Machine Elements Report

June 23, 2020

Contents

1	Mot	tor Design	4
	1.1	Nomenclature	4
	1.2	Calculate η_{sys}	4
	1.3	Calculate P_{motor}	5
	1.4	Calculate n_{motor}	5
	1.5	Choose motor	5
	1.6	Calculate power, rotational speed and torque of the motor and 2 shafts	6
		1.6.1 Power	6
		1.6.2 Rotational speed	6
		1.6.3 Torque	6
2	Cha	in Drive Design	7
	2.1	Nomenclature	7
	2.2	Find p	8
	2.3	Find a , x_c and i	9
	2.4	Strength of chain drive	9
	2.5	Force on shaft	10
3	Gea	rbox Design (Helix gears)	11
	3.1	Nomenclature	11
	3.2	Choose material	13
	3.3	Calculate $[\sigma_H]$ and $[\sigma_F]$	13

		3.3.1	Working cycle of bearing stress	13
		3.3.2	Working cycle of equivalent tensile stress	13
		3.3.3	Aging factor	14
		3.3.4	Calculate $[\sigma_H]$ and $[\sigma_F]$	14
	3.4	Transn	nission Design	14
		3.4.1	Determine basic parameters	14
		3.4.2	Determine gear meshing parameters	15
		3.4.3	Other parameters	15
		3.4.4	Contact stress analysis	16
		3.4.5	Bending stress analysis	17
4	Shaf	ft Desig	n	19
	4.1	Nomen	nclature	19
	4.2	Choose	e material	20
	4.3	Tranm	ission Design	20
		4.3.1	Load on shafts	20
		4.3.2	Preliminary calculations	21
		4.3.3	Identify the distance between bearings and applied forces	21

List of Tables

1.1	System properties	6
2.1	Table of chain drive specifications	10
3.1	Gearbox specifications	18

- F_t tangential force, N
- v conveyor belt speed, m/s
- D pulley diameter, mm
- L service life, year
- T working torque, $N \cdot mm$
- t working time, s
- δ_u error of speed ratio, %

Motor Design

1.1 Nomenclature

η_c	coupling efficiency	n_{bc}	rotational speed of belt conveyor,
η_b	bearing efficiency		rpm
η_{hg}	helical gear efficiency	n_{sh}	rotational speed of shaft, rpm
η_{ch}	chain drive efficiency	u_{hg}	transmission ratio of helical gear
η_{sys}	efficiency of the system	u_{ch}	transmission ratio of chain drive
P_m	maximum operating power of belt	u_{sys}	transmission ratio of the system
	conveyor, kW	T_{motor}	motor torque, $N \cdot mm$
P_{w}	opearting power of belt conveyor	T_{sh}	shaft torque, $N \cdot mm$
	given a workload, kW		
P_{motor}	calculated motor power to drive the		
	system, kW		
P_{sh}	operating power of shaft, kW		

1.2 Calculate η_{sys}

From table 2.3:

$$\eta_c = 1, \eta_b = 0.99, \eta_{hg} = 0.96, \eta_{ch} = 0.95$$

$$\eta_{sys} = \eta_c \eta_b^3 \eta_{hg} \eta_{ch} \approx 0.88$$

1.3 Calculate P_{motor}

$$P_m = \frac{F_t v}{1000} \approx 13.73 \text{ (kW)}$$

From equation (2.13):

$$P_{w} = P_{m} \sqrt{\frac{\left(\frac{T_{1}}{T}\right)^{2} t_{1} + \left(\frac{T_{2}}{T}\right)^{2} t_{2}}{t_{1} + t_{2}}} \approx 10.41 \text{ (kW)}$$

$$P_{motor} = \frac{P_{w}}{\eta_{sys}} \approx 11.76 \text{ (kW)}$$

1.4 Calculate n_{motor}

$$n_{bc} = \frac{6 \times 10^4 v}{\pi D} \approx 116.5 \text{ (rpm)}$$

$$u_{ch} = 5, u_{hg} = 5 \text{ (table 2.4)}$$

$$u_{sys} = u_{ch} u_{hg} = 25$$

$$n_{motor} = u_{sys} n_{bc} \approx 2912.54 \text{ (rpm)}$$

1.5 Choose motor

The operating power and rotational speed of the chosen motor must be larger than estimated P_{motor} and n_{motor} , respectively. Thus, from table P1.3, we choose motor 4A160S2Y3 operating at 15 kW and 2930 rpm

