L665 ML for NLP

Damir Cavar Indiana University Jan. 2018

Agenda

- Syllabus
- Descriptive Statistics
- Normal distribution and Significance tests
- Assignment

Descriptive Statistics

- For different text types:
- Does the choice of words say something specific about genre, century, the author etc.?
- Which words are more frequent in what kind of texts?
- Which syntactic constructions are more or less frequent in what kind of texts?
- How many different words (not tokens) do we find in what kind of texts?

Descriptive Statistics

- Information theory (Shannon, 1948):
 - Counting letters in English prose by one author:
 - Proportion of E = 13%
 - Proportion of W = 2%
 - Same proportions in (long enough) text by any other author.

Inductive Statistics

- Given the descriptive statistic facts we can make predictions:
 - The distribution of words: the most frequent
 - The distribution of letters: E 13%, W 2%

Inductive Statistics

- We can use statistical properties to e.g. predict
- the type of text
- the century it is created
- the origin of the author
- the language of the document
- the part-of-speech of a word
- the argument structure of a verb

•

Word Counts

- Count words and build a decreasing frequency profile
- What kind of regularities do you see in the frequency profile of one document?
- How can we compare the frequency profile of two or more documents?

Results

- Open vs. Closed Class Lexicon
- Function words belong to the closed class.
- Verbs, nouns, adjectives etc. belong to the open class.
- •Function words are most frequent.
- •Function words make up the smallest part of a natural language lexicon.

FOXTROT

WHAT I KNOW I'LL USE
DO YOU THE WORD THE"
MEAN? ABOUT 25 TIMES,
"AND" AT LEAST 15.
"IN, "IF," IT AND BUT"
SHOULD GIVE ME ANOTHER
30-40. TOSS IN THE USUAL
"IS," WAS, "WILL BE" VERB
ASSORTMENT AND I'M
SITTING COMFORTABLY
AT 120-PLUS
WORDS
BEFORE I
EVEN START.

Probability Theory

- The chance of a particular outcome occurring is determined by the ratio of the number of favorable outcomes to the total number of outcomes.
- Approach: frequency based

```
probability of favorable outcome = \frac{\text{number of favorable outcomes}}{\text{total number of outcomes}}
```

Statistics

- Inductive Statistics
 - analytic: conclusions from data
 - including probabilities
- Descriptive Statistics
 - description of data
 - display or presentation of data

N-gram Models

- List all possible symbol combinations of length n for a given corpus,
- —symbols: phones, phonemes, characters, morphemes, words (tokens or types), sentences, paragraphs etc.
- •together with their frequencies (absolute + number of all elements/tokens; relative)

Frequency Profiles

- •Unigram
- •Bi-gram
- Tables/graphics taken from MacKay (2003)

i	a_i	p_{i}		
1	a	0.0575	a	F
2	b	0.0128	b	E
3	С	0.0263	С	E
4	d	0.0285	d	Ľ
5	е	0.0913	е	
6	f	0.0173	f	E
7	g	0.0133	g	E
8	h	0.0313	h	Ľ
9	i	0.0599	i	Ľ
10	j	0.0006	j	
11	k	0.0084	k	
12	1	0.0335	1	Ľ
13	m	0.0235	m	Ľ
14	n	0.0596	n	Ľ
15	0	0.0689	0	C
16	p	0.0192	p	Ľ
17	q	0.0008	q	١
18	r	0.0508	r	Ľ
19	s	0.0567	s	C
20	t	0.0706	t	C
21	u	0.0334	u	Ľ
22	v	0.0069	v	·
23	W	0.0119	W	E
24	х	0.0073	X	
25	У	0.0164	У	
26	z	0.0007	Z	F
27	_	0.1928	_	L

abcdefghijklmnopqrstuvwxyz-y

Relative Frequency Theory

• If an experiment is repeated an extremely large number of times and a particular outcome occurs a percentage of the time, then the particular percentage is close to the probability of that outcome.

Cryptography

- What do counts tell us?
 - Using counts to match encrypted code with word types
- Language = cryptography
 - Navajo
- Linguistics = cryptoanalysis

Zipf's Law

- Principle of Least Effort
- —Minimize probable effort of work.
 - Not immediate, but considering future work.
- •Reciprocal relationship between word frequencies and rank in a frequency table:

$$f \propto \frac{1}{r}$$

There is a constant k such that f multiplied with r equals k.

