20104169 - SUMESH R

Importing Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2005.csv")
df
```

Mounted at /content/drive

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM10	PM25	PXY	SO_2	тсн	TC
0	2005- 11-01 01:00:00	NaN	0.77	NaN	NaN	NaN	57.130001	128.699997	NaN	14.720000	14.91	10.65	NaN	4.62	NaN	Na
1	2005- 11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.93	NaN	1.59	7.80	1.35	7.
2	2005- 11-01 01:00:00	NaN	0.40	NaN	NaN	NaN	46.119999	53.000000	NaN	30.469999	14.60	NaN	NaN	5.76	NaN	Na
3	2005- 11-01 01:00:00	NaN	0.42	NaN	NaN	NaN	37.220001	52.009998	NaN	21.379999	15.16	NaN	NaN	6.60	NaN	Na
4	2005- 11-01 01:00:00	NaN	0.57	NaN	NaN	NaN	32.160000	36.680000	NaN	33.410000	5.00	NaN	NaN	3.00	NaN	Na
236995	2006- 01-01 00:00:00	1.08	0.36	1.01	NaN	0.11	21.990000	23.610001	NaN	43.349998	5.00	NaN	NaN	6.68	1.37	2.
236996	2006- 01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999	4.95	1.49	1.00	7.06	1.28	0.
236997	2006- 01-01 00:00:00	0.19	NaN	0.26	NaN	0.08	26.730000	30.809999	NaN	43.840000	4.31	2.93	NaN	13.20	1.28	0.
236998	2006- 01-01 00:00:00	0.14	NaN	1.00	NaN	0.06	13.770000	17.770000	NaN	NaN	5.00	NaN	NaN	5.81	1.25	0.:
236999	2006- 01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998	5.67	2.11	1.09	11.07	1.30	1.:

237000 rows × 17 columns

Data Cleaning and Data Preprocessing

236979 0.38 28079006236996 0.54 28079024236999 0.40 28079099

```
In [3]:
df=df.dropna()
In [4]:
df.columns
Out[4]:
Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
      dtype='object')
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 20070 entries, 5 to 236999
Data columns (total 17 columns):
   Column
             Non-Null Count Dtype
              _____
    date
              20070 non-null object
              20070 non-null float64
20070 non-null float64
 1
   BEN
 2
    CO
 3
   EBE
              20070 non-null float64
 4 MXY
              20070 non-null float64
 5 NMHC
              20070 non-null float64
 6 NO 2
              20070 non-null float64
 7 NOx
              20070 non-null float64
 8 OXY
              20070 non-null float64
 9 0 3
              20070 non-null float64
 10 PM10
              20070 non-null float64
 11 PM25
              20070 non-null float64
              20070 non-null float64
 12 PXY
 13 SO 2
              20070 non-null float64
 14 TCH
              20070 non-null float64
              20070 non-null float64
 15 TOL
16 station 20070 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 2.8+ MB
In [6]:
data=df[['CO' ,'station']]
data
Out[6]:
       CO
            station
    5 0.88 28079006
   22 0.22 28079024
   25 0.49 28079099
   31 0.84 28079006
    48 0.20 28079024
236970 0.39 28079024
236973 0.45 28079099
```

Line chart

```
In [7]:
```

```
data.plot.line(subplots=True)
Out[7]:
array([<Axes: >, <Axes: >], dtype=object)
   8
                                                               CO
   6
   4
   2
   0
      +2.8079e7
 100
  80
  60
                                                            station
  40
  20
        0
                  50000
                             100000
                                         150000
                                                     200000
```

Line chart

```
In [8]:
data.plot.line()
Out[8]:
<Axes: >

1e7
2.5 -
2.0 -
1.5 -
0.5 -
CO
station
```


Bar chart

```
In [9]:
```

b=data[0:50]

In [10]:

b.plot.bar()

Out[10]:

<Axes: >

Histogram

In [11]:

data.plot.hist()

Out[11]:

<Axes: ylabel='Frequency'>

Area chart

```
In [12]:
```

```
data.plot.area()
Out[12]:
<Axes: >
     1e7
 2.5 -
 2.0
 1.5
 1.0
 0.5
            CO
            station
 0.0
                 50000
                             100000
```

Box chart

2.0 -

```
In [13]:
data.plot.box()
Out[13]:
<Axes: >
     1e7
 2.5
```

150000

200000

Pie chart

In [14]:

```
b.plot.pie(y='station')
```

Out[14]:

<Axes: ylabel='station'>

Scatter chart

```
In [15]:
```

```
data.plot.scatter(x='CO', y='station')
```

Out[15]:

<Axes: xlabel='CO', ylabel='station'>

In [16]:

```
אניניע
             20070 HOH HULL
                             LIUALUI
 2
    CO
             20070 non-null
                             float64
 3
    EBE
             20070 non-null float64
    MXY
             20070 non-null float64
 5
    NMHC
             20070 non-null float64
   NO 2
             20070 non-null float64
 7
             20070 non-null float64
   NOx
 8
   OXY
             20070 non-null float64
 9
    0 3
             20070 non-null float64
10 PM10
             20070 non-null float64
11 PM25
             20070 non-null float64
             20070 non-null float64
12 PXY
13 SO 2
             20070 non-null float64
14 TCH
             20070 non-null float64
             20070 non-null float64
15 TOL
16 station 20070 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 2.8+ MB
```

In [17]:

df.describe()

Out[17]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	
count	20070.000000	20070.000000	20070.000000	20070.000000	20070.000000	20070.000000	20070.000000	20070.000000	200
mean	1.923656	0.720657	2.345423	5.457855	0.179282	66.226924	143.046536	2.774935	
std	2.019061	0.549723	2.379219	5.495147	0.152783	40.568197	136.582521	2.705508	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.690000	0.400000	0.950000	1.930000	0.090000	36.602499	56.102499	1.000000	
50%	1.260000	0.580000	1.480000	3.800000	0.150000	60.525000	105.699997	1.890000	
75%	2.510000	0.880000	2.950000	7.210000	0.220000	89.317499	190.100006	3.620000	
max	26.570000	8.380000	29.870001	71.050003	1.880000	419.500000	1774.000000	38.680000	1
4				188					○ ▶

In [18]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [19]:

```
sns.pairplot(df1[0:50])
```

Out[19]:

<seaborn.axisgrid.PairGrid at 0x7f748350aad0>

In [20]:

Out[20]:

<Axes: xlabel='station', ylabel='Density'>


```
In [21]:
```

```
sns.heatmap(df1.corr())
```

Out[21]:

<Axes: >

TO TRAIN THE MODEL AND MODEL BULDING

```
In [22]:
```

In [23]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

```
▼ LinearRegression
LinearRegression()
```

```
coeff
Out[26]:
       Co-efficient
  BEN
       -10.011793
   CO
         37.347031
  EBE -12.403162
  MXY
         3.659439
NMHC
         80.914883
 NO_2
         0.102935
         -0.252799
  NOx
  OXY
         2.984563
  0_3
         0.011059
 PM10
         0.040474
  PXY
         2.645328
 SO_2
         0.206198
  TCH
         63.296975
  TOL
         -0.748106
In [27]:
prediction =lr.predict(x test)
```

coeff=pd.DataFrame(lr.coef_, x.columns, columns=['Co-efficient'])

In [25]:

Out[25]:

In [26]:

lr.intercept_

28078959.479894195

plt.scatter(y_test,prediction)

Out[27]:

<matplotlib.collections.PathCollection at 0x7f746c99e3b0>

```
8850 -
                               40
                 20
                                            60
                                                          80
                                                                       100
                                                                +2.8079e7
```

ACCURACY

```
In [28]:
lr.score(x_test,y_test)
Out[28]:
0.31020466985765904
In [29]:
lr.score(x_train,y_train)
Out[29]:
0.3010901501046742
Ridge and Lasso
In [30]:
from sklearn.linear model import Ridge,Lasso
In [31]:
rr=Ridge(alpha=10)
```

Out[31]:

Ridge Ridge(alpha=10)

Lasso Taggo (alpha=10)

Accuracy(Ridge)

rr.fit(x_train,y_train)

```
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.3100017708242503
In [33]:
rr.score(x train,y train)
Out[33]:
0.30084307644038644
In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
```

