

THESIS

BY

TIGRAN SAIDNIA

Emission kernel of parton shower

Emission kernel of parton shower

Karlsruhe institute for Technology (KIT)
Institute of theoretical physics

Referents: PD Dr. Stefan Gieseke

Dr. Simon Plätzer

Supervisor: Emma Simpson

statement of originality
I hereby confirm that I have written the accompanying thesis by myself, without contributions from any sources other than those cited in the text and acknowledgements. This applies also to all graphics, drawings, maps and images included in the thesis.
Karlsruhe, February 20, 2019
Tigran Saidnia

Contents

T_{i}	able	of contents 3
	0.1	Old parametrisation
	0.2	new kinematic
		0.2.1 useful relations
	0.3	Single emission part
	0.4	Common scalar products
	0.5	Parametrization in terms of $(k_1 \cdot q_i)(k_1 \cdot q_k) \cdot \dots \cdot $
	0.6	Parametrization in terms of $(k_1 \cdot q_i)(k_1 \cdot q_i) \cdot \dots \cdot $
	0.7	Altarelli-Parisi splitting functions
	0.8	Colour factor calculation
1	Qua	ark antiquark gluon emission kernel
	1.1	$\operatorname{qg-}ar{q}$
	1.2	\bar{q} g-q
	1.3	$\widetilde{M}_1\widetilde{M}_2^{\dagger}$
	1.4	$ M^2 $
2	Glu	on gluon gluon emission kernel 21
_	2.1	Gluon-Emitter Bubble
		2.1.1 One-loop corrections to the gluon self-energy diagram(Gluon-Emitter
		Bubble)
	2.2	Gluon-Spectator Bubble
		2.2.1 One-loop corrections to the gluon self-energy diagram (Gluon-Spectator
		Bubble)
	2.3	Interference term $M_1M_2^{\dagger}$
	2.4	$ M^2 $
3	Qua	ark gluon quark emission kernel 37
	3.1	Quark loop
	3.2	Spectator Quark loop
	3.3	Interference term
4	Glu	on quark quark emission kernel 41
_	4.1	$M_1 \ldots \ldots$
		M_2

4.3	$M1M_2^{\dagger}$			_											_	_					2	44	1

0.1 Old parametrisation

$$q_{i}^{\mu} = zp_{i}^{\mu} + y(1-z)p_{j}^{\mu} + \sqrt{zy(1-z)}m_{\perp}$$

$$q^{\mu} = (1-z)p_{i}^{\mu} + yzp_{j}^{\mu} - \sqrt{zy(1-z)}m_{\perp}$$

$$q_{j}^{\mu} = (1-y)p_{j}^{\mu}$$

$$y = \frac{q_{i}q}{p_{i}p_{j}}$$

$$q_{i} + q = p_{i} + yp_{j}$$

$$q_{j} + q = (1-z)p_{i}^{\mu} + (1+yz-y)p_{j}^{\mu} - \sqrt{zy(1-z)}m_{\perp}$$

$$q_{i} \cdot q = y(1-2z+2z^{2})(p_{i} \cdot p_{j})$$

$$q_{i} \cdot q_{j} = z(1-y)(p_{i} \cdot p_{j})$$

$$q_{j} \cdot q = (1-z)(1-y)(p_{i} \cdot p_{j})$$

$$q_{j} \cdot q = (1-z)(1-y)(p_{i} \cdot p_{j})$$

$$q_{j} \cdot q = (1-z)(1-y)(p_{i} \cdot p_{j})$$

0.2 new kinematic

$$k_{l}^{\mu} = \alpha_{l} \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} + y \beta n^{\mu} + \sqrt{y \alpha_{l} \beta_{l}} n^{\mu}_{\perp,l} \qquad l = 1, ..., m$$

$$q_{i}^{\mu} = (1 - \sum_{l=1}^{m} \alpha_{l}) \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} + y (1 - \sum_{l=1}^{m} \beta_{l}) n^{\mu} - \sqrt{y \alpha_{l} \beta_{l}} n^{\mu}_{\perp,l}$$

$$q_{k}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_{k}^{\nu} \qquad k = 1, ..., n \qquad k \neq i$$
(2)

0.2.1 useful relations

$$q_{i}^{2} = p_{i}^{2} = q_{k}^{2} = k_{l}^{2} = p_{j}^{2} = p_{k}^{2} = n^{2} = 0 \quad \text{All hard momenta are on-shell}$$

$$Q^{\mu} = q_{i}^{\mu} + \sum_{l=1}^{m} k_{l}^{\mu} + \sum_{k=1}^{m} q_{k}^{\mu} = p_{i}^{\mu} + \sum_{k=1}^{m} p_{k}^{\mu} \quad \text{total momentum}$$

$$n^{\mu} = Q^{\mu} - \frac{Q^{2}}{2p_{i} \cdot Q} p_{i}^{\mu} \qquad n^{\mu} \text{ is the recoil}$$

$$q_{i}^{\mu} + \sum_{l=1}^{m} k_{l}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} + y n^{\mu}$$

$$\alpha \Lambda^{\mu}_{\nu} Q^{\nu} = Q^{\mu} - y n^{\mu}$$

$$\alpha \Lambda^{\mu}_{\nu} Q^{\nu} = Q^{\mu} - y n^{\mu}$$

$$n^{\mu}_{\perp,l} \Lambda^{\mu}_{\nu} p_{i}^{\nu} = n_{\perp,l} \cdot n = n_{\perp,l} \cdot Q = 0$$

$$n^{\mu}_{\perp,l} \cdot p_{k} \neq 0$$

$$n^{2}_{\perp,l} = -2\alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} n_{\mu}$$

$$n^{2}_{\perp,1} = -2p_{i} \cdot Q$$

$$\alpha_{1} = 1 - \beta_{1}$$

 $\alpha = \sqrt{1-y}$

Lorenz trafo

$$\alpha \Lambda^{\mu}{}_{\nu} = p_{i}{}^{\mu} p_{i\nu} \frac{-y^{2} Q^{2}}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + p_{i}{}^{\mu} Q_{\nu} \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}{}_{\nu}$$

$$(4)$$

$$\hat{p}_{i}^{\mu} = \alpha \Lambda^{\mu}_{\ \nu} p_{i}^{\ \nu} = p_{i}^{\ \mu} p_{i\nu} p_{i}^{\ \nu} \frac{-y^{2} Q^{2}}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + p_{i}^{\ \mu} Q_{\nu} p_{i}^{\ \nu} \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} p_{i}^{\ \nu} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}_{\ \nu} p_{i}^{\ \nu}$$

$$(5)$$

$$\hat{p}_{i}^{\mu} = p_{i}^{\mu} (Q \cdot p_{i}) \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} p_{i}^{\mu}$$

$$= p_{i}^{\mu} \left[\frac{y(1 + \sqrt{1 - y})}{(2 + 2\sqrt{1 - y} - y)} + \sqrt{1 - y} \right] = p_{i}^{\mu}$$
(6)

$$\hat{p}_i^{\mu} = \alpha \Lambda^{\mu}_{\ \nu} p_i^{\nu} = p_i^{\mu}$$

$$(7)$$

$$\hat{p_k}^{\mu} = \alpha \Lambda^{\mu}{}_{\nu} p_k{}^{\nu} = p_i{}^{\mu} p_{i\nu} p_k{}^{\nu} \frac{-y^2 Q^2}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + p_i{}^{\mu} Q_{\nu} p_k{}^{\nu} \frac{y(1 + \sqrt{1 - y})}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} p_k{}^{\nu} \frac{(y^2 - y - y\sqrt{1 - y})}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}{}_{\nu} p_k{}^{\nu}$$

$$(8)$$

$$\hat{p_k}^{\mu} = \alpha \Lambda^{\mu}{}_{\nu} p_k^{\nu} = p_i^{\mu} \left[\frac{-y^2 Q^2(p_i \cdot p_k)}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] + Q^{\mu} \left[\frac{(y^2 - y - y\sqrt{1 - y})(p_i \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] + \sqrt{1 - y} p_k^{\mu}$$

$$(9)$$

$$\begin{split} \hat{p_k}^{\mu} &= \alpha \Lambda^{\mu}{}_{\nu} p_k{}^{\nu} = p_i{}^{\mu} \left[\frac{-y^2 Q^2 (p_i \cdot p_k)}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] \\ &+ Q^{\mu} \left[\frac{(y^2 - y - y\sqrt{1 - y})(p_i \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] + \sqrt{1 - y} p_k{}^{\mu} \end{split}$$

with

$$A_{1} \equiv \frac{-y^{2}Q^{2}(p_{i} \cdot p_{k})}{4(p_{i} \cdot Q)^{2}(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}$$

$$A_{2} \equiv \frac{(y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}$$
(10)

$$\hat{p}_k^{\mu} = A_1 \, p_i^{\mu} + A_2 \, Q^{\mu} + \sqrt{1 - y} p_k^{\mu}$$
(11)

$$\hat{Q}^{\mu} = \alpha \Lambda^{\mu}{}_{\nu} Q^{\nu} = p_{i}{}^{\mu} \left[\frac{-y^{2} Q^{2} (p_{i} \cdot Q)}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y}) Q^{2}}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} \right] + Q^{\mu} \left[\frac{(y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot Q)}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} \right] + \sqrt{1 - y} Q^{\mu}$$

with

$$S_{1} \equiv \frac{Q^{2}}{2p_{i} \cdot Q} \left[\frac{-y^{2}}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})}{(1 + \sqrt{1 - y} - \frac{y}{2})} \right] = \frac{Q^{2}}{2p_{i} \cdot Q} y$$

$$S_{2} \equiv \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} = 1 - y$$

$$(12)$$

$$\hat{Q}^{\mu} = \frac{Q^2}{2p_i \cdot Q} y \, p_i^{\mu} + (1 - y) \, Q^{\mu}$$
(13)

