

Application of Garvey-Kelson formula to mass extrapolation

C. Ma, Y. M. Zhao

2020.01.13

CONTENTS

- Introduction
- Garvey-Kelson mass formula
- Numerical experiments
- Conclusion

Introduction

[G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995); G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003); Chin. Phys. C 36, 1287 (2012); Chin. Phys. C, 36, 1603 (2012); Chin. Phys. C 41, 030002 (2017); Chin. Phys. C 41, 030003 (2017);]

Garvey-Kelson mass relations

Neutron number N

[G. T. Garvey and I. Kelson, Phys. Rev. Lett. 16, 197 (1966); G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi, and I. Kelson, Rev. Mod. Phys. 41, S1 (1969)]

- Suppose that $M(N,Z) \propto \alpha N + \beta Z + \gamma N Z$.
- Apply to the description and prediction for heavy nuclei with high precision;

[Phys. Rev. C, 87, 057304 (2013); Phys. Rev. C, 88, 064325 (2013); Sci. China-Phys. Mech. Astron. 60, 022011 (2017)]

■ For $A \ge 120$, RMSD=148 (158) keV for $D_L(D_T)$ in AME2016.

Garvey-Kelson mass formula

 If GKL and GKT are established simultaneously, the general solution should be

$$M_{\text{GKs}}(N,Z) = h_1(N) + h_2(Z) + \lambda NZ + \mu \frac{1 - (-1)^{NZ}}{2}$$
.

[G. T. Garvey and I. Kelson, Phys. Rev. Lett. 16, 197 (1966); G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi, and I. Kelson, Rev. Mod. Phys. 41, S1 (1969)]

Unfortunately, RMSD~2 MeV for AME2016.

- Previous efforts:
 - Inhomogeneous terms. [Nucl. Phys. A 243, 326 (1975)]

e.g.
$$M_{\mathrm{GKs}}(N,Z) = g_1(N) + g_2(Z) + g_3(A) + g_4(E) + E_p$$
.

[Z. He, M. Bao, Y. M. Zhao, and A. Arima, Phys. Rev. C 90, 054320 (2014)]

Treat different regions separately. [At. Data Nucl. Data Tables 39, 265 (1988)]

Practical method to predict atomic masses

- The GK formula does not hold globally but "locally" instead.
- The "locality" constraint is given by

$$|A_0 - A| \le R$$
, $|E_0 - E| \le R$,
 $A_0 \ne A$, $E_0 \ne E$,

where R are set as proper numbers for different nuclei to be predicted.

Determine the theoretical values by least-squares method,

$$\min_{p_{v}} \sum_{i=1}^{n} (M_{\exp}^{i} - M_{\text{th}}^{i})^{2} \longrightarrow \sum_{i=1}^{n} (M_{\exp}^{i} - M_{\text{th}}^{i}) \frac{\partial M_{\text{th}}^{i}}{\partial p_{v}} = 0, v = 1, 2 \dots m.$$

• Alternatively, determine theoretical values by introducing theoretical uncertainties $\sigma_{
m th}$ in χ^2 fitting,

$$\min_{p_{v}} \sum_{i=1}^{n} \frac{\left(M_{\exp}^{i} - M_{\text{th}}^{i}\right)^{2}}{\sigma_{\exp}^{i}^{2} + \sigma_{\text{th}}^{2}} \longrightarrow \sum_{i=1}^{n} \frac{M_{\exp}^{i} - M_{\text{th}}^{i}}{\sigma_{\exp}^{i}^{2} + \sigma_{\text{th}}^{2}} \frac{\partial M_{\text{th}}^{i}}{\partial p_{v}} = 0, v = 1, 2 \dots m;$$

$$\sigma_{\text{th}}^{2} = \frac{\sum_{i=1}^{n} \left(\sigma_{\exp}^{i}^{2} + \sigma_{\text{th}}^{2}\right)^{-2} \left[\left(M_{\exp}^{i} - M_{\text{th}}^{i}\right)^{2} - \sigma_{\exp}^{i}^{2}\right]}{\sum_{i=1}^{n} \left(\sigma_{\exp}^{i}^{2} + \sigma_{\text{th}}^{2}\right)^{-2}}.$$

