

D. Y. Patil College of Engineering, Akurdi, Pune 411044 Department of Computer Engineering

Unit Test IV

Date: 09/11/2020

Class : BE Computer Div: A Subject : High Performance Computing

Academic Year : 2020-21 Sem : I Exam Date: 11/11/2020

Q. No.	Question Description	Options 28	Correct Answer	Marks	со	<u>PO</u>	PSO	BTL
1	Select the parameters on which the parallel runtime of a program depends.	A. Input sizeB. Number of processorsC. Communication parameters of the machineD. All of the above	D	2	4	1	3	4
2	The time that elapses from the moment the first processor starts to the moment the last processor finishes execution is called as	A. Serial runtimeB. Parallel runtimeC. Overhead runtimeD. Excess runtime	В	2	4	4	3	4
3	Select how the overhead function (T_o) is calculated.	A. $T_o = T_P - T_S$ B. $T_o = p*n T_P - T_S$ C. $T_o = p T_P - T_S$ D. $T_o = T_P - pT_S$	С	2	4	1	3	1
4	What is is the ratio of the time taken to solve a problem on a single processor to the time required to solve the same problem on a parallel computer with <i>p</i> identical processing elements?	A. Efficiency B. Overall time C. Speedup D. Scaleup	C	2	4	1	3	4
5	The parallel time for odd- even sort (efficient	A. 3.75 B. 3.5	В	2	4	1	3	1

	parallelization of bubble sort) is 50 seconds. The serial time for bubblesort is 175 seconds. Evaluate the speedup of bubble sort.	C. 0.33 D. 0.26						
6	Consider the problem of adding n numbers by using n processing elements. The serial time taken is $\Theta(n)$ and parallel time is $\Theta(\log n)$. Evaluate the efficiency.	A. $E = \Theta (n / \log n)$ B. $E = \Theta (n \log n)$ C. $E = \Theta (\log n / n)$ D. $E = \Theta (1 / \log n)$	D	2	4	1	3	1
7	What will be the efficiency of cost optimal parallel systems?	A. $E = O(n)$. B. $E = O(1)$. C. $E = O(p)$. D. $E = O(n \log n)$.	В	2	4	1	3	3
8	Which law states that the maximum speedup of a parallel program is limited by the sequential fraction of the initial sequential program?	A. Amdahl's Law B. Flynn's Law C. Moore's Law D. Van Neumann's Law	A	2	4	3	3	1
9	Arrange the steps for the Matrix-Vector 2-D partitioning: i) result vector is computed by performing an all-to-one reduction along the columns. ii) Alignment of the vector <i>x</i> along the principal diagonal of the matrix. iii) Copy the vector	A. i, ii, iii B. ii, iii, i C. iii, i, ii D. ii, i, iii	В	2	4	3	3	1

	elements from each diagonal process to all the processes in the corresponding column using <i>n</i> simultaneous broadcasts among all processors in the column.							
10	Arrange the communication sequence in Matrix-Vector 2-D partitioning: i) all-to-one reduction in each row ii) one-to-all broadcast of each vector element among the <i>n</i> processes of each column iii) one-to-one communication to align the vector along the main diagonal	A. i, ii, iii B. ii, iii, i C. iii, ii, i D. ii, i, iii	С	2	4	1	3	4
11	Parallel time in Rowwise 1-D Partitioning of Matrix-Vector Multiplication where p=n is	A. $\Theta(1)$ B. $\Theta(n \log n)$ C. $\Theta(n^2)$ D. $\Theta(n)$	D	2	4	4	3	4
12	What are the sources of overhead in parallel programs?	A. Interprocess interactionB. IdlingC. Excess computationD. All of the above	D	2	4	4	3	4
13	What are the performance metrics of parallel systems?	A. Execution timeB. Total parallel overheadC. Speedup	E	2	4	4	3	4

		D. Efficiency E. All of the above						
14	The isoefficiency function determines the ease with which a parallel system can maintain a constant efficiency. True of false?	A. True B. False	A	2	4	1	3	1
15	Which matrix-matrix multiplication algorithm uses a 3-D partitioning?	A. Cannon's algorithmB. DNS algorithmC. Both of the aboveD. None of the above	В	2	4	1	3	1

Subject Teacher

(Mrs. Dhanashree Phalke) (Mrs. Vaishali Kolhe) Academic Coordintor

(Dr. Kailash Shaw) Dept. NBA Coordinator (Dr. Vinayak Kottawar) HOD Computer