

BUZ71A

N - CHANNEL 50V - 0.1Ω - 13A TO-220 STripFETTM POWER MOSFET

TYPE	V_{DSS}	R _{DS(on)}	I _D	
BUZ71A	50 V	< 0.12 Ω	13 A	

- TYPICAL $R_{DS(on)} = 0.1 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- HIGH CURRENT CAPABILITY
- 175°C OPERATING TEMPERATURE

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- REGULATORS
- DC-DC & DC-AC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- AUTOMOTIVE ENVIRONMENT (INJECTION, ABS, AIR-BAG, LAMPDRIVERS, Etc.)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	50	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	50	V
V_{GS}	Gate-source Voltage	± 20	V
I _D	Drain Current (continuous) at T _c = 25 °C	13	А
I _{DM}	Drain Current (pulsed)	52	А
P _{tot}	Total Dissipation at T _c = 25 °C	40	W
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C
	DIN HUMIDITY CATEGORY (DIN 40040)	E	
	IEC CLIMATIC CATEGORY (DIN IEC 68-1)	55/150/56	

First digit of the datecode being Z or K identifies silicon characterized in this datasheet.

July 1999 1/8

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	3.75	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	14	Α
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 25$ V)	50	mJ

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	50			٧
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T_j = 125 °C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 1 \text{ mA}$	2.1	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10 \text{ V}$ $I_D = 9 \text{ A}$		0.1	0.12	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} = 25 \text{ V} I_{D} = 9 \text{ A}$	4	7.7		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		760 100 30		pF pF pF

SWITCHING

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Time	$V_{DD} = 30 \text{ V}$ $I_{D} = 8 \text{ A}$		20		ns
tr	Rise Time	$R_{GS} = 50 \Omega$ $V_{GS} = 10 V$		65		ns
t _{d(off)}	Turn-off Delay Time			70		ns
tf	Fall Time			35		ns

ELECTRICAL CHARACTERISTICS (continued)

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)				13 52	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 28 A V _{GS} = 0			1.8	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 14 \text{ A}$ di/dt = 100 A/ μ s $V_{DD} = 30 \text{ V}$ $T_i = 150 ^{\circ}\text{C}$		65		ns
Q_{rr}	Reverse Recovery Charge	,		0.17		μС

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Safe Operating Area

Thermal Impedance

Output Characteristics

Transconductance

Gate Charge vs Gate-source Voltage

4/8

Transfer Characteristics

Static Drain-source On Resistance

Capacitance Variations

Normalized Gate Threshold Voltage vs Temperature

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

4