МГУ лаба №101 Изучение динамики простейших систем с помошью машины Атвуда

Сергей Слепышев 109 группа

Октябрь 2022 (последний день до дедлайна)

0.1 Введение

Цель работы:

Изучение законов равноускоренного движения.

Идея эксперимента:

Изучение законов равноускоренного движения производится на основе анализа кинематических характеристик движения системы тел. Для проведения такого анализа используется машина Атвуда, с помощью которой можно получать различные, не слишком большие (по сравнению с ускорением свободного падения) ускорения.

0.2 Эксперимент и обработка

0.2.1 Упражнение 1.

Анализ закона движения и определение ускорения.

Измерил массы грузов m_i и веревки с платформами m_0 . Приборную погрешность лучше прочитать в документации к весам, но мне лень за ней бегать, возьму на глаз равной 1%. Среднее отклонение σ_m получил по формуле:

$$\delta_m = \sqrt{\frac{\sum (m_i - \overline{m})}{N(N-1)}}$$

где N - общее количество грузов.

Полная погрешность m и m_0 в силу выше сказанного считается по:

$$\sigma_m = \sqrt{(\delta_m)^2 + (m * 0.01)^2}$$

Таблица 1

m_ni	среднее m_p	Случайная погрешность m_p	Полная погрешность m_p	m_0	Погренность m_0	g
	гр	гр	гр	гр	гр	м/с^2
4,58	4,58	0,02	0,05	60,4	0,6	9,82
4,55						
4,66						
4,59						
4,50						
4,59						
4,55						
4,63						
4,58						
4,53						
4,66						

Далее в программе, считающей МНК в компьютере на лабе, я обработал движение и получил ускорения. Посчитал соответствующее им среднее по формуле:

$$\overline{a}_{exp} = \frac{\sum a_{exp,i}}{N}$$

где N - число измерений в серии.

Рассчитал теоретическое ускорение a_{teor} по формуле (пренебрегаем потерями и весом блоков):

$$a_{teor} = g \frac{Nm}{m_0 + Nm}$$

Погрешность $\sigma_{a_{teor}}$ по формуле:

$$\sigma_{a_{teor}} = \sqrt{\left(g\frac{Nm_0}{Nm + m_0}\right)^2 * \sigma_m^2 + \left(g*\frac{Nm}{Nm + m_0}\right)^2 * \sigma_{m_0}^2}$$

Таблица 2

N	a1	a2	а3	mean a exp	Sigma a_exp	a teor	Sigma a teor
1	м/с^2	м/с^2	м/с^2	м/с^2	м/с^2	м/с^2	м/с^2
1	0,51	0,48	0,49	0,49	0,01	0,69	0,01
2	1,04	1,05	1,04	1,04	0,00	1,29	0,02
3	1,54	1,54	1,54	1,54	0,00	1,82	0,02
4	1,98	2	1,98	1,99	0,01	2,29	0,03
5	2,38	2,42	2,4	2,40	0,01	2,70	0,03
6	2,74	2,74	2,78	2,75	0,01	3,07	0,03
7	3,06	3,06	3,08	3,07	0,01	3,41	0,03

График зависимости $\overline{a}_{exp}(N)$ и $a_{teor}(N)$ представлен на следующем рисунке:

Вывод:

Bидно, что экспериментальная зависимость очень похожа на теоретическую, следовательно наша модель с некоторой погрешностью является верной. Если посмотреть на цифорки, можно увидеть что относительная разница уменьшается с ростом количества грузов N, из-за этого экспериментальное значение устремляется κ теоретическому.

Для справки (взято из методички):

$$a_{exp} = \frac{\Delta mg - M_{tr}/R}{\alpha m_{bl} + m}$$

0.2.2 Упражнение 2.

Измерение ускорения грузов при постоянной разности масс $\Delta \mathbf{m}$.

Вместо значений m_1 и m_2 , предложенных в методичке, я вставил в таблицу N_1 и N_2 , смысл тот же, только теперь завязано на количестве грузов слева и справа. Аналогично упр. 1 рассчитал среднее \overline{a}_{exp} и его дисперсию $\sigma_{a_{exp}}$:

Таблица 3

N1 (Слева)	N2 (Справа)	a1	a2	a3	mean a_exp	Sigma mean a_exp
1	1	м/с^2	м/с^2	м/с^2	м/с^2	м/с^2
0	1	0,50	0,50	0,50	0,50	0,00
1	2	0,44	0,44	0,42	0,43	0,01
2	3	0,38	0,36	0,36	0,37	0,01
3	4	0,34	0,32	0,32	0,33	0,01
4	5	0,30	0,30	0,30	0,30	0,00
5	6	0,26	0,26	0,26	0,26	0,00

Далее вычислил суммарную массу M:

$$M = m_1 + m_2 + m_0 = N * m + m_0$$

где N - количество грузов на установке.