```
In [35]:
la.score(x train, y train)
Out[35]:
0.0675303013230486
Accuracy(Lasso)
In [36]:
la.score(x_test,y_test)
Out[36]:
0.05878207020106385
In [37]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x train, y train)
Out[37]:
▼ ElasticNet
ElasticNet()
In [38]:
en.coef
Out[38]:
array([-5.73858158e+00, 1.42311526e+00, -7.04594809e+00, 2.59712093e+00,
        8.79781241e-01, -7.05217108e-02, -1.33839275e-03, 1.76533792e+00,
       -2.09839743e-02, 2.32167362e-01, 1.39167719e+00, 1.54356269e-01,
       1.57454738e+00, -8.77724188e-01])
In [39]:
en.intercept
Out[39]:
28079050.85067011
In [40]:
prediction=en.predict(x test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.17596282162432753
Evaluation Metrics
In [42]:
```

паээс (атыпа-то) |

from sklearn import metrics

print(metrics.mean absolute error(y test,prediction))

```
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
36.86428888023068
1532.3099527649367
39.144730842923636
Logistic Regression
In [43]:
from sklearn.linear model import LogisticRegression
In [44]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO 2', 'NOx', 'OXY', 'O 3',
       'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target_vector=df[ 'station']
In [45]:
feature matrix.shape
Out[45]:
(20070, 14)
In [46]:
target vector.shape
Out[46]:
(20070,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit transform(feature matrix)
In [49]:
logr=LogisticRegression(max iter=10000)
logr.fit(fs, target vector)
Out[49]:
         LogisticRegression
LogisticRegression(max iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079006]
In [52]:
logr.classes
Out[52]:
```

```
array([28079006, 28079024, 28079099])
In [53]:
logr.score(fs, target vector)
Out[53]:
0.879023418036871
In [54]:
logr.predict proba(observation)[0][0]
Out[54]:
0.9998966777270014
In [55]:
logr.predict proba(observation)
Out[55]:
array([[9.99896678e-01, 3.20032883e-30, 1.03322273e-04]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[57]:
▼ RandomForestClassifier
RandomForestClassifier()
In [58]:
parameters={ 'max depth': [1,2,3,4,5],
            'min samples leaf':[5,10,15,20,25],
            'n estimators':[10,20,30,40,50]
In [59]:
from sklearn.model selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
             GridSearchCV
 ▶ estimator: RandomForestClassifier
      RandomForestClassifier
In [60]:
grid search.best score
Out[60]:
```

In [61]:

```
rfc best=grid search.best estimator
```

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5], feature_names=x.columns, class_names=['a','b','c','d'], filled=True)
```

