

USATHAMA TECH INFO CTR AD-A256 409

15-90-D-0014

CONTRACT NO. DAAA15-90-D-0014 DELIVERY ORDER NO. 0004

US Army Corps of Engineers

Toxic and Hazardous Materials Agency

DO NOT REMOVE FROM FACILITY

GUPY1

FINAL REPORT
ASBESTOS AIR MONITORING RESULTS
AT ELEVEN FAMILY HOUSING AREAS
THROUGHOUT THE UNITED STATES

SUBMITTED TO:

U.S. ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-5401

SUBMITTED BY:

VERSAR, INC.
6850 VERSAR CENTER
SPRINGFIELD, VIRGINIA 22151

35525

92-26629

MAY 23, 1991

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting ourgen for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	13. REPORT TYPE AN	ID DATES COVERED
	May 23, 1991		/90 - 5/31/91
4. TITLE AND SUBTITLE Final Report Asbestos Air Monitoring			5. FUNDING NUMBERS Contract DAAA15-90-D-0014 Delivery Order No. 4
6. AUTHOR(5) Paul Cestone, Rosann Kry Alton McKissick, and Pame		netti,	
7. PERFORMING ORGANIZATION NAME Versar, Inc. 6800 Versar Center Springfield, Virginia 2			8. PERFORMING ORGANIZATION REPORT NUMBER 5510RPT.003-THAMA
9. SPONSORING/MONITORING AGENCY U.S. Army Toxic and Hazar Command USATHAMA, Attn: Aberdeen Proving Ground,	rdous Materials Agen CETHA-IR	су	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY STAT	Approved for public a Distribution Unlim	ejecze)	12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words) Versar conducted ashestos	air monitoring of	olovon fomily	ousing and (EUA)

Versar conducted asbestos air monitoring at eleven family housing areas (FHAs) throughout the United States. The objective of the sampling was to evaluate potential air impacts in the family housing units from asbestos containing materials identified in earlier assessments. This evaluation was necessary to clarify the environmental issues prior to sale or realignment of the property. The asbestos air monitoring indicated that three of the FHAs contained no airborne asbestos above the detection limit, and five contained airborne asbestos below the USATHAMA set limit of 0.005 fibers per cubic centimeter (f/cc). Three FHAs contained airborne asbestos at or above 0.005 f/cc, but a statistical test indicated that, in all cases, the indoor air was not statistically different from the outdoor air. No further testing is recommended. No reason was identified to discontinue the use of the FHAs.

14. SUBJECT TERMS			15. NUMBER OF PAGES
Family Housing Areas,	200 16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT

Wersar_{inc.}

TABLE OF CONTENTS

1.0	INTR	ODUCTION
2.0	ASSE	SSMENT
2	2.1	USARC Addison, Addison, Illinois
		2.1.1 Sampling Rationale
		2.1.2 Field Activities
		2.1.3 Results
	2.2	Worth, Illinois
		2.2.1 Sampling Rationale
		2.2.2 Field Activities
		2.2.3 Results
	2.3	Nike NY 54, Holmdel, New Jersey
		2.3.1 Sampling Rationale
		2.3.2 Field Activities
		2.3.3 Results
	2.4	Nike NY 60, Old Bridge, New Jersey
		2.4.1 Sampling Rationale
		2.4.2 Field Activities
		2.4.3 Results
	2.5	Nike NY 25, Rocky Point, New York
		2.5.1 Sampling Rationale
		2.5.2 Field Activities
		2.5.3 Results
	2.6	Nike NY 99, Spring Valley, New York
		2.6.1 Sampling Rationale
		2.6.2 Field Activities
		2.6.3 Results
	2.7	Nike NY 01, Tappan, New York
		2.7.1 Sampling Rationale
		2.7.2 Field Activities
		2.7.3 Results
	2.8	North Smithfield, Slatersville, Rhode Island
		2.8.1 Sampling Rationale
		2.8.2 Field Activities
		2.8.3 Results
	2.9	Woodbridge, Virginia
		2.9.1 Sampling Rationale
		2.9.2 Field Activities
		2.9.3 Results
	2.10	Midway Nike Manor, Kent, Washington
	10	2.10.1 Sampling Rationalee
		2.10.2 Field Activities
		2.10.3 Results

Versar_{mc}

TABLE OF CONTENTS

	2.11	Youngs Lake, Renton, Washington. 34 2.11.1 Sampling Rationale. 34 2.11.2 Field Activities. 34 2.11.3 Results. 35
3.0	SUMM	ARY
		<u>TABLES</u>
Table 2	2.2-1. 2.3-1. 2.4-1. 2.5-1. 2.6-1. 2.7-1. 2.8-1. 2.9-1. 2.10-1.	USARC Addison, Illinois 5 Worth, Illinois 8 Nike NY 54, Holmdel, New Jersey 11 Nike NY 60, Old Bridge, New Jersey 14 Nike NY 25, Rocky Point, New York 17 Nike NY 99, Spring Valley, New York 20 Nike NY 01, Tappan, New York 23 North Smithfield, Slatersville, Rhode Island 26 Woodbridge, Virginia 29 Midway Nike Manor, Kent, Washington 33 Youngs Lake, Renton, Washington 37 Youngs Lake, Renton, Washington 38 APPENDICES
		<u> </u>
Append Append	lix B:	AHERA Transmission Electron Microscopy (TEM) Method RJ Lee Group Quality Assurance Plan Floor Plans, Sampling Data Sheets, Chain of Custodies, and Analytical Results Student "t" Test Evaluation

Statement A author USAHAMA/CETHA-BC (Mr. Ricci-DSN 584-3261) Telecon

9 OCT 92 CB

Access	ion For	
NTIS	GRA&I	3
DTIC '	rab	
	ourced	
Justi	rication	
By Distr	vtele ibution/	eon
Avel	1971:175	Coj กร ์
	Avail ar	
Dist	Specia	al
A-1		

Wersaling.

1.0 INTRODUCTION

Versar, Incorporated conducted air monitoring for asbestos at eleven Family Housing Areas (FHAs) located in several states throughout the United States for the United States Army Toxic and Hazardous Materials Agency (USATHAMA). The work was conducted under the Total Environmental Protection Support (TEPS) Contract No. DAAA15-90-D-0014, Delivery Order No. 4 between USATHAMA and Versar.

Previous bulk sample results from 11 FHAs indicated that dust in the ductwork contained asbestos fibers. The presence of asbestos fibers in dust samples appears to confirm earlier speculation that the transite ductwork is the source of asbestos. Previous air sampling was not complete and more information was required to assess the concentration of airborne asbestos and associated health risks. This sampling addresses these questions.

U.S. Army family housing units (FHUs) at eleven FHAs were to be sampled by Versar personnel during January and February 1991. Ten FHAs were sampled in late January and early February. The eleventh FHA (Woodbridge, Virginia) was sampled in late February because a power outage prevented the use of the heating, ventilation, and air conditioning (HVAC) systems.

Versar performed asbestos air monitoring at 10 percent of the FHUs or three FHUs at each FHA, whichever was greater. The criteria used to select the FHUs for sampling were as follows:

- Sample at least one occupied house at each FHA, if occupied units exist.
- Do not sample previously air sampled houses.
- Sample at least one FHU from each construction design (e.g., Capehart, single family, duplex, apartment, and MCA).

Sampling operations were conducted in accordance with TM 5-612 and samples were analyzed using transmission electron microscopy (TEM) according to the Environmental Protection Agency (EPA) Asbestos Hazard Emergency Response Act (AHERA) method (Appendix A). Samples of unoccupied houses were collected after the heating systems were allowed to equilibrate (run at least one hour prior to sampling) to ensure conditions were representative of occupied houses. Versar ensured that a minimum volume of 1,200 liters was collected at each of the sample locations and that a flow rate of approximately 10 liters per minute was maintained. The individual sample volumes varied depending on sampling duration, actual flow rate, and temperature correction, if necessary.

Wersiling.

A summary of the Quality Assurance Plan for RJ Lee Group, the provider of TEM analysis, is provided in Appendix B. The plan includes key elements as follows: replicate analyses, duplicate analyses, field blanks, lab blanks, analysis of NIST Standard Reference Materials, interlaboratory exchange of samples, participation in NIST and AIHA accreditation programs, participation in the AIHA/NIOSH Proficiency Analytical Testing Program (PAT), thorough analyst training, and careful documented equipment maintenance and calibration. The lab is inspected every two years by NIST, every three years by AIHA and quarterly by the RJ Lee Group QC officer.

The sample detection limits varied depending on sampling volumes and grid openings scanned. Therefore, the detection limits presented in the results summary tables vary from 0.002 fibers per cubic centimeter (f/cc) to 0.005 f/cc.

Versur

2.0 ASSESSMENT

Sampling for airborne asbestos fibers was performed at 27 FHUs at 11 FHAs in January 1991 and February 1991. Samples were collected using procedures outlined in Versar's project plan, which was based on the AHERA method and TM5-612. The sampling procedures were designed specifically for USATHAMA with regard to asbestos air monitoring for FHUs. All samples were analyzed by TEM following the protocols specified in AHERA. For each FHA, the floor plans, sampling data sheets, chain of custodies, and analytical results are presented in the Appendix C.

The sampled FHUs were selected on the basis that samples would be collected from at least one house of each construction design, that at least one occupied house at the FHA would be sampled, if occupied units existed, and that the units were not previously air sampled. Air sampling was conducted only after the heating system had been run at least one hour prior to the start of sample collection and while the heating system was operating. This was done to ensure representative air circulation whether the house was occupied or not and be indicative of the worst possible case for exposure of occupants. The designated U.S. Army's Directorate of Engineering and Housing (DEH) was consulted for information related to the representativeness and choice of FHUs to be sampled.

2.1 USARC Addison, Addison, Illinois

Sampling for airborne asbestos fibers was performed at three units of the Addison Army Housing Units on January 29, 1991, by Versar. Ms. Rosann Kryczkowski, a Certified Industrial Hygienist (C.I.H.), and Andris Olmetti, an industrial hygienist (IH), performed the sampling.

2.1.1 Sampling Rationale

Three units were selected by Mrs. O'Connor of Family Housing, with the understanding that at least one unit had to be occupied, and all three were to have the heating systems operating for at least one hour prior to sampling. There are 12 single - family, "Capehart" style housing units located in this development. U.S. Army families reside at this location. The heating systems in the three units were operating prior to air sampling.

2.1.2 Field Activities

The "Capehart" style houses were three bedroom (403 & 404), and two bedroom (410) units. Heat was supplied via forced-air furnaces which were fueled with natural gas. The heating system duct work is embedded in the concrete slab foundation.

Unit 403 was monitored on the morning of January 29, unit 410 was monitored in the afternoon of January 29, and unit 403 was monitored on the morning of January 30. The weather was cold, so each of the units heating systems were operating. The high volume sampling pumps were calibrated before and after sampling using the mini-Buck calibrator which is a primary standard. After the pumps were calibrated, a sampling cassette made of an electrically conductive plastic was attached to the sampling line and placed directly over the heating register to be sampled. The cassette contained a 25 millimeter (mm) diameter mixed cellulose ester (MCE) membrane filter, having a nominal pore size of 0.45 microns (µm). The sampling times were recorded and air sampled for approximately 3 hours.

The pumps were operated for a time period sufficient to draw approximately 1,600 liters of air through each filter based upon presampling calibration values. Following the sampling period, the filter cassettes were removed and capped. Post calibration was conducted and all the necessary information was entered on the label, chain of custody form, and in the field notes.

Two Gillian Aircon 520 pumps were used to collect the two outside air samples and four Abatement Technologies pumps were used to collect the indoor air samples. Pumps were placed so as to collect representative samples over floor registers. Choice of sampling locations was influenced by furniture placement, occupant activities and power source locations. The sampling locations within the units are presented in Table 2.1.1.

2.1.3 Results

The results for the twelve air samples collected in and around units 403, 404, and 410 are presented in Table 2.1.1. No airborne asbestos fibers were detected inside any of the three Addison housing units exceeding the acceptable USATHAMA set limit of 0.005 f/cc. Based on these findings, outdoor samples were not examined. Further air sampling of these units is not required, unless some form of renovation to the heat ducts transpires.

TABLE 2.1-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING AND ANALYSIS USARC ADDISON, ILLINOIS

JANUARY 23, 1991

(ALL VALUES IN FIBERS/CC)

House	Sample Number	Sample Location	Asbestos Concentration	Asbestos Type Found
UNIT 403	A129-01 A129-02 A129-03 A129-04 A129-05 A129-06	Living Room Master Bedroom Bathroom Front Bedroom Outside Outside	ND <0.004 ND <0.005 ND <0.005 ND <0.005 Not Analyzed Not Analyzed	
Unit 410	A129-07 A129-08 A129-09 A129-10 A129-11 A129-12	Living Room Master Bedroom Bathroom Back Bedroom Outside Outside	ND <0.004 ND <0.004 ND <0.004 ND <0.004 Not Analyzed Not Analyzed	
Unit 404	A130-13 A130-14 A130-15 A130-16 A130-17 A130-18	Bathroom Living Room Front Room Living Room Outside Outside	ND <0.004 ND <0.004 ND <0.004 0.004* Not Analyzed Not Analyzed	Chrysotile

^{*}One asbestos fiber (<5.0 um in length) was detected.

)

2.2 Worth, Illinois

Sampling for airborne asbestos fibers was performed at two units of the Worth Army Housing Units on January 28, 1991, by Versar. Ms.Rosann Kryczkowski, C.I.H., and Mr. Andris Olmetti, an IH, performed the sampling.

2.2.1 Sampling Rationale

Two units were selected by Mrs. O'Connor of the Army Housing Office, with the understanding that at least one unit had to be occupied, and both were to have the heating systems operating for at least one hour prior to sampling. Units 4 and 6 were tested on the survey day.

There are 12 single-family, "Capehart" style housing units located in this development. U.S. Army families reside at this location. The heating systems in both units were operating prior to air sampling.

2.2.2 Field Activities

Both units monitored were three bedroom "Capehart" style houses. Heat was supplied via forced-air-furnaces which were fueled with propane. The heating system duct work is embedded in the concrete stab foundation.

Unit 6 was monitored on the morning of January 28 and Unit 4 was monitored in the afternoon. The weather was cold so both heating systems were operating. The high volume sampling pumps were calibrated before and after sampling using the mini-Buck calibrator which is a primary standard. After the pumps were calibrated, a sampling cassette made of an electrically conductive plastic was attached to the sampling line and placed directly over the heating register to be sampled. The cassette contained a 25mm diameter MCE membrane filter, having a nominal pore size of 0.45mm. The sampling times were recorded and air sampled for approximately 3 hours.

The pumps were operated for a time period sufficient to draw approximately 1,600 liters of air through each filter based upon presampling calibration values. Following the sampling period, the filter cassettes were removed and capped. Post calibration was conducted and all the necessary information was entered on the label, chain of custody form, and in the field notes.

Two Gillian Aircon 520 pumps were used to collect the two outside air samples and four Abatement Technologies pumps were used to collect the indoor air samples. Pumps were placed so as to collect representative samples over open floor registers. Choices of sampling locations was influenced by furniture placement, occupant activities and power source location. The sampling locations within the units are presented in Table 2.2.1.

2.2.3 Results

The results for the eight indoor air samples for units 4 and 6 are presented in Table 2.2.1. No airborne asbestos fibers were detected inside in any of the Worth housing units exceeding the acceptable USATHAMA set limit of 0.005 f/cc. Based on these findings outdoor samples were not examined. Further air sampling of these units is not required, unless some form of renovation to the heat ducts transpires.

- *i* -

Versii.

TABLE 2.2-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING AND ANALYSIS WORTH, ILLINOIS (ALL VALUES IN FIBERS/CC)

House	Sample <u>Number</u>	Sample Location	Asbestos Concentration	Asbestos Type Found
UNIT 6	W128-01 W128-02 W128-03 W128-04 W128-05 W128-06	Living Room Back Corner Bedroom Master Bedroom Bathroom Outside Outside	ND <0.004 ND <0.004 ND <0.004 ND <0.004 Not Analyzed Not Analyzed	
UNIT 4	W128-07 W128-08 W128-09 W128-10 W128-11 W128-12	Living Room Rear Corner Bedroom Master Bedroom Bathroom Outside Outside	ND <0.004 ND <0.004 ND <0.005 0.004* Not Analyzed Not Analyzed	Chrysotile

^{*}One asbestos fiber (<5.0 um in length) was detected.

Versar

2.3 Nike NY 54, Holmdel, New Jersey

Sampling for airborne asbestos fibers was performed at three housing units at the Holmdel Army Housing Area, Holmdel, New Jersey on January 31, 1991, by Versar. Messrs. Alton McKissick, CIH and Paul Cestone, IH, performed the sampling.

2.3.1 Sampling Rationale

At the Holmdel FHA all 12 FHUs were of the single family Capehart construction design. Units 206, 207 and 212 were selected for sampling. Units 206 and 207 were occupied and Unit 212 unoccupied.

2.3.2 Field Activities

Prior to conducting air sampling, a visual inspection of the FHUs air conditioning/furnace room and heating and air conditioning ductwork was performed in each FHU sampled. First, the HVAC units themselves were inspected for suspect asbestos-containing materials (ACM). Then, the HVAC registers were removed from each room and the vertical runs to the elbows of the ducts were visually examined for ACM using a high beam flashlight. No sources that were not noted in previous surveys were identified.

FHU 207 was sampled first. FHU 206 was sampled concurrently with FHU 207 with the air pumps being set up immediately after FHU 207's pumps were started. Sampling equipment was warmed to ambient temperature. Four Aircon air pumps were used inside each FHU - one each in the living room, kitchen, a bedroom, and a bathroom. Two Aircon air pumps were also used outside to collect background samples.

The Aircon air pumps were calibrated using Gilibrator Bubble Cell No. 5972-H prior to each sampling by placing a representative sample cassette in line between the air pump and the Gillian primary standard bubble calibrator. The air pump rotameter was set at ten liters per minute and run against the primary calibrator. The primary calibrator measurement was recorded as the initial flow rate. A 25 mm diameter 0.45 um MCE membrane filter cassette was then attached to the air pump and the unit placed in it's sampling location. After all the pumps were calibrated, sample cassettes attached, and the units positioned, a field blank was collected and sampling was begun.

The samples were run for a time sufficient to draw a minimum of 1,800 liters of air though each filter (approximately 3.5 hours). When the necessary air volume was filtered, the filter cassettes were inverted, capped, and collected. The flow rate of each pump was

measured by the same procedure used prior to the start of sample collection and all data recorded. The equipment was packaged up and removed.

The volume of air drawn through each filter was calculated, based on the average flow rate and the duration of sample collection. The calculated volumes for the background pumps, which were run outside, were corrected for temperature difference. The labeled sample cassettes were then packaged with all necessary data and shipped under chain-of-custody to the analyzing laboratory R.J. Lee Group in Manassas, Virginia for TEM analyses using a next day shipping service.

2.3.3 Results

A total of seven samples were collected per FHU. One each from the living room, kitchen, a bedroom, and a bathroom, two background samples collected from outside the FHU, and one field blank. The inside samples and the field blank for all three FHUs sampled were analyzed by TEM with results all less than 0.005 f/cc. (see table 2.3.1). The USATHAMA protocol stipulated these samples be analyzed first, and the outside samples be analyzed only if the inside sample results were 0.005 f/cc or greater. Since all the sample results from this FHA were less than 0.005 f/cc, the outside sample were not analyzed. At this time, the asbestos air monitoring results indicate that there is no reason to discontinue the use of the Nike NY 54.

Wersan.

TABLE 2.3-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING & ANALYSIS NIKE NY 54, HOLMDEL, NEW JERSEY (ALL VALUES IN FIBERS/CC)

<u>House</u>	Sample <u>Number</u>	Sample <u>Location</u>	Asbestos Concentration	Asbestos Type
Unit 207	68092	Living Room	ND < 0.005	
	68093	Kitchen	ND < 0.005	
	68094	Bed Room	ND < 0.004	
	68095	Bathroom	ND < 0.004	
	68096	Outside	Not Analyzed	
	68097	Outside	Not Analyzed	
Unit 206	68099	Living Room	ND < 0.004	
	68100	Kitchen	ND < 0.004	
	68101	Bedroom	ND < 0.004	
	68102	Bathroom	ND < 0.005	
	68103	Outside	Not Analyzed	
	68104	Outside	Not Analyzed	
Unit 212	68106	Living Room	ND < 0.004	
	68107	Kitchen	ND < 0.004	
	68108	Bedroom	ND < 0.004	
	68109	Bathroom	ND < 0.004	
	68110	Background	Not Analyzed	
	68111	Background	Not Analyzed	

Vernar_{na}

2.4 Nike NY 60, Old Bridge, New Jersey

Sampling for airborne asbestos fibers was performed at three housing units at the Old Bridge Army Housing Area, Old Bridge, New Jersey on January 29 and 30, 1991, by Versar. Messrs. Alton McKissick, CIH, and Paul Cestone, IH, collected the samples.

2.4.1 Sampling Rationale

At the Old Bridge FHA all 16 FHUs were of the single family Capehart construction design. Units 206, 209 and 212 were selected for sampling. Unit 212 was an occupied unit and units 206 and 209 unoccupied.

2.4.2 Field Activities

Prior to conducting air sampling, a visual inspection was performed in each FHU sampled. No ACM sources that were not noted in previous surveys were identified.

FHU 206 was sampled first. Being unoccupied it had it's heating system set at it's lowest setting, but was not completely deactivated. This meant that the air blower (fan) ran sporadically and infrequently. Therefore, the thermostat was raised to maintain continuous air flow. FHU 209 was sampled concurrently with FHU 212. Air pumps were set up immediately after FHU 206 pumps were started. Sampling equipment was warmed to ambient temperature. Four Aircon air pumps were used inside each FHU, one each in the living room, kitchen, a bedroom, and a bathroom. Two Aircon air pumps were also used outside to collect background samples.

The Aircon air pumps were calibrated using Gilibrator Bubble Cell No. 5972-H, prior to each sampling by placing a representative sample cassette in line between the air pump and the Gillian primary standard bubble calibrator. The air pump rotameter was set at ten liters per minute and run against the primary calibrator. The primary calibrator measurement was recorded as the initial flow rate. A 25 mm diameter 0.45 um MCE membrane filter cassette was then attached to the air pump and the unit placed in it's sampling location. After all the pumps were calibrated, sample cassettes attached, and the units positioned, a field blank was collected and sampling was begun.

The samples were run for a time sufficient to draw a minimum of 1,800 liters of air though each filter (approximately 3.5 hours). When the necessary air volume was filtered the filter cassettes were inverted, capped, and collected. The flow rate of each pump was

measured by the same procedure used prior to the start of sample collection, all data recorded, and the equipment packaged up and removed.

The volume of air drawn through each filter was calculated, based on the average flow rate and the duration of sample collection. Volumes for the background samples were not corrected for temperature differences since the temperature difference between the inside and outside was between 17 degrees Fahrenheit (°F) to 20° F and the effect on volume was negligible since the accuracy of the pumps is \pm 5 percent. The labeled sample cassettes were then packaged with all necessary data and shipped under chain-of-custody to the analyzing laboratory R.J. Lee Group in Manassas, Virginia for TEM analyses using a next day shipping service.

2.4.3 Results

A total of seven samples were collected per FHU. One each from the living room, kitchen, a bedroom, and a bathroom, two background samples collected from outside the FHU, and one field blank. The inside samples and the field blank for all three FHUs sampled were analyzed by TEM with results all less than 0.005 f/cc. (see table 2.4-1). The USATHAMA protocol stipulated these samples be analyzed first, and the outside samples be analyzed only if the inside sample results were 0.005 f/cc or greater. Since all the sample results from this FHA were less than 0.005 f/cc, the outside sample were not analyzed. At this time, the asbestos air monitoring results indicate that there is not reason to discontinue the use of Nike NY 60.

TABLE 2.4-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING & ANALYSIS NIKE NY 60, OLD BRIDGE, NEW JERSEY (ALL VALUES IN FIBERS/CC)

<u>House</u>	Sample Number	Sample <u>Location</u>	Asbestos Concentration	Asbestos Type
Unit 206	68071 68072 68073 68074 68075 68076	Living Room Kitchen Bed Room Bathroom Outside Outside	ND < 0.003 0.003* ND < 0.003 ND < 0.003 Not Analyzed Not Analyzed	Chrysotile
Unit 209	68078 68079 68080 68081 68082 68083	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.004 ND < 0.005 ND < 0.004 ND < 0.004 Not Analyzed Not Analyzed	
Unit 212	68085 68086 68087 68088 68089 68090	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.005 ND < 0.005 ND < 0.005 ND < 0.005 Not Analyzed Not Analyzed	

^{* =} One asbestos fiber (\geq 5.0 um in length) was detected. ND = Not Detected at the Limit of Detection.

2.5 Nike NY 25, Rocky Point, New York

Sampling for airborne asbestos fibers was performed at two housing units at the Rocky Point Army Housing Area, Rocky Pointy, New York on January 28, 1991, by Versar. Messrs Alton McKissick, CIH, and Paul Cestone, IH, collected the samples.

2.5.1 Sampling Rationale

At the Rocky Point FHA all 16 FHUs were of the single family Capehart construction design. Units 5 and 11 were selected for sampling. Both units were occupied; unit 5, a two bedroom Capehart and Unit 11, a three bedroom Capehart.

2.5.2 Field Activities

Prior to conducting air sampling, a visual inspection was performed in each FHU sampled. No ACM sources that were not noted in previous surveys were identified.

FHU 11 was sampled first. FHU 5 was sampled concurrently with FHU 11 with the air pumps being set up immediately after FHU 11's pumps were started. Sampling equipment was warmed to ambient temperature. Four Aircon air pumps were used inside each FHU, one each in the living room, kitchen, a bedroom, and a bathroom. Two Aircon air pumps were also used outside to collect background samples.

The Aircon air pumps were calibrated using, Gilibrator Bubble Cell No. 5972-H, prior to each sampling by placing a representative sample cassette in line between the air pump and the Gillian primary standard bubble calibrator. The air pump rotameter was set at ten liters per minute and run against the primary calibrator. The primary calibrator measurement was recorded as the initial flow rate. A 25 mm diameter 0.45 um MCE membrane filter cassette was then attached to the air pump and the unit placed in it's sampling location. After all the pumps were calibrated, sample cassettes attached, and the units positioned, a field blank was collected and sampling was begun.

The samples were run for a time sufficient to draw a minimum of 1,800 liters of air though each filter (approximately 3.5 hours). When the necessary air volume was filtered, the filter cassettes were inverted, capped, and collected. The flow rate of each pump was measured by the same procedure used prior to the start of sample collection, all data recorded, and the equipment packaged up and removed.

The volume of air drawn through each filter was calculated, based on the average flow rate and the duration of sample collection. Volumes for the background samples were not corrected for temperature differences since the temperature difference between the inside and outside was between $17^{\circ}F$ to $20^{\circ}F$ and the effect on volume was negligible since the accuracy of the pumps is \pm 5 percent. The labeled sample cassettes were then packaged with all necessary data and shipped under chain-of-custody to the analyzing laboratory R.J. Lee Group in Manassas, Virginia for TEM analyses using a next day shipping service.

2.5.3 Results

A total of seven samples were collected per FHU. One each from the living room, kitchen, a bedroom, and a bathroom, two background samples collected from outside the FHU, and one field blank. The inside samples and the field blank for all three FHUs sampled were analyzed by TEM with results all less than 0.005 f/cc. (see table 2.5.1). The USATHAMA protocol stipulated these samples be analyzed first, and the outside samples be analyzed only if the inside sample results were 0.005 f/cc or greater. Since all the sample results from this FHA were less than 0.005 f/cc, the outside sample were not analyzed. At this time, the asbestos air monitoring results indicate that there is no reason to discontinue the use of Nike NY 25.

TABLE 2.5-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING & ANALYSIS NIKE NY 25, ROCKY POINT, NEW YORK (ALL VALUES IN FIBERS/CC)

<u>House</u>	Sample Number	Sample Location	_	bestos Fype
Unit 11	68057 68058 68059 68060 68061 68062	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.002 ND < 0.002 ND < 0.002 ND < 0.002 Not Analyzed Not Analyzed	
Unit 05	68064 68065 68066 68067 68068 68069	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.003 ND < 0.003 ND < 0.003 ND < 0.003 Not Analyzed Not Analyzed	

2.6 Nike NY 99, Spring Valley, New York

Sampling for airborne asbestos fibers was performed at three housing units at the Spring Valley Army Housing Area, Spring Valley, New York on January 25 and 26, 1991, by Versar Inc. Messrs Alton McKissick, CIH, and Paul Cestone, IH, collected the samples

2.6.1 Sampling Rationale

At the Spring Valley FHA all 12 FHUs were of the single family Capehart construction design. Units 203, 207 and 208 were selected for sampling. Unit 203 was an occupied unit and Units 207 and 208 were unoccupied.

2.6.2 Field Activities

Prior to conducting air sampling, a visual inspection was performed in each FHU sampled. Versar did not have the results of previous surveys, but did identify floor tile as a possible ACM. However, the floor tile was in good condition and no samples were collected.

FHU 208 was sampled first. Being unoccupied, the heating system thermostat was set at it's lowest setting, but the HVAC system was not completely deactivated. This meant that the air blower (fan) would run sporadically and infrequently. Therefore the thermostat was raised to maintain continuous air flow. FHU 203 was sampled concurrently with FHU 207 with the air pumps being set up immediately after FHU 203's pumps were started. Sampling equipment was unloaded and the pumps to be used inside were warmed prior to calibration. Background pumps were calibrated at the outside temperature. Therefore, no volume corrections were necessary. Four Aircon air pumps were used inside each FHU, one each in the living room, kitchen, a bedroom, and a bathroom. Two Aircon air pumps were used outside to collect background samples.

The Aircon air pumps were calibrated using, Gilibrator Bubble Cell No. 5972-H, prior to each sampling by placing a representative sample cassette in line between the air pump and the Gillian primary standard bubble calibrator. The air pump rotameter was set at ten liters per minute and run against the primary calibrator. The primary calibrator measurement was recorded as the initial flow rate. A 25 mm diameter 0.45 um MCE membrane filter cassette was then attached to the air pump and the unit placed in it's sampling location. After all the pumps were calibrated, sample cassettes attached, and the units positioned, a field blank was collected and sampling was begun.

The samples were run for a time sufficient to draw a minimum of 1,800 liters of air though each filter (approximately 3.5 hours). When the necessary air volume was filtered the filter cassettes were inverted, capped, and collected. The flow rate of each pump was measured by the same procedure used prior to the start of sample collection, all data recorded, and the equipment packaged up and removed.

The volume of air drawn through each filter was calculated, based on the average flow rate and the duration of sample collection. The labeled sample cassettes were then packaged with all necessary data and shipped under chain-of-custody to the analyzing laboratory R.J. Lee Group in Manassas, Virginia for TEM analyses using a next day shipping service.

2.6.3 Results

A total of seven samples were collected per FHU. One each from the living room, kitchen, a bedroom, and a bathroom, two background samples collected from outside the FHU, and one field blank. The inside samples and the field blank for all three FHUs sampled were analyzed by TEM, with results all less than 0.005 f/cc except the bathroom sample from Unit 208, and the field blank and living room samples from Unit 203 (see table 2.6.1). The USATHAMA protocol stipulated these samples be analyzed first, and the outside samples be analyzed only if the inside sample results were 0.005 f/cc or greater; therefore, the outside samples for Units 203 and 208 were analyzed. All the sample results from Unit 207 were less than 0.005 f/cc. To determine whether the indoor air is impacted from ACM in the FHUs, the indoor air levels were statistically compared to the outside air levels at Units 208 and 203 using the student "t" test (see Appendix D). The test indicated that the indoor air levels are not statistically different from the outdoor levels. At this time, the asbestos air monitoring results indicate that there is no reason to discontinue the use of Nike NY 99.

TABLE 2.6-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING & ANALYSIS NIKE NY 99, SPRING VALLEY, NEW YORK (ALL VALUES IN FIBERS/CC)

House	Sample <u>Number</u>	Sample <u>Location</u>	Asbestos Concentration	Asbestos Type
Unit 208	68036 68037 68038 68039 68040 68041	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.004 0.004 ^A 0.004 ^B 0.008 ^C <0.004	Chrysotile Chrysotile Chrysotile
Unit 207	68043 68044 68045 68046 68047 68048	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.004 ND < 0.005 ND < 0.004 ND < 0.005 Not Analyzed Not Analyzed	
Unit 203	68050 68051 68052 68053 68054 68055	Living Room Kitchen Bedroom Bathroom Outside Outside	0.005 ^A ND < 0.005 ND < 0.005 ND < 0.005 ND < 0.004 ^D ND < 0.004 ^D	Chrysotile

^{*}One fiber less than 5 um in length.

