Table 22-5—Start of receive with entire preamble preceding SFD

Signal	Bit values of nibbles received through MII																		
RXD0	X	1 ^a	1	1	1	1	1	1	1	1	1	1	1	1	1	1 ^b	1	D0 ^c	D4 ^d
RXD1	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D1	D5
RXD2	X	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	D2	D6
RXD3	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	D3	D7
RX_DV	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

^a1st preamble nibble received.

22.2.3.3 Data

The data in a well formed frame shall consist of N octets of data transmitted as 2N nibbles. For each octet of data the transmit order of each nibble is as specified in Figure 22–13. Data in a collision fragment may consist of an odd number of nibbles.

22.2.3.4 End-of-Frame delimiter (EFD)

Deassertion of the TX_EN signal constitutes an End-of-Frame delimiter for data conveyed on TXD<3:0>, and deassertion of RX_DV constitutes an End-of-Frame delimiter for data conveyed on RXD<3:0>.

22.2.3.5 Handling of excess nibbles

An excess nibble condition occurs when an odd number of nibbles is conveyed across the MII beginning with the SFD and including all nibbles conveyed until the End-of-Frame delimiter. Reception of a frame containing a non-integer number of octets shall be indicated by the PHY as an excess nibble condition.

Transmission of an excess nibble may be handled by the PHY in an implementation-specific manner. No assumption should be made with regard to truncation, octet padding, or exact nibble transmission by the PHY.

22.2.4 Management functions

The management interface specified here provides a simple, two-wire, serial interface to connect a management entity and a managed PHY for the purposes of controlling the PHY and gathering status from the PHY. This interface is referred to as the MII Management Interface.

The MII Management Interface consists of a pair of signals that physically transport the management information across the MII or GMII, a frame format and a protocol specification for exchanging management frames, and a register set that can be read and written using these frames. The register definition specifies a basic register set with an extension mechanism. The MII uses two basic registers. The GMII also uses the same two basic registers and adds a third basic register.

The MII basic register set consists of two registers referred to as the Control register (Register 0) and the Status register (Register 1). All PHYs that provide an MII Management Interface shall incorporate the basic register set. All PHYs that provide a GMII shall incorporate an extended basic register set consisting of the Control register (Register 0), Status register (Register 1), and Extended Status register (Register 15). The

^b1st SFD nibble received.

^c1st data nibble received.

^dD0 through D7 are the first eight bits of the data field from the PDU.

status and control functions defined here are considered basic and fundamental to 100 Mb/s and 1000 Mb/s PHYs. Registers 2 through 14 are part of the extended register set. The format of Registers 4 through 10 are defined for the specific Auto-Negotiation protocol used (Clause 28 or Clause 37). The format of these registers is selected by the bit settings of Registers 1 and 15.

The full set of management registers is listed in Table 22–6.

Table 22-6-MII management register set

Dogiston adduses	Dogistar nama	Basic/Extended		
Register address	Register name	MII	GMII	
0	Control	В	В	
1	Status	В	В	
2,3	PHY Identifier	Е	Е	
4	Auto-Negotiation Advertisement	Е	Е	
5	Auto-Negotiation Link Partner Base Page Ability	Е	Е	
6	Auto-Negotiation Expansion	Е	Е	
7	Auto-Negotiation Next Page Transmit	Е	Е	
8	Auto-Negotiation Link Partner Received Next Page	Е	Е	
9	MASTER-SLAVE Control Register	Е	Е	
10	MASTER-SLAVE Status Register	Е	Е	
11	PSE Control register	Е	Е	
12	PSE Status register	Е	Е	
13	MMD Access Control Register	Е	Е	
14	MMD Access Address Data Register	Е	Е	
15	Extended Status	Reserved	В	
16 through 31	Vendor Specific	Е	Е	

22.2.4.1 Control register (Register 0)

The assignment of bits in the Control Register is shown in Table 22–7. The default value for each bit of the Control Register should be chosen so that the initial state of the PHY upon power up or reset is a normal operational state without management intervention.

22.2.4.1.1 Reset

Resetting a PHY is accomplished by setting bit 0.15 to a logic one. This action shall set the status and control registers to their default states. As a consequence this action may change the internal state of the PHY and the state of the physical link associated with the PHY. This bit is self-clearing, and a PHY shall return a value of one in bit 0.15 until the reset process is completed. A PHY is not required to accept a write transaction to the control register until the reset process is completed, and writes to bits of the control register other than 0.15 may have no effect until the reset process is completed. The reset process shall be completed within 0.5 s from the setting of bit 0.15.

The default value of bit 0.15 is zero.

