Package 'gdverse'

October 17, 2024

Title Analysis of Spatial Stratified Heterogeneity

Version 1.1-1

Description

Analyzing spatial factors and exploring spatial associations based on the concept of spatial stratified heterogeneity, and also takes into account local spatial dependencies, spatial interpretability, potential spatial interactions, and robust spatial stratification. Additionally, it supports geographical detector models established in academic literature.

```
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
URL https://stscl.github.io/gdverse/, https://github.com/stscl/gdverse
BugReports https://github.com/stscl/gdverse/issues
Depends R (>= 4.1.0)
Imports dplyr, forcats, geosphere, ggplot2, magrittr, parallel,
       patchwork, purrr, reticulate, rpart, scatterpie, sdsfun (>=
       0.4.0), sf, stats, tibble, tidyr, utils
Suggests cowplot, knitr, Rcpp, readr, rmarkdown, terra, testthat (>=
       3.0.0)
LinkingTo Rcpp
VignetteBuilder knitr
LazyData true
Config/testthat/edition 3
NeedsCompilation yes
Author Wenbo Lv [aut, cre, cph] (<a href="https://orcid.org/0009-0002-6003-3800">https://orcid.org/0009-0002-6003-3800</a>),
       Yangyang Lei [aut] (<a href="https://orcid.org/0009-0002-6518-3613">https://orcid.org/0009-0002-6518-3613</a>),
       Fangmei Liu [aut] (<a href="https://orcid.org/0009-0008-8634-7588">https://orcid.org/0009-0008-8634-7588</a>),
       Wufan Zhao [aut] (<a href="https://orcid.org/0000-0002-0265-3465">https://orcid.org/0000-0002-0265-3465</a>),
       Yongze Song [aut] (<a href="https://orcid.org/0000-0003-3420-9622">https://orcid.org/0000-0003-3420-9622</a>),
       Jianwu Yan [aut] (<a href="https://orcid.org/0000-0001-9411-8453">https://orcid.org/0000-0001-9411-8453</a>)
Maintainer Wenbo Lv <lyu.geosocial@gmail.com>
```

2 Contents

Repository CRAN

Date/Publication 2024-10-17 06:00:03 UTC

Contents

Contents 3

print.idsa_result
print.interaction_detector
print.lesh_result
print.opgd_result
print.rgd_result
print.rid_result
print.risk_detector
print.sesu_gozh
print.sesu_opgd
print.spade_result
print.srsgd_result
print.srs_ecological_detector
print.srs_factor_detector
print.srs_interaction_detector
psd_iev
psd_pseudop
psd_spade
psmd_pseudop
psmd_spade
rgd
rid
risk_detector
robust_disc
rpart_disc
sesu_gozh
sesu_opgd
shuffle_vector
sim
spade
spd_lesh
srsgd
srs_ecological_detector
srs_factor_detector
srs_geodetector
srs_interaction_detector
srs_table
srs_wt
weight_assign

72

Index

cpsd_disc

all2int

convert all discretized vectors to integer

Description

convert all discretized vectors to integer

Usage

```
all2int(x)
```

Arguments

Х

A discretized vector.

Value

An integer vector.

Examples

```
all2int(factor(letters[1:3],levels = c('b','a','c')))
all2int(letters[1:3])
```

cpsd_disc

optimal spatial data discretization based on SPADE q-statistics

Description

Function for determining the optimal spatial data discretization based on SPADE q-statistics.

Usage

```
cpsd_disc(
  formula,
  data,
  wt,
  discnum = 3:22,
  discmethod = "quantile",
  strategy = 2L,
  increase_rate = 0.05,
  cores = 1,
  return_disc = TRUE,
  seed = 123456789,
  ...
)
```

cpsd_disc 5

Arguments

formula A formula of optimal spatial data discretization.

data A data.frame or tibble of observation data.

wt The spatial weight matrix.

discnum (optional) A vector of number of classes for discretization. Default is 3:22.

discmethod (optional) The discretization methods. Default all use quantile. Noted that

robust will use robust_disc(); rpart will use rpart_disc(); Others use

sdsfun::discretize_vector().

strategy (optional) Discretization strategy. When strategy is 1L, choose the highest

SPADE model q-statistics to determinate optimal spatial data discretization parameters. When strategy is 2L, The optimal discrete parameters of spatial data

are selected by combining LOESS model.

increase_rate (optional) The critical increase rate of the number of discretization. Default is

5%.

cores (optional) A positive integer(default is 1). If cores > 1, a 'parallel' package

cluster with that many cores is created and used. You can also supply a cluster

object.

return_disc (optional) Whether or not return discretized result used the optimal parameter.

Default is TRUE.

seed (optional) Random seed number, default is 123456789. Setting random seed is

useful when the sample size is greater than 3000(the default value for largeN) and the data is discretized by sampling 10%(the default value for samp_prop in

st_unidisc()).

... (optional) Other arguments passed to st_unidisc(),robust_disc() or rpart_disc().

Value

A list with the optimal parameter in the provided parameter combination with k, method and disc(when return_disc is TRUE).

x discretization variable name

k optimal number of spatial data discreteization

method optimal spatial data discretization method

disc the result of optimal spatial data discretization

Note

When the discmethod is configured to robust, it will operate at a significantly reduced speed. Consequently, the use of robust discretization is not advised.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

6 cpsd_spade

References

Yongze Song & Peng Wu (2021) An interactive detector for spatial associations, International Journal of Geographical Information Science, 35:8, 1676-1701, DOI:10.1080/13658816.2021.1882680

Examples

cpsd_spade

compensated power of spatial determinant(CPSD)

Description

Function for calculate compensated power of spatial determinant Q_s.

Usage

```
cpsd_spade(yobs, xobs, xdisc, wt)
```

Arguments

yobs	Variable Y
xobs	The original undiscretized covariable X
xdisc	The discretized covariable X.
wt	The spatial weight matrix.

Details

The power of compensated spatial determinant formula is

$$Q_s = \frac{q_s}{q_{s_{inforkep}}} = \frac{1 - \frac{\sum_{h=1}^{L} N_h \Gamma_{kdep}}{N \Gamma_{totaldep}}}{1 - \frac{\sum_{h=1}^{L} N_h \Gamma_{hind}}{N \Gamma_{totalind}}}$$

Value

A value of compensated power of spatial determinant Q_s.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

ecological_detector 7

References

Xuezhi Cang & Wei Luo (2018) Spatial association detector (SPADE),International Journal of Geographical Information Science, 32:10, 2055-2075, DOI: 10.1080/13658816.2018.1476693

Examples

```
data('sim')
wt = inverse_distance_weight(sim$lo,sim$la)
xa = sim$xa
xa_disc = sdsfun::discretize_vector(xa,5)
cpsd_spade(sim$y,xa,xa_disc,wt)
```

ecological_detector

ecological detector

Description

Compare the effects of two factors X_1 and X_2 on the spatial distribution of the attribute Y.

Usage

```
ecological_detector(y, x1, x2, alpha = 0.95)
```

Arguments

у	Dependent variable, continuous numeric vector.
x1	Covariate X_1 , factor, character or discrete numeric.
x2	Covariate X_2 , factor, character or discrete numeric.
alpha	(optional) Confidence level of the interval, default is 0.95.

Value

A list.

F-statistic the result of F statistic for ecological detector

P-value the result of P value for ecological detector

Ecological is there a significant difference between the two factors X_1 and X_2 on the spatial distribution of the attribute Y

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

8 factor_detector

Examples

 ${\tt factor_detector}$

factor detector

Description

The factor detector q-statistic measures the spatial stratified heterogeneity of a variable Y, or the determinant power of a covariate X of Y.

Usage

```
factor_detector(y, x)
```

Arguments

y Variable Y, continuous numeric vector.

 ${\sf x}$ Covariate ${\sf X}$, factor, character or discrete numeric.

Value

A list.

Q-statistic the q statistic for factor detector

P-value the p value for factor detector

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

```
factor_detector(y = 1:7,x = c('x',rep('y',3),rep('z',3)))
```

F_informationloss 9

F_informationloss

measure information loss by information entropy

Description

Function for measure information loss by shannon information entropy.

