# Video denoising via Bayesian modeling of patches

#### Pablo Arias

joint work with Thibaud Ehret and Jean-Michel Morel CMLA, ENS Paris-Saclay

IHP workshop: Statistical modeling for shapes and imaging  ${\sf Paris-14/03/2019}$ 

# Why are we still researching in denoising

Denoising is mainly for people (i.e. not as much as a pre-processing for a CV task)

- ► Photography
- ► Smartphone cameras
- ► Film industry
- ► Night vision cameras
- ► Surveillance cameras
- ► Medical imaging
- ► Astronomy



A lot of research has been devoted to still image denoising, but there is still room for improvement in video denoising.

### Recursive vs. non-recursive methods



of patches, non-recursive and recursive approaches.

### Recursive vs. non-recursive methods



In this talk: video denoising via Bayesian estimation of patches, non-recursive and recursive approaches.

1

#### State of the art

#### Non-recursive

- ► Non-local means [Buades et al.'05], [Liu, Freeman '10]
- ► K-SVD [Protter, Elad '07]
- ► V-BM3D [Dabov et al.'07]
- ► Graph regularization [Ghoniem et al. '10]
- ► BM4D, V-BM4D [Maggioni et al.'12]
- ► SPTWO [Buades et al.'17]
- ► VNLB [Arias, Morel'18]
- ► VIDOSAT [Wen et al.'19]
- ► SALT [Wen et al.'19]
- ► VNLnet [Davy et al.'19]

#### Recursive

- ▶ Bilateral + Kalman filter [Zuo et al.'13]
- ▶ Bilateral + Kalman filter [Pfleger et al.'17]
- ► Recursive NL-means [Ali, Hardie'17]
- ► Gaussian-Laplacian fusion [Ehmann et al.'18]

#### State of the art

#### Non-recursive

- ► Non-local means [Buades et al.'05], [Liu, Freeman '10]
- ► K-SVD [Protter, Elad '07]
- ► V-BM3D [Dabov et al.'07]
- ► Graph regularization [Ghoniem et al.

#### Recursive

- ► Bilateral + Kalman filter [Zuo et al.'13]
- ► Bilateral + Kalman filter [Pfleger et al.'17]
- ► Recursive NL-means [Ali, Hardie'17]
- n et

► BM

10

- ▶ SP1 Non-recursive/mixed approaches good results at high computational cost.
  - Recursive methods: real-time performance but worse results.

- ► VNI
- ► SALT [Wen et al.'19]
- ► VNLnet [Davy et al.'19]

## **Contents**

Non-recursive methods

Recursive method I

Recursive method II

Empirical comparison

## **Contents**

Non-recursive methods

Recursive method I

Recursive method II

Empirical comparison

# Attention! Strange diagrams ahead













## VNLB: Bayesian patch estimation with Gaussian prior

 $p_1,\dots,p_n:n$  "similar" clean patches from u  $q_1,\dots,q_n:n$  "similar" noisy patches from v

Assumption: patches are IID samples of a Gaussian distribution

$$\begin{split} \mathbb{P}(\boldsymbol{p}_i) &= \mathcal{N}(\boldsymbol{p}_i \,|\, \boldsymbol{\mu}, C) \\ \mathbb{P}(\boldsymbol{q}_i | \boldsymbol{p}_i) &= \mathcal{N}(\boldsymbol{q}_i \,|\, \boldsymbol{p}_i, \sigma^2 I) \end{split}$$

For each noisy patch  $q_i$  estimate  $p_i$  as the MAP/MMSE, given by the Wiener filters

$$\hat{p}_i = \mu + C(C + \sigma^2 I)^{-1} (q_i - \mu I)^{-1}$$

## VNLB: Bayesian patch estimation with Gaussian prior

 $p_1,\dots,p_n:$  n "similar" clean patches from u  $q_1,\dots,q_n:$  n "similar" noisy patches from v

Assumption: patches are IID samples of a Gaussian distribution

$$\begin{split} \mathbb{P}(\boldsymbol{p}_i) &= \mathcal{N}(\boldsymbol{p}_i \,|\, \boldsymbol{\mu}, C) \\ \mathbb{P}(\boldsymbol{q}_i | \boldsymbol{p}_i) &= \mathcal{N}(\boldsymbol{q}_i \,|\, \boldsymbol{p}_i, \sigma^2 I) \end{split}$$

For each noisy patch  $q_i$  estimate  $p_i$  as the MAP/MMSE, given by the Wiener filter:

$$\hat{\boldsymbol{p}}_i = \boldsymbol{\mu} + C(C + \sigma^2 I)^{-1} (\boldsymbol{q}_i - \boldsymbol{\mu})$$



## Estimating the prior parameters

How to estimate  $\mu$  and C?

