PATENT ABSTRACTS OF JAPAN

(11) Publication number :

2003-075026

(43) Date of publication of application: 12.03.2003

(51) Int. CI.

F25B 40/00

F25B 1/00

(21) Application number : 2001- (71) Applicant : DAIKIN IND LTD

263222

(22) Date of filing: 31.08.2001 (72) Inventor: HORI YASUSHI

(54) REFRIGERATION UNIT

(57) Abstract:

PROBLEM TO BE SOLVED: To improve the rate of heat transfer from a high-pressure liquid medium to a low-pressure medium by specifying set-up conditions of a supercooling heat exchanger.

SOLUTION: The supercooling heat exchanger is constituted of a double-pipe heat exchanger having a vertical high-pressure side channel 14 and a low-pressure side channel 15, and performs supercooling by exchanging heat between the high-pressure liquid medium XI at the upstream of a

depressurizing mechanism and the low pressure medium X2 obtained by depressurizing the high- pressure liquid medium X1. Thus the low pressure medium X2 which makes a gas-liquid two-phase flow in the

initial stage of inflow is allowed to readily turn into an annular flow, whereby performance of the supercooling heat exchanger can be improved.

LEGAL STATUS

[Date of request for examination] 28.06.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出舉公開登号 特開2003-75026 (P2003-75026A)

(43)公開日 平成15年3月12日(2003.3.12)

(51) Int.CL'	織別記号	FI	デーマコート*(参え	≸)
F 2 5 B 40/00		F 2 5 B 40/00	v	
1/00	101	1/00	101E	
	3 3 1		331E	

審査請求 京請求 請求項の数6 OL (全 5 頁)

			
(21)出顧番号	特顧2001-263222(P2001-263222)	(71)出顧人	000002853
			ダイキン工業株式会社
(22)出題日	平成13年8月31日(2001.8.31)		大阪府大阪市北区中崎西2丁目4番12号
			梅田センタービル
		(72)発明者	
		(==>,====	大阪府堺市金岡町1304番地 ダイキン工業
	•		株式会社學製作所金剛工場内
	·	(74)代理人	100075731
		(14/104/)	
			弁理士 大浜 梯

(54) 【発明の名称】 冷凍装置

(57)【要約】

【課題】 過冷却熱交換器の設置状態を規定することにより、高圧液冷媒から低圧冷媒への熱伝達率の向上を図る

【解決手段】 減圧機構の上流側の高圧液冷媒X,に対して該高圧液冷媒X,を減圧して得られる低圧冷媒X,と の熱交換により過冷却を付与する過冷却熱交換器を、垂直な高圧側流路14および低圧側流路15を有する二重 管式熱交換器により構成して、流入初期に気液二相流となっている低圧冷媒X,の環状流化が容易となるようにし、もって過冷却熱交換器の性能向上を図るようにしている。

1

【特許請求の節囲】

【請求項1】 圧縮機(1)、熱源側熱交換器(3)、 瀬圧機構(7)および利用側熱交換器(8)を備え、前 記滅圧機構(7)の上流側の高圧液冷媒(X.)に対し て該高圧液冷媒 (X、) を減圧して得られる低圧冷媒 (X₂)との熱交換により過冷却を付与する過冷却熱交 換器(6)を付設してなる冷凍装置であって、前記過冷 却熱交換器(6)を、垂直な高圧側流路(14)および 低圧側流路(15)を有する二重管式熱交換器により模 成したことを特徴とする冷凍装置。

【請求項2】 前記低圧側流路(15)を流れる低圧冷 媒(X,)を下方から上方に向かって流通させるように 模成したことを特徴とする前記請求項1記載の冷炭装

【請求項3】 前記高圧側流路(14)および低圧側流 路(15)を、入口側および出口側が下端に位置し、R 部(6a)が上端に位置するU字状流路としたことを特 徴とする前記請求項1記載の冷凍装置。

