Symulacje Komputerowe

Raport: 1

Temat sprawozdania	
Wykonawca:	
Imię i Nazwisko, nr indeksu	Kacper Budnik, 262286 Szymon Malec, 262276
Wydział	Wydział matematyki, W13
Termin zajęć:	Wtorek, 15 ¹⁵
Numer grupy ćwiczeniowej	T00-70d
Data oddanie sprawozdania:	25 kwietnia 2022
Ocena końcowa	

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

1. Wstęp - Koniec

2. Liniowy generator kongruentny - Kiedyś

3. Metoda odwrotnej dystrybuanty - Malec

3.1. Opis

Metoda ta polega na generowaniu zmiennej losowej X generując zmienną U z rozkładu jednostajnego oraz nakładając na nią funkcję odwrotną dystrybuanty.

Algorytm dla rozkładów dyskretnych

Załóżmy, że rozkład X ma postać $P(X = x_i) = p_i, i = 1, 2, \dots$

- 1. Generuj $U \sim \mathcal{U}(0, 1)$.
- 2. Wyznacz $j \in \mathbb{N}$ takie, że $\sum_{i=1}^{j-1} p_i < U \leqslant \sum_{i=1}^{j} p_i$.
- 3. Zwróć $X = x_i$.

Algorytm dla rozkładów ciągłych

Załóżmy, że X ma dystrybuantę F(x).

- a) Jeśli dystrybuanta jest ściśle rosnąca:
 - 1. Generuj $U \sim \mathcal{U}(0,1)$.
 - 2. Zwróć $X = F_X^{-1}(U)$.
- b) Jeśli dystrybuanta nie jest ściśle rosnąca:
 - 1. Generuj $U \sim \mathcal{U}(0,1)$.
 - 2. Zwróć $X = \widetilde{F}_X^{-1}(U)$, gdzie $\widetilde{F}_X^{-1}(y) = \inf\{x \in \mathbb{R} : F_X(x) \geqslant y\}$.

3.2. Przykłady

Dyskretny - rozkład dwupunktowy

Ciągły - rozkład Cauchy'ego

Chcemy wygenerować $X \sim \mathcal{C}(\mu, \sigma)$. Dystrybuanta rozkładu Cauchy'ego ma postać

$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x-\mu}{\sigma}\right) + \frac{1}{2}.$$

Za pomocą elementarnych przekształceń jesteśmy w stanie otrzymać funkcję odwrotną

$$F^{-1}(y) = \sigma \tan \left(\pi \left(y - \frac{1}{2}\right)\right) + \mu.$$

Zatem, żeby wygenerować X, należy najpierw wygenerować $U \sim \mathcal{U}(0,1)$ i zwrócić $F^{-1}(U)$. Możemy to jednak lekko uprościć. Niech $Z \sim \mathcal{U}\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Wtedy

$$Z \stackrel{d}{=} \pi \left(U - \frac{1}{2} \right)$$
.

2

Ostatecznie algorytm będzie wyglądał następująco:

1. Generuj $Z \sim \mathcal{U}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

2. Zwróć $X = \sigma \tan(Z) + \mu$.

Aby przetestować powyższy algorytm, generujemy wektor 1000 realizacji zmiennej X, a następnie porównujemy dystrybuantę empiryczną tej próbki z dystrybuantą teoretyczną oraz tworzymy histogram i porównujemy go z gęstością. Jak możemy zauważyć dystrybuanty empiryczna i teoretyczna są do siebie zbliżone. To samo możemy powiedzieć o krzywej gęstości, której kształt jest podobny do histogramu próby.

4. Metoda akceptacji i odrzucenia^[1] - Budnik

4.1. Opis metody dla przypadku dyskretnego^[1]

Metoda akceptacji i odrzucenia służy do generowania zmiennej losowej X przy użyciu innych zmiennych. By móc wykorzystać tą metodę muszą być spełnione:

- Potrafimy efektywnie generować inną zmienną losową Y
- Zmienne X oraz Y muszą być skupione na tym samym zbiorze
- Potrafimy wyznaczyć stałą c taką że $\frac{\mathrm{P}(X=i)}{\mathrm{P}(Y=i)} = \frac{p_Y}{q_Y} \leqslant c$ dla każdego i

Jeśli są spełnione powyższe założenia możemy użyć poniższego algorytmu do generowania zmiennej X.

Algorytm

- 1. Generuj jedną realizację Y
- 2. Generuj $U \sim \mathcal{U}(0,1), U \perp \!\!\!\perp X$
- 3. Jeśli $U\leqslant \frac{p_Y}{cq_Y}$ zwróć X=Y, w przeciwnym wróć do 1.

