0. Setting Up: Loading the tidyverse packages

Before working through this notebook, make sure that your runtime is set to use R (rather than python). This should be set already, but you can double-check by selecting the following from the menu at the top of the notebook.

Runtime > Change runtime type

Then make sure that R appears in the drop-down menu under runtime type.

This first part of the code just installs and loads the R packages we want to use for the following analyses.

```
#Install packages we want to use

#this loads a helper function for installing R packages
source('https://raw.githubusercontent.com/COGS119/tutorials/refs/heads/main/R/loa/
#specify the name of all packages we want to use her
packages_to_apt_install = c('tidyverse')

#install packages specified above (note that we're using our old friend the for lafter more: https://www.w3schools.com/r/r_for_loop.asp
for (package in packages_to_apt_install) load_install_package(package, apt=TRUE)

#load packages we want to use
library(tidyverse)
library(scales)

#set some basic plotting defaults
theme_set(theme_minimal(base_size = 18))

#check the version of R used
print(R.version.string)
```


Show hidden output

1. Load the data

In this first section, we load in the data from the experiment and inspect it.

We've already done some significant processing to your data (consult your GitHub project page for detailed code, if you're curious!). Note: If you notice that any key information is missing from the data, please check with your instructor.

Let's first take a look at your data.

glimpse(processed_data)

```
Rows: 950
Columns: 20
                       <chr> "manatee", "manatee", "manatee", "manatee", "r
$ participant_id
                      <chr> "p3duj2aujg2", "p3duj2aujg2", "p3duj2aujg2", '
$ random id
$ repeat hit rate
                       <dbl> 349, 351, 353, 355, 357, 359, 361, 363, 365, 3
$ trial index
$ trial number
                       <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
                       <dbl> 1372371, 1375171, 1378242, 1383217, 1386673, 3
$ time_elapsed
                      <chr> "Test", "Test", "Test", "Test", "Test", "Test"
$ trial phase
                      <chr> "exemplar", "state", "state", "state", "exemp"
$ trial kind
                       <dbl> 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, (
$ response
                       <dbl> 1599, 876, 1654, 2162, 1001, 1162, 934, 2929,
$ rt
                       <dbl> 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 2, 5, 5, 4, 5
$ confidence_response
                       <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALS
$ correct
                       <dbl> 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
$ is_right
                      <chr> "[\"stimuli\\\EXEMPLAR\\\\USED\\\\Ewheelchai

$ choice_images
                       <chr> "stimuli\\EXEMPLAR\\USED\\Ewheelchair1.jpg", '
$ correct_image
                       <chr> "stimuli\\EXEMPLAR\\USED\\Ewheelchair1.jpg",
$ choice
$ experiment_purpose
                       <chr> "testing subjects on their ability to recall a
                       <chr> "shape, colour, size, and category of object";
$ 01
$ technical issues
```

unique(processed_data\$participant_id)

'manatee' · 'camel' · 'panda' · 'moose' · 'flamingo' · 'gazelle' · 'trex' · 'lion' · 'giraffe' · 'hedgehog' · 'seal' · 'turtle' · 'falcon' · 'jaguar' · 'tardigrade666' · 'leopard' · 'eagle' · 'cheetah' · 'kangaroo'

unique(processed data\$repeat false alarm rate)

1.1. Codebook

A first important step is to understand your data.

Please complete this section to include a full codebook including a description of each column in your dataset. To get you started, we've included descriptions of the first few columns.

- participant_id: the participant code entered by the participant
- random_id: a random code generated for each session by the experiment (identifies unique sessions)
- repeat_false_alarm_rate: the average rate for participants during the n-back task who
 falsely pressed spacebar for the falsely recalled item during the memory task.

2. Descriptives

In this section, look at the basic overall descriptives, e.g., overall average responses for each condition.

If you have multiple responses per participant, make sure to first cluster/ average your data within participant before deriving an overall average estimate.

