LAMBTON COLLEGE

A Report on [Lab 4,5,6 on AWS Cloud Foundations]

121 Brunel Rd, Mississauga ON L4Z 3E9

A Group assignment with screenshots of Lab 4, 5, and 6

on Aws academy

Big Data Analytics DSMM

Under the supervision of Professor Pedram Habibi

Submitted BY:

Aadarsha Chapagain (C0825975) Davinderjit Singh (C0833117) Priti Bhale (C0835691) Milanjeet Kaur(C0829899) Palwinder Kaur (C0827804) Nimmo Usman (C0836309)

Submitted To:

Lambton College Professor Pedram Habibi

Submission Date: 22nd November 2022

Lab4: Working With EBS

Create Volume

Attach Volume

Login using Putty client

At first the .ppk was downloaded and using same key in putty ssh connection was established.

Create an ext3 file system on the new volume

Create a directory for mounting the new storage volume:

Mount the new volume:

To configure the Linux instance to mount this volume whenever the instance is started, add a line to /etc/fstab.

View the configuration file to see the setting on the last line

View the available storage again

On mounted volume, create a file and add some text to it.

Verify that the text has been written to your volume

Create Snapshot

Snapshot created

Delete created file

Create volume from stored snapshot

Attach the volume to instance

Create a directory for mounting the new storage volume:

sudo mkdir /mnt/data-store2

Mount the new volume:

sudo mount /dev/sdg /mnt/data-store2

Conclusions for Lab4

- Created an Amazon EBS volume
- Attached the volume to an EC2 instance
- Created a file system on the volume
- Added a file to volume
- Created a snapshot of your volume
- Created a new volume from the snapshot
- Attached and mounted the new volume to your EC2 instance
- Verified that the file created earlier was on the newly created volume

Lab 5: Build Your DB Server and Interact With Your DB Using an App

Create a security group

Create Db Subnet Group

Create Database

database-1.c9kgzdoxiquz.us-east-1.rds.amazonaws.com

Web server Ip address

Web application to interact with database.

Created the record to test the connection

Lab 5 Conclusion

- Launched an Amazon RDS DB instance with high availability.
- Configured the DB instance to permit connections from your web server.
- Opened a web application and interact with your database

Lab 6: Scale and Load Balance Your Architecture

Task 1: Create an AMI for Auto Scaling

Task 2: Create a Load Balancer

Create a target group

Create Load Balancer

Task 3: Create a Launch Configuration and an Auto Scaling Group

Creta Auto scaling group

 Target tracking scaling policy Choose a desired outcome and leave it to the scaling policy to add and remove capacity as needed to achieve that outcome. 	O None	2	
Scaling policy name			
LabScalingPolicy			
Metric type			
Average CPU utilization	•		
Instances need 300 seconds warm up before including in metro	ric		
☐ Disable scale in to create only a scale-out policy			
Instance scale-in protection - optional			
Instance scale-in protection If protect from scale in is enabled, newly launched instances will be	e protected from sca	ale in by default.	
Enable instance scale-in protection		-	

Review the configurations

Newly launched two instances

Task 4: Verify that Load Balancing is Working

Healthy indicates that an instance has passed the Load Balancer's health check. This means that the Load Balancer will send traffic to the instance

Test Load balancer

This indicates that the Load Balancer received the request, sent it to one of the EC2 instances, then passed back the result.

Task 5: Test Auto Scaling

Two alarms under cloudwatch

After Performing load test Here Alarm high is in "In Alarm" state

Number of lab instances has increased as well from 2 to 3 instances to handle the load

Lab 6 Conclusion

- Created an Amazon Machine Image (AMI) from a running instance.
- Created a load balancer.
- Created a launch configuration and an Auto Scaling group.
- Automatically scale new instances within a private subnet
- Created Amazon CloudWatch alarms and monitor performance of your infrastructure.