Interfaces Pessoa-Máquina 2013/2014

Integrando o KITT à la engenheiro

Grupo 6

Tomás Alves

Andriy Zabolotnyy 75624 Tiago Rechau 76231

75541

tomas_martins_alves@hotmail.com

andriymz@hotmail.com

tiago.rechau@ist.utl.pt

Sumário

O KITT é um sistema auxiliar à condução presente no para-brisas, tornando-a mais completa e segura, disponibilizando um conjunto de funcionalidades controladas a partir de quatro botões presentes no volante.

Os componentes desta interface e o respetivo público-alvo foram inferidos através dos resultados de questionários. O desenvolvimento da aplicação partiu dos mesmos e ao longo do tempo foi evoluindo de protótipos de baixa fidelidade para uns de alta fidelidade de forma a satisfazer o utilizador quanto às funcionalidades desejadas e dando-lhe o controlo de todo o carro baseado numa organização de menus lógica navegáveis através de um *directional pad* no volante, tal como estava restringido no enunciado do projeto.

O produto final foi depois sujeito a testes com utilizadores, terminando tanto em termos funcionais como em termos aspetuais como pretendíamos.

1. INTRODUÇÃO

O presente relatório reporta a criação e elaboração do sistema KITT, uma interface integrada no parabrisas do veículo com o intuito de completar e enriquecer a experiência de condução do utilizador. A aplicação permite ao condutor controlar os elementos fulcrais e fundamentais de qualquer veículo através de quatro botões incorporados no volante.

Trata-se de uma interface pessoal e individual, sendo que toda a informação e preferências do utilizador estão guardadas na chave do veículo: um cartão com uma camada de memória para ligar o carro, fazendo *upload* para o programa de toda a sua informação presente na chave.

Através desta interface, o condutor pode recorrer aos sensores do carro para obter informação acerca do estado das componentes mecânicas do veículo, bem como a sua autonomia e condições, para além de ter acesso às tradicionais funcionalidades incorporadas no carro: reguladores de abertura de portas e vidros e luzes interiores e controladores de rádio, ar condicionado e piloto automático. O utilizador tem acesso igualmente a um conjunto de detetores interiores e exteriores com o intuito de promover a condução mais segura possível.

A criação deste sistema interativo partiu de um questionário divulgado entre o universo populacional e a análise das respetivas respostas, acabando por emergirem as necessidades e tarefas desejadas pelo utilizador. Após retirar conclusões, um modelo conceptual foi seguido de um protótipo de baixa fidelidade pronto a testar com os nossos colegas da cadeira de IPM e recuperar dos erros evidenciados pelos mesmos. Seguiu-se o

primeiro modelo de alta fidelidade que passou igualmente pela avaliação dos nossos colegas antes de ser testado com utilizadores reais, comparando se os critérios e resultados experimentais de usabilidade obtidos com os esperados.

Infelizmente, devido ao limite temporal imposto pelo semestre, apenas nos foi possível executar um destes ciclos, pelo que com certeza que, caso o tempo disponível para o desenvolvimento do sistema fosse prolongado, a qualidade do sistema cresceria proporcionalmente.

2. ANÁLISE DE UTILIZADORES E TAREFAS

2.1 Elaboração do questionário

Na fase inicial de desenvolvimento do projeto, concebemos um questionário de análise e avaliação de utilizadores de forma a podermos averiguar como é o público-alvo em termos característicos, bem como as tarefas que realizam e gostariam de realizar preferencialmente no ambiente de utilização da interface. O dito questionário foi respondido por 60 pessoas, oferecendo assim uma relativa percepção da densidade e diferenciabilidade do público-alvo. Dessa forma, separámos o mesmo pelos questionados com carta de condução e condutores de automóveis. Assim, filtrámos as respostas para que a análise particular e mais importante incidisse apenas em utilizadores que já tivessem passado pela experiência de conduzir, valorizando assim as suas opiniões.

2.2 Análise de resultados

Após a análise das respostas ao questionário, foi-nos possível sumarizar a Análise de Utilizadores e Tarefas nas 11 perguntas:

1. Quem vai utilizar o sistema?

O potencial utilizador do sistema estará na faixa etária entre os 18 e os 25 anos (74% dos inquiridos), é do sexo masculino (69%) e o seu grau de escolaridade é Ensino Secundário (52%).

Tem carta de condução desde à 1 a 3 anos (33%), carro próprio (64% dos inquiridos com carta de condução), o qual conduz todos os dias (43%), sendo predominantemente viagens de menos de 30 minutos (51%) em ambiente urbano (70%).

Não se distrai facilmente a conduzir (68%) e mantém-se atualizado nas alterações do Código de Estrada. Não tem qualquer deficiência física (91%) e faz exames de saúde regularmente (66%).

Não tem dificuldade a manejar tecnologias atuais (100%), sendo que a mais usada é o computador (29%). Usa o método Tentativa-Erro para aprender (87%) e acha que os veículos atuais têm todas as funcionalidades desejáveis (53%), sendo que o Leitor de Música/Rádio é a mais usada.

No caso de um sistema tecnológico falhar, tolera que o sistema responda e retome a sua execução num intervalo de 1 a 3 segundos (57%).

2. Tarefas atualmente executadas?

Leitor de música/Rádio é a funcionalidade mais usada (83% dos inquiridos utilizam sempre) e o sistema GPS é regularmente usado (39% dos inquiridos utilizam regularmente). Os sensores/câmaras de ajuda ao estacionamento, estacionamento automático e telemóvel integrado são funcionalidades que não são utilizadas (50%, 91% e 48%, respetivamente, dos inquiridos que não usam as funcionalidades referidas).

3. Tarefas desejáveis?

Detetor de obstáculos (19%), detetor de sonolência (13%) e informação do estado do veículo e componentes (15%) são as funcionalidades com maior percentagens de desejabilidade em relação às restantes expostas ao questionado. Existe também um interesse numa funcionalidade que trate do ajuste da transparência do para-brisas e detetor de sinais luminosos (10%).

4. Como aprendem as tarefas?

A grande maioria dos inquiridos, aprende por experiência/tentativa-erro (87%). Os restantes, leem o manual (11%) ou perguntam a um entendedor do novo sistema (2%).

5. Onde se desempenham as tarefas?

No veículo.

6. Qual a relação entre o utilizador e a informação?

Os dados pessoais do condutor são guardados no seu cartão pessoal de cidadão ou bilhete de identidade e no telemóvel. Os dados do veículo estão guardados no veículo do mesmo e no selo que está no para-brisas. A carta de condução do condutor contém igualmente informação sobre o mesmo.

Os dados do cartão de cidadão/bilhete de identidade e os do veículo não são dados comuns e em termos de acesso só o seu portador é que pode usar a informação contida nele, bem como transmiti-la.

