Complete Listing of All Claims, With Markings and Status IDENTIFIERS (Currently amended claims showing deletions by strikethrough and additions by underlining)

1 - 3 (canceled)

4 (withdrawn): A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 1 or a pharmaceutically-acceptable salt thereof.

5 (withdrawn): A method of selectively eliciting an agonist response from the PTH2 receptor which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 2 or a pharmaceutically acceptable salt thereof.

6 (withdrawn): A method of selectively eliciting an antagonist response from the PTH2 receptor which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 3 or a pharmaceutically acceptable salt thereof.

7 (canceled): An analogue according to claim 1 wherein said analogue is of formula (I),

$$\begin{array}{l} (R^1R^2) - A^1 - A^2 - A^3 - A^4 - A^5 - A^6 - A^7 - A^8 - A^9 - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^3 \,, \end{array}$$

(I)

or a pharmaceutically-acceptable salt thereof wherein

A¹ is a hydrophilic or a lipophilic amino acid;

 A^2 is a lipophilic amino acid;

A³ is a hydrophilic or a lipophilic amino acid;

A4 is a hydrophilic amino acid;

A⁵ is a hydrophilic or a lipophilic amino acid;

A⁶ is a hydrophilic amino acid or is deleted;

A⁷ is a hydrophilic or a lipophilic amino acid or is deleted;

A⁸ is a lipophilic amino acid or is deleted;

A⁹ is a hydrophilic amino acid or is deleted;

A¹⁰ is a hydrophilic amino acid or is deleted;

Page No. A¹¹ is a hydrophilic or a lipophilic amino acid or is deleted; A¹² is a hydrophilic or a lipophilic amino acid or is deleted; A¹³ is a hydrophilic amino acid; A¹⁴ is a hydrophilic amino acid or is deleted; A¹⁵ is a lipophilic amino acid or is deleted; A¹⁶ is a hydrophilic or a lipophilic amino acid or is deleted; A¹⁷ is a hydrophilic or a lipophilic amino acid or is deleted; A¹⁸ is a lipophilic amino acid or is deleted; A¹⁹ is a hydrophilic or a lipophilic amino acid or is deleted; A²⁰ is a hydrophilic amino acid or is deleted; A²¹ is a hydrophilic or a lipophilic amino acid or is deleted; A²² is a lipophilic or a hydrophilic amino acid or is deleted; A²³ is a hydrophilic or a lipophilic amino acid; A²⁴ is a hydrophilic or a lipophilic amino acid; A²⁵ is a hydrophilic amino acid; A²⁶ is a hydrophilic amino acid; A²⁷ is a lipophilic or a hydrophilic amino acid; A²⁸ is a lipophilic amino acid; A²⁹ is a lipophilic or a hydrophilic amino acid; A³⁰ is a hydrophilic or a lipophilic amino acid; A³¹ is a lipophilic or a hydrophilic amino acid or is deleted; A³² is a hydrophilic amino acid or is deleted; A³³ is a hydrophilic amino acid or is deleted; A³⁴ is a lipophilic amino acid or is deleted; A³⁵ is a lipophilic amino acid or is deleted; A³⁶ is a lipophilic or a hydrophilic amino acid or is deleted; A³⁷ is a lipophilic amino acid or is deleted; A³⁸ is a lipophilic or a hydrophilic amino acid or is deleted; R^1 and R^2 are each independently selected from the group consisting of H, (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl- (C_1-C_{30}) alkyl,

group consisting of H, (C_1-C_{30}) alkyl, (C_2-C_{30}) alkyl, phenyl- (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxy-phenyl (C_1-C_{30}) alkyl or hydroxy-naphthyl (C_1-C_{30}) alkyl;

 Applicant
 :
 Dong et al.

 Serial No.
 :
 09/674,597

 Filing Date
 :
 April 9, 2001

Page No. : 4

or one of R^1 or R^2 is COE^1 where E^1 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxy-phenyl (C_1-C_{30}) alkyl or hydroxy-naphthyl (C_1-C_{30}) alkyl; and

 R^3 is OH, NH_2 , (C_1-C_{30}) alkoxy or $NH-Y-CH_2-Z$, where Y is a (C_1-C_{30}) hydrocarbon moiety and Z is CO_2H or $CONH_2$;

provided that the compound is not $PTH(1-34)R^3$ (SEQ ID NO:4), $PTH(1-35)R^3$ (SEQ ID NO:5), $PTH(1-36)R^3$ (SEQ ID NO:6), $PTH(1-37)R^3$ (SEQ ID NO:7), or $PTH(1-38)R^3$ (SEQ ID NO:8).

8 (withdrawn): A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 7 or a pharmaceutically-acceptable salt thereof.

