Московский физико-технический институт (национальный исследовательский университет)

Кафедра радиоэлектроники и прикладной информатики

Дискретное во времени преобразование Фурье

Методические указания к лабораторной работе по курсу "Дискретные преобразования сигналов"

Составитель:

Тормагов Т. А.

Содержание

Задание к допуску						
1.1 Теоретическая часть						
		1.1.1	Дискретное во времени преобразование Фурье (ДВПФ)	5		
		1.1.2	Различные формы записи ДВПФ	6		
		1.1.3	Свойства ДВПФ	7		
	1.2	Задані	ие	8		
	1.3	1.3 Контрольные вопросы				
2 Связь ДВПФ и ДПФ, интерполяция добавлением нулевых отсчетов			Ф и ДПФ, интерполяция добавлением нулевых отсчетов	11		
	2.1	2.1 Теоретическая часть				
	2.2	Задані	ие	12		
	2.3	Контр	ольные вопросы	14		

Введение

Данная лабораторная работа посвящена особенностям дискретного во времени преобразования Φ урье (ДВП Φ).

В цифровых системах требуется конечное число отсчетов по времени и по частоте, поэтому на практике используется дискретное преобразование Фурье (ДПФ). Однако, можно показать, что ДПФ представляет собой масштабированные отчеты ДВПФ. Исходя из того, понимание свойств и особенностей ДВПФ важно для анализа сигналов в цифровых системах.

Теоретический материал для лабораторной работы представлен в учебных пособиях [1] и [2], а также в самой лабораторной работе.

Практические задания выполняются с помощью моделирования на Python с использованием библиотек NumPy, SciPy и Matplotlib, либо в среде GNU Octave.

Задание к допуску

- 1. Ответить на вопросы.
 - (а) В чем отличие между аналоговым, дискретным и цифровым сигналом?
 - (b) Что такое частота дискретизации?
 - (c) Как частота дискретизации связана с интервалом времени между отчетами дискретизованного сигнала?
 - (d) Какой вид имеют формулы ДВПФ анализа и синтеза (прямого и обратного преобразования) в нормированных частотах (принять $\Delta t = 1$)?
 - (e) Какой период есть у спектра сигнала, дискретизованного с частотой f_d ? Чему равен этот период в частотах, нормированных на частоту дискретизации?
- 2. Вычислите в нормированных частотах ($\Delta t = 1$) ДВПФ следующих последовательностей:

(a)
$$x(k) = \mathbf{1}(k) + \mathbf{1}(k-1)$$
;

(b)
$$x(k) = \mathbf{1}(k) + \mathbf{1}(k+1)$$
;

(c)

$$x(k) = \begin{cases} 0, & k < 0, \\ \cos(\frac{\pi}{2}k), & 0 \le k \le 3, \\ 0, & k > 3; \end{cases}$$

(d)

$$x(k) = \begin{cases} 0, & k < 0, \\ \sin(\frac{\pi}{2}k), & 0 \le k \le 3, \\ 0, & k > 3; \end{cases}$$

(e)

$$x(k) = \begin{cases} 0, & k < 0, \\ \cos(\frac{\pi}{2}k) + \sin(\frac{\pi}{2}k), & 0 \le k \le 3, \\ 0, & k > 3; \end{cases}$$

(f)
$$x_N(k) = \sum_{m=0}^{N-1} \mathbf{1}(k-m)$$
;

(g)
$$x_N(k) = 0.8 \sum_{m=0}^{N-1} \mathbf{1}(m-k)$$
;

(h)
$$x(-1) = -1$$
, $x(k) = 0$ при $k \neq -1$.

