Artificial Intelligence

The knapsack problem and genetic algorithms

The knapsack problem

- Let us consider that we have N items
- Each item *i* is characterized by its weight w_i and its value v_i
- There is also a sack where the items can be put in
- The weight of the items put in the sack cannot exceed some value W
- The goal is to choose a subset of the *N* items to be put in the sack so that the total value of the items is maximized while the total weight does not exceeds *W*

Individuals representation

- Each individual in the genetic algorithm represents a possible solution to the problem
- So, each individual prescribes the subset of the items that should be put in the sack
- Each individual will be represented has a binary vector of N genes
- Each gene corresponds to an item
- A gene with value 1 means that the corresponding item is to be put in the sack; A gene with value 0 means that the corresponding item is not to be put in the sack

Fitness function, version 1

- For some individual *ind*:
 - Let w(ind) be the sum of the weight of the items to be put in the sack
 - Let v(ind) be the sum of the value of the items to be put in the sack
- fitness(ind) = v(ind) if $w(ind) \le W$; otherwise, fitness(ind) = 0

Fitness function, version 2

- For some individual *ind*:
 - Let w(ind) be the sum of the weight of the items to be put in the sack
 - Let v(ind) be the sum of the value of the items to be put in the sack
- fitness(ind) = v(ind) if $w(ind) \le W$ otherwise, fitness(ind) = v(ind) penalty, where $penalty = MAXVP \times (w(ind) W)$ and MAXVP is the maximum value for $\frac{v_{item}}{w_{item}}$ over all items

Example

■ Let us consider that we have a sack with maximum capacity of 15kg and the following 5 items:

- Item 1: (w = 12, v = 04)
- Item 2: (w = 02, v = 02)
- Item 3: (w = 01, v = 01)
- Item 4: (w = 04, v = 10)
- Item 5: (w = 01, v = 02)

Individual example 1

Genotype

Items 1, 3 and 5 will be put in the sack

$$w(ind) = 12 + 1 + 1 = 14$$

 $v(ind) = 4 + 1 + 2 = 7$

Fitness, version 1:

Since w(ind) < W (14 < 15), fitness(ind) = 7

Fitness, version 2:

Since w(ind) < W (14 < 15), fitness(ind) = 7

Individual example 2

Genotype

Items 1 and 4 will be put in the sack

$$w(ind) = 12 + 4 = 16$$

 $v(ind) = 4 + 10 = 14$

Fitness, version 1:

Since
$$w(ind) > W$$
 (16 > 15), $fitness(ind) = 0$

Fitness, version 2:

Since
$$w(ind) > W$$
 (16 > 15),
$$fitness(ind) = 14 - 2.5 \times (16 - 15) = 11.5$$

MAXVP computation:

Item 1:
$$3/12 = 0.33 \left(\frac{v_{item}}{w_{item}}\right)$$

Item 2: $2/2 = 1$
Item 3: $1/1 = 1$
Item 4: $10/4 = 2.5 \leftarrow \text{maximum}$
Item 5: $2/1 = 1$

Knapsack

Example of the first iteration of the genetic algorithm

- Population size: 6 individuals
- Fitness function, version 2
- Selection method: tournament with size 2
- Crossover operator: 1 cut, occurring with probability of 0.7
- Mutation operator probability: 0.1

create_initial_population(P(t))

```
t = 0
create_initial_population(P(t))
evaluate(P(t))
while stop condition not met
     P'(t) = select(P(t))
     P''(t) = apply\_genetic\_operators(P'(t))
     P(t + 1) = create_next_population(P(t), P''(t)))
     evaluate(P(t + 1))
     t = t + 1
return best individual found
```


create_initial_population(P(t))

- Let us consider that the population is randomly inicialized with the following individuals
 - 0101
 - 0010
 - 1000
 - 0110

evaluate(P(t))

```
t = 0
create_initial_population(P(t))
evaluate(P(t))
while stop condition not met
     P'(t) = select(P(t))
     P''(t) = apply\_genetic\_operators(P'(t))
     P(t + 1) = create_next_population(P(t), P''(t)))
     evaluate(P(t + 1))
     t = t + 1
return best individual found
```


evaluate(P(t))

- Using fitness function, version 2, we compute each individual's fitness:
 - $10101 \rightarrow fitness = 7$
 - $10010 \rightarrow fitness = 14 2.5 \times (16 15) = 11.5$
 - $11000 \rightarrow fitness = 6$
 - $10110 \rightarrow fitness = 15 2.5 \times (17 15) = 10$
 - \blacksquare 00100 \rightarrow fitness = 1
 - \blacksquare 00101 \rightarrow fitness = 3

P'(t) = select(P(t))

```
t = 0
create_initial_population(P(t))
evaluate(P(t))
while stop condition not met
     P'(t) = select(P(t))
     P''(t) = apply\_genetic\_operators(P'(t))
     P(t + 1) = create_next_population(P(t), P''(t)))
     evaluate(P(t + 1))
     t = t + 1
return best individual found
```


$$P'(t) = select(P(t))$$

- We now use the tournament method to build P'(T)
- We repeat the following procedure 6 times:
 - Randomly choose two individuals from P(t)
 - Choose the best among the two selected individuals and put it in P'(t)

P'(t) = select(P(t))

Application of the tournament method:
P'(t)

