Fabio Nishida

Introduction
Motivation
This paper
Preview of findings
Inst. Backgroun
Data and
Variables
Method
Results
Final Remarks

Impacts of natural disasters on local public finance Evidence from droughts and floods in Brazil (2000–2019)

Fabio Nishida¹ Sergio Sakurai¹ Edson Severnini²

46th Meeting of the Brazilian Econometric Society

 1 School of Economics, Administration and Accounting at Ribeirao Preto, University of Sao Paulo 2 Schiller Institute for Integrated Science and Society at Boston College

December, 2024

Fabio Nishida

Motivation
This paper

This paper
Preview of findings
Inst. Backgroun
Data and
Variables
Method
Data backgroun

Method Results Final Remarks Appendices References

Motivation

- Natural disasters can adversely affect the local economy by generating rehabilitation costs and decreasing tax revenues. (Jerch et al., 2023).
- Higher-level governments typically provide assistance through disaster and non-disaster-related transfers (Deryugina, 2017).

Fahio Nishida

Motivation

Motivation

- Natural disasters can adversely affect the local economy by generating rehabilitation costs and decreasing tax revenues. (Jerch et al., 2023).
- Higher-level governments typically provide assistance through disaster and non-disaster-related transfers (Dervugina, 2017).
- Unclear if local public finance will improve or deteriorate and whether budget allocations will prioritize hazard-prevention measures:
 - Natural hazards can have different impacts: droughts build effects gradually, whereas floods inflict immediate damage.
 - The amount of aid may be influenced by political interests (Garrett and Sobel, 2002) and media attention (Eisensee and Stromberg, 2007).
 - Local governments might exhibit moral hazard behavior by relying on future expected grants rather than investing in preventive measures (Goodspeed and Haughwout, 2012; Wildasin, 2008).

Fabio Nishida

Introduction Motivation

This paper

Inst. Backgro

Inst. Background
Data and
Variables
Method
Results
Final Remarks
Appendices

This paper

Examine the impact of extreme weather events on local public finance

- How local administration finance unexpected disaster expenses?
- Do governments restrict mitigation policies spending when they expect aid?
- How similar are the impacts of droughts and floods?

Fabio Nishida

Introduction Motivation

This paper

Preview of findings Inst. Background Data and Variables Method Results Final Remarks

This paper

Examine the impact of extreme weather events on local public finance

- How local administration finance unexpected disaster expenses?
- Do governments restrict mitigation policies spending when they expect aid?
- How similar are the impacts of droughts and floods?

Main Data

- Standard Precipitation and Evapotranspiration Index (SPEI) 1981-2022 (Gebrechorkos et al., 2023)
- Local public finance 2000-2023 (Secretariat of National Treasury STN)

Fabio Nishida

Introduction Motivation

This paper

Preview of findings Inst. Background Data and Variables Method Results Final Remarks Appendices

This paper

Examine the impact of extreme weather events on local public finance

- How local administration finance unexpected disaster expenses?
- Do governments restrict mitigation policies spending when they expect aid?
- How similar are the impacts of droughts and floods?

Main Data

- Standard Precipitation and Evapotranspiration Index (SPEI) 1981-2022 (Gebrechorkos et al., 2023)
- Local public finance 2000-2023 (Secretariat of National Treasury STN)

Method

 Difference-in-differences with matching method, which allows treatments with switching on/off behavior (Imai et al., 2023).

Fabio Nishida

Introduction Motivation This paper

Preview of findings

Data and Variables Method Results Final Remarks Appendices

Preview of findings

- **1 Droughts**: Municipalities receive less transfers from higher-level governments, which affects their fiscal balance and the provision of public services. This situation leads them to take on more borrowing. However, they allocate part of their resources in agricultural and environmental initiatives.
- Ploods: Municipalities receive more transfers and do not face financial strain. Nevertheless, these administrations do not allocate increased resources for environmental and urban development.

