25.2 习题 II

习题 25.2.1 设 E 为有界集, f 在 E 上一致连续, 证明 f 在 E 上有界.

习题 25.2.2 从闭区间 [0,1] 出发,构造类 Cantor 集如下,在第 k 步时,对每一个余下的闭区间,移走相对长度为 θ_k $(0 < \theta_k < 1)$ 的同心开区间.证明余下的集合总长为零当且仅当 $\sum_{k=1}^{\infty} \theta_k = \infty$.

习题 25.2.3 Lebesgue 外侧度定义中的无穷求和是否能替换为有穷求和:

$$m^{*}\left(E
ight)=\inf\left\{ \sum_{k=1}^{N}\left|I_{k}\right|:\left\{ I_{k}
ight\} _{k=1}^{N}$$
为 \mathbb{R}^{n} 的 N 个开矩体, $E\subset\bigcup_{k=1}^{N}I_{k}
ight\} .$

习题 25.2.4 设 μ^* 为 \mathbb{R}^n 上的外测度. 设 $A \subset \mathbb{R}^n$, 定义

$$\mu_{A}^{*}\left(E\right)=\mu^{*}\left(E\cap A\right),\;\forall E\subset\mathbb{R}^{n}.$$

那么 μ_A^* 是外测度, 且任何 μ^* -可测集也是 μ_A^* -可测的.

习题 25.2.5 教材第二版 2.2 节思考题 2,3.