Towards a Classification of Contextuality

Hardy is almost everywhere

Nom-Locality without imequalities
for almost all entangled multipartite states

Towards a Classification of Contextuality

Hardy is almost everywhere

Nom-Locality without imequalities
for almost all entangled multipartite states

Towards a Classification of Contextuality (Weak < Logical < Strong)

Hardy is almost everywhere

Nom-Locality without imequalities
for almost all entangled multipartite states

Towards a Classification of Contextuality (Weak < Logical < Strong) Hardy is almost everywhere Nom-Locality without imequalities for almost all entangled multipartite states

Towards a Classification of Contextuality (Weak < Logical < Strong) Hardy is almost everywhere Nom-Locality without imequalities for almost all entangled multipartite states

Recording Empirical Observations

M M M	X	X	
M V S			

Idea: Keep track of what CAN/CAN'T happen

(NOT how likely it is to happen)

_		+ +	+ -	- +	
	ММ				
	M V				
	V M				
	VV				

	+ +	+ -	- +	
MM				
MV				
V M				
comtexts				

local sections

This cell specifies a function s: {M, , V, b} -> {+,-}

This cell specifies a function $s: \{M_A, V_B\} \longrightarrow \{+, -\}$ an atomic logical formula $f: \{M_A, V_B\} \longrightarrow \{+, -\}$

Empirical Models MM V_M comexts local sections empitical data (determines the SUPPORT of the E.M.)

Global to Local

	+ +	+ -	- +	
н н				
MV				
VM				
VV				

Global sections:

Global to Local

	+ +	+ -	- +	
ММ		0	0	
MV	1		0	
VM	i	0	0	
VV	1		O	

Global sections:

Global to Local

	+ +	+ -	- +	
ММ		0	O	
M V	1	0	0	
VM		0	0	
VV	1		O	

Global sections:

$$\frac{\mathsf{M}_{\mathsf{A}}\;\mathsf{M}_{\mathsf{B}}\;\mathsf{V}_{\mathsf{A}}\;\mathsf{V}_{\mathsf{B}}}{+\;\;+\;\;-\;\;+\;}$$

$$\frac{M_A}{M_B}$$
 $\frac{M_B}{V_A}$ $\frac{V_B}{V_B}$; $\frac{M_A}{M_B}$ $\frac{M_B}{V_A}$ $\frac{V_B}{V_B}$ incomsistent with the support

may be incomsistent

		+ +	+ -	- +	
M	М	1			1
М	٧	1			1
V	М	1			1
V	٧	1			1

	+ +	+ -	- +	
н н	1			1
M V	1			1
V M	1			1
VV	1			1

Global sections:

$$M_A$$
 M_B V_A V_B

	+ +	+ -	- +	
мм	1			1
M V	1			1
V M	1			1
V V	1			1

Global sections:

$$M_A$$
 M_B V_A V_B

Not contextual (im the logical semse)

	+ +	+ -	- +	
м м	1			1
M V	1			1
VM	1			1
VV		1	1	

		+ +	+ -	- +	
M P	1	1			1
M V	/	1			1
VM	I	1			1
VV	/		1	1	

Global sections:

r o	1.	CP10
Local	to	Global

	+ +	+ -	- +	
м м	1			1
M V	1			1
VM	1			1
VV		1	1	

Global sections:

"Strong Contextuality"

	+ +	+ -	- +	
н н	1	1	1	1
M V		1	1	1
Vм		1	1	1
VV	1	1	1	

	+ +	+ -	- +	
н н	1	1	1	1
M V		1	1	1
VM		1	1	1
VV	1	1	1	

Global sections:

MA	MB	VA	V _B
_	_	+	+

	+ +	+ -	- +	
ММ	1	1	1	1
M V		1	1	1
VM		1	1	1
VV	1	1	1	

Global sections:

MA	MB	VA	VB
_	_	+	+

$$M_A M_B V_A V_B$$
+ + γ γ

	+ +	+ -	- +	
ММ	1	1	1	1
M V		1	1	1
VM		1	1	1
VV	1	1	1	

Global sections:

MA	MB	VA	V _B
_	_	+	+

"Logical Comtextuality"

	+ +	+ -	- +	
мм	1	1	1	1
M V		1	1	1
V M		1	1	1
VV	1	1	1	

	+ +	+ -	- +	
ММ	1	1	1	1
M V		1	1	1
V M		1	1	1
VV	1	1	1	

Schmidt decomposition:

$$|\Psi\rangle = \propto |\alpha\rangle, |\alpha\rangle - \beta|b\rangle, |b\rangle,$$

	+ +	+ -	- +	
н н	1	1	1	1
M V		1	1	1
VM		1	1	1
VV	1	1	1	

Schmidt decomposition:

$$|\Psi\rangle = \propto |a\rangle, |a\rangle - \beta|b\rangle, |b\rangle$$

Chose observables

$$M_{i} = |m_{i}\rangle\langle m_{i}| \qquad \forall_{i} = |v_{i}\rangle\langle v_{i}|$$

