

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

پیادهسازی سامانهی اجتناب از مانع بروی ربات شش پره

پایاننامه کارشناسی ارشد مهندسی کامپیوتر – هوش مصنوعی و رباتیک داریوش حسنپور آده

استاد راهنما

دكتر مازيار پالهنگ

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

پایاننامه کارشناسی ارشد رشته مهندسی کامپیوتر – هوشمصنوعی و رباتیک آقای داریوش حسنپور آده تحت عنوان

پیادهسازی سامانهی اجتناب از مانع بروی ربات شش پره

در تاریخ ... توسط کمیته تخصصی زیر مورد بررسی و تصویب نهایی قرار گرفت:

۱_ استاد راهنمای پایاننامه دکتر مازیار پالهنگ

۳_استاد داور (اختیاری) دکتر ...

۴_استاد داور (اختياری) دکتر ...

سرپرست تحصیلات تکمیلی دانشکده دکتر محمد رضا تابان

تشکر و قدردانی

پروردگار منّان را سپاسگزارم

کلیه حقوق مادی مترتب بر نتایج مطالعات، ابتکارات و نوآوریهای ناشی از تحقیق موضوع این پایاننامه متعلق به دانشگاه صنعتی اصفهان است.

تقدیم به پدر و مادر عزیزم

فهرست مطالب

فحه	<u>9</u>	عنوان
هشت	رست مطالب	فه
نه	رست تصاویر	فه
١	کیده	چ
۲	ول: مقدمه	فصل ا
۲	.١ عنوان قسمت	٠١
٣	وم: تاریخچه و مرور کارهای پیشین	فصل د
٣	-۱ مقدمه	۲.
۴	ـ ۲ تاریخچه پرواز و پهپاد	۲.
٩	ـ ۳ مرور کارهای پیشین	۲.
٩	۴ نتیجهگیری	٠٢
١.	سوم: مفاهیم علمی پیشنیاز پایاننامه	فصل ،
١.	ـــــــــــــــــــــــــــــــــــــ	_
11	چهارم: روش پیشنهادی	فصل -
١١	ـ ۱ عنوان قسمت	
17	نجم: نتایج عملی	فصل د
١٢	- ۱ عنوان قسمت	
	٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	
۱۳	ششم: نتیجه گیری و جمع بندی	فصل
۱۳	- ۱ عنوان قسمت	۶.
۱۳	جع	مر
۱۵	کیده انگلیس	, ~

فهرست تصاوير

۵	موشک کروز اولیه به نام RAE Larynx	1 _ ٢
	هواپیمای Curtiss N2C-2 کنترل شونده از راهدور که در توسط ایالات متحده آمریکا در سال ۱۹۳۸ (۱۹۳۸	۲_۲
۶	م.) ساخته شد	
	پهپاد پستونی OQ-2 یکی از موفقترین پهپادهای اولیه که در دوران جنگ جهانی دوم ساخته شد و با تولید بیش	٣_٢
٧	از ۴۰۰، عدد به تولید انبوه رسید[۷]	
	پهپاد MQ-1 Predator ساخته شده توسط شرکت آمریکایی General Atomics که علاوه بر توانایی اجرای	4-1
٨	عملیات شناسایی و نظارتی امکان اجرای حملات تخریبی به صورت محدود را دارد	
٨	یهیاد ۶یره مورد استفاده در این یژوهش	۵_۲

فصل اول

مقدمه

۱_۱ عنوان قسمت

فصل دوم تاریخچه و مرور کارهای پیشین

1_7 مقدمه

«پرنده هدایت پذیر از دور یا به اختصار پهپاد که به آن وسیله هوایی بدون سرنشین نیز گفته می شود، نوعی وسیله هوایی هدایت پذیر از راه دور است.» تعریفی است که از پهپاد در ویکی پدیا آمده است [۱۱]. پهپاد به دو دسته کنترل شونده از راه دور توسط عامل انسانی و به صورت کاملا خود کار و برنامه ریزی شده می شوند. تاریخچه به وجود آمدن پهپادهای مدرن ریشه نظامی داشته و در ماموریت های نظامی که برای انسان خطیر یا خسته کننده بودند استفاده می شد. به جهت پیشرفت روزافزون تکنولوژی های ساخت پهپاد، اکنون شاهد کاربردهای غیرنظامی آن ها هستیم. راهبری پهپادها همانند سایر رباتها دارای خطراتی هستند که مهمترین آنها خطر برخورد با موانع موجود در مسیر هست که در مورد پهپادها غالبا منجر به از دست رفتن کنترل، سقوط و از بین رفتن ربات می شود. از اینجا هست که نیاز به ارائه روش های اجتناب از مانع برخط در پهپادها ضروری به نظر می رسد. از میان روش های اجتناب از مانع روش حسگر مبنا در زمینهی رباتهای هوایی استفاده می شود زیرا علاوه بر دینامیک پویا و غیرخطی پهپادها که هم بستگی شدیدی با متفییرهای محیطی (همانند سرعت جریان، تراکم هوا و غیره می دینورات محیط خارجی نیز از پویایی بالایی برخوردار است. روش های دیگری همانند طرح ریزی و غیره ی دارد تغییرات محیط خارجی نیز از پویایی بالایی برخوردار است. روشهای دیگری همانند طرح ریزی

