Логика-2, 3 курс М

Виктор Львович Селиванов 1

¹ФМКН СП6ГУ

Весенний семестр, 2024-25

v.selivanov@spbu.ru

Важная дополнительная информация: https://github.com/vseliv/Logic2-2024

Литература

- 1. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. 4-е изд., доп. М.: МЦНМО, 2012. 240 с.
- 2. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., доп. М.: МЦНМО, 2012. 159 с.
- 3. Н. Катленд. Вычислимость. Введение в теорию рекурсивных функций. М: Мир, 1983, 255 с.
- 4. И.А. Лавров, Л.Л. Максимова, Задачи по теории множеств, математической логике и теории алгоритмов. Издание четвертое, М.: Наука, 2001. 256 с.
- 5. Дж. Шенфилд. Математическая логика. М.: Наука, 1975. 528

Выражения ЛП $^{\sigma}$ строятся из исходных символов, разбитых на следующие множества:

 Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; множество предикатных символов непусто.

Выражения ЛП $^{\sigma}$ строятся из исходных символов, разбитых на следующие множества:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; множество предикатных символов непусто.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$

Выражения ЛП $^{\sigma}$ строятся из исходных символов, разбитых на следующие множества:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; множество предикатных символов непусто.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- ightharpoons Логические символы $\land \lor \to \lnot \forall \exists$

Выражения ЛП $^{\sigma}$ строятся из исходных символов, разбитых на следующие множества:

- Множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа; множество предикатных символов непусто.
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- ightharpoons Логические символы $\land \lor \to \lnot \forall \exists$
- Вспомогательные символы (),

Осмысленные выражения $\Pi \Pi^{\sigma}$

тоже терм.

 σ -ТЕРМЫ: любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$

Осмысленные выражения $\Pi\Pi^{\sigma}$

σ -ТЕРМЫ:

любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$ тоже терм.

σ -ФОРМУЛЫ:

суть формулы.

выражение $P(t_1,\ldots,t_n)$, где t_1,\ldots,t_n — термы, а P - n-местный предикатный символ из σ , является формулой; если φ и ψ — формулы, а x — переменная, то выражения $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $\neg \varphi$, $\forall x \varphi$, $\exists x \varphi$

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ; $FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ;

 $FV(\forall x \varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Переменные, которые входят в формулу, но не являются свободными, называются связанными. Формулы без свободных переменных называются предложениями.

Запись $\varphi=\varphi(x_1,\ldots,x_m)$ означает, что $FV(\varphi)\subseteq\{x_1,\ldots,x_m\}$. Аналогично для термов.

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to \{\text{И},\text{Л}\},$ а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to \{\mathsf{VI},\mathsf{II}\}$, а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

Изоморфизмом $\mathbb A$ на $\mathbb B$ называется биекция g множества A на множество B такая, что $P^{\mathbb A}(a_1,\dots,a_n)=P^{\mathbb B}(g(a_1),\dots,g(a_n))$ и $g(f^{\mathbb A}(a_1,\dots,a_n))=f^{\mathbb B}(g(a_1),\dots,g(a_n))$ для любых $a_1,\dots,a_n\in\mathbb A$.

Структуры $\mathbb A$ и $\mathbb B$ называются изоморфными ($\mathbb A \simeq \mathbb B$), если существует изоморфизм $\mathbb A$ на $\mathbb B$.

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathrm N, \mathrm J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x), f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu});$$

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathsf N, \mathsf J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x)$$
, $f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $P(t_1,\ldots,t_n)^{\mathbb{A},\nu} = P^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $(\varphi \wedge \psi)^{\mathbb{A},\nu} = \varphi^{\mathbb{A},\nu} \wedge \psi^{\mathbb{A},\nu}$, аналогично для \vee,\to,\neg ;

$$(\forall x\varphi)^{\mathbb{A},\nu} = \bigwedge_{a \in A} \varphi^{\mathbb{A},\nu_a^x} \text{ in } (\exists x\varphi)^{\mathbb{A},\nu} = \bigvee_{a \in A} \varphi^{\mathbb{A},\nu_a^x}$$

где ν_a^x — означивание, полученное из ν изменением значения x на a.

Значения термов и формул

Пусть $t = t(x_1, \ldots, x_m)$ и $\varphi = \varphi(x_1, \ldots, x_m)$.

- Если означивания μ и ν согласованы на x_1,\dots,x_m , то $t^{\mathbb{A},\mu}=t^{\mathbb{A},\nu}$ и $\varphi^{\mathbb{A},\mu}=\varphi^{\mathbb{A},\nu}$. Поэтому вместо $t^{\mathbb{A},\nu}$ часто пишут $t^{\mathbb{A}}(x_1/a_1,\dots,x_m/a_m)$ или, короче, $t^{\mathbb{A}}(a_1,\dots,a_m)$, где $a_i=\nu(x_i)$; аналогично для формул. Вместо $\varphi^{\mathbb{A}}(a_1,\dots,a_m)=\mathbb{N}$ часто пишут $\mathbb{A}\models\varphi(a_1,\dots,a_m)$.
- Если g изоморфизм $\mathbb A$ на $\mathbb B$, то $g(t^{\mathbb A, \nu}) = t^{\mathbb A, g \circ \nu}$ и $\varphi^{\mathbb A, \nu} = \varphi^{\mathbb A, g \circ \nu}$. Иными словами, $g(t^{\mathbb A}(a_1, \dots, a_m)) = t^{\mathbb B}(g(a_1), \dots, g(a_m))$ и $\varphi^{\mathbb A}(a_1, \dots, a_m) = \varphi^{\mathbb B}(g(a_1), \dots, g(a_m))$.
- Если $\mathbb{A} \simeq \mathbb{B}$, то эти структуры элементарно эквивалентны ($\mathbb{A} \equiv \mathbb{B}$), т.е. в них истинны одни и те же σ -предложения.

Общезначимость и ее варианты

- ightharpoonup arphi общезначима (тождественно истинна), если $arphi^{\mathbb{A},
 u} = \mathbb{N}$ для любых \mathbb{A} и ν .
- ightharpoonup arphi и ψ равносильны ($arphi \equiv \psi$), если $arphi^{\mathbb{A},
 u} = \psi^{\mathbb{A},
 u}$ для любых \mathbb{A} и ν .
- ▶ Моделью множества предложений T называется структура, в которой все предложения из T истинны.
- ▶ Предложение φ логически следует из множества педложений T ($T \models \varphi$), если φ истинно в любой модели множества T.
- ▶ Теория множество предложений. Замкнутая теория теория, замкнутая относительно логического следования. $[T] = \{ \varphi \mid T \models \varphi \}$ замыкание теории T.

Общезначимость и ее варианты

- ightharpoonup arphi общезначима $\iff \models arphi$.
- $ho = \psi \iff (\varphi \to \psi) \land (\psi \to \varphi)$ общезначима.
- ightharpoonup arphi(ar x) общезначима $\iff orall ar x arphi$ общезначима.
- $T \models (\varphi \to \psi) \iff T \cup \{\varphi\} \models \psi.$
- $ightharpoonup T \models arphi \iff T \cup \{ \neg arphi \}$ не имеет модели.
- $lacktriangledown T \models arphi \iff \bigwedge T
 ightarrow arphi$ общезначима, где T конечное множество предложений.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $A \in F \vee (I \setminus A) \in F$ для любого $A \subset I$.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $A \in F \vee (I \setminus A) \in F$ для любого $A \subseteq I$.

ПРЕДЛОЖЕНИЕ.

- 1. Ультрафильтры на I это в точности максимальные фильтры по включению.
- 2. Если F ультрафильтр, то $A \in F \iff (I \setminus A) \not\in F$ и $A \cup B \in F \iff A \in F \lor B \in F$, для любых $A, B \subseteq I$.
- 3. Любой фильтр на I содержится в некотором ультрафильтре.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

ТЕОРЕМА. Для любых ультрафильтра F, σ -формулы $\varphi(x_1,\ldots,x_m)$ и $a_1,\ldots,a_m\in A$ имеем: $\mathbb{A}_F\models\varphi([a_1],\ldots,[a_m])\iff\{i\mid\mathbb{A}_i\models\varphi(a_1(i),\ldots,a_m(i))\}\in F.$

В частности, при m=0: $\mathbb{A}_F\models \varphi\iff \{i\mid \mathbb{A}_i\models \varphi\}\in F.$

Теорема компактности

TEOPEMA. Если любое конечное подмножество множества предложений T имеет модель, то T имеет модель.

Теорема компактности

TEOPEMA. Если любое конечное подмножество множества предложений T имеет модель, то T имеет модель.

Пусть $I=\{i\mid i$ — конечное подмножество $T\}$. Каждое $i\in I$ имеет модель. По аксиоме выбора, существует семейство структур $\{\mathbb{A}_i\}_{i\in I}$ такое, что $\mathbb{A}_i\models i$ для любого $i\in I$. Пусть $G_i=\{j\in I\mid i\subseteq j\}$. Для любых $i,k\in I$ выполнено $G_i\cap G_k=G_{i\cup k}$. Поэтому $F=\{A\subseteq I\mid \exists i(G_i\subseteq A)\}$ — фильтр на I. По доказанному ранее, существует ультрафильтр $H\supseteq F$.

Теорема компактности

TEOPEMA. Если любое конечное подмножество множества предложений T имеет модель, то T имеет модель.

Пусть $I=\{i\mid i$ — конечное подмножество $T\}$. Каждое $i\in I$ имеет модель. По аксиоме выбора, существует семейство структур $\{\mathbb{A}_i\}_{i\in I}$ такое, что $\mathbb{A}_i\models i$ для любого $i\in I$. Пусть $G_i=\{j\in I\mid i\subseteq j\}$. Для любых $i,k\in I$ выполнено $G_i\cap G_k=G_{i\cup k}$. Поэтому $F=\{A\subseteq I\mid \exists i(G_i\subseteq A)\}$ — фильтр на I. По доказанному ранее, существует ультрафильтр $H\supseteq F$.

Утверждаем, что ультрапроизведение \mathbb{A}_H является моделью для T, т.е. $\mathbb{A}_H \models \varphi$ для любого $\varphi \in T$. Но $\{\varphi\} \in I$, откуда $G_{\{\varphi\}} \in F \subseteq H$ и $G_{\{\varphi\}} \subseteq \{i \mid \mathbb{A}_i \models \varphi\} \in H$. По теореме об ультрапоизведении, $\mathbb{A}_H \models \varphi$.

Теорема компактности для нормальных моделей

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

Теорема компактности для нормальных моделей

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

TEOPEMA. Если любое конечное подмножество множества предложений T сигнатуры с равенством имеет нормальную модель, то и все множество T имеет нормальную модель.

Теорема компактности для нормальных моделей

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

TEOPEMA. Если любое конечное подмножество множества предложений T сигнатуры с равенством имеет нормальную модель, то и все множество T имеет нормальную модель.

Для доказательства надо применить предыдущую теорему к множеству $T \cup E_{\sigma}$, где E_{σ} — аксиомы равенства (утверждающие, что = есть σ -конгруэнтность) и профакторизовать полученную модель $\mathbb A$ по конгруэнтности $=^{\mathbb A}$.

Аксиомы равенства, нормальные модели

$$\forall x(x = x), \ \forall x \forall y(x = y \to y = x),$$

$$\forall x \forall y \forall z(x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \to P(y_1, \dots, y_n)).$$

Аксиомы равенства, нормальные модели

$$\forall x(x = x), \ \forall x \forall y(x = y \to y = x),$$

$$\forall x \forall y \forall z(x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \to P(y_1, \dots, y_n)).$$

TEOPEMA. Если теория содержит аксиомы равенства и имеет модель, то она имеет и нормальную модель.

- lack A подструктура $\Bbb B$ ($\Bbb A\subseteq\Bbb B$), если $A\subseteq B$, $P^{\Bbb A}(a_1,\ldots,a_n)=P^{\Bbb B}(a_1,\ldots,a_n)$ и $f^{\Bbb A}(a_1,\ldots,a_n)=f^{\Bbb B}(a_1,\ldots,a_n)$ для всех $a_1,\ldots,a_n\in A$;
- ▶ *вложение* структуры \mathbb{A} в структуру \mathbb{B} это изоморфизм \mathbb{A} на подструктуру структуры \mathbb{B} ;
- ▶ \mathbb{A} элементарная подструктура \mathbb{B} ($\mathbb{A} \leq \mathbb{B}$), если $A \subseteq B$ и $\varphi^{\mathbb{A}}(\overline{a}) = \varphi^{\mathbb{B}}(\overline{a})$) для всех $\overline{a} \in \mathbb{A}$ и для всех формул $\varphi(\overline{x})$;
- ▶ элементарное вложение \mathbb{A} в \mathbb{B} это изоморфизм \mathbb{A} на элементарную подструктуру структуры \mathbb{B} ;
- $ightharpoonup \mathbb{A}$ элементарно эквивалентно \mathbb{B} ($\mathbb{A} \equiv \mathbb{B}$), если они удовлетворяют одни и те же предложения.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X\subseteq A$, $|X|\leq |\mathsf{For}_\sigma|$. Тогда существует $\mathbb{B}\preceq \mathbb{A}$: $X\subseteq B$ и $|\mathbb{B}|\leq |\mathsf{For}_\sigma|$.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |\mathsf{For}_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ и $|\mathbb{B}| \leq |\mathsf{For}_{\sigma}|$.

Д. Определим последовательность

$$X = S_0 \subseteq S_1 \subseteq \dots$$
 по индукции:

$$S_{n+1} = S_n \cup \{ \eta(e) \mid e \in E_n \},$$

где E_n и $\eta:E_n\to A$ определены так:

$$E_n = \{ (\overline{a}, \varphi(\overline{x}, y)) \mid \overline{a} \in S_n \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \} \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \} \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \}$$

$$\mathbb{A} \models \varphi(\overline{a}, \eta(e))$$
 для всех $e \in E_n$. $B = \bigcup_n S_n$.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |\mathsf{For}_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ и $|\mathbb{B}| \leq |\mathsf{For}_{\sigma}|$.

Д. Определим последовательность $X=S_0\subseteq S_1\subseteq\dots$ по индукции: $S_{n+1}=S_n\cup\{\eta(e)\mid e\in E_n\},$ где E_n и $\eta:E_n\to A$ определены так: $E_n=\{(\overline{a},\varphi(\overline{x},y))\mid \overline{a}\in S_n$ и $\mathbb{A}\models \exists y\;\varphi(\overline{a},y)\}$ и $\mathbb{A}\models \varphi(\overline{a},\eta(e))$ для всех $e\in E_n$. $B=\bigcup_n S_n$.

Известен следующий важный результат: Не существует логики, собственным образом расширяющей логику предикатов и удовлетворяющей теоремам компактности и понижения мощности.

Константное обогащение

Если $\sigma\subseteq \tau$, то сигнатура τ называется *обогащением* сигнатуры σ . Если $\mathbb{A}-\sigma$ -структура, то, определив интерпретацию символов из $\tau\setminus\sigma$ в A, получим τ -структуру \mathbb{B} , называемую обогащением структуры \mathbb{A} . Наоборот: если $\mathbb{B}-\tau$ -структура, то, "забывая" интерпретацию символов из $\tau\setminus\sigma$, получим σ -обеднение $\mathbb{B}|_{\sigma}$ структуры \mathbb{B} . Чаще всего сигнатуры обогащаются константными символами.

Константное обогащение

Если $\sigma\subseteq \tau$, то сигнатура τ называется *обогащением* сигнатуры σ . Если $\mathbb{A}-\sigma$ -структура, то, определив интерпретацию символов из $\tau\setminus\sigma$ в A, получим τ -структуру \mathbb{B} , называемую обогащением структуры \mathbb{A} . Наоборот: если $\mathbb{B}-\tau$ -структура, то, "забывая" интерпретацию символов из $\tau\setminus\sigma$, получим σ -обеднение $\mathbb{B}|_{\sigma}$ структуры \mathbb{B} . Чаще всего сигнатуры обогащаются константными символами.

Например, пусть $\mathbb{A}-\sigma$ -структура, а $\sigma_A=\sigma\cup\{c_a\mid a\in A\}$ ее обогащение новыми константными символами c_a такими, что $c_a\neq c_b$ при $a\neq b$. Стандартным константным обогащением структуры \mathbb{A} называется ее σ_A -обогащение, в котором новые символы интерпретируются так: $c_a\mapsto a$, для любого $a\in A$.

Диаграммы структур

Диаграмма σ -структуры \mathbb{A} — это множество $D(\mathbb{A})$ σ_A -предложений вида $f(c_{a_1},\ldots,c_{a_n})=c_a,\ P(c_{a_1},\ldots,c_{a_n}),$ $\neg P(c_{a_1},\ldots,c_{a_n})$, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Полная диаграмма σ -структуры \mathbb{A} — это множество $D^*(\mathbb{A})$ всех σ_A -предложений, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Диаграммы структур

Диаграмма σ -структуры \mathbb{A} — это множество $D(\mathbb{A})$ σ_A -предложений вида $f(c_{a_1},\ldots,c_{a_n})=c_a,\ P(c_{a_1},\ldots,c_{a_n}),$ $\neg P(c_{a_1},\ldots,c_{a_n}),$ истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Полная диаграмма σ -структуры \mathbb{A} — это множество $D^*(\mathbb{A})$ всех σ_A -предложений, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

ПРЕДЛОЖЕНИЕ. 1. σ -Структура $\mathbb A$ изоморфно вкладывается в σ -структуру $\mathbb B\iff \mathbb B$ является σ -обеднением некоторой модели множества $D(\mathbb A)$.

