Nama: Radam Gumelar

NIM : 164231032

KUIS 1 STATISTIKA NONPARAMETRIK

"Saya menyatakan bahwa saya mengerjakan ujian ini dengan jujur dan tidak mendapat bantuan atau kerjasama dengan pihak manapun. Apabila terbukti melakukan kecurangan, saya bersedia menerima sanksi yang berlaku."

(Nilai 30) Van Duijn mempelajari pengaruh clonazepam pada kucing. Pada penelitian tersebut aktivitas paroksismal fokus sebelum dan sesudah pemberian clonazepam dicatat dalam tabel berikut:

Kucing	1	2	3	4	5	6	7	8	9	10
Sebelum	2.7	4.2	3.3	5.3	4.2	3.5	6.5	4.8	3.7	7.1
Sesudah	4.5	2.6	1.4	2.5	2.5	2.3	3.0	2.6	1.9	0.4

Sumber: H. Van Duijn, "Keunggulan Clonazepam atas Diazepam di Experimental Epilepsi." Epilepsia. 14
1. (1973). 195-202.

a. Nyatakan hipotesis nol dan hipotesis alternatif untuk percobaan diatas.

Hipotesis satu arah kiri

 H_0 : Median populasi beda, $(X_i, Y_i) = Di \ge 0$ atau $P(+) \ge P(-)$ H_1 : Median populasi beda, $(X_i, Y_i) = Di < 0$ atau P(+) < P(-)

- b. Apakah dapat disimpulkan pemberian clonazepam dapat menurunkan fokus?
 - Gunakan bantuan excel untuk melakukan uji tanda pada tingkat kesalahan = 5%.
 - Gunakan bantuan excel untuk melakukan uji Wilcoxon pada tingkat kesalahan = 5%.

UJI TANDA

Kucing	1	2	3	4	5	6	7	8	9	10
Sebelum (X)	2,7	4,2	3,3	5,3	4,2	3,5	6,5	4,8	3,7	7,1
Sesudah (Y)	4,5	2,6	1,4	2,5	2,5	2,3	3	2,6	1,9	0,4
Yi-Xi	1,8	-1,6	-1,9	-2,8	-1,7	-1,2	-3,5	-2,2	-1,8	-6,7
Tanda	+	-	-	-	-	-	-	-	-	-

Statistik Uji dengan S+:

S+=1

S- = 9

Maka S = 1

Daerah Penolakan

$$P(X \le S + |b(n, 0.5)) \le \alpha$$

 $P(X \le 1|10, 0.5) \le \alpha$
 $0.0098 \le 0.05$

Karena nilai 0.0098 ≤ 0.05 maka Tolak H0

Kesimpulan = Ada cukup bukti untuk membuktikan bahwa pemberian clonazepam dapat menurunkan focus kucing

UJI WILCOXON

Kucing	1	2	3	4	5	6	7	8	9	10
Sebelum (X)	2,7	4,2	3,3	5,3	4,2	3,5	6,5	4,8	3,7	7,1
Sesudah (Y)	4,5	2,6	1,4	2,5	2,5	2,3	3	2,6	1,9	0,4
Yi-Xi	1,8	-1,6	-1,9	-2,8	-1,7	-1,2	-3,5	-2,2	-1,8	-6,7
mutlak	1,8	1,6	1,9	2,8	1,7	1,2	3,5	2,2	1,8	6,7
Rank	4,5	2	6	8	3	1	9	7	4,5	10

Statistik uji dengan T+:

T + = 4.5

T = 50,5

Maka T = 4,5

Cari Titik Kritis

N = 10 maka peluang untuk T=4,5 adalah 0,0083

Daerah Penolakan

 $T \le \alpha$ 0,0083 \le 0,05

Karena nilai 0,0083 ≤ 0,05 maka Tolak H0

Kesimpulan = Ada cukup bukti untuk membuktikan bahwa pemberian clonazepam dapat menurunkan focus kucing

(Nilai 25) Prodi Teknologi Sains Data ingin mengetahui preferensi mahasiswa laki – laki dan perempuan angakatan 2023 terhadap pembelajaran daring. Penilaian diberikan dengan skala 1 – 5 (Sangat Tidak Suka – Sangat Suka).

