

FCC TEST REPORT

Issued to

Shenzhen G&T Industrial Development Co., Ltd.

For

UMTS/HSPA+ Module

Model Name:

H330

Trade Name:

FIBOCOM

Brand Name:

FIBOCOM

FCC ID:

ZMOH330

Standard:

47 CFR Part 22 Subpart H

47 CFR Part 24 Subpart E

Test date:

2012-6-9 to 2012-6-30

Issue date:

2012-7-5

Shenzhen Morlab

ogy Co., Ltd.

Date

IEEE 1725

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

	TABLE OF CONTENTS						
1.	GENERAL INFORMATION	3					
1.1	EUT Description	3					
1.2	Test Standards and Results	5					
1.3	Facilities and Accreditations	6					
2.	47 CFR PART 2, PART 22H & 24E REQUIREMENTS	7					
2.1	Conducted RF Output Power	7					
2.2	99% Occupied Bandwidth	19					
2.3	Frequency Stability	30					
2.4	Conducted Out of Band Emissions	37					
2.5	Band Edge	75					
2.6	Transmitter Radiated Power (EIRP/ERP)	89					
2.7	Radiated Out of Band Emissions	96					

	Change History							
Issue Date Reason for change								
1.0	Jul 5, 2012	First edition						

1. GENERAL INFORMATION

1.1 EUT Description

EUT Type: UMTS/HSPA+ Module

Serial No.: (n.a, marked #1 by test site)

Hardware Version V1.1.0

Software Version: V1H.00.0E

Applicant: Shenzhen G&T Industrial Development Co., Ltd.

5/F,Building A, Technology Building II,1057#Nanhai

Blvd ,Nanshan District, Shenzhen

Manufacturer: Shenzhen G&T Industrial Development Co., Ltd.

5/F,Building A,Technology Building II,1057#Nanhai

Blvd ,Nanshan District, Shenzhen

Frequency Range: GSM 850MHz:

Tx: 824.20 - 848.80MHz (at intervals of 200kHz);

Rx: 869.20 - 893.80MHz (at intervals of 200kHz)

GSM 1900MHz:

Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);

Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)

WCDMA 850MHz

Tx: 826.4 - 846.6MHz (at intervals of 200kHz);

Rx: 871.4 - 891.6MHz (at intervals of 200kHz)

WCDMA 1900MHz

Tx: 1852.4 - 1907.6MHz (at intervals of 200kHz);

Rx: 1932.4 - 1987.6MHz (at intervals of 200kHz)

Modulation Type.....: GPRS/GSM Mode with GMSK Modulation

EDGE Mode with 8PSK Modulation WCDMA Mode with QPSK Modulation HSDPA Mode with QPSK Modulation HSUPA Mode with QPSK Modulation

HSPA+ Mode with QPSK Modulation

Antenna Type.....: PIFA Antenna Emission Designators.....: GSM:259KGXW,

EGPRS:260KG7W, WCDMA:4M07F9W

Note 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).

- Note 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2*(n-512), 512<=n<=810; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- *Note 3:* The transmitter (Tx) frequency arrangement of the WCDMA 850MHz band used by the EUT can be represented with the formula F(n)=826.4+0.2*(n-4132), 4132<=n<=4233; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 4132 (826.4MHz), 4175(835MHz) and 4233 (846.6MHz).
- Note 4: The transmitter (Tx) frequency arrangement of the WCDMA 1900MHz band used by the EUT can be represented with the formula F(n)=1852.4+0.2*(n-9262), 9262<=n<=9538; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 9262 (1852.4MHz), 9400 (1880MHz) and 9538 (1907.6MHz).
- *Note 5:* For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22 and Part 24 for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General
	(10-1-09 Edition)	Rules and Regulations
2	47 CFR Part 22	Public Mobile Services
	(10-1-09 Edition)	
3	47 CFR Part 24	Personal Communications Services
	(10-1-09 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	2.1046	Conducted RF Output Power	PASS
2	2.1049	99% Occupied Bandwidth	PASS
3	2.1055	Frequency Stability	PASS
	22.355		
	24.235		
4	2.1051	Conducted Out of Band Emissions	PASS
	2.1057		
	22.917		
	24.238		
5	2.1051	Band Edge	PASS
	2.1057		
	22.917		
	24.238		
6	22.913	Transmitter Radiated Power (EIPR/ERP)	PASS
	24.232		
7	2.1053	Radiated Out of Band Emissions	PASS
	2.1057		
	22.917		
	24.238		

NOTE: Measurement method according to TIA/EIA 603.D-2010

1.3 Facilities and Accreditations

1.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at 3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR PART 2, PART 22H & 24E REQUIREMENTS

2.1 Conducted RF Output Power

2.1.1 Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2 Test Description

1. Test Setup:

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

The Power Meter was just used for the Conducted RF Output Power test of WCDMA Model.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator Agilent		E5515C	GB43130131	2012.05
Spectrum Analyzer	Agilent	E7405A	US44210471	2012.05
Power Meter	Agilent	E4418B	GB43318055	2012.05
Power Splitter	Weinschel	1506A	NW521	(n.a.)
Attenuator 1	Resnet	20dB	(n.a.)	(n.a.)
Attenuator 2	Resnet	3dB	(n.a.)	(n.a.)

2.1.3 Test Results

Here the lowest, middle and highest channels are selected to perform testing to verify the conducted RF output power of the EUT.

