

Apr 18, 2022

Immunoblotting

Will Hancock-Cerutti^{1,2,3}, Pietro De Camilli^{1,3}

¹Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Ce Ilular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

²Interdisciplinary Neuroscience Program and MD-PhD Program, Yale University School of Medicine, New Haven, Connecticut 06510, USA;

³Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20

dx.doi.org/10.17504/protocols.io.bp2l6be9zgqe/v1

William Hancock-Cerutti

This protocol describes collection of protein from cultured cells and immunoblotting, including immunoblotting of large proteins using a proprietary tris-acetate buffer system.

dxwxbkjz7.pdf

DOI

dx.doi.org/10.17504/protocols.io.bp2l6be9zgqe/v1

Will Hancock-Cerutti, Pietro De Camilli 2022. Immunoblotting. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bp2l6be9zgqe/v1

Immunoblot, Western blot, Tris-glycine, Tris-acetate, siRNA, cGAMP, HT-DNA, ASAPCRN

protocol,

Jul 08, 2021

Apr 18, 2022

Jul 08, 2021 Urmilas

Jul 14, 2021 William Hancock-Cerutti

51400

1

Citation: Will Hancock-Cerutti, Pietro De Camilli Immunoblotting https://dx.doi.org/10.17504/protocols.io.bp2l6be9zgqe/v1

Solutions to prepare:

DMEM solution:

Α	В
FBS	10%
Penicillin	100 U/ml
Streptomycin	100 mg/ml
L-glutamine	2 mM

RIPA buffer:

NaCl	150 mM
Tris	10 mM
EDTA	0.5 mM
NP40	0.50%

Supplemented immediately before use with Protease Inhibitor Cocktail (Roche) and PhosStop phosphatase inhibitor (Roche)

TBS:

Α	В
Tris-Cl	50 mM
NaCl adjust pH to 7.5	150 mM

TBST: TBS with 0.1% TWEEN-20 (Sigma-Aldrich)

3x Laemmli buffer:

Α	В
Tris-HCl	188 mM
SDS	3%
Glycerol	30%
Bromophenol blue	0.01%
β-mercaptoethanol	15%

Tris-glycine running buffer:

Α	В
Tris base	25 mM
Glycine	192 mM
SDS in milliQ water	0.10%

Tris-glycine transfer buffer:

Α	В
Tris	25 mM
Glycine	192 mM
Methanol in milliQ water	20%

Chill to 4°C

Cell culture and treatments

3d

- 1 Culture the HeLa-M cells at ₹ 37 °C in 5% CO₂ and DMEM containing 10% FBS, □100 U/ml penicillin, [M]100 mg/mL streptomycin, and [M]2 Milimolar (mM) L-glutamine (all from Gibco).
- 2 For any given experiment, plate the cells at such density so as to be approximately 90% confluent at the time of lysis.
- 3 For experiments using siRNA, transfect 60 pmols of the indicated siRNA using **□6** μL Lipofectamine RNAiMax (ThermoFisher) in Opti-MEM (Gibco) per well according to manufacturer protocol. Lyse the cells **⊙72:00:00** after siRNA transfection.

3d

- 4 For experiments using cGAMP, transfect **38 μg/L** of cGAMP using **6 μL** Lipofectamine RNAiMax (ThermoFisher) in Opti-MEM (Gibco) per well according to manufacturer protocol.
- 5 For experiments using herring testes (HT)-DNA, transfect **□1 μg** HT-DNA using **□3 μL** Lipofectamine 2000 (ThermoFisher) in Opti-MEM (Gibco) per well according to manufacturer protocol.

Cell lysis and sample preparation

40m

- 6 Supplement RIPA buffer with Protease Inhibitor Cocktail (Roche) and PhosStop phosphatase inhibitor (Roche) and chill § On ice.
- 7

Aspirate media from cells and rinse cells with PBS § On ice . Aspirate PBS thoroughly.

8

Pipette RIPA lysis buffer onto cells and scrape cells using a cell lifter (Corning).

9

	Pipette lysis buffer containing cell mass into Eppendori tube.	
10		30m
	Incubate Eppendorf tube § On ice for © 00:30:00.	
11		
	Every 10 minutes, pipette lysis mixture up and down 10 times with a P-200 pipette tip (a of 3 cycles).	total
	NOTE: Take care not to introduce bubbles.	
		10m
12		
	Centrifuge at 315000 x g for 00:10:00 at 8 4 °C and collect the post-nuclear supernatant in a new Eppendorf tube.	
	NOTE: Samples can be snap frozen in liquid nitrogen at this step and stored at -70°C.	
13	Determine protein concentration in sample using Pierce BCA assay (ThermoFisher).	
14		
	Prepare samples at desired concentration and add 3x Laemmli buffer.	
Gel ele	ectrophoresis and immunoblotting (Tris-glycine buffer system) 4h 50m	
15		5m
	Incubate samples at § 95 °C for © 00:05:00.	
nroto	cols.io 4	

