Assignment № 2

Due: 03/26/2020

Jiageng Chen, CCNU Wollongong Joint Institute

Problem 1

Consider the signature system derived from a Sigma protocol (P, V) using the building blocks:

- A Sigma protocol (P,V) for a relation $\mathcal{R}\subseteq\mathcal{X}\times\mathcal{Y}$; we assume that conversations are of the form (t,c,z), where $t\in\mathcal{T},\,c\in\mathcal{C}$, and $z\in\mathcal{Z}$;
- A key generation algorithm G for R;
- A hash function H: M → T × C, which will be modeled as a random oracle; the set M will be the message space of the signature scheme.

The Fiat-Shamir signature scheme derived from G and (P, V) works as follows:

- The key generation algorithm is G, so a public key is of the form pk = y, where $y \in \mathcal{Y}$, and a secret key is of the form $sk = (x, y) \in R$.
- To sign a message $m \in \mathcal{M}$ using a secret key sk = (x, y), the signing algorithm runs as follows:
 - It starts the prover P(x,y), obtaining a commitment $t \in \mathcal{T}$;
 - It computes a challenge $c \leftarrow H(m, t)$;
 - Fnally, it feeds c to the prover, obtaining a response z, and outputs the signature $\sigma:=(t,z)\in\mathcal{T}\times\mathcal{Z}.$
- To verify a signature $\sigma = (t,z) \in \mathcal{T} \times \mathcal{Z}$ on a message $m \in \mathcal{M}$ using a public key pk = y, the verfication algorithm computes $c \leftarrow H(m,t)$, and checks that (t,c,z) is an accepting conversation for y.

Assume (P,V) is special HVZK. Suppose that during signing we set the challenge as $c \leftarrow H(m)$ instead of $c \leftarrow H(m,t)$. Show that the resulting signature system is insecure.

Hint: Use the HVZK simulator to forge the signature on any message of your choice.

Problem 2

(*Threshold proofs*). The OR-proof construction allows a prover to convince a verifier that he knows a witness for one of two given statements. In this exercise, we develop a generalization that allows a prover to convince a verifier that he knows at least k witnesses for n given statements.

Assignment № 1 Page 1

Let (P,V) be a Sigma protocol for a relation $\mathcal{R} \subset \mathcal{X} \times \mathcal{Y}$ Assume that (P,V) provides knowledge soundness and is special HVZK, with simulator Sim. We also assume that $\mathcal{C} = \mathbb{Z}q$ for some prime q.Let n and k be integers, with 0 < k < n < q. We can think of n and k as being constants or system parameters.

We shall build a Sigma protocol (P', V') for the relation

$$\mathcal{R}' = \left\{ ((x_1, ..., x_n), (y_1, ..., y_n)) \in (\mathcal{X} \cup \bot)^n \times \mathcal{Y}^n : |i \in \{1, ..., n\} : (x_i, y_i) \in \mathcal{R}| \ge k \right\}.$$

Suppose the prover P' is given the witness $(x_1,...,x_n)$ and the statement $(y_1,...,y_n)$, and the verifier V' is given the statement $(y_1,...,y_n)$. Let I denote the set of indices i such that $(x_i,y_i) \in R$. We know that $|I| \geq k$. We shall assume that |I| = k, removing indices from I if necessary. Let $J := 1,...,n \setminus I$, so |J| = n - k. The protocol runs as follows.

- 1. For each $j \in J$, the prover chooses $c_j \in \mathbb{Z}q$ at random, and runs Sim on input (y_j, c_j) to obtain (t_j, z_j) . For each $i \in I$, the prover initializes an instance of P with (x_i, y_i) , obtaining a commitment t_i . The prover then sends $(t_1, ..., t_n)$ to the verifier.
- 2. The verifier generates a challenge $c \in \mathbb{Z}q$ at random, and sends c to the prover.
- 3. The prover computes the unique polynomial $f \in \mathbb{Z}q[w]$ of degree at most n-k such that f(0)=c and $f(j)=c_j$ for all $j\in J$ using a polynomial interpolation algorithm. It then computes the challenges $c_i:=f(i)$ for all $i\in I$. For each $i\in I$, the prover then feeds the challenge c_i to the instance of P it initialized with (x_i,y_i) , obtaining a response z_i . The prover then sends $(f,z_1,...,z_n)$ to the verifier.
- 4. First, the verifier checks that f is a polynomial of degree at most n-k with constant term c. Then, for $\ell=1,...,n$, it computes $c_\ell:=f(\ell)$. Finally, for $\ell=1,...,n$, it verifies that (t_ℓ,c_ℓ,z_ℓ) is an accepting conversation for y_ℓ .

Give the instantiation by using Schnorr protocol.

Problem 3

Write down the GQ signature scheme by applying the Fiat-Shamir heuristic transformation to the GQ ID protocol. Compare the derived signature scheme with RSA-FDH signature scheme regarding the efficiency.

Assignment № 1 Page 2