Empirical Analysis of a Segmentation Foundation Model in Prostate Imaging

Heejong Kim¹, Victor Ion Butoi³, Adrian V. Dalca^{3,4}, Daniel J.A. Margolis¹, Mert R. Sabuncu^{1,2}

¹Department of Radiology, Weill Cornell Medicine ²School of Electrical & Computer Engineering, Cornell University and Cornell Tech ³Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School ⁴Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

Personal page: https://heejongkim.com
Email: hek4004@med.cornell.edu
Paper link

MOTIVATION

Traditional Approach vs. Foundational Model Approach

- Traditionally models, e.g. nnUNet [1] are trained for each segmentation task, often from scratch.
- FMs like UniverSeg [2] and Segment Anything Model (SAM) [3] are pre-trained general-purpose models.
- Instead of retraining, prompts like support sets are used for UniverSeg [2] and points and masks for SAM [3].
- We conduct an empirical evaluation study in the context of prostate imaging and compare UniverSeg [2] and nnUNet [1].

METHOD

Different support set selection strategies for UniverSeg

- **Support Set Selection Strategies:**
 - Slice-index-aware Support Set Selection:
 Randomly select with a probability proportional to the weight.
 - Weights for query image = $1/(|Z_{I_t}-Z_{I_q}|+1)$ (Z: slice index, I_t : available images, I_q : query image)
 - Random Support Set Selection:
 Randomly draw from available labeled slices.
- **ROI-inclusive vs. ROI-agnostic:** Support set selection techniques can be restricted to slices.
 - ROI-inclusive: slices where the ROI is present
 - ROI-agnostic: all possible slices (i.e., be agnostic to whether the ROI is present or absent in the slice)

Note: this poster includes the results of prostate gland segmentation only. For transitional and peripheral zone segmentation, please refer to the paper.

RESULT

Computational Resource Comparison.

	nnUNet-orig.	nnUNet-small	UniverSeg	
$\# \mathrm{Params}$	$20.6 \text{ M} \times 5 \text{ folds}$	$1.3~\mathrm{M} \times 5~\mathrm{folds}$	1.2 M	
Training time (ms)	1.6×10^{8}	1.2×10^{8}	_	
Inference time (ms)	9.7×10^{3}	7.5×10^3	6.9×10^{2}	

Table 1. Computational resource comparison. The values are averaged across ROIs and calculated for N=1 case for all methods. Tested on Nvidia TITAN Xp GPU (12 GB vRAM).

- Smaller number of parameters and faster inference time.
- Does not require task-specific training.
 - Saving substantial computational requirement.
 - Obviating the need for a GPU.

Quantitative Segmentation Performance

ROI	Method	N = 1	N=2	N = 5	N = 10
	nnUNet-Orig	0.592 ± 0.088	0.714 ± 0.045	0.810 ± 0.007	0.817 ± 0.016
Prostate-Gland	nnUNet-Small	0.520 ± 0.076	0.698 ± 0.057	0.802 ± 0.008	0.808 ± 0.019
	UniverSeg	$oxed{0.711} ar{\pm} ar{0}.ar{0}ar{0}$	$ar{0.769} \pm ar{0.009}^{-}$	0.780 ± 0.003	$-\bar{0}.80ar{2}\pmar{0}.ar{0}0ar{5}$

Table 2. 2D Dice scores results. The scores are averaged across 5 support/test splits.

- Overall comparable results to the nnUNet models.
- UniverSeg achieved good performance given extremely limited annotated data, e.g., N = 1, outperforming the nnUNet models.

Support Set Selection	N	Prostate		Support Set Selection	N	Prostate
ROI-agnostic	1	0.596 ± 0.047	>	> ROI-inclusive	1	0.481 ± 0.035
	2	0.690 ± 0.035			2	0.488 ± 0.034
	5	0.716 ± 0.006			5	0.513 ± 0.027
	10	0.778 ± 0.006			10	0.543 ± 0.013

Table 3. 3D Dice scores for UniverSeg models with two different support set selection strategies.

