APPLICATIONS OF INTEGRATION SOLUTIONS

NUTM Nexus Writing Team

April 28, 2025

1 Introduction: Definite Integrals and Area

Explanation. This section focuses on evaluating definite integrals and using them to calculate the area of regions bounded by curves.

The Definite Integral: The definite integral of a function f(x) from x = a to x = b, denoted $\int_a^b f(x) dx$, represents the *net signed area* between the curve y = f(x) and the x-axis over the interval [a, b]. "Net signed area" means area above the x-axis counts positively, and area below the x-axis counts negatively.

The Fundamental Theorem of Calculus (FTC), Part 2 (Evaluation Theorem): This theorem provides the primary method for evaluating definite integrals. If f(x) is continuous on [a, b] and F(x) is any antiderivative of f(x) (meaning F'(x) = f(x)), then:

$$\int_{a}^{b} f(x) \mathrm{d}x = F(b) - F(a)$$

The process is:

- 1. Find an antiderivative F(x) of the integrand f(x).
- 2. Evaluate F(x) at the upper limit b and the lower limit a.
- 3. Subtract the value at the lower limit from the value at the upper limit.

Notation: $[F(x)]_a^b = F(b) - F(a)$.

Area Application: If a function f(x) is non-negative $(f(x) \ge 0)$ and continuous on [a, b], then the definite integral $\int_a^b f(x) dx$ directly gives the geometric area of the region under the curve y = f(x), above the x-axis, between x = a and x = b.

Area =
$$\int_a^b f(x) dx$$
 (if $f(x) \ge 0$ on $[a, b]$)

If f(x) is negative on the interval, the integral will be negative, and the area is the absolute value of the integral, Area = $|\int_a^b f(x) dx| = -\int_a^b f(x) dx$. If the function crosses the x-axis within [a, b], the area must be calculated by splitting the integral at the x-intercepts and taking the absolute value of the parts below the axis.

2 Solutions: Examples

1. Find the area of the region bounded by the x-axis and the graph of $f(x) = x^2 - 1$ for $1 \le x \le 2$.

Solution:

Strategy. Check if $f(x) \ge 0$ on [1, 2]. If so, Area $= \int_1^2 f(x) dx$. Evaluate using FTC.

For $x \in [1, 2], x^2 \ge 1$, so $f(x) = x^2 - 1 \ge 0$.

Step 1: Set up integral.

$$Area = \int_{1}^{2} (x^2 - 1) \mathrm{d}x$$

Step 2: Antiderivative. $F(x) = \frac{x^3}{3} - x$.

Step 3: Evaluate. Area = $\left[\frac{x^3}{3} - x\right]_1^2 = \left(\frac{8}{3} - 2\right) - \left(\frac{1}{3} - 1\right) = \frac{2}{3} - \left(-\frac{2}{3}\right) = \frac{4}{3}$.

Final Answer: The area is 4/3.

2. Evaluate the definite integral $\int_0^1 (4t+1)^2 dt$.

Solution:

Method 1: Expand First

Step 1: Expand. $(4t+1)^2 = 16t^2 + 8t + 1$.

Step 2: Antiderivative. $F(t) = \frac{16}{3}t^3 + 4t^2 + t$.

Step 3: Evaluate. $\left[\frac{16}{3}t^3 + 4t^2 + t\right]_0^1 = \left(\frac{16}{3} + 4 + 1\right) - (0) = \frac{16}{3} + 5 = \frac{31}{3}$.

Method 2: U-Substitution

Let $u = 4t + 1 \implies du = 4dt \implies dt = \frac{1}{4}du$.

Limits: $t = 0 \implies u = 1$; $t = 1 \implies u = 5$.

Integral becomes $\int_1^5 u^2(\frac{1}{4}du) = \frac{1}{4} \int_1^5 u^2du$.

Evaluate: $\frac{1}{4} \left[\frac{u^3}{3} \right]_1^5 = \frac{1}{4} \left(\frac{5^3}{3} - \frac{1^3}{3} \right) = \frac{1}{4} \left(\frac{125 - 1}{3} \right) = \frac{1}{4} \left(\frac{124}{3} \right) = \frac{31}{3}$.

