

딥러닝 기반의 카메라모듈 얼룩불량 분류

2022. 6. 20

충북대학교 산업인공지능학과 김병근(2020254013)

소개글

소개

대학원

■충북대학교 산업인공지능학과 입학(2020.9)

-지도교수: **류관희** 교수님 -가 디 언 : **김현용** 교수님

■한국 빅데이터서비스학회 논문 개제(2022.5)

회사

■**파워로직스**(청주시 흥덕구 옥산면 과학산업로 – 오창)

: 2010.5 ~ 재직중 (2번째 회사)

- 카메라 사업부: 스마트폰 카메라 모듈

- 전장 사업부: 사이드 미러 카메라, MLA 헤드램프

- 베터리 사업부: ESS & 자동차 Pack, 스마트폰 외 배터리 모듈

자기소개

- ■정보팀 근무: 정보 시스템/보안/IT infra 운영
- ■하는 일
 - **정보화 시스템 기획/구축/운영**: ERP/PLM/MES/WMS 등
 - **일부 개발(C#, Oracle, MS-SQL)**: 장비 Interface, 원격 제어 등

딥러닝을 이용한 카메라 모듈 불량 분류 Camera Module Defect Classification using Deep Learning

> 김병근(파워로직스, 충북대학교 산업인공지능학과), 류관회(충북대학교 소프트웨어학부, 산업인공지능학과)

목차

1. 프로젝트 개요

- 1.1 프로젝트 배경
- 1.2 스마트폰 카메라 모듈(CM) 소개
- 1.3 선행 연구
- 1.4 프로젝트 목표와 효과
- 1.5 프로젝트 설계

2. 프로젝트 내용

- 2.1 데이터 준비
- 2.2 데이터 증강
- 2.3 학습환경 및 딥러닝 모델
- 2.4 불량 분류 학습

3. 프로젝트 결과

- 3.1 학습 결과
- 3.2 정확도 비교
- 3.3 최종 평가

4. 한계점 및 발전방향

- 4.1 한계점
- 4.2 의의 및 발전 방향

5. Reference

1.1 프로젝트 배경

- 스마트 폰: 글로벌 출하량은 보합세이나,
- 카메라 모듈: Multiple(Dual, Triple, Quadruple) 모듈(렌즈)의 비중확대 추세
- 즉, 카메라 모듈 대량 생산체제 대응을 위해, 기업 경쟁력인 "품질의 신뢰성 과 "제품 생산시간(Tact Time)"을 동시에 향상할 수 있는 방안 필요

참조1) 글로벌 스마트폰 출하량 추이

참조2) 스마트폰 카메라 렌즈수 비중 추이

1.2 "스마트폰 카메라모듈(Camera module, 이하 CM)" 소개

- 대량 생산체제: 스마트폰 1대당 카메라 모듈이 Dual, Triple, Quadruple로 생산량 증가
- SMT 투입 ~ 완제품 생산 완료까지 TAT(Turn around time)가 4~5일 소요

1.2 "스마트폰 카메라모듈(Camera module, 이하 CM)" 소개

- CM의 주요 불량: 얼룩(흑점, 멍 형태) 불량
- 공정 제조/공장간 이동 시, **다양한 형태와 경로로 이물질, 먼지 입자(Particle)들이 제품 내부에 유입**됨

1.3 선행 연구(현재 사용 중 인, 검사장비)

- 검사 알고리즘: 전통적인 머신비전 기술(①정상품과의 비교, ②픽셀 주변과의 밝기 차이)을 활용
- 이에, 과검(Overkill)과 미검(Underkill) 발생
 - ※ Lens shading 현상: 모두 같은 기준으로 검사할 수 없음 (광량 차이로 중심부는 밝고, 가장자리는 어두움)

1.4 프로젝트 목표와 효과

- 프로젝트 배경: "과검(Overkill)과 미검(Underkill)" 최소화 요구사항 증대

- 프로젝트 효과: 재검률 1%만 감소 시, 최소 1억원/월 정량적 효과 발생

[현재] 머신 비전 기술의 판정 정확도

- 집계 기간: 1개월 (2021.11월)

- 화소(Segmentation): 4,800만 화소(48M)

