	$\left(-ae_1\pm\frac{b^2}{a}\right)$	$\left(\pm \frac{b^2}{a}, -ae\right)$	$\left(\alpha - ae, \beta \pm \frac{b^2}{a}\right)$
<u>Parametric</u>	$(a \sec \theta, b \tan \theta)$	$(b \tan \theta, a \sec \theta)$	$(\alpha + a \sec \theta, \beta + b \tan \theta)$

- (1) If P(x,y) be a point on the foci S & S', then SP = ex a; S'P = ex + a; SP S'P = 2a.
- (2) Any point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $(a \sec \theta, b \tan \theta)$.
- (3) The rectangular hyperbola is $x^2 y^2 = a^2$.

Its transverse axis $\rightarrow X - axis$; Conjugate axis $\rightarrow Y - axis$

Eccentricity $\rightarrow \sqrt{2}$; Length of $T - axis \& C - axis \rightarrow 2a$.

(4) The two hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \& \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ are conjugate to each other.

Eccentricity $\rightarrow b^2 = a^2(e_1^2 - 1); a^2 = b^2(e_2^2 - 1).$

(5) The position of a point $P(x_1, y_1)$ w.r.t. the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

If $\frac{{x_1}^2}{a^2} - \frac{{y_1}^2}{b^2} - 1 > 0$, then inside the hyperbola

= 0, then on the hyperbola

< 0 , then outside the hyperbola

- (6) The equation of tangent of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at $P(x_1, y_1)$ is $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$.
- (7) The equation of normal of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at $P(x_1, y_1)$ is $b^2 x_1 (y y_1) + a^2 y_1 (x x_1) = 0$.

Classification of Curves:-

Let us consider a second degree curve in x, y as

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0...(i)$ [at least one of a, h, b is non – zero constant]

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = abc + 2fgh - af^2 - bg^2 - ch^2$$

Identification of Curves:-

The above equation (i) represents

- (i) A parabola if $\Delta \neq 0 \& h^2 = ab$.
- (ii) An ellipse if $\Delta \neq 0 \& h^2 < ab$.
- (iii) A hyperbola if $\Delta \neq 0 \& h^2 > ab$.
- (iv) A pair of straight lines if $\Delta = 0 \& h^2 \ge ab$.
- (v) A unique point if $\Delta = 0 \& h^2 < ab$.