4.2. Opis metody dla przypadku ciągłego^[2]

Metoda akceptacji i odrzucenia służy do generowania zmiennej losowej X o gęstości f(x) przy użyciu innych zmiennych. By móc wykorzystać tą metodę muszą być spełnione:

- Potrafimy efektywnie generować inną zmienną losową Y o gęstości g(x)
- Zmienne X oraz Y muszą być skupione na tym samym zbiorze
- Potrafimy wyznaczyć stałą c taką że $\sup \frac{f(x)}{g(x)} \leqslant c$ dla każdego x, gdzie $g(x) \neq 0$ (więc również $f(x) \neq 0$)

Algorytm

- 1. Generuj jedną realizację Y
- 2. Generuj $U \sim \mathcal{U}(0,1), U \perp \!\!\!\perp Y$
- 3. Jeśli $U\leqslant \frac{f(Y)}{cg(Y)}$ zwróć X=Y, w przeciwnym wróć do 1.

4.3. Szybkość algorytmu

W obu przypadkach, ciągłym i dyskretnym, prawdopodobieństwo, że zmienna zostanie za-akceptowana wynosi $\frac{1}{c}$.

Liczba iteracji algorytmu potrzebnych do wygenerowania zmiennej ma rozkład $\mathbb{G} \rtimes > (\frac{1}{c})$, zatem średnia liczba iteracji potrzebna do wygenerowania tej zmiennej to c. Z tego powodu stałą tą powinniśmy dobrać jak najmniejszą możliwą. Najoptymalniej wybrać $c = \max \frac{p_Y}{q_Y}$ w przypadku dyskretnym oraz $c = \sup \frac{f(x)}{g(x)}$ dla przypadku ciągłego.

4.4. Przykłady

Dyskretny

Zamieniłbym kolejność z metodą splotową, bo chcę się do niej odwołać Niech X ma następujący rozkład

$$P(X = i) = \begin{cases} 0.1, & \text{dla } i = -2\\ 0.2, & \text{dla } i = -1\\ 0.5, & \text{dla } i = 0\\ 0.2, & \text{dla } i = 1 \end{cases}$$

Możemy zauważyć, że nasza zmienna ma rozkład skupiony na wym samym zbiorze co Y =Z-2, gdzie $Z\sim\mathcal{B}(n=4,p)$. Zmienną Z potrafimy już efektywnie generować przy pomocy metody splotowej. Ale są szybsze sposoby i ten podobny do tego wykonywaliśmy już na zajęciach, ale wszystkie są takie same.

Ciagly

Chcemy wygenerować zmienną X o gęstości $f(x) = \sin(x) \cdot 2^{\cos(x)} 1_{(0,\frac{\pi}{2})}$. Użyjemy do tego zmiennej $Y \sim \mathcal{U}(0, \frac{\pi}{2})$ o funkcji gęstości $g(x) = \frac{2}{\pi} 1_{(0, \frac{\pi}{2})}$. Zaczniemy od wyliczenia stałej c.

$$c = \sup_{x \in (0, \frac{\pi}{2})} \frac{f(x)}{g(x)} = \sup_{x \in (0, \frac{\pi}{2})} \sin(x) \cdot 2^{\cos(x)} \cdot \frac{\pi}{2} \approx 1.2249 \leqslant \frac{5}{4}$$

Teraz wystarczy się stosować do powyższego algorytmu, czyli

- 1. Generuj $Y \sim \frac{\pi}{2}\mathcal{U}(0,1)$
- 2. Generuj $U \sim \mathcal{U}(0,1)$, $U \perp \!\!\! \perp Y$ 3. Jeśli $U \leqslant \sin(Y) \cdot 2^{\cos(Y)} \cdot \frac{2\pi}{5}$ zwróć X = Y, w przeciwnym wróć do 1.

5. Metoda splotowa - Malec

5.1. Opis

Metoda ta pozwala wygenerować pewną zmienną losową X, przy pomocy innych zmiennych, które potrafimy efektywnie generować, i zsumowaniu ich. Załóżmy, że

$$X \stackrel{d}{=} Y_1 + Y_2 + \dots + Y_n,$$

gdzie Y_i to zmienne losowe niezależne. Wtedy algorytm wygląda następująco:

- 1. Generuj Y_1, Y_2, \ldots, Y_n .
- 2. Zwróć $X = Y_1 + Y_2 + \dots + Y_n$.

5.2. Przykłady

Dyskretny -

Ciagły - rozkład chi-kwadrat

Niech $X \sim \mathcal{X}^2(n)$ oraz niech Y_1, Y_2, \dots, Y_n będzie ciągiem niezależnych zmiennych losowych o rozkładzie normalnym standardowym. Wtedy

$$X \stackrel{d}{=} Y_1 + Y_2 + \dots + Y_n$$

4

Stąd otrzymujemy algorytm:

- 1. Generuj Y_1,Y_2,\ldots,Y_n , gdzie $Y_i\sim\mathcal{N}(0,1)$. 2. Zwróć $X=Y_1+Y_2+\cdots+Y_n$.
- 6. Metoda kompozycji Malec
- 7. Metoda Boxa-Mullera Budnik
- 8. Metoda biegunowa Budink
- 9. Zakończenie Początek

Bibliografia

- [1] https://youtu.be/NFmbgbyj5M0?t=1323
 [2] https://youtu.be/SpPS0CnhvrE?t=37
 [3] https://youtu.be/SpPS0CnhvrE?t=4081