Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	8
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	٣
$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	Е
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} t^{\chi\beta} + \partial_{\chi}\partial^{\beta} t^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \ \sigma_{2+}^{\#1}\alpha\beta == 0 \ -i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi} -$	2
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ ^{\it i}\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\epsilon}{}_{\delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$	
	$4 \mathbb{I} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	de generators:	17

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	- <u>i</u> kr5+2 k³ r5	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$	
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0	
$\sigma_{1^-}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 k^4 \; r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2}\;(k^2r_5+2k^4r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$	
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\sigma_{1}^{\#2}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	
	$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_1^{\#2} + \alpha^{eta}$	$\tau_1^{\#1} + ^{\alpha eta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$	

Γ_{2} Γ_{3} Γ_{3} Γ_{4} Γ_{5} Γ_{5	(7±T)
Quadratic (free) action	
$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$	
$rac{1}{6}t_1$ (2 $\mathcal{A}^{lpha\prime}$ $\mathcal{A}^{}_{$	
$\partial' f^{\alpha}_{\ \alpha} - 2 \partial_i f^{\alpha i} \partial_{\theta} f^{\ \theta}_{\ \alpha} + 4 \partial' f^{\alpha}_{\ \alpha} \partial_{\theta} f^{\ \theta}_{\ i} - 6 \partial_{\alpha} f_{\ i\theta} \partial^{\theta} f^{\alpha i} -$	
$3\partial_{\alpha}f_{\theta_{l}}\partial^{\theta}f^{\alpha\prime}+3\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime}+3\partial_{\theta}f_{\alpha_{l}}\partial^{\theta}f^{\alpha\prime}+$	
$3\partial_{\theta}f_{,\alpha}\partial^{\theta}f^{\alpha\prime}+6\mathcal{A}_{\alpha\theta\prime}\left(\mathcal{A}^{\alpha\prime\theta}+2\partial^{\theta}f^{\alpha\prime}\right) ight)+$	
$r_{5}\left(\partial_{i}\mathcal{R}_{\theta}^{k}\partial^{\theta}\mathcal{R}^{lpha_{i}}_{lpha}-\partial_{ heta}\mathcal{R}_{i}^{k}\partial^{\theta}\mathcal{R}^{lpha_{i}}_{lpha}-\left(\partial_{lpha}\mathcal{R}^{lpha_{i} heta}-2\partial^{ heta}\mathcal{R}^{lpha_{i}}_{lpha} ight)$	
$(\partial_{\kappa}\mathcal{A}_{r}^{\kappa}_{\theta}-\partial_{\kappa}\mathcal{A}_{\theta}^{\kappa}_{})))[t, x, y, z]dzdydxdt$	

	${\mathscr{A}_1^{\#1}}^+{}_{\alpha\beta}$	$\mathcal{A}_{1}^{\#2}_{+lphaeta}f_{1}^{\#1}_{lphaeta}$	$f_{1}^{\#1}{}_{\!$	$\mathcal{A}_{1^{\text{-}}\alpha}^{\#1}$	$\mathcal{A}_{1^{-}\alpha}^{\#2}$	$f_{1^{\bar{-}}}^{\#1}\alpha$	$f_{1^-}^{\#2} \alpha$
$\mathcal{A}_{1}^{\#1} + \alpha^{\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\mathcal{A}_{1}^{\#2} + \alpha^{\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_1^{\#1} \dagger^{\alpha\beta}$	$\frac{\delta k t_1}{\sqrt{2}}$	0	0	0	0	0	0
${\mathscr A}_{1}^{\#1}\dagger^{lpha}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>ikt1</u> 3
$\mathcal{A}_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	17 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1}^{\#1} +^{lpha}$	0	0	0	0	0	0	0
$f_{1}^{\#2} +^{\alpha}$	0	0	0	$-\frac{1}{3}ikt_1$	$-\frac{1}{3}\bar{I}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
	$\mathcal{A}^{\#1}_{2+lpha R} f^{\#1}_{2+lpha R} \mathcal{A}^{\#1}_{2-lpha R}$:#1 2+08	#1 2- 080	8	$\mathcal{A}_{0+}^{\#1} f_{0+}^{\#1} f_{0+}^{\#2}$	$\mathcal{A}_{\bar{0}^{-1}}^{\#1}$	

 $au_2^{\#1}{}_{lphaeta}$

 $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

4 k²

 $\frac{1}{(1+2k^2)^2t_1}$

0

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\sigma_{2^- \alpha \beta \chi}^{\# 1}$

τ[#]1 0 0

0

σ[#]1+ τ[#]1+ τ[#]2+ σ[#]1+ σ[#]1+

0

0 0 5

 $\mathcal{A}_{0}^{\#1}+f_{0}^{\#1}+f_{0}^{\#1}+f_{0}^{\#2}+g_{0}^{\#1}+g_{0}^$

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_5 < 0 \&\& t_1 < 0 || t_1 > 0$