Computação Gráfica Manipulação de Imagens (Aula 4)

Leonardo Medeiros

Instituto Federal de Alagoas

20 de Abril de 2017

Roteiro

L. Medeiros

3.1. Principais Etapas de um Sistema de Visão Computacional

Figura 3.1 – Etapas de um sistema de VC genérico.

3.1.1 Aquisição de Imagens

Figura 3.2 – Aquisição da Imagem.

Amostragem e Quantização

- Amostragem refere-se ao número de pontos amostrados de uma imagem digitalizada (resolução).
- Quantização quantidade de níveis de tons que pode ser atribuído a cada ponto digitalizado.

As imagens reais possuem um número ilimitado de cores ou tons. No processamento de imagens computacional é necessário limitar os níveis de cores ou tons possíveis de serem atribuídos a cada *pixel* da imagem (gradação tonal).

Resolução

Figura 3.3 – Efeito da redução da resolução espacial na qualidade da imagem

Quantização

256 níveis de cinza

16 níveis de cinza

Figura 3.4 – Efeito da variação da gradação tonal ou quantização na qualidade da imagem.

3.1.2 Restauração e Realce

- •Restauração busca compensar deficiências específicas, geradas no momento de aquisição, na transmissão ou em alguma etapa do processamento.
- Realce destaca detalhes da imagem que são de interesse para análise ou que tenham sofrido alguma deteriorização.

3.1.3. Segmentação

Objetivo

Isolar regiões de pontos da imagem pertencentes a objetos para posterior extração de atributos e cálculo de parâmetros descritivos.

3.1.4. Extração de Atributos ou Características

Objetivo

A partir de imagens já segmentadas (em objeto e fundo) ou binárias busca obter dados relevantes ou atributos, das regiões ou objetos destacados.

Os tipos de atributos ou características mais comuns são: número total de objetos; dimensões; geometria; propriedades de luminosidade e textura.

3.1.5. Classificação e Reconhecimento

Distinguir objetos na imagem agrupando parâmetros de acordo com sua semelhança para cada região de *pixels* encontrada.

3.1.6. Decisão

- •O objetivo de um sistema de Visão Computacional é tomar decisões a partir da extração de informações do mundo real através de imagens.
- •A tomada de decisão pode ser feita a partir de indagações simples a respeito de parâmetros extraídos dos objetos ou de algoritmos mais complexos de Inteligência Artificial.

3.2. Visão Humana X Computacional

Figura 3.7. Sistema de Visão Humano.

Características

- Adaptabilidade
- Tomada de Decisão
- Qualidade das Medições
- Velocidade de Resposta
- Percepção de Espectros
- Dimensão dos Objetos

Exemplo de sistema de Visão Computacional

Figura 3.8. Integração da visão com o sistema motor.

Analogia entre a visão humana e a computacional.

Figura 3.9. Analogia do sistema de visão humano e computacional.

3.3. A Imagem Digital

- 3.3.1. Discretização e Reconstrução
- 3.3.2. Amostragem e Quantificação
- 3.3.3. Resolução Espacial
- **3.3.4. Aliasing**
- 3.3.5. Imagens Monocromáticas
- 3.3.6. Imagens Coloridas

3.3. A Imagem Digital

- •Do latim imago representação visual de um objeto.
- •Do grego *eidos* (raiz etimológica do termo *idea* ou *eide*) considera a *idea* da coisa, a sua imagem, uma projeção na mente.
- •Imagem pode ser adquirida ou gerada pelo ser humano.
- •Uma imagem consiste em qualquer forma visual de expressão de uma idéia.

Formas de captação de uma imagem

Figura 3.10 - Formas de Captação da Imagem por Radiação

Etapas do processamento de imagem digital

Figura 3.11 - Etapas do Processamento da Imagem

Discretização - conversão da imagem na forma contínua em um uma representação discreta.

Reconstrução - processo inverso da discretização.

