Since the tangent of an angle depends only on the measure of the angle, we can write tan 10° , for example, to stand for the tangent of any angle with a degree measure of 10. The table on page 311 lists the values of the tangents of some angles with measures between 0 and 90. Most of the values are approximations, rounded to four decimal places. Suppose you want the approximate value of tan 33°. Locate 33° in the angle column. Go across to the tangent column. Read .6494. You write tan $33^\circ \approx 0.6494$, where the symbol \approx means "is approximately equal to." You can also use a scientific calculator to find tan $33^\circ \approx 0.649407593$. Your calculator may give more or fewer decimal places than the nine that are shown.

Example 2 Find the value of y to the nearest tenth.

Solution

$$\tan 56^{\circ} = \frac{y}{32}$$

 $y = 32(\tan 56^{\circ})$
 $y \approx 32(1.4826)$
 $y \approx 47.4432$, or 47.4

You can find the approximate degree measure of an angle with a given tangent by reading the table from the tangent column across to the angle column, or by using the inverse tangent key(s) of a calculator.

Example 3

The grade of a road is the ratio of its rise to its run and is usually given as a decimal or percent. Find the angle that the road makes with the horizontal if its grade is 4% ($\frac{4}{100}$ or 0.04).

Solution

$$\tan x^{\circ} = 0.0400$$
$$x^{\circ} \approx 2^{\circ}$$

grade =
$$\frac{\text{rise}}{\text{run}}$$

If you use the table on page 311, notice that 0.0400 falls between two values in the tangent column: $\tan 2^{\circ} \approx 0.0349$ and $\tan 3^{\circ} \approx 0.0524$. Since 0.0349 is closer to 0.0400, we use 2° as an approximate value for x° .

Classroom Exercises

In Exercises 1-3 express $\tan R$ as a ratio.

- **4–6.** Express $\tan S$ as a ratio for each triangle above.
- 7. Use the table on page 311 to complete the statements.

a.
$$\tan 24^{\circ} \approx \frac{?}{}$$

d. $\tan \frac{?}{} \approx 2.4751$

b.
$$\tan 41^{\circ} \approx \frac{?}{0.3057}$$

e. $\tan \frac{?}{2} \approx 0.3057$

c.
$$\tan 88^{\circ} \approx \frac{?}{2}$$

f. $\tan \frac{?}{2} \approx 0.8098$