Table 22-7—Control register bit definitions

Bit(s)	Name	Description	R/W ^a			
0.15	Reset	1 = PHY reset 0 = normal operation				
0.14	Loopback	1 = enable loopback mode 0 = disable loopback mode	R/W			
0.13	Speed Selection (LSB)	0.6 0.13 1 1 = Reserved 1 0 = 1000 Mb/s 0 1 = 100 Mb/s 0 0 = 10 Mb/s	R/W			
0.12	Auto-Negotiation Enable	1 = enable Auto-Negotiation process 0 = disable Auto-Negotiation process	R/W			
0.11	Power Down	1 = power down 0 = normal operation ^b	R/W			
0.10	Isolate	1 = electrically Isolate PHY from MII or GMII 0 = normal operation ^b	R/W			
0.9	Restart Auto-Negotiation	1 = restart Auto-Negotiation process 0 = normal operation	R/W SC			
0.8	Duplex Mode	1 = full duplex 0 = half duplex	R/W			
0.7	Collision Test	1 = enable COL signal test 0 = disable COL signal test	R/W			
0.6	Speed Selection (MSB)	0.6 0.13 1 1 = Reserved 1 0 = 1000 Mb/s 0 1 = 100 Mb/s 0 0 = 10 Mb/s	R/W			
0.5	Unidirectional enable	When bit 0.12 is one or bit 0.8 is zero, this bit is ignored. When bit 0.12 is zero and bit 0.8 is one: 1 = Enable transmit from media independent interface regardless of whether the PHY has determined that a valid link has been established 0 = Enable transmit from media independent interface only when the PHY has determined that a valid link has been established	R/W			
0.4:0	Reserved	Write as 0, ignore on read	R/W			

^aR/W = Read/Write, SC = Self-clearing.

NOTE—This operation may interrupt data communication.

22.2.4.1.2 Loopback

The PHY shall be placed in a loopback mode of operation when bit 0.14 is set to a logic one. When bit 0.14 is set, the PHY receive circuitry shall be isolated from the network medium, and the assertion of TX_EN at the MII or GMII shall not result in the transmission of data on the network medium. When bit 0.14 is set, the PHY shall accept data from the MII or GMII transmit data path and return it to the MII or GMII receive data path in response to the assertion of TX_EN. When bit 0.14 is set, the delay from the assertion of TX_EN to

^bFor normal operation, both 0.10 and 0.11 must be cleared to zero; see 22.2.4.1.5.

the assertion of RX_DV shall be less than 512 BT. When bit 0.14 is set, the COL signal shall remain deasserted at all times, unless bit 0.7 is set, in which case the COL signal shall behave as described in 22.2.4.1.9. Clearing bit 0.14 to zero allows normal operation.

The default value of bit 0.14 is zero.

NOTE—The signal path through the PHY that is exercised in the loopback mode of operation is implementation specific, but it is recommended that the signal path encompass as much of the PHY circuitry as is practical. The intention of providing this loopback mode of operation is to permit a diagnostic or self-test function to perform the transmission and reception of a PDU, thus testing the transmit and receive data paths. Other loopback signal paths through a PHY may be enabled via the extended register set, in an implementation-specific fashion.

22.2.4.1.3 Speed selection

Link speed can be selected via either the Auto-Negotiation process, or manual speed selection. Manual speed selection is allowed when Auto-Negotiation is disabled by clearing bit 0.12 to zero. When Auto-Negotiation is disabled and bit 0.6 is cleared to a logic zero, setting bit 0.13 to a logic one configures the PHY for 100 Mb/s operation, and clearing bit 0.13 to a logic zero configures the PHY for 10 Mb/s operation. When Auto-Negotiation is disabled and bit 0.6 is set to a logic one, clearing bit 0.13 to a logic zero selects 1000 Mb/s operation. The combination of both bits 0.6 and 0.13 set to a logic one is reserved for future standardization. When Auto-Negotiation is enabled, bits 0.6 and 0.13 can be read or written, but the state of bits 0.6 and 0.13 have no effect on the link configuration, and it is not necessary for bits 0.6 and 0.13 to reflect the operating speed of the link when it is read. If a PHY reports via bits 1.15:9 and bits 15.15:12 that it is not able to operate at all speeds, the value of bits 0.6 and 0.13 shall correspond to a speed at which the PHY can operate, and any attempt to change the bits to an invalid setting shall be ignored.

The default value of bits 0.6 and 0.13 are the encoding of the highest data rate at which the PHY can operate as indicated by bits 1.15:9 and 15.15:12.

22.2.4.1.4 Auto-Negotiation enable

The Auto-Negotiation process shall be enabled by setting bit 0.12 to a logic one. If bit 0.12 is set to a logic one, then bits 0.13, 0.8, and 0.6 shall have no effect on the link configuration, and station operation other than that specified by the Auto-Negotiation protocol. If bit 0.12 is cleared to a logic zero, then bits 0.13, 0.8, and 0.6 will determine the link configuration, regardless of the prior state of the link configuration and the Auto-Negotiation process.

If a PHY reports via bit 1.3 that it lacks the ability to perform Auto-Negotiation, the PHY shall return a value of zero in bit 0.12. If a PHY reports via bit 1.3 that it lacks the ability to perform Auto-Negotiation, bit 0.12 should always be written as zero, and any attempt to write a one to bit 0.12 shall be ignored.

The default value of bit 0.12 is one, unless the PHY reports via bit 1.3 that it lacks the ability to perform Auto-Negotiation, in which case the default value of bit 0.12 is zero.

