

USB3.0 to SATA Bridge Controller

Copyright Notice:

Copyright © 2008, ASMedia TECHNOLOGY INC. All Rights Reserved.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF ASMEDIA TECHNOLOGY INC. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN ASMEDIA'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, ASMEDIA ASSUMES NO LIABILITY WHATSOEVER, AND ASMEDIA DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF ASMEDIA PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Products of ASMEDIA TECHNOLOGY INC. are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

ASMedia may make changes to specifications and product descriptions at any time, without notice.

ASMedia TECHNOLOGY INC. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Contact your local ASMedia sales office or your agent to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other ASMedia literature may be obtained by calling +886-2-22196088 or by visiting ASMedia's website at www.asmedia.com.tw.

ASMedia and ASMedia logo are trademarks or registered trademarks of ASMedia TECHNOLOGY INC. in Taiwan and other countries.

© 2008 祥碩科技股份有限公司,著作權所有,並保留一切權利

本文資料為與祥碩科技股份有限公司之產品相關。本文並未明示或默示授權任何智慧財產權予第三人。除在祥碩科技股份有限公司對該產品提供的買賣條款及條件以外,祥碩科技股份有限公司免於擔負任何責任,且不對產品的買賣及使用做任何明示或默示的保證,包含產品適於特殊使用目的、以及產品不侵害任何專利權、著作權或其他智慧財產權。祥碩科技股份有限公司之產品不用於醫療的、救助生命的、生命維持的、安全控管系統或核子設施等用途之上。

祥碩科技股份有限公司可隨時不經通知,逕行增訂或修改產品規格及描述。

本文之相關專利權、申請中之專利權、商標權、著作權及其餘智慧財產權均屬祥碩科技股份有限公司所有。本文及其他資訊並未明示或默示的提供任何專利、商標、著作權及其餘智慧財產權之授權。

請於下產品訂單前先聯絡當地的祥碩科技銷售處或代理商以取得最新的產品規格書。

本文提及之有訂單號碼之文件或其他詳細資料可參閱祥碩科技網站 www.asmedia.com.tw 或撥打+886-2-22196088

ASMEDIA 和 ASMEDIA 商標均為祥碩科技股份有限公司在台灣和其他國家的註冊商標或商標

Office:

ASMedia Technology, Inc. 6F, No.115, Minquan Rd., Xindian City, Taipei County 231, Taiwan, R.O.C. http://www.asmedia.com.tw

Tel: 886-2-2219-6088 Fax: 886-2-2219-6080

Environmentally hazardous materials are not used in this product.

Revision History

Rev.	Date	Description
0.1	August 2, 2013	Initial Release
0.2	August 9, 2013	Add the power on sequence spec Update the Vcore spec Upadte the unit of IIL-UP/IIL-DN of GPIO

Table of Contents

Revision History	iii
Table of Contents	iv
List of Figures	. V
1. General Description	. 1
2. Features	. 1
3. Package Type	. 1
4. Functional Diagram	. 2
5. Pinout Diagrams	. 3
6. Pin Descriptions	. 4
6.1 Strapping Table	
7. Electrical Characteristics	. 6
7.1 Absolute Maximum Ratings	. 6
7.2 Recommended Operating Conditions	. 6
7.3 DC Electrical Characteristics for VBUS pins	. 6
7.4 DC Electrical Characteristics for GPIO pins	. 6
7.5 DC Electrical Characteristics for RST# pins	. 7
7.6 External Crystal Electrical Specification	
7.7 Differential Clock Oscillator Electrical Specification	. 8
7.8 External Clock Input Electrical Specification	
7.9 Internal Linear Regular Electrical Specification	
7.10 Internal Switching Regular Electrical Specification	
7.11 Power Consumption Characteristics	. 9
8. Power on Sequence	11
9. PCB Design Guide under Thermal Pad	12
10. Package Information	
11. Top Marking Information	15
ASINedia eadill	

List of Figures

Figure	1: Functional Diagram of ASM1153E	2
Figure	2: ASM1153E Pinout	3
Figure		
	9: Symbol 2 for via design rule under Thermal pad	12
Figure		12

This page is intentionally left blank.

ASINedia confidential for

1. General Description

Engaged in Universal Serial Bus I/O solution and Storage application development, ASMedia Technology is committed to expand product portfolio with introducing a new generation of USB3.0 to SATA 6Gbps bridge Products.

