PENYANDIAN BLOCK

KULIAH KRIPTOGRAFI DAN KEAMANAN JARINGAN

BLOCK CIPHER VS STREAM CIPHER

- Stream cipher: cipher yang mengenkripsi/mendekripsi aliran data digital satu bit atau satu byte sekali waktu.
 - Menggunakan bit-stream generator yang menghasilkan bit stream berdasarkan kunci yang digunakan → setiap pengguna harus memperoleh informasi mengenai generating key dan masing-masing dapat menghasilkan keystream.
 - Plaintext di-xor-kan dengan bit stream untuk menghasilkan ciphertext
- Block cipher: cipher yang mengenkripsi/mendekripsi data dalam blokblok.
 - Ukuran: 64 atau 128 bit atau yang lain.
 - Pengguna mendapatkan informasi tentang kunci enkripsi simetri.
- Penyandian simetris yang ada sekarang lebih banyak menggunakan block cipher:
 - Lebih mudah dianalisis.
 - Aplikasi lebih luas.

(a) Stream Cipher Using Algorithmic Bit Stream Generator

(b) Block Cipher

Stallings (2011)

MOTIVASI STRUKTUR PENYANDIAN FEISTEL

- Block cipher beroperasi pada blok plaintext n bit untuk mendapatkan ciphertext sepanjang n bit.
- Terdapat 2ⁿ blok plaintext yang mungkin.
- Agar reversible (bisa didekripsi), masing-masing harus menghasilkan blok ciphertext yang unik → transformasi yang reversible/non-singular.
- Jumlah transformasi yang mungkin: 2ⁿ!

Plaintext	Ciphertext
00	11
01	10
10	00
11	01

Plaintext	Ciphertext
00	11
01	10
10	01
11	00

PENYANDIAN BLOCK IDEAL

 Feistel: memungkinkan jumlah maksimum kemungkinan pemetaan enkripsi dari blok plaintext

MASALAH PENYANDIAN BLOCK IDEAL

- Jika n kecil, ekuivalen dengan penyandian substitusi klasik

 ¬ rawan terhadap analisis statistik.
 - Jika n besar, resiko dapat dihindari.
- Tidak praktis untuk ukuran blok yang besar.:
 - Pemetaannya sendiri memuat kunci.
 - Untuk n = 4, ukuran kunci: 4 (bit) X 16 (baris) = 64 bit.
 - Secara umum untuk untuk panjang bit n, diperlukan kunci k sepanjang n x 2ⁿ bit.
 - Jadi untuk n = 64, panjang key $\approx 10^{21}$ bit.
- Feistel: pendekatan/aproksimasi terhadap sistem ideal block cipher untuk n besar.

PENYANDIAN FEISTEL

- Dipublikasikan pada tahun 1973.
- Mendekati ideal block cipher dengan memanfaatkan konsep product cipher: eksekusi 2 atau lebih cipher sederhana secara berurutan, dengan hasil akhir yang lebih kuat secara kriptografis daripada cipher komponennya.
- Prinsip: membangun block cipher dengan panjang kunci k bit dan blok dengan panjang n bit yang memungkinkan jumlah transformasi sebanyak 2^k, bukan 2ⁿ!
- Menggunakan:
 - Substitusi: tiap elemen atau kelompok elemen plaintext diganti secara unik oleh elemen atau kelompok elemen cipertext.
 - Permutasi: sederetan elemen dari plaintext diganti dengan permutasi dari deretan tersebut. Tidak ada penambahan atau penghapusan elemen, hanya urutan yang diubah.
- Merupakan aplikasi praktis dari confusion and diffusion.

