Splines

Trevor Hastie and Robert Tibshirani

Here, I am adapting part of the lab associated with Chapter 7 of the textbook.

In this lab, we re-analyze the Wage data considered in the examples throughout this chapter, in order to illustrate the fact that many of the complex non-linear fitting procedures discussed can be easily implemented in R. We begin by loading the ISLR2 library, which contains the data.

Cubic splines

In order to fit regression splines in R, we use the **splines** library. In Section 7.4, we saw that regression splines can be fit by constructing an appropriate matrix of basis functions. The **bs()** function generates the entire matrix of basis functions for splines with the specified set of knots. By default, cubic splines are produced. Fitting wage to age using a regression spline is simple:

```
library(splines)
fit <- lm(wage ~ bs(age, knots = c(25, 40, 60)), data = Wage)

agelims <- range(age)
age.grid <- seq(from = agelims[1], to = agelims[2])
preds <- predict(fit, newdata = list(age = age.grid),</pre>
```

```
se = TRUE)
se.bands <- cbind(preds$fit + 2 * preds$se.fit,
    preds$fit - 2 * preds$se.fit)

pred <- predict(fit, newdata = list(age = age.grid), se = T)
plot(age, wage, col = "gray", pch=20)
lines(age.grid, pred$fit, lwd = 2)
lines(age.grid, pred$fit + 2 * pred$se, lty = "dashed", col="blue")
lines(age.grid, pred$fit - 2 * pred$se, lty = "dashed", col="blue")</pre>
```


Here we have prespecified knots at ages 25, 40, and 60. This produces a spline with six basis functions. (Recall that a cubic spline with three knots has seven degrees of freedom; these degrees of freedom are used up by an intercept, plus six basis functions.) We could also use the df option to produce a spline with knots at uniform quantiles of the data.

```
dim(bs(age, knots = c(25, 40, 60)))
## [1] 3000 6
dim(bs(age, df = 6))
## [1] 3000 6
attr(bs(age, df = 6), "knots")
```

[1] 33.75 42.00 51.00

In this case R chooses knots at ages 33.8, 42.0, and 51.0, which correspond to the 25th, 50th, and 75th percentiles of age. The function bs() also has a degree argument, so we can fit splines of any degree, rather than the default degree of 3 (which yields a cubic spline).

In order to instead fit a natural spline, we use the ns() function. Here we fit a natural spline with four degrees of freedom.

```
fit2 <- lm(wage ~ ns(age, df = 4), data = Wage)
pred2 <- predict(fit2, newdata = list(age = age.grid),</pre>
```

```
se = T)
plot(age, wage, col = "gray", pch=20)
lines(age.grid, pred2$fit, col = "red", lwd = 2)
```


As with the bs() function, we could instead specify the knots directly using the knots option.

In order to fit a smoothing spline, we use the **smooth.spline()** function. Figure 7.8 was produced with the following code:

Smoothing Spline

Notice that in the first call to smooth.spline(), we specified df = 16. The function then determines which value of λ leads to 16 degrees of freedom. In the second call to smooth.spline(), we select the smoothness level by cross-validation; this results in a value of λ that yields 6.8 degrees of freedom.