Homework2

Qi'ao Chen 21210160025

October 4, 2021

Exercise 1. Given two chains (C, \leq) and (D, \leq) , define the lexicographic product of C and D to be the chain defined on the Cartesian product of their universes s.t. (a,b)<(c,d) in the sense of $C\times D$ if b< d in the sense of D, or b=d and a< c in the sense of C

- 1. Show that a discrete chains without endpoints are those that be written in the form $\mathbb{Z} \times C$, where C is a linear order
- 2. Show that if $C \sim_{\omega} C'$ and $D \sim_{\omega} D'$ then so is $C \times D \sim_{\omega} C' \times D'$

Proof. 1. Given a discrete chains without endpoints (D,<), for any $a,b\in D$, let $a\sim b$ if $d(a,b)\neq \infty$. Suppose a< b and $d(a,b)=\infty$, then for any $a'\in [a]$, as d(a,a') is finite, $d(a',b)=\infty$. Hence a'< b. Similarly, for any $b'\in [b]$, a< b'. Thus we define $[a]\prec [b]$ if a< b. As < is a strict linear order, \prec is also a strict linear order. We choose an element from each equivalence class, denoted by b_i for $i\in I$. For each $a\in [b_i]$, define $f:D\to \mathbb{Z}$ as

$$f(a) = \begin{cases} d(a,b_i) & \text{if } b_i < a \\ -d(a,b_i) & \text{otherwise} \end{cases}$$

and we have an isomorphism $f:[a]\cong \mathbb{Z}$ for any $a\in D$. Then we define the $\phi:D\to \mathbb{Z}\times D/\sim$ with $a\mapsto (f(a),[a]).$ ϕ is an isomorphism as f is an isomorphism and $-/\sim:D\to D/\sim$ is surjective.

Given a lexicographic product $(\mathbb{Z} \times C, <)$ where C is a linear order, for any $(n,c) \in \mathbb{Z} \times C$, we have (n-1,c) and (n+1,c) such that (n-1,c) < (n,c) < (n+1,c). Also there is no $(m,c) \in \mathbb{Z} \times C$ such that (n-1,c) < (m,c) < (n,c) or (n,c) < (m,c) < (n+1,c). Hence $(\mathbb{Z} \times C, <)$ is a discrete order.

2. If $C \sim_{\omega} C'$ and $D \sim_{\omega} D'$, then (C', \leq) and (D', \leq) are also chains (here we abuse the symbols of relations on C' and D').

We prove $C \times D \sim_{\omega} C' \times D'$ by induction on p to show $S_p(C \times D, C' \times D')$ is not empty.

For
$$p=0$$
, $S_0(C\times D,C'\times D')\neq\emptyset$ as $\emptyset\in S_0(C\times D,C'\times D')$.

For p=n+1, as $S_n(C\times D,C'\times D')\neq\emptyset$, we can build a local isomorphism $s=\{((c_i,d_i),(c_i',d_i'))|0< i\leq n\}$ where i respect the order of $C\times D$.

Now for any $(c,d) \in C \times D$

- if $(c,d)>(c_n,d_n)$, then either $d>d_n$ or $d=d_n$ and $c>c_n$. In both cases, as $C\sim_\omega C'$ and $D\sim_\omega D'$, we can find $(c',d')\in C'\times D'$ such that either $d'>d'_n$ or $d'=d'_n$ and $c'>c'_n$. Hence $(c',d')>(c'_n,d'_n)$
- \bullet if $(c_i,d_i)<(c,d)<(c_{i+1},d_{i+1})$, similarly we can find $(c',d')\in C'\times D'$ such that $(c_i',d_i')<(c',d')<(c_{i+1},d_{i+1})$
- if $(c,d)<(c_1,d_1)$, similarly we can find $(c',d')\in C'\times D'$ with $(c',d')<(c_1',d_1')$

Hence $t=s\cup\{((c,d),(c',d'))\}$ is a local isomorphism. Backward condition is similar and thus $\emptyset\in S_n(C\times D,C'\times D')$.

