A Glimpse Of Calculus

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16 Tel: 6516-2937

Polynomial Equations	2
Roots of Quadratic Equations	3
Roots of Cubic Equations	4
Roots of Quartic Equations	7
Roots of Quintic Equations	9
Complex Numbers	10
Complex Numbers	11
Complex Functions	12
Stereographic Projection	16
Matrix Representation	17
Evaluation of π	19
Liu Hui's Algorithm	20
Integration	
Series	27
Power Series	28
Integration	29
Ordinary Differential Equation	30
Term by Term Integration	
Come Charies	22

Roots of Quadratic Equations

Solve the Quadratic Equation: $x^2 + bx + c = 0$.

1.
$$\left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c = 0.$$

2.
$$\left(x + \frac{b}{2}\right)^2 = \frac{b^2 - 4c}{4}$$
.

3.
$$x + \frac{b}{2} = \pm \frac{\sqrt{b^2 - 4c}}{2}$$
.

4.
$$x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

☐ Remove the **Linear Term** by **Substitution**.

$$\qquad \text{Let } t=x+\frac{b}{2} \text{, i.e., } x=t-\frac{b}{2}.$$

 $\blacksquare \quad \text{The equation becomes} \quad \boxed{t^2+d=0}$

3/36

Roots of Cubic Equations

■ Solve the Cubic Equation: $x^3 + bx^2 + cx + d = 0$.

- 1. Use Cardano's Method (1545): x = t b/3
 - $\Box \quad t^3 + pt + q = 0.$
- 2. Set t = u + v:

$$\Box (u^3 + v^3) + (3uv + p)(u + v) + q = 0.$$

3. Suppose 3uv + p = 0.

$$u^3 + v^3 = -q$$
, $u^3v^3 = -p^3/27$.

4. u^3 and v^3 are roots of

$$\Box z^2 + qz - p^3/27 = 0.$$

- 5. Solve the equation above to get u and v.
 - $\Box x = t b/3 = u + v b/3.$

Roots of Cubic Equations

- Solve the Cubic Equation: $x^3 + bx^2 + cx + d = 0$.
 - 1. Set x = t b/3.
 - $\Box t^3 + pt + q = 0.$
 - 2. Solve $z^2 + qz p^3/27 = 0$.
 - \Box $z_1 = u^3$ and $z_2 = v^3$.
 - 3. $x = u + v b/3 = \sqrt[3]{z_1} + \sqrt[3]{z_2} b/3$.
 - \Box $t^3 + pt + q = 0$ is called the **Depressed Form**.
 - $\qquad \text{The } {\color{red} \textbf{Discriminant}} \ \Delta = 4p^3 + 27q^2 \\$
 - \triangle > 0: 3 distinct real roots.
 - $\triangle = 0$: repeated real roots.
 - $\triangle < 0$: 1 real and 2 nonreal conjugate roots.

5/36

Example

- - 1. b = -6. Set x = t b/3 = t + 2.
 - \Box Depressed form: $t^3 3t 2 = 0$.
 - 2. p = -3 and q = -2. Solve $z^2 + qz p^3/27 = 0$:
 - $\Box z^2 2z + 1 = 0 \Rightarrow z_1 = z_2 = 1.$
 - 3. $u = \sqrt[3]{z_1} = 1$ and $v = \sqrt[3]{z_2} = 1$.
 - \Box $x_1 = u + v + 2 = 1 + 1 + 2 = 4.$
 - 4. Factorize $x^3 6x^2 + 9x 4 = (x 4)(x^2 2x + 1)$.
 - 5. Solve $x^2 2x + 1 = 0$: $x_2 = x_3 = 1$.
 - 6. Therefore, the roots are $x_1 = 4, x_2 = 1, x_3 = 1$.
 - $\Box x^3 6x^2 + 9x 4 = (x 4)(x 1)^2.$

