[PI049] - Lakes and Bulldozers

The Problem

You are given a rectangular map with n rows and m columns that shows land and water. Each cell in the map contains either:

- '#' land
- '.' water

A **lake** is a connected region of water cells ('.') that are adjacent **horizontally or vertically** (not diagonally). Your task is to count how many distinct lakes exist in the initial map.

Then, bulldozers start destroying land. When land is destroyed, it becomes water:

- R x: bulldoze all land cells in row x (i.e., convert all '#' to '.' in that row).
- c x: bulldoze all land cells in column x (convert all '#' to '.' in that column).

After each bulldozing operation, new lakes might form or merge. You must print the number of lakes at each step:

- Before any bulldozing
- After each bulldozer operation

Note: Each row or column is bulldozed at most once.

Example

```
Initial map (3 rows × 4 columns):
    . . . #
    . . # .
    . # .
```

Here, '.' means water and '#' means land. There are 3 lakes: water areas that are not connected to each other.

After bulldozing row 1 (R 1) — all land in that row becomes water:

```
. . . . .
. . # .
. # . #
```

Now two lakes are connected, and there are 2 lakes.

After bulldozing column 4 (c 4):

```
. . . .
```

Now all water regions are connected, so there is 1 lake.

Input

- First line: integers n and m number of rows and columns.
- Next n lines: the map of m characters (each either '.' or '#').
- Next line: integer q number of bulldozing operations.
- Next q lines: each line is either $R \times (bulldoze row)$ or $C \times (bulldoze column)$.

Output

Print q + 1 lines:

- First, the number of lakes before any bulldozing.
- Then, one line for each bulldozing operation with the updated number of lakes.

--

Example Input 1

```
3 4
...#
..#.
2
R 1
C 4
```

Example Output 1

3 2 1

Example Input 2

```
3 3
###
###
3
R 1
R 3
C 1
```

Example Output2

Versão em Português | [see english version]

[PI049] - Lagos e Bulldozers

O Problema

É-lhe dado um mapa retangular com n linhas e m colunas que representa uma paisagem composta por terra e água. Cada célula do mapa contém:

```
• '#' – terra
```

• '.' – água

Um **lago** é uma região conectada de células de água (' . ') adjacentes **horizontal ou verticalmente** (não diagonalmente). O seu objetivo é contar quantos lagos distintos existem no mapa inicial.

Depois, bulldozers começam a destruir zonas de terra. Quando a terra é destruída, transforma-se em água:

- R x: destrói todas as células de terra na linha x (ou seja, converte todos os '#' dessa linha em '.').
- c x: destrói todas as células de terra na coluna x (converte todos os '#' dessa coluna em '.').

Após cada operação de bulldozer, novos lagos podem surgir ou lagos existentes podem unir-se. Deve imprimir o número de lagos em cada etapa:

• Antes de qualquer operação de bulldozer

Nota: Cada linna ou coluna e destruida no maximo uma vez.

Exemplo
Mapa inicial (3 linhas × 4 colunas):
. . # .
Aqui, '.' representa água e '#' representa terra. Existem 3 lagos : zonas de água que não estão conectadas entre si.
Após destruir a linha 1 (R 1) — toda a terra dessa linha vira água:
Agora dois lagos ficaram conectados, e há 2 lagos .
Example Input 1
3 4###. 2 R 1 C 4
Example Output 1
3 2 1
Example Input 2
3 3 ### ### ### 3 R 1 R 3 C 1
Example Output2
0 1 2 1

• Após cada operação de bulldozer