МИНОБРНАУКИ РОССИИ ФГБОУ ВО «МИРЭА –

Российский технологический университет»

ИПТиИП

Кафедра ВМиП

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 00

Дисциплина: Математический анализ Для всех направлений подготовки Форма обучения: очная Курс 2 Семестр 3 Утверждено на заседании кафедры (протокол № 1 от 25.08.24г.) Заведующий кафедрой А.А.Кытманов 2024-25 учебный год

Задание. Исследовать числовой ряд на сходимость

1.
$$\sum_{n=1}^{\infty} \frac{n!}{5^{n+1}}$$

$$2. \qquad \sum_{n=1}^{\infty} \frac{n^3 + 2}{3n^5 + 5}$$

3.
$$\sum_{n=1}^{\infty} \left(\frac{3n+4}{5n-3} \right)^{2n+1}$$

Задание 4. Исследовать знакочередующийся ряд на сходимость

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{3n^5 + 8}$$

Задание 5. Найти область сходимости данного ряда $\sum_{n=1}^{\infty} \frac{4^n \cdot (x-4)^n}{\sqrt{n^4+4}}$

Задание 6. Разложить в ряд Тейлора функцию $f(x) = x^2 \cdot e^{3x-5}$ по степеням x и указать область сходимости полученного ряда.

Задание 7. Вычислить сумму ряда, используя, разложение элементарных функций в ряд Тейлора:

$$\sum_{n=2}^{\infty} \frac{2^n}{n!} = \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \frac{2^5}{5!} + \frac{2^6}{6!} + \dots + \frac{2^n}{n!} + \dots$$

Задание 8. Разложить периодическую функцию f(x) в ряд Фурье:

$$f(x) = \begin{cases} -2, & -\pi < x \le 0 \\ 2, & 0 < x \le \pi \end{cases}$$

Задание 9. Прочитайте текст и установите соответствие.

Соотнесите функцию f(x) со значением суммы ряда Фурье S(x):

	функция $f(x)$		S(x) сумма ряда Фурье
1	$f(x) = \begin{cases} 2, -\pi < x \le 0 \\ -2, & 0 < x \le \pi \end{cases}$	A	$S(\pi) = -\frac{1}{2}$
2	$f(x) = - x , x \in (-\pi; \pi]$	Б	$S(\pi)=0$
3	$f(x) = \begin{cases} -2, -\pi < x \le 0 \\ 1, \ 0 < x \le \pi \end{cases}$	В	$S(\pi) = -\pi$
4	$f(x) = \begin{cases} 3, -\pi < x \le 0 \\ -2, \ 0 < x \le \pi \end{cases}$	Γ	$S(\pi) = \frac{1}{2}$