**STEP 2:** Use the guide patches  $g_1, \ldots, g_n \sim N(\mu, C)$ :

$$\widehat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}_{i} \qquad \widehat{\boldsymbol{C}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{g}_{i} - \widehat{\boldsymbol{\mu}}) (\boldsymbol{g}_{i} - \widehat{\boldsymbol{\mu}})^{T}$$

**STEP 1:** Use the noisy pathes  $q_1, \dots, q_n \sim N(\mu, C + \sigma^2 I)$ :

$$\widehat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{q}_{i} \qquad \widehat{\boldsymbol{C}} \approx \widehat{\boldsymbol{C}}_{\boldsymbol{q}} - \sigma^{2} \boldsymbol{I} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{q}_{i} - \widehat{\boldsymbol{\mu}}) (\boldsymbol{q}_{i} - \widehat{\boldsymbol{\mu}})^{T} - \sigma^{2} \boldsymbol{I}$$

## Estimating the prior parameters

We use the following hard-thresholding of the eigenvalues of the sample covariance matrix of the noisy patches:

$$\hat{\lambda}_i^{\mathsf{H}} = \mathbf{H}_{\tau}(\hat{\xi}_i - \sigma^2) = \begin{cases} \hat{\xi}_i - \sigma^2 & \text{if } \hat{\xi}_i \geqslant \tau \sigma^2 \\ 0 & \text{if } \hat{\xi}_i < \tau \sigma^2. \end{cases}$$

Based on the results of Debashis Paul (2007) on the aymptotic properties for the eigenvalues and eigenvectors of the noisy sample covariance matrix.

# **Examples of local Gaussian models**



Groups of 200 similar  $9 \times 9 \times 4$  patches, in a  $37 \times 37 \times 5$  search region.

Nearest neighbors 1 to 5.

Nearest neighbors 6 to 45.

Nearest neighbors 46 to 200.

## VLNB: Examples of local Gaussian models



corresponding MAP estimates.

### Patch search and aggregation

- ▶ 3D rectangular patches, typical sizes are  $10 \times 10 \times 2$ .
- ► Motion compensated search region: a square tracing the motion trajectory of the target patch. Motion estimation using optical flow (TV-L1 [Zach et al. '07]).
- ▶ Search region size:  $21 \times 21 \times 9$
- ► Two iterations over the whole video (as in BM3D [Dabov et al. '07]).

#### Contents

Non-recursive methods

Recursive method I

Recursive method II

Empirical comparison

#### Motivation

$$u_t = \mathtt{recursive-method}(f_t, u_{t-1})$$

#### Design constraints:

- ► reduce computational cost
- ▶ reduce memory cost  $(M_t = \mathcal{O}(1))$

#### Appealing properties:

- ▶ natural mechanism to enforce temporal consistency
- ► can aggregate an arbitrary number of past frames

#### Motivation

$$u_t, M_t \ = \ \mathtt{recursive-method}(f_t, M_{t-1})$$

#### Design constraints:

- lacktriangledown reduce computational cost
- ▶ reduce memory cost  $(M_t = \mathcal{O}(1))$

# $\label{properties:properties:} Appealing \ properties:$

- $\,\blacktriangleright\,$  natural mechanism to enforce temporal consistency
- ► can aggregate an arbitrary number of past frames

## Dynamic Gaussian patch model



We assume a Gaussian linear dynamic model for a patch trajectory  $p_t$ :

$$\left\{egin{aligned} p_0 = oldsymbol{\mu_0} + w_0, & w_0 \sim \mathcal{N}(\mathbf{0}, P_0), \ p_t = p_{t-1} + w_t, & w_t \sim \mathcal{N}(\mathbf{0}, W_t), \ q_t = p_t + r_t, & r_t \sim \mathcal{N}(\mathbf{0}, \sigma^2 I). \end{aligned}
ight.$$

