PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA A 17 FEBBRAIO 2011

 Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{T1 e} V_{T2} e dai coefficienti β₁ e β₂.

Il segnale d'ingresso abbia il seguente andamento:

t<0: $V_i = 0$ t>0: $V_i = Vdd$

Si calcoli il tempo di discesa t_{fall} associato al segnale di uscita vu, definito come il tempo necessario a compiere la transizione fra il 90% e il 10% dell'escursione totale del segnale di uscita.

 V_{dd} = 3.5 V, V_{T1} = 0.5 V, V_{T2} = 1 V, β_1 =2 mA/V², β_2 =1.5 mA/V², R_1 = 1 k Ω , R_2 =5 k Ω , C= 10 nF.

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia $V_{Tn}=|V_{Tp}|=V_{T}$ e dai coefficienti β_n e β_p .

I segnali di ingresso V_a , V_b e V_c abbiano l'andamento periodico (periodo di 12 ns) mostrato in figura. Si determini l'andamento dei segnali V_x e V_y . Si assuma che ogni transitorio si esaurisca prima della successiva variazione degli ingressi. Determinare infine il consumo medio di potenza statica del circuito.

 V_{dd} = 3.3 V, V_{T} = 0.35 V, β_{n} = 1.2 mA/V², β_{P} =0.9 mA/V².

Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m).

Esame di FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h e 30m).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m).

OSS. PRELIMINARI:

Il transistore M2 quando è on (vu>v_{t2}=1V) è in saturazione.

1)Per t<0 vi=0, M1 è off. Calcolo vu nell'ipotesi di avere M2 on e sat (da verificare).

$idn2sat = \beta_2/2(vu-v_{t2})^2$	Da cui si ricava che vu =-1.954 Ve vu=2.354 V. La
ir1=(vdd-vu)/r1	seconda soluzione è quella accettabile e verifica la
ir2=(vdd-vu)/r2	Hp su M2: $vu(=2.354 \text{ V}) > V_{t2}=1 \text{ V}$.
Ma idn2sat=ir1+ir2	Quindi $vu(t<0)=2.354 \text{ V}$

2) Per t -> ∞ , vi=vdd, quindi M1 on. Suppongo M1 lin, sse vu<vdd-v_{t1}=3 V (da verificare). Suppongo poi M2 off, sse vu<v_{t2}=1V (da verificare).

ir1=(vdd-vu)/r1	Da cui si ricava che vu = $0.640 \text{ Ve vu} = 6.560 \text{ V}$.
ir2=(vdd-vu)/r2	La prima soluzione è quella accettabile e verifica la
$idn1lin=\beta1*((vdd-v_{t1})*vu-1/2*vu^2)$	Hp su M1 lin, $vu(=0.640 \text{ V})<3\text{V}$,
Ma idn1lin=ir1+ir2	e su M2off, $vu(=0.640 \text{ V}) < v_{t2}=1 \text{ V}.$
	Quindi vu(t -> ∞)=0.640 V

3) Per t=0+ vi=vdd, M1 va on e lin, e M2 è sat. vu(0+)=vu(0-)=2.354Ve $vu(\infty)=0.640$ V. Il t_{fall} è il tempo necessario a compiere la transizione fra il 90% e il 10% dell'escursione totale del segnale di uscita $\Delta vu=vu(0+)-vu(\infty)=1.714$ V, quindi $vuiniz=vu(\infty)+0.9*\Delta vu=2.183$ V, e $vufinal=vu(\infty)+0.1*\Delta vu=0.811$ V.

Analizzo le regioni di funzionamento di M1 durante il transitorio analizzato:

1) M1 lin per vu<vdd-vt1=3 V, quindi sempre lin durante tutto l'intervallo; M2 sat per vu>v_{t2}=1V, poi off.

E' quindi necessario spezzare il due parti il calcolo del tfall:

- A) tfall₁, vu: 2.183V ->1 V, M1 lin, M2 sat;
- B) tfall₂, vu: 1 V -> 0.811 V, M1 lin, M2 off.