16	During this incubation, prepare gel apparatus with Mini PROTEAN TGX 4-20% trisglycine g (Bio-Rad) and running buffer.	els
17	Load samples into gel and run until dye front reaches bottom (90-120 V).	
18	Remove gel and set up transfer cassette with nitrocellulose membrane.	
19	Transfer at 120 V for © 01:00:00 at § 4 °C in tris-glycine transfer buffer.	1h
20	Remove nitrocellulose membrane and stain for total protein with ponceau stain.	
21		
	Wash with milliQ water.	
22	Block membrane with 5% milk in TBST for © 01:00:00 at § 22 °C.	1h
		1h

Incubate membrane with primary antibodies in 2.5% milk in TBST $\, \circlearrowleft \, \textbf{Overnight} \,$ at $\, \, \textbf{8} \, \, \textbf{4} \, \, \textbf{^{\circ}C} \,$.

NOTE: Optimal primary antibody incubation time and temperature can be determined empirically for a given primary antibody

23

24 00

Wash membrane with TBST. Repeat a total of 3 times.

24.1

5m

Wash membrane for ©00:05:00 with TBST (1/3).

24.2

5m

Wash membrane for © 00:05:00 with TBST (2/3).

24.3

5m

Wash membrane for © 00:05:00 with TBST (3/3).

25

1h

Incubate membrane with secondary antibodies conjugated to IRdye 800CW or IRdye 680CW (1:10,000, Licor) in 2.5% milk in TBST for 01:00:00 at 8 22 °C.

26

Wash membrane with TBST. Repeat a total of 3 times.

26.1

5m

Wash membrane for © 00:05:00 with TBST (1/3).

26.2

5m

Wash membrane for ©00:05:00 with TBST (2/3).

5m

26.3

Wash membrane for © 00:05:00 with TBST (3/3).

Wash membrane with TBS. Repeat a total of 3 times.

27.1

5m

Wash membrane for © 00:05:00 with TBS (1/3).

27.2

5m

Wash membrane for **© 00:05:00** with TBS (2/3).

27.3

5m

Wash membrane for © 00:05:00 with TBS (3/3).

28

Image membranes using a Licor Odyssey Infrared Imager.

Gel electrophoresis and immunoblotting (Tris-acetate buffer system)

20h 55m

For VPS13C immunoblotting, lyse samples and collect the post-nuclear supernatant as above.

30

10m

Mix post-nuclear supernatant with NuPAGE LDS Sample Buffer and Reducing Agent (Thermofisher) and incubate for 00:10:00 at $\$ 70 °C .

31

During this incubation, prepare gel apparatus with NuPage Tris-Acetate 3-8% gels and NuPage Running Buffer (Thermofisher).

32 Remove gel and set up transfer cassette with nitrocellulose membrane.

- 34 Remove nitrocellulose membrane and stain for total protein with ponceau stain.
- 35 🏠

Wash with milliQ water.

- 36 Block membrane with 5% milk in TBST for **© 01:00:00** at **§ 22 °C**.

Incubate membrane with primary antibodies in 2.5% milk in TBST for © 02:00:00 at § 22 °C

NOTE: Optimal primary antibody incubation time and temperature can be determined empirically for a given primary antibody

38

Wash membrane for with TBST. Repeat a total of 3 times.

38.1 \nearrow

Wash membrane for © 00:05:00 with TBST (1/3).

38.2 Po

Wash membrane for © 00:05:00 with TBST (2/3).

38.3

5m

Wash membrane for © 00:05:00 with TBST (3/3).

39

1h

Incubate membrane with secondary antibodies conjugated to IRdye 800CW or IRdye 680CW (1:10,000, Licor) in 2.5% milk in TBST for **© 01:00:00** at **§ 22 °C**.

Wash membrane with TBST. Repeat a total of 3 times.

40.1

5m

Wash membrane for \bigcirc **00:05:00** with TBST (1/3).

40.2

5m

Wash membrane for © 00:05:00 with TBST (2/3).

40.3

5_m

Wash membrane for © 00:05:00 with TBST (3/3).

Wash membrane with TBS. Repeat a total of 3 times.

41.1

5_m

Wash membrane for **© 00:05:00** with TBS (1/3).

41.2

5_m

Wash membrane for \bigcirc **00:05:00** with TBS (2/3).

41.3

5m

Wash membrane for **© 00:05:00** with TBS (3/3).

Image membranes using a Licor Odyssey Infrared Imager.