Methods in Microbiota Research: Part II

Ivan Vujkovic-Cvijin

(Ee-vahn Vooykoveech Tsveeyeen)

Assistant Professor

F. Widjaja Inflammatory Bowel Disease Institute
Department of Biomedical Sciences

Notes prior to beginning

- Google is a coder's best friend
 - Almost every error message has a solution on some online forum
- Statistical modeling/testing in microbiome science is a constantly evolving area
 - Precedent does not always justify usage methods may be outdated
 - No consensus on best methods more clarity on what not to do
- I am self-taught
 - If I can do it, so can you!

Tools of the Trade

The bacterial 16S ribosomal RNA gene as a phylogenetic barcode

Tools of the Trade

The bacterial 16S ribosomal RNA gene as a phylogenetic barcode

Pre-processing: Chimera filtering

- Chimeras are identifiable if one portion is identical to a more abundant 'parent' sequence and the rest is identical to another 'parent' sequence
 - 'removeBimeraDenovo' function in dada2

Pre-processing: removing taxa with low read counts

Mean fold difference A/B = infinity

Mean fold difference A/B = 0.75

- Random re-sampling (e.g. multiple rarefactions or re-sequencing) of samples causes wide variation in abundance of taxa with low read counts
- Fold changes between groups can be very unstable and unreliable
 - Example solution: filter taxa that are below 0.001% abundance threshold

Comparative metrics: alpha vs. beta diversity

Alpha diversity:

- The number of different taxa present in a sample (richness) and/or the relative distribution of these taxa (evenness)
 - Examples: chao1 (richness), Shannon or inverse Simpson (richness and evenness), Pielou's (evenness)
- Each sample gets its own alpha diversity quantification

Beta diversity:

- The ecological similarity between two samples
 - Similarity in common taxon membership (ex. Canberra, Bray-Curtis), phylogenetic similarity of taxa within a community (ex. Unweighted UniFrac)
- Each pair of samples gets its own beta diversity quantification

Beta diversity matrix

Subject ID	1	2	3	
1	0	0.22	0.9	
2	0.22	0	0.47	
3	0.9	0.47	0	

Comparative metrics: alpha vs. beta diversity

Inverse Simpson (Alpha diversity)

Beta diversity matrix

Subject ID	1	2	3	
1	0	0.22	0.9	
2	0.22	0	0.47	
3	0.9	0.47	0	

Principal Coordinates Analysis (PCoA) (Based on beta diversity matrix)

Pre vs. post PERMANOVA P = 0.00001

Alpha and beta diversity are skewed by sequencing read depth

Rarefaction: random selection of 'n' reads per sample

Randomly sub-sample 9 candies from each handful (rarefy to 9 candies)

Statistical analyses: Data assumptions

Parametric statistical tests assume normally distributed data:

• This allows the test to 'infer' missing data for groups with low N

Statistical analyses: Data assumptions

- Parametric statistical tests assume normally distributed data
- Microbiome data are not normally distributed:

Statistical analyses: Data assumptions

- Parametric statistical tests assume normally distributed data
- Microbiome data are not normally distributed:

T-test P = 0.161 (parametric)

Mann-Whitney P = 0.028 (non-parametric)

Non-parametric tests with dichotomous variables:

- Goal: Identify taxa that are in differential abundance between two groups of samples
- Method: make no assumptions about data distribution using non-parametric statistics
 - non-parametric statistical test for each taxon, successively
 - ex. Mann-Whitney U test/Wilcoxon rank-sum test
 - then perform multiple comparisons corrections
 - ex. Benjamini-Hochberg false discovery rate calculation

