On Parametric DBMs and their applications to time Petri nets¹

Loriane Leclercq, Didier Lime and Olivier H. Roux

Qest-Formats 2024 September 11

¹This work has been partially funded by ANR projects ProMiS

Parametric Time Petri Net (PTPN) Example

Introduction

- ▶ Parameters for early verification during the design of timed systems
- ► Parametric Time Automata (PTA) and Parametric Time Petri Nets (PTPN)
 - great expressiveness
 - lots of undecidable problems (existence of a parameter valuation to reach a given configuration)
 - ▶ semi-algorithms and decidable fragments/restrictions

Introduction

- ▶ Use of convex polyhedra
 - only two clocks in each constraint
 - ▶ DBM extension to parameters (PDBMs for L/U-TA²)
 - ▶ comparison between two constraints leads to splitting PDBMs

In: Journal of Logic and Algebraic Programming 52-53 (2002), pp. 183-220.

²Thomas Hune et al. "Linear parametric model checking of timed automata".

Introduction

- ▶ Use of convex polyhedra
 - only two clocks in each constraint
 - ▶ DBM extension to parameters (PDBMs for L/U-TA²)
 - ▶ comparison between two constraints leads to splitting PDBMs
- ➤ Tropical PDBMs with minimum of linear expressions to represent state classes

²Thomas Hune et al. "Linear parametric model checking of timed automata". In: Journal of Logic and Algebraic Programming 52-53 (2002), pp. 183-220.

Tropical semi-ring and expressions

The parametric tropical semi-ring:

$$\mathbb{T} = (\mathbb{P} \cup -\mathbb{P} \cup \mathbb{Z} \cup \{+\infty\}, \widetilde{\min}, \widetilde{+})$$

where $-\mathbb{P}$ contains the inverse of each parameter with respect to $\widetilde{+}$.

A parametric tropical expression is a value in \mathbb{T} , i.e. a term generated by grammar:

$$e ::= e_1 + e_2 \mid \widetilde{\min}(e_1, e_2) \mid a \mid p \mid -p$$

where:

- $\triangleright p \in \mathbb{P}$ is a parameter,
- $ightharpoonup a \in \mathbb{Z} \cup \{+\infty\}$ is a constant and
- $ightharpoonup e_1, e_2$ are tropical expressions.

A parametric tropical constraint is a term of the form $e \leq 0$.

Parametric Time Petri Net (PTPN)

Semantics

States of the PTPN $\mathcal{N} = (P, T, \mathbb{P}, F, m_0, I_s)$ is (m, v_p, θ) with

- $ightharpoonup m \subseteq P$ a marking,
- $\triangleright v_p$ a parameter valuation and
- \blacktriangleright θ the firing dates for every transition enabled by m

Parametric Time Petri Net (PTPN)

Semantics

States of the PTPN $\mathcal{N} = (P, T, \mathbb{P}, F, m_0, I_s)$ is (m, v_p, θ) with

- $ightharpoonup m \subseteq P$ a marking,
- $\triangleright v_p$ a parameter valuation and
- \triangleright θ the firing dates for every transition enabled by m

The transition relation \rightarrow :

- ▶ either $(m, v_p, \theta) \xrightarrow{d} (m, v_p, \theta')$ for the time delay transition
- ightharpoonup or $(m, v_p, \theta) \xrightarrow{t_f} (m', v_p, \theta')$ for the firing of a transition t_f

Parametric Time Petri Net (PTPN)

Semantics

States of the PTPN $\mathcal{N} = (P, T, \mathbb{P}, F, m_0, I_s)$ is (m, v_p, θ) with

- $ightharpoonup m \subseteq P$ a marking,
- $\triangleright v_p$ a parameter valuation and
- \triangleright θ the firing dates for every transition enabled by m

The transition relation \rightarrow :

- either $(m, v_p, \theta) \xrightarrow{d} (m, v_p, \theta')$ for the time delay transition
- ightharpoonup or $(m, v_p, \theta) \xrightarrow{t_f} (m', v_p, \theta')$ for the firing of a transition t_f

Firing dates are chosen when the transition become enable instead of at the firing time (moment of firing) 3 .

 $^{^3}$ Loriane Leclercq, Didier Lime, and Olivier H. Roux. "A state class based controller synthesis approach for Time Petri Nets". In: Petri Nets 2023. LNCS. Springer.

The parametric case

Infinite number of states

The non-parametric case

As an initial state we can take (1,3), (1.1,3), (1.01,3), (1.1,2.9), $(\frac{4}{3},3)$,...

Infinite number of states

The non-parametric case

As an initial state we can take (1,3), (1.1,3), (1.01,3), (1.1,2.9), $(\frac{4}{3},3)$,...

