

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2005年7月21日 (21.07.2005)

PCT

(10) 国際公開番号
WO 2005/066069 A1

(51) 国際特許分類⁷: C01B 13/32, B01J 19/00, C01G 19/00

(21) 国際出願番号: PCT/JP2004/019354

(22) 国際出願日: 2004年12月24日 (24.12.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願 2003-431586
2003年12月25日 (25.12.2003) JP

(71) 出願人(米国を除く全ての指定国について): 三井
金属鉱業株式会社 (MITSUI MINING & SMELTING
CO., LTD.) [JP/JP]; 〒1418584 東京都品川区大崎1丁
目11番1号 Tokyo (JP).

(72) 発明者: および

(75) 発明者/出願人(米国についてのみ): 高橋 誠一郎
(TAKAHASHI, Seiichiro) [JP/JP]; 〒3620021 埼玉県上

尾市原市 1333-2 三井金属鉱業株式会社 総合
研究所内 Saitama (JP). 渡辺 弘 (WATANABE, Hiroshi)
[JP/JP]; 〒3620021 埼玉県上尾市原市 1333-2 三
井金属鉱業株式会社 総合研究所内 Saitama (JP).

(74) 代理人: 栗原 浩之 (KURIHARA, Hiroyuki); 〒1500012
東京都渋谷区広尾1丁目3番15号 岩崎ビル6階
栗原国際特許事務所 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が
可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護
が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA,

/ 続葉有 /

(54) Title: PROCESS FOR PRODUCING MICROPARTICLE AND APPARATUS THEREFOR

(54) 発明の名称: 微粒子の製造方法及び製造装置

(57) Abstract: A process for producing microparticles that is capable of producing microparticles, such as those of oxides, by means of simple apparatus at low cost and that is suitable to production of ITO powder; and an apparatus therefor. There is provided a process for producing microparticles, comprising feeding a raw material in the form of a liquid stream, liquid droplets or powder into a heat source; trapping any product in the form of microparticles by means of a foggy liquid fluid; and recovering the microparticles in the form of slurry through gas-liquid separation.

/ 続葉有 /

WO 2005/066069 A1

SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— 請求の範囲の補正の期限前の公開であり、補正書受領の際には再公開される。

2 文字コード及び他の略語については、定期発行される各 PCT ガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

添付公開書類:
— 国際調査報告書

(57) 要約: 酸化物微粒子等の微粒子をより簡便な装置で且つ低成本で製造でき、ITO 粉末の製造に好適な微粒子の製造方法及び製造装置を提供する。微粒子を製造する方法において、原料を液流、液滴又は粉末として、熱源中に供給し、生成物を霧状の液状流体により微粒子として捕獲し、気液分離により前記微粒子をスラリーとして回収する。

明 細 書

微粒子の製造方法及び製造装置

技術分野

[0001] 本発明は、酸化インジウム-酸化錫粉末などの微粒子の製造方法及び製造装置に関する。

背景技術

[0002] 一般的に、薄膜を成膜する方法の1つとしてスパッタリング法が知られている。スパッタリング法とは、スパッタリングターゲットをスパッタリングすることにより薄膜を得る方法であり、大面積化が容易であり、高性能の膜が効率よく成膜できるため、工業的に利用されている。また、近年、スパッタリングの方式として、反応性ガスの中でスパッタリングを行う反応性スパッタリング法や、ターゲットの裏面に磁石を設置して薄膜形成の高速化を図るマグネットロンスパッタリング法なども知られている。

[0003] このようなスパッタリング法で用いられる薄膜のうち、特に、酸化インジウム-酸化錫($In_2O_3-SnO_2$)の複合酸化物、以下、「ITO」という)膜は、可視光透過性が高く、かつ導電性が高いので透明導電膜として液晶表示装置やガラスの結露防止用発熱膜、赤外線反射膜等に幅広く用いられている。

[0004] このため、より効率よく低コストで成膜するために、現在においてもスパッタ条件やスパッタ装置などの改良が日々行われており、装置を如何に効率的に稼働させるかが重要となる。また、このようなITOスパッタリングにおいては、新しいスパッタリングターゲットをセットしてから初期アーケ(異常放電)がなくなって製品を製造できるまでの時間が短いことと、一度セットしてからどれくらいの期間使用できるか(積算スパッタリング時間:ターゲットライフ)が問題となる。

