

高等数学内容要点

辅导书

作者: Antigore 组织: 跑步群 时间: 2023-4-17

版本: 0.1

目录

第1章	极限与连续	1
1.1	极限的概念	1
	1.1.1 数列极限的概念	1
	1.1.2 函数极限的概念	1
1.2	极限存在的充要条件	2
1.3	极限的性质	2
	1.3.1 数列极限的性质	2
	1.3.2 函数极限的性质	2

第1章 极限与连续

1.1 极限的概念

1.1.1 数列极限的概念

若当 $n\to\infty$ 时, x_n 无限趋向于常数 a,则称 a 为数列 $\{x_n\}$ 的极限,或称数列 $\{x_n\}$ 收敛于 a,记作 $\lim_{n\to\infty}x_n=a\quad\text{或}\quad x_n\to a\quad (n\to\infty)$

1.1.2 函数极限的概念

两类六种

定义 1.1

1. 若当 $x \to x_0$ 时,函数 f(x) 无限趋向于常数 A,则称 A 为函数 f(x) 当 $x \to x_0$ 时的极限,或称 A 为函数 f(x) 在点 x_0 处的极限,记作

$$\lim_{x \to x_0} f(x) = A \quad \text{\'a}, \quad f(x) \to A \quad (x \to x_0).$$

2. 若当 $x \to x_0$ 时且 $x < x_0$ 时,函数 f(x) 无限趋向于常数 A,则称 A 为函数 f(x) 当 $x \to x_0$ 时的左极限,或称 A 为函数 f(x) 在点 x_0 处的左极限,记作

$$\lim_{x\to x_0^-} f(x) = A \quad \text{\'g}, \quad f(x)\to A \quad (x\to x_0^-) \quad \text{\'g}, \quad f(x_0^-) = A \quad \text{\'g}, \quad f(x_0-0) = A.$$

3. 若当 $x \to x_0$ 时且 $x < x_0$ 时,函数 f(x) 无限趋向于常数 A,则称 A 为函数 f(x) 当 $x \to x_0$ 时的右极限,或称 A 为函数 f(x) 在点 x_0 处的右极限,记作

$$\lim_{x \to x_0^+} f(x) = A \quad \text{\'x} \quad f(x) \to A \quad (x \to x_0^+) \quad \text{\'x} \quad f(x_0^+) = A \quad \text{\'x} \quad f(x_0 + 0) = A.$$

4. 若当 $x \to \infty$ 时,函数 f(x) 无限趋向于常数 A,则称 A 为函数 f(x) 当 $x \to \infty$ 时的极限,记作

$$\lim_{x \to \infty} f(x) = A \quad \text{if} \quad f(x) \to A \quad (x \to \infty) \quad \text{if} \quad f(\infty) = A.$$

5. 若当 $x\to\infty$ 且 x<0 时,函数 f(x) 无限趋近于常数 A,则称 A 为函数 f(x) 当 $x\to-\infty$ 时的极限,记作

$$\lim_{x \to -\infty} f(x) = A \quad \text{id} \quad f(x) \to A \quad (x \to -\infty) \quad \text{id} \quad f(-\infty) = A.$$

6. 若当 $x\to\infty$ 且 x>0 时,函数 f(x) 无限趋近于常数 A,则称 A 为函数 f(x) 当 $x\to+\infty$ 时的极限,记作

$$\lim_{x\to +\infty} f(x) = A \quad \text{if} \quad f(x)\to A \quad (x\to +\infty) \quad \text{if} \quad f(+\infty) = A.$$

 \Diamond

推论 1.1

1.

$$x \to x_0$$
 ⇔ x 超近于 x_0 .

 $x \to x_0^-$ ⇔ x 超近于 x_0 , 且 $x < x_0$ ⇔ x 从 x_0 的左側趋近于 x_0 .

 $x \to x_0^+$ ⇔ x 超近于 x_0 , 且 $x > x_0$ ⇔ x 从 x_0 的右側趋近于 x_0 .

 $x \to \infty$ ⇔ $\|x\|$ 无限增大.

 $x \to -\infty$ ⇔ $\|x\|$ 无限增大,且 $x < 0$.

 $x \to +\infty$ ⇔ $\|x\|$ 无限增大,且 $x > 0$.

2.

 $x \to x_0$ ⇔ $x \to x_0^-$ 或 $x \to x_0^+$.

 $x \to \infty$ ⇔ $x \to \infty$ $x \to \infty$ $x \to \infty$ $x \to \infty$

1.2 极限存在的充要条件

定理 1.1

1.

$$\lim_{x\to x_0} f(x) = A \quad (A \, \not\! a \, \mathop{\sharp}\nolimits \, \mathop{\sharp}\nolimits \, \mathop{\longleftrightarrow}\nolimits \, \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) = A.$$

2.

$$\lim_{x\to\infty}f(x)=A\quad (A\, \not\!\! r\, \not\!\! x) \Longleftrightarrow \lim_{x\to -\infty}f(x)=\lim_{x\to +\infty}f(x)=A.$$

1.3 极限的性质

1.3.1 数列极限的性质

性质 (有界性) 收敛数列必有界.

(若 $\lim_{n\to\infty} x_n = a$, 则存在常数 M > 0, 使得对于 $\forall n \in N^+$, 有 $||x_n|| \leq M$.)

性质 (保号性) 设 $\lim_{n\to\infty} x_n = a$, 若 a>0 (或 a<0), 则存在正整数 N, 当 n>N 时,都有 $x_n>0$ ($x_n<0$)

推论 1.2

设
$$\lim_{x\to\infty}x_n=a$$
,若当 $n>N$ 时,有 $x_n\geqslant 0$ (或 $x_n\leqslant 0$),则 $a\geqslant 0$ (或 $a\leqslant 0$).

1.3.2 函数极限的性质

性质(局部有界性)若 $\lim_{x\to x_0} f(x)=A$,则 f(x) 在点 x_0 的某一去心邻域内有界(即存在常数 M>0 及 $\delta>0$,使得当 $x\in \dot{U}(x_0,\delta)$ 时,有 $|f(x)|\leqslant M$).

性质 (局部保号性) 设 $\lim_{x\to x_0} f(x) = A$, 若 A>0 (或 A<0), 则存在 $\delta>0$, 使得当 $x\in \dot{U}(x_0,\delta)$ 时,有 f(x)>0 (或 f(x)<0).

推论 1.3

设
$$\lim_{f(x)}=A$$
,若点 x_0 的某一去心邻域内 $f(x)\geqslant 0$ (或 $f(x)\leqslant 0$),则 $A\geqslant 0$ (或 $A\leqslant 0$).