Faculté des Sciences Dept. Maths Pr. M. Benalili m_benalili@yahoo.fr Cours de géométrie différentielle

Chapitre 3: Calcul différentiel sur les sous-variétés de \mathbb{R}^n

Cartes locales

Definition 1 Soit M une sous-variété de classe C^p et de dimension k de R^n et $a \in M$. Une carte locale de M au voisinage de a (resp. centrée en a) est un couple (U, φ) où U est un ouvert de M contenant a et $\varphi \colon U \to \Omega \subset R^k$ un C^p -difféomorphisme de U sur un ouvert Ω de R^k (resp. et tel que $\varphi(a) = 0$).

Proposition 2 Soit M_1 une sous-variété de classe C^p et de dimension n_1 de R^n et M_2 une sous-variété de classe C^p et de dimension n^2 de R^m . Alors $f: M_1 \to M_2$ est différentiable (resp. C^p) en a si et seulement si il existe une carte locale (U, φ) de M_1 centrée en a telle que $f \circ \varphi^{-1} : \Omega = \varphi(U) \to R^m$ soit différentiable (resp. C^p) en 0. Dans ce cas, on a $f \circ \psi^{-1} : \Omega' = \psi(U') \to R^m$ différentiable (resp. C^p) en 0 pour toute carte locale (U', ψ) de M_1 centrée en a.

Preuve:

Si f est différentiable en a alors $f \circ \varphi^{-1}$ est différentiable en 0 pour toute carte locale (U, φ) centrée en a. Réciproquement si $f \circ \varphi^{-1}$ est différentiable en 0 alors $(f \circ \varphi^{-1}) \circ \varphi = f$ est différentiable en a.

Atlas

Définition. Soit M une sous-variété de R^n de dimension k et classe C^p . Un Atlas de M est une famille $(U_i, \varphi_i)_{i \in I}$ de cartes locales de M telles que $\bigcup_{i \in I} U_i = M$.

Exemple

Considérons le cercle unité S^1 centré à l'origine O et A=(1,0), B=(-1,0) les applications $\varphi_A:U_A=S^1-\{B\}\to (-1,1)$ et $\varphi_B:U_B=S^1-\{A\}\to (-1,1)$ définies respectivement par $\varphi_A(z)=t=Arg(z)$ et $\varphi_B(z)=t=Arg(z)$ (z est considéré comme un nombre complexe de module 1). $\{(U_A,\varphi_A),(U_B,\varphi_B)\}$ et un atlas de S^1 . En effet $U_A\cup U_B=S^1$. De

plus φ_A et φ_B sont inversibles d'inverses respectivement $\varphi_A^{-1}(t) = e^{i\pi t}$ et $\varphi_B^{-1}(t) = e^{i\pi(1-t)}$ qui sont des difféomorphismes de classe C^{∞} .

Théorème. Soit M une sous-variété de dimension k et $(U_i, \varphi_i)_{i \in I}$ un atlas de M. Alors une application $f: M \to N$, où N est une sous-variété de R^m , est de classe C^p sur M si et seulement si $f_i = f \circ \varphi_i^{-1} : U_i \subset R^k \to R^m$ est de classe C^p au sens usuel pour tout $i \in I$.

Exemple. Sur S^2 , on considère l'atlas suivant $\{\varphi_N, \varphi_S\}$ donné par φ_N^{-1} : $C \to S^2 \subset R^3 \simeq C \times R$ définie par

$$\varphi_N^{-1}(z) = \left(\frac{2z}{1+|z|^2}, \frac{|z|^2-1}{|z|^2+1}\right)$$

et $\varphi_S^{-1}:C\to S^2\subset R^3\simeq C\times R$ définie par

$$\varphi_S^{-1}(z) = \left(\frac{2\overline{z}}{1+|z|^2}, \frac{1-|z|^2}{|z|^2+1}\right).$$

Ce sont bien des cartes locales puisque $\varphi_N: S^2-\{N\} \to C; \ \varphi_N(z,s)=\frac{z}{1-s}$ est l'inversee de φ_N^{-1} et $\varphi_S: S^2-\{S\} \to C; \ \varphi_S(z,s)=\frac{z}{1+s}$ est l'inverse de φ_S^{-1} . A tout polynôme $P=\sum_{i=1}^n a_i X^i \in C([X])$, on associe une application $f_P: S^2 \to S^2$ de classe C^∞ définie par

$$\begin{cases} f_P(m) = \varphi_N^{-1} o Po \varphi_N(m) \text{ pour } m \in S^2 - \{N\} \\ f_P(N) = N \end{cases}$$