0.3 Single emission part

$$k_{1}^{\mu} = (\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\mu} + y\beta_{1}Q^{\mu} + \sqrt{y\alpha_{1}\beta_{1}}n^{\mu}_{\perp,1}$$

$$q_{i}^{\mu} = (\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\mu} + y\alpha_{1}Q^{\mu} - \sqrt{y\alpha_{1}\beta_{1}}n^{\mu}_{\perp,l}$$

$$q_{k}^{\mu} = \alpha\Lambda^{\mu}_{\nu}p_{k}^{\nu} \qquad k = 1, ..., n \qquad k \neq i$$
(14)

$$\begin{aligned} k_1{}^{\mu} &= \zeta_1 p_i{}^{\mu} + \lambda_1 Q^{\mu} + \sqrt{y \alpha_1 \beta_1} n^{\mu}{}_{\perp,1} \\ q_i{}^{\mu} &= \zeta_q p_i{}^{\mu} + \lambda_q Q^{\mu} - \sqrt{y \alpha_1 \beta_1} n^{\mu}{}_{\perp,l} \\ q_k{}^{\mu} &= A_1 p_i{}^{\mu} + A_2 Q^{\mu} + \sqrt{1 - y} p_k^{\mu} \end{aligned}$$

$$\zeta_{1}\zeta_{1} = (\alpha_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) + y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2})
\zeta_{1}\lambda_{1} = (y\alpha_{1}\beta_{1} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\zeta_{1}\zeta_{q} = (\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}) + y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2})
\zeta_{1}\lambda_{q} = (y\alpha_{1}^{2} - y^{2}\beta_{1}\alpha_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\zeta_{q}\zeta_{q} = (\beta_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) + y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2})
\zeta_{q}\lambda_{1} = (y\beta_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\zeta_{q}\zeta_{1} = (\beta_{1}\alpha_{1} - y(\beta_{1}^{2} + \alpha_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}) + y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2})
\zeta_{q}\lambda_{q} = (y\beta_{1}\alpha_{1} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\lambda_{1}\lambda_{1} = y^{2}\beta_{1}^{2}
\lambda_{1}\zeta_{q} = (y\beta_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\lambda_{1}\lambda_{q} = y^{2}\beta_{1}\alpha_{1}
\lambda_{1}\zeta_{1} = (y\beta_{1}\alpha_{1} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\lambda_{q}\lambda_{q} = y^{2}\alpha_{1}\beta_{1}
\lambda_{q}\zeta_{q} = (y\alpha_{1}\beta_{1} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\lambda_{q}\zeta_{1} = (y\alpha_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))$$

0.4 Common scalar products

$$k_{1} \cdot q_{i} = (\zeta_{1}\lambda_{q} + \lambda_{1}\zeta_{q})p_{i} \cdot Q + \lambda_{1}\lambda_{q}Q^{2} - y\alpha_{1}\beta_{1}n^{2}_{\perp,1}$$

$$= [(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))y\alpha_{1} + y\beta_{1}(1 - \alpha_{1} - \alpha_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))] p_{i} \cdot Q$$

$$y^{2}\beta_{1}\alpha_{1} Q^{2} + 2y\alpha_{1}\beta_{1} p_{i}Q \qquad (16)$$

$$\Rightarrow k_{1} \cdot q_{i} = [y\alpha_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) + y\beta_{1} - y\alpha_{1}\beta_{1} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})] p_{i} \cdot Q$$

$$y^{2}\beta_{1}\alpha_{1} Q^{2} + 2y\alpha_{1}\beta_{1} p_{i}Q$$

$$k_{1} \cdot q_{i} = y(\alpha_{1} + \beta_{1}) p_{i} \cdot Q = y p_{i} \cdot Q \qquad (17)$$

$$k_{1} \cdot q_{k} = (\zeta_{1}A_{2} + \lambda_{1}A_{1})p_{i} \cdot Q + \zeta_{1}\sqrt{1 - y} p_{i} \cdot p_{k} + \lambda_{1}A_{2} Q^{2} + \lambda_{1}\sqrt{1 - y} Q \cdot p_{k} + \sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1} = \{ [(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))\frac{(y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}] + y\beta_{1} [\frac{-y^{2}Q^{2}(p_{i} \cdot p_{k})}{4(p_{i} \cdot Q)^{2}(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}] \} p_{i} \cdot Q + (\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))\sqrt{1 - y} p_{i} \cdot p_{k} + y\beta_{1} \frac{(y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} Q^{2} + y\beta_{1}\sqrt{1 - y}Q \cdot p_{k} + \sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1}$$

$$(18)$$

$$k_{1} \cdot q_{k} = \alpha_{1} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) - y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k})$$

$$+ y\beta_{1} \frac{-y^{2}Q^{2}}{4(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) + y\beta_{1} \frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} Q \cdot p_{k}$$

$$+ \alpha_{1}\sqrt{1 - y} p_{i} \cdot p_{k} - y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{1 - y} p_{i} \cdot p_{k}$$

$$+ y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) + y\beta_{1}\sqrt{1 - y}(Q \cdot p_{k})$$

$$+ \sqrt{\alpha_{1}\beta_{1}y(1 - y)} p_{k} \cdot n_{\perp,1}$$

$$(19)$$

$$k_{1} \cdot q_{k} = \left[\alpha_{1} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + y\beta_{1} \frac{-y^{2}Q^{2}}{4(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \alpha_{1}\sqrt{1 - y}\right]$$
$$-y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{1 - y}] p_{i} \cdot p_{k} + \left[y\beta_{1} \frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + y\beta_{1}\sqrt{1 - y}\right](Q \cdot p_{k})$$
$$+\sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1}$$
(20)

$$k_{1} \cdot q_{k} = \left\{ \alpha_{1} \left[\frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \right] + y\beta_{1} \left(\frac{Q^{2}}{p_{i} \cdot Q} \right) \left[\frac{-y^{2}}{4(1 + \sqrt{1 - y} - \frac{y}{2})} - \sqrt{1 - y} \right] \right\} p_{i} \cdot p_{k} + y\beta_{1} \left[\frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \right] (Q \cdot p_{k}) + \sqrt{\alpha_{1}\beta_{1}y(1 - y)} p_{k} \cdot n_{\perp, 1}$$

$$(21)$$

$$k_1 \cdot q_k = \left[\alpha_1(1-y) + y\beta_1(\frac{Q^2}{2p_i \cdot Q})\right] p_i \cdot p_k + y\beta_1 Q \cdot p_k + \sqrt{\alpha_1\beta_1 y(1-y)} p_k \cdot n_{\perp,1}$$
 (22)

0.5 Parametrization in terms of $(k_1 \cdot q_i)(k_1 \cdot q_k)$

$$(23)$$

$$\begin{split} k_1^{\eta}k_1^{\eta'} &= [(1-\beta_1)^2 - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q})^2]p_i^{\eta}p_i^{\eta'} - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q})p_i^{\eta}Q^{\eta'} - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q})Q^{\eta}p_i^{\eta'} \\ k_1^{\eta}q_i^{\eta'} &= [\beta_1(1-\beta_1) - y\beta_1^2(\frac{Q^2}{2p_i \cdot Q})]p_i^{\eta}p_i^{\eta'} + y\beta_1^2Q^{\eta}p_i^{\eta'} \\ q_i^{\eta}k_1^{\eta'} &= [\beta_1(1-\beta_1) - y\beta_1^2(\frac{Q^2}{2p_i \cdot Q})]p_i^{\eta}p_i^{\eta'} + y\beta_1^2p_i^{\eta}Q^{\eta'} \\ q_i^{\eta}q_i^{\eta'} &= \beta_1^2p_i^{\eta}p_i^{\eta'} \\ k_1^{\eta}q_k^{\eta'} &= [(1-\beta_1) - y\beta_1(\frac{Q^2}{2p_i \cdot Q})]\sqrt{1-y}p_i^{\eta}p_k^{\eta'} - y\beta_1(\frac{Q^2}{2p_i \cdot Q})A_1 p_i^{\eta}p_i^{\eta'} - y\beta_1(\frac{Q^2}{2p_i \cdot Q})A_2 p_i^{\eta}Q^{\eta'} \\ &+ y\beta_1A_1 Q^{\eta}p_i^{\eta'} + y\beta_1A_2 Q^{\eta}Q^{\eta'} + y\beta_1\sqrt{1-y}Q^{\eta}p_k^{\eta'} \\ q_i^{\eta}q_k^{\eta'} &= A_1\beta_1p_i^{\eta}p_i^{\eta'} + A_2\beta_1p_i^{\eta}Q^{\eta'} + \beta_1\sqrt{1-y}p_i^{\eta}p_i^{\eta'} - y\beta_1(\frac{Q^2}{2p_i \cdot Q})A_1 p_i^{\eta}p_i^{\eta'} - y\beta_1(\frac{Q^2}{2p_i \cdot Q})A_2 Q^{\eta}p_i^{\eta'} \\ &+ y\beta_1A_1 p_i^{\eta}Q^{\eta'} + y\beta_1A_2 Q^{\eta}Q^{\eta'} + y\beta_1\sqrt{1-y}p_k^{\eta}Q^{\eta'} \\ &+ y\beta_1A_1 p_i^{\eta}Q^{\eta'} + y\beta_1A_2 Q^{\eta}Q^{\eta'} + y\beta_1\sqrt{1-y}p_k^{\eta}Q^{\eta'} \\ q_k^{\eta}q_i^{\eta'} &= A_1\beta_1p_i^{\eta}p_i^{\eta'} + A_2\beta_1Q^{\eta}p_i^{\eta'} + \beta_1\sqrt{1-y}p_k^{\eta}p_i^{\eta'} \end{aligned} \tag{24}$$

0.6 Parametrization in terms of $(k_1 \cdot q_i)(k_1 \cdot q_i)$

$$(k_1 \cdot q_i)(k_1 \cdot q_i) = y^2(p_i \cdot Q)(p_i \cdot Q)$$
(25)

$$k_{1}^{\eta}k_{1}^{\eta'} = [(1-\beta_{1})^{2} - 2y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})p_{i}^{\eta}Q^{\eta'} + y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})Q^{\eta}p_{i}^{\eta}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = [\beta_{1}(1-\beta_{1}) - y(1-\beta_{1})^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y(1-\beta_{1})^{2}Q^{\eta}p_{i}^{\eta'}$$

$$q_{i}^{\eta}k_{1}^{\eta'} = [\beta_{1}(1-\beta_{1}) - y(1-\beta_{1})^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y(1-\beta_{1})^{2}p_{i}^{\eta}Q^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = [\beta_{1}^{2} - 2y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})p_{i}^{\eta}Q^{\eta'} + y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})Q^{\eta}p_{i}^{\eta}p_{i}^{\eta'}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = (1-\beta_{1})A_{1}p_{i}^{\eta}p_{i}^{\eta'} + (1-\beta_{1})A_{2}p_{i}^{\eta}Q^{\eta'} + (1-\beta_{1})\sqrt{1-y}p_{i}^{\eta}p_{i}^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = A_{1}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + A_{2}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + \beta_{1}\sqrt{1-y}p_{i}^{\eta}p_{i}^{\eta'}$$

$$q_{k}^{\eta}q_{i}^{\eta'} = A_{1}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + A_{2}\beta_{1}Q^{\eta}p_{i}^{\eta'} + \beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$(26)$$

0.7 Altarelli-Parisi splitting functions

$$\langle \hat{P}_{qq} \rangle = C_F \left[\frac{1+z^2}{1-z} - \varepsilon (1-z) \right]$$

$$\langle \hat{P}_{gq} \rangle = T_R \left[1 - \frac{2z(1-z)}{1-\varepsilon} \right]$$

$$\langle \hat{P}_{qg} \rangle = C_F \left[\frac{1+(1-z)^2}{z} - \varepsilon z \right]$$

$$\langle \hat{P}_{gg} \rangle = 2C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right]$$
splitting functions (27)

