- 1. 求函数  $y = \frac{3x-1}{x+1}$  的值域.
- 2. 求函数  $y = \frac{4x+3}{2x-1}$  的值域.
- 3. 求函数  $y = \frac{x^2 1}{x^2 + 2}$  的值域.
- 4. 求函数  $y = \frac{x^2 x + 1}{2x^2 2x + 3}$  的值域.
- 5. 求函数  $y = \frac{x^2 + 4x + 3}{x^2 + x 6}$  的值域.
- 6. 若实数 x, y 满足  $x^2 + 4y^2 = 4x$ , 求  $S = x^2 + y^2$  的值域.
- 7. 已知函数  $y = f(x) = x^2 + ax + 3$  在区间  $x \in [-1, 1]$  上的最小值为 -3, 求实数 a 的值.
- 8. 求函数  $y = 3x^2 12x + 18\sqrt{4x x^2} 23$  的值域.
- 9. 求函数 y = |x-2| |x+1| 的值域.
- 11. 已知定义域为 R 的函数 f(x) 满足: ①  $f(x+y)=f(x)\cdot f(y)$  对任何实数 x,y 都成立; ② 存在实数  $x_1,x_2,y_3$ 使  $f(x_1) \neq f(x_2)$ . 求证:
  - (1) f(0) = 1;
  - (2) f(x) > 0.
- 12. 设映射  $f: X \to Y$ , 其中 X, Y 是非空集合, 则下列语句中正确的是 (
  - A. Y 中每一个元素必有原像

- B. Y 中的各元素只能有一个原像
- C. X 中的不同元素在 Y 中的像也不同
- D. Y 中至少存在一个元素, 它有原像
- 13. 集合  $M=\{a,b,c\}$  与  $P=\{x,y,z\}$  之间建立起四种对应关系 (如图), 则下列结论中正确的是 (



- A. 只有  $f_2, f_3$  是从 M 到 P 的映射
- B. 只有  $f_2$ ,  $f_4$  是从 M 到 P 的映射
- C. 只有  $f_3, f_4$  是从 M 到 P 的映射
- D.  $f_1, f_2, f_3, f_4$  都是从 M 到 P 的映射
- 14. 设 (x,y) 在映射 f 下的像是  $(\frac{x+y}{2},\frac{x-y}{2})$ , 则在 f 下 (-5,2) 的原像是 ( ).
  - A. (-10, 4)
- B. (-3, -7)
- C. (-6, -4) D.  $(-\frac{3}{2}, -\frac{7}{2})$
- 15. 在给定的映射  $f:(x,y)\mapsto (2x+y,xy)(x,y\in {\bf R})$  下, 点  $(\frac{1}{6},-\frac{1}{6})$  的原像是 ( ).
  - A.  $(\frac{1}{6}, -\frac{1}{36})$

- B.  $(\frac{1}{3}, -\frac{1}{2})$  或  $(-\frac{1}{4}, \frac{2}{3})$  C.  $(\frac{1}{36}, -\frac{1}{6})$  D.  $(\frac{1}{2}, -\frac{1}{3})$  或  $(-\frac{2}{3}, \frac{1}{4})$

| 16. | $A = \{x   0 \le x \le 6\}, \ P = \{0 \le y \le 3\}, \ 则下列对应关系中, 不能作为从 M 到 P 的映射的是$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                           |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|--|--|--|--|
|     | ( ).                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                           |  |  |  |  |
|     | $A. f: x \mapsto y = \frac{1}{2}x$                                                            | $B. f: x \mapsto y = \frac{1}{3}x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C. $f: x \mapsto y = x$                         | $D. f: x \mapsto y = \frac{1}{6}x$        |  |  |  |  |
| 17. | 7. 设 $M = \mathbf{R}$ , 从 $M$ 到 $P$ 的映射 $f: x \mapsto y = \frac{1}{x^2 + 1}$ , 则像集 $P$ 为 ( ). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                           |  |  |  |  |
|     | A. $\{y y \in \mathbf{R}\}$                                                                   | B. $\{y y \in \mathbf{R}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C. $\{y 0 \le y \le 2\}$                        | D. $\{y   0 < y \le 1\}$                  |  |  |  |  |
| 18. | 若映射 $f:A\to B$ 的像象是                                                                           | $\xi$ 是 $Y$ ,原像的集合是 $X$ ,」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 则 $X$ 与 $A$ 的关系是                                | , Y 和 B 的关系                               |  |  |  |  |
| 19. | 若 $(x,y)$ 在映射 $f$ 下的像是                                                                        | (2x-y,x+2y), 则 $(-1,2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 在 f 下的原像是                                       | ÷                                         |  |  |  |  |
| 20. | 已知 $(a,b)$ 在映射 $f$ 的像是                                                                        | (a-b,ab), 则 $(2,3)$ 的原像:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 是                                               |                                           |  |  |  |  |
| 21. | 已知 $f: x \mapsto y = x^2$ 是从红是                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | 元素 1 在 R 中的原像                             |  |  |  |  |
| 22. | 从集合 $\{a\}$ 到 $\{b,c\}$ 的不同                                                                   | 映射有 个.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |                                           |  |  |  |  |
| 23. | 从集合 {1,2} 到 {5,6} 的不                                                                          | 同映射有 个.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |                                           |  |  |  |  |
| 24. | 已知集合 $A=\mathbf{Z},B=\{x x\in\mathbb{Z}\}$ 射是 $x\mapsto\frac{1}{3x+1},\mathbb{Q}$ 则从 $A$ 到    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbf{I}$ 从 $A$ 到 $B$ 的映射是 $x\mapsto 2$      | 2x-1, 从 $B$ 到 $C$ 的映                      |  |  |  |  |
| 25. | $f$ 是集合 $X = \{a, b, c\}$ 到集                                                                  | 合 $Y=\{d,e\}$ 的一个映射,则                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J满足映射条件的"f"共有(                                  | ).                                        |  |  |  |  |
|     | A. 5 个                                                                                        | B. 6 个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C. 7 个                                          | D. 8 个                                    |  |  |  |  |
| 26. | 若 $f: y = 3x + 1$ 是从集合 $A, B$ .                                                               | $A = \{1, 2, 3, k\}$ 到集合 $B = \{1, 2, 3, k\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | {4,7,a <sup>4</sup> ,a <sup>2</sup> +3a} 的一个映象  | t, 求自然数 a,k 的值及                           |  |  |  |  |
| 27. | 函数 $f(x) = \frac{\sqrt{x^2 - 5x + 6}}{x - 2}$ I                                               | 的定义域是 ( ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                                           |  |  |  |  |
|     | A. $\{x   2 < x < 3\}$                                                                        | $\mathbb{R}   f_x  _{\mathcal{X}} \leq 2x \leq 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C ( < 9 > 9)                                    | D ( < 0=4 > 9)                            |  |  |  |  |
|     | (                                                                                             | $\mathbf{D}. \ \{x \mid x \leq 2x > 3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C. \{x   x \le 2x \ge 3\}$                     | D. $\{x   x < 2\mathbf{y}, x \geq 3\}$    |  |  |  |  |
| 28. | 若函数 $f(x)$ 的定义域是 $[-1]$                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | D. $\{x   x < 2 \mathbf{y}, x \geq 3\}$   |  |  |  |  |
| 28. | 若函数 $f(x)$ 的定义域是 $[-1]$                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | D. $\{x   x < 2$ 與 $x \ge 3\}$ D. $[0,1]$ |  |  |  |  |
|     | 若函数 $f(x)$ 的定义域是 $[-1]$                                                                       | $[0,1]$ ,则函数 $f(x+1)$ 的定义 $[0,2]$ $y=\sqrt{x^2}$ 与 $y=(\sqrt{x})^2$ ; ③ $y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 域是 ( ).<br>C. [-2,0]                            | D. [0, 1]                                 |  |  |  |  |
|     | 若函数 $f(x)$ 的定义域是 $[-1]$ A. $[-1,1]$ 在① $y=x$ 与 $y=\sqrt{x^2}$ ; ② $[-1,1]$                    | $[0,1]$ ,则函数 $f(x+1)$ 的定义 $[0,2]$ $y=\sqrt{x^2}$ 与 $y=(\sqrt{x})^2$ ; ③ $y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 域是 ( ).<br>C. [-2,0]                            | D. [0, 1]                                 |  |  |  |  |
| 29. | 若函数 $f(x)$ 的定义域是 [-1] A. [-1,1] 在① $y = x$ 与 $y = \sqrt{x^2}$ ; ② $y = 1$ 这五组函数中,表示           | [0,1],则函数 $f(x+1)$ 的定义 $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0,2]$ $[0$ | 域是 ( ).   C. $[-2,0]$ $=  x                   $ | D. $[0,1]$                                |  |  |  |  |

31. 已知镭经过 100 年后剩下原来质量的 95.76%, 若质量为 l 克的镭经过 x 年后的剩余质量为 y 克, 则 y 与 x 之间的解析式是 ( ).

A. 
$$y = (\frac{0.9576}{100})^x$$

B. 
$$y = (0.9576)^{100x}$$

C. 
$$y = (0.9576)^{\frac{x}{100}}$$

D. 
$$y = 1 - (1 - 0.9576)^{\frac{x}{100}}$$

32. 函数  $y = x + \frac{|x|}{x}$  的图像是 ( ).









- 33. 函数  $y = \sqrt{1 x^2} + \sqrt{x + 1}$  的定义域为\_\_\_\_\_
- 34. 函数  $y = \frac{1}{\sqrt{2x^2 + 3}}$  的定义域为\_\_\_\_\_\_.
- 35. 函数  $y = \frac{x+5}{3x^2-2x-1}$  的定义域为\_\_\_\_\_.
- 36. 函数  $y = \sqrt{6x x^2 9}$  的定义域为\_\_\_\_\_\_
- 37. 函数  $y = \sqrt{4 x^2} + \frac{1}{|x| 1}$  的定义域为\_\_\_\_\_.
- 38. 函数  $y = \frac{x^3 1}{x + |x|}$  的定义域为\_\_\_\_\_\_.
- 39. 函数  $y = \frac{1}{|x| x^2}$  的定义域为\_\_\_\_\_.
- 40. 函数  $y = \sqrt{1 (\frac{x-1}{x+1})^2}$  的定义域为\_\_\_\_\_.
- 41. 函数  $y = \frac{\sqrt{x^2 2x 15}}{|x + 3| 8}$  的定义域为\_\_\_\_\_\_.
- 42. 函数  $y = 1 \frac{1}{x+2}$  的值域为\_\_\_\_\_.
- 43. 函数  $y = \frac{3}{2x}$  的值域为\_\_\_\_\_\_.
- 44. 函数  $y = \frac{x+3}{x-3}$  的值域为\_\_\_\_\_.
- 45. 函数  $y = \frac{5x+3}{x-3}$  的值域为\_\_\_\_\_.
- 46. 函数  $y = 4 + \sqrt{2x+1}$  的值域为\_\_\_\_\_\_.
- 47. 函数  $y = \sqrt{x \frac{1}{2}x^2}$  的值域为\_\_\_\_\_\_.
- 48. 函数  $y = \sqrt{-x^2 + x + 2}$  的值域为\_\_\_\_\_.
- 49. 函数  $y = \frac{2x^2 + 2x + 3}{x^2 + x + 1}$  的值域为\_\_\_\_\_\_.

- 50. 若函数 f(x) 满足  $f(2x) = (1 \sqrt{2}x)(1 + \sqrt{2}x)$ , 则 f(x) =\_\_\_\_\_.
- 51. 若函数 f(x) 满足  $f(\sqrt{x}+1) = x + 2\sqrt{x}$ , 则当  $x \ge 1$  时, f(x) =\_\_\_\_\_\_
- 52. 若函数 f(x) 满足  $f(\frac{1}{x}) = \frac{x}{1-x^2}$ , 则当  $x \neq 0$  时,  $f(x) = \underline{\hspace{1cm}}$
- 53. 若函数 f(x) = 2x + 1,  $g(x) = x^2 + 2$ , 满足 f(g(x)) = g(f(x)), 则 x =\_\_\_\_\_.
- 54. 若函数 f(x) 满足  $f(x+1) = 2x^2 + 1$ , 则 f(x-1) =\_\_\_\_\_.
- 55. 若一次函数 f(x) 满足 f(f(x)) = 1 + 2x, 则 f(x) =\_\_\_\_\_.
- 57. 函数  $f(x) = \frac{x}{\sqrt{1+x^2}}$ ,则  $f(f(x)) = \underline{\hspace{1cm}}$ , $f(f(f(x))) = \underline{\hspace{1cm}}$ .
- 58. 若 -b < a < 0, 且函数 d(x) 的定义域是 [a, b], 则函数 F(x) = f(x) + f(-x) 的定义域是 (
  - A. [a,b]

- B. [-b, -a]
- C. [-b, b]
- D. [a, -a]
- 59. 若 f(x) 的定义域是 [0,1], 且 f(x+m)+f(x-m) 的定义域是  $\varnothing$ , 则正数 m 的取值范围是 ( ).

  - A. 0 < m < 1 B.  $0 < m \le \frac{1}{2}$  C.  $0 < m < \frac{1}{2}$
- D.  $m > \frac{1}{2}$

- 60. 函数  $y = \frac{x^2 1}{x^2 + 1}$  的值域是 (
  - A. (-1,1)
- B. [-1, 1]
- C. [-1,1)
- D. (-1,1]

- 61. 若  $2x^2 3x \le 0$ , 则函数  $f(x) = x^2 + x + 1$  ).
  - A. 有最小值  $\frac{3}{4}$ , 但无最大值
- B. 有最小值  $\frac{3}{4}$ , 有最大值 1
- C. 有最小值 1 有最大值  $\frac{19}{4}$

- D. 既无最小值, 也无最大值
- 62. 函数  $f(x) = |1 x| |x 3| (x \in \mathbf{R})$  的值域是 ( ).
  - A. [-2, 2]
- B. [-1, 3]
- C. [-3, 1]
- D. [0, 4]
- 63. 若函数 f(x) 的定义域是 [0,1], 分别求函数 f(1-2x) 和 f(x+a)(a>0) 的定义域.
- 64. 若函数 f(x+1) 的定义域是 [-2,3), 求函数  $f(\frac{1}{x}+2)$  的定义域.
- 65. 求函数  $y = \frac{2x}{x^2 + x + 1}$  的值域.
- 66. 求函数  $y = \frac{x^2 + x 1}{x^2 + x + 1}$  的值域.
- 67. 求函数  $y = \frac{x^2 1}{x^2 5x + 4}$  的值域
- 68. 若实数 x, y 满足  $3x^2 + 2y^2 = 6x$ , 分别求  $x 与 x^2 + y^2$  的取值范围.
- 69. 若实数 x, y 满足  $x^2 + y^2 = 2x$ , 求  $x^2 y^2$  的取值范围.

- 70. 求函数  $y = 3x 2 + \sqrt{3 2x}$  的值域.
- 71. 求函数  $y = 2x + \sqrt{2x 1}$  的值域.
- 72. 求函数 y = (x-1)(x-2)(x-3)(x-4) + 15 的值域.
- 73. 已知函数  $f(x) = x^2 2x + 3$  在 [0, m] 上有最大值 3, 最小值 2, 求正数 m 的取值范围.
- 74. 已知函数  $y = x^2 + mx 1$  在区间 [0,3] 上有最小值 -2, 求实数 m 的值.
- 75. 当  $x \ge 0$  时, 求函数  $f(x) = x^2 + 2ax$  的最小值.
- 76. 已知函数  $f(x) = \frac{ax}{2x+3} (x \neq -\frac{3}{2})$  满足 f(f(x)) = x, 求实数 a 的值.
- 77. 已知 f(x) 是二次函数, 且满足  $f(2x) + f(3x+1) = 13x^2 + 6x 1$ , 求 f(x) 的表达式.
- 78. 已知函数 f(x) 的定义域是一切非零实数, 且满足  $3f(x) + 2f(\frac{1}{x}) = 4x$ , 求, f(x) 的表达式.
- 79. 作出函数  $y = 1 + \frac{|x|}{x}$  的图像.
- 80. 作出函数 y = x |1 x| 的图像.
- 81. 作出函数  $y = |x^2 4x + 3|$  的图像.
- 82. 作出函数  $y = \frac{x^3 + x}{|x|}$  的图像.
- 83. 作出函数  $y = \frac{(x + \frac{1}{2})^0}{|x| x}$  的图像.
- 84. 已知  $f(x) = -x^2 + 2x + 3$ , 画出函数  $y = \frac{1}{2}[f(x) + |f(x)|]$  的图像.
- 85. 已知  $f(x) = |x|, x \in [-1,1]$ , 作出函数 y = f(x+1) + 1 的图像.
- 86. 将进货单价为 40 元的商品按每件 50 元出售时, 每月能卖出 500 个, 已知这批商品在销售单价的基础上每涨 价 1 元, 其月销售数就减少 10 个, 为了每月赚取最大利润, 销售单价应定为多少?
- 87. 飞机飞行 1 小时的耗费由两部分组成: 固定部分 4900 元, 变动部分 P 与飞机飞行速度 v(千米/时) 的函数关 系是  $P=0.01v^2$ . 已知甲、乙两地相距为一常数  $a(\mathbf{f}.\mathbf{k})$ , 试写出飞机从甲地飞到乙地的总耗费 y 与飞机速 度 v 的函数关系式, 并写出耗费最小时飞机的飞行速度.
- 88. 求证: 函数  $f(x) = x^3$  在  $x \in \mathbf{R}$  上是增函数.
- 89. 已知奇函数 y = f(x) 在 x < 0 时是减函数, 求证: y = f(x) 在 x > 0 时也是减函数.
- 90. 已知 f(x) 是奇函数, 且当 x > 0 时 f(x) = x(1-x), 求 f(x) 在 x < 0 时的表达式.
- 91. 已知函数 y = f(x) 满足  $f(x) = f(4-x)(x \in \mathbf{R})$ , 且 f(x) 在 x > 2 时为增函数, 记  $a = f(\frac{3}{5})$ ,  $b = f(\frac{6}{5})$ , c = f(4), 则 a, b, c 之间的大小关系是 ( ).

