Homework 0 - Machine Learning

Kshitij Tayal, Student ID # 5397500

09/13/2018

Problem 1

Yes

Problem 2

- (i) Introduction to Data Mining
- (ii) Yes, Maths Department, MATH 5651
- (iii) Yes, Computer Science, CSCI 5304
- (iv) No, but currently taking EE 5239 (Introduction to Nonlinear Optimization)

Answer 3

 $w^* = (cI + X^T X)^{-1} X^T Y$ where I is n * n identity matrix.

Answer 4

Maximum of $w^T A w$ is $\lambda_{max} ||w||_2^2$

Minimum of $w^T A w$ is $\lambda_{min} ||w||_2^2$

where λ_{max} is maximum eigenvalue for A and λ_{min} is minimum eigenvalue for A.

Answer 5

Probability density function of a multivariate Gaussian distribution is

$$\mathcal{N}(x|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

 $\mathcal{N}(x|\mu,\,\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(x-\mu)^T\boldsymbol{\Sigma}^{-1}(x-\mu)\right)$ where μ is a n dimensional mean vector, $\boldsymbol{\Sigma}$ is a n*n co-variance matrix, and $|\boldsymbol{\Sigma}|$ denotes the determinant of the property of the pro minant of Σ

Expression for multivariate Gaussian Distribution in terms of mean and precision matrix is

$$\mathcal{N}(x|\mu, \boldsymbol{\theta}) = \frac{|\boldsymbol{\theta}|^{1/2}}{\sqrt{(2\pi)^n}} \exp\left(-\frac{1}{2}(x-\mu)^T \boldsymbol{\theta}(x-\mu)\right)$$

where μ is a n dimensional mean vector, $\boldsymbol{\theta}$ is a n * n inverse co-variance matrix, and $|\boldsymbol{\theta}|$ denotes the determinant of θ