情報構造第十二回

集合・辞書

今日の予定

- 集合(Set)
 - 集合の仕様
 - 実現:ビットベクトル
 - 実現:連結リスト
- 辞書 (Dictionary)
 - 辞書の仕様
 - 実現:配列へのベタ詰め法
 - 実現:ハッシュ法
 - オープンハッシュ法 ここがメイン
 - クローズドハッシュ法

集合

集合 (set)

- 要素数は**有限**
- 要素の**並び順には意味はない** {1, 2, 3}と{3, 2, 1}は同じ
- **同じ要素はひとつ**しか表れない
 - {1, 2, 2, 3, 1} は集合ではなく, **多重集合**(BAG, multiset)
- 要素間に線形順序(全順序) ≪ を考えることもある
- 集合S上の線形順序 ≪ はつぎのとおりである
 - ∀a, b ∈ S に対して,a≪b または a=bまたは b≪a の**どれか1つ**だけ成立
 - 排中律
 - ∀a, b, c ∈ S に対して, a ≪ b かつ b ≪ c ならば a ≪ c が成立
 - 推移律

集合の仕様

• 要素:

- 集合のすべての要素は**同じ型**Elementをもつ
- 要素型Elementが線形順序をもちうる

• 構造:

- 集合は同じ型の集まり
- 要素の重複はない
- 要素を並べる順序に意味はない
- 要素数は有限で、要素がないものを空集合と呼ぶ

操作:

集合に対して

- 和・積・差の集合演算(Union, Intersection, Difference)
- 要素の挿入・削除・所属(Insert, Delete, Member)
- 最小要素の取り出し(Min)

など

集合の実現:ビットベクトル

- 表現
 - 整数Nの値が小さいとき, 0, 1,…, Nの整数を要素とする集合
 - すなわち, 普遍集合(全体集合) {0,1,2,…N} 上の集合
 - ⇒ビットベクトルで実現
- ビットベクトル
 - 表現する語・バイトのビット上の位置とその値0または1で集合の要素を表す
 - 例えば, 5が**集合要素**のとき**ビット位置5**の値が**1** typedef char SET; /* 普遍集合{0, 1, 2, 3, 4, 5, 6, 7} */

集合変数 S = {1, 5, 7}

実現アルゴリズム: 和集合, 積集合, 差集合

- 集合操作は以下で実現できる
 - ビット論理演算子: |, &, ~ (or, and, not) /
 - シフト演算子:>>,<<(右シフト, 左シフト)

集合 A の第 i 番目のビットを A[i] で表す(LSB を i=0 とする)

- A, Bの和集合 C = Union(A, B):
- A, Bの積集合 C = Intersection(A, B): C[i] = A[i] & B[i]
- A, Bの差集合 C = Difference(A, B):

ference(A, B): $C[i] = A[i] & (\sim B[i])$

数値の各ビットを右

または左ヘシフトさ

せる演算子

 $C[i] = A[i] \mid B[i]$

積集合 C = A & B 0 0 1 0 0 1 0

最下位ビット least significant bit(右端ビット)

実現アルゴリズム: 所属, 挿入, 削除

- 所属: Member(i, A) = i ∈ A
 - {i} を表す整数2ⁱ とAのビット積(2ⁱ & A) を結果値とする 結果が整数**0**でないとき, すなわち 2ⁱ & A!= 0 のとき i ∉A
- 挿入:Insert(i, A)
 - {i} を表す整数2i とAのビット和(2i | A) を結果値とする
- 削除 Delete(i, A)
 - {i} を表す整数2i の1の補数~2iとAのビット積(~2i&A)を結果値とする

実現アルゴリズム(ビットベクトル)の 効率

- ビットベクトルが1語に納まるとき(Nビット≤1語)
 - Member, Insert, Delete, Union, Intersection, Differenceすべて一 定時間
 - …演算レジスタで数回の論理演算で実行できる
- ・Nビットにm語要するときは、m倍の論理演算が必要となる
- Min(A)は、Aのビット数Nの時間がかかる

普遍集合が列挙型

- 普遍集合を**列挙型**(スカラー型)にすることで、集合要素を**列挙値**の **識別子**で表せ、集合表現が分かりやすくなる
- 例えば、普遍集合{0, 1, 2, 3, 4, 5, 6, 7}の代わりに enum color {Black, White, Red, Green, Yellow, Blue, Brown, Purple} とした場合、列挙値Black,…Purpleは、0,…,7なので要素挿入 Member(2, A)は、Member(Red, A)と書ける

