Abstract simplicial complexes

Def 1 (Abstract simplicial complex). An abstract simplicial complex is a collection K of non-empty finite sets $\varnothing \neq S \in K$ such that every nonempty subset of S is also contained in K, i.e. $\varnothing \neq T \subseteq S \implies T \in K$.

Def 2 (Simplex). Sets in K are called *simplices*.

Def 3 (Vertex). An element $v \in S$ of a simplex $S \in K$ is a *vertex* (plural: vertices).

Def 4 (Dimension of a simplex and of a complex).

- The dimension of a simplex $S \in K$ is |S| 1.
- The dimension of the complex K is $\sup_{S \in K} \dim S$.

Def 5 (Face). A *face* is a subset of a simplex, *proper* if it is a strict subset.

Def 6 (Coface). A coface is a superset of a simplex which is in the complex.

Rem 7. \exists a bijection between the vertex set and 0-simplices. **Def 8** (Full subcomplex). A subcomplex L is full if every simplex in K whose vertices are in L belongs to L, i.e. $S \subseteq \operatorname{Vert} L, S \in K \implies S \in L$.

Vietoris-Rips complex

An abstract simplicial complex that can be defined from any metric space X and distance t by forming a simplex for every finite set of points that has diameter at most t:

Def 9 (Vietoris-Rips). A *Vietoris-Rips complex* of a metric space (X, d) at scale t is defined as

$$\operatorname{Rips}_t(X) := \{\varnothing \neq Q \subseteq X \mid \operatorname{diam} Q \leqslant t\},$$

where diam $Q := \sup_{x,y \in Q} d(x,y)$.

Def 10 (Closure). The *closure* of a simplex is the collection of its faces, (is the smallest simplicial complex that contains all its faces).

 $\bf Def~11~(Star).~The~star$ of a simplex is the collection of its cofaces.

Rem 12. $St(S) = \bigcap_{v \in S} St\{v\}.$

Def 13 (Link). The *link* of S is defined as Lk $(S) := \{P \in K \mid P \cup S \in K, P \cap S = \emptyset\}.$

Def 14 (Join). For two *augmented* simplicial complex K and L, Vert $K \cap \text{Vert } L = \emptyset$, their *join* is a simplicial complex defined as

$$K*L:=\{S\cup T\mid S\in K, T\in L\}.$$

Rem 15. Lk S * Cl S = Cl(St S).

Def 16 (Cone, Apex, Base). For $v \notin \text{Vert } K$, $\{\{v\}\} * K$ is a *cone* with *apex* v and *base* K.

Def 17 (Suspension). For $v, w \notin \text{Vert } K$, $\{\{v\}, \{w\}\} * K$ is a suspension of K.

A *flag complex* is an abstract simplicial complex such that *every set of vertices in which all pairs are simplices in the complex* is also itself a simplex in the complex.

Def 18 (Flag complex). Given a finite poset (partially order set) $P = (P, \leq)$, its *flag complex* (or order complex) is the Cplx that has P as vertices, and chains as simplices.

Exp 19 (Derived subdivision). Pos $K := (K, \subseteq)$ is called the *face poset* of K. Its flag complex is called the *derived subdivision* of K, denoted by $\operatorname{Sd} K = \operatorname{Flag}(\operatorname{Pos} K)$.

Maps between simplicial complexes

Let \mathcal{A}, \mathcal{B} be abstract simplicial complexes.

Def 20 (Vertex map). A map φ : Vert $\mathcal{A} \to \text{Vert } \mathcal{B}$ between vertex sets is a *vertex map* if the image of the vertices of a simplex always span a simplex, i.e. $S \in \mathcal{A} \implies \varphi(S) \in \mathcal{B}$.

Def 21 (Abstract simplicial map). The induced map $f: A \to B, S \mapsto \varphi(S)$ is an abstract simplicial map.

Def 22 (Simplicial isomorphism). If φ is a bijection and φ^{-1} is also a vertex map, then f is a *simplicial isomorphism*.

Geometric simplicial complexes

Let $V = \{v_0, ..., v_k\} \subset \mathbb{R}^d$ be a finite point set.

Def 23 (Affine combination). A point $\sum_{v \in V} \lambda_v v$ with $\sum_{v \in V} \lambda_v = 1$ is an affine combination of V.

