NETWORK SCIENCE OF ONLINE INTERACTIONS

Chapter 7: Dynamics

Joao Neto 02/Jun/2023

SUMMARY

- Community detection is a huge part of network theory
- Best method depends on community definition
- Dendogram is useful for small networks
- Modularity is very popular, but comes with caveats
- Stochastic block models solve some of those caveats

DYNAMICS ON NETWORKS

- Dynamics
 - Models on networks
 - Threshold models
 - Cascade models
 - Epidemic spreading
 - Opinion dynamics

- Critical Phenomena on Networks
 - Adaptive networks
 - Phase Transitions
 - Branching and autoregressive processes
 - Properties of networks at criticality
 - Self-organized criticality

- Things can spread on networks
 - Social networks: ideas, links
 - Epidemic spreading: diseases
- Definition: nodes have internal state(s) $x_i(t) = f(x(t))$
- What is the influence of the network structure on the dynamics?
- Example: Fake news spreading on twitter during the 2016 US Election
 - Over 30K tweets + retweets
 - Red ones flagged as bots

- How do we model how a node state (retweeting, sick, etc) spreads?
 - Deterministic: activation rule
 - Probabilistic: each active node has a probability of activating another

Threshold networks

- Deterministic dynamics
- A node is activated if more than θ_i neighbours are

$$x_i(t+1) = \begin{cases} 1 & \text{,if } \sum_j w_{ij} x_j(t) > \theta_i \\ 0 & \text{, otherwise} \end{cases} \quad \text{or} \quad x_i(t+1) = \begin{cases} 1 & \text{,if } \sum_j w_{ij} x_j(t) \ge \theta_i \\ 0 & \text{, otherwise} \end{cases}$$

- Threshold networks
 - $x_i(t) = H(\sum_j x_j(t) \theta_i)$
 - Generalization: Boolean networks
 - All Boolean functions instead of just H(x)
 - Extensively used to model gene regulatory networks
 - Many variations have been studied
 - Synchronous vs asynchronous updates
 - Varying threshold/threshold distribution
 - Inhibition and excitation
 - Long-term memory effects

- Thresholds can be
 - Absolute, e.g. $\theta_i = 2$
 - Fractional, e.g. $\theta_i = 0.5k_i$
- Running the model
 - Starts with activating some nodes(s)
 - The dynamics can
 - get frozen (e.g. dying out): x(t + 1) = x(t)
 - Stay active forever in a loop $x(t + t_{recurrence}) = x(t)$
 - $t_{recurrence}$ can be extremely long (up to 2^N)
 - Example: $\theta_i = k_i/2$
 - Evolves to all active
 - Frozen in that state

- Evolution of the spreading cascade depends on network structure
- If fractional threshold $\theta_i \sim k_i$, low degree nodes are more vulnerable
- If $\theta_i = \theta$, high degree nodes are both more vulnerable and better *drivers*
- A cascade initiated on the core is more likely to succeed
- Final state can depend on initial state
 - Not only degree, but network positioning

Community structure can lead to cascade patterns

- Extension: inhibition
 - Support of someone you dislike has a negative effect
- Random Threshold Network (RTN) with inhibition
 - Random network
 - A fraction F_+ of nodes are positive
 - Parameters:
 - Average degree K
 - Fraction of positive nodes F_+
 - Fraction of initial active nodes A(0)
 - Network quickly converges to a fraction A_{∞} of active nodes
 - Little dependence on topology (ER vs BA)

- More activity if
 - Larger F_+
 - Lower θ
 - Effect of K?
- Phase space analysis
 - By varying the parameters, all levels of activity can be obtained
- Sensitivity analysis
 - Due to deterministic dynamics, we can easily check the effect of changing a single node state (Hamming distance)
 - Some network structures are much more susceptible to manipulation than others

JPN et al, arXiv: 1712.08816

Independent cascade models

- Each active node has a probability p_{ij} of activating another
- Individual node-to-node interaction
- Many names and variations
 - Independent cascade
 - Percolation models
 - Contact processes
 - Branching models
- Probabilistic:
 - harder to control cascade
 - Only expected results (e.g. cascade size distribution)

- Independent cascade models
 - Many variants
 - Complex contagion: models in which the spreading requires multiple exposures to succeed
 - E.g. spread of innovation in technological networks

- Models of disease spreading borrow many of the concepts seen so far
- Diseases can spread faster on networks that are
 - denser
 - Small-world
 - with community structure
- COVID-19
 - Fast-spreader
 - Happened during the largest migratory events of mankind (Chinese New Year)
 - Happened at a busy airport (Wuhan)