^BOne fiber J um or greater in length.

^cTwo fibers less than 5 um in length.

^DOne chrysotile asbestos fiber (>.5- <5 um in length) was identified on the field blank. ND = Not Detected at the Limit of Detection.

2.7 Nike NY 01, Tappan, New York

Sampling for airborne asbestos fibers was performed at three housing units at the Tappan Army Housing Area, Tappan, New York on January 24, 1991, by Versar. Messrs Alton McKissick, ClH, and Paul Cestone, IH, collected the samples.

2.7.1 Sampling Rationale

At the Tappan FHA all 36 FHUs were of the single family Capehart construction design. Units 402, 403 and 416 were selected for sampling. None of the 36 FHUs were occupied.

2.7.2 Field Activities

Prior to conducting air sampling, a visual inspection was performed in each FHU sampled. No ACM sources that were not noted in previous surveys were identified.

FHUs 402 and 403 were sampled concurrently, and FHU 416 was sampled after FHUs 402 and 403. Being unoccupied, the HVAC thermostats were set at their lowest setting, but the system were not completely deactivated. This meant that the air blower (fan) ran sporadically and infrequently. Therefore the thermostat was raised to maintain continuous air flow. FHU 403 was sampled concurrently with FHU 402 with the air pumps in FHU 403 being set up immediately after FHU 402's pumps were started. Sampling equipment was allowed to reach inside ambient temperatures before calibration. Four Aircon air pumps were used inside each FHU, one each in the living room, kitchen, a bedroom, and a bathroom. Two Aircon air pumps were also used outside to collect background samples.

The Aircon air pumps were calibrated using, Gilibrator Bubble Cell No. 5972-H, prior to each sampling by placing a representative sample cassette in line between the air pump and the Gillian primary standard bubble calibrator. The air pump rotameter was set at ten liters per minute and run against the primary calibrator. The primary calibrator measurement was recorded a, the initial flow rate. A 25 mm diameter 0.45 um MCE membrane filter cassette was then attached to the air pump and the unit placed in it's sampling location. After all the pumps were calibrated, sample cassettes attached, and the units positioned, a field blank was collected and sampling was begun.

The samples were run for a time sufficient to draw a minimum of 1,800 liters of air though each filter (approximately 3.5 hours). When the necessary air volume was filtered the filter cassettes were inverted, capped, and collected. The flow rate of each pump was

measured by the same procedure used prior to the start of sample collection, all data recorded, and the equipment packaged up and removed.

The volume of air drawn through each filter was calculated, based on the average flow rate and the duration of sample collection. The volumes of the background pumps which were run outside were corrected for temperature difference. The labeled sample cassettes were then packaged with all necessary data and shipped under chain-of-custody to the analyzing laboratory R.J. Lee Group in Manassas, Virginia for TEM analyses using a next day shipping service.

2.7.3 Results

A total of seven samples were collected per FHU. One each from the living room, kitchen, a bedroom, and a bathroom, two background samples collected from outside the FHU and, one field blank. The inside samples and the field blank for all three FHUs sampled were analyzed by TEM with results all less than 0.005 f/cc. (see table 2.7.1). The USATHAMA protocol stipulated these samples be analyzed first, and the outside samples be analyzed only if the inside sample results were 0.005 f/cc or greater. Since all the sample results from this FHA were less than 0.005 f/cc, the outside sample were not analyzed. At this time, the asbestos air monitoring does not indicate that use of the Nike NY 01 FHA should be discontinued.

Versar_{me}

TABLE 2.7-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING & ANALYSIS NIKE NY 01, TAPPAN, NEW YORK (ALL VALUES IN FIBERS/CC)

<u>House</u>	Sample <u>Number</u>	Sample Location	Asbestos Concentration	Asbestos <u>Type</u>
Unit 402	68015	Living Room	ND < 0.004	
	68016	Kitchen	0.004*	Chrysotile
	68017	Bedroom	ND < 0.004	,
	68018	Bathroom	ND < 0.004	
	68019	Outside	Not Analyzed	
	68020	Outside	Not Analyzed	
Unit 403	68022	Living Room	0.004*	Chrysotile
	68023	Kitchen	ND < 0.004	,
	68024	Bedroom	ND < 0.004	N/A
	68025	Bathroom	ND < 0.005	N/A
	68026	Outside	Not Analyzed	N/A
	68027	Outside	Not Analyzed	N/A
Unit 416	68029	Living Room	ND < 0.004	
	68030	Kitchen	0.004*	Chrysotile
	68031	Bedroom	ND < 0.004	,,
	68032	Bathroom	ND < 0.005	
	68033	Outside	Not Analyzed	
	68034	Outside	Not Analyzed	

^{*}One fiber less than 5 um in length.

2.8 North Smithfield, Slatersville, Rhode Island

Sampling for airborne asbestos fibers was performed at two housing units at the Smithfield Army Housing Area, Slatersville, Rhode Island on January 22, 1991, by Versar. Messrs Alton McKissick, CIH, and Paul Cestone, IH, collected the samples.

2.8.1 Sampling Rationale

At the Slatersville FHA all 16 FHUs were of the single family Capehart construction design. Units 1006 and 1009 were selected for sampling. Unit 1006 was an occupied unit and 1009 unoccupied.

2.8.2 Field Activities

Prior to conducting air sampling, a visual inspection was performed in each FHU sampled. No ACM sources that were not noted in previous surveys were identified.

FHU 1009 was sampled first. Being unoccupied, the heating system thermostat was set at its' lowest setting, but the HVAC system was not completely deactivated. This meant that the air blower (fan) ran sporadically and infrequently. Therefore the thermostat was raised to maintain continuous air flow. FHU 1006 was sampled concurrently with FHU 1009 with the air pumps being set up immediately after FHU 1009's pumps were started. Sampling equipment was allowed to reach ambient temperature before calibration. Four Aircon air pumps were used inside each FHU; one each in the living room, kitchen, a bedroom, and a bathroom. Two Aircon air pumps were also used outside to collect background samples.

The Aircon air pumps were calibrated using Gilibrator Bubble Cell No. 5972-H prior to each sampling by placing a representative sample cassette in line between the air pump and the Gillian primary standard bubble calibrator. The air pump rotameter was set at ten liters per minute and actual flow rate was measured using the primary calibrator. The primary calibrator measurement was recorded as the initial flow rate. A 25 mm diameter 0.45 um MCE membrane filter cassette was then attached to the air pump and the unit placed in it's sampling location. After all the pumps were calibrated, sample cassettes attached, and the units positioned, a field blank was collected and sampling was begun.

The samples were run for a time sufficient to draw a minimum of 1,800 liters of air though each filter (approximately 3.5 hours). When the necessary air volume was filtered the filter cassettes were inverted, capped, and collected. The flow rate of each pump was

measured by the same procedure used prior at the start of sample collection, all data recorded, and the equipment packaged up and removed.

The volume of air drawn through each filter was calculated, based on the average flow rate and the duration of sample collection. The calculated volumes for the background pumps, which were run outside, were corrected for temperature difference. The labeled sample cassettes were then packaged with all necessary data and shipped under chain-of-custody to the analyzing laboratory R.J. Lee Group in Manassas, Virginia for TEM analyses using a next day shipping service.

2.8.3 Results

A total of seven samples were collected per FHU. One each from the living room, kitchen, a bedroom, and a bathroom, two background samples collected from outside the FHU, and one field blank. The inside samples and the field blank for all three FHUs sampled were analyzed by TEM with results all less than 0.005 f/cc. (see table 2.8.1). The USATHAMA protocol stipulated these samples be analyzed first, and the outside samples be analyzed only if the inside sample results were 0.005 f/cc or greater. Since all the sample results from this FHA were less than 0.005 f/cc, the outside sample were not analyzed. At this time, the asbestos air monitoring results indicate that there is no reason to discontinue the use of the Slatersville FHA.

TABLE 2.8-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING & ANALYSIS NORTH SMITHFIELD, SLATERSVILLE, RHODE ISLAND (ALL VALUES IN FIBERS/CC)

<u>House</u>	Sample Number	Sample <u>Location</u>	Asbestos Concentration	Asbestos Type
Unit 1009	68001 68002 68003 68004 68005 68006	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.005 ND < 0.005 ND < 0.004 ND < 0.004 Not Analyzed Not Analyzed	
Unit 1006	68008 68009 68010 68011 68012 68013	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.004 ND < 0.004 ND < 0.005 0.004* Not Analyzed Not Analyzed	

^{*}One fiber less than 5 um in length.

2.9 Woodbridge, Virginia

Sampling for airborne asbestos fibers was performed at two vacant housing units at the Woodbridge Housing Area, Woodbridge, Virginia on February 27, 1991, by Versar. Messrs Alton McKissick, CIH, and Kevin Foley, IH, collected the samples.

2.9.1 Sampling Rationale

At the Woodbridge FHA both a duplex unit and an apartment were available. Therefore, Unit 14011 (duplex) and Unit 14000 (apartment) were selected for sampling. No units were occupied.

2.9.2 Field Activities

Prior to conducting air sampling, a visual inspection was performed in each FHU sampled. No ACM sources that were not noted in previous surveys were identified.

The HVAC unit for FHU 14000 and FHU 14011 were deactivated. Therefore, the systems were activated and the thermostats raised to maintain continuous air flow. FHU 14000 was sampled concurrently with FHU 14011 with air pumps being set up immediately after FHU 14000's pumps were started. Sampling equipment was allowed to reach inside ambient temperatures before calibration. Four Aircon air pumps were used inside each FHU, one each in the living room, kitchen, a bedroom, and a bathroom. Two Aircon air pumps were also used outside to collect background samples.

The Aircon air pumps were calibrated using Gilibrator Bubble Cell No. 5972-H, prior to each sampling by placing a representative sample cassette in line between the air pump and the Gillian primary standard bubble calibrator. The air pump rotaincter was set at ten liters per minute and run against the primary calibrator. The primary calibrator measurement was recorded as the initial flow rate. A 25 mm diameter 0.45 mm MCE membrane filter cassette was then attached to the air pump and the unit placed in its sampling location. After all the pumps were calibrated, sample cassettes attached, and the units positioned, a field blank was collected and sampling was begun.

The samples were run for a time sufficient to draw a minimum of 1,800 liters of air though each filter (approximately 3.5 hours). When the necessary air volume was filtered the filter cassettes were inverted, capped, and collected. The flow rate of each pump was measured by the same procedure used prior to the start of sample collection, all data recorded, and the equipment packaged up and removed.

Versiling.

The volume of air drawn through each filter was calculated, based on the average flow rate and the duration of sample collection. The volumes of the background samples that were run outside were corrected for temperature difference. The labeled sample cassettes were packaged with all necessary data and shipped under chain-of-custody to the analyzing laboratory R.J. Lee Group in Manassas, Virginia for TEM analyses using a next day shipping service.

2.9.3 Results

A total of seven samples were collected per FHU. One each from the living room, kitchen, a bedroom, and a bathroom, two background samples collected from outside the FHU, and one field blank. The inside samples and the field blank for all three FHUs sampled were analyzed by TEM with results all less than 0.005 f/cc. (see table 2.9.1). The USATHAMA protocol stipulated these samples be analyzed first, and the outside samples be analyzed only if the inside sample results were 0.005 f/cc or greater. Since all the sample results from this FHA were less than 0.005 f/cc, the outside sample were not analyzed. At this time, the air monitoring results indicate that there is no reason to discontinue use of the Woodbridge FHA.

TABLE 2.9-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING & ANALYSIS WOODBRIDGE, VIRGINIA (ALL VALUES IN FIBERS/CC)

<u>House</u>	Sample Number	Sample Location	Asbestos Concentration	Asbestos Type
Unit 14000	77142 77143 77144 77145 77146 77147	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.005 ND < 0.005 ND < 0.005 ND < 0.005 Not Analyzed Not Analyzed	
Unit 14011	77133 77134 77135 77136 77137 77138	Living Room Kitchen Bedroom Bathroom Outside Outside	ND < 0.004 ND < 0.005 ND < 0.005 ND < 0.005 Not Analyzed Not Analyzed	

Versam

2.10 Midway Nike Manor, Kent, Washington

Sampling for airborne asbestos fibers was performed at two units of the Midway Army Housing Units on January 24, 1991, by Versar. Ms. Rosann Kryczkowski, a CIH, and Mr. Andris Olmetti, an IH, collected the air samples.

2.10.1 Sampling Rationale

Two units were selected by the King County Housing Authority (Mr. Joe Thomas) with the understanding that at least one had to be occupied, and both were to have the heating systems operating for at least one hour prior to sampling. Upon arrival, the complex managers, Mr. and Mrs. Lawson, indicated a change in units to be monitored because of availability of occupants. In addition, they requested that unit No. 3, which had a fire, be visually checked.

Both units selected, No. M1 and No. M18, were being used by the Mental Health Center. Unit M1 was being used for storage and additional office space, and unit M18 was being used by staff members as office space. The tested units were next door to each other. Heating systems in both units were operating prior to testing.

2.10.2 Field Activities

This housing project is currently being leased to three groups and occupied as follows:

King County Emergency Shelter - 15 units Highline/West Seattle Mental Health Center - 6 units Catholic Community Charities - 8 units Managers' Residence - 1 unit

All of the units were three bedroom "Capehart" style houses. Heat was supplied via forced-air furnaces which were fueled with oil.

A visual inspection of unit M3 was conducted at the request of the complex managers as it had been involved in a fire and there was damage to the structure. Most of the damage appeared to be to the outside front of the house and the roof. Previous surveys indicate the siding contains asbestos, and repair of fire damaged areas is appropriate.

Versar

Unit M16 had recently been demolished as a result of a fire. Demolition debris was still present where the house once stood. It was possible to see the heating system duct work in the concrete pieces.

Both units, M1 and M18, were sampled on January 24; M1 in the morning and M18 in the afternoon. The weather was cold so both heating systems were operating. The high volume sampling pumps were calibrated before and after sampling using the mini-Buck calibrator which is a primary standard. After the pumps were calibrated, a sampling cassette made of an electrically conductive plastic was attached to the sampling line and placed directly over the heating register to be sampled. The cassette contained a 25mm diameter MCE membrane filter, having a nominal pore size of 0.45mm. The sampling times were recorded and air sampled for approximately 3 hours.

The pumps were operated for a time period sufficient to draw approximately 1,600 liters of air through each filter based upon presampling calibration values. Following the sampling period, the filter cassettes were removed and capped. Post calibration was conducted and all the necessary information was entered on the label, chain of custody form, and in the field notes.

Two Gillian Aircon 520 pumps were used to collect the two outside air samples and four Abatement Technologies pumps were used to collect the indoor air samples. Pumps were placed so as to collect representative samples over open floor registers. Choice of sampling locations was influenced by furniture placement, occupant activities and power source locations. Sampling locations for M1 and M18 were as follows:

M 1	M18
TAT T	IALLO

Front Bedroom

Back Bedroom

Back Bedroom

Living Room-rear window

Living Room-rear window

Kitchen Living Room-front window
Outside-rear Outside-rear

Outside-front Outside-front

2.10.3 Results

The results for the six air samples collected in and around unit M1 and the four inside air samples from unit M18 are presented in Table 2.10.1. The two outside samples from unit M1 were analyzed since chrysotile was detected in one of the inside air samples collected in

the back bedroom (M-124-14). The analytical result for that sample of 0.005 f/cc equals the acceptable limit set by USATHAMA. It should be noted that the analytical result for the outside air sample collected at the rear of the house was 0.010 f/cc with both chrysotile and actinolite being detected. There was no apparent visible damage to this unit either inside or outside. The field blank was analyzed and no asbestos was detected. Only one inside sample was positive and it was at the limit set by USATHAMA, and close to the detection limit. To determine whether the indoor air is impacted by ACM in Unit M1, the indoor air levels were statistically compared to the outside air levels using the student "t" test (see Appendix D). The test indicated that the indoor air levels are not statistically different from the outdoor levels.

All of the indoor air samples for unit M18 were found to be below the detection limits of 0.004 and 0.005. Therefore, the outside air samples were not analyzed.

At this time, the asbestos air monitoring results do not indicate that use of this FHA should be discontinued.

TABLE 2.10-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING AND ANALYSIS MIDWAY NIKE MANOR, KENT, WASHINGTON (ALL VALUES IN FIBERS/CC)

<u>House</u>	Sample <u>Number</u>	Sample <u>Location</u>	Asbestos Concentration	Asbestos Type Found
Unit M1	M-124-13 M-124-14 M-124-15 M-124-16	Front Bedroom Back Bedroom Living Room-rear Kitchen	<0.005 0.005 ^A <0.005 <0.005	Chrysotile
	M-124-17 M-124-18	Outside-rear Outside-front	0.010 ^B <0.005	Chrysotile/Actinolite
Unit M18	M-124-19 M-124-20 M-124-21 M-124-22 M-124-23 M-124-24	Side Bedroom Back Bedroom Living Room-rear Living Room-front Outside-rear Outside-front	<0.004 <0.005 <0.005 <0.004 Not Analyzed Not Analyzed	

^{*}One fiber less than 5 um.

ND = None Detected at the limit of detection cited.

^BOne fiber less than 5 um and one fiber at 5 um or greater.

2.11 Youngs Lake, Renton, Washington

Sampling for airborne asbestos fibers was performed at two units of the Youngs Lake Army Housing Units on January 23, 1991, by Versar. Ms. Rosann Kryczkowski, a CIH, and Mr. Andris Olmetti, an IH, collected the air samples. The results from one sample were suspect; therefore, verification sampling was performed on April 3 and 4, 1991, by Alton McKissick, a CIH and Kevin Foley, an asbestos monitoring specialist, IH.

2.11.1 Sampling Rationale

Two units were selected by CPO Penn of the Coast Guard, with the understanding that at least one unit had to be occupied, and both were to have the heating systems operating for at least one hour prior to sampling. Upon arrival at the first unit chosen, unit L-25, the tenant informed us that she was not expecting us, and her heating system had not been functional for many hours. CPO Penn was contacted and identified unit L-24 as the intended unit for morning sampling. Units L-24 and L-19 were tested on January 23. Unit L-24 was sampled again on April 3 and 4.

There are 28 single-family, "Capehart" style housing units located in this development. Both Marine and Coast Guard families are located here. The heating systems in both units were operating prior to air sampling.

2.11.2 Field Activities

Both units monitored were three bedroom "Capehart" style houses. Heat is surplied via forced-air furnaces which are fueled with oil. The heating system duct work is embedded in the concrete slab foundation.

Unit L-24 was monitored on the morning of January 23 and Unit L-19 was monitored in the afternoon. The weather was cold so both heating systems were operating. The high volume sampling pumps were calibrated before and after sampling using a mini-Buck calibrator which is a primary standard. After the pumps were calibrated, a sampling cassette made of an electrically conductive plastic was attached to the sampling line and placed directly over the heating register to be sampled. The cassette contained a 25mm diameter mixed cellulose ester membrane filter (MCEF), having a nominal pore size of 0.45um. The sampling times were recorded and air sampled for approximately 3 hours.

The pumps were operated for a time period sufficient to draw approximately 1,600 liters of air through each filter based upon presampling calibration values. Following the

Versain

sampling period, the filter cassettes were removed and capped. Post calibration was conducted and all the necessary information was entered on the label, chain of custody form, and in the field notes.

Two Gillian Aircon 520 pumps were used to collect the two outside air samples and four Abatement Technologies pumps were used to collect the indoor air samples. Pumps were placed so as to collect representative samples over open floor registers. Choice of sampling locations was influenced by furniture placement, occupant activities and power source locations. Sampling locations for L-24 and L-19 were as follows:

<u>L-24</u> <u>L-19</u>

Living Room-rear window
Inside near side door
Back Center Bedroom
Front Bedroom
Inside near side door
Living Room-rear window
Front Hall

Outside-rear Outside-carport side
Outside-carport side

On April 3 and 4, 1991, the front bedroom air duct was visually examined below the register and ambient air samples were collected in the front bedroom and the living room for subsequent asbestos analysis by TEM. The heating/air conditioning (HVAC) register in the front bedroom was removed and the assessable portion of the duct was visually examined with a high beam flashlight. There was no evidence of dust/dirt accumulation.

Ambient air samples were collected Wednesday afternoon (April 3) and Thursday morning (April 4). Two samples from the front bedroom and one sample from the living room were collected, along with a field blank, each sampling period. Procedures and materials duplicated outlined sampling efforts on January 23, 1991, except a greater volume of air was collected to allow a greater sensitivity.

2.11.3 Results

The results for the six air samples collected in and around unit L-24 and the four inside air samples from unit L-19 are presented in Table 2.11.1. The results for the four inside air samples collected in unit L-19 were below the detection limits of 0.004 or 0.005 f/cc. Therefore, the outside air samples were not analyzed. The two outside samples from unit L-24 were analyzed, since chrysotile was detected in one of the inside air samples which was collected in the front bedroom (Y-123-4). To determine whether the inside air is impacted

Versar_{wa}

by ACM in Unit L-24, the inside levels were statistically compared to the outside levels using the student "t" test (see Appendix D). The test indicated that the indoor levels were not statistically different from the outside levels.

The analytical result of 0.021 f/cc for the front bedroom sample from unit L-24 exceeded the acceptable limit of 0.005 f/cc set by USATHAMA. This result also exceeds the limit of 0.01 f/cc quoted by the EPA as being acceptable following asbestos abatement activities. Although the fibers detected were less than 5 microns in length, the health issues regarding the size fiber are still in debate. Additionally, the fiber level was four times greater than the acceptable limit set by USATHAMA. Therefore, a follow-up survey of this unit was conducted. During the April 3 and 4 sampling, there were no airborne asbestos fibers found even though the detection limit was lowered to 0.003 f/cc. Table 2.11-2 presents this data.

At this time, the asbestos air monitoring results indicate there is not reason to discontinue use of the Youngs Lake FHA. No further testing is necessary.

TABLE 2.11-1. RESULTS OF AIRBORNE ASBESTOS SAMPLING AND ANALYSIS YOUNGS LAKE, RENTON, WASHINGTON JANUARY 23, 1991 (ALL VALUES IN FIBERS/CC)

<u>House</u>	Sample <u>Number</u>	Sample Location	Asbestos Concentration	Asbestos Type Found
Unit L-24	Y-123-1 Y-123-2 Y-123-3 Y-123-4 Y-123-5 Y-123-6	Living Room-Rear Inside (Near Sidedoor) Center Bedroom (Back) Front Bedroom Outside (Rear of house) Outside (Front of house)	<0.005 <0.004 <0.004 0.021* <0.004 <0.004	Chrysotile
Unit L-19	Y-123-7 Y-123-8 Y-123-9 Y-123-10 Y-123-11 Y-123-12	Back Corner Bedroom Inside, Sidewall Living Rm (Rear window) Front Hall Outside Front of house Outside Side of house	<0.005 <0.005 <0.004 <0.004 Not Analyzed Not Analyzed	

ND = Not Detected at the Limit of Detection.

^{* =} All fiber less than 5.0 microns in length.

TABLE 2.11-2. RESULTS OF AIRBORNE ASBESTOS SAMPLING AND ANALYSIS YOUNGS LAKE, RENTON, WASHINGTON, APRIL 3-4, 1991 (ALL VALUES IN FIBERS/CC)

:touse	Sample Number	Sample <u>Date</u>	Sample Location	Asbestos Concentration	Asbestos Type Found
Unit L-24	77150 77151 77152	04/03/91 04/03/91 04/03/91	Front Bedroom Front Bedroom Living Bedroom	ND <0.003 ND <0.003 ND <0.003	
Unit L-24	77153 77154 77155	04/04/91 04/04/91 04/04/91	Front Bedroom Front Bedroom Living Bedroom	ND <0.003 ND <0.003 ND <0.003	

ND = None Detected at the limit of detection

3.0 SUMMARY

Versar has conducted air monitoring for asbestos at 11 FHAs in accordance with the US THAMA purchase request THAMA019910078, Contract No. DAAA15-90-D-0014, Delivery Order No. 4. From these FHAs, 27 housing units were sampled.

Air samples were drawn through a 0.45 micron MCE filter and the sampling data recorded on sampling data sheets (Appendix C). Labeled sample cassette with all necessary data were sent under chain-of-custody (Appendix C) to the analyzing laboratory, R.J. Lee Group, Manassas, Virginia. The samples were analyzed by TEM and the results sent to Versar (Appendix C).

Three of the FHAs sampled contained no airborne asbestos above the detection limit:

- Nike NY 54, Holmdel, New Jersey (3 units sampled);
- Nike NY 25, Rocky Point, New York (2 units sampled); and
- Woodbridge, Virginia (2 units sampled).

Five of the FHAs sampled contained no airborne asbestos at or above the USATHAMA set limit of 0.005 f/cc:

- USARC Addison, Illinois (3 units sampled, 1 detection below 0.005 f/cc at 1 unit):
- Worth, Illinois (2 units sampled, 1 detection below 0.005 f/cc at 1 unit);
- Nike NY 60, Old Bridge, New Jersey (3 units sampled, 1 detection below 0.005 f/cc at 1 unit);
- Nike NY 01, Tappan, New York (3 units sampled, 1 detection below 0.005 f/cc at each unit); and
- North Smithfield, Slatersville, Rhode Island (2 units sampled, 1 detection below 0.003 f/cc at 1 unit).

At four out of seven FHUs at three FHAs, airborne asbestos was detected at or greater than the USATHAMA set limit of 0.005 f/cc:

Versarma

- Nike NY 99, Spring Valley, New York (2 units out of the 3 sampled had levels at or greater than 0.005 f/cc);
- Midway Nike Manor, Kent, Washington (1 unit out of the 2 sampled had levels at or greater than 0.005 f/cc); and
- Youngs Lake, Renton, Washington (1 unit out of the 2 sampled had levels at or greater than 0.005 f/cc).

To determine whether the indoor air was impacted by ACM in the FHUs, the indoor levels were statistically compared to the outdoor levels using the student "t" test (see Appendix D). The test indicated that, in all cases, the indoor air was not statistically different from the outdoor air.

However, only unit L-24 at Youngs Lake Army Housing unit produced enough airborne asbestos (0.021 f/cc, chrysotile) to warrant additional air monitoring to ensure the occupants were not exposed to unacceptable limits of airborne asbestos. The resampling at unit L-24 revealed no airborne asbestos fibers. In addition, an outside sample of unit M1 at Midway Army Housing Area gave 0.01 f/cc, chrysotile/actinolite. This may be due to fire damage to unit M3 and debris from unit M16.

No further testing is recommended, unless some form of renovation transpires at the FHAs. No reason was identified not to continue using these housing units.

- 40 -

APPENDIX A
AHERA TRANSMISSION ELECTRON MICROSCOPY (TEM) METHOD

GUIDANCE FOR CONTROLLING ASBESTOS-CONTAINING MATERIALS IN BUILDINGS

1985 EDITION

Exposure Evaluation Division
Office of Toxic Substances
Office of Pesticides and Toxic Substances
U.S. Environmental Protection Agency
Washington, D.C. 20460

and the plastic sheets covering doors, vents, and windows should be left in place until the air test has been passed.) If a negative air pressure ventilation system was used during abatement, it should continue operating while air monitoring is in progress.

As discussed in Section 4.1, measuring airborne asbestos fibers accurately is technically complex and usually expensive. It involves two steps: air sampling to capture fibers on a filter, and laboratory analysis to determine the quantity of asbestos. There are several approaches to air sampling and analysis, varying in technical requirements, cost, and availability. Which approach is more appropriate is a controversial subject. The information presented in the remainder of this chapter is based in part on a 1984 workshop sponsored by EPA and the National Bureau of Standards. A companion EPA guidance document on air monitoring following an abatement action discusses the subject in more detail (USEPA 1985b).

6.4.2.1 Sampling

Sampling for asbestos consists of collecting fibers by drawing air through a filter at a known rate. Usually, sampling equipment is placed at a fixed location for a certain period of time. But this approach may fail to detect the presence of fibers. For example, if sampling is conducted for a short time during a quiet period (i.e., when air movement is limited), many fibers will settle out of the air onto the floor and other surfaces and may not be captured on the filter. Under these conditions, air measurements could show little or no asbestos.

Previously, EPA recommended sampling for at least eight hours to cover various air circulation conditions and thus increase the likelihood of capturing asbestos fibers if they are present. A quicker and more effective way to accomplish this, however, is to circulate the air artificially so that the fibers remain airborne during sampling.

This "aggressive sampling" is recommended for the post-abatement air test. Recommended methods for conducting aggressive sampling are presented in Appendix M. They use forced-air equipment such as a leaf blower to dislodge free fibers, then slow-speed fans to keep the fibers suspended during sampling.

Persons who conduct the sampling should wear a respirator. Even though the work site has been cleaned and has passed the visual test, levels of airborne asbestos still may be elevated.

6.4.2.2 Analysis of Samples

Three microscopic methods are currently being used to analyze asbestos: phase contrast microscopy (PCM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The characteristics and relative merits of each method are summarized in Table 5 and are described in detail in the companion EPA guidance document (USEPA 1985b).

As indicated in Table 5, PCM is the method that is most familiar, available, and frequently used. It is also the least expensive and has a well-established analytical protocol. (As noted in Section 4.1.2, OSHA specifies PCM for monitoring worker exposure in asbestos industries.) However, the NIOSH protocol for PCM does not distinguish between asbestos and other types of fibers and counts only fibers longer than 5 micrometers. Nor is PCM sensitive enough to detect the extremely thin fibers typical of airborne asbestos in buildings. Thus, the interpretation of PCM results assumes that a low concentration of relatively large airborne fibers means that the concentration of asbestos fibers is also low.

The TEM method gives the most complete information on airborne asbestos: it can distinguish asbestos from other fibers and also is able to detect very thin fibers. However, it can be expensive and time-consuming. TEM is not widely available.

TABLE 5. COMPARISON OF METHODS FOR MEASURING AIRBORNE ASBESTOS

	PCM	SEM	TEM
Standard Methods	NIOSH P&CAM 239 Method. ¹	No standard method.	EPA provisional method & update.2
Quality Assurance	Proficiency Analytical Testing Program; no NBS ³ reference materials.	No lab testing, or NBS reference materials.	Limited lab testing; NBS reference materials available.
Cost	\$25-50	\$50-300	\$200-600
Availability	Most available.	Less available.	Least available.
Time Requirements	1 hr. preparation& analysis, < 6 hrs.turnaround.	4 hrs. preparation & analysis, 6-24 hrs. turnaround.	4-24 hrs. preparation & analysis, 2-7 days turnaround.
Sensitivity (Thinnest Fiber Visible)	0.15 μ m at best; 0.25 μ m typical.	0.05 μ m at best; 0.20 μ m typical.	0.0002 μ m at best; 0.0025 μ m typical.
Specificity	Not specific for asbestos.	More specific than PCM but not definitive for asbestos.	Definitive for asbestos. when used to its fullest capabilities.

¹ NIOSH 1979. The new NIOSH 7400 method is an alternative.

Source: Taken with modification from USEPA 1985b.

The SEM method can be somewhat more specific for asbestos and more sensitive to thin fibers than PCM, but less so than TEM. It is also less expensive and time-consuming than TEM. At present, however, no standard measurement protocol is available for SEM. As a result, it has not been systematically evaluated nor has the reliability of SEM measurements been established.

EPA acknowledges that all three methods are used in air testing for the purpose of releasing abatement contractors. However, only PCM and TEM have standard methods and testing programs. A standard method has not yet been developed for SEM. While TEM is technically the method of choice, PCM is the only option in many localities.

6.4.2.3 Recommended Test Specifications

Regardless of the microscopic method for measuring asbestos, identifying homogeneous work sites is the first important step in the process. A site within the abatement work area is homogeneous if it contains one type of ACM and only one type of abatement was used. For sampling purposes, the air in each

² USEPA 1977, Yamate 1984.

³ National Bureau of Standards.

homogeneous site is assumed to be relatively uniform. Guidelines for locating the samplers are included in Appendix M. Several other aspects of the air test are identical, regardless of microscopic method:

- Choose sampling locations within the homogeneous work site to assure representative samples.
 (See Appendix M).
- Begin sampling when the work site is dry (24 hours after cleaning).
- · Conduct aggressive air sampling in all cases.
- Follow sampling and analysis specifications, including procedures for quality control.

The asbestos program manager should be sure the technical advisor in charge of the air test knows the specifications listed below. The advisor should insist that recommended procedures be followed for both air sampling and laboratory analysis.

Testing with the TEM Method

Sampling:

- Draw at least 3000 liters of air through each filter at a rate of 2 to 12 liters per minute.
- · Collect at least five samples in each homogeneous work site.
- At the same time, collect at least five samples just outside the work site but within the building. These samples will be compared with those collected inside the work site to ensure that the work site is at least as clean as the incoming air (see Appendix M for details).

