Department of Electronic and Telecommunication Engineering University of Moratuwa, Sri Lanka

EN2570 - Digital Signal Processing

Design of an FIR Digital Filter for Prescribed Specifications

(Using the windowing method in conjunction with the Kaiser window)

Project Report

Submitted by

Thalagala B.P.

180631J

Submitted on

February 15, 2021

Contents

1	Modeling the RF propagation Using Matlab		
	1.1	Relationship between Free Space Path Loss and Frequency	2
	1.2	Rain attenuation, Fog attenuation and Atmospheric gas attenuation with Frequency .	3
	1.3	Variation of the Signal Power with the Distance	3
	1.4	Codes	3
Bi	Bibliography		

$st\ PDF\ is\ clickable$

Note:

 $Additionally\ all\ the\ materials\ related\ to\ Task\ can\ also\ be\ found\ at$

1 Modeling the RF propagation Using Matlab

1.1 Relationship between Free Space Path Loss and Frequency

Consider following meanings for the parameters

 P_{RX} = Received Power at the Receiving Antenna

 P_{TX} = Transmitted Power at the Transmitting Antenna

f = Frequency of the wave in Hz f_{GHz} = Frequency of the wave in GHz d = Distance between the antennas in m

 d_{km} = Distance between the antennas in km G_{TX} = Directive gain of the Transmitter

 G_{RX} = Directive gain of the Receiver

c = Velocity of the electromagnetic waves in a vacuum

$$\begin{aligned} 10.\log_{10}(L) &= 10.\log_{10}(\frac{(4\pi.f.d)^2}{c^2}) \\ L_{dB} &= 10.\log_{10}((4\pi.f.d)^2) - 10.\log_{10}(c^2) \\ &= 20.\log_{10}(4\pi.f.d) - 20.\log_{10}(c) \\ &= 20.\log_{10}(4\pi) - 20.\log_{10}(c) + 20.\log_{10}(f) + 20.\log_{10}(d) \\ &= 20.\log_{10}(\frac{4\pi}{c}) + 20.\log_{10}(f) + 20.\log_{10}(d) \\ &= -147.5522168 + 20.\log_{10}(f_{GHz}.10^9) + 20.\log_{10}(f_{GHz}) + 20.\log_{10}(10^3) + 20.\log_{10}(d_{km}.10^3) \\ &= -147.5522168 + 20.\log_{10}(10^9) + 20.\log_{10}(f_{GHz}) + 20.\log_{10}(10^3) + 20.\log_{10}(d_{km}) \\ &= -147.5522168 + 180 + 20.\log_{10}(f_{GHz}) + 60 + 20.\log_{10}(d_{km}) \\ &= -147.5522168 + 240 + 20.\log_{10}(f_{GHz}) + 20.\log_{10}(d_{km}) \\ &= -147.5522168 + 240 + 20.\log_{10}(f_{GHz}) + 20.\log_{10}(d_{km}) \\ &= +92.44778322 + 20.\log_{10}(f_{GHz}) + 20.\log_{10}(d_{km}) \end{aligned}$$

Note: Axes of the following plots are given in the logarithmic scale and range of frequency was chosen from 50 GHz to 1000 GHz since some of the ITU-R models are only defined in the 10 GHz-1000 GHz range.

1.2 Rain attenuation, Fog attenuation and Atmospheric gas attenuation with Frequency

Note: For the generation of following plots three of the Matlab built-in functions, namely rainpl()[1], gaspl()[1], fogpl()[1] which are developed according to the ITU-R P Series recommendations were used and links for their documentations are given at the Reference section.

1.3 Variation of the Signal Power with the Distance

Chosen Carrier frequency	$50~\mathrm{GHz}$
Transmission power	$50~\mathrm{kW}$ or $47~\mathrm{dB}$
Cable loss at Transmitter	3 dB
Transmitter Gain	30 dB
Receiver Gain	24.77 dB
Cable loss at Receiver	4 dB
Total Path Loss	Varies with Distance

