Complex Analysis

 ${\bf Martin~Azpillaga}$

 $March\ 5,\ 2014$

unit name

Contents

Ι	Definitions	7
1	The field of complex numbers	7
	The field of complex numbers	9
	Conjugation	9
	Norm	9
	Polar transformation	10
	Unit sphere projection	10
	Roots of unity	10
	Disk	11
	Component decomposition	11
2	Holomorphic functions	12
	Incremental quotient	14
	Holomorphic function	14
	Cauchy-Riemman equations	15
	Conformal	16
	Power series	17
	Convergence radius	18
	Absolutely convergent	18
	Numeric series	19
IJ	I Propositions	19
1	The field of complex numbers	21
2	Holomorphic functions	23
	Cauchy-Riemman	24
	tangent venctor	25

4 0 unit name

	arc images	26
	Holomorphic functions are conform	27
	Convergence of complex series	28
	Absolutely convergent are convergent	29
	Series and norm	30
	Root test	31
	Quotient test	32
	Power series theorem	33
	Power series theorem	35
	functions associated to series are \mathcal{C}^{∞}	38
II	I Examples	39
1	Holomorphic functions	39
2	Holomorphic functions	41
	Conjugation	42
	Quadratic norm	42
	Non preserving angles function	43
	Exponential	44
	Geometric series	44
	Series not centered in 0	45
	Radius of convergence without quotient test	46
IJ	V Problems	46
1	The field of complex numbers	50
	entity	51
2	Holomorphic functions	51
	3. Cauchy-Riemman	52
	B.2 a)	
	Preservation of angles	54
\mathbf{V}	Tasks	56
1	1st laboratory	57
	Existence of holomorphic functions	58

block name												
Constant tests	61											
Real part of holomorphic functions	63											

2	2nd laborator	ry														65
	Power series															66

0 unit name

I Definitions 7

Block I

Definitions

1. The field of complex numbers

introduction

I Definitions 9

The field of complex numbers

Let:

$$\begin{array}{cccc}
+ : \mathbb{R}^2 \times \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\
((a,b),(c,d)) & \longmapsto & (a+c,b+d) \\
\cdot : \mathbb{R}^2 \times \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\
\cdot & ((a,b),(c,d)) & \longmapsto & (ac-bd,ad+bd)
\end{array}$$

We name the field of complex numbers to:

$$\cdot (\mathbb{R}^2, +, \cdot)$$

We denote:

$$\cdot (\mathbb{R}^2, +, \cdot) : \mathbb{C}$$

$$\cdot (0,1) \in \mathbb{C} : i$$

$$(a,b) \in \mathbb{C} : a+bi$$

$$\cdot \pi_1(\mathbb{C}) : Re$$

$$\cdot \pi_2(\mathbb{C}) : Im$$

Conjugation

We name complex conjugation to:

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$
$$(a,b) \longmapsto (a,-b)$$

$$\cdot f((a,b)) : \overline{(a,b)}$$

Norm

We name complex norm to:

$$f: \mathbb{C} \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto \sqrt{a^2 + b^2}$$

We denote:

$$f((a,b)):|(a,b)|$$

Polar transformation

We name polar transformation to:

$$\begin{array}{cccc} \cdot & f : \mathbb{C} & \longrightarrow & \mathbb{R}^+ \times [0, 2\pi) \\ \cdot & (a, b) & \longmapsto & (\sqrt{|(a, b)|}, \arctan(\frac{b}{a})) \end{array}$$

We denote:

$$f((a,b)):(r,\theta)$$

Unit sphere projection

We name unit sphere projection to:

$$\begin{array}{cccc} \cdot & f : \mathbb{C} & \longrightarrow & S^1 \\ & z & \longmapsto & \frac{z}{|z|} \end{array}$$

$$\cdot f(z) : \pi(z)$$

I Definitions 11

Roots of unity

Let:

$$\cdot z \in \mathbb{C}$$

Then, z is a root of unity if:

$$\cdot \exists n \in \mathbb{N} :$$

$$z^n = 1$$

We denote:

$$\cdot \{z \in \mathbb{C} \mid z \text{ root of unity }\} : S^1$$

Disk

Let:

$$p \in \mathbb{C}$$

$$r \in \mathbb{R}^+ \setminus \{0\}$$

We name Disk centered in p and radius ${\bf r}$ to:

$$\cdot \{ z \in \mathbb{C} \mid |z - p| < r \}$$

$$\cdot \{z \in \mathbb{C} \mid |z - p| < r\} : D^1$$

Component decomposition

Let:

$$f: \mathbb{C} \to \mathbb{C}$$

We name real component of f to:

$$f_{Re}: \mathbb{C} \longrightarrow \mathbb{R}$$

$$z \longmapsto Re(f(z))$$

We name imaginary component of f to:

$$f_{Im}: \mathbb{C} \longrightarrow \mathbb{R}$$

$$z \longmapsto Im(f(z))$$

We name component decomposition of f to:

$$f_{\mathbb{R}^2}: \mathbb{C} \longrightarrow \mathbb{R}^2 (x,y) \longmapsto (f_{Re}(x+yi), f_{Im}(x+yi))$$

I Definitions 13

2. Holomorphic functions

Incremental quotient

Let:

$$\cdot \mathcal{U} \subset \mathbb{C}$$
 open

$$f: \mathcal{U} \to \mathbb{C}$$

$$\cdot p \in \mathcal{U}$$

We name incremental quotient of f in p to:

$$\cdot \lim_{z \to p} \frac{f(z) - f(p)}{z - p}$$

$$\cdot f'(p)$$

I Definitions 15

Holomorphic function

Let:

$$\cdot \mathcal{U} \subset \mathbb{C}$$
 open

$$f: \mathcal{U} \to \mathbb{C}$$

$$\cdot p \in \mathcal{U}$$

Then, f is holomorphic over p if:

$$\cdot \exists f'(p)$$

Then, f is holomorphic over U if:

$$\cdot \forall p \in \mathcal{U}$$
:

$$\exists f'(p)$$

$$\{f: \mathcal{U} \to \mathbb{C} \mid f \text{ holomorphic over } \mathcal{U}\}: \mathcal{H}(\mathcal{U})$$

$$f \in \mathcal{H}(\mathbb{C}) : f \text{ entire}$$

Cauchy-Riemman equations

Let:

$$\begin{array}{ccc} \cdot u, v \, : \, \mathbb{R}^2 \to \mathbb{R} \\ \\ \cdot \begin{array}{ccc} f : \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x, y) & \longmapsto & (u((x, y)), v((x, y))) \end{array}$$

