Modelagem da AI-0135

Ivan Ramos Pagnossin

Janeiro de 2012

1 Energia máxima vs. idade

A energia máxima E_m que um indivíduo pode armazenar é função de sua idade t:

$$E_m(t) = E_M e^{-t/t_E},$$

onde t_E é a idade na qual E_m é aproximadamente 37% da energia máxima armazenada por um indivíduo dessa espécie, E_M .

2 Velocidade vs. energia

Um indivíduo qualquer da espécie pode mover-se pelo ambiente, em busca de comida, de parceiro para acasalar ou sem motivo, com velocidade v(E), que depende da energia disponível naquele momento:

$$v(E) = v_M \left(1 - e^{-E/E_v} \right).$$

 v_M é a velocidade máxima de deslocamento do indivíduo, em unidades de distância do ambiente por unidade de tempo, e E_v é uma energia característica, na qual v(E) é aproximadamente igual a 63% da velocidade máxima.

3 Nascimento

Quando um indivíduo nasce, sua energia E é máxima: $E = E_m(0) = E_M$.

4 Permissividade de nascimento

Para evitar problemas de processamento, definimos a permissividade de nascimento $p^*(n)$ da espécie, uma função da quantidade de indivíduos n:

$$p^{\star}(n) = \operatorname{cut}\left(\frac{1}{2} + \frac{n_M - n}{\Delta n}\right)$$
$$\operatorname{cut}(x) \doteq \max\left[0, \min\left(x, 1\right)\right],$$

onde n_M é a quantidade máxima (desejada) de indivíduos e Δn é a flutuação em n_M . Deste modo, quando $p^* = 0$ a natalidade é totalmente suprimida. Inversamente, quando $p^* = 1$ a natalidade é totalmente incentivada (veja a seção 15).

Curiosidade: a função acima é uma aproximação mais rápida de se calcular de $p^*(n) = \left[e^{(n-n_M)/\Delta n} + 1\right]^{-1}$ (compare com a distribuição de Fermi-Dirac).

5 Morte

Um indivíduo morre quando sua reserva de energia se esgota: E=0.

6 Expectativa de vida

Espero que a expectativa de vida apareça naturalmente da conjunção dos parâmetros envolvidos na simulação. Essencialmente, a morte de um indivíduo acontecerá devido à redução gradual em $E_m(t)$, que por sua vez afeta v(E), a velocidade de busca por comida.

7 Ações

Cada indivíduo de uma espécie pode executar algumas ações, sendo cada uma delas têm um gasto ou ganho de energia associado. As ações são as seguintes:

- Para sobreviver no ambiente, um indivíduo qualquer gasta uma quantidade de energia $\dot{E}_b < 0$ por unidade de tempo da simulação, chamada de gasto basal.
- Para deslocar-se no ambiente em busca de alimento, de um parceiro para acasalar ou a esmo, um indivíduo qualquer gasta uma quantidade de energia $\dot{E}_d < 0$ por unidade de tempo da simulação.
- Para **acasalar**, cada um dos dois indivíduos envolvidos gasta uma quantidade de energia $\dot{E}_a < 0$ por unidade de tempo da simulação.
- Para alimentar-se, um indivíduo qualquer gasta uma quantidade de energia $\dot{E}_c < 0$ por unidade de tempo da simulação. Entretanto, neste processo esse mesmo indivíduo absorve o saldo de energia E' > 0 do indivíduo comido (não depende do intervalo de tempo que durou o processo).

Assim, após um turno da simulação, a energia de cada indivíduo deve ser recalculada:

$$E \leftarrow E + E' + \left(\dot{E}_a + \dot{E}_b + \dot{E}_c + \dot{E}_d\right) \Delta t,$$

onde Δt é o intervalo de tempo entre turnos.

Em qualquer um dos casos acima, $0 \le E \le E_m(t)$. Quando E=0 o indivíduo morre; quando $E=E_m(t)$, nada especial ocorre.