Roots of Quartic Equations

- **Quartic Equation:** $x^4 + bx^3 + cx^2 + dx + e = 0$.
 - 1. Ferrari's Method (1522–1565): Set x = t b/4.
 - $\ \ \, \square \ \ \, {\bf Depressed \ Form:} \ \ \, t^4+pt^2+qt+r=0.$
 - 2. Solve a Cubic Equation in z:

$$\Box \ z^3 + \frac{5}{2}pz^2 + (2p^2 - r)z + \left(\frac{p^3}{2} - \frac{pr}{2} - \frac{q^2}{8}\right) = 0.$$

3.
$$x = \frac{\pm \sqrt{p+2z} \pm \sqrt{-\left(3p+2z\pm\frac{2q}{\sqrt{p+2z}}\right)}}{2} - \frac{b}{4}$$

 \Box The first and the third \pm are both positive or negative.

7/36

Example

- Solve $x^4 12x^3 + 43x^2 24x 80 = 0$.
 - 1. Set x = t + 3.

$$\Box t^4 - 11t^2 + 18t - 8 = 0.$$

2. Solve a cubic equation in z:

$$\Box \quad z^3 - \frac{55}{2}z^2 + 250z - 750 = 0.$$

• Use Cardano's method to get z = 15/2.

3.
$$x = \frac{\pm 2 \pm \sqrt{-(-18 \pm 18)}}{2}$$

$$= 1, 1, -4, 2.$$

Roots of Quintic Equations

- **Quintic Equation:** $x^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$.
 - ☐ ÉVARISTE GALOIS (1811 1832) French
 - ☐ NIELS HENRIK ABEL (1802 1829) Norwegian
- Abel's Impossibility Theorem.
 - ☐ There is **No** general **Algebraic** solution
 - that is, expression using $+, -, \times, \div, \sqrt[n]{}$,
 - to Polynomial Equations of Degree ≥ 5 .
- Remarks.
 - ☐ Approximated solution may be found easily.
 - Bisection Method, Newton-Raphson's Method.
 - ☐ JOHANN CARL FRIEDRICH GAUSS (1777 1855)
 - **Fundamental Theorem of Algebra (1799)**: A polynomial equation of degree n has n roots in complex numbers.

9/36

Complex Numbers

10/36

Complex Numbers

- Complex Numbers: $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}\},$ $i^2 = -1$
 - \square \mathbb{C} is identified with the Cartesian Plane \mathbb{R}^2 :
 - $x + iy \leftrightarrow (x, y).$
 - \Box Polar Form: $z = r(\cos \theta + i \sin \theta)$.
 - $\qquad \textbf{Exponential Form:} \quad z=re^{i\theta}, \quad r=|z|, \quad \theta=\arg z.$

Complex Functions

- For any Real number x,
 - $\Box e^{ix} = \cos x + i \sin x$
 - $\Box \quad e^{-ix} = \cos(-x) + i\sin(-x) = \cos x i\sin x.$

We solve that

$$\qquad \qquad \square \quad \cos x = \frac{e^{ix} + e^{-ix}}{2} \text{ and } \sin x = \frac{e^{ix} - e^{-ix}}{2i}, x \in \mathbb{R}.$$

■ **Definition**. For any **Complex Number** z, define

$$\square \quad \cos z = \frac{e^{iz} + e^{-iz}}{2} \text{ and } \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

We can verify that all the Trigonometric Identities still hold:

- $\Box \quad \cos^2 z + \sin^2 z = 1;$
- $\Box \quad \sin 2z = 2\sin z \cos z;$
- $\Box \cos 2z = \cos^2 z \sin^2 z; \dots$