Def 24 (Affine hull). The collection of affine combinations is the *affine hull*, denoted by aff V.

Def 25 (Affinely independent). The points in V are affinely independent if the coefficients of any affine combination are unique. In this case aff V is a k-dim affine subspace.

Def 26 (Convex combination). An affine combination with $\lambda_v \ge 0$ is a *convex combination*.

Def 27 (Convex hull). The convex hull is the collection of convex combinations, denoted by conv V.

Def 28 (General linear position). V is in general linear position if any subset of at most d+1 points is affinely independent.

Exp 29 (Moment curve). The moment curve

$$X = \{(t, t^2, ..., t^d)\} \mid t \in \mathbb{R}\} \subset \mathbb{R}^d$$

is in general linear position.

Rem 30. Any finite $V \subset \mathbb{R}^d$ can be perturbed to general position, arbitrarily close to X.

Let V be affinely independent.

Def 31 (Geometric k-simplex). A geometric k-simplex $\sigma = \text{conv } V$ is the convex hull of k+1 affinely independent points. k is the dimension of the simplex.

Def 32 (Vertex). We say σ is spanned by V. The points in V are called vertices, $V = \text{Vert } \sigma$.

Rem 33. Vertex: 0-simplex, edge: 1-simplex, triangle: 2-simplex, and tetrahedron: 3-simplex.

Def 34 (Face). A *(proper) face* is a simplex spanned by a non-empty (proper) subset of V.

Def 35 (Coface). τ is coface of σ : \iff σ is face of τ

Def 36 (Boundary). The *boundary* of σ (bd σ) is the union of all its proper faces, or equivalently, all faces of codimension 1.

Rem 37. The boundary of a vertex is \varnothing .

Def 38 (Interior). int $\sigma = \sigma \setminus \operatorname{bd} \sigma$.

We are interested in sets of simplices that are closed under taking faces and that have no improper intersections:

Def 39 (Geometric simplicial complex). A geometric simplicial complex K in \mathbb{R}^d is a collection of simplices that

(i) is closed under the face relation:

 $\sigma \in K$ and τ face of $\sigma \implies \tau \in K$,

(ii) intersects only in common faces: for every $\sigma, \tau \in K$ with $\sigma \cap \tau \neq \emptyset$, it is a face of both σ, τ .

Def 40 (Dimension). The dimension of K is the supremum dimension of its simplices.

Rem 41. Condition (ii) is equivalent to: (ii') simplices have disjoint interiors: $\sigma \neq \tau \in K \implies \inf \sigma \cap \inf \tau = \emptyset$.

Def 42 (Underlying Space). The underlying space of K (or polyhedron), denoted as |K|, is the union of its simplices together with the coherent topology, which can be expressed using closed sets: $U \subseteq |K|$ closed if and only if $U \cap \sigma$ is closed in subspace topology of $\sigma \ \forall \sigma \in K$.

Def 43 (Triangulation). A triangulation of a topological space X is a homeomorphism between X and |K| for some simplicial complex K. In this case, X is triangulable.

Simplicial maps

Let K, L be geometric simplicial complexes.

Def 44 (Simplicial map). A simplicial map is a continuous map $f: |K| \to |L|$ mapping each simplex of K affinely onto some simplex in L. We also call $f: K \to L$ a simplicial map.

Rem 45. The restriction to the vertices of K already determines f uniquely.

Def 46 (Simplicial isomorphism). If f has a simplicial inverse, it is a *simplicial isomorphism*.

Def 47 (Vertex scheme). The abstract simplicial complex induced by the vertex sets of the simplices in K is called the *vertex scheme* of K.

Def 48 (Geometric realization). If the vertex scheme of K is isomorphic to some abstract simplicial complex A, then K is a *geometric realization* of A.

Rem 49. The geometric realization of an abstract simplicial complex is unique up to simplicial isomorphism.

Rem 50 (Geometric Realization Theorem). An d-dim abstract simplicial complex with n vertices has geometric realizations in \mathbb{R}^n , \mathbb{R}^{n-1} , and in \mathbb{R}^{2d+1} .

Gluing Constructions

Let L be an abstract simplicial complex and $f: \operatorname{Vert} L \to V$ a surjective map to some set V of vertex labels.

Def 51 (Pasting complex, map). The collection $K = \{f(\sigma) \mid \sigma \in L\}$ is an abstract simplicial complex with vertices Vert K = V, called the *pasting complex* for f.

