6. Signály a systémy. LTI systémy. Přenosová funkce, impulsní odezva. Konvoluce u číslicových signálů.

Signály a systémy

• Systém dokáže generovat, zpracovávat, modifikovat a přijímat signály. Signál je projevem činnosti systému.

Klasifikace systémů:

Podle charakteru signálu

Spojité – pracují se spoj. vstup.a výstupními signály
 Číslicové – pracují s diskrétními signály
 Hybridní – fungují jako převodníky mezi analogovými a číslicovými signály

Podle kauzality:

princip kauzality: odezva nemůže nastat dříve než buzení **Kauzální** – odezva závisí pouze na současných a minulých hodnotách

Nekauzální – závislost i na budoucích hodnotách nerealizovatelné v klasických (on-line) systémech, realizovatelné v off-line režimu – celý signál je v paměti příklad nekauzálního systému y(t) = (x(t) + x(t-1) + x(t+1))/3

Podle linearity

Lineární – platí podmínka $F(ax_1 + bx_2) = aF(x_1) + bF(x_2)$ odezva na lineární kombinaci budících signálů je rovna lineární kombinaci odezev na jednotlivé budící signály z linearity vyplývá princip superpozice (odezvu systému lze složit z odezev na dílčí buzení)

Příklady

lineárních systémů y(t) = k.x(t) y = dx(t)/dt nelineárních systémů $y(t) = x^2(t)$ y(t) = |x(t)|

Podle stacionarity (časové nezávislosti)

Pro časově nezávislý systém platí podmínka:

$$F(x(t-t_0)) = y(t-t_0)$$

Je-li vstupní signál zpožděn o čas Δt= t - t₀, musí i výstup být zpožděn o Δt Chování systému se nemění v čase.

Příklady

časově nezávislých systémů
$$y(t) = k.x(t)$$

časově závislých systémů $y(t) = t.x(t)$

LTI systémy (Linear time-invariant)

- = lineární časově nezávislé systémy
 - Jejich chování (u spojitých systémů) popisují diferenciální rovnice s konst. Koeficienty
 - Dif. rovnice popisuje vztah mezi vstupem a výstupem:

Základní vztah

$$A_0 y[n] + A_1 y[n-1] \cdot A_N y[n-N] = B_0 x[n] + B_1 x[n-1] \cdot B_M x[n-M]$$

Ize přepsat do podoby

$$y[n] = B'_0x[n] + B'_1x[n-1] \cdot B'_Mx[n-M] - A'_1y[n-1] \cdot - A'_Ny[n-N]$$

- Je vidět, že hodnota výstupního signálu závisí na:
 - o předchozích M hodnotách vstupu
 - o předchozích N hodnotách výstupu

nerekurzivní systém-FIR

- = (Finite Impulse Response) systém s konečnou odezvou
 - nerekurzivní systém reaguje na jednotkový impulz konečnou odezvou (o délce M), konečnou odezvou reaguje na jakýkoliv konečný signál

$$y[n] = x[n] - 2x[n-1] + x[n-2]$$

Určeme odezvu na jednotkový impulz na vstupu

$$y[0] = x[0] - 2x[-1] + x[-2] = 1 + 0 + 0 = 1$$

 $y[1] = x[1] - 2x[0] + x[-1] = 0 - 2*1 + 0 = -2$
 $y[2] = x[2] - 2x[1] + x[0] = 0 - 0 + 1 = 1$
 $y[3] = x[3] - 2x[2] + x[1] = 0 + 0 + 0 = 0$, $y[4] = 0$, atd

Rekurzivní systém – IIR

- = (Infinite Impulse Response) systém s nekonečnou imp. odezvou
 - rekurzivní systém reaguje na jednotkový impulz nekonečnou odezvou, nekonečnou odezvou reaguje také na jakýkoliv konečný signál

Chování libovolného LTI systému lze jednoznačně popsat tím, jak reaguje na jednotkový impulz => Odezva na jednotkový impulz jednoznačně charakterizuje libovolný LTI systém.
 Označuje se h[n]

Přenosová funkce, impulsní odezva

Z-transformace

- Je efektivním nástrojem, který usnadňuje analýzu chování LTI systémů a jejich návrh
- Její myšlenka spočívá v tom, že číslicové signály a popisy číslicových systémů převádí (transformuje) do prostoru komplexních čísel, kde lze snadněji a rychleji provést potřebné operace.
- Její největší přínos je v tom, že výpočetně náročnou operaci konvoluce převede na snazší operaci součinu.
- Existuje přímá vazba mezi Fourierovou transformací a Z-transformací
- Z-transformace obecného (nekonečného) číslicového signálu x[n] je definována vztahem:

$$X[z] = \sum_{k=-\infty}^{\infty} x[k]z^{-k}$$

Příklad: signál 2 5 3 4 je transformován na $X[z] = 2z^0 + 5z^{-1} + 3z^{-2} + 4z^{-3}$

Shrnutí: Z-tranformace převádí signál na polynom, v němž hrajou klíčovou roli mocniny **komplexní** proměnné z⁻¹

- Signál popsaný v čase se nazývá originál
- Jeho transformovaná verze se označuje jako obraz

