Mini-project 3:

PROBLEM STATEMENT: To predict the Rainfall based on various features of the dataset

Import Libraries:

```
In [1]: import numpy as np
   import pandas as pd
   from sklearn.linear_model import LinearRegression
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\DELL\Desktop\rainfall in india 1901-2015.csv")
df

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0

4116 rows × 19 columns

Data Cleaning & preprocessing:

```
In [3]:
         df.head()
Out[3]:
             SUBDIVISION YEAR JAN
                                       FEB MAR
                                                   APR
                                                          MAY
                                                                JUN
                                                                       JUL
                                                                           AUG
                                                                                   SEP
                                                                                         OCT
                                                                                                     DEC
                                                                                               NOV
              ANDAMAN &
          0
                NICOBAR
                            1901
                                 49.2
                                       87.1
                                             29.2
                                                         528.8 517.5 365.1
                                                                           481.1
                                                                                  332.6
                                                                                        388.5
                                                                                              558.2
                                                                                                      33.6
                 ISLANDS
              ANDAMAN &
          1
                NICOBAR
                            1902
                                  0.0
                                      159.8
                                             12.2
                                                     0.0 446.1 537.1 228.9 753.7
                                                                                  666.2 197.2 359.0
                 ISLANDS
              ANDAMAN &
          2
                            1903 12.7
                NICOBAR
                                      144.0
                                              0.0
                                                     1.0
                                                         235.1
                                                               479.9 728.4 326.7
                                                                                  339.0 181.2 284.4
                                                                                                    225.C
                 ISLANDS
              ANDAMAN &
          3
                NICOBAR
                            1904
                                        14.7
                                              0.0
                                                  202.4
                                                         304.5 495.1 502.0
                                                                           160.1 820.4 222.2 308.7
                                                                                                      40.1
                 ISLANDS
              ANDAMAN &
                NICOBAR
                            1905
                                  1.3
                                         0.0
                                              3.3
                                                    26.9 279.5 628.7 368.7 330.5 297.0 260.7
                                                                                               25.4
                                                                                                    344.7
                 ISLANDS
In [4]:
         df.tail()
Out[4]:
                  SUBDIVISION YEAR JAN FEB MAR APR
                                                             MAY
                                                                   JUN
                                                                          JUL
                                                                               AUG
                                                                                      SEP
                                                                                            OCT
                                                                                                  NOV
          4111 LAKSHADWEEP
                                2011
                                       5.1
                                             2.8
                                                  3.1
                                                       85.9
                                                            107.2
                                                                  153.6
                                                                         350.2
                                                                               254.0
                                                                                     255.2
                                                                                            117.4
                                                                                                  184.3
          4112 LAKSHADWEEP
                                2012
                                     19.2
                                            0.1
                                                  16
                                                       76.8
                                                             212
                                                                  327.0
                                                                         231.5
                                                                               381.2
                                                                                    179.8
                                                                                           145.9
                                                                                                   12.4
          4113 LAKSHADWEEP
                                2013
                                      26.2
                                           34.4
                                                 37.5
                                                        5.3
                                                             88.3
                                                                  426.2
                                                                         296.4
                                                                               154.4
                                                                                     180.0
                                                                                            72.8
                                                                                                   78.1
          4114 LAKSHADWEEP
                                2014
                                      53.2
                                           16.1
                                                       14.9
                                                             57.4
                                                                  244.1
                                                                         116.1
                                                                               466.1
                                                                                     132.2
                                                                                           169.2
                                                                                                   59.0
                                                  4.4
          4115 LAKSHADWEEP
                                2015
                                       2.2
                                             0.5
                                                       87.1
                                                            133.1
                                                                  296.6
                                                                         257.5
                                                                               146.4
                                                                                     160.4
                                                                                           165.4
                                                                                                 231.0
         df.shape
In [5]:
Out[5]: (4116, 19)
In [6]:
         df.columns
Out[6]: Index(['SUBDIVISION', 'YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL',
                  'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb', 'Mar-May',
                  'Jun-Sep', 'Oct-Dec'],
                dtype='object')
```