Analysis:

- Measure the asbestos on each filter with TEM using the EPA provisional procedures and updates (USEPA 1977 and Yamate 1984).
- Use a direct transfer method of sample preparation if possible (see Appendix M).
- Express the results as f/cc, or as ng/m³ if an indirect sample preparation is used.
- Include at least one field blank ² and one laboratory blank per abatement job for quality control purposes (see Section 6.4.3). Also, split one work site sample and conduct duplicate analyses.

Release Criterion:

- Release the contractor if the average fiber concentration of the work site samples is not statistically larger than the average of the outside samples. Each homogeneous site must pass the test before the contractor is released. (Appendix M contains information to determine statistical differences.)
- If the average of the work site samples is statistically larger than the average of the outside samples, clean the entire work site again and repeat the test (collect new work site samples and follow the procedures described above).

¹ If a negative pressure system has not been used, collect the "outside" samples outdoors.

² A blank is a filter that is not used for sampling but is otherwise treated in the same way as other filters.

Testing with the PCM Method

Sampling:

- Draw at least 3000 liters of air through each filter at a rate of 2 to 12 liters per minute.
- Collect at least five samples per homogeneous work site, or one per room, whichever is greater.

Analysis:

- Measure the asbestos on each filter with PCM using the NIOSH P&CAM 239 procedures. (The newer NIOSH 7400 procedures can also be used. See Appendix M.)
- Include at least one field blank and one laboratory blank per abatement project, for quality control purposes. Also, split one work site sample for duplicate analysis.

Release Criterion:

- Release the contractor if every sample value is below the limit of reliable quantification (approximately 0.01 f/cc when 3000 liters of air are sampled; see Appendix M).
- If any of the sample values is above the prescribed level, clean the entire work site again, collect new samples, and evaluate the samples as described above.

For each method, the recommended number of samples and the prescribed use of the data defining the release criteria are based on a compromise involving practical considerations of cost, time required for the tests, performance characteristics of the methods, and statistical criteria. Details of the sampling and analysis specifications are provided in Appendix M.

6.4.3 Quality Assurance

Notwithstanding the advantages of one microscopic method over another, no method will produce reliable results unless both the field sampling and laborabory analysis are properly conducted. To obtain reliable results, a quality assurance (QA) program for the collection and analysis of data is essential.

The objective is to produce measurements with sufficient and documented quality for their intended purpose. In this case, the purpose is to determine satisfactory completion of an abatement project. The components of a QA program range from clerical activities such as labeling samples and documenting results, to performing technically complex tasks in the laboratory. When establishing the quality of data, however, all activities are equally important.

Preparing and implementing a QA program requires the assistance of a technical advisor on asbestos measurement. EPA and OSHA have published guidelines on quality assurance for TEM and PCM (Yamate 1984, and NIOSH 1979). The QA Program Checklist below can be used by the asbestos program manager in reviewing a proposed QA program.

QA Program Checklist

Training and Experience: Be sure that all persons producing the measurement understand
their roles and are trained. Select a laboratory with demonstrated proficiency in asbestos analysis.
Request details of the laboratory's quality control program, and get documentation of the lowest
level of fibers routinely reported.

- Quality Control Checks: Use field and laboratory blanks to check for fiber contamination, coded sample labels to avoid analyst bias, duplicate analyses to confirm precision, and a second laboratory to spot-check the accuracy of results.
- Chain-of-Custody: Assign responsibility for security of the samples to specific persons at each stage of the analysis. Document each step in the passage of the sample from the field to the laboratory.
- **Documentation:** Check and document laboratory results as well as their labeling. The building owner should retain all test results and records documenting the testing process.

Appendix M. Detailed Specifications for Sampling and Analyzing Airborne Asbestos

The following specifications are summarized from "Measuring Airborne Asbestos Following an Abatement Action" (USEPA 1985).

M.1 Sampling

M.1.1 Sampling Equipment

Standard sampling equipment consists of a pump (operated at a 2 to 12 liter per minute flow rate), a filter in a cassette and associated tubing and supports. Three types of filters can be used:

PCM — cellulose ester with 0.8 to 1.2 μ m pore size;

TEM — polycarbonate with 0.4 μ m pore size (preferred); or cellulose ester with 0.8 μ m pore size.

M.1.2 Number of Samples

M.1.2.1 TEM

A minimum of five samples inside and five outside the work site is recommended. When a negative air pressure ventilation system has been used during the abatement operation the "outside" samples should be collected outside the work site, but inside the building. This provides a comparison between the work site and the incoming air. If a negative air pressure ventilation system has not been used, the "outside" samples should be collected outdoors. These sample sizes are based on calculations of statistical reliability and on the following characteristics:

- The coefficient of variation for TEM measurements is between 100% and 150% based on data from EPA research studies.
- A false positive rate of .10 (i.e., based on the statistical test comparing inside and outside measurements, 10% of the "clean" work sites will fail and have to be recleaned).
- A false negative rate of at most .10 (i.e., the statistical test comparing inside and outside measurements will identify at least 90% of the sites that must be recleaned).

M.1.2.2 PCM

A minimum of five samples is recommended. A sample size of five controls the false negative error rate. At least 90% of the sites where the actual fiber concentration exceeds 0.01 f/cc will fail the test. If the actual concentration is 0.02 f/cc the probability of failure is 99%.

M.1.3 Location of Samplers

M.1.3.1 Indoors

Indoor samplers should be placed so they are not influenced by unusual air circulation patterns. Avoid corners of rooms and obstructions (like furniture). Within the above constraints, samplers should be placed at random around the work site. For example, if the site is a single room of 1000 or more sq. ft., the five samplers should be distributed in an approximately uniform manner. If the site includes more than five rooms, the rooms to be sampled may be selected randomly. The companion EPA document (USEPA 1985) describes this procedure in more detail.

When TEM is used for the air test and a negative air pressure ventilation system has been employed during the abatement operation, the five "outside" samplers should be placed outside the work site but inside the building, and the negative air system left running during sampling. These outside samplers should be located to avoid any air that might escape through the containment barriers. Minimum recommendations are at least 50 ft. from the entry portal to the work site, or 25 ft. from the plastic containment barriers.

M.1.3.2 Outdoors

If TEM is to be used for the air test and a negative air pressure ventilation system has not been used during abatement, then five samplers should be placed outdoors. These should be placed at ground level (about 2 meters high), if possible, and away from obstructions that may influence wind patterns. If access to electricity and concerns about security dictate a roof-top site, do not place samplers near vents or other structures on the roof.

M.1.4 Sampling Volumes

M.1.4.1 TEM

The required sampling volume for the TEM air test is calculated from the theoretical detection limit of the TEM analysis procedures, and from typical levels of asbestos against which measurements in the work site will be compared:

Volume =
$$\frac{\text{(1 f/10 grid squares)}}{\text{(0.005 f/cc)}} \times \frac{\text{(855 mm}^2\text{)}}{\text{(0.0056 mm}^2\text{)}} \times \frac{\text{(1 liter)}}{\text{(1000 cc)}} = 3054 \text{ liters}$$

- Where: 1 f/10 grid squares (the maximum recommended filter counting area) is the smallest number of fibers needed to make a non-zero measurement. (This is below the limit of reliable quantification.)
 - 0.005 f/cc is a typical outdoor asbestos level in urban areas, as measured by TEM (Chatfield 1983).
 - 855 mm² is the collection area of a 37 mm diameter filter.
 - 0.0056 mm² is the area of each grid square (75 µm per side) in a 200 mesh electron microscope grid. This value will vary from 0.0056 to 0.0081 mm² for different grids. Larger grid squares will improve measurement accuracy for the same sampling volume.

This equation is appropriate for TEM analysis using a direct sample transfer technique (see Section M.2.1). If an indirect technique is used, the required sampling volume is increased in proportion to the dilution used. For example, if the sample is diluted by a factor of 10, the required volume is 10 times larger.

M.1.4.2 PCM

The equivalent PCM limit of reliable quantification for a sampling volume of 3000 liters is:

Quantification =
$$\frac{\text{(10 f/100 fields)}}{\text{(3000 liters)}} \times \frac{\text{(855 mm}^2)}{\text{(0.003 mm}^2)} \times \frac{\text{(1 liter)}}{\text{(1000 cc)}} = 0.01 \text{ f/cc}$$

Where: • 10 f/100 fields is the limit of reliable quantification for the P&CAM 239 method.

- 855 mm² is the collection area of a 37 mm diameter filter.
- 0.003 mm² is the size of a typical field of view for a PCM microscope. This value will vary from 0.003 to 0.006 mm² for different microscopes. Larger fields of view will improve (decrease) the limit of reliable quantification.

By increasing the sampling volume, the PCM test criterion can be made proportionally more stringent:

Volume	Quantification Limit	
3000 liters	0.01 f/cc	
5000	0.006	
7500	0.004	

If the sampling scheme associated with the new NIOSH 7400 PCM method is used, the limit of reliable quantification will be lower for the same sampling volume.

M.1.5 Aggressive Sampling

Procedures for sampling aggressively are:

- Before starting the sampling pumps, direct the exhaust from forced air equipment (such as a 1 horsepower leaf blower) against all walls, ceilings, floors, ledges and other surfaces in the room. This should take at least 5 minutes per 1000 sq. ft. of floor.
- Place a 20-inch fan in the center of the room. (Use one fan per 10,000 cubic feet of room space.) Place the fan on slow speed and point it toward the ceiling.
- Start the sampling pumps and sample for the required time.
- Turn off the pump and then the fan(s) when sampling is complete.

M.2 Analysis

M.2.1 TEM

Use the update to the EPA provisional method (Yamate 1984). The sample should be transferred directly from the polycarbonate filter to the electron microscope grid. If high levels of organic materials are suspected or found, cellulose ester filters and indirect transfer (involving ashing, sonicating, and refiltering the fibers) is recommended. However, levels of airborne organic particles should be low in a cleaned work site.

M.2.2 PCM

Use the NIOSH P&CAM 239 method (NIOSH 1979). The newer NIOSH 7400 methods can also be used, although OSHA has yet to replace P&CAM 239 with 7400 for workplace compliance monitoring. NIOSH reports that 7400 is at least as accurate as P&CAM 239.

M.3 Interpretation of Results

M.3.1 TEM

Use student's "t" test to compare inside and outside levels.

- Compute the natural logarithm of fiber concentration for each sample.
- · Compute means of the log transformed data for inside samples and outside samples.
- · Form the ratio

$$T = \frac{\overline{y}_1 - \overline{y}_2}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Where:

 \overline{y}_1 = average of log concentrations inside the work site

 \overline{y}_2 = average of log concentrations outside the work site

$$S = [(\sum (y_{1j} - \overline{y}_1)^2 + \sum (y_{2j} - \overline{y}_2)^2)/(n_1 + n_2 - 2)]^{y_2}$$

n₁ = number of samples collected inside the work site

n₂ = number of samples collected outside the work site

Then compare T to the 95 percentile point of a "t" distribution with $n_1 + n_2 - 2$ degrees of freedom. (When 5 samples are collected inside and outside the 95 percentile point is 1.86.) If T exceeds the 95 percentile point, reclean. Otherwise, release the contractor.

The following two examples illustrate the method:

Example 1

Measurements inside the work site (f/cc)	Measurements outside the work site (f/cc)		
0.002	0.001		
0.007	0.010		
0.030	0.008		
0.028	0.001		
0.001	0.025		
$\overline{y}_1 = -5.03$	$\overline{y}_2 = -5.39$		
S = 1.49			
T = 0.38			

T is less than 1.86. The contractor is released.

Example 2

Measurements inside the work site (f/cc)	Measurements outside the work site (f/cc)		
0.052	0.001		
0.130	0.010		
0.005	0.008		
0.240	0.001		
0.375	0.025		
$\overline{y}_1 = -2.54$	$\overline{y}_2 = -5.39$		
S = 1.59			
T = 284			

T is greater than 1.86. The site must be recleaned.

The test is based on the assumption that a homogenous work site has been selected. If one sample has a much higher concentration than the others it is possible that the site is not homogenous. Common sense should prevail in this case. Irrespective of the result of the "t" test, the high value should be investigated. The sample should be reanalyzed, additional samples collected, or the site recleaned and tested before the contractor is released.

M.3.2 PCM

The measured level of each sample is compared with the PCM limit of reliable quantification for the volume of air sampled (approximately 0.01 f/cc for 3000 liters). If any of the samples exceeds 0.01 f/cc, the work site must be re-cleaned.

program determined to be inadequate. and specifies the facts that underlie the findings of inadequacy.

§ 763.99 Exclusions.

- (a) A local education agency shall not be required to perform an inspection under § 763.85(a) in any sampling area as defined in 40 CFR 763.103 or homogeneous area of a school building
- (1) An accredited inspector has determined that, based on sampling records, friable ACBM was identified in that homogeneous or sampling area during an inspection conducted before December 14, 1987. The inspector shall sign and date a statement to that effect with his or her State of accreditation and if applicable, accreditation number and, within 30 days after such determination, submit a copy of the statement to the person designated under § 763.84 for inclusion in the management plan. However, an accredited inspector shall assess the friable ACBM under § 763.88.
- (2) An accredited inspector has determined that, based on sampling records, nonfriable ACBM was identified in that homogeneous or sampling area during an inspection conducted before December 14, 1987. The inspector shall sign and date a statement to that effect with his or her State of accreditation and if applicable, accreditation number and, within 30 days after such determination, submit a copy of the statement to the person designated under § 763.84 for inclusion in the management plan. However, an accredited inspector shall identify whether material that was nonfriable has become friable since that previous inspection and shall assess the newlyfriable ACBM under § 763.88.
- (3) Based on sampling records and inspection records, an accredited inspector has determined that no ACBM is present in the homogeneous or sampling area and the records show that the area was sampled, before December 14. 1987 in substantial compliance with § 763.85(a), which for purposes of this section means in a random manner and with a sufficient number of samples to reasonably ensure that the area is not ACBM.
- (i) The accredited inspector shall sign and date a statement, with his or her State of accreditation and if applicable, accreditation number that the homogeneous or sampling area determined not to be ACBM was sampled in substantial compliance with § 763.85(a).
- (ii) Within 30 days after the inspector's determination, the local education agency shall submit a copy of

the inspector's statement to the EPA Regional Office and shall include the statement in the management plan for that school.

(4) The lead agency responsible for asbestos inspection in a State that has been granted a waiver from § 763.85(a) has determined that, based on sampling records and inspection records, no ACBM is present in the homogeneous or sampling area and the records show that the area was sampled before December 14, 1987, in substantial compliance with § 763.85(a). Such determination shall be included in the management plan for

that school.

(5) An accredited inspector has determined that, based on records of an inspection conducted before December 14, 1987, suspected ACBM identified in that homogeneous or sampling area is assumed to be ACM. The inspector shall sign and date a statement to that effect. with his or her State of accreditation and if applicable, accreditation number and, within 30 days of such determination, submit a copy of the statement to the person designated under § 763.84 for inclusion in the management plan. However, an accredited inspector shall identify whether material that was nonfriable suspected ACBM assumed to be ACM has become friable since the previous inspection and shall assess the newly friable meterial and previously identified friable suspected ACBM assumed to be ACM under § 763.88.

(6) Based on inspection records and contractor and clearance records, an accredited inspector has determined that no ACBM is present in the homogeneous or sampling area where asbestos removal operations have been conducted before December 14, 1987, and shall sign and date a statement to that effect and include his or her State of accreditation and, if applicable, accreditation number. The local education agency shall submit a copy of the statement to the EPA Regional Office and shall include the statement in the management plan for that school.

(7) An architect or project engineer responsible for the construction of a new school building built after October 12, 1988, or an accredited inspector signs a statement that no ACBM was specified as a building material in any construction document for the building. or, to the best of his or her knowledge. no ACBM was used as a building material in the building. The local education agency shall submit a copy of the signed statement of the architect, project engineer, or accredited inspector to the EPA Regional Office and shall include the statement in the management plan for that school.

- (b) The exclusion, under paragraph (a) (1) through (4) of this section, from conducting the inspection under § 763.85(a) shall apply only to homogeneous or sampling areas of a school building that were inspected and sampled before October 17, 1987. The local education agency shall conduct an Inspection under § 763.85(a) of all areas inspected before October 17, 1987, that were not sampled or were not assumed to be ACM.
- (c) If ACBM is subsequently found in a homogeneous or sampling area of a local education agency that had been identified as receiving an exclusion by an accredited inspector under puragraphs (a) (3), (4), (5) of this section. or an architect, project engineer or accredited inspector under paragraph (a)(7) of this section, the local education agency shall have 180 days following the date of identification of ACBM to comply with this Subpart E.

Appendix A to Subpart E-Interim Transmission Electron Microscopy Analytical Methods-Mandatory and Nonmandatory—and Mandatory Section to Determine Completion of Response Actions

I. Introduction

The following appendix contains three units. The first unit is the mandatory transmission electron microscopy (TEM) method which all laboratories must follow; it is the minimum requirement for analysis of air samples for asbestos by TEM. The mandatory method contains the essential elements of the TEM method. The second unit contains the complete non-mandatory method. The non-mandatory method supplements the mandatory method by including additional steps to improve the analysis. EPA recommends that the non-mandatory method be employed for analyzing air filters; however, the laboratory may choose to employ the mandatory method. The non-mandatory method contains the same minimum requirements as are outlined in the mandatory method. Hence, laboratories may choose either of the two methods for analyzing air samples by TEM.

The finul unit of this Appendix A to Subpart E defines the steps which must be taken to determine completion of response actions. This unit is mandatory.

II. Mandatory Transmission Electron Microscopy Method

A. Definitions of Terms

1. "Analytical sensitivity"—Airborne asbestos concentration represented by each fiber counted under the electron

microscope. It is determined by the air volume collected and the proportion of the filter examined. This method requires that the analytical sensitivity be no greater than 0.005 structures/cm³.

2. "Asbestiform"—A specific type of mineral fibrosity in which the fibers and fibrils possess high tensile strength and

flexibility.

- 3. "Aspect ratio"—A ratio of the length to the width of a particle.

 Minimum aspect ratio as defined by this method is equal to or greater than 5:1.
- 4. "Bundle"—A structure composed of three or more fibers in a parallel arrangement with each fiber closer than one fiber diameter.
- 5. "Clean area"—A controlled environment which is maintained and monitored to assure a low probability of asbestos contamination to materials in that space. Clean areas used in this method have HEPA filtered air under positive pressure and are capable of sustained operation with an open laboratory blank which on subsequent analysis has an average of less than 18 structures/mm² in an area of 0.057 mm² (nominally 10 200-mesh grid openings) and a maximum of 53 structures/mm² for any single preparation for that same area.
- 6. "Cluster"—A structure with fibers in a random arrangement such that all fibers are intermixed and no single fiber is isolated from the group. Groupings must have more than two intersections.
 - 7. "ED"—Electron diffraction.
- 8. "EDXA"—Energy dispersive X-ray analysis.
- 9. "Fiber"—A structure greater than or equal to 0.5 μm in length with an aspect

- ratio (length to width) of 5:1 or greater and having substantially parallel sides.
- 10. "Grid"—An open structure for mounting on the sample to aid in its examination in the TEM. The term is used here to denote a 200-mesh copper lattice approximately 3 mm in diameter.
- 11. "Intersection"—Nonparallel touching or crossing of fibers, with the projection having an aspect ratio of 5:1 or greater.
- 12. "Laboratory sample coordinator"—That person responsible for the conduct of sample handling and the certification of the testing procedures.
- 13. "Filter background level"—The concentration of structures per square millimeter of filter that is considered indistinguishable from the concentration measured on a blank (filters through which no air has been drawn). For this method the filter background level is defined as 70 structures/mm².
- 14. "Matrix"—Fiber or fibers with one end free and the other end embedded in or hidden by a particulate. The exposed fiber must meet the fiber definition.
 - 15. "NSD"—No structure detected.
- 16. "Operator"—A person responsible for the TEM instrumental analysis of the sample.
- 17. "PCM"—Phase contrast microscopy.
- 18. "SAED"—Selected area electron diffraction.
- 19. "SEM"—Scanning electron microscope.
- 20. "STEM"—Scanning transmission electron microscope.

- 21. "Structure"—a microscorbundle, cluster, fiber, or matrix may contain asbestos.
- 22. "S/cm³"—Structures per cubic centimeter.
- 23. "S/mm "—Structures per squa millimeter.
- 24. "TEM"—Transmission electron microscope.

B. Sampling

1. The sampling agency must have written quality control procedures ar documents which verify compliance.

2. Sampling operations must be performed by qualified individuals completely independent of the abatement contractor to avoid possil conflict of interest (References 1, 2, 3 and 5 of Unit II.].)

3. Sampling for airborne asbestos following an abatement action must commercially available cassettes.

4. Prescreen the loaded cassette collection filters to assure that they not contain concentrations of asbest which may interfere with the analys the sample. A filter blank average o less than 18 s/mm² in an area of 0.0 mm² (nominally 10 200-mesh grid openings) and a single preparation to a maximum of 53 s/mm² for that sate area is acceptable for this method

5. Use sample collection fill are either polycarbonate havir, size less than or equal to 0.4 μm or mixed cellulose ester having a pore less than or equal to 0.45 μm.

6. Place these filters in series with 5.0 µm backup filter (to serve as a diffuser) and a support pad. See the following Figure 1:

BILLING CODE 6600-60-M

FIGURE I--SAMPLING CASSETTE CONFIGURATION

BILLING CODE 6660-60-C

- 7. Reloading of used cassettes is not permitted.
- 8. Orient the cassette downward at approximately 45 degrees from the horizontal.
- 9. Maintain a log of all pertinent sampling information.
- 10. Calibrate sampling pumps and their flow indicators over the range of their intended use with a recognized standard. Assemble the sampling system with a representative filter (not the filter which will be used in sampling) before and after the sampling operation.
 - 11. Record all calibration information.
- 12. Ensure that the mechanical vibrations from the pump will be minimized to prevent transferral of vibration to the cassette.
- 13. Ensure that a continuous smooth flow of negative pressure is delivered by the pump by damping out any pump action fluctuations if necessary.

- 14. The final plastic barrier around the abatement area remains in place for the sampling period.
- 15. After the area has passed a thorough visual inspection, use aggressive sampling conditions to dislodge any remaining dust. (See suggested protocol in Unit III.B.7.d.)
- 16. Select an appropriate flow rate equal to or greater than 1 liter per minute (L/min) or less than 10 L/min for 25 mm cassettes. Larger filters may be operated at proportionally higher flow rates.
- 17. A minimum of 13 samples are to be collected for each testing site consisting of the following:
- a. A minimum of five samples per abatement area.
- b. A minimum of five samples per ambient area positioned at locations representative of the air entering the abatement site.

- c. Two field blanks are to be taken by removing the cap for not more than 30 seconds and replacing it at the time of sampling before sampling is initiated at the following places:
- i. Near the entrance to each abatement area.
- ii. At one of the ambient sites. (DO NOT leave the field blanks open during the sampling period.)
- d. A sealed blank is to be carried with each sample set. This representative cassette is not to be opened in the field.
- 18. Perform a leak check of the sampling system at each indoor and outdoor sampling site by activating the pump with the closed sampling cassette in line. Any flow indicates a leak which must be eliminated before initiating the sampling operation.
- 19. The following Table I specifies volume ranges to be used:

TABLE 1--NUMBER OF 200 MESH EM GRID OPENINGS (0.0057 MM2) THAT NEED TO BE ANALYZED TO MAINTAIN SENSITIVITY OF 0.005 STRUCTURES/CC BASED ON VOLUME AND EFFECTIVE FILTER AREA

Effective Filter Area

Effective Filter Area 855 sa mm

		385 sq mm			855 sq mm	
	Volume (liters)	# of grid openings	ľ		# of grid openings	•
	560	24		1,250	24	
	600	23		1,300	23	
	700	19		1,400	21	
	800	17		1,600	19	
	900	· 15		1,800	17	
	1,000	14		2,000	15	
	1,100	12	1	2,200	14	
	1,200	11		2,4 00 .	13	
i	1,300	10		2,600	12	
Recommended	1,400	10	İ	2,800	11	1
Volume	1,500	9		3,000	10	1
Range	1,600	8		3,200	9	Recommended
1	1,700	8		3,400	9	Volume
i	1,800	8	i	3,600	8	Range
	1,900	7		3,800	8	
	2,000	7	Ī	4,000	8	
	2,100	6		4,200	7	
	2,200	6		4,400	7	
	2,300	6		4,600	7	
	2,400	6	1	4,800	6	ì
	2,500	5	l	5,000	6	
l	2,600	5	1	5,200	6	}
!	2,700	5	ľ	5,400	6	ł
	2,800	5	1	5,600		,
•	2,900	5	}	5,800	j 5	
	3,000	5 5 5 5 5	l	6,000	5 5 5 5 5	Ī
	3,100	1 4	ļ	6,200	5	
	3,200	1 4	1	6,400	5	}
	3,300	1 7		6,600	5	Į
	3,400	1 4	1	6,800	1 4]
	3,500		1	7,000	4	
	3,600	1 7		7,200	4	ì
	3,700	1 7		7,400	4	
	3,800	1 4	l	7,600	4	
•	0,000		4			-

Note minimum volumes required:

25 mm : 560 liters 37 mm : 1250 Rers

Filter diameter of 25 mm = effective area of 385 sq mm Filter diameter of 37 mm = effective area of 855 sq mm

BILLING COOK 6566-66-C

- 20. Ensure that the sampler is turned upright before interrupting the pump flow.
- 21. Check that all samples are clearly labeled and that all pertinent information has been enclosed before transfer of the samples to the laboratory.
- 22. Ensure that the samples are stored in a secure and representative location.
- 23. Do not change containers if portions of these filters are taken for other purposes.
- 24. A summary of Sample Data Quality Objectives is shown in the following Table II:

BILLING CODE 6560-50-M

TABLE II--SUMMARY OF SAMPLING AGENCY DATA QUALITY OBJECTIVES

This table summarizes the data quality objectives from the performance of this method in terms of precision, accuracy, completeness, representativeness, and comparability. These objectives are assured by the periodic control checks and reference checks listed here and described in the text of the method.

Unit Operation	OC Check	Frequency	Conformance Expectation
Sampling materials	Sealed blank	1 per I/O site	95%
Sample procedures	Field blanks	2 per L/O site	95%
	Pump calibration	Before and after each field series	90%
Sample custody	Review of chain-of-custody record	Each sample	95% complete
Sample shipment	Review of sending report	Each sample	95% complete
BILLING CODE 6560-60-C	·		

C. Sample Shipment

Ship bulk samples to the analytical laboratory in a separate container from air samples.

D. Sample Receiving

- 1. Designate one individual as sample coordinator at the laboratory. While that individual will normally be available to receive samples, the coordinator may train and supervise others in receiving procedures for those times when he/she is not available.
- 2. Bulk samples and air samples delivered to the analytical laboratory in the same container shall be rejected.

E. Sample Preparation

- All sample preparation and analysis shall be performed by a laboratory independent of the abatement contractor.
- 2. Wet-wipe the exterior of the cassettes to minimize contamination possibilities before taking them into the clean room facility.
- 3. Perform sample preparation in a well-equipped clean facility.

Note: The clean area is required to have the following minimum characteristics. The area or hood must be capable of maintaining a positive pressure with make-up air being HEPA-filtered. The cumulative analytical blank concentration must average less than 18 s/mm² in an area of 0.057 mm² (nominally 10 200-mesh grid openings) and a single preparation with a maximum of 53 s/mm² for that same area.

- 4. Preparation areas for air samples must not only be separated from preparation areas for bulk samples, but they must be prepared in separate rooms.
- 5. Direct preparation techniques are required. The object is to produce an intact film containing the particulates of the filter surface which is sufficiently clear for TEM analysis.

a. TEM Grid Opening Area measurement must be done as follows:

i. The filter portion being used for sample preparation must have the surface collapsed using an acetone vapor technique.

ii. Measure 20 grid openings on each of 20 random 200-mesh copper grids by placing a grid on a glass and examining it under the PCM. Use a calibrated graticule to measure the average field diameters. From the data, calculate the field area for an average grid opening.

iii. Measurements can also be made on the TEM at a properly calibrated low magnification or on an optical microscope at a magnification of approximately 400% by using an eyepiece fitted with a scale that has been calibrated against a stage micrometer. Optical microscopy utilizing

manual or automated procedures may be used providing instrument calibration can be verified.

b. TEM specimen preparation from polycarbonate (PC) filters. Procedures as described in Unit III.G. or other equivalent methods may be used.

c. TEM specimen preparation from mixed cellulose ester (MCE) filters.

i. Filter portion being used for sample preparation must have the surface collapsed using an acetone vapor technique or the Burdette procedure (Ref. 7 of Unit II.].)

ii. Plasma etching of the collapsed filter is required. The microscope slide to which the collapsed filter pieces are attached is placed in a plasma asher. Because plasma ashers vary greatly in their performance, both from unit to unit and between different positions in the asher chamber, it is difficult to specify the conditions that should be used. Insufficient etching will result in a failure to expose embedded filters, and too much etching may result in loss of particulate from the surface. As an interim measure, it is recommended that the time for ashing of a known weight of a collapsed filter be established and that the etching rate be calculated in terms of micrometers per second. The actual etching time used for the particulate asher and operating conditions will then be set such that a 1-2 µm (10 percent) layer of collapsed surface will be removed.

iii. Procedures as described in Unit III. or other equivalent methods may be used to prepare samples.

F. TEM Method

1. An 80-120 kV TEM capable of performing electron diffraction with a fluorescent screen inscribed with calibrated gradations is required. If the TEM is equipped with EDXA it must either have a STEM attachment or be capable of producing a spot less than 250 nm in diameter at crossover. The microscope shall be calibrated routinely for magnification and camera constant.

2. Determination of Camera Constant and ED Pattern Analysis. The camera length of the TEM in ED operating mode must be calibrated before ED patterns on unknown samples are observed. This can be achieved by using a carboncoated grid on which a thin film of gold has been sputtered or evaporated. A thin film of gold is evaporated on the specimen TEM grid to obtain zone-axis ED patterns superimposed with a ring pattern from the polycrystalline gold film. In practice, it is desirable to optimize the thickness of the gold film so that only one or two sharp rings are obtained on the superimposed ED pattern. Thicker gold film would

normally give multiple gold rings, but "will tend to mask weaker diffraction spots from the unknown fibrous particulate. Since the unknown despacings of most interest in asbestos analysis are those which lie closest to the transmitted beam, multiple gold rings are unnecessary on zone-axis ED patterns. An average camera constant using multiple gold rings can be determined. The camera constant is one-half the diameter of the rings times the interplanar spacing of the ring being measured.

3. Magnification Calibration. The magnification calibration must be done at the fluorescent screen. The TEM must be calibrated at the grid opening magnification (if used) and also at the magnification used for fiber counting. This is performed with a cross grating replica (e.g., one containing 2.160 lines/ mm). Define a field of view on the fluorescent screen either by markings or physical boundaries. The field of view must be measurable or previously inscribed with a scale or concentric circles (all scales should be metric). A logbook must be maintained, and the dates of calibration and the values obtained must be recorded. The frequency of calibration depends on the past history of the particular microscope. After any maintenance the microscope that involved adjust. of the power supplied to the lenses or the high-voltage system or the mechanical disassembly of the electron optical column apart from filament exchange, the magnification must be recalibrated. Before the TEM calibration is performed, the analyst must ensure that the cross grating replica is placed at the same distance from the objective lens as the specimens are. For instruments that incorporate an eucentric tilting specimen stage, all specimens and the cross grating replica must be placed at the eucentric position.

4. While not required on every microscope in the laboratory, the laboratory must have either one microscope equipped with energy dispersive X-ray analysis or access to an equivalent system on a TEM in another laboratory.

5. Microscope settings: 80–120 kV, grid assessment 250–1,000X, then 15,000–20,000X screen magnification for analysis.

6. Approximately one-half (0.5) of the predetermined sample area to be analyzed shall be performed on one sample grid preparation and the remaining half on a second sample preparation.

7. Individual grid openings with greater than 5 percent openings (holes)

or covered with greater than 25 percent particulate matter or obviously having nonuniform loading must not be analyzed.

- 8. Reject the grid if:
- a. Less than 50 percent of the grid openings covered by the replica are intact.
 - b. The replica is doubled or folded.
 - c. The replica is too dark because of

incomplete dissolution of the filter.

