The relation for directed graph shown below is a partial order.

True

False

The negation of $\forall x(x > o \land x^2 = 1)$ is

$$\bigcirc$$
 A. $\exists x (x \le o \lor x^2 \ne 1)$

$$\bigcirc$$
 B. $\forall x (x \le o \lor x^2 \ne 1)$

$$\bigcirc$$
 C. $\forall x (x \le o \land x^2 \ne 1)$

$$\bigcirc$$
 D. $\exists x (x \le o \land x^2 \ne 1)$

Then which choice is a simple path of length 4?

- A. ABEDE
- B. ACFGD
- C. AGEBA
- O. ADEBA

For the universal U={1,2,3,4,5}, let A={1,3}, and B=(4,5}. Then the set X={3} is a subset of $\overline{A} \cap B$

- True
- False

The Wheel graph W_5 is a planar graph?

- True
- False

$$\neg p \rightarrow q$$

$$r \rightarrow s$$
The argument $\neg r$

$$:: s \rightarrow q$$

- A. Undetermined
- B. Invalid
- C. Valid

The output of the given circuit is

$$\bigcirc$$
 A. $(xy).(\overline{x}y)$

$$\bigcirc$$
 B. $(\chi y) + (\overline{\chi} + y)$

$$\bigcirc$$
 C. $(x+y).(\overline{x}+y)$

$$\bigcirc$$
 D. $(xy).(x + y)$

The square of an odd number is

A. undecided

B. odd

C. even

How many components the graph has

- O A. 4
- B. 3
- C. 2
- OD.1

At the rooted tree

what is t he descndants of the vertex E?

- O K, L, P, Q
- B, C, D, F, G
- \bigcirc A

Which complete bipartite graph $K_{m,n}$ is a tree?

- \bigcirc A. $K_{1,4}$
- \bigcirc B. $K_{2,2}$
- \bigcirc C. $K_{2,3}$
- \bigcirc D. $K_{3,3}$

Let G be this graph

Then which choice is a simple path of length 4?

- A. 47651
- B. 16737
- C. 47654
- O.45614

Let $R=\{(1,1),(1,3),(2,3),(3,1),(3,3)\}$ be a relation defined on $A=\{1,2,3,4,5\}$. The reflexive closure of R is

- A. {(1,1),(1,3),(2,3),(3,1),(3,3),(2,2)}
- B. {(1,1),(1,3),(2,3),(3,2),(3,1),(3,3),(2,2),(4,4),(5,5)}
- C. {(1,1),(1,3),(2,3),(3,1),(3,3),(2,1)}
- D. {(1,1),(1,3),(2,3),(3,1),(3,3),(2,2),(4,4),(5,5)}

How many possible spanning tree of the graph

- A. 4
- B. 5
- C. 3
- OD. 2

On \mathbb{N} , the relation $R = \{(a,b): b = 2^k a$, for some integer $k \ge 0\}$ is a total ordering on \mathbb{N}

- True
- False

If (1-n) is even then n^2 is

- A. even
- B. odd
- C. undecided

For A and B arbitrary sets, $(A \cup B) \cap B$ equals

 $\bigcirc A. \overline{A} \cup B$

 \bigcirc B. \overline{B}

 \bigcirc C. $\overline{A} \cap \overline{B}$

D. A

The dual of the Boolean expression $(\overline{x}.y)+(\overline{x}.1)+(x.0)$ is

• A.
$$(x + y).(x + 0).(x + 1)$$

$$\bigcirc$$
 B. $(x.y) + (x.0) + (x.1)$

$$\bigcirc$$
 C. $(x + \overline{y}).(x + 0).(\overline{x} + 1)$

$$\bigcirc D.(x+\overline{y}).(x+1).(x+0)$$

The Boolean expression for the function that has the values in the table below

х	У	Z	F(x,y,z)	
1	1	1	1	
1	1	0	0	
1	0	1	1	
1	0	0	1	
0	1	1	0	
0	1	0	0	
0	0	1	1	
0	0	0	0	

$$\bigcirc$$
 A. $xyz + x\overline{yz} + \overline{xyz}$

$$\bullet$$
 B. $xyz + x\overline{yz} + x\overline{yz} + x\overline{yz}$

$$\bigcirc$$
 C. $xyz + \overline{xyz} + x\overline{yz} + x\overline{yz} + x\overline{yz}$

$$\bigcirc$$
 D. $xyz + x\overline{yz} + \overline{x}yz + \overline{x}yz + \overline{x}yz$

At the rooted tree

what is t he ancestors of the vertex e?

- 👩 a, b
- j, l, m
- \bigcirc 1
- j, k, n, o, p

For the universal U={1,2,3,4,5}, let A={1,3}, and B=(4,5}. Then the set X={3} is a subset of \overline{B} – A

- True
- False

The negation of $\forall x((x \ge o) \lor (x^2 \ge 0))$ is

$$\bigcirc$$
 A. $\exists x((x \ge 0) \land (x^2 \ge 0))$

○ B.
$$\forall x((x < 0) \land (x^2 < 0))$$

$$\bigcirc$$
 C. $\exists x((x < 0) \lor (x^2 < 0))$

$$\bigcirc$$
 D. $\exists x((x < 0) \land (x^2 < 0))$

How many components the graph has

- A. 3
- B. 2
- C. 1
- O D. 4

The hight of the rooted tree

- B. 6
- C. 3
- O D. 4

The number of regions a planar representation of $K_{2,4}$ determines in the plane is

- B. 3
- OD.1

$$\bigcirc$$
 A. $\{(x,y): x \ge y\}$

$$\bigcirc$$
 B. $\{(x,y): x \leq y\}$

$$\bigcirc$$
 C. $\{(x,y): x \subseteq y\}$

$$\bigcirc$$
 D. $\{(x,y): x \text{ divides } y\}$

Let S={1,2,3,4} be a set and $\mathcal{P}(S)$ its power set. On $\mathcal{P}(S)$, define relation R as

 $A R B \Leftrightarrow |A| = |B|$ (that is sets A and B have the same cardinality).

