DD2476: Search Engines and Information Retrieval Systems

Johan Boye*
KTH
Lecture 4

^{*} Many slides inspired by Manning, Raghavan and Schütze

Remember: Boolean retrieval

- In computer assignment 1, you implemented a special case of Boolean retrieval (intersection).
- Boolean retrieval might be good for expert users

 But it is bad for most users, especially for web search.

Problems with Boolean search

- Boolean queries often return too many or too few results
 - "zyxel P-660h" \rightarrow 192 000 results
 - "zyxel P-660h" "no card found" → 0 results
- Takes skill to formulate a search query that gives a manageable number of hits.
 - "AND" gives too few, "OR" too many
- No ranking of search results

Ranked retrieval

Web Images Videos Maps Translate Scholar Gmail more ▼

Web History | Search settings | Sign in

brutus caesar

Search

About 1,680,000 results (0.16 seconds)

Advanced search

Stockholm County

Change location

Any time

Past 24 hours

Standard view

Timeline

More search tools

Marcus Junius Brutus the Younger - Wikipedia, the free encyclopedia

Brutus persisted, however, waiting for Caesar at the Senate, and allegedly ... is attributed to Brutus at Caesar's assassination. The phrase is also the ...

Early life - Senate career - Conspiracy to kill Caesar

en.wikipedia.org/wiki/Marcus Junius Brutus the Younger - Cached - Similar

Julius Caesar (play) - Wikipedia, the free encyclopedia Q

Marcus Brutus is Caesar's close friend and a Roman praetor. Brutus allows himself to be cajoled into joining a group of conspiring senators because of a ...

en.wikipedia.org/wiki/Julius_Caesar_(play) - Cached - Similar

Show more results from en.wikipedia.org

Julius Caesar - Analysis of Brutus 9

I do fear the people do choose Caesar for their king...yet I love him well."(act 1, scene 2, II.85-89), as he is speaking to Cassius. Brutus loves Caesar ... www.field-of-themes.com/shakespeare/essays/Ejulius2.htm - Cached - Similar

Brutus Q

Caesar had a good reason for this: he had an affair with Brutus' mother, and he did not want to bring the young man, whom he had often met at the house of ... www.livius.org/bn-bz/brutus/brutus02.html - Cached - Similar

Was Caesar the Father of Brutus?

Caesar had a passionate and long-term affair with the mother of Brutus, ... Still the consensus is that it is unlikely that Caesar was Brutus' father. ... ancienthistory.about.com/od/caesarpeople/f/CaesarBrutus.htm - Cached - Similar

Ancient History Sourcebook: Plutarch: The Assassination of Julius ... 9

And when one person refused to stand to the award of Brutus, and with great clamour and

Ranked retrieval

- Every matching document is given a score, say in [0..1]
- The **higher** the score, the **better** the match
- Large result sets do not pose problems
 - Show top k results (k≈10)
 - Option to see more.
 - Premise: The ranking algorithm works!

Today's topics

The vector space model

 documents and queries are represented as vectors in a high-dimensional space

tf_idf weighting

take the frequency and informativeness of terms into account

Term-document incidence matrix

	Antony & Cleopatra	Julius Caesar	Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0 /	0	0	0	0
mercy	1	0	0	1	1	1
citizen	1	1	0	0	1	0

1 if term is present in document, 0 otherwise

Word count matrix

	Antony & Cleopatra	Julius Caesar	Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	1
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
citizen	1	2	0	0	1	0

Every document is a vector in term space.

Word count matrix

	Antony & Cleopatra	Julius Caesar	Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	1
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
citizen	1	2	0	0	1	0

Let's have a look at these dimensions only.

Bag-of-words

Represent documents as vectors

$$d = (c_1, c_2, ..., c_n)$$

where c_i is the number of occurrences of word w_i

- Called a bag-of-words representation ('bag' = multiset)
- Ordering of words not considered
 - "Carl is wiser than Mary" and "Mary is wiser than Carl" have the same vector

- So we have a |V|-dimensional space
 - Terms are axes/dimensions
 - Documents are points/vectors in this space
- Very high-dimensional
 - ~195,000 dimensions for our davisWiki corpus, much more for entire web
- Very sparse vectors most entries zero
- How can we compare such vectors?

Cosine similarity

Comparing points (vectors)

• Euclidean distance between $u = (u_1...u_n)$ and $v = (v_1...v_n)$

$$\sqrt{\sum_{i=1}^{n} (u_i - v_i)^2}$$

Manhattan distance between u and v:

$$\sum_{i=1}^{n} |u_i - v_i|$$

What's the point?

