1	西安交	飞通大学研究生:	考试题	成绩
		11 44		2020 年 1 月 10 日
学	院	专业班号		
学		姓 名		
-	填空題	返(每空2分,共56分) (答案)	直接写在横线上)	
	1.《计算》	方法》中主要研究的是	误差和	误差。
	2.已知 a =	= √2019 = 44.9332838773,将其	存入浮点数系	F(10,8,-38,38)中时,
fl(a) =	,此时	产生的误差为_	误差。
	3.由 5 个	不相同的点 $(x_i, 2019x_i^4 + x_i^2 + 10)$, i = 0, 1,, 4 , $*$	对成的 Lagrange 插值基
函数	数 $l_0(x) = $,并且有 l ₀	$(x_0)l_4(x_0) = $,
$\sum_{i=0}^{4}$	$(2019x_i^4 +$	$-x_i^2 + 10) I_i(x) = $	•	
	4. 已知 x	$=(1 \ 2 \ 3 \ 4 \ 5)^T, $		$ \left\ \vec{x} \right\ _{\infty} = $
	5.求解线	性方程组 $Ax = b$ 的迭代格式 $x^{(k)}$	$=Gx^{(k)}+d,\vec{X}$	寸于任何初值 x ⁽⁰⁾ 都收敛
的	充要条件是	是; 该方程组	在∞-范数下的	条件数为 cond _∞ (A) =
		°		
	6. 在浮点			个非零的数。
	7.已知 4	次多项式函数 $f(x) = 2020x^4 +$	$+2019nx^2+m,$	其中m,n为常数,则有
f	2019,2020,2	2021,2023,2024,2025] =, j	f[2019,2020,202	21,2024,2025] =
若	f[2019,20 2	0,2025,2024] = 8600 ,则 f[2019,	,2020,2021,2024	·]=

th

8.计算 $I(f) = \int_a^b f(x) dx$ 的数值积分的梯形公式为 $T_1 = $
代数精 度为
复化梯形公式 $T_n = $
9. 定义在[a , b]上最高次项系数为 1 的正交多项式族 $\{\varphi_k(x)\}$, $k=-1,0,1,$,若
$\rho(x) > 0 , \varphi_{-1}(x) = 0 , \varphi_{0}(x) = 1 , \text{if } \varphi_{1}(x) = \underbrace{\qquad \qquad }_{b} \int_{a}^{b} \rho(x) x^{4} \varphi_{5}(x) dx = \underbrace{\qquad \qquad }_{b} $
$\int_{a}^{b} \rho(x) \varphi_{k}(x) \varphi_{2020}(x) dx = (k < 2020).$
10.对于一阶常微分方程的初值问题中 $y'(t) = f(t, y(t)), y(0) = y_0, t \in [0,1]$,采用
后退 Euler 公式进行求解时的公式为
部截断误差为
$11.$ 若 $f(x)$ 是非线性函数,则求解非线性方程 $x+1-f(x)=0$ 的简单迭代格式 $x^{(k+1)}=\varphi(x^{(k)})=f(x^{(k)})-1$,若在某区间上满足
式可以收敛,此时的收敛速度为收敛。
收巡。
二、 简答题 (共 44 分)
. 在浮点数系 $F(10,5,-10,10)$ 中,若取 $a=9000$ 时,对于如下两个等价的公式
$=\sqrt{a+1}-\sqrt{a}$ 和 $x=\frac{1}{\sqrt{a+1}+\sqrt{a}}$ 分别进行计算得到 x 的近似值 x 各有几位有效数
2? 说明哪种方法得到的结果更加准确,为什么?($x=0.005270316373$,
$9000 = 94.86832980 \sqrt{9001} = 94.87360012) (4 \(\frac{1}{2}\))$

与

西安交通大学考试题

2. 求满足以下插值条件的不超过 3 次的插值多项式。(4 分)

	0	1	3	
у	1	2	4	
y'		2		

3. 已知以下数据,求满足形如 $p(x) = a + bx^2$ 的最小二乘近似函数。(6分)

x	-1			10000000000000000000000000000000000000		
v	1	0	1	2	3	4
			2	6	9	18

西安交通大学考试题

4. 针对方程组 $\begin{cases} x_1 + 2x_2 - 2x_3 = 3\\ x_1 + x_2 + x_3 = 10\\ 2x_1 + 2x_2 + x_3 = 14 \end{cases}$,解答以下问题:

- (1) 给出系数矩阵的 LU 分解形式,并求解该方程组。(4分)
- (2)若使用迭代方法求解该方程组,给出相应的 Jacobi 迭代格式和 Gauss-Seidel 迭代格式,并讨论对于任何初值 $x^{(0)}$ 两种迭代格式的收敛性。(6 分)

5.求以下数值积分公式中的系数,使其具有尽可能高的代数精度,说明该公式的代

数据精度的阶数,并给出误差估计式(8分)

$$\int_{-h}^{h} f(x)dx \approx A_0 f(-\frac{h}{2}) + A_1 f(0) + A_2 f(\frac{h}{2})$$

世 0 至 等 6 而

西安交通大学考试题

6.若方程 $x^3 - x^2 - 1 = 0$ 在[1,2]上有根,对于迭代格式 $x^{(k+1)} = \frac{1}{\sqrt{x^{(k)} - 1}}$ 判断其收敛性,

若不收敛,则将其改造为收敛的迭代格式。(6分)

7.若 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ 是 n 次多项式,其中 $n > 2, a_0 \neq 0$

- (1) 证明: 差商 $f[x,a_0]$ 是 n-1 次多项式;
- (2) 若 f(x) 中各项系数 $a_k(k=0,1,...,n)$ 都互不相同,则有 $f[a_0,a_1,...,a_n] = \sum_{i=0}^n \frac{f(a_i)}{\omega'(a_i)}$

其中:
$$\omega(x) = (x - a_0)(x - a_1) \cdots (x - a_n)$$
 (6分)