Linear Regression Model

Step 1 - *Import dataset*

```
import pandas as pd

df = pd.read_csv("Salary.csv")
    df
```

	df		
Out[1]:		YearsExperience	Salary
	0	1.1	39343
	1	1.3	46205
	2	1.5	37731
	3	2.0	43525
	4	2.2	39891
	5	2.9	56642
	6	3.0	60150
	7	3.2	54445
	8	3.2	64445
	9	3.7	57189
	10	3.9	63218
	11	4.0	55794
	12	4.0	56957
	13	4.1	57081
	14	4.5	61111
	15	4.9	67938
	16	5.1	66029
	17	5.3	83088
	18	5.9	81363
	19	6.0	93940
	20	6.8	91738
	21	7.1	98273
	22	7.9	101302
	23	8.2	113812
	24	8.7	109431

	YearsExperience	Salary
25	9.0	105582
26	9.5	116969
27	9.6	112635
28	10.3	122391
29	10.5	121872
30	11.2	127345
31	11.5	126756
32	12.3	128765
33	12.9	135675
34	13.5	139465

Step 2 - Splitting dataset into training data and testing data

```
In [9]:
           x = df[["YearsExperience"]]
                                           # Independent variable
           y = df["Salary"]
                                          # Dependent variable
In [10]:
           x.head()
Out[10]:
            YearsExperience
                        1.1
                        1.3
                        2.0
                        2.2
In [11]:
           y.head()
               39343
Out[11]: 0
               46205
               37731
               43525
               39891
          Name: Salary, dtype: int64
```

Importing Library

```
In [12]: from sklearn.model_selection import train_test_split
```

```
In [18]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0
```

Step 3 - Fit Linear Regression Model

```
In [19]:
    from sklearn.linear_model import LinearRegression
    model = LinearRegression()
    model = model.fit(x_train, y_train)
    model
```

Out[19]: LinearRegression()

Step 4 - Plotting

```
import matplotlib.pyplot as plt

plt.scatter(x_train, y_train)
   plt.plot(x_train, model.predict(x_train), color="c")

plt.xlabel("Years of Experience")
   plt.ylabel("Salary")
   plt.title("Train Plot")

plt.show()
```



```
import matplotlib.pyplot as plt

plt.scatter(x_test, y_test)
plt.plot(x_test, model.predict(x_test), color="c")

plt.xlabel("Years of Experience")
plt.ylabel("Salary")
```

```
plt.title("Test Plot")

plt.show()
```


Step 5 - Testing or Evaluating Model

```
In [31]: # Model Fitness - Training
    print("Score for Training Data -", model.score(x_train, y_train))
    print("Score for Testing Data -", model.score(x_test, y_test))

Score for Training Data - 0.9638371903672509
Score for Testing Data - 0.9708090245443415
```

Step 6 - Prediction of unknown values

```
In [35]: model.predict([[10]])
Out[35]: array([115742.98052455])
In [36]: model.predict(x_test)
Out[36]: array([120057.87672477, 88127.64484315, 73456.99776241, 118331.91824468, 97620.41648363, 71731.03928232, 63101.24688189])
In [37]: model.predict([[5],[10],[2],[2.5]])
Out[37]: array([ 72594.01852237, 115742.98052455, 46704.64132106, 51019.53752127])
```