Luke Mattfeld

Eastern Washington University

Fall, 2020

Outline

Background

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Future Work

Which Plague?

 Names: The Black Death, Bubonic Plague, etc.

Figure: "The Triumph of Death" - Pieter Bruegel the Elder - 1562

Which Plague?

 Names: The Black Death, Bubonic Plague, etc.

Figure: "The Triumph of Death" - Pieter Bruegel the Elder - 1562

Which Plague?

- Names: The Black Death, Bubonic Plague, etc.
 - Bubonic plague

Figure: "The Triumph of Death" - Pieter Bruegel the Elder - 1562

Which Plague?

- Names: The Black Death, Bubonic Plague, etc.
 - Bubonic plague
 - Pneumonic plague

Figure: "The Triumph of Death" - Pieter Bruegel the Elder - 1562

Which Plague?

- Names: The Black Death, Bubonic Plague, etc.
 - Bubonic plague
 - Pneumonic plague
 - Septicemic plague

Figure: "The Triumph of Death" - Pieter Bruegel the Elder - 1562

Which Plague?

- Names: The Black Death, Bubonic Plague, etc.
 - Bubonic plague
 - Pneumonic plague
 - · Septicemic plague
- Bacteria behind it all: Yersinia pestis

Figure: "The Triumph of Death" - Pieter Bruegel the Elder - 1562

How it Spread

Background

How it Spread

Aspirated

How it Spread

ullet Aspirated o Pneumonic model

Background 000

How it Spread

- ullet Aspirated o Pneumonic model
- Rats to Fleas to Humans

How it Spread

- Aspirated → Pneumonic model
- ullet Rats to Fleas to Humans o Rat-Flea transmission (RFT) model

Background

How it Spread

- Aspirated → Pneumonic model
- ullet Rats to Fleas to Humans o Rat-Flea transmission (RFT) model
- Other

Background 000

How it Spread

- Aspirated → Pneumonic model
- Rats to Fleas to Humans → Rat-Flea transmission (RFT) model
- Other → Human-Ectoparasite model (Dean et al.)

How it Spread

- Aspirated → Pneumonic model
- Rats to Fleas to Humans \rightarrow Rat-Flea transmission (RFT) model
- Other → Human-Ectoparasite model (Dean et al.)
- New RFT Model

Background 000

How it Spread

- Aspirated → Pneumonic model
- Rats to Fleas to Humans \rightarrow Rat-Flea transmission (RFT) model
- ullet Other o Human-Ectoparasite model (Dean et al.)
- New RFT Model → Lynch-Oster RFT model

Background 000

How it Spread

- Aspirated → Pneumonic model
 - Rats to Fleas to Humans → Rat-Flea transmission (RFT) model
 - ullet Other o Human-Ectoparasite model (Dean et al.)
- New RFT Model → Lynch-Oster RFT model

Goal

Background

000

How it Spread

- Aspirated → Pneumonic model
- Rats to Fleas to Humans → Rat-Flea transmission (RFT) model
- Other → Human-Ectoparasite model (Dean et al.)
- New RFT Model → Lynch-Oster RFT model

Goal

• Use data on plague spread to compare proposed models

How it Spread

- Aspirated → Pneumonic model
- Rats to Fleas to Humans → Rat-Flea transmission (RFT) model
- ullet Other o Human-Ectoparasite model (Dean et al.)
- ullet New RFT Model o Lynch-Oster RFT model

Goal

- Use data on plague spread to compare proposed models
- Get indication of spread type per data

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Future Work

Pneumonic Model

Humans - SID

$$\frac{dS_h}{dt} = -\beta_p \frac{S_h I_h}{N_h}$$

$$\frac{dI_h}{dt} = \beta_p \frac{S_h I_h}{N_h} - \gamma_p I_h$$

$$\frac{dD_h}{dt} = \gamma_p I_h$$

Pneumonic Model

Humans - SID

$$\frac{dS_h}{dt} = -\beta_p \frac{S_h I_h}{N_h}$$

$$\frac{dI_h}{dt} = \beta_p \frac{S_h I_h}{N_h} - \gamma_p I_h$$

$$\frac{dD_h}{dt} = \gamma_p I_h$$

- SID model
- S_h Susceptible, I_h Infected, D_h Deaths, N_h Total Population
- β_p Transmission rate, γ^{-1} Infectious period

