Diszkrét Matematika 1. Írásbeli vizsga, 2016. január 11. (90 perc)

NÉV: NEPTUN kód: (Leendő) szakirány:
1. Alapvető fontosságú fogalmak
A következő hat kérdésre 1-1 pont kapható. Ebből legalább 4 pontot kell szerezni.
1. Írjuk fel a negyedik egységgyököket trigonometrikus és algebrai alakban.
2. Melyek antiszimmetrikusak a következő relációk közül? Jelülje aláhúzással: "osztója" a természetes számok halmazán; "osztója" a 10-nél kisebb természetes számok halmazán; "osztója" a negatív egészek halmazán; "osztója" az egészek halmazán.
3. Írja fel kvantorokkal, eleme jellel és az "osztója" jel használatával: minden természetes számnak van osztója.
4. Definiálja a kommutativitást ("Egy kommutatív, ha minden ").
5. Hány olyan sorozat van, melynek hossza 5, és minden eleme A, B vagy C?
6. Definiálja a felbonhatatlanság fogalmát az $eg\acute{e}szek$ körében. Felbonthatatlan-e $-5?$

2. Definíciók, tételkimondások

Α	következő	nvolc	kérdésre	1_1	nont	kanható	
$\boldsymbol{\Gamma}$	KOVETKEZO	HYOIC	Kerdesre	T-T	DOIL	карпаю	•

1.	Mit nevezünk primitív n -edik egységgyöknek?
2.	Mennyi lesz egy primitív századik egységgyök ötvenedik hatványa?
3.	Soroljon fel 4-et az unió tulajdonságai közül.
4.	Definiálja binér reláció tranzitivitását.
5.	Hányféleképpen lehet 20 darab százforintost szétosztani 40 ember között (egy ember akár többet is kaphat, és mindegy, ki melyik százast kapja).
6.	Ismertesse Eratoszthenész szitáját.
7.	Definiálja a prím tulajdonságot.
8.	Adja meg azon 1000-nél kisebb természetes számokat, melyeknek pontosan 5 pozitív egész osztójuk van.

3. Bizonyítások

A következő három bizonyításra 3-3 pont kapható. Ebből legalább 3 pontot el kell érni (tételkimondásért nem jár pont). Az összpontszám alapján a ponthatárok: 10-től 2-es, 14-től 3-as, 18-tól szóbelizhet a 4-es, illetve 5-ös osztályzatért.

- 1. Ismertesse és igazolja a szorzásra vonatkozó Moivre-azonosságot.
- 2. Mondjon ki a halmazunió tulajdonságai közül ötöt, és igazolja őket.
- 3. Mondja ki és igazolja az ismétléses kombinációk számáról szóló állítást.

4. Szóbeli kiváltását lehetővé tevő opcionális tétel

Ez a feladat maximálisan 5 pontot ér. Ha ebből legalább 3 pont megvan, és az összpontszám eléri a 20, illetve 24 pontot, akkor 4-es, illetve 5-ös érdemjegyet ajánlunk.

Az alábbi feladatok helyes megoldása által bebizonyíthatjuk, hogy végtelen sok 4k+3, illetve 4k+1 alakú prímszám van.

- 1. Milyen maradékot adhat egy prímszám 4-gyel osztva? Milyen maradékot ad 4-gyel osztva egy olyan szorzat, melynek tényezői páratlan prímszámok négyzetei?
- 2. Igazolja, hogy egy 4k+3 alakú számnak $(k \in \mathbb{N})$ mindig van 4k+3 alakú prímszám osztója.
- 3. Legyenek p_1, p_2, \ldots, p_n különböző 4k + 3 alakú prímek. Írjunk fel egy olyan 4k + 3 alakú számot, mely p_1, p_2, \ldots, p_n közül egyikkel sem osztható. (Az előző pont szerint ennek van egy új 4k + 3 alakú prímosztója, így végtelen sok 4k + 3 alakú számnak kell léteznie.)
- 4. Bizonyítás nélkül fogadjuk el a tételt, hogy egy n^2+1 alakú számnak minden páratlan prímosztója 4k+1 alakú, és ezt felhasználva, a fentiek mintájára igazoljuk végtelen sok 4k+1 alakú prímszám létezését.