1 Основные свойства ДВПФ

1.1 Теоретическая часть

1.1.1 Дискретное во времени преобразование Фурье (ДВПФ)

Пусть есть последовательность отсчетов $x(k\Delta t),\ k=0,1,2...$. Спектр дискредитированного сигнала представляет собой периодическое повторение исходного спектра X(f) с периодом, равным частоте дискретизации $f_d=1/\Delta t$. В итоге необходимая спектральная информация будет содержаться в полосе $[-f_d/2;\ f_d/2]$.

$$X_d(f) = \sum_{m=-\infty}^{\infty} X(f - mf_d).$$

Берем m=0. Тогда по теореме Котельникова для сигнала с финитным спектром:

$$\widehat{x}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin 2\pi f_c (t - k\Delta t)}{2\pi f_c (t - k\Delta t)};$$

$$\widehat{x}(k\Delta t) = x(k\Delta t).$$

Возьмем преобразование Фурье от $\widehat{x}(t)$:

$$\widehat{X}(f) = \int_{-\infty}^{\infty} \widehat{x}(t) \exp\left(-j2\pi f t\right) dt;$$

$$\widehat{X}(f) = \sum_{k=-\infty}^{\infty} x(k\Delta t) e^{-j2\pi f k\Delta t} \int_{-\infty}^{\infty} \frac{\sin 2\pi f_c \left(t - k\Delta t\right)}{2\pi f_c \left(t - k\Delta t\right)} e^{-j2\pi f \left(t - k\Delta t\right)} dt =$$

$$= \Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t) e^{-j2\pi f k\Delta t} \Pi_{2f_c}(f);$$

$$\Pi_{2f_c}(f) = \begin{cases} 1, & |f| \le f_c; \\ 0, & |f| > f_c \end{cases}$$

$$\Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t) e^{-j2\pi f k\Delta t}$$

– это ряд Фурье периодической функции $X_d(f)$:

$$X_d(f) = \sum_{k=-\infty}^{\infty} c_{-k} e^{-jk(2\pi/f_d)f} = \sum_{k=-\infty}^{\infty} c_{-k} e^{-j2\pi f k \Delta t};$$

$$c_{-k} = \frac{1}{f_d} \int_{-f_d/2}^{f_d/2} X_d(f) e^{j2\pi f k \Delta t} df = \Delta t \widehat{x}(k\Delta t) = \Delta t x(k\Delta t).$$

В итоге получаем формулу ДВПФ последовательности x(k). Пара дискретного во времени преобразования Фурье (ДВПФ) имеет вид:

$$X(f) = \Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t)e^{-j2\pi f k\Delta t},$$
(1)

$$x(k\Delta t) = \int_{-f_d/2}^{f_d/2} X(f)e^{j2\pi fk\Delta t}df.$$
 (2)

Отметим, что прямое ДВПФ является континуальной и периодической функцией частоты с периодом, равным частоте дискретизации f_d .

1.1.2 Различные формы записи ДВПФ

Если принять $2\pi f = \omega$, а частоту дискретизации взять в рад/с ($\omega_d = 2\pi/\Delta t$), то

$$X(\omega) = \Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t) \exp(-j\omega k\Delta t), \tag{3}$$

$$x(k\Delta t) = \frac{1}{2\pi} \int_{-\omega_d/2}^{\omega_d/2} X(\omega) \exp(j\omega k\Delta t) d\omega. \tag{4}$$

Введем нормированные частоты $\nu=f/f_d$ и примем $\Delta t=1$ ($f_d=1/\Delta t$). Тогда пара ДВПФ может быть записана следующим образом:

$$X(\nu) = \sum_{k=-\infty}^{\infty} x(k)e^{-j2\pi\nu k},$$
(5)

$$x(k) = \int_{-1/2}^{1/2} X(\nu)e^{j2\pi\nu k} d\nu.$$
 (6)

Аналогично можно принять $\theta=2\pi\omega/\omega_d$ и $\Delta t=1$, тогда

$$X(\theta) = \sum_{k=-\infty}^{\infty} x(k)e^{-j\theta k},$$
(7)

$$x(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) e^{j\theta k} d\theta.$$
 (8)

Пример. Рассмотрим в качестве примера последовательность единичных импульсов $x(k) = \mathbf{1}(k+1) + \mathbf{1}(k) + \mathbf{1}(k-1)$, где

$$\mathbf{1}(k) = \left\{ \begin{array}{l} 1, \ k = 0; \\ 0, \ k \neq 0. \end{array} \right.$$