¹Online

²Sensor-based

سراسری[۳] نیز به جهت اجتناب از مانع وجود دارد ولی به دلیل آنکه این روش در صنعت هوایی به دلایل ذکر شده توانایی مورد استفاده قرار گرفته شدن را ندارد و از پیگیری این روش در این پژوهش اجتناب میکنیم.

در ادامهی این فصل به مروری کوتاه از تایخچهی پرواز و پهپادها میپردازیم و سپس به بررسی کارهای قبلی انجام شده در رابطه با اجتناب از موانع رباتهای چندپره به صورت خاص میپردازیم. دلیل آنکه به صورت خاص بروی روشهای پیادهسازی شده بروی رباتهای چندپره تمرکز میکنیم این است که پهپادها در حالت عموم دارای دینامیک و مشخصات منحصر به فرد و نهایتا دارای کنترلهای متفاوتی هستند که این امر منجر خواهد شد که هر حسگری را نتوان در هر پهپادی مورد استفاده قرار داد؛ که این دلایل باعث میشود روشهای متفاوتی بجهت اجتناب از مانع برای انواع پهپادها مطرح شود. برخی از روشها مانند روشهای مورد استفاده قرار داد. لذا در مرور این بخش علاوه بر کارهای انجام شده در زمینهی اجتناب از مانع رباتهای چندپره به بررسی مختصر این روشهای عمومی نیز خواهیم پرداخت.

۲_۲ تاریخچه پرواز و پهپاد

از دیرباز رویای پرواز در ذهن انسانها جا باز کرده بود، آسمان محلی مقدسی بود که استورههای باستان با هیبتی خداوندی از آن به زمین میآمدند... که این طرز نگرش نیازمند این بود که پرواز کردن و صعود به گنبد کبود به کهن ترین آرزوی آدمی بدل شود. این آرزو در اولین فرصت خود یعنی در حدود ۴۰۰ سال ق.م. با اختراع کایت که می توانست پرواز کند توسط مردمان چین به آتشی شعله کش در میان نسل بشر بدل گردید. جایگاه پرواز بقدری باارزش بود که در آن موقع کایت را به عنوان یک وسیله مقدس برای مراسمهای مذهبی استفاده می کردند. بعد از گذشت سالیان دراز لئوناردو داوینچی در سال ۱۴۸۰/۸۵ م.) فرصتی دوباره به این رویای کهن داد تا بلکه بتواند این رویا را به واقعیت بدل کند؛ وی اولین مطالعه رسمی تاریخ را بروی ماهیت پرواز انجام داد که این مطالعه شامل بیش از ۱۰۰ نقشه و تئوری پرواز بود. در سال ۱۱۶۲ (۱۷۸۳ م.) اولین بالن هوای گرم توسط برادران منتگولفیر ارائه شد. همچنین اولین گلایدر به همت آقای کی لی ت در یک دوره بالن هوای گرم توسط برادران منتگولفیر ارائه شد. همچنین اولین گلایدر به همت آقای کی لی ت در یک دوره ماله در بین سالهای ۱۱۷۸ (۱۷۹۹ م.) و ۱۲۲۹ (۱۸۵۰ م.) اختراع شد و بهبود پیدا کرد. در سال ۱۲۷۰ (۱۸۹۱ م.) یک مهندس آلمانی وی ایرودینامیک و طراحی گلایدرها مطالعه کرد و اولین فردی بود که توانست گلایدری را طراحی کند که می توانست یک انسان را در مسافتهای طولانی حمل کند. در همان

¹Kite

²Joseph and Jacques Montgolfier

³George Cayley

⁴Otto Lilienthal

شكل ٢-١: موشك كروز اوليه به نام RAE Larynx

سال آقای لنگلی^۱ متوجه شد که به نیرو جهت پرواز انسان نیاز هست و مدلی را ارائه داد که دارای موتور بخار بود توانست ۳/۴ مایل را قبل اینکه سوختش تمام شود حرکت کند[۴].

