```
import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
import seaborn as sns
from google.colab import drive
drive.mount('/content/drive')
    Go to this URL in a browser: <a href="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth?client_id="https://accounts.google.com/o/oauth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/auth2/au
                      Enter your authorization code:
                      Mounted at /content/drive
import os
os.chdir('/content/drive/My Drive/subcription_project/')
 !ls
                 public sharing collect_data_for_subcription.csv subcription.ipynb
data = pd.read csv("./public sharing collect data for subcription.csv")
data.head()
    Γ
```

₽	id		order_time	service_id	distance	total_cod	total_fee	total
	0	NNFNT7	2019-02-04 14:43:10 UTC	SGN-BIKE	6.302000	2400000.0	83000	83
	1	L8HYZC	2019-02-04 13:19:44 UTC	SGN-BIKE	5.818000	3600000.0	93000	93
	2	M0PC9M	2019-02-04 12:27:04 UTC	SGN-BIKE	9.673000	3400000.0	120000	120
	3	NUE89W	2019-02-04 18:27:53 UTC	SGN-BIKE	17.066999	450000.0	134000	134
	4	4l19P6	2019-02-04 15:44:46 UTC	SGN-BIKE	14.135000	280000.0	121000	121

data.info()

```
← <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 3024981 entries, 0 to 3024980
   Data columns (total 7 columns):
   id
                 object
   order_time
                 object
   service id
                 object
   distance
                 float64
   total cod
                 float64
   total fee
                 int64
                 float64
   total pay
   dtypes: float64(3), int64(1), object(3)
   memory usage: 161.6+ MB
```

```
data['order_time'] = data['order_time'].astype('datetime64[ns]')
# import datatime as dt
# data['order time'] =
# data['order_time'].dt.date
# pd.to_datetime(data['order_time'], format='%Y%m%d')
# data['order_date'] = pd.to_datetime(data['order_time'])
data.info()
   <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3024981 entries, 0 to 3024980
    Data columns (total 7 columns):
    id
                  object
    order time
                  datetime64[ns]
                  object
    service_id
    distance
                  float64
    total cod
                  float64
    total_fee
                  int64
    total pay
                  float64
    dtypes: datetime64[ns](1), float64(3), int64(1), object(2)
    memory usage: 161.6+ MB
# data[data['total cod']!=0]
```

▼ EDA

```
for col in data.iloc[:,3:7].columns:
  plt.figure(figsize=(4,6))
  sns.boxplot(data[col])
  plt.show()
```


sns.pairplot(data.iloc[:,3:7])
plt.show()

pd.set_option('display.float_format', lambda a: '%.2f' % a)
data.iloc[:,3:7].describe()

	distance	total_cod	total_fee	total_pay
count	3024981.00	3024981.00	3024981.00	3024981.00
mean	6.70	608087.43	38077.34	36553.83
std	4.63	752927.51	23506.99	23064.73
min	0.00	0.00	18000.00	0.00
25%	3.45	190000.00	23000.00	23000.00
50%	5.76	379000.00	29000.00	28000.00
75%	8.87	740000.00	45000.00	43000.00
max	96.13	49932000.00	659000.00	659000.00

```
data['ratio_fee_cod'] = data['total_fee']/data['total_cod']
data['ratio_pay_cod'] = data['total_pay']/data['total_cod']
```

data.head()

plt.show()

```
C→
             id
                       order_time service_id distance total_cod total_fee total_pay
        NNFNT7 2019-02-04 14:43:10
                                       SGN-BIKE
                                                       6.30
                                                             2400000.00
                                                                             83000
                                                                                       83000.00
        L8HYZC 2019-02-04 13:19:44
                                       SGN-BIKE
                                                       5.82
                                                             3600000.00
                                                                             93000
                                                                                       93000.00
     2 M0PC9M 2019-02-04 12:27:04
                                       SGN-BIKE
                                                       9.67
                                                             3400000.00
                                                                            120000
                                                                                      120000.00
       NUE89W 2019-02-04 18:27:53
                                       SGN-BIKE
                                                      17.07
                                                              450000.00
                                                                            134000
                                                                                      134000.00
         4l19P6 2019-02-04 15:44:46
                                       SGN-BIKE
                                                      14.14
                                                              280000.00
                                                                            121000
                                                                                      121000.00
```

```
# data[data['ratio_fee_cod']>1]
data.service_id.value_counts()
# data[(data['service_id'] == 'SGN-BIKE')|(data['service_id'] == 'SGN-LUX')]
                        SGN-BIKE
                                                                                                             1863612
                          SGN-POOL
                                                                                                                  975863
                          SGN-SAMEDAY
                                                                                                                  150813
                          SGN-DG
                                                                                                                        29255
                                                                                                                             5438
                          SGN-LUX
                          Name: service_id, dtype: int64
# sns.set(style='whitegrid')
plt.figure(figsize=(6,6))
ax = sns.scatterplot(x="total_fee", y="total_cod",palette='muted',data= data[(data['setal_fee", y="total_cod",data= data['setal_fee",data= data= data
ax.set(xlim=(20000, None), ylim=(0, None))
ax.grid(False)
```



```
plt.figure(figsize=(6,6))
ax = sns.scatterplot(x="total_fee", y="total_cod", data=data[data['service_id'] == 'S(
ax.set(xlim=(12000,None),ylim=(0,None))
ax.grid(False)
plt.show()
```


