Общие сведения о языке С

Первая программ на С

ЗАДАЧА 1. Задана окружность радиуса г. Вычислить длину дуги окружности и площадь круга.

Напомним формулы для вычисления длина дуги окружности L и площади круга S:

```
L=2\cdot\pi\cdot r, S=\pi\cdot r^2.
```

```
Huжe приведён текст программы.
#include <stdio.h>
#include <math.h>
int main(int argc, char **argv)
{
    float r,S,L;
    printf("r=");
    scanf("%f",&r);
    L=2*M_PI*r;
    S=M_PI*r*r;
    printf("Длина окружности равна %f\n",L);
    printf("Площадь круга равна %f\n",S);
    return 0;
}
```

Давайте построчно рассмотрим текст программы и познакомимся со структурой программы на C и с некоторыми операторами языка.

Строка 1-2. Указывает компилятору (а точнее, препроцессору), что надо использовать функции из стандартных библиотек stdio.h и math.h. Библиотека stdio нужна для организации ввода-вывода с помощью функций printf и scanf. Библиотека math.h содержит большинство математических функций и констант. В нашей программе из этой библиотеки будет использоваться M_PI для определения числа π . В программе на языке C должны быть подключены все используемые библиотеки.

Строка 3. Заголовок главной функции (главная функция имеет имя main). В простых программах присутствует только функция main().

Строка 4. Любая функция начинается с символа {.

Строка 5. Описание вещественных (float) переменных г (радиус окружности), S (площадь круга), L(длина окружности). *Имя переменной* состоит из латинских букв, цифр и символа подчёркивания. Имя не может начинаться с цифры. В языке C большие и малые буквы различимы. Например, имена PR_1 , pr_1 , pr_1 и pR_1 – разные.

Строка 6. Вывод строки символов r=c помощью функции printf. Программа выведет подсказку пользователю, что необходимо вводить переменную r.

Строка 7. Ввод вещественного числа а с помощью функции scanf. Сейчас надо запомнить, что в операторе scanf необходимо указывать не переменные, а их адрес. Для этого перед именем переменной необходимо использовать символ &. Кроме того в операторе явно присутствует указание типа переменной, для типа вещественной переменной необходимо использовать символ f, для целой – i или d. В это момент программа останавливается и ждёт, пока пользователь введёт значение переменой r с клавиатуры.

Строка 8. Оператор присваивания для вычисления длины дуги окружности (переменная L) по формуле $2 \cdot \pi \cdot r$. В операторе присваивания могут использоваться круглые скобки и знаки операций: + (сложение), - (вычитание), * (умножение), / (деление).

Строка 9. Оператор присваивания для вычисления площади круга. Для определения

¹ В литературе равнозначно используются термины *«имя переменной»* и *«идентификатор»*.

Строка 10. Вывод строки "Длина окружности равна " и значения L на экран. Символы "\n" предназначены для перевода курсора в новую строку дисплея². Таким образом строка printf("Длина окружности равна %f\n",L);

выводит на экран текст "Длина окружности равна " 3 , значение переменной L, и переводит курсор в новую строку.

Строка 11. Вывод строки "Площадь круга равна ", значения площади круга S, после чего курсор переводится в новую строку дисплея.

Строка 12. Оператор return, который возвращает значение в операционную систему. Об этом подробный разговор предстоит далее. Сейчас следует запомнить, если программа начинается со строки int main(), последним оператором должен быть return 0^4 .

Строка 15. Любая функция (в том числе и main) заканчивается символом }.

Мы рассмотрели простейшую программу на языке C, состоящую из операторов ввода данных, операторов присваивания (в которых происходит расчет по формулам) и операторов вывода.

ЗАДАЧА . Зная $a,\,b,\,c$ — длины сторон треугольника, вычислить площадь S и периметр P этого треугольника.