Usage

```
F_informationloss(xvar, xdisc)
```

Arguments

xvar

The original undiscretized vector.

xdisc

The discretized vector.

Details

The information loss measured by information entropy formula is $F = -\sum_{i=1}^N p_{(i)} \log_2 p_{(i)} - \left(-\sum_{h=1}^L p_{(h)} \log_2 p_{(h)}\right)$

Value

A numeric value of information loss measured by information entropy.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
F_informationloss(1:7,c('x',rep('y',3),rep('z',3)))
```

10 gd

gd	native geographical detector(GD) model
gu	native geographical detector(GD) model

Description

Function for native geographical detector model.

Usage

```
gd(formula, data, type = "factor", alpha = 0.95)
```

Arguments

formula A formula of geographical detector model.

data A data. frame, tibble or sf object of observation data.

type (optional) The type of geographical detector, which must be one of factor(default),

interaction, risk, ecological. You can run one or more types at one time.

alpha (optional) Specifies the size of the alpha (confidence level). Default is 0.95.

Value

A list.

factor the result of factor detector interaction the result of interaction detector risk the result of risk detector ecological the result of ecological detector

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Jin-Feng Wang, Xin-Hu Li, George Christakos, Yi-Lan Liao, Tin Zhang, XueGu & Xiao-Ying Zheng (2010) Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China, International Journal of Geographical Information Science, 24:1, 107-127, DOI: 10.1080/13658810802443457

gd_bestunidisc 11

gd_bestunidisc	best univariate discretization based on geodetector q-statistic
5 _	

Description

Function for determining the best univariate discretization based on geodetector q-statistic.

Usage

```
gd_bestunidisc(
  formula,
  data,
  discnum = 3:22,
  discmethod = c("sd", "equal", "geometric", "quantile", "natural"),
  cores = 1,
  return_disc = TRUE,
  seed = 123456789,
  ...
)
```

Arguments

formula	A formula of best univariate discretization.
data	A data.frame or tibble of observation data.
discnum	(optional) A vector of number of classes for discretization. Default is 3:22.
discmethod	(optional) A vector of methods for discretization, default is using $c("sd", "equal")$ by invoking sdsfun.
cores	(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
return_disc	(optional) Whether or not return discretized result used the optimal parameter. Default is TRUE.
seed	(optional) Random seed number, default is 123456789.
	$(optional)\ Other\ arguments\ passed\ to\ sdsfun:: \verb"discretize_vector"().$

", "geometric", "quan

Value

A list with the optimal parameter in the provided parameter combination with k, method and disc(when return_disc is TRUE).

x the name of the variable that needs to be discretized

k optimal discretization number method optimal discretization method disc optimal discretization results 12 generate_subsets

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

Examples

generate_subsets

generate subsets of a set

Description

generate subsets of a set

Usage

```
generate_subsets(set, empty = TRUE, self = TRUE)
```

Arguments

set A vector.

empty (optional) When empty is TRUE, the generated subset includes the empty set,

otherwise the empty set is removed. Default is TRUE.

self (optional) When self is TRUE, the resulting subset includes the set itself, other-

wise the set itself is removed. Default is TRUE.

Value

A list.

```
generate_subsets(letters[1:3])
generate_subsets(letters[1:3],empty = FALSE)
generate_subsets(letters[1:3],self = FALSE)
generate_subsets(letters[1:3],empty = FALSE,self = FALSE)
```

geodetector 13

geodetector geographical detector

Description

geographical detector

Usage

```
geodetector(formula, data, type = "factor", alpha = 0.95)
```

Arguments

formula A formula of geographical detector model.

data A data.frame or tibble of observation data.

type (optional) The type of geographical detector, which must be one of factor(default), interaction, risk, ecological.

alpha (optional) Specifies the size of the alpha (confidence level). Default is 0.95.

Value

A list of tibble with the corresponding result under different detector types.

factor the result of factor detector interaction the result of interaction detector risk the result of risk detector ecological the result of ecological detector

Note

Note that only one type of geodetector is supported at a time in geodetector().

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

14 gozh

gozh

geographically optimal zones-based heterogeneity(GOZH) model

Description

Function for geographically optimal zones-based heterogeneity(GOZH) model

Usage

```
gozh(formula, data, cores = 1, type = "factor", alpha = 0.95, ...)
```

Arguments

formula	A formula of GOZH model.
data	A data.frame, tibble or sf object of observation data.
cores	(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
type	(optional) The type of geographical detector, which must be factor(default), interaction, risk, ecological. You can run one or more types at one time.
alpha	(optional) Specifies the size of confidence level.Default is 0.95.
	(optional) Other arguments passed to rpart_disc().

Value

A list.

factor the result of factor detector interaction the result of interaction detector risk the result of risk detector ecological the result of ecological detector gozh_detector 15

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

References

Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y., & Meng, L. (2022). Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 185, 111–128. https://doi.org/10.1016/j.isprsjprs.2022.01.009

Examples

```
data('ndvi')
g = gozh(NDVIchange ~ ., data = ndvi)
g
```

gozh_detector

geographically optimal zones-based heterogeneity detector

Description

Function for geographically optimal zones-based heterogeneity detector.

Usage

```
gozh_detector(formula, data, cores = 1, type = "factor", alpha = 0.95, ...)
```

Arguments

formula	A formula of GOZH detector.
data	A data.frame or tibble of observation data.
cores	(optional) A positive integer(default is 1). If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object.
type	(optional) The type of geographical detector, which must be one of factor(default), interaction, risk, ecological.
alpha	(optional) Confidence level of the interval, default is 0.95.
	(optional) Other arguments passed to rpart_disc().

16 idsa

Value

A list of tibble with the corresponding result under different detector types.

```
factor the result of factor detector
interaction the result of interaction detector
risk the result of risk detector
ecological the result of ecological detector
```

Note

Only one type of detector is supported in a gozh_detector() run at a time.

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

References

Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y., & Meng, L. (2022). Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 185, 111–128. https://doi.org/10.1016/j.isprsjprs.2022.01.009

Examples

```
data('ndvi')
g = gozh_detector(NDVIchange ~ ., data = ndvi)
g
```

idsa

interactive detector for spatial associations(IDSA) model

Description

Function for interactive detector for spatial associations model.

Usage

```
idsa(
  formula,
  data,
  wt = NULL,
  discnum = 3:22,
  discmethod = "quantile",
  overlay = "and",
```

idsa 17

```
strategy = 2L,
increase_rate = 0.05,
cores = 1,
seed = 123456789,
alpha = 0.95,
...
)
```

Arguments

formula A formula of IDSA model. A data.frame, tibble or sf object of observation data. data (optional) The spatial weight matrix. When data is not an sf object, must wt provide wt. discnum (optional) Number of multilevel discretization. Default will use 3:22. discmethod (optional) The discretization methods. Default all use quantile. Noted that robust will use robust_disc(); rpart will use rpart_disc(); Others use sdsfun::discretize_vector(). overlay (optional) Spatial overlay method. One of and, or, intersection. Default is (optional) Discretization strategy. When strategy is 1L, choose the highest strategy SPADE model q-statistics to determinate optimal spatial data discretization parameters. When strategy is 2L, The optimal discrete parameters of spatial data are selected by combining LOESS model. (optional) The critical increase rate of the number of discretization. Default is increase_rate 5%. (optional) Positive integer (default is 1). When cores are greater than 1, use cores multi-core parallel computing. (optional) Random number seed, default is 123456789. seed (optional) Specifies the size of confidence level. Default is 0.95. alpha

Value

A list.

interaction the interaction result of IDSA model

risk1 whether values of the response variable between a pair of overlay zones are significantly different

(optional) Other arguments passed to cpsd_disc().

risk2 risk detection result of the input data

number_individual_explanatory_variables the number of individual explanatory variables used for examining the interaction effects

number_overlay_zones the number of overlay zones

percentage_finely_divided_zones the percentage of finely divided zones that are determined by the interaction of variables

18 interaction_detector

Note

Please note that all variables in the IDSA model need to be continuous data.

The IDSA model requires at least $2^n - 1$ calculations when has n explanatory variables. When there are more than 10 explanatory variables, carefully consider the computational burden of this model. When there are a large number of explanatory variables, the data dimensionality reduction method can be used to ensure the trade-off between analysis results and calculation speed.

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

References

Yongze Song & Peng Wu (2021) An interactive detector for spatial associations, International Journal of Geographical Information Science, 35:8, 1676-1701, DOI:10.1080/13658816.2021.1882680

Examples

