CN Diagrams Module-1

Module-2

Shielded Twisted Pair Cable

Unshielded Twisted Pair Cable

Coaxial cable

Circuit Globe

Types of Electromagnetic Radiation

[©] Encyclopædia Britannica, Inc.

Module-3

A frame in a character-oriented protocol

Byte stuffing

Bit stuffing and unstuffing

Stop-and-Wait Protocol

Go-Back-N ARQ

Selective Repeat ARQ

a. Window size = 2^{m-1}

b. Window size $> 2^{m-1}$

HDLC frames

Working of error detection

Checksum

Original Data

CRC

Hamming code

Fig. 5.22 b) 15-bit hamming code C(15,11)

Given data bit = 1011

P4, P2 and P1 is to be decided.

Step 2: Decide P1:

For P1, sections to be considered are 1,3,5,7

Here, we have to set P1=1 as 3,5,7=111 in order to have the even parity.

Step 3: Decide P2

For P2, sections to be considered are 2,3,6,7

Here, we have to set P2=0 as 3,6,7=101 in order to have the even parity.

Thus, the code word which is transmitted to the receiver = 1010101

Step 4: Decide P4

For P4, sections to be considered are 4,5,6,7

Here, we have to set P4=0 as 5,6,7=101 in order to have the even parity.

Time (shaded slots indicate collisions)

Time (shaded slots indicate collisions)

Csma

Controlled access

Reservation

Polling

Token passing

Module-4

Fig: IPv4 Frame Format

Fig 4.20.1.; IPv6 Fixed Header

Position of ARP and RARP in TCP/IP Protocol Suite

ARP Packet

Hardware Type		Protocol Type	
Hardware length	Protocol length	Operation Request 1, Reply 2	
Sender hardware address (For example, 6 bytes for Ethernet)			
Sender protocol address (For example, 4 bytes for IP)			
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)			
Target protocol address (For example, 4 bytes for IP)			

RARP packet

Hardware type		Protocol type	
Hardware length	Protocol length	Operation Request 3, Reply 4	
Sender hardware address (For example, 6 bytes for Ethernet)			
Sender protocol address (For example, 4 bytes for IP) (It is not filled for request)			
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled for request)			
Target protocol address (For example, 4 bytes for IP) (It is not filled for request)			

Module-5

Connectionless

Connection oriented

UDP header

UDP pseudo header

TCP segment header

Three way handshake

4 way handshake

TCP slow start

Fig. 5.1.9: HTTP Transaction

Fig. 5.3.7: Range of SMTP Protocol

Fig. 5.3.13: Connection Establishment in SMTP

SMTP - Simple Mail Transfer Protocol (e-mail

SMTP - Domain Name System

Fig. 5.4.1 : Example of DNS

Module-6

