Rate-cost tradeoffs in control

Victoria Kostina, Babak Hassibi

Control under communication constraints

Consider the following discrete time stochastic linear system:

$$X_{t+1} = \mathsf{A}X_t + \mathsf{B}U_t + V_t, \tag{1}$$

where

- random vector $X_t \in \mathbb{R}^n$ is the system state;
- random vector $V_t \in \mathbb{R}^n$ is the process noise;
- $U_t \in \mathbb{R}^m$ are deterministic controls;
- A and B are fixed matrices of dimensions $n \times n$ and $n \times m$, respectively.

The efficacy of a given control law at time t is measured by the linear quadratic regulator (LQR) cost function:

$$LQR(U_0, \dots, U_t) \triangleq \frac{1}{t+1} \mathbb{E} \left[\sum_{i=0}^t \left(X_i^T Q X_i + U_i^T R U_i \right) + X_{t+1}^T S_{t+1} X_{t+1} \right],$$

where $Q \ge 0$, R > 0 and $S_{t+1} \ge 0$ are known matrices.

Goal

Design an encoder and a controller to minimize the LQR cost.

Minimum cost without rate constraints

Suppose that V_1, V_2, \ldots are i.i.d. with common distribution P_V , and that (A, B) is controllable. Without rate constraints, the minimum attainable cost is given by

$$b_{\min} = \operatorname{tr}(\Sigma_V S),$$

where Σ_V is the covariance matrix of V, and S is the solution to the algebraic Ricatti equation

$$S = Q + A^{T} (S - M) A$$

$$M \triangleq SB(R + B^{T}SB)^{-1}B^{T}S.$$

Cost = mean-square deviation from 0

In this special case, $Q = I_n$, R = 0. If B is invertible, $S = M = I_n$, $U_t^* = -B^{-1}AX_t$, and

$$b_{\min} = \operatorname{Var}[V]$$
.

Rate-cost function

$$\mathbb{B}_{t}(r) \triangleq \min_{\substack{U_{i}, F_{i}, G_{i}, i=1,...t-1:\\ U_{i}=f(G^{i-1}), I(F_{i}; G_{i}|G^{i-1}) < r,}} \operatorname{LQR}(U_{0}, \ldots, U_{t})$$

Definition 1 (Information rate-cost function). The information rate-cost function is defined as

$$\mathbb{R}(b) \triangleq \min \left\{ r : \limsup_{t \to \infty} \mathbb{B}_t(r) < b, \right\}$$

Minimum cost with rate constraints

Theorem 1. Suppose that V_1, V_2, \ldots are i.i.d. with common distribution P_V . Assume that X_0 and V have a density, and that (A, B) is controllable. For any LQR cost $b > b_{\min}$, the rate-cost function of the fully observed linear stochastic system (1) is bounded from below as follows.

a) If $\operatorname{rank} B = n$, then

$$\mathbb{R}(b) \ge \log|\det A| + \frac{n}{2}\log\left(1 + \frac{N(V)|\det M|^{\frac{1}{n}}}{(b-b_{\min})/n}\right),$$
 (2)

where N(V) is the entropy power of V.

b) More generally, for all $b > b_{\min}$,

$$\mathbb{R}(b) \ge \sum_{i: |\lambda_i(\mathsf{A})| \ge 1} \log |\lambda_i(\mathsf{A})|. \tag{3}$$

Cost = mean-square deviation from 0

In this special case, (2) reduces to

$$\mathbb{R}(b) \ge \log|\det A| + \frac{n}{2}\log\left(1 + \frac{N(V)}{(b - \text{Var}[V])/n}\right).$$

Achievability scheme

A simple lattice quantization scheme that only quantizes the *innovation*, that is, the difference between the controller's belief about the current state and the true state, achieves cost $b > b_{\min}$ at the entropy rate

$$H \le \log|\det A| + \frac{n}{2}\log\left(\frac{N(V)|\det M|^{\frac{1}{n}}}{(b-b_{\min})/n}\right) + O_1(\log n) + O_2(b-b_{\min})$$

Figure: The minimum quantizer entropy compatible with cost b. Scalar system, $n=1, A=2, B=Q=R=1, V\sim \mathcal{N}(0,1)$. Courtesy of Ayush Pandey.

References

- [1] S. Tatikonda, A. Sahai, and S. Mitter, "Stochastic linear control over a communication channel," *IEEE Transactions on Automatic Control*, vol. 49, no. 9, pp. 1549–1561, 2004.
- [2] G. N. Nair and R. J. Evans, "Stabilizability of stochastic linear systems with finite feedback data rates," *SIAM Journal on Control and Optimization*, vol. 43, no. 2, pp. 413–436, 2004.