9 (currently amended):

An A human PTH analogue or a truncated human PTH analogue according to claim 1 of the following formula (II),

 $(R^1R^2) - A^1 - A^2 - A^3 - A^4 - A^5 - A^6 - A^7 - A^8 - A^9 - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^3 \, ,$

(II)

which selectively bind to the PTH2 receptor, or a pharmaceutically-acceptable salts thereof, wherein

A¹ is Ser, Ala, Dap, Thr, Aib or is deleted;

 A^2 is Val, Leu, Ile, Phe, Nle, G-Nal, Aib, p-X-Phe, Acc, Cha, Met or is deleted;

 A^3 is Ser, Thr, Aib or is deleted;

A⁴ is Glu, Asp or is deleted;

A⁵ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

A⁷ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe, a lipophilic amino acid, or is deleted;

 Applicant
 :
 Dong et al.

 Serial No.
 :
 09/674,597

 Filing Date
 :
 April 9, 2001

Page No. : 5

A⁸ is Met, Nva, Leu, Val, Ile, Cha, Acc, Nle, p-X-Phe, Phe, ß-Nal, Bpa, a lipophilic amino acid or is deleted;

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asn, a hydrophilic amino acid or is deleted;

A¹¹ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib, or is deleted;

 A^{13} is Lys, Arg or $HN-CH((CH_2)_nNH-R^4)-C(O)$;

A¹⁴ is His or is deleted;

A¹⁵ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe or is deleted;

A¹⁶ is Ser, Asn, Ala, Aib or is deleted;

A¹⁷ is Ser, Thr, Aib or is deleted;

A¹⁸ is Met, Nva, Leu, Val, Ile, Nle, p-X-Phe, Phe, ß-Nal, Acc, Cha, Aib or is deleted;

A¹⁹ is Glu, Aib or is deleted;

 A^{20} is Arg, Lys, $HN-CH((CH_2)_nNH-R^4)-C(0)$ or is deleted;

 ${\tt A}^{21}$ is Val, Leu, Ile, Phe, Nle, ß-Nal, Aib, p-X-Phe, Acc, Cha, Met or is deleted;

A²² is Acc, Aib, Glu or is deleted;

A²³ is Trp, Acc, Phe, p-X-Phe, Aib, ß-Nal or Cha;

A²⁴ is Leu, Acc, Ile, Val, Phe, ß-Nal, Nle, Aib, p-X-Phe or Cha;

 A^{25} is Arg, Lys or $HN-CH((CH_2)_nNH-R^4)-C(O)$;

 A^{26} is Arg, Lys or HN-CH((CH₂)_nNH-R⁴)-C(O);

 A^{27} is Lys, Aib, Leu, hArg, Gln, Acc, Arg, Cha, Nle, Ile, Val, Phe, ß-Nal, or p-X-Phe, where the Lys is optionally substituted on the ϵ -amino group by an acyl group;

A²⁸ is Leu, Acc, Cha, Ile, Val, Phe, Nle, ß-Nal, Aib or p-X-Phe;

A²⁹ is Gln, Acc or Aib;

A³⁰ is Asp, Lys, Arg or is deleted;

 A^{31} is Val, Leu, Nle, Acc, Cha, Phe, Ile, ß-Nal Aib, p-X-Phe or is deleted;

A³² is His or is deleted;

Page No. : 6

A³³ is Asn or is deleted;

 A^{34} is Phe, Tyr, Amp, Aib, ß-Nal, Cha, Nle, Leu, Ile, Acc, p-X-Phe or is deleted;

A³⁵ is Val, Leu, Nle, Acc, Cha, Phe, Ile, ß-Nal Aib, p-X-Phe or is deleted;

A³⁶ is Ala, Val, Aib, Acc, Nva, Abu or is deleted;
A³⁷ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe, a lipophilic amino acid, or is deleted;
A³⁸ is Gly, Acc, Aib, or is deleted;

where X for each occurrence is independently selected from the group consisting of OH, a halo and CH3; $\ensuremath{\text{R}}^1$ and $\ensuremath{\text{R}}^2$ are each independently selected from the group consisting of H, (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl- (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxy-phenyl ($C_1 C_{30}$) alkyl Θr and hydroxy-naphthyl (C_1-C_{30}) alkyl; or one of R^1 or R^2 is COE^1 where E^1 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl(C_1-C_{30})alkyl, naphthyl (C_1 - C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxy-phenyl (C_1-C_{30}) alkyl or hydroxy-naphthyl (C₁- C_{30}) alky1; and R^3 is OH, NH_2 , (C_1-C_{30}) alkoxy or $NH-Y-CH_2-Z$, where Y is a (C_1-C_{30}) hydrocarbon moiety and Z is CO_2H or $CONH_2$; n for each occurrence is independently an integer from 1 to 5; and R^4 for each occurrence is independently (C_1-C_{30}) alkyl,

provided that the compound said human PTH analogue, said truncated human PTH analogue or said pharmaceutically-acceptable salts thereof is are not PTH(1-34) R^3 (SEQ ID NO:4), PTH(1-35) R^3 (SEQ ID NO:5), PTH(1-36) R^3 (SEQ ID NO:6), PTH(1-37) R^3 (SEQ ID NO:7), or PTH(1-38) R^3 (SEQ ID NO:8).

