Comparaison d'algorithmes pour le problème d'ensemble dominant minimum dans un graphe

Bouali Zakariae

Département d'Informatique Université de Mons

21 juin, 2019

- 1 Introduction
- 2 Algorithmes exacts
 - Vue d'ensemble
 - Algorithme basé sur le Set Cover
- 3 Algorithmes approchés
 - Vue d'ensemble
 - Greedy reverse
- 4 Comparaisons
 - Algorithmes exacts
 - Heuristiques
- 5 Conclusion

Définition

Un **ensemble dominant** D d'un graphe G = (V, E), est un sous-ensemble de sommets tel que chaque sommet de G est soit dans D, soit voisin d'un sommet de D.

Figure: Graphe G = (V, E).

Définition

Un **ensemble dominant** D d'un graphe G = (V, E), est un sous-ensemble de sommets tel que chaque sommet de G est soit dans D, soit voisin d'un sommet de D.

Figure: Graphe G = (V, E).

Un **ensemble dominant minimum** (*Minimum Dominating Set, MDS*), est un ensemble dominant, contenant le plus petit nombre possible de sommets.

Problème: ensemble dominant (Dominating Set, DS)

Entrée : un graphe G = (V, E), un entier k.

 ${\bf Question}$: existe-t-il un ensemble dominant de taille au plus égale à k

pour G?

Problème: ensemble dominant (*Dominating Set, DS*)

Entrée : un graphe G = (V, E), un entier k.

 ${f Question}$: existe-t-il un ensemble dominant de taille au plus égale à k

pour G?

Problème: ensemble dominant (*Dominating Set, DS*)

Entrée : un graphe G = (V, E), un entier k.

 ${f Question}$: existe-t-il un ensemble dominant de taille au plus égale à k

pour *G*?

Applications

La synthèse de documents.

Problème: ensemble dominant (Dominating Set, DS)

Entrée : un graphe G = (V, E), un entier k.

 ${f Question}$: existe-t-il un ensemble dominant de taille au plus égale à k

pour *G*?

- La synthèse de documents.
- Le problème de domination des reines.

Problème: ensemble dominant (*Dominating Set, DS*)

Entrée : un graphe G = (V, E), un entier k.

 ${f Question}$: existe-t-il un ensemble dominant de taille au plus égale à k

pour *G*?

- La synthèse de documents.
- Le problème de domination des reines.
- Les réseaux des capteurs sans fil.

Problème: ensemble dominant (Dominating Set, DS)

Entrée : un graphe G = (V, E), un entier k.

 ${f Question}$: existe-t-il un ensemble dominant de taille au plus égale à k

pour *G*?

- La synthèse de documents.
- Le problème de domination des reines.
- Les réseaux des capteurs sans fil.
- · ...

Vue d'ensemble

Algorithmes exacts	Complexité en temps
Algorithme général (pour tous types de graphe) [1]	$O(1.93^n)$

Vue d'ensemble

Algorithmes exacts	Complexité en temps
Algorithme général (pour tous types de graphe) [1]	$O(1.93^n)$
Algorithme spécial pour les graphes de degré maximum égal à 3 [1]	$O(1.51^n)$

Vue d'ensemble

Algorithmes exacts	Complexité en temps
Algorithme général (pour tous types de graphe) [1]	$O(1.93^n)$
Algorithme spécial pour les graphes de degré maximum égal à 3 [1]	$O(1.51^n)$
Algorithme trivial basé sur le Set Cover [2]	$O(2^{n})$
Algorithme amélioré basé sur le Set Cover [2]	$O(1.51^n)$

Set Cover

Définition

soit $U = \{x_1, x_2, \dots, x_n\}$, un ensemble de n éléments, et soit $s = \{S_1, S_2, \dots, S_m\}$ des sous-ensembles de U. Une couverture de U par un sous-ensemble de s est l'ensemble $I \subseteq \{1, 2, \dots, m\}$ tel que $\bigcup_{S_{i \in I}} = U$.

