(NATURAL SCIENCE)

Vol. 61 No. 7 JUCHE104(2015).

주체104(2015)년 제61권 제7호

로바스트외란관측기에 의한 유연관절의 조종

윤정남, 리진성

론문에서는 닫긴로바스트안정성을 만족시키는 외란관측기의 설계와 실현방법을 탄성 축을 가진 유연관절의 로바스트조종에 응용하는 문제를 론의하였다.

설계 및 모의결과는 하드디스크의 자두위치정밀조종체계에서 로바스트외란관측기가 선행한 방법들에 비하여 높은 조종정확도를 보장할수 있다는것을 보여주었다.

1. 외란관측기설계문제

외란관측기[1]의 리용은 운동조종에서 목표추정특성과 같은 파라메터불확정성에 의한 외란억제와 로바스트성을 담보하는 가장 효과적인 방법의 하나이며 운동조종체계에서 광범히 응용된다.[2-5]

선행연구[9]에서는 상대차수조건과 내부모형차수조건과 같은 구조적속박을 해결하고 해석적인 방법으로 외란관측기의 설계문제를 푸는 방법론을 제기하였는데 이 방법은 고속고정밀도운동조종을 실현하는데서 효과적인 방법으로 된다.

DOB의 로바스트성과 외란억제특성은 DOB의 설계에서 Q-려파기를 어떻게 최량으로 선택하는가에 달려있다. 바터워스모형과 이항곁수모형과 같은 고차의 Q-려파기에 대한 전 형적인 려파기모형은 선행연구[6-8]에서 광범히 리용하였지만 이러한 모형은 고정된 곁수 구조로 하여 설계에서 제한성을 가진다.

최근에 H_{∞} 조종방식을 리용한 DOB의 여러가지 설계방법들이 소개[9-11]되였다. 이러한 설계알고리듬의 대부분은 수값계산에 의거하기때문에 합리적인 설계를 진행할수 없다.

한편 하드디스크, 기계손로보트와 같이 유연관절을 가진 대상의 조종문제를 해결하는 데서 외란관측기는 중요한 역할을 한다.

선행연구[9]에서는 자두위치조종을 위한 외란관측기의 설계문제를 닫긴로바스트안정성을 만족시키는 H_{∞} 노름최량화문제로 정식화하고 수값계산방법에 의하여 그 풀이를 얻어내였다. 그러나 이러한 수값계산방법은 계산과정이 복잡하고 완전한 대역풀이를 얻을수 있다는 담보가 없다.

이 론문에서는 로바스트외란관측기를 유연관절대상의 하나인 하드디스크의 자두위치조종에 응용하는 문제를 론의한다. 여기서는 H_{∞} 노름최량화에 기초한 외란관측기의 설계문제에서 제기되는 구조적제한조건을 가상고리분해법에 의하여 해결한다.

또한 닫긴고리체계의 설계문제가 외란관측기의 Q-려파기설계문제로 변환되여 해석적 인 방법에 의하여 최량풀이를 얻을수 있다.

2. 로바스트외란관측기의 설계

선행연구[12]에서는 닫긴로바스트안정성을 만족시키는 외란관측기의 설계문제가

$$\max \gamma, \min_{\substack{Q \in \Omega_{n, k, q} \\ Q \in RH_{\infty}}} \left\| \begin{array}{c} \gamma \cdot W_{SD}(s) \cdot \frac{1 - Q(s)}{1 + P_n(s)C(s)} \\ W_T(s) \cdot \frac{P_n(s)C(s) + Q(s)}{1 + P_n(s)C(s)} \end{array} \right\| < 1 \tag{1}$$

 $\Omega_{n, k, q} = F(s) | F(s) = M(s) / N(s),$

$$N(s) = \sum_{i=0}^{n} a_i \cdot s^i, \ M(s) = \sum_{j=0}^{m} b_j \cdot s^j,$$
 (2)

$$n-m=k, \ a_k=b_k (k=0, \ \cdots, \ q)$$

에 의하여 주어진다는것을 증명하였다. 여기서 $P_n(s)$ 와 C(s)는 각각 조종대상의 공칭모형과 조종기이다. 또한 $W_T(s)$ 는 대상모형의 상대변동 $\Delta(s)=(P(s)-P_n(s))/P_n(s)$ 의 주파수상한함수로서

$$\overline{\sigma}(\Delta(j\omega)) \le |W_T(j\omega)|, \ \forall \omega \tag{3}$$

