

2018-2019 学年第 1 学期

考试答题册

题号	 1 1	111	四	五.	六	七	总分
成绩							
阅卷人签字							
校对人签字							

考试课程_		工科高等代数 (期中 A 卷)				
班	级_	学号				
姓	名_					
任课	教师_					

2018年11月17日

姓 名 学号	
--------	--

一、 ;	选择题	(本题共	10 小题,	每小题3分,	共30分)
-----------------	-----	------	--------	--------	-------

- **1**. 已知三角形的顶点为A(1,-2,1),B(3,-3,-1),C(4,0,3),则此三角形 $\triangle ABC$ 为。
 - 等边三角形: Α.
- B. 等腰三角形; C. 直角三角形;
- 等腰直角三角形. D.
- - A.
- (3,4,-4); B. (-3,2,4);
- C. (1,-4,4); D. (2,3,-3).
- 3. 以下各组中的平面与球面相切的是。
 - A. z = 3, $x^2 + y^2 + z^2 6x + 2y 10z + 22 = 0$;
 - B. y = 2, $x^2 + y^2 + z^2 + 4x 2y 6z + 13 = 0$;
 - C. x = 5, $x^2 + y^2 + z^2 2x + 4y 2z 4 = 0$.
 - D. x + y + z = 1. $x^2 + y^2 + z^2 + 4x 6y + 2z + 12 = 0$.
- **4**. 如果平面x + mz 1 = 0与双叶双曲面 $x^2 + y^2 z^2 = -1$ 的交线是抛物线,则 m 可以取下 列选项中的____。
 - m=0:
- В.
- m=-1; C. m=2;
- D. m = -3.
- **5**. 已知四边形 ABCD 的顶点依次为 A(3,-1,2),B(1,2,-1),C(-1,1,-2),D(3,-5,4),则该四边形
 - A. 平行四边形; B. 非平面图形; C. 正方形; D.
- 梯形.
- 6. 下列有关向量的各式中正确的是____。
 - A. $(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b});$
- B. $(\vec{a} \cdot \vec{b})\vec{c} = \vec{a}(\vec{b} \cdot \vec{c});$
- C. $\vec{a}^2 \vec{b}^2 = (\vec{a} \cdot \vec{b})^2$;
- D. $|\vec{a} + \vec{b}| |\vec{a} \vec{b}| = |\vec{a}^2 \vec{b}^2|$.

7.	以下命题不成立的是。
1	A. 如果向量 $\vec{c} \perp \vec{b}$,则有 $(\vec{a} + \vec{c}) \cdot \vec{b} = \vec{a} \cdot \vec{b}$;
]	B. 如果向量 \vec{c} // \vec{b} ,则有 $(\vec{a} + \vec{c}) \times \vec{b} = \vec{a} \times \vec{b}$;
(C. 如果向量 \vec{a} , \vec{b} , \vec{c} 满足 \vec{a} + \vec{b} + \vec{c} = $\vec{0}$,则有 \vec{a} × \vec{b} = \vec{b} × \vec{c} = \vec{c} × \vec{a} ;
I	D. 如果向量 \vec{a} , \vec{b} , \vec{c} 满足 $\vec{a} \times \vec{c} = \vec{b} \times \vec{c}$,且 $\vec{c} \neq \vec{0}$,则有 $\vec{a} = \vec{b}$.
8.	下列各组向量不共面的是。
1	A. (2,3,-1), (1,-1,3), (1,9,-11); B. (2,-1,2), (1,2,-3), (3,-4,7);
(C. $(3,-2,1)$, $(2,1,3)$, $(3,-1,-2)$; D. $(-1,1,-4)$, $(-2,0,2)$, $(-3,1,-2)$.
9.	齐次线性方程组 $\begin{cases} x_1 + 2x_2 + x_3 = 0 \\ 2x_1 + x_2 + x_3 = 0 \end{cases}$ 的解的情况为。
1	A. 无解; B. 只有零解; C. 有无穷多解; D. 无法判断.
10.	已知线性方程组 $\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + 3x_2 + (a+2)x_3 = 3 \\ x_1 + ax_2 - 2x_3 = 0 \end{cases}$ 无解,则 $a = $ 。
1	A1; B. 0; C. 1; D. 2.
二、	填空题 (本题共 20 分,每小题 4 分).
1.	模长为 4 的向量 \vec{a} 与单位向量 e 的夹角 $\alpha = \frac{2}{3}\pi$, 则 \vec{a} 在 e 方向上的 投影
	$ec{a}_e = ec{a} \cos \alpha = $
2.	四面体的顶点为 $A(0,0,0)$, $B(3,4,-1)$, $C(2,3,5)$, $D(6,0,-3)$,则该四面体的体积 $V=$
3.	平面 Π_1 : $2x - y + z - 6 = 0$ 与平面 Π_2 : $x + y + 2z - 5 = 0$ 的夹角 $\alpha = \underline{\hspace{1cm}}$ 。

4. 通过点 A(1,1,-2), B(3,-1,0)的直线的参数方程为_____。

5. 方程组
$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_1 + x_2 - 2x_3 = 0 \end{cases}$$
的通解为_____。

三、(本题 8 分)已知点 O 是三角形 $\triangle ABC$ 的重心,证明:

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 0.$$

四、(本题共 10 分)求通过点 A(1,1,1)且与两条直线 $L_1: \frac{x}{1} = \frac{y}{2} = \frac{z+1}{1}$ 和 $L_2: \frac{x}{1} = \frac{y+4}{3} = \frac{z+1}{2}$ 都相交的直线 L 的方程。

五、(本题共10分)求通过直线

$$L: \begin{cases} 2x - z = 0, \\ x + y - z + 5 = 0 \end{cases}$$

且垂直于平面 Π : 7x - y + 4z - 3 = 0的平面方程。

六、(本题共10分)求以下两条直线之间的距离:

$$L_1: \frac{x+5}{3} = \frac{y+5}{2} = \frac{z-1}{-2}$$
 π $L_2: \begin{cases} x = 9 + 6t \\ y = -2t \\ z = 2 - t \end{cases}$

七、(本题共12分)设有方程组

$$\begin{cases} ax_1 + x_2 + x_3 = 4 \\ x_1 + bx_2 + x_3 = 3 \\ x_1 + 2bx_2 + x_3 = 4 \end{cases}$$

- 1) a,b 取何值时,方程组有唯一解;
- 2) a,b 取何值时,方程组无解;
- 3) a,b 取何值时,方程组有无穷多解,并求出通解。