SIT330-770: Natural Language Processing

Week 9 – Speech Processing & ASR

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

SIT330-770: Natural Language Processing

Week 9. 1 - Introduction to Automatic Speech Recognition

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of Sci Eng & Built Env

What is speech recognition?

- Speech-to-text transcription
 - Transform recorded audio into a sequence of words
 - Just the words, no meaning.... But do need to deal with acoustic ambiguity: "Recognise speech?" or "Wreck a nice beach?"
 - Speaker diarization: Who spoke when?
 - Speech recognition: what did they say?
 - Paralinguistic aspects: how did they say it? (timing, intonation, voice quality)
 - Speech understanding: what does it mean?

Applications of ASR

- Dictation
- Language learning
- Smart speakers (Alexa, Siri)
- Accessibility for hearing impaired
- Voice command
- Automatic captioning
- Audio indexing
- Machine translation
- Meeting understanding and summarization
- Call center analysis
- TV remote
- ..

Enable ChatGPT with voice input/output

Why is speech recognition difficult?

Several sources of variation

- Size
 - Number of word types in vocabulary, perplexity
- Speaker
 - Tuned for a particular speaker, or speaker-independent? Adaptation to speaker characteristics
- Acoustic environment
 - Noise, competing speakers, channel conditions (microphone, phone line, room acoustics)
- Style
 - Continuously spoken or isolated? Planned monologue or spontaneous conversation?
- Accent/dialect
 - Recognise the speech of all speakers who speak a particular language
- Language spoken
 - o There are many languages beyond English, Mandarin Chinese, Spanish, . . . What is the difference between a dialect and a language?

SIT330-770: Natural Language Processing

Week 9. 2 - Statistical modeling for Automatic Speech Recognition

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of Sci Eng & Built Env

Hierarchical modelling of speech

Statistical Speech Recognition

If X is the sequence of acoustic feature vectors (observations) and W denotes a word sequence,
 the most likely word sequence W* is given by

$$W^* = \operatorname*{argmax}_{w} P(W|X)$$

Applying Bayes' Theorem:

$$P(W|X) = \frac{P(X|W)P(W)}{P(X)}$$

$$\propto P(X|W)P(W)$$

$$W^* = \underset{w}{\operatorname{argmax}} P(X|W) P(W)$$
Acoustic model

Speech Recognition Components

$$W^* = \operatorname*{argmax}_{w} P(W|X)$$

 Use an acoustic model, language model, and lexicon to obtain the most probable word sequence W* given the observed acoustics X

Directly model transforming an input acoustic sequence into an output word or character

sequence

Directly model transforming an input acoustic sequence into an output word or character

sequence

• Directly model transforming an input acoustic sequence into an output word or character

sequence

Directly model transforming an input acoustic sequence into an output word or character

sequence

SIT330-770: Natural Language Processing

Week 9. 3 - Evaluation Metrics

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of Sci Eng & Built Env

Evaluation Metrics

- Reference:
 - The quick brown fox jumped over the lazy dog
- Hypothesis:
 - The quick brown fox jumps over ---- lazy dog too
- Word error rate:
 - \circ WER = D+S+I N
 - D: number of deleted words
 - S: number of subsituted words
 - I: number of inserted words
 - N: number of reference words
- Readability: whether the recognized text is easy to read by human.

SIT330-770: Natural Language Processing

Week 9. 4 - Deep learning for ASR

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of Sci Eng & Built Env

Deep learning for ASR

- Hybrid system: only replace HMM/GMM acoustic model with neural networks
- End-to-end ASR: replace the whole ASR system with neural works

Hybrid acoustic model

- Replace the generative HMM/GMM with a discriminative neural networks
- HMM/GMM models $p(o_t|s_t)$
- Hybrid models $p(s_t|o_t)$
- Common practices
 - Train an HMM/GMM first
 - Use it to align the label (senone sequences) to the feature sequence.
 - Train neural networks to predict frame level senone labels

Encoder Structures

- DNN
- CNN
- LSTM
- Transformer
- Or any combination of them

End-to-end ASR

- End-to-end ASR systems try to do ASR with a single model
- Three main approaches
 - Connectionist Temporal Classification
 - RNN Transducers
 - Sequence-to-Sequence

Sequence-to-sequence (S2S)

- S2S is also called attention encoder decoder (AED)
- Encoder: similar to acoustic model
- Attention: alignment model
- Decoder: similar to pronunciation and language model
- Offline model

RNN Transducers (RNN-T)

- Called RNN-T because originally RNN is used as the encoder model structure.
- Newer models uses transformers or conformers as encoder
- A native streaming model

SIT330-770: Natural Language Processing

Week 9. 5 - The alignment problem

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of Sci Eng & Built Env

The alignment problem

- We have a data set of speech, handwriting, other sequential data and the corresponding transcripts
- Problem: we don't know how the outputs align to the inputs
 - o i.e., which frame(s) of the input correspond to which output frame

Speech recognition: The input can be a spectrogram or some other frequency based feature extractor.