Quanto ao telemóvel, as informações do utilizador podem ser transmitidas e qualquer outro utilizador o pode utilizar se o primeiro lhe fornecer.

7. Instrumentos à disposição do utilizador?

Telemóvel, rádio, mapa e GPS.

8. Comunicação entre utilizadores?

Comunicam entre si por telemóvel, integrado ou não, dentro do veículo, gestos e sinais luminosos e sonoros.

9. Frequência de desempenho das tarefas?

Dos inquiridos com carta de condução (71%), predominantemente conduzem todos os dias (43%), sendo que, no total, podemos averiguar que 77% conduzem até pelo menos uma vez por semana. Dessa forma, a frequência das tarefas será num nível semanal intensivo.

10. Restrições temporais?

Muitas restrições, pois o utilizador executa-as durante o exercício da condução. Assim, os menus das funcionalidades têm de ser fáceis de aprender e objetivos de forma a executarem o que é suposto fazerem.

Os inquiridos toleram que o sistema recupere num intervalo de 1 a 3 segundos (57%).

11. O que acontece quando corre mal?

Não é possível retirar qualquer informação para responder a esta pergunta dos resultados do questionário. Podemos, no entanto, prespetivar que inicialmente, se algo correr mal, o utilizador deixa de usar a interface. Em último caso, poderá até sofrer um acidente.

É igualmente importante relembrar que 53% dos questionados consideram que o seu veículo atual tem todas as funcionalidades desejáveis para uma ótima condução. Assim, concluímos que a nossa interface vai ser introduzida num mercado onde os utilizadores estão aptos a utilizá-la, mas existe alguma resistência para que seja adquirida. No entanto, quando é utilizada, será com uma regularidade eventualmente elevada.

2.3 As funcionalidades escolhidas

A escolha das três funcionalidades estruturais do projeto recaíu nas escolhas mais desejadas dos questionados: detetor de obstáculos, detetor de sonolência e informação do estado do veículo e componentes. No entanto, decidimos que estas funcionalidades deveriam ter mais que uma utilização e não serem de utilização linear de forma a armar o utilizador com mais tarefas para auxiliar a sua condução. Assim, decidimos que cada uma das funcionalidades base teria duas diferentes utilizações disponíveis para o utilizador.

As funcionalidades são as seguintes, por ordem crescente de interação com o utilizador:

1. Informações do veículo:

- Informações gerais: Apresentação de informação útil mais importante para o condutor acerca do veículo (quantidade de combustível no depósito, pressão dos pneus, estado da bateria e temperatura do radiador); e
- o <u>Informações detalhadas</u>: Apresentação das observações resultantes duma análise ao veiculo, entre as quais avarias/danos (*airbags* e motor) e estado de diversos componentes (óleo do motor e ABS).

2. Detetores interiores:

- Detetor de distração: O detetor está conectado a umas câmaras interiores no carro e, quando ativo, verifica os movimentos do condutor e da sua face para confirmar se este se encontra distraído ou não. No caso de detetar distração por parte do utilizador, dispara um aviso visual e sonoro de forma a alterar o seu estado de consciência e levando-o à ação pretendida, i.e. concentração no ato de condução;
- Detetor de sonolência: O detetor está conectado a umas câmaras interiores no carro e, quando ativo, verifica os movimentos do condutor e da sua face para confirmar se este se encontra sonolento ou não. No caso de detetar sonolência por parte do utilizador, dispara um aviso visual e sonoro de forma a alterar o seu estado de consciência e levando-o à ação pretendida, i.e. concentração no ato de condução.

3. Detetores exteriores:

- Detetor por vídeo: O detetor por vídeo está conectado a umas câmaras exteriores que, quando ativas, encontram todos os corpos em movimento e trata de colocar uma *frame* retangular à volta deles no para-brisas. Consoante a proximidade dos corpos em relação ao veículo do utilizador, a cor da *frame* varia numa escala de vermelho a azul, estando o vermelho associado aos corpos mais próximos.
- Detetor por infravermelhos: O detetor por infravermelhos está conectado a umas câmaras exteriores que, quando ativas, encontram todos os corpos quentes e trata de os preencher no para-brisas. Consoante a proximidade dos corpos em relação ao veículo do utilizador, os corpos são preenchidos com uma cor que varia numa escala de vermelho a azul, estando o vermelho associado aos corpos mais próximos. No caso de a densidade da cor vermelha ser demasiado elevada, este detetor avisa o condutor para regular com cuidado a sua condução.

3. MODELO CONCEPTUAL

3.1 Metáfora

Prateleira - O nosso sistema vai ser como uma prateleira real com objetos/ferramentas dispostos(as) na mesma. A nossa prateleira pode estar ativa ou não e dispõe ao utilizador um conjunto de ícones para o mesmo selecionar e usar a funcionalidade correspondente ao ícone selecionado.

3.2 Conceitos: objetos e atributos

- a) Ambiente de trabalho (atributos: Data, Hora);
- b) Prateleira (atributos: Título);
- c) Ícone (atributos: Imagem);
- d) Ferramenta (atributos: Nome);
- e) Favorito (atributos: Nome);

- f) Conjunto de favoritos (atributos: Título);
- g) Veículo (atributos: Modelo, Matrícula, Data); e
- h) Utilizador (atributos: Nome, Morada, Data).

3.3 Conceitos: operações

- b) Prateleira
 - o Ativar prateleira; e
 - o Desativar prateleira.
- c) Ícone
 - o Selecionar ícone.
- d) Ferramenta
 - o Ativar ferramenta; e
 - Desativar ferramenta.
- e) Favorito
 - o Adicionar favorito;
 - o Editar favorito; e
 - o Remover favorito.
- g) Veículo
 - Verificar atributos do veículo.
- h) Utilizador
 - Verificar atributos do utilizador.

3.4 Relação entre conceitos

- a) Ambiente de trabalho
 - o Um ambiente de trabalho tem uma prateleira e um conjunto de favoritos.
- b) Prateleira
 - o Uma prateleira é um conjunto de ícones.
- c) Ícone
 - o Um conjunto de ícones tem vários ícones.
- d) Ferramenta
 - o Uma ferramenta tem um ícone associado.
- e) Favorito
 - o Um conjunto de favoritos tem vários favoritos.
- h) Utilizador
 - o Um utilizador pode verificar os seus atributos e o veículo e respetivos atributos;
 - o Um utilizador pode adicionar, editar e remover favoritos; e
 - o Um utilizador pode ativar e desativar uma ferramenta.

3.5 Mapeamento

- O A prateleira corresponde a uma *DockBar* com as ferramentas a utilizar dispostas; e
- O Uma ferramenta no nosso sistema corresponde a uma funcionalidade real.

