El Trompo de Lagrange

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

28 de abril de 2025

Agenda

El Trompo de Lagrange

- Generalidades
- El Lagrangeano
- Coordenadas cíclicas y cantidades conservadas
- Primeras integrales
- Potencial efectivo
- Mutación y rotación
- 🕡 Teorema de los ejes paralelos en los momentos de inercia

• Consideremos un trompo de masa *m* en el campo gravitacional terrestre, y cuyo punto inferior *O* está fijo.

- Consideremos un trompo de masa *m* en el campo gravitacional terrestre, y cuyo punto inferior *O* está fijo.
- Sea d la distancia, sobre el eje de simetría del trompo, desde el punto fijo O hasta el centro de masa.

- Consideremos un trompo de masa *m* en el campo gravitacional terrestre, y cuyo punto inferior *O* está fijo.
- Sea d la distancia, sobre el eje de simetría del trompo, desde el punto fijo O hasta el centro de masa.

• Los momentos de inercia $I_{11}^{\rm cm} = I_{22}^{\rm cm} \neq I_{33}^{\rm cm}$ son los momentos de inercia del trompo con respecto a su centro de masa.

- Consideremos un trompo de masa *m* en el campo gravitacional terrestre, y cuyo punto inferior *O* está fijo.
- Sea d la distancia, sobre el eje de simetría del trompo, desde el punto fijo O hasta el centro de masa.

- Los momentos de inercia $I_{11}^{\rm cm} = I_{22}^{\rm cm} \neq I_{33}^{\rm cm}$ son los momentos de inercia del trompo con respecto a su centro de masa.
- Tomamos el sistema del laboratorio (x, y, z) y el sistema (x_1, x_2, x_3) fijo en el cuerpo, ambos con origen en O.

- Consideremos un trompo de masa *m* en el campo gravitacional terrestre, y cuyo punto inferior *O* está fijo.
- Sea d la distancia, sobre el eje de simetría del trompo, desde el punto fijo O hasta el centro de masa.

- Los momentos de inercia $I_{11}^{\rm cm} = I_{22}^{\rm cm} \neq I_{33}^{\rm cm}$ son los momentos de inercia del trompo con respecto a su centro de masa.
- Tomamos el sistema del laboratorio (x, y, z) y el sistema (x_1, x_2, x_3) fijo en el cuerpo, ambos con origen en O.
- Sea $\mathbf{d} = (0, 0, d)$ la posición del centro de masa del trompo con respecto a O en el sistema (x_1, x_2, x_3) .

• Consideremos los momentos de inercia respecto al sistema (x_1, x_2, x_3) fijo en el cuerpo con origen en O, ubicado en $\mathbf{a} = -\mathbf{d}$ con respecto al centro de masa.

- Consideremos los momentos de inercia respecto al sistema (x_1, x_2, x_3) fijo en el cuerpo con origen en O, ubicado en $\mathbf{a} = -\mathbf{d}$ con respecto al centro de masa.
- Los momentos de inercia con respecto a los ejes (x_1, x_2, x_3) del sistema centrado en O son $I_{ik} = I_{ik}^{cm} + m \left(a^2 \delta_{ik} a_i a_k\right)$.

- Consideremos los momentos de inercia respecto al sistema (x_1, x_2, x_3) fijo en el cuerpo con origen en O, ubicado en $\mathbf{a} = -\mathbf{d}$ con respecto al centro de masa.
- Los momentos de inercia con respecto a los ejes (x_1, x_2, x_3) del sistema centrado en O son $I_{ik} = I_{ik}^{cm} + m \left(a^2 \delta_{ik} a_i a_k\right)$.
- Por lo tanto $I_{11} = I_{11}^{\rm cm} + md^2$, $I_{22} = I_{22}^{\rm cm} + md^2$ y $I_{33} = I_{33}^{\rm cm} \neq I_{11} = I_{22}$