Keeling-Gilligan Rat Model

Fleas

$$rac{dH}{dt} = r_f H \left(1 - rac{H}{K_f}
ight)$$
 $rac{dF}{dt} = (1 - g_r) \gamma_r I_r H - d_f F$

- H Number of fleas per rat
- F Number of infected fleas not on rats

Keeling-Gilligan Rat Model

Fleas

$$rac{dH}{dt} = r_f H \left(1 - rac{H}{K_f}
ight)$$
 $rac{dF}{dt} = (1 - g_r) \gamma_r I_r H - d_f F$

- H Number of fleas per rat
- F Number of infected fleas not on rats

Keeling-Gilligan RFT Model

SIRD - Rats & Humans

$$\frac{dS_j}{dt} = -\beta_r \frac{S_j F}{N_j} \left[1 - e^{-aN_r} \right]$$

$$\frac{dI_j}{dt} = \beta_r \frac{S_j F}{N_j} \left[1 - e^{-aN_r} \right] - \gamma_j I_j$$

$$\frac{dR_j}{dt} = g_j \gamma_j I_j$$

$$\frac{dD_j}{dt} = (1 - g_j) \gamma_j I_j$$

Keeling-Gilligan RFT Model

SIRD - Rats & Humans

$$\begin{split} \frac{dS_{j}}{dt} &= -\beta_{r} \frac{S_{j}F}{N_{j}} \left[1 - e^{-aN_{r}} \right] \\ \frac{dI_{j}}{dt} &= \beta_{r} \frac{S_{j}F}{N_{j}} \left[1 - e^{-aN_{r}} \right] - \gamma_{j}I_{j} \\ \frac{dR_{j}}{dt} &= g_{j}\gamma_{j}I_{j} \\ \frac{dD_{j}}{dt} &= (1 - g_{j})\gamma_{j}I_{j} \end{split}$$

- SIRD model where j = Rats, Fleas
- S_j Susceptible, I_j Infected, R_j Recovered, D_j Dead, N_j Total Population

Parasites - SI

$$\frac{dS_L}{dt} = r_L S_L \left(1 - \frac{N_L}{K_L} \right) - \left[\left(\beta_{low} I_{low} + \beta_{high} I_{high} \right) \frac{S_L}{N_h} \right]$$
$$\frac{dI_L}{dt} = \left[\left(\beta_{low} I_{low} + \beta_{high} I_{high} \right) \frac{S_L}{N_h} \right] - \gamma_L I_L$$

Human-Ectoparasite Model

Parasites - SI

$$\frac{dS_L}{dt} = r_L S_L \left(1 - \frac{N_L}{K_L} \right) - \left[\left(\beta_{low} I_{low} + \beta_{high} I_{high} \right) \frac{S_L}{N_h} \right]$$

$$\frac{dI_L}{dt} = \left[\left(\beta_{low} I_{low} + \beta_{high} I_{high} \right) \frac{S_L}{N_h} \right] - \gamma_L I_L$$

- SI Model
- S_L Susceptible, I_L Infected
- γ_L^{-1} Avg. infectious period, r_L Intrinsic growth rate, K_L Lice carrying capacity

Human-Ectoparasite Model

Humans - SIIRD

$$\begin{split} \frac{dS_h}{dt} &= -\beta_L \frac{S_h I_L}{N_h} \\ \frac{dI_{low}}{dt} &= \beta_L \frac{S_h I_L}{N_h} - \sigma_b I_{low} \\ \frac{dI_{high}}{dt} &= (1 - g_h) \sigma_b I_{low} - \gamma_b I_{high} \\ \frac{dR_h}{dt} &= g_h \sigma_b I_{low} \\ \frac{dD_h}{dt} &= \gamma_b I_{high} \end{split}$$

Human-Ectoparasite Model

Humans - SIIRD

$$\begin{split} \frac{dS_h}{dt} &= -\beta_L \frac{S_h I_L}{N_h} \\ \frac{dI_{low}}{dt} &= \beta_L \frac{S_h I_L}{N_h} - \sigma_b I_{low} \\ \frac{dI_{high}}{dt} &= (1 - g_h) \sigma_b I_{low} - \gamma_b I_{high} \\ \frac{dR_h}{dt} &= g_h \sigma_b I_{low} \\ \frac{dD_h}{dt} &= \gamma_b I_{high} \end{split}$$

