Appendix C

Arsenic Thermodynamic Data

published in 2009

C.1 Introduction

Italicized terms in the text of this appendix or words derived from the italicized terms are defined in the glossary of Appendix B.

Table C.1 lists published thermodynamic data for arsenic, including: the more common elemental forms, selected compounds, and some aqueous and gaseous species. The table contains Gibbs free energy (ΔG_f) , enthalpy (ΔH_f) , entropy (S), and heat capacity (Cp) values at 1 bar pressure and mostly at 298.15 K (25 °C). For thermodynamic data of chemical species not containing arsenic, extensive tables occur in geochemistry textbooks and other references, including: (Barin, 1995; Robie, Hemingway and Fisher, 1979; Wagman et al., 1982; Drever, 1997; Eby, 2004; Faure, 1998; Lide, 2007; Krauskopf and Bird, 1995). Thermodynamic data are important in examining the behavior of arsenic in mineral—water interactions, studying water quality issues, investigating the formation of ore deposits, developing and interpreting Eh-pH diagrams, and designing environmental remediation projects (Nordstrom and Archer, 2003, 1–2).

Not all published and widely accepted thermodynamic values are reliable. Nordstrom and Archer (2003) provide a detailed review of the controversies, uncertainties, and problems related to thermodynamic data for arsenic and its compounds and aqueous species. Many of the data are contradictory and the methods that produce the data are sometimes questionable or have not been thoroughly documented. Too often, data in the literature have been passed from reference to reference without critical evaluations. Some of the data have high measurement errors, were produced under undefined or poorly defined laboratory conditions, and involved unrepresentative sampling (Matschullat 2000, 298; Nordstrom and Archer, 2003). Furthermore, other questionable data originate from obscure documents or are written in languages that many individuals cannot read and properly interpret. Therefore, thermodynamic results must be accepted with a certain amount of caution. The table in this appendix includes thermodynamic data from various sources, which provide users with some idea of their variability. Although sometimes unavoidable, users

are cautioned to avoid mixing data from different literature sources when performing calculations for a reaction. Using data from multiple sources may introduce serious errors (Wagman *et al.*, 1982; Eby, 2004, 474).

C.2 Modeling applications with thermodynamic data

Once high-quality laboratory data are available, they may be used in geochemical computer models, such as MINTEQA2 (Allison, Brown and Novo-Gradac, 1991) and PHREEQC (Parkhurst and Appelo, 1999). Langmuir (1997, 558–561) provides a brief review of the different types of geochemical models and their advantages and limitations. Geochemical models allow users to avoid tedious calculations. When properly utilized, they may: (1) derive *adsorption* models, (2) identify probable aqueous species and estimate their *activities*, (3) model the effects of pH, *reduction/oxidation* (*redox* conditions), temperature, *ionic strength*, and other factors on arsenic chemistry, and/or (4) identify possible *precipitates*. However, as discussed in Chapter 2, geochemical models are often incapable of accurately representing and predicting the complex behavior of arsenic in natural environments. Specifically, the models typically fail to predict the presence of *metastable* species, sluggish chemical reactions, and the effects of biological organisms.

C.3 Thermodynamic data

Arsenic Thermodynamic Data

Table C.1 Thermodynamic data for arsenic, its compounds, and its aqueous and gaseous species at 1 bar pressure. Note that the units of G_i and H_i are 1000 times larger than S_i and Cp_i . 1 kcal = 4.184 kJ. C = K - 273.15. (See Appendix A for other unit conversions). Phases include: amorphous (am), aqueous species (aq), gas, liquid (liq), and crystalline solids (xls).

Chemical species	Phase	Temperature (K)	Gibbs free energy (G_i) $(kJ \text{ mol}^{-1})$	Enthalpy (H_i) (kJ mol ⁻¹)	Entropy (S_i) (J mol ⁻¹ ·K ⁻¹)	Heat Capacity (Cp_i) (J mol ⁻¹ ·K ⁻¹)	Reference
Elemental							
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	298.15	0	0	35.63	24.43	Nordstrom and Archer (2003)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	298.15	0	0	35.1	_	Wagman <i>et al</i> . (1982)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	298.15	0	0	35.69	24.65	Robie, Hemingway and Fisher (1979)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	298.15	0	0	35.6	_	Naumov, Ryzhenko and Khodakovsky (1974)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	298.15	0	0	35.706	24.652	Barin (1995)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	400	0	0	43.04	25.38	Robie, Hemingway and Fisher (1979)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	400	0	0	43.065	25.388	Barin (1995)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	500	0	0	48.77	25.96	Robie, Hemingway, and Fisher (1979)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	500	0	0	48.790	25.945	Barin (1995)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	600	0	0	53.55	26.51	Robie, Hemingway and Fisher (1979)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	600	0	0	53.569	26.501	Barin (1995)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	700	0	0	57.68	27.05	Robie, Hemingway and Fisher (1979)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	700	0	0	57.696	27.054	Barin (1995)

 Table C.1 (continued)