- Consideremos los momentos de inercia respecto al sistema (x_1, x_2, x_3) fijo en el cuerpo con origen en O, ubicado en $\mathbf{a} = -\mathbf{d}$ con respecto al centro de masa.
- Los momentos de inercia con respecto a los ejes (x_1, x_2, x_3) del sistema centrado en O son $I_{ik} = I_{ik}^{cm} + m \left(a^2 \delta_{ik} a_i a_k\right)$.
- Por lo tanto $I_{11} = I_{11}^{\rm cm} + md^2$, $I_{22} = I_{22}^{\rm cm} + md^2$ y $I_{33} = I_{33}^{\rm cm} \neq I_{11} = I_{22}$
- La energía potencial con respecto a O, es $V = mgz = mgd \cos \theta$.

- Consideremos los momentos de inercia respecto al sistema (x_1, x_2, x_3) fijo en el cuerpo con origen en O, ubicado en $\mathbf{a} = -\mathbf{d}$ con respecto al centro de masa.
- Los momentos de inercia con respecto a los ejes (x_1, x_2, x_3) del sistema centrado en O son $I_{ik} = I_{ik}^{cm} + m \left(a^2 \delta_{ik} a_i a_k\right)$.
- Por lo tanto $I_{11} = I_{11}^{\rm cm} + md^2$, $I_{22} = I_{22}^{\rm cm} + md^2$ y $I_{33} = I_{33}^{\rm cm} \neq I_{11} = I_{22}$
- La energía potencial con respecto a O, es $V = mgz = mgd \cos \theta$.
- La energía cinética del trompo se debe a la rotación con respecto al punto fijo O, $T_{\rm rot}=\frac{1}{2}\left(\textit{I}_{11}\Omega_1^2+\textit{I}_{22}\Omega_2^2+\textit{I}_{33}\Omega_3^2\right)$

- Consideremos los momentos de inercia respecto al sistema (x_1, x_2, x_3) fijo en el cuerpo con origen en O, ubicado en $\mathbf{a} = -\mathbf{d}$ con respecto al centro de masa.
- Los momentos de inercia con respecto a los ejes (x_1, x_2, x_3) del sistema centrado en O son $I_{ik} = I_{ik}^{cm} + m \left(a^2 \delta_{ik} a_i a_k\right)$.
- Por lo tanto $I_{11} = I_{11}^{\rm cm} + md^2$, $I_{22} = I_{22}^{\rm cm} + md^2$ y $I_{33} = I_{33}^{\rm cm} \neq I_{11} = I_{22}$
- La energía potencial con respecto a O, es $V = mgz = mgd \cos \theta$.
- La energía cinética del trompo se debe a la rotación con respecto al punto fijo O, $T_{\rm rot}=\frac{1}{2}\left(I_{11}\Omega_1^2+I_{22}\Omega_2^2+I_{33}\Omega_3^2\right)$
- Las componentes de la velocidad angular Ω se pueden expresar en función de los ángulos de Euler como $T_{\rm rot} \ = \ \frac{1}{2} I_{11} \left(\dot{\theta}^2 + \dot{\phi}^2 \, {\rm sen}^2 \, \theta \right) + \ \frac{1}{2} I_{33} (\dot{\psi} + \dot{\phi} \, {\rm cos} \, \theta)^2$