0.8 Colour factor calculation

fundamental representation in SU(2) and SU(3)

$$T^{a} = \tau^{a} \equiv \frac{\sigma^{2}}{2} \quad \text{with Pauli matrices } \sigma^{a}$$

$$T^{a} = \vartheta^{a} \equiv \frac{\lambda^{2}}{2} \quad \text{with Gell - Mann matrices } \lambda^{a}$$
(28)

$$\lambda^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 \end{pmatrix}, \quad \lambda^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \\ 0 \end{pmatrix}, \quad \lambda^{3} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \lambda^{4} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\lambda^{5} = \begin{pmatrix} -i \\ i \\ 0 \end{pmatrix}, \quad \lambda^{6} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \lambda^{7} = \begin{pmatrix} 0 & 0 \\ 0 & -i \\ i & 0 \end{pmatrix}, \quad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ 0 & -2 \\ 0 & -2 \end{pmatrix}$$
(29)

As we can see, λ^3 and λ^8 are diagonal. These generators satisfy:

$$[T^a, T^b] = i\epsilon^{abc}T^c \tag{30}$$

The most common convention for the normalization of the generators in physics is:

$$\sum_{c,d} f^{acd} f^{bcd} = N \delta^{ab} \tag{31}$$

The main relation we will use later for SU(N):

$$tr(T^aT^b) = T_{ij}{}^aT_{ji}{}^b = T_F\delta^{ab}$$
(32)

$$\sum_{a} (T^a T^a) = C_F \delta^{ij} \tag{33}$$

$$f^{acd}f^{bcd} = C_A \delta^{ab} \tag{34}$$

With $T_F = \frac{1}{2}$, $C_A = N$ and $C_F = \frac{N^2 - 1}{2N}$.

$$f^{abc} = -2itr(T^a[T^b, T^c]) \tag{35}$$

$$d^{abc} = 2tr(T^a T^b, T^c) (36)$$

$$T^{a}T^{b} = \frac{1}{2}(\frac{1}{N}\delta_{ab} + (d^{abc} + if^{abc})T^{c})$$
(37)

$$tr(T^a T^b T^c) = \frac{1}{4} (d^{abc} + i f^{abc}) \tag{38}$$

$$tr(T^a T^b T^a T^c) = \frac{-1}{4N} \delta_{bc} \tag{39}$$

$$f^{acd}f^{bcd} = N\delta^{ab} \tag{40}$$

$$f^{acd}d^{bcd} = 0 (41)$$

$$f^{ade}f^{bef}f^{cfd} = \frac{N}{2}f^{abc} \tag{42}$$

Fierz identity:

$$\sum_{a} T_{ij}{}^{a} T_{kl}{}^{a} = \frac{1}{2} \left(\delta_{il} \delta_{kj} - \frac{1}{N} \delta_{ij} \delta_{kl} \right) \tag{43}$$

Chapter 1

Quark antiquark gluon emission kernel

$1.1~{\sf qg}$ - \bar{q}

$$M_{1} = \left[\bar{u}_{\sigma}(q_{i})(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l})\frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}}\varepsilon^{\lambda_{1}}{}_{\mu}(q)\right]\left[v_{\tau}(q_{j})\right]$$
(1.1)

$$(b, \mu', \lambda_2)$$

$$q \qquad q_i + q$$

$$(o', \sigma') \xrightarrow{q_i} \qquad (k, \beta)$$

$$(f', \tau') \xrightarrow{q_j} \qquad (n, \delta)$$

$$M_1^{\dagger} = \left[\frac{-i(\not q_i + \not q)}{(q_i + q)^2} \left(ig_s \gamma^{\mu'} \times [T^b]_{\sigma'}^{k} \right) u_{\sigma'}(q_i) \varepsilon^{\lambda_2}{}_{\mu'}(q) \right] \left[\bar{v}_{\tau'}(q_j) \right]$$
(1.2)

$$(l, \alpha) \xrightarrow{q_i + q} (o, \sigma) (o', \sigma') \xrightarrow{q_i} (h, \alpha)$$

$$(m, \gamma) \xrightarrow{q_j} (f, \tau) (f', \tau') \xrightarrow{q_j} (n, \delta)$$

$$|M_{1}|^{2} = M_{1} M_{1}^{\dagger} = [\bar{u}_{\sigma}(q_{i}) (-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{1}}{}_{\mu}(q)][v_{\tau}(q_{j})]$$

$$[\frac{-i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} (ig_{s}\gamma^{\mu'} \times [T^{b}]_{o'}^{k}) u_{\sigma'}(q_{i}) \varepsilon^{\lambda_{2}}{}_{\mu'}^{*}(q)][\bar{v}_{\tau'}(q_{j})]$$

$$(1.3)$$

$$|M_{1}|^{2} = \left[\frac{-i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \left(ig_{s}\gamma^{\mu'} \times [T^{b}]_{o'}^{k}\right) \bar{u}_{\sigma}(q_{i}) u_{\sigma'}(q_{i}) \varepsilon^{\lambda_{2}}_{\mu'}^{*}(q) \varepsilon^{\lambda_{1}}_{\mu}(q) \right. \\ \left. \times \left(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}\right) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \left[\left[\bar{v}_{\tau'}(q_{j})v_{\tau}(q_{j})\right]\right] \right]$$

$$(1.4)$$

and after sum over the lorenz index (σ, σ') and (τ, τ') and unsing the spin addition relation:

$$\sum_{\sigma,\sigma'} \bar{u}_{\sigma}(q_i) \ u_{\sigma'}(q_i) = \not q_i \delta^{oo'},$$

$$\sum_{\tau,\tau'} \bar{v}_{\tau}(q_j) \ v_{\tau'}(q_j) = \not q_j \delta^{ff'}$$
(1.5)

and sum over polarization index (λ_1, λ_2) :

$$\sum_{\mu,\mu'} \varepsilon^{\lambda_2^*}_{\mu'}(q) \varepsilon^{\lambda_1}_{\mu}(q) = -g_{\mu\mu'} \delta^{ab}$$
(1.6)

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i + q)^2 (q_i + q)^2} [(\not q_i + \not q) \ \gamma^{\mu'} \ \not q_i \ g_{\mu'\mu} \gamma^{\mu} (\not q_i + q)] [\not q_j]$$
(1.7)

from here and after contraction between all indices we can actually make statements about the last result.

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i + q)^2 (q_i + q)^2} [(\not q_i + \not q) \ \gamma^{\mu'} \not q_i \ \gamma_{\mu'} (\not q_i + q)] [\not q_j]$$
(1.8)

In other words we expect the tree level diagram from LO and a number: Which means:

$$|M^2| = \left| \begin{array}{c|c} P_i & q_i & q_i \\ \hline \\ P_j & \end{array} \right|^2 \otimes \left| \begin{array}{c|c} q_i & q_i \\ \hline \\ q_i + q & Q \\ \hline \end{array} \right|^2$$

contribution from LO

 $a\ complex\ number$

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^{\ k} [T^a]_o^{\ l}}{(q_i + q)^2 (q_i + q)^2} [P_i] [P_j] \otimes (a \ complex \ number)$$
 (1.9)

Let's calculate the contribution and compare the final result with this expectation:

$$N =: \gamma^{\mu'} \not A_i \gamma_{\mu'} = q_{i\sigma} \gamma^{\mu'} \gamma^{\sigma} \gamma_{\mu'}$$

$$= q_{i\sigma} (\{\gamma^{\mu'}, \gamma^{\sigma}\} - \gamma^{\sigma} \gamma^{\mu'}) \gamma_{\mu'}$$

$$= q_{i\sigma} 2g^{\mu'\sigma} \gamma_{\mu'} - d \gamma^{\sigma}$$

$$= (2 - d) \not A_i$$

$$(1.10)$$

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i+q)^2 (q_i+q)^2} [(\not q_i + \not q) \quad \not q_i \quad (\not q_i+q)][\not q_j]$$
(1.11)

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i+q)^2 (q_i+q)^2} [\not q_i \not q_i \not q_i + \not q_i \not q_i \not q_i$$
(1.12)

For the momenta are on-shell which means:

$$A_i A_i = q_i^2 = m_i^2$$

$$A_i A_j = q^2 = m^2$$

$$A_j A_j = q_j^2 = m_j^2$$
(1.13)

we can first neglect the mass of patrons and ignore each term with $\not q_i \not q_i$ and $\not q \not q$ as well.

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(2a_i q)(2a_i q)} [A A_i A_j] [A_j]$$
(1.14)

$$L = \not A \not A_i \not A = \not A [q_{i\sigma}q_{\mu} (\{\gamma^{\mu}, \gamma^{\sigma}\} - \gamma^{\sigma}\gamma^{\mu})]
\not A [2q_i{}^{\mu}q_{\mu} - q_{i\sigma}q_{\mu}\gamma^{\mu}\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[\gamma^{\mu}\gamma^{\mu}\gamma^{\sigma}]
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[\frac{\gamma^{\mu}\gamma^{\mu}}{2} + \frac{\gamma^{\mu}\gamma^{\mu}}{2}]\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[g^{\mu\mu}]\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q^{\mu}\gamma^{\sigma}
= \not A (2q_iq) - q^2 \not A_i
= \not A (2q_iq)$$
(1.15)

After inserting the last result of L and simplify the term $(2q_iq)$ from the denominator and nominator because, we get:

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [\not A] [\not A_j]$$
(1.16)

Now we are going to use the parametrisation from equation (1) to reduce the 3-member matrix element to 2-member and take out the singularity term from the amplitude.

$$|M_1|^2 = (d-2) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [(1-z) \not p_i + zy \not p_j - \sqrt{zy(1-z)} \not m_\perp] [(1-y) \not p_j]$$

$$(1.17)$$

Multiplying the both sides

$$|M_{1}|^{2} = (d-2) \frac{g_{s}^{2} [T^{a}]_{o}^{k} [T^{a}]_{o}^{l}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [(1-z)(1-y) \not p_{i} \not p_{j}$$

$$+zy(1-y) \not p_{j} \not p_{j} + (1-y)\sqrt{zy(1-z)} \not m_{\perp} \not p_{j}]$$

$$(1.18)$$

and under consideration of the fact that p_i and p_j are the on-shell momenta of the emitter and spectator partons, we can ignore the terms with $\not p_i$ $\not p_i$ and $\not p_j$ $\not p_j$. The $p_i \cdot m_{\perp}$ and $p_j \cdot m_{\perp}$ are always 0 because the p_i and p_j are lightlike, i.e. zero transverse component. So those terms can be neglected.

$$|M_1|^2 = (d-2)(1-z)(1-y) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [p_i] [p_j]$$
 (1.19)

