Ostatnio skończyliśmy na kroku  $n-1\to n$  i wiemy, że dla n-1 wymiarów możemy napisać  $\int_{A\in\mathbb{R}^{n-1}}f(x)dx=\int_{B\in\mathbb{R}^{n-1}}f(\xi(t))|\det\xi'|dt$ 



Rysunek 1: Kółko Kskładamy z kresek  $K_a$ i mamy  $\int_K f = \int da \int_{K_a} f$ 

$$\int_{\Theta} f dx = \int_{\Omega} f(\xi(t)) |\det \xi'| dt.$$

Mając zbiór  $\Theta$ , zdefiniujmy zbiór  $\Theta_a$ , który jest zbiorem takich  $x \in \Theta$ , że na miejsca  $x_i$  wstawimy wielkość a.

$$\Theta_a = \left\{ x \in \mathbb{Q}, x = \left( x^1, x^2, \dots, x^{i-1}, a, x^{i+1}, \dots, x^n \right) \right\}.$$

$$K = \left\{ (x, y), x^2 + y^2 = 1 \right\}.$$

$$K_a = \left\{ (x, y) \in K, (x, y) = (x, a) \right\}, \left\{ (x, a), x^2 + a^2 = 1 \right\}.$$

Oznacza to, że

$$\int_{\Theta}fdx=\int da\int_{\Theta_a}f(x^1,x^2,\ldots,x^{i-1},a,x^{i+1},\ldots,x^n)dx^1dx^2\ldots dx^{i-1}dx^{i+1}\ldots dx^n.$$

Rozważmy  $\xi:\Theta\to\Omega$  taką, że

$$\begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} \rightarrow \begin{bmatrix} \xi_1(t_1, \dots, t_n) \\ \xi_2(t_1, \dots, t_n) \\ \vdots \\ \xi_{i-1} \\ t_1 \\ \vdots \\ \xi_{i+1} \\ \vdots \\ \xi_n(t_1, \dots, t_n) \end{bmatrix} \begin{bmatrix} x^1 \\ x^1 \\ \vdots \\ x^i \\ \vdots \\ x^n \end{bmatrix}.$$

(Czyli  $\xi$  nie zmienia jednej współrzędnej np.  $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} r \\ x \end{bmatrix}$ ). Możemy więc zapisać transformację  $\xi_a:\Theta_a \rightarrow \Omega_a$ 

$$\begin{bmatrix} t_1 \\ \vdots \\ t_{i-1} \\ t_{i+1} \\ \vdots \\ t_n \end{bmatrix} \rightarrow \begin{bmatrix} \xi_1(t_1, \dots, t_n) \\ \xi_2(t_1, \dots, t_n) \\ \vdots \\ \xi_{i-1}(\dots) \\ \xi_{i+1}(\dots) \\ \vdots \\ \xi_n(t_1, \dots, t_n) \end{bmatrix}.$$

Wówczas na mocy założenia indukcyjnego wiemy, że

$$\int_{\Theta_a} f(x^1, \dots, x^{i-1}, a, x^{i+1}, \dots, x^n) dx^1 \dots dx^{i-1} dx^{i+1} \dots dx^n =$$

$$\int_{\Omega_a} f(t_1, t_2, \dots, t_{i-1}, a, t_{i+1}, \dots, t_n) |\det \xi'_a| dt^1 dt_2 \dots dt^{i-1} dt^{i+1} \dots dt^n.$$

Wówczas

$$\int_{\Theta} f(x^{1}, \dots, x^{n}) dx^{n} = \int_{a} da \int_{\Omega_{a}} f(t_{1}, \dots, t_{i-1}, a, t_{i+1}, \dots, t_{n}) |\det \xi'_{a}| \cdot (\pm 1) dt^{1} \dots dt^{i-1} dt^{i+1} \dots dt^{n}$$

$$= [a = t_{i}] =$$

$$= \int_{\Omega} f(t^{1}, t^{2}, \dots, t^{n}) |\det \xi'| dt^{1} \dots dt^{n} \quad \square.$$

$$\xi' = \begin{bmatrix} \frac{\partial \xi_1}{\partial t_1} & \frac{\partial \xi_2}{\partial t_2} & \dots & \frac{\partial \xi_n}{\partial t_n} \\ 0 & \dots & 1 & \dots & 0 \\ \frac{\partial \xi_n}{\partial t_1} & \dots & \frac{\partial \xi_n}{\partial t_n} \end{bmatrix}.$$

**Przykład 1** Policzmy całkę  $I = \int_0^\infty e^{-x^2} dx$ . Nie umiemy. Ale skoro nie umiemy policzyć I, to tymbardziej  $I^2$ ?

$$I^{2} = \int_{0}^{\infty} e^{-x^{2}} dx \int_{0}^{\infty} e^{-y^{2}} dy = \int_{\square} e^{-(x^{2} + y^{2})}.$$