ASM1153E is the ASMedia third generation single chip solution, bridging the USB3.0 to Serial ATA host interface with highly integrated SuperSpeed USB3.0, High Speed USB2.0 and SATA1.5/3.0/6.0 Gbps ASMedia self-design PHYs. Along with excellent compatibility with USB3.0 hosts and SATA devices, ASM1153E uses advanced process technology to optimize the chip power consumption. Furthermore, it is also pin-to-pin backward compatible with existing ASM1053.

Customers can easily enhance their storage device performance with ASM1153E since it is also integrated 8-bit micro-processor and embedded RAM to provide a cutting edge solution in USB to SATA device enclosure market.

2. Features

- ♦ Compliant with USB3.0 Specification Revision 1.0
- ♦ Compliant with USB Specification Revision 2.0
- Support USB Super-Speed, High-Speed and Full-Speed Operation
- Support USB Mass Storage Class, Bulk-Only Transport Specification Revision 1.3
- Support USB Attached SCSI Protocol Specification Revision 1.0
- Compliant with Serial ATA Specification Revision 3.0
- Serial ATA bus up to 6Gbps Signal bandwidth
- ♦ Support Spread Spectrum Control of USB3.0 and SATA interface to improve the EMI performance
- Support ATA/ATAPI Packet Command Set
- ♦ Support ATA/ATAPI LBA48 addressing mode
- Integrated 8-bit micro-processor with embedded program RAM and ROM
- Support SPI NVRAM for Vender Specific Application of USB Device Controller
- ♦ Support multi-GPIO pins
- ♦ Support programmable PWMs
- Support 20/25/30MHz with external crystal mode or 30MHz with Clock input mode via strapping
- ♦ Integrated two internal voltage regulator for IO power and Core
- ♦ HBM ESD 2KV and MM ESD 200V

3. Package Type

♦ Green Package 6x6 QFN 48L (Pb-free)

4. Functional Diagram

Figure 1: Functional Diagram of ASM1153E

5. Pinout Diagrams

Figure 2: ASM1153E Pinout

6. Pin Descriptions

This section provides a detailed description of each signal. The following notations are used to describe the signal type.

I/O Type	Definition
1	Input pin
0	Output pin
В	Bi-directional pin
Р	Power pin
G	Ground pin
OD	Open Drain

Pin No.	Name	TYPE	Descriptions
USB interface	•		Descriptions
16	UDM	DB	USB2.0 negative Data Signal
15	UDP	DB	USB2.0 positive Data Signal
19	UTXN	DO	SuperSpeed USB negative Transmitter Signal
20	UTXP	DO	SuperSpeed USB positive Transmitter Signal
22	URXN	DI	SuperSpeed USB negative Receiver Signal
23	URXP	DI	SuperSpeed USB positive Receiver Signal
SATA interfac		וט	Superspeed USB positive Receiver Signal
		DI	CATA positive Possiver Cignal
29	SRXP	DI	SATA positive Receiver Signal
30	SRXN	DI	SATA negative Receiver Signal
32	STXN	DO	SATA negative Transmitter Signal
33	STXP	DO	SATA positive Transmitter Signal
System Signa			
42	TEST_EN	I	Test Enable Signal, with internal pull-down resistor
			0: Normal Mode (Default)
			1: Test Mode Enable
2	I2C_DATA	В	Used as I2C_DATA signal or SPI_DI signal, defined by strapping pin 37
			GPIO6. Used as General Purpose IO after power on. Integrated pull-up
			resistor.
3	I2C_CLK	В	Used as I2C_CLK signal or SPI_CLK signal, defined by strapping pin 37
			GPIO6. Used as General Purpose IO after power on. Integrated pull-up
			resistor.
5	GPIO5	В	General Purpose IO, used as SPI_DO, with internal pull-up resistor.
6	GPIO4	В	General Purpose IO, used as SPI_CSO, with internal pull-up resistor.
8	GPIO3	В	General Purpose IO, used as strapping pin for clock source select while
			power on. Refer to the strapping table. Integrated pull-up resistor.
9	GPIO2	В	General Purpose IO, used as SPI_CS1, with internal pull-up resistor.
35	GPIO7	В	General Purpose IO, use as strapping for clock source select while power
			on. Refer to the strapping table. Integrated pull-up resistor.
37	GPIO6	В	General Purpose IO, used as strapping for external ROM enabling via SPI
			interface. Refer to the strapping table. Integrated pull-up resistor.
40	UART_RX	В	URAT_RX while debug mode, Used as General Purpose IO after power on.
	_		Integrated pull-up resistor.
41	UART_TX	В	UART_TX while debug mode, Used as General Purpose IO after power on.
		_	Integrated pull-up resistor.
43	GPIO0	В	General Purpose IO. Integrated pull-up resistor.
44	GPIO1	В	General Purpose IO. Integrated pull-up resistor.
45	HDDPC	В	HDD power control pin, use as General Purpose IO. Integrated pull-up
40	TIDDIO		resistor.
			0: Hard Drive Power Off
			1: Hard Drive Power On
10	VBUS	I	USB Cable Power Detector
17	REXT	P	External Reference Resistor with 12.1Kohm +/-1%
38			
	RST#	l	Power Reset pin
Clock Interfa	ce		