3.6 Cenários de atividade

3.6.1 Funcionalidade: Sensor de monitorização do carro

Durante as suas férias de Verão, o Andriy decidiu que iria até à Ucrânia de carro. Depois de deixar a chave à vizinha para ela cuidar dos seus animais e de fazer as malas para a viagem, meteu-as dentro do seu carro e entrou para o lugar de condutor. Decidiu que tinha de verificar se o veículo estava pronto para a longa viagem, por isso, ligou o carro e <u>autenticou-se</u> no sistema. <u>Ativou a prateleira</u> e, após <u>selecionar</u> o <u>ícone</u> da <u>ferramenta</u> de monitorização do carro, <u>ativou-a</u> e verificou o estado do carro. Satisfeito, <u>desativou</u> a ferramenta e, por fim, desativou a prateleira para ter uma visão mais clara.

3.6.2 Funcionalidade: Detetor de Sonolência

Após fazer uma direta para acabar o relatório final de IPM até à última hora, o Tiago saiu de casa a correr para poder entregá-lo ao professor a tempo. Ligou o carro e <u>autenticou-se</u> no sistema, mas já estava a sentir o cansaço depois do café perder o efeito e sabia que iria ser uma longa viagem, portanto <u>ativou</u> a <u>prateleira</u> e <u>selecionou</u> o <u>ícone</u> da <u>ferramenta</u> detector de sonolência, <u>ativou-a</u>. Terminada a viagem, <u>desativou-a</u> e verificou que era tão prática que a <u>adicionou</u> aos seus <u>favoritos</u>.

3.6.3 Funcionalidade: Detetor de Obstáculos com Infravermelhos

O Tomás precisa mesmo de ir para o IST ter com o Andriy e o Tiago para acabarem o relatório final de IPM, mas está a cair uma chuva tão forte que não se conseguia ver a mais de 5 metros. Quando chegou ao carro, molhado como um pinto, <u>autenticou-se</u> no sistema, <u>ativou</u> a <u>prateleira</u> e <u>selecionou</u> o <u>ícone</u> para <u>ativar</u> a <u>ferramenta</u> de deteção de obstáculos através de infravermelhos e prosseguiu a sua viagem com maior certeza do que teria pela frente. Quando chegou à universidade, <u>desativou</u> a <u>ferramenta</u>, <u>desligou</u> o sistema e foi ter com os seus colegas.

4. EVOLUÇÃO DOS PROTÓTIPOS

O protótipo do KITT sofreu diversas atualizações, desde o momento em que os *storyboards* começaram a ser criados. Estas atualizações surgiram através de iniciativa própria ou por sugestões dos nossos colegas de laboratórios e dos utilizadores testados.

No entanto, é de referir que a estrutura base da interface não foi grandemente alterada, continuando com a sua filosofia. Este facto deve-se à cuidada planificação do protótipo desde o início, destacando sempre a melhor forma de navegar e organizar uma interface para o ambiente e ação em que será mais usada: durante a condução.

Este capítulo remete para a evolução do menu principal e da funcionalidade de informação geral do veículo, de uma forma pormenorizada. Nos anexos é possível observar outras evoluções.

4.1. Evolução do menu inicial

Na figura 1, é possível observar o menu inicial constituído por um botão principal com a letra K, o menu principal e duas caixas a indicar data e hora atuais.

Como é possível observar, existe uma prateleira de ícones a sair do botão inicial K. Esta prateleira tem os ícones correspondentes a cada uma das funcionalidades escolhidas inicialmente para estruturarem o projeto (da esquerda para a direita, informações do carro, detetores interiores e detetores exteriores) e um quarto ícone para as definições. A

Figura 1 – *Storyboard* que inclui a desenho do ecrã do menu inicial.

posição relativa no para-brisas do ícone principal e da prateleira foi determinada por ser o local que menos perturba o condutor na sua condução, uma vez que a sua vista está normalmente centrada à esquerda no centro do para-brisas. Assim, é altamente provável que o utilizador olhe ligeiramente para cima sem perturbar a sua condução, visto que a totalidade do para-brisas vai continuar no seu campo visual, garantindo, dessa forma, uma percepção da realidade lá fora de forma admissível para continuar a conduzir seguramente.

A figura 2 tem presente o ecrã com o menu inicial e mantém a filosofia do parágrafo anterior relativamente à posição do botão principal e da prateleira, mas altera a posição da data e hora atuais para

Figura 2 – Protótipo de baixa fidelidade que inclui o desenho do ecrã do menu inicial.

a direita do fundo do para-brisas e o centro do fundo do mesmo, respetivamente, de forma a dar mais comodidade ao utilizador não concentrando toda a informação e interação num ponto ou zona específica do para-brisas.

As diferenças refletem-se igualmente nos ícones e nas suas imagens, havendo uma constante evolução para dar ao utilizador o reconhecimento ao invés da lembrança. No protótipo de baixa fidelidade, a posição das funcionalidades foi alterada tendo em conta a frequência que calculámos com que cada funcionalidade seria executada, passando a ser, da esquerda para a direita, informações do carro, detetores exteriores e

detetores interiores.

A figura 3 ilustra a primeira implementação do projeto após a primeira avaliação por parte dos nossos colegas. A estrutura da interface e da respetiva prateleira manteve-se, mas as imagens dos ícones foi alterada, uma vez que um dos erros apontados foi a fraca percepção dos mesmos, e colocamos uma legenda para cada um para os identificar, como nos foi sugerido. A ordem de ícones e respetivas funcionalidades voltou a ser a mesma que existia na figura 1. Outro erro que nos foi apontado foi a inexistência de ajuda para o utilizador e foi colmatado disponibilizando essa funcionalidade para o controlo do mesmo no menu principal. A quinta funcionalidade foi adicionada por decisão do grupo, dando ao utilizador total controlo de quando quer ou não o sistema ligado.

Na figura 4 está presente a estrutura final do menu inicial, incluindo mais dois ícones para incluírem as seis novas funcionalidades que o professor requisitou: reguladores para o cadeado das portas, a abertura dos vidros e iluminação interior e controladores para o rádio, o ar condicionado e o piloto automático. A posição relativa do menu principal em relação ao para-brisas manteve-se e os ícones de

Figura 3 – Primeira implementação de alta fidelidade que inclui o desenho do ecrã do menu inicial.

Figura 4 – Segunda implementação de alta fidelidade que inclui o desenho do ecrã do menu inicial.

'Ajuda' e 'Desligar' foram empurrados para fora daquele menu: o primeiro devido ao facto de querermos tornar a ajuda independente da interface e pelo facto de o utilizador apenas a usar um número relativamente pequeno de vezes em relação à utilização total da interface; e o segundo devido à alteração do teclado de controlo de interface que estávamos a conceber.

Assim, o ícone de 'Ajuda' deixou de existir e a mesma pôde passar a ser ativa através do ambiente de trabalho com um simples toque no teclado. Esta dita ajuda é apenas um bloco cujo texto se altera dependendo do ícone selecionado e está sempre presente entre a data e a hora atuais.

