Tipologia II: Controllo della posizione verticale di un Bell-Boeing V-22 Osprey

Gruppo 10 - a

0000759562 Letizia Mancini 0000753822 Adamo Roversi Zoffoli 0000793310 Dario De Nardi 0000759806 Federico Mustich

Obiettivo

Progettare un controllore che permetta di mantenere la posizione verticale desiderata del velivolo in considerazione.

Consideriamo come modello approssimato e linearizzato della dinamica di interesse del velivolo la seguente funzione di trasferimento:

$$G(s) = \frac{50}{(1+15s)(1+30s)(s^2+0.8s+0.25)}$$

Progetto del controllore

Consideriamo il seguente schema di controllo

Per una corretta progettazione del controllore è richiesto il soddisfacimento di una serie di specifiche, suddivise in:

- Statiche: vincoli sulla pendenza del diagramma delle ampiezze di |L(jw)| che saranno soddisfatti dal progetto del regolatore statico.
- *Dinamiche*: vincoli sul tempo di assestamento e sulla sovraelongazione percentuale massima implementati dal regolatore dinamico.

Le specifiche richieste sono:

1. Errore a regime limitato superiormente al 3% con riferimento a gradino.

Con riferimento a gradino, vale la relazione:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + R(s)G(s)s} = \lim_{s \to 0} \frac{1}{1 + R(s)G(s)}$$

L'errore richiesto è minore di e=0.03. Abbiamo quindi

$$\mu > \frac{1-e}{G(0)e} \Rightarrow \mu > \frac{1-0.03}{200*0.03}$$

Troviamo un valore minimo per il guadagno pari a $\mu = 0.16$.

2. Il margine di fase per la funzione di trasferimento deve essere $M_f \ge 40$.

3. Garantire massima sovraelongazione percentuale pari a 5 e tempo di assestamento all'1% inferiore a 15 secondi.

La coppia di poli complessi coniugati dominanti della funzione ad anello L(jw) è caratterizzata da:

$$\delta \approx \frac{M_f}{100}$$
 $\omega_n \approx \omega_c$

con

 M_f margine di fase

 ω_c pulsazione di attraversamento

Possiamo quindi risolvere le specifiche dinamiche

- $S\% = 100e^{\frac{-\pi\delta}{\sqrt{1-\delta^2}}} \le 5 \ \Rightarrow \ \delta \ge 0.69 \ \Rightarrow \ M_f \ge M_f^* := 100*0.69$ Definiamo un lower bound sul margine di fase pari a $M_f \ge 69^\circ$.
- $T_{a,1\%} \leq 15 \Rightarrow \delta\omega \geq \frac{4.6}{15} \Rightarrow M_f\omega_c \geq \frac{460}{15} \Rightarrow \omega_c \geq \frac{460}{15*69}$ Troviamo così un lower bound sulla pulsazione di attraversamento $\omega_c \geq 0.444~rad/s$

4. Abbattere il disturbo sull'uscita n di almeno 20 volte.

$$20\log(20) = 26.02 db$$

L'attenuazione richiesta impone un upper bound sulla L(jw) pari a -26,02db. Inoltre la frequenza $\omega_n=100\ rad/s$ definisce un limite superiore per la ω_c di attraversamento.

Suddividiamo il progetto del regolatore in due parti, ognuna dedicata al soddisfacimento di diverse specifiche.

1. Regolatore statico

Interveniamo solamente sul guadagno statico μ_s , imponendo un regolatore statico pari a $R_s(s) = 0.2$.

2. Regolatore dinamico

La scelta relativa al regolatore statico influenza il progetto di quello dinamico: le specifiche vanno imposte, infatti, sul **sistema esteso** dato da $G_e(s) = R_s(s)G(s)$.

Dato che è stato utilizzato il guadagno del regolatore statico μ_s , il guadagno μ_d non sarà utilizzabile ($\mu_d=1$).

Nell'intervallo stabilito per la pulsazione di attraversamento ω_c , la fase del sistema risulta sempre minore del limite imposto su M_f ; è necessario quindi progettare un regolatore che fornisca l'anticipo di fase necessario.

