Macroeconomic Effects of Capital Tax Rate Changes

Saroj Bhattarai

Jae Won Lee

UT Austin

U of Virginia

Woong Yong Park

Choongryul Yang

Seoul National Univ.

UT Austin

Midwest Macro Meeting
May 2018

- Macro effects of capital tax cuts a recent subject of discussion
 - $\circ~$ Recent U.S. tax reform lowers the corporate tax rate from 35% to 21%

- Macro effects of capital tax cuts a recent subject of discussion
 - Recent U.S. tax reform lowers the corporate tax rate from 35% to 21%
- What are the long-run effects on output, investment, consumption, and wages?
 - Ones the source of financing matter?

- Macro effects of capital tax cuts a recent subject of discussion
 - Recent U.S. tax reform lowers the corporate tax rate from 35% to 21%
- What are the long-run effects on output, investment, consumption, and wages?
 - Ones the source of financing matter?
- Do wage, consumption, and income inequality increase or decrease?

- Macro effects of capital tax cuts a recent subject of discussion
 - Recent U.S. tax reform lowers the corporate tax rate from 35% to 21%
- What are the long-run effects on output, investment, consumption, and wages?
 - o Does the source of financing matter?
- Do wage, consumption, and income inequality increase or decrease?
- Are the short-run effects different from the long-run ones?

Our Model

- Standard business cycle model with capital-skill complementarity and incomplete consumption insurance
 - Skill-premium
 - Income and consumption inequality

Our Model

- Standard business cycle model with capital-skill complementarity and incomplete consumption insurance
 - Skill-premium
 - o Income and consumption inequality
- Adjustment frictions in investment and prices
 - Realistic transition dynamics
 - o A role for monetary aspects of the model

Preview of Results - Long-run Effects

- Capital tax cuts have expansionary long-run effects
 - For a permanent reduction of the capital tax rate from 35% to 21%,
 - output increases by 8.4%, investment by 31.7%, and consumption by 5.6%
 if lump-sum transfers adjust

Preview of Results - Long-run Effects

Capital tax cuts have expansionary long-run effects

- For a permanent reduction of the capital tax rate from 35% to 21%,
 - $-\,$ output increases by 8.4%, investment by 31.7%, and consumption by 5.6% if lump-sum transfers adjust

Capital tax cuts increase inequality in the long-run

- Skill premium increases by 13.7% point
- \circ Consumption of the skilled increases by 10%, but of the unskilled decreases by 5.6%

Preview of Results - Long-run Effects

Capital tax cuts have expansionary long-run effects

- For a permanent reduction of the capital tax rate from 35% to 21%,
 - output increases by 8.4%, investment by 31.7%, and consumption by 5.6%
 if lump-sum transfers adjust

Capital tax cuts increase inequality in the long-run

- Skill premium increases by 13.7% point
- \circ Consumption of the skilled increases by 10%, but of the unskilled decreases by 5.6%

How the tax cuts are financed matters

 The expansionary effects are smaller if the government has to rely on distortionary labor/consumption taxes

Preview of Results - Transition dynamics

• During the transition, the economy experiences a contraction

Preview of Results - Transition dynamics

- During the transition, the economy experiences a contraction
- Income inequality, the skill premium, and consumption inequality increase along the transition

Preview of Results - Transition dynamics

- During the transition, the economy experiences a contraction
- Income inequality, the skill premium, and consumption inequality increase along the transition
- Monetary aspects of the model matter
 - The interest rates response to inflation and how inertial are interest rate changes are important determinants of aggregate effects

Related Literature

Capital tax rate changes

- Long-run effects: Trabandt and Uhlig (2011)
- o Recent US Tax reform: Barro and Furman (2018)
- o DSGE: Forni, Monteforte, and Sessa (2009), Sims and Wolff (2017)
- Empirical: Romer and Romer (2010), Blanchard and Perrotti (2002), Mountford and Uhlig (2009), House and Shapiro (2008), Nallareddy, Rouen, and Suárez Serrato (2018)

Heterogeneity in the model

- Capital-skill complementarity: Krussell, Ohanian, Rios-Rull, and Violante (2000), Lindquist (2004), Maliar and Maliar (2011)
- TANK model: Galí, López-Salido, and Vallés (2007), Bilbiie (2017)

Normative analysis of the optimal capital tax rate

o Chamley (1986) and Judd (1985)

