

Aula 1 Organização de Computadores

Profa. Débora Matos

Objetivos a disciplina

- Caracterização de desempenho das arquiteturas.
 Organização de processadores: bloco operacional e bloco de controle.
- Organização serial e paralela (pipeline) da CPU.
- Estudo de sistema de memória (hierarquia da memória, memória cache e memória virtual).
- Métodos para aumento de desempenho: organização de pipelines, máquinas super-escalares.
- Estudos de caso de processadores contemporâneos. Ferramentas para análise e projeto de organizações.

(Cronos	grama	das	aula	S

Cronograma d	las au	las

Data

de potência.

mesmas.

conflitos.

PROVA 1

técnica de pipeline.

06/08

13/08

20/08

27/08

03/09

10/09

17/09

24/09

Assunto

Aula 1 – Apresentação da disciplina. Plano de Ensino. Revisão de conceitos. Introdução a

microprocessadores: revisão dos conceitos de organização. Avaliação de desempenho.

Aula 2 – Lei de Amdahl. Análise de Potência. Como calcular o CPI, o MIPS e o tempo de CPI e análise

Aula 3 – Entendendo as instruções do MIPS e as unidades funcionais requeridas para execução das

Aula 4 – Caminho de dados do MIPS, unidades funcionais, implementação de ciclo único e multiciclo.

Aula 5 – Implementação do MIPS com pipeline. Entendendo a melhora da performance com a

Aula 6 – Tipos de conflitos de pipeline: Hazards de dados, harzards de controle. Soluções para os

Aula 7 – Hazards de controle. Implementação de previsão dinâmica de desvios. Implementação de

stalls, forwarding e exceções. Definição do trabalho a ser desenvolvido em VHDL.

Cronograma d	las aulas
Aula 8 – Hierarquia de memória, tip	pos de memória, tecnologia utilizada, capacidade de

Aula 9 – Hierarquia de memória, memória cache, tipos de mapeamentos da memória

principal para a cache, técnicas de substituição de blocos, exercícios com memória cache.

Aula 14 - Entrega das notas das provas. Resolução da prova. Entrega por parte dos alunos

Aula 10 – Correção dos exercícios sobre hierarquia de memória, cálculo do tamanho da

armazenamento, velocidade, memória cache.

05/11 Aula 12 – Processadores Paralelos, superpipeline, GPU

da parte 1 do trabalho, orientação quanto a parte 2 do trabalho.

03/12 Aula 15 - Apresentação da parte 2 do trabalho. Entrega dos relatórios.

12/11 | Aula 13 - Processadores Superescalares e VLIW

19/11 PROVA 2

01/10

08/10

22/10

26/11

cache, cálculo de CPI.

29/10 Aula 11 – Memória Virtual

10/12 PROVA DE RECUPERAÇÃO

17/12 Divulgação dos conceitos finais.

Avaliações

- PROVA 1 (P1)
- PROVA 2 (P2)
- Trabalhos (T) = Trabalhos de desenvolvimento de organizações de computadores em VHDL

• Nota final = (P1 + P2 + T)/3

Avaliações

- No caso do aluno não atingir a média mínima, será possível a realização da recuperação para substituir a nota de uma das áreas com prova;
- A recuperação será de todo o conteúdo e não substitui a nota T.
- A nota obtida na recuperação substituirá uma das 2 notas com prova e a média será recalculada.
- O aluno só pode realizar a prova se tiver média maior ou igual a 4, considerando todas as avaliações.

Bibliografia

Bibliografia Básica

- PATTERSON, David A; HENNESSY, John L. Organização e Projeto de Computadores: a Interface Hardware/Software. 3. Ed. Rio de Janeiro: Elsevier, 2005. xvii, 484 p.
- STALLINGS, W. Arquitetura e organização de computadores. 5° ed., São Paulo, 2010.

Bibliografia Complementar

- TANENBAUM, Andrew, Organização estruturada de computadores, 4º ed.
- Hennessy, John. L.; Patterson, David A. Arquitetura de Computadores: Uma abordagem quantitativa, 4a Edição, 2007. Campus.

Revisão de alguns conceitos

Seguindo pedidos...

