and the matrix

$$\Delta A = \beta I$$

sastisfy the equations

$$Ax = b$$

$$(A + \Delta A)(x + \Delta x) = b$$

$$\|\Delta x\| = |\beta| \|A^{-1}w\| = \|\Delta A\| \|A^{-1}\| \|x + \Delta x\|.$$

Finally we can pick β so that $-\beta$ is not equal to any of the eigenvalues of A, so that $A + \Delta A = A + \beta I$ is invertible and b is is nonzero.

If
$$\|\Delta A\| < 1/\|A^{-1}\|$$
, then

$$||A^{-1}\Delta A|| \le ||A^{-1}|| ||\Delta A|| < 1,$$

so by Proposition 9.11, the matrix $I + A^{-1}\Delta A$ is invertible and

$$\|(I + A^{-1}\Delta A)^{-1}\| \le \frac{1}{1 - \|A^{-1}\Delta A\|} \le \frac{1}{1 - \|A^{-1}\| \|\Delta A\|}.$$

Recall that we proved earlier that

$$\Delta x = -A^{-1}\Delta A(x + \Delta x),$$

and by adding x to both sides and moving the right-hand side to the left-hand side yields

$$(I + A^{-1}\Delta A)(x + \Delta x) = x,$$

and thus

$$x + \Delta x = (I + A^{-1}\Delta A)^{-1}x,$$

which yields

$$\Delta x = ((I + A^{-1}\Delta A)^{-1} - I)x = (I + A^{-1}\Delta A)^{-1}(I - (I + A^{-1}\Delta A))x$$
$$= -(I + A^{-1}\Delta A)^{-1}A^{-1}(\Delta A)x.$$

From this and

$$||(I + A^{-1}\Delta A)^{-1}|| \le \frac{1}{1 - ||A^{-1}|| \, ||\Delta A||},$$

we get

$$\|\Delta x\| \le \frac{\|A^{-1}\| \|\Delta A\|}{1 - \|A^{-1}\| \|\Delta A\|} \|x\|,$$

which can be written as

$$\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|} \left(\frac{1}{1 - \|A^{-1}\| \|\Delta A\|} \right),$$

which is the kind of inequality that we were seeking.