Comparison of Sequential and Parallel Fast Fourier Transform

Rami Jurdi Zachary Noble Gregory Freitas Jayden Bendezu

Abstract—This research is in the Digital Signal Processing field where our aims are to improve the performance of real-time signal processing using parallel processing techniques coupled with 1 dimensional Fast Fourier Transforms. It has been done before by other researchers implementing multi-dimensional Fast Fourier Transforms in a multi-threaded context. The purpose of our research is to gain a better understanding of parallel processing techniques and digital signal processing. Thus the main goal is to observe the outcome of implementing a multi-threaded Fast Fourier transform algorithm and learn from the state-of-the-art research.

I. INTRODUCTION

The Fast Fourier transform (FFT) is an algorithm that uses Discrete Fourier transforms (DFT) on a time sequence to convert a signal, usually based on time, to a signal based in the frequency domain. This allows us to analyze a sequence of time-values by decomposing it into bins of different frequencies. The Fast Fourier transform is used in many applications ranging from digital signal processing, sampling, pitch correction software, and wave analysis.

The direct computation of the DFT results in n^2 multiplications and n(n-1) additions, making the computation greatly expensive for sufficiently large n. Over the course of many years of research done by researchers in the field, more efficient algorithms were developed for computing DFTs, such as the Cooley-Tukey FFT algorithm. This algorithm reduces the time complexity of the computation of Fourier transforms from $O(n^2)$ to O(nlogn) [1].

In this paper, we present our process of implementing the parallel FFT algorithm, specifically a variant of the Cooley-Tukey algorithm, and conduct performance comparisons between the sequential and parallel versions of the algorithm in C++.

II. TARGET PROBLEM

The main problem at hand is to create an application that is able to process signals provided to the program as audio files such as .WAV, .MP3, and .MP4. Then displaying the audio files as a spectrograph of its signals, which is calculated using the Fast Fourier Transform algorithm. This problem can be broken into several steps of what we need to achieve.

- A GUI to interact with.
- · Accepting audio files via local upload.
- Decoding the raw audio file data.

- Computing the parallelized Fast Fourier Transform on the audio signal.
- Displaying the detected frequencies in a Frequency vs. Amplitude chart.

A. Approach

Tackling some of the above sub-problems. In order to create a GUI to interact with, we will write the program using the QT C++ GUI framework to simplify taking audio files from disk and decoding the raw data. Through the use of provided libraries of QT the basic functionality of loading files and playing/decoding audio is handled and we use them on a higher level. This will allow us to focus more on the problem of processing signals for the audio files. Then by handling extracting raw data from the audio files using the QAudioDecoder class provided by QT, we intend to use one-dimensional Fast Fourier Transforms to process the signals. (How do we plan to parallelize the FFT is what would be discussed here briefly since will be explained thoroughly within the algorithms subsection).

1) Project Architecture:

B. Plan Outline

An outline of how our project development was structured is detailed below:

- 1) Setup programming environment using Qt C++.
- 2) Add support using Qt multimedia APIs to load and decode audio files from disk.
- 3) Stream the audio data to an output device such as speakers or headphones.
- 4) Display a waveform of the audio.
- 5) Implement single-threaded Fast Fourier Transforms.
- 6) Implement multi-threaded Fast Fourier Transforms.
- Display the frequency vs. amplitude data calculated from the Fast Fourier Transform, in order to validate correctness.
- 8) Conduct experimental tests comparing multi-threaded implementation vs sequential implementation. Observe any performance boosts if any.

C. Algorithm

1) Discrete Fourier Transform: The Discrete Fourier Transform (DFT) can be calculated as a summation of the product

1

of the sample value and a complex exponential term, shown in equation (1).

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{\frac{-j2\pi kn}{N}}$$
 (1)

Where x_n denotes the sample value at index n, j the imaginary number, k the desired frequency, and N the total number of samples. The output of the DFT X_k is the Fourier Transform coefficient for frequency k, which in our program is the magnitude of the real and imaginary output of the DFT, normalized between 0 and 1 with 1 indicating a large response from the DFT for that frequency k.

