W sygnale EEG występują fale/oscylacje o określonych częstościach

- → analiza EEG dąży do zamiany ciągłego sygnału biegnącego w czasie (szereg czasowy) na ilościowy opis informujący o tym jakie (i ile) fal/ oscylacji wstępuje w tym sygnale:
- → transformata Fouriera, falkowa, matching pursuit...
- → filtrowanie

transformata Fouriera

zakłada, że funkcje składowe sygnału to <u>nieskończone</u> sinusoidy o różnej amplitudzie

sygnał złożony z wielu oscylujących składowych

https://jackschaedler.github.io/circles-sines-signals/dft_introduction.html

transformata Fouriera ma za zadanie "odczytać" informacje jakią amplitude mają poszczególne składowe sygnału:

transformata Fouriera ma za zadanie "odczytać" informacje o tym jakią amplitudę mają poszczególne składowe sygnału:

transformata Fouriera ma za zadanie "odczytać" informacje o tym jakią amplitudę mają poszczególne składowe sygnału:

widmo częstotliwości

Odstęp częstotliwości w widmie =

- → częstotliwość próbkowania / liczba próbek w bloku danych (np 200 Hz / 200 = 1 Hz, 200 Hz / 2000 = 0.1 Hz)
- \rightarrow 1/długość okna w sekundach (1/1s = 1 Hz, 1/10 s = 0,1 Hz))

Pierwsza częstotliwość = 0 Hz (poziom stały sygnału)

Kolejna częstotliwość = odstęp częstości

Ostatnia częstotliwość = ½ częstości próbkowania

Pierwszy bin i odstęp częstotliwości w widmie :

→ częstotliwość próbkowania / liczba próbek w bloku danych (np 200 Hz / 256 = 0,7812 Hz, 200 Hz / 2049 = 0.09766 Hz)

100 Hz

→ 1/długość okna w sekundach (1/1,28 = 0,7812 hZ)

Ostatnia częstotliwość = ½ częstotliwości próbkowania = 100 Hz

FFT 'zakłada', że sygnał jest nieskończony , w rzeczywistości analizujemy skończone kawałki :

żeby zachować dynamikę aktywności stosujemy małe (np ok. 1sekundowe) nakładające się okna – tzw <u>FFT w "biegnącym" oknie (running FFT, spektrogram, periodogram)</u>

→ pokazuje jak zmienia się zawartość częstości w sygnale w ciągu całej rejestracji

→ wyniki z kolejnych okienek uśredniamy – uzyskujemy informację o średnim (typowym) składzie częstotliwościowym w sygnale i o wartościach odchylen standardowych → możliwość policzenia statystyk

wyniki z kolejnych okienek uśredniamy dla wybranych zakresów czasu

FILTROWANIE sygnału

- → usuwanie z sygnału niechcianych częstotliwości i artefaktów
- → wybieranie z sygnału interesujących częstotliwości

CUT-OFF FREQUENCY filtrów podawana jest dla osłabienia -3 dB (x 0,5)

decybel 10 log ₁₀ (X)	wartość X	
30	1000	
20	100	
10	10	
0	1	2 40 10 5
-10	0,1	-3 dB 0,5
-20	0,01	
-30	0,001	

FILTROWANIE sygnału (przykłady z programu Spike 2)

zostawiamy w sygnale te częstości które nas interesują, inne wyrzucamy

filtr dolnoprzepustowy (low pass)

częstotliwośc graniczna -3dB 7,5 Hz

pełna amplituda

FILTROWANIE sygnału (przykłady z programu Spike 2)

zostawiamy w sygnale te częstości które nas interesują, inne wyrzucamy

filtr górnoprzepustowy (high pass)

częstotliwośc graniczna -3dB 7,5 Hz

pełna amplituda