Chemical species	Phase	Temperature (K)	Gibbs free energy (G_i) $(kJ \text{ mol}^{-1})$	Enthalpy (H_i) (kJ mol ⁻¹)	Entropy (S_i) (J mol ⁻¹ ·K ⁻¹)	Heat Capacity (Cp_i) (J mol ⁻¹ ·K ⁻¹)	Reference
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	800	0	0	61.33	27.60	Robie, Hemingway and Fisher (1979)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	800	0	0	61.344	27.580	Barin (1995)
As(0) (elemental arsenic, rhombohedral or 'gray')	xls	875	0	0	63.82	28.03	Robie, Hemingway and Fisher (1979)
As(0) (elemental arsenic, amorphous or 'black')	am	298.15	_	4.2	_	_	Wagman <i>et al</i> . (1982)
As(0) (elemental arsenic, amorphous or 'black')	am	298.15	_	13.6	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
As ⁺	gas	298.15	_	1255.6	_	_	Wagman et al. (1982)
As^{2+}	gas	298.15	_	3059.8	_	_	Wagman <i>et al</i> . (1982)
As^{3+}	gas	298.15	_	5801.1	_	_	Wagman <i>et al.</i> (1982)
As^{4+}	gas	298.15	_	10644	_	_	Wagman et al. (1982)
As^{5+}	gas	298.15	_	16694	_	_	Wagman <i>et al.</i> (1982)
As^{6+}	gas	298.15	_	29045	_	_	Wagman <i>et al</i> . (1982)
As_2	gas	298.15	171.9	222.2	239.4	35.003	Wagman <i>et al</i> . (1982)
As ₂	gas	298.15	143	194	242.2	_	Naumov, Ryzhenko and Khodakovsky (1974)
As ₄	gas	298.15	92.4	143.9	314	_	Wagman et al. (1982)
As ₄	gas	298.15	87.9	144	330	_	Naumov, Ryzhenko and Khodakovsky (1974)
As ₄ Gases and aqueous species	gas	298.15	98.261	153.30	327.43	77.208	Barin (1995)

of arsenic compounds

Ag ₃ AsO ₄ AlAs AlAs AlAsO ₄ AlAsO ₄ ·2H ₂ O (mansfieldite)	xls 298.15 xls 298.15 xls 298.15 xls 298.15 xls 298.15 xls 298.15	-545.39 -115.20 -1333.1 -1280.8 -1709	-634.29 -116.3 -116.32 -1431.1 -	275.83 — 60.25 145.60 —	173.86 — 45.80 118.34 —	Barin (1995) Wagman et al. (1982) Barin (1995) Barin (1995) Ryu et al. (2002) Naumov, Ryzhenko and Khodakovsky
AsBr ₃	gas 298.15	-161.67	-132.1	363.8	_	(1974) Pankratov and Uchaeva (2000)
AsBr ₃	gas 298.15	-159	-130	363.87	79.16	Wagman <i>et al.</i> (1982)
AsBr ₃	gas 298.15	-159.80	-130.00	363.99	78.992	Barin (1995)
AsCl ₃	gas 298.15	-258.05	-270.3	328.8	_	Pankratov and Uchaeva (2000)
$AsCl_3$	gas 298.15	-248.9	-261.5	327.17	75.73	Wagman <i>et al.</i> (1982)
$AsCl_3$	gas 298.15	-248.66	-261.50	327.30	75.395	Barin (1995)
$AsCl_3$	liq 298.15	-259.4	-305.0	216.3	_	Wagman et al. (1982)
AsCl ₃	liq 298.15	-259.08	-305.01	216.31	133.47	Barin (1995)
AsF_3	gas 298.15	-905.67	-785.8	289.0	_	Pankratov and Uchaeva (2000)
AsF_3	gas 298.15	-770.76	-785.76	298.10	65.61	Wagman et al. (1982)
AsF_3	gas 298.15	-770.65	-785.76	289.22	64.684	Barin (1995)
AsF_3	liq 298.15	-774.16	-821.3	181.21	126.57	Wagman et al. (1982)
AsF_3	liq 298.15	-774.01	-821.32	181.21	126.55	Barin (1995)
AsF ₅	gas 298.15	-1172.5	-1236.7	_	_	Pankratov and Uchaeva (2000)

 Table C.1 (continued)

Chemical species	Phase	Temperature (K)	Gibbs free energy (G_i) $(kJ \text{ mol}^{-1})$	Enthalpy (H_i) $(kJ \text{ mol}^{-1})$	Entropy (S_i) (J mol ⁻¹ ·K ⁻¹)	Heat Capacity (Cp_i) (J mol ⁻¹ ·K ⁻¹)	Reference
AsF ₅	gas	298.15	-1169.0	-1234.2	_	87.84	O'Hare (1993)
AsF ₅	gas	298.15	-1169.6	-1236.8	317.26	97.541	Barin (1995)
AsH ₃ (arsine)	gas	298.15	68.91	66.40	223.0	_	Pankratov and Uchaeva (2000)
AsH ₃ (arsine)	gas	298.15	68.93	66.44	222.78	38.07	Wagman et al. (1982)
AsH ₃ (arsine)	gas	298.15	68.83	66.4	223	_	Naumov, Ryzhenko and Khodakovsky (1974)
AsH ₃ (arsine)	gas	298.15	69.109	66.442	222.78	38.072	Barin (1995)
Asl ₃	xls	298.15	-59.4	-58.2	213.05	105.77	Wagman et al. (1982)
Asl ₃	xls	298.15	-59.091	-58.158	213.05	105.77	Barin (1995)
AsI ₃	gas	298.15	_		388.34	80.63	Wagman <i>et al.</i> (1982)
Asl ₃	gas	298.15	-15.321	38.911	391.82	80.960	Barin (1995)
AsN	gas	298.15	167.97	196.27	225.6	30.42	Wagman et al. (1982)
AsO	gas	298.15	-84.715	-57.287	230.27	32.342	Barin (1995)
As ₂ O ₃ (arsenolite, cubic)	xls	298.15	-576.34	-657.27	107.38	96.88	Nordstrom and Archer (2003)
As ₂ O ₃ (arsenolite, cubic)	xls	298.15	-576	-657	107.4	_	Robie, Hemingway and Fisher (1979)
As ₂ O ₃ (arsenolite, cubic)	xls	298.15	-588.3	-666.1	117	_	Naumov, Ryzhenko and Khodakovsky (1974)
As ₂ O ₃ (arsenolite, cubic)	xls	298.15	-576.41	_	_	_	Davis et al. (1996)
As ₂ O ₃ (arsenolite, cubic)	xls	298.15	-575.96	-656.97	107.41	96.878	Barin (1995)
As ₂ O ₃ (claudetite, monoclinic)	xls	298.15	-576.53	-655.67	113.37	96.98	Nordstrom and Archer (2003)
As ₂ O ₃ (claudetite, monoclinic)	xls	298.15	-576	-655	113.3	_	Robie, Hemingway and Fisher (1979)
As ₂ O ₃ (claudetite, monoclinic)	xls	298.15	-589.1	-664.0	127	_	Naumov, Ryzhenko and Khodakovsky (1974)

