CHEMISTRY

Written examination 2

DATA SHEET

Directions to students

This data sheet is provided as a reference.

Make sure that you remove this data sheet from the question and answer book during reading time.

Any writings, jottings, notes or drawings made on this data sheet will **not** be considered in the marking.

At the end of the examination, ensure that you do **not** leave the data sheet in the question and answer book.

You may keep this data sheet.

Physical constants

 $F = 96500 \,\mathrm{C \, mol}^{-1}$

 $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Ideal gas equation

pV = nRT

 $1 \text{ atm} = 101 \ 325 \ Pa = 760 \ mmHg$

 0° C = 273 K

Molar volume at STP = $22.4 L \text{ mol}^{-1}$

Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$

The electrochemical series

	E° in volts
$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \rightarrow 2H_2O(1)$	+1.77
$Au^+(aq) + e^- \rightarrow Au(s)$	+1.68
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+1.23
$Br_2(l) + 2e^- \rightarrow 2Br^-(aq)$	+1.09
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$I_2(s) + 2e^- \rightarrow 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$S(s) + 2H^{+}(aq) + 2e^{-} \rightarrow H_{2}S(g)$	+0.14
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0.00
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.23
$Co^{2+}(aq) + 2e^- \rightarrow Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^- \rightarrow Mn(s)$	-1.03
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.67
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.34
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$K^+(aq) + e^- \rightarrow K(s)$	-2.93
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.02

Periodic table of the elements

2 He 4.0	10 Ne 20.1	18 Ar 39.9	36 Kr 83.8	54 Xe 131.3	86 Rn (222)	118 Uuo
	9 F 19.0	17 CI 35.5	35 Br 79.9	53 - 126.9	85 At (210)	
	8 O 16.0	16 S 32.1	34 Se 79.0	52 Te 127.6	84 (209)	116 Uuh
	7 N 14.0	15 P 31.0	33 As 74.9	Sb 121.8	83 Bi 209.0	
	6 C 12.0	Si 28.1	32 Ge 72.6	50 Sn 118.7	82 Pb 207.2	114 Uuq
	5 B 10.8	13 AI 27.0	31 Ga 69.7	49 In 114.8	81 TI 204.4	
			30 Zn 65.4	48 Cd 112.4	80 Hg 200.6	112 Uub
			29 Cu 63.6	47 Ag 107.9	79 Au 197.0	111 Uuu
			28 Ni 58.7	46 Pd 106.4	78 Pt 197.0	110 Uun
			27 Co 58.9	45 Rh 102.9	77 	109 Mt (268)
			26 Fe 55.9	Ru 101.1	76 0s 190.2	108 Hs (265)
			25 Mn 54.9	43 Tc 98.1	75 Re 186.2	107 Bh (264)
			24 Cr 52.0	42 Mo 95.9	74 W 183.8	106 Sg (263)
			23 V 50.9	41 Nb 92.9	73 Ta 180.9	105 Db (262)
			22 Ti 47.9	40 Zr 91.2	72 Hf 178.5	104 Rf (261)
			21 Sc 44.9	39 ★ 88.9	57 La 138.9	89 Ac (227)
	Be 9.0	12 Mg 24.3	20 Ca 40.1	38 Sr 87.6	56 Ba 137.3	88 Ra (226)
- ± 0.1	3 Li 6.9	11 Na 23.0	19 7 × 39.1	37 Rb 85.5	55 Cs 132.9	87 Fr (223)

71 Lu 175.0	103	ځ	(260)
70 Yb 173.0	102	õ	(259)
69 Tm 168.9	101	Md	(258)
68 Er 167.3	100	Æ	(257)
67 Ho 164.9	66	Es	(254)
66 Dy 162.5	86	ຽ	(251)
65 Tb 158.9	97	Ř	(247)
64 Gd 157.2	96	S	(247)
63 Eu 152.0	98	Am	(243)
62 Sm 150.3	94	Pu	(244)
61 Pm (145)	93	å	237.1
60 Nd 144.2	92	_	238.0
59 Pr 140.9	91	Pa	231.0
58 Ce 140.1	06	ᆮ	232.0

END OF DATA SHEET