SOLUTION BOOK TO INTRODUCTION TO SMOOTH MANIFOLDS BY JOHN M. LEE

SOLUTION BOOK TO INTRODUCTION TO SMOOTH MANIFOLDS BY JOHN M. LEE

Contents

Chapter 1. Tangent Vectors	2
1 Tangent Vectors	2
1.1 Tangent Vectors on Manifolds	2
Chapter 2. Vector Fields	4
1 Vector Fields on Manifolds	4
Chapter 3. Tensors	5
1 Pullbacks of Tensor Fields	5
Chapter 4. Orientations	6
1 Orientations of Vector Spaces	6
Appendix. Bibliography	7

Contents

CHAPTER 1

Tangent Vectors

1. Tangent Vectors

1.1. Tangent Vectors on Manifolds.

Exercise 1.1. Let M be a smooth manifold and $p \in M$. The set of all derivations at p, written T_pM , is a real vector space under the usual pointwise defined operations.

Solution 1.1. Clearly $T_pM \subseteq L(\mathscr{C}^{\infty}(M); \mathbb{R})$ and thus it is enough to show that T_pM is a linear subspace of $L(\mathscr{C}^{\infty}(M); \mathbb{R})$ (see [Lee13, p. 626]). We have $T_pM \neq \emptyset$, since $0 \in T_pM$ defined by $f \mapsto 0$. Let $u, v \in T_pM$, $\lambda \in \mathbb{R}$ and $f, g \in \mathscr{C}^{\infty}(M)$. Then by

$$(\lambda u + v)(fg) = \lambda u(fg) + v(fg)$$

$$= f(p) (\lambda u(g) + v(g)) + g(p) (\lambda u(f) + v(f))$$

$$= f(p)(\lambda u + v)(g) + g(p)(\lambda u + v)(f)$$

we have that $\lambda u + v \in T_pM$.

Exercise 1.2. Suppose M is a smooth manifold. Let $p \in M$, $v \in T_pM$ and $f \in \mathscr{C}^{\infty}(M)$. If f is constant, then v(f) = 0.

Solution 1.2. First assume that $f = \chi_M$. Then

$$v(\chi_M) = v(\chi_M \cdot \chi_M) = f(p)v(\chi_M) + f(p)v(\chi_M) = v(\chi_M) + v(\chi_M)$$
 (1)

implies that v(f) = 0. Hence if $f = \lambda \chi_M$ for $\lambda \in \mathbb{R}$, the \mathbb{R} -linearity of v implies that

$$v(f) = v(\lambda \chi_M) = \lambda v(\chi_M) = 0.$$
 (2)

Exercise 1.3 (Properties of Differentials). Let M, N and P be smooth manifolds, let $F: M \to N$ and $G: N \to P$ be smooth maps, and let $p \in M$.

- (a) $dF_p: T_pM \to T_{F(p)}N$ is \mathbb{R} -linear.
- (b) $d(G \circ F)_p = dG_{F(p)} \circ dF_p$.
- (c) $d(id_M)_p = id_{T_pM}$.

Solution 1.3. Let $u, v \in T_pM$, $\lambda \in \mathbb{R}$ and $f \in \mathscr{C}^{\infty}(N)$. Then

$$dF_p(\lambda u + v)(f) = (\lambda u + v)(f \circ F)$$

$$= \lambda u(f \circ F) + v(f \circ F)$$

$$= \lambda dF_p(u)(f) + dF_p(v)(f).$$

This shows part (a). Let $v \in T_pM$ and $f \in \mathscr{C}^{\infty}(P)$. Then

$$d(G \circ F)_p(v)(f) = v (f \circ (G \circ F))$$

$$= v ((f \circ G) \circ F)$$

$$= dF_p(f \circ G)$$

$$= dG_{F(p)} (dF_p(v)) (f)$$

$$= (dG_{F(p)} \circ dF_p) (v)(f).$$

This shows part (b). Part (c) is immediate by

$$d(id_M)_p(v)(f) = v(f \circ id_M) = v(f)$$

for $f \in \mathscr{C}^{\infty}(M)$. Finally, part (b) and (c) yields

$$dF_p \circ d(F^{-1})_{F(p)} = d(F \circ F^{-1})_{F(p)} = d(id_N)_{F(p)} = id_{T_{F(p)}N}$$

and

$$d(F^{-1})_{F(p)} \circ dF_p = d(F^{-1} \circ F)_p = d(id_M)_p = id_{T_pM}$$

which shows that dF_p is bijective with inverse $(dF_p)^{-1} = d(F^{-1})_{F(p)}$ by uniqueness. Since by part (a) dF_p is linear, we have that dF_p is an isomorphism (see [Lee13, p. 622]). This shows part (d).

$CHAPTER\ 2$

Vector Fields

1. Vector Fields on Manifolds

Exercise 1.1. Let M be a smooth manifold.

