

PROBLÉMATIQUE

Lancement d'une marketplace e-commerce

Enjeu:

Catégoriser automatiquement des biens de consommation selon leur description et/ou leur image, afin d'améliorer l'expérience des vendeurs et des clients, et de gagner en temps et en efficacité.

JEU DE DONNÉES

Fichier de données :

flipkart_com-ecommerce_sample_1050.csv

Dataset comportant l'ensemble des informations relatives aux 1050 images (nom, URL, catégorie, description, nom de l'image correspondante.

Images:

1050 images au format .jpg, dont les noms correspondent sont ceux inclus dans le dataset Flipkart. Les images ne sont pas classées par cétagories.

PRÉTRAITEMENTS TEXTE

ETUDE DE FAISABILITÉ

Caractéristiques du fichier Flipkart :

- Ni valeurs nulles, ni doublons
- Identification des catégories principales ('main_cat') au nombre de 7, équilibrées car comprenant chacune 150 produits :

Home Furnishing	150
Baby Care	150
Watches	150
Home Decor & Festive Needs	150
Kitchen & Dining	150
Beauty and Personal Care	150
Computers	150

ETUDE DE LA FEATURE 'DESCRIPTION'

Feature comprenant une description textuelle de chaque produit.

Analyse de la feature :

Longueur max.: 3 588 mots

MANIPULATION DU TEXTE DE DESCRIPTION

• Cleaning général :

minuscules, suppression des URL, suppression des ponctuations etc.

Suppression des contractions :

ex: " you're " devient " you are ", " yall " devient " you all "

Suppression des Stop words

<u>ex</u> : " this ", " do ", " more "

• Tokenisation des phrases :

ex: [« Projet 6. Classification textes et images »] devient ['Projet 6.', 'Classification textes images']

Stemmatisation:

ex: programming / programmer / programs deviennent: 'program'

Lemmatisation:

ex : meeting devient 'meet', 'was' devient 'be'

<u>Application au texte descriptif</u>:

'This curtain enhances the look of the interiors' | ('curtain', 'enhanc', 'look', 'interior')

ESSAIS DE MODELISATION

Nous appliquerons un Kmeans (n_clusters = 7) couplé à nos différentes méthodes de réduction de dimension et aux méthodes de traitement du texte.

Modèles testés:

- Sentence Embedding:
 - USE
 - Sentence BERT
- Bag of Words (BoW):
 - CounterVectorizer
 - TF-IDF
- Word Embedding:
 - Word2Vec
 - FastText
 - BERT (bert-base-uncased)
 - BERT (TensorFlow Hub)

Réduction de dimension:

- T-SNE
- UMAP
- SVD

<u>Métrique d'évaluation</u>:

- ARI
- Matrice de confusion
- Precision
- Recall
- F-1 score

BILAN DE LA MODELISATION

Comparaison des différents essais :

Les scores ARI sont globalement bas (< 0,5).

La modélisation la plus pertinente est la combinaison : TF-IDF avec réduction de dimension par T-SNE (ARI = 0,446)

BILAN DE LA MODELISATION

Evaluation de la meilleure modélisation (TF-IDF) :

La qualité de la prédiction dépend des catégories. La catégorie 'Computers' est ici bien mieux prédite que la catégorie 'Baby Care'.

PRÉTRAITEMENT IMAGES

ETUDE DE FAISABILITÉ

Création d'une feature 'img' combinant le chemin d'accès au dossier contenant les images, et le nom de l'image.

Exemple d'image:

LISTING DES CATEGORIES REELLES

3 exemples d'images par catégorie :

Computers

MANIPULATION DES IMAGES

<u>Redimensionnement</u>:

Formats acceptés par les méthodes qui seront utilisées : (224 x224) et (299 x 299)

<u>Flou gaussien</u>: uniformiser les parties d'une image en les floutant et en harmonisant ses détails.

• Ex:

MANIPULATION DES IMAGES

<u>Egalisation des couleurs</u>: augmenter le contraste, rétablir les ploints les plus foncés et les plus clairs, et répartir uniformément les valeurs entre ces deux points.

<u>Descripteurs (SIFT et ORB)</u>: calcul de caractéristiques visuelles dans un ensemble de sosu régions de l'image.

14

ESSAIS DE MODELISATION

Nous appliquerons un Kmeans ($n_{clusters} = 7$) couplé à nos différentes méthodes de réduction de dimension et à nos méthodes de traitement d'images.

Méthodes testées:

- Features SIFT
- ResNet50
- VGG16
- VGG19
- Xception
- InceptionV3

Réduction de dimension:

- T-SNE
- PCA

<u>Métrique d'évaluation</u>:

- ARI
- Temps de traitement
- Matrice de confusion
- Precision
- Recall
- F-1 score

BILAN DE LA MODELISATION

Comparaison des différents essais :

Les scores ARI sont globalement bas (< 0,6).

La modélisation la plus pertinente est la combinaison : Xception avec réduction de dimension par T-SNE (ARI = 0,554)

BILAN DE LA MODELISATION

Evaluation de la meilleure modélisation (Xception):

La qualité de la prédiction dépend des catégories. La catégorie 'Kitchen & Dining' est ici bien mieux prédite que la catégorie 'Beauty and Personal Care'.

La segmentation confirme la faisabilité d'une classification des images selon une méthode supervisée.