- 9. Recording Rules.
- a. Any continuous grouping of particles in which an asbestos fiber with an aspect ratio greater than or equal to 5:1 and a length greater than or equal to 0.5 µm is detected shall be recorded on the count sheet. These will be designated asbestos structures and will be classified as fibers, bundles, clusters,

or matrices. Record as individual fibers any contiguous grouping having 0, 1, or 2 definable intersections. Groupings having more than 2 intersections are to be described as cluster or matrix. An intersection is a nonparallel touching or crossing of fibers, with the projection having an aspect ratio of 5:1 or greater. See the following Figure 2:

BILLING CODE 6540-50-M

FIGURE 2--COUNTING GUIDELINES USED IN DETERMINING ASBESTOS STRUCTURES

Count as 1 fiber; 1 Structure; no intersections.

Count as 2 fibers if space between fibers is greater than width of 1 fiber diameter or number of intersections is equal to or less than 1.

Count as 3 structures if space between fibers is greater than width of 1 fiber diameter or if the number of intersections is equal to or less than 2.

Count bundles as 1 structure; 3 or more parallel fibrils less than 1 fiber diameter separation.

Count clusters as 1 structure; fibers having greater than or equal to 3 intersections.

Count matrix as 1 structure.

DO NOT COUNT AS STRUCTUPES:

Fiber protrusion <5:1 Aspect Ratio

No fiber protusion

Fiber protrusion < 0.5 micrometer

<0.5 micrometer in length
 <5:1 Aspect Ratio</pre>

BILLING CODE 6540-50-C

- i. Fiber. A structure having a minimum length greater than or equal to 0.5 µm and an aspect ratio (length to width) of 5:1 or greater and substantially parallel sides. Note the appearance of the end of the fiber, i.e., whether it is flat, rounded or dovetailed.
- ii. Bundle. A structure composed of three or more fibers in a parallel arrangement with each fiber closer than one fiber diameter.
- iii. Cluster. A structure with fibers in a random arrangement such that all fibers are intermixed and no single fiber is isolated from the group. Groupings must have more than two intersections.
- iv. Matrix. Fiber or fibers with one end free and the other end embedded in or hidden by a particulate. The exposed fiber must meet the fiber definition.
- b. Separate categories will be maintained for fibers less than 5 μ m and for fibers equal to or greater than 5 μ m in length.
- c. Record NSD no structures are detected in the field.
- d. Visual identification of electron diffraction (ED) patterns is required for each asbestos structure counted which would cause the analysis to exceed the 70 s/mm² concentration. (Generally this means the first four fibers identified as asbestos must exhibit an identifiable diffraction pattern for chrysotile or amphibole.)
- e. The micrograph number of the recorded diffraction patterns must be reported to the client and maintained in the laboratory's quality assurance records. In the event that examination of the pattern by a qualified individual indicates that the pattern has been misidentified visually, the client shall be contacted.
- f. Energy Dispersive X-ray Analysis (EDXA) is required of all amphiboles which would cause the analysis results to exceed the 70 s/mm² concentration. (Generally speaking, the first 4 amphiboles would require EDXA.)
- g. If the number of fibers in the nonasbestos class would cause the analysis to exceed the 70 s/mm² concentration, the fact that they are not asbestos must be confirmed by EDXA or measurement of a zone axis diffraction pattern.
- h. Fibers classified as chrysotile must be identified by diffraction or X-ray analysis and recorded on a count sheet. X-ray analysis alone can be used only

after 70 s/mm² have been exceeded for a particular sample.

i. Fibers classified as amphiboles must be identified by X-ray analysis and electron diffraction and recorded on the count sheet. (X-ray analysis alone can be used only after 70 s/mm² have been exceeded for a particular sample.)

j. If a diffraction pattern was recorded on film, record the micrograph number

on the count sheet.

k. If an electron diffraction was attempted but no pattern was observed, record N on the count sheet.

- I. If an EDXA spectrum was attempted but not observed, record N on the count sheet.
- m. If an X-ray analysis spectrum is stored, record the file and disk number on the count sheet.
 - 10. Classification Rules.
- a. Fiber. A structure having a minimum length greater than or equal to 0.5 µm and an aspect ratio (length to width) of 5:1 or greater and substantially parallel sides. Note the appearance of the end of the fiber, i.e., whether it is flat, rounded or dovetailed.
- h. Bundle. A structure composed of three or more fibers in a parallel arrangement with each fiber closer than one fiber diameter.
- c. Cluster. A structure with fibers in a random arrangement such that all fibers are intermixed and no single fiber is isolated from the group. Groupings must have more than two intersections.
- d. Matrix. Fiber or fibers with one end free and the other end embedded in or hidden by a particulate. The exposed fiber must meet the fiber definition.
- 11. After finishing with a grid, remove it from the microscope, and replace it in the appropriate grid holder. Sample grids must be stored for a minimum of 1 year from the date of the analysis; the sample cassette must be retained for a minimum of 30 days by the laboratory or returned at the client's request.

G. Sample Analytical Sequence

- 1. Under the present sampling requirements a minimum of 13 samples is to be collected for the clearance testing of an abatement site. These include five abatement area samples, five ambient samples, two field blanks, and one sealed blank.
- 2. Carry out visual inspection of work site prior to air monitoring.
- 3. Collect a minimum of 5 air samples inside the work site and 5 samples

outside the work site. The indoor and outdoor samples shall be taken during the same time period.

4. Remaining steps in the analytical sequence are contained in Unit IV of this Appendix.

H. Reporting

- The following information must be reported to the client for each sample analyzed:
- a. Concentration in structures per square millimeter and structures per cubic centimeter.
- b. Analytical sensitivity used for the analysis.
 - c. Number of asbestos structures.
 - d. Area analyzed.
- e. Volume of air sampled (which must be initially supplied to lab by client).
- f. Copy of the count sheet must be included with the report.
- g. Signuture of laboratory official to indicate that the laboratory met specifications of the method.
- h. Report form must contain official laboratory identification (e.g., letterhead).
 - i. Type of asbestos.
- I. Quality Control/Quality Assurance Procedures (Data Quality Indicators)

Monitoring the environment for airborne asbestos requires the use of sensitive sampling and analysis procedures. Because the test is sensitive. it may be influenced by a variety of factors. These include the supplies used in the sampling operation, the performance of the sampling, the preparation of the grid from the filter and the actual examination of this grid in the microscope. Each of these unit operations must produce a product of defined quality if the analytical result is to be a reliable and meaningful test result. Accordingly, a series of control checks and reference standards are to be performed along with the sample analysis as indicators that the materials used are adequate and the operations are within acceptable limits. In this way. the quality of the data is defined and the results are of known value. These checks and tests also provide timely and specific warning of any problems which might develop within the sampling and analysis operations. A description of these quality control/quality assurance procedures is summarized in the following Table III:

BILLING CODE 6560-50-M

TABLE III--SUMMARY OF LABORATORY DATA QUALITY OBJECTIVES

Unit Operation	OC Check	Frequency	Conformance Expectation
Sample receiving	Review of receiving report	Each sample	95% complete
Sample custody	Review of chain-of-custody record	Each sample	.95% complete
Sample preparation	Supplies and reagents	On receipt	Meet specs, or reject
	Grid opening size	20 openings/20 grids/lot of 1000 or 1 opening/sample	100%
• ,	Special clean area monitoring	After cleaning or service	Meet specs or reclean
·	Laboratory blank	1 per prep series or 10%	Meet specs, or reanalyze series
	Plasma etch blank	1 per 20 samples	75%
	Multiple preps (3 per sample)	Each sample	One with cover of 15 complete grid sqs.
Sample analysis	System check	Each day	Each day
	Alignment check	Each day	Each day
,	Magnification calibration with low and high standards	Each month or after service	95%
	ED calibration by gold standard	Weekly	95%
•	EDS calibration by copper line	Daily	95%
Performance check	Laboratory blank (measure of cleanliness)	Prep 1 per series or 10% read 1 per 25 samples	Meet specs or reanalyze series
	Replicate counting (measure of precision)	1 per 100 samples	1.5 x Poisson Std. Dev.
	Duplicate analysis (measure of reproducibility)	1 per 100 samples	2 x Poisson Std. Dev.
;	Known samples of typical materials (working standards)	Training and for com- parison with unknowns	100%
	Analysis of NBS SRM 1876 and/or RM 8410 (measure of accuracy and comparability)	1 per analyst per year	1.5 x Poisson Std. Dev.
	Data entry review (data validation and measure of completeness)	Each sample	95%
	Record and verify ID electron diffraction pattern of structure	1 per 5 samples	80% accuracy
Calculations and data reduction	Hand calculation of automated data reduction procedure or independent recalculation of hand-calculated data	1 per 100 samples	85%

1. When the samples arrive at the laboratory, check the samples and documentation for completeness and requirements before initiating the analysis.

2. Check all laboratory reagents and supplies for acceptable asbestos

background levels.

- 3. Conduct all sample preparation in a clean room environment monitored by luboratory blanks. Testing with blanks must also be done after cleaning or servicing the room.
- 4. Prepare multiple grids of each
- 5. Provide laboratory blanks with each sample batch. Maintain a cumulative average of these results. If there are more than 53 fibers/mm * per 10 200-mesh grid openings, the system must be checked for possible sources of contamination.

6. Perform a system check on the transmission electron microscope daily.

- 7. Make periodic performance checks of magnification, electron diffraction and energy dispersive X-ray systems as set forth in Table III under Unit II.I.
- 8. Ensure qualified operator performance by evaluation of replicate analysis and standard sample comparisons as set forth in Table III under Unit II.I.

9. Validate all data entries.

- 10. Recalculate a percentage of all computations and automatic data reduction steps as specified in Table III under Unit II.I.
- 11. Record an electron diffraction pattern of one asbestos structure from every five samples that contain asbestos. Verify the identification of the pattern by measurement or comparison of the pattern with patterns collected from standards under the same conditions. The records must also demonstrate that the identification of the pattern has been verified by a qualified individual and that the operator who made the identification is maintaining at least an 80 percent correct visual identification based on his measured patterns.
- 12. Appropriate logs or records must be maintained by the analytical laboratory verifying that it is in compliance with the mandatory quality assurance procedures.

J. References

For additional background information on this method, the following references should be consulted.

1. "Guidance for Controlling Asbestos-Containing Materials in Buildings," EPA 569/5-85-024, June 1985.

2. "Measuring Airborne Asbestos Following en Abatement Action."

- USEPA, Office of Toxic Substances, EPA 600/4-85-049, 1985.
- 3. Small, John and E. Steel. Asbestos Standards: Materials and Analytical Methods. N.B.S. Special Publication 619, 1982.
- 4. Campbell, W.J., R.L. Blake, L.L. Brown, E.E. Cather, and J.J. Sjoberg. Selected Silicate Minerals and Their Asbestiform Varieties. Information Circular 8751, U.S. Bureau of Mines, 1977.
- 5. Quality Assurance Handbook for Air Pollution Measurement System. Ambient Air Methods, EPA 600/4-77-027a, USEPA, Office of Research and Development, 1977.

6. Method 2A: Direct Measurement of Gas Volume through Pipes and Small Ducts. 40 CFR Part 60 Appendix A.

- 7. Burdette, G.J., Health & Safety Exec. Research & Lab. Services Div., London, "Proposed Analytical Method for Determination of Asbestos in Air."
- 8. Chatfield, E.J., Chatfield Tech. Cons., Ltd., Clark, T., PEI Assoc., "Standard Operating Procedure for Determination of Airborne Asbestos Fibers by Transmission Electron Microscopy Using Polycarbonate Membrane Filters," WERL SOP 87-1, March 5, 1987.
- 9. NIOSH Method 7402 for Asbestos Fibers, 12–11–86 Draft.
- 10. Yamate, G., Agarwall, S.C., Gibbons, R.D., ITT Research Institute, "Methodology for the Measurement of Airborne Asbestos by Electron Microscopy," Draft report, USEPA Contract 68-02-3268, July 1984.
- 11. "Guidance to the Preparation of Quality Assurance Project Plans," USEPA, Office of Toxic Substances, 1984.
- III. Nonmandatory Transmission Electron Microscopy Method

A. Definitions of Terms

1. "Analytical sensitivity"—Airborne asbestos concentration represented by each fiber counted under the electron microscope. It is determined by the air volume collected and the proportion of the filter examined. This method requires that the analytical sensitivity be no greater than 0.005 s/cm³.

"Asbestiform"—A specific type of mineral fibrosity in which the fibers and fibrils possess high tensile strength and

flexibility.

3. "Aspect ratio"—A ratio of the length to the width of a particle.

Minimum aspect ratio as defined by this method is equal to or greater than 5:1.

4. "Bundle"—A structure composed of three or more fibers in a parallel arrangement with each fiber closer than one fiber diameter.

- 8. "Clean area"—A controlled environment which is maintained and monitored to assure a low probability of asbestos contamination to materials in that space. Clean areas used in this method have HEPA filtered air under positive pressure and are capable of sustained operation with an open laboratory blank which on subsequent analysis has an average of less than 18 structures/mm² in an area of 0.057 mm² (nominally 10 200 mesh grid openings) and a maximum of 53 structures/mm² for no more than one single preparation for that same area.
- 6. "Cluster"—A structure with fibers in a random arrangement such that all fibers are intermixed and no single fiber is isolated from the group. Groupings must have more than two intersections.

7. "ED"-Electron diffraction.

- 8. "EDXA"—Energy dispersive X-ray analysis.
- 9. "Fiber"—A structure greater than or equal to 0.5 μm in length with an aspect ratio (length to width) of 5:1 or greater and having substantially parallel sides.

10. "Grid"—An open structure for mounting on the sample to aid in its examination in the TEM. The term is used here to denote a 200-mesh copper lattice approximately 3 mm in diameter.

11. "Intersection"—Nonparallel touching or crossing of fibers, with the projection having an aspect ratio of 5:1 or greater.

- 12. "Laboratory sample coordinator"—That person responsible for the conduct of sample handling and the certification of the testing procedures.
- 13. "Filter background level"—The concentration of structures per square millimeter of filter that is considered indistinguishable from the concentration measured on blanks (filters through which no air has been drawn). For this method the filter background level is defined as 70 structures/mm².
- 14. "Matrix"—Fiber or fibers with one end free and the other end embedded in or hidden by a particulate. The exposed fiber must meet the fiber definition.
 - 15. "NSD"—No structure detected.
- 16. "Operator"—A person responsible for the TEM instrumental analysis of the sample.
- 17. "PCM"—Phase contrast microscopy.
- 18. "SAED"—Selected area electron diffraction.
- 19. "SEM"—Scanning electron microscope.
- 20. "STEM"—Scanning transmission electron microscope.
- 21. "Structure"—a microscopic bundle, cluster, fiber, or matrix which may contain asbestos.

- 22. "S/cm^a"—Structures per cubic centimeter.
- 23. "S/mm²"—Structures per square millimeter.
- 24. "TEM"—Transmission electron microscope.

B. Sampling

- 1. Sampling operations must be performed by qualified individuals completely independent of the abatement contractor to avoid possible conflict of interest (See References 1, 2, and 5 of Unit III.L.) Special precautions should be taken to avoid contamination of the sample. For example, materials that have not been prescreened for their asbestos background content should not be used; also, sample handling procedures which do not take cross contamination possibilities into account should not be used.
- 2. Material and supply checks for asbestos contamination should be made on all critical supplies, reagents, and procedures before their use in a monitoring study.
- 3. Quality control and quality assurance steps are needed to identify problem areas and isolate the cause of the contamination (see Reference 5 of Unit III.L.). Control checks shall be permanently recorded to document the quality of the information produced. The sampling firm must have written quality control procedures and documents which verify compliance. Independent audits by a qualified consultant or firm should be performed once a year. All documentation of compliance should be retained indefinitely to provide a guarantee of quality. A summary of Sample Data Quality Objectives is shown in Table II of Unit II.B.
 - 4. Sampling materials.
- a. Sample for airborne asbestos following an abatement action using commercially available cassettes.
- b. Use either a cowling or a filterretaining middle piece. Conductive material may reduce the potential for particulates to adhere to the walls of the cowl.

- c. Cassettes must be verified as "clean" prior to use in the field. If packaged filters are used for loading or preloaded cassettes are purchased from the manufacturer or a distributor, the manufacturer's name and lot number should be entered on all field data sheets provided to the laboratory, and are required to be listed on all reports from the laboratory.
- d. Assemble the cassettes in a clean facility (See definition of clean area under Unit III.A.).
- e. Reloading of used cassettes is not permitted.
- f. Use sample collection filters which are either polycarbonate having a pore size of less than or equal to 0.4 μm or mixed cellulose ester having a pore size of less than or equal to 0.45 μm.
- g. Place these filters in series with a backup filter with a pore size of 5.0 μ m (to serve as a diffuser) and a support pad. See the following Figure 1:

BILLING CODE 6560-50-M

FIGURE I--SAMPLING CASSETTE CONFIGURATION

h. When polycarbonate filters are used, position the highly reflective face such that the incoming particulate is received on this surface.

i. Seal the cassettes to prevent leakage around the filter edges or between cassette part joints. A mechanical press may be useful to achieve a reproducible leak-free seal. Shrink fit gel-bands may be used for this purpose and are available from filter manufacturers and their authorized distributors.

j. Use wrinkle-free loaded cassettes in the sampling operation.

5. Pump setup.

a. Calibrate the sampling pump over the range of flow rates and loads anticipated for the monitoring period with this flow measuring device in series. Perform this calibration using guidance from BPA Method 2A each time the unit is sent to the field (See Reference 6 of Unit III.L.).

b. Configure the sampling system to preclude pump vibrations from being transmitted to the cassette by using a sampling stand separate from the pump station and making connections with flexible tubing.

c. Maintain continuous smooth flow conditions by damping out any pump action fluctuations if necessary.

d. Check the sampling system for leaks with the end cap still in place and the pump operating before initiating sample collection. Trace and stop the source of any flow indicated by the flowmeter under these conditions. e. Select an appropriate flow rate equal to or greater than 1 L/min or less than 10 L/min for 25 mm cassettes. Larger filters may be operated at proportionally higher flow rates.

f. Orient the cassette downward at approximately 45 degrees from the

horizontal.

g. Maintain a log of all pertinent sampling information, such as pump identification number, calibration data, sample location, date, sample identification number, flow rates at the beginning, middle, and end, start and stop times, and other useful information or comments. Use of a sampling log form is recommended. See the following Figure 2:

BILLING CODE 6660-60-M

FIGURE 2--SAMPLING LOG FORM

Sample Number	Location of Sample	Pump I.D.	Start Time	Middle Time	End Time	Flow Rate
				·		
		·				
			·			
		·				

Inspector:		Date:
2.3pcctor.		

BILLING CODE 6860-50-C

h. Initiate a chain of custody procedure at the start of each sampling, if this is requested by the client.

i. Maintain a close check of all aspects

Maintain a close check of all aspects
of the sampling operation on a regular
basis.

j. Continue sampling until at least the minimum volume is collected. as specified in the following Table I:

TABLE 1--NUMBER OF 200 MESH EM GRID OPENINGS (0.0057 MM2) THAT NEED TO BE ANALYZED TO MAINTAIN SENSITIVITY OF 0.005 STRUCTURES/CC BASED ON VOLUME AND EFFECTIVE FILTER AREA

Effective	Filter	Area
385	nm pa	n

_		Euecine Litter Viet
_		385 sq mm
	Volume (liters)	# of grid openings
	560	24
	600	23
	700	19
	800	17
	900	15
	1,000	14
1	1,100	12
	1,200	11
i	1,300	10
Recommended	1,400	10
Volume	1,500	. 9
Range	1,600	8
1	1,700	8
i	1,800	8
	1,900	7
	2,000	7
	2,100	6
	2,200	6
	2,300	6
	2,400	6
	2,500	5
Ĩ	2,600	5
	2,700	5 :
	2,800	5
	2,900	
	3.000	5
		5 4
	3,100	
j	3,200	4
, į	3,300	4
	3,400	• • • • • • • • • • • • • • • • • •
	3,500	•
	3,600	4

Effective Filter Area 855 sq mm

Recommended Volume Range

	933 BQ 11H11
Volume (liters)	# of grid openings
1,250	24
1,300	23
1,400	21
1,600	19
1,800	17
2,000	15
2,200	14
2,400	13
2,600	12
2,800	11
3,000	10
3,200	9
3,400	. 9
3,600	8
3,800	8
4,000	8
4,200	7
4,400	7
4,600	7
4,800	6
5,000	6
5,200	6 .
5,400	6
5,600	5
5,800	5
6,000	5
6,200	5
6,400	5
6,600	5
6,800	4
7,000	4
7,200	4
7,400	4
7 800	4

Note minimum volumes required:

3,700 3.800

Francisco Company and the second of the second o

25 mm : 560 liters 37 mm : 1250 itters

Filter diameter of 25 mm = effective area of 385 sq mm Filter diameter of 37 mm = effective area of 855 sq mm

MG CODE 6466-60-C

k. At the conclusion of sampling, turn the cassette upward before stopping the flow to minimize possible particle loss. If the sampling is resumed, restart the flow before reorienting the cassette downward. Note the condition of the filter at the conclusion of sampling.

1. Double check to see that all information has been recorded on the data collection forms and that the cassette is securely closed and appropriately identified using a waterproof label. Protect cassettes in individual clean resealed polyethylene bags. Bags are to be used for storing cassette caps when they are removed for sampling purposes. Caps and plugs should only be removed or replaced using clean hands or clean disposable plastic gloves.

m. Do not change containers if portions of these filters are taken for other purposes.

6. Minimum sample number per site. A minimum of 13 samples are to be collected for each testing consisting of the following:

a. A minimum of five samples per abatement area.

b. A minimum of five samples per ambient area positioned at locations representative of the air entering the abatement site.

- c. Two field blanks are to be taken by removing the cap for not more than 30 sec and replacing it at the time of sampling before sampling is initiated at the following places:
- i. Near the entrance to each ambient
 - ii. At one of the ambient sites.

(Note: Do not leave the blank open during the sampling period.)

- d. A sealed blank is to be carried with each sample set. This representative cassette is not to be opened in the field.
 - 7. Abatement area sampling.
- a. Conduct final clearance sampling only after the primary containment barriers have been removed; the abatement area has been thoroughly dried; and, it has passed visual inspection tests by qualified personnel. (See Reference 1 of Unit III.L.)
- b. Containment barriers over windows, doors, and air passageways must remain in place until the TEM clearance sampling and analysis is completed and results meet clearance test criteria. The final plastic barrier remains in place for the sampling period.
- c. Select sampling sites in the abatement area on a random basis to provide unbiased and representative samples.
- d. After the area has passed a thorough visual inspection, use

aggressive sampling conditions to dislodge any remaining dust.

i. Equipment used in aggressive sampling such as a leaf blower and/or fan should be properly cleaned and decontaminated before use.

ii. Air filtration units shall remain on during the air monitoring period.

iii. Prior to air monitoring, floors, ceiling and walls shall be swept with the exhaust of a minimum one (1) horsepower leaf blower.

iv. Stationary fans are placed in locations which will not interfere with air monitoring equipment. Fan air is directed toward the ceiling. One fan shall be used for each 10,000 ft 3 of worksite.

v. Monitoring of an abatement work area with high-volume pumps and the use of circulating fans will require electrical power. Electrical outlets in the abatement area may be used if available. If no such outlets are available, the equipment must be supplied with electricity by the use of extension cords and strip plug units. All electrical power supply equipment of this type must be approved Underwriter Laboratory equipment that has not been modified. All wiring must be grounded. Ground fault interrupters should be used. Extreme care must be taken to clean up any residual water and ensure that electrical equipment does not become wet while operational.

vi. Low volume pumps may be carefully wrapped in 6-mil polyethylene to insulate the pump from the air. High volume pumps cannot be sealed in this manner since the heat of the motor may melt the plastic. The pump exhausts

should be kept free. vii. If recleaning is necessary, removal of this equipment from the work area must be handled with care. It is not possible to completely decontaminate the pump motor and parts since these areas cannot be wetted. To minimize any problems in this area, all equipment such as fans and pumps should be carefully wet wiped prior to removal from the abatement area. Wrapping and sealing low volume pumps in 6-mil polyethylene will provide easier decontamination of this equipment. Use of clean water and disposable wipes should be available for this purpose.

e. Pump flow rate equal to or greater than 1 L/min or less than 10 L/min may be used for 25 mm cassettes. The larger cassette diameters may have comparably increased flow.

f Sample a volume of air sufficient to ensure the minimum quantitation limits. (See Table I of Unit III.B.5.j.)

8. Ambient sampling.

a. Position ambient samplers at locations representative of the air

entering the abatement site. If makeup air entering the abatement site is drawn from another area of the building which is outside of the abatement area, place the pumps in the building, pumps should be placed out of doors located near the building and away from any obstructions that may influence wind patterns. If construction is in progress immediately outside the enclosure, it may be necessary to select another ambient site. Samples should be representative of any air entering the work site.

b. Locate the ambient samplers at least 3 ft apart and protect them from adverse weather conditions.

c. Sample same volume of air as samples taken inside the abatement site.

C. Sample Shipment

- 1. Ship bulk samples in a separate container from air samples. Bulk samples and air samples delivered to the analytical laboratory in the same container shall be rejected.
- 2. Select a rigid shipping container and pack the cassettes upright in a noncontaminating nonfibrous medium such as a bubble pack. The use of resealable polyethylene bags may help to prevent jostling of individual cassettes.
- 3. Avoid using expanded polystyrene because of its static charge potential. Also avoid using particle-based packaging materials because of possible contamination.
- 4. Include a shipping bill and a detailed listing of samples shipped, their descriptions and all identifying numbers or marks, sampling data, shipper's name, and contact information. For each sample set, designate which are the ambient samples, which are the abatement area samples, which are the field blanks, and which is the sealed blank if sequential analysis is to be performed.

5. Hand-carry samples to the laboratory in an upright position if possible; otherwise choose that mode of transportation least likely to jar the samples in transit.

6. Address the package to the laboratory sample coordinator by name when known and alert him or her of the package description, shipment mode, and anticipated arrival as part of the chain of custody and sample tracking procedures. This will also help the laboratory schedule timely analysis for the samples when they are received.

D. Quality Control/Quality Assurance Procedures (Data Quality Indicators)

Monitoring the environment for airborne asbestos requires the use of

sensitive sampling and analysis procedures. Because the test is sensitive. it may be influenced by a variety of factors. These include the supplies used in the sampling operation, the performance of the sampling, the preparation of the grid from the filter and the actual examination of this grid In the microscope. Each of these unit operations must produce a product of defined quality if the analytical result is to be a reliable and meaningful test result. Accordingly, a series of control checks and reference standards is performed along with the sample analysis as indicators that the materials used are adequate and the operations are within acceptable limits. In this way. the quality of the data is defined, and the results are of known value. These checks and tests also provide timely and specific warning of any problems which might develop within the sampling and analysis operations. A description of these quality control/quality assurance procedures is summarized in the text below.

- 1. Prescreen the loaded cassette collection filters to assure that they do not contain concentrations of asbestos which may interfere with the analysis of the sample. A filter blank average of less than 18 s/mm² in an area of 0.057 mm² (nominally 10 200-mesh grid openings) and a maximum of 53 s/mm² for that same area for any single preparation is acceptable for this method.
- 2. Calibrate sampling pumps and their flow indicators over the range of their intended use with a recognized standard. Assemble the sampling system with a representative filter—not the filter which will be used in

sumpling—before and after the sampling operation.

- 3. Record all calibration information with the data to be used on a standard sampling form.
- 4. Ensure that the samples are stored in a secure and representative location.
- 5. Ensure that mechanical calibrations from the pump will be minimized to prevent transferral of vibration to the cassette.
- 6. Ensure that a continuous smooth flow of negative pressure is delivered by the pump by installing a damping chamber if necessary.
- 7. Open a loaded cassette momentarily at one of the indoor sampling sites when sampling is initiated. This sample will serve as an indoor field blank.
- 8. Open a loaded cassette momentarily at one of the outdoor sampling sites when sampling is initiated. This sample will serve as an outdoor field blank.
- 9. Carry a sealed blank into the field with each sample series. Do not open this cassette in the field.
- 10. Perform a leak check of the sampling system at each indoor and outdoor sampling site by activating the pump with the closed sampling cassette in line. Any flow indicates a leak which must be eliminated before initiating the sampling operation.
- 11. Ensure that the sampler is turned upright before interrupting the pump flow.
- 12. Check that all samples are clearly labeled and that all pertinent information has been enclosed before transfer of the samples to the laboratory.

F. Sample Receiving

- 1. Designate one individual as sum coordinator at the laboratory. While a individual will normally be available to receive samples, the coordinator may train and supervise others in receiving procedures for those times when he/she is not available.
- 2. Adhere to the following procedures to ensure both the continued chain-of-custody and the accountability of all samples passing through the laboratory:
- a. Note the condition of the shipping package and data written on it upon receipt.
- b. Retain all bills of lading or shipping slips to document the shipper and delivery time.
- c. Examine the chain-of-custody seal, if any, and the package for its integrity.
- d. If there has been a break in the seal or substantive damage to the package, the sample coordinator shall immediately notify the shipper and a responsible laboratory manager before any action is taken to unpack the shipment.
- e. Packages with significant damage shall be accepted only by the responsible laboratory manager after discussions with the client.
- 3. Unwrap the shipment in a clean. (uncluttered facility. The sample coordinator or his or her designee will record the contents, including a description of each item and all identifying numbers or marks. A Sample Receiving Form to document this information is attached for use when necessary. (See the following Figure 3.)

BILLING CODE 6560-50-M

FIGURE 3--SAMPLE RECEIVING FORM

Date of package delivery	Package shipped from						
Carrier	Shipping bill retained						
Condition of package on receipt							
*Condition of custody seal		-					
Number of samples received	_ Shipping mani	ifest attache	xd bx				
Purchase Order No.	Project I.D.						
Comments							
No. Description	SamplingMediumPCMCE	Sampled Yolume Liters	Receiving ID #	Assigned #			
1							
2							
3							
4							
5	·						
6	·						
7							
8							
9							
10	•	<u> </u>					
11	ı						
12							
13 (Use as many additional sheets as needed.)							
Comments							
Date of acceptance into sample bank							
Signature of chain-of-custody recipient							
Disposition of samples							

*Note: If the package has sustained substantial damage or the custody seal is broken, stop and contact the project manager and the shipper.

BILLING CODE 1889-86-C

Note.—The person breaking the chain-ofcustody scal and itemizing the contents essumes responsibility for the shipment and signs documents accordingly.

- 4. Assign a laboratory number and schedule an analysis sequence.
- 5. Manage all chain-of-custody samples within the laboratory such that their integrity can be ensured and documented.

F. Sample Preparation

- 1. Personnel not affiliated with the Abatement Contractor shall be used to prepare samples and conduct TEM analysis. Wet-wipe the exterior of the causettes to minimize contamination possibilities before taking them to the clean sample preparation facility.
- 2. Perform sample preparation in a well-equipped clean facility.

Note.—The clean area is required to have the following minimum characteristics. The area or hood must be capable of maintaining a positive pressure with make-up air being HEPA filtered. The cumulative analytical blank concentration must average less than 18 s/mm² in an area of 0.057 s/mm² (nominally 10 200-mesh grid openings) with no more than one single preparation to exceed 53 s/mm2 for that same area.

- 3. Preparation areas for air samples must be separated from preparation areas for bulk samples. Personnel must not prepare air samples if they have previously been preparing bulk samples without performing appropriate personal hygiene procedures, i.e., clothing change, showering, etc.
- 4. Preparation. Direct preparation techniques are required. The objective is to produce an intact carbon film containing the particulates from the filter surface which is sufficiently clear for TEM analysis. Currently recommended direct preparation procedures for polycarbonate (PC) and mixed cellulose ester (MCE) filters are described in Unit III.F.7. and 8. Sample preparation is a subject requiring additional research. Variation on those steps which do not substantively change the procedure, which improve filter clearing or which reduce contamination problems in a laboratory are permitted.
- a. Use only TEM grids that have had grid opening areas measured according to directions in Unit III.J.
- b. Remove the inlet and outlet plugs prior to opening the cassette to minimize any pressure differential that may be
- c. Examples of techniques used to prepare polycarbonate filters are described in Unit III.F.7.
- d. Examples of techniques used to prepare mixed cellulose ester filters are described in Unit III.F.S.