- Consideremos los momentos de inercia respecto al sistema (x_1, x_2, x_3) fijo en el cuerpo con origen en O, ubicado en $\mathbf{a} = -\mathbf{d}$ con respecto al centro de masa.
- Los momentos de inercia con respecto a los ejes (x_1, x_2, x_3) del sistema centrado en O son $I_{ik} = I_{ik}^{cm} + m \left(a^2 \delta_{ik} a_i a_k\right)$.
- Por lo tanto $I_{11} = I_{11}^{\rm cm} + md^2$, $I_{22} = I_{22}^{\rm cm} + md^2$ y $I_{33} = I_{33}^{\rm cm} \neq I_{11} = I_{22}$
- La energía potencial con respecto a \emph{O} , es $\emph{V}=\emph{mgz}=\emph{mgd}\cos\theta$.
- La energía cinética del trompo se debe a la rotación con respecto al punto fijo O, $T_{\rm rot}=\frac{1}{2}\left(\emph{I}_{11}\Omega_1^2+\emph{I}_{22}\Omega_2^2+\emph{I}_{33}\Omega_3^2\right)$
- Las componentes de la velocidad angular Ω se pueden expresar en función de los ángulos de Euler como $T_{\rm rot} = \frac{1}{2} I_{11} \left(\dot{\theta}^2 + \dot{\phi}^2 \, {\rm sen}^2 \, \theta \right) + \frac{1}{2} I_{33} (\dot{\psi} + \dot{\phi} \, {\rm cos} \, \theta)^2$
- El Lagrangiano del sistema es

$$\mathcal{L} = T_{rot} - V = \frac{1}{2}I_{11}(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{1}{2}I_{33}(\dot{\psi} + \dot{\phi}\cos \theta)^2 - mgd\cos \theta.$$

- \bullet El sistema posee tres grados de libertad: los ángulos de Euler θ,ϕ y ψ
- No depende del tiempo y tiene dos coordenadas cíclicas: ψ y ϕ .

- \bullet El sistema posee tres grados de libertad: los ángulos de Euler θ,ϕ y ψ
- No depende del tiempo y tiene dos coordenadas cíclicas: ψ y ϕ .
- La ecuación de Lagrange para ψ (cíclica) es $rac{d}{dt}\left(rac{\partial \mathcal{L}}{\partial \dot{\psi}}
 ight)-rac{\partial \mathcal{L}}{\partial \psi}=0$
- Entonces, $\frac{\partial \mathcal{L}}{\partial \dot{\psi}} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\psi}} = I_{33}(\dot{\psi} + \dot{\phi}\cos\theta) = I_{33}\Omega_3 = L_3 = \text{cte.}$

- \bullet El sistema posee tres grados de libertad: los ángulos de Euler $heta,\phi$ y ψ
- No depende del tiempo y tiene dos coordenadas cíclicas: ψ y ϕ .
- La ecuación de Lagrange para ψ (cíclica) es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\psi}}\right) \frac{\partial \mathcal{L}}{\partial \psi} = 0$
- Entonces, $\frac{\partial \mathcal{L}}{\partial \dot{\psi}} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\psi}} = I_{33}(\dot{\psi} + \dot{\phi}\cos\theta) = I_{33}\Omega_3 = L_3 = \text{cte.}$
- La ecuación de Lagrange para ϕ (cíclica) es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right) \frac{\partial \mathcal{L}}{\partial \phi} = 0$
- Otra vez

$$\frac{\partial \mathcal{L}}{\partial \phi} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \left(\emph{I}_{11} \, \mathrm{sen}^2 \, \theta + \emph{I}_{33} \, \mathrm{cos}^2 \, \theta \right) \dot{\phi} + \emph{I}_{33} \dot{\psi} \, \mathrm{cos} \, \theta = \emph{L}_z = \mathrm{cte}.$$

- ullet El sistema posee tres grados de libertad: los ángulos de Euler $heta,\phi$ y ψ
- No depende del tiempo y tiene dos coordenadas cíclicas: ψ y ϕ .
- La ecuación de Lagrange para ψ (cíclica) es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\psi}}\right) \frac{\partial \mathcal{L}}{\partial \psi} = 0$
- Entonces, $\frac{\partial \mathcal{L}}{\partial \dot{\psi}} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\psi}} = I_{33}(\dot{\psi} + \dot{\phi}\cos\theta) = I_{33}\Omega_3 = L_3 = \text{cte.}$
- La ecuación de Lagrange para ϕ (cíclica) es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right) \frac{\partial \mathcal{L}}{\partial \phi} = 0$
- Otra vez $\frac{\partial \mathcal{L}}{\partial \phi} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \left(I_{11} \operatorname{sen}^2 \theta + I_{33} \cos^2 \theta\right) \dot{\phi} + I_{33} \dot{\psi} \cos \theta = L_z = \operatorname{cte.}$
- El torque externo del peso $\tau = -mg\hat{\mathbf{z}} \times \mathbf{d} = mgd(\hat{\mathbf{z}} \times \hat{\mathbf{x}}_3)$, es perpendicular al plano (x_3, z) , al igual que el vector $d\mathbf{L}$ del cambio de momento angular del trompo.

