

Aula 01 – Classificando imagens

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Roteiro

- Imagens digitais
- Um problema de classificação
- Pipelines de classificação
- Modelos de aprendizado
- Validação cruzada
- Avaliação dos resultados

M linhas

N colunas

 $M \times N$ pixels

M linhas N colunas M × N pixels

Imagem de intensidades (níveis de cinza):

Imagem colorida (RGB):

Imagem de intensidades (níveis de cinza):

60	89	117	140
127	147	160	168
192	198	193	186
209	210	204	197

Imagem colorida (RGB):

78			
56			
36	49	28	
118	149	80	
108	133	58	
91	124	33	
211	176	81	
202	161	57	
200	158	17	
231	174	83	
218	155	57	
214	150	21	11

verde – G (green)

azul – B (blue)

Imagens coloridas - RGB

Imagens coloridas - RGB

UM PROBLEMA DE CLASSIFICAÇÃO

- Aprender a classificar três tipos (classes) de folhas a partir de imagens.
- Flavia leaf dataset:
 - http://flavia.sourceforge.net/
 - 1.907 imagens
 - 33 classes
- Selecionamos 3 classes:
 - aesculus chinensis
 - acer palmatum
 - cercis chinensis

- Extração de características:
 - Selecionar características das imagens que podem ser usadas para distinguir entre as classes.
- Características podem ser:
 - Formas
 - Cores
 - Texturas
 - Histograma de gradientes (HoG)
 - Bag of Visual Words
 - Fisher Vectors
 - **–** ...

Algumas características de forma:

aesculus chinensis

- **Axis:** the length of the major and minor axis of the ellipse with the same normalized second central moments as the region.
- **Roundness:** a function of the perimeter and the area of the region

-
$$roundness = \frac{4 \times \pi \times area}{perimeter^2}$$

Eccentricity: the ratio of the focal distance over the major axis length of the ellipse with the same second-moments.

- **Solidity:** the ratio of pixels in the region to pixels of the convex hull image.
 - **Convex hull:** the smallest convex polygon that encloses the region.

https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops

Método do vizinho mais próximo

K-vizinhos mais próximos – K-NN

Aprender a classificar três tipos (classes) de folhas a partir de imagens.

k = 1

K-vizinhos mais próximos – K-NN

Aprender a classificar três tipos (classes) de folhas a partir de imagens.

k = 3

K-vizinhos mais próximos – K-NN

Aprender a classificar três tipos (classes) de folhas a partir de imagens.

k = 3

Funções lineares (Perceptrons)

Funções lineares (Perceptrons)

Funções lineares (Perceptrons)

PIPELINES DE CLASSIFICAÇÃO

Pipelines de classificação

Yann LeCun's Deep Learning Course at CDS - SPRING 2021

MODELOS DE APRENDIZADO

Modelos de aprendizado

- Aprendizado supervisionado
- Aprendizado não supervisionado
- Aprendizado por reforço
- Aprendizado semi-supervisionado
- Aprendizado auto-supervisionado

Entrada

MODELO

Rótulo

Rótulo

aesculus chinensis
 cercis chinensis

MODELO

o Rótulo

0: acer palmatum
1: aesculus chinensis

2: cercis chinensis

Rótulo 0

1: aesculus chinensis

0: acer palmatum

2: cercis chinensis

1: aesculus chinensis2: cercis chinensis

0: acer palmatum

1: aesculus chinensis

Entrada

MODELO

Saída

Erro

1 (Rótulo

0: acer palmatum
1: aesculus chinensis

1 Rótulo

0: acer palmatum
1: aesculus chinensis

0: acer palmatum

1: aesculus chinensis

Entrada

MODELO

Saída

Erro

Rótulo 0

0: acer palmatum 1: aesculus chinensis

0

0: acer palmatum 1: aesculus chinensis

2: cercis chinensis

Rótulo

0: acer palmatum

1: aesculus chinensis

0: acer palmatum 1: aesculus chinensis

0: acer palmatum

1: aesculus chinensis

Aprendizado não-supervisionado

Aprendizado não-supervisionado

Aprendizado não-supervisionado

VALIDAÇÃO CRUZADA

Overfiting

Overfiting

Overfiting

Validação cruzada hold-out

Validação cruzada hold-out

Validação cruzada hold-out

Dataset

Imagem	excentricidade	área	classe
0	0,1	250	0
1	0,6	450	2
2	0,3	350	0
3	0,2	550	1
4	0,5	800	1
5	0,2	100	0
6	0,7	200	2
7	0,7	750	1
8	0,4	400	0
9	0,8	150	2
10	0,9	300	2
11	0,8	700	1
12	0,4	150	
13	0,4	300	·
14	0,2	200	
15	0,7	250	

