Maths: Caractérisations séquentielles

1 Bornes inférieures, supérieures

Soit $A \in \mathcal{P}(\mathbb{R}) \setminus \emptyset$.

(1) Soit M un majorant de A, i.e, $\forall x \in A, x \leq M$. On a alors :

$$M = \sup(A) \iff \exists (u_n)_{n \in \mathbb{N}} \subset A \mid u_n \xrightarrow[n \to +\infty]{} M$$

(2) Soit m un minorant de A, i.e, $\forall x \in A, m \leq x$. On a alors :

$$m = \inf(A) \iff \exists (u_n)_{n \in \mathbb{N}} \subset A \mid u_n \xrightarrow[n \to +\infty]{} m$$

2 Densité

Soit $A \in \mathcal{P}(\mathbb{R})$. Alors A est dense dans \mathbb{R} si, et seulement si :

$$\forall x \in \mathbb{R}, \ \exists (u_n)_{n \in \mathbb{N}} \subset A \mid u_n \xrightarrow[n \to +\infty]{} x$$

3 Limites

Soient $a, l \in \overline{\mathbb{R}}$, et f une fonction définie au voisinage de a. Alors :

$$f(x) \xrightarrow[x \to a]{} l \iff \forall (u_n)_{n \in \mathbb{N}} \subset \mathcal{D}_f \mid u_n \xrightarrow[n \to +\infty]{} a, \ f(u_n) \xrightarrow[n \to +\infty]{} l$$

4 Continuité

Soit $a \in \mathbb{R}$, et f une fonction définie en a. Alors :

$$f(x) \xrightarrow[x \to a]{} f(a) \iff \forall (u_n)_{n \in \mathbb{N}} \subset \mathcal{D}_f \mid u_n \xrightarrow[n \to +\infty]{} a, \ f(u_n) \xrightarrow[n \to +\infty]{} f(a)$$

