Университет ИТМО

Факультет программной инженерии и компьютерной техники

Распределённые системы хранения данных. Лабораторная работа №3.

Группа: Р33131

Студент: Смирнов Виктор Игоревич

Преподаватель: Афанасьев Дмитрий Борисович

Вариант: 736

Ключевые слова

База данных, конфигурация PostgreSQL.

Содержание

1	Цель работы и контекст
2	Этап 0. Контекст работы
	2.1 Переменные окружения
	2.2 Конфигурация базы данных
	2.3 Создание .pgpass
	2.4 Инициализация базы данных
	2.5 Запуск базы данных
	2.6 Настройка базы данных
3	Этап 1. Резервное копирование
	3.1 Задача
	3.2 Подготовка секретов
	3.3 Конфигурация primary узла для резервного копирования
	3.4 Создание базовой резервной копии
	3.5 Подготовка standby
	3.6 Полная настройка primary узла
	3.7 Действия системного администратора по первоначальной настройке системы
4	Этап 2. Потеря основного узла
	4.1 Задача
	4.2 Восстановление СУБД на резервном узле
	4.3 Действия на primary узле
	4.4 Действия на standby узле
5	Этап 3. Повреждение файлов БД
	5.1 Задача
	5.2 Решение
6	Этап 4. Логическое повреждение данных
	6.1 Задача
	6.2 Решение
7	Вывод

1 Цель работы и контекст

Цель работы - настроить процедуру периодического резервного копирования базы данных, сконфигурированной в ходе выполнения лабораторной работы №2, а также разработать и отладить сценарии восстановления в случае сбоев.

Узел из предыдущей лабораторной работы используется в качестве основного. Новый узел используется в качестве резервного. Учётные данные для подключения к новому узлу выдаёт преподаватель. В сценариях восстановления необходимо использовать копию данных, полученную на первом этапе данной лабораторной работы.

2 Этап 0. Контекст работы

В предыдущей лабораторной работы была создана база данных. Приведу здесь скрипты для ее инициализации.

2.1 Переменные окружения

```
1 #!/bin/sh
3 export DDB_PG_CONF="."
4 export DDB_PG_USER="postgres0"
5 export DDB_PG_PASS="pleasehelp"
export DDB_PG_PASS_FILE="$DDB_PG_CONF/pgpass.txt"
7 export DDB_PG_PORT=9666
8 export DDB_PG_DATABASE=postgres
10 export DDB_TABLESPACE_NAME=yqy90
11 export DDB_TABLESPACE_LOCATION = "$HOME/$DDB_TABLESPACE_NAME"
12 export DDB_NEW_DATABASE_NAME=lazyorangehair
13 export DDB_NEW_USER=root
14 export DDB_NEW_USER_PASSWORD = rootik
16 export PGDATA="$HOME/kop67"
17
18 export DDB_INITDB=/usr/lib/postgresql/14/bin/initdb
19 export DDB_PGBIN=/usr/lib/postgresql/14/bin/postgres
20 export DDB_PGBASEBACKUP=/usr/lib/postgresql/14/bin/pg_basebackup
22 export DDB_PRIMARY_BACKUP_DIR="primary/backup"
23 export DDB_PRIMARY_BACKUP_BASE_DIR="$DDB_PRIMARY_BACKUP_DIR/base"
25 export DDB_STANDBY_HOST = ddb - standby
export DDB_STANDBY_BACKUP_BASE_DIR=$DDB_PRIMARY_BACKUP_BASE_DIR

DDB_STANDBY_BACKUP_WAL_DIR="$DDB_PRIMARY_BACKUP_DIR/wal"
```

Листинг 1: Переменные окружения

2.2 Конфигурация базы данных

```
# $PGDATA/pg_hba.conf (Host-based authentication)

BY TYPE DATABASE USER ADDRESS METHOD

Nost all all 127.0.0.1/32 scram-sha-256 # Permit only localhost

Nost all all ::1/128 scram-sha-256 # Permit only localhost

nost replication all localhost scram-sha-256 # Permit base backup
```

