изменение данных

ДАТА	СЕРИЯ	ХАРАКТЕР ИЗМЕНЕНИЙ	ВЕРСИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
АПРЕЛЬ 2003 г.	СЕРИЯ 1	ПЕРВЫЙ ВЫПУСК	ВЕРСИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Приведенные в настоящем руководстве данные не могут рассматриваться в качестве обязательств компании LGE, и могут быть изменены без предварительного уведомления. Кроме того, компания LGE оставляет за собой право на внесение изменений без предварительного уведомления в конструкцию оборудования в связи с совершенствованием технологий проектирования и производства.

Настоящее руководство содержит информацию необходимую для установки, программирования, эксплуатации и технического обслуживания изделия G7030.

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ 4	6. ЗАГРУЗКА ПРОГРАММНОГО	
1.1 Назначение 4	ОБЕСПЕЧЕНИЯ 78	
1.2 Регламентирующие положения 4		
1.3 Список сокращений 6	7. СЕРВИСНОЕ ПРОГРАММНОЕ	
	ОБЕСПЕЧЕНИЕ И КАЛИБРОВКА 82	
2. РАБОЧИЕ ХАРАКТЕРИСТИКИ 7	7.1 Сервисное программное	
2.1 Название изделия 7	обеспечение {	00
2.2 Поддерживаемые стандарты 7	7.2 Калибровка {	
2.3 Основные узлы: стандарт GSM 7	7.2 Namopobka	၁၁
2.4 Характеристики аппаратной		
части 7	8 . БЛОК-СХЕМА 89	
2.5 Характеристики программного	8.1 Основная плата	20
обеспечения 9	8.2 Плата РЧ части	
2.6 Стандарты испытаний 11	0.2 Dia 14 1-140 7	90
2.0 o rangap isi nonsiranni mimimimi []		
	9. ПРИНЦИПИАЛЬНАЯ	
3. КРАТКАЯ ТЕХНИЧЕСКАЯ	ЭЛЕКТРИЧЕСКАЯ СХЕМА 91	
ИНФОРМАЦИЯ 13	9.1 Интерфейс соединительного	
3.1 Цифровой процессор	устройства 9	91
низкочастотной части 13	9.2 Интерфейс низкочастотной части	
3.2 Аналоговый процессор	9.3 Интерфейс блока памяти	
низкочастотной части 19	9.4 Интерфейс аудио блока	
3.3 Интерфейс дисплея и гибкой	9.5 Мультимедийный интерфейс (ММІ) 🤅	_
печатной платы32	9.6 Интерфейс РЧ части (96
3.4 Аудио интерфейс33		
3.5 Подсветка клавиатуры 36		
3.6 Соединения клавиатуры37	10 . ТОПОЛОГИЯ ПЕЧАТНОЙ ПЛАТЫ . 97	
3.7 Общее описание РЧ блока	10.1 Вид сверху	97
приемопередатчика38	10.2 Вид снизу	98
4. УСТРАНЕНИЕ	11. СЕРВИСНЫЙ РЕЖИМ 99	
НЕИСПРАВНОСТЕЙ 44		
4.1 Громкоговоритель 44		
4.2 Микрофон	12. TECT «STAND ALONE» 100	
4.3 Модуль ЖКД 48	12.1 Порядок настройки 1	00
4.4 Виброзвонок 50		
4.5 Зарядное устройство52		
4.6 Разъем гарнитуры	13. СБОРОЧНЫЙ ЧЕРТЕЖ И СПИСОК	
«свободные руки» 54	ЗАМЕНЯЕМЫХ ДЕТАЛЕЙ 103	
4.7 Устранение проблем тракта	13.1 Сборочный чертеж 1	03
приема 56	40.0.4	05
4.8 Устранение проблем тракта	13.3 Список заменяемых деталей	
передачи 64	< Механические детали > 1	06
	13.3 Список заменяемых деталей	
5 . ПОРЯДОК РАЗБОРКИ 71	< Основная плата > 1	08
5.1 Разборка 71		

1. ВВЕДЕНИЕ

1.1 Назначение

В настоящем руководстве приводится техническое описание устройства и необходимая информация для выполнения ремонта, калибровки, а также загрузки программного обеспечения.

1.2 Регламентирующие положения

А. Безопасность

Мошеннический доступ, т. е. несанкционированное использование телекоммуникационной системы неуполномоченной стороной (например, лицами, не являющимися служащими компании, ее представителями, субподрядчиками, либо действующими от имени компании) может стать причиной представления необоснованных счетов за пользование телекоммуникационными услугами. Пользователи системы несут ответственность за безопасность собственной системы. Имеется определенный риск коммутационного мошенничества в отношении Вашей телекоммуникационной системы. Пользователи системы несут ответственность за программирование и конфигурирование своего оборудования с целью предотвращения несанкционированного использования системы. Компания LGE не может гарантировать защищенность данного изделия в отношении вышеупомянутых случаев, и его возможностей по предотвращению несанкционированного пользования телекоммуникационными услугами коммерческих линий связи путем получения доступа или подключения оборудования. Компания LGE не несет ответственности за любые расходы, понесенные в результате подобного несанкционированного пользования телекоммуникационными услугами.

В. Причинение ущерба

В случае, если компания телефонной связи определит, что предоставленное клиенту оборудование является неисправным и его использование может нанести ущерб или нарушить работу телефонной сети связи, компания может временно приостанавливать оказание услуг телефонной связи на время необходимое для ремонта.

С. Изменения в предоставлении услуг

Местная компания телефонной связи может вносить изменения в свое оборудование связи и изменять порядок его работы. При наличии оснований полагать, что такие изменения способны оказать воздействие на работу изделия G7030, либо его совместимость с телефонной сетью, компании телефонной связи следует заранее письменно уведомить об этих изменениях пользователя, тем самым предоставляя ему возможность предпринять необходимые меры с целью дальнейшего пользования услугами телефонной связи.

D. Ограничения на выполнение техобслуживания

Некоторые работы по техническому обслуживанию данной модели могут быть выполнены только предприятием-изготовителем, либо его уполномоченными представителями. Пользователю запрещается вносить какие-либо изменения и/или производить ремонт, за исключением случаев, специально оговоренных в настоящем руководстве. Следует иметь в виду, что любые несанкционированные модификации либо ремонт могут повлечь изменение нормативного статуса системы и стать основанием для аннулирования всего периода гарантии.

Е. Уведомление о наличии излучения

Данное устройство соответствует нормативам местных контролирующих органов в отношении радиации и радиочастотного излучения. Согласно действующим положениям данных контролирующих органов Вас могут обязать предоставить такую информацию конечному пользователю.

F. Иллюстрации

Иллюстрации в настоящем руководстве приведены исключительно для наглядности. Ваше реальное оборудование может выглядеть немного иначе.

G. Помехи и подавление сигнала

Сигналы G7030 могут влиять на работу чувствительного лабораторного, медицинского и иного оборудования. На работу самого телефона могут влиять помехи, исходящие от машин и электродвигателей не оборудованных устройствами подавления помех.

Н. Приборы, чувствительные к статическому электричеству

ВНИМАНИЕ!

Платы, имеющие чувствительные к статическому электричеству элементы, обозначены соответствующей пиктограммой . Приведенная ниже информация касается порядка работы с такими деталями:

- Выполняя замену плат системы, технические специалисты должны иметь закрепленную на кисти руки линию заземления;
- При выполнении работ на системной плате специалист должен стоять на антистатическом покрытии (также заземленном);
- Паяльник (соответствующий выполняемой работе) должен быть заземлен;
- Чувствительные к статическому электричеству детали следует хранить в защитной упаковке вплоть до их непосредственного использования;
- Перед отправкой на завод системные платы, а также детали подобные EEPROM необходимо упаковать указанным способом.

1.3 Список сокращений

A DC	A
APC	Автоматическая регулировка мощности
BB	Низкочастотная часть
BER	Частота ошибок по битам
CC-CV	Постоянный ток-постоянное напряжение
DAC	Цифро-аналоговый преобразователь (ЦАП)
DCS	Система цифровой связи
dBm	дБ в отношении 1 милливатта (дБм)
DSP	Цифровой процессор сигналов
EEPROM	Электронно-перепрограммируемая память
EL	Электролюминесценция
ESD	Электростатический разряд
FPCB	Гибкая печатная плата
GMSK	Модуляция GMSK
GRIB	Интерфейс общего назначения
GSM	Глобальная система мобильной связи
IPUI	Международный код абонента мобильной связи
IF	Промежуточная частота (ПЧ)
LCD	Жидкокристаллический дисплей (ЖКД)
LDO	Стабилизатор напряжения
LED	Светоизлучающий диод
OPLL	Схема фазовой автоподстройки частоты (ФАПЧ)
PAM	Усилитель мощности
PCB	Печатная плата
PGA	Усилитель с программируемым усилением
PLL	Система фазовой автоподстройки частоты (система ФАПЧ)
PSTN	Коммутируемая телефонная сеть общего пользования
RF	Радиочастота (РЧ)
RLR	Номинал громкости приема
RMS	Среднеквадратичное действующее значение (СДЗ)
RTC	Функция реального времени
SAW	Поверхностная акустическая волна (ПАВ)
SIM	Модуль идентификации абонента
SLR	Номинал громкости передачи
SRAM	Статическое запоминающее устройство с произвольной выборкой
STMR	Противоместный эффект
TA	Зарядное устройство
TDD	Дуплекс временного разделения
TDMA	Множественный доступ с временным разделением
UART	Универсальный асинхронный интерфейс приема/передачи
VCO	Генератор, управляемый напряжением (ГУН)
VCTCXO	Термостабилизированный генератор, управляемый напряжением
WAP	Протокол WAP (для распространения данных по Internet)
8 81 /I	The total that Ann pasipasipalism dambix no internet

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

2.1 Наименование изделия

G7030: Поддержка GPRS (системы пакетной радиосвязи общего пользования), Класс 10.

2.2 Поддерживаемые стандарты

Наименование	Характеристики		Примечания
Поддерживаемые	E-GSM / DCS двухдиапазонны	й с гладким	
стандарты	переключением		
	Фаза 2+		
	Набор приложений для SIM (S		
	2, 3, A-E	·	
Диапазон частот	Передача в формате E-GSM	: 880-915 МГц	
	Прием в формате E-GSM	: 925-960 МГц	
	Передача в формате DCS	: 1710-1785 МГц	
	Прием в формате DCS	: 1805-1880 МГц	
Стандарты	WAP 1.2.1	: Да	
приложений	IrDA 1.3		

2.3 Основные узлы: формат GSM

	G7030
Цифровая	Hercrom400G2, модификация «В» на 39 МГц (XF741979-BGHH)
низкочастотная	
часть	
Аналоговая	Nausica_CS, модификация 2.1 (PTWLR3012BGGM)
низкочастотная	
часть	
РЧ микросхема	Aero (многоканальная) (Si4200-BM, Si201-BM, Si4133T-BM)

2.4 Характеристики аппаратного оборудования

Наименование	Характеристики	Примечания
Тип корпуса	С откидывающейся крышкой	Двойной ЖКД
		(цветовая палитра – 65.000 х 256)
Батарея питания	1) Тип: ионно-литиевая;	Размеры стандартной батареи:
	Емкость: 740 мА/ч	50 мм (Д) x 34 мм (Ш) x 46 мм (В)
	2) Тип упаковки: жесткая	
Размеры	Типовые: 87 мм (длина) х 34 мм	
	(ширина) x 25 мм (высота)	
Macca	89 г	С батареей питания
Печатная плата	Одна печатная плата: 8-слойная, 1т	

Наименование	Характеристики	Примечания
Сила тока	Макс.: 150 мА (при уровне мощности 19)	Расчетные значения
(MA)	Макс.: 320 мА (при уровне мощности 5)	
Сила тока в	Макс.: 4.0 мА (при общении с	Расчетное значение
дежурном режиме	базовой станцией)	
Продолжитель-	До 180 часов при общении с	При силе тока 740 мА/ч
ность работы в	базовой станцией (уровень 9)	·
дежурном режиме	,	
Время зарядки	Менее 2,5 часов	При выключенном телефоне / 740 мА/ч
батареи	•	' '
Продолжительнос	Не менее 2 ч 30 мин. при уровне	При емкости аккумулятора 740 мА/ч
ть разговора	мощности 7	, , , ,
	Не менее 4 ч 30 мин. при уровне	
	мощности 12	
Чувствительность	GSM 900 : -107 дБм	
приема	DCS 1800 : -107 дБм	
Выходная	GSM 900 : 32 дБм	Класс 4 (GSM)
мощность	DCS 1800 : 29 дБм	Класс 1 (DCS)
передатчика	•	· ·
Совместимость с	GPRS Класс 10	
системой GPRS		
Тип SIM-карты	Съемная	
	3B / 5B	
Дисплей	1. Главный ЖКД	
	2. 65.000-цветовой STN (128 x 160)	
	Размер пикселей: 0,219 х 0,219 мм	
	Зона просмотра: 30,54 x 36,04 мм	
	Рабочий участок экрана : 28,02 х 35,028 мм	
	Подсветка: СИД белого цвета	
	3. Вспомогательный ЖКД	
	4. 256 цветов: OELD (96 x 34)	
	Размер пикселей: 0,219 х 0,251 мм	
	Зона просмотра: 23,16 x 18,12 мм	
	Рабочий участок экрана: 20,997 х 16,04 мм	
Индикатор	Нет	
состояния		
Клавиатура	Буквенно-цифровые кнопки: 12	Функциональные кнопки:
	Функциональные кнопки: 12	4 кнопки для перемещения; кнопка
	Боковые кнопки: 2	подтверждения (ОК); F1; F2; звук;
	Всего кнопок: 26	окончание/питание; сброс; закладка;
		речевая запись
Антенна	Жесткого типа	
Системный	24-контактный	
разъем		
Гнездо наушника	3- полюсное (диаметр – 2,5 мм)	
Синхронизация с	Есть	
ПК		<u> </u>
Память	Флэш-память: 128 Мбит	Toshiba
	SRAM: 32 Мбит	
Кодирование речи	FR, EFR, HR	

Наименование	Характеристики	Примечания
Информационный	Встроенная информационная и	
и факсимильный	факсимильная поддержка	
интерфейс		
Виброзвонок	Встроенный виброзвонок	
IRDA	Встроенного типа	Поддержка синхронизации с ПК
Микросхема MIDI	40 полифонических тонов	Подача зуммерного сигнала при помощи музыкальной микросхемы MIDI
Речевая запись	До 90 секунд	30 сек. х 3
Зарядное	Есть	
устройство		
Дополнительное	Контактный ушной микрофон;	
оборудование	Адаптер от прикуривателя;	
(по заказу)	Информационный кабель;	
	Автомобильное устройство	- Подлежит определению
	«свободные руки»;	
	Гарнитура «свободные руки»;	- Подлежит определению

^{*} Емкость аккумуляторной батареи: 740 мА/ч (в настоящее время)

2.5 Характеристики программного обеспечения

Наименование	Характеристики	Примечания
RSSI (Индикатор уровня	0 ~ 5 Уровни	
сигнала)	·	
Зарядка батареи	0 ~ 3 Уровни	
Уровень сигнала кнопок	0 ~ 5 Уровни	
Уровень звукового сигнала	1 ~ 5 Уровни	
Индикация времени и даты на	Есть	
дисплее		
Многоязычная поддержка	Есть	
Режим быстрого доступа	Записная книжка / WAP / Профиль	(WAP – продолжительное нажатие кнопки ОК)
Синхронизация с ПК	Расписание / Записная книжка / SMS	Программы MS Scheduler и MS Outlook
Ускоренный набор номера	Есть (2 ~ 9)	Узел речевой почты – кнопка 1.
Профиль	Есть	
CLIP / CLIR (AOH и анти-AOH)	Есть (различные мелодии)	
Записная книжка	3 номера + 1 заметка + 1 E-mail	
Список последних набранных	Есть (20)	
номеров		
Список последних	Есть (20)	
поступивших вызовов		
Список последних звонков	Есть (10)	
без соединения		
Поиск номера / имени	Есть	

Наименование	Характеристики	Примечания
Групповой вызов	7 / изменение пользователем	
Фиксированный номер	Есть	
набора		
Речевая запись	30 сек. х 3	
Напоминание о звонке	Есть	
Выбор сети	Автоматический/ручной	
Выключение микрофона	Есть	
Переадресование вызова	Есть	
Запрет вызова	Есть	
Стоимость разговора	Есть	
Продолжительность	Есть	
разговора		
SMS (EMS) сообщения	100	
Отправка / Получение /	Есть	Мелодии / Изображения /
сохранение EMS сообщений		Анимация
Система просмотра (WAP-	WAP 1.2.1	
browser)		
Заставка экрана	Есть	
Загрузка мелодий / заставок	Yepes WAP	
экрана (MMS)		
Объем сообщений	До 480 символов (3 страницы по 160)	
Прием сетевых сообщений	Есть	
Игры	2 (Отелло, Ледяная пещера)	или Пиратский флаг
Календарь	Есть	
Записки	20	
Мировое время	Есть	
Преобразование единиц	Единицы длины / площади /	
измерения	объема / массы	
Факсимильный и	Есть	
информационный интерфейс		
Блокирование SIM-карты		Через оператора
Набор приложений для SIM	Класс 1, 2, 3	

2.6 Стандарты испытаний

2.6.1 Испытания общего характера

Категория испытаний	Стандарт испытаний	
Подключение батареи питания	10.000 pas	
Надписи на клавиатуре	Нагрузка 1 кг, Спиртовой тест - 100 раз	
Воздействие распыляемой соленой	Содержание соли – 5%, (рН 6,5-7,2) 35., 48 часов	
воды		
Воздействие пыли	Размеры частиц пыли – 75 микрон, время – 1 час	
Подключение соединительного	3.000 pas	
устройства ввода-вывода		
Выделение тепла	В процессе работы: около уха и щеки – не более 15	
	тепловых единиц, в других частях – не более 25 т. е.	
	В процессе зарядки: около батареи – 25 т. е.	
Допустимые изменения напряжения	± 15%	
Натяжение ремешка	12 кг	
Электростатические испытания	Воздушн.: 10 раз 10 кВ (по каждой детали)	
Включение контакта зарядного	20 раз/мин.	
устройства		
Нажатие кнопок	300.000 раз	
Открывание откидывающейся	50.000 раз (20 раз/мин.)	
крышки		

2.6.2 Испытания на ударную нагрузку

В упаковке		Все стороны	Нижняя сторона
	~10 кг	65 см	75 см
	10~20 кг	55 см	70 см
Без упаковки	150 см Деревянная плоскость, 3 раза каждой из 6		
	сторон		

2.6.3 Испытания на вибрацию

В упаковке	1,5 G (амплитуда 3 мм)
	Диапазон качания: 0,25 октав/мин.
	Частота вибрации: 10-200 Гц
	1 час по каждой оси – X, Y, Z
Без упаковки	1,5 G (амплитуда 3 мм)
	Диапазон качания: 0,25 октав/мин.
	Частота вибрации: 10-200
	1 час по каждой оси – X, Y, Z

2.6.4 Испытания на воздействие окружающей среды

Работа при низкой температуре	Температура –10°С, влажность 0%, 12 часов
Работа при высокой температуре и	Температура +60°С, влажность 85%, 12 часов
влажности	
Хранение при низкой температуре	Температура –30°С, влажность 0%, 12 часов
Хранение при высокой температуре	Температура +80°С, влажность 80%, 32 часа
и влажности	
Циклические изменения	+25°C, 65% → +50°C, 95% 24 часа
температуры и влажности	+25°C, 65% 2 часа → -20°C 24 часа: 1 цикл
	+25°C, 65% → +50°C, 95% 8 часов →
	-20°C 8 часов → +25°C, 65% 2 часа: 3 цикла

3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

3.1 Цифровой процессор низкочастотной части

Микросхема CALYPSO отвечает за цифровую обработку сигналов низкочастотной части мобильного телефона GSM/GPRS. Микросхема состоит из субпроцессора цифровой обработки сигнала со своей программой и памятью для хранения данных, ядра микропроцессорного управляющего устройства со средствами эмуляции (ARM7TDMIE), 8 Кбайт встроенной памяти аппаратного загрузчика, 4 Мбит статической оперативной памяти (SRAM), генератора прямоугольных тактовых импульсов, нескольких скомпилированных однопортовых и двухпортовых вентильных схем RAM и CMOS-памяти.

