

Aula 1 SISTEMAS NUMÉRICOS

Projeto de Ensino

Material didático para lógica digital I: circuitos combinacionais

Bolsista: Everaldina Guimarães Barbosa

Orientador: César Alberto Bravo Pariente

UESC - 2022/23

Sumário

1.	CÓDIGO BINÁRIO	3.	CÓDIGO HEXADECIMAL
	1.1. Introdução 4		3.1. Introdução
	1.2. Exemplos 6		3.2. Código hexa x decimal 14
	1.3. Código binário x decimal7		3.3. Conversão para decimal 15
	1.4. Conversão para decimal8	4.	CONVERSÃO
2.	CÓDIGO OCTAL		4.1. Base qualquer → decimal 16
	2.1. Introdução 10		4.2. Binário → Octal17
	2.2. Código octal x decimal 11		4.3. Octal → Binário18
	2.3. Conversão para decimal12		4.4. Binário → Hexadecimal19
			4.5. Hexadecimal → Binário20

Sumário

	4.6. Hexadecimal ↔ Octal 21
	4.7. Decimal para outras bases 22
	4.7.1 Decimal → Binário 23
	4.7.2 Decimal → Octal 24
	4.7.2 Decimal → Hexa 25
5.	BIN2HEX2OCT2BIN 26
6.	BIN2OCT2HEX2BIN 27
7.	CONVERSÃO ENTRE
	POTÊNCIAS
	7.1 Potências de 2
	7.2 Potências de 3

	7.3 Potências de 5 32	2
7.	CONVERSÃO POLINOMIA	I
	ENTRE 10 E BASES 2, 8, 16	
		5
8.	REFERÊNCIAS	
	BIBLIOGRÁFICAS 3'	7

Código Binário – Introdução

• No nosso dia-a-dia o sistema decimal é usado para representar os números. Esse sistema é de base 10, pois possui 10 dígitos:

$$0-1-2-3-4-5-6-7-8-9$$

• Para sistemas digitais é adotado o sistema binário, de base 2. Nele há apenas dois estados:

0 (baixo ou desligado)

•

1 (alto ou ligado)

Código Binário – Introdução

• No sistema decimal, a casa das unidades vai crescendo, e, quando chega ao dígito máximo (9), a unidade volta à zero e se adiciona uma dezena.

$$08 \rightarrow 09 = 08 + 1$$

• Quando a dezena chega a nove, adiciona-se uma centena e a casa das dezenas é zerada, isso se repete para: milhares, dezenas de milhares, centenas de milhares e assim por diante.

$$09 \rightarrow 10 = 09 + 1$$

• Isso funciona de forma análoga no sistema binário.

$$00 \rightarrow 01 = 00 + 1$$
 $01 \rightarrow 10 = 01 + 1$

Código Binário – Exemplos

$$8_{10} \rightarrow 9_{10} = 8_{10} + 1_{10}$$
 $009_{10} \rightarrow 010_{10} = 009_{10} + 001_{10}$
 $0_2 \rightarrow 1_2 = 0_2 + 1_2$ $001_2 \rightarrow 010_2 = 001_2 + 001_2$

$$011_2 \rightarrow 100_2 = 011_2 + 001_2$$
 $101_2 \rightarrow 110_2 = 101_2 + 001_2$
 $100_2 \rightarrow 101_2 = 100_2 + 001_2$ $111_2 \rightarrow 1000_2 = 111_2 + 001_2$

Código Binário × Código Decimal

DEC	0	1	2	3	4	5	6	7
BIN	00000	00001	00010	00011	00100	00101	00110	00111
DEC	8	9	10	11	12	13	14	15
BIN	01000	01001	01010	01011	01100	01101	01110	01111
DEC	16	17	18	19	20	21	22	23
BIN	10000	10001	10010	10011	10100	10101	10110	10111

Código Binário – Conversão para decimal

• Cada dígito de um número representado em forma binária equivale a uma potência de dois em decimal.

• Dessa forma, para converter números binários em decimais basta multiplicar o dígito em binário pelo seu respectivo valor em decimal e, após multiplicar todos os algarismos, soma-se os resultados.