- SI_I I_hRD Model
- S_h Susceptible, I_{low} Infected (low level), I_{high} Infected (high level), R_h Recovered, D_h Dead

Luke Mattfeld

Rats & Fleas - Logistic

$$\frac{dR_T}{dt} = \left(\frac{\beta_R}{K_R}\right) R_T (K_R - R_T) - \delta R_c$$

$$\frac{dR_c}{dt} = \alpha \frac{F_c}{F_T} (R_T - R_c) - \frac{\beta_R}{K_R} (R_T) (R_c) - \delta R_c - \gamma R_c$$

$$\frac{dF_T}{dt} = \left(\frac{\beta_F}{K_F}\right) F_T (K_F - F_T) - \rho F_T$$

$$\frac{dF_c}{dt} = \lambda \frac{R_c}{R_T} (F_T - F_c) - \rho F_c$$

• Logistic Model

Rats & Fleas - Logistic

$$\frac{dR_T}{dt} = \left(\frac{\beta_R}{K_R}\right) R_T (K_R - R_T) - \delta R_c$$

$$\frac{dR_c}{dt} = \alpha \frac{F_c}{F_T} (R_T - R_c) - \frac{\beta_R}{K_R} (R_T) (R_c) - \delta R_c - \gamma R_c$$

$$\frac{dF_T}{dt} = \left(\frac{\beta_F}{K_F}\right) F_T (K_F - F_T) - \rho F_T$$

$$\frac{dF_c}{dt} = \lambda \frac{R_c}{R_T} (F_T - F_c) - \rho F_c$$

- Logistic Model
- T total, c Infected
- β Intrinsic birth rate, μ Intrinsic death rate, γ Rat recovery rate, $\{\rho,\delta\}$ Plague death rate, $\{\lambda,\alpha\}$ Plague infectivity, K Carrying capacity

Rats & Fleas - Logistic

$$\frac{dR_T}{dt} = \left(\frac{\beta_R}{K_R}\right) R_T (K_R - R_T) - \delta R_c$$

$$\frac{dR_c}{dt} = \alpha \frac{F_c}{F_T} (R_T - R_c) - \frac{\beta_R}{K_R} (R_T) (R_c) - \delta R_c - \gamma R_c$$

$$\frac{dF_T}{dt} = \left(\frac{\beta_F}{K_F}\right) F_T (K_F - F_T) - \rho F_T$$

$$\frac{dF_c}{dt} = \lambda \frac{R_c}{R_T} (F_T - F_c) - \rho F_c$$

- Logistic Model
- T total, c Infected
- β Intrinsic birth rate, μ Intrinsic death rate, γ Rat recovery rate, $\{\rho,\delta\}$ Plague death rate, $\{\lambda,\alpha\}$ Plague infectivity, K Carrying capacity

Lynch-Oster Rat Model

Humans - SEIR

$$\frac{dS}{dt} = \beta(S + R_b) - \sigma S \frac{F_c}{F_T} - \mu S$$

$$\frac{dE}{dt} = \sigma S \frac{F_c}{F_T} - \nu E - \mu E$$

$$\frac{dI}{dt} = \nu E - \phi I - rI$$

$$\frac{dR_b}{dt} = rI - \mu R_b$$

$$\frac{dD}{dt} = \phi I - \mu N_b$$

Lynch-Oster Rat Model

Humans - SEIR

$$\frac{dS}{dt} = \beta(S + R_b) - \sigma S \frac{F_c}{F_T} - \mu S$$

$$\frac{dE}{dt} = \sigma S \frac{F_c}{F_T} - \nu E - \mu E$$

$$\frac{dI}{dt} = \nu E - \phi I - rI$$

$$\frac{dR_b}{dt} = rI - \mu R_b$$

$$\frac{dD}{dt} = \phi I - \mu N_b$$

- SEIR model
- S Susceptible, E Infected, I Infected, R_b Recovered, D -Deaths, N_h - Total Population
- β Human birth rate, σ chance of being infected by flea, μ -

Outline

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Future Work

How to Compare

How to Compare

• Given data and a model, why not just run directly?

