## Методы оптимизации Лекция 8: Введение в теорию двойственности

#### Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт



2 ноября 2020 г.

## На прошлой лекции

- ▶ Общие условия оптимальности
- Сопряжённые функции
- Свойства сопряжённых функций

## План на эту лекцию

- Двойственная функция её свойства
- Двойственная задача
- Коническая двойственность и связь с сопряжёнными функциями

#### Запись через надграфик

$$\min_{\mathbf{x}} f_0(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m \\ f_i(\mathbf{x}) \le 0, \ i = 1, \dots, p \end{cases} \implies \min_{\mathbf{x}, \ t} t$$

$$\text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m \\ f_i(\mathbf{x}) \le 0, \ i = 1, \dots, p$$

$$f_0(\mathbf{x}) \le t$$

#### Запись через надграфик

$$\min_{\mathbf{x}} f_0(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m \\ f_i(\mathbf{x}) \le 0, \ i = 1, \dots, p \end{cases} \implies \min_{\mathbf{x}, \ t} t$$

$$\mathbf{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$$

$$f_i(\mathbf{x}) \le 0, \ i = 1, \dots, p$$

$$f_0(\mathbf{x}) \le t$$

#### Преобразования ограничений

- $\mathbf{g}(\mathbf{x}) \le \mathbf{b} \to \mathbf{g}(\mathbf{x}) + \mathbf{y} = \mathbf{b}, \ \mathbf{y} \ge 0$
- $\mathbf{x} \to \mathbf{x}_1 \mathbf{x}_2, \ \mathbf{x}_1 \ge 0, \ \mathbf{x}_2 \ge 0$
- Формирование блочных матриц

#### Запись через надграфик

$$\min_{\mathbf{x}} f_0(\mathbf{x}) \qquad \qquad \min_{\mathbf{x}, t} t$$

$$\text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$$

$$f_i(\mathbf{x}) \le 0, \ i = 1, \dots, p$$

$$\Rightarrow \qquad \text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$$

$$f_i(\mathbf{x}) \le 0, \ i = 1, \dots, p$$

$$f_0(\mathbf{x}) < t$$

#### Преобразования ограничений

- $\mathbf{p}(\mathbf{x}) \leq \mathbf{b} \rightarrow \mathbf{g}(\mathbf{x}) + \mathbf{y} = \mathbf{b}, \ \mathbf{y} \geq 0$
- $\mathbf{x} \to \mathbf{x}_1 \mathbf{x}_2, \ \mathbf{x}_1 \ge 0, \ \mathbf{x}_2 \ge 0$
- Формирование блочных матриц

## Перенос ограничений в целевую функцию

$$\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \Rightarrow \min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x}) + \mathbb{I}_{\mathcal{X}}(\mathbf{x}), \quad \mathbb{I}_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X}, \\ +\infty, & \mathbf{x} \notin \mathcal{X}. \end{cases}$$

# Задача оптимизации с функциональными ограничениями

$$\min_{\mathbf{x}\in\mathcal{D}} f_0(\mathbf{x})$$
 s.t.  $g_i(\mathbf{x})=0,\ i=1,\ldots,m$  
$$h_j(\mathbf{x})\leq 0,\ j=1,\ldots,p$$
 dom  $f_0=\mathcal{D}\subseteq\mathbb{R}^n$ ,  $f_0(\mathbf{x}^*)=p^*$ 

## Задача оптимизации с функциональными ограничениями

$$\min_{\mathbf{x}\in\mathcal{D}} f_0(\mathbf{x})$$
 s.t.  $g_i(\mathbf{x})=0,\ i=1,\ldots,m$  
$$h_j(\mathbf{x})\leq 0,\ j=1,\ldots,p$$
 dom  $f_0=\mathcal{D}\subseteq\mathbb{R}^n$ ,  $f_0(\mathbf{x}^*)=p^*$ 

Основная цель

Сформулировать условия оптимальности для таких задач

## Задача оптимизации с функциональными ограничениями

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$
 s.t.  $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$   $h_j(\mathbf{x}) \leq 0, \ j = 1, \dots, p$ 

dom  $f_0 = \mathcal{D} \subseteq \mathbb{R}^n$ ,  $f_0(\mathbf{x}^*) = p^*$ 

Основная цель

Сформулировать условия оптимальности для таких задач

Лагранжиан 
$$L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p o \mathbb{R}$$
 
$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x})$$

- $\lambda_i$  множители Лагранжа для ограничений  $q_i(\mathbf{x}) = 0, \ i = 1, \dots, m$

## Двойственная функция

#### Определение

Функция  $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$  такая что

$$g(\lambda, \mu) = \inf_{\mathbf{x} \in \mathcal{D}} \left( f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}) \right)$$

называется двойственной функцией

## Двойственная функция

#### Определение

Функция  $g:\mathbb{R}^m imes\mathbb{R}^p o\mathbb{R}$  такая что

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\mathbf{x} \in \mathcal{D}} \left( f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}) \right)$$

называется двойственной функцией

#### Свойства

- Всегда вогнута
- lacktriangle Может равняться  $-\infty$  для некоторых  $(oldsymbol{\lambda},oldsymbol{\mu})$

#### Утверждение

Если 
$${m \mu} \geq 0$$
, тогда  $f_0({f x}^*) = p^* \geq g({m \lambda},{m \mu})$ 

Утверждение

Если  ${m \mu} \geq 0$ , тогда  $f_0({f x}^*) = p^* \geq g({m \lambda},{m \mu})$ 

Доказательство

#### **Утверждение**

Если 
$${m \mu} \geq 0$$
, тогда  $f_0({f x}^*) = p^* \geq g({m \lambda},{m \mu})$ 

#### Доказательство

f Eсли  $\hat{f x}\in \mathcal{D}$  и лежит в допустимом множестве, а также  $m \mu \geq 0$ , тогда

$$f_0(\hat{\mathbf{x}}) \ge L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

#### **Утверждение**

Если 
$${m \mu} \geq 0$$
, тогда  $f_0({f x}^*) = p^* \geq g({m \lambda},{m \mu})$ 

