Machine Learning

Pietro Garofalo

April 25, 2022

Mettere icona GitHub

Contents

1	Introduzione alla teoria Bayesiana nel machine learning	3
	1.1 Metodo di Naive-Baves	4

Chapter 1

Introduzione alla teoria Bayesiana nel machine learning

Abbiamo un classico problema di classificazione, si hanno C_n classi ciascuna etichettata con un label y_n .

Supponiamo di avere un determinato numero di features $\mathbf{X} = (x_1, x_2, ..., x_n)$ che descrivono le mie classi, il problema che ci poniamo è di trovare la :

$$P(y|\mathbf{X})$$

Ossia la probabilità di avere la classe targata y date features X infatti data questa la scelta che faremo fra tutte le classi è quella t.c la probabilità di cui sopra è massima! Trovare tale probabilità però è difficile, entra quindi in gioco il teorema di Bayes:

ATTENZIONE!

Teorema di Bayes:

$$P(y|\mathbf{X}) = \frac{P(\mathbf{X}|y)P(y)}{P(\mathbf{X})}$$

Tale teorema ci aiuta nel compito di determinare la probabilità che cerchiamo, facciamo un esempio per chiarire.

x_2	У
0	0
1	1
2	1
0	0
2	0
1	0
2	1
0	0
1	0
0	0
	0 1 2 0 2 1 2 0 1

Pagina 3 di 4

Se ti dovessi dare $\mathbf{X} = (0, 2)$ mi sapresti dire a quale classe appartiene? Applichiamo il th. di Bayes e vediamo, calcoliamoci tutte le quantità che ci servono:

$$P(y=0) = \frac{n(y=0)}{n(y=1) + n(y=0)} = \frac{6}{10}$$

$$P(y=1) = \frac{n(y=1)}{n(y=1) + n(y=0)} = \frac{4}{10}$$

$$P(\mathbf{X} = (0,2)|y=0) = 0$$

$$P(\mathbf{X} = (0,2)|y=1) = \frac{1}{4}$$

Troviamo quindi usando formula di Bayes:

$$P(y = 0|\mathbf{X}) = 0$$
$$P(Y = 1|\mathbf{X}) = \frac{1}{10}$$

La risposta alla domanda iniziale sarà y = 1, semplice no?

Assolutamente no! il problema è che qui avevamo solo 10 features e 10 campioni, pensa se ne hai 10000 e passa, come fai a controllare tutti i campioni per trovare la combinazione giusta? E se non la trovi dal tuo dataset di campioni essa risulta zero?

1.1 Metodo di Naive-Bayes

ATTENZIONE!

La assunzione fondamentale è che le features $x_1, x_2, ..., x_n$ siano indipendenti così che possiamo scrivere :

$$P(\mathbf{X} = (\mathbf{0}, \mathbf{2})|\mathbf{y} = \mathbf{0}) = P(x_1 = 0|y = 0) * P(x_2 = 2|y = 0)$$

Trasformando la probabilità in una produttoria sarà ora molto più facile trovarla, basta per esempio un semplice istogramma (come vedremo in un esempio) ed il gioco è fatto !