Ответы на теоретические вопросы к экзамену по математике. Семестр 1, 2019

по конспектам лекций Рачковского Н.Н. студентов группы 950501

31 декабря 2019 г.

Элементы теортии Множеств

1.1 Множества и операции над ними

Множество - совокупность некоторых объектов, обладающих определёнными свойствами. Каждый из объектов называется элементом обозначение множества: $\{a|P(a)\}$ где P(a) - свойство, объединяющее объекты а.

Специльные символы, обозначающие операции над множествами:

- 1. содержится: $A \subseteq B$. Каждый элемент множества A содержится в B.
- 2. совпадает: $A = B \Leftrightarrow A \subseteq B, B \subseteq A$
- 3. объединение: $A \cup B = \{c | c \in A$ или $c \in B\}$
- 4. пересечение: $A \cap B = \{c | c \in A \ \mathbf{u} \ c \in B\}$
- 5. теоритическо-множественная разность: $A \setminus B = \{c | c \in A \ \mathbf{u} \ c \notin B\}$
- 6. декартово произведение: $A \times B = \{(a,b) | a \in A; b \in B\}^{-1}$

Операции с ∅:

- 1. $A \cup \emptyset = A$
- 2. $A \cap \emptyset = \emptyset$
- 3. $A \setminus \emptyset = A$
- 4. $\emptyset \setminus A = \emptyset$

 $^{^{1}}$ каждый элемент в паре с каждым другим, как при раскрытии скобок

1.2 Замкнутость множеств

Рассматривая операции умножения и и деления над \mathbb{N} мы *остаёмся* в $\mathbb{N} \Rightarrow \mathbb{N}$ замкнуто относительно операции умножения.Для того, чтобы \mathbb{N} стало замкнуто относительно операции вычитания нужно добавить к нему отрицательные числа и ноль тем самым привратив его в \mathbb{Z} . Таким образом \mathbb{Z} замкнуто относительно \times, \pm но не \div . Для того, чтобы замкнуть \mathbb{Z} относительно \div , нужно дополнить его дробями вида $\frac{m}{n}$, где $m \in \mathbb{Z}$ и $n \in \mathbb{N}$. Т. О. получили \mathbb{Q} Получили: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ где \mathbb{R} - действительные числа.

1.3 Ограниченность множеств

А ограничено сверху, если $\exists M, \forall a \in A: a \leq M$ и А ограничено снизу, если $\exists M, \forall a \in A: a \geq M$

Таким образом, если множество ограничено **и** сверху **и** снизу, оно называется *ограниченным.* $\Rightarrow \exists M, \forall a \in A : |a| \leq M$ (1)

$$\begin{split} \exists M_1, M_2, \forall a \in A: M_1 \leq a \leq M_2 \\ M &= \max(|M_1|, |M_2|) \\ M \geq |M_1| \geq M_2 \\ M \geq |M_1| \Rightarrow -M \leq -|M_1| \leq M_1 \Rightarrow \\ \forall a \in A: -M \leq -M_1 \leq a \leq M_2 \leq M \rightarrow -M \leq a \leq M \end{split}$$

Следовательно из ограниченности А получается (1).

1.4 Окрестности

Рассмотрим $a \in \mathbb{R}$. Окрестностью а является отрезок (b; c), содержущюю а. Рассмотрим $\epsilon > 0$. ϵ -окрестностью а является отрезок $(a - \epsilon; a + \epsilon)$, содержущюю а.

 $\mathcal{U}_{\epsilon}(a)$ есть отрезок длиной 2ϵ , центром которого является а:

 $\mathcal{U}_{\epsilon}(a) = \{x \in \mathbb{R} | |x - a| < \epsilon \}$

Оно бывает и проколото: т.е. из отрезка удалена точка а: $\dot{\mathcal{U}}_{\epsilon}(a) = \mathcal{U} \setminus \{a\}$

Функции

обведи пж важные уравнения в коробку boxedeq{eq:*}{...}

Пусть даны 2 непустых множества A и В. Отображением из A и В называется правило, согласно которому каждому элементу множества A соответствует не более одного элемента В. Это обозначается $f:A\to B$ Областью определения f называется множество $D(f)=\{a\in A|\exists b=f(a)\}^1$ Множеством значений f называется множество $E(f)=\{b\in B|\exists a\in A;b=f(a)\}^2$ Запись b=f(a) обозначает, что $a\in A$ в отображениии f соответствует $b\in B$ тут b - образ, а a - прообраз.