An equivalent summation can be derived in terms of the trigonemetric functions cosine and sine using Euler's Identity $e^{ix} = cosx + isinx$, as shown in equation (2).

$$X_{k} = \sum_{n=0}^{N-1} x_{n} \left[\cos(\frac{2\pi}{N}kn) - j\sin(\frac{2\pi}{N}kn) \right]$$
 (2)

This version of the DFT makes it easier to compute the real and imaginary components of the equation in code through the use of the std::complex class in the C++ STL.

As mentioned in the introduction, the runtime complexity for direct computation of the DFT is $O(n^2)$ which makes it unusable in real-time applications for significantly large sample sizes; however, the main idea behind the DFT computation is used in the FFT algorithm, but the computation is repeatedly sub-divided instead, achieving better overall performance.

2) Fast Fourier Transform: It is essential that we use an implementation that yields a better runtime as in the case of our program, operating on larger audio files will begin to take much longer and become more inefficient. Thus we will be working with the Fast Fourier transform algorithm to reduce our upper asymptotic bound. The specific FFT algorithm we used is the Cooley-Tukey radix-2 Decimation in Time (DIT) algorithm, which repeatedly divides a DFT of size N into two interleaved DFTs of size N/2.

The interleaving of DFTs is achieved by splitting the evenindexed samples and odd-indexed samples of the original Nsized DFT, computing them using the DFT formula, and combining the results to produce the DFT of the original signal. This assumes that the original DFT size N is a power of 2, which can be ensured by using zero-padding in applications where the original audio file might not be a power of 2. A visualization of how the input signal is divided in the Cooley-Tukey radix-2 DIT algorithm is shown in Figure 1.

The first level of splitting of the DFT can be written as two summations, one operating on even-indices and one on odd indices, as show in equation (3).

$$X_{k} = \sum_{n=0}^{\frac{N}{2}-1} x_{2n} e^{\frac{-j2\pi k(2n)}{N}} + \sum_{n=0}^{\frac{N}{2}-1} x_{2n+1} e^{\frac{-j2\pi k(2n+1)}{N}}$$
(3)

This equation is simplified in terms of cosine and sine for code simplicity in the implementation, similar to equation (2). The algorithm for the Cooley-Tukey radix-2 DIT algorithm

Fig. 1. Example of interleaved decomposition of a 16 point input signal [2].

also makes use of bit-reversal permutation addressing, which swaps the real/imaginary signal input elements based on the bit reversal of their respective index in the signal. This is needed because the splitting of even/odd index elements in the calculation of the FFT leads to unordered output, which this permutation can prevent by pre-processing the bit-reversals in O(n) runtime. Overall, the runtime for the FFT is O(nlogn), which is a significant improvement from the $O(n^2)$ runtime from the direct computation of the DFT.

The sequential implementation in C++ of the Cooley-Tukey radix-2 DIT algorithm that we used in our application came from Project Nayuki [3] and was modified for our use-case.

D. Parallelized Fast Fourier Transform

As explained in section II-A, our application implements a DistributedFFTWorkerThread class which computes the FFT on a slice of the original input of size N. This implementation makes use of the QThread API from the Qt 5 C++ core library. We decided to use 8 total FFT worker threads with each thread operating on an evenly-split amount of samples, padded to the next power of 2 if needed, using bit-shifting to find the size and resizing the std::vector, padded with 0s.

Each thread is spawned in the FTController class which assigns each thread a unique ID from 0-7, which is used in the range calculation (4) of the indices to calculate the FFT on

$$data_i = signal[i*N/p, (i+1)*N/p-1](i = 0, ..., p-1)$$
 (4)

Where N is the total size of the signal input array, i is the unique worker ID, and p is the total amount of worker threads.

This range calculation (4) is a relatively common approach to distributing work between multiple threads, allowing for concurrent work to be done, and was used in the research paper by Zhong Cui-xiang et al. [1], in which they utilize a multiprocessor system to speed up the computation of the 1-D FFT radix-2 DIT algorithm.

For our approach we only utilize threads which operate on separate sections of the signal input, ensuring threadsafe computation without the use of any mutual-exclusion locks. Each thread, however, needs to relay the computed output back to the FTController through the use of thread-safe signals available in the Qt Core library, which could lead to a potential bottleneck for a greater amount of threads. Finally, the FTController combines the split output of the worker threads into a local vector of (frequency, magnitude) points, which is used to plot the Frequency vs. Amplitude graph in our application.

