Linear Algebra Vocabulary

A Comprehensive Glossary

Haadi Majeed / EN.625.252.81 Fall 2025

Contents

1	Module 2		
	1.1	Parallelogram Rule for Addition	2
	1.2	Algebraic Properties	2
	1.3	Linear Combination and Span	2
	1.4	Properties of Matrix-Vector Product	3

1. Module 2

1.1. Parallelogram Rule for Addition

Parallelogram Rule for Addition, Lay 1.3

If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are \mathbf{u} , $\mathbf{0}$, and \mathbf{v} . See Figure 3.

1.2. Algebraic Properties

Algebraic Properties of \mathbb{R}^n

For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d:

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

3.
$$u + 0 = 0 + u = u$$

4.
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
,
where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

6.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

7.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

8.
$$1u = u$$

1.3. Linear Combination and Span

A linear combination, definition, Lay, 1.3

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be vectors in \mathbb{R}^n .

A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ is a vector

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p, \quad c_1, c_2, \dots, c_n \in \mathbb{R}$$

The span of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ is the set of all linear combinations

$$\{c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p, c_1, c_2, \ldots, c_n \in \mathbb{R}\}$$

1.4. Properties of Matrix-Vector Product

If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then:

- a. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$;
- b. A(c**u**) = c(A**u**).