LEVEL

AD A110817

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

PERFORMANCE OF MULTIPLE, ANGLED NOZZLES WITH SHORT MIXING STACK EDUCTOR SYSTEMS

by

Charles Carver Davis

September 1981

Thesis Advisor:

P.F. Pucci

Approved for public release; distribution unlimited

DINC FILE COPY

82 02 11 064

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT HUMBER 2. GOVT ACCESSION NO. AD -ALLO	1. SECISIENT'S CATALOG NUMBER
Performance of Multiple, Angled Nozzles with Short Mixing Stack Eductor Systems	S. TYPE OF REPORT & PERIOD COVERED Master's Thesis September 1981 6. PERFORMING ORG. REPORT NUMBER
7. Author(e) Charles Carver Davis	S. CONTRACT OR GRANT NUMBER(s)
Naval Postgraduate School Monterey, California 93940	16. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, California 93940	September 1981 13. NUMBER OF PAGES 434
TA. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution 17. DISTRIBUTION STATEMENT (of the eberrest orad in Block 20, if different for	
18. SUPPLEMENTARY NOTES	
Angled, multiple nozzle, gas eductor syston short mixing stacks	tem, cold flow tests
Cold flow tests were conducted on a four-to evaluate the feasibility of reducing mixapplication of angled primary flow nozzles stacks with length to diameter ratios of lested using a set of straight nozzles and zles having tilt angles of 10, 15, 20 and were constructed with an area of primary fixack ratio of 2.5. Pumping coefficients,	king stack lengths by the . Three short mixing .75, 1.5, and 1.25 were a series of angled noz-22.5 degrees. The nozzles low to area of mixing

BUMTY CLASSIFICATION OF THIS PAGE/When Rote Botome

distributions, flow changes, exit velocity profiles, and back pressures were used to evaluate the various mixing stack length and angled nozzle combinations. A preferred combination was obtained, which, when compared with a longer mixing stack with a length to diameter ratio of 2.5 using straight nozzles, showed equal pumping coefficients and comparable mixing stack pressure distributions while actually improving the mixing. Back pressure increases for the preferred combination of short mixing stack and angled nozzles were slightly greater than for the longer mixing stack with straight nozzles.

DD Form 1473 S/N 0102-014-6601

Approved for public release; distribution unlimited

Performance of Multiple, Angled Nozzles with Short Mixing Stack Eductor Systems

by

Charles Carver Davis
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1970

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1981

Approved by:

Approved by:

Chairman, Department of Mechanical Engineering

Dean of Science and Engineering

ABSTRACT

Cold flow tests were conducted on a four-nozzle gas eductor system to evaluate the feasibility of reducing mixing stack lengths by the application of angled primary flow nozzles. Three short mixing stacks with length to diameter ratios of 1.75, 1.5, and 1.25 were tested using a set of straight nozzles and a series of angled nozzles having tilt angles of 10, 15, 20, and 22.5 degrees. The nozzles were constructed with an area of primary flow to area of mixing stack ratio of 2.5. Pumping coefficients, mixing stack pressure distributions, flow changes, exit velocity profiles, and back pressures were used to evaluate the various mixing stack length and angled nozzle combinations. A preferred combination was obtained, which, when compared with a longer mixing stack with a length to diameter ratio of 2.5 using straight nozzles, showed equal pumping coefficients and comparable mixing stack pressure distributions while actually improving the mixing. Back pressure increases for the preferred combination of short mixing stack and angled nozzles were slightly greater than for the longer mixing stack with straight nozzles.

TABLE OF CONTENTS

I.	INT	RODUCTION	20
	A.	NATURE OF THE PROBLEM	20
	в.	POSSIBLE SOLUTIONS	21
	c.	GAS EDUCTOR RESEARCH AT THE NAVAL POSTGRADUATE SCHOOL	22
	D.	EVALUATION OF GAS EDUCTOR SYSTEM'S PERFORMANCE	25
II.	MAJ	OR DIMENSIONLESS PARAMETERS	26
III.	EXP	ERIMENTAL CORRELATION	27
IV.	MOD	EL GEOMETRIES	28
	A.	MIXING STACK CONFIGURATION AND GEOMETRIES	28
	В.	ANGLED PRIMARY FLOW NOZZLE CONFIGURATION AND GEOMETRIES	29
	c.	NOZZLE BASE PLATE CONFIGURATION AND GEOMETRIES	31
v.	EXP	ERIMENTAL FACILITY · · · · · · · · · · · · · · · · · · ·	33
	A.	PRIMARY AIR SYSTEM	33
	в.	SECONDARY AIR PLENUM	35
	c.	TERTIARY AIR PLENUM	36
	D.	ALIGNMENT · · · · · · · · · · · · · · · · · · ·	37
	E.	INSTRUMENTATION	38
VI.	EXP	ERIMENTAL METHOD	4]
	A.	PUMPING COEFFICIENT · · · · · · · · · · · · · · · · · · ·	42
	D	INDUCED ATP FLOWS	4

	c.	PRESSURE DISTRIBUTION IN THE	
		MIXING STACK	44
	D.	MIXING STACK ROTATION ANGLE	45
	E.	VELOCITY TRAVERSES	46
VII.	DISC	CUSSION OF EXPERIMENTAL RESULTS	49
	A.	L/D = 1.75 (LONG STACK) RESULTS	51
	В.	L/D = 1.5 (MEDIUM STACK) RESULTS · · · · · · · ·	56
	c.	L/D = 1.25 (SHORT STACK) RESULTS · · · · · ·	58
	D.	BACK PRESSURES · · · · · · · · · · · · · · · · · · ·	60
VIII.	CONC	CLUSIONS	61
IX.	REC	OMMENDATIONS FOR FURTHER STUDY	63
LIST OF	REF	FERENCES	64
append1	X A	ONE-DIMENSIONAL ANALYSIS OF A SIMPLE EDUCTOR	^ ^
		SIMPLE EDUCIOR 4	U 4
APPENDI	X B	: FORMULAE · · · · · · · · · · · · · 4	16
appendi	X C	: UNCERTAINTY ANALYSIS	19
APPENDI	X D:	: ASME FLOW METERING COMBINATION NUMBERS AND DATA SHEETS 4	21
appendi	X E	: COMPUTER PROGRAMMING INFORMATION 4	28
TNTMT 3.1	DTC	EMPTRIMIAN LICH	. .

LIST OF TABLES

NOTE:	tab: list	to the le number ting. tables	ers a Each	nd tab	tit] le]	les List	wi ted	ll be	not low	be re	e g	ive ese	en ent	in S	a t	hi se	r	ies
TABLE	1.	Summaı	ry of	Tab	ulat	:ed	Da	ta		•	•		•		•	•		269
PERFO	RMANCI	E DATA	FOR L	/D :	= 1.	75	MI	XIN	G S	TAC	CKS							
TABLE	2.	Straig	ght No	zzl	es .	•	•		•		•	•	•	•	•	•	•	272
TABLE	3.	10/10	Nozzl	es		•	•		•		•	•		•	•	•	•	276
TABLE	4.	10/20	Nozzl	es			•		•		•	•	•	•	•	•		278
TABLE	5.	10/30	Nozzl	es			•		•		•		•	•		•		280
TABLE	6.	10/40	Nozzl	es		•	•		•		•	•	•	•			•	282
TABLE	7.	15/00	Nozzl	es		•	•				•	•	•	•		•	•	284
TABLE	8.		Nozzl ompari Base P	son	of	Pre	ess	ure	Di	sti	cib	uti	Lor			•	•	288
TABLE	9.	15/00 for Co with P Peak	ompari Base P	son lat	of e fi	Pre	ess d a	ure t F	Di 'irs	st I	rib Pre	uti ssi	ior	•	•	•		290
TABLE	10.	for Co	Nozzl ompari Base P ngs at	son lat	of e Ro	Pro	ess ted	ure fo	Di r I	st: eai	cib c P:	ut: res	ior ssu	ıre		•		292
TABLE	11.	15/10	Nozzl	es		•	•		•			•						294
TABLE	12.	15/20	Nozzl	es				•		•	•			•	•	•		298
TABLE	13.	15/25	Nozzl	es 1	with	ı S,	/D	= 0	. 5									302
TABLE	14.	15/25	Nozzl	es '	with	ı S,	/D	= 0	. 4		•							306
		15/05	M 1				/=	_ ^										

TABLE 16.	15/30 Nozzles
TABLE 17.	20/10 Nozzles
TABLE 18.	20/20 Nozzles
TABLE 19.	20/30 Nozzles
TABLE 20.	22.5/10 Nozzles
TABLE 21.	22.5/20 Nozzles
TABLE 22.	22.5/25 Nozzles
PERFORMANC	E DATA FOR $L/D = 1.5$ MIXING STACK
TABLE 23.	Straight Nozzles
TABLE 24.	10/10 Nozzles
TABLE 25.	10/20 Nozzles
TABLE 26.	10/30 Nozzles
TABLE 27.	10/40 Nozzles
TABLE 28.	15/10 Nozzles
TABLE 29.	15/20 Nozzles (Partial Data Run) 348
TABLE 30.	15/20 Nozzles (Full Data Run)
TABLE 31.	15/30 Nozzles · · · · · · · · · · ·
TABLE 32.	20/10 Nozzles
TABLE 33.	20/20 Nozzles · · · · · · · · · · · ·
TABLE 34.	20/30 Nozzles · · · · · ·
TABLE 35.	22.5/10 Nozzles
TABLE 36.	22.5/20 Nozzles · · · · ·
PERFORMANC	E DATA FOR $L/D = 1.25$ MIXING STACK
TABLE 37.	Straight Nozzles
TABLE 38.	10/10 Nozzles
TABLE 39.	10/20 Nozzles

TABLE 40.	10/30 Nozzles	4
FABLE 41.	10/40 Nozzles	6
TABLE 42.	15/10 Nozzles	8'
TABLE 43.	15/20 Nozzles (Partial Data Run) 38	0
TABLE 44.	15/20 NOzzles (Full Data Run)	2
TABLE 45.	15/30 NOzzles · · · · · · ·	6
TABLE 46.	20/10 Nozzles · · · · · · · ·	8
TABLE 47.	20/20 Nozzles (Partial Data Run)39	0
TABLE 48.	20/20 Nozzles (Full Data Run)	2
TABLE 49.	20/30 Nozzles	6
TABLE 50.	22.5/10 Nozzles	8
TABLE 51.	22.5/20 Nozzles	0
rable D-1.	ASME Flow Metering Nozzle Combination Numbers	:3

LIST OF FIGURES

FIGURE	1.	Eductor Model Testing Facility	65
FIGURE	2.	Gas Eductor Model Test Facility with Secondary and Tertiary Plenums	66
FIGURE	3.	Exterior View of Secondary Plenum with Plenum Door Off and ASME Nozzles Closed · · · · · · · · · · · · · · · · · · ·	67
FIGURE	4.	Interior of Secondary Plenum with One of Two Flow Straighteners Removed to Allow Viewing of ASME Flow Nozzles and the Nozzle Transition Duct	68
FIGURE	5.	Schematic of Straight Mixing Stack Gas Eductor with Angled Nozzles	69
FIGURE	6.	Dimensions for Short Mixing Stacks Investigated	70
FIGURE	7.	Mixing Stack Exit with Velocity Profile Directions and Pressure Tap Locations	71
FIGURE	8.	Velocity Traverse Bar and Mixing Stack	72
FIGURE	9.	Mixing Stack with Pressure Taps and Air Seal · · · · · · · · · · · · · · · · · · ·	72
FIGURE	10.	Dimensions of Angled Nozzles and Nozzle Tilt Angle	73
FIGURE	11.	Angled Primary Flow Nozzle	74
FIGURE	12.	Angled Nozzles with Tilt Angles of 10, 15, 20, and 22.5 Degrees	74
FIGURE	13.	Base Plate Rotation Angle and Nozzle Rotation Angle	75
FIGURE	14.	Dimensions for the Rotatable Nozzle Base Plate	76
FIGURE	15.	Rotatable Base Plate for Angled Nozzles	77
FIGURE	16.	Base Plate with a Set of 20/20 Nozzle Combinations Installed	77

FIGURE	17.	Schematic of Instrumentation 78
FIGURE	18.	Instrumentation
FIGURE	19.	Schematic of Instrumentation for Primary Air Flow Measurement 80
FIGURE	20.	Sample Pumping Coefficient Plot 81
FIGURE	21.	Sample Mixing Stack Pressure Distri- bution Plot
FIGURE	22.	Sample Base Plate Rotation Angle Distribution Plot
FIGURE	23.	Sample Horizontal Velocity Profile Plot
FIGURE	24.	Sample Diagonal Velocity Profile Plot
NOTE:	plots and mindix found plot	following figures are a series of performance of for the different angled nozzle combinations mixing stacks. The figure number for each widual plot will not be listed, but can be in the same sequence order following the first for a given nozzle and mixing stack combination. PLOTS FOR THE L/D = 1.75 MIXING STACK
FIGURE		
FIGURE		10/10 Nozzles
FIGURE		10/20 Nozzles
FIGURE	28.	
		10/30 Nozzles
	_	10/30 Nozzles
FIGURE	29.	
FIGURE FIGURE	29. 30.	10/40 Nozzles · · · · · · · · · · · · · 97

FIGURE 33	for ea Readir Pressu	Nozzles ach Peak ag for Co are Distr of the C	Positi mparin ibutio	on 'A' g Mixir ns, and	Pressu g Stac i Summa	ire ck ary	 . 108
FIGURE 34	4. 15/10	Nozzles				• • • .	 114
FIGURE 35	5. 15/20	Nozzles			,		 121
FIGURE 36	Compar the St	Nozzles ing the and-off	Effect Distan	s of Ch ce for	anging	i i	. 127
FIGURE 37	7. 15/25 Compar the St	Nozzles ring the rand-off	with S Effect Distan	/D = 0. s of Ch ce for	4 for	3	 134
FIGURE 38	Compai	Nozzles ing the off Dist	Effect ance f	s of Ch	anginq Led		 140
FIGURE 39	9. 15/30	Nozzles					 146
FIGURE 40	20/10	Nozzles					 153
FIGURE 41	1. 20/20	Nozzles					 160
FIGURE 42	2. 20/30	Nozzles					 167
FIGURE 43	3. 22.5/1	LO Nozzle	es				 169
FIGURE 44	4. 22.5/2	20 Nozzle	es				 171
FIGURE 45	5. 22.5/2	25 Nozzle	es				 173
PERFORMAN	NCE PLOTS	FOR THE	L/D =	1.5 MI	KING ST	CACK	
FIGURE 46	6. Straiq	tht Nozzl	les				 175
FIGURE 47	7. 10/10	Nozzles					 180
FIGURE 48	8. 10/20	Nozzles				• • •	 182
FIGURE 49	9. 10/30	Nozzles					 184
FIGURE 50	0. 10/40	Nozzles					186

FIGURE 51.	15/10 Nozzles
FIGURE 52.	15/20 Nozzles (Partial Data Run) 190
FIGURE 53.	15/20 Nozzles (Full Data Run) 193
FIGURE 54.	15/30 NOzzles
FIGURE 55.	20/10 Nozzles
FIGURE 56.	20/20 Nozzles
FIGURE 57.	20/30 Nozzles 205
FIGURE 58.	22.5/10 Nozzles
FIGURE 59.	22.5/20 Nozzles 209
PERFORMANC	E PLOTS FOR THE L/D = 1.25 MIXING STACK
FIGURE 60.	Straight Nozzles
FIGURE 61.	10/10 Nozzles
FIGURE 62.	10/20 Nozzles
FIGURE 63.	10/30 Nozzles
FIGURE 64.	10/40 Nozzles
FIGURE 65.	15/10 Nozzles
FIGURE 66.	15/20 Nozzles (Partial Data Run)
FIGURE 67.	15/20 Nozzles (Full Data Run)
FIGURE 68.	15/30 Nozzles
FIGURE 69.	20/10 Nozzles
FIGURE 70.	20/20 Nozzles (Partial Data Run) 239
FIGURE 71.	20/20 NOzzles (Full Data Run) 241
FIGURE 72.	20/30 Nozzles 247
FIGURE 73.	22.5/10 Nozzles 249
FIGURE 74.	22.5/20 Nozzles

NOTE:	son p	following figures are a series of summary compari- plots of pumping coefficients for the combination and above.
FIGURE	75.	Pumping Coefficient Comparison by Nozzle Combinations for the L/D = 1.75 Mixing Stack
FIGURE	76.	Pumping Coefficient Comparison by Nozzle Combinations for the L/D = 1.5 Mixing Stack
FIGURE	77.	Pumping Coefficient Comparison by Nozzle Combinations for the L/D = 1.25 Mixing Stack
FIGURE	78.	Combined Pumping Coefficient Comparison by Nozzle Combinations for Mixing Stacks with L/D ratios of 1.75, 1.5, and 1.25
FIGURE	79.	Series of Comparisons of Pumping Coefficients with Nozzle Combinations for Fixed Rotation Angles and Varying Nozzle Tilt Angles for L/D = 1.75 Mixing Stack
FIGURE	80.	Series of Comparisons of Pumping Coefficients with Nozzles Combinations for Fixed Rotation Anlges and Varying Nozzle Tilt Angles for L/D = 1.5 Mixing Stack
FIGURE	81.	Series of Comparisons of Pumping Coefficients with Nozzle Combinations for Fixed Rotation Angles and Varying Nozzle Tilt Angles for L/D = 1.25 Mixing Stack · · · · · · · · · · · · · · · · · · ·
FIGURE	A-1	Simple Single Nozzle Eductor System 415
FIGURE	D-1	Sample Pumping Coefficient Data Sheet 423
FIGURE	D-2	Sample Mixing Stack Data Sheet 426
FIGURE	D-3	Sample Velocity Traverse Data Sheet 427

NOMENCLATURE

English Letter Symbols

Area (in. ²)
Sonic velocity (ft/sec)
Coefficient of discharge
Diameter (in.)
Thermal expansion factor
Wall skin-friction force (lbf)
Proportionality factor in Newton's
Second Law $(g_c = 32.174 \text{ lbm-ft/lbf-sec}^2)$
Enthalpy (Btu/lbm)
Ratio of specific heats
Length (in.)
Pressure (in. H ₂ O)
Atmospheric pressure (in. Hg)
Velocity head (in. H ₂ O)
Static pressure along the length of the
mixing stack (in. H ₂ O)
Gas constant for air (R = 53.34 ft-lbf/
1bm-R)
Entropy (Btu/lbm-R)
Distance from primary nozzle exit plane
to mixing stack entrance plane (in.)
Absolute temperature (R)

u Internal energy (Btu/lbm)

U Velocity (ft/sec)

v Specific volume (ft³/lbm)

W Mass flow rate (lbm/sec)

Y Expansion factor

Dimensionless Groupings

A* Ratio of secondary flow area to primary

flow area

AR Area ratio

f Friction factor

K Flow coefficient

Kinetic energy correction factor

K_m Momentum correction factor at the mixing

stack exit

K_D Momentum correction factor at the primary

nozzle exit

L/D Ratio of mixing stack length to mixing

stack diameter

M Mach number

P* Pressure coefficient

PMS* Mixing stack pressure coefficient

Re Reynolds number

S/D Standoff; ratio of distance from primary

nozzle exit plane to entrance plane of the

mixing stack (S) to the diameter of the

mixing stack (D)

T*	Absolute temperature ratio of the secondary
	flow to primary flow
T* , TT*	Absolute temperature ratio of the ter-
	tiary flow to primary flow
W* , W*	Secondary mass flow rate to primary mass
	flow rate ratio
Wt , WT*	Tertiary mass flow to primary mass flow
	rate ratio
6 *	Induced flow density to primary flow
	density ratio

Greek Letter Symbols

μ	Absolute viscosity (lbf-sec/ft ²)
e	Density (lbm/ft ³)
θ	Primary nozzle tilt angle
ф	Primary nozzle rotation angle
ψ	Nozzle base plate rotation angle
ß	Ratio of ASME long radius metering nozzle
	throat diameter to inlet diameter

Subscripts

0	Section within secondary air plenum
1	Section at primary nozzle exit
2	Section at mixing stack exit
f	Film or wall cooling
m	Mixed flow or mixing stack
or	Orifice

p Primary

s Secondary

t Tertiary (Cooling)

u Uptake

w Mixing stack inside wall

Computer Tabulated Data

DPOR Pressure differntial across the orifice

(in. H₂O)

POR Static pressure at the orifice (in. H₂O)

PSEC Static pressure at the mixing stack

entrance (in. H₂O)

PTER Static pressure in the tertiary air plenum

(in. H₂O)

PUPT Static pressure in the uptake (in. H₂O)

TAMB Ambient air temperature (*F)

TOR Air temperature at the orifice (*F)

TUPT Temperature of air in the uptake (*F)

UM Average velocity in the mixing stack (ft/sec)

UP Primary flow velocity at primary nozzle

UUPT Primary flow velocity in uptake (ft/sec)

UPT MACH Uptake Mach number

UE Average velocity at the mixing stack exit

(ft/sec)

WM Mass flow rate from mixing stack (lbm/sec)

WP Mass flow from primary nozzles (lbm/sec)

WS SEcondary mass flow rate (lbm/sec)

WT Tertiary mass flow rate (lbm/sec)

1 8

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to those individuals who conducted past research on the multiple nozzle gas eductor systems at the Naval Postgraduate School. Your efforts and professionalism were of great benefit while conducting the present research. I hope I have maintained the exacting standards you instituted and that the present results prove as helpful to future research as yours did for this investigation.

I would like to further express sincere appreciation to Professor Paul Pucci, the thesis advisor, for his many hours of assistance, guidance, and moral support, as well as to the personnel in the Mechanical Engineering Machine and Electrical Shops for their timely support and suggestions.

To my family, I am grateful for your constant support and understanding.

I. INTRODUCTION

Gas turbine applications in marine propulsion and in auxiliary systems have increased dramatically over the last decade. Their high horsepower to specific weight, increasingly competitive specific fuel consumption, and lower watchstander and maintenance requirements have made them extremely attractive for advanced marine decay gns such as hydrofoil, planing hulls, SWATH, and SES and as well as more conventional monohull vessels. Consequently, special considerations must be given to the applications of gas turbines due to their particular air breathing and exhausting characteristics.

A. NATURE OF THE PROBLEM

Gas turbines require large amounts of cooling air in addition to the quantity needed for combustion, therefore air-fuel ratios are generally three to five times those of conventional steam and diesel power plants of comparable size. The exhaust gases are also roughly twice as hot as for these conventional power plants. In general, gas turbine power plants produce considerably larger volumes of higher temperature exhaust or stack gases. These exhaust gases contribute to greater thermal and corrosive damage in the electrical equipment located on masts near the exhaust stream, hot gas corrosion of masts and superstructures in the hot gas wake, possible aircraft control problems for helicopter

operation in or near the exhaust stream, and a significantly greater infrared radiation signature due to both the high volumetric and temperature exhaust plumes as well as the hotter external surfaces on the exhaust stacks.

B. POSSIBLE SOLUTIONS

The volume and temperatures of exhaust gases are fairly well fixed by gas turbine size, power loading, and current gas turbine technology; consequently, other means must be employed to counter the problems associated with gas turbine systems.

Waste heat boilers or heat exchangers do reduce the exhaust gas temperatures and offer increased economy by recovering thermal energy which would otherwise be lost to the atmosphere Unfortunately, such systems require considerable space and tend to generate back pressures which lower gas turbine performance. Fouling is also an ever present problem. Waste heat boilers have been tried on auxiliary power systems with limited success and research is still underway in this area.

Water injection systems are another possible solution.

They are active systems which require moving parts, injection metering and control equipment, and large amounts of water.

Costs and maintenance thus become problems.

One of the most promising systems for combatting the overall problem is the gas eductor. By using properly dimensioned primary flow nozzles for the exhaust gases and mixing stacks, secondary or ambient air is induced. The turbulent mixing reduces the overall exhaust temperatures, back pressures are minimized when compared with other systems, and resultant negative pressures along the mixing stack walls can be utilized to further induce a tertiary ambient cooling flow through ports in the mixing stack. If the mixing stack is then shrouded, this tertiary flow creates a film cooled outer stack while adding additional thermal mixing of the exhaust gases. The straight, unshrouded mixing stack system is presently in operation on several naval vessels. An additional positive feature of gas eductor systems is that they can be used in conjunction with either of the other two possible solutions with minor modifications.

C. GAS EDUCTOR RESEARCH AT THE NAVAL POSTGRADUATE SCHOOL

This thesis is a further extension of research conducted by Ellin [Ref. 1], Moss [Ref. 2], Lemke and Staehli [Ref. 3], Shaw [Ref. 4], and Ryan [Ref. 5] on the cold flow eductor model testing facility. Hill's research [Ref. 6] on the hot flow eductor model testing facility should also be mentioned as it verified that cold flow modeling procedures correlated extremely well with actual hot flow data on geometrically similar eductor configurations. This correlation allows utilization of the more time and cost effective cold flow facility to develop optimum designs and configurations which can then be verified with actual hot flow testing.

Ellin initiated the early work by constructing an eductor model testing facility consisting of an uptake, centrifugal

compressor, primary flow nozzle section, mixing stack, and a means to control and measure the primary and secondary air flows. See Figures 1 and 2 for the general test model layout. The primary air flow in the test facility represents the gas turbine's hot exhaust gases. The secondary air flow is ambient air induced into the mixing stack by the primary air flow and gas eductor concept. From Ellin's study of multiple vice single nozzle flow systems, it was determined that four primary flow nozzles were preferable to either three or five nozzle systems. Ellin also determined that the nozzle length had little if any effect on the overall performance of the gas eductor system. He then verified the independence of the onedimensional gas eductor modelling correlation parameters used on the flow rate or Mach number. His research showed that one-dimensional analysis provided good correlation of data for Mach numbers from 50 to 145 percent of the design Mach number of 0.064.

Moss's research initially consisted of reverification of the one-dimensional analysis. Moss then explored the effects of the stand-off distance, which is the distance from the primary nozzle exit plane to the entrance plane on the mixing stack. For non-dimensional analysis, the stand-off distance is divided by the mixing stack diameter to give the S/D ratio. Moss determined that eductor pumping was maximized when the stand-off distance was one-half the mixing stack diameter (S/D = 0.5). An independent investigation conducted by

Harrell [Ref. 7] confirmed Moss's results. Moss then explored the effects of adding a conical transition piece to the entrance of the mixing stack to enhance eductor pumping. Experiments showed that the entrance transition piece actually slightly degraded overall performance.

Lemke and Staehli investigated overall eductor system's performance for different geometric configurations of the mixing stack and for different area ratios of the primary nozzles. The area ratio for nozzles is defined as the cross sectional area of the mixing stack divided by the total cross sectional area of the primary nozzles. Their work showed that decreasing the nozzle area ratio from 3.0 to 2.5 decreased the back pressures but also decreased the eductor's pumping coefficient. Lemke and Staehli then investigated the effects of adding a solid diffusor, a two ring diffusor, and a threering diffusor to the exit region of the mixing stack. tests showed a decrease in uptake back pressure and an improvement in the eductor's pumping capacity. They then added slotted ports to the mixing stack to induce tertiary air. Their results showed significant air flow occurred through the ports. A shroud was then added, and tests showed that the shroud did not degrade either the pumping or mixing characteristics of the eductor but that it did provide an effective thermal shield around the mixing stack. Their final configuration was a ported mixing stack with a shroud and ring diffusors at the exit. The 3.0 area ratio nozzles and a standoff ratio of 0.5

were used in several of their investigations with mixing stack length to diameter ratios of 2.5 and 3.0.

The object of this thesis is directed toward reducing the length of the mixing stack by investigating the effects of angled primary flow nozzles on a four-nozzle gas eductor system. The results of investigations by Moss and Lemke and Staehli on the longer L/D ratios of 3.0 and 2.5 thus serve as a data base for comparing the effects of both straight and angled primary flow nozzles on the shorter mixing stack L/D ratios of 1.75, 1.5, and 1.25 used in this investigation.

D. EVALUATION OF GAS EDUCTOR SYSTEM PERFORMANCE

Evaluation of the gas eductor system performance is measured in the following areas: the amount of secondary air flow induced by the primary air flow; the amount of tertiary air flow induced; the degree of mixing of the primary and induced flows within the mixing stack; the amount of uptake back pressure impressed upon the gas turbine exhaust by the eductor system; and the amount of wall cooling air available to reduce the exterior stack temperatures. Because of the angled primary flow nozzles, several new parameters were defined to assist in evluating the gas eductor system's performance. The new parameters include the primary nozzle tilt angle, primary nozzle rotation angle, and the nozzle base plate rotation angle. These parameters will be discussed in further sections of this report.

II. MAJOR DIMENSIONLESS PARAMETERS

This investigation is an extension of earlier work conducted by Ellin, Moss, and Lemke and Staehli [Ref. 1,2,3] and utilizes the same one-dimensional analysis technique to model the gas eductor system. The more detailed analysis is given in Appendix A. In conducting this analysis, four major dimensionless parameters are used. The first three are used to evaluate the eductor's pumping performance, and the last is used to evaluate the static pressure distribution along the length of the mixing stack. The four major dimensionless paratemers are:

$$P^* = \frac{\frac{P_a - P_{os}}{\varrho_s}}{\frac{U^2}{p}}$$

a pressure coefficient which compares the pumped head, $(P_a - P_{os})/e_s$, to the driving head, $U_p^2/2g_c$, of the

 $* = \frac{\text{S}}{\text{Wp}}$ a flow rate ratio of secondary to primary mass flow rates

an absolute temperature ratio of secondary to primary air temperatures

$$PMS * = \frac{PMS}{C}$$

$$\frac{Cs}{U^2}$$

$$\frac{D^2}{2g_C}$$

a pressure coefficient which compares the pumped head, PMS/ e_s , to the driving head, $u_p^2/2g_c$, where PMS is the static pressure along the mixing stack.

III. EXPERIMENTAL CORRELATION

For the geometries and flow rates investigated, it was confirmed by Ellin and Moss [Ref. 1 and 2] that a satisfactory correlation of the variables P*, T*, and W* takes the form

$$\frac{P^*}{T^*} = \int (W^*T^{*n}) \tag{1}$$

where the exponent 'n' was determined to be equal to 0.44. The details of the determination of $n \approx 0.44$ as the correlating exponent for the geometric parameters of the gas eductor model being tested is given in Reference [1]. To obtain a gas eductor model's pumping characteristic curve, the experimental data is correlated and analyzed by using equation (1), that is, P^*/T^* is plotted as a function of $W^*T^{*0.44}$. This correlation is used to predict the open-to-the-environment operating point for the gas eductor model. Variations in the model's geometry will change the pumping ability, which can be evaluated by the plot of equation (1). For ease of discussion, $W^*T^{*0.44}$ will be referred to as the pumping coefficient in this report. Similarly, $WT^*TT^{*0.44}$ will be referred to as the film cooling or tertiary pumping coefficient.

IV. MODEL GEOMETRIES

The four-nozzle gas eductor system investigated in this report made use of a single primary flow uptake, a single cluster of four primary flow angled nozzles held in a rotatable base plate, and a straight, unshrouded, unported mixing stack without diffusor rings at the mixing stack exit.

A. MIXING STACK CONFIGURATION AND GEOMETRIES

The primary thrust of this research was to study the effects of angled nozzles on the performance of shorter mixing stacks. Three short mixing stacks were manufactured from nominally 12 inch OD and 11.7 inch ID PVC agriculture water irrigation pipe. The mixing stacks were constructed with L/D ratios of 1.75, 1.5, and 1.25. The L/D ratio of 1.75 was chosen as a starting point since baseline data was available for the primary nozzle area ratio of 2.5 from Lemke and Staehlis research [Ref. 3]. Their major research was concerned with longer mixing stacks with L/D ratios of 2.5 and 3.0, which could also be used to compare with the shorter mixing stacks. Pressure taps were installed in the shorter mixing stacks at 0.25 X/D increments (2.93 inch spacing) to provide more data points for evaluating the mixing stack pressure distribution. 0.5 X/D spacing had been used on the longer mixing stacks. The dimsnsions for the three mixing stacks are provided in

Figure 6, and pictures of the mixing stack can be found in Figures 8 and 9.

ANGLED PRIMARY FLOW NOZZLE CONFIGURATION AND GEOMETRIES в. The angled nozzle concept was chosen as the starting point for reducing the overall length of the mixing stacks by enhancing the mixing process. The nozzles were to have a constant cross section while having the ability to be inclined and rotated about a centerline axis. Several new parameters were defined for designing, manufacturing, and measuring the angled nozzles. The first parameter is the nozzle tilt angle, θ , which is the cant angle measured from the centerline of a straight nozzle to the centerline of an angled nozzle. The nozzle rotation angle, &, is the angle that the nozzle is rotated inward toward the mixing stack centerline from a perpendicular to a radial line from the base plate center to the center of the nozzle. It is difficult to picture these definitions, and Figures 10 and 13 provide a clearer visuali-

Several concepts were explored while attempting to design an easily manufactured and measurable angled nozzle. The most practical solution was to take a section of straight piping, cut it in two sections on a line mitered one half of the overall tilt angle desired, rotating the two sections 180 degrees, and then joining them together for the final tilt angle. The nozzles used in actual testing were manufactured from clear, cast acrylic pipe with a nominal 4.0 inch OD and

zation for the nozzle configurations.

3.625 inch ID which had to be machined to 3.7 inches ID to give a nozzle area ratio of 2.5 for the four nozzles in each The nozzles were also machined 0.5 inches up from the base to properly mate with the recesses in the nozzle base The edges where the two nozzle sections were joined were faired in to reduce abrupt flow direction changes both inside and outside the individual nozzles. Four nozzles for each configuration were constructed for nozzle tilt angles of 10 degrees, 15 degrees, 20 degrees, and 22.5 degrees as well as a set of straight nozzles for baseline data and mixing stack alignment purposes. The angled nozzles were dimensioned so that the intersection of their centerline and exit plane corresponded with the length of the straight nozzles used by Ellin, Moss, and Lemke and Staehli, thus establishing a common measurement for the standoff distance. This allowed alignment of the nozzles and mixing stack and setting the S/D ratio with the straight nozzles and not having to completely realign the system everytime the angled nozzles were changed. nozzles and base plate were constructed of similar material with tight tolerances where they mated together. Thermal expansion was essentially equal for both components, and the friction provided was sufficient for holding the nozzles in place while allowing rotation angle changes. This feature allowed deletion of O-rings for seals and some form of mechanical locking device. The angled nozzle geometries are given in Figure 10, and photographs of the nozzles are found in Figures 11, 12, and 16.

C. NOZZLE BASE PLATE CONFIGURATION AND GEOMETRIES

The nozzle base plate was constructed from acrylic plexiglass flat stock. Four recess holes were machined to accept the nozzles, and they were in turn machined to a 0.5 inch radius on the underside to present a smooth flow entrance region for the nozzles. The outer edge of the base plate was machined so that the whole base plate fit inside a matching aluminum base ring. The construction was such that the base plate could be rotated within the ring, primary flow pressure kept the two concentric surfaces mated which eliminated seals, and the base plate could not be ejected from the uptake by the considerable dynamic pressures associated with the high velocity primary air flow. Four symetrically located locking cams allowed the base plate and installed nozzles to be locked in place. This was required for alignment procedures and prevent rotation during initial start-up. Once the system was warmed up to operating conditions, the difference between thermal expansion factors for the ring and base plate allowed sufficient expansion to make the use of the locking cams unneccessary. In fact, rotation of the base plate could be difficult when the system was fully warmed up, and a dry teflon lubricant was used to help overcome this problem.

A third new parameter was need for the base plate's ability to be rotated. The base plate rotation angle, ψ , is hereby defined as the angle of base plate rotation measured from the 90 degree point on the uptake transition piece as

depicted in Figure 13. This parameter serves to give a general indication of the flow directions within the mixing stack due to the angled nozzles. The base plate's geometry and dimensions are given in Figure 14, and photographs can be seen in Figures 15 and 16.

V. EXPERIMENTAL FACILITY

Air is supplied to the primary nozzles by means of a centrifugal compressor and associated ducting schematically illustrated in Figure 1. The mixing stack configuration being tested is placed inside an air plenum containing an airtight partition so that two separate air flows, secondary and tertiary, may be measured. The air plenem facilitates the accurate measurement of secondary and tertiary air flows by using ASME long radius flow nozzles.

