Circulation theory of enzyme kinetics

Yuhao Jiang

Date: July 24, 2021

We consider the following m-step($n \ge 2$) enzyme kinetics model:

$$E + S \rightleftharpoons ES \rightleftharpoons EP_1 \rightleftharpoons EP_2 \rightleftharpoons \cdots EP_{m-2} \rightleftharpoons E + P$$
 (1)

where E is an enzyme turning the substrate S into the product P. From the perspective of a single enzyme molecule, this enzyme kinetics can be modeled as n-step Markov chain $(\xi_l)_{l\geq 0}$, with finite state space S defined on some space (Ω, \mathcal{F}, P) . When n=2, this Markov chain only have two state E and ES, we say that the state space $S=\{1,2\}$.

Definition 0.1. Let \mathbb{Z} be the set of integers, and a periodic function f which maps \mathbb{Z} to S is called circuit function. If s is the smallest positive integer which satisfied f(n+s) = f(n) for $\forall n \in \mathbb{Z}$, then we called it the period of f.

Definition 0.2. Two circuit functions f and g in S are called equivalent if there exists some $m \in \mathbb{Z}$ such that g(n) = f(n+m) for $\forall n \in \mathbb{Z}$.

Definition 0.3. For a circuit function f in S with period s that satisfies $f(1) = i_1$, $f(2) = i_2$, $f(3) = i_3$. The equivalence class that f belongs is a cycle $c = (i_1, i_2, \dots i_s)$.

Therefore, according to this definitions, $c_1 = (1, 2, 3), c_2 = (3, 1, 2)$ and $c_3 = (2, 3, 1)$ represent the same cycle.

For presentation purposes, if the order sequence i_1, i_2, \ldots, i_s occurs in the cycle c continuously, we denote that $[i_1, i_2, \ldots, i_s] \in c$. Specially, if $[i_1] \in c$, the point i_1 occurs in c, and $[i_1, i_2] \in c$ denotes the edge i_1i_2 exists in the cycle c. For the cycle $c_1 = (1, 2)$, we use k_{12} to denote the number of cycle c_1 .

Definition 0.4. Let $C_n(\omega)$ be the class of cycles occurring along the sample path $(\xi_l)_{l\geq 0}$ until time n. Then we use C_{∞} to represent the limit of C_n as $n\to\infty$. This convergence has been proofed in ?.

Definition 0.5. Let $k_{c,n}$ represent the number of time that cycle c is formed by a Markov chain up to time n. Then the sample circulation J_n^c along cycle c by time t is defined as

$$J_n^c = \frac{1}{n} k_{c,n} \quad \forall c \in \mathcal{C}_{\infty}$$

and the circulation w^c along cycle c is a nonnegative real number defined as the following almost sure limit:

$$w_c = \lim_{n \to \infty} J_n^c \quad \forall c \in \mathcal{C}_{\infty}, \quad a.s.$$

which represents the number of times that cycle c ic formed per unit time. Let $J_n = (J_n^c)_{c \in C_\infty}$ and $w = (w_c)_{c \in C_\infty}$.

For the enzyme kinetics model, if the state space $S = \{1, 2, ..., m\}$, then \mathcal{C}_{∞} has 2m + 2 cycles, including n 1-state cycles, n two-state cycles and two n-state cycles

Let |c| denotes the length of cycle c, and $E_m = \{\mu = (\mu_c)_{c \in \mathcal{C}_\infty} \in [0,1]^r : \sum_{c \in \mathcal{C}_\infty} |c| \mu_c = 1\}$ for m-state Markov chains, then the circulation distribution $w = (w_c)_{c \in \mathcal{C}_\infty} \in E_m$.

Definition 0.6. For m-state Markov chains, we say that J_n^c satisfies a large deviation principle with rate n and good rate function $I: E_m \to [0, \infty]$ if:

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(J_n^c = \nu_c, c \in \mathcal{C}_{\infty}) = -I(\nu), \quad \forall \nu \in E_m \to$$
 (2)

where $\sum_{c\in\mathcal{C}_{\infty}}|c|\nu_{c}=1$, and $\nu=(\nu_{c})_{c\in\mathcal{C}_{\infty}}\in E_{m}$.

1 Large deviation of circulation for finite Markov chains

1.1 Large deviation of circulation for finite state Markov chains

Figure 1: m-state transition diagram

Theorem 1.1. For the m-state Markov chains, the good rate function is

$$I_{m}^{c}(\nu) = \left[h(\nu_{12} + \nu_{1m} + \nu^{+} + \nu^{-}) - h(\nu_{12}) - h(\nu_{1m}) + h(\nu^{+}) + h(\nu^{-})\right] + \sum_{i \in S} \left[h(\nu^{i}) - h(\nu^{i} - \nu_{i})\right]$$

$$+ \max_{\nu_{ij}^{+} + \nu_{ij}^{-} = \nu_{ij}, i \neq 1, j \neq m} \left\{ \left[h(\nu_{12} + \nu_{23}^{+} + \nu^{+}) - h(\nu_{23}^{+}) - h(\nu_{12} + \nu^{+})\right] + \left[h(\nu_{34}^{+} + \nu_{23}^{+} + \nu^{+}) - h(\mu_{34}^{+}) - h(\nu_{23}^{+} + \nu^{+})\right] + \cdots + \left[h(\nu_{m-1,m}^{+} + \nu_{m-2,m-1}^{+} + \nu^{+}) - h((\nu_{m-1,m}^{+}) - h(\nu_{m-2,m-1}^{+} + \nu^{+})\right] + \left[h(\nu_{1m} + \nu_{m-1,m}^{-} + \nu^{-}) - h(\nu_{m-1,m}^{-}) - h(\nu_{1m}^{-} + \nu^{-})\right] + \left[h(\nu_{m-1,m}^{-} + \nu_{m-2,m-1}^{-} + \nu^{-}) - h(\nu_{m-2,m-1}^{-}) - h(\nu_{m-1,m}^{-} + \nu^{-})\right] + \cdots + \left[h(\nu_{23}^{-} + \nu_{34}^{-} + \nu^{-}) - h(\nu_{23}^{-}) - h(\nu_{34}^{-} + \nu^{-})\right] + \sum_{i,j} \left(\sum_{c \geq [i,j]} \nu_{c}\right) \log p_{ij}$$

Proof. According to contraction principle, the rate function exists, we know:

$$I_m^c(\nu) = \frac{1}{n} \log \mathcal{E}(G^m(k)) \prod_{i,j} p_{ij}^{\sum_{c \ni [i,j]} k_c}.$$

The accumulation part in $\mathcal{E}(G^m(k))$ has no more than n^{m-1} items, and $\frac{1}{n}\log n^{m-1} = O(\frac{\log n}{n})$. The other means for simplification has been mentioned in Theorem 1.1 many times.