DIFFUSION DAN CONFUSION

- Diperkenalkan oleh Claude Shannon (1949).
- Tujuan utama: mencegah kriptoanalisis berdasarkan analisis statistik.
 - Misalkan cryptanalyst mengetahui karakteristik statistik dari plaintext. Jika ciphertext merefleksikan karakteristik tersebut, cryptanalyst mungkin bisa mendapatkan kunci enkripsi atau sebagian kunci.
- Metode yang dipakai: diffusion (difusi) dan confusion.
- Diffusion:
 - Struktur statistik plaintext dihilangkan dengan ciphertext yang memiliki statistik dengan jangkauan besar.
 - Setiap digit plaintext mempengaruhi nilai dari digit ciphertext, atau setiap digit ciphertext dipengaruhi oleh banyak digit plaintext.

- Contoh: untuk mengenkripsi pesan $M = m_1, m_2, ...,$ digunakan rumus: $y_n = (\Sigma_i m_{n+i}) \mod 26$, i dari 1 sampai k.
 - Frekuensi huruf menjadi lebih seragam.
- Dalam blok cipher biner, dapat dilakukan dengan berulangkali melakukan permutasi pada data, kemudian mengaplikasikan fungsi pada permutasi tersebut -> beberapa bit dari posisi yang berbeda berkontribusi terhadap 1 bit ciphertext.

• Confusion:

- Membuat agar hubungan antara statistik dari ciphertext dan nilai dari kunci enkripsi menjadi sekompleks mungkin.
- Meskipun attacker mendapatkan statistik dari ciphertext, dia tidak dapat menggunakannya untuk mendapatkan kunci.
- Menggunakan algoritma substitusi yang kompleks.

STRUKTUR FEISTEL CIPHER

- Input: blok plaintext dengan ukuran 2w bit dan key K.
- Blok plaintext dibagi 2: L₀ dan R₀, masing-masing melalui n tahap pemrosesan, kemudian digabung untuk mendapatkan blok ciphertext.
- Tiap tahap (round) ke-i mendapatkan input L_{i-1} dan R_{i-1}, dan sub-key K_i yang diturunkan dari K.
- Substitusi terhadap bagian kiri data dilakukan pada setiap tahap.
- Fungsi F mengolah blok sebelah kanan (w bit) dan sub-key (y bit), dapat ditulis: F(RE_{i,} K_{i+1}).
- Setelah tahap terakhir, data kiri dan kanan dipertukarkan.

Proses dekripsi:

- Sama dengan enkripsi.
- Aturan: gunakan ciphertext sebagai input, tetapi K_i digunakan dengan urutan terbalik.

PENGGUNAAN FEISTEL CIPHER

Bergantung pada:

- Ukuran blok:
 - Makin besar maka makin aman, tetapi mengurangi kecepatan enkripsi/dekripsi.
 - Ukuran 64 bit sudah dianggap aman.
- Ukuran kunci:
 - Makin besar maka makin aman, tetapi mengurangi kecepatan enkripsi/dekripsi.
 - Ukuran 64 bit sudah tidak aman, yang umum 128 bit.
- Jumlah tahapan:
 - Satu kali tidak aman, tetapi dengan berkali-kali menjadi lebih aman.
 - Biasanya 16 kali.
- Algoritma pembangkit sub-key: Kompleksitas yang tinggi akan menyulitkan cyriptanalyst.
- Fungsi F: Kompleksitas yang tinggi akan menyulitkan cyriptanalyst.

PRINSIP DESAIN BLOK CIPHER

Tiga aspek penting:

- Jumlah tahap
- Fungsi F
- Key scheduling algorithm

Jumlah tahap:

 Semakin banyak jumlah tahap, semakin sulit untuk dilakukan kriptoanalisis, meski F tidak terlalu kuat.

Desain fungsi F:

- Semakin tidak linier semakin baik.
- Properti avalanche yang baik
 - Avalanche effect: perubahan pada 1 bit dari plaintext harus mengakibatkan perubahan pada beberapa bit ciphertext.
- Bit independence criterion (BIC): output pada bit ke-j dan k harus berubah secara independen jika satu bit tunggal ke-i diubah.

Key scheduling algorithm:

- Dipilih sub-keys agar tidak dapat dilakukan deduksi terhadap masing-masing sub-key dan key utama.
- Belum ada prinsip umum.