Results match.

3 Solutions: ClassWork Problems

3.1 Area Problems

3. Find the area bounded by $y = x - x^2$ and x-axis.

Solution:

Find bounds: $x(1-x) = 0 \implies x = 0, x = 1$. Bounds are [0,1].

Check sign: y(0.5) = 0.5 - 0.25 = 0.25 > 0. $y \ge 0$ on [0, 1].

 $Area = \int_0^1 (x - x^2) dx$

Antiderivative: $F(x) = \frac{x^2}{2} - \frac{x^3}{3}$.

Evaluate: $\left[\frac{x^2}{2} - \frac{x^3}{3}\right]_0^1 = \left(\frac{1}{2} - \frac{1}{3}\right) - 0 = \frac{1}{6}$.

Final Answer: Area is 1/6.

4. Find the area bounded by $y = 1 - x^4$ and x-axis.

Solution:

Find bounds: $1 - x^4 = 0 \implies x^4 = 1 \implies x = \pm 1$. Bounds are [-1, 1].

Check sign: y(0) = 1 > 0. $y \ge 0$ on [-1, 1].

Area =
$$\int_{-1}^{1} (1 - x^4) dx$$
.

Antiderivative: $F(x) = x - \frac{x^5}{5}$.

Evaluate: $\left[x - \frac{x^5}{5}\right]_{-1}^1 = \left(1 - \frac{1}{5}\right) - \left(-1 - \left(-\frac{1}{5}\right)\right) = \frac{4}{5} - \left(-\frac{4}{5}\right) = \frac{8}{5}$.

(Or use symmetry: $2\int_0^1 (1-x^4) dx = 2[x-x^5/5]_0^1 = 2(1-1/5) = 8/5$.)

Final Answer: Area is 8/5.

5. Find the area bounded by $y = \frac{1}{x^2}$, x-axis, x = 1, x = 2.

Solution:

Bounds [1, 2]. $y = x^{-2} > 0$ on [1, 2].

Area =
$$\int_{1}^{2} x^{-2} dx$$
.

Antiderivative: $F(x) = \frac{x^{-1}}{-1} = -1/x$.

Evaluate: $\left[-\frac{1}{x}\right]_1^2 = \left(-\frac{1}{2}\right) - \left(-\frac{1}{1}\right) = -\frac{1}{2} + 1 = \frac{1}{2}$.

Final Answer: Area is 1/2.

6. Find the area bounded by $y = \frac{2}{\sqrt{x}}$, x-axis, x = 1, x = 4.

Solution:

Bounds [1, 4]. $y = 2x^{-1/2} > 0$ on [1, 4].

Area =
$$\int_{1}^{4} 2x^{-1/2} dx$$
.

Antiderivative: $F(x) = 2\frac{x^{1/2}}{1/2} = 4x^{1/2} = 4\sqrt{x}$.

Evaluate: $[4\sqrt{x}]_1^4 = 4\sqrt{4} - 4\sqrt{1} = 4(2) - 4(1) = 8 - 4 = 4$.

Final Answer: Area is 4.

7. Find the area bounded by $y = 3e^{-x/2}$, x-axis, x = 1, x = 4.

Solution:

Bounds [1, 4]. y > 0 on [1, 4].

Area =
$$\int_1^4 3e^{-x/2} dx$$
.

Antiderivative: $F(x) = 3\frac{e^{-x/2}}{-1/2} = -6e^{-x/2}$.

Evaluate: $[-6e^{-x/2}]_1^4 = (-6e^{-4/2}) - (-6e^{-1/2}) = -6e^{-2} + 6e^{-1/2}$.

Final Answer: $6e^{-1/2} - 6e^{-2} \approx 2.827$.

8. Find the area bounded by $y = 2e^{x/2}$, x-axis, x = 1, x = 3.

Solution:

Bounds [1,3]. y > 0 on [1,3].

Area =
$$\int_{1}^{3} 2e^{x/2} dx$$
.

Antiderivative:
$$F(x) = 2\frac{e^{x/2}}{1/2} = 4e^{x/2}$$
.

Evaluate:
$$[4e^{x/2}]_1^3 = 4e^{3/2} - 4e^{1/2}$$
.

