

Exercise 1

Consider the exponential distribution with $\,\lambda=1\,$

- 1. Sample N=1000 values from $f_T(t)$
- Verify whether the obtained distribution provides a good approximation of the analytic exponential distribution. To this aim, you are required to:
 - A. find the empirical probability density function (pdf) of the sampled value in
 - B. compare the empirical pdf found in 2A. with the analytical Weibull distribution.
- 3. Provide an estimate G_N of $\int_0^{+\infty} t f_T(t) dt$
- 4. Estimate the variance of G_N
- 5. Consider the Weibull distribution:

$$F_T(t) = 1 - e^{-\beta t^{\alpha}}, \quad f_T(t) = \alpha \beta t^{\alpha - 1} e^{-\beta t^{\alpha}}$$

with $\alpha = 1.5$, $\beta = 1$

Provide a solution of point 1) to 4) for the Weibull distribution

Luca Pinciroli POLITECNICO MILANO 1863

MATLAB Commands

- rand(M,1) provides a column of M random numbers sampled from a uniform distribution in the range [0,1)
- N = hist(Y) bins the elements of vector Y into 10 equally spaced counters and returns the number of elements in each counter. More options if you write 'help hist'

Sampling Random Numbers from FX(x)

Luca Pinciro

iors

POLITECNICO MILANO 1863

Luca Pinciroli

10.66

POLITECNICO MILANO 1863

Exercise 2

Consider a continuously monitored component with constant failure (λ) and repair (μ) rates in the table. Assuming a mission time $T=1000\ hours$, write the MC code for the estimation of:

- The time dependent reliability
- · The reliability at the mission time
- · The instantaneous availability.

values λ 3· 10⁻³ h⁻¹ μ 25· 10⁻³ h⁻¹

Exercise 3

Consider the network in figure composed of five arcs (1, 2, 3, 4, 5). Each arc can be in two different states (1-working, 2-failed) with exponentially distributed transition times (table). The network is considered failed if there is no connection between nodes S and T. Assuming a mission time $T_m = 300\ hours$, write the MC code for the estimation of the time dependent reliability

Sampling the time of transition

· The rate of transition of the system out of its current configuration

• (1, 1, 1) is:

$$\lambda^{(1,1,1)} = \lambda^A + \lambda^B + \lambda^C$$

We are now in the position of sampling the first system transition time $t_{\scriptscriptstyle 1}$, by applying the **inverse transform method**:

$$t_1 = t_0 - \frac{1}{\lambda^{(1,1,1)}} \ln(1 - R_t)$$

where $R_t \sim U[0,1)$

Sampling the kind of Transition

• Assuming that $t_1 < T_M$ (otherwise we would proceed to the successive trial), we now need to determine which component has undergone the transition

• The probabilities of components A, B, C undergoing a transition out of their initial nominal states 1, given that a transition occurs at time t_1 , are:

$$\frac{\lambda^{A}}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^{B}}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^{C}}{\lambda^{(1,1,1)}}$$

· Thus, we can apply the inverse transform method to the discrete distribution

Exercise 4

Exercise 5

Consider the system in figure composed of three components(A, B, C) Each component can be in two different health states (1-nominal, 2failed) with exponentially distributed transition times (table) between them. Assuming a mission time T = 500 hours, write the MC code for the estimation of:

- The time dependent reliability
- The reliability at the mission time
- The instantaneous availability.

	A			В			C	
1.	10-3	h ⁻¹	2.	10-2	h ⁻¹	5.	10-2	h ⁻¹
 3.	10-2	h-1	5.	10-2	h-1	5.	10-3	h-1

Consider the system in figure composed of three components(A, B, C). Each component can be in three different health states (1-nominal, 2degraded, 3-failed) with exponentially distributed transition times. Assuming a mission time $T = 1000 \ hours$, write the MC code for the estimation of:

- The time dependent reliability
- The reliability at the mission time
- The instantaneous availability

Arrival	1	2	3
1(nominal)	0	$\lambda_{1\rightarrow 2}^{A(B,C)}$	$\lambda_{1\rightarrow 3}^{A(B,C)}$
2 (degraded)	0	0	$\lambda_{2\rightarrow 3}^{A(B,C)}$
3 (failed)	$\lambda_{3\rightarrow 1}^{A(B,C)}$	$\lambda_{3\rightarrow 2}^{A(B,C)}$	0

POLITECNICO MILANO 1863

Flow diagram

Sampling the time of transition

- No No End Sample the V simulation t < Tm Yes Yes Sample the Compute component results erforming the Update reliability ample the type of transition Update the matrices
- · The rate of transition of the system out of its current configuration
- (1, 1, 1) is:

 $\lambda^{(1,1,1)} = \lambda_{1\to 2}^A + \lambda_{1\to 3}^A + \lambda_{1\to 2}^B + \lambda_{1\to 3}^B + \lambda_{1\to 2}^C + \lambda_{1\to 3}^C$

We are now in the position of sampling the first system transition time t_{τ} , by applying the **inverse transform method**:

 $t_1 = t_0 - \frac{1}{2^{(1,1,1)}} \ln(1 - R_t)$

where $R_t \sim U[0,1)$

POLITECNICO MILANO 1863

Sampling the kind of Transition

Sampling the kind of Transition

- Assuming that $t_1 < T_M$ (otherwise we would proceed to the successive trial), we now need to determine which component has undergone the transition
- · The probabilities of components A, B, C undergoing a transition out of their initial nominal states 1, given that a transition occurs at time t_1 , are:

$$\frac{\lambda^A}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^B}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^C}{\lambda^{(1,1,1)}}$$

$$\lambda^A = \lambda_{1 \to 2}^A + \lambda_{1 \to 3}^A \qquad \lambda^B = \lambda_{1 \to 2}^B + \lambda_{1 \to 3}^B \qquad \lambda^C = \lambda_{1 \to 2}^C + \lambda_{1 \to 3}^C$$

· Thus, we can apply the inverse transform method to the discrete distribution

- · Since component B is the one undergoing the transition we need to sample the new state of component B.
- · The probabilities of components B undergoing a transition out of their initial nominal states 1 given that a transition occurs at time t_1 , are:

$$\frac{\lambda_{1\to 2}^B}{\lambda^B}$$
 $\frac{\lambda_{1\to 2}^B}{\lambda^B}$

· Thus, we can apply the inverse transform method to the discrete distribution

Next step

 As a result of this first transition, at t₁ the system is operating in configuration (1,2,1).

· The simulation now proceeds to sampling the next transition time t_2 with the updated transition rate

$$\lambda^{(1,2,1)} = \lambda_{1\to 2}^A + \lambda_{1\to 3}^A + \lambda_{2\to 3}^B + \lambda_{1\to 2}^C + \lambda_{1\to 3}^C$$

OVOY POLITECNICO MILANO 1863