- ullet El sistema posee tres grados de libertad: los ángulos de Euler $heta,\phi$ y ψ
- No depende del tiempo y tiene dos coordenadas cíclicas: ψ y ϕ .
- La ecuación de Lagrange para ψ (cíclica) es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\psi}}\right) \frac{\partial \mathcal{L}}{\partial \psi} = 0$
- Entonces, $\frac{\partial \mathcal{L}}{\partial \dot{\psi}} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\psi}} = I_{33}(\dot{\psi} + \dot{\phi}\cos\theta) = I_{33}\Omega_3 = L_3 = \text{cte.}$
- La ecuación de Lagrange para ϕ (cíclica) es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right) \frac{\partial \mathcal{L}}{\partial \phi} = 0$
- Otra vez $\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \left(I_{11} \operatorname{sen}^2 \theta + I_{33} \cos^2 \theta\right) \dot{\phi} + I_{33} \dot{\psi} \cos \theta = L_z = \operatorname{cte.}$
- El torque externo del peso $\tau = -mg\hat{\mathbf{z}} \times \mathbf{d} = mgd(\hat{\mathbf{z}} \times \hat{\mathbf{x}}_3)$, es perpendicular al plano (x_3, z) , al igual que el vector $d\mathbf{L}$ del cambio de momento angular del trompo.
- No hay componentes del torque en las direcciones $\hat{\mathbf{x}}_3$ ni $\hat{\mathbf{z}}$, es decir no hay cambios del vector momento angular en esas direcciones, por lo que $L_3 = \text{cte y } L_z = \text{cte}$.

- ullet El sistema posee tres grados de libertad: los ángulos de Euler $heta,\phi$ y ψ
- No depende del tiempo y tiene dos coordenadas cíclicas: ψ y ϕ .
- La ecuación de Lagrange para ψ (cíclica) es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\psi}}\right) \frac{\partial \mathcal{L}}{\partial \psi} = 0$
- Entonces, $\frac{\partial \mathcal{L}}{\partial \dot{\psi}} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\psi}} = I_{33}(\dot{\psi} + \dot{\phi}\cos\theta) = I_{33}\Omega_3 = L_3 = \text{cte.}$
- La ecuación de Lagrange para ϕ (cíclica) es $\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right) \frac{\partial \mathcal{L}}{\partial \phi} = 0$
- Otra vez $\frac{\partial \mathcal{L}}{\partial \phi} = 0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \left(I_{11} \operatorname{sen}^2 \theta + I_{33} \cos^2 \theta\right) \dot{\phi} + I_{33} \dot{\psi} \cos \theta = L_z = \operatorname{cte.}$
- El torque externo del peso $\tau = -mg\hat{\mathbf{z}} \times \mathbf{d} = mgd(\hat{\mathbf{z}} \times \hat{\mathbf{x}}_3)$, es perpendicular al plano (x_3, z) , al igual que el vector $d\mathbf{L}$ del cambio de momento angular del trompo.
- No hay componentes del torque en las direcciones $\hat{\mathbf{x}}_3$ ni $\hat{\mathbf{z}}$, es decir no hay cambios del vector momento angular en esas direcciones, por lo que $L_3 = \text{cte}$ y $L_z = \text{cte}$.
- La energía se conserva $E = \frac{1}{2}I_{11}\left(\dot{\theta}^2 + \dot{\phi}^2 \operatorname{sen}^2 \theta\right) + \frac{1}{2}I_{33}(\dot{\psi} + \dot{\phi} \cos \theta)^2 + mgd \cos \theta = \text{cte.}$

• El trompo de Lagrange es un sistema integrable: posee tres grados de libertad (ψ, ϕ y θ) y tres cantidades conservadas (L_3, L_z y E).