를 만족시키며 $W_{SD}(s)$ 는 감도함수의 저주파대역에서의 무게함수이다. 선행연구[9]에서는 식(2)와 같은 속박조건으로 하여 설계문제 (1)을 해석적인 방법으로 풀지 못하고 수값계산방법에 의하여 풀었는데 이 방법은 풀이과정이 체계적이지 못하고 대역성을 만족시키지 않는다. 선행연구[12]에서는 가상고리분해법에 의하여 속박조건 (2)를 극복함으로써 설계과정의 체계성을 보장할수 있게 되였다. 또한 닫긴고리해석에 의하여 식(1), (2)의 설계문제는다음과 같이 변형되었다.

$$\max \gamma, \ \min_{\substack{Q \in \Omega_{n,k,q} \\ Q \in RH_{\infty}}} \left\| \begin{bmatrix} \gamma \cdot W_C(s) \cdot (1 - Q(s)) \\ W_{TD}(s) \cdot Q(s) \end{bmatrix} \right\|_{\infty} < 1$$
 (4)

여기서 안정인 무게함수 $W_C(s)$ 는 다음의 조건을 만족시킨다

$$\left| \frac{W_{SD}(j\omega)}{1 + L(j\omega)} \right| < |W_C(j\omega)|, \ \forall \omega \tag{5}$$

여기서 $L(s) \coloneqq P_n(s)C(s)$ 는 외란관측기를 고려하지 않았을 때의 닫긴체계의 열린고리함수이다. 설계문제 (4)는 닫긴고리체계의 로바스트안정성과 외란억제성능을 반영한 외란관측기의 설계지표로 볼수 있으며 선행연구[12]에서 제기한 방법에 따라서 구조적속박조건이 없는 표준 H_∞ 노름최소화설계수법에 의하여 쉽게 풀수 있다.

3. 유연관절의 모형과 바깥고리조종기의 설계

선행연구[9]의 설계실례인 HDD의 유연팔과 유연관절로보트와 같은 유연대상에 대한 DOB설계를 진행하고 특성을 론의하였다.

이를 위해 조종대상의 모형을 다음과 같이 주었다.

$$P(s) = \frac{K \cdot \omega_n^2}{s^2 + 2\varsigma_1 \omega_n s + \omega_n^2} \cdot \prod_{\lambda} \frac{s^2 + 2\varsigma_{\lambda n} \omega_{\lambda n} + \omega_{\lambda n}^2}{s^2 + 2\varsigma_{\lambda d} \omega_{\lambda d} s + \omega_{\lambda d}^2}$$
(6)

이때 공칭모형 $P_n(s)$ 는 다음과 같이 선택한다.

$$P_n(s) = K \cdot \frac{\omega_n^2}{s^2 + 2c_1\omega_n s + \omega_n^2} \tag{7}$$

한편 급하기섭동 $\Delta(s)$ 는 다음과 같이 계산할수 있다.

$$\Delta(s) = P(s) / P_n(s) - 1 \tag{8}$$

그러면 반결합조종기 C(s)는

$$C(s) = \frac{5\ 850(0.000\ 84s + 1)}{0.000\ 11s + 1} \tag{9}$$

과 같이 설계된다.

4. 유연관절조종을 위한 외란관측기의 설계

로바스트성능지표에 대한 무게함수 $W_{TD}(s)$ 와 로바스트안정성에 대한 무게함수 $W_{C}(s)$ 는

$$W_{TD}(s) = \frac{0.5(s+2\ 000)}{s+0.1}, \quad W_C(s) = \frac{1\ 647.41s(s+1.3\times10^4)^2}{(s+10^6)(s+5\times10^4)^2}$$
(10)

과 같이 선택한다.

