Prova 2 de Teoria da Computação 2021.1

Questão 1. Seja $\Sigma = \{0,1\}$ e considere as linguagens abaixo:

$$L_1 = \{w \# w^R : w \in \Sigma^*\}$$

 $L_2 = \{w \# w : w \in \Sigma^*\}$

 $Em\ que\ w^R\ \'e\ a\ palavra\ w\ revertida,\ i.e.,\ se\ w=001,\ ent\~ao\ w^R=100.$

Decida se L_1 e L_2 são linguagens livre de contexto ou não. Apresente uma justificativa adequada para cada caso.

Questão 2. Considere a função $f: \mathbb{N} \to \mathbb{N}$ definida por: f(n) é o maior $m \in \mathbb{N}$ para o qual existe uma máquina de Turing com alfabeto de fita $\{\triangleright, \sqcup, 0, 1\}$ e no máximo n+1 estados (sendo exatamente um deles o estado de parada) que, ao ser executada com a fita vazia e cabeçote na primeira posição à direita de \triangleright , chega ao estado de parada com apenas a palavra 1^m na fita.

- **a.** Justifique por que a função f está bem definida, i.e., por que o valor de m mencionado na definição sempre existe.
- **b.** Mostre que a função f não é computável.

Questão 3. Mostre que a linguagem abaixo é indecidível

 $\{ M'' \in \Sigma_U^* ; M \text{ aceita apenas uma quantidade finita de palavras} \},$

sendo Σ_U o alfabeto da máquina de Turing universal e "M" a codificação de uma máquina de Turing M qualquer usando o alfabeto Σ_U , ambos conforme vistos em aula.

Questão 4. Considere o alfabeto $\Gamma = \{0, 1, ..., n\}$, e sobre Γ^* considere a ordem total \Box dada por $w \Box v$ sse

- |w| < |v|; ou
- |w| = |v|, $w \neq v$ e, na primeira posição em que discordam, o símbolo em w é menor do que o símbolo em v.

 $Portanto \ \varepsilon \sqsubseteq 0 \sqsubseteq 1 \sqsubseteq \cdots \sqsubseteq n \sqsubseteq 00 \sqsubseteq 01 \sqsubseteq \cdots \sqsubseteq 0n \sqsubseteq 10 \sqsubseteq \cdots$

a. Mostre que a linguagem

$$\{w \# v \in \Gamma^* \# \Gamma^* \; ; \; w \sqsubset v\}$$

é decidível.

b. Dizemos que uma linguagem $L \subseteq \Gamma^*$ é recursivamente enumerável em ordem crescente se existe uma máquina de Turing M, com alfabeto de fita $\{\triangleright, \sqcup\} \cup \Gamma$ e um estado especial q_e (chamado estado de enumeração), tal que

- 1. para quaisquer $w,v\in\Gamma^*$, se ao executarmos M com fita inicialmente vazia
 - ullet após n_w passos a máquina está no estado de enumeração com w na fita; e
 - ullet após n_v passos a máquina está no estado de enumeração com v na fita,

então $n_w < n_v$ sse $w \sqsubset v$.

2. $L=\{w\in\Gamma^*\;;\;ao\;executarmos\;M\;com\;fita\;inicialmente\;vazia,\;em\;algum\;momento\;a\;máquina\;fica\;no\;estado\;de\;enumeração\;com\;w\;na\;fita\}$

Mostre que uma linguagem $L\subseteq \Gamma^*$ é decidível se, e somente se, L é finita ou recursivamente enumerável em ordem crescente.

Questão 5. Um quadrado latino é uma matriz quadrada de tamanho $n \times n$, onde em cada linha e cada coluna, cada um dos algarismos de 1 a n aparece exatamente uma vez. Mostre que o seguinte problema está na classe NP: dados n e uma matriz quadrada $n \times n$ parcialmente preenchida com números de 1 a n, decidir se esta matriz pode ser completada a um quadrado latino.