Свойства биективного² отображения $f: A \to B$:

- 1. D(f) = A
- 2. E(f) = B
- 3. $\forall a_1, a_2 \in A, a_1 \neq a_2 : f(a_1) \neq f(a_2)$
- 4. обратное оторажение: $f^{-1}: B \to A; a = f^{-1}(b) \Leftrightarrow b = f(a)$

График отображения $fA \to B = \{(a,b)|b=f(a)\} \subset A \times B$ Если A и B - числовые, то это функция тогда график функции есть подмножество в декартовом квадрате³. Рассмотрим полскость с прямоугольной системой координат: элементам множества \mathbb{R}^2 можно поставить в соответствие точки этой полскости, координаты которой в этой С.К. являются эти элементы \mathbb{R}^2 . Тогда график функции можно предстваить как множество точек, причем ясно, что не каждое множество точек задает график функции. Множество точек задает график функции тогда и только тогда, когда любая вертикальная прямая параллельная оси ординат пересекает множество данных не более одного раза. Функция может задаваться аналитически, графичекси и неявно. Неявный способ: Рассмотрим $F: \mathbb{R}^2 \to R$ и Рассмотрим

¹f - заданное нами правило

 $^{^2}$ взаимооднозначного

 $^{^3\}mathbb{R}^2=\mathbb{R}\times\mathbb{R}$

F(x;y)=0. На Координатной плоскости рассмотрим множество решений этого уравнения: $\{(x;y)\in\mathbb{R}^2|F(x;y)=0\}$: если оказывается, что это множество является графиком функции, функция задана нефвно унавнением F(x;y)=0.

2.1 Типовые функции, график функции

Линейная функция:

Функция вида y = kx + b; $k, b \in \mathbb{R}$ имеет графиком невертикальную прямую при b = 0 график функции проходит через (0; 0). К - угловой коеффициент равный тангенсу кгла наклона графика к Ох. Взаимное расположение двух прямых, заданных функциями $y_1 = k_1x + b_1$ и $y_2 = k_2x + b_2$:

- 1. совпаление прямых $\Leftrightarrow k_1 = k_2; b_1 = b_2$
- 2. параллельность прямых $\Leftrightarrow k_1 = k_2$ и $b_1 \neq b_2$
- 3. пересечение прямых $\Leftrightarrow k_1 \neq k_2$

доказательство свойства 2:

 \Rightarrow) Пусть прямые $y_1=k_1x+b_1$ и $y_2=k_2x+b_2$ параллельны. Следовательно у них не общих точек: $\int y=k_1x+b_1$

$$\begin{cases} y=k_1x+b_1\\y=k_2x+b_2 \end{cases}$$
 не имеет решений
$$\Rightarrow x(k_1-k_2)=b_2-b_1 \text{ не имеет решений}$$
 Следовательно $x=\frac{b_2-b_1}{k_1-k_2}\notin\mathbb{R}\Rightarrow\begin{cases} k_1=k_2\\b_1\neq b_2 \end{cases}$

Следовательно $x=\frac{b_2-b_1}{k_1-k_2}\notin\mathbb{R}\Rightarrow \begin{cases} k_1=k_2\\b_1\neq b_2 \end{cases}$ \Leftarrow) Предположим, что $\begin{cases} k_1=k_2\\b_1\neq b_2 \end{cases}$ и проведем все эти действия в обратном порядке.