```
data('sim')
sim1 = sf::st_as_sf(sim,coords = c('lo','la'))
g = idsa(y ~ ., data = sim1)
g
```

interaction_detector interaction detector

Description

Identify the interaction between different risk factors, that is, assess whether factors X1 and X2 together increase or decrease the explanatory power of the dependent variable Y, or whether the effects of these factors on Y are independent of each other.

Usage

```
interaction_detector(y, x1, x2)
```

Arguments

y Dependent variable, continuous numeric vector	
---	--

x1 Covariate X_1 , factor, character or discrete numeric.

 X_2 Covariate X_2 , factor, character or discrete numeric.

Value

A list.

Variable1 Q-statistics Q-statistics for variable1

Variable2 Q-statistics Q-statistics for variable2

Variable1 and Variable2 interact Q-statistics Q-statistics for variable1 and variable2 interact

Interaction the interact result type

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Examples

inverse_distance_weight

calculate inverse distance weight

Description

Function for calculate inverse distance weight.

Usage

```
inverse_distance_weight(locx, locy, power = 1, is_arc = FALSE)
```

Arguments

locx The x axis location.

locy The y axis location.

power (optional) Default is 1. Set to 2 for gravity weights.

is_arc (optional) FALSE (default) or TRUE, whether to compute arc distance.

Details

The inverse distance weight formula is $w_{ij} = 1/d_{ij}^{\alpha}$

Value

A inverse distance weight matrices with class of matrix.

20 lesh

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

Examples

```
x = 1:10
y = 1:10
inverse_distance_weight(x,y)
inverse_distance_weight(x,y,is_arc = TRUE)
```

lesh

locally explained heterogeneity(LESH) model

Description

Function for locally explained heterogeneity model.

Usage

```
lesh(formula, data, cores = 1, ...)
```

Arguments

formula	A formula of LESH model.
data	A data frame, tibble or sf object of observation data.
cores	(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
	(optional) Other arguments passed to rpart_disc().

Value

A list.

interaction the interaction result of LESH model spd_lesh a tibble of the SHAP power of determinants

Note

The LESH model requires at least 2^n-1 calculations when has n explanatory variables. When there are more than 10 explanatory variables, carefully consider the computational burden of this model. When there are a large number of explanatory variables, the data dimensionality reduction method can be used to ensure the trade-off between analysis results and calculation speed.

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

loess_optscale 21

References

Li, Y., Luo, P., Song, Y., Zhang, L., Qu, Y., & Hou, Z. (2023). A locally explained heterogeneity model for examining wetland disparity. International Journal of Digital Earth, 16(2), 4533–4552. https://doi.org/10.1080/17538947.2023.2271883

Examples

```
data('ndvi')
g = lesh(NDVIchange ~ ., data = ndvi)
g
```

loess_optscale

determine optimal spatial data analysis scale

Description

Function for determining optimal spatial data analysis scale based on locally estimated scatter plot smoothing (LOESS) model.

Usage

```
loess_optscale(qvec, spscalevec, increase_rate = 0.05)
```

Arguments

qvec A numeric vector of q statistics.

spscalevec A numeric vector of spatial scales corresponding to quec.

increase_rate (optional) The critical increase rate of the number of discretization. Default is

5%.

Value

A numeric vector about optimal number of spatial scale and the critical increase rate of q value.

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

```
## Not run:
## The following code takes a long time to run:
library(tidyverse)
fvcpath = "https://github.com/SpatLyu/rdevdata/raw/main/FVC.tif"
fvc = terra::rast(paste0("/vsicurl/",fvcpath))
fvc1000 = fvc %>%
   terra::as.data.frame(na.rm = T) %>%
```

NTDs

ndvi

dataset of NDVI changes and its influencing factors

Description

dataset of NDVI changes and its influencing factors, modified from GD package.

Usage

ndvi

Format

ndvi: A tibble with 713 rows and 7 variables

Author(s)

Yongze Song <yongze.song@outlook.com>

NTDs

NTDs data

Description

The data were obtained by preprocessing use sf and tidyverse.

Usage

NTDs

Format

NTDs: A tibble with 185 rows and 4 variable columns and 2 location columns, modified from geodetector package.

opgd 23

opgd

optimal parameters-based geographical detector(OPGD) model

Description

Function for optimal parameters-based geographical detector(OPGD) model.

Usage

```
opgd(
  formula,
  data,
  discvar = NULL,
  discnum = 3:22,
  discmethod = c("sd", "equal", "geometric", "quantile", "natural"),
  cores = 1,
  type = "factor",
  alpha = 0.95,
  ...
)
```

A formula of OPGD model.

Arguments

formula

data	A data.frame, tibble or sf object of observation data.
discvar	Name of continuous variable columns that need to be discretized. Noted that when formula has discvar, data must have these columns. By default, all independent variables are used as discvar.
discnum	(optional) A vector of number of classes for discretization. Default is 3:22.
discmethod	(optional) A vector of methods for discretization, default is using c("sd", "equal", "geometric", "quant by invoking sdsfun.
cores	(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
type	(optional) The type of geographical detector, which must be factor(default), interaction, risk, ecological. You can run one or more types at one time.
alpha	(optional) Specifies the size of confidence level.Default is 0.95.
	(optional) Other arguments passed to gd_bestunidisc(). A useful parameter

is seed, which is used to set the random number seed.

Value

A list.

factor the result of factor detector interaction the result of interaction detector

pid_idsa

```
risk the result of risk detector
ecological the result of ecological detector
```

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Song, Y., Wang, J., Ge, Y. & Xu, C. (2020) An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data, GIScience & Remote Sensing, 57(5), 593-610. doi: 10.1080/15481603.2020.1760434.

Examples

pid_idsa

IDSA Q-saistics PID

Description

IDSA Q-saistics PID

Usage

```
pid_idsa(formula, rawdata, discdata, wt, overlaymethod = "and")
```

Arguments

formula A formula for IDSA Q-saistics

rawdata Raw observation data

discdata Observed data with discrete explanatory variables

wt Spatial weight matrix

overlaymethod (optional) Spatial overlay method. One of and, or, intersection. Default is

and.

Details

$$Q_{IDSA} = \frac{\theta_r}{\phi}$$

Value

The value of IDSA Q-saistics PID.

Examples

Description

S3 method to plot output for ecological detector in geodetector().

Usage

```
## S3 method for class 'ecological_detector' plot(x, ...)
```

Arguments

```
x Return by geodetector().... (optional) Other arguments passed to ggplot2::theme().
```

Value

A ggplot2 layer

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

26 plot.gd_result

```
plot.factor_detector plot factor detector result
```

Description

S3 method to plot output for factor detector in geodetector().

Usage

```
## S3 method for class 'factor_detector'
plot(x, slicenum = 2, alpha = 0.95, keep = TRUE, ...)
```

Arguments

x Return by geodetector().

slicenum (optional) The number of labels facing inward. Default is 2.

alpha (optional) Confidence level. Default is 0.95.

keep (optional) Whether to keep Q-value results for insignificant variables, default is

TRUE.

... (optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to plot output for GD model result in gd().

Usage

```
## S3 method for class 'gd_result'
plot(x, ...)
```

Arguments

```
x Return by gd().
```

... (optional) Other arguments passed to patchwork::wrap_plots().

plot.gozh_result 27

Value

```
A ggplot2 layer
```

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

plot.gozh_result

plot GOZH result

Description

S3 method to plot output for GOZH model result in gozh().

Usage