No	Jenis Kelamin	Penilaian	Jenis Kelamin	Penilaian
1	Laki – Laki	5	Perempuan	3
2	Laki – Laki	4	Perempuan	3
3	Laki – Laki	2	Perempuan	2
4	Laki – Laki	3	Perempuan	4
5	Laki – Laki	5	Perempuan	5
6	Laki – Laki	5	Perempuan	2
7	Laki – Laki	4	Perempuan	2
8			Perempuan	3
9			Perempuan	2

2.

a. Nyatakan hipotesis nol dan hipotesis alternatif untuk percobaan diatas.

 H_0 : $\mu_1 = \mu_2$ atau Tidak terdapat perbedaan preferensi mahasiswa laki laki dan perempuan angkatan 2023 terhadap pembelajaran daring.

 H_1 : $\mu_1 \neq \mu_2$ atau Terdapat perbedaan preferensi mahasiswa laki laki dan perempuan angkatan 2023 terhadap pembelajaran daring.

- b. Apakah terdapat perbedaan preferensi antara mahasiswa laki laki dan perempuan?
 - Gunakan bantuan excel untuk melakukan uji Mann-Whitney pada tingkat kesalahan =
 5%.
 - Gunakan bantuan SPSS/R (Pilih salah satu) untuk melakukan uji Mann-Whitney pada tingkat kesalahan = 5%.

UJI MANN WHITNEY DENGAN EXCELL

Mula mula urutkan penilaian dari kedua preferensi

Jenis Kelami	Penilaian
Laki	2
Perempuan	2
Laki	3
Perempuan	3
Perempuan	3
Perempuan	3
Laki	4
Laki	4
Perempuan	4
Laki	5
Laki	5
Laki	5
Perempuan	5

UJI MANN WHITNEY DENGAN R

```
1 x <- c(5,4,2,3,5,5,4) #Laki Laki
2 y <- c(3,3,2,4,5,2,2,3,2) # Perempuan
3
4 # Melakukan uji Mann-Whitney
5 hasil <- wilcox.test(x,y, paired= FALSE, correct= FALSE)
6
7 # Menampilkan hasil
8 print(hasil)</pre>
```

Output

```
Wilcoxon rank sum test

data: x and y
W = 48, p-value = 0.07093
alternative hypothesis: true location shift is not equal to 0
```

Didapatkan nilai p-value > Alfa dengan nilai 0,07093 > 0,05 sehingga keputusan Gagal Tolak H0

Kesimpulan: Tidak ada cukup bukti yang kuat untuk menolak H0 sehingga Tidak terdapat perbedaan preferensi mahasiswa laki laki dan perempuan angkatan 2023 terhadap pembelajaran daring

(Nilai 20) Suatu survei dilakukan untuk mengetahui preferensi jenis olah raga berdasarkan kelompok usia. Data hasil survei tersebut ditampilkan dalam tabel berikut.

Kelompok Usia	Sepak Bola	Bulu Tangkis	Basket
18-25 tahun	30	20	25
26-35 tahun	25	30	15
36-45 tahun	20	15	20

a. Nyatakan hipotesis nol dan hipotesis alternatif untuk percobaan diatas.

 H_0 : Populasi asal sampel bersifat homogen

H₁: Populasi asal sampel bersifat tidak homogen

b. Gunakan bantuan excel untuk melakukan uji homogenitas. Apakah data tersebut memberikan cukup bukti untuk menyimpulkan bahwa data bersifat homogen? Tingkat kesalahan = 5%.