Out[62]:

```
[Text(0.47767857142857145, 0.916666666666666666, 'TOL <= 9.175\ngini = 0.632\nsamples = 887
0\nvalue = [5948, 2545, 5556]\nclass = a'),
 Text(0.24107142857142858, 0.75, 'TCH <= 1.265 \mid = 0.637 \mid = 5978 \mid = [26]
40, 2353, 4461]\nclass = c'),
 Text(0.14285714285714285, 0.58333333333333334, 'OXY <= 1.005 \ngini = 0.413 \nsamples = 780
Text(0.07142857142857142, 0.41666666666666667, 'O_3 <= 73.53 \ngini = 0.536 \nsamples = 383

    \text{(nvalue = [370, 185, 58]} \\
    \text{(nclass = a'),}

 Text(0.03571428571428571, 0.25, 'OXY <= 0.995 \cdot 1000 = 0.477 \cdot 1000 = 325 \ nvalue = [359]
, 114, 53] \nclass = a'),
 Text(0.017857142857142856, 0.083333333333333333, 'gini = 0.393 \nsamples = 276 \nvalue = [3]
37, 54, 52]\nclass = a'),
 Text(0.05357142857142857, 0.0833333333333333333, 'qini = 0.407 \nsamples = 49 \nvalue = [22, 12]
60, 1] \n = b'),
 Text(0.10714285714285714, 0.25, 'MXY \le 1.09 \text{ ngini} = 0.315 \text{ nsamples} = 58 \text{ nvalue} = [11, 7]
1, 5] \setminus class = b'),
 Text(0.08928571428571429, 0.083333333333333333333, 'gini = 0.079 \nsamples = 49 \nvalue = [2, 0.08328571428571428]
71, 1]\nclass = b'),
 Text(0.21428571428571427, 0.41666666666666667, 'O 3 <= 59.3 \ngini = 0.206 \nsamples = 397 \nsamples
nvalue = [544, 0, 72] \nclass = a'),
 Text(0.17857142857142858, 0.25, 'EBE \le 0.78  | mgini = 0.127 | msamples = 318 | mvalue = [466, 1.78]
0, 34] \land a = a'),
 Text(0.16071428571428573, 0.0833333333333333333, 'gini = 0.0 \nsamples = 15 \nvalue = [0, 0, 0, 0]
18] \nclass = c'),
 Text(0.19642857142857142, 0.0833333333333333333, 'qini = 0.064 \nsamples = 303 \nvalue = [46]
6, 0, 16]\nclass = a'),
 Text(0.25, 0.25, 'NO 2 <= 27.475 \neq 0.441 = 79 \neq = 79 \neq = [78, 0, 38] = [78, 0, 38]
 Text(0.23214285714285715, 0.0833333333333333333, 'gini = 0.451 \nsamples = 24 \nvalue = [12, 12]
0, 231\nclass = c'),
 Text(0.26785714285714285, 0.0833333333333333333, 'qini = 0.302\nsamples = 55\nvalue = [66, 10.0833333333333333333]
0, 15] \ln a = a'),
 nvalue = [1726, 2168, 4331] \nclass = c'),
 Text(0.30357142857142855, 0.41666666666666667, 'NO 2 <= 10.06 \ngini = 0.252 \nsamples = 25
8\nvalue = [0, 335, 58]\nclass = b'),
 Text(0.2857142857142857, 0.25, 'gini = 0.0 \nsamples = 53 \nvalue = [0, 82, 0] \nclass = b'
),
 Text(0.32142857142857145, 0.25, 'PXY \le 1.055 \le 0.303 \le 205 \le 205 \le 1.055 \le 1
253, 58]\nclass = b'),
 Text(0.30357142857142855, 0.0833333333333333333, 'gini = 0.208 \nsamples = 176 \nvalue = [0, 0.08333333333333333]
240, 32]\nclass = b'),
 Text(0.3392857142857143, 0.083333333333333333, 'gini = 0.444 \nsamples = 29 \nvalue = [0, 1]
3, 26] \n = c'),
 Text(0.375, 0.4166666666666667, 'O 3 <= 5.545 \cdot 10^{-2} = 0.599\nsamples = 4940\nvalue = [17]
26, 1833, 4273]\nclass = c'),
 Text(0.35714285714285715, 0.25, 'gini = 0.0\nsamples = 110\nvalue = [0, 175, 0]\nclass =
b'),
 Text(0.39285714285714285, 0.25, 'PXY <= 1.005 | mgini = 0.591 | msamples = 4830 | mvalue = [17]
26, 1658, 4273]\nclass = c'),
 \nclass = b'),
 Text(0.4107142857142857, 0.08333333333333333333, 'gini = 0.456 \nsamples = 3086 \nvalue = [14]
55, 147, 33281 \setminus class = c'),
```

```
Text(0.7142857142857143, 0.75, 'NMHC <= 0.175 | min = 0.423 | msamples = 2892 | mvalue = [33]
08, 192, 1095] \nclass = a'),
   nvalue = [864, 41, 97] \nclass = a'),
   Text(0.5, 0.416666666666667, 'NMHC <= 0.095 \cdot ngini = 0.65 \cdot nsamples = 65 \cdot nvalue = [40, 38]
, 23] \ln a = a'),
   Text(0.4642857142857143, 0.25, 'Nox <= 35.575 | ngini = 0.362 | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = 28 | nvalue = [29, 10] | nsamples = [29, 10] | nsamples = [29
