

INTRODUCTION

Introduction

PROOSIS

- Simple and complex physical processes modeling software.
- EcosimPro Language EL to model continuous and discrete processes.
- Differential Algebraic Equations (DAEs), Ordinary Differential
 Equations (ODEs) and Discrete Events solver.
- EcosimPro provides a set of reusable Libraries: Mechanical,
 Electrical, Thermal, Mathematical, Control,...
- Schematic Modeling: user-friendly environment.

- Level 1: Users who develop libraries of components.
 - Model physics knowledge.
 - Model math knowledge.
 - EL code knowledge.

September 2015

- Level 2: Users who create models based on existing libraries.
 - Components deep knowledge.
 - Schematic modelling.

September 2015

- Level 3: Users who run simulations from existing models.
 - Running the simulation changing the input data.
 - Background knowledge of the final application.
 - Mainly by means of the monitor.

September 2015

- Level 4: Users who use exported models.
 - From EcosimPro to other tools (Excel, Matlab, Simulink).
 - From EcosimPro as black boxes (Decks).

MAIN CONCEPTS

Global View

- Workspace.
- Library.
- Component.
- Schematic.
- Partition.
- Experiment.
- Monitor.
- Deck.

WorkSpace

- Set of libraries related to a specific simulation environment and configuration setup.
- Each user may create different workspaces according to the different developing areas or projects.

Name	Version
⊟ 📰 DEFAULT	1.3
- 🔒 CONTROL	4.0.0
CONTROL_EXAMPLES	3.1.2
DEFAULT_LIB	3.1.2
- ☐ ELECTRICAL	3.1.2
■ ■ ELECTRICAL_EXAMPLES	3.1.2
□ □ MATH	3.1.2
→ MECHANICAL	3.1.2
■ MECHANICAL_EXAMPLES	3.1.2
PORTS_LIB	1.1.2
☐ THERMAL	3.4.2
THERMAL_EXAMPLES	3.1.2
☐ TURBOJET	3.1.2
□ 📶 TURBOJET_EXAMPLES	3.1.2

Library

- Collection of elements related to a specific simulation discipline (Electrical, Mechanical, Thermal, etc).
- Library area: Files, Items,
 Symbols, Partitions and
 Experiments related to the library.

Component

- The Components are the basic elements in EcosimPro.
- They are usually related to a physical element such as compressors, valves, pipes, pumps, ...
- Their formulation describes the behaviour of the related physical element.

```
Files
                       ■ Items
 3 Symbols
                                                          -- Component Minimum
Name
                     Type
                                 Description
C MIMOs
                     Abstract Co...
                                 This abstrac...
                                                                 Outputs the minimum input value.
C MO
                     Abstract Co...
                                 This abstrac...
C MathFunction
                     Component
                                 To perform ...
                                                          COMPONENT Minimum IS A MI2MOs "Outputs the minimum input value"
E MathOption
                     Enumerative
                                                             CONTINUOUS
C Maximum
                     Component
                                 Outputs the ...
                                                      37
                                                                 EXPAND (i IN 1, n)
C Minimum
                     Component
                                 Outputs the ...
                                                      38
                                                                     s out.signal[i] = ZONE (s in 1.signal[i] < s in 2.signal[i]) s in 1.signal[i]
C Module
                                                      39
                                                                                                                            s in 2.signal[i]
                     Component
                                 Module unit...
                                                                                          OTHERS
C Move
                     Component
                                 Move stand...
                                                      41 END COMPONENT
C Mux
                     Abstract Co... This abstrac...
C Mux2
                                 Multiplexer ...
                     Component
```

September 2015

Partition

- Mathematical model associated to a component.
- Defines the inputs and outputs of the simulation.
- Generates a definite solution for the complete equation system.

Experiment

- Configures the simulation on a defined partition of a component.
- Customizes the reports of the simulations
- Generates a sequence of studies of the behaviour of the component

```
EXPERIMENT exp1 ON Component.Partition

DECLS

--
INIT -- set initial values for variables
-- -- Dynamic variables
-- -- Algebraic variables

BOUNDS -- set expressions for boundary variables: v = f(t,...)
--
BODY

REPORT_MODE = IS_STEP
TIME = 0
TSTOP = 2
CINT = 0.005 --0.01
INTEG()

END EXPERIMENT
```

September 2015

Deck

- Standalone Executable file that encapsulates models and experiments
- From the user point of view, a Deck is like a black box
- Allows the connection with other software

Monitor

- Graphical Interface to analyze the results of simulations in detail
- Representation of variables and performance maps.

