

Semantic Role Labeling

CS-585

Natural Language Processing

Sonjia Waxmonsky

Semantic Role Labeling

Can we figure out that these have the same meaning?

XYZ corporation bought the stock.

They **sold** the stock to XYZ corporation.

The stock was **bought** by XYZ corporation.

The purchase of the stock by XYZ corporation...

The stock purchase by XYZ corporation...

Predicate-Argument Structure and Semantic Roles

- Predicates bear the central meaning of a situation expressed by a text.
 - Usually verbs or verbal nouns (bought, sold, purchase)
- Arguments: phrases that fill meaning slots of a situation expressed by a predicate, define its essential details
 - Answer questions like "who?", "did what?", "to whom?"
 - Usually nouns or noun phrases (stock, XYZ Corp.)
- Semantic roles express the abstract role that arguments of a predicate can take in the event
 - More specific: "Buyer"
 - Less specific: "Agent"

SEMANTIC ROLES

Semantic roles: First order logic

First order logic: Quantifies variables (Some, All)

"Neo-Davidsonian" event semantics:

- Event represented as variable e
- Event arguments linked via relations

Sasha broke the window

 $\exists e, x, y \ Breaking(e) \land Breaker(e, Sasha)$ $\land BrokenThing(e, y) \land Window(y)$

Pat opened the door

 $\exists e, x, y \ Opening(e) \land Opener(e, Pat)$ $\land OpenedThing(e, y) \land Door(y)$

Subjects of break and open: **Breaker** and **Opener**

Deep roles specific to each event (breaking, opening)

Thematic roles

- Breaker and Opener have something in common!
 - Volitional actors
 - Often animate
 - Direct causal responsibility for their events
- Thematic roles are a way to capture this semantic commonality between Breakers and Openers.
- They both have the role of: AGENT.
- BrokenThing and OpenedThing have role of THEME.
 - Prototypically inanimate objects affected in some way by the action

Thematic roles

A typical set of thematic roles:

Thematic Role	Definition	Example
AGENT	The volitional causer of an event	The waiter spilled the soup.
EXPERIENCER	The experiencer of an event	John has a headache.
FORCE	The non-volitional causer of the event	The wind blows debris from the mall into our yards.
ТНЕМЕ	The participant most directly affected by an event	Only after Benjamin Franklin broke the ice
RESULT	The end product of an event	The city built a regulation-size baseball diamond
CONTENT	The proposition or content of a propositional event	Mona asked "You met Mary Ann at a supermarket?"
INSTRUMENT	An instrument used in an event	He poached catfish, stunning them with a shocking device
BENEFICIARY	The beneficiary of an event	Whenever Ann Callahan makes hotel reservations for her boss
SOURCE	The origin of the object of a transfer event	I flew in from Boston.
GOAL	The destination of an object of a transfer event	I drove to Portland.

- Many sets exists
- No set is universally agreed-upon

Beyond Thematic Roles

Problems with Thematic roles for NLP:

- Hard to create and define a standard set of roles
- Often roles need to be fragmented to be defined.

Alternatives for NLP:

- **1. Fewer roles**: generalized semantic roles, defined as prototypes (Dowty 1991)
 - PROTO-AGENT
 - PROTO-PATIENT
- 2. More roles: Define roles specific to a group of predicates

THE PROPOSITION BANK (PROPBANK)

PropBank

Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. **The Proposition Bank: An Annotated Corpus of Semantic Roles**. *Computational Linguistics*, 31(1):71–106

- System of role representation
- Defines arguments for individual verb senses (i.e. individual word sense for individual verbs)
- Corpus of sentences annotated by Role
- English PropBank: Annotated on Penn Treebank

PropBank Roles

Proto-Agent

Following Dowty 1991

- Volitional involvement in event or state
- Sentience (and/or perception)
- Causes an event or change of state in another participant
- Movement (relative to position of another participant)

Proto-Patient

- Undergoes change of state
- Causally affected by another participant
- Stationary relative to movement of another participant

PropBank Roles

- Following Dowty 1991
 - Role definitions determined verb by verb, with respect to the other roles
 - Semantic roles in PropBank are thus verb-sense specific.
- Each verb sense has numbered argument:

Arg0: PROTO-AGENT

Arg1: PROTO-PATIENT

Arg2: usually: benefactive, instrument, attribute, or end state

Arg3: usually: start point, benefactive, instrument, or attribute

Arg4 the end point

ArgM: Adjunct meanings (e.g. time); not necessary to complete meaning of predicate

(Arg2-Arg4 are not really that consistent, causes a problem for labeling)

PropBank Frame Files

agree.01

Arg0: Agreer

Arg1: Proposition

Arg2: Other entity agreeing

Ex1: [Arg0] The group [Arg1] it wouldn't make an offer.

Ex2: [ArgM-TMP Usually] [Arg0 John] agrees [Arg2 with Mary]

[Arg1 on everything].

fall.01

Arg1: Logical subject, patient, thing falling ← No Arg0?

