KU Leuven Summer School Segment 2C Missing (Perhaps?) Not at Random

Paul Gustafson

September 15, 2022

Minimal Working Example

Creating the problem

```
r <- rbinom(n, size=1,
    prob=expit(0.1 + 0.3*x - 0.6*x*y))
x.obs <- rep(NA, n); x.obs[r==1] <- x[r==1]
dat <- data.frame(x=x.obs, y=y)</pre>
X subject to nonignorable missingness
```

MAR analysis (i)

```
genmod.mar.string <- "</pre>
                                       along the lines of what wive
model {
  alpha \sim dnorm(0, 0.1)
  beta0 \sim dnorm(0, 0.1)
  beta1 ~ dnorm(0, 0.1)
                                             Seev
                                     f(x,y) = f(x) f(y |x)
  for (i in 1:n) {
    x[i] ~ dbern(pr.x)
    y[i] ~ dbern(pr.y[i])
    logit(pr.y[i]) <- beta0 + beta1*x[i]</pre>
  logit(pr.x) <- alpha</pre>
7"
```

MAR analysis (ii)

```
### generative model, data go in
mod <- jags.model(</pre>
  textConnection(genmod.mar.string),
  data=list(x=dat$x, y=dat$y,
            n=dim(dat)[1]).
         n.chains=3)
update(mod, 2000) # burn-in
### MC output comes out
opt.mar.JAGS <- coda.samples(mod, n.iter=15000,
  variable.names=c("alpha","beta0","beta1"))
```

MAR Analysis (iii)

MCMCsummary(opt.mar.JAGS)

```
## mean sd 2.5\% 50% 97.5\% Rhat n.eff
## alpha -0.382 0.0626 -0.505 -0.382 -0.2590 1 11722
## beta0 -0.843 0.0744 -0.991 -0.843 -0.6988 1 6559
## beta1 -0.217 0.1446 -0.500 -0.216 0.0629 1 5586

95% cred; be interval for \beta,
```

Now explictly model the missingness

```
statmod.mnar.string <- "
                                 sanc as before
 for (i in 1:n) {
  x[i] ~ dbern(pr.x)
  y[i] ~ dbern(pr.y[i])
  logit(pr.y[i]) <- beta0 + beta1*x[i]</pre>
  r[i] ~ dbern(pr.r[i])
  logit(pr.r[i]) <- gamma0 + gamma1*y[i] +</pre>
    gamma2*x[i] + (gamma3-gamma2)*x[i]*y[i]
                                    MAR (=> (82,83)=(0,0)
 logit(pr.x) <- alpha"</pre>
  4 df to represent RIX, Y
```

With this prior specification

```
allowing that their
prior.mnarA.string <- "</pre>
   alpha \sim dnorm(0, 0.1)
   beta0 ~ dnorm(0, 0.1)
   beta1 ~ dnorm(0, 0.1)
  gamma0 \sim dnorm(0, 0.1)
  gamma1 \sim dnorm(0, 0.1)
  gamma2 ~ dnorm(0, 100) gamma3 ~ dnorm(0, 100)"
                                N(0,0.1^2)
genmod.mnarA.string <- paste(</pre>
  "model {",prior.mnarA.string,
  statmod.mnar.string, "}")
```

Any pertinent remarks about our generative model?

$$f(x)f(x) = \begin{cases} f(x; |x|) & f(y; |x|; x) \\ f(x; |x|) & f(y; |x|; x) \end{cases}$$

$$f(x; |x|) & f(y; |x|; x) \\ f(x; |x|) & f(x; |x|; x) \\ f(x; |x|; x) & f(x; |x|; x) \end{cases}$$

Turn the crank

```
### generative model, data go in
mod <- jags.model(</pre>
  textConnection(genmod.mnarA.string),
  data=list(x=dat$x, y=dat$y,
            r=as.vector(!is.na(dat$x)),
            n=dim(dat)[1]),
           n.chains=3)
update(mod,2000) # burn-in
### MC output comes out
opt.mnarA.JAGS <- coda.samples(</pre>
 mod,
 n.iter=15000,
  variable.names=c("alpha","beta0","beta1",
  "gamma0", "gamma1", "gamma2", "gamma3"))
```