ДВПФ такой последовательности
$$X(\nu)=\sum_{k=-\infty}^{\infty}x(k)e^{-j2\pi\nu k}=\sum_{k=-1}^{1}x_2(k)e^{-j2\pi\nu k}=x(-1)e^{j2\pi\nu}+x(0)e^0+x(1)e^{-j2\pi\nu}=\exp(j2\pi\nu)+1+\exp(-j2\pi\nu)=1+2\cos(2\pi\nu)$$

1.1.3 Свойства ДВПФ

Предложим, что для последовательности x(k) ДВПФ спектр будет $X(\nu)$, что символически будем обозначать $x(k) \xleftarrow{\text{ДВПФ}} X(\nu)$. Пусть также $y(k) \xleftarrow{\text{ДВПФ}} Y(\nu)$. Тогда справедливы следующие утверждения – свойства ДВПФ.

1. Линейность.

Если $x(k) \stackrel{\text{ДВПФ}}{\longleftrightarrow} X(\nu)$ и $y(k) \stackrel{\text{ДВПФ}}{\longleftrightarrow} Y(\nu)$, то и (α , β - действительные числа)

$$\alpha x(k) + \beta y(k) \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} \alpha X(\nu) + \beta Y(\nu).$$

2. Теорема запаздывания.

$$x(k-l) \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} X(\nu)e^{-j2\pi\nu l}$$
 (9)

x(k-l) - это сигнал, запаздывающий относительно сигнала x(k). Докажем свойство. Для этого возьмем обратное ДВПФ для правой части выражения:

$$\int_{-1/2}^{1/2} X(\nu) e^{-j2\pi\nu l} e^{j2\pi\nu k} d\nu = \int_{-1/2}^{1/2} X(\nu) e^{j2\pi\nu(k-l)} d\nu = x(k-l).$$

3. Теорема смещения.

$$x(k)e^{j2\pi\nu_0k} \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} X(\nu-\nu_0)$$
 (10)

4. Теорема о свертке.

$$\sum_{k=-\infty}^{\infty} x(k)h(l-k) \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} X(\nu)H(\nu)$$
(11)

В левой части стоит свертка сигналов, в правой – произведение спектров.

$$x(k)y(k) \stackrel{\text{ДВПФ}}{\longleftrightarrow} \int_{-1/2}^{1/2} X(\widetilde{\nu})Y(\nu - \widetilde{\nu})d\widetilde{\nu}$$
 (12)

В левой части стоит произведение сигналов, в правой – свертка (циклическая) спектров.

5. Равенство Парсеваля.

$$\sum_{k=-\infty}^{\infty} |x(k)|^2 = \int_{-1/2}^{1/2} |X(\nu)|^2 d\nu$$
 (13)

$$\sum_{k=-\infty}^{\infty} x(k)y^*(k) = \int_{-1/2}^{1/2} X(\nu) Y^*(\nu) d\nu$$
 (14)

6. Единичный импульс.

$$\mathbf{1}(k) = \begin{cases} 1, & k = 0; \\ 0, & k \neq 0. \end{cases}$$

$$\mathbf{1}(k) \xleftarrow{\text{ДВПФ}} 1 \tag{15}$$

7. Периодические последовательности.

$$\sum_{m=-\infty}^{\infty} \mathbf{1} (k-m) \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta (\nu - n)$$
 (16)

$$\sum_{m=-\infty}^{\infty} \mathbf{1} (k - mL) \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta \left(\nu - \frac{n}{L} \right)$$
(17)

$$\exp(j2\pi\nu_0 k), -\infty < k < +\infty \iff \sum_{n=-\infty}^{\infty} \delta(\nu - \nu_0 - n)$$
 (18)

8. Изменение масштаба.

$$\sum_{m=-\infty}^{\infty} x(m)\mathbf{1}(k-mL) \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} X(\nu L)$$
(19)

9. Умножение на k и дифференцирование по частоте.

$$kx(k) \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} \frac{j}{2\pi} \frac{dX(\nu)}{d\nu}$$
 (20)

1.2 Задание

Таблица 1: Задание по вариантам

Вариант	N	L	ν_0
11	8	2	1/10
12	9	3	-1/10
13	6	4	1/10
14	7	2	-1/10
15	8	3	-1/10
16	9	4	1/10
17	6	2	-1/10
18	7	3	1/10
19	8	4	-1/10
20	9	2	-1/10
21	6	3	1/10
22	7	4	1/10

1. Получите с помощью моделирования в Octave/Python ДВПФ спектр единичного импульса $\mathbf{1}(k)$ для нормированных частот $\nu \in [-0,5;\ 0,5]$. Сравните результат со свойством (15).

