EXERCICE - B

Principaux domaines abordés

- Suites, étude de fonction
- Fonction logarithme

Soit la fonction f définie sur l'intervalle]1; $+\infty$ [par

$$f(x) = x - \ln(x - 1).$$

On considère la suite (u_n) de terme initial $u_0 = 10$ et telle que $u_{n+1} = f(u_n)$ pour tout entier naturel n.

Partie I:

La feuille de calcul ci-dessous a permis d'obtenir des valeurs approchées des premiers termes de la suite (u_n) .

	A	В	
1	n	u_n	
2	0	10	
3	1	7,802 775 42	
4	2	5,885 444 74	
5	3	4,299 184 42	
6	4	3,105 509 13	
7	5	2,360 951 82	
8	6	2,052 767 5	
9	7	2,001 345 09	
10	8	2,000 000 9	

- 1) Quelle formule a été saisie dans la cellule B3 pour permettre le calcul des valeurs approchées de (u_n) par recopie vers le bas?
- 2) À l'aide de ces valeurs, conjecturer le sens de variation et la limite de la suite (u_n) .

Partie II:

On rappelle que la fonction f est définie sur l'intervalle]1; $+\infty$ [par

$$f(x) = x - \ln(x - 1).$$

- 1) Calculer $\lim_{x\to 1} f(x)$. On admettra que $\lim_{x\to +\infty} f(x) = +\infty$.
- 2) **a)** Soit f' la fonction dérivée de f. Montrer que pour tout $x \in]1$; $+\infty[$, $f'(x) = \frac{x-2}{x-1}$.
 - **b)** En déduire le tableau des variations de f sur l'intervalle]1; $+\infty$ [, complété par les limites.
 - c) Justifier que pour tout $x \ge 2$, $f(x) \ge 2$.

Partie III:

- 1) En utilisant les résultats de la partie II, démontrer par récurrence que $u_n \ge 2$ pour tout entier naturel n.
- 2) Montrer que la suite (u_n) est décroissante.
- 3) En déduire que la suite (u_n) est convergente. On note ℓ sa limite.
- 4) On admet que ℓ vérifie $f(\ell) = \ell$. Donner la valeur de ℓ .

Correction

EXERCICE - B

Principaux domaines abordés

- Suites, étude de fonction
- Fonction logarithme

$$f(x) = x - \ln(x - 1).$$

On considère la suite (u_n) de terme initial $u_0 = 10$ et telle que $u_{n+1} = f(u_n)$ pour tout entier naturel n.

Partie I:

- 1) Il faut écrire dans la cellule B3 : =B2 $\ln(B2 1)$
- 2) On peut penser que la suite est décroissante et a pour limite 2.

Partie II:

1) On a $\lim_{x \to 1} x - 1 = 0$, donc $\lim_{x \to 1} \ln(x - 1) = -\infty$ et enfin par somme de limites $\lim_{x \to 1} f(x) = +\infty$.

Rem. : la droite d'équation x = 1 est asymptote verticale à la représentation graphique de la fonction f.

- 2) **a)** Sachant que $(\ln u)' = \frac{u'}{u}$, u(x) étant une fonction de x ne s'annulant pas sur l'intervalle]1; $+\infty$ [, on a donc : $f'(x) = 1 \frac{1}{x-1} = \frac{x-1-1}{x-1} = \frac{x-2}{x-1}$ sur l'intervalle]1; $+\infty$ [.
 - **b)** Sur l'intervalle]1; $+\infty$ [on a bien entendu x > 1, donc le signe de f'(x) est celui du dénominateur x 2:
 - + $x-2>0 \iff x>2$: f'(x)>0 sur]2; + ∞ [; la fonction f est croissante sur]2; + ∞ [;
 - + $x-2<0 \iff x<2: f'(x)>0 \text{ sur }]1; 2[; la fonction } f \text{ est décroissante sur }]1; 2[; la fonction } f$
 - + $x-2=0 \iff x=2$: f'(2)=0 la fonction f a un minimum $f(2)=2-\ln 1=2-0=2$ sur]1; + ∞ [. D'où le tableau de variations:

x	1	2		$+\infty$
f'(x)	1	0	+	
f	+8	2		+∞

- c) La question précédente a montré que f(2) = 2 est le minimum de la fonction f sur l'intervalle]1; $+\infty[$, donc a fortiori sur l'intervalle]1; $+\infty[$.
 - On a donc pour tout $x \ge 2$, $f(x) \ge 2$.

Partie III:

1) Initialisation : on a $u_0 = 10 \ge 2$: la proposition est vraie au rang 0.

Hérédité : supposons que pour $n \in \mathbb{N}$, on ait : $u_n \ge 2$.

Par croissance de la fonction f, on a donc $f(u_n) \ge f(2)$, c'est-à-dire :

 $u_{n+1} \ge 2$: la proposition est donc vraie au rang n+1.

Conclusion : La proposition est vraie au rang 0 et si elle est vraie au rang $n \in \mathbb{N}$ elle est vraie au rang n + 1 : d'après le principe de récurrence la proposition :

« $u_n \ge 2$ pour tout entier naturel n » est vraie.

2) Pour $n \in \mathbb{N}$, calculons $u_{n+1} - u_n = f(u_n) - u_n = u_n - \ln(u_n - 1) - u_n = -\ln(u_n - 1)$.

Or d'après la question précédente, quel que soit $n \in \mathbb{N}$, $u_n \ge 2$, donc $u_n - 1 \ge 2 - 1$, ou $u_n - 1 \ge 1$, donc $\ln (u_n - 1) \ge 0$ et enfin $-\ln (u_n - 1) \le 0$.

Conclusion : quel que soit $n \in \mathbb{N}$, $u_{n+1} - u_n \le 0$ ou $u_{n+1} \le u_n$: la suite (u_n) est décroissante.

- 3) On a donc démontré dans les deux questions précédentes que la suite (u_n) est décroissante et minorée par 2 : elle converge donc vers une limite ℓ , telle $\ell \ge 2$.
- 4) $f(\ell) = \ell \iff \ell \ln(\ell 1) = \ell \iff 0 = \ln(\ell 1) \iff 1 = \ell 1$ (par croissance de la fonction logarithme népérien), d'où $2 = \ell$.

La suite (u_n) converge vers le nombre 2.