Decoding Income: Data-Driven Solutions for Economic Equity

Adel Hassen January 30th, 2025

Executive Summary

- Successfully identified influential factors determining whether an individual earns an income above or below \$50k per year
- Key takeaways
 - Education level, capital gains, and weeks worked during a year are strong predictors of income
 - Demographic features like sex and age show disparities
 - Predictive modeling achieved 94.76% accuracy in classifying income groups

These insights can drive data-driven policies and economic mobility programs.

Why does this Matter?

Understanding characteristics associated with earning above or below \$50K per year to enable key stakeholders to take mitigative actions

Scope and Constraints

Scope

- Exploratory Data Analysis
- Data Preparation
- Modeling
- Results

Constraints

- Time
- Resources
- Data
- Human Capital

Data Overview

- US Census data from 1994-1995
- Roughly 300,000 records
- 40 features
 - 7 numerical
 - 33 categorical
- Bias and privacy considerations
 - Potential historical biases in census data
 - Not PII (Personally Identifiable Information) but must be careful
 - Demographic data requires special attention when used in modeling

Exploratory Data Analysis

Exploratory Data Analysis Key Terms

- Outlier: Data point far from others
- Skewed Data: Data asymmetry in distribution
- Distribution: Spread of data values
- Normally Distributed: Symmetric, bell-shaped data distribution

Distribution of Numerical Data

- Multiple features contain outliers and are skewed right
- Weeks worked in a year and number of persons worked for employer have bimodal (two peaks) distributions
- Age is close to normally distributed but looks a bit skewed

Distribution of Income Class

- Older individuals are more likely to earn >\$50K than younger ones
- When number of persons worked for employer is 6, it increases chances of >\$50K.
 When 0, increases chances of <\$50K.
- 50-52 weeks worked increases
 \$50K likelihood while 0 weeks
 strongly correlates with <\$50K

Education

- Advanced degrees show the highest percentage of income >\$50K
 - o PhD
 - Prof school degree
 - Masters degree

Sex

- Males have higher percentage of earning >\$50K
- Highlights gender pay gap

Tax Filer Status

- Joint both under 65 shows the highest percentage of income >\$50K
- Nonfiler is nearly 100% <\$50K

Data Preparation

Data Preparation Key Terms

- Ordinal feature: categorical data with a clear order
- Nominal feature: categorical data with no clear order
- Encoder: convert categorical data into a numerical representation
 - Ordinal encoder: Preserves order of categories
 - One hot encoder: transform into binary representation
- Normalization: scales data to specific range, usually between 0 and 1

One Hot Encoding

id	color	One Hot Encoding	id	color_red	color_blue	col
1	red		1	1	0	
2	blue		2	0	1	
3	green		3	0	0	
4	blue		4	0	1	

Ordinal Encoding

Original Encoding	Ordinal Encoding		
Poor	1		
Good	2		
Very Good	3		
Excellent	4		

Data Preprocessing

- Ordinal features (education feature)
 - Rank in order
 - Ordinal encoder to convert to integers
 - Normalize data between 0 and 1
- Nominal features
 - One hot encoder
- Numerical features
 - Normalize data between 0 and 1

Simple data pipeline that converts all features into numerical values with range 0 to 1

Modeling

Modeling Key Terms

- Machine Learning (ML) Model: mathematical system that learns patterns from data to make predictions
- Classification: ML task predicting categories
- Training data: Data used to train a machine learning model
- **Test data:** Data used to evaluate a trained model's performance
- Feature Selection: Choosing the most important variables for the model
- Recursive Feature Elimination: Iteratively removing less important features
- Sampling: Adjusting data distribution for fair model training
- Random Oversampling: Duplicating minority class examples to balance data
- **SMOTE:** Creating synthetic data points to balance classes
- Tree-Based Model: Decision-making model using if-then rules like a flowchart
- Boosted Tree: Ensemble of trees improving weak learners iteratively
- **LightGBM Classifier:** Fast, efficient boosted tree model optimized for large datasets
- **Hyperparameter:** Settings that control how a model learns
- **Hyperparameter Tuning:** Optimizing hyperparameters for better performance

Machine Learning Approach

- Problem type: Binary classification of income class
 - Below \$50K per year (92%)
 - Above \$50K per year (8%)

Steps

- Use lazypredict to test basic models
- Select best model and perform hyperparameter tuning
- Try improving model (feature selection, sampling, etc.)
- Retrain on full training data
- Return results

Best Model

- LightGBM Classifier was the best model
- Qualities of LightGBM
 - Based on decision trees
 - Boosted tree method
 - Handles missing values and categorical features
 - Optimized for speed
- Accuracy
 - Default hyperparameters: 94.28%
 - Hyperparameter tuning: **94.50**%

Attempted Improvements

- Feature selection with recursive feature elimination
- Oversampling
 - Random oversampling
 - SMOTE

Model	Accuracy	F1 Score (Weighted)
Default hyperparameters	94.28%	93.68%
Feature selection	93.23%	92.20%
Random oversampling	85.99%	88.45%
SMOTE	93.25%	93.14%

Results

Results Key Terms

- Accuracy: Correct predictions out of total predictions
- Precision: True positives out of predicted positives
- Recall: True positives out of actual positives
- **F1-Score**: Balance of precision and recall
- Confusion Matrix: Table showing actual vs. predicted values
- Baseline Model: Simple model for performance comparison
- Feature Importance: Measure of a feature's impact on predictions

Model Evaluation and Metrics

After retraining on full training set:

- Accuracy: 94.76%
- F1 Score (Weighted): 94.20%
- Precision (Weighted): 94.19%
- Recall (Weighted): 94.76%

Our model outperformed the 93.8% majority-class baseline

Feature Importance

- Education is most important feature
- Capital gains ranks second
- Demographic features like sex and age rank in the top 10
- Tax filer status is in the top 10

Conclusion

Recommendations

- Education is the strongest predictor of income class
- Demographic features rank highly as predictors of income class highlighting disparities
- Practical applications
 - Policymakers: design programs and policies around upskilling, workforce development, and wage fairness
 - Nonprofits & educators: Develop career guidance programs and align educational curricula with economic opportunities

Drive Adoption

- Dataiku Data Science Studio (DSS)
 - End-to-end machine learning workflow on one platform
 - Streamlined data preparation and feature engineering
 - Collaboration and reproducibility
 - Scalability and deployment

Expert support

- Data science advisors
- Learning modules for Dataiku DSS
- Office hours
- Masterclasses

Next Steps

Short-Term

- 1. Deeper dive into each feature to build understanding
- 2. Explore missing values and steps to impute them
- 3. Impact of outliers and skewness
- 4. Rebinning categories
- 5. Trying more feature selection methods
- 6. Error analysis of ML models

Long-Term

- 7. Creating more features and incorporating new data
- 8. Responsible ML practices
- Production-level ML pipeline with MLOps workflow (experiment tracking, orchestration, monitoring, CI/CD, etc.)

Questions and Discussion