[0005] このようなITOスパッタリングターゲットは、酸化インジウム粉末及び酸化錫粉末を所定の割合で混合して乾式又は湿式で成形し、焼結したものであり(特許文献1)、高密度のITO焼結体を得るために高分散性の酸化インジウム粉末が提案されている(特許文献2, 3, 4等参照)。

[0006] また、共沈法により湿式合成されたITO粉末をITO焼結体とすることも知られており

(特許文献5等参照)、同様に高密度な焼結体を得るためのITO粉末の湿式合成方法が多数提案されている(特許文献6～9等参照)。

[0007] さらに、プラズマアーク中でインジウム—錫合金と酸素とを反応させて、マッハ1以上のガス流で所定の冷却速度以上で冷却することによりITO粉末を製造する方法が提案されている(特許文献10参照)。しかしながら、マッハ1以上の高速ガス流を用いるなど、設備が大がかりになり、安価に効率よくITO粉末を製造することができないという問題がある。

[0008] 一方、ITO粉末の製造方法ではないが、金属酸化物微粒子の製造方法としては、以下の方法が提案されている。例えば、金属粉末をバーナ火炎中に供給し、酸化物超微粒子を製造し、固気相分離する各種方法が提案されている(特許文献11～16等参照)。また、溶融金属に気体を噴射して粉体化し、気体で搬送される粉体を液体中に導入して化学反応および濃縮等の反応を起こさせて微粉体を製造する方法が提案されている(特許文献17参照)。さらに、金属バルク又は金属酸化物棒などの原料体にプラズマアークをあてて原料体を溶融蒸発させ、この蒸発ガスに反応・冷却ガスを吹き付けて超微粒子を形成する方法が提案されている(特許文献18～20参照)。

[0009] しかしながら、このような乾式合成は、ITO粉末に適さないためか、現在、ITO粉末の乾式合成は工業的に行われていない。

特許文献1:特開昭62-21751号公報

特許文献2:特開平5-193939号公報

特許文献3:特開平6-191846号公報

特許文献4:特開2001-261336号公報

特許文献5:特開昭62-21751号公報

特許文献6:特開平9-221322号公報

特許文献7:特開2000-281337号公報

特許文献8:特開2001-172018号公報

特許文献9:特開2002-68744号公報

特許文献10:特開平11-11946号公報

特許文献11:特公平1-55201号公報

特許文献12:特公平5-77601号公報

特許文献13:特許第3253338号公報

特許文献14:特許第3253339号公報

特許文献15:特許第3229353号公報

特許文献16:特許第3225073号公報

特許文献17:特開昭60-71037号公報

特許文献18:特開2002-253953号公報

特許文献19:特開2002-253954号公報

特許文献20:特開2002-263474号公報

発明の開示

発明が解決しようとする課題

[0010] 本発明はこのような事情に鑑み、酸化物微粒子等の微粒子をより簡便な装置で且つ低成本で製造でき、ITO粉末の製造に好適な微粒子の製造方法及び製造装置を提供することを課題とする。

課題を解決するための手段

[0011] 前記課題を解決する本発明の第1の態様は、微粒子を製造する方法において、原料を液流、液滴又は粉末として、熱源中に供給し、生成物を霧状の液状流体により微粒子として捕獲し、気液分離により前記微粒子をスラリーとして回収することを特徴とする微粒子の製造方法にある。

[0012] かかる第1の態様では、原料が熱源中に供給されて得られた生成物は、霧状の液状流体により微粒子として捕獲されて気液分離により効率的に回収される。

[0013] 本発明の第2の態様は、第1の態様において、原料の溶湯から液流又は液滴を形成して前記熱源中に供給することを特徴とする微粒子の製造方法にある。

[0014] かかる第2の態様では、原料としての金属若しくは合金などの溶湯からの液流又は液滴は熱源中で場合によっては酸化物となり、霧状の液状流体により微粒子として捕獲される。

