- **1.**设两个数列 $\{x_n\},\{y_n\}$, $\lim_{n\to\infty}x_n=0$, $x_n\neq 0$,下列说法**正确**的是
 - A. 若级数 $\sum_{n=1}^{\infty} y_n$ 收敛,则级数 $\sum_{n=1}^{\infty} x_n y_n$ 一定收敛;
 - B. 若级数 $\sum_{n=1}^{\infty} y_n$ 收敛,则级数 $\sum_{n=1}^{\infty} \frac{y_n}{x_n}$ 一定发散;
 - C. 若级数 $\sum_{n=1}^{\infty} y_n$ 发散,则级数 $\sum_{n=1}^{\infty} \frac{y_n}{x_n}$ 一定发散;
 - D. 若级数 $\sum_{n=1}^{\infty} y_n$ 绝对收敛,则级数 $\sum_{n=1}^{\infty} x_n y_n$ 一定绝对收敛.
- **2.** 对于正数列 $\{x_n\}$,满足下列哪一个条件时一定有 $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=1$
 - A. 正数列 $\{x_n\}$ 收敛;
- B. 正数列 $\{x_n\}$ 单调减少;
- C. 正数列 $\{x_n\}$ 单调增加有上界; D. $\lim_{n\to\infty} \sqrt[n]{x_n} = 1$.
- 3. x=0 是下列哪一个函数的可去间断点

- A. $sgn(\sin x)$; B. $[\sin x]$; C. $[\cos x]$; D. $max(\sin x, \cos x)$.
- **4.** 使得函数 $f(x) = \frac{\cos x}{x}$ 不一致连续的区间为
- A. (0,1); B. [1,2]; C. [m,M] (M>m>0); D. $[1,+\infty)$.

1. D 2. C 3. C 4. A

- **1.** y = ax + b 是曲线 $y = x \ln \left(\sqrt{e} + \frac{2024}{x} \right)$ 的斜渐近线,则 $a = _____$, $b = _____$;
- **2.** 对于级数 $\sum_{n=1}^{\infty} a_n$, 判断下列说法是否正确:
- (2) 若 $\sum_{n=1}^{\infty} (a_n + a_{n+1})$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 一定收敛 ______;
- **3.** 若 $\lim_{x\to 1} \frac{\ln(2-x^2)}{x^2+ax+b} = \frac{1}{2}$ 则 $a = _____; b = _____;$
- 4. $\lim_{n\to\infty} \sqrt[2n]{2024n + 2023} =$ _______, $\lim_{n\to\infty} \sqrt[n]{2024^n \ln n} =$ _______;
- **5.** 函数项级数 $\sum_{n=1}^{\infty} \frac{e^{-nx}}{n}$ 在下列的区间上具有那种性质:(填写 A、B、C)
 - A. 非处处收敛, B. 处处收敛但非一致收敛, C. 一致收敛
 - (1) (0,1]_____, (2) $[1,+\infty)$ ____;
- **6.** $f_n(x) = x^n$, D = [0,1], 判断下列说法正确与否:
 - (1) 函数列 $\{f_n(x)\}$ 在D上处处收敛 _____,
 - (2) 函数列 $\{f_n(x)\}$ 在D上一致收敛 ______,
 - (3) 函数列 $\{f_n(x)\}$ 在D上一致有界 ______,
 - (4) 函数列 $\{f_n(x)\}$ 的极限函数在D上连续 _____;
- 7. 下述点为函数 $f(x) = \frac{x^2 x}{x^2 1} \sqrt{1 + \frac{1}{x^2}}$ 的哪种点:(填写 A、B、C、D)

A. 连续点, B. 可去间断点, C. 跳跃间断点, D. 第二类间断点 (1) x=-1____, (2) x=0____, (3) x=1____, (4) x=2____.

- 1. $\frac{x}{2} + \frac{2024}{\sqrt{e}}$; 2. 正确,错误; 3. -6, 5; 4. 1, 2024;
- 5. B, C; 6. 正确,错误,正确,错误; 7. D, C, B, A

1. 己知
$$f(x) = \sin(2\pi x^2)$$
, 求 $\lim_{n\to\infty} n^2 \left[f\left(n + \frac{1}{n}\right) - f(n) \right]$. (2π)

2.
$$\exists \exists \lim_{x \to 0} \frac{\sqrt[8]{1 + f(x)\sin x} - 1}{e^{11x} - 1} = 23, \quad \exists \lim_{x \to 0} f(x).$$
 (2024)

3. 求极限
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(\sqrt{1 + \frac{k}{n^2}} - 1 \right)$$
. (1/4)

- **4.** 求函数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 2^n} (1+x)^n$ 的收敛域,并说明在收敛域内是否一致收敛. ([-3,1],一致收敛)
- 5. 判断级数 $\sum_{n=1}^{\infty} \sin\left(\sqrt{n^2+1}\pi\right)$ 的收敛性,若收敛须说明绝对收敛或条件收敛. (条件收敛)
- 1. 设 $\{x_n\}$ 为正数列,判断下列说法是否正确: ((1) 错误(2) 正确)

(1) 若
$$\left\{x_{n} + \frac{1}{x_{n}}\right\}$$
收敛,则 $\left\{x_{n}\right\}$ 收敛; (2) 若 $\left\{x_{n} - \frac{1}{x_{n}}\right\}$ 收敛,则 $\left\{x_{n}\right\}$ 收敛.

- **2.** 设函数 f(x)在 $(-\infty, +\infty)$ 上连续,判断下列说法是否正确,错误的请举反例,正确的给出证明: ((1) 错误(2) 正确)
 - (1) 函数 $g(x) = \sin(f(x))$ 在 $(-\infty, +\infty)$ 上一致连续;
 - (2) 函数 $h(x) = f(\sin x)$ 在 $(-\infty, +\infty)$ 上一致连续.

3. 设
$$(2+\sqrt{2})^n = x_n + y_n\sqrt{2}$$
, $z_n = \frac{x_n}{y_n}$, 其中 x_n, y_n 为正整数.

- (1) 建立数列 $\{z_n\}$ 满足的递推式; $z_n = 1 + \frac{z_{n-1}}{2 + z_{n-1}}$
- (2) 证明数列 $\{z_n\}$ 收敛; (压缩数列或单调减少有下界)
- (3) 求极限 $\lim_{n\to\infty} z_n$. (根下 2)