Corriente Eléctrica

Cargas en movimiento a través de un área A

La rapidez con la cual fluye la carga a través del área se define como *corriente eléctrica I*

$$I \equiv \frac{dQ}{dt}$$

La *unidad* para la corriente es el **ampere** (A): 1A = 1C/s

Modelo microscópico de la corriente

$$n = \frac{n^{\circ} \text{ de portadores de carga}}{\text{volumen}}$$
(densidad)

$$\Delta Q = n (A \Delta x) q \frac{\Delta t}{\Delta t}$$
$$dQ = n (A v_d) q dt$$

$$I \equiv \frac{dQ}{dt} = n \ q \ v_d \ A$$

 v_d es una rapidez promedio que se conoce como *rapidez de arrastre*

Ley de Ohm

Densidad de Corriente:

$$I = \int_{S} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$$

$$\vec{\mathbf{J}} \equiv \frac{I}{A} = n \ q \ \vec{\mathbf{v}}_d$$

 \vec{J} es proporcional al \vec{E} (mayoria materiales)

$$\vec{\mathbf{J}} = \sigma \vec{\mathbf{E}}$$

Ley de Ohm

 $\sigma \to conductividad$

$$\frac{I}{A} = \sigma \left(-\frac{dV}{dx} \right)$$

$$I = -\sigma A \left(\frac{dV}{dx} \right)$$

 $Idx = -\sigma A \ dV$

$$I \int_{b}^{a} dx = -\sigma A \int_{V_{b}}^{V_{a}} dV$$

$$I l = -\sigma A (V_{a} - V_{b})$$

$$I = \frac{\sigma A}{l} \Delta V$$

$$\Delta V = \frac{l}{\sigma A} I$$

$$con R = \frac{l}{\sigma A}$$
obtenemos nuevamente
la **Ley de Ohm**

$$\Delta V = R I$$

Resistencia y Resistividad

Llamaremos Resistencia a

$$R \equiv \frac{l}{\sigma A}$$

unidad es: $Ohm \rightarrow 1\Omega = 1V/A$

Resistividad, ρ :

$$\rho = \frac{1}{\sigma}$$

es la inversa de la conductividad

$$entonces \to R = \rho \frac{l}{A}$$

- \bullet ρ depende de las propiedades del material y de la temperatura
- *R* además depende de la geometría

Resistencia y temperatura

$$\rho = \rho_o [1 + \alpha (T - T_o)]$$

$$R = R_o [1 + \alpha (T - T_o)]$$

Resistividades y coeficientes de temperatura de resistividad para diversos materiales

Material	Resistividad * (Ω · m)	Coeficiente de temperatura ^b α [(°C) ⁻¹]
Plata	1.59×10^{-8}	3.8×10^{-3}
Cobre	1.7×10^{-8}	3.9×10^{-3}
Oro	2.44×10^{-8}	3.4×10^{-3}
Aluminio	2.82×10^{-8}	3.9×10^{-3}
Tungsteno	5.6×10^{-8}	4.5×10^{-3}
Hierro	10×10^{-8}	5.0×10^{-3}
Platino	11×10^{-8}	3.92×10^{-3}
Plomo	22×10^{-8}	3.9×10^{-3}
Nicromoc	1.00×10^{-6}	0.4×10^{-3}
Carbono	3.5×10^{-5}	-0.5×10^{-3}
Germanio	0.46	-48×10^{-3}
Silicio ^d	2.3×10^{3}	-75×10^{-3}
Vidrio	$10^{10} \text{ a } 10^{14}$	
Hule	$\sim 10^{13}$	
Azufre	1015	
Cuarzo (fundido)	75×10^{16}	

^{*} Todos los valores están a 20 °C. Los elementos de la tabla se consideran libres de impurezas.
b Ve a la sección 26.4.

 α coeficiente de variación de resistividad con la temperatura: $\lceil ({}^{\circ}C)^{-1} \rceil$

[&]quot; ve a la sección 26.4.
^c Aleación de níquel v cromo usada comúnmente en elementos calefactores.

Aleacion de niquel y cromo usada comunmente en elementos caletactore d La resistividad del silicio es muy sensible a la pureza.

El valor puede cambiar en varios órdenes de magnitud cuando es dopado con otros átomos