

ASSOCIATION STUDIES (FIRST SCREENING)

NON AFFECTED	CONTROLS=76	>65 YEARS	PSA<4
AFFECTED	CASES= 112	35 SPORADIC CASES	+77 FAMILIAL CASES
POPULATION	SAMPLE SIZE	POPULATION	CHARACTERISTICS

FIG.2

ASSOCIATION STUDIES (ZOOM)

UNAFFECIED	CONTROLS (104)	>65 YEARS	PSA<4	
AFFECTED	CASES (185)	CHARACTERISTICS 47 SPORADIC CASES	+138 FAMILIAL CASES	
		CHARACTERISTICS	OF POPULATIONS	

FIG. 3

HAPLOTYPE FREQUENCY ANALYSIS

POPULATIONS

	AFFECIEU	UNAFFELIEU
	CASES 2 (281)	CONTROLS 3 (130)
CHARACTERISTICS	143 SPORADIC CASES	>65 YEARS
OF POPULATIONS	7	PSA<4

			PVALUE			9,00E-04 ***	6,00E-05 ***	1,00E-05****	10,06 9,00E-07****		-	_	2,00E-04***	1,00E-04**	3,00E-04***	6,00E-04***	
			RELATIVE	RISK		4,42	6,46	6,78		5,17	4,78	2,33	2,17	2,32	2,01	2,05	
	HAPLOTYPE	FREQUENCIES		CASES CONTROLS	,	5 0,018	5 0,016	0,116 0,019	0,117 0,013	0,117 0,025	0,117 0,027	2 0,109	0,251 0,134	6 0,112	6 0,146	0,233 0,129	
		FRE		CASES		0,075	0,095	0,11	0,11	0,11	0,11	0,222	0,25	0,226	0,256	0,23	
99-135	80725812			12,00E-0	<29KB>>100KB<	٧	∢										
99-221		:		7,006-0		٧	۷	A	⋖	A	¥						
99-213				9,00E-02	<15KB>	S	ပ	9	၁	9	9	9		S		ပ	
4-67	B0463F01		A	6,00E-04	<17KB>	 -	<u>-</u>	-	-	_	<u> </u>	-	-	-	-	_	-
99-217			PG1 —	2,00E-02	<88KB> <22KB> <17KB>	-	-	<u> </u>	 -	1	1	-	 -	1	L		
4-77 99-217 4-67 99-213 99-221 99-135		11453		2,00E-02	<88KB>	9	9	9	ပ	9		9	9				
4-14	80189508			$\frac{2,00\xi-01}{1,00\xi-01}$, $\frac{0}{1,00\xi-01}$, $\frac{2,00\xi-02}{2,00\xi-02}$, $\frac{2,00\xi-04}{2,00\xi-04}$, $\frac{2,00\xi-02}{2,00\xi-01}$	<15KB>	ပ	ပ	J	ပ								
99-123 4-26				1,00,00	<18KB>	A	4	4									
99-123	H0287B09			2,00E-01]~	ں											
MARKERS	BACS	CONTIGS	GENES	P VALUE	DISTANCE BETWEEN MARKERS(KB)	HAPI OTYPF 8>304KB<	HAPLOTYPE 7>286KB<	HAPLOTYPE 6<186KB>	HAPI OTYPE 5<171KB>	HAPI OTYPE 4<83KB>	HAPI OTYPE 3.1<54KB>	HAPLOTYPE 3.2<54KB>	HAPI OTYPE 2 2< 39KB>	HAPI OTYPE 2<32KB>	HAPI OTYPE 1 1<17KB>	HAPI OTYPE 1.2<15KB>	

FIG.4

HAPLOTYPE SIMULATIONS (100 ITERATIONS)

FIG.5A

HAPLOTYPE SIMULATIONS (100 ITERATIONS)

