LABORATORIUM SYSTEMÓW WBUDOWANYCH I MIKROPROCESORÓW

Blok 2: Czujniki mikromechaniczne- wersja zdalna

Protokół wykonania ćwiczenia

Temat: <u>Podstawowe właściwości oraz zasada działania żyroskopu mikromechanicznego.</u>

Data	7.05.2021	Godzina	13:00	
Nazwisko i Imię			Numer indeksu	Grupa dziekańska
Adryan Maciej			175854	III

AD. 3:

Działanie i konstrukcja żyroskopu MEMS opierają się na zjawisku Coriolisa. Polega ono na zmianie toru ruchu poruszającego się ciała w obracającym się, nieinercjalnym układzie odniesienia. Wewnątrz żyroskopu w specjalnej ramce zawieszona jest masa krzemowa, wykonująca ruchy wzdłuż promienia obracającego się układu, natomiast ramka tylko prostopadle względem niego. Przemieszczenie masy uzyskujemy poprzez wprawienie jej w drgania za pomocą oddziaływań elektrostatycznych. Do ramki przymocowane są elektrody, które stanowią okładziny kondensatora grzebieniowego. W wyniku odchylenia się ramki na skutek działania siły Coriolisa, odległość pomiędzy okładzinami kondensatora ulega zmianie co wpływa na zmiany pojemności kondensatorów pracujących różnicowo. Dzięki informacji o ich pojemnościach wynikających z bliskości okładzin kondensatora możemy oszacować w przybliżeniu prędkość kątową.

AD. 4:

Proces kalibracji żyroskopu polega na obliczeniu odchylenia współczynnika korygującego. Obliczony na podstaiwe zestawu danych GYRO_OUT współczynnik korygujący jest ładowany do rejestru GYRO_OFF. Rejestr przechowuje przesunięcie względem osi X.

Obliczona wartość poprawki w procesie kalibracji:	0.031827
---	----------

AD. 5:

Wartość poprawki wpisana do rejestru <i>GYRO_OFF</i>	0.0250
--	--------

Wartość wpisana do rejestru GYRO_OFF jest inna od tej obliczonej w punkcie 9 ponieważ dokładność zadnego rejestru jest na poziomie 0.0125 °/sec a więc przyjmuje ona największą możliwą wielokrotność poziomu dokładności mniejszą od wartości obliczonej.

2 *0.0125 - <u>0.031827</u> = -0.006827 3 *0.0125 - <u>0.031827</u> = 0.005673

AD.6:

AD.7:

Żyroskop prędkościowy "rozpoznaje" kierunek obrotu. Podczas obracania wokół osi OZ zgodnie z ruchem wskazówek zegara wartości X_GYRO są ujemne, zaś podczas obracania w kierunku przeciwnym do ruchu wskazówek zegara są one dodatnie.

AD.11.

Model czujnika	ADIS 16400		
Adres rejestru osi X	0x04	Zakres pomiarowy	± 375 °/sec
Adres rejestru osi Y	-	Czułość czujnika	0.05 °/sec
Adres rejestru osi Z	-	Liczba bitów danych	14

Zadanie rozszerzone:

AD. a)

Na przestrzeni 24-60 s kąt żyroskopu zmienia się (bardzo powoli) o 1°.

AD. b)

Tak, "dryft zera żyroskopu" jest widoczny na podstawie wykresu przy dobraniu odpowiedniej skali. Jest on równy około <u>0.03570077</u> °/s.

AD.c)

Wynika to z błędów całkowania spowodowanych różnicą wartości wpisanej do rejestru GYRO_OFF oraz wartości poprawki obliczonej w procesie kalibracji.