Suppose we have the query

mercy citizen

- This query can be represented as the vector q=(1,1) (in the mercy-citizen space).
- Perhaps the most relevant documents are those closest to the query?

Queries as vectors

 Key idea 1: Represent queries as vectors in same space

 Key idea 2: Rank documents according to proximity to query in this space

Recall:

- Get away from Boolean model
- Rank more relevant documents higher than less relevant documents

Short distance = high relevance?

However consider the query

information retrieval

- and the 2 documents:
 - the Wikipedia article on Information Retrieval
 - "blue fish"
- Which is most relevant?
- Which is closest to the query?

Dot product

Recall: the dot product of two vectors is

$$u \cdot v = \sum_{i=0}^{n} u_i v_i$$

 e.g. the dot product of "information retrieval" and "blue fish" will be 0.

Dot product

$$u \cdot v = \sum_{i=0}^{n} u_i v_i$$

 The dot product of "information retrieval" and the Wikipedia article on IR will be large (=196)

```
"information retrieval" (0,0,...,1,...........1,...)
the Wiki IR article (0,0,..,103,........93...)
```

Large dot product = high relevance?

 So should we use the dot product as a rating mechanism?

 However, only using the dot product will favour long documents (why)?

Small angle= high relevance?

 Small angle between two docs d1 and d2 = the distribution of terms is similar in d1 and d2

- So should we use the angle as a rating mechanism?
 - Small angle with q = higher rating?

 In fact, we will use the cosine of the angle (rather than the angle itself)

Graph of cos(angle)

Cosine similarity

Dot product of *u* and *v*:

$$u \cdot v = \sum_{i=0}^{n} u_i v_i$$

It holds that:

$$u \cdot v = ||u|||v|| \cos \theta$$

where |u| = the length of u, and θ = angle between u and v

Therefore:

$$\cos \theta = \frac{\sum_{i=0}^{n} u_i v_i}{\|u\| \|v\|}$$

Length of a vector

- There is more than one length norm:
 - Manhattan

$$\|x\|_1 = \sum_i |x_i|$$

Euclidean

$$\left\|x\right\|_2 = \sqrt{\sum_i x_i^2}$$

Cosine similarity

Dot product Unit vectors
$$\cos(q,d) = \frac{q \cdot d}{\mid q \mid \mid d \mid} = \frac{q}{\mid q \mid} \cdot \frac{d}{\mid d \mid} = \frac{\sum_{i=0}^{n} q_i d_i}{\sqrt{\sum_{i=0}^{n} q_i^2} \sqrt{\sum_{i=0}^{n} d_i^2}}$$

cos(q,d) = is the cosine similarity of q and d

- = cosine of the angle between q and d
- = dot product of the unit vectors q/|q| and d/|d|

Vectors after length normalisation


```
d1 to be or not to be
d2 to be is to do
d3 i do i do i do i do
d4 do be do be do
```

- What do the d1-d4 vectors look like?
- What is cos(d1, d2)?
- What is cos(d3, d4)?

```
d1 to be or not to be (2,2,1,1,0,0,0)
d2 to be is to do (2,1,0,0,1,1,0)
d3 i do i do i do i do (0,0,0,0,0,5,5)
d4 do be do be do (0,2,0,0,0,3,0)
```

- What do the d1-d4 vectors look like?
- What is cos(d1, d2)?
- What is cos(d3, d4)?

```
d1 to be or not to be (2,2,1,1,0,0,0)
d2 to be is to do (2,1,0,0,1,1,0)
d3 i do i do i do i do (0,0,0,0,0,5,5)
d4 do be do be do (0,2,0,0,0,3,0)
```

- What do the d1-d4 vectors look like?
- What is cos(d1, d2)? $\frac{2 \cdot 2 + 2 \cdot 1}{\sqrt{2^2 + 2^2 + 1^2 + 1^2} \sqrt{2^2 + 1^2 + 1^2 + 1^2}} = \frac{6}{\sqrt{70}}$
- What is cos(d3, d4)?

```
d1 to be or not to be (2,2,1,1,0,0,0)
d2 to be is to do (2,1,0,0,1,1,0)
d3 i do i do i do i do (0,0,0,0,0,5,5)
d4 do be do be do (0,2,0,0,0,3,0)
```

What do the d1-d4 vectors look like:

• What is cos(d1, d2)?
$$\frac{2 \cdot 2 + 2 \cdot 1}{\sqrt{2^2 + 2^2 + 1^2 + 1^2} \sqrt{2^2 + 1^2 + 1^2 + 1^2}} = \frac{6}{\sqrt{70}}$$

• What is cos(d3, d4)?