Zipf's Law

- Explanation:
- —Count the words and sort them based on their frequency.
- The 50th most common word should occur with three times the frequency of the 150th most common word.
- •Problem:
- Slight inaccuracy for words in the rank 100.

Zipf's Law

Zipf's explanation:

- —Speaker and hearer are trying to minimize their effort.
- —Speaker: tendency for a small vocabulary
- —Hearer: large vocabulary of individually rarer words
 - reduction of ambiguity

• Relevance:

- For most words there is little data in the corpus.
 - Collocation, distribution, use

Zipf's Other Laws

Number of meanings of a word obeys the law:

$$m \propto \sqrt{f}$$
 $m \propto \frac{1}{\sqrt{r}}$

- The lower the rank of a word in the frequency scale, the less meanings the word has.
- High frequent words are more often ambiguous.
- Low frequent words are less ambiguous.

Zipf's Other Laws

- Clumping of content words:
 - Measure the distance between words (the same words)
 - characters, lines, pages
 - Calculate the frequency F of the different intervals I
- Content words occur near another occurrence of the same word.

Statistics

- Types of statistics
 - Numerical statistics
 - Numbers, average, mean
 - Pictorial statistics
 - Presentation of numerical statistics
 - Inductive statistics
 - Process numbers and/or pictures

- Measures of central tendencies of data
 - Mean
 - Median
 - Mode
- Measures of variation/variability
 - Spread in data
- Measurement scales

- Arithmetic Mean
- —Data set:

File	Count words
Flo031201.txt	10346
Flo031202a.txt	503 I
Flo031202b.txt	11876
Flo031203.txt	12175
Flo031204.txt	10943

Arithmetic Mean

$$arithmetic\ mean = \frac{sum\ of\ measures}{number\ of\ measures}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

—example:

$$\frac{10346 + 5031 + 11876 + 12175 + 10943}{5} = 10074.2$$

- Median
 - -Middle value of ordered measure values

File	Count words	
Flo031202a.txt	5031	
Flo031201.txt	10346	
Flo03 I 204.txt	10943	
Flo031202b.txt	11876	
Flo031203.txt	12175	

- Median
 - —Decrease relevance of outliers:

File	Count words
Flo031202a.txt	5031
Flo031201.txt	10346
Flo03 I 204.txt	10943
Flo031202b.txt	11876
Flo031203.txt	12175

Median

with even number of elements:

File	Count words
Flo031202a.txt	5031
Flo03 20 .txt	10346
Flo03 I 204.txt	10943
Flo031202b.txt	11876

Arithmetic mean of the two middle values:

$$\frac{10346 + 10943}{2} = 10644.5$$

Median

• Measures need to be sorted (irrespective of whether decreasing or increasing):

$$median = \begin{cases} x_{k+1} & \text{if } n \text{ is odd}, n = 2k \\ \frac{x_k + x_{k+1}}{2} & \text{if } n \text{ is even}, n = 2k+1 \end{cases}$$

Mean: 10074.2

Median: 10943

- Mean is reduced on the basis of the outlier:
 Flo031202a.txt
 5031
- Median may be a better indicator of central tendency if outliers/extreme values are present.

Mode

The measure value that occurs most often:

File	Count words
Flo031202a.txt	5031
Flo031201.txt	10943
Flo03 I 204.txt	10943
Flo031202b.txt	6329
Flo031203.txt	12175

Mode = 10943

Approximation of

- **—**Mode
 - \bullet mean -3 (mean median)
- -Median
 - (2 *mean* + *mode*) / 3
- -Mean
 - (3 *median mode*) / 2

Notation

```
—Mean (x bar): \overline{x}
```

—Mean of a population:

—Sum of values: μ

 \sum

- Notation example:
 - Arithmetic mean:

$$\overline{x} = \frac{\sum x}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

• Arithmetic mean for grouped data:

Files	Count words
35%	0-4999
30%	5000-9999
25%	10000-14999
10%	15000-19999

• With 100 sample documents what is the arithmetic mean?