A. 
$$c > a > b$$

B. 
$$c > b > a$$

C. 
$$b > a > c$$

C. 
$$b > a > c$$
 D.  $a > c > d$ 

- 92. 画出函数  $y = x^2 2|x| 1$  的图像.
- 93. 求函数  $y = \frac{x-2}{2x+1}$  的值域.
- 94. 已知函数  $f(x)=(x-1)^2(x\leq 1)$ , 又 f(x) 和  $\varphi(x)$  的图像关于直线 y=x 对称, 求  $\varphi(x)$  的表达式.
- 95. 求实数 m 的范围, 使关于 x 的方程  $x^2 + 2(m-1)x + 2m + 6 = 0$ :
  - (1) 有两个实数根, 且一个比 2 大, 另一个比 2 小;
  - (2) 有两个实数根, 且都比 1 大;
  - (3) 有两个实数根  $\alpha, \beta$ , 且满足  $0 < \alpha < 1 < \beta < 4$ ;
  - (4) 至少有一个正根.
- 96. 就参数 m 讨论方程  $x^2 2|x| m = 0$  的解的情况.
- 97. 下列记数中, 符合科学记数法的是 ( ).

A. 
$$35.6 \times 10^{-25}$$

B. 
$$0.356 \times 10^{-23}$$

C. 
$$3.56 \times 10^{-24}$$

D. 
$$356 \times 10^{-26}$$

98. 计算  $3^{-1} \times 2^{-2} \div 4^{-2}$  的结果是 ( ).

A. 
$$\frac{1}{192}$$

B. 
$$\frac{4}{3}$$

C. 
$$\frac{1}{12}$$

D. 
$$-\frac{4}{3}$$

99. 下列各式中, 正确的是().

A. 
$$(-1)^0 = -1$$
 B.  $(-1)^{-1} = 1$ 

B. 
$$(-1)^{-1} = 1$$

C. 
$$3a^{-2} = \frac{1}{3a^2}$$

D. 
$$(-x)^5 \div (-x)^3 = x^2$$

100. 下列各式中, 计算正确的是().

A. 
$$(-0.125) \div (-0.5)^{-3} = 1$$

C. 
$$(\frac{1}{3})^0 \div 3^{-1} = 3$$

B. 
$$10^{-4}(\sqrt{5})^0 = -10000$$

D. 
$$(\sqrt{3} - \sqrt{2})^0 - (\sqrt{3})^2 - (-\sqrt{2})^2 = 1 - 3 + 2 = 0$$

101. 化简  $\frac{1}{3}x\sqrt{9x} - x^2\sqrt{\frac{1}{x}}$  的结果是 ( ).

A. 
$$\sqrt{x}$$

B. 
$$x(1-x^2)\sqrt{x}$$

C. 
$$x^2(1 - x\sqrt{x})$$

102. 化简  $\frac{a^{-2}-b^{-2}}{a^2-b^2}$  的结果是 ( ).

B. 
$$-\frac{1}{a^2b^2}$$

C. 
$$a^{-1} + b^{-1}$$

D. 
$$\frac{1}{a^2b^2}$$

103. 已知  $x = 1 - 2^s$ ,  $y = 1 - 2^{-s}$ , 则 y 等于 ( ).

A. 
$$\frac{x-1}{x}$$
 B.  $\frac{2-x}{1-x}$ 

B. 
$$\frac{2-x}{1-x}$$

C. 
$$\frac{x}{x-1}$$

D. 
$$\frac{x-2}{x-1}$$

104. 计算  $\sqrt{(3-\pi)^2}$  的结果是 ( ).

A. 
$$3 - \pi$$

B. 
$$\pi - 3$$

C. 
$$\pi + 3$$

D. 
$$-\pi - 3$$

- 105. 若  $(\sqrt[n]{-3})^n$  有意义, 则 n 一定是 ( ).
  - A. 正偶数
- B. 自然数
- C. 正奇数
- D. 整数

- 106. 已知  $n \in \mathbb{N}$ , 在①  $\sqrt[4]{(-4)^{2n}}$ ; ②  $\sqrt[4]{(-4)^{2n+1}}$ ; ③  $\sqrt[5]{-x^2}$ ; ④  $\sqrt[5]{-x^2}$  这四个式子中,有意义的 ( ).
  - A. 是①②③④
- B. 只有③④
- C. 只有①③④
- D. 只有④

- 107. 若  $\sqrt[4]{4a^2 4a + 1} = \sqrt[3]{1 2a}$ , 则实数 a 的取值范围是 ( ).
- B.  $a = \frac{1}{2}$  **或** 0
- C.  $a > \frac{1}{2}$
- D. R
- 108. 在①  $0^{-1}$ ; ②  $0^{-\frac{1}{2}}$ ; ③  $0^{0}$ ; ④  $0^{0.2}$  这四个式子中, 有意义的个数是(
  - A. 0

B. 1

C. 2

D. 3

- 109. 下列各式中正确的是().

  - A.  $-4^0 = 1$  B.  $(5^{-\frac{1}{2}})^2 = 5$
- C.  $(-3^{m-n})^2 = 9^{m-n}$
- D.  $(-2)^{-1} = \frac{1}{2}$

- 110. 计算  $[(-3)^2]^{\frac{1}{2}} (-10)^0$  的值等于 (

C. -4

D. 4

- 111. 下列计算中正确的是().
  - A.  $a^{\frac{8}{3}} \cdot a^{\frac{3}{8}} = a$  B.  $a^{\frac{8}{3}} \cdot a^{-\frac{8}{3}} = 0$
- C.  $a^{\frac{8}{3}} \div a^{\frac{1}{3}} = a^{8}$
- D.  $a^{\frac{1}{2}} \div a^{\frac{1}{3}} = a^{\frac{1}{6}}$

- 112. 下列计算中正确的是().
  - A.  $a^{\frac{3}{4}} \cdot a^{\frac{4}{3}} = a$  B.  $a^{\frac{3}{4}} \div a^{\frac{3}{4}} = a$
- C.  $a^{-4} \div a^4 = 0$
- D.  $(a^{\frac{3}{4}})^{\frac{4}{3}} = a$

- 113. 化简  $(a^{\frac{2}{3}}b^{\frac{1}{2}})(-3a^{\frac{1}{2}}b^{\frac{1}{3}})\div(\frac{1}{3}a^{\frac{1}{6}}b^{\frac{5}{6}})$  的结果是 ( ).
  - A. 6a

B. -a

C. -9a

D. 9a

- 114. 将  $\sqrt[3]{-2\sqrt{2}}$  化成不含根号的式子是 (
  - A.  $-2^{\frac{1}{2}}$

- B.  $-2^{-\frac{1}{2}}$
- C.  $-2^{\frac{1}{3}}$

D.  $-2^{\frac{2}{3}}$ 

- 115. 将  $(a^{\frac{1}{n}} + b^{\frac{1}{n}})^{\frac{1}{3}}$  表示成根式的形式是 (
  - A.  $\sqrt[3]{a^{\frac{1}{n}} + b^{\frac{1}{n}}}$
- B.  $(\sqrt[n]{a} + \sqrt[n]{b})^{\frac{1}{3}}$
- C.  $\sqrt[3]{\sqrt[n]{a} + \sqrt[n]{b}}$
- D.  $(\sqrt[n]{a} + \sqrt[n]{b})^3$

- 116. 计算:  $\sqrt{12} \sqrt{3} \div (2 + \sqrt{3}) = \underline{\hspace{1cm}}$ .
- 117. 计算:  $(\sqrt{12} \sqrt{\frac{1}{2}} 2\sqrt{\frac{1}{3}}) (\sqrt{\frac{1}{8}} \sqrt{18}) = \underline{\hspace{1cm}}$
- 118. 计算:  $(\sqrt{3}+2)^{1997} \times (\sqrt{3}-2)^{1988} =$ \_\_\_\_\_\_.
- 119. 计算:  $\frac{2\sqrt{10}-5}{4-\sqrt{10}} =$ \_\_\_\_\_\_.
- 120. 计算:  $4\sqrt{\frac{2}{5}} \sqrt{1000} + 2\sqrt{10} =$ \_\_\_\_\_\_.
- 121. 计算:  $\frac{1}{(2+\sqrt{3})^2} + \frac{1}{(2-\sqrt{3})^2} = \underline{\hspace{1cm}}$ .
- 122. 计算:  $\frac{1}{1+\sqrt{2}+\sqrt{3}} + \frac{1}{1-\sqrt{2}+\sqrt{3}} = \underline{\hspace{1cm}}$ .

- 123. 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式):  $3x^{-\frac{3}{2}} =$ \_\_\_\_\_.
- 124. 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式):  $a^{\frac{1}{2}} \cdot b^{-\frac{1}{2}} =$ \_\_\_\_\_\_\_
- 125. 将下式改写成不含分数指数幂的根式形式 (要求分母不含有根式形式):  $(a+b)^{\frac{1}{2}}\cdot (a-b)^{-\frac{4}{3}} =$ \_\_\_\_\_\_.
- 126. 将根式改写成分数指数幂的形式:  $\sqrt[4]{a^3}$  =\_\_\_\_\_.
- 127. 将根式改写成分数指数幂的形式: <sup>5</sup>√b<sup>8</sup> =\_\_\_\_\_.
- 128. 将根式改写成分数指数幂的形式:  $\sqrt[4]{x^2 + y^2} =$ \_\_\_\_\_.
- 129. 将根式改写成分数指数幂的形式:  $\frac{\sqrt{x}}{\sqrt[3]{y^4}} =$ \_\_\_\_\_\_.
- 130. 将根式改写成分数指数幂的形式:  $\sqrt{2\sqrt{2}} =$ \_\_\_\_\_\_.
- 131. 将根式改写成分数指数幂的形式:  $-\frac{1}{\sqrt{27x}} = _____.$
- 132. 将根式改写成分数指数幂的形式:  $\sqrt{\frac{4}{3ab^3}} =$ \_\_\_\_\_.
- 133. 已知 m < n, 将根式改写成分数指数幂的形式:  $2\sqrt[6]{(m-n)^{-2}} =$ \_\_\_\_\_\_.
- 134. 判断命题:  $2^{\frac{3}{2}} \cdot 2^{\frac{2}{3}} = 2$  是否正确, \_\_\_\_\_\_.
- 135. 判断命题:  $(\frac{1}{8})^{-\frac{1}{2}} = -2\sqrt{2}$  是否正确, \_\_\_\_\_.
- 136. 判断命题: 若  $a \in \mathbb{R}$ , 则  $(a-1)^0 = 1$  是否正确, \_\_\_\_\_\_.
- 137. 判断命题:  $a^x + a^y = a^{x+y}$  是否正确, \_\_\_\_\_.
- 138. 判断命题:  $\sqrt[3]{-5} = \sqrt[6]{(-5)^2} = \sqrt[6]{25}$  是否正确, \_\_\_\_\_\_.
- 139. 计算:  $(\frac{81}{625})^{-\frac{3}{4}} =$ \_\_\_\_\_.
- 140. 计算:  $(0.064)^{-\frac{1}{3}} =$ \_\_\_\_\_.
- 141. 计算:  $(2\sqrt{2})^{-\frac{1}{3}} =$ \_\_\_\_\_.
- 142. 计算:  $[(-3)^2]^{\frac{3}{2}} =$ \_\_\_\_\_.
- 143. 计算:  $(-0.027)^{-\frac{2}{3}} =$ \_\_\_\_\_.
- 144. 计算:  $(-0.001)^{-\frac{4}{3}} =$ \_\_\_\_\_.
- 145. 计算:  $5^{\frac{4}{5}} \times 125 \times 25^{-0.4} =$ \_\_\_\_\_\_.
- 146. 计算:  $(8+2\times15^{\frac{1}{2}})^{\frac{1}{2}} =$ \_\_\_\_\_\_.
- 147. 计算:  $(4-12^{\frac{1}{2}})^{\frac{1}{2}} =$ \_\_\_\_\_.

148. 计算: 
$$(0.25)^{-0.5} + (\frac{1}{27})^{-\frac{1}{3}} - 625^{0.25} =$$
\_\_\_\_\_\_.

149. 化筒: 
$$2x^{-\frac{1}{3}}(\frac{1}{2}x^{\frac{1}{3}}-2x^{-\frac{2}{3}})-(-3.5)^0=$$
\_\_\_\_\_.

150. 化简: 
$$(x^{\frac{1}{3}} + y^{\frac{1}{3}})(x^{\frac{2}{3}} - x^{\frac{1}{3}}y^{\frac{1}{3}} + y^{\frac{2}{3}}) = _____.$$

151. 化简: 
$$(\frac{b^3}{2a^2}) \div (-\frac{4b^3}{a^{-7}}) \times (-\frac{b^2}{a})^3 = \underline{\hspace{1cm}}.$$

152. 化简: 
$$(2a^{\frac{1}{4}}b^{-\frac{1}{3}})(-3a^{-\frac{1}{2}}b^{\frac{2}{3}}) \div (-\frac{1}{4}a^{-\frac{1}{4}}b^{-\frac{2}{3}}) =$$
\_\_\_\_\_.

153. 若 
$$a = 1.5^{-\frac{1}{2}}$$
,  $b = 0.5^{-\frac{1}{2}}$ ,  $c = 1$ , 则它们的大小顺序是 ( ).

A. 
$$a < c < b$$

B. 
$$a < b < c$$

C. 
$$c < b < a$$

D. 
$$b < c < a$$

154. 若 
$$a = \frac{1}{\sqrt{2}}$$
,  $b = \frac{1}{\sqrt[3]{2}}$ , 则  $[a^{-\frac{3}{2}}b(ab^{-2})^{-\frac{1}{2}}(a^{-1})^{-\frac{2}{3}}]^3 =$ \_\_\_\_\_\_.

155. 若 
$$a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 2$$
, 则:

(1) 
$$a + a^{-1} = ___;$$

(2) 
$$a^2 + a^{-2} = ____;$$

(3) 
$$a^4 + a^{-4} = \underline{\hspace{1cm}}$$

156. 若 
$$10^{\alpha} = 2^{-\frac{1}{2}}$$
,  $10^{\beta} = \sqrt[3]{32}$ , 则  $10^{2\alpha - \frac{3}{4}\beta} =$ \_\_\_\_\_\_.

157. 计算: 
$$(\frac{1}{125})^{-\frac{1}{3}} + (-2)^{-2} + (-2)^{0}$$
.

158. 计算: 
$$(2\frac{7}{9})^{\frac{1}{2}} - (-0.027)^{-\frac{1}{3}} - (-\sqrt{3})^{-2} + \pi^0$$
.

159. 计算: 
$$5-3 \times [(-3\frac{3}{8})^{-\frac{1}{3}} + 1031 \times (0.25 - 2^{-2})] \div 9^{0}$$
.

160. 计算: 
$$(0.027)^{\frac{1}{3}} - (-\frac{1}{6})^{-2} + 256^{0.75} - |-3^{-1}| + (-5.555)^{0}$$
.

161. 计算: 
$$(2.25)^{0.5} + (-4.3)^0 - (3\frac{3}{8})^{-\frac{2}{3}} + \frac{3^{-2} - 2^{-2}}{3^{-1} - 2^{-1}}$$
.

162. 计算: 
$$(0.25)^{-2} + (\frac{8}{27})^{\frac{1}{3}} + (\frac{1}{8})^{-\frac{2}{3}} - (\frac{1}{16})^{-0.75}$$
.

163. 计算或化简: 
$$\sqrt[3]{m^{\frac{9}{2}}\cdot\sqrt{m^{-3}}}\div\sqrt[3]{m^{-7}}\cdot\sqrt[3]{m^{13}}(m>0).$$

164. 计算或化简: 
$$(x-y) \div (x^{\frac{1}{2}} + y^{\frac{1}{2}}) - (x+y-2x^{\frac{1}{2}}y^{\frac{1}{2}}) \div (x^{\frac{1}{2}} - y^{\frac{1}{2}})(x>y>0).$$

165. 计算或化简: 
$$(8y^{-\frac{1}{3}}\sqrt{x^{-\frac{1}{3}}y\sqrt{x^{\frac{4}{3}}}})^{\frac{1}{3}}$$
.

166. 计算或化简: 
$$\frac{x+y}{\sqrt{x}+\sqrt{y}}+\frac{2xy}{x\sqrt{y}+y\sqrt{x}}$$

167. 计算或化简: 
$$(5+\sqrt{6}+\sqrt{10}+\sqrt{15}) \div (\sqrt{2}+\sqrt{3}+\sqrt{5})$$
.

168. 计算或化简: 
$$(2+3^{\frac{1}{2}})^{\frac{1}{2}} \times (2+(2+3^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}} \times (2+(2+(2+3^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}})$$
.

169. 化简: 
$$\sqrt{x+2\sqrt{x-1}} + \sqrt{x-2\sqrt{x-1}}$$
.

