ColumbiaX: Machine Learning

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

ColumbiaX: Machine Learning Lecture 1

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

OVERVIEW

This class will cover model-based techniques for extracting information from data with an end-task in mind. Such tasks include:

- predicting an unknown "output" given its corresponding "input"
- uncovering information within the data to better understand it
- ▶ data-driven recommendation, grouping, classification, ranking, etc.

There are a few ways we can divide up the material as we go along, e.g.,

supervised learning | unsupervised learning | probabilistic models | non-probabilistic models | modeling approach | optimization techniques

We'll adopt the first method and work in the second two along the way.

OVERVIEW: SUPERVISED LEARNING

Regression: Using set of inputs, predict real-valued output.

Classification: Using set of inputs, predict a discrete label (aka class).

EXAMPLE CLASSIFICATION PROBLEM

Given a set of inputs characterizing an item, assign it a label.

Is this spam?

hi everyone,

i saw that close to my hotel there is a pub with bowling (it's on market between 9th and 10th avenue). meet there at 8:30?

What about this?

Enter for a chance to win a trip to Universal Orlando to celebrate the arrival of Dr. Seuss's The Lorax on Movies On Demand on August 21st! Click here now!

OVERVIEW: UNSUPERVISED LEARNING

(c) topic modeling

(d) recommendations1

With unsupervised learning our goal is often to uncover structure in the data. This helps with predictions, recommendations, efficient data exploration.

¹ Figure from Koren, Y., Robert B., and Volinsky, C.. "Matrix factorization techniques for recommender systems." Computer 42.8 (2009): 30-37.

EXAMPLE UNSUPERVISED PROBLEM

Goal: Learn the dominant topics from a set of news articles.

The New York Times

music	book	art	game	show
band	life	museum	Knicks	film
songs	novel	show	nets	television
rock	story	exhibition	points	moyie
album	books	artist	team	series
jazz	man	artists	season	says
pop	stories	paintings	play	life
song	love	painting	games	man
singer	children	century	night	character
night	family	works	coach	know
theater play production show stage street broadway director musical directed	clinton bush campaign gore political republican dole presidential senator house	stock market percent fund investors funds companies stocks investment trading	restaurant sauce menu food dishes street dining dinner chicken served	budget tax governor county mayor billion taxes plan legislature fiscal

DATA MODELING

- ► Supervised vs. unsupervised: Blocks #1 and #4
- ► Probabilistic vs. non-probabilistic: Primarily Block #2 (Some Block #3)
- ► Model development (Block #2) vs. Optimization techniques (Block #3)

GAUSSIAN DISTRIBUTION (MULTIVARIATE)

Gaussian density in d dimensions

- ▶ Block #1: Data x_1, \ldots, x_n . Each $x_i \in \mathbb{R}^d$
- ▶ Block #2: An i.i.d. Gaussian model
- ▶ Block #3: Maximum likelihood
- Block #4: Leave undefined

The density function is

$$p(x|\mu,\Sigma) := \frac{1}{(2\pi)^{\frac{d}{2}} \sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

The central moments are:

$$\mathbb{E}[x] = \int_{\mathbb{R}^d} x \, p(x|\mu, \Sigma) dx = \mu,$$

$$Cov(x) = \mathbb{E}[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T] = \mathbb{E}[xx^T] - \mathbb{E}[x]\mathbb{E}[x]^T = \Sigma.$$

BLOCK #2: A PROBABILISTIC MODEL

Probabilistic Models

- ▶ A *probabilistic model* is a set of probability distributions, $p(x|\theta)$.
- We pick the *distribution family* $p(\cdot)$, but don't know the parameter θ .

Example: Model data with a Gaussian distribution $p(x|\theta)$, $\theta = \{\mu, \Sigma\}$.

The i.i.d. assumption

Assume data is independent and identically distributed (iid). This is written

$$x_i \stackrel{iid}{\sim} p(x|\theta), \quad i = 1, \dots, n.$$

Writing the density as $p(x|\theta)$, then the *joint* density decomposes as

$$p(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n p(x_i|\theta).$$

BLOCK #3: MAXIMUM LIKELIHOOD ESTIMATION

Maximum Likelihood approach

We now need to find θ . *Maximum likelihood* seeks the value of θ that maximizes the likelihood function:

$$\hat{\theta}_{\text{ML}} := \arg \max_{\theta} \ p(x_1, \dots, x_n | \theta),$$

This value best explains the data according to the chosen distribution family.

Maximum Likelihood equation

The analytic criterion for this maximum likelihood estimator is:

$$\nabla_{\theta} \prod_{i=1}^{n} p(x_i | \theta) = 0.$$

Simply put, the maximum is at a peak. There is no "upward" direction.

