CS273A: Linear Classifiers

Prof. Alexander Ihler Fall 2024

Linear Classifiers

Linear Classification with Perceptrons

Perceptron Learning

Gradient-Based Classifier Learning

Multi-Class Classification

Regularization for Linear Classifiers

Supervised Learning

Notation

- Features x
- Targets y

Linear Regresson

"Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

- Contrast with classification
 - Classify: predict discrete-valued target y
 - Initially: "classic" binary { -1, +1} classes; generalize later

Perceptron Classifier (2 Features)

r = X @ theta.T # compute linear response Yhat = 1*(r > 0) # predict class 1 vs 0 Yhat = 2*(r > 0)-1 # or "sign": predict +1 / -1 # Note: typically convert classes to "canonical" values 0,1,... # then convert back ("learner.classes[c]") after prediction

Visualizing for one feature "x":

Perceptrons

- Perceptron = a linear classifier
 - The parameters θ are sometimes called weights ("w")
 - real-valued constants (can be positive or negative)
 - Input features x₁...x_n are arbitrary numbers
 - Define an additional constant input feature x₀=1
- A perceptron calculates:
 - 1. A weighted sum of the input features ("linear response")
 - 2. The sum is then thresholded by the T(.) function ("decision")
- Perceptron: a simple artificial model of human neurons
 - weights = "synapses"
 - threshold = "neuron firing"

Perceptron Decision Boundary

• The perceptron is defined by the decision algorithm:

$$f(x; \theta) = \begin{cases} +1 & \text{if } \theta \cdot x^T > 0 \\ -1 & \text{otherwise} \end{cases}$$

Linear response r(x)

Decision f(x) = T(r(x))

CS273A: INTRO TO MACHINE LEARNING

Decision boundary:

Example, Linear Decision Boundary

Example, Linear Decision Boundary

05: LINEAR CLASSIFIERS

Example, Linear Decision Boundary

Separability

- A data set is separable by a learner if
 - There is some instance of that learner that correctly predicts all the data points
- Linearly separable data
 - Can separate the two classes using a hyperplane in feature space
 - in 2 dimensions the decision boundary is a straight line

Linearly separable data

Decision boundary
Feature 1, X₁

Linearly non-separable data

Class overlap

- Classes may not be well-separated
- Same observation values possible under both classes
 - High vs low risk; features {age, income}
 - Benign/malignant cells look similar
 - ...

- Common in practice
- May not be able to perfectly distinguish between classes
 - Maybe with more features?
 - Maybe with more complex classifier?
- Otherwise, may have to accept some errors

Another example

Non-linear decision boundary

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

"AND"	,
-------	---

X ₂	У
0	-1
1	-1
0	-1
1	1
	0 1 0

"XOR"

X ₁	X ₂	У
0	0	1
0	1	-1
1	0	-1
1	1	1

Adding features

Linear classifier can't learn some functions

1D example:

Adding features

Linear classifier can't learn some functions

1D example:

Quadratic features, visualized in original feature space:

More complex decision boundary: $ax^2+bx+c=0$

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

What kinds of functions could we use to learn the data on the right?

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

"£	1/	١I	D	"

X ₁	X ₂	У
0	0	-1
0	1	-1
1	0	-1
1	1	1

X ₁	X ₂	у
0	0	1
0	1	-1
1	0	-1
1	1	1

What kinds of functions could we use to learn the data on the right?

Ellipsiodal decision boundary: $a x_1^2 + b x_1 + c x_2^2 + d x_2 + e x_1 x_2 + f = 0$

Feature representations

- Features are used in a linear way
- Learner is dependent on representation
- Ex: discrete features
 - Mushroom surface: {fibrous, grooves, scaly, smooth}
 - Probably not useful to use $x = \{1, 2, 3, 4\}$
 - Better: 1-of-K, x = { [1000], [0100], [0010], [0001] }
 - Introduces more parameters, but a more flexible relationship

Effect of dimensionality

- Data are increasingly separable in high dimension is this a good thing?
- "Good"
 - Separation is easier in higher dimensions (for fixed # of data m)
 - Increase the number of features, and even a linear classifier will eventually be able to separate all the training examples!
- "Bad"
 - Remember training vs. test error? Remember overfitting?
 - Increasingly complex decision boundaries can eventually get all the training data right, but it doesn't necessarily bode well for test data...