- e. Prepare multiple grids for each sample.
- f. Store the three grids to be measured in appropriately labeled grid holders or polyethylene capsules.
 - 5. Equipment.
 - a. Clean area.
- b. Tweezers. Fine-point tweezers for handling of filters and TEM grids.
- c. Scalpel Holder and Curved No. 10 Surgical Blades.
 - d. Microscope slides.
 - e. Double-coated adhesive tupe.
 - f. Gummed page reinforcements.
- g. Micro-pipet with disposal tips 10 to 100 µL variable volume.
- h. Vacuum coating unit with facilities for evaporation of carbon. Use of a liquid nitrogen cold trap above the diffusion pump will minimize the possibility of contamination of the filter surface by oil from the pumping system. The vacuum-coating unit can also be used for deposition of a thin film of gold.

i. Carbon rod electrodes. Spectrochemically pure carbon rods are required for use in the vacuum evaporator for carbon coating of filters.

j. Carbon rod sharpener. This is used to sharpen carbon rods to a neck. The use of necked carbon rods (or equivalent) allows the carbon to be applied to the filters with a minimum of heating.

k. Low-temperature plasma asher. This is used to etch the surface of collapsed mixed cellulose ester (MCE) filters. The asher should be supplied with oxygen, and should be modified as necessary to provide a throttle or bleed valve to control the speed of the vacuum to minimize disturbance of the filter. Some early models of ashers admit air too rapidly, which may disturb particulates on the surface of the filter during the etching step.

I. Glass petri dishes, 10 cm in diameter, 1 cm high. For prevention of excessive evaporation of solvent when these are in use, a good seal must be provided between the base and the lid. The seal can be improved by grinding the base and lid together with an abrusive grinding material.

- m. Stainless steel mesh.
- n. Lens tissue.
- o. Copper 200-mesh TEM grids, 3 mm in diameter, or equivalent.
- p. Gold 200-mesh TEM grids, 3 mm in diameter, or equivalent.
 - q. Condensation washer.
- r. Carbon-coated, 200-mesh TEM grids, or equivalent.
- s. Analytical balance, 0.1 mg sensitivity.
- t. Filter paper, 9 cm in diameter. u. Oven or slide warmer. Must be
- capable of maintaining a temperature of 88-70 °C.

- v. Polyurothane foam, 6 mm thicknr
- w. Gold wire for evaporation.
- 6. Reagents.
- a. General. A supply of ultra-clean, fiber-free water must be available for washing of all components used in the analysis. Water that has been distilled in glass or filtered or deionized water is satisfactory for this purpose. Reagents must be fiber-free.
- b. Polycarbonate preparation method—chloroform.
- c. Mixed Cellulose Ester (MCE) preparation method-acetone or the Burdette procedure (Ref. 7 of Unit III.L.).
- 7. TEM specimen preparation from polycarbonate filters.
- a. Specimen preparation laboratory. It is most important to ensure that contamination of TEM specimens by extraneous asbestos fibers is minimized during preparation.
- b. Cleaning of sample cassettes. Upon receipt at the analytical laboratory and before they are taken into the clean fucility or laminar flow hood, the sample cassettes must be cleaned of any contamination adhering to the outside surfaces.
- c. Preparation of the carbon evaporator. If the polycarbonate filter has already been carbon-coated prior," receipt, the carbon coating step will \{ omitted, unless the analyst believes the carbon film is too thin. If there is a need to apply more carbon, the filter will be treated in the same way as an uncoated filter. Carbon coating must be performed with a high-vacuum coating unit. Units that are based on evaporation of carbon filaments in a vacuum generated only by an oil rotary pump have not been evaluated for this application, and must not be used. The carbon rods should be sharpened by a carbon rod sharpener to necks of about 4 mm long and 1 mm in diameter. The rods are installed in the evaporator in such a manner that the points are approximately 10 to 12 cm from the surface of a microscope slide held in the rotating and tilting device.
- d. Selection of filter area for carbon coating. Before preparation of the filters. a 75 mm x 50 mm microscope slide is washed and dried. This slide is used to support strips of filter during the carbon evaporation. Two parallel strips of double-sided adhesive tape are applied along the length of the slide. Polycarbonate filters are easily stretched during handling, and cutting of areas for further preparation must be performed with great care. The filter and the MCE backing filter are removed together from the cassette and place a cleaned glass microscope slide. The filter can be cut with a curved scalpel blade by rocking the blade from the

point placed in contact with the filter. The process can be repeated to cut a strip approximately 3 mm wide across the diameter of the filter. The strip of polycarbonute filter is separated from the corresponding strip of backing filter and carefully placed so that it bridges the gap between the adhesive tape strips on the microscope slide. The filter strip can be held with fine-point tweezers and supported underneath by the scalpel blade during placement on the microscope slide. The analyst can place sever il such strips on the same microscope slide, taking care to rinse and wet-wipe the scalpel blade and tweezers before handling a new sample. The filter strips should be identified by etching the glass slide or marking the slide using a marker insoluble in water and solvents. After the filter strip has been cut from each filter, the residual parts of the filter must be returned to the cassette and held in position by reassembly of the cassette. The cassette will then be archived for a period of 30 days or returned to the client upon request.

e. Carbon coating of filter strips. The glass slide holding the filter strips is placed on the rotation-tilting device, and the evaporator chamber is evacuated. The evaporation must be performed in very short bursts, separated by some seconds to allow the electrodes to cool. If evaporation is too rapid, the strips of polycarbonate filter will begin to curl. which will 'ead to cross-linking of the surface material and make it relatively insoluble in chloroform. An experienced analyst can judge the thickness of carbon film to be applied, and some test should be made first on unused filters. If the film is too thin, large particles will be lost from the TEM specimen, and there will be few complete and undamaged grid openings on the specimen. If the coating is too thick, the filter will tend to curl when exposed to chloroform vapor and the carbon film may not adhere to the support mesh. Too thick a carbon film will also lead to a TEM image that is lacking in contrast. and the ability to obtain ED patterns will be compromised. The carbon film should be as thin as possible and remain intact on most of the grid openings of the TEM specimen intact.

f. Preparation of the Jaffe washer. The precise design of the Jaffe washer is not considered important, so any one of the published designs may be used. A washer consisting of a simple stainless steel bridge is recommended. Several pieces of lens tissue approximately 1.0 cm x 0.5 cm are placed on the stainless steel bridge, and the washer is filled with chloroform to a level where the

meniscus contacts the underside of the mesh, which results in saturation of the lens tissue. See References 8 and 10 of Unit III.L.

g. Placing of specimens into the Jaffe washer. The TEM grids are first placed on a piece of lens tissue so that individual grids can be picked up with tweezers. Using a curved scalpel blade. the analyst excises three 3 mm square pieces of the carbon-coated polycarbonate filter from the filter strip. The three squares are selected from the center of the strip and from two points between the outer periphery of the active surface and the center. The piece of filter is placed on a TEM specimen grid with the shiny side of the TEM grid facing upwards, and the whole ascembly is placed boldly onto the saturated lens tissue in the Jaffe washer. If carboncoated grids are used, the filter should be placed carbon-coated side down. The three excised squares of filters are placed on the same piece of lens tissue. Any number of separate pieces of lens tissue may be placed in the same laffe washer. The lid is then placed on the Jaffe washer, and the system is allowed to stand for several hours, preferably overnight.

h. Condensation washing. It has been found that many polycarbonate filters will not dissolve completely in the Jaffe washer, even after being exposed to chloroform for as long as 3 days. This problem becomes more serious if the surface of the filter was overheated during the carbon evaporation. The presence of undissolved filter medium on the TEM preparation leads to partial or complete obscuration of areas of the sample, and fibers that may be present in these areas of the specimen will be overlooked; this will lead to a low result. Undissolved filter medium also co. promises the ability to obtain ED patterns. Before they are counted. TEM grids must be examined critically to determine whether they are adequately cleared of residual filter medium. It has been found that condensation washing of the grids after the initial Jaffe washer tree ment, with chloroform as the sorvent, clears all residual filter medium in a period of approximately 1 hour. In practice, the piece of lens tissue supporting the specimen grids is transferred to the cold finger of the condensation washer, and the washer is operated for about 1 hour. If the specimens are cleared satisfactorily by the Jaffe washer alone, the condensation washer step may be unnecessary.

8. TEM specimen preparation from MCE filters.

a. This method of preparing TEM specimens from MCE filters is similar to

that specified in NIOSH Method 7402. See References 7, 8, and 9 of Unit III.L.

b. Upon receipt at the analytical laboratory, the sample cassettes must be cleaned of any contamination adhering to the outside surfaces before entering the clean sample preparation area.

c. Remove a section from any quadrant of the sample and blank filters.

d. Place the section on a clean microscope slide. Affix the filter section to the slide with a gummed paged reinforcement or other suitable means. Label the slide with a water and solvent-proof marking pen.

e. Place the slide in a petri dish which contains several paper filters soaked with 2 to 3 mL acetone. Cover the dish. Wait 2 to 4 minutes for the sample lilter to fuse and clear.

f. Plasma etching of the collapsed filter is required.

i. The microscope slide to which the collapsed filter pieces are attached is placed in a plasma asher. Because plasma ashers vary greatly in their performance, both from unit to unit and between different positions in the asher chamber, it is difficult to specify the conditions that should be used. This is one area of the method that requires further evaluation. Insufficient etching will result in a failure to expose embedded filters, and too much etching may result in loss of particulate from the surface. As an interim measure, it is recon inended that the time for ashing of a known weight of a collapsed filter be established and that the etching rate be calculated in terms of micrometers per second. The actual etching time used for a particular asher and operating conditions will then be set such that a 1-2 µm (10 percent) layer of collapsed surface will be removed.

ii. Place the slide containing the collapsed filters into a low-temperature plasma asher, and etch the filter.

g. Transfer the slide to a rotating stage inside the bell jar of a vacuum evaporator. Evaporate a 1 mm x 5 mm section of graphite rod onto the cleared filter. Remove the slide to a clean, dry. covered petri dish.

h. Prepare a second petri dish as a Jaffe whisher with the wicking substrate prepared from filter or lens paper placed on top of a 6 mm thick disk of clean spongy poli arethane foam. Cut a Vinotch on the edge of the foam and filter paper. Use the Vinotch as a reservoir for adding solvent. The wicking substrate should be thin enough to fit into the petri dish without touching the lid.

i. Place carbon-coated TEM grids face up on the filter or lens paper. Label the grids by marking with a pencil on the filter paper or by putting registration marks on the petri dish lid and marking with a waterproof marker on the dish lid. In a fame hood, fill the dish with acetone until the wicking substrate is saturated. The level of acetone should be just high enough to saturate the filter paper without creating puddles.

i. Remove about a quarter section of the carbon-coated filter samples from the glass slides using a surgical knife and tweezers. Carefully place the section of the filter, carbon side down. on the appropriately labeled grid in the acetone-saturated petri dish. When all filter sections have been transferred. slowly add more solvent to the wedgeshaped trough to bring the acetone level up to the highest possible level without disturbing the sample preparations. Cover the petri dish. Elevate one side of the petri dish by placing a slide under it. This allows drops of condensed solvent vapors to form near the edge rather than in the center where they would drip onto the grid preparation.

G. TEM Method

1. Instrumentation.

a. Use an 80–120 kV TEM capable of performing electron diffraction with a fluorescent screen inscribed with calibrated gradations. If the TEM is equipped with EDXA it must either have a STEM attachment or be capable of producing a spot less than 250 nm in diameter at crossover. The microscope shall be calibrated routinely (see Unit III.].) for magnification and camera constant.

b. While not required on every microscope in the laboratory, the laboratory must have either one microscope equipped with energy dispersive X-ray analysis or access to an equivalent system on a TEM in another laboratory. This must be an Energy Dispersive X-ray Detector mounted on TEM column and associated

hardware/software to collect, save read out spectral information.
Calibration of Multi-Channel Analyzahall be checked regularly for A1 at 1.48 KeV and Cu at 8.04 KeV, as well as the manufacturer's procedures.

- 1. Standard replica grating may be used to determine magnification (e.g.. 2160 lines/mm).
- ii. Gold standard may be used to determine camera constant.
- c. Use a specimen holder with single tilt and/or double tilt capabilities.
 - 2. Procedure.
- a. Start a new Count Sheet for each sample to be analyzed. Record on count sheet: analyst's initials and date; lab sample number; client sample number microscope identification; magnification for analysis; number of predetermined grid openings to be analyzed; and grid identification. See the following Figure 4:

BILLING CODE 6560-60-M

	FIGURE 4	COUNT SHEET			
Lab Sample No Client Sample No Instrument I.D Magnification Acc. Voltage	Grid I.D (GO)		Comments		
Structure Structure	Length E		ED Observation	EDAX	
No. Type •	< 5µm ≥ 5 µ	m Chrys. A	Imph. Nonasb	. Neg. ID	EDAX

	Structure	Structure	Le	Length		ED Observation			
<u> </u>	No.	Type •	< 5µm	≥5µm	n Chrys. Amph. Nonasb. Neg. ID				
				<u> </u>			<u> </u>		
			<u> </u>	<u> </u>		·	<u> </u>		
			<u> </u>		ļ	ļ	 		
							ļ		
			ļ	<u> </u>	ļ	<u> </u>	<u> </u>		
				<u> </u>					
			1			ł			
			İ	Ť			1		
·			 				 		
				†	-		 		-
			<u> </u>	1	 		 	-	
			<u> </u>	ļ	ļ				
*			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
i	1		1	Í	1	1	ì	1	

~	Structure	Structure	L	Length		ED Observation			
00	No.	Type •	< 5µm	j ≥5μm	Chrys.	Amph.	Nonesb.	Neg. ID	EDAX
			1			<u> </u>			
			<u> </u>	 	1		 	1	
			 		+	 	 	 	1
			ļ		.				<u> </u>
			<u> </u>	<u> </u>				_1	
				_1	1	1		1) .
									1
				 	-}		 		
					<u> </u>	<u> </u>			
_				1	1				<u> </u>
			1	 	1	 	1	+	1
			<u> </u>	_ _	<u> </u>	l	1	_f	i

^{*}B = Bundle

NFD = No fibers detected N = No diffraction obtained

C = Cluster

F = Fiber

M = Matrix

b. Check that the microscope is properly aligned and calibrated according to the manufacturer'b specifications and instructions.

c. Microscope settings: 80-120 kV, grid Hasessment 250-1000X, then 15,000-20,000X screen magnification for

ผกยโysis.

d. Approximately one-half (0.5) of the predetermined sample area to be analyzed shall be performed on one sumple grid preparation and the remaining half on a second sample grid preparation.

e. Determine the suitability of the grid.

i. Individual grid openings with greater than 5 percent openings (holes) or covered with greater than 25 percent particulate matter or obviously having nonuniform loading shall not be analyzed.

ii. Examine the grid at low mugnification (<1000X) to determine its suitability for detailed study at higher

magnifications.

iil. Reject the grid if:

(1) Less than 50 percent of the grid openings covered by the replica are intact.

(2) It is doubled or folded.

(3) It is too dark because of .
incomplete dissolution of the filter.

iv. If the grid is rejected, load the next sample grid.

v. If the grid is acceptable, continue on to Step 6 if mapping is to be used: otherwise proceed to Step 7.

f. Grid Map (Optional).

i. Set the TEM to the low magnification mode.

ii. Use flat edge or finder grids for

mapping.

iii. Index the grid openings (fields) to be counted by marking the acceptable fields for one-half (0.5) of the area needed for analysis on each of the two grids to be analyzed. These may be marked just before examining each grid opening (field), if desired.

iv. Draw in any details which will allow the grid to be properly oriented if it is reloaded into the microscope and a particular field is to be reliably

identified.

g. Scan the grid.

i. Select a field to start the

examination.

ii. Choose the appropriate magnification (15,000 to 20,000X screen magnification).

iii. Scan the grid as follows.
(1) At the selected magnificati
make a series of parallel traverse
across the field. On reaching the end of
one traverse, move the image one
window and reverse the traverse.

Note.—A slight overlap should be used so as not to miss any part of the grid opening flields.

(2) Make parallel traverses until the entire grid opening (field) has been scanned.

h. Identify each structure for appearance and size.

i. Appearance and size: Any continuous grouping of particles in which an asbestos fiber within aspect ratio greater than or equal to 5:1 and a length greater than or equal to 0.5 µm i detected shall be recorded on the coun sheet. These will be designated asbest structures and will be classified as fibers, bundles, clusters, or matrices. Record as individual fibers any contiguous grouping having 0, 1, or 2 definable intersections. Groupings having more than 2 intersections are to be described as cluster or matrix. See

the following Figure 5:

FIGURE 5--COUNTING GUIDELINES USED IN DETERMINING ASBESTOS STRUCTURES

Count as 1 fiber; 1 Structure; no intersections. Count as 2 fibers if space between fibers is greater than width of 1 fiber diameter or number of intersections is equal to or less than 1. Count as 3 structures if space between fibers is greater than width of 1 fiber diameter or if the number of intersections is equal to or less than 2.

Count bundles as 1 structure; 3 or more parallel fibrils less than 1 fiber diameter separation.

Count clusters as 1 structure; fibers having greater than or equal to 3 intersections.

Count matrix as 1 structure.

DO NOT COUNT AS STRUCTUPES:

Fiber protrusion <5:1 Aspect Ratio

No fiber protusion

Fiber protrusion <0.5 micrometer

<0.5 micrometer in length
<5:1 Aspect Ratio</pre>

BELLING CODE 4500-60-C

An intersection is a non-parallel touching or crossing of libers, with the projection having an aspect ratio of 5:1 or greater. Combinations such as a matrix and cluster, matrix and bundle, or bundle and cluster are categorized by the dominant fiber quality-cluster. bundle, and matrix, respectively. Separate categories will be maintained for fibers less than 5 µm and for fibers greater than or equal to 5 μ m in length. Not required, but useful, may be to record the fiber length in 1 µm intervals. (Identify each structure morphologically and analyze it as it enters the "window".)

(1) Fiber. A structure having a minimum length greater than 0.5 µm and an aspect ratio (length to width) of 5:1 or greater and substantially parallel sides. Note the appearance of the end of the fiber, i.e., whether it is flat, rounded or dovetailed, no intersections.

(2) Bundle. A structure composed of 3 or more fibers in a parallel arrangement with each fiber closer than one fiber

diameter.

- (3) Cluster. A structure with fibers in a random arrangement such that all fibers are intermixed and no single fiber is isolated from the group; groupings must have more than 2 intersections.
- (4) Matrix. Fiber or fibers with one end free and the other end embedded in or hidden by a particulate. The exposed fiber must meet the fiber definition.

(5) NSD. Record NSD when no structures are detected in the field.

- (6) Intersection. Non-parallel touching or crossing of fibers, with the projection having an aspect ratio 5:1 or greater.
 - ii. Structure Measurement.(1) Recognize the structure that is to
- be sized.
 (2) Memorize its location in the "window" relative to the sides, inscribed square and to other particulates in the field so this exact location can be found again when scanning is resumed.

(3) Measure the structure using the scale on the screen.

- (4) Record the length category and structure type classification on the count sheet after the field number and fiber number.
- (5) Return the fiber to its original location in the window and scan the rest of the field for other fibers; if the direction of travel is not remembered, return to the right side of the field and begin the traverse again.

I. Visual identification of Electron
Diffraction (ED) patterns is required for
each asbestos structure counted which
would cause the analysis to exceed the
70 s/mm² concentration. (Generally this
means the first four fibers identified as
asbestos must exhibit an identifiable

diffraction pattern for chrysotile or amphibole.)

i. Center the structure, focus, and obtain an ED pattern. (See Microscope Instruction Manual for more detailed instructions.)

ii. From a visual examination of the ED pattern, obtained with a short camera length, classify the observed structure as belonging to one of the following classifications: chrysotile.

amphibole, or nonasbestos.

(1) Chrysotile: The chrysotile asbestos pattern has characteristic streaks on the layer lines other than the central line and some streaking also on the central line. There will be spots of normal sharpness on the central layer line and on alternate lines (2nd. 4th, etc.). The repeat distance between layer lines is 0.53 nm and the center doublet is at 0.73 nm. The pattern should display (002), (110), (130) diffraction maxima; distances and geometry should match a chrysotile pattern and be measured semiquantitatively.

(2) Amphibole Group [includes grunerite (amosite), crocidolite, anthophyllite, tremolite, and actinolite]: Amphibole asbestos fiber patterns show layer lines formed by very closely spaced dots, and the repeat distance between layer lines is also about 0.53 nm. Streaking in layer lines is occasionally present due to crystal

structure defects.

(3) Nonasbestos: Incomplete or unobtainable ED patterns, a nonasbestos EDXA, or a nonasbestos

morphology.

iii. The micrograph number of the recorded diffraction patterns must be reported to the client and maintained in the laboratory's quality assurance records. The records must also demonstrate that the identification of the pattern has been verified by a qualified individual and that the operator who made the identification is maintaining at least an 80 percent correct visual identification based on his measured patterns. In the event that examination of the pattern by the qualified individual indicates that the pattern had been misidentified visually, the client shall be contacted. If the pattern is a suspected chrysotile, take a photograph of the diffraction pattern at 0 degrees tilt. If the structure is suspected to be amphibole, the sample may have to be tilted to obtain a simple geometric array of spots.

j. Energy Dispersive X-Ray Analysis (EDXA).

i. Required of all smphiboles which would cause the analysis results to exceed the 70 s/mm² concentration. (Generally speaking, the first 4 amphiboles would require EDXA.)

- il. Can be used alone to confirm chrysotile after the 70 s/mm² concentration has been exceeded.
- iii. Can be used alone to confirm all nonasbestos.
- iv. Compare spectrum profiles with profiles obtained from asbestos standards. The closest match identifies and categorizes the structure.
- v. If the EDXA is used for confirmation, record the properly labeled spectrum on a computer disk, or if a hard copy, file with analysis data.
- vi. If the number of fibers in the nonasbestos class would cause the analysis to exceed the 70 s/mm² concentration, their identities must be confirmed by EDXA or measurement of a zone axis diffraction pattern to establish that the particles are nonasbestos.

k. Stopping Rules.

- If more than 50 asbestiform structures are counted in a particular grid opening, the analysis may be terminated.
- ii. After having counted 50 asbestiform structures in a minimum of 4 grid openings, the analysis may be terminated. The grid opening in which the 50th fiber was counted must be completed.
- iii. For blank samples, the analysis is always continued until 10 grid openings have been analyzed.
- iv. In all other samples the analysis shall be continued until an analytical sensitivity of 0.005 s/cm⁸ is reached.
- l. Recording Rules. The count sheet should contain the following information:
- i. Field (grid opening): List field number.
- ii. Record "NSD" if no structures are detected.
 - iii. Structure information.
- (1) If fibers, bundles, clusters, and/or matrices are found, list them in consecutive numerical order, starting over with each field.
- (2) Length. Record length category of asbestos fibers examined. Indicate if less than 5 μ m or greater than or equal to 5 μ m.
- (3) Structure Type. Positive identification of asbestos fibers is required by the method. At least one diffraction pattern of each fiber type from every five samples must be recorded and compared with a standaro diffraction pattern. For each asbestos fiber reported, both a morphological descriptor and an identification descriptor shall be specified on the count sheet.
- (4) Fibers classified as chrysotile must be identified by diffraction and/or X-ray analysis and recorded on the count

sheet. X-ray analysis alone can be used as sole identification only after 70s/mm² have been exceeded for a particular

sample.

(5) Fibers classified as amphiboles must be identified by X-ray analysis and electron diffraction and recorded on the count sheet. (X-ray analysis alone can be used as sole identification only after 70s/mm³ have been exceeded for a particular sample.)

(6) If a diffraction pattern was recorded on film, the micrograph number must be indicated on the count

sheet.

- (7) If an electron diffraction was attempted and an appropriate spectra is not observed, N should be recorded on the count sheet.
- (8) If an X-ray analysis is attempted but not observed. N should be recorded on the count sheet.
- (9) If an X-ray analysis spectrum is stored, the file and disk number must be recorded on the count sheet.
 - m. Classification Rules.
- i. Fiber. A structure having a minimum length greater than or equal to $0.5~\mu m$ and an aspect ratio (length to width) of 5:1 or greater and substantially parallel sides. Note the appearance of the end of

the fiber, i.e., whether it is flat, rounded or dovetailed.

ii. Bundle. A structure composed of three or more fibers in a parallel arrangement with each fiber closer than one fiber diameter.

iii. Cluster. A structure with fibers in a random arrangement such that all fibers are intermixed and no single fiber is isolated from the group. Groupings must have more than two intersections.

iv. Matrix. Fiber or fibers with one end free and the other end embedded in or hidden by a particulate. The exposed fiber must meet the fiber definition.

v. NSD. Record NSD when no structures are detected in the field.

n. After all necessary analyses of a particle structure have been completed, return the goniometer stage to 0 degrees, and return the structure to its original location by recall of the original location.

o. Continue scanning until all the structures are identified, classified and

sized in the field.

p. Select additional fields (grid openings) at low magnification; scan at a chosen magnification (15,000 to 20,000X screen magnification); and analyze until the stopping rule becomes applicable.

q. Carefully record all data as they are being collected, and check for accurs

r. After finishing with a grid, remover from the microscope, and replace it in the appropriate grid hold. Sample grids must be stored for a minimum of 1 year from the date of the analysis; the sample cassette must be retained for a minimum of 30 days by the laboratory or returned at the client's request.

H. Sample Analytical Sequence

1. Carry out visual inspection of work

site prior to air monitoring.

2. Collect a minimum of five air samples inside the work site and five samples outside the work site. The indoor and outdoor samples shall be taken during the same time period.

3. Analyze the abatement area samples according to this protocol. The analysis must meet the 0.005 s/cm⁹

analytical sensitivity.

 Remaining steps in the analytical sequence are contained in Unit IV. of this Appendix.

I. Reporting

The following information must be reported to the client. See the following Table II:

BILLING CODE 6560-60-M

TABLE II--EXAMPLE LABORATORY LETTERHEAD

Laboratory	Client		FILTE	MEDIA DATA	Analyzed	Sample	
I.D.	I.D.	Туре	Diameter, mm	Effective Area.mm 2	Pore Size, µm	Analyzed Area, mm ²	Volume, cc
					_		
							<u> </u>
					L		
			ļ				
					·		
			ļ		<u> </u>		
			<u> </u>				
			<u> </u>				
					•		

INDIVIDUAL ANALYTICAL RESULTS

Laboratory	Client ·	# Asbestos	Analytical	CONCE	NTRATION
I.D.	I.D.	Structures	Sensitivity, s/cc	Structures/mm ²	Structures/cc
<u> </u>					
	<u> </u>				
 	-				
I					
[
		<u>_</u>			
	•			·	

The analysis was carried out to the approved TEM method specified by the method.	. This laboratory is in compliance with the quality
Authorized Signa	iture

- 1. Concentration in structures per square millimeter and structures per cubic centimeter.
- 2. Analytical sensitivity used for the analysis.
- 3. Number of asbestos structures.

4. Area analyzed.

- 5. Volume of air samples (which was initially provided by client).
 - Average grid size opening.
 Number of grids analyzed.
- 8. Copy of the count sheet must be included with the report.
- 9. Signature of laboratory official to indicate that the laboratory met apecifications of the AHERA method.

10. Report form must contain official laboratory identification (e.g., letterhead).

11. Type of asbestos.

1. Calibration Methodology

Note: Appropriate implementation of the method requires a person knowledgeable in electron diffraction and mineral identification by ED and EDXA. Those inexperienced laboratories wishing to develop capabilities may acquire necessary knowledge through analysis of appropriate standards and by following detailed methods as described in References 8 and 10 of Unit III.L.

1. Equipment Calibration. In this method, calibration is required for the air-sampling equipment and the transmission electron microscope

(TEM).

a. TEM Magnification. The magnification at the fluorescent screen of the TEM must be calibrated at the grid opening magnification (if used) and also at the magnification used for fiber counting. This is performed with a cross grating replica. A logbook must be maintained, and the dates of calibration depend on the past history of the particular microscope; no frequency is specified. After any maintenance of the microscope that involved adjustment of the power supplied to the lenses or the high-voltage system or the mechanical disassembly of the electron optical column apart from filament exchange, the magnification must be recalibrated. Before the TEM calibration is performed, the analyst must ensure that the cross grating replica is placed at the same distance from the objective lens as the specimens are. For instruments that incorporate an eucentric tilting specimen stage, all speciments and the cross grating replica must be placed at the eucentric position.

 b. Determination of the TEM magnification on the fluorescent screen.

i. Define a field of view on the fluorescent screen either by markings or physical boundaries. The field of view

must be measurable or previously inscribed with a scale or concentric circles (all scales should be metric).

ii. Insert a diffraction grating replica (for example a grating containing 2.160 lines/mm) into the specimen holder and place into the microscope. Orient the replica so that the grating lines fall perpendicular to the scale on the TEM fluorescent screen. Ensure that the goniometer stage tilt is 0 degrees.

iii. Adjust microscope magnification to 10.000X or 20.000X. Measure the distance (mm) between two widely separated lines on the grating replica. Note the number of spaces between the lines. Take care to measure between the same relative positions on the lines (e.g., between left edges of lines).

Note.—The more spaces included in the measurement, the more accurate the final calculation. On most microscopes, however, the magnification is substantially constant only within the central 8-10 cm diameter region of the fluorescent screen.

iv. Calculate the true magnification (M) on the fluorescent screen:

M = XG/Y

where:

X = total distance (mm) between the designated grating lines;
 G=calibration constant of the grating

replica (lines/mm):
Y=number of grating replica spaces

counted along X.

c. Calibration of the EDXA System. Initially, the EDXA system must be calibrated by using two reference elements to calibrate the energy scale of the instrument. When this has been completed in accordance with the manufacturer's instructions, calibration in terms of the different types of asbestos can proceed. The EDXA detectors vary in both solid angle of detection and in window thickness. Therefore, at a particular accelerating voltage in use on the TEM, the count rate obtained from specific dimensions of fiber will vary both in absolute X-ray. count rate and in the relative X-ray peak heights for different elements. Only a few minerals are relevant for asbestos abatement work, and in this procedure the calibration is specified in terms of a "fingerprint" technique. The EDXA spectra must be recorded from individual fibers of the relevant minerals, and identifications are made on the basis of semiquantitative comparisons with these reference spectra.

d. Calibration of Grid Openings.
i. Measure 20 grid openings on each of
20 random 200-mesh copper grids by
placing a grid on a glass slide and
examining it under the PCM. Use a
calibrated graticule to measure the

average field diameter and use this number to calculate the field area f average grid opening. Grids are to be randomly selected from batches up to 1.000.

Note.—A grid opening is considered as one field.

- ii. The mean grid opening area must be measured for the type of specimen grids in use. This can be accomplished on the TEM at a properly calibrated low magnification or on an optical microscope at a magnification of approximately 400X by using an eyepiece fitted with a scale that has been calibrated against a stage micrometer. Optical microscopy utilizing manual or automated procedures may be used providing instrument calibration can be verified.
- e. Determination of Camera Constant and ED Pattern Analysis.
- i. The camera length of the TEM in ED operating mode must be calibrated before ED patterns on unknown samples are observed. This can be achieved by using a carbon-coated grid on which a thin film of gold has been sputtered or evaporated. A thin film of gold is evaporated on the specimen TEM grid to obtain zone-axis ED patterns superimposed with a ring pattern frothe polycrystalline gold film.

ii. In practice, it is desirable to optimize the thickness of the gold film so that only one or two sharp rings are obtained on the superimposed ED pattern. Thicker gold film would normally give multiple gold rings, but it will tend to mask weaker diffraction spots from the unknown fibrous particulates. Since the unknown dspacings of most interest in asbestos analysis are those which lie closest to the transmitted beam, mulitiple gold rings are unnecessary on zone-axis ED patterns. An average camera constant using multiple gold rings can be determined. The camera constant is onehalf the diameter, D, of the rings times the interplanar spacing, d, of the ring being measured.