Final Answer:
$$4e^{3/2} - 4e^{1/2} \approx 11.332$$
.

9. Find the area bounded by $y = \frac{x^2 + 4}{x}$, x-axis, x = 1, x = 4. Solution: Bounds [1, 4]. y = x + 4/x > 0 on [1, 4].

Area =
$$\int_1^4 (x + \frac{4}{x}) dx$$
.

Antiderivative:
$$F(x) = \frac{x^2}{2} + 4 \ln |x|$$
.

Evaluate:
$$\left[\frac{x^2}{2} + 4\ln|x|\right]_1^4 = \left(\frac{16}{2} + 4\ln 4\right) - \left(\frac{1}{2} + 4\ln 1\right) = (8 + 4\ln 4) - \left(\frac{1}{2} + 0\right) = \frac{15}{2} + 4\ln 4.$$

Final Answer:
$$\frac{15}{2} + 4 \ln 4 \approx 13.045$$
.

10. Find the area bounded by $y = \frac{x-2}{x}$, x-axis, x = 2, x = 4.

Bounds [2, 4].
$$y = 1 - 2/x$$
. For $x \ge 2$, $0 < 2/x \le 1$, so $y \ge 0$.

Area =
$$\int_{2}^{4} (1 - \frac{2}{x}) dx$$
.

Antiderivative:
$$F(x) = x - 2 \ln |x|$$
.

Evaluate:
$$[x - 2 \ln |x|]_2^4 = (4 - 2 \ln 4) - (2 - 2 \ln 2) = 2 - 2 \ln 4 + 2 \ln 2$$
.

$$= 2 - 2\ln(2^2) + 2\ln 2 = 2 - 4\ln 2 + 2\ln 2 = 2 - 2\ln 2.$$

Final Answer:
$$2 - 2 \ln 2 \approx 0.614$$
.

- 3.2 Solutions: Definite Integral Evaluation
 - 11. Evaluate $\int_0^1 2x \, dx$.

Solution: Antiderivative
$$F(x) = x^2$$
.

Result:
$$[x^2]_0^1 = 1^2 - 0^2 = 1$$
.

12. Evaluate $\int_2^7 3v \, dv$.

Solution: Antiderivative
$$F(v) = \frac{3}{2}v^2$$
.

Result:
$$\left[\frac{3}{2}v^2\right]_2^7 = \frac{3}{2}(49) - \frac{3}{2}(4) = \frac{3}{2}(45) = \frac{135}{2}$$
.

13. Evaluate $\int_{-1}^{1} (x-2) dx$.

Solution: Antiderivative
$$F(x) = \frac{x^2}{2} - 2x$$
.

Result:
$$\left[\frac{x^2}{2} - 2x\right]_{-1}^1 = \left(\frac{1}{2} - 2\right) - \left(\frac{1}{2} + 2\right) = -4.$$

14. Evaluate $\int_{2}^{5} (-3x + 4) dx$.

Solution: Antiderivative $F(x) = -\frac{3}{2}x^2 + 4x$.

Result: $\left[-\frac{3}{2}x^2 + 4x\right]_2^5 = \left(-\frac{75}{2} + 20\right) - \left(-\frac{12}{2} + 8\right) = -\frac{35}{2} - 2 = -\frac{39}{2}$.

15. Evaluate $\int_{-1}^{1} (2t-1)^2 dt$.

Solution: Expand: $4t^2 - 4t + 1$.

Antiderivative $F(t) = \frac{4}{3}t^3 - 2t^2 + t$.

Result: $\left[\frac{4}{3}t^3 - 2t^2 + t\right]_{-1}^1 = \left(\frac{4}{3} - 2 + 1\right) - \left(-\frac{4}{3} - 2 - 1\right) = \frac{1}{3} - \left(-\frac{13}{3}\right) = \frac{14}{3}$.

16. Evaluate $\int_0^2 (1-2x)^2 dx$. Solution: Expand: $1-4x+4x^2$.

Antiderivative $F(x) = x - 2x^2 + \frac{4}{3}x^3$.