集合值S={Black,Red,Purple}

Purple	Brown	Blue	rellow	Green	Red	white	Віаск
=7	=6	=5	=4	=3	= 2	=1	=0
1	О	0	О	О	1	О	1

集合の実現:連結リスト

- 表現
 - ひとつの**連結リスト**でひとつの**集合**を表す
 - 連結リスト中の各構造体で、集合の各要素を表す
 - 操作の効率を考えて、集合の要素間の線形順序を用い、連結リスト中の構造体をソートしておく

連結リストによる集合演算

実現アルゴリズム(連結リスト)の効率

- Union, Intersection Differenceの効率
 - 連結リストの構造体が**ソートされている**場合 …二つのリストの**, 長さの**和
 - 連結リストの構造体が**ソートされていない**場合 …二つのリストの**、長さの積**

辞書

辞書 (Dictionary)

•操作 Insert, Delete, Memberを備えた集合を辞書とよぶ

=> 操作Union, Intersection, Differenceを除いた抽象データ型

辞書の仕様

- ・要素・構造(辞書の要素と構造は**集合と同じ**)
 - 集合のすべての要素は**同じ型**Elementをもつ
 - Elementは線形順序を持ち得る
 - 要素の重複はない
 - 要素を並べる順序に意味はない
 - 要素数は有限で、要素がないものを空の辞書と呼ぶ
- 操作(辞書の操作は抽象データ型**集合の部分集合**)
 - 要素の挿入,削除,所属(探索)(Insert, Delete, Member)

例: $\{1,2,3\} = \{3,2,1\} \neq \{3,3,2,1\}$

・など

辞書の操作

辞書型 Dictionary

辞書型変数 D

要素型 Element

要素型データx

- int Member(Element x, Dictionary D)
 - Post: 関数値は x∈D ならば真(1) さもなければ偽(0)
- Dictionary Insert (Element x Dictionary D)
 - Post: 関数値は **D** ∪ {**x**}
- Dictionary Delete(Element x Dictionary D)
 - Post: 関数値は **D** {**x**}
- Dictionary Create (void)
 - Post: 関数値は, **空の辞書**
- Element Min(Dictionary D)
 - Pre: **D**≠空の辞書
 - Post: 関数値は**D**中の**最小要素の値**

辞書の実現

- 辞書の配列上での実現方法
 - ベタ詰め法
 - ハッシュ法

表現:辞書の実現配列へのベタ詰め

```
#define maxsize 1000 /*辞書の要素の最大数*/
typedef struct{
    Element value[maxsize];
    int last; /*辞書要素の最後, -1の時は空*/
} Dictionary;
```


効率:辞書の実現配列へのベタ詰め

- 辞書の要素をソートしないとき
 - Insert, Delete, Memberは、最悪N(辞書の要素数)かかる
- 辞書の要素をソートしたとき
 - Member, Insert, Deleteは、探索に最悪log₂Nかかる

辞書の実現:ハッシュ法

- 辞書の**配列へのベタ詰め**の実現は
 - 操作は最悪で登録要素数N (ソートすればlog₂N) のオーダーの時間計算量
- ハッシュ法
 - 辞書を配列(ハッシュ表)で実現
 - 各操作の**平均の時間計算量を一定**にする

辞書要素とハッシュ表の対応

- 辞書の要素型Element
- •辞書要素を格納する配列T (ハッシュ表) …辞書の表現 ハッシュ表 T
- Tのインデックスが0からB-1
- 次の関数hを考える
 - h: Element→[0…B-1] (要素からインデックス)
 - hをハッシュ関数と呼ぶ
 - Element型の要素xをキー
 - h(x)をキーxのハッシュ値と呼ぶ

7h(**y**)

衝突 (collision)

- Elementすべての要素のハッシュ値が異なる(hが単斜)なら辞書要素(キー)xの情報は配列Tの第h(x)番目に格納できる?
- ハッシュ表を非常に大きくしなければ, 一意の関数を見つけるのは **難しい**!