Summary

- Linear classifier ⇔ perceptron
- Linear decision boundary
 - Computing and visualizing
- Separability
 - Limits of the representational power of a perceptron
- Adding features
 - Interpretations
 - Effect on separability
 - Potential for overfitting

Linear Classifiers

Linear Classification with Perceptrons

Perceptron Learning

Gradient-Based Classifier Learning

Multi-Class Classification

Regularization for Linear Classifiers

Learning the Classifier Parameters

- Learning from Training Data:
 - training data = labeled feature vectors
 - Find parameter values that predict well (low error)
 - error is estimated on the training data
 - "true" error will be on future test data
- Define a loss function $J(\underline{\theta})$:
 - Classifier error rate (for a given set of weights $\underline{\theta}$ and labeled data)
- Minimize this loss function (or, maximize accuracy)
 - An optimization or search problem over the vector $(\theta_0, \theta_1, \theta_2,...)$

Training a linear classifier

- How should we measure error?
 - Natural measure = "fraction we get wrong" (error rate)

$$\operatorname{err}(\theta) = \frac{1}{m} \sum_{i} \mathbb{1} \big[y^{(i)} \neq f(x^{(i)}; \theta) \big] \quad \text{ where } \quad \mathbb{1} \big[y \neq \hat{y} \big] = \begin{cases} 1 & y \neq \hat{y} \\ 0 & \text{o.w.} \end{cases}$$

```
Yhat = np.sign( X @ theta.T ) # predict class (+1/-1)
err = np.mean( Y != Yhat ) # count errors: empirical error rate
```

- But, hard to train via gradient descent
 - Not continuous
 - As decision boundary moves, errors change abruptly

1D example:
$$T(r(x)) = -1 \text{ if } r(x) < 0$$

 $T(r(x)) = +1 \text{ if } r(x) > 0$

Linear regression?

• Simple option: set θ using linear regression

- In practice, this often doesn't work so well...
 - Consider adding a distant but "easy" point
 - MSE distorts the solution

Perceptron algorithm: an SGD-like algorithm
 while ¬ done:

for each data point j:

$$\hat{y}^{(j)} = \mathrm{sign}(\theta \cdot x^{(j)})$$
 (predict output for point j)
$$\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$$
 ("gradient-like" step)

- Compare to linear regression + MSE cost
 - Identical update to SGD for MSE except error uses thresholded
 - $\hat{y}(j)$ instead of linear response $\underline{\theta}$ x':
 - (1) For correct predictions, $y^{(j)} \hat{y}^{(j)} = 0$
 - (2) For incorrect predictions, $y^{(j)}$ $\hat{y}^{(j)}$ = \pm 2

"adaptive" linear regression: correct predictions stop contributing

 Perceptron algorithm: an SGD-like algorithm while \neg done:

for each data point j:

$$\hat{y}^{(j)} = \mathrm{sign}(\theta \cdot x^{(j)})$$
 (predict output for positive $\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$ ("gradient-like" step)

(predict output for point j)

y(j)predicted incorrectly: update weights

• Perceptron algorithm: an SGD-like algorithm while ¬ done:

for each data point j:

$$\hat{y}^{(j)} = \mathrm{sign}(\theta \cdot x^{(j)})$$
 (predict output for point j)
$$\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$$
 ("gradient-like" step)

y(j)
predicted
correctly:
no update

• Perceptron algorithm: an SGD-like algorithm while ¬ done:

for each data point j:

$$\hat{y}^{(j)} = \mathrm{sign}(\theta \cdot x^{(j)})$$
 (predict output for point j)
$$\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$$
 ("gradient-like" step)