Def 52 (Pasting map). The pasting map for f is the simplicial map induced by f.

We want to identify only disjoint simplices in L and the identification should preserve dimension. We now phrase criterion to exclude unintended gluing of simplices.

Rem 53. Assume that the vertices in L with the same label have disjoint closed vertex stars: for any $v \neq w \in \text{Vert } L$ with f(v) = f(w), we have $\text{Cl St } v \cap \text{Cl St } w = \emptyset$. Then,

- (i) the induced pasting map preserves dimension of simplices: $\dim g(\sigma) = \dim \sigma$ for all $\sigma \in L$, and
- (ii) only disjoint simplices are identified: if $\sigma, \tau \in L$ with $g(\sigma) = g(\tau)$, then $\sigma \cap \tau = \varnothing$.

Homotopy

Let $f,g:X\to Y$ be two continuous maps between topological spaces.

Def 54 (Homotopic). f and g are homotopic ($f \simeq g$) if there exists a continuous deformation of f into g, i.e. a continuous map $H: X \times [0,1] \to Y$ with H(x,0) = f(x) and H(x,1) = y(x) for all $x \in X$.

Def 55 (Homotopy). H is called a homotopy.

Rem 56. Homotopy defines an equivalence relation of continuous maps.

Simplicial approximation

We show that by subdividing, we can approximate any continuous map between triangulable spaces by a simplicial map.

Let K, L be geometric simplicial complexes and let $g: |K| \to |L|$ be a continuous map.

Def 57 (Simplicial approximation). A simplicial map $f: K \to L$ is a *simplicial approximation* to g, if for all $x \in |K|$ and $\tau \in L$, $g(x) \in \tau$ implies $f(x) \in \tau$.

Rem 58. f and g are homotopic.

Def 59 (Subdivision). A simplicial complex L is a *subdivision* of another simplicial complex K if they have the same underlying space, i.e. |L| = |K|, and every simplex in L is contained in a simplex in K.

Exp 60 (Barycentric subdivision). The barycentric subdivision of K, denoted as $\operatorname{Sd} K$, is defined as follows:

(i) The vertices are the barycenters of simplices of K:

Vert Sd $K = \left\{ z(\sigma) = \sum_{i=0}^{d} \frac{1}{d+1} v_i \mid \sigma = \operatorname{conv}\{v_0, \dots, v_d\} \in K \right\},$

(ii) The k-simplices of Sd K are spanned by the barycenters: $\{z(\sigma_0), z(\sigma_1), ..., z(\sigma_k)\},$

where $\sigma_0 \subsetneq \sigma_1 \subsetneq ... \subsetneq \sigma_k$ is a *chain* of proper faces in K.

Rem 61. Every point $x \in |K|$ lies in the unique interior of a simplex $\sigma_x \in K$. All coefficients λ_v in $x = \sum_{v \in \sigma_x} \lambda_v v$ are strictly positive.

Def 62 (Barycentric coordinates). For each vertex $v \in \text{Vert } K$, define the coordinate function $b_v : |K| \to [0, 1]$

$$x \mapsto \begin{cases} \lambda_v, & \text{if } v \text{ is a vertex of } \sigma_x, \\ 0, & \text{otherwise.} \end{cases}$$

The functions b_v are the barycentric coordinates of K.

Rem 63. Barycentric coordinates are continuous.

Rem 64. The unique simplex $\sigma_x \in K$ with $x \in \text{int } \sigma_x$ is spanned by vertices $\{v \in \text{Vert } K \mid b_v(x) > 0\}$.

Def 65 (Open star). The open star of $\sigma \in K$ is st $\sigma = \bigcup_{\tau \in \operatorname{St} \sigma} \operatorname{int} \tau$.

Rem 66. The open star is an open set: for a vertex v we have $\operatorname{st}(v) = \{x \in |K| \mid b_v(x) > 0\} = b_v^{-1}(0, \infty)$.

Rem 67. A vertex set S spans a simplex τ iff their open star intersection is non-empty, i.e. $\bigcap_{v \in S} \operatorname{st}(v) \neq \emptyset$, in which case we have $\operatorname{st}(\sigma) = \bigcap_{v \in S} \operatorname{st}(v)$.

