| Last time : Dot Product                                                                                                                           |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| $\vec{v}$ and $\vec{v}$ are otherword if $\vec{v} \cdot \vec{v} = 0$                                                                              |                    |
| 12.4 Cross Product                                                                                                                                | 1 R3               |
| goal give two vectors 7: (U, U2, U37,                                                                                                             |                    |
| V= < V, V2 V, Y + R3. Construct a                                                                                                                 | 1-3                |
| vector w = <w, +="" 1r3="" 50<="" 7="" td="" w,=""><td>*</td></w,>                                                                                | *                  |
| that wis ormoganal to vans v                                                                                                                      | took ver           |
| (want to find is conomically)                                                                                                                     | K build Plan       |
| 4.3 10 4.06                                                                                                                                       | 46                 |
| How?: We Know that of 0 = \vec{v} \cdot \vec{w} = (v, w, + v, w)                                                                                  | 2 1349             |
| Give "this formula" we want to find Kw., in, i                                                                                                    | N3 W3 7 - W        |
| GIVE INIS IDIMPLE SEE WASTE TO THE CO. TO THE                                                                                                     | , ~                |
| Therefore, we multiply 1 by vs and 1 by us                                                                                                        | to obtain!         |
| () (0 = V3 (1.1) = (V,V3) W, + (U2 V3) W2+                                                                                                        | (U2 V3) W3         |
| (2) (0= U3 (2. 2 = (U3V,)W, + (U3Ve)W2+                                                                                                           | (U3 V3) W3         |
|                                                                                                                                                   |                    |
| Next subtract (2) from (1)                                                                                                                        | aside: -ax tby = 0 |
| 1 0 = V3 (3.3) - V3 (3.3)                                                                                                                         | has solution (x=b) |
|                                                                                                                                                   | to - ab + ba = 0   |
| = (U, V3 - U3V, ) w, + (U2 V3 - U3 V2) W2                                                                                                         |                    |
| = - (- (U, V3 - U3V,)) W, + (U2V3 - U3)                                                                                                           |                    |
|                                                                                                                                                   | /2 ) W2            |
| Hence: 1 has at least the solution                                                                                                                |                    |
| 1 I I I I I I I I I I I I I I I I I I I                                                                                                           | Ī                  |
| $\left\{ \begin{array}{l} \omega_{1} = V_{1} V_{3} - U_{3} V_{2} \\ \omega_{2} = - \left( V_{1} V_{3} - U_{3} V_{1} \right) \end{array} \right\}$ |                    |

Inputting these to 1 we obtain 0= U, w, + U2 w2 + U3 w3 = U, (U2V3-U3V2) + U2 (-(U,V3-U3V,)) + U3 W3 = U, U2V3 - U, U3V2 - U, U2V3 + U2V3V, + U3W3. TU3 (02 V, -U, V2 + W3) Site note: either U3 =0 OC M = U, V2 - Nou, Claim: (modulo the Jetail that uz may be 0) We have the solution! W = ( U2V3 - U3V2 , - (U1V3 - U3V1) , U1V2 - U2V1) Now Check I Symbolically Def: The determinant of the 2x2 matrix is det [ab] = |ab| = +ad-be Def: The determinant of the 3x3 matrix is det la c = abc alteration in signs from 2x2 to 3x3 ... +,-,+,-,+,-



NB: This has been done in R3. This only works in R3 (cross product) The cross product as a vector operation (vector in 183 x vector in 183 -> vector in 183) 0 x1 = undefined - 1 is not in 123 <1,1> x (3,27 = undefined > not defined in IR3 Prop (Algebraic Properties of Cross product): 0 0 x v = - v x v 0 Proof: VXV = 1 1 K  $= \frac{1}{1} \begin{vmatrix} v_2 v_3 \\ v_1 v_2 \end{vmatrix} - \frac{1}{1} \begin{vmatrix} v_1 v_3 \\ v_1 v_3 \end{vmatrix} + \frac{1}{1} \begin{vmatrix} v_1 v_2 \\ v_1 v_2 \end{vmatrix}$ = 1 (V2U3-V3U2)-3. (V1U3+V3U1)+ K (V1U2-V2U1) = <V2U3-V3U2, -V1U3-V3U1, V1U2-V2U1) = <-(v, V3 - U3V2), -(-(v, V3 - U3V1)), -(v, V2 - U2V1) = - (U2V3 - U3V2, - (U,V3 -U3V,), U1V2 -U2V1) 

= - UXV

- @ (ct) xt = c(txt) = Ux(ct) 1 communative
- 3 v x(v+w) = (vxv) + (vxw) distributive on left
- Q (3+3) xw = (3xw) + (3xw) distributive on right
- # 3 3 · (txt) = (txt). 2
  - ©  $\vec{v} \times (\vec{v} \times \vec{w}) = (\vec{v} \cdot \vec{w})\vec{v} (\vec{v} \cdot \vec{v})\vec{w}$  (ross product of cross product)

    prop (geometric properties of cross product)

    Let  $\vec{v} \cdot \vec{v} \in \mathbb{R}^3$
  - Oixi is orthogonal to both i and i
  - 2 |3, 2 = 13/12/ sin(0) 0 is the angle between i and ?
  - 3 t x = 0 / lif and only if it is pomilled to v