- El trompo de Lagrange es un sistema integrable: posee tres grados de libertad (ψ , ϕ y θ) y tres cantidades conservadas (L_3 , L_z y E).
- Las primeras integrales del sistema serán:

$$\dot{\phi} = \frac{(L_z - L_3 \cos \theta)}{I_{11} \sin^2 \theta}$$

$$\dot{\psi} = \frac{L_3 - I_{33} \dot{\phi} \cos \theta}{I_{33}} = \frac{L_3}{I_{33}} - \frac{(L_z - L_3 \cos \theta) \cos \theta}{I_{11} \sin^2 \theta}$$

$$\dot{\theta} = \sqrt{\frac{2}{I_{11}} \left(E - \frac{(L_z - L_3 \cos \theta)^2}{2I_{11} \sin^2 \theta} - \frac{L_3^2}{2I_{33}} + mgd \cos \theta \right)}$$

- El trompo de Lagrange es un sistema integrable: posee tres grados de libertad (ψ , ϕ y θ) y tres cantidades conservadas (L_3 , L_z y E).
- Las primeras integrales del sistema serán:

$$\dot{\phi} = \frac{(L_z - L_3 \cos \theta)}{I_{11} \sin^2 \theta}$$

$$\dot{\psi} = \frac{L_3 - I_{33} \dot{\phi} \cos \theta}{I_{33}} = \frac{L_3}{I_{33}} - \frac{(L_z - L_3 \cos \theta) \cos \theta}{I_{11} \sin^2 \theta}$$

$$\dot{\theta} = \sqrt{\frac{2}{I_{11}} \left(E - \frac{(L_z - L_3 \cos \theta)^2}{2I_{11} \sin^2 \theta} - \frac{L_3^2}{2I_{33}} + mgd \cos \theta \right)}$$

• Podemos reescribir $E'=E-rac{L_3^2}{2I_{33}}=rac{1}{2}I_{11}\dot{ heta}^2+V_{\mathrm{ef}}(heta)=$ cte, con $V_{\mathrm{ef}}(heta)=rac{(L_z-L_3\cos\theta)^2}{2I_{11}\sin^2\theta}+mgd\cos\theta$

- El trompo de Lagrange es un sistema integrable: posee tres grados de libertad (ψ, ϕ y θ) y tres cantidades conservadas (L_3, L_z y E).
- Las primeras integrales del sistema serán:

$$\dot{\phi} = \frac{(L_z - L_3 \cos \theta)}{I_{11} \sin^2 \theta}$$

$$\dot{\psi} = \frac{L_3 - I_{33} \dot{\phi} \cos \theta}{I_{33}} = \frac{L_3}{I_{33}} - \frac{(L_z - L_3 \cos \theta) \cos \theta}{I_{11} \sin^2 \theta}$$

$$\dot{\theta} = \sqrt{\frac{2}{I_{11}} \left(E - \frac{(L_z - L_3 \cos \theta)^2}{2I_{11} \sin^2 \theta} - \frac{L_3^2}{2I_{33}} + mgd \cos \theta \right)}$$

- Podemos reescribir $E'=E-\frac{L_3^2}{2I_{33}}=\frac{1}{2}I_{11}\dot{\theta}^2+V_{\rm ef}(\theta)=$ cte, con $V_{\rm ef}(\theta)=\frac{(L_z-L_3\cos\theta)^2}{2I_{11}\sin^2\theta}+mgd\cos\theta$
- Es un problema unidimensional para la coordenada θ , con un potencial efectivo $V_{\rm ef}\left(\theta\right)$

ullet El potencial efectivo $V_{
m ef}\left(heta
ight)$ tiene un mínimo para $heta_0$ en $\left.rac{\partial V_{
m ef}}{\partial heta}
ight|_{ heta_0}=0$

