(Convolutional) autoencoder

Encoder

Encoder (the first half of autoencoder) transforms image to features (point in the latent space) ...

Regressor

... and for features perceptron works also in practice

Classifier

pridaním Softmaxu alebo Sigmoidy vieme regressor premeniť na klasifikátor

logit

Softmax mení čokoľvek na pravdepodobnosti

$$softmax_i(x) = \frac{e^{x_i}}{\sum_k e^{x_k}}$$

def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)

Softmax má zmysel len keď sa kategórie navzájom vylučujú. Pokiaľ máme napr. koleso aj bicykel, používame Sigmoid

Cross Entropy Loss

$$loss(x,y) = -\sum_{i} y_{i} \log \frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}}$$

$$x_i$$
 Softmax Softmax

gradienty
$$\frac{\partial L}{\partial x_i} = \begin{cases} p_i & \text{when } y_i = 0\\ p_i - 1 & \text{when } y_i = 1 \end{cases}$$

Základná vlastnosť DNN

• Keď si vieme zdôvodniť ako nejaký systém urobiť postupne a po častiach (spravíme autoencoder, odrežeme dekóder, pripojíme perceptron, ...), môžeme ho urobiť priamo v koncovej architektúre (End-to-End system)

CIFAR10

Trénovanie neurónových sietí

- Pri komplikovanejších sieťach trénovanie ľahko uviazne v lokálnom minime
- Do siete preto pridávame stavebné prvky, ktoré sa tomu snažia brániť
- Pozornosť tiež venujeme inicializácii váh

Dropout

 Počas trénovania sa náhodne pokazí prenos signálu medzi dvomi vrstvami (pošle sa nula)

 Je to prevencia uviaznutia v lokálnom minime a vedie to k lepšiemu rozloženiu zodpovednosti medzi neuróny v rámci jednej vrstvy

Xavier distribution

- Inicializácia váh má veľký vplyv na rýchlosť i výsledok trénovania
- Veľmi dobrou pre siete s ReLU je Xavierova (= Glorotova) inicializácia:

U[-x,x] kde
$$x = \sqrt{\frac{6}{N+M}}$$

kde N je počet vstupov a M počet neurónov

Kaiming distribution

• Defaultnou inicializaciou v Pytorch je Kaimingova inicializácia:

$$U[-x,x]$$
 kde $x = \sqrt{\frac{6}{N}}$

kde N je počet vstupov a M počet neurónov

Fully – Connected layer (Linear) s N vstupmi a M neurónmi (N x M + M parametrov) zodpovedá bloku M konvolučných vrstiev prepojených na vstup 1x1xN (rozlíšenie 1x1 a N kanálov) s kernelom 1x1

Fully – Connected layer (Linear) s N vstupmi a M neurónmi (N x M + M parametrov) zodpovedá bloku M konvolučných vrstiev prepojených na vstup 1x1xN (rozlíšenie 1x1 a N kanálov) s kernelom 1x1

Fully – Connected layer (Linear) s N vstupmi a M neurónmi (N x M + M parametrov) zodpovedá bloku M konvolučných vrstiev prepojených na vstup 1x1xN (rozlíšenie 1x1 a N kanálov) s kernelom 1x1

Keď teraz ako vstup vložíme niečo s väčším resolution, napríklad 13x13x4, spustíme 169 paralelne bežiacich perceptrónov, ktoré zdieľajú váhy a biásy

block of 3 convolutional layers with kernel 1x1

Čo je vlastne CNN?

• Čo ak teraz použijeme kernel väčší ako 1x1, napríklad 3x3?

• Zabezpečí to výmenu informácii medzi susednými paralelne bežiacimi perceptrónmi.

Čo je vlastne CNN?

• CNN je teda sieť, kde paralelne púšťame rovnaké spolupracujúce perceptrony nad rôznymi miestami obrazu

DNN

- Povalením perceptronov sa značne zväčšuje počet vrstiev sietí
- Preto sa im hovorí hlboké Deep NN

Fully-convolutional Network

- DNN kde sú všetky Linear nahradené Conv2D sú fully-convolutional
- Tieto siete nemajú (na rozdiel od iných DNN) pevnú resolution vstupu