- 170. 化简:  $(x^{\frac{a+b}{c-a}})^{\frac{1}{b-c}} \cdot (x^{\frac{x+a}{b-c}})^{\frac{1}{a-b}} \cdot (x^{\frac{b+c}{a-b}})^{\frac{1}{c-a}}$ .
- 171. 化筒:  $\frac{a^2-b^2}{a^2+b^2}(\frac{a-b}{a+b})^{\frac{p+q}{p-q}}\cdot[(\frac{a+b}{a-b})^{\frac{2p}{p-q}}+(\frac{a+b}{a-b})^{\frac{2q}{p-q}}].$
- 172. 当 a=0.001 时,求  $\frac{a^{\frac{4}{3}}-8a^{\frac{1}{3}}b}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}\div(1-2\sqrt[3]{\frac{b}{a}})$  的值.
- 173. 求证:  $\frac{1}{1+x^{a-b}+x^{a-c}}+\frac{1}{1+x^{b-c}+x^{b-a}}+\frac{1}{1+x^{c-a}+x^{c-b}}=1.$
- 174. 已知幂函数 f(x) 的图像经过点  $(2, \frac{\sqrt{2}}{2})$ , 则 f(4) 的值等于 ( ).
  - A. 16

B.  $\frac{1}{16}$ 

C.  $\frac{1}{2}$ 

D. 2

- 175. 下列幂函数中, 定义域为  $\{x|x>0\}$  的是 ( ).
  - A.  $y = x^{\frac{2}{3}}$
- B.  $y = x^{\frac{3}{2}}$
- C.  $y = x^{-\frac{2}{3}}$
- D.  $y = x^{-\frac{3}{2}}$

- 176. 幂函数  $y = x^n (n \in \mathbf{Z})$  的图像一定不经过 ( ).
  - A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限

177. 函数  $f(x) = x^{\frac{2}{3}}$  的图像是 ( ).



В.



С.



178. 幂函数  $y=x^m$  和  $y=x^n$  在第一象限内的图像  $C_1$  和  $C_2$  图像所示, 则 m,n 之间的关系是 ( ).



A. n < m < 0

B. m < n < 0

C. n > m > 0

D. m > n > 0

179. 图中,  $C_1, C_2, C_3$  为幂函数  $y = x^a$  在第一象限的图像, 则解析式中的指数  $\alpha$  依次可以取 ( ).



A. 
$$\frac{4}{3}$$
,  $-2$ ,  $\frac{3}{2}$ 

A. 
$$\frac{4}{3}$$
,  $-2$ ,  $\frac{3}{4}$  B.  $-2$ ,  $\frac{3}{4}$ ,  $\frac{4}{3}$ 

C. 
$$-2, \frac{4}{3}, \frac{3}{4}$$

D. 
$$\frac{3}{4}, \frac{4}{3}, -2$$

- 183. 函数  $y = x^{-\frac{5}{4}}$  的定义域为 , 值域为
- 185. 函数  $y = x^{-\frac{2}{3}}$  的定义域为 , 值域为 .
- 187. 函数  $y = 5(2x-1)^{\frac{3}{4}}$  的定义域为 , 值域为 .
- 188. 将下列函数图像的标号, 填在相应函数后面的横线上:
  - (1)  $y = x^{\frac{2}{3}}$ :\_\_\_\_\_; (2)  $y = x^{-2}$ :\_\_\_\_\_; (3)  $y = x^{\frac{1}{2}}$ :\_\_\_\_;
  - (4)  $y = x^{-1}$ :\_\_\_\_\_; (5)  $y = x^{\frac{1}{3}}$ :\_\_\_\_\_; (6)  $y = x^{\frac{3}{2}}$ :\_\_\_\_\_;
  - $(7)y = x^{\frac{4}{3}}$ : ;  $(8)y = x^{-\frac{1}{2}}$ : ;  $(9)y = x^{\frac{5}{3}}$ :





- 189. 若幂函数  $y = x^n$  的图像在 0 < x < 1 时位于直线 y = x 的下方, 则 n 的取值范围是\_
- 190. 若幂函数  $y = x^n$  的图像在 0 < x < 1 时位于直线 y = x 的上方, 则 n 的取值范围是\_
- 191. 函数  $f(x) = x^{k^2 2k 3} (k \in \mathbf{Z})$  的图像如图所示, 则  $k = \underline{\hspace{1cm}}$



- 应满足的条件是\_\_\_\_\_.
- 193. 若实数 a 满足  $2.4^a > 2.5^a$ , 求 a 的取值范围.
- 194. 若实数 a 满足  $(\frac{3}{4})^{-a} > (\frac{4}{3})^{-a}$ , 求 a 的取值范围.
- 195. 若实数 a 满足  $a^{-2} > 3^{-2}$ , 求 a 的取值范围.
- 196. 若实数 a 满足  $0.01^{-3} > a^{-3}$ , 求 a 的取值范围.
- 197. 将  $2.5^{\frac{2}{3}}$ ,  $(-1.4)^{\frac{2}{3}}$ ,  $(-3)^{\frac{1}{3}}$  从小到大排列:
- 198. 将  $4.1^{\frac{2}{5}}$ ,  $3.8^{-\frac{2}{3}}$ ,  $(-1.9)^{\frac{3}{5}}$  从小到大排列:\_\_\_\_\_.
- 199. 将  $0.16^{-\frac{3}{4}}$ ,  $0.5^{-\frac{3}{2}}$ ,  $6.25^{\frac{3}{8}}$  从小到大排列:\_\_\_\_\_\_.
- 200. 已知函数  $y=x^{n^2-2n-3}(n\in {f Z})$  的图像与两坐标轴都无公共点, 且其图像关于 y 轴对称, 求 n 的值, 并画出相 应的函数图像.
- 201. 函数  $y = \sqrt{x^2 + 2x 3}$  为减函数的区间是 ( ).

A. 
$$(-\infty, -3]$$

B. 
$$[-1, +\infty)$$

A. 
$$(-\infty, -3]$$
 B.  $[-1, +\infty)$  C.  $(-\infty, -1]$ 

D. 
$$[1, +\infty)$$

202. 若函数 y = (2k+1)x + b 在  $(-\infty, +\infty)$  上是减函数,则( ).

A. 
$$k > \frac{1}{2}$$

B. 
$$k < \frac{1}{2}$$

A. 
$$k > \frac{1}{2}$$
 B.  $k < \frac{1}{2}$  C.  $k > -\frac{1}{2}$ 

D. 
$$k < -\frac{1}{2}$$

| 203. | 若函数 $f(x) = 4x^2 - mx +$ ( ).                                             | 5 在区间 [-2,+∞) 上是均                      | 曾函数, 在区间 (-∞, -2] 上;                             | 是减函数,则 $f(1)$ 等于           |  |  |  |
|------|---------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|----------------------------|--|--|--|
|      | A7                                                                        | B. 1                                   | C. 17                                            | D. 25                      |  |  |  |
| 204. | 若函数 $y = x^2 + 2(a-2)x +$                                                 | - 5 在区间 (4,+∞) 上是増                     | 函数, 则实数 a 的取值范围是                                 | ( ).                       |  |  |  |
|      | A. $a \leq -2$                                                            | B. $a \ge -2$                          | C. $a \le -6$                                    | D. $a \ge -6$              |  |  |  |
| 205. | 下列函数中, 在区间 (0,2) 上                                                        | 为增函数的是( ).                             |                                                  |                            |  |  |  |
|      | A. $y = -3x + 1$                                                          | B. $y = \sqrt[3]{x}$                   | C. $y = x^2 - 4x + 3$                            | $D. y = \frac{4}{x}$       |  |  |  |
| 206. | 若函数 $f(x)$ 在定义域 R 上                                                       | 为增函数,且 $f(x) < 0$ ,则了                  | 下列函数在 R 上为增函数的是                                  | ; ( ).                     |  |  |  |
|      | A. $y =  f(x) $                                                           | $B. y = \frac{1}{f(x)}$                | C. $y = [f(x)]^2$                                | D. $y = [f(x)]^3$          |  |  |  |
| 207. | 函数 $y = \frac{1}{\sqrt{x^2 - 4x + 5}}$ 为掉                                 | 曾函数的区间是                                | 为减函数的区间是                                         |                            |  |  |  |
| 208. | 函数 $y=\frac{1}{\sqrt{3+2x-x^2}}$ 为掉                                       | 曾函数的区间是                                |                                                  |                            |  |  |  |
| 209. | 函数 $y =  3x - 5 $ 为减函数的                                                   | 的区间是                                   |                                                  |                            |  |  |  |
| 210. | 函数 $y =  x^2 - 2x - 3 $ 为增                                                | 函数的区间是                                 |                                                  |                            |  |  |  |
| 211. | 函数 $y = \frac{1-x}{1+x}$ 为减函数的                                            | ⊠间是                                    |                                                  |                            |  |  |  |
| 212. | 定义在 $[1,3]$ 上的函数 $f(x)$                                                   | 为减函数, 求满足不等式 ƒ                         | $(1-a) - f(3-a^2) > 0$ 的解结                       | 集.                         |  |  |  |
| 213. | 已知 $f(x) = -x^3 - x + 1(x)$                                               | $\in \mathbf{R}$ ), 求证 $y = f(x)$ 在定义  | L域上为减函数.                                         |                            |  |  |  |
| 214. | . 求证: 函数 $f(x) = x + \frac{1}{x}$ 在 $(0,1)$ 上是减函数, 在 $(1,+\infty)$ 上是增函数. |                                        |                                                  |                            |  |  |  |
| 215. | . 求证: $f(x) = \sqrt{x} - \frac{1}{x}$ 在定义域上是增函数.                          |                                        |                                                  |                            |  |  |  |
| 216. | 已知常数 $m,n$ 满足 $mn < 2$                                                    | ,求证: 函数 $f(x) = \frac{mx + n}{2x + n}$ | $\frac{1}{n}$ 在 $(-\frac{n}{2}, +\infty)$ 上为减函数. |                            |  |  |  |
| 217. |                                                                           |                                        | 数 $\lambda$ , 使得 $F(x) = g(x) - \lambda f(x)$    | $x)$ 在 $(-\infty, -1)$ 上是减 |  |  |  |
|      | 函数,在 (-1,0) 上是增函数                                                         | ? 说明理由.                                |                                                  |                            |  |  |  |
| 218. | 已知函数 $f(x)$ 在区间 $(-\infty$ ,                                              | $+\infty$ ) 上是增函数, 又实数 $a$             | $a, b$ 满足 $a+b \ge 0$ , 求证: $f(a)$               | $+f(b) \ge f(-a)+f(-b).$   |  |  |  |
| 219. | $f(x)$ 是定义在 $\mathbf{R}^+$ 的增函数                                           | f(x) = f(x) - f(y).                    |                                                  |                            |  |  |  |
|      | <ul><li>(1) 求 f(1) 的值;</li><li>(2) 若 f(6) = 1, 解不等式 f</li></ul>           | $(r+3) - f(\frac{1}{r}) < 2$           |                                                  |                            |  |  |  |
| 000  |                                                                           | w                                      | 727 / 4 o) I /                                   |                            |  |  |  |
| 220. | 若 $f(x) = (m-1)x^2 + 3mx$<br>A. 是增函数                                      |                                        | 区间 (-4,2) 上 ( ).<br>B. 是减函数                      |                            |  |  |  |
|      | A. 走增函数<br>C. 先是增函数后是减函数                                                  |                                        | D. 先是减函数<br>D. 先是减函数后是增函数                        |                            |  |  |  |



| 234. 若函数 $y = f(x)$                   | ) 是偶函数, 其图像与 x 轴有四                                                     | 个交点, 则方程 $f(x) = 0$ 的所有实                       | 数根之和为 ( ).            |
|---------------------------------------|------------------------------------------------------------------------|------------------------------------------------|-----------------------|
| A. 4                                  | B. 2                                                                   | C. 1                                           | D. 0                  |
| 235. 函数 $f(x) = \frac{1}{2^1}$        | $\frac{x}{x+x+2^{1-x}}(\qquad).$                                       |                                                |                       |
| A. 是奇函数,                              | 但不是偶函数                                                                 | B. 是偶函数, 但不是奇函数                                | Έ                     |
| C. 既是奇函数                              | 1, 又是偶函数                                                               | D. 既不是奇函数, 也不是個                                | <b>昌函数</b>            |
| 236. 已知奇函数 f(x                        | f(x) 在 $x > 0$ 时的表达式为 $f(x) = 0$                                       | $=2x-rac{1}{2}$ ,则当 $x\leq -rac{1}{4}$ 时,恒有( | ).                    |
| A. $f(x) > 0$                         | B. $f(x) < 0$                                                          | C. $f(x) - f(-x) \le 0$                        | D. $f(x) - f(-x) > 0$ |
| 237. $f(x) + f(2-x)$                  | x + 2 = 0 对任何实数 $x$ 都成立,                                               | 则 $f(x)$ 的图像 ( ).                              |                       |
| A. 关于直线 <i>x</i>                      | =1 成轴对称图形                                                              | B. 关于直线 $x=2$ 成轴对                              | <b> 你图形</b>           |
| C. 美于点 (1,                            | -1) 成中心对称图形                                                            | D. 关于点 (-1,1) 成中心系                             | <b>才称图形</b>           |
| 238. 已知 $f(x), g(x)$                  | 都是定义在 R 上的函数, $f(x)$ 为                                                 | $g$ 奇函数, $g(x)$ 为偶函数, 且 $f(x) \cdot g(x)$      | x) 恒不为 0, 判断下列函数      |
| 的奇偶性: (1)f                            | $(x)+g(x)$ :; $(2)f(x)\cdot g(x)$                                      | (x):; $(3)f[f(x)]$ :                           | (4)f[g(x)]:           |
| $(5)g[f(x)]:\underline{\hspace{1cm}}$ | (6)g[g(x)]:                                                            |                                                |                       |
| 239. 判断函数 $f(x)$                      | = 5 的奇偶性:                                                              |                                                |                       |
| 240. 判断函数 $f(x)$                      | $=\sqrt{x^2-1}+\sqrt{1-x^2}$ 的奇偶性:                                     | :                                              |                       |
| 241. 判断函数 $f(x)$                      | $=x^2-2x^2+3$ 的奇偶性:                                                    | ·                                              |                       |
| 242. 判断函数 x ∈ [-                      | -4,4) 的奇偶性:                                                            |                                                |                       |
| 243. 判断函数 $f(x)$                      | $= 3x+2 - 3x-2 $ 的奇偶性:_                                                | ·                                              |                       |
| 244. 判断函数 $f(x)$                      | $=rac{x^2(x-1)}{x-1}$ 的奇偶性:                                           | ·                                              |                       |
| 245. 判断函数 $f(x)$                      | $=rac{1}{2}[g(x)-g(-x)]$ 的奇偶性:                                        |                                                |                       |
| 246. 求证: 函数 f(x                       | $=\frac{x+1+\sqrt{1+x^2}}{x-1+\sqrt{1+x^2}}$ 是奇函数.                     |                                                |                       |
| 247. 求证: 函数 f(x                       | $y = egin{cases} x(1-x), & x > 0, \\ x(1+x), & x < 0 \end{cases}$ 是奇函数 | 数.                                             |                       |
| 248. 已知奇函数 f(x                        | c) 在定义域 (-l,l) 上是减函数,                                                  | 求满足 $f(1-m) + f(1-m^2) < 0$                    | 的实数 $m$ 的取值范围.        |
| 249. 已知偶函数 f(a                        | ⑵ 在 [0,+∞) 上是增函数. 求不管                                                  | 等式 $f(2x+5) < f(x^2+2)$ 的解集                    |                       |
| 250. 是否存在既是奇                          | <b>F函数又是偶函数的函数</b> ? 说明理                                               | <b>里由</b>                                      |                       |

. 求证: 定义域为 (-l,l) 的任何函数都能表示成一个奇函数与一个偶函数之和.

252. 下列函数中有反函数的是().

A. 
$$y = 3 + \sqrt{x^2 + 5}$$
 B.  $y = \frac{1}{x^2 + 1}$ 

B. 
$$y = \frac{1}{x^2 + 1}$$

C. 
$$y = \sqrt[3]{2x - 1} + 2$$

C. 
$$y = \sqrt[3]{2x - 1} + 2$$
 D.  $y = \begin{cases} x^2 - 3, & x \ge 0, \\ 3x, & x < 0 \end{cases}$ 

253. 函数  $y = \sqrt{x^2 - 2x + 3}(x < 1)$  的反函数的定义域是(

A. 
$$[0, +\infty)$$

B. 
$$(2, +\infty)$$

C. 
$$(-\infty, 1]$$

D. 
$$[\sqrt{2}, +\infty)$$

254. 设  $f(x) = \frac{2x+1}{4x+3} (x \in \mathbf{R}, \; \coprod \; x \neq -\frac{3}{4}), \; 则 \; f^{-1}(2)$  的值等于 ( ).

A. 
$$-\frac{5}{6}$$
 B.  $-\frac{2}{5}$ 

B. 
$$-\frac{2}{5}$$

C. 
$$\frac{2}{5}$$

D. 
$$\frac{5}{11}$$

255. 函数  $y = x^2 + 2x(x < -1)$  的反函数是 ( ).

A. 
$$y = \sqrt{x+1} - 1(x < -1)$$

B. 
$$y = \sqrt{x+1} - 1(x > -1)$$

C. 
$$y = -\sqrt{x+1} - 1(x < -1)$$

D. 
$$y = -\sqrt{x+1} - 1(x > -1)$$

256. 若函数 y=g(x) 的图像与函数  $f(x)=(x-1)^2(x\leq 1)$  的图像关于直线 y=x 对称. 则 g(x) 的表达式是 ( ).

A. 
$$g(x) = 1 - \sqrt{x}(x \ge 0)$$

B. 
$$q(x) = 1 + \sqrt{x}(x > 0)$$

C. 
$$g(x) = \sqrt{1 - x} (x \le 1)$$

D. 
$$g(x) = \sqrt{1+x}(x \ge -1)$$

257. 函数  $y = \frac{ax+b}{cx+1}(a \neq bc)$  的反函数是  $y = \frac{x+2}{3x+1}$ , 则的 a,b,c 值依次为 ( ).