Make sure that your averages allow you to derive an estimate of your central condition difference (e.g., a condition difference).

A few other rules to keep in mind:

- typically, we look at reaction times *only* for correct responses
- if you are using a scale, make sure you are transforming any items that are reverse-coded.

#take a look at the number of distinct responses
processed_data |>
 distinct(random_id,participant_id)

 $\overline{\mathbf{T}}$

A tibble: 19×2

random_id participant_id

<chr></chr>	<chr></chr>
p3duj2aujg2	manatee
p3zegmnxubt	camel
p48hzab1ry2	panda
p5lyc28scvl	moose
p6labg5etft	flamingo
p86x33mjzdl	gazelle
p920knkg1w3	trex
parq0lw64nk	lion
pcfdh9f6su2	giraffe
pe7o54mbpf0	hedgehog
pg0hzpvg3xz	seal
phy4ybvdja7	turtle
pjw2f4uz82k	falcon
pllo1t2f1nf	jaguar
pmkev4nz5vv	tardigrade666
po16pvz0ydw	leopard
ppj3b623m4f	eagle
prsues5texd	cheetah
puwua1qwtby	kangaroo

 \rightarrow

unique(processed_data\$participant_id)

'manatee' · 'camel' · 'panda' · 'moose' · 'flamingo' · 'gazelle' · 'trex' · 'lion' · 'giraffe' · 'hedgehog' · 'seal' · 'turtle' · 'falcon' · 'jaguar' · 'tardigrade666' · 'leopard' · 'eagle' · 'cheetah' · 'kangaroo'

proc_data_stat <- processed_data |>
 group_by(participant_id, trial_kind) |>
 summarise(accuracy=mean(is_right), .groups = "drop")

Martin: I jumped in and made a small correction here to support! (you want *
Note that you would actually want to compute sd/ sem only at your *next* st
proc_data_stat

A tibble: 38 × 3

participant_id trial_kind accuracy

<chr></chr>	<chr></chr>	<dbl></dbl>
camel	exemplar	0.8461538
camel	state	0.9166667
cheetah	exemplar	0.9545455
cheetah	state	0.8571429
eagle	exemplar	1.0000000
eagle	state	0.8518519
falcon	exemplar	0.9166667
falcon	state	0.8846154
flamingo	exemplar	0.8000000
flamingo	state	0.7600000
gazelle	exemplar	0.8000000
gazelle	state	0.7500000
giraffe	exemplar	0.6923077
giraffe	state	0.7083333
hedgehog	exemplar	0.8888889
hedgehog	state	0.8260870
jaguar	exemplar	0.6956522

jaguar	state	0.8148148
kangaroo	exemplar	0.9000000
kangaroo	state	0.7666667
leopard	exemplar	1.0000000
leopard	state	0.8636364
lion	exemplar	0.9629630
lion	state	0.9130435
manatee	exemplar	0.8800000
manatee	state	0.7600000
moose	exemplar	1.0000000
moose	state	0.9285714
panda	exemplar	0.4800000
panda	state	0.5600000
seal	exemplar	0.8148148
seal	state	0.6521739
tardigrade666	exemplar	0.9259259
tardigrade666	state	0.9130435
trex	exemplar	0.8800000
trex	state	0.8800000
turtle	exemplar	0.9230769
turtle	state	0.7500000

```
ggplot(proc_data_stat, aes(x=participant_id, y=accuracy, fill=trial_kind)) +
  geom_bar(stat="identity", position=position_dodge()) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 50, hjust = 1))
```



```
summary_stat <- proc_data_stat |>
  group_by(trial_kind) |>
  summarise(
    mean_accuracy = mean(accuracy),
    sd_accuracy = sd(accuracy),
    n_obs = n(),
    sem = sd(accuracy) / sqrt(n_obs),
    ci_lower = mean_accuracy - 1.96 * sem,
    ci_upper = mean_accuracy + 1.96 * sem)
summary_stat
```

