

# How to Ace the Data Science Coding

# 1. Sorting

|             | Time<br>Complexity | Space Complex-<br>ity | Stable | In-Place |
|-------------|--------------------|-----------------------|--------|----------|
| Bubble Sort | $O(n^2)$           | O(1)                  | Yes    | Yes      |
| Merge Sort  | $O(n \log n)$      | O(n)                  | Yes    | No       |
| Quick Sort  | $O(n \log n)$      | $O(\log n)$           | No     | Yes      |
| Heap Sort   | $O(n \log n)$      | O(1)                  | No     | Yes      |
| Tim Sort    | $O(n \log n)$      | O(n)                  | Yes    | No       |
| Bucket Sort | O(n+k)             | O(n+k)                | Yes    | No       |

#### 1.1. Merge Sort

Divide-and-conquer algorithm; stable and efficient but uses extra memory. Divides the unsorted array into smaller arrays, sorts them, and then merges them back together.

```
def merge_sort(arr):
if len(arr) > 1:
    mid = len(arr) // 2
   L = arr[:mid]
   R = arr[mid:]
   merge_sort(L) #sort left half
   merge_sort(R) #sort right half
   i = j = k = 0
           # merge sorted halfs
    while i < len(L) and j < len(R):
       if L[i] < R[i]:</pre>
           arr[k] = L[i]
           i += 1
        else:
            arr[k] = R[j]
           j += 1
       k += 1
    while i < len(L):
       arr[k] = L[i]
       i += 1
       k += 1
    while j < len(R):
        arr[k] = R[i]
       j += 1
       k += 1
```

#### 1.2. Quick sort

Fast and in-place but not stable. Partitions the array into smaller arrays around a pivot and sorts them recursively.

```
def quickSort(arr, s, e):
   if e - s + 1 <= 1:
       return
    pivot = arr[e]
    left = s # pointer for left side
    # Partition: elements smaller than pivot on left side
   for i in range(s, e):
       if arr[i] < pivot:</pre>
           tmp = arr[left]
            arr[left] = arr[i]
            arr[i] = tmp
            left += 1
    # Move pivot in-between left & right sides
    arr[e] = arr[left]
    arr[left] = pivot
    # Quick sort left side
    quickSort(arr, s, left - 1)
    # Quick sort right side
    quickSort(arr, left + 1, e)
    return arr
```

#### 1.3. Heap Sort

In-place but not stable. It is similar to selection sort where we first find the maximum element and place the maximum element at the end. Repeat for the remaining elements.

```
import heapq

def heap_sort(arr):
    heapq.heapify(arr)
    return [heapq.heappop(arr) for _ in range(len(arr))]
```

#### 1.4. Tim Sort

divides the list into small chunks, then sorts the chunks using an optimized version of insertion sort. Finally, it merges the sorted chunks in a manner similar to merge sort

```
arr.sort()
```

### 1.5. Bucket Sort

applicable if small range (like 0 - 100k), only very rare, create bucket for every value, not stable

```
def bucketSort(arr):
    # Assuming arr only contains 0, 1 or 2
    counts = [0, 0, 0]

# Count the quantity of each val in arr
for n in arr:
    counts[n] += 1

# Fill each bucket in the original array
i = 0
for n in range(len(counts)):
    for j in range(counts[n]):
        arr[i] = n
        i += 1
return arr
```

### 2. Searching

|               | Time        | Space | Requirements | Best Use-Case          |
|---------------|-------------|-------|--------------|------------------------|
| Linear Search | O(n)        | O(1)  | None         | Unsorted or small data |
| Binary Search | $O(\log n)$ | O(1)  | Sorted Array | Large, sorted<br>data  |

#### 2.1. Linear Search

goes through each element in the list sequentially until the desired element is found (or list ends)