1. GSM Model Test Verdict:

Band	Channel	Frequency	Measured	Measured Output Power			
Dallu	Chamiei	(MHz)	dBm	Refer to Plot	dBm	Verdict	
GSM	128	824.2	32.22			PASS	
850MHz	190	836.6	32.01	Plot A1 to A3	35	PASS	
630MHZ	251	848.8	32.15			PASS	
GSM	512	1850.2	28.43			PASS	
1900MHz	661	1880.0	28.18	Plot B1 to B3	32	PASS	
1900MHZ	810	1909.8	28.16			PASS	
CDDC	128	824.2	31.50	Dl-4 C1 4-		PASS	
GPRS 850MHz	190	836.6	31.40	Plot C1 to C3 ^{Note 1}	35	PASS	
630MHZ	251	848.8	31.56	C3		PASS	
CDDC	512	1850.2	27.65	Plot D1 to		PASS	
GPRS 1900MHz	661	1880.0	27.37	D3 ^{Note 1}	32	PASS	
190011112	810 1909.8		27.31	DS		PASS	
EGPRS	128	824.2	31.12	Plot E1 to		PASS	
850MHz	190	836.6	30.98	E3 ^{Note 1}	35	PASS	
630MHZ	251	848.8	31.13	E3		PASS	
EGPRS	512	1850.2	27.04	Plot F1 to		PASS	
1900MHz	661	1880.0	26.77	F3 ^{Note 1}	32	PASS	
19001/11/12	810	1909.8	26.72	ГЭ		PASS	

Note 1: For the GPRS and EGPRS model, all the slots were tested and just the worst data was record in this report.

2. WCDMA Model Test Verdict:

	band	W	CDMA 8	50	WCDMA 1900		
Item	ARFCN	4132	4175	4233	9262	9400	9538
	subtest		dBm			dBm	
5.2(WCDMA)	non	22.76	22.84	22.79	21.77	21.65	21.61
	1	22.66	22.63	22.68	21.62	21.59	21.58
HSDPA	2	22.65	22.61	22.69	21.59	21.57	21.57
пзръ	3	22.16	22.13	22.52	21.13	21.21	21.05
	4	22.15	22.11	22.58	21.07	21.23	21.09
	1	22.65	22.55	22.61	21.57	21.55	21.56
	2	20.55	20.06	20.03	19.59	19.57	19.55
HSUPA	3	21.56	21.56	21.59	20.55	20.56	20.55
	4	20.51	20.07	20.05	19.52	19.56	19.51
	5	22.61	22.51	22.57	21.53	21.51	21.49
HSPA+	1	21.78	21.69	21.77	21.23	21.51	21.42

3. GSM Model Test Plots:

(Plot A1: GSM 850MHz Channel = 128)

(Plot A2: GSM 850MHz Channel = 190)

(Plot A3: GSM 850MHz Channel = 251)

(Plot B1: GSM 1900MHz Channel = 512)

(Plot B2: GSM 1900MHz Channel = 661)

(Plot B3: GSM 1900MHz Channel = 810)

(Plot C1: GPRS 850MHz Channel = 128)

(Plot C2: GPRS 850MHz Channel = 190)

(Plot C3: GPRS 850MHz Channel = 251)

(Plot D1: GPRS 1900MHz Channel = 512)

(Plot D2: GPRS 1900MHz Channel = 661)

(Plot D3: GPRS 1900Hz Channel = 810)

(Plot E 1: EGPRS 850MHz Channel = 128)

(Plot E 2: EGPRS 850MHz Channel = 190)

(Plot E 3: EGPRS 850MHz Channel = 251)

(Plot F 1: EGPRS 1900MHz Channel = 512)

(Plot F 2: EGPRS 1900MHz Channel = 661)

(Plot F 3: EGPRS 1900MHz Channel = 810)

2.2 99% Occupied Bandwidth

2.2.1 Definition

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as the 99% emission bandwidth,

2.2.2 Test Description

See section 2.1.2 of this report.

2.2.3 Test Verdict

Here the lowest, middle and highest channels are selected to perform testing to verify the 99% occupied bandwidth.

1. Test Verdict:

Band	Channel	Frequency (MHz)	99% Occupied Bandwidth	Refer to Plot
	128	824.2	259.0871 kHz	Plot A
GSM 850MHz	190	836.6	251.9841 kHz	Plot B
	251	848.8	250.9845 kHz	Plot C
	512	1850.2	252.6689 kHz	Plot D
GSM 1900MHz	661	1880.0	251.4005 kHz	Plot E
	810	1909.8	249.5374 kHz	Plot F
	128	824.2	253.7693 kHz	Plot G
EDGE 850MHz	190	836.6	248.7513 kHz	Plot H
	251	848.8	247.9220 kHz	Plot I
	512	1850.2	259.5611 kHz	Plot J
EDGE 1900MHz	661	1880.0	255.2873 kHz	Plot K
	810	1909.8	253.1017 kHz	Plot L
WCDMA 850MHz	4175	835	4.0417 MHz	Plot M
WCDMA 1900MHz	9400	1880	4.0608 MHz	Plot N
HSDPA 850MHz	4175	835	4.0486 MHz	Plot O
HSDPA 1900MHz	9400	1880	4.0580 MHz	Plot P
HSUPA 850MHz	4175	835	4.0506 MHz	Plot Q
HSUPA 1900MHz	9400	1880	4.0657 MHz	Plot R
HSPA+ 850MHz	4175	835	4.0459MHz	Plot S
HSPA+1900MHz	9400	1880	4.0695 MHz	Plot T

2. Test Plots:

Occupied Bandwidth 259.0871 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -495.539 Hz x dB Bandwidth 337.757 kHz

(Plot A: GSM 850MHz Channel = 128)

(Plot B: GSM 850MHz Channel = 190)

(Plot C: GSM 850MHz Channel = 251)

(Plot D: GSM 1900MHz Channel = 512)

Center 1.91 GHz
#Res BW 30 kHz

Span 2 MHz
Sweep 5 ms (401 pts)

Occupied Bandwidth 249.5347 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -500.881 Hz x dB Bandwidth 333.807 kHz

(Plot F: GSM 1900MHz Channel = 810)

Occupied Bandwidth 248.7513 kHz

#Res BW 30 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Sweep 5 ms (401 pts)

Transmit Freq Error 443.754 Hz x dB Bandwidth 336.569 kHz

(Plot H: EDGE 850MHz Channel = 190)

#VBW 300 kHz

Occupied Bandwidth 259.5611 kHz

Center 1.85 GHz

#Res BW 30 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Sweep 5 ms (401 pts)

Span 2 MHz

Transmit Freq Error -2.197 kHz x dB Bandwidth 335.735 kHz

(Plot J: EDGE 1900MHz Channel = 512)

VBW 300 kHz

(Plot K: EDGE 1900MHz Channel = 661)