FIG.5B

E MICROSEQ. OLIGOS POSITIONS.	11-23125-47 (COMPLEMENTARY)	3 11-23 25-47 COMPLEMENTARY	7 7	C 11-23 25-47 (COMPLEMENTARY)	T 11-23 25-47 COMPLEMENTARY	1-23 25-47	_	1-23 25-47	1-23 25-47
BASE	3	.¥ _	\ <u>\</u>	\ <u>\</u>	\ <u>`</u>	ر د	\ 	\ <u>\</u>	V.G
SEQ ID POLYMORPHISM N* POSITION*	24	24	24	24	24	24	24	24	24
SEQ ID	48	49	50	51	52	. C.	54	55	26
RP SEQUENCE	TATTCAGAAAGGAGTGGG	TGAGGACTGCTAGGAAAG	GACTGTATCCTTTGATGCAC	GGAAAGGTACTCATTCATAG	GTTTATTTGTGTGAGCTTTG	TGAAAGAGTITATTCTCTGG	TTATTGCCCCACATGCTTGAG	TCATTCGTCTGGCTAGGTC	AAACACCTCCCATTGTGC
SEQ 10 N	39	40	41	42	43	44	45	46	47
PU SEQUENCE	AAAGCCAGGACTAGAAGG	TACAGCCCTGTAAGACAC	TCTAACCTCTCATCCAAC	TGTTGATTTACAGGCGGC	GGTGGGAATTTACTATATG	AAGTICACCTICTCAAGC	ATACTGGCAGCGTGTGCTTC	CCCTTTTCTTCACTGTTC	1 TGGAAGTTGTTATTGCCC
SEO ID N'(MUT)	30	<u></u>	32	33	34	35	36	37	38
SEQ ID	21	22	23	24	25	56	27	28	29
MARKER	99-123	4~26	4-14	4-77	99-217	4-67	99-213	-2	99-135
BAC	228	189		189/463	463	189/463	463	463	725

FIG.6A

*: POSITIONS ARE GIVEN RELATIVE TO THE SEQUENCE OF THE CORRESPONDING MARKER (i.e. SEQ ID Nº21-38 AND 57-62)

ITIONS*	ENTARY) ENTARY ENTARY)
IGOS POS	A/C 1-23 25-47 (COMPLEMENTARY) G/C 1-23 25-47 (COMPLEMENTARY C/T 1-23 25-47 (COMPLEMENTARY)
EQ. OL	5-47
MICROS	1-23 1-23 1-23 1-23
BASE	> > > > > > >
SEQ ID POLYMORPHISM BASE MICROSEQ. OLIGOS POSITIONS.	24 24 24
SEQ ID	66 67 68
RP SEQUENCE	ACAAATCTATATAAGGCTGG CTCTTGGTTAAACAGCAGTG TGGCTCTGCATTTCTTCC
SEO ID	63 64 65
PU SEQUENCE	ATCAAATCAGTGAAGTCTGAG ATCGCTGGAACATTCTGG GATTTAAGCTACGCTATTAG
SEQ ID N°(MUT)	60 61 62
SEQ ID	57 58 59
MARKER	99-1482 4-73 4-65
BAC	189/463 463 463

FIG.6B

*: POSITIONS ARE GIVEN RELATIVE TO THE SEQUENCE OF THE CORRESPONDING MARKER (i.e. SEQ ID Nº 21-38 AND 57-62)

EXON Phase	START	END	5' SPsite	PHASE	3' SPsite
Ex1 +0	2001	2216			GTGAGC
Ex2 +1	18196	18265	TAG	+0	GTTTGTA
Ex3 +0	23717	23832	CAG	+2	GTAACT
Ex4 +0	25571	25660	CAG	+0	GTAAGA
Ex5 +2	34669	34759	CAG	+0	GTAAGT
Ex6 +1	40688	40846	TAG	+1	GTAAGT
Ex7 +2	48070	48193	TAG	+2	GTGAGT
Ex8	50182	54523	TAG	+1	
ATG codon	2031	2033			
STOP codon	50405	50407			
POLY Ad site	54445	544 50			