## Dynamic Gaussian patch model



We assume a Gaussian linear dynamic model for a patch trajectory  $p_t$ :

$$\left\{egin{aligned} p_0 = oldsymbol{\mu_0} + oldsymbol{w}_0, & w_0 \sim \mathcal{N}(\mathbf{0}, oldsymbol{P_0}), \ p_t = p_{t-1} + oldsymbol{w}_t, & w_t \sim \mathcal{N}(\mathbf{0}, oldsymbol{W_t}), \ q_t = p_t + r_t, & r_t \sim \mathcal{N}(\mathbf{0}, \sigma^2 I). \end{aligned}
ight.$$

# Dynamic Gaussian patch model



Full patch model: 
$$\left\{ \begin{array}{l} p \sim \mathcal{N}(\mu_K, Q_K^{-1}), \\ q \sim \mathcal{N}(p, \sigma^2 I). \end{array} \right.$$

$$\mu_K = \begin{pmatrix} \mu_0 \\ \mu_0 \end{pmatrix}, \quad Q_K = \begin{pmatrix} P_0^{-1} + W_1^{-1} & -W_1^{-1} \\ -W_1^{-1} & W_1^{-1} + W_2^{-1} & -W_2^{-1} \\ -W_2^{-1} & W_2^{-1} + W_3^{-1} & -W_3^{-1} \\ -W_3^{-1} & W_3^{-1} + W_4^{-1} & -W_4^{-1} \\ -W_4^{-1} & W_5^{-1} \end{pmatrix}$$



Kalman filter: recursive computation of  $\mathbb{P}(p_t|q_t,\ldots,q_1)\sim\mathcal{N}\left(\widehat{p}_t,P_t\right)$ 

$$\left\{ \begin{array}{ll} \widehat{p}_t = (I-K_t)\widehat{p}_{t-1} + K_tq_t & \text{state mean} \\ \\ P_t = (I-K_t)(P_{t-1} + W_t)(I-K_t)^T + \sigma^2K_t^2 & \text{state covariance} \\ \\ K_t = (P_{t-1} + W_t)(P_{t-1} + W_t + \sigma^2I)^{-1} & \text{Kalman gain} \end{array} \right.$$



Kalman filter: recursive computation of  $\mathbb{P}(p_t|q_t,\ldots,q_1) \sim \mathcal{N}\left(\widehat{p}_t,P_t\right)$ 

$$\left\{ \begin{array}{ll} \widehat{p}_t = (I-K_t)\widehat{p}_{t-1} + K_tq_t & \text{state mean} \\ \\ P_t = (I-K_t)(P_{t-1} + \textbf{W}_t)(I-K_t)^T + \sigma^2K_t^2 & \text{state covariance} \\ \\ K_t = (P_{t-1} + \textbf{W}_t)(P_{t-1} + \textbf{W}_t + \sigma^2I)^{-1} & \text{Kalman gain} \end{array} \right.$$



Kalman filter: recursive computation of  $\mathbb{P}(p_t|q_t,\ldots,q_1) \sim \mathcal{N}\left(\widehat{p}_t,P_t\right)$ 

$$\left\{ \begin{array}{ll} \widehat{p}_t = (I-K_t)\widehat{p}_{t-1} + K_tq_t & \text{state mean} \\ \\ P_t = (I-K_t)(P_{t-1} + \textbf{W}_t)(I-K_t)^T + \sigma^2K_t^2 & \text{state covariance} \\ \\ K_t = (P_{t-1} + \textbf{W}_t)(P_{t-1} + \textbf{W}_t + \sigma^2I)^{-1} & \text{Kalman gain} \end{array} \right.$$



**Kalman filter:** recursive computation of  $\mathbb{P}(p_t|q_t,\ldots,q_1) \sim \mathcal{N}\left(\widehat{p}_t,P_t\right)$ 

$$\left\{ \begin{array}{ll} \widehat{p}_t = (I-K_t)\widehat{p}_{t-1} + K_tq_t & \text{state mean} \\ \\ P_t = (I-K_t)(P_{t-1} + \textbf{W}_t)(I-K_t)^T + \sigma^2K_t^2 & \text{state covariance} \\ \\ K_t = (P_{t-1} + \textbf{W}_t)(P_{t-1} + \textbf{W}_t + \sigma^2I)^{-1} & \text{Kalman gain} \end{array} \right.$$