Then, f is satisfies the Cauchy-Riemman equations if:

$$\exists u_x, u_y, v_x, v_y$$

$$u_x = v_y$$

$$\cdot u_y = -v_x$$

$$u_x + iv_x : f_x$$

$$u_y + iv_y : f_y$$

I Definitions 17

Conformal

Let:

$$\cdot \mathcal{U} \subset \mathbb{C}$$
 open

$$f: \mathcal{U} \to \mathbb{C}$$

$$\cdot z \in \mathcal{U}$$

Then, f is conformal in z if:

$$\cdot \exists c \in \mathbb{C}$$
:

$$\forall \ I \subset \mathbb{R} \ \ , \ \ 0 \in I :$$

$$\forall \ \gamma \ : \ I \to \mathbb{R}^2 \quad \text{,,} \quad \gamma \ \text{differentiable} \land \gamma(0) = z \ \land \ \gamma'(0) \neq 0$$

0:

$$\frac{(f \circ \gamma)'(0)}{\gamma'(0)} = c$$

Then, f is conformal if:

$$\cdot \forall z \in \mathcal{U}$$
:

f conformal in z

Power series

Let:

$$\cdot \sum_{n\geq 0} a_n f_n$$
 complex valued sequence

Then, $\sum_{n\geq 0} a_n f_n$ is a power series if:

 $\cdot \ \forall \ n \in \mathbb{N}$:

$$\begin{array}{ccc}
f_n : \mathbb{C} & \longrightarrow & \mathbb{C} \\
z & \longmapsto & (z-a)^n
\end{array}$$

Convergence radius

Let:

 $\cdot statements \\$

.

Then, *item* is a/an entity if:

 $\cdot conditions$

.

We denote:

 $\cdot property : notation$

.

Absolutely convergent

Let:

$$\cdot \sum c_n n[0]$$
 series

Then, $\sum c_n n[0]$ is absolutely convergent if:

$$\cdot \sum |c_n| n[0]$$
 convergent

Numeric series

Let:

$$\cdot (c_k)_{k \in \mathbb{N}}$$

Then, item is a/an entity if:

 $\cdot conditions$

.

We denote:

 $\cdot property : notation$

.

20 0 unit name

Block II

Propositions

1. The field of complex numbers

introduction

go

2. Holomorphic functions

Cauchy-Riemman

Let:

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \text{ satisfies CR}$$

Then, holds:

$$f_x = f'(z)$$

$$\cdot f_y = -if_y$$

$$\partial_{f(z)}z = 0$$

Demonstration:

$$f_x = u_x + iv_x = a + bi = f'(z)$$

$$f_y = i(a+ib) = if'(z)$$

$$f'(z) = -if_y$$

notation

tangent venctor

Let:

 $\cdot \gamma$ differentiable plane arc $\ \ \ \forall \ t \in I$:

$$\gamma'(t) \neq 0$$

Then, holds:

$$\cdot \gamma'(t)$$
 tangent to γ

Demonstration:

demonstration

arc images

Let:

$$f \in \mathcal{H}(\mathcal{U})$$

 $\cdot \gamma$ differentiable plane arc " $\gamma \subset \mathcal{U}$

$$\cdot \sigma = f(\gamma)$$

$$\cdot z_0 = \gamma(0)$$

Then, holds:

$$\cdot \, \sigma' = f'(\gamma) \gamma'$$

$$\cdot \gamma'(0) \neq 0 \rightarrow f'(z_0) \neq 0$$

$$\cdot \, \sigma'(0) = f'(z_0) \gamma'(0)$$

$$|\sigma'(0)| = |f'(z_0)||\gamma'(0)|$$

$$arg\sigma'(0) = arg\gamma'(0) + argf(z_0)$$

 \cdot f aplica una homotecia mas una rotacion constante a todos los vectores tangentes que salen de z0

Demonstration:

obvio

Holomorphic functions are conform

Let:

$$f: \mathcal{U} \to \mathbb{C}$$

.

Then, holds:

• fholomorph in
$$z \mid f'(z) \neq 0 \leftrightarrow f$$
 conform

Demonstration:

 \rightarrow):

already seen

←):

too hard

Convergence of complex series

Let:

$$\sum_{n>0} c_n$$
 complex series

Then, holds:

$$\cdot \sum_{n \geq 0} c_n \text{ convergent } \leftrightarrow \sum_{n \geq 0} Rec_n \text{ convergent } \land \sum Imc_n n[0] \text{ con-}$$

vergent

Demonstration:

demonstration

Absolutely convergent are convergent

Let:

 $\cdot \sum c_n n[0]$ absolutely convergent

Then, holds:

 $\cdot \sum c_n n[0]$ convergent

Demonstration:

$$S_k := \sum c_n n[0][k]$$

$$\forall m \in \mathbb{N} \quad || m < k :$$

$$|S_k - S_m| = |\sum c_n n[m+1][k]| \le \sum |c_n| n[m+1][k]$$

$$\le \sum |c_n| n[m+1] \stackrel{n}{\longrightarrow} 0$$

$$|S_k - S_m| \stackrel{n}{\longrightarrow} 0 \to (S_k)_k \text{ convergent } \to \sum c_n n[0] \text{ convergent}$$

gent

Series and norm

Let:

$$\cdot \sum c_n n[0]$$
 convergent

Then, holds:

$$\cdot |c_n| \stackrel{n}{\longrightarrow} 0$$

Demonstration:

$$\sum c_n n[0]$$
 convergent $\leftrightarrow (S_n)_n$ convergent \rightarrow Cauchy $|S_n - S_m| \xrightarrow{n} 0$ por n y m $\rightarrow |S_n - S_{n-1}| \xrightarrow{n} 0$ $\rightarrow |c_n| \xrightarrow{n} 0$

