ONLINE SUPPLEMENT TO

Bayesian Inventory Management with Potential Change-Points in Demand

Feburary 17, 2014

Table 1: Bounds and performance of heuristic policies (for p=4).

Gap%	14.56%	17.48%	K1 9907	01:04/0	62.37%	165.58%	187.47%	288%		7.60%	13.77%	13.14%	22.13%	27.04%		10.17%	8.12%	17.95%	17.53%	23.95%	21 810%	0/10:17	14.81%	11.56%	31.34%	28.20%	40.29%	45.11%		27.23%	23.70%	39.36%	41 43%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56.11%	54.32%
OPTNOCHG	50.7043	98.6992	(0.3404)	(0.1968)	103.3729	(0.2788) 58.5846	(0.1424) 107.5167	(0.2197)	(0.3848)	102.1953	(1.9002) 55.6318	(0.9321) 103.9225	(1.0202) 58.3675	(0.8011)	(1.3330)	(1.1738)	120.8614	84.4206	(1.9401) 156.5064	(2.9744) 104.4125	(1.9984)	(3.1556)	(1.8292)	145.4677	128.4318	(2.6922) 228.1226	(4.3339) 172.5764	(3.2662)	(5.8002)	100.5450	180.5146	(3.8907) 167.2167	(3.4519)	(5.8597)	241.0842	(42.1200) 427.4608 (6.6787)
Gap%	58.23%	33.19%	20 61 02	0.10.64	19.90%	9.61%	6.97%	11.22%	1	9.81%	7.42%	2.31%	0.01%	1.03%		0.85%	4.64%	3.25%	1.68%	0.45%	1 98%	1.00/0	16.22%	8.71%	6.24%	1.93%	0.55%	2.61%		31.28%	18.18%	7.72%	4 96%	200	1.83%	1.15%
OPTCHG	70.0338	111.9046	(0.6380)	(0.4608)	76.3320	(0.6978) 24.1799	(0.3593) 40.0088	(0.5487)	(0.3855)	104.2959	52.5278	93.9750	(0.7833) 47.7965	(0.6020)	(0.9799)	(0.6796)	116.9715	73.8998	(1.1596) 135.4040	(1.6255) 84.6195	(1.1357)	(1.7973)	(1.0688)	141.7576	103.8835	(1.5150) 181.3826	(2.1953) 123.6944	(1.7708) 227.7564	(3.0311)	103.7473	172.4589	(1.9981) 129.2623	(1.8493)	(2.8086)	157.2619	(2.3183) 280.1753 (3.3184)
Gap%	7.95%	5.79%	7007	000	5.25%	1.41%	0.79%	%890-		2.03%	2.84%	-0.80%	-0.43%	%09.0	20 5	1.01%	0.56%	1.71%	0.39%	0.60%	1 410%	0/14:1-	-0.63%	-1.45%	1.65%	-1.02%	0.14%	2.50%		3.16%	1.12%	0.21%	0.51%	0.10.0	%96.0	0.79%
LA-I	47.771	88.8786	(0.4381)	(0.3341)	67.0073	(0.5578) 22.3695	(0.3110) 37.6956	(0.4926)	(0.3320)	96.9036	50.2894	(0.6282) 91.1161	(0.7590) 47.5838	(0.6053)	(0.9811)	(0.7261)	112.4167	72.7967	(1.2012) 133.6872	(1.6707) 84.7448	(1.1662)	(1.8183)	(1.1811)	128.5080	99.3997	(1.6122) 176.1322	(2.3190) 123.1802	(1.8386) (227.5123)	(3.1013)	81.5254	147.5604	(2.2017) 120.2400	(2.0415)	(3.0163)	155.9127	(2.13/1) 2 79.1745 (3.4364)
Gap%	8.02%	2.80%	7027	000	5.24%	1.33%	0.71%	28%		1.95%	2.81%	-0.82%	-0.44%	0.61%		1.70%	0.46%	1.63%	0.31%	0.51%		-1.01/0	~999.0-	-1.54%	1.67%	-1.05%	0.21%	2.41%		3.18%	1.16%	0.18%	0.46%	200	0.99%	%69.0
