Stochastik 1 für Studierende der Informatik Modul: MATH3-Inf

Veranstaltung: 65-832

Übungsgruppe 2 Dienstag, 14.15 - 15.00 Geom 431

Utz Pöhlmann 4poehlma@informatik.uni-hamburg.de 6663579

Louis Kobras 4kobras@informatik.uni-hamburg.de 6658699

Felix Gebauer 4gebauer@informatik.uni-hamburg.de 6671660

12. April 2016

Punkte für die Hausübungen:

Inhaltsverzeichnis

Zettel 1 (05. April 2016)	1
Hausübung 1.1	 1
Hausübung 1.2	 1
Hausübung 1.3	 2
Zettel 2 (12. April 2016)	4

Zettel Nr. 1 (Ausgabe: 05. April 2016, Abgabe: 12. April 2016)

Hausübung 1.1

| 8 |

(Zufallsexperimente, 2+2+2+2 Punkte). Handelt es sich in den folgenden Situationen um Zufallsexperimente? Begründen Sie ihre Antwort.

- a) Sonnenaktivität am 07.04.2016 um 10:00.
 Kein Zufallsexperiment, da die Situation nicht rekonstruierbar ist.
- b) Verkehrssituation am Schlump Donnerstags 10:00.
 Zufallsexperiment, da die Situation rekonstruiert und dementsprechend das Experiment beliebig oft wiederholt werden kann.
- c) Gleichzeitiger Wurf von drei fairen Würfeln, Beobachtung der Augensumme. Zufallsexperiment, da die Situation rekonstruiert und dementsprechend das Experiment beliebig oft wiederholt werden kann.
- d) Lebenszeit römischer Kaiser nach Inthronisierung.

 Kein Zufallsexperiment, da die Umstände für jeden Kaiser eindeutig sind und dementsprechend die Situation nicht rekonstruierbar ist.

Hausübung 1.2

[| 12]

(Zufall in der Praxis, 6+6 Punkte). Stellen Sie in den beiden folgenden Situationen dar, an welchen Stellen sich Zufallseinflüsse auswirken. Geben Sie darüber hinaus kurz an, welche Ziele (ggf. aus Sicht der unterschiedlichen Parteien) erreicht werden sollen.

a) Ein Flughafen hat eine Landebahn, die Flugzeuge müssen beim Landen einen gewissen zeitlichen Abstand halten (vorangegangenes Flugzeug muss die Landebahn verlassen und sich weit genug entfernt haben, Wirbelschleppen müssen "verflogen"sein, ...). Nach Flugplan kommen die Flugzeuge gleichmäßig an, der Abstand zwischen zwei Ankünften ist im Mittel etwas größer als der notwendige zeitliche Abstand zwischen zwei Landungen. Ist eine Landung für ein Flugzeug noch nicht möglich, da die Landebahn noch nicht wieder freigegeben ist, muss das Flugzeug eine Warteschleife fliegen.

Das primäre Zufallsereigniss ist die Verspätung von Fliegern¹. Zufallsereignisse können sich insofern auf den Flughafen auswirken, dass Leute verspätet in ihren Flieger steigen können, ankommende Passagiere ihr Gepäck nicht zeitnah erhalten, da sich das Gepäckstück in einem anderen, verzufallten Flugzeug befinden kann, oder Passagiere ihren Anschluss verpassen. Eine zufällige Bombendrohung kann zu einer kompletten Evakuierung des Flughafens verleiten, wodurch der Betrieb vollständig zum Stillstand kommt. Zufällig kann es sein, dass zwei anfliegende Flugzeuge nicht richtig koordiniert werden und es zu einer (beinahe-)Kollision kommt. Der Gegenfall ist, dass ein Flugzeug zufällig fälschlicherweise in die Warteschlange eingereiht wird.

Die Ziele der Passagiere sind, dass sie ihr Gepäck erhalten und ihre Anschlussgelegenheiten rechtzeitig erreichen.

Die Ziele der Flughafenbetreiber sind ein reibungsloser Betrieb und zufriedene Passagiere.

¹siehe analog dazu Beispiel 1.3.1 im Skript, Version 05.04.2016

b) Die Universität Hamburg betreibt das System STiNE zur Vorlesungsplanung, -information und -unterstützung auf einem Server. Von Studierenden und Dozenten kommen Anfragen an und werden bearbeitet. Wird eine Anfrage nicht nach einer bestimmten Zeit erfolgreich bearbeitet, so wird sie unerfolgreich abgelehnt.

Das primäre Zufallsereignis ist die Anfrage einer Person an das System¹. Hierbei gibt es drei Zufallsgrößen: Art, Umfang und Anzahl der Anfragen. Die Art der Anfrage bindet unterschiedlich viele Ressourcen gleichzeitig, während der Umfang die Dauer der Ressourcenbindung beeinflusst. Die Anzahl der Anfragen gibt an, wie viele Anfragen das System gleichzeitig bearbeiten können muss. Ein weiteres Zufallsereignis ist der Zeitpunkt der Anfrage, welcher in einem Zeitraum der Unerreichbarkeit bzw. Nichtverfügbarkeit des Systems liegen kann.

Ziel des Betreibers ist ein sinnvolles LoS^2 .

Ziel des Service-Nutzers ist eine angemessene Bearbeitungszeit des Systems sowie dass er die Anfrage nicht mehrfach stellen muss, bis sie erfolgreich bearbeitet wird.

Hausübung 1.3

 $[\quad | \quad 5 \]$

(Mengenoperationen und Venn-Diagramme, 1+1+1+2 Punkte). In einem Venn-Diagramm werden die Grundmengen symbolisch durch geometrische Objekte, meistens Kreise oder Ellipsen dargestellt. Die Resultate betrachteter Mengenverknüpfungen werden dann farblich oder durch Markierung hervorgehoben. Beispielsweise veranschaulicht das folgende Diagramm den Schnitt $A \cap B$ zweier Mengen A und B.

Zeichnen Sie die entsprechenden Diagramme für die folgenden Operationen.

a) $A \setminus B = \{x \in A : x \notin B\}$ für zwei Mengen A, B.

 $^{^{1}}$ analog Skript, Bsp. 1.3.2, V. 05.04.2016

 $^{^{2}}$ Skript, Bsp. 1.3.2, V. 05.04.2016

b) $A\Delta B := (A \setminus B) \cup (B \setminus A)$ für zwei Mengen A, B. $(A\Delta B \text{ heißt auch } symmetrische Mengendifferenz.)$

c) $A \cap B \cap C$ für drei Mengen A, B, C.

d) $(A \cap B) \cup (A \cap C) \cup (B \cap C)$ für drei Mengen A, B, C.

Zettel Nr. 2 (Ausgabe: 12. April 2016, Abgabe: 19. April 2016)