Author: Liu Jian

Time: 2021-09-05

Robbins-Monro algorithm

Sequential MLE

相关章节: 2.3.5

Robbins-Monro algorithm

已知 $p(z,\theta)$,求 $f(\theta) = \mathbb{E}_{z|\theta}[z] = \int zp(z|\theta)\mathrm{d}z = 0$ 的解 θ^* .

假设:

1. the conditional variance of z is finite so that $\mathbb{E}_{z|\theta}[(z-f)^2]<\infty$;

2. without loss of generality, consider the case where $f(\theta)>0$ for $\theta>\theta^*$ and $f(\theta)<0$ for $\theta<\theta^*$;

则由如下递推公式得到的序列 $\{ heta^{(N)}\}$ 依概率收敛于 $heta^*$:

$$\theta^{(N)} = \theta^{(N-1)} - a_{N-1} z(\theta^{(N-1)})$$

where $z(\theta^{(N)})$ is an observed value of z when θ takes the value $\theta^{(N)}$, 也就是说若记 $z_{N+1}=z(\theta^{(N)})$, 则 $z_{N+1}\sim p(z|\theta^N)$. The coefficients $\{a_N\}$ represent a sequence of positive numbers that satisfy the conditions:

$$\lim_{N o\infty}a_N=0$$

$$\sum_{N=1}^{\infty} a_N = \infty$$

$$\sum_{N=1}^{\infty}a_N^2<\infty$$

Note that the first condition $\lim_{N \to \infty} a_N = 0$ ensures that the successive corrections decrease in magnitude so that the process can converge to a limiting value. The second condition $\sum_{N=1}^\infty a_N = \infty$ is required to ensure that the algorithm does not converge short of the root, and the third condition $\sum_{N=1}^\infty a_N^2 < \infty$ is needed to ensure that the accumulated noise has finite variance and hence does not spoil convergence.

Sequential MLE

By definition, the maximum likelihood solution θ_{ML} is a stationary point of the log likelihood function and hence satisfies:

$$-rac{\partial}{\partial heta} iggl\{ rac{1}{N} \sum_{n=1}^N \ln p_{model}(x_n | heta) iggr\} iggr|_{ heta_{ML}} = 0$$

其中 $x_n \sim p_{real}(x)$, $p_{model}(x|\theta)$ 是人为设定的函数形式已知的概率分布, θ 为待定参数.

当 $N \to \infty$ 时, θ_{ML} 即为如下方程的解:

$$\mathbb{E}_{x \sim p_{real}(x)} \left[-rac{\partial}{\partial heta} \mathrm{ln} \, p_{model}(x| heta)
ight] = 0$$

记

$$z = g(x, heta) = -rac{\partial}{\partial heta} {
m ln} \, p_{model}(x| heta)$$

则方程进一步可改写为:

$$\mathbb{E}_{z \sim p_{real}(z|\theta)}[z] = 0$$

其中, $p_{real}(z|\theta)$ 由如下过程给出:给定 θ ,采样 $x\sim p_{real}(x)$,接着通过映射 $g(x,\theta)$ 即得到 z。接下来,即可应用 Robbins-Monro algorithm 求解上述方程:

$$\begin{split} \theta^{(N)} &= \theta^{(N-1)} - a_{N-1} z(\theta^{(N-1)}) \\ &= \theta^{(N-1)} - a_{N-1} z_{N} \\ &= \theta^{(N-1)} - a_{N-1} g(x_{N}, \theta^{(N-1)}) \\ &= \theta^{(N-1)} - a_{N-1} \frac{\partial}{\partial \theta^{(N-1)}} [-\ln p_{model}(x_{N} | \theta^{(N-1)})] \end{split}$$

注意, $x_N \sim p_{real}(x)$ 而不是 $x_N \sim p_{model}(x|\theta^{(N-1)})$,也就是真实样本。上式即为 sequential MLE 的计算公式。

若 $p_{model}(x|\theta)$ 取高斯分布:

$$p_{model}(x| heta) = p_{model}(x|\mu,\sigma) = rac{1}{\sqrt{2\pi}\sigma} \mathrm{exp}\left\{-rac{(x-\mu)^2}{2\sigma^2}
ight\}$$

这里我们只考察均值而假设方差已知,可得:

$$z = g(x, \mu) = -rac{x - \mu}{\sigma^2}$$

取 $a_{N-1} = \sigma^2/N$,则:

$$\mu^{(N)} = \mu^{(N-1)} + rac{1}{N}(x_N - \mu^{(N-1)})$$

其中, $x_N \sim p_{real}(x)$ 。可以看到,上式与直接通过 MLE 得到的计算公式相同。

进一步,若 $p_{real}(x)$ 真的是高斯分布:

$$p_{real}(x) = \mathcal{N}(x|\mu_*, \sigma_*^2)$$

又 $z=g(x,\mu)=-rac{x-\mu}{\sigma^2}$,已知 $p_{real}(z|\mu)$ 也服从高斯分布。此时,方程 $\mathbb{E}_{z\sim p_{real}(z|\mu)}[z]=0$ 可解析求解:

$$\mathbb{E}_{z \sim p_{real}(z|\mu)}[z] = -rac{\mu_* - \mu}{\sigma^2} = 0$$
 ψ
 $u = \mu_*$

又由 Robbins-Monro algorithm 可知上面得到的 $\{\mu^{(N)}\}$ 依概率收敛于方程 $\mathbb{E}_{z\sim p_{real}(z|\theta)}[z]=0$ 的解,即 μ_* 。这就表明,若真实分布也为高斯分布,我们求得的 $\{\mu^{(N)}\}$ 确为真实均值 μ_* 。