【請求項4】 前記低圧側流路(15)を二重管の内管 (20)内に形成したことを特徴とする前記請求項1、 2および3のいずれか一項記載の冷凍装置。

【請求項5】 前記高圧側流路(14)を流れる高圧液 冷媒 (X,) と低圧側流路 (15) を流れる低圧冷媒 (X₂)とを対向流となしたことを特徴とする前記請求 項1.2、3および4のいずれか一項記載の冷凍装置。 【請求項6】 前記低圧側流路(15)を、前記過冷却 熱交換器(6)の上流側のメイン回路(A)から分岐し て前記圧縮機(1)の吸入側にバイバスするバイバス回 路(B)の一部により構成したことを特徴とする前記請 永順1、2、3、4 および5 のいずれか一項記載の冷凍 30 装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は、冷凍装置に関 し、さらに詳しくは冷凍装置における自己過冷却熱交換 器の構造に関するものである。

[0002]

【従来の技術】従来から、冷凍装置のメイン回路を流れ る高圧液冷媒の過冷却度を増加させる方法として、冷凍 装置における滅圧機構の上流側の高圧液冷媒に対して該 40 高圧液冷媒を減圧して得られる低圧冷媒との熱交換によ り過冷却を付与する自己冷却式の過冷却熱交換器を用い る方法が良く知られている。

[0003]

【発明が解決しようとする課題】ところが、上記した過 冷却熱交換器を用いる方法の場合、過冷却熱交換器の設 農状態によっては過冷却熱交換器としての性能を十分に 生かせない場合が生ずる。例えば、過冷却熱交換器を模 成する二つの流路(即ち、高圧液冷媒が流れる高圧側流 器と低圧冷媒が流れる低圧側流路)が水平となるような「50 Xzが環状流化したときに高圧液冷媒X,から低圧冷媒X

設置形態をとった場合、低圧側流路を流れる低圧冷媒 が、流入初期には気液二相流となっているにもかかわら ず、理想的な流動形態である環状流となりにくく、気液 が分離して流れることとなり、配管内の上面が十分に添 れず、高圧液冷媒から低圧冷媒への熱圧達率が低下して しまうという不具合が生ずるおそれがある。

【①①①4】特に、過冷却熱交換器における低圧側流路 を、該過冷却熱交換器の上流側のメイン配管から分岐し て前記圧縮機の吸入側にバイバスするバイバス回路の一 部により構成するバイパス回路タイプのものでは、バイ バス回路に分岐される冷媒量が少なくて低流速となるた め、水平設置とした場合、より一層環状流化が難しいと いう問題があった。

【0005】本願発明は、上記の点に鑑みてなされたも ので、過冷却熱交換器の設置状態を規定することによ り、高圧液冷媒から低圧冷媒への熱圧達率の向上を図る ことを目的とするものである。

[0006]

【課題を解決するための手段】請求項1の発明では、上 26 記課題を解決するための手段として、圧縮機1、熱源側 熱交換器3、減圧機機7および利用側熱交換器8を備 え、前記減圧機構了の上流側の高圧液冷媒X、に対して 該高圧液冷媒义、を減圧して得られる低圧冷媒义、との熱 交換により過冷却を付与する過冷却熱交換器6を付設し てなる冷凍装置において、前記過冷却熱交換器6を、垂 直な高圧側流路14および低圧側流路15を有する二重 管式熱交換器により構成している。

【0007】上記のように構成したことにより、高圧液 冷媒X、も低圧冷媒X、も垂直な流路14,15を流れる こととなるため、流入初期に気液二相流となっている低 圧冷媒X,の環状流化が容易となり、高圧液冷媒X,から 低圧冷媒乂、への熱圧達率が向上することとなる。従っ て、過冷却熱交換器6としての性能が向上することとな

[0008]請求項2の発明におけるように、請求項1 記載の冷凍装置において、前記低圧側流路15を流れる 低圧冷媒乂、を下方から上方に向かって流道させるよう に構成した場合。流入初期に気液二組流となっている低 圧冷媒乂、の環状流化がより一層容易となる。

