WELCOME TO PSY 653 LAB!

MODULE 06: REPEATED MEASURES AND MIXED DESIGNS

*Thanks to Gemma Wallace for her help with these slides

KEY TERMS

× Repeated Measures

 When subjects participate in all conditions of an experiment or provide data at multiple timepoints

× Sphericity

Equality of variances of the differences between treatment levels

CLASS EXAMPLE

A researcher is interested in the length of time it takes to say 2 syllable, 3 syllable, and 4 syllable words. She first times how long it takes each participant to say the 2 syllable word, then the 3 syllable word, then the 4 syllable word. However, half the participants are put in a condition in which there is a distracting noise in the background. She is interested if there is a difference between the control condition and the noise condition.

Source: Henderson, L., Coltheart, M., & Woodhouse, D. (1973). Failure to find a syllabic effect in number naming. Memory & Cognition, 1(3), 304-306. Retrieved from: http://users.stat.ufl.edu/~winner/data/

OUR VARIABLES AND RESEARCH DESIGN

- Noise Condition = between-subjects factor
 - Every participant is only exposed to one condition, either control or noisy
- # of syllables = within-subjects factor
 - Every participant reads words of all three syllable lengths
- Length of time to say each word = outcome variable

CREATE A NEW R-PROJECT AND R-NOTEBOOK!

Download the "syllables.csv" file from Canvas and save it into your R-project file

LOAD LIBRARIES

```
# Load libraries

``{r}
install.packages("ez")

library(tidyverse)
library(ez)
library(psych)
```

READ IN THE DATA

cond = condition (0 = control, 1 = noise condition)

time = milliseconds it took to say the word (outcome variable)

```
13 - # Read in data
14 + \bigcap \{r\}
    syl <- read_csv("syllables.csv")</pre>
16
                                                                                                                    Parsed with column specification:
     cols(
       ID = col_double(),
       length = col_double(),
       cond = col_double(),
       time = col_double()
17
          ID = subject id
         length = \# of syllables in word (2, 3, or 4)
```

DESCRIBE THE DATASET

L9 ₹	```{r}
20	describe(syl)
21 -	

									<i>□</i>
	vars <dbl></dbl>	n <dbl></dbl>	mean <dbl></dbl>	sd <db ></db >	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>	min <dbl></dbl>	max <dbl> ▶</dbl>
ID	1	48	8.50	4.66	8.5	8.5	5.93	1	16
length	2	48	3.00	0.83	3.0	3.0	1.48	2	4
cond	3	48	0.50	0.51	0.5	0.5	0.74	0	1
time	4	48	519.67	54.52	519.0	519.3	50.41	402	641

⁴ rows | 1-10 of 13 columns

FACTOR THE PREDICTOR VARIABLES

*Note: ezANOVA() (The main function we'll be using today) will do this automatically, but it's nice to remove the warning message and it looks nicer!

THE ezANOVA() FUNCTION

```
ezANOVA(data = dataframe,
 dv = outcome_variable,
 wid = variable_that_identifies_participants,
 within = repeated_measures_predictors,
 between = between_group_predictors,
 detailed = TRUE,
 type = 3)
```

If there are multiple predictor variables for each category, use a ".", parentheses, and separate them with a comma e.g., .(x,y). Use ?ezANOVA for more information

ANALYSES 1: RESEARCH QUESTION

Does length of time to read each word significantly differ by word syllable length? (We are ignoring Condition for analyses 1)

ANALYSIS 1: RUN A REPEATED MEASURES ANOVA (IGNORING CONDITION FOR NOW)

```
32 * # Repeated measures ANOVA
33 * ```{r}
34 ezANOVA(
35
            data = syl,
36
            dv = time,
            wid = ID.f,
            within = length.f,
38
39
            detailed = TRUE,
40
            type = 3
41
42 -
```

- \times data = dataset
- \times dv = dependent variable
- wid = ID grouping variable (factored)
- within = within subject variable (factored)
- "detailed = TRUE" indicates we want detailed output
- \times "type = 3" indicates we would like it to perform a type 3 ANOVA

4 WINDOWS WILL BE OUTPUTTED!

FIRST, CHECK IF SPHERICITY IS VIOLATED

Sphericity = the variances of the differences between all possible pairs of within-subject conditions (i.e., levels of the categorical predictor) are equal

A <u>non-significant</u> p value (i.e., >0.05) means that the condition of sphericity has been met. We do <u>NOT</u> need to use the Greenhouse-Geisser & Huynh-Feldt corrections (Window 4)

CHECK IF SPHERICITY IS VIOLATED

Was it violated?