Данная схема предназначена для управления обработкой сигналов низкочастотной части GSM/ GPRS посредством протоколов уровней 1, 2 и 3 в соответствии с описанием стандарта ETSI. При этом она отвечает за энергопотребление как в GSM режиме, так и в нерабочем режиме, а также за функции системы пакетной радиосвязи общего пользования (GPRS). Микросхема полностью соответствует утвержденным стандартам испытаний всех уровней GSM в отношении речевого кодирования в полноскоростном, улучшенном полноскоростном и полускоростном режимах. CALYPSO имеет все характеристики для структурного испытания логической схемы (полное сканирование (full-SCAN), встроенный самоконтроль (BIST), PMT, JTAG, периферийное сканирование).

3.1.1 Блок-схема

Надписи на схеме:

External ARM7 Memories	Внешние ЗУ микроконтроллера ARM7	Asynchronous WAKE_UP	Линия асинхронного запуска
Slice	Ограничитель по максимуму и минимуму	Debug unit	Отладочный блок
Boot ROM	Аппаратный загрузчик	Memory protect unit	Блок защиты памяти
ENABLE CK13Mhz	Включение тактового генератора 13МГц	Write buf.	Буфер записи

Рис. 3-1-1. Блок-схема Calypso G2 (HERCROM400G2)

3.1.2 Техническое описание блоков микросхемы

Микросхема CALYPSO построена на базе двух основ (ядер) процессоров ARM7 и LEAD2, использующих шину информационного канала TI RHEA как интерфейс связи с периферийными устройствами. Микросхема CALYPSO состоит из следующих блоков:

☐ ARM7TDMIE

Ядро центрального процессора ARM7TDMIE (32/16-разрядный RISC-процессор)

+ ARM модуль эмуляции (ice crusher).

□ Субкристалл цифрового процессора сигналов S28C128

Ядро цифрового процессора сигналов LEAD2, с 28К слов ОЗУ и 128К слов ПЗУ.

- + АРІ (8.000 слов из 28.000 ОЗУ)
- + Интерфейс с системной службой.
- + Таймер

□ Ячейка генератора тактовых импульсов прямоугольной формы

□ Периферийные устройства ARM:

Периферийные устройства общего назначения:

- Интерфейс памяти ARM для внешних устройств памяти ОЗУ, флэш или ПЗУ.
- Moct RHEA
- Статическое ОЗУ на 4 Мбайта с буфером записи
- Блок защиты памяти (MPU)
- Отладочный блок (DU)
- 64 Кбайта сдвоенный ROM для внутренней загрузки.
- Ячейка идентификации кристалла (48 байт + 5 резервных)

Периферийные устройства прикладного назначения:

- Универсальные устройства ввода-вывода ARM с интерфейсом клавиатуры и 2 сигналами широтно-импульсной модуляции для подсветки и зуммера с возможностью генерирования тональных сигналов.
- Микропроводный интерфейс для ЖКД и электронно-перепрограммируемого ПЗУ (EEPROM).
- 3 таймера (групповой, сторожевой).
- Интерфейс универсального асинхронного приемопередатчика (UART) 16C750 (UART_IRDA) с:
- средствами управления IRDA;
- управлением потоком данных (UART);
- протоколом последовательности операций аппаратных средств (DCD, CTS/RTS)
- Интерфейс UART 16C750 (UART MODEM) с:
- протоколом последовательности операций аппаратных средств (DCD, CTS/RTS)
- функцией автобод.
- Интерфейс SIM-карты.
- Блок обработки прерываний ARM (INTH).
- Контроллер последовательности операций GSM в реальном масштабе времени (TPU)
- Последовательный порт синхронизации операций GSM в реальном масштабе времени (TSP)
- DMA-контроллер (4 канала, 2 порта).
- Генератор импульсов истинного времени (RTC).
- Устройство сверхмалой мощности GSM (ULPD).
- Генератор тактовых импульсов и управляющее устройство цифровой фазовой автоподстройки (CLKM).
- Программируемый контроллер для генерирования импульсов светодиодов (LPG).
- Генератор тональных сигналов (PWT).
- Псевдошумовой модулятор для управления уровнем яркости (PWL).
- Последовательный интерфейс главной внутренней интегральной схемы.
- Модули 1 и 2 алгоритма шифрования системы пакетной радиосвязи общего пользования GPRS.

- □ Периферийные устройства цифрового процессора: Периферийные устройства общего назначения:
- Moct RHEA.

Периферийные устройства прикладного назначения:

- Радио-интерфейс (RIF).
- Многоканальный последовательный интерфейс (MCSI).
- Устройства шифрования A51/A52 (CRYPT).
- Интерфейс UART 16C750 (UART_MODEM) с:
- протоколом последовательности операций аппаратных средств (DCD, CTS/RTS)
- функцией автобод, эхоподавлением.
- DMA-контроллер (4 канала).
- Блок обработки прерываний цифрового процессора сигналов DSP (INTH).
- □ Прочие периферийные устройства специализированной микросхемы:
- Контроллер порта доступа к средствам тестирования (ТАР) JTAG.

3.1.2.1 Мегаячейка ARM (ARM7TDMIE)

ARM7TDMIE представляет собой ядро 32-разрядного микропроцессора с сокращенным набором команд (RISC). Данный обрабатывает команды в 32- и 16-разрядном формате, а информацию – в 32-, 16- и 8-разрядном формате. Архитектура ARM7TDMIE построена на основе процессора с сокращённым набором команд (RISC). Для обеспечения непрерывной работы всех элементов систем памяти и обработки данных применяется конвейерный режим. Таким образом, во время выполнения одной команды происходит расшифровка следующей команды, и одновременное извлечение из памяти третьей команды. Микропроцессор ARM7 из серии CALYPSO предназначен для работы только в режиме следования байтов, начиная с младшего.

3.1.2.2 Субкристалл цифрового процессора сигналов S28C128

Субкристалл DSP является ядром цифрового процессора сигналов серии TMS320C54x. Ядро центрального процессора LEAD2 связано с :

- Интерфейсом порта ARM (API);
- Блоком обработки прерываний;
- Параллельным интерфейсом XIO (выполнения ввода-вывода);
- Таймером;
- 28К слов ОЗУ, включая 8К слов общей памяти с АРІ;
- 128К слов ПЗУ;
- Последовательным портом;
- Интерфейсом JTAG.

Частоту входного сигнала тактового генератора задает внешнее устройство цифровой фазовой автоподстройки (DPLL), а диапазон частоты рабочего цикла определен в пределах 0-91 МГц.

3.1.2.3 Генератор тактовых импульсов прямоугольной формы

Ячейка генератора тактовых импульсов является аналоговой ячейкой, служащей для изменения формы входного сигнала тактового генератора, поступающего от внешнего генератора. Входной сигнал тактового генератора считается псевдо-синусоидальным с ограниченной динамикой; ячейка генератора тактовых импульсов преобразует его в импульс с прямоугольной формой волны и амплитудой напряжения питания.

3.1.3 Интерфейс устройств памяти

- 64 Мбайта x 2 флэш / 32 Мбайт псевдо-SRAM (статической оперативной памяти).
- 16-разрядная параллельная шина данных.
- ADD01 ~ ADD22.

Интерфейс устройств памяти: Интерфейс внешних/внутренних устройств памяти.

- CS0: FLASH2, TH50VPF5783AASB, 16-разрядный доступ, тройное состояние ожидания;
- _CS1 : FLASH1 в TH50VPF5783AASB, 16-разрядный доступ, тройное состояние ожидания;
- _CS2 : Внешняя псевдо-SRAM память, 16-разрядный доступ, тройное состояние ожидания:
- _CS3 : главный ЖКД, вспомогательный ЖКД, адресация музыкальной микросхемы MIDI, 16- и 8-разрядный доступ, тройное состояние ожидания;
- CS6 : внутренняя статическая оперативная память SRAM, 32-разрядный доступ.

^{*} Примечание: Тройное состояние ожидания на внутреннем 39МГц процессоре микросхемы CALYPSO необходим для обеспечения 80-нс выборки, поскольку цикл процессора составляет 25 нс $(25 \times 4 = 100 \text{ hc})$.

Рис. 3-1-2. Схема декодирования

3.1.4 Соединение с внешними устройствами

Таблица 3-1-1. Интерфейс внешних устройств

Интерфейс					
Устройства		Изготовитель № детали		Время цикла записи	Время цикла считывания
Флэш-1				70нс	70нс
Память	Флэш-2	Toshiba	TH50VPF5783 AASB	70нс	70нс
	Псевдо- SRAM			70нс	70нс
Главный ЖКД		SDI	UG12R61A		
Вспомогательный ЖКД		Samsung NEC			
Микросхема MIDI		Yamaha	YMU762B	50нс	80нс

3.1.5 РЧ интерфейс

Таблица 3-1-2. Описание РЧ интерфейса

Последовательный порт синхронизации (TSP)				
Ресурс Соединение		Описание		
TSPDO	ABB и Aero	Управляющие сигналы		
TSPCLKX	Aero	Последовательный тактовый генератор		
TSPEN0	ABB и Aero	Разрешение на передачу данных		
TSPEN1	Aero	Разрешение на передачу данных		
	Параллельный порт блока обработки по времени (TPU)			
TSPACT0	Aero	Управляющий сигнал понижения мощности		
TSPACT1	Aero	Управляющий сигнал включения усилителя		
TSPACT2	Aero	Управляющий сигнал выбора диапазона		
TSPACT3	Драйвер антенного переключателя	Управляющий сигнал приема/передачи		
TSPACT4	Драйвер антенного переключателя	Управляющий сигнал приемопередатчика		

3.1.6 Интерфейс универсального асинхронного приемопередатчика (UART)

G7030 имеет два задающих устройства универсального асинхронного приемопередатчика:

UART1: контроль последовательности операций аппаратных средств / факсимильная связь и модем для передачи данных.

UART1: управление устройством «свободные руки» / трассировка программного обеспечения или модема IRDA.

Таблица 3-1-3. Описание интерфейса универсального асинхронного приемопередатчика (UART)

UART1			
Pecypc	Наименование	Описание	
TX_MODEM	TXD	Передача данных	
RX_MODEM	RXD	Прием данных	
CTS_MODEM	CTS	Разрешение на передачу	
RTS_MODEM	RTS	Запрос на передачу	
GPIO 3	DSR	Готовность источника данных	
GPIO 2	DCD	Обнаружение информационного сигнала	
UART2			
TX_IRDA	TX	Передача данных (UART2)	
RX_IRDA	RX	Прием данных(UART2)	
TXIR_IRDA	TXIR_IRDA	Передача сигнала через инфракрасный порт	
RXIR_IRDA	RXIR_IRDA	Прием сигнала через инфракрасный порт	
SD_IRDA	SD_IRDA	Режим выключения приемопередатчика IRDA	

3.1.7 Карта универсальных устройств ввода-вывода (GPIO)

Из 16 имеющихся ресурсов G7030 использует 13, три оставшихся относятся к SIM-карте и памяти. Ниже в таблице приведена карта универсальных устройств ввода-вывода (GPIO) телефонного аппарата G7030, с указанием применения, состояния ввода-вывода, уровня разрешения.

Таблица 3-1-4. Таблица универсальных устройств ввода-вывода (GPIO)

Nº	Применение	Ввод/вывод	Ресурс	Нерабочее	Рабочее
ввода-				состояние	состояние
вывода				(уровень)	(уровень)
I/O(0)	FOLDER	Ввод	GPIO	Высокий	Низкий
				(отключен)	(включен)
I/O(1)	MELODY_INT	Ввод	GPIO	Высокий	Низкий
I/O(2)	DCD	Вывод	GPIO	Низкий	Высокий
I/O(3)	DSR	Ввод	GPIO	Высокий	Низкий
I/O(4)	SUB_EN	Вывод	GPIO	Низкий	Высокий
I/O(5)	SIM_PWCTL	Вывод	GPIO		
I/O(6)	JACK_DETECT	Ввод	GPIO	Высокий	Низкий
1/0(7)	LCD_RESET	Вывод	GPIO	Высокий	Низкий
I/O(8)	SPK_EN	Вывод	GPIO	Низкий	Высокий
I/O(9)	MELODY_RESET	Вывод	GPIO	Высокий	Низкий
I/O(10)	LCD_DIM_CNTL	Вывод	GPIO	Высокий	Низкий
I/O(11)	KEYLIGHT	Вывод	GPIO	Низкий	Высокий
I/O(12)	TP27	Ввод/Вывод	GPIO		
I/O(13)	HANDSFREE	Ввод	GPIO	Высокий	Низкий
I/O(14)	_BHE	Вывод	Память		
I/O(15)	_BLE	Вывод	Память		

3.2 Аналоговый процессор низкочастотной части (АВВ)

Данное устройство имеет наименование TWL3012B, и наряду с цифровым процессором низкочастотной части (DBB) предназначено для применения в телефонных аппаратах сотовой связи, включая стандарты GSM 900, DCS 1800 и PCS 1900 (двухдиапазонный). Устройство TWL3012B включает полный набор функций низкочастотной части, обеспечивающих интерфейс и обработку поступающих речевых сигналов, синфазных (I) и квадратурных (Q) сигналов, и поддерживающих как одноканальные, так и многоканальные режимы. Устройство TWL3012B также обеспечивает сопряженное вспомогательное управление РЧ, регулирование подаваемого напряжения, управление зарядкой аккумуляторной батареи, анализ включения/выключения системы. Устройство TWL3012B имеет интерфейсное взаимодействие с цифровым процессором низкочастотной части (DBB) через цифровой последовательный порт низкочастотной части (BSP) и последовательный порт речевого канала (VSP). Порты передачи сигналов сообщаются с ядром цифрового процессора сигналов (LEAD). Последовательный порт микроконтроллера (USP) связан с ядром микроконтроллера, а последовательный порт синхронизации (TSP) – с контроллером последовательности операций GSM в реальном масштабе времени (TPU). Для поддержки интерфейса 3B/5B SIM-карты есть специальный модуль. Данный модуль контролирует подачу напряжения на SIM-карту, а также необходимое смещение уровня для обеспечения соответствия между уровнями сигналов SIM-карты и уровнями сигналов вводавывода микроконтроллера. Устройство TWL3012B отвечает требованиям стандарта контролепригодности JTAG («Объединенная рабочая группа по автоматизации тестирования») -IEEE Std 1131.1-1990. Тестирование производится через стандартный порт контрольного доступа (TAP) методом периферийного сканирования. Устройство TWL3012B также имеет источник опорного напряжения на том же кристалле, схемы обнаружения понижения напряжения и сброса цепей включения питания.

3.2.1 Блок-схема

(APC) – Автоматическая регулировка мощности

(AFC) – Автоматическая подстройка частоты

(ADAC) – Аналого-цифро-аналоговый преобразователь

Рис. 3-2-1. Блок-схема устройства Nausica

3.2.2 Характеристики

Устройство TWL3012B обеспечивает поддержку следующих элементов:

- Прикладные системы, включая телефоны сотовой связи форматов GSM 900, PCS 1900 и DSC 1800.
- Речевой кодер/декодер (кодек).
- Одноканальный и многоканальный РЧ интерфейс I и Q сигналов с кодеком низкочастотной части.
- Вспомогательные РЧ преобразователи.
- Интерфейс SIM-карты.
- Управление зарядкой ионно-литиевой или никеле-металлогидридной батареи.
- Шесть малошумящих линейных стабилизатора напряжения.
- Детекторы напряжений (с задержкой выключения).
- Пятиканальный аналого-цифровой преобразователь.
- Низкий ток покоя.

3.2.2.1 Кодек речевого канала

Схемы кодека речевого канала выполняют обработку аналоговых звуковых сигналов восходящего речевого канала (VUL), и последующую передачу этих сигналов для их конечной модуляции в низкочастотной части. Схемы кодека также преобразуют речевые данные нисходящего речевого канала, поступающие через последовательный интерфейс голосового диапазона (VSP), в аналоговые звуковые сигналы. В нижеследующих параграфах приводится более подробное описание системы двунаправленной передачи данных.

Рис. 3-2-2. Блок-схема кодека речевого канала

3.2.1.1 Восходящий тракт речевых сигналов

Восходящий тракт речевых сигналов состоит из двух входных каскадов. Первый каскад – это микрофонный усилитель, совместимый с электронными микрофонами, оборудованный буферной схемой на полевом транзисторе и открытым стоком на выводе. Микрофонный усилитель с номинальным коэффициентом усиления 25,6 дБ (± 1 дБ) подает на микрофон напряжение смещения 2,0 В - 2,5 В (К9, MICBIAS). Вспомогательный звуковой вход может быть задействован в качестве альтернативного источника звуковых сигналов высшего уровня. В данном каскаде производится преобразование несимметричных сигналов в дифференциальные, а также программируемое усиление с 4,6 дБ до 28,2 дБ. В случае использования вспомогательного звукового входа микрофонный вход запирается, и питание на него не подается. Полученный полностью дифференцированный сигнал поступает на аналого-цифровой преобразователь определяемый величиной внутреннего опорного напряжения. Аналого-цифровое преобразование выполняется S-D модулятором третьего порядка с частотой амплитудно-импульсной модуляции 1 МГц. Выходной сигнал с аналого-цифрового преобразователя подается на цифровой фильтр звуковых частот, который производит сужение диапазона до 8 Кгц и ограничивает полосу пропускания сигнала как по нижним, так и по верхним частотам. Программируемое усиление задается в цифровом виде в пределах от -12 дБ до + 12 дБ при шаге в 1 дБ, с помощью разрядов 4-0 (VULPG(4:0)) регистра восходящего тракта речевого диапазона (см. параграф 5.3.12.2). Затем речевые сигналы через последовательный порт речевого канала передаются на цифровой процессор сигналов с частотой 8 Кгц. Имеется 15 значащих разрядов вывода.

Программируемые функции восходящего тракта речевых сигналов, включение питания, выборка входных сигналов, а также усиление управляются через последовательные порты низкочастотной части или микроконтроллера. Питание восходящего тракта речевых сигналов отключается при помощи разряда 0 (VULON) регистра отключения питания.

Рис. 3-2-3. Восходящий тракт речевых сигналов

3.2.1.2 Нисходящий тракт речевых сигналов

Речевые сигналы в импульсной форме поступают с цифрового процессора сигналов через последовательный порт речевого канала на нисходящий тракт с частотой дискретизации 8 Кгц. Здесь происходит их преобразование в аналоговые сигналы для управления внешним преобразователем речевых сигналов.

