R30

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

циональный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 6

название:	Решение	задачи	комми	вояжера	мет	одом_	полного
перебора и му	равьиным	алгорит	<u>CMOM</u>				
Дисциплина:	Анализ ал	Ігоритмо	<u>OB</u>				
Ступомт	ИУ7-521	-				E D I	Engyovog
Студент	(Группа)	<u>) </u>	_	(Подпись, да	та)		Брянская . Фамилия)
Преподаватель			_	(Памили на			Волкова
				(Подпись, да	rra)	(И.О	. Фамилия)

Оглавление

\mathbf{B}_{1}	Введение	•	3					
1	Аналитическая часть							
	1.1 Цель и задачи		4					
	1.2 Задача о коммивояжёре		4					
	1.3 Алгоритм полного перебора		4					
	1.4 Муравьиный алгоритм		5					
2	2 Конструкторская часть	•	6					
3 Технологическая часть								
4 Исследовательская часть								
За	Заключение	•	9					
\mathbf{C}_{1}	Список литературы	10	0					

Введение

В этой лабораторной работе будут рассматриваться два алгоритма, решающие задачу коммивояжёра.

Задача о коммивояжёре (travelling-salesman problem) является одной из знаменитых задач теории комбинаторики, была поставлена в 1934 году и заключается в поиске самого выгодного (минимального по стоимости) маршрута, проходящего строго по одному разу по всем приведённым городам с последующим возвратом в исходный город. Таким образом, выбор подходящего маршрута осуществялется среди гамильтоновых циклов.

Гамильтонов цикл - это такой цикл (замкнутый путь), который проходит через каждую вершину ровно по одному разу.

Задача коммивояжёра имеет ряд практических применений, к примеру, она использовалась для составления маршрутов лиц, занимающихся выемкой монет из таксофонов. В этом случае, в качестве пунктов, которые нужно посетить, выступали места установки таксофонов, а стоимость – время в пути между двумя точками.

Также она используется в задаче о сверлильном станке. Сверлильный станок изготавливает металлические листы с определённым количеством отверстий, координаты которых заранее известны. Нужно найти кратчайший путь через все отверстия, то есть наименьшее время, затрачиваемое на изготовление одной детали.

Для решения этой задачи есть несколько алгоритмов, в этой лабораторной работе будут рассмотрены: алгоритм полного перебора и муравьиный алгоритм.

1. Аналитическая часть

В этом разделе будут поставлены цель и основные задачи лабораторной работы, которые будут решаться по мере её выполнения.

1.1. Цель и задачи

Цель данной работы: провести сравнительный анализ метода полного перебора и эвристического метода на базе муравьиного алгоритма.

Для достижения поставленной цели необходимо решить следующий ряд задач:

- 1) дать описание базовой задачи;
- 2) описать алгоритмы;
- 3) реализовать все рассмотренные алгоритмы;
- 4) провести парметризацию муравьиного алгоритма для выбранного класса задач, то есть определить такие комбинации параметров или их диапазонов, при которых метод даёт наилучшие результаты.

1.2. Задача о коммивояжёре

В задаче о коммивояжёре, которая тесно связана с задачей о гамильтоновом цикле, коммивояжёр должен посетить n городов. Можно сказать, что коммивояжёру нужно совершить тур, или гамильтонов цикл, посетив каждый город ровно по одному разу и, завершив путешествие в том же городе, из которого он выехал. С каждым переездом из города i в город j связана некоторая стоимость пути c(i,j), выраженная целым неотрицательным числом, и коммивояжёру нужно совершить тур таким образом, чтобы общая стоимость (т.е. сумма стоимостей всех переездов) была минимальной. [1]

Для решения этой задачи предлагается два следующих алгоритма.

1.3. Алгоритм полного перебора

Этот алгоритм заключается в полном переборе всех возможных комбинаций точек (городов). На вход подаётся число городов N и матрица стоимостей C. Так как количество городов равно N, то последовательно будут рассматриваться все перестановки из N-1 положительных целых чисел. Будет анализироваться каждый из этих возможных туров, и будет выбран тот, у которого наименьшая стоимость. [2]

Этот алгоритм достаточно точный, но продолжительность таких вычислений может занять непозволительно много времени.

1.4. Муравьиный алгоритм

123

2. Конструкторская часть

3. Технологическая часть

4. Исследовательская часть

Заключение

Список литературы

- 1. Задача коммивояжёра [Электронный ресурс]. Режим доступа: http://www.avprog.narod.ru/student/kommi.htm свободный (дата обращения: 30.11.2020)
- 2. Кормен, Томас X. и др Алгоритмы: построение и анализ, 3-е изд. : Пер. с англ. М. : ООО "И.Д. Вильямс 2018. 1328 с. : ил. Парал. тит. англ. ISBN 978-5-8459-2016-4 (рус.).
- 3. Клейнберг Дж., Тардос Е. Алгоритмы: разработка и применение. Классика Computer Science /Пер. с англ. Е. Матвеева. СПб.: Питер, 2016. 800 с.: ил. (Серия "Классика computer science"). ISBN 978-5-496-01545-5
- 4. Документация по C++ [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/cpp/cpp/?view=msvc-160, свободный (дата обращения: 22.11.2020)
- 5. Документация по Visual Studio 2019 [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/visualstudio/windows/?view=vs-2019, свободный (дата обращения: 21.11.2020)
- 6. QueryPerformanceCounter function [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter, свободный (дата обращения: 22.11.2020).