Définition

soit $U=\{x_1,x_2,\ldots,x_n\}$, un ensemble de n éléments, et soit $s=\{S_1,S_2,\ldots,S_m\}$ des sous-ensembles de U. Une couverture de U par un sous-ensemble de s est l'ensemble $I\subseteq\{1,2,\ldots,m\}$ tel que $\bigcup_{S_{i\in I}}=U$.

Exemple

$$s = \{\{1, 2, 3\}, \{2, 4, 5\}, \{1, 2, 3, 5\}, \{1, 2, 3, 4\}\}, U = \{1, 2, 3, 4, 5\}$$

Définition

soit $U = \{x_1, x_2, \dots, x_n\}$, un ensemble de n éléments, et soit $s = \{S_1, S_2, \dots, S_m\}$ des sous-ensembles de U. Une couverture de U par un sous-ensemble de s est l'ensemble $I \subseteq \{1, 2, \dots, m\}$ tel que $\bigcup_{S_{i \in I}} = U$.

Exemple

$$s = \{\{1, 2, 3\}, \{2, 4, 5\}, \{1, 2, 3, 5\}, \{1, 2, 3, 4\}\}, U = \{1, 2, 3, 4, 5\}$$

$$I = \{1, 2\}$$

La réduction d'une instance du problème de l'ensemble dominant minimum en une instance du problème de la couverture par ensembles.

$$U = \{0, 1, 2, 3, 4\}$$

Introduction

$$U = \{0, 1, 2, 3, 4\}$$

$$s = \{\{0, 1\}\}$$

$$U = \{0, 1, 2, 3, 4\}$$
$$s = \{\{0, 1\}, \{0, 1, 2\}\}$$

$$U = \{0, 1, 2, 3, 4\}$$

$$s = \{\{0, 1\}, \{0, 1, 2\}, \{1, 2, 3, 4\}\}$$

$$U = \{0, 1, 2, 3, 4\}$$

$$s = \{\{0, 1\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}\}$$

$$U = \{0, 1, 2, 3, 4\}$$

$$s = \{\{0, 1\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}$$

Introduction

$$U = \{0, 1, 2, 3, 4\}$$

$$s = \{\{0, 1\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}$$

s = {{0,1},{0,1,2},{1,2,3,4}, {2,3,4},{2,3,4}} U={0,1,2,3,4}

Algorithme amélioré basé sur le Set Cover

Règle de l'élément unique

$$s = \{\{1, 2\}, \{1, 2, 3\}, \{3, 4\}\}, U = \{1, 2, 3, 4\}$$

Règle de l'élément unique

$$s = \{\{1, 2\}, \{1, 2, 3\}, \{3, 4\}\}, U = \{1, 2, 3, 4\}$$

Algorithmes approchés

Algorithme amélioré basé sur le Set Cover

Règle de l'élément unique

$$s = \{\{1, 2\}, \{1, 2, 3\}, \{3, 4\}\}, U = \{1, 2, 3, 4\}$$

Algorithmes approchés

$$s = \{\{1, 2\}, \{1, 2\}\}, U = \{1, 2\}$$

Algorithme amélioré basé sur le Set Cover

Éliminer les sous-ensembles inclus

$$s = \{\{1, 2, 3\}, \{1, 2, 3, 5\}, \{1, 2, 3, 4\}, \{2, 4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

Algorithmes approchés

Éliminer les sous-ensembles inclus

$$s = \{\{1,2,3\},\{1,2,3,5\},\{1,2,3,4\},\{2,4,5\}\},\ U = \{1,2,3,4,5\}$$
 X

Éliminer les sous-ensembles inclus

$$s = \{\{1,2,3\},\{1,2,3,5\},\{1,2,3,4\},\{2,4,5\}\},\ U = \{1,2,3,4,5\}$$
 X

Algorithmes approchés

Éliminer les sous-ensembles inclus

$$s = \{\{1,2,3\},\{1,2,3,5\},\{1,2,3,4\},\{2,4,5\}\},\ U = \{1,2,3,4,5\}$$
 X

$$s = \{\{1, 2, 3, 5\}, \{1, 2, 3, 4\}, \{2, 4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

Éliminer les sous-ensembles inclus

$$s = \{\{1,2,3\},\{1,2,3,5\},\{1,2,3,4\},\{2,4,5\}\},\ U = \{1,2,3,4,5\}$$
 X

$$s = \{\{1, 2, 3, 5\}, \{1, 2, 3, 4\}, \{2, 4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

Définition

Un couplage M de G=(V,E) est un sous-ensemble des arêtes E deux à deux non adjacentes .