K. Quality Control/Quality Assurance Procedures (Data Quality Indicators)

Monitoring the environment for airborne asbestos requires the use of sensitive sampling and analysis procedures. Because the test is sensitive, it may be influenced by a variety of factors. These include the supplies used in the sampling operation, the performance of the sampling, the preparation of the grid from the filte and the actual examination of this gi in the microscope. Each of these unit operations must produce a product of

defined quality if the analytical result is to be a reliable and meaningful test result. Accordingly, a series of control checks and reference standards is performed along with the sample analysis as indicators that the materials used are adequate and the operations are within acceptable limits. In this way, the quality of the data is defined and the results are of known value. These checks and tests also provide timely and specific warning of any problems which might develop within the sampling and analysis operations. A description of these quality control/quality assurance procedures is summarized in the following Table III:

BILLING CODE 6660-80-16

TABLE III--SUMMARY OF LABORATORY DATA QUALITY OBJECTIVES

Unit Operation	OC Check	Frequency	Conformance Expectation
Sample receiving	Review of receiving report	Each sample	95% complete
Sample custody	Review of chain-of-custody record	Each sample	95% complete
Sample preparation	Supplies and reagents	On receipt	Meet specs, or reject
	Grid opening size	20 openings/20 grids/lot of 1000 or 1 opening/sample	100%
	Special clean area monitoring	After cleaning or service	Meet specs or reclean
	Laboratory blank	1 per prep series or 10%	Meet specs, or reanalyze series
	Plasma etch blank	i per 20 samples	75%
	Multiple preps (3 per sample)	Each sample	One with cover of 15 complete grid sqs.
Sample analysis	System check	Each day	Each day
	Alignment check	Each day	Euch day
	Magnification calibration with low and high standards	Each month or after service	95%
	ED calibration by gold standard	Weckly	95% (
	EDS calibration by copper line	Daily	95%
Performance check	Laboratory blank (measure of cleanliness)	Prep 1 per series or 10% read 1 per 25 samples	Meet specs or reanalyze series
	Replicate counting (measure of precision)	1 per 100 samples	1.5 x Poisson Std. Dev.
	Duplicate analysis (measure of reproducibility)	1 per 100 samples	2 x Poisson Std. Dev.
	Known samples of typical materials (working standards)	Training and for com- parison with unknowns	100%
	Analysis of NBS SRM 1876 and/or RM 8410 (measure of accuracy and comparability)	1 per analyst per year	1.5 x Poisson Std. Dev.
	Data entry review (data validation and measure of completeness)	Each sample	95%
	Record and verify ID electron diffraction pattern of structure	1 per 5 samples	80% accuracy
Calculations and data reduction	Hand calculation of automated data reduction procedure or independent recalculation of hand-calculated data	1 per 100 samples	85%

BILLING CODE 6500-50-C

1. When the samples arrive at the laboratory, check the samples and documentation for completeness and requirements before initiating the analysis.

2. Check all laboratory reagents and supplies for acceptable asbestos

background levels.

3. Conduct all sample preparation in a clean room environment monitored by laboratory blanks and special testing after cleaning or servicing the room.

4. Prepare multiple grids of each

sample.

- 5. Provide laboratory blanks with each sample batch. Maintain a cumulative average of these results. If this average is greater than 53 f/mm a per 10 200-mesh grid openings, check the system for possible sources of contamination.
- 6. Check for recovery of asbestos from cellulose ester filters submitted to plasma asher.
- 7. Check for asbestos carryover in the plasma asher by including a blank alongside the positive control sample.

Perform a systems check on the transmission electron microscope daily.

- 9. Make periodic performance checks of magnification, electron diffraction and energy dispersive X-ray systems as set forth in Table III of Unit III.K.
- 10 Ensure qualified operator performance by evaluation of replicate counting, duplicate analysis, and standard sample comparisons as set forth in Table III of Unit III.K.
 - 11. Validate all data entries.
- 12. Recalculate a percentage of all computations and automatic data reduction steps as specified in Table III.
- 13. Record an electron diffraction pattern of one asbestos structure from every five samples that contain asbestos. Verify the identification of the pattern by measurement or comparison of the pattern with patterns collected from standards under the same conditions.

The outline of quality control procedures presented above is viewed as the minimum required to assure that quality data is produced for clearance testing of an asbestos abated area. Additional information may be gained by other control tests. Specifics on those control procedures and options available for environmental testing can be obtained by consulting References 6, 7, and 11 of Unit III.L.

L. References

For additional background information on this method the following references should be consulted.

1. "Guidelines for Controlling Asbestos-Containing Materials in Buildings." EPA 560/5-85-024, June 1985.

- 2. "Measuring Airborne Asbestos Following an Abatement Action," USEPA/ Office of Toxic Substances, EPA 600/4-85-049, 1985.
- 3. Small, John and E. Steel. Asbestos Standards: Materials and Analytical Methods. N.B.S. Special Publication 619, 1982.
- 4. Campbell, W.J., R.L. Blake, L.L. Brown, E.E. Cather, and J.J. Sjoberg. Selected Silicate Minerals and Their Asbestiform Varieties. Information Circular 8751, U.S. Bureau of Mines, 1977.
- 5. Quality Assurance Handbook for Air Pollution Measurement System. Ambient Air Methods, EPA 600/4-77-027a, USEPA, Office of Research and Development, 1977.

6. Method 2A: Direct Measurement of Gas Volume Through Pipes and Small Ducts. 40 CFR Part 60 Appendix A.

7. Burdette, G.J. Health & Safety Exec., Research & Lab. Services Div., London, "Proposed Analytical Method for Determination of Asbestos in Air."

8. Chatfield, E.J., Chatfield Tech.
Cons., Ltd., Clark, T., PEI Assoc.
"Standard Operating Procedure for
Determination of Airborne Asbestos
Fibers by Transmission Electron
Microscopy Using Polycarbonate
Membrane Filters." WERL SOP 87-1,
March 5, 1987.

9. NIOSH. Method 7402 for Asbestos Fibers, December 11, 1986 Draft.

10. Yamate, G., S.C. Agarwall, R.D. Gibbons, IIT Research Institute, "Methodology for the Measurement of Airborne Asbestos by Electron Microscopy." Draft report, USEPA Contract 68–02–3266, July 1984.

11. Guidance to the Preparation of Quality Assurance Project Plans. USEPA, Office of Toxic Substances, 1984.

IV. Mandatory !nterpretation of Transmission Electron Microscopy Results to Determine Completion of Response Actions

A. Introduction

A response action is determined to be completed by TEM when the abatement area has been cleaned and the airborne asbestos concentration inside the abatement area is no higher than concentrations at locations outside the abatement area. "Outside" means outside the abatement area, but not necessarily outside the building. EPA reasons that an asbestos removal contractor cannot be expected to clean an abatement area to an airborne asbestos concentration that is lower than the concentration of air entering the abatement area from outdoors or from other parts of the building. After

the abatement area has passed a thorough visual inspection, and before the outer containment barrier is removed, a minimum of five air samples inside the abatement area and a minimum of five air samples outside the abatement area must be collected. Hence, the response action is determined to be completed when the average airborne asbestos concentration measured inside the abatement area is not statistically different from the average airborne asbestos concentration measured outside the abatement area.

The inside and outside concentrations are compared by the Z-test, a statistical test that takes into account the variability in the measurement process. A minimum of five samples inside the abatement area and five samples outside the abatement area are required to control the false negative error rate. i.e., the probability of declaring the removal complete when, in fact, the air concentration inside the abatement area is significantly higher than outside the abatement area. Additional quality control is provided by requiring three blanks (filters through which no air has been drawn) to be analyzed to check for unusually high filter contamination that would distort the test results.

When volumes greater than or equal to 1,199 L for a 25 mm filter and 2,799 L for a 37 mm filter have been collected and the average number of asbestos structures on samples inside the abatement area is no greater than 70 s/mm * of filter, the response action may be considered complete without comparing the inside samples to the outside samples. EPA is permitting this initial screening test to save analysis costs in situations where the airborne asbestos concentration is sufficiently low so that it cannot be distinguished from the filter contamination/ background level (fibers deposited on the filter that are unrelated to the air being sampled). The screening test cannot be used when volumes of less than 1,199 L for 25 mm filter or 2,799 L for a 37 mm filter are collected because the ability to distinguish levels significantly different from filter background is reduced at low volumes.

The initial screening test is expressed in structures per square millimeter of filter because filter background levels come from sources other than the air being sampled and cannot be meaningfully expressed as a concentration per cubic centimeter of air. The value of 70 s/mm² is based on the experience of the panel of microscopists who consider one structure in 10 grid openings (each grid opening with an area of 0.0087 mm²) to

be comparable with contamination/ background levels of blank filters. The decision is based, in part, on Poisson statistics which indicate that four structures must be counted on a filter before the fiber count is statistically distinguishable from the count for one structure. As more information on the performance of the method is collected. this criterion may be modified. Since different combinations of the number and size of grid openings are permitted under the TEM protocol, the criterion is expressed in structures per square millimeter of filter to be consistent across all combinations. Four structures per 10 grid openings corresponds to approximately 70 s/mm².

B. Sample Collection and Analysis

1. A minimum of 13 samples is required: five samples collected inside the abatement area, five samples collected outside the abatement area, two field blanks, and one sealed blank.

2. Sampling and TEM analysis must be done according to either the mandatory or nonmandatory protocols in Appendix A. At least 0.057 mm² of filter must be examined on blank filters.

C. Interpretation of Results

1. The response action shall be considered complete if either:

a. Each sample collected inside the abatement area consists of at least 1,199 L of air for a 25 mm filter, or 2,799 L of air for a 37 mm filter, and the arithmetic mean of their asbestos structure concentrations per square millimeter of filter is less than or equal to 70 s/mm²;

b. The three blank samples have an arithmetic mean of the asbestos structure concentration on the blank filters that is less than or equal to 70 s/mm³ and the average airborne asbestos concentration measured inside the abatement area is not statistically higher than the average airborne asbestos concentration measured outside the abatement area as determined by the Z-test. The Z-test is carried out by calculating

$$Z = \frac{\overline{Y}_{I} - \overline{Y}_{0}}{0.8 (1/n_{I} + 1/n_{0})^{1/2}}$$

where \overline{Y}_i is the average of the natural logarithms of the inside samples and \overline{Y}_0 is the average of the natural logarithms of the outside samples, n_i is the number of inside samples and n_0 is the number of outside samples. The response action

is considered complete if Z is less than or equal to 1.65.

(Note.—When no fibers are counted, the calculated detection limit for that analysis is inserted for the concentration.)

2. If the abatement site does not satisfy either (1) or (2) above, the site must be recleaned and a new set of samples collected.

D. Sequence for Analyzing Samples

It is possible to determine completion of the response action without analyzing all samples. Also, at any point in the process, a decision may be made to terminate the analysis of existing samples, reclean the abatement site, and collect a new set of samples. The following sequence is outlined to minimize the number of analyses needed to reach a decision.

1. Analyze the inside samples.

2. If at least 1.199 L of air for a 25 mm filter or 2,799 L of air for a 37 mm filter is collected for each inside sample and the arithmetic mean concentration of structures per square millimeter of filter is less than or equal to 70 s/mm², the response action is complete and no further analysis is needed.

3. If less than 1,199 L of air for a 25 mm filter or 2,799 L of air for a 37 mm filter is collected for any of the inside samples, or the arithmetic mean concentration of structures per square millimeter of filter is greater than 70 s/mm², analyze the three blanks.

4. If the arithmetic mean concentration of structures per square millimeter on the blank filters is greater than 70 s/mm², terminate the analysis, identify and correct the source of blank contamination, and collect a new set of samples.

5. If the arithmetic mean concentration of structures per square millimeter on the blank filters is less than or equal to 70 s/mm², analyze the outside samples and perform the Z-test.

C 'f the Z-statistic is less than or equal to 1.65, the response action is complete. If the Z-statistic is greater than 1.65, reclean the abatement site and collect a new set of samples.

Appendix B to Subpart E—Work Practices and Engineering Controls for Small-Scale, Short-Duration Operations Maintenance and Repair (O&M) Activities Involving ACM

This appendix is not mandatory, in that LEAs may choose to comply with all the requirements of 40 CFR 763.121. Section 763.91(b) extends the protection provided by EPA in its 40 CFR 763.121 for worker protection during asbestos abatement projects to employees of local education agencies who perform

small-scale, short-duration operations. maintenance and repair (O&M) activities involving asbestos-containing materials and are not covered by the OSHA asbestos construction standard at 29 CFR 1926.58 or an asbestos worker protection standard adopted by a State as part of a State plan approved by OSHA under section 18 of the Occupational Safety and Health Act. Employers wishing to be exempt from the requirements of § 763.121 (e)(6) and (f)(2)(i) may instead comply with the provisions of this appendix when performing small-scale, short-duration O&M activities.

Definition of Small-Scale, Short-Duration Activities

For the purposes of this appendix, small-scale, short-duration maintenance activities are tasks such as, but not limited to:

- 1. Removal of asbestos-containing insulation on pipes.
- 2. Removal of small quantities of asbestos-containing insulation on beams or above ceilings.
- 3. Replacement of an asbestoscontaining gasket on a valve.
- 4. Installation or removal of a small section of drywall.
- 5. Installation of electrical conduits (through or proximate to asbestoscontaining materials.

Small-scale, short-duration maintenance activities can be further defined, for the purposes of this subpart, by the following considerations:

- 1. Removal of small quantities of asbestos-containin, materials (ACM) only if required in the performance of another maintenance activity not intended as asbestos abatement.
- 2. Removal of asbestos-containing thermal system insulation not to exceed amounts greater than those which can be contained in a single glove bag.
- 3. Minor repairs to damaged thermal system insulation which do not require removal.
- 4. Repairs to a piece of asbestoscontaining wallboard.
- 5. Repairs, involving encapsulation, enclosure or removal, to small amounts of friable asbestos-containing material only if required in the performance of emergency or routine maintenance activity and not intended solely as asbestos abatement. Such work may not exceed amounts greater than those which can be contained in a single prefabricated minienclosure. Such an enclosure shall conform spatially and geometrically to the localized work ar in order to perform its intended containment function.

APPENDIX B
RJ LEE GROUP QUALITY ASSURANCE PLAN

SUMMARY QUALITY ASSURANCE PLAN

USE OF THE TRANSMISSION ELECTRON MICROSCOPE FOR THE ANALYSIS OF DURABLE FIBERS

RJ Lee Group, Inc.

Headquarters 350 Hochberg Road Monroeville, Pennsylvania 15146

> Berkeley Laboratory 2424 6th Street Berkeley, California 94710

Washington, D. C. Laboratory 10366 Battleview Parkway Manassas, VA 22110

Chopra-Lee, Inc. an RJ Lee Group affiliate 1741 Baseline Road Grand Island, New York 14072

TABLE OF CONTENTS

i.	Tisle De		Page
1.	Title Pa	ige	
ii.	Table of Contents		
1.0	Introduction		
2.0	Organization and Managementi		
3.0	Personnel Qualifications		
4.0	Faciliti 4.1 4.2 4.3 4.4 4.5	es, Equipment, Consumables and Services Clean Room Monitoring Equipment Calibration Procedures and Reference Materials Consumables Plasma Etch	3 4 4
5.0	Data 5.1 5.2 5.3 5.4 5.5	Generation. Sample Receipt Sample Preparation. Analytical Procedures. Internal Quality Control Checks Audits.	5 5 6
6.0	Data	Processing	7
7.0	Data Q 7.1 7.2	Precision	8
8.0	Correct	tive Action	9
9.0	Documentation9		
0.0	References 10		

1.0 INTRODUCTION

RJ Lee Group, Inc. is a leader in the field of transmission electron microscopic analysis of durable fibers. As pioneers in this technology, RJ Lee Group has developed a strong Quality Assurance and Quality Control program—a program which far exceeds published regulatory requirements. This document is a synopsis of the Plan. Both the Plan and the relevant Standard Operating Procedures contain proprietary information, but are available for inspection at RJ Lee Group, Inc. by appointment.

The transmission electron microscope (TEM) is a powerful tool used for the analysis of a variety of inorganic materials. The high resolution imaging capability of the TEM combined with energy dispersive X-ray spectroscopy (EDS) can provide detailed morphology and elemental composition determinations of the micro-particulates. The electron diffraction mode provides information on the particle's crystal lattice structure. With these three pieces of information, the micro-particulate can be accurately identified. To achieve high quality work using the capabilities of the TEM, consistent and verifiable operational parameters must be attained. These form the basis of a quality assurance program. The QA/QC program in this document describes the criteria and the means by which the quality and accuracy of RJ Lee Group's transmission electron microscopy data is known and how it meets the requirements of its intended use.

RJ Lee Group has built a reputation of respect and trust through accurate and timely analyses. The continued efforts of all our employees are responsible for the delivery of a quality product. These efforts involve identifying the analytical need, making intelligent choices, and then following prescribed procedures. These practices provide our client with meaningful results—results which can be reproduced and are related to standards. RJ Lee Group personnel realize that reliable data are the only acceptable result for all samples submitted to the company.

2.0 ORGANIZATION AND MANAGEMENT

RJ Lee Group has an organizational structure which facilitates the production of reliable analytical results. Individuals are assigned responsibilities within their realm of technical and managerial expertise. They are then given corporate support and authority to perform the duties and functions required to produce precise and accurate data. An outline of the present managerial system is given below.

The work load of RJ Lee Group has been divided among its employees along functional lines. Direct management of sample preparation and analysis is conducted by the Manager, TEM Analysis-Headquarters, the Manager, Berkeley Laboratory, the Manager, Washington, D. C. Laboratory, or the Manager, Chopra-Lee, Inc. each of whom supervises a staff comprising a sample coordinator, a sample preparations specialist, microscopists, and data entry personnel. Staff members have suitable backgrounds and training to effectively execute their responsibilities.

From a Quality Assurance perspective, the operation is overseen by the Manager, Quality Assurance who periodically introduces blind audit samples into the daily routine, reviews the quality control sample results, and authors special reports. He also provides regular monthly reports to management on the effectiveness of the control program and recommends corrective action when this is deemed necessary. In this function, he reports administratively to the Vice President, Operations.

Figure 2.1 RJ Lee Group Project Management Organization Chart for TEM Asbestos Analysis

3.0 PERSONNEL QUALIFICATIONS

The key personnel on RJ Lee Group's roster are technical experts who have years of experience in TEM analytical methodologies. These individuals are nationally recognized for their microparticulate problem solving abilities.

In addition to a highly qualified focus of key individuals, there is an in-house training program for new employees who have not had experience in asbestos analysis. This training includes a formal introduction to all procedures and instrumentation that will be used by the new employee as well as the theoretical background of the particular analytical method. Following the first phase of instruction, the individual is given extensive on-the-job training by an experienced microscopist with practice samples. This is followed by a series of check sample analyses to establish his or her precision and accuracy. If these are found to be adequate, then the person is phased into analyzing actual samples including a variety of control samples. It is the policy of RJ Lee Group to enroll new microscopists in accredited training courses, when these courses are available.

Vitae of RJ Lee Group management personnel are available upon request.

4.0 FACILITIES, EQUIPMENT, CONSUMABLES AND SERVICES

The RJ Lee Group is headquartered in a 38,000-sq. ft. building located at 350 Hochberg Road, Monroeville, PA. This multi-purpose facility includes electron and optical microscopy laboratories, sample preparation laboratories, metallurgical laboratories, chemistry laboratories.

general office space, conference rooms, and a high bay area. The Berkeley laboratory, opened in 1987, is located at 2424 6th Street in Berkeley, CA. This 6,200-sq. ft. facility includes electron and optical microscopy laboratories. In 1989, RJ Lee Group purchased the Manassas. VA operation of Med-Tox Associates. This new addition to RJ Lee Group is located in a 6,000-sq. ft. facility at 10366 Battlefield Parkway, Manassas, VA. Chopra-Lee Inc., an RJ Lee Group affiliate, was established in 1988 to service western New York and is located at 1741 Baseline Road, Grand Island, NY in a 3,600-sq. ft. facility. All sites are adequately supplied with utilities and services.

All buildings are constructed of masonry block on a slab foundation. There is no spray-on asbestos-containing insulation in either building, or any other immediate source of potential asbestos emissions. The microscope laboratories are located on a slab foundation to ensure a stable, vibration-free base. These facilities are open to government agency or customer inspection when RJ Lee Group personnel are available for such an inspection.

4.1 Clean Room Monitoring

All sample preparation is conducted in a clean room environment monitored by open laboratory blanks. The space must be capable of sustained operation with an open blank, which on subsequent analysis has a concentration of less than 18 structures/mm² in an analyzed area of 0.067 mm² (nominally ten 200-mesh grid openings). Open blanks are analyzed bi-monthly to assure that the integrity of the environment is maintained.

In addition to room open blanks, each batch of samples is monitored with a sample preparation blank. The sample preparation blank should have a concentration of less than 18 structures/mm² in an analyzed area of 0.067 mm² (nominally ten 200-mesh grid openings). A single preparation blank is allowed a maximum contamination level of 53 structures/mm². A moving sample preparation blank average is monitored as a means for constantly checking the area and providing warning signs of possible contamination.

4.2 Equipment

Data collection and reduction, report writing, and sample tracking are performed on Apple MacintoshTM computer systems.

Four microscopes are available for use in TEM analyses at Monroeville, three are at Berkeley, two in Grand Island, and one in Washington, D. C. Most of the electron microscopes used by RJ Lee Group are state-of-the-art analytical instruments. These are equipped with energy dispersive X-ray analyzers/image processors for rapid analysis of the samples. The X-ray detectors are normally mounted with high take-off angles for optimum signal collection. A partial listing of the major TEM instrumentation follows.

- JEOL JEM 2000FX
- JEOL JEM 1200EX
- JEOL JEM 100-CX II
- Hitachi H-7000
- JEOL JEM 1200EX (Berkeley)
- Hitachi H-7000 (Berkeley)
- Hitachi HU-12A (Berkeley)
- Phillips CM-12 (Washington, D. C.)
- Phillips 300 (Chopra-Lee, Inc.)
- Hitachi H-600AB (Chopra-Lee, Inc.)

All microscopes, X-ray analyzers, and image processing systems are covered by a preventative maintenance program. RJ Lee Group Instrument Services provides most of the routine work necessary to ensure the equipment is fully operational. The equipment is also covered by maintenance agreements with the respective manufacturers. All maintenance performed on the instruments is recorded in log books for each instrument.

4.3 Calibration Procedures and Reference Materials

Calibration is the process of establishing the relationship of a measurement system with that of a known input; it allows different instruments to be correlated with each other and with specified reference standards. Calibration of an analytical TEM is necessary in three instances—magnification, camera constant, and X-ray analysis.

The magnification of the fluorescent screen of the TEM and the true (or camera) magnification must be calibrated monthly (and after servicing or repairs) at the magnification used for fiber counting (15,000 - 20,000X). The dates of calibration and the name of the person performing the calibration are recorded in a logbook.

Selected Area Electron Diffraction (SAED) calibration by gold standard measurement is performed weekly. The camera constant of the TEM must be calibrated before SAED patterns of unknown samples are observed or measured.

The EDS system is calibrated according to manufacturer's specifications. Calibration of the multichannel analyzer is checked regularly for aluminum at 1.48 Kev and copper at 8.04 Kev. The copper peak is checked daily by verifying that the position markers are in alignment with the centroid of the peak at 8.04 Kev. In addition, NIST SRM 2063 is used to calibrate the EDS system on a weekly basis. Particular attention is paid to the Mg/Fe ratio obtained with the SRM.

TEM grids are calibrated upon receipt at the laboratory using a sophisticated image analysis system.

4.4 Consumables

Laboratory reagents to be used in sample preparation procedures are verified as having acceptable asbestos background levels. Only high-purity analytical grade reagents that conform to purity standards such as ACS Grade (American Chemical Society) are to be used. The chemical supplies and materials used during sample preparation in this operation are checked for their purity, so that when a 150 ml aliquot of the reagent is filtered through a 25 mm filter, the resultant filter has a background level less than 18 s/mm².

4.5 Plasma Etch

Plasma etcher blanks are prepared and analyzed for every twenty (20) samples passing through the asher. The acceptable concentration and action level for asher blanks are the same as for laboratory blanks (<18 s/mm²).

5.0 DATA GENERATION

The quality of data generated from each sample is dependent upon the quality of sample sent to the laboratory for analysis. Sample collection QA/QC is the responsibility of the field crew. The analytical laboratory has its own unique concerns which relate to the laboratory procedures and equipment employed.

5.1 Sample Receipt

Sample receiving functions are important in qualifying the samples for analysis. Designated sample receivers handle these responsibilities. If samples are received at a time at which the usual designated person is unavailable, a trained assistant or alternate performs these duties, or the samples are held until an authorized person can preview and log them in as required. All samples received at RJ Lee Group are initially processed through a HEPA-filtered hood where each cassette is wet-wiped to prevent contamination of the laboratory. Each sample is assigned a unique laboratory sample number.

If a chain-of-custody form is included, all sample identification information recorded on the chain-of-custody form must be verified with the sample information recorded on the individual sample containers. The individual responsible for the custody of the samples must verify all information prior to signing the chain-of-custody form. The original chain-of-custody form must accompany the shipment of samples and, in like manner, the chain-of-custody form must accompany the samples when returned. The form must contain the name of the individual receiving the samples. Also, all mailing and shipping receipts are kept on file because these become part of the internal laboratory chain-of-custody record.

5.2 Sample Preparation

Cassettes containing filter samples are opened only in the sample preparation area by trained personnel. Here, portions of the exposed filters are cut to grid size. The filter sections are processed, using appropriate techniques, to transfer the materials on the filter to an electron transparent film on the grid for subsequent viewing in the electron microscope. The unused portion of the filter is returned to its cassette which acts as a convenient storage container. These cassettes are carefully archived in secure storage in the event they may be needed for additional filter pieces.

5.3 Analytical Procedures

Various analytical procedures are used in the examination of field samples by the transmission electron microscope (TEM). Choice of technique will depend upon the type of material contained in the field sample (water, bulk, or air particulates) and upon the request of the client. The client's needs are especially important for air particulates since there are two accepted analytical methods for airborne particulates (the so-called Yamate method and the AHERA protocol).

Copies of all analytical procedures can be found in the microscope area. Additional procedures are found in Section 10 of this manual.

Quality Control checks are incorporated in the procedures. Each data set is reviewed prior to reporting to ensure the data complies with the protocol (e.g. $\geq 5:1$ aspect ratio for AHERA, $\geq 3:1$ for EPA, etc).

5.4 Internal Quality Control Checks

Consistently accurate and precise analyses are the result of a series of continual internal quality control checks. Each check is designed to determine the operational capability of the instrumentation and the abilities of the microscopists charged with performing the analyses. These internal checks include the microscope system, microscope alignment, and the microscopists precision and accuracy.

Operating parameters of the transmission electron microscope are subject to change. The systems of the microscope, the vacuum, lens current, and photographic systems are to be checked daily to maintain consistent analyses. A note is made in the instrument log whenever calibration tests are performed for energy dispersive X ray and magnification checks.

Alignment and stigmation of the TEM is performed daily and with each new microscopist. It is imperative that the electron beam, various apertures, and lenses be in proper alignment to ensure proper illumination, TEM and diffraction functions. Alignment procedures are described in the operations manuals for the respective microscopes.

The primary methods of assessing the precision of the counting abilities of the individual microscopists is through the use of replicate analyses. A replicate analysis is a second (or more) analysis of the same field/fields, performed by the same microscopist as in the original analysis. The microscopist uses the same grid preparation and recounts the same grid openings as originally read. The analyst must check that all operating conditions of the microscope are the same as in the original analysis.

The conformance expectation for this replicate analysis is that the difference in count (per grid opening) from the original and the replicate analyses will fall within one and one-half of the Poisson standard deviation of the average count, or as follows:

$$A_1 - A_2 \le 1.5 \sqrt{\frac{A_1 + A_2}{2}}$$

where A_1 is the original count and A_2 the replicate count. Should difference fall outside the acceptance range, the grid is re-examined to determine the cause of the count variation.

The primary method of determining the accuracy of a microscopist is to duplicate the analysis. A duplicate analysis is performed in a similar manner to the replicate analysis, but with a different microscopist. The second microscopist is randomly selected to perform the analysis. Duplicate analyses are performed once every hundred samples analyzed per microscopist. Conformance expectations are similar to replicate analyses except the difference in counts must fall within two standard deviations, or:

$$A_1 - A_2 \le 2 \sqrt{\frac{A_1 + A_2}{2}}$$

In addition to replicate and duplicate analyses, complete repeat analyses are performed on selected samples. To characterize inter-microscope variability, selected samples are also duplicated (or

replicated) on a microscope other than the one used in the original analyses. Finally, the counting statistics of each microscopist is monitored through the use of verified counting.

New York State Environmental Laboratory Approval Program (ELAP) requires the performance of duplicate analyses once every ten samples (10%). Several other states, in which RJ Lee Group maintains certification, are also developing state-specific requirements. NIST NVLAP program also requires 10% QA work for TEM samples. RJ Lee Group meets or exceeds these requirements.

At least once a year each analyst reads an NIST SRM 1876a or RM 8410 grid. These NIST materials serve as calibration standards for the chrysotile fiber mineralogy in the TEM as well as for an analysis of the microscopists' abilities. This measure gives evidence of interlaboratory comparability and also a measure of accuracy.

Each analyst who has been approved to measure diffraction pattern from micrographs replicates the measurements of previously determined patterns. This occurs once every five samples. Conformance expectations are that the determinations of crystal identity will be identical 90% of the time.

Micrographs are an integral part of all TEM analyses. They are used for recording diffraction patterns and for permanent records of the morphology of individual particles. Because of this importance, each micrograph is sequentially numbered by the microscope. As each micrograph is taken, the number and a description of the micrograph are recorded onto special forms located at each microscope. As the micrographs are developed, they are inserted into numbered sleeves which are also labelled with the microscope designation (eg 1200-EX, or 100-CX).

5.5 Audits

Formal internal systems audits are conducted semi-annually or if significant problems arise in maintaining controlled analyses conditions. The quality assurance coordinator uses a written series of questions and check points for this purpose. He uses this list to grade the laboratory functions and report accordingly. Performance audits using multiple sample preparations from a given grid are made. Audit results will be based on the laboratory response to the reported challenge sample results.

In addition to these internal monitoring activities the laboratory participates in inter-laboratory testing programs. These programs have included methods development exchanges, split sample analyses, and a duplicate testing as part of the NIST NVLAP program. RJ Lee Group has been visited by several audit teams over the last two years. Results of these visits are available upon request.

6.0 DATA PROCESSING

The asbestos analysis protocol sets the form and manner in which the sample information is gathered and processed. Most of the dimensional and morphological data is made by direct observation and then recorded on appropriate laboratory forms. To ensure that all data entries are correctly made, only trained analysts are allowed to file or amend the data for this program. These data entries are reviewed by the analyst before he or she signs off on the data form. Additional

reviews are made as the airborne concentration calculations are performed. A final overview check for consistency is made as the customer report is produced.

Reports are generated at RJ Lee Group using a sophisticated computer database. Calculated results from the database are hand checked once per 100 samples.

7.0 DATA QUALITY ASSESSMENT

The reported results on samples analyzed by transmission electron microscopy will be of known data quality through the use of parallel control samples and regulated procedures. These controls will be used in the following manner.

7.1 Precision

The precision of a measurement is an indication of how closely a result can be reproduced on subsequent analysis. For Quality Assurance and Control, at least a portion of one (1) in 10 samples is recounted to enable a comparison of counts determined on a given sample. The Quality Control coordinator submits such samples with a request for reanalysis. He compares the results with those previously reported to assess the similarity of the results. It is expected that the counts can be reproduced within proscribed limits of the particular process. If an out-of-control situation arises, two counters will sit side by side through the recounting to resolve the discrepancies

The standard deviation is a useful measure of precision for both repeated counting of the same sample by one or more analyst or for the more complete laboratory preparation precision measure through counting of multiple grid preparations from the same sample. Standard deviations are calculated by the formula as follows:

$$s = \sqrt{\frac{\sum_{i=0}^{n} (X_i - \mu)^2}{n-1}}$$

Where

s = standard deviation

 X_i = individual measurement result

n = number of measurements

 $\mu = mean of X_i$

The range between two measurements can also be used to determine the standard deviation of a process. This is given by:

$$s = \frac{X_1 - X_2}{1.128}$$

The standard deviation of a process is frequently expressed as the coefficient of variation. The CV is simply the relative standard deviation, or the ratio of the standard deviation and the mean.

Summar: Quality Assurance Plan: Transmission Electron Microscopy

7.2 Completeness

It is important that the records and files of the work be substantially complete. Efforts are made to review the sampling documentation received. In a like manner all laboratory information and tiles are reviewed by the analyst and the supervisor for correctness and completeness which should be no less than 95% or corrective actions will be taken. This means that when lesser degrees of completion does occur that the information will be properly noted and due effort will be made to reconcile the situation.

Completeness is determined by:

Completeness,
$$\% = 100 \frac{D_r}{D_e}$$

where D_r is the quantity of valid data obtained and D_e is the quantity of data scheduled to be collected.

8.0 CORRECTIVE ACTION

All instrumentation used in this QA/QC testing program has criteria specified as acceptable operating parameters. Whenever there is a problem in meeting these criteria, sample analysis is suspended until the unit is aligned or repaired to provide a stabilized condition within the expectations. Major service to the units is made only by authorized individuals. Supervisory personnel check the overall condition of the unit before accepting it back for routine analysis.

Performance checks are made as stated with laboratory blanks, replicate analyses, and known check materials. Should any of these control samples reveal discrepancies, the processing of routine samples is suspended until the cause for the problem is identified and corrected. The identification of the cause may entail the analyses of specially prepared samples such as blanks to retest each of the reagents in the process or evaluate the various work stations in the lab separately.

