MAT-INF3360 Mandatory Exercises 1

Jonas van den Brink

j.v.d.brink@fys.uio.no

February 20, 2014

Exercise 2.30

In this exercise we will show the orthogonality relation between the discrete eigenfunctions of the operator L_h , which is defined as the negative of a 2. order central difference, meaning we have:

$$L_h v(x_j) = \frac{-v(x_{j+1}) + 2v(x_j) - v(x_{j-1})}{h^2}.$$

So we are studying the functions $v \in D_{h,0}$ that satisfy the eigenvalue problem

$$L_h v = \mu v.$$

From the text we know that the eigenstates are:

$$v_k(x_j) = \sin(k\pi x_j) \text{ for } k = 1, 2, \dots, n.$$

And we will show the orthogonality

$$\langle v_n, v_m \rangle_h = \delta_{n,m}/2,$$

where $\delta_{n,m}$ denotes the Kronecker-delta.

 \mathbf{a}

We will show that the sum

$$S_k = \sum_{j=0}^n \cos(k\pi x_j),$$

is $S_k = 0$ for k even, and $S_k = 1$ if k is odd. For k = 0 the sum is trivial and obviously equal to n + 1.

We start by writing the cosine term into a linear combination of expoentials with a purely imaginary argument and splitting the sum into parts

$$\sum_{j=0}^{n} \cos(k\pi x_j) = \frac{1}{2} \left(\sum_{j=0}^{n} \exp(ik\pi x_j) + \sum_{j=0}^{n} \exp(-ik\pi x_j) \right).$$

by introducing the step size h through $x_j = h \cdot j$, we can rewrite these sums as finite geometric sums, to which the value is known¹. We have

$$\sum_{j=0}^{n} \exp(\pm ik\pi x_j) = \sum_{j=0}^{n} [\exp(\pm ik\pi h)]^j = \frac{1 - [\exp(\pm ik\pi h)]^{n+1}}{1 - \exp(\pm ik\pi h)}.$$

So our sum can be written

$$S_k = \frac{1}{2} \left(\frac{1 - [\exp(ik\pi h)]^{n+1}}{1 - \exp(ik\pi h)} + \frac{1 - [\exp(-ik\pi h)]^{n+1}}{1 - \exp(-ik\pi h)} \right).$$

Now we use the fact that

$$[\exp(\pm ik\pi h)]^{n+1} = \exp(\pm ik\pi h(n+1)) = \exp(\pm ik\pi) = (-1)^k.$$

Due to the fact that h(n+1) = 1.

We now expand the latter fraction by $\exp(ik\pi h)$ and add the two fractions together to get

$$S_k = \frac{1}{2} \frac{1 - \exp(ik\pi h) - (-1)^k (1 - \exp(ik\pi h))}{1 - \exp(ik\pi h)} = \frac{1 - (-1)^k}{2}.$$

And from this expression we readily see that

$$S_k = \begin{cases} 0 & \text{for } k \text{ even} \\ 1 & \text{for } k \text{ odd.} \end{cases}$$

b)

We now turn to the inner-product, and will first show the orthogonality property of the discrete eigenfunctions v_k . Remebering that the inner product in the space $D_{h,0}$ is defined

$$\langle u, v \rangle_h = h \sum_{j=1}^n u_j v_j,$$

we can write the inner product as

$$\langle v_k, v_m \rangle_h = h \sum_{j=0}^n \sin(k\pi x_j) \sin(m\pi x_j).$$

Note that we let j run from 0 and not 1, this is ok as $v_k(x_0) = 0$ for all k anyway, so it doesn't affect the sum.

Now, using the trigonometric identity

$$\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) - \cos(x+y)),$$

we can rewrite this sum as

$$\langle v_k, v_m \rangle_h = \frac{h}{2} \left(\sum_{j=0}^n \cos((k-m)\pi x_j) - \sum_{j=0}^n \cos((k+m)\pi x_j) \right),$$

¹See for example Rottman page 112.

which using the results of exercise a) can be written as

$$\langle v_k, v_m \rangle_h = \frac{h}{2} \left(S_{(k-m)} - S_{(k+m)} \right).$$

We now see that for any integer values of k and m, both the difference k-m and the sum k+m will either be odd or even, and so the two sums cancel out, and we have

$$\langle v_k, v_m \rangle_h = 0$$
 when $k \neq m$.

When k = m, the first sum becomes $S_0 = n + 1$, and so this result does not apply to that case.

c)

We now look at the case

$$\langle v_k, v_k \rangle_h$$
.