【①①09】請求項3の発明におけるように、請求項1 記載の冷凍装置において、前記高圧側流路14および低 圧側流路15を、入口側および出口側が下端に位置し、 R部6aが上端に位置するU字状流路とした場合、流入 初期に気液二組流となっている低圧冷媒又」の環状流化 がより一層容易となる。

【()()1() 計球項4の発明におけるように、請求項 1. 2 および3 のいずれか一項記載の冷凍装置におい て、前記低圧側流路15を、二重管の内管20内に形成 した場合、流入初期に気液二相流となっている低圧冷媒

、への熱に達率がより一層向上するとともに、外部への 熱損失も可及的に少なくなる。

【りり11】請求項5の発明におけるように、請求項 1.2、3および4のいずれか一項記載の冷凍装置にお いて、前記流路14を流れる高圧液冷媒X,と前記流路 15を流れる低圧冷媒Xzとを対向流となした場合、流 第全長に互って高圧液冷媒 X、と低圧液冷媒 X、との温度 差を大きくすることができることとなり、高圧液冷媒又 、から低圧冷媒义、への熱交換性能をより一層向上させる ことができる。

【()()12】請求項6の発明におけるように、請求項 1.2、3、4および5のいずれか一項記載の冷凍装置 において、前記低圧側流路 1.5 を、前記過冷却熱交換器 6の上流側のメイン回路Aから分岐して前記圧縮機1の 吸入側にパイパスするパイパス回路Bの一部により構成 した場合、メイン回路A側の冷媒循環量が低下すること で、吸入圧損等の低下を図り得ることとなり、システム 性能を向上させることができる。

[0013]

類発明の殺つかの好適な実施の形態について詳述する。 【0014】第1の実施の形態

図1および図2には、本願発明の第1の実施の形態にか かる冷凍装置が示されている。

【0015】この冷凍装置は、図1に示すように、圧縮 機1.四路切換弁2、冷房運転時に疑縮器として作用し 且つ暖房運転時に蒸発器として作用する熱源側熱交換器 3. 冷媒流通方向を規定するブリッジ回路4、レシーバ 5、過冷却熱交換器6、減圧機構として作用する電動膨 て作用し且つ暖房運転時に凝縮器として作用する利用側 熱交換器8および前記四路切換弁2を順次冷媒配管によ り接続してなるメイン回路Aを備えて構成されており、 前記四路切換弁2の切換作動により、冷房運転時と暖房 運転時とで冷媒を可逆流道させることができるようにな っている。

【①①16】前記ブリッジ回路4は、4個の逆止弁4 A、4B、4C、4Dでブリッジを構成することによ り、冷房運転時においても暖房運転時においても、高圧 液冷媒がレシーバ5に必ず流れ且つ電動膨張弁子により 40 減圧された低圧冷媒が利用側熱交換器8あるいは熱源側 熱交換器3に流れることとされている。

【0017】前記レシーバ5の気相部は、逆止弁11を 介在させたバイバス回路9を介して前記圧縮級1の吐出 管10に接続されており、該バイバス回路9を介してレ シーバ5の気相部からのガス抜きを行うことでレシーバ 5への液封を防止することとなっている。

【10018】前記バイパス回路9における逆止弁11の 上流側と前記電動影張弁?の下流側とは、電磁開閉弁! 2を介在させた均圧回路13を介して接続されており、

運転停止時あるいは運転開始時に電磁開閉弁12を関作 動させることにより、高低圧を均圧させ、圧縮機1の起 動を容易ならしめるようになっている。

【①①19】前記過冷却熱交換器6は、前記電動膨張弁 7の上流側の高圧液冷媒X」が流れる高圧側流路14 (メイン回路Aの一部を構成している) と、メイン回路 Aから分岐した高圧液冷媒X、を減圧して得られる低圧 冷媒X、が供給される低圧側流路 15 とを備えた二重管 熱交換器により構成されている(図2参照)。つまり、 10 前記過冷却熱交換器 6 における低圧側流路 1.5 は、該過 冷却熱交換器6の上流側のメイン回路Aから分岐して前 記圧縮機1の吸入管16にバイパスするバイパス回路B の一部により構成されることとなっているのである。符 号17は過冷却付与が必要な時に関作動される電磁関閉 弁. 18は減圧機構として作用するキャピラリチューブ である。

