Misura della velocità del suono in aria

Caputo, Crismale, Panteghini Tavolo LAB 1

Abstract

In questo esperimento si studia la propagazione delle onde sonore all'interno di una bottiglia di vetro e il comportamento dell'aria.

Introduzione

Abbiamo riempito la bottiglia di vetro con dell'acqua raggiungendo un'altezza di 2,8 cm dal fondo e innalzando il livello dell'acqua di 2 cm alla volta, fino ad arrivare a 16,8 cm. Utilizzando il software Friture, per ogni altezza, abbiamo misurato la frequenza delle onde sonore emesse soffiando nella bottiglia.

Apparato sperimentale

Per lo svolgimento di questo esperimento sono stati utilizzati una bottiglia di vetro (a = 3.14 cm^2 , A = 56.75 cm^2 , L' = 26.4 cm, L = 16.8 cm, l = 9.6 cm), un righello e il software "Friture" per la misurazione della frequenza delle onde sonore.

Analisi dei dati

Facendo riferimento alla suddivisione citata nell'introduzione, abbiamo rilevato le frequenze delle onde sonore, ottenute soffiando nella bottiglia, con il software "Friture". Nella seguente tabella sono riportati i valori ottenuti:

FREQUENZA (Hz)	DISTANZA TAPPO- LIVELLO DELL'ACQUA (cm)
123	21.6
134.8	19.6
146.5	17.6
164.1	15.6
187.5	13.6
217	11.6
293	9.6

Non abbiamo ripetuto l'esperimento più volte perché, data la poca sensibilità del software utilizzato, i valori ottenuti ripetendo le misurazioni coincidevano; di conseguenza non è stato possibile calcolare le incertezze statistiche.

Riportiamo nel seguente grafico le lunghezze in funzione di $\frac{1}{frequenza^2}$ con i rispettivi errori sistematici. Notiamo che i punti ricavati sperimentalmente hanno un andamento lineare, effettuiamo quindi il fit con una retta ottenendo i seguenti valori $c = 2.299 \cdot 10^5$ e l = 6.896. Dunque possiamo calcolare la velocità del suono attraverso la seguente relazione :

$$v_s = 2\pi \sqrt{\frac{Acl}{a}} = 33615.99cm/s = 336.16 \, m/s$$

Calcoliamo l'errore relativo a v_s :

$$\sigma_{v_s} = \sqrt{\left(\frac{\partial v_s}{\partial c}\right)^2 \cdot (\sigma_c)^2} = \sqrt{\left(\frac{\pi A l}{\sqrt{a A l c}}\right)^2 \cdot (\sigma_c)^2} = 1029.91 \text{ cm/s} \approx 10.30 \text{ m/s}$$

Pertanto il valore ottenuto è $v_s = 336.16 \pm 10.30 \, m/s$

Determiniamo l'errore percentuale confrontando il valore ottenuto con quello aspettato

$$\varepsilon_{\%} = \frac{\left| v_{s \text{ atteso}} - v_{s \text{ sperimentale}} \right|}{v_{s \text{ atteso}}} \cdot 100 = 1.99\%$$

Conclusioni

Notiamo che il valore aspettato rientra nel range di valori ottenuti sperimentalmente ed essendo $\varepsilon_{\%}$ molto piccolo il risultato ottenuto è una buona approssimazione della velocità del suono.