 \rightarrow

A tibble: 2×7

trial_kind	mean_accuracy	sd_accuracy	n_obs	sem	ci_lower	ci_upper
<chr></chr>	<db1></db1>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
exemplar	0.8611050	0.12954020	19	0.02971856	0.8028566	0.9193534
state	0.8082446	0.09889321	19	0.02268766	0.7637768	0.8527124

colnames(summary_stat) = c("Trial Kind", "Mean Accuracy", "Standard Deviation", "I
summary_stat

 $\overline{\mathbf{T}}$

A tibble: 2×7

Trial Kind	Mean Accuracy	Standard Deviation	Number of Observations	Standard Error of the Mean	Lower 95th Percentile	
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
exemplar	0.8611050	0.12954020	19	0.02971856	0.8028566	0.9193534
state	0.8082446	0.09889321	19	0.02268766	0.7637768	0.8527124

3. Plot

Create a plot of your central effect or effects.

Things to keep in mind:

- **clear axis labels:** make sure your axis labels are clear (don't just use the column names, try to indicate the units for dependent measures, e.g. "Reaction Time (in ms)")
- variability across participants: whenever possible, try to represent both the overall average and the underlying variability across participants (e.g., include dots or violin plots of individual participant averages)
- error bars/ bands: a good plot will also include error bars/bands for average estimates
 (e.g., 95% confidence intervals or standard errors)

```
mem_performance_plot <- ggplot(summary_stat, aes(x=trial_kind, y=mean_accuracy, f</pre>
  geom_hline(yintercept = 0.5, linetype = "dashed", color = "black", size = 0.5,
 geom_bar(stat="identity", width=0.75) +
  geom_errorbar(aes(ymin=mean_accuracy - sem, ymax=mean_accuracy + sem), width=.1
                position=position_dodge(.9)) +
 geom_text(aes(label = round(mean_accuracy * 100)),
            vjust = -3, color = "black", size = 5) +
  geom_point(data = proc_data_stat, aes(x = trial_kind, y = accuracy),
            width = 0.2, size = 1, alpha = 0.3, color = "blue") +
  scale_y_continuous(labels = percent,
                     limits = c(0, 1),
                     expand = expansion(0,0) +
  labs(title = "Memory Performance Between State and Exemplar Trials",
       x = "Trial Type",
       y = "Percent Correct") +
  scale_fill_grey() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1),
        legend.position = "none") +
  theme minimal()
mem performance plot
```

 $\overline{\Sigma}$

Warning message in geom_point(data = proc_data_stat, aes(x = trial_kind, y = ϵ "Ignoring unknown parameters: `width`"

Additional EDA on data

processed_data\$is_right

processed_data\$is_right


```
# Confidence vs. Correct Trials
processed_data$is_right <- as.factor(processed_data$is_right)

ggplot(processed_data, aes(x = is_right, y = confidence_response, fill = is_right
    geom_violin(alpha = 0.7, trim = FALSE) +
    stat_summary(fun = function(x) quantile(x, 0.5), geom = "point", size = 5, colo
    scale_fill_manual(values = c("0" = "lightcoral", "1" = "lightblue")) +
    labs(
        title = "Confidence Scores by Trial Correctness",
        x = "Correctness (0 = Incorrect, 1 = Correct)",
        y = "Confidence Score"
    ) +
    scale_y_continuous(limits = c(1, 5), breaks = 1:5) +
    theme_minimal(base_size = 14) +
    theme(legend.position = "none")</pre>
```

→ Warning message:

"Removed 356 rows containing missing values or values outside the scale range (`geom_violin()`) ."

