Lógica de primer orden Interpretaciones, distinguibilidad, expresabilidad, y definibilidad Lógica y Computabilidad

Christian G. Cossio-Mercado

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

13 de noviembre de 2020

- Repaso de LPO
- Estructuras de un lenguaje
- Niveles de verdad
- 4 Distinguibilidad
- Expresabilidad
- 6 Definibilidad

- Repaso de LPO
- 2 Estructuras de un lenguaje
- Niveles de verdad
- 4 Distinguibilidad
- Expresabilidad
- 6 Definibilidad

Lógica de Primer Orden (LPO)

- símbolos lógicos y auxiliares: $x \quad ' \quad \forall \quad \neg \quad \rightarrow \quad (\quad)$
- símbolos de cada lenguaje particular $\mathcal{L} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$, donde
 - \mathcal{C} es un conjunto de símbolos de constantes (puede ser $\mathcal{C} = \emptyset$)
 - \mathcal{F} es un conjunto de símbolos de funciones (puede ser $\mathcal{F} = \emptyset$)
 - \mathcal{P} es un conjunto de símbolos de predicados ($\mathcal{P} \neq \emptyset$)

Lógica de Primer Orden (LPO)

- Tenemos términos y fórmulas.
- Podemos utilizar los símbolos ∃ ∨ ∧ en reemplazo de las fórmulas correspondientes.

- Repaso de LPO
- Estructuras de un lenguaje
- Niveles de verdad
- 4 Distinguibilidad
- Expresabilidad
- 6 Definibilidad

Interpretación de un lenguaje

Una \mathcal{L} -estructura \mathcal{A} de un lenguaje $\mathcal{L} = \mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ es

- un conjunto A no vacío, se lo llama universo o dominio
- las siguientes asignaciones:
 - ▶ para cada símbolo de constante $c \in C$, un elemento fijo

$$c_{\mathcal{A}} \in A$$

▶ para cada símbolo de función n-aria $f \in \mathcal{F}$, una función

$$f_{\mathcal{A}}:A^n\to A$$

▶ para cada símbolo de predicado *n*-ario $P \in \mathcal{P}$, una relación

$$P_{\mathcal{A}} \subseteq A^n$$

Las funciones f_A y predicados P_A son siempre totales.

Sea \mathcal{L} el lenguaje con igualdad $\{c, f, R, =\}$, donde c es un símbolo de constante, f es un símbolo de función 1-aria, y R un símbolo de predicado (o relación) 2-aria Decidir si son \mathcal{L} -estructuras las siguientes estructuras:

- **1** $\mathcal{M}_1 = \{\mathbb{Z}, -3, s, <\}$. Donde s es la función 'sucesor' (s(x) = x + 1) y < es el 'menor' usual
- ② $\mathcal{M}_2 = \{\mathbb{N}, 1, +, <\}$. Donde + es la función 'suma' (+(x, y) = x + y) y < es el 'menor' usual
- $\mathcal{M}_4 = \{T, r, id, \downarrow\}$. Donde T son los nodos de un árbol maximal de altura 2 y ramificación 2, r es la raíz de T (visto como un árbol), id(x) = x, $y \times y$ sii y es hijo de x

Interpretación de un lenguaje

Cosas a revisar:

- El universo *U* es no vacío
- $oldsymbol{2}$ La interpretación de cada constante pertenece al universo U elegido
- \odot La interpretación de cada función es total, tiene la aridad definida, y su dominio e imagen son elementos del universo U
- 4 La interpretación de cada predicado es total

- Repaso de LPO
- Estructuras de un lenguaje
- Niveles de verdad
- 4 Distinguibilidad
- 5 Expresabilidad
- 6 Definibilidad

Definición: Niveles de verdad

Una \mathcal{L} -fórmula φ se dice:

- universalmente válida si para toda \mathcal{L} -estructura \mathcal{M} y toda valuación v de \mathcal{M} , $\mathcal{M} \models \varphi[v]$
- válida (o verdadera) en una \mathcal{L} -estructura \mathcal{M} si para toda valuación v de \mathcal{M} , $\mathcal{M} \models \varphi[v]$
- satisfacible si existe alguna $\mathcal L$ -estructura $\mathcal M$ y una valuación v tales que $\mathcal M \models \varphi[v]$

Sea $\mathcal{L} = \{c, f, R, =\}$, como en el modelo \mathcal{M}_1 anterior $\mathcal{M}_1 = \{\mathbb{Z}, -3, s, <\}$. Donde s es la función 'sucesor' (s(x) = x + 1) y < es el orden usual de los \mathbb{Z} .