 (C_1-C_{30}) acyl or $-C((NH)(NH_2))$;

Page No. : 7

10 (currently amended): A compound human PTH analogue or a truncated human PTH analogue of the formula (III), $(R^1R^2) - A^1 - A^2 - A^3 - A^4 - A^5 - A^6 - A^7 - A^8 - A^9 - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^3$

(III)

which selectively bind to the PTH2 receptor, or a pharmaceutically-acceptable salts thereof, wherein

A¹ is Ser, Ala, Dap, Thr, Aib or is deleted;

A² is Val, Leu, Ile, Phe, Nle, ß-Nal, Aib, p-X-Phe, Acc, Cha, Met or is deleted;

A³ is Ser, Thr, Aib or is deleted;

A⁴ is Glu, Asp or is deleted;

A⁵ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

A⁷ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe, a lipophilic amino acid, or is deleted;

A⁸ is Met, Nva, Leu, Val, Ile, Cha, Acc, Nle, p-X-Phe, Phe, ß-Nal, Bpa, a lipophilic amino acid or is deleted;

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asn, a hydrophilic amino acid or is deleted;

A¹¹ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib, or is deleted;

 A^{13} is Lys, Arg or $HN-CH((CH_2)_nNH-R^4)-C(0)$;

A¹⁴ is His or is deleted;

A¹⁵ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe or is deleted;

A¹⁶ is Ser, Asn, Ala, Aib or is deleted;

A¹⁷ is Ser, Thr, Aib or is deleted;

A¹⁸ is Met, Nva, Leu, Val, Ile, Nle, p-X-Phe, Phe, ß-Nal, Acc, Cha, Aib or is deleted;

A¹⁹ is Glu, Aib or is deleted;

Page No. : 8

 A^{20} is Arg, Lys, $HN-CH((CH_2)_nNH-R^4)-C(0)$ or is deleted;

A²¹ is Val, Leu, Ile, Phe, Nle, ß-Nal, Aib, p-X-Phe, Acc, Cha, Met or is deleted;

A²² is Acc, Aib, Glu or is deleted;

A²³ is Trp, Acc, Phe, p-X-Phe, Aib, ß-Nal or Cha;

A²⁴ is Leu, Acc, Ile, Val, Phe, ß-Nal, Nle, Aib, p-X-Phe or Cha;

 A^{25} is Arg, Lys or $HN-CH((CH_2)_nNH-R^4)-C(0)$;

 A^{26} is Arg, Lys or $HN-CH((CH_2)_nNH-R^4)-C(0)$;

 A^{27} is Lys, Aib, Leu, hArg, Gln, Acc, Arg, Cha, Nle, Ile, Val, Phe, ß-Nal, or p-X-Phe, where the Lys is optionally substituted on the ϵ -amino group by an acyl group;

A²⁸ is Leu, Acc, Cha, Ile, Val, Phe, Nle, ß-Nal, Aib or p-X-Phe;

A²⁹ is Gln, Acc or Aib;

A³⁰ is Asp, Lys, Arg or is deleted;

A³¹ is Val, Leu, Nle, Acc, Cha, Phe, Ile, ß-Nal Aib, p-X-Phe or is deleted;

A³² is His or is deleted;

A³³ is Asn or is deleted;

A³⁴ is Phe, Tyr, Amp, Aib, ß-Nal, Cha, Nle, Leu, Ile, Acc, p-X-Phe or is deleted;

A³⁵ is Val, Leu, Nle, Acc, Cha, Phe, Ile, ß-Nal, Aib, p-X-Phe or is deleted;

A³⁶ is Ala, Val, Aib, Acc, Nva, Abu or is deleted;

A³⁷ is Leu, Val, Nle, Ile, Cha, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe, a lipophilic amino acid, or is deleted;

A³⁸ is Gly, Acc, Aib, or is deleted;

where X for each occurrence is independently selected from the group consisting of OH, a halo and CH_3 ; R^1 and R^2 are each independently selected from the group consisting of H, (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl- (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkyl, hydroxy-phenyl (C_1-C_{30}) alkyl $\frac{1}{100}$ and hydroxy-naphthyl $\frac{1}{100}$ alkyl;

Applicant Serial No. Filing Date Dong et al. 09/674,597 April 9, 2001

Page No. :

or one of R^1 or R^2 is COE^1 where E^1 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxy-phenyl (C_1-C_{30}) alkyl or hydroxy-naphthyl (C_1-C_{30}) alkyl; and

 R^3 is OH, NH_2 , (C_1-C_{30}) alkoxy or $NH-Y-CH_2-Z$, where Y is a (C_1-C_{30}) hydrocarbon moiety and Z is CO_2H or $CONH_2$; n for each occurrence is independently an integer from 1 to 5; and

 R^4 for each occurrence is independently (C_1-C_{30}) alkyl, (C_1-C_{30}) acyl or $-C((NH)(NH_2))$;

provided that when A^8 is not a lipophilic D-amino acid or is not deleted then at least one of A^6 , A^7 , A^9 , A^{10} , A^{11} and A^{12} is a D-amino acid or at least one of A^6 , A^7 , A^9 , A^{10} , A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} , A^{18} , A^{19} , A^{20} , A^{21} and A^{22} is deleted;

and further provided that when the compound said human PTH analogue, said truncated human PTH analogue or said pharmaceutically-acceptable salts thereof contains contain a D-amino acid, then A³⁶ is deleted.

