Headers

Total Forward & Backward Min, Max & Mean Size

Initial Window

Duration & Size

Important Features

Duration Down & Uptime

Transfer Rates

Bytes/Sec Packets/Sec

Flags

ACK, URG, etc

Min & Max Packet Size

Mean Header & Packet Size

Balanced Dataset (50% Benign, 50% Malicious)

	Binary Cl Acc	Binary Cl F1	Multi Cl* Acc	Multi Cl* F1
Decision Tree	99.8%	99.8%	84.6%	84.7%
Random Forest	99.9%	99.9%	85.2%	85.1%
XGBoost	99.9%	99.9%	86.5%	86.4%

*Multi Class: Benign + 11 Distinct DDoS Attacks

Anomaly Detection Dataset (99% Benign, 1% Malicious)

	Binary Cl Acc	Binary Cl F1	Multi Cl* Acc	Multi Cl* F1
Decision Tree	99.7%	99.6%	82.1%	82.8%
Random Forest	99.9%	99.8%	83.0%	83.1%
XGBoost	99.9%	99.9%	83.9%	83.8%

*Multi Class: Benign + 11 Distinct DDoS Attacks

Conclusions Each Attack has Models Perform Specific Sizes Well With Both Balanced **Packet** VS. Size **Anomaly Binary** Models VS. Protocols Multiclass Most DDoS Attacks Simple Models Have Models Perform Occur on TCP or UDP High Accuracy Better with Binary

Larger Data

Train models on dataset .01% malicious dataflows

Real Time

Deploy trained model on real-time data

Front End

Implement into Application with GUI

Thanks

Eric Blander @EricB10