【①①20】そして、本実施の形態における過冷却熱交 換器6は、図2に示すように、垂直な二つの流路(外管 19内に形成された高圧側流路14および内管20内に 【発明の実施の形態】以下、添付の図面を参照して、本 20 形成された低圧側流路15)を有する二重管式熱交換器 により構成されてあり、高圧側流路14においては、上 方の入口!48から下方の出口14bに向かって高圧液 冷媒乂,が流通し、低圧側流路15においては、下方の 入口 1 5 a から上方の出口 1 5 b に向かって低圧冷媒X 」(最初は、気液二組流で出口側ではガス冷媒となる) が流通することとなっている。つまり、この過冷却熱交 換器6においては、高圧液冷線X、と低圧冷媒X、とは対 向流となっているのである。

【りり21】上記のように構成したことにより、高圧液 張弁?、前記ブリッジ回路4、冷房運転時に蒸汽器とし 30 冷媒X、も低圧冷媒X。も垂直な流路14、15を流れる こととなるため、流入初期に気液二組流となっている低 圧冷媒义」の環状流化が容易となり、高圧液冷媒义、から 低圧冷媒义、への熱圧達率が向上することとなる。従っ て、過冷却熱交換器6としての性能が向上することとな

> 【りり22】しかも、前記低圧側流路15を流れる低圧 冷媒X、を下方から上方に向かって流通させるように構 成しているので、流入初期に気液二相流となっている低 圧冷媒义」の環状流化がより一層容易となる。

【0023】また、前記低圧側流路15を、二重管の内 管2()内に形成するようにしているので、流入初期に気 液二相流となっている低圧冷媒X」が環状流化したとき に高圧液冷媒X、から低圧冷媒X、への熱伝達率がより一 層向上するとともに、外部への熱損失も可及的に少なく

【①①24】また、前記流路14を流れる高圧液冷媒X 、と流路15を流れる低圧冷媒X。とを対向流となしてい るので、旋路全長に互って高圧液冷媒と、と低圧液冷媒 X、との温度差を大きくすることができることとなり、

50 高圧液冷媒X,から低圧冷媒X,への熱交換性能をより一

5

層向上させることができる。

【0025】また、前記低圧側流路 15を、前記過冷却 熱交換器6の上流側のメイン回路Aから分岐して前記圧 縮機1の吸入側にバイパスするバイバス回路Bの一部に より構成しているので、メイン回路A側の冷媒循環畳が 低下することで、吸入圧損等の低下を図り得ることとな り、システム性能を向上させることができる。

【0026】第2の実施の形態

図3には、本願発明の第2の実施の形態にかかる冷凍装 置における過冷却熱交換器が示されている。

【0027】との場合、過冷却熱交換器6においては、 外管19内に形成される高圧側流路14および内管20 内に形成される低圧側流路15は、入口14a、15a および出口14b, 15bが下端に位置し、R部6aが 上端に位置するU字状漆路とされている。そして、高圧 側流路14を流れる高圧液冷媒又、と低圧側流路15を 流れる低圧冷媒义、とは対向流とされている。

【0028】このようにすると、高圧液冷媒X、も低圧 冷媒X、も垂直な流路14.15を流れることとなるた。 め、流入初期に気液二相流となっている低圧冷媒X。の 環状流化が容易となり、高圧液冷媒と、から低圧冷媒と、 への熱伝達率が向上することとなる。従って、過冷却熱 交換器6としての性能が向上することとなる。しかも、 内管20内に形成されている低圧側流路15を流れ、流 入初期に気液二钼液となっている低圧冷模器,の環状流 化がより一層容易となる。

