Множества

Определение 1. Множества A и B называются равными, если каждый элемент множества A принадлежит множеству B, а каждый элемент множества B принадлежит множеству A. Обозначение: A=B.

Определение 2. Множество A называется подмножеством множества B, если каждый элемент множества A принадлежит множеству B. Обозначение: $A \subseteq B$.

Определение 3. Множество называется пустым, если оно не содержит ни одного элемента. Обозначение: \emptyset .

Определение 4. Объединением множеств A и B называется множество, состоящее из всех таких x, что $x \in A$ или $x \in B$. Обозначение: $A \cup B$.

Определение 5. Пересечением множеств A и B называется множество, состоящее из всех таких x, что $x \in A$ и $x \in B$. Обозначение: $A \cap B$.

Определение 6. Разностью множеств A и B называется множество, состоящее из всех таких x, что $x \in A$ и $x \notin B$. Обозначение: $A \setminus B$.

Определение 7. Количество элементов во множестве A будем обозначать |A|.

Задача 1. Дано множество A такое, что |A| = n. Найдите количество множеств а) $B \subseteq A$, б) $B \subseteq A$ таких что |B| нечётно.

Задача 2. Докажите тождества а) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 6) $(A \cup B) \setminus C = (A \setminus C) \cup (A \setminus C)$

Задача 3. На плоскости дан равносторонний треугольник ABC. Пусть X — множество всех точек M, для которых треугольник ABM равнобедренный.

Пусть Y — множество всех точек M, для которых треугольник BCM равнобедренный.

Пусть Z — множество всех точек M, для которых треугольник BCM равнобедренный.

Изобразите на плоскости следующие множества:
а) X,Y,б) $X\cap Y,$ в) $X\cup Z,$
г) $Y\setminus Z$

Задача 4. Докажите формулу а) $|A \cup B| = |A| + |B| - |A \cap B|$.

Задача 5. Докажите формулу а) $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_3 \cap A_2| - |A_1 \cap A_3| + |A_1 \cap A_2 \cap A_3|$. б) Что будет если множеств не три, а n?

Задача 6. Имеется комната площадью 6 кв. метров, в котором постели три ковра, площадью 3 кв. метра каждый. Докажите, что какие-то два перекрываются по площади по меньшей мере 1 кв. метр.