22.2.4.1.5 Power down

The PHY may be placed in a low-power consumption state by setting bit 0.11 to a logic one. Clearing bit 0.11 to zero allows normal operation. The specific behavior of a PHY in the power-down state is implementation specific. While in the power-down state, the PHY shall respond to management transactions. During the transition to the power-down state and while in the power-down state, the PHY shall not generate spurious signals on the MII or GMII.

A PHY is not required to meet the RX_CLK and TX_CLK signal functional requirements when either bit 0.11 or bit 0.10 is set to a logic one. A PHY shall meet the RX_CLK and TX_CLK signal functional requirements defined in 22.2.2 within 0.5 s after both bit 0.11 and 0.10 are cleared to zero.

The default value of bit 0.11 is zero.

22.2.4.1.6 Isolate

The PHY may be forced to electrically isolate its data paths from the MII or GMII by setting bit 0.10 to a logic one. Clearing bit 0.10 allows normal operation. When the PHY is isolated from the MII or GMII it shall not respond to the TXD data bundle, TX_EN, TX_ER and GTX_CLK inputs, and it shall present a high impedance on its TX_CLK, RX_CLK, RX_DV, RX_ER, RXD data bundle, COL, and CRS outputs. When the PHY is isolated from the MII or GMII it shall respond to management transactions.

A PHY that is connected to the MII via the mechanical interface defined in 22.6 shall have a default value of one for bit 0.10 so as to avoid the possibility of having multiple MII output drivers actively driving the same signal path simultaneously.

NOTE—This clause neither requires nor assumes any specific behavior at the MDI resulting from setting bit 0.10 to a logic one.

22.2.4.1.7 Restart Auto-Negotiation

If a PHY reports via bit 1.3 that it lacks the ability to perform Auto-Negotiation, or if Auto-Negotiation is disabled, the PHY shall return a value of zero in bit 0.9. If a PHY reports via bit 1.3 that it lacks the ability to perform Auto-Negotiation, or if Auto-Negotiation is disabled, bit 0.9 should always be written as zero, and any attempt to write a one to bit 0.9 shall be ignored.

Otherwise, the Auto-Negotiation process shall be restarted by setting bit 0.9 to a logic one. This bit is self-clearing, and a PHY shall return a value of one in bit 0.9 until the Auto-Negotiation process has been initiated. The Auto-Negotiation process shall not be affected by writing a zero to bit 0.9.

The default value of bit 0.9 is zero.

22.2.4.1.8 Duplex mode

The duplex mode can be selected via either the Auto-Negotiation process, or manual duplex selection. Manual duplex selection is allowed when Auto-Negotiation is disabled by clearing bit 0.12 to zero. When Auto-Negotiation is disabled, setting bit 0.8 to a logic one configures the PHY for full duplex operation, and clearing bit 0.8 to a logic zero configures the PHY for half duplex operation. When Auto-Negotiation is enabled, bit 0.8 can be read or written, but the state of bit 0.8 has no effect on the link configuration. If a PHY reports via bits 1.15:9 and 15.15:12 that it is able to operate in only one duplex mode, the value of bit 0.8 shall correspond to the mode in which the PHY can operate, and any attempt to change the setting of bit 0.8 shall be ignored.

When a PHY is placed in the loopback mode of operation via bit 0.14, the behavior of the PHY shall not be affected by the state of bit 0.8.

The default value of bit 0.8 is zero, unless a PHY reports via bits 1.15:9 and 15.15:12 that it is able to operate only in full duplex mode, in which case the default value of bit 0.8 is one.

22.2.4.1.9 Collision test

The COL signal at the MII or GMII may be tested by setting bit 0.7 to a logic one. When bit 0.7 is set to one, the PHY shall assert the COL signal within 512 BT in response to the assertion of TX_EN. While bit 0.7 is set to one, the PHY shall deassert the COL signal within 4 BT when connected to an MII, or 16 BT when connected to a GMII, in response to the deassertion of TX_EN. Clearing bit 0.7 to zero allows normal operation.

The default value of bit 0.7 is zero.

NOTE—It is recommended that the Collision Test function be used only in conjunction with the loopback mode of operation defined in 22.2.4.1.2.

22.2.4.1.10 Speed selection

Bit 0.6 is used in conjunction with bits 0.13 and 0.12 to select the speed of operation as described in 22.2.4.1.3.

22.2.4.1.11 Reserved bits

Bits 0.4:0 are reserved for future standardization. They shall be written as zero and shall be ignored when read; however, a PHY shall return the value zero in these bits.

22.2.4.1.12 Unidirectional enable

If a PHY reports via bit 1.7 that it lacks the ability to encode and transmit data from the media independent interface regardless of whether the PHY has determined that a valid link has been established, the PHY shall return a value of zero in bit 0.5, and any attempt to write a one to bit 0.5 shall be ignored.