Поступающие с цифрового процессора оцифрованные речевые сигналы сначала подаются на цифровой фильтр речевых сигналов, который имеет две функции. Первая из них – интерполирование входного сигнала и повышение частоты амплитудно-импульсной модуляции с 8 Кгц до 40 Кгц, в целях последующего цифро-аналогового преобразования сигнала при помощи цифрового модулятора с избыточной частотой дискретизации. Второй функцией цифрового фильтра является ограничение полосы пропускания сигнала, как по нижним, так и по верхним частотам. Фильтр можно обойти путем программирования разряда 9 (VFBYP) в управляющем регистре речевого диапазона. Интерполированный сигнал ограниченного диапазона подается на S-D модулятор второго порядка с частотой дискретизации 1 Мгц, который производит 4-разрядный (9-уровневый) сигнал с избыточной частотой дискретизации. Затем сигнал пропускается через блок согласования динамических элементов, после чего он поступает на 4-разрядный цифро-аналоговый преобразователь. В результате произведенного преобразования с избыточной частотой дискретизации, при выходе аналогового сигнала с 4-разрядного цифро-аналогового преобразователя происходит смешивание сигнала с высокочастотными шумами. Однако, поскольку сигнал выдается в 4-разрядном цифровом виде, для отделения от него помех достаточно резистивно-ёмкостного фильтра (входящего в состав 4-разрядного цифро-аналогового преобразователя). Регулирование громкости и программируемого усиления осуществляются при помощи цифрового фильтра передатчика. Регулировка громкости производится ступенчато, с шагом 6 дБ, в интервале от 0 дБ до -24 дБ. В режиме выключения звука коэффициент ослабления превышает 40 дБ. Точная регулировка усиления возможна в интервале от -6 дБ до +6 дБ с величиной шага 1 дБ для калибровки системы применительно к техническим параметрам наушника. Программирование этой конфигурации производится в управляющем регистре нисходящего тракта речевых сигналов. С усилителя наушника полностью дифференцированный сигнал подается на выводы H9 (EARP) и

Н8 (EARN), а со вспомогательного выходного усилителя дифференцированный сигнал поступает на выводы Ј9 (AUXOP) и Ј10 (AUXON). Питание нисходящего тракта речевых сигналов можно отключить программированием разряда 1 (VDLON) регистра понижения мощности. Зуммер приводится в действие находящимся на плате биполярным транзистором. Управление осуществляется при помощи подачи выходного сигнала BUZZOP (с вывода К10) на базу транзистора в виде потока битов широко-импульсной модуляции с продолжительностью импульса в1 Мгц.

Рис. 3-2-4. Нисходящий тракт кодека речевых сигналов

3.2.2.1.2 Нисходящий тракт речевых сигналов

Кодек низкочастотной части состоит из двухканального восходящего тракта низкочастотной части (BUL) и двухканального нисходящего тракта низкочастотной части (BDL).

3.2.2.2.1 Восходящий тракт речевых сигналов

Блок модулятора восходящего тракта низкочастотной части выполняет GMSK-модуляцию в соответствии со стандартом GSM. На модулятор сигналы поступают с РЧ интерфейса цифрового процессора (RIF) через последовательный порт низкочастотной части (BSP). Модулятор GMSK является цифровым, фильтр Гаусса рассчитан на поток 4-разрядных входящих данных, закодированных по справочным таблицам синусов/косинусов в ПЗУ. Модулятор производит синфазные (I) и квадратурные (Q) оцифрованные сигналы с коэффициентом интерполяции 16. Данные оцифрованные подвергаются дискретизации с частотой 4,33 Мгц, и подаются на входы пары 10-разрядных цифро-аналоговых преобразователей. После них аналоговые выходные сигналы пропускают через фильтры Бесселя третьего порядка для уменьшения внеполосных шумов и боковых гармоник, и для получения спектра модулированных выходных сигналов соответствующих стандарту GSM.

Полностью дифференцированные сигналы поступают на выводы С9 (BULIP), С10 (BULIM), D8 (BULQP) и D9 (BULQM).

С целью максимального снижения погрешности фазовой траектории, смещение постоянной составляющей каналов I и Q может быть сведено к минимуму путем выполнения калибровки смещения. В процессе калибровки смещения коды входа 10-разрядного цифро-аналогового преобразователя устанавливаются на «0», а для минимизации смещения постоянной составляющей выходных аналоговых сигналов используется 6-разрядный вспомогательный цифро-аналоговый преобразователь. До начала передачи все элементы пакетного сигнала, включая сторожевые разряды, хвостовые разряды и информационные разряды хранятся в одном или двух 160-разрядных буферных запоминающих устройствах пакетной передачи. Наличие двух пакетных буферных 3У объясняется необходимостью поддержания многоканальной передачи: в то время, как в одно буферное ЗУ происходит загрузка новых данных, данные из другого устройства выводятся на GMSK-модулятор для передачи. Выбор одноканального или многоканального режима осуществляется при помощи разряда 6 (МSLOT) управляющего регистра кодека низкочастотной части. В случае выбора одноканального режима, модуляции подвергается только содержимое буферного ЗУ 1. Выходной уровень выбирается при помощи разряда 8 (OUTLEV1) или 7 (OUTLEV0) управляющего регистра кодека низкочастотной части.

Обычная последовательность пакетной передачи включает следующие этапы:

- 1. Включение питания двухканального восходящего тракта низкочастотной части.
- 2.Выполнение калибровки смещения (не обязательно).
- 3. Модулирование содержимого буферного ЗУ.

Синхронизация данной последовательности контролируется через последовательный порт синхронизации, принимающий сигнал управления в реальном масштабе времени с блока обработки по времени (TPU)цифрового процессора низкочастотной части (DBB). Передача пакета данных осуществляется при помощи трех управляющих сигналов: BULON, BULCAL и BULENA. Каждому сигналу соответствует окно времени. Сигнал BULON включает при высоком уровне активный режим двухканального восходящего тракта низкочастотной части после задержки, связанной с установкой времени включения аналогового блока. Сигнал BULCAL активизирует окно калибровки смещения. При поступлении команды BULCAL, коды сигналов входа на 10-разрядный цифро-аналоговый преобразователь принудительно устанавливаются на «0», а компаратор малого смещения замеряет уровень на выводах C9/C10 (BULIP/BULIM) и D8/D9 (BULQP/BULQM). Результат сравнения используется для обновления содержания регистров смещения, с помощью которых 6-разрядный вспомогательный цифро-аналоговый преобразователь уменьшает ошибки смещения постоянной составляющей. Продолжительность периода калибровки зависит от времени необходимого для развертки динамического диапазона вспомогательного цифро-аналогового преобразователя. Процесс модулирования начинается с верхнего края сигнала BULENA, и заканчивается через 32 четвертных бита после нижнего края сигнала BULENA. По завершении модулирования модулятор инициализируется заново путем установки указателей буферных ЗУ пакетной передачи и ПЗУ фильтра на адрес базы. Вектор I устанавливается на максимальное значение, а вектор Q – на 0. Подача мощности для рассогласования усиления между каналами I и Q дает возможность компенсировать естественную несогласованность либо несовершенство усиления РЧ смесителя через разряды 5 (IQSEL), 3 (GO) и 4 (G1) управляющего регистра кодека низкочастотной части. Выходное напряжение синфазного сигнала на выводах С9 (BULIP), С10 (BULIM), D8 (BULQP) и D9 (BULQM) может быть установлено на VDD/2 с фиксированным значением 1,35 В, либо на VGAP при помощи разрядов 1 (SELVMID1) и 0 (SELVMID0) управляющего регистра кодека низкочастотной части.

Рис. 3-2-5. Блок-схема восходящего тракта низкочастотной части

3.2.2.2.2 Нисходящий тракт низкочастотной части

Нисходящий тракт низкочастотной части (BDL) состоит из двух идентичных контуров для обработки аналоговых I и Q сигналов низкочастотной части, вырабатываемых РЧ контуром. Первый каскад нисходящего тракта низкочастотной части представляет собой аналоговый фильтр второго порядка для защиты от наложения спектров внеполосных частот, возникающих в результате дискретизации сигналов в аналого-цифровом преобразователе. Данный фильтр также выполняет функцию каскада адаптации между внешними и внутрикристальными схемами.

За фильтром защиты от наложения спектров следует S-D-модулятор третьего порядка, выполняющий аналого-цифровое преобразование при частоте дискретизации 6,5 Мгц. Аналого-цифровой преобразователь подает двухразрядные слова на цифровой фильтр, который при коэффициенте прореживания 24 снижает частоту дискретизации до 270,8 Кгц. Аналого-цифровой преобразователь также производит разделение каналов путем подавления смежных частот – для обеспечения соответствия технических характеристик демодуляции стандарту GSM.

Нисходящий тракт низкочастотной части также имеет регистр смещения, сохраняющий значение величины смещения постоянной составляющей канала. Данное значение вычитается из величины выходного сигнала перед тем, как оцифрованные сигналы передаются на цифровой процессор сигналов через последовательный порт низкочастотной части. После сброса значение регистра смещения при загрузке устанавливается на «0». Содержимое регистра обновляется в процессе калибровки.

Обычная последовательность приема пакетного сигнала включает следующие этапы:

- 1. Включение питания нисходящего тракта низкочастотной части.
- 2.Выполнение калибровки смещения (не обязательно).
- 3.Преобразование и фильтрование I и Q составляющих и передача оцифрованных сигналов. Синхронизация данной последовательности контролируется через последовательный порт синхронизации, принимающий сигнал управления в реальном масштабе времени с блока обработки по времени (TPU) цифрового процессора низкочастотной части (DBB). Передача пакета данных осуществляется при помощи трех управляющих сигналов: BDLON, BDLCAL и BDLENA. Каждому сигналу соответствует окно времени.

Сигнал BDLON включает при высоком уровне активный режим нисходящего тракта низкочастотной части после задержки, связанной с установкой времени включения аналогового блока. Сигнал BDLCAL активизирует окно калибровки смещения. Выбор одного из двух возможных режимов калибровки смещения определяется состоянием разряда 9 (EXTCAL) управляющего регистра кодека низкочастотной части. При нулевом значении EXTCAL входы аналоговых сигналов отключаются от внешних устройств и внутренне закорачиваются. Результат выполненного в данном состоянии преобразования сохраняется в регистре смещения. При значении EXTCAL равном «1» вход аналоговых сигналов остается подключенным к внешним схемам, а результат преобразования, включающий в данном случае внутреннее смещение плюс смещение на внешних схемах, сохраняется в регистре смещения. Продолжительность окна калибровки главным образом зависит от времени установления цифрового фильтра.

Преобразование данных начинается с верхнего края сигнала BDLENA, однако, первые восемь дискретизированных сигналов I и Q на цифровой процессор сигналов не передаются, так как они являются незначимыми вследствие групповой задержки цифрового фильтра. Верхний край сигнала BDLENA также используется внутренним контроллером интерфейса шины для воздействия на тракт передачи от последовательного порта низкочастотной части к восходящему тракту низкочастотной части в течение всего окна приема. На нижнем краю сигнала BDLENA происходящее преобразование завершается, а сигналы передаются до момента завершения преобразования. И в завершение сигнал BDLON переводит нисходящий тракт низкочастотной части в неактивный режим при низком уровне.

Рис. 3-2-6. Блок-схема нисходящего тракта низкочастотной части

3.2.2.3 Последовательный интерфейс порта синхронизации (TSP)

Последовательный интерфейс порта синхронизации дает возможность последовательной передачи управляющих окон низкочастотной части для кодека низкочастотной части Nausica. Операции осуществляются при посредстве блока обработки во времени, обеспечивающем четвертьразрядное разрешение в системе GSM и точную установку команд кодека в кадре GSM TDMA. Формат данных для этой передачи включает семь разрядов, в том числе команды управления восходящим/нисходящим трактами (включение, калибровка, разрешение операций) и стартовый бит для аналого-цифрового преобразователя. Этот командный бит обеспечивает точность начала преобразования сигналов аналого-цифровым преобразователем в кадре множественного доступа с временным уплотнением (TDMA).

Этот канал передачи не дает доступ к регистру Nausica, воспринимается только передача от Calypso к Nausica К порту синхронизации Calypso также подключен последовательный интерфейс Aero (производства «Si Lab»). Через это звено Calypso осуществляет программирование синтезаторов, приемного устройства, схемы фазовой автоподстройки частоты, контроллера усилителя мощности. Тактовая частота последовательного порта синхронизации составляет 6,5 Мгц.

3.2.2.4 Последовательный интерфейс RIF/BSP (радио-интерфейс / последовательный порт низкочастотной части)

Этот интерфейс предназначен для восходящей и нисходящей передач дискретизированных сигналов I и Q между цифровым процессором сигналов и кодеком низкочастотной части, а также для доступа к регистру Nausica. По восходящему тракту цифровой процессор сигналов посылает на кодек пакетные разряды для модулирования, в то время как по нисходящему тракту процессор принимает немодулированные сигналы I и Q.

Доступ для записи на регистр Nausica осуществляется в том же формате данных, что и на восходящем тракте. Основными функциями являются:

- Программирование параметров автоматической регулировки мощности (уровни, задержки, коэффициенты линейных изменений);
- Автоматическая регулировка частоты;
- Управление кодеком речи.

Доступы к регистру можно считать синхронизированными с кадром множественного доступа с временным разделением (TDMA), так как цифровой процессор сигналов принимает команды на границе начала кадра TDMA. Тактовая частота последовательного сопряжения радио-интерфейса/ порта низкочастотной части составляет 13 Мгц. Доступ к последовательному порту низкочастотной части запрещается при значении ACTIVMCLK = 0.

3.2.2.5 Последовательный интерфейс SPI/USP (интерфейс с системной службой / последовательный порт микроконтроллера) процессора ARM

Данный интерфейс относится к регистру записи и считывания Nausica, с доступом с микросхемы Calypso. Данный канал предоставляет доступ ко всем регистрам Nausica, в то время как порт USP используется для конфигурирования и управления состоянием каждого блока устройства Nausica. Через данный интерфейс возможно считывание результатов преобразования сигналов аналогоцифровым преобразователем. Доступ является асинхронным в отношении кадра TDMA, его приоритет выше, чем у доступа последовательного порта низкочастотной части. Разрешение конфликтов, возникающих в результате одновременного обращения интерфейса с системной службой ARM и радио-интерфейса LEAD, возложено на внутренний контроллер шинного интерфейса Nausica. Тактовая частота данного последовательного соединения составляет 13 Мгц.

3.2.2.6 Последовательный интерфейс SPI/VSP (интерфейс с системной службой / последовательный порт речевого канала) процессора LEAD

При помощи данного интерфейса осуществляется прохождение оцифрованных речевых сигналов по нисходящему и восходящему тракту между цифровым процессором сигналов и кодеком речевого диапазона Nausica. Последовательный порт речевого канала Nausica является главным портом передачи сигналов. Тактовая частота данного соединения — 500 Кгц.

3.2.2.7 Интерфейс JTAG

Порт доступа к средствам тестирования (TAP) соответствует стандарту контролепригодности JTAG (IEEE Std1131.1-1990). Через данный порт возможна установка типовых программ стандарта JTAG, а также частных программ для специального конфигурирования устройства в целях тестирования или отладки.

3.2.2.7 Генераторы тактовой частоты

На устройство Nausica тактовые импульсы поступают с двух тактовых генераторов микропроцессора Calypso.

Сигналы генератора малой тактовой частоты («медленного» генератора) CLK32K_OUT используются цифровым процессором низкочастотной части в качестве опорных сигналов в неактивных режимах (архивации, ожидания). Аналоговый процессор низкочастотной части принимает данный тактовый генератор в качестве синхронизирующего генератора для управления включением питания по источнику опорного напряжения (VRPC), и в качестве генератора опорных тактовых импульсов при отсутствии генератора большой тактовой частоты («быстрого» генератора).

Импульсы генератора большой тактовой частоты CLK13M_OUT используются и цифровым и аналоговым процессорами процессором низкочастотной части в качестве опорных сигналов во всех режимах, включая режим последовательной передачи.

Кристалл на 32 Кгц встроен между входом и выходом генератора (выводы OS32K_IN и OSC32K_OUT). Соединение выполнено как можно более коротким. На кристалле соединены два нагрузочных конденсатора, и общая точка (цепь с замыканием через корпус) должна соединяться с выводом VSSO заземления выделенного генератора.

Подающий на генератор питание фильтрующий конденсатор соединяется с выводом VSSO (та же точка, что и точка возврата нагрузочного конденсатора кристалла) и напрямую с ближайшим выводом VDDRTC при минимально возможной длине соединения. Это делается с целью защиты параметров дрожания частоты от исходящих с линии питания помех, порождаемых быстрыми переходами внутренней логической схемы.

3.2.2.9 Прерывания

Устройство Nausica может вырабатывать два вида сигналов прерывания:

- Сигнал экстренного прерывания, подаваемый на вывод EXT_FIQ устройства Calypso, означающий обнаружение низкого напряжения аккумуляторной батареи.
- Подаваемый на вывод EXT_FIQ устройства Calypso сигнал прерывания при обнаружении состояния:
 - Нижний или верхний край сигнала на выводе RPWON.
- Нижний край сигнала на выводе PWON.
- Завершение преобразования из аналоговой формы в цифровую.
- Подключение зарядного устройства к сети электропитания.

3.2.2.10 Сигналы управления питанием

Три сигнала, управляющие состоянием системы и изменениями состояния системы, подаются на участок питания VRRTC.

- Сигнал nRESPWONZ.
- генерируется аналоговым процессором низкочастотной части.
- частично сбрасывает питание цифрового процессора низкочастотной части.
- задействуется только один раз (при наличии любого вида питания ВВ или МВ) при первом включении аппарата. Логическая схема управления питанием распространяет данный сигнал для выполнения всеобщего сброса по мере запитывания остальной части кристалла.
- Сигнал ON nOFF.
 - генерируется цифровым процессором низкочастотной части.
- сбрасывает в исходное состояние модули ASIC, ARM, LMM.
- находится на низком логическом уровне при каждом выключении системы. Сигнал вырабатывается логической схемой управления питанием и подается в остальную часть цепи.
- Сигнал ITWAKEUP.
- генерируется цифровым процессором низкочастотной части.
- используется для запуска системы из неактивных режимов (сохранения, ожидания).
- построен в виде комбинации всех запросов на прерывание, запускающих модуль ULPD микропроцессора Calypso и систему реального времени (RTC)

3.2.2.11 Стабилизация напряжения (VREG)

На кристалле аналогового процессора низкочастотной части имеется 5 стабилизаторов напряжения низкой выходной мощности (LDO). Значения напряжений на выходе этих пяти стабилизаторов приведены в нижеследующей таблице. На схеме (рис. 3-6) показаны связанные с подачей питания блоки цифрового и аналогового процессоров низкочастотной части и их интерфейсы в G7030.