Pin No.	Name	TYPE	Descriptions
25	ΧI	I	Crystal input or Clock input pin
26	XO	0	Crystal output or Clock output pin
27	VCCTXL	P	Power for Crystal and PLL circuit
Voltage Regul	lator		
11	VBUS_LDO	P	Linear regulator input
12	VCCO	P	Linear regulator output
1	VCCIN	Р	Switching regulator input
48	LXI	P	Connect with external inductor
47	PGND	G	Ground for voltage regulator
Power and Gr	ound		
14, 18	VCCU	Р	USB high power pin
34	VCCS	Р	SATA high power pin
13, 24	VDDU	P	USB low power pin
28	VDDS	P	SATA low power pin
7, 36, 46	VDD	Р	Core power
4, 39	VCC	Р	IO power
21, 31	GNDA	G	Analog Ground
49	GND	G	the exposed pad connected to common ground on PCB

6.1 Strapping Table

Pin	Function	Description
GPIO6	SPI Interface Select	0: SPI for External ROM 1: I2C (Default)
GPIO[3,7]	Clock Select	00: 25MHz Crystal 01: 30MHz Clock Input 10: 20MHz Crystal 11: 30MHz Crystal (Default)
	Media	Codino,

7. Electrical Characteristics

7.1 Absolute Maximum Ratings

Stresses the below parameter listed under absolute maximum rating may cause the device permanent damage. This is a stress rating only, and the function operating of the device at these or any other conditions over those parameter in the recommended operating condition is not implied. It is recommended to have a clamp circuit to protect the device with abnormal exhibit voltage spikes while power is switched on or off.

Parameter	Range	Unit	
Power Supply for VCC	-0.5 ~ VCC+0.5	V	
Power Supply for VDD	-0.5 ~ VDD+0.5		
DC Input Voltage	-0.5 ~ VCC+0.5	V	6()
Output Voltage	-0.5 ~ VCC+0.5	V	
Storage Temperature	JEDEC J-STD-03	33B MSL 3	
7.2 Recommended Op	perating Conditi	ons	ila.

7.2 Recommended Operating Conditions

Symbols	Parameter	Min.	Тур.	Max.	Units
Vcc	IO Power Supply	2.3	3.3	3.6	V
V ccu	USB Analog High Power Supply	2.3	3.3	3.6	V
Vccs	SATA Analog High Power Supply	2.3	3.3	3.6	V
V DD	Core Power Supply	1.0	1.05	1.28	V
V DDU	USB Analog Low Power Supply	1.0	1.05	1.28	V
V DDS	SATA Analog Low Power Supply	1.0	1.05	1.28	V
Tc	Operating Case Temperature	0	25	95	°C
τJ	Operating Junction Temperature	0	25	120	°C
HBM	Human Body mode ESD		+/-2		KV
MM	Machine Mode ESD		+/-200		V

7.3 DC Electrical Characteristics for VBUS pins

Symbols	Parameter	Min.	Тур.	Max.	Units
ViH	Input High Level	2			V
VIL	Input Low Level			0.8	V
V HYS	Input Hysteresis	0.57	0.6	0.65	mV
V TH-L2H	VTH of Schmitt Trigger low to high	1.4		1.8	V
V TH-H2L	VTH of Schmitt Trigger high to low	0.85		1.10	V

