Combinatorics I Lecture Notes

Guilherme Zeus Dantas e Moura gdantasemo@haverford.edu

IMPA

January-February 2021 Last update: January 7, 2021

This is IMPA's master class Combinatorics 1, instructed by Robert Morris. All errors are my responsability.

Use these notes only as a guide. There is a non-trivial chance that some things here are wrong or incomplete (especially proofs).

This class is being taught remotely via Gooogle Meet.

Figure 1: This is a graph.

Contents

1	which problems we'll study:	2
2	Ramsey's Theory	3
3	Extremal Graph Theory	6

1 Which problems we'll study?

In this summer course, we'll study extremal, counting and probabilistic problems. Here are some examples:

Problem 1.1

Let A be a subset of $\{1, 2, \dots, 2n\}$ such that $a \nmid b$, for all $a \neq b \in A$.

How large can |A| be?

Solution. $A = \{n+1, \ldots, 2n\}$ is a good example. This yields |A| = n.

Consider the partition of $\{1, 2, \dots, 2n\}$ given by the following sets:

- $\{2^t\}$
- $\{3 \cdot 2^t\}$
- $\{5 \cdot 2^t\}$

:

• $\{(2n-1)\cdot 2^t\}$

There can't be two elements in the same set of the partition, so $|A| \leq n$.

Problem 1.2

Let A be a subset of $\{1, 2, \dots, 2n\}$ such that $a + b \neq c$, for all $a, b, c \in A$. We'll call such set sum-free.

How large can |A| be?

Solution. $A = \{n+1, \dots, 2n\}$ is a good example. Another good example are the odd numbers. Both yield |A| = n.

Suppose $|A| \ge n + 1$. Let $a = \max A$.

Consider the following partition with $\left|\frac{a}{2}\right|$ sets:

- $\{1, a-1\}$
- $\{2, a-2\}$

:

• $\{\left|\frac{a}{2}\right|, \left[\frac{a}{2}\right]\}$

There can't be two elements in the same set of the partition.

If $a \le 2n-1$, then there are at most n-1 sets listed above, which implies $|A| \le n$.

If a=2n, then $n \notin A$, and then the n-1 first sets listed above cover A, thus $|A| \leq n$.

Theorem 1.1 (Schur, 1916)

Given $c: \mathbb{Z}_{>0} \to \{1, \dots, r\}$, the there are x, y, z such that:

- $\bullet \ x + y = z$
- c(x) = c(y) = c(z)

Problem 1.3

How many sum-free sets are in [n]?

Conjecture 1.2 (Cameron and Erdős)

The number of sum-free sets in [n] is $\leq C \cdot 2^{n/2}$.

2 Ramsey's Theory

Theorem 2.1 (Ramsey's Theorem)

If $c:\binom{\mathbb{N}}{2}\to\{1,\ldots,r\}$, then there exists $A\subset\mathbb{N}$ infinite and monochromactic, i.e, such that c(ab)=c, for all $a,b\in A$.

Proof of Theorem 2.1. Let $S_0 = \mathbb{N}$.

For each i, do the following: Pick $v_i \in S_{i-1}$. Look at the colors of $\{v_i, u\}$, for u in S_{i-1} . Since S_{i-1} is infinite and there are finitely many colors, there is some color that appears infinitely many times; we'll call this color c_i , and define $S_i = \{u \in S_{i-1} : c(\{v_i, u\}) = c_i\}$.

Now, we have an infinite sequence v_1, v_2, \ldots , such that $c(\{v_i, v_j\}) = c_i$, for i < j. Since there are finitely many colors, there is some color that appears in infinitely many c_i 's; call this color c, and define $A = \{v_i : c_i = c\}$.

The set A satisfies our condition.

Proof of Theorem 1.1. Given a coloring $c: \mathbb{N} \to \{1, \dots, r\}$, we define $c': \binom{\mathbb{N}}{2} \to \{1, \dots, r\}$ by $c'(\{a,b\}) = c(b-a)$, for b > a.

By Theorem 2.1, there is A infinite and monochromactic. Pick $x < y < z \in A$, then we have c(y-x) = c(z-y) = c(z-x), and (y-x) + (z-y) = z - y, so we're done!

Definition 2.2 (Ramsey Number)

Let R(k) denote the smallest n such that, for every coloring with two colors of the edges of the complete graph K_n , i.e., for every $c: E(K_n) \to \{R, B\}$, there exists a monochromatic copy of K_k .

