Natural language to Code Generation

Zora Wang, Nikitha Rao Nov 9th, 2023

The NL2Code Task

Given a natural language instruction Q, generate code implementation C

The Landscape for NL2Code Generation

- Transition of Evaluation Metrics:
 - Lexical, neural based metrics
 - Test case execution

Domain Coverage

- o Built-in grammar: "sum([1, 2, 4])
- o Domain-specific: data science
- Open domain: diverse Python libraries

Functional Complexity

- o Simple (toy) functions: e.g., LeetCode
- Class level
- Repository level

Test Automation

- Human-written tests
- Fuzzing methods
- Integrating LLMs

What We Had for Code Generation

Benchmark: **CodeXGLUE**, CoNaLa

- <u>code-code</u> (clone detection, defect detection, cloze test, code completion, code repair, and code-to-code translation)
- <u>text-code</u> (natural language code search, text-to-code generation)
- code-text (code summarization)
- <u>text-text</u> (documentation translation)

Model

• CodeBERT, GraphCodeBERT

Evaluation Metrics

• Lexical based: BLEU

Syntax based: CodeBLEU

Category	Task	Dataset Name	Language	Train/Dev/Test Size	Baselines	Task definition	
Code-Code	Clone Detection	BigCloneBench	Java	900K/416K/416K		Predict semantic equivalence for a pair of codes.	
	Cione Detection	POJ-104	C/C++	32K/8K/12K		Retrieve semantically similar codes.	
	Defect Detection	Devign	С	21k/2.7k/2.7k		Identify whether a function is vulnerable.	
	Cloze Test	CT-all	Python, Java, PHP, JavaScript, Ruby, Go	-/-/176k	CodeBERT	Tokens to be predicted come from the entire vocab	
		CT-max/min	Python, Java, PHP, JavaScript, Ruby, Go	-/-/2.6k		Tokens to be predicted come from (max, min).	
	Code Completion	PY150	Python	100k/5k/50k	3		
		GitHub Java Corpus	Java	13k/7k/8k	CodeGPT	Predict following tokens given contexts of codes	
	Code Repair	Bugs2Fix	Java	98K/12K/12K	Encoder-	Automatically refine codes by fixing bugs.	
	Code Translation	CodeTrans	Java-C#	10K/0.5K/1K	Decoder	Translate the codes from one programming language to another programming language.	
Text-Code	NL Code Search	CodeSearchNet, AdvTest	Python	251K/9.6K/19K	CodeBERT	Given a natural language query as input, find semantically similar codes.	
		CodeSearchNet, WebQueryTest	Python	251K/9.6K/1k	CodeBERI	Given a pair of natural language and code, predict whether they are relevant or not.	
	Text-to-Code Generation	CONCODE	Java	100K/2K/2K	CodeGPT	Given a natural language docstring/comment as input, generate a code.	
Code-Text	Code Summarization	CodeSearchNet	Python, Java, PHP, JavaScript, Ruby, Go	908K/45K/53K	Encoder-	Given a code, generate its natural language docstring/comment.	
Text-Text	Documentation Translation	Microsoft Docs	English- Latvian/Danish/Norw egian/Chinese	156K/4K/4K	Decoder	Translate code documentation between human languages (e.g. En-Zh), intended to test low- resource multi-lingual translation.	

What We Had for Code Generation

Benchmark:

CodeXGLUE, CoNaLa

Model

• CodeBERT, GraphCodeBERT

Evaluation Metrics

- Lexical based: BLEU
- Syntax based: CodeBLEU

Weighted N-Gram Match

Syntactic AST Match

```
[('d', 7, 'comesFrom', [], []), ('d', 16, 'comesFrom', [d'], [7]), ('d', 24, 'comesFrom', ['d'], [7])]

Machine translation:

public static int Sign ( double d ) {

return ( (int ) ( (d = = 0 ) ? 0 : (d < 0 ) ) ) ?

-1 : 1;
}
```

```
Reference (human) translation:
public static short Sign ( double c) {
    return ( short ) ( (c== 0 ) ? 0 : (c< 0 ) ? -
    1 : 1 ) :
}
```