#### Доказательство

lacktriangle Если  $\hat{\mathbf{x}} \in \mathcal{D}$  и лежит в допустимом множестве, а также  $m{\mu} \geq 0$ , тогда

$$f_0(\hat{\mathbf{x}}) \ge L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \ge \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

lacktriangle Минимизируя обе части по всем допустимым  $\hat{\mathbf{x}}$ , получим

$$p^* \geq g(\lambda, \mu)$$

#### Определение

$$\max g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

$$\text{s.t. } \pmb{\mu} \geq 0$$

#### Определение

Двойственной задачей называется следующая задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t.  $\pmb{\mu} \geq 0$ 

Всегда выпуклая задача

#### Определение

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t.  $\pmb{\mu} \geq 0$ 

- Всегда выпуклая задача
- lacktriangle Обозначим  $d^*=g(oldsymbol{\lambda}^*,oldsymbol{\mu}^*)$

#### Определение

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t.  $\pmb{\mu} \geq 0$ 

- Всегда выпуклая задача
- ▶ Обозначим  $d^* = g(\pmb{\lambda}^*, \pmb{\mu}^*)$
- ightharpoonup Лучшая нижняя оценка для  $p^*$ , которую может дать двойственная функция

#### Определение

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t.  $\pmb{\mu} \geq 0$ 

- Всегда выпуклая задача
- ▶ Обозначим  $d^* = g(\lambda^*, \mu^*)$
- ightharpoonup Лучшая нижняя оценка для  $p^*$ , которую может дать двойственная функция
- ightharpoonup Вектора  $(m{\lambda}, m{\mu})$  называются допустимыми для двойственной задачи, если  $m{\mu} \geq 0$  и  $(m{\lambda}, m{\mu}) \in \mathsf{dom}\ g$

## Связь с сопряжённой функцией

Рассмотрим задачу

$$\min f_0(\mathbf{x})$$
 s.t.  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$   $\mathbf{C}\mathbf{x} = \mathbf{d}$ 

Тогда

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\mathbf{x}} (f_0(\mathbf{x}) + \boldsymbol{\mu}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \boldsymbol{\lambda}^{\top} (\mathbf{C}\mathbf{x} - \mathbf{d})) =$$

$$- \mathbf{b}^{\top} \boldsymbol{\mu} - \boldsymbol{\lambda}^{\top} \mathbf{d} + \inf_{\mathbf{x}} (f_0(\mathbf{x}) + (\mathbf{A}^{\top} \boldsymbol{\mu} + \mathbf{C}^{\top} \boldsymbol{\lambda})^{\top} \mathbf{x}) =$$

$$- \mathbf{b}^{\top} \boldsymbol{\mu} - \boldsymbol{\lambda}^{\top} \mathbf{d} - f_0^* (-\mathbf{A}^{\top} \boldsymbol{\mu} - \mathbf{C}^{\top} \boldsymbol{\lambda})$$

Области определений двойственной и сопряжённой функций связаны:

$$\mathsf{dom}\ g = \{(\boldsymbol{\lambda}, \boldsymbol{\mu}) \mid \ -\mathbf{A}^{\top}\boldsymbol{\mu} - \mathbf{C}^{\top}\boldsymbol{\lambda} \in \mathsf{dom}\ f_0^*\}$$

Слабая двойственность:  $d^* \leq p^*$ 

Слабая двойственность:  $d^* \leq p^*$ 

▶ Всегда выполняется по построению двойственной задачи

#### Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Слабая двойственность:  $d^* \leq p^*$ 

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

Слабая двойственность:  $d^* \leq p^*$ 

- ▶ Всегда выполняется по построению двойственной задачи
- ► Нетривиальные нижние границы для (NP-)сложных задач

Сильная двойственность:  $d^* = p^*$ 

В общем случае НЕ выполняется

#### Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач

#### Слабая двойственность: $d^* \leq p^*$

- Всегда выполняется по построению двойственной задачи
- ► Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений

#### Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений
- ▶ Может выполняться и для  $\frac{1}{1}$  невыпуклых задач $^{1}$

<sup>&</sup>lt;sup>1</sup>Beck, Amir, and Yonina C. Eldar. "Strong duality in nonconvex quadratic optimization with two quadratic constraints." SIAM Journal on Optimization 17.3 (2006): 844-860.

#### Слабая двойственность: $d^* \leq p^*$

- ▶ Всегда выполняется по построению двойственной задачи
- ▶ Нетривиальные нижние границы для (NP-)сложных задач

- В общем случае НЕ выполняется
- Обычно выполнена для выпуклых задач
- Условия регулярности ограничений
- ▶ Может выполняться и для  $\frac{1}{1}$  невыпуклых задач $^{1}$
- Решение двойственной задачи даёт решение прямой задачи

<sup>&</sup>lt;sup>1</sup>Beck, Amir, and Yonina C. Eldar. "Strong duality in nonconvex quadratic optimization with two quadratic constraints." SIAM Journal on Optimization 17.3 (2006): 844-860.

Зазор двойственности:  $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$ 

Зазор двойственности:  $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$ 

Оценка точности решения

Зазор двойственности: 
$$f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$$

- Оценка точности решения
- ▶ Доказательство корректности и сходимости алгоритма

### Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

- Оценка точности решения
- ▶ Доказательство корректности и сходимости алгоритма

#### Теорема

Если  $\hat{\mathbf{x}}$  лежит в допустимом множестве и найдутся допустимые  $(\hat{\lambda},\hat{\mu})$  такие что

$$f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}),$$

то  $\hat{\mathbf{x}}$  является решением задачи.

## Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

- Оценка точности решения
- ▶ Доказательство корректности и сходимости алгоритма

#### Теорема

Если  $\hat{\mathbf{x}}$  лежит в допустимом множестве и найдутся допустимые  $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$  такие что

$$f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}),$$

то  $\hat{\mathbf{x}}$  является решением задачи.

#### Доказательство

## Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

- ▶ Оценка точности решения
- ▶ Доказательство корректности и сходимости алгоритма

#### Теорема

Если  $\hat{\mathbf{x}}$  лежит в допустимом множестве и найдутся допустимые  $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$  такие что

$$f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}),$$

то  $\hat{\mathbf{x}}$  является решением задачи.