Let R(s,t) denote the smallest n such that, for every coloring with two colors of the edges of the complete graph K_n , i.e., for every $c: E(K_n) \to \{R, B\}$, there exists a red copy of K_s or a blue copy of K_t .

Clearly, R(k) = R(k, k).

Theorem 2.3

$$R(k) \lesssim 2^{2k}$$
.

Sketch. Let $n = 2^{2k}$, and pick any coloring c of K_n . Let $S_0 = [n]$.

For each i < 2k do the following: Pick $v_i \in S_{i-1}$. Look at the colors of $\{v_i, u\}$, for u in S_{i-1} . There is some color that appears more times; we'll call this color c_i , and define $S_i = \{u \in S_{i-1} : c(\{v_i, u\}) = c_i\}$.

Note that, the size of S_m is at least $\frac{n}{2^m} \ge 1$. This is not quite correct. At each step, we're taking one vertice away, and then dividing by two. We'll properly prove a better bound later.

Now, we have an sequence $v_1, v_2, \ldots, v_{2k-1}$, such that $c(\{v_i, v_j\}) = c_i$, for i < j. Since there are two colors, there is some color that appears at least k times; call this color c, and define $A = \{v_i : c_i = c\}$. The size of A is at least k. Pick any subset B of A that has exactly k elements.

The subgraph of K given by deleting all vertices but those in B is a monochromatic copy of K_k .

Lemma 2.4

$$R(s,t) \le R(s-t,t) + R(s,t-1).$$

Proof. Let n = R(s,t) - 1. By definition, there exists a coloring $c: E(K_n) \to \{R,B\}$ without a red K_s or a blue K_t .

Pick any vertex v. v it connected to some of the vertices through a red edge, which we'll put in the set S_R ; the others are connected to v through a blue edge, those we'll put in the set S_B .

Since there are no red K_s or blue K_t , there can't be any red K_{s-1} or blue K_t in S_R ; thus, $|S_R| \le R(s-1,t)$. Analougously, $|S_B| \le R(s,t-1)$.

Therefore,

$$R(s,t) - 1 \le R(s-1,t) - 1 + R(s,t-1) - 1 + 1$$

 $R(s,t) \le R(s-1,t) + R(s,t-1).$

Figure 2: S_R and S_B .

Theorem 2.5

$$R(s,t) \le {s+t \choose s}.$$

Proof. Follows from Lemma 2.4.

Theorem 2.6 (Erdős-Szekeres, 1935)

$$R(k) \le \binom{2k}{k} \approx \frac{1}{\sqrt{k}} 4^k.$$

Let's now try to find a lower bound. It is very difficult to show a good construction. Luckly, we are not going to do that.

Theorem 2.7 (Erdős, 1947)

$$\sqrt{2}^k \le R(k)$$

Proof. Let $n \leq \sqrt{2}^k$. Let's choose colors randomly. Let

$$\mathbb{P}(c(e) = R) = \frac{1}{2},$$

for every edge e in K_n , independently.

We want to show that

 $\mathbb{P}(\text{there is not a monochromatic copy of } K_k) > 0.$

Let X be the number of monochromactic copies of K_k in c. Then,

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{\substack{S \subset K_n \\ S \text{ is a copy of } K_k}} \mathbb{1}[S \text{ is monochromatic}]\right]$$

$$= \sum_{\substack{S \subset K_n \\ S \text{ is a copy of } K_k}} \mathbb{E}\left[\mathbb{1}[S \text{ is monochromatic}]\right]$$

$$= \sum_{\substack{S \subset K_n \\ S \text{ is a copy of } K_k}} \mathbb{P}(S \text{ is monochromatic}))$$

$$= \sum_{\substack{S \subset K_n \\ S \text{ is a copy of } K_k}} \left(\frac{1}{2}\right)^{\binom{k}{2}-1}$$

$$= \binom{k}{n} \left(\frac{1}{2}\right)^{\binom{k}{2}-1}$$

$$\leq 2\left(\frac{en}{k}\right)^k \left(\frac{1}{2}\right)^{\frac{k(k-1)}{2}}$$

$$\leq 2\left(\frac{e\sqrt{2}}{k}\right)^k$$

$$< 1, \text{ for } k \geq 5.$$

Therefore, since $\mathbb{E}[X] < 1$, we have $\mathbb{P}(X = 0) > 0$.

The bounds have not improved much since then

Theorem 2.8 (Conlon, 2009)

$$R(k) \le \frac{4^k}{k^{\sqrt{\log k}}}$$

3 Extremal Graph Theory

Definition 3.1

Let ex(n, H) be the maximum number of edges a graph $G \subset K_n$ can have such that there are no copies of H in G.