2.1.1 Формула получения угла между двумя прямыми

$$\begin{cases} y = k_1 x + b_1 \\ y = k_2 x + b_2 \end{cases}$$

обозначим угол между красной и синей линиями за θ , наклон линий соответственно ϕ_1 и ϕ_2 $\theta=\phi_1-\phi_2$ $k_1=\tan\phi_1$ $k_2=\tan\phi_2$

$$\theta = \tan \phi_1 - \tan \phi_2 \Rightarrow$$

(2.1)

Таким образом 2 прямые взаимоперпендикулярны тогда и только тогда когда $k_1 = \frac{-1}{k_2}$

2.1.2 Основные элементарные функции

Степенная функция

6

ДОДЕЛАЙС

Окружность, Эллипс, Гипербола, Парабола

Пусть Существует прямоугольная система координат Оху; Пусть даны две точки $A(x_1; y_1), B(x_2; y_2)$; Тогда расстояние между A и B вычисляется так:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (3.1)

3.1 Фигуры и канонические уравнения фигур

Говорят, что уравнение на плоскости задет некоторую фигуру, если принадлежность M(x; y) этой фигуре равносильно выполнению равенства f(x; y) = 0 для каждой точки этой фигуры.

3.1.1 Окружность

Окружностью называется множество всех точек в плоскости, удаленных от данной фиксированной точки, называемой центром окружности на одно и то же расстояние, называемое радиусом окружности.

дана точа M(x; y) и окружность с центром $O(x_0, r_0)$. $M \in \omega(O, r) \Leftrightarrow |MO| = R \Leftrightarrow |MO|^2 = r^2 \Leftrightarrow$

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$
(3.2)

Равенство 3.2 есть уравнение окружности т.к. оно равносильно принадлежности точки M к окружности.

3.1.2 Эллипс

Пусть на плоскости заданы 2 точки F_1, F_2 , расстояние между которыми равно 2c; и пусть дано некоторое число a > c. Эллипсом называется

множество всех точек ранной плоскости, длял которых сумма расстояний от этой точки до точек F_1 и $F_2=2a$. Точки F называются фокусами эллипса. Вывод:

Зададим на плоскости ПСК с
$$Ox = F_1F_2$$
; координаты точек F получаются: $F_1(-c;0), F_2(c;0)$ Возьмем произвольную точку $M(x;y)\Rightarrow (MF_1+F_1F_2)=2a\Rightarrow \sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$ $\therefore (x+c)^2+y^2=4a^2-4a\sqrt{(x-c)^2+y^2}+(x-c)^2+y^2$ $\therefore a^2(x-c)^2+a^2y^2=a^4-2a^2cx+c^2x^2$ $\therefore b^2=a^2-c^2$ $\therefore b^2x^2+a^2y^2=a^2b^2$, делим на a^2b^2

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$
(3.3)

Так как обе переменных х и у в четных степенях, эллипс симметричен относительно начала координат. Эллипс ограничен прямоугольником 2a на 2b. В случае совпадения a и b получим $\omega(0,a)$. эксцентриситет эллипса: $\varepsilon = \frac{c}{a}$. $\varepsilon \in [0;1]$: $\varepsilon = 0$ для окружности.

3.1.3 Гипербола

На плоскости заданы несовпадающие точки F_1, F_2 , расстояние между которыми равно 2с. Пусть $a \in (0; c)$. Гиперболой называется множество точек, для которых разность расстояний от точки до F_1 и F_2 . F_1 и F_2 это фокусы гиперболы. На плоскости задана ПСК с $Ox = F_1F_2$; координаты точек F получаются: $F_1(-c; 0), F_2(c; 0)$

 $^{^{1}}$ неуверен в записи, особенно в $(MF_{1}+F_{1}F_{2})=2a$

wywod urawnenija giperboly zdesja.

