Locating Roots of Equations Secant Method

CS3010

Numerical Methods

Dr. Amar Raheja

Section 3.3

Lecture 6

What's a Secant?

- Secant is a line that crosses the function at two points.
- False-Position is a method that talked about secant
- Secant method is the same as False-Position with the difference being that the two points to be picked don't have to bracket the root.
- Formulation is exactly the same

$$c = b - f(b) \left[\frac{a - b}{f(a) - f(b)} \right] = a - f(a) \left[\frac{b - a}{f(b) - f(a)} \right] = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

The Secant Method

- Requires two initial estimates of x, e.g, x_o , x_1 . However, because f(x) is not required to change signs between estimates, it is not classified as a "bracketing" method.
- The secant method has the same properties as Newton's method. Convergence is not guaranteed for all $x_o, x_1, f(x)$.

The Secant Method (alternative formulation)

- A slight variation of Newton's method for functions whose derivatives are difficult to evaluate.
- For these cases, the derivative can be approximated by a backward finite divided difference.
- This approximation can be got from the Taylor series expansion using only first two terms of the series.

$$f(x_i + h) = f(x_i) + (x_{i-1} - x_i)f'(x_i)$$

$$f'(x_i) = \frac{f(x_i + h) - f(x_i)}{(x_{i-1} - x_i)} = \frac{f(x_{i-1}) - f(x_i)}{(x_{i-1} - x_i)}$$

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{(x_i - x_{i-1})}$$

Using this in the Newton-Raphson iterative formulation, $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

$$x_{i+1} = x_i - \left(\frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}\right) f(x_i)$$

Convergence

- While programming the secant method, calculate and test the quantity $f(xi) f(x_{i-1})$
- Method is succeeding as x_i is approaching a root i.e. f(xi) converges to zero.
- $ff(x_{i-1})$
- will also be converging to zero, and hence $f(xi) f(x_{i-1})$ will approach zero.
- Iterations can be halted when for some specified tolerance δ $|f(x_i) f(x_{i-1})| \le \delta |f(x_i)|$
- Best method to halt iterations: use relative approximate error

Algorithm

```
procedure Secant(f, a, b, nmax, \epsilon) integer n,nmax; real a,b,fa,fb,\epsilon,d external function f
fa← f(a)
if |fa| > |fb| then
            a \longleftrightarrow b
            fa \longleftrightarrow fb
end if
output 0, a, fa output 1, b, fb
for n = 2 to nmax do
            if |fa| > |fb| then
                         a \leftrightarrow b
                         fa \longleftrightarrow fb
            end if
            d \leftarrow (b-a)/(fb-fa) b \leftarrow a
            fb ← fa
            d \leftarrow d \cdot fa
            if |d| < \varepsilon then
                         output "convergence"
            return
            end if
            a \leftarrow a - d fa \leftarrow f(a)
            output n,a, fa
end for
end procedure Secant
```

Here \longleftrightarrow means interchange values. The endpoints [a, b] are interchanged, if necessary, to keep $|f(a)| \le |f(b)|$. Consequently, the absolute values of the function are nonincreasing; thus, we have $|f(x_n)| \le |f(x_{n+1})|$ for $n \le 1$.

Secant Method example

$$f(x) = \cos(x) + 2\sin(x) + x^2$$
use

 $x_0 = 0$ and $x_1 = -0.1$ as initial approximations

n	X_{n-1}	X_n	X_{n+1}	$ f(x_{n+1}) $	$ x_{n+1} - x_n $
1	0.0	-0.1	-0.5136	0.1522	0.4136
2	-0.1	-0.5136	-0.6100	0.0457	0.0964
3	-0.5136	-0.6100	-0.6514	0.0065	0.0414
4	-0.6100	-0.6514	-0.6582	0.0013	0.0068
5	-0.6514	-0.6582	-0.6598	0.0006	0.0016
6	-0.6582	-0.6598	-0.6595	0.0002	0.0003

Modified Secant Method

 Instead of using two arbitrary starting values, use one starting value a fractional perturbation.

$$f'(x_i) \cong \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

$$x_{i+1} = x_i - f(x_i) \frac{\delta x_i}{f(x_i + \delta x_i) - f(x_i)}$$
 $i = 1, 2, 3, \square$

- Choice of a value for δ is not automatic
 - If it is too small, you could be swamped by round off error caused by subtractive cancellation in the denominator
 - If too big, it can become inefficient and even divergent
 - If chosen properly, it is a nice alternative for cases where evaluating the derivative is difficult and developing two initial guesses is inconvenient.

Modified Secant Example

• Using Modified Secant method, estimate the root of $f(x) = e^{-x} - x$ using $\delta = 0.01$ and start with $x_0 = 1.0$. True root is 0.56714329. Calculate for 3 iterations with % relative error.

The False-Position Method (Regula-Falsi)

If a real root is bounded by x₁ and x_u of f(x)=0, then we can approximate the solution by doing a linear interpolation between the points [x₁, f(x₁)] and [x_u, f(x_u)] to find the x_r value such that I(x_r)=0, I(x) is the linear approximation of f(x).

Pros and Cons of False-Position Method

• Pros:

- Faster
- Always converges for a single root.

Cons

- One sided in that one bracketing point will tend to stay fixed
- Leads to poor convergence, especially for functions with significant curvature
- Plot of $f(x) = x^{10} 1$, illustrating slow convergence of the false-position method.
- Modified False-Position method
 - Modify the stuck bound by halving it each time
- Note: Always check by substituting estimated root in the original equation to determine whether $f(x_r) \approx 0$.

Comparison of False-Position and Secant

- (a) & (b) First iteratoins for both methods are identical
- (c) & (d) Points differ for second iterations, as a result the secant method diverges.

