Multiple Comparison Tests

Concepts

Parametric Test

Test hypothesis of the form

 H_0 : $\mu_1 = \mu_2 = \dots = \mu_m$

 H_1 : at least one of the μ_i is different from the rest

Tested by ANOVA (similar to the more than two population t-test)

Non-parametric test

Null hypothesis
$$F_1 = \cdots = F_m$$

Alternative hypothesis At least one of the F_i differs from the others

Tested by Kruskal-Wallis test (similar to the more than two population Mann-Whitney U test)

One-way analysis of variance (ANOVA)

m independent random samples, each of size n

The members of the ith sample - X_{i1} , X_{i2} , ..., X_{in} are normal random variables with unknown mean μ_i and unknown variance σ^2 , i.e., $X_{ij} \sim N(\mu_i, \sigma^2)$

 H_0 : $\mu_1 = \mu_2 = \dots = \mu_m$

 H_1 : at least one of the μ_i is different from the rest

Note that the test makes the simplifying assumption that the variance σ^2 is the same for all the m independent samples

Define

$$X_{i.} = \sum_{j=1}^{n} X_{ij}/n \qquad X_{..} = \frac{\sum_{i=1}^{m} X_{i.}}{m}$$

$$SS_{W} = \sum_{i=1}^{m} \sum_{j=1}^{n} (X_{ij} - X_{i.})^{2} \qquad SS_{b} = n \sum_{i=1}^{m} (X_{i.} - X_{..})^{2}$$

It can be shown that the test statistic

$$TS = \frac{SS_b/(m-1)}{SS_W/(nm-m)}$$

follows the *F*-distribution

If TS is sufficiently large, then H_0 is rejected

reject H_0 if $TS > F_{m-1,nm-m,\alpha}$ accept H_0 if otherwise

[A more thorough mathematical description can be found in text pg. 448-452.]

Example

An auto rental firm is using 15 identical motors that are adjusted to run at a fixed speed to test 3 different brands of gasoline. Each brand of gasoline is assigned to exactly 5 of the motors. Each motor runs on 10 gallons of gasoline until it is out of fuel. The following represents the total mileage obtained by the different motors:

Gas 1: 220 251 226 246 260

Gas 2: 244 235 232 242 225

Gas 3: 252 272 250 238 256

Test the hypothesis that the average mileage obtained in not affected by the type of gas used. Use 5% level of significance

m = 3 (three groups to test) n = 5 (each group has 5 data)

Gas	Mileage			$\sum_{j} X_{ij}$		
1	0	31	6	26	40	103
2	24	15	12	22	5	78
3	32	52	30	18	36	168

$$X_{1.} = \frac{103}{5} = 20.6$$
 $X_{2.} = \frac{78}{5} = 15.6$ $X_{3.} = \frac{168}{5} = 33.6$ $X_{1.} = \frac{20.6 + 15.6 + 33.6}{3} = 23.2667$

$$TS = 2.60$$

From the F-distribution table (Table A4, pg. 651 of Text)

$$F_{2,12,0.05} = 3.89$$

Since

$$TS < F_{2,12,0.05}$$

we cannot reject the hypothesis that the gasoline give equal mileage

Notes on usage

- In general, the ANOVA procedure allows the sample sizes $n_1, ..., n_m$ of the m samples to be different
- If the data is paired, then two-way ANOVA should be used

Kruskal-Wallis test

m independent random samples, of sample sizes n_1, \dots, n_m

The K-W test is a non-parametric test. It does not assume the form of the *m* distributions (i.e., unlike ANOVA, it does not requires the *m* distributions to be normal, nor they have the same variance)

Let the m distributions be F_1, \dots, F_m

Null hypothesis $F_1 = \cdots = F_m$

Alternative hypothesis At least one of the F_i differs from the others

In this test, we only consider the ranks of the data

The $n = n_1 + \cdots + n_m$ data are first ranked. Then the test computes a statistic called H statistic

$$H = \frac{12V}{n(n+1)}$$

$$V = \sum_{i=1}^{m} n_i (\bar{R}_i - \bar{R})^2$$

 \bar{R}_i is the average rank of the ith sample.

 $\overline{R} = (n+1)/2$ is the average rank of the n data

If the null hypothesis is true, then the \bar{R}_i are approximately equal. Hence V will be small

Kruskal and Wallis show that if the n_i values are "large" (rule of thumb is $n_i \ge 5$), H can be approximated by a χ^2 distribution with m-1 d.f.

If H is sufficiently large, then H_0 is rejected

reject
$$H_0$$
 if $H > \chi^2_{\alpha,m-1}$ accept H_0 if otherwise

Example

In the previous example,

Gas 1: 220 251 226 246 260

Gas 2: 244 235 232 242 225

Gas 3: 252 272 250 238 256

Assume that the form of the distributions is unknown.

Test the hypothesis that the average mileage obtained in not affected by the type of gas used. Use 5% level of significance

	Gas	Rank
220	1	1
225	2	2
226	1	3
232	2	4
235	2	5
238	3	6
242	2	7
244	2	8
246	1	9
250	3	10
251	1	11
252	3	12
256	3	13
260	1	14
272	3	15

Gas 1		
Amount	Rank	
220	1	
251	11	
226	3	
246	9	
260	14	

Gas 2		
Amount	Rank	
244	8	
235	5	
232	4	
242	7	
225	2	

Gas 3		
Amount	Rank	
252	12	
272	15	
250	10	
238	6	
256	13	

$$n = 15 m = 3$$

$$\bar{R}_1 = \frac{1+11+3+9+14}{5} = 7.6 \bar{R}_2 = 5.2 \bar{R}_3 = 11.2$$

$$\bar{R} = 8$$

$$V = 5(7.6-8)^2 + 5(5.2-8)^2 + 5(11.2-8)^2 = 91.2$$

$$H = 4.56$$

From the Chi-square distribution table (Table A2, pg. 649 of text)

$$\chi^2_{0.05,2} = 5.991$$

Since

$$H < \chi^2_{0.05,2}$$

we cannot reject the hypothesis that the gasoline give equal mileage

Notes on usage

If the data is paired, then Friedman test should be used

		2 groups	n groups $(n > 2)$	
data distribution				
Parametric Test (normality)	paired unpaired (related) (independent	•unpaired <i>t</i> -test	ANOVA Analysis of Variance) • two-way ANOVA • two-way ANOVA	
Param (norn	paired)(related)(•paired <i>t</i> -test	Analysis of two-way ANOVA	
Non-parametric Test (no normality)	unpaired independent	•Mann-Whitney <i>U-</i> test	one-way •Kruskal-Wallis test data	
Non-para (no no	paired (related) (∙sign test ∙Wilcoxon signed-ranks test	two-way data •Friedman test	

http://www.design.kyushu-u.ac.jp/~takagi/

(Downloadable files → Statistical Files)

References

Text Ch. 10

Kruskal-Wallis test:

Pg. 765-771, D. Wackerly, W. Mendenhall, and R.L. Scheaffer, *Mathematical statistics with applications*, 7th Ed., 2008.