SATISFIABILITY MODULO THEORIES (SMT)

SMT - INTRODUCTION

- In FOL, predicates and functions are in general uninterpreted
- In practice, we may have a specific meaning in mind for certain predicates and functions (e.g. = , \leq , + , etc.)
- First-order Theories allow us to formalise the meaning of certain structures.

FIRST-ORDER THEORY

- A First-order Theory (T) is defined by two components:
 - Signature (Σ_T) : Contains constant, predicate and function symbols
 - Axioms (A_T) : Set of closed FOL formulae containing only the symbols in Σ_T
- A Σ_T- formula is a FOL formula which only contains symbols from Σ_T

SATISFIABILITY AND VALIDITY

MODULO THEORIES

- An interpretation I is called a T-interpretation if it satisfies all the axioms of the theory T
 - For all $A \in A_T$, $I \models A$
- A Σ_T -formula F is satisfiable modulo T if there is a T-interpretation that satisfies F
- A Σ_T -formula F is valid modulo T if every T-interpretation satisfies F
 - Also denoted as $T \models F$

QUESTIONS

- Which is of the following holds?
 - F is satisfiable ⇒ F is satisfiable modulo T
 - F is satisfiable modulo T ⇒ F is satisfiable
- Which is of the following holds?
 - F is valid ⇒ F is valid modulo T
 - F is valid modulo T ⇒ F is valid

COMPLETENESS AND DECIDABILITY

- A theory T is complete if for every closed formula F, either F or ¬F is valid modulo T
 - $T \models F \text{ or } T \models \neg F$
- Is FOL (i.e.'empty' theory) complete?
 - No. Consider $F : \exists x . p(x)$. Neither F nor $\neg F$ is valid.
- A theory T is decidable if $T \models F$ is decidable for every formula F.
- Even though FOL (or empty theory) is undecidable, various useful theories are actually decidable.

THEORY OF EQUALITY $(T_{=})$

- One of the simplest first-order theories
 - $\Sigma_{=}$: All symbols used in FOL and the special symbol =
 - Allows uninterpreted functions and predicates, but = is interpreted.
- Axioms of Equality:

1. $\forall x. \ x = x$	(reflexivity)
$2. \ \forall x, y. \ x = y \ \rightarrow \ y = x$	(symmetry)
3. $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$	(transitivity)

AXIOMS OF EQUALITY

• Function Congruence: For a n-ary function f, two terms $f(\overrightarrow{x})$ and $f(\overrightarrow{y})$ are equal if \overrightarrow{x} and \overrightarrow{y} are equal:

$$\forall \overline{x}, \overline{y}. \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \rightarrow f(\overline{x}) = f(\overline{y})$$

• Predicate Congruence: For a n-ary predicate p, two formulas $p(\overrightarrow{x})$ and $p(\overrightarrow{y})$ are equivalent if \overrightarrow{x} and \overrightarrow{y} are equal:

$$\forall \overline{x}, \overline{y}. \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \rightarrow (p(\overline{x}) \leftrightarrow p(\overline{y}))$$

AXIOMS OF EQUALITY

- Function Congruence and Predicate Congruence are actually Axiom Schemes, which can be instantiated with any function or predicate to get axioms.
- For example, for a unary function g, the function congruence axiom is:
 - $\forall x, y . x = y \rightarrow g(x) = g(y)$

ANNOUNCEMENT

- Change in Grading Policy
 - Project: 30%
 - Assignments (3 Theory + 2 Tool): 40% 35%
 - Class Participation: 5%
 - End sem 30%
- Please participate in the class discussions
 - "Raise hand" if you want to answer a question or ask some doubt.
 - As far as possible, please unmute yourself and communicate verbally rather than using chat.
 - I am going to start asking questions to specific students now.
- Please revise the previous lectures before attending a new lecture.

EXAMPLE OF A $T_{=}$ -INTERPRETATION

Consider the domain $D_I = \{a, b\}$. What would be an appropriate interpretation $\alpha_I(=)$?

FRAGMENTS OF THEORY

- A fragment of a theory is a syntactically-restricted subset of formulae of the theory.
 - For example, the quantifier-free fragment of a theory T is the set of Σ_T formulae that do not contain any quantifiers.
- Technically, while considering validity of quantifier-free formula, we assume that all variables are universally quantified.
 - Hence, for validity, the quantifier-free fragment is the same as the fragment which allows only universal quantification.
- Quantifier-free fragments are of great practical and theoretical importance.

SEMANTIC ARGUMENT METHOD FOR VALIDITY MODULO THEORY

- We can use the semantic argument method to prove validity modulo theory.
- Along with the usual proof rules, axioms of the theory can be used to derive facts.
- As usual, we look for a contradiction in all branches.