plt.figure(figsize=(6,6)) ax = sns.scatterplot(x="total fee", y="total cod", data=data[data['service id'] == 'S(

 \Box

```
ax.set(xlim=(20000,50000),ylim=(0,None))
ax.grid(False)
plt.show()
```



```
plt.figure(figsize=(6,6))
ax = sns.scatterplot(x="total_fee", y="total_cod", data=data[data['service_id'] == 'S(
ax.set(xlim=(90000,300000),ylim=(0,None))
ax.grid(False)

# plt.ylim(1000000,5000000)
# plt.xlim(20000,500000)
# ax.set(ylim=(10, 40))
plt.show()
```



```
## total pay ??
```

```
cmap = sns.cubehelix_palette(dark=.3, light=.8, as_cmap=True)
plt.figure(figsize=(6,6))
ax = sns.scatterplot(x="total_pay", y="total_cod", data= data[(data['service_id'] ==
ax.grid(False)
plt.show()
```

С→

- -

```
plt.figure(figsize=(6,6))
ax = sns.scatterplot(x="total_pay", y="total_cod", data= data[(data['service_id'] == 'ax.grid(False)
plt.show()
```



```
plt.figure(figsize=(6,6))
ax = sns.scatterplot(x="total_pay", y="total_cod", data= data[(data['service_id'] == 'ax.grid(False)
plt.show()
```


plt.figure(figsize=(6,6))
ax = sns.scatterplot(x="total_pay", y="total_cod", data= data[(data['service_id'] == 'ax.grid(False)
plt.show()

▼ Ket luan1:

Các scatter của total_cod & total_pay cũng như total_cod & total_fee trên các dịch vụ là rất khác biệt. có đặc trưng về COD như sau BIKE&LUX, POOL, DG, SD.

```
##
bins = [0,0.05,0.1,0.15,0.2,np.inf]
labels = ['0-0.05','0.05-0.1','0.1-0.15','0.15-0.2','>0.2']
data['range_feeCod_BL'] = pd.cut(data[(data['service_id'] == 'SGN-BIKE')|(data['service_id'])
data['range_feeCod_PL'] = pd.cut(data[(data['service_id'] == 'SGN-POOL')]['ratio_fee_
data['range_feeCod_DG'] = pd.cut(data[(data['service_id'] == 'SGN-DG')]['ratio_fee_coc
data['range_feeCod_SD'] = pd.cut(data[(data['service_id'] == 'SGN-SAMEDAY')]['ratio_fe
# data[['range BL','range PL','range DG','range SD']].astype(float)
# data.info()
data[['range feeCod BL','range feeCod PL','range feeCod DG','range feeCod SD']].isna()

    range feeCod BL

                        False
    range feeCod PL
                        False
    range feeCod DG
                        False
    range feeCod SD
                        False
    dtype: bool
range BL = data[(data['service id'] == 'SGN-BIKE')|(data['service id'] == 'SGN-LUX')]|
# .groupby('range BL')
print(range BL.values/range BL.sum()*100)
range BL = pd.DataFrame(range BL)
range BL
    [33.45999304 26.5029293 18.103047 13.73927931 8.19475134]
             range feeCod BL
      0-0.05
                       625384
     0.05-0.1
                       495353
      >0.2
                       338355
```

```
# Pie chart
```

0.1 - 0.15

0.15-0.2

256794

153164

```
sizes = range_BL.values
#colors
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99','#ffbb99']
#explsion
explode = (0.05,0.05,0.05,0.05,0.05)

ax1 = plt.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90,
#draw circle
centre_circle = plt.Circle((0,0),0.70,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title("ratio total_fee/total_COD of BIKE & LUX ")
# Equal aspect ratio ensures that pie is drawn as a circle
# ax1.axis('equal')
plt.tight_layout()
plt.show()
```



```
range_PL = data[(data['service_id'] == 'SGN-POOL')]['range_feeCod_PL'].value_counts()
print(range_PL.values/range_PL.sum()*100)
range_PL = pd.DataFrame(range_PL)
range_PL
```