Codificação - a partir da representação discreta da imagem, gera um conjunto de dados representativos da imagem, dados estes que podem ser transformados no formato de arquivos.

Decodificação - processo oposto à codificação no qual acessam-se informações codificadas na forma de uma representação discreta.

3.3.1. Discretização e Reconstrução

Figura 3.12. Gráfico de uma imagem contínua.

A forma de representar o mundo contínuo ou uma função contínua no computador é discretizando-a.

A operação que a partir dos valores discretos retorna uma aproximação da função contínua inicial é chamada de reconstrução.

Figura 3.13 – Formas de Representação de uma função y = f(x).

3.3.2. Amostragem e Quantificação

Figura 3.15 – Reticulado uniforme da representação matricial da imagem.

Uma imagem digital é descrita por uma matriz N x M de valores de *pixel* (p(x,y)) inteiros positivos, que indica a intensidade de cor em cada posição [x,y] da imagem.

Um *pixel* é caracterizado pelo valor de tonalidade de cor e pela sua localização na imagem.

	47	52	64	132	153
	51	58	121	149	142
-	49	99	143	144	164
	94	135	161	170	199
	138	165	180		213

Figura 3.16 – Representação matricial de uma região da imagem.

3.3.3. Resolução Espacial

Ao ser digitalizada a imagem assume um tamanho adimensional, em pixels.

Figura 3.17 – Taça em duas resoluções, mas exibido no seu tamanho original.

Pode-se conhecer o tamanho da amostragem, conhecendo-se a razão entre o número de *pixels* obtido e o tamanho da imagem real no filme fotográfico ou equivalente.

A isso chama-se de resolução espacial, que em geral é medida em pontos por polegada ou dpi (*dots per inch*).

Imagens reais - > Digitais

Para que sejam representadas no meio digital, seu comportamento analógico (contínuo) tem que ser convertido numa série de valores discretos (descontínuos).

Esses valores são números (dígitos) que representam amostras (samples em inglês)

Amostragem

A conversão do sinal analógico para o digital é realizada por uma sequência de amostras da variação de voltagem do sinal original.

Cada amostra é arredondada para o número mais próximo da escala usada e depois convertida em um número digital binário (formado por "uns" e "zeros") para ser armazenado.

As amostras são medidas em intervalos fixos.

valores das amostras							
2.5	0.6	0.9	3.0	2.4			
valores quantizados							
2	0	1	3	2			
valores convertidos em							
digitos binários							
10	00	01	11	10			

O números de vezes em que se realiza a amostragem em uma unidade de tempo é a taxa de amostragem

3.3.4. Aliasing

Ocorre quando a frequência de amostragem é inferior à frequência de Nyquist.

Figura 3.19 – O sinal digitalizado fica completamente diferente do sinal original devido a sua baixa frequência de amostragem.

Teorema de Nyquist

A taxa de amostragem dever ser pelo menos duas vezes a maior frequência que se deseja registrar.

Esse valor é conhecido como frequência de Nyquist.

Ao se tentar reproduzir uma frequência maior do que a frequência de Nyquist ocorre o fenômeno de alising (ou foldover)

(b) Uma forma de amenizar o problema.

Figura 3.20 - Problema do aliasing em monitores de computadores antigos.

Bibliografia

- Solomon C., Breckon T. Fundamentals of Digital Image Processing.. A Practical Approach with Examples in Matlab (Wiley-Blackwell, 2011)(ISBN 9780470844724)(en)(355s)
- A. Conci, E. Azevedo e F.R. Leta Computação Gráfica: volume 2 (Processamento e Análise de Imagens Digitais), Campus/Elsevier. 2008 - ISBN 85-352-1253-3.
- Open CV Tutorials
- Tutorial de ColorSpace http://docs.opencv.org/trunk/ df/d9d/tutorial_py_colorspaces.html

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA ALAGOAS

Computação Gráfica

L. Medeiros

DÚVIDAS?

L. Medeiros