Arg2: Extent, amount fallen

Arg3: start point

Arg4: end point, end state of arg1

Ex1: [Arg1 Sales] fell [Arg4 to \$25 million] [Arg3 from \$27 million].

Ex2: [Arg1] The average junk bond] fell [Arg2] by 4.2%].

No proto-agent

Advantage of a PropBank Labeling

increase.01 "go up incrementally"

Arg0: causer of increase

Arg1: thing increasing

Arg2: amount increased by, EXT, or MNR

Arg3: start point

Arg4: end point

This would allow us to see the commonalities in these 3 sentences:

```
[_{Arg0} Big Fruit Co. ] increased [_{Arg1} the price of bananas].
[_{Arg1} The price of bananas] was increased again [_{Arg0} by Big Fruit Co. ]
[_{Arg1} The price of bananas] increased [_{Arg2} 5%].
```

FRAMENET

FrameNet

Goal: Capturing descriptions of the **same event** by **different nouns and verbs**

The price of bananas increased 5%.

The price of bananas rose 5%.

There has been a 5% increase in the price of bananas.

Which word or phrase in each sentence indicates prices are higher? What is its part of speech in each sentence?

FrameNet

Goal: Capturing descriptions of the same event by **different nouns and verbs**

```
[Arg1 The price of bananas] increased [Arg2 5%].
```

[Arg1 The price of bananas] rose [Arg2 5%].

There has been a [Arg2 5%] rise [Arg1] in the price of bananas].

FrameNet and Frames

• Frame:

- Descriptions of situations or events
- Evoked by lexical units usually but not always verbs
- Include frame elements (similar concept to roles)

FrameNet

- Lexicon of ~1000 frames
- Corpus of ~200k <u>annotated</u> sentences that use those frames
- Groups verbs into frames
- Links semantically related roles <u>across</u> frames

Example Frame: "Change position on a scale"

This frame consists of words that

- indicate the change of an ITEM's position on a scale (the ATTRIBUTE)
- from a starting point (INITIAL VALUE)
- to an end point (FINAL VALUE)

```
[ITEM Oil] rose [ATTRIBUTE in price] [DIFFERENCE by 2%].

[ITEM It] has increased [FINAL_STATE to having them 1 day a month].

[ITEM Microsoft shares] fell [FINAL_VALUE to 7 5/8].

[ITEM Colon cancer incidence] fell [DIFFERENCE by 50%] [GROUP among men].

a steady increase [INITIAL_VALUE from 9.5] [FINAL_VALUE to 14.3] [ITEM in dividends]

a [DIFFERENCE 5%] [ITEM dividend] increase...
```

Frame Elements: Example

Frame **elements** for frame "Change position on a scale":

Core Roles					
ATTRIBUTE	The ATTRIBUTE is a scalar property that the ITEM possesses.				
DIFFERENCE	The distance by which an ITEM changes its position on the scale.				
FINAL_STATE	A description that presents the ITEM's state after the change in the ATTRIBUTE's value as an independent predication.				
FINAL_VALUE	The position on the scale where the ITEM ends up.				
INITIAL_STATE	A description that presents the ITEM's state before the change in the AT- TRIBUTE's value as an independent predication.				
INITIAL_VALUE	The initial position on the scale from which the ITEM moves away.				
ITEM	The entity that has a position on the scale.				
$V_{\text{ALUE_RANGE}}$	A portion of the scale, typically identified by its end points, along which the				
	values of the ATTRIBUTE fluctuate.				
Some Non-Core Roles					
DURATION	The length of time over which the change takes place.				
SPEED	The rate of change of the VALUE.				
GROUP	The GROUP in which an ITEM changes the value of an				
	ATTRIBUTE in a specified way.				

Frame Target Words: Example

Target words for frame "Change position on a scale":

VERBS:	dwindle	move	soar	escalation	shift
advance	edge	mushroom	swell	explosion	tumble
climb	explode	plummet	swing	fall	
decline	fall	reach	triple	fluctuation	ADVERBS:
decrease	fluctuate	rise	tumble	gain	increasingly
diminish	gain	rocket		growth	
dip	grow	shift	NOUNS:	hike	
double	increase	skyrocket	decline	increase	
drop	jump	slide	decrease	rise	

Relationships between Frames

FrameNet encodes relationships between frames to allow sharing of frame elements (i.e. frame roles)

Example frame relationship: Causation

- Frame "Cause change position on a scale"
- Is <u>Causative</u> of: "<u>Change position on a scale</u>"
- Adds an <u>Agent Role</u>

[AGENT They] raised [ITEM the price of their soda] [DIFFERENCE by 2%].