Non-parametric tests with dichotomous variables: Results

Row.names	wilx_P wilx_st	at log2f	c numnonzero r	ank BH_Q Kingdom	Phylum	Class	0rder	Family	Genus
0f4cbad3b65eeea78a91f7bf9e73c5e4 0.6	001018407 0	.0 -In	f 26	16 0.0952019 Bacteria	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Anaerostipes
6598140bdeb7355cf46e0b33c25e9ff0 0.0	005458783 50	.0 In	f 7	46 0.0952019 Bacteria	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactiplantibacillus
66d9c2e13cb8020d78bdf39cae8f3440 0.6	005458783 50	.0 In	f 9	25 0.0952019 Bacteria	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Pediococcus
884cb13b27b7dd2a3750d189c988f647 0.6	005458783 50	.0 In	f 6	19 0.0952019 Bacteria	Proteobacteria (Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Klebsiella

Controlling for confounding variables in group comparisons: linear mixed effects models

- Goal: Identify taxa that are in differential abundance between two groups of samples and control for confounding variables
- Method: linear mixed effects models
 - Requires linear variables (ideally normally distributed) → convert data to 'linear'-esque space using transformations
 - Ex. limma, arcsin square root, log with pseudocount
 - Perform linear mixed effects with covariates as fixed/random effects
 - Perform multiple comparisons correction
 - ex. Benjamini-Hochberg false discovery rate calculation (FDR 'Q' value)

Controlling for confounding variables in group comparisons: linear mixed effects models

Row.names	Р	t	Kingdom	Phylum	Class	0rder
0f4cbad3b65eeea78a91f7bf9e73c5e4	1.010065e-10	-19.788603	Bacteria	Firmicutes	Clostridia	Clostridiales
e5ef806843f7664da2a1b26dc23e13c1	3.522567e-04	-4.791362	Bacteria	Bacteroidetes	Bacteroidia	Bacteroidales
055c4b73006650064d7f8e7a0214c957	8.783672e-04	-4.372881	Bacteria	Firmicutes	Clostridia	Clostridiales
c867a71e863b24c0a5d422dd6d72e02d	8.938139e-04	-4.369494	Bacteria	Firmicutes	Negativicutes	Acidaminococcales
4d51427c6465d3c97af11af0edd132be	1.073987e-03	-4.275329	Bacteria	Firmicutes	Clostridia	Clostridiales
c322e6afe2a271d465ca4bd5971f739a	1.118331e-03	-4.160847	Bacteria	Firmicutes	Clostridia	Clostridiales
dd0234a1d48f74a011f58a58b206e6ad	1.172211e-03	-4.208625	Bacteria	Firmicutes	Clostridia	Clostridiales
6598140bdeb7355cf46e0b33c25e9ff0	1.370366e-03	4.052329	Bacteria	Firmicutes	Bacilli	Lactobacillales
66d9c2e13cb8020d78bdf39cae8f3440	1.644626e-03	3.955422	Bacteria	Firmicutes	Bacilli	Lactobacillales
db5b82bfeecda9de9a33e7f4db90ee7f	1.974811e-03	3.858670	Bacteria	Firmicutes	Negativicutes	Veillonellales
d5d0e236ef6bc5291a873c4a842795ac	2.400135e-03	-3.825696	Bacteria	Firmicutes	Clostridia	Clostridiales
884cb13b27b7dd2a3750d189c988f647	2.904909e-03	3.655812	Bacteria	Proteobacteria	Gammaproteobacteria	Enterobacterales

Controlling for intra-individual variance in longitudinal comparisons: linear mixed effects models

- Goal: Identify taxa that are in differential abundance between groups of samples in a longitudinal study
- Method: Control for intra-individual covariance using linear mixed effects models
 - Requires linear variables (ideally normally distributed), convert to 'linear'-esque space using transformations
 - Ex. limma, arcsin square root, log with pseudocount
 - Perform linear mixed effects with subject ID as a 'random effect'
 - Perform multiple comparisons correction
 - ex. Benjamini-Hochberg false discovery rate calculation (FDR 'Q' value)

Controlling for intra-individual variance in longitudinal comparisons: linear mixed effects models