# Recursive Bayesian patch estimation: smoothing



Rauch-Tung-Streibel smoother: back-recursion for  $\mathbb{P}(p_t|q_T,\ldots,q_1) \sim \mathcal{N}\left(\widetilde{p}_t,\widetilde{P}_t\right)$ 

$$\left\{ \begin{array}{ll} \widetilde{p}_t = (I-S_t)\widehat{p}_t + S_t\widetilde{p}_{t+1} & \text{state mean} \\ \\ \widetilde{P}_t = P_t + S_t(\widetilde{P}_{t+1} - P_t - W_{t+1})S_t & \text{state covariance} \\ \\ S_t = P_t(P_t + W_{t+1})^{-1} & \text{smoothing gain} \end{array} \right.$$

#### Parameter estimation

The only model parameters that need to be estimated are the state transition covariances  $W_t$  associated to the group.

$$\mathbb{E}\{(q_t - q_{t-1})(q_t - q_{t-1})^T\} = W_t + 2\sigma^2 I.$$

We assume that similar patches are iid realizations of the same dynamic model:

$$p_{t,i} = p_{t-1,i} + w_{t,i} \text{ with } w_{t,i} \sim \mathcal{N}(\mathbf{0}, W_t)$$

$$\tag{1}$$

$$q_{t,i} = p_{t,i} + r_{t,i} \text{ with } r_{t,i} \sim \mathcal{N}(\mathbf{0}, \sigma^2 I).$$
 (2)

We estimate  $W_t$  via the sample covariance matrix of the innovations:

$$\widehat{W}_{t} = \beta \widehat{W}_{t-1} + (1 - \beta) \left( \frac{1}{n} \sum_{i=1}^{n} (q_{t,i} - q_{t-1,i}) (q_{t,i} - q_{t-1,i})^{T} - 2\sigma^{2} I \right)_{+}.$$

A forgetting factor  $\beta \in [0,1]$  is introduced to increase temporal stability.

#### Forward NL-Kalman filter: frame 1



Forward NL-Kalman filter: frame 1



#### Forward NL-Kalman filter: frame t



Aggregate

by averaging

 ${\sf Patch\ groups}\ t$ 

26











# **FNLK:** Managing patch trajectories

- ▶ Occlusions: Terminate patch trajectories if an occlusion is detected.
- ▶ **Dis-occlusions:** Create groups for parts not covered by existing groups.



For each of these groups, we store

- lacktriangle coordinates of the patches in the group
- lacktriangle estimated clean patches  $\widehat{m{p}}_{t,i}$
- $\blacktriangleright$  covariance of estimated patches  $P_t$
- lacktriangle transition covariance matrix  $\widehat{W}_t$

### Contents

Non-recursive methods

Recursive method I

Recursive method II

Empirical comparison

# Dropping the patch groups memory in FNLK



# Dropping the patch groups memory in FNLK



# Recursive Bayesian patch estimation w/out covariances



Given  $\widehat{p}_{t-1}, P_{t-1}$ , at time t we have

$$\left\{ \begin{array}{l} p_{t-1} \sim \mathcal{N}(\widehat{p}_{t-1}, P_{t-1}), \\ \\ p_t = p_{t-1} + w_t, & w_t \sim \mathcal{N}(\mathbf{0}, \textcolor{red}{W_t}), \\ \\ q_t = p_t + r_t & r_t \sim \mathcal{N}(\mathbf{0}, \sigma^2 I). \end{array} \right.$$

Kalman filter: Recursive computation of  $\mathbb{P}(p_t|q_t,\ldots,q_1) \sim \mathcal{N}\left(\widehat{p}_t,P_t\right)$ 

$$\left\{ \begin{array}{ll} \widehat{p}_t = (I-K_t)\widehat{p}_{t-1} + K_tq_t & \text{state mean} \\ \\ P_t = (I-K_t)(P_{t-1} + \textbf{W}_t)(I-K_t)^T + \sigma^2K_t^2 & \text{state covariance} \\ \\ K_t = (P_{t-1} + \textbf{W}_t)(P_{t-1} + \textbf{W}_t + \sigma^2I)^{-1} & \text{Kalman gain} \end{array} \right.$$

# Recursive Bayesian patch estimation w/out covariances



If we don't have  $\widehat{p}_{t-1}, P_{t-1}$  we introduce them as parameters

$$\left\{egin{array}{l} p_{t-1} \sim \mathcal{N}(oldsymbol{\mu_{t-1}}, C_{t-1}), \ p_t = p_{t-1} + w_t, & w_t \sim \mathcal{N}(\mathbf{0}, oldsymbol{W_t}), \ q_t = p_t + r_t & r_t \sim \mathcal{N}(\mathbf{0}, \sigma^2 I). \end{array}
ight.$$

