MATH 503: Mathematical Statistics

Lecture 7: Hypothesis Testing II Reading: C&B Chp. 8, HMC Sec. 6.3

Kimberly F. Sellers

Department of Mathematics & Statistics

Today's Topics

- Maximum likelihood tests
 - Likelihood Ratio Test
 - Wald Test
 - (Rao's) Score Test
- Uniformly most powerful (UMP) tests
 - Monotone Likelihood Ratio

Likelihood Ratio Test (LRT)

- Let $X_1, ..., X_n$ be iid with pdf $f(x; \theta)$
- Consider $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_0'$
- Let $\widehat{\theta}$ denote the MLE of θ
- Consider the ratio of two likelihoods, namely

$$\Lambda = \frac{\sup_{\Theta_0} L(\theta \mid \mathbf{x})}{\sup_{\Theta} L(\theta \mid \mathbf{x})}$$

Question: what are the bounds for Λ?

Likelihood Ratio Test (cont.)

- By definition,
 - Λ close to 1 if H_0 true
 - Λ "small" if H_1 true

• For specified significance level α , decision rule says to reject H_0 in favor of H_1 if $\Lambda \leq c$, where c chosen st. $\alpha = P_{\theta_0}[\Lambda \leq c]$

Steps to Performing LRT

- Identify hypotheses
- Determine likelihood function, $L(\theta; x)$
- Find associated MLEs $\hat{\theta} \in \Theta$, and $\hat{\theta}_0 \in \Theta_0$
- Determine likelihood ratio Λ (simplify as necessary)
- Determine appropriate decision rule based on $\Lambda \leq c$

Let $X_1, ..., X_n$ be iid Exponential(θ). Determine the appropriate LRT for testing H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$.

• Let X_1, \dots, X_n be iid with pdf

$$f(x \mid \theta) = e^{-(x-\theta)}, \quad x \ge \theta, \quad -\infty < \theta < \infty$$

• Consider H_0 : $\theta \le \theta_0$ vs. H_1 : $\theta > \theta_0$. Determine the appropriate LRT.

Let $X_1, ..., X_n$ be iid Normal $(\theta, \sigma^2), -\infty < \theta < \infty$ unknown, $\sigma^2 > 0$ known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. Determine the appropriate LRT.

Theorem

- Assume that the appropriate regularity conditions hold:
 - Pdfs are distinct, i.e. $\theta \neq \theta' \Rightarrow f(x_i; \theta) \neq f(x_i; \theta')$
 - Pdfs have common support for all θ
 - The point θ_0 is an interior point in Ω
 - Pdf is twice differentiable as a function of θ
 - Integral $\int f(x;\theta)dx$ can be differentiated twice under the integral sign as a function of θ
 - The pdf $f(x; \theta)$ is three times differentiable as a function of θ . Further, for all $\theta \in \Omega$, there exists a constant c and function M(x) s.t. $\left|\frac{\partial^3}{\partial \theta^3}\log f(x;\theta)\right| \le M(x)$, with $E_{\theta_0}[M(x)] < \infty$, for all $\theta_0 c < \theta < \theta_0 + c$ and all x in the support of X.

Theorem (cont.)

- Under H_0 , $-2 \log \Lambda \rightarrow \chi_1^2$ in distribution.
- Decision rule: Reject H_0 in favor of H_1 if $\chi_L^2 = -2 \log \Lambda \ge \chi_1^2(\alpha)$

Wald Test

- The Wald Test statistic: $\chi_W^2 = \left[\sqrt{nI(\hat{\theta})} (\hat{\theta} \theta_0) \right]^2$
- Taylor expansion implies

$$-2\log\Lambda = 2(l(\hat{\theta}) - l(\theta_0)) = \left[\sqrt{nI(\theta_0)}(\hat{\theta} - \theta_0)\right]^2 + R_n^*$$

where
$$I(\hat{\theta}) \stackrel{p}{\to} I(\theta_0)$$
 $\therefore \chi_W^2 = \left[\sqrt{nI(\hat{\theta})} (\hat{\theta} - \theta_0) \right]^2 \stackrel{d}{\to} \chi_1^2$

- Decision rule: Reject H_0 in favor of H_1 if $\chi_W^2 \ge \chi_1^2(\alpha)$
- Under H_0 , $\chi_W^2 \chi_L^2 \xrightarrow{p} 0$

Rao's Score Test

• $\chi_R^2 = \left(\frac{l'(\theta_0)}{\sqrt{nI(\theta_0)}}\right)^2$, where scores are $S(\theta) = \left(\frac{\partial \log f(X_1;\theta)}{\partial \theta}, \dots, \frac{\partial \log f(X_n;\theta)}{\partial \theta}\right)'$ and $l'(\theta_0) = \sum_{i=1}^n \frac{\partial \log f(X_i;\theta)}{\partial \theta}$

• Decision rule: Reject H_0 in favor of H_1 if $\chi_R^2 \ge \chi_1^2(\alpha)$

• Let $X_1, ..., X_n$ be a random sample from Poisson(θ), $\theta > 0$. Test H_0 : $\theta = 2$ vs. H_1 : $\theta \neq 2$ using (a) $-2 \log \Lambda$, (b) a Wald-test statistic, (c) Rao's score statistic.