Confidence Scores by Trial Correctness

test_trial <- processed_data |>
 select(participant_id, trial_number, time_elapsed, trial_kind, rt, confidence_relapsed)

```
group_by(participant_id) |>
 mutate(time_from_start = time_elapsed - first(time_elapsed)) |>
  ungroup()
test_trial
```

A tibble: 950×8

	A tibble: 950×8				
confidence_respo	rt	trial_kind	time_elapsed	trial_number	participant_id
<<	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
	1599	exemplar	1372371	1	manatee
	876	state	1375171	2	manatee
	1654	state	1378242	3	manatee
	2162	state	1383217	4	manatee
	1001	exemplar	1386673	5	manatee
	1162	exemplar	1389233	6	manatee
	934	state	1391462	7	manatee
	2929	state	1395658	8	manatee
	1604	state	1401492	9	manatee
	953	exemplar	1403736	10	manatee
	1619	state	1406860	11	manatee
	6636	state	1414776	12	manatee
	1390	state	1419485	13	manatee
	858	exemplar	1421806	14	manatee
	3319	state	1426403	15	manatee
	1289	exemplar	1431038	16	manatee
	1442	state	1433734	17	manatee
	1493	state	1436474	18	manatee
	1049	state	1438705	19	manatee
	1056	exemplar	1440868	20	manatee
	2094	state	1445093	21	manatee
	918	exemplar	1447709	22	manatee

manatee	23	1452986	exemplar	3947
manatee	24	1455524	exemplar	1096
manatee	25	1458064	exemplar	1236
manatee	26	1464073	state	2662
manatee	27	1466730	exemplar	927
manatee	28	1472157	exemplar	4156
manatee	29	1474733	state	1367
manatee	30	1481647	state	3677
:	:	:	:	:
kangaroo	21	558824	state	1069
kangaroo	22	561859	exemplar	1638
kangaroo	23	564424	exemplar	975
kangaroo	24	567829	exemplar	2073
kangaroo	25	570438	exemplar	1260
kangaroo	26	572754	state	941
kangaroo	27	575319	state	1227
kangaroo	28	579954	state	1890
kangaroo	29	582404	exemplar	1035
kangaroo	30	585509	state	1532
kangaroo	31	589620	exemplar	2704
kangaroo	32	591859	exemplar	885
kangaroo	33	594618	state	1223
kangaroo	34	599192	state	1780
kangaroo	35	601611	state	909
kangaroo	36	605388	state	1476
kangaroo	37	607590	state	1035
kangaroo	38	610744	state	2008
kangaroo	39	613788	state	1810

J

kangaroo	40	616431	state	1415
kangaroo	41	621452	state	1996
kangaroo	42	627883	exemplar	3368
kangaroo	43	630623	state	1176
kangaroo	44	633247	exemplar	874
kangaroo	45	635950	state	1465
kangaroo	46	638584	exemplar	906
kangaroo	47	647614	exemplar	3503
kangaroo	48	653948	state	4656
kangaroo	49	661643	state	3522
kangaroo	50	664703	state	1500

```
# Ensure participant and time elapsed are treated appropriately
test trial*participant id <- as.factor(test trial*participant id)
# Line plot of accuracy over time (time elapsed on x-axis)
ggplot(test_trial, aes(x = time_from_start, y = is_right, color = participant_id)
  qeom_line(alpha = 1, size = 0.8) +
  geom_point(size = 1, alpha = 0.8) +
  facet_wrap(~participant_id, ncol = 3)
  labs(
    title = "Confidence Scores Over Time (Elapsed Time)",
   x = "Time Elapsed (seconds)",
   y = "Confidence Score",
    color = "Participant") +
  theme_minimal(base_size = 14) +
  theme(strip.text = element_text(size = 10), # Adjust size of facet labels
  panel.spacing = unit(1, "lines")) +
  theme(legend.position = "none")
```