• El potencial efectivo $V_{\rm ef}\left(\theta\right)$ tiene un mínimo para θ_0 en $\left.\frac{\partial V_{\rm ef}}{\partial \theta}\right|_{\theta_0}=0$

• Los ángulo θ posibles ocurren para valores $E' \geq V_{\text{ef}}(\theta)$

• El potencial efectivo $V_{\rm ef}\left(\theta\right)$ tiene un mínimo para θ_0 en $\left.\frac{\partial V_{\rm ef}}{\partial \theta}\right|_{\theta_0}=0$

- Los ángulo θ posibles ocurren para valores $E' \geq V_{\rm ef}\left(\theta\right)$
- Los puntos de retorno θ_1 y θ_2 son soluciones de la ecuación $E' = V_{\rm ef}(\theta) = \frac{(L_z L_3 \cos \theta)^2}{2 I_{11} \sin^2 \theta} + mgd \cos \theta$

• El potencial efectivo $V_{\rm ef}\left(\theta\right)$ tiene un mínimo para θ_0 en $\left.\frac{\partial V_{\rm ef}}{\partial \theta}\right|_{\theta_0}=0$

- Los ángulo θ posibles ocurren para valores $E' \geq V_{\text{ef}}(\theta)$
- Los puntos de retorno θ_1 y θ_2 son soluciones de la ecuación $E' = V_{\text{ef}}(\theta) = \frac{(L_z L_3 \cos \theta)^2}{2 h_1 \sin^2 \theta} + mgd \cos \theta$
- ullet La nutación ocurre en el intervalo $heta \in [heta_1, heta_2]$

• El potencial efectivo $V_{\rm ef}\left(\theta\right)$ tiene un mínimo para θ_0 en $\left.\frac{\partial V_{\rm ef}}{\partial \theta}\right|_{\theta_0}=0$

- Los ángulo θ posibles ocurren para valores $E' \geq V_{\text{ef}}(\theta)$
- Los puntos de retorno θ_1 y θ_2 son soluciones de la ecuación $E' = V_{\text{ef}}(\theta) = \frac{(L_z L_3 \cos \theta)^2}{2I_{11} \sin^2 \theta} + mgd \cos \theta$
- La nutación ocurre en el intervalo $\theta \in [\theta_1, \theta_2]$
- De la energía obtuvimos

$$\dot{ heta} = rac{d heta}{dt} = \sqrt{rac{2(E' - V_{
m ef}(heta))}{I_{11}}}, \Rightarrow t(heta) = \sqrt{rac{I_{11}}{2}} \int rac{d heta}{\sqrt{(E' - V_{
m ef}(heta))}}$$

• El período de nutación es $T_{\mathrm{nut}} = 2\sqrt{\frac{I_{11}}{2}} \int_{\theta_1}^{\theta_2} \frac{d\theta}{\sqrt{(E'-V_{\mathrm{ef}}(\theta))}}$

- El período de nutación es $T_{
 m nut} = 2\sqrt{rac{I_{11}}{2}\int_{ heta_1}^{ heta_2}rac{d heta}{\sqrt{(E'-V_{
 m ef}(heta))}}}$
- La velocidad angular de precesión $\dot{\phi}$, puede cambiar su dirección instantánea en los puntos de retorno θ_1 y θ_2 , dependiendo del signo de $(L_z L_3 \cos \theta)$

- El período de nutación es $T_{
 m nut}=2\sqrt{rac{I_{11}}{2}\int_{ heta_1}^{ heta_2}rac{d heta}{\sqrt{(E'-V_{
 m ef}(heta))}}}$
- La velocidad angular de precesión $\dot{\phi}$, puede cambiar su dirección instantánea en los puntos de retorno θ_1 y θ_2 , dependiendo del signo de $(L_z L_3 \cos \theta)$
- Cuando $\dot{\phi} > 0$ siempre $(L_z > L_3 \cos \theta, \forall \theta)$.

