# 논문 연구 진행 보고

### 김동완

## 2016년 3월 13일

# 1. 전체 진행 계획

- 1. 가상 데이터 실험
  - (a) 데이터 생성(연속형 설명변수, 이항 반응변수) [완료]
  - (b) Online Gradient Descent방법 실험 [완료]
  - (c) Assumed Density Filtering 방법 실험 [완료]
- 2. 작은 규모의 실제 데이터 실험
  - (a) 범주형 변수에 대한 Feature Hashing(murmurhash) [완료]
  - (b) Online Gradient Descent방법 실험 [완료]
  - (c) Assumed Density Filtering 방법 실험 [완료]
- 3. 큰 규모의 실제 데이터 실험
  - (a) Online Gradient Descent방법 실험
  - (b) Assumed Density Filtering 방법 실험

## 2. 연구 개요

배치 처리가 어려울 정도로 건수가 많고, 범주의 수가 유동적인 수백 개의 범주형 변수를 갖는 데이터에 대한 온라인 베이지안 로지스틱 회귀분석 기법에 대한 연구

# 3. 지난 세션 진행 내용 개괄

#### 3.1. 개요

한개의 연속형 설명변수와 이항 반응 변수를 갖는 데이터를 모의로 3000 건 생성하여 Online Gradient Descent 방법과 Assumed Density Filtering 방법으로 로지스틱 회귀 모형을 적합하고, 그 회귀 모수 값의 변화를 ML 추정치와 비교

### 3.2. 결과

Gradient Descent 방법을 적용한 경우 Step size  $\alpha$ 의 값에 따라 ML추정 치로의 근사 속도가 달라짐, Assumed Density Filtering 방법을 적용한 경우 각 모수 분포의 초기 평균과 분산 값에 따라 근사 속도가 달라짐

Gradient Descent의 경우 각 모수에 따른 최적의 Step size를 찾거나 iteration에 따라 이를 유동적으로 변화 시켜주는 방법이 필요한데, Assumed Density Filtering 방법의 경우 각 모수의 불확실성을 모수 분포의 분산으로 모델링 하여 Step size를 유동적으로 변화시키는 효과를 얻을 수 있음. 실험 결과에서도 이러한 효과가 반영되어 초기 적합 속도가 우수한 것을 확인 할수 있었음.

## 4. 이번 세션 진행 내용

#### 4.1. 개요

대규모 데이터에 앞서의 방법론을 적용하기에 전에 우선 간단한 데이터를 이용하여 feature hashing방법으로 데이터를 가공한 후 Online Gradient Descent와 Assumed Density Filtering 방법으로 모형 적합을 수행하고, 그 결과를 ML추정치를 사용한 예측 결과와 비교하려 함.

범주의 개수가 유동적이고 범주형 변수가 많이 포함된 데이터를 분석할 경우 dummy 변수의 갯수가 많아지고, 범주가 추가될 때 마다 다시 dummy 변수를 갱신하거나 모형 적합을 다시 수행해야는 문제가 발생한다. 이러한 문제에 대한 대응 방법으로 feature hashing(hashing trick, kernel trick) 을 사용.

이 실험에서는  $Kaggle^1$ 에 공개된 891건의 데이터를 사용했고, 800건을 이용하여 모형 적합을 수행하고 나머지 91건에 대하여 MLE, OGD, ADF 방법의 정-예측률을 비교.

### 4.2. 데이터 설명

• Survived : 0, 1 [반응 변수]

• Pclass: 1, 2, 3

 $\bullet$  Sex : male, female

• Age :  $0.67 \sim 80$ 

• SibSp : 0, 1, ..., 7, 8

• Parch: 0, 1, 2, 3, 4, 5, 6

<sup>&</sup>lt;sup>1</sup>https://www.kaggle.com/c/titanic

• Fare :  $0 \sim 512.3292$ 

• Embarked: C, Q, S

#### 4.3. Feature hashing

다양한 hashing 방법 중 비교적 hash 충돌이 양호하다고 알려진 murmurhash 방법을 사용(R의 digest 패키지에서 제공)

이 데이터의 경우 모든 변수를 범주형으로 취급하여 [변수명 + 값]에 hashing을 적용할 경우 350여 가지의 16진수가 생성되었고, 이 값을 512로 모듈러 연산하여 회귀 계수 벡터의 인덱스로 사용함<sup>2</sup>.

#### 4.4. 3가지 방법을 이용한 결과 비교

- ML 추정치를 이용한 예측(dummy 변수 사용)
- Online Gradient Descent를 사용한 예측(feature hashing)
- Assumed Density Filtering을 사용한 예측(feature hashing)

위 세가지 방법을 사용하여 회귀 계수를 구하고 테스트 데이터 91건에 대한 예측을 수행한 후 예측률을 비교해봄. Online Gradient Descent의 경우 alpha값이  $0.2 \sim 0.3$ 일때, Assumed Density Filtering의 경우 초기 분산 값이  $2 \sim 9$  일때 가장 높은 예측률을 보였음.

91건의 테스트 데이터에 대한 3가지 방법의 정-예측률을 비고하면 아래와 같은데, 온라인 예측의 특성상 ML추정치를 이용한 예측률에는 미치지 못했으나 큰 차이는 아니라고 할 수 있음.

Online Gradient Descent와 Assumed Density Filtering의 반복 당 평균 log-loss를 비교하면 아래와 같음. 두 방법 모두 iteration이 증가할 수록 일정한 값으로 수렴함을 알 수 있음.

<sup>&</sup>lt;sup>2</sup>첨부 R code의 get\_mur\_x\_v3(df\_row) 함수

| 표 1: 예측률 비교 |        |        |
|-------------|--------|--------|
| MLE         | OGD    | ADF    |
| 0.8427      | 0.8315 | 0.8315 |



# 5. 다음 세션 진행 계획

앞서 titanic 데이터에서 구현한 feature hashing 방법을 동일하게 적용하여 4천 500만건 정도의 온라인 광고 데이터에 대해 OGD, ADF 두가지방법을 실험하고 결과를 비교 분석 예정.