Def 68 (Star condition). $g:|K| \to |L|$ satisfies the star condition if it maps open stars in K into open stars in L, i.e. $\forall v \in \text{Vert } K \ \exists u \in \text{Vert } L: g(\text{st } v) \subseteq \text{st } u.$

Rem 69. Choosing such a vertex u_v for each vertex v defines a vertex map $\varphi : \operatorname{Vert} K \to \operatorname{Vert} L, v \mapsto u_v$, which extends to a simplicial approximation $f : K \to L$ of g.

Def 70 (Mesh). The *mesh* of K is the maximum length of its edges. It is also the maximum diameter of any simplex.

Rem 71. Let δ be the mesh of K. Then the mesh of $\operatorname{Sd} K$ is at most $\frac{d}{d+1}\delta$, where d is the dimension of K.

Thm 72 (Simplicial approximation). Let K, L be finite geometric simplicial complexes. Then g has a simplicial approximation $f: |\operatorname{Sd}^n K| \to |L|$ for some $n \in \mathbb{N}$.

Complexes from geometric point sets Homotopy equivalence

Weaker than homeomorphism. Let X, Y be topological spaces.

Def 73 (Homotopy equivalent). Two spaces X, Y are homotopy equivalent $(X \simeq Y)$ if \exists continuous $f: X \to Y$, $g: Y \to X$ such that $f \circ g \simeq \operatorname{Id}_Y$ and $g \circ f \simeq \operatorname{Id}_X$.

Def 74 (Homotopy inverse). g is a homotopy inverse to f and vice versa.

Rem 75. Homotopy equivalence defines an equivalence relation of topological spaces.

Consider $Y \subseteq X$. Then a continuous map $r: X \to Y$ is a *retraction* if r restricts to the identity map on Y. More generally:

Def 76 (Retraction). Given $\iota: Y \to X$ continuous, a continuous $r: X \to Y$ is a retraction if $r \circ \iota = \mathrm{id}_Y$.

Def 77 (Deformation retraction). The map $r: X \to Y$ is a deformation retraction if $\iota \circ r$ is homotopic to id_X .

Rem 78. A deformation retraction can also be defined as a homotopy between a retraction and the identity map on X.

Def 79 (Contractible). Assume \exists deformation retraction $X \to Y$. If Y is a single point, then X is *contractible*.

Rem 80. Two spaces X and Y are homotopy equivalent iff $\exists Z \ s.t. \ \exists \ deformation \ retractions \ Z \to X \ and \ Z \to Y.$

Nerves

We construct simplicial complexes by recording the intersection patterns of a collection of sets.

Def 81 (Nerve). Let F be a finite collection of sets. The *nerve* of F consists of all subcollections whose sets have a non-empty common intersection, Nrv $F = \{G \subseteq F \mid \bigcap G \neq \emptyset\}$.

Rem 82. Nrv F is always an abstract simplicial complex: if $\bigcap X \neq \emptyset$ and $Y \subseteq X$, then $\bigcap Y \neq \emptyset$ as well.

Thm 83 (Nerve theorem for compact convex covers). Let X be compact. Assuming that F is a finite cover of X by compact convex sets. Then $|\operatorname{Nrv} F| \simeq X$.

Čech complexes

Consider the case where F is a collection closed balls. Let $X \subset \mathbb{R}^d$ be a *finite point set*. Write $D_r(x) = \{y \in \mathbb{R}^d \mid \|y - x\| \leq r\}$.

Def 84 (Čech complex). The Čech complex of X for radius r is defined as Čech $_r(X) = \{Q \subseteq X \mid \bigcap_{x \in Q} D_r(x) \neq \emptyset\}.$

Rem 85. Čech complexes are abstract simplicial complexes. **Rem 86.** Čech_r(X) is isomorphic to the never of the balls centered at the points in X.

Rem 87. If X is compact, then for every $r \ge \operatorname{diam} X$, the Čech complex is the full simplex, i.e. $\operatorname{Cech}_r(X) = \operatorname{Cl} X$.

Rem 88. $Q = \{q_1, ..., q_n\} \in \operatorname{Cech}_r(X) \iff \exists z \in \bigcap_{q \in Q} D_r(q) \iff Q \subseteq D_r(z) \iff \text{the smallest enclosing sphere of } Q \text{ has } radius \leqslant r.$

Enclosing spheres and circumspheres

Let $Q \subset \mathbb{R}^d$ be a finite point set and let D be a d-ball with boundary ((d-1)-sphere) S.