Для решения задачи нам понадобится формула вычисления периметра p=a+b+c. Для вычисления площади можно воспользоваться формулой Герона.

$$S = \sqrt{\frac{p}{2} \cdot \left(\frac{p}{2} - a\right) \cdot \left(\frac{p}{2} - b\right) \cdot \left(\frac{p}{2} - c\right)}.$$

Решение задачи можно разбить на следующие этапы:

Рисунок 1: Треугольник

- 1. Определение значений a, b и c (ввод величин a, b, c c клавиатуры в память компьютера).
- 2. Расчет значений р и s по приведенным выше формулам.
- 3. Вывод р и ѕ на экран дисплея.

```
#include <stdio.h>
#include <math.h>
int main()
{
    float a,b,c,S,r; //Описание переменных.
    printf("a="); //Вывод на экран символов a=.
    //В функции scanf для вычисления адреса
    //переменной применяется операция &.
```

² Обращаем внимание читателя, что символ пробел является обычным символом, который ничем не отличается от остальных. Для вывода пробела на экран его надо явно указывать в строке вывода.

³ С пробелом после слова «равен».

⁴ Вообще говоря, вместо 0 может быть любое целое число.

```
scanf("%f", &a);
                        //Запись в переменную а значения
                        //введенного с клавиатуры.
   printf("b=");
                                //Вывод на экран символов b=.
   scanf("%f", &b);
                        //Запись в переменную b значения
                                //введенного с клавиатуры.
   printf("c=");
                                //Вывод на экран символов с=
   scanf("%f",&c);
                        //Запись в переменную с значения
                        //введенного с клавиатуры.
   r = (a+b+c)/2;
                                //Вычисление полупериметра.
   S = sqrt(r*(r-a)*(r-b)*(r-c));
                                        //Вычисление площади
                                        //треугольника.
   printf("S=%5.2f \t",S); //Вывод символов S=,
                        //значения S и символа
                        //табуляции \t.
                        //Спецификация %5.2f
                        //означает, что будет
                        //выведено вещественное
                        //число из пяти знаков,
                        //два из которых после точки.
   printf("p=%5.2f \n",2*r); //Вывод символов p=,
                                //значения выражения 2*r
                                //и символа окончания строки.
   //Οπeparop printf("S=%5.2f \ p=%5.2f \ n",S,2*r);
   //выдаст тот же результат.
return 0;
```


Рисунок . Результаты работы программы к задаче (вариант 1)

Таблица. Стандартные математические функции

Обозначение	Действие
abs(x)	Модуль целого числа x
fabs(x)	Модуль вещественного числа х
sin(x)	Синус числа х
cos(x)	Косинус числа х
tan(x)	Тангенс числа <i>х</i>
atan(x)	Арктангенс числа х,
acos(x)	Арккосинус числа <i>х</i>
asin(x)	Арксинус числа <i>х</i>
exp(x)	Экспонента, <i>e</i> ^x
log(x)	Натуральный логарифм, (х>0)
log10(x)	Десятичный логари ϕ м, (x >0)

sqrt(x)	Корень квадратный, (х>0)
pow(x,y)	Возведение числахв степень у
ceil(x)	Округление числа х до ближайшего
	большего целого
floor(x)	Округление числа х до ближайшего
	меньшего целого

Примеры записи математических выражений с использованием встроенных функций представлены в таблице .

Таблица. . Примеры записи математических выражений

Математическая запись	Запись на языке С++
$\sqrt[3]{(a+b)^2}$	pow((a+b)*(a+b),1./3)
, ,	pow(pow(a+b,2),1./3)
$\cos^4(x)$	pow(cos(x), 4)
e^{2x}	exp(2*x)
$e^{5\sin(\frac{x}{2})}$	exp(5*sin(x/2))
$\sin^2(\sqrt{x})$	pow(sin(sqrt(x)),2)
$\frac{\ln(\sqrt{x})}{\ln(x-2)}$	log(fabs(x-2))
(1 17	
$\log_b a$	log(a)/log(b)
$lg(x^2+1)$	log10(x*x+1)/log10(4)
lg(4)	
$(x^2 + y^2)$	z=x*x+y*y;
$\sin(x^2 + y^2) + \cos\frac{(x^2 + y^2)}{2 \cdot y} + \sqrt{x^2 + y^2}$	sin(z)+cos(z/(2*y))+sqrt(z);