4, 4]\nclass = a'),
   Text(0.44642857142857145, 0.0833333333333333333, 'qini = 0.571 \nsamples = 5 \nvalue = [1, 2]
, 4] \nclass = c'),
   Text(0.48214285714285715, 0.0833333333333333333, 'gini = 0.124 \nsamples = 23 \nvalue = [28, 1]
2, 0] \nclass = a'),
   Text(0.5357142857142857, 0.25, 'BEN <= 0.885 \setminus gini = 0.6 \setminus samples = 37 \setminus value = [11, 34, 34]
19]\nclass = b'),
   Text(0.5178571428571429, 0.083333333333333333, 'gini = 0.117 \nsamples = 7 \nvalue = [0, 1, 1]
15] \nclass = c'),
  Text(0.5535714285714286, 0.083333333333333333, 'gini = 0.468 \nsamples = 30 \nvalue = [11, 0.0833333333333333]
33, 4] \setminus class = b'),
  Text(0.6428571428571429, 0.41666666666666667, 'BEN <= 1.795 \ngini = 0.157 \nsamples = 558
nvalue = [824, 3, 74] \setminus nclass = a'),
   Text(0.6071428571428571, 0.25, 'NO 2 \le 40.62 \le 0.503 \le 74 \le 74 \le 64,
2, 45] \ln as = a'),
  Text(0.5892857142857143, 0.0833333333333333333333, 'gini = 0.117 \nsamples = 11 \nvalue = [15, 15]
1, 0] \setminus ass = a'),
  = a'),
  Text(0.6785714285714286, 0.25, 'TCH \le 1.435 \setminus gini = 0.073 \setminus gini = 484 \setminus gini = 1.435 \setminus gini=
1, 29]\nclass = a'),
   Text(0.6607142857142857, 0.0833333333333333333, 'gini = 0.028 \nsamples = 415 \nvalue = [683]
, 0, 10]\nclass = a'),
  Text(0.6964285714285714, 0.08333333333333333333, 'gini = 0.331 \nsamples = 69 \nvalue = [77, ]
1, 19]\nclass = a'),
  Text(0.8571428571428571, 0.5833333333333333334, 'O 3 <= 6.085 \ngini = 0.458 \nsamples = 2269
\nvalue = [2444, 151, 998] \setminus a = a'),
  Text(0.7857142857142857, 0.41666666666666667, 'SO 2 <= 15.275 \ngini = 0.565 \nsamples = 21
2\nvalue = [36, 112, 187]\nclass = c'),
   Text(0.75, 0.25, 'PXY \le 4.64 \text{ inj inj} = 0.237 \text{ nsamples} = 64 \text{ nvalue} = [0, 88, 14] \text{ nclass} = [0, 88, 14]
   Text(0.7321428571428571, 0.0833333333333333333, 'gini = 0.104 \nsamples = 59 \nvalue = [0, 8]
6, 5] \setminus nclass = b'),
  Text(0.7678571428571429, 0.0833333333333333333, 'gini = 0.298 \nsamples = 5 \nvalue = [0, 2, 0.083333333333333333]
9] \nclass = c'),
   Text(0.8214285714285714, 0.25, 'NO 2 \le 176.45 \cdot gini = 0.414 \cdot gini = 148 \cdot gini 
, 24, 173]\nclass = c'),
   Text(0.8035714285714286, 0.0833333333333333333, 'gini = 0.373 \nsamples = 142 \nvalue = [26, 10.8035714285714286, 0.0833333333333333]
24, 173] \nclass = c'),
   Text(0.8392857142857143, 0.08333333333333333, 'gini = 0.0 \nsamples = 6 \nvalue = [10, 0, 0]
01 \leq a'),

    \text{nvalue} = [2408, 39, 811] \\    \text{nclass} = a'),

   Text(0.8928571428571429, 0.25, 'TCH <= 1.485 / gini = 0.512 / gine = 630 / gine = [580, gine = 630 / gine =
31, 393]\nclass = a'),
   ss = a'),
  Text(0.9107142857142857, 0.08333333333333333333, 'gini = 0.441 \nsamples = 241 \nvalue = [86, 10.9107142857]
22, 262]\nclass = c'),
  Text(0.9642857142857143, 0.25, 'TCH <= 1.595 \ngini = 0.308 \nsamples = 1427 \nvalue = [182]
8, 8, 418] \nclass = a'),
  Text(0.9464285714285714, 0.083333333333333333, 'gini = 0.16 \nsamples = 722 \nvalue = [1037]
, 0, 100] \ln a = a'),
  Text(0.9821428571428571, 0.0833333333333333333, 'gini = 0.417 \nsamples = 705 \nvalue = [791]
, 8, 318] \nclass = a')]
```


Conclusion

Accuracy

In [63]:

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.31020466985765904 Ridge Regression: 0.3100017708242503 Lasso Regression 0.05878207020106385

ElasticNet Regression: 0.17596282162432753 Logistic Regression: 0.879023418036871 Random Forest: 0.8624098160653053

Logistic Regression is suitable for this dataset