EXAMPLE

Prove that $F: a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$ is valid

1.
$$I \not\models F$$
 assumption
2. $I \models a = b \land b = c$ 1, \rightarrow
3. $I \not\models g(f(a),b) = g(f(c),a)$ 1, \rightarrow
4. $I \models a = b$ 2, \land
5. $I \models b = c$ 2, \land
6. $I \models a = c$ 4, 5, (transitivity)
7. $I \models f(a) = f(c)$ 6, (function congruence)
8. $I \models b = a$ 4, (symmetry)
9. $I \models g(f(a),b) = g(f(c),a)$ 7, 8 (function congruence)
10. $I \models \bot$ 3, 9

DECIDABILITY OF VALIDITY IN $T_{=}$

- $T_{=}$ being an extension of FOL, the validity problem is clearly undecidable.
- However, validity in the quantifier-free fragment of T_{\pm} is decidable, but NP-complete.
- Conjunctions of quantifier-free equality constraints can be solved efficiently.
 - Congruence closure algorithm can be used to decide satisfiability of conjunctions of equality constraints in polynomial time

PRESBURGER ARITHMETIC $(T_{\mathbb{N}})$ THE THEORY OF NATURAL NUMBERS

- Signature, $\Sigma_{\mathbb{N}}:0,1,+,=$
 - 0,1 are constants
 - + is a binary function
 - = is a binary predicate.
- Axioms:

INTERPRETATION

- The intended T_N -interpretation is \mathbb{N} , the set of natural numbers
- Does there exist a finite subset of $\mathbb N$ which is also a $T_{\mathbb N}-$ interpretation?
 - Which axiom(s) will be violated by any finite subset?
- Are negative numbers allowed by the axioms?

EXAMPLES

- Examples of $\Sigma_{\mathbb{N}}$ -formulae
 - $\forall x . \exists y . x = y + 1$
 - 3x + 5 = 2y
 - Can be expressed as (x + x + x) + (1 + 1 + 1 + 1 + 1) = (y + y)
 - $\forall x . \exists y . x + f(y) = 5$ is not a $\Sigma_{\mathbb{N}}$ -formula
- How to express x < y and $x \le y$?
 - $\exists z . z \neq 0 \land y = x + z$
 - $\exists z. y = x + z$

EXPANDING TO THEORY OF INTEGERS

- How to expand the domain to negative numbers?
 - x + y < 0
 - Converted to $(x_p x_n) + (y_p y_n) < 0$
 - Converted to $x_p + y_p < x_n + y_n$
 - Converted to $\exists z . z \neq 0 \land x_p + y_p + z = x_n + y_n$

THEORY OF INTEGERS $(T_{\mathbb{Z}})$

LINEAR INTEGER ARITHMETIC

SIGNATURE:

$$\{..., -2, -1, 0, 1, 2, ...\} \cup \{..., -3, -2, 2, 2, 3, ...\} \cup \{+, -, =, <, \le\}$$

- Signature:
 - ..., -2, -1, 0, 1, 2, ... are constants
 - ..., -3., -2., 2., 3., ... are unary functions to represent coefficients of variables
 - +, are binary functions
 - = , < , \le are binary predicates.
- Any $T_{\mathbb{Z}}$ -formula can be converted to a $T_{\mathbb{N}}$ -formula.

DECIDABILITY

- Validity in quantifier-free fragment of Presgurber Arithmetic is decidable
 - NP-Complete
- Validity in full Presburger Arithmetic is also decidable
 - Super Exponential Complexity : $O(2^{2^n})$
- Conjunctions of quantifier-free linear constraints can be solved efficiently
 - Using Simplex Method or Omega test.
- Presburger Arithmetic is also complete
 - For any closed $T_{\mathbb{N}}$ -formula F, either $T_{\mathbb{N}} \models F$ or $T_{\mathbb{N}} \models \neg F$

ANNOUNCEMENTS

- Assignment-1 (Theory) will be released next week.
 - Questions on PL,FOL,SMT.
 - Deadline will be 10 days after release.
 - Use Latex for writing the solutions, submit the final pdf. Compulsory.
 - Please work on the assignment on your own. Any plagiarism attempts will result in 0 marks in the assignment and 1-grade drop penalty.
- Course Project
 - Start working on the project proposal (Due Date: Feb 28).
 - Explore sub-areas, case studies, study advanced verification tools,...
 - We will have one-on-one meetings next Tuesday during the lecture to discuss plans.
 - I will share a poll to pick a 10-minute slot.

THEORY OF RATIONALS

- Theory of Rationals $(T_{\mathbb{Q}})$
 - Also called Linear Real Arithmetic.
 - Same symbols as Presburger arithmetic, but many more axioms.
 - Interpretation is \mathbb{R} .
 - Example: $\exists x . 2x = 3$. Satisfiable in $T_{\mathbb{Q}}$.
 - Is it satisfiable in $T_{\mathbb{Z}}$?
 - Conjunctive quantifier-free fragment is efficiently decidable in polynomial time.