Primary school contact network

Compartment models

- Blocks and connection between blocks
- The SIS model
 - Nodes are Susceptible or Infected
 - S gets infected with rate β
 - I recovers with rate μ
 - Good if there is no immunity effect (e.g. common cold)
 - Analytically: $\frac{dS}{dt} = -\frac{\beta SI}{N} + \mu I$ $\frac{dI}{dt} = \frac{\beta SI}{N} \mu I$
 - Steady state that depends on the parameters
 - $dS/dt = 0 \rightarrow S = \mu N/\beta, I = 1 S$

The SIR model

- Adds a new block: Recovered
- Models diseases with immunity
- Analytically

$$\frac{dS}{dt} = -\frac{\beta SI}{N} \qquad \frac{dI}{dt} = \frac{\beta SI}{N} - \mu I \qquad \frac{dR}{dt} = \mu I$$

- Slow, irregular ramp-up of infected (usually indetectable)
- Exponential growth of infected
- Stationary state
 - Endemic (I > 0)
 - Eradicated (I = 0)

- Many other possible blocks
 - **SIRS**: Susceptible-Infected-Recovered-Susceptible
 - Immunity wanes with a rate γ
 - SEIRS: Susceptible-Exposed-Infected-Recovered-Susceptible
 - Models a latent phase where individual are infected but not yet infectious
 - Vital dynamics: adds birth-death processes
- Different block configurations have different sampling challenges
 - Exposed population can be undetectable
 - Solution: Bayesian inference

Dehning, J., Zierenberg, J., Spitzner, F. P., Wibral, M., **Neto, J. P.,** Wilczek, M., & Priesemann, V. (2020). *Science*, 369(6500), eabb9789.

- Continuous model
 - Models a fully-mixed system (all-to-all)
 - Mean-field solution: equivalent to the expected behaviour of all identical nodes in the same compartment
 - Disregards node heterogeneity, and fluctuations
 - "Atto-Foxes": can result in continuous dynamics where the actual system would die out

Network model

- Can have very different results from the continuous model depending on topology
- Important example: contact network
 - No epidemic threshold if there are hubs
 - Hubs are likely to get infected, and can infect many in return
 - Vaccination strategy: vaccinate hubs first
 - Similar to network robustness analysis

- Opinion spread in social networks borrow from the models seen so far
- Two classes:
 - Discrete opinions
 - Continuous opinions
- Dimensionality:
 - Single topic
 - Multiple topics
- Usual set-up:
 - Random initial opinions (disagreement)
 - Study the rules for consensus-formation

- Possible outcomes
 - Discrete opinions: consensus or polarization
 - Continuous opinion: statistical distribution
 - Unlikely to have a stationary state
 - Other observables (e.g. fraction of system with one opinion) may stabilize

Majority model

- Node takes the opinion of the majority of its neighbours
- Similar to a clustering algorithm
- Equivalent to a threshold model with $\theta_i = k_i/2$
- Two ideas competing instead of one spreading
- Rarely results in consensus, but

a

Voter model

- A node may randomly change the opinion to one of its neighbours
- Consensus is the only stable state
- Due to being probabilistic, it will eventually happen as long as the network is connected
- May take an extremely long time

a

b

- Continuous opinions: Bounded confidence model
 - The idea: opinions can only influence each other if they are within a distance (confidence bound) ϵ
 - Parameters:
 - Confidence bound ϵ
 - Convergence parameter μ
 - Set-up
 - For two nodes i and j with opinions within ϵ , update their opinions with

$$o_i(t+1) = o_i(t) + \mu[o_j(t) - o_i(t)]$$

$$o_j(t+1) = o_j(t) + \mu[o_i(t) - o_j(t)]$$

Results

- If $\mu = 1/2$, opinions converge to the average
- If $\mu = 1$, they switch
- Average opinion is conserved
- Convergence parameter only affects speed
- For $\epsilon > 1/2$ the system always reaches consensus, on any network, with the opinions centred around $\frac{1}{2}$
- For $\epsilon < 1/2$, a varying number of clusters will appear

SUMMARY

- Many models with different applicability
- Threshold models
 - Deterministic compounded influence of neighbours
 - Depends on network and starting point
- Cascade models
 - Probabilistic single-node influence
- Epidemic spreading
 - Various components for different types of diseases
- Opinion dynamics
 - Different spreading rules: majority, probabilistic, bounded effect

