Max Wisniewski

Tutorin: Kristen (Mi 12-14)

1. Äquivalenz von Metriken

Auf \mathbb{R}^n seien drei verschiedene Metriken gegeben durch

$$d(x,y) := |x - y| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$\sigma(x,y) := \max_{1 \le i \le n} |x_i - y_i| \qquad , \qquad \varrho(x,y) := \sum_{i=1}^{n} |x_i - y_i|$$

(i)

Es bezeichen $B_r^d(x), B_r^{\sigma}(x)$ und $B_r^{\varrho}(x)$ offene Kugeln um $x \in \mathbb{R}^n$ mit dem Radius r. Finden Sie nur von n abhängige Konstanten C_1, C_2, C_3 und C_4 , so dass

$$B_{C_1r}^{\varrho}(x) \subset B_r^d(x) \subset B_{C_2r}^{\sigma}(x)$$
 sowie $B_{C_3r}^{\sigma}(x) \subset B_r^d(x) \subset B_{C_2r}^{\varrho}(x)$.

Lösung:

a) $B_{C_1r}^{\varrho}(x) \subset B_r^d(x)$. Wir wollen also zeigen, dass $\forall y \in B_{C_1r}^{\varrho}(x) : d(x,y) < r$ gilt. Sei $y \in B_{C_1r}^{\varrho}(x)$ beliebig. Dann wissen wir

$$\varrho(x,y) = \sum_{i=1}^{n} |x_i - y_i| < C_1 r$$

$$\Rightarrow |x_i - y_i| < C_1 r, \ \forall 1 \le i \le n$$

Dies wissen wir, da alle Summanden größer als 0 sind und sonst die Summe gesammt größer wäre. Nun setzen wir es in die Metrik von d ein:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$< \sqrt{\sum_{i=1}^{n} C_1^2 r^2}$$

$$= \sqrt{nC_1 r}$$

Wir wir sehen, ist für $C_1 = \frac{1}{\sqrt{n}}$ die Gleichung erfüllt und ist somit eine Grenze.

b) $B_r^d(x) \subset B_{C_2r}^{\sigma}(x)$. Wir wollen zeigen, dass $\forall y \in B_r^d(x) : \sigma(x,y) < r$ gilt. Sei $y \in B_r^d(x)$ beliebig. Dann wissen wir

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} < r$$

$$\Leftrightarrow \sum_{i=1}^{n} (x_i - y_i)^2 < r^2$$

$$\Rightarrow |x_i - y_i| < r, \forall 1 \le i \le n$$

Nun setzen wir es in die Metrik von σ ein:

Wir sehen, dass die Gleichung für $C_2 = 1$ gilt.

c) $B^{\sigma}_{C_3r}(x) \subset B^d_r(x)$. Wir wollen zeigen, dass $\forall y \in B^{\sigma}_{C_3r}(x) : d(x,y) < r$ gilt. Sei $y \in B^{\sigma}_{C_3r}(x)$ beliebig. Dann wissen wir

$$\sigma(x,y) = \max_{1 \le i \le n} |x_i - y_i| < C_3 r \Rightarrow \forall 1 \le i \le n : |x_i - y_i| < C_3 r.$$

Nun setzen wir es in die Metrik von d ein:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$\stackrel{Vor.}{<} \sqrt{\sum_{i=1}^{n} C_3^2 r^2}$$

$$= \sqrt{n} C_3 r$$

Wir sehen, dass die Gleichung für $C_3 = \frac{1}{\sqrt{n}}$ erüllt ist.

d) $B_r^d(x) \subset B_{C_A r}^{\varrho}(x)$.

Wir wollen zeigen, dass $\forall y \in B_r^d(x) : \varrho(x,y) < C_4 r$ gilt.

Sie $y \in B_r^d(x)$ beliebig. Dann wissen wir aus b) $|x_i - y_i| < r$. Nun setzten wir es in die Metrik von ρ ein:

$$\varrho(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

$$\stackrel{Vor.}{<} \sum_{i=1}^{n} r$$

$$= n \cdot r$$

Wir sehen, dass die Gleichung mit $C_4 = n$ gilt.

(ii)

Sei $U \subset \mathbb{R}^n$ offen in (\mathbb{R}^n, d) . Zeigen Sie, dass dann U auch offen ist in (\mathbb{R}^n, ϱ) und (\mathbb{R}^n, σ) .

Lösung:

Für den ersten Teil U offen in (\mathbb{R}^n, ϱ) , müssen wir zeigen, dass

$$\forall x \in U \exists r > 0 : B_r^{\varrho}(x) \subset U$$

gilt. Sei $x \in U$ beliebig aber fest.

Nun wissen wir allerdings, dass ein r' > 0 existiert, so dass $B_r^{\prime d}(x) \subset U$ ist, da U offen bezüglich d ist.