 $\textit{Zamie\'nmy sobie zmienne: } x = r\cos\varphi, \quad y = r\sin\varphi. \ \psi: \begin{bmatrix} r \\ \varphi \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \end{bmatrix}, \ |\psi'| = r \ \textit{Mamy}$ 

$$\begin{split} I^2 &= \int_0^\infty dr \int_0^{\frac{\pi}{2}} d\varphi e^{-r^2} r = \frac{\pi}{2} \lim_{p \to +\infty} \int_0^p dr \cdot e^{-r^2} \cdot r = \frac{\pi}{2} \lim_{p \to \infty} \left[ -\frac{1}{2} e^{-r^2} \right]_0^p \\ &\frac{\pi}{2} \left[ \lim_{p \to \infty} \left[ -\frac{1}{2} e^{-p^2} \right] - \left[ -\frac{1}{2} e^{(0)^2} \right] \right] = \frac{\pi}{2} \frac{1}{2} = \frac{\pi}{4} \end{split}$$

czyli 
$$I^2 = \frac{\pi}{4} \implies I = \frac{\sqrt{\pi}}{2}$$

## 0.1 Formy różniczkowe

(czyli o uprawianiu analizy na powierzchni balonika albo kartki)

Niech  $M \subset \mathbb{R}^n$  - taki, że dla każdego punktu  $p \in M$  istnieje otoczenie otwarte  $U \subset M$ 

**Przykład 2** (sfera, obwarzanek, itd., okrąg), (stożek - nie ok!), (taka ósemka co się przecina - też nie) TODO: obrazki

**Definicja 1** Niech U - zbiór otwarty  $\subset M$  i niech odwzorowanie  $\varphi: U \to \mathbb{R}^n$  takie, że  $\varphi$  - klasy  $\mathcal{C}^1$ , (czasami  $\mathcal{C}^{\infty}$ ),  $\varphi^{-1}$  - klasy  $\mathcal{C}^1$ , (czasami  $\mathcal{C}^{\infty}$ ) nazywamy mapą. Uwaga: mapa <u>nie musi</u> pokrywać całego zbioru M.

Wyobraźmy sobie, że mamy jakiś zbiór M. Połowa tego zbioru to niech będzie  $U_1$ , i ono się przecina z  $U_2$ .  $U_1$  i  $U_2$  możemy rozłożyć na prostokąty w  $\mathbb{R}^2$ . Co się stanie z punktami mapowanymi do obu U?

Definicja 2  $(U^1, \varphi^1), (U^2, \varphi^2)$  - mapy na M. U<sub>1</sub> i U<sub>2</sub> nazywamy zgodnymi jeżeli a)  $U_1 \cap U_2 = \phi$ albo odwzorowanie  $\varphi_2 \circ \varphi_1^{-1} : \varphi_1(U_1 \cap U_2) \to \varphi_2(U_2 \cap U_1)$  jest bijekcją (klasy powiedzmy sobie  $\mathcal{C}^1,\mathcal{C}^\infty$ 



Rysunek 2:  $M = \{(x, y) : x^2 + y^2 = 1^2\}$ 

## Przykład 3

$$U_{1} = \{(x, y) \in M, y > 0\}, \quad \varphi_{1} : (x, y) \in U_{1} \to x$$

$$U_{2} = \{(x, y) \in M, x > 0\}, \quad \varphi_{2} : (x, y) \in U_{2} \to y$$

$$U_{3} = \{(x, y) \in M, y < 0\}, \quad \varphi_{3} : (x, y) \in U_{3} \to x$$

$$U_{4} = \{(x, y) \in M, x < 0\}, \quad \varphi_{4} : (x, y) \in U_{4} \to y.$$

 $U_1$  i  $U_3$  oraz  $U_2$  i  $U_4$  są zgodne. Czy zgodne są  $U_1$  i  $U_2$ ? Czyli chcemy zbadać odwzorowanie  $\varphi_1(U_1\cap U_2)$  $U_2) \rightarrow \varphi_2(U_1 \cap U_2), \ ale \ \varphi_1(x,y) \in U_1 \rightarrow x.$   $Czyli \ \varphi_1^{-1}(x) \rightarrow \left(x, \sqrt{1-x^2}\right),$ 

 $\begin{array}{l} czyli \ \varphi_2(\varphi_1^{-1}(x)=\varphi_2((x,\sqrt{1-x^2}))=\sqrt{1-x^2}.\\ Zatem \ czy \ \varphi_2\circ\varphi_1^{-1}(x)=\sqrt{1-x^2} \ przerzuca \ ]0,1[\rightarrow]0,1[ \ jest \ r\'ozniczkowalne? \ Odpowiedź: \ na \ zbiorze \end{array}$ ]0,1[ jest.

Definicja 3 Kolekcję zgodnych map nazywamy atlasem. Zbiór M wraz z atlasem, który pokrywa cały M nazywamy **rozmaitością** (ang. manifold).