8 Fator limitante

Cada espécie está sujeita à uma lista de fatores limitantes x_i $(i \in \mathbb{N})$, que afetam suas ações (seção 7). Nesta simulação, a resposta da espécie a esse fator limitante qualquer é definido por uma função de uma variável, $0 \le f_i(x) \le 1$, onde x é o valor do fator limitante (por exemplo, a temperatura e o pH do meio ambiente). Quando f(x) = 0 o ambiente é hostil para a espécie, de modo que os indivíduos morrem rapidamente; quando f(x) < F, os indivíduos conseguem sobreviver, mas não reproduzir (F é um threshold que depende da espécie); quando $f(x) \ge F$ os indivíduos vivem e se reproduzem, tão melhor quanto maior for f(x). Isto é, quando f(x) = 1 a espécie vive plenamente.

Numa primeira modelagem de um fator limitante qualquer, utilizaremos nesta simulação a expressão

$$f(x) = \operatorname{cut}\left[-\frac{2(x-x_{+})(x-x_{-})}{(x_{+}-x_{-})^{2}}\right]$$
(1)

onde x_{-} e x_{+} são as duas raízes reais de f(x). Note que $f(\bar{x}) = 1$, onde $\bar{x} = (x_{+} + x_{-})/2$ é o ponto médio entre x_{-} e x_{+} . Mas atenção: esta é uma particularidade da expressão acima, que pode eventualmente mudar.

Exemplo: considere os parâmetros $x_- = 0$ °C, $x_+ = 2$ °C e F = 1/2, que definem a resposta de uma espécie qualquer ao fator limitante x = T, a temperatura. Podemos concluir que esta espécie só sobreviverá no ambiente se $0 \le T \le 2$ °C. Além disso, essa espécie só conseguirá se reproduzir se $0, 3 \lesssim T \lesssim 1, 7$ °C (região na qual f(T) > F). Finalmente, T = 1 °C oferece o melhor ambiente para esta espécie.

Importante: a expressão 1 é uma primeira aproximação do fator limitante. Por isso, é importante isolar a definição de f(x) de modo que se possa alterá-la conforme a necessidade no futuro. A interface, que se mantém inalterada, é a assinatura de f(x). Isto é, dado um valor do fator limitante, obtemos a resposta da espécie a ele, o valor f(x).

9 Gasto energético basal (\dot{E}_b)

O gasto basal é a quantidade de energia \dot{E}_b que um indivíduo gasta para manter-se vivo por unidade de tempo da simulação:

$$\dot{E}_b = -\max\left\{ [1 - f_i(x_i)] \, \dot{E}_{i,\text{max}} - f_i(x_i) \dot{E}_{i,\text{min}} \right\},$$
 (2)

onde o índice $i \in 1, 2, ..., N$ define os N fatores limitantes. \dot{E}_{\min} e \dot{E}_{\max} são os gastos mínimo e máximo possíveis, respectivamente, e devem ser definidos para cada espécie no ambiente.

Atenção: pode ser útil definir $\dot{E}_{\rm min}$ e $\dot{E}_{\rm max}$ como uma fração de E_M (seção 1). Por exemplo, $\dot{E}_{\rm min} = E_M/100$ e $\dot{E}_{\rm max} = E_M/10$. Deste modo, quando f(x) = 0 (ambiente hostil), um indivíduo qualquer consegue viver por até dez unidades de tempo da simulação (sem alimentar-se). Por outro lado, se f(x) = 1 (ambiente favorável) ele conseguirá manter-se vivo por até cem unidades de tempo da simulação.

10 Gasto energético para deslocar (\dot{E}_d)

Para deslocar-se de uma unidade de distância no ambiente, um indivíduo qualquer gasta \dot{E}_d . Este gasto relaciona-se com os fatores limitantes da mesma forma que \dot{E}_b , na seção 9, exceto que os parâmetros \dot{E}_{\min} e \dot{E}_{\max} são diferentes.