2. σ -Структура $\mathbb A$ элементарно вкладывается в σ -структуру $\mathbb B\iff \mathbb B$ является σ -обеднением некоторой модели множества $D^*(\mathbb A)$.

Повышение мощности

TEOPEMA. Пусть имеется бесконечная σ -структура $\mathbb A$ и кардинал $\kappa \ge \max(|A|,|\mathsf{For}_\sigma|)$. Тогда $\mathbb A$ элементарно вкладывается в некоторую структуру мощности κ .

Повышение мощности

TEOPEMA. Пусть имеется бесконечная σ -структура $\mathbb A$ и кардинал $\kappa \ge \max(|A|,|\mathsf{For}_\sigma|)$. Тогда $\mathbb A$ элементарно вкладывается в некоторую структуру мощности κ .

Обогатим σ до $\tau=\sigma_A\cup\{d_\alpha\mid \alpha\in\kappa\}$, добавив κ новых различных константных символов в σ_A , и рассмотрим τ -теорию

$$T = D^*(A) \cup \{ \neg (d_{\alpha} = d_{\beta}) \mid \alpha, \beta \in \kappa, \alpha \neq \beta \}.$$

Любое конечное $T_0 \subseteq T$ имеет модель, являющуюся τ -обогащением структуры \mathbb{A}_A , в котором константы $\{d_\alpha\}$, входящие в T_0 , интерпретируются различными элементами A. По теореме компактности, T имеет модель \mathbb{C} . Поскольку $lpha\mapsto d_{lpha}^{\mathbb{C}}$ — инъекция из κ в C , $\kappa\leq |C|$. Пусть $X\subseteq C$ множество мощности κ , содержащее \mathbb{C} -интерпретации всех c_a , $a \in A$. По теореме о понижении мощности, найдется $\mathbb{B}' \preceq \mathbb{C}$ мощности $|\mathbb{B}'| \leq |\mathsf{For}_{\tau}| \leq \kappa$. С другой стороны, $B' \supset X$, поэтому $|B'| \geq |X| = \kappa$, откуда $|\mathbb{B}'| = \kappa$. Обеднение $\mathbb{B} = \mathbb{B}' | \sigma$ имеет мощность κ и $\mathbb A$ элементарно вкладывается в $\mathbb B$.

Мощность моделей теории

В качестве следствий теорем о повышении и понижении мощности получаем:

Мощность моделей теории

В качестве следствий теорем о повышении и понижении мощности получаем:

TEOPEMA. Если σ -теория T имеет модель мощности $\geq n$ для любого $n\in\mathbb{N}$, то она имеет модель любой мощности $\kappa\geq |{\sf For}_\sigma|.$

Мощность моделей теории

В качестве следствий теорем о повышении и понижении мощности получаем:

TEOPEMA. Если σ -теория T имеет модель мощности $\geq n$ для любого $n\in\mathbb{N}$, то она имеет модель любой мощности $\kappa\geq |{\sf For}_\sigma|.$

TEOPEMA. Если σ -теория T имеет единственную с точностью до изоморфизма модель некоторой мощности $\kappa \geq |\mathsf{For}_\sigma|$ и не имеет конечных моделей, то она полна (т.е. $T \models \varphi \lor T \models \neg \varphi$ для любого σ -предложения φ).

Аксиоматизируемые классы

- ightharpoonup T множество σ -предложений.
- ▶ Теории T соответствует класс ее моделей $\mathrm{Mod}(T) = \{\mathbb{A} \mid \mathbb{A} \models T\}$
- ► Классу структур $K \subseteq \operatorname{Str}_{\sigma}$ соответствует его теория $\operatorname{Th}(K) = \{ \varphi \in \operatorname{Sent}_{\sigma} \mid \forall \mathbb{A} \in K \ (\mathbb{A} \models \varphi) \}.$
- Класс структур K аксиоматизируем, если $K = \mathsf{Mod}(T)$ для некоторой теории T.
- Класс структур K конечно аксиоматизируем, если $K = \mathsf{Mod}(T)$ для некоторой конечной теории $T = \{\varphi_1, \dots, \varphi_n\}$. Это равносильно аксиоматизируемости одной формулой $(\varphi_1 \wedge \dots \wedge \varphi_n)$.

Аксиоматизируемые классы: свойства

- 1. Если $T \subseteq T'$, то $\mathsf{Mod}(T) \supseteq \mathsf{Mod}(T')$;
- 2. Если $K \subseteq K'$, то $\mathsf{Th}(K) \supseteq Th(K')$;
- 3. $K \subseteq \mathsf{Mod}(\mathsf{Th}(K))$ и $T \subseteq \mathsf{Th}(\mathsf{Mod}(T))$;
- 4. Класс K аксиоматизируем тогда и только тогда, когда $K = \mathsf{Mod}(\mathsf{Th}(K));$
- 5. Любое пересечение аксиоматизируемых классов является аксиоматизируемым классом. Объединение двух аксиоматизируемых классов является аксиоматизируемым классом;
- 6. Класс K конечно аксиоматизируем тогда и только тогда, когда K и $\mathsf{Str}_\sigma \backslash K$ аксиоматизируемы;
- 7. Класс K аксиоматизируем тогда и только тогда, когда K замкнут относительно элементарной эквивалентности и ультрапроизведений.

Доказательство свойства 7

Достаточно доказать, что из замкнутости следует $\mathsf{Mod}(\mathsf{Th}(K)) \subseteq K$, т.е. любая $\mathbb{A} \models \mathsf{Th}(K)$ элементарно эквивалентна ультрапроизведению подходящего семейства $\{\mathbb{B}_i\}_{i\in I}, \mathbb{B}_i\in K$, по некоторому ультрафильтру G на I. Зафиксируем $\mathbb{A} \models \mathsf{Th}(K)$ и проверим сначала, что для любого $\varphi \in \mathsf{Th}(\mathbb{A})$ существует $\mathbb{B} \in K$ такая, что $\mathbb{B} \models \varphi$. Пусть нет, т.е. $\mathbb{B} \models \neg \varphi$ для любой $\mathbb{B} \in K$. Тогда $\neg \varphi \in \mathsf{Th}(K)$ и следовательно $\mathbb{A} \models \neg \varphi$ – противоречие. Т. о., существует семейство $\{\mathbb{B}_{\varphi}\}_{\varphi\in\mathsf{Th}(\mathbb{A})}$ K-структур такое, что $\mathbb{B}_{\varphi}\models\varphi$. Для $\varphi \in I$, пусть $U_{\varphi} = \{ \psi \in \mathsf{Th}(\mathbb{A}) \mid \psi \to \varphi \text{ общезначима} \}.$ Тогда $\varphi \in U_{\varphi}$ и $U_{\varphi} \cap U_{\varphi'} = U_{\varphi \wedge \varphi'} \neq \emptyset$, поэтому $F = \{J \subseteq \mathsf{Th}(\mathbb{A}) \mid \exists \varphi (J \supseteq U_{\varphi})\}$ – фильтр на I. Пусть G ультрафильтр, расширяющий F. Остается проверить, что $\mathbb{A} \equiv \mathbb{B}_G$. Достаточно проверить, что $\mathbb{B}_G \models \varphi$ для любого $\varphi \in \mathsf{Th}(\mathbb{A})$. Поскольку для любого $\psi \in U_\phi$

выполнены $\mathbb{B}_{\psi} \models \psi \to \varphi$ и $\mathbb{B}_{\psi} \models \psi$, получаем $\mathbb{B}_{\psi} \models \varphi$. Отсюда

 $U_{arphi}\subseteq\{\psi\in\mathsf{Th}(\mathbb{A})\mid\mathbb{B}_{\psi}\modelsarphi\}\in F\subseteq G$, значит $\mathbb{B}_{G}\modelsarphi$.

Классификация формул

- Σ_0 множество всех формул, равносильных бескванторным формулам;
- $ightharpoonup \Sigma_1$ множество всех формул, равносильных формулам вида $\exists \overline{x} \ \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- ▶ Σ_2 множество всех формул, равносильных формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная, и т.д.;
- lacktriangle множество Π_n определяется аналогично множеству Σ_n с заменой \exists на \forall и наоборот.

Классификация формул

- Σ_0 множество всех формул, равносильных бескванторным формулам;
- $ightharpoonup \Sigma_1$ множество всех формул, равносильных формулам вида $\exists \overline{x} \ \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- ▶ Σ_2 множество всех формул, равносильных формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная, и т.д.;
- ▶ множество Π_n определяется аналогично множеству Σ_n с заменой \exists на \forall и наоборот.

ПРЕДЛОЖЕНИЕ. 1. $\Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}$.

- 2. Множества Σ_n и Π_n замкнуты относительно \wedge, \vee .
- 3. $\varphi \in \Pi_n \iff \neg \varphi \in \Sigma_n$.
- 4. $\bigcup \Sigma_n = \bigcup \Pi_n = \mathsf{For}_{\sigma}$.

Основные равносильности

```
1. (\varphi \to \psi) \equiv (\neg \varphi \lor \psi); 2. \neg \neg \varphi \equiv \varphi;
3. \neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi); 4. \neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi);
5. (\varphi \wedge \psi) \equiv (\psi \wedge \varphi); 6. (\varphi \vee \psi) \equiv (\psi \vee \varphi);
7. \varphi \wedge (\psi \wedge \theta) \equiv (\varphi \wedge \psi) \wedge \theta;
8. \varphi \lor (\psi \lor \theta) \equiv (\varphi \lor \psi) \lor \theta;
9. \varphi \wedge (\psi \vee \theta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \theta);
10. \varphi \lor (\psi \land \theta) \equiv (\varphi \lor \psi) \land (\varphi \lor \theta).
11. \neg(\forall x\varphi) \equiv \exists x(\neg\varphi);
12. \neg(\exists x\varphi) \equiv \forall x(\neg\varphi);
13. \psi \wedge \forall x \varphi \equiv \forall x (\psi \wedge \varphi);
14. \psi \vee \exists x \varphi \equiv \exists x (\psi \vee \varphi);
15. \psi \lor \forall x \varphi \equiv \forall x (\psi \lor \varphi) (x не входит свободно в \psi);
16. \psi \wedge \exists x \varphi \equiv \exists x (\psi \wedge \varphi) (x не входит свободно в \psi);
17. \forall x \varphi(x) \equiv \forall y \varphi(y) (y не входит в \varphi);
18. \exists x \varphi(x) \equiv \exists y \varphi(y) (y не входит в \varphi).
```

TEOPEMA. Аксиоматизируемый класс K является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур.

TEOPEMA. Аксиоматизируемый класс K является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур.

Д-во \Leftarrow . Пусть $K=\operatorname{Mod}(T)$. Достаточно проверить $K=\operatorname{Mod}(\Gamma)$, $\Gamma=\{\varphi\in\Pi_1\mid T\models\varphi\}$. Включение K в $\operatorname{Mod}(\Gamma)$ очевидно. Проверим, что $\mathbb{B}\in K$ для любой $\mathbb{B}\models\Gamma$. Заметим, что существует $\mathbb{A}\models T\cup\operatorname{Th}_{\Sigma_1}(\mathbb{B})$ (иначе, по компактности, $T\cup\{\psi_1,\dots,\psi_n\}$ не имеет модели для конечного множества $\psi_i\in\operatorname{Th}_{\Sigma_1}(\mathbb{B})$, откуда $\psi=\psi_1\wedge\ldots\wedge\psi_n\in\Sigma_1$, $T\models\neg\psi\in\Pi_1$, а значит, $\mathbb{B}\models\neg\psi\wedge\psi$, противоречие).

TEOPEMA. Аксиоматизируемый класс K является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур.

Д-во \Leftarrow . Пусть $K = \operatorname{Mod}(T)$. Достаточно проверить $K = \operatorname{Mod}(\Gamma)$, $\Gamma = \{\varphi \in \Pi_1 \mid T \models \varphi\}$. Включение K в $\operatorname{Mod}(\Gamma)$ очевидно. Проверим, что $\mathbb{B} \in K$ для любой $\mathbb{B} \models \Gamma$. Заметим, что существует $\mathbb{A} \models T \cup \operatorname{Th}_{\Sigma_1}(\mathbb{B})$ (иначе, по компактности, $T \cup \{\psi_1, \dots, \psi_n\}$ не имеет модели для конечного множества $\psi_i \in \operatorname{Th}_{\Sigma_1}(\mathbb{B})$, откуда $\psi = \psi_1 \wedge \dots \wedge \psi_n \in \Sigma_1$, $T \models \neg \psi \in \Pi_1$, а значит, $\mathbb{B} \models \neg \psi \wedge \psi$, противоречие).

Для проверки $\mathbb{B} \in K$ достаточно вложить \mathbb{B} в некоторую $\mathbb{C} \in K$, т.е. проверить, что $T \cup D(\mathbb{B})$ имеет модель. По компактности, достаточно проверить, что $T \cup \{\delta_1, \dots, \delta_m\}$ имеет модель, где $\delta_i = \delta_i(\overline{c}) \ (c \in \sigma_B)$. Поскольку $\mathbb{B} \models \exists \overline{x} \delta(\overline{x}) \in \Sigma_1, \ \delta = \delta_1 \wedge \dots \wedge \delta_m, \ \mathbb{A} \models \exists \overline{x} \delta(\overline{x})$. Значит, \mathbb{A} можно обогатить до модели $T \cup \{\delta_1, \dots, \delta_m\}$.

Класс структур K замкнут относительно объединений цепей, если из $\mathbb{A}_n \in K$ и $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \dots$ следует $\bigcup \mathbb{A}_n \in K$.

TEOPEMA. Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

Класс структур K замкнут относительно объединений цепей, если из $\mathbb{A}_n \in K$ и $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \dots$ следует $\bigcup \mathbb{A}_n \in K$.

TEOPEMA. Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

Класс структур K замкнут относительно объединений цепей, если из $\mathbb{A}_n \in K$ и $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \dots$ следует $\bigcup \mathbb{A}_n \in K$.

TEOPEMA. Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

 $egin{aligned} \mathcal{A}. & \mathsf{H}\mathsf{a}\mathsf{v}\mathsf{a}\mathsf{n}\mathsf{o} & \mathsf{a}\mathsf{h}\mathsf{a}\mathsf{n}\mathsf{o}\mathsf{o}\mathsf{f}\mathsf{u}\mathsf{v}\mathsf{d}\mathsf{o}\mathsf{n} \end{aligned}$ рассмотрим $\Gamma = \{ \varphi \in \Pi_2 \mid T \models \varphi \}$ и докажем $K = \mathsf{Mod}(\Gamma);$ достаточно проверить, что $\mathbb{B} \models T$ для любой $\mathbb{B} \models \Gamma.$ Как и раньше, существует $\mathbb{A} \models T \cup \mathsf{Th}_{\Sigma_2}(\mathbb{B}).$

Покажем, что существуют $\mathbb{A}' \equiv \mathbb{A}$ и $\mathbb{B}' \succeq \mathbb{B}$ такие, что $\mathbb{B} \subseteq \mathbb{A}' \subseteq \mathbb{B}'$.

Рассмотрим $\operatorname{Th}(\mathbb{A}) \cup \operatorname{Th}_{\Pi_1}(\mathbb{B}_B)$, где $\mathbb{B}_B - \sigma_B$ -обогащение \mathbb{B} . Для любого конечного $\{\delta_1(\overline{c}), \ldots, \delta_m(\overline{c})\} \subseteq \operatorname{Th}_{\Pi_1}(\mathbb{B}_B)$ имеем $\mathbb{B} \models \exists \overline{x}(\delta_1(\overline{x}) \wedge \ldots \wedge \delta_m(\overline{x})) \in \Sigma_2$, откуда $\mathbb{A} \models \exists \overline{x}(\delta_1(\overline{x}) \wedge \ldots \wedge \delta_m(\overline{x}))$.

Значит, некоторое $\sigma_{\overline{c}}$ -обогащение $\mathbb A$ является моделью $\mathsf{Th}(\mathbb A)\cup\{\delta_1(\overline{c}),\dots,\delta_m(\overline{c})\}$. По компактности, есть модель $\mathbb A'_B$ теории $\mathsf{Th}(\mathbb A)\cup\mathsf{Th}_{\Pi_1}(\mathbb B_B)$; пусть $\mathbb A'$ – ее σ -обеднение. Тогда $\mathbb A'\equiv\mathbb A$, $\mathbb B\subseteq\mathbb A'$, и $\mathsf{Th}_{\Sigma_1}(\mathbb B_B)\supseteq\mathsf{Th}_{\Sigma_1}(\mathbb A'_B)$ (поскольку $\mathsf{Th}_{\Pi_1}(\mathbb B_B)\subseteq\mathsf{Th}_{\Pi_1}(\mathbb A'_B)$).

Рассмотрим теперь $D(\mathbb{A}_B') \cup \mathsf{Th}(\mathbb{B}_B)$. Рассуждая как и выше, видим что эта теория имеет модель $\mathbb{B}_{A'}'$ такую, что $\mathbb{B} \preceq \mathbb{B}'$.

