

Redes de Computadores

Ricardo José Cabeça de Souza

ricardo.souza@ifpa.com.br

CAMADA DE APLICAÇÃO

- Desempenha funções específicas de utilização dos sistemas
- Identificação de parceiros de comunicação
 - Especificação de nomes e endereços
 - Serviço de Diretório (Directory Service)
- Não são implementadas funções de multiplexação ou splitting
- Determinação da disponibilidade de recursos
- Autenticação de parceiros de comunicação

PROTOCOLOS DA CAMADA DE APLICAÇÃO -EXEMPLOS

- HTTP (HyperText Transfer Protocol)
- SMTP (Simple Mail Transfer Protocol)
- FTP (File Transfer Protocol)
- DNS (Domain Name System)

CAMADA DE APLICAÇÃO

- Arquitetura da Aplicação
 - É projetada pelo desenvolvedor e determina como a aplicação é organizada em vários sistemas finais
 - Arquiteturas Usadas:
 - Cliente-Servidor
 - P2P
 - Híbrida

CAMADA DE APLICAÇÃO

- Arquitetura Cliente-Servidor
 - Host sempre em funcionamento (servidor)
 - Pode existir mais de um servidor (server farm)
 - Atende requisições de muitos usuários (clientes)
 - Servidor tem endereço fixo, conhecido (IP)
 - Exemplos:
 - Servidor Web, Servidor FTP, Servidor e-mail, etc.

TECNOLOGIA CLIENTE/SERVIDOR

Arquitetura Cliente/Servidor

Arquitetura Cliente/Servidor

 COMUNICAÇÃO ENTRE O CLIENTE E O SERVIDOR

COMUNICAÇÃO ENTRE O CLIENTE E O SERVIDOR

- Arquitetura P2P (Peer-to-peer)
 - Não há servidor sempre em funcionamento
 - Pares arbitrários de hosts (peers) comunicam-se diretamente entre si
 - Um host pode mudar seu endereço IP
 - Principais características:
 - Escalabilidade
 - Natureza descentralizada e distribuída
 - Difícil de gerenciar

- Arquitetura P2P (Peer-to-peer)
 - Ideia inicial

ricardo.souza@ifpa.edu.br

Arquitetura P2P (Peer-to-peer)

(A) ARQUITETURA CLIENTE-SERVIDOR; (B) ARQUITETURA P2P

a. Arquitetura cliente-servidor

b. Arquitetura P2P

ricardo.souza@ifpa.edu.br

Protocolos da Camada de Aplicação

- O protocolo da camada de aplicação define:
 - Tipo de mensagem trocada
 - Sintaxe dos vários tipos de mensagens
 - Semântica dos campos (significado de cada campo)
 - Regra para determinar quando e como um processo envia mensagens e responde mensagens

Protocolo HTTP (Hyper Text Transfer Protocol)

- Definido pela RFC 1945 e 2616
- Implementado em dois programas: cliente e servidor
- Programas são executados em sistemas finais diferentes

Requisição HTTP

COMPORTAMENTO DE REQUISIÇÃO-RESPOSTA DO HTTP

CÁLCULO SIMPLES PARA O TEMPO NECESSÁRIO PARA SOLICITAR E RECEBER UM ARQUIVO HTML

MANTENDO O ESTADO DO USUÁRIO COM COOKIES

Legenda:

FTP TRANSPORTA ARQUIVOS ENTRE SISTEMAS DE ARQUIVO LOCAL E REMOTO

CONEXÕES DE CONTROLE E DE DADOS

ricardo.souza@ifpa.edu.br

UMA VISÃO DO SISTEMA DE E-MAIL DA INTERNET

ALICE ENVIA UMA MENSAGEM A BOB

Legenda:

PROTOCOLOS DE E-MAIL E SUAS ENTIDADES COMUNICANTES

DNS (Domain Name System)

- Mecanismo utilizado pelo TCP/IP que define um sistema de nomes baseado em uma estrutura de árvore, que possibilita uma nomeação organizada de sistemas de domínio universal.
- Estabelece a sintaxe de nomes e regras para delegação de autoridade sobre os nomes além de implementar um algoritmo computacional eficiente para mapear nomes em endereços.

