FORMULE LA FIZICĂ(TERMODINAMICĂ ȘI ELECTROSTATICĂ)

Sarcina electrică: $q=n\cdot e$

Constanta electrică: $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{F}{m}$

 $\underline{\text{Intensitatea câmpului electric:}} \ E = \sum\nolimits_{i=1}^{n} \overrightarrow{E_i}$

Fluxul vectorului intensității: $d\Phi = \frac{1}{arepsilon_0} \sum_{i=1}^n q_i$

Energia potențială: $E_p = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{q \cdot q_0}{r}$

Potențialul câmpului electrostatic: $\varphi = \frac{E_p}{q_0} = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{q}{r}$

Intensitatea câmpului electric:

 $E = -grad\varphi = -(\vec{V} \cdot \varphi)$

Permitivitatea dielectrică: $\varepsilon = \frac{\overrightarrow{E_0}}{\overrightarrow{E}}$

Inducția electrică: $\varepsilon_0 \cdot \vec{E} + \vec{P} = \vec{D}$

Capacitatea electrică: $C = \frac{q}{\varphi} = 4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot R$

Tensiunea electrică: $U=\varphi_1\cdot\varphi_2=rac{q\cdot d}{arepsilon\cdotarepsilon_0\cdotarepsilon}$

Capacitatea condensatorului plan: $C = \frac{\varepsilon \cdot \varepsilon_0 \cdot S}{d}$

Energia potentială: $E_p = \frac{c \cdot \Delta \varphi^2}{2}$ $E_p = \frac{\varepsilon \cdot \varepsilon_0 \cdot E^2}{2}$

<u>Câmpul electric:</u> $W = \frac{\vec{E} \cdot \vec{D}}{2}$

Densitatea curentului: $\mathcal{E} = \frac{L_{ex}}{a}$

Tensiune: $U_{12} = \varphi_1 - \varphi_2 + \mathcal{E}_{12}$

Legea lui Ohm: $I = \frac{\varphi_1 - \varphi_2 + \mathcal{E}}{R}$ — porțiune neomogenă de circuit

Cantitatea de căldură: $dQ = \frac{U^2}{R} dt$

 $\underline{\text{C\^{i}mp magnetic:}}\ M_{max} = P_m \cdot B \cdot \sin\alpha$

<u>Legea Biot – Savar – Laplace:</u> $B = \frac{\mu_0 \cdot I}{2 \cdot \pi \cdot d}$

<u>Câmpul magnetic a unui conductor circular:</u>

 $dB = \left(\frac{\mu_0}{4 \cdot \pi} \cdot \frac{I}{R^2}\right) dl \qquad B = \frac{\mu_0}{4 \cdot \pi} \cdot \frac{2 \cdot \pi \cdot R^2}{\left(R^2 + d^2\right)^{3/2}}$

<u>Câmpul magnetic în vid:</u> $\overrightarrow{B} = \mu_0 \cdot \sum_{i=1}^n I_i$

<u>Câmpul magnetic al solenoidului:</u> $B = \frac{\mu_0 \cdot I \cdot N}{l}$ (bobină)

Legea lui Ampere, interacțiunea curenților:

$$d\vec{F} = I \cdot B \cdot dl \cdot \sin \alpha$$

Forța Lorentz: $\vec{F} = q[\vec{v} \cdot \vec{B}]$

Fluxul câmpului magnetic: $\Phi_B = B \cdot S$

Lucrul efectuat la deplasarea conductorului:

$$dL = I \cdot d\Phi$$

Fluxul magnetic: $\Phi = \mathcal{L} \cdot I$, \mathcal{L} – inductanța

Inducție mutuală: $\mathcal{E}_{21} = -\mathcal{L}_{12} \cdot \frac{dI_2}{dt}$

Energia câmpului magnetic: $W = \frac{\mathcal{L} \cdot I^2}{2} = \frac{B \cdot H}{2}$

Moment magnetic arbital al electronului:

$$P_m = I \cdot S \cdot \vec{n} = e \cdot v \cdot S \cdot \vec{n}$$

Raport giromagnetic: $g = -\frac{e}{2 \cdot m}$

<u>Teoria lu Maxwell:</u> $\oint_e \overrightarrow{E_B} \cdot d\overrightarrow{l} = \mathcal{E}_i = -\frac{d\Phi}{dt}$

