

BGA Commercial Temp Industrial Temp

1M x 8 8Mb Asynchronous SRAM

8, 10, 12 ns 3.3 V V_{DD}

Features

- Fast access time: 8, 10, 12 ns
- CMOS low power operation: 240/190/170 mA at minimum cycle time
- Single 3.3 V \pm 0.3 V power supply
- All inputs and outputs are TTL-compatible
- Fully static operation
- Industrial Temperature Option: -40° to 85°C
- 14 mm x 22 mm, 119-bump, 1.27 mm Pitch Ball Grid Array package

Description

The GS78108A is a high speed CMOS Static RAM organized as 1,048,576-words by 8-bits. Static design eliminates the need for external clocks or timing strobes. The GS78108operates on a single 3.3 V power supply, and all inputs and outputs are TTL-compatible. The GS7810A8 is available in a 14 mm x 22 mm BGA package.

Block Diagram

A0	Address Input Buffer	Row Decoder	Memory Array
·			•••
A19 ——		•	Column Decoder
<u> </u>		· [•••
CE WE OE	Control	•	I/O Buffer
			DQ1 DQ8

Pin Descriptions

1M x 8 Async SRAM in Bump, 14x22mm BGA

_		•		
	οV	л	Δ	\A/
10	JV		C	W

Ī	1	2	3	4	5	6	7
Α	NC	A 15	A 14	A 16	A 13	A 12	NC
В	NC	A 11	A 10	CE	A 9	A 8	NC
С	NC	NC	V _{DD} , NC	A 17	Vss, NC	NC	NC
D	NC	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	NC
Е	NC	NC	V_{DD}	V_{SS}	V_{DD}	NC	NC
F	NC	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	NC
G	DQ1	NC	V_{DD}	V_{SS}	V_{DD}	NC	DQ5
Н	DQ ₂	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	DQ6
J	V_{DD}	V_{SS}	V_{DD}	V_{SS}	V_{DD}	V_{SS}	V_{DD}
K	DQ3	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	DQ ₇
L	DQ4	NC	V_{DD}	V_{SS}	V_{DD}	NC	DQ8
M	NC	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	NC
N	NC	NC	V_{DD}	V_{SS}	V_{DD}	NC	NC
Р	NC	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	NC
R	NC	NC	NC	NC	NC	NC	NC
T	NC	A 7	A 6	WE	A 5	A 4	NC
U	A 18	Аз	A 2	ŌĒ	A 1	A ₀	A 19

Note: Bumps 3C and 5C are actually NC's but should be wired $3C = V_{DD}$ and $5C = V_{ss}$ to assure compatibility with future versions.

Truth Table

CE	Œ	WE	DQ1 to DQ8	V _{DD} Current
Н	Х	Х	Not Selected	ISB1, ISB2
L	L	Н	Read	_
L	Х	L	Write	I _{DD}
L	Н	Н	High Z	_

Note: X: "H" or "L"

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply Voltage	V _{DD}	–0.5 to +4.6	V
Input Voltage	V _{IN}	-0.5 to V _{DD} +0.5 (≤ 4.6 V max.)	V
Output Voltage	V _{OUT}	-0.5 to V _{DD} +0.5 (≤ 4.6 V max.)	V
Allowable power dissipation	PD	1.5	W
Storage temperature	T _{STG}	-55 to 150	°C

Note

Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation shall be restricted to Recommended Operating Conditions. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage for -8/10/12	V _{DD}	3.0	3.3	3.6	V
Input High Voltage	V _{IH}	2.0	_	V _{DD} +0.3	V
Input Low Voltage	V _{IL}	-0.3	_	0.8	V
Ambient Temperature, Commercial Range	T _{Ac}	0	_	70	°C
Ambient Temperature, Industrial Range	T _{Ai}	-40	_	85	°C

Notes:

- 1. Input overshoot voltage should be less than $\ensuremath{V_{DD}}\xspace + 2\ \ensuremath{V}\xspace$ and not exceed 20 ns.
- 2. Input undershoot voltage should be greater than –2 V and not exceed 20 ns.

Capacitance

Parameter	Symbol	Test Condition	Max	Unit
Input Capacitance	C _{IN}	V _{IN} = 0 V	10	pF
Output Capacitance	C _{OUT}	V _{OUT} = 0 V	7	pF

Notes:

- 1. Tested at $T_A = 25$ °C, f = 1 MHz
- 2. These parameters are sampled and are not 100% tested

DC I/O Pin Characteristics

Parameter	Symbol	Test Conditions	Min	Max
Input Leakage Current	I _{IL}	$V_{IN} = 0$ to V_{DD}	–2 uA	2 uA
Output Leakage Current	l _{OL}	Output High Z, V _{OUT} = 0 to V _{DD}	–1 uA	1 uA
Output High Voltage	V _{OH}	I _{OH} = -4 mA	2.4	
Output Low Voltage	V _{OL}	I _{OL} = +4 mA		0.4 V

