DATA ANALYSIS I

Data: Algebraic and Geometric View

2019-20

Sources

• Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press. [1-13]

Data Matrix

Data can be represented or abstracted as an n×d data matrix, with n rows and d columns.

Rows correspond to objects in the dataset.

Columns represent attributes or properties of interest.

Data matrix

$$D = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \\ x_1 & x_{11} & x_{12} & \cdots & x_{1d} \\ x_2 & x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n & x_{n1} & x_{n2} & \cdots & x_{nd} \end{pmatrix}$$

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id})$$

$$X_i = (x_{i1}, x_{i2}, \dots, x_{id})$$
 $X_j = (x_{1j}, x_{2j}, \dots, x_{nj})$

Data Point

• If the *d* attributes or dimensions in the data matrix *D* are all numeric, then each row can be considered as a *d*-dimensional point

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{id}) \in \mathbb{R}^d$$

$$\mathbf{x}_{i} = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{pmatrix} = \begin{pmatrix} x_{i1} & x_{i2} & \cdots & x_{id} \end{pmatrix}^{\mathrm{T}} \in \mathbb{R}^{d}$$

Cartesian Coordinate Space

- The *d*-dimensional *Cartesian coordinate space* is specified via the d unit vectors, called the standard basis vectors, along each of the axes.
- Any other vector in R^d can be written as linear combination of the standard basis vectors.

$$e_j = (0, ..., 1_j, ..., 0)^T$$

$$x_i = x_{i1}e_1 + x_{i2}e_2 + \dots + x_{id}e_d = \sum_{j=1}^d x_{ij}e_j$$

Examples

Data Matrix: Example

 An extract of the Iris dataset; the complete data forms a 150×5 data matrix.

• Each entity is an Iris flower, and the attributes include sepal length, sepal width, petal length, and petal width in centimeters, and the type or class of the Iris flower.

Data Matrix

	Sepal length	Sepal width	Petal length	Petal width	Class
	X_1	X_2	X_3	X_4	X_5
\mathbf{x}_1	5.9	3.0	4.2	1.5	Iris-versicolor
x_2	6.9	3.1	4.9	1.5	Iris-versicolor
x_3	6.6	2.9	4.6	1.3	Iris-versicolor
x_4	4.6	3.2	1.4	0.2	Iris-setosa
X5	6.0	2.2	4.0	1.0	Iris-versicolor
x_6	4.7	3.2	1.3	0.2	Iris-setosa
X7	6.5	3.0	5.8	2.2	Iris-virginica
X8	5.8	2.7	5.1	1.9	Iris-virginica
:	÷	÷	÷	:	i i
X ₁₄₉	7.7	3.8	6.7	2.2	Iris-virginica
χ_{150}	5.1	3.4	1.5	0.2	Iris-setosa /

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

Geometric Representation

Distance and Angle

• **Vectors**: Treating data objects and attributes as vectors, and the entire dataset as a matrix, enables to apply both geometric and algebraic methods to aid in the data mining and analysis tasks.

What is a distance / similarity?

Dot Product

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\mathbf{a}^{\mathrm{T}}\mathbf{b} = \begin{pmatrix} a_1 & a_2 & \cdots & a_m \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
$$= a_1b_1 + a_2b_2 + \cdots + a_mb_m$$
$$= \sum_{i=1}^m a_ib_i$$

Euclidean Norm

$$\|\mathbf{a}\| = \sqrt{\mathbf{a}^{\mathrm{T}}\mathbf{a}} = \sqrt{a_1^2 + a_2^2 + \dots + a_m^2} = \sqrt{\sum_{i=1}^{m} a_i^2}$$

• The Euclidean norm is a special case of a general class of norms, known as L_p -norm (p=2), defined as

$$\|\mathbf{a}\|_{p} = (|a_{1}|^{p} + |a_{2}|^{p} + \dots + |a_{m}|^{p})^{\frac{1}{p}} = (\sum_{i=1}^{m} |a_{i}|^{p})^{\frac{1}{p}}$$

Euclidean Distance

• Euclidean distance is the distance in Euclidean space.

$$\delta(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\| = \sqrt{(\mathbf{a} - \mathbf{b})^{\mathrm{T}}(\mathbf{a} - \mathbf{b})} = \sqrt{\sum_{i=1}^{m} (a_i - b_i)^2}$$

Cosine Similarity

• **Cosine similarity** is the cosine of the smallest angle between vectors *a* and *b*.

$$\cos \theta = \frac{\mathbf{a}^{\mathrm{T}} \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \left(\frac{\mathbf{a}}{\|\mathbf{a}\|}\right)^{\mathrm{T}} \left(\frac{\mathbf{b}}{\|\mathbf{b}\|}\right)$$

• The cosine of the angle between a and b is given as the dot product of the unit vectors a / ||a|| a b / ||b||.

Distance and Angle

Mean and Total Variance

Mean

• The **Mean** of the data matrix D is the vector obtained as the average of all the points.

$$mean(D) = \mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Total Variance

• The **Total Variance** of the data matrix *D* is the average squared distance of each point from the mean.

$$var(D) = \frac{1}{n} \sum_{i=1}^{n} \delta(\mathbf{x}_i, \boldsymbol{\mu})^2 = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - \boldsymbol{\mu}\|^2$$

Centered Data Matrix

- Often we need to center the data matrix by making the mean coincide with the origin of the data space.
- The centered data matrix is obtained by subtracting the mean from all the points.

$$\mathbf{Z} = \mathbf{D} - 1 \cdot \boldsymbol{\mu}^{\mathrm{T}} = \begin{pmatrix} \mathbf{x}_{1}^{\mathrm{T}} \\ \mathbf{x}_{2}^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_{n}^{\mathrm{T}} \end{pmatrix} - \begin{pmatrix} \boldsymbol{\mu}^{\mathrm{T}} \\ \boldsymbol{\mu}^{\mathrm{T}} \\ \vdots \\ \boldsymbol{\mu}^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{1}^{\mathrm{T}} - \boldsymbol{\mu}^{\mathrm{T}} \\ \mathbf{x}_{2}^{\mathrm{T}} - \boldsymbol{\mu}^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_{n}^{\mathrm{T}} - \boldsymbol{\mu}^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} \mathbf{z}_{1}^{\mathrm{T}} \\ \mathbf{z}_{2}^{\mathrm{T}} \\ \vdots \\ \mathbf{z}_{n}^{\mathrm{T}} \end{pmatrix}$$

Linear Independence

• The vectors v_1, \ldots, v_k are linearly dependent if at least one vector can be written as a linear combination of the others.

 A set of vectors is linearly independent if none of them can be written as a linear combination of the other vectors in the dataset.

• Basis: It is a minimum set of vectors in the dataset that are linearly independent. Any two bases must have the same number of vectors.

Dimensionality

• **Dimension (rank)**: For any matrix, the *dimension* of its row and column space is the same, and this dimension is also called the *rank* of the matrix. Rank gives an indication about the intrinsic dimensionality of the data.

• **Dimensionality reduction**: It is often possible to approximate dataset (matrix) *D* with a derived data matrix D', which has much lower dimensionality.