The ability to encode and transmit data from the media independent interface regardless of whether the PHY has determined that a valid link has been established is controlled by bit 0.5 as well as the status of Auto-Negotiation Enable bit 0.12 and the Duplex Mode bit 0.8 as this ability can only be supported if Auto-Negotiation is disabled and the PHY is operating in full-duplex mode. If bit 0.5 is set to a logic one, bit 0.12 to logic zero and bit 0.8 to logic one, encoding and transmitting data from the media independent interface shall be enabled regardless of whether the PHY has determined that a valid link has been established. If bit 0.5 is set to a logic zero, bit 0.12 to logic one or bit 0.8 to logic zero, encoding and transmitting data from the media independent interface shall be dependent on whether the PHY has determined that a valid link has been established. When bit 0.12 is one or bit 0.8 is zero, bit 0.5 shall be ignored.

A management entity shall set bit 0.5 to a logic one only after it has enabled an associated OAM sublayer (see Clause 57) or if this device is a 1000BASE-PX-D PHY. A management entity shall clear bit 0.5 to a logic zero prior to it disabling an associated OAM sublayer when this device is not a 1000BASE-PX-D PHY. To avoid collisions, a management entity should not set bit 0.5 of a 1000BASE-PX-U PHY to a logic one.

The default value of bit 0.5 is zero, except for 1000BASE-PX-D, where it is one.

22.2.4.2 Status register (Register 1)

The assignment of bits in the Status register is shown in Table 22–8. All of the bits in the Status register are read only, a write to the Status register shall have no effect.

22.2.4.2.1 100BASE-T4 ability

When read as a logic one, bit 1.15 indicates that the PHY has the ability to perform link transmission and reception using the 100BASE-T4 signaling specification. When read as a logic zero, bit 1.15 indicates that the PHY lacks the ability to perform link transmission and reception using the 100BASE-T4 signaling specification.

22.2.4.2.2 100BASE-X full duplex ability

When read as a logic one, bit 1.14 indicates that the PHY has the ability to perform full duplex link transmission and reception using the 100BASE-X signaling specification. When read as a logic zero, bit

Table 22-8—Status register bit definitions

Bit(s)	Name	Description	R/W ^a
1.15	100BASE-T4	1 = PHY able to perform 100BASE-T4 0 = PHY not able to perform 100BASE-T4	RO
1.14	100BASE-X Full Duplex	1 = PHY able to perform full duplex 100BASE-X 0 = PHY not able to perform full duplex 100BASE-X	RO
1.13	100BASE-X Half Duplex	1 = PHY able to perform half duplex 100BASE-X 0 = PHY not able to perform half duplex 100BASE-X	RO
1.12	10 Mb/s Full Duplex	1 = PHY able to operate at 10 Mb/s in full duplex mode 0 = PHY not able to operate at 10 Mb/s in full duplex mode	RO
1.11	10 Mb/s Half Duplex	1 = PHY able to operate at 10 Mb/s in half duplex mode 0 = PHY not able to operate at 10 Mb/s in half duplex mode	RO
1.10	100BASE-T2 Full Duplex	1 = PHY able to perform full duplex 100BASE-T2 0 = PHY not able to perform full duplex 100BASE-T2	RO
1.9	100BASE-T2 Half Duplex	1 = PHY able to perform half duplex 100BASE-T2 0 = PHY not able to perform half duplex 100BASE-T2	RO
1.8	Extended Status	1 = Extended status information in Register 15 0 = No extended status information in Register 15	RO
1.7	Unidirectional ability	1 = PHY able to transmit from media independent interface regardless of whether the PHY has determined that a valid link has been established 0 = PHY able to transmit from media independent interface only when the PHY has determined that a valid link has been established	RO
1.6	MF Preamble Suppression	1 = PHY will accept management frames with preamble suppressed 0 = PHY will not accept management frames with preamble suppressed	RO
1.5	Auto-Negotiation Complete	1 = Auto-Negotiation process completed 0 = Auto-Negotiation process not completed	RO
1.4	Remote Fault	1 = remote fault condition detected 0 = no remote fault condition detected	RO/ LH
1.3	Auto-Negotiation Ability	1 = PHY is able to perform Auto-Negotiation 0 = PHY is not able to perform Auto-Negotiation	RO
1.2	Link Status	1 = link is up 0 = link is down	RO/ LL
1.1	Jabber Detect	1 = jabber condition detected 0 = no jabber condition detected	RO/ LH
1.0	Extended Capability	1 = extended register capabilities 0 = basic register set capabilities only	RO

^aRO = Read only, LL = Latching low, LH = Latching high

^{1.14} indicates that the PHY lacks the ability to perform full duplex link transmission and reception using the 100BASE-X signaling specification.

22.2.4.2.3 100BASE-X half duplex ability

When read as a logic one, bit 1.13 indicates that the PHY has the ability to perform half duplex link transmission and reception using the 100BASE-X signaling specification. When read as a logic zero, bit 1.13 indicates that the PHY lacks the ability to perform half duplex link transmission and reception using the 100BASE-X signaling specification.

22.2.4.2.4 10 Mb/s full duplex ability

When read as a logic one, bit 1.12 indicates that the PHY has the ability to perform full duplex link transmission and reception while operating at 10 Mb/s. When read as a logic zero, bit 1.12 indicates that the PHY lacks the ability to perform full duplex link transmission and reception while operating at 10 Mb/s.