Handwriting recognition: The input can be (x, y) coordinates of a pen stroke or pixels in an image.

The alignment problem: Naïve solutions

- We could devise a rule like "one character corresponds to ten inputs".
 - But people's rates of speech vary, so this type of rule can always be broken.
- Another alternative is to hand-align each character to its location in the audio.
 - May work well, but we'd know the ground truth for each input time-step
 - o For any reasonably sized dataset this is prohibitively time consuming.

Speech recognition: The input can be a spectrogram or some other frequency based feature extractor.

Solution: Connectionist Temporal Classification (CTC) is a way to get around not knowing the alignment between the input and the output

Problem definition

Given:

- A sequence $X = [x_1, x_2, ..., x_T]$ (audio)
- The corresponding output sequence $Y=[y_1,y_2,...,y_U]$ (transcript)
- We want to find an accurate mapping from X to Y
- Challenges:
 - Both X and Y can vary in length
 - The ratio of the lengths of X and Y can vary.
 - We don't have an accurate alignment (correspondence of the elements) of X and Y
- The CTC algorithm overcomes these challenges and for a given X it gives an output distribution over all possible Y
 - We can use this distribution either to infer a likely output or to assess the probαbility of a given output.

SIT330-770: Natural Language Processing

Week 9. 6 -Automatic Speech Recognition using Connectionist Temporal Classification

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of Sci Eng & Built Env

The algorithm: Alignment

- Assume the input has length six and Y = [c, a, t]. One way to align X and Y is
 to assign an output character to each input step and collapse repeats
- This approach has two problems:
 - It doesn't make sense to force every input step to align to some output
 - We have no way to produce outputs with multiple characters in a row.
 - The alignment [h, h, e, l, l, o] collapses to "helo"

The algorithm: CTC Alignment

- CTC introduces a new token **c** called the blank token
- The € token doesn't correspond to anything
- We allow any alignment which maps to Y after merging repeats and removing **\infty** tokens:

First, merge repeat characters.

Then, remove any ϵ tokens.

The remaining characters are the output.

The algorithm: CTC Alignment Examples

Valid Alignments

ccaatt

c a ϵ ϵ ϵ t

Invalid Alignments

 $C \in \epsilon \in t t$

corresponds to Y = [c, c, a, t]

has length 5

missing the 'a'

The algorithm: CTC Alignment Properties

- The allowed alignments between X and Y are monotonic.
 - If we advance to the next input, we can keep the corresponding output the same or advance to the next one.
- The alignment of X to Y is many-to-one.
 - One or more input elements can align to a single output element but not vice-versa.
- The length of Y cannot be greater than the length of X.

The algorithm: Loss Function

- The CTC alignments gives us a probability of an output sequence
- The CTC objective for a single (X,Y)
 pair is:

$$\wp(Y\mid X) =$$

The CTC conditional

probability

$$\sum_{A \in \mathcal{A}_{YY}}$$

marginalizes over the set of valid alignments

computing the **probability** for a single alignment step-by-step.

We start with an input sequence, like a spectrogram of audio.

The input is fed into an RNN, for example.

The network gives p_t ($a \mid X$), a distribution over the outputs $\{h, e, l, o, \epsilon\}$ for each input step.

With the per time-step output distribution, we compute the probability of different sequences

By marginalizing over alignments, we get a distribution over outputs

The algorithm: Loss Function

- The CTC loss can be very expensive to compute.
 - A brute force approach that computes the score for each alignment is expensive
 - There can be a massive number of alignments.
- We can compute the loss faster with a dynamic programming algorithm
 - o If two alignments have reached the same output at the same step, they can be merged

Summing over all alignments can be very expensive.

The algorithm: Loss Function

- Example of the computation performed by the dynamic programming algorithm
- Every valid alignment has a path in this graph.
 - For a training set D, the loss function is:

$$\sum_{(X,Y)\in\mathcal{D}} -\log\;p(Y\mid X)$$
 output $Y=[\mathsf{a,\,b}]$

 The CTC loss function is differentiable since it's just sums and products of probabilities

Node (s, t) in the diagram represents $\alpha_{s,t}$ – the CTC score of the subsequence $Z_{1:s}$ after t input steps.

The algorithm: Inference

Find a likely output for a given input by solving:

$$Y^* = \underset{Y}{\operatorname{argmax}} p(Y \mid X)$$

- Need to settle for an approximate solution, too expensive to search for the true max
- One heuristic is to take the most likely character at each output

The algorithm: Inference

$$Y^* = \operatorname*{argmax}_{Y} p(Y \mid X)$$

- Problems?
 - Does not take into account that the same output Y could be produced by two different alignments
 - [a,a] and [a,a,a] individually have lower probability than [b,b], but combined higher and they collapse to [a]
 - With this heuristic, [b] gets picked

The algorithm: Inference

• A better heuristic is to use modified beam search

- $Y^* = \operatorname*{argmax}_{Y} p(Y \mid X)$
- Can exchange speed for asymptotically better solution