[0015] 本発明の第3の態様は、第1の態様において、原料のアトマイズ粉末を形成して前

記熱源中に供給することを特徴とする微粒子の製造方法にある。

- [0016] かかる第3の態様では、原料の金属若しくは合金などはアトマイズ粉末として熱源中に供給され、微粒子とされる。
- [0017] 本発明の第4の態様は、第1～3の何れかの態様において、前記気液分離をサイクロンを用いて行うことを特徴とする微粒子の製造方法にある。
- [0018] かかる第4の態様では、サイクロンにより気液分離されて微粒子が液状流体のスラリーとして回収される。
- [0019] 本発明の第5の態様は、第1～4の何れかの態様において、前記熱源が、アセチレン炎又はDCプラズマ炎であることを特徴とする微粒子の製造方法にある。
- [0020] かかる第5の態様では、原料は、アセチレン炎又はDCプラズマ炎により微粒子とされる。
- [0021] 本発明の第6の態様は、第1～5の何れかの態様において、前記液状流体が、水であることを特徴とする微粒子の製造方法にある。
- [0022] かかる第6の態様では、生成物は水により捕獲され、スラリーとして回収される。
- [0023] 本発明の第7の態様は、第1～6の何れかの態様において、前記原料が、金属、合金、酸化物、窒化物及び酸窒化物から選択される少なくとも一種であることを特徴とする微粒子の製造方法にある。
- [0024] かかる第7の態様では、金属、合金、酸化物、窒化物及び酸窒化物などの原料は、微粒子とされる。
- [0025] 本発明の第8の態様は、第1～7の何れかの態様において、前記熱源が、酸化雰囲気又は窒化雰囲気の何れかであり、酸化物、窒化物及び酸窒化物の何れかの微粒子を得ることを特徴とする微粒子の製造方法にある。
- [0026] かかる第8の態様では、原料は、酸化雰囲気又は窒化雰囲気下の熱源中で、酸化物、窒化物又は酸窒化物の微粒子とされる。
- [0027] 本発明の第9の態様は、第1～7の何れかの態様において、前記原料が、In-Sn合金又はITO粉末であり、酸化インジウム-酸化錫粉末を製造することを特徴とする微粒子の製造方法にある。
- [0028] かかる第9の態様では、In-Sn合金又はITO粉末からITO粉末がスラリーとして製

造される。

[0029] 本発明の第10の態様は、第9の態様において、錫含有量がSnO₂換算で2.3～4.5質量%である酸化インジウム—酸化錫粉末を製造することを特徴とする微粒子の製造方法にある。

[0030] かかる第10の態様では、所定量の酸化錫によりITOの導電性が保持される。

[0031] 本発明の第11の態様は、第1～10の何れかの態様において、前記生成物の前記液状流体により捕獲する際の最大速度が、150m/sec以下であることを特徴とする微粒子の製造方法にある。

[0032] かかる第11の態様では、比較的低速の流速で微粒子を製造することができる。

[0033] 本発明の第12の態様は、熱源中に原料を液流、液滴又は粉末として供給することにより得られる生成物を気体流体と共に導入する導入口と、導入された生成物に対して霧状の液状流体を噴射する流体噴射手段と、液状流体で捕獲された微粒子を気液分離して前記微粒子のスラリーを得る気液分離手段と、液状流体で捕獲できなかつた微粒子を含む雰囲気流体の一部を流体滴噴射位置まで戻して循環させる循環手段とを具備することを特徴とする微粒子の製造装置にある。

[0034] かかる第12の態様では、原料が熱源中に供給されて得られた生成物は、霧状の液状流体により微粒子として捕獲されて気液分離され、雰囲気流体の少なくとも一部は循環手段により循環されて再度気液分離されることにより効率的に回収される。

[0035] 本発明の第13の態様は、第12の態様において、前記気液分離手段の下流側にさらに、液状流体で捕獲できなかつた微粒子を含む雰囲気流体の一部を導入すると共に霧状の液状流体を噴射し気液分離して前記微粒子のスラリーを得る第2の気液分離手段を具備することを特徴とする微粒子の製造装置にある。

[0036] かかる第13の態様では、第2の気液分離手段により、回収できなかつた微粒子が効率的に回収される。

[0037] 本発明の第14の態様は、第13の態様において、前記気液分離手段の下流側にさらに、液状流体で捕獲できなかつた微粒子を含む雰囲気流体の一部を前記第2の気液分離手段の導入部まで戻す第2の循環手段を具備することを特徴とする微粒子の製造装置にある。

[0038]かかる第14の態様では、第2の気液分離手段でスラリーとして回収できなかつた雰囲気ガスが再度気液分離され、微粒子が効率的に回収される。

[0039]本発明の第15の態様は、第12～14の何れかの態様において、前記気液分離手段がサイクロンであることを特徴とする微粒子の製造装置にある。

[0040]かかる第15の態様では、サイクロンにより気液分離を連続的且つ効率的に行うことができる。

[0041]本発明の第16の態様は、第12～15の何れかの態様において、前記流体噴射手段が噴射した液状流体に微粒子が捕獲される際の最大速度が150m/sec以下であることを特徴とする微粒子の製造装置にある。

