Федеральное государственное автономное образовательное учреждение высшего с	бразования
«Национальный исследовательский университет ИТМО»	

Факультет программной инженерии и компьютерной техники

Расчетно-графическая работа №4 по дисциплине «Математическая статистика» Вариант 1

Группа: Р3230

Преподаватель: Лукина Марина Владимировна

Выполнили:

Вавилина Екатерина Кузнецов Кирилл

Медведева Даниэла

Цель работы

Целью данной работы является построение эмпирической зависимости коэффициента конвективного теплообмена α от температуры U на основе экспериментальных данных. Для этого с помощью метода наименьших квадратов (МНК) определяется регрессионная модель вида:

$$\alpha(y) = \theta_0 + \theta_1 \cdot \varphi_1(y) + \theta_2 \cdot \varphi_2(y)$$

где $y = \frac{U - U_0}{\varphi_0 - U_0}$, функции $\varphi_1(y)$ и $\varphi_2(y)$ заданы. Дополнительно оцениваются доверительные интервалы параметров модели и проводится проверка гипотезы об адекватности.

Задание

$$U_0 = 41, \, \Theta_0 = 166, \, g = 0.7$$

$$\varphi_1(t) = y^4$$

$$\varphi_2(t) = y^2 \cdot \cos^2(qy)$$

0. Подготовительный этап

Для удобства обработки введем новую переменную $y = \frac{U - U_0}{\Theta_0 - U_0}$, где $\Theta_0 = U_{I0}$

yi	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.6	0.7	0.8	0.9	1.0
$\alpha_{\rm i}$	3466	3472	3486	3482	3502	3542	3545	3558	3587	3667	3782	

Функция регрессии линейна относительно неизвестных параметров и в новых переменных имеет вид $\alpha(y) = \theta_0 + \theta_1 \varphi_1(t) + \theta_2 \varphi_2(t)$, где функции $\varphi_1(t)$ и $\varphi_2(t)$ заданы, а параметры θ_0 , θ_1 и θ_2 необходимо определить.

1. Оценивание параметров

Для оценки параметров используем МНК и построим нормальную систему уравнений $P \cdot \theta = V$ где:

$$P = \begin{bmatrix} p_{00} & p_{01} & p_{02} \\ p_{10} & p_{11} & p_{12} \\ p_{20} & p_{21} & p_{22} \end{bmatrix}, \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}, \quad V = \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix}$$

$$p_{jk} = p_{kj} = \sum_{i=1}^{n} \varphi_j(y_i)\varphi_k(y_i), \quad v_j = \sum_{i=1}^{n} \alpha_i \varphi_j(y_i), \quad j = 0, 1, 2; \quad k = 0, 1, 2; \quad \varphi_0(y) = 1$$

$$P = \begin{bmatrix} 11.0 & 2.533 & 2.758 \\ 2.533 & 1.677 & 1.268 \\ 2.758 & 1.268 & 1.148 \end{bmatrix} \qquad V = \begin{bmatrix} 39089.0 \\ 9316.0 \\ 9990.8 \end{bmatrix}$$

Решим систему уравнений $P \cdot \theta = V$

$$\theta_0 = 3478.837$$
 $\theta_1 = 244.243$
 $\theta_2 = 73.607$

Вычислим
$$S_{min} = \sum_{i=0}^{10} (\alpha_i - (\theta_0 + \theta_1 \varphi_1(t) + \theta_2 \varphi_2(t)))^2$$
 и $\sigma^2 = \frac{S_{min}}{n-m}$ при $n-m=8$

Дисперсия измерения: $\sigma^2 = 318.403$

Для вычислений минимальной суммы рассчитаем следующие значения:

i	yi	$\alpha_{\rm i}$	$\tilde{\alpha}(y_i)$	$\Delta lpha_{ m i}$	$(\Delta \alpha_{\rm i})^2$
0	0.000	3466.00	3478.84	-12.84	164.80
1	0.100	3472.00	3479.59	-7.59	57.67
2	0.200	3486.00	3482.12	3.88	15.09
3	0.300	3482.00	3487.15	-5.15	26.55
4	0.400	3502.00	3495.97	6.03	36.39
5	0.500	3542.00	3510.34	31.66	1002.31
6	0.600	3545.00	3532.58	12.42	154.16
7	0.700	3558.00	3565.56	-7.56	57.14
8	0.800	3587.00	3612.70	-25.70	660.29
9	0.900	3667.00	3678.01	-11.01	121.29
10	1.000	3782.00	3766.14	15.86	251.54

Аппроксимация зависимости $\alpha(y)$

2. Построение доверительных интервалов

Для построения доверительных интервалов построим корреляционную матриц

$$\tilde{K} = \begin{bmatrix} \tilde{\sigma}^2[\tilde{\theta}_0] & \cos[\tilde{\theta}_0, \tilde{\theta}_1] & \cos[\tilde{\theta}_0, \tilde{\theta}_2] \\ \cos[\tilde{\theta}_1, \tilde{\theta}_0] & \tilde{\sigma}^2[\tilde{\theta}_1] & \cos[\tilde{\theta}_1, \tilde{\theta}_2] \\ \cos[\tilde{\theta}_2, \tilde{\theta}_0] & \cos[\tilde{\theta}_2, \tilde{\theta}_1] & \tilde{\sigma}^2[\tilde{\theta}_2] \end{bmatrix} = \tilde{\sigma}^2 \cdot P^{-1}$$