#### Доказательство

▶ По построению двойственной задачи:  $p^* \geq g(\pmb{\lambda}, \pmb{\mu})$  для всех допустимых  $(\pmb{\lambda}, \pmb{\mu})$ 

## Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

- Оценка точности решения
- ▶ Доказательство корректности и сходимости алгоритма

#### Теорема

Если  $\hat{\mathbf{x}}$  лежит в допустимом множестве и найдутся допустимые  $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$  такие что

$$f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}),$$

то  $\hat{\mathbf{x}}$  является решением задачи.

- ▶ По построению двойственной задачи:  $p^* \geq g(\pmb{\lambda}, \pmb{\mu})$  для всех допустимых  $(\pmb{\lambda}, \pmb{\mu})$
- lacktriangle Тогда выполнено, что  $f_0(\mathbf{x}) p^* \leq f_0(\mathbf{x}) g(oldsymbol{\lambda}, oldsymbol{\mu})$

## Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

- ▶ Оценка точности решения
- ▶ Доказательство корректности и сходимости алгоритма

#### Теорема

Если  $\hat{\mathbf{x}}$  лежит в допустимом множестве и найдутся допустимые  $(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$  такие что

$$f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}),$$

то  $\hat{\mathbf{x}}$  является решением задачи.

- ▶ По построению двойственной задачи:  $p^* \geq g(\pmb{\lambda}, \pmb{\mu})$  для всех допустимых  $(\pmb{\lambda}, \pmb{\mu})$
- ▶ Тогда выполнено, что  $f_0(\mathbf{x}) p^* \leq f_0(\mathbf{x}) g(\boldsymbol{\lambda}, \boldsymbol{\mu})$
- lacktriangle Если нашёлся допустимый  $\hat{f x}$  и допустимые  $(\hat{m \lambda},\hat{m \mu})$ , такие что  $f_0(\hat{f x})=g(\hat{m \lambda},\hat{m \mu})$ , то  $f_0(\hat{f x})-p^*\leq 0$

### Зазор двойственности: $f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\mu})$

- Оценка точности решения
- ▶ Доказательство корректности и сходимости алгоритма

#### Теорема

Если  $\hat{\mathbf{x}}$  лежит в допустимом множестве и найдутся допустимые  $(\hat{\lambda},\hat{\mu})$  такие что

$$f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}),$$

то  $\hat{\mathbf{x}}$  является решением задачи.

- ▶ По построению двойственной задачи:  $p^* \geq g(\pmb{\lambda}, \pmb{\mu})$  для всех допустимых  $(\pmb{\lambda}, \pmb{\mu})$
- ▶ Тогда выполнено, что  $f_0(\mathbf{x}) p^* \le f_0(\mathbf{x}) g(\boldsymbol{\lambda}, \boldsymbol{\mu})$
- lacktriangle Если нашёлся допустимый  $\hat{\mathbf{x}}$  и допустимые  $(\hat{m{\lambda}},\hat{m{\mu}})$ , такие что  $f_0(\hat{\mathbf{x}})=g(\hat{m{\lambda}},\hat{m{\mu}})$ , то  $f_0(\hat{\mathbf{x}})-p^*\leq 0$
- ▶ Так как  $p^*$  минимальное значение  $f_0$ , то  $p^* = f_0(\hat{\mathbf{x}})$

## Седловая точка

#### Определение седловой точки

Точка  $\bar{\mathbf{x}}$  называется седловой точкой дифференцируемой функции f если она стационарная точка, то есть  $f'(\bar{\mathbf{x}})=0$ , но не является локальным экстремумом, то есть найдутся направления  $\mathbf{d}_1, \mathbf{d}_2$  такие что  $f(\bar{\mathbf{x}}+\mathbf{d}_1) \leq f(\bar{\mathbf{x}}) \leq f(\bar{\mathbf{x}}+\mathbf{d}_2)$ 

## Седловая точка

#### Определение седловой точки

Точка  $\bar{\mathbf{x}}$  называется седловой точкой дифференцируемой функции f если она стационарная точка, то есть  $f'(\bar{\mathbf{x}})=0$ , но не является локальным экстремумом, то есть найдутся направления  $\mathbf{d}_1, \mathbf{d}_2$  такие что  $f(\bar{\mathbf{x}}+\mathbf{d}_1) \leq f(\bar{\mathbf{x}}) \leq f(\bar{\mathbf{x}}+\mathbf{d}_2)$ 

#### Классический пример

Функция  $f(x,y) = x^2 - y^2$ , для которой точка (0,0) является седловой.

## Седловая точка

#### Определение седловой точки

Точка  $\bar{\mathbf{x}}$  называется седловой точкой дифференцируемой функции f если она стационарная точка, то есть  $f'(\bar{\mathbf{x}})=0$ , но не является локальным экстремумом, то есть найдутся направления  $\mathbf{d}_1, \mathbf{d}_2$  такие что  $f(\bar{\mathbf{x}}+\mathbf{d}_1) \leq f(\bar{\mathbf{x}}) \leq f(\bar{\mathbf{x}}+\mathbf{d}_2)$ 

#### Классический пример

Функция  $f(x,y) = x^2 - y^2$ , для которой точка (0,0) является седловой.

#### Частный случай

Если функция f зависит от двух переменных  $f(\mathbf{x},\mathbf{y})$ , то точка  $(\bar{\mathbf{x}},\bar{\mathbf{y}})$  будет седловой, если  $f(\bar{\mathbf{x}},\mathbf{y}) \leq f(\bar{\mathbf{x}},\bar{\mathbf{y}}) \leq f(\mathbf{x},\bar{\mathbf{y}})$  для точек из области определения.