Result: $[x - 2x^2 + \frac{4}{3}x^3]_0^2 = (2 - 8 + \frac{32}{3}) - 0 = -6 + \frac{32}{3} = \frac{14}{3}$.

17. Evaluate $\int_{0}^{3} (x-2)^{3} dx$.

Solution (U-Sub): u = x - 2, du = dx.

Limits $x = 0 \to u = -2$, $x = 3 \to u = 1$. $\int_{-2}^{1} u^3 du = \left[\frac{u^4}{4}\right]_{-2}^{1} = \frac{1^4}{4} - \frac{(-2)^4}{4} = \frac{1}{4} - \frac{16}{4} = -\frac{15}{4}$.

18. Evaluate $\int_{2}^{5} (x-3)^{3} dx$.

Solution (U-Sub): u = x - 3, du = dx.

Limits $x = 2 \to u = -1$, $x = 5 \to u = 2$. $\int_{-1}^{2} u^3 du = \left[\frac{u^4}{4}\right]_{-1}^2 = \frac{2^4}{4} - \frac{(-1)^4}{4} = \frac{16}{4} - \frac{1}{4} = \frac{15}{4}$.

19. Evaluate $\int_{-1}^{1} (\sqrt[3]{t} - 2) dt$.

Solution: Rewrite $\int_{-1}^{1} (t^{1/3} - 2) dt$.

Antiderivative $F(t) = \frac{t^{4/3}}{4/3} - 2t = \frac{3}{4}t^{4/3} - 2t$.

Result: $\left[\frac{3}{4}t^{4/3} - 2t\right]_{-1}^{1} = \left(\frac{3}{4} - 2\right) - \left(\frac{3}{4} + 2\right) = -\frac{5}{4} - \frac{11}{4} = -4.$

20. Evaluate $\int_1^4 \frac{u-2}{\sqrt{u}} du$.

Solution: Simplify $\int_{1}^{4} (u^{1/2} - 2u^{-1/2}) du$.

Antiderivative $F(u) = \frac{u^{3/2}}{3/2} - 2\frac{u^{1/2}}{1/2} = \frac{2}{3}u^{3/2} - 4u^{1/2}$.

Result: $\left[\frac{2}{3}u^{3/2} - 4u^{1/2}\right]_1^4 = \left(\frac{2}{3}(8) - 4(2)\right) - \left(\frac{2}{3} - 4\right) = \left(\frac{16}{3} - 8\right) - \left(-\frac{10}{3}\right) = -\frac{8}{3} + \frac{10}{3} = \frac{2}{3}$.

21. Evaluate $\int_{-1}^{0} (t^{1/3} - t^{2/3}) dt$.

Solution: Antiderivative $F(t) = \frac{t^{4/3}}{4/3} - \frac{t^{5/3}}{5/3} = \frac{3}{4}t^{4/3} - \frac{3}{5}t^{5/3}$.

Result: $\left[\frac{3}{4}t^{4/3} - \frac{3}{5}t^{5/3}\right]_{-1}^{0} = (0) - \left(\frac{3}{4}(1) - \frac{3}{5}(-1)\right) = -\left(\frac{3}{4} + \frac{3}{5}\right) = -\frac{27}{20}$

22. Evaluate $\int_{0}^{4} (x^{1/2} + x^{1/4}) dx$.

Solution: Antiderivative $F(x) = \frac{x^{3/2}}{3/2} + \frac{x^{5/4}}{5/4} = \frac{2}{3}x^{3/2} + \frac{4}{5}x^{5/4}$

Result: $\left[\frac{2}{3}x^{3/2} + \frac{4}{5}x^{5/4}\right]_0^4 = \left(\frac{2}{3}(4^{3/2}) + \frac{4}{5}(4^{5/4})\right) - 0 = \frac{2}{3}(8) + \frac{4}{5}(4 \cdot 4^{1/4}) = \frac{16}{3} + \frac{16 \cdot 2^{1/2}}{5} = \frac{16}{3}(8) + \frac{16}{5}(4 \cdot 4^{1/4}) = \frac{16}{3}(8) + \frac{16}{$

23. Evaluate $\int_{0}^{1} e^{-2x} dx$.

Solution: Antiderivative $F(x) = -\frac{1}{2}e^{-2x}$.