As ₂ O ₃ (claudetite, monoclinic)	xls 298.15	-576.64	-654.80	117.00	96.979	Barin (1995)
$As_2O_3 \cdot SO_3$	xls 298.15	_	-1194.32			Wagman <i>et al</i> . (1982)
As_2O_5	xls 298.15	-774.96	-917.59	105.44	115.9	Nordstrom and Archer (2003)
As ₂ O ₅	xls 298.15	-782.0	-924.7	105	_	Naumov, Ryzhenko and Khodakovsky (1974)
As_2O_5	xls 298.15	-782.78		_		Davis et al. (1996)
As_2O_5	xls 298.15	-782.3	-924.87	105.4	116.52	Wagman et al. (1982)
As_2O_5	xls 298.15	-782.09	-924.87	105.40	116.54	Barin (1995)
As_2O_5	xls 400	-733.31	-924.59	142.62	136.54	Barin (1995)
As_2O_5	xls 500	-685.66	-922.93	174.77	151.78	Barin (1995)
$As_2O_5 \cdot 4H_2O$	xls 298.15	_	-2104.6	_		Wagman et al. (1982)
$As_2O_5 \cdot 4H_2O$	xls 298.15	-1720				Faure (1998)
$(As_2O_5)_3 \cdot 5H_2O$	xls 298.15	_	-4248.4	_	_	Wagman et al. (1982)
As_4O_6	gas 298.15	-1092.2	-1196.2	409.35	173.60	Barin (1995)
AsS (α , realgar)	xls 298.15	-31.3	-31.8	62.9	47	Nordstrom and Archer (2003)
AsS (α , realgar)	xls 298.15	-35	-36	63.5	_	Naumov, Ryzhenko and Khodakovsky (1974)
AsS (β)	xls 298.15	-30.9	-31.0	63.5	47	Nordstrom and Archer (2003)
$AsS(OH)(SH)^{-}$	aq 298.15	-245.11				Helz et al. (1995)
As_2S_3	am 298.15	-76.8	-66.9	200	_	Nordstrom and Archer (2003)
As ₂ S ₃ (orpiment)	xls 298.15	-84.9	-85.8	163.8	163	Nordstrom and Archer (2003)
As ₂ S ₃ (orpiment)	xls 298.15	-95.4	-96.2	164	_	Naumov, Ryzhenko and Khodakovsky (1974)
$As_3S_4(SH)_2^-$	aq 298.15	-127.19	_	_	_	Helz et al. (1995)
						/ : 1 1 0

 Table C.1 (continued)

Chemical species	Phase	Temperature (K)	Gibbs free energy (G_i) $(kJ \text{ mol}^{-1})$	Enthalpy (H_i) (kJ mol ⁻¹)	Entropy (S_i) (J mol ⁻¹ ·K ⁻¹)	Heat Capacity (Cp_i) (J mol ⁻¹ ·K ⁻¹)	Reference
As_2Se_3	xls	298.15	-88.4	-86.1	7.8	_	O'Hare et al. (1990)
As_2Se_3	xls	298.15		-81.1	_		O'Hare (1993)
As_2Se_3	xls	298.15	-101.43	-102.51	194.56	121.39	Barin (1995)
As_2Se_3	am	298.15	_	-53.1	_	_	O'Hare (1993)
As_2Te_3	xls	298.15	-39.580	-37.656	226.35	127.49	Barin (1995)
$Ba_3(AsO_4)_2$	xls	298.15	-3113.40	_	_	_	Zhu et al. (2005)
$Ba_3(AsO_4)_2$	xls	298.15	-3192.2	-3421.7	309.62	257.21	Barin (1995)
BaHAsO ₄ ⋅H ₂ O	xls	298.15	-1544.47	_	_	_	Zhu et al. (2005)
$Be_3(AsO_4)_2$	xls	298.15	-2525.5	-2738.1	207.28	232.52	Barin (1995)
BiAsO ₄	xls	298.15	-619		_	_	Wagman <i>et al.</i> (1982)
BiAsO ₄	xls	298.15	-695.43	-795.21	168.07	121.12	Barin (1995)
BiAsO ₄ (rooseveltite)	xls	298.15	-613.58	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
$(CH_3)_3As$	gas	298.15	_	12	_	_	Pankratov and Uchaeva (2000)
$Ca(H_2AsO_4)_2$	xls	298.15	-2054	_	_	_	Ryu et al. (2002)
Ca ₂ AsO ₄ OH	xls	298.15	-1988	_	_	_	Ryu <i>et al</i> . (2002)
$Ca_3(AsO_4)_2$	xls	298.15	-3061	_		_	Ryu et al. (2002)
$Ca_3(AsO_4)_2$	xls	298.15	-3063.1	-3298.7	226.00	249.79	Barin (1995)
$Ca_3(AsO_4)_2$	xls	298.15	-3063.0	-3298.7	226		Wagman <i>et al.</i> (1982)
$Ca_3(AsO_4)_2 \cdot 2.25H_2O$	xls	298.15	-3611.50				Zhu <i>et al</i> . (2006)
$Ca_3(AsO_4)_2 \cdot 3H_2O$	xls	298.15	-3787.87				Zhu et al. (2006)
$Ca_3(AsO_4)_2 \cdot 3.67H_2O$	xls	296	-3945	_	_	_	Bothe and Brown (1999)
$Ca_3(AsO_4)_2 \cdot 4H_2O$	xls	298.15	-4019	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
$Ca_3(AsO_4)_2 \cdot 4.25H_2O$	xls	296	-4085	_	_	_	Bothe and Brown (1999)

