Stručné shrnutí semináře 6

Rovnoměrné rozdělení: náhodná proměnná se vyskytuje se stejnou pravděpodobností kdekoliv uvnitř intervalu <*a*, *b*>, ale mimo tento interval se nevyskytuje nikdy.

hustota pravděpodobnosti:
$$f(x|a,b) = \begin{cases} \frac{1}{b-a} & \text{pro } x \in \langle a,b \rangle \\ 0 & \text{jinak} \end{cases}$$

distribuční funkce:
$$F(x|a,b) = \begin{cases} 0 & \text{pro } x < a \\ \frac{b-x}{b-a} & \text{pro } x \in \langle a,b \rangle \\ 1 & \text{pro } x > b \end{cases}$$

Očekávaná hodnota rovnoměrného rozdělení je $\mu = \frac{a+b}{2}$. Rozptyl rovnoměrného rozdělení je $\sigma^2 = \frac{(b-a)^2}{12}$.

Normální (Gaussovo) rozdělení: parametry rozdělení jsou μ , σ

hustota pravděpodobnosti:
$$f(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
 distribuční funkce: $F(x|\mu,\sigma) = \frac{1}{2}\left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right]$, kde $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}}\int_0^\infty e^{-t^2}dt$

Očekávaná hodnota normálního rozdělení je μ .

Rozptyl normálního rozdělení je σ^2 .

Pro normální rozdělení platí
$$P(\mu - \sigma \le x \le \mu + \sigma) = \text{erf}\left(\frac{1}{\sqrt{2}}\right) \approx 0.683$$

Breit-Wignerovo (**Lorentzovo**) rozdělení: parametry rozdělení jsou x_0 , γ

hustota pravděpodobnosti:
$$f(x|x_0,\gamma) = \frac{1}{\pi} \frac{\gamma/2}{\gamma^2/4 + (x-x_0)^2}$$
 distribuční funkce: $F(x|x_0,\gamma) = \frac{1}{\pi} \arctan\left(\frac{x-x_0}{\gamma/2}\right) + \frac{1}{2}$.

Očekávaná hodnota a rozptyl Breit-Wignerova rozdělení nejsou definovány.

Medián Breit-Wignerova rozdělení je x_0 .

Cauchyho rozdělení je speciálním případem Breit-Wignerova rozdělení pro $x_0 = 0$ a $\gamma = 1$.

Rozdělení funkce náhodné proměnné

Jestliže je x náhodná proměnná popsaná hustotou pravděpodobnosti f(x) a y je náhodná proměnná, která vynikne aplikací prosté funkce h na náhodnou proměnnou x, tj. y = h(x), potom hustota pravděpodobnost g(y) náhodné proměnné y je $g(y) = f(h^{-1}(y)) \left| \frac{dh^{-1}}{dy} \right|$.