- El período de nutación es $T_{
 m nut}=2\sqrt{rac{I_{11}}{2}}\int_{ heta_1}^{ heta_2}rac{d heta}{\sqrt{(E'-V_{
 m ef}(heta))}}$
- La velocidad angular de precesión ϕ , puede cambiar su dirección instantánea en los puntos de retorno θ_1 y θ_2 , dependiendo del signo de $(L_z L_3 \cos \theta)$
- Cuando $\dot{\phi} > 0$ siempre $(L_z > L_3 \cos \theta, \forall \theta)$.
- Cuando $\dot{\phi}$ cambia de signo en θ_1 ó en θ_2 , dependiendo del signo de la cantidad ($L_z L_3 \cos \theta_{1,2}$) (el sentido del movimiento depende de condiciones iniciales).

- El período de nutación es $T_{
 m nut} = 2\sqrt{rac{I_{11}}{2}} \int_{ heta_1}^{ heta_2} rac{d heta}{\sqrt{(E'-V_{
 m ef}(heta))}}$
- La velocidad angular de precesión $\dot{\phi}$, puede cambiar su dirección instantánea en los puntos de retorno θ_1 y θ_2 , dependiendo del signo de $(L_z L_3 \cos \theta)$
- Cuando $\dot{\phi} > 0$ siempre $(L_z > L_3 \cos \theta, \forall \theta)$.
- Cuando $\dot{\phi}$ cambia de signo en θ_1 ó en θ_2 , dependiendo del signo de la cantidad ($L_z L_3 \cos \theta_{1,2}$) (el sentido del movimiento depende de condiciones iniciales).
- Cuando $\dot{\phi}=0$ en θ_1 ó en θ_2 ($L_z=L_3\cos\theta_{1,2}$).

Teorema de los ejes paralelos

Sea I_{ik} el tensor de inercia de un cuerpo rígido (un sistema de N partículas rígidamente unidas) en el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa del cuerpo. Un sistema de coordenadas paralelas fijas (x_1', x_2', x_3') cuyo origen O' se encuentra en una posición $\mathbf{a} = (a_1, a_2, a_3)$ con respecto al centro de masa del cuerpo. Entonces el tensor de inercia es $I'_{ik} = I_{ik} + \sum_{j}^{N} m_j \left(a^2 \delta_{ik} - a_i a_k\right)$.

• El tensor de inercia en el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa del cuerpo, es $I_{ik} = \sum_{j}^{N} m_j \left(r_j^2 \delta_{ik} - x_i x_k \right)$.

- El tensor de inercia en el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa del cuerpo, es $I_{ik} = \sum_{j}^{N} m_j \left(r_j^2 \delta_{ik} x_i x_k \right)$.
- Supongamos un sistema de coordenadas fijas (x'_1, x'_2, x'_3) , con origen O' en una posición **a** respecto al centro de masa del cuerpo.

- El tensor de inercia en el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa del cuerpo, es $I_{ik} = \sum_{j}^{N} m_j \left(r_j^2 \delta_{ik} x_i x_k \right)$.
- Supongamos un sistema de coordenadas fijas (x'_1, x'_2, x'_3) , con origen O' en una posición **a** respecto al centro de masa del cuerpo.
- La posición de un punto P respecto (x_1, x_2, x_3) es $\mathbf{r}_j = \mathbf{a} + \mathbf{r}'_i \Rightarrow x_{ij} = a_i + x'_{ij}$