# Условие оптимальности и седловая точка функции Лагранжа

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x})$$

# Условие оптимальности и седловая точка функции Лагранжа

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x})$$

#### Теорема

Пусть  $\hat{\mathbf{x}} \in \mathcal{D}$  и  $(\hat{\pmb{\lambda}}, \hat{\pmb{\mu}})$  допустимы. Тогда эквивалентны следующие условия

- $\hat{\mathbf{x}}$  лежит в допустимом множестве и  $f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}})$
- $(oldsymbol{\lambda})$  для всех  $\mathbf{x} \in \mathcal{D}$  и всех допустимых  $(oldsymbol{\lambda}, oldsymbol{\mu})$  выполнено

$$L(\hat{\mathbf{x}}, \lambda, \mu) \le L(\hat{\mathbf{x}}, \hat{\lambda}, \hat{\mu}) \le L(\mathbf{x}, \hat{\lambda}, \hat{\mu}),$$

то есть точка  $(\hat{\mathbf{x}},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$  есть седловая точка функции Лагранжа

 $\hat{\mathbf{x}}$  лежит в допустимом множестве, является точкой минимума функции  $L(\mathbf{x},\hat{\pmb{\lambda}},\hat{\pmb{\mu}})$  и выполнено  $\hat{\mu}_i h_i(\hat{\mathbf{x}})=0$ 

igcap Для допустимого  $\hat{\mathbf{x}}$  и произвольной допустимой пары  $(m{\lambda}, m{\mu})$  выполнено  $L(\hat{\mathbf{x}}, m{\lambda}, m{\mu}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \lambda_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) = f_0(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) \le f_0(\hat{\mathbf{x}})$  так как  $\mu_j \ge 0$  и  $h_j(\hat{\mathbf{x}}) \le 0$ 

- ▶ Для допустимого  $\hat{\mathbf{x}}$  и произвольной допустимой пары  $(\boldsymbol{\lambda}, \boldsymbol{\mu})$  выполнено  $L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \lambda_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) = f_0(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) \le f_0(\hat{\mathbf{x}})$  так как  $\mu_j \ge 0$  и  $h_j(\hat{\mathbf{x}}) \le 0$
- ▶ Также  $g(\hat{\pmb{\lambda}}, \hat{\pmb{\mu}}) = \inf_{\mathbf{u} \in \mathcal{D}} L(\mathbf{u}, \hat{\pmb{\lambda}}, \hat{\pmb{\mu}}) \leq L(\mathbf{x}, \hat{\pmb{\lambda}}, \hat{\pmb{\mu}})$  для любого  $\mathbf{x} \in \mathcal{D}$

- lackbox Для допустимого  $\hat{\mathbf{x}}$  и произвольной допустимой пары  $(\pmb{\lambda},\pmb{\mu})$  выполнено  $L(\hat{\mathbf{x}},\pmb{\lambda},\pmb{\mu})=f_0(\hat{\mathbf{x}})+\sum_{i=1}^m\lambda_ig_i(\hat{\mathbf{x}})+\sum_{j=1}^p\mu_jh_j(\hat{\mathbf{x}})=f_0(\hat{\mathbf{x}})+\sum_{j=1}^p\mu_jh_j(\hat{\mathbf{x}})\leq f_0(\hat{\mathbf{x}})$  так как  $\mu_j\geq 0$  и  $h_j(\hat{\mathbf{x}})\leq 0$
- ▶ Также  $g(\hat{\pmb{\lambda}}, \hat{\pmb{\mu}}) = \inf_{\mathbf{u} \in \mathcal{D}} L(\mathbf{u}, \hat{\pmb{\lambda}}, \hat{\pmb{\mu}}) \leq L(\mathbf{x}, \hat{\pmb{\lambda}}, \hat{\pmb{\mu}})$  для любого  $\mathbf{x} \in \mathcal{D}$
- lacktriangle Если  $f(\hat{f x}) = g(\hat{m \lambda},\hat{m \mu})$ , то выполнено

$$L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \le f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) \le L(\mathbf{x}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}})$$

для всех  $\mathbf{x} \in \mathcal{D}$  и допустимых пар  $(oldsymbol{\lambda}, oldsymbol{\mu})$ 

# Доказательство: $1) \rightarrow 2)$

- ▶ Также  $g(\hat{\pmb{\lambda}}, \hat{\pmb{\mu}}) = \inf_{\mathbf{u} \in \mathcal{D}} L(\mathbf{u}, \hat{\pmb{\lambda}}, \hat{\pmb{\mu}}) \leq L(\mathbf{x}, \hat{\pmb{\lambda}}, \hat{\pmb{\mu}})$  для любого  $\mathbf{x} \in \mathcal{D}$
- lacktriangle Если  $f(\hat{f x}) = g(\hat{m \lambda},\hat{m \mu})$ , то выполнено

$$L(\hat{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \le f_0(\hat{\mathbf{x}}) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) \le L(\mathbf{x}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}})$$

для всех  $\mathbf{x} \in \mathcal{D}$  и допустимых пар  $(oldsymbol{\lambda}, oldsymbol{\mu})$ 

lacktriangle Если  $\mathbf{x}=\hat{\mathbf{x}}$  и  $(oldsymbol{\lambda},oldsymbol{\mu})=(\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ , то  $f_0(\hat{\mathbf{x}})=L(\hat{\mathbf{x}},\hat{oldsymbol{\lambda}},\hat{oldsymbol{\mu}})$ 

ightharpoonup Из правого неравенства в условии седловой точки следует, что  $\hat{\mathbf{x}}$  точка минимума Лагранжиана

- ightharpoonup Из правого неравенства в условии седловой точки следует, что  $\hat{\mathbf{x}}$  точка минимума Лагранжиана
- ▶ Из левого неравенства следует, что

$$f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \lambda_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) \le f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$$

- ightharpoonup Из правого неравенства в условии седловой точки следует, что  $\hat{\mathbf{x}}$  точка минимума Лагранжиана
- Из левого неравенства следует, что

$$f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \lambda_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) \le f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$$

▶ Или  $\sum_{i=1}^m (\lambda_i - \hat{\lambda}_i) g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p (\mu_j - \hat{\mu}_j) h_j(\hat{\mathbf{x}}) \le 0$  для всех допустимых  $(\lambda, \mu)$ 

- ightharpoonup Из правого неравенства в условии седловой точки следует, что  $\hat{\mathbf{x}}$  точка минимума Лагранжиана
- ▶ Из левого неравенства следует, что

$$f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \lambda_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) \leq f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$$

- ▶ Или  $\sum_{i=1}^m (\lambda_i \hat{\lambda}_i) g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p (\mu_j \hat{\mu}_j) h_j(\hat{\mathbf{x}}) \le 0$  для всех допустимых  $(\lambda, \mu)$
- $lack \square$  Пусть  $m{\mu} = \hat{m{\mu}}$  и  $\lambda_k = \hat{\lambda}_k \pm 1$ , а остальные  $\lambda_i = \hat{\lambda}_i$  для  $i \neq k$ , тогда  $\pm g_k(\hat{\mathbf{x}}) \leq 0$ , то есть  $g_k(\hat{\mathbf{x}}) = 0$