• Arithmetic mean for grouped data:

$$\overline{x} = \frac{\sum fx}{n}$$

$$-f$$
 = frequency
- x = midpoint

• Arithmetic mean for grouped data:

Files	Midpoint	fx	Count words
35	2500	87500	0-4999
30	7500	225000	5000-9999
25	12500	312500	10000-14999
10	17500	175000	15000-19999

$$\overline{x} = \frac{\sum fx}{n} = \frac{87500 + 225000 + 312500 + 175000}{100} = \frac{800000}{100} = 8000$$

• Median for grouped data:

$$median = L + \frac{w}{f_{med}} (.5n - \sum f_b)$$

- -L = lower class limit that contains the interval
- -n = total number of measurements
- -w = class width
- $-f_{med}$ = frequency of the class containing the median
- $-\Box f_b$ = sum of the frequencies for all classes before the median class

• Median for grouped data:

Files	Count words
35	0-4999
30	5000-9999
25	10000-14999
10	15000-19999

$$median = 5000 + \frac{4999}{30} (50 - 35) = 7499.5$$

- Distribution
 - Symmetric distribution
 - Skewed curves
 - negatively skewed curves
 - positively skewed curves

Symmetric distribution: Mean, median and mode are equal.

Skewed curves: Negatively skewed distribution: mean
 median < mode

- Skewed curves
 - Positively skewed distribution: mode < median < mean

Variability

Experiment I	Experiment 2
195	10
210	0
199	400
200	20
205	380
190	200
200	390
201	200

- Variability
 - —For both experiments:
 - mean: 200
 - mode: 200
 - median: 200
 - Experiment 2 has greater variation.
- Measure of variation:
 - -Range
 - —Deviation
 - -Variance

Range

- —Difference between largest and smallest value:
 - Experiment 1:210 190 = 20
 - Experiment 2: 400 0 = 400

Deviation

- —Distance of the measurements away from the mean:
 - Experiment I: less
 - Experiment 2: more

- Deviation
 - Distance of the measurements away from the mean:
 - Experiment 1: less
 - Experiment 2: more

$$sd = \frac{1}{N} \sum_{i=1}^{N} |x_i - \bar{x}|$$

- Variance
 - Sum of squared deviations of n measurements from their mean divided by (n – 1):
 - Experiment I:?
 - Experiment 2: ?

$$s_N^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$$
 $s_{N-1}^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{x})^2$

- Standard deviation
 - Positive square root of the variance.
 - Experiment I:?
 - Experiment 2: ?

$$s_N = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$s_N = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
 $s_{N-1} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$

Notation

- $-s^2$ = variance of a sample
- $-\sigma^2$ = variance of a population
- -s = standard deviation of a sample
- $-\sigma$ = standard deviation of a population

Collocations

- Words in context
 - distribution
 - fixed expressions
 - collocations
 - statistical properties
 - function words

How to test for collocations?

- Statistics
- Significance tests

Significance

Notations:

- Type I error rate of .05
- Alpha level of .05 or $\alpha = .05$
- Finding is significant at the .05 level
- Confidence level is 95%
- 95% certainty that a result is not due to chance
- A I in 20 chance of obtaining the result
- Are of the region of rejection is .05
- p-value is .05 or p = .05

- Statistics as testing of scientific hypotheses
- Strategies:
 - Formulating a Research Hypothesis or Alternative Hypothesis (Ha)
 - Statement of the expectation to be tested

- Strategies:
 - Derivation of a statement that is the opposite of the research hypothesis: Null Hypothesis (H0)
 - Testing the null hypothesis

- Statistics as testing of scientific hypotheses
- Strategies:
 - If the null hypothesis can be rejected, this is evidence in favor of the research hypothesis.

- Strategies:
 - Usually:
 - No prove for research hypothesis, just support for it.

- Research Hypothesis:
 - At IU linguistics students perform differently in statistics than computer science students.
 - Ha: μI ≠ μ2
 - Ha: $\mu I \mu 2 \neq \bullet$

- Null Hypothesis:
 - At IU linguistics students perform the same in statistics as computer science students.
 - H0: μ I = μ 2
 - H0: μ I μ 2 = 0

- More specific: Research Hypothesis:
 - At IU linguistics students perform better in statistics than computer science students.
 - Ha: $\mu I > \mu 2$
 - Ha: $\mu I \mu 2 > 0$

- More specific: Null Hypothesis
 - At IU linguistics students perform worse in statistics, or equal to computer science students.
 - H0: μ1 ≤ μ2
 - H0: μ1 μ2 ≤ ●

- Given the distribution of a known area
 - e.g. normal distribution
- estimate the probability of obtaining a certain value as a result of chance.
- If the probability is low, the likelihood for a mere coincidence is low, i.e. a certain theory is correct.

