Semi-Supervised learning_1

2021年4月1日

Soft have no use Entropy-based regularization

- Supervised learning: $\{(x^r, \hat{y}^r)\}_{r=1}^R$
 - E.g. x^r : image, \hat{y}^r : class labels
- Semi-supervised learning: $\{(x^r, \hat{y}^r)\}_{r=1}^R, \{x_s^u\}_{u=R}^{R+U}$
 - A set of unlabeled data, usually U >> R 没有用testing-set的label所以不是cheating
 - Transductive learning: unlabeled data is the testing data
 - · Inductive learning: unlabeled data is not the testing data

Semi-supervised Learning for Generative Model

Low-density Separation Assumption

Smoothness Assumption

Better Representation

The distribution of the unlabeled data tell us something.

Supervised Generative Model

- Given labelled training examples $x^r \in C_1, C_2$
 - looking for most likely prior probability P(C_i) and classdependent probability P(x|C_i)
 - $P(x|C_i)$ is a Gaussian parameterized by μ^i and Σ

With
$$P(C_1)$$
, $P(C_2)$, μ^1 , μ^2 , Σ
$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_1)}$$

Semi-supervised Generative Model

- Given labelled training examples $x^r \in C_1$, C_2
 - looking for most likely prior probability P(C_i) and classdependent probability P(x | C_i)
 - $P(x|C_i)$ is a Gaussian parameterized by μ^i and Σ

The unlabeled data x^u help re-estimate $P(C_1)$, $P(C_2)$, μ^1,μ^2,Σ

看了unlabel 的 data 会影响对mean 和cov的预测,

进而影响decision boundary

Semi-supervised Generative Model

- Initialization: $\theta = \{P(C_1), P(C_2), \mu^1, \mu^2, \Sigma\}$
- Step 1: compute the posterior probability of unlabeled data

$$P_{\theta}(C_1|x^u)$$
 Depending on model θ

· Step 2: update model

$$P(C_1) = \frac{N_1 + \sum_{x^u} P(C_1|x^u)}{N}$$

$$N: \text{ total number of examples}$$

$$N_1: \text{ number of examples}$$

$$\text{belonging to } C_1$$

$$\mu^1 = \frac{1}{N_1} \sum_{x^r \in C_1} x^r + \frac{1}{\sum_{x^u} P(C_1|x^u)} \sum_{x^u} P(C_1|x^u) x^u$$

$$\text{Back to}$$

$$\theta = \{P(C_1), P(C_2), \mu^1, \mu^2, \Sigma\}$$

$$logL(\theta) = \sum_{x^r} logP_{\theta}(x^r, \hat{y}^r) \qquad \begin{array}{c} P_{\theta}(x^r, \hat{y}^r) \\ = P_{\theta}(x^r | \hat{y}^r) P(\hat{y}^r) \end{array}$$

· Maximum likelihood with labelled + unlabeled data

$$logL(\theta) = \sum_{x^r} logP_{\theta}(x^r) + \sum_{x^u} logP_{\theta}(x^u)$$

$$P_{\theta}(x^{u}) = P_{\theta}(x^{u}|C_{1})P(C_{1}) + P_{\theta}(x^{u}|C_{2})P(C_{2})$$

Semi-supervised Learning Low-density Separation

Low density: the density is low at the boundary

Self-training

- Given: labelled data set = $\{(x^r, \hat{y}^r)\}_{r=1}^R$, unlabeled data set = $\{x^u\}_{u=l}^{R+U}$
- Repeat:
 - Train model f^* from labelled data set

Independent to the model

- Apply f* to the unlabeled data set
 - Obtain $\{(x^u, y^u)\}_{u=l}^{R+U}$ Pseudo-la
- Remove a set of data from unlabeled data set, and add them into unlabeled data set

在regression上可能会有用吗? Output a number. Train 完 再 train 不会影响 f^star

Self-training

- · Similar to semi-supervised learning for generative model
- · Hard label v.s. Soft label

Considering using neural network θ^* (network parameter) from labelled data

Entropy-based Regularization

不符合 low density distribution 的假设

Entropy of y^u : Evaluate how concentrate the distribution y^u is

$$E(y^{u}) = -\sum_{m=1}^{5} y_{m}^{u} ln(y_{m}^{u})$$

y表示 概率, 前两个都是0 第三个比较大

So:

As small as possible

$$L = \sum_{x^r} C(y^r, \hat{y}^r)$$
 labelled data
$$+\lambda \sum_{x^u} E(y^u)$$
 unlabeled data data

Labeled: cross-entropy

Unlabeled: self-cross-entropy(var)

Key: make the distribution as concentrate as possible

Outlook: Semi-supervised SVM

Semi-supervised Learning Smoothness Assumption

近朱者赤,近墨者黑

"You are known by the company you keep"