Рис. 3-2-7. Совместимое соединение с Nausica

Надписи на схеме:

ABB VRPC core	Узел управления подачей питания и стабилизации	Split power logic	Логическая схема управления питанием
	напряжения аналогового процессора низкочастотной части	Powerdown of internal	Отключение внутренней внутренней схемы сдвига
External LDO	Внешний стабилизатор	level shifter	уровня
Split power ring	Кольцо деления мощности	RTC and X032K reset	Сброс генератора импульсов истинного времени и X032K
RTC&SPLIT DOMAIN	Область генератора импульсов истинного времени и	X032K Conf registers	Регистры конфигурирования X032K
	делителя мошности		

Таблица 3-2-1. Напряжения на выходе стабилизаторов

	Напряжение на выходе	Применение
VR1	1,8 B	Цифровое ЗУ (ядро) цифрового процессора низкочастотной части
VR1B	2,0 B	Цифровое ЗУ (ядро) аналогового процессора низкочастотной части
VR2	2,85 B	Интерфейс памяти цифрового процессора низкочастотной части
VR2B	2,85 B	Цифровые вводы-выводы цифрового и аналогового процессоров низкочастотной части
VR3	2,85 B	Аналоговый блок аналогового процессора низкочастотной части

3.2.2.12 Каналы аналого-цифрового преобразователя

Блок аналого-цифрового преобразователя аналогового процессора низкочастотной части состоит из четырех внутренних и пяти внешних каналов аналого-цифрового преобразователя. Данный блок управляет зарядкой батареи и другими связанными с зарядкой процессами, считывая значения напряжения батареи и другие аналоговые параметры.

Таблица 3-2-2. Характеристики каналов аналого-цифрового преобразователя

9 каналов аналого-цифрового преобразователя			
Ресурс Наименование		Назначение	
VCHG	VCHG		
VBAT	VBAT	Управление процессами зарядки	
ICHG	ICHG		
VBACKUP	VBACKUP	Резервная батарея	
ADCIN1 Не используется			
ADCIN2	BATT_TEMP	Считывание значений температуры основной батареи	
ADCIN3	RADIO_TEMP	Считывание значений температуры РЧ части	
ADCIN4/TSCXP	HOOK_DETECT	Считывание значений кнопки соединения	
ADCIN5/TSCYP	Не используется		

3.2.2.13 Подача питания

На приведенной выше схеме указаны соединения подачи питания от Nausica к Calypso. на этой схеме следует выделить следующие моменты:

- При отсутствии подключения МВ (основной батареи) напряжения на выходах стабилизаторов не будет.
- Резервный стабилизатор генератора импульсов истинного времени (RRTC) всегда находится в активном состоянии, подавая напряжение на участок управления питанием микропроцессора Calypso в любом функциональном режиме системы.
- Значение напряжения на стабилизаторе генератора импульсов истинного времени и стабилизаторе цифрового процессора низкочастотной части (RDBB) может быть выбрано между 1,4 В и 1,8 В через входной вывод VL RTC.
- По умолчанию значение напряжения RMEM может находиться между 2,8 В и 1,8 В через входной вывод VLMEM.
- Стабилизатор цифрового процессора низкочастотной части измеряет внешнее напряжение для более точной стабилизации напряжения на входном выводе VSDBB. В результате исключается падение напряжения от клавиатуры и проводных соединений к выводу подачи питания микропроцессора Calypso. Чтобы данная функция была действенной, точка считывания возвратного напряжения должна находиться как можно ближе к выводу микропроцессора Calypso.
- Схемы сдвига уровня ввода-вывода генератора импульсов истинного времени (RTC) в приложении Nausica к Calypso применяются с одинаковыми значениями напряжения с обеих сторон => VDD-RTC = VDD-RTC = 1,8 B.

3.2.2.14 Зарядка

Блок контроля зарядки в аналоговом процессоре низкочастотной части осуществляет управление процессом зарядки батареи при помощи значений VBAT, ICHG через канал аналого-цифрового преобразователя. На рисунке ниже приведена индикация уровня заряженности батареи аппарата G7030 и соответствующие значения напряжения.

Рис. 3-2-7. Индикатор уровня заряженности батареи

- 1. Метод зарядки: СС-СУ (постоянный ток постоянное напряжения).
- 2. Напряжение обнаружения зарядного устройства: 4,0 В.
- 3. Время зарядки: 2 часа.
- 4. Иконка остановки заряда: 65 мА.
- **5**. Ток зарядки: **480** мА.
- 6. Стабилизированное напряжение: 4,2 В.
- 7. Ток отключения: 40 мА.
- 8. Ток индикации полностью заряженной батареи (остановка иконки): 65 мА.
- 9. Напряжение перезарядки: 4,16 В.
- 10. Сигнал низкого уровня заряда батареи
- а. В нерабочем режиме: 3,62 В.
- б. В рабочем режиме: 3,50 В.
- 11. Интервал подачи сигнала о низком уровне заряда батареи
- а. В нерабочем режиме: 3 мин.
- б. В рабочем режиме: 1 мин.
- 12. Напряжение отключения: 3,35 В.
- 13. Температурный диапазон аналого-цифрового преобразователя необходимый для выполнения подзарядки.
- а. Температура в помещении < -5°C: зарядка батареи не производится.
- б. -5°С < Температура в помещении < 45°С: зарядка производится.
- в. 45°С < Температура в помещении: зарядка не производится.

3.2.2.15 Интерфейс SIM-карты

Цифровой интерфейс SIM-карты в аналоговом процессоре низкочастотной части обеспечивает преобразование логических уровней между цифровым процессором низкочастотной части и SIM-картой, для передачи 3 различных сигналов:

- Синхронизирующий сигнал, полученный от тактового генератора и обработанный цифровым процессором низкочастотной части, на SIM-карту (DBBSCK SIM CK).
- Сигнал сброса от цифрового процессора низкочастотной части на SIM-карту (DBBSRST SIM RST).
- Последовательные данные от цифрового процессора низкочастотной части на SIM-карту (DBBSIO SIM IO), и наоборот.

Интерфейс SIM-карты может быть запрограммирован для работы SIM-картой на 3 В или 5 В.

 Интерфейс SIM-карты с цифровым и аналоговым процессорами низкочастотной части

 SIM_RST
 Сброс SIM-карты.

 SIM_PWCTRL
 Включение питания SIM-карты.

 SIM_IO
 Двунаправленная линия передачи данных SIM-карты.

 SIM_CLK
 Опорный тактовый сигнал для SIM-карты.

Таблица **3-2-3**. Интерфейс **SIM**-карты

Рис. 3-2-8. Интерфейс SIM-карты

3.3 Интерфейс дисплея и гибкой печатной платы

Модуль ЖКД соединен с основной платой через 34-контактный гибкий шлейф. В него входят двухрежимный громкоговоритель, виброзвонок и резервная батарея.

Рис. 3-2-8. Интерфейс дисплея и гибкой печатной платы

Nº	Наименование вывода	Категория	Выполняемая функция
1	D15		Ввод данных
2	D14		Ввод данных
3	D13		Ввод данных
4	D12	Шина	Ввод данных
5	D11	данных	Ввод данных
6	D10		Ввод данных
7	D09		Ввод данных
8	D08		Ввод данных
9	VR2B	Питание	Подача питания (основного и вспомогательного ЖКД)
10	MAIN_BACKLIGHT	Подсветка	Подсветка основного ЖКД
11	GND	Питание	Заземление
12	SUB_EN	Активирование	Активирование вспомогательного ЖКД
13	VBACKUP	Питание	Резервная батарея
14	MOTOR	Виброзвонок	Управление виброзвонком
15	GND	Питание	Заземление
16	SPKN	Аудио	Громкоговоритель и приемное устройство N
17	SPKP	Аудио	Громкоговоритель и приемное устройство Р
18	GND	Питание	Заземление
19	GNG	Питание	Заземление
20	LCD_DIM_CNTL	Затемнение	Управляющий вывод управления затемнением основного ЖКД
21	LCD_RESET	Сброс	Сброс (основного и вспомогательного ЖКД)
22	_MAIN_CS	Выбор кристалла	Выбор кристалла основного ЖКД
23	_SUB_CS	Выбор кристалла	Выбор кристалла вспомогательного ЖКД
24	VBAT	Питание	Напряжение батареи
25	_WR	Запись	Управление записью основного ЖКД
26	A(1)	Переключение	Переключение данных или команд
27	D07		Ввод данных
28	D06		Ввод данных
29	D05		Ввод данных
30	D04	 Шина данных	Ввод данных
31	D03	шина данных 	Ввод данных
32	D02		Ввод данных
33	D01		Ввод данных
34	D00		Ввод данных

3.4 Аудиоинтерфейс

3.4.1 Цепимикрофона

Рис. 3-4-1. Схемыподключениямикрофона

При установлении вызова сигнал MICBIAS повышается на<2,0V> в G7030. Устройство Nausica(аналоговый процессор низкочастотной части) подает в цепь 2,0 В и 2,5 В для сигнала MICBIAS. Для повышения защиты от электростатических разрядов используются VA5, VA6

3.4.2 Интерфейс гнезда для подключения наушника

Рис. 3-4-2. Интерфейс гнезда для подключения наушника

Когд а вконтактное гнездо вставлен штекер контактного ушного микрофона или наушника, уровень сигнала JACK_DELETE изменяется с <H> на <L>. Если кнопка соединения нажата в течение одной секунды для того, чтобы сделать звонок, то состояние сигнала изменяется с <L> на <H>. Окончание звонка происходит таким же способом при нажатии кнопки соединения на ремешке контактного ушного микрофона. Нажатие кнопки соединения обычно обнаруживается при непрерывном сигнале в течение 20 мсек.

3.4.3 Цепигромкоговорителя

Рис. 3-4-3. Переключательсистемыдвухрежимногогромкоговорителя

Находящиеся в одной упаковке двойные аналоговые переключатели используются для поддержки обеих режимов одного громкоговорителя - голосового режима и звукового режима микросхемы MIDI. Громкоговоритель поддерживает параметры как приемного устройства, так и собственно громкоговорителя. Если порт SPK_EN установлен на <<H>>>, то он работает в качестве громкоговорителя В противном случае порт SPK_EN остается в состоянии <<L>>>.

3.4.4 Описание схемы MIDI SOUND

Рис. 3-4-4. Переключатель системы двухрежимного громкоговорителя

Цепь синтезатора MIDI включает в себя YMU762B, внешний стабилизатор (3,3 В на выходе) и перемычки в зависимости от типа YMU759B или YMU762B, R125, R108 используются поочередно. В настоящее время R108 используется для поддержки YMU762B (звуковая микросхема с 40 полифоническими элементами).

3.4.4.1 YMU762B имеет следующие характеристики:

- Одновременное генерирование до 40 звуковых тонов.
- использование полифонического синтезатора.
- имеет предопределенные по умолчанию звуковые тона для синтезаторов таблицы частотной модуляции и форм сигнала в ПЗУ. Звуковые тона могут быть загружены в ОЗУ.
- Воспроизведение при помощи адаптивной дифференциальной импульсно-кодовой модуляции.
- Программный механизм прерываний для внешней синхронизации.
- Имеет 8-разрядный параллельный интерфейс для осуществления управления со стороны центрального процессора.
- Имеет усилитель громкоговорителя и эквалайзер.
- Имеет встроенную систему фазовой автоподстройки частоты для поддержки входящих сигналов от генератора опорных импульсов частотой до 20 Мгц.
- Включает в себя 16-разрядный стереофонический цифро-аналоговый преобразователь.

3.5 Подсветка клавиатуры

Рис. 3-5-1. Переключательподсветкиклавиатуры

Управление системой переключения подсветки клавиатуры осуществляется при помощи сигнала включена, потребление энергии составляет около 30 мА при напряжении подачи от основной батареи равном 3,7 В.

3.6 Соединения клавиатуры

Цифровой процессор низкочастотной части обеспечивает поддержку **25**-кнопочной клавиатуры и кнопки включения питания, которая соединена напрямую с аналоговым процессором низкочастотной части (см. Рис. **6-1**).

Клавиатура соединена с микропроцессором с помощью:

- Входных выводов KBR (4:0) для горизонтальных рядов.
- Выходных выводов КВС (4:0) для вертикальных рядов.

При нажатии одной из кнопок матрицы клавиатуры происходит замыкание соответствующих горизонтальных и вертикальных рядов, идентифицируя тем самым нажатую кнопку. Все входные выводы (КВR) внутренне подведены к VCC, а все выходные выводы КВС действуют на низком уровне. При нажатии на кнопку подается сигнал прерывания на микроконтроллер, который, в свою очередь, начинает последовательное сканирование вертикальных рядов кнопок. В данной схеме G7030 обеспечивает поддержку 25 кнопок, а нажатие кнопки питания (ON_OFF) обнаруживается устройством Nausica.

3.7 Общее описание РЧ блока приемопередатчика

Радиочастотные компоненты включают в себя передающее устройство, приемное устройство синтезатор частот, источник напряжения, термостабилизированный генератор, управляемый напряжением.

Приемопередатчик Aero состоит из трех наборов микросхем - Si4200-BM[U6], Si4133T-BM[U5] и Si4201-BM[U7], обеспечивая двух- и трех диапазонную GSM/GPRS беспроводную связь.

Приемопередатчик Aero имеет встроенное приемное устройство, основанное на архитектуре низкой промежуточной частоты (100 МГц), и передатчик, основанный на архитектуре контура модуляции. Синтезатор [U403], использующий микропроцессорный набор Si4133T-BM (Silicon Labs), является полным двухдиапазонным синтезатором со встроенными ГУН.

В приемном устройстве задействован трехпроводный последовательный интерфейс, позволяющий внешнему системному контроллеру выполнять ввод регистров команд делителей частот, усиление радиоканала приема, установку падения мощности, и прочие управляющие операции.

Рис. 3-7-1. Блок схема РЧ входного каскада

3.7.1 Приемное устройство

В приемном устройстве используется приемник ПЧ, размещенный на одном кристалле с фильтром выбора каналов, устраняющий необходимость применения фильтров подавления боковых гармоник и фильтра ПАВ ПЧ, являющихся элементами обычной супергетеродинной схемы. Микросхема Si4200-BM [U6] включает в себя три малошумящих усилителя дифференциального входа, согласованных с 200-омными фильтрами симметричного выхода через внешние согласующие LC-схемы.

Квадратурный смеситель с подавлением боковых гармоник преобразует РЧ сигнал с понижением до 100 кГц промежуточной частоты (ПЧ) при помощи местного РЧ гетеродина на Si4133T-BM [U5]. Выходной сигнал со смесителя усиливается аналоговым усилителем с программируемым усилением, а квадратурный сигнал ПЧ преобразовывается в цифровую форму высокоточными аналого-цифровыми преобразователями. Si4201-BM[U7] преобразует выходной сигнал с АЦП с понижением частоты при помощи сигнала от местного цифрового 100-Гц квадратурного гетеродина. Цифровая обработка сигнала и фильтры применяются для выбора канала с целью устранения блокировки и помех. После того, как канал выбран, цифровой выход корректируется при помощи регулируемого усилителя, управляемого разрядами DGAIN (5:0) в регистре 5h. Усиленный цифровой выходной сигнал проходит через цифро-аналоговые преобразователи, с которых дифференциальный аналоговый сигнал поступает на выводы RXIP, RXIN, RXQP и RXQN для сопряжения с стандартными интегральными схемами НЧ части аналого-цифрового преобразователя.

Индикатор антенного приема	Количество штрихов индикации	Мощность (дБм)
	5	≥ -85
	4	≥ -90
	3	≥ -95
	2	≥ -100
	1	≥ -105
	0	< -105

Рис. 3-7-2. Блок-схема приемного устройства

3.7.2 Синтезатор

Интегральная схема синтезатора . Si4133T-BM[U5] является монолитной интегральной схемой комплементарной метал-окисидной полупроводниковой (КМОП) структуры, выполняющей синтез ПЧ и РЧ. Две полные системы ФАПЧ (фазовой автоподстройки частоты) интегрированы с включением в себя ГУН генераторов, параметрических диодов, резонаторов, контурных фильтров, опорных делителей и делителей ГУН, фазовых детекторов. Дифференциальные выходы на системы ФАПЧ ПЧ и РЧ предназначены для прямого соединения с ИС приемопередатчика Si4200-BM[U6]. Схема ФАПЧ РЧ использует два мультиплексных ГУН.

ГУН РЧ1 работает в режиме приема, а ГУН РЧ2 . в режиме передачи. Схема ФАПЧ задействована только в режиме приема, и использует одинарный ГУН. Средняя частота каждого из трех ГУН интегральной схемы Si4133T задается подключением внешней индуктивности (Lext).

Программируемый делитель на выводе XIN обеспечивает 13 либо 26 МГц с внешнего кварцевого генератора. Частота регенерации фазового детектора схемы ФАПЧ ПЧ программируется битом RFUP

в регистре 31h на 100 кГц, либо 200 кГц. В схеме ФАПЧ ПЧ всегда используется частота 200 кГц. В режиме приема в диапазонах DCS1800 и PCS1900используется частота 100 кГц, а в диапазонах GSM 850 и E-GSM900 . 200 кГц.

В режиме передачи всегда используется частота **200** кГц. Частоты выходного сигнала ПЧ и РЧ задаются программированием регистров **N**-делителя, а также программируются через трехпроводный интерфейс с контроллером внешней системы.

Рис. 3-2 Блок-схема синтезатор частот Si4133T

3.7.3 Передатчик

Передающая часть Si4200-BM[U6] состоит из I/Q преобразователя с повышением частоты в НЧ части, схемы фазовой автоподстройки частоты (ФАПЧ), и двух 50-омных выходных буферов, приводящих в действие внешние усилители мощности. Системе ФАПЧ не требуется внешний антенный аттенюатор для ослабления помех при передаче и паразитных сигналов в диапазоне приема. Кроме того, на выходе ГУН (ГУН передачи) создается сигнал с постоянной огибающей, который уменьшает проблему расширения спектра, создаваемую нелинейностью усилителя мощности. Квадратурный смеситель частот преобразует дифференциальные І/Q сигналы с повышением частоты при посредстве местного гетеродина для генерирования сигнала ПЧ одной боковой полосы, который проходит через фильтр и используется в качестве опорного входного сигнала для системы фазовой автоподстройки частоты. Микропроцессор Si4133T[U5] формирует частоту местного гетеродина ПЧ. Частота гетеродина делится пополам для генерирования квадратурных сигналов местного гетеродина для квадратурного модулятора. Система ФАПЧ состоит из преобразователя частоты обратной связи, фазового детектора, контурного фильтра и полностью интегрированного ГУН («генератор, управляемый напряжением») передачи. Частота ГУН расположена по центру между DCS 1800 и PCS 1900, а его выходной сигнал делится на 2 для диапазонов GSM 850 и E-GSM 900. Si4133T генерирует частоту местного гетеродина РЧ между 1272 и 1483 МГц. Для того, чтобы обеспечить использование единственного ГУН для местного гетеродина РЧ, используется высокая подача сигнала для диапазонов GSM 850 и E-GSM 900, и низкая подача для диапазонов DCS 1800 и PCS 1900.

Низкочастотные фильтры перед фазовым детектором системы ФАПЧ снижают гармоническую составляющую квадратурного модулятора и выходных сигналов преобразователя частоты обратной связи. Частота среза фильтров программируется разрядами FIF (3:0) в регистре 04h.