Fabio Nishida

Introductio Motivation This paper

Preview of findings

Data and Variables Method Results Final Remarks Appendices References

Preview of findings

- **1 Droughts**: Municipalities receive less transfers from higher-level governments, which affects their fiscal balance and the provision of public services. This situation leads them to take on more borrowing. However, they allocate part of their resources in agricultural and environmental initiatives.
- Ploods: Municipalities receive more transfers and do not face financial strain. Nevertheless, these administrations do not allocate increased resources for environmental and urban development.

We contribute by:

- Comparing the impact of droughts and floods on public finance, while most of the other works focus on hurricanes or floods.
- Showing evidence of moral hazard behavior due to reliance on vertical transfers in decentralized states.

Fabio Nishida

Motivation
This paper
Preview of findings
Inst. Background
Data and
Variables

Data and Variables Method Results Final Remarks Appendices References

Institutional Background

Civil Defense in Brazil

- In 1988, the National System for Civil Defense was established.
- The disaster report and recognition is a technical and political process.

▶ 2012 Recognition Criteria

- Politically important states may receive greater aids (Garrett and Sobel, 2003)
- Political alignment increases the probability to recognize decreed emergencies (Cavalcanti, 2018; Larreguy and Monteiro, 2014).
- 2007 Guide for Disasters: "(the decree) should not be made with the sole objective of resorting to the State or the Federal Government's coffers"

Fabio Nishida

Introduction Motivation

Preview of finding

Inst. Backgrou

Data and Variables Method

Results
Final Remarks
Appendices

Treatment variables

Standard Precipitation and Evapotranspiration Index (SPEI)

- To address potential endogeneity from political interests, we used the SPEI, which is commonly used to identify droughts.
- 1981-2022 dataset by Gebrechorkos et al. (2023).
- SPEI is obtained by transforming water balance into standard deviations.

water balance = precipitation - potential evapotranspiration (PET)

SPEI	Categories
≥ 1.83	extremely wet
1.43 to 1.82	very wet
1.0 to 1.42	moderately wet
-0.83 to 0.99	near normal
-0.84 to -1.27	moderately dry
-1.28 to -1.64	severely dry
≤ -1.65	extremely dry

Sources: Agnew (2000) and Danandeh Mehr et al. (2020)

Fabio Nishida

Introduction Motivation This paper

Preview of findings

Inst. Backgroun

Data and Variables Method Results

Final Remarks
Appendices
References

Treatment variables

Standard Precipitation and Evapotranspiration Index (SPEI)

SPEI timescales, drought types and impacts

Timescale (months)	Drought type	Impacts
1	meteorological	precipitation/water balance deficits
3–6	agricultural	crop yield reduction, and soil moisture deficits
12–24	hydrological	water shortage in streams or storages (reservoirs,
12-24	nydrologicai	lakes, lagoons, and groundwater)

Sources: Svoboda et al. (2012) and IPCC (2023).

Fabio Nishida

Motivation Data and Variables

Treatment variables

Municipalities affected by natural disasters (using SPEI)

Floods: SPEI-1 (urban areas) ≥ 1.83 Droughts: SPEI-3 < -1.65

Fabio Nishida

Motivation
This paper
Preview of findings
Inst. Backgroun
Data and
Variables
Method
Results
Final Remarks
Appendices

Identification Strategy

• Due to the recurrence of disasters in the same locations, using a staggered DiD estimator would prioritize the treatments at the beginning of the panel.

Fabio Nishida

Introduction Motivation This paper

Preview of findings

Data and Variables Method

Final Remarks
Appendices
References

Imai, Kim and Wang's (2023) estimator

• Pairing of treated observations (i, t) with controls considering the same treatment history up to L periods before treatment.

time

		t = 1	t = 2	t=3	t = 4	t=5	t = 6
	i = 1	0	0	0	1	0	1
,	i = 2	0	0	0	0	1	1
5	<i>i</i> = 3	1	0	0	1	0	0
	<i>i</i> = 4	0	0	0	0	0	0