Una possibile scelta, nell'intervallo delle frequenze, può essere $\omega_c = 2 \ rad/s$.

A questa frequenza troviamo

$$|G_e(j\omega_c)| = 0.0014 \Rightarrow 20 \log 0.0014 = -57.077 \ db$$

 $\arg |G_e(j\omega_c)| = -334.02^\circ$

Imponiamo un margine di fase pari a $M_f=90^\circ\,$ per garantire la stabilità del sistema in retroazione: l'anticipo di fase richiesto risulta di $244.02^\circ.$

Sono necessarie tre reti anticipatrici

$$R(s) = \frac{1 + \tau s}{1 + \alpha \tau s}$$

che forniscono un anticipo di fase grazie all'inserimento degli zeri, con l'effetto collaterale dell'amplificazione dei moduli.

Ogni rete deve fornire un anticipo di fase pari a

$$\varphi = \frac{244.02}{3} = 81.34^{\circ}$$

e una amplificazione del modulo di

$$M = 10^{-\frac{|G_e(j\omega_c)|db/3}{20}} = 10^{\frac{19}{20}} = 9$$

Tramite le seguenti formule di inversione si possono progettare i gradi di libertà α e τ che consentano di avere una amplificazione M=9 e uno sfasamento $\varphi=81.34^\circ$ a $\omega_c=2~rad/s$.

$$\tau = \frac{M - \cos(\varphi)}{\omega_c \sin(\varphi)}$$

$$\alpha \tau = \frac{\cos(\varphi) - \frac{1}{M}}{\omega_c \sin(\varphi)}$$

Troviamo quindi tre reti anticipatrici con au=4.48 e lpha au=0.02

$$R_a(s) = \frac{1 + 4.48s}{1 + 0.02s}$$

Il regolatore che agisce complessivamente sul sistema è quindi

$$R(s) = 0.2 \frac{(1 + 4.48s)^3}{(1 + 0.02s)^3}$$

Tramite simulazione in Simulink verifichiamo che anche la specifica sul tempo di assestamento viene rispettata.

Opzionale: ridurre il più possibile il tempo di assestamento facendo un paragone sulle azioni di controllo generate.

Per ridurre ulteriormente il tempo di assestamento scegliamo una $\omega_c=10~rad/s$, imponendo a questa frequenza un margine di fase $M_f=80^\circ$.

Abbiamo

$$|G_e(j\omega_c)| = 2.22 * 10^{-6} \Rightarrow 20 \log(2.22 * 10^{-6}) = -113.07 \ db$$

 $\arg|G_e(j\omega_c)| = --354.84^{\circ}$

L'anticipo di fase richiesto risulta di 244.84°.

Sono necessarie tre reti anticipatrici

$$R(s) = \frac{1 + \tau s}{1 + \alpha \tau s}$$

Ognuna fornisce un anticipo di fase pari a

$$\varphi = \frac{244.82}{3} = 81.61^{\circ}$$

e una amplificazione del modulo di

$$M = 10^{\frac{-|G_e(j\omega_c)|db/3}{20}} = 10^{\frac{37.69}{20}} = 76.65$$

SI progettano quindi α e τ tali da consentire una amplificazione M=76.65~db e uno sfasamento $\varphi=81.61^\circ$ a $\omega_c=10~rad/s$.

$$\tau = \frac{M - \cos(\varphi)}{\omega_c \sin(\varphi)} = 7.73$$

$$\alpha \tau = \frac{\cos(\varphi) - \frac{1}{M}}{\omega_c \sin(\varphi)} = 0.013$$

Troviamo quindi tre reti anticipatrici

$$R_a(s) = \frac{1 + 7.73s}{1 + 0.013s}$$

Il regolatore risultante è

$$R(s) = 0.2 \frac{(1 + 7.73s)^3}{(1 + 0.013s)^3}$$

Il tempo di assestamento risulta tuttavia superiore alla specifica richiesta.