- El tensor de inercia en el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa del cuerpo, es $I_{ik} = \sum_{j}^{N} m_j \left(r_j^2 \delta_{ik} x_i x_k \right)$.
- Supongamos un sistema de coordenadas fijas (x'_1, x'_2, x'_3) , con origen O' en una posición **a** respecto al centro de masa del cuerpo.
- La posición de un punto P respecto (x_1, x_2, x_3) es $\mathbf{r}_j = \mathbf{a} + \mathbf{r}_i' \Rightarrow x_{ij} = a_i + x_{ij}'$
- Para (x'_1, x'_2, x'_3) , tenemos $I'_{ik} = \sum_{j}^{N} m_j \left(r'_j{}^2 \delta_{ik} x'_i x'_k \right)$, con $r'_j{}^2 = (\mathbf{r}_j \mathbf{a})^2 = r_j^2 + a^2 2 \sum_{l}^3 x_l a_l$.

- El tensor de inercia en el sistema de coordenadas (x_1, x_2, x_3) con origen en el centro de masa del cuerpo, es $I_{ik} = \sum_{j}^{N} m_j \left(r_j^2 \delta_{ik} x_i x_k \right)$.
- Supongamos un sistema de coordenadas fijas (x'_1, x'_2, x'_3) , con origen O' en una posición **a** respecto al centro de masa del cuerpo.
- La posición de un punto P respecto (x_1, x_2, x_3) es $\mathbf{r}_j = \mathbf{a} + \mathbf{r}'_i \Rightarrow x_{ij} = a_i + x'_{ij}$
- Para (x'_1, x'_2, x'_3) , tenemos $I'_{ik} = \sum_{j}^{N} m_j \left(r'_j{}^2 \delta_{ik} x'_i x'_k \right)$, con $r'_j{}^2 = (\mathbf{r}_j \mathbf{a})^2 = r_j^2 + a^2 2 \sum_{l}^3 x_l a_l$.
- Sustituyendo, $I'_{ik} = \sum_{j}^{N} m_{j} \left[\left(r_{j}^{2} + a^{2} - 2 \sum_{l}^{3} x_{l} a_{l} \right) \delta_{ik} - (x_{i} - a_{i}) (x_{k} - a_{k}) \right]$ $I'_{ik} = \sum_{j}^{N} m_{j} \left(r_{j}^{2} \delta_{ik} - x_{i} x_{k} \right) + \sum_{j}^{N} m_{j} \left(a^{2} \delta_{ik} - a_{i} a_{k} \right)$ $-2 \sum_{i}^{N} m_{i} \sum_{l}^{3} x_{l} a_{l} \delta_{ik} + \sum_{i}^{N} m_{i} x_{i} a_{k} + \sum_{i}^{N} m_{i} x_{k} a_{i}$

• Pero en el sistema de coordenadas (x_1, x_2, x_3) , tenemos

$$\sum_{j}^{N} m_{j} x_{i} a_{k} = a_{k} \left(\sum_{j}^{N} m_{j} x_{ij} \right) = 0,$$

$$\sum_{j}^{N} m_{j} x_{k} a_{i} = a_{i} \left(\sum_{j}^{N} m_{j} x_{kj} \right) = 0,$$

$$\sum_{j}^{N} m_{j} \sum_{l}^{3} x_{l} a_{l} = \sum_{l}^{N} a_{l} \left(\sum_{j}^{N} m_{j} x_{lj} \right) = 0.$$

• Pero en el sistema de coordenadas (x_1, x_2, x_3) , tenemos

$$\sum_{j}^{N} m_{j} x_{i} a_{k} = a_{k} \left(\sum_{j}^{N} m_{j} x_{ij} \right) = 0,$$

$$\sum_{j}^{N} m_{j} x_{k} a_{i} = a_{i} \left(\sum_{j}^{N} m_{j} x_{kj} \right) = 0,$$

$$\sum_{j}^{N} m_{j} \sum_{l}^{3} x_{l} a_{l} = \sum_{l}^{N} a_{l} \left(\sum_{j}^{N} m_{j} x_{lj} \right) = 0.$$

• Luego tenemos, $I'_{ik} = I_{ik} + \sum_{j}^{N} m_j \left(a^2 \delta_{ik} - a_i a_k \right)$