Theorem 3.2 (Mantel, 1907)

$$ex(n,K_3) = \left| \frac{n^2}{4} \right|.$$

Proof. The example is the bipartite graph with $\lfloor \frac{n}{2} \rfloor$ and $\lfloor \frac{n}{2} \rfloor$ vertices.

Let's prove by indution on n.

Now, suppose G does not have a triangle. Pick an edge uv. Let G' be the graph G deleting u and v. The subgraph G' also does not contain triangles, so $e(G') \ge \left\lfloor \frac{n^2}{4} \right\rfloor$.

Notice that cannot exist $w \in G'$ such that uw and vw are edges of G, because G does not have triangles. Therefore, there can be at most n-2 edges from u or v to vertices on G'. Including the edge uv, we conclude that

$$\begin{split} e(G) &\leq e(G') + n - 1 \\ &\leq \left\lfloor \frac{(n-2)^2}{4} \right\rfloor + n - 1 \\ &\leq \left\lfloor \frac{n^2}{4} \right\rfloor. \end{split}$$

Figure 3: Edge uv on a triangle-less graph.

Definition 3.3 (Turán's Graph)

The graph $T_r(n)$ consists of r sets with roughly n/r elements each (some rounded up, some rounded down).; we create an edge uv if, and only if, u and v are on different sets.

We'll denote by $t_r(n)$ the number of edges in $T_r(n)$.

Theorem 3.4 (Turán, 1941)

$$ex(n, K_{r+1}) = t_r(n) \approx \left(1 - \frac{1}{r}\right) \binom{n}{2}.$$

Proof. We'll use induction on n. For $n \leq r$, we're good.

Pick a maximal graph G that doesn't have a copy of K_{r+1} . Pick a copy of K_r , let's call it H. Define G' = G - H. Of course, G' has no copies of K_r ; thus $e(G') \leq t_r(n-r)$, by induction.

Futhermore, if $v \in G'$, there can be at most r-1 edges connecting v to some vertex in H.

Wrapping everything up, we have

$$e(G) \le e(G') + (n-r)(r-1) + \binom{r}{2}$$

$$\le t_r(n-r) + (n-r)(r-1) + \binom{r}{2}$$

$$\le t_r(n).$$

Figure 4: Turán's Graph

Theorem 3.5 (Erdős, 1935)

$$ex(n, C_4) \le \frac{n^{3/2}}{2}.$$

Proof. Let's count cherries! A cherry is a pair $(v, \{u, w\})$, in which vu and vw are edges of the graph.

Since there is no C_4 , there is at most one cherry for each pair $\{u, w\}$. This implies that:

$$\binom{n}{2} \ge \#(\text{cherries}) = \sum_{v \in G} \binom{d(v)}{2}$$
$$\ge n \binom{\frac{2e(G)}{n}}{2}.$$

Solving this quadractic inequation on e(G) yields to

$$e(g) \ge \frac{n^{3/2}}{2}.$$

Question 3.1

For which graphs we have

$$ex(n, H) = \Theta(n^2)$$
?

Proposition 3.6

For every non-bipartite graph H, we have

$$ex(n,H) \ge \frac{n^2}{4}.$$

Proof. Take G as the complete bipartite graph with n vertices. It has roughly $\frac{n^2}{4}$ vertices and it cannot contain a non-bipartite graph.

Theorem 3.7 (Kővári-Sós-Turán, 1954)

Let H be a bipartite graph. Then,

$$ex(n, H) = o(n^2).$$

Proof. Since H is bipartite, there is some $K_{s,t}$ such that $H \subset K_{s,t}$. Then,

$$ex(n, H) \leq ex(n, K_{s,t}).$$

Let's bound $ex(n, K_{s,t})$.

We'll count s-cherries: (v, S), in which S has size s and $vx \in E(G)$ for all $x \in S$.

There are at most t-1 s-cherries for each subset S with size s. This implies that:

$$(t-1)\binom{n}{s} \ge \#(\text{cherries}) = \sum_{v \in G} \binom{d(v)}{s}$$
$$\ge n\binom{\frac{2e(G)}{n}}{s} \ge \frac{e(G)^s}{s^s \cdot n^{s-1}}.$$

This implies that, for some constant C,

$$e(G) \le C \cdot n^{2 - \frac{1}{s}}$$

Question 3.2

For which H it holds that

$$ex(n, H) = O(n)$$
?