EPA website on PM pollution for an especially good idea if you fir	d using computing skills taught in class so far and basic internet searches for domain background; for this project, you may wish to refer to HW1 and Lab1 for code examples and the background. However, you are also encouraged to refer to external resources (package documentation, vignettes, stackexchange, internet searches, etc.) as needed this may be ind yourself thinking, 'it would be really handy to do X, but I haven't seen that in class anywhere'. projects is to cultivate your problem-solving ability in an unstructured setting. Your work will be evaluated based on the following: to answer questions;
code style and documentati Please write up your results sep Part I: Dataset	tion. parately from your codes; codes should be included at the end of the notebook. the air quality data and tidy the dataset (see notes below). Write a brief description of the data.
In which years were data vaHow many observations areHow many variables are me	raphic unit of measurement)? luded in the data? rritories do the CBSA's reside? (Hint: str.split()) ralues recorded? re recorded? reasured? reasured? rissing most of the time (i.e., in at least 50% of instances)?
less. Air quality data The CBSA is A U.S. geographic calculate how many CBSA's are every names of states after the control of the control o	a narrative fashion; please do not list answers to the questions above one by one. A few brief paragraphs should suffice; please limit your data description to three paragraphs of a area defined by the Office of Management and Budget (OMB) based on census data and referred collectively to both metropolitan statistical areas and micropolitan areas. To be included in the data, i calculated the length of each unique CBSA's, and the answer is 351. To calculate how many different states are included, i similalr used strsplit function to go commas and then strssplit them accordingly to slashes between states. I then used the set function to count how many unique states there are, and it returned as 52. To calculate ed i used strsplit function to get every names states and territories. I used an if statement to find append all the territories in my territory list. I then measure the length of the
In order to get how many variable trend statsitic. There are in total pollutants in total, but 9 variables pivoted table, thus any sums below.	6.The data was recored from 2000 to 2019, and it could be seen by just looking at how many columns of years there were. Dies are measured, I firstly melted the data according to years, which means letting different years become rows. Then, I pivoted the dataframe by different variables in pollutant and I 1134 observations measured across 20 years (because the dataset has 1134 rows). It turns out there are 9 vairbales (some pollutants have multiple trend statistics, and there are 7 res) measured accrossing 20 years. Moreover, I then used isna.sum() to calculate the number of missing values for different pollutants. Note that there are in total 7020 datasets in the elow the half of 7020 are non-missing most of the time. It turns out that PM2.5 and O3 are the variables of nonmissing most of the time. PM2.5 is an air pollutant that is a concern for air are high. PM2.5 are tiny particles in the air that reduce visibility and cause the air to appear hazy when levels are elevated. It is important because it could harm people's health
Focus on the PM2.5 measurement of how you obtained it; <i>please d</i> Has PM 2.5 air pollution order to calculate if pm2.5 air pm2.5. I took the average after the second of the pm2.5 air pm2.5.	nents that are non-missing most of the time. Answer each of the following questions in a brief paragraph or two. Your paragraph(s) should indicate both your answer and a description on improved in the U.S. on the whole since 2000? In pollution has improved, I melted the dataset according to different years and then groupby years. The index that I looked at was weighted annual mean which was only included in the groupby function in different years, and we can see a decline across 20 years. So yes, the pollution has improved from city to city in US.
In order to see if the pollution had melted dataframe with different your which state has seen. The way that i intepreted the woodataframes in melted dataset(which see if the pollution had melted dataset).	as become more variable, I used the same melted dataset from previous question. Similarly to the last question, except that I did not take the average after grouping by the years, i took the standard deviation function and we could see a decline across 20 years. So, it has become less variable the greatest improvement in PM 2.5 pollution over time? Which city has seen the greatest improvement? ord "improvement" was by looking at the difference at PM2.5 pollution between year 2019 and 2000. To look at the difference of cities between 2019 and 2000, I selected the where years were the index) with years equal to 2019 and 2000. I then took out the numeric values of different years as two long vectors(or dataframe, to be more precise). I renamentag years and merged theses two vectors to a dataframe together. I then added an empty column to the new dataframe to calculate the difference between two years. Lastly, I used
idxmax to get the index of the gr To answer the questions that wh get different state names. I did it dataframe and calculated the dif entries without '-' because it mea	preatest difference between two years. It turns out to be Portsmouth, OH. hich state has seen the greatest improvement, I used similar methodology and the only difference is that I have to strsplit the column Core Based statistical area after the comma to it so and grouped by the dataset with different states and looked at their mean(since there are multiple territories within a state). Similarly I inserted a column with empty entries to the inference between two years. I then used idxmax() to get the index of greatest diffrence between two years. The answer turns out to be WV. I used a for loop to go through all the
Extra credit: Imputa One strategy for filling in missing used as predictors of missing validentify one other pollutant that in	ng values ('imputation') is to use non-missing values to predict the missing ones; the success of this strategy depends in part on the strength of relationship between the variable(s)
	tion is by looking at the correlation matrix between two variables PM2.5 and other pollutants. It turns out that O3 has the strongest correlation with PM2.5 weighted annual mean. So edicted. Some pitfalls about this technique is that the prediction might not be good because there are biases exist in different cities due to missing values. So the best solution is to test.