And report posterior quantities

```
. wider now then under MAR
                             still not reaching
MCMCsummary(opt.mnarA.JAGS)
                                 truth of 0.2
                                   50% 97.5% Rhat n.eff
##
                     sd ½.5%
             mean
## alpha -0.381089 0.0719 -0.5211 -0.38133 -0.2394
                                                   6076
## beta0 -0.844381 0.0793 -1.0003 -0.84397 -0.6912
                                                   4669
## beta1 -0.214351 0.1606 -0.5323 -0.21375 0.0977
                                                1 4050
## gamma0 0.172698 0.0681 0.0415 0.17162
                                       0.3076
                                                   6141
## gamma1 -0.236507 0.1144 -0.4625 -0.23676 -0.0136
                                                   8084
## gamma2 0.000243 0.0993 -0.1935 0.00073 0.1917
                                                   5126
## gamma3 -0.001862 0.0995 -0.1971 -0.00177 0.1926
                                                1 10451
```

And now the same with this prior specification

```
prior.mnarB.string <- "

alpha ~ dnorm(0, 0.1)

beta0 ~ dnorm(0, 0.1)

beta1 ~ dnorm(0, 0.1)

gamma0 ~ dnorm(0, 0.1)

gamma1 ~ dnorm(0, 0.1)

gamma2 ~ dnorm(0, 25)

gamma3 ~ dnorm(0, 25)"

- N(0, 0.2)
```

```
genmod.mnarB.string <- paste(
  "model {",prior.mnarB.string,
   statmod.mnar.string, "}")</pre>
```

Crank

```
### generative model, data go in
mod <- jags.model(</pre>
  textConnection(genmod.mnarB.string),
  data=list(x=dat$x, y=dat$y,
    r=as.vector(!is.na(dat$x)),
    n=dim(dat)[1]),
  n.chains=3)
update(mod, 2000) # burn-in
### MC output comes out
opt.mnarB.JAGS <- coda.samples(</pre>
 mod,
 n.iter=15000,
  variable.names=c("alpha","beta0","beta1","gamma0",
    "gamma1", "gamma2", "gamma3"))
```

wider still
- almost reaches truth of 0.2 Answer MCMCsummary(opt.marB.JAGS) ## sd 2.5% 50% 97.5% Rhat n.eff mean ## alpha -0.37978 0.0951 \(\daggerightarrow{0.56618} \) -0.37993 -0.1932 2213 ## beta0 -0.84465 0.0917 -1.02539 -0.84368 -0.6687 2496 ## beta1 -0.21456 0.1987 -0.60383 -0.21329 0.1720 2152 1835 ## gamma0 0.17851 0.1002 -0.00844 0.17576 0.3863

0.0576

0.3953

0.3888

2548

1579

3619

gamma1 -0.23858 0.1501 -0.53573 -0.23850

gamma3 -0.00483 0.2019 -0.40203 -0.00533

gamma2 -0.00209 0.2014 -0.39610 -0.00159

Take a bit of stock

Recall γ_2 , γ_3 describe $\log OR(R, X|Y=y)$

Adjective soup

MAR $\gamma_2 = \gamma_3 = 0$ known (and don't need to model R)

- · identified · regular . text book
- - nice

MNAR

 γ_2, γ_3 unknown

- . probally identified

Folk theorem

In these kinds of irresulproblems, as you turn down the information knob, the numerical approximation of posterior quantities worsens (when using off. Me. shelf MCMC)

ncreasing

Important distinction related to folk theorem

The posterior dist of B when you don't know much about the missing data mechanism (orld be the scientifically pertinant thing to report - we just cont compole it easily - a problem of Boyesien computation, not Bayesian analysis par se