ĐHBK Tp HCM-Khoa ĐĐT-BMĐT

MH: Điện tử y sinh – HK182 GVPT: Hồ Trung Mỹ

Ôn tập KTGHK – Phần BT – ĐS/BG 1 số câu

1) *ĐS*.

- a) $V_{OUT} = V_{CC}(R3/(R3+R2) R4/(R4+R1)) = V_{CC}((1 + \alpha T)/(2 + \alpha T) 0.5)$ (vì R4 = R1 và R2 = R3 ở 0°C) b) $S = \Delta V_{OUT}/\Delta R3 = dV_{OUT}/\Delta R3 = -1/4R_0 = -2.5 \times 10^{-4} \text{ V/}\Omega$ (nếu ban đầu T = 0 và R0 = 1kΩ)
- và $\triangle Vout = S \times \triangle R3 = -2.5 \times 10^{-4} \times 100 = -0.025 \text{ V}.$

2) *ĐS*.

- a) $T = 34.78^{\circ}C$;
- b) $S = \Delta Vo/\Delta T = -0.0106 \text{ V/°C}$ (nếu ban đầu T như ở a) Khi $\Delta T = 10 \text{ °C} \Rightarrow \Delta Vo = S \times \Delta T = -0.106 \text{ V}$
- 3) DS. $R_T = R_{T0} \exp(\beta(1/T 1/T_0)) \text{ với } \beta = 2500 \text{ K} \text{ và T là nhiệt độ Kelvin}$
 - a) R39 = R_T(T=39oC) = 9.4962 Ω và V_O (T=39oC) = 4.9905 \approx 4.99 V
 - b) Nếu xét thay đổi từ $T = T_0$ thì : $S = \beta V_s R_1 R_T / [T_0 (R_1 + R_0)]^2$ (V/oK)

4) BG.

Điện trở $R_T(\Omega)$	99	107	115	121	130	138
Nhiệt độ T (°C)	0	15	35	60	75	100

- b) $R_T = R_0(1 + \alpha T)$,
- Ta tìm được R_0 và $R_0\alpha$ bằng hình vẽ bên trái. R_0 = 100 Ω

 $R_0\alpha = 0.384\Omega/^{\circ}C \Rightarrow \alpha = 0.384/R_0 = 0.00384/^{\circ}C$

- c) R20 = $0.384 \times 20 + 100 = 107.68 \Omega$
 - \Rightarrow R1 = R2 = R3 = R20 để V_0 = 0V @ 20°C
- @37oC: Giả sử $V_S = 10 \text{ V}$

 $R37 = 100(1 + 0.00384 \times 37) = 114.208 \approx 114.21\Omega$

 $V_0 = V_s*(R_1/(R_1+R37) - R_2/(R_2+R_3)) = -0.1471 V$

<u>Cách 2 (chính xác hơn)</u>: Dùng phương pháp bình phương tối thiểu để tìm các hệ số a và b của phương trình y = ax + b với $y = R_T$ và x = T. Ta tìm được: $a = R_0\alpha = 0.3804$ và $b = R_0 = 100.265$ Nếu dùng Matlab, ta có mã sau:

- $x = [0 \ 15 \ 35 \ 60 \ 75 \ 100]$
- $y = [99\ 107\ 115\ 121\ 130\ 138]$
- S = polyfit(x, y, 1)
- a = S(1)
- b = S(2)

5)6)

- 7) DS. $R_T = R_{T0} \exp(\beta(1/T 1/T_0)) \text{ với } \beta = 3500 \text{ K} \text{ và T là nhiệt độ Kelvin}$
 - a) $R_{350C} = 26.9\Omega \text{ và } R_{390C} = 23.26\Omega$
 - b) $V_{AB} = 5 50/(5 + R_T) \Rightarrow V_{AB}@35oC = 3.43 \text{ V và } V_{AB}@39oC = 3.23$

8) 9)

- 10) BG.
 - a) Vout/R4 = -Vin/R2 + 5/R2 + 2.5/R4 (vì R2 = R3) Nếu xét KĐ AC thì các thành phần DC xem như là 0, dẫn đến
 - b) Nếu chỉ xét với tín hiệu AC:

Zin = R1//R2 = 1 kΩ // 10 kΩ = 10/11 kΩ

 $Vout/R4 = -Vin/R2 \implies A_V = -R4/R2 = -100$

Zout ≈ 0 (opamp lý tưởng)

11) BG.