-FIG. 7

Prostate Gene

FIG. 8B

		box 1	box 2	box 3
PG1	Hs	NHQ 81-83	FPEGTR 160-165	LDAIYDVTV 211-219
AF003136 (Genbank)	Ce	NHQ 630-632	FPEGTR 712-717	LDAIYDVTV 762-770
Z72511 (Genbank)	Ce	48 NHR 50	FPEGTD 129-134	VEYIYDITI 204-212
P38226 (Swissport	Sc)	111 NHQ 113	FPEGTN 223-228	IESLYDITI 271-279
P33333 (Swissport	Sc)	81 NHQ 83	FPEGTR 154-159	-
Z49770 (Genbank)	Sc	116 NHQ 118	FPEGTN 215-220	LDAIYDVTI 265-273
P26647 (Swissport	Ec)	72 NHQ 74	FPEGTR 145-150	-
Z49860 (Genbank)	Bn	-	FVEGTR 90-95	VPAIYDMTV 138-146
U89336 (Genbank)	Hs	95 NHQ 97	FPEGTR 168-173	-
U56417 (Genbank)	Hs	103 NHQ 105	FPEGTR 176-181	-
AB005623 (Genbank)	Mm	100 NHQ 102	FPEGTR 173-178	
Z29518 (Genbank)	Zm	91 NHR 93	FVEGTR 170-175	VPAIYDTTV 218-226

Hs = Homo sapiens, Ce = Caenorabibitis elegans, Ec = Escherichia coli;

Sc = Saccharomyces cerevisiae, Bn = Brassica napus, Zm = Zea maize,

Mm = Mus Musculus

Note: Funcitional acyl glycerol transferases all contain boxes 1 and 2 and not box 3. Proteins most related to PG1 contain the 3 boxes with a high degree of conservation.

^{- =} pattern absent from protein sequence

FIG. 10

FIG. 11

PC3 PG1 1-5

PNT2 PG1 1-5

FIG. 12

PNT2 PG1 mut229

FIG. 13

FIG. 14A FIG. 14B FIG. 14 FIG. 14A

Alternative splicing

FIG. 14B

Combination of exons of PG1 gene discovered by PCR with primers specific for exon borders