$$\Rightarrow P_{motor} = 15 \text{ kW}, n_{motor} = 2930 \text{ (rpm)}$$

Recalculating u_{sys} with the new P_{motor} and n_{motor} , we obtain:

$$u_{sys} = \frac{n_{motor}}{n_{bc}} \approx 25.15$$

Assuming $u_{hg} = const$:

$$u_{ch} = \frac{u_{sys}}{u_{hg}} \approx 5.03$$

1.6 Calculate power, rotational speed and torque of the motor and 2 shafts

1.6.1 Power

$$P_{ch} = P_w \approx 10.41 \text{ (kW)}$$

$$P_{sh2} = \frac{P_{ch}}{\eta_{ch}} \approx 10.96 \text{ (kW)}$$

$$P_{sh1} = \frac{P_{sh2}}{\eta_b \eta_{hg}} \approx 11.53 \text{ (kW)}$$

$$P_{motor} = \frac{P_{sh1}}{\eta_b \eta_c} \approx 11.64 \text{ (kW)}$$

1.6.2 Rotational speed

$$n_{sh1} = n_{motor} = 2930 \text{ (rpm)}$$

 $n_{sh2} = \frac{n_{sh1}}{u_{hg}} = 586 \text{ (rpm)}$

1.6.3 Torque

$$T_{motor} = 9.55 \times 10^{6} \frac{P_{motor}}{n_{motor}} \approx 37950.46 \,(\text{N} \cdot \text{mm})$$

$$T_{sh1} = 9.55 \times 10^{6} \frac{P_{sh1}}{n_{sh1}} \approx 37570.93 \,(\text{N} \cdot \text{mm})$$

$$T_{sh2} = 9.55 \times 10^{6} \frac{P_{sh2}}{n_{sh2}} \approx 178537.08 \,(\text{N} \cdot \text{mm})$$

In summary, we obtain the following table:

	Motor	Shaft 1	Shaft 2
P(kW)	11.64	11.527	10.96
и	5	5.03	
n (rpm)	2930	2930	586
$T(N \cdot mm)$	37950.44	37570.93	178537.08

Table 1.1: System properties

Chain Drive Design

2.1 Nomenclature

z_1	number of teeth on the driving	q	mass per meter of chain, kg/m
	sprocket	v_1	driving sprocket speed, m/s
z_2	number of teeth on the driven	F_t	tangential force on shaft, N
	sprocket	F_{v}	centrifugal force, N
z_{max}	maximum number of teeth on the	F_0	tension from passive chain part, N
	driven sprocket	F_r	force on shaft, N
[P]	permissible power, kW	n_{ch}	rotational speed of chain drive,
p	sprocket pitch, mm		rpm
d_1	driving sprocket diameter, mm	n_{01}	experimental rotational speed,
d_2	driven sprocket diameter, mm		rpm
d_c	pin diameter, mm	k_z	coefficient of number of teeth
\boldsymbol{B}	bush length, mm	k_n	coefficient of rotational speed
Q	permissible load, N	k	overall factor
a	center distance, mm	k_0	arrangement of drive factor
a_{min}	minimum center distance, mm	k_a	center distance and chain's length
a_{max}	maximum center distance, mm		factor

x number of links k_{dc} chain tension factor

 x_c an even number of links k_{bt} lubrication factor

i impact times per second k_d dynamic loads factor

[i] permissible impact times per k_c rating factor

second k_f loosing factor

s safety factor k_x chain weight factor

[s] permissible safety factor

2.2 Find p

$$n_{ch} = n_{sh2} = 586 \, (\text{rpm})$$

Find z Since z_1 and z_2 is preferably an odd number (p.80):

$$z_1 = 29 - 2u_{ch} = 18.94 \approx 19$$

$$z_2 = u_{ch} z_1 = 95.57 \approx 97 \le z_{max} = 120$$

Find k Since $n_{ch} = 586 \approx 600$ (rpm), choose $n_{01} = 600$ (rpm), which is obtained from table 5.5. Then, we calculate k_z and k_n