$Ca_3(AsO_4)_2 \cdot 6H_2O$	xls 298.15	-2732	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
$Ca_3(AsO_4)_2 \cdot 8H_2O$	xls 298.15	-3530	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
$Ca_4(OH)_2(AsO_4)_2 \cdot 4H_2O$	xls 296	-4941	_	_	_	Bothe and Brown (1999)
$Ca_4(OH)_2(AsO_4)_2 \cdot 4H_2O$	xls 298.15	-4928.86	_	_	_	Zhu <i>et al</i> . (2006)
$Ca_5(AsO_4)_3OH$	xls 296	-5087	_		_	Bothe and Brown (1999)
$Ca_5(AsO_4)_3OH$	xls 298.15	-5096.47			_	Zhu et al. (2006)
$Ca_5H_2(AsO_4)_4$	xls 298.15	-5636.7		_	_	Ryu <i>et al.</i> (2002)
$Ca_5H_2(AsO_4)_4 \cdot 9H_2O$ (ferrarisite)	xls 296	-7808	_	_	_	Bothe and Brown (1999)
$Ca_5H_2(AsO_4)_4 \cdot 9H_2O$ (guerinite)	xls 296	-7803	_	_	_	Bothe and Brown (1999)
$CaH(AsO_4)\cdot H_2O$	xls 296	-1533	_	_	_	Bothe and Brown (1999)
CaHAsO ₄	aq 298.15	_	-1446.0	_	_	Wagman et al. (1982)
$Cd_3(AsO_4)_2$	xls 298.15	-1716.1		_	_	Wagman et al. (1982)
$Cd_3(AsO_4)_2$	xls 298.15	-1712.0	-1934.3	301.71	258.82	Barin (1995)
Cd_3As_2	xls 298.15		-41.8	_	_	Wagman et al. (1982)
Cd_3As_2	xls 298.15	-35.885	-41.840	206.83	125.30	Barin (1995)
$CdAs_2$	xls 298.15		-17.6	_	_	Wagman et al. (1982)
CoAs	xls 298.15		-40.6		_	Wagman et al. (1982)
CoAs (modderite)	xls 298.15	-49	-51	59	_	Naumov, Ryzhenko and Khodakovsky (1974)
CoAs ₂	xls 298.15		-61.5		_	Wagman et al. (1982)
CoAs ₂ (safflorite)	xls 298.15	-97	-83	100	_	Naumov, Ryzhenko and Khodakovsky (1974)
						(continued overleaf)

 Table C.1 (continued)

Chemical species	Phase	Temperature (K)	Gibbs free energy (G_i) $(kJ \text{ mol}^{-1})$	Enthalpy (H_i) (kJ mol ⁻¹)	Entropy (S_i) (J mol ⁻¹ ·K ⁻¹)	Heat Capacity (Cp_i) (J mol ⁻¹ ·K ⁻¹)	Reference
Co. Ao	مايد	200.15		20.7			Wagnese 4 J (1002)
Co ₂ As	xls xls	298.15 298.15	_	-39.7 -97.5	_		Wagman <i>et al.</i> (1982)
Co_2As_3	xls	298.15	_	-97.5 -81.2	_		Wagman <i>et al.</i> (1982)
Co_3As_2			_		_		Wagman <i>et al.</i> (1982)
Co_5As_2	xls	298.15	1620.0	-79.5		_	Wagman <i>et al.</i> (1982)
$Co_3(AsO_4)_2$	xls	298.15	-1620.8	10643			Wagman <i>et al.</i> (1982)
$Co_3(AsO_4)_2$	xls	298.15	-1671.9	-1864.3	337.02	264.31	Barin (1995)
CrAsO ₄	xls	298.15	-968.36	-1062.1	155.35	119.10	Barin (1995)
$Cr_3(AsO_4)_2$	xls	298.15	-2027.0	-2218.2	321.42	261.83	Barin (1995)
Cs ₃ AsO ₄	xls	298.15	-1543.9	-1668.5	283.59	176.22	Barin (1995)
Cu ₃ As	xls	298.15	_	-11.7		_	Wagman <i>et al.</i> (1982)
Cu ₃ As	xls	298.15	-12.322	-11.715	137.24	93.080	Barin (1995)
$Cu_3(AsO_4)$	xls	298.15	-624.04	-710.36	255.98	176.36	Barin (1995)
_	xls	298.15	-1300.7	_	_		Wagman et al. (1982)
$Cu_3(AsO_4)_2$	xls	298.15	-1301.32	_	_		Davis et al. (1996)
$Cu_3(AsO_4)_2$	xls	298.15	-1316.0	-1522.6	298.61	258.21	Barin (1995)
$Cu_3(AsO_4)_2 \cdot 6H_2O$	xls	298.15	-2733.04	_	_	_	Davis et al. (1996)
Cu ₃ AsS ₄ (enargite)	xls	298.15	-206.74	-179.0	356.4	_	Castro and Baltierra (2005) and Kantar (2002)
Cu ₃ AsS ₄ (enargite)	xls	298.15	_	_	257.6	190.4	Seal <i>et al</i> . (1996)
Cu ₃ AsS ₄ (enargite)	xls	298.15	-437.26	_			Davis et al. (1996)
$Fe_3(AsO_4)_2$	xls	298.15	-1753.93	_	_		Davis et al. (1996)
$Fe_3(AsO_4)_2 \cdot 8H_2O$ (symplesite)	xls	298.15	-3687.26	_	_	_	Davis <i>et al</i> . (1996)
FeAs (westerveldite)	xls	298.15	-43.36	-43.51	62.5	50.36	Perfetti et al. (2008)
FeAs ₂ (loellingite)	xls	298.15	-52.09	-43.5	127		Naumov, Ryzhenko and Khodakovsky (1974)