[0042]かかる第16の態様では、比較的低速の流速で微粒子を製造することができる。

発明の効果

[0043]以上説明したように、本発明によれば、熱源中に原料金属若しくは合金を液流、液滴又は粉末として導入することにより得られた生成物を霧状の液状流体で捕獲することにより、微粒子を効率よく簡便に製造することができるという効果を奏する。

図面の簡単な説明

[0044] [図1]本発明の一実施形態に係る微粒子の製造装置の概略構成図である。
[図2]本発明の実施例1のITO粉末のX線回折の結果を示す図である。
[図3]本発明の実施例2のITO粉末のX線回折の結果を示す図である。
[図4]本発明の比較例1のITO粉末のX線回折の結果を示す図である。
[図5]本発明の比較例2のITO粉末のX線回折の結果を示す図である。
[図6]本発明の比較例3のITO粉末のX線回折の結果を示す図である。
[図7]本発明の実施例3のITO粉末のX線回折の結果を示す図である。
[図8]本発明の比較例4のITO粉末のX線回折の結果を示す図である。

発明を実施するための最良の形態

[0045]本発明の微粒子を製造する方法では、原料を、液流、液滴又は粉末として、熱源中に供給する。

[0046]ここで、原料は、例えば、金属若しくは合金であり、金属若しくは合金としては、例えば、Mg、Al、Zr、Fe、Si、In、Snなどの金属、又はこれらの合金である。また、原料

として、上述した金属若しくは合金などの酸化物、窒化物及び酸窒化物を用いることができる。なお、ここで、酸化物は、複合酸化物を含むものであり、窒化物は複合窒化物を含むものである。

[0047] かかる原料は、溶融した状態の液流又は液滴として供給してもよいし、粉末状態として供給してもよい。すなわち、溶湯溜などから連続的に液流として若しくは液滴として滴下してもよく、又はアトマイズ粉末を形成してこれを供給するようにしてもよい。

[0048] 例えば、In—Sn合金を原料とすると、ITO粉末を得ることができる。また、ITO粉末を原料としても、性状の異なるITO粉末を得ることができる。

[0049] また、熱源としては、酸化雰囲気又は窒化雰囲気可能な熱源を挙げることができ、例えば、アセチレン炎、DCプラズマ炎などを挙げることができる。熱源の温度は、金属若しくは合金又は酸化物や窒化物あるいは酸窒化物を溶融し、十分に酸化若しくは窒化できる程度であればよく、特に制限されない。なお、アセチレン炎の場合には、数千°C以上、DCプラズマ炎の場合には、数万°C以上であるといわれている。

[0050] このようなアセチレン炎又はDCプラズマ炎に原料を液流、液滴又は粉末として供給すると、生成物は、そのまま又は酸化物や窒化物あるいは酸窒化物として気体流と共に得られる。原料をそのまま金属若しくは合金の生成物として得るか、又は金属若しくは合金の酸化物や窒化物あるいは酸窒化物とするかは熱源の火炎の状態によって決定され、酸化雰囲気にすると、金属若しくは合金の酸化物あるいは酸窒化物の生成物が得られ、窒化雰囲気とすると、金属若しくは合金の窒化物や酸窒化物が得られる。また、原料として、酸化物や窒化物あるいは酸窒化物を用いても、性状の異なる酸化物や窒化物あるいは酸窒化物を得ることができる。

[0051] 本発明では、得られた生成物を霧状の液状流体により捕獲する。すなわち、アセチレン炎やDCプラズマ炎の噴流と共に流れる生成物に霧状の液状流体、好ましくは霧状の水を噴霧する。これにより、生成物は急冷されて微粒子となり、噴霧された液状流体のスラリーとなる。

[0052] ここで、霧状の液状流体の供給は、得られる生成物を捕獲して冷却できるように行えばよく、特に限定されない。例えば、水を用いる場合には、常温の水、好ましくは、常温の純水を用いればよいが、冷却水を用いてもよい。

[0053] 生成物を微粒子として捕獲する場合、捕獲する際の最大速度は、例えば、150m/sec以下、好ましくは100m/sec以下程度である。

[0054] 本発明では、噴霧された液状流体に捕獲された微粒子を含む液状流体を気液分離し、微粒子をスラリーとして回収する。ここで、スラリーの回収方法は特に限定されないが、好ましくは、サイクロンを用いて行うことができる。