- a) $H(s) = (1 + Rf/R1)^2 \times 1/(1 + 1/sCR)) \times 1/(1 + sC'R')$ với $s = j\omega$ Đặt $\omega_L = 1/RC = 10$ rad/s và $\omega_H = 1/C'R' = 1000$ rad/s, ta có: $H(s) = 10201/[(1 + \omega_L/s)(1 + s/\omega_H)] = 10201s/(0.001s^2 + 1.01s + 10)$
- b) Tần số cắt dưới $f_L = \omega_L/2\pi = 1.59$ Hz và Tần số cắt trên $f_H = \omega_H/2\pi = 159.16$ Hz. Giàn đồ Bode của đáp ứng biên độ:

12)

13) BG.


```
a) Khi không có R<sub>G</sub>
```

 $V_{01} = -R2V_{REF}/R1 + (1 + R2/R1)V_{IN1}$ $V_{OUT} = -R4V_{01}/R3 + (1 + R4/R3)V_{IN2}$ Theo đề bài, R2/R1 = R3/R4 = 1/4 Suy ra

 $V_{OUT} = V_{REF} + (1 + R4/R3)(V_{IN2} - V_{IN1})$ $V_{OUT} = 5(V_{IN2} - V_{IN1}) + V_{REF}$

b) Khi có R_G và $V_{REF} = 0$

Vì v+ = v- với opamp ở chế độ KĐ:

• Với opamp 1:

(Đặt $V_A = V_{O1}, V_1 = V_{IN1} \text{ và } V_2 = V_{IN2}$) $(V_{REF} - V_1)/R1 = (V_1 - V_2)/R_G + (V_1 - V_A)/R_2$ (1)

• Với opamp 2: (R4 = R1 và R3 = R2)

 $(V_2 - V_{OUT})/R1 = (V_1 - V_2)/R_G + (V_A - V_2)/R_2$ (2) • Công (1) và (2), ta có

- Cộng (1) và (2), ta có (V_{REF} + V₂ - V₁ - V_{OUT})/R₁= 2(V₁ - V₂)/R_G+(V₁ - V₂)/R₂
- \Rightarrow V_{OUT} = (1 + R₁/R₂ + 2R₁/R_G)(V_{IN2} V_{IN1})

14)

15)

16) BG.

Ta có ($Vsat+ = -Vsat- = V_{SAT}$)

UTP =
$$R_F V_{REF} / (R_1 + R_F) + R_1 V_{SAT} / (R_1 + R_F)$$

 $LTP = R_F V_{REF} / (R_1 + R_F) - R_1 V_{SAT} / (R_1 + R_F)$

Suy ra:

UTP – LTP =
$$2R_1V_{SAT}/(R_1 + R_F) = 20/(1 + R_F/R_1) = 1 - (-3) = 4 V$$

 $\Rightarrow R_F/R_1 = 4 \Rightarrow R_1 = 20k\Omega/5 = 5 k\Omega$

Tìm V_{REF}:

UTP = RF/R1 x
$$V_{REF}/(1 + RF/R1) + V_{SAT}/(1 + R_F/R_1) = 4V_{REF}/5 + 10/5 = 1 V$$

$$\Rightarrow V_{REF} = -5/4 V = -1.25V$$

17) BG.

<u>Chú ý</u>: Mạch này có đặc tuyến ngược lại câu 16, nghĩa là khi $V_l \ll$ thì opamp bão hòa âm.

Ta tìm điểm chuyển khi V+ = V-:

 $V + = R2V_1/(R1+R2) + R1V_0/(R1+R2) = V - = V_{REF}$

Suy ra:

$$VI = (1 + R2/R1)V_{REF} - R1V_{O}/R2$$

Như vậy:

UTP = $(1 + R2/R1)V_{REF} - R1V_{SAT}/R2$

LTP = $(1 + R2/R1)V_{REF} - R1V_{SAT+}/R2$

UTP - LTP = $4 - 1 = 3 = -R1(V_{SAT-} - V_{SAT+})/R2 = 24R1/R2 \Rightarrow R2/R1 = 8$

Chon R1 = 10 k $\Omega \Rightarrow$ R2 = 80 k Ω

 \Rightarrow UTP = 4 = (1 + 8)V_{REF} + 12/8 \Rightarrow V_{REF} = 5/18 V

18) ĐS. Người ta muốn thiết kế mạch thực hiện biểu thức sau: $V_0 = 3V_1 - 4V_2 + 6V_3 - 2V_4$

Chú ý: Có nhiều đáp án cho các R.