Значит, некоторое $\sigma_{\bar{c}}$ -обогащение $\mathbb A$ является моделью $\mathsf{Th}(\mathbb A)\cup\{\delta_1(\bar{c}),\dots,\delta_m(\bar{c})\}$. По компактности, есть модель $\mathbb A'_B$ теории $\mathsf{Th}(\mathbb A)\cup\mathsf{Th}_{\Pi_1}(\mathbb B_B)$; пусть $\mathbb A'$ – ее σ -обеднение. Тогда $\mathbb A'\equiv\mathbb A$, $\mathbb B\subseteq\mathbb A'$, и $\mathsf{Th}_{\Sigma_1}(\mathbb B_B)\supseteq\mathsf{Th}_{\Sigma_1}(\mathbb A'_B)$ (поскольку $\mathsf{Th}_{\Pi_1}(\mathbb B_B)\subseteq\mathsf{Th}_{\Pi_1}(\mathbb A'_B)$).

Рассмотрим теперь $D(\mathbb{A}_B') \cup \mathsf{Th}(\mathbb{B}_B)$. Рассуждая как и выше, видим что эта теория имеет модель $\mathbb{B}_{A'}'$ такую, что $\mathbb{B} \preceq \mathbb{B}'$.

Итерируя конструкцию $(\mathbb{A},\mathbb{B})\mapsto (\mathbb{A}',\mathbb{B}')$, определим структуры $(\mathbb{A}_0,\mathbb{B}_0)=(\mathbb{A},\mathbb{B})$ и $(\mathbb{A}_{n+1},\mathbb{B}_{n+1})=(\mathbb{A}'_n,\mathbb{B}'_n)$.

Тогда $\mathbb{B}_n\subseteq \mathbb{A}_{n+1}\subseteq \mathbb{B}_{n+1}$, $\mathbb{A}_{n+1}\equiv \mathbb{A}_n\equiv \mathbb{A}$, и $\mathbb{B}_n\preceq \mathbb{B}_{n+1}$.

Тогда $\mathbb{B}=\mathbb{B}_0\preceq\mathbb{B}_1\preceq\cdots$, откуда $\mathbb{B}\preceq\bigcup_n\mathbb{B}_n=\bigcup_n\mathbb{A}_n\models T.$

Значит, $\mathbb{B} \models T$.

Полные теории

 σ -Теория T называется *полной*, если она имеет модель и, для любого σ -предложения φ , либо $T\models\varphi$, либо $T\models\neg\varphi$. ПРЕДЛОЖЕНИЕ. Для теории T, имеющей модель, равносильны следующие условия: T-полна; $[T]=\operatorname{Th}(\mathbb{A}),$ для любой $\mathbb{A}\models T$ (где $[T]=\{\varphi\mid T\models\varphi\}-\text{множество}$ всех логических следствий теории T); $\operatorname{Th}(\mathbb{A})=\operatorname{Th}(\mathbb{B})$ для любых $\mathbb{A},$ $\mathbb{B}\models T.$

Полные теории

 σ -Теория T называется *полной*, если она имеет модель и, для любого σ -предложения φ , либо $T \models \neg \varphi$.

ПРЕДЛОЖЕНИЕ. Для теории T, имеющей модель, равносильны следующие условия:

T — полна;

 $[T]=\mathsf{Th}(\mathbb{A})$, для любой $\mathbb{A}\models T$ (где $[T]=\{\varphi\mid T\models\varphi\}$ — множество всех логических следствий теории T); $\mathsf{Th}(\mathbb{A})=\mathsf{Th}(\mathbb{B})$ для любых $\mathbb{A},\,\mathbb{B}\models T.$

Теория называется *категоричной в мощности* κ , если она имеет единственную с точностью до изоморфизма модель мощности κ .

Ранее уже доказали простую, но важную теорему:

Если σ -теория не имеет конечных моделей и категорична в некоторой мощности $\geq |\mathsf{For}_{\sigma}|$, то она полна.

Модельно полные теории

Теория T модельно полна, если она имеет модель и отношения \subseteq, \preceq совпадают на $\mathsf{Mod}(T)$.

Модельно полные теории

Теория T модельно полна, если она имеет модель и отношения \subseteq, \preceq совпадают на $\mathsf{Mod}(T)$.

TEOPEMA. Для теории T, имеющей модель, равносильны:

- 1. T модельно полна.
- 2. Для любой $\mathbb{A} \models T$, теория $T \cup D(\mathbb{A})$ полна.
- 3. Для любых $\mathbb{A},\mathbb{B}\models T$ из $\mathbb{A}\subseteq\mathbb{B}$ следует, что любое Σ_1 -предложение в сигнатуре σ_A , которое истинно в \mathbb{B}_A , будет истинно и в \mathbb{A}_A .
- 4. $\Sigma_1=\Pi_1$ по модулю T (т.е. любая Σ_1 -формула $\varphi(\overline{x})$ равносильна подходящей Π_1 -формуле $\psi(\overline{x})$ в T: $T\models \forall \overline{x}\; (\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$.
- 5. $For_{\sigma} = \Pi_1$ по модулю T.

Доказательство $3\Rightarrow 4$

Пусть $\varphi(\overline{y}) \in \Sigma_1$, нужно проверить, что $T \models \forall \overline{y} \ (\varphi(\overline{y}) \leftrightarrow \psi(\overline{y}))$ для некоторой $\psi(\overline{y}) \in \Pi_1$; достаточно получить $T \models \varphi(\overline{c}) \leftrightarrow \psi(\overline{c})$ для новых констант \overline{c} . Пусть $\Gamma = \{\gamma \in \Pi_1 \mid T \models \varphi(\overline{c}) \to \gamma\}$. Достаточно доказать $T \cup \Gamma \models \varphi(\overline{c})$, поскольку тогда $T \cup \{\gamma_1, \ldots, \gamma_m\} \models \varphi(\overline{c})$ по компактности, и $\psi = \gamma_1 \wedge \cdots \wedge \gamma_k \in \Pi_1$ годится.

Доказательство $3 \Rightarrow 4$

Пусть $\varphi(\overline{y}) \in \Sigma_1$, нужно проверить, что $T \models \forall \overline{y} \ (\varphi(\overline{y}) \leftrightarrow \psi(\overline{y}))$ для некоторой $\psi(\overline{y}) \in \Pi_1$; достаточно получить $T \models \varphi(\overline{c}) \leftrightarrow \psi(\overline{c})$ для новых констант \overline{c} . Пусть $\Gamma = \{\gamma \in \Pi_1 \mid T \models \varphi(\overline{c}) \to \gamma\}$. Достаточно доказать $T \cup \Gamma \models \varphi(\overline{c})$, поскольку тогда $T \cup \{\gamma_1, \ldots, \gamma_m\} \models \varphi(\overline{c})$ по компактности, и $\psi = \gamma_1 \wedge \cdots \wedge \gamma_k \in \Pi_1$ годится.

Для любой $\mathbb{A}\models T\cup\Gamma$ проверим $\mathbb{A}\models\varphi$. Сначала докажем, что $T\cup\{\varphi\}\cup D(\mathbb{A})$ имеет модель. Пусть нет, тогда по компактности для некоторых $\{\delta_1,\ldots,\delta_m\}\subseteq D(\mathbb{A})$ у $T\cup\{\varphi\}\cup\{\delta_1,\ldots,\delta_m\}$ нет модели. Пусть $\delta=\delta_1\wedge\ldots\wedge\delta_m$. По определению диаграммы, $\mathbb{A}\models\exists\overline{x}\;\delta(\overline{x})$. С другой стороны, из-за отсутствия модели $T\cup\{\varphi\}\models\forall x\neg\delta(\overline{x})$, поэтому $T\models\varphi\to\forall\overline{x}\;\neg\delta(\overline{x})$. По определению Γ , $\forall\overline{x}\;\neg\delta(\overline{x})\in\Gamma$, значит эта формула верна в \mathbb{A} . Но и её отрицание верно в \mathbb{A} . Противоречие. Пусть $\mathbb{B}\models T\cup\{\varphi\}\cup D(\mathbb{A})$. Тогда $\mathbb{A}\subseteq\mathbb{B}$, $\varphi-\Sigma_1$ -предложение. Из 3) получаем $\mathbb{A}\models\varphi$, чтд.

Дополнительные свойства

TEOPEMA.

- 1. Любая модельно полная теория Π_2 -аксиоматизируема.
- 2. Если модельно полная теория T имеет модель, которая вкладывается в любую модель T, то T полна.
- 3. Если для любых двух моделей модельно полной теории T существует третья модель, в которую они обе вкладываются, то T полна.
- 4. Теория T допускает элиминацию кванторов (т.е. $For_{\sigma} = \Pi_0$ по модулю T) в точности тогда, когда теория $T \cup D(\mathbb{A})$ полна для любой $\mathbb{A} \subseteq \mathbb{B} \models T$.
- 5. Если теория Π_2 -аксиоматизируема, не имеет конечных моделей и категорична в некоторой мощности $\lambda \geq |\mathsf{For}_\sigma|$, то она модельно полна.

Пусть T допускает \ni K и \land вкладывается в некоторую модель T; надо показать, что теория $T \cup D(\mathbb{A})$ полна. Достаточно доказать, что любые две модели \mathbb{B}, \mathbb{C} этой теории элементарно эквивалентны, т.е. $\varphi^{\mathbb{B}} = \varphi^{\mathbb{C}}$ для любого предложения φ сигнатуры σ_A . По свойству диаграммы, существуют изоморфные вложения $f: \mathbb{A} \to \mathbb{B}|_{\sigma}$ и $g: \mathbb{A} \to \mathbb{C}|_{\sigma}$. Пусть $d=(d_1,\ldots,d_m)$ — все константы из $\sigma_A\setminus\sigma$, входящие в $\varphi = \varphi(d_1, \ldots, d_m)$. Поскольку T допускает ЭК, можем считать arphi бескванторной. Пусть $ar{a}$, $ar{b}$ и $ar{c}$ — интерпретации констант $ar{d}$ в \mathbb{A}, \mathbb{B} и \mathbb{C} . Тогда $\varphi^{\mathbb{B}}(b_1, \ldots, b_m) = \varphi^{\mathbb{B}}(f(a_1), \ldots, f(a_m)) =$ $\varphi^{\mathbb{A}}(a_1,\ldots,a_m)=\varphi^{\mathbb{C}}(q(a_1),\ldots,q(a_m))=\varphi^{\mathbb{C}}(c_1,\ldots,c_m).$

Пусть T допускает \ni K и \land вкладывается в некоторую модель T; надо показать, что теория $T \cup D(\mathbb{A})$ полна. Достаточно доказать, что любые две модели \mathbb{B}, \mathbb{C} этой теории элементарно эквивалентны, т.е. $\varphi^{\mathbb{B}}=\varphi^{\mathbb{C}}$ для любого предложения φ сигнатуры σ_A . По свойству диаграммы, существуют изоморфные вложения $f: \mathbb{A} \to \mathbb{B}|_{\sigma}$ и $g: \mathbb{A} \to \mathbb{C}|_{\sigma}$. Пусть $d=(d_1,\ldots,d_m)$ — все константы из $\sigma_A\setminus\sigma$, входящие в $\varphi = \varphi(d_1, \ldots, d_m)$. Поскольку T допускает ЭК, можем считать arphi бескванторной. Пусть $ar{a}$, $ar{b}$ и $ar{c}$ — интерпретации констант $ar{d}$ в \mathbb{A}, \mathbb{B} и \mathbb{C} . Тогда $\varphi^{\mathbb{B}}(b_1, \ldots, b_m) = \varphi^{\mathbb{B}}(f(a_1), \ldots, f(a_m)) =$ $\varphi^{\mathbb{A}}(a_1,\ldots,a_m)=\varphi^{\mathbb{C}}(q(a_1),\ldots,q(a_m))=\varphi^{\mathbb{C}}(c_1,\ldots,c_m).$

Обратно, пусть $T\cup D(\mathbb{A})$ полна для любой \mathbb{A} , вкладывающейся в некоторую модель T. Надо доказать, что любая σ -формула $\varphi(\bar{x})$ равносильна подходящей бескванторной $\psi(\bar{x})$ в T. Обогатим σ новыми константами \bar{c} до $\sigma_{\bar{c}}$ и подберем $\psi(\bar{x})$ так, что $T\models\varphi(\bar{c})\leftrightarrow\psi(\bar{c})$ в обогащённой структуре.

Пусть Γ — множество всех бескванторных $\sigma_{\overline{c}}$ -предложений таких, что $T \models \varphi(\overline{c}) \to \gamma$. Достаточно проверить $T \cup \Gamma \models \varphi(\overline{c})$, т.е. $\varphi(\overline{c})$ истинна в любой модели $\mathbb{B} \models T \cup \Gamma$. Пусть \mathbb{A} — подструктура \mathbb{B} , порожденная элементами $a_i = c_i^{\mathbb{B}}$, $i = 1, \ldots, k$, и пусть $Diag(\mathbb{A})$ — множество всех бескванторных $\sigma_{\overline{c}}$ -предложений, истинных в \mathbb{A} . Тогда $\mathrm{Diag}(\mathbb{A})$ обладает свойством диаграммы, т.е. σ -обеднения моделей этого множества — это в точности σ -структуры, в которые изоморфно вкладывается $\mathbb{A}|_{\sigma}$. В частности, $\mathbb{B} \models T \cup \mathrm{Diag}(\mathbb{A})$.

Пусть Γ — множество всех бескванторных $\sigma_{\overline{c}}$ -предложений таких, что $T \models \varphi(\overline{c}) \to \gamma$. Достаточно проверить $T \cup \Gamma \models \varphi(\overline{c})$, т.е. $\varphi(\overline{c})$ истинна в любой модели $\mathbb{B} \models T \cup \Gamma$. Пусть \mathbb{A} — подструктура \mathbb{B} , порожденная элементами $a_i = c_i^{\mathbb{B}}$, $i = 1, \ldots, k$, и пусть $Diag(\mathbb{A})$ — множество всех бескванторных $\sigma_{\overline{c}}$ -предложений, истинных в \mathbb{A} . Тогда $\mathrm{Diag}(\mathbb{A})$ обладает свойством диаграммы, т.е. σ -обеднения моделей этого множества — это в точности σ -структуры, в которые изоморфно вкладывается $\mathbb{A}|_{\sigma}$. В частности, $\mathbb{B} \models T \cup \mathrm{Diag}(\mathbb{A})$.

Поскольку теория $T\cup {\sf Diag}({\mathbb A})$ по условию полна, достаточно доказать, что $T\cup {\sf Diag}({\mathbb A})\cup \{\varphi(\overline c)\}$ имеет модель. Предположим противное. Тогда $T\cup \{\delta_1(\overline c),\ldots,\delta_n(\overline c))\}\cup \{\varphi(\overline c)\}$ не имеет модели для некоторого конечного $\{\delta_1(\overline c),\ldots,\delta_n(\overline c))\}\subseteq {\sf Diag}({\mathbb A})$. Тогда $T\models \varphi(\overline c)\to \bigvee_i\neg \delta_i(\overline c)$, значит предложение $\gamma=\bigvee \neg \delta_i(\overline c)$ лежит в Γ , откуда ${\mathbb B}\models \gamma$, а значит и ${\mathbb A}\models \gamma$. Но по определению ${\sf Diag}({\mathbb A})$ выполнено ${\mathbb A}\models \neg \gamma$. Противоречие.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

II выигрывает в описанной партии, если конечные подструктуры, порождённые построенными кортежами элементов $\overline{a}, \overline{b}$, изоморфны относительно соответствия $a_i \mapsto b_i$, $c^\mathbb{A} \mapsto c^\mathbb{B}$; пустые подструктуры изоморфны по определению.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

II выигрывает в описанной партии, если конечные подструктуры, порождённые построенными кортежами элементов $\overline{a}, \overline{b}$, изоморфны относительно соответствия $a_i \mapsto b_i$, $c^\mathbb{A} \mapsto c^\mathbb{B}$; пустые подструктуры изоморфны по определению.

Игра $G(\mathbb{A},\mathbb{B})$ отличается только тем, что первый ход I начинает выбором числа n; далее игра идёт как $G_n(\mathbb{A},\mathbb{B})$.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегия для данного игрока называется выигрышной, если игрок, следуя этой стратегии, выигрывает в любой партии, при любых ходах своего оппонента.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегия для данного игрока называется выигрышной, если игрок, следуя этой стратегии, выигрывает в любой партии, при любых ходах своего оппонента.

Выражение $G_n^I(\mathbb{A},\mathbb{B})$ означает, что игрок I имеет выигрышную стратегию в игре $G_n(\mathbb{A},\mathbb{B})$. Аналогично определяются сокращения $G_n^{II}(\mathbb{A},\mathbb{B})$, $G^I(\mathbb{A},\mathbb{B})$, $G^{II}(\mathbb{A},\mathbb{B})$.

Свойства выигрышных стратегий

- 1. $G_{n+1}^{I}(\mathbb{A}, \mathbb{B}) \Leftrightarrow (\exists a \in \mathbb{A} \ \forall b \in \mathbb{B} \ G_{n}^{I}((\mathbb{A}, a), (\mathbb{B}, b))) \lor (\exists b \in \mathbb{B} \ \forall a \in \mathbb{A} \ G_{n}^{I}((\mathbb{A}, a), (\mathbb{B}, b))).$
- 2. $G_{n+1}^{II}(\mathbb{A}, \mathbb{B}) \Leftrightarrow (\forall a \in \mathbb{A} \ \exists b \in \mathbb{B} \ G_n^{II}((\mathbb{A}, a), (\mathbb{B}, b))) \land (\forall b \in \mathbb{B} \ \exists a \in \mathbb{A} \ G_n^{II}((\mathbb{A}, a), (\mathbb{B}, b)))$
- 3. $G_{n+1}^{II}(\mathbb{A}, \mathbb{B}) \implies G_n^{II}(\mathbb{A}, \mathbb{B}).$
- 4. $G^{II}(\mathbb{A}, \mathbb{B}) \Leftrightarrow \forall n \ G_n^{II}(\mathbb{A}, \mathbb{B}).$
- 5. $G^I(\mathbb{A}, \mathbb{B}) \Leftrightarrow \exists n \ G_n^I(\mathbb{A}, \mathbb{B}).$
- 6. В любой игре $G_n(\mathbb{A}, \mathbb{B})$ ровно один из игроков имеет выигрышную стратегию.
- 7. В любой игре $G(\mathbb{A},\mathbb{B})$ ровно один из игроков имеет выигрышную стратегию.