12/36

Complex Functions

- Recall that $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ and $\sin z = \frac{e^{iz} e^{-iz}}{2i}$.
 - $\Box \cos^{2} z + \sin^{2} z = \left(\frac{e^{iz} + e^{-iz}}{2}\right)^{2} + \left(\frac{e^{iz} e^{-iz}}{2i}\right)^{2}.$
 - $\Box \quad \cos^2 z + \sin^2 z = 1.$
- **Definition.** $\tan z = \frac{\sin z}{\cos z} = \frac{i(e^{iz} e^{-iz})}{e^{iz} + e^{-iz}}$
 - \Box $\cot z = \frac{\cos z}{\sin z}$, $\sec z = \frac{1}{\cos z}$, $\csc z = \frac{1}{\sin z}$

Complex Functions

- Recall that $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ and $\sin z = \frac{e^{iz} e^{-iz}}{2i}$.
 - $\Box \cos i = \frac{e^{i \cdot i} + e^{-i \cdot i}}{2} = \frac{e^{-1} + e}{2} = \frac{e + e^{-1}}{2} \approx 1.543.$
 - $\Box \sin i = \frac{e^{i \cdot i} e^{-i \cdot i}}{2i} = \frac{e^{-1} e}{2i} = \frac{i(e e^{-1})}{2} \approx 1.175i.$
- The Logarithmic Function $\ln x$ is also extendable to $\mathbb{C} \setminus \{0\}$.
 - $\Box \quad \boxed{\log z = \ln|z| + i\arg z}$
 - $\log(-1) = \pi i$; $\log i = \frac{\pi i}{2}$; $\log(-i) = -\frac{\pi i}{2}$.
- $\blacksquare \quad \text{The } \textbf{Exponential Function } a^x \text{ is extendable for any } a,x \in \mathbb{C}.$
 - $\Box \quad \boxed{a^x = \exp(x \log a)} \quad \text{if } a \neq 0.$
 - $(-1)^i = e^{-\pi}$; $i^i = e^{-\pi/2}$.

14/36

Example

- Let $z = \cos x + i \sin x = e^{ix}$. Let
 - \square $S = 1 + z + \dots + z^n = \frac{1 z^{n+1}}{1 z}.$

$$S = \frac{1 - [\cos(n+1)x + i\sin(n+1)x]}{1 - (\cos x + i\sin x)}$$
$$= \frac{1}{2} + \frac{1}{2} \frac{\sin\frac{(n+1)x}{2}}{\sin\frac{x}{2}} + \frac{\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}i$$

$$Re(S) = 1 + \cos x + \cos 2x + \dots + \cos nx$$

$$= \frac{1}{2} + \frac{1}{2} \frac{\sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$$

$$\operatorname{Im}(S) = \sin x + \sin 2x + \dots + \sin nx$$
$$= \frac{\sin \frac{(n+1)x}{2} \sin \frac{nx}{2}}{\sin \frac{x}{2}}.$$

Stereographic Projection

- For any $z = x + iy \leftrightarrow (x, y)$, connect z to N(0, 0, 1).
 - \Box Line Nz intersects the unit sphere $x^2+y^2-N=1$ at Z.

- \Box $S^2 := \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ the Unit Sphere.

 - $\qquad \mathbb{C} \cup \{\infty\} \leftrightarrow S^2 \text{ via } z \leftrightarrow Z \text{ and } \infty \leftrightarrow N(0,0,1).$

16/36

Matrix Representation

■ A Complex Number can be identified with a Real Matrix:

$$\Box \quad z = \left| x + iy \leftrightarrow \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \right| = M_z.$$

- All the **Arithmetic Properties** are preserved:
 - \square Addition: Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$.