[P. Möller and J. R. Nix, At. Data Nucl. Data Tables 59, 185 (1995)]

Description of AME2016 Database

		1	$\lim_{R\to\infty}M_{\rm ex}$	$_{\rm p}-M_{ m wl}$	-s		
Z	100	Global fitting σ _{wl-s} =2.046 Ν					-5
	75	- wi-s					-3 -1
	50					-	0
	25		A CONTRACTOR OF THE PARTY OF TH			-	3
	0	40) (30	120	160	5
				N			

			1		
		2	3	4	
<i>R</i> =2:	5	6	•	7	8
		9	10	11	
			12		

$$N_{\text{para}}$$

= 5 + 5 + 2
= 12
= N_{input}

- R increases → Systematic deviation between theoretical and experimental masses generally increases;
- The theoretical values with minimal R is recommended (at least R=3).

Description of AME2016 Database

- Major differences on theoretical masses from least-square fitting and χ^2 fitting occur for nuclei with $\sigma_{\rm exp} > 50$ keV;
- Most cases are located on the border of the known region;
- Two fitting procedures may be quite different in case of extrapolation.

 GKs: take average value as final theoretical mass,

$$M_{th}(N,Z) = \sum_{i=1}^{n} M_{th}^{i}(N,Z) / n$$
.

[Phys Rev C. 77. 041304 (2008)]

 wGKs: take weighted average value as final theoretical mass,

$$M_{\rm th}(N,Z) = \frac{\sum_{i=1}^n M_{\rm th}^i(N,Z) \times \omega_i}{\sum_{i=1}^n \omega_i}$$

$$\omega_i = 1/\sigma_i^2 = 1/(\sigma_{\text{th}}^{i^2} + \sigma_{\text{exp}}^{i^2})$$
;

•
$$\sigma_{\text{abs}} = \sum_{i=1}^{n} \frac{\left|M_{\exp}^{i}(N_{i},Z_{i}) - M_{\exp}^{i}(N_{i},Z_{i})\right|}{n}$$
.

A≥120	l-s	wl-s	ratio	GKs	wGKs	ratio
$\sigma_{ m abs}$ (keV)	226	143	36.9%	216	218	-1%
$\sigma_{ m rmsd}$ (keV)	300	198	33.9%	289	290	-0.5%

Mass relations based on residual neutronproton interactions

(3)

Total n-p interactions between the last i
neutron(s) and the last j proton(s) are defined as

$$\begin{split} \delta V_{in-jp} \\ &= M(N,Z) - M(N-i,Z) - M(N,Z-j) \\ &+ M(N-i,Z-j) \ . \end{split}$$

• Empirical δV_{in-jp} formulas:

$$\begin{split} \delta V_{1n-1p}^{\rm cal}(N,Z) &= \overline{\delta V_{1n-1p}^{\rm cal}(A)} + \Delta_{\rm sh}(N,Z) \,, \\ \delta V_{2n-1p}^{\rm cal}(N,Z) &= \overline{\delta V_{2n-1p}^{\rm cal}(A)} + \Delta_{\rm sh}(N,Z) + \Delta_{\rm sh}(N-1,Z) \,, \\ \delta V_{2n-1p}^{\rm cal}(N,Z) &= \overline{\delta V_{1n-2p}^{\rm cal}(N,Z)} \\ &= \overline{\delta V_{1n-2p}^{\rm cal}(A)} + \Delta_{\rm sh}(N,Z) + \Delta_{\rm sh}(N,Z-1) \,, \\ \text{where} \end{split}$$

$$\Delta_{\rm sh}(Z, N) = a_{\rm sh} + 2b_{\rm sh}|\delta_p \Omega_N(N_p - \Omega_Z) - \delta_n \Omega_Z(N_n - \Omega_N)|$$

TABLE I. The parameters [in keV, see Eq. (3)] taken in this work for different mass regions. These parameters are obtained via a χ^2 fitting procedure.

