Programming Assignments 1 & 2 (circle one) 601.455 and 601/655 (circle one) Fall 2018

Score Sheet (hand in with report)

Name 1	Tianyu Song	
Email	tsong11@jhu.edu	
Other contact information (optional)		
Name 2	Huixiang Li	
Email	lhuixia1@jhu.edu	
Other contact information (optional)		
Signature (required)	I (we) have followed the rules in completing this assignment	
	Tianyn Song Huixiang Li	

Grade Factor			
Program (40)			
Design and overall program structure	20		
Reusability and modularity	10		
Clarity of documentation and programming	10		
Results (20)			
Correctness and completeness	20		
Report (40)			
Description of formulation and algorithmic approach	15		
Overview of program	10		
Discussion of validation approach	5		
Discussion of results	10		
TOTAL	100		

CIS Programming Assignment #2

a) Methods and Algorithms in Our Programs

1. Distortion correction function[1]

Step 1: normalize measured data (scale to box)

$$u = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Step 2: obtain F matrix

$$F_{ijk}(u_x, u_y, u_z) = B_{5,i}(u_x)B_{5,j}(u_y)B_{5,k}(u_z)$$

$$B_{N,k}(u, v) = (N, k)u^{N-k}v^k$$

$$v = 1 - u$$

Step 3: calculate correction function matrix

$$[F] [C] = [P]$$
$$[C] = find \ least \ square([F]^{-1}[P])$$

Step 4: dewarp new measured data using the correction function

$$P_{dewarped} = [F(scale \ to \ box(P_{measure}))][C_{dewarp-matrix}]$$

2. Point cloud to point cloud registration[2]

Step 1: compute the center of the two point clouds

$$\overline{a} = \frac{1}{N} \sum_{i=1}^{N} \vec{a_i}$$
 $\tilde{a_i} = \tilde{a_i} - \overline{a}$

$$\overline{b} = \frac{1}{N} \sum_{i=1}^{N} \vec{b_i} \qquad \tilde{b_i} = \vec{b_i} - \overline{b}$$

Step 2: use direct techniques to solve R that minimizes, the details are shown in 5

$$\sum_{i} (R\tilde{a}_{i} - \tilde{b}_{i})^{2}$$

Step 3: calculate p base on the solved R

$$p = \overline{b} - R\overline{a}$$

Step 4: obtain the rigid body transformation

$$F = [R, p]$$

3. Pivot calibration

The known is a set of transformations from the frames of the tracker device to the different probe frames. The unknown is the coordinates of the dimple relative to the tracker device and those of the tip relative to probe frames, which are constant.

Given

$$F_i = \left\lceil \frac{R_i}{0} \frac{P_i}{1} \right\rceil$$

Calculate

$$p_{tip} \\ p_{pivot}$$

The formulation:

$$F_{i}p_{tip} = p_{pivot} = R_{i}p_{tip} + P_{i}$$

Thus,

$$R_i p_{tip} - p_{pivot} = -P_i$$

Stack all the equations together, we can form:

$$\begin{bmatrix} \dots & \dots \\ R_i - I \end{bmatrix} \begin{bmatrix} p_{tip} \\ p_{pivot} \end{bmatrix} = \begin{bmatrix} \dots \\ -P_i \end{bmatrix}$$

The steps taken to solve this:

Step1: Initial guess by Moore–Penrose inverse [3]:

Let
$$A = \begin{bmatrix} \dots & \dots \\ R_i & -I \\ \dots & \dots \end{bmatrix}$$
 and $b = \begin{bmatrix} \dots \\ -P_i \\ \dots \end{bmatrix}$, and $x = \begin{bmatrix} p_{tip} \\ p_{pivot} \end{bmatrix}$, then $x = (A^T A)^{-1} A^T b$.

Step2. Use least square method to solve $dx = (A^T A)^{-1} A^T (b - Ax)$

Step3. Calculate x = x+dx and evaluate dx.