A. PRIMARY AIR SYSTEM

The circled numbers found in this section refer to locations on Figure 1. The primary air ducting is constructed of 16-gage steel with 0.635 cm (0.25 in) thick steel flanges. The ducting sections were assembled using 0.635 cm (0.25 in) bolts with air drying silicone rubber seals between the flanges of adjacent sections. Entrance to the inlet ducting

(1) is from the exterior of the building through a 91.44 cm (3.0 ft) square to a 30.48 cm (1.0 ft) square reducer, each side of which has the curvature of a quarter ellipse. A transition section (2) then changes the 30.48 cm (1.0 ft) square section to a 35.31 cm (13.90 in) diameter circular section (3). This circular section runs approximately 9.14 m (30 ft) to the centrifugal compressor inlet.

A standard ASME square edged orifice (4) is located 15 diameters downstream of the entrance reducer and 11 diameters upstream of the centrifugal compressor inlet, thus insuring stability of flow at both the orifice and compressor inlet. Piezometer rings (5) are located one diameter upstream and one-half diameter downstream of the orifice. The duct section also contains a thermocouple just downstream of the orifice. Primary flow is measured by means of the standard ASME square edged orifice designed to the specifications given in the ASME power test code [Ref. 8]. The 17.55 cm (6.902 in) diameter orifice used was constructed out of 304 stainless steel 0.635 cm (0.25 in) thick. The inside diameter of the duct at the orifice is 35.31 cm (13.90 in) which yields a beta ($\beta = d/D$) of 0.497. The orifice diameter was chosen to give the best performance in regard to pressure drop and pressure loss across the orifice for the primary air flow rate used (1.71 Kg/sec (3.77 lbm/sec)).

The centrifugal compressor 7 used to provide primary air to the system is a Spencer Turbo Compressor, catalogue number 25100-H, rated at 6000 cfm at 2.5 psi back pressure. The compressor is driven by a three phase, 440 volt, 100 horsepower motor.

A manually operated sliding plate variable orifice 6
was designed to constrict the flow symmetrically and facilitate fine control of the primary air flow. During operation, the butterfly valve 8, located at the compressor's

discharge, provided adequate regulation of primary air flow, eliminating the necessity of using the sliding plate valve. The sliding plate valve was positione? n the wide-open position for all data runs.

On the compressor discharge side, immediately downstream of the butterfly valve, is a round to square transition 9 followed by a 90 degree elbow 10 and a straight section duct 11. All ducting to this point is considered part of the fixed primary air supply system. A transition section 12 is fitted to this last square section which reduces the duct cross section to a circular section 29.72 cm (11.17 in) in diameter. This circular ducting tapers down to a diameter of 26.30 cm (11.5 in) to provide the primary air inlet to the eductor system being tested. The transition is located far enough upstream of the model to insure that the flow reaching the model is fully developed.

B. SECONDARY AIR PLENUM

The secondary air plenum, shown in Figures 1, 2, and 3, is constructed of 1.905 cm (0.75 in) plywood and measures 1.22 m by 1.22 m by 1.88 m (4. ft by 4 ft by 6.17 ft). It serves as an enclosure that can contain all or only part of the eductor model and still allow the exit plane of the mixing stack to protrude. The purpose of the secondary air plenum is to serve as a boundary through which secondary air for the eductor system must flow. Long radius ASME flow nozzles,

designed in accordance with ASME power test codes [Ref. 8] and constructed of fiberglass, penetrate the secondary air plenum, thereby providing the sole means for metering the secondary air reaching the eductor as shown in Figures 1 through 4. Appendix D of reference [1] outlines the design and construction of the secondary air flow nozzles. By measuring the temperature of the air entering and the pressure differential across the ASME flow nozzles, the mass flow rate of secondary air can be determined. Flexibility is provided in measurement of the mass flow rate of secondary air by employing flow nozzles with three different throat diameters: 20.32 cm (8 in), 10.16 cm (4.in), and 5.08 cm (2 in). By using a combination of flow nozzles, a wide variety of secondary cross sectional areas can be obtained.

A secondary air flow straightener, shown in Figures 1, 2, and 4, consisting of a double screen is installed 1.22 m (4 ft) from the open end of the secondary air plenum, between the ASME long radius nozzles and the primary air flow nozzles. The purpose of the straightener is to reduce any swirl effect that could result when only a small secondary air flow area exists.

C. TERTIARY AIR PLENUM

The tertiary air plenum, shown in Figures 1, 2, 8 and 9, is constructed of 1.90 cm (0.75 in) plywood and measure 1.22 m by 1.22 m by 1.22 m (4 ft by 4 ft by 4 ft). It serves as an enclosure that completely surrounds the mixing stack and allows

the exit and entrance regions to protrude. An airtight rubber diaphragm type seal, schematically illustrated in Figure 2, is located at each end of the enclosure. This allows measurement of a tertiary air flow independent of the secondary air flow. Tertiary air flow is measured with the use of long radius ASME flow nozzles designed in accordance with ASME test codes [Ref. 8] and constructed of fiberglass. These nozzles are located so that they penetrate the airtight tertiary air plenum, thereby providing the sole means for metering the tertiary air reaching the eductor. By measuring the temperature of the air entering and the pressure differential across the ASME flow nozzles, the mass flow rate of tertiary air can easily be obtained. Flexibility in measuring the tertiary flow is provided by employing different size flow nozzles: two of 20.32 cm (8 in) throat diameter, three of 10.16 cm (4 in) throat diameter, and two of 5.08 cm (2 in) throat diameter. By using various combinations of these flow nozzles, a wide variety of tertiary cross section flow areas can be obtained.

The interior of the tertiary air plenum is pictured in Figures 8 and 9. The stand which holds the mixing stack can be seen mounted inside the plenum.

D. ALIGNMENT

The alignment of the mixing stack with the primary air flow nozzles is accomplished by using two round alignment plugs, a nozzle alignment plate, and a 0.75 inch OD steel

alignment bar. The two circular alignment plugs are inserted into opposite ends of the mixing stack, and the nozzle alignment plate is then carefully inserted over the straight nozzles. The steel alignment bar is then inserted through the centerline holes in the alignment plugs and brought up to the centerline hole in the nozzle alignment plate. The three axis mounting stand, pictured in Figure 8, is adjusted until the alignment bar can be fully inserted into the nozzle alignment plate and recess in the nozzle base plate without difficulty.

E. INSTRUMENTATION

Pressure taps for measuring gage pressures are located inside the primary air uptakes just prior to the primary nozzles, inside the secondary air plenum, inside the tertiary air plenum, and at various points on the model. A variety of manometers, pictured in Figure 18, were used to indicate the pressure differentials. A schematic representation of the pressure measuring instrumentation is illustrated in Figures 17 and 19. Monitoring of each of the various pressures was facilitated by the use of a scanivalve and a multiple valve manifold. The scanivalve was used to select the pressure tap to be read, while the multiple value manifold allowed selection of the optimum manometer for the pressure being recorded. A vent was included in the multiple valve manifold which provided a means of venting the manometers between pressure readings. When taking readings of the pressure distribution in the mixing stack, it was necessary to manually change the

tubing from one end of the manometer to the other in order to get the positive pressure readings. The valve manifold provided a selection of a 15.24 cm (6.0 in) inclined water manometer, a 5.08 cm (2.0 in) inclined water manometer, and a 1.27 cm (0.5 in) inclined oil manometer (specific gravity 0.827). In addition, the following dedicated manometers were used in the system: a 50.80 cm (20 in) single column water manometer connected to the primary air flow just prior to the primary nozzles, a 1.27 cm (50 in) U-tube water manometer with each leg connected to a piezometric ring on either side of the orifice plate in the air inlet duct, and a 2.55 cm (1.0 in) inclined water manometer connected to the upstream piezometric ring.

Primary air temperatures, measured at the orifice outlet and just prior to the primary nozzles, are measured with copper-constantan thermocouples. The thermocouples are in assemblies manufactured by Honeywell under the trade name Megapak. Polyvinyl covered 20 gage copper-constantan extension wire is used to connect the thermocouples to an Omega Digital Thermometer, Model Number 2176A, which provided a digital display of the measured temperatures in degrees Fahrenheit or Centigrade. Due to the longer data runs involved with this thesis, another thermocouple was added to measure the secondary/tertiary ambient air temperature to provide more timely data. The mercury-glass thermometer was retained for comparison purposes.

Velocity traverse profiles at the mixing stack exit plane are obtained by using a pitot tube mounted in a revised velocity traverse bar. The entire assembly was rebuilt to provide increased stability and support for the pitot tube which had to reach up to 30 inches into the tertiary plenum to record velocity profiles on the short, L/D = 1.25 mixing stack. tram bar was also equipped with a new distance measuring system to increase accuracy and lower data acquisition time. The pitot tube is used in conjunction with the 50.80 cm (20 in) single column water manometer vice the 6.0 inch inclined water manometer, mainly due to the higher pressures involved with the shorter mixing stacks and the greater pressure fluctuations. Threaded studs were used to locate the velocity traverse bar and pitot tube assembly for both the horizontal and diagonal velocity profiles. Four nuts kept the system in place and provided rapid changeover from one profile to the other. The assembly can be seen in Figure 8.

VI. EXPERIMENTAL METHOD

Evaluation of the eductor model requires the experimental determination of pressure differentials across the ASME long radius flow nozzles, temperatures of primary and induced air flows, internal mixing stack pressure distributions, and mixing stack exit velocity profiles from pitot tube pressure readings. In addition, base plate rotation angles are used to get a general understanding of the flow patterns within the mixing stack. These experimentally determined quantities are then reduced with the aid of a computer to obain pumping coefficients, induced air flow rates, pressure distributions and flow distributions in the mixing stack, and mixing stack velocity profiles at the exit plane of the mixing stack. performance characteristics of the eductor due to the different nozzle geometric configurations are then evaluated graphically by use of computer generated plots. The plots also help to determine the model's relative effectiveness and problem areas which may not be apparent when reviewing raw and processed data.

The following sections address the individual performance criteria used to evaluate the eductor and nozzle combinations. Circled numbers refer to regions located on the representative plots used in the evaluation process.

A. PUMPING COEFFICIENT

The secondary pumping coefficient and the tertiary pumping coefficients provied a basis for analyzing the eductor's pumping capability. Nozzle combination changes alter the eductor's pumping performance, and the pumping coefficient is one of the major criteria for comparing various nozzles as well as any changes to the mixing stack such as shrouding, porting, diffusor rings, L/D ratios, and S/D ratios. pumping coefficient(s) for the model should correspond to the coefficients for the shipboard gas eductor system. At the operating point, the eductor is exposed to no restrictions in the secondary or tertiary air flows. In the model, this is simulated by completely opening the air plenums to the environment. Unfortunately, at this condition, the secondary and/or tertiary air flow rates can not be measured. eductor model's characteristics must then be established by extrapolating the measured pumping coefficients to the desired operating point.

The data for this extrapolation is established by varying the associated induced air flow rate, either secondary or tertiary, from zero to its maximum measurable rate. These rates are determined by sequentially opening the ASME flow nozzles mounted in the appropriate plenum and recording the pressure drop across the nozzles. Values for nozzle cross-section areas, pressure drops, induced flow air temperatures, and barometric pressures are then used to calculate the

dimensionless parameters P*/T* and W*T* 3.44 as described in Appendix A. The dimensionless parameters are then plotted as illustrated in Figure 20. The data point (1) to closing all ASME flow nozzles. Data points in region corresponds to opening most of the ASME flow nozzles and the final data point corresponds to opening all flow nozzles, plenum doors, or other plenum penetrations available. Early data runs attempted to gain more accuracy in this region by taking more data. Unfortunately, the pressure drop across the nozzles is so critical in this region that any error or fluctuations causes considerable data scatter. Such points were deleted from the finished plots contained in this thesis. In theory, there should be no pressure inside the plenum at the operating point except for ambient pressure. In reality there is always some small negative pressure present. data points in region (3) provide the most consistent and accurate data. Extrapolation of the pumping characteristics curve to intersect the zero P*/T* or PT*/TT* abscissa locates the appropriate operating point for the eductor model configuration.

B. INDUCED AIR FLOWS

Secondary and tertiary air flows are induced flows. In this thesis, only the secondary air flow was of concern although both flows were written into the documentation and computer programs.

The secondary air flow is the amount of air induced by the primary nozzles which is mixed within the mixing stack with primary air to reduce the exhaust gas temperature.

C. PRESSURE DISTRIBUTION IN THE MIXING STACK

The axial pressure distribution in the mixing stack is obtained by taking static pressure reading from pressure taps attached to the stack in two rows. In the cold flow test facility, the mixing stack is located horizontally in the tertiary plenum. The first row is located on the top of the mixing stack, and the second row is offset 45 degrees from the first row as shown in Figures 6 and 7. The pressure taps were located 0.25 mixing stack diameters apart. Actual locations are given in Figure 6. The dimensionless mixing stack pressure term, PMS*, as previously mentioned in Section II and as derived in Appendix A, is then calculated from the static pressure data. PMS* is plotted versus X/D pressure tap locations to obtain the mixing stack pressure distribution. A sample distribution is shown in Figure 21. Region located at the entrance of the mixing stack, and it has the highest negative pressure readings for each stack. The early tests confirmed that there were definite limits on the amount of nozzle tilt and rotation before the primary flow started to interfere with the secondary flow in this region. Pressures near region (2), located toward the exit of the stack, tend to possess lower potential for inducing tertiary flow when compared to pressures near region (1). Pressures located

at region 3, located just prior to the exit of the mixing stack may actually be positive, or above ambient pressure. In the sample plot, the data point at region 2 has very little potential for inducing tertiary flow, and the data point at region 3 is positive which would hinder tertiary flow. It is therefore desirable to look for nozzles combinations which produce pressure distributions remaining below the zero PMS* line on the plot and as low down on the PMS* axis as possible.

D. MIXING STACK ROTATION ANGLE

The straight nozzles produce a symmetric flow consisting of four peak and four null pressure areas along the axis of the mixing stack. Pressure taps at position 'A' normally could be used to record the peaks while the position 'B' taps could be used to record the lower pressure regions or nulls. With introduction of the angled nozzles, the flow became swirled. A rotatable base plate was used to scan the entire circumference of the mixing stack at each L/D position and thereby obtain a better record of the varying axial pressure distribution. This allowed the peaks and troughs to be rotated to the stationary pressure taps for data acquisition. The base plate rotation angle, w, is recorded for each pressure tap position, and when plotted, provides a rough indication of the flow pattern variations. Region (1) in Figure 22 corresponds to the rotation angle needed to align the peak position 'A' reading with the pressure tap and is always the

actual angle recorded. The other data points were actually rotated 90 degrees for plotting purposes. The data in Figure 22 is fairly stable and indicates little twisting of the primary flow. Region 2 often showed a considerable change in flow direction as did region 3. Again, the plots of this data only serves as a general indication of flow directions, which were in agreement with observations of tufts of string used to follow the flow paths on each run.

Tests were conducted early in the research to determine the sensitivity of the rotation angles. Results showed that changes as small as one degree of rotation could cause large pressure changes while at other times the base plate could be rotated 30 degrees without any pressure changes.

E. VELOCITY TRAVERSES

The velocity traverses are generated by moving the pitot tube in measured increments across the horizontal and diagonal lines as indicated in Figure 7. Stagnation pressure readings are read from the 20 inch manometer and combined with data taken for the pumping coefficients to calculate mixing stack exit velocities in units of feet/second. Computer generated two-dimensional plots of the velocity traverses can then be used to get indications of mixing, wall effects, and primary flow core formation.

The sample horizontal velocity profile shown in Figure 23 shows two, essentially primary flow peaks at regions (2) and (4). Regions (1) and (5) are essentially secondary

induced flows and show some wall efforts. Region 3 should be symmetrically located at the center of the stack, however misalignment of the base plate may cause the center trough to appear displaced. Region 6 should have data points which overlap data points on the diagonal velocity plot.

The sample diagonal velocity profile shown in Figure 24 shows noticeable peaks and troughs. The peaks at regions 1 and 7 are the primary nozzle flows which have not been rotated inward enough to get better mixing. The peaks at 3 and 5 correspond to peaks 2 and 4 on the horizontal velocity profile. Region 4 should be at the same point as region 3 in the horizontal profile, and serves as a quick indication of rotation angle misalignment. Region 8 data points should be the same as those in the other profile. This region also is observed for coring effects when the nozzles have excessive tilt and rotation.

The dashed lines in both sample profiles are just rough indications of what a fully developed turbulent flow should look like. With the short mixing stacks, this will never be achieved, but the goal is to select nozzle combinations which can give generally flat overall profiles as an indication of enhanced mixing. Sharp peaks and troughs should therefore be avoided or minimized. The comparison plots of the two profiles serves to determine data accuracy, the interaction of the flows, and base plate misalignment which can seriously skew the profiles.

Due to the flow rotation created by the angled primary nozzles, the nozzles base plate had to be rotated on a trial-and-error basis to bring the primary flows into alignment with the pitot tube for the diagonal velocity traverse profile. This setting of the nozzle base plate was kept intact for the horizontal velocity profile. Alignment procedures called for obtaining a peak pressure reading on the diagonal traverse, adjusting the sliding scale on the velocity traverse bar and moving the bar until a symmetric profile was achieved, and then verifying the base plate rotation.

VII. DISCUSSION OF EXPERIMENTAL RESULTS

Major components for the straight geometry mixing stacks were relocated, overhauled, and installed while the components and computer software for the angled primary flow nozzles were being developed. The data reduction process and basic cold flow test facility components were then verified by taking a series of tests with a set of straight nozzles used by Lemke and Staehli [Ref. 3]. This set of nozzles had inner diameters of 3.38 inches and an area ratio of 3.0. This early data is not presented in this report, but it correlated extremely well with Lemke and Staehli's results. These tests confirmed that higher pumping coefficients on the order of 0.75 could be obtained if you are willing to suffer the considerably higher, approximately 2.5 inches of water higher back pressure and higher nozzle exhaust velocities when compared to straight nozzles having an inner diameter of 3.70 inches and area ratio of 2.5 on the same mixing stack with an L/D ratio of 1.75. The test results for the 3.7 inch ID and AR = 2.5 straight nozzles on a mixing stack with L/D = 1.75 and S/D = 0.5 are given in Tables 2 through 2.3, and the plots are given in Figures 25 through 25.4. This data compared extremely well with Lemke and Staehli's results as listed in Table V.c of Reference [3] and is plotted in Figure 25. This data served as a baseline for evaluating the angled nozzles with the same L/D, S/D, and AR ratios for the early data runs.

The angled nozzle combinations in the remainder of this discussion will appear as 15/10 for example, where the 15 is the nozzle tilt angle, θ , and the 10 is the nozzle rotation angle, ϕ . Due to the large number of plots and tables involved, references to individual plots and tables for the various nozzle combinations will not normally be made except by references to the series of data for that particular combination. The notation FT 15/8, for example, will be used to indicate that the plots are located in the Figure 15 series and that the data is located in the Table 8 series for the nozzle combination specified. The summary tables, Tables 1.1, 1.2, and 1.3, and the summary plots given in Figures 75 through 81 may also prove to be of great value when reading this discussion. The mini-plots given with the tabulated data are also quite helpful when reviewing data. The abbreviations MSD for mixing stack pressure distribution, PCD for pumping coefficient, and VTD for velocity traverse distribution will also be used in this discussion and in the summary of tabulated data tables. Unless specifically mentioned otherwise, the S/D ratio of 0.5 was used throughout these investigations.

ŀ

1

The first set of angled nozzles chosen for testing were the 15 degree tilt series. These nozzles were near the middle of the 10, 15, 20, and 22.5 degree tilt angle nozzles available, and it was hoped that by testing nozzles on either side of them that a trend would quickly develop which could possibly reduce the amount of testing necessary. The four sets of

angled nozzles could be rotated from zero to between 25 and 45 degrees depending on the amount of tilt angle involved. The rotation angles can be adjusted in one degree increments which made the number of nozzles combinations available for testing extremely large. This was further compounded by the requirement to test these combinations on three different L/D ratio mixing stacks. It was decided that rotation angles in 10 degree increments would be used to help alleviate the number of runs possible while still developing a thorough data base.

A. L/D = 1.75 (LONG STACK) RESULTS

Although the L/D = 1.75 mixing stack was the longest mixing stack tested, it is still approximately only two-thirds the L/D ratio of stacks involved in past research as well as those in actual use on several naval vessels. The 15/00 combination was tested first with results given in the FT 30/7 series. the pumping coefficient for the straight nozzles was 0.54 and the 15/00 nozzles increased this to 0.57. The MSD profile was worse and indicated a positive PMS* pressure value near the L/D = 1.5 pressure tap. The VTD profile showed that the primary flow was predominant along the walls for the diagonal profile while the horizonatal profile was nice and flat. Unfortunately, this first angled nozzle data run pointed out that it would take about 2.5 hours to get a complete set of acceptable data.

The PCD data was fairly easy to take, however, the angled nozzles had to be rotated with the base plate to get accurate MSD data. The alignment of the velocity profile traverse system to get the profiles centered was hard enough, but the base plate had to be rotated to the optimum position to get an unskewed profile. Consequently, there was a lot of trial-and-error adjustment required while taking the MSD and VTD data.

Tests were rerun on the 15/00 nozzles to determine if the base plate could be fixed at the zero point, rotated to the peak pressure at position 'A' and left there, or had to be rotated for both maximum and minimum pressure readings along the mixing stack. The results are given in the FT 31/8, FT 32/9, and FT 33/10 series. It was determined that the rotation angles served only as a general indication of flow directions and was not as important as the pressure readings along the The results also showed that rotating the peak pressure to the top pressure taps gave fairly accurate minimum readings on the diagonal pressure taps without further rotation of the base plate. The next data run for the 15/10 nozzles showed that not only may one miss the minimum reading, one might miss any positive pressures as well when using this approach. Consequently, the MSD procedure that evolved was to rotate the base plate to get a maximum negative or positive pressure reading at the top pressure taps, record the reading and the rotation angle, rotate the base plate for a minimum reading on the diagonal taps, compare the two angles,

and record the average of the two. This did help reduce the run time down to two hours, and nothing was found to reduce the time involved obtaining the velocity profiles. The semi-automated data system in its present configuration would have actually increased the run times for the particular geometries associated with this research.

The next tests were conducted on the 15/10 and 15/20 nozzle combinations, and results are given in the FT 34/11 and
FT 35/12 series. The pumping coefficients were both in the
0.59 range with the 15/20 nozzles being just slightly better.
Both had similar MSD profiles with one slightly positive PMS*
reading near the stack exit. The 15/20 combination had the
less positive PMS* reading of these two nozzle combinations,
and its VTD profile was also slightly better than the 15/10
combinations.

The 15/30 tests given in FT 39/16 showed a pumping coefficient of 0.55 which was lower than either of the 15/10 or 15/20 combinations. The MSD profile showed some improvement, but the positive PMS* reading still existed in the same region. The diagonal VTD profile was excellent, but the horizonatal profile showed onset of primary flow coring.

The next approach was to split the difference and try a 15/25 combination to see if there was a maximum pumping coefficient in the combination region. Results are given in FT 36/13 and the pumping coefficient fell to 0.58. The positive PMS reading was lower than in the 15/20 data, but the

VTD profiles were slightly worse for thermal mixing. This same nozzle combination was then used for testing S/D ratios of 0.4 and 0.25 to determine the effect of reducing the standoff d'atance. Moss in Reference [2] had shown that the optimum S/D ratio for the straight primary nozzles was 0.5. Results are given in the FT 37/14 and FT 38/15 series. The S/D = 0.4run showed a slightly better pumping coefficient of 0.585 when compared with the S/D = 0.5 pumping coefficient of 0.58. The positive PMS* reading near the mixing stack exit was intermittently negative and finally stayed negative as the data run progressed. Unfortunately, the VTD profiles were poorer for the S/D = 0.4 ratio. The S/D = 0.25 pumping coefficient fell off to 0.55, the MSD profile was better than the other two S/D rations, and the VTD profile was much worse than either the S/D = 0.5 or S/D = 0.4 profiles. In comparing the results, it was determined that the angled nozzles generally behaved as staight nozzles as far as stand-off distance ratios were concerned and the results followed the curve generated by Moss. Each change of the S/D ratio requires realignment of the mixing stack which can take a considerably amount of time, the results correlated with Moss's findings, and further comparison of S/D ratios for the two shorter mixing stacks was ruled out.

Full data runs were then conducted on 20/10 and 20/20 nozzle combinations with the results being given in the FT 40/17 and FT 41/18 series. Although they had pumping

coefficients below the 15/20 nozzle combination, they both exhibited improved VTD profiles. The MSD profiles both had more positive PMS* readings and were generally poorer than for the 15/20 combination. The hoped for trend was becoming clear, however the data acquisition time for a full set of data on every nozzle combination would have precluded testing on the other two mixing stacks. It was felt that the angled nozzles did make shorter mixing stacks possible, but that the MSD profiles were substandard for the stack tested. Testing was needed on the shorter stacks to determine if the MSD profiles would be improved while maintaining or improving the pumping coefficients.

A careful review of evaluation procedures disclosed that all parameters have to be analyzed, but that the pumping coefficient was slightly predominant. The tests so far had shown that any amount of nozzle tilt and rotation improved the pumping coefficient over that of the straight nozzles. To establish a broader data base while still being able to test the shorter stacks, run times had to be reduced still further. It was decided to take partial data runs for pumping coefficient data over the remainder of the nozzles followed by full data runs on nozzle combinations with the better pumping coefficients.

The PCD data only procedure was then conducted on the 20/30 and all of the 10 degree and 22.5 degree tilt angle nozzles. The plots and tabulated data for these various combinations are provided in this report; however, the summary

of tabulated data in Tables 1.1 and 1.2 along with the summary plots in Figures 75 through 81 should be referred to for a clearer picture of the results. In general, it was found that the 10 degree tilt angle nozzles started off fairly well at low rotation angles, and the pumping coefficients then fell off dramatically as the rotation angle was increased. The 15 degree tilt angle nozzles started out with good pumping coefficients at low rotation angles, reached a peak around the 15/20 combination, and then fell off for higher rotation angels. The 20 degree tilt angle nozzles started below the other two, got better, and then stayed the same as the rotation angle was increased.

The 22.5 degree tilt angle nozzles started out the lowest for this L/D ratio and got better with increasing rotation angles. Partial tests showed that primary flow coring took effect with these nozzles with poorer mixing once you passed a rotation angle of about 25 to 30 degrees depending on the tilt angle being tested.

One interesting point became clear by taking just the PCD data to establish a broader data base, the results clearly showed that not all angled nozzle combinations give better pumping performance than the straight nozzles. Several in the 10/30 and 10/40 ranges would be considerably worse in this application.

B. L/D = 1.5 (MEDIUM STACK) RESULTS
The L/D ratio of 1.5 mixing stack was installed, aligned,

and tested. The straight nozzles were then tested with a full data run to establish a base line for the medium stack data results. The results are given in the FT 46/23 series. The pumping coefficient fell to 0.51 while the MSD and VTD profiles were essentially the same as those for the longer stack.

Partial data runs were conducted for the remainder of the angles nozzle combinations. The results are provided in the various figures and tables, but again, the summaries in Table 1.2 and in Figures 75 through 81 present a clearer picture of the overall results. The 15/20 nozzles again provided the best pumping coefficient, and a full data run was then con-The results are given in the FT 53/30 series. The pumping coefficient was slightly better than 0.58, which compared favorably with the 0.59 pumping coefficient for the same nozzles on the longer L/D = 1.75 mixing stack. More importantly, the MSD profile improved considerably and there were no positive PMS* readings. The VTD profiles showed more peaks and troughs than with the longer stack, but overall, they were generally flatter, indicating better mixing. These findings were extremely important as they verified that the pumping coefficient could be kept close to those associated with straight nozzles and considerably longer mixing stacks, achieve better mixing, and the improved MSD profile clearly indicated that the ported mixing stack with shroud and diffusor end rings was also feasible. The 15/20 angled nozzle combinacombination, based on data up to this point, clearly appeared to be the best combination irregardless of the mixing stack length and provided the best overall performance on the medium length mixing stack.

C. L/D = 1.25 (SHORT STACK) RESULTS

The L/D mixing stack was installed and aligned. The straight nozzles were again tested with a full data run to establish a baseline for the short mixing stack. The results are given in the FT 60/37 series. The pumping coefficient fell even further to 0.50 when compared to the two longer mixing stacks. The MSD profile was good, but it was poorer than those for the other two stacks. The VTD profiles had more pronounced peaks and troughs which were higher than those of any other stack and nozzle combination tested, thus indicating extremely poor mixing within the mixing stack.

Partial data runs were conducted on the remainder of the angled nozzle combinations. The results are provided in the various figures and tables, but again, the summaries in Table 1.3 and Figures 75 through 81 presents a clearer picture of the results. The 15/20 nozzles, the previously best performers on the other two stacks, fell below the pumping coefficients of the 15/10, 20/10, and 20/30 nozzles.

Full data runs were then conducted on the 15/20 and 20/20 nozzle combinations to determine the effects of increasing the L/D ratio while holding the 15/20 nozzle combination

constant and the effects of increasing the rotation angle while holding the tilt angle constant for the short stack.

The 15/20 nozzle combination on the full run dropped from 0.57 to 0.56 with better data accuracy. The results are given in the FT 67/44 series. The MSD profile, while always negative, was generally not as good as on the L/D = 1.5 mixing stack but better than on the long stack. The VTD profiles were better than the straight nozzles, but not quite as good as either of the longer mixing stacks.

The 20/20 nozzle combination had a pumping coefficient of 0.58 which was better than the 15/20 nozzles. The results of this run are given in the FT 71/48 series. The biggest difference between these two combinations was in the MSD profiles. The 20/20 nozzle combination had two positive PMS* readings near the mixing stack exit as well as a poorer overall profile. There was some misalignment on the VTD profiles but in general, the horizontal profile was better than with the 15/20 nozzles while the diagonal profile was considerably worse with indications of some wall effects. Overall, the VTD profiles were about equal for mixing properties.

The 20/30 nozzles should have been slightly poorer performers than the 20/20 nozzles, and a full data run was not conducted. The next step would have been to conduct full data runs on the 15/10 nozzle combination; however, time expired for data acquisition and was needed to analyze data and write this report. This testing of the 15/10 nozzle combination would make an excellent starting point for the next research effort.

59

D. BACK PRESSURES

A review of the back pressure data from the various data tables showed that the better performing angled primary flow nozzles increased the back pressures on the average of 0.04 inches of water when compared to the straight nozzles on the same mixing stack. For example, the 15/20 nozzles on the L/D = 1.5 mixing stack increased the back pressure only 0.02 inches of water for the test uptake Mach number of 0.062. Increasing the nozzle tilt angle about 20 degrees and the nozzle rotation angle above 25 degrees tended to raise the back pressures slightly, usually on the order of several tenths of inches of water. A firm correlation between the effects of increasing just one or both of the angles could not be obtained. For example, the 22.5/20 nozzles on the L/D = 1.25 mixing stack showed 0.15 inches of water less back pressure than the 22.5/10 nozzles; however, they both were at least 0.35 inches of water greater than the straight nozzles.

The 15/20 nozzles with the L/D = 1.5 mixing stack showed a back pressure of 6.30 inches of water for a test Mach number of 0.064. The straight nozzles used with the longer L/D = 2.5 mixing stack were shown by Lemke and Stæhli to have a back pressure of 5.8 inches of water, therefore the angled nozzles when used in the shorter mixing stacks do exhibit a slight increase in back pressure on the order of one-half inch of water.

VIII. CONCLUSIONS

This research investigated the feasibility of reducing the length of the mixing stacks in gas turbine gas eductor systems by the use of angled primary flow nozzles. The conclusions resulting from this investigation are as follows:

- 1. The best combination of angled primary flow nozzles and mixing stacks tested appears to be the angled nozzles with an area ratio of 2.5, a tilt angle of 15 degrees, and a rotation of 20 degrees used in a mixing stack with an L/D ratio of 1.5 and an S/D ratio of 0.5. This combination provides a pumping coefficient of 0.58, which is equal to that reported by Lemke and Staehli for straight nozzles with the same area ratio used in a mixing stack with an L/D ratio of 2.5 and S/D ratio of 0.5. The best combination of angled nozzles and mixing stack, when further compared to this longer mixing stack, showed comparable mixing stack pressure distributions, a slight increase in back pressure of 0.50 inches of water, and improved mixing.
- 2. The family of 15 degree tilt angled primary flow nozzles provides the best overall eductor performance when evaluated by all parameters on the mixing stacks investigated. Not all angled nozzles tested gave

improved performance over straight primary flow nozzles for the same AR, L/D, and S/D ratios. Some of the angled primary flow nozzles which do give good pumping capacity provide poor mixing and/or mixing stack pressure distributions. The best combination of angled primary flow nozzles and mixing stack previously listed shows strong potential for further application of the shrouded, ported, and diffusor ring equipped mixing stack concept.

- 3. The S/D ratio of 0.5 appears to be the preferred overall location of the mixing stack from the primary flow nozzles. The angled nozzles appear to behave in this respect much like straight nozzles, and follow the general behavior obtained by Moss for varying the stand-off ratios.
- 4. Back pressure increases associated with the angled primary flow nozzles are insignificant when compared with straight nozzles used with the same L/D ratio mixing stacks, provided that the nozzle tilt angle is kept below approximately 20 degrees and the nozzle rotation is kept below approximately 25 degrees.

IX. RECOMMENDATIONS FOR FURTHER STUDY

Based upon a review of this investigation and its findings, it is recommended that further study be conducted in the following areas:

- 1. Full data runs be conducted for the 15/10 nozzle combinations on the L/D = 1.25 and L/D = 1.5 mixing stacks to establish a more complete data base for the 15 degree tilt angle nozzles.
- More verification of S/D ratio effects at 10/20 and 15/20 nozzle combinations on the above L/D ratio mixing stacks.

.

- 3. Investigate the application of angled primary flow nozzles on ported, shrouded, and diffusor ring equipped short mixing stacks to further enhance short mixing stack performance.
- 4. Investigate alternate nozzle cross sections, such as the flutted nozzle, to further enhance the mixing process in short mixing stacks. This research could also later be applied to the ported, shrouded, and diffusor ring equipped short stacks.
- 5. Hot flow verification of cold flow findings should conducted once the above recommendations have established the better performing geometries and configurations for short mixing stack and gas eductor enhancement in gas turbine applications.

LIST OF REFERENCES

- 1. Ellin, C.R., Model Test of Multiple Nozzle Exhaust Gas Eductor Systems for Gas Turbine Powered Ships, Engineer's Thesis, Naval Postgraduate School, June 1977.
- Moss, C.M., Effects of Several Geometric Parameters on the Performance of a Multiple Nozzle Eductor System, Master's Thesis, Naval Postgraduate School, September 1977.

\$

7

- 3. Lemke, R.J. and Staehli, C.P., <u>Performance of Multiple Nozzle Eductor Systems with Several Geometric Configurations</u>, <u>Master's Thesis</u>, Naval Postgraduate School, <u>September 1978</u>.
- 4. Shaw, R.S., <u>Performance of a Multiple Nozzle Exhaust Gas Eductor System for Gas Turbine Powered Ships</u>, Master's Thesis, Naval Postgraduate School, December 1980.
- 5. Ryan, D.L., <u>Flow Characteristics of a Multiple Nozzle</u>
 <u>Exhaust Gas Eductor System</u>, Master's Thesis, Naval Postgraduate School, March 1981.
- 6. Hill, J.A., Hot Flow Testing of Multiple Nozzle Exhaust Eductor Systems, Master's Thesis, Naval Postgraduate School, September 1979.
- 7. Harrell, J.P., Jr., Experimentally Determined Effects of Eductor Geometry on the Performance of Exhaust Gas Eductors for Gas Turbine Powered Ships, Engineer's Thesis, Naval Postgraduate School, September 1977.
- American Society of Mechanical Engineers Interim Supplement 19.5 of Instrumentation and Apparatus, <u>Fluid Meters</u>, Sixth edition, 1971.
- Pucci, P.F., <u>Simple Eductor Design Parameters</u>, Ph.D. Thesis, Stanford University, <u>September 1954</u>.
- 10. Kline, S.J. and McClintock, F.A., "Describing Uncertainties in Single-Sample Experiments", <u>Mechanical Engineering</u>, p. 3-8, January 1953.