UJI CHI-SQUARE UNTUK MENGUJI HOMOGENITAS

Mula mula tentukan row total, column total, dan grand total

Kelompok Usia	Sepak Bola	Bulu Tangkis	Basket	Total	
18-25 Tahun	30	20	25	75	
26-35 Tahun	25	30	15	70	
36-45 Tahun	20	15	20	55	
Total	75	65	60	200	Grand Total

Tentukan Expected Cell Frequency

Kelompok Usia	Sepak Bola	Bulu Tangkis	Basket
18-25 Tahun	28,125	24,375	22,5
26-35 Tahun	26,25	22,75	21
36-45 Tahun	20,625	17,875	16,5

Tentukan nilai Chi-Square Hitung

Kelompok Usia	Sepak Bola	Bulu Tangkis	Basket	
18-25 Tahun	0,125	0,78525641	0,277778	
26-35 Tahun	0,0595238	2,31043956	1,714286	
36-45 Tahun	0,0189394	0,462412587	0,742424	
		Chi Square	6,496059	

Mencari nilai DF

Df = (r-1)(c-1)

Df = (3-1)(3-1)

Df = 4

3.

Nilai Chi-Square table dengan Tingkat kesalahan 5% dan Df = 4 dari table adalah sebesar 9,488

DAERAH PENOLAKAN

Karena $X^2_{hitung} \le X^2_{tabel}$ dimana 6,496 \le 9,488 maka keputusan Gagal tolak H0

Kesimpulan : Populasi asal sampel (Preferensi jenis olahraga berdasarkan tingkat usia) sudah bersifat homogen

- 4. Jawablah pertanyaan-pertanyaan berikut dengan benar
 - a. Apakah yang disebut dengan goodness of fit test distribution? Suatu metode uji dalam ilmu statistika yang digunakan untuk menentukan seberapa baik data yang diperoleh sehingga cocok dengan distribusi probabilitas tertentu. Uji ini membantu kita memahami apakah data yang dikumpulkan mengikuti pola atau distribusi yang diharapkan.
 - b. Sebutkan asumsi-asumsi pada goodness of fit test distribution!
 - Independensi: Setiap pengamatan harus independen satu sama lain yang berarti hasil satu pengamatan tidak mempengaruhi yang lain.
 - Ukuran Sampel: Ukuran sampel harus cukup besar agar hasilnya valid. Umumnya, frekuensi harapan (expected frequency) untuk setiap kategori harus lebih dari 5.
 - Distribusi yang Diharapkan: Distribusi yang diharapkan harus ditentukan sebelumnya sebelum melakukan uji, agar kita bisa membandingkan data yang diamati dengan distribusi tersebut.
 - c. Sebutkan metode-metode goodness of fit test distribution! (minimal 2)
 - Uji Chi-Square: uji yang digunakan untuk mengukur perbedaan antara frekuensi yang diamati dan frekuensi yang diharapkan.
 - Uji Saphiro Wilk: uji yang digunakan untuk menguji kenormalitasan data.
 - d. Sebutkan langkah-langkah pengerjaan pada metode-metode yang sudah Anda sebutkan pada poin c!
 - Pengerjaan Uji Chi-Square
 - a. Mengumpulkan data, hitung nilai frekuensi yang diamati (O)
 - b. Tentukan Hipotesis
 - c. Tentukan nilai frekuensi yang diharapkan (E)
 - d. Cari nilai X hitung dengan rumus

$$X_{hitung}^2 = \sum \frac{(O-E)^2}{E}$$

- e. Menentukan nilai Df dengan (r-1)(c-1)
- f. Bandingkan nilai X^2_{hitung} dengan nilai X^2_{tabel}
- Pengerjaan Uji Saphiro Wilk
 - a. Mengumpulkan data
 - b. Tentukan Hipotesis
 - c. Cari nilai statistic W untuk menemukan W hitung
 - d. Bandingkan nilai Whitung dengan Wtabel