				-		1		!			:	T	,		- :		_			_			
	Φ .	ز	MB						'	1													
e e	100 5	8	-, 67.5	باب						01.	- ~	~	4	S	و	~	œ	6	0	=	22	23	
i i	Clone prostc PNT 1 A		NC C	-			,P7	_		0 11		CP1	CP.	핏	링	9	9	CP			CP	CP	5
Printer	[3] 되죠!	Z Z		312		ļΩ	Ш	E C	<u>س</u>			E	Ĭ	ĭ	띪	Ξį	E	Ш	Щ	E	ŭ	ŭ.	ū
PG1exon13	:#\#\#\	+ + 4	KEK	X	\	14	(A)	£	£	XX	£ (£	14		(,6)	*	¥	9		¥				¥
PG1exon14	+ + + + + + + + + + + + + + + + + + + +	*	* 6/4	XX.	66	14	1	6	· C		6/6	10	+	2	24	M	22	1	22	22	01/2	22	Ž
PG1exon15		-1	· - N	TI —	- +	1-	_	_	-	- -	_ _	<u> -</u>	_		_	-	_	_	_	_	_		_
PG1exon16	-i+!-:	+++-	· - N	<u> </u>	-1-	<u>! – </u>	+	_	_ :	- :		<u>! —</u>	_	-1	=	-	_	_	_	+		_	_
PG1exon17	++++	+ + + +	+ :N	<u>ri +</u>	 -	1-	1+	-			+ +	+	+	+!	+	+	_ !	_	+	+	_	+	+
PG1exon18	++++:	+ + -	· - · N	11+	+ -	-	<u> </u>	- 1	- :	<u> </u>	-	-	— i	+1	<u> </u>	- !	<u>-</u>	–	-	-	- ·	· —	-
PG1exon24	7-7+X+X	+ + +	(+)	XX	4	10	6	1	8	48	t (t	1	1	1	1	*	2				22	22	Ž
PG1exon25	:+ + -:	+++-	- i - :N	<u>r +</u>	. – i –	-	<u>i — </u>	- 1	-	<u>-i·</u>	+ -	<u> —</u>	- 1	+	<u>- </u>	<u>-</u>	-	- !	-	-	-	+	+ ~~
PG1exon26	14/6/7	444	/ HE	W. V	+ +	10		¥	1	+/	VXX	V.		2	**	**	2	11/2	22	22	22	2/2	24
PG1exon27	- -	+++-	N	ΓI +		!-	-	_	_	<u>-:</u>	- +	<u> </u>		+	-	_	_	-	_	-	_	+	+
PG1exon28	+:	- - -	- N	rl	-1-	<u> </u>	_	_	_	-!-	<u> </u>	! -	_	<u> </u>	-	-	_	_	_	_	-		_
PG1exon35	1-1+1+1	+ + +	+ N	ri +	+!-	<u> </u>	-		_ 1	<u> </u>	+1+	+ -	+1	+1	+	<u> </u>	_ 	+!	+	+	+	-1	- 70
PG1exon36	1-14/4	+++	CN	1/6	1416	V		1	 	*	KKK	V.	1		XX	1		20		20	22	222	22
PG1exon37		-!-!-	N	<u> </u>		<u>; —</u>	_	_		<u>-!</u>	_ _	; -	_	<u> – i</u>	_	_	_		_	1	_	_	_
PG1exon38			- N	ri —	+	! —	-		_ :	_,.	- -	 -	- !	+1	-	-	-	1 2223	-	+	_	-	- 77
PG1exon45	7.7.4.4X.4X	#\b\ t	XXX	XX	(+XX	1	1	(V)	14	41	V/V	19	1	1	+	*/	Y)	1			24		
PG1exon47	2 4 244	+ + + + + +	+ HX	4,4	4/4	1	+	1	/ [77 V	t/V	17/	10	<i>2</i> /4	**	*/	2	22	2/2	22	22	22	24
PG1exon48	-,- -	-++-	- N	[-		-	+	_	- 1		_ _	! —		<u> </u>	- i	<u> </u>	<u> </u>	-	-	-	-	-	_ 7777
PG1exon57	X#X#X#X	444	+ XX	1/1/	**	1	1		1	#X	4	1/2		1	X	***	2	22	22	22	22	224	24
PG1exon58	1-1-1-	-:-:+	+ N	<u> </u>		!-	_	-		_ ; ·	<u> </u>	!-	-	-	_	_	_	_	_	_	+		-
PG1exon68	:+:+:	-1+1+	+ N	<u> [] +</u>	+:-	1-	_		+!	+:-	_!_	1+	+	_!	_	+!	_		_	+	_	+	+
PG1exon11b	+++++	++++	+ N	<u> </u>	+	!+	_	+:	+ 1	+1.	+!+	+	+ i	-		+	-		+	+	+	_	+
PG1exon1b2	+++++	+!+!+	1+ N	<u> [+</u>	+ -	i +	l — j	+:	+	+	+ +	1+	+:	- I	- 2228	+ ~~	- 1	- I	72	+	777	702	T 00.
PG1exon1b3	11/4 V V + V	+ + +	H N	4,4	66	1.60		1	+	J. 16	6/6	100	1	1	X	*/	22	22		22	27/	27/2	<i>I</i>
PG1exon1b4	+ - :	+++++	1+1+	· i +	+ -	<u>: -</u>	+		+1	+	_ _	<u>:-</u>	+	+!	+!	+	_	+	+	_	_	<u> </u>	Ξ
PG1exon1b5	+ + + - !	+ + + + +	+ !N	[÷	+ -	1-	+	· — :		_	+++	1 	1 — 1	+1	- ;	+ 1 222	70	_ \ 222	700	+			70
PG1exon1b6	1118/6/87	, E. E. E. E.	t by	er, 47	KK.	10	1	إخبرا	1	<u> </u>	VXV,	¥,¥,	(** *)	13	XX	70/	24	274	27/	07/	250	27/	22
PG1exon1b7	<u> </u>	++++	+ N	1 +	+++	+	<u> </u>	_	_	+1.		<u> </u>	_	-	<u>- </u>	-	_	_		_			_
PG1exon1b8	· -:-i	+ ! +	- - N	۲۱ –	-	1+	 -	- 1	: ـــــ : بادورو	-1.	- ! -	1-	70	708	- I	77/2	70	- (1)	0.00	730	7.0	70	- 7 <u>w</u>
PG1exon3b4	+ + + + + + + + + + + + + + + + + + +	- 1 b	K. H. M.	W.W	(+)(+	XX.	1/2	(t)	+	(X)	*	1/1/	25	24/	<i>7</i> /4	2/4	27/	27/	25/2	07/	07/4	224	21/
PG1exon3b5	; - -	+++i-	- - N	[] –	<u> </u>	\ <u>-</u>	-	-	: :: 727	-:	-) -	100	70	702	700	722	7.0	- 10	70	70	730	720	- 70
PG1exon3b6	1//X XXX	+ K R H	W to BM	4/4/	K 40 K A	177	100	+	(t)	1	V/V	100	200	7	7 <u>7</u> /2	27/	22	274	274	<i>0</i> 74	224	<i>272</i>	27/
PG1exon3b7	1+	+++-			+1-	+	-	_	-	_ ; ·	- -	-	_	+1	+	_		+					_
PG1exon3b8			- - N		<u> </u>	-	_	_	- 1	<u>- ; · </u>	- ! -	-	_	_	_	귀	_	_					=
PG1exon5b6		-!-!-					<u> </u>		-!		+ +	-	_		-	=	_	_			_		_
PG1exon5b7		++++		_		_	-	_	_	_;	_ _	F	_		+	_		_	_	-	_		_
PG1exon5b8		- + -					70	- 1 202	- I	720	- (-	<u> </u>	_ 0 <u></u>	722	700		70	130	10	70	70		74
PG1exon56b	77.577.777.77	W. Viervie	**************************************	14 t	(V (V)	177	(V)	4	8 V /	07.83 1.000	7/(Y) W/3/	VV VV	(V ()					//					
PG1exon46b	- 33 Viz. Viz. 1		V VX								\$ 		7777			10							
PG1exon36b	/// //////////////////////////////////	(# X # X A			(*) 								~~~					10					
PG1exon26b		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V IX	0/V/	10000	20	10	1	6. V) V 12		V/V W/W					4	//6						
PG1exon16b	11/4	****	14.44	a/V	(Y)(X)	1/1/	1/4/	170	₹	77:Y	5408	X/X/	07/	(7/t	N/X	11/3	22/3	<u> </u>	11/2		11/2	2723	44