FeAsO ₄	xls 298.15	-772.39	-865.34	161.54	117.05	Barin (1995)
FeAsO ₄	xls 298.15	-772.62	_	_	_	Ryu <i>et al</i> . (2002)
FeAsO ₄ ·2H ₂ O (scorodite)	xls 298.15	-1280.1	_	_	_	Ryu <i>et al</i> . (2002)
FeAsO ₄ ·2H ₂ O (scorodite)	xls 296	-1279.2	_		_	Krause and Ettel (1988)
FeAsO ₄ ·2H ₂ O (scorodite)	xls 298.15	-1267.69	_	_	_	Davis et al. (1996)
$Fe_3(AsO_4)_2$	xls 298.15	-1766.0	-1955.0	339.91	264.64	Barin (1995)
FeAsS (arsenopyrite)	xls 298	-136.45	-144.36	68.5	68.44	Perfetti et al. (2008)
FeAsS (arsenopyrite)	xls 298	-141.6	_	_	_	Pokrovski, Kara and
						Roux (2002)
FeAsS (arsenopyrite)	xls 298.15	-127.25	_	_	_	Davis et al. (1996)
FeAsS ₂ (loellingite)	xls 298.15	-80.23	-85.77	80.1	70.83	Perfetti et al. (2008)
FeAsS ₂ (loellingite)	xls 298.15	-52.116	_	_	_	Davis et al. (1996)
GaAs (gallium arsenide)	xls 298.15	-67.8	-71	64.18	46.23	Wagman et al. (1982)
GaAs (gallium arsenide)	xls 298.15	-70.374	-74.057	64.183	46.858	Barin (1995)
GaAs (gallium arsenide)	xls 298.15	-67.8	-71	64.2	_	Naumov, Ryzhenko and Khodakovsky (1974)
GaAsO ₄	xls 298.15	-901.85	-1002.2	150.12	118.26	Barin (1995)
$H_3AsO_3^0$	aq 298.15	-639.8	-737.3	212.4	85.0	Perfetti et al. (2008)
$H_3AsO_3^{0}$	aq 298.15	-640.03	-742.36	195.8	_	Nordstrom and Archer (2003)
$H_3AsO_3^0$	aq 298.15	-639.78	-740.82	200	197	Pokrovski <i>et al</i> . (1996)
$H_2AsO_3^-$	aq 298.15	-587.13	-714.79	110.5	_	Wagman et al. (1982)
$H_2AsO_3^-$	aq 298.15	-587.66	-714.74	112.79	_	Nordstrom and Archer (2003)
HAsO ₃ ²⁻	aq 298.15	-524	-689	– 15		Dove and Rimstidt (1985)
						(continued overleaf)

 Table C.1 (continued)

Chemical species	Phase	Temperature (K)	Gibbs free energy (G_i) $(kJ \text{ mol}^{-1})$	Enthalpy (H_i) (kJ mol ⁻¹)	Entropy (S_i) (J mol ⁻¹ ·K ⁻¹)	Heat Capacity (Cp_i) (J mol ⁻¹ ·K ⁻¹)	Reference
HAsO ₃ ²⁻	aq	298.15	-524.3	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
AsO_3^{3-}	aq	298.15	-448	-664	-187	_	Dove and Rimstidt (1985)
AsO ₃ ³⁻	aq	298.15	-447.7	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
$H_3AsO_4^0$	aq	298.15	-766.3	-898.6	198.3	105.0	Perfetti et al. (2008)
$H_3AsO_4^{0}$	aq	298.15	-766.75	-903.45	183.07	_	Nordstrom and Archer (2003)
$H_2AsO_4^-$	aq	298.15	-753.17	-909.56	117	_	Wagman et al. (1982)
$H_2AsO_4^{\frac{1}{2}}$	aq	298.15	-753.65	-911.42	112.38	_	Nordstrom and Archer (2003)
$HAsO_4^{2-}$	aq	298.15	-713.73	-908.41	-11.42	_	Nordstrom and Archer (2003)
$HAsO^{2-}_4$	aq	298.15	-714.60	-906.34			Wagman et al. (1982)
AsO_4^{3-7}	aq	298.15	-646.36	-890.21	-176.31	_	Nordstrom and Archer (2003)
HAsO ₃ F ⁻	aq	298.15	-1060.96			_	Wagman et al. (1982)
AsO_3F^{2-}	aq	298.15	-1027.45	_	_	_	Wagman <i>et al.</i> (1982)
$Hg_3(AsO_4)_2$	xls	298.15	-1033.6	-1271.0	323.47	261.72	Barin (1995)
InAs (indium arsenide)	xls	298.15	-53.6	-58.6	75.7	47.78	Wagman et al. (1982)
InAs (indium arsenide)	xls	298.15	-53.286	-58.601	75.701	47.780	Barin (1995)
InAs (indium arsenide)	xls	298.15	-52.7	-57.7	75.7	_	Naumov, Ryzhenko and Khodakovsky (1974)
InAsO ₄	xls	298.15	-874.26	-978.30	154.85	119.32	Barin (1995)
KAs	xls	298.15	_	-102.9	_	_	Wagman et al. (1982)

