Argomenti di Intelligenza artificiale

Intelligenza artificiale, Machine Learning e Deep Learning.

Storia dell'intelligenza artificiale, Origini, I due Inverni, Tempi moderni: 2011 ad oggi Deep Learning

Paradigma del machine Learning vs Paradigma di programmazione tradizionale.

Preparazione dei dati (Training Set, Validation Set, Testing Set)

- Modello - Predizione

Task del Machine Learning: Classificazione, Regressione e Clustering

Deep Learning – vs Machine Learning

Classificazione degli algoritmi di Machine Learning: Algoritmi Supervisionati

(Regressione e classificazione), Algoritmi non supervisionati (Clustering)

Neurone Artificiali: Neurone Biologico e Neurone artificiale. Funzioni di attivazione. Percettrone a soglia e limiti.

Reti Neurali artificiali: Input Layer, Hidden Layer, Output Layer. Reti FeedForward, Reti ricorrenti.

MultiLayer Preceptron (MLP)

Training di una rete neurale. Forward Propagagation e Backward Propagation.

Iperparametri di una rete neurale.

Loss Function e Funzione costo nell' apprendimento supervisionato: caso del task della regressione; caso del task della classificazione.

Reti neurali Convoluzionali:

Architettura di una rete CNN: parte convoluzione e parte fully-connected

La parte convoluzionale consiste di strati convoluzionali seguite da funzioni di attivazione non lineare tipo(RELU) e di pooling. Questa parte costituisce il componente essenziale dell'estrazione di feature

• La parte fully-connected consiste in un'architettura di rete neurale completamente connessa. Questa parte esegue il compito di classificazione in base all'input dalla parte convoluzionale.

Algoritmo di backpropagation per il calcolo delle derivate parziali della funzione costo rispetto ai pesi di tutti i layer . (Ricavare la formula di aggiornamento dei pesi nel caso

di una rete MLP con 1 layer di input con un solo nodo, 2 layer nascosti ciascuno con un solo nodo ed un nodo di output).

Tecniche di Ottimizzazione: metodo di discesa del gradient batch, metodo del gradiente stocastico (SGD), metodo del gradiente stocastico minibatch.

Sotto quali condizioni, il metodo di discesa del gradiente con passo fisso converge a un punto stazionario della funzione costo, che può essere un minimo globale se la funzione è convessa?

Non convessità della funzione di costo.

Importanza del learning rate nei metodi di discesa.

Metodo di ottimizzazione del gradient descent con momento. Perchè è stato studiato e formula di aggiornamento dei pesi.

Aggiornamento del learning rate programmato (learning rate scheduling): step decay, decadimento esponenziale, decadimento dipendente dal tempo.

Learning rate adattivo per ogni peso (durante il processo di ottimizzazione) : Adagrad, RMSProp, Adadelta, Adam. (formula di aggiornamento dei pesi e discussioni)