[+] alternative splicing form with combination of exons 13478 instead of 1345678

FIG. 17

ASSOCIATION STUDIES PG1 (8p23)

POPULATIONS		AFFECTED N= [275;491]		UNAFFECTED N=[130;313]
	ALL CASES	SPORADIC CASES	FAMILIAL CASES	CONTROLS
characteristics of populations	<=491 all cases	<=294 sporadics cases <=197 familial cases	<=197 familial cases	<28 unaffected (65 years or older) & <=289 controls (65 years or older with PSA<4)

ASSOCIATION STUDIES

FIG. 18A

PG1 (8p23)

POPULATIONS		AFFECTED N= [275;491]		UNAFFECTED N=[130;313]
	ALL CASES	SPORADIC CASES	FAMILIAL CASES	CONTROLS
characteristics of populations	characteristics <=491 all cases <=294	<=294 sporadics cases	sporadics cases <=197 familial cases	<28 unaffected (65 years or older) & <=289 controls (65 years or older with PSA<4)

<u> </u>																			
Attributable Risk	17.58	QN	ON	13.15	18.16	18.64	13.25	26.76	QN	QN	9.32	QN	QN	QN	8.46	18.40	QN	13.16	10.97
Freq(randoms)	0.29	\$QN	g N	0.41	0.31	0.28	0.31	0.52	QN	ON	0.28	QN	QN	QN	0.28	0.24	ON.	0.24	0.24
Pvalue	2.53E-02	9.64E-03	6.93E - 02	1.57E-01	1,35E-02	1.43E-02	9.43E-02	7.29E-03	8.33E-02	4.83E - 02	1.68E-01	2.69E-02	7.52E-01	7.29E-03	1.07E-01	3.18E-03	0,527§	4.68E-03	2.39E-02
Odd Ratio	1.44	1.51	1.37	1.23	1.43	1.49	1.29	1.48	1.30	1.36	1.25	1.44	1.01	1.55	1.20	1.72	1.76	1.43	1.33
abs diff % (fg(cases)— (fg(controls))	7.4	10.1	5.8	5	7.4	8.3	5.7	9.7	6.2	7	4.4	7.4	0.3	9.2	3.8	9.2	0.3	6.2	4.9
Freq(controls)	0.24	0.42	0.22	0.38	0.26	0.26	0.30	0.42	0.37	0.30	0.25	0.25	0.34	0.25	0.28	0.17	0.00	0.19	0.20
Freq(cas)	0.32	0.52	0.28	0.43	0.34	0.34	0.36	0.52	0.43	0.37	0.29	0.33	0.34	0.35	0.31	0.27	0.01	0.25	0.25
Polym.	1/*9	6/1	1/3	6/A	2/9	A/G	A/6	2/9	4/9,	A/T	A/C	A/6	1/A	G/A	2/1	3/9	G/A	1/3	1/0
PG1	prom	In1	in1	in1	in1	n.	in	In1	n.	Ē	in2	in2	in3	in4	in4	in6	3'UTR	3'UTR	3'UTR
name of markers	99-1485/251	99-622/95	99-619/141	4-76/222	4-77/151	4-71/233	4-72/127	4-73/134	99-610/250	99-609/225	4-90/283	99-602/258	99-600/492	99-598/130	99-217/277	99-576/421	4-61/269	4-66/145	4-67/40

