Devoir3

EL Hadrami

23/12/2020

```
library("FactoMineR")
library("factoextra")
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library("corrplot")
## corrplot 0.84 loaded
Exercice 1
Z1 \leftarrow c(1:3,4,9)
Z2 \leftarrow c(5,10,rep(8,2),12)
n \leftarrow length(Z2)
mat <- matrix(c(Z1,Z2),nrow=2,ncol=5,byrow = TRUE,dimnames = list(c("Z1","Z2")))</pre>
meanZ1 <- mean(mat[1,])</pre>
meanZ2 <- mean(mat[2,])</pre>
miZ1 <- sd(mat[1,])
miZ2 <- sd(mat[2,])
Z1norm \leftarrow (Z1 - mean(Z1)) / sd(Z1)
Z2norm \leftarrow (Z2 - mean(Z2)) / sd(Z2)
matnorm <- matrix(c(Z1norm, Z2norm), nrow=2, ncol=5, byrow = TRUE, dimnames = list(c("Z1", "Z2")))
# Matrice de correlation
matcorr <- (1/4) * (matnorm %*% t(matnorm))</pre>
# valeurs propres et vecteurs propres
eig <- eigen(matcorr)</pre>
valp1 <- eig$values[1]</pre>
vp1 <- eig$vectors[,1]</pre>
valp2 <- eig$values[2]</pre>
vp2 <- eig$vectors[,2]</pre>
# Cercle de correlation contenat les vecteurs X1 et X2
X1 <- sqrt(valp1) * vp1</pre>
X2 <- sqrt(valp2) * vp2</pre>
1.ACP sur la main
df <- as.data.frame(mat)</pre>
res.pca <- PCA(df,scale.unit = TRUE ,graph = FALSE)
2. Interpretation
3. Utilisation des commandes
# Standardisation des données
s1 <- scale(x = Z1,center=TRUE,scale=TRUE)</pre>
```

```
s2 <- scale(x = Z2,center=TRUE,scale=TRUE)</pre>
mats \leftarrow matrix(c(s1,s2),nrow = 2,ncol=5,byrow = TRUE)
fonction gsvd
gsvd <- function(Z,r,c){
  \#Z matrice numerique de dimension (n,p) et de rang k
  #r poids de la metrique des lignes N=diaq(r)
  # c poids de la metrique des colonnes M=diag(c)
  #----sortie-----
  # d vecteur de taille k contenant les valeurs singulieres (racines carres des valeurs propres)
  # U matrice de dimension (n,k) des vecteurs propres de de ZMZ'N
  # V matrice de dimension (p,k) des vecteurs propres de de Z'NZM
  k <-qr(Z)$rank
  colnames <-colnames (Z)
  rownames <-rownames (Z)
  Z <-as.matrix(Z)</pre>
  Ztilde <-diag(sqrt(r)) %*% Z %*%diag(sqrt(c))</pre>
  e <-svd(Ztilde)
  U <-diag(1/sqrt(r))%*%e$u[,1:k]# Attention : ne s'ecrit comme cela que parceque N et M sont diagonale
  V <-diag(1/sqrt(c))%*%e$v[,1:k]</pre>
  d \leftarrow e d[1:k]
  rownames(U) <- rownames</pre>
  rownames(V) <- colnames</pre>
  if(length(d)>1)
    colnames(U) <-colnames(V) <-paste("dim", 1:k, sep = "")</pre>
  return(list(U=U,V=V,d=d))
r <-rep(1/nrow(mats), nrow(mats)) #lignes ponderees par 1/n
c <-rep(1,ncol(mats)) #colonnes ponderees par 1
U <-gsvd(mats,r,c)$U
d <-gsvd(mats,r,c)$d
Psi <- U %*%diag(d)
#princomp(mat,cor=TRUE)
Exercice 2
# load data
data_ski <- read.table("data/stations.txt",header = TRUE)</pre>
# extraction des variables quantitatives
data_ski_active <- as.matrix(data_ski[1:32,2:7])</pre>
rownames(data_ski_active) <- data_ski$Nom</pre>
summary(data_ski_active)
##
                                                                         kmfond
       prixforf
                         altmin
                                        altmax
                                                       pistes
## Min.
         : 42.00
                    Min. : 500
                                   Min. :1600
                                                   Min. : 0.00
                                                                     Min. : 0.0
## 1st Qu.: 81.75
                    1st Qu.:1138
                                    1st Qu.:2275
                                                  1st Qu.: 26.00
                                                                     1st Qu.: 9.5
## Median : 95.50
                    Median:1400
                                    Median:2600
                                                   Median : 34.00
                                                                     Median:22.0
## Mean :104.69
                     Mean :1323
                                    Mean :2567
                                                   Mean : 49.44
                                                                     Mean :27.5
## 3rd Qu.:140.00
                    3rd Qu.:1550
                                    3rd Qu.:2838
                                                   3rd Qu.: 71.00
                                                                     3rd Qu.:36.5
## Max. :160.00
                    Max. :1850
                                    Max. :3450
                                                   Max. :129.00
                                                                     Max. :80.0
##
      remontee
## Min. : 4.00
## 1st Qu.: 17.00
```

