11.14-4

EE23BTECH11048-Ponugumati Venkata Chanakya*

QUESTION: QUESTION: Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of peiodic motion (ω is any positive constant):

- 1) $\sin(\omega t) \cos(\omega t)$
- 2) $\sin^3(\omega t)$
- 3) $3\cos\left(\frac{\pi}{4}-2\omega t\right)$
- 4) $\cos(\omega t) + \cos(3\omega t) + \cos(5\omega t)$
- 5) $exp(-\omega^2t^2)$
- 6) $1 + \omega t + \omega^2 t^2$

Answer:

Definition of period:

The period is denoted by the symbol "T," and it represents the time interval required for the motion to go through one complete cycle

1) $\sin(\omega t) - \cos(\omega t)$

This function can be rewritten as

$$= \sin(\omega t) - \sin\left(\frac{\pi}{2} - \omega t\right)$$

$$= 2\cos\left(\frac{\pi}{4}\right)\sin\left(\omega t - \frac{\pi}{4}\right)$$

$$= \sqrt{2}\sin\left(\omega t - \frac{\pi}{4}\right)$$

 \therefore Simple harmonic motion with period T = $\frac{2\pi}{\omega}$ Phase angle of $\left(\frac{-\pi}{4}\right)$ or $\left(\frac{7\pi}{4}\right)$

(2) $\sin^3(wt)$

This function can be rewritten as

$$= \frac{1}{4} (3\sin(\omega t) - \sin(3\omega t)) \tag{4}$$

 \therefore periodc with period T = $\frac{2\pi}{\omega}$

(3) $3\cos\left(\frac{\pi}{4}-2\omega t\right)$

This function can be rewritten as

$$=3\cos\left(2\omega t - \frac{\pi}{4}\right) \tag{5}$$

(6)

Simple harmonic motion with period $T = \frac{\pi}{\omega}$ and a phase angle of $\left(\frac{-\pi}{4}\right)$ or $\left(\frac{7\pi}{4}\right)$

(4) $\cos(\omega t) + \cos(3\omega t) + \cos(5\omega t)$

This function can be rewritten as

$$= \cos(\omega t) + \cos(5\omega t) + \cos(3\omega t) \tag{7}$$

$$= 2\cos\left(\frac{\omega t + 5\omega t}{2}\right)\cos\left(\frac{5\omega t - \omega t}{2}\right) + \cos(3\omega t) \quad (8)$$

$$= 2\cos(3\omega t)\cos(\omega t) + \cos(3\omega t) \tag{9}$$

$$=\cos(3\omega t)(1+2\cos(\omega t))\tag{10}$$

Period of $\cos(3\omega t)$ is $\frac{2\pi}{3\omega}$ Period of $1 + 2\cos(\omega t)$ is $\frac{2\pi}{\omega}$ Lcm is $\frac{2\pi}{\omega}$

 \therefore Simple harmonic motion with period $\frac{2\pi}{\omega}$

(5) $\exp(-\omega^2 t^2)$

This function can be rewritten as

$$\exp\left(-\omega^2 t^2\right) \to \infty$$

.. This never repeats and non periodic

(6)
$$1 + \omega t + \omega^2 t^2$$

This function can be rewritten as

As
$$T \to \infty$$

 $1 + \omega t + \omega^2 t^2 \to \infty$

.. This never repeats and non periodic

Fig. 0. $\sin(\omega t) - \cos(\omega t)$

Fig. 0. $\sin^3(\omega t)$

Fig. 0. $3\cos\left(\frac{\pi}{4}-2\omega t\right)$

Fig. 0. $cos(\omega t) + cos(3\omega t) + cos(5\omega t)$

Fig. 0. $exp^{(-\omega^2 t^2)}$

Fig. 0. $1 + \omega t + \omega^2 t^2$

:

TABLE 0 Summary

	Function	Periodic	Simple harmonic motion	Non Periodic	Period
(a)	$sin(\omega t) - cos(wt)$	Yes	Yes	No	$\frac{2\pi}{\omega}$
(b)	$sin^3(\omega t)$	Yes	Yes	No	$\frac{2\pi}{\omega}$
(c)	$3\cos\left(\frac{\pi}{4}-2\omega t\right)$	Yes	Yes	No	$\frac{\pi}{\omega}$
(d)	$cos(\omega t) + cos(3\omega t) + cos(5\omega t)$	Yes	Yes	No	$\frac{2\pi}{\omega}$
(e)	$exp^{(-\omega^2t^2)}$	No	No	Yes	_
(f)	$1 + \omega t + \omega^2 t^2$	No	No	Yes	_