【0029】その他の構成および作用効果は、第1の実 施の形態におけると同様なので説明を省略する。

【0030】上記した各実施の形態においては、過冷却 適側のメイン回路から分岐して圧縮機の吸入側にバイバ スするバイパス回路の一部により構成するようにしてい るが、本類発明は、過冷却熱交換器における低圧側流路 に、減圧機構により減圧された低圧冷媒を供給してメイ ン回路を流れる高圧側液冷媒に対して過冷却を付与する ようにしたものにも適用可能である。

[0031]

【発明の効果】請求項1の発明によれば、圧縮機1、熱 源側熱交換器3.減圧機構?および利用側熱交換器8を 備え、前記減圧機構7の上流側の高圧液冷填X,に対し て該高圧液冷媒メ、を減圧して得られる低圧冷媒メ、との 熱交換により過冷却を付与する過冷却熱交換器6を付設 してなる冷凍装置において、前記過冷却熱交換器6を、 **垂直な高圧側流路14および低圧側流路15を有する二** 宣管式熱交換器により構成して、高圧液冷模X,も低圧 冷媒X,も垂直な流路14, 15を流れるようにしたの で、流入初期に気液二相流となっている低圧冷媒义。の 環状流化が容易となり、高圧液冷媒X、から低圧冷媒X。 への熱伝達率が向上し、過冷却熱交換器6としての性能 が向上するという効果がある。

【0032】請求項2の発明におけるように、請求項1 記載の冷凍装置において、前記低圧側流路15を流れる 低圧冷媒X」を下方から上方に向かって流通させるよう に構成した場合、流入初期に気液二相流となっている低 圧冷媒又」の環状流化がより一層容易となる。

【0033】請求項3の発明におけるように、請求項1 記載の冷凍装置において、前記高圧側流路14および低 圧側流路15を、入口側および出口側が下端に位置し、 10 R部が上端に位置するU字状流路とした場合、流入初期 に気液二相流となっている低圧冷媒と、の環状流化がよ り一層容易となる。

【①①34】請求項4の発明におけるように、請求項 1. 2および3のいずれか一項記載の冷凍装置におい て、前記低圧側流路15を、二重管の内管20内に形成 した場合、流入初期に気波二相流となっている低圧冷媒 X」が環状流化したときに高圧液冷媒X、から低圧冷媒X 」への熱伝達率がより一層向上するとともに、外部への 熱損失も可及的に少なくなる。

20 【0035】請求項5の発明におけるように、請求項 1.2、3および4のいずれか一項記載の冷凍装置にお いて、前記流路14を流れる高圧液冷媒X、と流路15 を流れる低圧冷媒又、とを対向流とないた場合、流路全 長に亙って高圧液冷媒X、と低圧液冷媒X、との温度差を 大きくすることができることとなり、高圧液冷媒と、か ろ低圧冷媒X2への熱交換性能をより一層向上させると とができる。

【0036】請求項6の発明におけるように、請求項 1 2、3、4および5のいずれか一項記載の冷凍装置 熱交換器における低圧側流路を、該過冷却熱交換器の上 30 において、前記低圧側流路15を、前記過冷却熱交換器 6の上流側のメイン回路Aから分岐して前記圧縮機1の 吸入側にパイパスするパイパス回路Bの一部により構成 いた場合、メイン回路A側の冷媒循環量が低下すること で、吸入圧損等の低下を図り得ることとなり、システム 性能を向上させることができる。

【図面の簡単な説明】

【図1】本願発明の第1および第2の実施の形態にかか る冷凍装置の冷媒回路図である。

【図2】本類発明の第1の実施の形態にかかる冷凍装置 における過冷却熱交換器の概略断面図である。

【図3】本類発明の第2の実施の形態にかかる冷凍装置 における過冷却熱交換器の概略断面図である。

【符号の説明】

1 は圧縮機、3 は熱源側熱交換器、6 は過冷却熱交換 器。6 a はR部、7 は減圧機構、8 は利用側熱交換器、 14は高圧側流路、14aは入口、14bは出口、15 は低圧側流路。15aは入口、15bは出口、19は内 管、20は外管、Aはメイン回路、Bはバイパス回路 X、は高圧液冷媒、X、は低圧冷媒。