FIGURE 2 - GAS EDUCTOR MODEL TEST FACILITY WITH SECONDARY AND TERTIARY PLENUMS

FIGURE 3 - EXTERIOR OF SECONDARY PLENUM WITH PLENUM DOOR OFF AND ASME FLOW NOZZLES CLOSED

FIGURE 4 - INTERIOR OF SECONDARY PLENUM WITH ONE OF TWO FLOW STRAIGHTNERS REMOVED TO ALLOW VIEWING CF ASME FLOW NOZZLES AND NOZZLE TRANSITION DUCT

FIGURE 5 - SCHEMATIC OF STRAIGHT MIXING STACK GAS EDUCTOR WITH ANGLED NOZZLES

FIGURE 6 - DIMENSIONS FOR SHORT MIXING STACKS INVESTIGATED

FIGURE 7 - MIXING STACK EXIT WITH VELOCITY PROFILE DIRECTIONS AND PRESSURE TAP LOCATIONS

FIGURE 8 - VELOCITY TRAVERSE BAR AND MIXING STACK

FIGURE 9 - MIXING STACK WITH PRESSURE TAPS AND AIR SEAL

FIGURE 10 - DIMENSIONS OF ANGLED NOZZLES AND NOZZLE TILT ANGLE

FIGURE 11 - ANGLED PRIMARY FLOW NOZZLE

FIGURE 12 - ANGLED NOZZLES WITH TILT ANGLES 10 TO 22.5 DEGREES

FIGURE 13 - BASE PLATE ROTATION ANGLE AND NOZZLE ROTATION ANGLE

FIGURE 14 - DIMENSIONS FOR THE ROTATABLE NOZZLE BASE PLATE

FIGURE 15 - ROTATABLE BASE PLATE FOR ANGLED NOZZLES

FIGURE 16 - BASE PLATE WITH A 20/20 NOZZLE COMBINATION

FIGURE 18 - INSTRUMENTATION

FIGURE 19 - SCHEMATIC OF INSTRUMENTATION FOR PRIMARY AIR FLOW MEASUREMENT

The state of the s

the last of the second second

Alexander .

The second secon

SUMMARY OF TABULATED DATA

COMMENTS	Ш	. Data compared extremely -STAEHLI duta.	aight but below the 15/20	Retter than straight but below the 15/20 nozzles.	Worse than both the straight and the 15/20 nozzles.	Nuch worse than the straight and the 15/20 nozzles.	straight but below the One positive MSD point.	Misu and rotation angle comparison run with the base plate fixed at zero.	NSD and rotation angle comparison run with the base plate fixed at the peak position 'A' value.	MSD and rotation anile comparison run with the base plate rotated for peak position 'A' pressure values.	Better than straight nozzles but slightly below 15/20 nozzles. VID cdue effects.	Rest nozzle combination based on PCD.	S/D comparison run. Better than straight but below 15/20 nozzles. Positive MSD pressure point.	S/D comparison, Slightly better than with S/D-0.5 and positive MSD point was intermittent.	S/O comparison run. Better thin straight nozzles but below other S/O comparison data. Intermittent positive Mio point.	Detter than straight but below 15/20 nozzles. One slightly positive MSD boint	Better than straight but below 15/20 nozzles. Generally poor MSD and WiD profiles.	Better than straight but slightly below 15/20 nozales. One positive MSD pre-sure
	-#-	Il Calibration run. Data c			-	 	Better than the 15/20 nozzles.	With the base pl				Rest nozzle con	S/b comparison but below 15/20	S/D comparison. S/D=0.5 and posi	_	Detter th	Better the nozzles.	Better than stra 15/20 nozzles.
DTG/RUN	-#-	0208811	1909u 14	1908813	1908812	140811	030881	1188050	0508812	0508813	1008811	1008812	1209811	1208812	130881	1108811	170881	1606611
} ⊢	1	×		_	_		×	_			×	×	×	×	×	×	×	×
		×		_	_	_	×	×	×	×	×	×	×	×	×	×	×	*
-		×	×	×	×	<u> </u>	×	*	×	×	<u> ×</u>	×	×	×	×	×	×	×
ACCURACY		÷.005	500.₹	÷.005	÷.005	÷.005	₹.005	YN	N N	K.	÷.005	\$00· +	±.0025	₹.0025	±.0025	+.0025	÷.0025	<u>+</u>
(110) (Te) . 44		.54	85.	95.	15.	.47	.57	ΥN	NA	NA	- 59	+65.	.58	. 585	. 55	. 55	98.	95.
		00	10	20	30	0.	00	00	8	00	10	20	25	25	25	30	9	20
iži		00	10	97	91	e	13	13	15	22	~	15	25	2	S 2	23	20	20
S/D RATIO		0.5	5.0				9.5						9.5	7 .0	0.25	9.5	6.9	
L/D MT10		1.75																

TABLE 1.1 SUMMARY OF TABULATED DATA

SUMMARY OF TARULATED DATA (CONTINUED)

1.75	1908817 Stightly better than straight nozzles but just 1908817 Stightly better than straight nozzles but 1908817 Stightly better than straight nozzles but 1908816 Better than straight nozzles but below 1908815 Better than straight nozzles but below 15/20 nozzles
22.5 10 .54 ±.0025 X 22.5 20 .36 ±.0025 X X 22.5 25 .57 ±.0025 X X 00 00 .51 ±.0025 X X 10 10 .56 ±.0025 X X 10 30 .49 ±.0025 X X 15 20 .58 ±.0025 X X X 15 30 .56 ±.0025 X X X 15 30 .56 ±.0025 X X X 20 10 .56 ±.0025 X X X 20 20 .57 ±.0025 X X X	1908817 Slightly better than well befow 15/20 nozz 1908816 Better than straight 15/20 nozzles. 1908815 Better than straight 15/20 nozzles. 2008811 Straight nozzle calli worse than 1/D=1/75 and 1/D=1/D=1/75 and 1/D=1/75 and 1/D
22.5	1908816 Stigntly Detter than well below 15/20 nozz 1908816 Better than straight 15/20 nozzles. 1908815 Better than straight 15/20 nozzles. 2008811 Straight nozzle calli worse than 1/D=1/75 and 1/D=1/D=1/75 and 1/D=1/75 and 1/D
22.5 20 .56 ±.005 x 22.5 25 .57 ±.0025 x x 10 00 .51 ±.0025 x x x 10 10 .56 ±.0025 x x x 10 40 .46 ±.0025 x x x 15 10 .58 ±.0025 x x x 15 20 .58+ ±.0025 x x x 15 30 .56 ±.0025 x x x 20 10 .56 ±.0025 x x x 20 20 .57 ±.0025 x x x	1908816 1938815 2008811
22.5 25 .57 ±.0025 x <t< th=""><td>1938815</td></t<>	1938815
10 00 .51 ±.00.25 x x 10 10 .56 ±.00.25 x x 10 20 .52 ±.00.25 x x 10 30 .49 ±.00.25 x x 15 10 .58 ±.00.25 x x 15 20 .58+ ±.00.25 x x x 15 30 .56 ±.00.25 x x x 20 20 .56 ±.00.55 x x 20 20 .56 ±.00.55 x x 20 30 .57 ±.00.25 x x	7008811
10 10 .56 ±.0015 x 10 20 .52 ±.005 x 10 30 .49 ±.0025 x 10 40 .46 ±.0025 x 15 20 .58 ±.0025 x x 15 20 .58 ±.0025 x x 20 10 .56 ±.0025 x x 20 20 .56 ±.005 x x 20 20 .56 ±.005 x x 20 30 .56 ±.005 x x	Worse than 1,021.75 straight nozzles but
10 10 .56 ±.0025 x 10 20 .52 ±.005 x 10 30 .49 ±.0025 x 15 10 .50 ±.0025 x 15 20 .58 ±.0025 x x 15 20 .58+ ±.0025 x x x 20 10 .56 ±.0025 x x x 20 20 .56 ±.005 x x 20 30 .56 ±.005 x x	Averinged pipe epitions are pipe and
10 20 .52 ±.005 X 10 30 .49 ±.0025 X 10 40 .46 ±.01 X 15 10 .58 ±.0025 X 15 20 .58+ ±.0025 X X 15 30 .56 ±.0025 X X 20 20 .56 ±.005 X 20 30 .56 ±.005 X 20 .50 ±.005 X	2 108811 Better than straight mozzles but below
10 30 .49 ±.0025 x 10 40 .46 ±.01 x 15 10 .58 ±.0025 x 15 20 .58+ ±.0025 x x 20 10 .56 ±.0025 x 20 20 .56 ±.0025 x 20 20 .56 ±.0025 x 20 20 .56 ±.0025 x	2308812 Slightly better than straight nozzles but well below 15/20 nozzles.
10 40 .46 ±.01 x 15 10 .58 ±.0025 x 15 20 .58 ±.0025 x x 15 20 .58+ ±.0025 x x x 20 10 .56 ±.0025 x x 20 20 .56 ±.0025 x x 20 20 .56 ±.0025 x x	2308813 Norse than the straight or the 15/20 nozzle combinations.
15 10 .58 ±.0025 X 15 20 .58+ ±.0025 X X 15 30 .56 ±.0025 X 20 10 .56 ±.0025 X 20 20 .56 ±.0025 X 20 20 .56 ±.005 X	2308814 Worst nozzle combination for the L/D=1.5 mixing stack.
15 20 .58 ±.0025 x x 15 20 .58+ ±.0025 x x 15 30 .56 ±.0025 x 20 10 .56 ±.0025 x 20 20 .56 ±.0025 x 20 30 .56 ±.0025 x 20 .56 ±.0025 x	2308815 Better than the straight nozzles but just below the 15/20 nozzles.
15 20 .58+ ±.0025 x x x x x x x x x x x x x x x x x x x	2308816 PCD data run only. Best nozzle combination as verified by the full data run.
20 10 .56 ±.0025 x 20 10 .56 ±.005 x 20 20 .56 ±.0025 x 20 30 .57 ±.005 x	2409811
20 10 .56 ±.0025 X 20 20 .56 ±.005 X 20 20 .56 ±.0025 X 20 30 .57 ±.005 X	
20 10 .56 ±.0025 X 20 10 .56 ±.005 X 20 20 .56 ±.0025 X 20 30 .57 ±.0025 X	and troughs in the VTD profile compared to the L/D=1.75 stack and 15/20 nozzles.
20 10 .56 ±.005 X 20 20 .56 ±.0025 X 20 30 .57 ±.005 X	
20 .56 ±.0025 x 30 .57 ±.005 x	2408812 Better than straight but below the 15/20
30 .57 ±.005 x	2408813 Better than straight but below the 15/20 nozzles.
	2408814 Better than straight but below the 15/20 nozzles.
10 .54 ±.0025 X	2408815 Detter than straight but below the 15/20 nozzles.
22.5 2055 ±.01 x 240	2408816 Better than straight but below the 15/20

TABLE 1.2 SUMMARY OF TABULATED DATA (CONT)

SUMMARY OF TABULATED DATA (CONTINUED)

20. 00.70	6 /D BATTO	12	31220	10. 1001.44	70.4		DATA			
	2/2	TILL	ROTATION	,	ALLUMALI	PCD	MSD	VTD	OTG/RUN	COUNTENTS
1.25	6.5	00	00	. 50	÷.005	×	×	×	2508811	PCD below L/D=1.5 and L/D=1.75 straight nozzles. MSD profile is good, but still remains below the longer mixing stacks. VTD profile has more pronounced peaks and
	9.8	10	01	.54	±.0025	×			2608811	Retter than the straight but below the 15/10 nozzles.
		10	20	.50	±.0025	×			2608812	Just slightly better than the straight nozzles and well below the 15/10 nozzles.
		10	30	99.	÷.005	×			2608813	Nell Lelow the straight or the 15/10
		10	0+	.43	÷.01	×			2608814	Worst nozzle combination for any of the mixing stacks tested.
	0.5	15	10	.58+	÷.0025	×			2508815	PCD data only, but should be the best combination for this mixing stack
		13	92	.57	₹.60\$	*			2608816	This combination should have been the best combination for the L/D=1.25 stack
										based on past data, but it fell off for
		51	20	95.	±.002\$	×	×	×	2708812	. `
										pumping coefficient. MSD and VTD profile, are above average, and no mailine press-
										ure points. Vfp profile does show more
		15	30	.53	10.7	×			2608817	Slightly better than straight nozzles but
	0.5	20	10	. 56	÷.005	×		T	2608818	Notice than 15/10 nozzles. Better than the straight nozzles but belo
		20	20	.58	+.0025	×		1	2608819	PCD shows a strong contender for best
		20	20	95.	+.0025	×	×	>	2708813	Good PCD, but USD profile is markedly
										Some misalinement on VTD crofile but in
										general, horizontal profile is better and
		20	30	.58	+.0025	×			2708811	1 7
	0.5	22.5	0τ	.56	÷.005	×		-	2708814	Better than the straight nozzles but below
		22.5	20	95.	÷.00\$	×	Γ		2708815	Better than the straight notales but below
				*			1	1		Leng 12/14 nozzies.

TABLE 1.3 SUMMARY OF TABULATED DATA (CONT)

COMMENTS. Straight HOZZLES-CAL RUH	MISCELLNHEOUS INFORMATION: ORIFICE DIGMETER: 6.962 KIN3 ORIFICE BETA: 6.457 UPTAKE AREA: 107.510 KIN23 ATM PPESSURE: 30.69 KIN4G3	SECONDARY AREA TERTIARY AREA	SQUARE INCHES SQUARE INCHES			25, 133			122 796 296	201 062					UB UUPT UPT HACH	FT/SEC FT/SEC	72.13 8	91 71 83 0	71 55. 0	72.12 0		71.87	71.87	71.85		
COH1 2.58 SIR		PIER SECO	SQUA	88		00	9 9 9	9 6	2 4		9 6	9 (9 (9		4.0	FT.SEC #TZ	3.5		178.87		69	65	29	79		
	ORMATION: 0 COEGI 0 TSZ [IN2] 5: 4	PSEC P1	OF H20	3.25					95		9.0	9.	9 10 0		SH.	LBM/SEC FT	0 84 0000 0	6268	0333			9330				
HOZZLE AN'AP APEA PATIO	PRIMMRY HOZZLE INFORMATION: TILT ANGLE: ROTATION ANGLE: 8 E AREA PER HOZZLE: 10 752 E HUMBER OF HOZZLES: 4	Pupt	0 #1	2 20		84) W	n w		F. 6	3	•	6.20		d ii	LBM/SEC L	, t	٦ ٢	, 1	7	P	· •		0 1 5 C		I
4022LE AN	PRINGRY HOZZLITT RUCKE: ROTATION GHIGHEND REPER NO HUMBER OF H	1888	44.	۲ ۲ ۲	9 5	2 1	2 1	9 1 9	20	67.3	67.3	67.3	67.3		PR CIRM BICAR			9 6	•	• 4		•		9 4	, #	
•	C143 E383	1401	REGPEES	0	9 8 9 1	7.601	601	9 9	109.6	109.8	8 601	189.8	169.8		P X / T &			*	9 (•	S	S	9		•	•
2 AUG 81 C.C. BAVIS	26. 46 41. 76 41. 76 41. 76	40.0	96	,	35.4	9	26.6	36.5	26.4	36.6	26.4	36.6	36.2		1			•	•	9	0	•	•	•	4.9254	•
OH: 2 AUG 81 BY: C.C. BAU	LHFORM	8040	D2H	,	21.9	2.	212	22 1	22.0	22.	22.0	22.0	22.0	×	â						7611 8	3411	9.0132	4 M 10 M	9.9992	
12) EN	MIXING STACK INFORMATION LENGTH: 20.4 016METER: 81.7 L/D RATIO: 1.7 S/D RATIO: 0.5	P 0 P	111 06		9 0		69 8			69 0				SECONDARY B	*			69969	8 1675				9.5144	8 2738	0.5472	
0.41 0.41	ALXING LENG 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	±	27		-	~	m	*	'n	ø	~	. «	•	\$60	z			-	~	M	•	n	~	~	•	N

TABLE 2 - PCD DATA FOR STRAIGHT NOZZLES WITH L/D=1.75 STACK.

TABLE 2.2 - MSD DATA FOR STRAIGHT NOZZLES WITH L/D=1.75 STACK

- VTD DATA FOR STRAIGHT NOZZLES WITH L/D=1.75 STACK m

	RMATION: 6.902 EIN3, 8.497 107.516 EIN23 30.12 EINMG3	REA	NCHES	***	***	****	****	*****	****	****									• 	
110N/PCD	MER 6 9	TERTIARY AREA	SQUARE INCHES	******	*****	***	***	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	***	**		UPT NACH		9.862	0.062	8 862	200	60.00		198.
COMMENTS. 10 TILT/10 POTATION/PCD	MISCELLANEOUS INFORMATION: ORIFICE DIAMETER: 6.902 ORIFICE BETA: 0.497 UPTAKE AREA: 107.510 ATM. PRESSURE: 30.12 E	SECONDARY AREA	SOURRE INCHES	8.606	12.566	5.133	50.265	168.531	150.796	*****		UUPT	FIXSEC FIXSEC							148 71.72
	AL ORI	SECOND	SOUARE		-	~	n	~	-	-		ัม								***
2.58	COECU	9 3 5 8		60.0	80.0	6 0 · 6 0	8 . 88	9 . 9 9	99. 9	8 0 .		9	FT/SEC			181 83	188.48	179.61		179.29
A RAT10:	PRINARY HOZZLE INFORMATION: TILT ANGLE: ROTATION ANGLE: BREA PER HOZZLE: 10.752 E NUMBER OF NOZZLES:	PSEC	0F H20	3.18	2.23	19.1	88.0	46.0	6.19	10.0		S	LBM/SEC LBM/SEC FT/SEC	9	_		-		N	1.8946
NOZZLE AM/AP AREA RATIO:	INARY HOZZLE INFOR TILT ANGLE: Rotation angle: Arem per Hozzle: I Number of Nozzles:	PUPT	I	3,23	4.15	4.75	0 T	30.90	6.03	6.13		3	LBM/SEC						3.7412	
NOZZLE AI	PRINARY HOZZLI TILT ANGLE. ROTATION AN AREA PER HO NUMBER OF N	1848	L	71.2	71.2	21.2	71.4	¥.12	71.6	71.8		PAZTE HETA 44		•	•			_		*****
	C C C C C C C C C C C C C C C C C C C	1001	DEGREES	112.6	112.4	112.2	112.2	112.4	112.0	112.6		P 1 / 1 1			•	_	•			7 0.0007
AUG BE	20.48 20.48 11.70 1.73 1.73 1.73	108	ā	8	9							±		9 8.9277			•	•	_	7 0.9287
0H 19 BY C.	CK INFO	DPOR	0£ H20	22.	21.9	22.1	22.0	21.9	21.9	21.0	X O B	Z		0 6 4239	•	•	•	_		1 0.007
DATA TAFEN ON: 19 AUG 81 Data taken by: C.C. Davis	MIXING STACK INFORMATION - LENGTH - 20.48 LO RATIO - 11.79 S.D RATIO - 1.79	6	2	92	69	69.	69	69	69	69.	SECONDARY BOX	=	2	8 6 9 6	11711		.4288	0.5309	0.5836	
DATE	Z Z O J O	z	20	-	. ~	m	•	M	'	~	. 3	Z	202	-	~	m	•	n	•	~

8140 8140	DATA TAPEN ON: 19 AUG 81.	1 A A	19 1 C. C.	AUG.	517		3	3722	A 14. FE	HOZZLE AH.AF AREA RATIO	R 8	011	96 2	COMMENTS. 10 TICT . 20 ROTATION / PCD	ZO ROTH	17 10	1/800	
2 A C A C A	MEXING STACK INFORMATION: LEMETH: 20 46 DEFNETER: 11 70 L/O RATIO: 1 25 9/D RATIO: 6/50	4	if GR.	11 20 11	1015 1015 1015 1015 1015 1015 1015 1015	C 1 1 3		INGRY NOZZLI Tilt Angle: Rotation an Area Per No Number of R	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PRINGRY NOZZLE JUFORMATION TRET ANGLE: ROTATION ANGLE: BO AREA PER NOZZLE: 10.752 NUMBER OF NOZZLES:	FOR S	18 18 18 18 18 18 18 18 18 18 18 18 18 1	10N. 19 IDEGJ 88 EDEGJ 52 E1423	MISCEL' 4NEOUS INFORMATION: ORIFICE BIRNETER, 6.982 ORIFICE BETR 0.497 UPTRE ARER 187.518 ATM. PRESSURE 38 12 E.	SCEL' HIEOUS INFORIORIER. ORIFICE BETA: ORIFICE RETA: UPTRIE AREA: BIM. PRESSURE:	1	RMMITON: 6.982 EIND 8.497 107.519 EINED 30 12 EINMED	Chij Chi Chi
z	90 A	ō	OPOR	108	a c	TUFT	•	1648	<u>a.</u>	PUPT	FSEC	ပ္သ	P 7ER	SECONDARY AREA	AREA	E	Tertiapy area	Œ
30	111 06	F H20	0		DEC	DEGREES	i			Z	0F H20	120		SOURRE INCHES	CHES	301	SDURRE INCHES	(S)
	9,	2,	•	60	~	112	¥	71.4	(m)	3.23	3.13	5	88.8	989.0	98		*****	
•	69.	~	21.9	60		112.8	8		•	4.15	2.18	8		12.566	9		****	,
m	9 2 9	2	22.1	60		112	y.	71 8	•	4.89	1 56	26	9 9 9 9	25.133	33		*****	~
*	97.0	2	8.22	59.2		112.6	y.	8.12	SO.	¥.	•	80 ·		50.2	ر د ورو		***	
m	92 0	~	22.1	39	•	715	0 4)	71.8	•	8	9.31	3.	99	188.531	31		***	
•	8.78	22	•	39	~	112.8	3		ø		91.0	91		156.796	9		*****	
~	6 2 0	22	•	3	•	112	•	72.0	٧	52.	6	. 6.	99	***	*		***	
38	SECONDRRY BOX	×																
=	2	•	# G	>-	*	à d	3 *	P#/18 WET^.44		d H	S	w	a	W n	UUPT	190	ивси	
20									1.6	LBMYSEC	LEM	LPM/SEC F	FT/8EC	FT/SEC FT/SEC	LYSEC		•	
•	0	•		•	6.00	•	7687	0000		7 7 800	9	0000	131.74	72 78	72.78	0	0.062	
۰ ۸	9555 9		2975	9 9	9277	9 4	3207	9.1638		3 7426	9		180.58	83.52	72.24		0 062	1
1 173	•	9	2113	9	0.9287	0	9	0.2758		3.7611	~		181.13	92.00	72.46		6.862	,
•		•	.1165	•	9267	0.1254	4	0.4682		3.7584	-	7185.1	380.38	100.36	72.24		0.052	
n (9.5682		0.0423		9284	8.8456 6224	0 P	0.4916		4 75.04	- ~		90 001	106.72	72.83		190.0	
• ~	4.3467				0.9291	0.0007	. ~	***		3.7526	<u> </u>		199.94	****	72.02		198.8	• .

TABLE 4 - PCD DATA FOR 18/28 NOZZLES WITH L/D=1.75 STACK

279

DATE	THEN ON	66.	19 806 81	4	NOZZLE AN'AP APEA PATIO'	AP APEA	PAT 10 ·	2 50	COMMENTS: 10 TLLT-30 POTATION/PCD	TOHNED
11:11 11:11 10:04 10:04	MIKING SIACA INFORMATION- LENGIN. LOANETER. LO RATIO: 8.0 RATIO: 8.50	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.48 20.48 11.78 1.73 8.50	C 1 N 3	PRIMARY NOZZLE INFORMATION: 19 E. 71LT ANGLE: 30 E. ROTATION ANGLE: 10 752 E. RREA PEP NOZZLE: 10 752 E. NUMBER OF NOZZLES: 4	INARY NOZZLE INFORMÍ 71LT ANGLE: ROTATION ANGLE: AREA PEP NOZZLE: 10 NUMBER OF NOZZLE:	20004	10 KPEGJ 30 KOEGJ 32 KINZJ 4	MISCELLAHEOUS INFORMATION: ORIFRIE DIAHETER: 6 902 ORIFRIE BETA: 6 497 UPTAKE AREA: 107 510 ATM. PRESSURE: 30 12 E	JER 6 982 EJNJ 6 497 EJNJ 107 510 EJN23 30 12 EINHED
4	9	4090	108	1401	TANB	1.304) 35 d	PTER	SECONDARY AREA	JERTIARY BREA
z	\$6 E.		90	DEGREES	u.	**	OF H20		SOURRE INCHES	SOURKE THERE
-	12.9	22	58.2	112.9	71.6	8 . 4 8 . 4	3.08 2.08	6 6 6 6 6 6	12.566 25.136	
N M	0 0 0 0	22.4		111	71.6	4 t	44.0	3 G 3 G	50.263	
* *	92.4	22.0	58 58 58 58	112.0	. e. :	9	6.27	9 9 9 9	150.796	
, . .	02.0	22.2		112.0	9 E	6 80 11 19 9	9	9	**************************************	
SEC0	SECGNORFY BOX	×			•	N.			•	7 9 8
. 1	3	•	*	P 2 / 1 1	P8/14 H41' 44	d Z	93	90	1 400	י שינים
R	;	•				LBMYSEC LBMYSEC FTYSEC	LBM/SEC	FIVSEC	FT-SEC FT/SEC	
	6	4 2 4	E626 8 4	8 6 4478				181 69	72 63 72.68	9.062
~ ~	6.1646							186.11		0 061
M 4	4969	6 1049	9			3.7526	1.5008	188.18		9.061
n • 1			3 6.9297 6 6.9297 7 6.9366	7 6.9461 7 6.9269 6 6.6667	0.4079 0.4079 7.88888	4.7584 4.7584 5.7584	1.8911	179.94	105.69 .71.98 ***** 71.98	9.061 9.061
-										

TABLE 5 - PCD DATA FOR 10/30 NOZZLES WITH L/D+1.75 STACK

281

041H	DATH THIEN ON: 19 RUG ST.	9N: 19	AUG 31 C. DAVIS	_	NOZZLE AII AP AREA RATIO:	HP AREA	RAT10:	2.58	COMMENTS	COMMENTS: 10 Tilt 18 FOIRTION ENRYD/PCD
2007	AING SIACK LENGIK: DIANGIER: L/D FATIO: S/D PATIO:		LENGING STACK INFORMATION: LENGIN: 20.48 DIAMETER: 11.70 L/D FATIO: 0.50	C123	PRIMAE: NOZZLE INFORMATION TILI GNGLE: 10 I ROTATION GNGLE: 40 I AREA PER NOZZLE: 10 752 I HUNBER OF NOZZLES: 4	IMBE: NOZZLE IMFORI TILL AUGLE: Rotation Augle: Area per Nozzle: 1: Number of Hozzles:	IMBE, NOZZLE INFORMATION: ILLI GNGLE: ROTATION ANGLE: 40 EDEGJ RREA PER NOZZLE: 10 752 EINZJ NUNBER OF NOZZLES: 4	10 CDEG3 10 CDEG3 40 CDEG3 52 CIN23	MISCELLMEOUS INFORMATION ORIFICE DIAMETER: 6 963 ORIFICE BETA: 6 43 UPTAFE AREA: 167.516 ATM FRESSURE: 30.12	INFORMATION: HETER: 6.962 CINJ R: 8.437 R: 107.510 CIN23 RE: 30.12 CINHG3
I	909	010	10R	1401	9881	1 404	FSEC	PTER	SECONDARY AREA	TERTIARY AREA
20	2	0£ H20	90	DEGREES	is.	X.	OF H20		SQUARE INCHES	SQUARE INCHES
	•			7 111	æ I.	80 80	2,95	00.9	000.0	******
	2 (77	2 4 5	9	2 1 2	4	1.92	0.00	12.566	*****
v =		22.0		0	2.1	8.18	1.31	00 0	25.133	
٠,		~		111.6	8.12	8 78	29.0	00 0	50.265	
• 4		2		111.6	71.0	9 1 9	8.24	80.0	100 531	
,		- 20	24.0	111.6	8.12	929	9 12	0	150.796	
~				9.111	71.8	6 . 30		9 9 6	***	
į		3								
	SECONORRY	× •								
=	2	•	1	P1/14	Pt / 1 t M 1 1 / 44	Ŧ	E S	d O	UN UUPT	UPT MACM
HOL						735×H87	LBHZSEC	FIMEC	FINSEC FINSEC	•
			•		9000	3 256 2	6000	8	72.68 72.68	8 0 852
(7000	998 A B	20000	9 9	7 . 7 . 6		180.70		
V F		•	•		•	3 7554		180.50	89.70 72 21	
, •		• 4	•	•		3.7640	1.3991	186.36		٠
P 18 ⁻¹						3.7569	1.6674	180.03		
, A	0.4645					3.7576	1.7454	188.01	103.12 72.01	199 6 6
~	111111	0.0007	17 0.9303	. 6.6087	****	3.7576	# T T T T T T T T T T T T T T T T T T T	JA - A - 1		-

TABLE 6 - PCD DATA FOR 10/40 NOZZLES WITH L/D=1.75 STACK

283

	a ¹ .00								
. 215	10H: 902 EIN3 510 EIN3 66 EINHES	AREA Iches	***					•	
ROTATION CAL-RUN	REPTION: 6.992 6.497 887.519 30.06.0	TERTIARY AREA Square inches	711717	****		UPT MACH		062	190
101	FOR	TER				140		000000	Ø Ø Ø
	iu	IREA IES	e w M		70 V1 45 44	UUPT	<u>ن</u> (71.86
COMMENTS: 15 TILT/80	SCELLANEOUS ORIFICE DIAN ORIFICE BETA UPIAKE AREA: ATH FRESSUR	SECONDARY AREA Sauare inches	9 999 12 566	50 265 160 531	150.796 201.062 245 044 111111	# 5	2 E C	7	668
COMM 15 I	200 200 200 200 200 200 200 200 200 200	SECONDI		•			FT	997	20 # 21 # 21 #
2.50	EDECT COECT CINZT	PER	00.0	000	9 9 9 9 9 9 9 9	41	100		179.64 179.67 179.59
PAT 10:	111FORMATION 15 15 16: 18 752 1265: 4	PSEC F H20	4 12 0		6.19 6.11 6.61 6.61	S#	Œ		2.2841 2.3740 2.6888
AREA	IMARY HOZZLE INFO TILT AMGLE: ROTATION AMGLE: AREA PER HOZZLE: HUMBER OF HOZZLE:	PUPT P.		(à. F)35/I		7563
AH AP	IMARY NOZZLE I TILT ANGLE: ROTATION ANGLE AREA PER NOZZL NUMBER OF NOZZL	4	m +	r in w	, 0000	*		6000 1610 2695 4068 3778 3778	
N0221E	PRINGRY TILI ROTAT BREA NUMBE	TANB	67 9 67 9 67 9		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	: F # 3		& & & & & & & & & & & & & & & & & & &	သံ မာ #
Z	# E # 10 10 10 10 10 10 10 10 10 10 10 10 10	TUPT REES F	67.66 67.66 67.69		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 1 / 1 4			0.0163 0.0118 0.0015
81 08/15		TUR TUPT DEGREES	40.00		∞ ⇔ ∞ ▼	=		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9258
30 S	HFORMSTION: 20 - 48			6 er	~ @ @ @ & & & & & & & &			4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
0 N : 3	-	6F 0R	22,		2222	¥ d.			
TAI EN ON	SIACK	, s		789	0 0 0 0 0 0 0 0			0 - 4 4 B B	
CA16 18 0819 18	MEXING SIG LENGTH: CIGNETER L/O RATE S/D PAIN	804 X	• • •			SECONDAFY	NO B	- N M 4 W 4	~ .
2 6	ž	2 2		* # 10	9~65	3.			