Fabio Nishida

Introduction Motivation

This paper Preview of findings

Inst. Background Data and Variables

Method Results

Final Remarks
Appendices
References

Imai, Kim and Wang's (2023) estimator

• Pairing of treated observations (i, t) with controls considering the same treatment history up to L periods before treatment.

time

		t = 1	t=2	t = 3	t = 4	t = 5	t = 6
	i = 1	0	0	0		0	1
2	i = 2	0	0	0	0	1	1
5	<i>i</i> = 3	1	0	0	1	0	0
	<i>i</i> = 4	0	0	0	0	0	0

Fabio Nishida

Introduction Motivation

This paper Preview of findings

Inst. Background Data and Variables

Variables

Method

Results Final Remarks Appendices References

Imai, Kim and Wang's (2023) estimator

• Pairing of treated observations (i, t) with controls considering the same treatment history up to L periods before treatment.

		time					
		t=1	t=2	t=3	t = 4	t=5	t=6
	i = 1	0	0	0	\Box ①	0	1
nıts	i=2	0	0	0	0	1	(1)
5	i = 3	1	0	0	1	0	0
	i = 4	0	0	0	0	0	0

- Restricted ATT on leads when remain treated (Interpretability \times Long-term).
- For aftermath effects, we computed reversal effects (ART).

Fabio Nishida

Introduction Motivation

This paper Preview of findings

Inst. Background Data and Variables

i = 3

0

Variables

Method

Results

Results Final Remarks Appendices References

Imai, Kim and Wang's (2023) estimator

0

0

• Pairing of treated observations (i, t) with controls considering the same treatment history up to L periods before treatment.

time

	t=1	t=2	t=3	t = 4	t=5	t=6
i = 1	0	0	0	$\square \mathbb{1}$	0	1
i = 2	0	0	0	0	(1)	(1)

 Restricted ATT on leads when remain treated 	(Interpretability × Long-	term)
---	---------------------------	-------

0

0

0

• For aftermath effects, we computed reversal effects (ART).

0

Fabio Nishida

Introduction Motivation

Preview of findings

Inst. Background

Data and Variables

Results
Final Remarks
Appendices
References

Imai, Kim and Wang's (2023) estimator

• Pairing of treated observations (i, t) with controls considering the same treatment history up to L periods before treatment.

		time					
		t = 1	t=2	t=3	t = 4	t=5	t=6
	i = 1	0	0	0	\square ①	0	
its	i=2	0	0	0	0	1	1
Ħ	i = 3	1	0	0	1	0	0
	i = 4	0	0	0	(O	0	0

- Restricted ATT on leads when remain treated (Interpretability \times Long-term).
- For aftermath effects, we computed reversal effects (ART).
- Refined control groups using Covariate Balancing Propensity Score (CBPS)
 - Matching method that directly optimizes the covariates balance.
 - More robust to misspecifications than PS (Imai and Ratkovic, 2014).

Fabio Nishida

Motivation

Method

Covariates Balance for Droughts

Fahio Nishida

Motivation

Outcomes Balance for Droughts

Fabio Nishida

Introduction Motivation

Descious of finding

Preview of findin

Data and Variables Method

Results
Final Remarks

Final Remark Appendices References

Results | Droughts

Effects of droughts on local public finance

		SPEI ≤ -1.65	Threshold	
		ATT	Α	RT
Outcome variable	0	1	+1	+2
Total Surplus	-5.69	-20.88**	-13.46	-28.19
	(7.7)	(8.7)	(17.1)	(24.0)
Expenditures				
Current Expenditure	-11.77*	-37.65***	1.61	-35.62
	(6.0)	(11.1)	(15.0)	(24.7)
Capital Expenditure	-1.67	7.92	-4.22	-27.74*
	(3.1)	(6.3)	(6.5)	(17.9)
by function	` ,	, ,	` ,	, ,
Agriculture	0.66	5.60***	1.03	1.86
	(1.2)	(1.7)	(1.4)	(2.5)
Environment	1.06***	-ì.17 [*]	1.12*	1.08
	(0.4)	(0.6)	(1.0)	(1.7)
Revenues				
Tax Revenue	-1.49	-5.59	1.23	-6.72
	(1.6)	(4.7)	(3.8)	(5.4)
Transfers	-13.51*	-48.88***	-11.31	-66.47
	(7.4)	(13.3)	(15.8)	(36.2)
Borrowing	0.07	2.69***	-1.19	-1.40
	(0.6)	(1.0)	(1.1)	(2.8)
Observations	17,485	5,221	16,262	10,479

