## Regularização e Regressão Ridge

Prof. Dr. Leandro Balby Marinho



Análise de Dados II

### Roteiro

1. Sintomas de Overfitting

2. Otimização de Parâmetros

3. Validação Cruzada

## Função Geradora

Considere os dados abaixo gerados pela função sen $(2\pi x)$  com ruído aleatório adicionado.



Normalmente, não sabemos o formato da função geradora, e então tentamos achar uma aproximação coerente.

### Escolha do Modelo

#### Para M = grau do polinômio:



#### Erro no Treino vs. Erro no Teste



### Tamanho dos Parâmetros

Na regressão linear, overfitting é caracterizado por grandes valores dos parâmetros:

|                       | M=0  | M=1   | M=3    | M = 9       |
|-----------------------|------|-------|--------|-------------|
| <i>w</i> <sub>0</sub> | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1$                 |      | -1.27 | 7.99   | 232.37      |
| $W_2$                 |      |       | -25.43 | -5321.83    |
| W <sub>3</sub>        |      |       | 17.37  | 48568.31    |
| <i>W</i> 4            |      |       |        | -231639.30  |
| W <sub>5</sub>        |      |       |        | 640042.26   |
| w <sub>6</sub>        |      |       |        | -1061800.52 |
| $W_7$                 |      |       |        | 1042400.18  |
| w <sub>8</sub>        |      |       |        | -557682.99  |
| W <sub>9</sub>        |      |       |        | 125201.43   |

## Formato Desejado do Custo

#### Queremos balancear:

- i. Ajuste aos dados
- ii. Magnitude dos coeficientes (Complexidade do modelo)

Custo total=medida do ajuste (RSS) + medida da magnitude.

# Medida da magnitude dos coeficientes de regressão Que medida é indicativa da magnitude dos coeficientes:

► Soma:

$$\sum_{j=0}^{D} w_j$$

▶ Soma de valores absolutos (norma  $L_1$ ):

$$\sum_{j=0}^{D} |w_j| = ||\mathbf{w}||_1$$

▶ Soma dos quadrados (normal L<sub>2</sub>):

$$\sum_{i=0}^{D} w_i^2 = ||\mathbf{w}||_2^2$$

Validação Cruzada

# Regressão Ridge (também chamada de Regularização L2)

Custo total=
$$\underbrace{\text{medida do ajuste}}_{\text{RSS(w)}} + \underbrace{\text{medida da magnitude}}_{||\mathbf{w}||_2^2}$$

Tarefa: Selecionar w para minimizar

$$\mathsf{RSS}(\hat{\mathbf{w}}) + \lambda ||\hat{\mathbf{w}}||_2^2$$

- ▶  $\lambda = 0$ : problema reduz a achar os mínimos quadrados  $(||\hat{\mathbf{w}}^{MQ}||_2^2)$ .
- $\lambda = \infty$ 
  - ▶ se  $\hat{\mathbf{w}} \neq \mathbf{0}$  o custo total é  $\infty$
  - se  $\hat{\mathbf{w}} = 0$  o custo total é RSS(0)
- ▶  $0 < \lambda < \infty$ :

$$0 \le ||\hat{\mathbf{w}}||_2^2 \le ||\hat{\mathbf{w}}^{MQ}||_2^2$$

(ロ) (部) (注) (注) 注 り(())

### Trade-off Bias-Variância

- $\blacktriangleright$   $\lambda$  grande:
  - ► Bias grande, baixa variância
  - Exemplo:  $\hat{\mathbf{w}} = \mathbf{0}$  para  $\lambda = \infty$
- $\blacktriangleright$   $\lambda$  pequeno:
  - Bias pequeno, alta variância
  - Exemplo: Método dos mínimos quadrados para um polinômio de alta ordem para  $\lambda=0$

# Caminho dos Coeficientes na Regressão Ridge



# Impacto da Regularização



## Impacto da Regularização no Teste



### Roteiro

1. Sintomas de Overfitting

2. Otimização de Parâmetros

3. Validação Cruzada

# Usando notação de matrizes: todas as observações



$$y = Hw + \epsilon$$

## Custo de uma curva D-dimensional

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y^{(i)} - \mathbf{w}^{T} \mathbf{h}(\mathbf{x}^{(i)}))^{2}$$
$$= (\mathbf{y} - \mathbf{H}\mathbf{w})^{T} (\mathbf{y} - \mathbf{H}\mathbf{w})$$



