Apoorva Kethamaranahalli: 001090928

Program Structures & Algorithms Fall 2021

Assignment No. 5

Task

Your task is to implement a parallel sorting algorithm such that each partition of the array is sorted in parallel. You will consider two different schemes for deciding whether to sort in parallel.

- 1. A cutoff (defaults to, say, 1000) which you will update according to the first argument in the command line when running. It's your job to experiment and come up with a good value for this cutoff. If there are fewer elements to sort than the cutoff, then you should use the system sort instead.
- 2. Recursion depth or the number of available threads. Using this determination, you might decide on an ideal number (*t*) of separate threads (stick to powers of 2) and arrange for that number of partitions to be parallelized (by preventing recursion after the depth of *lg t* is reached).
- 3. An appropriate combination of these.

Relationship Conclusion:

- 1. As per the cutoff ratio (cutoff/size of the array), we see that irrespective of the array sizes, and the number of threads available for parallel sorting, there is a range of cutoff ratio between 0.3 and 0.55 for which parallel sort can be an optimal solution
- 2. As per performing analysis on different sizes of arrays (2 Million and 16 Million), for a number of different threads ranging from 2 to 16, we see that 6 threads works as a best case scenario

Evidence to support the conclusion: (Graphical Representation)

1. Finding the optimal cutoff value, for different sizes of input array(while keeping the number of threads as a constant)

Threads: 2 [Refer fig: 2.0 to 2.4 in Output Screenshots]
 Array sizes varied from: 1 Million, to 6 Million, doubling each run.
 Cutoff ratio: (Cutoff value/Size of the array): Ranging from 0.05 to to 1.0 in increments of 0.05

cutoff/size	1 Million	2 Million	4 Million	6 Million	8 Million	16 Million
0.05	968	1821	3134	5187	7089	13778
0.1	730	1631	3068	5073	6615	13587
0.15	789	1797	3434	5603	7266	14084
0.2	819	1747	3368	5360	7391	14998
0.25	855	1673	3159	5495	7567	15859
0.3	588	1460	2413	4078	5348	11189
0.35	616	1341	2444	4101	5265	11513
0.4	658	1329	2413	4054	5311	11146
0.45	586	1286	2426	4032	5347	11190
0.5	628	1326	2586	4051	5467	11258
0.55	577	1210	2381	3940	5130	10445
0.6	576	1282	2427	3798	5093	10442
0.65	580	1260	2402	3799	5085	10524
0.7	569	1195	2466	3876	5102	10543
0.75	565	1182	2415	3754	5082	10933
0.8	577	1251	2366	3880	5168	11425
0.85	579	1314	2371	3759	5277	11441
0.9	564	1207	2414	3823	5375	11375
0.95	561	1185	2420	3816	5556	11409
1	568	1193	2374	3895	5527	11343

Threads: 4,
 Array sizes varied from: 1 Million, to 6 Million, doubling each run.
 Cutoff ratio: (Cutoff value/Size of the array): Ranging from 0.05 to to 1.0 in increments of 0.05

55.4 .						
cutoff/size	1 Million	2 Million	4 Million	6 Million	8 Million	16 Million
0.05	1065	1672	3707	5341	6936	14339
0.1	778	1563	3150	4873	6781	13337
0.15	741	1564	3288	5087	6769	13932
0.2	703	1539	3188	5228	6422	13346
0.25	739	1566	3281	4935	6982	13823
0.3	446	935	1767	2638	3528	7393
0.35	399	831	1726	2605	3426	7253
0.4	393	792	1721	2576	3492	7356
0.45	395	794	1737	2640	3750	7286
0.5	381	802	1716	2595	3678	7825
0.55	560	1169	2516	3884	5018	11705
0.6	576	1194	2541	3845	5024	11743
0.65	580	1201	2508	3818	5064	11299
0.7	563	1172	2514	3778	5128	10905
0.75	571	1181	2552	3826	5006	10752
0.8	554	1177	2514	3835	5044	10838
0.85	555	1173	2547	3847	4966	10798

0.9	573	2163	2513	3857	5054	11200
0.95	571	1632	2565	3810	5070	11460
1	564	1622	2523	3776	5058	11337

2. Checking for different threads from 2 to 16 for an array of 1000000 elements, with cutoff ratios changing from 0.05 to 1.0

Cutoff/size					Threads:
ratio	Threads: 2	Threads: 4	Threads: 6	Threads: 8	16
0.05	1020	1027	1109	1157	1029
0.1	828	702	805	682	641
0.15	956	741	545	482	386
0.2	1042	746	543	475	427
0.25	829	804	528	443	372
0.3	642	399	387	397	407
0.35	641	404	412	423	433
0.4	657	387	380	405	463
0.45	668	385	380	396	418
0.5	620	390	393	406	419
0.55	571	562	555	550	582
0.6	607	598	554	563	569
0.65	576	601	562	577	574
0.7	576	588	578	546	576
0.75	589	579	575	564	596
0.8	579	575	551	563	705
0.85	575	576	578	584	585
0.9	575	591	581	601	567
0.95	579	604	557	560	577
1	567	586	558	549	582