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : если φ атомарная, то $q(\varphi)=0$; если $\varphi=\neg\varphi_1$, то $q(\varphi)=q(\varphi_1)$; если $\varphi=\varphi_1\wedge\varphi_2$, то $q(\varphi)=\max(q(\varphi_1),q(\varphi_2))$; если $\varphi=\exists x\ \varphi_1$, то $q(\varphi)=q(\varphi_1)+1$.

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : если φ атомарная, то $q(\varphi)=0$; если $\varphi=\neg\varphi_1$, то $q(\varphi)=q(\varphi_1)$; если $\varphi=\varphi_1\wedge\varphi_2$, то $q(\varphi)=\max(q(\varphi_1),q(\varphi_2))$; если $\varphi=\exists x\ \varphi_1$, то $q(\varphi)=q(\varphi_1)+1$.

Пусть $C_n^{\overline{x}}$ — множество всех σ -формул $\varphi(\overline{x})$ глубины не более n. Если φ — предложение, сокращаем C_n^\emptyset до $C_n.$

ЛЕММА. Фактор-множество $C_n^{\overline{x}}/_{\equiv}$ конечно.

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : если φ атомарная, то $q(\varphi)=0$; если $\varphi=\neg\varphi_1$, то $q(\varphi)=q(\varphi_1)$; если $\varphi=\varphi_1\wedge\varphi_2$, то $q(\varphi)=\max(q(\varphi_1),q(\varphi_2))$; если $\varphi=\exists x\ \varphi_1$, то $q(\varphi)=q(\varphi_1)+1$.

Пусть $C_n^{\overline{x}}$ — множество всех σ -формул $\varphi(\overline{x})$ глубины не более n. Если φ — предложение, сокращаем C_n^\emptyset до $C_n.$

ЛЕММА. Фактор-множество $C_n^{\overline{x}}/_{\equiv}$ конечно.

Д. индукцией по n. $C_0^{\overline{x}}$ — булевы комбинации атомарных формул $x_i=x_j, x_i=c, c=x_i, c=d$)и $P(t_1,\ldots,t_m)$ (t_i — переменные или константы). Таких формул конечное число, поскольку σ конечна. Их булевы комбинации с точностью до равносильности совпадают с булевыми функциями от этих атомарных формул. Поэтому их тоже конечное число. При n>0 имеем $C_n^{\overline{x}}=BC(C_{n-1}^{\overline{x}}\cup\{\exists y\psi(\overline{x},y\mid q(\psi)=n-1\}).$ По индукции оба члена объединения конечны с точностью до равносильности, откуда следует требуемое.

TEOPEMA. $G_n^{II}(\mathbb{A}, \mathbb{B}) \iff \forall \varphi \in C_n \ (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$

TEOPEMA. $G_n^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$

СЛЕДСТВИЕ.

$$G^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in \mathsf{Sent}_{\sigma}\left(\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}\right) \iff \mathbb{A} \equiv \mathbb{B}.$$

TEOPEMA. $G_n^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$

СЛЕДСТВИЕ.

$$G^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in \mathsf{Sent}_\sigma \, (\varphi^\mathbb{A} = \varphi^\mathbb{B}) \iff \mathbb{A} \equiv \mathbb{B}.$$

В приложениях важны также следующие варианты элементарной эквивалентности: говорят, что $\mathbb A$ n-эквивалентно $\mathbb B$ (обозначение $\mathbb A\equiv_n \mathbb B$), если $\forall \varphi\in C_n(\varphi^\mathbb A=\varphi^\mathbb B)$.

TEOPEMA. $G_n^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$

СЛЕДСТВИЕ.

$$G^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in \mathsf{Sent}_\sigma \, (\varphi^\mathbb{A} = \varphi^\mathbb{B}) \iff \mathbb{A} \equiv \mathbb{B}.$$

В приложениях важны также следующие варианты элементарной эквивалентности: говорят, что $\mathbb A$ n-эквивалентно $\mathbb B$ (обозначение $\mathbb A\equiv_n \mathbb B$), если $\forall \varphi\in C_n(\varphi^\mathbb A=\varphi^\mathbb B)$.

Д. индукцией по n:

$$G_n^{II}((\mathbb{A}; \bar{a}), (\mathbb{B}; \bar{b})) \iff \forall \varphi \in C_n^{\bar{x}} \, (\varphi^{\mathbb{A}}(\bar{a}) = \varphi^{\mathbb{B}}(\bar{b})).$$
 $n=0$ понятно, пусть $n>0. \Rightarrow$. Поскольку $C_n^{\overline{x}} = BC(C_{n-1}^{\overline{x}} \cup \{\exists y \psi(\overline{x}, y \mid q(\psi) = n-1\}),$ достаточно д-ть $\varphi^{\mathbb{A}}(\bar{a}) = \varphi^{\mathbb{B}}(\bar{b})$ для φ из $C_{n-1}^{\overline{x}} \cup \{\exists y \psi(\overline{x}, y \mid q(\psi) = n-1\}.$ Для $\varphi \in C_{n-1}^{\overline{x}}$ утверждение следует из индукции, поэтому пусть $\varphi = \exists y \, \psi(\overline{x}, y)$, где $q(\psi) = n-1$.

В силу симметрии достаточно рассмотреть $\mathbb{A}\models\varphi(\bar{a}).$ Зафиксируем $a\in A$ такой, что $\mathbb{A}\models\psi(\overline{a},a).$ По свойству 2 найдется $b\in B$ с условием $G_{n-1}^{II}((\mathbb{A},\overline{a},a),(\mathbb{B},\overline{b},b)).$ По индукции из $\mathbb{A}\models\psi(\overline{a},a)$ получаем $\mathbb{B}\models\psi(\overline{b},b)$, откуда $\mathbb{B}\models\varphi(\overline{b}),$ что и требовалось.

В силу симметрии достаточно рассмотреть $\mathbb{A}\models \varphi(\bar{a}).$ Зафиксируем $a\in A$ такой, что $\mathbb{A}\models \psi(\overline{a},a).$ По свойству 2 найдется $b\in B$ с условием $G_{n-1}^{II}((\mathbb{A},\overline{a},a),(\mathbb{B},\overline{b},b)).$ По индукции из $\mathbb{A}\models \psi(\overline{a},a)$ получаем $\mathbb{B}\models \psi(\overline{b},b)$, откуда $\mathbb{B}\models \varphi(\overline{b})$, что и требовалось.

 \Leftarrow . По контрапозиции и свойству 5 достаточно доказать $G_n^I((\mathbb{A},\overline{a}),(\mathbb{B},\overline{b}))\Longrightarrow \exists \varphi\in C_n^{\overline{x}}\,(\varphi^{\mathbb{A}}(\overline{a})\neq \varphi^{\mathbb{B}}(\overline{b})).$ Можно считать, что первый выигрышный ход I — это элемент $a\in A$. Тогда $\forall b\in B \ \ G_{n-1}^I((\mathbb{A},\overline{a},a),(\mathbb{B},\overline{b},b)),$ откуда по индукции $\forall b\,\exists \psi\in C_{n-1}^{\overline{x},y}\,(\psi^{\mathbb{A}}(\overline{a},a)\neq \psi^{\mathbb{B}}(\overline{b},b)).$

По лемме $\{[\psi_1(\overline{x},y)],\dots,[\psi_M(\overline{x},y)]\}=C_{n-1}^{\overline{x}}/_{\equiv}$ для некоторого M, поэтому $\forall b\exists i(\psi_i^{\mathbb{A}}(\overline{a},a)\neq\psi_i^{\mathbb{B}}(\overline{b},b)).$ Пусть $\theta_i=\psi_i$, если $\psi_i^{\mathbb{A}}(\overline{a},a),\ \theta_i=\neg\psi_i$, если $\neg\psi_i^{\mathbb{A}}(\overline{a},a).$ Тогда формула $\varphi(\overline{x})=\exists y\ \bigwedge_i\theta_i(\overline{x},y)$ подходит: $\varphi^{\mathbb{A}}(\overline{a})$ — истина, а $\varphi^{\mathbb{B}}(\overline{b})$ — ложь.

Основной результат ЛП

Множество всех общезначимых предложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

Основной результат ЛП

Множество всех общезначимых предложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

- 1) фиксируются некоторые конкретные простые общезначимые предложения (называемые аксиомами);
- 2) фиксируются некоторые простые правила, позволяющие чисто синтаксически выводить одни формулы из других;
- 3) доказывается, что многократное применение правил вывода к аксиомам и уже выведенным формулам порождает все общезначимые формулы.

Основной результат ЛП

Множество всех общезначимых предложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

- 1) фиксируются некоторые конкретные простые общезначимые предложения (называемые аксиомами);
- 2) фиксируются некоторые простые правила, позволяющие чисто синтаксически выводить одни формулы из других;
- 3) доказывается, что многократное применение правил вывода к аксиомам и уже выведенным формулам порождает все общезначимые формулы.

Глубина основного результата в том, что определение Тарского не дает никакой верхней границы для вычислительной сложности множества общезначимых предложений. Известно, что не существует логики, расширяющей ЛП и удовлетворяющей теоремам компактности и основному результату.

Аксиомы:

1) Основные тавтологии (приведены на следующем слайде);

Аксиомы:

- 1) Основные тавтологии (приведены на следующем слайде);
- 2) Кванторные аксиомы (где $\varphi(t)$ результат подстановки терма t вместо всех свободных вхождений x в формулу $\varphi(x)$; обозначение $\varphi(t)$ применяется только при условии, что никакая переменная терма t не оказывается связанной в результате этой подстановки):

$$\forall x \varphi(x) \to \varphi(t) \text{ in } \varphi(t) \to \exists x \varphi(x);$$

Аксиомы:

- 1) Основные тавтологии (приведены на следующем слайде);
- 2) Кванторные аксиомы (где $\varphi(t)$ результат подстановки терма t вместо всех свободных вхождений x в формулу $\varphi(x)$; обозначение $\varphi(t)$ применяется только при условии, что никакая переменная терма t не оказывается связанной в результате этой подстановки):

$$\forall x \varphi(x) \to \varphi(t) \text{ in } \varphi(t) \to \exists x \varphi(x);$$

3) Аксиомы равенства для сигнатуры σ .

Аксиомы:

- 1) Основные тавтологии (приведены на следующем слайде);
- 2) Кванторные аксиомы (где $\varphi(t)$ результат подстановки терма t вместо всех свободных вхождений x в формулу $\varphi(x)$; обозначение $\varphi(t)$ применяется только при условии, что никакая переменная терма t не оказывается связанной в результате этой подстановки):

$$\forall x \varphi(x) \to \varphi(t) \text{ in } \varphi(t) \to \exists x \varphi(x);$$

3) Аксиомы равенства для сигнатуры $\sigma.$

Правила:
$$\frac{\varphi, \varphi \to \psi}{\psi}$$
, $\frac{\psi \to \varphi(y)}{\psi \to \forall x \varphi(x)}$, $\frac{\varphi(y) \to \psi}{\exists x \varphi(x) \to \psi}$,

где y — переменная, не входящая свободно в нижнюю формулу.

Основные тавтологии

- 1. $\varphi \to (\psi \to \varphi)$;
- 2. $(\varphi \to \psi) \to ((\varphi \to (\psi \to \theta)) \to (\varphi \to \theta));$
- 3. $\varphi \to (\psi \to (\varphi \land \psi));$
- 4. $(\varphi \wedge \psi) \rightarrow \varphi$;
- 5. $(\varphi \wedge \psi) \rightarrow \psi$;
- 6. $\varphi \to (\varphi \lor \psi)$;
- 7. $\psi \to (\varphi \lor \psi)$;
- 8. $(\varphi \to \theta) \to ((\psi \to \theta) \to ((\varphi \lor \psi) \to \theta));$
- 9. $(\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi);$
- 10. $\neg \neg \varphi \rightarrow \varphi$.

Выводимость

Выводом формулы φ из множества формул T называется последовательность формул $\varphi_0,\dots,\varphi_n=\varphi,$ где φ_i либо аксиома, либо принадлежит T, либо получается из предыдущих по одному из правил.

Формула φ выводима из множества формул T, если существует вывод формулы φ из T. Обозначается $T \vdash \varphi$. При $T = \emptyset$ говорят просто о выводимости.

Выводимость

Выводом формулы φ из множества формул T называется последовательность формул $\varphi_0,\dots,\varphi_n=\varphi,$ где φ_i либо аксиома, либо принадлежит T, либо получается из предыдущих по одному из правил.

Формула φ выводима из множества формул T, если существует вывод формулы φ из T. Обозначается $T \vdash \varphi$. При $T = \emptyset$ говорят просто о выводимости.

Основной результат об Π_{σ} : φ выводимо $\iff \varphi$ общезначимо; Более общо: $T \vdash \varphi \iff T \models \varphi$.

Основные результаты об $\Pi \Pi_{\sigma}$

TEOPEMA. Любое непротиворечивое множество предложений имеет модель.

Основные результаты об $\Pi\Pi_{\sigma}$

TEOPEMA. Любое непротиворечивое множество предложений имеет модель.

ТЕОРЕМА. Для любой сигнатуры σ с равенством и любого σ -предложения φ имеем: φ выводимо в ИП $_{\sigma} \iff \varphi$ общезначимо. Более общо: для любой теории T, $T \vdash \varphi \iff T \models \varphi$.

Основные результаты об $\Pi \Pi_{\sigma}$

TEOPEMA. Любое непротиворечивое множество предложений имеет модель.

ТЕОРЕМА. Для любой сигнатуры σ с равенством и любого σ -предложения φ имеем: φ выводимо в ИП $_{\sigma} \iff \varphi$ общезначимо. Более общо: для любой теории T,

 $T \vdash \varphi \iff T \models \varphi.$

СЛЕДСТВИЕ. Множество всех общезначимых преложений любой конечной сигнатуры перечислимо.

Более общо: Множество всех логических следствий любой перечислимой теории конечной сигнатуры перечислимо.

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним *исчисление секвенций с равенством*. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним *исчисление секвенций с равенством*. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Аксиомы:
$$\Gamma, \varphi \vdash \Delta, \varphi$$
; $\Gamma \vdash \Delta, t = t$

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним исчисление секвенций с равенством. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Аксиомы:
$$\Gamma, \varphi \vdash \Delta, \varphi; \qquad \Gamma \vdash \Delta, t = t$$
 Правила:
$$\frac{\Gamma \vdash \Delta, \varphi; \, \varphi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} \qquad \frac{\Gamma \vdash \Delta, \varphi; \, \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \rightarrow \psi \vdash \Delta} \qquad \frac{\Gamma, \varphi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \rightarrow \psi}$$

$$\frac{\Gamma, \varphi(t) \vdash \Delta, \psi(t)}{\Gamma, t = t', \varphi(t') \vdash \Delta, \psi(t')} \qquad \frac{\Gamma, \varphi(t) \vdash \Delta, \psi(t)}{\Gamma, t' = t, \varphi(t') \vdash \Delta, \psi(t')}$$

Дополнительные правила см. ниже

Дополнительные правила вывода

$$\frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma, \neg \varphi \vdash \Delta}, \qquad \frac{\Gamma, \varphi(t) \vdash \Delta}{\Gamma, \forall x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(y) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(y) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(y) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(x$$

$$\frac{\Gamma \vdash \Delta, \varphi; \ \Gamma \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \land \psi},$$

$$\frac{\Gamma \vdash \Delta, \varphi \land \psi}{\Gamma \vdash \Delta, \varphi \lor \psi},$$

$$\frac{\Gamma \vdash \Delta, \varphi \vdash \Delta}{\Gamma \vdash \Delta, \neg \varphi},$$

$$\frac{\Gamma \vdash \Delta, \varphi(y)}{\Gamma \vdash \Delta, \forall x \varphi(x)},$$

$$\frac{\Gamma \vdash \Delta, \varphi(t)}{\Gamma \vdash \Delta, \exists x \varphi(x)}$$

Проблема разрешимости ЛП

Множество общезначимых предложений перечислимо, но будет ли оно вычислимым, т.е. существует ли алгоритм, который по данному предложению определяет, будет ли оно общезначимо? Замечательный результат логики состоит в том, что в общем случае (для любой конечной сигнатуры) ответ отрицателен.

Проблема разрешимости ЛП

Множество общезначимых предложений перечислимо, но будет ли оно вычислимым, т.е. существует ли алгоритм, который по данному предложению определяет, будет ли оно общезначимо? Замечательный результат логики состоит в том, что в общем случае (для любой конечной сигнатуры) ответ отрицателен.

Отметим, что интуитивного понятия алгоритма достаточно для того, чтобы убедиться в вычислимости многих функций (например, $x\cdot y,\ x^y,\ x!$ и другие знакомые функции и предикаты из теории чисел). Совершенно другого подхода требует доказательство того, что какая-то функция или отношение не является вычислимой. Для строгого доказательства необходимо иметь строгое определение вычислимой функции.