$_{ m LA-M}$	47.8105	88.8875	(0.4381)	(0.3340)	67.0006	(0.5579) 22.3516	(0.3112) 37.6655	(0.4923)	(0.3323)	96.8358	50.2743	91.0979	(0.7590) 47.5791	(0.6053)	(0.9807)	(0.7259)	112.3044	72.7385	(1.2015) 133.5803	(1.6705) 84.6686	(1.1667)	(1.8192)	(1.1821)	128.3924	99.4196	(1.6115) 176.0794	(2.3190) 123.2665	(1.8404)	(3.1013)	81.5417	147.6194	(2.1995) 120.2040	(2.0425)	(3.0154)	155.9595	(2.1555) 278.8956 (3.4385)
Gap%	9.84%	9.47%	20 24 20 2	0/00/00	20.58%	8.66%	5.94%	-0.54%		1.86%	2.69%	-0.77%	-0.42%	0.59%	200	1.01%	0.42%	1.48%	0.23%	0.32%	1 49%	1.000	-0.78%	-1.51%	1.60%	-1.10%	0.16%	2.31%		2.99%	1.14%	-0.02%	0.41%	0.1	1.16%	0.70%
Myopic	48.6139	91.9763	(0.3638)	(0.2227)	76.7642	23.9697	(0.2677) 39.6241	(0.4432)	(0.3235)	96.7444	50.2127	91.1438	(0.7395) 47.5917	(0.5779)	(0.9571)	(0.7166)	112.2596	72.6331	(1.1820) 133.4709	(1.6529) 84.5122	(1.1380)	(1.7981)	(1.1634)	128.4335	99.3455	(1.5961) 175.9873	(2.2885) 123.2082	(1.7843) 227.0736	(3.0419)	81.3868	147.5893	(2.1891) 119.9678	(1.9684)	(2.9533)	156.2210	(2:1312) 2 78.9428 (3:3460)
LB^M	40.2985	79.8954	00 6790		56.2041	17.0479	32.5127			93.2702	47.2685	89.6411	46.8004	86.0120		57.0343	109.9887	70.5127	131.4374	83.9910		1000.401	66.3320	126.7072	93.7568	173.2337	121.1817			73.7701	140.0821	112.3521	208 8707		150.9342	273.2594
LB^I	44.2602	84.0165	(0.0815)	(0.0435)	63.6631	(0.1084) 22.0591	(0.0426) 37.4009	(0.0963)	(0.0322)	94.9790	48.8989	(0.0567) 91.8506	(0.1386) 47.7916	(0.0997) 87.3003	(0.1838)	(0.0841)	111.7873	71.5720	(0.1246) 133.1615	(0.2842) 84.2389	(0.1610)	(0.3783)	(0.1371)	130.3991	97.7850	(0.2044) 177.9418	(0.4405) 123.0121	(0.2581)	(0.5335)	79.0277	145.9312	(0.3813) 119.9931	(0.2597)	(0.5689)	154.4294	276.9906 (0.7313)
T	22	10	14	,	10	rů	10	LC,)	10	ю	10	ro	10) H	ი	10	ю	10	rO	0) i	<u>م</u>	10	ro	10	ıΩ	9	2	n	10	rO	10	0	rO	10
7	0.2		, 14	5.		8.0		0.0	!		0.5		8.0		c	7.0		0.5		8.0		0	0.7		0.5		0.8			0.2		0.5			8.0	
S_c	П							r.	0						Ş	10						ì	To							19						
d	4																																			
Instance	1	2	c	o	4	ю	9	1	-	∞	6	10	11	12	<u> </u>	13	14	15	16	17	ŏ	0 0	19	20	21	22	23	2.7	i	22	26	27	86	3	29	30

 $a^h = 48, S^h = 160, a^c = 3$ for all instances. Standard errors are reported in the parentheses below the corresponding estimates.

Table 2: Bounds and performance of heuristic policies (for p=9).