Shuffled dataset

shuffle

Imagem	excentricidade	área	classe
13	0,5	300	0
11	0,8	700	1
8	0,4	400	0
9	0,8	150	2
2	0,3	350	0
15	0,7	250	2
4	0.5	800	1
7	0,7	750	1
10	0,9	300	2
12	0,4	150	0
3	0,6	550	1
6	0,6	200	2
0	0,4	700	1
1	0,8	400	2
5	0,3	100	0
14	0,2	200	0

Treino

Imagem	excentricidade	área	classe
13	0,5	300	0
11	0,8	700	1
8	0,4	400	0
9	0,8	150	2
2	0,3	350	0
15	0,7	250	2
4	0.5	800	1
7	0,7	750	1
10	0,9	300	2
12	0,4	150	0
3	0,6	550	1
6	0,6	200	2

split

Teste

Imagem	excentricidade	área	classe
0	0,4	700	1
1	0,8	400	2
5	0,3	100	0
14	0,2	200	0

Validação cruzada k-fold

Dataset					
	shuffle				
		Treino			Teste
				•	
	Treino Validação			k = 0	
	Treino		Validação	Treino	k = 1
Tre	Treino Validação Treino			k = 2	
Treino	Validação	Treino		k = 3	
Validação	Treino		k = 4		

NORMALIZAÇÃO

• Transformada Normal de Características (Standard Scaler)

Treinamento (X_{train})

Imagem	excentricidade	área
13	0,50	300
11	0,80	700
8	0,40	400
9	0,80	150
2	0,30	350
15	0,70	250
4	0.50	800
7	0,70	750
10	0,90	300
12	0,40	150
3	0,60	550
6	0,60	200
Média:	0.60	408.33
Desv. Pad.:	0.1859	234.35

Treinamento normalizado (X'_{train})

Imagem	excentricidade	área
13		
11		
8		
9		
2		
15		
4		
7		
10		
12		
3		
6		
Média:		
Desv. Pad.:		

Teste (X_{test})

Imagem	excentricidade	área
0	0,4	700
1	0,8	400
5	0,3	100
14	0,2	200

Teste normalizado(X'_{test})

Imagem	excentricidade	área
0		
1		
5		
14		
Média:		
Desv. Pad.:		

Transformada Normal de Características (Standard Scaler)

Treinamento (X_{train})

Imagem	excentricidade	área
13	0,50	300
11	0,80	700
8	0,40	400
9	0,80	150
2	0,30	350
15	0,70	250
4	0.50	800
7	0,70	750
10	0,90	300
12	0,40	150
3	0,60	550
6	0,60	200
Média:	0.60	408.33
Desv. Pad.:	0.1859	234.35

Treinamento normalizado (X'_{train})

Imagem	excentricidade	área
13		
11		
8		
9		
2		
15		
4		
7		
10		
12		
3		
6		
Média:		
Desv. Pad.:		

Teste (X_{test})

Imagem	excentricidade	área
0	0,4	700
1	0,8	400
5	0,3	100
14	0,2	200

Teste normalizado(X'_{test})

Imagem	excentricidade	área
0		
1		
5		
14		
Média:		
Desv. Pad.:		

$${X'}_{train} = \frac{X_{train} - mean(X_{train})}{std(X_{train})}$$
 ${X'}_{test} = \frac{X_{test} - mean(X_{train})}{std(X_{train})}$

Transformada Normal de Características (Standard Scaler)

Treinamento (X_{train})

Imagem	excentricidade	área
13	0,50	300
11	0,80	700
8	0,40	400
9	0,80	150
2	0,30	350
15	0,70	250
4	0.50	800
7	0,70	750
10	0,90	300
12	0,40	150
3	0,60	550
6	0,60	200
Média:	0.60	408.33
Desv. Pad.:	0.1859	234.35

Treinamento normalizado (X'_{train})

Imagem	excentricidade	área
13	-0.5380	-0.4622
11	1.0760	1.2445
8	-1.0760	-0.0355
9	1.0760	-1.1022
2	-1.6140	-0.2489
15	0.5380	-0.6756
4	-0.5380	1.6712
7	0.5380	1.4578
10	1.6140	-0.4622
12	-1.0760	-1.1022
3	0.0000	0.6044
6	0.0000	-0.8889
Média:	0.00	1.00
Desv. Pad.:	0.00	1.00

Teste (X_{test})

Imagem	excentricidade	área
0	0,4	700
1	0,8	400
5	0,3	100
14	0,2	200

Teste normalizado(X'_{test})