# Notação vetorial para $||\mathbf{w}||_2^2$

$$||\mathbf{w}||_2^2 = w_0^2 + w_1^2 + w_2^2 + \ldots + w_D^2$$



$$||\mathbf{w}||_2^2 = \mathbf{w}^T \mathbf{w}$$

# Custo da regressão Ridge

Na forma matricial o custo agora é dado por:

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2 = (\mathbf{y} - \mathbf{H}\mathbf{w})^T (\mathbf{y} - \mathbf{H}\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

$$\nabla \left[ \mathsf{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2 \right] = \nabla \left[ (\mathbf{y} - \mathbf{H} \mathbf{w})^T (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w} \right]$$

$$\nabla \left[ \mathsf{RSS}(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2 \right] = \nabla \left[ (\mathbf{y} - \mathbf{H}\mathbf{w})^T (\mathbf{y} - \mathbf{H}\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w} \right]$$
$$= \nabla \left[ (\mathbf{y} - \mathbf{H}\mathbf{w})^T (\mathbf{y} - \mathbf{H}\mathbf{w}) \right] + \nabla \left[ \lambda \mathbf{w}^T \mathbf{w} \right]$$

$$\nabla \left[ \mathsf{RSS}(\mathsf{w}) + \lambda ||\mathsf{w}||_2^2 \right] = \nabla \left[ (\mathsf{y} - \mathsf{Hw})^T (\mathsf{y} - \mathsf{Hw}) + \lambda \mathsf{w}^T \mathsf{w} \right]$$
$$= \nabla \left[ (\mathsf{y} - \mathsf{Hw})^T (\mathsf{y} - \mathsf{Hw}) \right] + \nabla \left[ \lambda \mathsf{w}^T \mathsf{w} \right]$$
$$= -2\mathsf{H}^T (\mathsf{y} - \mathsf{Hw}) + 2\lambda \mathsf{w}$$

$$\nabla \left[ \mathsf{RSS}(\mathsf{w}) + \lambda ||\mathsf{w}||_2^2 \right] = \nabla \left[ (\mathsf{y} - \mathsf{Hw})^T (\mathsf{y} - \mathsf{Hw}) + \lambda \mathsf{w}^T \mathsf{w} \right]$$

$$= \nabla \left[ (\mathsf{y} - \mathsf{Hw})^T (\mathsf{y} - \mathsf{Hw}) \right] + \nabla \left[ \lambda \mathsf{w}^T \mathsf{w} \right]$$

$$= -2\mathsf{H}^T (\mathsf{y} - \mathsf{Hw}) + 2\lambda \mathsf{w}$$

$$= -2\mathsf{H}^T (\mathsf{y} - \mathsf{Hw}) + 2\lambda \mathsf{Iw} \quad (\mathsf{I} = \mathsf{identidade})$$

$$\nabla \text{RSS}(\mathbf{w}) = -2\mathbf{H}^T(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$

$$-2\mathbf{H}^T\mathbf{y} + 2\mathbf{H}^T\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0$$

$$\nabla \text{RSS}(\mathbf{w}) = -2\mathbf{H}^T(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$

$$-2\mathbf{H}^{T}\mathbf{y} + 2\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0$$
$$-\mathbf{H}^{T}\mathbf{y} + \mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)}$$

$$\nabla$$
RSS(w) =  $-2H^T(y - Hw) + 2\lambda Iw = 0$ 

$$\begin{aligned} &-2\mathbf{H}^T\mathbf{y} + 2\mathbf{H}^T\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0 \\ &-\mathbf{H}^T\mathbf{y} + \mathbf{H}^T\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)} \\ &\mathbf{H}^T\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^T\mathbf{y} \end{aligned}$$

$$\nabla \text{RSS}(\mathbf{w}) = -2\mathbf{H}^T(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$

$$-2\mathbf{H}^{T}\mathbf{y} + 2\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0$$

$$-\mathbf{H}^{T}\mathbf{y} + \mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)}$$

$$\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$(\mathbf{H}^{T}\mathbf{H} + \lambda\mathbf{I})\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$\nabla$$
RSS(w) =  $-2H^T(y - Hw) + 2\lambda Iw = 0$ 

