Theoretical Computer Science Tutorial Week 6

Prof. Andrey Frolov

nnoboria

Agenda

- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

Informally

Finite State Automata

States are memory! Non-rewritable memory!

Finite State Automata

Agenda

- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

FSA (Formal definition)

Definition

A (complete) Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

Q is a finite set of *states*;

 Σ is a finite input alphabet;

 $q_0 \in Q$ is the *initial* state;

 $A \subseteq Q$ is the set of *accepting* states;

 $\delta: Q \times \Sigma \to Q$ is a (total) *transition* function.

PDA (Formal Definition)

Definition

```
A (Deterministic) Pushdown Automaton (PDA) is a tuple \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle, where
```

 Σ and Γ are the input and stack (finite) alphabets;

 $\delta: Q \times (I \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^*$ is the (partial) transition function;

 $q_0 \in Q$ is the initial state;

Q is a finite set of states:

 $Z_0 \in \Gamma$ is the initial stack symbol;

 $A \subseteq Q$ is the set of accepting states.

 $\Gamma = \{Z_0, A\}$, Z_0 is the initial stack symbol.

Conditions on Z_0

- the stack contains at least one symbol: Z_0 ;
- Z_0 is never removed;
- no additional copies of Z_0 are pushed onto the stack.

$$\delta(p_0,a,Z_0)=(p_1,AZ_0)$$

$$\delta(p_1, a, A) = (p_1, AA)$$

$$\delta(p_1,b,A)=(p_2,\epsilon)$$

$$\delta(p_2, b, A) = (p_2, \epsilon)$$

$$\delta(p_2,\epsilon,Z_0)=(p_3,Z_0)$$

 $aabb \in L_1$

PDA. Transition

Definition

A tuple (q, x, Z) is called **configuration**, where $q \in Q, x \in \Sigma^*, Z \in \Gamma^*$.

Definition

For a PDA $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle$, if $\delta(q, a, A) = (q', A')$ then

$$(q, ax, Z\gamma) \vdash (q', x, Z'\gamma),$$

where $a \in \Sigma, x \in \Sigma^*, Z \in \Gamma, Z' \in \Gamma^*$.

$$(p_0, aabb, Z_0) \vdash (p_1, abb, AZ_0)$$

$$(p_0, aabb, Z_0) \vdash (p_1, abb, AZ_0) \vdash (p_1, bb, AAZ_0)$$

$$(p_0, aabb, Z_0) \vdash (p_1, abb, AZ_0) \vdash (p_1, bb, AAZ_0) \vdash (p_2, b, AZ_0)$$

$$(p_0, aabb, Z_0) \vdash (p_1, abb, AZ_0) \vdash (p_1, bb, AAZ_0) \vdash (p_2, b, AZ_0) \vdash (p_3, \epsilon, Z_0)$$

PDA. Recognized Languages

Definition

For configurations $c_1, c_2, \dots c_k$, if

$$c_1 \vdash c_2 \vdash \cdots \vdash c_k$$

then we define

$$c_1 \vdash^* c_k$$

PDA. Recognized Languages

Definition

For configurations $c_1, c_2, \dots c_k$, if

$$c_1 \vdash c_2 \vdash \cdots \vdash c_k$$

then we define

$$c_1 \vdash^* c_k$$

Definition

A language L is recognized by a PDA $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle$, if

$$L = \{x \in \Sigma^* \mid (q_0, x, Z_0) \vdash^* (q, \epsilon, \gamma), \text{ where } q \in A, \gamma \in \Gamma^*\}$$

Agenda

- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular, but is recognized by a PDA.

Example 2

 $L_2 = \{a^n b a^n \mid n \in \mathbb{N}\}$ is not regular, but is recognized by a PDA.

Example 3

 $L_3 = \{vcv^R \mid v \in \{a, b\}^*\}$ is not regular, but is recognized by a PDA.

Agenda

- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

Pumping lemma for FSA

Pumping lemma

If $L \subseteq \Sigma^*$ is a regular language then there exists $m \ge 1$ such that any $w \in L$ with $|w| \ge m$ can be represented as w = xyz such that

- $y \neq \epsilon$,
- $|xy| \leq m$,
- $xy^iz \in L$ for any $i \ge 1$.

Pumping lemma for PDA

Bar-Hillel lemma

If $L \subseteq \Sigma^*$ is a recognized by a PDA language then there exists $m \ge 1$ such that any $w \in L$ with $|w| \ge m$ can be represented as $w = x_1x_2x_3x_4x_5$ such that

- $|x_2x_4| > 0$,
- $|x_2x_3x_4| \leq m$,
- $x_1 x_2^i x_3 x_4^i x_5 \in L$ for any $i \ge 1$.

Pumping lemma for PDA

Bar-Hillel lemma

If $L \subseteq \Sigma^*$ is a recognized by a PDA language then there exists $m \ge 1$ such that any $w \in L$ with $|w| \ge m$ can be represented as $w = x_1x_2x_3x_4x_5$ such that

- $|x_2x_4| > 0$,
- $|x_2x_3x_4| \leq m$,
- $x_1 x_2^i x_3 x_4^i x_5 \in L$ for any $i \ge 1$.

Example

 $L = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ is **not** recognized by a PDA.

Agenda

- Deterministic Pushdown Automata
 - Definition
 - Examples
 - Pumping lemma for PDA
- Nondeterministic Pushdown Automata

PDA (Formal Definition)

Definition

A Deterministic Pushdown Automaton (DPDA) is a tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle$, where

Q is a finite set of states;

 Σ and Γ are the input and stack (finite) alphabets;

 $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^*$ is the (partial) transition function;

 $q_0 \in Q$ is the initial state;

 $Z_0 \in \Gamma$ is the initial stack symbol;

 $A \subseteq Q$ is the set of accepting states.

Nondeterministic PDA (Formal Definition)

Definition

A Nondeterministic Pushdown Automaton (NPDA) is a tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, A \rangle$, where

Q is a finite set of states;

 Σ and Γ are the input and stack (finite) alphabets;

 $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \times Q \times \Gamma^*$ is the transition relation;

 $q_0 \in Q$ is the initial state;

 $Z_0 \in \Gamma$ is the initial stack symbol;

 $A \subseteq Q$ is the set of accepting states.

Nondeterministic PDA

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is recognized by a PDA.

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is recognized by a NPDA.

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is recognized by a NPDA.

Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is recognized by a NPDA.

Example 2

 $L_2 = \{vv^R \mid v \in \{a, b\}^*\}$ is recognized by a NPDA.

Example 2

 $\{vv^R \mid v \in \{a, b\}^*\}$ is recognized by a NPDA.

Question

Is $\{vv^R \mid v \in \{a, b\}^*\}$ recognized by a DPDA?

Thank you for your attention!