# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

### ОТЧЕТ

по лабораторной работе №4 по дисциплине «Сети и телкомуникации»

Тема: Изучение понятий ІР-адреса и подсетей.

| Студент гр. 1384 | Усачева Д.В.  |
|------------------|---------------|
| Преподаватель    | Ефремов М. А. |

Санкт-Петербург

2023

### Цель работы.

Изучение IP-адресации (IPv4), логического построения локальных сетей.

- 1. Создать две виртуальные машины (лаб. работа № 1).
- 2. Определить адрес сети по ІР и маске.
- 3. Определить широковещательный ІР-адрес для конкретной подсети.
- 4. Определить принадлежность IP-адресов к одной подсети.
- 5. Построить схему сети с использованием различных масок и IP-адресов.
- 6. Проверить п. 4 на реальной инфраструктуре, построенной в VirtualBox. **Задание.** 
  - 1. Определение принадлежности ІР-адресов к одной подсети.

Развернуть две виртуальные машины (лаб. работа No 1), выбрать тип подключения сетевого адаптера «intnet» и выполнить следующие операции:

- (a) Получить два IP-адреса с маской у преподавателя: 154.187.244.93/16 139.128.196.90/17 (вариант 27)
- (b) Для полученных IP-адресов определить, относятся они к одной подсети или нет. Представить процесс вычислений в отчете.
- (c) Настроить IP-адреса из п. а для созданных виртуальных машин и проверить их доступность с использованием команды ping. Результат должен совпасть с п. b.
- (d) Если IP-адреса не принадлежат одной подсети для подсети, в которой находится первый IP-адрес, придумать IP-адрес, который будет принадлежать данной подсети, настроить вторую виртуальную машину с использованием придуманного IP-адреса и продемонстрировать успешное выполнение ping с одной виртуальной машины к другой.
- (e) Для каждого IP-адреса указать адрес подсети, широковещательный IP-адрес.
- 2. Логическое проектирование сети. Используя варианты из таблицы, спроектируйте схему сети, состоящей из четырех подсетей (CIDR надо брать из вариантов), соединенных между собой несколькими маршрутизаторами. В каждой из подсетей разместите минимум 2-3 компьютера, придумайте и

назначьте им IP-адреса и маски. IP-адреса не должны быть последовательными.

### Выполнение работы.

1. Были получены два IP-адреса (154.187.244.93/16 и 139.128.196.90/17). С помощью операции побитового И можно узнать подсеть:

Широковещательный адрес для первой подсети: 154.187.255.255

Широковещательный адрес для второй подсети: 139.128.255.255

После расчетов можно сделать вывод о том, что адреса лежат в разных подсетях.

Достоверность вычислений можно проверить, если выполнить ping с одной виртуальной машины к другой. Результаты выполнения команды ping представлены на рисунке 1 и 2.

dari@dari:~\$ ping 154.187.244.93 connect: Network is unreachable

Рисунок 1 — Попытка выполнить ping с первой машины на вторую

dari@dari:~\$ ping 139.128.196.90 connect: Network is unreachable

Рисунок 1 — Попытка выполнить ping со второй машины на первую

Результаты выполнения Ping подтвердили расчеты, проведенные ранее.

Для того, чтоб два адреса лежали в одной подсети, для второй машины был установлен IP-адрес 154.187.0.11/16

Теперь можно попробовать выполнить ping с первой машины к другой и

### наоборот.

Результаты продемонстрированы на рисунках 3 - 4.

```
dari@dari:~$ ping 154.187.0.11

PING 154.187.0.11 (154.187.0.11) 56(84) bytes of data.
64 bytes from 154.187.0.11: icmp_seq=1 ttl=64 time=2.05 ms
64 bytes from 154.187.0.11: icmp_seq=2 ttl=64 time=0.946 ms
64 bytes from 154.187.0.11: icmp_seq=3 ttl=64 time=0.911 ms
^C
--- 154.187.0.11 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/aug/max/mdev = 0.911/1.302/2.051/0.530 ms
```

Рисунок 3 — Результат выполнения ping с первой машины на вторую

```
dari@dari:~$ ping 154.187.244.93
PING 154.187.244.93 (154.187.244.93) 56(84) bytes of data.
64 bytes from 154.187.244.93: icmp_seq=1 ttl=64 time=2.03 ms
64 bytes from 154.187.244.93: icmp_seq=2 ttl=64 time=0.824 ms
^C
--- 154.187.244.93 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 0.824/1.429/2.035/0.606 ms
```

Рисунок 4 — Результат выполнения ping со второй машины на первую

Так как адреса принадлежат одной подсети, ping между машинами выполняется.

## 2. Вариант 27: CIDR 1 = 7, CIDR 2 = 19, CIDR 3 = 3, CIDR 4 = 27.

На основе 4 масок была сконструирована сеть, представленная на рисунке 5.

| Узел     | ІР-адрес       | Адрес сети   | Адрес узла    | Маска подсети   |
|----------|----------------|--------------|---------------|-----------------|
| PC1      | 10.0.0.1       | 10.0.0.0     | 0.0.0.1       | 254.0.0.0       |
| PC2      | 10.10.0.54     | 10.0.0.0     | 0.10.0.54     | 254.0.0.0       |
| PC3      | 10.0.0.27      | 10.0.0.0     | 0.0.0.27      | 254.0.0.0       |
| R1(eth0) | 11.255.255.254 | 10.0.0.0     | 1.255.255.254 | 254.0.0.0       |
| PC7      | 192.168.0.1    | 192.168.0.0  | 0.0.0.1       | 255.255.224.0   |
| PC8      | 192.168.0.252  | 192.168.0.0  | 0.0.0.252     | 255.255.224.0   |
| PC9      | 192.168.25.44  | 192.168.0.0  | 0.0.25.44     | 255.255.224.0   |
| R2(eth0) | 192.168.31.254 | 192.168.0.0  | 0.0.31.254    | 255.255.224.0   |
| PC4      | 192.168.32.1   | 192.168.32.0 | 0.0.0.1       | 255.255.255.224 |
| PC5      | 192.168.32.15  | 192.168.32.0 | 0.0.0.15      | 255.255.255.224 |

| PC6      | 192.168.32.10   | 192.168.32.0 | 0.0.0.10       | 255.255.255.224 |
|----------|-----------------|--------------|----------------|-----------------|
| R1(eth1) | 192.168.32.30   | 192.168.32.0 | 0.0.0.30       | 255.255.255.224 |
| PC10     | 160.0.0.1       | 160.0.0.0    | 0.0.0.1        | 224.0.0.0       |
| PC11     | 160.0.31.1      | 160.0.0.0    | 0.0.31.1       | 224.0.0.0       |
| PC12     | 172.16.0.1      | 160.0.0.0    | 12.16.0.1      | 224.0.0.0       |
| R2(eth1) | 191.255.255.254 | 160.0.0.0    | 31.255.255.254 | 224.0.0.0       |



Рисунок 5 — Схема сети для задания 2

# Выводы.

Были изучены IP-адресация (IPv4) и логическое построение локальных сетей.