Modal Logic

PICO GILMAN

June 16, 2023

§1 Propositional Logic

Definition 1.1. P, Q, R are statements (have a truth value), and \neg, \land are the only operations. $(P \to Q \text{ is } \neg P \lor Q)$

§2 Modal Logic

Definition 2.1. Modal logic is a propositional logic with \Box , \Diamond .

- $\neg \Box \neg (P) = \Diamond (P)$.
- $\neg \Diamond \neg (P) = \Box (P)$.
- $(\neg\neg)\Diamond(\neg\neg) = \neg\Box\neg = \Diamond$.

Axioms:

- K (distribution axiom) $(\Box(P \to Q)) \to (\Box P \to \Box Q)$
- N (necessitation rule) $P \to \Box P$

§3 Temporal Modal Logic

Definition 3.1. • \square = "is always true"

• $\neg \Box \neg = \Diamond =$ "is sometimes true"

 ${\bf Remark.}$ Temporal Modal Logic ${\it cannot}$ satisfy the necessitation rule.

§4 Deontic Modal Logic

Definition 4.1. $\Box \phi = "\phi \text{ is necessary}"$

§5 Topological Modal Logic

Definition 5.1. $\operatorname{int}(Y) = \{x \mid \exists U \ni x, U \subseteq Y\} = \{x \mid \exists U \ni x, \inf_U(\mathbb{1}_Y) = 1\}.$

Definition 5.2. X is a set; possible propositions = 2^X . τ is a topology on X. $\Box(Y) = \operatorname{int}(Y)$.

 $\Box P \rightarrow \Box \Box P$.

 $\Box(Y) \lor \Box(Z) = "1" \to [\Box(Y \land Z) \neq "0"] \lor [Y = "0" \lor Z = "0"]$ would be the definition of connectedness.

§6 Poset-Topological Modal Logic

Let L be a poset (X, τ) be a topological space. Our proposition is L^x .

 $A \vee B(x) = \sup(A(x), B(x))$. $\neg A(x) = \gamma(x)$. (We reverse the poset, by basically reversing the order of everything) $A \vee \neg A(x) = \max(L)$. $\Box A(x) = \sup_{U \supset x} (\inf_{u \in U} A(u))$.

Example 6.1 (Cofinite lattice)

Finite and cofinite lattices (union of finite and cofinite gives cofinite, intersection of finite and cofinite gives finite, ...) $\{x \subseteq \mathbb{N} \mid |x| < \infty \lor |\mathbb{N} \setminus x| < \infty\}$

Definition 6.2. An antichain is a subset of elements where no two distinct elements are not comparable.

Definition 6.3. For a poset L and $X \subseteq L$, define

$$S(X) := \{ y \in L \mid \exists x \in X, y \le x \}$$

Exercise 6.4. Prove that S(S(X)) = S(X).

Exercise 6.5. Prove that $S(X) \cup S(X') = S(X \cup X')$.

Theorem 6.6

The following three statements are equivalent:

- 1. Let $X \subseteq L$, then $\exists Y \subseteq X$ s.t. $|Y| < \infty$ and S(X) = S(Y).
- 2. Let $X \subseteq L$, then $Y \subseteq L$ s.t. $|Y| < \infty$ and S(X) = S(Y).
- 3. L has no infinite ascending chains and infinite antichains.

Proof. (3) \Longrightarrow (2). For $X \subseteq L$, let $x_0 \in X$. Consider the chain $x_L > x_{L-1} > \cdots > x_0$, where the chain terminates at x_L , since there is no infinite ascending chain. Let $X' = X \setminus S(\{x_L\})$, then we have $S(X') \cup S(\{x_L\}) = S(X)$, but then there cannot be infinitely many antichains, so some two must be comparable, hence we are done.

- (2) \Longrightarrow (1). Let $X \subseteq L$, and $Y \subseteq L$, such that S(X) = S(Y). Then, $\forall y \in Y \exists x \in X$ such that $y \in S(X) \iff y \leq x$, hence we are done.
- (1) \Longrightarrow (3). Let $(a_1, a_2, ...)$ be an ascending chain, then it must be bounded, since otherwise let $X = \{a_i\}$. Then $\exists Y \subseteq X$ such that $|Y| < \infty$ and $S(Y) = S(\{a_i\})$.