- いくつかの要素が**同じハッシュ値**を持つ
 - このクラスをバケット、そのハッシュ値をバケット番号という
- 同じバケット内の異なる辞書要素(キー)xとyは、衝突するという

ハッシュ法の種類

- 要素の衝突に多する処理はいろいろあるが、ここでは二つの方法を採り上げる
 - 1. オープンハッシュ法 (チェイン法)
 - 2. クローズドハッシュ法 (オープンアドレス法)

オープンハッシュ法	\Leftrightarrow	クローズドハッシュ法
(open hashing)		(closed hashing)
overflow hash	\Leftrightarrow	open hash
direct chaining	\Leftrightarrow	open addressing <
chaining	\Leftrightarrow	open addressing
外部ハッシュ	\Leftrightarrow	内部ハッシュ

オープンが逆になる 他の名前があるので 注意

オープンハッシュ法:辞書の表現

- 配列T: ハッシュ表 インデックスがバケット番号 0, 1,…, B-1
- 同じバケット i 中の衝突要素(衝突キー): T[i]をヘッダとする**連結リスト**に登録(Tの要素はキーではない)

オープンハッシュ法:操作

- 挿入:Insert(x, D)
- 削除:Delete(x, D)
- 所属・探索:Member(x, D)

実現アルゴリズム: 挿入Insert (x, D)

- 1. キー (辞書要素) xのバケット i (=h(x))を求める
- 2. ハッシュ表の要素T[i]をヘッダとする連結リスト中にxがあるか調べる
- **3. あれば**, 何もせず終了
- 4. なければ、xを連結リストの要素として挿入して終了

実現アルゴリズム: 削除Delete (x, D)

- 1. **キーx**のバケット i (=h(x))を求める
- 2. ハッシュ表の要素T[i]をヘッダとする連結リスト中にxがあるか調べる
- 3. **あれば**, 連結リストから削除して終了
- 4. なければ、何もせず終了

実現アルゴリズム: 探索Member (x, D)

- 1. **キーx**のバケット i (=h(x))を求める
- 2. ハッシュ表の要素T[i]をヘッダとする連結リスト中にxがある か調べ、その結果を関数値として終了

ハッシュ関数の選定

- **キー** (辞書要素) を各バケットに**均一**に**割り当てる**ハッシュ関 数が好ましい!
- **キーx**が**文字列**の時は,**数値**に変換してから,バケットに割り 当てる

ハッシュ関数の例

- キーx: 文字列c_{n-1}…c₁ c₀
- •バケット数B: 50
- ・ハッシュ値:「各文字のASCIIコードの和のBによる剰余」

$$h(c_{n-1}\cdots c_1c_0) = (c_{n-1} + \cdots + c_1 + c_0) \% B$$

 $h("A00") = (65 + 48 + 48) \% 50 = 11$

キー100個: A00, A01, …, A99を50個のバケットに割り当てる

=> キーが**均一**に**割り当てられない**

C言語では、文字の和は、 文字の**ASCIIコード**の和 • キー集合{"A00",…, "A99"}, h(x) = 「文字コードの和のBの剰余」

バケット11	1個	A00 バケット0から10		
バケット12	2個	A01 A10 のキーは 0 個		
バケット13	3個	A02 A11 A20		
バケット14	4個	A03 A12 A21 A30		
バケット15	5個	A04 A13 A22 A31 A40		
バケット16	6個	A05 A14 A23 A32 A41 A50		
バケット17	7個	A06 A15 A24 A33 A42 A51 A60		
バケット18	8個	A07 A16 A25 A34 A43 A52 A61 A70		
バケット19	9個	A08 A17 A26 A35 A44 A53 A62 A71 A80		
バケット20	10個	A09 A18 A27 A36 A45 A54 A63 A72 A81 A90		
バケット21	9個	A19 A28 A37 A46 A55 A64 A73 A82 A91		
バケット22	8個	A29 A38 A47 A56 A65 A74 A83 A92		
バケット23	7個	A39 A48 A57 A66 A75 A84 A93		
バケット24	6個	A49 A58 A67 A76 A85 A94		
バケット25	5個	A59 A68 A77 A86 A95		
バケット26	4個	A69 A78 A87 A96	平均	2
バケット27	3個	A79 A88 A97	' -	
バケット28	2個	A89 A98	分散	9.4
バケット29	1個	A99 バケット30から49		
		―――― のキーは0個		