Teremos na disciplina

ORGJogo

Regras:

- Formar equipes (4 a 5 alunos);
- Questões relacionadas ao conteúdo da disciplina ocorrerão ao longo do semestre;
- A equipe vencedora, ao final do semestre, terá
 1 ponto a mais na média;
- A equipe que ficar em segundo lugar, ao final do semestre, terá 0,5 ponto a mais na média;

ORGjogo

Regras:

- Quando a questão for colocada, a equipe deve se reunir para formalizar a resposta.
- Será dado em torno de 5 minutos para entregar a resposta escrita;
- Se a equipe responder corretamente, 1 ponto é computado;
- Se a equipe responder errado ou não entregar, nenhum ponto é computado.

ORGjog

Regras:

0

- As respostas serão lidas e primeiramente avaliadas pelas equipes;
- Se parte da resposta não estiver 100% correta, a equipe que respondeu ganha somente 0,5;
- Uma outra equipe pode corrigir a resposta de uma equipe e se corrigir corretamente, esta equipe ganha 0,5 a mais;

Pergunta, pergunta, pergunta???

Arquitetura X Organização

• Arquitetura:

refere-se aos atributos de um sistema que são visíveis para o programador, ou seja, aos atributos que tem impacto direto sobre a execução lógica de um programa.

Exemplos:

- ✓ conjunto de instruções,
- ✓ número de bits utilizados para representar os tipos de dados,
- ✓ mecanismos de entrada e saída
- ✓ as técnicas de endereçamento à memória.

Arquitetura X Organização

 Organização: refere-se as unidades operacionais e suas interconexões que implementam as especificações da arquitetura.

Exemplos:

✓ Detalhes de hardware transparentes aos programador: sinais de controle, periféricos, tecnologia de memória utilizada, número de ULAS, interconexões entre os componentes, etc.

Arquitetura X Organização

 Definir se um computador deve ou não ter uma instrução de multiplicação é uma decisão do projeto de sua arquitetura.

 Definir se essa instrução será implementada por uma unidade especial de multiplicação ou por um mecanismo que utiliza repetidamente sua unidade de soma é uma decisão do projeto da sua organização.

Componentes de microcomputador

Microprocessadores: um breve histórico

Quais são alguns exemplos de fabricantes de processadores:

Microprocessadores: um breve histórico

- Microprocessadores vem sendo desenvolvidos e produzidos por um grande número de fabricantes:
 - Intel, AMD, Motorola, Texas, IBM e várias outros
 - Várias empresas já foram participantes ativos no mercado de microprocessadores (como Zilog) e desapareceram, perderam importância ou foram adquiridas pelos concorrentes

microprocessador ARM

Lei de Moore

A lei de Moore diz que a quantidade de transistores em um circuito integrado dobra a cada 18 meses.

Lei de Moore

- Um processador é um circuito integrado composto por milhões de transistores (ex. core i7 possui o número de transistores próximo a 1 bilhão);
- Estes transistores são agrupados para desempenharem determinadas funções (cálculos aritméticos, registro, condições lógicas...);

Lei de Moore

 Sustentar a taxa de progresso definida pela lei de Moore durante mais de 40 anos exigiu incríveis inovações tecnológicas nas técnicas de fabricação.

Memória DRAM

Capacidade por chip de DRAM ao longo do tempo

Microprocessadores: um breve histórico

Tem evoluído, tornando-se menor e mais baratos

(http://www.computerhistory.org/semiconductor/)

1950s

Silicon Transistor

1 Transistor 1960s

Quad Gate

16 Transistors 1970s

8-bit Microprocessor

4500 Transistors 1980s

32-bit Microprocessor

275,000 Transistors 1990s

32-bit Microprocessor

3,100,000 Transistors 2000s

64-bit Microprocessor

592,000,000 Transistors

microprocessadores de 8 a 64 bits

8 a 64 indica o número de bits da palavra de dados. Quando maior o número de bits, maior a capacidade de representação de inteiros.

Microprocessadores ao longo dos anos

Fonte: Data Processing in ExaScale-ClassComputer Systems (C. Moore, April 2011).

Microprocessadores ao longo dos anos

 Solução: substituição do aumento da frequência pelo aumento do número de cores.

Fonte: Keynote presentation (L. Benini, RSP 2010).

• MPSoC (Multiprocessor Sytem on Chip): sistema composto por múltiplos cores (possivelmente heterogêneos), hierarquia de memória e componentes de entrada/saída (I/O) em um CI (Circuito Integrado).

Microprocessadores ao longo dos anos Para entender a evolução...

Fonte: Presentation CS252 (Prof. Kurt Keutzer, 2000)

Quais são alguns dos avanços que temos visto na arquitetura dos computadores?