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = -1$$
 (3.4)

Так как обе переменных x и y в четных степенях, эллипс симметричен относительно начала координат. $y=\pm \frac{b}{a}x$ - асимптоты гиперболы. а и b - полуоси гиперболыб точки пересеччения с Ох - вершины. эксцентриситет гиперболы: $\varepsilon=\frac{c}{a}$. $c>a\Rightarrow\varepsilon>1$

3.1.4 Парабола

На плоскости задана прямая Δ и $F \notin \Delta$. Параболой называется множество точек плоскости равноудаленных от Δ и F. При этом Δ -директрисса параболы, F - фокус Параболы. Введем ПСК: Ох проходит через F и $\bot \Delta \Rightarrow F(\frac{p}{2};0)$ где p - расстояние от F до Δ .

Уравнение параболы wywod urawnenija tuta

$$y = \pm 2px \tag{3.5}$$

у в уравнении в чтной степени \Rightarrow парабола симметрична относительно Ох при $x \ge 0$ получается, что парабола расположена в правой полуплоскости.

MISHUPA

Числовая последовательность и ее предел. Свойства сходящихся последовательностей.

Числовая последовательность называется отображением в котором каждому $\mathbb N$ числу соответствует некоторое число. Последовательности принято изображать $\{x_n\}=x_1;x_2;\dots x_n$ Если из $\{x_n\}$ взято некое бесконечное подмножество, из которого сформирована другая последовательность, в которой порядок следования членов такой же как и в исходной последовательности, то она называется подпоследовательностью. Обозначение $\{x_{nm}\}$. Из определения последовательности: если $k_1 < k_2 \Rightarrow m_1 < m_2$. Число а называется пределом последовательности

 $\lim_{n\to\infty}x_n=a\Leftrightarrow \forall \epsilon>0, \exists N=N(\epsilon)\in\mathbb{N}, \forall n\geq N:|x_n-a|<\epsilon\Rightarrow \lim_{n\to\infty}x_n=a\Leftrightarrow$ в сколь угодно малой $\mathcal{U}_\epsilon(a)$ может находиться конечное число членов этой последовательности.

Предел числовой последовательности есть точчка, в которой кучкуются почти все члены последовательности за исключением, может последнего члена.

Последовательность, имеющая предел называется *сходящейся*; в противном случае - *расходящейся*. Расходящиеся последовстельности также включают бесконечно большие последовательности.

бесконечно большие последовательности:

$$\lim_{n\to\infty} k_n = \infty \Leftrightarrow$$

$$\forall M > 0, \exists N = N(M) \in \mathbb{N}, \forall n \ge N : |x_n| > M$$

бесконечно малые последовательности:

$$\lim_{n \to \infty} k_n = -\infty \Leftrightarrow$$

$$\forall M < 0, \exists N = N(M) \in \mathbb{N}, \forall n \ge N : |x_n| < M$$

5.1 Свойства сходящихся последовательностей DOKAZAT' SWOJSTWA

- 1. Сходящаяся последовательность имеет единственный предел. Действительно, если предположть, что пределов 2, можноуказать несколько \mathcal{U}_{ϵ} этих пределов, не пересекающте друг друга. По определению предела внутри каждой из этих $\mathcal{U}_{\epsilon}(a)$ должно содержаться бесконечно много членов последовательности, что есть противоречие.
- 2. Если Последовательность сходится к а, то любая подпоследовательность этоц последовательности сходиться к а.
- 3. Любая мходящаяся последовательность ограничена:

Пусть
$$\epsilon=1:\exists\in\mathbb{N}, n\geq N: |x_n-a|<1\Leftrightarrow |x_n|-|a|\leq |x_n-a|<1\Leftrightarrow |x_n|-|a|<1\Rightarrow |x_n|-|a|<1\Rightarrow |x_n|<|a|+1$$
 Пусть члены $x_1\dots x_{N-1},$ не попавшие в рассматриваемую окрестность точки а. и Пусть $M=\max(|x_1|\dots|x_{N-1}|,|a+1|)$ $\forall n,|x_n|\leq M$

4. Если для 2х членов последоватеьностей x_n и y_n , сходящихся к числам а и b соответственно, начиная с некоторого номера $x_n < y_n, a \le b$:

Пусть
$$\lim_{n\to\infty} x_n = a$$

$$\lim_{n\to\infty} y_n = b$$
 $a < b \Rightarrow \exists N \in \mathbb{N}, A_n \geq N : x_n < y_n$
Примем $\epsilon = \frac{b-a}{2}$

$$\exists N_1, N_2 \in \mathbb{N}, \forall n \geq N_1, |x_n - a| < \frac{b-a}{2},$$

$$\forall n \geq N_2, |y_n - b| < \frac{b-a}{2}$$

$$\therefore \text{при } N = \max(N_1, N_2)$$

$$\begin{cases} x_n > a - \frac{b-a}{2} \\ x_n > a + \frac{b-a}{2} \end{cases}$$

$$b - \frac{b-a}{2} < y_n < b + \frac{b-a}{2}$$

- 5. Если для 3х последовательностей $x_n,\,y_n,\,z_n$ выполняется $x_n\leq y_n\leq z_n$ $\lim_{x_n\to\infty}x_n=a\lim_{x_n\to\infty}z_n=a,$ то y_n также сходится к a
- 6. Если $\lim_{x_n\to\infty} x_n = a \neq 0$, то начиная с некоторого номера $|x_m| > \frac{a}{2}$ все члены этой последовательности имеют тот же знак, что и a.

Тероэма 5.1. Пусть x_n и y_n сходятся κ а и b, тогда

(a)
$$\{x_n \pm y_n\} = k \lim_{n \to \infty} k_n = a \pm b$$

(b)
$$\forall c \{c \cdot x_n\} \lim_{n \to \infty} = c \cdot a$$

(c)
$$\lim_{n\to\infty} \{x_n \cdot y_n\} = a \cdot b$$

(d)
$$\lim_{n\to\infty} \left\{ \frac{1}{x_n} \right\} = \frac{1}{a}$$
, echu $a \neq 0$

(e)
$$\lim_{n\to\infty} \left\{ \frac{y_n}{x_n} \right\} = \frac{b}{a}$$
, echu $a \neq 0$

MISHUPA

Монотонные последовательности, теорема Вейкерштрасса

ебаьт где это в конспекте?

MISHUPA

Предел функции в точке и на бесконечности, Односторонние пределы.

КАК-ТО МАЛО НАПИСАНО

Предел функции на бесконечности определяется так:

9.1 Бесконечный предел, Предел на бесконечности

- $\lim_{x\to\infty} f(x) = A \Leftrightarrow$ $\forall \epsilon > 0, \exists \delta > 0, \forall x, |x| > \delta; |f(x) - A| < \epsilon$
- $\begin{array}{l} \bullet \; \lim_{x \to x_0} f(x) = \infty \Leftrightarrow \\ \forall \epsilon > 0, \exists \delta > 0, \forall x \in \dot{\mathcal{U}}_{\delta(x_0)}, |f(x)| > \epsilon \end{array}$

9.2 Односторонние пределы

y = f(x) определена на $(x - \delta; x)$.

 $\lim_{x \to x_0 - 0} f(x) = A$: Односторонним пределом слева функции y = f(x) называется $A: \forall \epsilon > 0, \exists \delta_1 > 0, \forall x \in (x_0 - \delta_0; x_0): |f(x) - A| < \epsilon$, если A существует.

Анологично определяется предел справа: $\lim_{x\to x_0+0} f(x)=A \ \forall \epsilon>0, \exists \delta_1>0, \forall x\in (x_0+\delta_0;x_0): |f(x)-A|<\epsilon$

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0 - 0} f(x) = A = \lim_{x \to x_0 + 0} f(x)$$

$$(9.1)$$

Глава 9. Предел функции в точке и на бесконечности, Односторонние пределы.18

предел слева(точка на красном) и справа(точка на синем)

в данном случае предела у функции нет

MS

Непрерывность функций в точке, их свойства.