$idn1lin=\beta_1*((vdd-v_{t1})*vu-1/2*vu^2)$	tfall1 = $\int_{2.183}^{1} \frac{C}{ir1 + ir2 - idn1lin - idn2sat} dvu$
idn2sat= $\beta_2/2$ (vu-v _{t2})^2 ir1=(vdd-vu)/r1	=2.739 μs
ir2=(vdd-vu)/r2	B) ir1+ir2-idn1lin=Cdvu/dt
A)	tfall2 = $\int_{1}^{0.811} \frac{C}{\text{ir1} + \text{ir2} - \text{idn1lin}} dvu$ =1.315 µs
ir1+ir2-idn1lin- idn2sat=	
=Cdvu/dt	Da cui si ricava tfall=tfall ₁ +tfall ₂ =4.054 μs

Esercizio 2 - 17.2.2011

I transistori M_1 , M_2 fungono da reti di "pull-up" per i nodi a tensione V_x e V_y , rispettivamente. I transistori M_3 , M_4 fungono da reti di "pull-down" per gli stessi nodi e il transistore M_5 funge da pass-transistor fra i i nodi a tensione V_x e V_y , tendendo, se acceso, ad equalizzarne i valori. Gli andamenti sono mostrati in figura:

1) 0 < t < 1ns, $V_a = V_b = V_c = 0$ $\rightarrow M_1, M_2 \text{ on}, M_3, M_4, M_5 \text{ off}, \rightarrow V_x = V_y = V_{DD}$

2) $1~ns < t < 2ns,~V_a = V_b = 0, V_c = V_{DD} \rightarrow M_5$ on: non cambia nulla rispetto al caso precedente (la differenza di potenziale ai capi del pass-transistor M_5 è nulla)

- 3) 2 ns < t < 3ns, $V_a = V_b = V_c = 0 \rightarrow M_1$, M_2 on, M_3 , M_4 , M_5 off, $\rightarrow V_x = V_y = V_{DD}$ (identico al caso 1)
- 4) $3 \, ns < t < 4 \, ns$, $V_a = V_{DD}$, $V_b = V_c = 0 \rightarrow M_1 {\rm off}$, $M_2 {\rm on}$, $M_3 {\rm off}$, $M_4 {\rm on}$, $M_5 {\rm off}$: il nodo V_x si trova quindi in alta impedenza e mantiene il valore precedente $(V_x = V_{DD})$, mentre V_y è soggetto all'azione simultanea del pull-up M_2 e del pull-down M_4 . La tensione V_y si porta ad un valore intermedio, definito dal bilancio fra le correnti; ipotizzando M_2 e M_4 in regime lineare:

$$I_{D2} = I_{D4}$$

$$I_{D2} = \beta_p \left((V_{DD} - V_T) (V_{DD} - V_y) - \frac{(V_{DD} - V_y)^2}{2} \right)$$

$$I_{D4} = \beta_n \left((V_{DD} - V_T) V_y - \frac{V_y^2}{2} \right)$$

$$I_{D4} = \beta_n \left((V_{DD} - V_T) V_y - \frac{V_y^2}{2} \right)$$

che soddisfa le ipotesi. In queste condizioni, il circuito è soggetto ad una corrente statica erogata dal generatore V_{DD} :

$$I_{D2} = I_{D4} = I_{DD} = 3.53 \text{ mA}$$

5) 4 ns < t < 5 ns, $V_a = V_c = V_{DD}$, $V_b = 0 \rightarrow M_1 \text{ off}$, $M_2 \text{ on}$, $M_3 \text{ off}$, $M_4 \text{ on}$, $M_5 \text{ on}$: in questo caso, anche il nodo V_x , attraverso il pass-transistor M_5 , si porta al valore intermedio $V_x = V_y = 1.27 \ V$ (M_5 lavora in regione lineare, per cui il transitorio termina quando $V_{DS5} = V_x - V_y = 0$). Poiché, a regime, $I_{D5} = I_c = 0$, la corrente statica richiesta al generatore è identica al caso precedente.

6) $5 \, ns < t < 6 \, ns$, $V_a = V_{DD}$, $V_b = V_c = 0 \rightarrow M_1 {\rm off}$, $M_2 {\rm on}$, $M_3 {\rm off}$, $M_4 {\rm on}$, $M_5 {\rm off}$: il nodo V_x si trova quindi in alta impedenza e mantiene il valore precedente ($V_x = 1.27 \, V$), mentre V_y è soggetto all'azione simultanea del pull-up M_2 e del pull-down M_4 , secondo quanto già calcolato al punto 4.

