Math 214 Study Guide

VISHAL RAMAN

May 8, 2021

Contents

1		2
2	2.1 Definitions	2 3
3	3.1 Definitions	3 3
4	4.1 Definitions	4 4
5	5.1 Definitions	4 4
6	6.1 Definitions	5 5
7	7.1 Definitions	5
8	8.1 Definitions	6 6
9	9.1 Definitions	7 7
10	10.1 Definitions	7 7 7

Vis	hal Raman (May 8, 2021)	Math 214 Study Guide		
11	Cotangent Bundle	8		
	11.1 Definitions	8		
	11.2 Theorems	8		
12	Tensors	8		
	12.1 Definitions	8		
	12.2 Theorems	9		
13	Riemannian Metrics	9		
	13.1 Definitions	9		
	13.2 Theorems	10		
14	Differential Forms	10		
	14.1 Definitions	10		
	14.2 Theorems	10		
15	Orientations	10		
	15.1 Definitions	10		
	15.2 Theorems	11		
16	Integration on Manifolds	11		
	16.1 Definitions	11		
	16.2 Theorems	11		
17	De Rham Cohomology	11		
	17.1 Definitions	11		
	17.2 Theorems	12		

§1 Smooth Manifolds

§1.1 Definitions

- Topological Manifold
- Locally Euclidean
- Coordinate Charts
- Projective Spaces
- Smooth Atlas
- Smooth Structure
- Smooth Manifold
- Manifolds with Boundary

§2 Smooth Maps

§2.1 Definitions

- Smooth function
- Coordinate representation
- Smooth Map
- Diffeomorphism
- Partitions of Unity

§2.2 Theorems

- 2-3: If $f:M\to\mathbb{R}^k$ is smooth, $f\circ\varphi^{-1}$ is smooth for every smooth chart (U,φ)
- 2-5: Equivalent Characterizations of Smoothness
- 2-8: Gluing Lemma for Smooth Maps
- 2-25: Existence of Smooth Bump Functions
- 2-26: Extension Lemma for Smooth Functions
- 2-28: Existence of Smooth Exhaustion Functions
- 2-29: Level Sets of Smooth Functions

§3 Tangent Vectors

§3.1 Definitions

- Geometric Tangent Space
- Derivations
- Tangent Vectors
- Differentials
- Computations in Coordinates
- Differential in Coordinates
- Pushforward
- Change of Coordinates
- Tangent Bundle
- Velocity Vectors of Curves

§3.2 Theorems

- 3-4: Properties of Tangent Vectors
- 3-6: Properties of Differentials
- 3-23: Correspondence of Velocity Vectors and Tangent Vectors

§4 Submersions, Immersions, and Embeddings

§4.1 Definitions

- Rank of Smooth Map
- Smooth Submersion
- Smooth Immersion
- Smooth Embedding
- Local Section
- Smooth Covering Map

§4.2 Theorems

- 4-5: Inverse Function Theorem
- 4-6: Properties of Local Diffeomorphisms
- 4-12: Rank Theorem
- 4-14: Global Rank Theorem
- 4-26: Local Section Theorem
- 4-28: Smooth submersion is an open map/quotient map

§5 Submanifolds

§5.1 Definitions

- Embedded Submanifold
- Properly Embedded
- k-dimensional Slice Chart
- Regular/Critical Points
- Regular/Critical Value
- Regular Level Set
- Defining Map
- Local Defining Function
- Immersed Submanifold

§5.2 Theorems

- 5-8: Local Slice Criterion
- 5-14: Regular Level Set Theorem
- 5-37: Tangent Space to Submanifold
- 5-38: Tangent Space of Embedded Submanifold is the Kernel of Local Defining Map

§6 Sard's Theorem

§6.1 Definitions

- Measure Zero Sets
- Normal Bundle
- Tubular Neighborhood
- Smooth Homotopy
- Tranversality

§6.2 Theorems

- 6-10: Sard's Theorem
- 6-15: Whitney Embedding Theorem
- 6-18: Whitney Immersion Theorem
- 6-19: Strong Whitney Embedding Theorem
- 6-20: Strong Whitney Immersion Theorem
- 6-21: Whitney Approximation Theorem for Functions

- 6-24: Tubular Neighborhood Theorem
- 6-26: Whitney Approximation Theorem
- 6-35: Parametric Transversailty Theorem
- 6-36: Transverality Homotopy Theorem

§7 Lie Groups

§7.1 Definitions

- Lie Group
- Left/Right Translation
- Lie Group Homomorphism
- Lie Subgroup
- Lie Group Actions
- Equivariant Maps
- Orbit Map

§7.2 Theorems

- 7-7: Existence/Uniqueness of Universal Covering Group
- 7-21: Lie subgroup closed if and only if embedded
- 7-25: Equivariant Rank Theorem: Equivariant implies Constant Rank
- 7-26: Properties of Orbit Map

§8 Vector Fields

§8.1 Definitions

- Vector Fields
- Rough Vector Field
- Support of Vector Field
- Local and Global Frames
- Parallelizable
- F-related vector fields
- Pushforward of Vector Fields
- Lie Bracket
- Lie Algebra
- Left-invariant
- Lie Algebra homomorphism

§8.2 Theorems

- 8-1: Smoothness Criterion for Vector Fields
- 8-7: Given $p \in M, v \in T_pM$, exists $X \in \mathfrak{X}(M)$ with $X_p = v$.
- 8-13: Gram-Schmidt for Frames
- 8-14: Alternate Smoothness Criterion(Vector Field as Derivations of $C^{\infty}(M)$)
- 8-27: Lie Bracket Computation
- 8-31: Pushforward of Lie Bracket