4.2 <u>Evolução da funcionalidade de</u> informação geral do veículo

Na figura 5, podemos observar a disposição da informação apresentada pela funcionalidade de informação geral do veículo na etapa de construção do *storyboard*. Esta informação é um conjunto de ícones a representar o estado dos componentes que são mais frequentemente visitados pelo utilizador para este se atualizar dos mesmos. Cada ícone tem associado a ele um número, indicando, por exemplo, quantidade em percentagem de combustível no depósito, ou a pressão dos pneus e o peso total do veículo.

Figura 5 – *Storyboard* que inclui a desenho do ecrã da funcionalidade de informação geral do veículo.

a

O conjunto de ícones surge no lugar do menu inicial de forma a recuperar o espaço que o mesmo estava a ocupar e, visto que na execução desta funcionalidade ele não é necessário, não existe qualquer

problema de navegação com a substituição do mesmo pelo dito conjunto.

A figura 6 mostra a disposição do conjunto de ícone no protótipo de baixa fidelidade cuja posição relativa se mantém em relação à anterior. A diferença é que existe a remoção do ícone que indicava o peso total do carro para dar entrada a outros dois ícones (percentagem de autonomia da bateria e condição do óleo do motor) e todos os ícones ganham um rebordo de forma a distinguiremse de todo os outros elementos.

No seguimento iniciação implementação da interface, como não houve erros apontados pelos nossos colegas nesta funcionalidade, decidimos remover o ícone da qualidade do óleo para adicionar um ícone a apresentar a temperatura dum radiador, de forma a conseguirmos uniformizar a funcionalidade apenas com números ao invés de números e letras. Tal como está na figura 7, também o rebordo dos ícones foi alterado, o que se revelou uma má opção mais à frente.

Após a avaliação de usabilidade dos por parte dos nossos colegas revelou que a forma do rebordo dos ícones era demasiado similar com os ícones do menu principal e menus secundários, levando ao utilizador a pressionar os botões de forma ineficiente para verificar cada ícone individualmente. Decidimos, assim, que o rebordo dos ícones desta funcionalidade seriam únicos, tal como está representado na figura 8, a qual contém o protótipo final do projeto no que toca a esta funcionalidade.

Figura 8 – Segunda implementação de alta fidelidade que inclui a desenho do ecrã da funcionalidade de informação geral do veículo.

Figura 6 – Protótipo de baixa fidelidade que inclui a desenho do ecrã da funcionalidade de informação geral do veículo.

Figura 7 – Primeira implementação de alta fidelidade que inclui a desenho do ecrã da funcionalidade de informação geral do veículo.

5. TAREFAS

5.1 Medidores de usabilidade das tarefas

Quanto aos medidores de usabilidade, considerámos os seguintes:

- Medidas de eficácia: número de erros de navegação, i.e. carregar na tecla de pressão errada em relação à conclusão mais rápida e com menor número de cliques da ativação da funcionalidade, e o número de erros de ativação da funcionalidade errada;
- Medidas de eficiência: duração da realização da tarefa e o número de cliques para a realizar; e
- o Medidas de satisfação: *feel & look* de cada utilizador em relação a cada tarefa.

Através da utilização destes medidores, conseguimos apurar todos os aspetos relevantes num ciclo inicial iterativo da construção da interface, entre os quais: profundidade do menu adequada, tendo em conta que o utilizador está a conduzir; a densidade de cada menu e a dificuldade de navegação para ativar determinada funcionalidade; e tempo de adaptação à navegação restringido aos quatro botões disponíveis.

5.2 Critérios base de usabilidade das tarefas

Decidimos que as três tarefas deveriam ter uma dificuldade diferente entre elas, com mais ou menos interação entre o sistema e o utilizador de forma a refletir a experiência de utilização da nossa interface. Assim, as tarefas 1, 2 e 3 são, respetivamente, classificadas como Fácil, Média e Difícil.

Esta classificação deve-se ao facto do enunciado da tarefa 1 ser muito explícito em relação ao seu objetivo, não sendo preciso que o utilizador se concentre em localizar mentalmente onde a funcionalidade deveria estar, do enunciado da tarefa 2 ser implícito, apesar da funcionalidade testada com menor número de cliques necessários para a sua ativação, e do enunciado da tarefa 3 compreender a ativação de duas funcionalidades percorrendo todo os ícones de funcionalidades do menu na sua extensão.

Na elaboração das tarefas, decidimos definir os seguintes critérios gerais para todas elas com o intuito de utilizar a informação proveniente dos testes de uma forma estatisticamente correta e serem todos realizados num mesmo limite:

- Assumimos que o utilizador parte do ambiente de trabalho, após um refresh do browser;
- A ativação da Ajuda é executada com um clique no ambiente de trabalho e, após ativa, é
 permanente em toda a interface até ser desligada pelo utilizador no mesmo ambiente de trabalho.
 Assim, caso o utilizador pretenda ativar a ajuda, dá-se um acréscimo em uma unidade do número
 total de cliques que ele efetuou para a ativação da funcionalidade-alvo;
- Caso cometa um erro de navegação, i.e. carregar na tecla de pressão errada em relação à conclusão mais rápida e com menor número de cliques da ativação da funcionalidade, o utilizador conseguirá recuperar do mesmo em menos de 1 segundo e 1 clique;
- O tempo total é igual à soma do tempo que levou a navegar no menu e submenus, do tempo que levou a ativar a funcionalidade-alvo, do tempo que levou a cometer e recuperar de erros e, no caso de ter ativado a ajuda, do tempo que levou a ativá-la; e
- O número de cliques total é igual à soma do número de cliques que levou a navegar no menu e submenus, do número de cliques que levou a ativar a funcionalidade-alvo, do número de cliques que levou a cometer (o número de cliques na recuperação do erro não é contado) e, no caso de ter ativado a ajuda, do número de cliques que levou a ativá-la.

