FMI, Info, Anul I Semestrul I, 2015/2016 Logică matematică și computațională Laurențiu Leuştean, Alexandra Otiman, Andrei Sipoş

06-07.10.2015

Seminar 1

(S1.1) Fie T o mulţime şi $A, B, X \subseteq T$ cu $A \cap B = \emptyset$ şi $A \cup (B \setminus X) = B \cup X$. Să se arate că X = A.

(S1.2) Fie $A = \{a, b, c, d\}$ şi $R = \{(a, b), (a, c), (c, d), (a, a), (b, a)\}$ o relaţie binară pe A. Care este compunerea $R \circ R$? Care este inversa R^{-1} a lui R? Care dintre relaţiile $R, R^{-1}, R \circ R$ este funcţie?

(S1.3) Dați exemplu de familie de submulțimi ale lui $\mathbb R$ indexată, pe rând, după:

- (i) \mathbb{N}^* ;
- (ii) \mathbb{Z} ;
- (iii) $\{2, 3, 4\}$.

Determinați reuniunea și intersecția fiecărei familii date ca exemplu.

(S1.4) Dacă $(A_i)_{i\in I}$ este o familie de submulțimi ale unei mulțimi X, arătați următoarele (legile lui De Morgan):

- (i) $C_X \bigcup_{i \in I} A_i = \bigcap_{i \in I} C_X A_i$;
- (ii) $C_X \bigcap_{i \in I} A_i = \bigcup_{i \in I} C_X A_i$.

(S1.5)

- (i) Demonstrați că orice intervale deschise (a, b), (c, d) ale lui \mathbb{R} sunt echipotente.
- (ii) Demonstrați că (0,1),(0,1],[0,1),[0,1] și $\mathbb R$ sunt echipotente.