Root test

Let:

$$\sum_{n \geq 0} c_n \text{ real series}$$

$$\cdot l \in \mathbb{R} \quad \text{,,} \quad \overline{\lim_k} \ |c_k|^{\frac{1}{k}} = l$$

Then, holds:

$$\begin{split} \cdot \ l > 1 \to \sum_{n \ge 0} \ c_n \notin \mathbb{R} \\ \cdot \ l < 1 \to \sum_{n \ge 0} \ c_n \in \mathbb{R} \end{split}$$

Demonstration:

demonstration

Quotient test

Let:

Then, holds:

·
$$\exists l \in \mathbb{R}$$
:

$$\lim_{k} \frac{c_{k+1}}{c_k} = l$$

$$\cdot \overline{\lim}_{c_k} |c_k|^{\frac{1}{k}} k = l$$

Power series theorem

Let:

$$\sum_{n>0} a_n c^n$$
 power series

Then, holds:

$$|z - a| < R \rightarrow \text{absolutely convergent}$$

$$|z - a| > R \rightarrow \text{divergent}$$

· convergent in
$$D(a,R)$$

$$f: \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto \sum_{n \geq 0} c_n (z - a)^n \in \mathcal{H}(D(a, R))$$

 $\cdot \forall z \in \mathbb{C}$:

$$f'(z) = \sum_{n>0} nc_n(z-a)^{n-1}$$
 convergent

· convergence radius of f' = convergence radius of f

Demonstration:

$$\forall \ z \in \mathbb{C} \quad _{!!} \quad |z - a| < R :$$

Root test over
$$\sum_{n\geq 0} |c_n||z-a|^n r limit(|c_n||z-a|^n)^{\frac{1}{n}} n = |z-a|^n$$

$$a|rlimit|c_n|^{\frac{1}{n}}n = \frac{|z-a|}{R} < 1$$
 Root test \rightarrow absolutely convergent

$$\forall z \in \mathbb{C} \quad |z-a| < R$$
:

$$\forall \ \rho \in \mathbb{R} \ \ ||z-a| < \rho < R :$$

$$\frac{1}{\rho} < \frac{1}{R}$$

 $rlimit|c_n|^{1/n}n = \frac{1}{R}$ ı exists partial of $|c_n|^{1/n}$

$$|c_n||z-a|^n > \frac{|z-a|^n}{\rho^n}$$
 no $\stackrel{n}{\longrightarrow} 0$

General term test \rightarrow divergent

Power series theorem

Let:

.

Then, holds:

$$\cdot PartII, III, IV$$

Demonstration:

Follow 3 steps

Step 1: Uniform convergence in compacts of D(a, R):

$$\begin{array}{ccc} g_n : \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & c_n(z-a)^n \end{array}$$

$$\forall \ \rho \in \mathbb{R} \ \ _{\square} \ \rho < R :$$

$$\forall z \in \overline{D(a,\rho)} :$$

$$|g_n(z)| = |c_n||z - a|^n \le |c_n|\rho^n$$

$$M_n := |c_n| \rho^n$$

$$rlimit(|c_n|\rho^n)^{1/n}n = \rho rlimit|c_n|^{1/n}n = \frac{\rho}{R} < 1$$

Root test
$$\rightarrow \sum_{n>0} M_n$$
 convergent

M-Weierstrass
$$\rightarrow \sum_{n>0} c_n(z-a)^n$$
 uniformly convergent

over compacts of $D(a, \rho)$

$$\sum_{n>0} c_n (z-a)^n \text{ uniformly convergent over compacts of } D(a,r)$$

$$f(z) := \sum_{n>0} g_n(z)$$

g uniformly convergent $\rightarrow f$ continuous

$$\tilde{f}(z) := \sum_{n \ge 1} n c_n (z - a)^{n-1}
\tilde{f}(z) = \sum_{n \ge 0} (n+1) c_{n+1} (z - a)^n
\frac{1}{R'} = r limit(n+1) |c_{n+1}|^{1/n} n = r limit(n+1)^{1/n} |c_{n+1}|^{1/n} n = |c_{n+1}|^{1/n} |c_{n+1}|^{1/n} n = |c_{n+1}|^{1/n} |c_{n+1}|^{1/n} n = |c_{n+1}|^{1/n} |c_{n+1}|^{1/n} |c_{n+1}|^{1/n} n = |c_{n+1}|^{1/n} |c_$$

$$rlimit(|c_{n+1}|^{1/n+1})^{\frac{n+1}{n}}n = \frac{1}{R}$$

$$R' = R$$

Step 3: III:

$$\tilde{f}$$
 well defined in $D(a,R)$

$$\forall z_0 \in D(a,R)$$
:

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - \tilde{f}(z_0) \right| \stackrel{n}{\longrightarrow} 0$$
?

