Université Constantine 2 – Abdelhamid Mehri

Faculté NTIC Spécialité : M2 SDIA Module : MLCI

Nom :
Prénom :
Groupe :

Interrogation

Partie 1 (QCM): Cochez les réponses vraies (plusieurs réponses sont possibles). 11points

1.	Un auto-encodeur : 1.25					
	Apprend selon un apprentissage supervisé.					
	Est une généralisation d'un Encodeur-Décodeur.					
	Apprend selon un apprentissage par renforcement.					
	Apprend selon un apprentissage non-supervisé.					
	Doit contenir une convolution					
2.	Un CNN 1.00					
	Il est spécialement conçu pour traiter des images en entrée, mais il peut être utilisé pour des données					
	textuelles.					
	Il permet de localiser un ensemble de caractéristiques dans les images en entrée, mais ces					
	caractéristiques doivent être préalablement définies.					
	Il fait l'extraction des caractéristiques et le clustering.					
	Il peut être utilisé pour faire uniquement l'extraction de caractéristiques (features extraction).					
3.	Quelle couche produit la matrice de caractéristiques présentée à droite : 1.25					
	La dernière couche entièrement connectée					
	Une couche de convolution au milieu					
	La dernière couche de convolution (la plus haute)					
	La première couche de Pooling					

La première couche de convolution

4.	Un contour est: 1.25
	Un changement brusque d'intensité.
	Un changement brusque de texture.
	Un changement doux d'intensité.
	Une continuité d'intensité.
	Détecté par un filtre gaussien
5.	Quel est l'objectif d'utiliser un bruit en entrée d'un GAN? 1.25
	Pour contrôler le taux d'apprentissage durant l'entrainement.

Pour contrôler le taux d'apprentissage durant l'entrainement.
Pour régler les poids du générateur.
Pour introduire des variations et rendre la génération aléatoire.
Pour apprendre à minimiser le bruit dans les images bruitées.
Aucun choix précédent

Université Constantine 2 - Abdelhamid Mehri

Faculté NTIC Spécialité : M2 SDIA Module : MLCI

6.	Quel est le rôle du discriminateur utilisé dans un GAN? 1.25
	Pour aider le générateur
	Pour améliorer les sorties du générateur
	Pour générer des images synthétiques
	Pour ajuster le taux d'apprentissage.
	Aucun choix précédent

7.	Bed of nails est: 1.75
	Une technique de groupage (pooling).
	Une technique de sur-échantillonnage.
	Une technique de sous-échantillonnage.
	Une technique qui remplace chaque valeur par quatre valeurs identique.
	Une technique de convolution transposée
	Une technique qui remplace chaque valeur par des zéros.
	Aucun choix précédent

8.	Un GAN: 2.00
	Un réseau de neurone récurrent.
	Un générateur et un décodeur.
	Un classificateur binaire.
	Un générateur et un encodeur.
	Respecte un apprentissage supervisé.
	Un générateur et un discriminateur
	Un générateur et un classifieur binaire
	Toutes les réponses précédentes sont correctes.

Partie 2:

1. L'architecture demandée est présentée ci-dessous :

CONV1 (96f, (11x11), S=4) \rightarrow RELU1 \rightarrow POOL1 (3x3, S=2) \rightarrow CONV2 (256 f, (5x5), P=2) \rightarrow RELU2 \rightarrow POOL2 (3x3, S=2) \rightarrow CONV3 (3x3, P=1,384f) \rightarrow CONV4(3x3, P=1,384f) \rightarrow CONV5(3x3, P=1, 256f) \rightarrow FC1(4096) \rightarrow FC2(4096) \rightarrow FC3

Couche	Paramètre	Sortie	Couche	Paramètre	Sortie
CON1	96f // 11*11// S=4	55*55*96	CONV3	3*3 // P=1 //384f	13*13*384
RELU1		//	CONV4	3*3 // P=1 // 384f	13*13*384
POOL1	3*3 // S=2	27*27*96	CONV5	3*3 // P=1 // 256f	13*13*256
CONV2	256f // 5*5 // P=2	27*27*256	FC1	4096	4096
RELU2		//	FC2	4096	4096
POOL2	3*3 // S=2	13*123*256	FC3	1000	1000

Université Constantine 2 – Abdelhamid Mehri

Faculté NTIC Spécialité : M2 SDIA Module : MLCI

2. Compléter l'architecture de l'auto-encodeur présentée ci-dessous, tout en précisant les sorties de chacune des couches.

Image $28x28x1 \rightarrow CONV1$ (S=2, 32filres) \rightarrow ? (S=2, 64filtres) \rightarrow CONV3(128filtres,S=2) \rightarrow Flatten (?) \rightarrow ?(10) \rightarrow ...

Couche	Paramètre	Sortie	Couche	Sortie
CON1	S=2, 32filtres	14*14*32	Reshape	3*3*128
COV2	S=2, 64 filtres	7*7*128	CONVT	7*7*64
CONV3	S=2, 128filtres	3*3*128	CONVT	14*14*32
Flatten		1152	CONVT	28*28*1
Code		10		
Flatten		1152		

3. Soit la matrice présentée ci-dessous. Donner la matrice résultante d'un MaxUnPooling.

	2	3	
	4	5	
(1,1)	(0,2)	
(:	3,0)	(3,3)	

0	0	3	0
0	2	0	0
0	0	0	0
4	0	0	5

Bon courage