22.2.4.2.5 10 Mb/s half duplex ability

When read as a logic one, bit 1.11 indicates that the PHY has the ability to perform half duplex link transmission and reception while operating at 10 Mb/s. When read as a logic zero, bit 1.11 indicates that the PHY lacks the ability to perform half duplex link transmission and reception while operating at 10 Mb/s.

22.2.4.2.6 100BASE-T2 full duplex ability

When read as a logic one, bit 1.10 indicates that the PHY has the ability to perform full duplex link transmission and reception using the 100BASE-T2 signaling specification. When read as a logic zero, bit 1.10 indicates that the PHY lacks the ability to perform full duplex link transmission and reception using the 100BASE-T2 signaling specification.

22.2.4.2.7 100BASE-T2 half duplex ability

When read as a logic one, bit 1.9 indicates that the PHY has the ability to perform half duplex link transmission and reception using the 100BASE-T2 signaling specification. When read as a logic zero, bit 1.9 indicates that the PHY lacks the ability to perform half duplex link transmission and reception using the 100BASE-T2 signaling specification.

22.2.4.2.8 Unidirectional ability

When read as a logic one, bit 1.7 indicates that the PHY has the ability to encode and transmit data from the media independent interface regardless of whether the PHY has determined that a valid link has been established. When read as a logic zero, bit 1.7 indicates the PHY is able to transmit data from the media independent interface only when the PHY has determined that a valid link has been established.

A PHY shall return a value of zero in bit 1.7 if it is not a 100BASE-X PHY using the PCS and PMA specified in 66.1 or a 1000BASE-X PHY using the PCS and PMA specified in 66.2.

22.2.4.2.9 MF preamble suppression ability

When read as a logic one, bit 1.6 indicates that the PHY is able to accept management frames regardless of whether they are or are not preceded by the preamble pattern described in 22.2.4.5.2. When read as a logic zero, bit 1.6 indicates that the PHY is not able to accept management frames unless they are preceded by the preamble pattern described in 22.2.4.5.2.

22.2.4.2.10 Auto-Negotiation complete

When read as a logic one, bit 1.5 indicates that the Auto-Negotiation process has been completed, and that the contents of the extended registers implemented by the Auto-Negotiation protocol (either Clause 28 or

Clause 37) are valid. When read as a logic zero, bit 1.5 indicates that the Auto-Negotiation process has not been completed, and that the contents of the extended registers are as defined by the current state of the Auto-Negotiation protocol, or as written for manual configuration. A PHY shall return a value of zero in bit 1.5 if Auto-Negotiation is disabled by clearing bit 0.12. A PHY shall also return a value of zero in bit 1.5 if it lacks the ability to perform Auto-Negotiation.

22.2.4.2.11 Remote fault

When read as a logic one, bit 1.4 indicates that a remote fault condition has been detected. The type of fault as well as the criteria and method of fault detection is PHY specific. The Remote Fault bit shall be implemented with a latching function, such that the occurrence of a remote fault will cause the Remote Fault bit to become set and remain set until it is cleared. The Remote Fault bit shall be cleared each time Register 1 is read via the management interface, and shall also be cleared by a PHY reset.

If a PHY has no provision for remote fault detection, it shall maintain bit 1.4 in a cleared state. Further information regarding the remote fault indication can be found in 37.2.1.5, 22.2.1.2, and 24.3.2.1.

22.2.4.2.12 Auto-Negotiation ability

When read as a logic one, bit 1.3 indicates that the PHY has the ability to perform Auto-Negotiation. When read as a logic zero, bit 1.3 indicates that the PHY lacks the ability to perform Auto-Negotiation.

22.2.4.2.13 Link Status

When read as a logic one, bit 1.2 indicates that the PHY has determined that a valid link has been established. When read as a logic zero, bit 1.2 indicates that the link is not valid. The criteria for determining link validity is PHY specific. The Link Status bit shall be implemented with a latching function, such that the occurrence of a link failure condition will cause the Link Status bit to become cleared and remain cleared until it is read via the management interface. This status indication is intended to support the management attribute defined in 30.5.1.1.4, aMediaAvailable.

22.2.4.2.14 Jabber detect

When read as a logic one, bit 1.1 indicates that a jabber condition has been detected. This status indication is intended to support the management attribute defined in 30.5.1.1.6, aJabber, and the MAU notification defined in 30.5.1.3.1, nJabber. The criteria for the detection of a jabber condition is PHY specific. The Jabber Detect bit shall be implemented with a latching function, such that the occurrence of a jabber condition will cause the Jabber Detect bit to become set and remain set until it is cleared. The Jabber Detect bit shall be cleared each time Register 1 is read via the management interface, and shall also be cleared by a PHY reset.

PHYs specified for 100 Mb/s operation or above do not incorporate a Jabber Detect function, as this function is defined to be performed in the repeater unit at these speeds. Therefore, PHYs specified for 100 Mb/s operation and above shall always return a value of zero in bit 1.1.

22.2.4.2.15 Extended capability

When read as a logic one, bit 1.0 indicates that the PHY provides an extended set of capabilities which may be accessed through the extended register set. When read as a logic zero, bit 1.0 indicates that the PHY provides only the basic register set.