The equivalence class of $[\emptyset]$ =

- \bigcirc A. $\{\emptyset\}$
- \bigcirc B. {Ø,S}
- \bigcirc C. { \emptyset ,{1},{2},{3},{4}}
- \bigcirc D. { \emptyset ,{1},{1,2},{1,2,3},S}

The sum of product of F(x,y,z) = (x+y)z is

$$\bigcirc$$
 A. $xyz + xyz + \overline{x}yz$

$$\bigcirc$$
 B. $xyz + x\overline{yz} + x\overline{yz} + x\overline{yz} + x\overline{yz}$

$$\circ$$
 C. $xyz + xyz + xyz$

$$\bigcirc$$
 D. $xyz + xyz + xyz + xyz + xyz = 0$

$$\neg p \lor r$$

$$p \wedge q$$

The argument

$$\therefore (p \land q) \rightarrow r$$

- A. Undetermined
- B. Invalid
- C. Valid

- A. 3-ary tree
- B. binary tree
- C. 4- ary tree
- O. 6- ary tree

The value of the boolean variable x that satisfies the equation $x \cdot \overline{x} = 1$ is

- A. impossible
- B. x=1
- \bigcirc C. x=0

- A. complete graph
- B. cycle
- C. forest
- O. Tree

The output of the given circuit is

$$\bigcirc A.(\overline{x+y})+(xy)$$

$$\bigcirc$$
 B. $(\overline{\chi + y}) + (\overline{\chi y})$

$$\bigcirc$$
 c. $(x + y).(xy)$

$$\bigcirc D.(\overline{x+y}).(\overline{xy})$$

The simplify of the sum of product expansion given below using K-map is

	yz	yz̄	$\bar{y}\bar{z}$	$\bar{y}z$
х	1	1		1
\bar{x}	1			1

$$\bigcirc$$
 A. $\chi + \overline{\chi} z$

$$\bigcirc$$
 B. $z + xy\overline{z}$

$$\bigcirc$$
 C. $Z + XY$

$$\bigcirc$$
 D. $xy+\overline{y}z+\overline{x}yz$

The relation $R = \{(x,y): x+y=0\}$ on the set of all real numbers is symmetric

- True
- False

How many nonisomorphic graphs are there with three vertices?

- B. 5
- OD.7

The negation of a contingency is

- A. a contradiction
- B. a contingency
- C. a tautology

- o c, f, h, i, j, l, m, n, o, p
- g, f
- j, l, m, i, k
- a, b, d, e, g, k

The Hasse digram

represents the poset on {3,4,12,24,48,72} given by

$$\bigcirc$$
 A. $\{(x,y): x \ge y\}$

$$\bullet$$
 B. $\{(x,y): x \text{ divides } y\}$

$$\bigcirc$$
 C. $\{(x,y): x \subseteq y\}$

$$\bigcirc$$
 D. $\{(x,y): x \leq y\}$

The number of regions a planar representation of $K_{2,3}$ determines in the plane is

- B. 4
- O C. 3
- OD. 2

The value of the boolean variable x that satisfies the equation x+x=0 is

- A. impossible
- B. x=0
- C. x=1

Which complete bipartite graph $K_{m,n}$ is a tree?

- \bigcirc A. $K_{2,2}$
- \bigcirc B. $K_{3,3}$
- \bigcirc C. $K_{2,3}$
- \bigcirc D. $K_{1,4}$

The sum of product of F(x,y,z) = (x+y)z is

$$\bigcirc A. xyz + xy\overline{z} + \overline{x}yz$$

$$\bigcirc$$
 C. $xyz + xyz + \overline{x}yz + \overline{x}yz + \overline{x}yz$

$$\bigcirc$$
 D. $xyz + x\overline{yz} + x\overline{yz} + xyz$

- O A. Pesudograph
- B. mixed graph
- C. multigraph
- O. simple graph

○ True

False

Let S={1,2,3,4} be a set and $\mathcal{P}(S)$ its power set. On $\mathcal{P}(S)$, define relation R as

 $A R B \Leftrightarrow |A| = |B|$ (that is sets A and B have the same cardinality).

The equivalence class of $[\{1,2\}]$ =

- \bigcirc A. $\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$
- B. {{1,2}}
- \bigcirc c. $\{\emptyset,S\}$
- D. {{1},{2},{3},{4}}

- A. forest
- OB. complete graph
- C. Tree
- O. cycle

On \mathbb{N} , the relation $R = \{(a,b): b = 2^k a$, for some integer $k \ge 0\}$ is a total ordering on \mathbb{N}

- False