- Incorporating ROI-excluded slices improves results.
 - Need to account for ROI absence in query images in 3D contexts.

Qualitative Segmentation Performance

Ablation

ROI	Method	N = 1	N = 2	N = 5	N = 10
nnUNet-Orig	w/o augmentation	0.590 ± 0.085	0.712 ± 0.046	0.809 ± 0.007	0.815 ± 0.016
	fold-1	0.581 ± 0.086	0.681 ± 0.060	0.798 ± 0.011	0.808 ± 0.017
	fold-2	0.564 ± 0.095	0.710 ± 0.039	0.797 ± 0.010	0.798 ± 0.023
	fold-3	0.590 ± 0.092	0.691 ± 0.044	0.795 ± 0.014	0.807 ± 0.025
	fold-4	0.599 ± 0.088	0.708 ± 0.043	0.785 ± 0.006	0.804 ± 0.006
	fold-5	0.553 ± 0.046	0.692 ± 0.046	0.790 ± 0.006	0.810 ± 0.008
	$\overline{ ext{default}}$	$\boxed{\textbf{0.592} \pm \textbf{0.088}}$	$ar{0.714} \pm ar{0.045}$	$ar{0.810} \pm ar{0.007}$	0.817 ± 0.016
	w/o augmentation	0.519 ± 0.072	0.696 ± 0.056	0.801 ± 0.007	0.807 ± 0.018
	fold-1	0.537 ± 0.047	0.668 ± 0.074	0.784 ± 0.014	0.801 ± 0.021
	fold-2	0.518 ± 0.068	0.686 ± 0.051	0.793 ± 0.012	0.792 ± 0.023
nnUNet-Small	fold-3	0.512 ± 0.091	0.689 ± 0.057	0.784 ± 0.011	0.803 ± 0.011
	fold-4	0.508 ± 0.076	0.705 ± 0.046	0.787 ± 0.015	0.792 ± 0.022
	fold-5	0.530 ± 0.089	0.680 ± 0.045	0.782 ± 0.014	0.798 ± 0.020
	$\overline{\mathrm{default}}$	$\boxed{0.520 \pm 0.076}$	$ar{0}.ar{6}9ar{8}\pmar{0}.ar{0}ar{5}7^{-}$	$ar{0.802} \pm ar{0.008}$	0.808 ± 0.019
	all	0.711 ± 0.008	0.769 ± 0.009	0.778 ± 0.006	0.799 ± 0.005
UniverSeg	random	_	_	0.777 ± 0.002	0.798 ± 0.005
	random+5 ensemble	_	_	0.779 ± 0.004	0.800 ± 0.006
	z-weighted	_	_	0.777 ± 0.002	0.798 ± 0.005
	z-weighted $+5$ ensemble	_	_	$\boldsymbol{0.780 \pm 0.003}$	$\boldsymbol{0.802 \pm 0.005}$
Average $\#$ of images available for support set		14.0 ± 2.1	31.4 ± 6.5	83.4 ± 2.9	148.0 ± 3.7

Table 4. 2D Dice scores from the ablation study conducted for the prostate segmentation task.

- Ensembling gave all models a boost.
- Support set quality is important for UniverSeg.
- Test time augmentation gives boost to nnUNet results.

CONCLUSION

- Our results and discussion highlight several important factors that will likely be important in the development and adoption of foundation models for medical image segmentation.
- Based on the successful employment of FMs in multiple domains, we believe FMs will instigate a paradigm shift for medical imaging.
- Future directions:
 - FMs for 3D MIS are needed, and promise to be impactful.
 - Second, adaptation of FMs should be further studied.
 - Third, clinical practitioners can easily adapt FMs in their workflows, as it obviates the need to fine-tune.

REFERENCE

[1] Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods 18(2), 203–211 (2021) [2] Butoi, V.I., Ortiz, J.J.G., Ma, T., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Uni- verseg: Universal medical image segmentation. arXiv preprint arXiv:2304.06131 (2023) [3] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)