$$k_z = \frac{25}{z_1} \approx 1.32, k_n = \frac{n_{01}}{n_{ch}} \approx 1.02$$

Specifying the chain drive's working condition and ultizing table 5.6 , we find out

that
$$k_0 = k_a = k_{dc} = k_{bt} = 1$$
, $k_d = 1.25$, $k_c = 1.3$

$$\Rightarrow k = k_0 k_a k_{dc} k_{bt} k_d k_c = 1.625$$

Find p From table 5.5:

$$[P] = P_{ch}kk_zk_n \approx 22.78 \text{ (kW)} \le 25.7 \text{ (kW)} \Rightarrow [P] = 25.7 \text{ (kW)}$$

Using the table, we also get the other parameters:

$$p = 25.4 \text{ (mm)}, d_c = 7.95 \text{ (mm)}, B = 22.61 \text{ (mm)},$$

$$d_1 = \frac{p}{\sin\frac{\pi}{z_1}} \approx 154.32 \text{ (mm)}, d_2 = \frac{p}{\sin\frac{\pi}{z_2}} \approx 784.39 \text{ (mm)}$$

2.3 Find a, x_c and i

Find x_c $a_{min} = 30p = 762 \text{ (mm)}$, $a_{max} = 50p = 1270 \text{ (mm)}$. Therefore, we can approximate a = 800 (mm)

$$x = \frac{2a}{p} + \frac{z_1 + z_2}{2} + \frac{(z_2 - z_1)^2 p}{4\pi^2 a} \approx 123.71 \Rightarrow x_c = 124$$

Find a From equation (5.13), recalculating a with x_c :

$$a = \frac{p}{4} \left(x_c - \frac{z_2 + z_1}{2} + \sqrt{\left(x_c - \frac{z_2 + z_1}{2} \right)^2 - 2 \frac{(z_2 - z_1)^2}{\pi^2}} \right) - 0.003 \cdot 800 \approx 771.66 \text{ (mm)}$$

Find i From table 5.9:

$$i = \frac{z_1 n_{sh2}}{15x} \approx 6 < [i] = 30$$

2.4 Strength of chain drive

Choose $k_d = 1.2, k_f = 6$

Given p from previous calculations, Q and q are obtained from table 5.2:

$$Q = 56.7 \times 10^3 \text{ (N)}, q = 2.6 \text{ (kg/m)}$$

 $v_1 = \frac{n_{ch}pz_1}{6 \times 10^4} \approx 4.71 \text{ (m/s)}$

Find F_t , F_v , F_0 We also need to calculate F_t , F_v and F_0

$$F_t = \frac{10^3 P_{ch}}{v_1} \approx 2208.07 \text{ (N)}$$
$$F_v = q v_1^2 \approx 57.76 \text{ (N)}$$

$$F_0 = 9.81 \times 10^{-3} k_f qa \approx 118.09 \text{ (N)}$$

Validate s From equation (5.15):

$$s = \frac{Q}{k_d F_t + F_0 + F_v} \approx 20.07 \ge [s] = 10.3$$
, where [s] is chosen from table 5.10

2.5 Force on shaft

Choose $k_x = 1.15$ and follow equation (5.20):

 $F_r = k_x F_t \approx 2539.28 \, (\text{N})$

In su(mm)ary, we have the following table:

[P] (kW)	25.7
n (rpm)	586
u_{ch}	5.03
<i>z</i> ₁	19
z_2	97
p (mm)	25.4
d_1 (mm)	154.32
$d_2 (\mathrm{mm})$	784.39
d_c (mm)	7.95
B (mm)	22.61
x_c	124
a (mm)	771.66
i	6

Table 2.1: Table of chain drive specifications

Gearbox Design (Helix gears)