Gap%	10.45%	14.91%	39.26%	7007	01:44/0	121.49%	151.27%	8. 7.7.%		3.66%	13.93%	16.47%	20.71%		27.21%	15.72%	10.80%	24.46%		27.85%	39.25%	43.31%	30.36%	28 74%		59.24%	53.98%	72.79%	65.98%		32.60%	34.43%	75.25%	67.54%		85.50%	93.08%
OPTNOCHG	67.5849	133.2049	(0.6023) 71.9651	(0.3008)	(0.4302)	75.1120	139.1579	(0.3606)	(0.8241)	136.2961	79.3094	(1.3886) 149.8462	(2.2242) 83.5777	(1.4117)	157.5532 (2.2369)	95.9392	(2.2363) 173.7639	(3.2321)	(3.1338)	243.5657 (4.8744)	173.9835	(6.5114) 315.9940	(9.0070) 132.7373	(4.3214)	(5.2738)	232.6362	394.3230	(11.5214) 316.0882	(7.1661) 533.5367	(10.6901)	157.0130 (4.5438)	282.7756	(7.4551) 316.3742	(9.8222) 521.8764	(11.7488)	(16.0711)	773.1140 (14.9257)
Gap%	95.47%	54.48%	53.70%	21 2 40%	07.10	15.65%	12.69%	13.15%		8.17%	8.66%	4.53%	1.10%		2.05%	10.82%	5.34%	2.75%		2.56%	0.14%	2.37%	24.99%	13 06%		7.65%	5.55%	3.59%	0.87%		33.54%	20.61%	14.18%	5.79%		6.48%	3.54%
OPTCHG	119.6096	(0.61/3) 179.0718	(1.1089) 79.4264	(0.8419)	(1.1576)	39.2202	62.4115	(0.9114)	(0.7142)	142.2273	75.6364	(1.0025) 134.4743	(1.2412) 69.9956	(0.9788)	126.4015 (1.4605)	91.8815	$^{(1.1477)}_{165.1992}$	(1.5966)	(1.6505)	195.3915 (2.3261)	125.1134	(2.3/56) 225.7092	(3.8147) 127.2669	(1.9864)	(2.1681)	157.2722	270.3129	(5.2919) 189.5009	(3.3094) 324.2532	(4.4848)	158.1329	253.6930	(2.9228) 206.1225	(4.2672) 329.5138	(4.4594)	(6.1414)	414.5634
Gap%	898.9	808.9	11.70%	1	0/61.7	3.73%	3.66%	0.22%		-0.38%	3.28%	1.16%	0.42%		1.36%	2.92%	-0.44%	0.40%		1.19%	0.32%	2.26%	3.50%	%48 0-		4.33%	2.04%	3.27%	0.55%		-0.50%	-0.48%	6.44%	0.65%	2 2	1.03%	3.16%
LA-I	65.3898	(0.4264) 123.8018	(0.6881) 57.7223	(0.4961)	(0.7981)	35.1770	57.4092	(0.7744) 68.4134	(0.6401)	130.9820	71.8945	(0.9684) 130.1501	(1.2100) 69.5292	(0.9747)	125.5474 (1.4574)	85.3328	(1.2949) 156.1375	(1.7297)	(1.7564)	1 92.7834 (2.4632)	125.3330	(2.46/9) 225.4773	(3.8606) 105.3874	(2.2930)	(2.5064)	152.4174	261.3212	(5.4815) 188.9102	(3.4481) 323.2105	(4.6443)	117.8209	209.3367	(3.3662) 192.1542	(4.6209) 313.4965	(4.9553)	(6.5785)	413.0785
Gap%	6.77%	6.85%	11.61%	7000	0/80:1	3.77%	3.72%	0.32%	1	-0.36%	3.31%	1.06%	0.36%		1.45%	2.89%	-0.36%	0.33%		1.23%	0.21%	2.33%	3.53%	-0.35%		4.22%	2.05%	3.29%	0.62%		-0.47%	-0.52%	6.53%	0.66%	2 20	1.09%	3.22%