```
## S3 method for class 'gozh_result'
plot(x, ...)
```

Arguments

x Return by gozh().

... (optional) Other arguments passed to patchwork::wrap_plots().

Value

A ggplot2 layer

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

plot.idsa_result

plot IDSA risk result

Description

S3 method to plot output for IDSA risk result in idsa().

Usage

```
## S3 method for class 'idsa_result'
plot(x, ...)
```

Arguments

```
x Return by idsa().... (optional) Other arguments passed to ggplot2::theme().
```

Value

```
A ggplot2 layer
```

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

```
plot.interaction_detector
```

plot interaction detector result

Description

S3 method to plot output for interaction detector in geodetector().

Usage

```
## S3 method for class 'interaction_detector'
plot(x, alpha = 1, ...)
```

Arguments

```
x Return by geodetector().
```

alpha (optional) Picture transparency. Default is 1.

... (optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

plot.lesh_result 29

Description

S3 method to plot output for LESH model interaction result in lesh().

Usage

```
## S3 method for class 'lesh_result'
plot(
    x,
    pie = TRUE,
    scatter = FALSE,
    scatter_alpha = 1,
    pieradius_factor = 15,
    pielegend_x = 0.99,
    pielegend_y = 0.1,
    pielegend_num = 3,
    ...
)
```

Arguments

```
x Return by lesh().
Х
pie
                   (optional) Whether to draw the interaction contributions. Default is TRUE.
scatter
                   (optional) Whether to draw the interaction direction diagram. Default is FALSE.
scatter_alpha
                  (optional) Picture transparency. Default is 1.
pieradius_factor
                   (optional) The radius expansion factor of interaction contributions pie plot. De-
                  fault is 15.
                   (optional) The X-axis relative position of interaction contributions pie plot leg-
pielegend_x
                   end. Default is 0.99.
pielegend_y
                   (optional) The Y-axis relative position of interaction contributions pie plot leg-
                   end. Default is 0.1.
                  (optional) The number of interaction contributions pie plot legend. Default is 3.
pielegend_num
                   (optional) Other arguments passed to ggplot2::theme().
```

Value

A ggplot2 layer.

Note

When both scatter and pie are set to TRUE in RStudio, enlarge the drawing frame for normal display.

30 plot.rgd_result

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

plot.opgd_result

plot OPGD result

Description

S3 method to plot output for OPGD model result in opgd().

Usage

```
## S3 method for class 'opgd_result'
plot(x, ...)
```

Arguments

x Return by opgd().

... (optional) Other arguments passed to patchwork::wrap_plots().

Value

A ggplot2 layer

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

plot.rgd_result

plot RGD result

Description

S3 method to plot output for RGD model result in rgd().

Usage

```
## S3 method for class 'rgd_result'
plot(x, slicenum = 2, alpha = 0.95, keep = TRUE, ...)
```

plot.risk_detector 31

Arguments

x Return by rgd().

slicenum (optional) The number of labels facing inward. Default is 2.

alpha (optional) Confidence level. Default is 0.95.

keep (optional) Whether to keep Q-value results for insignificant variables, default is

TRUE.

... (optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to plot output for risk detector in geodetector().

Usage

```
## S3 method for class 'risk_detector'
plot(x, ...)
```

Arguments

x Return by geodetector().

... (optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

32 plot.sesu_opgd

plot.sesu_gozh

plot gozh sesu

Description

S3 method to plot output for gozh sesu in sesu_gozh().

Usage

```
## S3 method for class 'sesu_gozh'
plot(x, ...)
```

Arguments

x Return by sesu_gozh().

... (optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

plot.sesu_opgd

plot opgd sesu

Description

S3 method to plot output for opgd sesu in sesu_opgd().

Usage

```
## S3 method for class 'sesu_opgd'
plot(x, ...)
```

Arguments

x Return by sesu_opgd().

... (optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer.

plot.spade_result 33

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

plot.spade_result

plot SPADE power of spatial and multilevel discretization determinant

Description

S3 method to plot output for SPADE power of spatial and multilevel discretization determinant from spade().

Usage

```
## S3 method for class 'spade_result'
plot(x, slicenum = 2, alpha = 0.95, keep = TRUE, ...)
```

Arguments

x Return by spade(). The number of labels facing inward.

slicenum (optional) The number of labels facing inward. Default is 2.

alpha (optional) Confidence level. Default is 0.95.

keep (optional) Whether to keep Q-value results for insignificant variables, default is TRUE.

... (optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

plot.srsgd_result

plot SRSGD result

Description

S3 method to plot output for SRSGD model result in srsgd().

Usage

```
## S3 method for class 'srsgd_result'
plot(x, ...)
```

Arguments

x Return by srsgd().

... (optional) Other arguments passed to patchwork::wrap_plots().

Value

A ggplot2 layer

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
plot.srs_ecological_detector
```

plot spatial rough set-based ecological detector

Description

S3 method to plot output for spatial rough set-based ecological detector in srsgd().

Usage

```
## S3 method for class 'srs_ecological_detector' plot(x, ...)
```

Arguments

x Return by srsgd().

... (optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer

plot.srs_factor_detector 35

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
plot.srs_factor_detector
```

plot spatial rough set-based factor detector result

Description

S3 method to plot output for spatial rough set-based factor detector in srsgd().

Usage

```
## S3 method for class 'srs_factor_detector'
plot(x, slicenum = 2, ...)
```

Arguments

```
x Return by srsgd().
slicenum (optional) The number of labels facing inward. Default is 2.
... (optional) Other arguments passed to ggplot2::theme().
```

Value

A ggplot2 layer.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
plot.srs_interaction_detector
```

plot spatial rough set-based interaction detector result

Description

S3 method to plot output for spatial rough set-based interaction detector in srsgd().

Usage

```
## S3 method for class 'srs_interaction_detector'
plot(x, alpha = 1, ...)
```

Arguments

```
x Return by srsgd().
alpha (optional) Picture transparency. Default is 1.
```

(optional) Other arguments passed to ggplot2::theme().

Value

A ggplot2 layer

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to format output for ecological detector in geodetector().

Usage

```
## S3 method for class 'ecological_detector' print(x, ...)
```

Arguments

x Return by geodetector().... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

print.factor_detector 37

```
print.factor_detector print factor detector
```

Description

S3 method to format output for factor detector in geodetector().

Usage

```
## S3 method for class 'factor_detector'
print(x, ...)
```

Arguments

```
x Return by geodetector().... (optional) Other arguments passed to knitr::kable().
```

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
print.gd_result
```

print GD result

Description

S3 method to format output for GD model from gd().

Usage

```
## S3 method for class 'gd_result'
print(x, ...)
```

Arguments

```
x Return by gd().
```

... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

38 print.idsa_result

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
print.gozh_result
```

print GOZH result

Description

S3 method to format output for GOZH model from gozh().

Usage

```
## S3 method for class 'gozh_result'
print(x, ...)
```

Arguments

```
x Return by gozh().
```

.. (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
print.idsa_result
```

print IDSA result

Description

S3 method to format output for IDSA model from idsa().

Usage

```
## S3 method for class 'idsa_result'
print(x, ...)
```

Arguments

```
x Return by idsa().
```

... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to format output for interaction detector in geodetector().

Usage

```
## S3 method for class 'interaction_detector'
print(x, ...)
```

Arguments

```
x Return by geodetector().... (optional) Other arguments passed to knitr::kable().
```

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to format output for LESH model interaction result in lesh().