```
In [7]: df.describe()
```

Out[7]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.000000	410
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.234444	34
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.710758	26
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	ı
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.350000	17:
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.700000	28
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.150000	41
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	236
4								•

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype				
0	SUBDIVISION	4116 non-null	object				
1	YEAR	4116 non-null	int64				
2	JAN	4112 non-null	float64				
3	FEB	4113 non-null	float64				
4	MAR	4110 non-null	float64				
5	APR	4112 non-null	float64				
6	MAY	4113 non-null	float64				
7	JUN	4111 non-null	float64				
8	JUL	4109 non-null	float64				
9	AUG	4112 non-null	float64				
10	SEP	4110 non-null	float64				
11	OCT	4109 non-null	float64				
12	NOV	4105 non-null	float64				
13	DEC	4106 non-null	float64				
14	ANNUAL	4090 non-null	float64				
15	Jan-Feb	4110 non-null	float64				
16	Mar-May	4107 non-null	float64				
17	Jun-Sep	4106 non-null	float64				
18	Oct-Dec	4103 non-null	float64				
<pre>dtypes: float64(17), int64(1), object(1)</pre>							
memory usage: 611.1+ KB							

Checking any null values.

```
In [9]: df.isnull().sum()
 Out[9]: SUBDIVISION
                           0
          YEAR
                           0
                           4
          JAN
          FEB
                           3
                           6
          MAR
          APR
                           4
          MAY
                           3
                           5
          JUN
                           7
          JUL
          AUG
                           4
          SEP
                           6
          OCT
                           7
          NOV
                          11
          DEC
                          10
          ANNUAL
                          26
          Jan-Feb
                           6
          Mar-May
                           9
          Jun-Sep
                          10
          Oct-Dec
                          13
          dtype: int64
In [10]: | df.dropna(inplace=True)
In [11]: df.isnull().sum()
Out[11]: SUBDIVISION
                          0
          YEAR
                          0
          JAN
                          0
          FEB
                          0
                          0
          MAR
          APR
                          0
          MAY
                          0
                          0
          JUN
          JUL
                          0
          AUG
                          0
          SEP
                          0
          OCT
                          0
          NOV
                          0
          DEC
                          0
          ANNUAL
                          0
          Jan-Feb
                          0
          Mar-May
                          0
          Jun-Sep
                          0
          Oct-Dec
                          0
          dtype: int64
```

```
In [12]: df["ANNUAL"].value_counts()
Out[12]: ANNUAL
          1024.6
                    4
          770.3
                    4
          790.5
                    4
          1353.8
                    3
          1138.2
                    3
          419.8
                    1
          428.9
                    1
          527.8
                    1
          322.9
                    1
          1642.9
                    1
          Name: count, Length: 3712, dtype: int64
In [13]: |df["Jan-Feb"].value_counts()
Out[13]: Jan-Feb
          0.0
                   238
          0.1
                    80
          0.2
                    52
          0.3
                    38
          0.4
                    32
          66.5
                     1
          80.9
                     1
          26.4
                     1
                     1
          102.5
          69.3
                     1
          Name: count, Length: 1211, dtype: int64
In [14]: | df["Mar-May"].value_counts()
Out[14]: Mar-May
          0.0
                   29
          0.1
                   13
          0.3
                   11
          8.3
                   11
          2.9
                   10
                   . .
          165.6
                    1
          246.3
                    1
          248.1
                    1
          151.3
                    1
          223.9
                    1
          Name: count, Length: 2248, dtype: int64
```

```
In [15]: df["Jun-Sep"].value_counts()
Out[15]: Jun-Sep
          334.8
                   4
          434.3
                   4
          573.8
                   4
          613.3
                   4
          403.9
                   3
          897.7
                   1
          301.6
                   1
          380.9
                   1
          409.3
                   1
          958.5
                   1
          Name: count, Length: 3670, dtype: int64
In [16]: df["Oct-Dec"].value_counts()
Out[16]: Oct-Dec
          0.0
                   16
          0.1
                   15
          0.5
                   13
          0.6
                   12
          0.7
                   11
          124.5
                    1
          139.1
                    1
          41.5
                    1
          95.4
                    1
          555.4
                    1
          Name: count, Length: 2378, dtype: int64
```

Data Visualisation:

```
In [17]: df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


In [18]: sns.countplot(x="JAN",data=df)

Out[18]: <Axes: xlabel='JAN', ylabel='count'>


```
In [64]: predictions=regr.predict(x_test)
plt.scatter(y_test,predictions)
```

Out[64]: <matplotlib.collections.PathCollection at 0x17f336e5e50>


```
In [38]: x=df[['MAR']]
y=df['JAN']
```

LINEAR REGRESSION:

```
In [41]: print(regr.intercept_)
    coeff_=pd.DataFrame(regr.coef_,x.columns,columns=['coefficient'])
    coeff_
```

11.032992188591763

Out[41]:

coefficient

MAR 0.306187

```
In [42]: score=regr.score(x_test,y_test)
print(score)
```

0.11835017078035837

RIDGE:

```
In [43]: from sklearn.linear_model import Lasso,RidgeCV,Ridge
from sklearn.preprocessing import StandardScaler
```

```
In [44]: feature=df.columns[0:3]
  target=df.columns[-1]
```

```
In [45]: x=np.array(df['JAN']).reshape(-1,1)
y=np.array(df['FEB']).reshape(-1,2)
```

```
In [46]: x= df[feature].values
    y= df[target].values
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)
```

```
In [47]: ridgeReg=Ridge(alpha=10)
    ridgeReg.fit(x_train,y_train)
        train_score_ridge=ridgeReg.score(x_train,y_train)
        test_score_ridge=ridgeReg.score(x_test,y_test)
        print("\n Ridge Model \n")
        print("train score for ridge model is {}".format(train_score_ridge))
        print("test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model

train score for ridge model is 0.05014945209599819 test score for ridge model is 0.05148515553862054

```
In [48]: plt.figure(figsize=(10,10))
         plt.plot(feature,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,c
          plt.plot(feature,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',langersize=7
          plt.xticks(rotation=90)
          plt.legend()
          plt.show()
                     Ridge; alpha = 10
           MAR
                     Linear Regression
           FEB
           JAN
                  AN
```

In [49]: print(ridgeReg.score(x_test,y_test))

0.05148515553862054

LASSO:

```
In [50]: lassoReg=Lasso(alpha=10)
    lassoReg.fit(x_train,y_train)
        train_score_lasso=lassoReg.score(x_train,y_train)
        test_score_lasso=lassoReg.score(x_test,y_test)
        print("\n Lasso Model \n")
        print("train score for lasso model is {}".format(train_score_lasso))
        print("test score for lasso model is {}".format(test_score_lasso))
```

Lasso Model

train score for lasso model is 0.05009768723610697 test score for lasso model is 0.05164202078447555

```
In [51]: from sklearn.linear_model import LassoCV
    lasso_cv=LassoCV(alphas=[0.001,0.001,0.01,1,1,10]).fit(x_train,y_train)
    print("The train score for lasso model is {}".format(lasso_cv.score(x_train,y_train))
    print("The train score for lasso model is {}".format(lasso_cv.score(x_test,y_test))
```

The train score for lasso model is 0.05009768723610697 The train score for lasso model is 0.05164202078447555

```
In [52]: igure(figsize=(10,10))
         lot(feature,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color=
         lot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',l
         lot(feature,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='
         ticks(rotation=90)
         egend()
         how()
                    Ridge; alpha = 10
           MAR
                    lasso; alpha = grid
                    Linear Regression
           FEB
           JAN
                  AN
```

In [53]: print(lassoReg.score(x_test,y_test))

0.05164202078447555

ELASTIC NET:

```
In [54]: from sklearn.linear_model import ElasticNet
In [55]: regr=ElasticNet()
    regr.fit(x,y)
    print(regr.coef_)
    print(regr.intercept_)

        [0.24206174 0.01817624 0.04362447]
        12.558042980256765
In [56]: y_pred_elastic=regr.predict(x_train)
        mean_squared_error=np.mean((y_pred_elastic=y_train)**2)
        print(mean_squared_error)
        1797.5088236249962
In [57]: print(regr.score(x_test,y_test))
```

0.05298141054185812

CONCLUSION: Among on accuracy scores of all models that were implemented we can conclude that "Lasso Model" is the best model for the given dataset.