3.1 Nomenclature

$[\sigma_H]$	permissible contact stress, MPa		aging factor due to contact stress
$[\sigma_F]$	permissible bending stress, MPa	K_{FL}	aging factor due to bending stress
σ^o_{Hlim}	permissible contact stress	K_{FC}	load placement factor
	corresponding to working cycle,	$K_{H\alpha}$	factor of load distribution from
	MPa		contact stress on gear teeth
σ^o_{Flim}	permissible bending stress	$K_{H\beta}$	factor of load distribution from
	corresponding to working cycle,		contact stress on top land
	MPa	K_{Hv}	factor of dynamic load from
σ_b	ultimate strength, MPa		contact stress at meshing area
σ_{ch}	yield limit, MPa	K_H	load factor from contact stress
H	surface roughness, HB	$K_{F\alpha}$	factor of load distribution from
S	length, mm		bending stress on gear teeth
S_H	safety factor of contact stress	$K_{F\beta}$	factor of load distribution from
S_F	safety factor of bending stress		bending stress on top land
N_{HO}	working cycle of bearing stress	K_{Fv}	factor of dynamic load from
	corresponding to $[\sigma_H]$		bending stress at meshing area
		K_F	load factor from bending stress

N_{HE}	working cycle of equivalent tensile	K_d	coefficient of gear material
	stress corresponding to $[\sigma_H]$	Y_{ϵ}	meshing factor
N_{FO}	working cycle of bearing stress	Y_{β}	helix angle factor
	corresponding to $[\sigma_F]$	Y_F	tooth shape factor
N_{FE}	working cycle of equivalent tensile	C	gear meshing rate
	stress corresponding to $[\sigma_F]$	a_w	center distance, mm
AG	accuracy grade of gear	b_w	face width, mm
z_M	material's mechanical properties	d	pitch circle diameter, mm
	factor	d_w	rolling circle diameter, mm
z_H	contact surface's shape factor	d_a	addendum diameter, mm
z_{ϵ}	meshing condition factor	d_f	deddendum diameter, mm
Z_{min}	minimum number of teeth	d_b	base diameter, mm
	corresponding to β	m_H	root of fatigue curve in contact
z_v	equivalent number of teeth		stress test
ϵ_{lpha}	horizontal meshing condition	m_F	root of fatigue curve in bending
	factor		stress test
ϵ_{eta}	vertical meshing condition factor	m	traverse module, mm
α	base profile angle, following	m_n	normal module, mm
	Vietnam standard (TCVN	v	rotational velocity, m/s
	1065-71), i.e. $\alpha = 20^{\circ}$	X	gear correction factor
α_t	profile angle of a gear tooth, $^{\circ}$	y	center displacement factor
α_{tw}	meshing profile angle, °	1	subscript for driving gear
β	helix angle, °	2	subscript for driven gear
eta_b	helix angle at base circle, °		
ψ_{ba}	width to shaft distance ratio		
ψ_{bd}	width to pinion diameter ratio		

3.2 Choose material

From table 6.1, the material of choice for both gears is steel 40X with $S \le 100$ mm, HB250, $\sigma_b = 850$ MPa, $\sigma_{ch} = 550$ MPa.

Table 6.2 also gives
$$\sigma_{Hlim}^{o} = 2\text{HB} + 70$$
, $S_{H} = 1.1$, $\sigma_{Flim}^{o} = 1.8\text{HB}$, $S_{F} = 1.75$

Therefore, they have the same properties except for their surface roughness H.

For the driving gear,
$$H_1 = \text{HB250} \Rightarrow \sigma^o_{Hlim1} = 570 \,\text{MPa}, \, \sigma^o_{Flim1} = 450 \,\text{MPa}$$

For the driven gear,
$$H_2 = \text{HB}240 \Rightarrow \sigma^o_{Hlim2} = 550 \,\text{MPa}$$
, $\sigma^o_{Flim2} = 432 \,\text{MPa}$

3.3 Calculate $[\sigma_H]$ and $[\sigma_F]$

3.3.1 Working cycle of bearing stress

Using equation (6.5):

$$N_{HO1} = 30H_1^{2.4} = 17.07 \times 10^6$$
 cycles

$$N_{HO2} = 30H_2^{2.4} = 15.4749 \times 10^6 \text{ cycles}$$

3.3.2 Working cycle of equivalent tensile stress

Since $H_1, H_2 \le \text{HB350}, m_H = 6, m_F = 6.$

Both gears meshed indefinitely, thus c = 1.