#### 2.2. Binary Search

only on sorted arrays, repeatedly divide the sorted list into halves until the target element is found

```
def binarySearch(arr, target):
   L, R = 0, len(arr) - 1
    while L <= R:
       mid = (L + R) // 2
       if target > arr[mid]:
           L = mid + 1
        elif target < arr[mid]:</pre>
           R = mid - 1
        else:
           return mid
   return -1
```

#### 2.2.1. Find hidden number in range

```
def binarySearch(low, high):
   while low <= high:
       mid = (low + high) // 2
       if isCorrect(mid) > 0:
           high = mid - 1
        elif isCorrect(mid) < 0:</pre>
           low = mid + 1
           return mid
    return -1
# Return 1 if n is too big, -1 if too small, 0 if correct
def isCorrect(n):
   if n > 10: #hidden target value
       return 1
    elif n < 10:
       return -1
    else:
       return 0
```

#### 3. Linked Lists

## 3.1. Singly Linked Lists class ListNode: def \_\_init\_\_(self, val): self.val = val self.next = None class LinkedList: def \_\_init\_\_(self): # Init the list with a 'dummy' node which makes removing a node self.head = ListNode(-1) self.tail = self.head def insertEnd(self, val): self.tail.next = ListNode(val) self.tail = self.tail.next def remove(self, index): i = 0curr = self.head while i < index and curr: i += 1 curr = curr.next # Remove the node ahead of curr if curr and curr.next: if curr.next == self.tail: self.tail = curr curr.next = curr.next.next def print(self): curr = self.head.next while curr: print(curr.val, "u->u", end="") curr = curr.next def reverseList(self, head: Optional[ListNode]) -> Optional[ListNod • FIFO append() and popleft() new list = None current = head

#### 3.2. Doubly Linked Lists

while current:

return new list

next node = current.next current.next = new\_list

new\_list = current current = next\_node

```
class ListNode:
   def __init__(self, val):
       self.val = val
       self.next = None
       self.prev = None
# Implementation for Doubly Linked List
class LinkedList:
   def init (self):
       # Init the list with 'dummy' head and tail nodes which makes
       # edge cases for insert & remove easier.
       self.head = ListNode(-1)
       self.tail = ListNode(-1)
       self.head.next = self.tail
       self.tail.prev = self.head
```

#### 3.3. Queue

from collections import deque

| Command                             | Explanation                                                       | Use-Case                                                  |
|-------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|
| append(x)                           | Adds x to the right side of the deque.                            | Appending an element at the en                            |
| appendleft(x)                       | Adds $x$ to the left side of the deque.                           | Prepending an element at the b ginning.                   |
| pop()                               | Removes and returns an element from the right side of the deque.  | Removing the last element.                                |
| popleft()                           | Removes and returns an element from the left side of the deque.   | Removing the first element.                               |
| <pre>extend(iterable)</pre>         | Adds all elements from iterable to the right side of the deque.   | Extending the deque with multipelements at the end.       |
| extendleft(itera                    | a Madds all elements from iterable to the left side of the deque. | Extending the deque with multipelements at the beginning. |
| rotate(n)                           | Rotates the deque n steps to the right.                           | Rotating all elements $n$ steps the right.                |
| count(x)                            | Counts the number of deque elements equal to $x$ .                | Counting occurrences of a specific element.               |
| remove(value)                       | Removes the first occurrence of value.                            | Removing a specific element value.                        |
| reverse()                           | Reverses the elements of the deque in-place.                      | Reversing the order of elements.                          |
| clear()                             | Removes all elements from the deque.                              | Clearing all elements from the deque.                     |
| <pre>index(x[, start[, end]])</pre> | Returns the position of $\boldsymbol{x}$ in the deque.            | Finding the index of a specific ement.                    |

- LIFO append() and pop()

#### 4. Trees

#### 4.1. Binary Trees

each node two children, no cycles allowed

class TreeNode: def init (self. val): self.val = val self.left = None self.right = None