- ightharpoonup Из правого неравенства в условии седловой точки следует, что  $\hat{\mathbf{x}}$  точка минимума Лагранжиана
- ▶ Из левого неравенства следует, что

$$f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \lambda_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) \leq f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$$

- ▶ Или  $\sum_{i=1}^m (\lambda_i \hat{\lambda}_i) g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p (\mu_j \hat{\mu}_j) h_j(\hat{\mathbf{x}}) \le 0$  для всех допустимых  $(\lambda, \mu)$
- lackbox Пусть  $m{\mu}=\hat{m{\mu}}$  и  $\lambda_k=\hat{\lambda}_k\pm 1$ , а остальные  $\lambda_i=\hat{\lambda}_i$  для  $i\neq k$ , тогда  $\pm g_k(\hat{\mathbf{x}})\leq 0$ , то есть  $g_k(\hat{\mathbf{x}})=0$
- ▶ Пусть  $\lambda = \hat{\lambda}$ , но  $\mu_k = \hat{\mu}_k + 1$  и  $\mu_j = \hat{\mu}_j$  для  $j \neq k$ , тогда  $h_k(\hat{\mathbf{x}}) \leq 0$ . Таким образом,  $\hat{\mathbf{x}}$  лежит в допустимом множестве

- ightharpoonup Из правого неравенства в условии седловой точки следует, что  $\hat{\mathbf{x}}$  точка минимума Лагранжиана
- ▶ Из левого неравенства следует, что

$$f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \lambda_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \mu_j h_j(\hat{\mathbf{x}}) \le f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$$

- ▶ Или  $\sum_{i=1}^m (\lambda_i \hat{\lambda}_i) g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p (\mu_j \hat{\mu}_j) h_j(\hat{\mathbf{x}}) \le 0$  для всех допустимых  $(\lambda, \mu)$
- ▶ Пусть  $\mu = \hat{\mu}$  и  $\lambda_k = \hat{\lambda}_k \pm 1$ , а остальные  $\lambda_i = \hat{\lambda}_i$  для  $i \neq k$ , тогда  $\pm g_k(\hat{\mathbf{x}}) \leq 0$ , то есть  $g_k(\hat{\mathbf{x}}) = 0$
- ▶ Пусть  $\lambda = \hat{\lambda}$ , но  $\mu_k = \hat{\mu}_k + 1$  и  $\mu_j = \hat{\mu}_j$  для  $j \neq k$ , тогда  $h_k(\hat{\mathbf{x}}) \leq 0$ . Таким образом,  $\hat{\mathbf{x}}$  лежит в допустимом множестве
- lacktriangle Аналогично, если  $m{\lambda}=\hat{m{\lambda}}$ , но  $\mu_k=2\hat{\mu}_k$  или  $\mu_k=0$ , а  $\mu_j=\hat{\mu}_j$  для  $j\neq k$ , тогда  $\hat{\mu}_k h_k(\hat{f x})=0$

Так как  $\hat{\mathbf{x}}$  точка минимума лагранжиана, то  $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = \inf_{\mathbf{z} \in \mathcal{D}} L(\mathbf{z}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$ 

# Доказательство: $3) \rightarrow 1)$

- Так как  $\hat{\mathbf{x}}$  точка минимума лагранжиана, то  $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = \inf_{\mathbf{z} \in \mathcal{D}} L(\mathbf{z}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$
- $\hat{\mathbf{x}}$  лежит в допустимом множестве, поэтому  $g_i(\hat{\mathbf{x}})=0$  для  $i=1,\dots,m$

# Доказательство: $3) \rightarrow 1)$

- Так как  $\hat{\mathbf{x}}$  точка минимума лагранжиана, то  $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = \inf_{\mathbf{z} \in \mathcal{D}} L(\mathbf{z}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$
- $\hat{\mathbf{x}}$  лежит в допустимом множестве, поэтому  $g_i(\hat{\mathbf{x}})=0$  для  $i=1,\dots,m$
- lacktriangle Так как выполнено  $\hat{\mu}_j h_j(\hat{\mathbf{x}})=0$ , где  $j=1,\dots,p$ , то в итоге  $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})=f_0(\hat{\mathbf{x}})$

# Доказательство: $3) \rightarrow 1)$

- Так как  $\hat{\mathbf{x}}$  точка минимума лагранжиана, то  $g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = \inf_{\mathbf{z} \in \mathcal{D}} L(\mathbf{z}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = L(\hat{\mathbf{x}}, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = f_0(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{\lambda}_i g_i(\hat{\mathbf{x}}) + \sum_{j=1}^p \hat{\mu}_j h_j(\hat{\mathbf{x}})$
- $\hat{\mathbf{x}}$  лежит в допустимом множестве, поэтому  $g_i(\hat{\mathbf{x}})=0$  для  $i=1,\dots,m$
- lacktriangle Так как выполнено  $\hat{\mu}_j h_j(\hat{\mathbf{x}})=0$ , где  $j=1,\dots,p$ , то в итоге  $g(\hat{\pmb{\lambda}},\hat{\pmb{\mu}})=f_0(\hat{\mathbf{x}})$
- ▶ Таким образом, выполнено условие оптимальности

## Условия Каруша-Куна-Таккера (ККТ)

#### Следствие

Пусть  $\mathbf{x}^*$  решение задачи минимизации такое, что  $\mathbf{x}^* \in \mathrm{int}(\mathcal{D})$ ,  $f_0, g_i, h_j$  дифференцируемы в  $\mathbf{x}^*$  и выполнен критерий оптимальности  $f_0(\mathbf{x}^*) = g(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}})$  для некоторой допустимой пары  $(\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}})$ , тогда выполнено

$$\begin{cases} L'_{\mathbf{x}}(\mathbf{x}^*, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = 0\\ \hat{\mu}_k h_k(\mathbf{x}^*) = 0 \end{cases}$$

#### **Условия ККТ**

- $L_{\mathbf{x}}'(\mathbf{x}^*, \hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\mu}}) = 0$
- $\hat{\mu}_k h_k(\mathbf{x}^*) = 0$  условия дополняющей нежёсткости
- $\hat{\boldsymbol{\mu}} \geq 0$
- $h_i(\mathbf{x}^*) \le 0$
- $g_i(\mathbf{x}^*) = 0$