RF3133 [U4] является трехдиапазонным (GSM/DCS/PCS) модулем усилителя мощности, использующим метод непрямого регулирования мощности по замкнутому циклу. Непрямое регулирование по замкнутому циклу полностью автономно, и не требует оптимизации схемы. Оно запускается непосредственно с выхода аналого-цифрового преобразователя в цепи НЧ части. Внутриплатное регулирование мощности обеспечивает диапазон регулирования свыше 35 дБ с аналоговой подачей напряжения, а также отключение питания при «низком» логическом уровне в дежурном режиме. Его эффективность составляет 55% в диапазонах GSM и DCS.

Мощность на выходе передающего устройства GSM 900

Уровень регулирования	Мощность на выходе	Допустимые	отклонения
мощности	передатчика дБм	Обычные	Крайние
5	33	± 3 дБ	± 4 дБ
6	31	± 3 дБ	± 4 дБ
7	29	± 3 дБ	± 4 дБ
8	27	± 3 дБ	± 4 дБ
9	25	± 3 дБ	± 4 дБ
10	23	± 3 дБ	± 4 дБ
11	21	± 3 дБ	± 4 дБ
12	19	± 3 дБ	± 4 дБ
13	17	± 3 дБ	± 4 дБ
14	15	± 3 дБ	± 4 дБ
15	13	± 3 дБ	± 4 дБ
16	11	± 5 дБ	± 6 дБ
17	9	± 5 дБ	± 6 дБ
18	7	± 5 дБ	± 6 дБ
19	5	± 5 дБ	±6 дБ

Мощность на выходе передающего устройства GSM 900

Уровень регулирования мощности	Мощность на выходе передатчика	Допустимые отклонения	
	дБм	Обычные	Крайние
0	30	±3 дБ	±4 дБ
1	28	±3 дБ	±4 дБ
2	26	±3 дБ	±4 дБ
3	24	±3 дБ	±4 дБ
4	22	±3 дБ	±4 дБ
5	20	±3 дБ	±4 дБ
6	18	±3 дБ	±4 дБ
7	16	±3 дБ	±4 дБ
8	14	±3 дБ	±4 дБ
9	12	±4 дБ	±5 дБ
10	10	±4 дБ	±5 дБ
11	8	±4 дБ	±5 дБ
12	6	±4 дБ	±5 дБ
13	4	±4 дБ	±5 дБ
14	2	±5 дБ	±6 дБ
15	0	±5 дБ	±6 дБ

Рис. 3-7-4. Блок-схема передатчика

3.7.4 Модуль антенного переключателя

Модуль антенного переключателя (LMSP54AA-097) предназначен для использования в двухдиапазонных телефонах. Ниже в таблице приведены параметры логической схемы и питания.

Таблица 3-7-1 Логическая схема и сила тока

	VC1	VC2	Сила тока
GSM передача	0 B	2,5 – 3,0 B	10,0 мА макс.
DCS передача	2,5 – 3,0 B	0 B	10,0 мА макс.
GSM/ DCS прием	0 B	0 B	< 0,1 MA

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

4.1 Громкоговоритель

4.2 Микрофон

4.3 Модуль ЖКД

4.4 Виброзвонок

4.5 Зарядное устройство

4.6 Разъем гарнитуры «свободные руки»

4.7 Устранение проблем тракта приема

4.7.1 Проверка схемы стабилизатора

4.7.2 Проверка схемы термостабилизированного генератора, управляемого напряжением (ГУН)

4.7.3 Проверка схемы системы ФАПЧ

4.7.5 Проверка схемы ПАВ-фильтра

Антенный переключатель и подвижный переключатель в порядке. См. ниже порядок проверки I и Q сигналов на приеме

4.7.6 Проверка I и Q сигналов на приеме

4.8 Устранение проблем тракта передачи

4.8.1 Проверка схемы стабилизатора

4.8.2 Проверка схемы термостабилизированного генератора, управляемого напряжением (ГУН)

1.00 V Ch2 2.00 V M 25.0ns Ch1 F 600mV 20 Apr 2003

4.8.3 Проверка схемы системы ФАПЧ

4.8.4 Проверка I и Q сигналов на передаче

4.8.5 Проверка управляющих сигналов усилителя мощности

4.8.6 Проверка антенного переключателя и подвижного переключателя

5. ПОРЯДОК РАЗБОРКИ

5.1 Разборка.

1. Вынуть батарею, отвернуть винты.

Рис. 5-1. Удаление батареи, крепежных винтов и антенны

2. Сначала аккуратно поднять нижнюю часть задней крышки, повернуть крышку.

Рис. 5-2. Разъединение задней крышки и передней крышки

3. Затем аккуратно отделить заднюю крышку от захватов в верхней части передней крышки.

Рис. 5-3. Отделение от захватов.

4. Вынуть разъем (см. рис.) печатной платы.

Рис. 5-4. Демонтаж печатной платы.

5. При помощи пинцета снять узел крепления батареи.

Рис 5-5. Демонтаж узла крепления батареи.

6. Снять боковые кнопки.

Рис. 5-6. Демонтаж боковых кнопок.

7. Надавить на стержень чтобы снять крышку.

Рис. 5-7. Отсоединение откидывающей ся крышки.

8. Снять шарнир с откидывающей ся крышки, удалить колпачки и винты.

Рис 5-8. Удаление шарнира и винтов.

9. Положить откидывающуюся крышку на стол. Аккуратно сместить шарнир вниз и отделить его от крепежных захватов на рисунке сверху.

Рис. 5-9. Разборка откидывающей ся крышки.

10. Демонтировать детали откидывающей ся крышки.

Рис. 5-10. Демонтаж деталей откидывающей ся крышки.

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

А. Схема соединения оборудования для загрузки ПО

Рис. 6.1 Схема соединения оборудования для загрузки ПО

В. Порядок загрузки программного обеспечения

1.Запустить Fluid_GUI.exe и выбрать меню «Erase/Program flash».

2.Щелкнуть на кнопке «Add». Затем выбрать файл m0 для загрузки.

3. Нужно сделать выбор в трех пунктах окна программирования. Первый пункт - необходимо ли стереть всю информацию из флэш-памяти. Если загружаемый файл m0 несет изменение ИКМ-структуры для файла m0 объекта, то всю флэш-память необходимо стереть. Второй пункт - необходимо ли стереть данные загрузчика. Рекомендуется на стирать. Третий пункт - выполнять ли дельта загрузку. В случае выбора дельта загрузки время загрузки будет сокращено, так как будет производиться сравнивание файла m0 с блоком флэш-памяти, а не просто его загрузка файла m0.

4.Сделав выбор установок программирования, щелкните на кнопке «Erase/Program». При этом в окне «Output» появится запись «(reset target)». Теперь, при коротком нажатии на кнопку включения питания на телефоне начнется загрузка.

5. Дождитесь окончания процесса загрузки.

6. После завершения загрузки можно включить телефон. При первом включении телефона после загрузки программного обеспечения нельзя извлекать батарею питания до окончания процесса включения. В противном случае пользовательские установки во флэш-памяти телефона не сохраняются.

7. СЕРВИСНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И КАЛИБРОВКА

7.1 Сервисное программное обеспечение

7.1.1 Общие положения

Настоящее сервисное программное обеспечение предназначено для выполнения калибровки и теста «Stand alone».

7.1.2 Необходимое аппаратное и программное обеспечение

- . Компьютер с процессором мощнее 486.
- . 16-Мбайт RAM.
- . Не менее 10 Мбайт свободной памяти на жестком диске.
- . Операционная программа не старее MS Windows 98.

7.1.3 Ввод в действие системы программного обеспечения

Развернуть заархивированное сервисное ПО телефона. Запустить Setup.exe из папки Service software setup. Таблица линейных преобразований сигналов передачи по умолчанию (RampTable.dat) и данные для выполнения калибровки по умолчанию (rf_original_L300.epm) помещаются в системную папку Windows. Эти файлы загружаются автоматически при выполнении LaputeService.exe.

7.1.4 Общие характеристики сервисного программного обеспечения

После запуска программы под интерфейсом пользователя появится окно под заголовком LAPUTA_Service Tool (см. рис 6-1). Окно LAPUTA_Service Tool состоит из пяти основных разделов.

Рис. 7-1. Окно программы LAPUTA_Service Tool

A. Раздел окна, относящийся к объекту программирования (Target system)

Служит для инициализации телефона – объекта программирования. Если программа применяется для тестирования телефона модели G7000, то сначала необходимо инициализировать телефон. Для инициализации телефона необходимо выбрать модель (по умолчанию - G7000) и используемый порт COM компьютера, затем щелкнуть на кнопке «Initialize». При успешном завершении инициализации телефона прямоугольник под кнопкой «Initialize» изменит цвет с красного на зеленый.

В. Раздел «Rx AGC Test» (Проверка автоматической регулировки усиления на приеме)

Раздел предназначен для проверки приемного тракта телефона.

• Service Freq. Setting (TCH) - Установка сервисной частоты (канал информационного обмена)

Позволяет установить канал информационного обмена телефона. Число в поле означает ARFCN канала информационного обмена. Его можно изменить в пошаговом порядке - нажимая стрелки, либо непосредственно ввести нужное значение.

- Beacon Freq. Setting (BCH) Установка сигнальной частоты (широковещательный канал). Позволяет установить широковещательный канал телефона. Число в поле означает ARFCN широковещательного канала центральной станции.
- AGC Value Setting Установка значения автоматической регулировки усиления. Позволяет установить величину АРУ телефона. Число означает коэффициент усиления усилителя АРУ приемного тракта.
- Power measurement Измерение уровня мощности.

Число означает канальный индекс соответственно предопределенному ARFCN. В приемном диапазоне есть 12 предопределенных ARFCN, 4 – для GSM, остальные – для DCS. При нажатии на стрелки для изменения числа видно, как автоматически меняются ARFCN канала информационного обмена (TCH) и широковещательного канала (BCH). В поле «PM» указывается уровень мощности, измеренный на микропроцессоре низкочастотной части. Эта величина используется для расчета абсолютного уровня принимаемой мощности. Единица измерения мощности – дБм.

• PM Start - Запуск процесса измерения уровня мощности.

Замеряется уровень мощности сигнала, принимаемого телефоном с тестового оборудования. При нажатии этой кнопки, в поле «PM» раздела «Power measurement» появляется результат замера уровня мощности. Уровень мощности можно измерить для всех 12 канальных индексов, выбирая их номера и щелкая на кнопке «PM Start».

• Calculate – Расчет.

Расчет производится после измерения всех 12 канальных индексов. При нажатии кнопки «Calculate» сервисная программа выполняет расчет калибровочных данных на основе измеренных значений уровней мощности 12-ти индексов каналов.

«Standalone».

Кнопка «Standalone» включает непрерывный режим приема телефона. Телефон работает в условиях заданных установок. В период непрерывного приема надпись на кнопке «Standalone» изменяется на «Stop». Для выхода из режима непрерывного приема следует снова щелкнуть на этой кнопке.

С. Раздел «Тх AGC Test» (Проверка автоматической регулировки усиления при передаче)

Раздел предназначен для проверки передающего тракта телефона.

- Service Freq. Setting (TCH) Установка сервисной частоты (канал информационного обмена) Позволяет установить канал информационного обмена телефона. Число в поле означает ARFCN канала информационного обмена.
- Beacon Freq. Setting (BCH) Установка сигнальной частоты (широковещательный канал). Позволяет установить широковещательный канал телефона. Число в поле означает ARFCN широковещательного канала центральной станции.
- Power Level Setting Установка уровня мощности.

Сначала необходимо выбрать рабочий режим (GSM или DCS) в соответствии с частотами ранее выбранных канала информационного обмена (TCH) и широковещательного канала (BCH). Затем выбирается уровень («Level») и величина цифро-аналогового преобразования («DAC»). Уровень («Level») означает уровень выходной мощности GSM/DCS. Для GSM диапазон включает значения от 5 до 19, а для DCS - от 0 до 15. Величина значения цифро-аналогового преобразования («DAC») необходима для определения выходной мощности. Она варьируется в пределах от 0 до 1023.

• Uplink Normal Burst test - Проверка нормальной пакетной передачи восходящей линии. Позволяет устанавливать номер слота канала передачи данных (в поле «TCS»). Поскольку в GSM используется 8-временной слот, значения TCS могут быть от 1 до 7. Поле «Pattern» служит для выбора формата данных при передаче. Данные можно передавать как 0, или 1, или повторяя 1010. Лучше, однако, использовать установку по умолчанию, поскольку формат данных не влияет на PЧ характеристики.

Test – при нажатии этой кнопки начинается передача. Во время передачи надпись на кнопке «Test» изменяется на «Stop». Для прекращения передачи следует снова щелкнуть на этой кнопке.

D. Раздел «RF Parameter Download» (Загрузка параметров РЧ)

• Сохранение етр-файла во флэш-памяти.

Для загрузки еmp-файла с калибровочными данными во флэш-память телефона необходимо выделить пункт «Flash» и щелкнуть на кнопке «File download».Затем, в появившемся окне сохранения параметров РЧ (RF parameters Save) выберите emp-файл для сохранения во флэш-памяти, и щелкните «Open». В процессе загрузки файла во флэш-память телефона под разделом «RF Parameter Download» появляется индикаторная шкала отражающая ход загрузки. При успешном завершении загрузки появится сообщение. Щелкните «ОК».

• Сохранение данных калибровки во флэш-памяти.

После выполнения калибровки системы приема или передачи результаты калибровки можно сохранить в етр-файле во флэш-памяти. Щелкните «Flash», затем «Calib Save». Затем, в появившемся окне сохранения параметров РЧ (RF parameters Save) напишите имя файла и щелкните на кнопке Save.

E. Pаздел «User Command and Results» (Подаваемые команды и результаты)

При любом нажатии кнопки или выполнении какой-либо операции в сервисной программе каждое выполняемое действие отражается в поле данного раздела. В нем также указываются результаты калибровки.

F. Кнопка «Ramp shape» (Форма линейно изменяющегося сигнала)

Эта кнопка предназначена для работы с таблицей форм пакетных сигналов. В режиме работы с сервисным ПО кнопка не действует.

7.2 Калибровка

7.2.1 Общие положения

Данные калибровки хранятся во флэш-памяти телефона. При необходимости (например, при замене схемы) содержимое флэш-памяти может быть считано при помощи сервисного программного обеспечения и сохранено в виде файла. Программа также дает возможность записи значений параметров по умолчанию во флэш-память. В этом случае выполняются все этапы калибровки. Сервисная программа не дает возможности контролировать оборудование, поэтому применима только ручная калибровка.

7.2.2 Список необходимого оборудования

Таблица 7-1. Список необходимого для калибровки оборудования

Необходимое для калибровки оборудование	Тип/Модель	Изготовитель
Контрольно-измерительное устройство для радиотелефонного оборудования.	HP 8960, HP 8922, CMU200, или иные приборы вызова	
Кабель RS-232 и устройство JIG.		
РЧ кабель.		
Источник питания.		
Сервисное программное обеспечение.	Laputa	
Тестовая SIM-карта.		
ПК (для установки программного обеспечения)	Pentium II, мощнее 300 МГц	

7.2.3 Схема включения оборудования

Рис. 7-1. Список необходимого для калибровки оборудования

7.2.4 Порядок выполнения калибровки

А. Калибровка параметров приема

Калибровка необходима для обеспечения соответствия параметров схемы приема рабочим характеристикам GSM. Также, в связи с применением системы автоматической регулировки усиления, требуется калибровка некоторых постоянных параметров АРУ. В целом необходимо выполнить три калибровки приемного диапазона: автоматическую регулировку усиления, коррекцию каналов и коррекцию температурных воздействий. При замене схемы температурная коррекция не является необходимой. При выполнении калибровки АРУ опорный уровень мощности, подаваемой на телефон через постоянное антенное соединение, составляет –74 дБм. При коррекции каналов номера каналов в приемном диапазоне следующие:

Диапазон E-GSM: 0, 40, 124, 975 и 1023.

Диапазон DCS: 512, 574, 636, 700, 760, 822 и 885.

Процедура выполнения:

- а) Инициализировать телефонный аппарат нажатием кнопки «Initialize».
- b) Установить контрольно-измерительное оборудование GSM в режим CW (непрерывной подачи сигнала), установить канал информационного обмена (TCH) и широковещательный канала (BCH) на «0», выполнить то же самое с телефонным аппаратом.
- с) Установить уровень мощности контрольно-измерительного оборудования GSM на «-74 дБм».
- d) Щелкнуть на кнопке «PM Start», после чего в разделе «PM Measurement» сервисной программы появится значение уровня мощности на приеме телефона.
- e) Изменить номер канала информационного обмена (TCH) и широковещательного канала (BCH) нажатием кнопки «Number». Выставить такие же каналы (BCH и BCH) на контрольно-измерительном оборудовании.
- f) Щелкнуть на кнопке «PM Start».
- g) Повторять вышеуказанную процедуру, пока число в поле раздела «Power Measurement» не достигнет 12.
- h) Щелкнуть на кнопке «Calculate». Сервисная программа рассчитает значения параметров коррекции каналов.
- i) Щелкнуть на кнопке «Calib Saving». Обновленные данные калибровки будут сохранены во флэш-памяти телефона.

Примечание.

Если калибровка выполнена не для всех каналов, т.е. 5 каналов EGSM900 и 7 каналов DCS1800, то программа выдаст сообщение «Please execute after measuring the PM» («Сначала выполните измерение уровня мощности»).

В. Калибровка параметров передачи

Калибровка необходима для обеспечения соответствия рабочим характеристикам GSM значений уровней мощности при передаче. В общей сложности необходимо выполнить четыре калибровки диапазона передачи: калибровку уровней мощности, коррекцию каналов, температурную коррекцию и низковольтную коррекцию. При замене схемы температурная коррекция и низковольтная коррекция не являются необходимыми. Коррекция каналов также не нужна, так как рабочий режим GSM обеспечивает достаточный диапазон регулировки для значений мощности при передаче.

При коррекции мощности номера каналов в диапазоне передачи следующие:

Диапазон E-GSM: 62. Диапазон DCS: 699.

Дианазон DC3. 633.

Устанавливаемые значения мощности (в дБм) для каждого уровня мощности следующие:

Таблица 7-2. Значения уровней мощности на передаче

Уровень	GSM	DCS
мощности		
0		29
1		28
2		26
3		24
4		22
5	32	20
6	31	18
7	29	16
8	27	14
9	25	12
10	23	10
11	21	8
12	19	6
13	17	4
14	15	2
15	13	0
16	11	
17	9	
18	7	
19	5	

Процедура выполнения:

- а) Инициализировать телефонный аппарат нажатием кнопки «Initialize».
- b) Установить канал информационного обмена (TCH) и широковещательный канала (BCH) на «62» для E-GSM900 и «699» для DCS1800. Естественно, этим цифрам должно соответствовать значение ARFCN канала информационного обмена (TCH) и широковещательного канала (BCH) на контрольно-измерительном оборудовании. Выставить коэффициент цифро-аналогового преобразования для каждого уровня мощности, чтобы получить величину мощности на передаче. Щелкнуть на кнопке «Test». Значения выходной мощности будут показаны на дисплее контрольно-измерительного устройства.
- c) Щелкнуть на кнопке «Calib Saving». Обновленные данные калибровки будут сохранены во флэш-памяти телефона.