(Converges if data are linearly separable)

y(j)
predicted
correctly:
no update

Perceptron MARK 1 Computer

Frank Rosenblatt, late 1950s

Linear Classifiers

Linear Classification with Perceptrons

Perceptron Learning

Gradient-Based Classifier Learning

Multi-Class Classification

Regularization for Linear Classifiers

Surrogate loss functions

- Another solution: use a "smooth" loss
 - e.g., approximate the threshold function

- Usually some smooth function of distance
 - Example: logistic "sigmoid", looks like an "S"

Now, measure e.g. MSE

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} \left(\sigma(r(x^{(j)})) - y^{(j)} \right)^{2}$$

Class $y = \{0, 1\} ...$

- Far from the decision boundary: |f(.)| large, small error
- Nearby the boundary: |f(.)| near 1/2, larger error

Classification error = 2/9

 $MSE = (0^2 + .1^2 + .2^2 + .25^2 + .05^2 + ...)/9$

Training the Classifier

 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1,x_2) = a^*x_1 + b^*x_2 + c$$

Example: 2D feature space

⇔ parameter space

Training the Classifier

 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1,x_2) = a^*x_1 + b^*x_2 + c$$

Example: 2D feature space

⇔ parameter space

Training the Classifier

 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1,x_2) = a^*x_1 + b^*x_2 + c$$

• Example: 2D feature space

⇔ parameter space

Finding the Best MSE

- As in linear regression, this is now just optimization
- Methods:
 - Gradient descent
 - Improve loss by small changes in parameters ("small" = learning rate)
 - Or, substitute your favorite optimization algorithm...
 - Coordinate descent
 - Stochastic search

Gradient Descent

0/1 (Error Rate) Loss Example

• Data set: one feature, 5 data points

Logistic MSE Surrogate

• Smoother version of 0/1 Loss

Gradient Equations

• MSE (note, depends on function $\sigma(.)$)

$$J(\underline{\theta} = [a, b, c]) = \frac{1}{m} \sum_{i} (\sigma(ax_1^{(i)} + bx_2^{(i)} + c) - y^{(i)})^2$$

- What's the derivative with respect to one of the parameters?
 - Recall the chain rule of calculus:

$$\frac{\partial}{\partial a} f(g(h(a))) = f'(g(h(a))) g'(h(a)) h'(a)$$

$$f(g) = (g)^{2} \qquad \Rightarrow f'(g) = 2(g)$$

$$g(h) = \sigma(h) - y \qquad \Rightarrow g'(h) = \sigma'(h)$$

$$h(a) = ax_{1}^{(i)} + bx_{2}^{(i)} + c \qquad \Rightarrow h'(a) = x_{1}^{(i)}$$

w.r.t. b,c : similar; replace x_1 with x_2 or 1

$$\frac{\partial J}{\partial a} = \frac{1}{m} \sum_{i} 2 \left(\sigma(\theta \cdot x^{(i)}) - y^{(i)} \right) \frac{\partial \sigma(\theta \cdot x^{(i)})}{\partial \sigma(\theta \cdot x^{(i)})} \frac{x_{1}^{(i)}}{x_{1}^{(i)}}$$
Error between class Sensitivity of prediction

Error between class and prediction

Sensitivity of prediction to changes in parameter "a"

Beyond misclassification rate

- Which decision boundary is "better"?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better…

- Side benefit of many "smoothed" error functions
 - Encourages data to be far from the decision boundary
 - See more examples of this principle later...

Saturating Functions

- Many possible "saturating" functions
- "Logistic" sigmoid (scaled for range [0,1]) is

$$\sigma(z) = 1 / (1 + \exp(-z))$$

Derivative (slope of the function at a point z) is

$$\partial \sigma(z) = \sigma(z) (1-\sigma(z))$$

(to predict: threshold z at 0 or threshold σ (z) at $\frac{1}{2}$)

 $(z = linear response, x^T\theta)$

Python Implementation:

```
def sig(z): # logistic sigmoid
  return 1.0 / (1.0 + np.exp(-z)) # in [0,1]

def dsig(z): # its derivative at z
  return sig(z) * (1-sig(z))
```