Using the same steps as in the previous exercise we can show that this is equal to

$$\langle v_k, v_k \rangle_h = \frac{h}{2} \Big(S_0 - S_{2k} \Big).$$

From exercise a), we know that $S_{2k}=0$ as 2k is even for all non-zero integers k, and we also know that $S_0=n+1=1/h$. Using this we have

$$\langle v_k, v_k \rangle_h = \frac{1}{2}.$$

And we have thus shown that

$$\langle v_k, v_m \rangle_h = \delta_{k,m}/2$$
 q.e.d.

Project 2.1

We will be studying the problem

$$-u''(x) = f(x),$$
 $x \in (0,1),$ $u(0) = u(1) = 0.$

Which has solutions on the form

$$u(x) = x \int_0^1 (1-y)f(y) dy - \int_0^x (x-y)f(y) dy.$$

We will be looking at numerical schemes that result from using numerical approximations to the integrations in this form.

(a) The Trapezoidal Rule

The trapezoidal rule is an intutive approximation to a definite integral. It is most easily understood from a geometric perspective. The definite integral

$$I = \int_{a}^{b} F(x) \, \mathrm{d}x,$$

is the area under the curve F(x) between the limits a and b. The trapezoidal rule approximates this area as many small trapezoids, from which the area is easily calculated. See figure 1 and 2 for illustrations.

Using more trapezoids should give a better approximation, but will also require more samplings. Using n+1 trapezoids, means using n+2 mesh points and thus n+2 samplings of the function F(x).

Looking at figure 2, it is easy to see that the area of a single trapezoid is

$$a_i = (x_{i+1} - x_i) \frac{F(x_{i+1}) + F(x_i)}{2}.$$

Here, the width of the trapezoid is given as $x_{i+1} - x_i$, which is the general case. In this project however, we will assume uniformly spaced mesh points, meaning we use

$$x_i = a + ih,$$
 $h = x_{i+1} - x_i = \frac{b-a}{n+1}.$

Summing over all the trapezoids, we see that all the internal mesh points are added twice, while the endpoints are added just once, we thus have

$$I = \int_a^b F(x) dx \approx h \left(\frac{F(a) + F(b)}{2} + \sum_{i=1}^n F(x_i) \right).$$

Figure 1: Illustration of using the trapezoidal rule to approximate an integral using 4 trapezoids, meaning we have n=3 internal mesh points

Figure 2: A single trapezoid element.

(b) Writing a Trapezoidal Integration Function

We will now implement a procedure that for a given a, b, F(x) and n computes the approximation given by the trapezoidal rule.

For simplicity, we write the code in Python:

```
def trapez(F,a,b,n):
    h = (b-a)/(n+1)

s = F(a)/2. + F(b)/2.
for i in range(n):
    x += h
    s += F(x)

return s*h
```

Note that this function is not very efficient. For practical use, it should either be vectorized using numpy or implemented in some other language, like for example C++.

(c)

We now set $F(x) = x^5$ and $G(x) = \sqrt{|x - \frac{1}{2}|}$ and will compute the integrals

$$I_1 = \int_0^1 F(x) dx$$
 and $I_2 = \int_0^1 G(x) dx$,

using the trapezoidal rule. We first compute them analytically, so that we have an exact solution to compare our results to.

The first integral is trivial

$$I_1 = \int_0^1 x^5 \, \mathrm{d}x = \frac{1}{6}.$$

The second integral can be solved by realizing it is symetric about x = 1/2, and substituting u = x - 1/2:

$$I_2 = \int_0^1 \sqrt{|x - \frac{1}{2}} \, dx = 2 \int_0^{\frac{1}{2}} \sqrt{u} \, du = \frac{\sqrt{2}}{3}.$$

Using the function trapez(F,a,b,n) defined above, we calculate numerical approximations to I_1 and I_2 using n = 10, 20, 40, 80, 160 internal mesh points.

To estimate the rate of convergence for the approximations of these integrals, we assume that the error is proportional to some order of the step length h:

$$e_h = ch^r$$
,

where c is a proportionality constant. To find r, we compare for two different values of h

$$r = \frac{\ln(e_{h_1}/e_{h_2})}{\ln(h_1/h_2)}.$$

The results are shown in table 1. We se that for the first integral, we get a rate of convergence of about 2, while for the second integral we get a rate of

convergence of about 1.55. From the litterature on the trapezoidal rule, we find that the error is

error = $-\frac{(b-a)^3}{12N^2}f''(\xi)$,

where ξ is some number in the range [a, b], and so the trapezodial rule is a 2. order method, and the rate of convergence we found seems to be reasonable. Also note that as the error is proportional to some number $f''(\xi)$, the trapezodial rule will give an accurate result for any polynomial of degree one or less, as any such polynomial will have f''(x) = 0 for all x. This will be relevant when we test the convergence of our solver later on.