$1.2 \quad \bar{q}$ g-q

$$M_2 = \left[\frac{i(\not q_j + \not q)}{(q_i + q)^2} (-ig_s \gamma^{\nu} \times [T^c]_f^m) v_{\tau}(q_j) \varepsilon^{\lambda_3}{}_{\nu}(q) \right] [u_{\sigma}(q_i)]$$
 (1.20)

$$(d, \nu', \lambda_4)$$

$$q \qquad q_j + q$$

$$(f', \tau') \xrightarrow{q_j} (n, \delta)$$

$$(o', \sigma') \xrightarrow{q_i} (k, \beta)$$

$$M_{2}^{\dagger} = \left[\bar{v}_{\tau'}(q_{j}) \left(ig_{s}\gamma^{\nu'} \times [T^{d}]_{f'}^{n}\right) \frac{-i(\not q_{j} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{4}}_{\nu'}(q)\right] \left[\bar{u}_{\sigma'}(q_{i})\right]$$
(1.21)

$$(m, \gamma) \xrightarrow{q_j + q} (f, \tau) \xrightarrow{(c, \nu, \lambda_3)} (d, \nu', \lambda_4)$$

$$(m, \gamma) \xrightarrow{q_j + q} (f, \tau) \xrightarrow{(f', \tau')} q_j \xrightarrow{q_j + q} (n, \delta)$$

$$(l, \alpha) \xrightarrow{q_i} (o, \sigma) (o', \sigma') \xrightarrow{q_i} (k, \beta)$$

$$|M_{2}|^{2} = M_{2} M_{2}^{\dagger} = \left[\frac{i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} \left(-ig_{s}\gamma^{\nu} \times [T^{c}]_{f}^{m}\right) v_{\tau}(q_{j}) \varepsilon^{\lambda_{3}}{}_{\nu}(q)\right] \left[u_{\sigma}(q_{i})\right]$$

$$\left[\bar{v}_{\tau'}(q_{j}) \left(ig_{s}\gamma^{\nu'} \times [T^{d}]_{f'}^{n}\right) \frac{-i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} \varepsilon^{\lambda_{4}}{}_{\nu'}(q)\right] \left[\bar{u}_{\sigma'}(q_{i})\right]$$

$$(1.22)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} [T^{c}]_{f}^{m} [T^{d}]_{f'}^{n}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(\not q_{j} + \not q)\gamma^{\nu} v_{\tau}(q_{j})\bar{v}_{\tau'}(q_{j}) \varepsilon^{\lambda_{3}}{}_{\nu}(q)\varepsilon^{\lambda_{4}}{}_{\nu'}(q)\gamma^{\nu'}(\not q_{j} + \not q)]$$

$$[u_{\sigma}(q_{i})] [\bar{u}_{\sigma'}(q_{i})]$$

$$(1.23)$$

and after sum over the lorenz index (σ, σ') and (τ, τ') and unsing the spin addition relation:

$$\sum_{\sigma,\sigma'} \bar{u}_{\sigma}(q_i) u_{\sigma'}(q_i) = \not q_i \delta^{oo'},$$

$$\sum_{\tau,\tau'} \bar{v}_{\tau}(q_j) v_{\tau'}(q_j) = \not q_j \delta^{ff'}$$
(1.24)

and sum over polarization index (λ_3, λ_4) :

$$\sum_{\nu,\nu'} \varepsilon^{\lambda_4}_{\nu'}^*(q) \varepsilon^{\lambda_3}_{\nu}(q) = -g_{\nu\nu'} \delta^{cd}$$
(1.25)

$$|M_2|^2 = \frac{g_s^2 [T^c]_f^m [T^c]_f^n}{(q_i + q)^2 (q_i + q)^2} [(\not q_j + \not q)\gamma^{\nu} \not q_j (-g_{\nu\nu'})\gamma^{\nu'} (\not q_j + \not q)] [\not q_i]$$
(1.26)

After the same calculation from the last part, we'll get:

$$|M_2|^2 = (d-2)\frac{g_s^2 \left[T^c\right]_f^m \left[T^c\right]_f^n}{(2qq_i)} [\not q] [\not q_i]$$
(1.27)

finally:

$$|M_2|^2 = -(d-2)yz^2 \frac{g_s^2 \left[T^c\right]_f^m \left[T^c\right]_f^n}{2(1-z)(1-y)(p_i \cdot p_j)} [p_i] [p_j]$$
(1.28)

1.3 $M_1 M_2^{\dagger}$

$$M_{1} M_{2}^{\dagger} = \left[\bar{u}_{\sigma}(q_{i}) \left(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}\right) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{1}}{}_{\mu}(q)\right] \left[v_{\tau}(q_{j})\right]$$

$$\left[\bar{v}_{\tau'}(q_{j}) \left(ig_{s}\gamma^{\nu'} \times [T^{d}]_{f'}^{n}\right) \frac{-i(\not q_{j} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{4}}{}_{\nu'}(q)\right] \left[u_{\sigma'}(q_{i})\right]$$

$$(1.29)$$

$$M_{1} M_{2}^{\dagger} = \frac{g_{s}^{2} [T^{a}]_{o}^{l} [T^{d}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [\not q_{i} \gamma^{\mu} (\not q_{i} + \not q_{i})] \varepsilon^{\lambda_{1}}_{\mu}(q) \varepsilon^{\lambda_{4}}_{\nu'}(q)$$

$$[\not q_{j} \gamma^{\nu'} (\not q_{j} + \not q_{i})]$$
(1.30)

$$M_{1} M_{2}^{\dagger} = \frac{g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [\not q_{i} \gamma^{\mu} (\not q_{i} + \not q)] - g_{\mu\nu'}$$

$$[\not q_{j} \gamma^{\nu'} (\not q_{j} + \not q)]$$

$$(1.31)$$

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(2q_i q)(2q_j q)} [\not q_i \gamma^{\mu} (\not q_i + \not q)] [\not q_j \gamma_{\mu} (\not q_j + \not q)]$$
(1.32)

Expectation:

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^{\ l} [T^a]_{f'}^n}{(2q_i q)(2q_j q)} [(\not q_i + \not q) \gamma^{\mu} \not q_i] [(\not q_j + \not q) \gamma_{\mu} \not q_j]$$
(1.33)

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [-(\not q_{i} + \not q) \not q_{i} \gamma^{\mu} + 2(\not q_{i} + \not q) q_{i}^{\mu}]$$

$$[-(\not q_{j} + \not q) \not q_{j} \gamma_{\mu} + 2(\not q_{j} + \not q) q_{j\mu}]$$

$$(1.34)$$

$$|M^2| = \left| \begin{array}{c} P_i \\ \\ \\ P_j \end{array} \right|^2 \otimes \left| \begin{array}{c} OOO \\ \\ OOO \end{array} \right|^2$$

contribution from LO

 $a\ complex\ number$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)}$$

$$[(\cancel{A}_{i} + \cancel{A}) \cancel{A}_{i} \gamma^{\mu}] [(\cancel{A}_{j} + \cancel{A}) \cancel{A}_{j} \gamma_{\mu}]$$

$$-2[(\cancel{A}_{i} + \cancel{A}) \cancel{A}_{i} \gamma^{\mu}] [(\cancel{A}_{j} + \cancel{A}) q_{j\mu}]$$

$$-2[(\cancel{A}_{i} + \cancel{A}) q_{i}^{\mu}][(\cancel{A}_{j} + \cancel{A}) \cancel{A}_{j} \gamma_{\mu}]$$

$$+4[(\cancel{A}_{i} + \cancel{A}) q_{i}^{\mu}][(\cancel{A}_{j} + \cancel{A}) q_{j\mu}]$$

$$(1.35)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)}$$

$$[A A_{i} \gamma^{\mu}] [A A_{j}\gamma_{\mu}]$$

$$-2[A A_{i} \gamma^{\mu}] [(A + A_{j}) q_{j\mu}]$$

$$-2[(A_{i} + A_{j}) q_{i}^{\mu}][A A_{j} \gamma_{\mu}]$$

$$+4[(A_{i} + A_{j}) q_{i}^{\mu}][(A_{j} + A_{j}) q_{j\mu}]$$

$$(1.36)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{4(1-z)(1-y)y(1-2z+2z^{2})(p_{i}\cdot p_{j})(p_{i}\cdot p_{j})}$$

$$[y(1-2z+2z^{2}) \not p_{i} \not p_{j} \gamma^{\mu}] [(1-z)(1-y) \not p_{i} \not p_{j} \gamma_{\mu}]$$

$$+4(q_{i}^{\mu} \cdot q_{j\mu})[(\not q_{i}+\not q_{j})][(\not q_{j}+\not q_{j})]$$

$$(1.37)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} \left[T^{a}\right]_{o}^{l} \left[T^{a}\right]_{f'}^{n}}{4(1-z)(1-y)y(1-2z+2z^{2})(p_{i}\cdot p_{j})(p_{i}\cdot p_{j})}$$

$$\left[y(1-2z+2z^{2})\not p_{i}\not p_{j}\gamma^{\mu}\right] \left[(1-z)(1-y)\not p_{i}\not p_{j}\gamma_{\mu}\right]$$

$$+4(p_{i}\cdot p_{j})\left[\cancel{p}_{i}+y\not p_{j}\right]\left[(1-z)\not p_{i}+(1+yz-y)\not p_{j}-\sqrt{zy(1-z)}\not m\right]$$

$$(1.38)$$

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(1-z)(1-y)y(1-2z+2z^2)(p_i \cdot p_j)} z(1-y)[\not p_i][\not p_j]$$
(1.39)

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(1-z)y(1-2z+2z^2)(p_i \cdot p_i)} z[p_i] [p_j]$$
(1.40)

1.4 $|M^2|$

$$|M|^2 = |M_1|^2 + |M_2|^2 + M_1 M_2^{\dagger} + M_1^{\dagger} M_2$$
(1.41)

$$|M|^2 = |M_1|^2 + |M_2|^2 + \frac{2RE(M_1 M_2^{\dagger})}{}$$
(1.42)

$$|M|^{2} = (d-2)(1-z)(1-y) \frac{g_{s}^{2}[T^{a}]_{o}^{k} [T^{a}]_{o}^{l}}{2y(1-2z+2z^{2})(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}]$$

$$-(d-2)yz^{2} \frac{g_{s}^{2}[T^{c}]_{f}^{m} [T^{c}]_{f}^{n}}{2(1-z)(1-y)(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}]$$

$$+2RE((\frac{-2z}{z-1})\frac{g_{s}^{2}[T^{a}]_{o}^{l}[T^{a}]_{f}^{n}}{2y(1-2z+2z^{2})(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}])$$
(1.43)

$$T^{a}{}_{ok} T^{a}{}_{lo} = \frac{1}{2} (\delta_{oo}\delta_{lk} - \frac{1}{N}\delta_{ok}\delta_{lo}) = \frac{1}{2} (N\delta_{lk} - \frac{1}{N}\delta_{lk}) = C_F \delta_{lk}$$
 (1.44)

After summation over the final colour states and averaging over initial colour states we get:

$$T^{a}{}_{ok} T^{a}{}_{lo} = C_{F} \delta_{lk} = \frac{1}{N} \sum_{l=1}^{N} \delta_{lk} C_{F} = C_{F}$$
 (1.45)