E. Experimental Results

Below is our performance results of the sequential and parallel implementations of the Fast Fourier Transform tested on three different WAV audio files. The computation time may vary among different systems due to hardware capabilities.

Data Set 1				
Algorithm	File	File Size	Comp. Time	
Sequential FFT	440Hz-1s.wav	88 KB	0.0051s	
Parallel FFT	440Hz-1s.wav	88 KB	0.0014s	

Data Set 2					
Algorithm	File	File Size	Comp. Time		
Sequential FFT	440Hz-3s.wav	260 KB	0.023s		
Parallel FFT	440hz-3s.wav	260 KB	0.0047s		

Data Set 3				
Algorithm	File	File Size	Comp. Time	
Sequential FFT	440Hz-30s.wav	2.5 MB	0.34s	
Parallel FFT	440Hz-30s.wav	2.5 MB	0.058s	

The last data set, which contains the 440Hz-30s.wav file, has over 1.3 million total samples in the signal, which is sufficient enough to compare runtimes of the sequential/parallel FFT algorithms. Each audio file was sampled at 44100 Hz, with a 16 bit sample size. So, a 30 second audio file sampled at 44100 Hz contains 30*44100 = 1323000 total samples, which is used as input for the parallel/sequential FFT.

Additionally, each audio file had its FFT computed for 50 trials each, for both the sequential and parallel FFT algorithms, and the average runtimes were calculated and are displayed in the Comp. Time column in the table above. We observed a speedup factor of around 6x on the 30s audio file, utilizing 8 worker threads with our parallel FFT algorithm. As the number of samples increase, there is a greater performance increase between the sequential and parallel FFT implementations, as can be observed in the table.

III. STATE-OF-THE-ART RESEARCH

The discrete fourier transforms have a variety of applications for the science and engineering fields [1]. Though due to how inefficient the base form of fourier transforms are, the Cooley-Tukey Fast Fourier transform was developed in 1965 that was later expanded on [4]. These modified implementations make up the state of the art research in digital signal processing using fourier transforms. Although there are several implementations, they are typically those that improve on the constant factors, none of which that obtain a better upper asymptotic bound of O(NLog(N)). Although the efficiency of each algorithm is typically determined based on the total

of operations which involves the addition and multiplication count aiming for less operations but yielding same results. Further expanding on the FFT algorithms to further increase performance, variations of the algorithms were parallelized. Where some utilize inter-processing communications, and others with no communications. A comparison between the two approaches to parallelizing the FFT is provided in [5], with a end result of no-communications performing better on smaller data sets, and inter-processing communications performing more efficient on larger data sets. In the below subsections, the different implementations are explained in more detail.

A. Radix 2 Decimation in Time

This RAD 2 DIT algorithm makes use of the divide and conquer methodology. Through exploiting the symmetrical properties of the DFT the summation can be broken up into computations of even and odd sample points [6]. The sub trees of even and odd points are then continuously broken up into smaller transforms. Due to the computations not being in a natural ordering it is necessary to use bit reversal to obtain the natural ordering of the results. As said by Douglas L. Jones in [7], it is considered one of the simplest Power-of-two FFT algorithms. That being the case it serves as a great approach to begin with due to its efficiency relative to its simplicity.

B. Split Radix FFT

Similar to the Radix 2 DIT, the sample points are split into even and odd indicies. Although there is a key difference where the even indexed terms uses a radix-2 index map, and the odd indexed terms uses a radix-4 index map. Since the even and odd indicies are computed independantly, it is possible to split them into the two diffrent index mappings. The number of computations required deduce to 4nLog(n) as opposed to the Radix 2 DIT's 5nLog(n) [6]. Due to the efficiency provided by the split radix approach, it is preferred to the Radix 2 approach, as the implementation is not much more difficult to expand to.

C. Prime Factor Algorithm

The idea behind this algorithm is to reorder the DFT computations in such a way that any rendundancies are exposed, overall allowing for the computation of the DFT to be reduced [7]. This approach is not as widely used as the Power-of-two FFT's such as Split radix and Radix-2 DIT discussed above. One characteristic about this algorithm is that it serves to remove the twiddle factors and remaining with multiples of short length, the opposite affect that is achieved with the Power-of-two algorithms. Although this approach is not as widely used, it yields similar operation count on similar length samples [7], making this approach not inferior to the latter.