Semantic Data-flow Match

CodeBLEU = $\alpha \cdot N$ - Gram Match (BLEU) + $\beta \cdot M$ Weighted N-Gram Match + $\gamma \cdot M$ Syntactic AST Match + $\delta \cdot M$ Semantic Data-flow Match

Issues: Evaluations Are Not Rigorous

HumanEval Benchmark - 15

Evaluation: test case execution

164 hand-written examples

- Why human-written?
 - "It is important for these tasks to l fraction of GitHub, which already
- Safety: Sandbox for Executing
 - "Since publicly available programs incorrect, executing these programs
- Optimizing BLEU != Improving

HumanEval Looks Like Toy Examples?

HumanEval Examples

```
def incr_list(1: list):
    """Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
    [2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
    [6, 4, 6, 3, 4, 4, 10, 1, 124]
    """
    return [i + 1 for i in 1]
```

```
def solution(lst):
    """"Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.

Examples
    solution([5, 8, 7, 1]) =⇒12
    solution([3, 3, 3, 3, 3]) =⇒9
    solution([30, 13, 24, 321]) =⇒0
    """

return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

Real-World Development Code

Asking the user for input until they give a valid response

Domain Exploration

- Leetcode Style: HumanEval, APPS, MBPP
 - Manually written or collected from code contest websites
 - o Only uses Python built-in grammar
- Limited Domains: e.g., Data Science
 - O DS-1000: StackOverflow questions
 - ARCADE: Interactive Jupyter Notebooks
 - o ExeDS
 - O
- Open Domain: ODEX
 - 79 Python libraries
 - o Four natural languages

NumPy example problem involving randomness, requiring the use of a specialist knowledge test.

Execution-Based Evaluation for Open-Domain Code Generation

Larger Domain Coverage

- Test execution on real-world coding queries
 - Collected from StackOverflow questions
- Support four natural languages as input
 - o English, Spanish, Japanese, Russian

```
import requests

def function(files, url, data):
    """multipartのリクエストで複数のデータ`files`, `data`を`url'にPOSTする
    (POST multiple data `files`, `data` to `url' with multipart request)
```

```
return [requests.post(url, files=files, data=data]

# test case
r = requests.Response()
r.status_code = 200
requests.post = Mock(return_value = r)
file_path = 'a.txt'
```

	Dataset	Samples	Domain	Executable?	Avg. Test Cases	Data Source	NL
2	JuICe (Agashe et al., 2019)	1,981	open	×	-	GitHub Notebooks	en
	HumanEval (Chen et al., 2021)	164	4	✓	7.7	Hand-written	en
	MBPP (Austin et al., 2021)	974	8	✓	3.0	Hand-written	en
	APPS (Hendrycks et al., 2021)	10,000	0	✓	13.2	Competitions	en
	DSP (Chandel et al., 2022)	1,119	16	✓	2.1	Github Notebooks	en
	MTPB (Nijkamp et al., 2022)	115	8	✓	5.0	Hand-written	en
	Exe-DS (Huang et al., 2022)	534	28	✓	-	GitHub Notebooks	en
	DS-1000 (Lai et al., 2022)	1,000	7	✓	1.6	StackOverflow	en
	CoNaLa (Yin et al., 2018)	2,879	open	×	-	StackOverflow	en
	MCoNaLa (Wang et al., 2022)	896	open	×	-	StackOverflow	es, ja, ru
a	ODEX	945	79	1	1.8	StackOverflow Hand-Written	en, es, ja, ru

(catcutate the improper integrat given by the function i from the number `n` to infinity)

return

```
return Sympy.integrate(f, (sympy.symbols('x'), n, sympy.oo))

# test case
x = Sympy.symbols('x')
f = (x * x)
n = 1
assert str(function(f, n)) == 'oo'
```

ODEX: Unique Challenges for Execution

Closed-domain code: easy to execute and verify

assert func([1, 2, 10]) == [2, 3, 11]

Open-domain code:

Random outputs

```
random.randint(3, 5) 5
```

In [4]: assert (a == b)

Specialized verification

```
In [1]: import numpy as np
In [2]: a = np.array([1, 2, 3])
In [3]: b = np.array([1, 2, 3])
```

```
ValueError Traceback (most recent call last)
Cell In[4], line 1
----> 1 assert (a == b)
```

ValueError: The truth value of an array with more than one element is ambiguous.