Figure: Couplages maximaux [3].

Définition

Une couverture par arêtes d'un graphe G est un ensemble d'arêtes C, tel que chaque sommet de G est incident à au moins une arête de C.

Figure: Couvertures par arêtes minimaux [4].

Algorithme amélioré basé sur le Set Cover

Introduction

$$s = \{\{1,2\},\{2,3\},\{3,4\},\{3,5\},\{4,1\},\{4,5\}\},\ U = \{1,2,3,4,5\}$$

$$s = \{\{1,2\},\{2,3\},\{3,4\},\{3,5\},\{4,1\},\{4,5\}\},\ U = \{1,2,3,4,5\}$$

$$s = \{\{1,2\}, \{2,3\}, \{3,4\}, \{3,5\}, \{4,1\}, \{4,5\}\}, U = \{1,2,3,4,5\}$$

Arrêter quand la cardinalité des ensembles est au plus égale à deux

$$s = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 1\}, \{4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

Algorithmes approchés

$$s = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 1\}, \{4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

$$s = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 1\}, \{4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

$$s = \{\{1,2\}, \{2,3\}, \{3,4\}, \{3,5\}, \{4,1\}, \{4,5\}\}, U = \{1,2,3,4,5\}$$

Arrêter quand la cardinalité des ensembles est au plus égale à deux

$$s = \{\{1,2\}, \{2,3\}, \{3,4\}, \{3,5\}, \{4,1\}, \{4,5\}\}, U = \{1,2,3,4,5\}$$

Algorithmes approchés

Arrêter quand la cardinalité des ensembles est au plus égale à deux

$$s = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 1\}, \{4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

Arrêter quand la cardinalité des ensembles est au plus égale à deux

$$s = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 1\}, \{4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

$$s = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 1\}, \{4, 5\}\}, U = \{1, 2, 3, 4, 5\}$$

Illustration

$$U = \{0, 1, 2, 3, 4\}, s = \{\{0, 1\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}$$

15 / 27

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1\},\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$
 Éliminer les sous-ensembles inclus

$$U = \{0, 1, 2, 3, 4\}, \ s = \{\{0, 1\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}$$

$$\biguplus \text{ \'Eliminer les sous-ensembles inclus}$$

$$U = \{0, 1, 2, 3, 4\}, s = \{\{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1\},\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\biguplus \text{ \'eliminer les sous-ensembles inclus}$$

$$U = \{0,1,2,3,4\}, \; \mathfrak{s} = \{\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\} \\ \qquad \qquad \qquad \\ \text{Règle d'élément unique} \\$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1\},\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\bigvee \text{ \'eliminer les sous-ensembles inclus}$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\bigvee \text{Règle d'élément unique}$$

$$U = \{3,4\}, \ s = \{\{3,4\},\{3,4\},\{3,4\}\}$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1\},\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\downarrow \text{ Règle d'élément unique}$$

$$U = \{3,4\}, \ s = \{\{3,4\},\{3,4\},\{3,4\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1\},\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\downarrow \text{ Règle d'élément unique}$$

$$U = \{3,4\}, \ s = \{\{3,4\},\{3,4\},\{3,4\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{3,4\}, \ s = \{\{3,4\}\}$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1\},\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{0,1,2,3,4\}, \ s = \{\{0,1,2\},\{1,2,3,4\},\{2,3,4\},\{2,3,4\}\}\}$$

$$\downarrow \text{ Règle d'élément unique}$$

$$U = \{3,4\}, \ s = \{\{3,4\},\{3,4\}\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{3,4\}, \ s = \{\{3,4\}\}\}$$

$$\downarrow \text{ Règle d'élément unique}$$

Illustration

$$U = \{0, 1, 2, 3, 4\}, \ s = \{\{0, 1\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{0, 1, 2, 3, 4\}, \ s = \{\{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}\}$$