Г⇒

```
[32.15277144 19.85135209 18.69616944 18.33904964 10.96065739]
```

```
# Pie chart
labels = range PL.index.values
sizes = range PL.values
#colors
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99','#ffbb99']
#explsion
explode = (0.05, 0.05, 0.05, 0.05, 0.05)
ax1 = plt.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90,
#draw circle
centre circle = plt.Circle((0,0),0.70,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title("ratio total_fee/total_COD of POOL ")
# Equal aspect ratio ensures that pie is drawn as a circle
# ax1.axis('equal')
plt.tight layout()
plt.show()
```



```
range_DG = data[(data['service_id'] == 'SGN-DG')]['range_feeCod_DG'].value_counts()
print(range_DG.values/range_DG.sum()*100)
range_DG = pd.DataFrame(range_DG)
range_DG
```

Гэ

[33.39258246 25.49649633 18.86515126 15.79900872 6.44676124]

	range_feeCod_DG
0.05-0.1	9769
0.1-0.15	7459
>0.2	5519
0.15-0.2	4622
0-0.05	1886

```
# Pie chart
labels = range_DG.index.values
sizes = range DG.values
#colors
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99','#ffbb99']
#explsion
explode = (0.05, 0.05, 0.05, 0.05, 0.05)
ax1 = plt.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90,
#draw circle
centre_circle = plt.Circle((0,0),0.70,fc='white')
fig = plt.gcf()
fig.gca().add artist(centre circle)
plt.title("ratio total fee/total COD of DG ")
# Equal aspect ratio ensures that pie is drawn as a circle
# ax1.axis('equal')
plt.tight layout()
plt.show()
```


Гэ

```
range_SD = data[(data['service_id'] == 'SGN-SAMEDAY')]['range_feeCod_SD'].value_counts
print(range_SD.values/range_SD.sum()*100)
range_SD = pd.DataFrame(range_SD)
range_SD
```

[40.50844423 23.32955382 17.08075564 12.33381738 6.74742894]

range_feeCod_SD 0.05-0.1 61092 0.1-0.15 35184 >0.2 25760 0.15-0.2 18601 0-0.05 10176

```
# Pie chart
labels = range_SD.index.values
sizes = range_SD.values
#colors
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99','#ffbb99']
#explsion
explode = (0.05, 0.05, 0.05, 0.05, 0.05)
ax1 = plt.pie(sizes, colors = colors, labels=labels, autopct='%1.1f%%', startangle=90,
#draw circle
centre circle = plt.Circle((0,0),0.70,fc='white')
fig = plt.gcf()
fig.gca().add artist(centre circle)
plt.title("ratio total fee/total COD of SAMEDAY")
# Equal aspect ratio ensures that pie is drawn as a circle
# ax1.axis('equal')
plt.tight layout()
plt.show()
```


Ket Luan 2: ratio of total_fee/ total_cod

BIKE & LUX: khoảng 0-5% là phổ biến nhất với 32%, 5%-10%: chiếm 26%

SAMEDAY: khoảng 5%-10% thì chiếm 40%, khoảng 10%-15% chiếm 23.3 %, khoảng lớn hơn 0.2% chiếm

=> Bốc riêng sameday để phân tích xem khoảng mean của total_pay and total_fee

data[(data['service_id'] == 'SGN-SAMEDAY')].groupby(['range_feeCod_SD'])[['total_fee',

₽		total_fee	total_pay	total_cod
	range_feeCod_SD			
	0-0.05	22012.58	20618.42	481778.46
	0.05-0.1	24078.75	22708.03	338841.83
	0.1-0.15	24233.86	22749.57	197557.19
	0.15-0.2	24483.74	22771.03	141364.24
	>0.2	24774.77	22869.79	81993.03

corr = data[(data['service_id'] == 'SGN-SAMEDAY')].corr()
corr

	distance	total_cod	total_fee	total_pay	ratio_fee_cod	ratio_pay_
distance	1.00	0.08	0.68	0.47	0.00	(
total_cod	0.08	1.00	0.06	0.07	-0.15	-(
total_fee	0.68	0.06	1.00	0.61	0.01	(
total_pay	0.47	0.07	0.61	1.00	0.01	(
ratio_fee_cod	0.00	-0.15	0.01	0.01	1.00	(
ratio_pay_cod	0.01	-0.15	0.01	0.02	0.99	1

```
ax = sns.heatmap(corr,annot=True,fmt='.2g')
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + .5, top - .5)
plt.show()
```



```
from IPython.display import HTML
HTML('''<script>
code_show=true;
function code_toggle() {
  if (code_show){
   $('div.input').hide();
  } else {
```

```
$('div.input').show();
}
code_show = !code_show
}
$( document ).ready(code_toggle);
</script>
The raw code for this IPython notebook is by default hidden for easier reading.
To toggle on/off the raw code, click <a href="javascript:code_toggle()">here</a>.''')
```

The raw code for this IPython notebook is by default hidden for easier reading. To toggle on/off the raw code, c