ハッシュ関数の例

- キーx: 文字列c_{n-1}…c₁ c₀
- ·バケット数B: 50
- ハッシュ値: 「n個の文字列をASCIIコードで128進数n桁の数値」の Bによる剰余

```
h(c_{n-1}\cdots c_1c_0) = (c_{n-1}*128^{n-1} + \cdots + c_1*128^1 + c_0*128^0) % B 例:h(A49) = (A'*128^2 + A'*128^1 + B'*128^0) % B = (65*16381 + 52*128 + 57*1) % B = 1071673 % 50 = 23
```

128進数3桁ならば、128³(=2,097,152)の大きさのハッシュ表を用意すれば**ハッシュ値は単斜**(衝突は起こらない)

- ・ キー集合{"A00",…, "A99"}, h(x) = 「128進数のBの剰余」
 - すべてのバケットで、キーは1個から3個

バケット0 2個	A58 A72	バケット25 1個	A65
バケット1 2個	A59 A73	バケット26 2個	A66 A8
バケット2 2個	A00 A74	バケット27 2個	A67 A81
バケット3 2個	A01 A75	バケット28 2個	A68 A82
バケット4 3個	A02 A76 A90	バケット29 2個	A69 A83
バケット5 3個	A03 A77 A91	バケット30 2個	A10 A84
バケット6 3個	A04 A78 A92	バケット31 2個	A11 A85
バケット7 3個	A05 A79 A93	バケット32 2個	A12 A86
バケット8 3個	A06 A20 A94	バケット33 2個	A13 A87
バケット9 3個	A07 A21 A95	バケット34 2個	A14 A88
バケット10 3個	A08 A22 A96	バケット35 2個	A15 A89
バケット11 3個	A09 A23 A97	バケット36 2個	A16 A30
バケット122個	A24 A98	バケット37 2個	A17 A31
バケット132個	A25 A99	バケット38 2個	A18 A32
バケット142個	A26 A40	バケット39 2個	A19 A33
バケット15 2個	A27 A41	バケット40 1個	A34
バケット162個	A28 A42	バケット41 1個	A35
バケット172個	A29 A43	バケット42 2個	A36 A50
バケット18 1個	A44	バケット43 2個	A37 A51
バケット19 1個	A45	バケット44 2個	A38 A52
バケット202個	A46 A60	バケット45 2個	A39 A53
バケット21 2個	A47 A61	バケット46 1個	A54
バケット22 2個	A48 A62	バケット47 1個	A55
バケット23 2個	A49 A63	バケット48 2個	A56 A70
バケット24 1個	A64	バケット49 2個	A57 A71

平均 2 分散 0.32

ハッシュ関数の作り方

- 除算法 h(x) = キーxを数値化 % B
- 平方採中法 (乗算法,中央2乗法)

$$h(x) = (n^2 / C) \% B$$

擬似乱数の生成方法

- 文字キーxを変換した数値nが0からKとする
- BC²≒K²となるように**整数C**で、数値**nの2乗の中央値**をとることができる
- 原理は、次のようにキーの数値54321の2乗の中央値077をとることである。 これは、中央の桁が全桁に依存することによる $54321^2 = 2950771041$
- 折り込み法
 12345678 = 0001 | 2345 | 678
 ⇒1000 + 2345 + 867 = 4221

• 平方採中法 キー集合 $\{0,\dots,499\}$, $h(x) = (n^2/C)\%$ B, K = 499, C = 71

14個 バケット0: バケット17: 9個 16個 バケット18: バケット1: 8個 バケット2: バケット19: 17個 12個 バケット20: 8個 バケット3: 7個 バケット21: バケット4: 12個 12個 9個 5個 バケット5: バケット22: 13個 8個 バケット6: バケット23: バケット7: 9個 バケット24: 10個 バケット8: 11個 バケット25: 10個 バケット9: 13個 バケット26: 16個 8個 バケット27: バケット10: 10個 バケット28: 11個 8個 バケット11: バケット12: 5個 バケット29: 8個 バケット13: 8個 バケット30: 11個 バケット14: バケット31: 13個 10個 バケット15: 14個 バケット32: 6個 9個 バケット16: 12個 バケット33:

10個 バケット34: 8個 バケット35: バケット36: 9個 バケット37: 12個 バケット38: 11個 8個 バケット39: 7個 バケット40: バケット41: 9個 バケット42: 14個 バケット43: 5個 バケット44: 10個 バケット45: 12個 バケット46: 9個 バケット47: 11個 バケット48: 3個 バケット49: 10個

平均 10 分散 8.7

```
    平方採中法 キー集合{"A00",…, "A99"}, h(x) = (n² / C) % B

   • n=x[0]*128^2+x[1]*128+x[2], K=1072313("A99"-1), C=153187
バケット0:
                  バケット18: 2個
                                     バケット36:
          1個
                                               1個
          4個
                                               3個
バケット1:
                                     バケット37:
                  バケット19:
                            3個
バケット2:
          2個
                  バケット20:
                            1個
                                     バケット38:
                                               2個
          0個
                  バケット21:
                                               1個
バケット3:
                            4個
                                     バケット39:
                                     バケット40:
          2個
                  バケット22:
                            1個
                                               1個
バケット41
          3個
                             3個
                                               3個
バケット5:
                  バケット23:
                                     バケット41:
                                               1個
バケット6:
          1個
                  バケット24:
                             2個
                                     バケット42:
                                     バケット43:
          4個
                            1個
                                               5個
バケット7:
                  バケット25:
          1個
バケット8:
                  バケット26:
                            1個
                                     バケット44:
                                               1個
          2個
                                               1個
バケット9:
                  バケット27:
                             4個
                                     バケット45:
バケット10:
          2個
                  バケット28:
                             1個
                                     バケット46:
                                               2個
バケット11:
          2個
                                               2個
                  バケット29:
                             4個
                                     バケット47:
バケット12:
          0個
                  バケット30:
                            1個
                                     バケット48:
                                               0個
バケット13:
          4個
                  バケット31:
                             1個
                                     バケット49:
                                               4個
                  バケット32:
バケット14:
          1個
                             2個
バケット15:
          4個
                  バケット33:
                            2個
                                          平均
                                              2
バケット16:
          1個
                  バケット34:
                             0個
                                          分散
                                              1.8
          1個
バケット17:
                  バケット35:
                             5個
```

 平方採中法 キー集合{"A00",…, "A99"}, h(x) = (n² / C) % B • $n=x[0]*128^2+x[1]*128+x[2]$, K=1161("A99"-"A00"), C=165バケット18: 3個 1個 バケット0: バケット36: 2個 バケット1: 1個 1個 2個 バケット19: バケット37: バケット2: 1個 バケット20: 4個 バケット38: 3個 2個 バケット3: バケット21: 3個 バケット39: 3個 0個 バケット22: バケット40: バケット4: 0個 0個 バケット5: 5個 2個 1個 バケット23: バケット41: バケット6: 0個 3個 バケット42: 0個 バケット24: バケット7: 0個 バケット25: 3個 バケット43: 0個 バケット26: 2個 1個 バケット8: 2個 バケット44: 1個 バケット45: バケット9: 3個 バケット27: 3個 2個 3個 バケット10: 3個 バケット28: バケット46: 4個 バケット11: バケット29: 1個 バケット47: 3個 4個 バケット30: バケット12: 2個 バケット48: 1個 2個 バケット31: 2個 バケット13: バケット49: 0個 2個 バケット14: バケット32: 7個 2個 0個 バケット15: バケット33: 平均 2 4個 1個 バケット16: バケット34: 分散 2.16 2個 バケット35: バケット17: 3個

 平方採中法 キー集合{"A00",…, "A99"}, h(x) = (n² / C) % B • n=x[0]*128²+x[1]*128+x[2], K=2097157(128進数3桁), C=299593 3個 2個 バケット36: バケット18: バケット0: 4個 バケット1: 3個 1個 バケット37: 2個 バケット19: バケット2: 2個 2個 バケット38: バケット20: 0個 2個 2個 バケット39: バケット3: バケット21: 3個 2個 1個 バケット4: バケット40: バケット22: 1個 3個 1個 バケット23: バケット41: 3個 バケット5: 1個 バケット24: 1個 バケット42: バケット6: 0個 バケット7: 3個 バケット25: 2個 バケット43: 5個 2個 3個 2個 バケット8: バケット26: バケット44: バケット9: バケット27: 2個 1個 3個 バケット45: バケット46: バケット10: 3個 バケット28: 3個 3個 1個 バケット47: バケット11: 2個 2個 バケット29: 3個 1個 バケット30: バケット48: 2個 バケット12: バケット13: 2個 2個 バケット49: バケット31: 0個 1個 バケット14: 2個 バケット32: バケット33: 1個 2個 平均 バケット15: 2 バケット16: 3個 3個 分散 バケット34: 1.08 2個 0個 バケット17: バケット35:

オープンハッシュの平均時間計算量

- バケット数B,登録要素数N
 ⇒1バケットあたりの平均要素数は N/B
- Member, Insert, Deleteの操作1回に要する平均の時間計算量は O(1 + N/B)

B≒N ⇒ 平均時間計算量一定

一つの要素にバケット一つ

- ・表の再構成
 - 登録要素数がバケット数Bの2倍以上になったとき, バケット数が2倍の新しいハッシュ表を作る
 - ⇒いつも (N/B)<2となるので、操作の平均効率は3未満
 - ⇒表の大きさBは登録要素数Nの2倍程度
- •最小の要素を取り出す操作Minの効率のよいアルゴリズムはない

クローズドハッシュ法:辞書の表現

- ハッシュ表Tに、直接キー (辞書要素) そのものを格納
- ハッシュ表Tに、ハッシュ関数h以外に、再ハッシュ関数h1, h2, h3,…(高々B-1個)を使う

削除操作のない場合の挿入Insert(x, D)

- 1. キーxをハッシュとするハッシュ値 i =h(x) を求める
- 2. ハッシュ表の要素**T**[i]が
 - xならば、既登録より終了
 - 空の状態ならば、未登録なので、ここにxを登録し終了
 - x以外のキーならば、再ハッシュし再ハッシュ値 i を求め2.を繰り返す

削除操作のない場合の所属Member (x, D)

- 1. キーxをハッシュとするハッシュ値 i =h(x) を求める
- 2. ハッシュ表の要素**T**[i]が
 - xならば、Member値を真(1)にして、終了
 - 空の状態ならば、未登録なので、Member値を偽(0)にし終了
 - x以外のキーならば、再ハッシュし再ハッシュ値 i を求め2.を繰り返す

削除操作がある場合

- ハッシュ表の要素の状態
 - キー (辞書要素) でふさがっている**状態**
 - 一度でもキーでふさがったことのない**空状態**
 - 操作Deleteでキーが削除された削除状態

削除状態の必要性

- キーcを削除して、ハッシュ表の要素T[i]を**空状態**にすると
 - 他の操作(例えば、xのMember操作の再ハッシュ)で、T[i]にきたとき、**空状態**のため**キー<math>xがない**と誤った判断をしてしまう
 - 削除後, **削除状態**にし,この先の**再ハッシュの必要性**を示す

xの再ハッシュで 空状態を発見、 未登録に!?

> **削除状態**に 換えれば、 再ハッシュが 可能に!

削除状態を設けた場合の所属Member(x,D)

- 1. **キーx**をハッシュとするハッシュ値 i =h(x) を求める
- 2. ハッシュ表の要素**T**[i]が
 - xならば、既登録によりMember値を真(1)にして、終了
 - 空の状態ならば、未登録なので、Member値を偽(0)にし終了
 - **x以外**のキーまたは**削除状態**ならば,**再ハッシュ**し再ハッシュ値 i を求め2.を 繰り返す

削除状態を設けた場合の挿入Insert(x, D)

- 1. **キーx**をハッシュとするハッシュ値 i =h(x) を求める
- 2. ハッシュ表の要素**T**[i]が
 - xならば、既登録より終了
 - **空**の状態ならば, **未登録**なので, 3. にいき**登録**
 - **x以外**のキーまたは**削除状態**ならば, **再ハッシュ**し再ハッシュ値 i を求め2.を繰り返す
- **3. 再ハッシュ中に削除状態**の要素があれば、そこに**x**を**登録**. なければ、最後の**空状態に登録**、終了

削除Delete(x, D)

- 1. キーxをハッシュとするハッシュ値 i =h(x) を求める
- 2. ハッシュ表の要素**T**[i]が
 - ・xならば、削除状態にして終了
 - 空の状態ならば、未登録なので終了
 - **x以外**のキーまたは**削除状態**ならば, **再ハッシュ**し再ハッシュ値 i を求め2.を繰り返す