جنگها در کنار ویرانگریهایی که از خود پشت سر میگذارند همیشه باعث تکامل و جهش عمل بشری بودهاند؛ در جنگهای جهانی (بخصوص جنگ جهانی دوم) نوآوریهای زیادی در زمینهی علوم هواوفضا و رباتیک شد. اولین بار در اواخر جنگ جهانی اول بود که یک هواپیمای بدون سرنشین اختراع شد که توسط یک سامانهی رادیویی کنترل می شد. در میانهی جنگهای جهانی (سالهای ۱۹۲۹ (۱۹۲۷ م.) تا ۱۳۰۸ (۱۹۲۹ م.) ولین موشک کوروز (شکل ۲-۱) که بصورت یک هواپیمای تک باله ساخته شد که از روی یک کشتی جنگی پرتاب و توسط خلبان خود کار هدایت می شد. موفقیت آمیز بود ساخت این موشک باعث شد که چند سال بعد هواپیماهای بدون سرنشین و کنترل کننده ی رادیویی در سال ۱۹۳۹ (۱۹۳۰ م.) ساخته شوند. در طی جنگ در دهه ی در مینوی در ایالات متحده آمریکا شروع به انجام آزمایشاتی در زمینه ی هواپیماهای رادیوکنترلی در دهه ی ۱۹۳۹ (۱۹۳۰ م.) کرد که نهایتا منجر به ساخت هواپیمای بدون سرنشین و کنترل از راه دور را بروی بمب افکنهای می شد که به عنوان یک سامانه ی ضد هوایی به خدمت گرفته شد. در همین دوران ایالات متحده آمریکا تلاش کرد دستاوردهای خود را در زمینهی هواپیماهای بدون سرنشین کنترل شونده از راه دور را بروی بمب افکنهای تلاش کرد دستاوردهای خود را در زمینهی هواپیماهای بدون سرنشین کنترل شونده از راه دور را بروی بمب افکنهای تلاش کرد دستاوردهای خود را در زمینهی هواپیماهای بدون سرنشین بود که در سال ۱۹۹۱ (۱۹۹۰ م.) ساخته شد که می توانست یک بمب ۱۳۰۰ لیک هواپیمایی بدون سرنشین بود که در سال ۱۳۱۹ (۱۹۴۰ م.) ساخته شد که می توانست یک بمب ۱۰۰۰ بوندی (حدودا ۲۵۰ کلوگرم) را به پرواز در آورده و به هدف بزند[۹].

در تاریخچهی هواپیماهای بدون سرنشین تا قبل از جنگ سرد به دلیل نبود تکنولوژیهای مدرن امروزی جنس هواپیماها از جنس موتور، پیستون و گازوییل بودند و ارتباط کنترلی آنهای بصورت رادیویی بود و معمولا دارای

¹Samuel P. Langley

شکل ۲-۲: هواپیمای Curtiss N2C-2 کنترل شونده از راهدور که در توسط ایالات متحده آمریکا در سال ۱۳۱۷ (۱۹۳۸ م.) ساخته شد.

خلبان خود کار نبوده و در صورت وجود چنین سامانهای، سیستمی بسیار ساده داشته و ادومتری آنهای صرفا بر مبنای قطبنما، میزان سرعت و مدت زمان حرکت بود. در دوران جنگ سرد و بعد از آن بود که جهشهای بزرگ در تکنولوژیهای ساخت هواپیماهای بدون سرنشین ایجاد شد.

در دوران جنگ سرد درپی موفقیت آمیز پهپاد پستونی OQ-2 هواپیماهای رادیویی به دوره ی جدیدی از نوآوری ها وارد شدند و موج جدیدی از استفاده و بکارگیری پهپادها در ارتش ایالات متحده ی آمریکا به راه افتاد. شرکت Globe بعد از ساخت پهپاد پیستونی KDG Snipe در سال ۱۹۴۵ (۱۹۴۶ م.) به ساخت پهپادهای KDG و KD2G پرداخت که از نمونههای اولیه پهپادهای موتور – جت می باشند، کرد. در نهایت در اواخر دهه ی KD2G و ۱۹۵۰ (۱۹۵۰ م.) پهپادهای جنگی پرقدرت پا به عرصه ی کاربردهای نظامی در سطح گسترده گذاشتند.

