Statis	tiques	

Propriétés de la Somme

n	,		
$\sum \lambda$	=(n	-p -	$+1)\lambda$

$$\sum_{i=1}^n \lambda x_i = \lambda \sum_{i=1}^n x_i$$

$$i=1$$
 $i=1$

$$\sum_{i=1}^n \left(x_i + y_i
ight) = \sum_{i=1}^n x_i + \sum_{i=1}^n y_i$$

$$\sum_{i=1}^n x_i = \sum_{i=1}^p x_i + \sum_{i=p+1}^n x_i$$

Symboles utilisés

Moyenne d'un échantillon

$$x = (x_1, x_2, x_3, ..., x_n)$$

N

 n_i

 N_i

 F_i

Fréquence Absolue

 $f_i = \frac{n_i}{N}$

Fréquence Relative Cumulée

 $\bar{x} = \frac{\sum_{i=1}^k x_i}{N}$

 $ar{x} = rac{\sum_{i=1}^k n_i x_i}{N}$

Si N est impair

Si N est pair

Données groupées en classes

$$ar{x} = \sum_{i=1}^k f_i x_i$$

 $Me=x_k, k=rac{N+1}{2}$

 $Me=rac{x_k+x_{k+1}}{2}, k=rac{N}{2}$

$$\sum_{i=1}^k d_i = \sum_{i=1}^k (x_i - ar{x}) = 0$$

du carré des déviations

Variance d'un échantillon

Moyenne de la somme

des déviations

Données non groupées Moyenne de la somme

$$SS_x = \sum_{i=1}^k x_i^2 - kar{x}^2$$

 $SS_x = \sum_{i=1}^k (x_i - \bar{x})^2 n_i$

 $SS_x = \sum_{i=1}^k (x_i - \bar{x})^2$

$$S_x^2 = rac{SS_x}{N-1}$$

$$\frac{SS_x}{V-1}$$

Écart-type d'un échantillon
$$S_x = \sqrt{rac{SS_x}{N-1}}$$