For range [-1 , +1]:

$$\rho(z) = 2 \sigma(z) -1$$

$$\partial \rho(z) = 2 \sigma(z) (1 - \sigma(z))$$

Predict: threshold z or ρ at zero

Logistic regression

- Intepret $\sigma(\underline{\theta} \mathbf{x}^T)$ as a probability that y = 1
- Use a negative log-likelihood loss function

(**Note:** Some software calls this "cross entropy")

- If y = 1, cost is log Pr[y=1] = log $\sigma(\underline{\theta} x^T)$
- If y = 0, cost is $-\log \Pr[y=0] = -\log (1 \sigma(\underline{\theta} x^T))$
- Can write this succinctly:

$$J(\underline{\theta}) = -\frac{1}{m} \Big(\sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta \cdot x^{(i)})) \Big)$$
Nonzero only if y=1
Nonzero only if y=0

Logistic regression

- Intepret $\sigma(\underline{\theta} \mathbf{x}^T)$ as a probability that y = 1
- Use a negative log-likelihood loss function

(**Note:** Some software calls this "cross entropy")

- If y = 1, cost is log Pr[y=1] = log $\sigma(\underline{\theta} x^T)$
- If y = 0, cost is $-\log \Pr[y=0] = -\log (1 \sigma(\underline{\theta} x^T))$
- Can write this succinctly:

$$J(\underline{\theta}) = -\frac{1}{m} \left(\sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)})) \right)$$

• Convex! Otherwise similar: optimize $J(\theta)$ via ...

Gradient Equations

Logistic neg-log likelihood loss:

$$J(\underline{\theta}) = -\frac{1}{m} \left(\sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)})) \right)$$

What's the derivative with respect to one of the parameters?

$$\frac{\partial J}{\partial a} = -\frac{1}{m} \left(\sum_{i} y^{(i)} \frac{1}{\sigma(\theta \cdot x^{(i)})} \, \partial \sigma(\theta \cdot x^{(i)}) \, x_{1}^{(i)} + (1 - y(i)) \dots \right)$$

$$= -\frac{1}{m} \left(\sum_{i} y^{(i)} (1 - \sigma(\theta \cdot x^{(i)})) \, x_{1}^{(i)} + (1 - y^{(i)}) \dots \right)$$

Surrogate loss functions

• Replace 0/1 loss $\Delta_i(\theta) = \mathbb{1} \big[T(\theta x^{(i)}) \neq y^{(i)} \big]$ with something easier:

Logistic MSE

$$J_i(\theta) = 4\left(\sigma(\theta x^{(i)}) - y^{(i)}\right)^2$$

Logistic Neg Log Likelihood

$$J_i(\underline{\theta}) = -\frac{y^{(i)}}{\log 2} \log \sigma(\theta \cdot x^{(i)}) + \dots$$

Surrogate loss functions

Summary

- Linear classifier ⇔ perceptron
- Measuring quality of a decision boundary
 - Error rate (0/1 loss)
 - Logistic sigmoid + MSE criterion
 - Logistic Regression
- Learning the weights of a linear classifer from data
 - Reduces to an optimization problem
 - Perceptron algorithm
 - For MSE or Logistic NLL, we can do gradient descent
 - Gradient equations & update rules

Linear Classifiers

Linear Classification with Perceptrons

Perceptron Learning

Gradient-Based Classifier Learning

Multi-Class Classification

Regularization for Linear Classifiers

Multi-class linear models

- What about multiple classes? One option:
 - Define one linear response per class
 - Choose class with the largest response

$$f(x;\theta) = \arg\max_{c} \ \theta_c \cdot x^T$$

$$heta = \left[egin{array}{cccc} heta_{00} & \dots & heta_{0n} \ dots & \ddots & dots \ heta_{C0} & \dots & heta_{Cn} \end{array}
ight]$$

Boundary between two classes, c vs. c'?

$$= \begin{cases} c & \text{if } \theta_c \cdot x^T > \theta_{c'} x^T & \Leftrightarrow (\theta_c - \theta_{c'}) x^T > 0 \\ c' & \text{otherwise} \end{cases}$$