19) BG.

Có thể viết lại biểu thức ra:

$$V_0 = -3V_1 - 5V_3 + 7.5V_2$$

❖ Cách 1: Dùng 2 opamp

Mach trên cho Vo = $-R_F(V_1/R_1 + V_3/R_3 - V_2/R_2) = V_0 = -3V_1 - 5V_3 + 7.5V_2$

Suy ra: RF/R1 = 3, RF/R3 = 5, $var{a}$ RF/R2 = 7.5

Điện trở nhỏ nhất là R2 \Rightarrow R2 = 10 kΩ \Rightarrow RF = 7.5 x10 kΩ = 75 kΩ

Như vậy: R1 =RF/3 = 75/3 = $25 \text{ k}\Omega$, R3 = 75/5 = $15 \text{ k}\Omega$.

Cách 2: Dùng 1 opamp

Với mạch trên, áp dụng định lý xếp chồng ta tìm được: $V_o = -(R_F/R_1)V_1 - (R_F/R_3)V_3 + (1 + R_F/(R_1//R_3))R_{2B}V_3/(R_{2A} + R_{2B})$ (1) So sánh (1) với đề bài: $V_0 = -3V_1 - 5V_3 + 7.5V_2$ Suy ra: $R_F/R_1 = 3$ **(2)** $R_F/R_3 = 5$ (3) $(1 + R_F/(R_1//R_3))R_{2B}V_3/(R_{2A} + R_{2B}) = 7.5$ **(4)** Vì hệ này có 5 ấn mà chỉ có 3 phương trình, ta có thể chọn giá trị cho 2 điện trở trước và tính các R còn lại: (có nhiều bộ nghiệm) • Nhận xét (2) và (3) ta có thể chọn $R_F = 3 \times 5 \times 10 \text{ k}\Omega = 150 \text{ k}\Omega$ \Rightarrow R₁ = R_F/3 = 50 k Ω và R3 = R_F/5 = 30 k Ω . Trước hết tính 1 + R_F/(R₁//R₃) = 1 + 150 (50 + 30) /(50 x 30) = 1 + 8 = 9 và thay vào (4) ta có $R_{2B}/(R_{2A} + R_{2B}) = 7.5/9$ hay $1 + R_{2A}/R_{2B} = 9/7.5 = 3/2.5 = 30/25 \Rightarrow R_{2A}/R_{2B} = 1/5$ Neu chọn $R_{2A} = 10 \text{ k}\Omega \Rightarrow R_{2B} = 5 \text{ R}_{2A} = 50 \text{ k}\Omega$. Tóm lại, 1 bộ nghiệm thỏa để bài là $R_F = 150 \text{ k}\Omega$, $R1 = 50 \text{ k}\Omega$, $R3 = 30 \text{ k}\Omega$. $R2A = 10 \text{ k}\Omega$, $Var{a} R2B = 50 \text{ k}\Omega$. 20) *DS*. a) $A_2 = V_{O2}/V_{O1} = -9/2 = -4.5$ b) $V_{02} = 54V1 + 18V2 - 36V3$ c) $V_{02} = -67.5V1$ 21) *BG*. Nhận xét: • Khi V2 = 0, mạch giống KĐ đảo $Vo = Vo1 = -R2/R1 = G_1V1$ $v\acute{o}i G1 = -R2/R1 = -51/4.9 = -10.4082$ Khi V1 = 0, mạch giống KĐ không đảo $Vo = Vo2 = (1 + R2/R1)R4V2/(R3 + R4) = G_2V2$ $v\acute{o}i G2 = (1 + R2/R1)R4/(R3 + R4) = 10.3607$ Bằng định lý xếp chồng ta tìm được điện áp ra $Vo = Vo1 + Vo2 = G_1V_1 + G_2V_2$ (1) với $G_1 = -10.4082$ và $G_2 = 10.3607$ R1 = 4.9, R2=51, R3 = 10.1, R4=99.9, G1=-R2/R1, G2=(1 + R2/R1)*R4/(R3 + R4)Theo lý thuyết ta có thành phần vào vi sai là Vd = V2 – V1 thành phần vào cách chung là Vc = (V2 + V1)/2 • điện áp ra Vo = GdVd + GcVc Thay biểu thức của Vd và Vc vào (2) và so sánh với (1), suy ra G1 = -Gd + Gc/2G2 = Gd + Gc/2Giải hệ này ta được Gd = (G2 - G1)/2 = (10.3607 - (-10.4082))/2 = 10.3844(a) Gc = G2 + G1 = 10.3607 - 10.4082 = -0.0475(b) Như vậy CMRR = $20lg(|Gd/Gc|) = 20lg(10.3844/0.0475) = 46.7938 \approx 47 dB$ (c) 22) BG. Gọi độ lợi dải giữa của op amp thứ nhất là K1, thứ hai là K2 và của toàn mạch là K = K1 x K2. a) Mạch opamp thứ nhất là mạch lọc thông thấp với tần số cắt là $f_{LP} = 1/2\pi R_2 C_1$ và $K_1 = -R_2/R_1$. Mạch opamp thứ nhất là mạch lọc thông cao với tần số cắt là $f_{HP} = 1/2\pi R_3 C_2$. và $K_2 = -R_4/R_3$. b) Điều kiên để cho mạch này trở thành mạch thông dải là $f_{LP} > f_{HP}$. c) Điều kiện để cho mạch này trở thành mạch triệt dải là $f_{LP} > f_{HP}$. d) Mạch opamp đầu thực hiện mạch thông thấp với tần số cắt fc1 = $1/2\pi$ C1R2 ≈ 4.974 kHz