→ NULL

Confidence Overtime between participants

```
ggplot(test_trial, aes(x = time_from_start, y = confidence_response, color = partic
  geom_line(alpha = 1, size = 0.8) +
  geom_point(size = 1, alpha = 0.8) +
  facet_grid(participant_id ~ .)
  labs(
    title = "Confidence Scores Over Time (Elapsed Time)",
    x = "Time Elapsed (seconds)",
    y = "Confidence Score",
    color = "Participant") +
  theme_minimal(base_size = 14) +
  theme(strip.text = element_text(size = 10), # Adjust size of facet labels
  panel.spacing = unit(1, "lines")) +
  theme(legend.position = "none")
```

→ NULL


```
ggplot(processed_data, aes(x = participant_id, y = repeat_hit_rate)) +
 geom_bar(stat="identity") +
  labs(title = "Participant Repeat Hit Rate",
       x = "Participant",
       y = "Repeat Hit Late") +
 theme(axis.text.x = element_text(angle = 90, hjust = 1))
```

$\overline{2}$

Participant Repeat Hit Rate

Participant

as.integer(as.logical(processed_data\$repeat_hit_rate))

```
\rightarrow
```

as.numeric(processed_data\$is_right)

```
9.9.9.9.9.9.9.9.9.9.9.9.9.1.9.1.9.1.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.1.9.9.1.9.9.
nback data <- processed data |>
mutate(nback participation = as.integer(as.logical(repeat hit rate)))
nback_data$is_right <- as.numeric(nback_data$is_right)</pre>
proc nback data <- nback data |>
group_by(participant_id, nback_participation) |>
summarise(accuracy=mean(is_right)) |>
mutate(accuracy=accuracy - 1)
proc nback data
```


`summarise()` has grouped output by 'participant_id'. You can override using the `.groups` argument.

A grouped_df: 19 × 3

participant_id nback_participation accuracy

	<chr></chr>	<int></int>	<dbl></dbl>
	camel	1	0.88
	cheetah	1	0.90
	eagle	1	0.92
	falcon	1	0.90
	flamingo	1	0.78
	gazelle	1	0.78
	giraffe	0	0.70
	hedgehog	1	0.86
	jaguar	0	0.76
	kangaroo	1	0.82
	leopard	1	0.94
	lion	1	0.94
	manatee	1	0.82
	moose	1	0.96
	panda	0	0.52
	seal	1	0.74
	tardigrade666	1	0.92
	trex	1	0.88
	turtle	1	0.84

link text

library(forcats)

Reordering participants' accuracies to be ascending
proc_nback_data\$participant_id <- fct_reorder(proc_nback_data\$participant_id, pro</pre>

proc_nback_data\$accuracy <- as.numeric(proc_nback_data\$accuracy)</pre>

ggplot(proc_nback_data, aes(x=proc_nback_data\$accuracy)) +
 geom_density()

library(forcats)

Panda, giraffe, and jaguar have the lowest, second lowest, and fourth lowest rated accuracies respectively.

```
12/9/24, 9:34 PM
```

```
updated_proc <- proc_data_stat |>
  filter(!participant_id %in% c("panda", "giraffe", "jaguar")) |>
  group_by(trial_kind) |>
  summarise(
    mean_accuracy = mean(accuracy),
    sd_accuracy = sd(accuracy),
    n_obs = n(),
    sem = sd(accuracy) / sqrt(n_obs),
    ci_lower = mean_accuracy - 1.96 * sem,
    ci_upper = mean_accuracy + 1.96 * sem)
updated_proc
```

 \rightarrow

A tibble: 2×7

trial_kind	mean_accuracy	sd_accuracy	n_obs	sem	ci_lower	ci_upper
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
exemplar	0.9058147	0.06780385	16	0.01695096	0.8725908	0.9390386
state	0.8295937	0.08045465	16	0.02011366	0.7901709	0.8690165

desc_stat <- updated_proc |>

mutate(mean_accuracy = mean_accuracy * 100, sd_accuracy = sd_accuracy * 100, secolnames(desc_stat) = c("Trial Kind", "Percent Accurate", "Standard Deviation", "Idesc_stat

