

Matemáticas para las Ciencias II Semestre 2020-2

Prof. Pedro Porras Flores Ayud. Irving Hernández Rosas **Tarea Examen**

Kevin Ariel Merino Peña¹

Lema 1. Sea $B \in M_{nxm}(\mathbb{R})$ $\cdot \vartheta \cdot B = [b_{ij}]$ y B es la maatriz asociada a la función cuadrática $H : \mathbb{R}^n \to \mathbb{R}$ tal que $H(h_1 \dots h_n) = (h_1 \dots h_n) \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$ es definida positiva, entonces existe M > 0 tal que, $\forall \vec{h} \in \mathbb{R}^n$

$$H(\vec{h}) \leq M \left| \left| \vec{h} \right| \right|^2$$

 $Demostraci\'on. \ \ Definimos \ g(\vec{h}) = H(\vec{h}) \ \ \text{y consideremos} \ \left|\left|\vec{h}\right|\right| = 1. \\ \text{Aqu\'i observamos que } g \ \text{es continua, por lo que tenemos} \right|$

$$H(\vec{h}) = H\left(\frac{\vec{h}}{\left|\left|\vec{h}\right|\right|}\left|\left|\vec{h}\right|\right|\right) = \left|\left|\vec{h}\right|\right|^2\left(\frac{\vec{h}}{\left|\left|\vec{h}\right|\right|}\right) = \left|\left|\vec{h}\right|\right|^2g\left(\frac{\vec{h}}{\left|\left|\vec{h}\right|\right|}\right)$$

así, g alcanza su **máximo** en un intervalo abierto de \mathbb{R}^n i.e. $\exists M \in \mathbb{R} \quad \cdot \ni$

$$g\left(\frac{\vec{h}}{\left|\left|\vec{h}\right|\right|}\right) \leq M \implies \left|\left|\vec{h}\right|\right|^2 g\left(\frac{\vec{h}}{\left|\left|\vec{h}\right|\right|}\right) \leq \left|\left|\vec{h}\right|\right|^2 M$$

Entonces habiendo hecho esta observación podemos concluir

$$H(\vec{h}) = H\left(\frac{\vec{h}}{\left|\left|\vec{h}\right|\right|}\left|\left|\vec{h}\right|\right|\right) = \left|\left|\vec{h}\right|\right|^2 \left(\frac{\vec{h}}{\left|\left|\vec{h}\right|\right|}\right) = \left|\left|\vec{h}\right|\right|^2 g\left(\frac{\vec{h}}{\left|\left|\vec{h}\right|\right|}\right) \le \left|\left|\vec{h}\right|\right|^2 M$$

Siguiendo la cadena de desigualdades, tenemos:

$$H(\vec{h}) \le \left| \left| \vec{h} \right| \right|^2 M$$

 $^{^1\}mathrm{Número}$ de cuenta 317031326