7.2.5 Тестирование с использованием JIG

Электропитание устройства JIG

	Описание
Подаваемое электропитание	Обычно 4,0 В
Адаптор постоянного тока	9,5 В, 500 мА

Микропереключатель в корпусе DIP устройства JIG

Nº	Наименование	Функциональная характеристика
переключателя		
Переключатель 1	ADI-REMOTE	В положении ON (ВКЛ) телефон переходит в активное
		состояние. В положении OFF не используется.
Переключатель 2	TI-REMOTE	В положении ВКЛ телефон переходит в активное
		состояние.
Переключатель 3	VBAT	Питание к телефону подается от батареи.
Переключатель 4	PS	Питание к телефону подается через адаптер постоянного
		тока

Характеристики светодиодов

№ светодиода	Наименование	Функциональная характеристика
1	POWER	Подача питания на JIG.
2	TA	Индикация уровня зарядки батареи телефона.
3	UART	Индикация состояния передачи данных через UART IRDA.
4	MON	Индикация состояния передачи данных через UART
		MODEM

Порядок работы:

- 1. Соединить последовательным кабелем RS232 порт COM компьютера и порт MON устройства JIG.
- 2. Подключить электропитание на 4,0 В.
- 3. Установить 3-й микропереключатель DIP в положение ON (ВКЛ).
- 4. Установить 4-й микропереключатель DIP в положение ON (ВКЛ).

5. Нажать кнопку питания на телефоне; если используется дистанционное включение питания – установить 1-й микропереключатель DIP в положение ON (ВКЛ).

8.1 Основная плата

9. ПРИНЦИПИАЛЬНАЯ ЭЛЕКТРИЧЕСКАЯ СХЕМА

9.1 Интерфейс соединительного устройства

9.2 Интерфейс низкочастотной части

9.3 Интерфейс блока памяти

9.4 Интерфейс аудио блока

9.5 Мультимедийный интерфейс (ММІ)

9.6 Интерфейс РЧ части

10. ТОПОЛОГИЯ ПЕЧАТНОЙ ПЛАТЫ

10.1 Вид сверху

11. СЕРВИСНЫЙ РЕЖИМ

Сервисный режим дает возможность специалисту по ремонту/техническому обслуживанию проверить и протестировать основные функции аппарата.

Последовательность нажатия кнопок для включения сервисного режима — 2945** Select. При нажатии END устройство возвращается из сервисного режима в обычный режим. Для выбора пунктов меню используются кнопки «Вверх» и «Вниз», для перехода к очередным операциям — кнопка «Select» («Выбор»). При нажатии кнопки «Васк» происходит возврат к исходному меню проверки.

(1) Полностью автоматическое тестирование.

(2) Тестирование низкочастотной части.

- (2-1) ЖКД
 - (2-1-1) ЖКД АВТО
 - (2-1-2) КОНТРАСТНОСТЬ ЖКД
 - (2-1-3) ПРОВЕРКА 65К-ЦВЕТОВОГО ЖКД
- (2-2) ШРИФТ
 - (2-2-1) ШРИФТ 8 Х 10
 - (2-2-2) ШРИФТ 8 Х 10 І
 - (2-2-3) ШРИФТ 8 Х 16
 - (2-2-4) ШРИФТ 8 Х 16 І
 - (2-2-5) ШРИФТ 8 Х 16 В
 - (2-2-6) ШРИФТ 10 Х 19
 - (2-2-7) ШРИФТ13 Х 20
 - (2-2-8) ШРИФТ КИТАЙСКИЙ
- (2-3) СИГНАЛИЗАЦИЯ
 - (2-3-1) ВИБРОЗВОНОК
 - (2-3-2) 3BOHOK
 - (2-3-3) СИГНАЛ СРАБАТЫВАНИЯ
 - (2-3-4) ПРОВЕРКА МУЗЫКАЛЬНЫХ СИГНАЛОВ
 - (2-3-5) СИГНАЛ О ПОСТУПИВШЕМ СООБЩЕНИИ
 - (2-3-6) ГРОМКОСТЬ
- (2-4) ПОСЛЕДОВАТЕЛЬНЫЙ ПОРТ
 - (2-4-1) МОДЕМ
 - (2-4-2) IrDA
- (2-5) ДАННЫЕ 1 О БАТАРЕЕ
- (2-6) УСИЛЕНИЕ ЗВУКОВОГО СИГНАЛА
 - (2-6-1) ПРИЕМНОЕ УСТРОЙСТВО
 - (2-6-2) УШНОЙ МИКРОФОН
 - (2-6-3) ГРОМКОГОВОРИТЕЛЬ
 - (2-6-4) УСТРОЙСТВО
 - «СВОБОДНЫЕ РУКИ»
 - (2-6-5) УСТАНОВКИ ПО УМОЛЧАНИЮ

(3) ВЕРСИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

(4) СЕРВИСНЫЙ РЕЖИМ

- (4-1) ПРОВЕРКА СИСТЕМЫ
- (4-2) КОНФИГУРАЦИЯ
- (4-3) АДРЕСНЫЕ ДАННЫЕ
- (4-4) ДАННЫЕ УРОВНЯ 1
- (4-5) СИСТЕМНЫЕ ДАННЫЕ 1
- (4-6) СИСТЕМНЫЕ ДАННЫЕ 2
- (4-7) СИСТЕМНЫЕ ДАННЫЕ 3
- (4-8) СИСТЕМНЫЕ ДАННЫЕ 4
- (4-9) СИСТЕМНЫЕ ДАННЫЕ 5
- (4-0) СИСТЕМНЫЕ ДАННЫЕ 6
- (4-*) СИСТЕМНЫЕ ДАННЫЕ 78
- (4-#) СИСТЕМНЫЕ ДАННЫЕ 13

(5) ЗАВОДСКИЕ УСТАНОВКИ ПО УМОЛЧАНИЮ

12. TECT «STAND ALONE»

12.1 Порядок настройки

12.1.1 Порта СОМ

В «Dialog Menu» («Меню диалога») выберите указанные ниже параметры:

- Порт: выберите соответствующий порт СОМ.
- Скорость передачи (в бодах): 38400.
- -Значения остальных параметров оставьте по умолчанию.

12.1.2 Проверка передатчика

1.Выбор канала

-Выберите диапазон GSM либо DCS и установите соответствующий канал.

2.Выбор автоматической регулировки мощности

- а. Выберите либо уровень мощности, либо значения ЦАП.
- **b**.Уровень мощности.
- Введите соответствующее значение GSM (между 5~19), или DCS (между 0~15).
- с.Значение ЦАП
- Вы можете непосредственно произвести настройку уровня мощности со значениями ЦАП.

12.1.3 Приемного устройства

1. Выбор канала

-Выберите диапазон **GSM** либо **DCS** и установите соответствующий канал.

2. Автоматическая регулировка усиления и инструментальный уровень мощности

- Проверьте, близко ли значение RSSI к .60 дБм при величине автоматической регулировки усиления «34».
- Нормальное значение RSSI составляет около .60 дБм.

13. СБОРОЧНЫЙ ЧЕРТЕЖ П СПИСОК ЗАМЕНЯЕМЫХ ДЕТАЛЕЙ

13.1 Сборочный чертеж

F4	DCB ACCV CIDE VEV	1	ACCEMBIV
51	PCB ASSY,SIDE KEY	1	ASSEMBLY ASSEMBLY
50	BATTERY PACK,LI-ION		
49	CAP,MOBILE SWITCH	1	PART
48	CAP,SCREW REAR	2	PART
47	SCREW, MACHINE M1.4x3.5	6	PART
46	CONTACT, ANTENNA	1	PART
45	SCREW,MACHINEIM1.4x3.51	1	PART
44	ANTENNA,GSM,FIXED	1	PART
43	LOCKER,BATTERY	1	PART
42	SPRING,COIL	1	PART
41	GASKET,SHIELD FDAMIFPEBI	1	PART
41	COVER,REAR	1	PART
39	GASKET,SHIELD FDAM IO [N]	1	PART
38	CAP,EARPHONE JACK	1	PART
37	PCB ASSY,MAIN	1	ASSEMBLY
36	DOME ASSY,METAL	1	PART
35	BUTTON ASSY, DIAL	1	ASSEMBLY
34	INSERT M1.4xL2.5	6	PART
33	DECO,HINGE RIGHT	1	PART
32	DECO,HINGEILEFTI	1	PART
31	BUTTON ASSY, SIDE	1	PART
30	WINDOW,IRDA	1	PART
29	BUMPER	2	PART
28	COVER,FRONT	1	PART
27	CAP,SCREW FOLDER	2	PART
26	CAP,SCREW FOLDER	2	PART
25	SCREW,MACHINE M1.4x3.5	3	PART
24	TAPE, PROTECTION I WINDOW!	1	PART
23	WINDOW,LCD	1	PART
22	TAPE, WINDOW	1	PART
21	HINGE,FOLDERI5.8DI	1	PART
20	DECO,RECEIVER	1	PART
19	TAPE, DECO RECEIVER	1	PART
18	COVER, FOLDER LOWER	1	PART
17	MAGNET,SWITCH	1	PART
16	PAD,LCD	1	PART
15	SPEAKER	1	PART
14	VIBRATOR,MOTOR	1	PART
13	LCD MODULE ASSY	1	ASSEMBLY
12	GASKET,SHIELD FORM LED	2	PART
11	PAD,LCD SUB	1	PART
10	PAD,RECEIVER	1	PART
9	PAD,MOTOR	1	PART
В	TAPE, PROTECTION IUPPERI	1	PART
7	DECO,WINDOW SUB	1	PART
6	WINDOW,LCD SUB	1	PART
5	TAPE, DECOIALI	1	PART
4	TAPE, WINDOW SUB	1	PART
3	INSERT M1.4xL2.5	3	PART
2	DECO,FOLDER UPPER	1	PART
1	COVER, FOLDER UPPER	1	PART
No.	PART NAME	Q'TY	TYPE
1 ''''	I CANAL INCALLE	~ ' '	

13.2 Аксессуары

Nº	№ Позиции	Описание	№ Детали	Кол- во	І ІІОСТАВЛЯЕМОСТЬ	Поставл яемость	Примеч ания
2	MHBY00	HANDSTRAP	MHBY0001101	1	Neck Strap 400mm (CDMA,common use)	Υ	
2	SSAD00	TRAVEL ADAPTOR,AC-DC	SSAD0007818	1	100-240V ,60 Hz,5.2 V,800 mA,CE ,24P	Υ	
2	SGDY00	DATA CABLE	SGDY0004401	1	DK-20G, G7000 ,Cable bulk	Υ	
2	SGEY00	EAR PHONE/EAR MIKE SET	SGEY0002901	1	G7000,G5200 Common use, 3P EAR MIC	Υ	

13.3 Список заменяемых деталей

< Механические детали >

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставл яемость	Примеч ания
3	ABGA00	BUTTON ASSY, DIAL	ABGA0001901	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	36
3	ACGG00	COVER ASSY, FOLDER	ACGG0026001	1	COVER ASSY, FOLDER	Υ	
4	ACGH00	COVER ASSY, FOLDER(LOWER)	ACGH0013501	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	
5	MCJH00	COVER, FOLDER(LOWER)	MCJH0010701	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	18
5	MDAH00	DECO, RECEIVER	MDAH0002901	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	20
5	MMAA00	MAGNET, SWITCH	MMAA0000601	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	17
5	MPBG00	PAD, LCD	MPBG0012001	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	16
5	MTAA00	TAPE, DECO	MTAA0028101	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	19
5	MTAD00	TAPE, WINDOW	MTAD0014001	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	22
5	MGAD00	GASKET SHIELD FOAM	MGAD0033001	1	GASKET SHIELD FOAM	Υ	
4	ACGJ00	COVER ASSY, FOLDER(UPPER)	ACGJ0021501	1	COVER ASSY, FOLDER(UPPER)	Υ	
5	MCJJ00	COVER, FOLDER(UPPER)	MCJJ0015101	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	1
5	MDAE00	DECO, FOLDER(UPPER)	MDAE0014401	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	2
5	MDAM00	DECO, WINDOW(SUB)	MDAM0002901	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	7
5	MICA00	INSERT, FRONT	MICA0006001	3	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	3
5	MPBJ00	PAD, MOTOR	MPBJ0008501	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	9
5	MPBM00	PAD, RECEIVER	MPBM0003401	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	10
5	MPBQ00	PAD, LCD(SUB)	MPBQ0008601	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	11
5	MTAA00	TAPE, DECO	MTAA0028001	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	5
5	MTAE00	TAPE, WINDOW(SUB)	MTAE0008501	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	4
4	ACGK00	COVER ASSY, FRONT	ACGK0023501	1	COVER ASSY, FRONT	Υ	
5	ABGC00	BUTTON ASSY, SIDE	ABGC0003501	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	30
5	MBHY00	BUMPER	MBHY0003507	2	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	29
5	MCJK00	COVER, FRONT	MCJK0015901	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	28
5	MDAJ00	DECO, HINGE	MDAJ0003401	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	33
5	MDAJ00	DECO, HINGE	MDAJ0003501	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	32
5	MICA00	INSERT, FRONT	MICA0006001	6	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	34
5	MSGB00	STOPPER, HINGE	MSGB0003501	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	35
4	ALAY00	LCD, ASSY	ALAY0005701	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	13
5	SACY00	PCB ASSY, FLEXIBLE	SACY0010001	1	G7030 MAIN TO LCD FPCB	Υ	
6	ENBY00	CONNECTOR, BOARD TO BOARD	ENBY0013401	1	34 PIN, 0.4 mm	Υ	
6	SPCY00	PCB, FLEXIBLE	SPCY0017101	1	POLYI, 0.3 mm, DOUBLE	Y	
5	SBCL00	BATTERY, CELL, LITHIUM	SBCL0001001	1	3V, 1.2mAh, COIN	Υ	
5	SVLM00	LCD MODULE	SVLM0005501	1	128X 160, 34X 54, G7030 LCD ASS'Y	Υ	

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставл яемость	Примеч ания
4	GMZZ00	SCREW MACHINE	GMZZ0009401	3	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	
4	MCCH00	CAP, SCREW	MCCH0002107	2	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	27
4	MCCH00	CAP, SCREW	MCCH0014601	2	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	26
4	MHFD00	HINGE, FOLDER	MHFD0003301	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	21
4	MWAC00	WINDOW, LCD	MWAC0027401	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	23
4	MWAF00	WINDOW, LCD(SUB)	MWAF0010601	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	6
4	SJMY00	VIBRATOR, MOTOR	SJMY0002801	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	14
4	SUSY00	SPEAKER	SUSY0006202	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	15
4	MPBZ00	PAD	MPBZ00027401	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	
4	MGAD00	GASKET SHIELD FOAM	MGAD0029301	2	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	12
4	MGAD00	GASKET SHIELD FOAM	MGAD0032701	1	LCD FPCB	Y	
4	MTAB00	TAPE, PROTECTION	MTAB0001401	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	8
4	MTAB00	TAPE, PROTECTION	MTAB0018201	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	24
3	ACGM00	COVER ASSY, REAR	ACGM0020001	1	COVER ASSY, REAR	Y	
4	GMZZ00	SCREW MACHINE	GMZZ0009401	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	46
4	MCCC00	CAP, EARPHONE	MCCC0008801	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	39
4	MCIA00	CONTACT, ANTENNA	MCIA0007301	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	47
4	MCJN00	COVER, REAR	MCJN0013201	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	N	41
4	MGAD00	GASKET SHIELD FOAM	MGAD0027301	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	40
4	MGAD00	GASKET SHIELD FOAM	MGAD0027401	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	42
4	MICA00	INSERT, FRONT	MICA0006001	1	-	N	
4	MLEA00	LOCKER, BATTERY	MLEA0010201	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	44
4	MSDB00	SPRING COIL	MSDB0001701	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	43
4	MWAG00	WINDOW, IRDA	MWAG0002801	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	30
4	SNGF00	ANTENNA, GSM, FIXED	SNGF0001801	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	45
4	MTAB00	TAPE, PROTECTION	MTAB0020202	1	-	N	
3	ADCA00	DOME ASSY, METAL	ADCA0011901	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Y	37
3	GMZZ00	SCREW MACHINE	GMZZ0009401	6	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	48
3	MCCF00	CAP, MOBILE SWITCH	MCCF0009801	1	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	50
3	MCCH00	CAP, SCREW	MCCH0014801	2	Please refer to the "СБОРОЧНЫЙ ЧЕРТЕЖ"	Υ	49
3	MLAK00	LABEL, MODEL	MLAK0006301	1	-	Υ	
3	SAFY00	PCB ASSY, MAIN	SAFY0066601	1	G7030	Υ	
3	CN2	PCB ASSY, SIDE KEY	SAKY0002301	1	G7030	Υ	
3	MIC1	MICROPHONE	SUMY0004101	1	FPCB, -42 dB, 6* 1.3, G5200 C-MIC	Υ	
2	SBPL00	BATTERY PACK,LI-ION	SBPL0065853	1	443450(SV),3.7 V,720 mAh,1 CELL,SV	Υ	