Applying equation (6.7) and T_1 , T_2 , t_1 , t_2 from the initial parameters:

$$N_{HE1} = 60c \left[\left(\frac{T_1}{T} \right)^3 n_1 t_1 + \left(\frac{T_2}{T} \right)^3 n_2 t_2 \right] \approx 5.73 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh1})$$

$$N_{HE2} = 60c \left[\left(\frac{T_1}{T} \right)^3 n_1 t_1 + \left(\frac{T_2}{T} \right)^3 n_2 t_2 \right] \approx 1.15 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh2})$$

$$N_{FE1} = 60c \left[\left(\frac{T_1}{T} \right)^{m_F} n_1 t_1 + \left(\frac{T_2}{T} \right)^{m_F} n_2 t_2 \right] \approx 3.35 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh1})$$

$$N_{FE2} = 60c \left[\left(\frac{T_1}{T} \right)^{m_F} n_1 t_1 + \left(\frac{T_2}{T} \right)^{m_F} n_2 t_2 \right] \approx 0.67 \times 10^6 \text{ cycles } (n_1 = n_2 = n_{sh2})$$

Aging factor 3.3.3

For steel, $N_FO = 4 \times 10^6$ MPa. Applying equation (6.3) and (6.4) yield:

$$K_{HL1} = {}^{m} \sqrt[H]{N_{HO1}/N_{HE1}} \approx 1.2$$

 $K_{HL2} = {}^{m} \sqrt[H]{N_{HO2}/N_{HE2}} \approx 1.54$
 $K_{FL1} = {}^{m} \sqrt[L]{N_{FO1}/N_{FE1}} \approx 1.03$

$$K_{FL1} = {}^{m_{F}} \! \! / N_{FO1} / N_{FE1} \approx 1.03$$

$$K_{FL2} = \sqrt[m_F]{N_{FO2}/N_{FE2}} \approx 1.35$$

Calculate $[\sigma_H]$ and $[\sigma_F]$ 3.3.4

Since the motor works in one direction, $K_{FC} = 1$

$$[\sigma_{H1}] = \sigma^o_{Hlim1} K_{HL1} / S_{H1} \approx 621.61 \text{ MPa}$$

$$[\sigma_{H2}] = \sigma^o_{Hlim2} K_{HL2} / S_{H2} \approx 771.63 \text{ MPa}$$

$$[\sigma_{F1}] = \sigma^o_{Flim1} K_{FC1} K_{FL1} / S_{F1} \approx 264.85 \text{ MPa}$$

$$[\sigma_{F2}] = \sigma^o_{Flim2} K_{FC2} K_{FL2} / S_{F2} \approx 332.48 \,\text{MPa}$$

$$[\sigma_{F2}] = \sigma^o_{Flim2} K_{FC2} K_{FL2} / S_{F2} \approx 332.48 \text{ MPa}$$

 $[\sigma_H]_{max} = \frac{1}{2} ([\sigma_{H1}] + [\sigma_{H2}]) \approx 696.62 \text{ MPa} \leq 1.25 [\sigma_H]_{min} = 1.25 [\sigma_{H1}]$

Permissible bending stress during overload:

$$[\sigma_F]_{max} = [\sigma_{F2}] = 0.8\sigma_{ch} \approx 440 \,\mathrm{MPa}$$

Transmission Design 3.4

3.4.1 **Determine basic parameters**

Examine table 6.5 gives $K_a = 43$

Assuming symmetrical design, table 6.6 also gives $\psi_{ba} = 0.5$

$$\Rightarrow \psi_{bd} = 0.53 \psi_{ba} (u_{hg} + 1) = 1.59$$

From table 6.7 , using interpolation we approximate $K_{H\beta} \approx 1.108, K_{F\beta} \approx 1.2558$

Since the gear system only consists of involute gears and it is also a speed reducer gearbox, we estimate a_w using equation (6.15a) before following SEV229-75 standard:

$$a_w = K_a (u_{hg} + 1) \sqrt[3]{\frac{T_{sh1} K_{H\beta}}{[\sigma_H]^2 u_{hg} \psi_{ba}}} = 83.84 \text{ mm}$$

3.4.2 Determine gear meshing parameters

Find m Applying equation (6.17) and choose m from table (6.8):

$$m = (0.01 \div 0.02)a_w = (0.84 \div 1.68) \,\mathrm{mm} \Rightarrow m = 1.5 \,\mathrm{mm}$$

Find z_1 , z_2 , a_w We have $\beta = \alpha = 20^\circ$. Combining equation (6.18) and (6.20), we come up with the formula to calculate z_1 . From the result, z_1 is rounded to the nearest odd number (preferably a prime number).

