Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1/1 point

1/1 point

1. Compute the length of

$$\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

using the inner product defined

$$\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Do the exercise using pen and paper.

O 26

 \bigcirc $\sqrt{11}$

 \bigcirc $\sqrt{29}$

 $\bigcirc \sqrt{31}$

 \bigcirc $\sqrt{26}$

÷

Ocorrect
Good job.

2. Compute the squared distance between

 $\mathbf{x} = \begin{bmatrix} \frac{1}{2} \\ -1 \\ -\frac{1}{2} \end{bmatrix}$

and

$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

using the inner product defined as

$$\langle \mathbf{a}, \mathbf{b}
angle = \mathbf{a}^T egin{bmatrix} 2 & 1 & 0 \ 1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix} \mathbf{b}$$

Do the exercise using pen and paper.

 $O\sqrt{\frac{9}{2}}$

5

 \bigcirc $\sqrt{5}$

*

 $O^{\frac{9}{2}}$

÷

3.

1/1 point

	Compute the length of $\mathbf{x} = egin{bmatrix} -1 \\ 1 \end{bmatrix}$ using the inner product defined by			
	$\langle \mathbf{a}, \mathbf{b} angle = \mathbf{a}^T rac{1}{2} egin{bmatrix} 5 & -1 \ -1 & 5 \end{bmatrix} \mathbf{b}$			
	Do the exercise using pen and paper.			
	O 12	A		
	 √6 √2 	\$ \$		
	\bigcirc $\sqrt{12}$	÷		
	O 6			
	○ Correct Good job!			
4.	Compute the distance (not squared) between		1/1 point	
	$\mathbf{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$			
	$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$			
	and			
	$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$			
	[0] using the inner product defined as			
	$\langle \mathbf{a}, \mathbf{b} angle = \mathbf{a}^T egin{bmatrix} 2 & 1 & 0 \ 1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix} \mathbf{b}$			
	Do the exercise using pen and paper (and calculator if necessary). Please enter a decimal number.			
	6.5			
	⊙ Correct			
	Well done!			
	5.4			
	Compute the length of $\mathbf{x} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ using the inner product defined as $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \mathbf{I} \mathbf{b}$ where \mathbf{I} is the iden	tity	1/1 point	
	matrix.			
	Do the exercise using pen and paper.			
4	$\bigcirc -\sqrt{3}$	‡		
		÷		
	○ 3 ○ -3			
	⊙ Correct			
	Well done! Our inner product is the dot product.			