Machine Learning (IT3190E)

Quang Nhat NGUYEN

quang.nguyennhat@hust.edu.vn

Hanoi University of Science and Technology
School of Information and Communication Technology
Academic year 2020-2021

The course's content:

- Introduction
- Performance evaluation of ML system
- Supervised learning
- Unsupervised learning
- Ensemble learning
 - Problem of bias vs. variance trade-off
 - Strategies for combining classifiers
 - Ensemble learning based on data sampling
 - Ensemble learning based on classifiers stacking
- Reinforcement learning

Problem of bias vs. variance trade-off

Trade-off of bias vs. variance

- High bias typically occurs when under-fitting the data
- High variance typically occurs when over-fitting the data

[Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001]

Unstable learners

- Beyond the problems linked to under-fitting/over-fitting, some predictive models are inherently unstable
 - Small differences in the learning dataset might lead to very different predictions (regression/classification)
 - Sensitivity to outliers
 - Sensitivity to irrelevant variables
 - Resulting in a large variance in the prediction

Unstable classifiers

- Decision trees are unstable
 - Example from https://towardsdatascience.com/the-indecisive-decision-tree-story-of-an-emotional-algorithm-1-2-8611eea7e397:

I trained 10 decision trees having exact same hyper-parameters with 10 different seed values, which ensures that each tree trains with a slightly different sample. Let's look at the top three most important variables, which represent structure of the tree, obtained by the trees for both the data sets.

	seed	train_acc	valid_acc	top_feature	second_feature	third_feature
0	0	0.903439	0.785185	Title	Fare	Age
1	288	0.888889	0.748148	Sex	Age	Fare
2	576	0.879630	0.740741	Title	Fare	Age
3	864	0.892857	0.792593	Sex	Age	Fare
4	1152	0.883598	0.748148	Sex	Age	Fare
5	1440	0.886243	0.725926	Title	Age	Sex
6	1728	0.895503	0.703704	Fare	Sex	Age
7	2016	0.894180	0.770370	Title	Fare	Age
8	2304	0.902116	0.792593	Sex	Pclass	Fare
9	2592	0.871693	0.777778	Title	Age	Fare
10	2880	0.898148	0.785185	Title	Age	Pclass

Solution: Ensemble learning

- Idea of ensemble learning methods:
 - "United we stand, divided we fall"
- Objective of ensemble learning methods
 - Reducing variance/unstability of single predictive models by combining multiple models

Solution: Ensemble learning

- Ensemble learning can be applied for both supervised and unsupervised learning
 - Supervised learning: regression or classification
 - E.g., Random forest
 - Unsupervised learning: clustering ensembles
 - E.g., Consensus clustering
- Ensemble learning can be seen as a special kind of metalearning
- In this lecture, we will focus mostly on supervised learning (classification) task

Strategies for combining classifiers

Combining classifiers

- Consider a set of classifiers h₁, ..., h_L being diverse
 - Maybe from the same model, but making different mistakes (e.g., trees in the random forest)
 - Maybe based on different models (e.g., SVM + Naive Bayes)
- **Idea:** Construct a classifier $H(\mathbf{x})$ that combines the individual predictions of $h_1, ..., h_L$
 - $\Box h_1, ..., h_l$ might return different predictions, or
 - h_1, \dots, h_L might focus on different regions of the representation space
- H(x) is sometimes called a "meta-classifier"

Major voting (Averaging)

- H(x) is simply the majority vote
 - □ Or, the average output for regression
 - □ This is the most usual strategy for random forest

[https://courses.cs.washington.edu/courses/cse446/20wi/Lecture16/16_EnsembleMethods.pdf]

Weighted average

- H(x) is simply a weighted majority vote
 - □ Or, the weighted average output for regression
 - \Box The weights $w_1, ..., w_l$ are learned from a validation set

[https://courses.cs.washington.edu/courses/cse446/20wi/Lecture16/16_EnsembleMethods.pdf]

Gating

■ This is a special case of weighted average where the weights $w_1, ..., w_L$ depend on the input(s)

□ The gating function selects/weights the best models for each

problem

The gating function is learned from a validation set

[https://courses.cs.washington.edu/courses/cse446/20wi/Lecture16/16_EnsembleMethods.pdf]

Stacking

- Consists in stacking layers of classifiers
 - □ The predictions of the 1st layer are used as an input for the 2nd layer
 - □ The second layer is trained on a validation set
 - One might stack more than 2 layers of classifiers

[https://courses.cs.washington.edu/courses/cse446/20wi/Lecture16/16_EnsembleMethods.pdf]

Combining classifiers

- Consider a set of classifiers h₁, ..., h_L being diverse
 - □ Maybe based on different models (e.g., SVM + Naive Bayes)
 - In this case, the classifiers can be learned from the same training set (diversity is achieved by the diversity of the models)
 - Maybe from the same model, but making different mistakes (e.g., trees in the random forest): The models can be
 - Learned from different samplings of the training set
 - □ Random strategies
 - □ *E.g.*, Bagging, Random Subspaces
 - Stacked
 - □ Adaptive strategies
 - □ *E.g.*, Boosting

Ensemble learning methods based on data sampling

Bootstrap sampling

- A bootstrap sample is built from an initial dataset
 - □ By sampling n instances with replacement
 - □ Excludes ~35% of the instances
- A bootstrap sample contains as many objects as the original sample, but...
 - Some objects are replicated several times
 - Others are deleted
- The selection of the n objects to be replicated/deleted is ALMOST random
 - Bootstrap samples might be further stratified (mostly for classification)
 - Keeps the class distribution of the initial dataset

Bagging

Bagging [Breiman, 1996]

- 1. Creating *L* bootstrap samples
- Learning L classifers h_i
- Combining the *L* classifiers $h_1, ..., h_L \rightarrow H$ (final classifier)

Bagging

- Objective of bagging:
 - Reduce the effects of outliers / records that are "too influential"
- The performance of the individual classifiers h_i is evaluated using out-of-bootstrap data
- For Step 3 (combination of classifiers), one can use:
 - Averaging
 - Weighted average
 - Gating

Bagging

- Advantages of Bagging:
 - Can reduce the detrimental effects of outliers
 - Can enhance performances
- Disadvantages of Bagging:
 - Higher computational complexity
 - E.g., We are essentially multiplying the work of growing a single tree by *L* (especially if we are using the more involved implementation that prunes and validates on the original training data) (https://www.stat.cmu.edu/~ryantibs/datamining/lectures/24-bag.pdf)
 - Loss of interpretability
 - E.g., The final bagged classifier is not a tree, and so we forfeit the clear interpretative ability of a classification tree (https://www.stat.cmu.edu/~ryantibs/datamining/lectures/24-bag.pdf)

Random subspaces

- Objectives of random subspaces [Ho, 1998] :
 - Reduce the effects of irrelevant attributes on the final model
 - Reduce the effects of attributes (features) correlation on the final model
 - Reduce the problems that arise when the number of examples in the training set is insufficient compared to the number of explanatory variables
- The L classifiers $h_1, ..., h_L$ are built from all examples
- Each classifier h_i is built from q attributes
 - Randomly selected from the whole set of explanatory attributes
 - □ In general, *q* << *p* (where *p* is the initial number of explanatory attributes)

Random subspaces

- For the combination of classifiers, one can use:
 - Averaging
 - Weighted average
 - Gating

Random subspaces

- Advantages of Random subspaces:
 - Can effectively reduce the effects of irrelevant attributes on the final model
 - Can effectively reduce the effects of attributes (features) correlation on the final model
 - Can effectively reduce the problems that arise when the number of examples in the training set is insufficient compared to the number of explanatory variables
- Disadvantages of Random subspaces:
 - Higher computational complexity
 - Loss of readability/interpretability

Example of Ensemble learning based on data sampling: Random Forest

Random forest

- Random forest might be used for classification or regression
- Somehow combines Bagging and Random Subspaces: Each tree in the forest is built by:
 - Using Bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node (node-level Random Subspaces)

Random forest

- In its original version [Ho 95]:
 - □ The trees in the forest are not prunned
 - □ The outputs of the trees are averaged
 - Might be used for classification or regression

Random forest

Advantages:

- ■Better stability (i.e., effectively reduces variance)
- □On average, H (i.e., random forest) achieves better performance than any h_i (i.e., any individual tree)

Disadvantages:

- More computationally expensive
 - A lot more for the training phase
 - A bit more for the classification phase
- $exttt{ up}$ Loose the readability/interpretability of the individual trees h_i

Ensemble learning based on classifiers stacking: Boosting

Motivation

- Ensemble Learning models based on data sampling can effectively reduce the variance of the model
- But, they might still suffer from a large bias
 - □ At least, in some regions of the representational space (*i.e.,* for some examples)
- Boosting aims at reducing the bias

- Idea: sequentially derives weak classifiers (can be rules of thumb)
 - Apply procedure to subset of examples
 - Obtain the first weak classifier
 - □ Apply to 2nd subset of examples
 - Obtain 2nd weak classifier
 - □ Repeat *L* times
- How to choose examples on each round?
 - Concentrate on the "hardest" examples
 - The most often misclassified by previous classifiers

Technically:

- □ Assume given "weak" classifiers h_t that perform slightly better than random (i.e., accuracy ≥ 55% for 2-class problems)
- □ We will stack them in a cascade, such that h_{t+1} focuses on samples that are misclassified by h_t (i.e., difficult examples)
- Given a sufficient number/variety of training examples, a Boosting algorithm can construct a meta-classifier H with much better accuracy

- Principle: building a cascade of "weak" classifiers h_t ...
- ... Each individual classifier h_t aims at focusing on the "hard samples" that were incorrectly classified by its predecessor in the cascade h_{t-1}

- In practice, there are two main strategies:
 - **Arcing:** Increase the probability of selecting these "hard samples" in the training dataset of classifier h_t
 - **Ada-boost:** Increase the weight of these "hard samples" when learning the classifier h_t
- In general, the outputs of the classifiers are combined using (weighted) averaging

- Example of practical application of Boosting
 - □ **Face detection** from numeric images [Viola&Jones, 2001]
 - Find faces in photograph or movie using Adaboost algorithm
 - Weak classifiers: detect light/dark rectangles in image
 - Many clever tricks to make it fast and accurate

Advantages

- Reduces the effect of "difficult examples" (at the frontier between classes)
- Often gives very good results in practice
 - If there is a large number of examples in the training set, Boosting often gives better results than Bagging

Disadvantages

- More computationally expensive for the individual classifiers
- If there are not enough of training examples:
 - Either the training set is perfectly classified by the first classifier, and the Boosting algorithm is useless
 - Either the algorithm focuses on a small number of examples, potentially unrepresentative of the classes, and the "boosted" classifier may perform worse than the original classifier...