در همین دوره که مسابقه ی اتمی بین ایالات متحده ی آمریکا و شوروی سابق شدت یافته بود، ایالات متحده ی آمریکا ۸ فقره از بمب افکنهای B-17 Flying Fortresses خود را به پهپادها تبدیل کرد. این که تلاش قبلا در دوران جنگ جهانی دوم با شکست مواجه شده بود این دفعه موفقیت آمیز از آب در آمد و این هواپیماها به جهت جمع آوری اطلاعات در ابر رادیواکتیو ۲ به خدمت گرفته شد. این هواپیماها در هنگام برخواست و فرود توسط یک کنترل کننده بروی یک جیپ کنترل می شد و در هنگام پرواز وسیله ی یک هواپیمای B-17 دیگر از راه دور کنترل می شد. گرچه پیکربندی این پهپاد دارای موفقیت هایی در اجرا بود ولی به دلیل سیستم پیچیده ی پیاده سازی شده روی آن میزان اتفاقات آن نیز بالا بود.

پهپادها همیشه به عنوان وسیلهی غیرقابل اعتماد و پرهزینهی دیده می شد تا اینکه نیروی هوایی اسرائیل جهش بزرگی در پیشرفت روزبهروز پهپادها در پیروزی بر نیروی هوایی سوریه در سال ۱۳۶۱ (۱۹۸۲ م.) ایجاد کرد.

¹Radioplane

²Radioactive Cloud

شکل ۲_۳: پهپاد پستونی OQ-2 یکی از موفق ترین پهپادهای اولیه که در دوران جنگ جهانی دوم ساخته شد و با تولید بیش از ۹،۴۰۰ عدد به تولید انبوه رسید[۷].

اسرائیل با پیادهسازی سیستمی که با همکاری پهپاد و جنگدههای دارای خلبان توانستند به سرعت تعداد زیادی از هواپیماهای جنگده سوری را از بین ببرند. در این جنگ پهپادها به عنوان طعمه ، متخل کننده الکترونیکی و شناساگر ویدئویی مورد استفاده واقع می شدند [۹].

در حالت کلی پهپادها را میتوان به ۵ دسته زیر دستهبندی کرد[۵]:

- هدف و طعمه^۱: تیراندازی کردن به اهداف زمینی و هوایی.
 - ۲. شناسایی^۵: جمعآوری اطلاعات نظامی.
 - مبارز⁹: امکان تهاجم نظامی برای ماموریتهای خطیر.
- ۴. تحقیقات و توسعه ۱۰ برای تحقیق و توسعه پهپادهای آزمایشی نسل آینده.
- ۵. تجاری و غیرنظامی ۱۰ اختصاصا برای کاربردهای غیرنظامی طراحی شدهاند.

در دوره حاظر پهپادهای پیشرفته ی زیادی با کاربردهای مختلفی ساخته شده است. که از معروفترین و پیشرفته پهپادهای نظامی میتوان به پهپاد MQ-1 Predator که متعلق به ارتش ایالات متحده ی آمریکا میباشد که این پهپاد در اوایل دهه ی ۱۳۶۹ (۱۹۹۰ م.) برای کاربردهای نظارتی ساخته شد که دارای دوربینها و

¹Decoy

²Jammer

³Video Reconnaissance

⁴Target and decoy

⁵Reconnaissance

 $^{^6}$ Combat

⁷Research and development

⁸Civil and Commercial

شکل ۲-۴: پهپاد MQ-1 Predator ساخته شده توسط شرکت آمریکایی General Atomics که علاوه بر توانایی اجرای عملیات شناسایی و نظارتی امکان اجرای حملات تخریبی به صورت محدود را دارد.

شکل ۲ ـ ۵: پهپاد ۶پره مورد استفاده در این پژوهش

تعدادی سنسور دیگر میباشد و بعدها به گونهای تغییر یافت که امکان حمل ۲ عدد موشک را نیز داشته باشد؛ این پهپاد از سال ۱۳۷۴ (۱۹۹۵ م.) در عملیاتهای نظامی مختلفی مورد استفاده قرار گرفته است[۸].