#### 4.1.1. Delete nodes

def delete\_nodes(root, to\_delete): Deletes nodes from a binary tree given their values. - root: The root of the binary tree. - to delete: A set of node values to be deleted. - The root of the modified tree. if root is None: return None # If the current node should be deleted if root.val in to\_delete: # Perform extra operations on the node to be deleted # Delete the node and return None return None # Recursively delete nodes in the left and right subtrees root.left = delete\_nodes(root.left, to\_delete) root.right = delete\_nodes(root.right, to\_delete) return root

#### Recursion:

- passing info downwards by arguments
- passing info upwards by return value

#### 4.2. Binary Search Tree

sorted property: every left child must be smaller and every right child greater than its parent, no duplicates

## 4.2.1. Search

Time:  $O(\log n)$ 

def search(root, target): if not root: #if root NONE/NULL return False if target > root.val: return search (root.right, target) elif target < root.val:</pre> return search(root.left, target) 6186. return True

#### 4.2.2. Insert

# Insert a new node and return the root of the BST. def insert(root, val): if not root: return TreeNode(val) if val > root.val: #call insert on right subtree root.right = insert(root.right, val) elif val < root.val: #call insert on left subtree root.left = insert(root.left, val) return root

#### 4.2.3. Remove

# Return the minimum value node of the BST. def minValueNode(root): curr = root while curr and curr.left: #while current node and left node is not curr = curr.left return curr # Remove a node and return the root of the BST. def remove(root, val): if not root: return None if val > root.val: root.right = remove(root.right, val) elif val < root.val: root.left = remove(root.left, val) else: if not root.left: # if no left child, return righ child return root.right elif not root.right: return root.left else: # replace with smallest value in subtree and remove small minNode = minValueNode(root.right) root.val = minNode.val root.right = remove(root.right, minNode.val) return root

#### 4.3. Depth-First Search

visit left deepest node, travers up, ...

Time: O(n)

def inorder(root): if not root: return inorder (root.left) print(root.val) inorder (root.right)

#### 4.4. Breadth-First Search

Time: O(n)

from collections import deque def bfs(root): queue = deque() #FIFO queue if root: queue.append(root) level = 0 while len(queue) > 0: print("level:", level) for i in range(len(queue)): curr = queue.popleft() print(curr.val) if curr.left: queue.append(curr.left) if curr.right: queue.append(curr.right) level += 1

**4.5.** Backtracking
Determine if path exists (e.g. without any zeros), recursively try every path, Time:

```
def leafPath(root, path):
    if not root or root.val == 0:
        return False
    path.append(root.val)
    if not root.left and not root.right:
        return True
    if leafPath(root.left, path):
        return True
    if leafPath(root.right, path):
        return True
    path.pop() # backtrack because path didnt work
    return False
```

# 5. Heap/Priority Queue

pop values based on priority (min or max)

- structure property: complete binary tree (every single level in the tree is full, except the last level), missing nodes are at the end of level (right side)
- order property: parent is always smaller than its children

```
leftChild of i = heap[2 * i]
rightChild of i = heap[(2 * i) + 1]
parent of i = heap[i // 2]
```

### 5.1. Implemented Python commands

| Command                                  | Explanation                                                                                 | Use-Case                                                      |
|------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| heapify(iterable)                        | Transforms the iterable into a valid heap, in-place.                                        | Creating a heap from an existing list in $O(n)$ time.         |
| heappush(heap, elem)                     | Adds an element to the heap while maintaining the heap property.                            | Adding a new element to a heap.                               |
| heappop(heap)                            | Removes and returns the smallest element from the heap.                                     | Extracting the minimum element from a heap.                   |
| heappushpop(heap, elem)                  | Pushes a new element on the heap, then pops and returns the smallest element from the heap. | Efficiently adding an element and then removing the smallest. |
| heapreplace(heap, elem)                  | Pops and returns the smallest element, and then adds the new element to the heap.           | Replacing the smallest element in a heap with a new value.    |
| heapify(heap)                            | Transforms a list into a heap, in-place.                                                    | Transforming an unsorted list into a heap.                    |
| <pre>nsmallest(n, iterable[, key])</pre> | Returns the n smallest elements from the iterable, in ascending order.                      | Finding the n smallest elements in a collection.              |
| <pre>nlargest(n, iterable[, key])</pre>  | Returns the n largest elements from the iterable, in descending order.                      | Finding the n largest elements in a collection.               |