```
## S3 method for class 'lesh_result'
print(x, ...)
```

40 print.opgd_result

Arguments

```
x Return by lesh().... (optional) Other arguments passed to knitr::kable().
```

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

print.opgd_result

print OPGD result

Description

S3 method to format output for OPGD model from opgd().

Usage

```
## S3 method for class 'opgd_result'
print(x, ...)
```

Arguments

x Return by opgd().

... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

print.rgd_result 41

print.rgd_result

print RGD result

Description

S3 method to format output for RGD model from rgd().

Usage

```
## S3 method for class 'rgd_result'
print(x, ...)
```

Arguments

x Return by rgd().

... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

print.rid_result

print RID result

Description

S3 method to format output for RID model from rid().

Usage

```
## S3 method for class 'rid_result'
print(x, ...)
```

Arguments

```
x Return by rid().
```

... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

42 print.sesu_gozh

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to format output for risk detector in geodetector().

Usage

```
## S3 method for class 'risk_detector'
print(x, ...)
```

Arguments

```
x Return by geodetector().... (optional) Other arguments passed to knitr::kable().
```

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to format output for gozh sesu from sesu_gozh().

Usage

```
## S3 method for class 'sesu_gozh'
print(x, ...)
```

Arguments

```
x Return by sesu_gozh().
```

... (optional) Other arguments passed to knitr::kable().

print.sesu_opgd 43

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

print.sesu_opgd

print opgd sesu

Description

S3 method to format output for opgd sesu from sesu_opgd().

Usage

```
## S3 method for class 'sesu_opgd'
print(x, ...)
```

Arguments

```
x Return by sesu_opgd().... (optional) Other arguments passed to knitr::kable().
```

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
print.spade_result
```

print SPADE power of spatial and multilevel discretization determinant

Description

S3 method to format output for SPADE power of spatial and multilevel discretization determinant from spade().

```
## S3 method for class 'spade_result'
print(x, ...)
```

print.srsgd_result

Arguments

```
x Return by spade().
```

... Other arguments.

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to format output for SRSGD model from srsgd().

Usage

```
## S3 method for class 'srsgd_result'
print(x, ...)
```

Arguments

x Return by srsgd().

... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

Description

S3 method to format output for spatial rough set-based ecological detector in srsgd().

Usage

```
## S3 method for class 'srs_ecological_detector' print(x, ...)
```

Arguments

- x Return by srsgd().
- ... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Description

S3 method to format output for spatial rough set-based factor detector in srsgd().

Usage

```
## S3 method for class 'srs_factor_detector' print(x, ...)
```

Arguments

- x Return by srsgd().
- ... (optional) Other arguments passed to knitr::kable().

psd_iev

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

```
print.srs\_interaction\_detector\\print.spatial\ rough\ set-based\ interaction\ detector
```

Description

S3 method to format output for spatial rough set-based interaction detector in srsgd().

Usage

```
## S3 method for class 'srs_interaction_detector' print(x, ...)
```

Arguments

x Return by srsgd().

... (optional) Other arguments passed to knitr::kable().

Value

Formatted string output

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

psd_iev

PSD of an interaction of explanatory variables (PSD-IEV)

Description

PSD of an interaction of explanatory variables (PSD-IEV)

```
psd_iev(discdata, spzone, wt)
```

psd_pseudop 47

Arguments

 $\label{eq:continuous} Observed \ data \ with \ discrete \ explanatory \ variables. \ A \ tibble \ or \ data.frame \ .$

spzone Fuzzy overlay spatial zones. Returned from st_fuzzyoverlay().

wt Spatial weight matrix

Details

$$\phi = 1 - \frac{\sum_{i=1}^{m} \sum_{k=1}^{n_i} N_{i,k} \tau_{i,k}}{\sum_{i=1}^{m} N_i \tau_i}$$

Value

The Value of PSD-IEV

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Yongze Song & Peng Wu (2021) An interactive detector for spatial associations, International Journal of Geographical Information Science, 35:8, 1676-1701, DOI:10.1080/13658816.2021.1882680

Examples

```
data('sim')
wt = inverse_distance_weight(sim$lo,sim$la)
sim1 = dplyr::mutate(sim,dplyr::across(xa:xc,\(.x) sdsfun::discretize_vector(.x,5)))
sz = sdsfun::fuzzyoverlay(y ~ xa + xb + xc, data = sim1)
psd_iev(dplyr::select(sim1,xa:xc),sz,wt)
```

psd_pseudop

calculate power of spatial determinant(PSD) and the corresponding pseudo-p value

Description

Function for calculate power of spatial determinant q_s .

```
psd_pseudop(y, x, wt, cores = 1, seed = 123456789, permutations = 0)
```

48 psd_spade

Arguments

У	Variable Y	, continuous	numeric vector.
---	------------	--------------	-----------------

x Covariable X, factor, character or discrete numeric.

wt The spatial weight matrix.

cores (optional) A positive integer(default is 1). If cores > 1, use parallel computation.

seed (optional) Random seed number, default is 123456789.

permutations (optional) The number of permutations for the PSD computation. Default is 0,

which means no pseudo-p values are calculated.

Details

The power of spatial determinant formula is $q_s=1-\frac{\sum_{h=1}^L N_h \Gamma_h}{N\Gamma}$

Value

A tibble of power of spatial determinant and the corresponding pseudo-p value.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Xuezhi Cang & Wei Luo (2018) Spatial association detector (SPADE),International Journal of Geographical Information Science, 32:10, 2055-2075, DOI: 10.1080/13658816.2018.1476693

Examples

```
data('sim')
wt = inverse_distance_weight(sim$lo,sim$la,power = 2)
psd_pseudop(sim$y,sdsfun::discretize_vector(sim$xa,5),wt)
```

psd_spade

power of spatial determinant(PSD)

Description

Function for calculate power of spatial determinant q_s

```
psd_spade(y, x, wt)
```

psmd_pseudop 49

Arguments

v Variable Y. continuous nume	ic vector.

x Covariable X, factor, character or discrete numeric.

wt The spatial weight matrix.

Details

The power of spatial determinant formula is

$$q_s = 1 - \frac{\sum_{h=1}^{L} N_h \Gamma_h}{N\Gamma}$$

Value

A value of power of spatial determinant q_s.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Xuezhi Cang & Wei Luo (2018) Spatial association detector (SPADE),International Journal of Geographical Information Science, 32:10, 2055-2075, DOI: 10.1080/13658816.2018.1476693

Examples

```
data('sim')
wt = inverse_distance_weight(sim$lo,sim$la,power = 2)
psd_spade(sim$y,sdsfun::discretize_vector(sim$xa,5),wt)
```

 ${\tt psmd_pseudop}$

power of spatial and multilevel discretization determinant(PSMD) and the corresponding pseudo-p value

Description

Function for calculate power of spatial and multilevel discretization determinant and the corresponding pseudo-p value.

50 psmd_pseudop

Usage

```
psmd_pseudop(
  yobs,
  xobs,
  wt,
  discnum = 3:22,
  discmethod = "quantile",
  cores = 1,
  seed = 123456789,
  permutations = 0,
  ...
)
```

Arguments

yobs Variable Y

xobs The original undiscretized covariable X.

wt The spatial weight matrix.

discrum (optional) Number of multilevel discretization. Default will use 3:22.

discmethod (optional) The discretization methods. Default will use quantile. If discmethod

is set to robust, the function robust_disc() will be used. Conversely, if discmethod is set to rpart, the rpart_disc() function will be used. Others use sdsfun::discretize_vector(). Currently, only one discmethod can

be used at a time.

cores (optional) A positive integer(default is 1). If cores > 1, use parallel computation.

seed (optional) Random seed number, default is 123456789.

permutations (optional) The number of permutations for the PSD computation. Default is 0,

which means no pseudo-p values are calculated.

... (optional) Other arguments passed to sdsfun::discretize_vector(),robust_disc()

or rpart_disc().

Details

The power of spatial and multilevel discretization determinant formula is $PSMDQ_s = MEAN(Q_s)$

Value

A tibble of power of spatial and multilevel discretization determinant and the corresponding pseudop value.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Xuezhi Cang & Wei Luo (2018) Spatial association detector (SPADE),International Journal of Geographical Information Science, 32:10, 2055-2075, DOI: 10.1080/13658816.2018.1476693

psmd_spade 51

Examples

```
data('sim')
wt = inverse_distance_weight(sim$lo,sim$la)
psmd_pseudop(sim$y,sim$xa,wt)
```

psmd_spade

power of spatial and multilevel discretization determinant(PSMD)

Description

Function for calculate power of spatial and multilevel discretization determinant PSMDQ_s.

