REINVENT ENGINEERING

Qualité, conception, modélisation

Modèle Relationel, Modèle Physique des Données

JY Martin

Plan

- Introduction
- 2 Le Modèle Relationnel Formel
- 3 Le Modèle Physique des Données

- modèle de niveau logique
- modèle simple : deux concepts
 - relation (table)
 - attribut (colonne)
- défini par Ted Codd en 1970; prix Turing en 1986
 Développé par IBM lab.
- support théorique très solide
- Aujourd'hui utilisé par beaucoup de SGBD (Oracle, Informix, DB2, Ingres, Sybase, dBase, PostgreSQL, mySQL, MariaDB, ...) et SIG

Le Modèle

- Modèle formel Inspiré de la théorie des ensembles
 - Objets manipulés : relation, attribut, tuple, identifiant, ...
 - Outils de vérification : normalisation
 - Outils mathématiques : algèbre relationnelle
 - calculs relationnels
- Langage: Structured Query Language (SQL)
 - Définition
 - Opération de base : Create, Research, Update Delete (CRUD)
 - Sécurité

Propriétés ACID

- Atomicité transaction effectuée complètement ou pas du tout
- Cohérence
 La base passe d'un état valide à un autre état valide
- Isolation
 Une transaction s'effectue comme si elle était toute seule
- Durabilité
 Une fois confirmée, le résultat de la transaction est enregistré

Plan

- Introduction
- 2 Le Modèle Relationnel Formel
- Le Modèle Physique des Données

Concepts de base

Monde réel	/	Relationnel
objet	->	relation
propriété	->	attribut
simple, monovaluée		
association	->	relation ou attribut
lien	->	identifiant externe
binaire, sans attribut		

Définition :

Un Attribut est une information (un nom).

Définition:

Le **Domaine de Valeurs** d'un attribut est l'ensemble, fini ou infini, des valeurs que peut prendre un attribut.

Définition :

Une **Relation** est un ensemble non vide d'attributs.

Représentation

```
Il se représente sous la forme : relation(attrib1/dom1, attrib2/dom2, ... attribn/domn) ou plus simplement relation(attrib1, attrib2, ... attribn) ou graphiquement
```

Relation attrib1 attrib2 ... attribn

Définition

On appelle **Base de Données Relationnelle** un ensemble cohérent de relations.

Définition

On appelle **n-uplet** ou **tuple**, ou **occurence** d'une relation un ensemble de couples (propriétés / valeurs) où la propriété est l'un des attributs de la relation et la valeur appartient au domaine de la propriété.

Exemple

tuple

Etudiant (NEtud, Nom, Prénom, Age)

۲,	héma	Eti	udia
אכ	пеша		uuna

Etudiant				
NEtud	Nom	Prénom	Age	Degré=4
136	Roger	Jean	29	Population
253	Aubry	Annie	20	
101	Duval	André	21	
147	Roger	Marc	21	Cardinalité=4

Règles de structuration

- attributs : simples et monovalués (domaine de valeurs atomiques)
- Relation : structure plate régulière

Tous les attributs de tous les tuples doivent avoir une valeur. Et si la valeur n'existe pas ? N'est pas définie ?

Définition

Si un attribut a une valeur inconnue (ou inexistante) pour un tuple.

On dit alors qu'il a une valeur **nulle**

On le note en utilisant le terme NULL

NULL est une "valeur" à part entière, non typée

exemple

on ne connaît ni l'age d'Annie ni le prénom de Duval

Etudiant	NEtud	Nom	Prénom	Age
	136	Roger	Jean	29
	253	Aubry	Annie	NULL
	101	Duval	NULL	21
	147	Roger	Marc	21

CENTRAL NANTES

Définition :

On appelle **clé candidate** de la relation un ensemble minimal d'attributs de la relation tel qu'il n'existe pas deux tuples différents de la même relation qui ont les mêmes valeurs des attributs de la clé candidate.

Définition

On appelle **identifiant** de la relation l'une des clés candidates de la relation.

Le Modèle Relationnel : remarques

- Une relation a toujours au moins une clé candidate (l'ensemble des attributs) et peut en avoir plusieurs
- Si l'ensemble des attributs ne constitue pas une clé candidate, ajouter un attribut entier de type compteur autoincrémenté
- Une relation a toujours un identifiant.

Notation

L'identifiant est indiqué en soulignant les attributs du schéma qui le composent. Les autres clés candidates sont ignorées.

