The Ocean-Land-Atmosphere Model (OLAM)

Robert L. Walko

Rosenstiel School of Marine and Atmospheric Science University of Miami, Miami, FL

Martin Otte

U.S. Environmental Protection Agency Research Triangle Park, NC 27711

Dynamic Core Model Intercomparison Project (DCMIP)

NCAR – Boulder, CO

1 August 2012

Motivation for OLAM originated in our work with the Regional Atmospheric Modeling System (RAMS)

RAMS, begun in 1986, is a limited-area model similar to WRF and MM5

Features include 2-way interactive grid nesting, microphysics and other physics parameterizations designed for mesoscale & microscale simulations

But, there are significant disadvantages to limited-area models

So, OLAM was originally planned as a global version of RAMS.

OLAM began with all of RAMS' physics parameterizations in place.

OLAM dynamic core is a complete replacement from RAMS

Based on icosahedral grid

Seamless local mesh refinement

OLAM: Relationship between triangular and hexagonal cells (either choice uses Arakawa-C grid stagger)

OLAM:
Hexagonal grid
cells

Terrain-following coordinates used in most models

OLAM uses cut cell method

One reason to avoid terrain-following grids: Error in horizontal gradient computation (especially for pressure)

Another reason: Anomalous vertical dispersion

Continuous equations in conservation form

$$\frac{\partial V_i}{\partial t} = -\nabla \cdot (v_i \vec{V}) - (\nabla p)_i - (2\rho \vec{\Omega} \times \vec{v})_i + \rho g_i + F_i$$

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{V} + M$$

$$\frac{\partial(\rho\,\Theta)}{\partial t} = -\nabla \bullet \left(\!\Theta\vec{V}\right) + H$$

$$p = \left[\left(\rho_d R_d + \rho_v R_v \right) \theta \right]^{\frac{C_P}{C_V}} \left(\frac{1}{p_0} \right)^{\frac{R_d}{C_V}}$$

$$\frac{\partial(\rho\,s)}{\partial t} = -\nabla \cdot \left(s\,\vec{V}\right) + Q$$

Momentum conservation (component i)

Total mass conservation

Θ conservation

Equation of State

Scalar conservation (e.g. $s_v = \rho_v / \rho$)

$$\rho = \rho_d + \rho_v + \rho_c$$

$$\vec{V} = \rho \vec{v}$$

$$\theta = \Theta \left[1 + \frac{q_{lat}}{C_p \max(T, 253)} \right]$$

Total density

Momentum density

 θ = potential temperature

 Θ = ice-liquid potential temperature

Finite-volume formulation: Integrate over finite volumes and apply Gauss Divergence Theorem

$$\int_{\Psi} \nabla \bullet \vec{\Phi} \ d\Psi = \oint_{\sigma} \vec{\Phi} \bullet d\vec{\sigma}$$

Discretized equations:

$$\frac{\partial}{\partial t} \int V_i \, d\Psi = -\oint \left(v_i \vec{V} \right) \Phi \, d\vec{\sigma} - \int \frac{\partial p}{\partial x_i} \, d\Psi - \int \left(2\rho \, \vec{\Omega} \times \vec{v} \right)_i \, d\Psi + \int \rho \, g_i \, d\Psi + \int F_i \, d\Psi$$

$$\frac{\partial}{\partial t} \int \rho \, d\Psi = - \oint \vec{V} \cdot d\vec{\sigma} + \int F_m d\Psi$$

$$\frac{\partial}{\partial t} \int \rho \, \Theta \, d\Psi = - \oint \left(\Theta \vec{V} \right) \cdot d\vec{\sigma} + \int F_{\theta} \, d\Psi$$

$$\frac{\partial}{\partial t} \int \rho \, s \, d\Psi = - \oint (s \, \vec{V}) \cdot d\vec{\sigma} + \int F_s \, d\Psi$$

Conservation equations in discretized finite-volume form

(SGS = "subgrid-scale eddy correlation")

$$\frac{\partial \overline{V}_{i}}{\partial t} = -\Psi^{-1} \sum_{j} \left[\left(\overline{v}_{ij} \overline{V}_{j} + SGS\{v_{ij}, V_{j}\} \right) \sigma_{j} \right] - \frac{\Delta \overline{\rho}}{\Delta x_{i}} - \left(2 \overline{\rho} \ \overrightarrow{\Omega} \times \overrightarrow{v} \right)_{i} + \overline{\rho} \ g_{i} + \overline{F}_{i}$$

$$\frac{\partial \overline{\rho}}{\partial t} = -\Psi^{-1} \sum_{j} \left[\overline{V}_{j} \sigma_{j} \right]$$

$$\frac{\partial \left(\overline{\rho} \Theta \right)}{\partial t} = -\Psi^{-1} \sum_{j} \left[\left(\overline{\Theta}_{j} \overline{V}_{j} + SGS\{\Theta_{j}, V_{j}\} \right) \sigma_{j} \right] + \overline{H}$$

$$\frac{\partial \left(\overline{\rho} \Theta \right)}{\partial t} = -\Psi^{-1} \sum_{j} \left[\left(\overline{\Theta}_{j} \overline{V}_{j} + SGS\{\Theta_{j}, V_{j}\} \right) \sigma_{j} \right] + \overline{H}$$

$$\frac{\partial \left(\overline{o} \, s \right)}{\partial \, t} = -\Psi^{-1} \sum_{j} \left[\left(\overline{s}_{j} \, \overline{V}_{j} + SGS\{s_{j}, V_{j}\}\right) \sigma_{j} \right] + \overline{Q}$$

$$\overline{p} = \left[\left(\overline{s}_d R_d + \overline{s}_v R_v \right) \overline{\rho} \, \overline{\theta} \right]^{C_P} \left(\frac{1}{p_0} \right)^{\frac{R_d}{C_V}}$$

Discretized momentum density is consistent between all conservation equations

Grid cells A and B have reduced volume and surface area Fully-underground cells have zero surface area

C-staggered momentum advection method of Perot (JCP 2002)

