

Architecture des systèmes informatiques

TD n°1 - Conception d'une machine à registres

1 Introduction

L'un des facteurs qui limitent la performance globale d'un système informatique est le temps de transfert des données entre le processeur et la mémoire centrale. Il existe plusieurs techniques pour améliorer ce point; nous allons nous intéresser à l'une d'entre elles : la multiplication des registres (vous verrez, plus tard dans le cours, une autre technique : la mémoire cache).

L'idée principale qui motive l'augmentation du nombre de registres est simple : ce sont les données dans les registres qui sont le plus rapidement disponibles pour l'UAL, donc il est plus rapide de faire, par exemple, une addition entre 2 registres qu'une addition entre 1 accumulateur et un mot en mémoire centrale comme dans le cas de la machine de cours.

2 Description de l'architecture externe

Nous conserverons pour ce processeur les mêmes choix que pour la machine de cours : architecture Von Neumann, mots et adresses de 16 bits. Au lieu d'un accumulateur, 16 registres (notés R0 à R15) sont disponibles ; les échanges de données entre la mémoire centrale et le processeur se font uniquement avec les instructions LDRx et STRx; les opérations arithmétiques prennent leurs opérandes dans des registres et stockent leur résultat dans un autre.

Le tableau suivant décrit l'architecture externe :

Instruction	Format	Description	
LOAD #val,Rx	$0000^{1} xxxx^{2}$ val ³	Chargement dans Rx de val (mode immédiat)	
LOAD adr, Rx	0001 xxxx adr ⁴	Chargement dans Rx du mot d'adresse adr (mode direct)	
LOAD (Ry),Rx	0011 yyyy xxxx	Chargement dans Rx du mot dont l'adresse est contenue dans Ry (mode indirect registre)	
STORE Rx,adr	0101 xxxx adr	Rangement du contenu de Rx en mémoire à l'adresse adr	
STORE Rx, (Ry)	0111 уууу хххх	Rangement du contenu de Rx en mémoire à l'adresse contenue dans Ry (mode indirect registre)	
TFR Ry, Rx	0010 yyyy xxxx	Transfert de Ry dans Rx	
ADD Ry,Rz,Rx	1000 yyyy zzzz xxxx	Additionne Ry et Rz et range le résultat dans Rx	
SUB Ry,Rz,Rx	1001 yyyy zzzz xxxx	Soustrait Rz de Ry et range le résultat dans Rx	

ces quatre tirets signifient que ces 4 bits sont ignorés numéro du registre Rx sur 4 bits

entier codé en complément à 2 sur 16 bits

⁴ adresse sur 16 bits

JMP	adr	1100 adr	Saut à l'adresse adr
JZ	Rx,adr	1110 xxxx adr	Saut à l'adresse adr si le contenu de Rx est nul
JN	Rx,adr	1111 xxxx adr	Saut à l'adresse adr si le contenu de Rx est négatif

Vous noterez que, comme pour la machine de cours, les instructions sont sur 1 ou 2 mots.

3 Chemin de données générique

Le chemin de données qui servira de base à la conception du processeur reprend celui de la machine de cours en substituant au registre accumulateur un banc de 16 registres avec 1 entrée (sélection du registre avec le signal SE, chargement sur le front montant de HBR) et 2 sorties (sélection avec les signaux SS1 et SS2); à chaque sortie sont associées 2 indicateurs indiquant si celle-ci est nulle (ZSi) ou négative (NSi). L'horloge du compteur ordinal (HCO) charge le CO si le signal CCO vaut 1, l'incrémente sinon. Les signaux de commande des sorties 3 états sur les bus ne sont pas nommés. L'unité arithmétique et logique est supposée posséder toutes les opérations nécessaires.

4 Travail à effectuer

Déterminer le chemin de données et les équations du séquenceur du processeur décrit.

5 Solution possible

A VERIFIER

Fetch	T1	T2
Fetch	CO->A->RADM	SM->B->RI
	CUAL=A	CUAL=B
	HRADM	HRI
		CCO=0, HCO

	Т3	T4	T5
LOAD #val,Rx	CO->A->RADM CUAL=A	CCO=0, HCO	SM->B->BR CUAL=B
	HRADM	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SE=Rx, HBR
LOAD adr,Rx	CO->A->RADM CUAL=A HRADM	SM->B->RADM CUAL=B HRADM	SM->B->BR CUAL=B SE=Rx, HBR
		CCO=0, HCO	

			1	T
LOAD	(Ry),Rx		S1->A->RADM	SM->B->BR
			CUAL=A	CUAL=B
			SS1=Ry	SE=Rx, HBR
			HRADM	
STORE	Rx,adr	CO->A->RADM	SM->B->RADM	S1->A->EM
		CUAL=A	CUAL=B	CUAL=A
		HRADM	HRADM	SS1=Rx
			CCO=0, HCO	HEM, $R/W=0$
STORE	Rx, (Ry)		S1->A->RADM	S1->A->EM
DIONE	ix, (ixy)		CUAL=A	CUAL=A
			SS1=Ry	SS1=Rx
			HRADM	HEM, R/W=0
TFR	Ry, Rx			S1->A->BR
TIT	1(4),1(2)			CUAL=A
				SS1=Ry
				SE=Rx, HBR
ADD	Ry,Rz,Rx			S1->A, S2->B
1122	11,7112,1111			CUAL=A+B
				SS1=Ry, SS2=RZ
				SE=Rx, HBR
SUB	Ry,Rz,Rx			S1->A, S2->B
	1, ,			CUAL=A-B
				SS1=Ry, SS2=RZ
				SE=Rx, HBR
JMP	adr	CO->A->RADM	CCO=0, HCO	SM->B->CO
V		CUAL=A	000 0,1100	CUAL=B
		HRADM		HCO=1, HCO
JZ	Rx,adr	CO->A->RADM	CCO=0, HCO	SS1=Rx
0 2	NA, aai	CUAL=A	CCO=0, 11CO	SM->B->CO
		HRADM		CUAL=B
				CCO=1, HCO si
				ZS1
T) 7		CO->A->RADM	000 0 1100	SS1=Rx
JN	Rx,adr	CUAL=A	CCO=0, HCO	SM->B->CO
				CUAL=B
		HRADM		
				CCO=1, HCO si
				NS1