Automatically Neutralizing Subjective Bias in Text

Reid Pryzant, Richard Diehl Martinez, Nathan Dass, Sadao Kurohashi, Dan Jurafsky, Diyi Yang

Presentators

- Jüri Keller
- Leon Munz
- Matteo Meier

Agenda

1. Introduction

- 1. Subjektiver Bias
- 2. Neutralisieren von subjektivem Bias

2. Wiki Neutrality Corpus (WNC)

- 1. Quelle
- 2. Unterkategorien
- 3. Dataset-Eigenschaften

3. Modelle

- Modular
- Concurrent

4. Performance Conclusion

5. Adaption auf ESuPol-Datensatz

- 1. Neutralisieren von Bias
- 2. Erkennen von Bias
- 6. Quellen und Links

O1 — Introduction

1.1 Subjektiver Bias

Subjektiver Bias tritt auf, wenn Sprache neutral sein sollte, jedoch durch Gefühle,
 Meinungen oder Geschmack verzerrt wird.

Einbringen von Haltung

Wahrheitsannahme

Auslösen von Zweifeln

1.2 Neutralisieren von Subjektivem Bias

• Um Subjektiven Bias zu identifizieren wird die Richtlinie für neutrale Standpunkte (NPOV) von Wikipedia genutzt.

 Diese Richtlinie beinhaltet eine Reihe von Prinzipien die unter anderen die Vermeidung der Darstellung von Meinung als Fakten aufführt.

1.2 Neutralisieren von Subjektivem Bias

Beispiel:

- 1. "exposed" ist ein faktisches Verb, das wie Wahrheit seines Komplements voraussetzt .
- 2. Das Ersetzen von "exposed" durch "described" neutralisiert den Satz.
- 3. Der Satz behält dabei eine ähnliche Aussage

• Parallelkorpus mit ca. 180.000 verzerrten und neutralisierten Satzpaaren.

Erstellt aus Wikipedia-Edits aus der Kategorie NPOV (2004 - 2019).

Drei Kategorien von subjektiver Verzerrung:

- Epistemologische Verzerrung
- Framing
- Demographische Verzerrung

Subcategory	Percent 25.0			
Epistemological				
Framing	57.7			
Demographic	11.7			

Von 500 Samples des WNC

Source	Target	Subcategory Epistemological	
A new downtown is being developed which will bring back	A new downtown is being developed which which its promoters hope will bring back		
The authors' exposé on nutrition studies	The authors' statements on nutrition studies	Epistemological	
He started writing books revealing a vast world conspiracy	He started writing books alleging a vast world conspiracy	Epistemological	
Go is the deepest game in the world.	Go is one of the deepest games in the world.	Framing	
Most of the gameplay is pilfered from DDR.	Most of the gameplay is based on DDR.	Framing	
Jewish forces overcome Arab militants .	Jewish forces overcome Arab forces .	Framing	
A lead programmer usually spends his career mired in obscurity.	Lead programmers often spend their careers mired in obscurity.	Demographic	
The lyrics are about mankind 's perceived idea of hell.	The lyrics are about humanity 's perceived idea of hell.	Demographic	
Marriage is a holy union of individuals.	Marriage is a personal union of individuals.	Demographic	

Table 1: Samples from our new corpus. 500 sentence pairs are annotated with "subcategory" information (Column 3).

• Es besteht ein Zusammenhang zwischen dem Thema des Textes und der Häufigkeit von Subjektivem Bias.

Häufiges Auftreten von Geringes Auftreten von subjektivem Bias subjektivem Bias Geschichte Meteorologie Wissenschaft Politik Philosophie Landformen Rundfunk Sport Sprache Kunstkategorien

03 — Modelle

Modular

Zweistufiges Modell zur Entfernung von Subjective Bias

Detection Module: erkennt Wörter mit Bias.

 Editing Module: tauscht die erkannten Wörter gegen Wörter ohne Bias.

3.1 Modular: Detection Module

"Marriage is a holy union of individuals."

"Marriage is a **holy** union of individuals."

3.1 Modular: Editing Module

"Marriage is a **holy** union of individuals."

"Marriage is a **personal** union of individuals."

3.1 Detection Module: Training

BERT-based sequence tagger:

- BERT wurde als *masked language model* trainiert. Also auf nicht gelabelten Texten.
- Um den Bias-Topic Zusammenhang zu erhalten, wird dem Input ein Topic Token hinzugefügt.
- Das Modell wird auf dem WNC Datensatz vortrainiert. Dabei haben alle Terme ein Label, ob sie Bias enthalten oder nicht.