2. Используя моделирование в Octave/Python, получите ДВПФ спектр двух последовательных единичных импульсов $x_2(k) = \mathbf{1}(k) + \mathbf{1}(k-1)$ для $\nu \in [-0,5;\ 0,5]$.

Применяя теорему запаздывания и свойство линейности, получите аналитическое выражение для ДВПФ спектра $X_2(\nu)$ последовательности $x_2(k)$. Сравните результаты.

Зная аналитическую запись $X_2(\nu)$, вычислите значение интеграла $\int_{-1/2}^{1/2} |X_2(\nu)|^2 d\nu$. Сравните результат с тем, который получается путем применения равенства Парсеваля.

- 3. Вычислите и постройте в Octave/Python ДВПФ спектр $X_N(\nu)$ N последовательных единичных импульсов $x_N(k) = \sum_{m=0}^{N-1} \mathbf{1}(k-m)$ для $\nu \in [-0,5;\ 0,5]$.
 - Получите аналитическую запись $X_N(\nu)$ с использованием теоремы запаздывания (воспользоваться формулой геометрической прогрессии для суммы комплексных экспонент). Сравните результат с непосредственным вычислением ДВПФ спектра в Octave/Python.
- 4. Рассмотрите последовательность $y(k) = kx_N(k)$. Найдите, используя Octave/Python, ее ДВПФ спектр $Y(\nu)$ для $\nu \in [-0,5;\ 0,5]$.

Сравните результат с аналитической записью $Y(\nu)$ (дифференцирование $X_N(\nu)$ по частоте, свойство (20)).

5. Рассмотрите последовательность z(k), получаемую добавлением между каждой парой отсчетов последовательности $x_N(k) \ L-1$ нулей:

$$\sum_{m=-\infty}^{\infty} x_N(m) \mathbf{1}(k - mL).$$

Постройте ее ДВПФ спектр в Octave/Python для $\nu \in [-0,5;\ 0,5]$ и сравните результат с $X_N(\nu L)$ (свойство (19)).

6. Постройте в Octave/Python для $\nu \in [-0,5;\ 0,5]$ ДВПФ спектр $Q(\nu)$ последовательности $q(k)=x_N(k)\exp(j2\pi\nu_0k)$ для ν_0 . Чем отличаются $Q(\nu)$ и $X_N(\nu)$? Как это согласуется с теоремой смещения?

1.3 Контрольные вопросы

- 1. Пусть $X(\nu)$ ДВПФ спектр некоторой последовательности x(k). Как нужно изменить последовательность x(k), чтобы ее ДВПФ спектр был сдвинут влево относительно исходного на $\nu_0=1/10$?
- 2. Пусть $X_5(\nu)$ ДВПФ спектр пяти последовательных единичных импульсов $x_5(k) = \sum_{m=0}^4 \mathbf{1}(k-m)$, а $Y(\nu)$ ДВПФ спектр последовательности $y(k) = kx_5(k)$. Пусть также

$$\Phi(\nu) = \int_{-1/2}^{1/2} X_5(\widetilde{\nu}) Y(\nu - \widetilde{\nu}) d\widetilde{\nu},$$

$$\Psi(\nu) = \int_{-1/2}^{1/2} Y(\widetilde{\nu}) X_5(\nu - \widetilde{\nu}) d\widetilde{\nu}.$$

Чему равно $\Phi(\nu)$? Выполняется ли $\Phi(\nu) \equiv \Psi(\nu)$?