Usage

```
psmd_spade(
  yobs,
  xobs,
  wt,
  discnum = 3:22,
  discmethod = "quantile",
  cores = 1,
  seed = 123456789,
  ...
)
```

Arguments

yobs	Variable Y
xobs	The original undiscretized covariable X.
wt	The spatial weight matrix.
discnum	(optional) Number of multilevel discretization. Default will use 3:22.
discmethod	(optional) The discretization methods. Default will use quantile. If discmethod is set to robust, the function robust_disc() will be used. Conversely, if discmethod is set to rpart, the rpart_disc() function will be used. Others use sdsfun::discretize_vector(). Currently, only one discmethod can be used at a time.
cores	(optional) A positive integer(default is 1). If cores > 1, use parallel computation.
seed	(optional) Random seed number, default is 123456789.
	<pre>(optional) Other arguments passed to sdsfun::discretize_vector(),robust_disc() or rpart_disc().</pre>

Details

The power of spatial and multilevel discretization determinant formula is $PSMDQ_s = MEAN(Q_s)$

52 rgd

Value

A value of power of spatial and multilevel discretization determinant PSMDQ_s.

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

References

Xuezhi Cang & Wei Luo (2018) Spatial association detector (SPADE),International Journal of Geographical Information Science, 32:10, 2055-2075, DOI: 10.1080/13658816.2018.1476693

Examples

```
data('sim')
wt = inverse_distance_weight(sim$lo,sim$la)
psmd_spade(sim$y,sim$xa,wt)
```

rgd

robust geographical detector(RGD) model

Description

Function for robust geographical detector(RGD) model.

Usage

```
rgd(formula, data, discvar = NULL, discnum = 3:22, minsize = 1, cores = 1)
```

Arguments

formula	A formula of RGD model.
data	A data frame, tibble or sf object of observation data.
discvar	Name of continuous variable columns that need to be discretized. Noted that when formula has discvar, data must have these columns. By default, all independent variables are used as discvar.
discnum	A numeric vector of discretized classes of columns that need to be discretized. Default all discvar use 3:22.
minsize	(optional) The min size of each discretization group. Default all use 1.
cores	(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.

rid 53

Value

A list.

factor the result of RGD model disc robust discrete results

Note

Please set up python dependence and configure GDVERSE_PYTHON environment variable if you want to run rgd(). See vignette('rgdrid',package = 'gdverse') for more details.

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

References

Zhang, Z., Song, Y.*, & Wu, P., 2022. Robust geographical detector. International Journal of Applied Earth Observation and Geoinformation. 109, 102782. DOI: 10.1016/j.jag.2022.102782.

Examples

rid

robust interaction detector(RID) model

Description

Function for robust interaction detector(RID) model.

```
rid(
  formula,
  data,
  discvar = NULL,
  discnum = 10,
  overlay = "intersection",
  minsize = 1,
  cores = 1
)
```

54 rid

Arguments

formula	A formula of RID model.
data	A data frame, tibble or sf object of observation data.
discvar	Name of continuous variable columns that need to be discretized. Noted that when formula has discvar, data must have these columns. By default, all independent variables are used as discvar.
discnum	A numeric vector for the number of discretized classes of columns that need to be discretized. Default all discvar use 10.
overlay	(optional) Spatial overlay method. One of and, or, intersection. Default is intersection.
minsize	(optional) The min size of each discretization group. Default all use 1.
cores	(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.

Value

A list.

interaction the result of RID model

Note

The RID model requires at least $2^n - 1$ calculations when has n explanatory variables. When there are more than 10 explanatory variables, carefully consider the computational burden of this model. When there are a large number of explanatory variables, the data dimensionality reduction method can be used to ensure the trade-off between analysis results and calculation speed.

Please set up python dependence and configure GDVERSE_PYTHON environment variable if you want to run rid(). See vignette('rgdrid', package = 'gdverse') for more details.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Zhang, Z., Song, Y., Karunaratne, L., & Wu, P. (2024). Robust interaction detector: A case of road life expectancy analysis. Spatial Statistics, 59(100814), 100814. https://doi.org/10.1016/j.spasta.2024.100814

risk_detector 55

risk_detector

risk detector

Description

Determine whether there is a significant difference between the attribute means of two sub regions.

Usage

```
risk_detector(y, x, alpha = 0.95)
```

Arguments

y Variable Y, continuous numeric vector.

x Covariate X, factor, character or discrete numeric.

alpha (optional) Confidence level of the interval, default is 0.95.

Value

A tibble. contains different combinations of covariate X level and student t-test statistics, degrees of freedom, p-values, and whether has risk (Yes or No).

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

Examples

robust_disc

univariate discretization based on offline change point detection

Description

Determines discretization interval breaks using an optimization algorithm for variance-based change point detection.

```
robust_disc(formula, data, discnum, minsize = 1, cores = 1)
```

56 rpart_disc

Arguments

formula	A formula of univariate discretization.
data	A data frame or tibble of observation data.
discnum	A numeric vector of discretized classes of columns that need to be discretized.
minsize	(optional) The min size of each discretization group. Default all use 1.
cores	(optional) A positive integer(default is 1). If cores > 1, use python joblib package to parallel computation.

package to paramer computation

Value

A tibble of discretized columns which need to be discretized.

Note

Please set up python dependence and configure GDVERSE_PYTHON environment variable if you want to run robust_disc(). See vignette('rgdrid',package = 'gdverse') for more details.

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

Examples

rpart_disc

discretization of variables based on recursive partitioning

Description

discretization of variables based on recursive partitioning

```
rpart_disc(formula, data, ...)
```

sesu_gozh 57

Arguments

```
formula A formula.

data A data.frame or tibble of observation data.

... (optional) Other arguments passed to rpart::rpart().
```

Value

A vector that being discretized.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y., & Meng, L. (2022). Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 185, 111–128. https://doi.org/10.1016/j.isprsjprs.2022.01.009

Examples

```
data('ndvi')
rpart_disc(NDVIchange ~ ., data = ndvi)
```

sesu_gozh

comparison of size effects of spatial units based on GOZH

Description

Function for comparison of size effects of spatial units in spatial heterogeneity analysis based on geographically optimal zones-based heterogeneity(GOZH) model.

```
sesu_gozh(
  formula,
  datalist,
  su,
  cores = 1,
  strategy = 2L,
  increase_rate = 0.05,
  alpha = 0.95,
  ...
)
```

58 sesu_gozh

Arguments

formula A formula of comparison of size effects of spatial units.

datalist A list of data.frame or tibble.
su A vector of sizes of spatial units.

cores (optional) Positive integer (default is 1). When cores are greater than 1, use

multi-core parallel computing.

strategy (optional) Calculation strategies of Q statistics at different scales. Default is 2L,

see details for more contents.

increase_rate (optional) The critical increase rate of the number of discretization. Default is

5%.

alpha (optional) Specifies the size of confidence level. Default is 0.95.

... (optional) Other arguments passed to rpart_disc().

Details

When strategy is 1, use the same process as sesu_opgd(). If not, all explanatory variables are used to generate a unique Q statistic corresponding to the data in the datalist based on rpart_disc() and gd(), and then loess_optscale() is used to determine the optimal analysis scale.

Value

A list.

sesu a tibble representing size effects of spatial units optsu optimal spatial unit strategy the optimal analytical scale selection strategy increase_rate the critical increase rate of q value

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Song, Y., Wang, J., Ge, Y. & Xu, C. (2020) An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data, GIScience & Remote Sensing, 57(5), 593-610. doi: 10.1080/15481603.2020.1760434.

Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y., & Meng, L. (2022). Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a geographically optimal zones-based heterogeneity model. ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 185, 111–128. https://doi.org/10.1016/j.isprsjprs.2022.01.009

sesu_opgd 59

Examples

```
## Not run:
## The following code takes a long time to run:
library(tidyverse)
fvcpath = "https://github.com/SpatLyu/rdevdata/raw/main/FVC.tif"
fvc = terra::rast(paste0("/vsicurl/",fvcpath))
fvc1000 = fvc %>%
  terra::as.data.frame(na.rm = T) %>%
  as_tibble()
fvc5000 = fvc %>%
  terra::aggregate(fact = 5) %>%
  terra::as.data.frame(na.rm = T) %>%
  as_tibble()
sesu_gozh(fvc \sim .,
          datalist = list(fvc1000,fvc5000),
          su = c(1000, 5000),
          cores = 6)
## End(Not run)
```

sesu_opgd

comparison of size effects of spatial units based on OPGD

Description

Function for comparison of size effects of spatial units in spatial heterogeneity analysis based on optimal parameters geographical detector(OPGD) model.

Usage

```
sesu_opgd(
  formula,
  datalist,
  su,
  discvar,
  discnum = 3:22,
  discmethod = c("sd", "equal", "geometric", "quantile", "natural"),
  cores = 1,
  increase_rate = 0.05,
  alpha = 0.95,
  ...
)
```

Arguments

formula A formula of comparison of size effects of spatial units.

datalist A list of data. frame or tibble. su A vector of sizes of spatial units. 60 sesu_opgd

Name of continuous variable columns that need to be discretized. Noted that when formula has discvar, data must have these columns. discnum (optional) A vector of number of classes for discretization. Default is 3:22. discmethod (optional) A vector of methods for discretization, default is using c("sd", "equal", "geometric", "quan by invoking sdsfun. (optional) Positive integer (default is 1). When cores are greater than 1, use cores multi-core parallel computing. increase rate (optional) The critical increase rate of the number of discretization. Default is 5%. (optional) Specifies the size of confidence level. Default is 0.95. alpha (optional) Other arguments passed to gd_bestunidisc().

Details

discvar

Firstly, the OPGD model is executed for each data in the datalist (all significant Q statistic of each data are averaged to represent the spatial association strength under this spatial unit), and then the loess_optscale function is used to select the optimal spatial analysis scale.

Value

```
A list.
sesu a tibble representing size effects of spatial units
optsu optimal spatial unit
increase_rate the critical increase rate of q value
```

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Song, Y., Wang, J., Ge, Y. & Xu, C. (2020) An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data, GIScience & Remote Sensing, 57(5), 593-610. doi: 10.1080/15481603.2020.1760434.

```
## Not run:
## The following code takes a long time to run:
library(tidyverse)
fvcpath = "https://github.com/SpatLyu/rdevdata/raw/main/FVC.tif"
fvc = terra::rast(paste0("/vsicurl/",fvcpath))
fvc1000 = fvc %>%
 terra::as.data.frame(na.rm = T) %>%
 as_tibble()
fvc5000 = fvc %>%
```

shuffle_vector 61

shuffle_vector

randomly shuffling vector

Description

randomly shuffling vector

Usage

```
shuffle_vector(x, shuffle_rate, seed = 123456789)
```

Arguments

```
x A vector.shuffle_rate The shuffling rate.seed (optional) Random seed number. Default is 123456789.
```

Value

A shuffled vector.

```
shuffle_vector(1:100,0.15)
```

62 spade

sim

Simulation data.

Description

Simulation data.

Usage

sim

Format

sim: A tibble with 80 rows and 6 variables, modified from IDSA package.

Author(s)

Yongze Song <yongze.song@outlook.com>

spade

spatial association detector (SPADE) model

Description

Function for spatial association detector (SPADE) model.

```
spade(
  formula,
  data,
  wt = NULL,
  discvar = NULL,
  discnum = 3:22,
  discmethod = "quantile",
  cores = 1,
  seed = 123456789,
  permutations = 0,
  ...
)
```

spade 63

Arguments

formula	A formula of spatial association detector (SPADE) model.
data	A data.frame, tibble or sf object of observation data.
wt	(optional) The spatial weight matrix. When data is not an sf object, must provide wt.
discvar	(optional) Name of continuous variable columns that need to be discretized. Noted that when formula has discvar, data must have these columns. By default, all independent variables are used as discvar.
discnum	(optional) Number of multilevel discretization. Default will use 3:22.
discmethod	(optional) The discretization methods. Default all use quantile. Note that when using different discmethod for discvar, please ensure that the lengths of both are consistent. Noted that robust will use robust_disc(); rpart will use rpart_disc(); Others use sdsfun::discretize_vector().
cores	(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
seed	(optional) Random number seed, default is 123456789.
permutations	(optional) The number of permutations for the PSD computation. Default is \emptyset , which means no pseudo-p values are calculated.
•••	<pre>(optional) Other arguments passed to sdsfun::discretize_vector(),robust_disc() or rpart_disc().</pre>

Value

A list.

factor the result of SPADE model

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Xuezhi Cang & Wei Luo (2018) Spatial association detector (SPADE),International Journal of Geographical Information Science, 32:10, 2055-2075, DOI: 10.1080/13658816.2018.1476693

```
data('sim')
sim1 = sf::st_as_sf(sim,coords = c('lo','la'))
g = spade(y ~ ., data = sim1)
g
```

64 spd_lesh

S	$pd_{}$	1	ρ,	sh
9	μu_	_+'	.	,,,

SHAP power of determinants (SPD)

Description

Function for calculate SHAP power of determinants SPD.

Usage

```
spd_lesh(formula, data, cores = 1, ...)
```

Arguments

formula A formula of calculate SHAP power of determinants SPD.

data A data.frame or tibble of observation data.

cores (optional) A positive integer(default is 1). If cores > 1, a 'parallel' package

cluster with that many cores is created and used. You can also supply a cluster

object.

... (optional) Other arguments passed to rpart_disc().

Details

The power of SHAP power of determinants formula is

$$\theta_{x_{j}}\left(S\right) = \sum_{s \in M \setminus \left\{x_{j}\right\}} \frac{|S|!(|M|-|S|-1)!}{|M|!} \left(v\left(S \cup \left\{x_{j}\right\}\right) - v\left(S\right)\right).$$

SHAP power of determinants (SPD) is the contribution of variable x_j to the power of determinants.

Value

A tibble with variable and its corresponding SPD value.

Note

The SHAP power of determinants (SPD) requires at least 2^n-1 calculations when has n explanatory variables. When there are more than 10 explanatory variables, carefully consider the computational burden of this model. When there are a large number of explanatory variables, the data dimensionality reduction method can be used to ensure the trade-off between analysis results and calculation speed.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Li, Y., Luo, P., Song, Y., Zhang, L., Qu, Y., & Hou, Z. (2023). A locally explained heterogeneity model for examining wetland disparity. International Journal of Digital Earth, 16(2), 4533–4552. https://doi.org/10.1080/17538947.2023.2271883

srsgd 65

Examples

```
data('ndvi')
g = spd_lesh(NDVIchange ~ ., data = ndvi)
g
```

srsgd

spatial rough set-based geographical detector(SRSGD) model

Description

Function for spatial rough set-based geographical detector model.

Usage

```
srsgd(formula, data, wt = NULL, type = "factor", alpha = 0.95)
```

Arguments

formula A formula of spatial rough set-based geographical detector model.

data A data.frame, tibble or sf object of observation data.

wt Spatial adjacency matrix. If data is a sf polygon object, the queen adjacency

matrix is used when no wt object is provided. In other cases, you must provide

a wt object.

type (optional) The type of geographical detector, which must be one of factor(default),

interaction and ecological.

alpha (optional) Specifies the size of the alpha (confidence level). Default is 0.95.

Value

A list.

factor the result of spatial rough set-based factor detector interaction the result of spatial rough set-based interaction detector ecological the result of spatial rough set-based ecological detector

Note

The Spatial Rough Set-based Geographical Detector Model (SRSGD) conducts spatial hierarchical heterogeneity analysis utilizing a geographical detector for data where *the dependent variable* is *discrete*. Given the complementary relationship between SRSGD and the native version of geographical detector, I strive to maintain consistency with gd() function when establishing srsgd() function. This implies that all input variable data in srsgd must *be discretized prior to use*.

