CSE 301 Combinatorial Optimization

Single Source Shortest Path
Bellman Ford Algorithm
DAG

Negative-Weight Edges

- s → a: only one path
 - $\delta(s, a) = w(s, a) = 3$
- $s \rightarrow b$: only one path $\delta(s, b) = w(s, a) + w(a, b) = -1$
- s → c: infinitely many paths
 ⟨s, c⟩, ⟨s, c, d, c⟩, ⟨s, c, d, c, d, c⟩

cycle has positive weight (6 - 3 = 3)

 $\langle s, c \rangle$ is shortest path with weight $\delta(s, b) = w(s, c) = 5$

What if we have negativeweight edges?

Negative-Weight Edges

- s → e: infinitely many paths:
 - $-\langle s, e \rangle, \langle s, e, f, e \rangle, \langle s, e, f, e, f, e \rangle$
 - cycle (e, f, e) has negative weight:

$$3 + (-6) = -3$$

- can find paths from s to e with arbitrarily large negative weights
- δ(s, e) = ∞ ⇒ no shortest path exists between *s* and e
- Similarly: $\delta(s, f) = -\infty$, $\delta(s, g) = -\infty$

$$\delta(s, h) = \delta(s, i) = \delta(s, j) = \infty$$

Negative-Weight Edges

 Negative-weight edges may form negative-weight cycles

defined

- Keep going around the cycle, and get $w(s, v) = -\infty$ for all v on the cycle

Cycles

- Can shortest paths contain cycles?
- Negative-weight cycles No!
- Positive-weight cycles: No!
 - By removing the cycle we can get a shorter path
- We will assume that when we are finding shortest paths, the paths will have no cycles

Shortest-Path Representation

For each vertex $v \in V$:

• $d[v] = \delta(s, v)$: a **shortest-path estimate**

- Initially, d[v]=∞
- Reduces as algorithms progress
- π[v] = predecessor of v on a shortest
 path from s
 - If no predecessor, $\pi[v] = NIL$
 - $-\pi$ induces a tree—shortest-path tree

Initialization

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- 1. for each $v \in V$
- 2. do d[v] $\leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

 All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

Relaxation

 Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If d[v] > d[u] + w(u, v)we can improve the shortest path to v \Rightarrow update d[v] and $\pi[v]$

RELAX(u, v, w)

```
    if d[v] > d[u] + w(u, v)
    then d[v] ← d[u] + w(u, v)
    π[v] ← u
```

- All the single-source shortest-paths algorithms
 - start by calling INIT-SINGLE-SOURCE
 - then relax edges
- The algorithms differ in the order and how many times they relax each edge

Bellman-Ford Algorithm

- Single-source shortest paths problem
 - Computes d[v] and π [v] for all $v \in V$
- Allows negative edge weights
- Returns:
 - TRUE if no negative-weight cycles are reachable from the source s
 - FALSE otherwise ⇒ no solution exists
- Idea:
 - Traverse all the edges |V 1| times, every time performing a relaxation step of each edge

BELLMAN-FORD(V, E, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s)
- 2. **for** $i \leftarrow 1$ to |V| 1
- 3. do for each edge $(u, v) \in E$
- 4. **do** RELAX(u, v, w)
- 5. for each edge $(u, v) \in E$
- 6. **do if** d[v] > d[u] + w(u, v)
- 7. then return FALSE
- 8. return TRUE

E: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Example (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Detecting Negative Cycles

- for each edge (u, v) ∈ E
- **do if** d[v] > d[u] + w(u, v)
- then return FALSE
- return TRUE

Look at edge (s, b):

$$d[b] = -1$$

 $d[s] + w(s, b) = -4$

$$\Rightarrow$$
 d[b] > d[s] + w(s, b)

BELLMAN-FORD(V, E, w, s)

```
INITIALIZE-SINGLE-SOURCE(V, s) \leftarrow \Theta(V)
2. for i \leftarrow 1 to |V| - 1
        do for each edge (u, v) ∈ E
                do RELAX(u, v, w)
4.
   for each edge (u, v) \in E
                                             ← O(E)
        do if d[v] > d[u] + w(u, v)
6.
             then return FALSE
    return TRUE
```

Running time: O(VE)

Triangle inequality

For all
$$(u, v) \in E$$
, we have:
 $\delta(s, v) \le \delta(s, u) + w(u, v)$

If u is on the shortest path to v we have the equality sign

Upper-bound property

We always have $d[v] \ge \delta(s, v)$ for all v.

Once $d[v] = \delta(s, v)$, it never changes.

The estimate never goes up – relaxation only lowers the estimate

No-path property

If there is no path from s to v then $d[v] = \infty$ always.

 $- \delta(s, h) = ∞$ and d[h] ≥ δ(s, h) \Rightarrow d[h] = ∞

Convergence property

If $s \sim u \rightarrow v$ is a shortest path, and if $d[u] = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $d[v] = \delta(s, v)$ at all times afterward.

- If $d[v] > \delta(s, v) \Rightarrow$ after relaxation: d[v] = d[u] + w(u, v) d[v] = 5 + 2 = 7
- Otherwise, the value remains unchanged, because it must have been the shortest path value

Path relaxation property

Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from $s = v_0$ to v_k . If we relax, in order, (v_0, v_1) , (v_1, v_2) , . . . , (v_{k-1}, v_k) , even intermixed with other relaxations, then $d[v_k] = \delta(s, v_k)$.

Single-Source Shortest Paths in DAGs

Single-Source Shortest Paths in DAGs

- Given a weighted DAG: G = (V, E)
 - solve the shortest path problem
- Idea:
 - Topologically sort the vertices of the graph
 - Relax the edges according to the order given by the topological sort
 - for each vertex, we relax each edge that starts from that vertex
- Are shortest-paths well defined in a DAG?
 - Yes, (negative-weight) cycles cannot exist

DAG-SHORTEST-PATHS(G, w, s)

```
    topologically sort the vertices of G ← Θ(V+E)
    INITIALIZE-SINGLE-SOURCE(V, s) ← Θ(V)
    for each vertex u, taken in topologically Θ(V) sorted order
    do for each vertex v ∈ Adj[u]
    do RELAX(u, v, w)
```

Running time: $\Theta(V+E)$

Example

Example (cont.)

Example (cont.)

Readings

- Chapter 24
- Exercise
 - 24.1-6 Find negative cycle
 - 24.2-4 Total Number of paths in a DAG
- Difficult Problems (Solve these if you want):
 - 24.3-6 modify dijkstra
 - 24-2 nesting boxes
 - 24-3 Arbitrage
 - 24.6 Bitonic Shortest path