 $\forall n \in \mathbb{N}$:

$$\mathbb{N}:$$

$$S_n(z) := \sum_{k=0}^n f_k(z)$$

$$R_n(z) := \sum_{k \ge n+1} f_k(z)$$

$$f(z) = S_n(z) + R_n(z)$$

$$\tilde{f}(z) = \tilde{S}_n(z) + \tilde{R}_n(z)$$

$$R_n(z), \tilde{R_n}(z) \stackrel{n}{\longrightarrow} 0$$

 $\forall \varepsilon \in \mathbb{R}^+$:

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| = \left| \frac{S_n(z) - S_n(z_0)}{z - z_0} + \frac{R_n(z) - R_n(z_0)}{z - z_0} - \tilde{S}_n(z_0) - \tilde{R}_n(z_0) \right|$$

$$\forall \rho \in \mathbb{R} \quad ||z_0 - a| < \rho < R :$$

$$\left| \tilde{R}_n(z_0) \right| \le \sum_{k \ge n+1} k|c_k| \rho^{k-1} < \frac{\varepsilon}{3} (n \ge n_1)$$

$$\left| \frac{R_n(z) - R_n(z_0)}{z - z_0} \right| \le \sum_{k \ge n+1} |c_k| \left| \frac{(z - a)^k - (z_0 - a)^k}{z - z_0} \right|$$

$$\frac{a^k - b^k}{a - b} = a^{k-1} - a^{k-2}b + \dots + b^{k-1}$$

$$\le \sum_{k \ge n+1} |c_k| (|z - a|^{k-1} + |z - a|^{k-2}|z_0 - a| + \dots + \dots + b^{k-1})$$

 $|z_0 - a|^{k-1}$

$$|z - a|, |z_0| < \rho$$

$$\leq \sum_{k \geq n+1} |c_k| k \rho^{k-1} < \frac{\varepsilon}{3} (n \geq n_1)$$

$$\left| \frac{S_n(z) - S_n(z_0)}{z - z_0} - \tilde{S}_n(z_0) \right| < \frac{\varepsilon}{3} (S'_n = \tilde{S}_n) (n \geq n_2)$$

$$\forall n \in \mathbb{N} \quad n \geq \max(n_1, n_2) :$$

$$\left| \frac{f(z) - f(z_0)}{z - z_0} \right| < \varepsilon$$

functions associated to series are \mathcal{C}^{∞}

Let:

$$f(z) = \sum c_n(z-a)^n n[0]$$
 series

 $\cdot R$ radius of convergence of f

Then, holds:

$$f \in \mathcal{C}^{\infty} \text{ over } D(a, R)$$

$$\cdot \forall n \in \mathbb{N}$$
:

$$f^{n)} \in \mathcal{H}(D(a,R))$$

$$\cdot c_k = \frac{f^{k)}}{k!}$$

 \cdot series associated to f is unique

Demonstration:

$$f^{k)}(z) = \sum n(n-1) - - (n-k+1)c_n(z-a)^{n-k}n[k]$$

$$f^{k)}(a) = k!c_k$$

$$c_k = \frac{f^{k)}(a)}{k!}$$

III Examples 39

Block III

Examples

1. Holomorphic functions

introduction

III Examples 41

go

2. Holomorphic functions

Conjugation

Let:

Then, \bar{a} is not holomorphic:

$$u_x = 1$$

$$u_y = 0$$

$$v_x = 0$$

$$v_y = -1$$

$$\forall z \in \mathbb{C}$$
:

 $-1 \neq 1 \rightarrow f$ not holomorphic in z

Quadratic norm

Let:

$$\begin{array}{cccc} . & f : \mathbb{C} & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & |z|^2 \end{array}$$

 $\cdot f_{\mathbb{R}^2}$ component decomposition of f

Then, f is holomorphic in 0:

f differentiable in \mathbb{R}^2 polinomial

 $\forall z \in \mathbb{C}$:

$$u_x(x,y) = 2x$$

$$u_y(x,y) = 2y$$

$$v_x(x,y) = 0$$

$$v_y(x,y) = 0$$

$$u_x = v_y \leftrightarrow x = 0$$

$$u_y = -v_x \leftrightarrow y = 0$$

f holomorphic function in $z \leftrightarrow z = 0$

Non preserving angles function

Let:

$$f(z) = z^2$$

Then, f is conform in $\mathbb{R} \setminus \{0\}$:

$$f(\{(x,0) \in \mathbb{C} \mid x > 0\}) = \{(x,0) \in \mathbb{C} \mid x > 0\}$$

$$f(\{(x,0) \in \mathbb{C} \mid x < 0\}) = \{(x,0) \in \mathbb{C} \mid x > 0\}$$

$$ang(A,B) = \pi \neq 0 = ang(f(A), f(B))$$

Exponential

Let:

$$\cdot a : 0$$

$$\cdot c_n : \frac{1}{n}$$

Then, $\sum_{n>0} c_n(z-a)^n$ is convergent in D1:

$$\lim_{n} \frac{|c_{n}|}{|c_{n+1}|} = \lim_{n} \frac{n+1}{n} = 1 \to R = 1$$

 $CH \rightarrow D(0,1)$ convergent

$$\mathbb{C} \setminus D(0,1)$$
 divergent

$$f' = f$$

Geometric series

Let:

$$\cdot a : 0$$

$$\cdot c_n : 0$$

Then, $\sum z^n n[0]$ is convergent in \mathbb{D} :

$$R = \frac{c_n}{c_{n+1}} = 1$$
 Then, holds:

$$\cdot \sum z^n n[0] = \frac{1}{1-z}$$

$$\cdot \sum nz^{n-1}n[0] = \frac{1}{(1-z)^2}$$

$$\cdot \sum_{n+1}^{\infty} n[0] = -\log(1-z)$$

Demonstration:

$$\forall z \in \mathbb{D}$$
:

$$\sum z^n n[0]$$
 geometric series

$$\sum z^n n[0] = \frac{1}{1-z}$$

II differentiating

III integrating

46 0 unit name

Series not centered in 0

Let:

$$\cdot a : i$$

$$\cdot c_n : \frac{n+1}{5^{n+1}}$$

Then, item is a/an entity:

$$\sum \frac{n(z-i)^{n-1}}{5^n} n[1]$$

$$= \frac{1}{5} \sum n \frac{z-i}{5}^{n-1} n[1] = \frac{1}{5} \sum n u^{n-1} n[1]$$

$$S(u) = \tilde{S}'(u)$$

$$\tilde{S}(u) = \frac{1}{5} \sum u^n n[1] = \frac{u}{5(1-u)}$$

$$S(u) = \frac{1}{5(1-u)^2}$$

$$S(z) = \frac{5}{(5+i-z)^2} \text{ over } D(i,5)$$

Radius of convergence without quotient test

Let:

$$\sum \frac{(-1)^n}{n(n+1)} (z-2)^{n(n+1)} n[1]$$

Then, R is a/an entity:

ignore zeros

$$\lim_{c_{n+1}} c_n \not\exists$$

$$\lim_{n} \frac{1}{n(n+1)}^{\frac{1}{n(n+1)}} = 1$$

IV Problems 47

Block IV

Problems

PROBLEMES D'ANÀLISI COMPLEXA 2n quadrimestre del curs 2013-2014.