A. 
$$1, -2, -3$$

B. 
$$-1, 2, 3$$

$$C. -1, 2, -3$$

258. 若函数  $f(x) = \frac{x-2}{x+m}$  的反函数  $f^{-1}(x) = f(x)$ , 则 m 的值是 ( ).

D. 
$$-2$$

259. 若函数 f(x) 的图像经过点 (0,-1), 则函数 f(x+4) 的反函数的图像必经过点 (

B. 
$$(-4, -1)$$

C. 
$$(-1, -4)$$

D. 
$$(1, -4)$$

- 260. 已知函数  $y = -\sqrt{1-x^2}$  的反函数是  $y = -\sqrt{1-x^2}$ , 则原函数的定义域 "最大" 可以是\_\_\_\_\_\_.
- 262. 若点 (1,2) 既在函数  $y = \sqrt{ax+b}$  的图像上. 又在其反函数的图像上, 则  $a = _____, b = _____$
- 263. 若  $y = \frac{1+x}{1-x} (x \neq 1)$ , 则其反函数  $f^{-1}(x) =$ \_\_\_\_\_.
- 264. 若  $f(x) = x^{\frac{2}{3}}(x < 0)$ , 则其反函数  $f^{-1}(x) = 0$ .
- 265. 若  $f(x) = -\sqrt{1-x^2}(0 < x < 1)$ ,则其反函数  $f^{-1}(x) = 1$
- 266. 若  $f(x) = \sqrt{x^2 4}(x \le -2)$ ,则其反函数  $f^{-1}(x) = -2$

- 270. 已知函数  $f(x) = \frac{x+1}{x-1}$ ,  $g(x) = f^{-1}(-x)$ , 则 g(x)( ).
  - A. 在  $(-\infty, +\infty)$  上是增函数

B. 在  $(-\infty, -1)$  上是增函数

C. 在  $(1,+\infty)$  上是减函数

- D. 在  $(-\infty, -1)$  上是减函数
- 271. 若函数  $y = \sqrt{x-m}$  与其反函数的图像有公共点, 则 m 的取值范围是 ( ).
  - A.  $m \geq \frac{1}{4}$
- B.  $m \le \frac{1}{4}$
- D. m < 0
- 272. 已知 y = g(x) 是函数 y = f(x) 的反函数, 又 y = h(x) 与 y = g(x) 的图像关于原点 O(0,0) 对称, 则 h(x) 的 表达式是().
  - A.  $y = f^{-1}(x)$
- B.  $y = -f^{-1}(x)$

- 273. 若幂函数 f(x) 是奇函数,则  $f^{-1}(1) = _____, f^{-1}(-1) = ____.$
- 274. 若  $f(x) = \frac{2x-1}{x+a}$  存在反函数, 则实数 a 的取值范围是\_\_\_\_\_\_.
- 275. 若  $f(x) = 2x^2 4x + 9(x \ge 1)$ , 且满足  $f^{-1}(a+1) = 3$ , 则 f(a) =
- 276. 已知定义域为  $(-\infty,0]$  的函数 f(x) 满足  $f(x-1)=x^2-2x$ , 则  $f^{-1}(-\frac{1}{2})=$ \_\_\_\_\_\_
- 277. 求函数  $f(x) = \begin{cases} x+1, & x>0, \\ x-1, & x<0 \end{cases}$  的反函数, 并作出其反函数的图像.
- 278. 已知函数  $f(x) = x^2 + 2x + 1$ .
  - (1) 若函数的定义域是  $(-\infty, +\infty)$ , 这个函数有没有反函数?
  - (2) 若函数的定义域是  $[0,+\infty)$ , 求其反函数;
  - (3) 若函数的定义域是  $(-\infty, -1]$ , 求其反函数.
- 279. 若关于 x 的方程  $x^2 + 2(m+3)x + 2m + 14 = 0$  有两个实数根, 且一个比 4 大, 另一个比 4 小, 求实数 m 的 取值范围.
- 280. 若关于 x 的方程  $x^2 + 2mx (m-12) = 0$  的两根都大于 2, 求实数 m 的取值范围

- 281. 若关于 x 的方程  $7x^2 (m+13)x + m^2 m 2 = 0$  的两实数根  $\alpha, \beta$  满足  $0 < \alpha < 1 < \beta < 2$ , 求实数 m 的取值范围.
- 282. 若关于 x 的方程  $2x^2 3x + 2m = 0$  的两根均在 [-1, 1] 之间, 求实数 m 的取值范围.
- 283. 若关于 x 的方程  $x^2 + 2mx + 2m^2 1 = 0$  至少有一负根, 求实数 m 的取值范围.
- 284. 若在区间 [-2, 2] 内恰有一个 x 的值满足方程  $2mx^2 x 1 = 0$ , 求实数 m 的取值范围.
- 285. 若关于 x 的方程  $x^2 + x = m + 1$  在  $0 < x \le 1$  内有解, 求实数 m 的取值范围.
- 286. 就实数 k 的取值讨论下列关于 x 的方程解的情况:
  - (1)  $x^2 + 2|x| k = 0$ ;
  - (2)  $|x^2 2x 3| = k$ .
- 287. 将下列各数从小到大排列:  $(\frac{2}{3})^{-\frac{1}{3}}$ ,  $(\frac{3}{5})^{\frac{1}{2}}$ ,  $(\frac{2}{5})^{\frac{1}{2}}$ ,  $(\frac{3}{2})^{\frac{2}{3}}$ ,  $(-2)^3$ ,  $(\frac{5}{3})^{-\frac{1}{3}}$ .

解答在这里(1)与零比,负数有(-2)³.(2)与 1 比,小于 1 的数有( $\frac{3}{5}$ ) $\frac{1}{2}$ ,( $\frac{5}{5}$ ) $\frac{1}{2}$ ,( $\frac{5}{3}$ ) $-\frac{1}{3}$ . 利用幂函数  $x^{\frac{1}{2}}$  的性质,得( $\frac{2}{5}$ ) $\frac{1}{2}$  < ( $\frac{3}{5}$ ) $\frac{1}{2}$  < ( $\frac{3}{2}$ ) $\frac{1}{2}$  < ( $\frac{3$ 

288. 求函数  $y = (\frac{1}{2})^{-x^2+2x}$  为增函数的区间.

解答在这里,解法一因为  $0<\frac{1}{2}<1$ ,所以  $-x^2+2x$  为减函数的区间为  $[1,+\infty)$ ,也就是 y 为增函数的区间. 解法二因为  $y=(\frac{1}{2})^{-x^2+2x}=2^{x^2-2x}=2^{(x-1)^2-1}$ ,所以 y 为增函数的区间就是  $x^2-2x$  为增函数的区间,即  $[1,+\infty)$ .

289. 求函数  $y = 9^x - m \cdot 3^x + 1$  的最小值.

解答在这里令  $t=3^x$  则函数为  $y=t^2-mt+1=(t-\frac{m}{2})^2+1-\frac{m^2}{4}$ , 其图像的对称轴方程为  $t=\frac{m}{2}$ . (1) 如下图左, 若  $\frac{m}{2}>0$ , 则当  $t=\frac{m}{2}$  时,  $y_{\min}=1-\frac{m^2}{4}$ .



- (2) 如上图右, 若  $\frac{m}{2} \le 0$ , 则由于 t > 0, 函数无最小值.
- 290. 填写下表:

| x  | $f(x) = x^2$ | f(x) - f(x-1) | $g(x) = 2^x$ | g(x) - g(x-1) |
|----|--------------|---------------|--------------|---------------|
| 0  |              |               |              |               |
| 1  |              |               |              |               |
| 2  |              |               |              |               |
| 3  |              |               |              |               |
| 4  |              |               |              |               |
| 5  |              |               |              |               |
| 6  |              |               |              |               |
| 7  |              |               |              |               |
| 8  |              |               |              |               |
| 9  |              |               |              |               |
| 10 |              |               |              |               |

- (1) 比较  $f(x) = x^2$  与  $g(x) = 2^x$  的函数值的大小;
- (2) 比较  $f(x)=x^2$  与  $g(x)=2^x$  的函数值递增的快慢. 解答在这里, 经计算得下表:

| x  | $f(x) = x^2$ | f(x) - f(x-1) | $g(x) = 2^x$ | g(x) - g(x-1) |
|----|--------------|---------------|--------------|---------------|
| 0  | 0            |               | 1            |               |
| 1  | 1            | 1             | 2            | 1             |
| 2  | 2            | 1             | 4            | 2             |
| 3  | 9            | 7             | 8            | 4             |
| 4  | 16           | 7             | 16           | 8             |
| 5  | 25           | 9             | 32           | 16            |
| 6  | 36           | 11            | 64           | 32            |
| 7  | 49           | 13            | 128          | 64            |
| 8  | 64           | 15            | 256          | 128           |
| 9  | 81           | 17            | 512          | 256           |
| 10 | 100          | 19            | 1024         | 512           |

并描点得出函数  $f(x) = x^2$  与  $g(x) = 2^x$  在同一个平面直角坐标系下的图像如图所示.



## 由表和图知:

(1) 当 0 < x < 2 时, g(x) > f(x); 当 2 < x < 4 时, f(x) > g(x); 当 x > 4 时, g(x) > f(x); 当 x = 2 或 x = 4 时, f(x) = f(x). (2) 当 x > 4 时,  $f(x) = x^2$  的函数值递增的速度较  $g(x) = 2^x$  慢.

291. 已知函数  $f(x)=2x+1,\ g(x)=1.5^x,\ h(x)=x^{1.5},\$  试用数值计算比较三个函数在  $[0,+\infty)$  上的函数值的大小、图像递增的快慢. 并说明在函数图像上的表现. 解列表并计算得:

| x  | f(x) = 2x + 1 | f(x) - f(x-1) | $g(x) = 1.5^x$ | g(x) - g(x-1) | $h(x) = x^{1.5}$ | h(x) - h(x-1) |
|----|---------------|---------------|----------------|---------------|------------------|---------------|
| 0  | 1             |               | 1              |               | 0                |               |
| 1  | 3             | 2             | 1.5            | 0.5           | 1                | 1             |
| 2  | 5             | 2             | 2.25           | 0.75          | 2.82842712       | 1.82842712    |
| 3  | 7             | 2             | 3.375          | 1.125         | 5.19615242       | 2.3677253     |
| 4  | 9             | 2             | 5.0625         | 1.6875        | 8                | 2.80384758    |
| 5  | 11            | 2             | 7.59375        | 2.53125       | 11.1803399       | 3.18033989    |
| 6  | 13            | 2             | 11.390625      | 3.796875      | 14.6969385       | 3.51659857    |
| 7  | 15            | 2             | 17.085938      | 5.6953125     | 18.5202592       | 3.82332072    |
| 8  | 17            | 2             | 25.628906      | 8.5429688     | 22.627417        | 4.10715782    |
| 9  | 19            | 2             | 38.443359      | 12.814453     | 27               | 4.372583      |
| 10 | 21            | 2             | 57.665039      | 19.22168      | 31.6227766       | 4.6227766     |
| 11 | 23            | 2             | 86.497559      | 28.83252      | 36.4828727       | 4.86009609    |
| 12 | 25            | 2             | 129.74634      | 43.248779     | 41.5692194       | 5.08634669    |
| 13 | 27            | 2             | 194.61951      | 64.873169     | 46.8721666       | 5.3029472     |

| x  | f(x) = 2x + 1 | f(x) - f(x-1) | $g(x) = 1.5^x$ | g(x) - g(x-1) | $h(x) = x^{1.5}$ | h(x) - h(x-1) |
|----|---------------|---------------|----------------|---------------|------------------|---------------|
| 14 | 29            | 2             | 291.92926      | 97.309753     | 52.3832034       | 5.51103683    |
| 15 | 31            | 2             | 437.89389      | 145.96463     | 58.0947502       | 5.71154678    |
| 16 | 33            | 2             | 656.84084      | 218.94695     | 64               | 5.90524981    |
| 17 | 35            | 2             | 985.26125      | 328.42042     | 70.0927956       | 6.09279564    |
| 18 | 37            | 2             | 1477.8919      | 492.63063     | 76.3675324       | 6.27473673    |
| 19 | 39            | 2             | 2216.8378      | 738.94594     | 82.8190799       | 6.45154756    |
| 20 | 41            | 2             | 3325.2567      | 1108.4189     | 89.4427191       | 6.62363917    |
| 21 | 43            | 2             | 4987.8851      | 1662.6284     | 96.2340896       | 6.79137049    |
| 22 | 45            | 2             | 7481.8276      | 2493.9425     | 103.189147       | 6.95505712    |
| 23 | 47            | 2             | 11222.741      | 3740.9138     | 110.304125       | 7.11497832    |
| 24 | 49            | 2             | 16834.112      | 5611.3707     | 117.575508       | 7.27138262    |
| 25 | 51            | 2             | 25251.168      | 8417.0561     | 125              | 7.42449235    |
| 26 | 53            | 2             | 37876.752      | 12625.584     | 132.574507       | 7.57450735    |
| 27 | 55            | 2             | 56815.129      | 18938.376     | 140.296115       | 7.72160806    |
| 28 | 57            | 2             | 85222.693      | 28407.564     | 148.162073       | 7.86595801    |
| 29 | 59            | 2             | 127834.04      | 42611.346     | 156.169779       | 8.00770599    |
| 30 | 61            | 2             | 191751.06      | 63917.02      | 164.316767       | 8.14698784    |
|    |               |               |                |               |                  |               |

得点 A, B, C, D 的横坐标分别约为 1.5, 4.8, 6.5, 7.4, 记作  $x_A, x_B, x_C, x_D$ .

## (1) 三个函数的函数值的大小情况如下:

① 当  $0 < x < x_A$  时, f(x) > g(x) > h(x); ② 当  $x_A < x < x_B$  时, f(x) > h(x) > g(x); ③ 由  $x_B < x < x_C$  时, h(x) > f(x) > g(x); ④ 当  $x_C < x < x_D$  时, h(x) > g(x) > f(x); ⑤ 当  $x_D < x$  时, g(x) > h(x) > f(x); ⑥ 当  $x = x_A$  时, f(x) > g(x) = h(x); ⑦ 当  $x = x_B$  时, f(x) = h(x) > g(x); ⑧ 当  $x = x_C$  时, f(x) = g(x) < h(x); ⑨ 当  $x = x_D$  时, f(x) < g(x) = g(x).

(2) 它们在同一个平面直角坐标系下的图像如图 14 所示.



由表格及图像可看出, 三个函数的函数值变化及相应增量规律为: 随着 x 的增大, 直线型均匀上升, 增量恒定; 指数型急剧上升, 在区间  $[0,+\infty)$  上递增增量快速增大; 幂函数型虽上升较快, 但随着 x 的不断增大上升趋势 远不如指数型, 几乎微不足道, 其增量缓慢递增.

292. 已知函数  $f(x) = 4 + a^{x-1}$  的图像恒过记点 P, 则点 P 的坐标是 (

A. 
$$(1,5)$$

B. 
$$(1,4)$$

D. 
$$(4,0)$$

293. 下列函数中, 值域为  $(0,+\infty)$  的函数是 ( ).

A. 
$$y = (\frac{1}{8})^{2-x}$$

B. 
$$y = \sqrt{1 - 3^x}$$

A. 
$$y = (\frac{1}{8})^{2-x}$$
 B.  $y = \sqrt{1-3^x}$  C.  $y = \sqrt{(\frac{1}{3})^x - 1}$  D.  $y = 2^{\frac{1}{3-x}}$ 

D. 
$$y = 2^{\frac{1}{3-x}}$$

294. 若 0 < a < 1, 记  $m = a^{-1}$ ,  $n = a^{-\frac{4}{3}}$ ,  $p = a^{-\frac{1}{3}}$ , 则 m, n, p 的大小关系是 ( ).

A. 
$$m < n < p$$

B. 
$$m$$

A. 
$$m < n < p$$
 B.  $m C.  $n < m < p$  D.  $p < m < n$$ 

D. 
$$p < m < n$$

295. 下列函数式中, 满足 f(x+1) = 2f(x) 的 f(x) 是 ( ).

A. 
$$\frac{1}{2}(x+1)$$
 B.  $x+\frac{1}{4}$ 

B. 
$$x + \frac{1}{4}$$

C. 
$$2^x$$

D. 
$$2^{-x}$$

296. 若  $f(x) = \frac{e^x - e^{-x}}{2}$ ,  $g(x) = \frac{e^x + e^{-x}}{2}$ . 则下列关系式中不正确的是 ( ).

A. 
$$[g(x)]^2 - [f(x)]^2 = 1$$

B. 
$$f(2x) = 2f(x) \cdot g(x)$$

C. 
$$g(2x) = [f(x)]^2 + [g(x)]^2$$

D. 
$$f(-x)g(x) = f(x)g(-x)$$

297. 若 a>b 且  $ab\neq 0$ . 则在①  $a^2>b^2$ ,②  $2^a>2^b$ ,③  $\frac{1}{a}<\frac{1}{b}$ ,④  $a^{\frac{1}{3}}>b^{\frac{1}{3}}$ ,⑤  $(\frac{1}{3})^a<(\frac{1}{3})^b$  这五个关系式中,恒 成立的有().

298. 在同一平面直角坐标系中, 函数 f(x) = ax 与  $g(x) = a^x$  的图像可能是 ( ).









299. 下列各式中, 正确的是(

$$\text{A. } (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}} \qquad \text{B. } (\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}} \qquad \text{C. } (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}} \qquad \text{D. } (\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2$$

B. 
$$(\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{5})^{\frac{2}{3}}$$

C. 
$$(\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{1}{3}} < (\frac{1}{2})^{\frac{2}{3}}$$

D. 
$$(\frac{1}{5})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2}{3}} < (\frac{1}{2})^{\frac{2}{3}}$$

300. 若 f(x) 在  $(0,+\infty)$  上是减函数, 而  $f(a^x)$  在  $(-\infty,+\infty)$  上是增函数, 则实数 a 的取值范围是 (

B. 
$$(0,1) \cup (1,+\infty)$$

C. 
$$(0, +\infty)$$

D. 
$$(1, +\infty)$$

301. 函数  $y = (\frac{1}{2})^{\sqrt{-x^2+x+x}}$  为增函数的区间是 ( ).