Imagem	excentricidade	área
0	-1.0760	1.244528
1	1.0760	-0.035558
5	-1.6140	-1.315644
14	-2.1521	-0.888949
Média:	-0.9415	-0.2489
Desv. Pad.:	1.4150	1.1289

$$X'_{train} = \frac{X_{train} - mean(X_{train})}{std(X_{train})}$$
 $X'_{test} = \frac{X_{test} - mean(X_{train})}{std(X_{train})}$

AVALIAÇÃO DOS RESULTADOS

- Verdadeiro positivo (TP):
 - Objetos da classe C₁ classificados como C₁.
- Verdadeiro negativo (TN):
 - Objetos de outras classes (C₂ e C₃) classificados como não sendo C₁.
- Falso positivo (FP) (erro tipo I):
 - Objetos classificados como C₁ mas pertencem a outras classes (C₂ ou C₃).
- Falso negativo (FN) (erro tipo II):
 - Objetos da classe C₁ classificados como outras classes (C₂ ou C₃).

		Classificação					
		Classe C1	Classe C2	Classe C3	Soma		
	Classe C1	5	3	0	8		
e rea	Classe C2	2	3	1	6		
Classe real	Classe C3	0	2	11	13		
	Soma	7	8	12	_		

- Verdadeiro positivo (TP):
 - Objetos da classe C₁ classificados como C₁.
- Verdadeiro negativo (TN):
 - Objetos de outras classes (C₂ e C₃) classificados como não sendo C₁.
- Falso positivo (FP) (erro tipo I):
 - Objetos classificados como C₁ mas pertencem a outras classes (C₂ ou C₃).
- Falso negativo (FN) (erro tipo II):
 - Objetos da classe C₁ classificados como outras classes (C₂ ou C₃).

		Classificação						
Classe C1 Classe C2 Classe C3						Soma		
	Classe C1	5		3				8
Classe real	Classe C2	2			3	1		6
Class	Classe C3	0			2	11		13
	Soma	7			8	12		

Classe C1		Classificação				
Classe	: CI	Classe C1		Outras		
Classe real	Classe C1	5	TP	3	FN	
Cla	Outras	2	FP	17	TN	

- Verdadeiro positivo (TP):
 - Objetos da classe C₁ classificados como C₁.
- Verdadeiro negativo (TN):
 - Objetos de outras classes (C₂ e C₃) classificados como não sendo C₁.
- Falso positivo (FP) (erro tipo I):
 - Objetos classificados como C₁ mas pertencem a outras classes (C₂ ou C₃).
- Falso negativo (FN) (erro tipo II):
 - Objetos da classe C₁ classificados como outras classes (C₂ ou C₃).

	Classificação					
	Classe C1 Classe C2 Classe C3 Sor					
	Classe C1	5	3	0	8	
e real	Classe C2	2	3	1	6	
Classe	Classe C3	0	2	11	13	
	Soma	7	8	12		

Classe C1		Classificação			
		Classe C1		Outras	
Classe real	Classe C1	(5)	TP	3	FN
Cla	Outras	2	FP	17	TN

- Verdadeiro positivo (TP):
 - Objetos da classe C₁ classificados como C₁.
- Verdadeiro negativo (TN):
 - Objetos de outras classes (C₂ e C₃) classificados como não sendo C₁.
- Falso positivo (FP) (erro tipo I):
 - Objetos classificados como C₁ mas pertencem a outras classes (C₂ ou C₃).
- Falso negativo (FN) (erro tipo II):
 - Objetos da classe C₁ classificados como outras classes (C₂ ou C₃).

		Classificação					
		Classe C1	Classe C2	Classe C3	Soma		
	Classe C1	5	3	0	8		
e real	Classe C2	2	<u>3</u>	1	6		
Classe I	Classe C3	0	2	11	13		
	Soma	7	8	12			

Classe C1		Classificação				
Classe	CI	Class	se C1	Outr	as	
Slasse real	Classe C1	5	TP	3	FN	
Cla	Outras	2	FP	17	TN	

Classe	. (2	Classificação					
Classe	: C2	Class	e C2	Outras			
sse al	Classe C2	3	TP	3	FN		
Class	Outras	5	FP	16	TN		

- Verdadeiro positivo (TP):
 - Objetos da classe C₁ classificados como C₁.
- Verdadeiro negativo (TN):
 - Objetos de outras classes (C₂ e C₃) classificados como não sendo C₁.
- Falso positivo (FP) (erro tipo I):
 - Objetos classificados como C₁ mas pertencem a outras classes (C₂ ou C₃).
- Falso negativo (FN) (erro tipo II):
 - Objetos da classe C₁ classificados como outras classes (C₂ ou C₃).