Median : 23.00

```
## Mean : 33.81
## 3rd Qu.: 45.75
## Max. :110.00
```

PCA

```
pcaski <- PCA(data_ski_active,scale.unit = T,graph = FALSE)
# Visualisation des valeurs propres
valp <- pcaski$eig</pre>
```

Graphe des valeurs propres

```
fviz_eig(pcaski, addlabels = TRUE, ylim = c(0, 50))
```


Les deux premières composantes principales expliquent 74% de la variation, donc les deux premiers axes peuvent etre accept Graphique des variables

```
var <- get_pca_var(pcaski)</pre>
```

Coordonnées des variables

var\$coord

```
Dim.1
                          Dim.2
                                     Dim.3
                                              Dim.4
                                                         Dim.5
## prixforf 0.93031706 0.09513297 -0.08572117
                                           0.1251448 -0.31055554
## altmin
          -0.07336694
                     0.82270492 0.48871130
                                           0.2792394
                                                    0.02904032
           0.04967488
## altmax
           0.95404437 -0.06226765 -0.11082956
                                          0.1446174
## pistes
## kmfond
           0.36193326 -0.50154750 0.76829658 -0.1613207 -0.03250806
## remontee 0.92973674 -0.14239486 -0.03422684 0.1886935 0.23708189
```

fviz_pca_var(pcaski,axes = c(1,2))

Interpretation

- Les variables positivement corrélées sont regroupées
- Les variables négativement corrélées sont positionnées sur les côtés opposés de l'origine du graphique (quadrants opposés).
- La distance entre les variables et l'origine mesure la qualité de représentation des variables, les variables qui sont loin de l'origine sont bien représentées par l'ACP.

Qualité de representation des variables

corrplot(var\$cos2,is.corr = FALSE)

fviz_cos2(pcaski, choice = "var", axes = 1 :2)

Interpretations

Un cos2 élevé indique une bonne représentation de la variable sur les axes principaux en considération(comme on peut le voftviz_pca_var(pcaski, col.var = "cos2",gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE)

Contributions des variables

var\$contrib

```
Dim.1
                                     Dim.3
                                               Dim.4
                           Dim.2
                                                          Dim.5
## prixforf 27.0545026 0.7277779 0.8630735 3.348903 60.3619164
           0.1682591 54.4283218 28.0528130 16.673650 0.5278217
## altmin
## altmax
           13.2095337 22.6732235 0.1724779 62.326754 1.5443938
## pistes
           28.4521266 0.3117897 1.4427227 4.472173
                                                     1.7256503
## kmfond
            4.0948176 20.2283699 69.3313170 5.564903 0.6614036
## remontee 27.0207604 1.6305172 0.1375958 7.613617 35.1788143
```

corrplot(var\$contrib,is.corr = FALSE)

Interpretation

La ligne en pointillé rouge, sur le graphique ci-dessus, indique la contribution moyenne attendue. Donc les variables les plus contributives sont **piste**,**remontee** et **prixfort**

Diagramme circulaire des variables contributives

fviz_pca_var(pcaski, col.var = "contrib",gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),alha.var="c

Graphiques des individus

```
ind <- get_pca_ind(pcaski)
fviz_pca_ind (pcaski, col.ind = "cos2",gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE)</pre>
```


Contribution of individuals to Dim-1-2

Biplot

```
fviz_pca_biplot(pcaski,
repel = TRUE,col.var = "#2E9FDF", # Couleur des variables
col.ind = "#696969") # Couleur des individues )
```