$$z_1 = \frac{2a_w \cos \beta}{m(u+1)} \approx 17.51 \approx 17$$
$$z_2 = u_{hg} z_1 = 85$$

According to SEV229-75 standard, we choose $a_w = 80 \text{ mm}$

$$\Rightarrow b_w = \psi_{ba} a_w = 40 \,\mathrm{mm}$$

Find x_1 , x_2 Let $\beta = 20^\circ$, $z_{min} = 15$. Knowing that $y = \frac{a_w}{m} - \frac{z_1 + z_2}{2} = 0$, we conclude z_1 must not be smaller than 17 as mentioned by table 6.9. Hence, there is no need for correction ($x_1 = x_2 = 0$) and $z_1 = 17$ satisfy the condition.

Find
$$\alpha_{tw}$$
 Since $y = 0 \Rightarrow \alpha_{tw} = \alpha_t = \tan^{-1} \frac{\tan \alpha}{\cos \beta} \approx 21.17^{\circ} \text{ (p.105)}$

3.4.3 Other parameters

$$\alpha_t = \tan^{-1} \frac{\tan \alpha}{\cos \beta} \approx 21.17^{\circ}$$
 $d_{f2} = d_2 - 2.5m \approx 131.93 \text{ mm}$ $d_1 = \frac{mz_1}{\cos \beta} \approx 27.14 \text{ mm}$ $d_{b1} = d_1 \cos \alpha \approx 25.3 \text{ mm}$ $d_{b2} = \frac{d_2 \cos \alpha}{\cos \beta} \approx 135.68 \text{ mm}$ $d_{a1} = d_1 + 2m \approx 30.14 \text{ mm}$ $d_{a2} = d_2 + 2m \approx 138.68 \text{ mm}$ $d_{d1} = d_1 - 2.5m \approx 23.39 \text{ mm}$ $d_{d2} = \frac{d_2 - 2.5m}{\cos \alpha} \approx 126.52 \text{ mm}$ $d_{d3} = d_2 + 2m \approx 138.68 \text{ mm}$ $d_{d3} = d_3 + 2m \approx 138.68 \text{ mm}$ $d_{d4} = d_4 - 2.5m \approx 23.39 \text{ mm}$

3.4.4 Contact stress analysis

From section 6.3.3. in the text, contact stress applied on a gear surface must satisfy the condition below:

$$\sigma_H = z_M z_H z_\epsilon \sqrt{2T_{sh1} K_H \frac{u_{hg} + 1}{b_w u_{hg} d_{w1}^2}} \le [\sigma_H]$$
 (3.1)

Find $z_M = 274$, according to table 6.5

Find z_H Since correction is unused in our calculation:

$$\beta_b = \arctan(\cos \alpha_t \tan \beta) \approx 18.75^\circ \Rightarrow z_H = \sqrt{2 \frac{\cos \beta_b}{\sin(2\alpha_t)}} \approx 1.68$$

Find z_{ϵ} Obtaining z_{ϵ} through calculations:

$$\epsilon_{\alpha} = \frac{\sqrt{d_{a1}^2 - d_{b1}^2 + \sqrt{d_{a2}^2 - d_{b2}^2} - 2a_w \sin \alpha_t}}{2\pi m \frac{\cos \alpha_t}{\cos \beta}} \approx 1.64$$

$$\epsilon_{\beta} = b_w \frac{\sin \beta}{m\pi} \approx 2.9 > 1 \Rightarrow z_{\epsilon} = \epsilon_{\alpha}^{-0.5} \approx 0.78$$

Find K_H We find K_H using equation $K_H = K_{H\beta}K_{H\alpha}K_{H\nu}$

From table 6.13, $v \le 10 \text{ m/s} \Rightarrow AG = 8$

From table P2.3, using interpolation, we approximate:

$$K_{Hv} \approx 1.0417, K_{Fv} \approx 1.1145$$

From table 6.14, using interpolation, we approximate:

$$K_{H\alpha} \approx 1.0766, K_{F\alpha} \approx 1.253$$

$$\Rightarrow K_H \approx 1.24$$

Find σ_H After calculating z_M , z_H , z_ϵ , K_H , we get the following result:

$$\sigma_H \approx 699.12 \,\mathrm{MPa} \leq [\sigma_H] \approx 696.62 \,\mathrm{MPa}$$

Since σ_H and $[\sigma_H]$ are almost equal to each other, i.e $||\sigma_H - [\sigma_H]|| < 4\%$, the assumed parameters are appropriate.

