Kirchoff's Laws

Circuit Definitions

- Node any point where 2 or more circuit elements are connected together
 - Wires usually have negligible resistance
 - Each node has one voltage (w.r.t. ground)
- Branch a circuit element between two nodes
- Loop a collection of branches that form a closed path returning to the same node without going through any other nodes or branches twice

How many nodes, branches & loops?

Three nodes

• 5 Branches

Three Loops, if starting at node A

Kirchoff's Voltage Law (KVL)

- The algebraic sum of voltages around each loop is zero
 - Beginning with one node, add voltages across each branch in the loop (if you encounter a + sign first) and subtract voltages (if you encounter a – sign first)
- Σ voltage drops Σ voltage rises = 0
- Or Σ voltage drops = Σ voltage rises

Kirchoff's Voltage Law around 1st Loop

Assign current variables and directions

Use Ohm's law to assign voltages and polarities consistent with passive devices (current enters at the + side)

Kirchoff's Voltage Law around 1st Loop

Starting at node A, add the 1st voltage drop: $+I_1R_1$

Kirchoff's Voltage Law around 1st Loop

Add the voltage drop from B to C through R_2 : $+I_1R_1+I_2R_2$

Kirchoff's Voltage Law around 1st Loop

Subtract the voltage rise from C to A through Vs: $+I_1R_1 + I_2R_2 - Vs = 0$ Notice that the sign of each term matches the polarity encountered 1st

 When given a circuit with sources and resistors having fixed values, you can use Kirchoff's two laws and Ohm's law to determine all branch voltages and currents

• By Ohm's law: $V_{AB} = I \cdot 7\Omega$ and $V_{BC} = I \cdot 3\Omega$

C

- By KVL: $V_{AB} + V_{BC} 12 v = 0$
- Substituting: $I \cdot 7\Omega + I \cdot 3\Omega 12 v = 0$
- Solving: I = 1.2 AA

 TO B

 TO B

- Since $V_{AB} = I \cdot 7\Omega$ and $V_{BC} = I \cdot 3\Omega$
- And I = 1.2 A
- So V_{AB} = 8.4 v and V_{BC} = 3.6 v

Series Resistors

- KVL: $+I \cdot 10\Omega 12 \text{ v} = 0$, So I = 1.2 A
- From the viewpoint of the source, the 7 and 3 ohm resistors in series are equivalent to the 10 ohms

Series Resistors

 To the rest of the circuit, series resistors can be replaced by an equivalent resistance equal to the sum of all resistors

Series resistors (same current through all) Γ Σ Rseries

Kirchoff's Current Law (KCL)

- The algebraic sum of currents entering a node is zero
 - Add each branch current entering the node and subtract each branch current leaving the node
- Σ currents in Σ currents out = 0
- Or Σ currents in = Σ currents out

Kirchoff's Current Law at B

Assign current variables and directions

Add currents in, subtract currents out: $I_1 - I_2 - I_3 + I_5 = 0$

By KVL:
$$-I_1 \cdot 8\Omega + I_2 \cdot 4\Omega = 0$$

Solving: $I_2 = 2 \cdot I_1$
By KCL: $10A = I_1 + I_2$
Substituting: $10A = I_1 + 2 \cdot I_1 = 3 \cdot I_1$
So $I_1 = 3.33$ A and $I_2 = 6.67$ A
And $V_{AB} = 26.33$ volts

By Ohm's Law:
$$V_{AB} = 10 \text{ A} \cdot 2.667 \Omega$$

So $V_{AB} = 26.67 \text{ volts}$

Replacing two parallel resistors (8 and 4 Ω) by one equivalent one produces the same result from the viewpoint of the rest of the circuit.

Solve for the currents through each resistor And the voltages across each resistor

Using Ohm's law, add polarities and expressions for each resistor voltage

Write 1st Kirchoff's voltage law equation $-50 \text{ v} + \text{I}_1 \cdot 10\Omega + \text{I}_2 \cdot 8\Omega = 0$

Write 2nd Kirchoff's voltage law equation $-I_2 \cdot 8\Omega + I_3 \cdot 6\Omega + I_3 \cdot 4\Omega = 0$ or $I_2 = I_3 \cdot (6+4)/8 = 1.25 \cdot I_3$

Write Kirchoff's current law equation at A + $I_1 - I_2 - I_3 = 0$

- We now have 3 equations in 3 unknowns, so we can solve for the currents through each resistor, that are used to find the voltage across each resistor
- Since $I_1 I_2 I_3 = 0$, $I_1 = I_2 + I_3$
- Substituting into the 1st KVL equation

-50 v + (
$$I_2 + I_3$$
)·10Ω + I_2 ·8Ω = 0
or I_2 ·18 Ω + I_3 · 10 Ω = 50 volts

- But from the 2nd KVL equation, $I_2 = 1.25 \cdot I_3$
- Substituting into 1st KVL equation:

$$(1.25 \cdot I_3) \cdot 18 \Omega + I_3 \cdot 10 \Omega = 50 \text{ volts}$$

Or:
$$I_3 \cdot 22.5 \Omega + I_3 \cdot 10 \Omega = 50 \text{ volts}$$

Or:
$$I_3 \cdot 32.5 \Omega = 50 \text{ volts}$$

Or:
$$I_3 = 50 \text{ volts}/32.5 \Omega$$

Or:
$$I_3 = 1.538$$
 amps

- Since $I_3 = 1.538$ amps $I_2 = 1.25 \cdot I_3 = 1.923$ amps
- Since $I_1 = I_2 + I_3$, $I_1 = 3.461$ amps
- The voltages across the resistors:

```
I_1 \cdot 10\Omega = 34.61 volts

I_2 \cdot 8\Omega = 15.38 volts

I_3 \cdot 6\Omega = 9.23 volts

I_3 \cdot 4\Omega = 6.15 volts
```


Solve for the currents through each resistor And the voltages across each resistor using Series and parallel simplification.

The 6 and 4 ohm resistors are in series, so are combined into $6+4=10\Omega$

The 8 and 10 ohm resistors are in parallel, so are combined into $8\cdot10/(8+10) = 14.4 \Omega$

The 10 and 4.4 ohm resistors are in series, so are combined into $10+4=14.4\Omega$

Writing KVL, $I_1 \cdot 14.4\Omega - 50 \text{ v} = 0$ Or $I_1 = 50 \text{ v} / 14.4\Omega = 3.46 \text{ A}$

If $I_1 = 3.46$ A, then $I_1 \cdot 10 \Omega = 34.6$ v So the voltage across the $8 \Omega = 15.4$ v

If
$$I_2 \cdot 8 \Omega = 15.4 \text{ v}$$
, then $I_2 = 15.4/8 = 1.93 \text{ A}$
By KCL, $I_1 - I_2 - I_3 = 0$, so $I_3 = I_1 - I_2 = 1.53 \text{ A}$