13.3 Список заменяемых деталей < Основная плата >

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
3	SAFY00	PCB ASSY,MAIN	SAFY0066601	1	G7030(EUA)	Y
4	SAFA00	PCB ASSY,MAIN,AUTO	SAFA0023001	1	G7030(EUA)	N
5	C12	CAP,CERAMIC,CHIP	ECCH0000102	1	1 pF,50V,C,NP0,TC,1005,R/TP	Y
5	C33	CAP,CERAMIC,CHIP	ECCH0000103	1	1.5 pF,50V,C,NP0,TC,1005,R/TP	Y
5	C34	CAP,CERAMIC,CHIP	ECCH0000103	1	1.5 pF,50V,C,NP0,TC,1005,R/TP	Υ
5	C44	CAP,CERAMIC,CHIP	ECCH0000110	1	10 pF,50V,D,NP0,TC,1005,R/TP	Υ
5	C47	CAP,CERAMIC,CHIP	ECCH0000110	1	10 pF,50V,D,NP0,TC,1005,R/TP	Υ
5	C49	CAP,CERAMIC,CHIP	ECCH0000110	1	10 pF,50V,D,NP0,TC,1005,R/TP	Y
5	C97	CAP,CERAMIC,CHIP	ECCH0000113	1	18 pF,50V,J,NP0,TC,1005,R/TP	Υ
5	C121	CAP,CERAMIC,CHIP	ECCH0000114	1	20 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C122	CAP,CERAMIC,CHIP	ECCH0000114	1	20 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C53	CAP,CERAMIC,CHIP	ECCH0000115	1	22 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C55	CAP,CERAMIC,CHIP	ECCH0000115	1	22 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C24	CAP,CERAMIC,CHIP	ECCH0000117	1	27 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C29	CAP,CERAMIC,CHIP	ECCH0000117	1	27 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C51	CAP,CERAMIC,CHIP	ECCH0000117	1	27 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C100	CAP,CERAMIC,CHIP	ECCH0000122	1	47 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C101	CAP,CERAMIC,CHIP	ECCH0000122	1	47 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C102	CAP,CERAMIC,CHIP	ECCH0000122	1	47 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C135	CAP,CERAMIC,CHIP	ECCH0000122	1	47 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C151	CAP,CERAMIC,CHIP	ECCH0000122	1	47 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C153	CAP,CERAMIC,CHIP	ECCH0000122	1	47 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C154	CAP,CERAMIC,CHIP	ECCH0000122	1	47 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C155	CAP,CERAMIC,CHIP	ECCH0000122	1	47 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C50	CAP,CERAMIC,CHIP	ECCH0000128	1	100 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C58	CAP,CERAMIC,CHIP	ECCH0000128	1	100 pF,50V,J,NP0,TC,1005,R/TP	Y
5	C65	CAP,CERAMIC,CHIP	ECCH0000130	1	150 pF,50V,J,SL,TC,1005,R/TP	Y
5	C140	CAP,CERAMIC,CHIP	ECCH0000130	1	150 pF,50V,J,SL,TC,1005,R/TP	Υ
5	C148	CAP,CERAMIC,CHIP	ECCH0000130	1	150 pF,50V,J,SL,TC,1005,R/TP	Y
5	C168	CAP,CERAMIC,CHIP	ECCH0000130	1	150 pF,50V,J,SL,TC,1005,R/TP	Y
5	C70	CAP,CERAMIC,CHIP	ECCH0000139	1	470 pF,50V,K,X7R,HD,1005,R/TP	Y
5	C104	CAP,CERAMIC,CHIP	ECCH0000139	1	470 pF,50V,K,X7R,HD,1005,R/TP	Y
5	C6	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C16	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C54	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C57	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C61	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
5	C63	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C68	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Υ
5	C71	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Υ
5	C82	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C91	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C92	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C159	CAP,CERAMIC,CHIP	ECCH0000143	1	1 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C52	CAP,CERAMIC,CHIP	ECCH0000149	1	3.3 nF,50V,K,X7R,HD,1005,R/TP	Y
5	C147	CAP,CERAMIC,CHIP	ECCH0000159	1	22 nF,16V,K,X7R,HD,1005,R/TP	Y
5	C76	CAP,CERAMIC,CHIP	ECCH0000161	1	33 nF,16V,K,X7R,HD,1005,R/TP	Y
5	C138	CAP,CERAMIC,CHIP	ECCH0000161	1	33 nF,16V,K,X7R,HD,1005,R/TP	Y
5	C37	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C39	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C40	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C41	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C43	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C56	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C60	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C62	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C160	CAP,CERAMIC,CHIP	ECCH0000179	1	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C8	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C13	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C15	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Υ
5	C25	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C26	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Υ
5	C27	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C73	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C74	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C81	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C84	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Υ
5	C86	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Υ
5	C87	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C95	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C96	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C98	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C99	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C109	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C111	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C123	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C128	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
5	C129	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C137	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C139	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C141	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Υ
5	C146	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Υ
5	C150	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Υ
5	C152	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C156	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Υ
5	C157	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C164	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C167	CAP,CERAMIC,CHIP	ECCH0000182	1	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP	Y
5	C1	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C2	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C3	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C4	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C5	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C7	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C17	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C18	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C19	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C20	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C21	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C22	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C23	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C48	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C105	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C106	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C107	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C108	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C113	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C114	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C115	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C116	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C117	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C118	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C119	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C124	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C125	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C126	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C142	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
5	C144	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C145	CAP,CERAMIC,CHIP	ECCH0000186	1	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP	Y
5	C85	CAP,CERAMIC,CHIP	ECCH0000276	1	1 uF,10V,Z,Y5V,HD,1608,R/TP	Υ
5	C93	CAP,CERAMIC,CHIP	ECCH0000276	1	1 uF,10V,Z,Y5V,HD,1608,R/TP	Y
5	C112	CAP,CERAMIC,CHIP	ECCH0000276	1	1 uF,10V,Z,Y5V,HD,1608,R/TP	Υ
5	C127	CAP,CERAMIC,CHIP	ECCH0000276	1	1 uF,10V,Z,Y5V,HD,1608,R/TP	Υ
5	C136	CAP,CERAMIC,CHIP	ECCH0000276	1	1 uF,10V,Z,Y5V,HD,1608,R/TP	Y
5	C143	CAP,CERAMIC,CHIP	ECCH0000276	1	1 uF,10V,Z,Y5V,HD,1608,R/TP	Y
5	C163	CAP,CERAMIC,CHIP	ECCH0000276	1	1 uF,10V,Z,Y5V,HD,1608,R/TP	Y
5	C166	CAP,CERAMIC,CHIP	ECCH0000276	1	1 uF,10V,Z,Y5V,HD,1608,R/TP	Y
5	C35	CAP,CERAMIC,CHIP	ECCH0000701	1	1.2 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP	Y
5	C36	CAP,CERAMIC,CHIP	ECCH0000701	1	1.2 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP	Y
5	C64	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Y
5	C69	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Y
5	C72	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Y
5	C75	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Y
5	C83	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Y
5	C94	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Υ
5	C130	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Y
5	C132	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Υ
5	C149	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Y
5	C169	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Υ
5	C170	CAP,CERAMIC,CHIP	ECCH0003401	1	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP	Υ
5	C133	CAP,CERAMIC,CHIP	ECCH0003803	1	4.7 uF,10V ,Z ,Y5V ,HD ,2012 ,R/TP	Υ
5	C134	CAP,CERAMIC,CHIP	ECCH0003803	1	4.7 uF,10V ,Z ,Y5V ,HD ,2012 ,R/TP	Υ
5	C88	CAP,CERAMIC,CHIP	ECCH0004902	1	220 nF,10V ,Z ,Y5V ,TC ,1005 ,R/TP	Υ
5	C59	CAP,TANTAL,CHIP,M AKER	ECTZ0003901	1	595D106X0016A2T,10 uF,16V ,M ,STD ,ETC ,R/TP	Y
5	LD2	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD4	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD5	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD6	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD7	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD8	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD9	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Υ
5	LD10	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD11	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD12	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Y
5	LD13	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Υ
5	LD15	DIODE,LED,CHIP	EDLH0004502	1	LEBB-S14H,BLUE ,1608 ,R/TP ,0.35T	Υ
5	D5	DIODE,SWITCHING	EDSY0005201	1	CRS08(TE85L),SMD ,30 V,1.5 A,R/TP ,	Y

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
5	D2	DIODE,SWITCHING	EDSY0010401	1	1SS388,1-1G1A ,40 V,300 A,R/TP ,Silicon Epitaxial Schottky Barrier Type Diode	Y
5	D3	DIODE,SWITCHING	EDSY0010401	1	1SS388,1-1G1A ,40 V,300 A,R/TP ,Silicon Epitaxial Schottky Barrier Type Diode	Y
5	D4	DIODE,SWITCHING	EDSY0010401	1	1SS388,1-1G1A ,40 V,300 A,R/TP ,Silicon Epitaxial Schottky Barrier Type Diode	Y
5	D6	DIODE,SWITCHING	EDSY0010401	1	1SS388,1-1G1A ,40 V,300 A,R/TP ,Silicon Epitaxial Schottky Barrier Type Diode	Υ
5	L5	INDUCTOR,CHIP	ELCH0000739	1	0603AS-022J-01,22 nH,J ,1608 ,R/TP ,	Υ
5	L6	INDUCTOR,CHIP	ELCH0000749	1	0603AS-5N6J,5.6 nH,J ,1608 ,R/TP ,	Υ
5	L7	INDUCTOR,CHIP	ELCH0001406	1	LL1005-FH4N7S,4.7 nH,S,1005,R/TP	Υ
5	L10	INDUCTOR,CHIP	ELCH0001408	1	LL1005-FH6N8J,6.8 nH,J ,1005 ,R/TP ,	Υ
5	L17	INDUCTOR,CHIP	ELCH0001413	1	LL1005-FH22NJ,22 nH,J ,1005 ,R/TP ,	Υ
5	L11	INDUCTOR,CHIP	ELCH0001426	1	LL1005-FH8N2J,8.2 nH,J ,1005 ,R/TP ,	Υ
5	L18	INDUCTOR,CHIP	ELCH0001427	1	LL1005-FH2N2S,2.2 nH,S ,1005 ,R/TP ,	Y
5	L3	INDUCTOR,CHIP	ELCH0005009	1	HK1005R10J,100 nH,J ,1005 ,R/TP ,	Υ
5	L12	INDUCTOR,CHIP	ELCH0005009	1	HK1005R10J,100 nH,J ,1005 ,R/TP ,	Υ
5	L13	INDUCTOR,CHIP	ELCH0005009	1	HK1005R10J,100 nH,J ,1005 ,R/TP ,	Y
5	L14	INDUCTOR,CHIP	ELCH0005009	1	HK1005R10J,100 nH,J ,1005 ,R/TP ,	Υ
5	L15	INDUCTOR,CHIP	ELCH0005009	1	HK1005R10J,100 nH,J ,1005 ,R/TP ,	Υ
5	L16	INDUCTOR,CHIP	ELCH0005009	1	HK1005R10J,100 nH,J ,1005 ,R/TP ,	Υ
5	J1	CONNECTOR,BOARD TO BOARD	ENBY0013402	1	24-5602-034-001-829,34 PIN,0.4 mm,STRAIGHT ,Au ,B to B G5400	Y
5	J3	CONN,JACK/PLUG,EA RPHONE	ENJE0002301	1	KJA-PH-3-0028,3,5 PIN,G7000 EAR JACK 3 pole, 5 pin KSD	Y
5	J4	CONNECTOR,I/O	ENRY0000801	1	GT056-24P-P1000,24 PIN,0.5 mm,ANGLE ,AU GOLD	Y
5	J2	CONN,SOCKET	ENSY0007602	1	PC-D6-A3-H2.7-S,6 PIN,ETC , , mm,Height 2.7mm	Y
5	SW1	CONN,RF SWITCH	ENWY0000401	1	MM8430-2600B,STRAIGHT ,SMD ,0.1 dB,3*3*1.8 / 500 CYCLES	Y
5	Q3	TR,BJT,NPN	EQBN0004801	1	IMX9T110,SMT6 ,0.2 W,R/TP ,	Υ
5	Q2	TR,BJT,NPN	EQBN0007001	1	RN1307(TE85L),SC-70 ,0.1 W,R/TP ,	Υ
5	Q4	TR,FET,P-CHANNEL	EQFP0003301	1	NDC652P,SOT-6 ,1.6 W,30 V,2.4 A,R/TP ,use for charge P- CHANNEL FET	Y
5	R15	RES,CHIP	ERHY0000184	1	150 ohm,1/16W ,F ,1005 ,R/TP	Y
5	R21	RES,CHIP	ERHY0000184	1	150 ohm,1/16W ,F ,1005 ,R/TP	Y
5	R38	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R39	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R40	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R41	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R51	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Υ
5	R97	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
5	R98	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Υ
5	R106	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Υ
5	R108	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R120	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R128	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R129	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R133	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R134	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Y
5	R135	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Υ
5	R136	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Υ
5	R137	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Υ
5	R141	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Υ
5	R142	RES,CHIP	ERHY0000201	1	0 ohm,1/16W,J,1005,R/TP	Υ
5	R82	RES,CHIP	ERHY0000202	1	4.7 ohm,1/16W,J,1005,R/TP	Υ
5	R121	RES,CHIP	ERHY0000202	1	4.7 ohm,1/16W,J,1005,R/TP	Y
5	R122	RES,CHIP	ERHY0000202	1	4.7 ohm,1/16W,J,1005,R/TP	Υ
5	R131	RES,CHIP	ERHY0000202	1	4.7 ohm,1/16W,J,1005,R/TP	Y
5	R14	RES,CHIP	ERHY0000206	1	18 ohm,1/16W,J,1005,R/TP	Y
5	R70	RES,CHIP	ERHY0000207	1	20 ohm,1/16W,J,1005,R/TP	Y
5	R71	RES,CHIP	ERHY0000207	1	20 ohm,1/16W,J,1005,R/TP	Y
5	R96	RES,CHIP	ERHY0000211	1	33 ohm,1/16W,J,1005,R/TP	Y
5	R131	RES,CHIP	ERHY0000211	1	33 ohm,1/16W,J,1005,R/TP	Y
5	R138	RES,CHIP	ERHY0000211	1	33 ohm,1/16W,J,1005,R/TP	Y
5	R13	RES,CHIP	ERHY0000212	1	39 ohm,1/16W,J,1005,R/TP	Y
5	R86	RES,CHIP	ERHY0000213	1	47 ohm,1/16W,J,1005,R/TP	Y
5	R16	RES,CHIP	ERHY0000220	1	100 ohm,1/16W,J,1005,R/TP	Y
5	R17	RES,CHIP	ERHY0000220	1	100 ohm,1/16W,J,1005,R/TP	Y
5	R29	RES,CHIP	ERHY0000220	1	100 ohm,1/16W,J,1005,R/TP	Y
5	R31	RES,CHIP	ERHY0000220	1	100 ohm,1/16W,J,1005,R/TP	Y
5	R123	RES,CHIP	ERHY0000220	1	100 ohm,1/16W,J,1005,R/TP	Y
5	R2	RES,CHIP	ERHY0000226	1	220 ohm,1/16W,J,1005,R/TP	Y
5	R103	RES,CHIP	ERHY0000228	1	270 ohm,1/16W,J,1005,R/TP	Y
5	R20	RES,CHIP	ERHY0000229	1	300 ohm,1/16W,J,1005,R/TP	Y
5	R23	RES,CHIP	ERHY0000229	1	300 ohm,1/16W,J,1005,R/TP	Y
5	R146	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R147	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R148	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R149	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R150	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R151	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
5	R152	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R153	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R154	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R155	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R156	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R157	RES,CHIP	ERHY0000230	1	330 ohm,1/16W,J,1005,R/TP	Y
5	R75	RES,CHIP	ERHY0000233	1	470 ohm,1/16W,J,1005,R/TP	Y
5	R84	RES,CHIP	ERHY0000233	1	470 ohm,1/16W,J,1005,R/TP	Y
5	R22	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R24	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R25	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R26	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R34	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R64	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R65	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R85	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R91	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R92	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R95	RES,CHIP	ERHY0000236	1	620 ohm,1/16W,J,1005,R/TP	Y
5	R47	RES,CHIP	ERHY0000237	1	680 ohm,1/16W,J,1005,R/TP	Y
5	R87	RES,CHIP	ERHY0000241	1	1K ohm,1/16W,J,1005,R/TP	Y
5	R119	RES,CHIP	ERHY0000241	1	1K ohm,1/16W,J,1005,R/TP	Y
5	R140	RES,CHIP	ERHY0000241	1	1K ohm,1/16W,J,1005,R/TP	Y
5	R143	RES,CHIP	ERHY0000241	1	1K ohm,1/16W,J,1005,R/TP	Y
5	R144	RES,CHIP	ERHY0000241	1	1K ohm,1/16W,J,1005,R/TP	Y
5	R74	RES,CHIP	ERHY0000243	1	1.2K ohm,1/16W,J,1005,R/TP	Y
5	R6	RES,CHIP	ERHY0000244	1	1.5K ohm,1/16W,J,1005,R/TP	Y
5	R101	RES,CHIP	ERHY0000244	1	1.5K ohm,1/16W,J,1005,R/TP	Y
5	R159	RES,CHIP	ERHY0000244	1	1.5K ohm,1/16W,J,1005,R/TP	Y
5	R83	RES,CHIP	ERHY0000247	1	2.2K ohm,1/16W,J,1005,R/TP	Y
5	R66	RES,CHIP	ERHY0000248	1	2.4K ohm,1/16W,J,1005,R/TP	Y
5	R124	RES,CHIP	ERHY0000250	1	3.3K ohm,1/16W,J,1005,R/TP	Y
5	R46	RES,CHIP	ERHY0000254	1	4.7K ohm,1/16W,J,1005,R/TP	Y
5	R67	RES,CHIP	ERHY0000254	1	4.7K ohm,1/16W,J,1005,R/TP	Y
5	R76	RES,CHIP	ERHY0000261	1	10K ohm,1/16W,J,1005,R/TP	Y
5	R93	RES,CHIP	ERHY0000261	1	10K ohm,1/16W,J,1005,R/TP	Y
5	R99	RES,CHIP	ERHY0000261	1	10K ohm,1/16W,J,1005,R/TP	Y
5	R118	RES,CHIP	ERHY0000261	1	10K ohm,1/16W,J,1005,R/TP	Y
5	R127	RES,CHIP	ERHY0000262	1	12K ohm,1/16W,J,1005,R/TP	Y
5	R19	RES,CHIP	ERHY0000263	1	15K ohm,1/16W,J,1005,R/TP	Y

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
5	R48	RES,CHIP	ERHY0000263	1	15K ohm,1/16W,J,1005,R/TP	Y
5	R53	RES,CHIP	ERHY0000265	1	20K ohm,1/16W,J,1005,R/TP	Y
5	R69	RES,CHIP	ERHY0000265	1	20K ohm,1/16W,J,1005,R/TP	Y
5	R102	RES,CHIP	ERHY0000265	1	20K ohm,1/16W,J,1005,R/TP	Υ
5	R115	RES,CHIP	ERHY0000265	1	20K ohm,1/16W,J,1005,R/TP	Υ
5	R10	RES,CHIP	ERHY0000273	1	47K ohm,1/16W,J,1005,R/TP	Υ
5	R112	RES,CHIP	ERHY0000273	1	47K ohm,1/16W,J,1005,R/TP	Υ
5	R49	RES,CHIP	ERHY0000280	1	100K ohm,1/16W,J,1005,R/TP	Y
5	R52	RES,CHIP	ERHY0000280	1	100K ohm,1/16W,J,1005,R/TP	Υ
5	R77	RES,CHIP	ERHY0000280	1	100K ohm,1/16W,J,1005,R/TP	Y
5	R89	RES,CHIP	ERHY0000280	1	100K ohm,1/16W,J,1005,R/TP	Υ
5	R100	RES,CHIP	ERHY0000280	1	100K ohm,1/16W,J,1005,R/TP	Y
5	R105	RES,CHIP	ERHY0000280	1	100K ohm,1/16W,J,1005,R/TP	Y
5	R113	RES,CHIP	ERHY0000280	1	100K ohm,1/16W,J,1005,R/TP	Y
5	R158	RES,CHIP	ERHY0000280	1	100K ohm,1/16W,J,1005,R/TP	Y
5	R90	RES,CHIP	ERHY0000282	1	120K ohm,1/16W,J,1005,R/TP	Y
5	R60	RES,CHIP	ERHY0000287	1	220K ohm,1/16W,J,1005,R/TP	Y
5	R88	RES,CHIP	ERHY0000287	1	220K ohm,1/16W,J,1005,R/TP	Υ
5	R37	RES,CHIP	ERHY0000289	1	270K ohm,1/16W,J,1005,R/TP	Y
5	R1	RES,CHIP	ERHY0000296	1	1M ohm,1/16W,J,1005,R/TP	Y
5	R27	RES,CHIP	ERHY0000296	1	1M ohm,1/16W,J,1005,R/TP	Υ
5	R62	RES,CHIP	ERHY0000296	1	1M ohm,1/16W,J,1005,R/TP	Υ
5	R80	RES,CHIP	ERHY0000296	1	1M ohm,1/16W,J,1005,R/TP	Y
5	R114	RES,CHIP	ERHY0000299	1	33000 ohm,1/16W ,J ,1005 ,R/TP	Y
5	R117	RES,CHIP	ERHY0000299	1	33000 ohm,1/16W ,J ,1005 ,R/TP	Υ
5	R126	RES,CHIP	ERHY0001102	1	0.2 ohm,1/4W ,F ,2012 ,R/TP	Y
5	RA1	RES,ARRAY,R	ERNR0000401	1	MNR04M0ABJ470,47 ohm, ohm,8 PIN,J ,1/32 W ,SMD ,R/TP	Υ
5	RA4	RES,ARRAY,R	ERNR0000401	1	MNR04M0ABJ470,47 ohm, ohm,8 PIN,J ,1/32 W ,SMD ,R/TP	Y
5	R116	RES,ARRAY,R	ERNR0000403	1	MNR04M0ABJ103,10000 ohm, ohm,8 PIN,J ,1/32 W ,SMD ,R/TP	Y
5	V1	RES,VARIABLE,ETC	ERVZ0000101	1	AVL5M02-200,ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR	Y
5	VA5	RES,VARIABLE,ETC	ERVZ0000101	1	AVL5M02-200,ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR	Y
5	VA6	RES,VARIABLE,ETC	ERVZ0000101	1	AVL5M02-200,ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR	Y
5	U9	IC	EUSY0076701	1	ADP3330-2.85-R,SOT-23-6 ,6 PIN,R/TP ,	Υ
5	U8	IC	EUSY0077201	1	SN74AHC1GU04DCKR,SOT(DCK) ,5 PIN,R/TP ,	Υ
5	U20	IC	EUSY0077301	1	MAX4599EXT-T,SC70-6/SOT23-6 ,6 PIN,R/TP ,	Υ

