Prerequisitos y preliminares Hungerford

Pablo Brianese

16 de agosto de 2021

Teorema 1 (4.1). Sea A un conjunto novacio. Dada una relación de equivalencia $R \subseteq A \times A$, definimos sus clases de equivalencia como $\bar{a} = \{b \in A : (a,b) \in R\}$ para cada $a \in A$, y definimos el cociente de A por R como $A/R = \{\bar{a} : a \in A\}$. La asignación $R \mapsto A/R$ define una biyección entre el conjunto E(A), formado por todas las relaciones de equivalencia R sobre A, y el conjunto Q(A), formado por todas las parciciones de A.

Teorema 2 (5.2). Sea $\{A_i: i \in I\}$ una familia de conjuntos indexada por I. Entonces existe un conjunto D, junto con una familia de aplicaciones $\{\pi_i: D \to A_i | i \in I\}$ con la siguiente propiedad: para cualquier conjunto C y familia de aplicaciones $\{\phi_i: C \to A_i | i \in I\}$, existe una única aplicación $\psi: C \to D$ tal que $\pi_i \phi = \phi_i$ para todo $i \in I$. Más aún, D queda determinado univocamente salvo una biyección.

$$C \xrightarrow{\phi} \phi_i \xrightarrow{} D \xrightarrow{\pi_i} A_i$$

Teorema 3 (6.2 Recursion). Si S es un conjunto, $a \in S$ y para cada $n \in \mathbb{N}$, $f_n : S \to S$ es una función, entonces existe una única función $\phi : \mathbb{N} \to S$ tal que $\phi(0) = a$ y $\phi(n+1) = f_n(\phi(n))$ para todo $n \in \mathbb{N}$.

Para cada $N \in \mathbb{Z}$, denotamos $[N] = \{n \in \mathbb{N} : 0 \le n \le N\}$.

Demostración. Sea \mathcal{N} el conjunto de los $N \in \mathbb{N}$ tales que existe una única función $\phi_N : [N] \to S$ que verifica la condición recursiva $\phi_N(n+1) = f_n(\phi_N(n))$ para todo $n \in [N-1]$, y la condición base $\phi_N(0) = a$.

En un principio $0 \in \mathcal{N}$. En efecto, aquí la condición $\phi_0(0) = a$ determina unívocamente a la función $\phi_0 : \{0\} \to S$; y la condición recursiva sobre ϕ_0 es vacua porque $[-1] = \emptyset$.

Supongamos, inductivamente, que $N \in \mathcal{N}$. Entonces existe una única función $\phi_N:[N] \to S$ tal que $\phi_N(0)=a$ y verifica la condición recursiva. Definimos $\phi_{N+1}:[N+1] \to S$ como $\phi_{N+1}(n)=\phi_N(n)$ para $n \in [N]$, e imponemos $\phi_{N+1}(N+1)=f_N(\phi_N(N))$. Entonces por construcción $\phi_{N+1}(0)=a$, y ϕ_{N+1} verifica la condición recursiva. Para probar la unicidad de ϕ_{N+1} suponemos que $\psi:[N+1] \to S$ es cualquier función que verifique la condición recursiva y la condición base. Si restringimos ψ al conjunto [N] obtenemos una función que satisface la condición recursiva y la condición base. Por hipótesis inductiva $\psi|_{[N]}=\phi_N$. La condición recursiva para ψ dice que $\psi(N+1)=f_N(\psi(N))$. Pero probamos $\psi(N)=\phi_N(N)$. Entonces $\psi(N+1)=f_N(\phi_N(N))$. Por lo tanto $\psi=\phi_{N+1}$. En conclusión $N+1\in\mathcal{N}$.

Por inducción, para todo $N \in \mathbb{N}$ existe una única función $\phi_N : [N] \to S$ tal que $\phi_N(0) = a$ y $\phi_N(n+1) = f_n(\phi_N(n))$ para todo $n \in [N-1]$. La propiedad de unicidad las hace compatibles, es decir que $\phi_N|_{[M]} = \phi_M$ si $M \leq N$. Esta compatibilidad nos permite afirmar que la unión de sus gráficas, $\bigcup_{N \in \mathbb{N}} \operatorname{gr}(\phi_N)$, es la gráfica de una función $\phi : \mathbb{N} \to S$ tal que $\phi(0) = a$ y $\phi(n+1) = f_n(\phi(n))$ para todo $n \in \mathbb{N}$. La unicidad de esta gran ϕ es consecuencia de la unicidad de las pequeñas ϕ_N con $N \in \mathbb{N}$.

Demostración. Construiremos una relación $R \subseteq \mathbb{N} \times S$ que resulte igual a la gráfica de una función $\phi : \mathbb{N} \to S$ con las propiedades deseadas. Sea \mathcal{G} el conjunto formado por todos los subconjuntos Y de $\mathbb{N} \times S$ tales que

$$(0,a) \in Y \qquad \forall (n,x) \in Y, \ (n+1,f_n(x)) \in Y \tag{1}$$

Entonces $\mathcal{G} \neq 0$ dado que $\mathbb{N} \times S \in \mathcal{G}$. Sea $R = \bigcap \mathcal{G}$ (definida como la intersección de los elementos Y de la familia \mathcal{G}); entonces $R \in \mathcal{G}$. Sea M el subconjunto de \mathbb{N} que consiste de todos los $n \in \mathbb{N}$ para los cuales existe un único $x_n \in S$ tal que $(n, x_n) \in R$. Probaremos $M = \mathbb{N}$ usando inducción. Si $0 \notin M$, entonces existe $(0, b) \in R$ con $b \neq a$ y el conjunto $R \setminus \{(0, b)\}$ está en \mathcal{G} . Consecuentemente $R = \bigcap \mathcal{G} \subseteq R \setminus \{(0, b)\}$, lo cual es una contradicción. Por lo tanto, $0 \in M$.

Supongamos, inductivamente, que $n \in M$ (es decir, $(n, x_n) \in R$ para un único $x_n \in S$). Una consecuencia simple es que $(n+1, f_n(x_n)) \in R$. Dado $(n+1,c) \in R$ con $c \neq f_n(x_n)$, consideremos el conjunto $R' = R \setminus \{(n+1,c)\}$. Nuestro objetivo será probar que $R' \in \mathcal{G}$ para llegar a un absurdo. Observemos que $(0,a) \in R'$ porque $(0,a) \in R$ y $(0,a) \neq (n+1,c)$. Además, para todo par $(m,x_m) \in R'$, con $m \neq n$, tenemos por un lado que $(m,x_m) \in R$ implica $(m+1,f_m(x_m)) \in R$; y por el otro que $m \neq n$ implica $(m+1,f_m(x_m)) \neq (n+1,c)$. Es decir que $(m+1,f_m(x_m)) \in R'$ para todo $(m,x_m) \in R'$ con $m \neq 0$. Finalmente, para todo par $(n,x) \in R'$ se tiene $(n,x) = (n,x_n)$ Por lo tanto, $R' \notin \mathcal{G}$ solo es posible si existe un par $(n,x) \in R'$ tal que $(n+1,f_n(x)) \notin R'$. Pero $(n,x) \in R'$ implica $(n,x) \in R$, y por hipótesis inductiva se deduce $(n,x) = (n,x_n)$. Luego () Es decir, suponemos que o bien $(0,a) \notin R'$ o bien existe $(m,x_m) \in R'$ tal que $(m+1,f_m(x_m)) \notin R'$.