- Um problema pode ser resolvido através de diversos algoritmos;
- O fato de um algoritmo resolver um dado problema não significa que seja aceitável na prática.

ordem	Método de Cramer	Método de Gauss
2	$22\mu s$	$50\mu s$
3	$102\mu s$	$159\mu s$
4	$456\mu s$	$353 \mu s$
5	2.35ms	$666 \mu s$
10	1.19min	4.95ms
20	15255 séculos	38.63ms

- A escolha de um algoritmo na maioria das vezes é feita através de critérios subjetivos como
 - facilidade de compreensão, codificação e depuração;
 - eficiencia na utilização dos recursos do computador e rapidez.
- A análise de algoritmo fornece uma medida objetiva de desempenho proporcional ao tempo de execução do algoritmo.

Por quê analisar a eficiência de algoritmos se os computadores estão cada dia mais rápidos?

complexidade de tempo	máquina lenta	máquina rápida $(10x)$
log_2n	x_0	x_0^{10}
n	x_1	$10x_1$
$n \log_2 n$	x_2	$10x_2$ (p/ x_2 grande)
n^2	x_3	$3.16x_3$
n^3	x_4	$2.15x_4$
2^n	x_5	$x_5 + 3.3$
3^n	x_6	$x_6 + 2.096$

Complexidade do Algoritmo x Tamanho máximo de problema resolvível

	10	100	10 ³	10 ⁴	10 ⁵	10 ⁶
log ₂ n	3	6	9	13	16	19
n	10	100	1000	10 ⁴	10 ⁵	10 ⁶
n log₂n	30	664	9965	10 ⁵	10 ⁶	10 ⁷
n²	100	10 ⁴	10 ⁶	10 ⁸	10 ¹⁰	10 ¹²
n³	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
2 ⁿ	10 ³	10 ³⁰	10 ³⁰⁰	10 ³⁰⁰	10 ³⁰⁰⁰	10 ³⁰⁰⁰⁰⁰

1 ano = $365 \times 24 \times 60 \times 60 \approx 3 \times 10^7$ segundos 1 século $\approx 3 \times 10^9$ segundos 1 milénio $\approx 3 \times 10^{10}$ segundos

- A eficiência de um algoritmo pode ser medida através de seu tempo de execução.
- É a melhor medida?
- O tempo de execução não depende somente do algoritmo, mas do conjunto de instruções do computador, a qualidade do compilador, e a habilidade do programador

- O tempo de execução de um algoritmo para uma determinada entrada pode ser medido pelo número de operações primitivas que ele executa.
- Como esta medida fornece um nível de detalhamento grande convém adotar medidas de tempo assintótica.

Medidas de Complexidade

- Complexidade é também chamada:
 - esforço requerido ou
 - quantidade de trabalho.
- Complexidade no pior caso: Considera-se a instância que faz o algoritmo funcionar mais lentamente;
- Complexidade média : Considera-se todas as possíveis instâncias e mede-se o tempo médio.

Medidas de Complexidade

- A complexidade pode ser calculada através do:
 - Tempo de execução do algoritmo determinado pelas instruções executadas: quanto "tempo" é necessário para computar o resultado para uma instância do problema de tamanho n;
 - Espaço de memória utilizado pelo algoritmo: quanto "espaço de memória/disco" é preciso para armazenar a(s) estrutura(s) utilizada(s) pelo algoritmo.
- O esforço realizado por um algoritmo é calculado a partir da quantidade de vezes que a operação fundamental é executada.
 - Para um algoritmo de ordenação, uma operação fundamental é a comparação entre elementos quando à ordem.

- A complexidade exata possui muitos detalhes, então a escolha de um algoritmo é feita através de sua taxa de crescimento.
- A taxa é representada através de cotas que são funções mais simples.
- A ordem de crescimento do tempo de execução de um algoritmo fornece uma caracterização simples de eficiência do algoritmo.

- O (1): constante mais rápido, impossível
- O (log log n) : super-rápido
- O (log n): logarítmico muito bom
- O (n): linear é o melhor que se pode esperar se algo não pode ser determinado sem examinar toda a entrada
- O (n log n): limite de muitos problemas práticos, ex.: ordenar uma coleção de números
- O (n²): quadrático
- $O(n^k)$: polinomial ok para n pequeno
- $O(k^n)$, O(n!), $O(n^n)$: exponencial evite!

Imagine um algoritmo com complexidade:

$$an^2 + bn + c$$

- Desprezamos os termos de baixa ordem
- Ignoramos o coeficiente constante
- Logo, o tempo de execução do algoritmo tem cota igual a n², O(n²).

A complexidade por ser vista como uma propriedade do problema, o que significa dar uma medida independente do tratamento do problema, independente do caminho percorrido na busca da solução, portanto independente do algoritmo.

Será?

- Considere dois algoritmos A e B com tempo de execução O(n²) e O(n³), respectivamente.
- Qual deles é o mais eficiente?

- Considere dois programas A e B com tempos de execução 100n² milisegundos, e 5n³ milisegundos, respectivamente, qual é o mais eficiente?
- Se considerarmos um conjunto de dados de tamanho n<20, o programa B será mais eficiente que o programa A.
- Entretanto, se o conjunto de dados é grande, a diferença entre os dois programas se torna bastante significativa e o programa A é preferido.

- Considere dois algoritmos A e B com tempo de execução O(n²) e O(n³), respectivamente.
- Qual deles é o mais eficiente?

- Considere dois computadores:
 CompA que executa 10⁹ instruções por segundo;
 CompB que executa 10⁷ instruções por segundo.
- Considere que dois algoritmos de ordenação:
 - Prog1: linguagem de máquina para CompA cujo código exige 2n² instruções para ordenar n números;
 - Prog2: linguagem de alto nível para CompB cujo código exige **50n log₂ n** instruções.
- Quanto tempo CompA e CompB demoram para ordenar um milhão de números - 1.000.000?

Para ordenar um milhão de números (10⁶)...

• CompA demora:
$$\frac{2(10^6)^2 instruções}{10^9 instruções/segundo} = 2000 segundos$$

CompB demora:

$$\frac{50(10^6)\log_2 10^6 instruções}{10^7 instruções/segundo} = 100 segundos$$