 \bullet Two types of households - skilled (N^s) and unskilled (N^u)

- Two types of households skilled (N^s) and unskilled (N^u)
- Two types of capital structures (K_b) and equipment (K_e)

- Two types of households skilled (N^s) and unskilled (N^u)
- Two types of capital structures (K_b) and equipment (K_e)
- Equipment capital and skilled labor are complements

- ullet Two types of households skilled (N^s) and unskilled (N^u)
- Two types of capital structures (K_b) and equipment (K_e)
- Equipment capital and skilled labor are complements
- Skilled workers own capital and have access to financial markets

- ullet Two types of households skilled (N^s) and unskilled (N^u)
- Two types of capital structures (K_b) and equipment (K_e)
- Equipment capital and skilled labor are complements
- Skilled workers own capital and have access to financial markets
- Unskilled workers are hand-to-mouth consumers
 - o They simply consume their disposable income in each and every period

Household

• Skilled workers' problem is to

$$\max_{\left\{C_{t}^{s}, H_{t}^{s}, B_{t}^{s}, I_{b,t}^{s}, I_{e,t}^{s}, K_{b,t+1}^{s}, K_{e,t+1}^{s}\right\}} \quad E_{0}\left\{\sum_{t=0}^{\infty} \beta^{t} U\left(C_{t}^{s}, H_{t}^{s}\right)\right\}$$

subject to

$$(1 + \tau_t^C) P_t C_t^s + P_t I_{b,t}^s + P_t I_{e,t}^s + B_t^s = (1 - \tau_t^H) W_t^s H_t^s + R_{t-1} B_{t-1}^s$$

$$+ (1 - \tau_t^K) R_t^{K,b} K_{b,t}^s + (1 - \tau_t^K) R_t^{K,e} K_{e,t}^s$$

$$+ P_t \chi^{\Phi} \Phi_t + P_t \chi^S S_t$$

$$K_{b,t+1}^{s} = (1 - d_b) K_{b,t}^{s} + \left(1 - \mathcal{S}\left(\frac{I_{b,t}^{s}}{I_{b,t-1}^{s}}\right)\right) I_{b,t}^{s}$$

$$K_{e,t+1}^{s} = (1 - d_e) K_{e,t}^{s} + \left(1 - \mathcal{S}\left(\frac{I_{e,t}^{s}}{I_{e,t-1}^{s}}\right)\right) I_{e,t}^{s} q_t$$

Household

• Unskilled workers' problem is to

$$\max_{\left\{C_t^u, H_t^u\right\}} \ U\left(C_t^u, H_t^u\right)$$

subject to

$$\left(1+\tau_{t}^{C}\right)P_{t}C_{t}^{u}=\left(1-\tau_{t}^{H}\right)W_{t}^{u}H_{t}^{u}+P_{t}\left(1-\chi^{\Phi}\right)\Phi_{t}^{u}+P_{t}\left(1-\chi^{S}\right)S_{t}^{u}$$

Firms

- ullet Competitive final goods firms produce aggregate output Y_t
- Continuum of monopolistically competitive intermediate goods firms produce with a CRS technology

$$Y_{t}\left(i\right) \equiv A_{t}\left(K_{b,t}\left(i\right)\right)^{\alpha}\left[\mu\left(L_{u,t}\left(i\right)\right)^{\sigma} + (1-\mu)\left(\lambda\left(K_{e,t}\left(i\right)\right)^{\rho} + (1-\lambda)\left(L_{s,t}\left(i\right)\right)^{\rho}\right)^{\frac{\sigma}{\rho}}\right]^{\frac{1-\alpha}{\sigma}}$$
 using capital structures $(K_{b,t})$, capital equipment $(K_{e,t})$, skilled labor $(L_{s,t})$

• Capital-skill complementarity if $\sigma > \rho$

and unskilled labor($L_{u,t}$)

• Intermediate goods firms rent capital and hire labor in competitive markets

Monetary and Fiscal Policy

Monetary policy

$$\frac{R_t}{\bar{R}} = \left[\frac{R_{t-1}}{\bar{R}}\right]^{\rho^R} \left[\left(\frac{\pi_t}{\bar{\pi}}\right)^{\phi}\right]^{\left(1-\rho^R\right)}$$