Llista 1: Els nombres complexos

B.2. Si z=x+iy trobeu les parts real i imaginària de les expressions següents: (b) z(z+1) (c) $\frac{1}{z}$

(e) \sqrt{i} (g) $\sqrt{9i}$ (f) $\sqrt{-i}$ (h) $\sqrt{1+i}$

(d) $\frac{1}{z-3}$.

(d) -1 - i

B.1. Expresseu en la forma a + ib els següents nombres:

B.4. Trobeu la forma polar dels nombres següents i dibuixeu-los. (a) $3(1+\sqrt{3}i)$ (b) $2\sqrt{3}-2i$ (c) -2+2i

(a) (2+3i)(4+i) (c) $\frac{1}{4+i}$ (b) $(4+2i)^2$ (d) $\frac{i}{4+i}$

a) $\operatorname{Re}(z+w) = \operatorname{Re} z + \operatorname{Re} w$? b) $\operatorname{Re}(zw) = (\operatorname{Re} z)(\operatorname{Re} w)$?

c) $\operatorname{Re}(\frac{z}{w}) = \frac{\operatorname{Re} z}{\operatorname{Re} w}$?

(a) z^2

B.3. És cert que

			()	()	
B.5. Sigui $(x + iy)/(x - iy) = a + ib$. Proveu que $a^2 + b^2 = 1$.					
	B.6. Proveu que si $p(z)$ és un polinomi amb coeficients reals i z és un zero de p l també ho és.				
	В.7.	Descriviu els conjunts del pla que sa	ls conjunts del pla que satisfan (recordeu que $\mathbb{C}^* = \mathbb{C} \setminus \{0\}.$)		
		(a) $\operatorname{Im} \frac{z-a}{z} = 0, a \in \mathbb{C}^*$ (b) $ z $	$=\operatorname{Re}z+1$	(c) $ z-2 > z-3 $	
	SOL. B.1. a) $5 + 14i$; b) $12 + 16i$; c) $4/17 - i/17$; d) $1/17 + 4i/17$; e) $\pm \sqrt{2}/2(1+i)$; f) $\pm \sqrt{2}/2(1-i)$; g) $\pm 3\sqrt{2}/2(1+i)$; h) $\pm 2^{1/4}(\cos(\pi/8) + i\sin(\pi/8))$. B.2 a) $x^2 - y^2 + 2ixy$; b) $x^2 - y^2 + x + i(y + 2xy)$; c) $(x - iy)/(x^2 + y^2)$; d) $(x - 3 - iy)/((x - 3)^2 + y^2)$. B.3 a) si. b) no. c) no. B.4 a) $6(\cos(\pi/3) + i\sin(\pi/3))$; b) $4(\cos(\pi/6) - i\sin(\pi/6))$; c) $2\sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$; d) $\sqrt{2}(\cos(3\pi/4))$. B.6 Conjugueu tot el polinomi. B.7 a) Recta que passa per 0 i a; b) Paràbola horitzontal $x = (1/2)(y^2 - 1)$; c) $\{\text{Re } z > 3/2\}$.				
1.	. Expresseu en la forma $a+ib$ els següents nombres:				
	(a) (b)	$ \frac{1}{i} \qquad (c) \frac{1}{2+i} + \frac{1}{2-i} \frac{1+i}{1-i} \qquad (d) \frac{1}{2+i} + \frac{4-2i}{3+i} $	(e) $\left(\frac{2+i}{3-2i}\right)^2$ (f) $(1+i)^{100} + (1-i)^{100}$		
2.	Si z =	$= x + iy$ on $x, y \in \mathbb{R}$, trobeu les parts	real i imaginària de:		

PROBLEMES D'ANLISI COMPLEXA 2n quadrimestre del curs 2013-2014

Llista 2: Funcions de variable complexa i equacions de Cauchy-Riemann

- **B.1.** Trobeu els punts on la funció f és derivable (en el sentit complex), en els següents casos, i calcula'n la derivada.
 - (a) $\cos |z|^2$

(c) e^{iz}

(e) $\frac{1}{(z-1)^2(z^2+2)}$

(b) $|z|^4$

- (d) $z + \frac{1}{z}$
- (f) $\frac{1}{(z+\frac{1}{z})^2}$

 $\textbf{Solució:} \hspace{0.1cm} \textbf{(a)} \hspace{0.2cm} \emptyset; \hspace{0.1cm} \textbf{(b)} \hspace{0.2cm} \emptyset \hspace{0.1cm} ; \hspace{0.1cm} \textbf{(c)} \hspace{0.2cm} \mathbb{C}; \hspace{0.1cm} f'(z) = ie^{iz}; \hspace{0.1cm} \textbf{(d)} \hspace{0.2cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{0\}; \hspace{0.1cm} f'(z) = 1 - |\frac{1}{z^2}; \hspace{0.1cm} \textbf{(e)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{0\}; \hspace{0.1cm} f'(z) = 1 - |\frac{1}{z^2}; \hspace{0.1cm} \textbf{(e)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \textbf{(f)} \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \{1, \pm \sqrt{2}i\}; \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus \hspace{0.1cm} \mathbb{C} \hspace{0.1cm} \setminus$

- B.2. Determineu si aquestes funcions poden ser la part real d'una funció holomorfa, i en cas que ho siguin calculeu la part imaginària.
 - (a) $e^x \cos y$
- (b) $x^3 + 6xy^2$
- (c) $\log(x^2 + y^2)$

Solució: (a) $e^x \sin y$; $f(z) = e^z$; (b) No ho és; (c) $2\arctan(y/x)$; $(f(z) = \log(z^2)$.

