PS3 Solutions

Jingle Fu

Solution (a).

- Unit (Firm) Fixed Effects: Each firm i has intercept α_i . When the number of firms N is large but the time period T is fixed, we have to estimate almost N-T parameters. Such problem can lead to inconsistency in the estimation of the common parameters, because the estimation error in α_i doesn't vanish as $N \to \infty$.
- **Time Fixed Effects:** In contrast, time fixed effects add only *T* dummies, the number of parameters associated with time dummies is fixed. Hence, their estimation does not create an incidental parameters problem.

In short, while unit fixed effects can cause IPP when T is relative small to N, the addition of time fixed effects does not because the number of time dummies remains fixed and is asymptotically negligible.

Table 1: Fixed Eects Model		
	(1)	
	FE	
	b/se	
log of employment	0.737***	
	(0.063)	
log of deflated capital	0.096**	
	(0.044)	
log of deflated R&D	0.144***	
	(0.028)	
Observations	2971	

```
1 use GMdata.dta, clear
2 xtset index yr
3 xtreg ldsal lemp ldnpt ldrnd i.yr, fe robust
```

Solution (b).

Starting from the original equation for firm i at time t:

$$\Delta ldsal_{it} = \beta_1 \Delta lemp_{it} + \beta_2 \Delta ldnpt_{it} + \beta_3 \Delta ldrnd_{it} + (f_t - f_{t-1}) + \Delta u_{it}$$

EI035 Econometrics II Jingle Fu

Since α_i does not vary over time, it drops out in the differencing.

The time effects appear as differences $f_t - f_{t-1}$. Thus, in the first-differenced equation the levels of the year dummies disappear, but their differences remain.

Solution (c).

As $d357_{it}$ equals 1 for firms in industry 357 and is constant over time, then its effect is absorbed by the firm fixed effect α_i . In the fixed effects (within) estimator, the coefficient on d357 is not separately identified. In the first-differenced model, any time-invariant variable will vanish $\Delta d357_{it} = 0 \forall t$.

Including a time-invariant dummy does not worsen the IPP since it adds only one parameter that is either absorbed (or eliminated in first differences).

Solution (d).

As we define $\ddot{y}_{it} = y_{it} - \overline{y}_{it}$ and $\ddot{X}_{it} - \overline{X}_{it}$, we have:

$$\hat{\beta}_{FE-W} = \left(\sum_{i,t} \ddot{X}'_{it} \ddot{X}_{it}\right) \sum_{i,t} \ddot{X}_{it} \ddot{y}_{it}$$

$$\hat{\beta}_{RE} = \left(X'\Omega^{-1}X\right)^{-1}X'\Omega^{-1}y$$

Solution (e).

The Hausman test statistics is:

$$H = \left(\hat{\beta}_{FE} - \hat{\beta}_{RE}\right)' \left[A\mathbb{V}[\hat{\beta}_{FE}] - A\mathbb{V}[\hat{\beta}_{RE}]\right]^{-1} \left(\hat{\beta}_{FE} - \hat{\beta}_{RE}\right)$$

```
1 hausman fe_w re, sigmamore
```

EI035 Econometrics II Jingle Fu

Table 2: Fixed Effects Model		
	(1)	
	log of deflated sales	
	b/se	
log of employment	0.650***	
	(0.031)	
log of deflated capital	0.186***	
	(0.025)	
log of deflated R&D	0.098***	
	(0.019)	
year == 73, 78, 83, 88 = 73	0.000	
	(.)	
year == 73, 78, 83, 88 = 78	0.058***	
	(0.016)	
year == 73, 78, 83, 88 = 83	-0.012	
	(0.020)	
year == 73, 78, 83, 88 = 88	0.251***	
	(0.020)	
d357 = 0	0.000	
	(.)	
d357=1	0.000	
	(.)	
$year == 73, 78, 83, 88 = 73 \times d357 = 0$		
	(.)	
$year == 73, 78, 83, 88 = 73 \times d357 = 1$		
TO TO OD OD TO 1077	(.)	
$year == 73, 78, 83, 88 = 78 \times d357 = 0$		
70 70 00 00 70 lorg 1	(.)	
$year == 73, 78, 83, 88 = 78 \times d357 = 1$	1.128***	
79 70 09 00 09 1917 0	(0.073)	
$year == 73, 78, 83, 88 = 83 \times d357 = 0$		
79 70 09 00 09 1957 1	(.)	
$year == 73, 78, 83, 88 = 83 \times d357 = 1$		
72 70 02 00 00 v d257 0	(0.074)	
$year == 73, 78, 83, 88 = 88 \times d357 = 0$		
voer — 73 78 82 80 80 × 4257_1	(.) 3.433***	
$year == 73, 78, 83, 88 = 88 \times d357 = 1$	(0.074)	
Constant	3.774***	
Constant	(0.100)	
Observations	856	

EI035 Econometrics II Jingle Fu

Table 3: Random Effects Model	
	(1)
	log of deflated sales
	b/se
log of employment	0.582***
	(0.026)
log of deflated capital	0.340***
	(0.019)
log of deflated R&D	0.067^{***}
	(0.016)
year == 73, 78, 83, 88 = 73	0.000
	(.)
year == 73, 78, 83, 88 = 78	0.031*
	(0.017)
year == 73, 78, 83, 88 = 83	-0.080***
	(0.019)
year == 73, 78, 83, 88 = 88	0.197***
	(0.019)
d357 = 0	0.000
10	(.)
d357=1	-3.304***
	(0.110)
$year == 73, 78, 83, 88 = 73 \times d357 = 0$	0.000
79 70 09 00 79 1 1957 1	(.)
$year == 73, 78, 83, 88 = 73 \times d357 = 1$	0.000
waar 72 79 92 99-79 v d257-0	(.)
$year == 73, 78, 83, 88 = 78 \times d357 = 0$	0.000
voor — 73 78 83 88—78 v d357—1	(.) 1.145***
$year == 73, 78, 83, 88 = 78 \times d357 = 1$	(0.076)
$year == 73, 78, 83, 88 = 83 \times d357 = 0$	0.000
year — 13, 10, 03, 00—03 × d331—0	(.)
$year == 73, 78, 83, 88 = 83 \times d357 = 1$	2.500***
year == 10, 10, 00, 00=00 × d001=1	(0.076)
$year == 73, 78, 83, 88 = 88 \times d357 = 0$	0.000
70, 10, 00, 00 00 / 4001 0	(.)
$year == 73, 78, 83, 88 = 88 \times d357 = 1$	3.439***
5	(0.077)
Constant	3.312***
	(0.066)
Observations	856
Onset various	090