COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CSE 2151

Credits: 04

EXERCISE

- Give a short sequence of machine instructions for the task
 - Add the contents of memory location A to those of location B, and place the answer in location C
 - Following instructions are the only instructions available to transfer data between the memory and the general-purpose registers.
 - Load Ri, LOC
 - Store Ri, LOC
 - Do not change the contents of either location A or B.

Solution:

- Load R3, A
- Load R4, B
- Add R5, R3, R4
- Store R5, C

NUMBER REPRESENTATION AND ARITHMETIC OPERATIONS

Number representation

- Decimal number system:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Each digit has a position value in terms of powers of 10
 - \bullet 123= 1 * 10² + 2 * 10¹ + 3 * 10⁰
- Binary number system
 - **0**, 1
 - Each digit has a position value in terms of powers of 2
 - \bullet 101= 1 * 2² + 0 * 2¹ + 1 * 2⁰
 - n-bit vector $B = b_{n-1} \dots b_1 b_0$,
 - where $b_i = 0$ or 1 for $0 \le i \le n 1$
 - unsigned integer value V(B) in the range 0 to 2^{n-1} , where
 - $V(B) = b_{n-1} \times 2^{n-1} + \cdots + b_1 \times 2^1 + b_0 \times 2^0$

INTEGER

- Unsigned integer
 - If the integers are represented using 4 bit
 - $0_{(10)}$ in binary? 0000
 - $15_{(10)}$ in binary? $1111 = 1 * 2^3 + 1 * 2^2 + 1 * 2^1 + 1 * 2^0$
- Signed integer

b ₃ b ₂ b ₁ b ₀	Value in decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

INTEGER

- Unsigned integer
 - If the integers are represented using 4 bit
 - 0₍₁₀₎ in binary? 0000
 - 15₍₁₀₎ in binary?

1111 =
$$1 * 2^3 + 1 * 2^2 + 1 * 2^1 + 1 * 2^0$$

- Signed integer
 - Sign and magnitude
 - One's complement
 - Two's complement
 - In all three systems,
 - the **positive numbers** have the **same** bit representation
 - the **negative numbers** have **different** bit representation
 - positive numbers the leftmost bit is 0
 - negative numbers- the leftmost bit is 1

В	١	/alues represented	
$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1	+ 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0	+ 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0	+ 7 + 6 + 5 + 4 + 3 + 2 + 1 + 0
1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1	- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7	- 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0	- 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

SIGNED INTEGER: SIGN AND MAGNITUDE

- Negative values most significant bit of the corresponding positive value changed from 0 to 1
- Sign- MSB
- Magnitude (or number)- remaining bits
- 0 represented as positive and negative

Positive Value	$\mathbf{b}_3 \ \mathbf{b}_2 \mathbf{b}_1 \mathbf{b}_0$	$\mathbf{b}_3 \ \mathbf{b}_2 \mathbf{b}_1 \mathbf{b}_0$	Negative Value
+7	0111	1111	-7
+6	0110	1110	-6
+5	0101	1101	-5
+4	0100	1100	-4
+3	0011	1011	-3
+2	0010	1010	-2
+1	0001	1001	-1
+0	0000	1000	-0

SIGNED INTEGER: ONE'S COMPLEMENT

- Negative values complementing each bit in the corresponding positive value
- Negative to positive- complementing each bit in the corresponding negative value

+6 0110 -6 **1001**

- For n-bit numbers, this operation is equivalent to subtracting the number from $2^n 1$.
- Example: +6 to -6 in a 4-bit representation
 - 2ⁿ-1=15 1111 +6 <u>0110</u> -6 **1001**

0 represented as positive and negative

Positive Value	$\mathbf{b}_3 \ \mathbf{b}_2 \mathbf{b}_1 \mathbf{b}_0$	$\mathbf{b}_3 \mathbf{b}_2 \mathbf{b}_1 \mathbf{b}_0$	Negative Value
+7	0111	1000	-7
+6	0110	1001	-6
+5	0101	1010	-5
+4	0100	1011	-4
+3	0011	1100	-3
+2	0010	1101	-2
+1	0001	1110	-1
+0	0000	1111	-0

SIGNED INTEGER: TWO'S COMPLEMENT

- 2's-complement of an n-bit number is done by subtracting the number from 2ⁿ.
- How to subtract 2 numbers?
- **•** 0101 0100
 - **•** 001
- **•** 01100 01000
 - **0100**
- **•** 010000 0101
 - **•** 01011
- **•** 01000 0011
 - ?

