Reg No.: Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY Third Semester B.Tech Degree Examination December 2020 (2019 Scheme) Course Code: MAT203 Course Name: Discrete Mathematical Structures Max. Marks: 100 Duration: 3 Hours PART A Answer all questions. Each question carries 3 marks Marks 1 Without using truth tables, show that (3) $p \to (q \to r) \equiv p \to (\sim q \vee r) \equiv (p \wedge q) \to r$ 2 Define the terms: Converse, Inverse and Contrapositive. (3)What is Pigeonhole Principle? Given a group of 100 people, at minimum, 3 (3)how many people were born in the same month? In how many ways can the letters of the word 'MATHEMATICS' be 4 (3) arranged such that vowels must always come together? If $A = \{1,2,3,4\}$, give an example of a relation on A which is reflexive and 5 (3)

transitive, but not symmetric.	
6 Define a complete lattice. Give an example.	(3)

8 Determine the coefficient of
$$x^{15}$$
 in $f(x) = (x^2 + x^3 + x^4 + ...)^4$ (3)

Show that the set of idempotent elements of any commutative monoid forms (3) a submonoid.

PART B

Answer any one full question from each module. Each question carries 14 marks Module 1

- 11(a) Check whether the propositions $p \land (\sim q \lor r)$ and $p \lor (q \land \sim r)$ are logically equivalent or not. (6)
 - (b) Check the validity of the statement $p \to q$ (8)

$$q \to (r \land s)$$

$$\sim r \lor (\sim t \lor u)$$

0800MAT203122001

 $p \wedge t$

∴ u

- 12(a) Show that $((p \to q) \land (q \to r)) \to (p \to r)$ is a tautology. (6)
 - (b) Let p, q, r be the statements given as (8)

p: Arjun studies. q: He plays cricket. r: He passes Data Structures.

Let p_1, p_2, p_3 denote the premises

 p_1 : If Arjun studies, then he will pass Data Structures.

 p_2 : If he doesn't play cricket, then he will study.

 p_3 : He failed Data Structures.

Determine whether the argument $(p_1 \land p_2 \land p_3) \rightarrow q$ is valid.

Module 2

- 13(a) State Binomial theorem. Find the coefficient of xyz^2 in $(2x y z)^4$ (6)
 - (b) Determine the number of positive integers n such that $1 \le n \le 100$ and n is not divisible by 2,3 or 5.
- 14(a) Prove that if 7 distinct numbers are selected from {1,2,3, ...,11}, then sum of two among them is 12.
 - (b) An urn contains 15 balls, 8 of which are red and 7 are black. In how many ways can 5 balls be chosen so that (i)all the five are red (ii)all the five are black (iii) 2 are red and 3 are black (iv)3 are red and 2 are black.

Module 3

- 15(a) If f, g and h are functions on integers, $f(n) = n^2$, g(n) = n + 1, (6) h(n) = n 1, then find (i) $f^{\circ}g^{\circ}h$ (ii) $g^{\circ}f^{\circ}h$ (iii) $h^{\circ}f^{\circ}g$
 - (b) If $A = \{a, b, c\}$ and P(A) be its power set. The relation \leq be the subset (8) relation defined on the power set. Draw the Hasse diagram of $(P(A), \leq)$.
- 16(a) Let R be a relation on Z by xRy if 4|(x-y). Then find all equivalence (6) classes.
 - (b) Find the complement of each element in D_{42} . (8)

Module 4

- 17(a) Solve the recurrence relation $a_{n+1} = 2a_n + 1$, $n \ge 0$, $a_0 = 0$. (6)
 - (b) Solve the recurrence relation $a_{n+2} = a_{n+1} + a_n$, $n \ge 0$, $a_0 = 0$, $a_1 = 1$ (8)

(6)

(8)

(6)

(8)

0800MAT203122001

18(a) Solve the recurrence relation $a_{n+2} - 4a_{n+1} + 3a_n = -200$, $n \ge 0$,

Show that every subgroup of a cyclic group is cyclic.

(b) If $A = \{1,2,3\}$. List all permutations on A and prove that it is a group.

State and prove Lagrange's Theorem.

20(a)

(b) Solve the recurrence relation
$$a_n = 2a_{n-1} - 4a_{n-2}$$
, $n \ge 3$, $a_1 = 2$, $a_2 = 0$

Module 5

19(a) If $f: (R^+, ^\circ) \to (R, +)$ as $f(x) = lnx$, where R^+ is the set of positive real numbers. Show that f is a monoid isomorphism from R^+ onto R .