

Stochastic processes in the real

Course > Week 6 > world

> Problem (1-2)

Problem (1-2)

Problem 1

0.0/1.0 point (graded)

Modify the code example introduced in the video to calculate the normalized logarithmic return $G_{\tau}(t)$ of Apple's stock for a time duration of $\tau=30,90,180$ days, using the historical data from January 1st, 1989 to December 31st, 2016. For this, you should call the computeReturn function three times, one for each value of τ (be sure to give each a different label within the Data Frame). Plot the (normalized) histogram of the returns on the same plot. Which of the following graphs (G11 - G15) is the closest to what you obtained? (use n=40 bins when plotting the histograms).

Problem 2

0.0/1.0 point (graded)

Use the code example introduced in the video to calculate the probability distribution function for the absolute normalized price returns $|G_{30}|$, $|G_{90}|$, and $|G_{180}|$ of the previous problem. Plot the functions on a log-log scale together with a Gaussian distribution for comparison. Which of the following graphs is the closest to what you obtained? (When generating the histogram, use n=20 bins for comparison).