#### Анонс на следующую лекцию

- Следствие на предыдущем слайде требует наличия сильной двойственности
- Если задача выпукла и выполнено некоторое условие регулярности, то сильная двойственность выполняется.
   Этот факт будет доказан на следующей лекции.
- На следующей лекции обсудим, что меняется когда появляется выпуклость и докажем основную теорему для условий оптимальности

▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи

- ▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- ▶ Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

- ▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- ▶ Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

Стандартные приёмы

- Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

#### Стандартные приёмы

▶ Введение новых переменных

$$\begin{split} \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \rightarrow & \min_{(\mathbf{x}, \mathbf{y})} \|\mathbf{y}\| \\ \text{s.t. } \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{y} \end{split}$$

- ▶ Равносильные прямые задачи могут давать совершенно разные двойственные задачи
- Равносильное преобразование исходной задачи может дать более простую или полезную двойственную задачу

#### Стандартные приёмы

▶ Введение новых переменных

$$\begin{split} \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\| \rightarrow & \min_{(\mathbf{x}, \mathbf{y})} \|\mathbf{y}\| \\ \text{s.t. } \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{y} \end{split}$$

Превращение явных ограничений в неявные

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x} \\ \text{s.t.} & -1 \leq \mathbf{x} \leq 1 \rightarrow & \min_{-1 \leq \mathbf{x} \leq 1} \mathbf{c}^{\top} \mathbf{x} \\ \mathbf{A} \mathbf{x} = \mathbf{b} & \text{s.t. } \mathbf{A} \mathbf{x} = \mathbf{b} \end{aligned}$$

Исходная задача

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}$ 
 $\mathbf{x} \ge 0$ 

Исходная задача

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}$ 

$$\mathbf{x} \ge 0$$

Лагранжиан:

$$L = \mathbf{c}^{\top}\mathbf{x} + \boldsymbol{\lambda}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}) - \boldsymbol{\mu}^{\top}\mathbf{x} = (\mathbf{c} + \mathbf{A}^{\top}\boldsymbol{\lambda} - \boldsymbol{\mu})^{\top}\mathbf{x} - \boldsymbol{\lambda}^{\top}\mathbf{b}$$

Исходная задача

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}$ 
 $\mathbf{x} \ge 0$ 

Лагранжиан:

$$L = \mathbf{c}^{\top}\mathbf{x} + \boldsymbol{\lambda}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}) - \boldsymbol{\mu}^{\top}\mathbf{x} = (\mathbf{c} + \mathbf{A}^{\top}\boldsymbol{\lambda} - \boldsymbol{\mu})^{\top}\mathbf{x} - \boldsymbol{\lambda}^{\top}\mathbf{b}$$

Двойственная функция

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \begin{cases} -\boldsymbol{\lambda}^{\top} \mathbf{b}, & \mathbf{c} + \mathbf{A}^{\top} \boldsymbol{\lambda} - \boldsymbol{\mu} = 0, \\ -\infty, & \text{иначе.} \end{cases}$$

▶ Исходная задача

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}$ 

$$\mathbf{x} \ge 0$$

Лагранжиан:

$$L = \mathbf{c}^{\top} \mathbf{x} + \boldsymbol{\lambda}^{\top} (\mathbf{A} \mathbf{x} - \mathbf{b}) - \boldsymbol{\mu}^{\top} \mathbf{x} = (\mathbf{c} + \mathbf{A}^{\top} \boldsymbol{\lambda} - \boldsymbol{\mu})^{\top} \mathbf{x} - \boldsymbol{\lambda}^{\top} \mathbf{b}$$

Двойственная функция

$$g(\lambda, \mu) = egin{cases} -\lambda^{ op} \mathbf{b}, & \mathbf{c} + \mathbf{A}^{ op} \lambda - \mu = 0, \\ -\infty, & ext{иначе.} \end{cases}$$

Двойственная задача

$$\min \boldsymbol{\lambda}^{\top} \mathbf{b}$$
  
s.t.  $\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{c} \ge 0$ 

# Связь между неограниченностью и неразрешимостью

#### Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

## Связь между неограниченностью и неразрешимостью

#### Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

#### Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

#### Доказательство

ightharpoonup Допустимое множество в прямой задаче  $\{{f x}\in \mathbb{R}^n\mid {f A}{f x}={f b},\; {f x}\geq 0\}$ 

#### Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

#### Доказательство

- ightharpoonup Допустимое множество в прямой задаче  $\{{f x}\in {\Bbb R}^n\mid {f A}{f x}={f b},\; {f x}\geq 0\}$
- ▶ Если оно пустое, то по лемме Фаркаша найдётся вектор  ${f p}$  такой что  ${f p}^{\top}{f b}<0$  и  ${f p}^{\top}{f A}\ge0$

#### Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

#### Доказательство

- ightharpoonup Допустимое множество в прямой задаче  $\{{f x}\in {\Bbb R}^n\mid {f A}{f x}={f b},\; {f x}\geq 0\}$
- ▶ Если оно пустое, то по лемме Фаркаша найдётся вектор  ${f p}$  такой что  ${f p}^{\top}{f b}<0$  и  ${f p}^{\top}{f A}\ge0$
- Двойственная задача

$$\min \boldsymbol{\lambda}^{\top} \mathbf{b}$$
 s.t.  $\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{c} \geq 0$ 

#### Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

#### Доказательство

- ightharpoonup Допустимое множество в прямой задаче  $\{{f x}\in {\Bbb R}^n\mid {f A}{f x}={f b},\; {f x}\geq 0\}$
- ▶ Если оно пустое, то по лемме Фаркаша найдётся вектор  ${f p}$  такой что  ${f p}^{\top}{f b}<0$  и  ${f p}^{\top}{f A}\ge0$
- Двойственная задача

$$\min \boldsymbol{\lambda}^{\top} \mathbf{b}$$
 s.t.  $\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{c} \geq 0$ 

▶ Пусть  $\hat{\boldsymbol{\lambda}} = \theta \mathbf{p}, \ \theta > 0$ , тогда  $\theta \mathbf{p}^{\top} \mathbf{b} \to -\infty$  и  $\theta \mathbf{A}^{\top} \mathbf{p} + \mathbf{c} \ge 0$ 

#### Теорема

Если допустимое множество в прямой задаче LP пусто, то двойственная задача не ограничена.

