Diseño y Desarrollo de una Red MODBUS RTU basada en Arduino

DHI 2019~20 :: Alonso Rodriguez

Introducción

Objetivo

- Intercomunicar diferentes sensores y actuadores de diversa naturaleza, fabricantes, protocolos...
- En definitiva: Abstraerlos

Obstáculo

 No todos los sensores y actuadores utilizan el mismo protocolo de transmisión de la información, y no se pueden acoplar en una red

Solución

Acoplar un arduino para que actúe como "traductor"

Introducción: Tecnologías

MODBUS

Público y gratuito

Fácil de implementar, y no requiere mucho desarrollo

Maneja bloques de datos sin restricciones

Sencillo y fiable

RS485

Estándar

Transmisión diferencial

Ampliamente conocido

Arduino

HW/SW Libre

Bajo coste

Versatilidad

Amplia comunidad

RS485

- Transmisión diferencial
- PtP, PtMP
- 256+ dispositivos
- Comunicación mediante par trenzado
- Serial
- Asíncrono
- v = 300baud/s $\rightarrow 19.2$ kbaud/s

RS-485				
Estándar	TIA/EIA-485-A			
Medio físico	Par trenzado			
Topología de red	Punto a punto, punto a multipunto, multi-drop			
Modo de comunicación	Semiduplex, dúplex			
Máximo de dispositivos	Originalmente 32, actualmente 256 e incluso más usando repetidores			
Modo de operación	Diferencial			
Niveles de tensión	-7V / +12V			
"1" Lógico	Tensión positiva (B-A > +200mV)			
"0" Lógico	Tensión negativa (B-A < -200mV)			

RS485: Transmisión diferencial

RS485: PtMP

Todas las comunicaciones pasan por el maestro

Minimiza crosstalk y el ruido externo

MODBUS

- Protocolo MODBUS Serie (Capa II), y MODBUS TCP/IP (Capa VII)
- Topología Maestro Esclavo(s)
- Dos modos
 - ASCII
 - o RTU
- v = 75baud/s $\rightarrow 19.2$ kbaud/s

Tipo de objeto	Acceso	Tamaño
Discrete input	Solo leer	1 bit
Coil	Leer/escribir	1 bit
Input register	Solo leer	16 bits
Holding register	Leer/escribir	16 bits

MODBUS: Trama

Figura 2-4: trama MODBUS serie

- Address field o Campo de dirección: Sirve para indicar la dirección del esclavo al que va dirigida la trama. El rango válido va desde 0 a 247, siendo el 0 la dirección de *Broadcast* y quedan reservadas las direcciones 248 a 255. Cuando el esclavo recibe una trama dirigida a él; construye la respuesta y pone su propia dirección en este campo, para que el maestro sepa de qué esclavo viene la respuesta.
- Function code o Código de función: Indica el código de la operación que el maestro solicita al esclavo; por ejemplo, leer un determinado registro.
- **Data o Campo de datos:** Lleva la información que se necesite para realizar determinada función; por ejemplo, escribir un valor en el registro indicado.
- CRC o LRC: Chequeo de redundancia cíclica o chequeo de redundancia longitudinal: sirve para asegurarse de que la información llega sin errores.

MODBUS: Diagrama de Estados

MODBUS: Transmisión

MODBUS: Formato de Trama - RTU

				Con ch	equeo d	e parida	ıd			
Inicio	1	2	3	4	5	6	7	8	Par	Stop
				Sin che	equeo de	e parida	d			

	S	sta	art
2	3.	5	char

Address	Function	Data	CRC Check
8 bits	8 bits	N x 8 bits	16 bits

MODBUS message

End
≥ 3.5 char

MODBUS: Formato de Trama - RTU (II)

MODBUS: Formato de Trama - ASCII

			Con	cheque	o de par	idad			
Inicio	1	2	3	4	5	6	7	Par	Stop
Inicio	1	2	Sin 3	chequeo	de pari	dad 6	7	Stop	Stop

Start	Address	Function	Data	LRC	End
1 char :	2 chars	2 chars	0 up to 2x252 char(s)	2 chars	2 chars CR,LF

MODBUS: Formato de Trama - ASCII vs RTU

RTU: 11 bits vs ASCII: 10 bits

MODBUS: Formato de Trama - ASCII vs RTU

MODBUS: Formato de Trama - ASCII vs RTU

RTU

ASCII

Arduino

- Hardware y Software Libre
- Bajo coste
- Versatilidad
- Amplia comunidad

- Algunos modelos no destacan por su elevada eficiencia energética
- etc

Material

- Arduino UNO Rev3
- Módulo Multiprotocol
- Módulo MODBUS/RS-485
- Sensor PIR
- Servo Motor
- Protoboard
- Cables jumper para protoboard
- Diodo LED
- Potenciómetro
- Librería < ArduinoRS485-MODBUS >

Sensor PIR

• Passive InfraRed sensor

Primer escenario

Flujo de tramas

Dirección esclavo	Código de función	Dirección de inicio	No.	
01	03	00 00	Nº de registros	CRC
		00 00	00 01	

				- 1 de los hits	CRC	
г		cutino de función	Bytes de respuesta	Estado de los bits		١
- 1	Dirección esclavo	Codigo de funcion		00 00		
1		03	02	00 00		,
- 1	01	05				_

Dirección esclavo	Código de función			
01	06	Dirección del registro	Valor a escribir	CRC
	00	00 00	00 00	

ı		Código de función	Dirección del registro	Valor a escribir	CRC	
	Dirección esclavo	06	00 00	00 00		١
	01	00				_

Segundo escenario

Conclusiones

- Mucha teoría de MODBUS, esquemas claros y concisos
- Teoría > Práctica
- Teoría + Tutorial
- Nuevos conceptos que desconocía
- Base robusta para los proyectos expuestos en otras sesiones
- Expansibilidad del bus para mayor modularidad
 - -> Desoldar resistencia de 120Ω en los transceptores intermedios

Crítica

- Teoría > Práctica
- Eficiencia energética
- Esquemáticos