11 Gasto energético para acasalar (\dot{E}_a)

Para acasalar, cada um dos dois indivíduos envolvidos gasta E_a . Este gasto relaciona-se com os fatores limitantes da mesma forma que \dot{E}_b , na seção 9, exceto que os parâmetros \dot{E}_{\min} e \dot{E}_{\max} são diferentes.

12 Gasto energético para comer (\dot{E}_c)

Para comer um indíduo qualquer gasta \dot{E}_c . Este gasto relaciona-se com os fatores limitantes da mesma forma que \dot{E}_b , na seção 9, exceto que os parâmetros \dot{E}_{\min} e \dot{E}_{\max} são diferentes. Entretanto, diferentemente das ações anteriores, ao comer o indivíduo absorve a energia contida no indivíduo comido, E'>0. Ou seja, $E\leftarrow E+E'+\dot{E}_c\Delta t$. Acontece que geralmente $E'\gg |\dot{E}_c\Delta t|$, de modo que neste caso a operação anterior tenderá a aumentar a energia do indivíduo. Este é o único mecanismo que aumenta a energia do indivíduo. Além disso, note que E' não depende de $f_i(x_i)$.

Atenção: pode ser útil definir todas as energias envolvidas na simulação como variáveis inteiras. Isto tornará mais rápido os cálculos.

13 Interesse por alimentar-se

A função $i_c(E) \in [0,1]$ dá o grau de interesse do indivíuo em alimentar-se, numa escala de 0 (não interessado) a 1 (interessado):

$$i_c(E) = \operatorname{cut}\left[\frac{\left(i_{cM} - i_{cm}\right)\left(E_C - E\right)}{E_C - E_c}\right],$$

onde i_{cm} e i_{cM} são o interesse mínimo e máximo, respectivamente ($\in [0,1]$). E_c é a energia crítica abaixo da qual o único interesse do indivíduo é alimentar-se

(está faltando energia); E_C é a energia crítica acima da qual o único interesse do indivíduo é acasalar-se (está sobrando energia).

14 Interesse por reproduzir-se

A função $i_a(E) \in [0,1]$ dá o grau de interesse do indivíuo no acasalamento, numa escala de 0 (não interessado) a 1 (interessado):

$$i_a(E) = \operatorname{cut}\left[\frac{(i_{aM} - i_{am})(E - E_a)}{E_C - E_a}\right],$$

onde i_{am} e i_{aM} são o interesse mínimo e máximo, respectivamente ($\in [0,1]$). E_a é a energia acima da qual o interesse do indivíduo por acasalar-se começa a crescer.

Em palavras, E_a é a energia mínima que um indivíduo precisa ter disponível para interessar-se pelo acasalamento. Este limite inferior é importante por que, sem ele, pode acontecer de o indivíduo literalmente morrer durante o acasalamento, isto é, atingir E=0. Por outro lado, se $E>E_C$ o indivíduo tem tanta energia que não precisa se alimentar nem descansar. Neste caso, seu interesse é a reprodução, até como forma de reduzir sua energia E.

15 Estados da simulação

Cada indivíduo no ambiente está sempre num dos seguintes estados:

- 1. Descansando (parado ou movendo-se)
- 2. Procurando comida (movendo-se)
- 3. Comendo (parado)
- 4. Procurando um parceiro para acasalar (movendo-se)
- 5. Acasalando (parado)

As transições de estado permitidas são aquelas ilustradas na figura 1. O estado inicial é o 1 acima: descansando. Neste estado, a cada turno da simulação o indivíduo pode transitar para os estados 2 (procurando comida), 4 (procurando parceiro para acasalar) ou manter-se no mesmo estado (descansando). Para tomar esta decisão, utilize este processo:

- Se random() $< i_c(E)$, vai para o estado 2; se não, vai para o próximo item.
- Se random() $< i_a(E)p^*(n)$, vai para o estado 4; se não, vai para o estado 1.

