Answers

1.1

(a)
$$\frac{\lambda_L qxr}{2\varepsilon_0 (r^2 + x^2)^{\frac{2}{3}}} \hat{\mathbf{x}}$$
 (b)
$$\frac{(2\pi r \lambda_L)q}{4\pi \varepsilon_0 r^2} \hat{\mathbf{x}} = \frac{Qq}{4\pi \varepsilon_0 r^2} \hat{\mathbf{x}}$$
 (c)
$$\frac{\rho_A R^2}{4\varepsilon_0 x^2} \hat{\mathbf{x}}$$

1.2

32 C

1.3

(a)
$$\frac{q}{4\pi r^2}\hat{\mathbf{r}}$$
 (b) $\frac{\rho_L}{2\pi r}\hat{\mathbf{r}}$ (c) $\frac{\rho_A R}{r}\hat{\mathbf{r}}$, 0 (d) $\frac{q}{2}\hat{\mathbf{r}}$ (e) $q\hat{\mathbf{r}}$

$$\mathbf{E} = \frac{\mathbf{D}}{\varepsilon_0} \text{ in all cases}$$

1.4

$$\frac{qr}{4\pi\varepsilon_0 a^3}\hat{\mathbf{r}} \quad 0 < r < a$$

$$\frac{q}{4\pi\varepsilon_0 r^2}\hat{\mathbf{r}} \qquad r \ge a$$

1.5

(a)
$$\frac{-q}{4\pi b^2}$$
 (b) $\frac{\rho_A b^2}{\varepsilon_0 r^2} \hat{\mathbf{r}}$

1.6

$$\frac{K_0 r}{3\varepsilon_0} \left(1 - \frac{3r^2}{5a^2}\right) \hat{\mathbf{r}} \quad r < a$$
(b) $8\pi a^3 K/15$
(b) $\frac{2K_0 a}{15\varepsilon_0} \hat{\mathbf{r}} \qquad r = a$

$$\frac{2K_0 a^3}{15\varepsilon_0 r^2} \hat{\mathbf{r}} \qquad r > a$$