The state space in infinite!

Infinite number of states

The non-parametric case

As an initial state we can take (1,3), (1.1,3), (1.01,3), (1.1,2.9), $(\frac{4}{3},3)$,...

The state space in infinite!

We need finite representations: state classes and the state class graph

State Class Graph (SCG)

The non-parametric case

Parametric state classes

A finite representation of the state space

The parametric state class $K_{t_1...t_n}$ is the set of all states obtained by firing $t_1...t_n$ in order,

Notation : $K_{\sigma} = (m, D)$

The firing domain D:

- ▶ is the union of all possible firing dates and parameters,
- ▶ points in D are (v_p, θ) with v_p a valuation of \mathbb{P} and θ the firing dates of enabled transitions.

Parametric State Class Graph (PSCG)

The Parametric State Class Graph (PSCG) is the directed graph whose states are the state classes whose transitions are such that:

$$K_{\sigma} \xrightarrow{t} K_{\sigma \cdot t}$$

Convex polyhedra to DBM

Constraints of a state classe (m, D):

$$\forall t_i, t_j \in \operatorname{en}(m) : \begin{cases} -e_{0i} \le \theta_i \le e_{i0} \\ -e_{ji} \le \theta_i - \theta_j \le e_{ij} \end{cases}$$

Convex polyhedra to DBM

Constraints of a state classe (m, D):

$$\forall t_i, t_j \in \operatorname{en}(m) : \begin{cases} -e_{0i} \le \theta_i \le e_{i0} \\ -e_{ji} \le \theta_i - \theta_j \le e_{ij} \end{cases}$$

Difference Bound Matrix (DBM):

$$\theta_i - \theta_j \prec_{ij} e_{ij} \iff M_c[i,j] = (e_{ij}, \prec_{ij})$$

with $e_{ij} \in \mathbb{N}$ and $\prec_{ij} \in \{\leq, <\}$

Convex polyhedra to tPDBM

Constraints of a parametric state classe (m, D):

$$\forall t_i, t_j \in \operatorname{en}(m) : \begin{cases} -e_{0i} \le \theta_i \le e_{i0} \\ -e_{ji} \le \theta_i - \theta_j \le e_{ij} \end{cases}$$

Tropical Parametric Difference Bound Matrix (PDBM):

$$\theta_i - \theta_j \prec_{ij} e_{ij} \iff M_c[i,j] = (e_{ij}, \prec_{ij})$$

with $e_{ij} \in \mathbb{T}$ and $\prec_{ij} \in \{\leq, <\}$

Convex polyhedra to tPDBM

Constraints of a parametric state classe (m, D):

$$\forall t_i, t_j \in \operatorname{en}(m) : \begin{cases} -e_{0i} \le \theta_i \le e_{i0} \\ -e_{ji} \le \theta_i - \theta_j \le e_{ij} \end{cases}$$

Tropical Parametric Difference Bound Matrix (PDBM):

$$\theta_i - \theta_j \prec_{ij} e_{ij} \iff M_c[i,j] = (e_{ij}, \prec_{ij})$$
 with $e_{ij} \in \mathbb{T}$ and $\prec_{ij} \in \{\leq, <\}$

Parametric state classes can be represented by tPDBM using tropical constraints as bounds.

Efficient State Class Graph (SCG)

Efficient way to compute the successor domain of a class using DBM⁴⁵

$$\mathsf{Succ}_{\mathsf{p}}((m, M_c), t_f) = \begin{pmatrix} M_c'[o, i] = \min_{k \in \mathsf{en}(m)}(0, M_c[k, i]) \\ M_c'[i, o] = M_c[i, f] \\ M_c'[i, j] = \min(M_c[i, j], M_c'[i, o] + M_c'[o, j]) \\ (if \ i, j \not \in \mathsf{newen}(m, t_f)) \\ M_c'[i, j] = M_c'[i, o] + M_c'[o, j] \qquad (otherwise) \\ \end{pmatrix}$$

⁴Boucheneb and Mullins, "Analyse des réseaux temporels : Calcul des classes en $O(n^2)$ et des temps de chemin en $O(m \times n)$ ".