이때 주파수함수 $E(\omega)$ 의 응답특성은 그림 1과 같다.

그림 1. $E(\omega)$, $W_{TD}^{-1}(s)$ 와 $Q^*(S)$ 의 주파수응답 $1-E(\omega)$, $2-W_{TD}^{-1}(s)$, $3-Q^*(s)$

제기한 방법에 의해 Q-려파기를 설계하기 위하여 무게함수 $W_{TD}(s)$ 를

$$\widetilde{P}(s) = \frac{\alpha}{(s+\beta)^k}
W_{TD} = \frac{(s+\rho)(s^2 + 2\xi_Q \omega_Q s + \omega_Q^2)}{10^{12}}$$
(11)

과 같이 선택한다.

 $\tilde{P}(s)$ 의 파라메터는 임의로 줄수 있는데 여기서는 $\alpha=1$, $\beta=3$ 으로 주고 그것의 차수는 k=3으로 주었는데 이것은 설계된 Q-려 파기의 상대차수를 나타낸다.

또한 ho=100, $\xi_Q=2$, $\omega_{TD}=15$ 000rad/s 로 선택하였는데 이것은 그림 1에서 보는바

와 같이 $W_{TD}^{-1}(s)$, $E(\omega)$ 의 주파수응답곡선으로부터 주어진 조건을 만족시킨다는것을 알수 있다.

상수외란을 완전히 억제하기 위한 DOB고리의 적분특성을 얻기 위하여 식 (10)에서 $W_{C}(s)$ 를 다음과 같이 변경시킨다.

$$\overline{W}_C(s) = \frac{0.5(s+2\ 000)}{s+\lambda}, \quad \lambda = 0.001$$
 (12)

그러면 $\overline{W_C}(s)$ 는 $|\overline{W_C}^{-1}(j\omega)| < |W_{SD}^{-1}(j\omega)|$, $\forall \omega$ 를 만족시킨다는것을 쉽게 알수 있다. 식 (11), (12)에 대한 표준 H_∞ 문제는 최량화방법에 의하여 풀수 있다. 설계된 최량 \mathbf{O} —러파기

$$Q^*(s) = \frac{9.99 \times 10^{11}}{s^3 + 6.35 \times 10^4 s^2 + 4.40 \times 10^8 s + 9.99 \times 10^{11}}$$
(13)

은 차수 n, 상대차수 k, 내부모형차수 q의 요구를 만족시킨다는것이 명백하다.

그림 1에서 $W_{TD}^{-1}(s)$ 와 $Q^*(s)$ 의 주파수응답곡선으로부터 $Q^*(s)$ 는 평가함수의 노름제한 조건을 만족시킨다는것을 알수 있다.

한편 로바스트안정조건을 만족하는 $Q^*(s)$ 를 가진 반결합고리의 상보감도함수 T(s)에 대한 주파수응답특성은 그림 3과 같다.

다른 한편 감도함수 $1-Q^*(s)$ 와 $1-Q_W(s)$, 상보감도함수 $Q^*(s)$ 와 $Q_W(s)$ 의 주파수응답 특성은 그림 3과 같다. 여기서 $Q_W(s)$ 는 선행연구[9]에서 제기한 LMI방법에 의하여 설계한 풀이이다.

그림 2. 로바스트안정조건의 시험 $1-\Delta^{-1}(s)$, $2-W_T^{-1}(s)$, 3-T(s)

그림 3. 저주파수대역에서 $Q^*(s)$ 와 $Q_W(s)$ 의 외란제거특성의 비교 $1-Q^*(s),\ 2-Q_W(s),\ 3-1-Q^*(s),$ $4-1-Q_W(s),\ 5-W_{SD}^{-1}(s)$

그림 3에서 보는바와 같이 $Q^*(s)$ 의 외란억제특성이 $Q_W(s)$ 보다 거의 2배나 높다는것을 알수 있다. 즉 설계된 DOB는 비록 고주파대역에서 $Q^*(s)$ 의 크기가 $Q_W(s)$ 보다 크지만 저주파대역에서는 로바스트안정성은 물론 더 좋은 외란억제특성을 가진다.