[0055] 本発明方法を用いると、原料としてIn-Sn合金若しくはITO粉末を用いることにより、酸化インジウム-酸化錫(ITO)粉末を製造することができる。このように製造されたITO粉末は、このように In_2O_3 中の SnO_2 固溶量が高水準なので、焼結性が高く、比較的容易に高密度の焼結体が得られ、この結果、ライフの長いターゲットを得ることができる。なお、各種製造方法により製造されたITO粉末、又は焼結されたITO焼結体を粉碎したITO粉末を原料とした場合、原料とは異なる性状で、 In_2O_3 中の SnO_2 固溶量が高水準なITO粉末を得ることができる。

[0056] なお、かかるITO粉末は、ITOスペッタリングターゲットの材料として用いることができる。かかるITOスペッタリングターゲットの材料としては、錫含有量が SnO_2 換算で2.3~45質量%であるのが好ましい。

実施例

[0057] 以下、本発明方法を実施する微粒子の製造装置の一例を図1を参照しながら説明する。

[0058] この装置は、酸化雰囲気又は窒化雰囲気可能な熱源であるアセチレン炎又はDCプラズマ炎からなる火炎1中に供給された金属若しくは合金などの原料2を液流、液滴又は粉末として供給することにより得られる生成物3を気体流体と共に導入する導入口10と、導入された微粒子に対して霧状の液状流体を噴射する流体噴射手段20と、液状流体で捕獲された微粒子を気液分離して前記微粒子のスラリーを得る気液分離手段であるサイクロン30と、液状流体で捕獲できなかった微粒子を含む雰囲気流体の一部を流体滴噴射位置まで戻して循環させる循環手段40とを具備する。

[0059] ここで、導入口10は、生成物を含む気体流を導入できるものであれば特に限定されないが、気体流を吸引するようにしてもよい。

[0060] 流体噴射手段20は、導入口10が設けられた導入管11の下流側に設けられて流

体、例えば、水を噴射する複数の噴射ノズル21と、噴射ノズル21へ流体を導入するためにポンプ22及び流体を湛える流体タンク23とを有する。噴射ノズル21からの流体の噴射の方向は特に限定されないが、導入口10から導入される気体流の流れ方向に向かって合流する方向に噴射するのがよい。導入口10から導入された気体流に含有される生成物3は、噴霧された流体、例えば、水により冷却され、微粒子として捕獲される。なお、導入管11の噴射ノズル21の下流側には、流路を絞ったベンチュリ一部12を設けて気液混合物の流速の低下を防止しているが、ベンチュリ一部12は必ずしも設ける必要はない。また、噴射ノズル21及びポンプ22は、必ずしも設ける必要はなく、気体流の流れによる吸引力により液体を吸引して噴射するようにしてもよい。

[0061] 導入口10が設けられた導入管11は、気液分離手段であるサイクロン30の導入口31に連通している。サイクロン30の導入口31から導入された気液混合物は、サイクロン本体32の内壁に沿って周回する渦流33となって気液分離され、液体成分、すなわち、微粒子を含むスラリーが下部に落下し、気体成分は排気口34から排出されるようになっている。

[0062] 本実施形態では、排気口34に循環手段40が設けられている。すなわち、排気口34には、導入管11の導入口10近傍に連通する循環パイプ41が設けられ、循環パイプ41の途中にブロア42が介装されており、これらが循環手段40を構成している。この循環手段40により、捕獲しきれなかった粉末を噴射ノズル21の上流側に戻し、捕獲効率を向上させている。

[0063] また、サイクロン30で気液分離された液体成分は水排出口36から排出され、流体タンク23に湛えられる。なお、この流体タンク23に湛えられたスラリーの上澄みの水が循環手段40により循環されているので、徐々に微粒子成分の濃度の濃いスラリーが得られる。

[0064] サイクロン30からの排気の大部分は排気口34から循環パイプ41に循環されるが、排気の一部、例えば、十分の一程度は第2の排気口35から排気されるようになっている。

[0065] 本実施形態では、第2の排気口35には、第2の気液分離手段である第2のサイクロ

ン50が排気パイプ43を介して接続されている。第2のサイクロン50は、基本的にはサイクロン30と同一の構造を有して気液分離作用を有する。すなわち、排気パイプ43が接続される導入口51から導入された気液混合物は、サイクロン本体52の内壁に沿って周回する渦流53となって気液分離され、液体成分、すなわち、微粒子を含むスラリーは、下部に落下し、水排出口54から排出され、流体タンク61に溜まるようになっている。さらに詳言すると、排気パイプ43の途中には流路を絞ったベンチュリ一部44が設けられており、このベンチュリ一部44と、流体タンク61とを連通する水循環パイプ62が設けられている。これにより、ベンチュリ一部44の高速の気体の流れにより、流体タンク61中の水が吸引されてベンチュリ一部44内に噴射され、気体中に残存する微粒子を液体中に捕獲するようにしている。一方、排気口55には排気パイプ71が連結され、排気パイプ71には第2のプロア72が設けられ、当該第2のプロア72を介して排気口55からの気体が排気されるようになっている。なお、水タンク61の水を排気パイプ43内に噴霧するには、上述したサイクロン30のように、ポンプと噴霧ノズルを用いて行ってもよい。また、流体タンク61には、上述したように、フィルターを設けてもよいし、中和して微粒子を分離する沈降分離槽を設けてもよい。さらに、排気口55からの排気の一部を排気パイプ43のベンチュリ一部44の上流側に循環させて、さらに捕獲効率を高めてもよい。

[0066] なお、サイクロン30のみで微粒子の捕獲効率が十分な場合には、第2のサイクロン50は、必ずしも設ける必要はなく、又は、さらに捕獲効率を高めたい場合には、さらに複数のサイクロンを連結してもよい。

[0067] 以上説明した実施形態の装置を用いて微粒子を製造した例を以下に示す。

[0068] (実施例1)

In-Sn合金(Sn9.6wt%)のアトマイズ粉末(平均粒径45 μm)を、アセチレン炎に導入してITO($\text{In}_2\text{O}_3:\text{SnO}_2 = 90:10\text{wt\%}$)粉末を乾式合成し、これをバグフィルターにより乾式回収し、実施例1のITO粉末とした。

[0069] (実施例2)

実施例1と同様にしてアセチレン炎より乾式合成したITO粉末を、スプレー水により湿式回収し、これを実施例2のITO粉末とした。

[0070] (比較例1)

湿式合成された酸化インジウム粉末を1000°Cで仮焼した酸化インジウム粉末90質量%と、同様に湿式合成された酸化錫を1000°Cで仮焼した酸化錫粉末10質量%とを乳鉢で混合したものを比較例1とし、標準品1とした。

[0071] (比較例2)

共沈法により湿式合成されたITO粉末を比較例2のITO粉末とした。

[0072] 共沈法による湿式合成の手順は以下の通りである。すなわち、まず、In(4N) 20gを硝酸(試薬特級:濃度60~61%) 133ccに常温にて溶解し(pH=-1.5)、一方、Sn(4N) 2. 12gを塩酸(試薬特級:濃度35~36%) 100ccに常温にて溶解し(pH=-1.9)、両者を混合して混酸溶液とした。このとき、析出物はなく、pHは-1.5であった。次いで、この混酸に25%アンモニア水(試薬特級)を混合して中和してpH6.5としたところ、白い沈殿物を析出した。数時間後、上水を捨てて純水2リットル(L)にて3回洗浄した後、80°Cにて乾燥させた後、600°Cで3時間培焼、脱水反応させ、湿式合成ITO粉末を得た。

[0073] (比較例3)

湿式合成された酸化インジウム粉末と酸化錫粉末との混合物(酸化錫10wt%)の粉末を用いて1550°C以上で焼結した焼結体を粉碎したものを比較例3のITO粉末とした。

[0074] (試験例1)

各実施例1, 2及び各比較例1~3のITO粉末について、 SnO_2 固溶量を求めた。手順は以下の通りである。なお、試験の実施に先駆けて、実施例1, 2及び比較例2, 3のITO粉末については、1000°C×3時間、大気中で仮焼して、微小粒子として析出している SnO_2 を成長させて SnO_2 として検出され易いようにした。

1. まず、誘導結合高周波プラズマ分光分析(ICP分光分析)した。この結果より、In、Sn以外は全て酸素Oであるとし、そのOの量は欠損している可能性があると仮定して、InとSnとの比を求め、このIn及びSnの全てが In_2O_3 、 SnO_2 になったとしたときの重量比を算出した。