Signály v časovém prostoru se značí x[n], y[n], ... v obrazovém prostoru pak X[z], Y[z],

Aplikací Z-transformace vzniká Přenosová funkce
 H[z] je tzv. přenosová funkce popisující chování systému v obrazové oblasti

$$H(z) = \frac{B_0 + B_1 z^{-1} \cdots B_M z^{-M}}{1 + A_1 z^{-1} \cdots A_N z^{-N}}$$

Pro libovolný LTI systém platí:

v časové oblasti y[n] = h[n] * x[n]v obrazové oblasti Y[z] = H[z]X[z]

- Přenosová funkce je obrazem impulzní odezvy
- konvoluce v časové oblasti se transformuje na součin v obrazové oblasti

Činnost LTI systému lze tedy popsat několika způsoby:

Pomocí diferenční rovnice

$$A_0 y[n] + A_1 y[n-1] \cdot \cdot \cdot A_N y[n-N] = B_0 x[n] + B_1 x[n-1] \cdot \cdot \cdot B_M x[n-M]$$

• Pomocí přenosové funkce (Postihuje "přenos dat" mezi výstupem a vstupem prostřednictvím Z-transformace)

$$H(z) = \frac{B_0 + B_1 z^{-1} \cdots B_M z^{-M}}{A_0 + A_1 z^{-1} \cdots A_N z^{-N}}$$

• Pomocí impulsní odezvy (=odezva ustáleného systému na jednotkový impuls)

$$h[n] = F(\delta[n])$$

• Pomocí základních stavebních prvků

Příklad popisu systému:

Průměrovací filtr (systém který počítá výstupní hodnotu z průměru N aktuálních vzorků – zde N = 3)

A. Diferenční rovnice $y[n] = \frac{1}{3}x[n] + \frac{1}{3}x[n-1] + \frac{1}{3}x[n-2]$

B. Přenosová funkce $H(z) = \frac{\frac{1}{3} + \frac{1}{3}z^{-1} + \frac{1}{3}z^{-2}}{1} = \frac{1}{3} + \frac{1}{3}z^{-1} + \frac{1}{3}z^{-2}$

C. Impulzní odezva $h[0] = \frac{1}{3}, h[1] = \frac{1}{3}, h[2] = \frac{1}{3}$

D. Grafické schéma

Konvoluce u číslicových signálů

= Matematická funkce postihující interakci signálu a systému popsaného impulzní odezvou.

při známé impulzní odezvě můžeme pomocí konvoluce stanovit odezvu na libovolnou vstupní posloupnost x(n) Na vstup lineárního systému s impulsní charakteristikou h[n] je přiváděn vstupní signál x[n], výsledkem je výstupní signál y[n], který vznikl konvolucí.

SVztah pro konvoluci:

potom odezva systému na signál x[n] musí být

$$\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \rightarrow \sum_{h[n]}^{\infty} x[k] h[n-k]$$

• Příklad:

Konvoluce u číslicových signálů

např.
$$x[0] = 2$$
, $x[1] = 2$, $x[2] = 3$, $x[3] = 2$, $x[4] = 1$
 $h[0] = 3$, $h[1] = 2$, $h[2] = -3$, $h[3] = 1$

					n				
	hodnota v časech	0	1	2	3	4	5	6	7
	odezva na x(0)	x(0).h(0)	x(0).h(1)	x(0).h(2)	x(0).h(3)				
	odezva na x(1)		x(1).h(0)	x(1).h(1)	x(1).h(2)	x(1).h(3)			
k	odezva na x(2)			x(2).h(0)	x(2).h(1)	x(2).h(2)	x(2).h(3)		
	odezva na x(3)				x(3).h(0)	x(3).h(1)	x(3).h(2)	x(3).h(3)	
	odezva na x(4)					x(4).h(0)	x(4).h(1)	x(4).h(2)	x(4).h(3)
	součet odezev				Σ x(k).h(n-k)				

obecný vztah
$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

jde o součet dílčích součinů signálu **x** a funkce **h** otočené kolem bodu n

Pro číslicové signály lze poměrně snadno spočítat

příklad:
$$x[n] = 1 2 3 2 1$$
, délka $Nx = 5$, $h[n] = 4 3 2 1$, $Nh = 4$

1) Metodou posuvného proužku

2) Pomocí polynomiálního násobení (žádný signál se neotáčí!) $(1s^4 + 2s^3 + 3s^2 + 2s + 1) \cdot (4s^3 + 3s^2 + 2s + 1) = 4s^7 + 11s^6 + 20s^5 \dots$

Konvoluce u periodických signál

Je-li signál periodický, výsledkem konvoluce je opět periodický signál se **stejnou periodou**.

Příklad:

1. Určíme konvoluci pro jednu periodu:

 Konvoluci kompletního periodického signálu určíme "přeložením" výše uvedené sekvence do bloků o délce Tx, tj. 3

Výsledný periodický signál je 44, 38, 44, 44, 38, 44,

Vlastnosti konvoluce

Komutativnost

$$x * h = h * x$$

Asociativnost

$$(x * h_1) * h_2 = x * (h_1 * h_2)$$

Sériové a paralelní řazení systémů