7)
$$6 \text{ ns} < t < 7 \text{ ns}, V_a = V_b = V_{DD}, V_c = 0$$

 $\rightarrow M_1, M_2 \text{ off}, M_3, M_4 \text{ on}, M_5 \text{ off}, \rightarrow V_x = V_y = 0$

8) 7~ns < t < 8~ns, $V_a = V_b = V_c = V_{DD} \rightarrow M_5$ on: non cambia nulla rispetto al caso precedente (la differenza di potenziale ai capi del pass-transistor M_5 è nulla)

9) $8 \text{ ns} < t < 9 \text{ ns}, V_a = V_b = V_{DD}, V_c = 0 \rightarrow M_1, M_2 \text{ off}, M_3, M_4 \text{ on}, M_5 \text{ off}, \rightarrow V_x = V_y = 0 \text{ (identico al caso 7)}$

10) $9 \, ns < t < 10 \, ns, \ V_b = V_{DD}, \ V_a = V_c = 0$ $\rightarrow M_1 {\rm on}, M_2 {\rm off}, M_3 {\rm on}, M_4 {\rm off}, M_5 {\rm off}$: il nodo $V_y {\rm si}$ trova quindi in alta impedenza e mantiene il valore precedente $(V_y = 0)$, mentre $V_x {\rm e}$ soggetto all'azione simultanea del pull-up M_1 e del pull-down M_3 . La tensione V_y si porta allo stesso valore intermedio calcolato al punto 4 $(V_y = 1.27 \, V)$ e, analogamente, la corrente erogata dal generatore V_{DD} vale: $I_{D1} = I_{D3} = I_{DD} = 3.53 \, {\rm mA}$

11) $10 \ ns < t < 11 \ ns$, $V_b = V_c = V_{DD}$, $V_a = 0$ $\rightarrow M_1 \text{on}$, $M_2 \text{ off}$, $M_3 \text{ on}$, $M_4 \text{off}$, $M_5 \text{ on}$: in questo caso, anche il nodo V_y , attraverso il pass-transistor M_5 , si porta al valore intermedio $V_x = V_y = 1.27 \ V$ (M_5 lavora in regione lineare, per cui il transitorio termina quando $V_{DS5} = V_y - V_x = 0$). Poiché, a regime, $I_{D5} = I_c = 0$, la corrente statica richiesta al generatore è identica al caso precedente.

12) $11 \, ns < t < 12 \, ns$, $V_b = V_{DD}$, $V_a = V_c = 0 \rightarrow M_1 \, \text{on}$, $M_2 \, \text{off}$, $M_3 \, \text{on}$, $M_4 \, \text{off}$, $M_5 \, \text{off}$: il nodo V_y si trova quindi in alta impedenza e mantiene il valore precedente ($V_y = 1.27 \, V$), mentre V_x è soggetto all'azione simultanea del pull-up M_1 e del pull-down M_3 , secondo quanto già calcolato al punto 10.

Infine, secondo quanto sopra indicato, il circuito dissipa potenza statica negli intervalli (4,5,6,10,11,12). Si ha quindi:

$$P_{statica} = \frac{1}{T} \int_{T} V_{DD} I_{DD} dt = \frac{V_{DD}}{T} \int_{T} I_{DD} dt$$

$$= \frac{3.3}{12 \cdot 10^{-9}} \left(\int_{0}^{3ns} 0 dt + \int_{3ns}^{6ns} 3.53 \cdot 10^{-3} dt + \int_{6ns}^{9ns} 0 dt + \int_{9ns}^{12ns} 3.53 \cdot 10^{-3} dt \right)$$

$$= \frac{3.3 \times 3.53 \cdot 10^{-3}}{12 \cdot 10^{-9}} \left(\int_{3ns}^{6ns} dt + \int_{9ns}^{12ns} dt \right) = \frac{3.3 \times 3.53 \cdot 10^{-3} \times 6 \cdot 10^{-9}}{12 \cdot 10^{-9}} = 5,83 \text{ mW}$$