BLOCK #3: LOGARITHM TRICK

Logarithm trick

Calculating $\nabla_{\theta} \prod_{i=1}^{n} p(x_i | \theta)$ can be complicated. We use the fact that the logarithm is monotonically increasing on \mathbb{R}_+ , and the equality

$$\ln\left(\prod_i f_i\right) = \sum_i \ln(f_i).$$

Consequence: Taking the logarithm does not change the *location* of a maximum or minimum:

$$\max_{y} \ \ln g(y) \neq \max_{y} \ g(y) \qquad \qquad \text{The $value$ changes.}$$

$$\arg \max_{y} \ \ln g(y) = \arg \max_{y} \ g(y) \qquad \qquad \text{The $location$ does not change.}$$

BLOCK #3: ANALYTIC MAXIMUM LIKELIHOOD

Maximum likelihood and the logarithm trick

$$\hat{\theta}_{\text{ML}} = \arg\max_{\theta} \prod_{i=1}^{n} p(x_i|\theta) = \arg\max_{\theta} \ln\left(\prod_{i=1}^{n} p(x_i|\theta)\right) = \arg\max_{\theta} \sum_{i=1}^{n} \ln p(x_i|\theta)$$

To then solve for $\hat{\theta}_{ML}$, find

$$\nabla_{\theta} \sum_{i=1}^{n} \ln p(x_i|\theta) = \sum_{i=1}^{n} \nabla_{\theta} \ln p(x_i|\theta) = 0.$$

Depending on the choice of the model, we will be able to solve this

- 1. analytically (via a simple set of equations)
- 2. numerically (via an iterative algorithm using different equations)
- 3. approximately (typically when #2 converges to a local optimal solution)

EXAMPLE: MULTIVARIATE GAUSSIAN MLE

Block #2: Multivariate Gaussian data model

Model: Set of all Gaussians on \mathbb{R}^d with unknown mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma \in \mathbb{S}^d_{++}$ (positive definite $d \times d$ matrix).

We assume that x_1, \ldots, x_n are i.i.d. $p(x|\mu, \Sigma)$, written $x_i \stackrel{iid}{\sim} p(x|\mu, \Sigma)$.

Block #3: Maximum likelihood solution

We have to solve the equation

$$\sum_{i=1}^{n} \nabla_{(\mu,\Sigma)} \ln p(x_i|\mu,\Sigma) = 0$$

for μ and Σ . (Try doing this without the log to appreciate it's usefulness.)

EXAMPLE: GAUSSIAN MEAN MLE

First take the gradient with respect to μ .

$$0 = \nabla_{\mu} \sum_{i=1}^{n} \ln \frac{1}{\sqrt{(2\pi)^{d} |\Sigma|}} \exp\left(-\frac{1}{2} (x_{i} - \mu)^{T} \Sigma^{-1} (x_{i} - \mu)\right)$$

$$= \nabla_{\mu} \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi)^{d} |\Sigma| - \frac{1}{2} (x_{i} - \mu)^{T} \Sigma^{-1} (x_{i} - \mu)$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \nabla_{\mu} \left(x_{i}^{T} \Sigma^{-1} x_{i} - 2\mu^{T} \Sigma^{-1} x_{i} + \mu^{T} \Sigma^{-1} \mu\right) = -\Sigma^{-1} \sum_{i=1}^{n} (x_{i} - \mu)$$

Since Σ is positive definite, the only solution is

$$\sum_{i=1}^{n} (x_i - \mu) = 0 \qquad \Rightarrow \qquad \hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Since this solution is independent of Σ , it doesn't depend on $\hat{\Sigma}_{\text{ML}}$.

EXAMPLE: GAUSSIAN COVARIANCE MLE

Now take the gradient with respect to Σ .

$$0 = \nabla_{\Sigma} \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi)^{d} |\Sigma| - \frac{1}{2} (x_{i} - \mu)^{T} \Sigma^{-1} (x_{i} - \mu)$$

$$= -\frac{n}{2} \nabla_{\Sigma} \ln|\Sigma| - \frac{1}{2} \nabla_{\Sigma} \operatorname{trace} \left(\Sigma^{-1} \sum_{i=1}^{n} (x_{i} - \mu) (x_{i} - \mu)^{T} \right)$$

$$= -\frac{n}{2} \Sigma^{-1} + \frac{1}{2} \Sigma^{-2} \sum_{i=1}^{n} (x_{i} - \mu) (x_{i} - \mu)^{T}$$

Solving for Σ and plugging in $\mu=\hat{\mu}_{\mbox{\tiny ML}},$

$$\hat{\Sigma}_{\text{ML}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}_{\text{ML}}) (x_i - \hat{\mu}_{\text{ML}})^T.$$

EXAMPLE: GAUSSIAN MLE (SUMMARY)

So if we have data x_1, \ldots, x_n in \mathbb{R}^d that we hypothesize is i.i.d. Gaussian, the maximum likelihood values of the mean and covariance matrix are

$$\hat{\mu}_{\text{ML}} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\Sigma}_{\text{ML}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}_{\text{ML}})(x_i - \hat{\mu}_{\text{ML}})^T.$$

Are we done? There are many assumptions/issues with this approach that makes finding the "best" parameter values not a complete victory.

- ▶ We made a model assumption (multivariate Gaussian).
- ▶ We made an i.i.d. assumption.
- ▶ We assumed that maximizing the likelihood is the best thing to do.

Comment: We often use θ_{ML} to make predictions about x_{new} (Block #4).

How does θ_{ML} generalize to x_{new} ?

If $x_{1:n}$ don't "capture the space" well, θ_{ML} can *overfit* the data.