- So far, we have discarded 3D object detection and only remain **3D Semantic Segmentation** (lidar segmentation).
- Domain adaptation is still preserved; We train our model with both labeled source data and unlabeled target data and test our model on target\_test.
- We adopt nearly the same architecture as xMUDA, except for the head part, where xMUDA introduces "Dual Head" but we only use "Vinilla Fusion". The backbones are the same: UNet for 2D images and SparseConvNet for 3D lidar points.
- The segmentation labels we use are released after xMuda. So we have rerun xMUDA with the new labels. See the results.
- We have run baseline for our "Vanilla Fusion". Though seemingly strange, but it has outperformed xMUDA. See the results.

- We have tried to add contrastive losses on both source and target training data. But it doesn't give us a better result on target\_test. This corresponds to config meta "contrast\_usa". See the results.
- So at this point we return to contrastive loss on a single domain to check its effectiveness on source\_test. This corresponds to config meta "src\_ctr\_usa". See the results.

#### **Nuscenes Dataset Domain Splits**

- Two Source-Target pairs
  - (USA, Singapore) & (Day, Night)
- Two splits on source
  - Source\_train & Source\_test
- Three splits on target
  - Target train, Target test & Target val
- All of the experiments (results shown in tables) up to now are carried on these splits!



Table 4: Number of frames for the 3 splits.

## **Config Metas:**

• baseline usa

$$L = L_{seg}$$

• src\_ctr\_usa

$$L = L_{seg} + \lambda * L_{src\_contrast}$$

• only\_ctr\_usa

$$L = L_{src\_contrast}$$
, or  $L = L_{src\_contrast} + L_{tgt\_contrast}$ 

• contrast usa

$$L = L_{seg} + \lambda * (L_{src\_contrast} + L_{tgt\_contrast})$$

# **Architectures(ours)**



Vanilla Fusion(Baseline)



**Vanilla Fusion with contrastive loss** 

# Architectures(xMuda)



**Dual Head with KL Divergence** 



**Single Head without KL Divergence** 

## 03/28/2021

• src\_ctr\_usa\_v3/v4

## 03/25/2021

- src\_ctr\_usa\_v1/v2
- only\_ctr\_usa\_v0/v1

# contrastive loss ablation study on single source domain

| Configs         | Source_test (mIOU) | Target_test (mIOU) |
|-----------------|--------------------|--------------------|
| src ctr usa v0  | 68.42              | 61.14              |
| src ctr usa v1  | 68.80              | 59.90              |
| src ctr usa v2  | 65.55              | 52.04              |
| src ctr usa v3  | 66.44              | 54.68              |
| src ctr usa v4  | 63.66              | 52.85              |
| baseline usa v1 | 68.01              | 63.74              |
|                 |                    |                    |
|                 |                    |                    |



src\_ctr\_usa\_v0:

- $\lambda = 0.01$
- #pts = 1024, # groups = 1
- batch\_size=8
- $L = L_{seg} + \lambda * L_{src\_contrast}$



src\_ctr\_usa\_v1:

- $\lambda = 0.1$
- #pts = 1024, # groups = 1
- batch\_size=8
- $L = L_{seg} + \lambda * L_{src\_contrast}$



src\_ctr\_usa\_v2:

- $\lambda = 0.5$
- #pts = 1024, # groups = 1
- batch\_size=8
- $L = L_{seg} + \lambda * L_{src\_contrast}$



src\_ctr\_usa\_v3:

- $\lambda = 0.3$
- #pts = 1024, # groups = 1
- batch\_size=8
- $L = L_{seg} + \lambda * L_{src\_contrast}$



src\_ctr\_usa\_v4:

- $\lambda = 1.0$
- #pts = 1024, # groups = 1
- batch\_size=8
- $L = L_{seg} + \lambda * L_{src\_contrast}$





#### 03/24/2021

- contrast\_usa\_v3/v4
- src\_contrast\_usa\_v0

#### 03/20/2021

- baseline\_usa\_v1(baseline2\_usa)
- contrast usa v1

#### 03/19/2021

- Baseline\_usa\_v0(baseline1\_usa)
- Contrast\_usa\_v0

| USA/Singapore                                        |                                                                  |                    |  |  |
|------------------------------------------------------|------------------------------------------------------------------|--------------------|--|--|
|                                                      | Config                                                           | Target_test (mIOU) |  |  |
| xMUDA                                                | $\frac{\text{dual head} + \text{KL div}}{2\text{D} + 3\text{D}}$ | 62.53              |  |  |
| xMUDA baseline                                       | single head 2D+3D                                                | 62.10              |  |  |
| Vanilla fusion baseline                              | baseline usa v0 (B=4)                                            | 61.57              |  |  |
|                                                      | baseline_usa_v1 (B=8)                                            | 63.74              |  |  |
| Contrastive loss on both source_train & target_train | contrast usa v0                                                  | 52.67              |  |  |
|                                                      | contrast usa v1                                                  | 61.69              |  |  |
|                                                      | contrast_usa_v3                                                  | < 60.00            |  |  |
|                                                      | contrast_usa_v4                                                  | < 60.00            |  |  |

#### Hyperparameters to fine-tune:

- $\lambda$  (0.1, 0.01, 0.005, 0.001)
- Temparature (100, 10, 1, 0.5, 0.1, 0.05)
- #pts in each group (64, 256, 1024, 2048) & #groups in ea
  - $n_{pos}$ :  $n_{neg} = 1$ : (#pts 1)
- Transformation after representation(Linear, Non-Linear,
- Optimizers(AdamW, Adam, SGD+Momentum)