 \rightarrow

A tibble: 2×7

Trial Kind	Percent Accurate	Standard Deviation	Number of Observations	Standard Error of the Mean		Upper 95th Percentile
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
exemplar	90.58147	6.780385	16	1.695096	87.25908	93.90386
state	82.95937	8.045465	16	2.011366	79.01709	86.90165

Warning message in geom_point(data = proc_data_stat, aes(x = trial_kind, y = a "Ignoring unknown parameters: `width`"


```
par(mfrow = c(1, 2))
mem_performance_plot
nback_mem_plot
```


4. Inference [optional]

Can you derive statistical tests or models that investigate your central question of interest? A good starting point will be to look at the Results section of your replication article.

```
install.packages("corrplot")
```

```
Installing package into '/usr/local/lib/R/site-library'
    (as 'lib' is unspecified)
#participant-level accuracy
participant_mean_accuracy <- proc_data_stat %>%
  group_by(participant_id) %>%
  summarise(overall_accuracy = mean(accuracy, na.rm = TRUE))
#`repeat_hit_rate` in `processed_data`?
if (!"repeat_hit_rate" %in% colnames(processed_data)) {
 processed data <- processed data %>%
   mutate(repeat hit rate = repeat correct / (repeat correct + repeat false alar
}
merged_data <- merge(participant_mean_accuracy, processed_data, by = "participant_</pre>
str(merged data)
     'data.frame': 950 obs. of 21 variables:
\rightarrow
     $ participant_id
                              : Factor w/ 19 levels "panda", "giraffe", ...: 12 12 12
     $ overall accuracy
                                     0.881 0.881 0.881 0.881 0.881 ...
                                     "p3zegmnxubt" "p3zegmnxubt" "p3zegmnxubt" "p3
     $ random id
                              : chr
     $ repeat_false_alarm_rate: num
                                     0.00667 0.00667 0.00667 0.00667 0.00667 ...
                                     $ repeat_hit_rate
                              : num
     $ trial_index
                                     389 405 391 397 387 411 385 395 367 413 ...
                              : num
     $ trial_number
                              : num
                                     21 29 22 25 20 32 19 24 10 33 ...
                                     547158 586079 553399 565492 543669 ...
     $ time_elapsed
                              : num
                                     "Test" "Test" "Test" ...
     $ trial_phase
                              : chr
                                     "exemplar" "exemplar" "exemplar" "exemplar",
     $ trial kind
                              : chr
     $ response
                                     1 0 1 1 1 1 0 1 0 0 ...
                              : num
     $ rt
                              : num
                                     1970 842 1562 2165 3437 ...
     $ confidence_response
                                     4 5 5 2 2 2 5 3 5 2 ...
                              : num
                              : logi TRUE TRUE TRUE FALSE TRUE FALSE ...
     $ correct
     $ is right
                              : Factor w/ 2 levels "0","1": 2 2 2 1 2 1 2 2 2 1 ...
                                     "[\"stimuli\\\EXEMPLAR\\\USED\\\\Econe2.jpc
     $ choice_images
                              : chr
                                     "stimuli\\EXEMPLAR\\USED\\Econe1.jpg" "stimu
     $ correct_image
                              : chr
     $ choice
                                     "stimuli\\EXEMPLAR\\USED\\Econe1.jpg" "stimu
                              : chr
                                     "I think items you saw repeated you would pro
     $ experiment purpose
                              : chr
     $ Q1
                              : chr
                                     "Certain positions, certain facets pop out (:
     $ technical_issues
                                     "No." "No." "No." "No." ...
                              : chr
```

```
#correlation
cor_data <- merged_data %>%
    select(repeat_hit_rate, overall_accuracy)

cor_matrix <- cor(cor_data, use = "complete.obs")

if (!requireNamespace("corrplot", quietly = TRUE)) {
    install.packages("corrplot")
}
library(corrplot)
corrplot(cor_matrix, method = "shade", type = "upper", tl.col = "black", tl.srt = 4")</pre>
```



```
condition_accuracy <- processed_data %>%
  group_by(trial_kind) %>%
  summarise(mean_accuracy = mean(is_right, na.rm = TRUE), .groups = "drop")
condition_accuracy
\rightarrow
             A tibble: 2 \times 2
     trial kind mean accuracy
           <fct>
                           <dbl>
         exemplar
                       0.8598326
            state
                       0.8093220
#paired t-test: State vs. Exemplar
state_data <- processed_data$is_right[processed_data$trial_kind == "State"]</pre>
exemplar_data <- processed_data$is_right[processed_data$trial_kind == "Exemplar"]</pre>
if (length(state_data) > 1 & length(exemplar_data) > 1) {
  state_exemplar_ttest <- t.test(state_data, exemplar_data, paired = TRUE)</pre>
  print(state_exemplar_ttest)
} else {
  message("Not enough observations for paired t-test.")
    Not enough observations for paired t-test.
length(state data)
length(exemplar_data)
```