Código Binário – Conversão para decimal

• Exemplo

Código Octal – Introdução

• Outro sistema de numeração é o octal, contando com 8 dígitos, sendo eles:

$$0-1-2-3-4-5-6-7$$

• Atualmente ele é pouco utilizado na eletrônica digital, ao contrário dos sistemas binário e hexadecimal.

Código Octal × Código Decimal

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13
OCTA	0	1	2	3	4	5	6	7	10	11	12	13	14	15
DEC	14	15	16	17	18	19	20	21	22	23	24	25	26	27
OCTA	16	17	20	21	22	23	24	25	26	27	30	31	32	33
DEC	28	29	30	31	32	33	34	35	36	37	38	39	40	41
OCTA	34	35	36	37	40	41	42	43	44	45	46	47	50	51

Código Octal – Conversão para decimal

• Para conversão de números octais para base decimal, aplica-se a mesma lógica da conversão "binário → decimal", onde dessa vez cada posição equivale a um número de base 8.

8n	8n-1	85	84	83	82	81	80
		<u> </u>					

• Como um exemplo, o número 3501₈ na base decimal converte-se:

$$3501_8 = (3 \times 8^3) + (5 \times 8^2) + (0 \times 8^1) + (1 \times 8^0) =$$

$$= (3 \times 512) + (5 \times 64) + (0 \times 8) + (1 \times 1) =$$

$$= 1.536 + 320 + 0 + 1 = 1.857_{10}$$

Código Hexadecimal – Introdução

• O sistema hexadecimal conta com 16 dígitos, representados pelos 10 dígitos decimais e as primeiras 6 letras do alfabeto:

$$0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F$$

- Na conversão as letras A, B, C, D, E e F significam em decimal respectivamente: 10, 11, 12, 13, 14 e 15.
- Esse sistema é bastante usado na área da informática. Com ele grandes números conseguem ser representados de forma mais sucinta, fazendo com que ele seja preferível a outros sistemas numéricos para representar códigos extensos ao usuário.

Código Hexadecimal × Código Decimal

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13
HEX	0	1	2	3	4	5	6	7	8	9	A	В	C	D
DEC	14	15	16	17	18	19	20	21	22	23	24	25	26	27
HEX	E	F	10	11	12	13	14	15	16	17	18	19	1A	1B
DEC	28	29	30	31	32	33	34	35	36	37	38	39	40	41
HEX	1 C	1D	1E	1F	20	21	22	23	24	25	26	27	28	29

Código Hexadecimal – Conversão para decimal

• Para conversão de números hexadecimais para decimais, dessa vez cada posição equivale à um número de base 16:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16 ⁿ	16 ⁿ⁻¹	6 ⁿ⁻¹	16 ⁵	16^4	16^3	16^2	16 ¹	16^{0}
--	-----------------	-------------------	------------------	-----------------	--------	--------	--------	-----------------	----------

• Como um exemplo, o número F2A0₁₆ na base decimal é igual a:

$$F2A0_8 = (15 \times 16^3) + (2 \times 16^2) + (10 \times 16^1) + (0 \times 16^0) =$$

$$= (15 \times 4.096) + (2 \times 256) + (10 \times 16) + (0 \times 1) =$$

$$= 61.440 + 512 + 160 + 0 = 62.112_{10}$$

Conversão: Base qualquer para Decimal

• Além dos códigos de bases 2, 8 e 16, também é possível converter um número de base qualquer b. Basta usar o método anterior substituindo pela base desejada.

hn	b ⁿ⁻¹	h 5	h 4	h 3	b 2	h1	b 0
U	U	 U	U	U	U	U	U

• Como exemplo, uma conversão de número na base 5. Nessa base estarão presentes os dígitos 0, 1, 2, 3 e 4.

421303₅ =
$$(4 \times 5^5) + (2 \times 5^4) + (1 \times 5^3) + (3 \times 5^2) + (0 \times 5^1) + (3 \times 5^0) =$$

= $(4 \times 3.125) + (2 \times 625) + (1 \times 125) + (3 \times 25) + (0 \times 5) + (3 \times 1) =$
= $12.500 + 1.250 + 125 + 75 + 0 + 3 =$ **13.953**₁₀

Conversão: Binário > Octal

• Para conversão de binário para octal, primeiro se agrupam os bits, da direita para a esquerda, em grupos de 3 (adicionando zeros onde faltar).

