

AERMOD Modeli

- ➤ AMS/EPA Regulatory Model Amerikan Meteoroloji Derneği / Amerikan Çevre Koruma Örgütü Düzenleyici Modeli
- > Doğrusal, kararlı hal (steady state), Gauss dispersiyon modeli
- ➤ 2004 yılından itibaren ISCST3 modeli yerine AERMOD modeli kullanılmaya başlanmıştır.

AERMOD Modeli

- Noktasal, hacimsel ve alansal kaynaklar düz ve engebeli arazide modellenebilir. AERMOD çizgisel kaynakları modellenmesini gerçekleştiremediği için çizgisel kaynakları, birbirini takip eden alansal kaynaklara dönüştürerek modelleme işlemi yapılabilir.
- > 50 km'ye kadar etkilidir.
- ➤ Meteorolojik veriler için AERMET ön işlemcisini kullanır.
- Topografik veriler için AERMAP ön işlemcisini kullanır.

AERMOD Model Formülasyonu

$$C_T\{x_r, y_r, z_r\} = f \cdot C_{c,s}\{x_r, y_r, z_r\} + (1 - f)\{x_r, y_r, z_p\}$$

- $ightharpoonup C_T\{x_n,y_n,z_r\}$: Toplam konsantrasyon (µg/m³)
- C_{c,s}{x_r,y_r,z_r}: Yatay hüzmeden kaynaklanan konsantrasyon (μg/m³)
- C_{c,s}{x_ny_nz_p}: Araziden yansımadan kaynaklanan konsantrasyon (µg/m³)
- > f : Hüzme ağırlık fonksiyonu
- z_r: Hüzme merkez çizgisi yüksekliği (m)
- z_t: Reseptör noktasındaki arazinin yüksekliği (m)
- z_p: Reseptörün yüksekliği (m)

AERMOD Model Formülasyonu

- AERMOD modeli kararlı sınır katmanında (stable boundary layer - SBL) hem dikey ham de yatay yönlerde Gauss dağılımına göre hesaplar.
- Konvektif sınır katmanında (convective boundary layer - CBL) konsantrayon, yatayda Gauss, dikeyde ise Bi-Gauss fonksiyonu ile hesaplanır.

AERMOD Model Formülasyonu

682

JOURNAL OF APPLIED METEOROLOGY

VOLUME 44

AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization

Alan J. Cimorelli,* Steven G. Perry, $^+$ Akula Venkatram, $^\#$ Jeffrey C. Weil, $^@$ Robert J. Paine, $^\&$ Robert B. Wilson,** Russell F. Lee, $^{++}$ Warren D. Peters, $^\#$ and Roger W. Brode $^@$

*U.S. Environmental Protection Agency Region 3, Philadelphia, Pennsylvania

+Air Resources Laboratory, NOAA, and National Exposure Research Laboratory, U.S. Environmental Protection Agency,
Research Triangle Park, North Carolina

#College of Engineering, University of California, Riverside, Riverside, California

@Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

&ENSR International, Westford, Massachusetts

***U.S. Environmental Department of the Proceedings of the

*ENSR International, Westford, Massachusetts

**U.S. Environmental Protection Agency Region 10, Seattle, Washington

++Charlotte, North Carolina

##OAQPS, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

@@MACTEC Federal Programs, Inc., Durham, North Carolina

(Manuscript received 21 January 2004, in final form 6 October 2004)

https://doi.org/10.1175/JAM2227.1

EPA – AERMOD Modeli

AERMOD Modeling System Code and Documentation

AERMOD Implementation Guide

AERMOD Implementation Guide (PDF) (39 pp, 335 K, 2019) - Provides information on the recommended use of AERMOD for particular applications and is an evolving document.

Model Code

Executable (v19191) (ZIP) (1.4 M, 2019) - 64-bit Operating Systems Executable (v19191) (ZIP) (1.2 M, 2019) - 32-bit Operating Systems Source Code (v19191) (ZIP) (535 K, 2019)

Model Documentation

AERMOD Quick Reference Guide (PDF) (6 pp, 55 K, 2019) User's Guide (PDF) (321 pp, 1.6 M, 2019)

https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#aermod

AERMOD View Yazılımının Kullanımı		
Düğme	Sıra	Kullanım Amacı
Control	1	Çıktı türü (konsantrasyon, kuru-yaş çökelme vb.), ortalama zaman seçeneği, dispersiyor katsayısı ve arazi seçenekleri modele girilir.
Source	2	Kirletici türü seçilir, kirletici kaynakları modele girilir. Kentsel bölge için hesaş yapılacaksa nüfus değeri yazılır. Değişken emisyonlar varsa tanımlanır.
Receptor	3	Reseptör noktaları tanımlanır. Reseptörler kartezyen veya kutupsal koordinatlarla tanımlanabilir.
Met	4	AERMET View veya RAMMET View tarafından derlenen meteoroloji dosyaları modele girilir. Modelleme yapılacak süre aralığı seçilebilir.
Output	5	Model sonucunda istenen çıktı türleri seçilir.
Terrain	6	Kaynaklar ve reseptör noktaları modele girildikten sonra, dijital yükseklik dosyalar seçilerek AERMEP modeli çalıştırılır ve reseptör noktalarının yükseklikleri hesaplanır.
Run	7	Son olarak hava kalitesi modeli çalıştırılır.
Options	8	Elde edilen kirlilik dağılım haritasının görselleştirilmesi için gerekli ayarlamalar yapılır.

Topografik Veriler

- > ASTER GDEM uydu görüntüleri kullanıldı. (ücretsiz)
- ➤ Dosya formatı: NED GEOTIFF
- ➤ DEM dosyalarının çözünürlüğü: 30 m. × 30 m.

https://asterweb.jpl.nasa.gov/gdem.asp

Kaynaklar

- Cimorelli, A.J., S.G. Perry, A. Venkatram, J.C. Weil, R. Paine, R.B. Wilson, R.F. Lee, W.D. Peters, and R.W. Brode, 2005: AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization. J. Appl. Meteor., 44, 682–693.
- Demirarslan K. O., Kocaeli İli Körfez İlçesinde Hava Kirletici Kaynaklarının ve Hava Kalitesi Seviyesinin Belirlenmesi, Doktora Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, 2012, 323156.
- Mehrshad B, Maryam F A, Hadi R (2016) Dispersion Modeling of Total Suspended Particles (TSP) Emitted from a Steel Plant at Different Time Scales Using AERMOD View, Journal of Earth, Environment and Health Sciences, 2 (2), 77-82.
- Taşpınar F., Bakoğlu M., İzmit Klinik ve Tehlikeli Atıkları Yakma ve Enerji Üretim Tesisi'nden Atmosfere Verilen Azot Oksit (NO_x) Emisyonlarının Dağılımının Modellenmesi, V. Ulusal Çevre Mühendisliği Kongresi, Ankara, Türkiye, 1-4 Ekim 2003.