Security Protocols and Verification Description of the Bourget-Saunier-Werck Protocol

Description of the Bourget-Saunier-Werck Public-Key Protocol

The Bourget-Saunier-Werck public key protocol is described as follows:

$$\begin{split} \mathbf{A} &\to \mathbf{S} : \ \mathbf{A}, \{\,|\, \mathbf{B}, N_{\mathbf{a}}, \ \{\, \mathbf{K}\,\}_{\text{pub}(\mathbf{B})}\,|\,\}_{\mathbf{K}_{as}} \\ \mathbf{S} &\to \mathbf{B} : \ \{\,|\, \mathbf{A}, N_{\mathbf{a}}, \ \{\, \mathbf{K}\,\}_{\text{pub}(\mathbf{B})}\,|\,\}_{\mathbf{K}_{bs}} \\ \mathbf{B} &\to \mathbf{A} : \ \mathbf{B}, \{\,|\, \mathbf{ACK}\,|\,\}_{\mathbf{K}} \end{split}$$

Initial knowledge. When an agent receives a nonce, they compare it to their list of previously received nonces to check if a replay attack has been tried.

Values generated during execution. N_a is a nonce freshly generated by A, and ACK is an integer (1) sent back for the confirmation.

Protocol description.

- Step 1 (A \rightarrow S). A generates K and N_a , encrypts K for B as $\{K\}_{\text{pub}(B)}$, then wraps $(B, N_a, \{K\}_{\text{pub}(B)})$ under the A \rightarrow S channel key K_{as} ; the cleartext A tells S which key to use. S then checks if a replay attack happened.
- Step 2 (S \rightarrow B). S decrypts with K_{as} and forwards (A, N_a , { K }_{pub(B)}) to B encrypted under K_{bs} . B then checks if a replay attack happened by comparing the nonce he just received with the list of the previously received nonces.
- Step 3 (B \rightarrow A). B decrypts with K_{bs} to obtain A, N_a , { K }_{pub(B)}, recovers K using prv(B), and confirms by sending B, { ACK }_K to A.

Security properties.

- Authentication ($A \rightarrow B$). If B completes a run of the protocol and obtains a key K, then K was indeed generated and sent by A. This follows since K is always transmitted encrypted under pub(B) and only A can initiate such a message through the server S.
- Authentication ($B\rightarrow A$). If A receives the confirmation message $\{ACK\}_K$, then B has successfully decrypted $\{K\}_{pub(B)}$ and thus possesses K. Hence, A can be assured that B has received the correct key.
- Secrecy. The session key K remains secret between A and B (and possibly the server S). An attacker cannot learn K, as it is always transmitted encrypted under pub(B).
- Freshness. B checks nonces to detect and reject replayed messages. Thus, old protocol runs cannot be reused by an adversary to mislead honest agents.

Cost of the protocol. For reference:

Step 1:
$$1 + 10 + 50 + 50 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 117$$
,

Step 2:
$$10 + 50 + 50 + 1 + 1 + 1 + 1 + 1 + 1 = 116$$
,

Step 3:
$$10 + 1 + 1 + 1 = 13$$
.

Total:
$$117 + 116 + 13 = 246$$
.