- 1. 设f、 $g \in C[a,b]$,证明
- (2) 若 $f(x) \ge g(x)$ ($x \in [a,b]$), 且 $f(x) \ne g(x)$, 则 $\int_{a}^{b} f(x) dx > \int_{a}^{b} g(x) dx.$
- 2. 利用定积分的性质以及第5题的结论,比较下列各组中积分的大小.

(1)
$$\int_0^{\frac{\pi}{2}} \sin^2 x dx = \int_0^{\frac{\pi}{2}} \sin^4 x dx$$
; (2) $\int_0^1 e^x dx = \int_0^1 (1+x) dx$;

- (3) $\int_{1}^{e} \ln x dx$, $\int_{1}^{e} (\ln x)^{2} dx = \int_{1}^{e} \ln(x^{2}) dx$.
- 3. 证明下列不等式:

(1)
$$\frac{2}{3} < \int_0^1 \frac{\mathrm{d}x}{\sqrt{2+x-x^2}} < \frac{\sqrt{2}}{2};$$
 (2) $\frac{1}{2} < \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} \, \mathrm{d}x < \frac{\sqrt{2}}{2};$

- (3) $\frac{2\pi}{9} < \int_{\frac{1}{\sqrt{3}}}^{\frac{\sqrt{3}}{3}} x \arctan x dx < \frac{4\pi}{9}$.
- 4. 计算下列极限

(1)
$$\lim_{n\to\infty} \int_0^{1/2} \frac{x^n}{1+x} dx$$
; (2) $\lim_{n\to\infty} \int_n^{n+1} x^2 e^{-x} dx$; (3) $\lim_{n\to\infty} \int_{n^2}^{n^2+n} \frac{1}{\sqrt{x}} e^{-\frac{1}{x}} dx$.

- 5. 设函数 $f \in C[0,1] \cap D(0,1)$,且 $3\int_{\frac{2}{3}}^{1} f(x) dx = f(0)$. 证明:至少存在一点 $\xi \in (0,1)$,使得 $f'(\xi) = 0$.
- **6.** 设函数 $f \in Q[0,1]$ $D(0, 且 3\int_0^{\frac{1}{3}} e^{1-x^2} f(x) d = f(. 证明: 至少存在一点 <math>\xi \in (0,1)$,使得 $f'(\xi) = 2\xi f(\xi)$.