CLASSIFICATION SUPERVISÉE D'IMAGES

APPROCHE

Modèle retenu:

- * Xception :
 - weights = 'imagenet'
 - input_shape = (299, 299, 3)

Méthodes testées :

- Préparation initiale des images sans data augmentation
- ImageDataGenerator (TensorFlow Keras) –data augmentation
- Image_dataset_from_directory (TensorFlow Keras) data augmentation

Paramètres retenus:

- Batch_size: 32
- Random_state: 42
- Encodeur : LabelEncoder()

Métriques d'évaluation :

- Accuracy / loss
- Temps d'entraînement

Split du dataset :

• Train / Validation / Test

PRÉPARATION INITIALE DES IMAGES - SANS DATA AUGMENTATION

Malgré l'absence de data augmentation dans cette modélisation, les résultats d'accuracy obtenus sont très acceptables.

Validation accuracy : 0.8857 Validation loss : 0.3351

Test accuracy : 0.959 Test loss : 0.1347

IMAGEDATAGENERATOR (TENSORFLOW KERAS) — AVEC DATA AUGMENTATION

Validation accuracy : 0.8397 Validation loss : 0.53

Test accuracy : 0.9333 Test loss : 0.2141

Les résultats apparaissent ici inférieurs à ceux de notre méthode précédente n'utilisant pas de data augmentation (accuracy sur les dataset de validation et de test)

IMAGE_DATASET_FROM_DIRECTORY (TENSORFLOW KERAS) - AVEC DATA AUGMENTATION

Validation accuracy : 0.9046 Validation loss : 0.2883

Test accuracy : 0.9657 Test loss : 0.1185

La méthode utilisant lmage_dataset_from_directory, couplée à une data augmentation, permet d'obtenir les meilleurs résultats d'accuracy sur nos dataset de validation et de test.

BILAN DE LA CLASSIFICATION SUPERVISÉE D'IMAGES

Modèle retenu : Xception Encoder : LabelEncoder

Batch_size : 32

Epochs : 50 (with early stopping)

Random state : 42

	Method	Training time	Train acc	Train loss	Val. acc	Val. loss	Test acc	Test loss
0	Prép initiale des images (sans data augmentation)	526.51	0.992857	0.028407	0.885714	0.400726	0.971429	0.102871
1	ImageDataGenerator + Data augmentation	371.80	0.956853	0.139504	0.851145	0.499971	0.940000	0.186125
2	Image_dataset_from_directory + Data augmentation	995.23	0.977381	0.071859	0.904580	0.305940	0.958095	0.131765

Conclusion:

Notre dernière méthode (Image_dataset_from_directory) donne les meilleurs résultats d'accuracy, et démontre que la classification automatique d'images est réalisable de manière efficace.

TEST D'UNE API

Enjeu:

Elargir la gamme de produits disponibles sur la market place, particulièrement concernant l'épicerie fine.

Approche:

Nous utiliserons l'API fournie (RapidAPI – Edanam Food and Grocery Database) et essaierons d'en extraire 10 produits contenant le mot 'Champagne', en ne gardant que les features nécessaires et en enregistrant l'extrait au format .csv afin qu'il soit exploitable.

EXTRACTION VIA L'API

Données extraites enregistrées sous : 'champagne_extract.csv'

Données extraites:

food.image	food.foodContentsLabel	food.category	food.label	food.foodid	
https://www.edamam.com /food-img/a71/a718cf3c52	NaN	Generic foods	Champagne	food_a656mk2a5dmqb2adiamu6beihduu	0
NaN	OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR	Packaged foods	Champagne Vinaigrette, Champagne	food_b753ithamdb8psbt0w2k9aquo06c	1
https://www.edamam.com /food-img/d88/d88b64d973	INGREDIENTS: WATER; CANOLA OIL; CHAMPAGNE VINE	Packaged foods	Champagne Vinaigrette, Champagne	food_b3dyababjo54xobm6r8jzbghjgqe	2
NaN	CANOLA AND SOYBEAN OIL; WHITE WINE (CONTAINS S	Packaged foods	Champagne Vinaigrette, Champagne	food_a9e0ghsamvoc45bwa2ybsa3gken9	3
NaN	WATER; CANOLA AND SOYBEAN OIL; WHITE WINE (CON	Packaged foods	Champagne Vinaigrette, Champagne	food_an4jjueaucpus2a3u1ni8auhe7q9	4
https://www.edamam.com /food-img/ab2/ab2459fc2a	SOYBEAN OIL; WHITE WINE (PRESERVED WITH SULFIT	Packaged foods	Champagne Dressing, Champagne	food_bmu5dmkazwuvpaa5prh1daa8jxs0	5
NaN	sugar; butter; shortening; vanilla; champagne;	Generic meals	Champagne Buttercream	food_alpl44taoyv11ra0lic1qa8xculi	6
NaN	Sugar; Lemon juice; brandy; Champagne; Peach	Generic meals	Champagne Sorbet	food_byap67hab6evc3a0f9w1oag3s0qf	7
NaN	butter; cocoa; sweetened condensed milk; vanil	Generic meals	Champagne Truffles	food_am5egz6aq3fpjlaf8xpkdbc2asis	8
NaN	champagne vinegar; olive oil; Dijon mustard; s	Generic meals	Champagne Vinaigrette	food_bcz8rhiajk1fuva0vkfmeakbouc0	9