How to Compare

- Given data and a model, why not just run directly?
- Problem: Unknown Parameters

How to Compare

- Given data and a model, why not just run directly?
- Problem: Unknown Parameters
 - · Lack of data

How to Compare

- Given data and a model, why not just run directly?
- Problem: Unknown Parameters
 - · Lack of data
 - No way to measure

How to Compare

- Given data and a model, why not just run directly?
- Problem: Unknown Parameters
 - Lack of data
 - No way to measure
 - Nontrivial to compute

How to Compare

- Given data and a model, why not just run directly?
- Problem: Unknown Parameters
 - Lack of data
 - No way to measure
 - Nontrivial to compute
 - Changes from case to case

How to Compare

- Given data and a model, why not just run directly?
- Problem: Unknown Parameters
 - Lack of data
 - No way to measure
 - Nontrivial to compute
 - Changes from case to case
- Solution: Markov-Chain Monte-Carlo

00000000

omparison DOOOOO

Method

Monte Carlo Method

Monte Carlo Method

• Have: Unknown distribution from behavior

Monte Carlo Method

• Have: Unknown distribution from behavior

• Want: Distribution information

Monte Carlo Method

- Have: Unknown distribution from behavior
- Want: Distribution information
 - 1. Simulate the underlying behavior

Monte Carlo Method

- Have: Unknown distribution from behavior
- Want: Distribution information
 - 1. Simulate the underlying behavior
 - 2. Run lots of simulations

Monte Carlo Method

- Have: Unknown distribution from behavior
- Want: Distribution information
 - 1. Simulate the underlying behavior
 - 2. Run lots of simulations
 - ullet 3. Examine results as number of iterations N o Really Big

Monte Carlo Method

- Have: Unknown distribution from behavior
- Want: Distribution information
 - 1. Simulate the underlying behavior
 - 2. Run lots of simulations
 - ullet 3. Examine results as number of iterations N o Really Big
- Get: Pretty good distribution estimation

Markov Chains

Markov Chains

• Series (chain) of computed values

Markov Chains

- Series (chain) of computed values
- Dependent on the previous state

Markov Chains

- Series (chain) of computed values
- Dependent on the previous state
- Many uses

Markov Chains

- Series (chain) of computed values
- Dependent on the previous state
- Many uses
 - Model a state machine

Markov Chains

- Series (chain) of computed values
- Dependent on the previous state
- Many uses
 - Model a state machine
 - Train into predictive algorithms

Markov Chains

- Series (chain) of computed values
- Dependent on the previous state
- Many uses
 - Model a state machine
 - Train into predictive algorithms
 - Explore parameter distribution space

Markov Chains

- Series (chain) of computed values
- Dependent on the previous state
- Many uses
 - Model a state machine
 - Train into predictive algorithms
 - Explore parameter distribution space

MCMC

MCMC

• Monte Carlo simulation generated using Markov Chains

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:
 - ullet \vec{lpha} vector of unknown parameters

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:
 - ullet \vec{lpha} vector of unknown parameters
 - ullet $\mathcal D$ data

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:
 - \bullet $\vec{\alpha}$ vector of unknown parameters
 - ullet $\mathcal D$ data
 - \mathcal{M} model

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:
 - \bullet $\vec{\alpha}$ vector of unknown parameters
 - ullet $\mathcal D$ data
 - \mathcal{M} model
- Want to find: $P(\vec{\alpha}|\mathcal{D},\mathcal{M})$

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:
 - ullet \vec{lpha} vector of unknown parameters
 - ullet $\mathcal D$ data
 - \mathcal{M} model
- Make use of Bayes Formula:

$$P(\vec{\alpha}|\mathcal{D},\mathcal{M}) = \frac{P(\mathcal{D}|\vec{\alpha},\mathcal{M})P(\vec{\alpha}|\mathcal{M})}{P(\mathcal{D}|\mathcal{M})}$$

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:
 - ullet \vec{lpha} vector of unknown parameters
 - ullet $\mathcal D$ data
 - \mathcal{M} model
- Make use of Bayes Formula:

$$P(\vec{\alpha}|\mathcal{D},\mathcal{M}) = \frac{P(\mathcal{D}|\vec{\alpha},\mathcal{M})P(\vec{\alpha}|\mathcal{M})}{P(\mathcal{D}|\mathcal{M})}$$

