Math104Hw10

Trustin Nguyen

November 17, 2023

Exercise 1: Find the exact interval of convergence for the power series $\sum n^2 x^n$.

Proof. We have that

$$\limsup_{n\to\infty} |n^2|^{\frac{1}{n}} = 1 = \beta$$

Therefore, $R = \frac{1}{\beta} = 1$. So it converges when |x| < 1. Now to check for the boundary points, we have for x = 1:

 $\sum n^2$

and for x = -1:

$$\sum (-1)^n n^2$$

Both of these diverge. So the interval of convergence is (-1, 1).

Exercise 2: Find the exact interval of convergence for the power series $\sum \frac{n}{2^n} x^n$.

Proof. We can try the ratio test:

$$\lim_{n \to \infty} \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}} = \frac{n+1}{2n} = \frac{1}{2} = \beta$$

Then $R = \frac{1}{\beta} = 2$. So now to test the endpoints:

$$\sum (-1)^n n$$
 and $\sum n$

Both of these diverge, so the radius of convergence is (-2,2).

Exercise 3: Let $f_n = \frac{1+\cos nx}{n}$, $x \in \mathbb{R}$. Find f(x) so that $f_n \to f$ pointwise on \mathbb{R} , then check whether $f_n \to f$ uniformly or not on \mathbb{R} .

Proof. We have that $0 \le \cos nx \le 1$. So

$$\frac{1}{n} \leqslant \frac{1 + \cos nx}{n} \leqslant \frac{2}{n}$$

Since $\lim_{n\to\infty} \frac{2}{n} = 0$, by comparison test, we have that $f_n \to 0$.

Now we need to check uniform convergence or that $\forall \epsilon > 0$, $\exists N > 0$ such that if n > N, we have:

$$|f_n(x) - f(x)| = \left| \frac{1 + \cos nx}{n} \right| < \varepsilon$$

We have that

$$\left| \frac{1 + \cos nx}{n} \right| \le \left| \frac{2}{n} \right| < \varepsilon$$

$$\frac{2}{n} < \varepsilon$$

$$\frac{2}{\varepsilon} < n$$

So we require $N = \frac{2}{\epsilon}$. Since N does not depend on the value of x, it converges uniformly.

Exercise 4: Let $f_n = \frac{nx}{1+n^2x^2}$, $x \in \mathbb{R}$. Prove that $f_n \to 0$ pointwise on \mathbb{R} , then check whether $f_n \to 0$ uniformly or not on [0,1].

Proof. We find the convergence of f_n like so:

$$\lim_{n \to \infty} \frac{nx}{1 + n^2 x^2} = \lim_{n \to \infty} \frac{\frac{1}{nx}}{\frac{1}{n^2 x^2} + 1}$$

$$= \frac{\lim_{n \to \infty} \frac{1}{nx}}{\lim_{n \to \infty} \frac{1}{nx}}$$

$$= \frac{0}{1}$$

$$= 0$$

So $f_n \to 0$.

Now to check for uniform convergence, we have to show that $\forall \epsilon > 0$, $\exists N > 0$ such that $\forall n > N$, we have:

$$|f_n(x) - f(x)| = \left| \frac{nx}{1 + n^2 x^2} \right| < \varepsilon$$

for $x \in [0, 1]$.

Instead, it is equivalent to show that $\limsup_{n\to\infty} \{|f_n(x)| : x \in [0,1]\} = 0$. First, the derivative:

$$\frac{d}{dx}\left(\frac{nx}{1+n^2x^2}\right) = \frac{(1+n^2x^2)n - nx(2n^2x)}{(1+n^2x^2)^2} = \frac{n-n^3x^2}{(1+n^2x^2)^2}$$

So we check:

$$n - n^3 x^2 = 0 \implies x^2 = \frac{1}{n^2} \implies x = \pm \frac{1}{n}$$

We note that the derivative is positive on $[0, \frac{1}{n})$ and negative after $\frac{1}{n}$. So we obtain the supremum as

$$\frac{n\left(\frac{1}{n}\right)}{1+n^2\left(\frac{1}{n}\right)^2} = \frac{1}{2}$$

and the infimum as

0

So the $\limsup_{n\to\infty} \left|\frac{nx}{1+n^2x^2}\right| \neq 0$ which means that it does not uniformly converge.

Exercise 5: Same f_n in Q4, check whether $f_n \to 0$ uniformly or not on $[1, \infty)$.

Proof. Recall from the previous problem that the function $\frac{nx}{1+n^2x^2}$ is increasing on the interval $(0, \frac{1}{n})$ and decreasing on the interval $(\frac{1}{n}, \infty)$. Then the sequence:

$$f_n(\frac{1}{n})$$

is increasing but the function $f_n(x) > f_n(y)$ for x < y. Therefore, the function assumes a maximum value in the interval $[1, \infty)$ for x = 1. So now we calculate the supremum, which is plugging in 1:

$$\frac{n}{1+n^2}$$

and the infimum calculating the limit $x \to \infty$

$$\lim_{x \to \infty} \frac{nx}{1 + n^2 x^2} = 0$$

Then we have:

$$\limsup_{n \to \infty} \{ |f_n(x) : x \in [1, \infty)| \} = \limsup_{n \to \infty} \frac{n}{1 + n^2}$$
$$= 0$$

Since the limit is 0, we know that it uniformly converges on the interval.

Exercise 6: Use the definition to show: if $f_n \to f$ uniformly on S and $g_n \to g$ uniformly on S, then $f_n + g_n \to f + g$ uniformly on S.

Proof. If $f_n \to f$ uniformly, on S, then we know that $\forall \epsilon > 0$, $\exists N_1 > 0$ such that $\forall n > N_1$, $x \in S$, we have that:

$$|f_n(x) - f(x)| < \varepsilon/2$$

Similarly, we know that there is an $N_2 > 0$ such that $\forall n > N_2, x \in S$, we have

$$|g_n(x) - g(x)| < \varepsilon/2$$

Then for all $\varepsilon > 0$, we take the maximum $\max(N_1, N_2)$ that exists for the first two equations. Then for all $x \in S$, we have:

$$|f_n(x) + g_n(x) - f(x) - g(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

 $< \varepsilon$

This means that $f_n(x) + g_n(x)$ uniformly converges to f(x) + g(x) on S.