Justicia: A Stochastic SAT Approach to Formally Verify Fairness

Bishwamittra Ghosh¹, Debabrota Basu^{2,3}, Kuldeep S. Meel¹

¹National University of Singapore, Singapore, ²Chalmers University of Technology, Goteborg, Sweden, ³Scool, Inria Lille-Nord Europe, France

PROBLEM STATEMENT

Let X= non-protected attributes, A= protected attributes, $\hat{Y}=$ predicted class label

Given

- binary classifier $\mathcal{M}:(X,A) o \{0,1\}$ and
- probability distribution $X \sim \mathcal{D}$,

verify whether ${\cal M}$ achieves independence and separation fairness metrics with respect to the distribution ${\cal D}$

Fairness Metrics

Independence: A classifier satisfies $(1-\epsilon)$ -disparate impact (DI) if, for $\epsilon \in [0,1]$,

$$\min_{\mathbf{a}\in A}\Pr[\hat{Y}=1|\mathbf{a},\mathcal{M}]\geq (1-\epsilon)\max_{\mathbf{b}\in A}\Pr[\hat{Y}=1|\mathbf{b},\mathcal{M}].$$

Separation: A classifier satisfies ϵ -statistical parity if, for $\epsilon \in [0, 1]$,

$$\max_{\mathbf{a},\mathbf{b}\in\mathcal{A}}|\Pr[\hat{Y}=1|\mathbf{a},\mathcal{M}]-\Pr[\hat{Y}=1|\mathbf{b},\mathcal{M}]|\leq\epsilon.$$

CONTRIBUTION

A formal and scalable fairness verification framework, named Justicia, based on Stochastic SAT

- Two fairness definitions: independence and separation
- Handle compound protected groups such as White-male, Blackfemale etc.

Python library: pip install justicia

KEY OBSERVATION

Computing the positive predictive value (PPV) of the classifier

$$\Pr[\hat{Y}=1|A=\mathbf{a}]$$

is the building block of verifying different fairness metrics

STOCHASTIC SAT (SSAT)

Compute probability of satisfaction of a CNF formula ϕ given quantification over its variables

$$\Phi = Q_1 X_1, \dots, Q_m X_m; \phi$$
prefix CNF

where $Q_i \in \{\exists, \forall, \exists^{p_i}\}$ is either an existential (\exists) , an universal (\forall) , or a randomized (\exists^{p_i}) quantifier with $p_i = \Pr[X_i = \mathsf{TRUE}]$

Semantics. Recursively eliminate the outermost quantifier of X

- 1. Pr[TRUE] = 1, Pr[FALSE] = 0,
- 2. $\Pr[\Phi] = \max_X \{\Pr[\Phi|_X], \Pr[\Phi|_{\neg X}]\}$ if X is \exists quantified
- 3. $\Pr[\Phi] = \min_X \{\Pr[\Phi|_X], \Pr[\Phi|_{\neg X}]\}$ if X is \forall quantified
- 4. $\Pr[\Phi] = p \Pr[\Phi|_X] + (1-p) \Pr[\Phi|_{\neg X}]$ if X is \mathbb{H}^p quantified

Example. $\Phi = \exists^{0.25} X_1, \exists X_2, \exists X_3; \ (X_1 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_3) \land (\neg X_1)$ such that $\Pr[\Phi] = 0.75$

APPROACH 1: ENUMERATION

Given a CNF formula $\phi_{\hat{Y}}$ representing the classifier, $\Pr[\hat{Y}=1|A=a]$ can be computed by solving

$$\Phi_{\mathbf{a}} := \underbrace{\exists^{p_1} X_1, \ldots, \exists^{p_m} X_m}_{\text{non-protected attributes}}, \underbrace{\exists A_1, \ldots, \exists A_n}_{\text{protected attributes}}; \; \phi_{\hat{Y}} \land (A = \mathbf{a})$$

Example. Let $A \triangleq$ age ≥ 40 , $F \triangleq$ fitness ≥ 0.61 , $I \triangleq$ income ≥ 0.29 , $J \triangleq$ income ≥ 0.69

$$\Phi_{\mathsf{age} \, \geq \, \mathsf{40}} := \, \mathsf{H}^{0.41} \mathit{F}, \, \mathsf{H}^{0.93} \mathit{I}, \, \mathsf{H}^{0.09} \mathit{J}, \, \exists \mathit{A}; \, \, \underbrace{(\neg \mathit{F} \, \lor \, \mathit{I}) \wedge (\mathit{F} \, \lor \, \mathit{J})}_{\mathsf{classifier}} \wedge \underbrace{\mathcal{A}}_{\mathsf{group}}$$

Disparate impact $=\frac{\Phi_{age}\geq_{40}}{\Phi_{age}<_{40}}=\frac{0.43}{0.43}=1$ Statistical parity $=|\Phi_{age}>_{40}-\Phi_{age}<_{40}|=0$

ENCODING CORRELATION

Use conditional probability $Pr[F|age \ge 40]$ instead of Pr[F]

$$\Phi_{\mathsf{age} \geq 40} := \exists^{0.01} F, \exists^{0.99} I, \exists^{0.18} J, \exists A; \ (\neg F \lor I) \land (F \lor J) \land A$$

Disparate impact $=\frac{0.18}{0.72}$, Statistical parity =|0.18-0.72|=0.54

APPROACH 2: LEARNING

Learning the most favored group

$$\Phi := \exists A$$
, $\exists A^{0.41}F$, $\exists A^{0.93}I$, $\exists A^{0.09}J$; $(\neg F \lor I) \land (F \lor J)$

Learning the least favored group

$$\Phi := orall A$$
, $\exists^{0.41} F$, $\exists^{0.93} I$, $\exists^{0.09} J$; $(\neg F \lor I) \land (F \lor J)$

EXPERIMENTAL RESULTS

Accuracy: Justicia shows less than 1%-error

Metric	FairSquare	VeriFair	AIF360	Exact	Justicia
Disparate impact	0.99	0.99	0.25	0.26	0.25
Statistical parity			0.54	0.53	0.54

Scalability: Justicia shows 1 to 3 orders of magnitude speed-up

Dataset	Ricci		Titanic		COMPAS		Adult	
Classifier	DT	LR	DT	LR	DT	LR	DT	LR
FairSquare	4.8		16.0		36.9			
VeriFair	5.3	2.2	1.2	0.8	15.9	11.3	295.6	61.1
Justicia	0.1	0.2	0.1	0.9	0.1	0.2	0.2	1.0

Verification of compound protected groups and robustness

