[問題] X-B (1)

K-Bの表1にあるデータをそれぞれのステータスが平均が0、分散が1となるように正規化するプログラムを作成し、正規化されたデータを元にK-B表1に相当する表を作成せよ。値は有効数字4桁で5桁目を四捨五入して求めよ。

[問題] X-B (2)

問1で正規化したデータの3次元ベクトル空間の基底を IX-B および X-A で求めた3つの固有ベクトルに置き換え、新しい基底での座標を求めて IX-B 表1に相当する表を作成せよ。値は有効数字4桁で5桁目を四捨五入して求めよ。

※ 問 1, 2 において表は手書き作っても良いし、プログラムの出力をコピー&ペーストしたものでも良い。

[略解] X-B (1)

ポケモン	HP	攻撃	防御
ピカチュウ	-0.9549	-0.6981	-1.159
ライチュウ	-0.3890	0.2463	0.04090
イーブイ	-0.5048	-0.7914	-0.7662
コイキング	-1.289	-1.666	-1.399
ギャラドス	0.3955	0.7593	0.8043
カビゴン	1.862	0.2113	0.4335
ミュウ	0.5112	0.4445	1.328
ミュウツー	0.3697	1.494	0.7171

Table: K-B表1にあるポケモンのステータスのデータを正規化して示した表

[略解] X-B (2)

ポケモン	PC1	PC2	PC3
ピカチュウ	-1.627	0.1538	-0.2663
ライチュウ	-0.04613	0.4593	-0.02420
イーブイ	-1.197	-0.1859	-0.01064
コイキング	-2.515	-0.1682	0.1954
ギャラドス	1.142	0.2630	0.08422
カビゴン	1.405	-1.295	-0.2166
ミュウ	1.339	0.09228	0.6486
ミュウツー	1.500	0.6808	-0.4106

Table: K-B表1にあるポケモンのステータスのデータを正規化して示した表

[数値解析 第11回]

数值積分法

刻んで重みを付けて足す

数値積分法の図解

- ある x の範囲で f(x) と x 軸の間の面積を近似的に求める
- 近似として区分的補間多項式 の面積を使う
 - ▶ 実際に補間多項式の係数を求める必要はない

Figure: 1次の区分的補間多項式でつないだ場合(複合的台形則)

6 / 14

[手法解説]

数值積分法 (Numerical Integration)

関数 f(x) の定積分 $I=\int_a^b f(x)dx$ を近似的に求める方法。N+1 個の積分点 x_i $(0 \le i \le N)$ に対する関数の値 $f(x_i)$ に重み α_i をかけて足し上げた $I_N=\sum_{i=0}^{N}\alpha_i f(x_i)$ を数値的に求めて I の近似値とする。

- ullet α_i の取り方によって I_N の精度が異なる
- 積分点を等間隔に取る方法はニュートン・コーツ則 (Newton-Cotes rule) と呼ばれる

数値積分法の種類

- 複合台形則 (Composite trapezoid rule)
 - ▶ 隣り合う積分点を直線でつないだ関数の積分で近似
 - ▶ 区間毎に見ると台形の面積を足し上げている
 - ightharpoonup 刻み幅 h に対して $\mathcal{O}(h^2)$ の誤差
- シンプソン則 (Simpson's rule)
 - ▶ 3点の積分点を放物線でつないだ関数の積分で近似
 - **▶** 刻み幅 *h* に対して $O(h^4)$ の誤差

[問題] XI-A

定積分 $\int_0^1 (e^x+1)dx$ を考える。

- (1) 上記の定積分を計算しネイピア数 e を用いて表せ。
- (2) 上記の定積分を複合台形則を用いて数値積分する問題を考え

る。ニュートン・コーツ則で台形近似を行う区間の数を $N=2^n$

(積分点の数は $N+1=2^n+1$) とした時 の $n\geq 0$ を 1 ずつ増やして積分値を求めるプログラムを作成し、数値積分の値の相対誤差が 10^{-8} を下回る最も小さい n を求めよ。

作成したプログラムも提出すること。プログラミング言語は問わない。

[略解] XI-A

(1) *e*

(2) n = 12

[手法] 複合台形則 (Composite trapezoid rule)

積分点を等間隔に取った複合台形則

Input: f(x), a, b, N

Output: I

1:
$$h \leftarrow \frac{b-a}{N}$$

2:
$$I \leftarrow \frac{1}{2} f(a)$$

$$j = 1, 2, \dots, N-1$$
:

4:
$$I \leftarrow I + f(a + h \times j)$$

5:
$$I \leftarrow I + \frac{1}{2}f(b)$$

6:
$$I \leftarrow I \times h$$

[問題] XI-B

XI-A で示した定積分をシンプソン則を用いて数値積分 する問題を考える。ニュートン・コーツ則で2次多項 式近似を行う区間の数を $M=2^{n-1}$ (積分点間の区画の 数は $2M = 2^n$ 、積分点の数は $2M + 1 = 2^n + 1$) とした 時の $n \ge 1$ を1ずつ増やして積分値を求めるプログラ ムを作成し、数値積分の値の相対誤差が 10-8 を下回 る最も小さいnを求めよ。

作成したプログラムも提出すること。プログラミング言語は問わない。12/14

シンプソン則の図解

- 積分点3点を通る2次の補間 多項式をつなげた曲線下の面 積を積分の近似値として用 いる
 - ▶ 実際に補間多項式の係数を求める必要はない

Figure: 2次の区分的補間多項式でつな

いだ場合 (シンプソン則)

[手法] シンプソン則 (Simpson's rule)

積分点を等間隔に取ったシンプソン則

Input: f(x), a, b, M $[f(x_i) \ (0 \le i \le 2M)$ の重み付きの和を考える。M=1 の時 ℓ . 5 の for 文はスキップ]

Output: I

1:
$$h \leftarrow \frac{b-a}{2M}$$

2:
$$I \leftarrow \frac{1}{3}f(a)$$

3: **for**
$$j = 1, 3, \dots, 2M - 1$$
:

4:
$$I \leftarrow I + \frac{4}{3}f(a+h \times j)$$

5: **for**
$$j = 2, 4, \dots, 2M - 2$$
 :

6:
$$I \leftarrow I + \frac{2}{3}f(a+h \times j)$$

7:
$$I \leftarrow I + \frac{1}{3}f(b)$$

8:
$$I \leftarrow I \times h$$