3.1 Editing Module: Training

Editing Module:

- Trainiert auf dem "sauberen" Teil des WNC Datensatzes
- **bi-LSTM** bezieht vorwärts und rückwärts Beziehungen ein und encoded den Text.
- LSTM decodiert wieder zu Text.
- copy mechanism erstellt Output aus Input und neu berechneten Token
- coverage mechanisms verhindert wiederholungen von Wörtern und Sequenzen

3.1 Modular: Training

Final System:

- Beide Module (Detection und Editing) sind im finalen System miteinander verbunden.
- Die subjective bias probability-distribution aus dem Detection Modul fließt in den Encoder mit ein.
- So wird bestimmt welche Wörter angepasst werden müssen und welche behalten werden können

3.1 Modular: Training

Final System:

- Beide Module (Detection und Editing) sind im finalen System miteinander verbunden.
- Die subjective bias probability-distribution aus dem Detection Modul fließt in den Encoder mit ein.
- So wird bestimmt welche Wörter angepasst werden müssen und welche behalten werden können

Concurrent

Einstufiges Modell zur Entfernung von Subjective Bias

Tauscht die Wörter mit Bias gegen Wörter ohne Bias.

3.2 Concurrent: Editing Module

"Marriage is a **holy** union of individuals."

"Marriage is a **personal** union of individuals."

3.2 Concurrent: Editing Module

"Marriage is a **holy** union of individuals."

"Marriage is a **personal** union of individuals."

3.2 Concurrent: Training

- Ein Satz mit Subjective Bias wird direkt in einen Satz ohne Subjective Bias übersetzt.
- Anstelle des sequence taggers und des Encoders werden die Sätze direkt encoded und an den LSTM Decoder übergeben.
- Geringerer Trainingsaufwand

04 -

Performance Conclusion

4.1 Performance and Conclusion

Evaluierungsergebnisse bei Anwendung auf den WNC-Korpus*

Method	BLEU	Accuracy	Fluency	Bias	Meaning
Source Copy	91.33	0.00) <u>1</u> 21	-	2
Detector (always delete biased word)	92.43*	38.19*	-0.253*	-0.324*	1.108*
Detector (predict substitution from biased word)	92.51	36.57*	-0.233*	-0.327*	1.139*
Delete Retrieve (ST) (Li et al. 2018)	88.46*	14.50*	-0.209*	-0.456*	1.294*
Back Translation (ST) (Prabhumoye et al. 2018)	84.95*	9.92*	-0.359*	-0.390*	1.126*
Transformer (MT) (Vaswani et al. 2017)	86.40*	24.34*	-0.259*	-0.458*	0.905*
Seq2Seq (MT) (Luong, Pham, and Manning 2015)	89.03*	23.93	-0.423*	-0.436*	1.294*
Base	89.13	24.01	120	8-23°	-
+ loss	90.32*	24.10	-	_	2
+ loss + pretrain	92.89*	34.76*	(5)	8779	-
+ loss + pretrain + detector (MODULAR)	93.52*	45.80*	-0.078	-0.467*	0.996*
+ loss + pretrain + BERT (CONCURRENT)	93.94	44.87	0.132	-0.423*	0.758*
Target copy	100.0	100.0	-0.077	-0.551*	1.128*

- hoher manueller
 Aufwand bei der
 Erstellung der Quality
 Measures
- Modular ist stärker bei der Reduzierung des Bias
- Concurrent hat bessere
 Werte für die Erhaltung
 Fluency und Meaning

O5— Adaption auf den ESuPol-Datensatz

5.1 Adaption des Neutralisierens von Bias

mögliche Adaptionen:

- Modular/Concurrent Editing Module zur Neutralisierung von Suggestion Terms in Suchmaschinen (Aufsetzen einer "Bias-freien" Suchmaschine)
- Subjective Bias bereinigte Vergleiche/Statistiken
 - Hypothesentest auf signifikante Sprach-Unterschiede zwischen der Suche im Kontext ethnischer vs religiöser Minorities

5.1.1 Neutralisieren von Bias - Beispiel 1

This plot contains unprocessed data from ESuPol "suggestions_minorities_slice.csv".

Differenzbetrachtung **neutralisierter Suchvorschläge** hinsichtlich ethnischer/religiöser Minderheiten

5.2 Adaption des Erkennens von Bias

mögliche Adapationen:

- Modular Detection Module zur Erkennung von Bias
 - Bewertung des Gesellschaftsbildes für Politiker aus bestimmten Parteien
 - Bias-Scores für Suchmaschinen/Länder
 - Erweiterung mit WNC-Bias-Subcategory (Einschränkung: Kategorisierung wurde nur auf ein 500er-Sample des WNC vorgenommen)

5.2.1 Erkennen von Bias - Beispiel 1

This plot contains sample data.

Bias Bestimmung bei Suchanfragen in Zusammenhang mit Politikern bestimmter Parteien

5.2.2 Erkennen von Bias - Beispiel 2

bias score in eu countries 2020

This plot contains sample data.

06 — Quellen und Links

6 Quellen und Links

Pryzant, R., Martinez, R. D., Dass, N., Kurohashi, S., Jurafsky, D., & Yang, D. (2020).

Automatically neutralizing subjective bias in text.

In *Proceedings of the aaai conference on artificial intelligence* (Vol. 34, No. 01, pp.480-489). https://arxiv.org/abs/1911.09709

Original Code und Daten auf GitHub: https://github.com/rpryzant/neutralizing-bias

Suggestions Minorities Slice from ESuPol Dataset: https://github.com/irgroup/dis25-2021

Sämtliche Diagramme und Darstellungen sind entweder aus dem o.g. Paper übernommen oder stammen aus eigener Darstellung.