```
Part 1
```

- 1. $\Pi_{lname(Athelete)}$ Π_{lname} (σ Athelete.AID = Result.AID (Athelete \bowtie Result))
- 2. $\Pi_{\text{lname}} \sigma_{\text{gold=0} \land \text{silver=0} \land \text{bronze=0}} Athlete$
- 3. AtLeastTwo: σ E1.EID != E2.EID \wedge E1.SID=E2.SID [(ρ E1 Event)×(ρ E2 Event)] Answer = Π sname(σ Stadium.SID = AtLeastTwo.SID(AtLeastTwo × Stadium))
- 4. Canadians(AID, sport) := $\Pi_{AID, \text{ sport}} \sigma_{cname='Canada}$ (Athlete \bowtie Country) Answer(sport) := Π_{sport} (Canadians \bowtie Result)
- 5) Swimming = σsport = "swimming" (Athelete)
 NotTop = ΠS1.fname, S1.lname(σS1.gold<S2.gold (ρS1Swimming x ρS2Swimming))
 Answer = Πfname, lname (Swimming)- NotTop
- 6. Gold(CID) := $\Pi_{\text{CID}} \sigma_{\text{gold} > 0}$ Athlete Silver(CID) := $\Pi_{\text{CID}} \sigma_{\text{silver} > 0}$ Athlete

Bronze(CID) := $\Pi_{\text{CID}} \sigma_{\text{bronze} > 0}$ Athlete

 $AllMedal(CID) := Gold \cap Silver \cap Bronze$

Answer(cname) := Π_{cname} (AllMedal \bowtie Country)

7.NotFirstTicket = Π T1.EID (σ T1.dateIssued>T2.dateIssued ^ T1.timeIssued>T2.timeIssued (ρ T1 Ticket x ρ T2Ticket))

 $FirstTicket = \Pi EID(Ticket) - NotFirstTicket$

 $GoldAthelete = \Pi AID(\sigma medal = "gold"(FirstTicket \bowtie Result))$

 $Country_ID = \Pi CID(GoldAthelete \bowtie Athlete)$

 $Country_name = \Pi cname (\sigma CID = Country_ID \bowtie Country))$

8. MexicoGold(AID, fname, lname, gold) := $\Pi_{AID, fname, lname, gold} \sigma_{cname='Mexico'}$. (Athlete \bowtie Country) NotTop(AID, fname, lname, gold) := $\Pi_{M1.AID, M1.fname, M1.lname, M1.gold} \sigma_{M1.gold < M2.gold} [(\rho_{M1} MexicoGold)]$ NotSecond(AID, fname, lname, gold) := $\Pi_{M1.AID, M1.fname, M1.lname, M1.gold} \sigma_{M1.gold < M2.gold} [(\rho_{M1} NotTop) x (\rho_{M2} NotTop)]$

Answer(fname, lname) := $\Pi_{\text{fname lname}}$ (MexicoGold - NotSecond)

9.AtleastTwo_Ticket = σ T1.TID != T2.TID \wedge T1.EID = T2.EID[(ρ T1 Ticket)×(ρ T2 Ticket)] Answer = Π Event.sport(σ Event.EID = AtleastTwo_Ticket.EID \wedge Event.date = AtleastTwo_Ticket.dateIssued(Event x AtleastTwo_Ticket))

 $10. \ NotMost(AID, \ fname, \ lname, \ CID, \ gold) := \Pi_{A1.AID, \ A1.fname, \ A1.lname, \ A1.CID, \ A1.gold} \ \sigma_{A1.gold < A2.gold} \\ [(\rho_{A1} \ Athlete) \ x \ (\rho_{A2} \ Athlete)]$

 $MostGold(AID, fname, lname, CID, gold) := (\Pi_{AID, fname, lname, CID, gold} Athlete) - NotMost \\ Answer(fname, lname, cname, gold) := \Pi_{AID, fname, lname, cname, gold} (MostGold <math>\bowtie$ Country)

- 11. Cannot be expressed
- 12. NoTicket(EID) := $(\Pi_{EID} \text{ Event})$ $(\Pi_{EID} \text{ Ticket})$ GoldMeal(AID, EID) := $\Pi_{AID, EID} \sigma_{medal='gold'}$ (NoTicket \bowtie Result) Answer(fname, lname) := $\Pi_{fname, lname}$ (Athlete \bowtie GoldMedal)

Part 2

- 1. σ R1.EID = R2.EID AND R1.AID = R2.AID AND R1.medel != R2.medal ((ρ R1 Result)×(ρ R2 Result)) = Ø
- $2. \ \sigma_{dateIssued \geq date \ V (dateIssued = date \ \Lambda \ timeIssued \geq time)} \ (Event \bowtie Ticket) = \varnothing$
- 3. Cannot be expressed
- $4. \ \sigma_{Athlete.AID=Result.AID \land Event.EID=Result.EID \land Athlete.sport \neq Event.sport} \ (Athlete \ \big \langle \ Result \ \big \rangle \ Event) = \varnothing$