7.4 DC Electrical Characteristics for GPIO pins

Symbols	Parameter	V	CC=3.3	I	V	Units		
	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Ullits
Vін	Input High Level	2			1.55			V
VIL	Input Low Level			0.8			0.6	V
V HYS	Input Hysteresis	0.57	0.6	0.65	0.47	0.52	0.57	mV
V TH-L2H	VTH of Schmitt Trigger low to high	1.38	1.6	1.8	1.1	1.3	1.5	V
V TH-H2L	VTH of Schmitt Trigger high to low	0.89	1.07	1.22	0.63	0.78	0.94	V
Dur	Internal Pull-up resistance while Vin=0V	70	103	143	97	148	216	ΚΩ
Rup	Internal Pull-up resistance while Vin=VCC/2 V	40	58.2	79.2	53	80	115	ΚΩ

Symbole	Parameter	V	VCC=3.3V			VCC=2.5V			
Symbols	raiailletei	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	
	Internal Pull-down resistance while Vin=0V	68	109	158	91	153	230	ΚΩ	
Rdn	Internal Pull-down resistance while Vin=VCC/2 V	39	61.7	88	49	82.7	123	ΚΩ	
l IL-UP	Input pull-up current after Vin is read, Rup is off & Iil < 1uA when VIN=0	21	32	54	10	16.8	32	mA	
	Input pull-up current after Vin is read, Rup is off & Iil < 1uA when VIN=VCC/2	19	28.4	48	9.8	15.6	28	mA	
	Input pull-down current after Vin is read, Rdn is off & Iil < 1uA when VIN=VCC	19	30.2	54	15.4	27.8	32	mA	
I IL-DN	Input pull-down current after Vin is read, Rdn is off & Iil < 1uA when VIN=VCC/2	17	26.8	48	9.6	16.4	29	mA	

7.5 DC Electrical Characteristics for RST# pins

Symbols	Parameter	Min.	Тур.	Max.	Units
V IH	Input High Level	2.6	$\triangle \triangle$		V
VIL	Input Low Level	/	34	1.4	V
V HYS	Input Hysteresis	0.218	0.235	0.25	V
V TH-L2H	VTH of Schmitt Trigger low to high	1.88		2.58	V
V TH-H2L	VTH of Schmitt Trigger high to low	1.65		2.35	V
Iιι	Input pull-up leakage current while Vin=0V			1	uA

7.6 External Crystal Electrical Specification

Note: please refer to the figure 3

Symbol	Parameter	Min.	Тур	Max.	Unit
f xtal	Frequency		20/25/30		MHz
Δfxtal	Long Term Stability (at 25°C)	-30		30	ppm
Tc	Temperature Stability	-30		30	ppm
FA	Aging	-5		5	ppm
CL	Load Capacitance (Single-end mode)		16		pF
Co	Shunt Capacitance	1	3	7	pF

Figure 3: Differential Crystal Design

7.7 Differential Clock Oscillator Electrical Specification

Note: please refer to the figure 3

Symbol	Parameter	Min.	Тур	Max.	Unit
f clk	Frequency		20/25/30		MHz
Δfclκ	Long Term Stability (all condition)	-150		150	ppm
Сх	External Load Capacitance (Differential mode)		10		pF
CTOTAL	Total External Equivalent Capacitance from XI pin to XO pin (Differential mode)		11	15	Pf
RTOTAL	Total External Equivalent Series Resistance from XI pin to XO pin			60	Ω

7.8 External Clock Input Electrical Specification

Symbol	Parameter	Min.	Тур	Max.	Unit
fclk	Frequency		30		MHz
∆fclk	Long Term Stability (all condition)	-100	X	100	ppm
Jitter	Input Clock cycle to cycle jitter Tolerance			150	ps
	Duty Cycle	45		55	%
t R	Rising Edge rate	1.0		2.0	V/ns
tr	Falling Edge rate	1.0		2.0	V/ns
Vih	Clock Input High Level	2			V
VIL	Clock Input Low Level		9)	0.8	V

7.9 Internal Linear Regular Electrical Specification

Symbol	Parameter	Min.	Тур	Max.	Unit
VIN_LINEAR	Input Voltage Range for internal linear regulator	4.5	5	5.5	V
Vout_linear	Output Voltage Range for internal linear regulator	3.15	3.3	3.45	V
Імах	Maximum capacity of current output			200	mA

7.10 Internal Switching Regular Electrical Specification

Symbol	Parameter	Min.	Тур	Max.	Unit
VIN_SWITCH	Input Voltage Range for internal switching regulator	2.3		5.5	V
Vout_switch	Output Voltage Range for internal switching regulator	1.0	1.05	1.1	V
ΔV _N (p-p)	3.3V input voltage noise/ripple Range	-8		8	%
Fosc	OSC frequency		1.7		MHz
Імах	Maximum capacity of current output			300	mA
IP _(LM)	P-channel current limiter		1		А

> Strong recommend to have 10uF decoupling capacitor placed close to pin3 to filter the noise/ripple of 3.3V switching regulator input.