Листинг 2: Конфигурационный файл pg hba.conf

```
# $PGDATA/postgresql.conf (PostgreSQL configuration file)
3 # Note: Optimized for OLAP load:
4 # 5 users, packet r/w 128MB
6 ## CONNECTIONS
8 listen_addresses = '127.0.0.1' # Available only from localhost
                            # For security
                 = 9666
unix_socket_directories = ''
                              # Only TCP/IP
12 max_connections
                               = 6 # 5 users + 1 extra
13 superuser_reserved_connections = 3
16 ## AUTHENTICATION
18 authentication_timeout = 20s
                                     # Type password faster
19 password_encryption
                       = scram-sha-256 # Strong password hashing
21 ## RESOURCE USAGE
22
23 shared_buffers
                         = 1024MB + 128MB * (5 + 3) users
24 temp_buffers
                         = 128 MB
                                  # 128MB
25 max_prepared_transactions = 0
                                  # We don't use transactions
                         = 256 MB
                                   # Expected packet size
26 work_mem
                         = 1.5
                                  # Smaller hash tables
27 hash_mem_multiplier
28 maintenance_work_mem
                        = 64MB
                                  # ?
```

```
31
32 temp_file_limit
                             = 4GB
                                        # Something is wrong if we reach this
34 ## WRITE - AHEAD LOG
36 checkpoint_timeout
                         = 5min
                                        # Lost data is not critical, as we can recreate
37 fsync
                         = off
38 synchronous_commit
                         = off
                                        # Same
                        = replica
                                       # Enable replication
39 wal_level
                       = off
40 wal_compression
                                      # WAL must not be so huge?
                         = 200
                                       # Acceptable to lose 200mc of data
41 commit_delay
42 effective_cache_size = 4GB
                                       # OK?
44
45 ## REPORTING AND LOGGING
                   = 'stderr'
47 log_destination
48 logging_collector = off
                  = 'log'
49 log_directory
50 log_filename
                     = 'postgresq1 - % Y - % m - % d_ % H % M % S . log '
51 log_min_messages = warning
53 log_connections
                     = on
54 log_disconnections = on
5.5
56 ## Archiving
                  = on
58 archive mode
59 archive_timeout = 16s
60 archive_command = 'ssh -q <STANDBY_HOST> "test ! -e <STANDBY_WAL_DIR>/%f" && scp %p <
      STANDBY_HOST>: ~/ < STANDBY_WAL_DIR > '
```

Листинг 3: Конфигурационный файл postgresql.conf

2.3 Создание .pgpass

```
#!/bin/sh

set -e

d

cd "$(dirname "$0")"

echo "" > ~/.pgpass
echo "localhost:$DDB_PG_PORT:*:$DDB_PG_USER:$DDB_PG_PASS" >> ~/.pgpass
echo "localhost:$DDB_PG_PORT:*:$DDB_NEW_USER:$DDB_NEW_USER_PASSWORD" >> ~/.pgpass
chmod 0600 ~/.pgpass
```

Листинг 4: Файл .pgpass

2.4 Инициализация базы данных

```
#!/bin/sh

set -e

du "$(dirname "$0")"

mkdir "$PGDATA" 2> /dev/null

echo "$DDB_PG_PASS" > "$DDB_PG_PASS_FILE"

"$DDB_INITDB" \
    --pgdata="$PGDATA" \
    --locale="ru_RU_CP1251" \
    --encoding="WIN1251" \
    --pwfile="$DDB_PG_PASS_FILE"

cp "$DDB_PG_CONF/pg_hba.conf" "$PGDATA/pg_hba.conf"
    cp "$DDB_PG_CONF/postgresql.conf" "$PGDATA/postgresql.conf"
```

Листинг 5: Инициализация базы данных

2.5 Запуск базы данных

```
1 #!/bin/sh
2
3 set -e
4
5 cd "$(dirname "$0")"
6
7 "$DDB_PGBIN" -D "$PGDATA"
```

Листинг 6: Запуск базы данных

2.6 Настройка базы данных

```
1 #!/bin/sh
s set -e
5 cd "$(dirname "$0")"
7 sql() {
      psql -h localhost -p "$DDB_PG_PORT" -c "$1" "$DDB_PG_DATABASE"
nkdir "$DDB_TABLESPACE_LOCATION" 2>/dev/null
13 sql "CREATE TABLESPACE $DDB_TABLESPACE_NAME LOCATION '$DDB_TABLESPACE_LOCATION';"
14 sql "ALTER DATABASE template1 SET TABLESPACE $DDB_TABLESPACE_NAME;
15 sql "CREATE DATABASE $DDB_NEW_DATABASE_NAME TEMPLATE template1;"
16 sql "CREATE ROLE tester;"
17 sql "CREATE USER $DDB_NEW_USER WITH LOGIN PASSWORD '$DDB_NEW_USER_PASSWORD';"
18 sql "GRANT tester TO $DDB_NEW_USER;"
19
20 sql() {
  psql -U "$DDB_NEW_USER" -h localhost -p $DDB_PG_PORT -c "$2" "$1"
21
23
24 PRV = " $DDB_PG_DATABASE"
25 NEW = " $DDB_NEW_DATABASE_NAME"
27 sql "$PRV" "CREATE TABLE note_prv (id serial PRIMARY KEY, content text NOT NULL);"
28 sql "$NEW" "CREATE TABLE note_new (id serial PRIMARY KEY, content text NOT NULL);"
30 sql "$PRV" "INSERT INTO note_prv (content) VALUES ('Note at postgres');"
31 sql "$NEW" "INSERT INTO note_new (content) VALUES ('Note at lazyorangehair');"
33 sql "$PRV" "SELECT * FROM note_prv;"
34 sql "$NEW" "SELECT * FROM note_new;"
```