22.2.4.2.16 Extended status

When read as a logic one, bit 1.8 indicates that the base register status information is extended into Register 15. All PHYs supporting 1000 Mb/s operation shall have this bit set to a logic one. When read as a logic zero, bit 1.8 indicates that the extended status is not implemented.

22.2.4.3 Extended capability registers

In addition to the basic register set defined in 22.2.4.1 and 22.2.4.2, PHYs may provide an extended set of capabilities that may be accessed and controlled via the MII management interface. Thirteen registers have been defined within the extended address space for the purpose of providing a PHY-specific identifier to layer management, to provide control and monitoring for the Auto-Negotiation process, and to provide control and monitoring of power sourcing equipment, and to provide MDIO Manageable Device (MMD) register access.

If an attempt is made to perform a read transaction to a register in the extended register set, and the PHY being read does not implement the addressed register, the PHY shall not drive the MDIO line in response to the read transaction. If an attempt is made to perform a write transaction to a register in the extended register set, and the PHY being written does not implement the addressed register, the write transaction shall be ignored by the PHY.

22.2.4.3.1 PHY Identifier (Registers 2 and 3)

Registers 2 and 3 provide a 32-bit value, which shall constitute a unique identifier for a particular type of PHY. A PHY may return a value of zero in each of the 32 bits of the PHY Identifier.

Bit 2.15 shall be the MSB of the PHY Identifier, and bit 3.0 shall be the LSB of the PHY Identifier.

The PHY Identifier shall be composed of the third through 24th bits of the Organizationally Unique Identifier (OUI) assigned to the PHY manufacturer by the IEEE, 1 plus a six-bit manufacturer's model number, plus a four-bit manufacturer's revision number. The PHY Identifier is intended to provide sufficient information to support the oResourceTypeID object as required in 30.1.2.

The third bit of the OUI is assigned to bit 2.15, the fourth bit of the OUI is assigned to bit 2.14, and so on. Bit 2.0 contains the eighteenth bit of the OUI. Bit 3.15 contains the nineteenth bit of the OUI, and bit 3.10 contains the twenty-fourth bit of the OUI. Bit 3.9 contains the MSB of the manufacturer's model number. Bit 3.4 contains the LSB of the manufacturer's model number. Bit 3.3 contains the MSB of the manufacturer's revision number, and bit 3.0 contains the LSB of the manufacturer's revision number.

NOTE—The use of only 22 bits of the OUI as described here has been deprecated by the IEEE Registration Authority. The definition of vendor-specific device identifiers for other applications is expected to use the full 24 bits to accommodate the use of either an OUI or Company ID.

¹Interested applicants should contact the IEEE Standards Department, Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, USA.

Figure 22–14 depicts the mapping of this information to the bits of Registers 2 and 3. Additional detail describing the format of OUIs can be found in IEEE Std 802.

Figure 22–14—Format of PHY Identifier

22.2.4.3.2 Auto-Negotiation advertisement (Register 4)

Register 4 provides 16 bits that are used by the Auto-Negotiation process. See 28.2.4.1 and 37.2.5.1.

22.2.4.3.3 Auto-Negotiation link partner ability (Register 5)

Register 5 provides 16 bits that are used by the Auto-Negotiation process. See 28.2.4.1 and 37.2.5.1.

22.2.4.3.4 Auto-Negotiation expansion (Register 6)

Register 6 provides 16 bits that are used by the Auto-Negotiation process. See 28.2.4.1 and 37.2.5.1.

22.2.4.3.5 Auto-Negotiation Next Page (Register 7)

Register 7 provides 16 bits that are used by the Auto-Negotiation process. See 28.2.4.1 and 37.2.5.1.

22.2.4.3.6 Auto-Negotiation link partner Received Next Page (Register 8)

Register 8 provides 16 bits that are used by the Auto-Negotiation process. See 32.5.1 and 37.2.5.1.

22.2.4.3.7 MASTER-SLAVE control register (Register 9)

Register 9 provides bit values by 100BASE-T2 (as specified in 32.5) and 1000BASE-T (as specified in 40.5).

22.2.4.3.8 MASTER-SLAVE status register (Register 10)

Register 10 provides bit values by 100BASE-T2 (as specified in 32.5) and 1000BASE-T (as specified in 40.5).

22.2.4.3.9 PSE Control register (Register 11)

Register 11 provides control bits that are used by a PSE. See 33.5.1.1.

22.2.4.3.10 PSE Status register (Register 12)

Register 12 provides status bits that are supplied by a PSE. See 33.5.1.2.

22.2.4.3.11 MMD access control register (Register 13)

The assignment of bits in the MMD access control register is shown in Table 22–9. The MMD access control register is used in conjunction with the MMD access address data register (Register 14) to provide access to the MMD address space using the interface and mechanisms defined in 22.2.4.