2. 各実施例1, 2及び各比較例1~3のITO粉末について、粉末X線回折(XRD: (

株)マックサイエンス社製、MXP18II)による分析を行い、 SnO_2 析出量を求めた。すなわち、回折結果から、間化合物($\text{In}_4\text{Sn}_3\text{O}_{12}$)の有無を確認し、間化合物が検出されない場合には、比較例1の標準品1として各試料の In_2O_3 (222)積分回折強度及び SnO_2 (110)積分回折強度の比から SnO_2 の析出量(質量%)を求めた。すなわち、 SnO_2 の析出量(質量%)は、X線回折の積分回折強度比から求められる SnO_2 の含有量であり、 In_2O_3 に固溶していない SnO_2 が1000°C程度の仮焼により成長してX線回折の SnO_2 (110)のピークとなると仮定している。X線回折の結果を図2～図6に示す。

3. 1及び2の結果から、ICP分析で検出されたが、X線回折では SnO_2 (110)とは検出されない SnO_2 を、 In_2O_3 中の SnO_2 固溶量とした。

[0075] これらの結果を表1に示す。

[0076] この結果、実施例1、2のITO粉末では、 SnO_2 固溶量が2.35wt%、2.42wt%と、湿式合成したITO粉末である比較例2の2.26wt%より多いことがわかった。なお、一度焼結体としたものを粉碎した比較例3のITO粉末では間化合物が検出され、 SnO_2 固溶量は測定不能であった。

[0077] [表1]

試料番号	ICPの結果				XRDの結果				SnO_2 固溶量(wt%)
	In(wt%)	Sn(wt%)	In_2O_3 (wt%)	SnO_2 (wt%)	間化合物	In_2O_3 (222)	SnO_2 (110)	SnO_2 析出量(wt%)	
実施例1	74.1	8.26	89.52	10.48	無	6974596	357821	8.13	2.35
実施例2	74.8	7.90	89.92	10.08	無	6875331	331124	7.66	2.42
比較例1	75.1	7.87	90.09	9.91	無	7141621	455777	9.91 標準	0.00
比較例2	76.1	8.03	90.03	9.97	無	7273411	352429	7.71	2.26
比較例3	74.8	7.90	90.02	9.98	有	7529677	105639	—	—

[0078] (実施例3)

In-Sn合金(Sn9.6wt%)のアトマイズ粉末(平均粒径45 μm)を、DCプラズマ炎に導入してITO($\text{In}_2\text{O}_3:\text{SnO}_2 = 90:10$ wt%)粉末を乾式合成し、これをスプレー水

により湿式回収し、実施例3のITO粉末とした。

[0079] (比較例4)

比較例1と同様に、湿式合成された酸化インジウム粉末を1000°Cで仮焼した酸化インジウム粉末90質量%と、同様に湿式合成された酸化錫を1000°Cで仮焼した酸化錫粉末10質量%とを乳鉢で混合したものを比較例4とし、標準品2とした。

[0080] (試験例2)

実施例3及び各比較例4のITO粉末について、試験例1と同様にSnO₂ 固溶量を求めた。なお、粉末X線回折(XRD)はスペクトリス(株)社製のX' PertPRO MPD を用いて分析した。これらの結果を表2に示す。また、X線回折の結果を図7及び図8に示す。

[0081] この結果、実施例3のITO粉末では、SnO₂ 固溶量が3. 00wt%と、DCプラズマ炎の代わりにアセチレン炎を用いた以外は同等の実施例2のSnO₂ 固溶量より著しく大きいことがわかった。

[0082] [表2]

試料 番号	I C P の結果				X R D の結果				SnO ₂ 固溶量 (wt%)
	In (wt%)	Sn (wt%)	In ₂ O ₃ (wt%)	SnO ₂ (wt%)	間化 合物	InO ₃ (222)	SnO ₂ (110)	SnO ₂ 析出量 (wt%)	
実施 例3	73. 8	7. 46	90. 40	9. 60	無	691582	31090	6. 60	3. 00
比較 例4	75. 1	7. 86	90. 10	9. 90	無	892303	62325	9. 90	0. 00