Листинг 7: Настройка базы данных

3 Этап 1. Резервное копирование

3.1 Задача

- 1. Настроить резервное копирование с основного узла на резервный следующим образом:
 - (а) Первоначальная полная копия + непрерывное архивирование.
 - (b) Включить для СУБД режим архивирования WAL;
 - (c) настроить копирование WAL (scp) на резервный узел;
 - (d) создать первоначальную резервную копию (pg basebackup),
 - (e) скопировать на резервный узел (rsync).
- 2. Подсчитать, каков будет объем резервных копий спустя месяц работы системы, исходя из следующих условий:
 - (а) Средний объем новых данных в БД за сутки: 650МБ.
 - (b) Средний объем измененных данных за сутки: 950МБ.
- 3. Проанализировать результаты.

3.2 Подготовка секретов

Нам необходимо будет отправлять базовую резервную копию, а так WAL файлы на резервный узел, так что сперва следует сгенерировать и распределить ключи шифрования для безопасной передачи данных между узлами.

```
#!/bin/sh

set -e

echo "[primary] Generating ssh key..."
ssh-keygen -t rsa -f ~/.ssh/id_rsa -N ""

echo "[primary] Generated ssh key:"
cat ~/.ssh/id_rsa.pub
```

Листинг 8: Генерация ключей

Далее я авторизовал публичный ключ primary узла на standby. Теперь можно проверить, что передача данных скорее всего будет работать.

```
1 #!/bin/sh
2
3 set -e
4
5 ssh -q $1 "echo Hello, World!"
```

Листинг 9: Проверка подключения

3.3 Конфигурация primary узла для резервного копирования

Включаем архивирование, будем отправлять WAL файлы на standby каждые 16 секунд.

Листинг 10: Ключевые строчки в конфигурационном файле

3.4 Создание базовой резервной копии

```
#!/bin/sh

set -e

decho "[primary] Creating base backup..."

"$DDB_PGBASEBACKUP" \
--host="localhost" \
--port="$DDB_PG_PORT" \
--pgdata="$HOME/$DDB_PRIMARY_BACKUP_BASE_DIR" \
--format="tar" \
--wal-method="fetch" \
--no-password

echo "[primary] Sending to '$DDB_STANDBY_HOST'..."

rsync -ave ssh "$HOME/$DDB_PRIMARY_BACKUP_BASE_DIR" $DDB_STANDBY_HOST:~/
$DDB_PRIMARY_BACKUP_DIR
```

Листинг 11: Создание базовой резервной копии

3.5 Подготовка standby

```
#!/bin/sh

set -e

echo "[standby] Prepairing..."
```

```
7 mkdir -p "$HOME/$DDB_STANDBY_BACKUP_WAL_DIR"
8 mkdir -p "$HOME/$DDB_PRIMARY_BACKUP_BASE_DIR"
```

Листинг 12: Подготовка standby

3.6 Полная настройка primary узла

```
#!/bin/sh

set -e

cho "[primary] Creating '.pgpass' file..."

sh common/0-pgpass.sh

cho "[primary] Editing 'postgresql.conf' file..."

sh primary/1-config.sh

cho "[primary] Initializing the database..."

sh primary/1-init.sh

cho "[primary] Starting the database..."

sh common/2-start.sh &

cho "[primary] Waiting the database startup..."

sleep 2

cho "[primary] Settings up the database..."

sh primary/3-setup.sh

cho "[primary] All right!"
```

