

Orientation + Seminar 1

O Created	@September 18, 2022 12:41 PM
	Quantum Computing Fundamentals
⊚ Туре	Seminar
☑ Reviewed	
Date	@September 18, 2022
Materials	

Components of Final Grade:

- Homework = 50%
- Lab Attendance = 40%
- Course Evaluations (Completion) = 10%

Course Holidays/Breaks:

- Thanksgiving: (Nov. 20 26, 2022)
- Winter Break: (Dec. 18 Jan. 7, 2023)
- Spring Break: (April 9 15, 2023)

Communication:

- Primarily through Zoom, Email, and Canvas
- student@qubitbyqubit.org

Course Overview:

Post-Course Programs with QxQ:

- Early Quantum Career Immersion Program
- Alumni Opportunities

What is Quantum Computing?:

- Uses properties of quantum mechanics to solve computations that traditional computers cannot
- Quantum mechanics describes how really small objects behave
 - Atoms, electrons, and more
 - These really small objects do not obey the law of classical physics
- Quantum World Properties:
 - Superposition
 - Objects can be in multiple states

- Schrodinger's cat: Cat is both alive and dead
- Tunneling:
 - Objects can pass through physical barriers
- Teleported:
 - Information can be teleported over large distances
- 3 important quantum mechanical properties in quantum computing
 - Superposition
 - Interference
 - Entanglement
 - Example: If objects are entangled, they're answers will instantly be different
- Quantum computing harnesses these properties to make computing faster and more powerfully
 - But q-computers solve problems in a fundamentally different way
 - Traditional computers do inherently the same type of computations but may vary in the speed of computation
 - Q-computers take it a step further through quantum computation
- Purposes for q-computation:
 - Moore's Law:
 - Squeezing more power into a computer means the smallest parts (bits) are getting smaller
 - Computing power is predicted by the law to exponentially double every year
 - The problem associated with the law is that the smaller size of the bits is approaching the size of atoms where the world of quantum mechanics beings to take shape
 - The growth is becoming to plateau and hit a limit in the future
- Why not use the quantum mechanics of really small bits?
 - First Quantum Revolution:

- Scientists met and discussed that the physics of the small world was different than traditional physics
- They developed the principles of quantum mechanics as a result
- Quantum mechanics already integrated into day to day life already
- Second Quantum Revolution:
 - Focused on controlling individual quantum systems and in turn develop powerful new technologies
 - Q-computing is part of a bigger field: Quantum information science and engineering (QISE)
 - Quantum sensing more powerful sensors
 - Quantum networking distributing information
- Application of Quantum Computing
 - Advantages over traditional computers:
 - problems that involve searching through lists
 - encryption related problems
 - simulating quantum mechanical systems
 - Applications in fields:
 - Finance
 - Cyber Security
 - Shor's algorithm (a big enough of q-computer could hack into modern crypto systems)
 - Threaten to break commonly used encryption methods
 - Q-computers could create unhackable security networks
 - Biology
 - Chemistry
 - Aerospace
 - Robotics/Machine Learning

Combatting Climate Change:

- Main barrier in reaching new developments is dependent on how these large, less noisy q-computers can be developed
 - Hopeful estimate: 5-10 years
- The Current Quantum Ecosystem
 - ExxonMobile
 - BMW
 - Goldman Sachs
 - Cleveland Clinic & IBM Quantum