In spite of the best intentions, clients will have problems/complaints concerning the data, timeliness, documentation, etc. of their samples. Generally, most complaints can and should be handled by the appropriate division Manager. Billing complaints will be handled by the Accounting Department. For those complaints which are not directly either group's responsibility, the Manager, Quality Control will intercede and resolve the problem.

9.0 DOCUMENTATION

The AHERA test procedures in the Federal Register of October 30, 1987 describe the required data documentation which is used for many TEM analyses. RJ Lee Group conforms with all these requirements.

10.0 REFERENCES

- 1. "Interim Method for Determining Asbestos in Water", Anderson and Long, EPA 600/4-80-005, January 1980.
- 2. "Interim Method for the Determination of Asbestos in Bulk Insulation Samples", EPA 600/M4-82-020, 1982.
- 3. "Guidance for Controlling Asbestos-Containing Materials in Building", Appendix M, EPA 560/5-85-024, June, 1985.
- 4. "Methodology for the Measurement of Airborne Asbestos by Electron Microscopy", Yamate, Agarwa, and Gibbons, EPA Contract 68-02-3266, 1984.
- 5. "Analytical Method for Determination of Asbestos Fibers in Water," Chatfield and Dillon, EPA Contract 68-03-2717, 1981.
- 6. Federal Register, Part III, 40 CFR Part 763, "Asbestos Containing Materials in Schools; Final Rules and Notice", October 30, 1987.
- 7. "Ambient Atmospheres Determination of Asbestos Fibers", Chatfield, Draft Proposal, ISO/TC 146/SC 3/WG1.

APPENDIX C FLOOR PLANS, SAMPLING DATA SHEETS, CHAIN OF CUSTODIES, AND ANALYTICAL RESULTS

The Materials Characterization Specialists

LABORATORY REPORT *************

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

JANUARY 30, 1991

SAMPLE RECEIPT DATE:

JANUARY 28, 1991

RJ LEE GRP. JOB NUMBER: ATW-101056

CLIENT JOB NUMBER:

61,5510,3,1

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ESSENTIAL NOTES AND DISCLAIMERS

- 1. THE ASBESTOS MINERALS SOUGHT IN EACH SAMPLE INCLUDE CHRYSOTILE (CLINOCHRYSOTILE, ORTHOCHRYSOTILE AND PARACHRYSOTILE), AMOSITE (GRUNERITE AND CUMMINGTONITE), CROCIDOLITE (RIEBECKITE), ANTHOPHYLLITE (ANTHOPHYLLITE AND MAGNESIO-ANTHOPHYLLITE) TREMOLITE AND ACTINOLITE. NAMES GIVEN IN PARENTHESES INDICATE THE PROPER MINERALOGICAL TERM FOR ASBESTOS VARIETIES KNOWN BY AN IMPRECISE NAME. DEFINITIONS USED FOR THE AMPHIBOLES ARE THOSE OF THE INTERNATIONAL MINERALOGICAL ASSOCIATION (1978)
- 2. ASBESTOS STRUCTURES INCLUDED IN THE STRUCTURE CONCENTRATION AND STRUCTURE DENSITY INCLUDE FIBERS, BUNDLES, CLUSTERS AND MATRICES. SEE DEFINITIONS IN EPA'S AHERA TEM METHOD.
- 3. THE NUMBER OF STRUCTURES USED IN CALCULATING DETECTION LIMITS MAY VARY DEPENDING UPON THE CLEANLINESS OF FIELD AND SEALED BLANKS AND THE CLEANLINESS OF LABORATORY BLANKS CONTEMPORANEOUS WITH THESE SAMPLES.
- 4. AIRBORNE MASS CONCENTRATIONS OF ASBESTOS IN NANOGRAMS PER CUBIC METER CAN BE PROVIDED AS NEEDED FOR THESE SAMPLES. THIS STREAMLINED REPORT ONLY INCLUDES STRUCTURE CONCENTRATIONS.
- 5. SAMPLES WITH A DILUTION FACTOR OTHER THAN 1 HAVE BEEN SUBJECTED TO LOW-TEMPERATURE PLASMA ASHING AND AQUEOUS REDEPOS "ION DUE TO PARTICULATE OVERLOAD ON THE ORIGINAL FILTER SURFACE, COMPLEX ASBESTOS STRUCTURES CONSISTING OF MULTIPLE FIBER. MAY HAVE DISAGGREGATED DURING SAMPLE PREPARATION; CONSEQUENTLY ASBESTOS STRUCTURE COUNTS MAY BE BIASED HIGH.
- 6. TEM COEFFICIENTS OF VARIANCE RANGE FROM APPROXIMATELY 0.5 AT LOW FIBER CONCENTRATIONS TO 0.1 AT HIGH FIBER CONCENTRATIONS.
- 7. THIS TEST REPORT ONLY RELATES TO THE ITEMS TESTED.
- 8. THIS REPORT IS NOT VALID UNLESS IT BEARS THE NAME OF A NVLAP-APPROVED SIGNATORY.
- 9. ANY REPRODUCTION OF THIS DOCUMENT MUST INCLUDE THE ENTIRE DOCUMENT IN ORDER FOR THE REPORT TO BE VALID.
- 10. NEITHER THE NYLAP ACCREDITATION OF THIS LABORATORY NOR THIS REPORT CAN BE USED TO CLAIM PRODUCT ENDORSEMENT BY NVLAP OR ANY AGENCY OF THE U.S. GOVERNMENT.

PAGE 5 OF 5

USARC ADDISON ADDISON, ILLINOIS

ADDISON FHU FLOOR PLAN

Wath IL -	1.28.91	Part / Pre Cal	Post al	·····	
2466	9.50	9.30 /	11.79	2 10.55	_ .
2042	9.77	9.75	9.60	<u>/</u>	
2043	9765	11.15 310.46	9.45	> 10.30	
2462		9.55 > 9.84	10,02 0	<u>/</u>	
1667	9.40	9.55	9.68		· —
1681	10.25	10.15	10.33	/ <u></u>	, -
	***	· · · · · · · · · · · · · · · · · · ·			
Addison 1-2	9-9/		- Encal library	ţ)	
PuneNo	Pre-cal	Post Par Cal	Ental put	Post Co	/
2466	9.798	9.984		9.23	۷
2042	9.76.2	8.7 >7.23	<u>9.953</u>	10.80	ڍ
2043	9.75	8.63 -7.17	9.94	10.61	>
2442	10.03	8.815 29.42	10.04	10.67	,
1667	7,54	9.80		2.92	·
1481	_ 10.14	10.8		7. 4	<u>.</u>
		·			
Addison 1	-30-91	<u> </u>			
PumpNo	Pre-Cul	Cost.Cal	 -		
2464	9.21	9.11.			
2042	9.89	9.60	• • • • • • • • • • • • • • • • • • • •		
2043	7.523	9.6a -			
2462	2.817	9.67			
1667	9.81	9.93			
_ 1681	10.31	10.38		. -	

)	_ ₹
	3
	30
	元
	U
Ŋ	\geq
1	7

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJEC	PROJECT NAME	<u></u>				ď	PARAMETERS	≥ ()	INDUSTRIAL (Y
61.5510,003.01	18n	USBIHAMA	3M.	-		1 50				2
SAMPLERS: (Signeture)		10					\			
K. Kence kost	T		Vac V		R. Koyczkiuski IA Christi	NO3	<i>\ \ \</i>	\ \ \ \	R	REMARKS
SAMPLE	DATE	TIME	COMP.	BARD	STATION LOCATION	100 / 20 / S			Plow Pater	Powlete Volume-
A130-13	16-08-1	- 80.6 - 87.6			Satherem Fyr				9.31 lon	1436.76
		45.08 -			Living 1:00m - Side				7.8.6	
130-15		9:c8- 11:44			Front bedroom				9.803	1532.39
A130-14		7:08-			Liona room - back				9.83	1531.92
A130-17		4:63-			Outside - front				7.80	1597.40
1130-18		7:00-			Butside- front				10.30	16 78.90
Black	\									
									•	
					ŀ				⊢	
Relinquished by: (Signature)	nature)	7.3	Date /	Time	Delores Apartes	Relinquished by: (Signature)	Signature)	Date / Time	e Received by: (Signature)	(Signature)
(Printada					Printed 1-31-91 8:45AM	(Printed)			(Printed)	
Relinquished by: (Signature)	neture)		Date /	/ Time	Received for La	Date / Time	Remarks - USR	Remarks - USR form that reports 475 S	ports 4 v	25/20
(Printed)					(Printed)		7	7		
		$\frac{1}{2}$								

	Ü	
	€	
•		
	20	
	•	
	-	
N		

CHAIN OF CUSTODY RECORD

	02000								IN	INDUSTRIAL	2
7.1 < 5/0.003 m		INCATUAME	3MA			/	PAF	PAHAMETERS	HYGIE	HYGIENE SAMPLE	z
11.00/0/cm	-	11111				Sb3			//		
SAMPLERS: (Signature)	\\\ !: !	91.	31. 11		(Printed)						
1 Puretwell	1		2/2		Thrycakowski / Olmeth	7	\ \ \	\ \ \	RE	REMARKS	
NUMBER	/oate	TIME	COMP.	. CHAB	STATION LOCATION	1000 SO SO SO SO SO SO SO SO SO SO SO SO SO			Vlaw late : Volume	Volume	
10.1614	10.861	- 05:18 13:40		# 1	#403 Living room				9.998 pm 1679.664	1679.664	
	1.29.91								9.33	1550.64	
0.99-03	11-96-1	8:50- 11:41			Anth goern				9.19	1553.11	
H197-04	16-66-1	8:53-		-	Front Deducoin				9.43	1582.56	T
A121.05		8:51-			Outside fort				9.54	1640.88	
70-6010	16.801	8:51-			Outsule front				10.14	1744.08	
				17.4	#410 Living recoin				9.61	1749,02	
	1060-1	12:16-			Master beilroun				85.01	18 78.78	
A127-09	16.601	12:23- 3:16			Bathroom				86.01	1778.44	
01.1514		12:20-			Back bedroom				10.36	1864.80	
A129-11	_	12:12-			Outside front				7.80	8.0081	
A139.13	b-le-/	3:18			Outside front				9.85	18 32.10	
Relinquished by: (Signature	nature		Date /	Time		Relinquished by: (Signature)	ignature)	Date / Time	Received by: (Signature)	Signature /	
of the chira	<u>ښ</u>	*>	16.081		Delacer Garden						
(Printed)					(Printed) 1-31-91 8:45471-1 ((Printed)	i		(Printed)		
Relinquished by: (Signature)	gnature)		Date / Time	Time	Received for Laboratory by: (Signature)	Date / Time	Remarks - 18/2	Remarks - 1 Blunk enclased	ימ ['] ,	\	
(Printed)					(Printed)		- use fo	nor that p	eperts 4	1351	

RJ Lee Group North and

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC. 6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6743 ATTN: PAM HILLIS REPORT DATE:

FEBRUARY 2, 1991

SAMPLE RECEIPT DATE:

JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATV-101068

CLIENT JOB NUMBER:

61,5510,003,1

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA LEVEL II (YAMATE, ET AL., 1984)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00662 SQ MM DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) : TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CM12

ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS 1

ASBESTOS STRUCTURES DETECTED WITH ASPECT RATIO > 3 : 1, ASBESTOS ASBESTOS TYPE(S) OF STRUCTURE STRUCTURE ASBESTOS ANALYTICAL GRID DILLI-ARFA SORTED BY LENGTH STRUCTURE SENSITIVITY OPENINGS TION ANALYZED DENSITY CONCENTRATION BT FEE < 5.0 UM >= 5.0 UM TOTAL (STR/MM^2) DETECTED (STRUCT/CC) SCANNED FACTOR (SQ MM) (STR/CC) SAMPLE # 0.004 NONE DETECTED 0.0044 8 1.0 0.0530 0 0 0 < 18.88 < 2066163 < 18.88 < 0.004 NONE DETECTED 0.0043 1.0 0.0530 0 ٥ 0 2066164 NONE DETECTED 0.0045 7 1.0 0.0463 0 < 21.58 < 0.005 2066165 0 8 1.0 0.0530 0 < 18.88 < 0.004 NONE DETECTED 0 0.0042 0 2066166 1.0 0.0000 0 NOT ANAL. NOT ANALYZED 0 0 NOT ANAL. 2066167 NOT ANALYZED 0 1.0 0.0000 NOT ANAL. NOT ANALYZED NOT ANALYZED 0 0 0 Λ NOT ANAL. 2066168 8 1.0 0.0530 0 0 ٥ 18.88 0.004 NONE DETECTED 2066169 0.0045 0.0043 8 1.0 0.0530 0 0 0 18.88 0.004 NONE DETECTED 2066170 0.0045 8 1.0 0.0530 0 0 Λ 18.88 0.005 NONE DETECTED 2066171 0.0041 8 1.0 0.0530 1 ٥ 1 18.88 0.004 CHRYSOTILE · 2066172 NOT ANALYZED 0 1.0 0.0000 0 Ω n NOT ANAL. NOT ANAL. NOT ANALYZED 2066173 0 1.0 0.0000 0 0 NOT ANAL. NOT ANAL. NOT ANALYZED 2066174 NOT ANALYZED 0 NOT APPLICABLE 10 1.0 0.0662 0 0 NOT APPL. NONE DETECTED 2066175 0.004 1.0 0.0530 0 Ö 0 18.88 NONE DETECTED 0.0043 8 2066176 < 18.88 < 0.005 NONE DETECTED 1.0 0.0530 0 Ď 2066177 0.0047 8 0 0.0047 8 1.0 0.0530 0 0 0 < 18.88 < 0.005 NONE DETECTED m 2066178 Ç 2066179 0.0046 8 1.0 0.0530 0 0 0 18.88 < 0.005 NONE DETECTED ₄ 2066180 0 NOT ANAL. NOT ANALYZED 0 1.0 0.0000 0 0 NOT ANAL. NOT ANALYZED 0.0000 0 0 NOT ANAL. NOT ANAL. NOT ANALYZED NOT ANALYZED a 1.0 0 2066181 ō ō 18.88 0.004 NONE DETECTED 1.0 0.0530 2066182 0.0042 8 ō < n n < 21.58 < 0.004 NONE DETECTED O 2066183 0.0044 7 1.0 0.0463 n

Worth, IL

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6743

ATTN: PAM HILLIS

************* REPORT DATE:

FEBRUARY 2, 1991

SAMPLE RECEIPT DATE:

JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATW-101068

CLIENT JOB NUMBER: 61.5510.003.1

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA LEVEL II (YAMATE, ET AL., 1984)

SAMPLE INFORMATION

	RJ LEE SAMPLE #	CLIENT SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DES	SCRIPTION	AIR VOLUME (LITERS)	CASSETTE DIAMETER (MM)	COWL LENGTH (MM)	CONDUCT I VE COWL
	2066163	W-128-01	INSIDE, #6, LIVING ROOM		1643.5	25	50	YES
	2066164	W-128-02	INSIDE, #6, BACK CORNER BEDROOM		1709.75	25	50	YES
	2066165	W-128-03	INSIDE, #6, MASTER BEDROOM	lo	1830.5	25	50	YES
	2066166	W-128-04	INSIDE, #6, BATHROOM	¥	1722	25	50	YES
	2066167	W-128-05	OUTSIDE, #6, FRONT		1824.5	25	50	YES
	2066168	W-128-06	OUTSIDE, #6, FRONT		1708.8	25	50	YES
Ĩ.	2066169	W-128-07	INSIDE, #4, LIVING ROOM		1618.5	25	50	YES
}	2066170	W-128-08	INSIDE, #4, REAR CENTRAL BEDROOM		1709.8	25	50	YES
2	2066171	W-128-09	INSIDE, #4, MASTER BEDROOM	×	1004.4	25	50	YES
-	2066172	W-128-10	INSIDE, #4, BATHROOM	*	1772.4	25	50	YES
3	2066173	W-128-11	OUTSIDE, #4, FRONT	•	1674.75	25	50	YES
$\overline{\mathbf{x}}$	2066174	W-128-12	OUTSIDE, #4, FRONT		1575. <i>7</i> 5	25	50	YES
	2066175	BLANK	BLANK		0	25	50	YES
	2066176	A-129-01	INSIDE, #403, LIVING ROOM		1679.664	25	50	YES
نمسد	2066177	A-129-02	INSIDE, #403, MASTER BEDROOM	_	1550.64	25	50	YES
-	2066178	A-129-03	INSIDE, #403, BATHROOM	ر ^ب س	1553.11	25	50	YES
	2066179	A-129-04	INSIDE, #403, FRONT BEDROOM	* **	1582.56	25	50	YES
	2066180	A-129-05	OUTSIDE, #403, FRONT	-	1640.88	25	50	YES
 •••	2066181	A-129-06	OUTSIDE, #403, FRONT		1744.08	25	50	YES
2	2066182	A-129-07	INSIDE, #410, LIVING ROOM	<i></i>	1749.02	52	50	YES
	2066183	A-129-08	INSIDE, #410, MASTER BEDROOM		1878.78	25	50	YES

SAMPLE PREPARER

AED DHG R8G, KEI TEM OPERATOR-ANALYST

THOMAS DAGENHART, M.S.

LABORATORY MANAGER

NVLAP SIGNATORY

NYLAP ACCREDITATION NUMBER 1208-3 PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 5

RJ Lee Group, Inc • 10366 Bartleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC. 6850 VERSAR CENTER SPRINGFIELD, VIRGINIA 22151

2066193 NOT ANALYZED

NOT ANALYZED

NOT APPLICABLE

2066194

2066195

703-642-6743 ATTN: PAM HILLIS REPORT DATE:

FEBRUARY 2, 1991

SAMPLE RECEIPT DATE: JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATW-101068

CLIENT JOB NUMBER: 61.5510.003.1

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA LEVEL II (YAMATE, ET AL., 1984)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00662 SQ MM

TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CM12

NOT ANAL. NOT ANALYZED

NOT ANAL. NOT ANALYZED

NOT APPL. NONE DETECTED

DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS): 1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

NOT ANAL.

NOT ANAL.

< 15.11

						ASBESTOS	STRUCTURES	DETECTED			
						WITH ASP	ECT RATIO >	3:1,	ASBESTOS	ASBESTOS	TYPE(S) OF
		ANALYTICAL	GRID	DILU-	AREA	SOR	TED BY LENG	тн	STRUCTURE	STRUCTURE	ASBESTOS
	RJ LEE	SENSITIVITY	OPENINGS	TION	ANALYZED				DENSITY	CONCENTRATIO	N STRUCTURE
	SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	< 5.0 UM	>= 5.0 UM	TOTAL	(STR/MM^2)	(STR/CC)	DETECTED
	•••••										
	2066184	0.0041	8	1.0	0.0530	0	0	0	< 18.88	< 0.004	NONE DETECTED
	2066185	0.0045	7	1.0	0.0463	0	0	0	< 21.58	< 0.004	NONE DETECTED
,	2066186	NOT ANALYZED	0	1.0	0.0000	0	0	٥	NOT ANAL.	NOT ANAL.	NOT ANALYZED
	2066187	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
	2066188	NOT APPLICABLE	10	1.0	0.0662	0	0_	0	< 15.11	NOT APPL.	NONE DETECTED
_	2066189	0.0045	9	1.0	0.0596	G	0	0	< 16.78	< 0.004	NONE DETECTED
	2066190	0.0042	9	1.0	0.0596	0	0	0	< 16.78	< 0.004	NONE DETECTED
	2066191	0.0042	9	1.0	0.0596	0	0	٥	< 16.78	< 0.004	NONE DETECTED
•	2066192	0.0042	9	1.0	0.0596	1	0	1	16.78	0.004	CHRYSOTILE

0

0

0

0

0

0

٥

1.0 0.0000

1.0 0.0000

1.0 0.0662

0

0

10

The Materials Characterization Specialists

LABORATORY REPORT *********

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6743

ATTN: PAM HILLIS

REPORT DATE:

FEBRUARY 2, 1991

SAMPLE RECEIPT DATE: JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATW-101068 CLIENT JOB NUMBER:

61.5510.003.1

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA LEVEL II (YAMATE, ET AL., 1984)

SAMPLE INFORMATION

	RJ LEE SAMPLE #	CLIENT SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	AIR VOLUME (LITERS)	CASSETTE DIAMETER (MM)	COML LENGTH (MM)	CONDUCTIVE
	20//40/						
_	2066184	A-129-09	INSIDE, #410, BATHROOM	1778.44	25	50	YES
0	2066185	A-129-10	INSIDE, #410, BACK BEDROOM	1864.8	25	50	YES
-	2066186	A-129-11	OUTSIDE, #410, FRONT	1822.8	25	50	YES
A	2066187	A-129-12	OUTSIDE, #410, FRONT	1832.1	25	50	YES
	2066188	BLANK	BLANK_	a	25	50	YES
	2066189	A-130-13	INSIDE, BATHROOM	1436.76	25	50	YES
	2066190	A-130-14	INSIDE, LIVING ROOM SIDE	1542.84	25	50	YES
ব	2066191	A-130-15	INSIDE, FRONT BEDROOM	1532.39	25	50	YES
ō	2066192	A-130-16	INSIDE, LIVING ROOM - BACK	1531.92	25	50	YES
÷	2066193	A-130-17	OUTSIDE, FRONT	1597.4	25	50	YES
=	2066194	A-130-18	OUTSIDE, FRONT	1678.9	25	50	YES
_	2066195	BLANK	BLANK	٥	25	50	YES

TEG, Jem, TWS, TL , DRM AED, DHG, RBG, KEI TEM OPERATOR-ANALYST

SAMPLE PREPARER

THOMAS DAGENHART, M.S.

DATE

LABORATORY MANAGER NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 2 OF 5

RJ Lee Group, Inc. 10366 Battleview Parkway, Manassas, VA 22110 . 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

WORTH WORTH, ILLINOIS

PROECT # 61.5510.007.9 DATE: 2/25/91

	Wath, IL - 1.28-91
	Pump No Cural Post/Pre Cal Post Cal
	2466 9.50 9.30 11.79 > 10.55
	2042 9.77 9.75 9.60
	2043 9765 11.15 > 10.46 9.45 > 10.30
	2462 10.12 9.55 > 9.84 10.02
	1667 9.60 9.55 9.68
	1681 10.25 10.15 / 10.33 /
	Addison 1-29-91
	Regardo Presal Post Par Cal Portal Cost Cal
	2466 9.718 9.9842 9.23 > 9.61
	2042 9.762 8.7 >7.23 9.953 10.80 >10.80
	2043 9.75 8.63 - 7.17 9.94 10.61 20.00
	2462 10.03 8.815 29.42 10.04 10.67 310.30
	1667 7.54 9.80 - 2.92
	1681 10.14 10.8 - 9.4 >9.85
	Addison 1-30-91
	Pump No Pre-Cal Post-Cal
	2464 9.31 9.11
ļ	2042 9.89 9.60
	2043 9.62
	2462 9.817 9.67 -
	1667 9.81 9.93
	1681 10.31 10.38
	1. okay-within ± 5% of collibrated value - if not use average > for collibration of volume
	What a dudum

SAMPLERS: (Signanus) SAMPLERS: (Signanus) Aute Ledo SAMPLE SAMPLE SAMPLE OATE	いまくと こういろうにん	ш				PAR	PARAMETERS		<u></u>	γ_
	USATHAMA	AME			1 2		/ / /	-	HYGIENE SAMPLE	z
A MAYEZ KONSKI HELD SAMPLE DATE	-		e)	(Printed)	JANI JANI	\ \ \	\ \ \	\		
	Olle	12 m	Y	: Korcelanski M. Ulmetti		\		\	REMARKS	
	TIME	COMP.	BARD	STATION LOCATION	(50 50)			Plan Rube	Valume	
11.801 10-80101	8:55-		#6	6 - Living Room				7.50		- T
۲				৷ ব				9.77	1709.75	
11.28.03 [1.86.1]	8:55 11:50			Master Sectoury				10.46	1830.50	
/				Bethroom				9.84	1733.00	
				Outside - front				10.35	05.44.81	
	8:54			Outside - Prant				9.60	1768.80	
	35.5		F#					9.75	16/8,50	T
^	3:30							10.30	1709.80	
17-801 10-861C1	13:34 3:03			_				9.55	1604.40	
	10:34- 3:23		_	Bathroom				10.55	1773.40	
16.861 11.86101	10:36 - 3:01			Putsule - front				10,15 .	1674.75	I
18-861 B1-86161	3.36			Outside - front				9.55	1575,75	
Relinquished by: (Signature)		Date /	Time	Received by: (Signature)	Relinquished by: (Signature)	ature)	Date / Time		Received by: (Signature)	
R. Huceknish	7	1.20-21		er Granker					,	
(Printpd)		:		4. 4.	(Printed)			(Printed)		
Relinquished by: (Signature)		Date /	' Тіте	Received for Laboratory by: (Signature)	Date / Time Re	Remarks - / B/an	Remarks - 1 Blank enclosed	, Y	\	
(Printed)				(Printed)	b	use for	- use form that reports 4 x 3 5	reports 4	r3 3 m	

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC. 6850 VERSAR CENTER SPRINGFIELD, VIRGINIA 22151

703-642-6743 ATTN: PAM HILLIS REPORT DATE:

FEBRUARY 2, 1991

SAMPLE RECEIPT DATE:

JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATW-101068

CLIENT JOB NUMBER:

61.5510.003.1

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA LEVEL II (YAMATE, ET AL., 1984)

SAMPLE INFORMATION

				AIR	CASSETTE	COML	
	RJ LEE	CLIENT		VOLUME	DIAMETER	LENGTH	CONDUCTIVE
	SAMPLE #	SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	COMP
	2066163	w-128-01	INSIDE, #6, LIVING ROOM	1643.5	25	50	YES
	2066164	w-128-02	INSIDE, #6, BACK CORNER BEDROOM	1709.75	25	50	YES
	2066165	w-128-03	INSIDE, #6, MASTER BEDROOM	1830.5	25	50	YES
	2066166	W-128-04	INSIDE, #6, BATHROOM	1722	25	50	YES
	2066167	W-128-05	OUTSIDE, #6, FRONT	1824.5	25	50	YES
	2066168	w-128-06	OUTSIDE, #6, FRONT	1708.8	25	50	YES
. سر	2066169	W-128-07	INSIDE, #4, LIVING ROOM	1618.5	25	50	YES
H	2066170	₩-128-08	INSIDE, #4, REAR CENTRAL BEDROOM	1709.8	25	50	YES
2	2066171	w-128-09	INSIDE, #4, MASTER BEDROOM	1604.4	25	50	YES
+	2066172	W-128-10	INSIDE, #4, BATHROOM	1772.4	25	50	YES
C.	2066173	W-128-11	OUTSIDE, #4, FRONT	1674 <i>.7</i> 5	25	50	YES
Z	2066174	w-128-12	OUTSIDE, #4, FRONT	1575. <i>7</i> 5	25	50	YES
	2066175	BLANK	BLANK	0	25	50	YES
_	2066176	A-129-01	INSIDE, #403, LIVING ROOM	1679.664	25	50	YES
نسد	2066177	A-129-02	INSIDE, #403, MASTER BEDROOM	1550.64	25	50	YES
<u>۔</u>	2066178	A-129-03	INSIDE, #403, BATHROOM	1553.11	25	50	YES
	2066179	A-129-04	INSIDE, #403, FRONT BEDROOM	1582.56	25	50	YES
,	2066180	A-129-05	OUTSIDE, #403, FRONT	1640.88	25	50	YES
مسد	2066181	A-129-06	OUTSIDE, #403, FRONT	1744.08	25	5ŭ	YES
_ ~	2066182	A-129-07	INSIDE, #410, LIVING ROOM	1749.02	25	50	AEZ
_	2066183	A-129-08	INSIDE, #410, MASTER BEDROOM	1878.78	25	50	YES

SAMPLE PREPARER

TEG, JPM, TWS, TL, DRM PED, DHG, R8G, KEI TEM OPERATOR-ANALYST

THOMAS DAGENHART. M.S.

