Math 1560 Assignment #3 Solutions University of Lethbridge, Fall 2017

Sean Fitzpatrick

October 16, 2017

1. Show that the equation $6x^5 + 13x + 1 = 0$ has **exactly one** real number solution.

Solution: Let $f(x) = 6x^5 + 13x + 1$. Since f is a polynomial function, it is continuous on \mathbb{R} . We notice that

$$f(-1) = -6 - 13 + 1 = -18 < 0$$
, and $f(0) = 0 + 0 + 1 = 1 > 0$.

Thus, by the Intermediate Value Theorem, there exists some number $c \in (-1,0)$ such that $f(c) = 6c^5 + 13c + 1 = 0$, so there is at least one solution to the equation.

Now, suppose there were two such solutions, say c_1 and c_2 , with $c_1 < c_2$. Then we have that f is continuous on $[c_1, c_2]$, and differentiable on (c_1, c_2) , and $f(c_1) = f(c_2) = 0$. It would then follow from Rolle's theorem that there is some number $a \in (c_1, c_2)$ such that f'(a) = 0.

However, we find that

$$f'(x) = 30x^4 + 13 \ge 13 > 0$$

for all $x \in \mathbb{R}$. Thus, it is impossible for such a number a (with f'(a) = 0) to exist.

If there were more than one solution, we would have a contradiction, and therefore, there must be exactly one solution to the equation, as required.

2. Show that for any real numbers *a* and *b*,

$$|\sin(a) - \sin(b)| \le |a - b|.$$

Solution: Suppose a < b. (If a = b, the result holds, since $0 \le 0$. If a > b, we can simply exchange the roles of a and b.)

Let $f(x) = \sin(x)$. We know that f is continuous on [a, b] and differentiable on (a, b), so by the Mean Value Theorem there exists some $c \in (a, b)$ such that

$$f'(c) = \frac{f(a) - f(b)}{a - b}.$$

But we know that $f'(c) = \cos(c)$, and since $|\cos(c)| \le 1$ for any number c, we have

$$1 \ge |\cos(c)| = \left| \frac{\sin(a) - \sin(b)}{a - b} \right| = \frac{|\sin(a) - \sin(b)|}{|a - b|}.$$

Multiplying both sides of the inequality by |a-b|, we obtain the desired result.

- 3. Sketch the graph of the function *f* with the following properties:
 - (i) f is continuous on \mathbb{R}
 - (ii) f(0) = 1, f(1) = 0, f(-1) = 0, and f(2) = 1.
 - (iii) $\lim_{x \to \infty} f(x) = 2$, and $\lim_{x \to -\infty} f(x) = -1$.
 - (iv) f'(x) > 0 on $(-\infty, 0) \cup (1, \infty)$, and f'(x) < 0 on (0, 1).
 - (v) f''(x) > 0 on $(-\infty, 0) \cup (0, 2)$ and f''(x) < 0 on $(2, \infty)$.

Solution: The following is a representative (albeit imperfect) graph satisfying the required properties.