Def 89 (Enclosing sphere). S is an enclosing sphere of Q, if $Q \subset D$. In this case, D is an enclosing disk of Q.

Def 90 (Circumsphere). S is circumsphere of Q, if $Q \subset S$.

Rem 91. Affinely independent Q has a circumsphere.

Rem 92 (Smallest circumsphere). If $|Q| \leq d$, then its circumsphere is not unique. But the smallest circumsphere S(Q) is unique and has center on the affine hull aff Q.

Rem 93. Assume B(Q, P) is the smallest circumsphere of P that encloses Q and $x \in Q$. If the sphere $B(Q \setminus \{x\}, P)$ encloses x, then $B(Q, P) = B(Q \setminus \{x\}, P)$, and otherwise $B(Q, P) = B(Q \setminus \{x\}, P \cup \{x\})$.

Voronoi domains and Delaunay complexes

Let $X \subset \mathbb{R}^d$ be a finite point set.

Def 94 (Voronoi domain). The *voronoi domain* of $x \in X$ is the set of points p in \mathbb{R}^d that have x as the nearest neighbor in X: $Vor(x, X) = \{p \in \mathbb{R}^d \mid ||p - x|| \le ||p - y|| \text{ for all } y \in X\}.$

Def 95 (Delaunay complex). The *Delaunay complex* of X is defined as $Del(X) := \{Q \subseteq X \mid \bigcap_{x \in Q} Vor(x, X) \neq \emptyset\}$.

Rem 96. The Delaunay complex is isomorphic to the nerve of the Voronoi domains.

Rem 97. $Q \in \text{Del}(X) \implies \exists x \in \mathbb{R}^d, r > 0 : ||x - q|| = r \forall q \in Q$ **Rem 98.** $\emptyset \neq Q \subseteq X$ is a simplex of Del(X) iff Q has a circumsphere S $(Q \subset S)$ bounding an open ball B that is empty of points in $X : X \cap B = \emptyset$.

Def 99 (General spherical position). X is in general spherical position if for every $Q \subseteq X$ of at most d+1 points, (i) Q is affinely independent; and (ii) the smallest circumsphere of Q contains no other points of X: $S(Q) \cap (X \setminus Q) = \emptyset$.

Thm 100. Let X be in general spherical position. Then the geometric simplices $GeomDel(X) = \{conv \ Q \mid Q \in Del(X)\}$ form a geometric simplicial complex. Its underlying space is the convex hull of the points X, i.e. $|GeomDel(X)| = conv \ X$.

Def 101 (Lifting). $l : \mathbb{R}^d \to \mathbb{R}^{d+1}, x \mapsto (x, ||x||^2)$.

Lem 102. A (d-1)-sphere $S \in \mathbb{R}^d$ corresponds to a unique hyperplane $H = \text{aff } l(S) \subseteq \mathbb{R}^{d+1}$ with $l(S) = H \cap \text{im } l$ (an ellipsoid). S is empty of X iff all points in l(X) lie in the upper halfspace bounded by H.

Cor 103. If $X \subset \mathbb{R}^d$ is in general spherical position, then l(X) is in general linear position.

Delaunay Filtration

Def 104 (Delaunay complex). The *Delaunay complex* of X at radius $r \ge 0$ is $\mathrm{Del}_r(X) = \{Q \subseteq X \mid \bigcap_{x \in Q} \mathrm{Vor}_r(x, X) \ne \emptyset\}$, where $\mathrm{Vor}_r(x, X) = D_r(x) \cap \mathrm{Vor}(x, X)$.

Rem 105. $\operatorname{Del}_r(X) \cong \operatorname{Nrv} \{ \operatorname{Vor}_r(x, X) \mid x \in X \}$

Rem 106. For sufficiently large $r: Del_r(X) = Del(X)$.

Rem 107. The Čech and Delaunay complexes for the same radius have homotopy equivalent geometric realizations: $|\operatorname{Del}_r(X)| \simeq |\operatorname{Cech}_r(X)| \simeq \bigcup_{x \in X} D_r(x)$.

Rem 108. $Q \subseteq X$ is a simplex of $Del_r(X)$ iff the smallest circumsphere of Q excluding X has radius at most r.