§ Test Fisher—\$ ND: Not done —* disease associated allele / not associated allele

FIG. 18B

FIG. 19A HAPLOTYPE FREQUENCY ANALYSIS

POPULATIONS	AFFECTED	UNAFFECTED
sample sizes	CASES (n=491)	CONTROLS (n=317)
characteristics of populations	294 sporadic cases + 197 familial cases	28 unaffected (65 years or older) + 289 controls (65 years or older with PSA<4)

			4-14/240	00_217/277	155/145	99-221/377
	_		4-14/240	33-217/217		33-221/3//
PG1 (8	p23)		in4	3'UTR	
distance bet	ween	mks	<100	0kb> <17	kb> <43	kb>
size (cases v			481 vs 305	481 vs 302	481 vs 300	481 vs 303
frequency % (co	ses/	controls)	65,7/62,1(C)	31,3/27,5(C)	25,1/19(C)	42,7/42,91 (A)
abs diff freq. all.(cases	-controls)	3.6	3.8	6.2	0
pvalu	1 e		1.47E-01	1.07E-01	4.68E-03	7.52E-01
Hardy Weindeberg		cases	5.84E-01	6.55E-01	2.54E-01	5.84E-01
Disequilibrium	(controls	4.80E-01	2.21E-01	3.71E-01	2.54E-01
HAP 1 <43kb>		451 vs 297			11/19:11/1	11/11/14/19
HAP 2 <17kb>		451 vs 296		ा ग		
HAP 3 <117kb>		452 vs 299	C (4)	1. 1. 14	711/ \$ 11/1/	
HAP 4 <100kb>		479 vs 302		400 🚁 🎉		
HAP 5 <60kb>		476 vs 300				
HAP 6 <160kb>	PT2	476 vs 303	7 - 1 × C2 - 1			111111110 C. 11
HAP 7 <160kb>		447 vs 297	1.11/ 9 /1///	1 1 1 1 1/4		
HAP 8 <60kb>		446 vs 294		名 JF 约		
HAP 9 <117kb>		450 vs 296	E	グーT ※		
HAP 10 <160kb>	PT3	474 vs 300	1999C 149	<u> 8 T (4</u>		12.5/14/ X
HAP 11 <160kb>	PT4	445 vs 294	(C. 5)	T.	12.76 6 72.793	% - 303 /¥

haplo freque					
cases	controls	Odd ratio	Chi-S	Pvali	1e
0.116	0.067	1.83	9.85	(1.7e-03)	***
0.243	0.183	1.43	7.49	(6.2e-03)	**
0.182	0.130	1749	7.18	(7.3e-03)	**
0.217	0.188	1.20	1.88	(1.7e-01)	*
0.155	0.132	1.20	1.54	(2.1e-01)	*
0.373	0.346	1.12	1.16	(2.7e-01)	*
0.095	0.042	2.39	14.62	(1.3e-04)	****
0.117	0.065	1.93	11.33	(7.3e-04)	***
0.178	0.125	1.53	7.80	(5.2e-03)	**
0.114	0.089	1.32	2.44	(1.1e-01)	*
0.095	0:032	/ /3/18; /	21.59	(3.4e-06)	***** / //

FIG. 19B

HAPLOTYPE FREQUENCY ANALYSIS PG1 (8p23)

markers of haplotype Max	4-14/240	99-217/277 in4	4-66/145 3'UTR	99-221/377
	O	}	၁	A
distance between mks		(100kb> <1	<17kb> <	<43kb>