고주파대역에서 $Q^*(s)$ 의 크기를 감소시키기 위하여 식 (11)의 파라메터를 조절할수 있는데 여기서는 $\rho=2~000$, $\xi_Q=0.5$, $\omega_{\rm TD}=2~000{\rm rad/s}$ 로 주었다. 따라서 새로운 무게함수 W_{On} 과 Q-려파기는 다음과 같이 표시된다.

$$W_{Qn}(s) = \frac{s^3 + 3.6 \times s^2 + 7.2 \times 10^6 \, s + 8.0 \times 10^9}{4.5 \times 10^{10}}$$
(14)

$$Q_n^*(s) = \frac{4.50 \times 10^{10}}{s^3 + 7.26 \times 10^3 s^2 + 2.55 \times 10^7 s + 4.50 \times 10^{10}}$$
(15)

그림 4. 고주파수대역에서 개선된 수감부잡음제거특성 $1-Q^*(s), 2-Q_W(s), 3-1-Q^*(s),$ $4-1-Q_W(s), 5-W_{SD}^{-1}(s)$

식 (14), (15)에 의하여 설계된 Q-려파기를 가진 DOB고리의 감도함수와 상보감도함수의 주파수특성은 그림 4와 같다.

그림 4로부터 $Q^*(s)$ 의 크기가 $Q_W(s)$ 보다 더 작다는것을 알수 있다.

맺 는 말

론문에서 제기한 로바스트안정성충분조건에 의하여 닫긴고리특성에 대한 설계문제는 체계적이며 직접적인 풀이알고리듬에 의한 최량로바스트Q-려파기를 쉽게 얻을수 있으므로 DOB내부고리의 Q-려파기설계문제로 변환된다.

결과적으로 저주파대역에서 외란제거특성과 차단주파수근방에서 최대값사이의 최량타 협은 실지 경우에 설계목적에 따라 충분히 달성할수 있다. 설계실례들은 모든 설계요구가 반 결합고리의 로바스트안정성과 감도를 반영하는 적당한 무게함수의 결정에 의하여 만족될 수 있다는것을 보여준다.

참 고 문 헌

- [1] J. S. Ri et al.; Journal of Kim Il Sung University(Natural Science), 4, 1, 26, Juche104(2015).
- [2] H. Tanaka et al.; In Proc. IEEE 10th Int. Workshop Adv. Motion Control, 3, 601, 2008.
- [3] K. Natori et al.; IEEE Trans. Ind. Electron., 57, 3, 1050, 2010.
- [4] W. S. Huang et al.; IEEE Trans. Ind. Electron., 57, 1, 420, 2010.
- [5] Z. Jamaludin et al.; IEEE Trans. Ind. Electron., 56, 10, 3848, 2009.
- [6] T. Umeno et al.; In Proc. 15th Annu. Conf. IEEE Ind. Electron. Soc., 2, 11, 313, 1989.
- [7] C. J. Kempf et al.; IEEE Trans. on Control Systems Technology, 7, 5, 513, 1999.
- [8] E. Schrijver et al.; Journal of Dynamic Systems, Measurement and Control, 124, 4, 539, 2002.
- [9] C. C. Wang et al.; In Proc. American Control Conference, 6, 6, 3764, 2004.
- [10] G. Zhang et al.; In Proc. 7th World Congresson Intelligent Control and Automation, 6, 4697, 2008.
- [11] C. K. Thum et al.; IET Control Theory and Applications, 3, 12, 1591, 2009.
- [12] J. N. Yun et al.; Acta Automatica Sinica, 37, 3, 331, 2011.
- [13] K. Ohnishi et al.; In Proc. 15th Annu. Conf. IEEE Ind. Electron. Soc., 2, 11, 356, 1989.

주체104(2015)년 3월 5일 원고접수

Control of Flexible Joint by Robust Disturbance Observer

Yun Jong Nam, Ri Jin Song

We present a design method for disturbance observer considering disturbance rejecting performance and robust stability of closed-loop system, and apply the method to the controlling of flexible joint.

Key words: robust, closed-loop system