Uniformly Most Powerful Tests

- The critical region C is a <u>uniformly most powerful</u> (<u>UMP</u>) <u>critical region</u> of size α for testing the simple hypothesis H_0 against an alternative composite hypothesis H_1 if the set C is a best critical region of size α for testing H_0 against each simple hypothesis in H_1 .
- A test defined by this critical region \mathcal{C} is called a uniformly most power (UMP) test, with significance level α , for testing the simple hypothesis H_0 against the alternative composite hypothesis H_1 .

Notes re. UMP Tests

- UMP tests don't always exist
- When they do exist, Neymann-Pearson can help determine them.
- UMP tests are based on sufficient statistics

How do we determine the best critical region?

Neymann-Pearson Thm.: Let $X_1, ..., X_n$ (n, a positive fixed integer) denote a random sample from a distribution that has pdf/pmf $f(x; \theta)$. Then the likelihood of $X_1, ..., X_n$ is

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f(x_i; \theta).$$

Let θ' and θ'' be distinct fixed values of θ s.t. $\Omega = \{\theta: \theta = \theta', \theta''\}$, and let k be a positive number.

Neymann-Pearson Thm. (cont.)

Let C be a subset of the sample space s.t.

a)
$$\frac{L(\theta';x)}{L(\theta'';x)} \le k$$
, for each point $x \in C$

b)
$$\frac{L(\theta';x)}{L(\theta'';x)} \ge k$$
, for each point $x \in C^c$

c)
$$\alpha = P_{H_0}[X \in C]$$

Then C is a best critical region of size α for testing the simple hypothesis H_0 : $\theta = \theta'$ vs. H_1 : $\theta = \theta''$.

Let $X_1, ..., X_n$ be a random sample from a distribution that is $N(0, \theta)$, where the variance θ is an unknown positive number. Show that there exists a UMP test with significance level α for testing H_0 : $\theta = \theta'$ vs. H_1 : $\theta > \theta'$.

Let $X_1, ..., X_n$ be a random sample from a normal distribution $N(\theta, 1)$, where θ is unknown. Does a UMP test of H_0 : $\theta = \theta'$ vs. H_1 : $\theta \neq \theta'$ exist?

Let $X_1, ..., X_{10}$ be a random sample of size 10 from a Poisson(θ) distribution. Find a best critical region for testing H_0 : $\theta = 0.1$ vs. H_1 : $\theta = 0.5$. Is this region uniformly most powerful for H_0 : $\theta = 0.1$ vs. H_1 : $\theta > 0.1$?

For One-sided Hypotheses...

- Consider $H_0: \theta \leq \theta'$ vs. $H_1: \theta > \theta'$ [or, analogously, $H_0: \theta \geq \theta'$ vs. $H_1: \theta < \theta'$]
- For some families of pdfs and hypotheses, we can obtain general forms of UMP tests

Introduce the monotone likelihood ratio....

Monotone Likelihood Ratio

[In CB] A family of pdfs or pmfs $\{g(t \mid \theta) : \theta \in \Theta\}$ for a univariate random variable T with real-valued parameter θ has a monotone likelihood ratio (MLR) if, for every $\theta_2 > \theta_1$, $g(t \mid \theta_2)/g(t \mid \theta_1)$ is a monotone (nonincreasing or nondecreasing) function of t on $\{t : g(t \mid \theta_1) > 0 \text{ or } g(t \mid \theta_2) > 0\}$

[In HMC] The likelihood $L(\theta; x)$ has monotone likelihood ratio (MLR) in the statistic y = u(x), if for $\theta_1 < \theta_2$, the ratio $L(\theta_1; x)/L(\theta_2; x)$ is a monotone function of y = u(x).

Let $X_1, ..., X_n$ be a random sample from a Bernoulli distribution with parameter $p = \theta$, where $0 < \theta < 1$. Show that this distribution satisfies the MLR property.

Karlin-Rubin Theorem

Consider testing H_0 : $\theta \leq \theta_0$ vs H_1 : $\theta > \theta_0$. Suppose that T is a sufficient statistic for θ and the family of pdfs or pmfs $\{g(t \mid \theta): \theta \in \Theta\}$ of T has a nondecreasing MLR*. Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$.

^{*} as defined in CB.

Let $X_1, ..., X_n$ be a random sample whose distribution can be represented as an exponential family. Show that this distribution satisfies the MLR property, if $p(\theta)$ is monotone.

Unbiased Tests

- A test is <u>unbiased</u> if its power never falls below the significance level
- Examples:
 - MP test of simple H_0 vs. simple H_1
 - One-sided tests based on MLR pdfs