CHECK IF SPHERICITY IS VIOLATED

(therefore we don't need to deal with window 4)

NEXT, VIEW THE ANOVA TABLE (SINCE SPHERICITY WASN'T VIOLATED)


```
### Visualize the effect
```{r}
syl_sum <- group_by(syl, length.f)
syl_sum <- summarise(syl_sum, time = mean(time))
syl_sum <- ungroup(syl_sum)

ggplot(syl_sum, aes(x = length.f, y = time, group = length.f, fill = length.f)) +
 geom_col(width = .5) +
 theme_bw() +
 labs(title = "Does length of time to read each word significantly differ by word syllable length?", fill| = "word length",
 x = "Word length")
...</pre>
```











#### **ANALYSIS 2**:

RUN A MIXED EFFECTS ANOVA TO EVALUATE EFFECTS OF BOTH #
OF SYLLABLES AND NOISE CONDITION ON TIME

Does length of time to read each word significantly differ by word syllable length AND by condition?

## ANALYSIS 2: RUN A MIXED EFFECTS ANOVA TO EVALUATE EFFECTS OF BOTH # OF SYLLABLES AND NOISE CONDITION ON TIME

```
58 - ## Mixed design
59 - ```{r}
60
 ezANOVA(
61
 data=syl,
62
 dv=time.
63
 wid=ID,
 within= length,
64
 between = cond,
65
66
 detailed=TRUE,
 type = 3
67
68
69
```

#### FIRST, CHECK IF SPHERICITY WAS VIOLATED



#### FIRST, CHECK IF SPHERICITY WAS VIOLATED



Sphereicity was  $\underline{NOT}$  violated (p > .05)

## NEXT, VIEW THE ANOVA TABLE (SINCE SPHERICITY WASN'T VIOLATED)

	na main man agmannanny mny saorannana									
	R Console	data.frame 4 x 9		data.frame 2 x 4	data.f 2 x					
	Effect <chr></chr>	<b>DFn</b> <dbl></dbl>	<b>DFd</b> <dbl></dbl>		SSn <dbl></dbl>	SSd <dbl></dbl>	<b>F</b> <dbl></dbl>	<b>p</b> <dbl></dbl>	<b>p&lt;.05</b> <chr></chr>	ges <dbl></dbl>
1	(Intercept)	1	14	1.29625	7e+07	132976	1.364727e+03	2.342147e-15	*	0.989620054
2	cond	1	14	1.61333	3e+02	132976	1.698552e-02	8.981607e-01		0.001185200
3	length	2	28	2.68816	67e+03	2986	1.260359e+01	1.249189e-04	*	0.019388124
4	cond:length	2	28	9.15166	67e+02	2986	4.290802e+00	2.368832e-02	rk	0.006686043

4 rows

SSd = an error term: the amount of unexplained variance across the conditions of the within-subjects variable

```
Visualize the effect
85 * ```{r}
86
87
88 syl_sum <- group_by(syl, cond.f, length.f)
89 syl_sum <- summarise(syl_sum, time = mean(time))
90 syl_sum <- ungroup(syl_sum)
91
92
93
94 ggplot(syl_sum, aes(x = length.f, y = time, color = cond.f)) +
95 geom_line(aes(group = cond.f))
96
97
98
99 ```</pre>
```



## VISUALIZE THE EFFECTS OF SYLLABLE LENGTH AND NOISE CONDITION ON TIME TO SAY EACH WORD

### WHAT SHOULD YOU DO IF THE SPHERICITY ASSUMPTION IS VIOLATED?

We didn't violate the assumption in this demo activity, but if we had:

Vise the output from Window 4 and apply a correction to the model F Ratio, and then use that value in your model interpretations.