5 U16 IC EUSY0077602 1 SI0182DH-33-T1 MSOR-8,8 PH,R/TP_250mA CMOS LOD WINT ERROR FLAG /3.3V Y 5 U18 IC EUSY0088401 1 MC74VHC138,TSSOP_16 PIN,RTP_3-TO-8 LINE DECODER Y 5 U2 IC EUSY0100502 1 NC7WZ08K8X.8-LEAD US8.8 PIN,R/TP_UHS DUAL 2.INPUT AND GATE Y 5 U17 IC EUSY011801 1 YKU762.32-PIN OFN .32 PIN,R/TP_UHS DUAL 2.INPUT AND GATE Y 5 U12 IC EUSY011801 1 YKT411976H PBGA .179 PIN,BK Y 5 U11 IC EUSY0118001 1 PTWLR3012BGGM,100GGM PBGA .100 PIN,BK Y 5 U11 IC EUSY0118002 1 AMALOG SBICHLIZOSP .12 PIN,R/TP .DUAL SPDT Y 6 U13 IC EUSY0122301 1 CIM-80578-T,SURFACE MOUNT .7 PIN,R/TP .DUAL SPDT Y 6 U10 IC EUSY0122301 1 CIM-80578-T,SURFACE MOUNT .7 PIN,R/TP .DUAL SPDT Y 5 U13 IC EUSY0122301 1 CIM-80578-T	Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
DECODER	5	U16	IC	EUSY0077602	1		Y
1	5	U18	IC	EUSY0088401	1		Y
1	5	U2	IC	EUSY0100502	1		Y
Digital BB Chip Fundamental	5	U17	IC	EUSY0111601	1		Y
5 U11 IC EUSY0119002 1 ANALOG BB CHIP Y 5 U15 IC EUSY0119002 1 MAX4684EBC,12L UCSP,12 PIN,R/TP,DUAL SPDT Y 5 U13 IC EUSY0122301 1 CIM-80S7B-T,SURFACE MOUNT,7 PIN,R/TP,IRDA Y 5 U10 IC EUSY0122401 1 S-817A18ANB-CUH-T2,SC-82AB,4 PIN,R/TP,CMOS Y 5 W2 IC EUSY0129501 1 S-817A18ANB-CUH-T2,SC-82AB,4 PIN,R/TP,CMOS Y 5 W2 IC EUSY0144801 1 SI4201-BM,5'5,32 PIN,R/TP, HALL EFFECT Y 5 W7 IC EUSY0144802 1 SI4201-BM,5'5 MLP28,28 PIN,R/TP, Y 5 U5 IC EUSY0144802 1 SI4201-BM,5'5 MLP28,28 PIN,R/TP, Y 5 U14 IC EUSY0144802 1 SI4201-BM,5'5 MLP28,28 PIN,R/TP, Y 5 U14 IC EUSY0144802 1 TH50VPF5783AASB,P-FBGA73,73 PIN,R/TP, Y 5 U14	5	U12	IC	EUSY0116401	1		Υ
5 U13 IC EUSY012301 1 ANALOG SWITCHES Y 5 U13 IC EUSY0122301 1 CIM-8087B-T, SURFACE MOUNT, 7 PIN,R/TP, IRDA DATA 1.3 LOW POWER TRANSCEIVER / 115.2kb/s Y 5 U10 IC EUSY0122401 1 S-817A18ANB-CUH-T2, SC-82AB, 4 PIN,R/TP, CMOS LDO 1.8V OUTPUT/ 2.0 X 2.1 Y 5 W2 IC EUSY0129501 1 A3212ELH,SC-74A FIT, 3 PIN,R/TP, HALL EFFECT WITCH Y 5 W7 IC EUSY0144801 1 SH2201-BM,5*5 32 PIN,R/TP, HALL EFFECT WITCH Y 5 U5 IC EUSY0144802 1 SH4133T-BM,5*5 MLP28 28 PIN,R/TP, Y Y 5 U6 IC EUSY0144804 1 SH4200-BM,5*5 MLP28 28 PIN,R/TP, Y Y 5 U7 IC EUSY0145401 1 TH50VPF6783AASB,P-FBGA73,73 PIN,R/TP, DC MOTOR PLASH 32M PSRAM / BOTTOM BOOT / CE 2 PCS Y 5 U19 IC EUSY0160401 1 SUY98005LT1,SOT-23,3 PIN,R/TP, DC MOTOR PRIVER / INTEGERATED RELAY Y 5 X1 VCTCXO	5	U11	IC	EUSY0116501	1		Y
5 U13 IC EUSY0122301 1 DATA 1.3 LOW POWER TRANSCEIVER / 115.2kb/s Y 5 U10 IC EUSY0122401 1 S-817A18ANB-CUH-T2,SC-82AB .4 PIN,R/TP .CMOS Y 5 SW2 IC EUSY0129501 1 A3212ELH,SC-74A FIT .3 PIN,R/TP .HALL EFFECT Y 5 U7 IC EUSY0144801 1 SI4201-BM,5°5 .32 PIN,R/TP . Y 5 U5 IC EUSY0144802 1 SI4133T-BM,5°5 MLP28 .28 PIN,R/TP . Y 5 U6 IC EUSY0144804 1 SI4200-BM,5°5 MLP32 .32 PIN,R/TP . Y 5 U14 IC EUSY0145401 1 TH50VPF783AASB,P-FBGA73 .73 PIN,R/TP .128M PLASH 32M PSRAM / BOTTOM BOOT / CE 2 PCS Y 5 U19 IC EUSY0160401 1 SUY98005LT1,SOT-23 .3 PIN,R/TP .DC MOTOR DRIVER / INTEGERATED RELAY Y 5 X1 VCTCXO EXSK0000801 1 VC-TCXO-208C-13.0MHZ,13.0 MHz, PPM,10 pF,SMD Y 5 X2 X-TAL EXXY0004601 1 MC-146(7PF, +/-2	5	U15	IC	EUSY0119002	1		Y
5 UTU IC EUSY012240T 1 LDO 1.8V OUTPUT/ 2.0 X 2.1 Y 5 SW2 IC EUSY0129501 1 A3212ELH,SC-74A FIT ,3 PIN,R/TP ,HALL EFFECT	5	U13	IC	EUSY0122301	1		Y
5 SWZ IC EUSY0129901 1 SWITCH Y 5 U7 IC EUSY0144801 1 SI4201-BM,5°5,32 PIN,R/TP, Y 5 U5 IC EUSY0144802 1 SI4133T-BM,5°5 MLP28,28 PIN,R/TP, Y 5 U6 IC EUSY0144804 1 SI4200-BM,5°5 MLP28,28 PIN,R/TP, Y 5 U14 IC EUSY0145401 1 TH50VPF5783AASB,P-FBGA73,73 PIN,R/TP, 128M FLASH 32M PSRAM / BOTTOM BOOT / CE 2 PCS Y 5 U19 IC EUSY0160401 1 SUY98005LT1,SOT-23,3 PIN,R/TP, DC MOTOR PLASH 52M PSRAM / BOTTOM BOOT / CE 2 PCS Y 5 X1 VCTCXO EXSK0000801 1 VC-TCXO-208C-13.0MHZ,13.0 MHz, PPM,10 PF,SMD PM,10 PF,SMD PM	5	U10	IC	EUSY0122401	1		Y
5 U5 IC EUSY0144802 1 SI4133T-BM,5*5 MLP28,28 PIN,R/TP, Y 5 U6 IC EUSY0144804 1 SI4200-BM,5*5 MLP32,32 PIN,R/TP, Y 5 U14 IC EUSY0145401 1 TH50VPF5783AASB,P-FBGA73,73 PIN,R/TP,128M FLASH 32M PSRAM / BOTTOM BOOT / CE 2 PCS Y 5 U19 IC EUSY0160401 1 SUY98005LT1,SOT-23,3 PIN,R/TP,DC MOTOR DRIVER / INTEGERATED RELAY Y 5 X1 VCTCXO EXSK0000801 1 VC-TCXO-208C-13.0MHZ,13.0 MHz, PPM,10 pF,SMD Y Y 5 X2 X-TAL EXXY0004601 1 MC-146(7PF,+/-20PPM),.032768 MHz,20 PPM,7 pF,65000 ohm,SMD,6.9*1.4*1.3 Y 5 CN1 TERMINAL,PIN MTCB0000702 1 G5400 EUASV SV,BK,7.4*2.8 4.3T Mold 2.2T 3P Y 5 R36 THERMISTOR SETY0001201 1 NSM4223J380H3R,NTC ,22 Kohm,SMD ,1.0*0.5 / NSM4 SERIES Y 5 V3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V4 VARISTOR SEVY	5	SW2	IC	EUSY0129501	1		Y
5 U6 IC EUSY0144804 1 SI4200-BM,5*5 MLP32,32 PIN,R/TP, Y 5 U14 IC EUSY0145401 1 TH50VPF5783AASB,P-FBGA73,73 PIN,R/TP, 128M Y FLASH 32M PSRAM / BOTTOM BOOT / CE 2 PCS Y 5 U19 IC EUSY0160401 1 SUY98005LT1,SOT-23,3 PIN,R/TP, DC MOTOR DRIVER / INTEGERATED RELAY Y 5 X1 VCTCXO EXSK0000801 1 VC-TCXO-208C-13.0MHZ,13.0 MHz, PPM,10 pF,SMD Y S.0*3.2*1.5, Y 5 X2 X-TAL EXXY0004601 1 MC-146(7PF,+/-20PPM),.032768 MHz,20 PPM,7 pF,65000 ohm,SMD ,6.9*1.4*1.3, Y 5 CN1 TERMINAL,PIN MTCB0000702 1 G5400 EUASV SV,BK,7.4*2.8 4.3T Mold 2.2T 3P Y 5 R36 THERMISTOR SETY0001201 1 NSM4223J380H3R,NTC ,22 Kohm,SMD ,1.0*0.5 / NSM4 SERIES Y 5 V3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA2 VARISTOR </td <td>5</td> <td>U7</td> <td>IC</td> <td>EUSY0144801</td> <td>1</td> <td>SI4201-BM,5*5 ,32 PIN,R/TP ,</td> <td>Y</td>	5	U7	IC	EUSY0144801	1	SI4201-BM,5*5 ,32 PIN,R/TP ,	Y
5 U14 IC EUSY0145401 1 TH50VPF5783AASB,P-FBGA73,73 PIN,R/TP,128M FLASH 32M PSRAM / BOTTOM BOOT / CE 2 PCS Y 5 U19 IC EUSY0160401 1 SUY98005LT1,SOT-23,3 PIN,R/TP,DC MOTOR DRIVER / INTEGERATED RELAY Y 5 X1 VCTCXO EXSK0000801 1 VC-TCXO-208C-13.0MHZ,13.0 MHz, PPM,10 pF,SMD y.03.2*1.5. Y 5 X2 X-TAL EXXY0004601 1 MC-146(7PF, +/-20PPM), 032768 MHz,20 PPM,7 pF,65000 ohm,SMD ,6.9*1.4*1.3, Y 5 CN1 TERMINAL,PIN MTCB0000702 1 G5400 EUASV SV,BK,7.4*2.8 4.3T Moid 2.2T 3P Y 5 V3 VARISTOR SETY0001201 1 NSM4223J380H3R,NTC ,22 Kohm,SMD ,1.0*0.5 / NSM4 SERIES Y 5 V3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V42 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V40 VARISTOR	5	U5	IC	EUSY0144802	1	SI4133T-BM,5*5 MLP28 ,28 PIN,R/TP ,	Y
5 U14 IC EUSY0145401 1 FLASH 32M PSRAM / BOTTOM BOOT / CE 2 PCS Y 5 U19 IC EUSY0160401 1 SUY98005LT1,SOT-23,3 PIN,R/TP, DC MOTOR DRIVER / INTEGERATED RELAY Y 5 X1 VCTCXO EXSK0000801 1 VC-TCXO-208C-13.0MHZ,13.0 MHz, PPM,10 pF,SMD y.5.0*3.2*1.5. Y 5 X2 X-TAL EXXY0004601 1 MC-146(7PF,+/-20PPM),.032768 MHz,20 PPM,7 pF,65000 ohm,SMD ,6.9*1.4*1.3. Y 5 CN1 TERMINAL,PIN MTCB0000702 1 G5400 EUASV SV,BK,7.4*2.8 4.3T Mold 2.2T 3P Y 5 R36 THERMISTOR SETY0001201 1 NSM4223J380H3R,NTC ,22 Kohm,SMD ,1.0*0.5 / NSM4 SERIES Y 5 V3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V42 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V43 VARISTOR SEVY0000702 <t< td=""><td>5</td><td>U6</td><td>IC</td><td>EUSY0144804</td><td>1</td><td>SI4200-BM,5*5 MLP32 ,32 PIN,R/TP ,</td><td>Y</td></t<>	5	U6	IC	EUSY0144804	1	SI4200-BM,5*5 MLP32 ,32 PIN,R/TP ,	Y
5 U19 IC EUSY0160401 1 DRIVER / INTEGERATED RELAY Y 5 X1 VCTCXO EXSK0000801 1 VC-TCXO-208C-13.0MHZ,13.0 MHz, PPM,10 pF,SMD	5	U14	IC	EUSY0145401	1		Y
5 X1 VCTCXO EXSK0000801 1 ,5.0*3.2*1.5 , Y 5 X2 X-TAL EXXY0004601 1 MC-146(7PF,+/-20PPM),.032768 MHz,20 PPM,7 pF,65000 ohm,SMD ,6.9*1.4*1.3 , Y 5 CN1 TERMINAL,PIN MTCB0000702 1 G5400 EUASV SV,BK,7.4*2.8 4.3T Mold 2.2T 3P Y 5 R36 THERMISTOR SETY0001201 1 NSM4223J380H3R,NTC ,22 Kohm,SMD ,1.0*0.5 / NSM4 SERIES Y 5 V3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA1 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA2 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	U19	IC	EUSY0160401	1		Y
5 X2 X-TAL EXXY0004001 1 pF,65000 ohm,SMD ,6.9*1.4*1.3 , Y 5 CN1 TERMINAL,PIN MTCB0000702 1 G5400 EUASV SV,BK,7.4*2.8 4.3T Mold 2.2T 3P Y 5 R36 THERMISTOR SETY0001201 1 NSM4223J380H3R,NTC ,22 Kohm,SMD ,1.0*0.5 / NSM4 SERIES Y 5 V3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V41 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V42 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	X1	VCTCXO	EXSK0000801	1		Y
5 R36 THERMISTOR SETY0001201 1 NSM4223J380H3R,NTC ,22 Kohm,SMD ,1.0*0.5 / NSM4 SERIES Y 5 V3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 V5 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA1 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA2 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	X2	X-TAL	EXXY0004601	1		Y
5 R36 THERMISTOR SETY0001201 1 NSM4 SERIES Y 5 V3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 V4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 V5 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 VA1 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 VA2 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y	5	CN1	TERMINAL,PIN	MTCB0000702	1	G5400 EUASV SV,BK,7.4*2.8 4.3T Mold 2.2T 3P	Υ
5 V4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 V5 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 VA1 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 VA2 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 VA3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10%,SMD, Y	5	R36	THERMISTOR	SETY0001201	1		Y
5 V5 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA1 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA2 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	V3	VARISTOR	SEVY0000702	1	AVL14K02200,14 V,10% ,SMD ,	Υ
5 VA1 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA2 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	V4	VARISTOR	SEVY0000702	1	AVL14K02200,14 V,10% ,SMD ,	Υ
5 VA2 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	V5	VARISTOR	SEVY0000702	1	AVL14K02200,14 V,10% ,SMD ,	Υ
5 VA3 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y 5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	VA1	VARISTOR	SEVY0000702	1	AVL14K02200,14 V,10% ,SMD ,	Y
5 VA4 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	VA2	VARISTOR	SEVY0000702	1	AVL14K02200,14 V,10% ,SMD ,	Υ
	5	VA3	VARISTOR	SEVY0000702	1	AVL14K02200,14 V,10% ,SMD ,	Y
5 VA7 VARISTOR SEVY0000702 1 AVL14K02200,14 V,10% ,SMD , Y	5	VA4	VARISTOR	SEVY0000702	1	AVL14K02200,14 V,10% ,SMD ,	Y
	5	VA7	VARISTOR	SEVY0000702	1	AVL14K02200,14 V,10% ,SMD ,	Y

Nº	№ Позиции	Описание	№ Детали	Кол- во	Поставляемость	Поставля емость
5	FL1	FILTER,SEPERATOR	SFAY0001901	1	LMSP54AA-097,880/960 ,1710/1880 ,1.3 dB,1.5 dB,30 dB,25 dB,ETC ,5.4*4.0*1.8	Y
5	FB1	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Y
5	FB2	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Y
5	FB3	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Y
5	FB4	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB5	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Y
5	FB6	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Y
5	FB9	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Y
5	FB10	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB11	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB12	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB13	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB14	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB15	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB16	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB17	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB18	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB19	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB20	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB21	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB22	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB23	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB24	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB25	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Y
5	FB26	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	FB27	FILTER,BEAD,CHIP	SFBH0007101	1	BLM15AG121PN1,120 ohm,1005 ,Ferrite Bead	Υ
5	L8	FILTER,BEAD,CHIP	SFBH0007102	1	BLM15AG100PN1,10 ohm,1005 ,Ferrite Bead	Υ
5	L9	FILTER,BEAD,CHIP	SFBH0007102	1	BLM15AG100PN1,10 ohm,1005 ,Ferrite Bead	Υ
5	FL2	FILTER,SAW	SFSY0012202	1	SAFSD942MFM0T00,942.5 MHz,2.0*2.5*1.0 ,SMD ,	Υ
5	FL3	FILTER,SAW	SFSY0012302	1	SAFSD1G84FA0T00R00,1842.5 MHz,2.0*2.5*1.0 .SMD .	Υ
5	U4	PAM	SMPY0004001	1	RF3133,35 dBm,55 %,2 A,-50 dBc,25 dB,10.0 * 7.0 * 1.4 ,SMD ,	Υ
5	SPFY00	PCB,MAIN	SPFY0046101	1	G7030 EUASV,MAIN,1.1,FR-4 ,1 mm,MULTI-8 ,Revision 1.1	N