Variations et dérivée

Hypothèse. Soit *f* une fonction <u>dérivable</u> sur un intervalle *I* non trivial. (*I* non vide et non réduit à un point)

Théorème. Etudier les variations d'une fonction, c'est étudier le signe de sa dérivée. f est croissante sur I si et seulement si f' est positive sur I (pour tout $x \in I$, $f'(x) \ge 0$) f est décroissante sur I si et seulement si f' est négative sur I (pour tout $x \in I$, $f'(x) \le 0$) f est constante sur I si et seulement si f' est nulle sur I (pour tout $x \in I$, f'(x) = 0)

Exemple. Soit *f* la fonction définie sur \mathbb{R} par $f(x) = 5x^2 - 3x + 9$.

f est dérivable sur \mathbb{R} (par somme et produits de fonctions dérivables sur \mathbb{R}).

Pour déterminer ses variations, on peut étudier le signe de f'.

Pour tout $x \in \mathbb{R}$, $f'(x) = 5 \times 2x - 3 \times 1 + 0 = 10x - 3$

Donc $f'(x) > 0 \Leftrightarrow 10x - 3 > 0 \Leftrightarrow 10x > 3 \Leftrightarrow x > \frac{3}{10}$

x	$-\infty$		3 10		+∞
Signe de $f'(x)$		-	0	+	
Variations de f		*	$\frac{81}{10}$ –		

Théorème. Etude des variations <u>strictes</u> d'une fonction.

Si f'(x) > 0 pour tout $x \in I$ (sauf peut-être un nombre fini de fois) alors f est strictement croissante sur I Si f'(x) < 0 pour tout $x \in I$ (sauf peut-être un nombre fini de fois) alors f est strictement décroissante sur I

Exemple. Dans le tableau précédent f' ne s'annule qu'en $\frac{3}{10}$ donc les variations de f sont strictes.

Remarque. Si f est <u>strictement</u> croissante sur I, alors $f' \ge 0$ sur I mais on n'a pas forcément f' > 0 sur I. Par exemple, la fonction définie sur $\mathbb R$ par $f(x) = x^3$ est strictement croissante sur $\mathbb R$ mais f'(0) = 0. Il existe même des fonctions f strictement croissantes telles que f' s'annule un nombre infini de fois.

Hypothèse. Soit f une fonction définie sur un intervalle I. Soit $a \in I$.

Définition. On dit que f admet un minimum global en a si pour tout $x \in I$, $f(x) \ge f(a)$

Définition. On dit que f admet un maximum global en a si pour tout $x \in I$, $f(x) \le f(a)$

Définition. Un minimum ou un maximum global est appelé extremum global.

Définition. Un intervalle I est **ouvert** s'il est de la forme I =]a; b[avec $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$

Définition. On dit que f admet un minimum <u>local</u> en a s'il existe un intervalle <u>ouvert</u> J contenant a, tel que pour tout $x \in I \cap J$, $f(x) \ge f(a)$

Définition. On dit que f admet un maximum <u>local</u> en a s'il existe un intervalle <u>ouvert</u> f contenant a, tel que pour tout $x \in I \cap J$, $f(x) \le f(a)$

Définition. Un minimum ou un maximum local est appelé **extremum local**.

Remarque. Un extremum global est en particulier local. Un extremum local n'est pas forcément global.

Remarque. Les extremums se lisent directement dans un tableau de variations.

Exemple. Soit f une fonction définie sur l'intervalle I = [-8, 7] dont voici le tableau de variations :

f admet un minimum local en -1 qui vaut -2. Avec J =]-8; 4[, pour tout $x \in J$, $f(x) \ge f(-1)$

f admet un maximum local en 4 qui vaut 6. Avec J =]-1; 7[, pour tout $x \in J$, $f(x) \le f(4)$

f admet un maximum global en 4 qui vaut 6 car pour tout $x \in I$, $f(x) \le f(4)$

f admet un minimum global en 7 qui vaut -5 car pour tout $x \in I$, $f(x) \ge f(7)$

Définition. Un nombre réel a est **intérieur** à un intervalle I si : $a \in I$ et n'est pas une borne de I.

Théorème. Soit f une fonction dérivable sur un intervalle I. Si f admet un extremum local en un réel a intérieur à I, alors f'(a) = 0.

Idée. En chaque extremum d'une courbe lisse, la pente est horizontale (sauf peut-être aux bords).

Exemple. Soit la fonction f définie sur]0; 2[par $f(x) = x^2 - 2x + 1$.

Pour tout $x \in]0; 2[$, $f(x) = (x - 1)^2$ or un carré est toujours positif, donc f admet un minimum global (donc local) en 1 qui vaut 0. De plus, f est <u>dérivable</u> sur l'intervalle]0; 2[et 1 est intérieur à]0; 2[.

On en déduit que f'(1) = 0.

Vérifions le en calculant explicitement la dérivée de f.

Pour tout $x \in]0; 2[, f'(x) = 2x - 2]$. Donc $f'(1) = 2 \times 1 - 2 = 0$. C'est bien ce que l'on attendait.

Remarque. Si a n'est pas intérieur à I, alors il est possible que $f'(a) \neq 0$, quand a est au bord de I.

Exemple. Soit f la fonction définie sur [0;1] par f(x) = x.

f a un minimum global en 0 qui vaut 0 et un maximum global en 1 qui vaut 1. Mais $f'(0) = f'(1) = 1 \neq 0$.

Remarque. La réciproque est fausse. Si f'(a) = 0, alors f n'admet pas forcément un extremum local en a. **Exemple**. Soit f définie sur \mathbb{R} par $f(x) = x^3$. f est dérivable sur \mathbb{R} avec pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2$. f'(0) = 0, mais 0 n'est ni un minimum ni un maximum local de f puisque f(x) > 0 dès que f(x) > 0 et f(x) < 0 dès que f(x) < 0 dès que f(x) > 0 dès que f(x) > 0 et f(x) < 0 des que f(x) > 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 et f(x) < 0 des que f(x) > 0 et f(x) < 0 des que f(x) < 0 et f(x) < 0 des que f(x) < 0 et f(x) < 0

Propriété. Si f'(a) = 0 <u>et</u> f' change de signe en a, alors f admet un extremum local en a. **Remarque**. En pratique retenir cette propriété n'est pas utile. Il suffit de construire le tableau de variations de f pour voir où se situe les minimums et les maximums locaux.

Exemple. Soit f la fonction définie sur \mathbb{R} par $f(x) = 5x^2 - 3x + 9$.

Par somme et produits de fonctions dérivables sur \mathbb{R} , f est dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, f'(x) = 10x - 3.

On peut donc dresser le tableau de signe de f' puis le tableau de variations de f comme précédemment.

x	-∞	$\frac{3}{10}$		+∞
Signe de $f'(x)$	ı	0	+	
Variations de f		<u>81</u> ∕		*

Observer le tableau de signe de f' montre que $f'\left(\frac{3}{10}\right) = 0$, et que f' change de signe en $\frac{3}{10}$, ce qui permet d'en déduire par la propriété que f admet un extremum local en $\frac{3}{10}$.

Observer le tableau de variations de f permet de voir directement que f admet un minimum local en $\frac{3}{10}$