(Plot L: EDGE 1900MHz Channel = 810)

x dB Bandwidth 4.667 MHz

Transmit Freq Error

4.0608 MHz

6.866 kHz

(Plot N: WCDMA 1900MHz Channel = 9400)

-26.00 dB

x dB

Occupied Bandwidth
4.0580 MHz

Center 1.88 GHz

#Res BW 30 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Sweep 8.918 ms (401 pts)

Span 8 MHz

Transmit Freq Error -8.681 kHz x dB Bandwidth 4.643 MHz

(Plot P: HSDPA1900MHz Channel = 9400)

#VBW 300 kHz

(Plot R: HSUPA1900MHz Channel = 9400)

(Plot T: HSPA+1900MHz Channel = 9400)

2.3 Frequency Stability

2.3.1 Requirement

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30° C to $+50^{\circ}$ C at intervals of not more than 10° C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.3.2 Test Description

1. Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator	Agilent	E5515C	GB43130131	2012.05
DC Power Supply	Good Will	GPS-3030DD	EF920938	2012.05
Temperature	YinHe Experimental	HL4003T	(n.a.)	2012.05
Chamber	Equip.			

2.3.3 Test Verdict

The nominal, highest and lowest extreme voltages are separately 3.7VDC, 4.2VDC and 3.6VDC, which are specified by the applicant; the normal temperature here used is 25°C. The frequency

deviation limit of 850MHz band is $\pm 2.5 ppm$, and 1900MHz is $\pm 1 ppm$

1. GSM 850MHz Band

Test Conditions		Frequency Deviation						
Power	Temperature	Channel = 128 (824.2MHz)		Channel = 190 (836.6MHz)		Channel = 251 (848.8MHz)		Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	10.72		-9.66		5.05		
	-20	-11.17		19.70	±2091.5	8.41	±2122	PASS
	-10	17.28		-11.06		1.19		
	0	-23.03	±2060.5	21.06		34.30		
3.7	+10	-13.02		13.05		17.11		
	+20	-10.39		-12.76		-15.51		
	+30	27.75		-2.05		19.46		
	+40	5.31		-3.77		-6.80		
	+50	-22.19	-	5.39		7.58		
4.2	+25	23.74		19.65		23.11		
3.6	+25	23.29		-20.70		-14.93		

2. GSM 1900MHz Band

Test Conditions		Frequency Deviation						
Power	Temperatur	Channel = 512 (1850.2MHz)		Channel = 661 (1880.0MHz)		Channel = 810		Verdict
(VDC)	e (°C)	`		`	· · · · · ·	`	.8MHz)	
(, 2 0)		Hz	Limits	Hz	Limits	Hz	Limits	
	-30	-10.39		38.28		27.27		
	-20	27.75		-2.15	±1880.0	9.49	±1909.8	PASS
	-10	5.31		40.06		-12.90		
	0	-22.19		1.99		12.66		
3.7	+10	23.74	±1850.2	-19.86		5.05		
	+20	-10.39		-2.32		3.02		
	+30	-18.89		23.12		-13.01		
	+40	44.49		11.33		0.51		
	+50	40.72		-17.55		21.45		
4.2	+25	16.15		38.10		-16.04		
3.6	+25	32.34		-22.06		-21.86		

3. EDGE 850MHz Band

Test Conditions			F	Frequency	y Deviation	n		
Down	Tomanomotivano	Channel = 128		Channel $= 190$		Channel = 251		Verdict
Power (VDC)	Temperature	(824.	2MHz)	(836.	6MHz)	(848.	8MHz)	verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	-3.10		23.12		8.51		
	-20	38.28		11.33		-12.90		
	-10	-2.15		-17.55		12.66	±2122	PASS
	0	40.06	_	38.10		5.05		
3.7	+10	1.99		-22.06		3.02		
	+20	-19.86	± 2060.5	-16.11	±2091.5	10.76		
	+30	39.56		17.76		-16.51		
	+40	46.60		15.64		-2.10		
	+50	39.98		3.67		-12.99		
4.2	+25	-15.71		13.95		-7.53		
3.6	+25	-17.70		6.23		6.78		

4. EDGE 1900MHz Band

Test	Conditions]	Frequenc	y Deviation	n		
Power	Temperature		el = 512 .2MHz)		Channel = 661 (1880.0MHz)		Channel = 810 (1909.8MHz)	
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	-13.77		23.62		2.47		
	-20	0.62		7.23		-11.76	±1909.8	PASS
	-10	1.65		-24.78		-12.21		
	0	2.47	<u>-</u>	-1.26		13.33		
3.7	+10	-10.76		-18.68		5.33		
	+20	-2.11	± 1850.2	-21.61	±1880.0	35.26		
	+30	13.33		14.58		-26.78		
	+40	5.33		-0.68		19.54		
	+50	-2.56		36.87		-16.67		
4.2	+25	17.60		3.88		26.79		
3.6	+25	-8.09		13.12		19.93		

5. WCDMA 850MHz Band

Test Conditions			F	requency	Deviatio	n		Verdict
Power (VDC)	1		Channel = 4123 (826.4MHz)		Channel = 4175 (835MHz)		Channel = 4233 (846.6MHz)	
(VDC)	(C)	Hz	Limit	Hz	Limit	Hz	Limit	
	-30	17.29		11.87		-9.81		
	-20	-7.32		-0.59		-23.82		PASS
	-10	-3.40		21.45		26.39	±846.6	
	0	16.47	_	13.45		30.98		
3.7	+10	30.18		1.31		-2.65		
	+20	32.07	±826.4	-12.52	±835	18.30		
	+30	-7.98		30.62		-12.57		
	+40	26.21		13.45		28.93		
	+50	11.10		-12.52		19.66		
4.2	+25	-6.18		30.62		22.19		
3.6	+25	18.66		-18.00		-18.70		