		Classificação							
		Classe C1	Classe C2	Classe C3	Soma				
1	Classe C1	5	3	0	8				
e real	Classe C2	2	3	1	6				
Classe	Classe C3	0	2	11	13				
	Soma	7	8	12					

Classo	. C1	Classificação					
Classe	CI	Class	se C1	Outras			
Slasse real	Classe C1	5	TP	3	FN		
Cla	Outras	2	FP	17	TN		

Classe	. (2	Classificação					
Classe	: C2	Class	se C2	Outras			
lasse real	Classe C2	3	TP	3	FN		
Cla: re	Outras	5	FP	16	TN		

Classe	. (2	Classificação					
Classe	: C3	Class	e C3	Outras			
lasse real	Classe C3	11	TP	(2)	FN		
Cla	Outras	1	FP	13	TN		

Acurácia (Accuracy):

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

Precisão (Precision):

-
$$Precision = \frac{TP}{TP+FP}$$

• Sensitividade (*Recall*):

$$Recall = \frac{TP}{TP+FN}$$

• Índice-F1 (*F1-score*):

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

- Suporte (Support):
 - Support = TP + FN

Acurácia (Accuracy):

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

• Precisão (*Precision*):

-
$$Precision = \frac{TP}{TP+FP}$$

• Sensitividade (*Recall*):

$$- Recall = \frac{TP}{TP+FN}$$

• Índice-F1 (*F1-score*):

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

- Suporte (Support):
 - Support = TP + FN

- Quão próxima a classificação está do valor verdadeiro.
- A capacidade do classificador de não rotular uma amostra negativa como positiva.
- A capacidade do classificador de encontrar todas as amostras positivas.
- A média harmônica ponderada da precisão e recuperação.
- O número de ocorrências de cada classe real (verdadeira).

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision recall fscore support.html

Acurácia (Accuracy):

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

- Precisão (*Precision*):
 - $Precision = \frac{TP}{TP+FP}$

Sensitividade (*Recall*):

$$Recall = \frac{TP}{TP+FN}$$

• Índice-F1 (*F1-score*):

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

• Suporte (*Support*):

$$-$$
 Support = $TP + FN$

Classes	ТР	TN	FP	FN	Acurácia	Precisão	Sensitividade	Índice-F1	Suporte
C1	5	17	2	3					
C2	3	16	5	3					
С3	11	13	1	2					
MÉDIA									
DESV. PAD									

Acurácia (Accuracy):

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

- Precisão (*Precision*):
 - $Precision = \frac{TP}{TP+FP}$

Sensitividade (*Recall*):

$$Recall = \frac{TP}{TP+FN}$$

• Índice-F1 (*F1-score*):

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

- Suporte (*Support*):
 - Support = TP + FN

Classes	ТР	TN	FP	FN	Acurácia	Precisão	Sensitividade	Índice-F1	Suporte
C1	5	17	2	3	0.8148	0.7143	0.6250	0.6667	8
C2	3	16	5	3	0.7037	0.3750	0.5000	0.4286	6
С3	11	13	1	2	0.8889	0.9167	0.8462	0.8800	13
MÉDIA									
DESV. PAD									

Acurácia (Accuracy):

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

• Precisão (*Precision*):

$$- Precision = \frac{TP}{TP+FP}$$

Sensitividade (*Recall*):

$$- Recall = \frac{TP}{TP+FN}$$

• Índice-F1 (*F1-score*):

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

• Suporte (*Support*):

$$-$$
 Support = $TP + FN$

Classes	TP	TN	FP	FN	Acurácia	Precisão	Sensitividade	Índice-F1	Suporte
C1	5	17	2	3	0.8148	0.7143	0.6250	0.6667	8
C2	3	16	5	3	0.7037	0.3750	0.5000	0.4286	6
C3	11	13	1	2	0.8889	0.9167	0.8462	0.8800	13
MÉDIA					0.8025	0.6687	0.6571	0.6584	
DESV. PAD					0.0761	0.2235	0.1431	0.1844	

Acurácia Vs. Precisão

- Acurácia (Accuracy):
 - $Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$
 - O quão próximo as predições estão do valor real.
- Precisão (Precision):
 - $Precision = \frac{TP}{TP+FP}$
 - O grau de variação entre diferentes predições.

Bibliografia

- GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.
- COSTA, L. DA F.; CESAR-JR., R. M. Shape analysis and classification: theory and practice. CRC Press, 2000. Capítulo 8.
- Yann LeCun', Alfredo Canziani. Yann LeCun's Deep Learning Course at CDS SPRING 2021
 - https://cds.nyu.edu/deep-learning/
- scikit-learn User Guide.
 - https://scikit-learn.org/stable/user_guide.html

FIM