• Linear boundary: $(\theta_c - \theta_{c'}) x^T = 0$

Multiclass perceptron algorithm

- Perceptron algorithm:
 - Make prediction f(x)
 - Increase linear response of true target y; decrease for prediction f

```
while \neg done: for each data point j: f^{(j)} = \arg\max_c(\theta_c \cdot x^{(j)}) \qquad \text{Predict output for data point j} \\ \theta_{f^{(j)}} \leftarrow \theta_{f^{(j)}} - \alpha \, x^{(j)} \qquad \text{Decrease response of class f on data } x^{(j)} \\ \theta_{y^{(j)}} \leftarrow \theta_{y^{(j)}} + \alpha \, x^{(j)} \qquad \text{Increase response of class y on data } x^{(j)}
```

If prediction "f" matches true class "y", no update

Otherwise, makes it more likely that "y" will have the largest response next time

Multilogit regression

Define the probability of each class:

(**Note:** Some software calls this function "softmax")

$$p(Y = y|X = x) = \frac{\exp(\theta_y \cdot x^T)}{\sum_c \exp(\theta_c \cdot x^T)}$$

(Y binary = logistic regression)

Then, the NLL loss function is:

$$J(\theta) = -\frac{1}{m} \sum_{i} \log p(y^{(i)} | x^{(i)}) = -\frac{1}{m} \sum_{i} \left[\theta_{y^{(i)}} \cdot x^{(i)} - \log \sum_{c} \exp(\theta_{c} \cdot x^{(i)}) \right]$$

- P: "confidence" of each class
 - Soft decision value
- Decision: predict most probable
 - Linear decision boundary
- Convex loss function

Linear Classifiers

Linear Classification with Perceptrons

Perceptron Learning

Gradient-Based Classifier Learning

Multi-Class Classification

Regularization for Linear Classifiers

Regularization

- Reminder: Regularization for linear regression
 - Encourage models with small parameter values
 - Can reduce overfitting (by reducing variance)

Degree-9 polynomial fit

Regularized logistic regression

- Intepret $\sigma(\underline{\theta} \mathbf{x}^T)$ as a probability that y = 1
- Use a negative log-likelihood loss function
 - If y = 1, cost is log Pr[y=1] = log $\sigma(\underline{\theta} x^T)$
 - If y = 0, cost is $-\log \Pr[y=0] = -\log (1 \sigma(\underline{\theta} x^T))$
- Minimize weighted sum of negative log-likelihood and a regularizer that encourages small weights:

$$J(\underline{\theta}) = -\frac{1}{m} \Big(\sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log (1 - \sigma(\theta \cdot x^{(i)})) \Big)$$
 Nonzero only if y=1 Nonzero only if y=0
$$+\alpha ||\theta||_{p}$$

(Also equivalent: minimize NLL subject to Lp norm < R)

Different regularization functions

• More generally, for the L_p regularizer:

$$\left(\sum_{i}|\theta_{i}|^{p}\right)^{\frac{1}{p}}$$

Penalize small non-zero parameters more Prefer some parameters exactly zero; a few big parameters are OK Penalize small non-zero parameters less, but big parameter values a lot Prefer lots of small weights, no big weights

Different regularization functions

• More generally, for the L_p regularizer: $\big(\sum_i |\theta_i|^p\big)^{\frac{1}{p}}$

Isosurfaces: $\|\theta\|_p = \text{constant}$

 L_0 = limit as p goes to 0 : "number of nonzero weights", a natural notion of complexity

Regularization: L2 vs L1

• Estimate balances data term & regularization term

Regularization: L2 vs L1

- Estimate balances data term & regularization term
- Lasso tends to generate sparser solutions than a quadratic regularizer.

Gradient-Based Optimization

- L₂ makes (all) coefficients smaller
- L₁ makes (some) coefficients exactly zero: *feature selection*

(Informal intuition: Gradient of L_1 objective not defined at zero)

Regularization Paths

Prostate Cancer Dataset with M=67, N=8

- \succ Horizontal axis increases bound on weights (less regularization, smaller lpha)
- > For each bound, plot values of estimated feature weights
- Vertical lines are models chosen by cross-validation