Method of Moving Points

Alston Yam

1 Introduction

Inspired by problem 4 on this IMO mock by Evan Chen.

2 Cross Ratios

Definition 2.1 – Cross Ratios Given 4 distinct points A, B, C, D on a line, the cross ratio (A, B; C, D) is defined as

$$(A, B; C, D) = \frac{AC \cdot BD}{BC \cdot AD}$$

Where the lengths are taken to be directed (XY = -YX).

We can actually extend the definition of the cross ratio to not just points on a line, but also four points on a conic γ (the most commonly used conic in Olympiad geometry is a circle), and also a *pencil* of lines through a particular point. In the latter case A, B, C, D will correspond to lines rather than points.

In the case of a pencil, the cross ratio can actually be thought of as the ratio of the sines of the angles between these four lines.

3 Projective Transformations

A projective transformation is any transformation that preserves the cross ratio. Specifically:

Definition 3.1–Projective Transformations A projective map f is defined as a function $f: \mathcal{C}_1 \to \mathcal{C}_2$ (where \mathcal{C}_1 and \mathcal{C}_2 are both conics, lines or pencils of lines) such that for any 4 points $A, B, C, D \in \mathcal{C}_1$,

$$(A, B; C, D) = (f(A), f(B); f(C), f(D))$$

There are two useful results that would come in handy.

Theorem 3.1–Projective Compositions The composition $f \circ g$ of two projective functions f and g is projective.

Theorem 3.2 – Inverse of a Projective Map The inverse f^{-1} of a projective map f is also projective.

We give a few examples of common projective transformations below. These are taken from this blog post.

3.1 Common Projective Transformations

- 3.1.1 Projection from a line to a pencil of lines
- 3.1.2 Projection from a line to another line
- 3.1.3 Reflection across a line
- 3.1.4 Projection from a conic to a pencil of lines
- 3.1.5 Projection from a conic to points on that same conic
- 3.1.6 Inversion

4 The Method

The essence of the method of moving points boils down to one important theorem:

Theorem 4.1 hello

5 Example Problems

These problems are sourced from here and here.

Problem 5.1–USA Winter TST for IMO 2019 Problem 1 Let ABC be a triangle and let M and N denote the midpoints of \overline{AB} and \overline{AC} , respectively. Let X be a point such that \overline{AX} is tangent to the circumcircle of triangle ABC. Denote by ω_B the circle through M and B tangent to \overline{MX} , and by ω_C the circle through N and N0 tangent to N1. Show that N2 and N3 intersect on line N4.

Merlijn Staps