(a) If $X, Y \in \mathfrak{X}(M)$, $f, g \in \mathscr{C}^{\infty}(M)$, then $fX + gY \in \mathfrak{X}(M)$.

CHAPTER 3

Tensors

1. Pullbacks of Tensor Fields

Exercise 1.1 (Properties of Tensor Pullbacks). Suppose $F: M \to N$ is a smooth mapping and A, B are covariant tensor fields on N. Then

(a)
$$F^*(A \otimes B) = F^*A \otimes F^*B$$
.

Solution 1.1. Let $p \in M$. Then we have

$$(F^*(A \otimes B))_p (v_1, \dots, v_{k+l}) = (A \otimes B)_{F(p)} (dF_p(v_1), \dots, dF_p(v_{k+l}))$$

$$= (A_{F(p)} \otimes B_{F(p)}) (dF_p(v_1), \dots, dF_p(v_{k+l}))$$

$$= A_{F(p)} (dF_p(v_1), \dots, dF_p(v_k)) B_{F(p)} (dF_p(v_{k+1}), \dots, dF_p(v_{k+l}))$$

$$= (F^*A)_p (v_1, \dots, v_k) (F^*B)_p (v_{k+1}, \dots, v_{k+l})$$

$$= (F^*A)_p \otimes (F^*B)_p (v_1, \dots, v_{k+l})$$

$$= (F^*A \otimes F^*B)_p (v_1, \dots, v_{k+l})$$

for all $v_1, \ldots, v_{k+l} \in T_p M$.

CHAPTER 4

Orientations

1. Orientations of Vector Spaces

Exercise 1.1. Let V be a vector space of dimension $n \ge 1$. Define a relation \sim on the set of all ordered bases of V by

$$(v_1, \dots, v_n) \sim (w_1, \dots, w_n) \quad :\Leftrightarrow \quad \det B > 0$$

where B denotes the transition matrix defined by $w_j = B_j^i v_i$. Show that \sim is an equivalence relation and that $|X/\sim| = 2$.

Solution 1.1. Clearly $(v_1, \ldots, v_n) \sim (v_1, \ldots, v_n)$ by $v_j = \delta_j^i v_i$. Assume $(v_1, \ldots, v_n) \sim (w_1, \ldots, w_n)$. Thus B defined by $w_j = B_j^i v_i$ has a positive determinant. But then by $\det(B^{-1}) = (\det(B))^{-1}$ also $\det(B^{-1})$ is positive and $v_j = (B^{-1})_j^i w_i$. Hence $(w_1, \ldots, w_n) \sim (v_1, \ldots, v_n)$. Lastly, assume that also $(w_1, \ldots, w_n) \sim (u_1, \ldots, u_n)$. Hence there exists a matrix A such that $u_j = A_j^i w_i$ where $\det(A) > 0$. Thus $u_j = A_j^i w_i = A_j^i (B_i^k v_k) = (A_j^i B_i^k) v_k$ and by $\det(AB) = \det(A) \det(B) > 0$ we get that $(v_1, \ldots, v_n) \sim (u_1, \ldots, u_n)$. Hence \sim is an equivalence relation.

By [Gri07, p. 335] every vector space has a basis. Let us denote it by (v_1, \ldots, v_n) . Therefore

$$(\widetilde{v}_1,\ldots,\widetilde{v}_n):=(-v_1,\ldots,v_n)$$

is also a basis for V simply by considering the transition matrix

$$\widetilde{B} := \begin{pmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

defined by $v_j = \widetilde{B}_j^i \widetilde{v}_i$. Let (w_1, \dots, w_n) be an ordered basis for V. Let the transition matrix B be defined by $w_j = B_j^i v_i$. If $\det(B) > 0$, we have that

$$(w_1,\ldots,w_n)\sim (v_1,\ldots,v_n).$$

Otherwise, if det(B) < 0

$$w_j = B_j^i v_i = B_j^i \left(\widehat{B}_i^k \widehat{v}_k \right) = \left(B_j^i \widehat{B}_i^k \right) \widehat{v}_k$$

together with $det(B\widehat{B}) = det(B) det(\widehat{B}) > 0$ yields

$$(w_1,\ldots,w_n)\sim (\widetilde{v}_1,\ldots,\widetilde{v}_n).$$

Since $det(B) \neq 0$ by the nonsingularity of B, we have that there are exactly two equivalence classes

$$[(v_1,\ldots,v_n)]_{\sim}$$
 and $[(-v_1,\ldots,v_n)]_{\sim}$.

6

Bibliography

- [Gri07] Pierre Antoine Grillet. Abstract Algebra. Graduate Texts in Mathematics. Springer Science + Business Media, LLC, 2007.
- [Lee13] John M. Lee. Introduction to Smooth Manifolds. Second Edition. Graduate Texts in Mathematics. Springer, 2013.