```
In [5]: np.array_equal(a, b)
Out[5]: True
```

- (Potentially) not reproducible queries
 - HTTP requests, e.g., requests.post("https://def.xyz", data={'key': 'value'})

Significant Performance Gaps: Open vs. Closed

- Although Codex performs better overall
- CodeGen has smaller domain gaps

Figure 7: CODEX (left) and CODEGEN (right) pass@1 on open- and closed-domain problems in each language.

Functional Complexity

- Function Level: HumanEval, MBPP
- Class Level: ClassEval

```
HumanEval Function Test

METADATA = {\n 'author': 'jt',\n 'dataset': 'test'\n}

def check(candidate):
    assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True
    assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False
    ...

MBPP Function Test
[
    "assert get_ludic(10) == [1, 2, 3, 5, 7]",
    "assert get_ludic(25) == [1, 2, 3, 5, 7, 11, 13, 17, 23, 25]", ...
]
```

```
Class Eval Method Test

class VendingMachineTestPurchaseItem(unittest.TestCase):

def test_purchase_item (self):

vm = VendingMachine()

vm.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}

vm.balance = 1.25

self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quantity': 9}})

def test_purchase_item_2(self):

vm = VendingMachine()

vm.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}

vm.balance = 1.25

self.assertEqual(vm.purchase_item('Pizza'), False)

self.assertEqual(vm.inventory, {'Coke': {'price': 1.25, 'quantity': 10}})

...
```

```
from datetime import datetime
                                                             Import Statements
class VendingMachine:
                                                                     Class Name
    """This is a class to simulate a vending machine, including adding products, inserting
coins, purchasing products, viewing balance, replenishing product inventory, and
displaying product information. """
                                                              Class Description
  def __init__(self):
    Initializes the vending machine's inventory and balance.
                                                              Class Constructor
    self.inventorv=[]
    self. balance= {}
                                                              Method Signature
  def purchase item(self, item name):
    """ Purchases a product from the vending machine and returns the balance after the
                                                        Functional Description
purchase.
                            ClassEval Class Test
```

```
class VendingMachineTestMain (unittest.TestCase):

def setUp(self) -> None:
    self.vm = VendingMachine()
    self.vm.inventory = {"Coke": {"price": 1.25, "quantity": 10}}
    self.vm.balance = 0

def test_all(self):
    self.assertEqual(vm.insert_coin(1.25), 1.25)
    self.assertEqual(vm.purchase_item("Coke"), 0.0)
    self.assertEqual(vm.inventory, {"Coke": {"price": 1.25, "quantity": 9}})
    self.assertEqual(vm.restock_item("Coke", 10), True)
    self.assertEqual(vm.inventory, {"Coke": {"price": 1.25, "quantity": 19}})
    self.assertEqual(vm.display_items(), "Coke - $1.25 [19]")
```

Figure 4: Test Cases in Existing Benchmarks and ClassEval

"Write a python function to find the first repeated character in a given string."

Figure 1: Examples in Existing Benchmarks

```
returns False.

>>> vendingMachine.inventory = {'Coke': {'price': 1.25, 'quantity': 10}}

>>> vendingMachine.restock_item('Coke', 10)

True

>>> vendingMachine.inventory
{'Coke': {'price': 1.25, 'quantity': 20}}

Example Input/Output

"""

...
```

Figure 2: An Example of Class Skeleton in ClassEval

Functional Complexity

- Function Level: HumanEval, MBPP
- Class Level: ClassEval
- Repository Level:
 - RepoCoder
 - Retrieval-augmented generation
 - Multiple iterations
 - RepoEval
 - Collected 14 Github Repositories
 - Metrics:
 - exact match
 - exact similarity
 - execution