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:
 - ullet \vec{lpha} vector of unknown parameters
 - ullet $\mathcal D$ data
 - \mathcal{M} model
- Make use of Bayes Formula:

$$P(\vec{\alpha}|\mathcal{D},\mathcal{M}) = \frac{P(\mathcal{D}|\vec{\alpha},\mathcal{M})P(\vec{\alpha}|\mathcal{M})}{P(\mathcal{D}|\mathcal{M})}$$

Method: MCMC

- Posterior $P(\vec{\alpha}|\mathcal{D},\mathcal{M})$
- Likelihood $P(\mathcal{D}|\vec{\alpha}, \mathcal{M})$
- Prior $P(\vec{\alpha}|\mathcal{M})$

$$P(\vec{\alpha}|\mathcal{D},\mathcal{M}) \propto P(\mathcal{D}|\vec{\alpha},\mathcal{M})P(\vec{\alpha}|\mathcal{M})$$

MCMC

- Monte Carlo simulation generated using Markov Chains
- Bayesian Statistics
- Given:
 - ullet \vec{lpha} vector of unknown parameters
 - ullet $\mathcal D$ data
 - \mathcal{M} model
- Make use of Bayes Formula:

$$P(\vec{\alpha}|\mathcal{D},\mathcal{M}) = \frac{P(\mathcal{D}|\vec{\alpha},\mathcal{M})P(\vec{\alpha}|\mathcal{M})}{P(\mathcal{D}|\mathcal{M})}$$

Method: MCMC

- Posterior $P(\vec{\alpha}|\mathcal{D},\mathcal{M})$
- Likelihood $P(\mathcal{D}|\vec{\alpha}, \mathcal{M})$
- Prior $P(\vec{\alpha}|\mathcal{M})$

$$P(\vec{\alpha}|\mathcal{D},\mathcal{M}) \propto P(\mathcal{D}|\vec{\alpha},\mathcal{M})P(\vec{\alpha}|\mathcal{M})$$

Method

MCMC Process

Figure: David Kipping - Sagan 2016 Presentation on MCMC

MCMC - Metropolis

Method

Markov Chains - Metropolis

Outline

- 1 Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Future Work

Barcelona - 1490

Malta - 1813

Ďay

Florence - 1400

Rat-Flea Model 1 - Florence 1400 Observed deaths RF1P (mean) RF1P (95% CI) Deaths Day

BIC

Data set	Model	BIC
Barcelona	Human-Ecto	1945
	Rat-flea 2	2002
	Pneumonic	2411
	Rat-flea 1	3392
Malta	Human-Ecto	1945
	Rat-flea 2	2491
	Pneumonic	3806
	Rat-flea 1	8274
Florence	Rat-flea 2	2375
	Human-Ecto	6105
	Pneumonic	4660
	Rat-flea 1	2

RMSE

Data set	Model	RMSE
Barcelona	Rat-flea 2	4.8
	Human-Ecto	4.9
	Pneumonic	8.1
	Rat-flea 1	10.6
Malta	Human-Ecto	7.4
	Rat-flea 2	7.8
	Pneumonic	10.0
	Rat-flea 1	17.6
Florence	Human-Ecto	15.6
	Rat-flea 2	16.9
	Pneumonic	31.3
	Rat-flea 1	32.7

Conclusion

• Neither model outperforms significantly

Conclusion

- Neither model outperforms significantly
- Longer testing, more data, better MCMC alg.

Conclusion

- Neither model outperforms significantly
- Longer testing, more data, better MCMC alg.
- A RFT Model is viable

Outline

- Background
- 2 Preliminary Models
- 3 Method: MCMC
- 4 Comparison
- 5 Future Work

Ideas

Ideas

• Update libraries:

Ideas

- Update libraries:
 - Pymc3

Ideas

- Update libraries:
 - Pymc3
 - NUTS algorithm

Ideas

- Update libraries:
 - Pymc3
 - NUTS algorithm
- Create a framework:
 - Generalize comparison process

Ideas

- Update libraries:
 - Pymc3
 - NUTS algorithm
- Create a framework:
 - Generalize comparison process
 - Use on other historical data
 - Use on new outbreaks (COVID)

Questions?