§9 Integral Curves and Flows

§9.1 Definitions

- Integral Curve
- Flows
- Singular/Regular Points
- Lie Derivative
- Commuting Vector Fields
- Commuting Flows

§9.2 Theorems

- 9-2: Existence/Uniqueness
- 9-3: Rescaling Lemma
- 9-4: Translation Lemma
- 9-12: Fundamental Theorem on Flows
- 9-20: Flowout Theorem
- 9-38/39: Properties of Lie Derivative
 - 9-42: Equivalent Conditions for Commuting Vector Fields
 - 9-44: Vector fields commute if and only if flows commute

§10 Vector Bundles

§10.1 Definitions

- Vector Bundles
- Local Trivialization
- Sections of Vector Bundles

- Zero Section
- Local and Global Frames
- Bundle Homomorphisms
- Subbundles

§10.2 Theorems

- 10-4: Tangent Bundle as a Vector Bundle
- 10-15: Completion of Local Frames

§11 Cotangent Bundle

§11.1 Definitions

- Dual Basis
- Cotangent Space
- Covariant/Contravariant Vectors
- Cotangent Bundle
- Covector Field
- Component Functions of Covector Field
- Local and Global Coframes
- Differential
- Pullback of Covector Field
- Line Integral
- Exact Covector Field
- Conservative Covector Field
- Closed Covector Field

§11.2 Theorems

- 11-11: Smoothness Criteria for Covector Fields
- 11-18: Differential is a smooth covector field
- 11-20: Properties of Differential
- 11-23: Derivative o a Function Along a Curve
- 11-42: Smooth covector field is conservative if and only if it is exact
- 11-44: Exact implies closed
- 11-46: Pullback takes closed to closed, exact to exact
- 11-49: Poincaré Lemma

§12 Tensors

§12.1 Definitions

- Multilinear Map
- Tensor Products
- Covariant Tensors
- Contravariant Tensors
- Mixed Tensors
- Symmetric Tensor
- \bullet Symmetrization
- Symmetric Product
- Alternating Tensor
- Tensor Bundles
- Component Functions of Tensor Bundle
- Pullback of Tensor Fields
- Lie Derivative of Tensor Field

§12.2 Theorems

- 12-4: Basis for Multilinear Functions
- 12-9: Associativity of Tensor Product Spaces
- 12-25: Properties of Tensor Pullbacks
- 12-26: Coordinate Representation of Tensor Pullback
- 12-32: Properties of Lie Derivative on Tensor Fields
- 12-34: Differential Commutes with Lie Derivative

§13 Riemannian Metrics

§13.1 Definitions

- Riemannian Metric
- Euclidean Metric
- Product Metric
- Pullback Metric
- Local Isometry
- Flat Metric

- Riemannian Submanifold
- Surface of Revolution
- Riemannian Length
- Riemannian Distance
- Musical Isomorphisms
- Gradient of Vector Field

§13.2 Theorems

- 13-3: Existence of Riemannian Metrics
- 13-9: Pullback Metric Criterion
- 13-19: Flatness Criterion for Surfaces of Revolution
- 13-29: Riemannian Manifolds as Metric Spaces

§14 Differential Forms

§14.1 Definitions

- Alternating Covariant Tensors
- Elementary Covectors
- Wedge Product
- Interior Multiplication
- Differential Forms
- Exterior Derivative
- Lie Derivatives of Differential Forms

§14.2 Theorems

- 14-8: Basis for $\Lambda^k(V^*)$
- 14-11: Properties of Wedge Product
- 14-20: Pullback Formula for Top-Degree Forms
- 14-23: Properties of Exterior Derivative
- 14-35: Cartan's Magic Formula
- 14-36: Lie Derivative Commutes with d.

§15 Orientations

§15.1 Definitions

- Oriented Vector Space
- Positively/Negatively Oriented
- Pointwise Orientation
- Positively/Negatively Oriented Frame
- Continuous pointwise orientation
- Orientable Manifold
- Orientation Form
- Oriented Coordinate Chart
- Orientation-preserving Action
- Generalized covering maps
- Orientation Covering/Double Cover

§15.2 Theorems

- 15-5: Orientation Determined by an n-Form
- 15-11: Orientations of Codimension-0 Submanifolds
- 15-15: Pullback Orientation
- 15-24: Induced Orientation on a Boundary
- 15-35: If $\pi: E \to M$ is a smooth covering map, M is orientable, then E is orientable
- 15-40: Properties of Orientation Covering
- 15-41: Orientation Covering Theorem

§16 Integration on Manifolds

§16.1 Definitions

- Integral of Differential Form
- Integration on Manifolds

§16.2 Theorems

- 16-1: Transformation Theorem
- 16-6: Properties of Integrals of Forms
- 16-8: Integration over Parameterizations
- 16-11: Stokes' Theorem

§17 De Rham Cohomology

§17.1 Definitions

- Cycles, Boundaries, de Rham Cohomology Group
- Homotopy Invariants
- Homotopy Operator/Cochain Homotopy
- Degree of Smooth Map

§17.2 Theorems

- 17-2: Induced Cohomology Maps
- 17-13: Cohomology of Contractible Manifolds
- 17-14: Poincaré Lemma
- 17-15: Local Exactness of Closed Forms
- 17-20: Mayer-Vietoris Sequence
- 17-35: Degree of Smooth Map