Physik 1 (PH1-B-REE1)

Michael Erhard

Wiederholung

- Starrer Körper = Massenpunkte/-dichte in starrer relativ zueinander unveränderlicher Anordnung
- Drehmoment

$$\underline{M} = \underline{r} \times \underline{F} \\
= |\underline{r}| |\underline{F}| \sin \angle (\underline{r}, \underline{F})$$

Schwerpunkt

$$\underline{x}_{\rm SP} = \frac{\sum_{i} m_i \underline{x}_i}{m_{\rm ges}}$$

Schwerpunkt

Wirkung wie wenn gesamte Gewichtskraft am Schwerpunkt angreift

Inhalt

12 Drehbewegung und Trägheitsmoment

- 12.1 Punktmasse auf Kreisbahn
- 12.2 Trägheitsmoment und Drehbewegung starrer Körper
- 12.3 Trägheitsmomente verschiedener Körper
- 12.4 Verschiebung der Drehachse (Satz von Steiner)

12. Trägheitsmoment

12. Trägheitsmoment

An Tafel

12.1 Punktmasse: Wiederholung Drehbewegung, Anwendung von Newton, Herleitung der Formeln für Drehbewegung

12.2 Verallgemeinerung: Definition Trägheitsmoment, und Formeln für Drehbewegungen

Beispiel Scheibe

12.3 Trägheitsmomente (1/2)

Abbildung	Beschreibung	Trägheitsmoment
$\frac{1}{r}$	Ein Massepunkt um eine Drehachse	$J = m r^2$
$r \longrightarrow \omega$	Zylindermantel oder Ring	$J = m r^2$
$r \longrightarrow \omega$	Vollzylinder oder runde Scheibe	$J = \frac{m}{2} r^2$
$\frac{1}{r}$	Hohle Kugel	$J = \frac{2m}{3} r^2$
$\frac{1}{r}$	Volle Kugel	$J = \frac{2m}{5} r^2$

Quelle: Folien R. Hess

6

12.3 Trägheitsmomente (2/2)

Abbildung	Beschreibung	Trägheitsmoment
$\frac{b}{a} \xrightarrow{\omega}$	Massiver Quader oder rechteckige Scheibe ($c = 0$)	$J = \frac{m}{12} \left(a^2 + b^2 \right)$
	Dünner Stab um die Mitte	$J = \frac{m}{12} l^2$
$l \longrightarrow \frac{\omega}{l}$	Dünner Stab um ein Ende	$J = \frac{m}{3} l^2$

Quelle: Folien R. Hess