■ 10101 (7) and 00100 (1) chosen
$$\longrightarrow$$
 10101 \rightarrow $fitness = 7$

- 10010 (11,5) and 10110 (10) chosen \longrightarrow 10010 \rightarrow fitness = 11.5
- 00101 (3) and 10010 (11,5) chosen \longrightarrow 10010 \rightarrow fitness = 11.5
- 10110 (10) and 10101 (7) chosen \longrightarrow 10110 \rightarrow fitness = 10
- 00101 (3) and 00100 (1) chosen \longrightarrow 00101 \rightarrow fitness = 3
- 10110 (10) and 00101 (3) chosen \longrightarrow 10110 \rightarrow fitness = 10

$P''(t) = apply_genetic_operators(P'(t))$

```
t = 0
create_initial_population(P(t))
evaluate(P(t))
while stop condition not met
     P'(t) = select(P(t))
     P''(t) = apply\_genetic\_operators(P'(t))
     P(t + 1) = create_next_population(P(t), P''(t)))
     evaluate(P(t + 1))
     t = t + 1
return best individual found
```


$P''(t) = apply_genetic_operators(P'(t)) - crossover$

P'(t)		P''(t)
10101	 First, we generate a value in the interval [0, 1] Let's consider that 0.4 is generated 	10110
10010	3. Since 0.4 < 0.7, the two individuals should be crossedover (0.7 is the crossover probability)	10001
10010	4. Now, we must randomly select the crossover point5. Let's consider that the randomly generated	
10110	crossover point is between the 3 rd and the 4 th genes 6. The resulting individuals are 10110 and 10001	
00101		
10110		

$P''(t) = apply_genetic_operators(P'(t)) - crossover$

P'(t)		P''(t)
10101	 First, we generate a value in the interval [0, 1] Let's consider that 0.8 is generated 	10110
10010	3. Since 0.8 > 0.7, the two individuals should not be crossedover	10001
10010	 This means that the two individuals are copied to P''(t) with no modifications 	10010
10110		10110
00101		
10110		

$P''(t) = apply_genetic_operators(P'(t)) - crossover$

P'(t)		P"(t)
10101	 First, we generate a value in the interval [0, 1] Let's consider that 0.2 is generated 	10110
10010	3. Since 0.2 < 0.7, the two individuals should be crossedover	10001
10010	4. Now, we must randomly select the crossover point	10010
10110	 Let's consider that the generated crossover point is between the 2nd and the 3rd genes 	10110
00101	6. The resulting individuals are 10101 and 00101	00110
10110		10101

$P''(t) = apply_genetic_operators(P'(t)) - mutation$

P"(t) before mutation		P"(t) after mutation
10110	 For each gene of all individuals, we generate a value in the interval [0, 1] 	10110
10001	2. If the value is smaller than 0.1 (the mutation probability), we mutate the gene: if it is 0, it is	10011
10010	flipped to 1 and vice-versa 3. Let's consider that, after doing this for all	10010
10110	genes of all individuals, the mutated genes are the red ones on the population on the left	10110
00110	4. This results on the population on the right	00110
10101		00111

$P(t + 1) = create_next_population(P(t), P''(t)))$

```
t = 0
create_initial_population(P(t))
evaluate(P(t))
while stop condition not met
     P'(t) = select(P(t))
     P''(t) = apply\_genetic\_operators(P'(t))
     P(t + 1) = create_next_population(P(t), P''(t)))
     evaluate(P(t + 1))
     t = t + 1
return best individual found
```


$$P(t + 1) = create_next_population(P(t), P''(t)))$$

P"(t)		P(t + 1)
10110	 We just do P(t + 1) = P"(t) 	10110
10011	This is the so called generational	10011
10010	strategy, where the parents population is completely replaced by the descendants one	10010
10110		10110
00110		00110
00111		00111

evaluate(P(t + 1))

```
t = 0
create_initial_population(P(t))
evaluate(P(t))
while stop condition not met
     P'(t) = select(P(t))
     P''(t) = apply\_genetic\_operators(P'(t))
     P(t + 1) = create_next_population(P(t), P''(t)))
     evaluate(P(t + 1))
     t = t + 1
return best individual found
```


evaluate(P(t))

Using fitness function, version 2, we compute each individual's fitness:

■
$$10110 \rightarrow fitness = 15 - 2.5 \times (17 - 15) = 10$$

■
$$10011 \rightarrow fitness = 16 - 2.5 \times (17 - 15) = 11$$

■
$$10010 \rightarrow fitness = 14 - 2.5 \times (16 - 15) = 11.5$$

■
$$10110 \rightarrow fitness = 15 - 2.5 \times (17 - 15) = 10$$

- $00110 \rightarrow fitness = 11$
- $00111 \rightarrow fitness = 13$

while stop condition not met

```
t = 0
create_initial_population(P(t))
evaluate(P(t))
while stop condition not met
     P'(t) = select(P(t))
     P''(t) = apply genetic operators(P'(t))
     P(t + 1) = create_next_population(P(t), P''(t)))
     evaluate(P(t + 1))
     t = t + 1
return best individual found
```

- ■The algorithm would now proceed to the next iteration
- ■In our case, it would stop after a predefined number of iterations (generations)
- ■After stoping, the algorithm returns the best individual found during the entire process (not necessarily the best individual in the last generation)
- ■This means that we must do some bookeeping in order to save the best individual found so far (not shown in the algorithm)