- **B.3.** Sigui f una funció holomorfa en un obert $\Omega \subset \mathbb{C}$ i $z_0 \in \Omega$ tal que $f'(z_0) \neq 0$. Quin angle formen les corbes $\operatorname{Re} f(z) = \operatorname{Re} f(z_0)$ i $\operatorname{Im} f(z) = \operatorname{Im} f(z_0)$ en un punt z_0 ? Solució: $\pi/2$.
- 1. Trobeu els punts on la funció f és derivable (en el sentit complex), en els següents casos:
 - (a) f(z) = |z|

- (d) $f(z) = z + z\bar{z}$
- (b) $\cosh x \cos y + i \sinh x \sin y$
- (c) $f(z) = \operatorname{Re} z$

- (e) $f(z) = \operatorname{Im} e^{\overline{z}} + i \operatorname{Re} e^{z}$
- 2. Sigui $\Omega \subset \mathbb{C}$ un obert, $z_0 \in \Omega$ i $f: \Omega \to \mathbb{C}$ una funció.
 - a) Identificant \mathbb{R}^2 amb \mathbb{C} de la forma habitual, demostreu que si f és diferenciable en z_0 , llavors

$$Df(z_0)(z) = \frac{\partial f}{\partial z}(z_0) \cdot z + \frac{\partial f}{\partial \overline{z}}(z_0) \cdot \overline{z} \qquad (z \in \mathbb{C}),$$

on

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \ \ \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

- b) Proveu que f és holomorfa en Ω si, i només si, f és diferenciable i $\frac{\partial f}{\partial \overline{z}}=0$ en Ω . En tal cas, $f'=\frac{\partial f}{\partial z}$.
- 3. Demostreu que si f és diferenciable en un obert de \mathbb{C} , llavors

$$\frac{\overline{\partial f}}{\partial z} = \frac{\partial \overline{f}}{\partial \overline{z}} \quad \text{i} \quad \frac{\overline{\partial f}}{\partial \overline{z}} = \frac{\partial \overline{f}}{\partial z}.$$

1. The field of complex numbers

introduction

IV Problems 51

entity

Let:

 $\cdot statements \\$

.

Then, item is a/an entity if:

 $\cdot conditions$

.

We denote:

 $\cdot property : notation$

•

2. Holomorphic functions

IV Problems 53

3. Cauchy-Riemman

Let:

$$f \in \mathcal{H}(\mathbb{C})$$
 , $Ref + Imf = c_a$

Show that:

$$\cdot \exists a' \in \mathbb{C} :$$

$$f = c_{a'}$$

Demonstration:

u,v real components of f

$$u(x,y) + v(x,y) = a$$

differentiate respect x and y

$$u_x + v_x = 0$$

$$u_y + v_y = 0$$

fholomorphic $\rightarrow f$ CR

$$u_x - u_y = 0$$

$$u_y + u_x = 0$$

$$u_x, u_y, v_x, v_y = 0$$

$$\exists a_1 \in \mathbb{R}$$
:

$$u = c_{a_1}$$

$$\exists a_2 \in \mathbb{R}$$
:

$$v = c_{a_2}$$

$$f = c_{(a_1, a_2)} 53$$

Let:

$$u: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \longmapsto \exp(y)\cos(x)$$

Show that:

$$\cdot \exists f \in \mathcal{H}(\mathbb{C}) :$$

u real component of f

Demonstration:

lab
$$1 \rightarrow u_{xx} + v_{yy} = 0$$

 $u_x = \exp(x)\cos(y)$
 $u_{xx} = \exp(x)\cos(y)$
 $u_y = -\exp(x)\sin(y)$
 $u_{yy} = -\exp(x)\cos(y)$
ok

Calculate v using CR

$$v_y = u_x = \exp(x)\cos(y)$$

$$v(x,y) = \int_{\mathbb{C}} \exp(x)\sin(y)dy = \exp(x)\sin(y) + \phi(x)$$

$$v_x = \partial_v x = \exp(x)\sin(y) + \phi'(x)$$

$$-u_y = \exp(x)\sin(y) + \phi'(x)$$

$$CR \to \phi'(x) = 0$$

$$\forall c \in \mathbb{R} :$$

$$\phi(x) = c \text{ ok}$$
 54
 $v(x, y) = \exp(x)\sin(y)$

IV Problems 55

Preservation of angles

Let:

$$\cdot \gamma_1, \gamma_2$$
 plane arcs $\eta_1 \gamma_1(0) = \gamma_2(0)$

Then, holds:

· angle of
$$\gamma_1'(0)$$
 and $\gamma_2'(0)$ = angle $\sigma_1'(0), \sigma_2'(0)$

Demonstration:

rotations and homotecies let angles invariant

56 0 unit name

Block V

Tasks

1. 1st laboratory

Existence of holomorphic functions

Let:

$$f \in \mathcal{H}(\mathbb{D})$$

Study:

$$\cdot \exists f \in \mathcal{H}(\mathbb{D}) :$$

$$\forall n \in \mathbb{N} \quad n \geq 2$$
:

$$a) f(\pm \frac{1}{n}) = \frac{1}{2n+1}$$

$$b) f(\pm \frac{1}{n}) = \frac{1}{n^2}$$

$$c) |f(\frac{1}{n})| = \frac{1}{\log(n+1)}$$

$$d) |f(\frac{1}{n})| = \frac{n}{n+1}$$

Demonstration:

$$E_{1} := \left\{ +\frac{1}{n} + 0i \in \mathbb{C} \mid n \in \mathbb{N} \right\}$$

$$E_{2} := \left\{ -\frac{1}{n} + 0i \in \mathbb{C} \mid n \in \mathbb{N} \right\}$$

$$\lim_{E_{1}} \frac{f(z) - f(0)}{z - 0} = \lim_{n} \frac{f(\frac{1}{n})}{\frac{1}{n}} - \frac{f(0)}{\frac{1}{n}} = \frac{1}{2} - \lim_{n} \frac{f(0)}{\frac{1}{n}}$$

$$\lim_{E_{1}} \frac{f(z) - f(0)}{z - 0} \begin{cases} = \frac{1}{2} & f(0) = 0 \\ \notin \mathbb{C} & f(0) \neq 0 \end{cases}$$

$$\operatorname{Case} f(0) = 0:$$

$$\lim_{E_{2}} \frac{f(z) - f(0)}{z - 0} = \lim_{n} \frac{f(-\frac{1}{n})}{-\frac{1}{n}} = -\frac{1}{2} \neq \lim_{E_{1}} \frac{f(z) - f(0)}{z - 0}$$

$$\nexists f \in \mathcal{H}(0)$$
 , f satisfies a)