	+ +	+ -	- +	
ММ	1	1	1	1
M V		1	1	1
VM		1	1	1
VV	1	1	1	

Schmidt decomposition:

$$|\Psi\rangle = \propto |\alpha\rangle, |b\rangle, -\beta|\alpha\rangle, |b\rangle$$

Chose observables

$$M_{i} = |m_{i}\rangle\langle m_{i}| \qquad \forall_{i} = |\nabla_{i}\rangle\langle \nabla_{i}|$$

where the + eigenvectors are
$$|m_{\alpha}\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\beta} |\alpha\rangle + \sqrt{\alpha} |\alpha\rangle_{2} \right)$$

$$|v_{\beta}\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\beta} |b\rangle - \sqrt{\alpha} |b\rangle_{2} \right)$$

	+ +	+ -	- +	
ММ	1	1	1	1
M V		1	1	1
VM		1	1	1
VV	1	1	1	

Schmidt decomposition:

$$|\Psi\rangle = \propto |a\rangle, |b\rangle, -\beta |a\rangle, |b\rangle$$

Chose observables

$$M_{i} = |m_{i}\rangle\langle m_{i}| \qquad \forall_{i} = |\nabla_{i}\rangle\langle \nabla_{i}|$$

where the + eigenvectors are $|m_{\alpha}\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\beta} |\alpha\rangle + \sqrt{\alpha} |\alpha\rangle_{2} \right)$ $|V_{b}\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\beta} |b\rangle_{1} - \sqrt{\alpha} |b\rangle_{2} \right)$

and their orthogonal eigenvectors are

$$| \Pi_{\alpha} \rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(-\sqrt{\alpha^*} | \Omega_{\alpha} \rangle + \sqrt{\beta^*} | \Omega_{\alpha} \rangle \right)$$

$$| u_{\beta} \rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\alpha^*} | \beta_{\alpha} \rangle + \sqrt{\beta^*} | \beta_{\alpha} \rangle \right)$$

$$|u_b\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\alpha^* |b\rangle} + \sqrt{\beta^* |b\rangle}_2 \right)$$

	+ +	+ - - +			
м м	1	1	1	1	
M V		1	1	1	
VM		1	1	1	
VV	1	1	1		

 $\langle \Psi | m_b \rangle | m_b \rangle \neq 0$

Schmidt decomposition:

$$|\Psi\rangle = \propto |\alpha\rangle, |b\rangle, -\beta|\alpha\rangle, |b\rangle$$

Chose observables

$$M_{i} = |m_{i}\rangle\langle m_{i}| \qquad \forall_{i} = |\nabla_{i}\rangle\langle \nabla_{i}|$$

where the + eigenvectors are

$$|m_{\alpha}\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\beta} |\alpha\rangle + \sqrt{\alpha} |\alpha\rangle_{2} \right)$$

$$|V_{\underline{b}}\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\beta} |b\rangle_{1} - \sqrt{\alpha} |b\rangle_{2} \right)$$

and their orthogonal eigenvectors are

$$| \cap_{\alpha} \rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(-\sqrt{\alpha^* |\alpha\rangle} + \sqrt{\beta^* |\alpha\rangle}_2 \right)$$

$$|u_b\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\alpha^* |b\rangle} + \sqrt{\beta^* |b\rangle}_2 \right)$$

	+ +	+ -	- +	
м м	1	1	1	1
M V		1	1	1
VM		1	1	1
VV	1	1	1	

 $\langle \Psi | m_b \rangle | m_b \rangle \neq 0$

 $\langle \Psi | m_a \rangle | V_L \rangle = 0$

Schmidt decomposition:

$$|\Psi\rangle = \propto |\alpha\rangle, |b\rangle, -\beta|\alpha\rangle, |b\rangle$$

Chose observables

$$M_{i} = |m_{i}\rangle\langle m_{i}| \qquad \forall_{i} = |\nabla_{i}\rangle\langle \nabla_{i}|$$

where the + eigenvectors are $|m_{\alpha}\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\beta} |\alpha\rangle + \sqrt{\alpha} |\alpha\rangle_{2} \right)$ $|V_{\underline{b}}\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\beta} |b\rangle_{1} - \sqrt{\alpha} |b\rangle_{2} \right)$

and their orthogonal eigenvectors are

$$| \Pi_{\alpha} \rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(-\sqrt{\alpha^* |\alpha|} + \sqrt{\beta^* |\alpha|}_2 \right)$$

$$| \Pi_{\alpha} \rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\alpha^* |\beta|} + \sqrt{\beta^* |\beta|}_2 \right)$$

$$|u_b\rangle = \frac{1}{\sqrt{|\alpha| + |\beta|}} \left(\sqrt{\alpha^* |b\rangle} + \sqrt{\beta^* |b\rangle}_2 \right)$$

Our Argument

	+ +	+ -	- +		
ММ	1	1	1	1	
M V		1	1	1	
VM		1	1	1	
VV	1	1	1		

Just add ome suitably chosen, additional observable Di for each additional ith gubit

Our Argument

	+++	++-	+-+	+	-++	_+-	+	
D. M M	1	1	1	1	•	•	•	•
D. M V		1	1	1	•	•	•	•
D. V M		1	1	1	•	•	•	•
D ' \ \ \	1	1	1		•	•	•	•

Just add one suitably chosen, see paper the additional observable Di exact formula exact formula to each additional it gubit (the Going Up" lemmas) for each additional it qubit

ALGORITHM

Input An *n*-qubit state $|\omega\rangle$

Output Either

Yes if $|\omega\rangle$ is logically contextual,

together with a list of n+2 local observables, or

No if $|\omega\rangle$ is in \mathcal{P}_n .

