MA-2115: Matemáticas 4

Semana 2

1.1 Sucesiones infinitas

1. Definición

2. Convergencia

3. Propiedades

4. Sucesiones monótonas

5. Ejercicio 1.2

Sea a_n la sucesión definida por $a_1=2,\ a_{n+1}=\frac{1}{2}(a_n+4)$ para $n\geq 2$. Determine si la sucesión a_n es convergente o no. En caso afirmativo calcule el límite.

6. Principio de inducción: ejemplo illustrativo

7. Aplicaciones

(a) Fibonacci: $F_n = F_{n-1} + F_{n-2}$, para n > 1, y $F_0 = F_1 = 1$.

(b) Concentración de fármacos: $C_{n+1} = rC_n + d$, dada una concentración inicial C_0 .

1.2 Series

1. Definición

2. Propiedades

3. Serie armónica:

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

4. Serie geométrica:

$$\sum_{n=1}^{\infty} ar^{n-1}$$

5. Criterio de comparación ordinaria

6. Criterio de comparación usando límite

7. Criterio de la integral

8. Ejercicio 1.3

Determine la convergencia de $\sum_{n=1}^{\infty} \frac{e^{-n}}{\sqrt[p]{n}}$.