1. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-3 + 8x \le \frac{60x + 6}{7} < 6 + 8x$$

- A. (a, b], where $a \in [-7.75, 0.25]$ and $b \in [9, 10]$
- B. $(-\infty, a] \cup (b, \infty)$, where $a \in [-11.75, -1.75]$ and $b \in [7, 14]$
- C. [a, b), where $a \in [-6.75, -3.75]$ and $b \in [9, 15]$
- D. $(-\infty, a) \cup [b, \infty)$, where $a \in [-10.75, -5.75]$ and $b \in [9, 16]$
- E. None of the above.
- 2. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$5x + 5 \le 6x + 6$$

- A. $(-\infty, a]$, where $a \in [0, 4]$
- B. $(-\infty, a]$, where $a \in [-2, 0]$
- C. $[a, \infty)$, where $a \in [-2.7, -0.2]$
- D. $[a, \infty)$, where $a \in [0.6, 1.9]$
- E. None of the above.
- 3. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{-8}{6} - \frac{5}{3}x \le \frac{3}{4}x + \frac{9}{8}$$

- A. $(-\infty, a]$, where $a \in [0.02, 3.02]$
- B. $[a, \infty)$, where $a \in [0.02, 4.02]$
- C. $[a, \infty)$, where $a \in [-2.02, -0.02]$
- D. $(-\infty, a]$, where $a \in [-2.02, -0.02]$

Fall 2020

E. None of the above.

4. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-3 + 4x > 5x$$
 or $-5 + 4x < 7x$

A.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [0.67, 2.67]$ and $b \in [0, 6]$

B.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [-0.33, 8.67]$ and $b \in [2, 9]$

C.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [-6, 0]$ and $b \in [-1.67, 2.33]$

D.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-6, 1]$ and $b \in [-4.67, 2.33]$

E.
$$(-\infty, \infty)$$

5. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

Less than 4 units from the number -4.

A.
$$[-8, 0]$$

B.
$$(-\infty, -8) \cup (0, \infty)$$

C.
$$(-8,0)$$

D.
$$(-\infty, -8] \cup [0, \infty)$$

E. None of the above

6. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$8 + 6x > 9x$$
 or $9 + 7x < 9x$

A.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [-6.5, -3.5]$ and $b \in [-4.67, 2.33]$

B.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [0.67, 6.67]$ and $b \in [3.5, 5.5]$

C.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-4.5, -2.5]$ and $b \in [-2.67, 1.33]$

7547-2949

D.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-0.33, 4.67]$ and $b \in [3.5, 5.5]$

E.
$$(-\infty, \infty)$$

7. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{-9}{4} + \frac{4}{5}x \ge \frac{10}{9}x - \frac{3}{7}$$

A.
$$[a, \infty)$$
, where $a \in [-8.86, -1.86]$

B.
$$[a, \infty)$$
, where $a \in [3.86, 10.86]$

C.
$$(-\infty, a]$$
, where $a \in [-6.86, -4.86]$

D.
$$(-\infty, a]$$
, where $a \in [2.86, 6.86]$

- E. None of the above.
- 8. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-6 + 8x \le \frac{32x - 6}{3} < 5 + 9x$$

A.
$$(-\infty, a] \cup (b, \infty)$$
, where $a \in [-5.5, -0.5]$ and $b \in [0.2, 11.2]$

B.
$$[a, b)$$
, where $a \in [-3.6, -0.2]$ and $b \in [4.2, 6.2]$

C.
$$(a, b]$$
, where $a \in [-2, 1.2]$ and $b \in [2.2, 8.2]$

D.
$$(-\infty, a) \cup [b, \infty)$$
, where $a \in [-1.5, -0.5]$ and $b \in [3.2, 9.2]$

- E. None of the above.
- 9. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-10x - 7 > 4x + 4$$

A. $[a, \infty)$, where $a \in [-0.46, 2.58]$

- B. $(-\infty, a]$, where $a \in [0.7, 1.7]$
- C. $(-\infty, a]$, where $a \in [-1.9, -0.4]$
- D. $[a, \infty)$, where $a \in [-1.18, -0.2]$
- E. None of the above.
- 10. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

More than 8 units from the number 3.

- A. $(-\infty, -5) \cup (11, \infty)$
- B. $(-\infty, -5] \cup [11, \infty)$
- C. (-5, 11)
- D. [-5, 11]
- E. None of the above