11 (withdrawn): A compound according to claim 10 wherein said compound is

 $[D-Nle^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$

 $[D-Nle^{8}]hPTH(1-34)NH_{2},$

 $[D-Leu^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$

 $[D-Cha^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$

 $[D-Phe^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$

 $[D-Nal^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$

 $[D-Abu^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$

 $[D-Met^8]hPTH(1-34)NH_2$,

 $[Cha^{7, 11}, D-Met^{8}]hPTH(1-34)NH_{2},$

 $[D-Ile^8]hPTH(1-34)NH_2,$

 $[Cha^{7, 11}, D-Ile^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2},$

 $[D-lle^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,$

```
Serial No.
                   09/674,597
Filing Date
                   April 9, 2001
Page No.
[D-Leu^{8}]hPTH(1-34)NH_{2},
[Cha^{7,11}, D-Leu^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,
[D-Val^8]hPTH(1-34)NH_2
[Cha^{7, 11}, D-Val^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2},
[D-Val^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,
[D-Cha^8]hPTH(1-34)NH_2,
[Cha^{7,11}, D-Cha^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2},
[D-Ala^8]hPTH(1-34)NH_2
[Cha^{7, 11}, D-Ala^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2}
[D-Ala^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2,
[D-Phe^8]hPTH(1-34)NH_2
[Cha^{7,11}, D-Phe^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2}
[D-Na1^{8}]hPTH(1-34)NH_{2}
[D-Trp^8]hPTH(1-34)NH_2
[Cha^{7,11}, D-Trp^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2}
[D-Trp^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2}
[D-Abu^8]hPTH(1-34)NH_2
[Cha^{7,11}, D-Abu^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2}
[D-Nle^8, Nle^{18}]hPTH(1-34)NH_2,
[des-Met^8]hPTH(1-34)NH_2 (SEQ ID NO:18),
[Cha<sup>7,11</sup>, des-Met<sup>8</sup>]hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:19),
[Cha^{7,11}, des-Met^{8}, des-Met^{18}, Tyr^{34}]hPTH(1-34)NH_{2} (SEQ ID NO:20),
[des-Met^8, des-Met^{18}]hPTH(1-34)NH_2 (SEO ID NO:21),
[Cha^{7,11}, des-Met^{8}, des-Met^{18}]hPTH(1-34)NH_2 (SEQ ID NO:22),
[des-Met^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:23),
[des-Met^{18}]hPTH(1-34)NH_2 (SEQ ID NO:24),
[Cha^{7,11}, des-Met^{18}]hPTH(1-34)NH_2 (SEO ID NO:25),
[Cha^{7,11}, des-Met^{18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:26),
[D-Nle^8, des-Met^{18}, Tyr^{34}]hPTH(1-34)NH_2,
[des-Gln<sup>6</sup>, Nle<sup>8,18</sup>, Tyr<sup>34</sup>]hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:27),
[des-Leu^7, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:28),
[des-His^9, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:29),
[des-Asn^{10}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:30),
```

Applicant

Dong et al.

```
Serial No.
                    09/674,597
                    April 9, 2001
Filing Date
Page No.
[des-Leu^{11}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:31),
[des-Glv^{12}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:32),
[des-Lys^{13}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2(SEQ ID NO:33),
[des-His<sup>14</sup>, Nle<sup>8,18</sup>, Tyr<sup>34</sup>]hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:34),
[des-Leu^{15}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:35),
[des-Asn<sup>16</sup>, Nle<sup>8,18</sup>, Tyr<sup>34</sup>]hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:36),
[des-Ser^{17}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:37),
[des-Glu^{19}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:38),
[des-Arg^{20}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:39),
[des-Val^{21}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:40),
[des-Glu^{22}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:41),
[des-Gln^6, Cha^{7,11}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:42),
[des-Leu^7, Nle^{8,18}, Cha^{11}, Tyr^{34}]hPTH(1-34)NH_2 (SEQ ID NO:43),
[Cha^{7,11}, des-His^{9}, Nle^{8,18}, Tyr^{34}]hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:44),
[des-Gln<sup>6</sup>, Cha<sup>7,11</sup>, D-Nle<sup>8</sup>, Nle<sup>18</sup>, Tyr<sup>34</sup>]hPTH(1-34)NH<sub>2</sub>,
[des-Leu^7, D-Nle^8, Cha^{11}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2
[Cha^{7,11}, D-Nle^8, des-His^9, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2
[Cha^{7,11}, D-Nle^8, Nle^{18}, Tyr^{34}]hPTH(1-31)NH_2,
[Cha^{7,11}, des-Met^{8}, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_{2} (SEQ ID NO:16),
[Cha^{7,11}, D-Nle^8, des-Met^{18}, Tyr^{34}]hPTH(1-34)NH_2
[Cha^{7,11}, des-Met^{8}, des-His^{9}, des-Asn^{10}] hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:45),
[Cha^{7,11}, des-Ser^{17}, des-Met^{18}, des-Glu^{19}]hPTH(1-34)NH<sub>2</sub> (SEQ ID NO:46),
[D-Met^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2
[D-Met^{8}, Tyr^{34}]hPTH(1-34)NH_{2},
[D-Bpa^8, Tyr^{34}]hPTH(1-34)NH_2,
[D-Nle^8, Nle^{18}, Tyr^{34}]hPTH(7-34)NH_2,
[D-Nle^8, Nle^{18}]hPTH(7-34)NH_2 or
[D-Met^8]hPTH(7-34)NH_2.
      12 (withdrawn): A compound according to claim 11 wherein
said compound is
[Cha^{7,11}, des-Met^{8}, Nle^{18}, Tyr^{34}]hPTH-(1-34)NH<sub>2</sub> (SEQ ID NO:16),
[Cha^{7,11}, D-Nle^8, des-Met^{18}, Tyr^{34}]hPTH-(1-34)NH_2,
[Cha^{7,11}, D-Nle^8, Nle^{18}, Tyr^{34}]hPTH-(1-34)NH_2,
```