The same calculation for $T^c_{mf} T^c_{fn}$ and $T^a_{ol} T^a_{fn}$ turns C_F out as the colour factor. Now we are going to compute the splitting function in the case of the colinearity, wich means, if:

$$y \longrightarrow 0 \tag{1.46}$$

$$|M|^{2} = (d-2)(1-z)(1-y) \frac{g_{s}^{2}C_{F}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$-(d-2)yz^{2} \frac{g_{s}^{2}C_{F}}{2(1-z)(1-y)(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$+2RE((\frac{-2z}{z-1}) \frac{g_{s}^{2}C_{F}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$
(1.47)

$$|M|^{2} = C_{F}((d-2)(1-z) - \frac{4z}{z-1}) \frac{g_{s}^{2}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [p_{i}][p_{j}]$$
(1.48)

for

$$d = 4 - 2\epsilon \tag{1.49}$$

$$|M|^{2} = C_{F}((4 - 2\epsilon - 2)(1 - z) + \frac{4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$= C_{F}(\frac{2(1 - \epsilon)(1 - z)^{2} + 4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$C_{F}(\frac{2 - 4z + 2z^{2} - \epsilon(1 - z)^{2} + 4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}] \qquad (1.50)$$

$$= C_{F}(\frac{(1 + z^{2})}{1 - z} - \epsilon(1 - z)) \frac{g_{s}^{2}}{y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$= \langle \hat{P}_{qq} \rangle \frac{g_{s}^{2}}{q_{i} \cdot q} [\not p_{i}] [\not p_{j}]$$

Chapter 2

Gluon gluon emission kernel

2.1 Gluon-Emitter Bubble

$$M_{1} = \left[\frac{-i}{(q+q_{i})^{2}} (-g_{s} f^{a \circ l} (g^{\mu \zeta} (q-q_{i})^{\eta} + g^{\zeta \eta} (-q - (q+q_{i}))^{\mu} + g^{\eta \mu} (q_{i} + q_{i} + q)^{\zeta})\right]$$

$$\varepsilon^{\lambda_{1}}{}_{\mu}(q) \varepsilon^{\lambda_{6}}{}_{\zeta}(q) \left[\varepsilon^{\theta}{}_{\tau'}(q_{j}) \right]$$
(2.1)

$$M_{1} = \left[\frac{-i}{(q_{i} + q)^{2}} \left(-g_{s} f^{a \, o \, l} \left(g^{\mu \zeta} (q - q_{i})^{\eta} - g^{\zeta \eta} (2q + q_{i})^{\mu} + g^{\eta \mu} (2q_{i} + q)^{\zeta} \right) \right]$$

$$\varepsilon^{\lambda_{1}}_{\mu}(q_{i}) \varepsilon^{\lambda_{6}}_{\zeta}(q) \left[\varepsilon^{\theta}_{\tau'}(q_{j}) \right]$$
(2.2)

$$(o', \zeta', \lambda_5)$$

$$q$$

$$q_i + q$$

$$(a', \mu', \lambda_2) \qquad q_i$$

$$(k, \eta', \lambda_4)$$

$$(f', \tau', \theta') \qquad 000000 \qquad (n, \delta, \vartheta')$$

$$q_j$$

$$M_{1}^{\dagger} = \left[\frac{i}{(q_{i}+q)^{2}}(-g_{s}f^{a'ko'}(-g^{\mu'\eta'}(2q_{i}+q)^{\zeta'}+g^{\eta'\zeta'}(2q+q_{i})^{\mu'}+g^{\zeta'\mu'}(q_{i}-q)^{\eta'})\right]$$

$$\varepsilon^{\lambda_{2}}_{\mu'}{}^{*}(q_{i})\varepsilon^{\lambda_{5}}_{\zeta'}{}^{*}(q)\right]\left[\varepsilon^{\theta'}_{\tau'}{}^{*}(q_{j})\right]$$
(2.3)

$$|M_{1}|^{2} = \left[\frac{-i}{(q_{i}+q)^{2}}(-g_{s}f^{a\,o\,l}(g^{\mu\zeta}(q-q_{i})^{\eta} - g^{\zeta\eta}(2q+q_{i})^{\mu} + g^{\eta\mu}(2q_{i}+q)^{\zeta})\right]$$

$$\varepsilon^{\lambda_{1}}{}_{\mu}(q_{i})\,\varepsilon^{\lambda_{2}}{}_{\mu'}{}^{*}(q_{i})\varepsilon^{\lambda_{6}}{}_{\zeta}(q)\,\varepsilon^{\lambda_{5}}{}_{\zeta'}{}^{*}(q) \qquad (2.4)$$

$$(-g_{s}f^{a'\,k\,o'}(-g^{\mu'\eta'}(2q_{i}+q)^{\zeta'} + g^{\eta'\zeta'}(2q+q_{i})^{\mu'} + g^{\zeta'\mu'}(q_{i}-q)^{\eta'})\frac{i}{(q_{i}+q)^{2}}[g_{\gamma\delta}]$$

$$N \equiv g_{\mu\mu'}g_{\zeta\zeta'}[-g^{\mu\zeta}g^{\mu'\eta'}(q-q_{i})^{\eta}(2q_{i}+q)^{\zeta'}+g^{\mu\zeta}g^{\eta'\zeta'}(q-q_{i})^{\eta}(2q+q_{i})^{\mu'} +g^{\mu\zeta}g^{\zeta'\mu'}(q-q_{i})^{\eta}(q_{i}-q)^{\eta'}+g^{\zeta\eta}g^{\mu'\zeta'}(2q+q_{i})^{\mu}(2q_{i}+q)^{\zeta'} -g^{\zeta\eta}g^{\eta'\zeta'}(2q+q_{i})^{\mu}(2q+q_{i})^{\mu'}-g^{\zeta\eta}g^{\zeta'\mu'}(2q+q_{i})^{\mu}(q_{i}-q)^{\eta'} -g^{\eta\mu}g^{\mu'\eta'}(2q_{i}+q)^{\zeta}(2q_{i}+q)^{\zeta'}+g^{\eta\mu}g^{\eta'\zeta'}(2q_{i}+q)^{\zeta}(2q+q_{i})^{\mu'} +g^{\eta\mu}g^{\zeta'\mu'}(2q_{i}+q)^{\zeta}(q_{i}-q)^{\eta'}][g_{\gamma\delta}]$$

$$(2.5)$$

$$N \equiv \left[-(q - q_i)^{\eta} (2q_i + q)^{\eta'} + (q - q_i)^{\eta} (2q + q_i)^{\eta'} + d(q - q_i)^{\eta} (q_i - q)^{\eta'} + (2q + q_i)^{\eta'} (2q_i + q)^{\eta} - g^{\eta\eta'} (2q + q_i)^{\mu} (2q + q_i)_{\mu} - (2q + q_i)^{\eta} (q_i - q)^{\eta'} \right]$$

$$-g^{\eta\eta'} (2q_i + q)^{\zeta} (2q_i + q)_{\zeta} + (2q_i + q)^{\eta'} (2q + q_i)^{\eta} + (2q_i + q)^{\eta} (q_i - q)^{\eta'} \right] [g_{\gamma\delta}]$$
(2.6)

$$N \equiv \left[-(q^{\eta}q^{\eta'} + 2q^{\eta}q_{i}^{\eta'} - q_{i}^{\eta}q^{\eta'} - 2q_{i}^{\eta}q_{i}^{\eta'}) + (2q^{\eta}q^{\eta'} + q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} - q_{i}^{\eta}q_{i}^{\eta'}) + (4q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} - 4q_{i}^{\eta}q_{i}^{\eta'}) + (4q^{\eta'}q_{i}^{\eta} + 2q^{\eta'}q^{\eta} + 2q_{i}^{\eta'}q_{i}^{\eta} + q_{i}^{\eta'}q^{\eta}) + (-2q^{\eta}q^{\eta'} + 2q^{\eta}q_{i}^{\eta'} - q_{i}^{\eta}q^{\eta'} + q_{i}^{\eta}q_{i}^{\eta'}) + (2q^{\eta'}q^{\eta} + q^{\eta'}q_{i}^{\eta} + 4q_{i}^{\eta'}q^{\eta} + 2q_{i}^{\eta'}q_{i}^{\eta}) + (-q^{\eta}q^{\eta'} + q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} + 2q_{i}^{\eta}q_{i}^{\eta'}) - g^{\eta\eta'}(5q^{2} + 5q_{i}^{2} + 8qq_{i})\right][g_{\gamma\delta}]$$

$$(2.7)$$

$$N \equiv [(6-d)q^{\eta}q^{\eta'} + (d+3)q^{\eta}q_i^{\eta'} + (d+3)q_i^{\eta}q^{\eta'} + (6-d)q_i^{\eta}q_i^{\eta'} -g^{\eta\eta'}(5q^2 + 5q_i^2 + 8qq_i)][g_{\gamma\delta}]$$
(2.8)

$$|M_{1}|^{2} = \frac{g_{s}^{2} f^{a \circ l} f^{a k \circ o}}{(q_{i} + q)^{2} (q_{i} + q)^{2}} [(6 - d)q^{\eta}q^{\eta'} + (d + 3)q^{\eta}q_{i}^{\eta'} + (d + 3)q_{i}^{\eta}q^{\eta'} + (6 - d)q_{i}^{\eta}q_{i}^{\eta'} - g^{\eta\eta'} (5q^{2} + 5q_{i}^{2} + 8qq_{i})][g_{\gamma\delta}]$$

$$(2.9)$$

2.1.1 One-loop corrections to the gluon self-energy diagram(Gluon-Emitter Bubble)

$$|M_1|_{Ghost \, loop}^2 = \frac{g_s^2 \, f^{\, a \, o \, l} \, f^{\, a \, k \, o}}{(q_i + q)^2 (q_i + q)^2} [-q_i^{\, \eta} q^{\eta'} - q^{\eta} q_i^{\, \eta'}] [g_{\gamma \delta}]$$
(2.10)

$$|M'_{1}|^{2} = |M_{1}|^{2} + |M_{1}|_{Ghost \, loop}^{2}$$

$$= \frac{g_{s}^{2} f^{a \, o \, l} f^{a \, k \, o}}{(q_{i} + q)^{2} (q_{i} + q)^{2}} [(6 - d)q^{\eta} q^{\eta'} + (d + 3)q^{\eta} q_{i}^{\eta'} \qquad (2.11)$$

$$+ (d + 3)q_{i}^{\eta} q^{\eta'} + (6 - d)q_{i}^{\eta} q_{i}^{\eta'} - g^{\eta\eta'} (5q^{2} + 5q_{i}^{2} + 8qq_{i}) - q_{i}^{\eta} q^{\eta'} - q^{\eta} q_{i}^{\eta'}] [g_{\gamma\delta}]$$

$$|M_1'|^2 = \frac{g_s^2 f^{aol} f^{ako}}{(q_i + q)^2 (q_i + q)^2} [(6 - d)q^{\eta}q^{\eta'} + (d + 2)q^{\eta}q_i^{\eta'} + (d + 2)q^{\eta}q_i^{\eta'} + (d + 2)q_i^{\eta}q^{\eta'} + (6 - d)q_i^{\eta}q_i^{\eta'} - g^{\eta\eta'}(8qq_i)][g_{\gamma\delta}]$$
(2.12)

