MLP

- * Application: Tabular/structured data (e.g., medical records, financial data).
- * Architecture: Fully connected layers with activation functions like ReLU and sigmoid.
- * Works well on structured datasets.
- * Easy to implement and train.
- * Cannot effectively capture spatial relationships (e.g., in image data).
- * Requires careful feature scaling and encoding.

CNN

- * Application: Image and spatial data (e.g., object detection, handwriting recognition).
- * Architecture: Uses convolutional and pooling layers to learn spatial hierarchies.
- * Automatically extracts spatial features (edges, textures, shapes).
- * Outperforms MLPs on image tasks.
- * Requires more data and compute than MLPs.
- * Not suitable for non-spatial/tabular data.

Effects of transfer learning:

Using a CNN pretrained on a large dataset (e.g., ImageNet) and adapting it to a new task.

How it works:

- * Reuse early layers that capture general features.
- * Fine-tune later layers on your custom dataset.

Transfer learning significantly improves accuracy on small datasets, reduces training time and the risk of overfitting, and requires less labeled data.