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Bai, H., Li, D., Ge, Y., Wang, J., & Cao, F. (2022). Spatial rough set-based geographical detectors for nominal target variables. Information Sciences, 586, 525–539. https://doi.org/10.1016/j.ins.2021.12.019

Examples

srs_ecological_detector

spatial rough set-based ecological detector

Description

spatial rough set-based ecological detector

Usage

```
srs_ecological_detector(y, x1, x2, wt, alpha = 0.95)
```

Arguments

У	Dependent variable, factor, character or discrete numeric.
x1	Covariate X_1 , factor, character or discrete numeric.
x2	Covariate X_2 , factor, character or discrete numeric.
wt	Spatial adjacency matrix.
alpha	(optional) Confidence level of the interval, default is 0.95.

Value

A list.

T-statistic the result of T statistic for spatial rough set-based ecological detector P-value the result of P value for spatial rough set-based ecological detector Ecological does one spatial feature X_1 play a more important role than X_2

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

srs_factor_detector 67

References

Bai, H., Li, D., Ge, Y., Wang, J., & Cao, F. (2022). Spatial rough set-based geographical detectors for nominal target variables. Information Sciences, 586, 525–539. https://doi.org/10.1016/j.ins.2021.12.019

Examples

```
data('srs_table')
data('srs_wt')
srs_ecological_detector(srs_table$d,srs_table$a1,srs_table$a2,srs_wt)
```

srs_factor_detector

spatial rough set-based factor detector

Description

spatial rough set-based factor detector

Usage

```
srs_factor_detector(y, x, wt)
```

Arguments

y Variable Y, factor, character or discrete numeric.
x Covariate X, factor, character or discrete numeric.
wt Spatial adjacency matrix.

Value

A list.

PD the average local explanatory power

SE_PD the degree of spatial heterogeneity of the local explanatory power

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Bai, H., Li, D., Ge, Y., Wang, J., & Cao, F. (2022). Spatial rough set-based geographical detectors for nominal target variables. Information Sciences, 586, 525–539. https://doi.org/10.1016/j.ins.2021.12.019

```
data('srs_table')
data('srs_wt')
srs_factor_detector(srs_table$d,srs_table$a1,srs_wt)
```

68 srs_geodetector

srs_geodetector	spatial rough set-based geographical detector	
-----------------	---	--

Description

spatial rough set-based geographical detector

Usage

```
srs_geodetector(formula, data, wt = NULL, type = "factor", alpha = 0.95)
```

Arguments

formula	A formula of spatial rough set-based geographical detector model.
data	A data.frame, tibble or sf object of observation data.
wt	Spatial adjacency matrix. If data is a sf polygon object, the queen adjacency matrix is used when no wt object is provided. In other cases, you must provide a wt object.
type	(optional) The type of geographical detector, which must be one of factor(default), interaction and ecological.
alpha	(optional) Specifies the size of the alpha (confidence level). Default is 0.95.

Value

A list of tibble with the corresponding result under different detector types.

factor the result of spatial rough set-based factor detector interaction the result of spatial rough set-based interaction detector ecological the result of spatial rough set-based ecological detector

Author(s)

```
Wenbo Lv <lyu.geosocial@gmail.com>
```

srs_interaction_detector 69

srs_interaction_detector

spatial rough set-based interaction detector

Description

spatial rough set-based interaction detector

Usage

```
srs_interaction_detector(y, x1, x2, wt)
```

Arguments

У	Dependent variable, factor, character or discrete numeric.
x1	Covariate X_1 , factor, character or discrete numeric.
x2	Covariate X_2 , factor, character or discrete numeric.
wt	Spatial adjacency matrix.

Value

A list.

Variable 1 PD the average local explanatory power for variable 1

Variable2 PD the average local explanatory power for variable2

Variable1 and Variable2 interact PD the average local explanatory power for variable1 and variable2 interact

Variable1 SE_PD the degree of spatial heterogeneity of the local explanatory power for variable1 Variable2 SE_PD the degree of spatial heterogeneity of the local explanatory power for variable2

Variable1 and Variable2 SE_PD the degree of spatial heterogeneity of the local explanatory power for variable1 and variable2 interact

Interaction the interact result type

Author(s)

Wenbo Lv <lyu.geosocial@gmail.com>

References

Bai, H., Li, D., Ge, Y., Wang, J., & Cao, F. (2022). Spatial rough set-based geographical detectors for nominal target variables. Information Sciences, 586, 525–539. https://doi.org/10.1016/j.ins.2021.12.019

```
data('srs_table')
data('srs_wt')
srs_interaction_detector(srs_table$d,srs_table$a1,srs_table$a2,srs_wt)
```

70 weight_assign

srs_table

example of spatial information system table

Description

example of spatial information system table

Usage

```
srs_table
```

Format

srs_table: A tibble with 11 rows and 5 variables(one ID column).

srs_wt

example of spatial information system spatial adjacency matrix

Description

example of spatial information system spatial adjacency matrix

Usage

```
srs_wt
```

Format

srs_wt: A matrix with 11rows and 11cols.

 $weight_assign$

assign values by weight

Description

```
assign values by weight
```

```
weight_assign(x, w, list = FALSE)
```

weight_assign 71

Arguments

x A numeric valuew A weight vector

list (optional) Return list or not. if list is TRUE, return a list, otherwise return a

vector. Default is FALSE.

Value

A numeric Vector.

Examples

weight_assign(0.875,1:3)

Index

* NTDs	ndvi, 22
NTDs, 22	NTDs, 22
* dataset	1.22
ndvi, 22	opgd, 23
NTDs, 22	mid idea 24
sim, 62	pid_idsa, 24
srs_table, 70	plot.ecological_detector, 25
srs_wt, 70	plot.factor_detector, 26
* ndvi	plot.gd_result, 26
ndvi, 22	plot.gozh_result, 27
* sim	plot.idsa_result, 27
sim, 62	plot.interaction_detector, 28
* srs_table	plot.lesh_result, 29
srs_table, 70	plot.opgd_result, 30
* srs_wt	plot.rgd_result, 30
srs_wt, 70	plot.risk_detector,31
	plot.sesu_gozh,32
all2int, 4	plot.sesu_opgd,32
	plot.spade_result, 33
cpsd_disc, 4	plot.srs_ecological_detector,34
cpsd_spade, 6	plot.srs_factor_detector,35
	plot.srs_interaction_detector, 35
ecological_detector,7	plot.srsgd_result,34
	<pre>print.ecological_detector, 36</pre>
F_informationloss, 9	<pre>print.factor_detector, 37</pre>
factor_detector, 8	<pre>print.gd_result, 37</pre>
	print.gozh_result,38
gd, 10	print.idsa_result,38
gd_bestunidisc, 11	print.interaction_detector,39
generate_subsets, 12	print.lesh_result,39
geodetector, 13	$print.opgd_result, 40$
gozh, 14	print.rgd_result,41
gozh_detector, 15	<pre>print.rid_result,41</pre>
	<pre>print.risk_detector, 42</pre>
idsa, 16	print.sesu_gozh,42
interaction_detector, 18	print.sesu_opgd,43
inverse_distance_weight, 19	<pre>print.spade_result,43</pre>
	<pre>print.srs_ecological_detector, 45</pre>
lesh, 20	print.srs_factor_detector,45
loess_optscale, 21	print.srs_interaction_detector, 46
	,

INDEX 73

```
print.srsgd_result,44
psd_iev, 46
psd_pseudop, 47
psd_spade, 48
psmd_pseudop, 49
psmd_spade, 51
rgd, 52
rid, 53
risk_detector, 55
robust\_disc, 55
rpart_disc, 56
sesu_gozh, 57
sesu_opgd, 59
shuffle\_vector, 61
sim, 62
spade, 62
spd_lesh, 64
srs_ecological_detector,66
srs_factor_detector, 67
srs_geodetector, 68
srs_interaction_detector, 69
srs_table, 70
srs_wt, 70
srsgd, 65
weight\_assign, \textcolor{red}{70}
```