EXAMEN DE ESTRUCTURAS ALGEBRAICAS 2° Ingeniería Informática

15 de Septiembre de 2007. TIEMPO: 3 horas

Dar respuestas breves y razonadas a las siguientes preguntas

- 1. (1,75 ptos.)
 - (a) Resolver la ecuación diofántica 18x 7y = 48.
 - (b) Sean a, b, p enteros con p primo. Demuestra que

$$(a+b)^p = a^p + b^p \mod p.$$

2. (1.75 ptos.) Consideramos los conjuntos de matrices siguientes:

$$GL_2(\mathbf{R}) = \{ A \in M_2(\mathbf{R}) / \det A \neq 0 \}, \quad SL_2(\mathbf{R}) = \{ A \in M_2(\mathbf{R}) / \det A = 1 \}.$$

- (a) Probar que $GL_2(\mathbf{R})$ es un grupo y que $SL_2(\mathbf{R})$ es un subgrupo de $GL_2(\mathbf{R})$.
- (b) Indicar un homomorfismo de grupos $\phi : GL_2(\mathbf{R}) \longrightarrow \mathbf{R}^*$.
- (c) Mostrar que $SL_2(\mathbf{R})$ es un subgrupo normal de $GL_2(\mathbf{R})$ y calcular el grupo cociente $GL_2(\mathbf{R})/SL_2(\mathbf{R})$ usando el primer teorema de isomorfía.
- 3. (2 ptos.) Se considera el grupo abeliano G generado por a, b, c, d con las relaciones siguientes:

$$12a + 6b + 6c - 6d = 0$$
, $2b - 4c - 12d = 0$.

- (a) Calcular los coeficientes de torsión y el rango de G.
- (b) Encontrar, si existe, un elemento de orden k, para k=2,4,6,12, en algún grupo isomorfo a G.
- 4. (2 ptos.) Estudiar si son isomorfos los siguientes pares de anillos justificando la respuesta.
 - (a) $\mathbf{R}[x]/(x^2+1)$ y $\mathbf{R}[x]/(x^2-1)$.
 - (b) $\mathbf{Z}_{27} \text{ y } \mathbf{Z}_3[x]/(x^3-x+1).$
 - (c) $\mathbf{Z}_2[x]/(x^3+x+1)$ y $\mathbf{Z}_2[x]/(x^3+x^2+1)$.
 - (d) $\mathbf{Z}_4[x] \ y \ \mathbf{Z}_2[x]$.
- **5.** (2, 5 ptos.)
 - (a) En $\mathbf{Q}[x]$ hallar el máximo común divisor de los polinomios

$$P = x^4 + x^3 + 2x^2 + 6x + 4$$
, $Q = x^4 - x^3 + 2x^2 + 2x - 4$.

¿Está el polinomio $x^3 + 2x + 5$ en el ideal generado por P y Q en $\mathbf{Q}[x]$?

- (b) Probar que el anillo cociente $L = \mathbf{Q}[x]/(x^3 + 2x + 4)$ es un cuerpo. Dar una base e indicar la dimensión de L como espacio vectorial sobre \mathbf{Q} .
- (c) Hallar el elemento inverso para la multiplicación de $\overline{x-1} \in L$.