Class Test n°3

Name:

First Name:

Class:

Question from the lesson

Let (u_n) be a numerical sequence and $\ell \in \mathbb{R}$. Give the accurate definition, using the mathematical quantifiers, of : « (u_n) is bounded », « (u_n) tends to $+\infty$ » and « (u_n) does not converge to ℓ ».

Alun bounded: DMER, HNEW, Jun EM + lim (u)=too: +AER, 3NEW, HAEN, NSN=> U)>A of (un) does not converge to 1: 3 & 11-nul bronk , ManE , Mant , OKSE

Question from the lesson

Give an example of a numerical sequence (u_n) that is both increasing and bounded (and prove these two properties).

let (un) be defined on M* by un = -'i Then: · ANEW, MHI - M= - 1 + 1 = - 1 + (N+1) = 1 > 0 So (un) is increasing. · trENt, we have -1 20 so an 20 and n>13 - 21 = -1 > -1 So frem, -1 & un 60 and (un) is brounded

Exercise 1

Let (u_n) be defined by $u_0 = 3$ and for every $n \in \mathbb{N}$, $u_{n+1} = 5 - 4u_n$. Determine, for every $n \in \mathbb{N}$, u_n as a function of n.

4 We determine the fixed point P: P=5-4P=5=1=>P=1 + Ler Vn = un-1 Then 4 n EM, VALI = Until-1 = 5-4 cm -1 = 4-4 cm = -4 (4-1) So (Val is geometric with common ratio -4. (this frame)

+ Then
$$\forall n \in \mathbb{N}$$
, $v_n = v_0 (-4)^n$ and $v_0 = u_0 - 1 = 3 - 1 = 2$.
So $v_n = 2x(-4)^n$
+ Since $v_n = u_{n-1}$, we have $u_n = v_{n+1}$.
Thus, $\forall n \in \mathbb{N}$, $u_n = 2x(-4)^n + 1$

Exercise 2

Let $(u_n)_{n\in\mathbb{N}^*}$ be defined for every $n\in\mathbb{N}^*$ by $u_n=\left(\sum_{i=1}^n\frac{1}{k!}\right)+\frac{1}{n!}$

1. Study the monotonicity of (u_n) .

Let
$$n \in \mathbb{N}$$
. Then

 $u_n = \left(\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!}\right) + \frac{1}{n!}$
 $u_{n+1} = \left(\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!}\right) + \frac{1}{(n+1)!}$
 $= \frac{2}{(n+1)!} - \frac{1}{(n+1)!}$
 $= \frac{2}{(n+1)!} - \frac{n+1}{(n+1)!}$
 $= \frac{2-n-1}{(n+1)!} = \frac{-n+1}{(n+1)!} \leq 0$ sha $n \in \mathbb{N}^*$ (so $n \geq 1$)

So the sequence (un) is decreasing.

2. Is (u_n) convergent? Justify your answer.