· Government flow budget constraint

$$\frac{B_t}{P_t Y_t} + \tau_t^C \frac{C_t}{Y_t} + \tau_t^H \left(\frac{W_t^s}{P_t Y_t} L_{s,t} + \frac{W_t^u}{P_t Y_t} L_{u,t} \right) + \tau_t^K \left(\frac{R_t^{K,b}}{P_t Y_t} K_{b,t} + \frac{R_t^{K,e}}{P_t Y_t} K_{e,t} \right) \\
= R_{t-1} \frac{B_{t-1}}{P_{t-1} Y_{t-1}} \frac{1}{\pi_t} \frac{Y_{t-1}}{Y_t} + \frac{G_t}{Y_t} + \frac{S_t}{Y_t}$$

- \bullet A permanent change in the capital tax rate τ_t^K
 - $\circ~$ In the long-run, $\frac{G_t}{Y_t}$ and $\frac{B_t}{P_tY_t}$ the same as the initial steady-state
- · Fiscal policy adjustment rules
 - Lump-sum transfers; Labor tax rates; Consumption tax rates

Definitions and Functional Forms

• The economy features a balanced growth path

Definitions and Functional Forms

- The economy features a balanced growth path
- Functional forms for preferences and technology

$$U(C^{i}, H^{i}) \equiv \ln(C^{i}) - \overline{\omega}^{i} \frac{\left(H^{i}\right)^{1+\varphi}}{1+\varphi}$$

$$F(A, K_{b}, K_{e}, L_{u}, L_{s}) \equiv A(K_{b})^{\alpha} \left[\mu L_{u}^{\sigma} + (1-\mu)(\lambda(K_{e})^{\rho} + (1-\lambda)(L_{s})^{\rho})^{\frac{\sigma}{\rho}}\right]^{\frac{1-\alpha}{\sigma}}$$

• Capital-skill complementarity if $\sigma > \rho$

Definitions and Functional Forms

- The economy features a balanced growth path
- Functional forms for preferences and technology

$$U(C^{i}, H^{i}) \equiv \ln \left(C^{i}\right) - \bar{\omega}^{i} \frac{\left(H^{i}\right)^{1+\varphi}}{1+\varphi}$$

$$F\left(A, K_{b}, K_{e}, L_{u}, L_{s}\right) \equiv A\left(K_{b}\right)^{\alpha} \left[\mu L_{u}^{\sigma} + (1-\mu)\left(\lambda \left(K_{e}\right)^{\rho} + (1-\lambda)\left(L_{s}\right)^{\rho}\right)^{\frac{\sigma}{\rho}}\right]^{\frac{1-\alpha}{\sigma}}$$

- Capital-skill complementarity if $\sigma > \rho$
- Investment and price adjustment costs

$$\mathcal{S}\left(\frac{I_t}{I_{t-1}}\right) \equiv \frac{\xi}{2} \left(\frac{I_t}{I_{t-1}} - \gamma\right)^2, \ \ \Xi\left(\frac{P_t}{P_{t-1}}\right) \equiv \frac{\kappa}{2} \left(\frac{P_t}{P_{t-1}} - \bar{\pi}\right)^2$$

Calibration

	Value	Description	References
House	eholds_		
N^s	0.5	Fraction of skilled labor	Lindquist (2004)
φ	1.0	Inverse of Frisch elasticity of labor supply	Trabandt and Uhlig (2011)
ξ	4.0	Investment adjustment cost	Smets and Wouters (2007)
Firms	_		
σ	0.401	EoS between unskilled labor and equipment	Krusell et al.(2000)
ρ	-0.495	EoS between skilled labor and equipment	Krusell et al.(2000)
α	0.117	Structures capital Income share	Krusell et al.(2000)
λ	0.35	Equipment capital income share	Steady-state labor share: 56%
μ	0.345	Unskilled labor income share	Steady-state skill premium: 60%
κ	50	Quadratic price adjustment cost	Ireland (2000)
θ	4.0	Elasticity of substitution between goods	Steady-state Markup: 33%