No estado 2 (procurando comida), o indivíduo move-se pelo ambiente em busca de alimento (algoritmo A* em modo seek) e dele sai apenas (i) quando encontrar comida ou (ii) quando morrer. No caso (i), ocorre a transição para o estado 3 (comendo). Após comer, a única transição possível é para o estado 1 (descansando). No caso (ii), o indivíduo simplesmente deixa de existir no ambiente (após uma animação de morte).

No estado 4 (procurando parceiro para acasalar), o indivíduo move-se pelo ambiente em busca de um parceiro $que\ tamb\'em\ esteja\ no\ estado\ 4$ (algoritmo A*

Figura 1: Estados da simulação

em modo seek) e dele sai num desses três eventos: (i) ao encontrar um parceiro, (ii) quando $E < E_c$ (seção 14) ou (iii) quando morrer. No caso (i) ocorre a transição para o estado 5 (acasalando) e, dele, para 1 (descansando); no caso (ii), ocorre a transição para o estado 2.

O estado 1 (descansando) pode ocorrer com o indivíduo em movimento ou parado no ambiente. A decisão entre um e outro é puramente aleatória: por exemplo, se random() < 1/2 o indivíduo descansará em movimento [com isto seu gasto energético será $(\dot{E}_b + \dot{E}_d)\Delta t$]; caso contrário, descansará parado (gasto energético igual a $\dot{E}_b\Delta t$).

16 Resumo de parâmetros

Propriedades da espécie

- E_c Energia crítica abaixo da qual o indivíduo ocupa-se em alimentar-se (quase) exclusivamente.
- E_{C} Energia crítica acima da qual o indivíduo ocupa-se em acasalar-se (quase) exclusivamente.
- E_M Energia máxima que um indivíduo consegue armazenar.
- E_v Energia na qual $v(E)/v_M=0,63$.
- v_M Velocidade máxima de deslocamento.
- $x_{i_{\perp}}^{-}$ Limite inferior de sobrevivência da espécie com relação ao fator limitante i_{-}
- x_i^+ Limite superior de sobrevivência da espécie com relação ao fator limitante i.
- F_i é o threshold que define a relação $f(x_i) \geq F_i$, que deve ser satisfeita para que ocorra a reprodução.
- t_E Idade na qual $E_m(t)/E_M=0,37$.
- n_M Quantidade máxima desejável de indivíduos no ambiente.
- Δn Flutuação em n_M .
- i_{cm} Interesse mínimo do indivíduo em alimentar-se.

 $i_{cM}\,$ Interesse máximo do indivíduo em alimentar-se.

 i_{am} Interesse mínimo do indivíduo em acasalar-se.

 i_{aM} Interesse máximo do indivíduo em acasalar-se.

 $E_{a,\min}$ Gasto energético mínimo no acasalamento. Ocorre quando $\min[f_i(x_i)] =$

 $E_{a,\text{max}}$ Gasto energético máximo no acasalamento. Ocorre quando $\min[f_i(x_i)] =$

 $E_{b,\mathbf{min}}$ Gasto basal mínimo.

 $\dot{E}_{b,\mathbf{max}}$ Gasto basal máximo.

 $\dot{E}_{c, \min}$ Gasto energético mínimo na alimentação.

 $\dot{E}_{c,\text{max}}$ Gasto energético máximo na alimentação.

 $\dot{E}_{d, \min}$ Gasto energético mínimo no deslocamento.

 $\dot{E}_{d, \text{max}}$ Gasto energético máximo no deslocamento.

Algumas condições que devem ser satisfeitas:

- $E_M > E_C > E_a > E_c > 0$
- $E_M > E_v > 0$ $x_i^+ > x_i^-$
- $1 \ge i_{cM} > i_{cm} \ge 0$
- $1 \ge i_{aM} > i_{am} \ge 0$
- $\Delta n \ll n_M$
- $0 \le F_i < 1$

Propriedades de um indivíduo

t Idade

E Saldo energético

Propriedades do ambiente

 Δt Intervalo de tempo de uma ação (seção 7).

 $\{x_i\}$ Lista de fatores limitantes.