1 数论初步

1.1

证明.

(1)
$$\forall x | a, x | b \begin{cases} x > 0 & \xrightarrow{a > 0, x | a} x \le a \\ x < 0 & \xrightarrow{a > 0} x < a \end{cases} \Rightarrow x < a \xrightarrow{a | a, a | b} (a, b) = a.$$

(2)
$$\begin{cases} (a,b)|(a,b),\ (a,b)|b \\ \forall \ x|(a,b),\ x|b,\ \bar{n}x \leq (a,b). \end{cases} \Rightarrow ((a,b),b) = (a,b).$$

1.2

证明.

(1) 不妨假设 $\exists n > 0, (n, n+1) = d > 1$

$$(n, n+1) = d \Rightarrow \exists x, y \in \mathbb{Z}, \ n = xd, n+1 = yd$$

 $\Rightarrow 1 = (n+1) - n = (y-x)d > 0$
 $\Rightarrow y > x, \ (y-x)d \ge d > 1$
 \Rightarrow 矛盾,假设不成立.

(2) 可取 (n,k), 证明如下

由推论 2.3, 取
$$x = 1$$
, $a = n$, $b = k$, 有 $(n, k) = (n, n + k)$.

1.3

(1) (314,159) = 1,有解。由辗转相除法

$$314 = 159 \cdot 1 + 155$$
$$159 = 155 \cdot 1 + 4$$
$$155 = 4 \cdot 38 + 3$$
$$4 = 3 \cdot 1 + 1$$

即

$$1 = 4 - 3 \cdot 1$$

$$= 4 - (155 - 4 \cdot 38) \cdot 1$$

$$= (159 - 155 \cdot 1) \cdot 39 - 155$$

$$= 159 \cdot 39 - 155 \cdot 40$$

$$= 159 \cdot 39 - (314 - 159 \cdot 1) \cdot 40$$

$$= 159 \cdot 79 - 314 \cdot 40.$$

 $\mathbb{P} x = -40, y = 79.$

(2) (3141,1592) = 1,有解。由辗转相除法

$$3141 = 1592 \cdot 1 + 1549$$

 $1592 = 1549 \cdot 1 + 43$
 $1549 = 43 \cdot 36 + 1$

即

$$1 = 1549 - 43 \cdot 36$$

$$= 1549 - (1592 - 1549 \cdot 1) \cdot 36$$

$$= 1549 \cdot 37 - 1592 \cdot 36$$

$$= (3141 - 1592 \cdot 1) \cdot 37 - 1592 \cdot 36$$

$$= 3141 \cdot 37 - 1592 \cdot 73.$$

 $\mathbb{P} x = 37, y = -73.$

1.4

证明.

(0)
$$n = 1, n^3 - n = 0$$
, $f(0) = 6 \cdot 0, 6 | (n^3 - n)$.

(1)
$$n = 2, n^3 - n = 0$$
, $f(6) = 6 \cdot 1, 6 | (n^3 - n)$.

(2) 假设 $n = k, k \in \mathbb{N}$ 时,有 $6|(k^3 - k)$,则 n = k + 1 时有

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 2k$$

= $(k^3 - k) + 3k(k+1)$

显然有 $6|(k^3-k)$, 下证 6|3k(k+1)

$$1^{\circ} k = 1, 3k(k+1) = 6$$
,有 $6 = 6 \cdot 1, 6|3k(k+1)$

 2° 若 6|3k(k+1),则

$$3(k+1)(k+2) = 3k(k+1) + 6(k+1) \implies 6|3(k+1)(k+2)|$$

即证

$$\forall k \in \mathbb{N} \ 6|3k(k+1) \implies 6|(k+1)^3 - (k+1)$$

综上, 即证

$$\forall n > 0, 6 | (n^3 - n).$$

1.5

证明.

$$\begin{cases} 3^4 \equiv 1 \pmod{10} & \Rightarrow 3^{4n} \equiv 1 \pmod{10} \\ & \Rightarrow 3^{m+4n} \equiv (-1) \pmod{10}. \end{cases}$$
$$10|(3^m+1) \qquad \Rightarrow 3^m \equiv (-1) \pmod{10}$$

即证

$$10|(3^{m+4n}+1)$$

En 土土 代数结构答案 妮可

1.6

(1)

$$2345 = 5 \cdot 7 \cdot 67$$

(2)

$$3456 = 2 \cdot 3 \cdot 3 \cdot 3$$

1.7

证明. 不妨假设 $\exists n > 0$, 使得 $n(n+1) = d^2$ 为平方数,则有

$$n^2 < n(n+1) = d^2 < (n+1)^2 \implies n < d < n+1$$

不存在相邻整数间的整数, d 不存在, 假设不成立, 即证.

1.8

证明. $n = 5! + 1 = 2 \cdot 3 \cdot 4 \cdot 5 + 1$.

(1)

$$n+1 = 2 \cdot 3 \cdot 4 \cdot 5 + 2 = 2 \cdot (3 \cdot 4 \cdot 5 + 1)$$

(2)

$$n+2=2\cdot 3\cdot 4\cdot 5+3=3\cdot (2\cdot 4\cdot 5+1)$$

(3)

$$n+3=2\cdot 3\cdot 4\cdot 5+4=4\cdot (2\cdot 3\cdot 5+1)$$

(4)

$$n+4=2\cdot 3\cdot 4\cdot 5+5=5\cdot (2\cdot 3\cdot 4+1)$$

1.9

(1) (1,1)=1 |2,方程有解, $x_0=0,y_0=2$ 为一组特解,故通解为

$$\left\{ \begin{array}{ll} x & = \ t \\ y & = \ 2-t \end{array} \right., \ (t \in \mathbb{Z})$$

(2)

(3)

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

6