CONTROL OF H.E.V USING FUZZY LOGIC

FINAL-SEMESTER PRESENTATION
Abishek Krishnan 2011B5A3511H
S Murali Krishna Sai 2011B3AA375H

HYBRID ELECTRIC VEHICLE

INTERNAL COMBUSTION ENGINE

Types of HEV

- Power to wheel by ICE
- Power to wheel by EM
- Power to wheel by ICE & EM simultaneously
- Charge the battery, using part of ICE power to drive the EM as a generator (the other part of ICE power) is used to drive wheels
- Slow down the Vehicle by letting wheels drive the EM as a generator that provides power to the battery (regenerative braking)

Power Controller

Fuzzy logic

- Imprecise measurements
- Component Variability
- Rule based Energy management Statergy.

SECTION-III: ENERGY MANAGEMENT STRATERGY

Power Controller

A.Efficiency Maps

ICE Power should not be (<=6KW or >=50KW)
Torque: Throttle angle

Speed: Shifting Gear

High SOC Low Power Level

EM speed can't be gear shifted so,
Optimize power at given speed

B. Power Split Strategy

Loses associated with path-2

- 1.Efficiency of EM: 1st as generator; 2nd motor
- 2.Efficiency of Baterry:1st to store; 2nd to release

After calculations

Advisable to use path 2 over path 1 only when path 1 is 16% less efficient than path 2

a) Power level < 6KW Only EM b) Power Level 6-50 KW Only ICE c) Power level >50KW EM to complement ICE

Section IV: Fuzzy Logic Controller

Membership Functions

200

0

400 600 EM Speed (rad/s)

800

1000

STEPS

B.Power Controller

Cannot exceed 65% of the total braking power

C. Gear Shifting Control

Mathematical Model for a)Vehicle speed b)Power required

Topics Covered

- 1)General description of vehicle movement
- 2) Vehicle resistance
- 3) Dynamic equation
- 4)Tire Ground Adhesion

AIM

Fundamental: Apply Newton's second law
 Acceleration of object

Net external force.

- Acceleration of the Vehicle depends on:
- 1) Power delivered by the propulsion unit
- 2) Road conditions
- 3) Aerodynamics of the vehicle
- 4) Composite mass of the vehicle

General description of vehicle movement

- Forces acting are
 1) Tractive force (F_t) produced by the power plant of the vehicle.
- Resistive forces are
 - 1)Rolling resistance
 - 2)Aerodynamic drag
 - 3) Uphill resistance

$$\frac{dV}{dt} = \frac{\sum F_t - \sum F_{resistac}}{\delta M}$$

where

V = vehicle speed

$$\sum F_t$$
 = total tractive effort [Nm]

$$\sum F_{resis\,tan\,ce}$$
 = total resistance [Nm]

M = total mass of the vehicle [kg]

 δ = mass factor for converting the rotational inertias of rotating components into translational mass

Rolling Resistance

Stand-still

Loading & Unloading

 The moment produced by forward shift of the resultant ground reaction force is called rolling resistance moment

```
T_r = Pa = Mga
where
T_r = \text{rolling resistance } [Nm]
P = \text{Normal load acting on}
the centre of the rolling wheel [N]
M = \text{mass of the vehicle } [kg]
g = \text{acceleration constant } [m/s^2]
a = \text{deformation of the tyre } [m]
```

• To keeps the wheel rolling, a force \mathbf{F}_r , acting on the center of the wheel is required to balance this rolling resistant moment.

$$F_r = \frac{T_r}{r_{dyn}} = \frac{Pa}{r_{dyn}} = Pf_r$$
where
 $T_r = \text{rolling resistance } [Nm]$
 $P = \text{Normal load acting on the centre of the rolling wheel } [N]$
 $r_{dyn} = \text{dynamic radius of the tyre } [m]$
 $f_r = \text{rolling resistance coefficient}$

 Or equivalently expressing it as a horizontal force acting opposite to movement of wheel.

```
F_r = Pf_r where P = Normal load acting on the centre of the rolling wheel <math>[N] f_r = rolling resistance coefficient
```

 Suppose we consider the vehicle is going Uphill.

```
F_r = Pf_r \cos(\alpha) = Mgf_r \cos(\alpha) where P = \text{Normal load acting on the centre of the rolling wheel } [N] f_r = \text{rolling resistance coefficient} \alpha = \text{road angle } [radians]
```

 F_r are given in table (1).