再ハッシュ関数の選定

- 線形検査法
- c個離れた要素を調べる
- 2次関数検査法
- ランダムな順列を用いる

再ハッシュ関数:線形検査法

- $h_i(x) = (h(x) + i) % B (i = 1, \dots, B-1), Bはハッシュ表の大きさ$
 - ハッシュ表を**環状**に考えて、**空**状態の要素が見つかるまで、 $h(x) + 1, h(x) + 2, \cdots$ と次の位置を調べていく

辞書要素が h(x) の周りに集中しやすい欠点を持つ

再ハッシュ関数:c個離れた要素

- $h_i(x) = (h(x) + ci) % B (i = 1, \dots, B-1), cとBは互いに素$
 - ハッシュ表を**環状**に考えて、**空**状態の要素が見つかるまで、h(x) + c, h(x) + 2c,…と次の位置を調べていく

線形検索法と同じく, c個目ごとに団子状態になる欠点を持つ

再ハッシュ関数:2次関数検査法

- $h_i(x) = (h(x) + i^2) \% B \quad (i = 1, \dots, B-1)$
 - 団子状態は生じないが、ハッシュ表のすべてが検索されるとは限らない
 - Bが素数のときは、少なくともハッシュ表の半分は調べられる
 - 次の再帰的公式を用いれば、上述の再ハッシュ関数で、2乗演算を使わずにすむ

$$h_{i+1}(x) = h_i(x) + d_i(x)$$

 $d_{i+1}(x) = d_i(x) + 2$
 $h_0(x) = h(x)$
 $d_0(x) = 1$

再ハッシュ関数:ランダムな順序

- $h_i(x) = (h(x) + d_i) \% B \quad (i = 1, \dots, B-1)$
 - d_1 , d_2 ,···, d_{B-1} は,**ランダムな順列**で,シフトレジスタを用いて生成する方法がある

擬似乱数の生成方法

クローズドハッシュの平均時間計算量

- ハッシュ表の大きさB
 - ハッシュ表はN個の辞書要素でふさがっており、どのふさがり型も等確率とする
- ハッシュ表に**N個登録**されている場合, **N+1個目**の新しい辞書 要素を登録するときの平均時間計算量を考える
- k回目に空状態の要素を見つける確率P_kを考える

$$P_{1} = \frac{B - N}{B}$$

$$P_{2} = \frac{N}{B} \frac{B - N}{B - 1}$$
...
$$P_{k} = \frac{N}{B} \frac{N - 1}{B - 1} \cdots \frac{N - (k - 2)}{B - (k - 2)} \frac{B - N}{B - (k - 1)}$$

N+1個目の辞書要素の登録

- N+1個目の新しい辞書要素をハッシュ表に**登録**するときの時間 計算量を考える
 - k回目に空状態の要素を見つける確率P_k

$$P_{k} = \frac{N}{B} \frac{N-1}{B-1} \cdots \frac{N-(k-2)}{B-(k-2)} \frac{B-N}{B-(k-1)}$$

〈N+1個目登録の平均時間計算量〉

$$= \sum_{k=1}^{N+1} k P_k = \frac{B+1}{B+1-N} \approx \frac{B}{B-N} = \frac{1}{1-\alpha}$$

ただし、 $\alpha = N/B$ で、 ハッシュ表中の辞書要素の割合

1個登録に要する平均時間計算量

• ハッシュ表にN個まで登録したとき, 1個登録に要した平均時間 計算量は,

〈N個まで登録したときの1個登録平均時間計算量〉

$$=\frac{1}{N}\sum_{k=1}^{N}\langle k 個目登録の平均時間計算量\rangle$$

$$= \frac{1}{N} \sum_{k=1}^{N} \frac{B+1}{B+2-k} = \frac{B+1}{N} \ln \frac{B+1}{B+2-N} = \frac{B}{N} \ln \frac{B}{B-N}$$

$$= \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$
 ただし、 $\alpha = N/B$ で、 ハッシュ表中の辞書要素の割合