Region	Parameter	Even-A	Odd-A
$Z \in [1, 28), N \in [1, 28)$	$a_{ m sh}$	28.55	136.7
	$b_{ m sh}$	-0.3958	-5.138
$Z \in [1, 28), N \in [28, 50)$	$a_{ m sh}$	7.372	45.74
or $Z \in [28, 50), N \in [1, 28)$	$b_{ m sh}$	-0.628	-0.1966
$Z \in [28, 50), N \in [28, 50)$	$a_{ m sh}$	141.3	-177.2
	$b_{ m sh}$	-0.6086	0.8863
$Z \in [28, 50), N \in [50, 82)$	$a_{ m sh}$	59.26	7.282
or $Z \in [50, 82), N \in [28, 50)$	$b_{ m sh}$	-0.2223	-0.0007
$Z \in [50, 82), N \in [50, 82)$	$a_{ m sh}$	129.2	-84.88
or $Z \in [28, 50), N \in [82, 126)$	$b_{ m sh}$	-0.2666	0.1337
$Z \in [50, 82), N \in [82, 126)$	$a_{ m sh}$	60.64	107.9
or $Z \in [82, 126), N \in [50, 82)$	$b_{ m sh}$	-0.1124	-0.2617
$Z \in [82, 126), N \in [82, 126)$	$a_{ m sh}$	11.37	18.81
or $Z \in [50, 82), N \in [126, 184)$	$b_{ m sh}$	-0.1067	-0.0266
$Z \in [82, 126), N \in [126, 184)$	$a_{ m sh}$	44.67	-11.25
	$b_{ m sh}$	-0.1697	0.0499

[H. Jiang, G. J. Fu, et. al., Phys. Rev. C. 85, 054303 (2012)]

 Take the average of 12 possible ways to derive masses.

[G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003); H. Jiang, et. al., Phys. Rev. C. 85, 054303 (2012)]

A≥120	A-W	$\delta V_{\sf np}$	wl-s	
$\sigma_{ m abs}$ (keV)	208	206	147	
$\sigma_{ m rmsd}$ (keV)	291	276	204	

- Underestimates at A~140: wl-s $< \delta V_{np} < A-W$;
- Overestimates at A~230: wI-s < A-W < δV_{np} .

- Abnormal cases: ¹³⁸Sb & ¹⁴⁵Tb;
- Expansion of reference masses: keep S_{2n} invariant;
- R increases as prediction moves away from known region;
- Predictions within two or three steps are generally reliable.

Comparison with various models

• wl-s yields smallest σ_{rmsd} compared with various models in the market, in both cases of AME03-16 and AME12-16, for $A \ge 120$.

TABLE I: Predicted mass excesses and their uncertainties (in keV) predicted by Audi-Wapstra (A-W) extrapolation [19], by Bao et al. [17], by Jiang et al. [29], WS4+RBF [9], WS4+RBFoe [30] and this work, respectively, for the nuclei with $A \ge 120$, from the AME2012 database [19] to the AME2016 database [20]. The last row present the RMSD (in keV) of the 21 calculated masses in this Table with and without consideration of ¹³⁸Sb, given outside and inside the bracket, respectively.