y=f(x) непрерывна в точке x_0 , если она определена в этой точке, а также в $\mathcal{U}_{(x)}$ и при этом $\lim_{x\to x_0}f(x_0)\Leftrightarrow \forall \epsilon>0, \exists \delta>0, \forall x, |x-x_0|<\delta:|f(x)-f(x_0|<\epsilon$ $\Delta_x=x-x_0$ - приращение аргумента $\Delta f(x_0)=f(x)-f(x_0)$ - есть приращение функции в x_0 y=f(x) непрерывна в x_0 \Leftrightarrow

$$\forall \epsilon > 0, \exists \delta > 0, |\Delta x| < \delta \Rightarrow |\Delta f(x_0)| < \epsilon \Leftrightarrow \lim_{\Delta x \to 0} \Delta f(x_0) = 0$$
 (11.1)

Непрерывность функции в точке означает то, что в любой, сколь угодно маленькой окрестности, бесконечно малое приращение аргумента влечёт за собой бесконечно маое приращение функции.

Свойства непрерывной функции в точке

- 1. Если функция непрерывна в точке x_0 , тов некоторой окрестности этой точки эта функция ограничена.
- 2. Если функция непрерывна в точке x_0 и $f(x_0) \neq 0$, то в некоторой окрестности x_0 функция имеет тот же знак, что и $f(x_0)$
- 3. Если $y = f(x_0)$ и $y = g(x_0)$ непрерывна в точке x_0 и $f(x_0) < g(x_0)$, то $\exists \mathcal{U}_{(x_0)}$ где f(x) < g(x)
- 4. Если $y = f(x_0)$ и $y = g(x_0)$ непрерывна в точке x_0 , то так же непрерывны $y = f(x_0) \pm y = g(x_0)$, $y = f(x_0) \cdot y = g(x_0)$, $y = f(x_0)y \div g(x_0)$
- 5. Непрерывность композиции функций: Если $y=g(x_0)$ непрерывна в точке $x_0,\ z=f(x_0)$ непрерывна в точке $y_0=g(x_0),$ то y=f(g(x)) непрерывна в точке $x_0.$

Доказательство.

```
\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathcal{U}_{\delta(x_0)}: |g(x) - g(x_0)| < \epsilon
\forall \sigma > 0, \exists \tau > 0, \forall y \in \mathcal{U}_{\tau(y_0)}: |f(y) - f(y_0)| < \sigma
\forall \sigma > 0, \exists \delta > 0, \forall x \in \mathcal{U}_{\delta(x_0)}: |f(g(x)) - f(g(x_0))| < \sigma
что и означает непрерывность y = f(g(x)) в точке x_0
```

11.1 Односторонняя непрерывность

y=f(x) определена на $(x_0-\delta;x_0]$ такая функция называется непрерывной слева, если $\lim_{x\to x_0-0}f(x)=f(x_0)$ аналогично функция называется непрерывной справа, если $\lim_{x\to x_0+0}f(x)=f(x_0)$. Так как функция непрерывна, она непрерывна слева и справа.

Функция называется разрывна в точке x_0 , если она либо не определена в этой точке, либо определена, но не непрерывна.

Классификация точек разрыва:

- 1. Если существуют и конечны оба односторонних пределаи эти односторонние пределы не равны друг другу, то эта точка - точка разрыва первого рода.
- 2. Если функции справа равен пределу слева и не равен значению функции в точке, это точка устранимого разрыва. $\lim_{x\to x_0+0} f(x) = \lim_{x\to x_0-0} f(x) \neq f(x_0)$
- 3. Если хотя бы один из односторонних пределов бесконечен или не существует точка разрыва второго рода

11.2 Непрерывными а любой точке ОДЗ являются

- постоянные функции
- $\bullet \ y = x$
- $y = a_n x^m + a_{n-1} x^{m-1} + \dots + a_0$
- \bullet дробно-рациональные функции $y=\frac{P(x)}{Q(x)},$ $\mathrm{P}(\mathrm{x}),$ $\mathrm{Q}(\mathrm{x})$ многочлены степени x
- функции sin, cos, tan, cot

MS

Сравение функций, эквивалентные функции

Пусть y=f(x) и y=g(x) определены в $\mathcal{U}_{x_0}.$ Говорят, что f(x) сравнима с g(x), если

$$\exists \epsilon, \exists \mathcal{U}_{x_0}, \forall x_0 \in \mathcal{U}_{x_0} : |f(x)| \le \epsilon |g(x)|$$
(13.1)

В этом случае пишут, что f(x) = O(g(x)).