n	Rel. error I_1	Conv. rate I_2	Rel. error I_2	Conv. rate I_2
10	$2.06 \cdot 10^{-2}$		$9.15 \cdot 10^{-3}$	
20	$5.67 \cdot 10^{-3}$	1.9981	$3.25 \cdot 10^{-3}$	1.5995
40	$1.49 \cdot 10^{-3}$	1.9995	$1.13 \cdot 10^{-3}$	1.5760
80	$3.81 \cdot 10^{-4}$	1.9999	$3.92 \cdot 10^{-4}$	1.5567
160	$9.64 \cdot 10^{-5}$	2.0000	$1.36 \cdot 10^{-4}$	1.5417

Table 1: Results of using the trapez function to evalute the integrals of F(x) and G(x) on the unit interval.

(d)

We now define the functions

$$\alpha(x) = \int_0^x f(y) dy$$
 and $\beta(x) = \int_0^x y f(y) dy$.

And will use these to redwrite the general solution to our boundary value problem

$$u(x) = x \int_0^1 (1 - y) f(y) dy - \int_0^x (x - y) f(y) dy.$$

Divding the integrals makes this an easy task

$$u(x) = x \left(\underbrace{\int_0^1 f(y) \, \mathrm{d}y}_{\alpha(1)} - \underbrace{\int_0^1 y f(y) \, \mathrm{d}y}_{\beta(1)} \right) + \underbrace{\int_0^x y f(y) \, \mathrm{d}y}_{\beta(x)} - x \underbrace{\int_0^x f(y) \, \mathrm{d}y}_{\alpha(x)}.$$

So we see that we can write the solution as

$$u(x) = x(\alpha(1) - \beta(1)) + \beta(x) - x\alpha(x)$$
 q.e.d.

(e)

We will now find approximations to $\alpha(x_i)$ and $\beta(x_i)$. Remember that

$$\alpha(x_i) = \int_0^{x_i} f(y) \, dy, \quad \beta(x_i) = \int_0^{x_i} y f(y) \, dy$$
 where $x_i = ih$.

We will also be using the shorthand $f(x_i) = f_i$. We start by realizing that if the value of $\alpha(x_i)$ is known, calculating the value of $\alpha(x_{i+1})$ can be simplified in the following manner:

$$\alpha(x_{i+1}) = \int_0^{x_{i+1}} f(y) \, \mathrm{d}y = \int_0^{x_i} f(y) \, \mathrm{d}y + \int_{x_i}^{x_{i+1}} f(y) \, \mathrm{d}y = \alpha(x_i) + \int_{x_i}^{x_{i+1}} f(y) \, \mathrm{d}y.$$

The integral from x_i to x_{i+1} can then be approximated with the trapezoidal rule, using one internal mesh point—as this mesh point will lie between x_i and x_{i+1} it is a kind of *virtual* mesh point. We then have

$$\int_{x_i}^{x_{i+1}} f(y) \, \mathrm{d}y \approx \frac{h}{4} (f_i + 2f_{i+1/2} + f_{i+1}).$$

For simplicity, we let α_i denote the approximation to $\alpha(x_i)$ and not the exact. We then have

$$\alpha_0 = 0,$$
 $\alpha_{i+1} = \alpha_i + \frac{h}{4} (f_i + 2f_{i+1/2} + f_{i+1}).$

For $\beta(x_i)$, we do the exact same steps, and find

$$\beta_0 = 0,$$
 $\beta_{i+1} = \beta_i + \frac{h}{4} (x_i f_i + 2x_{i+1/2} f_{i+1/2} + x_{i+1} f_{i+1}).$

(f)

As $\alpha(x_{n+1}) = \alpha(1) \approx \alpha_{n+1}$, we can define an approximation to the solution of the boundary value problem u as:

$$u_i = x_i(\alpha_{n+1} - \beta_{n+1}) + \beta_i - x_i\alpha_i.$$

Note that as previously, u_i is the discrete approximation in the point x_i , and not the exact solution evaluated in x_i . From our Dirichlet boundary conditions we also know that $u_0 = u_{n+1} = 0$.