In particular:

$$\nexists f \in \mathcal{H}(\mathbb{D})$$
 , f satisfies a)

$$\begin{array}{ccc} f:\mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & z^2 \end{array}$$

 $\forall n \in \mathbb{N} , n \geq 2$:

$$f(\pm \frac{1}{n}) = \frac{1}{n^2}$$

f satisfies b)

$$\bar{f}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (u(x,y),v(x,y)) = (x^2 - y^2, 2xy)$

 $\bar{f} \in \operatorname{Pol}(\mathbb{R}^2) \to \bar{f}$ differentiable in \mathbb{R}^2

$$\forall (x,y) \in \mathbb{R}^2$$
:

$$\partial_x u(x,y) = 2x = \partial_y v(x,y)$$

$$\partial_y u(x,y) = -2y = -\partial_x v(x,y)$$

f satisfies CR

$$\therefore$$
) $f \in \mathcal{H}(\mathbb{R}^2)$

In particular:

$$f \in \mathcal{H}(\mathbb{D})$$

c):

Suppose $\exists f \in \mathcal{H}(\mathbb{D})$, f satisfies c)

$$f \in \mathcal{C}^0(\mathbb{D}) \to f(0) = f(\lim_n \frac{1}{n}) = \lim_n f(\frac{1}{n}) = 0$$

$$\left| \lim_{E_1} \frac{f(z) - f(0)}{z - 0} \right| = \lim_{n} \frac{\left| f\left(\frac{1}{n}\right) \right|}{\frac{1}{n}} \notin \mathbb{C}$$

$$f \notin \mathcal{H}(0) \text{ absurd}$$

d):

$$\begin{array}{ccc} f: \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \frac{1}{z+1} \end{array}$$

 $\forall n \in \mathbb{N} , n \geq 2$:

$$\left| f\left(\frac{1}{n}\right) \right| = \frac{1}{\frac{1}{n}+1} = \frac{n}{n+1}$$

f satisfies d)

$$\begin{array}{ccc} \bar{f}:\mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (u(x,y),v(x,y)) = (\frac{x+1}{(x+1)^2+y^2},\frac{-y}{(x+1)^2-y^2}) \end{array}$$

 $\bar{f} \in \operatorname{Rat}(\mathbb{R}^2) \wedge \forall (x,y) \in \mathbb{R}^2$:

$$(x+1)^2 + y^2 \neq 0$$

 \bar{f} differentiable in \mathbb{R}^2

 $\forall (x,y) \in \mathbb{R}^2$:

$$\partial_x u(x,y) = \frac{y^2 - (x+1)^2}{((x+1)^2 + y^2)^2} = \partial_y v(x,y)$$

$$\partial_y u(x,y) = \frac{-2y(x+1)}{((x+1)^2+y^2)^2} = -\partial_x v(x,y)$$

f satisfies CR

$$\therefore$$
) $f \in \mathcal{H}(\mathbb{R}^2)$

In particular:

$$f \in \mathcal{H}(\mathbb{D})$$

Constant tests

Let:

$$\Omega \subset \mathbb{C}$$
 region

$$f \in \mathcal{H}(\Omega)$$

Then, holds:

$$f_{Re} = 0 \lor f_{Im} = 0 \to f \in \mathrm{Cst}(\Omega)$$

$$|f| \in \mathrm{Cst}(\Omega) \to f \in \mathrm{Cst}(\Omega)$$

$$\cdot\operatorname{Im} f \text{ circumference} \to f \in \operatorname{Cst}$$

Demonstration:

$$f_{Re} = 0 \ \lor \ f_{Im} = 0$$
:

$$u := f_{Re}$$

$$v := f_{Im}$$

$$f \in \mathcal{H}(\Omega) \to f$$
 satisfies CR in Ω

$$\partial_x u = \partial_y v = 0$$

$$\partial_u u = -\partial_x v = 0$$

Null diferential test:

$$\Omega \text{ connex } \rightarrow u, v \in \text{Cst}$$

$$u, v \in \text{Cst} \rightarrow f \in \text{Cst}$$

$$|f| \in \mathrm{Cst}(\Omega)$$
:

$$|f|: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto \sqrt{u(x,y)^2 + v(x,y)^2}$

$$|f| \in \text{Cst} \to \exists \ a \in \mathbb{R} :$$

$$\sqrt{u(x,y)^2 + v(x,y)^2} = a$$

$$u(x,y)^2 + v(x,y)^2 = a^2$$

$$2\partial_x u(x,y) + 2\partial_x v(x,y) = 0$$

$$2\partial_y u(x,y) + 2\partial_y v(x,y) = 0$$

$$f \in \mathcal{H}(\Omega) \to f \text{ satisfies CR in } \Omega$$

$$2\partial_y v(x,y) + 2\partial_x v(x,y) = 0$$

$$-2\partial_x v(x,y) + 2\partial_y v(x,y) = 0$$

$$+: 4\partial_y v(x,y) = 0 \to \partial_y v(x,y) = 0$$

$$-: 4\partial_x v(x,y) = 0 \to \partial_x v(x,y) = 0$$
Null differential test:
$$\Omega \text{ connex } \to u, v \in \text{Cst}$$

$$u, v \in \text{Cst} \to f \in \text{Cst}$$

Im(f) circumference :