Power Supply Currents

Parameter	Symbol	Symbol Test Conditions		0 to 70°C			-40 to 85°C			
Parameter Symbo		rest Conditions	8 ns	10 ns	12 ns	8 ns	10 ns	12 ns		
Operating Supply Current	I _{DD}	$\overline{E} \leq V_{IL}$ All other inputs $\geq V_{IH} \text{ or } \leq V_{IL}$ Min. cycle time $I_{OUT} = 0 \text{ mA}$	160 mA	130 mA	115 mA	180 mA	150 mA	135 mA		
Standby Current	I _{SB1}	$\overline{E} \ge V_{IH}$ All other inputs $\ge V_{IH}$ or $\le V_{IL}$ Min. cycle time	60 mA	50 mA	50 mA	80 mA	70 mA	70 mA		
Standby Current	I _{SB2}	$\begin{split} E &\geq V_{DD} - 0.2V \\ & \text{All other inputs} \\ &\geq V_{DD} - 0.2V \text{ or } \leq 0.2V \end{split}$	20 mA 40 mA							

AC Test Conditions

Parameter	Conditions
Input high level	V _{IH} = 2.4 V
Input low level	V _{IL} = 0.4 V
Input rise time	tr = 1 V/ns
Input fall time	tf = 1 V/ns
Input reference level	1.4 V
Output reference level	1.4 V
Output load	Fig. 1& 2

Notes:

- 1. Include scope and jig capacitance.
- 2. Test conditions as specified with output loading as shown in **Fig. 1** unless otherwise noted
- 3. Output load 2 for t_{LZ} , t_{HZ} , t_{OLZ} and t_{OHZ} .

Output Load 2

AC Characteristics

Read Cycle

Parameter	Symbol		-8	-	10	-	12	Unit
raiametei	Syllibol	Min	Max	Min	Max	Min	Max	Offic
Read cycle time	trc	8	_	10	_	12		ns
Address access time	taa	_	8	_	10	_	12	ns
Chip enable access time (CE)	tac	_	8	_	10	_	12	ns
Output enable to output valid (OE)	t oe	_	3.5	_	4	_	5	ns
Output hold from address change	tон	3	_	3	_	3	_	ns
Chip enable to output in low Z (CE)	t _L z*	3	_	3	_	3	_	ns
Output enable to output in low Z (OE)	tolz*	0	_	0	_	0	_	ns
Chip disable to output in High Z (CE)	t _{HZ} *	_	4	_	5	_	6	ns
Output disable to output in High Z (OE)	tonz*	_	3.5	_	4	_	5	ns

Read Cycle 1: $\overline{CE} = \overline{OE} = V_{IL}$

Write Cycle

Parameter	Symbol	-	8	-1	0	-1	2	Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Ullit
Write cycle time	tWC	8	_	10	_	12		ns
Address valid to end of write	tAW	5.5	_	7	_	8	_	ns
Chip enable to end of write	tCW	5.5	_	7	_	8	_	ns
Data set up time	tDW	4	_	5	_	6	_	ns
Data hold time	tDH	0	_	0	_	0	_	ns
Write pulse width	tWP	5.5	_	7	_	8	_	ns
Address set up time	tAS	0	_	0	_	0	_	ns
Write recovery time (WE)	tWR	0	_	0	_	0	_	ns
Write recovery time (CE)	tWR1	0	_	0	_	0	_	ns
Output Low Z from end of write	tWLZ*	3	_	3	_	3	_	ns
Write to output in High Z	tWHZ*	_	3.5	_	4	_	5	ns

^{*} These parameters are sampled and are not 100% tested

Write Cycle 1: WE Controlled

Write Cycle 2: CE Controlled

Package Dimensions - 119-bump PBGA

Bottom View

Side View

Package Dimensions - 119 Pin PBGA

Symbol	Description	Min.	Nom.	Max
Α	Width	13.8	14.0	14.2
В	Length	21.8	22.0	22.2
С	Package Height (including ball)	-		2.40
D	Ball Size	0.60	0.75	0.90
Е	Ball Height	0.50	0.60	0.70
F	Package Height (excluding balls)		1.46	1.70
G	Width between Balls		1.27	
K	Package Height above board	0.80	0.90	1.00
N	Cut-out Package Width		12.00	
Р	Foot Length		19.50	
R	Width of package between balls		7.62	
S	Length of package between balls		20.32	
T	Variance of Ball Height		0.15	

Unit: mm

BPR 1999.05.18

Ordering Information

Part Number*	Package	Access Time	Temp. Range	Status
GS78108AB-8	BGA	8 ns	Commercial	
GS78108AB-10	BGA	10 ns	Commercial	
GS78108AB-12	BGA	12 ns	Commercial	
GS78108AB-8I	BGA	8 ns	Industrial	
GS78108AB-10I	BGA	10 ns	Industrial	
GS78108AB-12I	BGA	12 ns	Industrial	
GS78108AB-15I	BGA	15 ns	Industrial	

^{*} Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. For example: GS78108AB-12T

Revision History

Rev. Code: Old; New	Types of Changes Format or Content	Page #/Revisions/Reason
GS78108AB_r1		Creation of new datasheet