 ハッシュ表の90%(α=0.9)を辞書要素でうめたときの 1個登録に要した平均時間計算量は、2.56。

探索に要する平均時間計算量

ハッシュ表にN個まで登録したとき

〈表に<u>ない</u>要素を探す平均時間計算量〉

= 〈N + 1個目登録の平均時間計算量〉

$$=\frac{1}{1-\alpha}$$

ただし、 $\alpha = N/B$ で、 ハッシュ表中の辞書要素の割合

〈表にある要素を探す平均時間計算量〉

=〈**N個まで登録**したときの**1個登録**平均時間計算量〉

$$=\frac{1}{\alpha}\ln\frac{1}{1-\alpha}$$

削除に要する平均時間計算量

・ハッシュ表にN個まで登録したとき

〈要素を削除する平均時間計算量〉

= 〈その要素を探索する平均時間計算量〉

クローズドハッシュの平均時間計算量まとめ

- 登録要素数Nがハッシュ表の90%以上 $(\alpha > 0.9)$ のとき
 - ・表中にある要素を探す平均時間計算量は2.56以上
 - ・表中にない要素を探す平均時間計算量は10以上

・表の再構成

- 登録要素数がハッシュ表の**90%以上**を占めたとき
- 大きさが2倍の**新しいハッシュ表**を作る
- ⇒それぞれの平均時間計算量が**2.56以下**および**10以下**に保つことはできる
- ⇒**登録要素数Nは表の大きさB**の90%程度
- 最小の要素を取り出す操作Minの効率のよいアルゴリズムはない

まとめ

- 集合
 - 集合の仕様
 - 実現:ビットベクトル
 - 実現:連結リスト
- 辞書
 - 辞書の仕様
 - 実現:配列へのベタ詰め法
 - 実現:ハッシュ法
 - オープンハッシュ法
 - クローズドハッシュ法

演習1オープンハッシュ法

- 抽象データ型辞書をオープンハッシュ法で実現する.
- 辞書操作, **挿入**, 探索(所属), 削除について以下の設問に答えよ.
- ただし,
 - ハッシュ表の大きさBは5, インデックスは0からB-1までとする.
 - 辞書要素(キー)の集合 = {0,1,···,14} とする.
 - ハッシュ関数 h(x) = x % Bとする.
 - 最初、ハッシュ表(辞書)には何も登録されていないとする.
- 1. 5つの辞書要素(キー) 2, 8, 14, 3, 9 をこの順でハッシュ表に登録する. このときのハッシュ表への登録手順を概説し, できあがったハッシュ表の図を描け.
- 2. つづいて、9, 13がハッシュ表に登録されているか否かを調べる. このときの ハッシュ表の探索手順を概説せよ.
- 3. 最後に、9,13をハッシュ表から削除する.このときのハッシュ表の削除手順を概説し、できあがったハッシュ表の図を描け.

演習2 クローズドハッシュ法

- 抽象データ型辞書Dをクローズドハッシュ法で実現する.
- ただし,
 - 辞書Dのハッシュ表Tの大きさBは11, そのインデックスは0からB-1とする.
 - 辞書要素(キー)の集合 = {0,1,…,109} とする.
 - '空の状態'を -1, '削除状態'を -2 で表す.
 - ハッシュ関数 h(x) = x % B とする.
 - 再ハッシュ関数 h_i(x)=(h(x) + 3 * i) % B とする.
 - いま、辞書D(ハッシュ表T)には右図のように、キーが登録されており、 以下の設問を順に操作していくとする.
- 1. 辞書要素(キー) 7を登録する。そのときのハッシュ, 再ハッシュの手順を 説明し, 結果のハッシュ表Tを図示せよ.
- 2. 辞書要素(キー) 32を削除する. そのときのハッシュ, 再ハッシュの手順を 説明し, 結果のハッシュ表Tを図示せよ.
- 3. 再び、辞書要素(キー) 7を登録するときのハッシュ、再ハッシュの手順を 説明し、結果のハッシュ表Tを図示せよ.

	ハッシュ表T
0	-1
0 1 2 3 4 5 6 7 8 9	-1
2	32
3	-1
4	-1
5	-1
6	-1
7	18
8	-1
9	-1
10	21

提出方法

- ドローイングソフトを使ってもかまいませんが、手書きを写真でとったものでOKです。
- pdfや画像フォーマットで提出してください

• 提出方法:LETUS

• 締め切り:2023/7/10 10:30まで