If dx < 1e-5, then return x as the result, else go to Step 2.

b) Description of Functions

functions	input variable	output variable
initpy		
	<u>'</u>	,
# Initialize the er	nvironment	
invtrans.py	F rigid transform matrix(4*4)	inv(F) inverse transform of F matrix(4*4)
# Inverse of rigid	body transformation, from <i>F</i> to <i>inv(F)</i>	
point_cloud_re gistration.py	c1 c2 two 3D point clouds(n*3)	F rigid transform matrix(4*4)
# Point cloud reg	sistration, compute the rigid transform matrix wi	th two input point clouds
pivot_calibratio n.py	<i>NF</i> n rigid transformations matrix(4*4*n)	P two translations in one array(6*1)
# Pivot calibration	on, compute the two translations using n input tra	ansformations matrix
import_calibrat e_data.py	a_string a string relates to the debug file such as 'a','b','c',etc	C_exp, C_origin ground truth and measured point cloud matrix(3*3375)
# Collect in <i>calbody</i> and <i>calreading</i> data files, return ground truth and measured point cloud data for distortion correction		
distortion_corr ection.py	C_exp, C_origin, C_warp, point cloud data, txt file, order a value for polynomial order	C_dewarp dewarded point cloud matrix(3*3375)
# Read in calbody and calreading data file, warped data, and polynomial order, calculate the distortion correction polynomial using the <i>calbody</i> and <i>calreading</i> files, using the obtained coefficient to dewarp the warped data		

test_distortion_ correction.py	a_string a string relates to the debug file such as 'a','b','c',etc	P_EM_dimple array(3*1)	
# Read in calbody and calreading data file, warped data, and polynomial order, calculate the P_EM_dimple matrix for debugging with the output1 data file			
Assigment2.py		'NAME-OUR-OUTPUT1.TXT' Output file that give the P_em_dimple 'NAME-OUR-OUTPUT2.TXT' Output file that give tip location with respect to the CT image	

c) Results of Functions

the CT image in the file 'NAME-OUR-OUTPUT2.TXT'

We first output our P_EM_dimple results as an intermediate step for debugging and compare them with output1 files. The residual between our results and the provided debug results is also calculated.

Output1			
Dataset	Provided Results	Our Results	Residual
а	200.56, 197.74, 208.34	200.56, 197.74, 208.34	0.0 , -0.0 , 0.0
b	200.09, 205.27, 207.97	200.13, 205.31, 208.02	-0.04 , -0.04 , -0.05
С	196.76, 194.97, 204.59	194.51, 191.65, 205.63	2.25 , 3.32 , -1.04
d	207.29, 204.71, 193.73	207.29, 204.71, 193.73	0.0 , -0.0 , 0.0
е	207.88, 200.60, 207.76	208.39, 205.11, 206.88	-0.51 , -4.51 , 0.88

f	192.76, 206.81, 193.92	186.79, 208.73, 198.31	5.97 , -1.92 , -4.39
g	201.62, 191.88, 207.53	206.58, 195.48, 210.03	-4.96 , -3.6 , -2.5
h	/	193.42, 207.43, 210.83	/
i	/	202.62, 198.05, 207.75	/
j	/	202.14, 195.87, 189.19	/

After getting reasonable residual error, then we calculated the tip location with respect to the CT image as the final output results.