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{y^{2}(\alpha_{1} + \beta_{1})^{2} (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[(6 - d)(\zeta_{1}p_{i}^{\eta} + \lambda_{1}Q^{\eta} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1})(\zeta_{1}p_{i}^{\eta'} + \lambda_{1}Q^{\eta'} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta'}_{\perp,1})$$

$$+(d + 2)(\zeta_{1}p_{i}^{\eta} + \lambda_{1}Q^{\eta} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1})(\zeta_{q}p_{i}^{\eta'} + \lambda_{q}Q^{\eta'} - \sqrt{y\alpha_{1}\beta_{1}}n^{\eta'}_{\perp,1})$$

$$+(d + 2)(\zeta_{q}p_{i}^{\eta} + \lambda_{q}Q^{\eta} - \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1})(\zeta_{1}p_{i}^{\eta'} + \lambda_{1}Q^{\eta'} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta'}_{\perp,1})$$

$$+(6 - d)(\zeta_{q}p_{i}^{\eta} + \lambda_{q}Q^{\eta} - \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1})(\zeta_{q}p_{i}^{\eta'} + \lambda_{q}Q^{\eta'} - \sqrt{y\alpha_{1}\beta_{1}}n^{\eta'}_{\perp,1})$$

$$-g^{\eta\eta'}(8y(\alpha_{1} + \beta_{1}) p_{i} \cdot Q)][g_{\gamma\delta}]$$

$$(2.13)$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} \int a \circ l \int a \circ k \circ}{y^{2}(\alpha_{1} + \beta_{1})^{2} (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[(6 - d)[\zeta_{1}\zeta_{1}p_{i}^{\eta}p_{i}^{\eta'} + \zeta_{1}\lambda_{1}p_{i}^{\eta}Q^{\eta'} + \zeta_{1}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} + \lambda_{1}\zeta_{1}Q^{\eta}p_{i}^{\eta'} + \lambda_{1}\lambda_{1}Q^{\eta}Q^{\eta'} + \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}Q^{\eta}n^{\eta'}_{\perp,1} + \lambda_{1}\zeta_{1}Q^{\eta}p_{i}^{\eta'} + \lambda_{1}\lambda_{1}Q^{\eta}Q^{\eta'} + \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}Q^{\eta}n^{\eta'}_{\perp,1} + \zeta_{1}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}p_{i}^{\eta'} + \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}Q^{\eta'} - \zeta_{1}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} + \lambda_{1}\zeta_{q}Q^{\eta}p_{i}^{\eta'} + \lambda_{1}\lambda_{q}Q^{\eta}Q^{\eta'} - \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} + \lambda_{q}\zeta_{q}Q^{\eta}p_{i}^{\eta'} + \lambda_{q}\lambda_{q}Q^{\eta}Q^{\eta'} - \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}q^{\eta}n^{\eta'}_{\perp,1} + \lambda_{q}\zeta_{1}Q^{\eta}p_{i}^{\eta'} + \lambda_{q}\lambda_{1}Q^{\eta}Q^{\eta'} - \sqrt{y\alpha_{1}\beta_{1}}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} + \lambda_{q}\zeta_{1}Q^{\eta}p_{i}^{\eta'} + \lambda_{q}\lambda_{1}Q^{\eta}Q^{\eta'} + \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} + \lambda_{q}\zeta_{1}Q^{\eta}p_{i}^{\eta'} + \lambda_{q}\lambda_{1}Q^{\eta}Q^{\eta'} + \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} - \zeta_{1}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}p_{i}^{\eta'} - \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}Q^{\eta'} - \sqrt{y\alpha_{1}\beta_{1}}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} + \lambda_{q}\zeta_{q}Q^{\eta}p_{i}^{\eta'} + \lambda_{q}\lambda_{q}Q^{\eta}Q^{\eta'} - \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} - \zeta_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}p_{i}^{\eta'} - \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}Q^{\eta'} + \sqrt{y\alpha_{1}\beta_{1}}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - \zeta_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}p_{i}^{\eta'} - \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}Q^{\eta'} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - \zeta_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}q^{\eta'} + \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}q^{\eta'}_{\eta'} + \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}q^{\eta'}_{\eta'} + \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{$$

$$|M'_1|^2 = \frac{g_s^2 f^{aol} f^{ako}}{y^2(\alpha_1 + \beta_1)^2 (p_i \cdot Q) (p_i \cdot Q)}$$

$$[(6 - d)\{(\alpha_1^2 - 2y\alpha_1\beta_1(\frac{Q^2}{2p_i \cdot Q}))p_i^{\eta}p_i^{\eta'} + y\alpha_1\beta_1p_i^{\eta}Q^{\eta'} + \zeta_1\sqrt{y\alpha_1\beta_1}p_i^{\eta}n^{\eta'}_{\perp,1} + y\beta_1\alpha_1Q^{\eta}p_i^{\eta'} + \lambda_1\sqrt{y\alpha_1\beta_1}Q^{\eta}n^{\eta'}_{\perp,1} + \zeta_1\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \lambda_1\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}Q^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}p_i^{\eta'} + \lambda_1\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}Q^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}p_i^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}p_i^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}p_i^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}p_i^{\eta'} + \lambda_1\sqrt{y\alpha_1\beta_1}Q^{\eta}n^{\eta'}_{\perp,1} + y\beta_1^2Q^{\eta}p_i^{\eta'} - \lambda_1\sqrt{y\alpha_1\beta_1}Q^{\eta}n^{\eta'}_{\perp,1} + \zeta_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \lambda_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \lambda_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + y\alpha_1^2p_i^{\eta}Q^{\eta'} + \zeta_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \lambda_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + y\beta_1^2p_i^{\eta}Q^{\eta'} + \zeta_q\sqrt{y\alpha_1\beta_1}p_i^{\eta}n^{\eta'}_{\perp,1} + y\alpha_1^2Q^{\eta}p_i^{\eta'} + \lambda_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + y\beta_1^2p_i^{\eta}Q^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} - \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + y\alpha_1\beta_1p_i^{\eta}Q^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} - \lambda_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\perp,1}p_i^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\mu,1}p_i^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{\eta}_{\mu,1}p_i^{\eta'} + \gamma_q\sqrt{y\alpha_1\beta_1}n^{$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{y^{2}(\alpha_{1} + \beta_{1})^{2} (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[(6-d)(\alpha_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) + 2(d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))$$

$$+(6-d)(\beta_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))]p_{i}^{\eta}p_{i}^{\eta'}$$

$$+[2(6-d)y\alpha_{1}\beta_{1} + (d+2)y(\alpha_{1}^{2} + \beta_{1}^{2})]p_{i}^{\eta}Q^{\eta'}$$

$$+[2(6-d)y\beta_{1}\alpha_{1} + (d+2)y(\alpha_{1}^{2} + \beta_{1}^{2})]Q^{\eta}p_{i}^{\eta'}$$

$$+[2(6-d) - 2(d+2)]y\alpha_{1}\beta_{1}n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - 8yg^{\eta\eta'}(\alpha_{1} + \beta_{1})p_{i} \cdot Q][g_{\gamma\delta}]$$

$$(2.18)$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{y^{2}(\alpha_{1} + \beta_{1})^{2} (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[(6-d)(\alpha_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) + 2(d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))$$

$$+(6-d)(\beta_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))]p_{i}^{\eta}p_{i}^{\eta'}$$

$$+y[(4d-8)\alpha_{1}^{2} + (8-4d)\alpha_{1} + (d+2)]p_{i}^{\eta}Q^{\eta'}$$

$$+y[(4d-8)\alpha_{1}^{2} + (8-4d)\alpha_{1} + (d+2)]Q^{\eta}p_{i}^{\eta'}$$

$$+y[8-4d](\alpha_{1} - \alpha_{1}^{2})n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - 8yg^{\eta\eta'}(\alpha_{1} + \beta_{1})p_{i} \cdot Q][g_{\gamma\delta}]$$

$$(2.19)$$

$$|M_1'|^2 = \frac{g_s^2 f^{a o l} f^{a k o}}{y(1 - \beta_1 + \beta_1)^2 (p_i \cdot Q) (p_i \cdot Q)}$$

$$[[8 - 4d]\beta_1 (1 - \beta_1) n^{\eta}_{\perp, 1} n^{\eta'}_{\perp, 1} - 8g^{\eta \eta'} (1 - \beta_1 + \beta_1) p_i \cdot Q][g_{\gamma \delta}]$$
(2.20)

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{a \circ l} f^{a k \circ}}{y (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[8[\epsilon - 1]\beta_{1}(1 - \beta_{1})n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - 8g^{\eta\eta'}p_{i} \cdot Q][g_{\gamma\delta}]$$
(2.21)

Another way:

$$k_{1}^{\eta}k_{1}^{\eta'} = (\alpha_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}\beta_{1}Q^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = (\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}^{2}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}^{2}Q^{\eta}p_{i}^{\eta'} - y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$q_{i}^{\eta}k_{1}^{\eta'} = (\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}^{2}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}^{2}Q^{\eta}p_{i}^{\eta'} - y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = (\beta_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}\beta_{1}Q^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$(2.22)$$

$$N \equiv (6-d)(\alpha_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}\beta_{1}Q^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$+ (d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}^{2}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}^{2}Q^{\eta}p_{i}^{\eta'} - y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$+ (d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}^{2}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}^{2}Q^{\eta}p_{i}^{\eta'} - y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$+ (6-d)(\beta_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}\beta_{1}Q^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$(2.23)$$

$$N \equiv [(6-d)(\alpha_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q})) + (d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))$$

$$+ (d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q})) + (6-d)(\beta_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))]p_{i}^{\eta}p_{i}^{\eta'}$$

$$+ [(6-d)y\alpha_{1}\beta_{1} + (d+2)y\alpha_{1}^{2} + (d+2)y\beta_{1}^{2} + (6-d)y\alpha_{1}\beta_{1}]p_{i}^{\eta}Q^{\eta'}$$

$$+ [(6-d)y\alpha_{1}\beta_{1} + (d+2)y\beta_{1}^{2} + (d+2)y\alpha_{1}^{2} + (6-d)y\alpha_{1}\beta_{1}]Q^{\eta}p_{i}^{\eta'}$$

$$+ [(6-d)y\alpha_{1}\beta_{1} - (d+2)y\alpha_{1}\beta_{1} - (d+2)y\alpha_{1}\beta_{1} + (6-d)y\alpha_{1}\beta_{1}]n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$- 8yg^{\eta\eta'}p_{i} \cdot Q$$

$$(2.24)$$

$$|M_1'|^2 = \frac{g_s^2 f^{a \circ l} f^{a k \circ}}{y (p_i \cdot Q)^2} [(12 - 2d)y\alpha_1\beta_1 - 2(d+2)y\alpha_1\beta_1] n_{\perp,1}^{\eta} n_{\perp,1}^{\eta'} - 8yg^{\eta\eta'} p_i \cdot Q] [g_{\gamma\delta}]$$

$$\Rightarrow |M_1'|^2 = \frac{g_s^2 f^{aol} f^{ako}}{(p_i \cdot Q)^2} [(12 - 2d)\alpha_1\beta_1 - 2(d+2)\alpha_1\beta_1] n_{\perp,1}^{\eta} n_{\perp,1}^{\eta'} - 8g^{\eta\eta'} p_i \cdot Q] [g_{\gamma\delta}]$$

$$|M_1'|^2 = \frac{g_s^2 f^{a \circ l} f^{a k \circ}}{y (p_i \cdot Q) (p_i \cdot Q)} [8[\epsilon - 1] \beta_1 (1 - \beta_1) n^{\eta}_{\perp, 1} n^{\eta'}_{\perp, 1} - 8g^{\eta \eta'} p_i \cdot Q] [g_{\gamma \delta}]$$
(2.25)