Notes: $^*p < 10\%$, $^{**}p < 5\%$, $^{***}p < 1\%$. Block bootstrapped standard errors in parenthesis. All monetary values are in R\$ per capita. ATT columns (0) and (1) represent the contemporaneous and next year effects. ART columns (+1) and (+2) are the aftermath effects.

Fabio Nishida

Introduction Motivation

P . CC II

Preview of finding

Data and Variables

Variables Method Results

Appendices

Results | Floods

Effects of floods on local public finance

➤ Tax/Transfer ➤ Socioeconomic

		$SPEI \geq 1.83$	Threshold	
	A	ГТ	AR	:T
Outcome variable	0	1	+1	+2
Total Surplus	2.35	16.20	0.63	-5.53
	(11.6)	(26.4)	(10.1)	(21.5)
Expenditures				
Current Expenditure	12.94	1.95	-11.62	-37.02
	(10.2)	(27.5)	(12.4)	(51.4)
Capital Expenditure	3.61	0.75	6.88	18.07
	(4.4)	(8.7)	(8.1)	(15.0)
by function	` ,	` ,	` ,	, ,
Environment	0.61	-1.44*	0.85	4.56*
	(0.4)	(8.0)	(0.6)	(3.4)
Urbanism	2.10	-9.15	-5.50	-3.42
	(3.1)	(9.7)	(6.4)	(12.7)
Revenues				
Tax Revenues	1.23	3.32	6.00	2.62
	(1.6)	(3.2)	(7.3)	(7.0)
Transfers	14.66***	6.50	-0.24	-22.46
	(7.4)	(17.0)	(13.2)	(57.3)
Borrowing	-0.27	-2.89***	2.15***	-3.50
	(0.6)	(1.3)	(0.9)	(4.4)
Observations	16,810	3,985	17,486	11,262

Notes: p < 10%, p < 5%, p < 5%, p < 1%. Block bootstrapped standard errors in parenthesis. All monetary values are in R\$ per capita. ATT columns (0) and (1) represents the contemporaneous and next year effects. ART columns (+1) and (+2) are the aftermath effects.

Fabio Nishida

Motivation
This paper
Preview of finding
Inst. Backgrou
Data and
Variables
Method
Results
Final Remarks
Appendices

Final Remarks

- We examined how municipalities affected by natural disasters manage unexpected costs and whether intergovernmental transfers discourage investment in hazard efforts.
- The findings reveal that droughts and floods have different fiscal impacts on Brazilian municipalities, especially concerning grants received and resource allocation for disaster mitigation.
- This highlights the need for targeted fiscal policies to address these unique financial challenges. Drought-affected municipalities should receive direct financial support to offset revenue losses, while flood-affected areas need better incentives to effectively apply resources for disaster mitigation.

Fabio Nishida

Introduction Motivation

Preview of findings

Inst Backgroup

Data and

Method

Kesuits

Appendices

References

Appendices

Fabio Nishida

Introduction Motivation

Preview of findir

Inst. Backgroun Data and Variables Method

Results
Final Remark
Appendices

Criteria for emergency/calamity recognition (2012)