Cutoff/size					Threads:
ratio	Threads: 2	Threads: 4	Threads: 6	Threads: 8	16
0.05	13778	14339	13742	14534	15380
0.1	13587	13337	12399	12629	11627
0.15	14084	13932	13703	14564	8116
0.2	14998	13346	13497	13648	8084
0.25	15859	13823	14431	13136	8086
0.3	11189	7393	10102	8833	6610
0.35	11513	7253	10335	11960	6916
0.4	11146	7356	10014	9769	6836
0.45	11190	7286	9907	9970	6856
0.5	11258	7825	9942	9661	6844
0.55	10445	11705	7338	8621	7380
0.6	10442	11743	7348	8596	7384
0.65	10524	11299	7287	8484	7454
0.7	10543	10905	7475	8218	7950
0.75	10933	10752	7320	7945	8392
0.8	11425	10838	7362	8133	8600
0.85	11441	10798	7639	8144	8515
0.9	11375	11200	7534	8405	8007
0.95	11409	11460	8395	8487	8004
1	11343	11337	9620	8331	8136

Output for Conclusion 1:


```
Random random = new Random();
           int[] array = new int[8000000];
                                                               int[] array = new int[16000000];
          ArrayList<Long> timeList = new ArrayList<>();
                                                               ArrayList<Long> timeList = new ArrayList
                                                                  ParSort.cutoff = 800000 * (j + 1);
                                                       /Library/Java/JavaVirtualMachines/jdk1.8.0_281.
    /Library/Java/JavaVirtualMachines/jdk1.8.0_281.jdk/Co
                                                       Degree of parallelism: 2
    Degree of parallelism: 2
                                                       cutoff: 800000
                                                                            10times Time:13778ms
    cutoff: 400000
                      10times Time:7089ms
                                                       cutoff: 1600000
                                                                            10times Time:13587ms
    cutoff: 800000
                                                       cutoff: 2400000
                                                                            10times Time:14084ms
註
                      10times Time:7266ms
   cutoff: 1200000
                                                       cutoff: 3200000
                                                                            10times Time: 14988ms
   cutoff: 1600000
                      10times Time:7391ms
-
                                                       cutoff: 4000000
                                                                             10times Time:15859ms
    cutoff: 2000000
                                                       cutoff: 4800000
                                                                             10times Time:11189ms
    cutoff: 2400000
                      10times Time:5348ms
                                                       cutoff: 5600000
                                                                            10times Time:11513ms
    cutoff: 2800000
                      10times Time:5265ms
                                                       cutoff: 6400000
                                                                            10times Time:11146ms
    cutoff: 3200000
                      10times Time:5311ms
                                                       cutoff: 7200000
                                                                            10times Time:11190ms
    cutoff: 3600000
                      10times Time:5347ms
                                                       cutoff: 8000000
                                                                            10times Time:11258ms
    cutoff: 4000000
                      10times Time:5467ms
                                                       cutoff: 8800000
                                                                            10times Time:10445ms
                      10times Time:5130ms
    cutoff: 4400000
                      10times Time:5093ms
                                                       cutoff: 9600000
                                                                             10times Time:10442ms
    cutoff: 4800000
    cutoff: 5200000
                      10times Time:5085ms
                                                       cutoff: 10400000
                                                                                 10times Time:10524ms
                      10times Time:5102ms
    cutoff: 5600000
                                                       cutoff: 11200000
                                                                                 10times Time:10543ms
    cutoff: 6000000
                      10times Time:5082ms
                                                       cutoff: 12000000
                                                                                 10times Time:10933ms
    cutoff: 6400000
                      10times Time:5168ms
                                                       cutoff: 12800000
                                                                                 10times Time:11425ms
    cutoff: 6800000
                      10times Time:5277ms
                                                       cutoff: 13600000
                                                                                 10times Time:11441ms
    cutoff: 7200000
                      10times Time:5375ms
                                                       cutoff: 14400000
                                                                                 10times Time:11375ms
    cutoff: 7600000
                      10times Time:5556ms
                                                       cutoff: 15200000
                                                                                 10times Time:11409ms
    cutoff: 8000000
                      10times Time:5527ms
                                                       cutoff: 16000000
                                                                                 10times Time:11343ms
```


Sample Output for Conclusion 2: For array size: 1 Million, varying threads from 2 to 16


```
public static void main(String[] args) {
       processArgs(args);
Degree of parallelism: 8
cutoff: 50000
                    10times Time:1157ms
cutoff: 100000
                    10times Time:682ms
cutoff: 200000
                    10times Time:475ms
                    10times Time:443ms
cutoff: 300000
                    10times Time:397ms
cutoff: 350000
                    10times Time:423ms
                    10times Time: 396ms
cutoff: 500000
                    10times Time:550ms
cutoff: 600000
                    10times Time:563ms
cutoff: 650000
cutoff: 750000
                    10times Time:584ms
cutoff: 850000
cutoff: 900000
                    10times Time:601ms
                    10times Time:560ms
```

For Array size: 16 Million, varying threads from 2 to 16:

