Problem set 4 Aalto University Department of Mathematics and Systems Analysis MS-C1541 — Metric spaces, 2023-2024/III K Kytölä & D Adame-Carrillo (Exercise sessions: 1.-2.2.2024) Hand-in due: Tue 6.2.2024 at 23:59 Fill-in-the-blanks 1. Let (X, d) be a metric space. Complete the proof of the following claim. **Claim.** For any $z \in X$ and $r \geq 0$, the closed ball $\overline{\mathcal{B}}_r(z) \subset X$ is a closed set. **Proof.** Let $z \in X$ and $r \geq 0$. The claim means, by definition of _____, that the set _____ is open. We will prove this directly from the definition of open sets. For every $x \in \underline{\hspace{1cm}}$ we must therefore find some $\varepsilon > 0$ such that $\mathcal{B}_{\varepsilon}(x) \subset X \setminus \overline{\mathcal{B}}_{r}(z)$. So let $x \in$ ______ . Note that by definition of the complement and the closed ball we then have d(z,x) > r. Let $\varepsilon = \mathsf{d}(z,x) - r$, and notice that from the above we get that $\varepsilon > 0$. Suppose now that $y \in \mathcal{B}_{\varepsilon}(x)$, i.e., $d(x,y) < \varepsilon$. Then by the triangle inequality lower bound we get $\geq d(z,x) - d(x,y) > d(z,x) - \varepsilon = \underline{\hspace{1cm}}.$

This shows that $\mathcal{B}_{\varepsilon}(x) \subset X \setminus \overline{\mathcal{B}}_r(z)$. The proof is complete.

Fill-in-the-blanks 2. Let (X, d_X) and (Y, d_Y) be two metric spaces. Let $M \ge 1$. A function $f: X \to Y$ is said to be M-bilipschitz if for all $x_1, x_2 \in X$ we have

$$\frac{1}{M} \, \mathsf{d}_X(x_1, x_2) \, \leq \, \mathsf{d}_Y \big(f(x_1), f(x_2) \big) \, \leq \, M \, \mathsf{d}_X(x_1, x_2).$$

Complete the proofs of the following statements.

a) Claim. Any M-bilipschitz function is injective.

Proof. Suppose $f: X \to Y$ is M-bilipschitz. Let $x_1, x_2 \in X$ be two different points, $x_1 \neq x_2$. Then from

we get that

$$d_Y(f(x_1), f(x_2)) \ge \frac{1}{M} d_X(x_1, x_2) > 0.$$

By _______, this implies $f(x_1) \neq f(x_2)$. Injectivity of f is thus proven.

b) Claim. Any surjective M-bilipschitz function is a homeomorphism. **Proof.** Suppose $f: X \to Y$ is surjective and M-bilipschitz. Then f is bijective, because it is _______ by assumption and _______ by the observation above. It remains to check that _______

The second inequality in the M-bilipschitz property shows that $f: X \to Y$ is in particular M-Lipschitz. It follows that f is continuous.

We will show that also $f^{-1}: Y \to X$ is M-Lipschitz. For this, let $y_1, y_2 \in Y$. From the first inequality in the bilipschitz property, we get

$$\frac{1}{M} d_X (f^{-1}(y_1), f^{-1}(y_2)) \le d_Y (\underline{\qquad})$$

$$= d_Y (y_1, y_2).$$

Multiplying by $M \geq 1$ we get $d_X(f^{-1}(y_1), f^{-1}(y_2)) \leq M d_Y(y_1, y_2)$, showing that f^{-1} is M-Lipschitz. It follows that f^{-1} is continuous. The proof is complete.