پهپادی که در این پژوهش به صورت خاص مورد توجه واقع شده از خانواده ی پهپادهای چندموتوره میباشد. مزیت خانواده ی پهپادهای چندموتوره به پهپادهایی گفته می شود که برای پرواز به بیش از دو موتور نیازمند هستند. مزیت کاربردی این خانواده از پهپادها، سادگی نسبی مکانیکی آن بجهت کنترل پرواز میباشد که این سادگی علاوه بر اینکه هزینه ساخت و تولید این نوع از کوپترها را پایین می آورد ۲، باعث شده این خانواده به جمع پهپادهایی با استفاده ی غیرنظامی و تجاری بپیوندد. پهپادهای ۳پره، ۴پره، ۶پره و ۸پره از زیرمجموعههای متعارف این خانواده میباشند [۱۰]. ما روش پیشنهادی خود را در این تحقیق را بروی یک دستگاه ۶پره اجرا کرده ایم در فصلهای بعدی مفصلا شرح داده خواهد شد.

¹Multicopte

بدون درنظر گرفتن امکانات خاص، به راحتی میتوان با مبلغ تاچیزی حدود ۱۰دلار کوادکوپتری بجهت تفریح در اختیار داشت $[۱]^{!2}$

۲_۳ مرور کارهای پیشین

e · · 1

 $e \cdot \cdot \Upsilon$

۲_۴ نتیجهگیری

در این قسمت بلاح بلاح بلاح

فصل سوم مفاهیم علمی پیشنیاز پایاننامه

۱_۳ عنوان قسمت

فصل چهارم روش پیشنهادی

1_4 عنوان قسمت

فصل پنجم نتایج عملی

۱_۵ عنوان قسمت

فصل ششم نتیجه گیری و جمع بندی

۱_۶ عنوان قسمت

مراجع

- [1] Amazon. Cheerson cx-10 mini 29mm 4ch 2.4ghz 6-axis gyro Amazon. https://www.amazon.com/Cheerson-2-4GHz-6-Axis-Quadcopter-Bright/dp/B00KXZC762/. [Online; accessed 6-September-2016].
- [2] Johann Borenstein and Yoram Koren. The vector field histogram-fast obstacle avoidance for mobile robots. *IEEE Transactions on Robotics and Automation*, 7(3):278–288, 1991.
- [3] Sayed Navid Hoseini Izadi. Autonomous navigation in unknown off-road environment based on family of bug algorithms. Master's thesis, Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan University of Technology, Isfahan 84156-83111, Iran, 1 2014.
- [4] NASA. Histroy of flights. https://www.grc.nasa.gov/www/k-12/UEET/StudentSite/historyofflight.html. [Online; accessed 4-September-2016].
- [5] TheUAV. Uavs. http://www.theuav.com. [Online; accessed 6-September-2016].
- [6] Iwan Ulrich and Johann Borenstein. Vfh+: Reliable obstacle avoidance for fast mobile robots. In *Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on*, volume 2, pages 1572–1577. IEEE, 1998.
- [7] Wikipedia. Radioplane oq-2 wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Radioplane_OQ-2, 2015. [Online; accessed 6-September-2016].
- [8] Wikipedia. General atomics mq-1 predator wikipedia, the free encyclopedia, 2016. [Online; accessed 6-September-2016].
- [9] Wikipedia. History of unmanned aerial vehicles wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/History_of_unmanned_aerial_vehicles, 2016. [Online; accessed 4-September-2016].
- [10] Wikipedia. Multirotor wikipedia, the free encyclopedia, 2016. [Online; accessed 6-September-2016].
- [11] Wikipedia. Unmanned aerial vehicle wikipedia, the free encyclopedia, 2016. [Online; accessed 6-September-2016].

Implementation of obstacle avoidance system on quadcopter

Dariush Hasanpour Adeh

d.hasanpoor@ec.iut.ac.ir

[DATE]

Department of Electrical and Computer Engineering
Isfahan University of Technology, Isfahan 84156-83111, Iran
Degree: M.Sc.
Language: Farsi

Supervisor: Assoc. Prof. Maziar Palhang (palhang@cc.iut.ac.ir)

Abstract

Key Words: Drone, Flight security, Obstacle avoidance

Isfahan University of Technology

Department of Electrical and Computer Engineering

Implementation of obstacle avoidance system on quadcopter

A Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Science

by Dariush Hasanpour Adeh

Evaluated and Approved by the Thesis Committee, on ...

- 1. Maziar Palhang, Assoc. Prof. (Supervisor)
- 2. ..., Prof. (Examiner)
- 3. ..., Prof. (Examiner)

Mohamad Reza Taban, Department Graduate Coordinator