Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 1))$

- (a) Show that this vector space has an additive identity element $\mathbf{0}$ satisfying $(x,y) \oplus \mathbf{0} = (x,y)$.
- (b) Determine if V is a vector space or not. Justify your answer.

Determine if the vectors
$$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Standard V4.
$$\begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R}$$
 a subspace of \mathbb{R}^4 .

Standard S2.

Mark:

Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}_3

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x,y\in V$ and $c\in\mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that scalar multiplication is associative: $a \odot (b \odot x) = (ab) \odot x$.
- (b) Determine if V is a vector space or not. Justify your answer

Determine if the vectors
$$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Standard V4.	ark:
--------------	------

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Standard S2.

Determine if the set $\left\{ \begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 3 & 9 \end{bmatrix} \right\}$ is a basis of $M_{2,2}$ or not.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.
- (b) Determine if V is a vector space or not. Justify your answer.

Determine if the vectors
$$\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Standard V4.

Mark:

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S2.

Mark:

Determine if the set $\{x^3 - 3x^2 + 2x + 2, -x^3 + 4x^2 - x + 1, -x^3 + 2x + 1, 3x^2 + 3x + 9\}$ is a basis of \mathcal{P}^3 or not.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 1))$

- (a) Show that this vector space has an additive identity element $\mathbf{0}$ satisfying $(x,y) \oplus \mathbf{0} = (x,y)$.
- (b) Determine if V is a vector space or not. Justify your answer.

Determine if the vectors
$$\begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\1\\0\\-3 \end{bmatrix}$, $\begin{bmatrix} 0\\3\\0\\-2 \end{bmatrix}$, and $\begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix}$ span \mathbb{R}^4 .

Standard V4.	Mark:

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Standard S2.
$$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \\ -1 \end{bmatrix}$$
 is a basis of \mathbb{R}^4 .

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers together with the operations \oplus and \odot defined by, for any $x,y\in V$ and $c\in\mathbb{R}$,

$$x \oplus y = x + y - 3$$
$$c \odot x = cx - 3(c - 1)$$

- (a) Show that scalar multiplication is associative: $a \odot (b \odot x) = (ab) \odot x$.
- (b) Determine if V is a vector space or not. Justify your answer

Standard V3.	Mark:				
Determine if the vectors	$\begin{bmatrix} 8\\21\\-7 \end{bmatrix},$	1 1 1	$\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$, and	$\begin{bmatrix} 4\\11\\-5 \end{bmatrix}$	span \mathbb{R}^3

Standard V4.	Mark:

Let W be the set of all complex numbers that are purely real (i.e of the form a+0i) or purely imaginary (i.e. of the form 0+bi). Determine if W is a subspace of \mathbb{C} .

Determine if the set
$$\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^4 .

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V4.

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S2.

Mark:

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2