#### Доказательство

- ightharpoonup Допустимое множество в прямой задаче  $\{{f x}\in {\Bbb R}^n \mid {f A}{f x}={f b}, \ {f x}\geq 0\}$
- ▶ Если оно пустое, то по лемме Фаркаша найдётся вектор  ${f p}$  такой что  ${f p}^{\top}{f b}<0$  и  ${f p}^{\top}{f A}\ge0$
- Двойственная задача

$$\min \boldsymbol{\lambda}^{\top} \mathbf{b}$$
  
s.t.  $\mathbf{A}^{\top} \boldsymbol{\lambda} + \mathbf{c} \geq 0$ 

- ▶ Пусть  $\hat{\boldsymbol{\lambda}} = \theta \mathbf{p}, \ \theta > 0$ , тогда  $\theta \mathbf{p}^{\top} \mathbf{b} \to -\infty$  и  $\theta \mathbf{A}^{\top} \mathbf{p} + \mathbf{c} \ge 0$
- Двойственная задача не ограничена

#### Обобщённое отношение частичного порядка

Пусть  $\mathcal K$  выпуклый, замкнутый конус,  $\mathcal K\cap -\mathcal K=\{0\}$ . Тогда  $\mathbf x\leq_{\mathcal K}\mathbf y\Leftrightarrow \mathbf y-\mathbf x\in\mathcal K$  — отношение частичного порядка (докажите аксиомы!).

#### Обобщённое отношение частичного порядка

Пусть  $\mathcal K$  выпуклый, замкнутый конус,  $\mathcal K\cap -\mathcal K=\{0\}$ . Тогда  $\mathbf x\leq_{\mathcal K}\mathbf y\Leftrightarrow \mathbf y-\mathbf x\in\mathcal K$  — отношение частичного порядка (докажите аксиомы!).

Пример: конус  $\mathcal{K} = \mathbf{S}^n_+$ 

Пусть  $\mathbf{X},\mathbf{Y}\in\mathbf{S}^n$ . Тогда  $\mathbf{X}\leq_{\mathcal{K}}\mathbf{Y}$  означает, что  $\mathbf{Y}-\mathbf{X}\in\mathbf{S}^n_+$ 

### Обобщённое отношение частичного порядка

Пусть  $\mathcal{K}$  выпуклый, замкнутый конус,  $\mathcal{K} \cap -\mathcal{K} = \{0\}$ . Тогда  $\mathbf{x} \leq_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{y} - \mathbf{x} \in \mathcal{K}$  — отношение частичного порядка (докажите аксиомы!).

Пример: конус  $\mathcal{K} = \mathbf{S}^n_+$ 

Пусть  $\mathbf{X},\mathbf{Y}\in\mathbf{S}^n$ . Тогда  $\mathbf{X}\leq_{\mathcal{K}}\mathbf{Y}$  означает, что  $\mathbf{Y}-\mathbf{X}\in\mathbf{S}^n_+$ 

### Задача линейного программирования

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x} \qquad \qquad \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x}$$
s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}$  s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}$  
$$x_i \ge 0 \qquad \qquad \mathbf{x} \in \mathbb{R}^n_+$$

#### Обобщённое отношение частичного порядка

Пусть  $\mathcal K$  выпуклый, замкнутый конус,  $\mathcal K\cap -\mathcal K=\{0\}$ . Тогда  $\mathbf x\leq_{\mathcal K}\mathbf y\Leftrightarrow \mathbf y-\mathbf x\in\mathcal K$  — отношение частичного порядка (докажите аксиомы!).

Пример: конус  $\mathcal{K} = \mathbf{S}^n_+$ 

Пусть  $\mathbf{X},\mathbf{Y}\in\mathbf{S}^n$ . Тогда  $\mathbf{X}\leq_{\mathcal{K}}\mathbf{Y}$  означает, что  $\mathbf{Y}-\mathbf{X}\in\mathbf{S}^n_+$ 

#### Задача линейного программирования

$$egin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x} & \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x} \\ \mathrm{s.t.} \ \mathbf{A} \mathbf{x} = \mathbf{b} & \mathrm{s.t.} \ \mathbf{A} \mathbf{x} = \mathbf{b} \\ x_i \geq 0 & \mathbf{x} \in \mathbb{R}^n_{\perp} \end{aligned}$$

#### Введение нелинейности

Использование декартового произведение трёх самосопряжённых конусов позволяет записать многие практически важные выпуклые задачи

## Двойственность и обобщённые неравенства

#### Постановка задачи

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m \\ h_j(\mathbf{x}) &\leq_{\mathcal{K}} 0, \ j = 1, \dots, p \end{aligned}$$

## Двойственность и обобщённые неравенства

#### Постановка задачи

$$\begin{aligned} \min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) = 0, \ i = 1, \dots, m \\ h_j(\mathbf{x}) &\leq_{\mathcal{K}} 0, \ j = 1, \dots, p \end{aligned}$$

#### Лагранжиан

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \langle \boldsymbol{\lambda}, \mathbf{g}(\mathbf{x}) \rangle + \langle \boldsymbol{\mu}, \mathbf{h}(\mathbf{x}) \rangle$$

- $h_i(\mathbf{x}) \leq_{\mathcal{K}} 0 \Leftrightarrow -h_i(\mathbf{x}) \in \mathcal{K}$
- ▶ условие  $\langle \boldsymbol{\mu}, \mathbf{h}(\mathbf{x}) \rangle \leq 0 \Leftrightarrow \langle \boldsymbol{\mu}, -\mathbf{h}(\mathbf{x}) \rangle \geq 0$  или  $\langle \boldsymbol{\mu}, \mathbf{u} \rangle \geq 0$ , где  $\mathbf{u} \in \mathcal{K}$  выполнено, если  $\boldsymbol{\mu} \in \mathcal{K}^*$  или  $\boldsymbol{\mu} \geq_{\mathcal{K}^*} 0$