# 6. Graphs

 $Edges \le Vertices(nodes)^2 \rightarrow \text{every pointer can go to everywhere (cycles allowed)}$ Represent as

- Matrix: grid graph
- Adjacency Matrix (less common)
- Adjacency List: neighbors as list (no cycles)

#### 6.1. Graphs as Adjacency List

neighbors as list (no cycles)

```
from collections import deque
# GraphNode used for adjacency list
class GraphNode:
   def __init__(self, val):
        self.val = val
        self.neighbors = []
# Or use a HashMap
adjList = { "A": [], "B": [] }
# Given directed edges, build an adjacency list
edges = [["A", "B"], ["B", "C"], ["B", "E"], ["C", "E"], ["E", "D"]]
adjList = {}
for src, dst in edges:
   if src not in adjList:
        adjList[src] = []
   if dst not in adjList:
        adjList[dst] = []
    adjList[src].append(dst)
# Count paths (backtracking)
def dfs(node, target, adjList, visit):
   if node in visit:
       return 0
   if node == target:
       return 1
    count = 0
    visit.add(node)
   for neighbor in adjList[node]:
        count += dfs(neighbor, target, adjList, visit)
    visit.remove(node)
    return count
# Shortest path from node to target
def bfs(node, target, adjList):
    length = 0
    visit = set()
    visit.add(node)
    queue = deque()
    queue.append(node)
    while queue:
        for i in range(len(queue)):
            curr = queue.popleft()
            if curr == target: #reached target
                return length
            for neighbor in adjList[curr]:
                if neighbor not in visit:
                    visit.add(neighbor)
                    queue.append(neighbor)
        length += 1
    return length
```

#### 6.2. Matrix as Graph

#### 6.2.1. Matrix Breadth-First Search (BFS)

explores all neighbor nodes before moving on to nodes at the next depth level  $\Rightarrow$  can find shortest paths between two nodes if unweighted

- Time: *O*(*nm*)
- Space: O(V)

```
# Shortest path from top left to bottom right
def bfs(grid):
    ROWS, COLS = len(grid), len(grid[0])
   visit = set()
    queue = deque()
    queue.append((0, 0))
    visit.add((0, 0))
   length = 0
    while queue:
       for i in range(len(queue)):
            r, c = queue.popleft()
            if r == ROWS - 1 and c == COLS - 1:
                return length #reached goal
            neighbors = [[0, 1], [0, -1], [1, 0], [-1, 0]]
            for dr, dc in neighbors:
                if (min(r + dr, c + dc) < 0 or #not out of bounds
                   r + dr == ROWS or c + dc == COLS or
                    (r + dr, c + dc) in visit or grid[r + dr][c + dc] ==
                queue.append((r + dr, c + dc))
                visit.add((r + dr, c + dc))
        length += 1
```

**6.2.2. Matrix Depth-First Search (DFS)** first as deep as possible before backtracking, useful for scenarios where you want to go as deep as possible into the tree/graph, like solving mazes

- Time:  $O(4^{nm})$
- Space: O(n+m)

```
# Matrix (2D Grid)
grid = [[0, 0, 0, 0],
        [1, 1, 0, 0],
        [0. 0. 0. 1].
        [0, 1, 0, 0]]
# Count paths (backtracking)
def dfs(grid, r, c, visit): #r, c: starting row and col,
    ROWS, COLS = len(grid), len(grid[0])
    if (\min(r, c) < 0 \text{ or}
        r == ROWS or c == COLS or #dont move out of bounds
        (r, c) in visit or grid[r][c] == 1): #reach visited or blocked po
        return 0 # no valid path
    if r == ROWS - 1 and c == COLS - 1:
        return 1 #reach last row and col
    visit.add((r. c))
    count += dfs(grid, r + 1, c, visit)
    count += dfs(grid, r - 1, c, visit)
    count += dfs(grid, r, c + 1, visit)
    count += dfs(grid, r, c - 1, visit)
    visit.remove((r, c))
    return count
print(dfs(grid, 0, 0, set()))
```

