© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°08

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – D'après CCP MP Maths 2 2014

On note $\operatorname{diag}(\alpha_1, \dots, \alpha_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux sont $\alpha_1, \dots, \alpha_n$. On munit l'espace vectoriel $E = \mathbb{R}^n$ du produit scalaire canonique noté $\langle \cdot \mid \cdot \rangle$ et de la norme euclidienne $\| \cdot \|$ associée.

On note $\mathcal{S}(E)$ le sous-espace des endomorphismes auto-adjoints de E, $\mathcal{S}^+(E)$ l'ensemble des endomorphismes auto-adjoints positifs de E, et $\mathcal{S}^{++}(E)$ l'ensemble des endomorphismes auto-adjoints définis positifs de E. De la même manière, on note $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$, $\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques positives de $\mathcal{M}_n(\mathbb{R})$, et $\mathcal{S}_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques définies positives de $\mathcal{M}_n(\mathbb{R})$.

I Préliminaires

1 1.a Montrer que ln est concave sur \mathbb{R}_+^* .

1.b En déduire que si $a_1, ..., a_n$ sont des réels positifs,

$$\left(\prod_{i=1}^n a_i\right)^{1/n} \le \frac{1}{n} \sum_{i=1}^n a_i$$

2.a Enoncer sans démonstration le théorème de réduction des endomorphismes auto-adjoints de l'espace euclidien E, ainsi que sa version relative aux matrices symétriques réelles.

2.b Toute matrice symétrique à coefficients complexes est-elle nécessairement diagonalisable? On pourra considérer la matrice de $\mathcal{M}_2(\mathbb{C})$:

$$S = \begin{pmatrix} i & 1 \\ 1 & -i \end{pmatrix}$$

Soit $s \in S(E)$ de valeurs propres (réelles) $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant : $\lambda_1 \leq \dots \leq \lambda_n$. Soit $\beta = (\varepsilon_1, \dots, \varepsilon_n)$ une base orthonormée de E telle que $\forall i \in [[1, n]], s(\varepsilon_i) = \lambda_i \varepsilon_i$. Pour tout $x \in E$, on pose $R_s(x) = \langle s(x) \mid x \rangle$.

3.a Exprimer $R_s(x)$ à l'aide des λ_i et des coordonnées de x dans la base β .

3.b En déduire l'inclusion $R_s(S(0,1)) \subset [\lambda_1, \lambda_n]$ où S(0,1) désigne la sphère unité de E.

Soit $S = (s_{i,j}) \in S_n(\mathbb{R})$ de valeurs propres $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant. Exprimer $s_{i,j}$ comme un produit scalaire et montrer que

$$\forall i \in [1, n], \ \lambda_1 \leq s_{i,i} \leq \lambda_n$$

© Laurent Garcin MP Dumont d'Urville

II Un maximum sur $O_n(\mathbb{R})$

On note I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$ et $O_n(\mathbb{R})$ le groupe des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

- $\boxed{\mathbf{5}}$ Démontrer que l'application $M \mapsto M^T M I_n$ est une application continue de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$.
- **6** Justifier que si $A = (a_{i,j}) \in O_n(\mathbb{R})$, alors

$$\forall (i,j) \in [[1,n]]^2, |a_{i,j}| \le 1$$

- 7 En déduire que le groupe orthogonal $O_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.
- Soit $S \in \mathcal{S}_n^+(\mathbb{R})$ de valeurs propres $\lambda_1, \dots, \lambda_n$. On pose $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Si A est une matrice orthogonale, on note $T(A) = \operatorname{tr}(AS)$.
 - **8.a** Soit $A \in O_n(\mathbb{R})$. Démontrer qu'il existe une matrice orthgonale B telle que $T(A) = tr(B\Delta)$.
 - **8.b** Démontrer que l'application T admet un maximum sur $O_n(\mathbb{R})$, que l'on notera t.
 - **8.c** Démontrer que, pour toute matrice $A \in O_n(\mathbb{R})$, $T(A) \leq tr(S)$, puis déterminer le réel t.

III Inégalité d'Hadamard

Soit $S = (s_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$ de valeurs propres $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant.

9 Démontrer l'inégalité

$$\det(S) \le \left(\frac{1}{n}\operatorname{tr}(S)\right)^n \tag{\star}$$

- Soit $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, $D = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$ et $S_{\alpha} = D^{\mathsf{T}}SD$. Démontrer que $S_{\alpha} \in \mathcal{S}_n^+(\mathbb{R})$ et calculer $\operatorname{tr}(S_{\alpha})$.
- Dans cette question, on suppose que les coefficients diagonaux $s_{i,i}$ de S sont strictement positifs et, pour $i \in [\![1,n]\!]$, on pose $\alpha_i = \frac{1}{\sqrt{s_{i,i}}}$. En utilisant l'inégalité (\star), démontrer que

$$\det(S) \le \prod_{i=1}^{n} s_{i,i}$$

12 Pour tout réel $\varepsilon > 0$, on pose $S_{\varepsilon} = S + \varepsilon I_n$. Démontrer que $\det(S_{\varepsilon}) \leq \prod_{i=1}^{n} (s_{i,i} + \varepsilon)$, puis conclure que :

$$\prod_{i=1}^{n} \lambda_{i} \leq \prod_{i=1}^{n} s_{i,i} \qquad \text{(inégalité d'Hadamard)}$$

IV Application de l'inégalité d'Hadamard : détermination d'un minimum

Soit $S \in \mathcal{S}_n^{++}(\mathbb{R})$ de valeurs propres $\lambda_1, \ldots, \lambda_n$ rangées par ordre croissant et $\Delta = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Soit $\Omega \in O_n(\mathbb{R})$ telle que $S = \Omega \Delta \Omega^{\top}$. On désigne par \mathcal{U} l'ensemble des matrices de $\mathcal{S}_n^{++}(\mathbb{R})$ de déterminant égal à 1.

13 Démontrer que pour tout $A \in \mathcal{U}$, la matrice $B = \Omega^T A \Omega$ est une matrice de \mathcal{U} vérifiant

$$tr(AS) = tr(B\Delta)$$

Démontrer que $\{tr(AS), A \in \mathcal{U}\} = \{tr(B\Delta), B \in \mathcal{U}\}$, puis que ces deux ensembles admettent une borne inférieure que l'on notera m.

© Laurent Garcin MP Dumont d'Urville

15 Démontrer que si $B = (B_{i,j}) \in \mathcal{U}$:

$$\operatorname{tr}(\mathrm{B}\Delta) \ge n(\lambda_1 \cdots \lambda_n)^{1/n} (b_{1,1} \cdots b_{n,n})^{1/n}$$

16 En déduire que pour $B = (B_{i,j}) \in \mathcal{U}$, $tr(B\Delta) \ge n(det(S))^{1/n}$.

Pour tout $k \in [[1, n]]$, on pose $\mu_k = \frac{1}{\lambda_k} (\det(S))^{1/n}$ et $D = \operatorname{diag}(\mu_1, \dots, \mu_n)$. Déterminer le réel m.