6. WCDMA 1900MHz Band

Test	Conditions			Frequenc	y Deviation	ı		
Power (VDC)	Temperature (°C)	Channel = 9262 (1852.4MHz)		Channel = 9400 $(1880.0MHz)$		Channe (1907	Verdict	
(VDC)	(C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	17.29		18.25		-8.99		
	-20	-7.32		2.49		23.60		
	-10	-3.40		-10.71	±1880.0	14.81	±1907.6	PASS
	0	16.47	_	-7.77		-3.07		
3.7	+10	30.18		21.97		17.42		
	+20	-2.62	±1852.4	11.87		-10.39		
	+30	22.31		-0.59		17.47		
	+40	0.32		21.45		27.84		
	+50	-13.55	ı	-5.71		-2.53		
4.2	+25	23.21		14.58		20.95		
3.6	+25	22.00		26.37		-23.22		

7. HSDPA 850MHz Band

Test C	Conditions		F	requency	Deviatio	n			
Power	Temperatu	Channel = 4123 (826.4MHz)			Channel = 4175 (835MHz)		Channel = 4233 (846.6MHz)		
(VDC)	re (°C)	Hz	Limit	Hz	Limit	Hz	Limit		
	-30	27.46		-24.37		15.81			
	-20	-8.56		-13.96		14.41	±846.6		
	-10	20.65	±826.4	35.23		21.57		PASS	
	0	12.88		-8.31		-24.37			
3.7	+10	-14.75		-13.95		-13.96			
	+20	8.78		-24.37	±835	35.23			
	+30	-1.49		12.88		-8.31			
	+40	17.14		-14.75		-13.95			
	+50	-23.61		23.37		26.37			
4.2	+25	32.03		7.93		7.90			
3.6	+25	17.51		-31.21		1.78			

8. HSDPA 1900MHz Band

Test	Conditions		I	Frequency	Deviation	on		
Power	Temperature	Channel = 9262		Channe	Channel = 9400		Channel = 9538	
	-	(1852	.4MHz)	(1880.	OMHz)	(1907	.6MHz)	Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	11.87		-3.01		2.61		
	-20	-16.65		21.71		-8.38		
	-10	20.12		14.37		-13.02	±1907.6	PASS
	0	-3.01		-11.21		-8.51		
3.7	+10	21.71		10.60		5.64		
	+20	20.12	±1852.4	-4.81	±1880	-3.85		
	+30	-15.01		34.31		9.57		
	+40	22.71		8.36		27.54		
	+50	16.32		-25.88		-12.52		
4.2	+25	-11.28		29.43		-2.83		
3.6	+25	10.33		-2.27		14.42		

9. HSUPA 850MHz Band

Test C	Conditions	Frequency Deviation						
Power	Temperatu re (°C)	Channel = 4123 (826.4MHz)			Channel = 4175 (835MHz)		Channel = 4233 (846.6MHz)	
(VDC)	ie (C)	Hz	Limit	Hz	Limit	Hz	Limit	
	-30	13.82		13.5		13.55		
	-20	-15.25		-15.31		7.43		
	-10	-11.79	±826.4	-11.79		7.00	±846.6	PASS
	0	-0.44		-0.44		-7.32		
3.7	+10	0.01		0.01		-4.91		
	+20	13.82		-6.64	±835	21.35		
	+30	-15.25		24.25		-5.94		
	+40	-11.79		9.63		13.78		
	+50	-0.44	1	23.76		28.45		
4.2	+25	1.71		-4.57		29.11		
3.6	+25	1.54		5.25		-7.70		

10. HSUPA 1900MHz Band

Test Conditions			I	Frequency	/ Deviation	on		
Power	Temperature	Channel = 9262 (1852.4MHz)		Channel = 9400 (1880.0MHz)		Channo (1907	Verdict	
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	14.55		30.18		-12.97		
	-20	7.15	8.69 2.01	19.36		12.35		
	-10	8.69		-5.91		29.57	±1907.6	PASS
	0	2.01		7.29		-6.20		
3.7	+10	-4.75		-4.52		-12.61		
	+20	16.38	±1852.4	31.70	±1880	-13.09		
	+30	-1.76		33.66		-0.38		
	+40	23.52		1.15		-11.85		
	+50	13.79		-7.94		-5.91		
4.2	+25	-7.08		6.81		25.48		
3.6	+25	22.58		-1.83		-15.78		

11. HSPA+ 850MHz Band

Test C	Conditions		F	requency	Deviatio	n		
Power	Temperatu		l = 4357 4MHz)	Channel = 4400 $(835MHz)$		Chann (846	Verdict	
(VDC)	re (°C)	Hz	Limit	Hz	Limit	Hz	Limit	
	-30	-20.54		-9.75		23.99		
	-20	8.22		18.54		7.43		
	-10	0.00		32.04		7.00	±846.6	PASS
	0	-13.77	±826.4	22.67		-7.32		
3.7	+10	-0.10		15.41		-4.91		
	+20	13.82		-6.64	±835	21.35		
	+30	-15.25		24.25		-5.94		
	+40	-11.79		9.63		13.78		
	+50	-0.44		23.76		28.45		
4.2	+25	0.01		-4.57		29.11		
3.6	+25	1.54		5.25		-7.70		

12. HSPA+ 1900MHz Band

Test	Test Conditions		I	Frequency	Deviation	on		
Power	Temperature		el = 9662	Channel = 9800		Chann	Verdict	
(VDC)	•	(1852	.4MHz)	(1880.	OMHz)	(1907	.6MHz)	Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	14.55		30.18		-12.97		
	-20	7.15		19.36		12.35		
	-10	8.69		-5.91		29.57	±1907.6	PASS
	0	2.01		7.29		-6.20		
3.7	+10	-4.75		-4.52		-12.61		
	+20	16.38	±1852.4	31.70	±1880	-13.09		
	+30	-1.76		33.66		-0.38		
	+40	23.52		1.15		-11.85		
	+50	13.79		-7.94		-5.91		
4.2	+25	-7.08		6.81		25.48		
3.6	+25	22.58		-1.83		-15.78		

Report No.: SZ12050140W03

2.4 Conducted Out of Band Emissions

2.4.1 Requirement

According to FCC section 22.917(a) and FCC section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.4.2 Test Description

See section 2.1.2 of this report.