3.4.5 Bending stress analysis

For safety reasons, the following conditions must be met:

$$\sigma_{F1} = 2 \frac{T_{sh1} K_F Y_{\epsilon} Y_{\beta} Y_{F1}}{b_w d_{w1} m_n} \le [\sigma_{F1}]$$

$$(3.2)$$

$$\sigma_{F2} = \frac{\sigma_{F1} Y_{F2}}{Y_{F1}} \le [\sigma_{F2}]$$
 (3.3)

Find Y_{ϵ} Knowing that $\epsilon_{\alpha} \approx 1.64$, we can calculate $Y_{\epsilon} = \epsilon_{\alpha}^{-1} \approx 0.61$

Find
$$Y_{\beta}$$
 Since $\beta = 20^{\circ} \Rightarrow Y_{\beta} = 1 - \frac{\beta}{140} \approx 0.86$

Find Y_F Using formula $z_v = z \cos^{-3}(\beta)$ and table 6.18:

$$z_{v1} = z_1 \cos^{-3}(\beta) \approx 20.49 \Rightarrow Y_{F1} \approx 4.06$$

$$z_{v2} = z_2 \cos^{-3}(\beta) \approx 102.44 \Rightarrow Y_{F2} \approx 3.6$$

Find K_F Using $K_{F\beta}$, $K_{F\alpha}$, $K_{F\nu}$ calculated from the sections above, we derive:

$$K_F = K_{F\beta}K_{F\alpha}K_{F\nu} \approx 1.75$$

Find σ_F Substituting all the values, we find out that:

$$\sigma_{F1} \approx 182.39 \, \text{MPa} \leq [\sigma_{F1}] \approx 264.85 \, \text{MPa}$$

$$\sigma_{F2} \approx 161.69 \, \text{MPa} \leq [\sigma_{F2}] \approx 332.48 \, \text{MPa}$$

The calculated results are appropriate.

Through calculations, there is no correction needed, i.e. y = 0. Thus, the specifications will not include corrections.

In summary, we have the following table:

	pinion	driving gear	
H HB	250	240	
$[\sigma_H]$ MPa	621.61	771.63	
$[\sigma_F]$ MPa	264.85	332.48	
$[\sigma_H]$ MPa	696	.62	
σ_F MPa	182.39	161.69	
σ_H MPa	699.12		
α_{tw} $^{\circ}$	21.17		
β°	20		
a_w mm	80		
b_w mm	40		
m mm	1.5		
Z	17	85	
d mm	27.14	135.68	
d_a mm	30.14	138.68	
d_f mm	23.39	131.93	
d_b mm	25.3	126.52	

Table 3.1: Gearbox specifications

Shaft Design

4.1 Nomenclature

[au]	permissible torsion, MPa	q	standardized coefficient of shaft
r	position of applied force on the		diameter
	shaft, mm	b_O	rolling bearing width, mm
hr	tooth direction	l_m	hub diameter, mm
cb	role of gear on the shaft (active or	T	torque on shaft
	passive)	α_{tw}	meshing profile angle, $^{\circ}$
cq	rotational direction of the shaft	β	helix angle, °
σ_b	ultimate strength, MPa	1	subscript for shaft 1
σ_{ch}	yield limit, MPa	2	subscript for shaft 2
S	safety factor	x	subscript for x-axis
F_{x}	applied force, N	y	subscript for y-axis
F_t	tangential force, N	z	subscript for z-axis
F_r	radial force, N	sh1	subscript for shaft 1
F_a	axial force, N	sh2	subscript for shaft 2
a_w	shaft distance, mm		
d	shaft diameter, mm		
d_w	gear diameter, mm		

4.2 Choose material

For moderate load, we will use quenched steel 40X to design the shafts. From table 6.1, the specifications are as follows: $S \le 100 \, (\text{mm})$, HB260, $\sigma_b = 850 \, (\text{MPa})$, $\sigma_{ch} = 550 \, (\text{MPa})$.