KAs ₂	xls 298.15	_	-127.2	_	_	Wagman et al. (1982)
K_3As	xls 298.15	_	-186.2	_	_	Wagman et al. (1982)
K_5As_4	xls 298.15	_	-452.7	_	_	Wagman et al. (1982)
KH_2AsO_4	xls 298.15	-1035.9	-1180.7	155.02	126.73	Wagman et al. (1982)
KH ₂ AsO ₄	xls 298.15	-1041.6	-1186.2	155	_	Naumov, Ryzhenko and Khodakovsky (1974)
$K_3(AsO_4)$	xls 298.15	-1548.8	-1668.7	237.82	172.29	Barin (1995)
KUO ₂ AsO ₄	xls 298.15	-2021.1	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
LaAsO ₄	xls 298.15	-1455.7	-1556.9	163.47	117.89	Barin (1995)
$Li_3(AsO_4)$	xls 298.15	-1595.0	-1702.4	173.13	161.84	Barin (1995)
$MgAs_4$	xls 298.15	_	-126	_	_	Wagman et al. (1982)
Mg_3As_2	xls 298.15	_	-371.5	_	_	Wagman et al. (1982)
$Mg_3(AsO_4)_2$	xls 298.15	_	-3092.8			Wagman et al. (1982)
$Mg_3(AsO_4)_2$	xls 298.15	-2775	_	_	_	Ryu et al. (2002)

 Table C.1 (continued)

Chemical species	Phase	Temperature (K)	Gibbs free energy (G_i) $(kJ \text{ mol}^{-1})$	Enthalpy (H_i) (kJ mol ⁻¹)	Entropy (S_i) (J mol ⁻¹ ·K ⁻¹)	Heat Capacity (Cp_i) (J mol ⁻¹ ·K ⁻¹)	Reference
$Mg_3(AsO_4)_2$	xls	298.15	-2831.7	-3059.8	225.10	236.31	Barin (1995)
$Mg_3(AsO_4)_2 \cdot 10H_2O$	xls	298.15	-5147.2	_	_	_	Ryu et al. (2002)
MgHAsO ₄	xls	298.15	-1187	_	_	_	Ryu et al. (2002)
MgHAsO ₄ ·7H ₂ O (roesslerite)	xls	298.15	-2848	_	_	_	Ryu <i>et al.</i> (2002)
$MgNH_4AsO_4 \cdot 6H_2O$	xls	298.15	_	-3316.7	_	_	Wagman et al. (1982)
MnAs (α)	xls	298.15	-61.636	-51.861	107.00	71.116	Barin (1995)
MnAs (β)	xls	298.15	-59.865	-53.297	91.442	70.340	Barin (1995)
MnAs (γ)	xls	298.15	-59.691	-56.902	77.069	70.164	Barin (1995)
MnAs	xls	298.15	_	-59	_	_	Wagman et al. (1982)
MnAs (kaneite)	xls	298.15	-55.2	-57.3	60	_	Naumov, Ryzhenko and Khodakovsky (1974)
$Mn_3(AsO_4)_2$	xls	298.15	-2167.4	_	_	_	Ryu et al. (2002)
$Mn_3(AsO_4)_2$	xls	298.15	_	-2145.6	_	_	Wagman <i>et al.</i> (1982)
$Mn_3(AsO_4)_2$	xls	298.15	-2167.0	-2366.3	319.62	261.79	Barin (1995)
$Mn_3(AsO_4)_2 \cdot 8H_2O$	xls	298.15	-4055	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
$MnHAsO_4$	xls	298.15	_	-1102.5	_	_	Wagman et al. (1982)
$MoAsO_4$	xls	298.15	-817.79	-910.69	163.01	120.06	Barin (1995)
NaAs	xls	298.15	-89.1	-96.2	62.8	_	Wagman et al. (1982)
NaAs ₂	xls	298.15	-100.4	-106.7	100	_	Wagman <i>et al</i> . (1982)
Na ₃ As	xls	298.15	-187.4	-205	130	_	Wagman <i>et al</i> . (1982)
Na_3As	xls	298.15	-187.10	-205.02	130.00	97.769	Barin (1995)

NaAsO ₂	xls 298.15	_	-660.53	_	_	Wagman et al. (1982)
NaUO ₂ AsO ₄ ·4H ₂ O	xls 298.15	-2944.6	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
Na ₃ AsO ₄	xls 298.15	_	-1540	_	_	Wagman et al. (1982)
Na ₃ AsO ₄	xls 298.15	-1426.0	-1540.0	217.94	170.13	Barin (1995)
Na ₃ AsO ₄ ·12H ₂ O	xls 298.15	_	-5092	_	_	Wagman et al. (1982)
NiAs (nickeline, niccolite)	xls 298.15	_	_	61	_	Naumov, Ryzhenko and Khodakovsky (1974)
NiAs	xls 298.15	-67.268	-73.291	45.380	56.001	Barin (1995)
$Ni_3(AsO_4)_2$	xls 298.15	-1579.3	_	_	_	Wagman et al. (1982)
$Ni_3(AsO_4)_2$	xls 298.15	-1659.4	-1849.2	344.80	265.41	Barin (1995)
$Ni_3(AsO_4)_2 \cdot 8H_2O$ (Annabergite)	xls 298.15	-3482	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
Ni_5As_2	xls 298.15	-242.11	-251.10	190.63	215.98	Barin (1995)
Ni ₁₁ As ₈	xls 298.15	-762.63	-774.04	468.88	552.00	Barin (1995)
NH ₄ H ₂ AsO ₄	xls 298.15	-832.9	-1059.8	172.05	151.17	Wagman <i>et al</i> . (1982)