Рекурсивные функции и предикаты

Сначала будем изучать вычислимость лишь на \mathbb{N} , в частности значения всех переменных науральные. Определим понятие рекурсивной функции - одну из формализаций понятия вычислимой функции.

Рекурсивные функции и предикаты

Сначала будем изучать вычислимость лишь на \mathbb{N} , в частности значения всех переменных науральные. Определим понятие рекурсивной функции - одну из формализаций понятия вычислимой функции.

Если предикат P(x) истинен при некотором значении $x \in \mathbb{N}$, то $\mu x P(x)$ — наименьшее число из \mathbb{N} , для которого предикат P(x) истинен. Например, $\mu x (4 < x^2) = 3$.

Рекурсивные функции и предикаты

Сначала будем изучать вычислимость лишь на \mathbb{N} , в частности значения всех переменных науральные. Определим понятие рекурсивной функции - одну из формализаций понятия вычислимой функции.

Если предикат P(x) истинен при некотором значении $x \in \mathbb{N}$, то $\mu x P(x)$ — наименьшее число из \mathbb{N} , для которого предикат P(x) истинен. Например, $\mu x (4 < x^2) = 3$.

При n>0 и $1\le k\le n$ определим n-местную функцию I_n^k следующим образом: $I_n^k(x_1,\dots,x_n)=x_k.$ Введем также двухместную функцию l(x,y): l(x,y)=0 при x< y и l(x,y)=1 при $x\ge y.$

Рекурсивные функции

Рекурсивные функции

```
ОПРЕДЕЛЕНИЕ Функции +, \cdot, l и I_n^k рекурсивны; если рекурсивны функции g(y_1,\ldots,y_k), h_1(\bar{x}),\ldots,h_k(\bar{x}), то функция g(h_1(\bar{x}),\ldots,h_k(\bar{x})) рекурсивна;
```

Рекурсивные функции

```
ОПРЕДЕЛЕНИЕ
Функции +, \cdot, l и I_n^k рекурсивны;
если рекурсивны функции g(y_1,\ldots,y_k),
h_1(\bar{x}), \dots, h_k(\bar{x}), то функция g(h_1(\bar{x}), \dots, h_k(\bar{x}))
рекурсивна;
если функция g(\bar{x},y) рекурсивна и
\forall \bar{x} \exists y (g(\bar{x},y)=0), то функция
f(\bar{x}) = \mu y(g(\bar{x}, y) = 0) рекурсивна;
```

Рекурсивные функции

```
ОПРЕДЕЛЕНИЕ
Функции +, \cdot, l и I_n^k рекурсивны;
если рекурсивны функции g(y_1,\ldots,y_k),
h_1(\bar{x}),\ldots,h_k(\bar{x}), то функция g(h_1(\bar{x}),\ldots,h_k(\bar{x}))
рекурсивна;
если функция g(\bar{x},y) рекурсивна и
orall ar{x}\exists y(g(ar{x},y)=0), то функция
f(\bar{x}) = \mu y(g(\bar{x},y) = 0) рекурсивна;
других рекурсивных функций нет.
```

Рекурсивность и вычислимость

Нетрудно показать, что всякая рекурсивная функция вычислима. Достаточно заметить:

Рекурсивность и вычислимость

Нетрудно показать, что всякая рекурсивная функция вычислима. Достаточно заметить:

функции +, \cdot , l и I_n^k вычислимы; если функции $g(y_1,\ldots,y_k)$ и $h_1(\bar x),\ldots,h_k(\bar x)$ вычислимы, то функция $g(h_1(\bar x),\ldots,h_k(\bar x))$ вычислима; если $\forall \bar x \exists y (g(\bar x,y)=0)$ и функция $g(\bar x,y)$ вычислима, то функция $f(\bar x)=\mu y(g(\bar x,y)=0)$ вычислима.

Верно ли обратное? Почти все специалисты считают верным следующее утверждение.

Рекурсивность и вычислимость

Нетрудно показать, что всякая рекурсивная функция вычислима. Достаточно заметить:

функции +, \cdot , l и I_n^k вычислимы; если функции $g(y_1,\ldots,y_k)$ и $h_1(\bar x),\ldots,h_k(\bar x)$ вычислимы, то функция $g(h_1(\bar x),\ldots,h_k(\bar x))$ вычислима; если $\forall \bar x \exists y (g(\bar x,y)=0)$ и функция $g(\bar x,y)$ вычислима, то функция $f(\bar x)=\mu y(g(\bar x,y)=0)$ вычислима.

Верно ли обратное? Почти все специалисты считают верным следующее утверждение.

ТЕЗИС ЧЁРЧА. Класс всех рекурсивных функций совпадает с классом всех вычислимых функций.

Рекурсивные предикаты

- 1. Характеристической функцией предиката $P(\bar{x})$ называют функцию $\chi_P(\bar{x})$, задаваемую условиями: $\chi_P(\bar{x})=0$, если $P(\bar{x})=\mathsf{N}$; $\chi_P(\bar{x})=1$, если $P(\bar{x})=\mathsf{N}$.
- 2. Предикат рекурсивен, если его характеристическая функция рекурсивна.

Рекурсивные предикаты

- 1. Характеристической функцией предиката $P(\bar{x})$ называют функцию $\chi_P(\bar{x})$, задаваемую условиями: $\chi_P(\bar{x})=0$, если $P(\bar{x})=\mathsf{N}$; $\chi_P(\bar{x})=1$, если $P(\bar{x})=\mathsf{N}$.
- 2. Предикат рекурсивен, если его характеристическая функция рекурсивна.

Легко видеть, что определенная выше функция l есть характеристическая функция предиката $<: l(x,y) = \chi_<(x,y)$. Поэтому предикат < рекурсивен.

Рекурсивные предикаты

- 1. Характеристической функцией предиката $P(\bar{x})$ называют функцию $\chi_P(\bar{x})$, задаваемую условиями: $\chi_P(\bar{x})=0$, если $P(\bar{x})=\mathsf{N}$; $\chi_P(\bar{x})=1$, если $P(\bar{x})=\mathsf{N}$.
- 2. Предикат рекурсивен, если его характеристическая функция рекурсивна.

Легко видеть, что определенная выше функция l есть характеристическая функция предиката $<: l(x,y) = \chi_<(x,y)$. Поэтому предикат < рекурсивен.

Из тезиса Черча следует, что класс всех рекурсивных предикатов совпадает с классом всех вычислимых предикатов.

Свойства рекурсивных функций и предикатов

- 1. Если предикат $P(y_1,\ldots,y_k)$ и функции $h_1(\bar x),\ldots,h_k(\bar x)$ рекурсивны, то рекурсивен и предикат $P(h_1(\bar x),\ldots,h_k(\bar x))$.
- 2. Если предикат $P(\bar x,y)$ рекурсивен и $\forall \bar x \exists y P(\bar x,y)$, то функция $f(\bar x)=\mu y P(\bar x,y)$ рекурсивна.
- 3. Если предикаты $P(\bar x)$, $Q(\bar x)$ и $R(\bar x,y)$ рекурсивны, то предикаты $P(\bar x) \wedge Q(\bar x)$, $P(\bar x) \vee Q(\bar x)$, $P(\bar x) \to Q(\bar x)$, $\neg p(\bar x)$, $\forall y < z R(\bar x,y)$ и $\exists y < z R(\bar x,y)$ рекурсивны.
- 4. Пусть $P_1(\bar x),\dots,P_k(\bar x)$ рекурсивные предикаты такие, что для любого истинен ровно один из этих предикатов, а $g_1(\bar x),\dots,g_k(\bar x)$ рекурсивные функции. Тогда рекурсивна и

функция
$$f(ar x)=egin{cases} g_1(ar x),& \mbox{если}P_1(ar x)=\mbox{\sf M}\\ \dots&\dots\\ g_k(ar x),& \mbox{если}P_k(ar x)=\mbox{\sf M} \end{cases}$$

Свойства рекурсивных функций и предикатов

- 1. Если предикат $P(y_1,\ldots,y_k)$ и функции $h_1(\bar{x}),\ldots,h_k(\bar{x})$ рекурсивны, то рекурсивен и предикат $P(h_1(\bar{x}),\ldots,h_k(\bar{x}))$.
- 2. Если предикат $P(\bar x,y)$ рекурсивен и $\forall \bar x \exists y P(\bar x,y)$, то функция $f(\bar x)=\mu y P(\bar x,y)$ рекурсивна.
- 3. Если предикаты $P(\bar{x})$, $Q(\bar{x})$ и $R(\bar{x},y)$ рекурсивны, то предикаты $P(\bar{x}) \wedge Q(\bar{x})$, $P(\bar{x}) \vee Q(\bar{x})$, $P(\bar{x}) \rightarrow Q(\bar{x})$, $\neg p(\bar{x})$, $\forall y < zR(\bar{x},y)$ и $\exists y < zR(\bar{x},y)$ рекурсивны.
- 4. Пусть $P_1(\bar x),\dots,P_k(\bar x)$ рекурсивные предикаты такие, что для любого истинен ровно один из этих предикатов, а $g_1(\bar x),\dots,g_k(\bar x)$ рекурсивные функции. Тогда рекурсивна и

функция
$$f(\bar{x}) = egin{cases} g_1(\bar{x}), & \text{если} P_1(\bar{x}) = \mathsf{M} \\ \dots & \\ g_k(\bar{x}), & \text{если} P_k(\bar{x}) = \mathsf{M} \end{cases}$$

Д.3. \wedge , \rightarrow , \forall выразимы через \vee , \neg , \exists . Для \vee , \neg легко, рассмотрим \exists . Предикат y=z рекурсивен, поэтому $f(\bar{x},z)=\mu y(R(\bar{x},y)\vee(y=z))$ рекурсивна. Поэтому $\exists y< zR(\bar{x},y)\equiv (f(\bar{x},z)< z)$ рекурсивен.

Функция Гёделя

TEOPEMA. Существует рекурсивная функция $\beta(a,i)$ такая, что: $\beta(0,i)=0$; $\beta(a+1,i)\leq a$; для любых $n,\,a_0,\ldots,a_n$ из $\mathbb N$ найдется $a\in\mathbb N$ такое, что $\beta(a,0)=a_0,\ldots,\beta(a,n)=a_n.$

Функция Гёделя

TEOPEMA. Существует рекурсивная функция $\beta(a,i)$ такая, что: $\beta(0,i)=0$; $\beta(a+1,i)\leq a$; для любых $n,\,a_0,\ldots,a_n$ из $\mathbb N$ найдется $a\in\mathbb N$ такое, что $\beta(a,0)=a_0,\ldots,\beta(a,n)=a_n.$

Д. Рекурсивная функция $p(x,y) = (x+y)^2 + x + 1$ — инъекция из \mathbb{N}^2 в \mathbb{N} такая, что x,y < p(x,y). Положим $\beta(a,i) = \mu x((a=0)) / (a=0)$

$$0) \vee (x+1=a) \vee \exists y < a \exists z < a (a=p(y,z) \wedge y \dot{:} (1+z \cdot p(x,i)))).$$

Функция Гёделя

TEOPEMA. Существует рекурсивная функция $\beta(a,i)$ такая, что: $\beta(0,i)=0$; $\beta(a+1,i)\leq a$; для любых $n,\,a_0,\ldots,a_n$ из $\mathbb N$ найдется $a\in\mathbb N$ такое, что $\beta(a,0)=a_0,\ldots,\beta(a,n)=a_n.$

Д. Рекурсивная функция $p(x,y)=(x+y)^2+x+1$ — инъекция из \mathbb{N}^2 в \mathbb{N} такая, что x,y< p(x,y). Положим $\beta(a,i)=\mu x((a=x)^2)$

$$0) \lor (x+1=a) \lor \exists y < a \exists z < a (a=p(y,z) \land y \vdots (1+z \cdot p(x,i)))).$$
 Для любых n, a_0, \ldots, a_n подберем a , для которого $\beta(a,i)=a_i$

при $i \leq n$. Пусть a = p(y,z), где $y = (1+z \cdot p(a_0,0)) \cdot \ldots \cdot (1+z \cdot p(a_n,n))$, z = c!, и $c = \max\{p(a_i,i)|i \leq n\}$. Тогда $x = a_i$ удовлетворяет последнему члену дизъюнкции, а первому и второму - нет. Предположим $x < a_i$ тоже удовлетворяет. Тогда $a = p(y_1,z_1)$ и $y_1 \vdots (1+z_1 \cdot p(x,i))$, откуда $y \vdots (1+z \cdot p(x,i))$. Поскольку z = c!, числа 1+zk и 1+zl взаимно просты при $k < l \leq c$. Значит, $1+z \cdot p(x,i) = 1+z \cdot p(a_j,j)$ для некоторого $j \leq n$, откуда i=j и $x=a_j=a_i$. Противоречие.

Кодирование последовательностей

Сопоставим любой последовательности a_1,\ldots,a_n ее код $\langle a_1,\ldots,a_n\rangle=\mu a(\beta(a,0)=n\wedge\beta(a,1)=a_1\wedge\ldots\wedge\beta(a,n)=a_n).$

Кодирование последовательностей

Сопоставим любой последовательности
$$a_1,\ldots,a_n$$
 ее код $\langle a_1,\ldots,a_n\rangle=\mu a(\beta(a,0)=n\wedge\beta(a,1)=a_1\wedge\ldots\wedge\beta(a,n)=a_n).$

- 1. Если $a=\langle a_1,\dots,a_n\rangle$, то $\beta(a,0)=n$ и $\beta(a,i)=a_i< a$ при $1\leq i\leq n.$
- 2. Если $(a_1, \dots, a_n) \neq (b_1, \dots, b_m)$, то $\langle a_1, \dots, a_n \rangle \neq \langle b_1, \dots, b_m \rangle$.
- 3. Существует рекурсивная функция $\mathit{hav}(a,i)$, которая для любого $a=\langle a_1,\dots,a_n\rangle$, $n\geq i$, возвращает код начального отрезка этой последовательности длины i.
- 4. Предикат $\operatorname{Пос}(a)$, истинный в точности на кодах последовательностей, рекурсивен.

Кодирование последовательностей

Сопоставим любой последовательности
$$a_1,\ldots,a_n$$
 ее код $\langle a_1,\ldots,a_n\rangle=\mu a(\beta(a,0)=n\wedge\beta(a,1)=a_1\wedge\ldots\wedge\beta(a,n)=a_n).$

- 1. Если $a=\langle a_1,\dots,a_n \rangle$, то $\beta(a,0)=n$ и $\beta(a,i)=a_i < a$ при $1 \leq i \leq n$.
- 2. Если $(a_1,\ldots,a_n) \neq (b_1,\ldots,b_m)$, то $\langle a_1,\ldots,a_n \rangle \neq \langle b_1,\ldots,b_m \rangle$.
- 3. Существует рекурсивная функция $\mathit{Hau}(a,i)$, которая для любого $a=\langle a_1,\dots,a_n\rangle,\ n\geq i$, возвращает код начального отрезка этой последовательности длины i.
- 4. Предикат $\mathsf{Поc}(a)$, истинный в точности на кодах последовательностей, рекурсивен.
- Д. 3. Годится

нач
$$(a,i) = \mu x(\beta(x,0) = i \land \forall j < i(\beta(x,j+1) = \beta(a,j+1))).$$

4. $\operatorname{\mathsf{\Pi oc}}(a) \equiv \neg \exists x < a(\beta(x,0) = \beta(a,0) \land \forall i < \beta(a,0)(\beta(x,i+1) = \beta(a,i+1)).$

Рекурсивные определения функций

TEOPEMA. 1. Если $g(\bar x,y,z)$ рекурсивна, то $f(\bar x,y)=g(\bar x,y,\langle f(\bar x,0),\dots,f(\bar x,y-1)\rangle)$ тоже рекурсивна.

2. Если $Q(\bar x,y,z)$ рекурсивен, то $P(\bar x,y)=Q(\bar x,y,\langle\chi_P(\bar x,0),\dots,\chi_P(\bar x,y-1)\rangle)$ тоже рекурсивен.

Рекурсивные определения функций

- TEOPEMA. 1. Если $g(\bar x,y,z)$ рекурсивна, то $f(\bar x,y)=g(\bar x,y,\langle f(\bar x,0),\dots,f(\bar x,y-1)\rangle)$ тоже рекурсивна.
- 2. Если $Q(\bar x,y,z)$ рекурсивен, то $P(\bar x,y)=Q(\bar x,y,\langle\chi_P(\bar x,0),\dots,\chi_P(\bar x,y-1)\rangle)$ тоже рекурсивен.
- Д. 2 получается из 1 заменой f на χ_P , а g на χ_Q .
- 1. Рассмотрим вспомогательную функцию h:

$$\begin{array}{l} h(\overline{x},y) = \langle f(\overline{x},0), \ldots, f(\overline{x},y-1) \rangle \\ = \mu a \; (\operatorname{\Pioc}(a) \wedge \beta(a,0) = y \wedge \forall i < y \; (\beta(a,i+1) = f(\overline{x},i))) \\ = \mu a \; (\operatorname{\Pioc}(a) \wedge \beta(a,0) = y \wedge \forall i < y \; (\beta(a,i+1) = g(\overline{x},i,\operatorname{hay}(a,i))). \end{array}$$

Функция $h(\overline{x},y)$ рекурсивна, поэтому $f(\overline{x},y)=g(\overline{x},y,h(\overline{x},y))$ тоже рекурсивна.