Output2			
Dataset	Provided Results	Our Results	Residual
	104.99, 47.88, 58.45	105.0, 47.88, 58.45	-0.01 , -0.0 , -0.0
	160.11, 44.40, 62.23	160.12, 44.4, 62.23	-0.01 , -0.0 , -0.0
а	42.16, 171.29, 27.05	42.16, 171.29, 27.05	0.0,0.0,0.0
	161.56, 33.77, 44.41	161.56, 33.78, 44.41	0.0 , -0.01 , -0.0
	114.04, 127.19, 167.22	114.09, 127.15, 167.22	-0.05 , 0.04 , -0.0
b	111.60, 137.83, 48.38	111.63, 137.8, 48.4	-0.03 , 0.03 , -0.02
J	111.21, 98.86, 57.58	111.21, 98.84, 57.62	0.0 , 0.02 , -0.04
	54.17, 69.84, 116.05	54.16, 69.77, 116.08	0.01 , 0.07 , -0.03
	42.95, 92.24, 159.77	42.53, 91.3, 159.96	0.42 , 0.94 , -0.19
С	74.37, 106.52, 154.35	73.11, 105.0, 154.82	1.26 , 1.52 , -0.47
	161.83, 142.35, 38.59	161.05, 140.92, 39.53	0.78 , 1.43 , -0.94
	103.69, 82.15, 80.72	104.21, 81.1, 80.71	-0.52 , 1.05 , 0.01
	32.96, 111.13, 78.37	32.96, 111.13, 78.36	-0.0 , 0.0 , 0.01
d	28.89, 48.56, 158.26	28.89, 48.56, 158.25	0.0 , 0.0 , 0.01
u	102.90, 75.35, 167.64	102.9, 75.35, 167.63	0.0 , 0.0 , 0.01
	152.99, 80.68, 152.78	152.99, 80.68, 152.78	-0.0 , 0.0 , -0.0
е	51.96, 99.82, 115.51	54.58, 100.32, 117.31	-2.62 , -0.5 , -1.8
	29.50, 154.24, 160.19	34.88, 162.11, 163.1	-5.38 , -7.87 , -2.91
	29.34, 32.20, 89.85	29.07, 30.69, 90.5	0.27 , 1.51 , -0.65
	62.64, 156.26, 62.29	64.2, 158.68, 65.79	-1.56 , -2.42 , -3.5

f	150.71, 51.23, 147.32	143.76, 53.98, 147.0	6.95 , -2.75 , 0.32
	163.84, 70.85, 128.87	156.92, 75.68, 126.39	6.92 , -4.83 , 2.48
	46.15, 45.48, 107.40	45.54, 41.45, 106.32	0.61 , 4.03 , 1.08
	141.03, 127.87, 157.28	134.95, 133.17, 160.8	6.08 , -5.3 , -3.52
	29.52, 89.14, 27.18	27.59, 87.65, 24.41	1.93 , 1.49 , 2.77
a	117.13, 59.02, 107.64	118.95, 58.78, 105.35	-1.82 , 0.24 , 2.29
g	126.33, 77.28, 46.28	127.49, 76.3, 42.19	-1.16 , 0.98 , 4.09
	94.27, 112.12, 79.16	92.82, 111.23, 75.27	1.45 , 0.89 , 3.89
		73.23, 60.57, 84.3	
h	,	168.11, 154.33, 92.38	,
11	/	103.64, 167.45, 77.86	/
		167.1, 97.26, 103.56	
		134.19, 42.07, 159.75	
i	/	156.42, 97.43, 68.71	,
,	/	50.99, 156.22, 86.55	/
		75.65, 144.64, 79.28	
j		90.23, 23.04, 172.09	
	,	41.1, 112.35, 24.8	,
	/	48.82, 154.35, 176.3	/
		87.23, 41.1, 75.34	

d) Discussion of the Results and Analysis

In conclusion, our program works well, as one can observe from the comparison between the given debug output file and ours. All the differences of the values for a, b, c, d are within reasonable range.

For dataset e, f, g, the introduction of both EM distortion and EM noise to the data may make the distortion correction function not as accurate as that for the data without noise because the EM noise is random and non-zero mean. Plus, the introduction of OT jiggle also effects the final output results. Generally speaking, our program can achieve all the goals of this assignment with good performance.

e) Work Distribution

Name	Work
Tianyu Song	 Collaborated with Huixiang on implementing the distortion correction Finished Step 4 to 6 of assignment 2 Tested and debugged programs
Huixiang Li	 Collaborated with Tianyu on implementing the distortion correction Finished Step 1 to 3 of assignment 2 Tested and debugged programs

References

- [1] G. Farin, Curves and surfaces for computer-aided geometric design, a practical guide, Academic Press, Boston, 1990, chapter 10 and pp 281-284. (P20 in lecture slide 'Interpolation Review')
- [2] K.S. Arun, T.S. Huang, and S.D. Blostein. Least-Squares Fitting of Two 3-D Point Sets. IEEE PAMI. Vol. 9. No. 5. Sept. 1987: 698-700.
- [3] E. H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society, 26(9):394–395, 1920. doi:10.1090/.