Для каждого значения M вычислил a_{teor} по формуле:

$$a_{teor} = \frac{\Delta m * g}{M}$$

Вычислил отличие a_{exp} от a_{teor} по формуле:

$$\Delta a = \frac{|a_{teor} - a_{exp}|}{a_{teor}}$$

Результаты обработки представлены в таблице 4:

Таблица 4

Delta m	M	а ехр	a teor	Delta a	
гр	гр	м/с^2	м/с^2	%	
4,58	64,99	0,50	0,69	27,80	
Const	74,16	0,43	0,61	28,60	
	83,33	0,37	0,54	32,12	
	92,50	0,33	0,49	32,87	
	101,66	0,30	0,44	32,24	
	110,83	0,26	0,41	35,98	

Построил график $a_{teor}(\Delta m)$, $a_{exp}(\Delta m)$ и $\Delta a(\Delta m)$, ввел справа дополнительную ось для корректного отображения. График представлен на рисунке:

Вывод:

Смотря на глаз, зависимость $a_{exp}(\Delta m)$ близка к линейной. Расхождение от теории, конечно, больше, чем я ожидал (около 25%), но это не 50%, поэтому можем радоваться)) наша модель около реальности. Видно существенную роль играет момент силы трения.

Для справки (взято из методички):

$$a_{exp} = \frac{\Delta mg - M_{tr}/R}{\alpha m_{bl} + m}$$

0.2.3 Упражнение 3. Измерение ускорения грузов при постоянной общей массе m. Определение момента силы трения M_{tr} в оси блока и ускорения свободного падения g.

Сразу вставлю таблицу (всё аналогично упр. 2):

Таблица 5

N1	N2	a1	a2	a3	mean a_exp	SE of mean a_exp	Полная погрешность а_ехр
1	1	м/с^2	м/с^2	м/с^2	м/с^2	м/с^2	м/с^2
5	6	0,26	0,26	0,26	0,26	0,00	0,02
4	7	1,04	1,02	1,02	1,03	0,01	0,02
3	8	1,82	1,82	1,82	1,82	0,00	0,02
2	9	2,58	2,58	2,58	2,58	0,00	0,02
1	10	3,34	3,30	3,32	3,32	0,01	0,02
0	11	4,10	4,10	4,10	4,10	0,00	0,02

Только я уже от того, что устал, для скорости начал округлять) погрешность округления тогда равна 0,02, учел ее при расчетах по формуле:

$$\sigma_{a_{exp}} = \sqrt{\delta_{a_{exp}}^2 + 0.02^2}$$

где $\delta_{a_{exp}}$ - случайная погрешность.

Далее слепил таблицу 6 по формулам:

$$M = m_1 + m_2 + m_0 = N * m + m_0$$

$$a_{teor} = \frac{\Delta m * g}{M}$$

$$\Delta a = \frac{|a_{teor} - a_{exp}|}{a_{teor}}$$

Таблица 6

Delta m	M	а ехр	a teor	Delta a
гр	гр	м/с^2	м/с^2	%
4,58	110,8	0,26	0,41	36,0
13,75	110,8	1,03	1,22	15,7
22,92	110,8	1,82	2,03	10,4
32,09	110,8	2,58	2,84	9,2
41,25	110,8	3,32	3,66	9,2
50,42	110,8	4,10	4,47	8,2

cм. cлeд. cmp.

Методом МНК "аппроксимировал"
линейной зависимостью $\overline{a}_{exp}=D+C\Delta m$ график $\overline{a}_{exp}(\Delta m)$, результаты записал в таблицу 7, для расчета использовал классический МНК с постоянной погрешностью $S_{a_{exp}}=0.02$ м/c2:

Расчеты в табл. 7 выполнил по формулам:

Ускорение свободного падения g:

$$g = C(\alpha m_{bl} + m_1 + m_2 + m_0) = C(\alpha m_{bl} + Nm + m_0)$$

где $\alpha=0,3,\,m_{bl}=0,0175$ кг, N - суммарное кол-во грузов, равное 11. Погрешность g:

$$\sigma_g = \sqrt{(NC)^2 \sigma_m^2 + (C)^2 \sigma_{m0}^2 + (Nm + m_0 + \alpha m_{bl}) * \sigma_C^2}$$

Момент силы трения M_{tr} :

$$M_{tr} = -D(\alpha m_{bl} + Nm + m_0)$$

Погрешность M_{tr} :

$$\sigma_{M_{tr}} = \sqrt{(R * (\alpha m_{bl} + Nm + m_0))^2 \sigma_D^2 + (N * D * R)^2 \sigma_m^2 + (D * R)^2 \sigma_{m0}^2}$$

Таблица 7

С	sigma C	D	sigma D	g	sigma g	M tr	sigma M tr
м/(с^2 * гр)	м/(с^2 * гр)	м/с^2	м/с^2	м/с^2	м/с^2	Н*м	Н*м
0,0837	0,0005	-0,116	0,014	9,71	0,09	0,0034	0,0004

Вывод:

Я профессионал эксперимента. Значение д получилось очень близким к реальному, причем с небольшой натяжкой можно сказать, что оно попало в диапазон погрешности.