 - $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2).$ $M_{z_1} + M_{z_2} = \begin{pmatrix} x_1 + x_2 & -(y_1 + y_2) \\ y_1 + y_2 & x_1 + x_2 \end{pmatrix} = M_{z_1 + z_2}$
 - \square Multiplication: Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$.
 - $z_1 z_2 = (x_1 x_2 y_1 y_2) + i(x_1 y_2 + x_2 y_1).$

$$\begin{split} M_{z_1} M_{z_2} &= \begin{pmatrix} x_1 & -y_1 \\ y_1 & x_1 \end{pmatrix} \begin{pmatrix} x_2 & -y_2 \\ y_2 & x_2 \end{pmatrix} \\ &= \begin{pmatrix} x_1 x_2 - y_1 y_2 & -(x_1 y_2 + y_1 x_2) \\ x_1 y_2 + y_1 x_2 & x_1 x_2 - y_1 y_2 \end{pmatrix} = M_{z_1 z_2} \end{split}$$

Matrix Representation

■ A Complex Number can be identified with a Real Matrix:

$$\Box z = \begin{vmatrix} x + iy \leftrightarrow \begin{pmatrix} x & -y \\ y & x \end{vmatrix} = M_z.$$

- All the **Arithmetic Properties** are preserved:
 - \Box Modulus: $|z|^2 = x^2 + y^2 = \det(M_z)$.

 - \square Quotient: Let z=x+iy. Then $1/z=z^{-1}=\frac{x-iy}{x^2+y^2}$.
 - $M_{z^{-1}} = \frac{1}{x^2 + y^2} \begin{pmatrix} x & y \\ -y & x \end{pmatrix} = (M_z)^{-1}.$

18 / 36

Evaluation of π 19 / 36

Liu Hui's Algorithm

- Recall that ARCHIMEDES, LIU HUI and ZU CHONGZHI used regular polygons to approximation π the area of unit circle.
- **Liu Hui's Algorithm** for π :
 - 1. Let $M_n=$ a side of a regular n-gon inscribed in unit circle.
 - 2. Let $A_n =$ area of the regular n-gon inscribed in the unit circle.

 $\Box \quad \pi \approx A_n = \frac{1}{2} M_n \cdot h \cdot n \approx \frac{n}{2} \cdot M_n.$

Liu Hui's Algorithm

- Recall that Archimedes, Liu Hui and Zu Chongzhi used regular polygons to approximation the area of unit circle.
- **Liu Hui's Algorithm** for π :
 - 1. Let $M_n=$ a side of a regular n-gon inscribed in unit circle.
 - 2. Let $A_n=$ area of the regular n-gon inscribed in the unit circle.
 - $\square \quad \pi \approx A_n = \frac{1}{2} M_n \cdot h \cdot n \approx \frac{n}{2} \cdot M_n.$
 - 3. Let $L(n)=2-M_{3 imes 2^n}^2$. Then $L(1)=2-M_6^2=1$.
 - \Box LIU HUI found that $L(n+1) = \sqrt{2 + L(n)}$
 - **4.** $\pi \approx A_{3 \times 2^n} \approx \frac{3 \times 2^n}{2} \cdot M_{3 \times 2^n} = 3 \times 2^{n-1} \times M_{3 \times 2^n}$
- Remark. LIU HUI evaluated up to 96-sided polygon, and used a shortcut to generate the result for 1536-sided polygon.

21/36

Liu Hui's Algorithm

Liu Hui's Algorithm for π :

Iteration	Sides	Approximation of π
1	6	3.
2	12	3.1
3	24	3.13
4	48	3.14
5	96	3.141
9	1536	3.14159
12	12288	3.1415926
15	98304	3.141592653
20	1572864	3.141592653589
30	1610612736	3.141592653589793238

- Remarks: Zu Chongzhi found that
 - $\ \ \square \ \ \pi pprox 22/7 \ {\rm and} \ \pi pprox 355/113.$

Integration

$$\Box \frac{1}{2}x^4(1-x)^4 \le \frac{x^4(1-x)^4}{1+x^2} \le x^4(1-x)^4.$$

$$\Box \int_0^1 \frac{x^4 (1-x)^4}{2} \, dx \le \int_0^1 \frac{x^4 (1-x)^4}{1+x^2} \, dx \le \int_0^1 x^4 (1-x)^4 \, dx.$$

$$\therefore \quad \frac{22}{7} \text{ is a bigger approximation of } \pi \text{ with error} \leq \frac{1}{630} < 0.0016.$$