Table 22–9—MMD access control register bit definitions

Bit(s)	Name	Description	R/W ^a
13.15:14	Function	13.1513.14 00= address 01= data, no post increment 10= data, post increment on reads and writes 11= data, post increment on writes only	R/W
13.13:5	Reserved	Write as 0, ignore on read	R/W
13.4:0	DEVAD	Device address	R/W

 $^{{}^{}a}R/W = Read/Write$

Each MMD maintains its own individual address register as described in 45.2.8. The DEVAD field directs any accesses of Register 14 to the appropriate MMD as described in 45.2. If the access of Register 14 is an address access (bits 13.15:14 = 00) then it is directed to the address register within the MMD associated with the value in the DEVAD field (bits 13.4:0). Otherwise, both the DEVAD field and that MMD's address register direct the Register 14 data accesses to the appropriate registers within that MMD.

The Function field can be set to any of four values:

- a) When set to 00, accesses to Register 14 access the MMD's individual address register. This address register should always be initialized before attempting any accesses to other MMD registers.
- b) When set to 01, accesses to Register 14 access the register within the MMD selected by the value in the MMD's address register.
- c) When set to 10, accesses to Register 14 access the register within the MMD selected by the value in the MMD's address register. After that access is complete, for both read and write accesses, the value in the MMD's address field is incremented.
- d) When set to 11, accesses to Register 14 access the register within the MMD selected by the value in the MMD's address register. After that access is complete, for write accesses only, the value in the MMD's address field is incremented. For read accesses, the value in the MMD's address field is not modified.

For additional insight into the operation and usage of this register, see Annex 22D.

22.2.4.3.12 MMD access address data register (Register 14)

The assignment of bits in the MMD access address data register is shown in Table 22–10. The MMD access address data register is used in conjunction with the MMD access control register (Register 13) to provide access to the MMD address space using the interface and mechanisms defined in 22.2.4. Accesses to this

register are controlled by the value of the fields in Register 13 and the contents of the MMD's individual address field as described in 22.2.4.3.11.

Table 22–10—MMD access address data register bit definitions

Bit(s)	Name	Description	R/W ^a
14.15:0	Address Data	If 13.15:14 = 00, MMD DEVAD's address register. Otherwise, MMD DEVAD's data register as indicated by the contents of its address register	R/W

^aR/W = Read/Write

For additional insight into the operation and usage of this register, see Annex 22D.

22.2.4.3.13 PHY specific registers

A particular PHY may provide additional registers beyond those defined above. Register addresses 16 through 31 (decimal) may be used to provide vendor-specific functions or abilities. The definition of Registers 4 through 14 are dependent on the version (Clause 28 or Clause 37) of Auto-Negotiation protocol used by the PHY.

22.2.4.4 Extended Status register (Register 15)

The Extended Status register is implemented for 1000BASE-T PHYs and all PHYs using the 1000BASE-X signaling specifications. The assignment of bits in the Extended Status register is shown in Table 22–11. All of the bits in the Extended Status register are read only; a write to the Extended Status register shall have no effect.

Table 22-11—Extended Status register bit definitions

Bit(s)	Name	Description	R/W ^a
15.15	1000BASE-X Full Duplex	1 = PHY able to perform full duplex 1000BASE-X 0 = PHY not able to perform full duplex 1000BASE-X	RO
15.14	1000BASE-X Half Duplex	1 = PHY able to perform half duplex 1000BASE-X 0 = PHY not able to perform half duplex 1000BASE-X	RO
15.13	1000BASE-T Full Duplex	1 = PHY able to perform full duplex 1000BASE-T 0 = PHY not able to perform full duplex 1000BASE-T	RO
15.12	1000BASE-T Half Duplex	1 = PHY able to perform half duplex 1000BASE-T 0 = PHY not able to perform half duplex 1000BASE-T	RO
15.11:0	Reserved	Ignore when read	RO

 $^{^{}a}RO = Read only$

22.2.4.4.1 1000BASE-X full duplex ability

When read as a logic one, bit 15.15 indicates that the PHY has the ability to perform full duplex link transmission and reception using the 1000BASE-X signaling specification. When read as a logic zero, the

bit 15.15 indicates that the PHY lacks the ability to perform full duplex link transmission and reception using the 1000BASE-X signaling specification.

22.2.4.4.2 1000BASE-X half duplex ability

When read as a logic one, bit 15.14 indicates that the PHY has the ability to perform half duplex link transmission and reception using the 1000BASE-X signaling specification. When read as a logic zero, the bit 15.14 indicates that the PHY lacks the ability to perform half duplex link transmission and reception using the 1000BASE-X signaling specification.

22.2.4.4.3 1000BASE-T full duplex ability

When read as a logic one, bit 15.13 indicates that the PHY has the ability to perform full duplex link transmission and reception using the 1000BASE-T signaling specification. When read as a logic zero, the bit 15.13 indicates that the PHY lacks the ability to perform full duplex link transmission and reception using the 1000BASE-T signaling specification.

22.2.4.4.4 1000BASE-T half duplex ability

When read as a logic one, bit 15.12 indicates that the PHY has the ability to perform half duplex link transmission and reception using the 1000BASE-T signaling specification. When read as a logic zero, the bit 15.12 indicates that the PHY lacks the ability to perform half duplex link transmission and reception using the 1000BASE-T signaling specification.

