

TOPIC OUTLINE

Bartlett's Test

One-Way ANOVA

Welch's ANOVA

BARTLETT'S TEST

BARTLETT'S TEST

Bartlett's Test is a statistical test used to assess whether **multiple groups** have equal variances.

Hypothesis

$$H_o$$
: $\sigma_1 = \sigma_1 = \sigma_3 = \cdots \sigma_n$

 H_a : at least one \neq (p-value $< \alpha$)

Assumptions

- Continuous data
- Normal data

<u>syntax</u>

```
from scipy import stats
b_stat, p_value = stats.bartlett(
    sample_1 data,
    sample_2 data,
    sample_3 data,...sample_n data)
```


ONE-WAY ANOVA

ONE-WAY ANOVA

One-Way ANOVA is a statistical test used to compare the means of three or more independent groups to determine if there is a statistically significant difference among them.

Hypothesis

$$H_0$$
: $\mu_1 = \mu_1 = \mu_3 = \cdots \mu_n$

 H_a : at least one \neq (p-value $< \alpha$)

Assumptions

- Continuous data
- Normal data
- Equal variances

<u>syntax</u>

```
from scipy import stats

f_stat, p_value = stats.f_oneway(
    sample_1 data,
    sample_2 data,
    sample_3 data,... sample_n data)
```


WELCH'S ANOVA

WELCH'S ANOVA

Welch's ANOVA is a variation of the classic one-way ANOVA that does <u>not</u> assume equal variances across groups.

Hypothesis

$$H_o: \mu_1 = \mu_1 = \mu_3 = \cdots \mu_n$$

 H_a : at least one \neq (p-value $< \alpha$)

Assumptions

- Continuous data
- Normal data
- <u>Unequal</u> variances

<u>syntax</u>

```
import pingouin as pg
result = pg.welch_anova(
    dv = 'data_values column',
    between = 'group_column',
    data = df)

p_value = result['p-unc'].values[0]
```

note: stuck dataset

EXERCISE

The dataset contains power output measurements from **three hydroelectric** power plants. Verify the maintenance department claim that one of the plants is **underperforming**.

dataset

"hydroelectric-sample.csv"

Solution

Let $\alpha = 0.05$

Hypothesis

$$H_o: \mu_1 = \mu_1 = \mu_3 = \cdots \mu_n$$

 H_a : at least one \neq (p-value $< \alpha$)

LABORATORY

