Lab 9

Dr. Weitao Xu

Information theory

- Entropy
- Joint distribution
- Conditional distribution

Measurement of Information

"How to measure information in terms of bits?"

= ? bits

= ? bits

Shannon's Information Theory

Shannon's measure of information is the number of bits to represent the amount of uncertainty (randomness) in a data source, and is defined as entropy

$$H = -\sum_{i=1}^{n} p_i \log(p_i)$$

Where there are *n* symbols 1, 2, ... *n*, each with probability of occurrence of *pi*

For example

- Tossing a dice:
 - Outcomes are 1,2,3,4,5,6
 - Each occurs at probability 1/6
 - Information provided by tossing a dice is

$$H = -\sum_{i=1}^{6} p(i) \log_2 p(i) = -\sum_{i=1}^{6} p(i) \log_2 p(i)$$
$$= -\sum_{i=1}^{6} \frac{1}{6} \log_2 \frac{1}{6} = \log_2 6 = 2.585 \text{ bits}$$

Entropy is greatest when the probabilities of the outcomes are equal

Let's consider a fair coin experiment

- The entropy $H = -\frac{1}{2} \log 0.5 \frac{1}{2} \log 0.5 = 1$
- Consider a biased coin, P(H) = 0.98, P(T) = 0.02
- H = -0.98 * log 0.98 0.02 * log 0.02 =
 - = 0.98 * 0.029 + 0.02 * 5.643 = 0.0285 + 0.1129 = 0.1414

Joint distribution

• If X and Y are two random variables, the probability distribution that defines their simultaneous behavior is called a joint probability distribution.

For example:

- Suppose Person A is rolling a dice, and person b is flipping a coin. Every time A rolls a dice, B flips a coin. They repeat this process by 10 times
- X is a random variable representing the outcomes of rolling a dice (X can be 0,1,2,3,4,5,6)
- Y is a random variable representing the outcomes of flipping a coin (Y can be H, T)

Expe No	eriment	1	2	3	4	5	6	7	8	9	10
X		6	4	2	1	3	4	5	2	5	6
Υ		Н	Т	H	Т	Т	Н	T	Н	T	Н

(2,H) happens 2 times, so P(2,H)=2/10

Pi,j	1	2	3	4	5	6
Н	0	(0.2)	0	0.1	0	0.2
Т	0.1	0	0.1	0.1	0.2	0

For joint distribution, we have $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$

Conditional distribution

- If X and Y are two random variables, conditional distribution P(Y=y|X=x) means the probability that Y=y happens given X=x. For example:
- Suppose Person A is rolling a dice, and person b is flipping a coin. Every time A rolls a dice, B flips a coin. They repeat this process by 10 times
- X is a random variable representing the outcomes of rolling a dice (X can be 0,1,2,3,4,5,6)
- Y is a random variable representing the outcomes of flipping a coin (Y can be H, T)

Experiment No	1	2	3	4	5	6	7	8	9	10
Χ	6	4	2	1	3	4	5	2	5	6
Υ	Н	Т	Н	/ T	Т	Н	Т	Н	Т	Н

1 happens 1 times, but (1,H) never happens in the above table, so P(H|1)=0/1=0 (1,T) happens 1 time, so P(T|1)=1/1=1

Py x	1	2	3	4	5	6
Н	0	1	0	0.5	0	1
Т	1	0	1	0.5	1	0

For conditional distribution, we have the sum of Py|x is 1 for every x.

How to calculate each conditional distribution?

	1	2	3	4	5	6	7	8	9	10
Dice	6	4	2	1	3	4	5	2	5	6
coin	Н	Т	Н	Т	Т	Н	Т	Н	Т	Н

For Py|x: Calculate the number of events (x,y)happens divided by the number of events x happens. For example, 4 happens 2 times, and (4,T) happens 1 time, (4,H) happens 1 time, so PT|4 is $\frac{1}{2}$ =0.5, PH|4 is $\frac{1}{2}$ =0.5

Py x	1	2	3	4	5	6
Н	0/1	1/1	0/1	1/2	0/1	1/1
Т	1/1	0/1	1/1	1/2	1/1	0/1