4.3 Tranmission Design

4.3.1 Load on shafts

Applied forces from Gears

Following p.186, the subscript convention of the book will be used in this chapter. If a symbol has 2 numeric subscripts, the first one is the ordinal number of shafts while the second one is used for machine elements. On shaft 1, the motor is labeled 1 and the pinion is labeled 2. On shaft 2, the driven gear is labeled 1 and the driving sprocket is labeled 2. Therefore, we obtain:

$$r_{12} = d_{w12}/2 \approx 13.57 \text{ (mm)}, hr_{12} = +1, cb_{12} = +1, cq_1 = +1$$

 $r_{21} = d_{w21}/2 \approx 67.84 \text{ (mm)}, hr_{21} = +1, cb_{21} = -1, cq_2 = -1$

Find magnitude of F_t , F_r , F_a Using the results from the previous chapter: $\alpha_{tw} \approx 21.17^\circ$, $\beta = 20^\circ$, $d_{w12} \approx 27.14$ (mm)

$$\begin{cases} F_{t12} = F_{t21} = \frac{2T_{sh1}}{d_{w12}} \approx 2769.03 \text{ (N)} \\ F_{r12} = F_{r21} = \frac{F_{t12} \tan \alpha_{tw}}{\cos \beta} \approx 1141.36 \text{ (N)} \\ F_{a12} = F_{a21} = F_{t12} \tan \beta \approx 1007.84 \text{ (N)} \end{cases}$$

Find direction of F_t , F_r , F_a Following the sign convention, we obtain the forces:

$$\begin{cases} F_{x12} = \frac{r_{12}}{|r_{12}|} cq_1 cb_{12} F_{t12} \approx 2769.03 \text{ (N)} \\ F_{y12} = -\frac{r_{12}}{|r_{12}|} \frac{\tan \alpha_{tw}}{\cos \beta} F_{t12} \approx -1141.36 \text{ (N)} \\ F_{z12} = cq_1 cb_{12} hr_{12} F_{t12} \tan \beta \approx 1007.84 \text{ (N)} \end{cases}$$

$$\begin{cases} F_{x21} = \frac{r_{21}}{|r_{21}|} cq_2cb_{21}F_{t21} \approx 2769.03 \text{ (N)} \\ F_{y21} = -\frac{r_{21}}{|r_{21}|} \frac{\tan \alpha_{tw}}{\cos \beta} F_{t21} \approx -1141.36 \text{ (N)} \\ F_{z21} = cq_2cb_{21}hr_{21}F_{t21} \tan \beta \approx 1007.84 \text{ (N)} \end{cases}$$

Applied forces from Chain drives

Assuming the angle between x-axis and F_r is 150° and $F_r \approx 2539.28$ (N) (chapter 2), we get the direction of F_r on shaft 2:

$$\begin{cases} F_{x22} = F_{r22} \cos 150^{\circ} \approx -2199.08 \text{ (N)} \\ F_{y22} = F_{r22} \sin 150^{\circ} \approx 1269.64 \text{ (N)} \end{cases}$$

4.3.2 Preliminary calculations

Since shaft 1 receives input torque T_{sh1} and shaft 2 is produces output torque T_{sh2} , $[\tau_1] = 15$ (MPa) and $[\tau_2] = 30$ (MPa). Using equation (10.9), we can approximate d_1 and d_2 :

$$d_1 \ge \sqrt[3]{\frac{T_{sh1}}{0.2[\tau_1]}} \approx 23.22 \text{ (mm)} \Rightarrow d_1 = 25 \text{ (mm)}$$

 $d_2 \ge \sqrt[3]{\frac{T_{sh2}}{0.2[\tau_2]}} \approx 30.99 \text{ (mm)} \Rightarrow d_1 = 35 \text{ (mm)}$

4.3.3 Identify the distance between bearings and applied forces

From table (10.2), we can estimate b_O . On shaft 1, $b_{O1} = 15$ (mm). On shaft 2, $b_{O2} = 21$ (mm). Using equation (10.10), $l_{m1} = 1.5d_1 \approx 34.83$ (mm), $l_{m2} = 1.5d_2 \approx 46.48$ (mm).

Figure 4.1: Shaft design and its dimensions