請求の範囲

- [1] 微粒子を製造する方法において、原料を液流、液滴又は粉末として、熱源中に供給し、生成物を霧状の液状流体により微粒子として捕獲し、気液分離により前記微粒子をスラリーとして回収することを特徴とする微粒子の製造方法。
- [2] 請求の範囲1において、原料の溶湯から液流又は液滴を形成して前記熱源中に供給することを特徴とする微粒子の製造方法。
- [3] 請求の範囲1において、原料のアトマイズ粉末を形成して前記熱源中に供給することを特徴とする微粒子の製造方法。
- [4] 請求の範囲1～3の何れかにおいて、前記気液分離をサイクロンを用いて行うこととする微粒子の製造方法。
- [5] 請求の範囲1～4の何れかにおいて、前記熱源が、アセチレン炎又はDCプラズマ炎であることを特徴とする微粒子の製造方法。
- [6] 請求の範囲1～5の何れかにおいて、前記液状流体が、水であることを特徴とする微粒子の製造方法。
- [7] 請求の範囲1～6の何れかにおいて、前記原料が、金属、合金、酸化物、窒化物及び酸窒化物から選択される少なくとも一種であることを特徴とする微粒子の製造方法。
- [8] 請求の範囲1～7の何れかにおいて、前記熱源が、酸化雰囲気又は窒化雰囲気の何れかであり、酸化物、窒化物及び酸窒化物の何れかの微粒子を得ることを特徴とする微粒子の製造方法。
- [9] 請求の範囲1～7の何れかにおいて、前記原料が、In-Sn合金又はITO粉末であり、酸化インジウム-酸化錫粉末を製造することを特徴とする微粒子の製造方法。
- [10] 請求の範囲9において、錫含有量がSnO₂換算で2.3～45質量%である酸化インジウム-酸化錫粉末を製造することを特徴とする微粒子の製造方法。
- [11] 請求の範囲1～10の何れかにおいて、前記生成物の前記液状流体により捕獲する際の最大速度が、150m/sec以下であることを特徴とする微粒子の製造方法。
- [12] 热源中に原料を液流、液滴又は粉末として供給することにより得られる生成物を気体流体と共に導入する導入口と、導入された生成物に対して霧状の液状流体を噴射す

る流体噴射手段と、液状流体で捕獲された微粒子を気液分離して前記微粒子のスラリーを得る気液分離手段と、液状流体で捕獲できなかつた微粒子を含む雰囲気流体の一部を流体滴噴射位置まで戻して循環させる循環手段とを具備することを特徴とする微粒子の製造装置。

- [13] 請求の範囲12において、前記気液分離手段の下流側にさらに、液状流体で捕獲できなかつた微粒子を含む雰囲気流体の一部を導入すると共に霧状の液状流体を噴射し気液分離して前記微粒子のスラリーを得る第2の気液分離手段を具備することを特徴とする微粒子の製造装置。
- [14] 請求の範囲13において、前記気液分離手段の下流側にさらに、液状流体で捕獲できなかつた微粒子を含む雰囲気流体の一部を前記第2の気液分離手段の導入部まで戻す第2の循環手段を具備することを特徴とする微粒子の製造装置。
- [15] 請求の範囲12～14の何れかにおいて、前記気液分離手段がサイクロンであることを特徴とする微粒子の製造装置。
- [16] 請求の範囲12～15の何れかにおいて、前記流体噴射手段が噴射した液状流体に微粒子が捕獲される際の最大速度が150m/sec以下であることを特徴とする微粒子の製造装置。

[図1]

[図2]

実施例1

[図3]

実施例2

[図4]

比較例1(標準)

[図5]

比較例2

[図6]

比較例3

[図7]

実施例3

[図8]

比較例 4 (標準品 2)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/019354

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C01B13/32, B01J19/00, C01G19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C01B13/32, B01J19/00, C01G19/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Toroku Jitsuyo Shinan Koho	1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 6-99057 A (Stork Protecon B.V.), 12 April, 1994 (12.04.94), & GB 2268094 A	1-16
A	JP 51-31754 A (Kansai Paint Co., Ltd.), 18 March, 1976 (18.03.76), (Family: none)	1-16

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
02 June, 2005 (02.06.05)

Date of mailing of the international search report
14 June, 2005 (14.06.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl.⁷ C01B13/32, B01J19/00, C01G19/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl.⁷ C01B13/32, B01J19/00, C01G19/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国実用新案登録公報	1996-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI (DIALOG)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	J P 6-99057 A (ストーク プロテコン ビー. ヴィ.) 1994. 04. 12 & GB 2268094 A	1-16
A	J P 51-31754 A (関西ペイント株式会社) 1976. 03. 18 (ファミリーなし)	1-16

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

02. 06. 2005

国際調査報告の発送日

14. 6. 2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

豊永 茂弘

4D 8418

電話番号 03-3581-1101 内線 3421