ЗАДАЧИ ОТ ВЗАИМНИ ПОЛОЖЕНИЯ И РАЗСТОЯНИЕ МЕЖДУ ПРАВИ

Необходим материал: векторни бази в линейно пространство, координатни условия за колинеарност и компланарност на вектори, скаларно произведение, векторно произведение

1 зад. Дадени са векторите \vec{a} и \vec{b} , за които $|\vec{a}| = 1$, $|\vec{b}| = 2$, $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$.

 $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AC} = \overrightarrow{b}, \overrightarrow{AD} = \overrightarrow{a} \times \overrightarrow{b}$. Да се намери разстоянието между правите AB и CD.

Упътване: Правите са кръстосани. Търсеното разстояние е дължината на тяхната ос-отсечка.

OTF: $\frac{\sqrt{6}}{6}$

2 зад. Даден е куб $ABCDA_1B_1C_1D_1$ с ръб AB=1.

- а) Да се докаже, е правите A_1D и BD_1 са кръстосани;
- b) Да се намери $∢(A_1D, BD_1)$;
- с) Да се намери разстоянието между A_1D и BD_1 .

Упътване: Изберете векторна база в пространството, изразете $\overrightarrow{A_1D}$ и $\overrightarrow{BD_1}$. Правите са кръстосани точно тогава, когато точките A_1, D, B, D_1 не са компланарни.

OTF: c) $\frac{\sqrt{6}}{6}$

3 зад. Даден е куб $ABCDA_1B_1C_1D_1$ с ръб AB=1. $\overrightarrow{AB}=\vec{a}$, $\overrightarrow{AD}=\vec{b}$, $\overrightarrow{AA_1}=\vec{c}$.

Точката M е медицентърът на Δ ABD, а точката N е медицентърът на Δ BCC_1 .

- а) Да се изразят векторите \overrightarrow{AM} , \overrightarrow{AN} и \overrightarrow{MN} чрез \vec{a} , \vec{b} , \vec{c} ;
- b) Да се определи взаимното положение на правите AD и MN;
- с) Да се намери ∢(АД, МN);
- d) Да се намери разстоянието между правите AD и MN.

OTT: d) $\frac{\sqrt{5}}{15}$

4 зад. Даден е правоъгълен паралелепипед $ABCDA_1B_1C_1D_1$. $|AB|=\sqrt{2}$, |AD|=2, $|AA_1|=1$.

Точките M и N са средите съответно на A_1B_1 и BC.

- а) Да се намери дължината на MN;
- b) Да се определи взаимното положение на правите BD_1 и MN;
- c) Да се намери $\sphericalangle(BD_1, MN)$;
- d) Да се намери разстоянието между правите BD_1 и MN.

5 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} , за които $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$,

$$\sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{c}, \vec{b}) = \sphericalangle(\vec{a}, \vec{c}) = \frac{\pi}{3}. \ \overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c}.$$

 A_1 и B_1 са средите съответно на $B\mathcal{C}$ и \mathcal{OC} .

- а) Да се докаже, че векторите \vec{a} , \vec{b} и \vec{c} са линейно независими;
- b) Да се изразят векторите $\overrightarrow{AA_1}$ и $\overrightarrow{BB_1}$ чрез \vec{a} , \vec{b} , \vec{c} ;
- с) Да се докаже, че правите AA_1 и BB_1 са кръстосани;
- d) Да се намери разстоянието между правите AA_1 и BB_1 .

OTF: d)
$$\frac{\sqrt{70}}{35}$$

6 зад. Даден е правоъгълен паралелепипед $ABCDA_1B_1C_1D_1$, за който $|AB|=\lambda$,

$$|AD| = |AA_1| = 1$$
. Известно е, че $\sphericalangle(D_1M, AC_1) = \frac{\pi}{2}$, където M е средата на ръба AB .

- а) Да се намери дължината на ръба АВ;
- b) Нека $\lambda = 0,5$ и точката G е медицентърът на тетраедъра $BA_1C_1D_1$. Да се намери разстоянието между правите AG и BC_1 .