Base Cases

1. If n = 1, output No.

2. If n=2, apply the Hardy procedure of the Base Case Lemma to the Schmidt decomposition of $|\omega\rangle$.

Recursive Case: n+1, n>1

1. We apply $\mathsf{Test}\mathcal{P}_{n+1}$ to $|\omega\rangle$. If $|\omega\rangle$ is in \mathcal{P}_{n+1} , return No.

2. Otherwise, we write

$$|\omega\rangle = \alpha |\psi\rangle |0\rangle + \beta |\phi\rangle |1\rangle.$$

Explicitly, if $|\omega\rangle$ is represented by a 2^{n+1} -dimensional complex vector

$$\sum_{\sigma \in \{0,1\}^{n+1}} a_{\sigma} |\sigma\rangle$$

in the computational basis, we can define

$$\alpha = \sqrt{\sum_{\sigma \in \{0,1\}^n} |a_{\sigma 0}|^2}, \qquad \beta = \sqrt{\sum_{\sigma \in \{0,1\}^n} |a_{\sigma 1}|^2}$$

$$|\psi\rangle = \frac{1}{\alpha} \sum_{\sigma \in \{0,1\}^n} a_{\sigma 0} |\sigma\rangle, \qquad |\phi\rangle = \frac{1}{\beta} \sum_{\sigma \in \{0,1\}^n} a_{\sigma 1} |\sigma\rangle.$$

- 3. We apply $\mathsf{Test}\mathcal{P}_n$ to $|\psi\rangle$. If $|\psi\rangle$ is not in \mathcal{P}_n , we proceed recursively with $|\psi\rangle$, and then extend the observables using the construction of the Going Up Lemma I.
- 4. Otherwise, we proceed similarly with $|\phi\rangle$.

5. Otherwise, both $|\psi\rangle$ and $|\phi\rangle$ are in \mathcal{P}_n . For a in (0,1), we define

$$\tau(a) := a|\psi\rangle + \sqrt{1 - a^2}|\phi\rangle.$$

For 19 distinct values in (0,1), we assign these values to a, and apply $\mathsf{Test}\mathcal{P}_n$ to $\tau(a)$.

If we find a value of a for which $\tau(a)$ is not in \mathcal{P}_n , we use that value to compute the local observable $B(\frac{\alpha}{a}, \frac{\beta}{\sqrt{1-a^2}})$ for the n+1-th party, as specified in the Going Up Lemma II, and continue the recursion with the n-qubit state $\tau(a)$.

6. Otherwise, by the 21 Lemma and the Small Difference Lemma, the only remaining case is where $|\psi\rangle$ and $|\phi\rangle$ differ in one qubit. We have these qubits $|\psi_1\rangle$, $|\phi_1\rangle$ from our previous applications of Test \mathcal{P}_n . In this final case, we can write $|\omega\rangle$ as

$$|\omega\rangle = |\Psi\rangle \otimes |\xi\rangle$$

where $|\Psi\rangle$ is in \mathcal{P}_{n-1} , and $|\xi\rangle$ is a 2-qubit state. Moreover, we have

$$|\xi\rangle = \alpha |\psi_1\rangle |0\rangle + \beta |\phi_1\rangle |1\rangle.$$

7. We apply the Base Case procedure to $|\xi\rangle$, which we know cannot be maximally entangled, by Step 1. We output Yes, together with the two local observables for each party produced by the Hardy construction, and the n-2 local observables for $|\Psi\rangle$ produced by the Corollary to the Going Up lemmas. \square

SUBROUTINE Test \mathcal{P}_n

Input n-qubit quantum state $|\theta\rangle$

Output Either

Yes, and entanglement type of $|\theta\rangle$, or

No

- 1. Compute the n-1 partial traces ρ_i over n-1 qubits of $|\theta\rangle$. If any ρ_i is not a maximally mixed state, compute $\text{Tr}\rho_i^2$. If $\text{Tr}\rho_i^2 \neq 1$, return No. We now have the list $\{i_1,\ldots,i_k\}$ of indices for which the maximally mixed state was returned.
- 2. For each i_p in the list, find its "partner" i_q by computing the partial traces ρ_{i_p,i_q} over n-2 qubits, and then testing if $\text{Tr}\rho_{i_p,i_q}^2=1$. If we cannot find the partner for some i_p , return No.
- 3. Otherwise, we return Yes. We also have the complete entanglement type of $|\theta\rangle$, and we have computed all the single-qubit components. \Box