Рекурсивная биекция между \mathbb{N}^k и \mathbb{N}

ПРЕДЛОЖЕНИЕ. Для любого $k \geq 2$ существует рекурсивная биекция между \mathbb{N}^k и \mathbb{N} . Точнее, существуют рекурсивная биекция $c^k: \mathbb{N}^k \to \mathbb{N}$ и рекурсивные функции $p_1^k(x), \dots, p_k^k(x)$ такие, что $x \mapsto (p_1^k(x), \dots, p_k^k(x))$ — функция, обратная к c^k .

Рекурсивная биекция между \mathbb{N}^k и \mathbb{N}

ПРЕДЛОЖЕНИЕ. Для любого $k \geq 2$ существует рекурсивная биекция между \mathbb{N}^k и \mathbb{N} . Точнее, существуют рекурсивная биекция $c^k: \mathbb{N}^k \to \mathbb{N}$ и рекурсивные функции $p_1^k(x), \dots, p_k^k(x)$ такие, что $x \mapsto (p_1^k(x), \dots, p_k^k(x))$ — функция, обратная к c^k .

Индукция по k. При k=2 полагаем

$$\begin{array}{l} c^2(x_1,x_2)=2^{x_1}(2x_2+1)-1\text{, }p_1^2(x)=\mu y((x+1)\not /2^{y+1})\text{,}\\ p_2^2(x)=((x+1)/2^{p_1^2(x)}-1)/2. \end{array}$$

Рекурсивная биекция между \mathbb{N}^k и \mathbb{N}

ПРЕДЛОЖЕНИЕ. Для любого $k \geq 2$ существует рекурсивная биекция между \mathbb{N}^k и \mathbb{N} . Точнее, существуют рекурсивная биекция $c^k: \mathbb{N}^k \to \mathbb{N}$ и рекурсивные функции $p_1^k(x), \dots, p_k^k(x)$ такие, что $x \mapsto (p_1^k(x), \dots, p_k^k(x))$ — функция, обратная к c^k .

Индукция по k. При k=2 полагаем

$$c^2(x_1,x_2) = 2^{x_1}(2x_2+1)-1$$
, $p_1^2(x) = \mu y((x+1)/2^{y+1})$, $p_2^2(x) = ((x+1)/2^{p_1^2(x)}-1)/2$.

При
$$r=3$$
 полагаем $c^3(x_1,x_2,x_3)=c^2(c^2(x_1,x_2),x_3)$, $p_1^3(x)=p_1^2(p_1^2(x))$, $p_2^3(x)=p_2^2(p_1^2(x))$, $p_3^3(x)=p_2^2(x)$.

И так далее.

Чтобы применить рекурсивные функции к логике, нужно научиться представлять логические объекты (термы, формулы, выводы) натуральными числами (поскольку рекурсивные функции определены и принимают значения в \mathbb{N}), т. е. ввести кодирование этих объектов. Такое кодирование можно построить для любой конечной или счетной сигнатуры, а мы сделаем это для сигнатуры $\Sigma = \{=,<,+,\cdot,0,1\}$.

Чтобы применить рекурсивные функции к логике, нужно научиться представлять логические объекты (термы, формулы, выводы) натуральными числами (поскольку рекурсивные функции определены и принимают значения в \mathbb{N}), т. е. ввести кодирование этих объектов. Такое кодирование можно построить для любой конечной или счетной сигнатуры, а мы сделаем это для сигнатуры $\Sigma = \{=,<,+,\cdot,0,1\}$.

Каждому исходному символу сопоставим число в соответствии с таблицей:

v_n	\wedge	V	\rightarrow	_	\forall	3	=	<	+		0	1
2n	1	3	5	7	9	11	13	15	17	19	21	23

Чтобы применить рекурсивные функции к логике, нужно научиться представлять логические объекты (термы, формулы, выводы) натуральными числами (поскольку рекурсивные функции определены и принимают значения в \mathbb{N}), т. е. ввести кодирование этих объектов. Такое кодирование можно построить для любой конечной или счетной сигнатуры, а мы сделаем это для сигнатуры $\Sigma = \{=,<,+,\cdot,0,1\}$.

Каждому исходному символу сопоставим число в соответствии с таблицей:

v_n	\wedge	V	\rightarrow	_	\forall	3	=	<	+		0	1
2n	1	3	5	7	9	11	13	15	17	19	21	23

Каждому терму t сопоставим его код $\lceil t \rceil \in \mathbb{N}$: $\lceil v_n \rceil = \langle 2n \rangle$, $\lceil 0 \rceil = \langle 21 \rangle$, $\lceil 1 \rceil = \langle 23 \rangle$, $\lceil t_1 + t_2 \rceil = \langle 17, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$, $\lceil t_1 \cdot t_2 \rceil = \langle 19, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$, где t_1 и t_2 - термы.

Каждой формуле φ сопоставим ее код $\ulcorner \varphi \urcorner \in \mathbb{N}$: $\ulcorner s = t \urcorner = \langle 13, \ulcorner s \urcorner, \ulcorner t \urcorner \rangle$, $\ulcorner s < t \urcorner = \langle 15, \ulcorner s \urcorner, \ulcorner t \urcorner \rangle$, $\ulcorner \psi \land \theta \urcorner = \langle 1, \ulcorner \psi \urcorner, \ulcorner \theta \urcorner \rangle$, $\ulcorner \psi \lor \theta \urcorner = \langle 3, \ulcorner \psi \urcorner, \ulcorner \theta \urcorner \rangle$, $\ulcorner \psi \to \theta \urcorner = \langle 5, \ulcorner \psi \urcorner, \ulcorner \theta \urcorner \rangle$, $\ulcorner \neg \psi \urcorner = \langle 7, \ulcorner \psi \urcorner \rangle$, $\ulcorner \forall v_n \psi \urcorner = \langle 9, 2n, \ulcorner \psi \urcorner \rangle$, $\ulcorner \exists v_n \psi \urcorner = \langle 11, 2n, \ulcorner \psi \urcorner \rangle$, где s и t — термы, ψ и θ — формулы.

Синтаксическим понятиям ЛП соответствуют предикаты и функции от кодов термов и формул, в частности:

Терм $(a)\equiv a$ есть код некоторого терма; $\Phi(a)\equiv a$ есть код некоторой формулы; $\Phi_0(a)\equiv (a-$ код некоторой формулы $\varphi(v_0)$; $\operatorname{Пр}(a)\equiv (a$ есть код некоторого предложения); $\operatorname{отp}(a)-$ функция, равная $\ulcorner\neg\varphi\urcorner$, если $\Phi(a)=\mathsf{N}$ и $a=\ulcorner\varphi\urcorner$; если же $\Phi(a)=\mathsf{Л}$, то $\operatorname{отp}(a)=0$; $\operatorname{подc}(a,b,c)-$ функция, равная $\ulcorner\varphi(t)\urcorner$, если $\Phi(a)=\mathsf{N}$, $a=\ulcorner\varphi(v_n)\urcorner$, $b=\ulcorner v_n\urcorner$, Терм $(c)=\mathsf{N}$, $c=\ulcorner t\urcorner$ и допустима подстановка $\varphi(t)$; в противном случае $\operatorname{подc}(a,b;c)=0$.

С любым множеством предложений T свяжем предикаты:

 $P_T(a)$, истинный в точности на кодах формул из T;

Выв
$$_T(a,b)\equiv (a=\langle a_1,\dots,a_n\rangle, n>0, b=a_n, a_i=\ulcorner \varphi_i \urcorner (1\leq i\leq n)$$
 и $(\varphi_1,\dots,\varphi_n)$ — вывод формулы φ_n из T в ИП.

С любым множеством предложений T свяжем предикаты:

 $P_T(a)$, истинный в точности на кодах формул из T;

Выв
$$_T(a,b)\equiv (a=\langle a_1,\dots,a_n\rangle, n>0, b=a_n, a_i=\ulcorner \varphi_i \urcorner (1\leq i\leq n)$$
 и $(\varphi_1,\dots,\varphi_n)$ — вывод формулы φ_n из T в ИП.

СВОЙСТВА: 1. Разным термам и формулам соответствуют разные коды.

- 2. Предикаты Терм, Φ , Φ_0 , Пр, Сек, и функции *отр*, *подс* рекурсивны.
- 3. Если P_T рекурсивен, то и Выв $_T$ рекурсивен.
- 4. Существует алгоритм, вычисляющий по терму (формуле) его (ее) код.
- 5. Существует алгоритм, вычисляющий по коду соответствующий терм (формулу).

C любым множеством предложений T свяжем предикаты:

 $P_T(a)$, истинный в точности на кодах формул из T;

Выв
$$_T(a,b)\equiv (a=\langle a_1,\dots,a_n\rangle, n>0, b=a_n, a_i=\ulcorner \varphi_i \urcorner (1\leq i\leq n)$$
 и $(\varphi_1,\dots,\varphi_n)$ — вывод формулы φ_n из T в ИП.

СВОЙСТВА: 1. Разным термам и формулам соответствуют разные коды.

- 2. Предикаты Терм, Φ , Φ_0 , Пр, Сек, и функции *отр*, *подс* рекурсивны.
- 3. Если P_T рекурсивен, то и Выв $_T$ рекурсивен.
- 4. Существует алгоритм, вычисляющий по терму (формуле) его (ее) код.
- 5. Существует алгоритм, вычисляющий по коду соответствующий терм (формулу).

Д.
$$\mathsf{Терм}(a) \equiv \exists n < a(a = \langle 2n \rangle) \lor a = \lceil 0 \rceil \lor a = \lceil 1 \rceil \lor (\mathsf{Поc}(a) \land \beta(a,0) = 3 \land \beta(a,1) \in \{17,19\} \land \mathsf{Терм}(\beta(a,2)) \land \mathsf{Терм}(\beta(a,3))).$$

5. Заметим, что следующие предикаты рекурсивны: $\Pi p_{\rightarrow}(a,b,c) \equiv (a,b \text{ и } c - \text{коды таких формул } \varphi, \psi \text{ и } \theta$, что θ выводима из φ и ψ по \to -правилу);

 $\mbox{Пр}_\forall(a,b)\equiv (a$ и b — коды таких формул φ и ψ , что ψ выводима из φ по \forall -правилу);

 $\mbox{Пр}_{\exists}(a,b)\equiv (a$ и b — коды таких формул φ и ψ , что ψ выводима из φ по \exists -правилу);

 $\mathsf{Akc}(a) \equiv (a - \mathsf{код} \ \mathsf{некоторой} \ \mathsf{akcuomb}).$

Акс(a)= Акс $_1(a)\lor\ldots\lor$ Акс $_{18}(a)$. Предикат Акс $_1(a)$ утверждает, что а есть код первой основной тавтологии $\varphi\to(\psi\to\varphi)$. По определению $\ulcorner \varphi\to(\psi\to\varphi)\urcorner=\langle 5,\ulcorner \varphi\urcorner, \ulcorner \psi\to \varphi\urcorner \rangle=\langle 5,\ulcorner \varphi\urcorner, \langle 5,\ulcorner \psi\urcorner, \ulcorner \varphi\urcorner \rangle \rangle$, откуда Акс $_1(a)\equiv\Phi(a)\land\exists b< a\exists c< a(a=\langle 5,b,\langle 5,c,b\rangle\rangle)$.

5. Докажем рекурсивность предиката $\mathrm{Пp}_{\to}(a,b,c)$. Формула θ выводима из формул φ и ψ по \to -правилу в точности тогда, когда $\psi=\varphi\to\theta$. Поэтому

$$\begin{split} & \mathsf{Пр}_{\to}(a,b,c) \equiv \Phi(a) \wedge \Phi(b) \wedge \Phi(c) \wedge b = \langle 5,a,c \rangle, \\ & \mathsf{откуда} \ \mathsf{следует} \ \mathsf{рекурсивность} \ \mathsf{предиката} \ \mathsf{Пр}_{\to}(a,b,c). \end{split}$$

5. Докажем рекурсивность предиката $\Pi {\sf p}_{\to}(a,b,c)$. Формула θ выводима из формул φ и ψ по \to -правилу в точности тогда, когда $\psi=\varphi\to\theta$. Поэтому

$$\Pi {\rm p}_{\to}(a,b,c) \equiv \Phi(a) \wedge \Phi(b) \wedge \Phi(c) \wedge b = \langle 5,a,c \rangle \text{,}$$

откуда следует рекурсивность предиката $\Pi \mathbf{p}_{
ightarrow}(a,b,c).$

Наконец,

Выв
$$_T(a,b) \equiv \operatorname{Пр}(b) \wedge \operatorname{Поc}(a) \wedge (\beta(a,0)>0) \wedge (\beta(a,n)=b) \wedge \forall i < n (\operatorname{Akc}(a_i+1) \vee P_T(a_i+1) \vee \exists j < i \exists k < i (\operatorname{Пр}_{\to}(a_j+1,a_k+1,a_i+1) \vee \operatorname{Пр}_{\forall}(a_j+1,a_i+1) \vee \operatorname{Пр}_{\exists}(a_j+1,a_i+1))),$$

где $n=\beta(a,0)$ и $a_i+1=\beta(a,i+1)$. Предикат P_T рекурсивен по условию, поэтому последняя равносильность обосновывает рекурсивность предиката $\mathsf{Bыb}_T(a,b)$.

Арифметики МА и РА

Минимальная арифметика МА задается аксиомами:

1.
$$0+1=1$$

2.
$$\forall x \neg (x + 1 = 0)$$

3.
$$\forall x \forall y (x+1=y+1 \rightarrow x=y)$$

$$4. \ \forall x(x+0=x)$$

5.
$$\forall x \forall y (x + (y + 1) = (x + y) + 1)$$

6.
$$\forall x(x \cdot 0 = 0)$$

7.
$$\forall x \forall y (x \cdot (y+1) = (x \cdot y) + x)$$

8.
$$\forall x \neg (x < 0)$$

9.
$$\forall x \forall y (x < y \lor x = y \lor y < x)$$

10.
$$\forall x \forall y (x < y + 1 \leftrightarrow (x < y \lor x = y))$$

Арифметики МА и РА

Минимальная арифметика МА задается аксиомами:

- 1. 0+1=1
- 2. $\forall x \neg (x + 1 = 0)$
- 3. $\forall x \forall y (x+1=y+1 \rightarrow x=y)$
- 4. $\forall x(x+0=x)$
- 5. $\forall x \forall y (x + (y+1) = (x+y) + 1)$
- 6. $\forall x(x \cdot 0 = 0)$
- 7. $\forall x \forall y (x \cdot (y+1) = (x \cdot y) + x)$
- 8. $\forall x \neg (x < 0)$
- 9. $\forall x \forall y (x < y \lor x = y \lor y < x)$
- 10. $\forall x \forall y (x < y + 1 \leftrightarrow (x < y \lor x = y))$

Арифметика Пеано РА получается из МА добавлением аксиом индукции:

$$(\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1))) \to \forall x\varphi(x),$$

где $\varphi=\varphi(x,\bar{y})$ — любая σ -формула.

Представимость рекурсивных предикатов в МА

ОПРЕДЕЛЕНИЕ 1. Предикат $P(x_1,\ldots,x_n)$ представим, если существует такая формула $\varphi(x_1,\ldots,x_n)$, что при всех $\bar x\in\mathbb N$:

 $MA \vdash \varphi(\hat{x}_1,\dots,\hat{x}_n)$, если $P(\bar{x})$ истинен и $MA \vdash \neg \varphi(\hat{x}_1,\dots,\hat{x}_n)$ в противном случае.

Здесь
$$\hat{0}=0$$
, $\hat{1}=1$, $\hat{2}=1+1$, $\hat{3}=(1+1)+1$, и т.д.

2. Функция $f(\bar{x})$ представима, если существует формула $\psi(x_1,\dots,x_n,y)$, удовлетворяющая при всех $x_1,\dots,x_n\in\mathbb{N}$ соотношению

$$MA \vdash \forall y (\psi(\hat{x}_1, \dots, \hat{x}_n, y) \leftrightarrow y = \widehat{f(x)}).$$

Представимость рекурсивных предикатов в МА

ОПРЕДЕЛЕНИЕ 1. Предикат $P(x_1,\ldots,x_n)$ представим, если существует такая формула $\varphi(x_1,\ldots,x_n)$, что при всех $\bar x\in\mathbb N$:

 $MA \vdash \varphi(\hat{x}_1,\dots,\hat{x}_n)$, если $P(\bar{x})$ истинен и $MA \vdash \neg \varphi(\hat{x}_1,\dots,\hat{x}_n)$ в противном случае.

Здесь
$$\hat{0}=0$$
, $\hat{1}=1$, $\hat{2}=1+1$, $\hat{3}=(1+1)+1$, и т.д.

2. Функция $f(\bar{x})$ представима, если существует формула $\psi(x_1,\dots,x_n,y)$, удовлетворяющая при всех $x_1,\dots,x_n\in\mathbb{N}$ соотношению

$$MA \vdash \forall y (\psi(\hat{x}_1, \dots, \hat{x}_n, y) \leftrightarrow y = \widehat{f(x)}).$$

TEOPEMA. Все рекурсивные предикаты и функции представимы.

ОПРЕДЕЛЕНИЕ 1. Предикат $P(x_1,\ldots,x_n)$ представим, если существует такая формула $\varphi(x_1,\ldots,x_n)$, что при всех $\bar{x}\in\mathbb{N}$:

 $MA \vdash \varphi(\hat{x}_1,\dots,\hat{x}_n)$, если $P(\bar{x})$ истинен и $MA \vdash \neg \varphi(\hat{x}_1,\dots,\hat{x}_n)$ в противном случае.