TABLE 7 - PCD DATA FOR 15/80 NOZZLES WITH L/D=1.75 STACK

TABLE 7.1 - PCD DATA (CONT) FOR 15/00 NOZZLES WITH L/D=1.75 STACK

TABLE 7.2 - MSD DATA FOR 15/00 NOZZLES WITH L/D=1.75 STACK

10H PHS# 10H
--

MIXING STACE DATA FOR RUN 9

	AL VELOCITY TRAVERSE		4	OUD WOUNDERS WAS INVESTIGATION	からのからのののことののののなからはあるから	FAIR STANTS A STROCTOR
5.0 4 V 8 9 0 4 V	HO9120NIAL	 809	9 ° °	Me work	NO DOCUMENT	041004

	_	Ç)	3 5	-	1 3	3	<i>)</i> .	1	2	0	13	۸
	9	91	6.	9	7.9	7.1	00	10	25	4	20	9	
	_	60	150	n	-	98	8	ci.	96		ห	151	
1	00	6.0	38	3	80	23	00	00	93	20	91.	6	
	-	s	157	*	-	8	თ	2.00	2.	_	ກ	150	
	×	7	54	99	96	29	20	93	25	00	00	7	
٠	٠.	g)	154	7	-	6	~	-	α, œ	-	N)	148	
	9	0.3	9	5.0	9	ربا 1 -	9	0.2	7.1	50	36	96	
(3		151			96			8		•	137	
:	2	30	96	0.0	40	0	Š	9	4	6.0	50	4	90
•	9		137	14)	~	103	v	-	<u></u>	10	M	124	2
	?	60	5	ŝ	3	6. O	9	ŝ	÷	9	96	25	9
•	2	-	9	N	M	117	9	-	<u>-</u>	ď	N	113	-
6	2	9	99	9	Ċ	Ξ	56	6.9	15	00	3	03	9
(•	9	6	~	4	133	'n		æ.	ď	~	103	=
:	=	3	_	Ξ	5	Ċ	É	FILL HEGS	-	Ξ	5	Ċ	POSITEIND
	_	FULL RZOD	[J35]	FOSTICINDS	Ĭ	E : 3]	Ξ		11	ž	SE	101
•	ň	Ξ	1 1 1 7	7	Ξ	- 4	5	Ξ	1	~	Ξ	F 4	P0517

VTD DATA FOR 15/00 NOZZLES WITH L/D∞1.75 STACK ı 7.3 TABLE

<u> </u>	EN ON	n o	DATA TAKEN ON: 3 AUG 81 DATA TAKEN BY: C.C. DAVIS		NOZZLE AN AP APEA RAJIO	N. AP ARE	A RATIO:	2 56	COMPENTS: COMPAPISON OF ROTATION MUGLES	N OF RC	TATION FE	GLES
	KING STACK LENGIN: DIAMETER: L/D RATIO: S/D RATIO:	INFOR	MENING STACK EMFORMATION: LENGTH: 20.48 DIRMETER: 11.79 L/D RATIO: 8.50	CHI	PRIMARY MOZZLE TILT ANGLE: ROINTION ANG AREA PER NOZ NUMBER OF NO	FHARY HOZZLE INFOR TILT ANGLE: ROINTION ANGLE: AREA PER HOZZLE: I HUMBER OF HOZZLES:	FORMIST 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10N' 15 EDEG3 0 EDEG3 -52 E11123	ASSELLANEOUS IN OPIFICE DIANET ORIFICE AREA: OTA: PPESSURE:	DIANEL DIANEL BETA - AREA : ESSURE	SCELLMICOS INFORMATION OPIFICE DIANETER: 6 992 EINJ ORIFICE BETA: 0 497 OTH: AREA: 107 510 EINFOJ ATH: PPESSURE: 30.08 EINHGJ	107 510 EIHED
9 8	~	DFOR	108	TOR TUPT	8 8 8	1 40 4	PSEC	PTER	SECONDARY AREA	AREA	TERTIARY AKEA	AKEA
	IN OF' H20	H20	90	DEGREES		=	IN OF H20		SOURRE INCHES	SHES	SOURRE INCHES	HCHES
•	69.	22.		53.2 107.2 67.2	67.2	10 10 10	9	•	****	=	*****	***
ê	SECONDARY 80X	J										••
3	=	:	*	P1/14	PAZTE MITA. 44	4	S I	9	E S	U TANG	UUPT UPT MACH	•
						LBM/SEC	LBH/SEC LBH/SEC FT/SEC	FT/SEC	FI/SEC FI/SEC	/SEC		••
:	•	.	. 9294		****	3 7698		179.39	***** 71.76 0.961	71.76	190 0	
Ě	TERTIARY BOX									•		
=======================================		=======================================	111	PT\$/TT\$	TTB PTS/TTF NTETT-, 44	# # * * * * * * * * * * * * * * * * * *	13	JU.				
						LON/SE	LON'SEC LON'SEC FT/SEC	FT/SEC				

COMMENTS

TABLE 8 - PCD DATA FOR 15/00 NOZZLES WITH L/D=1.75 MSD COMPARISON BASE PLATE FIXED AT 000 ROTATION

1 states 0.0000 6.9294 6.0000 attata attata attata

38	DATA TAFEN ON		3 AUG 81	5 AUG 81 C C DAVIS	-	HOZZLE F	HOZZLE AHZAP AREA PATIO:	A PATIO:	2.50	COMPRHISON OF	COMPRESS OF ROTATION ANGLES
Z 10 1 %	LENGING SINCK LENGING DIANETER: L/D PATIO: S/D PATIO:		if ORM	INFORMRIION - 20-48 11 - 70 11 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 - 75 1 1 1 - 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C 183 C 183	PRINHRY TILT F ROIGHT BRER F HUMBER	IHMRY NOZZLE INFORI Tilt Angle: Rotation Angle: Area Per Nozzle: I Number of Nozzles:	PRINHRY NOZZLE INFORMATION: TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: 10 752 EIN23 NUMBER OF NOZZLES: 4	COECJ CDECJ CDECJ CIRZJ	MISCELLAMEDUS INFORMATION: ORIFICE BEIN: 6 497 UPTAKE AREN: 167 519 ATM. FRESSURE: 38 68 E	INFORMATION: METER: 6.962 EIN3 A: 0.497 . 107.510 EIN23 RE: 30.00 EIN4G3
z	POR	٩	DPOR	108	TUPT	1918	PUPI	PSEC	PTER	SECONDARY AREA	TERTJARY AREA
202	1N 0F		H20	90	DEGREES	u .	=	1H OF H20		SQUARE INCHES	SQUARE INCHES
-	•	N	22.0	7 · 80	107.3	67.4	6.25		9 0 · 0	**	***
SEC	SECONDARY BO	×									
=	*	•	ï	=	P#/1#	PECTE HETC. 44	4 H P	S	9	UN UUPT	UPT MACH
20	_						L.BM/SEC	LBM/SEC LBM/SEC FT/SEC	FT/SEC	FT/SEC FT/SEC	
-	*****	•	1 2884	B. 9296	9887 8.9296 9 8887		3.7702	statit 3.7702 1.9012 179.44	179.44	. sestat 71.78	
166	TESTIARY BO)	×								,	
2	414	•		***	PT#/TT#	PTECTIS HISTIC, 44	. 44 KH	H	3 0	÷	-
2	•					•	. LBM/SEC	C LBM/SEC FT/SEC	FT/SE(•	. 2 5
-	******		:	. 926.	0.0000 0.924 6.0000		*** ***	****** ****** ****** *****	****		

TABLE 9 - PCD DATA FOR 15/00 NOZZLES WITH L/D=1.75 MSD COMPARISON BASE PLATE ROTATED TO FIRST PEAK ONLY

MSD DATA FOR 15/10 NOZZLES WITH L/D=1.75 MSD COMPARISON BASE PLATE ROTATED TO FIRST PEAK ONLY TABLE 9.1

CRIP INTEN ON	THE EN ON		5 AUC 31	*	NOZZLE AH AF AREA PATIO	AF AREA	PA110	2 50	COMPAPISON OF POTATION ANGLES	Flon Augles
MIXING STACK LENGTH DIMHETEP: L/O RATIO: \$/D RATIO:	166 : 410 : 410 :	<u></u>	11 CRANTION - 20 46 20 46 11 70 11 70 11 75 11 7	223	PRIMHRY MOZZLE INFORMATION ILL ANGLE: 15 C. ROTATION ANGLE: 0 E. REEM PER HOZZLE: 10.752 E. HUMBER OF MOZZLES: 4	11487 HOZZLE INFOPHATION: TILT ANGLE: 15 EDEGI ROTATION ANGLE: 0 EDEGI RREM PER HOZZLE: 10.752 EINZI WUMBER OF HOZZLES: 4	FORMAT10	10N: 15 [06G] 92 [182] 4	MISCELLANEOUS INFORMATION: ORIFICE DIANETER: 6 902 ORIFICE BETA: 0.497 UPTAKE AREA: 107 510 ATH PRESSUPE: 30 00 E	RMFION: 6 902 CIN3 6 497 167 516 CIN23 36 66 CINMGS
•	· ·	S C C C C C C C C C C C C C C C C C C C	TGR TUPT	1 0 P T	1988	PUPT	PSEC IN OF H20	9 83 84	SECONDARY AREM TEL SQUARE INCHES SQ	TEKTIARY AKEA Souare inches
1 0.69		22.0	93.0	93.0 107.4	97.6	6.25	16 · 6	•	## 14 M M M M M M M M M M M M M M M M M M	**
SECONDARY BOY	68 Y 80	× .	*	F × 1 &	P\$ / T# 841 44	3	%	5	TAU TANN MU	UPT NACH
2			0.9290		LBM/SEC LBM/SEC FT/SEC 0007 0007 000700 0007 000700 0007 000700 0007 00070000 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700 000700000 000700000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 0007000 000700 000700 000700 000700 000700 000700 000700 000700 00070000 000000	18H/SEC 3 7705	LBM/SEC LBM/SEC FT/SEC 3 7705 1.3008 179.49	FT/SEC 179.49	F1/SEC F1/SEC	29
TERTIARY BOX	; •	×				•			/ . 	
2	#1#	Ë	***	P11/118	HH 64 - 1141H 411-414 411	44 . MM . 44	NA NT UE.	UE C FT/SEC		
# ·			9298	9590 0 0000	***	****** ****** ****** ******	*****	* ****		-

TABLE 18 - PCD DATA FOR 15/88 NOZZLES WITH L/D=1.75 MSD COMPARISON BASE PLATE ROTATED FOR PEAKS AT EACH X/D POSITION

MSD DATA FOR 15/80 NOZZLES WITH L/D=1.75 MSD COMPARISON BASE PLATED ROTATED FOR PEAKS AT EACH X/D POSITION ı TABLE 10.1

AXIAL DISTANCE CL/D3

TABLE 11 - PCD DATA FOR 15/10 NOZZLES WITH L/D=1.75 STACK

	_\$,									
s 31	N 02 CIN3 97	JERTIARY ABEA	INCHES	1 4 4	**	****	*****	*****	****	****	***									•	•					
ZZ0N	6.902 6.902 9.497 17 510 E	11ARY	J J	******	111111	111	4 4 4 1	* # #	* * * .	* * *	* * *			насн				N	N (7.	<u>.</u>			- :		
NO 1	TER:	TERI	SOURE											UPT			8.052	9	9	5	9	9 (9 (
ROTATION NOZZLE	CE DISME LCE DISME LCE DETA: KE BREB: PRESSURE	E	9											UUPT		Ç E		. 47	. 22	2.2	9	96	30	96		
	ANEO LCE D SCE B AE AR	6 ≻-	INCH	000										Š		FT/SE		3 72.								
COMMENTS: 15 TILT/10	MISCELLANEOUS INFORMATION ORIFICE DIANETER 6.902 ORIFICE BETA: 0.491 UPTAKE ARER: 107 510 ATM. PRESSURE: 30 12	SECONDARY AREA	SQUARE INCHES	6	- 0	80	100	88	201	245	**			2		F1.5EC	72 8	83 83	91.3	100.8	107.6	6 111	112.4	111.3	***	
.56		PTER		00	9 0	9 6	9 6	9 6	9 6	•	•			٩		/SEC	00	161.16	40.	55	. 83	. 8 ·	7.4	9.73	9.66	
8	108: 15 FD 18 FD 52 FI	ā		6	•	6	6	6	•	•	•			7	•	F	192	161	186	180	521 1	179	175	179	1	
PAT10:	## # # # # # # # # # # # # # # # # # #	PSEC	H20	19	2 1	000	9	2 0		4	9			9	6	18M 'SEC	8000	6359	0751	609	. 0154	. 243	. 275	2.212	9.046	
	INFORI	•	1N OF	E)	C4 -	- 0		•			-							2								
AP APEA	m 240	PUPT		3.43	4.25	4 i	0	0			2 7 9			9	Ì	LBM/SEC	. 273	39	3 760	3 769	3.762	3.762	3.761	3.76	3.7591	
BM/BP	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•		•	+	•	•	De (.	.	ń 4			;	*	~	900	2022	721	414	561	1783	868	17.05	****	
HOZZLE	PRIMBRY TILT A ROIATI ROMBER	1881	L	7	71.4	7		~ (- (77	2 2	•		;	PE/TE WEI/.44		4	9 9	•	•						
2				•	•	a	4	ر د د	~	7	N 4	•		1	*		,	0 0 0 0		900		1000	E 9 1 0			i i
	CHID	101	DEGREES	=	-	=	=	=	-	6 -		•			2		•	•	9 4	•	9 6	•	•		, •	•
AUG B1 C. DAVIS	FORMATION: 20.48 11.78 11.78 8.50	106	5	6 Z		36.4	4.95	26.0	26.4	2.95	36.2				*			9356			700					
79	S E E	*	0							•	•	•			_			591						701		
- O	=	0	#5								22		• ,	X C B	=			•	~ '	4 ·	- '		•	•	•	
E11 0N	TACK 1: 1ER 1710:	ىو	11 06	4		29	9.2	9.	9 2	0.2	9.	•			=			9	1634		~		6. 6.	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,, ,	
I TAYEN	LENGTH: DIAMETER L/O RATI	90	_					•			•	•		SECONORRY	-		•	•	•	•	•	•	•	•		
0A1A		*	30	•	- ~	P)	4	n	•	~	•	•		9E (z	1		-	~	-	•	er '	•	•	• (N

TABLE 11.2 - MSD DATA FOR 15/10 NOZZLES WITH L/D=1.75

ROTATION PMSt	96 -8 220	9	8			9			PLATE ROTATION		# - FDOS . 8. COD. 4	:	•	•	200	
XZO PRESSURE CIN H203	10°	.25 -8.	8	75 -8.	2	9-	8		•	5 6 5 1	000		3 4]s:	
	•	_		_												
PNSA	- 6 298		-	•		440		18UT 10N		-			··	CATA		
ROINTION PHSA EDECA	ç	•	9	9	9	,		URE DISTRIBUTION					, = =	BING . W. 504-1	2	s .
	96	9-						AZIAL PRESSURE DISTRIBUTION		0	6.2			# - 60d-#	2	s .

MIXING STACE DATA FOR RUN 9

DA18			STORU J	2	NOZZLE ANJAF APER PATIO!	AP APER	PAT10.	20.2		
BAIN THE STREK IN CONTROL OF THE STREET IN CONTROL OF THE CONTROL	IN INTENDED STACK LENGTH STACK LENGTH STACK LO PATIO:				PRIMARY HOZZLE INFORMATION TILT ANGLE: 15 ROTATION ANGLE: 20 AREA PER HOZZLE: 10 752 NUMBER OF NOZZLES: 4	INARY NOZZLE INFORMI TILF ANGLE: ROTATION ANGLE: AREA PER NOZZLE: 10 NUMBER OF NOZZLES:	15 18 752 ES:	rdegy roegy ringy	MISCELLANEOUS INFORMATION ORIFICE DIAMETER 6.90 ORIFICE BETA 6.49 UPTAME AREA 197 510 ATA FRESSURE 30 12	19F DR BATTO: 1 1
	•	6	100	. Idul	TANB	PuPT	PSEC	PIER	SECONDARY AREA	TERTIARY AREA
- }	10 A		30		Œ.	I	OF H20		SQUARE INCHES	SQUARE INCHES
			•	9	9 02	3,25	3.11	8.88	800.0	
-	69 6	55 5-7 5-7	7 95	9 9	72.2	4.15	2.55	9 9	25.133	****
	, e 2		52.0	1.0.4	72.6	4 1 00 4 00 6		90	59.265	
_	0 ~		55.0	0.011	4.21	e e e e e	# P	60.0	100 231	
	69		9.0	2.6		6.13	6.22	86 8	158.796	
19	69 0	22.0	25.2	2 0	7 22		91.0	60.6	201.862	***
~	92	22.0	0 4		72.4	6.23	9.12	•	*****************	****
••	200	22.0	26.2	120	7.2.	9 E 9	9 0.	9 9 9	6 6 6 6	
SECO	SECONDAP! B	80X				:	91	9	UM UUPT	UPT MRCM
3	3	#	# 1	F1/14	F# / L# H#1 / 44	Ì	n E	5	4	
•	i					LBM/SEC	LBM/SEC	F1-5E6	FINSEC FINSEC	
*							9 9999	181 20	72 48	
-	8000		•	_			6338			9 9
2	E 023 8	6 3548 4 2 2 4 8	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. •	•	• •	0310	89 68	10.69	0
m 4	1467		•	Ö	•	3.7636	9000	179.95	197.67	_
P 10		•	9	0	6.5133			179.97	115.04	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
•	3649 0	•	9337	7 W. W. S.	•	Pi	(4)	179	129.16 72.96	•
<i>-</i> ۹	7571	0.0213	-	•			2.8347	179. PX	*****	9
• •		•	•	7 · · · ·	******* 9	•	•			-

TABLE 12 - PCD DATA FOR 15/20 NOZZLES WITH L/D=1.75 STACK

299

719 010 790 790 365 385 315 ----

-0 313 -0 129 -0 129 -0 196 -0 073

PHSI

ROTATION CDEG3

PRESSURE EIN H201

o/x

PMS#

ROTATION CDEGS

PRESSURE EIN H203

0 /x

MIXING STACK DATA FOR RUN

TOP (POSITION 'A') DATA:

DIRCONAL (POSITION '8') DATA:

*\$4

23

- VTD DATA FOR 15/20 NOZZLES WITH L/D=1.75 STACK 12.3 TABLE

1140	DATE THE BOY C C. DAULS	ë =	÷ ÷	2	300	81 8015		Ī	1220	E 33	Ŷ.	AREA	R 25	NOZZLE AM'AP AREA RAIIO:	2 . 50		CONMENTS: 15 TILT: 25 ROTATION / 5 S/O RATI	15.0 1.25	ROTAL	1011	S S	•	RATI
NIXI LE	MIXING STRCK INFORMATION - LENGIN - 20.48	BCK.	=	IF 01	RHAT 2	101	AT108 20 40 E1N1		RINH TIL	INAKY HOZZLI Tilt Angle: Potation An	022L GLE:	a.	FOR	PRIMARY HOZZLE 11.FORMATION: Tilt Amgle: 15 C. Rotation Angle: 25 C.	10N: 15 COEG3 25 COEG3		MISCELLAHEOUS INFORMATION: Orifice Diameter: 6.902 Orifice Beta: 6.497	L AIGE	SCELLAHEOUS INFORMATION: Orifice Diameter, 6.902 (IN) Orifice beta:	IFORMI	A 1 1 0	. 05 . 07 . 07	CHI
: `	L/0 FAT10	0			•	73		_	3.5	A PE	2)22LE	- 1	AREA PER HOZZLE: 10 752 [112]	C 1112		UPTA	4	REA	8	18.	8	1112
÷	.0114 0/8	<u>.</u>				0	_		Ž	2 W	٠ -	NUMBER OF HOZZLES.	Š	•			E E	₩ œ È	ATM FRESSURE.		50 50 50	<u> </u>	29 92 CINNG
3	9		3	CF OR		108	1001	4	TAMB	9	PUPT	-	PSEC	Ę	PTER		SECONDARY AREA	æ ⊁.	REA	TERTIARY AREA	19 8.	æ	E
20	Z	40 +	Ĭ	H20		ō	DEGREES					=	OF H20	N 2 O		•	SQUARE INCHES	1110	8 3	80 008 1110468	1 3 d	HCH	8 3
-	. 7	_	ä	-		~	110	٠	9	•	17	52	m	91	99.0	_	•	9 0 9 9			******		
~	~	_	Ň	22.0		~ ~	110	٠	63	•	4.13	5	~	21	0 00	_	12	12.566				******	
m	•		Ň	2		œ ~	110	؈	69	~	•	9	_	66	90.0	_	25	133				••••	
•	2	•	Ň	2.2		2.	110	٠	70	N	'n	ţ	•	89	9 0.0	_	98	265			****	=	
n	9.79	•	N	22.1		58.6	111.2	N	9 02	9	56.50	50	•	9.34	90	_	601	531			******	=======================================	
•	7	_	Ñ		<u>.</u>	9	111	•	10	٠	•	•	•	61	9 . 6	_	150	150.796		•	*****	Ξ	
~	~	_	Ň	22.4	<u>.</u>	58.0	===	N	2	•	9	5	•	E 1	•		201	201.062			***	******	_
•	~	•	N	2.0	ñ	2	===	4	2	؈	•	23	•	47	9	_	243	. 0 4 4			***	******	_
•	7.		Ň	~	ซ	•	111	~	7.0	.	•	9	•	63		_	* * *	*****	_		***	******	_
											•												
SECI	SECONONPY	¥ .	X S S																			•	
																			;				

ECO	SECONONEY	×oa ≻	×												-
•	=		*	,-	:	P 1 / 1 4	H41~ 44	4	HS	40	Ma	UUPT	UP I	HBCH	
Z,								LBH/SEC	LBH/SEC LBM/SEC FT/SEC	FT-SEC	FTXSEC	FT/SEC			
_	000	9 90	6914	•	956	9.4591	3666	3 7536			72 82	72.82		791	• •
•	21 8	0 20	5633	•	1356	0 3237	9+91	3.7451			83 86	72.50			
_	98 0	87 0	2169	0	9274	9 2339	2793	3.7430			91.64	72 35		291	
_	. + 3	4364 0	1214	•	9292	9.1366	0 4167	3.7536	1.6156	181.05	101.33	72.43	0.062	162	
_	**	26 0	. 0466	•	9269	0.00	3512	3.7435			168.04	72.31		162	
_	6 53	95	. 9261	•	9286	0.0281	5793	3.7401			112.22	72.14		231	
_	.63	97 0	. 0179	•	9269	6.0192	6367	3.7422			116.34	72.15		362	
_	D. 10	-	.0196	•	9886	0.0.0	5712	3.7415			111.67	72.15		162	
_				•	0.9292		***	3.7422			*****	72.13		795	

TABLE 13 - PCD DATA FOR 15/25 NOZZLES WITH L/D=1.75 AND S/D=0.5 STACK

303

TABLE 13.2 - MSD DATA FOR 15/25 NOZZLES WITH L/D=1.75 AND S/D=0.5 STACK

- VTD DATA FOR 15/25 NDZZLES WITH L/D=1.75 AND S/D=0.5 STACK 13, 3 TABLE

TABLE 14 - PCD DATA FOR 15/25 NOZZLES WITH L/D=1.75 AND S/D=0.4 STACK

TABLE 14.2 - MSD DATA FOR 15/25 NDZZLES WITH L/D=1.75 AND S/D=6.4 STACK

VTD DATA FOR 15/25 NOZZLES WITH L/D=1.75 AND S/D=0.4 STACK ı TABLE 14.3

9	~ ~		-	~	
RUTATE/0.25 S.D.RATIO	HFORMATION: TER: 6 962 E1N3 0.497 107 519 E1N23	TERTIFFY RPER		UPT HRCH	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
COHMENTS. 15 TILT/25 ROTA	HISCELLAHEOUS INFORMATION: OFFICE DIGNETER: 6 902 OFFICE BETA: 0.497 UPTAFE AREA: 107 510 F ATH PFESGURE: 23 99 CI	SECONORFY AREA SQUARE INCHES	**************************************	UM UUPT	72.60 72.64 83.79 72.44 91.46 72.31 100.07 72.21 109.19 72.48 8888 72.48
2 50	N. COEGJ CDEGJ CIEGJ	7		11P FT × SEC	181 181 180 180 180 180 180 180 190 190 190 190 190 190 190 190 190 19
AN/AP APEA RATIO:	ZLE INFORMATION E: 15 Angle: 25 HOZZLE: 10.752 HOZZLES: 4	7 PSEC 18 OF H20	25 2 3 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	HP HS	3.7495 0.0000 3.7483 0.6380 3.7473 1.6752 3.7466 1.3632 3.7544 1.0480 3.7629 2.0578
NOZZLE AH/AP	PRIMMRY NOZZLE INFORMATION TILT ANGLE: ROTATION ANGLE: AREA PER HOZZLE: 10.752 HUMBER OF HOZZLES:	TAMB PUPT	00000000000000000000000000000000000000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000000000000000000000000000000000000
z		1961		11/14	9 3233 9 2338 9 2338 9 2338 9 8 224 9 9 7 2 2 4
13 AUG 81 C.C. DAVIS	26.40 26.40 11.70 11.70 10.00	10R			9 9 2 5 7 5 6 9 9 2 5 7 5 9 9 2 5 6 9 9 2 5 6 9 9 2 5 6 9 9 2 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	INFORMATION 28.4 11.7 17.0 2.2	0F0F		× v	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
TAKEN ON	LENGIN. LENGIN. BIANETER. L/D PATIO. 6/D AATIO.	707 E		SECONDARY BO N Ms PUN	00000 01000 0000 01000 0000 0000 0000 0000 0000 0000 0000 0000
DATA BATA	T C C C C C C C C C C C C C C C C C C C	2 3	N M T 89 W F	3	- 11 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18

The second of th

TABLE 15 - PCD DATA FOR 15/25 NOZZLES WITH L/D=1.75 AND S/D=0.25 STACK

.

311

- VTD DATA FOR 15/25 NOZZLES WITH L/D=1.75 AND S/D=0.25 STACK 15.3 TABLE

EGREES F 1117 ANGLE: 111 ORNATION: 2.50 15 1117 ANGLE: 115 ORNATION: 15 CDEG3 112.0 72.2 3.25 3.11 0.00 113.2 72.4 4.15 2.20 0.00 113.2 73.0 4.15 2.20 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.20 0.13 0.00 113.2 73.0 6.20 0.13 0.00 113.2 73.0 6.20 0.13 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.30 0.30 12.50 0.235 0.00 0.31 7.55 1.00 0.00 12.50 0.235 0.00 0.11 3.7456 1.0794 180 0.00	72.27 72.14 6 72.14 6 72.13 6
HOZZLE RHYAP APER RATIO: 2.50 ISTILT.30 POTATION CHARMED PRINTER PRINT	34 72.27 0 33 72.14 0 62 72.11 0
HOZZLE AH/AP AFEA RATIO: 2.50 15 11LT.30 POIAT IN THIARY HUZZLE INFORMATION: 35 EDEC3 ORIFICE GIAHEN AFEA PER HOZZLE: 10 752 EIN23 ORIFICE BEING AND	34 72.27 0 33 72.14 0 62 72.11 0
HOZZLE AH/AP AFEA RATIO: 2.50 15 11LT.30 POIAT IN THIARY HUZZLE INFORMATION: 35 EDEC3 ORIFICE GIAHEN AFEA PER HOZZLE: 10 752 EIN23 ORIFICE BEING AND	34 72.27 0 33 72.14 0 62 72.11 0
HOZZLE AH/AP AFEA RATIO: 2.50 15 11LT.30 POIAT IN THIARY HUZZLE INFORMATION: 35 EDEC3 ORIFICE GIAHEN AFEA PER HOZZLE: 10 752 EIN23 ORIFICE BEING AND	33 72.27
EGREES F 10FT TAMB PUFT PSEC FIER SE 1112 B 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.0 73.0 6.20 0.13 0.00 113.0 73.0 6.30 0.13 0.00 113.0 73.0 6.30 0.13 0.00 113.0 73.0 1.00	46.22
EGREES F 10FT TAMB PUFT PSEC FIER SE 1112 B 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.0 73.0 6.20 0.13 0.00 113.0 73.0 6.30 0.13 0.00 113.0 73.0 6.30 0.13 0.00 113.0 73.0 1.00	***
EGREES F 10FT TAMB PUFT PSEC FIER SE 1112 B 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.0 73.0 6.20 0.13 0.00 113.0 73.0 6.30 0.13 0.00 113.0 73.0 6.30 0.13 0.00 113.0 73.0 1.00	116.3
EGREES F 10FT TAMB POFT PSEC FIER 112.0 72.1 10 8.00 113.2 72.2 3.25 3.11 8.00 113.2 73.0 4.75 1.59 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.00 0.33 0.00 113.2 73.0 6.20 0.13 0.00 113.2 73.0 6.20 0.13 0.00 113.2 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 6.30 0.33 0.00 113.0 73.0 1.00 113.	
EGREES F 112.8 73.4 4.15 2.2 3.11 113.8 73.9 6.19 113.8 73.9 6.19 113.8 73.9 6.29 113.8 73.9 6.29 113.8 73.9 6.29 113.8 73.9 6.29 113.8 73.9 6.29 113.8 73.9 6.29 113.8 73.9 6.29 113.8 73.9 6.29 113.8 73.9 6.29 113.8 73.9 6.29 113.9 73.9 6.39 113.9 73.9 6.29 113.9 73.9 6.29 113.9 73.9 6.29 113.9 73.9 6.39 113.9 73.9 6.39 113.9 73.9 6.39 113.9 73.9 6.39 113.9 73.9 6.39 113.9 73.9 6.39 113.9 73.9 6.39 113.9 73.9 6.39 13.9 73.9 6.39 14.8 4521 0.8000 3.7415 0.6000 14.8 7523 7.15 0.6000	
EGREES F 1117 ANGLE 1117 ANGLE 112.0 72.2 3.25 113.2 72.2 3.25 113.2 73.0 4 75 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 73.0 73.0 113.0 73.0 73.0 73.0 113.0 73.0 73.0 73.0 113.0 73.0 73.0 73.0 127.0 0000 3.751	8 8 8 8
EGREES F 1117 ANGLE 1117 ANGLE 112.0 72.2 3.25 113.2 72.2 3.25 113.2 73.0 4 75 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 73.0 73.0 113.0 73.0 73.0 73.0 113.0 73.0 73.0 73.0 113.0 73.0 73.0 73.0 127.0 0000 3.751	2337
EGREES F 1117 ANGLE 1117 ANGLE 112.0 72.2 3.25 113.2 72.2 3.25 113.2 73.0 4 75 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 6.00 113.2 73.0 73.0 73.0 113.0 73.0 73.0 73.0 113.0 73.0 73.0 73.0 113.0 73.0 73.0 73.0 127.0 0000 3.751	700 m
10PT	# # # # # # # # # # # # # # # # # # #
10PT	9 m m m
10PT	# = 5.0°
10PT	8.5276 8.5276 8.6381 8.5911
10 PT	
N	0280
	U D D D
	9 20 20 20 20 20 20 20 20 20 20 20 20 20
	0000
NATIONAL X NAUVEN NA	103
	23.25 23.52 23.56 25 25 25 25 25 25 25 25 25 25 25 25 25
134 FEE	
22600	
THE THE THE PROPERTY OF THE	

TABLE 16.1 - PCD DATA (CONT) FOR 15/30 NOZZLES WITH L/D=1.75 STACK

TABLE 16.2 - MSD DATA FOR 15/30 NOZZLES WITH L/D-1.75 STACK

WING C.W. HOLLISON WOL			•								
×	1 I	PPESSURE EIN MAGI	ROTATION COEGS	PHST	×	0 ×	FRE	PRESSURE Ein H203	ROTATION Edeca		PHS#
6	7	0 + 1	96	-8.294	•	9	7	838	96	6	252
52		150		-0.158	•	25	9 1	983	8	9	-0.136
			=	~	•	90	9	. 905	£1	0	125
2	•	9+4	24	-	•	7.5	•	675	24	•	893
9	•	695		960.0-	_	90	9	475	8-1	9	963
	7		22	•	=	25	•	395	22		954
	•	828	8	6.003	-		9	202	58	•	. 929
	39.			, -			1405	BASE	PLATE ROT	ROTSTION	NG
	2 2					2303	— —.	•	. 504-#	 Œ Ø	0818
	2 0	•	3 34	••		HOIT					
7	67	• ►	4-P0S . 9.	00 T & 0		A T O		•	•	•	_
		20	7	95		-		22	98	SE	82
	ê		OTSTANCE FO						1	, 1	1
	Ē		- 1	, ca,		ل		AXIRL	AXIAL DISTANCE EL/DI	1	-

TABLE 16.3 - VTD DATA FOR 15/30 NOZZLES WITH L/D=1.75 STACK

6.140 6.140		7F1 ER		2.0	17 AUG 81 C.C. DAVIS		NOZZLE AH AP		AREA KATIO:	2.56	COMMENTS: 20 TILT/10	ROIA	ROTATION:0	0 /0
		2 200	*	MF OR	INFORMATICH- 28-48 11-70 1-70 1-70 1-70 1-70		PRINGRY NOZZLE TILI ANGLE: ROTATION ANGL APER PER HOZZ HUMBER OF NOZ		INFORMATION 20 E: 10 752 21E5: 10 752	COECT CDECT CINZT	MISCELLANEOUS INFORMATION ORIFICE DIGHETER 6 99 ORIFICE BEIR 9 49 UPTRE AREA 187 519 AIM PRESSURE 29 96	OUS INFOR DIAMETER, BETA, REA, 3	HFORMAI TER: 1	6 992 EIN3 6 497 518 EIN23
I	3	•	٥	POR	108	1101	TARE	PUFT	PSEC	PTER	SECONDARY AREA	# #	TERTI	TERTIARY AREA
104		2		H20	ā	DEGREES	•	=	OF H20		SQUARE INCHES	E 8	800AP	SSUAPE INCHES
- ~ !	9	92	~ ~ (22.1	20 20 1 20 40 1 20 40 1		67.4 67.4	W 4 1	3 92	99	996.6		-	******
→	•		W CV	• A	8 . 4 88 . 4	90.000		0 0 0 0 0 0	# = # # # # #	0 0 0 0 0 0	25.133		* =	*****
,	• •	9 2 9 2 9 4	~ ~	- 4	55.6	169.2	67 4 67.6	6.25	6.32	9	100 001 100 796		**	******
~	•	2	~	7.	34.4	109		\$. \$.	4.62		***		*	****
8 E.C.	SECCHDARY	A A	×				,							
I	*	=	•	*	=	PA-14	N#1 ~ 14	4	118	a. O	ún un	U. TAUU	UPT HACH	.
# C #	_							LBMSEC	LBH/SEC F	235.13	FT/SEC FT/SEC	EC		
	000000	0-0-10-10-10-10-10-10-10-10-10-10-10-10-		4057 2015 2015 1112 0429		6.4378 6.2019 6.0019 6.0019 6.0019 6.0019 6.0019			00 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1551.82 1881.25 1890.62 1899.98 1899.96	2000 2000 2000 2000 2000 2000 2000 200	12000 10000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1		•

TABLE 17 - PCD DATA FOR 20/10 NOZZLES WITH L/D=1.75 STACK

TABLE 17.3 - VTD DATA FOR 20/10 NOZZLES WITH L/D=1.75 STACK

321

上 2 人

TABLE 18.2 - MSD DATA FOR 20/20 NOZZLES WITH L/D=1.75 STACK

			EE 752.1
-	PHS#	20000000000000000000000000000000000000	1 1
ATA	ã	G G G G G G	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIRGONAL (POSITION '8') DATA	8078710N CDE63	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	PLATE 0-96
POSIT	PRESSURE CIN H203	600 600 600 600 600 600 600 600 600 600	8 • 25.
HAL	PRES CIN		E3303 H011A108
B 60	×	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	PHS		#0 00 67. 1.00 FT. 1.00 FT. 1.
DATA.	ROTATION CDEGN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TOP (POSITION 'A') DATA			2 0 = 92 2 0 = 92
(P05111	FFE		
-	D/X		

TABLE 18.3 - VTD DATA FOR 20/20 NOZZLES WITH L/D-1.75 STACK

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	78.4 4.3 78.6 6.1 7.2 6.2 7.7 7.2 6.2 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	THERY NOZELE INTOR TILL ANGLE: AREA PER NOZELE: ANCHBER OF KOZELES: NUMBER OF KOZELES: ANCHBER OF HOZELES: ANCHBER OF HOZELES: A		ATION (20) DECIDED 3 DECIDED 3 DECIDED 3 CO C C C C C C C C C	SECONGARY AREA TERTIARY B SECONGARY AREA TERTIARY B SOURE INCHES SOURE INC B 000 RATATA 12.566 RATATA 12.566 RATATA 12.566 RATATA 12.566 RATATA 12.566 RATATA 12.566 RATATA 12.566 RATATA 12.566 RATATA 12.566 RATATA 130.266 RATATA 14.4444 RATATA	INFORMATION - METER - 6.902 EINI - 107.510 EINES FETTING AREA SQUARE INCHES ###################################
SECONDARY BOX	9	;			. 9	0	9	,	I O O I O
-	u. 0.	*	*	***	SEC	SEC	F1/SEC	ر 1	
	6.4123 6.2976 6.2136 6.1174 6.6459	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 . 2 . 2 . 2 . 3 . 4 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3		W W W W W W W W W W W W W W W W W W W	6.0000 1.00000 1.00000 1.00000 1.00000 1.00000	1881 31 1881 93 188 76 188 24 199 24	72.53 72.53 63.72.72.42 91.45.72.31 199.51.72.18 167.47.72.18	66522666666666666666666666666666666666

TABLE 18 - PCD DATA FOR 20/30 NOZZLES WITH L/D=1.75 STACK

600	€ €	TAKEN ON:	ā á	÷ ;	DATA TAKEN ON: 19 AUG 81 Data taken OV: C.C. Davis		NOZZLE A	NOZZLE KM/AP AREA RATIO:	A RAT10.	2.58	COMMENTS: 22.5 TILT/10	COMMENTS. 22.5 TILT/10 ROTATION/PCD
2 2 3	600 600 600 600 600 600 600 600 600 600	KING STACK CHENGIN: CLOBARTER: CLO RATIO: 8/0 RATIO:	¥ .00	IN FO	MIXING STACK INFORMATION: LENGTH: DIAMETER: L/O RATIO: 8/D RATIO: 0.50	C C C C C C C C C C C C C C C C C C C	PRIMARY NOZZLI TILT ANGLE. ROTATION AN AREA PER NO. NUMBER OF H	IMARY NOZZLE INFOR TILT ANGLE: Rotation angle: Area per Nozzle: 1 Number of Nozzles:	FORMA1 22 22 18 7	10N -	MISCELLAHEOUS INFOR- ORIFICE DIAMETER: ORIFICE BEIN- UPTAKE AREA:	MISCELLANEOUS INFORMATION ORIFICE DIAMETER 6 962 EINJOHFICE BETA 6 497 UPTAKE AREA 107 510 EINZJAME 30 12 EINGZ
2		6		DPOR	108	TUPT	1 2 3 4	Pupt	PSEC	PTER	SECONDARY AREA	TERTIARY ARES
2	_	I	6	H20	90	DEGREES	L	Z.	OF H20		SOURRE INCHES	SQUARE INCHES
- (2.0		22.1	69.2	113.4		4.10	20.0	88.	969	****
4 19				22.1	 		9.09.	6 . V	2 . 61	9 6	12.566	*****
•		. 7		21.9	7.09	114.0		3.93	8 2 8	89.6	50.265	***
D		2		22.2	60 . v	113.0	71.4	9.43	9.30	00.	100.531	****
• ^				22.1	7.0	9.5	21.2	9 9 9	 	9 6	150.796	****
•				:	;						•	**************************************
98	Š	SECONDARY	×	×								
I		=		:	*	P1 / 14	PA/TE MATA.44	9	MS	9	UM UUPT	UPT MACH
2	z							LBM/SEC	LBM/SEC	F1/SEC	FINSEC FINSEC	••
- 0		9000	••	3965	6.9257 6.9257	8.4283 8.2952	00000	3.7553	00000	181.72	72.69 72.70	9 6 662
•	_	0 2740		1945	•	0.2103	•	3.7538		181.11	90.75 72.45	
4 10	_ •	6.4856 6.4995	• • • n	1070	0.9254	6.1156 6.0440	6.3926	3.7375	1.5161	196.16	99.63 72.64	0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0
•	_	3635		0.0232 0.0007	• •	0.0251	•	3.7546	2.1233	180.58		

TABLE 20 - PCD DATA FOR 22.5/10 NOZZLES WITH L/D-1.75 STACK

TABLE 21 - PCD DATA FOR 22.5/20 NOZZLES WITH L/D-1.75 STACK

TABLE 21.1 - PCD DATA (CONT) FOR 22.5/20 NOZZLES WITH L/D=1.75 STACK

- PCD DATA FOR 22.5/25 NOZZLES WITH L/D=1.75 STACK 2 TABLE

00 00 00 00 00 00 00 00 00 00 00 00 00	DATA TAKEN ON: 20 RUG 81 Data taken 87. C.C. Davi	K: 20	20 RUG 81 C.C. DAVIS	_	MOZZLE AP	MOZZLE AN/AP APER RATIO	RATEO.	2.50	COMMENTS. STRAIGHT MOZZLES CAL L/D=1.5	3772	CAL L	8 1 0	
# CE 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MAXING STACK INFORMATION: LENGTH: DISHETER: L. OR RATIO: B. CO. BATIO: B	20 12 1	- 20 HE A	E E E E E E E E E E E E E E E E E E E	PRINGRY NOZZL TILT GNGLE: ROTATION BN SRED PER NO HUMBER OF N	INGRY NOZZLE INFOR TILT ANGLE: ROTATION ANGLE: AREA PER WOZZLE: 1 NUMBER OF NOZZLES:	PRINGRY HOZZLE INFORMATION TILT ANGLE, ROTATION BNGLE, BREA PER HOZZLE, 10.752 HUMBER OF HOZZLES	r. roegj roegj ringj	MISCELLANEOUS INFORMATION ORIFICE DIAMETER, 6.99. ORIFICE BETR, 9.49 UPTAKE ARER, 197.519 ATA. PRESSURE, 19.96	US IN IAMEI ETA: ETA: SURE:	16.8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FHATION: 6.902 EINJ 9.497 197.519 EINEJ 30.96 EINHGJ	
2	404	0.00	108	1001	1818	PUPT	PSEC	PTER	SECONDARY AREA	E	1ERT 186	TERTIARY AREA	
101	10 11	H20	30	DEGREES	10-	=	0F H20		SOURE INCHES		SQUARE	SOURRE INCHES	
•	. 70	22.1	37.6	110.4	9.99	3.25	3.25	86.6	99.		*	****	
. ~	0.4	21.9		9.011	99		7 7	9 6 9 6	12.366			******	
n	0.4	7.22			9.00		- 6		50.265		**	******	
• 1		. 22			9.9	9 0 9	0.27	90.	166.531		*	****	
n v		2			9.99	6. 63	. E.S.	• •	156.796		# (# (***	
•	. 7	22		111.	67 . 0	6 . 28	<u>.</u>	.	# # # # # # # # # # # # # # # # # # #			*	
\$EC(SECOMBARY BOX	×			•								
z	*		#	P#/11	P\$/1\$ H\$T^.44	3	H.S	a n	UN UUPT		UPT MACH	_	
22						LBM/SEC	LBM/SEC	FT/SEC	FT/SEC FT/SEC	ت ت			
•	6	4747	4 6 9 2 5	4721	999	3,7609	80000	181.54		72.62	9.862		
- ~	1684	8.2987	_	•	•			188.26		72.11	9.862		
<i>m</i>	0 2790	0.2006	•	0.2174	D.2693	3 7617	1.6493 3.750	186.86	98.95 72.	72.05	9.962		
4 41	4782	6.037	3 0.3220 1 0.9229	•	•			179.46		71.79	199.0	-	
4	0.5254	0.0199	9 0.9229	0.0216	5 0.5872	3.7439	1.9672	179.48 186.26	*******	72.11	290.0	•	
•			•	1									

TABLE 23 - PCD DATA FOR STRAIGHT NOZZLES WITH L/D-1.5 STACK .

335

TABLE 23.2 - MSD DATA FOR STRAIGHT NOZZLES WITH L/D-1.5 STACK

X/D PRESSURE ROTATION PMSS X/D PRESSURE ROTATION PMSS CIN 420 45 -0 134 CIN 420 45 -0 134 CO 25 -0 965 45 -0 134 CO 25 -0 135 CO 25 -0 1

<u>ئ</u>

- VTD DATA FOR STRAIGHT NOZZLES WITH L/D-1.5 STACK TABLE 23.3

00	TAFEN	2 5		23 AUG 81 C.C. DAVIS		HOZZLE A	M/AP ARE	NOZZLE AK/AP AREA RATIO:	2.50	COMMENTS:	POTATION/PCD ONLY
# C C C C C C C C C C C C C C C C C C C	MIXING SIACK LENGIN DIANEER . E.O RAIDO . S.O PATIO .		NF OR	INFORMATION:	C	PRIMARY HOZZLI TILT BNGLE- Rotation An Area Per No Humber of N	IMARY MOZZLE INFORM TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: 10 HUMBER OF NOZZLES:	NOZZLE INFORMATION ANGLE: 10.0 ION ANGLE: 10.752 PER NOZZLE: 10.752 R OF NOZZLES: 4	00. 00. 00.00. 00.00. 00.00. 00.00.	MISCELLANEOUS INFORMATION ORIFICE OFFICER 6.99: ORIFICE BETA 6.49 UPTAKE AREA 107 510 ATM. PRESSURE 30 62	INFORMATION : INFORMATION : 6 902 EINZ 6 497
2	0	•	DPOR	108	TUPT	1 A 10	PuPT	PSEC	PTER	SECONDARY AREA	TERTIARY AREA
2	=	F .	H20	06(OEGREES		Z	1 OF H20		SQUARE INCHES	SQUARE INCHES
•	•		6 61	6	112.2		3,28	91 · E	88.	600.0	*****
- ^		- ~	22.0		112.4			N	90.9	12.566	****
• ~	^	. 14	6	2 9	112.6		4.63	1.36	80.0	25.133	*****
•		, ••	22.1	7.09	112.6		97 6	40.0	80.0	59.265	经 类类性系统
- 47		. 14	22.0	7 .09	0 PI		3.90	0.31	9 .	100.531	特殊性的种
•	7		22.0	+	113.2		6.05	91.0	. 9	150.796	
~	- 2		22.0	9.09	113.4	20.5	6.20	- -	.	***	
SE C0	SECONDARY	×o									
I	=	_	ï	1	P1/14	H\$T^.44	d I	8	9	UN UUPT	UPT MACH
2							LBM/SEC	LBM/SEC	F1/SEC	FT/SEC FT/SEC	٠.
•	6	•	4364	6860	4694	6	3 7575	9 6666	182.16		9
- ~	1783	9	3662	9252	0.3245	0.1648	ניק נ	6.6379	181.01	83.77 72.41	•
•	8.2872	•	2135	0.9249	0.2308	0.2775	3,7320	1.0719	199.34		
•	. 419	•	1114	9249	0.1237			97.0.	90.00		•
•	9.5116	•	0425	9246	9.6409		7	- ''	188 28		•
• ~	48888		700	9246	200		1 7 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100.24	***** 72.1	•

TABLE 24 - PCD DATA FOR 18/18 NOZZLES WITH L/D=1.5 STACK

	CIN3 IHC3 HHC3	æ	-		_								1				
	- % ~ " = =	TERTIARY AREA	SQUARE INCHES	* * *	**		******	*****			•						
PCB	6.902 6.902 6.497 107 510 C	I ARY	18E	******	****	* *		* *		MACH		~	~ ~		_	- N	•
ROTATION/PCD	7. O. T.	TERI	200							UPT M		90.0	9.962	96.	9.861	0.861 0.862	
TAT	73 E C - C - C - C - C - C - C - C - C	æ										m	<u> </u>	9 9	5	. 6. 7.	i
0	ANEOUS IN ICE DIAME ICE BETA: KE AREA: PRESSURE	Y AREA	ICHE 6	8.088 2.566	25.133	265	331 296	**		UUPT	FT/SEC		72.36			2.2	
COMMENTS:	MISCELLANEOUS INFORMATION ORIFICE DIAMETER: 6 90 ORIFICE BETA: 0 49 UPTAKE AREA: 107 510 ATA PRESSURE: 30 03	SECONDARY	SQUARE INCHES	. 28	25.	20.	166.931	****		E 5	FT/SEC (72.82	63.51	00 m	103.88	106.31	- - - - -
2.58	N. COEGJ COEGJ CIR2J	PTER		9 6	9	90.0	9			g.	FT/SEC	182.85	190.87	181.59	186.01	179.92	
RATIO	FORMETION 16.0 20.0 16.732 ES. 4	P S F C	OF H20	B1.6	- S	6.79	6.27	. 0		H S	LBM/SEC	9999	8.6269	1.6541	1.7823	1.9251	C 68 . 1
AP AREA	IMPRY NOZZLE INFORMFILON TILT AMGLE: 10.0 ROTATION ANGLE: 20 AREA PER HOZZLE: 10.752 NUMBER OF NOZZLES: 4	PUPT	=			4.43	S. 90	6.43 6.23		T	LBM/SEC	3 7475	3.7326	4.7504 4.44	24.7.20 24.7.20 24.7.20	3.7298	3.7475
NOZZLE AM/AP	PRIMARY NOZZLI TILT AMGLE: ROTATION AN AREA PER HO NUMBER OF N	1918		70.2	 	70.4	79.6	70.6 70.8		MRT^.44		600	9 1628	0.2715	0.45.0	6.4987	****
ž		_		•	• •	•	•		i	#		6	37	- ;	9 6		<u>^</u>
	C 1 K 3	TUPT	DEGREES	113	7 M	2	113	E : -	•	PAZTA		•		•	0 1 1 0	•	
23 AUG 81 C.C. DAVIS	1XFORMSTION - 1	108	30	8.0	· •	7.09	9.			±		1770	9243	•	0.9258	•	0.3247
	INFORM	DPOR	H20	22.1	21.8	22	21.9	21.9		. :			2996	. 2844	. 1079	619	
32			5						× ×				9 6	•	n		•
TAKEN	MIXING STACK LENGTH: DIGHETER: L/O RATIO: S/D PATIO:	80	I	12.0		7	-	2.7		3			0 1677	•	4075	0.5161	****
00 4 T A D	# P P P P P P P P P P P P P P P P P P P	1	2	-	N F	, 4	,	• ^		=	2	•	- ~	17	~ •	n •	~

TABLE 25 - PCD DATA FOR 18/28 NOZZLES WITH L/D=1.5 STACK

341

1 40 2 40	DATA TAKEN ON: Data taken by:	2 Z Z W W	× × ×	DATA TAKEN ON: 23 AUG 81 Data taken by: C.C. Davis		NOZZLE A	N.AP APE	NOZZLE AH/AP APEA RATIO:	2.58	CONMENTS. 10 TILT/30 POTATION/PCD	TATION/PCD
E × 1010	KING SIACI LENGIN. CLARETER. F/O RATIO S/O RATIO	STACK TH: ETER: RATIO: RATIO:	N FO	BIXING SINCK INFORMATION: LENGTH: DIAMETER: 11.70 L/O RATIO: 6.50		PRIMARY MOZZLITLT ANGLE. ROTATION ANGREM PER HO NUMBER OF N	IMARY MOZZLE INFOI TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: NUMBER OF NOZZLE:	PRIMARY HOZZLE INFORMATION TILT ANGLE: 10.0 ROTATION ANGLE: 30 AREA PER HOZZLE: 10.752 NUMBER OF HOZZLES: 4	2 COECU	MISCELLANEOUS INFORMATION: ORIFICE DIANETER: 6 902 ORIFICE BETA: 60.497 UPTAKE APER: 107.510 ATH. PRESSURE: 30.03 E	INFORMATION: REFER: 6 902 CIN3 R: 0.497 1 107:510 CIN23 RE: 30.03 CINHGS
z	04		DPOR	108	1 401	TAMB	PUPT	PSEC	PIER	SECONDARY AREA	TERTIARY AREA
2	-	I O	H20	90	DEGREES		I	OF H20		SQUARE INCHES	SQUARE INCHES
-	9.72	~	22.3	6 . 4	113.6	9.02	84 . W	3.84	66.60	909.9	****
~	. 7	_	22.2	7 . 9	113.6	70.0	Ø † · †	2 . 01	8 . 9	12.566	****
m ·	•	<u>.</u>	- C	7 (113.0	9	4 i	- 37	9 6	25.133	***
• •			22.7	D 7		9 0	n 10 0 0 0	6 . 7 1 9 . 25	9 0	188.763	
•		7.	22 1	4.09	113.0	71.2	6.28	9.12	99.	150.796	
~	~ .	•	22.0	•	113.8	71.4	6 . 20	10.0	8 0	***	
SEC	SECONDARY BOX	¥ ¥	×			·					
I	=		=	1.	P4/14	PAZTE HETA 44	<u>.</u>	ss I	9.0	UM UUPT	UPI MACH
# D	_						LBM×SEC	LBMSEC	FT/SEC	FT/SEC FT/SEC	
- 0		9 9 9 9 9	0.4053	0.9253	4380	00000	3.7658	0.0000	182.89	73.16 73.16	
m	~	-	1857		0.2007	0.2587	3.7489		181.38	90.47 72.56	. 6962 6.062
∢ :	•		0.0961	•	0.1038	0.3714	3.7588		181.57		•
n •	•	.4751	1910.0	9234	9966	6.4420	3.7489	1.7144	160.09	182.96 72.36	6.062 6.062
~	88888			•	0.0007	***	3.7404	1.8925	100.37		. 190.0

TABLE 28 - PCD DATA FOR 10/30 NOZZLES WITH L/D=1.5 STACK

343

- PCD DATA FOR 10/40 NOZZLES WITH L/D=1.5 STACK 23 TABLE

TABLE 27.1 - PCD DATA (CONT) FOR 18/48 NOZZLES WITH L/D=1.5 STACK

INT 10H/PCD	1NFORMATION - 1ETER - 6.902 CIN3 8.407 8.107.510 CIN23 RE - 30 03 CIN4G3	TERTIARY AREA	SOURE INCHES		****	***	*****	***		UPT MACH	•	6.062 6.062	•		•	190.0
COMMENTS' 15 TILT'10 POTATIOH'PCD	MISCELLANEDUS INFORMATION- ORIFICE DIAMETER. 6.902 ORIFICE BETA: 6.497 UPTAKE AREA: 107.510 ATM. PRESSURE: 30 03 E	SECONDARY AREA	SOURE INCHES	900.0	25.133	50.263	366 . 981 156 . 786	***		TAOD KO	FI/SEC FI/SEC	73.03 73.04 81 99 72 67	91.33	188.58 71.97	10 . 0 1 T	****
2.50	0 COEC1	PTER		60		0.0		•		dfr	FT/SEC	182.57		179.91	94.001 160.46	16.001
WOZZLE MM.AP AREA RATIO:	PRIMARY HOZZLE INFORMATION TILT ANGLE: 15.0 ROIATION ANGLE: 10 PRE HOZZLE: 10.752 NUMBER OF HOZZLES: 4	PSEC	IN OF H20	3.07			7			H.S	C LBM/SEC	99000 B	, –		1 1 7 66 10 10 10 10 10 10 10 10 10 10 10 10 10	-
H.AP AR	IMARY MOZZLE INFORTILLT ANGLE: ROTATION ANGLE: RREP PER NOZZLE: NUMBER OF NOZZLE:	PUPT	_	W 4	4.75	3. A.	9 . 9	6.27	,	4	LBMISEC	3.7603			1907.N	
W0221E H	PRIMARY TILI P ROTATI BREB P NUMBER	TAR		70.4	T + .	70.6				PEZTE META. 44		99999	•		5 6.5877	•
	CENT	1001	DEGREES	113.4	113.4	113.4	113.4	113.4		P#/1#		0.4437	•		0.8486 0.8251	-
AUG BI DAVIS	187.08.18.28.28.28.28.28.28.28.28.28.28.28.28.28	10R	ā	29.6	200	9.00	6 6			1			6.9256	•	0.9257 0.9268	•
TAKEN ON: 23 AUG 81 TAKEN BY: C.C. DAUTS	K SHFOR	BPOR	DF H20	22.2	22.7	2	22.1	22.6	×o	•		•	6.2132	•	0.0450	•
TAKEN	MENTING STACK EMFORMATION- LENGTH: 87.55 DIGHTER: 13.76 L/O RATIO: 3.55 S/D RATIO: 6.56	404	2	. 73		2			SECONDARY BOX	* 3		0000	8.2879	0.4294	9.5253	*****
0 4 1 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z 2019	=	200	~	% F	•	n 4	•	*	Z	25	-	4 M	◀1	n 4) ~

TABLE 28 - PCD DATA FOR 15/18 NOZZLES WITH L/D=1.5 STACK

ROTATION/PCD	MISCELLANEOUS INFORMATION: ORIFICE DIAMETER: 6.902 EINJ ORIFICE BETA: 6.497 UPTAKE AREA: 107.510 EINZJ ATM. PRESSURE: 30.03 EINMGJ	TERTIARY AREA	SQUARE INCHES	******	***	***	*****	***		T MACH	-	962	200	.062	1.062	
Œ	Z = 1		_							L T		•	•	•	•	
/26 ROT	SCELLAHEOUS INFORMORIFICE DIAMETER: ORIFICE BETA: UPTAKE AREA: ATM. PRESSURE:	' AREA	ICHES	999 366	243	722	962	**		UUPT	FT/SEC					72.28
15 TILT/20	MISCELL ORIFI ORIFI UPIFI ATM.	SECONDARY	SQUARE INCHES	9 %	20 1	100.531	159.796	***		5	FT/SEC F	72.83	80° 50	101.45	107.46	110.14
2 .50	0N. 0 COECJ 0 COECJ 2 CIN2J	PTER		9 9	9.0		•	•		•	FT/SEC	182.86		101.44	180.75	188.69
AREA RATIO.	FORMATION 15.0 20.75.	PSEC	0F H20	2.2	- 1 - 1 - 1 - 1 - 1) PP	1.17	.		S	LBM/SEC			1.6176	1.9697	2.1202
	IMARY NOZZLE INFO TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: HUMBER OF NOZZLE:	PUPT	I	3.25	4.4 1.4 1.4		6.15	M.		e E	LBM/SEC	3.7533	8 - 7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	3.7624	3.7532	3.7547
NOZZLE AM/AP	PRIMARY NOZZLE INFORMATION TILT ANGLE: 15.0 ROTATION ANGLE: 20 RREA PER NOZZLE: 10.752 NUMBER OF NOZZLES: 4	4 4 5	LL.	76.6	9.6	2.5	71.2	71.2		PAZTA MATA, 44		9.6699				• *
_				• •	•	• •	•			*		5	9 10	? .	90	9 6
	CENT	1071	ZEE!	112	25	125	112	12		ž		4.		0.130	ě	. 0250
C.C. DAVIS	ATOMETICAL STREET OF THE STREE	401	DEGREES	59.2						=		9566		9270	9273	0.9280
Ü	g 8	Œ	_	- 6	• •	. –	-	~				4	5 3	1265	3	0232
-	Ī	DP OR	H20	22.1	22	25	23	22	×	=		7		٠.		
~			6						X O G			•				
TAFEN	LENGTH: CENGTH: DIAMETER: L/O RATIO: 8/O RATIO:	6 0	=	22	2;		. 7		SECONOARY	=		8648	1786	429	324	D #
6	######################################	z	30	- 8	m 1			~	ECO	z	2	-	N F	, ,	•	• ~

TABLE 28 - PCD DATA FOR 15/28 NOZZLES WITH L/D=1.5 STACK

INFORMATION	DATA TAVEN ONTA TAVEN	z>	24 A	24 AUG 81 C.C. DAV15		NOZZLE	AN/AP	AREA	NOZZLE AN'AP AREA RATIO:	8. S	COMMENTS 15 TILT/20 POTATION/FULL IMISCELLANEOUS INFORMATION	POTAT US IN	COMMENTS 15 TILT/20 POTATION/FULL PUN MISCELLANEOUS INFORMATION
TOR TUPT TAMB PUPT PSEC PTER SECONDARY AREA 59.0 111.6 69.0 3.25 3.11 0.00 0.000 59.2 111.6 69.0 4.15 2.23 0.00 12.56 59.2 112.0 70.2 5.45 0.90 0.00 100.551 59.2 112.0 70.2 5.45 0.90 0.00 100.551 59.0 112.2 70.4 6.15 0.00 0.00 100.551 59.0 112.2 70.4 6.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	XING STACK I LENGIH: DIAMETER: L/O RATIO: 8/O RATIO:		7 8 9	- NOTIE	CERT	TALTARY ALLE ROTAL	ANGLE FION A PER H	HOZZLE	13.6 13.6 18.4 18.4	COEC3	ORIFICE BORINGE OR THE ORIFICE BORINGE OF THE ORIFICE BORING OF THE ORIFICE BORINGE OF THE ORIFICE BORING OF THE ORIFICE BORING OF THE OR	ETAL ETA: EA: SURE:	ER. 6.902 EINJ 0.497 107.510 EINZ3 30.02 EINHG3
59.0 111.6 69.0 3.25 3.11 0.00 0.000 12.566 59.0 4.15 2.23 0.00 0.000 12.566 59.0 4.15 2.23 0.00 0.00 12.566 59.0 4.15 2.23 0.00 0.00 12.566 59.0 4.15 2.23 0.00 0.00 12.0 12.0 70.2 5.00 0.02 0.00 112.0 70.2 5.00 0.02 0.00 112.0 70.2 5.00 0.02 0.00 112.0 70.2 5.00 0.02 0.00 112.0 70.0 0.00 0.02 0.00 112.0 70.0 0.00 0.00 112.0 70.0 0.00 0.00 112.0 70.0 0.00 0.00 0.00 0.00 0.00 0.00 0		ē	P 0 R	108	TUPT	TAMB	ē.	=	PSEC	PTER	SECONDARY AR		TERTIARY AREA
22.0 59.0 111.6 69.0 3.25 3.11 0.00 12.566 22.1 59.2 112.0 70.2 4.65 1.61 0.00 12.565 22.2 59.0 112.0 70.2 5.00 4.55 1.61 0.00 100 131 22.1 59.2 112.0 70.2 5.00 0.32 0.00 100 131 22.1 59.2 112.0 70.2 5.00 0.32 0.00 100 131 22.1 59.2 112.0 70.2 5.00 0.32 0.00 100 131 22.1 59.2 112.0 70.2 5.00 0.31 22.1 59.2 112.0 70.4 0.00 0.00 0.31 22.0 59.0 112.2 70.6 6.30 0.00 0.00 100 100 131 22.0 59.0 112.0 70.4 0.00 0.00 0.00 100 131 22.0 50.0 1316 0.150 0.150 0.150 0.00 100 131 22.0 52.0 52.0 0.1316 0.10 0.00 0.00 100 13 72.54 0.00 100 100 13 72.54 0.00 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 13 72.54 0.00 100 100 100 13 72.54 0.00 100 100 100 100 100 100 100 100 10	6	I	20	90		•			DF H20		SOURE INCHE		SQUARE INCHES
22.1 56.6 111.6 69.0 4.15 2.23 9.00 215.35 2.25 2.25 2.25 2.25 2.25 2.25 2.25		~	~	89.0	111.6	69.8	~	23	3.11		000.0		***
22.0 59.2 112.0 70.2 4.55 1.51 0.50 0.55 1.50 2.55 1.52 2.5 5.5 1.52 0.70 0.32 0.60 1.60 531 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5		~	7	38 .	9 11	6.9	÷ •	<u>د</u>	۶. د ج	3 6	36.36		******
22. 39. 112. 70. 2 5.45 6.00 132 6.00 150.796 150.796 152. 59. 2 112. 0 70. 2 6.00 177 0.00 150.796 150.796 152. 59. 2 112. 0 70. 4 6.30 0.17 0.00 174.11 0.00 112. 2 70. 6 6.30 0.01 0.00 174.11 0.00 174.1 0.00		~		59.2	1 2 . 0	9.0	• 1	ים פי	- 6				
22. 39. 112. 70.4 6.19 0.17 0.00 1750.796 22. 39. 112. 2 70.6 6.30 0.01 0.00 1750.796 22. 39. 112. 2 70.6 6.30 0.01 0.00 1750.796 22. 39. 0.112. 2 70.6 6.30 0.01 0.00 1750.796 22. 39. 0.112. 2 70.6 6.30 0.01 0.00 1750.75 0.06 22. 39. 0.122 0.265 0.1550 0.1650 3.744 0.0000 181.33 72.54 0.06 21.22 0.265 0.1316 0.4104 3.7510 1.6273 181.29 101.53 72.54 0.06 21.22 0.252 0.252 0.255 0.356 0.4104 3.752 0.96 22. 3.752 0.252 0.252 0.255 0.356		~ (~ ·	60	25.	7 · 6	PY	n d			100.331		*****
PE TE PE/TE NAT. 44 MP NS UP UN UUPT UPT MR PE TSEC FT/SEC			7						17		150.796		****
PE TE PE/TE MET^.44 MP MS UP UM UUPT UPT LENSE TESEC FT/SEC FT/SE		- 14			7		•			6	***		***
TE PE/TE NET. 44 MP MS UP UN UUPT UPT UPT B268 B 4544 B 6090 3 7448 B 6090 181 33 72 54 72.54 B 9268 B 4544 B 6090 181 33 72 54 72.54 B 9269 B 9269 B 3256 B 4584 B 7541 B 6496 181 38 B 3.97 72 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	š					•						
B 9268 B 4544 B 8000 3 7448 B 8000 181 33 72 54 72 54 8 9268 B 3256 B 1650 3 7448 B 8000 181 33 72 54 72 54 8 9265 B 9269 B 1356 B 1650 3 7441 B 6406 181 38 83 97 72 56 8 9269 B 1316 B 4104 3 741 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	*	:	P#/14	H#T^.4		Δ.	S	وت			
# 9268 # 4544 # 6.6969 3.7448 # 6496 181.33 72.54 72.54 # 9269 # 3256 # 1659 3.7541 # 6496 181.38 # 83.97 72.56 # 9265 # 2256 # 2281 3.7441 1.8885 168.75 91.71 72.31 # 9269 # 1316 # 4184 3.7619 1.6273 181.29 181.59 72.24 # 9272 # 6281 # 7526 1.9487 188.59 186.84 72.24 # 9272 # 6281 # 5546 3.7541 2.1214 188.59 118.88 72.24							. 181			FT/SEC		EC C	•
9 9268 9 3256 9 1659 3 7541 9 6496 181 38 83.97 72.56 9 9265 9 2369 9 2811 3 7441 1 9885 188 75 9 1 7 72.31 9 9269 9 1316 9 4184 3 7618 1 6273 181 29 181 53 72.52 9 9269 9 8472 9 5862 3 7526 1 9487 188 59 186 84 72.24 9 9272 9 6251 9 5466 3 7541 2 1214 188 59 118 88 72.24	9	•	4211	B. 9268		900.0		2448		181.33			6.862
0 9265 0.2369 0.2811 3.7441 1.0885 160.75 91.71 72.31 0 9269 0.1316 0.4104 3.7610 1.6273 181.29 101.53 72.52 0 9269 0.0472 0.5862 3.7526 1.9407 180.59 106.84 72.24 0 9272 0.0281 0.5466 3.7541 2.1214 180.59 110.00 72.24	9021	•	3018		•	•		7541		181.38			9 .062
0 9269 0.1316 0.4104 3.7610 1.6273 181.29 181.53 72.52 0.9269 0.6472 0.5862 3.7526 1.9487 180.59 186.84 72.24 0.9272 0.6281 0.5466 3.7541 2.1214 180.59 110.00 72.24			2195		ė	•	P)	1442		166.75			298.8
0.9269 0.0472 0.5002 3.7526 1.9407 180.59 106.04 72.24 0.9272 0.0251 0.5466 3.7541 2.1214 180.59 110.00 72.24		_	1220		•	•	_	7619	1.6273	181.29		-	79A. B
0.9272 0.0251 0.5466 3.7541 2.1214 190.59 110.00 72.24		ė	0437	1.9269	•	•		7526	1.9487	186.59			298.8
		•	0232	9272	•		m 1	7541	2.1214	188.59			

TABLE 30 - PCD DATA FOR 15/20 NOZZLES WITH L/D-1.5 STACK (FULL RUN)

TABLE 30.2 - MSD DATA FOR 15/20 NOZZLES WITH L/D=1.5 STACK

- VTD DATA FOR 15/20 NOZZLES WITH L/D=1.5 STACK 30.3 TABLE

DATA TAFEN Data Taken	EN OF	£ 23 :	TAPEN ON: 23 AUG BI TAKEN BY: C.C. DAVIS		HOZZLE R	NOZZLE AM/AP AREA RATIO:	A RAT10.	2.58	COMMENTS: 15 TILT/30 ROTATION/PCD	AT10H/PC0
XING STACK LENGIN: DISMETER: L/D RATIO: S/D RATIO:	TACK 1: 1ER: 1110:	INF OF	MINING STACK INFORMATION: LENGIN: DISHETER: L.D. RATIO: 8.00 RATIO: 0.50		PRIMARY HOZZLI TILT ANGLE I ROTATION AN AREA PER HO NUMBER OF N	IMARY HOZZLE INFOR TILL ANGLE: ROTATION ANGLE: AREA PER HOZZLE: I NUMBER OF HOZZLES:	PRIMARY HOZZLE INFORMATION TILT ANGLE: 15.0 ROTATION ANGLE: 30 AREA PER NOZZLE: 10.752 NUMBER OF NOZZLES: 4	COEC3 COEC3 C1823	NISCELLANEOUS INFORMATION ORIFICE DIGNETER 6 902 ORIFICE BETA 8 497 UPTAKE AREA 107 510 ATM. PRESSURE 30 03 C	INFORMATION ETER 6.962 CIN3 0.497 187.519 CIN23 E. 38.63 CIN4G3 E. 38.63 CIN4G3
90		80 40	108	1401	TANB	Puet	PSEC	PTER	SECONDARY AREA	TERTIARY AREA
RUN	1H 0F	H20	30	DEGREES	L.	I	OF H20		SOUPRE INCHES	SOURRE 1 ICHES
0.70	9.4	22.0	# T	112.2		3.30	3.09	0 0 0 0 0 0	8.888 12.566	
•		22.1		112.2		4 1	1.87	9 6	25.133	******
9.7	200	22.0	N 69 60 60 60 60	112.0		n 49 n 49	 		160.531	****
•	2.5	22.2		112.2	71.2	6	9 7 6 6	# # # # # # # #	~ *****	* ** * ** * ** * ** * **
PONOS	SECONDARY BOX	×								
3	*	4	*	11/14	PESTE METS 44	ů.	S Z	45	un uupt	UPT MACK
N N						LBM/SEC	LBM/SEC	FT/SEC	FT/SEC FT/SEC	
9 9	9000	4188		-		3.7476	8.6299	181.59		
• •		9.2138	•	• •	9		1.5895	181.32	100.61 72.23	60 CS
• • •	9.5107 9.5476 88888	6.8428 9.8219 6.8887	9 6.9263 7 6.9299 7 6.9296	8.0461 9.0236	1 8.4942 6 8.5368 7 44444	4.7477 4.7462 4.7477	2.0569 2.0569 1.0025	179.87 186.69 186.13		

TABLE 31 - PCD DATA FOR 15/30 NOZZLES WITH L/D-1.5 STACK

61.00	DATA SAYEN ON: 24 AUG 81	€ 0 70 1	UG 81 DAV1S	2	NOZZLE AN/AP AREA RATIO:	AP AREA	RAT10.	2.58	CONMENTS. 20 TILT/10 FOTATION/PCD	AT10H/PCD
#1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	KING STACK LENGTH: DRAHETER: E/D RATIO: 8/D RATIO:	STACK INFORMATION 17.55 11.75	10 10 10 10 10 10 10 10 10 10 10 10 10 1	22	PRIMARY NOZZLE INFORMATION: TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: 10.752 E NUMBER OF NOZZLES:	IMARY NOZZLE INFORMF FILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: 10 NUMBER OF NOZZLES:	~ · · · · · · · · · · · · · · · · · · ·	ATION - 20 0 CDEG3 10 CDEG3 10 CDEG3 1752 CIN23 4	MISCELLAHEOUS INFORMATION- ORIFICE DIAMETER, 6.982 ORIFICE BETA: 8.497 UPTAKE AREA: 107.518 ATM. PRESSURE: 30.03	INFORMATION: ETER: 6.902 CINZ 1. 00.497 1. 107.518 CINZ RE: 30.03 CINHGS
z	8 0 8	0 P O R	108		######################################	Febr	PSEC DF H2D	а ш ж	SECONDARY AREA SQUARE INCHES	SGURRE INCHES
2	1 OF	H20	190	DECREES		•			•	*****
-	7	22.1	37.6	111.6	72.8	98.4	2.06	9 9 9 9 9 9	12.566	***
۰ ~	2. 4	22.0	57.0	4.11	9.5	1 et 7 7 .	4	99.9	25.133	*****
т.	0 . 4	22.1	9.70	9. 1.1	9.12	80° 80°	ණ ල න ස	9 G	100.531	****
• •		22.0	37.6	111.6	9.1.	9 T	91.0		150.796	
• ~	22.	22.0	57 N	111.2	5. T.		5	6	***	
SEC	SECONDARY 8	XO8				;	2	9	TANN NU	UPT MACH
1	3	:	#	P#/1#	**************************************	LBM/SEC I	SEC	FT/SEC	FT/SEC FT/SEC	
2	_							•		4 8 862
- N M 4 M	9989 9.1582 9.2735 9.4877		9303	6.4153 6.2884 6.2187 6.1174 6.1174	6 1552 6 1552 7 6 2649 7 6 3949 4 6 4847	10 10 to to to		181 88 181 17 186 92 186 29	93.16.72.48 99.85.72.48 99.76.72.38 195.66.72.38 186.82.72.98	
• ~	83444	0.0014	•			3.7520	2.6753	1	•	

TABLE 32 - PCD DATA FOR 20/10 NOZZLES WITH L/D=1.5 STACK

TABLE 32.1 - PCD DATA (CONT) FOR 20/10 NOZZLES WITH L/D=1.5 STACK

			~ • •		
	RMATION: 6.902 [[N] 6.497 167 518 [[N2] 38.83 [[NHG]	TERTIARY AREA SOURE INCHES		HACH	
ROTATION/PCD	A LINE A	TERT		UPT MA	
. . 9	MISCELLANEOUS INFORMATION ORIFICE DIAMETER 6 902 ORIFICE BETA 6 497 UPTAKE AREA 107 510 ATM PRESSURE 30.03 E	RY AREA Inches	### ### ##############################	UUPT FT/SEC	722.39
COMMENTS: 20 TILT/20		SECONDARY AREA SQUARE INCHES	- W N G N #	UN FT/SEC	72.91.91.11.100.26.100.
2.58	ATION 20 6 CDEG3 20 CDEG3 752 CIN23	PIER		UP FT/SEC	1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AREA RATIO	A	PSEC N OF H20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NS NS	2000 2000 2000 2000 2000 2000 2000 200
AH / AP	PRIMARY HOZZLE INFO TILT ANGLE: ROTATION ANGLE: AREA PER HOZZLE: HUMBER OF HOZZLES	PUPT	24 4 28 28 08 08 08 18 18 18 18 18 18 18 18 18 18 18 18 18	HP LBM/SEC	
N022LE	A TITARY A T	1938	4444449 27777777777777777777777777777777	**************************************	00000000000000000000000000000000000000
10	- n 0 0 0	TUPT	* * * * * * * * * * * * * * * * * * *	P	6.2217 6.2217 6.2217 6.64517 6.64517
24 AUG 81 C.C. DAVIS	ANTORNATIONAL STATEMENT OF THE STATEMENT	401		*	
 2 >	¥	DPOR OF H20		* 4 × 0	3952 6.2863 6.1132 6.6156
IA TAKEN	RENEING STACK LENGIH: DIBHETER: L/D RATIO: 8/D RATIO:	F08		OND R.Y.	
0.0 ATA	2	2 2		S E	- N M 4 B W F