str(processed_data) #structure

```
→
```

```
tibble [950 \times 20] (S3: tbl df/tbl/data.frame)
                         : chr [1:950] "manatee" "manatee" "manatee" "manatee
 $ participant_id
                         : chr [1:950] "p3duj2aujg2" "p3duj2aujg2" "p3duj2au
 $ random_id
 $ repeat false alarm rate: num [1:950] 0 0 0 0 0 0 0 0 0 ...
                         $ repeat hit rate
                         : num [1:950] 349 351 353 355 357 359 361 363 365 36
 $ trial index
 $ trial_number
                         : num [1:950] 1 2 3 4 5 6 7 8 9 10 ...
                         : num [1:950] 1372371 1375171 1378242 1383217 13866.
 $ time elapsed
                         : chr [1:950] "Test" "Test" "Test" "Test" ...
 $ trial_phase
                         : Factor w/ 2 levels "exemplar", "state": 1 2 2 2 1 1
 $ trial kind
 $ response
                         : num [1:950] 1 0 1 0 0 0 0 0 1 0 ...
 $ rt
                         : num [1:950] 1599 876 1654 2162 1001 ...
                         : num [1:950] 5 5 5 5 5 5 5 5 5 ...
 $ confidence response
                           logi [1:950] TRUE TRUE TRUE TRUE TRUE TRUE ...
 $ correct
 $ is right
                         : num [1:950] 1 1 1 1 1 1 1 0 1 1 ...
                         : chr [1:950] "[\"stimuli\\\EXEMPLAR\\\\USED\\\\Ewh
 $ choice_images
 $ correct_image
                         : chr [1:950] "stimuli\\EXEMPLAR\\USED\\Ewheelchair:
                         : chr [1:950] "stimuli\\EXEMPLAR\\USED\\Ewheelchair:
 $ choice
                         : chr [1:950] "testing subjects on their ability to
 $ experiment_purpose
                         : chr [1:950] "shape, colour, size, and category of
 $ Q1
 $ technical issues
                         : chr [1:950] NA NA NA NA ...
```

head(processed_data) #sample rows

_	participant_id	random_id	repeat_false_alarm_rate	repeat_hit_rate	trial_ind
	<chr></chr>	<chr></chr>	<db1></db1>	<db1></db1>	<db< th=""></db<>
	manatee	p3duj2aujg2	0	0.9	3
	manatee	p3duj2aujg2	0	0.9	3
	manatee	p3duj2aujg2	0	0.9	3
	manatee	p3duj2aujg2	0	0.9	3
	manatee	p3duj2aujg2	0	0.9	3
	manatee	p3duj2aujg2	0	0.9	3