Nous avons

$$f_p o \varphi_N^{-1}(z) = \varphi_N^{-1} o P(z) = \left(\frac{2P(z)}{1 + |P(z)|^2}, \frac{|P(z)|^2 - 1}{|P(z)|^2 + 1}\right)$$

et

$$f_{p}o\varphi_{S}^{-1}(z) = \varphi_{N}^{-1}oPo\varphi_{N}o\varphi_{S}^{-1}(z)$$

$$= \varphi_{N}^{-1}oP\left(\frac{1}{z}\right)$$

$$= \left(\frac{z^{n}Q(z)}{|z|^{2n} + |Q(z)|^{2}}, \frac{|Q(z)|^{2} - |z|^{2n}}{|z|^{2n} + |Q(z)|^{2}}\right)$$

pour $z \in C$ où

$$Q(z) = \sum_{i=0}^{n} a_{n-i} z^{i}$$

pour $z \in C - \{0\}$ et

$$f_P o \varphi_N^{-1}(0) = f_p(N)$$

= $N = (0, 1) \in C \times R$.

Ces deux dernières applications sont de classe C^{∞} et par suite f_p est de classe C^{∞} .

Théorèmes d'inversion

Théorème. Soit M_1 une sous-variété de \mathbb{R}^n

et M_2 une sous-variété de R^m .

1. Si $f: M_1 \to M_2$ est C^p et $d_a f: T_a M_1 \to T_{f(a)} M_2$ est un isomorphisme

alors f est un C^p -difféomorphisme local en a.

2. Si $f: M_1 \to M_2$ est C^p sur M_1 et si $d_a f$ est un isomorphisme pour tout

 $a \in M_1$, alors f est un C^p -difféomorphisme local de M_1 sur son image. De plus, pour tout ouvert U de M_1 , f(U) est un ouvert de M_2 .

3. Si $f: M_1 \to M_2$ est C^p sur M_1 , daf est inversible pour tout $a \in M_1$ et f est injective sur M_1 , alors f est un C^p -di éomorphisme de M_1 sur $f(M_1)$.

Preuve.

1. Soit (U_1, φ_1) une carte locale de M_1 centrée en a et $(U_2; \varphi_2)$ une carte locale de M_2 centrée en f(a). Par continuité de f, quitte à réduire U_1 , on peut supposer de $f(U_1) \subset U_2$. Alors $g = \varphi_2 o$ f $o \varphi_1^{-1}$ est une application de classe C^p de U_1 dans U_2 et $d_0 g = d_{f(a)} \varphi_2$. $d_a f$ $d_0 \varphi_1$ est un isomorphismde R^k comme composée d'isomorphisme linéaires. D'après le théorème d'inversion locale usuel, il existe des voisinages ouvert Ω et Ω' de 0 dans $\Omega_1 = \varphi_1(U_1) \subset R^k$ et $\Omega_2 = \varphi_2(U_2) \subset R^k$ tels que g soit un difféomorphisme de Ω sur Ω' . Alors $U'_1 = \varphi_1^{-1}(\Omega)$ est un ouvert de M_1 , $U'_2 = \varphi_2^{-1}(\Omega)$ est un ouvert de M_2 et $f = \varphi_2^{-1} o g o \varphi_1$ est un C^p -difféomorphisme comme composée de C^p -difféomorphisme.

Les preuves du deuxième et troisième point se font de la même manière. Exemple. On considère l'application de S^1 dans lui même définie par

$$f(x,y) = (x^2 - y^2, 2xy)$$

f est de classe C^{∞} et on

$$df(x,y)(h,k) = (2xh - 2yk, 2yh - 2xk)$$

comme pour tout $(x,y) \in S^1$ on a

$$\det\left(\begin{array}{cc} 2x & -2y\\ 2y & 2x \end{array}\right) = 4,$$

alors $L: \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$L(h,k) = (2xh - 2yk, 2yh - 2xk)$$

est un isomorphisme de R^2 et donc $df(x,y) = L_{/T_{(x,y)}S^1}$ est injective de $T_{(x,y)}S^2 \to T_{f(x,y)}S^2$ et puisque ces deux espaces sont de dimension 1, df(x,y) est un isomorphisme et on déduit d'après le théorème de l'inversion que f est un difféomrphisme de classe C^{∞} de S^1 sur $f(S^1)$ et $f(S_1)$ est un ouvert de S^1 . $f(S^1)$ est compact puisque S^1 est connexe il en résulte que $f(S^1)$ est connexe et par suite $f(S^1) = S^1$ et donc f est un difféomorphisme local de classe C^{∞} de S^1 . f n'est pas un difféomorphisme global puisque f(-x, -y) = f(x,y) et f n'est pas injective.