$$\exists (x_0, y_0) \in \mathbb{R}^2, r \in \mathbb{R}^+ :$$

$$\operatorname{Im}(f) = C_r(x_0, y_0)$$

$$\bar{f} : \mathbb{R}^2 \longrightarrow C_r(x_0, y_0)$$

$$(x, y) \longmapsto (r \cos(x - x_0), r \sin(y - y_0))$$

$$\forall (x, y) \in \Omega :$$

$$|\bar{f}|(x, y) = \sqrt{r^2(\cos^2(x - x_0) + \sin^2(y - y_0)} = r$$

$$|f| \in \operatorname{Cst} \to f \operatorname{Cst}$$

Real part of holomorphic functions

Let:

$$\cdot \Omega \subset \mathbb{R}^2$$
 region
$$\cdot u \in \mathcal{C}^2(\Omega) \quad \text{, } \quad \exists \ f \in \mathcal{H}(\Omega) :$$

$$f_{Re} = u$$

Show that:

$$\cdot \partial_{xx} u + \partial_{yy} u = 0$$

Study:

$$\exists f \in \mathcal{H}(\Omega) :$$

$$a) f_{Re}(x,y) = x^2 + y^2$$

$$b) f_{Re}(x,y) = x(x+1) - y^2$$

$$c) \forall \alpha \in \mathbb{R} :$$

$$f_{Re} = y^3 + \alpha x^2 y \wedge \Omega = \mathbb{C}$$

Demonstration:

$$\partial_{xx}u + \partial_{yy}u = 0:$$

$$u := f_{Re}, v := f_{Im}$$

$$f \in \mathcal{H}(\Omega) \to f \text{ satisfies CR in } \Omega$$

$$\partial_{x}u = \partial_{y}v \to \partial_{xx}u = \partial_{xy}v$$

$$\partial_{y}u = -\partial_{x}v \to \partial_{yy}u = -\partial_{xy}v$$

$$\therefore) \partial_{xx}u + \partial_{yy}u = 0$$

$$f_{Re}(x,y) = x^2 + y^2:$$

$$\partial_{xx}u + \partial_{yy}u = 4 \neq 0$$

$$\exists f \in \mathcal{H}(\Omega) \quad || \quad f_{Re}(x,y) = x^2 + y^2$$

$$f_{Re}(x,y) = x(x+1) - y^2:$$

$$\bar{f} : \Omega \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (u(x,y),v(x,y)) = (x(x+1) - y^2, 2xy + y)$$

$$\bar{f} \in \text{Pol} \rightarrow \bar{f} \text{ differentiable in } \Omega$$

$$\forall (x,y) \in \Omega:$$

$$\partial_x u(x,y) = 2x + 1 = \partial_y v(x,y)$$

$$\partial_y u(x,y) = -2y = -\partial_x v(x,y)$$

$$f \text{ satisfies CR in } \Omega$$

$$f \in \mathcal{H}(\Omega) \land f_{Re} = u$$

$$f_{Re}(x,y) = y^3 + \alpha x^2 y:$$

$$f \text{ has to satisfy CR in } \mathbb{C}:$$

$$\forall (x,y) \in \mathbb{R}^2:$$

$$\partial_y v(x,y) = \partial_x u(x,y) = 2\alpha xy$$

$$\partial_x v(x,y) = -\partial_y u(x,y) = -3y^2 - \alpha x^2$$

$$v(x,y) = \alpha xy^2 + c(x)$$

$$v(x,y) = -3xy^2 - \frac{\alpha}{3}x^3 + c(y)$$

$$\alpha = -3, c(x) = x^3, c(y) = 0$$

$$v(x,y) = -3xy^2 + x^3$$

2. 2nd laboratory

Power series

Study:

$$\sum_{n>1} n(n+1)z^n$$

Demonstration:

Naming:

R radius of convergence of the series

 $\forall n \in \mathbb{N}$:

$$c_n := n(n+1)$$

Convergence domain:

$$\lim_{n} \frac{c_n}{c_{n+1}} = \lim_{n} \frac{n(n+1)}{(n+1)(n+1)} = 1$$

Quotient test:

$$R^{-1} = \overline{\lim_{n}} |c_n|^{\frac{1}{n}} = 1 \to R = 1$$

Cauchy-Hadamard theorem:

$$\sum_{n\geq 1} n(n+1)z^n \text{ convergent over } \mathbb{D}$$

$$\sum_{n\geq 1} n(n+1)z^n \text{ divergent over } \mathbb{C} \setminus \overline{\mathbb{D}}$$

 $\forall K \subset \mathbb{D} \mid K \text{ compact } :$

$$\sum_{n>1} n(n+1)z^n \text{ uniformly convergent over } K$$

Define

$$\begin{array}{ccc} f: \mathbb{D} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & z \sum_{n \geq 1} n(n+1) z^{n-1} \end{array}$$

Sum:

$$\begin{array}{ccc} g: \mathbb{D} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \sum_{n \geq 1} n(n+1)z^{n-1} \end{array}$$

UCI theorem:

$$\int_{0}^{z} g(t)dt = \sum_{n\geq 1} (n+1)z^{n}
h : \mathbb{D} \longrightarrow \mathbb{C}
z \longmapsto \sum_{n\geq 1} (n+1)z^{n}
\int_{0}^{z} h(t)dt = \sum_{n\geq 1} z^{n+1} = \sum_{n\geq 0} z^{n} = \frac{1}{1-z}
h(z) = \partial_{z} \frac{1}{1-z} = \frac{1}{(1-z)^{2}}
g(z) = \partial_{z} h(z) = \frac{2}{(1-z)^{3}}
f(z) = \frac{2z}{(1-z)^{3}}$$

Application:

In particular:

$$\sum_{n>1} (-1)^n \frac{n(n+1)}{2^n} = f(-\frac{1}{2}) = \frac{-2^3}{3^3}$$

68 2 unit name

Bibliography

[1] Joaquim Ortega-Cerda. Funcions analtiques, February 2005.