summary(processed data) #summarizing key columns

```
\rightarrow
     participant id
                          random id
                                             repeat false alarm rate
    repeat hit rate
                         Length:950
                                             Min.
                                                    :0.000000
                                                                      Min.
                                                                             :0.0000
     Length:950
     Class :character
                         Class :character
                                             1st Ou.:0.000000
                                                                      1st Ou.:0.7500
     Mode
           :character
                         Mode
                               :character
                                             Median :0.006667
                                                                      Median :0.9000
                                             Mean
                                                    :0.011930
                                                                      Mean
                                                                             :0.7658
                                             3rd Qu.: 0.020000
                                                                      3rd Qu.:0.9500
                                             Max.
                                                    :0.053333
                                                                      Max.
                                                                             :1.0000
      trial index
                     trial number
                                    time elapsed
                                                      trial phase
     Min. :349
                    Min. : 1.0
                                   Min. : 457741
                                                      Length:950
                   1st Qu.:13.0
     1st Ou.:373
                                   1st Qu.: 556686
                                                      Class :character
     Median :398
                    Median :25.5
                                   Median : 615136
                                                      Mode
                                                            :character
     Mean :398
                   Mean :25.5
                                   Mean : 849481
     3rd Qu.: 423
                    3rd Qu.:38.0
                                   3rd Qu.: 691381
                                          :3746911
     Max. :447
                    Max. :50.0
                                   Max.
        trial kind
                        response
                                                       confidence response
                                                 724
                                                       Min. :1.000
     exemplar:478
                           :0.0000
                                      Min.
                     Min.
                     1st Qu.:0.0000
                                      1st Qu.: 1248
                                                       1st Qu.:2.000
     state
             :472
                                      Median: 1634
                                                       Median :4.000
                     Median :0.0000
                     Mean :0.4547
                                      Mean : 2085
                                                       Mean :3.466
                     3rd Qu.:1.0000
                                      3rd Qu.: 2364
                                                       3rd Qu.:5.000
                     Max. :1.0000
                                      Max. :19244
                                                       Max. :5.000
      correct
                         is right
                                       choice images
                                                           correct image
     Mode : logical
                      Min. :0.0000
                                       Length: 950
                                                           Length:950
     FALSE:157
                      1st Ou.:1.0000
                                       Class :character
                                                           Class :character
     TRUE : 793
                      Median :1.0000
                                       Mode
                                              :character
                                                           Mode
                                                                  :character
                      Mean :0.8347
                      3rd Qu.:1.0000
                      Max. :1.0000
        choice
                                                  Q1
                                                                 technical issues
                         experiment purpose
     Length:950
                         Length:950
                                             Length:950
                                                                Length: 950
     Class :character
                         Class :character
                                             Class :character
                                                                 Class :character
     Mode
           :character
                         Mode
                               :character
                                             Mode
                                                   :character
                                                                 Mode
                                                                       :character
```

```
table(processed_data$trial_kind)
#switching to unpaired t-test
if (length(state_data) > 1 & length(exemplar_data) > 1) {
  state_exemplar_ttest <- t.test(state_data, exemplar_data, paired = FALSE)</pre>
  print(state_exemplar_ttest)
} else {
  message("Not enough observations for t-test (paired or unpaired).")
\rightarrow
     exemplar
                 state
          478
                   472
    Not enough observations for t-test (paired or unpaired).
#ANOVA: Effect of Trial Kind on Accuracy
processed_data <- processed_data %>%
  group_by(participant_id, trial_kind) %>%
  summarise(accuracy = mean(is_right, na.rm = TRUE), .groups = "drop")
anova_results <- aov(accuracy ~ trial_kind, data = processed_data)</pre>
summary(anova_results)
\rightarrow
                 Df Sum Sq Mean Sq F value Pr(>F)
    trial kind
                  1 0.0265 0.02654
                                      1.999
                                             0.166
    Residuals
                 36 0.4781 0.01328
```


Start coding or generate with AI.