Очевидно, что f(x)=O(g(x)) при $x\to x_0\Leftrightarrow \lim_{x\to x_0}\frac{f(x)}{f(x)}\le \epsilon$ а это означает, что $\frac{f(x)}{f(x)}$ ограничена в \mathcal{U}_{x_0} .

Говорят, что y=f(x) бесконечно мала по сравнению y=g(x) при $x\to x_0,$ если $\forall \epsilon>0, \exists \delta>0, \forall x\in \mathcal{U}_{x_0}:|f(x)|<$

 $HILFE_MIR!_ICH_HABE_DAS_KONSPEKT_NICHT!$ тогда пишут, что f(x) = o(f(x)) при $x \to x_0 \Rightarrow \lim_{x \to x_0} |\frac{f(x)}{f(x)}| = 0 \Leftrightarrow f(x0 = f(x) \cdot \alpha(x))$ где $\alpha(x)$ - БМФ при $x \to x_0$.

13.1 Эквивалентность

Функции y=f(x) и y=g(x) квивалентны при $x\to x_0$, если $\lim_{x\to x_0}\frac{f(x)}{g(x)}=1$ или конечному числу A, тогда пишется $f(x)\sim g(x)$ при $x\to x_0\Rightarrow f(x)\sim g(x)\Leftrightarrow f(x)=g(x)+o(g(x))$, тут y=g(x) - главная часть y=f(x)

Тероэма 13.1. *Если* $f(x) \sim g(x)$ *npu* $x \to x_0$, *mo* $\forall x$:

- $\lim_{x \to x_0} f(x) \cdot h(x) = \lim_{x \to x_0} g(x) \cdot h(x)$
- $\lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{g(x)}{h(x)}$

Таблица эквивалентных при $x \to x_0$:

$$\begin{array}{c|cccc} \sin(x) & & x \\ tg(x) & & x \\ arcsin(x) & & x \\ arctg(x) & & x \\ 1-cos(x) & & \frac{x^2}{2} \\ \ln a & & x \\ a^x-1 & & x \cdot \ln a \\ \log_a 1+x & & \frac{x}{\ln a} \\ e^x-1 & & x \\ (1+x)^{\beta}-1 & & \beta x \\ x^{\beta}-1 & & \beta(x-1) \end{array}$$

MC

Непрерывность функции на отрезке

Пусть $y = f(x), [a;b] \subset \mathcal{D}(y).$ y = f(x) непрерывна на [a;b], если она непрерывна в каждой точке интервала (a;b) и непрерывна справа в точке a и слува в точке b.

Тероэма 15.1. Кантора о вложенных отрезках.

Имеется [a;b] и совокупность вложенных отрезков $[a;b]\supset [a_1;b_1]\supset [a_2;b_2]\supset \cdots \supset [a_n;b_n]\supset \ldots$ и при этом $\lim_{n\to\infty}b_n-a_n=0^1$, тогда

$$\exists a \in [a; b] : \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$
 (15.1)

Используя теорему Кантора Докажем теорему Больцана-Вейерштрасса

Доказательство. $\forall \{x_n\} \subset [a;b]$ можно выделить мходящуюся подпоследовательность:

Разобьём [a;b] точкой С пополам и рассмотрим $[a_1;b_1]$, половину первоначального отрезка.

