Prioritizing Data Sources for Minimum Viable Detection

Presenter

There is no photo.
I'm right here :)

Mean streets of Northern Virginia

"The Government"

Red Canary

Keith McCammon

Why we're here

To learn how you can prioritize collection of ATT&CK data sources, use this information to inform technology selection, and ultimately build a strong foundation for your detection engineering program.

Detection Engineering

What does this have to do with ATT&CKTM?

Detection Engineering

We love to fixate on this!

DATA

Am I collecting the right data to detect, investigate, and respond effectively to threats?

ANALYTICS

Am I <u>asking the right</u> questions of the data that I have? **DETECTION**

Do I have the process, context, and expertise that I need to answer the questions that I've asked?

Detection Engineering

We should pay closer attention to this . . .

to threats?

ANALYTICS

Am I <u>asking the right</u> questions of the data that I have?

DETECTION

Do I have the process, context, and expertise that I need to answer the questions that I've asked?

Obligatory Nods

Olaf Hartong

- sysmon-modular
- ThreatHunting

Roberto & Jose Luis Rodriguez

- hunters-forge / ATTACK-Python Client
- Hunters ATT&CKing

CONCEPT

Minimum Viable Detection

Being in a position to detect most threats, most of the time.

Not where you want to end up . . .

... but a great way to think about how

you start.

Words to Live By (At Work)

MAXIMIZE COVERAGE

MINIMIZE COMPLEXITY

OPTIMIZE FOR ANSWERS

BACKGROUND

Data Sources: The linchpin of ATT&CK

About the ATT&CK Data Sources

- 50 data sources
- One or more per each of the 240 ATT&CK (Enterprise)

techniques

About the ATT&CK Data Sources

- <u>■ 50</u> 59 data sources
- One or more per each of the 240 265 ATT&CK (Enterprise)

techniques

Useful for understanding **how we observe** a given technique

ID: T1096

Tactic: Defense Evasion

Platform: Windows

System Requirements: NTFS partitioned hard drive

Data Sources: File monitoring, Kernel drivers, API monitoring, Process command-line parameters

Defense Bypassed: Signature-based detection, Host forensic analysis, Antivirus

Contributors: Red Canary; Oddvar Moe, @oddvarmoe

Version: 1.0

Nits

Do you need one or all data sources to properly observe a technique?

Data sources are not clearly defined.

Where do we start?

The stages of grief

- 1. Understanding prevalence
- 2. Focus on a class of data or product
- 3. Differentiate within a class of data / product
- 4. Coverage based on operational data, insights

Understanding prevalence

Determining Prevalence

https://github.com/keithmccammon/python-attack-utils

Step 1: ./attack.py --dump-metadata

Step 2: Excel:)

Top 10 Data Sources by Prevalence

Focus on a class of data or product

Data Source... Sources

The Top 10

Process command-line

Differentiate within a class of data / product

	Visibility			Protection		
	#	Ć		1	Ć	
Process						
Process Use of Network				\bigcirc	lacksquare	0
File Monitoring			•	•	-	\bigcirc
Module Loads (DLL / .so)		•	•	lacksquare	0	0
System Calls	\bigcirc	-	0	lacksquare	0	0
Registry		N/A	N/A		N/A	N/A

Techniques by Data Source

https://github.com/keithmccammon/python-attack-utils

./attack.py --match-data-source <filename>

Visibility	Protection
Process command-line parameters	Process command-line parameters Process monitoring
Process monitoring Binary file metadata	Trocess monitoring
DLL monitoring	
File monitoring	
Loaded DLLs	
Process use of network	

... and then

\$./attack.py --match-data-sources data/edr_data_sources.txt Techniques: 266 Techniques Observable: 188 (71%)

[\$./attack.py --match-data-sources data/cb_response_data_sources.txt
Techniques: 266
Techniques Observable: 217 (82%)

\$./attack.py --match-data-sources data/sysmon_modular_data_sources.txt Techniques: 266 Techniques Observable: 223 (84%)

Operational context

Less a data source thing. Critically important.

Threat Detection Report

An in-depth look at the most prevalent ATT&CK™ techniques according to Red Canary's historical detection dataset

Trends: Powershell

year over year rank for mitre T1086, powershell

Trends: Windows Admin Shares

Trends: Remote File Copy

year over year rank for mitre T1105, remote file copy

Trends: Spearphishing Attachment

year over year rank for mitre T1193, spearphishing attachment

WHAT OTHERS ARE SAYING

"Everyone in this room should be sharing confirmed threat data based on ATTACK™."

~ Me. I made this up. Still a valid point . . .

One more time . . .

MAXIMIZE COVERAGE

MINIMIZE COMPLEXITY

OPTIMIZE FOR ANSWERS

FEEDBACK, QUESTIONS, ROTTEN TOMATOES

Thank you!