23 / 36

Integration

- $\int_0^1 \frac{x^8 (1-x)^8}{8} \, dx \le \int_0^1 \frac{x^8 (1-x)^8}{4(1+x^2)} \, dx \le \int_0^1 \frac{x^8 (1-x)^8}{4} \, dx.$
 - $\Box \quad \frac{1}{1750320} \le \pi \frac{47171}{15015} \le \frac{1}{875160}.$
- $\therefore \quad \frac{47171}{15015} pprox 3.14159174 \cdots \ \ ext{is a smaller approximation for } \pi$

with error
$$\leq \frac{1}{875160} \approx 10^{-6}$$
.

 $\int_0^1 \frac{x^{12}(1-x)^{12}}{32} \, dx \le \int_0^1 \frac{x^{12}(1-x)^{12}}{16(1+x^2)} \, dx \le \int_0^1 \frac{x^{12}(1-x)^{12}}{16} \, dx.$

$$\Box \quad \frac{1}{2163324800} \le \frac{431302721}{137287920} - \pi \le \frac{1}{1081662400}.$$

 $\therefore \ \, \frac{431302721}{137287920} \approx 3.141592654 \cdots \ \, \text{is a bigger approximation for } \pi$

with error
$$\leq \frac{1}{1081662400} \approx 10^{-9}$$
.

Integration

 \blacksquare Approximate π using

$$\Box \int_0^1 \frac{x^{4n}(1-x)^{4n}}{4^{n-1}(1+x^2)} dx \le \int_0^1 \frac{x^{4n}(1-x)^{4n}}{4^{n-1}} dx < \frac{1}{2^{10n-2}}$$

\overline{n}	Fraction	Decimal
1	$\frac{22}{7}$	3.14
3	$\frac{431302721}{137287920}$	3.141592654
5	$\frac{26856502742629699}{8548690331301120}$	3.141592653589793
10	$\frac{89293478252053341114758995682016773}{28422996899365886608045972478361600}$	3.141592653589793238462643383279

25 / 36

Series 26 / 36

Power Series

■ Recall that a **Power Series** has the form:

$$\Box \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

It plays an important role in **Approximation Theory**.

Examples.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots.$$

•
$$e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{10!} \approx 2.718281801.$$

$$\Box \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots.$$

$$\bullet \quad \sin 2 \approx 2 - \frac{2^3}{3!} + \frac{2^5}{5!} - \frac{2^7}{7!} + \frac{2^9}{9!} \approx 0.9093474427.$$

Integration

- $\blacksquare \quad \text{Approximate } \int_0^1 \sin(x^2) \, dx.$
 - 1. $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \frac{x^9}{9!} \frac{x^{11}}{11!} + \cdots$
 - 2. $\sin(x^2) \approx x^2 \frac{x^6}{3!} + \frac{x^{10}}{5!} \frac{x^{14}}{7!} + \frac{x^{18}}{9!} \frac{x^{22}}{11!}$
 - 3. Approximate $\int_0^1 \sin(x^2) dx$ by
 - 4. $\int_0^1 \sin(x^2) dx \approx 0.3102683017174579.$
- The exact value is $0.31026830172338110 \cdots$.

28 / 36

Ordinary Differential Equation

- Suppose $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n + \dots$
 - $\ \square$ Term by Term Differentiation: f'(x):
 - $c_1 + 2c_2x + 3c_3x^2 + \dots + nc_nx^{n-1} + \dots$
- **Example.** Suppose $\frac{dy}{dx} = y$ and y = 1 at x = 0.
 - \Box Let $f(x) = y = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$
 - $f'(x) = c_1 + 2c_2x + 3c_3x^2 + \dots + nc_nx^{n-1} + \dots$
 - □ Compare coefficients:
 - $c_0 = 1$, $c_1 = c_0$, $2c_2 = c_1$, $3c_3 = c_2$, $4c_4 = c_3$, ...
 - $c_0 = 1$, $c_1 = 1$, $c_2 = 1/2$, $c_3 = 1/6$, $c_4 = 1/24$, ...
 - $y = f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots$

