URL Coursework 2

StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks [1]

Bruno Sánchez Gómez

May 31, 2025

- Introduction
- StackGAN++ Methodology
- Results
- 4 Ablation Studies
- 6 Analysis

Introduction

Area of Research of the Paper

Generative Adversarial Networks (GANs) for Realistic Image Synthesis

- High-resolution images (256 × 256 pixels)
- Two tasks:
 - Unconditional Image Generation
 - Text-to-Image Synthesis (Conditional Image Generation)

Limitations of Prior Work

GAN Training Instability:

- Sensitive to hyperparameters
- Can suffer from non-convergence

• Mode Collapse:

- Limited variety of generated samples
- Fail to capture full diversity of the training data

• Limited to low-resolution images:

- Training GANs for high-resolution images is especially difficult and unstable.
- ullet Low overlap between model and data distributions o Poor gradients

Contributions by StackGAN++

- Conditioning Augmentation (CA): Improve sample diversity by augmenting the image-text pairs.
- **StackGAN:** Two GAN frameworks for conditional and unconditional image synthesis with high resolution (256×256) :
 - StackGAN-v1: Two-stage GAN
 - StackGAN-v2: Multi-stage GAN with a tree-like structure

- Introduction
- StackGAN++ Methodology
- Results
- Ablation Studies
- 5 Analysis

Conditioning Augmentation (CA)

Core Idea

Augment the text conditioning to improve sample diversity and stabilize GAN training

- ullet The latent space for text embeddings, ϕ_t , is high-dimensional
- Limited data causes discontinuity in the latent data manifold
- ullet CA samples a new embedding \hat{c} from a Gaussian distribution:

$$\hat{c} = N(\mu_{\theta}(\phi_t), \Sigma_{\theta}(\phi_t))$$

 To further enforce smoothness over the conditioning manifold and avoid overfitting, a regularization term is added to the loss:

$$\mathcal{L}_{\mathsf{KL}} = D_{\mathsf{KL}} \big(\mathsf{N}(\mu_{\theta}(\phi_t), \Sigma_{\theta}(\phi_t)) \mid\mid \mathsf{N}(0, I) \big)$$

StackGAN-v1

Core Idea Decompose text-to-image generation into a sketch-refinement process Text description t Embedding on Internation (CA) | Stage-I Generator Go for sketch | Stage-I Discriminator Do for sketch | Stage-I Discriminat

Figure: StackGAN-v1 Architecture (Source: [1])

StackGAN-v2

Core Idea

A more general, end-to-end multi-stage framework with a tree-like structure

Figure: StackGAN-v2 Architecture and JCU Discriminators (Source: [1])

- Introduction
- StackGAN++ Methodology
- Results
- 4 Ablation Studies
- 5 Analysis

Experimental Setup

Datasets:

- Text-to-Image (Conditional):
 - CUB-200-2011 (Birds)
 - Oxford-102 (Flowers)
 - MS COCO (Challenging general scenes)
- Unconditional Generation:
 - LSUN (Bedroom, Church)
 - ImageNet (Dog, Cat subsets)

Evaluation Metrics:

- Inception Score (IS): Measures image quality and diversity. Higher is better.
- Fréchet Inception Distance (FID): Measures similarity between generated and real image distributions. Lower is better.
- Human Rank (HR): User studies to assess perceptual quality and text-image alignment. Lower is better.
- t-SNE Visualizations: To check for mode collapse and sample diversity.

Quantitative Results: Text-to-Image (StackGAN-v1)

StackGAN-v1 significantly outperforms prior text-to-image models.

- Higher Resolution: StackGAN-v1 generates 256x256 images.
- Improved IS: e.g., on CUB, StackGAN-v1 (3.70) vs. GAN-INT-CLS (2.88).
- Drastically Lower FID*: FID* (on 64x64 resized images) shows better distribution matching. e.g., on CUB, StackGAN-v1 (35.11) vs. GAN-INT-CLS (68.79).
- Better Human Rank (HR): Indicates more realistic and text-relevant images.

Qualitative Results: Text-to-Image

CUB Dataset (Birds): Oxford-102 (Flowers) & COCO:

StackGAN-v1 and v2 produce much more detailed and realistic images compared to GAN-INT-CLS (64x64) and GAWWN (128x128, often blurry without part annotations).

StackGAN-v2 vs. StackGAN-v1 & Unconditional SOTA

- StackGAN-v2 often improves FID over StackGAN-v1, e.g., CUB FID: 15.30 (v2) vs 51.89 (v1).
- StackGAN-v2 IS generally higher or competitive.
- Less Mode Collapse in StackGAN-v2:
- **Unconditional Generation:** StackGAN-v2 outperforms SOTA like DCGAN, WGAN-GP in quality and resolution (256x256).

- Introduction
- StackGAN++ Methodology
- Results
- 4 Ablation Studies
- 5 Analysis

Ablation Studies: StackGAN-v1 Components

Testing importance of StackGAN-v1 design choices on CUB dataset (Table 4 in paper).

