Answer the following as indicated and in the given order. SHOW YOUR SOLUTIONS.

- 1. Answer the following questions.
- (20 Points)
- (a) If $H \leq S_n$, find |H|.
- (b) $|A_{10}| =$ ____.
- (c) How many reflections are there in the dihedral group D_n ?
- (d) Given D_8 , find a^4b*a^6 .
- (e) When is a left coset gH equal to H?
- (f) Find the intersection of the right cosets Hg_1 and Hg_2 .
- (g) Every group of prime order is _____.
- (h) When is a homomorphism ϕ one-to-one?
- (i) When is a homomorphism ϕ onto?
- (j) Given a homomorphism ϕ , $|Ker \ \phi| \cdot |\phi(G)| =$
- 2. Determine if the following permutations are odd or even. (5 Points)
 - (a) $\alpha = (4\ 1\ 7)(9\ 6\ 5\ 8\ 2)$
 - (b) $\beta = (2\ 1\ 8\ 7)(6\ 4\ 2\ 5).$
- 3. Enumerate the elements of D_3 and write its Cayley table. (10 Points)
- 4. Given the Cayley table below for a group (G,*), find the distinct left and right cosets of < y >. (8 Points)

*	e	r	s	\boldsymbol{x}	y	z
e	e	r	s	\boldsymbol{x}	y	z
r	r	s	e	y	z	\boldsymbol{x}
s	s	e	r	z	\boldsymbol{x}	y
x	x	z	y	e	s	r
y	y	\boldsymbol{x}	z	r	e	s
z	z	y	\boldsymbol{x}	s	r	e

- 5. From number 4, find a mapping ϕ from $(\langle r \rangle, *) \to (\mathbb{Z}_2, +)$ such that ϕ is a homomorphism. Verify that the mapping you chose is a homomorphism. (7 Points)
- 6. In each of the following, determine if the given function ϕ is a group homomorphism. (10 Points)
 - (a) Let $\phi: (\mathbb{R}, +) \to (\mathbb{R}, +)$ where $\phi(x) = x^2$.
 - (b) Let $\phi: (P_2, +) \to (P_2, +)$ where $\phi(f(x)) = f'(x)$. (P_2 is the set of all polynomials with real coefficients of degree less than or equal to 2).
 - (c) Let $\phi: (\mathbb{Z}_{12},+) \to (\mathbb{Z}_3,+)$ where $\phi(g)=g \pmod{3}$.
- 7. For the given mapping $\phi: (\mathbb{Z}_{12}, +) \to (\mathbb{Z}_{12}, +)$ where $\phi(g) = 3g$, do the following: (15 Points)
 - (a) Verify that ϕ is a homomorphism.
 - (b) Determine if ϕ is one-to-one using the definition of one-to-one.
 - (c) Determine if ϕ is onto using the definition of onto.
 - (d) Verify your answer in (b) by finding $Ker \phi$.
 - (e) Verify your answer in (c) by finding $\phi(G)$.
 - (f) Is ϕ an isomorphism? Justify your answer.

BONUS. Find a mapping ϕ from D_3 to (G,*) in number 4 such that ϕ is a homomorphism. (5 Points)