Decidir si las siguientes \mathcal{L} -fórmulas son universalmente válidas, válidas en \mathcal{M}_1 , satisfacibles, o insatisfacibles.:

- **1** $\varphi_1 : x = x$

Verificar si las fórmulas φ_3 , φ_4 y φ_5 del ejercicio anterior son válidas en la \mathcal{L} -estructura \mathcal{S}

En este caso $f_S = id : \{0, \dots, 6\} \rightarrow \{0, \dots, 6\}, c_S = 0$, y R_S es el conjunto de flechas del árbol.

- Repaso de LPO
- Estructuras de un lenguaje
- Niveles de verdad
- 4 Distinguibilidad
- Expresabilidad
- 6 Definibilidad

Definición: Distinguibilidad

Decimos que un elemento e del universo de una \mathcal{L} -estructura \mathcal{M} es **distinguible** si existe una \mathcal{L} -fórmula φ con una sola variable libre x tal que $\mathcal{M} \models \varphi[v]$ si y sólo si v(x) = e.

Consideremos el lenguaje anterior, $\mathcal{L} = \{c, f, R, =\}$. Demostrar que todos los elementos de la \mathcal{L} -estructura \mathcal{T} (c es el 0, f es la función identidad, R está representado por las flechas) son distinguibles

Sea \mathcal{L} el lenguaje con igualdad que consiste únicamente de un predicado binario R. Sea \mathcal{M} una \mathcal{L} -interpretación que consiste en un árbol ($R_{\mathcal{M}}$ es la relación de accesibilidad: $xR_{\mathcal{M}}y$ sii y es hijo de x). Demostrar que la raíz de \mathcal{M} es un elemento distinguible.

Sea $\mathcal L$ el lenguaje de primer orden con igualdad, con una relación binaria <. Considerar la siguiente $\mathcal L$ -interpretación $\mathcal M$ con universo $\omega^2=\{(x,y)\mid x,y\in\mathbb N\}.$

$$(x, y) <_{\mathcal{M}} (x', y')$$
 sii $(x < x' \circ x = x' y y < y')$

Demostrar que son distinguibles todos los elementos de la forma (i,0) con $i\in\mathbb{N}$

- Repaso de LPO
- Estructuras de un lenguaje
- Niveles de verdad
- 4 Distinguibilidad
- 5 Expresabilidad
- 6 Definibilidad

Definicion: Expresabilidad

Dada una \mathcal{L} -interpretación \mathcal{M} con universo M, decimos que una relación $R \subseteq M^n$ es **expresable** si existe una \mathcal{L} -fórmula φ con n variables libres x_1, \ldots, x_n tal que para toda valuación v, vale que $\mathcal{M} \models \varphi[v]$ sii $(v(x_1), \ldots, v(x_n)) \in R$.

Sea $\mathcal{L} = \{+, =\}$, con + un símbolo de función binario. Sea, con cierto abuso de notación, $\mathcal{M} = \langle \mathbb{N}, +, = \rangle$, donde + es la suma de naturales usual. Demostrar que son expresables las relaciones $R_{\leq} = \{(x_1, x_2) \mid x_1 \leq x_2\}$ y $R_{\leq} = \{(x_1, x_2) \mid x_1 < x_2\}$.

- Repaso de LPO
- Estructuras de un lenguaje
- Niveles de verdad
- 4 Distinguibilidad
- Expresabilidad
- 6 Definibilidad

Definicion: Definibilidad

Decimos que una clase de \mathcal{L} -estructuras \mathcal{K} es **definible** si existe una sentencia φ tal que para toda \mathcal{L} -interpretación \mathcal{M} , vale que $\mathcal{M} \models \varphi$ sii $\mathcal{M} \in \mathcal{K}$.

Sea $\mathcal{L} = \{R, =\}$, donde R es un símbolo de relación binaria. Demostrar que es definible la clase de \mathcal{L} -modelos donde R es una relación irreflexiva, transitiva, y con al menos un elemento minimal.

Lógica de primer orden Interpretaciones, distinguibilidad, expresabilidad, y definibilidad Lógica y Computabilidad

Christian G. Cossio-Mercado

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

13 de noviembre de 2020