$$\frac{5\cdot 3}{\sqrt{5^2+5^2}\sqrt{2^2+3^2}} = \frac{3}{\sqrt{26}}$$

The tf_idf weighting scheme

Word count matrix

	Antony & Cleopatra	Julius Caesar	Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	1
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
citizen	1	2	0	0	1	0

Term frequencies tf

log-frequency weighting

- Which numbers should fill our vectors?
- Raw term frequency might not be what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term
 - But perhaps not 10 times more relevant
- Log-frequency weight of term t in document d

$$w_{t,d} = \begin{cases} 1 + \log_{10} \operatorname{tf}_{t,d}, & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

Example

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

term	tf _{t,d}	$\mathbf{w}_{t,d}$
airplane	0	
shakespeare	1	
calpurnia	10	
under	100	
the	1,000	

Document frequency **df**

- Rare terms are more informative than frequent terms
- Example: rare word CAPRICIOUS
 - Document containing this term is very likely to be relevant to query CAPRICIOUS
 - → High weight for rare terms like CAPRICIOUS
- Example: common word THE
 - Document containing this term can be about anything
 - → Very low weight for common terms like THE
- We will use document frequency (df) to capture this.

idf (inverse df)

Informativeness idf (inverse document frequency) of t:

$$idf_t = log(N/df_t)$$

where N is the number of documents.

 $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Query: THE CAPRICIOUS PERSON

Doc contains 10 'the', 1 'capricious, 1 'person'

idf(the) = 0.22, idf(capricious) = 8.52, idf(person)=6.21

Dot product without idf:

$$10+1+1=12$$

With idf:

$$10 \times 0.22 + 1 \times 8.52 + 1 \times 6.21 = 14.95$$

tf_idf weighting

 tf_idf weight of a term: product of tf weight and idf weight

Best known weighting scheme in information retrieval

- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Effect of idf on ranking

 Note that idf has no effect on ranking for one-term queries, like 'CAPRICIOUS'.

- Only effect for >1 term
 - Query THE CAPRICIOUS PERSON: idf puts more weight on CAPRICIOUS than PERSON...
 - ... and much more than THE

Cosine similarity again

$$\cos(q,d) = \frac{q \cdot d}{\mid q \mid \mid d \mid} = \frac{q}{\mid q \mid} \cdot \frac{d}{\mid d \mid} = \frac{\sum_{i=0}^{n} q_i d_i}{\sqrt{\sum_{i=0}^{n} q_i^2} \sqrt{\sum_{i=0}^{n} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

```
d1 to be or not to be
d2 to be is to do
d3 i do i do i do i do
d4 do be do be do
```

- What is idf(to)?
- What is tf(d1,to)?
- What do the d1-d4 vectors look like?
- What is cos(d1, d2)?

```
d1 to be or not to be
d2 to be is to do
d3 i do i do i do i do
d4 do be do be do
```

- What is idf(to)? $\log(4/2) = 0.7$
- What is tf(d1,to)?
- What do the d1-d4 vectors look like?
- What is cos(d1, d2)?

```
d1 to be or not to be
d2 to be is to do
d3 i do i do i do i do
d4 do be do be do
```

- What is idf(to)? $\log(4/2) = 0.7$
- What is tf(d1,to)? 2
- What do the d1-d4 vectors look like?
- What is cos(d1, d2)?

```
d1 to be or not to be (1.4, 0.6, 1.4, 1.4, 0, 0, 0)
d2 to be is to do (1.4, 0.3, 0, 0, 1.4, 0.3, 0)
d3 i do i do i do i do i do (0, 0, 0, 0, 0, 1.5, 6.9)
d4 do be do be do (0, 0.6, 0, 0, 0, 0.9, 0)
```

- What is idf(to)? $\log(4/2) = 0.7$
- What is tf(d1,to)? 2
- What do the d1-d4 vectors look like?
- What is cos(d1, d2)?

```
d1 to be or not to be (1.4, 0.6, 1.4, 1.4, 0, 0, 0)
d2 to be is to do (1.4, 0.3, 0, 0, 1.4, 0.3, 0)
d3 i do i do i do i do i do (0, 0, 0, 0, 0, 1.5, 6.9)
d4 do be do be do (0, 0.6, 0, 0, 0, 0.9, 0)
```

- What is idf(to)? $\log(4/2) = 0.7$
- What is tf(d1,to)? 2
- What do the d1-d4 vectors look like?
- What is cos(d1, d2)?

$$\frac{1.4 \times .1.4 + 0.6 \times 0.3}{\sqrt{1.4^2 + 0.6^2 + 1.4^2 + 1.4^2} \sqrt{1.4^2 + 0.3^2 + .1.4^2 + 0.3^2}} \approx 0.42$$

Summary – Vector space model

Vector space model:

- Represent the query as a tf-idf vector
- Represent each document as a tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Computing cosine scores

Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
    float Length[N]
    for each query term t
    do calculate w<sub>t,q</sub> and fetch postings list for t
         for each pair(d, tf<sub>t,d</sub>) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,q}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

Computing cosine scores

- In the code skeleton for the assignments...
- ... in the **Index.java** interface...
- ... there is a HashMap **docLengths** that stores the number of tokens (=Manhattan length) for all documents.
- This is computed for you at indexing time.
- In task 2.6, you will need to compute Euclidean lengths for all documents.