Nach (i) wissen wir, dass $B^{\varrho}_{C_1r'}(x)\subset B^d_{r'}(x)$ gilt und da \subset transitiv ist, folgt die Behauptung $B^{\varrho}_{C_1r'}(x)\subset U$, da $C_1r'>0$ ist.

Der zweite Teil mit

$$\forall x \in U \exists r > 0 : B_r^{\sigma}(x) \subset U$$

folgt analog mit $C_3r' > 0$.

2. Vollständigkeit von Funktionsräumen

Für $E \subset \mathbb{R}^n, E \neq \emptyset$ setzen wir

$$B(E) := \{ f : E \to \mathbb{R} \mid f \text{ ist beschränkt} \}.$$

Ferner definieren wir für zweit Funktionen $f, g : E \to \mathbb{R}$ ihren Abstand

$$d(f,g) := \sup_{x \in E} |f(x) - g(x)|.$$

Zeigen Sie, dass (B(E), d) vollständig ist.

Lösung:

Als erstes müssen wir zeigen, dass es sich bei (B(E), d) um eine Metrik handelt.

1. $\forall f, g \in B(E) : d(f,g) \ge 0$.

Dies gilt trivialerweise, da $\forall x \in \mathbb{E} : |f(x) - g(x)| \ge 0$, da es sich um die Betragsfunktion handelt.

$$\forall f, g \in B(E) : d(f,g) = 0 \Leftrightarrow f = g.$$
<=:

Wenn f = g gilt, dass gilt insbesondere $\forall x \in E$: f(x) = g(x). Daher ist $M = \{|f(x) - g(x)|, x \in E\} = \{0\}$ und sup M = 0. =>:

Da $d(f,g) \ge 0$ wissen wir, dass $\forall x \in E : f(x) - g(x) = 0$ gelten muss. Gäbe es nur einen Wert, der $\ne 0$ ist, so wäre das sup > 0.

Nun folgt daraus aber, dass $\forall x \in E : f(x) = g(x) \Rightarrow f = g$.

- 2. $\forall f, g \in B(E)$: d(f,g) = d(g,f). Dies folgt aus der Symmetrie von $|a-b| = |b-a| \forall a, b \in \mathbb{R}$.
- 3. $\forall f, g, h \in B(E) : d(f,g) \leq d(f,h) + d(h,g)$ Sei $(x_n)_{n \in \mathbb{N}}$ eine Folge, so dass $\lim_{n \to \infty} |f(x_n) - g(x_n)| = d(f,g)$, $(y_n)_{n \in \mathbb{N}}$ eine Folge, so dass $\lim_{n \to \infty} |f(y_n) - h(y_n)| = d(f,h)$, und $(z_n)_{n \in \mathbb{N}}$ eine Folge, so dass $\lim_{n \to \infty} |h(z_n) - g(z_n)| = d(h,g)$.

Nun gilt $\lim_{n\to\infty} |f(x_n)-g(x_n)| \leq \lim_{n\to\infty} |f(x_n)-h(x_n)| + |h(x_n)-g(x_n)|$, da $\lim_{n\to\infty} |f(x_n)-h(x_n)| \leq |f(y_n)-h(y_n)|$ und für z_n ebenso gilt, da die Folgen, als das supremum definiert waren und alle Funktionen in unserem Raum beschränkt sind. Es kann also kein größeren Wert geben.

Sei nun $(f_n)_{n\in\mathbb{N}}$ Cauchy - Folge beliebig, aber fest.

Als erstes zeigen wir, dass die Folge $(f_n)_{n\in\mathbb{N}}$ konvergiert.

Nach definition einer Cauchyfolge, gilt $\exists n_0 \in \mathbb{N} \forall n, m > n_0 : d(f_n, f_m) < \varepsilon$. Da es sich nun bei $d(f_n, f_m)$ um einen Wert in \mathbb{R} handelt, konvergiert die Reihe in \mathbb{R} .

Sei nun $x \in E$ beliebig, aber fest.

3. Norm und Skalarprodukt

Sei $<\cdot,\cdot>: X\times X\to \mathbb{R}$ ein inneres Produkt auf einem rellen Vektorraum X. Wir definieren eine Norm auf X gemäß

$$||x|| := \sqrt{\langle x, x \rangle}.$$

Zeigen Sie:

(i)

$$< x,y> \leq \|x\| \|y\|$$

Lösung:

(ii)

$$||x + y|| \le ||x|| + ||y||$$

Lösung:

(iii)

Betrachte nun den Folgenraum

$$l^2 := \{ x = (x_n)_{n \in \mathbb{N}} \mid x_n \in \mathbb{R} ; , \sum_{n=1}^{\infty} x_n^2 \le \infty \}$$

Zeigen Sie, dass durch

$$||x|| := \sqrt{\sum_{n=1}^{\infty} x_n^2}$$

eine Norm auf l^2 definiert ist.

Lösung: