Probabilistic Programming Languages

Reactive Probabilistic Programming

Guillaume Baudart

MPRI 2023-2024

Synchronous languages

- High-level specification language
- Generate correct-by-construction embedded code
- Industrial tool: ANSYS Scade

Challenges

- Noisy environment, perceived through noisy sensors
- Interaction with other autonomous entities

Synchronous languages

- High-level specification language
- Generate correct-by-construction embedded code
- Industrial tool: ANSYS Scade

Challenges

- Noisy environment, perceived through noisy sensors
- Interaction with other autonomous entities

Synchronous languages

- High-level specification language
- Generate correct-by-construction embedded code
- Industrial tool: ANSYS Scade

Challenges

- Noisy environment, perceived through noisy sensors
- Interaction with other autonomous entities

Synchronous languages

- High-level specification language
- Generate correct-by-construction embedded code
- Industrial tool: ANSYS Scade

Challenges

- Noisy environment, perceived through noisy sensors
- Interaction with other autonomous entities

Existing approaches

- Manually implement stochastic controller: Can be error prone
- Offline statistical tests: Requires up-to-date offline data

Synchronous languages

- High-level specification language
- Generate correct-by-construction embedded code
- Industrial tool: ANSYS Scade

Challenges

- Noisy environment, perceived through noisy sensors
- Interaction with other autonomous entities

Existing approaches

- Manually implement stochastic controller: Can be error prone
- Offline statistical tests: Requires up-to-date offline data

Reactive Probabilistic Programming

- Synchronous languages with probabilistic constructs
- Make the probabilistic model explicit
- Automatically learn posterior distributions from observations

Reactive Probabilistic Programming (Demo)

Simultaneous Localization And Mapping

- Environment: slippery wheels and noisy color sensor
- System: infer current position and map, output command (left/right/up/down)

At each step:

- Move to the next position
- Observe the color of the ground
- Use inferred position to compute next command

Reactive systems

Synchronous data-flow languages and block diagrams

- Signal: stream of values
- System: stream processor


```
let node robot (gps) = u where

rec u = controller (x0 \rightarrow pre x)

and x = tracker (u, gps)
```

Reactive probabilistic systems

Synchronous data-flow languages and block diagrams

- Signal: stream of values
- System: stream processor

ProbZelus: add support to deal with uncertainty

- Extend a synchronous language
- Parallel composition: deterministic/probabilistic
- Inference-in-the-loop
- Streaming inference


```
let proba robot (gps) = u where
  rec u = controller (x0_dist → pre x_dist)
  and x_dist = infer tracker (u, gps)
```

Synchronous programming

Reactive Probabilistic Programming

Dataflow synchronous programming

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

Stream operations

- Constant are lifted to stream: 1 = 1, 1, 1,
- \blacksquare Temporal operators: \rightarrow , pre, fby
- Control structures: reset/every, present, automaton

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

node nat
$$v = cpt$$
 where
 $rec cpt = v \rightarrow pre cpt + 1$

$$cpt_n = if (n = 0) then v_0 else cpt_{n-1} + 1$$

Dataflow synchronous programming

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

node nat
$$v = cpt$$
 where
 $rec cpt = v \rightarrow pre cpt + 1$

$$cpt_n = if (n = 0) then v_0 else cpt_{n-1} + 1$$

nat

$$t = 0$$

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

node nat
$$v = cpt$$
 where
 $rec cpt = v \rightarrow pre cpt + 1$

$$cpt_n = if (n = 0) then v_0 else cpt_{n-1} + 1$$

$$t = 0$$

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

node nat
$$v = cpt$$
 where
 $rec cpt = v \rightarrow pre cpt + 1$

$$cpt_n = if (n = 0) then v_0 else cpt_{n-1} + 1$$

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

node nat
$$v = cpt$$
 where
 $rec cpt = v \rightarrow pre cpt + 1$

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

node nat
$$v = cpt$$
 where
 $rec cpt = v \rightarrow pre cpt + 1$

$$cpt_n = if (n = 0) then v_0 else cpt_{n-1} + 1$$

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

node nat
$$v = cpt$$
 where
 $rec cpt = v \rightarrow pre cpt + 1$

$$cpt_n = if (n = 0) then v_0 else cpt_{n-1} + 1$$

- Set of stream equations
- Discrete logical time steps
- At each step, compute the current value given inputs and previous values

node nat
$$v = cpt$$
 where
 $rec cpt = v \rightarrow pre cpt + 1$

$$cpt_n = if (n = 0) then v_0 else cpt_{n-1} + 1$$


```
let node n1 () = (o1, o2) where
  rec reset o1 = nat 0 every (0 fby o2 = 3)
and reset o2 = nat 0 every (0 fby o1 = 2)
```

```
let node n1 () = (o1, o2) where
  rec reset o1 = nat 0 every (0 fby o2 = 3)
  and reset o2 = nat 0 every (0 fby o1 = 2)
```

```
      o1
      |
      0
      1
      2
      3
      4
      5
      6
      0
      1
      2
      ...

      o2
      |
      0
      1
      2
      0
      1
      2
      3
      4
      5
      6
      ...
```

```
let node n1 () = (o1, o2) where
  rec reset o1 = nat 0 every (0 fby o2 = 3)
  and reset o2 = nat 0 every (0 fby o1 = 2)

let node n2 () = o where
  rec o1, o2 = n1 ()
  and o = present (o2 = 0) → o1 else 1
```

```
      o1
      0
      1
      2
      3
      4
      5
      6
      0
      1
      2
      ...

      o2
      0
      1
      2
      0
      1
      2
      3
      4
      5
      6
      ...
```

```
let node n1 () = (o1, o2) where
  rec reset o1 = nat 0 every (0 fby o2 = 3)
  and reset o2 = nat 0 every (0 fby o1 = 2)

let node n2 () = o where
  rec o1, o2 = n1 ()
  and o = present (o2 = 0) → o1 else 1
```

```
o1 | 0 1 2 3 4 5 6 0 1 2 ...
o2 | 0 1 2 0 1 2 3 4 5 6 ...
```

```
      o1
      0
      1
      2
      3
      4
      5
      6
      0
      1
      2
      ...

      o2
      0
      1
      2
      0
      1
      2
      3
      4
      5
      6
      ...

      o
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      ...
```

```
let node n1 () = (o1, o2) where
  rec reset o1 = nat 0 every (0 fby o2 = 3)
  and reset o2 = nat 0 every (0 fby <math>o1 = 2)
let node n2 () = o where
  rec o1, o2 = n1 ()
  and o = present (o2 = 0) \rightarrow o1 else 1
let node n3 () = o where
  rec o1, o2 = n1 ()
  and o = present (o2 = 0) \rightarrow last o + o1 init 1
```

```
      01 | 0 1 2 3 4 5 6 0 1 2 ...

      02 | 0 1 2 0 1 2 3 4 5 6 ...

      01 | 0 1 2 3 4 5 6 ...

      01 | 0 1 2 3 4 5 6 0 1 2 ...

      02 | 0 1 2 0 1 2 3 4 5 6 ...

      0 | 1 1 1 3 1 1 1 1 1 1 1 ...
```

```
let node n1 () = (o1, o2) where
                                                              o1 | 0 1 2 3 4 5 6 0 1 2 ...
  rec reset o1 = nat 0 every (0 fby o2 = 3)
                                                              02 | 0 1 2 0 1 2 3 4 5 6 ...
  and reset o2 = nat 0 every (0 fby <math>o1 = 2)
let node n2 () = o where
                                                              o1 | 0 1 2 3 4 5 6 0 1 2 ...
 rec o1, o2 = n1 ()
                                                              02 | 0 1 2 0 1 2 3 4 5 6 ...
  and o = present (o2 = 0) \rightarrow o1 else 1
                                                               o | 1 1 1 3 1 1 1 1 1 1 ...
let node n3 () = o where
                                                              o1 | 0 1 2 3 4 5 6 0 1 2 ...
  rec o1, o2 = n1 ()
                                                              02 | 0 1 2 0 1 2 3 4 5 6 ...
  and o = present (o2 = 0) \rightarrow last o + o1 init 1
                                                               o | 1 1 1 4 4 4 4 4 4 4 ...
```

Exercises

```
let node integr (y, dt) = o where
  rec ???

let node deriv (y, dt) = o where
  rec ???

let node pid ((p, i, d), r, y, dt) = o where
  rec ???
```

Hierarchical automata

Demo

ProbZelus

Reactive Probabilistic Programming

Probabilistic constructs

- x = sample(d): introduce a random variable x of distribution d
- \blacksquare observe(d, y): condition on the fact that y was sampled from d
- infer m y: compute posterior distribution of m given y


```
let proba tracker (y) = x where

rec x = x0 \rightarrow sample(mv_gaussian(f *0 (pre x), q))

and () = observe(mv_gaussian(h *0 x, r), y)
```

Probabilistic constructs

- x = sample(d): introduce a random variable x of distribution d
- \blacksquare observe(d, y): condition on the fact that y was sampled from d
- infer m y: compute posterior distribution of m given y


```
let proba tracker (y) = x where

rec x = x0 \rightarrow sample(mv_gaussian(f *0 (pre x), q))

and () = observe(mv_gaussian(h *0 x, r), y)
```

Probabilistic constructs

- x = sample(d): introduce a random variable x of distribution d
- observe(d, y): condition on the fact that y was sampled from d
- infer m y: compute posterior distribution of m given y


```
let proba tracker (y) = x where
  rec x = x0 → sample(mv_gaussian(f *0 (pre x), q))
  and () = observe(mv_gaussian(h *0 x, r), y)
```


Reactive probabilistic programming

Reactive probabilistic programming

Reactive probabilistic programming

Demo

Co-iterative semantics

Schedule agnostic semantics

Deterministic semantics

Deterministic semantics

Deterministic equations

$$\begin{bmatrix} e \text{ where rec init } x = c \\ \text{ and } x = e_x \\ \text{ and } y = e_y \end{bmatrix}^{\text{init}}_{\gamma} = c, \left(\llbracket e \rrbracket^{\text{init}}_{\gamma}, \llbracket e_x \rrbracket^{\text{init}}_{\gamma}, \llbracket e_y \rrbracket^{\text{init}}_{\gamma} \right)$$

$$\begin{bmatrix} e \text{ where rec init } x = c \\ \text{ and } x = e_x \\ \text{ and } y = e_y \end{bmatrix}^{\text{step}}_{\gamma} = bet s'_x, v_x = \llbracket e_x \rrbracket^{\text{step}}_{\gamma + [x. \text{last} \leftarrow p_x]}(s_x) \text{ in let } s'_y, v_y = \llbracket e_y \rrbracket^{\text{step}}_{\gamma + [x. \text{last} \leftarrow p_x, x \leftarrow v_x]}(s_y) \text{ in let } s', v = \llbracket e \rrbracket^{\text{step}}_{\gamma + [x. \text{last} \leftarrow p_x, x \leftarrow v_x]}(s_y) \text{ in let } s', v = \llbracket e \rrbracket^{\text{step}}_{\gamma + [x. \text{last} \leftarrow p_x, x \leftarrow v_x, y \leftarrow v_y]}(s) \text{ in } (v_x, (s', s'_x, s'_y))$$

Deterministic equations

$$\begin{bmatrix} e \text{ where rec init } x = c \\ \text{ and } x = e_x \\ \text{ and } y = e_y \end{bmatrix}_{\gamma}^{\text{init}} = c, \left(\llbracket e \rrbracket_{\gamma}^{\text{init}}, \llbracket e_x \rrbracket_{\gamma}^{\text{init}}, \right)$$

$$\begin{bmatrix} e \text{ where rec init } x = c \\ \text{ and } x = e_x \\ \text{ and } y = e_y \end{bmatrix}^{\text{step}}_{\gamma} \quad (p_x, (s, s_x, s_y)) = \begin{aligned} & |et s_x', v_x = \llbracket e_x \rrbracket_{\gamma}^{\text{ste}} \\ & |et s_y', v_y = \llbracket e_y \rrbracket_{\gamma+}^{\text{step}} \\ & |et s', v = \llbracket e \rrbracket_{\gamma+[x]}^{\text{step}} \\ & (v_x, (s', s_x', s_y')) \end{aligned}$$

Reactive Probabilistic Programming

Guillaume Baudart	Louis Mandel	Eric Atkinson
MIT-IBM Watson AI Lab,	MIT-IBM Watson AI Lab,	MIT
IBM Research	IBM Research	USA
USA	USA	
Benjamin Sherman	Marc Pouzet	Michael Carbin
MIT	École Normale Supérieure,	MIT
USA	PSL Research University	USA
	France	

Abstract

Synchronous modeling is at the heart of programming languages like Lustre, Esterel, or SCADE used routinely for implementing safety critical control software, e.g., fly-by-wire and engine control in planes. However, to date these languages have had limited modern support for modeling uncertainty — probabilistic aspects of the software's environment or behavior — even though modeling uncertainty is a primary activity when designing a control system.

In this paper we present ProbZelus the first *synchronous probabilistic programming language*. ProbZelus conservatively provides the facilities of a synchronous language to write control software, with probabilistic constructs to model uncertainties and perform *inference-in-the-loop*.

We propose a measure-theoretic semantics of probabilistic stream functions and a simple type discipline to separate deterministic and probabilistic expressions. We demonstrate a semantics-preserving compilation into a first-order functional language that lends itself to a simple presentation of inference algorithms for streaming models. We also redesign the delayed sampling inference algorithm to provide efficient *streaming* inference. Together with an evaluation on several reactive applications, our results demonstrate that ProbZelus enables the design of reactive probabilistic applications and efficient, bounded memory inference.

CCS Concepts: • Theory of computation \rightarrow Streaming models; • Software and its engineering \rightarrow Data flow languages.

Keywords: Probabilistic programming, Reactive programming, Streaming inference, Semantics, Compilation

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

PLDI '20, June 15–20, 2020, London, UK © 2020 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-7613-6/20/06.

https://doi.org/10.1145/3385412.3386009

ACM Reference Format:

Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, and Michael Carbin. 2020. Reactive Probabilistic Programming. In *Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI '20), June 15–20, 2020, London, UK.* ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3385412.3386009

1 Introduction

Synchronous languages [2] were introduced thirty years ago for designing and implementing real-time control software. They are founded on the synchronous abstraction [4] where a system is modeled ideally, as if communications and computations were instantaneous and paced on a global clock. This abstraction is simple but powerful: input, output and local signals are streams that advance synchronously and a system is a stream function. It is at the heart of the data-flow languages Lustre [20] and SCADE [13]; it is also the underlying model behind the discrete-time subset of Simulink.

The data-flow programming style is very well adapted to the direct expression of the classic control blocks of control engineering (e.g., relays, filters, PID controllers, control logic), and a discrete time model of the environment, with the feedback between the two. For example, consider a backward Euler integration method defined by the following stream equations and its corresponding implementation in Zelus [7], a language reminiscent of Lustre:

$$x_0 = xo_0$$
 $x_n = x_{n-1} + x_n' \times h \quad \forall n \in \mathbb{N}, n > 0$
let node integr (xo, x') = x where rec x = xo -> (pre x + x' * h)

The *node* integr is a function from input streams xo and x' to output stream x. The *initialization* operator \rightarrow returns its left-hand side value at the first time step and its right-hand side expression on every time step thereafter. The *unit-delay* operator pre returns the value of its expression at the previous time step. The following table presents a sample *timeline* showing the sequences of values taken by the streams defined in the program (where h is set to 0.1).

898

Deterministic equations

$$= c, \left(\llbracket e \rrbracket_{\gamma}^{\mathsf{init}}, \llbracket e_x \rrbracket_{\gamma}^{\mathsf{init}}, \right.$$

Reactive Probabilistic Programming

Marc Pouzet École Normale Supérieure, USA

Michael Carbin

Scheduling. In the expression e where rec E, E is a set of mutually recursive equations. In practice, a scheduler reorders the equations according to their dependencies. Initializations init $x_j = c_j$ are grouped at the beginning, and an equation $x_i = e_i$ must be scheduled after the equation $x_i = e_i$ if the expression e_i uses x_i outside a last construct. A program satisfying this partial order is said to be *scheduled*. The compiler can also introduce additional equations to relax the scheduling constraints and rejects programs that cannot be statically scheduled [5]. After scheduling, the expression e where rec E has the following form.

$$e$$
 where rec init $x_1 = c_1$... and init $x_k = c_k$ and $y_1 = e_1$... and $y_n = e_n$

For simplicity, we also assume that every initialized variable is defined in a subsequent equation, i.e., $\{x_i\}_{1...k} \cap \{y_i\}_{1...n} =$ $\{x_i\}_{1...k}$. If it is not the case, in this kernel we can always add additional equations of the form $x_i = last x_i$.

```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
• Initial state: (), 0
• Output: 1, 2, 3, 4, ...
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```



```
rec x = 1 + pre x
• Initial state: (), 0
• Output: 1, 2, 3, 4, ...
```



```
rec x = 1 + pre x
• Initial state: (), 0
• Output: 1, 2, 3, 4, ...
```



```
rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4, ....
```


Deterministic vs. probabilistic

Deterministic streams

Transition function returns a pair of state and value $CoStream(T,S) = S \times (S \rightarrow S \times T)$

Probabilistic streams

Transition function returns a measure over (state, value)

CoPStream
$$(T,S) = S \times (S \to \Sigma_{S \times T} \to [0,\infty])$$

Probabilistic semantics

Probabilistic semantics

Probabilistic equations

$$\left\{ \begin{bmatrix} e \text{ where rec init } x = c \\ \text{ and } x = e_x \\ \text{ and } y = e_y \end{bmatrix} \right\}_{\gamma}^{\text{init}}$$

$$= c, \left(\left\{ e \right\}_{\gamma}^{\text{init}}, \left\{ e_x \right\}_{\gamma}^{\text{init}}, \left\{ e_y \right\}_{\gamma}^{\text{init}} \right)$$

$$= \left\{ e \text{ where rec init } x = c \\ \text{ and } x = e_x \\ \text{ and } y = e_y \end{bmatrix} \right\}_{\gamma}^{\text{step}}$$

$$(p_x, (m, m_x, m_y)) = \int \left\{ e_x \right\}_{\gamma+[x, \text{last} \leftarrow p_x]}^{\text{step}} (m_x) (dm_x', dv_x)$$

$$\int \left\{ e_y \right\}_{\gamma+[x, \text{last} \leftarrow p_x, x \leftarrow v_x]}^{\text{step}} (m_y) (dm_y', dv_y)$$

$$\int \left\{ e_y \right\}_{\gamma+[x, \text{last} \leftarrow p_x, x \leftarrow v_x, y \leftarrow v_y]}^{\text{step}} (m) (dm', d_v)$$

$$\delta_{(v_x, (m', m_x', m_y')), v}$$

Probabilistic equations

$$\left\{ \begin{bmatrix} e \text{ where rec init } x = c \\ \text{ and } x = e_x \\ \text{ and } y = e_y \end{bmatrix} \right\}_{\gamma}^{\text{init}}$$

$$= c, \left(\left\{ e \right\}_{\gamma}^{\text{init}}, \left\{ e_x \right\}_{\gamma}^{\text{init}}, \left\{ e_y \right\}_{\gamma}^{\text{init}} \right)$$

$$= \left\{ e \text{ where rec init } x = c \\ \text{ and } x = e_x \\ \text{ and } y = e_y \end{bmatrix} \right\}_{\gamma}^{\text{step}}$$

$$(p_x, (m, m_x, m_y)) = \int \left\{ e_x \right\}_{\gamma+[x, \text{last} \leftarrow p_x]}^{\text{step}} (m_x) (dm'_x, dv_x)$$

$$\int \left\{ e_y \right\}_{\gamma+[x, \text{last} \leftarrow p_x, x \leftarrow v_x]}^{\text{step}} (m_y) (dm'_y, dv_y)$$

$$\int \left\{ e_y \right\}_{\gamma+[x, \text{last} \leftarrow p_x, x \leftarrow v_x, y \leftarrow v_y]}^{\text{step}} (m) (dm', d_v)$$

$$\delta_{(v_x, (m', m'_x, m'_y)), v}$$

Nested integrals require a fixed schedule

Semantics of infer

$$\begin{split} & \big[\mathsf{infer}(e) \big]_{\gamma}^{\mathsf{init}} &= \delta_{\llbracket e \rrbracket_{\gamma}^{\mathsf{init}}} \\ & \big[\mathsf{infer}(e) \big]_{\gamma}^{\mathsf{step}}(\sigma) &= \det \nu = \int \sigma(dm) \, \{\!\![e]\!\!]_{\gamma}^{\mathsf{step}}(m) \, \mathsf{in} \, \mathsf{let} \, \overline{\nu} = \nu / \nu(\top) \, \mathsf{in} \\ & \quad (\pi_{1*}(\overline{\nu}), \pi_{2*}(\overline{\nu})) \end{split}$$

Compilation

Reactive Probabilistic Programming

Target

```
Simplified syntax

x ::= variables
```

Target

Simplified syntax

Probabilistic semantics

$$\begin{split} & \| \text{let } f = \text{fun } p \to e \|^{\phi} & = \phi + \left[f \leftarrow \lambda v. \, \{e\}_{[p \leftarrow v]}^{\phi} \right] \text{if kindOf}(e) = P \\ & \| e \|_{\gamma}^{\phi} & = \lambda U. \, \delta_{\llbracket e \rrbracket_{\gamma}^{\phi}}(U) \, \text{if kindOf}(e) = D \\ & \| f(e) \|_{\gamma}^{\phi} & = \lambda U. \, \phi(f)(\llbracket e \rrbracket_{\gamma}^{\phi})(U) \\ & \| \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \|_{\gamma}^{\phi} & = \lambda U. \, \text{if } \llbracket e_1 \rrbracket_{\gamma}^{\phi} \, \text{then } \, \{e_2 \}_{\gamma}^{\phi}(U) \, \text{else } \, \{e_3 \}_{\gamma}^{\phi}(U) \\ & \| \text{let } p = e_1 \text{ in } e_2 \|_{\gamma}^{\phi} & = \lambda U. \, \int_{\llbracket typeOf(e_1) \rrbracket} \{e_1 \}_{\gamma}^{\phi} \, (dv) \, \{e_2 \}_{\gamma+\lceil p \leftarrow v \rceil}^{\phi} \\ & \| \text{sample}(e) \|_{\gamma}^{\phi} & = \lambda U. \, \llbracket e \|_{\gamma}^{\phi}(U) \\ & \| \text{factor}(e) \|_{\gamma}^{\phi} & = \lambda U. \, \llbracket e \|_{\gamma}^{\phi}(U) \\ & \| \text{observe}(e_1, e_2) \|_{\gamma}^{\phi} & = \lambda U. \, \text{pdf}(\llbracket e_1 \rrbracket_{\gamma}^{\phi})(\llbracket e_2 \rrbracket_{\gamma}^{\phi}) \cdot \delta_{()}(U) \\ & \| \text{infer}(e) \|_{\gamma}^{\phi} & = \frac{\lambda U. \, \{ e \}_{\gamma}^{\phi}(U) }{\{ e \}_{\gamma}^{\phi}(\llbracket typeOf(e) \rrbracket)} & \text{if } 0 < \{ e \}_{\gamma}^{\phi}(\llbracket typeOf(e) \rrbracket) < \infty \\ & \| \text{otherwise} & \text{otherwise} \\ \end{split}$$

Careful with 0, and ∞...

Compilation = Allocation + Transition

Synchronous languages

- Static analyses (typing, causality, initialization)
- Normalization, scheduling (rec x = y + 1 and y = \emptyset \rightarrow pre x)
- Compilation

Memory can be statically allocated

Allocation

```
= ()
\mathcal{A}(x)
\mathcal{A}((e_1,e_2))
                                                       = (\mathcal{A}(e_1), \mathcal{A}(e_2))
\mathcal{A}(\mathsf{present}\ e \to e_1\ \mathsf{else}\ e_2) = (\mathcal{A}(e), \mathcal{A}(e_1), \mathcal{A}(e_2))
\mathcal{A}(op(e))
                                                        = \mathcal{A}(e)
\mathcal{A}(f(e))
                                                       = (f_{init}, \mathcal{A}(e))
A(sample(e))
                                                       = \mathcal{A}(e)
\mathcal{A}(\mathsf{factor}(e))
                                                       = \mathcal{A}(e)
\mathcal{A}(\mathsf{observe}(e_1, e_2))
                                                       = (\mathcal{A}(e_1), \mathcal{A}(e_2))
A(infer(e))
                                                        = \mathcal{A}(e)
```

Allocation

```
\mathcal{A}(x)
\mathcal{A}((e_1,e_2))
                                                      = (\mathcal{A}(e_1), \mathcal{A}(e_2))
\mathcal{A}(\mathsf{present}\,e \to e_1 \;\mathsf{else}\,e_2) = (\mathcal{A}(e), \mathcal{A}(e_1), \mathcal{A}(e_2))
\mathcal{A}(op(e))
                                                       = \mathcal{A}(e)
\mathcal{A}(f(e))
                                                       = (f_{init}, \mathcal{A}(e))
A(sample(e))
                                                       = \mathcal{A}(e)
A(factor(e))
                                                       = \mathcal{A}(e)
\mathcal{A}(\mathsf{observe}(e_1, e_2))
                                                      = (\mathcal{A}(e_1), \mathcal{A}(e_2))
A(infer(e))
                                                       = \mathcal{A}(e)
```

$$\mathcal{A}egin{pmatrix} e & \mathsf{where} \\ \mathsf{rec\ init}\ x = c_x \\ \mathsf{and\ init}\ y = c_y \\ \mathsf{and}\ x = e_x \\ \mathsf{and}\ y = e_y \end{pmatrix} \ = \ egin{pmatrix} (c_x, c_y), \\ (\mathcal{A}(e_1), \mathcal{A}(e_2)), \\ \mathcal{A}(e) \end{pmatrix}$$

Transition

```
C(c) = \text{fun s} \rightarrow (c, s)
C(x) = \text{fun s} \rightarrow (x, s)
C(\text{last } x) = \text{fun s} \rightarrow (x_{\text{last, s}})
C((e_1, e_2)) = \text{fun } (s1, s2) \rightarrow
  let v1,s1' = C(e_1)(s1) in
  let v2,s2' = C(e_2)(s2) in
  ((v1, v2), (s1', s2'))
C(op(e)) = \text{fun s} \rightarrow
  let v,s' = C(e)(s) in
  (op(v), s')
C(f(e)) = \text{fun (s1,s2)} ->
  let v1,s1' = C(e)(s1) in
  let v2,s2' = f\_step(s2,v) in
  (v2, (s1', s2'))
C(\text{present } e \rightarrow e_1 \text{ else } e_2) =
fun (s,s1,s2) ->
  let v, s' = C(e)(s) in
  if v then let v1,s1' = C(e_1)(s1) in
     (v1, (s', s1', s2))
  else let v2,s2' = C(e_2)(s2) in
     (v2, (s',s1,s2'))
```

```
C(sample(e)) = fun s \rightarrow
  let mu,s' = C(e)(s) in
  let v = sample(mu) in (v, s')
C(\text{observe}(e_1, e_2)) = \text{fun } (s1, s2) \rightarrow
  let v1,s1' = C(e_1)(s1) in
  let v2,s2' = C(e_2)(s2) in
  let _ = observe(v1, v2) in
  ((), (s1', s2'))
C(factor(e)) = fun s \rightarrow
  let v,s' = C(e)(s) in
  let _{-} = factor(v) in ((), s')
C(infer(e)) = fun sigma \rightarrow
  let mu, sigma' = infer(C(e), sigma) in
  (mu, sigma')
```

Transition

```
C(c) = \text{fun s} \rightarrow (c, s)
                                                                        C(sample(e)) = fun s \rightarrow
C(x) = \text{fun s} \rightarrow (x, s)
                                                                          let mu,s' = C(e)(s) in
C(\text{last } x) = \text{fun s} \rightarrow (x_{\text{last, s}})
                                                                          let v = sample(mu) in (v, s')
C((e_1, e_2)) = \text{fun } (s1, s2) \rightarrow
                                                                        C(\text{observe}(e_1, e_2)) = \text{fun } (s1, s2) \rightarrow
                                                                          let v1,s1' = C(e_1)(s1) in
  let v1,s1' = C(e_1)(s1) in
                                                                           Let v2,s2' = C(e_2)(s2) in
  let
                                                                           let _ = observe(v1,v2) in
  ((v
         C(\text{present } e \rightarrow e_1 \text{ else } e_2) =
                                                                           ((), (s1', s2'))
         fun (s,s1,s2) ->
C(op(
           let v, s' = C(e)(s) in
                                                                           factor(e)) = fun s \rightarrow
  let
                                                                           let v,s' = C(e)(s) in
  (op
             if v then let v1,s1' = C(e_1)(s1) in
                                                                           let _{-} = factor(v) in ((), s')
                (v1, (s', s1', s2))
C(f(\epsilon))
            else let v2,s2' = C(e_2)(s2) in
  let
                                                                           infer(e)) = fun sigma \rightarrow
                                                                           Let mu, sigma' = infer(C(e), sigma) in
  let
                (v2, (s', s1, s2'))
  (v2
                                                                           (mu, sigma')
C(\text{present } e \rightarrow e_1 \text{ else } e_2) =
fun (s,s1,s2) ->
 let v, s' = C(e)(s) in
 if v then let v1,s1' = C(e_1)(s1) in
    (v1, (s', s1', s2))
  else let v2,s2' = C(e_2)(s2) in
    (v2, (s',s1,s2'))
```

Transition

```
C(c) = \text{fun s} \rightarrow (c, s)
                                                                       C(\mathsf{sample}(e))
                                                                         let mu,s'
C(x) = \text{fun s} \rightarrow (x, s)
                                                                         let v = s
C(\text{last } x) = \text{fun s} \rightarrow (x_{\text{last, s}})
C((e_1, e_2)) = \text{fun } (s1, s2) \rightarrow
                                                                       C(observe(e
  let v1,s1' = C(e_1)(s1) in
                                                                         let v1,s1
  let
                                                                          let v2,s2
  ((v
                                                                          let _ = c
         C(\text{present } e \rightarrow e_1 \text{ else } e_2) =
                                                                          ((), (s1'
         fun (s,s1,s2) ->
C(op(
           let v, s' = C(e)(s) in
  let
                                                                          factor(e)
                                                                          let v,s'
  (op
            if v then let v1,s1' = C(e_1)(s1) in
                                                                          (v1, (s', s1', s2))
C(f(\epsilon))
            else let v2,s2' = C(e_2)(s2) in
  let
                                                                          infer(e)
  let
                                                                          let mu,si
                (v2, (s', s1, s2'))
                                                                          (mu, sign
  (v2
C(\text{present } e \rightarrow e_1 \text{ else } e_2) =
fun (s,s1,s2) ->
 let v, s' = C(e)(s) in
  if v then let v1,s1' = C(e_1)(s1) in
    (v1, (s', s1', s2))
  else let v2,s2' = C(e_2)(s2) in
    (v2, (s',s1,s2'))
```

```
C(sample(e)) = fun s \rightarrow
  let mu,s' = C(e)(s) in
  let v = sample(mu) in (v, s')
C(\text{observe}(e_1, e_2)) = \text{fun } (s1, s2) \rightarrow
  let v1,s1' = C(e_1)(s1) in
  let v2,s2' = C(e_2)(s2) in
  let _ = observe(v1, v2) in
  ((), (s1', s2'))
C(factor(e)) = fun s \rightarrow
  let v,s' = C(e)(s) in
  let _{-} = factor(v) in ((), s')
C(infer(e)) = fun sigma \rightarrow
  let mu, sigma' = infer(C(e), sigma) in
  (mu, sigma')
```

The Zelus compiler

Generated code

```
(* a synchronous stream function with type 'a −D\rightarrow 'b *)
(* is represented by an OCaml value of type ('a, 'b) node *)
type ('a, 'b) node =
    Node:
      { alloc : unit \rightarrow 's; (* allocate the state *)
         step: 's \rightarrow 'a \rightarrow 'b; (* compute a step *)
        reset : 's → unit; (* reset/initialize the state *)
      \rightarrow ('a, 'b) cnode
(*
 let m = alloc() in
 reset m;
  while true do
   let o = step m i in ...
  done
```

Streaming inference

Reactive Probabilistic Programming

Approximate inference algorithm: importance sampling, but...

- Add a resampling step at each observe
- Compute the score of the particles to compute a distribution
- Re-sample a new set of particles from this distribution

How can we duplicate a particle during execution?

- Continuation Passing Style (CPS)?
- Clone the memory state?

Approximate inference algorithm: importance sampling, but...

- Add a resampling step at each observe
- Compute the score of the particles to compute a distribution
- Re-sample a new set of particles from this distribution

How can we duplicate a particle during execution?

- Continuation Passing Style (CPS)?
- Clone the memory state?


```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0
```

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0
sample (gaussian (0, 10))
```

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

$$t = 0$$
sample (gaussian (0, 10))


```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0 sample (gaussian (0, 10)) observe (gaussian (x, 1), 3)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0 sample (gaussian (0, 10)) observe (gaussian (x, 1), 3)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
let proba tracker (y) = x where
                                             rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))
                                             and () = observe (gaussian (x, 1), y)
           t = 0
                                                  t = 1
sample (gaussian (0, 10))
                                     sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)
```

```
let proba tracker (y) = x where  rec \ x = sample \ (gaussian \ (0, \ 10) \rightarrow gaussian \ (pre \ x, \ 1))  and () = observe \ (gaussian \ (x, \ 1), \ y)   t = 0   t = 1  sample (gaussian \ (0, \ 10))  sample (gaussian \ (x, \ 1), \ 3)  sample (gaussian \ (x, \ 1), \ 3)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0
sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)
sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)
```



```
 rec \ x = sample \ (gaussian \ (0, \ 10) \rightarrow gaussian \ (pre \ x, \ 1))   and \ () = observe \ (gaussian \ (x, \ 1), \ y)   t = 0   t = 1   sample \ (gaussian \ (0, \ 10))   sample \ (gaussian \ (pre \ x, \ 1))   observe \ (gaussian \ (x, \ 1), \ 3)   observe \ (gaussian \ (x, \ 1), \ 5)   observe \ (gaussian \ (x, \ 1), \ ...)
```

let proba tracker (y) = x where

• • •

Simple Particles Filters can be impractical

- Require lot of computing power
- Poor approximation

Exact inference is often possible

Semi-Symbolic inference

- Perform as much exact computation as possible
- Fall back to a Particle Filter when symbolic computation fails

Main idea

- Keep track of conjugacy relationships
- Incorporate observations analytically
- Sample only when necessary

Simple Particles Filters can be impractical

- Require lot of computing power
- Poor approximation

Exact inference is often possible

Semi-Symbolic inference

- Perform as much exact computation as possible
- Fall back to a Particle Filter when symbolic computation fails

Main idea

- Keep track of conjugacy relationships
- Incorporate observations analytically
- Sample only when necessary

Example: Conjugate Gaussians

$$x \sim \mathcal{N}(\mu_0, \sigma_0)$$
$$y \sim \mathcal{N}(x, \sigma)$$

$$x \mid (y = v) \sim \mathcal{N}(\mu_1, \sigma_1)$$

$$\mu_1 = \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}\right)^{-1} \left(\frac{\mu_0}{\sigma_0^2} + \frac{\nu}{\sigma^2}\right)$$

$$\sigma_1 = \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}\right)^{-2}$$

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0
```

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t=0 sample (gaussian (0, 10))
```

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t=0 sample (gaussian (0, 10))
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0
sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0
sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0
sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

$$t=0$$
 sample (gaussian (0, 10)) observe (gaussian (x, 1), 3)


```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

Example: 2 Gaussians $x \sim \mathcal{N}(\mu_0, \sigma_0)$ $y \sim \mathcal{N}(x, \sigma)$ $x \mid (y = v) \sim \mathcal{N}(\mu_1, \sigma_1)$ $\mu_1 = \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}\right)^{-1} \left(\frac{\mu_0}{\sigma_0^2} + \frac{v}{\sigma^2}\right)$ $\sigma_1 = \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}\right)^{-2}$

$$t = 0$$
 sample (gaussian (0, 10)) observe (gaussian (x, 1), 3)


```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

Example: 2 Gaussians $x \sim \mathcal{N}(\mu_0, \sigma_0)$ $y \sim \mathcal{N}(x, \sigma)$ $x \mid (y = v) \sim \mathcal{N}(\mu_1, \sigma_1)$ $\mu_1 = \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}\right)^{-1} \left(\frac{\mu_0}{\sigma_0^2} + \frac{v}{\sigma^2}\right)$ $\sigma_1 = \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}\right)^{-2}$

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t = 0 sample (gaussian (0, 10)) observe (gaussian (x, 1), 3)
```



```
let proba tracker (y) = x where
                                               rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))
                                               and () = observe (gaussian (x, 1), y)
           t = 0
                                                    t = 1
sample (gaussian (0, 10))
                                       sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)
              X
 \mathcal{N}(2.97, 0.995)
```

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t=0 \\  \text{sample (gaussian (0, 10))} \\  \text{observe (gaussian (x, 1), 3)} \\  \\  t=1 \\  \text{sample (gaussian (pre x, 1))} \\  \\
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t=0 \\  \text{sample (gaussian (0, 10))} \\  \text{observe (gaussian (x, 1), 3)} \\  \text{observe (gaussian (x, 1), 5)} \\
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t=0 \\  \text{sample (gaussian (0, 10))} \\  \text{observe (gaussian (x, 1), 3)} \\  \text{observe (gaussian (x, 1), 5)} \\
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

```
t=0 \\  \text{sample (gaussian (0, 10))} \\  \text{observe (gaussian (x, 1), 3)} \\  \text{observe (gaussian (x, 1), 5)} \\
```



```
let proba tracker (y) = x where
                                                  rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))
                                                   and () = observe (gaussian (x, 1), y)
                                                        t = 1
                                                                                                   t = 2
            t = 0
sample (gaussian (0, 10))
                                         sample (gaussian (pre x, 1))
                                                                                    sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)
                                                                                    observe (gaussian (x, 1), ...)
                                         observe (gaussian (x, 1), 5)
                                                   pre x
                                                                 X
               X
                                                   \mathcal{N}(\cdot,1)
  \mathcal{N}(2.97, 0.995)
                                                            \mathcal{N}(4.32, 0.816)
```

```
let proba tracker (y) = x where
                                             rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))
                                             and () = observe (gaussian (x, 1), y)
                                                                                         t = 2
                                                  t = 1
           t = 0
sample (gaussian (0, 10))
                                     sample (gaussian (pre x, 1))
                                                                           sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)
                                                                           observe (gaussian (x, 1), ...)
                                     observe (gaussian (x, 1), 5)
                                              pre x
             X
```

```
let proba tracker (y) = x where
rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x where
                                             rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))
                                             and () = observe (gaussian (x, 1), y)
                                                                                         t = 2
                                                  t = 1
           t = 0
sample (gaussian (0, 10))
                                     sample (gaussian (pre x, 1))
                                                                           sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 3)
                                                                           observe (gaussian (x, 1), ...)
                                     observe (gaussian (x, 1), 5)
                                              pre x
             X
```

Streaming Delayed sampling

```
let proba tracker (y) = x where
rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```


Streaming Delayed sampling

```
let proba tracker (y) = x where
rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```

```
t = 0
t = 1
t = 2
sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)
t = 1
t = 2
sample (gaussian (pre x, 1))
t = 3
observe (gaussian (x, 1), 5)
t = 2
t = 3
t = 2
t = 3
t = 2
t = 3
t = 2
t = 3
t = 3
t = 2
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t = 3
t =
```

 $\mathcal{N}(4.32, 0.816)$

Streaming Delayed sampling

```
let proba tracker (y) = x where
rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1)
and () = observe (gaussian (x, 1), y)
```

```
t=0 sample (gaussian (0, 10)) observe (gaussian (x, 1), 3)
```

```
t=1 \\  \text{sample (gaussian (pre x, 1))} \\  \text{observe (gaussian (x, 1), 5)} \\  \text{sample (gaussian (pre x, 1))} \\  \text{observe (gaussian (x, 1), ...)} \\
```

X

Delayed Sampling semantics

```
\{ op(e) \}_{\gamma,q,w} =
      let(e', g_e, w_e) = \{ [e] \}_{Y,q,w} in(app(op, e'), g_e, w_e)
\{\{if e then e_1 else e_2\}\}_{\gamma,q,w} =
      let e', g_e, w_e = \{e\}_{Y,g,w} in
      let v, g_v = value(e', g_e) in
      if v then \{e_1\}_{\gamma,q_v,w_e} else \{e_2\}_{\gamma,q_v,w_e}
\{\{\text{sample}(e)\}\}_{Y,q,w} =
      let \mu, g_e, w' = \{e\}_{Y,g,w} in
      let X, g' = assume(\mu, g_e) in (X, g', w')
\{ observe(e_1, e_2) \}_{\gamma, q, w} =
      let \mu, g_1, w_1 = \{ [e_1] \}_{\gamma,q,w} in let X, g_x = assume(\mu, g_1) in
      let e'_2, g_2, w_2 = \{ [e_2] \}_{\gamma, g_x, w_1} in let v, g_v = value(e'_2, g_2) in
      let g' = observe(X, v, g_v) in ((), g', w_2 * \mu_{pdf}(v))
```

```
 \begin{aligned} & [[\inf \texttt{er}(\texttt{fun} \ s \ -> \ e \ , \ \sigma)]]_{\gamma} = \\ & let \ \mu = \lambda U. \ \sum_{i=1}^{N} \ let \ s_{i}, g_{i} = \text{draw}([\![\sigma]\!]_{\gamma}) \ in \\ & let \ (e_{i}, s_{i}'), w_{i}, g_{i}' = \{\![\texttt{fun} \ s \ -> \ e]\!]_{\gamma, 1, g_{i}}(s_{i}) \ in \\ & let \ d_{i} = \ distribution(e_{i}, g_{i}') \ in \\ & \overline{w_{i}} * d_{i}(\pi_{1}(U)) * \delta_{s_{i}', g_{i}'}(\pi_{2}(U)) \end{aligned}   in \ (\pi_{1*}(\mu), \pi_{2*}(\mu))
```

Delayed Sampling semantics

```
\{ op(e) \}_{\gamma,q,w} =
      let(e', g_e, w_e) = \{ [e] \}_{Y,q,w} in(app(op, e'), g_e, w_e)
\{\{if e then e_1 else e_2\}\}_{\gamma,q,w} =
      let e', g_e, w_e = \{e\}_{Y,g,w} in
      let v, q_v = value(e', q_e) in
      if v then \{e_1\}_{\gamma,q_v,w_e} else \{e_2\}_{\gamma,q_v,w_e}
\{\{\text{sample}(e)\}\}_{Y,q,w} =
      let \mu, g_e, w' = \{e\}_{v,g,w} in
      let X, g' = assume(\mu, g_e) in (X, g', w')
\{ observe(e_1, e_2) \}_{\gamma, q, w} =
      let \mu, g_1, w_1 = \{ [e_1] \}_{Y,g,w} in let X, g_x = assume(\mu, g_1) in
      let e'_2, g_2, w_2 = \{ [e_2] \}_{\gamma, g_x, w_1} in let v, g_v = value(e'_2, g_2) in
      let g' = observe(X, v, g_v) in ((), g', w_2 * \mu_{pdf}(v))
```

```
 \begin{aligned} & [[\inf er(fun \ s \ -> \ e \ , \ \sigma)]]_{\gamma} = \\ & let \ \mu = \lambda U. \ \sum_{i=1}^{N} \ let \ s_{i}, g_{i} = \operatorname{draw}(\llbracket \sigma \rrbracket_{\gamma}) \ in \\ & let \ (e_{i}, s_{i}'), w_{i}, g_{i}' = \{[\operatorname{fun} \ s \ -> \ e]\}_{\gamma, 1, g_{i}}(s_{i}) \ in \\ & let \ d_{i} = \operatorname{distribution}(e_{i}, g_{i}') \ in \\ & \overline{w_{i}} * d_{i}(\pi_{1}(U)) * \delta_{s_{i}', g_{i}'}(\pi_{2}(U)) \end{aligned}   in \ (\pi_{1*}(\mu), \pi_{2*}(\mu))
```

Manipulate symbolic terms (e.g., app(+, ...))

$$\overline{w_i} = w_i / \sum_{i=1}^N w_i$$

Delayed Sampling semantics

```
\{ [op(e)] \}_{Y,q,w} =
      let(e', g_e, w_e) = \{ [e] \}_{Y,q,w} in(app(op, e'), g_e, w_e)
\{\{if e then e_1 else e_2\}\}_{\gamma,q,w} =
      let e', g_e, w_e = \{e\}_{Y,g,w} in
      let v, q_v = value(e', q_e) in
      if v then \{e_1\}_{Y,q_2,w_e} else \{e_2\}_{Y,q_2,w_e}
\{\{sample(e)\}\}_{\gamma,q,w} =
      let \mu, g_e, w' = \{e\}_{v,g,w} in
      let X, q' = assume(\mu, q_e) in (X, q', w')
\{ observe(e_1, e_2) \}_{\gamma, q, w} =
      let \mu, g_1, w_1 = \{ [e_1] \}_{Y,g,w} in let X, g_x = assume(\mu, g_1) in
      let e'_2, g_2, w_2 = \{e_2\}_{Y, g_x, w_1} in let v, g_v = value(e'_2, g_2) in
      let g' = observe(X, v, g_v) in ((), g', w_2 * \mu_{pdf}(v))
```

```
 \begin{aligned} & [[\inf \texttt{er}(\texttt{fun } s \to e \,, \, \, \sigma)]]_{\gamma} = \\ & \textit{let } \mu = \lambda U. \ \sum_{i=1}^{N} \ \textit{let } s_{i}, g_{i} = \text{draw}([\![\sigma]\!]_{\gamma}) \ \textit{in} \\ & \textit{let } (e_{i}, s_{i}'), w_{i}, g_{i}' = \{\![\texttt{fun } s \to e]\!]_{\gamma, 1, g_{i}}(s_{i}) \ \textit{in} \\ & \textit{let } d_{i} = \textit{distribution}(e_{i}, g_{i}') \ \textit{in} \\ & \overline{w_{i}} * d_{i}(\pi_{1}(U)) * \delta_{s_{i}', g_{i}'}(\pi_{2}(U)) \end{aligned}   \textit{in } (\pi_{1*}(\mu), \pi_{2*}(\mu))
```

Manipulate symbolic terms (e.g., app(+, ...))

High-level API: graph manipulations assume, observe, value

$$\overline{w_i} = w_i / \sum_{i=1}^N w_i$$

Evaluation

Algorithms comparison

- PF Particle Filtering
- ▼ SDS Streaming Delayed Sampling

Benchmarks

Conclusions

- SDS is always faster to match accuracy
- Reduction in particle count outweighs symbolic overhead
- SDS can be exact (1 particle)
- PF is impractical for advanced examples

Static analysis

Reactive Probabilistic Programming

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```


Yes!

```
let proba tracker (y) = x, x0 where
rec init x0 = sample (gaussian (0, 10))
and x = x0 \rightarrow sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x, x0 where
rec init x0 = sample (gaussian (0, 10))
and x = x0 \rightarrow sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x, x0 where
rec init x0 = sample (gaussian (0, 10))
and x = x0 \rightarrow sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x, x0 where
rec init x0 = sample (gaussian (0, 10))
and x = x0 \rightarrow sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x, x0 where
rec init x0 = sample (gaussian (0, 10))
and x = x0 \rightarrow sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```



```
let proba tracker (y) = x, x0 where
rec init x0 = sample (gaussian (0, 10))
and x = x0 \rightarrow sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```


Vo!

```
let proba tracker (y) = x, x0 where
rec init x0 = sample (gaussian (0, 10))
and x = x0 \rightarrow sample (gaussian (pre x, 1))
and () = observe (gaussian (x, 1), y)
```

Can we determine if a given program will run in bounded memory?

No!

Trace: abstract execution

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

trace	state	time
$x_0 \leftarrow \bot$::	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$		
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$		
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$		
• • •		

Trace: abstract execution

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

	trace	state	time
random variable	$\rightarrow x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
	$y_0 \leftarrow x_0 ::$		
	observe y ₀ ::		
	$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
	$y_1 \leftarrow x_1 ::$		
	observe y ₁ ::		
	$x_2 \leftarrow x_1 ::$	$x = x_2, \text{ pre } x = x_1$	t = 2
	$y_2 \leftarrow x_2 ::$		
	• • •		

Trace: abstract execution

```
let proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

	trace	state	time
random variable	$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
	$y_0 \leftarrow x_0 ::$		
observation ———	observe y ₀ ::		
	$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
	$y_1 \leftarrow x_1 ::$		
	observe y ₁ ::		
	$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
	$y_2 \leftarrow x_2 ::$		
	• • •		

Static analysis for delayed sampling

Semantic properties

m-consumed property

Chains of variables before an observe are bounded

unseparated paths property

Chains of variables referenced in the state are bounded

Theorem: The program satisfies these two properties iff it executes in bounded memory

Static analysis for delayed sampling

Semantic properties

m-consumed property

Chains of variables before an observe are bounded

unseparated paths property

Chains of variables referenced in the state are bounded

Theorem: The program satisfies these two properties iff it executes in bounded memory

Static analysis

Track variables introduced but not used yet

Track maximal path between pairs of variable in the state

Theorem: Any program that passes the analysis executes in bounded memory

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

trace	state	time
$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$		
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1, \text{ pre } x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$		
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$		
• • •		

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gauss

and () = observe (gaussian (x, 1), y)
```

Chains of variables before an observe are bounded

trace	state	time
$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$		
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$		
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$		
• • •		

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gauss

and () = observe (gaussian (x, 1), y)
```

Chains of variables before an observe are bounded

	trace	state	time
	$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
	$y_0 \leftarrow x_0 ::$		
y_0 is 0-consumed ——	\longrightarrow observe $y_0 ::$		
	$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
	$y_1 \leftarrow x_1 ::$		
	observe y ₁ ::		
	$x_2 \leftarrow x_1 ::$	$x = x_2, \text{ pre } x = x_1$	t = 2
	$y_2 \leftarrow x_2 ::$		
	• • •		

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gauss

and () = observe (gaussian (x, 1), y)
```

Chains of variables before an observe are bounded

	trace	state	time
	$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
x_0 is 1-consumed ——	$\longrightarrow y_0 \leftarrow x_0 ::$		
y_0 is 0-consumed —	\longrightarrow observe $y_0 ::$		
	$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
	$y_1 \leftarrow x_1 ::$		
	observe y ₁ ::		
	$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
	$y_2 \leftarrow x_2 ::$		
	• • •		

m-consumed property

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gauss

and () = observe (gaussian (x, 1), y)
```

Chains of variables before an observe are bounded

	trace	state	time
	$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
x_0 is 1-consumed —	$\rightarrow y_0 \leftarrow x_0 ::$		
y_0 is 0-consumed —	\longrightarrow observe $y_0 ::$		
	$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
x_1 is 1-consumed —	$\longrightarrow y_1 \leftarrow x_1 ::$		
y_1 is 0-consumed —	\longrightarrow observe $y_1 ::$		
	$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
	$y_2 \leftarrow x_2 ::$		
	• • •		

m-consumed property

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gauss

and () = observe (gaussian (x, 1), y)
```

Chains of variables before an observe are bounded

	trace	state	time
	$x_0 \leftarrow \bot$::	$x = x_0$	t = 0
x_0 is 1-consumed ——	$\rightarrow y_0 \leftarrow x_0 ::$		
y_0 is 0-consumed ——	\rightarrow observe $y_0 ::$		
	$x_1 \leftarrow x_0 ::$	$x = x_1, \text{ pre } x = x_0$	t = 1
x_1 is 1-consumed ——	$\rightarrow y_1 \leftarrow x_1 ::$		
y_1 is 0-consumed ——	\rightarrow observe $y_1 ::$		
	$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
	$y_2 \leftarrow x_2 ::$		
	• • •		

Yes

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gaussian (pre x, 1))

and () = observe (gaussian (x, 1), y)
```

trace	state	time
$x_0 \leftarrow \bot$::	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$		
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$		
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2, \text{ pre } x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$		
• • •		

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gauss

and () = observe (gaussian (x, 1), y)
```

trace	state	time
$x_0 \leftarrow \bot$::	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$		
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$		
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$		
• • •		

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gauss

and () = observe (gaussian (x, 1), y)
```

trace	state	time
$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$		
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$		
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$		
•••		

```
proba tracker (y) = x where

rec x = sample (gaussian (0, 10) \rightarrow gauss

and () = observe (gaussian (x, 1), y)
```

Chains of variables referenced in the state are bounded

trace	state	time
$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$		
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1, \text{ pre } x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$		
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$		
•••		

Yes!

```
proba tracker (y) = x where

rec init x0 = sample (gaussian (0, 10))

and x = x0 \rightarrow sample (gaussian (pre x, 1)

and () = observe (gaussian (x, 1), y)
```

trace	state	time
$x_0 \leftarrow \bot$::	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$	$x0 = x_0$	
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$	$x0 = x_0$	
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$	$x0 = x_0$	
•••		

```
proba tracker (y) = x where

rec init x0 = sample (gaussian (0, 10))

and x = x0 \rightarrow sample (gaussian (pre x, 1)

and () = observe (gaussian (x, 1), y)
```

trace	state	time
$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$	$\mathbf{x} 0 = x_0$	
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$	$\mathbf{x} 0 = x_0$	
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$	$\mathbf{x} 0 = x_0$	
•••		

```
proba tracker (y) = x where

rec init x0 = sample (gaussian (0, 10))

and x = x0 \rightarrow sample (gaussian (pre x, 1)

and () = observe (gaussian (x, 1), y)
```

Chains of variables referenced in the state are bounded

trace	state	time
$x_0 \leftarrow \bot ::$	$x = x_0$	t = 0
$y_0 \leftarrow x_0 ::$	$\mathbf{x} 0 = x_0$	
observe y ₀ ::		
$x_1 \leftarrow x_0 ::$	$x = x_1$, pre $x = x_0$	t = 1
$y_1 \leftarrow x_1 ::$	$\mathbf{x} 0 = \mathbf{x}_0$	
observe y ₁ ::		
$x_2 \leftarrow x_1 ::$	$x = x_2$, pre $x = x_1$	t = 2
$y_2 \leftarrow x_2 ::$	$\mathbf{x}0 = x_0$	
• • •		

Vo!

Evaluation

	<i>m</i> -consumed		unsep. paths		bounded mem.	
	output	actual	output	actual	output	actual
Kalman	✓	✓	✓	✓	✓	✓
Kalman Hold-First	✓	✓	X	X	X	X
Gaussian Random Walk	X	X	✓	✓	X	X
Robot	✓	✓	✓	✓	✓	✓
Coin	✓	✓	✓	✓	✓	✓
Gaussian-Gaussian	✓	✓	✓	✓	✓	✓
Outlier	Х	X	✓	✓	Х	X
MTT	X	X	✓	✓	X	X
SLAM	X	✓	✓	✓	X	✓

Evaluation

memory is probabilistically bounded

		m-cons	sumed	unsep.	paths	bounde	d mem.
		output	actual	output	actual	output	actual
Ī	Kalman	✓	✓	✓	✓	✓	✓
	Kalman Hold-First	✓	✓	X	X	X	X
	Gaussian Random Walk	X	X	✓	✓	X	X
	Robot	✓	✓	✓	✓	✓	✓
	Coin	✓	✓	✓	✓	✓	✓
	Gaussian-Gaussian	✓	✓	✓	✓	✓	✓
1	Outlier	X	X	✓	✓	X	X
	MTT	X	X	✓	✓	X	X
	SLAM	X	✓	✓	✓	X	✓

Evaluation

Applications: Control

Reactive Probabilistic Programming

exec_simple_pid

Cartpole PID

```
let node controller (angle, (p,i,d)) = action where
  rec e = angle -. (0.0 \rightarrow pre theta)
  and theta = p *. e +. i *. integr(0., e) +. d *. deriv(e)
  and action = if theta > 0. then Right else Left
let p = 0.0403884114239
let i = 0.041460471604
let d = 0.0705417538223
let node main () = () where
  rec obs, _, stop = cart_pole_gym true (Right \rightarrow pre action)
  and reset action = controller (obs.pole_angle, (p, i, d))
      every stop
```


Cartpole learn from angle

```
(* Learn the coefficients that minimize the angle *)
let proba model obs_init = p, (i, d) where
 rec init p = sample (gaussian 0. 0.1)
 and init i = sample (gaussian 0. 0.1)
 and init d = sample (gaussian 0. 0.1)
 and action = controller (obs.pole_angle, (p,i,d))
 and obs = simple_pendulum (obs_init, Right → pre action)
 and () = factor (-10. *. abs_float (obs.pole_angle))
let node main () = () where
 rec obs, _, stop = cart_pole_gym true (Right \rightarrow pre action)
 and reset action = controller (obs.pole_angle, (p, i, d))
     every stop
 and pid_dist = infer 1000 model obs
 and p, (i, d) = draw pid_dist
```

Cartpole learn from example

```
(* Favor action similar to example *)
let proba model (obs, ctrl_action) = p, (i, d) where
  rec init p = sample (gaussian 0. 0.1)
  and init i = sample (gaussian 0. 0.1)
  and init d = sample (gaussian 0. 0.1)
  and action = controller (obs.pole_angle, (p,i,d))
  and () = factor (if action = ctrl_action then 0. else -0.2)
let node main () = () where
  rec obs, _, stop = cart_pole_gym true (Right \rightarrow pre action)
  and reset action = controller (obs.pole_angle, (p, i, d))
      every stop
  and pid_dist = infer 1000 model obs
  and p, (i, d) = draw pid_dist
```

Cartpole learn from example

```
(* Favor action similar to example *)
let proba model (obs, ctrl_action) = p, (i, d) where
  rec init p = sample (gaussian 0. 0.1)
  and init i = sample (gaussian 0. 0.1)
  and init d = sample (gaussian 0. 0.1)
  and action = controller (obs.pole_angle, (p,i,d))
  and () = factor (if action = ctrl_action then 0. else -0.2)
let node main fix = () where
  rec obs, _, stop = cart_pole_gym true (Right \rightarrow pre action)
  and reset action = controller (obs.pole_angle, (p, i, d))
      every stop
  and automaton
      | Learn → do pid_dist = infer 1000 model obs
                 and p, (i, d) = draw pid_dist
        until fix then Fix
      \mid Fix \rightarrow do until (not fix) then Learn
  end
```


References

Reactive probabilistic programming

Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sherman, Marc Pouzet, Michael Carbin PLDI 2020

Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Programs.

Lawrence Murray, Daniel Lundén, Jan Kudlicka, David Broman, Thomas B. Schön AISTATS 2017

A Co-iterative Characterization of Synchronous Stream Functions

Paul Caspi and Marc Pouzet CMCS 1998

Statically Bounded-Memory Delayed Sampling for Probabilistic Streams

Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, Michael Carbin OOPLSA 2021