Relationships between Frames

FrameNet encodes relationships between frames to allow sharing of frame elements (i.e. frame roles)

Example frame relationship: Inheritance

 Child Frames "Commerce-Sell" and "Lending" both inherit from parent frame "Giving"

FrameNet vs ProbBank

- Role in FrameNet are specific to a frame
 - Multiple target words can evoke same frame, usually but not always verbs
 - Roles/elements are shared across frames
- Roles in PropBank are specific to a verb sense
 - ARG0 and ARG1 are consistent across verbs
 - ARG2, ARG3, ... are (somewhat) verb-specific

SEMANTIC ROLE LABELING

Semantic role labeling (SRL)

- Task: Recover the predicate-argument structure of a sentence
- Find the semantic roles of each argument of each predicate in a sentence
- Can apply FrameNet representation...

```
[You] can't [blame] [the program] [for being unable to identify it]
COGNIZER TARGET EVALUEE REASON
```

... or PropBank representation:

```
[The San Francisco Examiner] issued [a special edition] [yesterday]
ARG0 TARGET ARG1 ARGM-TMP
```

Shallow Semantics

- Semantic Role Labeling: Roles are filled with tokens from the text:
 - Identify predicates
 - Specify span of text (tokens or sequences of tokens)
 that fills each role
- Why "shallow"?
 - Roles are <u>not</u> filled with symbolic expressions
 - Not applying first-order logic concepts
 - Intermediate between parses and full semantics

Why Semantic Role Labeling

- Provides a useful shallow semantic representation
- Improves NLP tasks like:
 - Question answering
 - Information extraction
 - Textual entailment
 - "Disney's purchase of ABC..."→Disney bought ABC
 - Machine translation

How do we decide what is a predicate

- If we're just doing PropBank verbs
 - Choose all verbs
 - Possibly removing light verbs (from a list)
- If we're doing FrameNet (verbs, nouns, adjectives)
 - Choose every word that was labeled as a target in training data

SRL as Classification

- SRL can be modeled as a classification of phrasal constituents
- Steps:
 - Parse sentence
 - Finding predicates in the sentence
 - For each predicate, classify each parse tree constituent

```
function SEMANTICROLELABEL(words) returns labeled tree
```

```
parse ← Parse(words)

for each predicate in parse do

for each node in parse do

featurevector ← ExtractFeatures(node, predicate, parse)

ClassifyNode(node, featurevector, parse)
```

SRL as Classification

Features for SRL

Features for:
"The San Francisco Examiner"

Headword of constituent

Examiner

Headword POS

NNP

Voice of the clause

Active

Subcategorization of pred

VP -> VBD NP PP

Named Entity type of constituent

ORGANIZATION

First and last words of constituent

The, Examiner

Linear position, clause re: predicate

before

Path Features

Path in the parse tree from the constituent to the predicate

Frequent path features

Frequency	Path	Description
14.2%	VB↑VP↓PP	PP argument/adjunct
11.8	VB↑VP↑S↓NP	subject
10.1	VB↑VP↓NP	object
7.9	VB↑VP↑VP↑S↓NP	subject (embedded VP)
4.1	VB↑VP↓ADVP	adverbial adjunct
3.0	NN↑NP↑NP↓PP	prepositional complement of noun
1.7	VB↑VP↓PRT	adverbial particle
1.6	VB↑VP↑VP↑VP↑S↓NP	subject (embedded VP)
14.2		no matching parse constituent
31.4	Other	

From Palmer, Gildea, Xue 2010

Features for SRL

For "The San Francisco Examiner",

- Label: Arg0
- Features: [issued, NP, Examiner, NNP, active, before, VP->VBD NP PP, ORG, The, Examiner, NP↑S↓VP↓VBD]

Other features could be used as well

- sets of n-grams inside the constituent
- other path features
 - the upward or downward halves
 - whether particular nodes occur in the path

Constrained Optimization for SRL

- SRL has sentence level constraints, e.g.:
 - For each verb, there can only be one argument of each type
 - Arguments cannot be from overlapping spans
- Can be imposed with integer linear programming
- Example: Each non-null role type r can occur only once over all constituents in a sentence:

$$\forall r \neq \varnothing, \qquad \sum_{(i,j) \in \tau} z_{i,j,r} \leq 1.$$
[E=NLP Formula 13.7]

Deep Learning for SRL

Deep Semantic Role Labeling: What Works and What's Next [He et al, 2017]

- Treats SRL as B-I-O sequential tagging task, similar to previous NN-based approaches
- Applies Bi-LSTM model based on word and binary predicate embedding
- Finds minimal benefit from decoding constraints on SRL structure

Deep Learning for SRL

Simple BERT Models for Relation Extraction and Semantic Role Labeling [Shi and Lin, 2003 2019]

Typo in year corrected after lecture

- Applies pre-trained transformer-based models (BERT)
- Also applies B-I-O SRL tagging (e.g B-ARG0)
- Shows that SRL is possible without lexical or syntactic features
- Promising for low-resource languages where parsers not available
- Also does not apply decoding constraints