Remarques:

- les attributs d'une clé candidate et donc d'un identifiant ne peuvent pas comporter de valeur NULL.
- Un attribut peut faire partie de plusieurs clés candidates

Exemples

Clés candidates: (NEtud), (Nom, Prénom)

Etudiant	NEtud	Nom	Prénom	Age
	136	Roger	Jean	29
	253	Aubry	Annie	NULL
	101	Duval	André	21
	147	Roger	Marc	21

Clés candidates : (Netud)

Etudiant	NEtud	Nom	Prénom	Age
	136	Roger	Jean	29
	253	Aubry	Annie	NULL
	101	Duval	NULL	21
	147	Roger	Marc	21

CENTRALE NANTES

Exemples

Etudiant Prénom **NEtud** Nom Age 136 Roger lean 29 253 Aubry Annie NULL 101 Duval NULL 21 147 Roger Marc 21

Définition :

On appelle **lien externe** entre deux relations le lien symbolique orienté unissant un ensemble d'attributs d'une relation à un ensemble d'attributs de même taille et de même nature d'une autre relation.

Remarques:

- Un lien externe est un lien orienté
- La cible d'un lien externe est une clé candidate de la relation cible, et de préférence son identifiant.

Exemple de lien externe

Personne		
NPersonne	Nom	Prénom
-		

Commande	
NCommande	NPersonne
	-

121	Roger	Marc
234	Aubry	Annie
564	Dupond	Jacques

12345	121
54321	564
98765	121

Définition

On appelle **Contrainte d'Intégrité** le mécanisme permettant de vérifier qu'un tuple peut exister au niveau d'une relation.

Exemples:

- Vérification du domaine de définition
- Identifiant de la relation
- Liens externes

Contrainte d'intégrité sur les domaines de valeur

Au niveau d'une relation, cette contrainte permet de s'assurer que les valeurs des tuples correspondent bien aux domaines de valeurs des attributs de la relation.

Exemple:

On ne peut pas avoir de valeur réelle dans un attribut dont le domaine de valeur est l'ensemble des entiers.

On ne peut pas avoir de chaine de 35 caractères dans un attribut dont le domaine de valeurs est l'ensemble de chaines de moins de 32 caractères

Contrainte d'intégrité sur les identifiant

Dans la population d'une relation, il est impossible de trouver deux tuples pour lesquelles les valeurs des attributs de l'identifiant sont identiques.

Etudiant	NEtud	Nom	Prénom	Age
	136	Roger	Jean	29
	253	Aubry	Annie	27
	101	Duval	André	21
	136	Roger	Marc	21

Contrainte d'intégrité sur les identifiant

Remarques:

- Les identifiants sont nécessaires pour assurer l'unicité des informations dans la population d'une relation, leur définition est donc INDISPENSABLE pour toutes les relations.
- La vérification de cette contrainte d'intégrité est l'un des premiers éléments permettant d'assurer le bon fonctionnement d'une base de données.

Contrainte d'intégrité sur les liens externes

Dans une relation, à tout tuple de la relation d'origine du lien externe doit correspondre un unique tuple de la relation cible tel que les valeurs des attributs liés sont identiques.

Etudiant			
<u>NEtud</u>	Nom	Prénom	Age
136	Roger	Jean	29
253	Aubry	Annie	27
101	Duval	André	21
126	Roger	Marc	21

Club	
<u>NEtud</u>	<u>NomClub</u>
253	Astronomie
115	Théatre
136	Théatre
136	JdR

Contrainte d'intégrité sur les liens externes

Remarques:

- La cible d'un lien externe est obligatoirement une clé candidate. Par défaut, il s'agira de l'identifiant. Cette contrainte assure la cohérence des informations dans les populations des différentes relations.
- La vérification de cette contrainte d'intégrité est l'un des éléments permettant d'assurer le bon fonctionnement d'une base de données.

Autres contraintes d'intégrité

D'autres contraintes peuvent apparaître au niveau du modèle.

Elles seront traduites techniquement par des contraintes d'intégrité explicites lors de de l'implémentation et l'implantation de la base de données.

Attributs complexes ou multivalués

Les notions d'attribut multivalué ou complexe n'existent pas dans le modèle relationnel. Il faut donc les modéliser autrement.

- Pour un attribut monovalué complexe, il faut choisir entre le composé ou les composants
- Pour un attribut multivalué, il faut créer une autre relation (ceci pour chaque attribut multivalué)

Attributs Complexes

On considère la relation

Personne(NPersonne, Nom, Prénom, Adresse)

Or adresse = (nom, rue , n°, ville , Pays)

2 solutions:

- intégrer la décompositoin en attributs simples
 Personne(NPersonne, Nom, Prénom, nom, rue, n°, ville, Pays)
- remplacer par un attribut simple
 Adresse est une chaine de caractères

Attributs Complexes

Comment choisir?