Здесь
$$\hat{0}=0$$
, $\hat{1}=1$, $\hat{2}=1+1$, $\hat{3}=(1+1)+1$, и т.д.

2. Функция $f(\bar{x})$ представима, если существует формула $\psi(x_1,\dots,x_n,y)$, удовлетворяющая при всех $x_1,\dots,x_n\in\mathbb{N}$ соотношению

$$MA \vdash \forall y (\psi(\hat{x}_1, \dots, \hat{x}_n, y) \leftrightarrow y = \widehat{f(x)}).$$

TEOPEMA. Все рекурсивные предикаты и функции представимы.

СЛЕДСТВИЕ. Все рекурсивные функции и предикаты определимы в стандартной модели арифметики.

Д. Достаточно доказать для функций, поскольку тогда из рекурсивности $P(\bar{x})$ следует рекурсивность $\chi_P(\bar{x})$, поэтому $\chi_P(\bar{x})$ представима посредством некоторой формулы $\psi(x_1,\ldots,x_n,y)$. Но тогда $P(\bar{x})$ представим посредством $\psi(x_1,\ldots,x_n,0)$.

Д. Достаточно доказать для функций, поскольку тогда из рекурсивности $P(\bar{x})$ следует рекурсивность $\chi_P(\bar{x})$, поэтому $\chi_P(\bar{x})$ представима посредством некоторой формулы $\psi(x_1,\dots,x_n,y)$. Но тогда $P(\bar{x})$ представим посредством $\psi(x_1,\dots,x_n,0)$.

Достаточно проверить: 1) функции +, \cdot , $\chi_{<}$, I_{n}^{k} представимы;

- 2) композиция представимых функций представима;
- 3) минимизация представимой функции представима.

Д. Достаточно доказать для функций, поскольку тогда из рекурсивности $P(\bar{x})$ следует рекурсивность $\chi_P(\bar{x})$, поэтому $\chi_P(\bar{x})$ представима посредством некоторой формулы $\psi(x_1,\dots,x_n,y)$. Но тогда $P(\bar{x})$ представим посредством $\psi(x_1,\dots,x_n,0)$.

Достаточно проверить: 1) функции +, \cdot , $\chi_{<}$, I_n^k представимы;

- 2) композиция представимых функций представима;
- 3) минимизация представимой функции представима.
- 1) Представляющими формулами будут $y=x_1+x_2$, $y=x_1\cdot x_2$, $(x_1< x_2\wedge y=0)\vee (\neg(x_1< x_2)\wedge y=1)$ и $y=x_k$.

Для двух последних функций это легко, а для двух первых вытекает из легко проверяемых утвеждений $\text{MA} \vdash \hat{x}_1 + \hat{x}_2 = \widehat{x_1 + x_2}, \ \text{MA} \vdash \hat{x}_1 \cdot \hat{x}_2 = \widehat{x_1 \cdot x_2}.$

2) Проверим, что если функции $g(y_1,y_2)$, $h_1(x)$, $h_2(x)$. представимы формулами $\varphi(y_1,y_2,z)$, $\psi_1(x,y_1)$, $\psi_2(x,y_2)$ то функция $f(x)=g(h_1(x),h_2(x))$ представима формулой $\theta(x,z)=\exists y_1\exists y_2(\psi_1(x,y_1)\wedge\psi_2(x,y_2)\wedge\varphi(y_1,y_2,z))$. Это прямолинейно следует из определения представимости функций в MA.

- 2) Проверим, что если функции $g(y_1,y_2)$, $h_1(x)$, $h_2(x)$. представимы формулами $\varphi(y_1,y_2,z)$, $\psi_1(x,y_1)$, $\psi_2(x,y_2)$ то функция $f(x)=g(h_1(x),h_2(x))$ представима формулой $\theta(x,z)=\exists y_1\exists y_2(\psi_1(x,y_1)\wedge\psi_2(x,y_2)\wedge\varphi(y_1,y_2,z))$. Это прямолинейно следует из определения представимости функций в MA.
- 3) Проверим, что если функции g(x,y) представима формулой $\varphi(x,y,z)$ и $\mathbb{N}\models \forall x\exists y(g(x,y)=0)$, то функция $f(x)=\mu y(g(x,y)=0)$ представима формулой $\psi(x,y)=\varphi(x,y,0)\wedge \forall t< y\neg \varphi(x,t,0)$, т. е. при любом $x\in \mathbb{N}$ формулы $\theta_1=(\psi(\hat{x},y)\to y=\widehat{f(x)})$ и $\theta_2=(y=\widehat{f(x)}\to\psi(\hat{x},y))$ истинны в любой $\mathbb{A}\models \mathsf{MA}$ при любом $y\in A$.

Это прямолинейно следует из определения представимости функций в МА.

Универсальные функции и предикаты

ОПР. 1) $u:\mathbb{N}^2\to\mathbb{N}$ универсальна, если для любой РФ f(x) найдется n такое, что f(x)=u(n,x). 2) $U:\mathbb{N}^2\to\{\mathrm{M},\mathrm{J}\}$ универсален, если для любого рекурсивного предиката R(x) найдется n такое, что R(x)=U(n,x).

Универсальные функции и предикаты

ОПР. 1) $u:\mathbb{N}^2\to\mathbb{N}$ универсальна, если для любой РФ f(x) найдется n такое, что f(x)=u(n,x). 2) $U:\mathbb{N}^2\to\{\mathrm{M},\mathrm{J}\}$ универсален, если для любого рекурсивного предиката R(x) найдется n такое, что R(x)=U(n,x).

TEOPEMA. Любая универсальная функция и любой универсальный предкат не рекурсивны.

Универсальные функции и предикаты

- ОПР. 1) $u:\mathbb{N}^2\to\mathbb{N}$ универсальна, если для любой РФ f(x) найдется n такое, что f(x)=u(n,x).
- 2) $U:\mathbb{N}^2 \to \{\mathsf{M},\!\mathsf{Л}\}$ универсален, если для любого рекурсивного предиката R(x) найдется n такое, что R(x)=U(n,x).

TEOPEMA. Любая универсальная функция и любой универсальный предкат не рекурсивны.

- Д. 1) Пусть u универсальная РФ. Тогда f(x)=u(x,x)+1 рекурсивна, значит f(x)=u(n,x) для некоторого n. Но тогда f(n)=u(n,n)+1=f(n)+1 противоречие.
- 2) Пусть U универсальный РП. Тогда $R(x) = \neg U(x,x)$ рекурсивен, значит R(x) = U(n,x) для некоторого n. Но тогда $R(n) = \neg U(n,n) = \neg R(n)$ противоречие.

TEOPEMA. Для любого непротиворечивого множества предложений $T\supseteq$ MA множество [T] нерекурсивно.

TEOPEMA. Для любого непротиворечивого множества предложений $T\supseteq \mathsf{MA}$ множество [T] нерекурсивно.

СЛЕДСТВИЕ. 1. Множества [MA], [PA] и $Th(\mathbb{N})$ нерекурсивны.

2. Множества [MA], [PA] и $Th(\mathbb{N})$ неразрешимы, т.е. не существует алгоритмов, выясняющих по любому предложению, принадлежит ли оно этим множествам.

TEOPEMA. Для любого непротиворечивого множества предложений $T\supseteq \mathsf{MA}$ множество [T] нерекурсивно.

СЛЕДСТВИЕ. 1. Множества [MA], [PA] и $Th(\mathbb{N})$ нерекурсивны.

2. Множества [MA], [PA] и $Th(\mathbb{N})$ неразрешимы, т.е. не существует алгоритмов, выясняющих по любому предложению, принадлежит ли оно этим множествам.

Д. Предположим, что есть непротиворечивое $T\supseteq$ MA такое, что [T] рекурсивно. Рассмотрим предикат $R_T(a,b)\equiv (a=\lceil \varphi \rceil$ для некоторой формулы $\varphi=\varphi(v_0)$ такой, что $T\vdash \varphi(\hat{b})$. Из свойств кодирования и рекурсивности функции $f(b)=\lceil \hat{b} \rceil$ следует, что предикат $R_T(a,b)$ рекурсивен. Проверим, что он универсальн (что противеречит теореме об универсальном предикате).

Достаточно доказать, что для любого рекурсивного предиката Q(x) найдется a такое, что $R_T(a,x)\equiv Q(x)$. Предикат Q(x) представим в MA, т.е. найдется формула $\varphi(v_0)$ такая, что при любом $x\in\mathbb{N}$ из $Q(x)=\mathsf{V}$ следует MA $\vdash \varphi(\hat{x})$ и из $Q(x)=\mathsf{J}$ следует MA $\vdash \neg \varphi(\hat{x})$.

Достаточно доказать, что для любого рекурсивного предиката Q(x) найдется a такое, что $R_T(a,x)\equiv Q(x)$. Предикат Q(x) представим в MA, т.е. найдется формула $\varphi(v_0)$ такая, что при любом $x\in\mathbb{N}$ из $Q(x)=\mathbb{N}$ следует MA $\vdash \varphi(\hat{x})$ и из $Q(x)=\mathbb{N}$ следует MA $\vdash \neg \varphi(\hat{x})$.

Достаточно взять $a=\lceil \varphi(v_0) \rceil$. Действительно, если Q(x)= И, то $T\vdash \varphi(\hat{x})$ (т. к. $T\supseteq$ МА и МА $\vdash \varphi(\hat{x})$ и $R_T(a,x)=$ И по определению предиката $R_T(a,b)$.

Достаточно доказать, что для любого рекурсивного предиката Q(x) найдется a такое, что $R_T(a,x)\equiv Q(x)$. Предикат Q(x) представим в MA, т.е. найдется формула $\varphi(v_0)$ такая, что при любом $x\in\mathbb{N}$ из $Q(x)=\mathbb{N}$ следует MA $\vdash \varphi(\hat{x})$ и из $Q(x)=\mathbb{N}$ следует MA $\vdash \neg \varphi(\hat{x})$.

Достаточно взять $a=\lceil \varphi(v_0) \rceil$. Действительно, если Q(x)= И, то $T\vdash \varphi(\hat{x})$ (т. к. $T\supseteq$ МА и МА $\vdash \varphi(\hat{x})$ и $R_T(a,x)=$ И по определению предиката $R_T(a,b)$.

Если же $Q(x)=\Pi$, то $T\vdash \neg \varphi(\hat{x})$ и (вследствие непротиворечивости T из T нельзя вывести $\varphi(\hat{x})$, а поэтому $R_T(a,x)=\Pi$.

Неполнота арифметики

TEOPEMA. Любое непротиворечивое рекурсивное множество предложений $T\supseteq \mathsf{MA}$ неполно.

Неполнота арифметики

TEOPEMA. Любое непротиворечивое рекурсивное множество предложений $T\supseteq \mathsf{MA}$ неполно.

Д. Пусть $T\supseteq$ МА — непротиворечивое рекурсивное полное множество предложений. Рассмотрим рекурсивный предикат $Q(a,b) \equiv \neg \mathsf{Пp}(b) \lor \mathsf{Bыb}_T(a,b) \lor \mathsf{Bыb}_T(a,\mathsf{orp}(b)).$ Из полноты следует, что $\mathbb{N} \vdash \forall b \exists a \ Q(a,b).$ Значит, рекурсивна и функция $f(b) = \mu a Q(a,b)$, откуда $Q(f(b),b) \equiv \mathsf{M}.$

Неполнота арифметики

TEOPEMA. Любое непротиворечивое рекурсивное множество предложений $T\supseteq \mathsf{MA}$ неполно.

Д. Пусть $T\supseteq$ МА — непротиворечивое рекурсивное полное множество предложений. Рассмотрим рекурсивный предикат $Q(a,b)\equiv \neg \mathsf{Пp}(b)\lor \mathsf{Bыb}_T(a,b)\lor \mathsf{Bыb}_T(a,\mathsf{orp}(b)).$ Из полноты следует, что $\mathbb{N}\vdash \forall b\exists a\ Q(a,b).$ Значит, рекурсивна и функция $f(b)=\mu aQ(a,b)$, откуда $Q(f(b),b)\equiv \mathsf{M}.$

Отсюда нетрудно вывести, что $P_{[T]}(b) \equiv \mathsf{Bыв}_T(f(b),b)$, т.е. множество $P_{[T]}$ рекурсивно. Это противоречит теореме о неразрешимости арифметики.

TEOPEMA. Множество всех общезначимых предложений сигнатуры арифметики нерекурсивно.

TEOPEMA. Множество всех общезначимых предложений сигнатуры арифметики нерекурсивно.

Конечные сигнатуры, для которых логика предикатов разрешима, имеют простое описание: это в точноси сигнатуры, не имеющие предикатных символов местности более 1, и которые, возможно, имеют единственный одноместный функциональный символ.

ТЕОРЕМА. Множество всех общезначимых предложений сигнатуры арифметики нерекурсивно.

Конечные сигнатуры, для которых логика предикатов разрешима, имеют простое описание: это в точноси сигнатуры, не имеющие предикатных символов местности более 1, и которые, возможно, имеют единственный одноместный функциональный символ.

Для $A, B \subseteq \mathbb{N}$, A m-сводится к B ($A \leq_m B$), если $A = f^{-1}(B)$ для подходящей рекурсивной функции $f:\mathbb{N}\to\mathbb{N}$. Справедливы соотношения (структуры рассматриваются в сигнатуре $\{=,+,\cdot\}$): $Th(\mathbb{R}) \equiv_m Th(\mathbb{C}) <_m Th(\mathbb{N}) \equiv_m Th(\mathbb{Z}) \equiv_m Th(\mathbb{Q}).$

$$Th(\mathbb{R}) \equiv_m Th(\mathbb{C}) <_m Th(\mathbb{N}) \equiv_m Th(\mathbb{Z}) \equiv_m Th(\mathbb{Q}).$$

TEOPEMA. Множество всех общезначимых предложений сигнатуры арифметики нерекурсивно.

Конечные сигнатуры, для которых логика предикатов разрешима, имеют простое описание: это в точноси сигнатуры, не имеющие предикатных символов местности более 1, и которые, возможно, имеют единственный одноместный функциональный символ.

Для $A,B\subseteq\mathbb{N}$, A m-сводится к B ($A\leq_m B$), если $A=f^{-1}(B)$ для подходящей рекурсивной функции $f:\mathbb{N}\to\mathbb{N}$. Справедливы соотношения (структуры рассматриваются в сигнатуре $\{=,+,\cdot\}$): $Th(\mathbb{R})\equiv_m Th(\mathbb{C})<_m Th(\mathbb{N})\equiv_m Th(\mathbb{Z})\equiv_m Th(\mathbb{Q})$.

Для большинства популярных теорий известно, какие из них разрешимы, а какие нет.

Программы

Программа — это непустая конечная последовательность $P = (I_0, \dots, I_l)$ операторов, занумерованных начальным сегментом натурального ряда.

Оператор — это либо оператор присваивания, либо условный оператор $r_i = r_j \Rightarrow k$ (условный переход на оператор с меткой k).

Oператор присваивания — это либо $r_i:=0$, либо $r_i:=r_i+1$, либо $r_i:=r_j$.

В программах используются переменные r_0, r_1, r_2, \ldots со значениями в \mathbb{N} .

Пример программы:

Программы

Программа — это непустая конечная последовательность $P = (I_0, \dots, I_l)$ операторов, занумерованных начальным сегментом натурального ряда.

Оператор — это либо оператор присваивания, либо условный оператор $r_i = r_j \Rightarrow k$ (условный переход на оператор с меткой k).

Оператор присваивания — это либо $r_i := 0$, либо $r_i := r_i + 1$, либо $r_i := r_i$.

В программах используются переменные r_0, r_1, r_2, \ldots со значениями в $\mathbb{N}.$

Пример программы:

0.
$$r_1 := r_1 + 1$$

1.
$$r_2 := r_2 + 1$$

$$2. r_1 = r_0 \Rightarrow 4$$

3.
$$r_0 = r_0 \Rightarrow 0$$

4.
$$r_0 := r_2$$

Пример вычисления по программе

время/память	0	1	2	3	4	5	6	7	8	9	10	11	12
r_0	7	7	7	7	7	7	7	7	7	7	7	7	3
r_1	4	5	5	5	5	6	6	6	6	7	7	7	7
r_2	0	0	1	1	1	1	2	2	2	2	3	3	3
номер команды	0	1	2	3	0	1	2	3	0	1	2	4	5

время/ память	0	1	2	3	4	5	
r_0	7	7	7	7	7	7	
r_1	7	8	8	8	8	8	
r_2	2	2	3	3	3	3	
номер команды	0	1	2	3	0	1	

Параметры программы

Длина программы P — число l+1. Память P наибольшее m, для которого r_m входит в P. Состояние программы P в момент t при начальных значениях $r_i = x_i \in \mathbb{N}$ — это кортеж $(r_0(t),\ldots,r_m(t),k(t))$, где $r_i(t)$ — содержимое регистра r_i в момент t, а k(t) — номер оператора, выполняющегося в момент t; $(r_0(0), \ldots, r_m(0), k(0)) = (x_0, \ldots, x_m, 0)$. Если k(t) > l + 1, то считаем k(t + 1) = k(t). Вычисление по программе P — последовательнось состояний $\{(r_0(t), \ldots, r_m(t), k(t))\}_t$. Порядок выполнения команд как в языках программирования. Вычисления по программе заканчиваются, если программа должна выполнять команду с номером большим или равным длины программы.