IV. FURTHER IMPROVEMENTS

Our implementation is only one of many implementation options we found in our research. In our research we found a few possible improvements on top of our current implementation. One possible improvement we could have added

Fig. 2. Example of a split radix approach [8]

to our implementation could have been dynamically adjusting the number of threads we use for calculating our Fourier transform based on the number of samples we have in our audio file. We could have calculated some number of threads that would decrease the amount of padding required to reach a total number of samples that reach a power of 2, then we could theoretically decrease the total computation time by avoiding unhelpful computations.

Another technique that we never were able to implement was something called the split radix algorithm. The way our algorithm works is that we split our sample points of audio into 2 equal groups in radix 2. It is split so that one thread recursively splits the even indices of the audio file into more threads equally, and a second thread recursively splits the odd indices equally between more threads. The split radix approach splits the even indices recursively from one whole chunk, but the odd indices are split into 2 separate threads, to then further be split similarly. This is illustrated in Figure 2.

This approach to splitting up the computation in practice improves performance by 20% [9].

Another improvement we could have made to the Cooley-Tukey radix-2 DIT algorithm was pre-computing the $\frac{N}{2}$ cosine and sine values and re-using those values for each thread, since each of the 8 threads ends up re-computing the same cosine/sine functions independently anyways. This could end up saving us O(n) time in pre-computation for the Cooley-Tukey algorithm; however, the overall runtime complexity stays O(nlogn) due to the main computation loops.

V. RELATED WORK

The implementation that we went with was the Radix 2 Decimation in Time algorithm. Paralleizing it without interprocessing communications, where a constant number of 8 threads are utilized. It varies from the methods used in [10], which instead made use of an arbitrary number of processes *P*.

VI. OUR CONTRIBUTIONS

After performing experiments with sequential and paralell implementations. The exectuion times were recorded and proved that the parallel implementations ran more efficiently. This contributes to the fact that paralell implementations of

the fast fourier transform are more effective. Also that the FFT algorithm is well suited for parallelization. Where there are many applications for FFT, any improvements to the speed of calculations are vital when calculating large sample of *N*.

VII. CONCLUSION

Overall the research was based on a difficult topic, so most of all learning and understanding the math behind it proved to be the toughest hurdle. It was imperative to understand the base discrete fourier transform, to be able to understand its optimization and then implement it. A more straight forward approach of no interprocessing communications was chosen for simplicity. It was easier to follow and understand with it being lockfree and not having and conflicting memory accesses while values were being computed. Also with the nature of the problem being relatively distributed, it seemed natural to apply a distributed approach to calculating the FFT. The performance gains made with our parallelized implementaion were a relatively large improvement, as the sequential fft was about 6 times as slow, making a significant improvement over large number of N samples.

REFERENCES

- Zhong Cui-xiang, Han Guo-qiang, and Huang Ming-he, "Some new parallel fast fourier transform algorithms," in Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT'05), pp. 624–628, 2005.
- [2] Steven W. Smith, "The scientist and engineer's guide to digital signal processing," 1998. [Online].
- [3] Nayuki, "Free small fft in multiple languages," 2021. [Online].
- [4] "The cooley-tukey fast fourier transform algorithm," 2021. [Online].
- [5] R. Al Na'mneh, D. Pan, and R. Adhami, "Parallel implementation of 1-d fast fourier transform without inter-processor communications," in Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005. SSST '05., pp. 307–311, 2005.
- [6] Manish Soni and Padma Kunthe, "A general comparison of fft algorithms," no. 713229618.
- [7] Douglas L. Jones and Ivan Selesnick, The DFT, FFT, and Practical Spectral Analysis. Connexions, 2010.
- [8] B. Karsin, "Parallel fast fourier transform literature review," 2013.
- [9] P. Duhamel and H. Hollmann, "Implementation of "split-radix" fft algorithms for complex, real, and real symmetric data.," ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing, Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '85, vol. 10, pp. 784 – 787, 1985.
- [10] G. Xie and Y. Li, "Parallel computing for the radix-2 fast fourier transform," in 2014 13th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, pp. 133–137, 2014.