- 비전 검사장비의 판정 정확도 측정

항목	검사	양품	불량	양품률
최초 검사	3,513,474	3,237,511 ①TP	275,963	92.1%
재검 (1~3차)	a) 1,155,794	695,156 ③FN	460,638 ②TN	60.1%

a)재검 수량: 당월 및 전월 가성 불량 수량의 1~3차 재검의 합

b)판정 정확도: (①TP양품수량+②TN진성불량) / (①+②+③검사수량계)

c)과검: (③FN양품수량) / (①+②+③검사수량계)

※ 장비1대 capa. 2.5k/日, 60k/月

손실 비용

정량적: 재검 1%▲ = 1억원/월▼ 장비구입/기구물/직.간접 인건비

정성적: 부대비용 발생 공간/시간/기타

재검사를 최소화 하는, 새로운 검사방법 필요!

1.4 프로젝트 목표와 효과

- 프로젝트 목표: 딥러닝(resnet18) 모델로 Classification 정확도 측정

1) 프로젝트 목표

"머신비전 기술" vs "딥러닝 알고리즘 기술" 불량 판정 정확도 비교

항목	단위	현재 장비(머신 비전)	프로젝트목표(딥러닝)	비고
불량 판정 정확도 (Classification)	%	판정 정확도 84.2%	분류 정확도 90.0%	
오(誤) 판정 부대비용		재검사 용(用) 각종 비용 발생	재검률 1% ▼ = 1억 이상/月	장비 구입/공간/ 기구/인원비/시 간/부대비용

2) 향후 목표

검사설비의 검사방법 알고리즘의 제안을 하고자 함

1.5 프로젝트 설계

- 준비 / 학습: 장비의 검사 영상 수집 후, 전처리 과정을 거처, RESNET18로 학습 진행
- 정확도 비교: 머신 비전과 딥러닝 모델의 정확도(accuracy) 비교

.NG: 20,000ea

<u>2.1 데이터 셋 준비</u>

- 제품선정: Galaxy A series(**A32 48M**) 제품선정
- 데이터 수집: 머신비전 장비의 "4,800만 화소(8,000*6,000)" 검사 영상 수집(1대 장비에서, 1일간 검사한 이미지)

2.2 데이터 증강

- **데이터 증강 필요**: NG 데이터의 데이터 불균형(99%:1%)
- 데이터 증강으로 불균형 해소: OK/NG이미지를 ①Color, ②Rotation(1~359°, 좌우/상하 반전 포함)

③확장자 변환(bmp→png): 파일용량 감소(평균 85%▼)

Class별 데이터 불균형 "증강 처리 필요"

.png (11Mbyte) 4,000*3,000

ОК	NG	
16,000	20,000	
계= 36,000		

학습 데이터 셋 구성

구분	Augmentation		
TE	ОК	NG	
TRAIN(85%)	13,600	17,000	
VALID(10%)	1,600	2,000	
TEST(5%)	800	1,000	

<u>2.3 딥러닝 모델</u>

- 딥러닝 모델 선정: RESNET18
 - . Classification에 강점인 모델
 - . 더 깊은 인공 신경망을 통해, 특정(feature)을 더 정확하게 추출하고, 성능 및 기울기 소실(gradient vanishing)도 문제 해결

참조5) VGG-19뼈대에 컨볼루션 층을 추가하여 깊게 만들고, shortcut을 추가한 Resnet 네트워크 구조

<u>2.4 학습 환경</u>

- 학습 환경

구분	PC 사양
CPU	AMD Ryzen7 2700X 8-Core 3.70Ghz
RAM	64GB
GPU	2GB NVIDIA GeForce GT 1030

2.5 불량 분류(Defect classification) 학습

DATA SET

7 8	Augmentation		
구분	OK	NG	
TRAIN(85%)	13,600	17,000	
VALID(10%)	1,600	2,000	
TEST(5%)	800	1,000	

학습 PARAMETERS

Stochastic Gradient Descent		Ste	pLR
Learning Momentu Rate m		Step Size	Gamma
0.001	0.9	7	0.1

- . Batch size = 50
- . Epoch = 10

3. 프로젝트 결과

<u>3.1 학습 결과</u>

3. 프로젝트 결과

<u>3.2 정확도 비교</u>

Rule 기반 검사 – 머신 비전 장비

Confusion Matrix		1차 검사	
		양품(FP)	불량(FN)
재검사	양품(TP)	3,237,511	695,156
(1~3차)	불량(TN)	0	460,638