Densitatea curentului de deplasare: $\overrightarrow{jd} = \frac{\partial \overrightarrow{D}}{\partial t}$

$$\overrightarrow{jd} = \mathcal{E}_0 \frac{\partial \overrightarrow{E}}{\partial t} + \frac{\partial \overrightarrow{P}}{\partial t} \quad \underline{\leftarrow \text{ de polarizare}}$$

$$\underline{\uparrow \hat{\text{ in vid}}}$$

Ecuațiile lui Maxwell:

1. Legea lui Gauss în electrostatică:

$$\oint_{S} \overrightarrow{B} \cdot d\vec{s} = \oint_{v} \rho \cdot dv$$

2. <u>Legea lui Gauss în magnetism:</u> $\oint_{\mathcal{S}} \vec{B} \cdot d\vec{s} = 0$

3. <u>Legea lui Faraday:</u> $\oint_e \vec{E} \cdot d\vec{e} = -\int_s \frac{\partial \vec{B}}{\partial t} d\vec{s}$

4. <u>Leg. Ampere-Maxwell:</u> $\oint \vec{H} \cdot d\vec{l} = I = \oint_{s} \vec{j} \cdot d\vec{s}$

$$\begin{cases} \overrightarrow{D} = \mathcal{E}_0 \cdot \mathcal{E} \cdot \overrightarrow{E} \\ \overrightarrow{B} = \mu_0 \cdot \mu \cdot \overrightarrow{H} \end{cases} , \gamma - \underline{\text{conductibilitatea substanței}}$$

$$\overrightarrow{I} = \gamma \cdot \overrightarrow{E}$$

 $k = 1.38 \cdot 10^{-23}$

 $\underline{\mathcal{V}.\mathsf{med.\ p\"{a}tr.\ a\ molec.\ gaz.:}}\ \overline{v_{p\breve{a}tr}} = \sqrt{\tfrac{1}{\mathit{N}} \sum_{i=1}^{n} v_{i}^{2}}$

=> $P=rac{1}{3}\cdot n\cdot m_0\cdot \overline{v_{p T}}^2$ (ec. Bază a teoriei cinetico-moleculare a

Energia cinetică medie în mișcarea de translație:

$$<\varepsilon> = \frac{E}{N} = \frac{1}{2}m_0\overline{v_{p tr}}^2 = \frac{3}{2}kT$$

Proces izocor: (V – const.) $dU = \delta Q = \frac{m}{M} C_v d\tau$

Proces izobar (P – const.):

$$dU = \delta Q - \delta L = \frac{m}{M} (C_p - R) dt = \frac{m}{M} C_v d\tau$$

<u>Proces izoterm (T – const., PV – const.):</u>

$$L = \frac{m}{M}RT \ln \frac{p_1}{p_2}$$

Proces adiabatic (
$$\delta Q=0$$
): $P_1V_1^{\gamma}=P_2V_2^{\gamma}$; $A=\frac{m}{M}C_v(T_1-T_2)=\Delta V$

Entropia: $\Delta S = \frac{m}{M} C_v \ln \frac{T_2}{T_1}$; $TdS \ge dV + dA$ – ecuația funamentală a termodinamicii.

Parcursul liber mediu: $<\lambda>=\frac{1}{\sqrt{2}\pi d^2n}$

Coeficientul de difuziune: $D = \frac{1}{3} < v \times \lambda >$

Forța de frecare internă: $F = \eta \left(\frac{dv}{dx}\right) ds$

Energia cinetică a 1 gr. libertate: $<\varepsilon_0>=\frac{1}{2}kT$

Energia cinetică medie: $<\varepsilon>=\frac{i}{2}kT$

Legea distribuției moleculelor după viteză:

$$f(v) = 4\pi \left(\frac{m_0}{2\pi kT}\right)^{3/2} v^2 exp\left[\frac{-m_0 v^2}{2kT}\right]$$

<u>Legea distribuției Boltzmann:</u> $n=n_0e^{\frac{-E_p}{kt}}$