

American International University- Bangladesh Department of Computer Science

Lab Report Cover Sheet

Course Name	Data Communication
Lab Report No.	03
Lecturer Name	Md. Navid Bin Anwar
Semester	Fall 2020-21
Submission Date	5/11/2020
Section	В
Group No.	10

Student Name	Student ID	Contribution (out of
		100%)
1. Nusrat Alam Chaiti	18-37417-1	20%
2. MD. Sibbir Hossain	18-38828-3	20%
3. Kaif Al Kabid	18-38144-2	20%
4. Fahim Mahtab	18-38626-2	20%
5. Tanvir Ahamed	18-37519-1	20%
Lecturer Remarks		
(Only for teacher)		

CODE	PLOTTING		
A. x1(t) = A1 cos(2π(CDE*100)t) Here, ID:18-37417-1 A1=GD=77 A2=AF=11			
<pre>B. 1.%18-37417-1 %CDE=374 A1=77; A2=11; fs=40000; t=0:5/fs:5-5/fs; x1=77*cos(2*pi*(374*100) *t); n=4; L=(2^n)-1</pre>	1. Command Window >> lab3 L = 15 fx >>		
2. %18-37417-1 %CDE=374 A1=77; A2=11; fs=40000; t=0:5/fs:5-5/fs; x1=77*cos(2*pi*(374*100) *t); n=4; L=(2^n)-1; delta= (max(x1)-min(x1))/L	2. Command Window >> lab3 delta = 10.2667 fx >>		

```
3.
                                3.
%18-37417-1
%CDE=374
                                  Command Window
A1=77;
A2=11:
                                     >> lab3
fs=40000:
t=0:5/fs:5-5/fs;
                                    xq =
x1=77*cos(2*pi*(374*100)
*t);
x=3.2;
                                         5.1333
n=4;
L=(2^n)-1;
                                 f_{\underline{x}} >>
delta = (max(x1) -
min(x1))/L;
xq=min(x1)+(round(x-
min(x1))/delta)).*delta
                                4.
4. %18-37417-1
%CDE=374
                                   401×4 char array
A1 = 77;
                                    '1111'
A2=11;
                                    '1110'
                                    '0001'
fs=80000;
                                     0100
t=0:1/fs:0.005;
x1=77*cos(2*pi*(374*100)
*t);
x=3.2;
n=4;
L=(2^n)-1;
delta = (max(x1) -
min(x1))/L;
xq=min(x1)+(round(x1-
                                    lab3.m
UIIU
                                             binary.txt ≈ +
min(x1))/delta)).*delta;
                                380
                                      1011
                                381
                                      0011
B = dec2bin((round((x1-
                                382
                                      1101
                                      0001
                                383
min(x1))/delta))
                                      1111
                                384
                                      0000
                                385
fid = fopen('binary.txt'
                                386
                                      1111
, 'w')
                                388
                                      1110
                                389
                                      0010
                                390
                                      1100
                                391
                                      0100
fprintf(fid,
                                392
                                      1001
[repmat('%c',1,size(B,2)
                                393
                                      0111
                                394
                                      0110
) '\r\n'], B.')
                                395
                                      1010
                                      0100
                                396
fclose(fid)
                                397
                                      1101
                                398
                                      1110
                                400
                                      0000
 (creates a binary text file also)
                                401
                                      1111
```

```
code of quantization (with graph):
%18-37417-1
A1 = 77:
A2=11;
fs=80000;
t=0:1/fs:0.005;
x1=77*cos(2*pi*(374*100)
*t);
x=3.2;
n=4;
L=(2^n)-1;
delta = (max(x1) -
min(x1))/L;
xq=min(x1)+(round(x1-
min(x1))/delta)).*delta;
subplot(3,1,1)
plot(t, x1, 'R');
subplot(3,1,2);%
breaking the window
figure to plot both
graphs
stem(t,x1,'b');% plot of
discrete time
signaltitle('Discrete
time representation')%
title of the figure
xlabel('time(s)')% label
on the x-axis of the
plot
ylabel('X[n]')% label on
the y-axis of the plot
subplot(3,1,3);
stairs(t,xq,'b');% the
quantized output
title('Quantized
Signal')% title of the
figure
xlabel('time')% label on
the x-axis of the plot
ylabel('amplitude')%
label on the y-axis of
the plot
```