Resolvendo para w:

$$-2\mathbf{H}^{T}\mathbf{y} + 2\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + 2\lambda\mathbf{I}\hat{\mathbf{w}} = 0$$

$$-\mathbf{H}^{T}\mathbf{y} + \mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = 0 \quad \text{(divide ambos os lados por 2)}$$

$$\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda\mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$(\mathbf{H}^{T}\mathbf{H} + \lambda\mathbf{I})\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$\hat{\mathbf{w}} = (\mathbf{H}^{T}\mathbf{H} + \lambda\mathbf{I})^{-1}\mathbf{H}^{T}\mathbf{y}$$

Custo da inversão de matrizes (quando inversível):  $O(D^3)$ 

$$\hat{\mathbf{w}}^{\mathsf{ridge}} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H}^T \mathbf{y}$$

- ▶  $\lambda = 0$ : problema reduz a achar os mínimos quadrados  $((\mathbf{H}^T\mathbf{H})^{-1}\mathbf{H}^T\mathbf{y})$ .
- $\lambda = \infty$ :  $\hat{\mathbf{w}}^{\text{ridge}} = 0$  (análogo a dividir por infinito)

### Gradiente Descendente

#### Gradient-Descent-Ridge

1 while not converged

2 
$$w_j^{(t+1)} = w_j^{(t)} - \alpha \left[ -2 \sum_{i=1}^N h_j(\mathbf{x}^{(i)}) (y^{(i)} - \hat{y}^{(i)}) + 2\lambda w_j^{(t)} \right]$$

### Gradiente Descendente

#### Gradient-Descent-Ridge

1 while not converged

2 
$$w_j^{(t+1)} = (1 - 2\alpha\lambda)w_j^{(t)} + 2\alpha\sum_{i=1}^N h_j(\mathbf{x}^{(i)}) (y^{(i)} - \hat{y}^{(i)})$$

#### Gradient-Descent-OLS

1 while not converged

2 
$$w_j^{(t+1)} = w_j^{(t)} + 2\alpha \sum_{i=1}^{N} h_j(\mathbf{x}^{(i)}) (y^{(i)} - \hat{y}^{(i)})$$

OLS = Ordinary Least Squares (Mínimos Quadrados Ordinário)  $\hat{y}^{(i)} = \mathbf{h}(\mathbf{x}^{(i)})^T \mathbf{w}$ 

### Roteiro

1. Sintomas de Overfitting

2. Otimização de Parâmetros

3. Validação Cruzada

### Como encontrar o melhor $\lambda$ ?

- ► Dividindo os dados em K blocos diferentes de forma aleatória.
- ► No caso de uma partição (1/2,1/2) dos dados,
  - A primeira parte é usada para treino e a segunda para validação.
  - A segunda parte é usada para treino e a primeira para validação.
- ► Essa ideia pode ser generalizada para *k* partições de igual tamanho.
- ightharpoonup Em cada execução, k-1 partições são usadas para treino e uma para validação.
- ➤ O procedimento é repetido k vezes e a média do MSE calculada.

# Validação Cruzada 5-fold



For  $k = 1, \ldots, K$ 

- 1. Estime  $\hat{\mathbf{w}}_{\lambda}^{(k)}$  nos blocos de treino
- 2. Calcule o erro no bloco de validação  $\mathcal{L}_k(\lambda)$

Calcule erro médio:  $\mathsf{CV}(\lambda) = \frac{1}{K} \sum_{k=1}^K \mathcal{L}_k(\lambda)$  (repita para todos os  $\lambda$ )

### Referências

- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical Learning with Applications in R. Springer, 2013.
- Emily Fox and Carlos Guestrin. Machine Learning Specialization. Curso online disponível em https://www.coursera.org/specializations/machine-learning. Último acesso: 14/09/2017.