and (12.30) show that

$$L(f) = \lim_{p \to \infty} L\left(\sum_{n=1}^{p} f \xi_{F_n}\right) = \lim_{p \to \infty} \sum_{n=1}^{p} L(f \xi_{F_n})$$

$$= \lim_{p \to \infty} \sum_{n=1}^{p} \int_{F_n} f \bar{g} d\mu = \lim_{p \to \infty} \int_{X} \sum_{n=1}^{p} f \xi_{F_n} \bar{g} d\mu$$

$$= \int_{X} f \bar{g} d\mu. \quad \Box$$

(20.20) **Theorem.** Let (X, \mathcal{A}, μ) be a decomposable measure space (19.25). Then the mapping T defined by

$$T(g) = L_{\tilde{g}}$$

[see (20.16)] is a norm-preserving linear mapping of \mathfrak{L}_{∞} onto the conjugate space \mathfrak{L}_{1}^{*} . Thus, as Banach spaces, \mathfrak{L}_{∞} and \mathfrak{L}_{1}^{*} are isomorphic.

Proof. The fact that T is a norm-preserving mapping from \mathfrak{L}_{∞} into \mathfrak{L}_{1}^{*} is (20.16). It follows from (20.19) that T is onto \mathfrak{L}_{1}^{*} . It is trivial that T is linear. Since T is both linear and norm-preserving, it is one-to-one. \square

- (20.21) Note. As we have shown in (20.17), the conclusion in (20.20) fails for some nondecomposable measure spaces. However J. Schwartz has found a representation of $\mathfrak{L}_1^*(X, \mathscr{A}, \mu)$ for arbitrary (X, \mathscr{A}, μ) [Proc. Amer. Math. Soc. 2 (1951), 270–275], to which the interested reader is referred.
- (20.22) Exercise. Let X be a locally compact Hausdorff space and let ι be an outer measure on $\mathscr{P}(X)$ as in § 9. Prove that the definitions of local ι -nullity given in (9.29) and in (20.11) are equivalent.
- (20.23) Exercise. Let (X, \mathcal{A}, μ) be a degenerate measure space such that $\mu(X) = \infty$ [see (10.3) for the definition]. Is this measure space decomposable? Find \mathfrak{L}_1 , \mathfrak{L}_1^* , and \mathfrak{L}_{∞} explicitly for this measure space.
- (20.24) Exercise. Let (X, \mathscr{A}, μ) be any measure space and let $f \in \mathfrak{L}_1(X, \mathscr{A}, \mu)$. Define L on $\mathfrak{L}_{\infty}(X, \mathscr{A}, \mu)$ by

$$L(g) = \int_X g \, \bar{f} \, d\mu .$$

Prove that $L \in \mathfrak{L}_{\infty}^*$ and that $||L|| = ||f||_1$.

(20.25) Exercise. Prove that $\mathfrak{L}_1([0,1])$ [with Lebesgue measure] is not reflexive by showing that not every $L \in \mathfrak{L}_{\infty}^*([0,1])$ has the form described in (20.24). [Hint. Use the Hahn-Banach theorem to produce an $L \neq 0$ such that L(g) = 0 for all $g \in \mathfrak{L}_{\infty}$ for which g is essentially continuous, i.e., $||g - h||_{\infty} = 0$ for some $h \in \mathfrak{C}([0,1])$.]

(20.26) Exercise. (a) Prove that $\mathfrak{L}_{\infty}([0, 1])$ is not separable.

(b) Find necessary and sufficient conditions on a measure space that its \mathfrak{L}_{∞} space be separable. [Do not forget (20.23).]

Having found the conjugate space of $\mathfrak{L}_p(X, \mathscr{A}, \mu)$ for $1 and any measure space <math>(X, \mathscr{A}, \mu)$, and of $\mathfrak{L}_1(X, \mathscr{A}, \mu)$ for a large class of