A. 
$$[-1, \frac{1}{2}]$$

B. 
$$(-\infty, -1]$$
 C.  $[2, +\infty)$ 

C. 
$$[2, +\infty)$$

D. 
$$\left[\frac{1}{2}, 2\right]$$

302. 若函数  $f(x)=(a^2-1)^x$  在  $(-\infty,+\infty)$  上是减函数, 则 a 的取值范围是 (

A. 
$$|a| > 1$$

B. 
$$|a| < \sqrt{2}$$

C. 
$$a > \sqrt{2}$$

D. 
$$1 < |a| < \sqrt{2}$$

303. 若函数  $f(x) = a^x - (b+1)(a > 0$  且  $a \neq 1$ ) 的图像在第一、三、四象限, 则必有 (

A. 
$$0 < a < 1$$
 H,  $b > 0$  B.  $0 < a < 1$  H,  $b < 0$  C.  $a > 1$  H,  $b < 1$  D.  $a > 1$  H,  $b > 0$ 

C. 
$$a > 1$$
 且  $b < 1$ 

D. 
$$a > 1 \, \exists \, b > 0$$

304. 用不等号 ">" 或 "<" 填空: (1) 1.2<sup>0.3</sup>\_\_\_\_\_\_1;

$$(2) \ 0 \ 3^{5.1}$$

$$(3) \ (\frac{2}{3})^{-\frac{1}{3}} \underline{\hspace{1.5cm}} (\frac{3}{2})^{-\frac{1}{3}};$$

$$(4) 9^{\frac{1}{3}}$$
  $3^{\frac{4}{3}}$ ;

(5) 
$$2^{\frac{2}{3}}$$
\_\_\_\_\_3.6<sup>-\frac{3}{4}</sup>;

(6) 
$$0.8^{-2}$$
  $(\frac{5}{3})^{-\frac{1}{2}}$ .

305. 将下列各数从小到大排列:  $(1) 0.9^{\frac{3}{4}}, 1.2^{\frac{3}{4}}, 1:$ \_\_\_\_\_\_;

$$(2) \ 2.5^{\frac{2}{3}}, \ (-1.4)^{\frac{2}{3}}, \ (-3)^{\frac{1}{3}}$$
:\_\_\_\_\_;

$$(3) \ 4.1^{\frac{2}{3}}, \ 3.8^{-\frac{2}{3}}, \ (-1.9)^{\frac{3}{5}}$$
:\_\_\_\_\_.

306. 根据条件确定实数 x 的取值范围:

(1) 
$$2^x > 0.5$$
:\_\_\_\_\_;

(2) 
$$2^x < 1$$
:\_\_\_\_\_;

(3) 
$$0.2^{2x-1} > \frac{1}{25}$$
:\_\_\_\_\_;

$$(4) 8 < (\frac{1}{2})^{2x+1} : _{};$$

(5) 
$$(a^2 + a + 2)^x > (a^2 + a + 2)^{1-x}$$
;

(6) 
$$(\frac{1}{2})^{x^2+x-2} < 1$$
:\_\_\_\_\_.

- 307. 函数  $f(x) = \sqrt{1 6x^2 + x 2}$  的定义域是\_\_\_\_\_\_.
- 309. 函数  $y = 3^{x^2 3x 2}$  为增函数的区间是\_\_\_\_\_\_.
- 310. 函数  $y = (0.2)^{x^2 6x + 9}$  为增函数的区间是\_\_\_\_\_.
- 311. 函数  $y = 2^{-|x|}$  为增函数的区间是\_\_\_\_\_.
- 312. 函数  $y = (\frac{1}{2})^{|1+2x|}$  为增函数的区间是\_\_\_\_\_\_\_, 为减函数的区间是\_\_\_\_\_\_.
- 313. 若函数  $y = (\frac{1}{2})^{(m^2-1)x}$  在  $x \in \mathbf{R}$  为减函数, 则实数 m 的取值范围是\_\_\_\_\_\_.
- 314. 若  $1 \le x \le 2$ , 则函数  $y = (\frac{1}{2})^{x^2 6x + 10}$  的最大值为\_\_\_\_\_\_.
- 315. 函数  $f(x) = a^{2x} 3a^x + 2(a > 0$  且  $a \neq 1$ ) 的最小值为\_\_\_\_\_.
- 316. 对于函数  $y = a^{x^2-4} (a > 0$  且  $a \neq 1)$ :
  - (1) 若 0 < a < 1, 则 y 有最大值 ;
  - (2) 若 a > 1, 则 y 有最小值\_\_\_\_\_.
- 317. 函数  $f(x) = \frac{1}{3^x 1}$  的值域是\_\_\_\_\_.
- 318. 函数  $f(x) = \frac{3^x}{3^x + 1}$  的值域是\_\_\_\_\_.
- 319. 若关于 x 的方程  $5^x = \frac{a+3}{5-a}$  有负根, 则实数 a 的取值范围是\_\_\_\_\_\_.
- 320. 若  $0 < a < 1, x > y > 1, 则 <math>a^x, x^a, a^y, y^a$  从小到大的排列顺序是\_\_\_\_\_\_.
- 321. 若 0.9 < a < 1, 则  $a, a^a, a^{a^a}$  从小到大的排列顺序是\_\_\_\_\_\_.
- 322. 已知  $f(x) = a^{2x^2 3x + 1}$ ,  $g(x) = a^{x^2 + 2x 5} (a > 0$  且  $a \neq 1$ ), 确定 x 的取值范围, 使得 f(x) > g(x).
- 323. 若  $f(x) = a + \frac{1}{4^x + 1}$  是奇函数, 求常数 a 的值.
- 324. 若  $f(x) = x^2(\frac{1}{a^x 1} + m)(a > 0$  且  $a \neq 1)$  为奇函数, 求常数 m 的值.
- 325. 已知函数  $f(x) = (\frac{1}{2^x 1} + \frac{1}{2})x^3$ .
  - (1) 求函数的定义域;
  - (2) 讨论 f(x) 的奇偶性;
  - (3) 求证: f(x) > 0.
- 326. 已知  $f(x) = \frac{a^x 1}{a^x + 1}(a > 1)$ .
  - (1) 判断函数 f(x) 的奇偶性;
  - (2) 求函数 f(x) 的值域;
  - (3) 求证: f(x) 在区间  $(-\infty, +\infty)$  上是增函数.

- 327. 若  $0 \le x \le 2$ , 求函数  $y = 4^{x-\frac{1}{2}} 3 \cdot 2^x + 5$  的最大值和最小值.
- 328. 若函数  $f(x) = a^{2x} + 2a^x 1(a > 0$  且  $a \neq 1)$  在 [-1,1] 上的最大值为 14, 求实数 a 的值.
- 329. 已知函数  $f(x) = \frac{a}{a^2-2}(a^x-a^{-x})(a>0$  且  $a\neq 1$ )在  $(-\infty,+\infty)$  上是增函数, 求实数 a 的取值范围.
- 330. 已知  $(a+1)^{-\frac{1}{3}} < (3-2a)^{-\frac{1}{3}}$ , 求实数 a 的取值范围.
- 331. 已知集合  $M=\{x|(x+1)^2\leq 1\},\ P=\{y|y=4^x-a\cdot 2^{x+1}+1,\ x\in M,\ \frac{3}{4}< a\leq 1\},$  且全集  $U=\mathbf{R},$  求  $\mathbb{C}_U(M\cup P).$
- 332. 求方程  $x^{\frac{1}{3}} + 2^x = 0$  的实根个数.
- 333. 求关于 x 的方程  $a^x + 1 = -x^2 + 2x + 2a(a > 0$  且  $a \neq 1$ ) 的实数解的个数.
- 334. 在同一个平面直角坐标系中, 作出 t(x) = 0.5x 与  $g(x) = 0.2 \times 2^x$  的图像, 并比较它们的增长情况.
- 335. 某地区不同身高的未成年男性的体重平均值如下表 (身高: cm; 体重: kg):

| 身高 | 60    | 70    | 80    | 90    | 100   | 110   |
|----|-------|-------|-------|-------|-------|-------|
| 体重 | 6.13  | 7.90  | 9.99  | 12.15 | 15.02 | 17.05 |
| 身高 | 120   | 130   | 140   | 150   | 160   | 170   |
| 体重 | 20.92 | 26.86 | 31.11 | 38.85 | 47.25 | 55.05 |

为了揭示未成年男性的身高与体重的规律, 甲选择了模型  $y=ax^2+bx+c(a>0)$ , 乙选择了模型  $y=ba^x(a>1)$ , 其中 y 表示体重, x 表示身高. 你认为谁选择的模型较好?

## 336. 用计算器计算并填写下表:

| x  | $f(x) = x^{\frac{1}{2}}$ | $g(x) = x^{0.6}$ | $h(x) = 2.1^x$ | $s(x) = 2.2^x$ |
|----|--------------------------|------------------|----------------|----------------|
| 0  |                          |                  |                |                |
| 1  |                          |                  |                |                |
| 2  |                          |                  |                |                |
| 3  |                          |                  |                |                |
| 4  |                          |                  |                |                |
| 5  |                          |                  |                |                |
| 6  |                          |                  |                |                |
| 7  |                          |                  |                |                |
| 8  |                          |                  |                |                |
| 9  |                          |                  |                |                |
| 10 |                          |                  |                |                |

从表中变化的现象可以归纳出哪些函数递增的规律?

- (1) 幂函数 f(x) 与 g(x) 之间比较得出的规律; (2) 指数函数 h(x) 与 s(x) 之间比较得出的规律; (3) 幂函数  $f(x) = x^{\frac{1}{2}}$  与指数函数 h(x) 之间比较得出的规律
- 337. 求 log<sub>9</sub> 27 的值.

解答在这里设  $\log_9 27 = x$ ,根据对数的定义有  $9^x = 27$ . 即  $3^{2x} = 3^3$ ,所以  $2x = 3, x = \frac{3}{2}$ ,即  $\log_9 27 = \frac{3}{2}$ 注意  $\log_a N$  的定义至关重要, 它始终是解对数问题的首要手段. 根据定义, 显然有  $\log_a 1 = 0$ ,  $\log_a a = 1$ ,  $\log_a a^m \ = \ m, \ a^{\log_a N} \ = \ N(a \ > \ 0 \ \perp \ a \ 
eq \ 1, \ N \ > \ 0).$  学习了换底公式后,本例还可按以下方法求值:  $\log_9 27 = \frac{\log_3 27}{\log_2 9} = \frac{3\log_3 3}{2\log_2 3} = \frac{3}{2}, \ \ \text{rg} \ \log_9 27 = \log_{3^2} 3^3 = \frac{3}{2}\log_3 3 = \frac{3}{2}.$ 

338. 设  $3^a = 4^b = 36$ , 求  $\frac{2}{a} + \frac{1}{b}$  的值.

解答在这里对已知条件取以 6 为底的对数, 得  $\frac{2}{a} = \log_6 3$ ,  $\frac{1}{b} = \log_6 2$ , 于是  $\frac{2}{a} + \frac{1}{b} = \log_6 3 + \log_6 2 = \log_6 6 = \log_6 6$ 

339. 已知  $x = a^{\frac{1}{1 - \log_a y}}, y = a^{\frac{1}{1 - \log_a z}}$  求证:  $z = a^{\frac{1}{1 - \log_a x}}$ 

解答在这里由  $x=a^{\frac{1}{1-\log_a y}}$ ,得  $\log_a x=\frac{1}{1-\log_a y}$ .同理  $\log_a y=\frac{1}{1-\log_a z}$ ,代入上式,消去  $\log_a y$ ,得  $\log_a x=\frac{1}{1-\frac{1}{1-\log_a z}}=\frac{1-\log_a z}{-\log_a z}$ ,即  $\log_a z=\frac{1}{1-\log_a x}$ ,所以  $z=a^{\frac{1}{1-\log_a x}}$ .

- 340. 已知  $\log_{12} 27 = a$ , 求  $\log_6 16$ . 解答在这里由已知,得  $a = \log_{12} 27 = \frac{\log_3 27}{\log_3 12} = \frac{3}{1 + 2\log_3 2}$ ,所以  $\log_3 2 = 27$  $\frac{3-a}{2a}$ . 于是  $\log_6 16 = \frac{\log_3 16}{\log_3 6} = \frac{4\log_3 2}{1+\log_3 2} = \frac{4(3-a)}{3+a}$ .
- 341. 若  $a = b^2(b > 0, b \neq 1)$ , 则有 ( ).

A. 
$$\log_2 a = b$$

B. 
$$\log_2 b = a$$

C. 
$$\log_a b = 2$$

D. 
$$\log_b a = 2$$

342. 若  $\log_x \sqrt[x]{y} = z$ , 则 x, y, z 之间满足 ( ).

A. 
$$y^7 = x^2$$

B. 
$$y = x^{7z}$$

C. 
$$y = 7x^{z}$$

D. 
$$y = z^{7x}$$

343. 2<sup>log<sub>4</sub> 3</sup> 的值等于 ( ).

B. 
$$\sqrt{3}$$

C. 
$$\frac{\sqrt{3}}{3}$$

D. 
$$\frac{1}{3}$$

344.  $\log_a b \cdot \log_3 a = 5$ , 则 b = (

A. 
$$a^3$$

B. 
$$a^{5}$$

C. 
$$3^{5}$$

D. 
$$5^{3}$$

345. 若点  $P(\lg a, \lg b)$  关于 x 轴的对称点的坐标是 (0, -1), 则 a 和 b 的值是 (

A. 
$$a = 1, b = 10$$

A. 
$$a = 1, b = 10$$
 B.  $a = 1, b = \frac{1}{10}$  C.  $a = 10, b = 1$ 

C. 
$$a = 10, b = 1$$

D. 
$$a = \frac{1}{10}, b = 1$$

346. 给出下列四个式子 (已知  $a > 0, a \neq 1, x > y > 0$ ): ①  $\log_a x \cdot \log_a y = \log_a (x + y)$ ; ②  $\log_a x + \log_a y = \log_a (x + y)$  $\log_a(x+y); \ \mathfrak{J} \ \log_a\frac{x}{y} = \log_a(x-y); \ \mathfrak{J} \ \log_a(x-y) = \frac{\log_a x}{\log_a y}. \ \mathbf{其中正确的有} \ ( \hspace{1cm} ).$ 

- 347. 若 m > 0, 且  $10^x = \lg(10m) + \lg \frac{1}{m}$ , 则 x 的值为 (

C. 0

D. -1

- 348. 若  $\lg x = a$ ,  $\lg y = b$ , 则  $\lg \sqrt{x} \lg(\frac{y}{10})^2$  的值等于 (
- A.  $\frac{1}{2}a 2b 2$  B.  $\frac{1}{2}a 2b + 2$  C.  $\frac{1}{2}a 2b 1$
- D.  $\frac{1}{2}a 2b + 1$
- 349. 如果方程  $\lg^2 x + (\lg 2 + \lg 3) \lg x + \lg 2 \cdot \lg 3 = 0$  的两个根为  $x_1, x_2$ , 那么  $x_1 \cdot x_2$  的值为 ( ).
  - A.  $\lg 2 \cdot \lg 3$
- B.  $\lg 2 + \lg 3$
- C.  $\frac{1}{6}$

D. -6

- 350. 若  $x = t^{\frac{1}{t-1}}$ ,  $y = t^{\frac{t}{t-1}}(t > 0, t \neq 1)$ , 则 x, y 之间的关系是 (
  - A.  $y^x = x^{\frac{1}{y}}$
- B.  $y^{\frac{1}{x}} = x^y$
- C.  $y^x = x^y$
- D.  $x^x = y^y$

- 351. 若  $\log_8 x = -\frac{2}{3}$ , 则 x =\_\_\_\_\_.
- 352. 若  $\log_x 27 = \frac{3}{4}$ , 则 x =\_\_\_\_\_.
- 353. 若  $\log_2(\log_5 x) = 0$ , 则 x =\_\_\_\_\_.
- 354. 若  $\log_2(\lg x) = 1$ , 则 x =\_\_\_\_\_
- 355. 若  $\log_2[\log_3(\log_5 x)] = 0$ , 则 x =\_\_\_\_\_\_
- 356. 若  $\log_2[\log_3(\log_4 x)] = \log_3[\log_4(\log_2 y)] = \log_4[\log_2(\log_3 z)] = 0$ . 则 x + y + z =\_\_\_\_\_.
- 357. 计算:  $2^{\log_4(2-\sqrt{3})^2} + 3^{\log_9(2+\sqrt{3})^2} =$
- 358. 计算:  $2^{1+\frac{1}{2}\log_2 5} =$ \_\_\_\_\_.
- 359. 计算: 9<sup>log<sub>3</sub> 2</sup> = ...
- 360. 计算:  $5^{3-2\log_{25}125} =$  .
- 361. 计算:  $\log_{(2-\sqrt{3})}(7+4\sqrt{3}) =$ \_\_\_\_\_.
- 362. 计算:  $\log_6(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}})=$  .
- 363. 计算:  $(2+\sqrt{3})^{-1} \log_{(2+\sqrt{3})}(7+4\sqrt{3}) =$ \_\_\_\_\_\_
- 364. 计算:  $-2^2 \div (-\frac{27}{8})^{-\frac{1}{3}} (0.7)^{\lg 1} + \log_3 \frac{1}{4} + \log_3 12 =$ \_\_\_\_\_\_
- 365. 若  $3^x = 12^y = 8$ , 则  $\frac{1}{x} \frac{1}{y} =$ \_\_\_\_\_.
- 366. 若  $2^x = 7^y = 196$ ,则  $\frac{1}{x} + \frac{1}{y} = \underline{\hspace{1cm}}$
- 367. 若  $2^{6a} = 3^{3b} = 6^{2c}$ , 则 a, b, c 之间的关系式是\_\_\_\_\_
- 368. 已知正数 a, b 满足  $a^2 + b^2 = 7ab$ , 求证:  $\log_m \frac{a+b}{3} = \frac{1}{2} (\log_m a + \log_m b) (m > 0, m \neq 1)$ .