- Aumento da capacidade de armazenamento
- Aumento da frequência de operação do processador
- Aumento do número de núcleos de processamento
- Aumento do paralelismo das organizações de computadores
- Processadores mais tolerante à falhas

Qual o objetivo desses avanços?

- Acelerar as aplicações, aplicativos, softwares;
- Prover maior capacidade de armazenamento;
- Possibilitar o uso de mais recursos;
- Reduzir o consumo de energia;
- Aumentar a eficiência energética;
- Reduzir o número de falhas;

O que afeta o desempenho de um computador?

- Requisitos de HW e SW
 - ✓ Algoritmos dos programas
 - ✓ Linguagem de programação e compiladores
 - ✓ Sistema operacional
 - ✓ O projeto do processador
 - ✓ Sistema de entrada e saída, dispositivos

HW x SW

- •O hardware de um computador só pode executar instruções de baixo nível extremamente simples.
- De uma aplicação complexa até as instruções simples, envolve várias camadas de SW que interpretam ou traduzem operações de alto nível em instruções simples de computador.

HW x SW

Exemplos de SW de sistema:

- Sistema Operacional
- Compilador
- Montadores
- ✓ Interpretador
- Drivers

O que faz o Sistema Operacional?

Gerencia os recursos do computador:

- manipula operações básicas de entrada e saída
- Aloca armazenamento e memória
- Possibilita e controla o compartilhamento do processador entre aplicações que rodam simultaneamente.

O que fazem os compiladores?

Realizam a tradução de um programa descrito em linguagem de programação de alto nível em linguagem de máquina.

Função dos compiladores e montadores

Função dos compiladores e montadores

Programa em linguagem de alto nível (em C)

Compilador

Programa em linguagem assembly (para MIPS)

Assembler/ Montador

Programa em linguagem de máquina (para MIPS)

```
swap(int v[], int k)
{ int temp;
     temp = v[k];
     v[k] = v[k + 1];
     v[k + 1] = temp;
}
```

```
swap: multi $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31
```

Organização de um Computador

- Modelo Von Neumann (1945)
- Conceito de programa armazenado
- Separação da Unidade Aritmética e de Controle
- Utilização de barramentos e registradores
- Hardware de entrada e saída (I/O)

Modelo Von Neumann

Modelo Von Neumann

Memória

A memória é organizada em posições:

Cada elemento da memória é armazenado em um endereço

Memória

- A memória de um sistema computacional tem a função de armazenar dados e instruções:
 - Organizada em posições;
 - Podem ser visualizadas como elementos de uma matriz;
 - Cada elemento tem um endereço.
- Então uma memória que tenha x posições:
 - Cada posição pode ser referenciada diretamente de acordo com a sua colocação na sequência;
 - Se uma memória tem 4096 posições existem posições de 0, ..., 4095;
 - Instruções são executadas em uma sequência determinada pela sua posição de memória

Memória

- Memória é formada por elementos armazenadores de informações;
- É dividida em palavras;
- Cada palavra é identificada unicamente por um endereço;
- Conteúdo armazenado nas palavras da memória tanto pode representar dados como instruções;

Princípios básicos

- O endereço representa uma posição particular na memória e pode ser formado de várias maneiras;
- A Unidade Lógica e Aritmética (ULA) é responsável por realizar ações indicadas nas instruções, executando operações numéricas (aritméticas) e não numéricas (lógica);
 - Preparação de informações de desvios do programa;
- O controle do programa e a ULA formam a unidade central de processamento, ou

Busca-Decodificação-Execução de instruções

> BUSCA:

- PC (program counter) contador de instruções contém sempre a posição da próxima instrução a ser executada. A instrução apontada pelo PC é trazida da memória para uma área de armazenamento chamada registrador de instruções.
- DECODIFICAÇÃO: Sinais de controle são gerados de acordo com a informação presente no campo de operação.
- EXECUÇÃO: A execução da instrução se dá ao final da operação determinada após a decodificação. Ao término da execução da instrução, o ciclo é repetido.

Busca-Decodificação-Execução de instruções

BUSCA:

- Copia o apontador de programa (PC) para o registrador de programa (REM);
- Lê a instrução da memória;
- Copia o registrador de dados da memória (RDM) para o registrador de instruções (RI);
- Atualiza o apontador do programa (PC);

Busca-Decodificação-Execução de instruções

- DECODIFICAÇÃO: Normalmente realizada por lógica combinacional.
- EXECUÇÃO: Exemplos de operações:
 - Cálculo do endereço de operandos;
 - Busca de operandos na memória;
 - Seleção de operação da ULA;
 - Carga de registradores;
 - Escrita de operandos na memória;
 - Atualização do PC para desvios.