The rolling resistance coefficient, \mathbf{F}_r , is a function of: a)Tire material ,b)Tire structure ,c)Tire temperature d)Tire inflation pressure etc.

The rolling resistance coefficient of a passenger car on a concrete road may be calculated as:

$$f_r = f_0 + f_s \left(\frac{V}{100}\right)^{2.5}$$

For most common range of inflation pressure, the following equation can be used for a passenger car on a concrete road

$$f_r = 0.01 \left(1 + \frac{V}{160} \right)$$

where

V = vehicle speed [km/h]

Aerodynamic Drag

1)Shape drag

2)Skin effect

$$F_{w} = \frac{1}{2} \rho A_{f} C_{D} V^{2}$$
where
$$\rho = \text{density of air } [kg / m^{3}]$$

$$A_{f} = \text{vehicle frontal area } [m^{2}]$$

$$V = \text{vehicle speed } [m / s]$$

$$C_{D} = \text{drag coefficient}$$

C_D and A_f in table(2)

Grading Resistance

 When a vehicle goes up or down a slope, its weight produces a component of force that is always directed downwards. This force component opposes the forward motion, i.e. the grade climbing.

```
F_g = Mg \sin(\alpha)

where

M = \text{mass of vehicle } [kg]

g = \text{acceleration constant } [m/s^2]

\alpha = \text{road angle } [radians]
```

 In some literature, the tire rolling resistance and the grading resistance taken together and is called road resistance. The road resistance is expressed as

$$F_{rd} = F_f + F_g = Mg(f_r \cos(\alpha) + \sin(\alpha))$$

Acceleration resistance

$$F_a = \left(M + \frac{\sum J_{rot}}{r_{dyn}^2}\right) \frac{dV}{dt}$$

where

M = mass of vehicle [kg]

 J_{rot} = intertia of rotational components [$kg \times m^2$]

V =speed of the vehicle [km / h]

 $r_{dyn} = dynamic \ radius \ of \ the \ tyre \ [m]$

Or equivalently

$$F_a = \lambda M \frac{dV}{dt}$$

where

 λ = rotational inertia constant

M = mass of the vehicle [kg]

V = speed of the vehicle [m/s]

Total driving resistance

$$F_{\textit{resistance}} = F_{r} + F_{\textit{w}} + F_{\textit{g}} + F_{\textit{a}}$$

Substituting with the expressions

$$F_{resistance} = Mgf_r \cos(\alpha) + \frac{1}{2} \rho A_f C_D V^2 + Mg \sin(\alpha) + \lambda M \frac{dV}{dt}$$

Power required (P_{req})

$$P_{\it req} = F_{\it resis\,tan\,ce} V$$

Dynamic equation

$$M\frac{dV}{dt} = \left(F_{tf} + F_{tr}\right) - \left(F_{rf} + F_{rr} + F_{w} + F_{g} + F_{a}\right)$$

Adhesion, Dynamic wheel radius and slip

- Tractive effort of a vehicle > maximum tractive effort limit
- Results in "spinning of wheels"
- The slip between the tires and the surface can be described as:

drive slip
$$S_T = \frac{\omega_R r_{dyn} - V}{\omega_R r_{dyn}}$$

• The dynamic wheel radius $(r_{\rm dyn})$ is calculated from the distance travelled per revolution of the wheel, rolling without slip.

 Dynamic wheel radius of common tire sizes in table(4).

Mathematical Modeling of Electric Motor

Basic Diagram

Equations Involved

$$T = K_t i$$

$$e = K_e \dot{\theta}$$

$$J\ddot{\theta} + b\dot{\theta} = Ki$$

$$L\frac{di}{dt} + Ri = V - K\dot{\theta}$$

Laplace Transform & Transfer Function

$$s(Js + b)\Theta(s) = KI(s)$$

 $(Ls + R)I(s) = V(s) - Ks\Theta(s)$

$$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K}{(Js+b)(Ls+R)+K^2}$$
 $\left[\frac{rad/sec}{V}\right]$

One dimensional modeling of an internal combustion engine.