Weighting schemes

• Different weighting schemes:

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{d}f_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{d}f_t}{\mathrm{d}f_t}\}$	u (pivoted unique)	1/ <i>u</i> (Section 6.4.4)
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			1 /	$1/\textit{CharLength}^{\alpha}, \alpha < 1$
L (log ave)	$\frac{1+\log(tf_{t,d})}{1+\log(ave_{t\in d}(tf_{t,d}))}$				

• In assignment 2.3 you will explore some of these variants

Computing cosine scores efficiently

- Approximation:
 - Assume that terms only occur once in the query

$$w_{t,q} \leftarrow \begin{cases} 1, & \text{if } \text{tf}_{t,q} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- Works for short queries (|q| << N)
- Works since ranking is only relative
 - We only care about the order, not the actual numbers

Computing cosine scores efficiently

```
FastCosineScore(q)
     float Scores[N] = 0
     for each d
     do Initialize Length[d] to the length of doc d
     for each query term t
     do calculate W_{t,q} and fetch postings list for t
 5
        for each pair(d, tf_{t,d}) in postings list
 6
        do add wf_{t,d} to Scores[d]
     Read the array Length[d]
     for each d
     do Divide Scores[d] by Length[d]
10
     return Top K components of Scores[]
11
Figure 7.1 A faster algorithm for vector space scores.
```

Computing cosine scores efficiently

- Downside of approximation: sometimes get it wrong
 - A document not in the top K may creep into the list of K output documents
- Is this such a bad thing?
- Cosine similarity is only a proxy
 - User has a task and a query formulation
 - Cosine matches documents to query
 - Thus cosine is anyway a proxy for user happiness
 - If we get a list of K documents "close" to the top K by cosine measure, should be ok

Choosing K largest scores efficiently

- Do we really need to order every document?
- No, usually it is enough to retrieve top K documents wrt query
- Do selection:
 - avoid visiting all documents

There are several schemes that achieves this

Index elimination, version 1

- Disregard low-idf terms
- Example:

CATCHER IN THE RYE

- Only accumulate scores from CATCHER and RYE
- Intuition:
 - IN and THE contribute little to the scores do not alter rank-ordering much
- Benefit:
 - We will consider far fewer documents
 - (since postings lists of low-idf terms have many documents)

Index elimination, version 2

• Example:

CAESAR ANTONY CALPURNIA BRUTUS

Only compute scores for documents containing ≥3 query terms

Champions lists

- Precompute for each dictionary term t, the r documents of highest tf-idf_{td} weight
 - Call this the champions list (fancy list, top docs) for t

• Benefit:

 At query time, only compute scores for documents in the champion lists – fast

Issue:

- r chosen at index build time
- Too large: slow
- Too small: too few results

Query parser

Query phrase:

RISING INTEREST RATES

- Sequence:
 - Run as a phrase query
 - If <K documents contain the phrase RISING INTEREST RATES, run
 phrase queries RISING INTEREST and INTEREST RATES
 - If still <K docs, run vector space query RISING INTEREST RATES
 - Rank matching docs by vector space scoring

Static quality scores

- We want top-ranking documents to be both relevant and authoritative
 - Relevance cosine scores
 - Authority query-independent property
- Assign query-independent quality score g(d) in [0,1]
 to each document d
- net-score $(q,d) = w_1^*g(d) + w_2^*\cos(q,d)$
 - Two "signals" of user happiness

BM25 ranking

$$bm25(d) = \sum_{t \in q} \log \left(\frac{N}{df_t}\right) \frac{(k+1)tf_{td}}{k(1-b+b\frac{L_d}{L_{ave}}) + tf_{td}}$$

d is a document, q is the query L_d is the length of d, L_{ave} is the average length of a doc The b parameter controls length scaling The k parameter controls frequency scaling

BM25 ranking

$$bm25(d) = \sum_{t \in q} \log \left(\frac{N}{df_t}\right) \frac{2tf_{td}}{2\frac{L_d}{L_{ave}} + tf_{td}}$$

Special case: b=1 and k=1

Shorter documents will be up-ranked, longer docs will be down-ranked