# Двойственность и обобщённые неравенства

#### Постановка задачи

$$\min_{\mathbf{x} \in \mathcal{D}} f_0(\mathbf{x})$$
s.t.  $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$ 

$$h_j(\mathbf{x}) \leq_{\mathcal{K}} 0, \ j = 1, \dots, p$$

#### Лагранжиан

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\mathbf{x}) + \langle \boldsymbol{\lambda}, \mathbf{g}(\mathbf{x}) \rangle + \langle \boldsymbol{\mu}, \mathbf{h}(\mathbf{x}) \rangle$$

- $h_i(\mathbf{x}) \leq_{\mathcal{K}} 0 \Leftrightarrow -h_i(\mathbf{x}) \in \mathcal{K}$
- ▶ условие  $\langle \boldsymbol{\mu}, \mathbf{h}(\mathbf{x}) \rangle \leq 0 \Leftrightarrow \langle \boldsymbol{\mu}, -\mathbf{h}(\mathbf{x}) \rangle \geq 0$  или  $\langle \boldsymbol{\mu}, \mathbf{u} \rangle \geq 0$ , где  $\mathbf{u} \in \mathcal{K}$  выполнено, если  $\boldsymbol{\mu} \in \mathcal{K}^*$  или  $\boldsymbol{\mu} \geq_{\mathcal{K}^*} 0$

### Двойственная задача

$$\max g(\pmb{\lambda}, \pmb{\mu})$$
 s.t.  $\pmb{\mu} \geq_{\pmb{\mathcal{K}}^*} 0$ 

# Двойственность для задачи конической оптимизации

Стандартная форма

$$\begin{aligned} \min \mathbf{c}^{\top} \mathbf{x} \\ \text{s.t. } \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq_{\mathcal{K}} \mathbf{0} \end{aligned}$$

# Двойственность для задачи конической оптимизации

Стандартная форма

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t.  $\mathbf{A} \mathbf{x} = \mathbf{b}$ 

$$\mathbf{x} \ge_{\mathcal{K}} 0$$

▶ Двойственная задача (аналогично LP)

$$\max oldsymbol{\lambda}^{ op} \mathbf{b}$$
  
s.t.  $\mathbf{A}^{ op} oldsymbol{\lambda} \leq_{\mathcal{K}^*} \mathbf{c}$ 

# Двойственность для задачи конической оптимизации

Стандартная форма

$$\min \mathbf{c}^{\top} \mathbf{x}$$
s.t.  $\mathbf{A}\mathbf{x} = \mathbf{b}$ 

$$\mathbf{x} \ge_{\mathcal{K}} 0$$

Двойственная задача (аналогично LP)

$$\max oldsymbol{\lambda}^{ op} \mathbf{b}$$
  
s.t.  $\mathbf{A}^{ op} oldsymbol{\lambda} \leq_{\mathcal{K}^*} \mathbf{c}$ 

ightharpoonup Если конус  $\mathcal K$  самосопряжённый мы автоматически знаем, как выглядит двойственная задача!

# Двойственная задача для SDP

Исходная задача

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$
  
s.t.  $\operatorname{trace}(\mathbf{A}_i \mathbf{X}) = b_i$   
 $\mathbf{X} \succeq 0$ 

# Двойственная задача для SDP

Исходная задача

$$\min_{\mathbf{X}} \operatorname{trace}(\mathbf{CX})$$
s.t. 
$$\operatorname{trace}(\mathbf{A}_{i}\mathbf{X}) = b_{i}$$

$$\mathbf{X} \succeq 0$$

Двойственная задача

$$\begin{aligned} \max_{\boldsymbol{\lambda}} \boldsymbol{\lambda}^{\top} \mathbf{b} \\ \text{s.t. } \mathbf{C} - \sum_{i=1}^{m} \lambda_i \mathbf{A}_i \succeq 0 \end{aligned}$$

Рассмотрим задачу

 $\min x_2$ 

s.t. 
$$\begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

#### Рассмотрим задачу

 $\min x_2$ 

s.t. 
$$\begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

#### Рассмотрим задачу

 $\min x_2$ 

s.t. 
$$\begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

$$p^* = 0$$

Рассмотрим задачу

 $\min x_2$ 

s.t. 
$$\begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

 $p^* = 0$ 

Двойственная задача имеет вид

$$\min -y_{11}$$
 s.t.  $\mathbf{Y}\succeq 0$   $y_{11}+y_{32}+y_{23}=1$   $y_{22}=0$ 

Рассмотрим задачу

 $\min x_2$ 

s.t. 
$$\begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

 $p^* = 0$ 

Двойственная задача имеет вид

$$\min -y_{11}$$
 s.t.  $\mathbf{Y} \succeq 0$  
$$y_{11} + y_{32} + y_{23} = 1$$
 
$$y_{22} = 0$$

▶ Допустимое множество:  $y_{11} \ge 0, y_{22}y_{33} - y_{23}y_{32} \ge 0$ 

Рассмотрим задачу

$$\min x_2$$

s.t. 
$$\begin{bmatrix} x_2 + 1 & 0 & 0 \\ 0 & x_1 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \succeq 0$$

Допустимое множество:

$$x_2 \ge -1, x_1 \ge 0, -x_2^2 \ge 0, x_1(x_2 + 1) \ge 0, (x_2 + 1)(-x_2^2) \ge 0$$

 $p^* = 0$ 

Двойственная задача имеет вид

$$\min -y_{11}$$
s.t.  $\mathbf{Y} \succeq 0$ 

$$y_{11} + y_{32} + y_{23} = 1$$

$$y_{22} = 0$$

- ▶ Допустимое множество:  $y_{11} \ge 0, y_{22}y_{33} y_{23}y_{32} \ge 0$
- $d^* = -1$

▶ Преобразования задач и их типы

- ▶ Преобразования задач и их типы
- ▶ Двойственная функция и её свойства

- ▶ Преобразования задач и их типы
- ▶ Двойственная функция и её свойства
- Двойственная задача и её свойства

- Преобразования задач и их типы
- Двойственная функция и её свойства
- Двойственная задача и её свойства
- ▶ Сильная двойственность и слабая двойственность

- Преобразования задач и их типы
- Двойственная функция и её свойства
- ▶ Двойственная задача и её свойства
- Сильная двойственность и слабая двойственность
- Обобщённые неравенства