4140	DATA TAYEN ON: 24 AUG 81 DATA TAYEN BY: C.C. DRUIS	4: 24 A	UG 81 DAV1S	Z	NOZZLE AM/AP APEA RATIO:	AP APEA	RAT 10.	2.58	CONNENTS! 20 TILT/30 FOTATION/PCO	TATO	1.NO1	00
# C C C C C C C C C C C C C C C C C C C	BINING STACK INFORMATION - 17.55 DIAMETER - 11.50 L/O RATIO - 0 50 50 50 50 50 50 50 50 50 50 50 50 5	X CO	- X0110 17. 11. 12. 12. 12. 12. 12. 12. 12. 12. 12	- CE	PRIMARY NOZZLE INFORMATION TILT ANGLE: 20.0 ROTATION ANGLE: 30 AREA PER NOZZLE: 10.732 NUMBER OF NOZZLES: 4	IMARY NOZZLE INFORM TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: 18 NUMBER OF NOZZLES:	ORMATION 20.00 30.00 30.00 30.00 30.00 50.	AT10N . 20.0 EDEC1 30 EDEC1 752 EIN23	MISCELLANEOUS INFORMATION. ORIFICE DIAMETER. 6.962 ORIFICE BETA. 8.497 UPTAKE AREA. 107.510 ATM. PRESSURE. 30.03 E	7.3. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	FOR 1	RMATION: 6 962 CIN3 0 497 107.510 CIN23 39.83 CINHG3
z	e 0	0 P O R	104	1001	TANB	PUPT	P & E C	PTER	SECONDARY AREA	€.	TERI	TERTIARY AREA
200	10 H		30	DEGREES		ĩ	OF H20		SQUARE INCHES		800	SQUARE INCHES
			:	•	7: 2	3 28	78.5	9	909.			*****
- (6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	7.78	•	21.2	4	2.20	90.	12.566			****
N		,			71.2	4.75	1.57	9	25.133			****
P	5.0	2 C C C			7 - 7	61 61	60.87	00.0	59.265			*****
• 1		22.0			71.	10	8.33	00.0	188.531			****
		7.77	27.4		7.1.7	9	97.	. 6	150.796			***
••		22.	- 25	111.2	4.12	6.23	10 .0	00.0	*****			*****
•												
SEC	SECONDARY 8	×0										
Z	=	E	#1	P4/14	PAZTA MATA.44	<u>.</u>	SI	e B	UN NOPT		UPI	HACH
2	_					LBM/SEC	LBM/SEC FT/SEC	FT/SEC	FT/SEC FT/SEC	ບູ		
•			3000	4474	8888	3,7513	8.8698	181.58	72.68	19	0.062	2
~ 6	2000	•				3.7675	6.6356	181.89	84.11	72.76	6.662	, No. 5
• •	200					3.7697	1.0739	181.65	- B - C	ر و و	9 6	,
•	\$24.4	•				3.7534	1.5987	180.56		72.23	9 (Y (
	2047	•						180.66		72.27	299.9	v (
٠ ﴿		•	_			3.7612		199.57		72.23	798.8	·
•							2.6763	100.15	ZZ zzzzzz	•		¥

TABLE 34 - PCD DATA FOR 20/30 NOZZLES WITH L/D=1.5 STACK

000	TAKEN	-	38 24 BY: C.C	24 AUG 81 C.C. DAVIS		NOZZLE A	AN/AP AREA RATIO	A RAT10.	2.50	CONMENTS: 22.5 TILT/10	ROTATION/FCD
2	LENGTH: STACK LENGTH: DIABETER: L'O RATIO: 8/0 RATIO:	3 ÷ 00	1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	TATORNATION - TO THE TATORNATI	E E E	PRIMARY MOZZE TILT ANGLE- ROTATION AN AREA PER NO MUMBER OF N	IMARY HOZZLE INFOI TILT ANGLE: ROTATION ANGLE: AREM PER HOZZLE: NUMBER OF NOZZLES	PRIMARY MOZZLE INFORMATION TILT ANGLE: 22.5 ROTATION ANGLE: 18 AREA PER NOZZLE: 18.752 NUMBER OF NOZZLES: 4	N. COEGJ COEGJ	MISCELLAMEDUS INFORMATION ORIFICE DIAMETER. 6.90 ORIFICE BETA: 8.49 UPTAKE AREA: 187.518 AIM. PRESSURE: 38.63	OUS INFORMATION - DIGNETER - 6.902 CIND BETA: 9.497 AREA: 187.518 CINZD ESSURE: 30.63 CINHGD
2	0		DPOR	108	TUPT	TAND	PUPT	PSEC	PIER	SECONDARY AREA	TERTIARY AREA
*	2	9	Н20	30	DECREES	•	Z	OF H20		SQUARE INCHES	SOURRE INCHES
- 8	0.71		22.1	36.6	9.011	71.4	A. 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	2.78	9 6	999 6	40 0 40 0 40 0 40 0 40 0
P '	2.0		22.2	97.0	-	2.5	10°	1.39	90.	25.133	
4 W			22.0	9.9	0.0	2.5	10 10 10 10 10 10	 	9 G	30 265	
•			22.1	36.4	110.6	2	9	- 13		150.796	*****
~	. .	_	22.1	• · • · • • • • • • • • • • • • • • • •	9.	4.17	9 . 7.		.	***	***
386	SECONDARY		×				·				
2	=		=	1	P 1/11	PAZTA HATA,44	d H	S	a	UM UUPT	UPT MACH
2	_						LBM/SEC	LBM/SEC !	FT/SEC	FT/SEC FT/SEC	
-	. 9699	•	3760	0.9313	0.4039	0.0000	3.7627	. 6999	181.66		•
~ r		9 9	2632	9386	0.2828	9 (m		189.42		_
•	2007			2026.0	4797.A	.	7	40.0	181.51		•
n	•	•	. 6398	6.9309	6.0428	0.4762	3.7564		180.25	105.07 72.11	_
• ~	111111	~ •	. 0205	0.9309 0.9313	0.0221	0.5120 #####	3.7634		186.53		

363

DATA	TAKEN ON: 24 AUG BI	¥ : 24 £	NG 91		NO.	ZEE AM	NO22LE ANZAP AREA RATIO:	RAT10.	2.58	COMMENS: 22.5 TILT/28 ROTATION/PCD	.28 RO	IAT 10N/PCD	
6119	DATA TAYEN BY! C.C. DPVIS		51247		:					110	2000	- NOT LEMBOURE OF COURSE A CHARLES	
N I X I W	MIXING STACK INFORMATION:	INFOR	1AT 10N .		PR	MARY NO	ZZLE 1M	PRIMARY NOZZLE INFORMATION	AT10N:	DRIFICE DIAMETER.	DIAME	M	C 1 1 3
	I GMC TM.		17.55		_	TILT ANGLE		7.6	1000	ORIFICE	BETR	167 0	1
0.18	DIAMETER		11.79	C 1 1 1 3	.	1019110N	TANDER MOTINGER	782 41 .	2277	UPTAKE AREA.	AREA.	187 518 CIN23	123
5	L/D RATIO.		5		_	IREA PER	AREA PER NOZZIE: 1	AREA PER HUZZIE! 10.11		ATH PRESSURE	ESSURE	NO BY CINHCH	HCA
• •	3 AAT 10.		6.					i.					
											1		
¥	*	DP 0 R	108	TUPT		TAMB	PUPT	PSEC	PTER	SECONDARY AREM	ARER	SERTING TARE	Ĕ.
:	: :						:	900		SOURCE INCHES	Ø W	SOURRE INCHES	•
¥ 7 ¥	10 H	N20	40	DECREES	¥		E.	Ur 46U		1			
					•		20	2 62	99	888	•	*****	
-	. 12.0	22.2	N .	0.7	*) d - 1		8	12.560	ي	*****	
~	9.70	22.1	0 · 0		.				4	25.133		*****	
m	0.70	22.	57.	=	•	9.17		. d		58.265	100	*****	
*	. 7	22.1	57.2	=	•	2.17	0 (4	100.531	=	*****	
ø	. 7	22.	6 7.	=	•	2.2	D (0			159.796	9	****	
•	. 7	21.3			•	7.7		7.0		*****	*	****	
~	2.3	22.3	97.0	• · • · · · · · · · · · · · · · · · · ·	•	71.2	n n •						
SECE	SECONDARY B	×0•					,					•	
2	2	ä	1.8	P # (# # 1	PEZTE META.44	d I	SI	d d	t n	UUPI	UP1 MACM	
: ;	i					_	BHISEC	LBM/SEC LBM/SEC FT/SEC	FT/SEC	FT/SEC FT/SEC	SEC		•
					1		9696	9	182 18	72.84	72.85	9.862	
		Φ (9306	6.4223 6.1918	23		3.7612	9.6166	181.34		72.54	6.652	
~ 1	9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				4	0.2674	3.7527	1.0358	180.66		72.27	0 d d	
m •	9.276	•		•	9	9.3974	3.7685	1.5426	188.75	0 m	70 00	9 9 6 2	
• 41	4919			•	53	9.4766	3.7527	1.8461	188.14		71.86	9.00	
•	6.5494		•	_	0 1	0.5323	3.7455	2.6769	100.03	****	72.34	9.062	•
~	*****	• . • . •	. 9366		D =				, ,			į	

TABLE 36 - PCD DATA FOR 22.5/20 NOZZLES WITH L/D-1.5 STACK

NATING SINCK IMPORMATION - PRIMARY UNIZLE IMPORMATION - MIXING ELLANGENG NOTE INCRETANTION - 11 4 6 3 CIN TILT ANCLE NOTE 0 CIN CIC ORIFICE DIANGER 0 497 ORIFICE DIANGER 0 497 ORIFICE OR	67.60	TAKEN TAKEN	0N: 29	DATA TAKEN DN: 29 AUG 81 DATA TAKEN BY: C.C. DAVIS		HOZZLE	NOZZLE AN/AP AREA RATIO.	A RATIO	2.58	CONNENTS. Straight Hozzle Cal	LE CAL RUN
OF OR TOR TUPT TAND PUPT PSEC PTER SECONORRY AREA 0F H20 DEGREES IN OF H20 SQUARE INCHES 22.0 57.2 110.4 66.4 3.35 3.17 0.00 0.00 22.1 57.2 110.4 66.4 3.35 3.17 0.00 0.00 22.1 57.2 110.6 66.6 4.40 2.04 0.00 12.56 22.1 57.2 110.6 66.6 5.00 0.73 0.00 100.531 22.1 57.2 110.6 67.2 6.05 0.26 0.00 100.531 22.1 57.0 111.0 67.2 6.05 0.26 0.00 150.79 22.1 57.0 111.0 67.2 6.05 0.26 0.00 150.79 22.1 57.0 111.0 60.2 6.32 0.01 0.00 150.79 22.1 57.0 111.0 60.2 6.32		G STACI GTN: RETER: RATIO	X	11 . 63 11 . 70 11 . 70 11 . 70		PRIMARY TILI ROTAT AREA NUMBE	HOZZLE I BNGLE: ION ANGLE PER HOZZL R OF NOZZL	INFORMATIO 6.0 6.1 6.10.732 21.65.4	0 CDEG3	MISCELLANEOUS ORIFICE DIN ORIFICE BET UPTAKE AREA	INFORMATION: METER: 6.902 CIN3 A: 0.7.510 CIN23 RE: 30 03 CIN4C3
Second Color	_	E	0 0 0		1001	T A R B	FUPT	PSEC	PTER	SECONDARY AREA	
22.0 57.2 110.4 66.4 3.35 3.17 0.00 0 0.00 12.566 22.0 12.566 4.40 2.01 37 0.00 12.566 22.1 35 22.0 110.6 66.0 5.00 1.37 0.00 25.135 22.0 110.6 66.0 5.00 1.37 0.00 25.135 22.0 110.0 67.2 6.05 0.26 0.00 1.00 25.135 22.1 57.0 110.0 67.4 6.20 0.13 0.00 110.0 57.4 6.20 0.13 0.00 110.0 57.6 110.0 67.4 6.20 0.13 0.00 110.0 57.6 110.0 67.4 6.20 0.13 0.00 110.0 57.96 110.0 57.0 111.0 60.2 6.32 0.01 0.00 111.0 60.2 7.0 111.0 60.2 6.32 0.01 0.00 111.2 6.00 111.0 112.0				0	GREES	u.	Z =			SQUARE INCHES	SOURRE INCHES
22.1 57.8 110.6 66.6 4 40 2.84 8.89 12.56 22.0 58.0 110.6 66.8 5.80 11.37 8.80 150.263 22.1 57.0 110.8 66.8 5.82 8.26 8.80 180.253 22.1 57.0 111.0 67.4 6.20 0.13 8.80 150.796 22.1 57.0 111.0 67.4 6.20 0.13 8.80 150.796 22.1 57.0 111.0 67.4 6.20 0.13 8.80 150.796 22.1 57.0 111.0 68.2 6.32 8.01 8.80 150.796 22.1 57.0 111.0 68.2 6.32 8.01 8.80 150.796 22.1 57.0 111.0 68.2 6.32 8.01 8.80 17.56 FT/SEC	_	0.70	22.0		110.4	9 9 9	3.35	3.17	99.	800 0	*****
22.0 35.0 110.6 66.0 5.0 1.37 0.00 25.133 22.0 22.0 37.2 110.0 66.0 5.0 1.37 0.00 1.37 0.00 265.265 22.0 37.2 110.0 67.2 6.00 0.13 0.00 1.50.756 22.1 37.0 111.0 67.2 6.20 0.13 0.00 1.50.756 22.1 37.0 111.0 67.2 6.20 0.13 0.00 1.50.756 22.1 37.0 111.0 67.2 6.20 0.13 0.00 1.50.756 22.1 37.0 111.0 60.2 6.32 0.01 0.0 0.0 0.00 1.50.756 22.1 37.0 111.0 60.2 6.32 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.4	22.1		110.6	9.99	• •	2.84	. 60	12.566	***
22.0 57.2 110.0 67.2 6.05 0.26 0.00 100.531 22.1 57.0 111.0 67.4 6.20 0.13 0.00 150.796 22.1 57.0 111.0 67.4 6.20 0.13 0.00 150.796 22.1 57.0 111.0 67.4 6.20 0.13 0.00 150.796 Pt	-	9 4	22.0	20.0	9 6	99	9 Y	1 M	9 9	25.133	***
22.1 57.0 111.0 67.4 6.20 0.13 0.00 150.796 22.1 57.0 111.0 60.2 6.32 0.01 0.00 100.796 BOX Pt		2.	22.0	57.2		67.2	9	97.0		166.531	
22.1 57.0 111.0 60.2 6.32 0.01 0.00 arrests BOX Ps		. 7	22.1		111.	67.4	6.28	E 1 . 0		150.796	***
BOX LBM/3EC LBM/SEC FT/SEC FT		2.	22.1	97.0		60.2	6.32	. 0	.	**	***
PR TR PR/TR MFT/.44 MP MS UP UM UUPT UPT UPT UPT UPT UPT UPT UPT UPT UP	7		×			•					٠.
LBM/SEC LBM/SEC FT/SEC		=	=	=	P 1 / T 1	H#T^.44		S H	a 5		UPT MACH
0.4267 0.9228 0.4623 0.0000 3.7520 0.300 181.26 72.51 72.51 0.2751 0.9220 0.2981 0.1579 3.7593 0.6147 161.12 0.34 72.46 0.1863 0.9232 0.2981 0.1579 3.7593 1.4706 180.38 98.00 72.16 0.0353 0.3229 0.1877 3.7593 1.4706 180.61 98.29 72.25 0.0353 0.936 0.9384 0.4516 3.7526 1.7546 180.49 180.14 72.04 0.0177 0.9236 0.0192 0.4781 3.7593 1.8607 180.49 180.15 72.17 0.0177 0.9236 0.0192 0.4781 3.7593 2.6044 180.35 \$							LBM/SEC	LBM/SEC	TISEC	FT/SEC FT/SEC	٠,
0.1863 0.5232 0.2019 0.2594 3.7491 1.0073 180.36 98.00 72.16 0.0990 0.9229 0.1073 0.3777 3.7593 1.4706 180.61 98.29 72.25 0.0935 0.9236 0.0384 0.4781 3.7520 1.7546 180.09 103.14 72.04 0.0177 0.9236 0.0192 0.4781 3.7593 1.8607 100.40 105.15 72.17 0.08230 0.0015 statt 3.7593 2.6044 100.35 tattt 72.13	₩ ●	_	0.4267	• •	0.4623			388	181.26		
0.0990 0.9229 0.1073 0.3777 3.7503 1.4706 180.61 98.29 72.25 0.0355 0.9236 0.0384 0.4516 3.7520 1.7546 180.09 103.14 72.04 0.0177 0.9236 0.0192 0.4781 3.7583 1.8607 100.40 105.15 72.17 0.0014 0.9250 0.0015 222223 3.7503 2.6044 180.35 22222 72.15			9.196	•	0.2018	9		.0073	186.38		
6.61.57 6.92.36 6.61.92 6.47.61 3.75.63 1.86.67 180.49 183.14 72.64 6 6.61.77 6.92.36 6.61.92 6.47.61 3.75.63 1.86.67 180.40 185.13 72.17 6 6.61.4 6.92.56 6.6615 88888 3.75.63 2.68.4 180.35 888888 72.15 6	• •	3913	9660 0	•	9.1673 6.1673	•			19.081		
0.0014 0.9250 0.0015 statts 3.7503 2.6844 180.35 statts 72.15 0		1.4951	0.017	•	6.0195 6.0192	•	יו ני		69.991		9 4
	-	*****		•			· P		180.35		•

TABLE 37 - PCD DATA FOR STRAIGHT NOZZLES WITH L/D=1.25 STACK

Marine Strick Information	0A1A	TAFEN ON	<u>::</u>	26 AUC 81 Drucker/Davis		NOZZLE AM/AP	AP AREA	RATIG	2.50	COMMENTS: 10 TILT/10	8 ROTA	ROTATION/PCD	
POR DPOR TOR TUPT TANB PUPT PSEC PTER SECONDARY AREA 1		AG STACK AGTH: AMETER: D RATIO: D RATIO:		14 63 11.70 1 25 6 58	CINI	TILT SET STATES AND SECTION SE	OZZLE IHI GLE: N RNGLE: R HOZZLE OF NOZZL	FORMATIO 18.0 18. 18. 18.752	K. FDEGJ FOEGJ FINZJ	MISCELLAN ORIFICE ORIFICE UPTAKE ATH. PR	EOUS I DIANE BETA: AREA:	NFORMATI TER 6 167 9	0N: 902 [1H] 497 18 [1H2] 18 [1HG]
## OF H20 DEGREES F IN OF H20 SQUARE INCHES	*	2	0 P 0 R	10R	TUPT	TAMB	PUPT	PSEC	PTER	SECONDARY		TERTIAR	
0.71 22 0 59 2 113.0 71.8 3.20 3.15 0.00 0.00 25.153 0.00 0.71 22.0 59.2 112.8 71.8 4.20 2.19 0.00 25.153 0.50 0.71 22.0 59.2 112.6 71.8 4.80 1.53 0.00 0.00 100.531 0.00 0.71 22.0 59.2 112.6 71.8 4.80 1.53 0.00 0.00 100.531 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	. 2	2		00		1 4.	I			SQUARE INC	NE 8	SOUARE	INCHES
22.6 59.2 113.6 71.6 4.80 1.53 0.80 25.133 22.0 22.0 59.2 112.8 71.6 4.80 1.53 0.80 0.80 25.133 22.0 59.2 112.6 71.8 4.80 1.53 0.80 0.80 25.133 22.0 59.2 112.6 72.0 6.80 0.153 0.80 150.756 150.756 22.0 59.2 112.6 72.0 6.80 0.153 0.80 150.756 150.756 22.0 59.4 112.0 72.2 6.20 0.01 0.80 150.756				:			•	,	Œ		9	**	****
22 2 59 2 112 8 71 8 4 80 1 53 0 0 0 0 25 133 22 0 52 0 53 1 22 0 59 2 112 6 71 8 4 80 1 53 0 0 0 0 100 531 52 0 59 2 112 6 72 0 6 0 0 0 15 0 0 0 0 150 531 52 0 59 2 112 6 72 0 6 10 0 15 0 0 0 0 15 0 0 0 0 150 79 6 150 72 0 6 10 0 15 0 0 0 0 0 150 79 6 112 0 72 2 6 20 0 0 0 15 0 0 0 0 0 15 0 0 0 0 0 0 0 0	_	1.71	22.0	80	113.6		9 6	7 0	9 6		9	**	****
22 0 39.2 112.6 72.0 6.00 0.30 0.00 100.531 22 0 39.2 112.6 72.0 6.00 0.30 0.00 150.00 150.531 22 0 39.2 112.6 72.0 6.00 0.15 0.00 150.796 22 0 39.2 112.6 72.0 6.00 0.15 0.00 150.796 22 0 39.2 112.6 72.0 6.00 0.00 150.00 150.796 22 0 39.2 112.6 72.0 6.00 0.00 150.796 22 0 39.2 112.6 72.0 6.00 150.794 PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UUPT UPT MR PR TT PATT MIT. 44 HP MS UP UM UND UND UPT UPT UPT MR PR TT PATT MIT. 44 HP MS UPT	•	6.71	22.2	9	112.8	20 d	D 0	, r	9	25.1	, P.	**	****
22.8 59.2 112.6 72.8 6.80 8.30 8.80 156.796 156.796 22.8 59.2 112.6 72.8 6.10 8.15 8.00 156.796 156.796 22.8 59.2 112.6 72.8 6.10 8.15 8.00 8.80 156.796 156.796 22.8 59.2 112.8 72.2 6.20 8.00 156.796 156.79	_	17.0	22.0	60 E	112.8			, c	60.00	20.50	20	**	****
BOX PF TF PF/TF MFT^.44 MP MS UP UNT UPT MPT MF MS D D D D D D D D D D D D D D D D D D	_	12.0	22.0	N (0	9.2.) G	9	188.5	3.	*	***
BOX Pr	_	- 1 - 1	2 (A)	N . 6	9 4		- S		80	158.7	96	*	***
BOX PR TR PR/TR MATA.44 HP HS UP UM UUPT UPT LBM/SEC LBM/SEC FT/SEC FT/SEC FT/SEC B 0 4261 8.9284 8.4592 8.8080 3.7416 8.8080 181.88 72.76 72.76 9.808 2.388 8.9284 8.423 72.89 9.808 8.137 8.9287 8.1278 3.7416 1.6586 181.89 91.40 72.44 8.608 8.137 8.9287 8.128 8.4084 1.6586 181.89 91.40 72.44 8.608 8.137 8.9287 8.40831 3.7416 1.6586 181.89 72.18 8.628 8.9287 8.9287 8.9287 8.9287 8.9287 8.9287 8.9287 8.9287 8.9287 8.9287 8.9287 8.9287 8.9288 8.9287 8.9287 8.72.89 8.6088 8.9288 8.9287 8.9287 8.72.89 8.6088 8.9288 8.9287 8.9287 8.72.89 8.6088 8.9288 8.9287 8.9287 8.7288	<u>.</u>	7.7	22.0		112.0	72.2	6.28	9.01	99	***	*	*	***
LBM/SEC LBM/SEC FT/SEC	2		×o										
LBM/SEC LBM/SEC FT/SEC	z	2	ä	**	P#/T#	N#1^.44	4	SH	e S				
### ### ### ### ### ### ### ### #### ####	2								FT/SEC)35×	- •- •	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1		•	6	đ	3.7416	9999	181.88		72.76	9.052	
8.2629 8.2088 9.284 8.2249 8.2738 3.7416 1.0586 181.89 91.40 72.44 8.4168 8.137 8.9287 8.1225 8.4634 3.7416 1.5594 188.72 188.21 72.29 8.5814 8.6412 8.9291 8.644 8.4651 3.7416 1.8747 188.48 189.78 72.29 8.5315 8.6286 8.9287 8.6222 8.3145 3.7498 1.9884 188.44 187.88 72.18 85555 8.6814 8.9291 8.6815 3.7416 2.6721 188.41 85555 72.17	_ ,			D G	9 60	•	3 7586	6332	182.21		72.89	9.062	
0.4168 0 1137 0.9287 0.1225 0.4034 3.7416 1.5594 180.64 100.61 72.20 0.5913 0.0412 0.9291 0.0444 0.4651 3.7416 1.6747 180.48 107.80 72.20 0.5915 0.0206 0.9207 0.0222 0.5145 3.7409 1.9884 180.44 107.80 72.10 0.5315 0.0206 0.9291 0.0015 \$	4 M	B 2829	•	•	-	9	3.7416	.0586	181.89		72.44	2 C C C C C C C C C C C C C C C C C C C	•
8.58.4 8.6412 8.9291 8.6444 8.4631 3.7416 1.8747 18874 18778 1.778 8.5315 8.6286 8.9287 8.6222 8.5145 3.7489 1.9884 188.44 187.88 72.18 888888 8.8814 8.9291 8.6815 88888 3.7416 2.6721 188.4888 72.17	•	4148	•	•	•	9	3.7416	5594	186.72		72.29	96.0	
8.0319 8.0206 8.9207 8.0222 8.0140 6.7407 1.7004 100.41 888888 72.17 888888 8.0291 8.0	•	D 186 0	•	•	•	•	•		77 001	9 65	72.18	0.062	
SERVERS 6. 8614 6. 9291 6. 921 6. 921 6. 921 6. 921 6. 921 6. 921 6. 921 6. 921 6. 921 6. 921 6. 921 6. 921 6. 921 6.	•	6.5315	9.1506	•	•	•	•	1007 6		*****	72.17	0.662	•
	~	*****		•	C100.		•		•		ı		

TABLE 38 - PCD DATA FOR 10/10 NOZZLES WITH L/D=1.25 STACK

0A1A0	DATA TAFEN ON: 26 AUG 81 Data tafen by: Druckep/Davis	× ×	26 F	26 RUG 81 DRUCKER'D	I DAV	9	ž	3722C	A	NOZZLE AN'AP AREA RATIO:	. A R	.011	2.50	CONNENTS. 10 TILI/20 FOTATION/PCD	20 ROTA	11.00	1/PCD
# LE	MIXING STACK INFORMATION 14.65 COLAMETER: \$1.70 CLO RATIO: 0.50 SATIO: 0.50	=	2 0 2	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- m & f) &	C 1 N 3		RIMAR TILI ROLL AREA NUMB	IMMRY NOZZLI TILI ANGLE: Rotation and Area Per No Number of N	PRIMARY NOZZLE INFORMATION TILT ANGLE: 10.0 ROTATION ANGLE: 20 AREA PER NOZZLE: 10.752 NUMBER OF NOZZLES: 4	INFOR	10 0 10 0 20 10 752	ATION: 10.0 COECJ 20 COECJ 752 CINZ	MISCELLE ORIFIC ORIFIC UPTAKE	SCELLANEOUS INFORI ORIFICE DIAMETER. ORIFICE BETA. UPTAKE AREA. I	N	MISCELLANEOUS INFORMATION. ORIFICE DIAMETER. 6.902 CIN3 ORIFICE BETA: 6.497 UPTAKE AREA: 107 510 CIN23 ATH. PRESSURE: 29 99 CINHGS
2	9 8 8	ō	DPOR	108	e	TUPT	p=	TANB	_	PUPT	•	PSEC	PTER	SECONDARY AREA	' AREA	16	TERTIARY HREA
2	O H	I I	H20		990	OEGREES	S			=	IN OF	OF H20		SGURRE INCHES	CHES		BOURRE INCHES
-	12.0	~	25.2	9.		112		72.2	••	3.30	m	3.88	90.	69	888		*****
~	7.	~	22.0	59.0		112	•	72.4	••	₩.36	N	2.03	99.9	15.	566		*****
m	12.0	~	2.1	59.	•	112	•	72.		9 9	- (1.42	6	25.133	133		***
₹ (7.	~ (22.0	6.0	• •	112.6	• a	72.2	n	9 9 9 4	9 4	* 0		188 531	243		****
n 4		,		. 4	. .	112.6	•	7.7		9	•	~	9	150.796	962		******
^	2.0	. ~	22.0	29.2	N	112	•	72.		6. 23	•	10	00.0	***	***		***
3.5.6	SECONDAPY BOX	XOE															
Z	*	-	=	1.8		È	1.	PAZTE MATA 44	+	a. I	-	S	a a	E S	UUPT	UPT	MACH
3									ل	LBM/SEC		LBM/SEC	FT/SEC	FT/SEC F	FT/SEC		
	8888	•	4135		26.	Ť.	4458	8.8888		3.7599		8.8688	195.61	73.85	73.65		6.062
~ ~	0.1628		8.2764	8.9291 8.9294	- 60	8.2975 8.2879	978 978	8.1577 8.2632		3.7430	• ⊶	1.0196	181.32	98.43	72.53	9 69	8 .062 8 .062
•	9.3933		0.1015		50	-	1092	9.3868		3.7429	_	4721	180.68	98.65	72.28	•	9.062
.	0.4653	•	.0356		291	•	. 0363	6.4585	n (3.7587		1.7452	189.99	103.63	72.37	• •	0.062 0.062
• ~	111111	•	* 100	•	. 9290		610	****		3.7422	• (1	.6729	180.32	****	72.14	•	

6 1 4 0	DRIA TAKEN DN: 26 RUG 8) Data Taken BY: DRUCKER/DAVIS	9 8	AUG 81 UCKER/DÍ	A	NOZZLE AM'AP AREA RATIO	AP AREA	RAT 10 .	2 . 58	COMMENTS: 10 TILT/30 ROTATION/PCD	TAT ION / PCD	
# KENG KENG 	MIXING STACK INFORMATION: LENGTH: DIANETER: L/O RATIO: 1.23 8/0 RATIO: 0.54	O N	73 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- w o s é	PRIMARY NOZZLE INFORMATION TILT ANGLE: 18.8 ROTATION ANGLE: 38 AREA PER NOZZLE: 18.752 HUNBER OF NOZZLES: 4	IHARY NOZZLE INFOR TILT ANGLE: ARTATION ANGLE: AREM PER HOZZLE: HUMBER OF NOZZLES	ORMATION 10.00 10.	19 8 EDEG3 38 EDEG3 752 ELK23	MISCELLANEOUS INFORMATION: ORIFICE DIAMETER: 6.982 ORIFICE BETR: 8.497 UPTAKE ARER: 187.518 ATM: PRESSURE: 29.99		CINI INS
z	9 8	0 P O #	40 T	TUPT	TAMB	PUPT	PSEC	PTER	SECONDARY AREA	I TERTIARY AREA	E
2	¥7	H20		DEGREES		Z	OF H20		SQUARE INCHES	SOURRE INCHES	8
			9	A 211		9 T	86.8	80.0	889.8	***	
- ^		22.0	9 67	112.	72.4	4.45	1.87	00.	12.566		
4 P	7.7	20				8 · 10	1.27	60.0	25.156	*****	
•	7.7	7				2·60	9.63	9 9	007.007	****	
, p.	2.0	22		112.8		9	. 23 9	90.0	70.99		_
•	7	22	_		72.4	9 . 10		9	96.00		
•	2.3	21				6.20	- - -	9 5 9			
5.60	SECONORRY BO	×									
Z	3		*1	1/#d	PEZTE HETC. 44	4	SI	9	UM UUPT	UPT MACH	
						LBM/SEC	LBM/SEC	FINSEC	FT/SEC FT/SEC		٠
5					•	964%	9	191 67	72.67 72.67	7 9.062	
-	8888	6.4883				24.40		181			
~	6 1563	9.2551		-		2 74 30	8 9643	188.92			
M	6.2576	6.1737	•		9 4		1.3794	189.64		•	
•	•	2688.8	•	_	•		1.6411	180.52	101.62 72.21	•	
n	•	0.0316	•	44 6 . 6340 44 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	•		1.7024	180.44		•	
• 1	7464.0	1010	31 0.3638				2.6720	186.82	****** 72.01	190.0	

TABLE 40 - PCD DATA FOR 10/30 NOZZLES WITH L/D=1.25 STACK

TABLE 48.1 - PCD DATA (CONT) FOR 18/38 NOZZLES WITH L/D-1.25 STACK

NEW NEW CONTRICTOR		DATA TAKEN ON, 26 AUG B1 Data taken by, drucker/d	2 2	. 26 . 08U	DATA TAKEN ON: 26 AUG 81 Data Taken OY: DRUCKER/DAVIS	9 1 >	NOZZLE A	NOZZLE AM/AP AREA RATIO.	RATIO.	2.50	COMMENTS. 18 TILT/48 ROTATION/PCD	. OJAZEO
120 DEGREES F IN OF H20 SQUARE INCHES 12.2 \$56.6 112.4 72.4 3.70 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0	2 2 5 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ž	n T G	11		PRIMARY TILT B ROTATI AREA P NUMBER	HOZZLE IF NGLE: ON ANGLE OF HOZZLE OF HOZZLE	FORMATIO 19.6 19.6 1.19.752	T. CDECU	MISCELLANEOUS ORIFICE DIAN ORIFICE BETA UPTAKE AREA.	INFORMATION: ETER: 6.902 CIN3 0.497 107.510 CIN23 E: 29.99 CINHG3
#20 DEGREES F INCHES SQUARE INCHES #22.0 DEGREES F INCHES F INC	-			DPOR	108	TUPT	TAMB	PUPT	9 8 6 6	PTER	SECONDARY AREA	TERTIARY AREA
PS. 2 58 6 112.4 72.4 4.65 1.69 0.00 0.00 12.566 PS. 98.6 112.4 72.4 4.65 1.69 0.00 12.566 PS. 98.6 112.4 72.4 5.20 1.11 0.00 25.133 PS. 98.6 112.4 72.4 5.15 0.19 0.00 100.25.133 PS. 98.6 112.4 72.4 5.15 0.10 0.00 100.25.133 PS. 98.6 112.4 72.4 5.15 0.00 0.19 0.00 100.25.133 PS. 74.6 6.25 0.00 100.25.75 0.255 PS. 74.7 0.00 0.00 102.4 181.10 0.00 102.4 12.20 0.00 100.4 100.27 72.10 0.00 100.4 100.27 72.10 0.00 100.4 100.27 72.10 0.00 100.4 100.27 72.15 0.00 100.4 100.27 72.15 0.00 100.4 100.27 72.15 0.00 100.4 100.27 72.15 0.00 100.4 100.27 72.15 0.00 100.4 100.4 100.4 100.27 72.15 0.00 100.4			9	H20	90	GREES		2			SOURRE INCHES	SQUARE INCHES
PR TR PR/TR HRT^. 44 4.65 1.69 0.00 12.566 22.0 58.6 112.4 72.4 5.80 1.11 0.00 25.133 22.0 58.6 112.4 72.4 5.80 0.19 0.00 150.796 22.0 58.4 112.4 72.4 6.15 0.19 0.00 155.796 22.0 58.4 112.4 72.4 6.15 0.19 0.00 155.796 22.0 58.4 112.4 72.4 6.15 0.10 0.00 155.796 22.0 58.4 112.4 72.4 6.15 0.00 152.796 22.0 58.4 112.4 72.4 0.00 162.43 72.98 9.00 22.0 58.4 181.10 82.38 72.45 0.2332 3.744 0.5544 181.10 82.38 72.45 0.00 22.0 0.9301 0.1635 0.2332 3.744 0.5544 181.10 82.39 72.25 0.00 22.0 0.9301 0.0265 0.3312 3.744 0.5544 181.10 82.39 72.25 0.00 22.0 0.9304 0.0148 0.4198 3.7431 1.4916 160.48 98.93 72.25 0.00 23.0 0.0130 0.013 0.4198 3.7431 1.4916 160.48 98.93 72.25 0.00 23.0 0.0130 0.0148 0.4198 3.7431 1.4916 160.44 101.27 72.15 0.00 22.0 0.0304 0.0148 0.4198 3.7431 1.4916 160.44 101.27 72.15 0.00	_	1.71		22.2	38.6	112.4	72.4	3.78	2.88	90.	989.9	******
PR TR PR/TE HETA- 4 72.4 5.28 1.11 0.00 25.133 22.0 58.6 112.4 72.4 5.80 0.56 0.00 150.796 22.0 58.4 112.4 72.4 5.80 0.19 0.00 150.796 22.0 58.4 112.4 72.6 6.38 0.10 0.00 150.796 22.0 58.4 112.4 72.6 6.39 0.01 0.00 150.796 22.0 58.4 112.4 72.6 6.30 0.01 0.00 150.796 22.0 58.4 112.4 72.4 WP WS UP UM UUPT UPT LBM/SEC LBM/SEC FT/SEC	_ `	•		22.0	38.6	112.4	72.4	4.63	1.69	00.0	12.566	*****
PR TR PR/TR HRT^ 44 MP MS UP UNT UNPT UPT LBM/SEC LBM/SEC FT/SEC	_			22.		112.4	7.00	9 d N d	- 1 - G	9 4	25.133	****
Pt Tt Pt/Tt HtT/.44 WP MS UP UNT UNPT UPT UPT UPT UPT UPT UPT UPT UPT UPT U	•	7.		22.0	30.4	112.4	72.4	6.13	6 7	00	100.531	
Pt Tt Pt/Tt Htf*.44 WP MS UP UM UUPT UPT UPT UPT UPT UPT UPT UPT UPT UP	_	7.		22.	4.00	112.4	72.6	6.25	0.10	99.	150.796	***
THE THE PLATE HATCH AND HE	_	<u>.</u>		. 22	2.0	7.7	72.6	9.3		9	***	**
LBM/SEC LBM/SEC FT/SEC	Ŧ	7 8 40	0	¥								
LBM/SEC LBM/SEC FT/SEC		=		=	=	P # / T #	H810.44	<u>a</u>	S I	a d		UPT MACH
0000 0 3760 0 9301 0 4651 0 0600 3 7614 0 6000 182.43 72 96 72 98 8 1481 0 2294 0 9301 0 2466 0 1434 3 7444 0 5544 181.10 82.38 72 45 0 2468 0 1520 0 9301 0 1635 0 2332 3 7437 0 9613 180 62 86 46 72 33 0 3419 0 0769 0 9361 0 0627 0 3312 3 7444 1 2804 180.61 95.19 72.25 0 3419 0 0261 0 9301 0 0281 0 3650 3 7441 1 4916 180.48 98.93 72.20 6 4333 0 0130 0 9304 0 0140 0 4190 3 7451 1 4916 180.44 101.27 72.10 0 8888 0 0814 0 9304 0 0140 0 4190 3 7451 1 6229 180.44 101.27 72.10 0 8888 0 0014 0 9306 0 0014 0 0140 0										.T / SEC	FT/SEC FT/SEC	
1481 0.2294 0.9301 0.2466 0.1434 3.7444 0.5544 181.10 82.38 72.45 0.248 0.1520 0.9301 0.1635 0.2332 3.7437 0.9013 180.62 861.46 72.33 0.3419 0.0759 0.9311 0.3419 0.3616 0.0261 0.9312 3.7444 1.9016 100.61 9.9519 72.29 0.3312 3.7441 1.4916 100.61 9.9519 72.29 0.3983 0.0261 0.9301 0.0201 0.3650 3.7451 1.4916 100.48 98.93 72.20 0.4333 0.0130 0.9304 0.0140 0.4190 3.7451 1.6229 100.44 101.27 72.10 0.9304 0.0140 0.4190 3.7451 1.6229 100.44 101.27 72.10 0.9804 0.0140 0.4190 3.7451 1.6229 100.44 101.27 72.10 0.9804 0.0140 0.4190 3.7451 1.6229 100.44 101.27 72.10 0.9804 0.0140 0.4190 3.7451 1.6229 100.44 101.27 72.10 0.9804 0.0140 0.9100 0.4190 0.4	•			3768	•	9.4031	0000	3.7614		182.43		
	•		• •	2294	•	0.2466	0.1434			181 . 18	•	
	•			87CT .	•	0.1000	7557.B			28.991		
0.0014 0.9304 0.0140 0.4190 3.7451 1.6229 180.44 101.27 72.19 0	•) M	. 0261	•	0.0281	9.3828	144. M		88.01		9 6
0.0014 0.9306 0.0015 states 3.7456 2.6715 189.37 states 72.15 0	•	433	•	0130			0.4198			180.44		•
	*		•		936.		****	3.7456		180.37		0.062

TABLE 41.1 - PCD DATA (CONT) FOR 18/48 NOZZLES WITH L/D-1.25 STACK

	E 1 N 2 J	Œ	8			_		_	_								_			•		
	- 27 5	TERTIARY AREA	SGUARE INCHES	******	*****	******	******	****	****	·· -			. - ·		-	-	•					
P.C0	IATIO 6.9 6.9 7.51 29.99	11 I A R	JARE	*		**	*	*	*			MACH		ć	N (2 0	799.9	2 9	8.862	700 C	Y O	
) NO I	7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	168	3									UP T		•	290.0	299.9	3 6	9	9 (•	
OTAT	IS IN	E B	60									UUPT	Ç		73.84	72.68	9	72.63	36	27.10	72.14	
- 2	MEOU E DI E ARES		NCH	900.0	17. 350	50.263	166.931	150.796	******			3	61/E									
COMMENTS. 15 TILT/10 ROTATION/PCD	MISCELLANEOUS INFORMATION ORIFICE DIRMETER, 6.90, ORIFICE RETR, 9.49 UPTAKE AREA, 107 510 ATM. PRESSURE, 29.99	SECONDARY AREA	SQUARE INCHES	•	N .	9 60	993	150	**			Ę	335/19 335/18		73.03	84.65	91.52	101.41	187.59	116.68	***	
2.50	0663 0863 1 N 2 3	PTER		00.0	69 G	9 6	9	90	• • • • • • • • • • • • • • • • • • •			45	730/13	-	182.57	181.69	180.93	181.62	160.69	188.38	100.44	
RAT10	15.8 15.8 16 18.752 5.4	PSEC	OF H20	3.10	2.20	0 d) P)	6.17	10.0			E S	200	190,000	0.0000	9.6344	1.0695	1.6858	1.9658	2.1164	2.6720	
AP APEA	INGRY NOZZLE INFORMATION TILT ANGLE: 15 8 ROTATION BUGLE: 16 BRED PER NOZZLE: 19 752 NUMBER OF NOZZLES: 4	FUPT	I	. 43	4 · 20	D 1) (f)	9	6.23			4			3.7628	3,7543	3.7444	3.7658	3.7536	3.7439	3.7466	
NOZZLE AHZAP AREA RATIO:	PRIMARY NOZZLE INFORMATION TILT ANGLE. 18 C ROTATION ANGLE. 18 C AREA PER NOZZLE: 18 752 C NUMBER OF NOZZLES:	1888		72.4	72.4	72.4	7 0 0	75.4	72.4			P#/18 W#1^.44			9.0000	0.1637	0.2765	0.4130	6.5673	9.5474	****	
	22	Tupt	DEGREES F	112.2	112.0	211	112.0	112.0	112.0			P1.11	•		6.4477					0.0251	•	
UG 81 KER/DAV	20 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOR	90	58.2	58.2	9.00	27.6		5			1			9364	•	•	4	•	•	•	
26 A	INF ORM	DPOR	H20	22.2	22.1	22 0	25.6	200	22.0		×	•	•		4165	5660	8 2134	611 0	0452	0.0234		
EN ON	STACK 13H. ETER. RATIO.	w 0	Z 04	12	0.71	2.	2.0				XCECACONOLIS	•	i		9	600		F 7 C T	5217	96.95		
DATA TAFEN ON: 26 AUG 81 Data tafen by: Drucker/Davis	MIXING STACK INFORMATION: LENGTH: DIANETER: L/O RATIO: 1 20 S/O RATIO: 0 50	2	202	-	8			n (• •				B	*	•	- ^	•	•	• •	•	· ~	

TABLE 42 - PCD DATA FOR 15/10 NOZZLES WITH L/D=1.25 STACK

LBM/SEC LBM/SEC FT/SEC

H

PTANTTA MTATTA. 44

P 7 #

202

TERTIARY BOX

- PCD DATA (CONT) FOR 15/10 NOZZLES WITH L/D=1.25 STACK TABLE 42.1

0918 6180	TAPEN TAKEN	5 5	ON: 26 AUG 81 BY: DRUCKER/D	DATA TAKEN ON: 26 AUG 81 Data taken by: Drucker/Davis		1022LE AR	NOZZLE AM/AP AREA RATIO:	RAT10.	2.58	COMMENTS: 15 TILI/20 ROTATION/PCO	OTATION/PCD	
2 1 2 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	XING STACK LENGTH: DIAMETER: L/D RATIO: S/D RATIO:	ž	I NF OR	MIXING STACK INFORMATION: LENGIN: DIAMETER: 11.70 L/O RATIO: 0 30	CHII	PRIMARY NOZZLITLI RAGLE. TILI RAGLE. ROTATION ANGREM PER NO NUMBER OF H	PRIMARY NOZZLE INFORMATION TILT ANGLE: 15.0 ROTATION ANGLE: 20 AREA PER NOZZLE: 10.752 NUMBER OF NOZZLES: 4	FORMATION 15.0 28. 1 18.752	COECJ CDECJ CDECJ CIN2J	MISCELLANEOUS INFOR- ORIFICE DIAMETER: ORIFICE BETA: UPTAKE ARER: 10	MISCELLANEOUS INFORMATION: ORIFICE DIAMETER: 6 902 CINJ ORIFICE BETA: 0.497 UPTAKE RREA: 107 510 CINZI ATH. PRESSURE: 29.99 CINHGJ	
z	80		DPOR	10R	TUPT	SH & L	PUPT	PSEC	PTER	SECONDARY AREA	EA TERTIARY AREA	
# C	=	9	H20	0	DEGREES	ı.	I	OF H20		SQUARE INCHES	S SOURRE INCHES	
-	12.0		22 . 2		112.0	72.4	3.25	3.13	00.0	999.9	***	
~ 1	2.		22.8	50.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	112.0	72.4	4 4 5 4	2.28	9 6	12.566	****	
¬ •			- 22	. a	112.0	72.4	. n	. 63	80	50.265	***	
•	-		22.2		112.0	72.4	9	1 P . 0	00.	186.531	***	
•	~		22.1		112.0	72.4	6.13	9.16		156.796	****	
~	. Y		22.0	38 · •	112.0	72.4	6.25	9.0	• • •	***		
8 EC(SECONDARY BOX	9	×									
*	=		=		P1/11	PAZTA MATA, 44	3	\$	a n	UM UUPT	T UPT MACH	
2							LBM/SEC	LBM/SEC (FINSEC	FT/SEC FT/SEC	· ·	
-	6000	•	1 4206	9307	6 4519	8 8888	3.7636	0000	182.56		_	
~	0 1693	m	1 2397	6.9387	8.3228	0.1641	3.7466	0.6344	181 32		72.53 0.662	
m	8.2854	-	1.2133	•	0.2293	_		1.0721	181.51			
•	0.4210	•	9911.	•	0.1252	•		1.5774	12.991		200.0 (2)	
5 7	9.5863	m (0423	•	4040			2000.	181.26	100.00	72.31 . B. B.C. 77. 72. 12. B. B.C.	
• ^	1.5469	9	0120.	9387	0.0015	*****	3.7466	2.6720	100.34			
•	1	•	, , , , , ,									

TABLE 43 - PCD DATA FOR 15/20 NOZZLES WITH L/D=1.25 STACK

The second second

381

														,			•
	RHATION: 6.902 [IN] 6.497 107 510 [IN2] 29.63 [IHHG]	€	90														
٠ ऱ	u	TERTIARY AREA	SQUARE INCHES	*		*	*	*	*								
₹	~ ~ ~ ~ ~	Œ	ž	*	* •	• *	*	#	Ħ								
ب.	6.902 6.902 6.497 5.10	≻	~	*******	******	*****	*****	*****	***					•	•		
ಕ	~ o o n o	Œ	<u> </u>	*	* :	*	*	*	*		3						
ř	2 2 2	Ξ	₹	-			•	•			насн		962	62	62	2 6	3
ž	8	, and	3										a	9.062	0.062	8.062 9.062	. 962
Ξ	<u>.</u>	-	40								UPT		60 6	9	Φ,	3 C	•
CONNENTS: 15 TILI/20 ROTATION/FULL RUN	MISCELLANEOUS INFORMATION ORIFICE DIRMETER: 6.90. ORIFICE BETM: 6.49. UPTAKE AREA: 167.519 ATM. PRESSURE: 29.63										~						
5	0 E F E 5	AREA									-	Ç	72.88	72.63	72.82	72.59	72.60
102	3 8 8 9	æ	¥	60	م ص	, ₁₀		9	*		UUPT	SE	N C	v N	N S	Ņ٥	izi
6	2 m m g m	Ę	چ	ē	91	9 9	23	2	*		∍	~	I ~ I	· ~	~ :	~ 1	. ~
CONMENTS 15 TILIZ	SCELLANEOUS IN ORIFICE BETA: ORIFICE BETA: UPTAKE AREA: ATM PRESSURE	SECONDARY	SQUARE INCHES	9 9 9 9	12.566	56.265	188.531	150.796	****			FT/SEC FT/SEC	00 (v	•	• -	. *
ᠴᆜ	1	ĕ	w	•	- 0	íñ	6	Š	*	•	_	C	72.88	36.19 91.91	101.34	106 04	*****
₹ -	00000	5	Œ				_	_	_		ž	Š	2	5 ~	~	9 6	*
<u>5 m</u>	=======================================	2	3									÷	,- ,		<u>~</u>	-	•
-	-	G	w									•					
•	888	æ			9 6	9 09	•	•	0			IJ	00.0	0	2	9 4	2
2.58	S C C C	PTER		õ	9 6	9	80.8	80.6	•		9	SE	(•	
6	 COEG3 EDEG3 E1H23	<u> </u>		•	9 0	•	9	•	9		>	FT/SEC	182.19	181.68	182.02	181.46	101.40
Ξ	12101 120 130 130 140 150 150 150 150 150 150 150 150 150 15		0									S	8.8888	1.0688	5817	1.8993	2.6632
=	<u> </u>	PSEC	H2	2	22	9	5	5	ã			Š	9	2 2	8	9 4	9
F	8 × ·	P S	OF H20	3.12	2.28	98.9	9.31	91.0	•		53	È	-				
NOZZLE RM/AP AREA RATIO:	IMARY HOZZLE INFOI TILT ANGLE: ROTATION ANGLE: AREA PER HOZZLE: NUMBER OF HOZZLES	_										LBM/SEC	90 0	-	_	- "	• ••
Œ	IMARY HOZZLE IN TILT RMGLE: ROTRTION ANGLE: AREA PER HOZZLE NUMBER OF HOZZLE		I									LBM/SEC	N 1	9 19	7	•	
<u>~</u>	322	<u>-</u>	_	'n	Ø 1	9 8		10	8			W S	7262	900	4	, c	7339
_	7.302	PUPT		3.25	4.20	. 60	9.09	6.13	9		7	È	-	3.7283 3.7283	3.7423	3.7346	~
Œ	7 7 7 7	4		171	•		_	_	•		_	<u> </u>	ז פין	J 13	(L)	M 14	11
È	2200										_	_	-	N IO	_	N E	· •
æ	THERY NOZZELI TILT RMGLE: ROTRTION AN ARER PER NO NUMBER OF N	40		*	6 4	•	•	•	•		÷		8888	2773	4891	8.4922 8.4923	****
4	5 - F - F - F - F - F - F - F - F - F -	TANB		72.4	72.6	72.0	~	•	m		<		ě.	- ~	4	Ť	
22	E = 5 & 2	!		~	٠.	. ~	~	~	~		Ξ		60 6	9 60	•	9 4	•
2	&		*								æ						
_				•	4	ب ج		*	*		*		4559	- 6	8	5	
	# M	TUPT	Ü	113.4	2	9.21	113.0	114.4	* · * = = = = = = = = = = = = = = = = =		P#/T# HAT^ 44		2,	2309	0.1259	8.8457 8.457 8.454	. 9913
S	C (7	3	=	= :		-	-	-		•		60 (•	<u>.</u>	
2			DEGREES										m 1	n as	a	n e	•
= 0	110H- 14.63 11.76 12.76 1.25 1.25	Œ	0	•	•	4 4	•	*	•		*		9285	6.9283	9.9288	8.9283 8.924	0.9273
∞ à		TOR			9.69		8.89	61.4			=		6	, 0	9	0, 0	9
S W	E			9	9	9 4	•	•	φ				19	9 9	•	•	•
27 AUG BI DRUCKER'E	T C	~		•) N	-	-	-				<u>~</u>	2 12		* 0	11
200	6	OP OR	H20	~	22.1		(4		22.		*		4233	2143	0.1178	0.0424	
	Z	ō	Ξ	Ñ	N	i	10	~	N	×	•			A W	~	_	
DATA TAKEN ON: 27 RUG BI Data Taken BY: Drucker-davis	MIXING STACK INFORMATION: LENGTH: 018METER: 1.0 PATIO: 6.50		4							SECONDARY BOX			_	9 69			
7 ~	<u> </u>							_	_	- -			9 9 9	8 1693 8,2867	.4227	3886	
		•	I	7	7.		7	7	~	ž.	Ĭ		60	16912	~	# T	7 #
œ œ		40		é	•	•	•	•	•	وَ	-					•	
	XING STACK LENGTH: DIANETER: C/O #ATIO: S/D #ATIO:	_								5		_			_		
E E	といいい	z	200	_	N F	, .	n	•	~	3	Z	2	-	N 19	•	n 4	•
55	Ē	_	¥		•	Ť				W		•					

TABLE 44 - PCD DATA FOR 15/20 NOZZLES WITH L/D=1.25 STACK (FULL RUN)

TABLE 44.1 - PCD DATA (CONT) FOR 15/20 NOZZLES WITH L/D=1.25 STACK

TABLE 44.2 - MSD DATA FOR 15/20 NOZZLES WITH L/D-1.25 STACK

00 00 00 00 00 00 00 00 00 00 00 00 00	TAKEN O	· ·	26 AUG 81 C.C. DAVIS	_	NOZZLE AN'AP APEA RATIO:	HZAP APE	A RAT10.	2.58	COMPENS' 15 TILIZZO ROTATION/PCD	101AT10	3N/FCD
Z 2079	BIXING STACK LENGTH: DIAMETER: L/D BATIO:		NOTE STATE OF THE	CH	PRIMARY NOZZLI TILT ANGLE. ROTATION AN AREA PER NO NUMBER OF N	IMBRY NOZZLE IMFOI TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: NUMBER OF NOZZLES	PRIMARY NOZZLE INFORMATION TILT ANGLE: 13.0 ROTATION ANGLE: 30 ARER PER NOZZLE: 10.752 NUMBER OF NOZZLES: 4	. COECJ COECJ COECJ C1H2J	MISCELLANEOUS INFORMATION: ORIFICE DIAMETER: 6 902 ORIFICE BETA: 6 497 UPTAKE AREA: 107 519 ATM. PRESSURE: 29 99 C	SURE	DRNATION: 6.902 EIN3 6.497 107.516 EIN23 29.99 EINNG3
2	«	9	108	1001	1818	FUPT	PSEC	PTER	SECONDARY AREA		TERTIARY AREA
2	No H		90	DEGREES		X.	OF H20		SCUARE INCHES		SOURRE INCHES
		,		•		4	70 1	9	808		*****
-	1.7	75.	* · · · · · · · · · · · · · · · · · · ·	-	22.0) (A	5.06	00.0	12.566		*****
~ 1	2.0	2					P -		25.133		****
m '		X . 2 X			. ~~	10	0.70		59.265		****
• •					72	9	0.28	• •	186.531		****
n '					72.0	6. 1.9		00.9	150.796		時時時時時
• ~		22		112.	72.0	6.30		•	****		10° 10° 10° 10° 10° 10° 10° 10° 10° 10°
360	SECONORY SO	×o									
2	*	:	==	P1/14	P\$/18 M\$T^.44	d H	9	a a	UN UUPT		UPT MACH
2						LBM/SEC	LBM/SEC	FIVSEC	FT/SEC FT/SEC	U	
		:	•	9577	6	1 7573	8888	182.89	_		8.862
- (217	9307	3030	, -		0.6141	180.82	83.33 72.33		6.0 62
4 M	2756		•	0.2139	•		1.8376	101 92			798
•	4834		_	0.1149	•	ו פרון	•	70.001	37.55		
10	. 4041	_	•	0.0415	•		1.8114	180.10		-	. 062
•1	0.9119	0.0192		0.020.	48888 I	3.7466	- ~	10.4			
•											

TABLE 45 - PCD DATA FOR 15/30 NOZZLES WITH L/D=1.25 STACK

6149	E E	TAPEN ON. 26 RUG BI TAKEN BY: C.C. DAVI		6 B	DATA TAYEN ON: 26 RUG BI DATA TAYEN BY: C.C. DAVIS		HOZZLE A	HOZZLE AM/AP AREA RATIO:	A RAT10.	2.58	COMMENTS: 20 TILITIO POTATION/PCO	TATION/PCD
<u> </u>	KING ST LENGTH: DISMETE: L'O SAT S'O RAT	KING STRCK LENGTH: DIGHETER: L/G GATIO: 8/G RATIO:	*	ORNA	#1KING STACK INFORMATION- 14.63 DIGHTER- 11.76 L/0.44710- 5.08	CHI	PRIMARY NOZZLI TILT AMGLE, ROTATION AN MREA PER NO: NUMBER OF N	IMBRY MOZZLE INFOR TILT ANGLE: ROTATION ANGLE: AREA PER MOZZLE: NUMBER OF NOZZLE:	FORM - 10	ATION. 20.0 COECT 10 COECT. 752 CIN23	MISCELLANEOUS INFOR- ORIFICE DIAMETER- ORIFICE BETA- UPTAKE AREA- ATH. PRESSURE-	MISCELLANEOUS INFORMATION: ORIFICE DIAMETER: 6.962 EINJ ORIFICE BETA: 0.497 UPTAKE AREA: 167.519 EINKS ATH. PRESSURE: 29.99 EINKG
z	40	•	0 0 0	æ	108	TUPT	1988	PUPT	PSEC	PTER	SECONDARY AREA	TERTIARY AREA
3		1N 0F	H20	_	90	DEGREES	u.	=	0F H20		SOURRE INCHES	SQUARE INCHES
•	•	;	¢		•	•	2.5 B	3 79	2 83	9	000.0	*****
- ^	•	22	21.0				71.	# · · ·	1.96	00	12.566	***
4 2	•	: =			4 . L.		72.0	10 T	94.1	99.	25.133	*****
•	•		22			. 111	72.0	9. 48	6.79	• • •	59.265	***
•	•		22		37.6	111.	72.0	80 . 8	9.31	0.0	100.531	****
•			2		200	111	72.0	S .	91.0		150.796	
	•	2	2		99.	112.0	71.0	6 .13	. .	•		
						•						
386	SECONDARY		X O S									
Z	_	*	Ï.		=	P#/T\$	PEZTE META. 44	4	SI	Ş	UM UUPT	UPT MACH
25	_							LBM/SEC	LBM.SEC LBM.SEC FT/SEC	FT/SEC	FT/SEC FT/SEC	•
•	•			,	9	•	4	7 7 7 4 2	6	181.91	72.77 72.77	7 0.062
- ^	•		7795.	3664 e	9369	2886	•			169.73		
• •		0.2698		1897	. 9384	0.2039	•			181.75		
•	•	4636	0.1070	120	9304	0.1159	•		1.5213	91 . 191		100 m
**	÷	. 5005	0.0426	126	9304	0.0450	•		9996.	186.48	160.33 (6.60	•
• 1	•	.9470	0.0219	_	. 9364	1.8236	0.3239 1	TOOL T		199.69	7	
•						•				1		