THEORIES ABOUT DATA STRUCTURES

- · So far, we have looked at theories of numbers and arithmetic.
- But, we can also formalize behaviour of data structures using theories.
 - Very useful for automated verification

THEORY OF ARRAYS (T_A)

- Signature, Σ_A : { \cdot [\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle , = }
- a[i] is a binary function
 - Read array a at index i
 - · Returns the value read.
- $a\langle i \triangleleft v \rangle$ is a ternary function
 - Write value v at index i in array a
 - Returns the modified array.
- = is a binary predicate

EXAMPLES

- $(a\langle 2 \triangleleft 5\rangle)[2] = 5$
 - Write the value 5 at index 2 in array a, then from the resulting array, the value at index 2 is 5.
- $(a\langle 2 \triangleleft 5\rangle)[2] = 3$
 - Write the value 5 at index 2 in array a, then from the resulting array, the value at index 2 is 3.
- According to the usual semantics of arrays, which of the formulae is valid/sat/unsat?

AXIOMS OF T_A

- The axioms of T_A include reflexivity, symmetry and transitivity axioms of $T_=$.
- Array Congruence:
 - $\forall a, i, j . i = j \rightarrow a[i] = a[j]$
- Read over Write 1:
 - $\forall a, i, j, v \cdot i = j \rightarrow a \langle i \triangleleft v \rangle [j] = v$
- Read over Write 2:
 - $\forall a, i, j, v . i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$

EXAMPLE

Prove that $F: \forall a, i, e \cdot a[i] = e \rightarrow \forall j \cdot a \langle i \triangleleft e \rangle [j] = a[j]$ is valid

1.
$$I \models a[i] = e$$

2.
$$I \nvDash \forall j . a \langle i \triangleleft e \rangle [j] = a[j]$$

3.
$$I_1 \models a \langle i \triangleleft e \rangle [j] \neq a[j]$$

4.
$$I_1 \models i = j$$

5.
$$I_1 \models a \langle i \triangleleft e \rangle [j] = e$$

6.
$$I_1 \vDash a \langle i \triangleleft e \rangle [j] = a[i]$$

7.
$$I_1 \models a[i] = a[j]$$

8.
$$I_1 \models a \langle i \triangleleft e \rangle [j] = a[j]$$

9.
$$I_1 \models \bot$$

assumption,
$$\rightarrow$$

assumption,
$$\rightarrow$$

$$2, \forall, j \in D_I$$

$$1,5,$$
transitivity of =

$$6,7,$$
transitivity of =

DECIDABILITY IN T_A

- The validity problem in T_A is not decidable.
 - Any formula in FOL can be encoded as an equisatisfiable T_A formula (How?).
- Quantifier-free fragment of T_A is decidable.
 - Unfortunately, this only allows us to express properties about specific elements of the array.
- Richer Fragments of T_A are also decidable.
 - Array Property Fragment, which allows (syntactically restricted) formulae with universal quantification over index variables.

QUANTIFIER-FREE FRAGMENT OF FOL

- Formula constructed using FOL syntax, but without quantifiers.
 - All variables are free.
- For the satisfiability problem, we assume implicit existential quantification of all variables.
- For the validity problem, we assume implicit universal quantification of all variables.
 - Validity and Satisfiability are still duals: For a quantifier-free F, $\forall * .F$ is valid iff $\exists * . \neg F$ is unsatisfiable.
- Any quantifier-free FOL formula can be converted to a PL formula. (How?)
 - Hence, Validity in the quantifier-free fragment of FOL is decidable and NP-complete.

OTHER COMMON THEORIES

- Many more theories...
 - Theory of bit-vectors
 - Theory of Lists
 - Theory of Heap
 - •
- The aim is to build efficient decision procedures for the satisfiability modulo theory problem.

COMBINATION OF THEORIES

- We talked about individual theories: $T_=, T_{\mathbb{N}}, T_{\mathbb{Z}}, T_A, \ldots$, each imposing different restrictions on the symbols used in a FOL formula.
- However, in practice, we may have FOL formulae which combine symbols across theories.
- Consider the formula: x' = f(x) + 1.
 - Which theories are used in this formula?
 - $T_{\mathbb{Z}}$ and $T_{=}$

COMBINED THEORIES

- Given two theories T_1 and T_2 , such that $\Sigma_1 \cap \Sigma_2 = \{ = \}$, the combined theory $T_1 \cup T_2$ is defined as follows:
 - Signature: $\Sigma_1 \cup \Sigma_2$
 - Axioms: $A_1 \cup A_2$
- Consider the following formula:
 - $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
 - Is it well-formed in $T_{=} \cup T_{\mathbb{N}}$?
 - Is it valid/sat/unsat in $T_{=} \cup T_{\mathbb{N}}$?
 - How about in $T_{=}$?