- O DNS converte nomes de máquinas em endereços IP
- Mapeia nomes para IPs e IPs para nomes
- Banco de dados distribuído, permitindo, assim, que uma seção seja gerenciada localmente e esteja, mesmo assim, disponível para todo o mundo

- Os servidores de nomes compõem a parte servidor do mecanismo cliente-servidor do DNS
- Os servidores de nomes contêm informações sobre uma parte do banco de dados e as torna disponíveis para os clientes ou resolvedores.

ESTRUTURA DO DNS

- Parecida com a estrutura de arquivos do Unix
- Uma árvore invertida com o nó raiz no topo
- Cada nó contém um rótulo que identifica o nó relativo ao pai
- Cada nó representa a raiz de uma sub-árvore da árvore global
- Cada uma dessas sub-árvores representa um domínio
- Cada domínio pode ser dividido em outras partições (subdomínios)

- DNS (Domain Name System)
- No caso do nível mais alto, Domínios de Primeiro Nível ou TLD(Top Level Domain) foram designados os seguintes nomes:
 - COM organizações comerciais;
 - COUNTRY qualquer país que utilize o padrão ISO3166 para nomes de país;
 - EDU instituições educacionais;
 - GOV instituições governamentais;
 - INT organizações internacionais;
 - MIL grupos militares;
 - ORG outras organizações.

DNS (Domain Name System)

FQDN (Fully Qualified Domain Name)

SERVIDORES DNS RAIZ EM 2012 (NOME, ORGANIZAÇÃO, LOCALIZAÇÃO)

Domínio IN-ADDR.ARPA

ricardo.souza@ifpa.edu.br

Registro de Domínios

- Antes feito pela FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo)
- No final de 2005 esta atividade passou a ser de competência do Núcleo de Informação e Coordenação do Ponto BR
- Todo o processo é feito a partir do servidor Web do Registro.BR, localizado em http://registro.br.

Referências

- FOROUZAN, Behrouz A. **Comunicação de dados e redes de computadores**. 4. ed. São Paulo: McGraw-Hill, 2008.
- KUROSE, Jim F. ROSS, Keith W. Redes de Computadores e a Internet. Uma nova abordagem. 3. ed. São Paulo: Addison Wesley, 2006.
- TANENBAUM, Andrew S. **Redes de computadores**. 3. Ed. Rio de Janeiro: Campus, 1997.
- COMER, Douglas E. Internetworking with TCP/IP. Principal, Protocolos, and Architecture. 2.ed. New Jersey: Prantice Hall, 1991. v.1.
- OPPENHEIMER, Priscilla. **Projeto de Redes Top-down**. Rio de Janeiro: Campus, 1999.
- GASPARINNI, Anteu Fabiano L., BARELLA, Francisco Rogério.
 TCP/IP Solução para conectividade. São Paulo: Editora Érica Ltda., 1993.

Referências

- SPURGEON, Charles E. **Ethernet: o guia definitivo**. Rio de Janeiro: Campus, 2000.
- SOARES, Luiz Fernando G. Redes de Computadores: das LANs, MANs e WANs às redes ATM. Rio de Janeiro: Campus, 1995.
- CARVALHO, Tereza Cristina Melo de Brito (Org.). Arquitetura de Redes de Computadores OSI e TCP/IP. 2. Ed. rev. ampl. São Paulo: Makron Books do Brasil, Brisa; Rio de Janeiro: Embratel; Brasília, DF: SGA, 1997.
- COMER, Douglas E. Interligação em rede com TCP/IP. 2. Ed. Rio de Janeiro: Campus, 1998. v.1.
- ARNETT, Matthen Flint. Desvendando o TCP/IP. Rio de Janeiro: Campus, 1997. 543 p.
- ALVES, Luiz. **Comunicação de dados**. 2. Ed. rev. ampl. São paulo: Makron Books do Brasil, 1994.