3. Предположим, что имеется финитная последовательность

$$x(k) = \{1; 5; \underbrace{2}_{k=0}; 4; 1; 1; 3\}.$$

Не вычисляя непосредственно ее ДВП $\Phi X(\nu)$, опередите значения следующих выражений:

- (a) X(0);
- (b) X(1/2);
- (c) $\int_{-1/2}^{1/2} X(\nu) d\nu$;
- (d) $\int_{-1/2}^{1/2} |X(\nu)|^2 d\nu$;
- (e) $\int_{-1/2}^{1/2} \left| \frac{dX(\nu)}{d\nu} \right|^2 d\nu$.
- 4. Докажите равенство Парсеваля для ДВПФ.
- 5. Докажите для ДВПФ свойство (20): если $x(k) \xleftarrow{\text{ДВПФ}} X(\nu), \ kx(k) \xleftarrow{\text{ДВПФ}} \frac{j}{2\pi} \frac{dX(\nu)}{d\nu}$. Получите аналогичное свойство для спектра сигнала (последовательности) $k^M x(k)$, где M натуральное число.
- 6. Предположим, что аналоговый сигнал $x(t)=\cos(2\pi t f_0)$, $-\infty < t < \infty$, $f_0=250$ Гц был дискретизован с частотой дискретизации $f_d=1$ кГц. Будет ли наблюдаться эффект наложения (aliasing)?

Определить и построить график ДВПФ для отсчетов сигнала x(t) в переменных f и ν :

$$X(f) = \Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t) \exp(-j2\pi f k \Delta t),$$

$$X(\nu) = \Delta t \sum_{k=-\infty}^{\infty} x(k\Delta t) \exp(-j2\pi\nu k).$$

7. Построить графики ДВПФ сигналов (последовательностей) $x_1(k) = \cos(2\pi k \nu_0)$ и $x_2(k) = \sin(2\pi k \nu_0)$, $\nu_0 = 0.2$, $-\infty < k < \infty$

Определить ДВПФ для последовательностей $y_1(k)$ и $y_2(k)$ взвешанных прямоугольной оконной функцией $w(k) = \sum_{m=0}^{N-1} \mathbf{1}(k-m)$, т.е. $y_1(k) = x_1(k)w(k)$ и $y_2(k) = x_2(k)w(k)$ (это можно сделать, зная ДВПФ окна и используя теорему смещения).

2 Связь ДВПФ и ДПФ, интерполяция добавлением нулевых отсчетов

2.1 Теоретическая часть

Установим связь между ДВП Φ и ДП Φ . Рассмотрим N-точечную последовательность x(k). Ее ДВП Φ

$$X(\nu) = \Delta t \sum_{k=0}^{N-1} x(k) \exp(-j2\pi\nu k).$$
 (21)

Здесь $\nu=f\Delta t=f/f_d$ – нормированная частота. Обратное ДПФ для последовательности x(k)

$$x(k) = \sum_{n=0}^{N-1} X(n) \exp\left(j\frac{2\pi}{N}nk\right). \tag{22}$$

Подставив (22) в (21), получим, что

$$X(\nu) = \Delta t \sum_{k=0}^{N-1} \left(\sum_{n=0}^{N-1} X(n) \exp\left(j\frac{2\pi}{N}nk\right) \right) \exp\left(-j2\pi\nu k\right) =$$

$$= \Delta t \sum_{n=0}^{N-1} X(n) \sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)k\right). \tag{23}$$

Рассмотрим отдельно множитель $\sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu-\frac{n}{N}\right)k\right)$. Это сумма N членов геометрической прогрессии с первым членом $b_1=1$, и знаменателем $q=\exp\left(-j2\pi\left(\nu-\frac{n}{N}\right)\right)$.

В точках $\nu \neq n/N$, где $q \neq 1$, получаем (используя известные формулы $S_N = b_1(1-q^N)/(1-q)$ и $\sin \varphi = (e^{j\varphi} - e^{-j\varphi})/(2j)$):

$$\sum_{k=0}^{N-1} \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)k\right) = \frac{1 - \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)N\right)}{1 - \exp\left(-j2\pi\left(\nu - \frac{n}{N}\right)N\right)} =$$

$$= \frac{\exp\left(j\pi\left(\nu - \frac{n}{N}\right)N\right)\left(\exp\left(j\pi\left(\nu - \frac{n}{N}\right)N\right) - \exp\left(-j\pi\left(\nu - \frac{n}{N}\right)N\right)\right)}{\exp\left(j\pi\left(\nu - \frac{n}{N}\right)\right)\left(\exp\left(j\pi\left(\nu - \frac{n}{N}\right)\right) - \exp\left(-j\pi\left(\nu - \frac{n}{N}\right)N\right)\right)} =$$

$$= \exp\left(j\pi\left(\nu - \frac{n}{N}\right)(N-1)\right)\frac{\sin\left(\pi\left(\nu - \frac{n}{N}\right)N\right)}{\sin\left(\pi\left(\nu - \frac{n}{N}\right)N\right)}$$
(24)

