Module : Conception et Complexité des Algorithmes

Bab-Ezzouar, 10 Octobre 2018 Année universitaire 2018/2019 Semestre 1

Série de Travaux Pratiques n° 2 (TP n°2)

Algorithmes de Complexités temporelles linéaire O(n) et racine carrée $O(\sqrt{n})$

L'objet de ce TP est une étude expérimentale de 3 algorithmes du problème du test de la primalité d'un nombre entier naturel. Les 2 premiers algorithmes ont une complexité linéaire O(n) en n et le $3^{\text{ème}}$ algorithme a une complexité en racine carrée $O(\sqrt{n})$. On utilise le langage de programmation C.

Rappel : Un nombre entier naturel n est premier s'il n'a que 2 diviseurs : le nombre 1 et le nombre n lui-même.

Partie I (Algorithme 1 du test de la primalité)

1- Développer un algorithme qui permet de déterminer si un nombre entier naturel n est premier (n>=2).

Ind : Utiliser la fonction modulo qui donne le reste de la division de n par i, i variant de 1 jusqu'à n.

- 2.1- Calculer les complexités temporelles en notation exacte, notée f3(n), et/ou en notation asymptotique de Landau O (Grand O) de cet algorithme au meilleur cas, notée f1(n), et au pire cas, notée f2(n).
- 2.2- Calculer la complexité spatiale en notation exacte et/ou en notation asymptotique de Landau O (Grand O) de cet algorithme notée s(n).
- 3- Développer le programme correspondant avec le langage C.
- 4- Vérifier par programme si les nombres n donnés dans le tableau ci-dessous (1.000.003, 2.000.003, ...) sont premiers.
- 5- Mesurer les temps d'exécution T pour ces nombres n et compléter le tableau ci-dessous.

Ind : Pour mesurer le temps d'exécution d'un programme avec le langage C, on utilise les fonctions de gestion du temps qui sont fournies dans la bibliothèque time.h (inclure l'instruction : #include <time.h>).

n	1.000.003	2.000.003	4.000.037	8.000.009	16.000.057	32.000.011	64.000.031
T							

n	128.000.003	256.000.001	512.000.009	1024.000.009	2048.000.011
T					

- 6- Développer un programme de mesure du temps d'exécution du programme qui a en entrée les données de l'échantillon ci-dessus et en sortie les temps d'exécution. Les données et les mesures du temps sont à enregistrer dans des tableaux notés respectivement Tab1 et Tab2.
- 7- Représenter par un graphe, noté $G_f(n)$, les variations de la fonction de la complexité temporelle correspondant soit au meilleur cas f1(n) soit au pire cas f2(n) en fonction de n; et

par un autre graphe, noté $G_T(n)$, les variations du temps d'exécution T(n) en fonction de n. Utiliser pour cela un logiciel graphique tel que excel.

8- Interprétation des résultats :

8.a- Les mesures du temps obtenues correspondent-elles au meilleur cas ou au pire cas ?

8.b- Que remarque-t-on sur les données de l'échantillon et sur les mesures obtenues ? Peut-on déduire, même de façon approximative, une fonction T(n) reliant T et n ; c'est-à-dire une fonction T(n) permettant de déterminer directement la valeur de T à partir de n.

Ind: comparer chaque nombre n avec le suivant ; et chaque mesure du temps avec la suivante. 8.c- Comparer entre la complexités théorique et la complexité expérimentale (çàd., les mesures expérimentales). Les prédictions théoriques sont-elles compatibles avec les mesures expérimentales ?

Partie II (Algorithme 2 du test de la primalité)

On cherche à améliorer l'algorithme précédent.

On sait que tout diviseur i du nombre n vérifie la relation : $i \le n/2$, avec $i \ne n$.

- 1- Développer un 2^{ème} algorithme en tenant compte de cette propriété et refaire les questions 2 à 8 de la partie 1.
- 2- Comparer les 2 algorithmes (représenter pour cela dans une même figure les graphes des 2 algorithmes). Lequel des 2 algorithmes est meilleur (ou plus performant) ?

Partie III (Algorithme 3 du test de la primalité)

On cherche à améliorer encore l'algorithme du test de la primalité.

Il existe une propriété mathématique sur les nombres entiers :

Propriété : les diviseurs d'un nombre entier n sont pour la moitié $\leq \sqrt{n}$ et pour l'autre moitié compris entre \sqrt{n} et n/2.

- 1- Développer un 3^{ème} algorithme en tenant compte de cette propriété et refaire toutes les questions 2 à 8 de la partie 1.
- 2- Comparer les 3 algorithmes (représenter pour cela dans une même figure les graphes des 3 algorithmes). Lequel des 3 algorithmes est meilleur (ou plus performant) ?

Partie IV (Rapport de travail)

1- Rédiger un rapport décrivant le travail réalisé.