Naive Bayes model to classify tissue types and brain regions using splicing patterns

Oriol Gracia, Júlia Mir, Helena Rodríguez

Introduction

- Exon-skipping events.
- Proportion of RNA molecules that include the exon from all RNA molecules.
- Per tissue per splicing site
- Brain samples
- Tissue samples
- Gtex format:
 - columns → tissues
 - o rows → splicing sites

Pipeline

NA ratio

Training and Testing sets

BRAIN TISSUES 377 Heart 69 Amygdala 83 Anterior Cingulate Cortex (Ba24) 28 Kidney $80\% \rightarrow training$ 109 Caudate (Basal Ganglia) 110 Liver 20% → testing 97 Cerebellar Hemisphere 288 Lung 119 Cerebellum 396 Muscle 105 Cortex 278 Nerve 102 Frontal Cortex (Ba9) 84 Hippocampus 82 Hypothalamus 104 Nucleus Accumbens (Basal Ganglia) 81 Putamen (Basal Ganglia) 60 Spinal Cord (Cervical C-1) $55 \rightarrow training$ 57 Substantia Nigra $2 \rightarrow \text{testing}$

Calculate MI

Information gain
$$IG(S,A) = MI(S,A) = H(S) - H(S \mid A)$$

$$H(S) = -\sum_{s=\{classes\}} P(s) \log_2 P(s)$$

$$H(S \mid A) = -\sum_{a=\{values\}} \sum_{s=\{classes\}} P(s,a) \log_2 \frac{P(s,a)}{P(a)}$$

$$H(S \mid A) = -\sum_{a = \{values\}} P(a) \sum_{s = \{classes\}} P(s \mid a) \log_2 P(s \mid a)$$

Avoiding Redundancy

if n° up splicingA == n° up splicingB \rightarrow +1 hit

Avoiding Redundancy

	splicing A	splicin	j В	splicing C	splicing D
splicing A					
splicing B	3				
splicing C	1	1			
splicing D	2	2		2	

MI A > MI B

V	splicing A	splicing C	splicing D
splicing A			
splicing C	2		
splicing D	1	2	

Redundancy

Pseudocounts

Correct predictions per attribute

Percent of correct predictions per attribute

Percent of correct predictions per attribute

Brain Other tissues

Naive Bayes

$$v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_{r=1}^{n} P(a_r \mid v_j)$$

Pseudocounts

$$P(a) = \frac{n_a}{n} \longrightarrow P(a) = \frac{n_a + 1}{n + m}$$

ROC curves (brain)


```
Brain_-_Amygdala
Brain_-_Anterior_Cingulate_Cortex_(Ba24)
Brain_-_Caudate_(Basal_Ganglia)
Brain_-_Cerebellar_Hemisphere
Brain_-_Cortex
Brain_-_Cortex
Brain_-_Frontal_Cortex_(Ba9)
Brain_-_Hippocampus
Brain_-_Hypothalamus
Brain_-_Nucleus_Accumbens_(Basal_Ganglia)
Brain_-_Putamen_(Basal_Ganglia)
Brain_-_Spinal_Cord_(Cervical_C-1)
Brain_-_Substantia Nigra
```

ROC curves(other tissues)

Heart_-_Atrial_Appendage
Heart_-_Left_Ventricle
Liver
Lung
Muscle_-_Skeletal
Nerve_-_Tibial

Correct versus incorrect predictions

Final Results

BRAIN

- The Number of correct guesses are: 249
- The Number of incorrect guesses are: 188
- The correct ratio is 0.57

OTHER TISSUES

- The Number of correct guesses are: 498
- The Number of incorrect guesses are: 30
- The correct ratio is 0.94

Possible improvements

- Symmetrical uncertainty $SU(S,A) = \frac{2MI(S,A)}{H(S) + H(A)}$
- K-fold cross-validation
- Different approaches for pseudocounts
 - Prior estimate $P(a) = \frac{n_a + mp}{n + m}$
- Remove tissues with lower prediction accuracy: amygdala, cingulate cortex and putamen

Thank you