Подставив формулу для суммы (24) в связь (23), получаем интерполяционную формулу восстановления континуальной функции $X(\nu)$ по коэффициентам ДПФ X(n):

$$X(\nu) = \Delta t \sum_{n=0}^{N-1} X(n) \frac{\sin\left(\pi\left(\nu - \frac{n}{N}\right)N\right)}{\sin\left(\pi\left(\nu - \frac{n}{N}\right)\right)} \exp\left(j\pi\left(\nu - \frac{n}{N}\right)(N-1)\right). \tag{25}$$

ДПФ для последовательности x(k), имеет следующий вид:

$$X(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(k) \exp\left(-j\left(\frac{2\pi}{N}\right) nk\right). \tag{26}$$

Сравнивая с формулой ДВПФ (21), в точках $\nu = n/N$ получаем равенство

$$X(n\Delta\nu) = N\Delta t X(n), \ \Delta\nu = 1/N.$$
 (27)

Это означает, что коэффициенты ДПФ X(n) равны отсчетам функции $X(\nu)/N\Delta t$, взятым с шагом $\Delta \nu = 1/N$.

Заметим, что если принять $\Delta t=1$ и рассматривать запись ДПФ без нормирующего множителя 1/N, то выполняется

$$X(n\Delta\nu) = X(n), \ \Delta\nu = 1/N.$$
 (28)

Улучшим качество визуализации ДВПФ при помощи отсчетов ДПФ. Получим М-точечную последовательность — добавим в исходную последовательность x(k) N-M отсчетов, равных нулю:

$$y(k) = \begin{cases} x(k), & 0 \le k \le N - 1; \\ 0, & N \le k \le M - 1. \end{cases}$$
 (29)

Ее ДПФ M-точечное и определяется формулой (без нормирующего множителя 1/N)

$$Y(n) = \sum_{k=0}^{M-1} y(k) \exp\left(-j\frac{2\pi}{M}nk\right) = \sum_{k=0}^{M-1} x(k) \exp\left(-j\frac{2\pi}{M}nk\right).$$
 (30)

При этом ДВПФ не изменяется:

$$Y(\nu) = \sum_{k=0}^{N-1} x(k) \exp(-j2\pi\nu k).$$
 (31)

С помощью добавления нулевых отсчетов улучшено качество визуализации ДВП Φ , поскольку число точек, где выполняется (28), больше, чем в исходной последовательности.

2.2 Задание

1. Рассмотрите N-точечную последовательность $x(k) = \sum_{m=0}^{N-1} \mathbf{1} \, (k-m)$ (последовательность N единичных импульсов). Вычислите с помощью формулы (21) ее ДВПФ. Принять $\Delta t = 1$. Вычислите модуль ДВПФ $|X(\nu)|$.

Рекомендация. Воспользоваться формулой суммы геометрической прогрессии и провести вычисления аналогично (24). Далее использовать то, что комплексная экспонента по модулю равна единице.

Определите N-точечное ДПФ без нормирующего множителя 1/N для последовательности x(k) с помощью формулы ДПФ.

Убедитесь, что в таком случае значение ДВПФ в каждой точке $\nu=n/N$ соответствует отсчету ДПФ с номером n.

Поведите вычисления в Octave/Python (это можно сделать, например, незначительно изменив код программы из примера выше). Добавьте к последовательности такое количество нулей, чтобы значительно улучшить качество визуализации ДВПФ последовательности. Приведите графическую интерпретацию результата.

