

Формула Ньютона-Лейбница. Примеры вычисления интегралов

В этом уроке

- Определение определенного интеграла
- Формула Ньютона–Лейбница
- Площадь фигуры

Основные определения

Пусть функция f(x) — непрерывная и неотрицательная на [a;b], F(x) — первообразная функции f(x) на [a;b]. Тогда:

$$S = F(b) - F(a)$$

Формула Ньютона–Лейбница

Пусть функция f(x) — непрерывная и неотрицательная на [a;b], F(x) — первообразная функции f(x) на [a;b].

Формула Ньютона-Лейбница:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Вычислить определенный интеграл $\int_{1}^{2} 2x^{2}dx$.

Решение:

$$\int_{1}^{2} 2x^{2} dx = 2 \cdot \int_{1}^{2} x^{2} dx = \frac{2}{3} x^{3} \Big|_{1}^{2} = \frac{2}{3} (2^{3} - 1^{3}) = \frac{2}{3} (8 - 1) = \frac{14}{3} = 4\frac{2}{3}$$

Ответ: $4\frac{2}{3}$.

Вычислить определенный интеграл $\int_{-1}^{2} x^2 dx$.

Решение:

$$\int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{2} = \frac{2^{3}}{3} - \frac{(-1)^{3}}{3} = 3$$

Ответ: 3.

Вычислить определенный интеграл $\int_0^{\pi} \sin x dx$.

Решение:

$$\int_0^{\pi} \sin x dx = (-\cos x) \Big|_0^{\pi} = -\cos \pi + \cos 0 = 2$$

Ответ: 2.

Плодащь фигуры,

① Если непрерывная кривая задана уравнением y = f(x), $f(x) \ge 0$, то:

$$S = \int_{a}^{b} f(x)dx$$

Вычислить площадь фигуры, ограниченной параболой $y=x^2$, прямыми x=-1, x=2 и осью Ox.

Решение:

$$S = \int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{2} = \frac{2^{3}}{3} - \frac{(-1)^{3}}{3} = 3$$

Ответ: 3.

Плодащь фигуры

 $m{2}$ Если S ограничена графиками непрерывных функций y=f(x) и y=g(x) и двумя прямыми $x=a,\ x=b$ и $f(x)\leq g(x)$ при $a\leq x\leq b$, то:

$$S = \int_{a}^{b} (g(x) - f(x))dx$$

Вычислить площадь сегмента, отсекаемого прямой y=-x от параболы $(x-1)^2=-(y-1).$

Решение:

$$\begin{cases}
y = 2x - x^2 \\
y = -x
\end{cases} \Rightarrow \begin{cases}
x_1 = 0; y_1 = 0 \\
x_2 = 3; y_2 = -3
\end{cases}$$

$$S = \int_0^3 (2x - x^2 - (-x))dx =$$

$$= \int_0^3 (3x - x^2)dx = \left(\frac{3x^2}{2} - \frac{x^3}{3}\right)\Big|_0^3 = \frac{9}{2} = 4.5$$

Ответ: 4.5.

Плодащь фигуры

§ Если криволинейная трапеция ограничена кривой $x = \varphi(y)$, прямыми y = c, y = d и отрезком [c;d] оси Oy, то:

$$S = \int_{c}^{d} \varphi(y) dy$$

Пример б

Найти площадь фигуры, ограниченной линиями $x=\sqrt{y},\ x=0,\ y=4.$

Решение:

3
$$S_{OABC} = \int_0^2 4 \, dx = 8$$
, $S_{OBC} = \int_0^2 x^2 dx = \frac{8}{3}$

$$S = 8 - \frac{8}{3} = \frac{16}{3}$$

Ответ: 16/3.

Пример б

Найти площадь фигуры, ограниченной линиями $x=\sqrt{y},\ x=0,\ y=4.$

Альтернативное решение:

$$\begin{cases}
 x = 0 \\
 x = \sqrt{y}
\end{cases} \Rightarrow y = 0$$

$$S = \int_0^4 \sqrt{y} dy = \frac{2y\sqrt{y}}{3} \Big|_0^4 = \frac{2 \cdot 4 \cdot 2}{3} - 0 = \frac{16}{3}$$

Ответ: 16/3.