2.4.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

1. Test Verdict:

Band	Channe 1	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdic t
GSM 850MHz	128	824.2	-20.26	Plot A1toA1.1		PASS
	190	836.6	-20.6	Plot A2toA2.1	-13	PASS
	251	848.8	-20.87	Plot A3toA3.1		PASS
GSM 1900MHz	512	1850.2	< -25	Plot B1toB1.1		PASS
	661	1880.0	< -25	Plot B2toB2.1	-13	PASS
	810	1909.8	< -25	Plot B3toB3.1		PASS
EDGE 850MHz	128	824.2	-20.46	Plot C1toC1.1		PASS
	190	836.6	-19.7	Plot C2toC2.1	-13	PASS
	251	848.8	-20.29	Plot C3toC3.1		PASS
EDCE	512	1850.2	< -25	Plot D1toD1.1		PASS
EDGE 1900MHz	661	1880.0	< -25	Plot D2toD2.1	-13	PASS
	810	1909.8	< -25	Plot D3toD3.1		PASS
WCDMA 850MHz	4132	826.4	-20.47	Plot E1toE1.1		PASS
	4175	835	-20.4	Plot E2toE2.1	-13	PASS
	4233	846.6	-20.72	Plot E3toE3.1		PASS
WCDMA 1900MHz	9262	1852.4	< -25	Plot F1toF1.1		PASS
	9400	1880	< -25	Plot F2toF2.1	-13	PASS
	9538	1907.6	< -25	Plot F3toF3.1		PASS
HSDPA	4132	826.4	-19.5	Plot G1toG1.1	-13	PASS

Report No.: SZ12050140W03

Band	Channe 1	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdic t
850MHz	4175	835	-20.33	Plot G2toG2.1		PASS
	4233	846.6	-19.42	Plot G3toG3.1		PASS
HSDPA 1900MHz	9262	1852.4	< -25	Plot H1toH1.1		PASS
	9400	1880	< -25	Plot H2toH2.1	-13	PASS
	9538	1907.6	< -25	Plot H3toH3.1		PASS
HSUPA 850MHz	4132	826.4	-19.66	Plot I1toI1.1		PASS
	4175	835	-20.9	Plot I2toI2.1	-13	PASS
	4233	846.6	-19.46	Plot I3toI3.1		PASS
HSUPA 1900MHz	9262	1852.4	< -25	Plot J1toJ1.1		PASS
	9400	1880	< -25	Plot J2toJ2.1	-13	PASS
	9538	1907.6	< -25	Plot J3toJ3.1		PASS
HSPA+ 850MHz	4357	826.4	-20.03	Plot K1toK1.1		PASS
	4400	835	-19.88	Plot K2toK2.1	-13	PASS
	4458	846.6	-20.08	Plot K3toK3.1		PASS
HSPA+ 1900MHz	9662	1852.4	< -25	Plot L1toL1.1		PASS
	9800	1880	< -25	Plot L2toL2.1	-13	PASS
	9938	1907.6	< -25	Plot L3toL3.1		PASS

2. Test Plots for the Whole Measurement Frequency Range:

Note: the power of the EUT transmitting frequency should be ignored.

(Plot A1: GSM 850MHz Channel = 128, 30MHz to 1GHz)

(Plot A1.1: GSM 850MHz Channel = 128, 1GHz to 9GHz)

(Plot A2: GSM 850MHz Channel = 190, 30MHz to 1GHz)

(Plot A2.1: GSM 850MHz Channel = 190, 1GHz to 9GHz)

(Plot A3: GSM 850MHz Channel = 251, 30MHz to 1GHz)

(Plot A3.1: GSM 850MHz Channel = 251, 1GHz to 9GHz)

(Plot B1: GSM 1900MHz Channel = 512, 30MHz to 1GHz)

(Plot B1.1: GSM 1900MHz Channel = 512, 1GHz to 20GHz)

(Plot B2: GSM 1900MHz Channel = 661, 30MHz to 1GHz)

(Plot B2.1: GSM 1900MHz Channel = 661, 1GHz to 20GHz)

(Plot B3: GSM 1900MHz Channel = 810, 30MHz to 1GHz)

(Plot B3.1: GSM 1900MHz Channel = 810, 1GHz to 20GHz)

(Plot C1: EDGE 850MHz Channel = 128, 30MHz to 1GHz)

(Plot C1.1: EDGE 850MHz Channel = 128, 1GHz to 9GHz)

(Plot C2: EDGE 850MHz Channel = 190, 30MHz to 1GHz)

(Plot C2.1: EDGE 850MHz Channel = 190, 1GHz to 9GHz)

(Plot C3: EDGE 850MHz Channel = 251, 30MHz to 1GHz)

(Plot C3.1: EDGE 850MHz Channel = 251, 1GHz to 9GHz)

(Plot D1: EDGE 1900MHz Channel = 512, 30MHz to 1GHz)

(Plot D1.1: EDGE 1900MHz Channel = 512, 1GHz to 20GHz)

(Plot D2: EDGE 1900MHz Channel = 661, 30MHz to 1GHz)

(Plot D2.1: EDGE 1900MHz Channel = 661,1GHz to 20GHz)

(Plot D3: EDGE 1900MHz Channel = 810, 30MHz to 1GHz)

(Plot D3.1: EDGE 1900MHz Channel = 810, 1GHz to 20GHz)

(Plot E1: WCDMA850MHz Channel = 4132, 30MHz to 1GHz)

(Plot E1.1: WCDMA850MHz Channel = 4132, 1GHz to 9GHz)

(Plot E2: WCDMA850MHz Channel = 4175, 30MHz to 1GHz)

(Plot E2.1: WCDMA850MHz Channel = 4175, 1GHz to 9GHz)

(Plot E3: WCDMA850MHz Channel = 4233, 30MHz to 1GHz)

(Plot E3.1: WCDMA850MHz Channel = 4233, 1GHz to 9GHz)

(Plot F1: WCDMA1900MHz Channel = 9262, 30MHz to 1GHz)

(Plot F1.1: WCDMA1900MHz Channel = 9262, 1GHz to 20GHz)

(Plot F2: WCDMA1900MHz Channel = 9400, 30MHz to 1GHz)

(Plot F2.1: WCDMA1900MHz Channel = 9400, 1GHz to 20GHz)

(Plot F3: WCDMA1900MHz Channel = 9538, 30MHz to 1GHz)