#### 7. Common problems

#### 7.1. Detect cyles in a list

keeping track of visited nodes results in  $O(n^2$  time, improve by using two pointers moving at different speeds to detect a cycle. This approach has O(1) space complexity and O(n) time complexity.

def hasCycle(self, head: Optional[ListNode]) -> bool:
 if not head:
 return False

 slow, fast = head, head.next

while fast is not None and fast.next is not None:
 if slow == fast:
 return True

 slow = slow.next
 fast = fast.next.next

return False

# **7.2.** Dynamic Programming: Fibonacci if recursively $O(2^n)$ , but with DP O(n)

# Brute Force def bruteForce(n): if n <= 1: return n return bruteForce(n - 1) + bruteForce(n - 2) # Memoization def memoization(n, cache): if n <= 1: return n if n in cache: return cache[n] cache[n] = memoization(n - 1) + memoization(n - 2)return cache[n] # Dynamic Programming def dp(n): if n < 2: return n dp = [0, 1]i = 2 while i <= n: tmp = dp[1]dp[1] = dp[0] + dp[1]dp[0] = tmp i += 1 return dp[1]

#### 7.3. Dynamic Programming: Longest Common Subsequence

naive recursive has exponential time complexity, but reduced to polynomial

```
# Time: O(2^{(n + m)}). Space: O(n + m)
def dfs(s1, s2):
   return dfsHelper(s1, s2, 0, 0)
def dfsHelper(s1, s2, i1, i2):
   if i1 == len(s1) or i2 == len(s2):
       return 0
   if s1[i1] == s2[i2]:
       return 1 + dfsHelper(s1, s2, i1 + 1, i2 + 1)
        return max(dfsHelper(s1, s2, i1 + 1, i2),
                dfsHelper(s1, s2, i1, i2 + 1))
# Time: O(n * m), Space: O(n + m)
def memoization(s1, s2):
   N, M = len(s1), len(s2)
   cache = [[-1] * M for _ in range(N)]
   return memoHelper(s1, s2, 0, 0, cache)
def memoHelper(s1, s2, i1, i2, cache):
   if i1 == len(s1) or i2 == len(s2):
       return 0
    if cache[i1][i2] != -1:
       return cache[i1][i2]
   if s1[i1] == s2[i2]:
        cache [i1] [i2] = 1 + memoHelper(s1, s2, i1 + 1, i2 + 1, cache)
        cache[i1][i2] = max(memoHelper(s1, s2, i1 + 1, i2, cache),
                memoHelper(s1, s2, i1, i2 + 1, cache))
    return cache[i1][i2]
# Time: O(n * m), Space: O(n + m)
def dp(s1, s2):
   N. M = len(s1). len(s2)
   dp = [[0] * (M+1) for _ in range(N+1)]
   for i in range(N):
       for j in range(M):
            if s1[i] == s2[i]:
                dp[i+1][j+1] = 1 + dp[i][j]
            else:
                dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j])
   return dp[N][M]
# Time: O(n * m). Space: O(m)
def optimizedDp(s1, s2):
   N, M = len(s1), len(s2)
    dp = [0] * (M + 1)
    for i in range(N):
       curRow = [0] * (M + 1)
       for j in range(M):
            if s1[i] == s2[j]:
                curRow[j+1] = 1 + dp[j]
                curRow[j+1] = max(dp[j + 1], curRow[j])
        dp = curRow
    return dp[M]
```