 $^{^5 \}mbox{Bourdil}$ et al., "Symmetry reduction for time Petri net state classes". \blacksquare

Efficient Parametric State Class Graph (PSCG)

Efficient way to compute the successor domain of a class using DBM⁴⁵

$$\mathsf{Succ_p}((m,M_c),t_f) = \begin{pmatrix} M_c'[o,i] = \widecheck{\min}_{k \in \mathsf{en}(m)}(0,M_c[k,i]) \\ M_c'[i,o] = M_c[i,f] \\ M_c'[i,j] = \widecheck{\min}(M_c[i,j],M_c'[i,o] \ \widecheck{+} \ M_c'[o,j]) \\ (if \ i,j \not\in \mathsf{newen}(m,t_f)) \\ M_c'[i,j] = M_c'[i,o] \ \widecheck{+} \ M_c'[o,j] \qquad (otherwise) \\ \end{pmatrix}$$

⁴Boucheneb and Mullins, "Analyse des réseaux temporels : Calcul des classes en $O(n^2)$ et des temps de chemin en $O(m \times n)$ ".

⁵Bourdil et al., "Symmetry reduction for time Petri net state classes". > > >

Example for SCG

Example for PSCG

The importance of parameter selection for reachability

We suppose that y = 6 and try different values for x:

Computing successor for reachability

$$D = \begin{pmatrix} \{p_1\} \\ \{x \le t_1 \le y \\ 3 \le t_2 \le 4 \\ \{0 \le x \le y\} \end{pmatrix}$$

$$M_c = \begin{pmatrix} 0 & -x & -3 \\ y & 0 & y-3 \\ 4 & 4-x & 0 \end{pmatrix}$$

$$P_c = \{0 \le x \le y\}$$

Computing successor for reachability

$$D = \begin{pmatrix} \{p_1\} \\ x \le t_1 \le y \\ 3 \le t_2 \le 4 \\ \{0 \le x \le y\} \end{pmatrix}$$

$$M_c = \begin{pmatrix} 0 & -x & -3 \\ y & 0 & y-3 \\ 4 & 4-x & 0 \end{pmatrix}$$

$$P_c = \{0 \le x \le y\}$$

$$\mathsf{fir_p}(D, t_1) = \{0 \le x \le y\} \cap \{4 - x \ge 0\}$$

$$P^{t_1} = \{0 < x < y, x < 4\}$$

Computing successor for reachability

$$D = \begin{pmatrix} \{p_1\} \\ x \le t_1 \le y \\ 3 \le t_2 \le 4 \\ \{0 \le x \le y\} \end{pmatrix}$$

$$M_c = \left(\begin{array}{ccc} 0 & -\mathbf{x} & -3\\ \mathbf{y} & 0 & \mathbf{y-3}\\ 4 & 4-\mathbf{x} & 0 \end{array}\right)$$

$$P_c = \{0 \le x \le y\}$$

$$fir_{\mathbf{p}}(D, t_1) = \{0 \le x \le y\} \cap \{4 - x \ge 0\}
P_c^{t_1} = \{0 \le x \le y, x \le 4\}$$

$$\operatorname{fir}_{\mathsf{p}}(D, t_2) = \{0 \le x \le y\} \cap \{y - 3 \ge 0\}$$
$$P_{*2}^{t_2} = \{0 \le x \le y, y \ge 3\}$$

Parameter constraints for reachability

Inclusion for reachability

Two constrained tPDBMs $D^1=(P_c^1,M_c^1)$ and $D^2=(P_c^2,M_c^2)$

$$\llbracket D^1 \rrbracket \subseteq \llbracket D^2 \rrbracket \iff \begin{pmatrix} \llbracket P_c^1 \rrbracket \subseteq \llbracket P_c^2 \rrbracket \text{ and } \\ \forall v_p \in \llbracket P_c^1 \rrbracket, \forall i, j, v_p(M_c^1[i,j]) \leq v_p(M_c^2[i,j]) \end{pmatrix}$$

Implementation

The tool Roméo:

https://romeo.ls2n.fr

Tested on several examples from the litterature:

- ► Fischer's mutual exclusion protocol
- ► level crossing
- ▶ producer-consumer

Case study: Fischer's mutual-exclusion protocol

Nb. of	Nb. of	General Polyhedron		Tropical PDBM		(split) PDBM	
par.	proc.	Time	Mem.	Time	Mem.	Time	Mem.
		(s)	(Mb)	(s)	(Mb)	(s)	(Mb)
1	4	1.6	16	0.4	9	1.2	50
1	5	8.2	71	1.8	47.7	5.2	260
1	6	49	367	11	283	26	1460
1	7	296	2155	67	1745	133	4293
1	8	DNF	DNF	404	9616	DNF	DNF
2	4	1.6	16	0.6	12	1	62
2	5	8	71	3.4	61	4.8	322
2	6	48	360	23	350	26	1740
2	7	305	2086	148	2104	143	9700
2	8	DNF	DNF	DNF	DNF	DNF	DNF

Table: Results for Fischer's protocol with one parameter (fixing B=1) and two parameters

Future work

- ► take advantage of tPDBM specific form to compute integer hulls more efficiently
- efficient comparison of tropical expressions
- \triangleright extend operations on tPDBMs for more complex algorithms: controller synthesis with parameter for reachability, safety and ω -properties
- applications to real-life problems

Thank you!