O controle do ciclo busca-decodificação-execução é feito pela unidade de controle.

Elementos funcionais básicos - unidade operacional

- Unidade Operacional:
 - Executa as transformações sobre dados, especificadas pelas instruções do computador;
 - Componentes: ULA, registradores de uso geral e específico, barramentos.
 - Cada organização possui:
 - número e tamanho de registradores variados em cada organização.
 - quantidade e tipo de operações variadas que a ULA realiza.

Elementos funcionais básicos – unidade operacional

- Unidade Lógica e Aritmética (ULA)
 - Realiza operações lógicas e aritméticas;
 - Exemplo: Soma de dois operandos;
 - Negação de um operando;
 - Inversão de um operando;
 - Lógica de operando;
 - Rotação de um operando para a direita ou esquerda.
- As operações da ULA geralmente são bem simples;
- Funções complexas são realizadas pela ativação sequêncial das várias operações básicas. Exemplo: multiplicação.

Elementos funcionais básicos - unidade operacional

- A ULA fornece o resultado das operações e também algumas indicações sobre a operação realizada;
- Essas indicações são chamadas de códigos de condição;
- Exemplos:
 - Overflow
 - Sinal
 - Carry
 - Zero

Para que são utilizados os códigos de condição?

Elementos funcionais básicos - unidade operacional

Acumulador

- É um registrador e tem por função armazenar um operando e/ou um resultado fornecido pela ULA;
- Em computadores muito simples só são encontrados um acumulador;
- É ativado de acordo com o sinal de carga (load);
 - Cada novo sinal faz perder o valor antigo

Elementos funcionais básicos – unidade de controle

- Serve para fornecer sinais de controle:
 - Gerenciar o fluxo interno de dados e o instante preciso em que ocorrem as transferências entre uma unidade e outra
- Cada unidade de controle comanda uma micro operação:
 - Responsável pela realização de uma carga em um registrador;
 - Seleção de dados para entrada;
 - Ativação de memória;
 - Seleção de uma operação da ULA.

Elementos funcionais básicos – unidade de controle

Lógica combinacional:

os sinais de saída são função exclusiva dos sinais de entrada.

• Lógica sequencial:

- os sinais de saída são função dos sinais de entrada e do estado anterior. A unidade de controle utiliza máquinas de Estado Finitas (FSM).
- As máquinas de estados são circuitos sequenciais que utilizam flip-flops com sinal de clock para que as informações armazenadas possam ser atualizadas sincronamente a intervalos regulares (a cada pulso de clock).
- Existem várias formas de implementar a lógica sequencial. Porém duas são usuais:
 - Organização convencional
 - Organização microprogramada (por descrição de hardware).

Elementos funcionais básicos - registradores especiais

- Existem no computador alguns registradores com funções especiais. Depende da arquitetura e organização de cada máquina;
- Tipos:
 - Apontador de instruções (PC)
 - Registrador de instruções (IR)
 - Registrador de estado (RST)

Elementos funcionais básicos - registradores especiais

- Apontador de Instruções (PC)
 - Tem como função manter atualizado o endereço de memória da próxima instrução;
- Registrador de instrução (IR)
 - Armazena a instrução que está sendo executada.
 De acordo com o conteúdo, a unidade de controle determina quais sinais deve ser gerados;
- Registrador de estado (RST)
 - Armazena códigos de condição gerados pela unidade lógica e aritmética;

Organização do Neander

Organização do Neander

Instruções do Neander:

Instrução STA

Busca: $RI \leftarrow MEM(PC)$

 $PC \leftarrow PC + 1$

Execução: end \leftarrow MEM(PC)

 $PC \leftarrow PC + 1$

 $MEM(end) \leftarrow AC$

Instrução LDA

Busca: $RI \leftarrow MEM(PC)$

 $PC \leftarrow PC + 1$

Execução: end \leftarrow MEM(PC)

 $PC \leftarrow PC + 1$

AC ← MEM(end); atualiza N e Z

Instrução ADD

Busca: $RI \leftarrow MEM(PC)$

 $PC \leftarrow PC + 1$

Execução: end \leftarrow MEM(PC)

 $PC \leftarrow PC + 1$

 $AC \leftarrow AC + MEM(end)$; atualiza N e Z

Organização MIPS