Ex.: 110101_2 10110_2 \downarrow \downarrow $(110_2) (101_2)$ $(010_2) (110_2)$

• Cada grupo é então convertido para código octal:

Conversão: Octal > Binário

• Para conversão de um número octal para binário, transforma-se cada algarismo octal para base 2, utilizando 3 bits.

Ex.:

Conversão: Binário > Hexadecimal

- Para conversão de binário para hexadecimal, primeiro se agrupam os bits, da direita para a esquerda, em grupos de 4. Se não for possível fazer um grupo de 4 dígitos, adiciona-se zeros à esquerda.
- Cada grupo é então convertido para hexadecimal.

Conversão: Hexadecimal -> Binário

• Para conversão de hexadecimal para binário basta transformar cada dígito hexadecimal em binário usando 4 bits.

Ex.:

Conversão: Hexadecimal ↔ Octal

- Na conversão entre hexadecimal e octal, o sistema binário pode ser utilizado como intermediário.
- Portanto, para converter um número hexadecimal em octal, primeiro o número em hexa é convertido para binário e depois esse mesmo número em binário é convertido para octal.
- De forma similar, para converter números octais para hexadecimais, é feito o caminho inverso.

Conversão: decimal para outras bases

- Para converter números de base 10 para qualquer outra base n é necessário fazer várias divisões inteiras até o quociente ser igual a zero. Depois os restos são utilizados em ordem inversa.
- Esse método serve não somente para as bases binária, octal e hexadecimal, mas sim para qualquer base arbitrária.

Ex.: Conversão Decimal -> Binário

Ex.: Conversão Decimal -> Octal

Ex.: Conversão Decimal -> Hexadecimal

1010 0011 0001₂ **BIN**

3¹ 10201₃

100₁₀

 3^2

• Para o sistema 3^3 existem 27 dígitos, sendo composto pelo intervalo [0-9] seguido pelo intervalo [A-Q], onde A e Q representa respectivamente 10_{10} e 26_{10} .

3¹ 10201₃

100₁₀

33

32

5¹ 130100₅

5025₁₀

• Para o sistema 5^2 existem 25 dígitos, sendo composto pelo intervalo [0-9] seguido pelo intervalo [A-O], onde A e O representa respectivamente 10_{10} e 24_{10} .

$$5^{2}_{\text{D10}_{25}}$$

• Para o sistema fictício 5³, que tem 125 dígitos, foi adotada um padrão em que apenas os primeiros 62 símbolos foram definidos, de forma que a demonstração de conversão fosse simplificada.

5¹ 130100₅

5025₁₀

• Nesse padrão os primeiros símbolos são os números de 0 à 9, em seguida as letras minúsculas de a à z, que representam 10_{10} e 35_{10} respectivamente, depois as letras maiúsculas de A à Z, representando 36_{10} à 61_{10} .

53 eP₁₂₅ $5^{2}_{010_{25}}$

BIN 101000110001₂

1×2 ¹¹	0×2^{10}	1×29	0×2 ⁸	0×2 ⁷	0×2 ⁶	1×2 ⁵	1×2^4	0×2^3	0×2^2	0×2^{1}	1×2 ⁰
2048	0	512	0	0	0	32	16	0	0	0	1

$$2048 + 512 + 32 + 16 + 1$$

$$2560 + 48 + 1$$

10×256 3×16 1×1

 $10 \times 16^2 \mid 3 \times 16^1 \mid 1 \times 16^0 \mid$

 $A \times 16^2$ 3×16^1 1×16^0

DEC 2609₁₀

2560 + 48 + 1

2560 0 48 1

5×512 0×64 6×8 1×1

HEX A31₁₆ OCT 5061₈

Referências Bibliográficas

- IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de Eletrônica Digital. 40. ed. São Paulo: Érica, 2008.
- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. **Sistemas digitais:** princípios e aplicações. 12. ed. São Paulo, SP: Pearson, 2018. E-book.
- NELSON, Victor P. et al. Digital logic circuit analysis and design. 1. ed. Englewood Cliffs: Prentice-Hall, 1995.