- 369. 已知  $\log_a(x^2+1) + \log_a(y^2+4) = \log_a 8 + \log_a x + \log_a y (a>0, a\neq 1)$ , 求  $\log_8(xy)$  的值.
- 370. 已知只有一个 x 的值满足方程  $(1 \lg^2 a)x^2 + (1 \lg a)x + 2 = 0$ , 求实数 a 的值.
- 371. 设方程  $x^2 \sqrt{10}x + 2 = 0$  的两个根为  $\alpha, \beta, \bar{x} \log_4 \frac{\alpha^2 \alpha\beta + \beta^2}{(\alpha \beta)^2}$  的值.
- 372. 已知  $\lg a$  和  $\lg b$  是关于 x 的方程  $x^2 x + m = 0$  的两个根,且关于 x 的方程  $x^2 (\lg a)x (1 + \lg a) = 0$  有两个相等的实数根,求实数 a, b 和 m 的值.
- 373. 已知函数  $f(x) = x^2 \lg a + 2x + 4 \lg a$  的最大值为 3, 求实数 a 的值.
- 374. 已知函数  $f(x) = x^2 + (\lg a + 2)x + \lg b$ , 满足 f(-1) = -2, 且对一切实数 x 都有  $f(x) \ge 2x$ , 求实数 a, b 的值.
- 375. 已知  $2 \lg \frac{x-y}{2} = \lg x + \lg y$ , 求  $\frac{x}{y}$  的值.
- 376. 设  $A>B>0, A^2+B^2=6AB,$  求证:  $\log_a\frac{A-B}{2}=\frac{1}{2}(\log_aA+\log_aB)(a>0$  且  $a\neq 1).$
- 377. 已知集合  $M = \{x, xy, \lg(xy)\}, P = \{0, |x|, y\},$  且满足 M = P, 求实数 x, y 的值.
- 378. 已知  $12^x = 3$ ,  $12^y = 2$ , 求  $8^{\frac{1-2x}{1-x+y}}$  的值.
- 379. 已知不相等的两个正数 a, b 满足  $a^{\lg ax} = b^{\lg bx}$ , 求  $(ab)^{\lg abx}$  的值.
- 380. 已知 x,y,z>0,且  $\lg x + \lg y + \lg z = 0$ ,求  $x^{\frac{1}{\lg y} + \frac{1}{\lg z}} \cdot y^{\frac{1}{\lg z} + \frac{1}{\lg x}} \cdot z^{\frac{1}{\lg x} + \frac{1}{\lg y}}$  的值.
- 381. 求  $y^{\lg 20} \cdot (\frac{1}{2})^{\lg 0.7}$  的值.
- 382. 化简  $\frac{\log_5 8}{\log_5 2}$  可得 ( ).
  - A. log<sub>5</sub> 4
- B.  $3\log_5 2$
- C. log<sub>3</sub> 6
- D. 3

- 383.  $\frac{\log_8 9}{\log_3 3}$  的值是 ( ).
  - A.  $\frac{2}{3}$

B. 1

C.  $\frac{3}{2}$ 

D. 2

- 384. 若  $\log_a b = \log_b a (a \neq b, a \neq 1, b \neq 1)$ , 则 ab 等于 ( ).
  - A. 1

B. 2

C.  $\frac{1}{4}$ 

D. 4

- 385.  $\frac{1}{\log_{\frac{1}{2}} \frac{1}{3}} + \frac{1}{\log_{\frac{1}{5}} \frac{1}{3}}$  的值所属区间是 ( ).
  - A. (-2, -1)
- B. (1,2)
- C.  $(-\infty, -2)$
- D. (2,3)

- 386. 若  $\log_3 7 \cdot \log_2 9 \cdot \log_{49} m = \log_4 \frac{1}{2}$ , 则 m 的值等于 ( ).
  - A.  $\frac{1}{4}$

B.  $\frac{\sqrt{2}}{2}$ 

C.  $\sqrt{2}$ 

D. 4

- 387. 若  $x \neq 1$ , 则与  $\frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x}$  相等的式子是 ( ).
  - A.  $\frac{1}{\log_{60} x}$
- B.  $\frac{1}{\log_3 x \cdot \log_4 x \cdot \log_5 x}$
- C.  $\frac{1}{\log_x 60}$
- D.  $\frac{12}{\log_3 x + \log_4 x + \log_5 x}$

- 388. 若  $\log_8 3 = p$ ,  $\log_3 5 = q$ , 则  $\lg 5(用 p, q 表示)$ 等于 ( ).
  - A.  $\frac{3p+q}{5}$
- $B. \frac{1+3pq}{p+q}$
- C.  $\frac{3pq}{1+3pq}$
- D.  $p^2 + q^2$
- 389. 已知 x, y, z 都是大于 1 的正数, m > 0, 且  $\log_x m = 24$ ,  $\log_y m = 40$ ,  $\log_{xyz} m = 12$ , 则  $\log_z m$  的值为 ( )
  - A.  $\frac{1}{60}$

B. 60

C.  $\frac{200}{3}$ 

D.  $\frac{3}{20}$ 

- 390. 计算: log<sub>64</sub> 32 =\_\_\_\_\_.
- 391. 计算:  $\log_{\frac{1}{a}} b + \log_a b =$ \_\_\_\_\_.
- 392. 计算:  $\log_6 25 \cdot \log_5 3 \cdot \log_9 6 =$ \_\_\_\_\_\_.
- 393. 计算:  $(\log_2 5 + \log_4 0.2)(\log_5 2 + \log_{25} 0.5) =$ \_\_\_\_\_
- 394. 计算:  $\log_2 \frac{1}{25} \cdot \log_3 \frac{1}{8} \cdot \log_5 \frac{1}{9} =$ \_\_\_\_\_.
- 395. 计算:  $a^{\frac{\log_b(\log_b a)}{\log_b a}} =$ \_\_\_\_\_.
- 396. 计算:  $a^{\frac{\log_m a \log_m b}{\log_m a}} =$ \_\_\_\_\_.
- 397. 已知  $n \in \mathbb{N}^*$ , 计算:  $(\log_2 3 + \log_4 9 + \log_8 27 + \dots + \log_{2^n} 3^n) \cdot \log_9 \sqrt[n]{32} = \underline{\hspace{1cm}}$
- 398. 已知  $\log_a x = 2$ ,  $\log_b x = 1$ ,  $\log_c x = 4$ , 则  $\log_{abc} x =$ \_\_\_\_\_.
- 399. 已知  $m = \log_2 5$ , 则  $2^m m \lg 2 4 =$ \_\_\_\_\_.
- 400. 已知  $\lg(3x^3) \lg(3y^3) = 9$ ,则  $\frac{x}{y} =$ \_\_\_\_\_\_.
- 401. 记  $\log_8 27 = m$ , 用 m 表示  $\log_6 16$ .
- 402. 已知  $\log_3 7 = a$ ,  $\log_3 4 = b$ , 求  $\log_{12} 21$ .
- 403. 已知  $\log_2 3 = a$ ,  $\log_3 5 = b$ , 求  $\log_{15} 20$ .
- 404. 已知 a > b > 1,  $\log_a b + \log_b a = \frac{10}{3}$ , 求  $\log_a b \log_b a$  的值.
- 405. 已知  $\log_{2a} a = m$ ,  $\log_{3a} 2a = n$ , 求证:  $2^{1-mn} = 3^{n-mn}$ .
- 406. 已知关于 x 的方程  $x^2 (\log_2 b + \log_a 2)x + \log_a b = 0$  的两根为-1 和 2, 求实数 a, b 的值.
- 407. 已知  $a^2 + b^2 = c^2$ , 求证  $\log_{(c+b)} a + \log_{(c-b)} a = 2\log_{(c+b)} a \cdot \log_{(c-b)} a$ .
- 408. 已知正实数 x, y, z 满足  $3^x = 4^y = 6^z$ .
  - (1) 求证  $\frac{1}{z} \frac{1}{x} = \frac{1}{2y}$ ;
  - (2) 比较 3x, 4y, 6z 的大小.

409. 求函数  $y = \frac{\sqrt{\log_{0.8} x - 1}}{2x - 1}$  的定义域.

解答在这里函数的定义域应满足: 
$$\begin{cases} 2x-1\neq 0, \\ \log_{0.8}x-1\geq 0, \end{cases} \quad \mathbb{P} \begin{cases} x\neq \frac{1}{2}, \\ \log_{0.8}x\geq 1, \quad \text{解得 } 0< x\leq \frac{4}{5} \text{ 且 } x\neq \frac{1}{2}. \text{ 故函} \\ x>0, \end{cases}$$
数的定义域为  $\{x|0< x\leq \frac{4}{5}\text{ 且} x\neq \frac{1}{2}\}.$ 

410. 解不等式  $\log_{0.2}(x^2 + 2x - 3) > \log_{0.2}(3x + 1)$ 

解答在这里由己知,得 
$$\begin{cases} x^2+2x-3>0,\\ 3x+1>0,\\ x^2+2x-3<3x+1, \end{cases}$$
 ,即 
$$\begin{cases} (x+3)(x-1)>0,\\ x^2-x-4<0. \end{cases}$$
 解得 
$$\begin{cases} x<-3x>1,\\ \frac{1-\sqrt{17}}{2}< x<\frac{1+\sqrt{17}}{2}. \end{cases}$$
 .   
 不等式的解集为  $\{x|1< x<\frac{1+\sqrt{17}}{2}\}.$ 

411. 将 log<sub>0.7</sub> 0.8, log<sub>1.1</sub> 0.9, 1.1<sup>0.9</sup> 由小到大排列.

解答在这里利用对数函数的单调性. 因为  $\log_{1.1} 0.9 < \log_{1.1} 1 = 0$ ,  $\log_{0.7} 0.8 > \log_{0.7} 1 = 0$ , 所以  $\log_{1.1} 0.9 < \log_{0.7} 0.8$ . 又因为  $\log_{0.7} 0.8 < \log_{0.7} 0.7 = 1$ , 由指数函数的单调性知,  $1.1^{0.9} > 1.1^{0} = 1$ , 所以  $\log_{0.7} 0.8 < 1.0^{0.9}$ . 于是从小到大的排列是  $\log_{1.1} 0.9 < \log_{0.7} 0.8 < 1.1^{0.9}$ .

412. 若 0 < x < 1, a > 0,  $a \neq 1$ , 比较  $p = |\log_a(1-x)|$  和  $q = |\log_a(1+x)|$  的大小.

解答在这里解法一因为 0 < x < 1,所以  $1-x \in (0,1), \ 1+x \in (1,2), \ 1-x^2 \in (0,1).$  若 a>1,则  $\log_a(1-x) < 0$ , $\log_a(1+x) > 0$ ,所以  $q-p=\log_a(1+x)+\log_a(1-x)=\log_a(1-x^2) < 0$ ,所以 q< p;若 0 < a < 1,则  $\log_a(1+x) < 0$ , $\log_a(1-x) > 0$ ,所以  $q-p=-\log_a(1+x)-\log_a(1-x)=-\log_a(1-x^2) < 0$ ,所以 q< p. 故恒有 p>q. 解法二因为  $\frac{p}{q}=|\frac{\log_a(1-x)}{\log_a(1+x)}|=|\log_{(1+x)}(1-x)|=-\log_{(1+x)}(1-x)=-\log_{(1+x)}(1-x)=-\log_{(1+x)}(1-x)=-\log_{(1+x)}(1-x^2)<0$ ,于是  $\frac{p}{q}>1$ .又 p>0,q>0,故 p>q.解法三 p>q.解法三 p>q2 p>q2 p>q3 p>q4 p>q5 p>q6 p>q6 p>q6 p>q7 p>q6 p>q7 p>q8 p>q7 p>q8 p>q9 p>q

413. 求函数  $f(x) = \log_{0.2}(x-1)(x+2)$  为增函数的区间.

解答在这里函数的定义域为 x<-2 或 x>1, 且  $(x-1)(x+2)=x^2+x-2=(x+\frac{1}{2})^2-\frac{9}{4}$ , 它在  $(-\infty,-\frac{1}{2})$  上为减函数. 所以函数 f(x) 为增函数的区间是  $(-\infty,-2)$ .

414. 求函数  $f(x) = \log_{\frac{1}{2}}(x^2 - 6x + 17)$  的值域.

解答在这里令  $t=x^2-6x+17=(x-3)^2+8\geq 8,$  所以  $f(x)\leq \log_{\frac{1}{2}}8=-3,$  即函数的值域是  $(-\infty,-3].$ 

415. 已知关于 x 的方程  $ax^2-4ax+1=0$  的两个实数根  $\alpha,\beta$  满足不等式  $|\lg\alpha-\lg\beta|\leq 1$ , 求实数 a 的取值范围.

解答在这里由题设,应有  $\begin{cases} \Delta = 4(4a^2 - a) \geq 0, \\ \alpha + \beta = 4 > 0, \\ |\lg \frac{\alpha}{\beta}| \leq 1, \end{cases}$  即  $\begin{cases} a \leq 0a \geq \frac{1}{4}, \\ \alpha + \beta = 4, \\ a > 0, \\ -1 \leq \lg \frac{\alpha}{\beta} \leq 1. \end{cases}$  由第四式,得  $\frac{1}{10} \leq \frac{\alpha}{\beta} \leq 10$ ,即  $\frac{11}{10} \leq \frac{\alpha + \beta}{\beta} \leq 11$ ;由  $\alpha + \beta = 4$ ,得  $\frac{11}{10} \leq \frac{4}{\beta} \leq 11$ ,即  $\frac{4}{11} \leq \beta \leq \frac{40}{11}$ . 于是  $\frac{1}{a} = \alpha\beta = \beta(4 - \beta) = -(\beta - 2)^2 + 4$ . 如图 15 所示, $\frac{1}{a} \in [\frac{160}{121}, 4]$ ,所以 a 的取值范围是  $\frac{1}{4} \leq a \leq \frac{121}{160}$ .



416. 与函数 y = x 为同一个函数的是 ( ).

A. 
$$y = \sqrt{x^2}$$

B. 
$$y = \frac{x^2}{1}$$

C. 
$$y = a^{\log_a x} (a > 0 \text{ II. } a \neq 1)$$

D. 
$$y = \log_a a^x (a > 0 \text{ II. } a \neq 1)$$

417. 若函数 y = f(x) 的反函数是  $y = \lg(x - 1) + 3(x > 1)$ , 则 f(x) 等于 ( ).

A. 
$$10^{x+3} + 1$$

B. 
$$10^{x-3} - 1$$

C. 
$$10^{x+3} - 1$$

D. 
$$10^{x-3} + 1$$

418. 若函数  $f(x) = \log_2 x + 3(x \ge 1)$ , 则其反函数  $f^{-1}(x)$  的定义域是 ( ).

A. **R** 

B. 
$$\{x | x \ge 1\}$$

B. 
$$\{x|x \ge 1\}$$
 C.  $\{x|0 < x < 1\}$  D.  $\{x|x \ge 3\}$ 

D. 
$$\{x | x \ge 3\}$$

419. 图中图像所对应的函数可能是().

- A.  $y = 2^x$
- B.  $y = 2^x$  的反函数 C.  $y = 2^{-x}$
- D.  $y = 2^{-x}$  的反函数
- 420. 设 f(x) 是定义在  $(-\infty, +\infty)$  上的偶函数, 且它在  $[0, +\infty)$  上是增函数, 记  $a=f(-\log_{\sqrt{2}}\sqrt{3}), b=f(-\log_{\sqrt{3}}\sqrt{2}),$ c = f(-2), 则 a, b, c 的大小关系是 (
  - A. a > b > c
- B. b > c > a
- C. c > a > b
- D. c > b > a

421. 下列函数图像中, 不正确的是( ).



- A.  $y = \log_{\frac{1}{2}} x^2$
- B.  $y = \log_{\frac{1}{3}}(-x)$
- $C. y = |\log_3 x|$
- D.  $y = |x^{-\frac{1}{3}}|$
- 422. 在同一平面直角坐标系中画出函数 y=x+a 与  $y=\log_a x$  的图像, 可能是 (







423. 函数 y = f(x) 的图像如图所示, 则  $y = \log_{0.7} f(x)$  的示意图是 (



A.





424. 由关系式  $\log_x y = 3$  所确定的函数 y = f(x) 的图像是 (

В.









425. 若函数  $f(x) = \frac{1-2^x}{1+2^x}$ ,则  $f^{-1}(\frac{3}{5})$  等于 ( )

A. 3

B. 2

C. 1

D. -2

426. 函数  $y = \log_{\frac{1}{3}}(x^2 - 3x + 4)$  的定义域为\_\_\_\_\_\_

427. 函数 
$$y = \frac{\sqrt{x^2 - 4}}{\lg(x^2 + 2x - 3)}$$
 的定义域为\_\_\_\_\_\_.

428. 函数 
$$y = \log_{(2x-1)}(32-4^x)$$
 的定义域为\_\_\_\_\_\_.

429. 函数 
$$y = \log_{\frac{1}{2}}(x^2 - 4x + 7)$$
 的值域为\_\_\_\_\_.

430. 函数 
$$y = \log_{\frac{1}{2}} \frac{1}{x^2 - 2x + 5}$$
 的值域为\_\_\_\_\_\_.