We have the following posterior  $\mathbb{P}(p_t|q_t) \sim \mathcal{N}\left(\widehat{p}_t, P_t\right)$ 

$$\left\{ \begin{array}{ll} \widehat{p}_t = (I-K_t)\mu_{t-1} + K_tq_t & \text{state mean} \\ \\ P_t = (I-K_t)(C_{t-1} + W_t)(I-K_t)^T + \sigma^2K_t^2 & \text{state covariance} \\ \\ K_t = (C_{t-1} + W_t)(C_{t-1} + W_t + \sigma^2I)^{-1} & \text{"Kalman" gain} \end{array} \right.$$

# Parameter estimation for the memoryless model

We assume that similar patches are iid realizations of the same dynamic model:

$$\left\{ \begin{array}{ll} p_{t-1,i} \sim \mathcal{N}(\pmb{\mu_{t-1}}, \pmb{C_{t-1}}) \\ \\ p_{t,i} = p_{t-1,i} + w_{t,i} & w_{t,i} \sim \mathcal{N}(\pmb{0}, \pmb{W_{t}}) \\ \\ q_{t,i} = p_{t,i} + r_{t,i} & r_{t,i} \sim \mathcal{N}(\pmb{0}, \sigma^2 I). \end{array} \right.$$

$$\begin{split} \widehat{\boldsymbol{\mu}}_{t-1} &= \frac{1}{m} \sum_{i=1}^{m} p_{t-1,i} \\ \widehat{\boldsymbol{C}}_{t-1} &= \frac{1}{m} \sum_{i=1}^{m} (p_{t-1,i} - \widehat{\boldsymbol{\mu}}_{t-1,i}) (p_{t-1,i} - \widehat{\boldsymbol{\mu}}_{t-1,i})^T \\ \widehat{\boldsymbol{W}}_{t} &= \frac{1}{n} \sum_{i=1}^{n} (q_{t,i} - p_{t-1,i}) (q_{t,i} - p_{t-1,i})^T - \sigma^2. \end{split}$$

**NOTE:** We introduced m to control the spatial averaging in  $\widehat{\mu}_{t-1}$ . Typically m < n.

# Additional simplification: work in DCT domain

 $\textbf{Assumption:} \quad W_t = U \mathsf{Diag}(\pmb{\nu}_t) U^T \quad \text{ where } U \text{ is the DCT basis}$ 

### Then:

- $1. \ P_t = U \mathsf{Diag}(\widehat{\pmb{\nu}}_t) U^T$
- 2. The Kalman recursion separates in d scalar filters on each DCT component:

## Backward NL-Kalman filter: frame t



### Backward NL-Kalman filter: frame t



## Backward NL-Kalman filter: frame t



# Backward NL-Kalman filtering and smoothing

# Algorithm 1: Recursive video filtering

```
\begin{array}{l} \text{input} : \text{Noisy video } f, \text{ noise level } \sigma \\ \\ \text{output: Denoised video } u \\ \\ 1 \text{ for } t = 1 \dots T \text{ do} \\ \\ 2 \qquad v_t^b \leftarrow \text{compute-optical-flow}(f_t, \hat{u}_{t-1}, \sigma) \\ \\ 3 \qquad \hat{u}_{t-1}^w \leftarrow \text{warp-bicubic}(\hat{u}_{t-1}, v_t^b) \\ \\ 4 \qquad \hat{g}_t \leftarrow \text{bwd-nlkalman-filter}(f_t, \hat{u}_{t-1}^w, \sigma) \\ \\ 5 \qquad \hat{u}_t \leftarrow \text{bwd-nlkalman-filter}(f_t, \hat{u}_{t-1}^w, \hat{g}_t, \sigma) \\ \\ \end{array}
```

# Algorithm 2: Recursive video smoothing input: Noisy video f, noise level $\sigma$

```
output: Denoised video u 1 for t=1\dots T do 2 \left|\begin{array}{c} v_t^f \leftarrow \text{compute-optical-flow}(\hat{u}_t, \tilde{u}_{t+1}, \sigma) \\ \mathbf{3} & \tilde{u}_{t+1}^w \leftarrow \text{warp-bicubic}(\tilde{u}_{t+1}, v_t^b) \\ \mathbf{4} & \tilde{u}_t \leftarrow \text{bwd-nlkalman-smoother}(\hat{u}_t, \tilde{u}_{t-1}^w, \sigma) \end{array}\right|
```