## PART I data	Core Resed Statistic
0 10100 PM10 1 10100 PM2.5 Weig 2 10100 PM2.5 98 3 10300 O3 4 10420 CO	rend Statistic Name of Sites 2000 2001 2002 2003 2004 2005 2011 2012 2013 2014 2015 2016 2017 2018 2019 College Statistic Animal Mean 1 50.000 58.000 59.000 66.000 39.000 48.000 29.000 62.000 66.000 36.000 43.000 65.000 40.000 49.000 35.000 Aberdeen, 19thted Annual Mean 1 8.600 8.600 7.900 8.400 8.100 9.000 7.100 7.500 7.300 6.200 6.200 5.400 5.800 6.600 5.900 Aberdeen, 19thted Annual Mean 1 23.000 23.000 23.000 21.000 23.000 23.000 23.000 18.000 23.000 23.000 23.000 17.000 14.000 14.000 13.000 22.000 18.000 Aberdeen, 19th Max 1 0.082 0.086 0.089 0.088 0.074 0.082 0.076 0.087 0.064 0.068 0.065 0.069 0.066 0.071 0.059 Adrian, 2nd Max 1 2.400 2.700 1.800 1.900 2.100 1.600 1.000 1.100 0.800 0.800 1.000 1.100 0.900 1.800 1.800 Akron, 4nd Mean 1 13.000 14.000 15.000 14.000 12.000 12.000 12.000 8.000 10.000 10.000 8.000 7.000 7.000 7.000 7.000 6.000 Yuba City, 4nd Annual Mean 1 13.000 14.000 15.000 14.000 12.000 12.000 8.000 10.000 10.000 8.000 7.000 7.000 7.000 7.000 6.000 Yuba City,
1130 49700 NO2 98 1131 49700 O3 1132 49700 PM2.5 Weight	Reth Percentile 1 62.000 62.000 62.000 62.000 52.000 51.000 44.000 46.000 52.000 44.000 39.000 40.000 42.000 41.000 40.000 Yuba City, 4th Max 2 0.081 0.077 0.090 0.085 0.076 0.075 0.070 0.073 0.066 0.072 0.068 0.072 0.074 0.073 0.063 Yuba City, righted Annual Mean 1 10.600 11.900 13.100 9.500 10.000 9.500 8.000 6.900 8.200 9.400 9.600 8.100 9.300 10.300 8.400 Yuba City, 8th Percentile 1 38.000 54.000 34.000 29.000 38.000 42.000 37.000 24.000 25.000 31.000 22.000 32.000 37.000 27.000 Yuba City, 1 38.000 54.000 34.000 29.000 38.000 42.000 37.000 24.000 25.000 31.000 22.000 32.000 37.000 27.000 Yuba City,
CBSA Pollutant To 0 10100 PM10 1 10100 PM2.5 Weighted 2 10100 PM2.5 9 3 10300 O3 4 10420 CO	98th Percentile 1 23.000 23.000 20.000 21.000 23.000 23.000 27.000 18.000 23.000 22.000 17.000 14.000 14.000 13.000 22.000 18.000 4th Max 1 0.082 0.086 0.089 0.088 0.074 0.082 0.066 0.076 0.087 0.064 0.068 0.065 0.069 0.066 0.071 0.059 2nd Max 1 2.400 2.700 1.800 1.900 2.100 1.600 1.400 1.000 1.100 0.800 0.800 1.000 1.100 0.900 1.800 1.800
1130 49700 NO2 9 1131 49700 O3 1132 49700 PM2.5 Weighted 1133 49700 PM2.5 9 1134 rows × 24 columns cbsa_number=len(pd.unique)	98th Percentile 1 38.000 54.000 34.000 29.000 38.000 42.000 17.000 37.000 24.000 25.000 31.000 22.000 32.000 37.000 27.000
<pre>territory_list=data.loc[:; territory_name=[] for i in range(0,len(territory_name.append) len(pd.unique(territory_name) #this counts how many difference. 341</pre>	ritory_list)): d(territory_list[i].split(',')[0])
<pre>state_name_unique=[] for i in range(0,len(state</pre>	<pre>critory_list[i].split(', ')[1]) te_name)): pend(state_name[i].split('-')) dunique: e_flat.append(item) que_flat))</pre>
<pre>{'KS', 'CA', 'RI', 'ID', A', 'TN', 'MA', 'FL', 'NE' 52 state_name territory_real=[] for i in range(0,len(state if(state_name[i].find</pre>	'AZ', 'MN', 'NM', 'MD', 'NJ', 'OR', 'NC', 'PA', 'WV', 'LA', 'HI', 'PR', 'MT', 'SC', 'MI', 'AL', 'VA', 'VT', 'NY', 'UT', 'ME', 'NV', 'OH', 'ND' E', 'CT', 'MS', 'MO', 'OK', 'CO', 'AR', 'DE', 'GA', 'DC', 'IL', 'TX', 'NH', 'IN', 'KY', 'WA', 'WY', 'AK', 'SD', 'WI'} te_name)): d('-')!=-1): opend(state_name[i])
