Prova Análise Real - 2023

- 1) Seja $f:[a,b) \to \mathbb{R}$ uma função e $l \in \mathbb{R}$ tal que $|f(x)-f(y)| \le l|x-y|, \forall x,y \in [a,b)$. Mostre que
 - (a) Existe uma sequência (x_n) em [a,b) tal que $x_n o b$ e $\lim f(x_n)$ existe.
 - (b) Se (y_n) e (z_n) são sequências em [a,b) tais que $y_n,z_n \to b$, então $\lim f(y_n) = \lim f(z_n)$.

Escolha duas das questões abaixo:

- 2) Seja $g: \mathbb{R} \to \mathbb{R}$ contínua tal que g(c) > 0, para algum $c \in \mathbb{R}$. Se $f(x) \neq 0, \forall x \in \mathbb{R}$. Mostre que $g(x) > 0, \forall x \in \mathbb{R}$.
- 3) Seja X um conjunto limitado superiormente, com $s = \sup X$. Se $s \notin X$, mostre que existe uma sequência estritamente crescente (x_n) em X tal que $x_n \to s$.
- 4) Seja $h: \mathbb{R} \to \mathbb{R}$ contínua tal que

$$\lim_{x o -\infty} h(x) = \lim_{x o \infty} h(x) = \infty$$

Mostre que existe $x_0 \in \mathbb{R}$ tal que $h(x_0) \leq h(x), \forall x \in \mathbb{R}$.