Term by Term Integration

- **Suppose** $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n + \dots$
 - \Box Term by Term Integration: $\int f(x) dx$:
 - $c_0x + \frac{c_1}{2}x^2 + \frac{c_2}{3}x^3 + \dots + \frac{c_n}{n+1}x^{n+1} + \dots$
- Examples
 - - $x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots + \frac{x^n}{n} + \frac{x^{n+1}}{n+1} + \dots$
 - $\Box -\ln|1-x| = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots + \frac{x^n}{n} + \frac{x^{n+1}}{n+1} + \dots$

30 / 36

Term by Term Integration

- Suppose $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n + \dots$
 - \Box Term by Term Integration: $\int f(x) dx$:
 - $c_0x + \frac{c_1}{2}x^2 + \frac{c_2}{3}x^3 + \dots + \frac{c_n}{n+1}x^{n+1} + \dots$
- Examples.
 - - $x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$
 - $\Box \tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$

Some Special Series

- \Box Let x=-1. Then
 - $-\ln 2 = -1 + \frac{1}{2} \frac{1}{3} + \frac{1}{4} \dots + \frac{(-1)^n}{n!} + \dots$
- \therefore The Alternating Harmonic Series converges to $\ln 2$.

Warning: The convergency of alternating Harmonic series is very slow!

32 / 36

Some Special Series

- - \square Note that -1 < x < 1. Take $x = \frac{1}{\sqrt{3}}$:

 - $\begin{array}{ll} \bullet & \frac{\pi}{6} = \frac{1}{\sqrt{3}} \frac{1}{3(\sqrt{3})^3} + \frac{1}{5(\sqrt{3})^5} \frac{1}{7(\sqrt{3})^7} + \cdots \\ \bullet & \frac{\pi}{6} \approx \frac{1}{\sqrt{3}} \frac{1}{3(\sqrt{3})^3} + \frac{1}{5(\sqrt{3})^5} + \cdots + \frac{1}{41(\sqrt{3})^{41}} \end{array}$
 - $\frac{\pi}{6} \approx 0.52359877559927 \cdots$
 - $\pi \approx 3.14159265359563\cdots$
 - - It is **Efficient** in evaluating π .

Some Special Series

 \square Note that -1 < x < 1. Take x = 1:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots + \frac{(-1)^n}{2n+1} + \dots$$

This is known as the **Leibniz Formula** for π .

- □ Warning: The convergency is very slow.
- SRINIVASA RAMANUJAN (1887–1920) Indian mathematician.

$$\Box \quad \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 394^{4n}}.$$

- $\blacksquare \quad \text{The first term gives } \frac{1}{\pi} \approx \frac{2\sqrt{2}}{9801} \cdot 1103.$
- $\pi \approx \frac{9801\sqrt{2}}{4412} = 3.14159273\cdots.$

34 / 36

Some Special Series

 \square Note that -1 < x < 1. Take x = 1:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots + \frac{(-1)^n}{2n+1} + \dots$$

This is known as the **Leibniz Formula** for π .

- □ Warning: The convergency is very slow.
- CHUDNOVSKY BROTHERS (1989) American mathematicians.

$$\Box \qquad \boxed{\frac{1}{\pi} = 12 \sum_{n=0}^{\infty} \frac{(-1)^n (6n)! (13591409 + 545140134n)}{(3n)! (n!)^3 640320^{3n+3/2}}}$$

- \blacksquare First term gives $\frac{1}{\pi}\approx 12\cdot \frac{13591409}{640320^{3/2}}$
- $\pi \approx \frac{640320^{3/2}}{12 \cdot 13591409} = 3.141592653589793 \cdot \cdot \cdot .$