5.3 Tarefas

Assim, as tarefas criadas com os respetivos medidores e critérios de usabilidade são as seguintes:

o Tarefa 1

- a. Enunciado: Ligar o detetor de sonolência para ver se não adormece no trânsito lento.
- b. Objetivo: Testar o acesso a uma funcionalidade com descrição explícita.
- c. <u>Eficácia</u>: No caso de ser a primeira vez que o utilizador executa a tarefa, espera-se como sendo de 65% em relação a erros de navegação e de 95% em relação a erros de

- ativação da funcionalidade errada e, em caso contrário, 90% e 100%, respetivamente.
- d. <u>Eficiência</u>: No caso de ser a primeira vez que o utilizador executa a tarefa, espera-se como sendo inferior a 20 segundos e, em caso contrário, inferior a 7 segundos. Um perito executa em 2 segundos e 7 cliques.
- e. <u>Satisfação</u>: Espera-se que o grau de satisfação dos utilizadores seja superior a 4 numa escala de Linkert com um intervalo entre 0 a 5.

o Tarefa 2

- a. Enunciado: Verificar a quantidade de gasolina no depósito.
- b. Objetivo: Testar o acesso a uma funcionalidade com descrição implícita.
- c. <u>Eficácia</u>: No caso de ser a primeira vez que o utilizador executa a tarefa, espera-se como sendo de 60% em relação a erros de navegação e de 80% em relação a erros de ativação da funcionalidade errada e, em caso contrário, 90% e 100%, respetivamente.
- d. <u>Eficiência</u>: No caso de ser a primeira vez que o utilizador executa a tarefa, espera-se como sendo inferior a 20 segundos e, em caso contrário, inferior a 5 segundos. Um perito executa em 2 segundos e 5 cliques.
- e. <u>Satisfação</u>: Espera-se que o grau de satisfação dos utilizadores seja superior a 4 numa escala de Linkert com um intervalo entre 0 a 5.

o Tarefa 3

- a. <u>Enunciado</u>: Ligar o detetor de infravermelhos para verificar a quantidade de carros que estão à minha frente e depois verificar o estado detalhado do carro.
- b. Objetivo: Testar o acesso a duas funcionalidades com descrição explícita.
- c. <u>Eficácia</u>: No caso de ser a primeira vez que o utilizador executa a tarefa, espera-se como sendo de 80% em relação a erros de navegação e de 85% em relação a erros de ativação da funcionalidade errada e, em caso contrário, 90% e 100%, respetivamente.
- d. <u>Eficiência</u>: No caso de ser a primeira vez que o utilizador executa a tarefa, espera-se como sendo inferior a 25 segundos e, em caso contrário, inferior a 12 segundos. Um perito executa em menos de 5 segundos e 14 cliques.
- e. <u>Satisfação</u>: Espera-se que o grau de satisfação dos utilizadores seja superior a 4 numa escala de Linkert com um intervalo entre 0 a 5.

6. TESTES COM UTILIZADORES

6.1 Condições dos testes

6.1.1 Ambiente

A avaliação com utilizadores não foi realizada sobre as mesmas condições para todos os vinte testes. Treze das vinte avaliações foram realizadas no laboratório 13 da RNL e as restantes sete numa sala isolada dentro de casa. Foram estes os locais escolhidos uma vez que normalmente apresentam um ambiente calmo, o que beneficia o utilizador no que toca à realização dos testes. Encontram-se imagens de utilizadores a realizar testes nos anexos.

6.1.2 Material Disponível

O utilizador tinha à sua disposição um computador portátil, onde iria testar o protótipo.

6.1.3 Termo de responsabilidade para a recolha do material multimédia de análise

De forma a poder utilizar fotografias e vídeos dos testados, pedimos-lhes que assinassem um documento de tomada de conhecimento dando-nos a liberdade de utilizar os ditos na elaboração deste projeto. Este termo de conhecimento encontra-se disponível nos anexos.

6.2 Plano de avaliação

Introduzimos inicialmente ao utilizador o contexto e a cadeira de Interfaces Pessoa-Máquina e o que era o projeto, imergindo o utilizador num contexto de forma a que a realização das tarefas lhe seja mais confortável. Foi então apresentado a cada um o objetivo dos testes: entender o comportamento do utilizador ao usar o protótipo, podendo expressar o seu pensamento em voz alta. Após a apresentação, fornecemos-lhe o

documento de tomada de responsabilidade mencionado anteriormente e presente nos anexos de forma a poder obter imagens do mesmo, uma fotografia enquanto trabalha numa das tarefas e um vídeo para a execução de cada tarefa.

De seguida, explicámos pelo testador e executada à vez e por ordem crescente cada tarefa por parte do utilizador, dando igualmente acesso ao protocolo da tarefa caso o dito necessitasse do consultar durante a execução.

No fim das tarefas, pedimos ao utilizador que preenchesse um questionário sobre a sua satisfação e apreciação global de cada tarefa e do sistema.

6.3 Tarefas testadas

Os protocolos das tarefas testadas foram os seguintes, por ordem de teste:

- o Ligar o detetor de sonolência para ver se não adormece no trânsito lento;
- o Verificar a quantidade de gasolina no depósito; e
- o Ligar o detetor de infravermelhos para verificar a quantidade de carros que estão à minha frente e depois verificar o estado detalhado do carro.

6.4 Informação recolhida

De forma a podermos avaliar a nossa interface tendo em conta os critérios de usabilidade que estabelecemos anteriormente, medimos, para cada utilizador, o número total de cliques, o número total de erros de navegação, o número total de erros de ativação da funcionalidade errada e o tempo total para executar a tarefa. Após a realização de cada tarefa, pedimos ao utilizador para classificar o seu grau de satisfação da mesma segundo uma escala de Likert entre 0 (não gostei) e 5 (gostei muito)

O questionário final continha as seguintes perguntas sendo que, a partir da terceira, seguiram-se segundo uma escala de Likert entre 0 (muito difícil/não/nunca) e 5 (muito fácil/sim/sempre).

- 1. Qual a sua idade?
- 2. Qual o seu género?
- 3. Usou o menu de ajuda?
- 4. Acha que o sistema foi fácil de utilizar?
- 5. O significado dos ícones é claro?
- 6. Gostou da organização da interface?
- 7. Gostaria de usar a interface frequentemente?
- 8. Teve dificuldade na leitura ou interpretação da informação da interface?

6.5 Principais erros

Durante a realização dos testes, os utilizadores enunciaram diversos erros e destacámos os mais importantes, entre os quais:

- o Não perceber como ativar o menu principal o utilizador começava por experimentar aleatorieamente entre *up*, *right* e *down*;
- o Texto informativo demasiado pequeno; e
- o Erros de navegação no menu e submenus.

6.6 Análise estatística das tarefas

Após realizados os testes e recolhida a informação, analisámo-la através de métodos estatísticos e obtivemos diversos resultados prontos a comparar com os valores que esperávamos.

Em baixo, apresentamos os resultados dos cálculos, bem como os comentários relacionados com os mesmos e comparados com o esperado.

