Домашняя Лабораторная работа 4.3 (Измерение толщины волоса)

Астафуров Евгений Б05-812 Московский Физико-Технический Институт (Государственный Университет). (Дата: 29 апреля 2020 г.)

Цель работы: получить дифракционную картину на волосе и определить его толщину. В работе используются: лазерная указка, волос, картон, клейкая лента, линейка.

І. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Случай геометрической оптики применим лишь тогда, если длина световой волны λ много меньше характерных размеров освещаемых объектов d ($\lambda << d$). При приближении размеров объектов к длине световой волны ($\lambda \approx d$), отклонения от законов геометрической оптики, приводящие к возникновению дифракции, проявляются сильнее. Согласно принципам геометрической оптики за непрозрачным объектом должна находиться резкая геометрическая тень. В случае волновой оптики вместо резкой тени получается сложное распределение интенсивности, называемое дифракционной картиной.

Рис. 1.

Для простоты обратимся к результатам дифракции Фраунгофера на щели. Такая дифракционная картина состоит из центрального максимума и побочных минимумов меньшей интенсивности (рис.1). Положение минимумов такой картины в приближении малых углов описывается следующим соотношением:

$$m\Delta x = m\lambda \frac{L}{d}, \qquad \qquad (1)$$

где $m=\pm 1,\pm 2,\pm 3,\dots$ — номер минимума, L — расстояние от щели до экрана. Точно так же выглядит дифракционная картина от волоса или тонкой проволки.

II. Порядок выполнения работы

- 1. Изготовьте штатив для волоса. Для этого можно в листе картона вырезать небольшое «окошко» размерами примерно 2x4 см. Затем исследуемый волос (или тонкую проволоку) с помощью клейкой ленты крепко закрепите волос на штативе, расположив его в центре получившегося «окошка».
- 2. Установите ваш картонный штатив перпендикулярно экрану (в качестве экрана может быть использована стена) и измерьте расстояние между ними.
- 3. Посветите лазером на волос и получите дифракционную картину. Для того, чтобы картина была более контрастной, рекомендуется проводить эксперимент в отсутствии дополнительного освещения.
- 4. Пронаблюдайте дифракционную картину. Измерьте расстояние между минимумами дифракционной картины Δx .
- 5. Результаты измерений подставьте в соотношение (1) и вычислите толщину волоса d. Примечание: длину волны вашего лазера следует найти в паспортных данных. Типичные длина волны для зелёной лазерной указки 532 нм, для красной 635 нм.
- 6. **Повторите эксперимент** на другом участке волоса или на другом волосе. Проанализируйте полученные результаты.

III. ХОД РАБОТЫ

Α.

Соберем эксперементальную установку и получим дифракционные полосы:

Рис. 2. Схема интерференционных полос.

Данные установки:

- Расстояние между волосом и источником света: $l=5.5~\mathrm{cm}.$
- Расстояние между целью и экраном: L=1.35 м.

В.

Из формулы (1) получим выражение для d:

$$d(m) = \lambda L \frac{1}{\Delta x(m)}.$$

Запишем результаты измерений:

m	Δx , cm	
-4	1.3	
-3	0.9	
-2	1.1	
-1	0.8	
1	0.8	
2	1.0	
3	1.1	
4	4 1.2	

Построим график зависимости $\Delta x(m)$ (см. рис. 3):

Рис. 3. График.

Погрешности определения коэффициентов:

Δx , см	$\sigma_{\Delta x}$, M	$\frac{\sigma_{\Delta x}}{\Delta x}$, %
1.0	0.14	14%

 $\mathbf{C}.$

Считая, что $\lambda = 635$ нм, получаем толщину волоса, равной:

$$d = (8.6 \pm 1.7) \cdot 10^{-5} \text{ M.} \approx 0.08 \text{MM}.$$

IV. ВЫВОДЫ

Классификация волос и табличные значения:

- Тонкие менее 0.5 миллиметров в диаметре.
- **Средние** 0.05 0.07 миллиметров в диаметре.
- Толстые 0.07 миллиметров в диаметре и более.

Из этого можно сделать выводы, что мои волосы толстые.

[1] $\it Makcumычеe~A.B.$ Лабораторный практикум по общей физике. Т.2. - М.:МФТИ, 2014

[2] $Cueyxun\ \mathcal{A}.B.$ Общий курс физики. Т.4. - М.:Наука, 1996