#### **Meta Config:**

contrast usa:

- batch size=8
- $L = L_{seg} + \lambda * (L_{src\_contrast} + L_{tgt\_contrast})$

# **Sub Configs:**

contrast\_usa\_v0:

- $\lambda = 0.1$
- #pts = 1024, #groups = 1

contrast\_usa\_v1:

- $\lambda = 0.01$
- #pts = 1024, # groups = 1

contrast\_usa\_v3:

- $\lambda = 0.01$
- #pts = 128, # groups = 8

contrast\_usa\_v4:

- $\lambda = 0.01$
- #pts = 2048, #groups = 1



baseline\_usa\_v1:

- batch\_size=8(the same as xmuda)
- $L = L_{seg}$





Vanilla Fusion(Baseline)

baseline\_usa\_v0:

- batch\_size=4
- $L = L_{seg}$





contrast\_usa\_v0:

- $\lambda = 0.1$
- batch\_size=8
- $L = L_{seg} + \lambda * (L_{src\_contrast} + L_{tgt\_contrast})$



contrast\_usa\_v1:

- $\lambda = 0.01$
- batch\_size=8
- $L = L_{seg} + \lambda * (L_{src\_contrast} + L_{tgt\_contrast})$

#### 03/16/2021

- Xmuda new baseline (trained with new seg labels)
- "Multi-modal Multi-Task fusion Ver2" baseline
- Move xMuda network structure to our framework; train vanilla fusion

| xMuda, reproduce results with new seg labels |                                 |                                  |                                |           |          |        |
|----------------------------------------------|---------------------------------|----------------------------------|--------------------------------|-----------|----------|--------|
| Train/test                                   | USA/Singapore                   |                                  |                                | Day/night |          |        |
| Segmentation (mloU)                          | Xmuda<br>(dual head,<br>KL_div) | Baseline<br>(train on<br>source) | Oracle<br>(train on<br>target) | Xmuda     | Baseline | Oracle |
| 2D                                           | 57.04                           | 54.03                            | 70.83                          | 49.62     | 38.81    | 39.30  |
| 3D                                           | 53.57                           | 48.41                            | 65.55                          | 45.55     | 43.75    | 46.84  |
| 2D+3D                                        | 62.53                           | 62.10                            | 75.40                          | 52.99     | 48.63    | 43.39  |

xMuda, old results showed in paper (seg label obtained by marking points in bounding boxes)

|                                              | USA/Singapore        |                      | Day/Night            |                      |                      | A2D2/SemanticKITTI    |                       |                      |                      |
|----------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|
| Method                                       | 2D                   | 3D                   | softmax avg          | 2D                   | 3D                   | softmax avg           | 2D                    | 3D                   | softmax avg          |
| Baseline (source only)                       | 53.4                 | 46.5                 | 61.3                 | 42.2                 | 41.2                 | 47.8                  | 36.0                  | 36.6                 | 41.8                 |
| Deep logCORAL [21]<br>MinEnt [29]<br>PL [17] | 52.6<br>53.4<br>55.5 | 47.1<br>47.0<br>51.8 | 59.1<br>59.7<br>61.5 | 41.4<br>44.9<br>43.7 | 42.8<br>43.5<br>45.1 | <b>51.8</b> 51.3 48.6 | 35.8*<br>38.8<br>37.4 | 39.3<br>38.0<br>44.8 | 40.3<br>42.7<br>47.7 |
| xMUDA<br>xMUDA <sub>PL</sub>                 | 59.3<br><b>61.1</b>  | 52.0<br><b>54.1</b>  | 62.7<br>63.2         | 46.2<br><b>47.1</b>  | 44.2<br>46.7         | 50.0<br>50.8          | 36.8<br><b>43.7</b>   | 43.3<br><b>48.5</b>  | 42.9<br><b>49.1</b>  |
| Oracle                                       | 66.4                 | 63.8                 | 71.6                 | 48.6                 | 47.1                 | 55.2                  | 58.3                  | 71.0                 | 73.7                 |

<sup>\*</sup> Trained with batch size 6 instead of 8 to fit into GPU memory.

| Ver1 (separate encoders for points) |          | Multi-modal Multi-Task fusion Ver2 (shared encoder for points) |                                                                     |                            |  |  |
|-------------------------------------|----------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|--|--|
| a/Sng                               | Baseline | Baseline<br>(train on source)                                  | Task_loss + lambda * Contrast_loss<br>(tried a few hyperparameters) |                            |  |  |
|                                     |          |                                                                | Train from scratch                                                  | Resume from baseline model |  |  |
| nentation<br>nloU)                  | 60.69    | 62.48                                                          | 48.80                                                               | 57.63                      |  |  |
| tection<br>nAP)                     | 51.29    | 45.02                                                          | 37.15                                                               | 41.59                      |  |  |



| Xmuda, new seg labels |                                 |                                       |                   |  |  |
|-----------------------|---------------------------------|---------------------------------------|-------------------|--|--|
| Train/test<br>Usa/Sng | Xmuda<br>(dual head,<br>KL_div) | Baseline<br>(separate<br>two streams) | Vanilla<br>fusion |  |  |
| 2D                    | 57.04                           | 54.03                                 |                   |  |  |
| 3D                    | 53.57                           | 48.41                                 |                   |  |  |
| 2D+3D                 | 62.53                           | 62.10                                 | 63.74             |  |  |



Vanilla Fusion(Baseline)