6.6.1. Tarefa 1

	Mínimo	Máximo	Média	Desvio-Padrão	Intervalo de confiança (\alpha = 0,05)	Total
Nº de cliques	7	32	15,15	7,92	[11,68;18,97]	303
Tempo total (s)	5	50	19,15	12,12	[13,84;24,46]	383
Nº de erros de navegação	0	13	3,85	3,81	[2,18;5,52]	77
Nº de erros de escolha de funcionalidade errada	0		0,05	0,22	[0;0,15]	1

Tabela 1 – Resultados estatísticos referentes à tarefa 1

Comparando os resultados obtidos com os esperados:

 Eficácia: segundo os resultados obtidos, a eficácia do número total de erros de navegação em relação

Figura 9 – Respostas do grau de satisfação em relação à tarefa 1.

aos cliques de navegação (total de cliques menos total de testes e duas vezes o número de erros de escolha de funcionalidade errada) foi de 72,6% e a

eficácia do número de erros de escolha de funcionalidade errada foi de 95%. Assim, concluímos que ambos os valores foram um sucesso por serem superiores aos esperados (65% e 90%, respetivamente), demonstrando que, para um enunciado fácil e explícito, o utilizador conseguiu encontrar bem o caminho para a funcionalidade alvo;

- Eficiência: esperávamos que os utilizadores conseguissem realizar esta tarefa em menos de 20 segundos e obtivemos uma média de 19,15 segundos com um desvio-padrão de 12,12 segundos, garantindo assim que, pelo menos, 50% dos utilizadores conseguiram, ao primeiro contacto com o protótipo, executar corretamente e aprender intuitivamente o seu funcionamento, pelo que ficamos satisfeitos; e
- Satisfação: como apenas um utilizador considerou a tarefa com grau de satisfação 3 e o que queríamos era que todos a considerassem com pelo menos 4 na escala, garantimos que 95% dos utilizadores ficaram satisfeitos e, assim, foi um sucesso.

6.6.2 Tarefa 2

	Mínimo	Máximo	Média	Desvio-Padrão	Intervalo de confiança (α = 0,05)	Total
Nº de cliques	7	85	18,40	18,60	[10,25;26,55]	368
Tempo total (s)	4	130	18,45	26,87	[6,67;30,23]	369
Nº de erros de navegação	1	35	6,05	8,16	[2,47;9,63]	121
Nº de erros de escolha de funcionalidade errada	0		0,3	0,9	[0;0,69]	6

Tabela 2 – Resultados estatísticos referentes à tarefa 2

Comparando os resultados obtidos com os esperados:

- Eficácia: segundo os resultados obtidos, a eficácia do número total de erros de navegação em relação aos cliques de navegação foi de 64% e a eficácia do número de erros de escolha de funcionalidade errada foi de 77%. Assim, concluímos que a eficácia de navegação foi um sucesso, sendo que o valor esperado era acima de 60%, mas falhámos quanto à ativação correta da funcionalidade alvo, demonstrando que, para um enunciado implícito o utilizador consequiu encontrar o

Figura 10 – Respostas do grau de satisfação em relação à tarefa 2.

enunciado implícito, o utilizador conseguiu encontrar o caminho certo a maior parte das vezes, mas não deduziu corretamente a funcionalidade a ativar.

- Eficiência: esperávamos que os utilizadores conseguissem realizar esta tarefa em menos de 20 segundos e obtivemos uma média de 18,45 segundos com um desvio-padrão de 26,87 segundos, garantindo assim que, pelo menos, 50% dos utilizadores obtiveram sucesso rapidamente, apesar de haver alguns casos com elevados tempos que conduziram ao enorme desvio-padrão.
- Satisfação: como apenas dois utilizador considerou a tarefa com grau de satisfação 3 e o que queríamos era que todos a considerassem com pelo menos 4 na escala, garantimos que 90% dos utilizadores ficaram satisfeitos e, assim, foi um sucesso.

6.6.3 Tarefa 3

	Mínimo	Máximo	Média	Desvio-Padrão	Intervalo de confiança (a = 0,05)	Total
Nº de cliques	15	40	19,95	7,57	[16,63;23,27]	399
Tempo total (s)	8	53	19,70	10,63	[15,04;24,36]	394
Nº de erros de navegação	0	11	2,20	2,97	[0,90;3,50]	44
Nº de erros de escolha de funcionalidade errada	0	1	0,15	0,36	[0;0,31]	3

Tabela 3 – Resultados estatísticos referentes à tarefa 3

Comparando os resultados obtidos com os esperados:

- Eficácia: segundo os resultados obtidos, a eficácia do número total de erros de navegação em relação aos cliques de navegação foi de 88% e a eficácia do número de erros de escolha de funcionalidade errada foi de 87%. Assim, concluímos que ambas as

Figura 11 – Respostas do grau de satisfação em relação à tarefa 3.

eficácias foram um sucesso, estando acima do esperado (80% e 85%, respetivamente), demonstrando que o utilizador conseguiu encontrar o caminho certo para ambas as funcionalidades e ativá-las corretamente. Este sucesso deve-se igualmente ao facto de nas duas anteriores tarefas darmos oportunidade ao utilizador de percorrer todo o menu e experimentar todas as teclas a que está habilitado a usar.

- Eficiência: esperávamos que os utilizadores conseguissem realizar esta tarefa em menos de 25 segundos e obtivemos uma média de 19,70 segundos com um desvio-padrão de 10,83 segundos, garantindo assim que, pelo intervalo de confiança, 97,5% dos utilizadores realizaram a tarefa abaixo do tempo esperado e podemos considerá-la, no geral, um sucesso em todos os aspetos.
- Satisfação: como apenas dois utilizador considerou a tarefa com grau de satisfação 3 e o que queríamos era que todos a considerassem com pelo menos 4 na escala, garantimos que 90% dos utilizadores ficaram satisfeitos e, assim, foi um sucesso.

6.6.4. Análise conjunta das tarefas

O fator mais importante do KITT é o tempo que demora a ativar uma funcionalidade e, assim sendo, comparando com os tempos esperados, podemos concluir que todas as tarefas têm a média temporal inferior ao limite esperado. É de notar que, sendo a primeira vez que os utilizadores são expostos à interface, garantir que pelo menos 50% se conseguem aperceber do seu funcionamento e manejar o protótipo, reconhecendo o seu comportamento, é positivo e demonstra que a interface tem uma boa organização e estrutura base.

Pelo facto das tarefas 1 e 2 cobrirem todo o menu de navegação, a tarefa 3 (a mais complexa) tem um número de erros de navegação pequeno comparado com as restantes, resultado da fácil aprendizagem de navegação.

Em sessenta testes, apenas em quatro deles é que foi ativada a ajuda. Concluímos que, tal como foi apurado nos questionários que realizámos, os utilizadores preferem a medida Tentativa-Erro ao invés de ler a ajuda disponível.

Após a execução das tarefas e dos testes, numa conversa informal e deixando os testados utilizar livremente a interface, observámos que o tempo que levavam a reexecutar as tarefas diminuía drasticamente, chegando a ser, respetivamente para as tarefas numeradas, menor a 7 segundos, menor a 5 segundos e menor que 10 segundos, não cometendo quase nenhuns erros de navegação. Estes

factos vieram corroborar a nossa teoria da boa organização e deixou-nos satisfeitos saber que a sua aprendizagem foi tão rápida e segura.