```
# Below are some referential code fragments
                                               Retrieved
from other files:
                                                Code
# the below code fragment can be found in:
 tests/test_pipelines_common.py
 @unittest.skipIf(torch device != "cuda")
 def test to device(self):
      components = self.get dummy components()
      pipe = self.pipeline class(**components)
      pipe.progress bar(disable=None)
      pipe.to("cpu")
"""Based on above, complete the following code:"""
@unittest.skipIf(torch device != "cuda")
                                              Unfinished
def test float16 inference(self):
                                                Code
    components = self.get dummy components()
    pipe = self.pipeline class(**components)
                                                Model
    pipe.to(torch device)
                                              Prediction
```

Figure 3: A visual example demonstrating the format of the RepoCoder prompt, which combines the retrieved code snippets from the repository with the unfinished code present in the target file.

Functional Complexity

- Function Level: HumanEval, MBPP
- Class Level: ClassEval
- Repository Level: RepoCoder & RepoEval
- Repo-Level Pull Requests: SWE-Bench

Figure 1: SWE-bench sources task instances from real-world Python repositories by connecting GitHub issues to merged pull request solutions that resolve related tests. Provided with the issue text and a codebase snapshot, models generate a patch that is evaluated against real tests.

Figure 6: We show an example of an formatted task instance, a model prediction, and the testing framework logs. Results and inputs are stylized for readability. In the gold and generated patch file, red-highlighted lines represent deletions and green-highlighted lines represent additions.

Automated & Improved Testing

- Initial approach: human (expert) write test cases
- Evaluate on code without annotated tests? CodeT
 - Models generate solutions and test cases at the same time
 - Cross-validation between multiple solutions and tests

Automated & Improved Testing

- Initial approach: human (expert) write test cases
- LLMs to create test cases → EvalPlus
 - Scale-up test generation, reduce human effort
 - More sufficient tests, can find wrong solutions

Table 2: Overview of EvalPlus-improved benchmarks.

		#Tasks			
	Avg.	Medium	Min.	Max.	
HUMANEVAL	9.6	7.0	1	105^{2}	
HumanEval ⁺	764.1	982.5	12	1,100	164
HumanEval ⁺ -mini	16.1	13.0	5	110	
			200		

```
[4,3,2,8], [3,2]
[4,3,2,8], [3,2,4]
HUMANEVAL inputs

[6,8,1], [6,8,1]
HUMANEVAL+ input

| Common(l1: list, l2: list):
| """Return sorted unique common elements for two lists"""
| common_elements = list(set(l1).intersection(set(l2)))
| common_elements.sort()
| return list(set(common_elements))

| ChatGPT synthesized code | (8,1,6)
| not sorted!
```

Figure 1: Exemplary wrong code synthesized by ChatGPT for HUMANEVAL #58.

Automated & Improved Testing

- Initial approach: human (expert) write test cases
- LLMs to create test cases → EvalPlus
- Fuzzing: a common method in software engineering
 - Type-aware value mutations / alterations
 - Limitation: can only apply to Python basic types, not open-domain ones, e.g., numpy array

Table 1: List of basic type-aware mutations over input x .	Table 1:	List of	basic ty	pe-aware	mutations	over input x .
--	----------	---------	----------	----------	-----------	------------------

Type	Mutation	Type	Mutation	
int float	$\mathtt{int} \mathtt{float} Returns x \! \pm \! 1$		$ \left\{ \begin{array}{l} \text{Remove/repeat a random item } x[i] \\ \text{Insert/replace } x[i] \text{ with } \texttt{Mutate}(x[i]) \end{array} \right. $	
bool	Returns a random boolean	Tuple	Returns Tuple (Mutate (List (x)))	
${\tt NoneType}$	Returns None		Returns Set (Mutate(List(x)))	
str	$ \begin{cases} \text{Remove a sub-string } s \\ \text{Repeat a sub-string } s \\ \text{Replace } s \text{ with Mutate}(s) \end{cases} $	Dict	$ \begin{cases} & \text{Remove a key-value pair } k \to v \\ & \text{Update } k \to v \text{ to } k \to \texttt{Mutate}(v) \\ & \text{Insert Mutate}(k) \to \texttt{Mutate}(v) \end{cases} $	