TABLE 46 - PCD DATA FOR 28/18 NOZZLES WITH L/D=1.25 STACK

66	==	DATA TAKEN DATA TAKEN B	i i	26 A	DATA TAKEN ON: 26 RUG 81 DATA TAKEN BY: C.C. DAVIS		MOZZLE A	NOZZLE AM.AP AREA RATIO.	A RAT10.	2 . 58	COMMENTS. 20 TILT/20 ROTATION/PCO	IAT 10N/PCD
<u> </u>	22600	KING STACK LENGTH: DIAMETER: L/D RATIO: B/D RATIO:	¥	A O A	LENGTH: INFORMATION: 14.63 14.63 10.10 11.70 11.70 11.20 11.20 11.20 11.20 11.20		PRIMARY NOZZLI 111 AKGLE: ROTATIÓN AN AREA PER NO MUNDER OF N	IMARY NOZZLE INFOR- TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: B NUMBER OF NOZZLES:	7 . M	AT1044 - 24 - 6 COEG2 24 - 6 COEG3 24 COEG3 27 25 CIN23	MISCELLANEOUS INFORMATION ORIFICE DIAMETER 6 902 ORIFICE BETR 6 497 UPTAKE AREA 107 310 ATM PRESSURE 29 99 F	SCELLAHEDUS INFORMATION. DRIFICE DIAMETER: 6.902 EINJ ORIFICE BETR: 0.497 UPTAKE AREA: 107.510 EINZJ ATM. PRESSURE: 29.99 EINMG3
=	•	804	å	DPOR	101	TUPT	4 A M 6	1404	PSEC	P 1 E R	SECONDARY AREA	TERTIFRY FRER
200		Z Z	OF #2	H20	90	DEGREES		=	1 OF H20		SOURRE INCHES	SOURRE INCHES
	•	2.3	ë i	22.5	37.6			W 4	2.93	9 9	8.866 12.566	
N P			ĭŇ	22.1				10 to	50.00		25.133	
4 ID		2.	ñ ñ	22 . 22 . t	~ · ·			0 10 4 4 00 4	9.35			
• ~		7.7	N N	 	9 9 8 8	12.0		6.23			90 90	* ** * ** * ** * **
2 8	20	SECONDARY BOX	×									
*		=	ï	*	**	P#/7#	PR-72 MST^. 44	ă.	S	d'u	UM UUPT	UPT MACM
300	_							LBM/SEC	LBM/SEC	FT/SEC	FT/SEC FT/SEC	•
~~~	••••	0.000		2911	9300	0.4252	6.1618 6.2747 6.4163	3.7565 3.7569 3.7567 3.7567	6.6261 181.33 6.627 181.49 1.6637 181.49	182.86 181.33 181.49	72.63 72.83 83.74 72.54 91.68 72.69 100.67 72.26	2 2 2 2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

TABLE 47 - PCD DATA FOR 20/20 NOZZLES WITH L/D=1.25 STACK



	'		·-···		
חור	6.992 EIN3 6.992 EIN3 6.497 167 516 EIN23 29.63 EIN63	TERTIFRY FRES			• }
AT 10N/F	ETER.	TERT		UPT HACH 8.062	
2.0 ROT	SCEL INEOUS INFORMORIES. ORIFICE BETA: OPTAKE AREA: BIM. PRESSURE:	* 5868	# # # # # # # # # # # # # # # # # # #	UUPT 1/8EC 73.23	722.662
COMMENTS: 20 TILT/20 ROTATION/FULL	MISCEL LNEOUS INFORMATION ORIFICE DIAMETER: 6.90 ORIFICE BETA: 6.49 UPTAKE AREA: 167 516 ATM. PRESSURE: 29.63	SECONDARY AREA SOURE INCHES	**************************************	UN UUPT FT/SEC FT/SEC 73.25 73.2	
2 . 58	AT10N. 20.0 FDEG3 20 FDEG3 752 FIN23	a. H		UP FT/SEC.	
RAT10:	T •	PSEC 1N OF H20	6 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	MP MS UP LBM/SEC LBM/SEC FT/SFC	2
NOZZLE AN/AP AREA RATIO:	IMARY NOZZLE INFOR TILT AMGLE: ROTATION ANGLE: AREA PER NOZZLE: 1' NUMBER OF NOZZLES:	140 <b>4</b>	W 4 4 W W G G	MP LBM/SEC	
NOZZLE AI	FRIMARY NOZZLI TILT ANGLE: ROTATION ANI AREA PER NO: NUMBER OF N	F E E E E	**************************************	P\$/1\$ H\$1^.44	
	2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	TUPT		•	
RUG B1	14.63 14.63 11.70 1.23	101		*	
ON: 27 BY: DRU	A INFO	0 P O P		X	
DATA TALEN ON. 27 RUG 81 Data talen by. Drucker/Dauis	MIXING STACK INFORMATION - LENGTH 14 63 DIFFIELD 11 70 L/O RATIO - 8/D RATIO - 0.50	204		BECONDARY GOX	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0A1A 0A1A	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 2	~ N T T T T	# Z 3 -	- W M T M W P

TABLE 48 - PCD DATA FOR 28/28 NOZZLES WITH L/D-1.25 STACK (FULL RUN)



TABLE 48.2 - MSD DATA FOR 28/28 NOZZLES WITH L/D+1.25 STACK

X/D PRESSURE FIN H203 FIN H203	ROTATION EDEG3 92	P. 15 1	x d	FRESSURE FIN H203		ROTATION	PMS#
			9	-1.516		7	
25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -		-0.280	A D .				-0.207
		-0.171	6.25	-8.973	3 22		
75		-0.122	. 50	-0.595			-0.082
55		-0.087	. 75	-8.333			-0.046
25 -1			- · · ·	010	•	_	0.003
•	=	-0.029	1.25	. 0	-	_	. 603
CH C	<b>⇔</b>		WIION EDECT	00000	8786 PLATE ROTATION 6 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	# + 0	1
		DATA PATA	109	200	•		
. 29	sz.	25.		<b>S2</b>	65 82	80	22 26 22
	1	1		•		. 1	· 1



TABLE 48.3 - VTD DATA FOR 20/20 NOZZLES WITH L/D=1.25 STACK

00 00 00 00 00 00 00 00 00 00 00 00 00	DATA TAKEN ON: 27 AUG 81 Data taken by: C.C. Davis	#: 27 Y: C.C	AUG BI		MOZZLE A	NOZZLE AH/AP AREA RATIO:	9 RAT10.	2.58	COMMENTS: 20 TILT/30 ROTATION/PCO	.AT10N/PC0
z Zgje	RIXING STACK INFORMATION: LENGTH: DIANGTER: L/D RATIO: 1.25 8/D RATIO: 0.50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MATION - 14.63 11.70 1.23 6.50	C E E	PRIMARY NOZZLI TILT ANGLE. ROTATION AN AREM PER HO NUMBER OF N	PRIMARY NOZZLE INFORMATION. TILT ANGLE. ROTATION ANGLE. BREA PER NOZZLE. 10.752 E NUMBER OF NOZZLES.	HFORMATIO 20.0 20.0 E: 30.733 LES: 4	20.0 COEG3 20.0 COEG3 30 CDEG3 .752 CIM23	MISCELLANEOUS INFORMATION. ORIFICE DIGMETER. 6.902 ORIFICE BETA. 6.497 UPTAKE AREA. 107.319 ATM. PRESSURE. 29.99	INFORMATION. IETER 6.902 CIN3 0.497 10.510 CIN23 1E. 29.99 CINHG3
2	F 0	0 P 0 R	TOR	TUPT	TAHB	PUPT	P S E C	PTER	SECONDARY AREA	TERTIARY AREA
2	70 X	H20	90	DEGREES	•	=	OF H20		SOUARE INCHES	SOUPRE INCHES
<b>⊶</b> (	22	22.2		111.		3.20	41.E	. 0	999	*****
N F		22.				•	2.20	00.	12.566	******
•		22.0	57.0		2.1.2	0 W			25.133	***
n	0.71	22.1		9.		9 9	. m		247.00 150.001	
<b>(4)</b>	0.70	22.1		111.4	71.6	6.03	0.17		150.796	***
•	<b>8</b> .		9. 9. 8.	11.2	21.6	6.20	<b>.</b> • .	•	<b>新教教育体验</b>	
<b>SEC</b>	SECONDARY BOX	×								
z	* 3	<b>P</b>	*	P1/14	PEZTE META.44	<u>a</u>	<b>3</b>	40	TANN MN	UPT HACH
# C #	_					LBM/SEC	LBM/SEC LBM/SEC FT/SEC	FT/SEC	FT/SEC FT/SEC	
-	0.0000	0.4216	9297	6.4535	8.8668	3.7636	8	4 C G 1	10 55 00 17	
~	0.1690	0.2980	_	0.3285		3.7558	6349	101.70	•	
<b></b>	0.2872	0.2156	_	0.2320	•	3.2473	1.0762	10.101		299
•	0.4283	1.1204	•	0.1295	•	3.7502	1.6062	186.78		<b>6</b> 662
<b>.</b>	0.5237	1010	•	0.0485		3.7565	1.9672	180.84		0.062
•	9636	0.0233	_	0.0256	9.5460	7.758	_	130.77		
•	22222		. 9386		****	3.7517	2.6741	186.33		0.062

TABLE 49 - PCD DATA FOR 20/30 NOZZLES WITH L/D-1.25 STACK



	CIN3 CIN23 INHG3	R E	HES		* 1			<b>#</b>	<b></b>			٠.					•
N/PCD	RMATION: 6.982 EIN3 9.497 187.519 EIN23 29.83 EINHES	IERIJARY AREA	SOURRE INCHES	*****	****	*******	******	*****	***		<b>3</b>					•	
A710	FORM ER.	TERT	80CA								UPT MACH		9 062	8 . 862 8 . 862	8.862	0.062	9.962 6.962
ROT		-														•	
S: LT/10	SCELLANEOUS INFO ORIFICE DIAMETER ORIFICE BETA: UPTAKE AREN: ATH. PRESSURE:	Y AREI	NCHE .	888	12.566	59.133	531	56.796	*		UUPT	TISEC	73.12	72.81	72.7	72.48	72.50
COMMENTS: 22.5 TILT/10 ROTATION/PCD	MISCELLAKEOUS INFORMATION ORIFICE DIGMETER: 6.98; ORIFICE BETA: 6.49; UPTAKE AREA: 187.519 ATM. PRESSURE: 29.83	SECONDARY AREA	SQUARE INCHES	•	~ .		100.531	150			ž,	FINSEC FINSEC	73.12	20 C C C C C C C C C C C C C C C C C C C	100.07	106.15	189 27
. 50	N. CDE 63	PTER		•	9 6						40	FT/SEC	192.78	182.88	181.89	181 . 19	181.22
RATIO	FORMATION 22.5 10 10 10 10 10 10 10 10 10 10 10 10 10	PSEC	OF H20	2.78	 		9.30	9.70			9	LBM/SEC	8688		1.5175	1.8788	2.6639
'AP AREA	IMARY NOZZLE IMFORM TILT ANGLE: ROTATION ANGLE: AREA PER NOZZLE: 10 NUMBER OF NOZZLE:	FUPT	Ξ	4.35	. 9. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	5	9	6.63			ž	LBM/SEC 1	3.7578	3.7499	3.7578	3.7479	3.7469
HOZZLE AH'AP AREA RATIO:	PRIMARY NOZZLE INFORMATION TILT ANGLE: 22.5 ROTATION ANGLE: 10 AREA PER NOZZLE: 10.752 NUMBER OF NOZZLES: 4	4 2 3 3	•	71.0	71.8		72.0	9.12	• · · · · · · · · · · · · · · · · · · ·		P#/T# ##T^.44	-	9.000	0.2608	13914	0.4836	8828.8
*		-		•	•	•	•	Ņ.	•		*		•	? =	23	= = = = = = = = = = = = = = = = = = = =	2 2
		TUPT	DEGREES	111.			111.	111.2			à		0.4010	0.2041	0.1153	0.041	0.0018
27 AUG 81 C.C DAVIS	ABXING STACK INFORMATION. LENGTH: DIANETER: 11.70 L/O RATIO: 1.25 S/D RATIO: 0.50	101	90	9.9	96.	90	57.5	97.0	• · · · · · · · · · · · · · · · · · · ·		*		6 9313	9.17.6	0.9313	0.9317	. 9310
0H: 27 A	INFOR	DPOR	H20	22.2	22.2	22.2	22.1	22.1	1.22	v	-		3742	1961	1074	-	
<b>* *</b>	×		6							ě			•	•	•	•	•
TALEN	KING STACK LENGIN. DIAMETER. L/O RATIO. S/D RATIO.	80	=	12.0	7.	7	17.0	7		SECOHDARY	=		9899	8 1596 6 2699	. 4030	. 4969	
6 6 6 6 6	1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 1212 × 12	=	TO E	-	<b>~</b> F	•	m	• •		SECO	z	3.	-	N P	•	<b>.</b>	• ^



0918 - F	3		27 BUG 81	X	NOZZLE AM'AP AREA RATIO:	IP RREA R	AT10:	2.59 2	22.5 TILT/20 ROTATION/FLU	
DATA TAKEN B ALKING STACK LENGTH' DIANETER' L'D RATIO' 8/D RATIO'	<b>&gt;</b>	. 🚊		E E E E E E E E E E E E E E E E E E E	PRIMARY NOZZLE INFORMATION TILT ANGLE: 22.5 ROTATION ANGLE: 20 AREA PER NOZZLE: 10.752 HUNBER OF NOZZLES:	IMARY MOZZLE INFOR TILT ANGLE: ROTATION ANGLE: AREM PER MOZZLE: MUMBER OF MOZZLES	9 n e n 4	CDEG3 CDEG3 CDEG3 C1N23	MISCELLANEOUS INFORMATION ORIFICE DIAMETER 6 980 ORIFICE BETA 6 49 OF 187 UPTAKE RRES 7 187 UPTAKE ARES	HFORMATION: 168. 6.982 CINZ 8.497 187.518 CINZZ 29.83 CINNGZ
	9	•	o C	Į dir	484	PUPT	₽ \$ \$ \$ \$	PTER	SECONDARY AREA	TERTIARY AREA
		20 00				2	0F H20		SQUARE INCHES	SOURRE INCHES
Z S M	ž					•		9	68	*****
-	12	22.2		111.0	72.0	96. F		90	12.566	
	2	22.0		111	. 2.	7 0	65	00.0	25.133	
. 17	9.7	21.9	26.6		D 6	. W	48	9.0	59.265	
	2.0	77			7.7.	) # ! !! ! !!	E. 0	9.0	100.001	
	2	22.0	. 95	9.011	12.0	. S.	91.			****
• ^		22.2	200		72.0	9 9 9			*	
								,		
SECONDARY	DARY	×				•	9	ā.	TANN	UPT MACM
2	*	=	=	*1/84	PS/TR MET^.44	L I	î.	5		
E	è è					198/88C	LBM/SEC	51/SEC	FINSEC FINSEC	
20								147 69	73.16 73.16	
_	9999	•			6.9966	3.7388	6133	191.62	63.81 72.66	290.0
	1657	_				3.7331		186.94		
m	. 2861		8 6.9510 6.650 6.6			3.7523	1.5645	181.51	186.70 70.30	
•	0.4169	11.0	-	97 B. 8458	•	17	1.9063	186.78		-
	6.5679 6.5451				•	19	2.8483	*		
• ~		_		-						

TABLE 51 - PCD DATA FOR 22.5/28 NOZZLES WITH L/D=1.25 STACK



#### APPENDIX: A

#### ONE-DIMENSIONAL ANALYSIS OF A SIMPLE EDUCTOR

This thesis is a further extension of the work conducted by Ellin, Moss, Lemke and Staehli, Shaw, and Ryan [Ref. 1,2,3,4, and 5] and uses the same one-dimensional analysis of a simple eductor syste. Similarity between the basic geometries tested by previous researchers was maintained to correlate data and preserve the error analysis conducted by Ellin. The dimensionless parameters controlling the flow phenomena used previously were also used in the present research along with the basic means of data analysis and presentation. Dynamic similarity was maintained by using Mach number similarity to establish the gas eductor model's primary flow rate.

Although the analysis presented here is for an eductor model with only primary and secondary air flows, the basic discussion applies as well to systems with primary, secondary, and tertiary flows. Systems with tertiary and film or wall cooling air flows have been non-dimensionalized with the same base parameters as the secondary air flow and have been calculated using the same non-dimensional analysis. This allows easier comparison or tabulated and graphic results. Parameters pertaining to the secondary systems are subscripted with an "s" and those relating to the tertiary box are subscripted with a "t".

#### A. MODELING TECHNIQUE

Dynamic similarity between the models tested and an actual prototype was maintained by using the same primary air flow Mach number. For the primary air flow Mach number used (0.064), and based on the average flow properties within the mixing stack and the hydraulic diameter of the mixing stack, the air flow through the eductor system is turbulent (Re > 10⁵). As a consequence of this, momentum exchange is predominant over shear interaction, and the kinetic and internal energy terms are more influential on the flow than are viscous forces. It can also be shown that the Mach number represents the ratio of kinetic energy of a flow to its internal energy and is, therefore, a more significant parameter than the Reynolds number in describing the primary flow through the uptakes.

#### B. ONE-DIMENSIONAL ANALYSIS OF A SIMPLE EDUCTOR

The theoretical analysis of an eductor may be approached in two ways. One method attempts to analyse the details of the mixing process of the primary and secondary air streams as it takes place inside the mixing stack. This requires an interpretation of the mixing phenomemon which, when applied to a multiple nozzle system, becomes extremely complex. The other method, which was chosen here, analyzes the overall performance of the eductor system and is not concerned with the actual mixing process. The one-dimensional analysis based on a single primary nozzle exhausting into a mixing stack, is

shown in Figure A-1. To avoid repetition with previous reports, only the main parameters and assumption will be represented here. A complete derivation of analysis used can be found in Reference [1] and [9]. The one-dimensional flow analysis of the simple eductor system described depends on the simultaneous solution of the continuity, momentum and energy equations coupled with the equation of state, all compatible with specific boundary conditions.

The idealizations made for simple wing the analysis are as follows:

- 1. The flow is steady state 30 4 sncompressible.
- 2. Adiabatic flow exists throughout the eductor with isentropic flow of the secondary stream from the plenum (at section 0) to the throat or entrance of the mixing stack (at section 1) and irreversible adiabatic mixing of the primary and secondary streams occurs in the mixing stack (between sections 1 and 2).
- 3. The static pressure across the flow at the entrance and exit planes of the mixing-tube (at sections 1 and 2) is uniform.
- 4. At the mixing-stack entrance (section 1) the primary flow velocity  $U_p$  and temperature  $T_p$  are uniform across the primary stream, and the secondary flow velocity  $U_s$  and temperature  $T_s$  are uniform across the secondary stream, but  $U_p$  does not equal  $U_s$ , and  $T_p$  does not equal  $T_s$ .

- 5. Incomplete mixing of the primary and secondary streams in the mixing stack is accounted for by the use of a non-dimensional momentum correction factor K_m which relates the actual momentum rate to the pseudo-rate based on the bulk-average velocity and density and by the use of a non-dimensional kinetic energy correction factor K_e which relates the actual kinetic energy rate to the pseudo-rate based on the bulk-average velocity and density.
- 6. Both gas flows behave as perfect gases.
- 7. Flow potential energy position changes are negligible.
- 8. Pressure changes P_{s0} to P_{s1} and P_l to P_a are small relative to the static pressure so that the gas density is essentially dependent upon temperature (and atmospheric pressure).
- 9. Wall friction in the mixing stack is accounted for with the conventional pipe friction factor term based on the bulk-average flow velocity  $\mathbf{U}_{\mathbf{m}}$  and the mixing stack wall area  $\mathbf{A}_{\mathbf{u}}$ .

The following parameters, defined here for clarity, will be used in the following development.

 $\frac{A_p}{A_m}$  area ratio of primary flow area to mixing stack cross sectional area

 $\frac{A_w}{A_-}$  area ratio of wall friction area to mixing stack cross sectional area

k momentum correction factor for primary mixing p

k momentum correction factor for mixed flow

f wall friction factor

Based on the continuity equation, the conservation of mass principle for steady flow yields

$$W = W + W + W$$
 (1)

where

$$W_{p} = \rho_{p} U_{p} A_{p}$$

$$W_{s} = \rho_{s} U_{s} A_{s}$$

$$W_{t} = \rho_{t} U_{t} A_{t}$$

$$W_{m} = \rho_{m} U_{m} A_{m}$$
(1a)

All of the above velocity and density terms, with the exception of  $\rho_{m}$  and  $U_{m}$ , are defined without ambiguity by the virtue of idealizations (3) and (4) above. Combining equations (1) and (1a) above, the bulk average velocity at the exit plane of the mixing stack becomes

$$U_{\rm m} = \frac{W_{\rm s} + W_{\rm t} + W_{\rm p}}{\rho_{\rm m} A_{\rm m}} \tag{1b}$$

where A is fixed by the geometric configuration and  $\ensuremath{\mathbf{m}}$ 

$$\rho_{\rm m} = \frac{P_{\rm a}}{RT_{\rm m}} \tag{2}$$

where T is calculated as the bulk average temperature from the energy equation (9) below. The momentum equation stems from Newton's second and third laws of motion and is the conventional force and momentum-rate balance in fluid mechanics.

$$K_{p}(\frac{W_{p}U_{p}}{g_{c}}) + (\frac{W_{s}U_{s}}{g_{c}}) + (\frac{W_{t}U_{t}}{g_{c}}) + P_{1}A_{1} = K_{m}(\frac{W_{p}U_{m}}{g_{c}}) + P_{2}A_{2} + F_{fr}$$
 (3)

Note the introduction of idealizations (3) and (5). To account for a possible non-uniform velocity profiles across the primary nozzle exit, the momentum correction factor K p is introduced here. It is defined in a manner similar to that of K and by idealization (4), supported by work conducted by Moss, it is set equal to unity. K is carried through this analysis only to illustrate its effect on the final result. The momentum correction factor for the mixing stack exit is defined by the relation

$$K_{m} = \frac{1}{W_{m}U_{m}} \int_{0}^{A_{m}} U_{m}^{2} \rho_{2} dA$$
 (4)

where  $U_{\rm m}$  is evaluated as the bulk-average velocity from equation (1b). The wall skin friction force  $F_{\rm fr}$  can be related to the flow stream velocity by

$$F_{fr} = f A_w \left( \frac{U_m^2 \rho_m}{2g_C} \right)$$
 (5)

using idealization (9). As a reasonably good approximation for turbulent flow, the friction factor may be calculated from the Reynolds number

$$f = 0.046 (Re_m)^{-0.2}$$
 (6)

Applying the conservation of energy principle to the steady flow system in the mixing stack between the entrance and exit planes,

$$W_{p}(h_{p} + \frac{U_{p}^{2}}{2g_{c}}) + W_{s}(h_{s} + \frac{U_{s}^{2}}{2g_{c}}) + W_{t}(h_{t} + \frac{U_{t}^{2}}{2g_{c}})$$

$$= W_{m}(h_{m} + K_{e} + \frac{U_{m}^{2}}{2g_{c}})$$
 (7)

neglecting potential energy of position changes (idealization 7). Note the introduction of the kinetic energy correction factor  $K_{\mathbf{e}}$ , which is defined by the relation

$$K_e = \frac{1}{W_m U_m^2} \int_{0}^{A_m} U_2^{3\rho_2 dA}$$
 (8)

It may be demonstrated that for the purpose of evaluating the mixed mean flow temperature  $\mathbf{T}_{\mathbf{m}}$ , the kinetic energy terms may be neglected to yield

$$h_{m} = \frac{W_{p}}{W_{m}} h_{p} + \frac{W_{s}}{W_{m}} h_{s} + \frac{W_{t}}{W_{m}} h_{t}$$
 (9)

where  $T_m = \phi(h_m)$  only, with the idealization (6).

The energy equation for the isentropic flow of the secondary air from the plenum to the entrance of the mixing stack may be shown to reduce to

$$\frac{P_{o} - P_{s}}{\rho_{s}} = \frac{U_{s}^{2}}{2g_{s}} \tag{10}$$

similarly, the energy equation for the tertiary air flow reduces to

$$\frac{P_{o} - P_{t}}{\rho_{t}} = \frac{U_{t}^{2}}{2g_{c}}$$

The previous equations may be combined to yield the vacuum produced by the eductor action in either the secondary or tertiary air plenums. For the secondary air plenum, the vacuum produced is

$$P_{a} - P_{os} = \frac{1}{g_{c}A_{m}} \left(K_{p}\frac{W_{p}^{2}}{A_{p}P_{p}} + \frac{W_{s}^{2}}{A_{s}P_{s}} \left(1 - \frac{1}{2}\frac{A_{m}}{A_{s}}\right) - \frac{W_{m}^{2}}{A_{m}P_{m}} \left(K_{m} + \frac{f}{2}\frac{A_{w}}{A_{m}}\right)\right)$$
(11)

where it is understood that  $A_p$  and  $\rho_s$  apply to the secondary flow at this same section, and  $A_m$  and  $W_m$  apply to the mixed flow at the exit of the mixing stack system.  $P_a$  is atmospheric pressure, and is equal to the pressure at the exit of the mixing stack.  $A_w$  is the area of the inside wall of the mixing stack.

For the tertiary air plenum, the vacuum produced is

$$P_{a} - P_{ot} = \frac{1}{g_{c}^{A}_{m}} (k_{p} \frac{(W_{p} + W_{s})^{2}}{(A_{p}P_{p} + A_{s})} + \frac{W_{t}^{2}}{A_{t}P_{t}} (1 - \frac{1}{2} \frac{A_{m}}{A_{t}})$$

$$= \frac{\frac{w^2}{m}}{\frac{A}{m} e_m} \left( \frac{K}{m} + \frac{f}{2} \frac{A}{M} \right)$$
 (11a)

where the primary flow now consists of both the primary and secondary air flows.

## C. NON-DIMENSIONAL FORM OF THE SIMPLE EDUCTOR EQUATION

In order to provide the criteria of similarity of flows with geometric similarity, the non-dimensional parameters which govern the flow must be determined. The means chosen for determining these parameters was to normalize equations (11) and (11a) with the following dimensionless groupings.

$$P* = \frac{P_a - P_{os}}{\frac{Q_s}{Q_c}}$$

a pressure coefficient which compares the pumped head  $P_a - P_{os}$  for the secondary flow to the driving head  $\frac{U}{p}$  of the primary flow  $\frac{2}{2g}$ 

$$PT* = \frac{\frac{P_a - P_{ot}}{e_t}}{\frac{U_p^2}{2g_c}}$$

a pressure coefficient which compares the pumped head  $P_a - P_{ot}$  for the tertiary flow to the driving head  $\frac{U_p^2}{2g_c}$  of the primary flow

$$W^* = \frac{W_s}{W_p}$$

a flow rate ratio, secondary to primary mass flow rate

$$WT^* = \frac{W_t}{W_p}$$

a flow rate ratio, tertiary to primary mass flow rate

$$T^* = \frac{T_s}{T_p}$$

an absolute temperature ratio, secondary to primary

$$TT* = \frac{T}{T}$$

an absolute temperature ratio, tertiary to primary

$$e_{\star}^{\star} = \frac{e_{\star}}{e_{\star}}$$

a flow density ratio of the secondary to primary flows. (Note that since the fluids are considered perfect gases,

$$e_s^* = \frac{T_p}{T_s} = \frac{1}{T_s^*}$$

a flow density ratio of the tertiary or fil, cooling flow to primary flows. (Note that since the fluids are considered perfect gases,

$$e_{t}^{*} = \frac{T_{p}}{T_{t}} = \frac{1}{T_{t}^{*}}$$

$$A_{S}^{*} = \frac{A_{S}}{A_{p}}$$

an area ratio of secondary flow area to primary flow area

$$A_{t}^{*} = \frac{A_{t}}{A_{p}}$$

an area ratio of tertiary flow area to primary flow area

With these non-dimensional groupings, equations (11) and (11a) can be rewritten in dimensionless form. Since both equations follow the same format, only the results for the secondary air plenum will be presented here.

$$\frac{P^*}{T^*} = 2 \frac{A_p}{A_m} ((K_p - \frac{A_p}{A_m} \beta) - W^*(K_p + T^*) \frac{A_p}{A_m} \beta$$

+ 
$$W^{*2}T^{*}(\frac{1}{A^{*}}(K_{p} - \frac{A_{m}}{2A^{*}A_{p}}) - \frac{A_{p}}{A_{m}}\beta))$$
 (12)

where

$$\beta = K_{m} + \frac{f}{2} \frac{A_{w}}{A_{m}}.$$

This may be rewritten as

$$\frac{P^*}{T^*} = C_1 + C_2 W^* (T + 1) + C_3 W^{*2} T^*$$
 (13)

where

$$C_1 = 2 \frac{A_p}{A_m} (K_p - \frac{A_p}{A_m} \beta),$$

$$C_2 = -\frac{A_p}{A_n}^2$$
 s, and

$$C_3 = 2 \frac{A_p}{A_m} (\frac{1}{A^*} - \frac{A_m}{2A^*A_p} \beta - \frac{A_p}{A_m} \beta)$$
.

As can be seen from equation (13),

$$P^* = F(W^*, T^*)$$
.

The additional dimensionless quantities listed below were used to correlate the static pressure distribution down the length of the mixing stack.

$$PMS^* = \frac{\frac{PMS}{e_s}}{\frac{u_p^2}{2g_c}}$$

a pressure coefficient which compares the pumping head  $\underline{PMS}$  for  $\rho_s$ 

the secondary flow to the driving head  $\frac{U_p^2}{2g_c}$  of the primary flow,

where PMS = static pressure
along the mixing stack length



FIGURE A-1. SIMPLE SINGLE NOZZLE EDUCTOR SYSTEM

#### APPENDIX: B

### FORMULAE

Presented here are the formulas used to obtain the primary and secondary mass flow rates. According to the ASME primary Test Code [Ref. 8], the general equation for mass flow rate appearing in equation (a)

$$W(lbm/sec) = (0.12705) KAYF_a (\rho \Delta P)^{0.5}$$
 (a)

may be used with flow nozzles and square edge orifices provided the flow is subsonic. In the above equation, K (dimensionless) represents the flow coefficient for the metering device and is defined as  $K = C(1 - \beta^4)^{-0.5}$  where C is the coefficient of discharge and  $\beta$  is the ratio of throat to inlet diameters;  $A(in^2)$  is the total cross sectional area of the metering device; Y (dimensionless) is the expansion factor for the flow;  $F_a$  (dimensionless) is the area thermal expansion factor;  $\rho$  (lbm/ft³) is the flow mass density; and  $\Delta P$  (inches  $H_2O$ ) is the differential pressure across the metering device. Each of these quantities are evaluated, according to the guidelines set forth in Reference [8], for the specific type of flow measuring device used.

Using a square edge orifice for measurement of the primary mass flow rate, the quantities in equation (a) are defined as follows:

- 1. The flow coefficient K is 0.62 based on a  $\beta$  of 0.502 and a constant coefficient of discharge over the range of flows considered of 0.60.
- 2. The orifice area is  $37.4145 \text{ in}^2$ .
- 3. Corresponding to the range of pressure ratios encountered across the orifice, the expansion factor Y is 01.8.
- 4. Since the temperature of the metered air is nearly ambient temperature, thermal expansion factor is essentially 1.0.
- 5. The primary air mass density  $e_{or}$  is calculated using the perfect gas relationship with pressure and temperature evaluated upstream of the orifice.

Substituting these values into equation (a) yields

$$W_{p}$$
 (lbm/sec) = (2.88455)  $(\rho_{or}\Delta P_{or})^{0.5}$  (b)

The secondary mass flow rate is measured using long radius flow nozzles for which case the quantities in equation (a) becomes:

- For a flow nozzle installed in a plenum, β is approximately zero in which case the flow coefficient is approximately equal to the coefficient of discharge.
   For the range of secondary flows encountered, the flow coefficient becomes 0.98.
- 2. A is the sum of the throat areas of the flow nozzles in use  $(in^2)$ .

- 3. Since the pressure ratios across the flow nozzles are very close to unity, the expansion coefficient Y is 1.0.
- 4. Since the temperature of the metered air is nearly ambient temperature, the thermal expansion factor is essentially 1.0.
- 5. The secondary air mass density  $\rho_{\rm S}$  is evaluated using the perfect gas relationship at ambient conditions. Substituting these values into equation (a) yields the equation for the secondary mass flow rate measured using long radius flow nozzles.

$$W_s$$
 (1bm/sec) = 0.12451) A  $(\rho_s \Delta P_s)^{0.5}$  (c)

## APPENDIX: C

### UNCERTAINTY ANALYSIS

The determination of the uncertainities in the experimentally determined pressure coefficients, pumping coefficients, and velocity profiles was made using the methods described by Kline and McClintock [Ref. 10]. The basic uncertainty analysis for the cold flow eductor model test facility was conducted by Ellin [Ref. 1]. The uncertainties obtained by Ellin using the second order equation suggested by Kline and McClintock were applicable to the experimental work conducted during the present research and are listed in the following table.

## UNCERTAINTY IN MEASURED VALUES

Ts	÷	1 R		
$\tau_{p}$	±	1 R		
P a	±	0.01	psi	a
ΔΡ	±	0.01	in.	H ₂ O
$^{\mathtt{P}}\mathtt{V}$	±	0.01	in.	H ₂ O
P u	±	0.05	in.	H ₂ O
ΔP _s (+)	±	0.01	in.	H ₂ O
ΔP _t (**)	±	0.01	in.	H ₂ O
Por	±	0.01	in.	H ₂ O
ΔPor	±	0.20	in.	H ₂ O
Tor	±	1 R		

T_a ± 1 R PT (***) ± 0.1 in. H₂0

## UNCERTAINTY IN CALCULATED VALUES

T* 1.9%

W*T*^{0.44} 1.4%

V/V 2.5%

(+) The pressure differential across the secondary flow nozzles, P_s. is the major source of uncertainty in the pumping coefficent.

(++) The pressure differential across the tertiary flow nozzles, P_t, is the major source of uncertainty in the pumping coefficient.

(+++) The measurement of the total pressure for the velocity profile is the major source of uncertainty in the velocity calculation.

#### APPENDIX: D

#### ASME FLOW METERING COMBINATION NUMBERS AND DATA SHEETS

The total cross-sectional area of the ASME long radius nozzles is one of the major inputs for determining the secondary air flow rate. Calculation of these areas as the nozzles are sequentially opened to the atmosphere can be difficult, time consuming, and possibly error prone. To increase accuracy while lowering the data acquisition time, past research was conducted using nozzle combination numbers to represent the areas involved.

Past combination numbers were determined by taking the diameters of the nozzles in use, squaring them, and then dividing by four. For example, if one-four inch and one-eight inch nozzle had been opened,  $4^2 = 16$ 

$$8^2 = 64$$

$$16 + 64 = 80/4 = 20$$

The combination number, 20, is thus easily calculated and easier still to input into the reduction programs. When multiplied by PI, the area becomes 62.832 square inches.

This research deviated from this past practice by eliminating all calculations in the acquisition process. The combination numbers used for the data sheets and for computer data reduction entry made the flow metering area calculations still easier to use. A set of areas which gave the optimum plotting points for the pumping coefficient plots were

determined, and the number and type of nozzles to be opened for each run were added to the data sheets along with the corresponding combination number. These standard combinations proved effective and efficient during this investigation, and room was left on the data sheets for non-standard combinations should they be needed at a future data. The reduction program uses the actual areas in calculating the secondary air flow, and the pumping coefficient program "PCDSTORE" performs the combination number/area conversion. This was done to allow the older combination numbers to be used again by modifying the smaller, less complicated input program without having to modify the more complex reduction program if such a need should arise.

The reduced size listings of the various combination numbers and corresponding areas are given in Table D-1. Reduced size samples of the data acquisition sheets are provided in Figures D-1, D-2, and D-3. The reduction makes the combination numbers difficult to read under the headings CSEC and CTER for secondary and tertiary combination numbers respectively in Figure D-1, but the ease of use should be apparant.

## ASME FLOW NOZZLE COMBINATIONS

	NUMB	ER OF NO	ZZLES	AREA	COMBINATIO	N NUMBER
2	INCH	4 INCH	8 INCH	(SO INCHES)	SECONDARY	TERTIARY
	0	0	)	000.000	l	1
	1	0	0	3.140	2	2
	2	0	0	6.283	3	3
	0	1	0	12.566	4	4
	1	1	0	15.708	5	5
	2	1	0	18.850	6	6
	0	2	0	25.133	7	7
	1	2	0	28.850	8	8
	2	2	0	31.416	9	9
	0	3	0	37.699	10	10
	1	3	0	40.841	11	11
	2	3	0	43.982	12	12
	0	0	1	50.265	13	13
	1	0	1	53.407	14	14
	2	0	1	56.549	15	15
Ĺ	0	1	1	62,832	16	16
	1	1	1	65.973	17	17
L	2	1	1	69.115	18	18
	0	2	1	75.398	19	19
	1	2	1	78.540	20	20
L	2	2	11	81.681	21	21
L	0 .	3	11	87.965	22	22
Ŀ	1	3	1	91.106	23	23
L	2	3	1	94.248	24	24
	0	0	2	100.531	25	25
L	1	0	2	103.673	26	26
L	2	0	2	106.814	27	27
L	0	1	2	113.097	28	28
L	1	1	2	116.239	29	29
	2	1	2	119.381	30	30
	0	2	2	125.664	31	31
L	1	2	2	128.805	32	32

TABLE D-1 ASME FLOW METERING NOZZLE COMBINATION NUMBERS

# ASME FLOW NOZZLE COMBINATIONS (CONTINUED)

Г	NUMB	ER OF NO	ZZLES	AREA	COMBINATIO	N NUMBER
2	INCH	4 INCH	8 INCH	(SO INCHES)	SECONDARY	
	2	2	2	131.947	33	33
	0	3	2	138.230	34	34
	1	3	2	141.372	35	35
	2	3_	2	144.513	36	36
	0	0	3	150.796	37	
	1	0 -	3	153.938	38	
	2	0	3	157.080	39	
	0	1	3	163.363	40	
	1	1	3	166.504	41	
	2	1	3	169.646	42	
	0	2	. 3	175.929	43	
	1	2	3	179.071	44	
	2	2	3	182.212	45	
	0	3	3	188.496	46	
Г	1	3	3	191,637	47	
	2	3	3	194.779	48	•
	0	0	4	201.062	49	
	1	0	4	204.204	50	
	2	0	4	207.345	51	
	0	1	4	213.628	52	
	1	1	4	216.770	53	
	2	1	4	219.911	54	
	0	2_	4	226.195	55	
	1	2	4	229.336	56	
	2	2	4	232.478	57	
	0	3	4	238.761	58	
	1	3	. 4	241.903	59	
	2	3	4	245.044	60	
	DOOR	S/NOZZLE	S OPEN	785.000	999	999

TABLE D-1 (CONTINUED)

	(IN HG)	CTER											
_ <b>1</b>	STOP STOP EMPERATI STOP	ER CSEC	000	0 1 0	O	00118	0	600	2 W 0				DATA RECORDER
UT DATA	START START AMBIENT START START	TUPT PUPT PSEC PTER											DATA R
COEFFICIENT	STACK (IN)	r PUPT											
1	MIXING S LENGTH DIAMETER L/D RATIO S/D RATIO												
PUMPING	(DEG) (DEG) 0,752 (IN ² )	DPOR .											NUN
	NOZZLE TILT ANGLE ROTATION ANGLE FLOW AREA 10	POR (											2
	TILT AN ROTATIC	Z S	7	તા	e	4	S	9	7	8	6	10	DATE

FIGURE D-1 SAMPLE PUMPING COEFFICIENT DATA SHEET



FIGURE D-2 SAMPLE MIXING STACK DATA SHEET

# VELOCITY TRAVERSE DATA

# ROTATION ANGLE

H	ORIZONT	AL
	NON-STD	PRESSURE
STD (IN)	NON-STD	(IN H ₂ O)
.0		
.2		
.4		
.6		
.8		
1.0		
1.5		
2.0		
2.5		
3.0		
3,5		
4.0		
4.5		
5.0		
5.5		
6.0		
6.5		
7.0		
7.5		
8.0		
8,5		
9.0		
9,5		
10.0		
10.5		
11.0		
11.2		
11,4		
11.6		
11.8		
12.0		

	DIAGONA	\L
205	NON-STO	PRESSURE
STD (IN)	NON-STD	(IN H ₂ O)
o.		
.2		
.4		
.8		
,8		
1.0		
1.5		
2.0		
2.5		
3.0		
3.5		
4,0		
4,5		
5.0		
5,5		
6.0		
6.5		
7.0		
7.5		
9.0		
8,5		
9.0		
9.5		
10.0		
10,5		
11.0		
11,2		
11.4		
11,6		
11,8		
12.0		

FIGURE D-3 SAMPLE VELOCITY TRAVERSE DATA SHEET

## APPENDIX: E

#### COMPUTER PROGRAMMING INFORMATION

The research conducted by Ryan [Ref. 5] utilized a semiautomated data acquisition system in the later stages of eductor model testing. The system used the Hewlett Packard HP-85 computer which also served to reduce the data and to plot the results for more detailed analysis. The data input, reduction, and plot programs were designed for the eductor geometries used by Shaw and Ryan in their investigations. With the introduction of the angled nozzles and straight mixing stack, the programs written by Ryan no longer applied. Had more research time been available, the equipment suggested by Ryan to further automate the data acquisition could have been obtained and the programs written for the new geometries. In the configuration and state of automation available at the start of the present research, the semi-automatic data acquisition system actually would have taken longer to acquire the same amount of data that could be taken manually. The decision was reached to place the system in a standby status and to rewrite the necessary programs for the angled nozzles with straight mixing stack. Ryan's programs were left intact and are available on floppy disc Volume: DLRYAN should research be directed toward the symmetric concealment plug concept.

#### A. PROGRAMMING CONCEPTS

The programs written for the angled nozzles and straight mixing stack were designed to be versatile, have room for growth, and to anticipate immediate future needs. As such, they were written for full secondary and tertiary flow data reduction, plotting, and comparison vice to fulfill just the secondary data reduction and plotting needed in this research. The programs were written to maximize man-machine interfacing. Operators with little skill in the HP Basic Language used should have no problems entering data, reducing the inputs, storing the outputs, and generating the numerous plots required for this particular research. Each program was designed to ask simple questions on the computer's display screen, give the possible answer of data input formats, and provide numerous data error correction techniques. The data sheets listed in Appendix D, Figures D-1, D-2, and D-3 were designed to further assist the data acquisition process by providing blanks or spaces in the same order that the particular programs would ask for data entry. The programs were written so that all data entry, reduction, and plotting routines were located on one floppy disc and the temporary and permanent data files were stored on another floppy disc. This feature was incorporated to allow future researchers to store their data on their own individual floppy disc, prevent filling the disc during a data run, and allow easier data comparison with past research files.

#### B. OPERATING PROCEDURES

Each program contains its own instructions. The programs are loaded by the LOAD command. For example, to load the program to store the pumping coefficient data, the operator would type in LOAD "PCDSTORE" and press the ENDLINE key. After the program is loaded, the operator could press the LIST key to see what capabilities are present. The operator could have also pressed the RUN key if the capabilities were already known. Once the program is running, the operator just has to make basic decisions and answer simple questions.

The programs are generally used in the following order and this sequence is strongly recommended:

PCDSTORE

Enters all of the header information/data for the pumping coefficients. It also converts combination numbers to actual metering flow nozzle areas.

MSDSTORE

Enters data for the mixing stack pressure and flow rotation distributions.

VTDSTORE

Enters data for the two velocity traverse profiles.

DRPSMS

Asks if mixing stack data and velocity traverse data are to be reduced, and it then runs for about 20 minutes reducing the data, placing the data into temporary files, printing about eight feet of output formatted for the thesis requirements, and includes up to six mini-plots for immediate comparison.

DATSTORE

Reads all of the data for the particular run, sorts out the data needed for graphical comparison, and then permanently stores the comparison data. SECPLOT

Allows stored data retrieval or manual data input comparisons of secondary flow pumping coefficients with capability to add comments located by the same units used to graph the data.

TERPLOT

Identical to SECPLOT except it plots the tertiary pumping coefficient comparisons.

MSDPLOT

Identical to SECPLOT except it plots the mixing stack pressure distributions in many different data combinations.

ROTPLOT

Same type program as MSDPLOT but plots the rotation angle distributions.

VTDPLOT

Plots only stored velocity profile data which cannot be compared with other data since the velocities are not dimensionless. It does have the option to compare the horizontal and diagonal velocity profiles, and allows comments to be added like the other programs.

FIGCOM

Allows adding figure or table numbers to finished plots or tables, adding comments which may have been left out, and has the option of locating these inputs on the plots by manually entering X-Y coordinates in plotter units or by using the digitizing feature of the plotter.

INITIALIZE

Initializes new floppy discs for data storage with properly dimensional memory allocations for the six temporary input/output storage files. It has several safeguards to prevent accidental purging of valuable data.

AUXPLOT

Plots the pumping coefficients by nozzle tilt/rotation angles for the summary plots. It has only manual data entry capability but retains comment addition similar to the other programs.

The INITIALIZE program would only be used once per thesis as sufficient memory is available on one floppy disc to handle all the data that could be taken over a six month span. FIGCOM and AUXPLOT are used mainly after all of the plots have been analyzed and finished products and summaries are desired.

For the inexperienced operator, a listing of programs can be obtained by typing in CAT and pressing ENDLINE with the program storage disc in the DRIVE 0 slot on the HP 82901M Flexible Disc Drive. Data listings can be obtained by typing CAT".DRIVE1.D701" and pressing ENDLINE with the data disc the DRIVE 1 slot on the disc drive. Further operating instructions can be found in the various operating manuals.

#### C. DATA FILES

Data files for this research period as stored on floppy disc Volume:DRIVE1 which is disc number two in the research manual. The information is stored by date-time-group and run number. For example, data for the pumping coefficients (secondary and tertiary) for the fourth data run on 26 August 1981 would be stored as P2608814. To facilitate future comparisons with the data derived during this research period, the data available and the file numbers are listed in the Summary of Tabulated Data which can be found in Tables 1.1, 1.2, and 1.3.

# INITIAL DISTRIBUTION LIST

		No.	of	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2	2
3.	Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		2	2
4.	Professor Paul F. Pucci, Code 69Pc Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		ţ	5
5.	Dean of Research, Code 012 Naval Postgraduate School Monterey, California 93940		]	L
6.	Mr. Charles Miller NAVSEA Code 0331 Naval Ship Systems Command Washington, DC 20362		-	L
7.	Mr. Olin M. Pearcy NSRDC Code 2833 Naval Ship Research and Development Center Annapolis, Maryland 21402		]	L
8.	Mr. Mark Goldberg NSRDC Code 2833 Naval Ship Research and Development Center Annapolis, Maryland 21402		1	L
9.	Mr. Eugene P. Wienert Head, Combined Power and Gas Turbine Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112		:	1
10.	Mr. Donald N. McCallum NAVSEC Code 6136 Naval Ship Engineering Center		;	1

11.	LCDR Charles R. Ellin USN 13512 Westwind Drive Silver Spring, Maryland 20904	1
12.	LCDR C.M. Moss USN 625 Midway Road Powder Springs, Georgia 30073	1
13.	LCDR J.P. Harrell, Jr., USN 2004 Cloverleaf Place Ardmore, Oklahoma 73401	1
14.	LCDR J.A. Hill USN Route 2, Box 61 Wood River, Nebraska 68883	1
15.	LCDR R.J. Lemke USN 2902 No. Cheyenne Tacoma, Washington 98407	1
16.	LCDR C.P. Staehli USN Route 2, Box 64B Burton, Washington 98013	1
17.	LT R.S. Shaw USN 147 Wampee Curve Summerville, South Carolina 29483	1
18.	LCDR D.L. Ryan USN 6393 Caminito Luisito San Diego, California 92111	1
19.	LCDR C.C. Davis USN 1608 Linden Drive Florence, South Carolina 29501	1
20.	CDR D. Welch USN 1036 Brestwick Commons Virginia Beach, Virginia 23458	1
21.	CDR P.D. Ross, Jr., USN 6050 Henderson Drive No. 8 La Mesa, Califonria 92041	1