years=['2000','2001','2002','2018','2019'] melteddata_pollutant=pd.me value_vars=years, var_name='years')	o2','2003','2004','2005','2006','2007','2008','2009','2010','2011','2012','2013','2014','2015','2016','2017' melt(data, id_vars=['Pollutant','Trend Statistic','CBSA','Core Based Statistical Area'], ot=melteddata_pollutant.pivot_table(melteddata_pollutant, index=['years', 'CBSA','Core Based Statistical Area'],columns=['Pollutant','Trend Statistical Area'], value Pollutant CO NO2 O3 PM10 PM2.5 Pb SO2
2000 10100 10300 10420 10500	Trend Statistic 2nd Max 98th Percentile Annual Mean 4th Max 2nd Max 98th Percentile Weighted Annual Mean Max 3-Month Average 99th Percentile Aberdeen, SD NaN NaN NaN 50.0 23.0 8.6 NaN NaN NaN Adrian, MI NaN NaN NaN 0.082 NaN NaN NaN NaN NaN NaN NaN NaN 163.0 Albany, GA NaN
2019 49340 49420 49620 49660 Youngstown-Warre 49700 7020 rows × 9 columns	Worcester, MA-CT NaN NaN NaN 0.060 NaN 8.0 York-Hanover, PA 0.7 42.0 7.0 0.062 NaN 20.0 8.8 NaN 8.0 en-Boardman, OH-PA NaN NaN NaN 0.065 31.3 19.0 7.7 NaN 5.0 Yuba City, CA NaN 40.0 6.0 0.063 NaN 27.0 8.4 NaN NaN
# thus PM2.5 and 03 are the Pollutant Trend St 2nd Max NO2 98th Per Annual NO3 4th Max PM10 2nd Max PM2.5 98th Per Weighted	total 7020 datasets in this pivoted table, thus we divide the nasum by 7020 to get the percentage of nonmissing, the variables of nonmissing most of the time Statistic Statis
so2 99th Per dtype: int64 years=['2000','2001','2002','2018','2019'] melteddata=pd.melt(data, :value_vars=years, var_name='years') melteddata[melteddata['Tre	## Month Average
2000 13.057944 2001 12.688318 2002 12.352336 2003 11.853271 2004 11.642056 2005 12.479439 2006 11.360748 2007 11.573364 2008 10.625234 2009 9.671028 2010 9.830374 2011 9.638318 2012 8.973364	
2013 8.798598 2014 8.660748 2015 8.342523 2016 7.585047 2017 7.942991 2018 8.115421 2019 7.559813 Name: value, dtype: floate # we can see it has become	rend Statistic']=='Weighted Annual Mean'].groupby('years').std()
cell value years 3.484359 2000 11339.276927 3.243586 2001 11339.276927 3.227867 2002 11339.276927 3.227867 2003 11339.276927 2.947421 2004 11339.276927 3.931336 2005 11339.276927 3.548080	
2006 11339.276927 2.745368 2007 11339.276927 3.039411 2008 11339.276927 2.484377 2009 11339.276927 2.224681 2010 11339.276927 2.400482 2011 11339.276927 2.188624 2012 11339.276927 1.792889 2013 11339.276927 2.153248 2014 11339.276927 1.998415	
2015 11339.276927 1.856069 2016 11339.276927 1.687641 2017 11339.276927 1.853767 2018 11339.276927 2.296680 2019 11339.276927 1.610754	rend Statistic']=='Weighted Annual Mean'].set_index('years') Core Based Statistical Area CBSA Pollutant value
years 2000 Weighted Annual Mean 2019 Weighted Annual Mean	Aberdeen, SD 10100 PM2.5 8.6 Akron, OH 10420 PM2.5 16.2 Albany, GA 10500 PM2.5 16.6 Albany-Schenectady-Troy, NY 10580 PM2.5 12.4 Albuquerque, NM 10740 PM2.5 6.6 Winston-Salem, NC 49180 PM2.5 8.5