1.4 Codes

```
%% Initialization
1
2
  clear; close all; clc
  %% ====== Free Space Propagation Loss with Frequency ========
4
  %Defining the frequency range in GigaHertz
5
  f_{GHz} = 50:1000;
6
  %Free Space Path Loss Model obtained through calculations
7
8
  freeSpaceLoss1 = 112.44778322 + 20*log10(f_GHz);
9
10
  % Plotting Data
  plotCurve(freeSpaceLoss1, 'FreeSpacePL')
11
12
13
  %% == Rain, Fog, Atmospheric Gases Attenuations with Frequency ==
14
  freq = f_GHz*1e9;% Defining the frequency range in Hertz
15
  16
  17
18
  tau = 0;
                  % Polarization tilt angle of the signal
19
                  % Ambient Temperature in celcious
20
  temp = 31;
21
  dens = 0.5;
                 % Liquid Water Density in g/m<sup>3</sup>
22
  rou = 30.4;
                  % Water Vapor Density in g/m<sup>3</sup>
23
  p = 101325; % Atmospheric Pressure in Pa at sea level
24
25
  % Calculating Attenuations
26
  rainAttenuation = rainpl(range, freq, rainrate, elev, tau);
27
  fogAttenuation = fogpl(range, freq, temp, dens);
28
  gasAttenuation = gaspl(range, freq, temp, p, rou);
29
  % Plotting Data
30
31
  plotCurve(rainAttenuation, 'RainPL');
  plotCurve(fogAttenuation, 'FogPL');
32
  plotCurve(gasAttenuation, 'GasPL');
33
34
35 | %% ======= Total Propagation Loss with Frequency ========
```

```
36
37
   % Calculating Total Attenuation
38
   Totalpathloss = freeSpaceLoss1 + rainAttenuation + ...
39
                                    fogAttenuation +gasAttenuation;
40
   % Plotting Data
   plotCurve(Totalpathloss, 'TotalPL');
41
42
43
   \%\% ====== Variation of the Signal Power with the Distance =======
44
45
   distance = 0:10e3; % Distance between transceivers in m
46
   freq = 50*1e9;
                       % Choosen frequency value in Hertz
47
   % Calculating Attenuations with Distance
48
49
   freeSpaceLoss2 = 126.4271833 + 20*log10(distance/(10e2));
50
   rainAttenuation = rainpl(distance, freq, rainrate, elev, tau);
   fogAttenuation = fogpl(distance, freq, temp, dens);
51
52
   gasAttenuation = gaspl(distance, freq, temp, p, rou);
53
54
   % Total Path Loss with Distance
55
   TotalLosswithDistance = freeSpaceLoss2' + rainAttenuation + ...
56
                                    fogAttenuation +gasAttenuation;
57
58
   % Calculating the signal Power with the distance
59
   signalPower = 74 - TotalLosswithDistance;
60
61
  % Plotting Data
62
  figure;
   plot(distance/10e2, signalPower, 'r', 'LineWidth', 2);
63
64
   grid on;
65
   xlabel('Distance (km)');
66
   ylabel('Signal Power (dB)');
67
   title('Variation of the Signal Power with the Distance');
68
69
   fprintf('Program paused. Press enter to continue.\n');
   pause;
70
71
72
   %% == Sending Voice Signal Over a Noisy Channel - Associated Logic ==
73
74
  freqDeviation = 4000; % Frequency Deviation of the Voice signal
75
   CarrierFreq = 50e9;
                        % Carrier Frequency
76
77
   % Frequency range of the Transmitted Signal
78
   freqRange = CarrierFreq - freqDeviation :...
79
                        CarrierFreq + freqDeviation;
80
81
   % Calculating Losses
82
   freeSpaceLoss3 = 112.44778322 + 20*log10(freqRange/(1e9));
83
   rainAttenuation = rainpl(range, freqRange, rainrate, elev, tau);
   fogAttenuation = fogpl(range, freqRange, temp, dens);
84
85
   gasAttenuation = gaspl(range, freqRange, temp, p, rou);
86
87
   % Total Path Loss in the given Frequency Range
88
   TotalPathLoss = freeSpaceLoss3 + rainAttenuation + ...
89
                                     fogAttenuation +gasAttenuation;
90
   % Plotting Data
91 | figure;
```

```
92 plot(freqRange, TotalPathLoss, 'r', 'LineWidth', 2);
93 grid on;
94 xlabel('Frequency (Hz)');
95 ylabel('Total Path Loss (dB)');
10 title('Variation of the Path Loss with Frequency');
```

Bibliography

- [1] Modeling the Propagation of RF Signals MATLAB & Simulink MathWorks India. https://in.mathworks.com/help/phased/examples/modeling-the-propagation-of-rf-signals.html.
- [2] P.676: Attenuation by atmospheric gases. https://www.itu.int/rec/R-REC-P. 676-10-201309-S/en.
- [3] P.838: Specific attenuation model for rain for use in prediction methods. https://www.itu.int/rec/R-REC-P.838-3-200503-I/en.
- [4] P.840: Attenuation due to clouds and fog. https://www.itu.int/rec/R-REC-P.840-6-201309-S/en.
- [5] Water Vapor and Vapor Pressure. http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/watvap.html.