$$\downarrow \text{ Règle d'élément unique}$$

$$U = \{3, 4\}, \ s = \{\{3, 4\}, \{3, 4\}\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{3, 4\}, \ s = \{\{3, 4\}\}\}$$

$$\downarrow \text{ Règle d'élément unique}$$

$$U = \{\}, \ s = \{\}$$

Comparaison d'algorithmes pour l'ensemble dominant minimum

$$U = \{0, 1, 2, 3, 4\}, \ s = \{\{0, 1\}, \{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{0, 1, 2, 3, 4\}, \ s = \{\{0, 1, 2\}, \{1, 2, 3, 4\}, \{2, 3, 4\}, \{2, 3, 4\}\}\}$$

$$\downarrow \text{ Règle d'élément unique}$$

$$U = \{3, 4\}, \ s = \{\{3, 4\}, \{3, 4\}\}\}$$

$$\downarrow \text{ Éliminer les sous-ensembles inclus}$$

$$U = \{3, 4\}, \ s = \{\{3, 4\}\}\}$$

$$\downarrow \text{ Règle d'élément unique}$$

$$U = \{\}, \ s = \{\}, \ I = \{2, 3\}$$

Algorithmes approchés

Vue d'ensemble

Algorithmes exacts	Complexité en temps
Greedy	$O(n^2)$ [5]
Greedy random	$O(n^2)$ [5]

Vue d'ensemble

Algorithmes exacts	Complexité en temps
Greedy	$O(n^2)$ [5]
Greedy random	$O(n^2)$ [5]
Greedy reverse	$O(n^2)$ [5]

Vue d'ensemble

Introduction

Algorithmes exacts	Complexité en temps
Greedy	$O(n^2)$ [5]
Greedy random	$O(n^2)$ [5]
Greedy reverse	$O(n^2)$ [5]
Algorithme génétique	$O(n^2)$ [6]

ensemble dominant.

Idée: au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un

Illustration

Introduction

Figure: Algorithme greedy reverse.

Greedy reverse

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Figure: Algorithme greedy reverse.

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

$$D = \{v_7, v_1, v_5, v_6, v_2, v_3, v_4\}$$

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

$$D = \{v_7, v_1, v_5, v_6, v_2, v_3, v_4\}$$

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

$$D = \{v_7, v_1, v_5, v_6, v_2, v_3, v_4\}$$

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Introduction

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

Figure: Algorithme greedy reverse.

Idée : au départ, l'ensemble D contient tous les sommets du graphe, et à chaque itération on enlève un sommet de D à condition que D reste toujours un ensemble dominant.

Illustration

$$D = \{v_2, v_4\}$$

Figure: Algorithme greedy reverse.

Comparaison d'algorithmes pour l'ensemble dominant minimum

Introduction

Introduction

Introduction Algorithmes exacts Algorithmes approchés Comparaisons Conclusion

Tous types de graphe

N	4	5	6	7	8	9	10
Nombre de graphes	11	34	156	1044	12346	24668	12005168

21 / 27

Introduction Algorithmes exacts Algorithmes approchés Comparaisons Conclusion

Tous types de graphe

N	4	5	6	7	8	9	10
Nombre de graphes	11	34	156	1044	12346	24668	12005168

Figure: Comparaison des algorithmes exacts en fonction du temps.

Comparaisons

Tous types de graphe

Introduction

N	$\gamma(G)$	Algorithme général	Algorithme amélioré
24	8	862 <i>ms</i>	265 ms
26	8	2378 ms	1096 ms
30	8	10468 <i>ms</i>	7639 ms
32	8	9381 ms	5762 ms
34	9	3276833 ms	74135 <i>ms</i>
34	9	2148155 ms	67658 <i>ms</i>
34	10	- ms	77175 ms
34	10	- ms	84343 <i>ms</i>

Comparaison des heuristiques

Figure: Comparaison des heuristiques en fonction de la taille du MDS.

Introduction

Algorithmes exacts Algorithmes approchés Comparaisons Conclusion

Comparaison des heuristiques

Figure: Comparaison des heuristiques en fonction de la taille du MDS.

