Time Series Analysis

Lecture **X**: Summary Questions and Answers

Tohid Ardeshiri

Linköping University
Division of Statistics and Machine Learning

October 16, 2019

Course topics

- Time series, time series regression and exploratory analysis
 - Autocovariance, ACF
 - Sample ACF
 - ► Stationarity, detrending, differencing,
 - ► transformation and smoothing
- ARIMA models
 - ► AR, MA, ARMA, ARIMA, seasonal ARIMA
 - ► PACF
 - ▶ Model selection
 - ► Estimation
 - ► Forecasting
- State space models
 - ► Linear and Gaussian state space models
 - ► Kalman filtering, Kalman smoothing and Forecasting
 - ► Maximum likelihood estimate of the state space models
 - ► Stochastic volatility
- Recurrent Neural Networks (RNNs)

Stationarity

- Time series x_t is weakly stationary (stationary) if
 - \blacktriangleright $Ex_t = const$
 - $\gamma(s,t) = \gamma(|s-t|)$
 - ▶ $var(x_t) < \infty$
- - ► Autocovariance depends on lag only!
- Autocovariance for stationary process $\gamma(h) = \text{cov}(x_t, x_{t+h})$
- ACF for stationary process $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$

ARIMA modelling

- ARIMA models
 - AR, MA, ARMA, ARIMA, seasonal ARIMA
 - ► PACF
 - ► Model selection
 - ► Estimation
 - Forecasting

ARIMA models

Time series models so far

$$\phi^p(B)x_t = \theta^q(B)w_t$$

Model	Concise form
AR(p)	$\phi^{p}(B)x_{t} = w_{t}$
MA(q)	$x_t = \theta^q(B)w_t$
ARMA(p,q)	$\phi^p(B)x_t = \theta^q(B)w_t$
ARIMA(p, d, q)	$\phi^p(B)(1-B)^d x_t = \theta^q(B) w_t$
$ARMA(P,Q)_s$	$\Phi^{P}(B^{s})x_{t} = \Theta^{Q}(s)w_{t}$
$ARIMA(P, D, Q)_s$	$\Phi^{P}(B^{s})(1-B^{s})^{D}x_{t} = \Theta^{Q}(B^{s})w_{t}$
$ARMA(p,q) \times (P,Q)_{s}$	$\Phi^{P}(B^{s})\phi^{p}(B)x_{t} = \Theta^{Q}(B^{s})\theta^{q}(B)w_{t}$
$ARIMA(p,d,q)\times(P,D,Q)_{s}$	$\Phi^{P}(B^{s})\phi^{P}(B)(1-B^{s})^{D}(1-B)^{d}x_{t} = \Theta^{Q}(B^{s})\theta^{q}(B)w_{t}$

Tohid Ardeshiri (LiU) Time Series Analysis 732A62 October 16, 2019

6/26

^{*} The notation used in this slide deviates from the notation used in the course literature so far.

PACF for AR(p)

• Example: AR(3) $\phi_1 = 1.5$, $\phi_2 = -0.75$, $\phi_3 = -0.1$

Seasonal?

ACF and PACF

	AR(p)	MA(q)	ARMA(p,q)
ACF	Tails off	Cuts off after lag q	Tails off
PACF	Cuts off after lag p	Tails off	Tails off

How to differentiate between ARMA(p,q)?

Empirical ACF (EACF)

Idea:

- ARMA(p,q): $x_t = \sum_{j=1}^{p} \phi_j x_{t-j} + \sum_{j=1}^{q} \theta_j w_{t-j} + w_t$
- If we can estimate $\phi_j \to x_t' = x_t \sum_{j=1}^p \phi_j x_{t-j}$ is linear function in $w_t, ..., w_{t-q}$
- If we run regression x'_t against $w_t...w_{t-j}$:
 - ▶ Residuals are white noise, $j \ge q \to \mathsf{ACFs}$ not significant
 - ★ Some of the coefficients will be 0
 - ▶ Residuals are not white noise, $j < q \rightarrow ACFs$ significant
 - \blacktriangleright Note: $w_t s$ substituted by lagged residuals from a series of regressions
- If $x'_t = x_t \sum_{j=1}^k \phi_j x_{t-j}, k white noise will never be achieved <math>\rightarrow$ ACFs are not zero

Empirical ACF (EACF)

- k > p General result: ACFs are 0 for j > q + (k p)
 - ► Example: ARMA(0,1)
- General conclusion for AR,MA =(k,j):
 - lacktriangleright This is theoretical one! ightarrow not exactly the same for the samples

AR/MA	0	1	2				
0	Х	Χ	Х	Χ	Χ	Х	Х
1	Х	Χ	Х	Х	Х	Х	Х
2	Х	Х	Х	Χ	Χ	Χ	Х
	Х	Х	Χ	Χ	Χ	Χ	Х
	Х	Х	Х	Χ	Χ	Χ	Х
	Х	Х	0	0	0	0	0
	Х	Х	Х	0	0	0	0
	Х	Х	Х	Χ	0	0	0
	Х	Х	Х	Χ	Χ	0	0

Residual analysis

- Residuals $r_t = x_t \hat{x}_t^{t-1}$?they are innovations
 - ► Note: computed from one-step-ahead predictions!
 - Measures predictive quality of the model (compare OLS)
- Residual analysis
 - Visual inspection: stationary? Patterns?
 - ► Histograms, Q-Q plots
 - ► ACF, PACF
 - ► Runs test
 - ▶ Box-Ljung test

