金融学院本科生 2018——2019 学年第一学期 概率论与数理统计课程期末考试试卷(A卷)

年级: 专业: 学号: 姓名: 任课教师: 范真真 成绩:

得 分

一 、张三今年研究生毕业。找工作需要导师的推荐信。如果导师的推荐信 强力推荐他,他有80%的概率会获得这份工作。如果导师只是正常推荐,那 么他有40%的概率获得工作。如果推荐信一般,那么他只有10%的概率拿到 工作。他估计他获得强力、正常和一般推荐的概率分别是 0.7,02 和 0.1。(本题共 15 分, 每小题 5分)

- (1) 张三能拿到工作的概率是多少?
- 张三最后成功获得了这份工作,请问他觉得自己被导师强推的概率有 (2) 多大?
- (3) 如果张三最后没有获得工作,请问他觉得自己的推荐信一般的概率有 多大?

得 分

- 二、张三和李四打赌。张三掷一个均匀的骰子600次,李四掷一枚均匀的 硬币 200 次。令 X 表示张三掷出 1 点的次数, Y 表示李四掷出国徽的次数。 如果 X>Y, 那么张三获胜。(本题共19分)
- (1) 计算 X 和 Y 的期望。(4 分)
- 准确计算 X 在 80 到 120 之间的概率 (写出表达式即可)。(4 分) (2)
- 说明X是否满足中心极限定理的假设,如果满足,请用中心极限定理 (3) 近似计算第(2)小题。(5分)
- 近似计算张三获胜的概率。并说明你计算的依据。(6分)

得 分

三、连续随机变量 X 和 Y 具有以下的联合密度函数(本题共 16 分)

- (1) 求常数 c。(3分)
- 计算 X 和 Y 的边缘概率密度 $f_{\mathbf{x}}(\mathbf{x}), f_{\mathbf{y}}(\mathbf{y})$ 。并说明这两个随机变量是否 **(2)** 独立。(6分)
- 计算当 Y=y 时 X 的条件概率密度函数 f(x|y)。(4 分) (3)
- (4) 计算 P(X<2/3|Y=3/2)。(3 分)

得 分

四、设 X 和 Y 是相互独立的随机变量且均服从二项分布, $X\sim b(n_1,p)$, $Y\sim b(n_2,p)$ 。证明 $Z=X+Y\sim b(n_1+n_2,p)$ 。(本题 10 分)

得 分

五、若随机变量(X, Y)在区域 $x^2 + y^2 \le 1$ 服从均匀分布。求他们的相关系数。(本题共 12 分)

- (1) 写出 X 和 Y 的联合密度函数。(3 分)
- (2) 求 X 和 Y 的协方差。(5 分)
- (3) X和Y是否相关?是否独立? (4分)

 得分
 六、一公寓有 300 住户,每户拥有的汽车辆数 X 的分布律为

 X
 0
 1
 2

 p_k
 0.1
 0.7
 0.2

问需要多少车位才能使每辆汽车都具有一个车位的概率至少为 0.95。(本题 15 分)

得 分

七、随机变量X₁和X₂相互独立并都服从期望为1的指数分布。(本题共13分)

- (1) 写出X₁和X₂的联合概率密度函数。(3分)
- (2) 计算概率 $P(X_1 + X_2 < 1)$ 。(5 分)
- (3) 求函数 U=max(X₁, X₂)的分布函数。(5分)

概率论与数理统计参考公式

分布	分布函数	分布律 (密度函数)	期望	方差
均匀分布	<u>x – a</u>	1	1 (a + b)	$\frac{1}{12}(b-a)^2$
U(a,b)	$\overline{b-a}$	$\overline{b-a}$	$\frac{1}{2}$ (a + b)	$\frac{12}{12}(0-a)$
正态分布	$\Phi(\frac{x-\mu}{\sigma})$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\sigma)^2/(2\sigma^2)}$	μ	σ^2
$N(\mu, \sigma)$		$\sqrt{2\pi\sigma^2}$		
指数分布	$1 - e^{-\theta x}$	$\theta e^{-\theta x}$	1/θ	$1/\theta^2$
$\exp(\theta)$				
泊 松 分 布	$e^{-\lambda}\sum_{i=0}^k \lambda^i/i!$	$e^{-\lambda}\lambda^k/k!$	λ	λ
Poisson(λ)				
二项分布	$\textstyle \sum_{i=0}^k C_n^i p^i (1-p)^{n-i}$	$C_n^i p^i (1-p)^{n-i}$	np	np(1-p)
b(n,p)				

卷积公式 Z= X+Y

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(s) f_Y(z-s) ds$$