	Emergency	Calamity			
(a1) Human damages					
deaths	1 to 9	10 or more			
affected persons	up to 99	100 or more			
(a2) Material damages					
damaged public health or education facilities	1 to 9	10 or more			
damaged housing units	1 to 9	10 or more			
damaged infrastructure works	1 to 9	10 or more			
damaged public facilities for community use	1 to 9	10 or more			
(a3) Environmental damages					
population affected by pollution and contamination of water or soil*	5% to 10%	more than 10%			
population affected by reduction or depletion of water st	5% to 10%	more than 10%			
destruction of parks, environmental protection areas or permanent preservation areas	up to 40% of the area	more than 40% of the area			
(b) Economic losses					
public (in essential services)	above 2,77% of net revenue	above 8,33% of net revenue			
private	above 8,33% of net revenue	above 24,93% of net revenue			
(c) Local government capacity to respond and manage the crisis	affected	exceeded			

^{*}double if fewer than 10,000 inhabitants

Fabio Nishida

Introductio Motivation

This paper

Inst. Backgrou

Data and Variables Method Results

Appendices

SPEI Calculation

SPEI

Source: Haslinger et al. (2015)

Fabio Nishida

Appendices

SPEI category and reported hazards (1997–2019)

	Floods reported
-	40.4%
-	27.9%
_	17.7%
12.6%	14.0%
23.9%	_
29.8%	-
33.7%	_
23,856	13,854
	23.9% 29.8% 33.7%

Notes: Reported droughts classified using SPEI-3 and reported floods classified using SPEI-1 (urban). Sources: SEDEC and Gebrechorkos et al. (2023).

Fabio Nishida

Motivation
This paper
Preview of finding
Inst. Backgro

Inst. Backgroun Data and Variables Method Results

Final Remark
Appendices

Effects of droughts on tax revenues and transfers

	$SPEI \leq -1.65 \; Threshold$			
	ATT		ART	
Outcome variable	0	1	+1	+2
Revenues				
Tax Revenue	-1.49	-5.59	1.23	-6.72
	(1.6)	(4.7)	(3.8)	(5.4)
Services Tax (ISSQN)	-1.51	-7.48**	3.71	-0.75
	(1.2)	(4.8)	(3.7)	(4.3)
Property Tax (IPTU)	0.58**	0.82	0.14	-0.55
	(0.3)	(0.9)	(0.7)	(1.4)
Transfers	-13.51*	-48.88***	-11.31	-66.47
	(7.4)	(13.3)	(15.8)	(36.2)
Municipal Participation Fund (FPM)	-1.79	-11.31	-3.65	17.07
, ,	(2.9)	(7.0)	(8.5)	(12.6)
VAT Share (ICMS)	-4.33	-5.20	0.19	-9.07
	(2.7)	(4.4)	(4.7)	(11.2)
Basic Education Fund (FUNDEB)	-9.36***	-21.17***	-0.74	2.91
	(1.5)	(3.2)	(4.3)	(8.7)
Capital Transfers	-1.19	0.41	-0.14	-38.94 [*] *
•	(2.0)	(3.1)	(6.2)	(18.8)
Observations	17,485	5,221	16,262	10,479

Notes: $^*p < 10\%$, $^{**}p < 5\%$, $^{***}p < 1\%$. Block bootstrapped standard errors in parenthesis. All monetary values are in R\$ per capita. ATT columns (0) and (1) represent the contemporaneous and next year effects. ART columns (+1) and (+2) are the aftermath effects.