 Table C.1 (continued)

Chemical species	Phase	Temperature (K)	Gibbs free energy (G_i) $(kJ \text{ mol}^{-1})$	Enthalpy (H_i) (kJ mol ⁻¹)	Entropy (S_i) (J mol ⁻¹ ·K ⁻¹)	Heat Capacity (Cp_i) (J mol ⁻¹ ·K ⁻¹)	Reference
NH ₄ H ₂ AsO ₄	xls	298.15	-837.34	-1064.1	172	_	Naumov, Ryzhenko and Khodakovsky (1974)
$(NH_4)_2HAsO_4$	xls	298.15	_	-1181.6	_	_	Wagman et al. (1982)
$(NH_4)_3AsO_4$	xls	298.15	_	-1286.2	_	_	Wagman <i>et al.</i> (1982)
$(NH_4)_3AsO_4 \cdot 3H_2O$	xls	298.15	_	-2166.9	_	_	Wagman <i>et al.</i> (1982)
$Pb_3(AsO_4)_2$	xls	298.15	-1553.1	-1780.2	324.60	258.00	Barin (1995)
$Pb_3(AsO_4)_2$	xls	298.15	-1580.01	_	_	_	Davis et al. (1996)
$Pb_3(AsO_4)_2$	xls	298.15	-1579.3	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
Pb ₅ (AsO ₄) ₃ Cl (mimetite)	xls	298.15	-2616.25	_	_	_	Davis et al. (1996)
$Pb_5(AsO_4)_3OH$	xls	298.15	-2659	_	_		Lee and Nriagu (2007)
PbHAsO ₄	xls	298.15	-805.66	_	_	_	Lee and Nriagu (2007)
$Rb_3(AsO_4)$	xls	298.15	-1547.0	-1669.0	267.06	175.28	Barin (1995)
Re ₃ As ₇	xls	298.15	-88.624	-95.395	336.81	248.64	Barin (1995)
ReAsO ₄	xls	298.15	-678.39	-771.57	170.00	121.37	Barin (1995)
$Sn_3(AsO_4)_2$	xls	298.15	-1564.6	-1785.8	303.93	259.1	Barin (1995)
$Sr_3(AsO_4)_2$	xls	298.15	-3094.4	-3317.1	312.1	257.6	Barin (1995)
$Ti_3(AsO_4)_2$	xls	298.15	-2547.3	-2617.3	339.4	264.5	Barin (1995)

Arsenic	
Thermod	
ynamic Data	

TIAsO ₄	xls 298.15	-885.81	-948.56	299.74	145.69	Barin (1995)
$YAsO_4$	xls 298.15	-1416.8	-1515.1	160.54	120.75	Barin (1995)
$Zn_3(AsO_4)_2$	xls 298.15	-1895.91	_	_	_	Davis <i>et al</i> . (1996)
$Zn_3(AsO_4)_2$	xls 298.15	-1895	_	_	_	Wagman et al. (1982)
$Zn_3(AsO_4)_2$	xls 298.15	-1915.6	-2134.7	281.92	255.28	Barin (1995)
$Zn_3(AsO_4)_2 \cdot 2.5H_2O$ (legrandite)	xls 298.15	-2611	_	_	_	Naumov, Ryzhenko and Khodakovsky (1974)
$ZnAs_2$	xls 298.15	_	-41.8	_	_	Wagman et al. (1982)
Zn_3As_2	xls 298.15	-125.46	-133.89	168.04	125.23	Barin (1995)
Zn_3As_2	xls 298.15	_	-32.2	_	_	Wagman et al. (1982)