A tarefa 2, apesar de ser mais rápida de ser executada e com um menor número de cliques, acabou por ter mais erros de navegação devido à clareza do enunciado.

Analisando o número de erros da ativação da funcionalidade errada da tarefa 2 comparativamente com as restantes, voltamos a observar que esta possui um enunciado demasiado rebuscado para a dificuldade da matéria, culminando com uma quantidade quase igual à totalidade dos ditos erros.

Figura 13 – Número de erros de ativação da funcionalidade errada.

Figura 12 – Número de erros de navegação por tarefa.

6.7 Análise estatística do questionário

Após realizados os testes e recolhida a informação, criámos gráficos com as repostas que obtemos de forma a avaliar as impressões que o nosso projeto suscitou no utilizador

Em baixo, apresentamos os gráficos dos cálculos e as respetivas perguntas, bem como os comentários relacionados com os mesmos.

Figura 14 – Respostas ao questionário realizado depois do teste. (I)

A escala usada no gráfico acima está compreendida entre 0 (muito difícil/não/nunca) e 5 (muito fácil/sim/sempre). Como podemos analisar, a interface foi um sucesso entre os utilizadores, sendo considerada fácil de utilizar e com um significado dos ícones claro, tendo uma estrutura organizacional muito boa. Todos estes fatores contribuem para que, no caso de o utilizador ser confrontado no futuro com uma interface como a nossa, exista uma grande preferência e pouca resistência para a utilização do projeto.

Figura 15 – Respostas ao questionário realizado depois do teste. (II)

A escala usada no gráfico acima está compreendida entre 0 (não) e 5 (sim). Analisando os resultados que apurámos, podemos concluir que as dificuldades decrescem segundo um fator de proporcionalidade inversa, sendo que existem poucas dificuldades na realização das tarefas e que a dificuldade na leitura e/ou interpretação da informação disponibilizada pela interface é quase nula.

Estes resultados são muito subjetivos, considerando que o utilizador tomou livre arbítrio ao não ativar a ajuda, sabendo que a tinha disponível. Dessa forma, e numa ótica do utilizador, pensamos que a maior dificuldade se manifestou aquando da realização da tarefa 2, razão pela qual levou aos utilizadores a terem manifestado dificuldades na navegação da interface. Pensamos igualmente que, no caso dos testados terem ativado a ajuda, os resultados às duas perguntas acima seriam à volta de 85% no 0 (não), ou seja, devido ao método Tentativa-Erro apresentado, a resposta a estas perguntas tenha sido condicionada em relação aos resultados que obteríamos no caso de os utilizadores a terem ativado.

De qualquer forma, as respostas aos questionários confirmaram que escolhemos a estrutura organizacional correta para a implementação de uma interface com as características das que no foi pedida no enunciado do projeto.

7. CONCLUSÕES

Todo o processo iterativo de criação, desenvolvimento e aperfeiçoação da interface levou-nos à obtenção de um produto de grande qualidade, tal como pudemos justificar pelos resultados obtidos. O projeto apresenta todas as funcionalidades implementadas e a opinião geral sobre as mesmas e a interface num todo é bastante positiva, e, depois de uma primeira exploração, o utilizador realiza qualquer tarefa sem problemas.

Os dados recolhidos no primeiro questionário foram fulcrais e sempre seguiram como guias para o produto final, ilustrando as necessidades e desejos dos utilizadores e apontando-nos sempre na evolução correta do protótipo, aplicando o conhecimento adquirido nas aulas teóricas. A organização da interface demonstrou-se correta, uma vez que após o professor requisitar mais seis funcionalidades diferentes a serem inseridas no projeto, a estrutura do mesmo manteve-se e não foram tomadas medidas de alterações profundas. Todos os erros e sugestões apontados pelos nossos colegas e testadores foram essenciais para a obtenção deste produto final e contribuíram para o seu correto desenvolvimento.

Consideramo-lo um sucesso e esperemos que este tipo de tecnologia seja implementado num futuro próximo.

Gostaríamos ainda de deixar em comentário final o nosso descontentamento perante a forma como este projeto foi organizado por parte da direção da cadeira de IPM, desde um enunciado incompleto e muito susceptível a falsas interpretações até a alterações de decisões prévias dos professores, suscitando a mudança dum protótipo a meio da sua concretização.

ANEXOS

A1. QUESTIONÁRIO

Secção 1 – Análise demográfica do questionado

- 1.) Qual o seu sexo?
 - o Feminino
 - Masculino
- 2.) Qual é a sua idade?
 - o < 18
 - o 18-25
 - 0 26-40
 - 0 41-60
 - o >60
- 3.) Qual é o seu grau de escolaridade?
 - o Ensino Básico
 - o Ensino Profissional
 - o Ensino Secundário
 - o Ensino Superior
- 4.) Há quanto tempo tirou a sua carta de condução de ligeiros?
 - o Não tenho carta de condução de ligeiro
 - Menos de 1 ano
 - o Entre 1 ano e 3 anos
 - o Entre 3 anos e 5 anos
 - o Entre 5 anos e 10 anos
 - Mais de 10 anos
- 5.) Com que frequência conduz?

NOTA: Se respondeu "Não tenho a carta de condução de ligeiros" na pergunta 4, continue para a secção 3 do mesmo, por favor.

- Não conduzo
- o Pelo menos, uma vez por mês
- o Pelo menos, uma vez por semana
- o Dia sim, dia não
- Todos os dias
- 6.) Quanto tempo dura em média cada viagem que realiza a conduzir?

NOTA: Se respondeu "Não conduzo" na pergunta 5, continue para a secção 3 do mesmo, por favor.

- Menos de 30 minutos
- o Entre 30 minutos e 1 hora
- o Entre 1 hora e 3 horas

0	Mais de 3 horas			
7.) Possui um veículo?				
0	Sim			
0	Não			
8.) Cond	uz profissionalmente um veículo?			
0	Sim			
0	Não			
9.) Qual	a sua profissão?			
NOTA: S	e respondeu "Não" na pergunta 8, ignore esta pergunta, por favor.			
0	Camionista			
0	Motorista			
0	Taxista			
10.) Cond	luz predominantemente em que ambiente de tráfego?			
0	Autoestrada			
0	Campestre			
0	Urbano			
11.) Acha	a que distrai facilmente ou que os seus pensamentos vagueiam enquanto conduz?			
0	Sim			
0	Não			
12.) Man	tém-se atualizado das alterações do Código da Estrada?			
0	Sim			
0	Não			
13.) Sofre	e de alguma deficiência física?			
0	Sim			
0	Não			
14.) Se si	m, qual?			
NOTA: S	e respondeu "Não" à pergunta anterior, ignore esta pergunta.			
15.) Faz e	exames de saúde e visão regulares?			
0	Sim			
0	Não			
Secção 2	- Análise das funcionalidades atuais de um veículo			
16.) Assi	nale a(s) tecnologia(s) com as quais tem experiência diária.			
0	Computador			
0	GPS			
0	Leitor de música/Rádio			
0	Smartphone			
0	Tablet			