(Plot F3.1: WCDMA1900MHz Channel = 9538 1GHz to 20GHz)

(Plot G1: HSDPA 850MHz Channel = 4132, 30MHz to 1GHz)

(Plot G1.1: HSDPA 850MHz Channel = 4132, 1GHz to 9GHz)

(Plot G2: HSDPA 850MHz Channel = 4175, 30MHz to 1GHz)

(Plot G2.1: HSDPA 850MHz Channel = 4175, 1GHz to 9GHz)

(Plot G3: HSDPA850MHz Channel = 4233, 30MHz to 1GHz)

(Plot G3.1: HSDPA850MHz Channel = 4233, 1GHz to 9GHz)

(Plot H1: HSDPA1900MHz Channel = 9262, 30MHz to 1GHz)

(Plot H1.1: HSDPA1900MHz Channel = 9262, 1GHz to 20GHz)

(Plot H2: HSDPA1900MHz Channel = 9400, 30MHz to 1GHz)

(Plot H2.1: HSDPA1900MHz Channel = 9400, 1GHz to 20GHz)

(Plot H3: HSDPA1900MHz Channel = 9538, 30MHz to 1GHz)

(Plot H3.1: HSDPA1900MHz Channel = 9538 1GHz to 20GHz)

(Plot I 1: HSUPA 850MHz Channel = 4132, 30MHz to 1GHz)

(Plot I1.1: HSUPA 850MHz Channel = 4132, 1GHz to 9GHz)

(Plot I 2: HSUPA 850MHz Channel = 4175, 30MHz to 1GHz)

(Plot I2.1: HSUPA 850MHz Channel = 4175, 1GHz to 9GHz)

(Plot I 3: HSUPA850MHz Channel = 4233, 30MHz to 1GHz)

(Plot I3.1: HSUPA850MHz Channel = 4233, 1GHz to 9GHz)

(Plot J 1: HSUPA1900MHz Channel = 9262, 30MHz to 1GHz)

(Plot J1.1: HSUPA1900MHz Channel = 9262, 1GHz to 20GHz)

(Plot J 2: HSUPA1900MHz Channel = 9400, 30MHz to 1GHz)

(Plot J2.1: HSUPA1900MHz Channel = 9400, 1GHz to 20GHz)

(Plot J 3: HSUPA1900MHz Channel = 9538, 30MHz to 1GHz)

(Plot J3.1: HSUPA1900MHz Channel = 9538 1GHz to 20GHz)

(Plot K 1: HSPA+ 850MHz Channel = 4132, 30MHz to 1GHz)

(Plot K 1.1: HSPA+ 850MHz Channel = 4132, 1GHz to 9GHz)

(Plot K 2: HSPA+ 850MHz Channel = 4175, 30MHz to 1GHz)

(Plot K2.1: HSPA+ 850MHz Channel = 4175, 1GHz to 9GHz)

(Plot K 3: HSPA+850MHz Channel = 4233, 30MHz to 1GHz)

(Plot K3.1: HSPA+850MHz Channel = 4233, 1GHz to 9GHz)

(Plot L 1: HSPA+1900MHz Channel = 9262, 30MHz to 1GHz)

(Plot L1.1: HSPA+1900MHz Channel = 9262, 1GHz to 20GHz)

(Plot L 2: HSPA+1900MHz Channel = 9400, 30MHz to 1GHz)

(Plot L2.1: HSPA+1900MHz Channel = 9400, 1GHz to 20GHz)

(Plot L 3: HSPA+1900MHz Channel = 9538, 30MHz to 1GHz)

(Plot L3.1: HSPA+1900MHz Channel = 9538 1GHz to 20GHz)

2.5 Band Edge

2.5.1 Requirement

According to FCC section 22.917(b) and FCC section 24.238(b), in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.5.2 Test Description

See section 2.1.2 of this report.

2.5.3 Test Result

The lowest and highest channels are tested to verify the band edge emissions.

1. Test Verdict:

Band Channel		Frequency	Measured Max. Band	Refer to	Limit (dDm)	Verdict
Band	Channel	(MHz)	Edge Emission (dBm)	Plot	Limit (dBm)	verdict
GSM	128	824.2	-14.56	Plat A	-13	PASS
850MHz	251	848.8	-15.31	Plot B	-13	PASS
GSM	512	1850.2	-19.18	Plat C	-13	PASS
1900MHz	810	1909.8	-17.33	Plot D	-13	PASS
EDGE	128	824.2	-16.85	Plat E	-13	PASS
850MHz	251	848.8	-16.56	Plot F	-13	PASS
EDGE	512	1850.2	-19.42	Plat G	-13	PASS
1900MHz	810	1909.8	-20.06	Plot H	-13	PASS
WCDMA	4132	826.4	-20.42	Plat I	-13	PASS
850MHz	4233	846.6	-21.23	Plot J	-13	PASS
WCDMA	9262	1852.4	-23.45	Plat K	12	PASS
1900MHz	9538	1907.6	-22.28	Plot L	-13	PASS
HSDPA	4132	826.4	-21.74	Plat M	-13	PASS
850MHz	4233	846.6	-23.68	Plot N	-13	PASS
HSDPA	9262	1852.4	-24.89	Plat O	-13	PASS
1900MHz	9538	1907.6	-22.66	Plot P	-13	PASS
HSUPA	4132	826.4	-22.12	Plat Q	-13	PASS
850MHz	4233	846.6	-23.2	Plot R	-13	PASS
HSUPA	9262	1852.4	-25.12	Plat S	-13	PASS
1900MHz	9538	1907.6	-22.86	Plot T	-13	PASS
HSPA+	4132	826.4	-22.45	Plat U	-13	PASS
850MHz	4233	846.6	-23.17	Plot V	-13	PASS
HSPA+	9262	1852.4	-26.26	Plat W	-13	PASS
1900MHz	9538	1907.6	-22.55	Plot X	-13	PASS

2. Test Plots:

(Plot A: GSM 850 Channel = 128)

(Plot B: GSM 850 Channel = 251)

(Plot C: GSM 1900 Channel = 512)

(Plot D: GSM 1900 Channel = 810)