2.2 Gluon-Spectator Bubble

$$|M_{2}|^{2} = \left[\frac{-i}{(q_{j}+q)^{2}}(-g_{s}f^{bfm}(g^{\tau\gamma}(-2q_{j}-q)^{\rho}+g^{\gamma\rho}(2q+q_{j})^{\tau}+g^{\rho\tau}(q_{j}-q)^{\gamma})\right]$$

$$g_{\tau\tau'}g_{\rho\rho'}(-g_{s}f^{b'nf'}(g^{\rho'\delta}(-2q-q_{j})^{\tau'}+g^{\delta\tau'}(2q_{j}+q)^{\rho'}+g^{\tau'\rho'}(q-q_{j})^{\delta})\frac{i}{(q_{j}+q)^{2}}][g_{\eta\eta'}]$$
(2.26)

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{b f m} f^{b' n f'} \delta^{aa'} \delta^{f f'} \delta^{bb'}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [g_{\tau \tau'} g_{\rho \rho'} (g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\rho' \delta} (2q + q_{j})^{\tau'} -g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\delta \tau'} (2q_{j} + q)^{\rho'} -g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\tau' \rho'} (q - q_{j})^{\delta} -g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\rho' \delta} (2q + q_{j})^{\tau'} +g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\delta \tau'} (2q_{j} + q)^{\rho'} +g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\tau' \rho'} (q - q_{j})^{\delta} -g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\rho' \delta} (2q + q_{j})^{\tau'} +g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\delta \tau'} (2q_{j} + q)^{\rho'} +g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\tau' \rho'} (q - q_{j})^{\delta}][g_{\eta \eta'}]$$

$$(2.27)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{b f m} f^{b n f}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(2q + q_{j})^{\gamma} (2q_{j} + q)^{\delta} - g^{\delta \gamma} (2q_{j} + q)^{\rho} (2q_{j} + q)_{\rho} - (2q_{j} + q)^{\gamma} (q - q_{j})^{\delta} - g^{\delta \gamma} (2q + q_{j})^{\tau} (2q + q_{j})_{\tau} + (2q_{j} + q)^{\gamma} (2q + q_{j})^{\delta} + (2q + q_{j})^{\gamma} (q - q_{j})^{\delta} - (q_{j} - q)^{\gamma} (2q + q_{j})^{\delta} + (q_{j} - q)^{\gamma} (2q_{j} + q)^{\delta} + d(q_{j} - q)^{\gamma} (q - q_{j})^{\delta}] [g_{\eta \eta'}]$$

$$(2.28)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{bfm} f^{bnf}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(3+d)q^{\gamma} q_{j}^{\delta} + (6-d)q^{\gamma} q^{\delta} + (6-d)q_{j}^{\gamma} q_{j}^{\delta} + (3+d)q_{j}^{\gamma} q^{\delta} - g^{\delta\gamma} (5q_{j}^{2} + 5q^{2} + 8qq_{j})$$

$$[g_{\eta\eta'}]$$
(2.29)

2.2.1 One-loop corrections to the gluon self-energy diagram (Gluon-Spectator Bubble)

$$|M_1|_{Ghost \, loop}^2 = \frac{g_s^2 f^{b f m} f^{b n f}}{(q_i + q)^2 (q_i + q)^2} [-q_j^{\gamma} q^{\delta} - q^{\delta} q_j^{\gamma}] [g_{\gamma \delta}]$$
(2.30)

$$|M_2'|^2 = \frac{g_s^2 f^{bfm} f^{bnf}}{(q_j + q)^2 (q_j + q)^2} [(2+d)q^{\gamma} q_j^{\delta} + (6-d)q^{\gamma} q^{\delta} + (6-d)q_j^{\gamma} q_j^{\delta} + (2+d)q_j^{\gamma} q^{\delta} - g^{\delta\gamma} (8qq_j)$$

$$[g_{\eta\eta'}]$$
(2.31)

2.3 Interference term $M_1 M_2^{\dagger}$

$$M_{1}M_{2}^{\dagger} = \left[\frac{-i}{(q_{i}+q)^{2}}(-g_{s}f^{lao}(g^{\eta\mu}(2q_{i}+q)^{\zeta}+g^{\mu\zeta}(q-q_{i})^{\eta}-g^{\zeta\eta}(2q+q_{i})^{\mu})\varepsilon^{\lambda_{1}}{}_{\mu}(q_{i})\varepsilon^{\lambda_{6}}{}_{\zeta}(q)\right]$$

$$\left[\varepsilon^{\theta}{}_{\tau}^{*}(q_{j})\right]$$

$$\left[\frac{i}{(q+q_{j})^{2}}(-g_{s}f^{f'b'n}(g^{\tau'\rho'}(q_{j}-q)^{\delta}+g^{\rho'\delta}(2q+q_{j})^{\tau'}-g^{\delta\tau'}(2q_{j}+q)^{\rho'})\varepsilon^{\theta'}{}_{\tau'}^{*}(q_{j})\varepsilon^{\lambda_{8}}{}_{\rho'}^{*}(q)\right]$$

$$\left[\varepsilon^{\lambda_{2}}{}_{\mu'}^{*}(q_{i})\right]$$
(2.32)

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{l a o} f^{f' b' n} \delta^{a a'} \delta^{o b'} \delta^{f f'}}{(q_{i} + q)^{2} (q_{j} + q)^{2}} [g_{\mu}^{\eta'} g_{\tau \tau'} (g^{\eta \mu} (2q_{i} + q)^{\zeta} + g^{\mu \zeta} (q - q_{i})^{\eta} - g^{\zeta \eta} (2q + q_{i})^{\mu})$$

$$g_{\zeta \rho'} (g^{\tau' \rho'} (q_{j} - q)^{\delta} + g^{\rho' \delta} (2q + q_{j})^{\tau'} - g^{\delta \tau'} (2q_{j} + q)^{\rho'}]$$
(2.33)

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{l a o} f^{f' b' n} \delta^{aa'} \delta^{ob'} \delta^{ff'}}{(q_{i} + q)^{2} (q_{j} + q)^{2}}$$

$$[g^{\eta\eta'} (2q_{i} + q)^{\gamma} (q_{j} - q)^{\delta} + g^{\eta\eta'} (2q + q_{j})^{\gamma} (2q_{i} + q)^{\delta} - g^{\eta\eta'} g^{\gamma\delta} (2q_{i} + q) \cdot (2q_{j} + q) \quad (2.34)$$

$$+ g^{\gamma\eta'} (q - q_{i})^{\eta} (q_{j} - q)^{\delta} + g^{\eta'\delta} (q - q_{i})^{\eta} (2q + q_{j})^{\gamma} - g^{\gamma\delta} (q - q_{i})^{\eta} (2q_{j} + q)^{\eta'}$$

$$- g^{\gamma\eta} (2q + q_{i})^{\eta'} (q_{j} - q)^{\delta} - g^{\eta\delta} (2q + q_{i})^{\eta'} (2q + q_{j})^{\gamma} + g^{\gamma\delta} (2q_{j} + q)^{\eta} (2q + q_{i})^{\eta'}]$$

$$\begin{split} M_{1}M_{2}^{\dagger} &= \frac{g_{s}^{2}f^{l\,a\,o}f^{f\,o\,n}}{4(q\cdot q_{i})(q\cdot q_{j})} \\ \{g^{\eta\eta'}[2q_{i}^{\gamma}q_{j}^{\delta} + 2q_{i}^{\gamma}q^{\delta} + q^{\gamma}q_{j}^{\delta} + q^{\gamma}q^{\delta} + 4q^{\gamma}q_{i}^{\delta} + 2q^{\gamma}q^{\delta} + 2q_{j}^{\gamma}q_{i}^{\delta} + q_{j}^{\gamma}q^{\delta}] \\ &- g^{\eta\eta'}g^{\gamma\delta}(2q\cdot q_{j} + q\cdot q + 4q_{i}\cdot q_{j} + 2q_{i}\cdot q) + g^{\gamma\eta'}[q^{\eta}q_{j}^{\delta} - q^{\eta}q^{\delta} - q_{i}^{\eta}q_{j}^{\delta} + q_{i}^{\eta}q^{\delta}] \\ &+ g^{\eta'\delta}[2q^{\eta}q^{\gamma} + q^{\eta}q_{j}^{\gamma} + q_{i}^{\eta}q^{\gamma} + q_{i}^{\eta}q_{j}^{\gamma}] - g^{\gamma\delta}[2q^{\eta}q_{j}^{\eta'} + q^{\eta}q^{\eta'} - 2q_{i}^{\eta}q_{j}^{\eta'} - q_{i}^{\eta}q^{\eta'}] \\ &- g^{\gamma\eta}[2q^{\eta'}q_{j}^{\delta} - 2q^{\eta'}q^{\delta} + q_{i}^{\eta'}q_{j}^{\delta} - q_{i}^{\eta'}q^{\delta}] - g^{\eta\delta}[4q^{\eta'}q^{\gamma} + 2q^{\eta'}q_{j}^{\gamma} + 2q_{i}^{\eta'}q^{\gamma} + q_{i}^{\eta'}q_{j}^{\gamma}] \\ &+ q^{\gamma\delta}[4q_{i}^{\eta}q^{\eta'} + 2q_{i}^{\eta}q_{i}^{\eta'} + q^{\eta}q^{\eta'} + q^{\eta}q_{i}^{\eta'}] \} \end{split}$$

$$k_{1}^{\eta}k_{1}^{\eta'} = [(1-\beta_{1})^{2} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2}]p_{i}^{\eta}p_{i}^{\eta'} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})p_{i}^{\eta}Q^{\eta'} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})Q^{\eta}p_{i}^{\eta'}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = [\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}^{2}Q^{\eta}p_{i}^{\eta'}$$

$$q_{i}^{\eta}k_{1}^{\eta'} = [\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}^{2}p_{i}^{\eta}Q^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = \beta_{1}^{2}p_{i}^{\eta}p_{i}^{\eta'}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = [(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]\sqrt{1-y}p_{i}^{\eta}p_{k}^{\eta'} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{1}p_{i}^{\eta}p_{i}^{\eta'} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2}p_{i}^{\eta}Q^{\eta'}$$

$$+ y\beta_{1}A_{1}Q^{\eta}p_{i}^{\eta'} + y\beta_{1}A_{2}Q^{\eta}Q^{\eta'} + y\beta_{1}\sqrt{1-y}Q^{\eta}p_{k}^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = A_{1}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + A_{2}\beta_{1}p_{i}^{\eta}Q^{\eta'} + \beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{1}p_{i}^{\eta}p_{i}^{\eta'} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2}Q^{\eta}p_{i}^{\eta'}$$

$$+ y\beta_{1}A_{1}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}A_{2}Q^{\eta}Q^{\eta'} + y\beta_{1}\sqrt{1-y}p_{k}^{\eta}Q^{\eta'}$$

$$+ y\beta_{1}A_{1}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}A_{2}Q^{\eta}Q^{\eta'} + y\beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$+ y\beta_{1}A_{1}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}A_{2}Q^{\eta}Q^{\eta'} + y\beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$+ y\beta_{1}A_{1}p_{i}^{\eta}Q^{\eta'} + A_{2}\beta_{1}Q^{\eta}p_{i}^{\eta'} + \beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$+ y\beta_{1}A_{1}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}A_{2}Q^{\eta}Q^{\eta'} + y\beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$+ y\beta_{1}P_{i}^{\eta}Q^{\eta'} + y\beta_{1}P_{i}^{\eta}Q^{\eta'} + \beta_{1}P_{i}^{\eta}Q^{\eta'}$$