# Three approaches based on Gaussian models of patches

#### **VNLB**

- ► Fixed 3D patch size
- ▶ No distinction between space and time
- Does not require OF
- ► Two iterations

#### **FNLK**

- ► Patch with arbitrary duration
- Processing organized by patch groups
- ► A lot of house-keeping
- Sensitive to OF
- ► Costly in memory

#### BNLK

- Patch with arbitrary duration (kind of)
- ► Very cheap in memory
- Processing by raster order
- ► DCT domain (for the moment)
- ► Two iterations
- ► Simple smoother
- ► Sensitive to OF

### Contents

Non-recursive methods

Recursive method I

Recursive method II

Empirical comparison

# Quantitative denoising results (PSNR)



Average PSNR over 7 grayscale sequences  $960 \times 540 \times 100$ .  $\sigma = 10 \qquad \sigma = 20 \qquad \sigma = 40$ 

# Quantitative denoising results (SSIM)



Average SSIM over 7 grayscale sequences  $960 \times 540 \times 100$ .  $\sigma = 10 \qquad \sigma = 20 \qquad \sigma = 40$ 

### Conclusions and future work

- ► Current state-of-the-art in video denoising: either good results or fast results.
- Presented two recursive approaches bridging the gap between costly good methods and fast methods.
- They integrate information accross longer time ranges and are allow to recover many more details.
- Still very sensitive to optical flow.

### Ongoing work

- ▶ Joint denoising and optical flow computation.
- ▶ Implement BNLK in an adaptive basis (instead of DCT).
- ► Fixed lag smoothers.
- ► Multiscale versions.

# Thank you!

#### Reproducibility! Code and results:

► Non-recursive results:

http://dev.ipol.im/~pariasm/video\_denoising\_models/

► VNLB: http://github.com/pariasm/vnlb

► SPTWO: https://doi.org/10.5201/ipol.2018.224

► BM4D-OF: https://github.com/pariasm/vbm3d

▶ BNLK: http://github.com/pariasm/bwd-nlkalman

► FNLK: http://github.com/tehret/nlkalman

### References I

[Dabov'07] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian. *Image denoising by sparse 3D transform-domain collaborative filtering.* IEEE Trans. on Image Processing, 16, 2007.

[Mairal'09] J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman, *Non-local sparse models for image restoration*. CVPR 2009.

[Ji et al.'10] H. Ji, C. Liu, Z. Shen, Y. Xu, Robust video denoising using low-rank matrix completion. CVPR 2010.

[He et al.'11] Y. He, T. Gan, W. Chen, H. Wang, Adaptive denoising by Singular Value Decomposition. IEEE Signal Processing Letters, 18(4), 2011.

[Zoran'11] D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, ICCV 2011.

[Wang et al.'12] Wang S., Zhang L., Liang Y., Nonlocal Spectral Prior Model for Low-Level Vision. ACCV 2012.

[Yu et al.'12] G. Yu, G. Sapiro and S. Mallat, Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity, IEEE TIP, 21(5), 2012.

### References II

[Dong et al.'13] Dong, W., Shi, G., Li, X., Nonlocal Image Restoration With Bilateral Variance Estimation: A Low-Rank Approach, IEEE TIP, 22(2), 2013.

[Lebrun'13] M. Lebrun, A. Buades and J.M. Morel. A Nonlocal Bayesian image denoising algorithm. SIAM Journal on Imaging Sciences, 6, 2013.

[Gu et al. 14] S. Gu, L. Zhang, W. Zuo, X. Feng, Weighted Nuclear Norm Minimization with Application to Image Denoising, CVPR 2014.

[Guo et al.'16] Q. Guo, C. Zhang, Y. Zhang and H. Liu, An Efficient SVD-Based Method for Image Denoising, IEEE Trans. on Circuits and Systems for Video Tech., 26(5), 2016.

[Badri et al. 16] H. Badri, H. Yahia and D. Aboutajdine, Low-Rankness Transfer for Realistic Denoising, in IEEE TIP, 25(12), 2016.

[Xie et al. 16] Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang and L. Zhang, Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction," in IEEE TIP, 25(10), 2016.