We will now implement this approximation on a computer. There is however one problem, in some cases, we might not be able to evaluate the source-term f in the virtual point $x_{i+1/2}$, which is not a mesh point. In some cases, we will therefore have to approximate this value, using an artihmetic mean

$$f_{i+1/2} \approx (f_i + f_{i+1})/2.$$

Which has a 2. order accuracy, i.e., the approximation doesn't lower the order of our numerical scheme. For the $\alpha(x)$ integral, this is effectively the same as using the trapezoidal rule with no internal mesh points:

$$\int_{x_i}^{x_{i+1}} f(y) \, \mathrm{d}y \approx h \frac{f_i + f_{i+1}}{2}.$$

In the β case, we get a slight difference however. Using the arithmetic mean, we get:

$$\alpha_{i+1} = \alpha_i + \frac{h}{2} (f_i + f_{i+1}),$$

$$\beta_{i+1} = \beta_i + \frac{h}{4} ((x_i + x_{i+1/2})f_i + (x_{i+1/2} + x_{i+1})f_{i+1}).$$

We now create the folling solver function:

```
def solver(f, n):
    x = linspace(0,1,n+2)
   h = x[1] - x[0]
   u = zeros(n+2)
    a = zeros(n+2)
    b = zeros(n+2)
    if callable(f):
        for i in range(n+1):
            a[i+1] = a[i] + h/4.*(f(x[i]) + 2*f(x[i]+h/2.) + f(x[i+1]))
b[i+1] = b[i] + h/4.*(x[i]*f(x[i])
                 + 2*(x[i]+h/2.)*f(x[i]+h/2.) + x[i+1]*f(x[i+1]))
    else:
        for i in range(n+1):
            a[i+1] = a[i] + h/2.*(f[i] + f[i+1])
            b[i+1] = b[i] + h/4.*((2*x[i]+h/2.)*f[i]
                          + (2*x[i+1]-h/2.)*f[i+1])
   u[:-1] = x[:-1]*(a[-1] - b[-1]) + b[:-1] - x[:-1]*a[:-1]
    return x, u
```

We now want to test our solver, and will do so for different source term with known exact solutions, giving us a perfect chance to test the convergence rate of our solver

$$f(x) = 1$$

$$u(x) = \frac{1}{2}x(1-x)$$

$$f(x) = x$$

$$u(x) = \frac{1}{6}x(1-x^2)$$

$$u(x) = \frac{1}{6}x(1-x^3)$$

$$u(x) = \frac{1}{12}x(1-x^3)$$

$$u(x) = (e-1)x - e^x + 1$$

$$u(x) = \cos(ax) \text{ for } a \in \mathbb{R}.$$

$$u(x) = \frac{1}{a^2}((1-\cos a)x + \cos(ax) - 1)$$

We test these functions for n=8,16,32,64,128,256,1024. Using the L_{∞} -norm to assess the error in each case:

$$error = \max |u - u_e|,$$

where u is the discrete numerical solution and u_e is the exact solution evaluated in the mesh points. We calculate the convergence rate in the same manner as earlier. The results are shown in table 2.

f	n	e	r	\int	n	e	r
1	8	1.4e-16		X	8	3.1e-17	
	16	1.2e-16	0.166		16	2.8e-17	0.185
	32	2.5e-16	-1.045		32	1.1e-16	-2.136
	64	8.9e-16	-1.871		64	8.3e-17	0.470
	128	5.4e-16	0.723		128	8.3e-17	0.000
	256	1.1e-15	-1.024		256	2.7e-16	-1.710
	1024	2.8e-16	0.993		1024	2.1e-16	0.190
x^2	8	6.4e-05		e^x	8	5.4 e-05	
	16	1.8e-05	1.986		16	1.5e-05	1.999
	32	4.8e-06	1.996		32	4.1e-06	1.999
	64	1.2e-06	1.999		64	1.0e-06	2.000
	128	3.1e-07	2.000		128	2.7e-07	2.000
	256	7.9e-08	2.000		256	6.7e-08	2.000
	1024	5.0e-09	2.000		1024	4.2e-09	2.000
$\cos(ax)$	8	6.7e-05					
	16	1.9e-05	1.982				
	32	5.0e-06	1.997				
	64	1.3e-06	2.000				
	128	3.3e-07	2.000				
	256	8.3e-08	2.000				
	1024	5.2e-09	2.000				

Table 2: Testing rate of convergence of the numerical solver.

Discussion

We see that for the source terms f(x) = 1 and f(x) = x, we have an error on the order of machine precision already for a small n. As a result, the convergence rate is obviously not really interesting, as the solution is already a perfect solution to the discrete problem. The reason for this is that the trapezodial integration scheme is of second order, and so it perfectly integrates both of these source term, which are of order 0 and 1 respectively.

For the other source terms, we see that the error decreases with increasing n as expected. In fact, we see that in all three cases, we get a convergence of order 2, which fit the theory of the trapezodial integration scheme being 2. order nicely.

f)

If the source term f is a set of samples, we cannot improve the number of samples, and thus cannot increase the number of mesh points. If we then want a better accuracy, we will have to alter our algorithm. One way to do this would be to use a more accurat Newton-Cotes integration scheme, such as Simpson's rule, which is fourth order. These higher-order methods will be more computationally costly, but will give a higher precision with the same number of mesh points, or samples.