- S'il existe au moins une requête qui est faite sur un des attributs de la décomposition de l'attribut complexe, alors les attributs simples doivent être intégrés au schéma
- Si aucune requête n'est faite sur l'un quelconque des attributs de la décomposition de l'attribut complexe, alors vous pouvez le transformer en attribut simple.

Exemple:

Si l'on doit pouvoir connaître dans quel pays habitent les personnes, solution 1, sinon la solution 2 suffit.

Attributs multivalués

Problème : Mémoriser les différents choix des étudiants.

2 propositions de solution :

- Etudiant(NEtud, Nom, Prénom, choix1, choix2,...choixn)
- Etudiant(NEtud, Nom, Prénom, liste de choix)

Aucune ne convient :

- Pour la première, rien ne garantit que n ne change pas. Le schéma sera alors inadapté.
- Pour la seconde, la notion de liste n'existe pas.

Comment faire?

Décomposer un attribut multivalué

La solution consiste à créer une nouvelle relation et un lien externe.

- Le lien externe permet d'assurer que le choix correspond à un étudiant.
- La clé pimaire de choix assure qu'un étudiant ne peut pas classer 2 fois un numéro de choix
- il n'y a pas de limitation au nombre de choix

- Modèle permettant de représenter les informations
 - Relations = ensemble de couples
 - Identifiant des relations
 - Liens externes
 - Contraintes d'intégrité
- Simple d'emploi
- Complètement formalisé
- Modèle sur lequel s'appuient la plupart des SGBD

Le modèle relationnel c'est aussi :

- Algèbre relationnelle
- Langage de définition, de manipulation, de requête : SQL
- Règles de transformation à partir de modèles conceptuels
- Règles de Normalisation

Plan

- Introduction
- 2 Le Modèle Relationnel Formel
- Le Modèle Physique des Données

Contexte

- plusieurs types de modèles conceptuels
 - Entité-Association
 - UML
 - ...
- 1 modèle en mémorisation
 - Modèle relationnel

Comment passer de l'un à l'autre?

Construire un Modèle Physique des Données

L'objectif est de construire le Modèle Physique de Données pour un modèle Relationnel.

2 étapes :

- Utilisation de règles de transformation du Modèle Conceptuel des données.
- ajoute des types de données.

Modèle Entité-Association

- Entités
- Associations
- Propriétés
- Identifiants
- Cardinalités

Modèle exemple

Regles de traductions

- 1 règle pour les entités
- 2 règles pour les associations

Appliquer les règles dans l'ordre indiqué.

Regle 1 : Entités

- Toute entité est traduite en une relation.
- Ses propriétés sont les attributs de la relation.
- Son identifiant est l'identifiant de la relation.

Personne (Personne ID, Nom, Prenom)

Eleve(Numero)

Matière(Abrege, Libelle)

Enseignant(Numero)

Statut(Statut ID, Libelle)

Règle 2 : Associations binaires avec une cardinalité max=1

Cette règle concerne les associations binaires dont l'une des cardinalités est de type 0:1 ou 1:1 (cardinalité max=1)

- l'identifiant de l'entité opposé à la cardinalité max=1 est recopié dans l'entité à la cardinalité max=1
- Un identifiant externe est créé entre les deux relations.
- Les propriétés de l'association sont également recopiées, avec l'identifiant transféré.

Si les deux cardinalités ont une cardinalité max=1, la plus représentative est choisie.

Règle 3 : Les autres associations

Cette règle concerne les associations non binaires ou les associations binaires pour lesquelles les cardinalités sont de type 0:n ou 1:n (cadinalité max=n).

En clair, les associations restantes.

- Une nouvelle relation est créée avec pour nom celui de l'association
- Les identifiants des entités liées sont recopiées dans la nouvelle relations. L'ensemble des identifiants forme l'identifiant de la nouvelle relation.
- Un identifiant externe est créé entre chaque copie d'identifiant et son origine.
- Les propriétés de l'association sont également recopiées.

Modèle exemple - Traduit

Ajout des types de données

Pour obtenir le modèle physique, il faut ajouter les domaines de définition des différents attributs.

Remarques

- Les types des attributs sont simples. Il ne peut pas y avoir d'attribut complexe.
- Les domaines des attributs source et cible d'un lien externe doivent être identiques

Modèle Physique des Données

Modèle Physique des Données