Calibration

	Value	Description	References
House	holds_		
N^s	0.5	Fraction of skilled labor	Lindquist (2004)
φ	1.0	Inverse of Frisch elasticity of labor supply	Trabandt and Uhlig (2011)
ξ	4.0	Investment adjustment cost	Smets and Wouters (2007)
Firms			
σ	0.401	EoS between unskilled labor and equipment	Krusell et al.(2000)
ρ	-0.495	EoS between skilled labor and equipment	Krusell et al.(2000)
α	0.117	Structures capital Income share	Krusell et al.(2000)
λ	0.35	Equipment capital income share	Steady-state labor share: 56%
μ	0.345	Unskilled labor income share	Steady-state skill premium: 60%
κ	50	Quadratic price adjustment cost	Ireland (2000)
θ	4.0	Elasticity of substitution between goods	Steady-state Markup: 33%
	nment(Fisc	al/Monetary Policy)	
$ar{ ilde{b}}$ $ar{ ilde{G}}$ $ar{ ilde{T}}^C$ $ar{ ilde{T}}^H$	0.363	SS debt to GDP ratio	US Post-Volcker Data
$\bar{\tilde{G}}$	0.161	SS government spending to GDP ratio	US Post-Volcker Data
$\bar{\tilde{T}}^C$	0.009	SS consumption tax revenue to GDP ratio	US Post-Volcker Data
$\bar{\tilde{T}}^H$	0.128	SS labor tax revenue to GDP ratio	US Post-Volcker Data
χ^{Φ}	1	Fraction of profit distribution to skilled worker	
χ^S	0	Fraction of transfers distribution to skilled worker	
φ	1.5	Taylor rule	

Long-run Effects

Capital tax cuts have expansionary long-run effects

Capital tax cuts increase inequality

Long-run Effect - Transfer Adjustment

- Capital tax cut facilitates capital accumulation and leads to an increase in aggregate output, consumption, and wages
- Skill-premium and wage inequality increase in the long-run
 - o Equipment capital accumulation and capital-skill complementarity
- Skill premium increases even with complete markets (without hand-to-mouth households)
- Consumption inequality increases due to the redistribution of income

```
    Other Variables
    ▶ Profit/Transfer Distribution
    ▶ Profit/Transfer Distribution
    ▶ Labor/Consumption Tax Adjustment
    ▶ Complete Market and No Complementarity
    ▶ Complete Market
    ▶ No Capital/Skill Complementarity
```

Transition Dynamics

Transition Dynamics

- \bullet Transition dynamics following a permanent capital tax cut, from 35% to 21%
 - o It takes a long time (70 quarters) for convergence to a new steady-state
- Different fiscal/monetary policy adjustments
 - \circ Transfers adjustment with smoothing ($\rho=0.9)$
 - $rac{S_t}{Y_t}$ adjust to maintain $rac{B_t}{P_t Y_t}$ constant
 - Labor (or consumption) tax rate adjustment

$$\tau_{t}^{H} - \bar{\tau}_{new}^{H} = \rho^{H} \left(\tau_{t-1}^{H} - \bar{\tau}_{new}^{H} \right) + \left(1 - \rho^{H} \right) \psi^{H} \left(\frac{B_{t-1}}{P_{t-1} Y_{t-1}} - \frac{\overline{B}}{PY} \right)$$

Transfers Adjustment

Implications on Macro Variables

- A capital tax rate cut leads to a decrease in the rental rate of capital
- It facilitates capital accumulation via more investment
- In the short-run, to finance this increase of investment, consumption declines
- Output also falls due to price and investment adjustment costs

Implications on Macro Variables

- A capital tax rate cut leads to a decrease in the rental rate of capital
- It facilitates capital accumulation via more investment
- In the short-run, to finance this increase of investment, consumption declines
- Output also falls due to price and investment adjustment costs
- The temporary fall in output and the increase in profits lead to fall in hours of skilled workers
- Unskilled workers work harder since the reduction in transfers leads to the decrease in their disposable income
 - Wages of unskilled workers drop more and stay below the initial steady-state for a long time

Transfers Adjustment - Inequality

Implications on Inequality

- Consumption inequality increases along the transition
 - Consumption of skilled workers slightly decreases to finance the increase in investment
 - Consumption of unskilled workers decreases a lot due to the reduction of disposable income
- Wage premium increases along the transition
 - Wages of skilled workers decrease because labor demand declines as firms produce a smaller amount of output in the short-run
 - Wages of unskilled workers decrease a lot because of the large labor supply effects
- (After-tax) capital income to labor income ratio increases
 - The long-run positive effects of capital tax cuts come at the expense of short-run decline of labor income

Extensions

- Source of financing Figure
 - o Transfers adjustment v.s. Distortionary tax rate adjustment
- Nominal aspects of the model Figure
 - Degree of price stickiness
 - o Inflation feedback parameter in monetary policy rule
- Without capital-skill complementarity Figure