Theorem 6.7

Let L be GC-compact, $\tau_L = \{S(X) \mid |X| < \infty \land X \subseteq L\}$, and $\{S(X_i)\} \subseteq \tau_L$. Then, τ_L is a topology (not generally true if we drop the GC-compact condition). Showing that τ_L is a topology is relatively straightforward: $\bigcup S(X_i) = S(\bigcup X_i) = S(Y)$, $\bigcap \exists \alpha \implies S(\alpha) \subseteq \bigcap S(X_i)$, and $\bigcap S(X_i) = A = S(A)$.

Let $L = 2^{<\omega} = \{0, 1, 00, 01, 10, 11, \dots\}$. Then, τ_L is not closed under arbitrary unions: consider $X = \{0, 10, 110, 1110, \dots\}$, then $S(X) = L \setminus \{\underbrace{11 \dots 1}_{} \mid k \geq 0\}$.

The poset must have a maximal length element, but then we can construct by taking union a longer element, so τ_L is not closed under arbitrary union, and we are done.

Claim 6.8 — $\Box f$ is continuous $\forall f \in L^X$, assuming that L is GC-compact.

Proof. It suffices to show that $Y = (\Box f)^{-1}(S(a))$ is closed, since f is continuous iff the pre-image of any closed set is closed.

Let $x \in Y$, then we want to show that $\exists U \ni x$ such that $U \cup Y = \emptyset$. Suppose FTSOC that $\forall W \ni x, \ W \cap Y \neq \emptyset$.

Then, $\exists w \in W \cap Y$ such that $\Box f(w) \in S(a)$, hence

$$a \ge \Box f(w) = \sup_{V \ni w} (\inf_{\tau \in V} f(\tau)) \ge \inf_{\tau \in W} f(\tau)$$

Thus,

$$a \geq \sup_{W \mid W \cap Y \neq \emptyset} (\inf_{\tau \in W} f(\tau)) = \Box f(x)$$

But then $\Box f^{-1}(a) \ni x$, contradiction.

§7 Modal Logic

 \square = "there is a proof of X"

$$\Box\Box P \rightarrow \Box P$$
.

$$\Box P \wedge \Box P \leftrightarrow \Box (P \wedge Q).$$

Exercise 7.1. Prove that $P \to \Box P$ does not necessarily imply $P \to \Diamond P$.

Proof. Find a "real-world" (i.e., in a concrete system) counterexample.

We have $P \to \Box P \iff \neg P \lor \Box P$.

For $P \to \Diamond P$, it suffices to show $P \to \neg \Box \neg P$.

$$P \to \neg \Box \neg P$$

$$\iff \neg P \lor \neg \Box \neg P$$

$$\iff \neg (P \land \Box \neg P)$$

If you add something like $\Box \Diamond P = \Diamond \Box P$, then $\neg \Box P = \Box \neg P$, like commutativity of two operations, which would probably lead to degenerate trivial cases.

Example 7.2

 $f: 2^X \to 2^Y$ or like $f: 2^X \to \{0, 1\}^Y$.

For example, $f(a) = \{1, 2, 3\}$, where $a \mapsto \{1 \to 1, 2 \to 1, 3 \to 1, 4 \to 0, 5 \to 0, \dots\} = \mathbb{1}_{\{1, 2, 3\}}$ which is the characteristic function of a set (returning whether an element is in the set).

There's also fuzzy sets, $f: 2^X \to [0,1]^Y$.

Example 7.3

L is a poset; $f: 2^X \to (L)^X$.

Exercise 7.4. Is it the case that $K \implies [\Diamond(P \to Q)] \to [\Diamond P \to \Diamond Q]$?

§8 Poset Modal Logic

L is a poset.

Define \wedge as the "sup" of A and B.

Define \neg as the "order reversing thingy".

Define $\Box P$ as "the next element in the poset after P".

One example is a tree going upwards, where stuff upwards is "stronger" in some sense.