22.2.4.4.5 Reserved bits

Bits 15:11:0 are reserved for future standardization. They shall be written as zero and shall be ignored when read; however, a PHY shall return the value zero in these bits.

22.2.4.5 Management frame structure

Frames transmitted on the MII Management Interface shall have the frame structure shown in Table 22–12. The order of bit transmission shall be from left to right.

Management frame fields **PRE** STOP PHYAD REGAD TA DATA **IDLE** RRRRR **READ** 01 10 AAAAA Z0DDDDDDDDDDDDDDD Z 1...1 Z WRITE 1...1 01 01 AAAAA RRRRR 10 DDDDDDDDDDDDDDD

Table 22-12—Management frame format

22.2.4.5.1 IDLE (IDLE condition)

The IDLE condition on MDIO is a high-impedance state. All three state drivers shall be disabled and the PHY's pull-up resistor will pull the MDIO line to a logic one.

22.2.4.5.2 PRE (preamble)

At the beginning of each transaction, the station management entity shall send a sequence of 32 contiguous logic one bits on MDIO with 32 corresponding cycles on MDC to provide the PHY with a pattern that it can

use to establish synchronization. A PHY shall observe a sequence of 32 contiguous one bits on MDIO with 32 corresponding cycles on MDC before it responds to any transaction.

If the STA determines that every PHY that is connected to the MDIO signal is able to accept management frames that are not preceded by the preamble pattern, then the STA may suppress the generation of the preamble pattern, and may initiate management frames with the ST (Start of Frame) pattern.

22.2.4.5.3 ST (start of frame)

The start of frame is indicated by a <01> pattern. This pattern assures transitions from the default logic one line state to zero and back to one.

22.2.4.5.4 **OP** (operation code)

The operation code for a read transaction is <10>, while the operation code for a write transaction is <01>.

22.2.4.5.5 PHYAD (PHY Address)

The PHY Address is five bits, allowing 32 unique PHY addresses. The first PHY address bit transmitted and received is the MSB of the address. A PHY that is connected to the station management entity via the mechanical interface defined in 22.6 shall always respond to transactions addressed to PHY Address zero <00000>. A station management entity that is attached to multiple PHYs must have prior knowledge of the appropriate PHY Address for each PHY.

22.2.4.5.6 REGAD (Register Address)

The Register Address is five bits, allowing 32 individual registers to be addressed within each PHY. The first Register Address bit transmitted and received is the MSB of the address. The register accessed at Register Address zero <00000> shall be the control register defined in 22.2.4.1, and the register accessed at Register Address one <00001> shall be the status register defined in 22.2.4.2.

22.2.4.5.7 TA (turnaround)

The turnaround time is a 2 bit time spacing between the Register Address field and the Data field of a management frame to avoid contention during a read transaction. For a read transaction, both the STA and the PHY shall remain in a high-impedance state for the first bit time of the turnaround. The PHY shall drive a zero bit during the second bit time of the turnaround of a read transaction. During a write transaction, the STA shall drive a one bit for the first bit time of the turnaround and a zero bit for the second bit time of the turnaround. Figure 22–15 shows the behavior of the MDIO signal during the turnaround field of a read transaction.

Figure 22–15—Behavior of MDIO during TA field of a read transaction

22.2.4.5.8 DATA (data)

The data field is 16 bits. The first data bit transmitted and received shall be bit 15 of the register being addressed.

22.3 Signal timing characteristics

All signal timing characteristics shall be measured using the techniques specified in Annex 22C. The signal threshold potentials $V_{ih(min)}$ and $V_{il(max)}$ are defined in 22.4.4.1.

The HIGH time of an MII signal is defined as the length of time that the potential of the signal is greater than or equal to $V_{ih(min)}$. The LOW time of an MII signal is defined as the length of time that the potential of the signal is less than or equal to $V_{il(max)}$.

The setup time of an MII signal relative to an MII clock edge is defined as the length of time between when the signal exits and remains out of the switching region and when the clock enters the switching region. The hold time of an MII signal relative to an MII clock edge is defined as the length of time between when the clock exits the switching region and when the signal enters the switching region.

The propagation delay from an MII clock edge to a valid MII signal is defined as the length of time between when the clock exits the switching region and when the signal exits and remains out of the switching region.

22.3.1 Signals that are synchronous to TX_CLK

Figure 22–16 shows the timing relationship for the signals associated with the transmit data path at the MII connector. The clock to output delay shall be a minimum of 0 ns and a maximum of 25 ns.

Figure 22-16—Transmit signal timing relationships at the MII

22.3.1.1 TX_EN

TX_EN is transitioned by the Reconciliation sublayer synchronously with respect to the TX_CLK rising edge with the timing as shown in Figure 22–16.

22.3.1.2 TXD<3:0>

TXD<3:0> is transitioned by the Reconciliation sublayer synchronously with respect to the TX_CLK rising edge with the timing as depicted in Figure 22–16.

22.3.1.3 TX_ER

TX ER is transitioned synchronously with respect to the rising edge of TX CLK as shown in Figure 22–16.