2019 Weighted Annual Mean 2019 Weighted Annual Mean 2019 Weighted Annual Mean You 2019 Weighted Annual Mean 4280 rows × 5 columns data_clean=melteddata[melteddata_2000=data_clean[data_21]	Yakima, WA 49420 PM2.5 9.2 York-Hanover, PA 49620 PM2.5 8.8 Pungstown-Warren-Boardman, OH-PA 49660 PM2.5 7.7 Yuba City, CA 49700 PM2.5 8.4 Lteddata['Trend Statistic']=='Weighted Annual Mean'] a_clean['years']=='2000']
data_2019=data_clean[data_data_2019_vector=data_2019] data_2000_vector=data_2000 data_2000_vector.rename(codata_2019_vector.rename(codata_begin_end_merge=pd.modata_begin_end_merge.inset# create a new column that for i in range(0,len(data_data_begin_end_merge.:# used a for loop to calcodata_begin_end_merge.idxmodata_begin_end_mer	a_clean['years']=='2019'] 19.loc[:,['value','Core Based Statistical Area']] 20.loc[:,['value','Core Based Statistical Area']] 20.loc[:,['value','Core Based Statistical Area']] 20.lumns={'value':'2000 value'}, inplace=True) 20.lumns={'value':'2019 value'}, inplace=T
2019 value 2000 value improvement over 20 years dtype: object #now we are trying to fine data_for_state=pd.merge(da state_different=data_for_s for i in range(0,len(state state_different.iloc[: for i in range(0,len(data)	Ind the greatest improvement among the states data_2019_vector,data_2000_vector,how='left',on='Core Based Statistical Area') _state.loc[:,'Core Based Statistical Area'] te_different)): [i]=state_different.iloc[i].split(',')[1]
data_for_state_meanreal=[] for i in range(0,len(data_	a_for_state)): a_for_state)): ac[i,1].find('-')==-1: anreal.append(data_for_state_meanreal) ad.DataFrame(data_for_state_meanreal) _for_state_meanreal.groupby('Core Based Statistical Area').mean() rt(2,"improvement over 20 years",[0 for element in range(len(data_for_state_mean))]) a_for_state_mean)): loc[i,2]=data_for_state_mean.iloc[i,1]-data_for_state_mean.iloc[i,0] ax() te TN-VA has the greatest improvement among 20 years
/var/folders/xv/l8hd10lx5@ A value is trying to be see See the caveats in the doc state_different.iloc[i]= 2019 value 2000 value improvement over 20 years dtype: object data_clean[data_clean['Con	Sgb4q4s4dpg_6xj40000gn/T/ipykernel_41151/1306497273.py:5: SettingWithCopyWarning: set on a copy of a slice from a DataFrame ocumentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy =state_different.iloc[i].split(',')[1] OR AL
 192 Weighted Annual Mean 1326 Weighted Annual Mean 2460 Weighted Annual Mean 3594 Weighted Annual Mean 4728 Weighted Annual Mean 5862 Weighted Annual Mean 6996 Weighted Annual Mean 	Cincinnati, OH-KY-IN 17140 PM2.5 2000 17.4 Cincinnati, OH-KY-IN 17140 PM2.5 2001 17.0 Cincinnati, OH-KY-IN 17140 PM2.5 2002 16.3 Cincinnati, OH-KY-IN 17140 PM2.5 2003 16.2 Cincinnati, OH-KY-IN 17140 PM2.5 2004 15.3 Cincinnati, OH-KY-IN 17140 PM2.5 2005 18.6 Cincinnati, OH-KY-IN 17140 PM2.5 2006 14.5
 8130 Weighted Annual Mean 9264 Weighted Annual Mean 10398 Weighted Annual Mean 11532 Weighted Annual Mean 12666 Weighted Annual Mean 13800 Weighted Annual Mean 14934 Weighted Annual Mean 16068 Weighted Annual Mean 	Cincinnati, OH-KY-IN 17140 PM2.5 2008 14.0 Cincinnati, OH-KY-IN 17140 PM2.5 2009 13.2 Cincinnati, OH-KY-IN 17140 PM2.5 2010 14.0 Cincinnati, OH-KY-IN 17140 PM2.5 2011 12.8 Cincinnati, OH-KY-IN 17140 PM2.5 2012 11.3 Cincinnati, OH-KY-IN 17140 PM2.5 2013 11.1 Cincinnati, OH-KY-IN 17140 PM2.5 2014 10.9