Consequently,
$$C \times D \sim_{\omega} C' \times D'$$

Exercise 2. Given two chains (C, \leq) and (D, \leq) , by C + D we mean the chain

$$C\times\{0\}\cup D\times\{1\}$$

s.t. $C \times \{0\}$ is a copy of C, $D \times \{1\}$ is a copy of D, and each element of $C \times \{0\}$ is smaller than each element of $D \times \{1\}$

- 1. Show that the linear orders \mathbb{R} and $\mathbb{R} + \mathbb{Q}$ are not isomorphic
- 2. Construct two discrete linear orders such that they are ∞ -equivalent but not isomorphic

Proof. 1. Suppose there is an isomorphism $f : \mathbb{R} \to \mathbb{R} + \mathbb{Q}$. Then

$$\mathbb{R} \cong [(f^{-1}(0,1),0),(f^{-1}(1,1),0)] \cong [(0,1),(1,1)] \cong \mathbb{Q}$$

that is impossible.

2. \mathbb{R} and $\mathbb{R}+\mathbb{Q}$ are ∞ -equivalent. We prove $\mathbb{R}\sim_{\infty}\mathbb{R}+\mathbb{Q}$ by induction on α .

Clearly $\mathbb{R} \sim_0 \mathbb{R} + \mathbb{Q}$.

If $\alpha = \beta + 1$ and $\mathbb{R} \sim_{\beta} \mathbb{R} + \mathbb{Q}$, then $\emptyset \in S_{\beta}(\mathbb{R}, \mathbb{R} + \mathbb{Q})$ and we get a local isomorphism $s = \{(a_i, b_i)_{0 \leq i < \beta}\}$ and for each ordinal $\gamma < \lambda < \beta$, $a_{\gamma} < a_{\lambda}$ and $b_{\gamma} < b_{\lambda}$.

- if $a < a_0$, then we choose $b = (\inf(\operatorname{dom} s) 1, 0)$
- if $a_{\gamma} < a < a_{\lambda}$ and there is no a_i such that $a_{\gamma} < a_i < a_{\lambda}$ for all $0 \leq i < \beta$, then we choose a b such that $b_{\gamma} < b < b_{\lambda}$ as $\mathbb R$ and $\mathbb Q$ are both dense
- if $a > \sup(\operatorname{dom} s)$, then we choose $b = (\sup(\operatorname{im} s) + 1, 1)$

Let $t=s\cup\{(a,b)\}$ and we get a new local isomorphism preserving all order relations. And the backward case is similar. Hence $\mathbb{R}\sim_{\alpha}\mathbb{R}+\mathbb{Q}$

If α is a limit ordinal, then clearly $\mathbb{R} \sim_{\alpha} \mathbb{R} + \mathbb{Q}$.

Hence $\mathbb{R} \sim_{\infty} \mathbb{R} + \mathbb{Q}$.

Exercise 3. 1. Show that $\mathbb{Z} + \mathbb{Z}$ and \mathbb{Z} are $\omega + 1$ -equivalent but not $\omega + 2$ -equivalent

- 2. Construct two discrete linear orders such that they are $\omega+n$ -equivalent but not $\omega+n+1$ -equivalent for each $n\in\mathbb{N}$
- *Proof.* 1. We first prove that $\mathbb{Z} + \mathbb{Z} \sim_{\omega+1} \mathbb{Z}$

For any $a\in\mathbb{Z}$, we choose $(a,0)\in\mathbb{Z}+\mathbb{Z}$. Now we prove that $s=\{(a,(a,0))\}$ is an ω -isomorphism, that is, for any $p\in\omega$, s is a p-isomorphism. But by Theorem 1.8, s is indeed a p-isomorphism. Hence s is an ω -isomorphism and forward condition is satisfied.

Then backward is similar and $\mathbb{Z} + \mathbb{Z} \sim_{\omega+1} \mathbb{Z}$.

But for $\omega+2$, if we choose $a,b\in\mathbb{Z}+\mathbb{Z}$ as $d(a,b)=\infty$, and suppose $s=\{(a,c),(b,d)\}$. To show s is an ω -isomorphism, by Theorem 1.8, for any $p\in\omega$, d(c,d) should be greater than or equal to 2^p-1 , which is impossible in \mathbb{Z} . Thus $\mathbb{Z}+\mathbb{Z}\nsim_{\omega+2}\mathbb{Z}$

2.