Applicant

Dong et al.

Page No. : 12

 $[D-Nle^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2 \text{ or } [D-Bpa^8, Tyr^{34}]hPTH(1-34)NH_2.$

13 (currently amended): A human PTHrP analogue or a truncated human PTHrP analogue according to the following of formula (IV) that selectively binds to the PTH2-receptor, $(R^1R^2) - A^1 - A^2 - A^3 - A^4 - A^5 - A^6 - A^7 - A^8 - A^9 - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^3,$

(IV)

which selectively bind to the PTH2 receptor, or a pharmaceutically acceptable salt salts thereof, wherein

A¹ is Ala, Ser, Dap, Thr, Aib or is deleted;

 A^2 is Val or is deleted;

A³ is Ser, Aib, Thr or is deleted;

A⁴ is Glu, Asp or is deleted;

 A^5 is His, Ile, Acc, Val, Nle, Phe, Leu, p-X-Phe, ß-Nal, Aib, Cha or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

A⁷ is Leu, Val, Cha, Nle, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe, Aib, a lipophilic amino acid or is deleted;

A⁸ is Leu, Met, Acc, Cha, Aib, Nle, Phe, Ile, Val, ß-Nal, p-X-Phe, a lipophilic amino acid or is deleted;

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asp, Asn, a hydrophilic amino acid or is deleted;

 A^{11} is Lys, Arg, Leu, Cha, Aib, p-X-Phe, Ile, Val, Nle, Acc, Phe, \mathfrak{L}_{n} -Nal, \mathfrak{L}_{n} -Ch((\mathfrak{L}_{n}) \mathfrak{L}_{n} -Ch(0), a lipophilic D-amino acid, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib or is deleted;

 A^{13} is Lys, Arg, $HN-CH((CH_2)_nNH-R^4)-C(O)$ or is deleted;

A¹⁴ is Ser, His or is deleted;

A¹⁵ is Ile, Acc, Cha, Leu, Phe, Nle, &-Nal, Trp, p-X-Phe, Val, Aib or is deleted;

A¹⁶ is Gln, Aib or is deleted;

A¹⁷ is Asp, Aib or is deleted;

Page No. : 13

A¹⁸ is Leu, Aib, Acc, Cha, Phe, Ile, Nle, ß-Nal, Val, p-X-Phe or is deleted;

 A^{19} is Arg, Lys, Aib, $HN-CH((CH_2)_nNH-R^4)-C(O)$ or is deleted;

 A^{20} is Arg, Lys, $HN-CH((CH_2)_nNH-R^4)-C(O)$ or is deleted;

 A^{21} is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(0) or is deleted;

A²² is Phe, Glu, Aib, Acc, p-X-Phe, ß-Nal, Val, Leu, Ile, Nle or Cha;

A²³ is Phe, Leu, Lys, Acc, Cha, ß-Nal, Aib, Nle, Ile, p-X-Phe, Val or Trp;

A²⁴ is Leu, Lys, Acc, Nle, Ile, Val, Phe, ß-Nal, Aib, p-X-Phe, Arg or Cha;

A²⁵ is His, Lys, Aib, Acc, Arg or Glu;

A²⁶ is His, Aib, Acc, Arg or Lys;

A²⁷ is Leu, Lys, Acc, Arg, Ile, Val, Phe, Aib, Nle, ß-Nal, p-X-Phe or Cha;

A²⁸ is Ile, Leu, Lys, Acc, Cha, Val, Phe, p-X-Phe, Nle, ß-Nal, Aib or is deleted;

A²⁹ is Ala, Glu, Acc, Aib or is deleted;