# **Empirical Wiener filters in high dimensions**

ML estimator of the inverse covariance matrix  $Q_{\pmb{y}} = C_{\pmb{y}}^{-1}$  results from the following convex SDP:

max 
$$\log \det Q_{\boldsymbol{y}} - \operatorname{tr}(Q_{\boldsymbol{y}}\widehat{C}_{\boldsymbol{y}})$$
  
subject to  $0 \prec Q_{\boldsymbol{y}} \preceq \sigma^{-2}I_d$ .

Although there are efficient algorithms for solving such an SDP, they are still prohibitive for the present application.

# Convergence of the sample covariance matrix

Spiked covariance model: Samples  $x_1,\dots,x_n\sim\mathcal{N}(\mathbf{0},C)$ . We observe  $y_i\sim\mathcal{N}(x_i,\sigma^2I)$ .

$$C = U \operatorname{Diag}(\lambda_1, \dots, \lambda_m, 0, \dots, 0) U^T.$$

Theorem (Paul 2007). Suppose that  $d/n \to \gamma \in (0,1)$  as  $n \to \infty$ . Let  $\widehat{\xi}_i$  be the ith eigenvector of the sample covariance matrix  $\widehat{C}_y$ . Then  $\widehat{\xi}_i$  converges almost surely to

$$\widehat{\xi_i} \to \left\{ \begin{array}{ll} \sigma^2 (1+\sqrt{\gamma})^2 & \text{if } \lambda_i \leqslant \sqrt{\gamma} \sigma^2, \\ f(\lambda_i) := (\lambda_i + \sigma^2) \left(1 + \frac{\gamma \sigma^2}{\lambda_i}\right) & \text{if } \lambda_i > \sqrt{\gamma} \sigma^2. \end{array} \right.$$

We can estimate 
$$\lambda_i$$
 as  $\widehat{\lambda}_i^5(\widehat{\xi_i}) = \left\{ \begin{array}{ll} 0 & \text{if } \widehat{\xi_i} \leqslant \sigma^2(1+\sqrt{\gamma})^2 \\ f^{-1}(\widehat{\xi_i}) & \text{if } \widehat{\xi_i} > \sigma^2(1+\sqrt{\gamma})^2 \end{array} \right.$ 

# Convergence of the sample covariance matrix

Spiked covariance model: Samples  $x_1,\dots,x_n\sim\mathcal{N}(\mathbf{0},C)$ . We observe  $y_i\sim\mathcal{N}(x_i,\sigma^2I)$ .

$$C = U \operatorname{Diag}(\lambda_1, \dots, \lambda_m, 0, \dots, 0) U^T.$$

**Theorem (Paul 2007).** Suppose that  $d/n \to \gamma \in (0,1)$  as  $n \to \infty$ . Let  $\widehat{\xi}_i$  be the ith eigenvector of the sample covariance matrix  $\widehat{C}_u$ . Then  $\widehat{\xi}_i$  converges almost surely to

$$\widehat{\xi_i} \to \left\{ \begin{array}{ll} \sigma^2 (1+\sqrt{\gamma})^2 & \text{if } \lambda_i \leqslant \sqrt{\gamma} \sigma^2, \\ f(\lambda_i) := (\lambda_i + \sigma^2) \left(1 + \frac{\gamma \sigma^2}{\lambda_i}\right) & \text{if } \lambda_i > \sqrt{\gamma} \sigma^2. \end{array} \right.$$

We can estimate 
$$\lambda_i$$
 as  $\widehat{\lambda}_i^{\mathrm{S}}(\widehat{\xi}_i) = \left\{ egin{array}{ll} 0 & \mbox{if } \widehat{\xi}_i \leqslant \sigma^2 (1+\sqrt{\gamma})^2, \\ f^{-1}(\widehat{\xi}_i) & \mbox{if } \widehat{\xi}_i > \sigma^2 (1+\sqrt{\gamma})^2. \end{array} \right.$ 

# Estimators for the eigenvalues of $C_{m{x}}$



### **Simulations**



### Variance threshold

We propose an additional estimator by hard thresholding the difference  $\hat{\xi}-\sigma^2$ . The value of the threshold is given by a parameter  $\tau$ :

$$\hat{\lambda}_i^{\mathsf{H}} = \mathrm{H}_{\tau}(\hat{\xi}_i - \sigma^2) = \left\{ \begin{array}{ll} \hat{\xi} - \sigma^2 & \text{if } \hat{\xi} \geqslant \tau \sigma^2 \\ 0 & \text{if } \hat{\xi} < \tau \sigma^2. \end{array} \right.$$

# Denoising performance of both estimators