(Plot E: EDGE 850 Channel = 128)

(Plot F: EDGE 850 Channel = 251)

(Plot G: EDGE 1900 Channel = 512)

(Plot H: EDGE 1900 Channel = 810)

(Plot I: WCDMA 850 Channel = 4132)

(Plot J: WCDMA 850 Channel = 4233)

(Plot K: WCDMA 1900 Channel = 9262)

(Plot L: WCDMA 1900 Channel = 9538)

(Plot M: HSDPA 850 Channel = 4132)

(Plot N: HSDPA850 Channel = 4233)

(Plot O: HSDPA 1900 Channel = 9262)

(Plot P: HSDPA 1900 Channel = 9538)

(Plot Q: HSUPA 850 Channel = 4132)

(Plot R: HSUPA850 Channel = 4233)

(Plot S: HSUPA 1900 Channel = 9262)

(Plot T: HSUPA 1900 Channel = 9538)

(Plot U: HSPA+ 850 Channel = 4132)

(Plot V: HSPA+850 Channel = 4233)

(Plot W: HSPA+ 1900 Channel = 9262)

(Plot X: HSPA+ 1900 Channel = 9538)

2.6 Transmitter Radiated Power (EIRP/ERP)

2.6.1 Requirement

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

2.6.2 Test Description

1. Test Setup:

The EUT, which is powered by the Battery charged with the AC Adapter, is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded.

- GSM Maximum RF output power: GSM850 32.35dBm, GSM 1900 28.19dBm, WCDMA 850 22.32, WCDMA 1900 22.58, Please refer to section 2.1.3 of this report.
- Step size (dB): 3dB
- Minimum RF power: GSM850 3.1dBm, GSM 1900 0.3dBm, WCDMA 850 2.09dBm, WCDMA

1900 0.5dBm.

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) or a Horn one (used for above 3GHz), and it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date
System Simulator	Agilent	E5515C	GB43130131	2012.05
Spectrum Analyzer	Agilent	E7405A	US44210471	2012.05
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2012.05
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2012.05
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2012.05

2.6.3 Test Result

The Turn Table is actuated to turn from 0° to 360° , and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

 $A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST TX} is signal generator level,

P_{SUBST RX} is receiver level,

L_{SUBST_CABLES} is cable losses including TX cable,

G_{SUBST_TX_ANT} is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

1. GSM Model Test Verdict:

Dand	Channel	Frequency	PCL	Measured ERP			Limit		Verdict
Band	Chamilei	(MHz)	PCL	dBm	W	Refer to Plot	dBm	W	verdict
GSM	128	824.20	5	33.88	2.44343	Plot A	38.5		PASS
850MHz	190	836.60	5	33.18	2.07970			7	PASS
850MHZ	251	848.80	5	33.84	2.42103				PASS
GPRS	128	824.20	5	30.26	1.06170	Plot B Note 1	38.5	7	PASS
850MHz	190	836.60	5	30.66	1.16413				PASS
830MHZ	251	848.80	5	31.19	1.31523				PASS
ECDDS	128	824.20	5	31.99	1.58125	Plot C Note 1	38.5		PASS
EGPRS 850MHz	190	836.60	5	32.94	1.96789			7	PASS
OJUMITZ	251	848.80	5	33.4	2.18776				PASS

Channal	Frequency	DCI		Limit		Verdict				
Chamiei	(MHz)	PCL	dBm	W	Refer to Plot	dBm	W	vertice		
512	1850.2	0	31.13	1.29718		33	2	PASS		
661	1880.0	0	29.1	0.81283	Plot D			PASS		
810	1909.8	0	29.41	0.87297				PASS		
512	1850.2	0	31.19	1.31522	Plot E Note 1	33	2	PASS		
661	1880.0	0	28.96	0.78705				PASS		
810	1909.8	0	29.46	0.88308				PASS		
512	1850.2	0	29.76	0.94624	Plot F Note 1	33		PASS		
661	1880.0	0	27.77	0.59841			2	PASS		
810	1909.8	0	29.65	0.92257				PASS		
	661 810 512 661 810 512 661	Channel (MHz) 512 1850.2 661 1880.0 810 1909.8 512 1850.2 661 1880.0 810 1909.8 512 1850.2 661 1880.0	Channel (MHz) PCL 512 1850.2 0 661 1880.0 0 810 1909.8 0 512 1850.2 0 661 1880.0 0 810 1909.8 0 512 1850.2 0 661 1880.0 0	Channel (MHz) PCL dBm 512 1850.2 0 31.13 661 1880.0 0 29.1 810 1909.8 0 29.41 512 1850.2 0 31.19 661 1880.0 0 28.96 810 1909.8 0 29.46 512 1850.2 0 29.76 661 1880.0 0 27.77	Channel (MHz) PCL dBm W 512 1850.2 0 31.13 1.29718 661 1880.0 0 29.1 0.81283 810 1909.8 0 29.41 0.87297 512 1850.2 0 31.19 1.31522 661 1880.0 0 28.96 0.78705 810 1909.8 0 29.46 0.88308 512 1850.2 0 29.76 0.94624 661 1880.0 0 27.77 0.59841	Channel (MHz) PCL dBm W Refer to Plot 512 1850.2 0 31.13 1.29718 Plot D 661 1880.0 0 29.1 0.81283 Plot D 810 1909.8 0 29.41 0.87297 512 1850.2 0 31.19 1.31522 661 1880.0 0 28.96 0.78705 Plot E Note 1 810 1909.8 0 29.46 0.88308 512 1850.2 0 29.76 0.94624 661 1880.0 0 27.77 0.59841 Plot F Note 1	Channel (MHz) PCL dBm W Refer to Plot dBm 512 1850.2 0 31.13 1.29718 1.2971	Channel (MHz) PCL dBm W Refer to Plot dBm W 512 1850.2 0 31.13 1.29718 0 29.1 0.81283 Plot D 33 2 810 1909.8 0 29.41 0.87297 0.87297 0.87297 0.87297 0.87297 0.912		