A³⁰ is Glu, Leu, Nle, Cha, Aib, Acc, Lys, Arg or is deleted;

A³¹ is Ile, Leu, Cha, Lys, Acc, Phe, Val, Nle, ß-Nal, Arg or is deleted;

A³² is His or is deleted;

A³³ is Thr, Ser or is deleted;

A³⁴ is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, ß-Nal, Aib, Acc or is deleted;

 ${\tt A}^{35}$ is Glu, Asp or is deleted;

A³⁶ is Ile, Acc, Cha, Leu, Phe, Nle, ß-Nal, Trp, p-X-Phe, Val, Aib or is deleted;

 ${\rm A}^{37}$ is Arg, Lys, HN-CH((CH₂)_nNH-R⁴)-C(O) or is deleted;

A³⁸ is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, ß-Nal, Aib, Acc or is deleted;

 R^1 and R^2 are each independently selected from the group consisting of H, (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl,

Applicant Serial No. Filing Date Dong et al. 09/674,597 April 9, 2001

Page No.

14

 $\begin{array}{lll} phenyl-(C_1-C_{30})\,alkyl\,, & naphthyl\,(C_1-C_{30})\,alkyl\,, \\ hydroxy\,(C_1-C_{30})\,alkyl\,, & hydroxy\,(C_2-C_{30})\,alkenyl\,, & hydroxy-phenyl\,(C_1-C_{30})\,alkyl\, & \underline{or} & \underline{and} & hydroxy-naphthyl\,(C_1-C_{30})\,alkyl\,; \end{array}$

or one of R^1 or R^2 is COE^1 where E^1 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy-phenyl (C_1-C_{30}) alkyl or hydroxy-naphthyl (C_1-C_{30}) alkyl; and

 R^3 is OH, NH_2 , (C_1-C_{30}) alkoxy or $NH-Y-CH_2-Z$, where Y is a (C_1-C_{30}) hydrocarbon moiety and Z is CO_2H or $CONH_2$; n for each occurrence is independently an integer from 1 to 5; and

 R^4 for each occurrence is independently (C_1-C_{30}) alkyl, (C_1-C_{30}) acyl or $-C((NH)(NH_2))$;

provided that the compound said human PTHrP analogue, said truncated human PTHrP analogue or said pharmaceutically acceptable salts thereof is are not PTHrP(1-34)R³ (SEQ ID NO:9), PTHrP(1-35)R³ (SEQ ID NO:10), PTHrP(1-36)R³ (SEQ ID NO:11), PTHrP(1-37)R³ (SED ID NO:12) or PTHrP(1-38)R³ (SEQ ID NO:13), and further provided that the compound said human PTHrP analogue, said truncated human PTHrP analogue or said pharmaceutically acceptable salts thereof is are not [Ile⁵, Trp²³]PTHrP(1-36)(SEQ ID NO:14) or [Trp²³]PTHrP(1-36)(SEQ ID NO:15).

14 (currently amended):

A compound human PTHrP analogue of according to the following formula (V),

 $(R^{1}R^{2}) - A^{1} - A^{2} - A^{3} - A^{4} - A^{5} - A^{6} - A^{7} - A^{8} - A^{9} - A^{10} - A^{11} - A^{12} - A^{13} - A^{14} - A^{15} - A^{16} - A^{17} - A^{18} - A^{19} - A^{20} - A^{21} - A^{22} - A^{23} - A^{24} - A^{25} - A^{26} - A^{27} - A^{28} - A^{29} - A^{30} - A^{31} - A^{32} - A^{33} - A^{34} - A^{35} - A^{36} - A^{37} - A^{38} - R^{3} ,$

which selectively bind to the PTH2 receptor, or a pharmaceutically acceptable salt salts thereof, wherein A¹ is Ala, Ser, Dap, Thr, Aib or is deleted;

Applicant Serial No. Dong et al. 09/674,597 April 9, 2001

Filing Date
Page No.

1

A² is Val or is deleted;

A³ is Ser, Aib, Thr or is deleted;

A⁴ is Glu, Asp or is deleted;

A⁵ is His, Ile, Acc, Val, Nle, Phe, Leu, p-X-Phe, ß-Nal, Aib, Cha or is deleted;

A⁶ is Gln, a hydrophilic amino acid or is deleted;

A⁷ is Leu, Val, Cha, Nle, ß-Nal, Trp, Pal, Acc, Phe, p-X-Phe, Aib, a lipophilic amino acid or is deleted;

A⁸ is Leu, Met, Acc, Cha, Aib, Nle, Phe, Ile, Val, ß-Nal, p-X-Phe, a lipophilic amino acid or is deleted;

A⁹ is His, a hydrophilic amino acid or is deleted;

A¹⁰ is Asp, Asn, a hydrophilic amino acid or is deleted;

 A^{11} is Lys, Arg, Leu, Cha, Aib, p-X-Phe, Ile, Val, Nle, Acc, Phe, &B-Nal, $HN-CH((CH_2)_nNH-R^4)-C(0)$, a lipophilic D-amino acid, a hydrophilic amino acid or is deleted;