Fig 1. Model of the engine

Sub-models

• 1. Piston Velocity

Fig. 2 Side view of piston

$$\dot{y}(\theta) = \frac{S}{2} * \sin \theta \left[-1 - \frac{S * \cos \theta}{2 * \sqrt{L_c^2 - \frac{S^2 * \sin^2 \theta}{4}}} \right] \dot{\theta}$$

$$v_{p_{-}\max} \Rightarrow \theta = \frac{\pi}{2} \Rightarrow \left| v_{p_{-}\max} \right| = \frac{S}{2} * \dot{\theta}$$

$$\dot{\theta} = \frac{rpm * \pi}{30} \Rightarrow v_{p_{\text{max}}} = \frac{S * \pi * rpm}{60}$$

Incompressible flow

$$\begin{aligned} u_{ip_\max} * A_{ip} &= v_{p_\max} * A_{p} \\ u_{ip_\max} &= v_{p_\max} * \left(\frac{B}{d_{ip}}\right)^{2} \end{aligned}$$

$$rpm = \frac{M * a * 60}{S * \pi} * \left(\frac{d_{ip}}{B}\right)^{2}$$
$$rpm = 752$$

Compressible flow

$$P*V = m*R*T$$

$$V_{c} = \frac{\pi * B^{2} * S}{4}$$

$$m_{in} = \frac{P_{atm} * \pi * B^{2} * S}{4 * R * T_{atm}} = 5.99*10^{-4} k$$

$$t_{open} = (180^{\circ}) = \left(\frac{rpm}{60}\right)^{-1} * 0.5 = \frac{30}{rpm} \sec t$$

$$\dot{m}_{in} = \frac{5.99 * 10^{-4} * rpm}{30} = 2.00 * 10^{-5} * rpm \ kg * s^{-1}$$

$$\dot{m}_{in} = \rho * u_{ip} * A_{ip} = \rho * M * a * A_{ip} = \rho * M * \sqrt{\gamma * R * T} * A_{ip} =$$

$$= \frac{\rho}{\rho_0} * \rho_0 * M * \sqrt{\gamma * R} * \sqrt{\frac{T}{T_0}} * \sqrt{T_0} * A_{ip}$$

$$\therefore \dot{m}_{in} = \rho_0 * \sqrt{\gamma * R * T_0} * A_{ip} * \frac{\rho}{\rho_0} * \left(\frac{T}{T_0}\right)^{\frac{1}{2}} * M$$

$$\frac{\rho}{\rho_0} = \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{-1}{\gamma - 1}} & \frac{T}{T_0} = \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{-1}$$

$$\dot{m}_{in} = \rho_0 * \sqrt{\gamma * R * T_0} * A_{ip} * \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{-1}{\gamma - 1} \cdot \frac{1}{2}}$$

$$8.484*10^{-5}*rpm = M*[1+0.2M^{2}]^{-3}$$

Exhaust flow

$$1.1701*10^{-5}*rpm = M*[1+0.2M^{2}]^{-3}$$

Fuzzy Logic Controller

• Inputs:-

1) Driver Power Command (kW)

2)State of Charge (SOC)

3)EM Speed

Rule Base

RULE BASE OF THE FUZZY LOGIC CONTROLLER

- 1 If SOC is too high then P_{gen} is 0 kW
- 2 If SOC is normal and P_{driver} is normal and ω_{EM} is optimal then P_{gen} is 10 kW
- 3 If SOC is normal and ω_{EM} is not optimal then P_{gen} is 0 kW
- 4 If SOC is low and P_{driver} is normal and ω_{EM} is low then P_{gen} is 5 kW
- 5 If SOC is low and P_{driver} is normal and ω_{EM} is not low then P_{gen} is 15 kW
- 6 If SOC is too low then P_{gen} is P_{gen,max}
- 7 If SOC is too low then scale factor is 0
- 8 If SOC is not too low and P_{driver} is high then P_{gen} is 0 kW
- 9 If SOC is not too low then scale factor is 1

Simulink Model

Example

- Inputs:-
 - 1) Tractive Force (rear + front) = 12500W
- 2) Voltage (Battery)=12V

- Outputs:-
 - 1) Power _ ICE = 20.2417 kW
- 2) Power EM = -7.5 kW