- Necessity of Stacked Structure:
 - Stage-I GAN direct 256x256 output: Poor IS (3.02) vs. StackGAN-v1 (3.70). Visually much worse (Fig. 11 in paper).
- Effect of Conditioning Augmentation (CA):
 - Stage-I GAN (64x64) IS: 2.66 (no CA) \rightarrow 2.95 (with CA).
 - Without CA, 256x256 Stage-I GAN collapses (Fig. 11 in paper). CA stabilizes and improves diversity.
- Inputting Text at Both Stages ("Text twice"):
 - StackGAN-v1 256x256 IS: 3.45 (text only Stage-I) \rightarrow 3.70 (text at both stages).
 - Stage-II benefits from re-processing text.

Ablation Studies: StackGAN-v2 Components

Testing importance of StackGAN-v2 design choices on CUB (Table 5) and other datasets.

• Multi-Scale/Multi-Stage Architecture:

- 'StackGAN-v2-G3' (only final 256x256 generator): IS drops from 4.04 \rightarrow 3.49.
- 'StackGAN-v2-all256' (all generators output 256x256): IS drops to 2.89.
- Visuals (Fig. 14 in paper) show severe mode collapse or poor quality for these baselines.

Joint Conditional/Unconditional (JCU) Discriminators:

• 'StackGAN-v2-no-JCU' (conventional conditional D): IS drops from $4.04 \rightarrow 3.77$.

Color-Consistency Regularization:

- Qualitatively (Fig. 15 in paper): Improves color consistency across scales for unconditional generation.
- ullet Quantitatively (ImageNet Dog): IS drops from 9.55 ightarrow 9.02 without it.
- Not critical for text-to-image due to strong text conditioning.

- Introduction
- StackGAN++ Methodology
- Results
- 4 Ablation Studies
- 6 Analysis

Pros (Improvements over Competing Methods)

Achieves Higher Resolution (256x256) with Photo-Realism:

 StackGAN-v1 was pioneering in generating 256x256 images from text, a significant leap from previous 64x64 or 128x128 results.

Superior Image Quality and Diversity:

- Consistently better IS, FID, and human preference scores compared to prior text-to-image methods (GAN-INT-CLS, GAWWN).
- StackGAN-v2 further improves stability and quality (especially FID) over StackGAN-v1 and SOTA unconditional GANs.

• More Stable GAN Training:

- Conditioning Augmentation (CA) in StackGAN-v1 stabilizes conditional GANs.
- StackGAN-v2's joint multi-distribution approximation and tree structure lead to more stable training and reduced mode collapse.

General Framework (StackGAN-v2):

- Applicable to both conditional (text-to-image, class-conditional) and unconditional image generation tasks.
- **Ability to Correct Defects:** The multi-stage approach allows later stages to refine and correct errors or omissions from earlier stages.

Cons (Limitations of the Proposed Method)

• Failure Cases Still Exist:

 While significantly improved, the methods can still produce imperfect images (e.g., blurry parts, unnatural shapes, minor artifacts), especially for complex text or scenes. StackGAN-v2 failures are generally "milder."

Convergence on Complex Datasets (StackGAN-v2):

- StackGAN-v2's end-to-end joint training can be harder to converge on highly complex datasets (like COCO) compared to StackGAN-v1's simpler stage-by-stage optimization.
- StackGAN-v1 sometimes yields slightly more appealing images on COCO by human rank, despite v2's better stability.

Computational Cost:

 Training multiple generators and discriminators in StackGAN-v2 is computationally intensive. StackGAN-v1, while two-stage, might have lower peak memory.

Dependence on Text Embedding Quality:

- The quality of generated images is highly dependent on the quality of the input text embeddings from the pre-trained text encoder.
- Subtle Mode Collapses: While large-scale mode collapses are

Conclusions

Stacked/Multi-Stage GANs are Highly Effective:

• Decomposing high-resolution image synthesis into progressive, manageable sub-problems (low-to-high resolution) is a key strategy for SUCCESS

StackGAN-v1 Advanced Text-to-Image Synthesis:

• First to achieve 256x256 photo-realistic images from text, with Conditioning Augmentation (CA) improving stability and diversity.

StackGAN-v2 Offers Generality, Stability, and Quality:

• Its tree-like architecture, joint multi-distribution approximation, and color-consistency regularization lead to more stable training, reduced mode collapse, and often higher quality for both conditional and unconditional tasks.

Significant Progress in Realistic Image Generation:

- The paper demonstrates a substantial leap in GANs' capability to generate detailed, high-resolution images.
- Future Directions: Despite progress, achieving perfect realism, coherence for all inputs, and efficient training for extremely complex scenarios remain open challenges.

Thank you for your attention!

Any questions?

References I

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas.

Stackgan++: Realistic image synthesis with stacked generative adversarial networks, 2018.