A¹² is Gly, Acc, Aib or is deleted;

 A^{13} is Lys, Arg, $HN-CH((CH_2)_nNH-R^4)-C(0)$ or is deleted;

A¹⁴ is Ser, His or is deleted;

A¹⁵ is Ile, Acc, Cha, Leu, Phe, Nle, ß-Nal, Trp, p-X-Phe, Val, Aib or is deleted;

A¹⁶ is Gln, Aib or is deleted;

A¹⁷ is Asp, Aib or is deleted;

A¹⁸ is Leu, Aib, Acc, Cha, Phe, Ile, Nle, ß-Nal, Val, p-X-Phe or is deleted;

 A^{19} is Arg, Lys, Aib, $HN-CH((CH_2)_nNH-R^4)-C(O)$ or is deleted;

 A^{20} is Arg, Lys, $HN-CH((CH_2)_nNH-R^4)-C(0)$ or is deleted;

 A^{21} is Arg, Lys, $HN-CH((CH_2)_nNH-R^4)-C(0)$ or is deleted;

 A^{22} is Phe, Glu, Aib, Acc, p-X-Phe, ß-Nal, Val, Leu, Ile, Nle or Cha;

A²³ is Phe, Leu, Lys, Acc, Cha, ß-Nal, Aib, Nle, Ile, p-X-Phe, Val or Trp;

 ${\tt A}^{24}$ is Leu, Lys, Acc, Nle, Ile, Val, Phe, ß-Nal, Aib, p-X-Phe, Arg or Cha;

Page No. :

A²⁵ is His, Lys, Aib, Acc, Arg or Glu;

A²⁶ is His, Aib, Acc, Arg or Lys;

16

A²⁷ is Leu, Lys, Acc, Arg, Ile, Val, Phe, Aib, Nle, ß-Nal, p-X-Phe or Cha;

A²⁸ is Ile, Leu, Lys, Acc, Cha, Val, Phe, p-X-Phe, Nle, ß-Nal, Aib or is deleted;

A²⁹ is Ala, Glu, Acc, Aib or is deleted;

A³⁰ is Glu, Leu, Nle, Cha, Aib, Acc, Lys, Arg or is deleted;

A³¹ is Ile, Leu, Cha, Lys, Acc, Phe, Val, Nle, ß-Nal, Arg or is deleted;

A³² is His or is deleted;

A³³ is Thr, Ser or is deleted;

A³⁴ is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, ß-Nal, Aib, Acc or is deleted;

A³⁵ is Glu, Asp or is deleted;

A³⁶ is Ile, Acc, Cha, Leu, Phe, Nle, ß-Nal, Trp, p-X-Phe, Val, Aib or is deleted;

 A^{37} is Arg, Lys, $HN-CH((CH_2)_nNH-R^4)-C(O)$ or is deleted;

A³⁸ is Ala, Phe, Tyr, Cha, Val, Ile, Leu, Nle, ß-Nal, Aib, Acc or is deleted;

 R^1 and R^2 are each independently selected from the group consisting of H, (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl- (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy((C_1-C_{30}) alkyl, hydroxy((C_2-C_{30}) alkenyl, hydroxy-phenyl((C_1-C_{30}) alkyl) or and hydroxy-naphthyl((C_1-C_{30}) alkyl;

or one of R^1 or R^2 is COE^1 where E^1 is (C_1-C_{30}) alkyl, (C_2-C_{30}) alkenyl, phenyl (C_1-C_{30}) alkyl, naphthyl (C_1-C_{30}) alkyl, hydroxy (C_1-C_{30}) alkyl, hydroxy (C_2-C_{30}) alkenyl, hydroxy-phenyl (C_1-C_{30}) alkyl or hydroxy-naphthyl (C_1-C_{30}) alkyl; and

 R^3 is OH, NH_2 , (C_1-C_{30}) alkoxy or $NH-Y-CH_2-Z$, where Y is a (C_1-C_{30}) hydrocarbon moiety and Z is CO_2H or $CONH_2$;

Page No. : 17

n for each occurrence is independently an integer from 1 to 5; and

 R^4 for each occurrence is independently (C_1-C_{30}) alkyl, (C_1-C_{30}) acyl or $-C((NH)(NH_2))$;

provided that when A^8 is not a lipophilic D-amino acid or is not deleted then at least one of A^6 , A^7 , A^9 , A^{10} , A^{11} and A^{12} is a D-amino acid or at least one of A^6 , A^7 , A^9 , A^{10} , A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} , A^{18} , A^{19} , A^{20} , A^{21} and A^{22} is deleted.