- Two possible outcomes of test:
 - Rejection of null hypothesis
 - Acceptance of null hypothesis

- z-score: determines the probability of obtaining a given value: How many standard deviations is a value above or below the mean?
 - With: x = value, $\mu = population mean$, $\sigma = population standard deviation$

Significance Table

	Ρ	0.99	0.95	0.10	0.05	0.01	0.005	0.001
d.f.	1	0.00016	0.0039	2.71	3.84	6.63	7.88	10.83
1	2	0.020	0.10	4.60	5.99	9.21	10.60	13.82
1	3	0.115	0.35	6.25	7.81	11.34	12.84	16.27
	4	0.297	0.71	7.78	9.49	13.28	14.86	18.47
1	00	70.06	77.93	118.5	124.3	135.8	140.2	149.4

Testing

- Critical value (tabled value):
 - z-value table for probability
 - Cutoff for acceptance or rejection of null hypothesis
 - weakest level: 95% / 5% p = 0.05
 - Decision made in advance

Testing

- Probability as significance level
- Example: Collocations
 - Null Hypothesis: independence of two words
 - P(wlw2) = P(wl) P(w2)

 Preferred activities over a population sample of I25 people:

	bowling	dancing	computer	total
male	30	29	16	75
female	12	33	5	50
total	42	62	21	125

- Is the choice of activities related to the gender?
 - If the two variables are independent, we can use these probabilities to predict how many people should be in each cell.
 - If the actual number is different from the expectation for independence, the two variables must be related.

- Research Hypothesis:
 - The variables are dependent.
- Null Hypothesis:
 - The variables are independent.

- Overall probability of a person in the sample being:
 - male: 75/125 = .6
 - female: 50/125 = .4

- Overall probability of each preference:
 - bowling: 42/125 = .336
 - dancing: 62/125 = .496
 - computer games: 21/125 = .168

- Independent events: multiplication rule
 - The probability of two events occurring is the product of their two probabilities.

- Probability of a person in the sample being male and preferring bowling:
 - P(male & bowling): $.6 \times .336 = .202$
 - Expectation: $.202 \times 125 = 25.2$

- Multiplication of row total with column total and division by total number in sample:
- \bullet (75 x 42) / 125 = 25.2

	bowling	dancing	computer	total
male	30 (25.2)	29 (37.2)	16 (12.6)	75
female	12 (16.8)	33 (24.8)	5 (8.4)	50
total	42	62	21	125

•Formula:

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$

$$\chi^2 = \frac{(30 - 25.2)^2}{25.2} + \frac{(29 - 37.2)^2}{37.2} + \frac{(16 - 12.6)^2}{12.6} + \frac{(12 - 16.8)^2}{16.8} + \frac{(33 - 24.8)^2}{24.8} + \frac{(5 - 8.4)^2}{8.4} = 9.097$$

- The larger $\chi 2$, the more likely the variables are related.
- Square effect of cells with large differences.

- Probability distribution of χ2:
- —Critical values in table
- —Degree-of-freedom:
 - df = (number-of-rows I) x (number-of-columns I)
 - •Example: $(2 1) \times (3 1) = 2$
- Example: 9.097 (< .025; > .01)

- Example: 9.097 (< .025; > .01)
 - Significance (at levels: .05, .01)!
 - Rejection of Null Hypotheses (independence of variables)

- Collocations
 - new, companies

	w1=new	w1¬new	total
w2=companies	8	4667	4675
w2¬companies	15820	14287181	14303001
total	15828	14291848	14307676

chi² (x2) test

- Collocations
 - -ban, derenčin = 267771.9929697935

	rı=ban	rı¬ban	total
r2=derenčin	31	69	100
r2¬derenčin	3019	84972930	84975949
total	3050	84972999	84976049

chi² (x2) test

- Collocations
 - -ban, derenčin = ?

	rı=ban	rı¬ban	total
r2=derenčin	31 (0)	69 (99)	100
r2¬derenčin	3019 (3049)	84972930 (84972899)	84975949
total	3050	84972999	84976049

chi² (x2) test

- Collocations
 - -ban, derenčin = ?

	rı=ban	rı¬ban	total
r2=derenčin	31 (0)	69 (99)	100
r2¬derenčin	3019 (3049)	84972930 (84972899)	84975949
total	3050	84972999	84976049

Is this significant?

Assignment

- Read:
 - Shravan & Broe (2010) The Foundations of Statistics: Chapter I
 - Manning & Schuetze (1999) Foundations of Statistical Natural Language Processing: Chapter