Results: Droughts

Fabio Nishida

Introduction Motivation

Preview of finding

Inst. Backgrou

Data and Variables Method Results

Final Remark

Appendices

Effects of droughts on socioeconomic variables

	$SPEI \leq -1.65 \; Threshold$				
	- A	ГТ	P	RT	
Outcome variable	0	1	+1	+2	
Population	-49.63**	-111.41**	86.70*	101.75	
	(24.3)	(59.4)	(39.1)	(124.7)	
GDP by sector					
Agriculture	-333.03***	-410.33***	52.89	-161.22	
	(31.9)	(54.0)	(48.2)	(308.9)	
Industry	-91.41	-123.59	-23.22	-118.05	
	(70.6)	(143.4)	(223.4)	(144.9)	
Services	-41.10*	11.03	9.53	-263.22***	
	(26.8)	(43.2)	(36.8)	(119.0)	
Government	4.21	42.39***	23.78***	8.20	
	(3.8)	(9.4)	(9.4)	(33.6)	
School enrollment					
Early childhood	4.61	8.66	7.42	18.87*	
	(4.2)	(6.8)	(6.8)	(12.4)	
Elementary	31.19***	86.03***	-12.76	-96.46***	
	(10.3)	(18.4)	(13.6)	(33.8)	
High school	1.84	-10.22	-4.52	-6.50	
	(5.0)	(22.3)	(4.7)	(9.2)	
Adult and continuing	15.44***	2.49	-7.22	-35.20***	
	(3.8)	(6.2)	(5.1)	(14.4)	
Observations	18,015	5,431	16,785	10,920	

Notes: ${}^*p < 10\%$, ${}^{**}p < 5\%$, ${}^{***}p < 1\%$. Block bootstrapped standard errors in parenthesis. All monetary values are in R\$ per capita. ATT columns (0) and (1) represents the contemporaneous and next year effects. ART columns (+1) and (+2) are the aftermath effects.

Fabio Nishida

Introduction
Motivation
This paper

Preview of findin

Preview of findin

Inst. Background Data and Variables Method

Final Remarks
Appendices

Effects of floods on tax revenues and transfers

	$SPEI \geq 1.83 \; Threshold$			
	A	TT	AF	₹T
Outcome variable	0	1	+1	+2
Revenues				
Tax Revenues	1.23	3.32	6.00	2.62
	(1.6)	(3.2)	(7.3)	(7.0)
Services Tax (ISSQN)	1.80*	2.84	6.43	5.09
, ,	(1.2)	(2.4)	(6.7)	(5.0)
Property Tax (IPTU)	-0.12	-0.03	-0.18	-0.84
, , ,	(0.3)	(0.5)	(0.4)	(1.3)
Transfers	14.66***	6.5Ó	-0.24	-22.46
	(7.4)	(17.0)	(13.2)	(57.3)
Municipal Participation Fund (FPM)	-3.06	-17.80***	6.20	-13.47
, ,	(2.9)	(6.0)	(5.4)	(29.9)
VAT Share (ICMS)	5.78***	6.49	-10.70*	-20.98*
, ,	(2.9)	(6.1)	(5.8)	(12.0)
Basic Education Fund (FUNDEB)	6.51***	7.23***	-9.72* [*] **	-17.33 [*] *
,	(1.6)	(3.5)	(3.5)	(8.0)
Capital Transfers	0.08	5 .64	15.82***	17.96*
	(2.3)	(5.0)	(5.2)	(10.8)
Observations	16,810	3,985	17,486	11,262

Notes: $^*p < 10\%$, $^{**}p < 5\%$, $^{***}p < 1\%$. Block bootstrapped standard errors in parenthesis. All monetary values are in R\$ per capita. ATT columns (0) and (1) represents the contemporaneous and next year effects. ART columns (+1) and (+2) are the aftermath effects.

Results: Floods

Fabio Nishida

Introduction Motivation This paper Preview of fin

Inst. Backgroun
Data and
Variables
Method
Results

Final Remark
Appendices

Effects of floods on socioeconomic variables

Outcome variable	$SPEI \geq 1.83 \; Threshold$				
		TT	ART		
	0	1	+1	+2	
Population	-82.97***	-48.18	8.08	159.10	
	(23.1)	(200.8)	(99.7)	(139.7)	
GDP by sector					
Agriculture	24.51	-201.70**	-137.92**	-155.56	
	(24.1)	(118.8)	(63.3)	(149.6)	
Industry	42.14	-166.16	-53.78	54.82	
	(47.6)	(128.2)	(75.6)	(147.8)	
Services	-12.67	-187.26***	-11.12	32.72	
	(14.9)	(76.8)	(10.0)	(112.7)	
Government	18.30 * * *	29.59***	-16.44	6.40	
	(4.2)	(11.6)	(16.4)	(22.5)	
School enrollment					
Early childhood	-2.90	28.31 * * *	-8.20	-49.35***	
	(13.6)	(8.3)	(6.1)	(18.5)	
Elementary	-28.74	-7.10	9.44	40.47	
•	(25.5)	(44.5)	(9.5)	(30.6)	
High school	-2.00	33.66***	-2.72	9.29	
_	(7.3)	(9.2)	(4.3)	(13.8)	
Adult and continuing	4.11	-26.28	2.49	`7.83	
_	(5.7)	(23.2)	(5.4)	(18.2)	
Observations	17,379	4,160	18,141	11,831	