24 / 27

Introduction

Comparaison des heuristiques sur les graphes du réseau social Google+

Introduction

Comparaison des heuristiques sur les graphes du réseau social *Google*+

Algorithme	gplus_200	gplus_500	gplus_2000	gplus_10000	gplus_20000	gplus_50000
Greedy	19(0%)	42(0%)	177(4.1%)	896(4%)	1809(5.4%)	4844(6%)
Greedy reverse	19 (0%)	42 (0%)	171 (0.5%)	876(1.7%)	1760(2.5%)	4751(4%)
Greedy random	37 (95%)	125 (197%)	419(146%)	2065(139%)	4064(136%)	10407(127%)
GeneticAlgo1	19 (0%)	42(0%)	198 (16%)	2350(172%)	5633 (228%)	14460 (216%)
GeneticAlgo2	19 (0%)	42(0%)	179(5.2%)	1723(100%)	5308(209%)	-(-%)
Solution optimale	19	42	170	861	≥ 1716	≥ 4566

Introduction

Comparaison des heuristiques sur les graphes du réseau social *Google*+

Algorithme	gplus_200	gplus_500	gplus_2000	gplus_10000	gplus_20000	gplus_50000
Greedy	19(0%)	42(0%)	177(4.1%)	896(4%)	1809(5.4%)	4844(6%)
Greedy reverse	19 (0%)	42 (0%)	171 (0.5%)	876(1.7%)	1760(2.5%)	4751(4%)
Greedy random	37 (95%)	125 (197%)	419(146%)	2065(139%)	4064(136%)	10407(127%)
GeneticAlgo1	19 (0%)	42(0%)	198 (16%)	2350(172%)	5633 (228%)	14460 (216%)
GeneticAlgo2	19 (0%)	42(0%)	179(5.2%)	1723(100%)	5308(209%)	-(-%)
Solution optimale	19	42	170	861	≥ 1716	≥ 4566

Introduction

 Algorithme général très performant pour les graphes qui ont un nombre de domination très petit.

- Algorithme général très performant pour les graphes qui ont un nombre de domination très petit.
- Algorithme amélioré très puissant lorsque le nombre de domination est plus grand.

- Algorithme général très performant pour les graphes qui ont un nombre de domination très petit.
- Algorithme amélioré très puissant lorsque le nombre de domination est plus grand.
- Algorithme génétique très performant pour les graphes de grande taille (< 2000).

- Algorithme général très performant pour les graphes qui ont un nombre de domination très petit.
- Algorithme amélioré très puissant lorsque le nombre de domination est plus grand.
- Algorithme génétique très performant pour les graphes de grande taille (< 2000).
- L'algorithme greedy, et l'algorithme greedy reverse sont les plus performants pour les graphes de taille très large (≥ 2000).

- Algorithme général très performant pour les graphes qui ont un nombre de domination très petit.
- Algorithme amélioré très puissant lorsque le nombre de domination est plus grand.
- Algorithme génétique très performant pour les graphes de grande taille (< 2000).
- L'algorithme greedy, et l'algorithme greedy reverse sont les plus performants pour les graphes de taille très large (≥ 2000).

Questions?

Introduction

Comparaisons

Fedor V Fomin, Dieter Kratsch, and Gerhard J Woeginger. Exact (exponential) algorithms for the dominating set problem.

In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 245–256. Springer, 2004.

Exact algorithms for dominating set.

Discrete Applied Mathematics, 159(17):2147–2164, 2011.

Matching.

https://en.wikipedia.org/wiki/Matching_(graph_theory), 2010 (accessed December 8, 2018).

Edge cover problem.

https://en.wikipedia.org/wiki/Edge_cover, 2010 (accessed December 8, 2018).

Laura A Sanchis.

Experimental analysis of heuristic algorithms for the dominating set problem.

Algorithmica, 33(1):3–18, 2002.

Anupama Potluri and Alok Singh.

Two hybrid meta-heuristic approaches for minimum dominating set problem.

pages 97-104, 12 2011.

27 / 27