Linear Algebra I Problem Set 8: Revision

Dr Nicholas Sedlmayr

Friday March 18th 2016

Due: In class, March 25th 2016

- 1. (6) In which of these is $V = U \oplus W$?
 - (a) $V = \mathbb{C}^3$, $U = \{(a, b, c)^T : a + b = 0\}$, $W = \{(a, b, c)^T : a = b = 2c\}$.
 - (b) $V = \mathbb{R}_4[x]$, polynomials of degree less than 4, $U = \{\text{polynomials of even degree, and degree less than 4}\}$, and $W = \{\text{polynomials of odd degree, and degree less than 4}\}$.
- 2. (6) Use Gram-Schmidt orthogonalization to find an orthonormal basis for $V = \mathbb{R}_3[x]$, the polynomials of degree less than 3, starting from the basis $\{1, x, x^2\}$ and with the inner product

$$\langle f|g\rangle = \int_0^2 \mathrm{d}x f(x)g(x) \,.$$

- 3. (8) Which of the following are bases of \mathbb{R}^4 ? Say why! Which are bases of the subspaces they span?
 - (a) $\{(1,1,0,3)^T,(2,1,1,1)^T\}.$
 - (b) $\{(1,1,0,3)^T,(2,1,1,1)^T,(1,0,1,-2)^T,(0,0,0,1)\}.$
 - (c) $\{(1,1,0,3)^T,(2,1,1,1)^T,(1,0,0,-2)^T,(0,0,0,1)^T,(0,1,0,0)^T\}.$
 - (d) $\{(1,1,0,3)^T,(2,1,1,1)^T,(1,0,0,-2)^T,(0,0,0,1)^T\}.$

Total available marks: 20