September 2015

GRAPHICAL USER INTERFACE

Library View

Library View

Library View

September 2015

September 2015

Schematics

Global **Ports Functions Variables COMPONENT Model Creation MACRO COMPONENT Mathematical Process PARTITION Experiment Definition EXPERIMENT**

Schematics

- Macro-components can be created graphically by means of Schematic diagrams
- Components from different libraries can be instanciated by drag & drop
- Ports and Connections define the interface between components

Schematics

- When Schematics are compiled, the component is added to the library
- This new item contains the complete formulation of the instances, and their port variables relationships

PARTITION

Global **Ports Functions Variables COMPONENT Model Creation MACRO COMPONENT Mathematical Process PARTITION Experiment Definition EXPERIMENT**

System of Equations

 When a Component source code is compiled, all its variables and equations are encapsulated to be reused in the future

This component contains the equations that must be satisfied

during the simulation

System of Equations

- These equations are not organized. The system cannot be solved
- The partition organize all the equations and check the number of boundaries that must be set by the user:

N_bounds = N_variables - N_equations

Dynamic variables and Algebraic loops are detected

Then, the **Mathematical Model** is ready to be solved if the initial values and Boundaries are given

System of Equations

 The Mathematical Model of any partition can be analyzed to check the sequential solving process

Component vs. Partition

- The Component provides the set of equations to be solved. The Partition organizes them to obtain a consistent system of equations
- The Partition defines the INPUTS and OUTPUTS of the model.

EXPERIMENT

Global **Ports Functions Variables COMPONENT Model Creation MACRO COMPONENT Mathematical Process PARTITION Experiment Definition EXPERIMENT**

Simulation Definition

- The Partition defines the Inputs and Outputs. Different calculations can be defined for it in a Experiment
- The Experiment is a sequence of statements which allows the user to:
 - Initialize data
 - Solve the system of equations defined in the partition
 - Create extra functions to manage the model variables
 - Define extra equations to extend the model equations
 - Prepare the model for external connections

Simulation Definition

- Typical calculations performed in experiments:
 - Steady
 - Transient
 - Design
 - Parametric
 - Sensitivity Analysis
- The Experiment can be used to define complex sets of calculations to perform complete analysis of models
- The Experiment Wizard provides an intuitive interface to create automatically the experiment code

Experiment Wizard

Create experiment code requires a **deep knowledge** of PROOSIS functions

The Experiment Wizard helps the user to generate experiments graphically

Wizard experiments are **easier to maintain** when models/partitions change

Complex experiments can be generated

Experiment Wizard

The Wizard experiments have the following structure:

Experiment Wizard

CASE: Group of calculations

- **Standard**: Executes the calculations sequentially
- **Parametric**: Create a loop to execute a set of calculations iteratively.

CALCULATION: Series of statements to set the Inputs/Outputs and solve the Mathematical Model.

- Simulations: transient, steady, sensitivity, parametric, ...
- Functions: function call, data, data cardpack
- Reset: reinitialize variables, execute init blocks, ...
- Report management: save state, restore state

Experiment Wizard

TYPE OF CALCULATIONS

- Steady: Calculate steady state point. Dynamics are calculated iteratively (as Algebraics)
- Extended Steady: Calculate an steady point. Design data are calculated iteratively to fulfil extra closure equations
- Transient: Simulate time evolutions. Dynamics variables are initialized by the user
- Extended Transient: Transient simulation. Boundaries are calculated to fulfil extra closure equations
- Parametric: Steady / Transien loops
- Sensitivity: Calculate input (Data or Bounds) sensitivity in Steady calculation results

DATA

C1 = 1e-3 F

L1 = 10 H

R1 = 2e3 Ohm

 $V = 10 \ V$

BOUNDARY

V3 = 100 V

DYNAMIC

C1.v = 0 V

i2 = 0 A

CONFIG

CINT = 1E-3

TIME = 0

TSTOP = 10

Electrical Example

EXPLICIT

v1, v2

i3

. . .

DYNAMIC

C1.v

i2

DERIVATIVE

C1.v

i2'

Transient vs. Steady

TRANSIENT: the violet line shows the evolution of the v2 variable from t= 0s to t=10s

STEADY: the green point represents the value of v2 when the system becomes stable and does not changes

Parametric Study

PARAMETRIC STUDY:

Loops of Transient or Steady calculations carried out to analyze the influence of:

- Initial states
- Component characteristics
- Boundary conditions

- ...