17202	Cincinnati, OH-KY-IN 17140 PM2.5 2015 9.9 Cincinnati, OH-KY-IN 17140 PM2.5 2016 9.4 Cincinnati, OH-KY-IN 17140 PM2.5 2017 8.9 Cincinnati, OH-KY-IN 17140 PM2.5 2018 9.3 Cincinnati, OH-KY-IN 17140 PM2.5 2019 9.2
17202 Weighted Annual Mean 18336 Weighted Annual Mean 19470 Weighted Annual Mean 20604 Weighted Annual Mean 21738 Weighted Annual Mean : # Extra credit melteddata_pollutant_pivon	pt.corr()
18336 Weighted Annual Mean 19470 Weighted Annual Mean 20604 Weighted Annual Mean 21738 Weighted Annual Mean : # Extra credit melteddata_pollutant_pivot Trend S Pollutant Trend S value CO 20 NO2 98th Per Annua O3 44	No.
18336 Weighted Annual Mean 19470 Weighted Annual Mean 20604 Weighted Annual Mean 21738 Weighted Annual Mean : # Extra credit melteddata_pollutant_pivot Trend S Pollutant Trend S Value CO 20 NO2 98th Per Annua O3 44 PM10 20 PM2.5 98th Per Weighted Annua Pb Max 3-Month A SO2 99th Per	Statistic 2nd Max 98th Percentile Annual Mean Ath Max 2nd Max 98th Percentile 1.000000 0.566425 0.609102 0.871111 0.572854 0.391540 0.461943 0.423815 0.431196 0.566225 0.172479 0.278752 0.278
18336 Weighted Annual Mean 19470 Weighted Annual Mean 20604 Weighted Annual Mean 21738 Weighted Annual Mean 21738 Weighted Annual Mean # Extra credit melteddata_pollutant_pivot Pollutant Trend S Pollutant Trend S Pollutant O3 4 PM10 20 PM2.5 98th Per Weighted Annual Pb Max 3-Month A SO2 99th Per Notes on merging To combine datasets based on s SHARED_COLS . If how = '160 be merged to B). A simple example of the use of # toy data frames A = pd. DataFrame({'shared_col': ['a',	Value Valu
18336 Weighted Annual Mean 19470 Weighted Annual Mean 20604 Weighted Annual Mean 21738 Weighted Annual Mean 21738 Weighted Annual Mean # Extra credit melteddata_pollutant_pivor Trend S Pollutant Trend S Pollutant Trend S NO2 98th Per Annual O3 4 PM10 20 PM2.5 98th Per Weighted Annual Pb Max 3-Month A SO2 99th Per Notes on merging To combine datasets based on S SHARED_COLS . If how = 'let be merged to B). A simple example of the use of # toy data frames A = pd.DataFrame(Solition Correction Cor
18336 Weighted Annual Mean 19470 Weighted Annual Mean 20604 Weighted Annual Mean 21738 Weighted Annual Mean 21738 Weighted Annual Mean # Extra credit melteddata_pollutant_pivot Trend S Pollutant Trend S Pollutant Trend S NO2 98th Per Annual O3 4 PM10 2th PM2.5 98th Per Weighted Annual Pb Max 3-Month A SO2 99th Per Notes on merging To combine datasets based on s SHARED_COLS . If how = 'let be merged to B b. A simple example of the use of # toy data frames A = pd.DataFrame(Solition Correction Cor
18336 Weighted Annual Mean 19470 Weighted Annual Mean 20604 Weighted Annual Mean 21738 Weighted Annual Mean 21738 Weighted Annual Mean # Extra credit melteddata_pollutant_pivot Trend S Pollutant Trend S Pollutant Trend S Pollutant O3 4 PM10 2t PM2.5 98th Per Weighted Annual Pb Max 3-Month A SO2 99th Per Notes on merging To combine datasets based on s SHARED_COLS . If how = 'let be merged to B). A simple example of the use of # toy data frames A = pd .DataFrame(Control Cont