Result: $\left[-\frac{1}{2}e^{-2x}\right]_0^1 = \left(-\frac{1}{2}e^{-2}\right) - \left(-\frac{1}{2}e^{0}\right) = -\frac{1}{2}e^{-2} + \frac{1}{2} = \frac{1}{2}(1 - e^{-2})$

24. Evaluate $\int_{1}^{2} e^{1-x} dx$.

Solution: Antiderivative $F(x) = -e^{1-x}$.

Result: $[-e^{1-x}]_1^2 = (-e^{-1}) - (-e^0) = -e^{-1} + 1 = 1 - 1/e$.

25. Evaluate $\int_{1}^{e} \frac{e^{3/x}}{x^2} dx$.

Solution (U-Sub): $u = 3/x, du = -3/x^2 dx \implies \frac{1}{x^2} dx = -\frac{1}{3} du$.

Limits: $x = 1 \to u = 3$, $x = e \to u = 3/e$. $\int_3^{3/e} e^u(-\frac{1}{3}du) = -\frac{1}{3}[e^u]_3^{3/e} = -\frac{1}{3}(e^{3/e} - e^3) = -\frac{1}{3}(e^{3/e} - e^3)$ $\frac{1}{2}(e^3 - e^{3/e}).$

26. Evaluate $\int_{-1}^{1} (e^x - e^{-x}) dx$.

Solution: Integrand $f(x) = e^x - e^{-x}$ is odd: $f(-x) = e^{-x} - e^x = -f(x)$

Interval is symmetric. Integral = 0.

27. Evaluate $\int_{1}^{1} \frac{e^{-x}}{\sqrt{e^{-x}+1}} dx$.

Solution (U-Sub): $u = e^{-x} + 1, du = -e^{-x} dx \implies e^{-x} dx = -du$.

 $\int_{2}^{1+1/e} \frac{-du}{\sqrt{u}} = -\int_{2}^{1+1/e} u^{-1/2} du = -[2u^{1/2}]_{2}^{1+1/e} = -2\sqrt{1+1/e} - (-2\sqrt{2}) = 2\sqrt{2} - 2\sqrt{1+1/e}.$

28. Evaluate
$$\int_{0}^{2} \frac{e^{2x}}{e^{2x} + 1} dx$$
.

Solution (U-Sub):
$$u = e^{2x} + 1, du = 2e^{2x}dx \implies e^{2x}dx = \frac{1}{2}du.$$

Limits:
$$x = 0 \to u = 2$$
, $x = 2 \to u = e^4 + 1$. $\int_2^{e^4 + 1} \frac{1}{u} (\frac{1}{2} du) = \frac{1}{2} [\ln |u|]_2^{e^4 + 1} = \frac{1}{2} (\ln (e^4 + 1) - \ln 2) = \frac{1}{2} \ln (\frac{e^4 + 1}{2})$.

29. Evaluate
$$\int_{1}^{2} \frac{x}{1+4x^2} dx.$$

Solution (U-Sub):
$$u = 1 + 4x^2, du = 8xdx \implies xdx = \frac{1}{8}du$$
.

Limits:
$$x = 1 \to u = 5$$
, $x = 2 \to u = 17$. $\int_5^{17} \frac{1}{u} (\frac{1}{8} du) = \frac{1}{8} [\ln |u|]_5^{17} = \frac{1}{8} (\ln 17 - \ln 5) = \frac{1}{8} \ln(\frac{17}{5})$.

30. Evaluate
$$\int_0^1 \frac{e^{2x}}{e^{2x} + 1} dx$$
.

Solution (U-Sub):
$$u = e^{2x} + 1, du = 2e^{2x}dx \implies e^{2x}dx = \frac{1}{2}du$$
.

Limits:
$$x = 0 \to u = 2$$
, $x = 1 \to u = e^2 + 1$. $\int_2^{e^2 + 1} \frac{1}{u} (\frac{1}{2} du) = \frac{1}{2} [\ln |u|]_2^{e^2 + 1} = \frac{1}{2} (\ln (e^2 + 1) - \ln 2) = \frac{1}{2} \ln (\frac{e^2 + 1}{2})$.