Листинг 13: Полная настройка primary узла

3.7 Действия системного администратора по первоначальной настройке системы

- 1. Получить конфигурационные файлы системы из репозитория https://github.com/vityaman-edu/ddb-homework/tree/trunk/lab-3
- 2. Доставить директории db/common и db/primary на primary узел, разместив их в домашней директории пользователя, от лица которого будет запущена система
- 3. Доставить директории db/common и db/standby на standby узел, разместив их в домашней директории пользователя, от лица которого будет запущена система
- 4. На primary узле сгенерировать ключи для primary узла при помощи скрипта common/0-ssh-keygen.sh и авторизовать публичный ключ на узле standby
- 5. Проверить на primary узле возможность ssh соединения с standby узлом при помощи common/0-ssh-test.sh
- 6. Подготовить standby узел к резервированию, выполнив на нем source common/0-env.sh && sh standby/1-prepare.sh
- 7. Запустить primary узел, выполнив на нем source common/0-env.sh && sh common/0-pgpass.sh && sh primary/9-full.sh
- 8. Создать базовую резервную копию на primary узле и отправить ее на standby узел: sh primary/4-backup.sh
- 9. Наполнить данными базу данных на primary узле: sh primary/5-fill.sh
- 10. Убедиться, что базовая резервная копия и WAL файлы доставлены на standby узел

4 Этап 2. Потеря основного узла

4.1 Задача

Этот сценарий подразумевает полную недоступность основного узла. Необходимо восстановить работу СУБД на РЕЗЕРВНОМ узле, продемонстрировать успешный запуск СУБД и доступность данных.

4.2 Восстановление СУБД на резервном узле

Для этого необходимо просто выполнить source common/0-env.sh && sh standby/2-restore.sh на standby узле, предварительно убедившись, что в директории primary/backup/base находятся файлы базовой резервной копии, а в директории primary/backup/wal есть WAL сегменты.

```
1 #!/bin/sh
5 mkdir -p $PGDATA
6 chmod 0700 $PGDATA
8 echo "[standby] Extracting base backup..."
9 tar \
10
      --extract \
      -f "$HOME/$DDB_PRIMARY_BACKUP_BASE_DIR/base.tar" \
      --directory=$PGDATA
14 echo "[standby] Restoring tablespaces..."
15 while read -r line; do
      tablespace_oid=$(echo $line | awk '{print $1}')
      echo "[standby][$tablespace_oid] Restoring tablespace..."
17
18
      TABLESPACE_DIR=$HOME/tablespace/$tablespace_oid
      echo "[standby][$tablespace_oid] Directory: $TABLESPACE_DIR"
20
      \verb|mkdir| -p $TABLESPACE_DIR|
21
22
      echo "[standby][$tablespace_oid] Extracting..."
23
24
      tar --extract \
          -f $HOME/$DDB_PRIMARY_BACKUP_BASE_DIR/$tablespace_oid.tar \
2.5
          --directory=$TABLESPACE_DIR
26
27
      echo "[standby][$tablespace_oid] Creating symbolic link..."
28
      ln -s $TABLESPACE_DIR $PGDATA/pg_tblspc/$tablespace_oid
30 done < $PGDATA/tablespace_map</pre>
s2 echo "[standby] Removing 'tablespace_map'..."
33 rm $PGDATA/tablespace_map
s5 echo "[standby] Patching postgresql.conf: add 'restore_command'..."
36 RESTORE_CMD="restore_command = 'cp $HOME/$DDB_STANDBY_BACKUP_WAL_DIR/%f %p'"
37 echo "\n$RESTORE_CMD\n" >> $PGDATA/postgresql.conf
39 echo "[standby] Patching postgresql.conf: disable archive..."
40 sed -i -e "s+archive_mode+#archive_mode+g" $PGDATA/postgresql.conf
42 echo "[standby] Signalling of recovery..."
43 touch $PGDATA/recovery.signal
45 echo "[standby] Is ready for startup!"
```

Листинг 14: Восстановление СУБД на резервном узле

4.3 Действия на primary узле

```
1 postgres0@2d09031f584d:~$ history
2 1 ls
3 2 source common/0-env.sh
4 3 sh common/0-ssh-keygen.sh
5 4 sh common/0-ssh-test.sh ddb-standby
6 5 sh common/0-pgpass.sh
```

```
7 6 sh primary/9-full.sh
8 7 sh primary/4-backup.sh
9 8 sh primary/5-fill.sh
10 9 history
```