Element	AME2016	A-W	Bao et al.	Jiang et al.	WS4+RBF	WS4+RBFoe	this work
$^{121}\mathrm{Rh}$	-56250 ± 619	-56430 ± 298	-56390 ± 190	-56325 ± 144	-55859	-56113	-56325 ± 149
$^{123}\mathrm{Pd}$	-60430 ± 789	-60417 ± 196	-60322 ± 199	-60531 ± 192	-60391	-60151	-60276 ± 128
$^{129}\mathrm{Cd}$	-63058 ± 17	-63509 ± 196	-63569 ± 124	-63638 ± 96	-63646	-63508	-63338 ± 194
$^{131}\mathrm{Cd}$	-55219 ± 102	-55331 ± 196	-54984 ± 159	-55822 ± 170	-55385	-55390	-54954 ± 363
$^{138}\mathrm{Sb}$	-54220 ± 1064	-54539 ± 298	-54521 ± 157	-54552 ± 117	-54493	-54572	-54653 ± 65
$^{141}\mathrm{I}$	-59927 ± 16	-59904 ± 196	-59951 ± 135	-59930 ± 100	-59882	-59832	-59943 ± 78
$^{149}\mathrm{Ba}$	-53120 ± 438	-53021 ± 196	-53171 ± 149	-52947 ± 395	-53069	-52986	-53153 ± 154
$^{150}\mathrm{La}$	-56130 ± 435	-56383 ± 196	-56432 ± 136	-56337 ± 174	-56299	-56538	-56450 ± 144
$^{151}\mathrm{La}$	-53310 ± 435	-53729 ± 196	-53472 ± 224	-53275 ± 153	-53701	-53564	-53238 ± 121
$^{137}\mathrm{Eu}$	-60146 ± 4	-60119 ± 196	-60100 ± 94	-59998 ± 94	-60147	-60001	-60145 ± 96
$^{190}\mathrm{Ti}$	-24372 ± 8	-24379 ± 50	-24416 ± 83	-24410 ± 56	-24431	-24328	-24376 ± 111
$^{215}\mathrm{Pb}$	4342 ± 52	4416 ± 101	4466 ± 114	4499 ± 66	4328	4296	4456 ± 68
$^{194}\mathrm{Bi}$	-16029 ± 6	-16036 ± 51	-15958 ± 85	-15957 ± 56	-16167	-16004	-15957 ± 62
$^{198}\mathrm{At}$	-6715 ± 6	-6721 ± 51	-6659 ± 87	-6636 ± 60	-6872	-6696	-6715 ± 69
$^{197}\mathrm{Fr}$	10254 ± 54		10488 ± 145	10441 ± 117	10282	10197	10334 ± 60
$^{198}\mathrm{Fr}$	9574 ± 32		9613 ± 105	9597 ± 90	9184	9523	9514 ± 84
$^{202}\mathrm{Fr}$	3096 ± 7	3092 ± 51	3140 ± 91	3123 ± 69	2876	3126	3030 ± 51
$^{232}\mathrm{Fr}$	46073 ± 14	45986 ± 155	45984 ± 114	46091 ± 71	46030	46146	45941 ± 57
$^{233}\mathrm{Fr}$	48920 ± 20	49034 ± 298	48894 ± 132	48907 ± 107	49062	48966	48898 ± 48
$^{201}\mathrm{Ra}$	11937 ± 20	11841 ± 106	11950 ± 94	12033 ± 100	11820	11981	11970 ± 73
$^{205}\mathrm{Ac}$	14107 ± 51		13940 ± 105	14049 ± 119	13973	13980	14032 ± 62
$^{206}\mathrm{Ac}$	13479 ± 50	13462 ± 71	13446 ± 103	13392 ± 94	13250	13432	13376 ± 82
$^{215}{ m U}$	24923 ± 88		24917 ± 154	25184 ± 128	25212	25034	24817 ± 62
$^{216}{ m U}$	23066 ± 28		23191 ± 123	23283 ± 130	23118	23235	23072 ± 56
$^{221}{ m U}$	24520 ± 51	24483 ± 102	24498 ± 111	24468 ± 88	24546	24485	24541 ± 107
$^{222}\mathrm{U}$	24273 ± 52	24222 ± 101	24204 ± 98	24292 ± 89	24321	24257	24235 ± 105
$^{219}\mathrm{Np}$	29457 ± 88	29277 ± 196		29606 ± 249	29316	29391	29115 ± 154
$^{229}\mathrm{Am}$	42150 ± 87		41891 ± 199	41912 ± 170	42148	42128	42168 ± 170
$^{259}\mathrm{No}$	94079 ± 7	94111 ± 100	94107 ± 93		93995	93986	94121 ± 60
${\rm RMSD}~({\rm keV})$		175 (164)	169 (160)	216 (209)	215 (212)	189 (177)	158 (130)

Summary

- The processing of experimental errors in local mass relations may need to be reconsidered;
- A new method to predict atomic masses based on the GK relations is constructed by considering experimental uncertainties;
- Its predictive power is exemplified in comparison with other previous models for $A \ge 120$.
- Unsolved problems:
 - How far can we predict;
 - Application to the prediction of α -decay energies for superheavy nuclei.

Thank you!