Notes: ${}^*p < 10\%$, ${}^{**}p < 5\%$, ${}^{***}p < 1\%$. Block bootstrapped standard errors in parenthesis. All monetary values are in R\$ per capita. ATT columns (0) and (1) represents the contemporaneous and next year effects. ART columns (+1) and (+2) are the aftermath effects.

Fabio Nishida

Motivation

Preview of findings

Appendices

References

Fabio Nishida

ntroduction Motivation

This paper
Preview of findings
Inst. Background

ata and ariables lethod esults inal Remarks

References

Deryugina, T. (2017). The Fiscal Cost of Hurricanes: Disaster Aid versus Social Insurance. *American Economic Journal: Economic Policy*, 9(3), 168–198. https://doi.org/10.1257/pol.20140296

Eisensee, T., & Stromberg, D. (2007). News Droughts, News Floods, and U. S. Disaster Relief. The Quarterly Journal of Economics, 122(2), 693–728. https://doi.org/10.1162/qjec.122.2.693

Garrett, T. A., & Sobel, R. S. (2002). The Political Economy of FEMA Disaster Payments (tech. rep.). https://doi.org/10.20955/wp.2002.012

Gebrechorkos, S. H., Peng, J., Dyer, E., Miralles, D. G., Vicente-Serrano, S. M., Funk, C., Beck, H. E., Asfaw, D. T., Singer, M. B., & Dadson, S. J. (2023).Global high-resolution drought indices for 1981–2022. Earth System Science Data, 15(12), 5449–5466. https://doi.org/10.5194/essd-15-5449-2023

Goodspeed, T. J., & Haughwout, A. F. (2012).On the optimal design of disaster insurance in a federation. *Economics of Governance*, 13(1), 1–27. https://doi.org/10.1007/s10101-011-0103-5

Haslinger, K., Schöner, W., & Anders, I. (2015). Future drought probabilities in the Greater Alpine Region based on COSMO-CLM experiments - Spatial patterns and driving forces. *Meteorologische Zeitschrift*, 25. https://doi.org/10.1127/metz/2015/0604

Imai, K., Kim, I. S., & Wang, E. H. (2023). Matching Methods for Causal Inference with Time-Series Cross-Sectional Data. American Journal of Political Science, 67(3), 587–605. https://doi.org/10.1111/ajps.12685

Fabio Nishida

Inst. Background

References

- Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 243–263. https://doi.org/10.1111/rssb.12027
 - IPCC. (2023, July). Climate Change 2021 The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009157896
- Jerch, R., Kahn, M. E., & Lin, G. C. (2023).Local public finance dynamics and hurricane shocks. Journal of *Urban Economics*, 134, 103516. https://doi.org/10.1016/j.jue.2022.103516
- Larreguy, H. A., & Monteiro, J. C. (2014). Media networks and political accountability: Evidence from radio networks in brazil (tech. rep.). Mimeo.
- Svoboda, M., Haves, M., & Wood, D. (2012). Standardized Precipitation Index: User Guide. Drought Mitigation Center Faculty Publications. https://digitalcommons.unl.edu/droughtfacpub/209
- Wildasin, D. E. (2008). Disaster Policies: Some Implications for Public Finance in the U.S. Federation. Public Finance Review, 36(4), 497-518. https://doi.org/10.1177/1091142107306286