Листинг 15: Действия на primary узле

4.4 Действия на standby узле

```
1 postgres0@c33884c20d42:~$ history
2 2 1s
3 3
    source common/0-env.sh
4 4 vim .ssh/authorized_keys
5 5
    sh standby/1-prepare.sh
6 6 ls
7 7 ls primary/backup/base/
8 8 ls primary/backup/wal/
9 9
     ls primary/backup/base
10 ls primary/backup/wal/
11 11 sh standby/2-restore.sh
     sh common/2-start.sh
12 12
13 13 bg
14 14 history
```

Листинг 16: Действия на standby узле

```
1 postgres0@c33884c20d42:~$ sh common/2-start.sh
2 2024-05-28 08:56:18.375 GMT [1088] LOG: starting PostgreSQL 14.12 (Ubuntu 14.12-1. pgdg20.04+1) on x86_64-pc-linux-gnu, compiled by gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2)
     9.4.0, 64-bit
3 2024-05-28 08:56:18.375 GMT [1088] LOG: listening on IPv4 address "127.0.0.1", port
     9666
4 2024-05-28 08:56:18.378 GMT [1089] LOG: database system was interrupted; last known up
     at 2024-05-28 08:50:55 GMT
5 cp: cannot stat '/home/postgres0/primary/backup/wal/00000002.history': No such file or
     directory
6 2024-05-28 08:56:18.381 GMT [1089] LOG: starting archive recovery
7 2024-05-28 08:56:18.392 GMT [1089] LOG: restored log file "00000001000000000000000"
     from archive
8\ 2024-05-28\ 08:56:18.396\ GMT\ [1089]\ LOG: redo starts at 0/2000028
connections
from archive
from archive
file or directory
14 2024-05-28 08:56:18.420 GMT [1089] LOG: redo done at 0/4000148 system usage: CPU: user:
0.00 s, system: 0.00 s, elapsed: 0.02 s _{15} 2024-05-28 08:56:18.420 GMT [1089] LOG: last completed transaction was at log time
     2024-05-28 08:51:07.961265+00
from archive
17 cp: cannot stat '/home/postgres0/primary/backup/wal/00000002.history': No such file or
     directory
18 2024-05-28 08:56:18.435 GMT [1089] LOG: selected new timeline ID: 2
19 2024-05-28 08:56:18.441 GMT [1089] LOG: archive recovery complete
20 cp: cannot stat '/home/postgres0/primary/backup/wal/00000001.history': No such file or
21 2024-05-28 08:56:18.450 GMT [1088] LOG: database system is ready to accept connections
```

Листинг 17: Вывод postgres при старте

Листинг 18: Состояние СУБД на standby узле

Как мы видим, в базе данных сохранились не только данные с базовой копии, но и подтянулись изменения из WAL сегментов.

5 Этап 3. Повреждение файлов БД

5.1 Задача

Этот сценарий подразумевает потерю данных (например, в результате сбоя диска или файловой системы) при сохранении доступности основного узла. Необходимо выполнить полное восстановление данных из резервной копии и перезапустить СУБД на ОСНОВНОМ узле.

Ход работы:

- 1. Симулировать сбой: удалить с диска директорию любой таблицы со всем содержимым.
- 2. Проверить работу СУБД, доступность данных, перезапустить СУБД, проанализировать результаты.
- 3. Выполнить восстановление данных из резервной копии, учитывая следующее условие: исходное расположение дополнительных табличных пространств недоступно разместить в другой директории и скорректировать конфигурацию.
- 4. Запустить СУБД, проверить работу и доступность данных, проанализировать результаты.

5.2 Решение

TODO

6 Этап 4. Логическое повреждение данных

6.1 Задача

Этот сценарий подразумевает частичную потерю данных (в результате нежелательной или ошибочной операции) при сохранении доступности основного узла. Необходимо выполнить восстановление данных на ОСНОВНОМ узле следующим способом:

Генерация файла на резервном узле с помощью pg_dump и последующее применение файла на основном узле.

Ход работы:

- 1. В каждую таблицу базы добавить 2-3 новые строки, зафиксировать результат.
- 2. Зафиксировать время и симулировать ошибку: в любой таблице с внешними ключами подменить значения ключей на случайные (INSERT, UPDATE)
- 3. Продемонстрировать результат.
- 4. Выполнить восстановление данных указанным способом.
- 5. Продемонстрировать и проанализировать результат.

6.2 Решение

TODO

7 Вывод

Данная лабораторная работа помогла мне изучить конфигурацию PostgreSQL.

Список литературы

[1] PostgreSQL Documentation: caйт. - 2024. - URL: https://www.postgresql.org/docs/14/index. html (дата обращения: 06.04.2024) - Текст : электронный.