REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this Collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (2704-0188), Withholston, Confederation and Reduction Project (2704-0188), Withholston, Confederation and Confederation an

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budg 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE		3. REPORT TYPE	3. REPORT TYPE AND DATES COVERED	
4. TITLE AND SUBTITLE	FINAL 01 Apr 96 to 31 Mar 97			
COMPUTER SIMULATIONS OF	IOW TEMPEDATURE HIGH	ENEDOV	5. FUNDING NUMBERS	
DENSITY MATERIALS	LOW TEMPERATURE HIGH	ENEKGY	F49620-96-1-0129	
6. AUTHOR(S)			2303/FS	
Dr Gregory A. Voth			61102F	
7. PERFORMING ORGANIZATION NAME(Dept of Chemistry University of Pennsylvan: Philadelphia PA 19104-63	ia 323		8. PERFORMING ORGANIZATION REPORT NUMBER	
S SPONSORING MONITORING AGENCY AFOSR/NL 110 Duncan Avenue Room BI Bolling AFB DC 20332-805	115		10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
Dr Michael R. Berman				
1. SUPPLEMENTARY NOTES				
2. DICTORUTION AVAILABLE TO				
2a. DISTRIBUTION AVAILABILITY STATE	EMENT		12b. DISTRIBUTION CODE	
Approved for public rel distribution unlimited.	ease;			
RABSTRACT Microsom 200 words) Solid hydrogen doped with used in rocket propulsion	energetic impuritie . A key research pr	s may form th	te basis for HEDM to be	

Solid hydrogen doped with energetic impurities may form the basis for HEDM to be used in rocket propulsion. A key research priority was therefore the largescale computer simulation of impurity diffusion and recombination in HEDM in order to better understand the reasons for its stability, or instability, as the case may be. The recombination of these atomic impurities is an extremely exothermic reaction, and therefore thermodynamically favored. Theoretical developments within our research group allowed for the (otherwise impossible) quantum dynamical simulation of these systems which was necessary to properly treat the problem. Classical molecular dynamics simulations, while less computationally challenging, predict qualitatively incorrect properties for low temperature liquid and solid hydrogen because of the highly quantum nature of hydrogen matrix, and are therefore inadequate.

	199/1217 (115	
14. SUBJECT TERMS			15. NUMBER OF PAGES
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT.	20. LIMITATION OF ABSTRACT
(U)	(U)	(U)	(UL)

To: Michael Berman@ngNL

From: Gregory A. Voth <voth@chemistry.chem.utah.edu>

Bcc:

Subject: Final Technical Report: First Part

Attachment:

Date: 10/22/97 12:00 AM

AFOSR Final Report

Computer Simulations of Low Temperature High Energy Density Materials (F49620-96-1-0129)

Gregory A. Voth Department of Chemistry University of Pennsylvania Philadelphia, PA 19104-6323

Introduction: Low Temperature HEDM Simulations

Solid hydrogen doped with energetic impurities may form the basis for HEDM to be used in rocket propulsion. A key research priority was therefore the largescale computer simulation of impurity diffusion and recombination in HEDM in order to better understand the reasons for its stability, or instability, as the case may be. The recombination of these atomic impurities is an extremely exothermic reaction, and therefore thermodynamically favored. Theoretical developments within our research group allowed for the (otherwise impossible) quantum dynamical simulation of these systems which was necessary to properly treat the problem. Classical molecular dynamics simulations, while less computationally challenging, predict qualitatively incorrect properties for low temperature liquid and solid hydrogen because of the highly quantum nature of hydrogen matrix, and are therefore inadequate.

The immediate goal of the research project was to calculate directly from largescale computer simulation the relevant rates for the impurity recombination process. In low temperature hydrogen HEDM, quantum effects are enormous, so a highly specialized method is required for these demanding computer simulations.

This grant lasted only for one year at the University of Pennsylvania because the P.I. moved to the University of Utah.

Summary of Key Results:

The primary result was the largescale quantum calculation of the intrinsic lithium impurity recombination rate in para-hydrogen at 4K.

Gregory A. Voth, Ph.D.
Professor of Chemistry and Director of the Henry Eyring
Center for Theoretical Chemistry

Department of Chemistry University of Utah 315 S. 1400 E. RM Dock