Эта половна содержит бесконечно много точек из $\{x_n\}$. Пусть $x_{n_1} \in [a_1;b_1]$. Точкой C_2 Разобьём отрезок $[a_1;b_1]$ пополам и мрассмотрим $[a_2;b_2]$, она содержит бесконечно много точек из $\{x_n\}$

и в этом отрезке обозначим x_{n_k} , чтобы $n_2 > n_1$ и так далее. Получим

$$\begin{aligned} \{x_{n_k}\} &\in [a_k;b_k], \forall k \in \mathbb{N} \Rightarrow \\ a_k &\leq x_{n_k} \leq, b_k - a_k = \frac{b_k - a_k}{2^k} \\ \lim_{n \to \infty} \frac{b_k - a_k}{2^k} &= 0 \end{aligned}$$

По теореме Кантора имеем: $\lim_{n\to\infty} a_k = \lim_{n\to\infty} b_k = a$ В неравенстве $a_k \le x \le b_k$ перейдём к пределам.

 $^{^{1}}$ вложены друг в друга и уменьшаются

По теореме о 2х милиционерах:
$$a_0 \leq \lim_{n\to\infty} x_{n_k} \leq a_0 \Rightarrow \lim_{n\to\infty} x_{n_k} = a_0 \in [a;b]$$

Тероэма 15.2. Если y = f(x) непрерывна на [a; b], то она ограничена на этом отрезке.

$$\exists c > 0, \forall x \in [a; b] : |f(x)| \le c$$

Доказательство. Пусть y = f(x) непрерывна на [a;b]. Предположим, что она неограничена на этом отрезке.

Отсюда $\forall n \in \mathbb{N}, \exists x_n \in [a;b]: |f(x)| \geq n$

Отсюда по Больцана-Вейерштрасса в $\{x_n\}$ можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$ с пределом $x_0 \in [a;b]$

Отсюда $\forall k, |f(x_{x_k})| > n_k, \lim_{k \to \infty} |f(x_{x_k})| \ge \infty$

Поскольку $\{x_n\} \to x_0$, в x_0 функция не является непрерывной, а терпит разрыв второго рода, что протеворечит нашему утверждению.

Тероэма 15.3. Вейерштрасса.

Hепрерывная на [a;b] функция достинает на нём своего максимального и минимального значений.

MC

Производная функции, односторонние производные

Пусть $y = f(x), x_0 \in \mathcal{D}(f(x))$. Рассмотрим график функции. и прямые $y = k(x-x_0) + f(x_0)$ Среди всех таких прямвх рассмотрим ту, которая наиболее тесно прижимается к графику функции f(x). Такая прямая называется касательной к графику функции в точке $(x_0; f(x_0))$. Эту прямую можно найти так: На графике функции рассмотрим кроме $(x_0; f(x_0))$ рассмотрим $(x_1; f(x_1))$ и прямую, проходящую через эти точки. Эта прямая - секущая, приближённая $(x_0; f(x_0))$

Уравнение секущей с угловым коеффициентом. Так как секущая должна роходить через $(x_0; f(x_0))$ должно выпоняться равенство $k = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \Rightarrow (x_1; f(x_1)) \to (x_0; f(x_0)) \Leftrightarrow x_1 - x_0 \Rightarrow k = \lim_{x \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ Если этот преел конечен и существует, то он есть производная функции y = f(x) в x_0 и обозначается $f'(x_0)$

$$x_1 - x_0 = \Delta x, f(x_1) - f(x_0) = \Delta f(x_0)$$
 $f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}$ иногда обозначается $\frac{df(x_0)}{dx}$

Может оказаться, что $\lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}$ бесконечен, в этом случае касательая к графику в точке вертикальна

Как известно, существование конечного предела равносильно существованию и равенству между собой односторонних пределов $\lim_{\Delta x \to 0+0} \frac{\Delta f(x_0)}{\Delta x}$ и $\lim_{\Delta x \to 0-0} \frac{\Delta f(x_0)}{\Delta x}$ Эти односторонние пределы, если они конечны и существуют, называются односторонними производными и обозначаются $f'(x_{0-0})$ и $f'(x_{0+0})$ Их существование означает существование касательной к фрагменту графика функции левее и правее $(x_0; f(x_0))$. Справедливо и обратное.

Возможны случаи, когда односторонние пределы существуют, но не равны друг другу это значит, что в точке $(x_0; f(x_0))$ терпит излом и не является гладким.

¹Размытое определение

Излом графика функции