2. WCDMA Model Test Verdict:

Band	Channel	Frequency	Measu	red ERP	Lin	Verdict	
Dallu	Chamiei	(MHz)	dBm	W	dBm	W	verdict
WCDMA	4132	826.4	23.12	0.205116			PASS
850MHz	4175	835	23.09	0.20370	38.5	7	PASS
830MHZ	4233	846.6	23.11	0.20464			PASS
HSDPA	4132	826.4	23.05	0.20184		7	PASS
850MHz	4175	835	23.01	0.19999	38.5		PASS
830MHZ	4233	846.6	23.02	0.20045			PASS
HSUPA	4132	826.4	22.01	0.15886			PASS
	4175	835	22.07	0.16107	38.5	7	PASS
850MHz	4233	846.6	22.02	0.15922			PASS

Band	Channel	Frequency	Measur	red EIRP	Lin	Verdict	
Dalla	Chamiei	(MHz)	dBm	W	dBm	W	verdict
WCDMA	9262	1852.4	22.07	0.16107		2	PASS
1900MHz	9400	1880	22.13	0.16331	33		PASS
1900MHZ	9538	1907.6	22.12	0.16293			PASS
HSDPA	9262	1852.4	22.19	0.16558		2	PASS
1900MHz	9400	1880	22.22	0.16673	33		PASS
1900MITZ	9538	1907.6	22.06	0.16069			PASS
HSUPA 1900MHz	9262	1852.4	22.13	0.16331			PASS
	9400	1880	22.11	0.16256	33	2	PASS
1 900 MITZ	9538	1907.6	22.06	0.16069			PASS

Note2: For the WCDMA and HSDPA test band, the measured output power was calculated by the reading of the Power Meter.

3. Test Plots:

No Peak Found

No Peak Found

(Plot A: GSM 850MHz Channel = 128, 190, 251)

(Plot B: GPRS 850MHz Channel = 128, 190, 251)

(Plot C: EDGE 850MHz Channel = 128, 190, 251)

(Plot D: GSM1900MHz Channel = 512, 661, 810)

(Plot E: GPRS 1900MHz Channel = 512, 661, 810)

(Plot F: EDGE 1900MHz Channel = 512, 661, 810)

2.7 Radiated Out of Band Emissions

2.7.1 Requirement

According to FCC section 22.917(a) and section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.7.2 Test Description

See section 2.6.2 of this report.

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.7.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions.

1. Test Verdict:

		Frequenc	Measured M Emissio	-			
Band	Channe 1		Test	Test	Refer to Plot	Limit	Verdict
	1	y (MHz)	Antenna	Antenna		(dBm)	
			Horizontal	Vertical			
GSM	128	824.2	< -25	< -25	Plot A.1/A.2		PASS
	190	836.6	< -25	< -25	Plot A.3/A.4	-13	PASS
850MHz	251	848.8	< -25	< -25	Plot A.5/A.6		PASS
CCM	512	1850.2	< -25	< -25	Plot B.1/B.2		PASS
GSM 1900MHz	661	1880.0	< -25	< -25	Plot B.3/B.4	-13	PASS
1900MITZ	810	1909.8	< -25	< -25	Plot B.5/B.6		PASS
EDCE	128	824.2	< -25	< -25	Plot C.1/C.2		PASS
EDGE	190	836.6	< -25	< -25	Plot C.3/C.4	-13	PASS
850MHz	251	848.8	< -25	< -25	Plot C.5/C.6		PASS
EDCE	512	1850.2	< -25	< -25	Plot D.1/D.2		PASS
EDGE	661	1880.0	< -25	< -25	Plot D.3/D.4	-13	PASS
1900MHz	810	1909.8	< -25	< -25	Plot D.5/D.6	_	PASS
WCDMA	4132	826.4	< -25	< -25	Plot E.1/E.2	-13	PASS

	Charma	F	Measured M Emissio	•		T,	
Band	Channe 1	Frequenc y (MHz)	Test Antenna	Test Antenna	Refer to Plot	Limit (dBm)	Verdict
			Horizontal	Vertical			
850MHz	4175	835	< -25	< -25	Plot E.3/E.4		PASS
	4233	846.6	< -25	< -25	Plot E.5/E.6		PASS
WCDMA	9262	1852.4	< -25	< -25	Plot F.1/F.2		PASS
WCDMA 1900MHz	9400	1880	< -25	< -25	Plot F.3/F.4	-13	PASS
1900MHZ	9538	1907.6	< -25	< -25	Plot F.5/F.6		PASS
HSDPA	4132	826.4	< -25	< -25	Plot G.1/G.2		PASS
850MHz	4175	835	< -25	< -25	Plot G.3/G.4	-13	PASS
830MHZ	4233	846.6	< -25	< -25	Plot G.5/G.6		PASS
HSDPA	9262	1852.4	< -25	< -25	Plot H.1/H.2		PASS
1900MHz	9400	1880	< -25	< -25	Plot H.3/H.4	-13	PASS
1900MITZ	9538	1907.6	< -25	< -25	Plot H.5/H.6		PASS
HSUPA	4132	826.4	< -25	< -25	Plot I.1/I.2		PASS
850MHz	4175	835	< -25	< -25	Plot I.3/I.4	-13	PASS
830MHZ	4233	846.6	< -25	< -25	Plot I.5/I.6		PASS
HSUPA	9262	1852.4	< -25	< -25	Plot J.1/J.2		PASS
1900MHz	9400	1880	< -25	< -25	Plot J.3/J.4	-13	PASS
1900MITZ	9538	1907.6	< -25	< -25	Plot J.5/J.6		PASS
HSPA+	4357	826.4	< -25	< -25	Plot K.1/K.2		PASS
850MHz	4400	835	< -25	< -25	Plot K.3/K.4	-13	PASS
OJUMITZ	4458	846.6	< -25	< -25	Plot K.5/K.6		PASS
HSPA+	9662	1852.4	< -25	< -25	Plot L.1/L.2		PASS
1900MHz	9800	1880	< -25	< -25	Plot L.3/L.4	-13	PASS
1 9001VII IZ	9938	1907.6	< -25	< -25	Plot L.5/L.6		PASS

2. Test Plots for the Whole Measurement Frequency Range:

Note1: the power of the EUT transmitting frequency should be ignored.

Note2: All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