구분	값
정확도(accuracy)	84.2%
재현율(recall)	100.0%
정밀도(precision)	82.3%
F1-Score	90.3%

딥러닝 기반 분류 – RESNET18

• TEST Accuracy: 100%

	precision	recall	f1-score	support
ok	1.00	1.00	1.00	1000
ng	1.00	1.00	1.00	800
accuracy			1.00	1800
macro avg	1.00	1.00	1.00	1800
weighted avg	1.00	1.00	1.00	1800

VS

3. 프로젝트 결과

<u>3.3 최종 평가</u>

- 딥러닝 기반의 불량 분류 결과가 높은 것으로 나타남
- 딥러닝 모델: 100%의 정확도에 검증을 위해, 다양한 불량 패턴의 데이터를 추가 수집해야 함

구분	머신비전	RESNET18
검사방법	주변 밝기, 양품 비교	Pre-trained weight
학습시간		7.5 시간
정확도	84.2%	99.8%

- 혼돈 행렬(Confusion Matrix)

구분	머신비전	RESNET18
정확도(accuracy)	84.4%	100%
재현율(recall)	100.0%	100%
정밀도(precision)	82.3%	100%
F1-Score	90.3%	100%

4. 한계점 및 발전방향

4.1 한계점

- 단일 기간의 단일 제품만으로 학습을 진행하여, 신뢰도의 향상이 필요 함
- 다양한 알고리즘과 parameters 변화를 통한 실험
- 고(高) 해상도의 영상으로 인해, 데이터 셋의 크기와 학습시간이 많이 걸림
 - : 학습시간 및 실제 적용을 위한, 영상 Slicing 방향도 모색

4.2 의의 및 발전방향

- 불(RULE) 기반 비전 검사 방식보다, 딥러닝 알고리즘 모델의 분류 정확도가 높음 : 즉, 비전전문가가 아니더라도, 구현 가능함으로써 상당히 고무적 임
- 과검(Overkill)으로 인한 재검 율을 낮출 수 있다면, 회사 이익에 상당한 기여
 - : 비전 장비의 검사방법 알고리즘을 제안하고자 함

5. Reference

- [1] 카운터포인트리서치
- [2] 카운터포인트리서치 스마트폰 카메라 트래커

https://korea.counterpointresearch.com/2021%EB%85%84-%EC%8A%A4%EB%A7%88%ED%8A%B8%ED%8F%B0-

%EA%B3%A0%ED%99%94%EC%86%8C-%EC%B9%B4%EB%A9%94%EB%9D%BC-%EB%B9%84%EC%A4%91-

45%EA%B9%8C%EC%A7%80-%ED%99%95%EB%8C%80%EB%90%A0-%EA%B2%83%EC%9C%BC/

[3] 전자공학회지 (2016), 탑엔지니어링, 카메라 모듈 검사 장비의 자동화를 위한 기계 학습의 활용

https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=JAKO201618054813860&oCn=JAKO201618054813860& dbt=JAKO&journal=NJOU00290673

[4,5] 논문, Deep Residual Learning for Image Recognition, CVPR 2016

https://arxiv.org/pdf/1512.03385.pdf

- [6] 하민호, & 박태형. (2020). 스마트팩토리 구현을 위한 기계 학습 기반의 소형 카메라 모듈 (CCM) 불량 분류 시스템. 대한산업 공학회지, 46(1), 64-70.
- [7] Kim, S. U. (2012). 기획특집 (2)-휴대폰 카메라 모듈 기술의 현주소. The Optical Journal, 22-25.
- [8] 문창배, 이종열, & 김병만. (2021). CNN 기반 차량 헤드라이트 불량검사 시스템. 한국통신학회 학술대회논문집, 581-582.
- [9] 임세호, 신용구, 유철환, 이한규, & 고성제. (2017). WGAN 을 이용한 Data Augmentation 기법. 대한전자공학회 학술대회, 516-519.
- [10] Kim, J. (2017). Deep learning based semantic segmentation using feature augmentation= 특징증대를 통한 딥러닝기반 의미적 영상분할.

Q & A

감사합니다