			-							
	Row.names	Р	t King	dom Phylu	m Class	0rder	Family	Genus	Species	famgenspec BHq
9bb453680381a926dfca5	f9e44c697fa 8	8.519397e-09	8.625376 Bacte	ria Bacteroidete	s Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	ovatus	Bacteroidaceae_Bacteroides_ovatus 9.626918e-07
dd0234a1d48f74a011f58	a58b206e6ad 1	1.864890e-08	8.222640 Bacte	ria Firmicute:	s Clostridia	Clostridiales	Lachnospiraceae	Blautia	<na></na>	Lachnospiraceae_Blautia_NA 1.053663e-06
0f4cbad3b65eeea78a91f	7bf9e73c5e4 6	6.152660e-08	7.739555 Bacte	ria Firmicute:	s Clostridia	Clostridiales	Lachnospiraceae	Anaerostipes	hadrus	Lachnospiraceae_Anaerostipes_hadrus 2.317502e-06
055c4b73006650064d7f8	e7a0214c957 3	3.315587e-07	6.984980 Bacte	ria Firmicute:	s Clostridia	Clostridiales	Lachnospiraceae	Fusicatenibacter	saccharivorans	Lachnospiraceae_Fusicatenibacter_saccharivorans 9.366534e-06
e5ef806843f7664da2a1b	26dc23e13c1 9	9.808455e-07	6.500447 Bacte	ria Bacteroidete	s Bacteroidia	Bacteroidales	Bacteroidaceae	Phocaeicola	<na></na>	Bacteroidaceae_Phocaeicola_NA 2.216711e-05
6598140bdeb7355cf46e0	b33c25e9ff0 1	1.245175e-06	-6.400116 Bacte	ria Firmicute:	s Bacilli	Lactobacillales	Lactobacillaceae	Lactiplantibacillus	<na></na>	Lactobacillaceae_Lactiplantibacillus_NA 2.345080e-05
80f715cf372b40bf5f783	d6f3dec9210 3	3.089105e-06	6.041145 Bacte	ria Bacteroidete	s Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	<na></na>	Bacteroidaceae_Bacteroides_NA 4.986698e-05
db5b82bfeecda9de9a33e	7f4db90ee7f 5	5.941851e-06	-5.760539 Bacte	ria Firmicute:	s Negativicutes	Veillonellales	Veillonellaceae	Megasphaera	micronuciformis	Veillonellaceae_Megasphaera_micronuciformis 8.392864e-05
a0531d77346b0efcc8bfa	411fcebe945 8	8.687391e-06	5.622630 Bacte	ria Bacteroidete	s Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes	putredinis	Rikenellaceae_Alistipes_putredinis 1.016041e-04
7a48aa7f3e7e5985addac	38ece2de88f 8	8.991517e-06	5.609260 Bacte	ria Firmicute:	s Clostridia	Clostridiales	Lachnospiraceae	Blautia	obeum	Lachnospiraceae_Blautia_obeum 1.016041e-04
4d51427c6465d3c97af11	af0edd132be 4	4.257686e-05	5.031517 Bacte	ria Firmicute:	s Clostridia	Clostridiales	Lachnospiraceae	Agathobacter	<na></na>	Lachnospiraceae_Agathobacter_NA 4.269406e-04
d9104b547cf822e787d4e	09e8c5be6cb 4	4.885754e-05	4.932664 Bacte	ria Actinobacteri	a Coriobacteriia	Coriobacteriales	Coriobacteriaceae	Collinsella	aerofaciens	Coriobacteriaceae_Collinsella_aerofaciens 4.269406e-04
884cb13b27b7dd2a3750d	189c988f647 4	4.911705e-05	-4.925839 Bacte	ria Proteobacteri	a Gammaproteobacteria	Enterobacterales	Enterobacteriaceae	Klebsiella	<na></na>	Enterobacteriaceae_Klebsiella_NA 4.269406e-04