7.11 Power Consumption Characteristics

Figure 4: Test point for power consumption

Symbols	Parameter	Condition	USB3.0			USB2.0			Units
			Min.	Тур.	Max.	Min.	Тур.	Max.	
	Total current	Operating	30	40 🧹	50	17	27	37	mA
Lyce	consumed for 3.3V power domain (Test point T1)	Idle	30	40	50	17	27	37	mA
IVCC		suspend	1.0	1.5	2.5	1.0	1.5	2.5	mA
	Total current	Operating	150	170	190	83	98	113	mA
IVDD	consumed for 1.05V	Idle	110	125	140	83	98	113	mA
1000	power domain (Test point T2)	suspend	1.5	2.5	3.8	1.5	2.5	3.8	mA

Figure 5: Test point on Type 1

Symbols	Parameter	Condition	USB3.0			USB2.0			Units
			Min.	Тур.	Max.	Min.	Тур.	Max.	
	Total current	Operating	75	85	95	65	75	85	mA
Ivbus	consumption for 5V	Idle	65	75	85	65	75	85	mA
	(Test Point: Vbus)	suspend	1.5	2.5	3.5	1.5	2.5	3.5	mA
	Total power	Operating	375	425	475	325	375	425	mW
PvBus	consumption for 5V	Idle	325	375	425	325	375	425	mW
	(Test Point: Vbus)	suspend	7.5	12.5	17.5	7.5	12.5	17.5	mW

Figure 6: Test point for Type 2

Symbols	Parameter	Condition		USB3.0			USB2.0		
			Min.	Тур.	Max.	Min.	Тур.	Max.	
	Total current	Operating	95	105	115	75	85	95	mA
I vbus	vвus consumption for 5V	Idle	75	85 📈	95	75	85	95	mA
	(Test Point: Vbus)	suspend	1.5	2.5	3.5	1.5	2.5	3.5	mA
	Total power	Operating	475	525	575	375	425	475	mW
	consumption for 5V	Idle	375	425	475	375	425	475	mW
	(Test Point: Vbus)	suspend	7.5	12.5	17.5	7.5	12.5	17.5	mW

Notice: The different type of inductor for internal switching regulator will have different power consumption.

8. Power on Sequence

Figure 7: timing diagram

	Figure 7: timing diagram											
Symbols	Parameter	Min	Тур	Max	Unit	Remark						
T1	The delay of VCC after VBUS is available	0	5	10	ms	Measure from 10% of VCC to 90% of VBUS For Self-powered system or external 5V to VCC regulator, this rule is not needed.						
Т2	The delay of VDD after VCC is available	40	64	90	ms	Measure from 10% of VCC to 90% of VDD For external VCC to VDD regulator, this rule is not needed.						
Т3	The delay of RST# after VCC is available	0		N/A	ms	Measure from 2V of RST# to 90% of VCC						
T4	The crystal clock is stable after RST# and VDD is available	15	25	40	ms	Measure from 90% of VDD or 2V of RST#						
Tsifw	Slew rate of VDD	0		10	ms	Measure from 10% to 90% of VDD						

9. PCB Design Guide under Thermal Pad

To improve the thermal efficieny and signal integrity, it is recommended to place the thermal via under or near to thermal pad. To avoid the process issue, please make sure the thermal via fills with solder covering with solder mask. It is recommended to follow up the pattern on PCB as Figure 7 or Figure 8.

Figure 8: Symbol 1 for via design rule under Thermal pad

Figure 9: Symbol 2 for via design rule under Thermal pad

10. Package Information

NOTES:

1.ALL DIMENSIONS ARE IN MILLIMETERS.

2.DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM(.012 INCHES MAXIMUM)

3.DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. -1994.

4.DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINALTIP.

5.THE PIN #1 IDENTIFIER MUST BE PLACED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.

6.EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.

ASMedia confidentia

7.PACKAGE WARPAGE MAX 0.08 mm.

8.APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.

9.APPLIED ONLY TO TERMINALS.

10.PACKAGE CORNERS UNLESS

OTHERWISE SPECIPIED

ARE R0.175±0.025 mm.

Figure 10: Mechanical Specification - QFN 48L

11. Top Marking Information

TBD

