Direct Parameter Recentering & Rescaling

Doug Hemken

The Problem (recap)

- Re-calculating coefficients for models
 - As if the data have been recentered, rescaled, or both
 - Without actually transforming the data

The Problem (recap)

• There is a classic formula for **standardized** coefficients

- $\bullet \ \beta_0^z = 0$
- $\bullet \ \beta_i^z = \frac{\sigma_{x_i}}{\sigma_y} \beta_i$
- Widely implemented in software
- Of limited use for interactions and polynomials

Example: set up

```
• Simulated data and model: y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_c x_1 x_2
orig <- lm(y \sim x1 * x2, data=example)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4840.09 847.54 5.711 1.26e-07 ***
x1 -1428.67 169.61 -8.423 3.58e-13 ***
x2 -600.20 84.62 -7.093 2.23e-10 ***
x1:x2 235.31 16.76 14.038 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 231 on 96 degrees of freedom
Multiple R-squared: 0.9864, Adjusted R-squared: 0.986
```

F-statistic: 2319 on 3 and 96 DF, p-value: < 2.2e-16

Example: compare coefficients

	Original	Classic Formula	Recalculated
(Intercept)	4840.09	0.00	-0.04
x1	-1428.67	-1.37	0.89
x2	-600.20	-0.27	0.26
x1:x2	235.31	0.23	0.20

Two graphs

Two graphs

Of note

- Unchanged
 - Relative positions of data points
 - Relative position of predictions
- Changed
 - x- and y- axes
- Change of basis

Change of basis, *data* ⇒ Change of basis, *parameters*

- ⇒ there is a linear transformation for our parameters
 - Can also transform variance-covariance matrices

- How do we get from data space to parameter space?
 - The column space of the parameters is a subspace of the outer product of the column space of the data
 - We construct our parameter change of basis as an outer product of the data changes of basis

Single variable

$$y = \beta_0 + \beta_1 x$$

$$Y = X\beta$$

- Recenter, $x_{\delta} = x \mu$
 - Let $C = \begin{bmatrix} 1 & \mu \\ 0 & 1 \end{bmatrix}$
- Rescale, $x_{\sigma} = x/\sigma$
 - Let $S = \begin{bmatrix} 1 & 0 \\ 0 & \sigma \end{bmatrix}$

• Standardize

•
$$\beta^{\delta} = C \times \beta$$

•
$$\beta^{\sigma} = S \times \beta$$

•
$$\beta^z = S \times C \times \beta$$

Two variables, re-centering

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

$$\bullet \ \beta^{\delta} = (C_2 \otimes C_1) \times \beta = \begin{bmatrix} 1 & \mu_1 & \mu_2 & \mu_1 \mu_2 \\ 0 & 1 & 0 & \mu_2 \\ 0 & 0 & 1 & \mu_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \beta$$

Two variables, re-scaling

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

$$\bullet \beta^{\sigma} = (S_2 \otimes S_1) \times \beta = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \sigma_1 & 0 & 0 \\ 0 & 0 & \sigma_2 & 0 \\ 0 & 0 & 0 & \sigma_1 \sigma_2 \end{bmatrix} \beta$$

Implementation

- Consider
 - Less-than-full factorial models
 - Missing lower-order terms (no-intercept, nested terms)
 - Polynomial terms, collecting terms
 - Untransformed variables, direct sums
 - Category coding/contrasts
- Progress
 - All of the pieces, but not fully integrated yet.

Advantages

- Requires only sufficient statistics, not the full data
- Reduces the total computation
- Reduces numerical error

On numerical error

- Simulation study
 - Predicted values from recentered models should be unchanged
 - Error measured as normed difference in predicted values
 - 3-way model, appropriate to the data
 - 100,000 simulations, each model N=100
 - The same (recentered) data is used to calculate predicted values
 - One model is re-estimated
 - The other has directly transformed coefficients

Kernel density of normed errors

(red=direct, black=re-estimate)