15 (withdrawn): A compound according to claim 14 wherein said compound is

[Ile⁵, D-Leu⁸]hPTHrP(1-34)NH₂,

[Ile⁵, D-Leu⁸, Trp²³]hPTHrP(1-34)NH₂,

[Ile⁵, des-Leu⁸, Trp²³]hPTHrP(1-34)NH₂ (SEQ ID NO:47),

[Ile⁵, des-Leu⁸]hPTHrP(1-34)NH₂ (SEQ ID NO:48),

[des-Leu⁸, Trp²³]hPTHrP(1-34)NH₂ (SEQ ID NO:49),

[Ile⁵, des-Leu¹⁸]hPTHrP(1-34)NH₂ (SEQ ID NO:50),

[Ile⁵, des-Leu¹⁸, Trp²³]hPTHrP(1-34)NH₂ (SEQ ID NO:51),

[des-Leu¹⁸, Trp²³]hPTHrP(1-34)NH₂ (SEQ ID NO:52),

 $[Ile^5, D-Leu^8, Glu^{22,25}, Leu^{23,28,31}, Lys^{26,30}, Aib^{29}]hPTHrP(1-34)NH₂,$

[le^5 , $D-Leu^8$, $Glu^{22,25}$, Trp^{23} , $Lys^{26,30}$, $Leu^{28,31}$, Aib^{29}]hPTHrP(1-34)NH₂,

 $[le^5, D-Leu^8, Glu^{22,25,29}, Leu^{23,28,31}, Lys^{26,30}]hPTHrP(1-34)NH_2,$

 $[\mathrm{Ile^5},\ \mathrm{D-Leu^8},\ \mathrm{Glu^{22,25,29}},\ \mathrm{Trp^{23}},\ \mathrm{Lys^{26,30}},\ \mathrm{Leu^{28,31}}]\ \mathrm{hPTHrP(1-34)NH_2}\ \mathrm{or}\\ [\mathrm{D-Leu^8},\ \mathrm{Trp^{23}}]\ \mathrm{hPTHrP(7-34)NH_2}.$

16 (withdrawn): A method of selectively binding the PTH2 receptor which comprises administering to a patient in need thereof an analogue according to claim 9 or a pharmaceutically acceptable salt thereof.

17 (withdrawn): A method of selectively binding the PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 10 or a pharmaceutically acceptable salt thereof.

Page No. : 18

18 (withdrawn): A method of selectively binding the PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 11 or a pharmaceutically acceptable salt thereof.

19 (withdrawn): A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 12 or a pharmaceutically acceptable salt thereof.

- 20 (withdrawn): A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof an analogue according to claim 13 or a pharmaceutically acceptable salt thereof.
- 21 (withdrawn): A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 14 or a pharmaceutically acceptable salt thereof.
- 22 (withdrawn): A method of selectively binding a PTH2 receptor which comprises administering to a patient in need thereof a compound according to claim 15 or a pharmaceutically acceptable salt thereof.
- 23 (original): A pharmaceutical composition comprising an analogue according to claim 9 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 24 (original): A pharmaceutical composition comprising a compound according to claim 10 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 25 (withdrawn): A pharmaceutical composition comprising a compound according to claim 11 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.

Page No. : 19

- 26 (withdrawn): A pharmaceutical composition comprising a compound according to claim 12 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 27 (original): A pharmaceutical composition comprising an analogue according to claim 13 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 28 (original): A pharmaceutical composition comprising a compound according to claim 14 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 29 (withdrawn): A pharmaceutical composition comprising a compound according to claim 15 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- 30 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 7, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 31 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 9, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 32 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 10,

Page No. : 20

sufficient to inhibit the activation of the PTH2 receptor of said patient.

- 33 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 11, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 34 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 12, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 35 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of an analogue according to claim 13, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 36 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 14, sufficient to inhibit the activation of the PTH2 receptor of said patient.
- 37 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a compound according to claim 15, sufficient to inhibit the activation of the PTH2 receptor of said patient.

Page No. : 21

38 (withdrawn): A method according to claim 30 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

39 (withdrawn): A method according to claim 31 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

40 (withdrawn): A method according to claim 32 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

41 (withdrawn): A method according to claim 33 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

42 (withdrawn): A method according to claim 34 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

43 (withdrawn): A method according to claim 35 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

44 (withdrawn): A method according to claim 36 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism

Page No. : 22

and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

45 (withdrawn): A method according to claim 37 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

46 (withdrawn): A method of treating a medical disorder that results from altered or excessive action of the PTH2 receptor, which comprises administering to a patient in need thereof an effective amount of a PTH analogue or a truncated PTH analogue or a pharmaceutically acceptable salt thereof according to claim 1, sufficient to inhibit the activation of the PTH2 receptor of said patient.

47 (withdrawn): A method according to claim 46 wherein said medical disorder is abnormal CNS functions, abnormal pancreatic functions, divergence from normal mineral metabolism and homeostasis, male infertility, abnormal blood pressure or a hypothalmic disease.

48 (new): A compound according to claim 10 wherein said compound is $[Cha^{7,11}, des-Met^8, Nle^{18}, Tyr^{34}]hPTH(1-34)NH_2$ (SEQ ID NO:16).

49 (new): A pharmaceutical composition comprising an analogue according to claim 48 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.