Calculation of the first Term

$$g^{\eta\eta'}[2\{A_{1}\beta_{1}p_{i}^{\gamma}p_{i}^{\delta} + A_{2}\beta_{1}p_{i}^{\gamma}Q^{\delta} + \beta_{1}\sqrt{1-y}p_{i}^{\gamma}p_{k}^{\delta}\}$$

$$+2\{[\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}^{\gamma}p_{i}^{\delta} + y\beta_{1}^{2}p_{i}^{\gamma}Q^{\delta}\}$$

$$+\{[(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]\sqrt{1-y}p_{i}^{\gamma}p_{k}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}p_{i}^{\gamma}p_{i}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}p_{i}^{\gamma}Q^{\delta}$$

$$+y\beta_{1}A_{1}Q^{\gamma}p_{i}^{\delta} + y\beta_{1}A_{2}Q^{\gamma}Q^{\delta} + y\beta_{1}\sqrt{1-y}Q^{\gamma}p_{k}^{\delta}\}$$

$$+3\{[(1-\beta_{1})^{2} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})^{2}]p_{i}^{\gamma}p_{i}^{\delta} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})p_{i}^{\gamma}Q^{\delta} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})Q^{\gamma}p_{i}^{\delta}\}$$

$$+4\{[\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}^{\gamma}p_{i}^{\delta} + y\beta_{1}^{2}Q^{\gamma}p_{i}^{\delta}\}$$

$$+2\{A_{1}\beta_{1}p_{i}^{\gamma}p_{i}^{\delta} + A_{2}\beta_{1}Q^{\gamma}p_{i}^{\delta} + \beta_{1}\sqrt{1-y}p_{k}^{\gamma}p_{i}^{\delta}\}$$

$$+\{[(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]\sqrt{1-y}p_{k}^{\gamma}p_{i}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}p_{i}^{\gamma}p_{i}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}Q^{\gamma}p_{i}^{\delta}$$

$$+y\beta_{1}A_{1}p_{i}^{\gamma}Q^{\delta} + y\beta_{1}A_{2}Q^{\gamma}Q^{\delta} + y\beta_{1}\sqrt{1-y}p_{k}^{\gamma}Q^{\delta}\}]$$

$$(2.37)$$

$$g^{\eta\eta'} \{ 2y\beta_{1}A_{2} Q^{\gamma}Q^{\delta} + y\beta_{1}\sqrt{1 - y}Q^{\gamma}p_{k}^{\delta} + y\beta_{1}\sqrt{1 - y}p_{k}^{\gamma}Q^{\delta}$$

$$[4A_{1}\beta_{1} + 6[\beta_{1}(1 - \beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})] - 2y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{1}$$

$$+ 3[(1 - \beta_{1})^{2} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2}]]p_{i}^{\gamma}p_{i}^{\delta}$$

$$+ [2A_{2}\beta_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2} - 3y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) + y\beta_{1}A_{1} + 2y\beta_{1}^{2}]p_{i}^{\gamma}Q^{\delta}$$

$$[2\beta_{1} + [(1 - \beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]]\sqrt{1 - y}p_{i}^{\gamma}p_{k}^{\delta}$$

$$[-3y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) + 4y\beta_{1}^{2} + 2A_{2}\beta_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2}]Q^{\gamma}p_{i}^{\delta}$$

$$+ [2\beta_{1} + [(1 - \beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]]\sqrt{1 - y}p_{k}^{\gamma}p_{i}^{\delta} \}$$

Calculation of the second term

$$-g^{\eta\eta'}g^{\gamma\delta}\{2([\alpha_{1}+y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\beta_{1}Q\cdot p_{k})$$

$$-2y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})p_{i}\cdot Q$$

$$+4(\beta_{1}A_{2}p_{i}\cdot Q+\beta_{1}\sqrt{1-y}p_{i}\cdot p_{k})+2yp_{i}\cdot Q\}$$

$$\Rightarrow$$

$$-g^{\eta\eta'}g^{\gamma\delta}\{2([(1-\beta_{1})+y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})+4\beta_{1}]\sqrt{1-y}p_{i}\cdot p_{k}+2y\beta_{1}Q\cdot p_{k}$$

$$+[-2y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})+4\beta_{1}A_{2}+2y]p_{i}\cdot Q\}$$

$$(2.39)$$

Calculation of the third term

$$+ g^{\gamma\eta'} \{ [(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})] \sqrt{1-y} p_{i}^{\eta} p_{k}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) A_{1} p_{i}^{\eta} p_{i}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) A_{2} p_{i}^{\eta} Q^{\eta'}$$

$$+ y\beta_{1} A_{1} Q^{\eta} p_{i}^{\delta} + y\beta_{1} A_{2} Q^{\eta} Q^{\delta} + y\beta_{1} \sqrt{1-y} Q^{\eta} p_{k}^{\delta}$$

$$- [[(1-\beta_{1})^{2} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2}] p_{i}^{\eta} p_{i}^{\delta} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) p_{i}^{\eta} Q^{\delta} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) Q^{\eta} p_{i}^{\delta}]$$

$$- [A_{1}\beta_{1} p_{i}^{\eta} p_{i}^{\delta} + A_{2}\beta_{1} p_{i}^{\eta} Q^{\delta} + \beta_{1} \sqrt{1-y} p_{i}^{\eta} p_{k}^{\delta}]$$

$$+ [\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})] p_{i}^{\eta} p_{i}^{\eta'} + y\beta_{1}^{2} p_{i}^{\eta} Q^{\eta'} \}$$

$$(2.40)$$

Calculation of the fourth term

$$+ g^{\gamma\eta'} \{ [(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) - \beta_{1}] \sqrt{1-y} p_{i}^{\eta} p_{k}^{\delta}$$

$$+ [y\beta_{1}A_{1} + y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})] Q^{\eta} p_{i}^{\delta} + y\beta_{1}A_{2} Q^{\eta} Q^{\delta} + y\beta_{1}\sqrt{1-y} Q^{\eta} p_{k}^{\delta}$$

$$[-[(1-\beta_{1})^{2} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2}] - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{1} - A_{1}\beta_{1} + [\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]] p_{i}^{\eta} p_{i}^{\delta}$$

$$+ [y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2} - A_{2}\beta_{1} + y\beta_{1}^{2}] p_{i}^{\eta} Q^{\delta} \}$$

$$(2.41)$$

$$+ g^{\eta'\delta} \{ [(1-\beta_1) - y\beta_1(\frac{Q^2}{2p_i \cdot Q}) - \beta_1] \sqrt{1-y} p_i^{\eta} p_k^{\gamma}$$

$$+ [y\beta_1 A_1 + 2y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q})] Q^{\eta} p_i^{\gamma} + y\beta_1 A_2 Q^{\eta} Q^{\gamma} + y\beta_1 \sqrt{1-y} Q^{\eta} p_k^{\gamma}$$

$$+ [2[(1-\beta_1)^2 - y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q})^2] - y\beta_1 (\frac{Q^2}{2p_i \cdot Q}) A_1 + A_1 \beta_1 + [\beta_1 (1-\beta_1) - y\beta_1^2 (\frac{Q^2}{2p_i \cdot Q})]] p_i^{\eta} p_i^{\gamma}$$

$$+ [-2y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q}) - y\beta_1 (\frac{Q^2}{2p_i \cdot Q}) A_2 + A_2 \beta_1 + y\beta_1^2] p_i^{\eta} Q^{\gamma} \}$$

$$(2.42)$$

$$-g^{\gamma\delta}[2q^{\eta}q_{j}^{\ \eta'}+q^{\eta}q^{\eta'}-2q_{i}^{\ \eta}q_{j}^{\ \eta'}-q_{i}^{\eta}q^{\eta'}]\\ -g^{\gamma\eta}[2q^{\eta'}q_{j}^{\ \delta}-2q^{\eta'}q^{\delta}+q_{i}^{\ \eta'}q_{j}^{\ \delta}-q_{i}^{\eta'}q^{\delta}]-g^{\eta\delta}[4q^{\eta'}q^{\gamma}+2q^{\eta'}q_{j}^{\ \gamma}+2q_{i}^{\eta'}q^{\gamma}+q_{i}^{\eta'}q_{j}^{\gamma}]\\ +g^{\gamma\delta}[4q_{j}^{\ \eta}q^{\eta'}+2q_{j}^{\ \eta}q_{i}^{\ \eta'}+q^{\eta}q^{\eta'}+q^{\eta}q_{i}^{\eta'}]\}$$
 (2.43)

2.4 $|M^2|$

Chapter 3

Quark gluon quark emission kernel

3.1 Quark loop

$$|M_1|^2 = \left[\frac{-i}{(q_i + q)^2} \not q_i (-ig_s \gamma^{\eta} \times [T^l]_a^o) \not q (ig_s \gamma^{\eta'} \times [T^k]_{o'}^{a'}) \frac{i}{(q_i + q)^2}\right] [\not q_j]$$
(3.1)

$$|M_1|^2 = \frac{g_s^2 [T^l]_a{}^o [T^k]_{o'}{}^{a'}}{4(qq_i)(qq_i)} [\not q_i \gamma^{\eta} \not q \gamma^{\eta'}] [\not q_j]$$
(3.2)

3.2 Spectator Quark loop

$$|M_2|^2 = \frac{g_s^2 [T^m]_f^b [T^n]_f^b}{4(qq_j)(qq_j)} [\not q_j \gamma^{\gamma} \not q \gamma^{\delta}] [\not q_i]$$
(3.3)

3.3 Interference term

$$M_1 M_2^{\dagger} = \frac{g_s^2 [T^l]_a^{\ o} [T^n]_f^{\ o}}{4(qq_i)(qq_j)} [\not q_i \gamma^{\eta} \not q \gamma^{\delta} \not q_j]$$
(3.4)

Chapter 4

Gluon quark quark emission kernel

4.1 M_1

4.2 M_2

4.3 $M1M_2^{\dagger}$