Mạch opamp sau thực hiện mạch thông cao với tần số cắt fc2 = $1/2\pi$ C2R3 = 0.1 kHz

Vì fc2 < fc1 ⇒ toàn mạch là mạch lọc thông dãi với Tần số cắt dưới f_{cL} = 0.1 kHz và tần số cắt trên f_{cH} = 4.974 kHz.

Độ lợi dải giữa tính được khi hở mạch C1 và ngắn mạch C2:

 $K = (-R_2/R_1) \times (-R_4/R_3) = (R_2/R_1) \times (R_4/R_3) = (100k/50k) \times (10k/5k) = 2 \times 2 = 4$

23) HD: Xem biểu thức Vo và đặc tuyến trong bài giảng.

24) BG.

- Zin = 100 k Ω và Zin = R₁ \Rightarrow R₁ = 100 k Ω
- Độ lợi DC = $|-R_F/R1| = 50 \Rightarrow R_F = 50R1 = 5 M\Omega$
- Tần số cắt -3dB = $f_L = 50 \text{ kHz} = 1/2\pi C_F R_F \Rightarrow C_F = 1/2\pi R_F f_L = 0.64 \text{ pF}$

25)

26) ĐS.

- a) $V_0 = -R_2V_i/R_1 = -5V_i$ (V)
- b) $13 = (1 + R_2/R_L)V_i/R_1 = 1.2V_i$ (A)
- c) l₃ không thay đổi vì nó không phụ thuộc R₃.

27) *ĐS*.

- a) Av = Vo/Vi = (1 + R2/R1) (1 + R3/R2 + R3/R4) Av = (1 + 25/5) (1 + 5/25 + 5/5) = 6 x 11/5 = 66/5 = 13.2
- b) Nếu Vì thuộc khoảng (Vsat-/Av, Vsat+/Av) thì op amp vẫn ở miền KĐ.

28) DS. $i_0 = -Vin/Rf$

29) DS. Đây là mạch lọc thông dải với tần số trung tâm f_0 .

$$f_0 = \frac{1}{2\pi C \sqrt{(R_1 || R_2)R_3}}$$

$$H_0 = \frac{R_3}{2R_1}$$

$$B = \frac{1}{\pi R_3 C}$$

30) DS.

- Hình 27 Mạch có dạng hình 16
- Hình 28 Mạch có dạng hình 15
- Hình 29 Mạch phát hiện zero (ngõ ra bảo hòa dương khi Vi > 0) + mạch tích phân
- Hình 30 Mạch phát hiện zero (ngõ ra bảo hòa âm khi Vi > 0) + mạch tích phân