2020年度 医用工学概論1 第5回 復習 (第4回)

電気回路(直流回路)の復習

- •合成抵抗
- キルヒホッフの法則
- ・ホイートストンブリッジ
- •電力、熱量

例題1 合成抵抗

次の合成抵抗を求めよ。

例題1 解答(2)

(2)

抵抗2つの並列接続の合成抵抗は

の合成抵抗は $R = \frac{\overline{h}}{\overline{h}} = \frac{R_1 \times R_2}{R_1 + R_2}$ 分岐して、複数列に接続

正解: 1.2 [Ω]

例題1 解答(3)

(3)並列部分と直列部分に分けて考える

①並列部分(上半分) 精 R.×R.

$$R_{12} = \frac{\hbar}{\hbar} = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{8 \times 2}{8 + 2} = \frac{16}{10} = 1.6$$

②直列部分(全体)

$$R_{123} = R_{12} + R_3 = 1.6 + 7 = 8.6$$

正解: 8.6 [Ω]

練習問題1

次の合成抵抗を求めよ。

例題2 消費電力

R₁=1, R₂=8, R₃ = 12[Ω], E=58[V]となる 以下のような回路を作製したとき

- (1)回路全体の消費電力を求めよ。
- (2)5秒間電流を流した時、 R_1 で発生する熱量を求めよ。

例題2 解答

- (1)消費電力 P = VI
- → 全体の消費電力を知るには、全体の電流が必要
- → 全体の電流を知るには、全体の抵抗(合成抵抗)が必要

まず合成抵抗を求める

①並列部分(下半分)

$$R_{23} = \frac{\overline{\eta}}{\overline{\eta}} = \frac{R_2 \times R_3}{R_2 + R_3} = \frac{8 \times 12}{8 + 12} = \frac{96}{20} = 4.8$$

②直列部分(全体)

$$R_{123} = R_1 + R_{23} = 1 + 4.8 = 5.8$$

消費電力

用質電刀
$$I = \frac{V}{R} = \frac{E}{R_{123}} = \frac{58}{5.8} = 10$$
, $P = VI = EI = 58 \times 10 = 580 [W]$ 8

例題2 解答

(2)発熱量

 $H = P \times t = VI \times t$

R₁の消費電力を知るにはR₁の電流と電圧がいる

- → R₁の電流は全体の電流と等しい & 抵抗はわかっている
 - → R₁の電圧はオームの法則で求められる

$$V_1 = R_1 I = 1 \times 10 = 10$$

R1の消費電力

 $P_1 = V_1 I = 10 \times 10 = 100$

R1の発熱量

 $H_1 = P_1 \times t = 100 \times 5 = 500 [Ws] = 500[J]$

練習問題2

R₁=0.1, R₂=1, R₃=9[Ω], E=30[V]となる 以下のような回路を作製したとき

- (1)消費電力を求めよ。
- (2)10秒間電流を流した時のR1で発生する熱量を求めよ。
- *(3)R₁において300[J]の熱量を得るためには何秒間電流を流せば良いか。

例題3 キルヒホッフの法則

図の回路の各抵抗に流れる電流の大きさを求めよ。

例題3 解答

点Aでキルヒホッフの第一法則より $I_1+I_2=I_3$

上の回路で

起電力: E_1 , 電圧降下: R_1I_1 , R_3I_3 キルヒホッフの第二法則より $E_1 = R_1I_1 + R_3I_3$ $20 = I_1 + I_3$

下の回路で

起電力: E_2 , 電圧降下: R_2I_2 , R_3I_3 キルヒホッフの第二法則より $E_2 = R_3I_2 + R_3I_3$

 $E_2 = R_2 I_2 + R_3 I_3$ 50 = $2I_2 + I_3$

$$\begin{cases} I_1 + I_2 = I_3 \\ 20 = I_1 + I_3 \\ 50 = 2I_2 + I_3 \end{cases}$$

$$\begin{cases} I_1 + I_2 - I_3 = 0 \\ I_1 + I_3 = 20 \\ 2I_2 + I_3 = 50 \end{cases}$$

例題3 解答

$$3 + 2' \times 2$$

 $2I_2 + I_3 = 50$
 $-2I_2 + 4I_3 = 40$
 $5I_3 = 90$
 $I_3 = 18$

$$I_3=18$$
 を 2 /に代入 $-I_2+36=20$ $-I_2=16$ $I_2=16$ ①に $I_2=16$ $I_1+16-18=0$ $I_1-2=1$ $I_1=2$

 $I_1 = 2$, $I_2 = 16$, $I_3 = 18$ [A]

練習問題3

キルヒホッフの法則を使って 各抵抗を流れる電流を求めよ。

例題4

抵抗R₀に流れる電流が0[A]になるとき、 抵抗Rの値はいくらか

例題4解答

図の回路はホイートストンブリッジである。 問題から、平衡条件が成り立っているので、次の式が成り立つ。

$$\frac{1}{R} = \frac{2}{3}$$

$$R = \frac{3}{2}$$

$$= 1.5 [\Omega]$$

$$R = \frac{3}{2}$$

$$= 1.5 [\Omega]$$

練習問題4

図の回路において抵抗 R_0 に流れる電流が0[A]になるとき、抵抗Rの値を求めよ。