References

- Boucheneb, Hanifa and John Mullins. "Analyse des réseaux temporels: Calcul des classes en $O(n^2)$ et des temps de chemin en $O(m \times n)$ ". In: TSI. Technique et science informatiques 22.4 (2003), pp. 435–459.
- Bourdil, Pierre-Alain et al. "Symmetry reduction for time Petri net state classes". In: *Science of Computer Programming* 132 (2016), pp. 209–225.
- Hune, Thomas et al. "Linear parametric model checking of timed automata". In: *Journal of Logic and Algebraic Programming* 52-53 (2002), pp. 183–220.
- Leclercq, Loriane, Didier Lime, and Olivier H. Roux. "A state class based controller synthesis approach for Time Petri Nets". In: Petri Nets 2023. LNCS. Springer.

Appendix

Parametric Time Petri Net (PTPN)

A parametric time Petri net (TPN) is a tuple $\mathcal{N} = (P, T, \mathbb{P}, F, m_0, I_s)$:

- ightharpoonup P is a finite non-empty set of *places*,
- ightharpoonup T is a finite set of transitions such that $T \cap P = \emptyset$,
- $ightharpoonup \mathbb{P}$ is a finite set of parameters such that $\forall q \in \mathbb{P}, q \in \mathbb{R}$
- ▶ $F: (P \times T) \cup (T \times P)$ is the flow function,
- $ightharpoonup m_0 \subset P$ the initial marking
- ▶ $I_s: T \to \mathcal{I}(\mathbb{T})$ is the static firing interval function,

Fischer's mutual-exclusion protocol

Figure: Fischer's mutual-exclusion protocal, PTPN model of the process i

Semantics

Timed Transition System $(S, s_0, \Sigma, \rightarrow)$ with:

- \triangleright S the set of states (m, θ) ,
- ▶ initial state $s_0 = (\{p_0\}, \theta_0) \in S$ with $\theta_0(t_{\mathsf{init}}) = 0$
- ▶ a labelling alphabet Σ containing letters $t_f \in T$ and $d \in \mathbb{R}_{\geq 0}$,
- ▶ the transition relation $\rightarrow \subseteq S \times \Sigma \times S$: $s \xrightarrow{a} s' \Leftrightarrow$
 - either $(m, \theta) \xrightarrow{t_f} (m', \theta')$ for $t_f \in T$ when:
 - 1. $t_f \in \operatorname{en}(m)$ and $\theta_f = 0$
 - 2. $m' = (m \setminus \mathsf{Pre}(t_f)) \cup \mathsf{Post}(t_f)$

3.
$$\forall t_k \in T$$
, $\begin{pmatrix} \theta_k' \in I_s(t_k) & \text{if } t_k \in \text{newen}(m, t_f) \\ \wedge \theta_k' = \theta_k & \text{if } t_k \in \text{pers}(m, t_f) \\ \wedge \theta_k' = \bot & \text{otherwise} \end{pmatrix}$

- ightharpoonup or $(m,\theta) \xrightarrow{d} (m,\theta')$ when:
 - $b d \in \mathbb{R}_{>0} \setminus \{0\},$
 - $\forall t_k \not\in en(m), \theta_k = \bot, \text{ and }$
 - $ightharpoonup \forall t_k \in \operatorname{en}(m), \theta_k d \geq 0 \text{ and } \theta_k' = \theta_k d.$

State Class Graph

algorithm from Berthomieu et al.⁶

- ▶ Initial system $K_{\epsilon} = \{\theta_k \in I_s(k) \mid t_k \in \mathsf{en}(m_0)\}$
- ▶ if σ firable then $\sigma.t_k$ firable if and only if :
 - 1. $t \in en(m)$
 - 2. $K_{\sigma} \wedge \{\theta_k \leq \theta_i \mid i \neq k \wedge t_i \in en(m)\}$ consistent
- ▶ If $\sigma.t_k$ is firable, then $K_{\sigma.t_k}$ is computed from K_{σ} :
 - ▶ Add $\{\theta_k \leq \theta_i \mid i \neq k \land t_i \in en(m)\}$ to K_{σ}
 - ▶ $\forall t_i \in \mathsf{en}(m')$ we add θ'_i such that: $\theta'_i = \theta_i - \theta_k$ if $k \neq i \land t_i \not\in \mathsf{newen}(m, t_k)$ $\theta'_i \in I_s(i)$ otherwise
 - ightharpoonup Eliminate θ_i variables $\forall i$