Práctico 5: Gramáticas Regulares

Año 2024

Ejercicio 1. Sea $\Sigma = \{0,1\}$ un alfabeto y sea G la siguiente gramática regular:

$$G: S \to 1A|0$$

$$A \to 0A|1A|\epsilon$$

- a) Hallar $\alpha_1, \alpha_2 \in \Sigma^*$ tal que $\alpha_1, \alpha_2 \in L(G)$ y dar su derivación correspondiente en G.
- b) Hallar α_3 , $\alpha_4 \in \Sigma^*$ tal que α_3 , $\alpha_4 \notin L(G)$.
- c) Definir L(G) dando una expresión regular que lo denote. Que conjunto es coloquialmente hablando?

Ejercicio 2. Sea $\Sigma = \{0, 1, 2, 3, \dots, 9\}$ un alfabeto, probar que los siguientes lenguajes son regulares dando una gramática regular que los genere:

- a) $L_{\mathbb{N}} = \{0, 1, 2, 3, \dots\}$ (el lenguaje de los números naturales)
- b) $L_{\mathbb{Z}} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ (el lenguaje de los números enteros)
- c) L_{float} el lenguaje de los números flotantes.

Ejercicio 3. Sea $\Sigma = \{a, b\}$ un alfabeto, probar que $L = \{\alpha : |\alpha| \ es \ impar\} \in LR^{\Sigma}$ dando una gramática regular G tal que L(G) = L, y luego, probar que efectivamente se cumple dicha igualdad mediante inducción.

Ejercicio 4. Sea $\Sigma = \{a, b\}$ un alfabeto, probar que $L = \{b\alpha b : \alpha \in \Sigma^*\} \in LR^{\Sigma}$ dando una gramática regular G tal que L(G) = L y luego, probar que efectivamente se cumple dicha igualdad mediante inducción.

Ejercicio 5. Sea $\Sigma = \{a, b, c\}$ un alfabeto, probar que $L = a^*bc^* \in LR^{\Sigma}$ dando una gramática regular G tal que L(G) = L y luego, probar que efectivamente se cumple dicha igualdad mediante inducción.

Ejercicio 6. Sea $\Sigma = \{a, b\}$ un alfabeto, determinar el lenguaje generado por la siguiente gramática regular y probarlo por inducción.

$$S \rightarrow aA|bS|\epsilon$$

$$A \rightarrow aS|bA$$

Ejercicio 7. Sea $\Sigma = \{a, b\}$ un alfabeto, determinar el lenguaje generado por la siguiente gramática regular y probarlo por inducción.

$$S \to aS|bA$$
$$A \to aA|bB$$
$$B \to aB|\epsilon$$

Ejercicio 8. Para cada uno de los siguientes AF, obtener su gramática regular (de paso único) equivalente:

Ejercicio 9. Para la siguiente gramática regular (de paso único), obtener su AF equivalente:

$$S \to aS|bA$$

$$A \to aA|bB$$

$$B \to aB|\epsilon$$

Ejercicio 10. Probar que si $e \in ER^{\Sigma}$, entonces existe $G \in GR^{\Sigma}$ tal que L(G) = L(e), pero sin utilizar el Teo. de Kleene. (Ayuda: hacer inducción en la forma de la expresión regular e).