FIRST YEAR BLOCK WEER SOLUTIONS 4 (a) (0.1)(10) = IN. (b) $(0.2)(10) - \frac{1}{12} = (1).(0.5)$ Ff= 2-0.5 = 1.5N. (c) Efdynamic remains constant = 1.5N (d) $M_{static} = \frac{F_{fmax}}{F_{N_i}} = \frac{2}{8} = 0.25$ -. $F_{fmax} = M_{shtri} \cdot F_{N} = (0.25)(1.2)(10)$ = 3N 3=mg m= 3/10 = 300 grams 2/ (a) SP = (10)(7) - (10)(5) = 20NS (b) SP10 = -20NS Ex before = 2(20)(10)2 + 2(10)(5)2 (c) = 1000 + 125 = 11255 En after = 2(10)(7)2+ 1/2(20)(9)2 -20= 20. V - 20. (10) -. DER= 1055-1125 180 = 20 V

$$20 = \frac{1}{2} \times 0.1 \times F_{\text{max}}$$

(c)
$$V^2 = u^2 + 2as$$
 Area = Wark $V^2 = 2(1000)(0.2)$ OR : Wark = $\frac{1}{2}(0.2)(100)$ $V = 20ms^{-1}$.

Power = F. v

$$V = u + a st$$

$$= (50) \cdot \left(\frac{20}{2}\right)$$

$$= 500 watts.$$

3 (e)
$$W = 26k$$

 $= 0 - \frac{1}{2}(0.05)(0)^{2}$
 $= -10 \text{ Toules}$ V
4// (a) fret= ma = $(500)(2) = \frac{1000 \text{ N}}{5 \text{ in } 0} = \frac{1000 \text{ N}}{1000}$
My sind (000) $\frac{1}{2} = \frac{1000 \text{ N}}{1000}$
Form. $\frac{1}{2} = \frac{1000 \text{ N}}{1000}$
 $\frac{1}{2} = \frac{1000 \text{ N}}{1000}$

V= 32ms-!