Rem 109. $\operatorname{Del}_r(X) \neq \operatorname{Del}(X) \cap \operatorname{Cech}_r(X)$.

Homology

Let K be a finite simplicial complex.

Def 110 (Euler characteristic). Let k_i be the number of *i*-simplices. Then, the $\chi(K) = \sum_{i=0}^{\dim K} (-1)^i k_i$ is the *Euler characteristic*.

Rem 111. *If* $|K| \simeq |L|$, *then* $\chi(K) = \chi(L)$.

Def 112 (d-chain). A d-chain is a formal sum of d-simplices $\sum_{\sigma \in K_{(d)}} \lambda_{\sigma} \sigma$ with coefficients in \mathbb{Z}_2 .

Def 113 (Chain space). The *d*-chains form a \mathbb{Z}_2 -vector space $C_d(K)$, the *chain space*.

Rem 114. A d-chain corresponds to a subset of d-simplices. Def 115 (Boundary map). The boundary $\partial \sigma$ of a d-simplex σ

Def 115 (Boundary map). The boundary $\partial \sigma$ of a d-simplex σ is the (d-1)-chain of facets (faces of codimension 1) of σ . This extends linearly to a boundary map $\partial_d : C_d(K) \to C_{d-1}(K)$.

Def 116 (*d*-boundary). A *d*-chain γ is called a *d*-boundary if $\gamma = \partial_{d+1}(\xi)$ for some (d+1)-chain ξ .

Rem 117. The d-boundaries $B_d := \operatorname{im} \partial_{d+1}$ form a subspace of $C_d(K)$, containing boundaries of (d+1) chains.

Def 118 (*d*-cycle). A *d*-chain γ is a *d*-cycle if $\partial_d(\gamma) = 0$.

Rem 119. The d-cycles form a subspace $Z_d(K) := \ker \partial_d$ of , containing chains with zero boundary.

Rem 120. Boundaries are cycles: $B_d(K) \subseteq Z_d(K)$. In other words, $\partial_d \partial_{d+1}(\sigma) = 0$ for any (d+1)-chain σ .

Def 121 (Homology). The *d*-th homology (space) is the \mathbb{Z}_2 -vector space $H_d(K) = Z_d(K)/B_d(K)$.

Def 122 (Betti number). The dimension $\beta_d(K) = \dim H_d(K)$ is the *d*-th *Betti number*.

Rem 123. The betti numbers in dimension 0.1 and 2 count the number of connected components, tunnels, and voids of K.

Induced maps

A simplicial map induces a map between homology groups. Let $f: K \to L$ be a simplicial map.

Def 124 (Induced chain map). The map f induces a chain map $f_{\#}: C_d(K) \to C_d(L)$ by specifying it on the basis, the d-simplices of K, i.e. $\sigma \mapsto f(\sigma)$ if $f(\sigma)$ is a d-simplex, otherwise 0.

Lem 125. The map $f_\#$ induces a map $f_*: H_d(K) \to H_d(L)$ on homology.

Rem 126. The homology is a functor from simplicial complexes to vector spaces. In particular, commutative diagrams are preserved.

$$\begin{array}{ccc}
K & \xrightarrow{f} & L & & H_*(K) & \xrightarrow{f_*} & L \\
\downarrow g & & & \downarrow g_* \\
M & & & & M
\end{array}$$

Thm 127. Let f be a simplicial map and a homotopy equivalence. Then the induced homomorphism $H_*(f): H_*(K) \to H_*(L)$ is an isomorphism.

Computing homology

We want to find compatible basis for the subspaces.

Def 128 (Pivot). Let M be a matrix. Then the *pivot index* of a column is the index of the last non-zero entry.

Def 129 (Reduced). M is reduced if the pivots of non-zero columns are distinct.

Alg 130 (Matrix reduction). Let D be the boundary matrix and V the identity matrix encoding column operations. As long as D is not reduced, we a left column to a right column of D and V simultaneously. Output: D and V.

Rem 131. The columns $\{D_j \neq 0\}$ form a basis of $B_*(K)$.

Rem 132. The columns $\{V_i \mid D_i = 0\}$ form a basis of $Z_*(K)$.

Rem 133. The columns $\{V_i + B_d(K) \mid D_i = 0, i \notin pivots \ D\}$ form a basis for $H_*(K)$.