

Design Practicum (IC201P) 2023

Group 11 Metallic Wall Climbing Robot

Adarsh Santoria (Team leader), Achint Dhama, Aman Ali Khan, Rohit Yadav, Shreya Garg, and Deepak Kumar, Mentors

Dr. Amit Shukla, and Dr. Jagadeesh Kadiyam

Main Features

- Can easily move on vertical ferromagnetic surfaces and can navigate along the x and the y axis.
- Costs less compared to other bots in the market for industrial purposes, so it would serve as a one-time investment for the consumers.
- It is light-weight and has a reasonable size.
- Can be used for many purposes, for e.g., sending a live camera feed to the user while inspecting the surfaces
- There are many wall-climbing robots available that use the concept of navigating on the wall via suction using a vacuum and compressor, but they are extremely slow. Our bot works on the principles of electromagnetism.

Market Survey

Some of the existing products in the market:

- Remote-controlled wall climbing car [1]
 - Cost efficient toy cars
 - · Cannot perform industrial tasks
- Crawlerbot [2]
 - Used to measure the density of asphalt silo walls and automates the process of taking measurements manually.
 - Has very limited application
- Geco Wall Climbing Bot [3]
 - A Research project on wall climbing bot using impeller technology.
 - Have adhesive pads on their feet that can stick to the surface due to van der Waals forces

Achieved Objectives

- The maintenance and inspection of metallic vertical surfaces, tanks, and pipes are complex and dangerous tasks, requiring skilled personnel and equipment.
- The current methods of accomplishing these tasks involve human intervention, which is timeconsuming, expensive, and poses a significant risk to workers' safety.
- Our bot can automate these processes. It should be able to operate in various environments, including harsh conditions, and be easy to use and maintain.
- It is cost-effective, making it a valuable tool for companies and organizations that require regular maintenance of their metallic vertical surfaces, tanks, and pipes.

Challenges faced

- Magnetic strength and load capacity of magnets:
 Finding electromagnets such that the bot stays in contact with the metallic surface but climbs as and when torque is provided.
- Selection of motor:
 Selecting stepper motors that provide sufficient torque for the wheels to rotate
- Selection of body material
 The bot must be as lightweight as possible, hence choosing a material was a challenge. We decided to use 3D printing.
- Battery selection
 The battery (LiPo Battery) should provide sufficient power for the bot to work.

Social Impact

- Industrial Inspection: In industries such as oil and gas, chemical, and power plants, metallic surface climbing robots can be used for inspecting hardto-reach areas of equipment and structures, including pipes, tanks, and walls. This can help identify potential safety hazards and prevent accidents.
- <u>Search and Rescue</u>: In the event of natural disasters or emergencies, metallic surface climbing robots can be used to search for survivors and navigate damaged tanks.
- Military and Defense: Climbing robots can be used by the military for surveillance, reconnaissance, and other tactical purposes, including inspecting structures and detecting potential threats.

References

[1] Smythstoys.com. [Online]. Available: https://www.smythstoys.com/uk/engb/toys/construction-and-cars/car-toys/radio-control-cars/remote-control-wall-climber/p/164494 [Accessed: 14-Apr-2022].

[2] D. Greenfield, "Rise of the wall-climbing robots?," Automation World, 25-May-2017 [Online]. Available:

https://www.automationworld.com/factory/robotics/blog/13314816/rise-of-thewallclimbing-robots. [Accessed: 14-Apr-2023].

[3] C. Rob and Instructables, "Geco - Wall Climbing Robot," Instructables, 21-Sep-2017. [Online]. Available: https://www.instructables.com/GECO-Wall-Climbing-Robot/. [Accessed: 14-Apr-2023].