17.) Sente dificuldades em manusear a(s) tecnologia(s)? Sim 0 Não 0 18.) Quando se depara com um novo sistema tecnológico com o qual não teve contacto prévio, o que faz para o aprender a manusear? Leio o manual Vou experimentando 0 Peço ajuda a entendedores do novo sistema 19.) Considera que os veículos actuais têm todas as funcionalidades que poderá necessitar para uma melhor condução? Sim 0 Não 0 20.) Indique o seu nível de utilização nas seguintes funcionalidades incorporadas no veículo. (Deixe em

Câmaras/Sensores de ajuda ao estacionamento

branco no caso do seu veículo não tiver a tecnologia descrita)

	1	2	3	4	5	
Nunca utilizo		0	0		0	Utilizo sempre

Sistema GPS

Leitor de música/Rádio

Telemóvel integrado

Secção 3 - Análise das funcionalidades a serem implementadas num veículo

- 21.) Das funcionalidades seguintes, indique a(s) que teria mais interesse em ver implementada(s) no parabrisas dum veículo.
 - o Ajustador de transparência do para-brisas
 - o Boletim meteorológico com disposição do estado do tempo num local objectivo
 - o Cronómetro para recomendação de descanso do condutor
 - Detector de obstáculos
 - o Detector de sinais luminosos próximos

- o Detector de sonolência/distração do condutor
- o Detector de velocidade excessiva
- o Informação do estado do veículo e respectivos componentes
- o Sensor de pluviosidade
- o Sincronizador de aplicações de calendário
- 22.) Sugira a seguir algumas das funcionalidades que gostaria que fossem implementadas no para-brisas dum veículo, por favor.
- 23.) No caso de uma das funcionalidades mencionada anteriormente nesta secção ter um erro na sua execução, até quanto tempo admite que a mesma recupere e continue a execução?
 - o Menos de 1 segundo
 - o Entre 1 segundo a 3 segundos
 - o Entre 3 segundos a 10 segundos

A2. STORYBOARDS

Figura A2.1 – Primeiro *storyboard* do aluno 75541.

Figura A2.3 – Terceiro *storyboard* do aluno 75541.

Figura A2.5 – Segundo *storyboard* do aluno 75624.

Figura A2.2 – Segundo *storyboard* do aluno 75541.

Figura A2.4 – Primeiro *storyboard* do aluno 75624.

Figura A2.6 – Terceiro *storyboard* do aluno 75624.

Figura A2.7 – Primeiro *storyboard* do aluno 76231.

Figura A2.9 – Terceiro *storyboard* do aluno 76231.

Figura A2.8 – Segundo *storyboard* do aluno 76231.

Os *storyboards* A2.1 e A2.4 são representações do menu inicial.

Os *storyboards* A2.2, A2.5 e A2.7 são representações do menu secundário da funcionalidade 'Informações do veículo'.

Os *storyboards* A2.3, A2.6 e A2.8 são representações do tipo de 'Informações do veículo' denominado por 'Informações gerais'.

O *storyboard* A2.9 é uma representação do tipo de 'Informações do veículo' denominado por 'Informações detalhadas'.

A3. PROTÓTIPOS NÃO FUNCIONAIS

Figura A3.1 – Ecrã de 'Informações gerais' do veículo.

Figura A3.3 – Ecrã de aviso de 'Detetor de distração'.

Figura A3.2 – Ecrã de 'Informações detalhadas' do veículo.

Figura A3.4 – Ecrã de aviso de 'Detetor de sonolência'.

Figura A3.5 – Ecrã de 'Detetor por vídeo' ativo.

Figura A3.6 – Ecrã de 'Detetor por infravermelhos' ativo.

A4. PRIMEIRO PROTÓTIPO FUNCIONAL

Figura A4.1 – Ecrã de 'Informações gerais' do veículo.

Figura A4.2 – Ecrã de 'Informações detalhadas' do veículo.

Figura A4.3 – Ecrã de 'Detetor de distração' após ser ativo.

Figura A4.4 – Ecrã de aviso de 'Detetor de sonolência'.

Figura A4.5 – Ecrã de 'Detetor por vídeo' ativo.

Figura A4.6 – Ecrã de 'Detetor por infravermelhos' ativo de noite.

A5. PROTÓTIPO FINAL

Figura A5.1 – Ecrã de 'Informações gerais' do veículo.

Figura A5.2 – Ecrã de 'Informações detalhadas' do veículo.

Figura A5.3 – Ecrã de 'Detetor de distração' após ser ativo.

Figura A5.4 – Ecrã de aviso de 'Detetor de sonolência'.

Figura A5.5 – Ecrã de 'Detetor por vídeo' ativo.

Figura A5.6 – Ecrã de 'Detetor por infravermelhos' ativo de dia.

A6. DOCUMENTO DE TOMADA DE CONHECIMENTO

Eu,,	declaro	que	tomei
conhecimento de que na avaliação do protótipo KITT em que irei participar s	serão grava	das ima	gens de
fotografias e vídeo que poderão, eventualmente, incluir-me. Declaro também	que autoriz	zo o usc	dessas
imagens para fins educativos.			

(assinatura)

A7. FOTOGRAFIAS DE TESTES AOS UTILIZADORES

Figura A7.1 – Utilizador alvo do teste número 1.

Figura A7.2 – Utilizador alvo do teste número 2.

Figura A7.3 – Utilizador alvo do teste número 4.

Figura A7.4 – Utilizador alvo do teste número 6.

Figura A7.5 – Utilizador alvo do teste número 10.

Figura A7.6 – Utilizador alvo do teste número 11.

A8. PORMENORES DO PROTÓTIPO FINAL

Figura A8.1

– Pormenor do ícone de ativação do menu principal.

Figura A8.2 – Pormenor do menu de edição de favoritos.

Figura A8.3 – Pormenor da informação do utilizador.

Figura A8.4 – Pormenor da informação acerca do sistema.

Figura A8.5 – Pormenor da opção de desligar o sistema.

Figura A8.6 – Pormenor da ajuda ativa no ambiente de trabalho.

Figura A8.7 – Pormenor do menu secundário de reguladores. De cima para baixo, luzes, portas e vidros.

Figura A8.8 – Pormenor do menu secundário de controladores. De cima para baixo, rádio, ar condicionado e piloto automático.

Figura A8.9 – Pormenor do menu secundário de definições. De cima para baixo, informações do utilizador, favoritos, acerca do sistema e desligar.

Figura A8.10 – Pormenor do alerta do detetor por infravermelhos.