Матрица К:

93.512	175.454	-418.599
175.454	1487.947	-2066.116
-418.599	-2066.116	3566.656

t-критерий Стьюдента при $n-m=8,\,\alpha=0.05$: 1.8595

Найдем доверительные интервалы для параметров функции

$$\tilde{\theta}_{k} - t_{n-m,1-\alpha} \cdot \tilde{\sigma} \left[\tilde{\theta}_{k} \right] < \theta_{k} < \tilde{\theta}_{k} + t_{n-m,1-\alpha} \cdot \tilde{\sigma} \left[\tilde{\theta}_{k} \right], \ k = 0,1,2$$

$$\sigma(\theta_0) = \sqrt{K[0,0]} = 9.670$$

$$\sigma(\theta_1) = \sqrt{K[1,1]} = 38.573$$

$$\sigma(\theta_2) = \sqrt{K[2,2]} = 59.721$$

Следовательно:

$$\theta_0$$
: [3460.855,3496.819]
 θ_1 : [172.513,315.974]
 θ_2 : [-37.448,184.661]

Найдем дисперсию функции регрессии и доверительный интервал для функции

$$\begin{split} \tilde{\sigma}^2[\tilde{\alpha}(y)] &= \tilde{\sigma}^2[\tilde{\theta}_0] + 2\mathrm{cov}[\tilde{\theta}_0, \tilde{\theta}_1] \varphi_1(y) + 2\mathrm{cov}[\tilde{\theta}_0, \tilde{\theta}_2] \varphi_2(y) + \tilde{\sigma}^2[\tilde{\theta}_1] \varphi_1^2(y) + 2\mathrm{cov}[\tilde{\theta}_1, \tilde{\theta}_2] \varphi_1(y) \varphi_2(y) + \tilde{\sigma}^2[\tilde{\theta}_2] \varphi_2^2(y) \\ \tilde{\alpha}(y) &= t_{n-m,1-\alpha} \cdot \tilde{\sigma}[\tilde{\alpha}(y)] < \alpha(y) < \tilde{\alpha}(y) + t_{n-m,1-\alpha} \cdot \tilde{\sigma}[\tilde{\alpha}(y)] \end{split}$$

Таблица с доверительными интервалами:

y _i	α_{i}	$\tilde{\alpha}(y_i)$	$\tilde{\sigma}[\tilde{\alpha}(y_i)]$	$b_1(y_i)$	b ₂ (y _i)
0.000	3466.0	3478.84	93.51	3460.86	3496.82
0.100	3472.0	3479.59	85.57	3462.39	3496.80
0.200	3486.0	3482.12	66.47	3466.95	3497.28
0.300	3482.0	3487.15	47.93	3474.28	3500.03
0.400	3502.0	3495.97	42.01	3483.92	3508.02
0.500	3542.0	3510.34	53.17	3496.78	3523.90
0.600	3545.0	3532.58	73.27	3516.67	3548.50
0.700	3558.0	3565.56	84.72	3548.44	3582.68
0.800	3587.0	3612.70	77.46	3596.33	3629.06
0.900	3667.0	3678.01	85.24	3660.84	3695.18
1.000	3782.0	3766.14	245.86	3736.98	3795.30

График функции и с доверительным интервалом:

3. Проверка гипотез об адекватности модели

Проверку гипотезы будем проводить для каждого из коэффициентов θ_1 , θ_2 , отдельно. Проверяется гипотеза H_0 : в функции регрессии коэффициент $\theta_1 = 0$ ($\theta_2 = 0$). Конкурирующая гипотеза H_1 : $\theta_1 \neq 0$ ($\theta_2 \neq 0$). Уровень значимости - $\alpha = 0.05$

Найдем
$$S_{min}^{(I)}$$
 и $S_{min}^{(2)}$ и введем статистики $F^{(I)}=\frac{\frac{1}{m-(m-I)}(S_{min}^{(I)}-S_{min})}{\frac{1}{n-m}S_{min}}$ и $F^{(2)}=$

$$\frac{\frac{1}{m - (m - l)} (S_{min}^{(2)} - S_{min})}{\frac{1}{n - m} S_{min}}$$

$$S_{min}^{(I)} = 4705.981$$

 $S_{min}^{(2)} = 3030.900$

$$F^{(1)} = 6.840$$

$$F^{(2)} = 1.558$$

По заданному уровню значимости построим $W = [F_{m-(m-1),n-m,\alpha};\infty) = [5.317;\infty)$

$$F^{(I)} = 6.840 > 5.317 = F$$
 - гипотеза H_0 отвергается, гипотеза H_1 - принимается

$$F^{(2)} = 1.558 < 5.317 = F$$
 - гипотеза H_0 не отвергается

Общий график для всех рассматриваемых функций:

Вывод

В ходе выполнения работы была построена регрессионная модель, описывающая зависимость коэффициента теплообмена от температуры. С помощью метода наименьших квадратов найдены параметры модели, а также рассчитаны доверительные интервалы для них. Проведена проверка значимости коэффициентов, которая показала, что модель адекватно описывает экспериментальные данные. Это позволяет считать её пригодной для дальнейшего анализа и практического применения.