References

- Allison, J.D., Brown, D.S. and Novo-Gradac, K.J. (1991) MINTEQA2/PRODEFA2: A Geochemical Assessment Model for Environmental Systems: Version 3.0 User's Manual, U.S. Environmental Protection Agency, Washington, DC.
- Barin, I. (1995) Thermochemical Data of Pure Substances: Parts 1 and II, 3rd edn. Weinheim, VCH Verlagsgesellschaft, 1885 pp.
- Bothe, J.V. Jr. and Brown, P.W. (1999) The stabilities of calcium arsenates at 23 \pm 1 °C. *Journal of Hazardous Materials*, **69**(2), 197–207.
- Castro, S.H. and Baltierra, L. (2005) Study of the surface properties of enargite as a function of pH. *International Journal of Mineral Processing*, 77(2), 104–15.
- Davis, A., Ruby, M.V., Bloom, M. *et al.* (1996) Mineralogic constraints on the bioavailability of arsenic in smelter-impacted soils. *Environmental Science and Technology*, **30**(2), 392–99.
- Dove, P.M. and Rimstidt, J.D. (1985) The solubility and stability of scorodite, FeAsO₄.2H₂O. *American Mineralogist*, **70**(7–8), 838–44.
- Drever, J.I. (1997) *The Geochemistry of Natural Waters: Surface and Groundwater Environments*, Upper Saddle River, NJ, Prentice Hall, 436 pp.
- Eby, G.N. (2004) *Principles of Environmental Geochemistry*, Brooks/Cole-Thomson Learning, Pacific Grove, CA, 514 pp.
- Faure, G. (1998) *Principles and Applications of Geochemistry*, 2nd edn. Prentice Hall, Upper Saddle River, NJ, 600 pp.
- Helz, G.R., Tossell, J.A., Charnock, J.M. et al. (1995) Oligomerization in As(III) sulfide solutions: theoretical constraints and spectroscopic evidence. Geochimica et Cosmochimica Acta, 59(22), 4591–604.
- Kantar, C. (2002) Solution and flotation chemistry of enargite. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **210**(1), 23–31.
- Krause, E. and Ettel, V.A. (1988) Solubility and stability of scorodite, FeAsO₄.2H₂O: new data and further discussion. *American Mineralogist*, **73**(7–8), 850–54.
- Krauskopf, K.B. and Bird, D.K. (1995) Introduction to Geochemistry, 3rd edn. McGraw-Hill, Boston.
- Langmuir, D. (1997) Aqueous Environmental Geochemistry, Upper Saddle River, NJ, Prentice Hall, 600 pp.
- Lee, J.S. and Nriagu, J.O. (2007) Stability constants for metal arsenates. Environmental Chemistry, 4(2), 123–33.
- Lide, D.R. (ed) (2007) CRC Handbook of Chemistry and Physics, 88th edn. CRC Press, Boca Raton, FL.
- Matschullat, J. (2000) Arsenic in the geosphere A review. Science of the Total Environment, 249(1–3), 297–312.
- Naumov, G.B., Ryzhenko, B.N. and Khodakovsky, I.L. (1974) Handbook of Thermodynamic Data, (English translation). PB 226 722, Report No. USGS-WRD-74-001, U.S. Geological Survey, Menlo Park California, National Technical Information Service, Springfield, Virginia.
- Nordstrom, D.K. and Archer, D.G. (2003) Arsenic thermodynamic data and environmental geochemistry, in *Arsenic in Ground Water*, (eds A.H. Welch and K.G. Stollenwerk), Kluwer Academic Publishers, Boston, pp. 1–25.
- O'Hare, P.A.G. (1993) Calorimetric measurements of the specific energies of reaction of arsenic and of selenium with fluorine. Standard molar enthalpies of formation $\Delta_f H^o{}_m$ at the temperature 2.98.15 K of AsF₅, SeF₆, As₂Se₃, As₄S₄, and As₂S₃. Thermodynamic properties of AsF₅ and SeF₆ in the ideal-gas state. Critical assessment of $\Delta_f H^o{}_m$ (AsF₃, 1)), and the dissociation enthalpies of As-F bonds. *Journal of Chemical Thermodynamics*, **25**, 391–402.
- O'Hare, P.A.G., Lewis, B.M., Susman, S. and Volin, K.J. (1990) Standard molar enthalpies of formation and transition at the temperature 298.15 K and other thermodynamic properties of the crystalline and vitreous forms of arsenic sesquiselenide (As₂S₃). Dissociation enthalpies of As-Se bonds. *Journal of Chemical Thermodynamics*, 22, 1191–206.
- Pankratov, A.N. and Uchaeva, I.M. (2000) A semiempirical quantum chemical testing of thermodynamic and molecular properties of arsenic compounds. *Journal of Molecular Structure (Theochem)*, **498**, 247–54.
- Parkhurst, D.L. and Appelo, C.A.J. (1999) User's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-reaction, One-dimensional transport, and Inverse Geochemical Calculations. U.S. Geological Survey Water-Resources Investigations Report 99-4259, 312 pp.

- Perfetti, E., Pokrovski, G.S., Ballerat-Busserolles, K. et al. (2008) Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 °C and 300 bar, and revised thermodynamic properties of As(OH)₃°(aq), AsO(OH)₃°(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta, 72(3), 713–31.
- Pokrovski, G., Gout, R., Schott, J. et al. (1996) Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochimica et Cosmochimica Acta, 60(5), 737–49.
- Pokrovski, G.S., Kara, S. and Roux, J. (2002) Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochimica et Cosmochimica Acta, 66(13), 2361-78.
- Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1979) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (10⁵ Pascals) Pressure and at Higher Temperatures, Reprinted with corrections. Geological Survey Bulletin 1452, United States Printing Office, Washington, DC, 456 pp.
- Ryu, J-H., Gao, S., Dahlgren, R.A. and Zierenberg, R.A. (2002) Arsenic distribution, speciation and solubility in shallow groundwater of Owens Dry Lake, California. Geochimica et Cosmochimica Acta, 66(17), 2981–94.
- Seal, R.R. II, Robie, R.A., Hemingway, B.S. and Evans, H.T. Jr (1996) Heat capacity and entropy at the temperatures 5 K to 720 K and thermal expansion from the temperatures 298 K to 573 K of synthetic enargite (Cu₃AsS₄). Journal of Chemical Thermodynamics, 28(4), 405–12.
- Wagman, D.D., Evans, W.H., Parker, V.B. et al. (1982) The NBS tables of chemical thermodynamic properties: selected values for inorganic and C1 and C2 organic substances in SI units. Journal of Physical and Chemical Reference Data, 11(2), 1–392.
- Zhu, Y., Zhang, X., Xie, Q. et al. (2005) Solubility and stability of barium arsenate and barium hydrogen arsenate at 25°C. Journal of Hazardous Materials, 120(1-3), 37-44.
- Zhu, Y.N., Zhang, X.H., Xie, Q.L. et al. (2006) Solubility and stability of calcium arsenates at 25°C. Water, Air, and Soil Pollution, 169(1-4), 221-38.