Cheatsheet - Automata Theory

Fabio Lama - fabio.lama@pm.me

1. Basics of (finite) Automata

An **alphabet**, Σ , is a non-empty set of symbols.

$$\Sigma = \{0,1\} \ \ \mbox{binary alphabet}$$

$$\Sigma = \{a,b,...,z\} \ \ \mbox{collection of lowercase letters}$$

A **string** or word is a finite sequence of letters drawn from an alphabet. **Empty strings**, ε , are strings with zero occurrences of letters. Empty strings can be from any alphabet.

The **length** of a string x is denoted as |x|:

$$x = \text{'hello'}$$
 $|x| = 5$

Other string related notations:

- The set of **all strings** composed from the letters in Σ is denoted by Σ^* .
- The set of all non-empty strings composed from letters in Σ is denoted by Σ^+
- The set of all strings of length k composed from letters in Σ is denoted by Σ^k .

$$\begin{split} \Sigma &= \{0,1\} \\ \Sigma^* &= \{\varepsilon,0,1,00,01,10,11,\ldots\} \\ \Sigma^+ &= \{0,1,00,01,10,11,\ldots\} \\ \Sigma^2 &= \{00,01,10,11\} \end{split}$$

Note that the size of Σ^k is denoted as $|\Sigma|^k$.

2. Automaton

A **finite automaton** is a simple mathematical machine; it is a representation of how computations are performed with *limited memory* space. It is a model of computation, which consists of a set of states that are connected by transitions. It has an input and it has an output.

An automaton M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- ullet Q is a finite set called the **states**.
- Σ is a finite set called **the alphabet**.
- $\delta: Q \times E \to Q$ is the **transition function**.
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of **accepted states**.

Example

- $Q = \{A, B, C, D\}$
- $\Sigma = \{0, 1\}$ $q_0 = A$ $F = \{D\}$ $\delta = ?$

δ	0	1
Α	С	В
В	D	С
С	D	Α
*D	Α	С

Figure 1. Note: Bottom right is the transition table. D is the only accepted state.

For example, based on the automaton in the picture above:

- Input 0010 results in state D; the input is **accepted** ($D \in F$).
- Input 0011 results in state A; the input is **rejected** ($A \notin F$).

2.1. Language of Automaton

The set of all strings accepted by an automaton is called the **language** of that automaton. If M is an automaton on alphabet Σ , then $\mathscr{L}(M)$ is the language of M:

$$\mathscr{L}(M) = \{x \in \Sigma^* \mid M \text{ accepts } x\}$$

Last updated 2022-12-03 18:42:34 UTC