Residual analysis - Visual inspection

Histogram and visual inspection

If looks white is good

If looks Normal is good

Residual analysis - ACF /PACF Q-Q plots

If between the blue lines good

If along the diagonal line GOOD

13 / 26

Statistical tests

Tests are used to test independence

Runs test

- H_0 : x_t values are i.i.d. **p-value NOT small**
- H_a : x_t values are not i.i.d. **p-value small**

Box-Ljung test

- H_0 : data are independent **p-value NOT small**
- H_a : data are not independent **p-value small**

• Multiplicative seasonal autoregressive integrated moving average model $ARIMA(p, d, q) \times (P, D, Q)_s$

$$\Phi_p(B^s)\phi(B)\nabla_s^D\nabla^d x_t = \delta + \Theta_Q(B^s)\theta(B)w_t$$

$$\nabla_s^D = (1 - B^s)^D$$

- How to identify SARIMA?
 - Perform differencing first (trend)
 - 2 Investigate ACF \rightarrow slowly decays at peaks?
 - $exttt{1}$ Yes o Additional differencing by $abla_s^D$
 - Model non-seasonal part
 - 4 Model seasonal part (check peaks), check ACF and PACF of residuals

Example: Air passangers

Example: Air passangers

 $(0,1,1)_{12}$ or $(1,1,0)_{12}$

Remove AR term!

> m1\$fit

Is one model much better the other one?

```
Call:
                                        stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(p, D,
                                            0), period = S), include.mean = !no.constant, optim.control = list(trace = trc.
                                            REPORT = 1. reltol = tol))
                                        Coefficients:
                                                 ar1
                                                          ma1
                                                                  sar1
(1,1,1) \times (1,1,0)_{12}
                                              0.0547 -0.4886
                                                               -0.4731
                                        s e 0 2161
                                                       0 1933
                                                                0.0800
                                        sigma^2 estimated as 0.001425: log likelihood = 241.73, aic = -475.47
                                        > m2$fit
                                        Call:
(1,1,1) \times (0,1,1)_{12}
                                        stats::arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, q))
                                            0), period = S), include.mean = !no.constant, optim.control = list(trace = trc.
                                            REPORT = 1, reltol = tol))
                                        Coefficients:
                                                 ar1
                                                          ma1
                                                                  sma1
                                              0.1960 -0.5784 -0.5643
                                        s.e. 0.2475 0.2132
                                                                0.0747
                                        sigma^2 estimated as 0.001341: log likelihood = 244.95. aic = -481.9
```

State space modelling

- State space models
 - ► Linear and Gaussian state space models
 - ► Kalman filtering, Kalman smoothing and Forecasting
 - ► Maximum likelihood estimate of the state space models
 - Stochastic volatility

Whiteboard

Consider an AR(2) model

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$$

Let
$$\mathbf{z}_t = \begin{bmatrix} x_t \\ x_{t-1} \end{bmatrix}$$
 and $\mathbf{e}_t = \begin{bmatrix} w_t \\ 0 \end{bmatrix}$.

Show that we rewrite the AR(2) model in the state space form:

$$\begin{aligned} \mathbf{z}_t &= \begin{bmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{bmatrix} \mathbf{z}_{t-1} + e_t \\ x_t &= \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{z}_t, \end{aligned}$$

ARIMA models in State Space form Whiteboard

$$\phi^p(B)x_t = \theta^q(B)w_t$$

Can we rewrite any model of this form as a state space model?

$$\mathsf{z}_t = A\mathsf{z}_{t-1} + e_t,$$

$$\mathbf{x}_t = C\mathbf{z}_t + \nu_t,$$

$$\phi^p(B)x_t = \theta^q(B)w_t$$

Outline of the solution:

Let
$$r = \max(p, q + 1)$$
, $\phi^r(B) = 1 - \phi_1 B - \dots - \phi_r B^r$, $\theta^r(B) = 1 + \theta_1 B - \dots - \theta_{r-1} B^{r-1}$, $\phi^r(B)(\theta^r(B))^{-1}x_t = w_t$. Hence, for $z_t = (\theta^r(B))^{-1}x_t$ we can have $\phi^r(B)z_t = w_t$

$$\mathbf{z}_{t} = \begin{bmatrix} z_{t} \\ z_{t-1} \\ z_{t-2} \\ \vdots \\ z_{t-r+1} \end{bmatrix} \text{ and } \mathbf{z}_{t} = \begin{bmatrix} \phi_{1} & \phi_{2} & \cdots & \phi_{r} \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \mathbf{z}_{t-1} + \begin{bmatrix} w_{t} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $x_t = \begin{bmatrix} 1 & \theta_1 & \theta_2 & \cdots & \theta_r \end{bmatrix} \mathbf{z}_t$

Robustness to outliers:filter versus smoother

Live example in Rstudio

Stochastic Volatility: Gaussian sum filter

The problem is finding the filtering distribution of $\mathbf{z}_t | \mathbf{x}_{1:t}$ when

$$\mathbf{z}_t = A\mathbf{z}_{t-1} + w_t$$

 $\mathbf{x}_t = C\mathbf{z}_t + \eta_t$

and

$$w_t \sim iidN(0, Q) \ \eta_t \sim \pi_0 N(\mu_0, R_1) + \pi_1 N(\mu_1, R_2)$$

where $\pi_0 + \pi_1 = 1$

Examination

- Most of the examination will be your Computer labs and assignments from the teaching sessions with a twist.
- You need to have a deep knowledge of the subjects covered in the lectures to get a B+ score.
- Study them over and over and make sure you have the correct solutions with you on the examination day.