R-вычислимые функции

Пусть P — программа и $n\geq 0$. Тогда P вычисляет частичную функцию $\phi_P(x_0\ldots,x_n)$ на $\mathbb N$, которая определяется так: при любых $\overline x\in\mathbb N$ зададим значения $r_0=x_0,\ldots,r_n=x_n;\ r_i=0$ при i>n, и запустим P. Если P никогда не останавливается (то есть $\forall t\ k(t)\leq l$), то $\phi_P(\overline x)$ не определена. Если же она остановится в момент t, то $\phi_P(\overline x)=r_0(t)$. Функции такого вида называются R-вычислимыми.

Если вычисление $P(\bar{x})$ никогда не остановится, будем обозначать это $P(\bar{x})\uparrow$ (или $\phi_P(\bar{x})\uparrow$, в противном случае пишем $P(\bar{x})\downarrow$ (или $\phi_P(\bar{x})\downarrow$. Таким образом, $\phi_P(\bar{x})\downarrow$ в точности тогда, когда $\phi_P(\bar{x})$ определено.

R-вычислимые функции

Пусть P — программа и $n \geq 0$. Тогда P вычисляет частичную функцию $\phi_P(x_0\dots,x_n)$ на $\mathbb N$, которая определяется так: при любых $\overline x \in \mathbb N$ зададим значения $r_0=x_0,\dots,r_n=x_n;\ r_i=0$ при i>n, и запустим P. Если P никогда не останавливается (то есть $\forall t\ k(t) \leq l$), то $\phi_P(\overline x)$ не определена. Если же она остановится в момент t, то $\phi_P(\overline x)=r_0(t)$. Функции такого вида называются R-вычислимыми.

Если вычисление $P(\bar{x})$ никогда не остановится, будем обозначать это $P(\bar{x})\uparrow$ (или $\phi_P(\bar{x})\uparrow$, в противном случае пишем $P(\bar{x})\downarrow$ (или $\phi_P(\bar{x})\downarrow$. Таким образом, $\phi_P(\bar{x})\downarrow$ в точности тогда, когда $\phi_P(\bar{x})$ определено.

ТЕЗИС ТЬЮРИНГА: Частичная функция на $\mathbb N$ R-вычислима в точности тогда, когда она вычислима (по некоторому алгоритму).

Кодирование R-вычислений

Кодом программы $P=(I_0,\ldots,I_l)$ назовем число $\ulcorner P\urcorner = \langle \ulcorner I_0\urcorner,\ldots,\ulcorner I_l\urcorner \rangle$, где $\ulcorner r_i:=0\urcorner = \langle 0,i\rangle$, $\ulcorner r_i:=r_i+1\urcorner = \langle 1,i\rangle, \ \ulcorner r_i:=r_j\urcorner = \langle 2,i,j\rangle$, и $\ulcorner r_i=r_j\Rightarrow k\urcorner = \langle 3,i,j,k\rangle$.

Кодирование R-вычислений

```
Кодом программы P=(I_0,\ldots,I_l) назовем число \ulcorner P \urcorner = \langle \ulcorner I_0 \urcorner,\ldots, \ulcorner I_l \urcorner \rangle, где \ulcorner r_i := 0 \urcorner = \langle 0,i \rangle, \ulcorner r_i := r_i + 1 \urcorner = \langle 1,i \rangle, \ulcorner r_i := r_j \urcorner = \langle 2,i,j \rangle, и \ulcorner r_i = r_j \Rightarrow k \urcorner = \langle 3,i,j,k \rangle.
```

 $\mathsf{On}(a) \iff a - \mathsf{код}$ некоторого оператора.

 $\mathsf{Проr}(a) \iff a - \mathsf{код}$ некоторой программы.

 $\mathsf{Пер}(i,a) \iff a - \mathsf{код}$ некоторой программы, в которую входит r_i .

 $\mathrm{д}\mathrm{J}(a)=\mathrm{д}\mathrm{J}$ лине программы P, если $a-\mathrm{kod}$ программы P; иначе 0.

 $\operatorname{пам}(a)=\operatorname{памяти} P$, если a — код программы P; иначе 0. $\operatorname{coc}(a,x_0,\ldots,x_n,t)=$ коду состояния P в момент t при $r_i=x_i$ для $i\leq n$ и $r_i=0$ для i>n, если a — код P; иначе 0.

Свойства кодирования

- 1. Коды разных операторов различны.
- 2. Коды разных программ различны.
- 3. Все определенные на предыдущем слайде предикаты и функции рекурсивны.
- 4. Если r_i входит в P, то $i < \lceil P \rceil$.
- 5. Если k номер оператора, входящий в P, то $k < \lceil P \rceil$
- 6. Существует алгоритм, который по программе вычисляет её код и наоборот.

TEOPEMA. Класс всех тотальных R-вычислимых функций совпадает с классом всех рекурсивных функций.

TEOPEMA. Класс всех тотальных R-вычислимых функций совпадает с классом всех рекурсивных функций.

Д. \subseteq . Пусть $\phi_P(\bar{x})$ тотальная и $a=\lceil P \rceil$. Тогда $g(\bar{x})=\mu t\ (\beta(\cos(a,\bar{x},t), \operatorname{пам}(a)+2) \geq \operatorname{дл}(a))$ рекурсивна, а значит и $\phi_P(\bar{x})=\beta(\cos(a,\bar{x},g(\bar{x})),1)$ рекурсивна.

- \supseteq . 1) Функции $+,\cdot,\chi_<,I_k^m$ являются R-вычислимыми.
- 2) Суперпозиция R-вычислимых функций является R-вычислимой функцией.
- 3) Минимизация R-вычислимой функции является R-вычислимой функцией.

TEOPEMA. Класс всех тотальных R-вычислимых функций совпадает с классом всех рекурсивных функций.

Д. \subseteq . Пусть $\phi_P(\bar{x})$ тотальная и $a=\lceil P \rceil$. Тогда $g(\bar{x})=\mu t \; (\beta(\cos(a,\overline{x},t), \operatorname{пам}(a)+2) \geq \operatorname{дл}(a))$ рекурсивна, а значит и $\phi_P(\bar{x})=\beta(\cos(a,\bar{x},g(\bar{x})),1)$ рекурсивна.

- \supseteq . 1) Функции $+,\cdot,\chi_<,I_k^m$ являются R-вычислимыми.
- 2) Суперпозиция R-вычислимых функций является R-вычислимой функцией.
- 3) Минимизация R-вычислимой функции является R-вычислимой функцией.
- 1) проверяется построением соответствующих программ.
- 2) Из программ H_1, H_2, G , вычисляющих соответственно $h_1(x), h_2(x), g(x_1, x_2)$, легко построить программу, F, вычисляющую $f(x) = g(h_1(x), h_2(x))$.
- 3) Программу G, вычисляющую функцию g(x,y) с условием $\forall x\exists y(g(x,y)=0)$, легко переделать в программу F, вычисляющую $f(x)=\mu y(g(x,y)=0)$.

ОПР (рекусивные частичные функции).

- 1) Функции $+,\cdot,\chi_<,I_k^m$ суть РЧФ.
- 2) Суперпозиция РЧФ является РЧФ.
- 3) Минимизация РЧФ является РЧФ.

При этом минимизация ЧФ $g(\bar{x},y)$ определяется как ЧФ $f(\bar{x}) = \mu y(g(\bar{x},y)=0)$ =наименьшему y (если оно существует) такому, что $g(\bar{x},y)=0$, и для всякого z < y значение $g(\bar{x},z)$ определено, но отлично от 0.

ОПР (рекусивные частичные функции).

- 1) Функции $+,\cdot,\chi_<,I_k^m$ суть РЧФ.
- 2) Суперпозиция РЧФ является РЧФ.
- 3) Минимизация РЧФ является РЧФ.

При этом минимизация ЧФ $g(\bar{x},y)$ определяется как ЧФ $f(\bar{x}) = \mu y(g(\bar{x},y)=0)$ =наименьшему y (если оно существует) такому, что $g(\bar{x},y)=0$, и для всякого z < y значение $g(\bar{x},z)$ определено, но отлично от 0.

ТЕОРЕМА. Класс всех R-вычислимых $\Psi\Phi$ совпадает с классом всех рекурсивных $\Psi\Phi$.

Д. Работает доказательство из предыдущего слайда.

Относительная R-вычислимость и рекурсивность

Пусть $h: \mathbb{N} \to \mathbb{N}$ — произвольная (возможно, не рекурсивная) функция. Частичные функции, рекурсивные относительно h определяются так же, как и обычные рекурсивные ЧФ, но в список начальных функций добавляется h.

Относительная R-вычислимость и рекурсивность

Пусть $h:\mathbb{N}\to\mathbb{N}$ — произвольная (возможно, не рекурсивная) функция. Частичные функции, рекурсивные относительно h определяются так же, как и обычные рекурсивные ЧФ, но в список начальных функций добавляется h.

R-вычислимые относительно h частичные функции (или ЧФ, вычислимые c оракулом h) — это ЧФ, вычислимые k-программами k оракулом k. k-программа k оператором k оператором k оператором k оператором k оператором k оператором k оракуле k ораку

Относительная R-вычислимость и рекурсивность

Пусть $h:\mathbb{N}\to\mathbb{N}$ — произвольная (возможно, не рекурсивная) функция. Частичные функции, рекурсивные относительно h определяются так же, как и обычные рекурсивные ЧФ, но в список начальных функций добавляется h.

R-вычислимые относительно h частичные функции (или ЧФ, вычислимые c оракулом h) — это ЧФ, вычислимые k-программами k оракулом k. k-программа k оператором k оператор

ТЕОРЕМА. Для любой функции $h:\mathbb{N}\to\mathbb{N}$, класс всех ЧФ, рекурсивных относительно h, совпадает с классом всех ЧФ, R-вычислимых относительно h.

Пусть $\mathcal F$ — множество всех одноместных РЧФ. Нумерация $\nu:\mathbb N o\mathcal F$ называется вычислимой, если двуместная функция $\tilde \nu(n,x)=\nu_n(x)$ вычислима. Вычислимая нумерация ν называется главной, если любая вычислимая нумерация $\mu:\mathbb N o\mathcal F$ сводится к ν , т.е. $\mu=\nu\circ f$ для некоторой РФ f.

Пусть $\mathcal{F}-$ множество всех одноместных РЧФ. Нумерация $\nu:\mathbb{N}\to\mathcal{F}$ называется вычислимой, если двуместная функция $\tilde{\nu}(n,x)=\nu_n(x)$ вычислима. Вычислимая нумерация ν называется главной, если любая вычислимая нумерация $\mu:\mathbb{N}\to\mathcal{F}$ сводится к ν , т.е. $\mu=\nu\circ f$ для некоторой РФ f. Определим $\phi:\mathbb{N}\to\mathcal{F}$ соотношением:

$$\phi_n = egin{cases} \phi_P^{(1)}, & ext{если } n = \ulcorner P \urcorner \ \emptyset, & ext{иначе} \end{cases}$$

Пусть $\mathcal F$ — множество всех одноместных РЧФ. Нумерация $\nu:\mathbb N o \mathcal F$ называется *вычислимой*, если двуместная функция $\tilde \nu(n,x)=\nu_n(x)$ вычислима. Вычислимая нумерация ν называется *главной*, если любая вычислимая нумерация $\mu:\mathbb N o \mathcal F$ сводится к ν , т.е. $\mu=\nu\circ f$ для некоторой РФ f. Определим $\phi:\mathbb N o \mathcal F$ соотношением:

$$\phi_n = egin{cases} \phi_P^{(1)}, & ext{если } n = \ulcorner P
ceil \\ \emptyset, & ext{иначе} \end{cases}$$

TEOPEMA. ϕ — главная вычислимая нумерация одноместных РЧФ.

Д. $g(n,x)=\mu t$ (Прог $(n)\wedge\beta(\cos(n,x,t),\max+2)\geq$ дл(n)) рекурсивна, значит и $\tilde{\phi}(n,x)=\beta(\cos(n,x,g(n,x)),1)$ рекурсивна.

Пусть μ вычислимая нумерация РЧФ и M — программа, вычисляющая $\tilde{\mu}(n,x)$. Для любого n построим программу P_n , для которой $\mu_n=\phi_{P_n}^{(1)}$. Идея программы — получив на входе x, дописать n, после чего запустить M.

Пусть μ вычислимая нумерация РЧФ и M – программа, вычисляющая $\tilde{\mu}(n,x)$. Для любого n построим программу P_n , для которой $\mu_n=\phi_{P_n}^{(1)}$. Идея программы — получив на входе x, дописать n, после чего запустить M.

$$0. \ r_1 := r_0$$
 $1. \ r_0 := 0$
 $2. \ r_0 := r_0 + 1$
 $...$
 $n. \ r_0 := r_0 + 1$
 $n+1. \ \mathsf{M(n+2)}$

Пусть μ вычислимая нумерация РЧФ и M – программа, вычисляющая $\tilde{\mu}(n,x)$. Для любого n построим программу P_n , для которой $\mu_n=\phi_{P_n}^{(1)}$. Идея программы — получив на входе x, дописать n, после чего запустить M.

0.
$$r_1 := r_0$$

1. $r_0 := 0$
2. $r_0 := r_0 + 1$
...
n. $r_0 := r_0 + 1$
n+1. $M(n+2)$

(M(n+2) — программа M, в которой номера операторов увеличены на n+2). Тогда $s(n)=\lceil P_n \rceil$ рекурсивна и $\mu=\phi\circ s$.

Свойства главной нумерации

TEOPEMA о неподвижной точке. Для любой одноместной РФ f(x) найдётся e такое, что $\phi_e = \phi_{f(e)}.$

Свойства главной нумерации

TEOPEMA о неподвижной точке. Для любой одноместной РФ f(x) найдётся e такое, что $\phi_e = \phi_{f(e)}.$

Д. Рассмотрим вычислимую нумерацию $\mu_n = \phi_{\phi_n(n)}$. По предыдущей теореме, существует РФ s такая, что $\mu_n = \phi_{s(n)}$. Функция $f \circ s$ рекурсивная, поэтому $f \circ s = \phi_v$ для некоторого v. Значит e = s(v) подходит: $\phi_{s(v)} = \mu_v = \phi_{\phi_v(v)} = \phi_{f(s(v))}$.

Свойства главной нумерации

TEOPEMA о неподвижной точке. Для любой одноместной РФ f(x) найдётся e такое, что $\phi_e = \phi_{f(e)}.$

Д. Рассмотрим вычислимую нумерацию $\mu_n = \phi_{\phi_n(n)}$. По предыдущей теореме, существует РФ s такая, что $\mu_n = \phi_{s(n)}$. Функция $f \circ s$ рекурсивная, поэтому $f \circ s = \phi_v$ для некоторого v. Значит e = s(v) подходит: $\phi_{s(v)} = \mu_v = \phi_{\phi_v(v)} = \phi_{f(s(v))}$.

ТЕОРЕМА Райса. Пусть $\emptyset \subset C \subset \mathcal{F}$. Тогда множество $\phi^{-1}(C)=\{n\mid \phi_n\in C\}$ нерекурсивно.

Пусть рекурсивно, $a\in\phi^{-1}(C)$, и $b\in\mathbb{N}\setminus\phi^{-1}(C)$. Рассмотрим рекурсивную функцию

$$f(x) = \begin{cases} a, & \text{если } x \notin \phi^{-1}(C) \\ b, & \text{если } x \in \phi^{-1}(C) \end{cases}$$

По теореме о неподвижной точке, для некоторого c выполнено $\phi_c=\phi_{f(c)}$, откуда $\phi_c\in C\leftrightarrow\phi_{f(c)}\not\in C.$ Противоречие.

Напомним, что $A\subseteq \mathbb{N}$ РП, если $A=\emptyset \lor A=rng(f)$ для некоторой РФ f. Пусть \mathcal{E} — множество всех РПМ. Нумерация $\nu: \mathbb{N} \to \mathcal{E}$ вычислима, если $\{\langle n, x \rangle \mid x \in \nu_n\}$ РП. Вычислимая нумерация называется *главной*, если к ней сводится любая другая вычислимая нумерация.

Напомним, что $A\subseteq \mathbb{N}$ РП, если $A=\emptyset \lor A=rng(f)$ для некоторой РФ f. Пусть \mathcal{E} — множество всех РПМ. Нумерация $\nu:\mathbb{N}\to \mathcal{E}$ вычислима, если $\{\langle n,x\rangle\mid x\in \nu_n\}$ РП. Вычислимая нумерация называется *главной*, если к ней сводится любая другая вычислимая нумерация.

- 1. A рекурсивно $\Leftrightarrow A$ и \overline{A} РП.
- 2. A РП $\Leftrightarrow A = rng(\phi_n)$ для некоторого $n \in \mathbb{N} \Leftrightarrow A = dom(\phi_n)$ для некоторого $n \in \mathbb{N}$.
- 3. Если $A \leq_m B$ и B рекурсивно (РП), то и A рекурсивно (РП).
- 4. $W_n = dom(\phi_n)$ главная вычислимая нумерация множества \mathcal{E} , удовлетворяющая аналогам теоремы о неподвижной точке и теоремы Райса.
- 5. Множества $C=\{n\mid n\in W_n\}$ и $U=\{\langle n,x\rangle\mid x\in W_n\}$ РП, но не рекурсивны.
- 6. Любое РПМ m-сводится к множествам C и U.