2. Проделайте аналогичные действия для N-точечной последовательности

$$z(k) = \cos\left(\frac{2\pi k}{5}\right).$$

Как изменяться ДВП Φ спектр последовательности с увеличением числа точек N?

3. Рассмотрите две последовательности, каждая из которых состоит из двух косинусоид с разными относительными частотами:

$$x_1(k) = \cos\left(\frac{\pi k}{4}\right) + \cos\left(\frac{17\pi k}{64}\right) = \cos\left(2\pi k \frac{8}{64}\right) + \cos\left(2\pi k \frac{8.5}{64}\right)$$

$$x_2(k) = \cos\left(\frac{\pi k}{4}\right) + \cos\left(\frac{21\pi k}{64}\right) = \cos\left(2\pi k \frac{8}{64}\right) + \cos\left(2\pi k \frac{10.5}{64}\right)$$

Предположим, что делается оценка спектра с помощью N=64 точечного ДПФ. Укажите, в каком случае спектральные компоненты будут различимы, а в каком нет. Приведите обоснование результата.

Peaлизуйте вычисления в Octave/Python, приведите также результат после интерполяции нулевыми отсчетами.

Повторите вычисления для N=128. Как размер прямоугольного временного окна влияет на результат?

4. Теоретическая часть

Определить ДВПФ для следующих окон для ДПФ:

(а) прямоугольное

$$w_1 = \begin{cases} 1, & 0 \le k < N, \\ 0, & \{k < 0\} \cup \{k \ge 0\}; \end{cases}$$

(b) треугольное (окно Бартлетта)

$$w_2 = \begin{cases} 1 - \frac{2|k - N/2|}{N}, & 0 \le k < N, \\ 0, \{k < 0\} \cup \{k > 0\}; \end{cases}$$

(с) Ханна

$$w_3 = \begin{cases} \frac{1}{2} (1 - \cos \frac{2\pi k}{N}), & 0 \le k < N, \\ 0, \{k < 0\} \cup \{k \ge 0\}; \end{cases}$$

Определить ширину главного лепестка на нулевом уровне для каждого из окон. Выразить через ДВПФ спектр оконной функции ДВПФ для последовательности $x(k) = \cos(\frac{\pi k}{4}) + \cos(\frac{21\pi k}{64})$, взвешанной окном w(k) (произвольным из $w_1(k)$, $w_2(k)$, $w_3(k)$), N=64.

Практическая часть

Вывести график ДВПФ при $-0.5 \le \nu \le 0.5$ для последовательностей $x(k)w_1(k)$, $x(k)w_2(k)$ и $x(k)w_3(k)$. Объяснить различия между графиками. На всех ли графиках спектральные компонеты различимы?

2.3 Контрольные вопросы

- 1. Сколько дополнительных нулей нужно добавить к N-точечной последовательности x(k)=1, чтобы получить двукратное увеличение числа отчетов? Сколько для четырехкратного?
- 2. Почему при добавлении нулевых отсчетов не изменяется ДВПФ?
- 3. Чему на рассмотренных в задании графиках равно расстояние между отсчетами ДПФ, если по частотной оси расположены нормированные частоты (обозначаемые ν)? Как изменится результат, если на соответствующей оси привести частоты в герцах (обозначаемых f) или в рад/с (обозначаемых ω)?
- 4. Пусть известно ДВПФ $X(\nu)$ некоторой N-точечной последовательности x(k). Определим М-точечное ДПФ как

$$Y(m) = \frac{1}{M}X(\nu = m/M), \ m = 0, 1, 2, ..., M - 1.$$

Обратное ДПФ от Y(m) обозначим через y(k). Эта М-точечная последовательность как-то связана с x(k). Установить эту связь. Показать, что x(k) может быть полностью восстановлена из y(k), только если $M \geq N$.

Список литературы

- [1] Романюк Ю.А. Дискретное преобразование Фурье в цифровом спектральном анализе. Учебное пособие. М.: МФТИ, 2007. 120 с.
- [2] Романюк Ю.А. Основы цифровой обработки сигналов. В 3-х ч. Ч.1. Свойства и преобразования дискретных сигналов: Учебное пособие. 2-е изд., перераб. М.: МФТИ, 2007. 332 с.