5. モノイド・群

2022 秋期「哲学者のための数学」授業資料(大塚淳)

ver. 2022年11月18日

1 モノイドとは何か、なぜそれを学ぶのか

前章で見た位相は、空間に関する幾何学的な概念であった。一方本章の主題となるモノイドや群は、本質的に代数的な「計算」にまつわる概念である。よって我々は、代数、幾何と来て我々は再び代数の世界に戻ってきた。

文系の学生にとって、「位相」という言葉は耳にしたことくらいはあっても、「モノイド」や「群」となると聞いたこともない、という人も多いかもしれない。しかし実のところ我々は皆、小学生のころからモノイドや群に親しんでいる。というのも、足し算や掛け算などはまさにこのモノイドや群の作用に他ならないからだ。モノイドや群は、そうした四則演算を始めとした「演算」一般の最もプリミティブな形を抜き出したものと言える。それ以外にも、モノイドは対象や系の変化・発展を表すために用いられるし、また群はモノの対称性(symmetry)の数学的な表現を与える。そしてこの対称性という考え方は、物理学における「法則性」という考えを裏から支えるものであり、また哲学的には客観性の概念と深い結び付きを持っている。こうしたことから、モノイドや群は非常に広範な科学的・哲学的含意を有している。

現代物理学を始め様々な科学で応用される群論は、極めて高度に発展しており、その全体像を掴むことを容易ではない。しかしその基本的な考え方はこれ以上ないくらいシンプルである。ここではその本質的な点のみに的を絞って紹介したい。そこから得られるモノイドや群は、数学者や物理学者からしたらおもちゃみたいに簡単なものでしかないかもしれないが、その哲学的含意を考えるには十分であろう。

2 モノイド

まずは例に倣い、集合をベースにモノイドを定義しよう.

定義 2.1 (モノイド) 集合 M 上に、積と呼ばれる二項写像 $\circ: M \times M \to M$ が定義されており、以下の条件を満たすとき、組 (M, \circ, e) をモノイド (monoid) という.

- 1. M の任意の元 x, y, z に対して、結合律 $(x \circ y) \circ z = x \circ (y \circ z)$ がなりたつ.
- 2. **単位元** (identity element) と呼ばれる元 $i \in M$ が存在して, M の任意の元 x に対して,

 $i \circ x = x \circ i = x$ がなりたつ.

事例 2.1 自然数 \mathbb{N} は,二項演算 + とモノイドをなす.ここでの単位元は 0 である.実際任意の自然数 x,y,z について,(x+y)+z=x+(y+z) かつ 0+x=x+0=x.同様に, \mathbb{N} が乗算 \times についてもモノイドとなることを確認せよ(その単位元はなんだろうか).