LA-M	65.3310	(0.4200) 123.8637	(0.6884) 57.6761	(0.4962)	(0.7978)	35.1911	57.4437	(0.7742)	(0.6407)	131.0082	71.9161	(0.9685) 130.0201	(1.2088) 69.4875	(0.9753)	125.6479 (1.4565)	85.3072	(1.2941) 156.2625	(1.7287)	(1.7576)	192.8606 (2.4637)	125.2078	(2.46/4) 225.6352	(3.8595) 105.4191	(2.2933)	(2.5062)	152.2501	261.3473	(5.4771) 188.9480	(3.4505) 323.4369	(4.6475)	117.8563	209.2530	(3.3648) 192.3081	(4.6236) 313.5278	(4.9503)	(6.5851)	413.2852
Gap%	8.02%	9.84%	21.17%	2000	0/07:07	25.42%	26.07%	0.12%		-0.42%	3.25%	1.03%	0.76%		1.75%	2.69%	-0.38%	0.28%		1.03%	0.30%	2.38%	3.28%	-0.49%		4.58%	2.16%	3.81%	1.02%		-0.49%	-0.59%	7.03%	0.93%		2.13%	3.70%
Myopic	66.0950	(0.3013) 127.3287	(0.5961) 62.6175	(0.3434)	(0.5292)	42.5325	(0.3400) 69.8179	(0.5623)	(0.6195)	130.9327	71.8763	(0.9313) 129.9798	(1.1578) 69.7628	(0.9214)	126.0234 (1.3977)	85.1349	$^{(1.2622)}_{156.2390}$	(1.7054)	(1.7121)	192.4793 (2.3973)	125.3180	(2.3308) 225.7410	(3.7755) 105.1655	(2.2138)	(2.4595)	152.7883	261.6285	(5.4350) 189.9012	(3.2691) 324.7263	(4.4585)	117.8387	209.1055	(3.3322) 1 93.2156	(4.3832) 314.3829	(4.6752)	(6.0775)	415.2349
T'B	55.4161	109.5441	39.8750	77	2	24.3338	45.5950	66.5945		128.9670	67.8210	126.1269	69.0474		123.2868	80.5675	153.2457	102.7535		186.8236	124.9394	220.4015	94.5405	177 5244		137.6860	247.5203	180.8314	317.5162		105.7189	196.9473	165.6320	296.0776		725.5450	395.2080
ΓB_{τ}	61.1904	(0.0565) 115.9198	(0.1048) 51.6779	(0.0515)	(0.1400)	33.9116	(0.0349) 55.3823	(0.1298) 68.2613	(0.0578)	131.4879	69.6107	(0.0819) 128.6514	(0.1840)	(0.1085)	123.8577 (0.2502)	82.9084	(0.1180) 156.8300	(0.2565)	(0.1711)	190.5104 (0.4586)	124.2541	(0.2206) 220.4895	(0.5201) 101.8251	(0.1972)	(0.4027)	146.0909	256.0934	(0.6001) 182.9305	(0.3744) 321.4416	(0.7966)	118.4147	210.3484	(0.5404) 180.5282	(0.4022)	(0.7947)	(0.5152)	400.4063
I	ro -	10	ro	-	2	ıo	10	r.)	10	rC	10	r.) ;	01	ro	10	M,)	01	20	10	ro		0	ro	10	ro	10		ın.	10	ы) h	ი	10
۲	0.3		0.5			8.0		0.0	1		0.5		œ			0.2		75			8.0		0.2			0.5		8.0			0.5		0.5		9	ø. O	
S	1							Ľ,)							10							15								19						
d	6																																				
Scenario	31	32	33	70	# ₀	35	36	37		38	39	40	41		42	43	44	45		46	47	48	49	т. С		51	52	53	7.3 4.4		52	56	57	7.5 00) i	60	09

 $a^h = 48, S^h = 160, a^c = 3$ for all instances. Standard errors are reported in the parentheses below the corresponding estimates.