First Value	Second Value	Difference
0	0	0
0	1	1 (by borrowing)
1	0	1
1	1	0

SIGNED INTEGER: TWO'S COMPLEMENT

- Negative values adding 1 to the 1'scomplement of corresponding positive value
- Example: +6 to -6 in a 4-bit representation
 - 2ⁿ-1=15 1111
 +6 0110 conversion using
 1001 l's complement
 +1 0001
 -6 1010
- For n-bit numbers, this operation is equivalent to subtracting the number from 2ⁿ.
- Example: +6 to -6 in a 4-bit representation
 - 2ⁿ 10000 +6 <u>00110</u>
 - -6 01010

Positive Value	$\mathbf{b}_3 \ \mathbf{b}_2 \mathbf{b}_1 \mathbf{b}_0$	$\mathbf{b}_3 \ \mathbf{b}_2 \mathbf{b}_1 \mathbf{b}_0$	Negative Value
+7	0111	1000	-8
+6	0110	1001	-7
+5	0101	1010	-6
+4	0100	1011	-5
+3	0011	1100	-4
+2	0010	1101	-3
+1	0001	1110	-2
+0	0000	1111	-1

0 represented as positive

SIGNED INTEGER: TWO'S COMPLEMENT

- 4 bits: -8 to +7
 -2⁴⁻¹ to +2⁴⁻¹-1
- 5 bits: -16 to +15
 -2⁵⁻¹ to +2⁵⁻¹-1
- 6 bits: -32 to +31
 -2⁶⁻¹ to +2⁶⁻¹-1
- n bits: -2^{n-1} to $+2^{n-1}-1$

SIGNED INTEGERS

- For 4-bit numbers, the value -8 is representable in the 2's-complement system but not in the other systems.
- Sign-and-magnitude system seems the most natural
- l's-complement system is easily related to this system
- 2's-complement appears unusual.
 - However, it leads to the most efficient way to carry out addition and subtraction operations.
 - It is the one most often used system in modern computers.

Bellev V. Statephy State St			2010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
В		Values represented	
$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+ 7	+ 7	+ 7
0110	+ 6	+ 6	+ 6
0 1 0 1	+ 5	+ 5	+ 5
0100	+ 4	+ 4	+ 4
0011	+ 3	+ 3	+ 3
0010	+ 2	+ 2	+ 2
0001	+ 1	+ 1	+ 1
0000	+ 0	+ 0	+ 0
1000	- 0	- 7	- 8
1001	- 1	- 6	- 7
1010	- 2	- 5	- 6
1011	- 3	- 4	- 5
1100	- 4	- 3	- 4
1 1 0 1	- 5	- 2	- 3
1110	- 6	- 1	- 2
1111	- 7	- 0	- 1

UNSIGNED INTEGERS: OPERATIONS

```
#include <iostream>
using namespace std;
int main() {
   unsigned short x=65535, y=65537;
   cout<<x<<" "<<y<endl;
   return 0;
}</pre>
```

- x=65535, y=1
- unsigned short: 16 bits
 - 0 to 65535 (0 to 2ⁿ-1)
 - If the value is out of range, it is divided by *largest_number+1* of that datatype, and only the remainder kept.
 - Here, 65537 % 65536= 1
 - Any number bigger than the largest number, "wraps around" the largest number in that type.

UNSIGNED INTEGERS: OPERATIONS

```
#include <iostream>
using namespace std;
int main() {
   unsigned short x=0, y=-1;
   cout<<x<<" "<<y<endl;
   return 0;
}</pre>
```

- x=0, y= 65535
- wraps around to the top of the range.

UNSIGNED INTEGER: ADDITION

- **7** (0111) + **5** (0101) = ?
 - From 7 move 5 units in clockwise direction
 - **1**2
- **9** + 14=?
 - From 9 (1001) move 14 units in clockwise direction
 - **-** 7

UNSIGNED INTEGERS: ADDITION

2-bit addition:

- Multiple bit addition
 - Similar to decimal addition method
 - add bit pairs starting from the low-order end of the bit vectors, transmitting the carries toward the high-order end
 - The carry-out from the previous bit pair becomes the carry-in to the current bit pair
 - The carry-out from the bit pair in the right must be added to the current bit pair to generate the sum and carry-out at that position
 - If both bits of a pair are 1 and the carry-in is 1, then the sum is 1 and the carry-out is 1

UNSIGNED INTEGERS: SUBTRACTION

```
#include <iostream>
using namespace std;
int main(){
 unsigned int x=1, y=2;
 cout<<x-y;
 return 0;
```

- **4294967295**
 - This occurs due to -1 wrapping around to a number close to the top of the range of a 4-byte integer
 - 2³²-1 → 4294967296-1
 - 32 bits = 4 bytes (size of int)
- Hence, subtraction is not recommended.

TOPICS COVERED FROM

- Textbook 1:
 - Chapter 1: 1.4.1