P value		3.40E-06 *****	4.60E-06 *****	4.80E-04 ****	8.60E-06 *****	5.00E-04 ***	3.50E-04 ****	9.40E-02 **	1.805-05 ****	2.20E-05 ****	.00E-02 **	3.706-06 *****
 S								_		17.98 2.20		21.33 3.70
chi-S		21.59	20.91	12.13	19.73	12.04	12.75	2.70	18.33	17.	6.59	21.
odd		3.18	3.56	2.60	3.23	3.20	2.82	2.00	3.32	3.83	2.48	4.26
haplotype frequencies	controls	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
haple frequ	COSBS	0.095	0.105	0.079	0.096	0.095	0,085	0.062	0.098	0.112	0.075	0.123
sample sizes	cases vs control	455 vs 294	171 vs 294	271 vs 294	266 vs 294	85 vs 294	178 vs 294	67 vs 294	179 vs 294	86 vs 294	93 vs 294	79 vs 294
	PG1	Cataco as accept	cases (<=65 vers) vs controls	Coses (New York) or control	Custo Could feel of the Could be	sportualic cases vs comicis	spot during coases (S.E.S. vegre) ve controls	sporting so seems of the state	monthly of the sponding cases of the sponding	tamilial cases vs controls	Idiffical custs (>=00 feets) to common	familial cases (>=3 caP) vs controls

HAPLOTYPE FREQUENCY ANALYSIS (PG1) FIG. 20

							767737	4 601146	hanlotona	envi				
-		99-622/95	4-77/151	4-71/233	4-73/134	061/866-66	174/0/0-58	211100-1	-	-				
Markers	Markers in PG1	₽ 	9/2	₽œ	5/2	A/G	S/S	СЛ						
			In1			in4	in6	3'UTR	frequencles	ncles				
(seems) exist	eire (cases ve controls)	336 vs 108	363 vs 173	336 vs 130	352 vs 129	347 vs 126	355 vs 129	456 vs 306						
2 valente franchis	Molic framency % (cases / controls)	52/42 (G)	34/26 (G)	34/26 (A)	52/42 (G)	35/25 (G)	27/17 (G)	25/19 (C)						
Suggest of suggests	ellelic framency % (randoms)	S	31 (G)	28 (A)	52 (G)	QN	24 (G)	24 (C)						
% Ile cost till	diffren all % (cases.controls)	101	7.4	8.3	9.7	9.2	9.2	6.2	cases controls	ontrois	ppo	Attributable	Pvalue	
		9,64E-03	1 35E-02	1.43E-02	7.29E-03	7 29E-03	3 18E-03	4 68E-03			Ratio	Risk %	(cases vs controls)	()
	(a)Outdoor an accept animals	:	:	:	:	:	:	:						
Dealine Icess	Odd Ratio	151	143	1 49	1 48	1.55	1.72	1 43						
Attributa	Attributable Rick %	S	18 16	18 64	26 76	ᄝ	8 46	13 16						
Hardy	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.52E-01	7.52E-01	5 84E-01	7 52E-01	7.52E-01	7.52E-01	3 43E-01						
Weindeberg	controls	4 39E-01	4 03E-01	1.21E-01	7 52E-01	6 52E-02	7 52E-01	1 29E-01			T			
╀	2 MKS 339 vs 167								0.263	0.152	1.99	18.55	-	
-		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					0 259	0 147	2 0 2	QN	_	
haplotype 3	4 MKS 312 vs 122	- C. I							0 259	0 147	2 02	<u></u>	(4 19-04)	
haplotype 4	5 MKS 311 vs 121	-							0.26	0 148	201	2 2	(4 00 -00)	
haplotype 5	6 MKS 309 vs 121	1							0 256	0 146	2	Q Q	(1 6e 03)	
haplotype 6	7 MKS 290 vs 99							777777777777777777777777777777777777777					GN.	ND Not Done

FIG. 21

Comparison of Pvalue between nb of mks for haplotype (19 mks of PG1)

	ombinations combinations	969 3876	
of 2 mks # of	ombinations combi	171	
#	# of markers c	19	
	GENE	PG1	