#### 7.4. Knapsack Problem

given a set of items, each with a weight and a value. You have a knapsack with a fixed carrying capacity (maximum weight it can hold). The goal is to select a subset of the items in such a way that their combined weight is less than or equal to the knapsack's capacity, and their combined value is maximized.

```
def knapsack(W, wt, val, n):
    dp = [[0 for _ in range(W + 1)] for _ in range(n + 1)]

for i in range(n + 1):
    for w in range(W + 1):
        if i == 0 or w == 0:
            dp[i][w] = 0
        elif wt[i-1] <= w:
            dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w])
        else:
            dp[i][w] = dp[i-1][w]

return dp[n][W]</pre>
```

#### 7.5. Detonate the Maximum Bombs

Convert list to graph based on condition and perform bfs on graph.

```
def maximumDetonation(self, bombs: List[List[int]]) -> int:
    graph = collections.defaultdict(list)
    n = len(bombs)
    # Build the graph
    for i in range(n):
        for j in range(n):
           if i == i:
                continue
            xi, yi, ri = bombs[i]
            xi, vi, _ = bombs[i]
           # Create a path from node i to node j, if bomb i detonates bo
           if ri ** 2 >= (xi - xj) ** 2 + (yi - yj) ** 2:
                graph[i].append(j)
       queue = collections.deque([i])
       visited = set([i])
       while queue:
           cur = queue.popleft()
           for neib in graph[cur]:
                if neib not in visited:
                    visited.add(neib)
                    queue.append(neib)
        return len(visited)
    answer = 0
   for i in range(n):
        answer = max(answer, bfs(i))
    return answer
```

#### 7.6. Parallel Course

Convert relation list into graph, with additional counter that prerequisites are fulfilled

def minimumSemesters(self. N: int. relations: List[List[int]]) -> int: graph = {i: [] for i in range(1, N + 1)} in count = {i: 0 for i in range(1, N + 1)} # or in-degree for start\_node, end\_node in relations: graph[start\_node].append(end\_node) in\_count[end\_node] += 1 queue = [] # we use list here since we are not # poping from front the this code for node in graph: if in\_count[node] == 0: queue.append(node) studied count = 0 # start learning with BFS while queue: # start new semester step += 1 next\_queue = [] for node in queue: studied count += 1 end\_nodes = graph[node] for end\_node in end\_nodes: in\_count[end\_node] -= 1 # if all prerequisite courses learned if in\_count[end\_node] == 0: next\_queue.append(end\_node) queue = next\_queue return step if studied\_count == N else -1

#### 7.7. Height of Binary Tree After Subtree Removal Queries

Convert relation list into graph, with additional counter that prerequisites are fulfilled

def treeQueries(self, root: Optional[TreeNode], queries: List[int]) -> List[int]: #each node stores (value, max\_height to left + own height, max\_height to right + own height) def get\_height(root, current): if not root: return [0, 0] else: left = get\_height(root.left, current + 1) right = get\_height(root.right, current + 1) root.val = [root.val, current + max(left), current + max(right)] return [max(left) + 1, max(right) + 1] #traverse the tree and store the solution for all subtrees #carry stores the maximum height so far def gen\_sol(root, carry, dicts): if root.left: dicts[root.left.val[0]] = max(carry, root.val[2]) gen\_sol(root.left, max(carry, root.val[2]), dicts) if root.right: dicts[root.right.val[0]] = max(carry, root.val[1]) gen\_sol(root.right, max(carry, root.val[1]), dicts) dicts = {} get height(root, 0) gen\_sol(root, -1, dicts) res = [] #get solutions from the dictionary for element in queries: res.append(dicts[element]) return res

#### 7.8. Water and Jug Problem BFS with always possible actions

def canMeasureWater(self, jug1Capacity: int, jug2Capacity: int, targetCapacity: int) -> bool: queue = deque([0]) visit = set() steps = [jug1Capacity, -jug1Capacity, jug2Capacity, -jug2Capacity] while queue: cur = queue.popleft() for step in steps: total = cur + step if total == targetCapacity: return True if total not in visit and \ 0 <= total <= jug1Capacity + jug2Capacity:</pre> visit.add(total) queue.append(total) return False