Conclusion

Conclusion

- A permanent reduction in the capital tax rate from 35% to 21% generates a long-run increase in output, consumption, and investment
 - o When labor/consumption tax adjusts, the increases are lower
- In the short-run, the economy experiences a decline in consumption, output, hours, wages, and labor income
- Capital tax cuts increase inequality in the long- and short-run
 - o Skill premium and consumption inequality increase

Appendix

Calibration

	Value	Description	References		
House	Households ($N^s=0.5$)				
β	0.9975	Time preference	Smets and Wouters (2007)		
φ	1.0	Inverse of Frisch elasticity of labor supply	Trabandt and Uhlig (2011)		
$\bar{\omega}^s$	7.7		Steady-state $\bar{H}^s=0.33$		
$\bar{\omega}^u$	4.6	Labor supply disutility parameters	Steady-state $\bar{H}^u=0.31$		
d_e	0.031	Equipment Capital depreciation	Krusell et al.(2000)		
d_b	0.013	Structures Capital depreciation	Krusell et al.(2000)		
ξ	4.0	Investment adjustment cost	Smets and Wouters (2007)		
<u>Firms</u>					
σ	0.401	EoS between unskilled labor and equipment	Krusell et al.(2000)		
ρ	-0.495	EoS between skilled labor and equipment	Krusell et al.(2000)		
α	0.117	Structures capital Income share	Krusell et al.(2000)		
λ	0.35	Equipment capital income share	Steady-state labor share: 56%		
μ	0.345	Unskilled labor income share	Steady-state skill premium: 60%		
κ	50	Quadratic price adjustment cost	Ireland (2000)		
θ	4.0	Elasticity of substitution between goods	Steady-state Markup: 33%		

	Value	Description	References		
Government(Fiscal/Monetary Policy)					
$ar{ ilde{b}}$	0.363	SS debt to GDP ratio	US Post-Volcker Data		
$\bar{\tilde{G}}$	0.161	SS government spending to GDP ratio	US Post-Volcker Data		
$\bar{\tilde{T}}^C$	0.009	SS consumption tax revenue to GDP ratio	US Post-Volcker Data		
$\bar{\tilde{T}}^H$	0.128	SS labor tax revenue to GDP ratio	US Post-Volcker Data		
χ^{Φ}	1	Fraction of profit distribution to skilled worker			
χ^S	0	Fraction of transfers distribution to skilled worker			
φ	1.5	Taylor rule			
. C	0.0	No tax rate response to debt			
ψ^{C}	0.05	Consumption tax rate response to debt			
	0.0	No tax rate response to debt			
ψ^H	0.05	Labor tax rate response to debt			

Aggregate Variables

Inequality Pack

Profit/Transfer Distribution

Profit/Transfer Distribution • Back

Different Profit Distribution

Different Profit Distribution Back

Different Transfers Distribution

Different Transfers Distribution Back

Source of Financing

Source of Financing • Back

Complete Market Without Complementarity

$$(\sigma = \rho = 0.1)$$

Complete Market Without Complementarity

$$(\sigma=
ho=0.1)$$
 Pack

Complete Market with Complementarity

Complete Market with Complementarity Back

Without Complementarity ($\sigma = \rho = 0.1$)

Without Complementarity $(\sigma = \rho = 0.1)$

Distortionary Tax Adjustment

Distortionary Tax Adjustment - Inequality

Implications of Fiscal Rules

- The drop in consumption and output is larger if labor or consumption tax adjusts
 - Increased labor/consumption tax rate decreases hours even further by discouraging workers from supplying labor
 - o Hours in equilibrium fall much more, below the lower new steady-state
 - This amplifies the short-run contraction in consumption and output
- The increase in inequality measures is larger if transfer adjusts
 - o Government takes more resources from unskilled workers if transfer adjusts

Degree of Price Stickiness

Degree of Price Stickiness - Inequality

Inflation Feedback

Inflation Feedback - Inequality Pack

Role of Monetary Components

- Monetary aspects of the model matter for transition dynamics
 - \circ When prices are more rigid or inflation feedback parameter (ϕ) is smaller,
 - there is a bigger short-run drop in consumption, output, and wages and a smaller drop in inflation
 - inequality increases more due to large increase in profits

Transition Dynamics Without Complementarity

$$(\sigma = \rho = 0.1)$$

Transition Dynamics Without Complementarity

$$(\sigma=
ho=0.1)$$
 Pack