431. 函数 
$$y = \log_{\frac{1}{2}} \sqrt{3 - 2x - x^2}$$
 的值域为\_\_\_\_\_\_

432. 函数 
$$y = \log_{\frac{1}{3}}(x^2 - 5x + 6)$$
 为减函数的区间是\_\_\_\_\_

433. 函数 
$$y = \lg(12 - 4x - x^2)$$
 为增函数的区间是\_\_\_\_\_\_

434. 函数 
$$y = -\log_{\frac{1}{2}}(-x)$$
 为减函数的区间是\_\_\_\_\_.

435. 若函数 
$$y = \log_a(1-x)$$
 在  $[0,1)$  上是增函数,则  $a$  的取值范围是\_\_\_\_\_\_.

436. 函数 
$$y = \log_{\frac{1}{2}}^2 x - \log_{\frac{1}{2}} x + 1$$
 为增函数的区间是\_\_\_\_\_

437. 函数 
$$y = (0.2)^{-x} + 1$$
 的反函数是\_\_\_\_\_.

438. 函数 
$$y = 1 + \lg(x+2)(x \ge 8)$$
 的反函数是\_\_\_\_\_.

439. 若 
$$f(x) = \frac{10^x + 1}{10^x - 1}(x > 1)$$
,则  $f^{-1}(\frac{101}{99}) =$ \_\_\_\_\_\_.

440. 若 
$$f(x) = \frac{\lg x - 1}{\lg x + 1}(x > 1$$
 且  $x \neq \frac{1}{10}$ ),则  $f^{-1}(\frac{1}{10}) =$ \_\_\_\_\_\_.

441. 若函数  $f(x) = a^x - k$  的图像过点 (1,3), 其反函数  $f^{-1}(x)$  的图像过点 (2,0), 则 f(x) 的表达式是\_\_\_\_\_

442. 函数 
$$y = \lg \frac{1-x}{1+x}$$
 ( ).

A. 是奇函数, 且在 (-1,1) 是增函数

B. 是奇函数, 且在 (-1,1) 上是减函数

C. 是偶函数, 且在 (-1,1) 是增函数

D. 是偶函数, 且在 (-1,1) 上是减函数

- 443. 函数  $f(x) = \ln(e^x + 1) \frac{x}{2}$ 
  - A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 既是奇函数, 又是偶函数

- D. 没有奇偶性
- 444. 求函数  $f(x) = \lg(1+x) + \lg(1-x) \left(-\frac{1}{2} < x < 0\right)$  的反函数.
- 445. 已知  $f(x) = \frac{a^x 1}{a^x + 1}(a > 1)$ .
  - (1) 求 f(x) 的值域:
  - (2) 求证: f(x) 在 R 上是增函数;
  - (3) 求 f(x) 的反函数.
- 446. 已知  $f(\log_a x) = \frac{a(x^2-1)}{x(a^2-1)}(x>0, 0< a<1)$ , 求证: 函数 f(x) 在  $(-\infty, +\infty)$  上是增函数.
- 447. 若函数  $f(x) = \log_a |x+1|$  在 (-1,0) 上有 f(x) > 0, 则 f(x)( ).
  - A. 在  $(-\infty,0)$  上是增函数

B. 在  $(-\infty,0)$  是减函数

C. 在  $(-\infty, -1)$  上是增函数

D. 在  $(-\infty, -1)$  是减函数

- 448. 若 0 < b < 1,  $\log_a b < 1$  则 ( ).
  - A. 0 < a < b
- B. 0 < b < a
- C. 0 < b < a < 1 D. 0 < a < b **ಪ** a > 1
- 449. 若函数  $f(x) = |\log_a x|$ , 其中 0 < a < 1, 则下列各式中成立的是 (
  - A.  $f(\frac{1}{2}) > f(2) > f(\frac{1}{4})$  B.  $f(\frac{1}{4}) > f(\frac{1}{2}) > f(2)$  C.  $f(2) > f(\frac{1}{2}) > f(\frac{1}{4})$  D.  $f(\frac{1}{4}) > f(2) > f(\frac{1}{2})$

- 450. 若 1 < x < 2, 则下列各式正确的是 ( ).
  - A.  $2^x > \log_{\frac{1}{2}} x > \sqrt[3]{x}$  B.  $2^x > \sqrt[3]{x} > \log_{\frac{1}{2}} x$  C.  $\sqrt[3]{x} > 2^x > \log_{\frac{1}{2}} x$  D.  $\log_{\frac{1}{2}} > x\sqrt[3]{x} > 2^x$

- 451. 若函数  $f(x) = \log_a x$  在  $x \in [3, +\infty)$  上恒有 |f(x)| > 1, 则实数 a 的取值范围是 ( ).
  - A.  $0 < a < \frac{1}{3}$  或 1 < a < 3

B.  $0 < a < \frac{1}{3}$  或 a > 3

C.  $\frac{1}{2} < a < 3 \perp a \neq 1$ 

- D.  $\frac{1}{3} < a < 1$  或 a > 3
- 452. 若  $a > a^2 > b > 0$ , 并记  $p = \log_a b$ ,  $q = \log_b a$ ,  $r = \log_a \frac{a}{b}$ ,  $s = \log_b \frac{b}{a}$ , 则 p, q, r, s 的大小关系是 ( ).
  - A. r < q < p < s

- B. r C. <math>r D. <math>r < q < s < p
- 453. 若  $\log_a \frac{1}{3} > \log_b \frac{1}{3} > 0$ , 则 a, b 的关系是 ( ).
  - A. 1 < b < a
- B. 1 < a < b
- C. 0 < a < b < 1 D. 0 < b < a < 1
- 454. 将下列各数按从小到大排列:  $a = |\log_{\frac{1}{3}} \frac{1}{4}|, b = |\log_{\frac{1}{2}} \frac{3}{2}|, c = |\log_2 5|$ :\_\_\_\_\_\_.
- 455. 将下列各数按从小到大排列:  $\log_{0.1} 0.4$ ,  $\log_{\frac{1}{2}} 0.4$ ,  $\log_{3} 0.4$ ,  $\log 0.4$ :\_\_\_\_\_.
- 456. 将下列各数按从小到大排列:  $\frac{3}{2}$ ,  $\log_2 3$ :\_\_\_\_\_\_.

- 457. 将下列各数按从小到大排列:  $\frac{2}{\lg 2}$ ,  $\frac{3}{\lg 3}$ ,  $\frac{5}{\lg 5}$ :\_\_\_\_\_.
- 458. 将下列各数按从小到大排列:  $\lg^2 x$ ,  $\lg x^2$ ,  $\lg(\lg x)$ , 其中 1 < x < 10:\_\_\_\_\_\_.
- 459. 若  $\log_a \frac{4}{5} < 1(a > 0, a \neq 1)$ , 则 a 的取值范围是\_\_\_\_\_\_.
- 460. 若 0 < a < 1, 0 < b < 1, 且  $a^{\log_b(x-3)} < 1$ , 则 x 的取值范围是\_\_\_\_\_\_.
- 461. 求函数  $y = (\log_{\frac{1}{4}} x)^2 \log_{\frac{1}{4}} x^2 + 5(2 \le x \le 4)$  的值域.
- 462. 若  $-3 \le \log_{\frac{1}{2}} x \le -\frac{1}{2}$ , 求  $y = (\log_2 \frac{x}{2})(\log_2 \frac{x}{4})$  的最大 (小) 值及其相应的 x 值,
- 463. 已知 a,b 是两个不相等的正数, 且  $\log_m \frac{x}{a} \cdot \log_m \frac{x}{b}$  的最小值是  $-\frac{1}{4}(m>0$  且  $m\neq 1)$ , 求 m 的值.
- 464. 已知实数 x, y 满足  $(\log_4 y)^2 = \log_{\frac{1}{2}} x$ , 求  $u = \frac{x}{y}$  的最大值及其相应的 x, y 的值.
- 465. 已知抛物线  $y = x^2 \log_2 a + 2x \log_a 2 + 8$  位于 x 轴的上方, 求实数 a 的取值范围.
- 466. 已知函数  $f(x) = (\log_a b)x^2 + 2(\log_b a)x + 8$  的图像在 x 轴的上方, 求 a, b 的取值范围.
- 467. 若只有一个 x 的值满足方程  $(1 \lg^2 a)x^2 + (1 \lg a)x + 2 = 0$ , 求实数 a 的值.
- 468. 若关于 x 的方程  $x^2 + 2(\log_3 a + 1)x \log_9 a = 0$  有两个相等实根, 求实数 a 的值.
- 469. 若二次函数  $f(x) = (\lg a)x^2 + 2x + 4\lg a$  有最小值 -3, 求实数 a 的值.
- 470. 已知  $f(x) = \log_a |\log_a x| (0 < a < 1)$ .
  - (1) 解不等式: f(x) > 0;
  - (2) 判断 f(x) 在  $(1,+\infty)$  上的单调性, 并证明之.
- 471. 实数 a 为何值时, 函数  $f(x) = 2^x 2^{-x} \lg a$  为奇函数?
- 472. 已知函数  $f(x) = \sqrt{\log_a x 1} (a > 0$  且  $a \neq 1$ ).
  - (1) 求 f(x) 的定义域;
  - (2) 当 a > 1 时, 求证: f(x) 在  $[a, +\infty)$  上是增函数.
- 473. 已知函数  $f(x) = 1 + \log_x 3$ ,  $g(x) = 2\log_x 2(x > 0$ , 且  $x \neq 1$ ), 比较 f(x) 与 g(x) 的大小.
- 474. 当 a > 1 时, 比较  $\log_b a$  与  $\log_{2b} a$  的大小.
- 475. 已知  $\log_m a > \log_n a(a > 1)$ , 讨论 m = n 的大小关系.
- 476. 已知  $\log_{1+a}(1-a) < 1$ , 求实数 a 的取值范围.
- 477. 已知  $|\lg(1-a)| > |\lg(1+a)|$ , 求实数 a 的取值范围.
- 478. 已知函数  $f(x) = \log_{\frac{1}{5}}(x^2 2x)$ .
  - (1) 求它的单调区间;
  - (2) 求 f(x) 为增函数时的反函数.

- 479. 已知函数  $f(x) = \log_a \frac{x+b}{x-b} (a > 0, b > 0$  且  $a \neq 1)$ .
  - (1) 求 f(x) 的定义域;
  - (2) 讨论 f(x) 的奇偶性;
  - (3) 讨论 f(x) 的单调性;
  - (4) 求 f(x) 的反函数  $f^{-1}(x)$ .
- 480. 已知函数  $f(x) = \lg \frac{x+1}{x-1} + \lg(x-1) + \lg(a-x)(a>1)$ .
  - (1) 是否存在一个实数 a 使得函数 y = f(x) 的图像关于某一条垂直于 x 轴的直线对称? 若存在, 求出这个实数 a; 若不存在, 说明理由;
  - (2) 当 f(x) 的最大值为 2 时, 求实数 a 的值.
- 481. 解方程  $9^{2x-1} = 4^x$ .

解答在这里由题意. 可得  $(\frac{9}{2})^{2x}=9$ ,所以  $2x=\log_{\frac{9}{2}}9$ ,故  $x=\frac{1}{2}\log_{\frac{9}{2}}9$ .

482. 解方程  $(\frac{1}{27})^x = 9^{1-x}$ .

解答在这里方程即为  $3^{-3x} = 3^{2-2x}$ , 所以 -3x = 2 - 2x, 故 x = -2.

483. 解方程  $9^x - 2 \cdot 3^{x+1} - 27 = 0$ .

解答在这里令  $y=3^x>0$ ,则原方程可化为  $y^2-6y-27=0$ . 由此得 y=9(另一解 y=-3 舍去). 从而由  $3^x=9$ ,解得 x=2.

484. **解方程**  $9^x + 4^x = \frac{5}{2} \times 6^x$ .

解答在这里方程即为  $2 \times 3^{2x} - 5 \times 3^x \times 2^x + 2 \times 2^{2x} = 0$ ,即  $2(\frac{3}{2})^{2x} - 5 \times (\frac{3}{2})^x + 2 = 0$ . 令  $y = (\frac{3}{2})^x$ ,方程又化为  $2y^2 - 5y + 2 = 0$ ,解得  $y_1 = 2$ , $y_2 = \frac{1}{2}$ ,于是便可得  $x_1 = \log_{\frac{2}{3}} 2$ , $x_2 = \log_{\frac{2}{3}} 2$ .

485. 解方程  $\log_3(3^x - 1) \cdot \log_3(3^{x-1} - \frac{1}{3}) = 2$ .

解答在这里方程即为  $\log_3(3^x-1)\cdot\log_3[\frac{1}{3}(3^x-1)]=2$ . 令  $t=\log_3(3^x-1)$ ,则方程可化为 t(t-1)-2=0,解 得  $t_1=2,\,t_2=-1$ . 于是由  $\log_3(3^x-1)=2$ ,得  $3^x=10$ ,所以  $x=\log_310$ . 由  $\log_3(3^x-1)=-1$ ,得  $3^x=\frac{4}{3}$ ,所以  $x=\log_3\frac{4}{3}$ . 故原方程的解为  $x_1=\log_310$ ,  $x_2=\log_3\frac{4}{3}$ .

486. 已知关于 x 的方程  $\lg(kx) = 2\lg(x+1)$  有且只有一个实数解, 求实数 k 的取值范围.

解答在这里显然,x 需满足  $\begin{cases} kx>0, \\ x+1>0, \end{cases}$  即  $\begin{cases} x>-1, \\ x^2+(2-k)x+1=0. \end{cases}$  (1) 若上述方程有两个相等

实根, 则必有  $\Delta=0$ , 即  $(2-k)^2-4=0$ , 所以 k=0 或 k=4. 若 k=0, 得实根 x=-1 应舍去; 若 k=4, 得实根 x=1 符合题意. (2) 若上述方程有两个不等实根  $x_1,x_2$ , 则必有  $x_1>-1$ ,  $x_2\leq -1$ . 考虑函数  $f(x)=x^2+(2-k)x+1$ .



如图, 只需  $f(-1) \le 0$ , 即  $1 + (2 - k)(-1) + 1 \le 0$ , 所以  $k \le 0$ . 由 (1) 知, k = 0 不合题意. 综上所述, 实数  $k \le 0$ 的取值范围是 k=4 或 k<0.

487. 若  $2^{2x} + 4 = 5 \times 2^x$ , 则  $x^2 + 1$  等于 ( ).

A. 1

- C. 5 或 1
- D. 3 或 2

488. 方程  $2^{|x+1|} = 3$  的解集是 ( ).

- A.  $\{\log_{\frac{1}{2}} \frac{2}{3}\}$  B.  $\{\log_{\frac{2}{3}}\}$
- C.  $\{\log_2 \frac{3}{2}, \log_2 \frac{1}{6}\}$  D.  $\{\log_2 \frac{1}{3}, -\log_{\frac{1}{2}} 6\}$

489. 方程  $2x^2 + 2^x - 3 = 0$  的实数根有 (

C. 2 个

D. 无数个

490. 满足  $(x-2)^{5-|x|}=1$  的实数根存 ( ).

- B. 3 个

C. 2 个

D. 无数个

491. 方程  $6 \cdot 7^{|x|} - 7^{-x} = 1$  的解集是 ( ).

- A.  $\{\log_7 \frac{1}{2}\}$
- B.  $\{\log_7 5\}$
- C.  $\{\log_7 \frac{1}{2}, \log_7 5\}$
- D.  $\emptyset$

492. 若对于任意实数 p, 函数  $y=(p-1)2^x-\frac{p}{2}$  的图像恒过一定点, 则这个点的坐标是 (

- A.  $(1, -\frac{1}{2})$
- C.  $(-1, -\frac{1}{2})$
- D.  $(-2, -\frac{1}{4})$

493. 方程  $2^{2x+1} - 33 \cdot 2^{x-2} + 1 = 0$  的解是 (

- A.  $\{-2, -3\}$
- C.  $\{2,3\}$
- D.  $\{-2, 3\}$

494. 方程  $3^{x^2} = (3^x)^2$  的解为\_\_\_\_\_\_.

495. 方程  $3^x = 2^x$  的解为\_\_\_\_\_.

496. 方程  $\frac{3^{x^2+1}}{3^{x-1}} = 81$  的解为\_\_\_\_\_\_.

497. 方程  $5^{x-1} \cdot 10^{3x} = 8^x$  的解为\_\_\_\_\_

498. 方程  $2^{x-1} = 3^{2x}$  的解为 .

499. 方程  $2 \cdot 4^x - 7 \cdot 2^x + 3 = 0$  的解为

- 500. 方程  $9^x 3^{x+2} 10 = 0$  的解为\_\_\_\_\_\_.
- 501. 方程  $3^{x+1} 3^{-x} = 2$  的解为 .
- 502. 已知 a > 0 且  $a \neq 1$ , 则方程  $a(a^x + 1) = a^{-x} + 1$  的解为\_\_\_
- 503. 解方程:  $3 \times 16^x + 36^x = 2 \times 81^x$ .
- 504. 解方程:  $(\sqrt{5+2\sqrt{6}})^x + (\sqrt{5-2\sqrt{6}})^x = 10.$
- 505. 解方程:  $\sqrt[x]{9} \sqrt[x]{6} = \sqrt[x]{4}$ .
- 506. 解方程:  $4^{x+\sqrt{x^2-2}} 5 \times 2^{x-1+\sqrt{x^2-2}} = 6$ .
- 507. 已知关于 x 的方程  $2a^{2x-2} 7a^{x-1} + 3 = 0$  有一个根是 2, 求实数 a 的值, 并求方程其余的根.
- 508. 解关于 x 的方程  $\frac{a^x a^{-x}}{a^x + a^{-x}} = b$ (实数  $a > 0, a \neq 1, b \in \mathbf{R}$ ).
- 509. 若关于 x 的指数方程  $9^x + (a+4)3^x + 4 = 0$  有实数解, 试求实数 a 的取值范围.
- 510. 若关于 x 的方程  $2a \cdot 3^{-|x-1|} 3^{-2|x-1|} 2a 1 = 0$  有实数解, 求实数 a 的取值范围.
- 511. 方程  $\lg(x-1)^2 = 2$  的解集是 ( ).
  - A. {11}

- B.  $\{-9\}$
- C.  $\{11, -9\}$
- D.  $\{-11, 9\}$
- 512. 关于 x 的方程  $\log_a x^2 = \log_a(\sqrt{a+1} \sqrt{a}) \log_a(\sqrt{a+1} + \sqrt{a})(a > 0$  且  $a \neq 1)$  的解为 ( ).
  - A.  $\sqrt{a+1} + \sqrt{a}$
- B.  $\sqrt{a+1}-\sqrt{a}$
- C.  $\pm(\sqrt{a+1} + \sqrt{a})$  D.  $\pm(\sqrt{a+1} \sqrt{a})$
- 513. 若  $f(x) = 1 + \lg x$ ,  $g(x) = x^2$ , 则使 2f[g(x)] = g[f(x)] 成立的 x 值等于 ( ).
- A.  $10^{1+\sqrt{2}}$  或  $10^{1-\sqrt{2}}$  B.  $1+\sqrt{2}$  或  $1-\sqrt{2}$  C.  $10^{1+\sqrt{3}}$  或  $10^{1-\sqrt{3}}$  D.  $1+\sqrt{3}$  或  $1-\sqrt{3}$

- 514. 方程  $\log_5(x-8)^2 = 2 + \log_5(x-2)$  的解是 ( ).
  - A. 3 或  $\frac{1}{2}$
- B.  $\frac{1}{2}$

- C. 3 或 38
- D. 2

- 515. 方程  $\sqrt{\lg x 4} = 4 \lg x$  的解集是 ( ).
  - A. {100}
- B. {1000}
- C. {10000}
- D.  $\left\{ \frac{1}{10000} \right\}$

- 516. 方程  $\log_2(x-1) \log_4(x+5) = 0$  的解为\_\_\_\_\_
- 517.  $\mathbf{j}$ 程  $\log_4(2-x) = \log_2(x-1) 1$  的解为
- 518. 方程  $\log_x(x^2 x) = \log_x 2$  的解为 .
- 519. 方程  $\log_{(16-3x)}(x-2) = \log_8 2\sqrt{2}$  的解为\_\_\_\_\_.
- 520. 方程  $\lg |2x-3| \lg |3x-2| = 0$  的解为

- 521. 方程  $\lg^2 x + \lg x^3 + 2 = 0$  的解为\_\_\_\_\_.
- 522. 方程  $\lg^2 x + \lg x^2 3 = 0$  的解为\_\_\_\_\_.
- 523. 方程  $(\log_4 x)^2 \frac{1}{2} |\log_2 x| 2 = 0$  的解为\_\_\_\_\_.
- 524. 已知方程  $\ln^2 x \ln x^2 2 = 0$  的两个根为  $\alpha, \beta$ , 求  $\log_{\alpha} \beta + \log_{\beta} \alpha$  的值.
- 525. 已知集合  $A = \{x|x^2 ax + a^2 19 = 0\}$ ,  $B = \{x|\log_2(x^2 5x + 8) = 1\}$ ,  $C = \{x|x^2 + 2x 8 = 0\}$  满足  $A \cap B \neq \emptyset$ ,  $A \cap C \neq \emptyset$ , 求实数 a 的值.
- 526. 已知  $f(x) = \log_a(a^x 1)(a > 0, a \neq 1)$ , 解方程  $f(2x) = f^{-1}(x)$ .
- 527. 解方程  $\log_{\frac{1}{2}}(9^{x-1}-5) = \log_{\frac{1}{2}}(3^{x-1}-2)-2$ .
- 528. 解方程  $\log_{0.5x} 2 \log_{0.5x^3} x^2 = \log_{0.5x^3} 4$ .
- 529. 解方程  $(\sqrt{x})^{\log_5 x 1} = 5$ .
- 530. **解方程**  $10^{\lg^2 x} + x^{\lg x} = 20$ .
- 531. **解方程**  $|\log_2 x| = |\log_2(2x^2)| 2$ .
- 532. 解方程组  $\begin{cases} \log_y x 3\log_x y = 2, \\ (2^x)^y = (\frac{1}{2})^{-16}. \end{cases}$
- 533. 解关于 x 的方程:  $\lg(x+a) + 1 = \lg(ax-1)$ .
- 534. 解关于 x 的方程:  $\lg(ax-1) \lg(x-3) = 1$ .
- 535. 解关于 x 的方程:  $2 \lg x \lg(x 1) = \lg a$ .
- 536. 已知函数  $f(x) = a^{x-\frac{1}{2}}$  满足  $f(\lg a) = \sqrt{10}$ , 求实数 a 的值.
- 537. 已知函数  $f(x) = x^2 x + k$  满足  $\log_2 f(a) = 2$ ,  $f(\log_2 a) = k(a > 0$  且  $a \neq 1$ ), 求  $f(\log_2 x)$  在什么区间上是减函数, 并求出 a = k 的值.
- 538. 若关于 x 的方程  $\lg 2x \cdot \lg 3x = -a^2$  有两个相异实根, 求实数 a 的取值范围, 并求此方程两根之积.
- 539. 若关于 x 的方程  $(\lg ax)(\lg ax^2) = 4$  所有的解都大于 1, 求实数 a 的取值范围.
- 540. 若关于 x 的方程  $\lg(ax) \cdot \lg(ax^2) = 4$  有两个小于 1 的正根  $\alpha, \beta,$  且满足  $|\lg \alpha \lg \beta| \le 2\sqrt{3}$ , 求实数 a 的取值范围.
- 541. 已知函数  $f(x) = x^2 \lg a + 2x + 4 \lg a$  的最大值是 3, 求实数 a 的值.
- 542. 若关于 x 的方程  $\log_2 x + 1 = 2\log_2(x a)$  恰有一个实数解, 求实数 a 的取值范围.

- 543. 已知函数  $f(x) = \log_a(a ka^x)(a > 0, a \neq 1, k \in \mathbf{R})$ . (1) 当 0 < a < 1, 且  $1 \le x$  时, f(x) 都有意义, 求实数 k 的取值范围;
  - (2) 当 a > 1 时, f(x) 的反函数就是它自身, 求 k 的值;
  - (3)  $\mathbf{a}$  (2)  $\mathbf{n}$  (2)  $\mathbf{n}$  (3)  $\mathbf{a}$  (4)  $\mathbf{n}$  (5)  $\mathbf{n}$  (7)  $\mathbf{n}$  (8)  $\mathbf{n}$  (9)  $\mathbf{n}$  (9)  $\mathbf{n}$  (10)  $\mathbf{n}$  (11)  $\mathbf{n}$  (12)  $\mathbf{n}$  (13)  $\mathbf{n}$  (13
- 544. 已知  $A = \{0,1\}, B = \{x | x \subseteq A\}$ , 问: A 与 B 是什么关系, 并用列举法写出 B.
- 545. 已知  $f(x) = x^2 + ax + b(a, b$  均为实数), 集合  $A = \{x | x = f(x), x \in \mathbf{R}\} = \{-1, 3\}, B = \{x | x = f[f(x)], x \in \mathbf{R}\},$ 用列举法求集合.
- 546. 已知实数集 R 的子集 P 满足两个条件: ①  $1 \notin P$ ; ② 若实数  $a \in P$ , 则  $\frac{1}{1-a} \in P$ . 求证:
  - (1) 若  $2 \in P$ , 则 P 中必含有其他两个数, 并求出这两个数;
  - (2) 集合 P 不可能是单元素集.
- 547. 已知集合 A, B, C 满足  $A \cap B = A, B \cap C = B,$  求证:  $A \subseteq C$ .
- 548. 已知集合  $A = \{x | x = a^2 + 1, a \in \mathbb{N}\}, B = \{y | y = b^2 4b + 5, b \in \mathbb{N}\},$  求证:  $A \subset B$ .
- 549. 已知集合  $A = \{x | x = 12a + 8b, \ a, b \in \mathbf{Z}\}, B = \{x | x = 20c + 16d, \ c, d \in \mathbf{Z}\},$ 求证: A = B.
- 550. 某班学生期中考试数学得优秀的有 18 人, 物理得优秀的有 14 人, 其中数学、物理两科中至少有一科得优秀的有 22 人, 求两科都得优秀的学生人数.
- 551. 由某班学生组成的篮球队、排球队、乒乓球队分别有 14,15,13 名队员. 已知同时参加这三个队的有 3 人, 既参加篮球队又参加排球队的有 5 人, 仅参加乒乓球队的有 4 人, 仅参加排球队的有 5 人, 问: 仅参加篮球队的有 1 人, 记。仅参加篮球队的有 1 人,
- 552. 某地区先后举行中学生数、理、化三科竞赛,参加竞赛的学生人数依次是 807 人、739 人、437 人,其中参加数学、物理两科竞赛的有 513 人,参加物理、化学竞赛的有 267 人,参加数学、化学竞赛的有 371 人,三科竞赛都参加的有 213 人,求参加竞赛的学生总人数.
- 553. 已知集合  $A = \{(x,y) | \frac{y-3}{x-2} = a+1\}$ ,  $B = \{(x,y) | (a^2-1)x + (a-1)y = 15\}$  满足  $A \cap B = \emptyset$ , 求实数 a 的 a.
- 554. 已知集合  $A = \{x|x^2 (a+1)^2x + 2a^3 + 2a \le 0, x \in \mathbf{R}\}, B = \{x|x^2 3(a+1)x + 6a + 2 \le 0, x \in \mathbf{R}\}$  满足  $A \subseteq B$ , 求实数 a 的取值范围.
- 555. 从集合  $A = \{1, 2, 3\}$  到集合  $M = \{0, 1\}$  可以建立几个不同的映射?
- 556. 从集合  $P = \{1, 2\}$  到集合  $Q = \{3, 4, 5\}$  可以建立几个不同的映射?
- 557. 若函数 f(x) 的定义域为  $\mathbb{R}^+$ , 且满足 f(xy) = f(x) + f(y), f(8) = 3, 求  $f(\sqrt{2})$  的值.
- 558. 若函数 f(x) 的定义域为 R, 且满足  $f(x) + 2f(-x) = -x^3 + 6x^2 3x + 3$ , 求 f(0) 的值, 并求 f(x) 的表达式.

- 559. 已知 f(x+y) = f(x) + f(y) 对于任何实数 x, y 都成立.
  - (1) 求证: f(2x) = 2f(x);
  - (2) 求 f(0) 的值;
  - (3) 求证: f(x) 为奇函数.
- 560. 已知函数 f(x) 对任何实数 x, y 满足 f(x+y) + f(x-y) = 2f(x)f(y), 且  $f(0) \neq 0$ , 求证: f(x) 是偶函数.
- 561. 已知函数  $f(x)(x \neq 0)$  满足 f(xy) = f(x) + f(y). (1) 求证: f(1) = f(-1) = 0;
  - (2) 求证: f(x) 为偶函数;
  - (3) 若 f(x) 在  $(0,+\infty)$  上是增函数, 解不等式  $f(x)+f(x-\frac{1}{2})\leq 0.$
- 562. 已知函数 f(x) 对一切实数 x, y 满足  $f(0) \neq 0$ ,  $f(x+y) = f(x) \cdot f(y)$ , 且当 x < 0 时, f(x) > 1. 求证: (1) 当 x > 0 时, 0 < f(x) < 1. (2) f(x) 在  $x \in \mathbb{R}$  上是减函数.
- 563. (1) 求函数  $y = 2x + \sqrt{1-2x}$  的最大值. (2) 求函数  $y = 2x + \sqrt{1-x^2}$  的值域. (3) 求函数  $y = \frac{\sqrt{x+1}}{x+2}$  的值域.
- 564. 求函数 g(t) = (t+3)(1+|t-1|) 的值域, 其中实数 t 的取值范围是使函数  $f(x) = x^2 4tx + 2t + 30$  对任一  $x \in \mathbb{R}$  都取非负值.
- 565. 已知函数 f(x) 的定义域是 [0, 1], 求函数 f(x+m) + f(x-m) 的定义域 (其中 m > 0).
- 566. 已知集合  $A = \{x | x^2 5x + 4 \le 0\}$ ,  $B = \{x | x^2 2ax + a + 2 \le 0\}$  满足  $A \supseteq B \ne \emptyset$ , 求实数 a 的取值范围.
- 567. 已知函数  $f(x) = x^2 2mx + m + 6$ .
  - (1) 若对任意实数 x 都有 f(x) > 0, 求实数 m 的取值范围;
  - (2) 若实数  $\alpha, \beta$  满足  $f(\alpha) = f(\beta) = 0$ , 求  $\alpha^2 + \beta^2$  的最小值.
- 568. 已知函数  $f(x) = x^2 2kx + 2$  在  $x \ge -1$  时恒有  $f(x) \ge k$ , 求实数 k 的取值范围.
- 569. 已知  $f(x) = -9x^2 6ax + 2a a^2$  在  $-\frac{1}{3} \le x \le \frac{1}{3}$  内有最大值 -3, 求实数 a 的值.
- 570. 已知 y = f(x) 在其定义域上是增函数, 求证: y = f(x) 的反函数  $y = f^{-1}(x)$  在其定义域上也是增函数.
- 571. 已知函数  $f(x) = x^3 + x + 1(x \in \mathbf{R})$ , 求证:
  - (1) f(x) 是 R 上的增函数;
  - (2) 方程  $x^3 + x + 1 = 0$  只有一个实数解.
- 572. 已知函数  $f(x) = \frac{x}{1+x^2} (x \in \mathbf{R}).$ 
  - (1) 求 f(x) 的值域;
  - (2) 讨论 f(x) 的单调性.
- 573. 若二次函数  $f(x) = ax^2 + bx + c$  满足  $f(x_1) = f(x_2)$ ,  $(x_1 \neq x_2)$  求证: 直线  $x = \frac{x_1 + x_2}{2}$  是该二次函数图像的对称轴.

- 574. 若对于任何实数 x, 函数 y = f(x) 始终满足 f(a+x) = f(a-x), 求证: 函数 y = f(x) 的图像关于直线 x = a 对称.
- 575. 已知函数 f(x) 满足  $f(x+2) = f(2-x)(x \in \mathbf{R})$ , 且 f(x) 的图像与 x 轴有 15 个不同的交点, 求方程 f(x) = 0 的所有解的和.
- 576. 已知函数 f(2x+1) 是偶函数, 求函数 f(2x) 的图像的对称轴.
- 577. 求函数  $y = \frac{3x-1}{x+2} (x \neq -2)$  的图像的对称点.
- 578. 已知函数 f(x) 满足  $f(x) + f(2-x) + 2 = 0(x \in \mathbf{R})$ , 求 f(x) 的图像的对称中心.
- 579. 已知函数  $f(x) = \log_3(x^2 4mx + 4m^2 + m + \frac{1}{m-1})$ , 集合  $M = \{m|m>1, m \in \mathbf{R}\}$ .
  - (1) 求证: 当  $m \in M$  时, f(x) 的定义域为  $x \in \mathbb{R}$ ; 反之, 若 f(x) 对一切实数 x 都有意义, 则  $m \in M$ ;
  - (2) 当  $m \in M$  时, 求 f(x) 的最小值;
  - (3) 求证: 对每一个  $m \in M$ , f(x) 的最小值都不小于 1.
- 580. 已知函数  $f(x) = \frac{4^x}{4^x + 2}$ ,求  $f(\frac{1}{101}) + f(\frac{2}{101}) + \dots + f(\frac{100}{101})$  的值.
- 581. 已知函数  $f(x) = 1 + \log_x 5$ ,  $g(x) = \log_{x^2} 9 + \log_{x^2} 8$ , 比较 f(x) 与 g(x) 的大小.
- 582. 求方程  $x^2 4|x| \log_2 x 5 = 0$  的实数解的个数.
- 583. 求使方程  $|x^2 2x + 1 + a| = a^2 6$  恰有两相异实数解时 a 的取值范围.
- 584. 已知 f(x) 在  $(-\infty, +\infty)$  上有单调性, 且满足 f(1) = 2 和 f(x+y) = f(x) + f(y).
  - (1) 求证: f(x) 为奇函数;
  - (2) 若 f(x) 满足  $f(k \log_2 t) + f(\log_2 t \log_2^2 t 2) < 0$ , 求实数 k 的取值范围.
- 585. 已知函数 f(x) 在定义域  $x \in \mathbf{R}^+$  上是增函数, 且满足  $f(x \cdot y) = f(x) + f(y)(x, y \in \mathbf{R}^+)$ .
  - (1) 求 f(x) 在  $(1, +\infty)$  上的值域;
  - (2) 若 f(2) = 1, f(x) 图像上三点 A, B, C 的横坐标分别为 a, a + 2, a + 4(a > 0), 且  $\triangle ABC$  的面积小于 1, 求实数 a 的取值范围.
- 586. 求关于 x 的方程  $9^{-|x-2|} 4 \cdot 3^{-|x-2|} a = 0$  有实根的条件.
- 587. **解方程**  $|\log_2 x| = |\log_2 2x^2| 2$ .
- 588. 分别求实数 a 的取值范围, 使关于 x 的方程  $\log_{(x+a)} 2x = 2$  有唯一解、两解、无解.
- 589. 分别求实数 a 的范围, 使关于 x 的方程  $1 + \frac{\log_2(2 \lg a x)}{\log_2 x} = 2 \log_x 2$  有两解、一解.