LABORATORY MANAGER

NVLAP SIGNATORY

HYLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 5

RJ Lee Group, Inc • 10366 Battleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

RJ Lee Group North End

The Materials Characterization Specialists

LABORATORY REPORT ************

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6743

ATTN: PAM HILLIS

REPORT DATE:

FEBRUARY 2, 1991

SAMPLE RECEIPT DATE:

JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATW-101068

CLIENT JOB NUMBER: 61.5510.003.1

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA LEVEL II (YAMATE, ET AL., 1984)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00662 SQ MM

TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CM12

DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) :

1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

ASBESTOS STRUCTURES DETECTED

						WITH ASP	ECT RATIO >	3:1,	ASBESTOS	ASBESTOS	TYPE(S) OF
		ANALYTICAL	GRID	DILU-	AREA	SOR	TED BY LENGT	Н	STRUCTURE	STRUCTURE	ASBESTOS
	RJ LEE	SENSITIVITY	OPENINGS	TION	ANALYZED				DENSITY	CONCENTRATIO	N STRUCTURE
	SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	•	< 5.0 UM	>= 5.0 UM	TOTAL	(STR/MM^2)	(STR/CC)	DETECTED
	2066163	0.0044	8	1.0		0	0	0	< 18.88	< 0.004	NONE DETECTED
	2066164	0.0043	8	1.0	0.0530	0	0	0	< 18.88	< 0.004	NONE DETECTED
V	2066165	0.0045	7	1.0	0.0463	0	0	0	< 21.58	< 0.005	NONE DETECTED
4	2066166	0.0042	8	1.0	0.0530	0	0	0	< 18.88	< 0.004	NONE DETECTED
ع	2066167	NOT ANALYZED	0	1.0	0.0000	0	O	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
<u> </u>	2066168	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
	2066169	0.0045	8	1.0	0.0530	0	0	0	< 18.88	< 0.004	NONE DETECTED
0	2066170	0.0043	8	1.0	0.0530	٥	0	0	< 18.88	< 0.004	NONE DETECTED
3	2066171	0.0045	8	1.0	0.0530	0	0	0	< 18.88	< 0.005	NONE DETECTED
4	2066172	0.0041	8	1.0	0.0530	1	0	1	18.88	0.004	CHRYSOTILE
#	2066173	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
. •	2066174	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
	2066175	NOT APPLICABLE	10	1.0	0.0662	0	0	0	< 15.11	NOT APPL.	NONE DETECTED
	2066176	0.0043	8	1.0	0.0530	0	0	0	< 18.88	< 0.004	NONE DETECTED
	2066177	0.0047	8	1.0	0.0530	0	0	0	< 18.88	< 0.005	NONE DETECTED
. (1)	2066178	0.0047	8	1.0	0.0530	0	0	0	< 18.88	< 0.005	NONE DETECTED
0 0	2066179	0.0046	8	1.0	0.0530	0	0	0	< 18.88	< 0.005	NONE DETECTED
ν 41 Ο 4	2011100	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
· • •	2066181	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
bb	2066182	0.0042	8	1.0	0.0530	0	0	0	< 18.88	< 0.004	NONE DETECTED
žn	2066183	0.0044	7	1.0	0.0463	0	0	0	< 21.58	< 0.004	NONE DETECTED

PAGE 3 OF 5

RJ Lee Group, Inc . 10366 Battleview Parkway, Manassas, VA 22110 . 703/368-7880 703/368-7761-FAX MONROEVILLE, PA WESTERN NY BERKELEY, CA

NIKE NY54 HOLMDEL, NEW JERSEY

PROJECT # 61.5510.007.05 DATE: 2/25/91

DRAWNG: 01/5510/003.05/PROTOLDWG

68105

FIRLD

BUNK

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510, 3, 2 Client: USATHAMA - NJ (Hom Diec)

Program Hanager: 13, 14 AESTRI Sample Location: UNIT # 206

Date: 1/31/91 Shift: DAY Samples Collected by: A. McKissick / P. Custons

Collection Hethod: AHRNA Analyze For: AIThorns (Ashas to s

Sample Hedia: 0.454 MCE Lot No: Nucleopoke # 819 | 0001627 OL

Occupien UNIT # 206

SAMPLE DATA

SAMPLE DATA

9 10 68104 1,8099 68100 68101 68102 68103 Sample No. 1207 1232 1668 1961 1729 1249 Pump No. 1015 Time On 1215 1015 1015 1015 1345 1-668 1345 1345 1345 13 45 1345 Time Off 210 210 210 210 210 210 Total Time (min) 9.7 9.8 9.9 9,9 10.1 10,0 Flow Rate (LPM) 1942 2037 2079 2058 1922 2121 Volume (liters) Employee Name/ID Results F/CC Fibers/Fields Fibers/mm² Detection Limit 95% UCL Analyst QC Recounts (F/CC) QC Analyst OUTSIDI? TEMP = 30°F. Therefore, volume Porce toll For Temperature

	01- 4	SAMPLE LOCATION	elght	ocati	ype	hase	batem	ampli
?	(,809 9	LIVING ROOM SIDE WALL Bet woulders	5'		A	<u> </u>	\ <u>\</u>	NA
9	68100	Kitchen By REFNIGHHATOR	Ĺ		ſ			
/v	1.8101	BEDICOM FRONT (SIVER SIDE)						
"	198102	BATHKOO- BY SINK						
12	68103	CUTSIDE IN CARPORT .						
13	128 104	OUTSIDE, IN CARPORT	V			ļ		سلر

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S = Pre-Start, E = Establish Containment, R = Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, HA - Non-appressive

	Calibratio	on (L/min)	Rotomete	tometer Setting		
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date	
1227	9,4	4.4 9.4	10.0		1/3//4/	
1232	9,8	9.5	\			
1668	10.0	9.6				
1961	10.4	9.8				
12201	9.8	10,0			· ·	
1249	9.9	10.1	1 /			

>	
PLING INFORMATION cting personal sampl	es)
✓ General Area	None
ipment Type:_ Type:_ Type:_	
NE NECESSAROL	
Cactual)	
l value (upper bounds s/cc) 100	71)
	General Area ipment Type: Type: Type: Type: Actual cal

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F = average of two fiber counts

CV - relative standard deviation from intralaboratory quality control chart

Airborne Fiber Conc	entration			,	
	fibers	fibers(blank)	x 385 mm	3	
F/CC -	fields	fields(blank)			
	1000 x 1p	m x minutes x	.00785 mg	<u>. </u>	

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versas Job No.: 5510.3.2 Client: DSATHAMA - Homoel, NT Program Hanager: B NARSINI Sample Location: UNIT # 207 Date: 1/31/91 Shift: DAY Samples Collected by: A. Mikissicic / P. MESTONE Analyze For: AINBOAN F Collection Method: AHEX'A ASBESTOS Lot No: Nucleopose # 819 Sample Media: 0.454 MEE 1004 G 270L UNIT 207 - OCCUPIED SGT LAGICE SAMPLE DATA LA FALCE

٠, 68048 MELU BLANK

Sample No.	68092	68093	68094	68095	68096	68097
Pump No.	1224	1682	1672	1246	1663	1669
Time On	0945	0945	0945	0945	0945	0945
Time Off	1320	1320	1320	1320	1320	1320
Total Time (min)	215	215	215	215	215	215
Flow Rate (LPM)	9.8	9.8	9.7	9.7	ID, 0	9,8
Volume (liters)	2.107	2107	2086	3086	1988	1948
Employee Name/ID		-				
Results F/CC						·
Fibers/Fields						
Fibers/mm ²						
Detection Limit						
95% UCL						
Analyst						
QC Recounts (F/CC)						
QC Analyst						
TEMP 300 = Thursh	1 1/3/11/41	1 Poliart	11 Fan 1	Come distante Me		- 4

TEMP 30	SAMPLE LOCATION	A CHON	ation	•	9	rement	pling
Sample #		101	307	Ϋ́P	Pha	Aba	Sam
68092	LIVING ROOM, AT INTEFFECT TO DINING ROOM			A			NA
1.8093	KITCHEN BY REFEIGERATOL						
68094	BEDROOK BY OUTSIDE WAIL						
68095	BATHROOM BY SINK						
68096	CUTSIVE CALPOLT.						
68097	OUTSIDE CALPORT			سلرا			1

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-appressive

-	Calibratio	on (L/min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use		Date
1069	9,8	9,8	10,0		1/3//9
1663	10.0	10.0	1		
1246	9.9	9,5			
1672	9,9	9,5			
1682	9.9	9,7			İ
1224	9.9	9.6	1		
lame of Cali	brator GILIBA	entor Co	11 # 59	72 - H	

emp.: 70°	Pressure:	RH:
(Ca	PERSONAL SAMPLING INFO	
Ventilation:	Local Exhaust <u>//</u> Gen	neral Area None
Respirator	y Protective Equipment	Туре:
Protective	Clothing	Type:
Gloves Goggles/Fac	ce Shield Lion	Туре:
	NonE	ire au. eei)
otameter Flow Corre	ection	
otameter Flow Corre		
otameter Flow Corre	Pcal. \ (Tactual)	
actual = Qindicated	d (Pcal. (Tactual) Pactual (Tcal)	
actual = Qindicated 5% Upper Confidence 5% UCL = measured v	d (Pcal. (Tactual) Tcal	pper boundry%)

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT
Difference between total number of fibers counted <2.77 x F x CV = ACCEPT
where F = average of two fiber counts

CV - relative standard deviation from intralaboratory quality control chart

Airborne Fiber Concentration

F/CC = fibers fibers(blank) x 385 mm

fields fields(blank)

1000 x lpm x minutes x .00785 mm

	no.	1
Page	of	

FIFLD BLANK

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510, 3. 2 Client: USATHAMA - HOMBIC , NJ Program Hanager: B MARSTRI Sample Location: UN Occupied UNIT # 2/2 Date: 1/3, /41 Shift: DAY Samples Collected by: A Mikissick / P. Pastone Collection Method: AHERA Analyze For: AIRBONNE ASBIBSTOS

Sample Media: 0.45 M MCE Lot No: Nucleopens # 819 /004 G270L

		SAME	LE DATA				
	15	16		18	19	zυ	
Sample No.	108106	68107	68108	68109	68110	68 11	
Pump No.	1224	1682	1072	1246	1663	166	, , , , , , , , , , , , , , , , , , ,
Time On	1425	1425	1425	1425	1425		
Time Off	1820	1820	1820	1820	1820	18	20
Total Time (min)	235	235	235	235	235	233	
Flow Rate (LPM)	9,6	9.7	9.4	9.5	9,9	9,8	
Volume (liters)	2256	2280	2209	2233	2113	20	92-0
Employee Name/ID				<u> </u>			
Results F/CC					1	<u> </u>	
Fibers/Fields							
Fibers/mm ²							
Detection Limit	<u> </u>						
95% UCL							
Analyst		<u> </u>					
QC Recounts (F/CC)					1		
QC Analyst							
QC Recounts (F/CC) QC Analyst 61 007 Side 70 P	75°76 15 Ap	SAMPLE	LOCATION	leight the	Location	Phase Abatement	Sampling
68106 LIVING 1					A		NA
			F RFFA				
68108 BADRUCA	~ C	FNTBI					
		y 51N	L				TT
68110 OUTSIDE		1	SIDRUALI	4	(177

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

> > S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-aggressive

	Calibrati	on (L/min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1669	7.8	9.7	10.0		1/3,/91
1663	10.0	9.7			
1246	9,5	9,5			
1672	9,5	9.3			
1882	9.7	9.6			1.
1224	9.6	4.5	1.1		,
Name of Cali	ibrator GIU	BNATUIZ 1	PELL #	5972-H	

	,		
	PERSONAL SAMPLING (Complete if collecting		ı
			
Ventilation:	Local Exhaust	General Area	None
	atory Protective Equipmen		
Protect Gloves	tive Clothing	Type: Type:	
Goggles	s/Face Shield	-, pc ·	<u> </u>
Ear Pro	otection		
		NONE NMESSARY	
Rotameter Flow (Correction		
<u> </u>			
Qactual - Qindi	cated Pactual Tcal	<u>*1</u>)	
95% Upper Confid	dence Limit		
	red value + measured value)
	ers/cc) (fibers/cc)	100	
(fib	+ F/CC (213%)		
(fib	+ F/CC (213%) 100		
(fib			
(fib - F/CC QC Recounts Difference betw	100 een total number of fibe		
(fib = F/CC QC Recounts Difference betw Difference betw	een total number of fiber	rs counted <2.77 x	
(fib = F/CC QC Recounts Difference betw Difference betw where	100 een total number of fibe	rs counted <2.77 x counts	F x CV

o₹
96
- 54
•

CHAIN OF CUSTODY RECORD

PROJECT NO	PROJECT NAME	NAME					PARAMETERS	INDUSTRIAL
5510.3, 2	USATHAMA	JAM	1		HOMDEL, NJ			\neg
SAMPLERS: (Signature)	9			<u>s</u>	(Printed)	W SAINE AS IN THE SAIN AS IN THE SAI		/ (axy, 150 UN!)
Alb MMcKizin	nchis	il			Alton M McKISSICK	/ /J/vos/		REMARKS
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	10.0x		PATY OFFIUR MAKZEUM
68089	16/8/		1	7	LIVING ROOM			Not= 2079 &
00189				~	Kirchen			Va= 2037 L
10189				1	BEDROOM			1,0L= 2058 R
20189					BATHROOM	-		Vot = 2121 &
80189					OUTSIDE	-		Va= 1922 f
po1 89					Outside	-		VoL = 1942
50189	7		77		FIELD BANK			
			_					
								•
Relinquished by: (Signeture)		1) one /	Hilgi	Received by: 157	Relinquished by: (Signature)	Date	Time Received by: (Signature)
Printed) Albn M. M.K.SSICIC	788616	روف	100 × 200 ×	FOP EX AUY O RABITAN CONTRA		(Printed)		(Printed)
Relinquished by: (Signature)	ansture)	_	Date / Time	Time	Received for Laboratory by: (Signature)	Date / Time Re	Just FIRST, AN JUBIUS. I.	and 68105. IF ANY ON 1/21.
(Printed)					(Printed)	Q e	and 43e 68103 + 68104	+ 68104 +

Versur.

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJECT NAME	NAM	_ 				PARAMETERS	INDUSTRIAL
5510,3,2	USA THAMA	THA	mi	1	HOW DEL, NJ	43		N SAMILE N
SAMPLERS: (Signeture)	(0.	'		\vdash	(Printed)	JUS BUIL		Mountable, 100
(Ul MmcKega	Kisa	3			Albo M McKISSICK	12/NOS		REMARKS # 2/2
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	SARD	STATION LOCATION	10 ON		(ABANDON OF UNIT)
90189	1/3"/91		~		LIVING ROOM	1 1	- 10/V	= 2256.6
68107					KITCHEN	1	101	= 2210 f
80189					BEDROOM		Lo1=	3209
60189					BATH ROOM	1	: (0)	= 2233 2
01189					OUTS 1 PE	7	10/ =	= 21134
11189		,	1		DUT510F	1	Vol	= 20921
21189	7			4	FIELD BLANK	-		
							<i>y</i>	
Relinquished by: (Signature)	\dashv	ने त	Date	Date / Time	Received by: (Signature)	Relinquished by: (Signature)	Date / Time	Received by: (Signature)
(U.L. M. M. Kessur		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7/4	y y	Huevelle Means	(Printed)	(Pri	(Printed)
Alton M. M. Kissick limmada - Maripus Deloves	Mc Kissia	- 42 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	डी <u>इ</u> इ	1	of Unmada-NARAN Deloves Spark			
Relinquished by: (Signature)	meture)		Date	Date / Time	1 10	Date / Time Rem	7,2.	any one of
(Printed)					(Printed)	89 201	168106-68109 13 / Anilyze 68110 and	68111,

•	S
	7
	ĕ
	/
٠	
ā	7
-	-
	_
	2

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJECT NAME	NAM					IVA	PARAMETERS		INDUSTRIAL
5510.32	115.4	I VA PLA AMA	2	ı	Home DE / N.T.	7"/				HYGIENE SAMPLE
7 10100				ŀ	LW DAG MOLL	583	///	/ / /		HOMPEL, NJ A
SAMPLERS: (Signature)	•	•		_	(Printed)			\ \ \	/	OCCUPIED UNIT 207
Web MMcKissin	ckin	inl			Alton M. Mekissick		<i> </i>			REMARKS
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	BARD	STATION LOCATION	1 2 / Se /			25)	(56T LAFALCE)
7 6089	18/3/		7		LIVING ROOM	-			= 70)	2107 f
68083					KITCHEN	1 1			10N	21071
46089					BADROOIN				= 70/	101 = 2086
56029					BATHROW	1			Va =	2086 R
76089					OUTSIPE	1			= 10/	J 8861 = 101
68087			1		OUTSIDE				Yol =	1948 L
86089	7			14	FIRED BLANK	_				
								<i>3</i>	~	
									20	7
										•
				-						
Relinquished by: (Signature)	nature)	2	2//P/	Time	Received by: (Signature)	Relinquished by: (Signature)	gnature)	Date / Time		Received by: (Signature)
Printed) ALTON M MKSSICK	cK/ss.co	248 248	PICKUP / PICKUP / RAPITAN R.	Rom	•	(Printed)			(Printed)	T.
Relinquished by: (Signature)	naturej		Date / Time	Time	Received for Laboratory by:	Date / Time	Remarks ANALYZI 108098 FIRST		28092-	15 ANY ONE 06
(Printed)					(Printed)		68042-63096 Anal 43-68096		029 +	97
		-				Ţ				

Holmdel, NJ

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

FEBRUARY 4, 1991

SAMPLE RECEIPT DATE: FEBRUARY 2, 1991

RJ LEE GRP. JCB NUMBER: ATW-102004

CLIENT JCS NUMBER:

5510.3.2

PURCHASE CROER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASSESTES ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND EMERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION

				AIR	CASSETTE	COAL	
	K1 FEE	CLIENT		VCLUME	DIAMETER	LENGTH	CONDUCTIVE
	SAMPLE #	SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	COMP
		•	*******************************				•••••
	66357	68092	LIVING ROOM	2107	25	50	YES
		68093	KILONEN	2107	25	50	YES
Ç	66359	68094	SED ROOM	2086	25	50	YES
_	_ 66360	68095	BATHROOM	2086	25	50	YES
	66361	68096	CUTSIDE	1988	25	50	YES
	66362	68097	CUTSIDE	1948	25	50	YES
	66363	68098	FIELD BLANK	0	25	50	YES
)	66364	68099	LIVING ROOM	2079	25	50	YES
ي:	66365	68100	KITCHEN	2037	25	50	YES
C	66366	68101	BED ROOM	2058	25	50	YES
ા	66367	68102	SATHROOM	2121	25	50	YES
-	δὸῖὸὸ	68103	CUTSIDE	1922	25	50	YES
	66369	68104	OUTSIDE	1942	25	50	YES
	66370	68105	FIELD BLANK	0	25	50	YES
	66371	68106	LIVING ROOM	2256	25	50	YES
C	66372	68107	KITCHEN	2280	25	50	YES
_	66373	68108	BED ROOM	2209	25	50	YES
6-1	66374	68109	BATHROOM	2233	25	50	YES
_	663 7 5	01156	QUTS:DE	2113	25	50	YES
ج ۱	60376	68111	CUTSIDE	2092	25	50	YES
-	663 <i>77</i>	68112	FIELD BLANK	D	25	50	YES

SAMPLE PREPARER

THOMAS DAGENHART, M.S.

LABORATORY MANAGER NVLAP SIGNATORY

HVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group, Inc. 10366 Bartleview Parkway, Manassas, VA 22110 . 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONRCEVILLE, PA

WESTERN NY

The Materials Characterization Specialists

Holmdel, NJ

LABORATORY REPORT *************

VERSAR, INC. 6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

FEBRUARY 4, 1991

SAMPLE RECEIPT DATE: FEBRUARY 2, 1991

RJ LEE GRP. JCB NUMBER: ATM-102004

CLIENT JCB NUMBER: \$510.3.2

PURCHASE CROER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASSESTES ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00655 SQ MM DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) : TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CH12

1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

ASBESTOS STRUCTURES DETECTED

							WITH ASPE	CT RATIO >	5 : 1,	ASBES.	TOS	ASSESTOS	TYPE(S) OF	
			ANALYTICAL	GRID	DIFN-	AREA	SCRI	ED BY LENGT	н	STRUC	TURE	STRUCTURE	ASBESTOS	
		RJ LEE	SENSITIVITY	CPENINGS	TION	ANALYZED				DENSI"	īΥ	CONCENTRATIO	STRUCTURE	
		SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UM	>= 5.0 UM	TOTAL	(STR/M	M^Z)	(STR/CC)	DETECTED	
				•••••	*****		•••••						•••••	
		66357	0.0046	6	1.0	0.0393	0	0	0	< 25.	.44	< 0.005	NONE DETECTED	
1	_	66358	0.0046	6	1.0	0.0393	0	0	0	< 25	.44	< 0.005	NONE DETECTED	
1	0	66359	0.0040	7	1.0	0.0459	0	Q	Q	< 21	.81	< 0.004	NONE DETECTED	
	7	66360	0.0040	7	1.0	0.0459	0	0	0	< 21.	.81	< 0.004	NONE DETECTED	
	Ħ	66361	NCT ANALYZED	0	1.0	0.0000	0	Q	0	NOT A	NAL.	NOT ANAL.	NOT ANALYZED	
:	y	66362	NCT ANALYZED	0	1.0	0.0000	Q	0	0	NOT A	NAL.	NOT ANAL.	NCT ANALYZED	
		66363	NCT APPLICABLE	10	1.0	0.0655	0	0	0	< 15.	. 26	NOT APPL.	NONE DETECTED	
_		66364	0.0040	7	1.0	0.0459	0	٥	0	< 21.	.81	< 0.004	NONE DETECTED	
	ڡ	66365	0.0041	7	1.0	0.0459	C	0	0	< 21.	.81	< 0.004	NONE DETECTED	
0	_	66366	0.0041	7	1.0	0.0459	0	0	C	< 21.	.31	< 0.004	NONE DETECTED	
	ŭ	66367	0.0046	6	1.0	0.0393	a	a	a	< 25	.44	< 0.005	NONE DETECTED	
į	d.	66368	NGT ANALYZED	0	1.3	0.0000	O	0	0	NOT A	NAL.	NOT ANAL.	NOT ANALYZED	
	•	66369	NOT ANALYZED	0	1.0	0.3000	0	0	C	NOT A	NAL.	NOT ANAL.	NCT ANALYZED	
	_	66370	NOT APPLICABLE	10	1.0	0.0655	0	0	C	< _ 15	. 26	NOT APPL.	NONE DETESTED	_
_		66371	0.3043	6	1.0	0.0393	0	0	C	< 25.	.44	< 0.004	NONE DETECTED	
		66372	0.0043	6	1.0	0.0393	C	0	0	< 25	.44	< 0.004	NONE DETECTED	
	_1	66373	0.0044	6	1.0	0.0393	0	0	0	< 25	.44	< 0.004	NONE DETECTED	
	7	66374	0.0044	6	1.0	0.0393	٥	0	0	< 25	.44	< 0.004	NONE DETECTED	
(N	56375	MOT ANALYZED	Q	1.0	0.0000	0	0	0	NOT A	NAL.	NOT ANAL.	NOT ANALYZED	
4		66376	NOT ANALYZED	0	1.0	0.0000	a	0	0	NOT A	NAL.	NOT ANAL.	NOT ANALYZED	
		66377	NOT APPLICABLE	10	1.0	0.0655	0	0	0	< 15.	.26	NOT APPL.	NONE DETECTED	

PAGE 2 OF 3

NIKE NY 60 OLD BRIDGE, NEW JERSEY

DRAWNE 0/5510/003.05/PROTO1.DWG

68077 FIELD BLANK

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: \$570, 3.2

Client: USA FHAMA - OLD BRIDGE

Program Manager: B. MAESTRI

Date: 1/29/91 Shift: DAY

Sample Location: OLD BRIDGE NS

Collection Method: AHERA

Analyze For: AIRBORNE ASBESTOS

Sample Media: 0.454 MCE

Lot No: Noilsongie 819/004 G 27 OL

UNOCCUPIED UNIT H ZOC

SAMPLE DATA

Sample No.	68071	68072	68073	68074	68075	68076
Pump No.	1227	1224	1682	1961	1663	1668
Time On	1315	1315	/3/5	1315	1315	1315
Time Off	695	1685	1655	1655	4 1655	1655
Total Time (min)	220	220	220	220	720	220
Flow Rate (LPM)	10.0	9.7	4.7	10.0	9,9	9,9
Volume (liters)	2200	2134	2134	2200	2178	2178
Employee Name/ID		_	_	-	_	
Results F/CC						·
Fibers/Fields						
Fibers/mm ²						
Detection Limit						
95% UCL						
Analyst						
QC Recounts (F/CC)						
QC Analyst		• •		, No.	601/4t10v	

S DUTSIDE FRINT = 50°F, NOL COLLECTION IS 6 89 elght SAMPLE LOCATION Sample # 1080.71 Naca Sidewall, Between windows 68072 NA IN FRONT of WASHON heell up Kitchen 68073 NA Manter 68074 MA Room IN Front of Sun K 68075 Ketchin Side walk NA DUTSIDE 68076 NA CUTSIDE

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-aggressive

	Calibratio	on (L/min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
11:68	9,4	7.9	10.0		1/24/41
1239	9.4	9.5	10.0		
1682	9.8	7.5	10,0		
1063	9,9	7.3	10,0		
1227	10,1	7.8	10.0		1.
1961	10,1	9.9	10.0		V
Name of Cal	ibrator Gil.	IBRATOR ; PO	11# 597	2-H	

Name of C	Calibrator (91	LIBRATOR, FOLLA	E 3972-A
Temp.:	70° /-	Pressure:	RH:
		RSONAL SAMPLING INFO	
Ventilati	on:Loca	1 Exhaust 🔀 Ger	neral Area None
R	espiratory Prote	ective Equipment	Type:
P	rotective Clothi	ing	Type:
G	loves loggles/Face Shie	.1.4	Type:
	ar Protection	; 1 u	
		NONE !	REQUIRE D
	Provided Pro	cal. (Tactual)	
	Confidence Limit		
	(fibers/cc)		pper boundry%) 100
•	F/CC + F/CC (213		
QC Recount	<u>.s</u>		

Difference between total number of fibers counted >2.77 x F x CV = REJECT

Difference between total number of fibers counted <2.77 x F x CV = ACCEPT

where F = average of two fiber counts

CV = relative standard deviation from intralaboratory quality control chart

Airborne	Fiber Con	centration	<u>n</u>			•
		fibers	fibers(blank)	X	385 s	
	F/CC -	fields	fields(blank)	· 		
		1000 x 1	pm x minutes x	. (0785	mm -

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.3, 2

Client: USATHAMA - ULD BRIDGE, IY S

Program Hanager: B. MAESTRI Sample Location: UNIT # 209

Date: 1/30/91 Shift: DAY Samples Collected by: A.McKacak / P. Austonie

Collection Hethod: AHDRA Analyze For: AIRBANZ ASKASTOS

Sample Media: 0,45 M MLE Lot No: Nullsofort # 819/004 927 04

OCCUPIER MUNKAC S.Y

SAMPLE DATA

Sample No.	68078	68079	68080	68081	68082	68083
Pump No.	8201	1961	1227	1682	4 1229	1663
Time On	0915	0915	0915	0915	0915	0915
Time Off	1310	1310	1310	1310	1310	1310
Total Time (min)	235	235	235	235	235	235
Flow Rate (LPM)	9.7	10.2	9.8	9.7	9.5	9.8
Volume (liters)	2280	2397	1303	2280	2233	2303
Employee Name/ID	_	_				
Results F/CC						·
Fibers/Fields						
Fibers/mm ²						
Detection Limit						
95% UCL						
Analyst						<u> </u>
QC Recounts (T/CC)						
QC Analyst		• •				
Of TEMP OUTSIDE :	= 53 F.	· No	FLOW RA	FRESHAY	E	ent ng

NO FLOW RAFTY SAMPLE LOCATION Sample # NA 68078 LIVING ROOM : BY FRONT DOUR 68079 Kitchen: IN FRONT OF WASHER 68080 BEDROOM ' ANT BATIMON DOCKWAY 68081 BATHROOM; IN FRONT OF SINK 68082 DUTSIDE . CAIL PORT 68083 OUTSIDE ! CARPOLT

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-aggressive

68084 FIRD BLANK

	Calibrati	on (L/min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1668	9.9	9.4	10,0		1/30/91
1961	10,3	10.0	, ,		1
1227	7.9	9.6			
1682	9,8	9. 5			
1229	9,5	9.5			1:
1663	9.9	9,7	1		سلر
Name of Cali	brator GILI	BRATUR; (FLLE 5	972-H	

Temp.: 70°	F Pressure:	RH:
	PERSONAL SAMPLING I (Complete if collecting p	
Ventilation:	Local Exhaust	General Area None
Protect Gloves	tory Protective Equipment ive Clothing /Face Shield tection	Type: Type: Type:
Rotameter Flow C		REQUIRES
Qactual - Qindic	ated Pactual Toal	
(fibe	ence Limit ed value + measured value rs/cc) (fibers/cc) F/CC (2131) 100	(upper_boundry%) 100

Difference between total number of fibers counted >2.77 x F x CV - REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F - average of two fiber counts

CV - relative standard deviation from intralaboratory quality control chart

VILDOLUS	LIDEL	Concentration	
		fibers	ĺ

F/CC = fibers fields(blank) x 385 sm² 1000 x 1pm x minutes x .00785 mm²

Page / of /

6809 | FIELD BLANK

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510,3,2

Client: USA7HBMA - OLD BAIPGE, IV J

Program Hanager: 8, MARSTIZI

Date: 1/30/91 Shift: DIAN Sample Location: UNIT # 212

Collection Method: AHERA Analyze For: AIRBORNE AS Los 40 S

Sample Media: 0. 454 MRE Lot No: Nucleoscie # 319 0046 270L

Occupied

SAMPLE DATA

SFC HOUDE

1672 1010 1340 210 10.0 2100	1246 1010 1340 210 9.8 2058	1232 1010 1340 210 9,7 2037	1010	1249 1010 1340 = 210 9,8 = 2058
1340 210 10,0	1340 210 9.8	1340	210	13:10 9,9 4 2058
10.0	9.9	9.7	9,17	9,9
10.0	9.8	9,7	9,17	9,8
	 			2058
2100	2058	2037	2037	
		-	-	1-
				1
			, .	

17-1656-7 Samplin SAMPLE LOCATION Sample # Room SIDE WALL BET WINDOWS NΑ 1,8085 LIVING 18086 DF Stove Kitchen IN FRONT IN Front of BATH ROOM POOR S087 BEDROOM IN FRONT OF SINK BATH ROOM OUT SI DE CARPORT CARPORT OUT SIDE

Location:

W - Work Area. O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abstement:

FP - Fireproofing, CT - Coiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-appressive

	Calibratio	on (L/min)	Rotomete	r Setting	1
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
			10,0		
1669	10.0	9.5	12.0		1/30/91
1672	10.2	9,7	100		(
1246	10.0	9.5	10.0		
1232	10,0	9,4	100		
1224	9.8	9,6	10,0		
1249	10,0	9.5	10.0		

Temp.:	7 0° F	Pressure:	RH:
	(PERSONAL SAMPLING INFO	
Ventila	tion:	_ Local Exhaust Gen	eral Area None
	Protectives Gloves	ory Protective Equipment ve Clothing Face Shield ection	Type:Type:
Pot amet e	r Flow Co	None	MECRESARY
Qactual 95 <u>% Uppe</u> 95% UCL	= Qindica r Confider = measure (fiber	red Pactual (Tactual)	oper boundry%) 100
OC Becom			

QC Recounts
Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F - average of two fiber counts

> CV - relative standard deviation from intralaboratory quality control chart

Airborne	Fiber Con	centration	L	•	
		fibers	fibers(blank)	x 385 mm²	
	F/CC -	fields	fields(blank)		
		1000 x 10	m x minutes x	.00785 mm²	•

ڥ≩
32
•
4

PROJECT NO.	PROJECT NAME	NAME					PAI	PARAMETERS	INDUSTRIAL Y
5510, 3, 2	USATHAM A	A ma	•	070	D Beipce, NS	1 24			-11
SAMPLERS: (Signeture)	(6)				(Printed)	(CV)	\ \ \	<i> </i>	UNIT # 206
le mmelsins	. this	a			Alton M McKissick	Z NOS	\ \ \	\ \ \	/ REMARKS
FIELD SAMPLE NUMBER	1	TIME	COMP.	BARD	STATION LOCATION	10 to 10 to			(UNOCUPIED)
12089	16/60/1	•	+		LIVING ROOM	-		>	Vol = 2200 &
18072					Kitcuen			>	Vol = 2134 f
68073					BED ROOM			λ	Vol = 2134 &
p2089					BATH ROOM				161 = 2300 l
54089					OUTSIDE	1 1		Λ	Vol = 2178 f
72027			7		OUTSIDE	-		7	Vol = 2178 &
12089	1			4	FIELD BLANK	_			
Relinquished by: (Signature)	nature)) 1/20/	Date	/ Time	Received by: (Signature)	Relinquished by: (Signature)	Signature)	Date / Time	Received by: (Signature)
US MMCLUS	inch	7 7	14	1946/ FAD 164 BUT	(Included)	(Printed)			(Printed)
ALBA M M. K.S.K.K.	Ne Pissu		15 3	AT RABITAN					
Relinquished by: (Signeture)	newe)		Date	Date / Time	Received for Laboratory by:	Date / Time	Remarks ANMYZE BOOTT, IF A	7 U	ANY ONE OF 68074 and ANY ONE OF 68071 -
(Printed)					(Printed)		68075 and	0	76.
		-							

•¥
3
3
\leq

PROJECT NO.	PROJEC	PROJECT NAME	سِ ا				PARAMETERS	INC USTRIAL HYGIENE SAMPLE	RIAL
5510.3.2	US A .	USATHAKI A	A		OLD BRIDGE, NJ	1/88		7.00.7	1/2 0 // E
SAMPLERS: (Signeture)	•	•			(Printed)	JAIN BY		/ / OLD BAIR 0=) /2	-
Ube mmike	120	73			Albu MMcKISSICK	0/000	/////	REMARKS	KS
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	100 / 20 / 20 / 20 / 20 / 20 / 20 / 20 /		(SEC HOLIDE)	LIDE)
52089	1/30/9		4		LIVING ROOM	1		Vol = 2058	8
98089					Kitchen	_		Vol = 2100	}
68087					BED ROOM	7		Vol = 2058 D	D
28089					BATH POOM			Vol = 2037 &	7
68087					Outside	_		161 - 20371	7
06089			1		OUTSIDE	-		110L = 2058 D	E
15089	1			I	FIRID BLANK	-		OPENED FOX	30 SFC
Refinguished by: (Signature)	neure)	}		/ Time	Received by: (Signature)	Relinquished by: (Signature)	Date /	Time Received by: (Signature)	urel
Me mucky		1	15/16/						
Printed) PIK SUCKONE MAN	1/K/S	10 PIC	FED/154 PICK U/D POR 11794 K	x 4 4 5	1 2	(Printed)		(Printed)	
Relinquished by: (Signature)	neture)		0	Date / Time	Received for Laboratory by: (Signature)	Sate / Time	Remarks 134/32 and 66091,	and 68091, The ANY ONE OF	88089
(Printed)					(Printed)		0144132 66048	10 and 6809.	

ولا
3
3
3 5

PROJECT NO.	PROJECT NAME	NAM					PARAMETERS	INDUSTRIAL Y
5510.3.2	USATHAMA	HAW	Ł	0	OLD BRIDGE, NJ.	42/		75
SAMPLERS: (Signeture)				<u> </u>	(Printed;	3NIVINO		OLD DAINE JA
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	BARD	STATION LOCATION	1 2 S S S S S S S S S S S S S S S S S S	//// Deco	OCCUPIND UNIT HAD! CSFC NIUMKACSY
86089	18/06/1		4		LIVING ROOM	1 1	= 70/	22801
					KITCHEN	1	= 70/\	23971
68089					BEDROOM		= 70/	23031
18087					BATHAGOM	1 1	= 70/	2280 f
78087					OUTSIDE		= 70/1	2233
68083			X		OUTSIDE		1/26 =	2303 L
18089	-\			<i>[-1</i>	BLANK (FIMED)		open f	Acr 80 30C
		7			⊢		<u> </u>	
Relinquished by: (Signature)	sture)	1/2	18/81	/6//	Melpre Synaka	Helinquisned DY: <i>(Signature)</i>		Neceived by: isignature)
Printed) Alton M Mallysick	¥29		F B 1 / 15 PILK UA 2011 (17)	7 7 3		(Printed)	(Printed)	(I)
Relinquished by: (Signature)	nature)		Dete	Date / Time	Received for Laboratory by:	Date / Time Remarks (08 0 8	Remarks ANALYTE 68078 - 68081 and 68084, IF ONE OF 68078-68061	68681 and 68081
(Printed)					(Printed)	15 7	3.005 \$16c, an	11431 68012 +

The Materials Characterization Specialists

LABORATORY REPORT ************

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

FEBRUARY 4, 1991

SAMPLE RECEIPT DATE:

JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATW-101069

CLIENT JOB NUMBER:

5510.3.2

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA HETHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION ------

			AIR	CASSETTE	COWL	
RJ L	EE CLIENT		VOLUME	DIAMETER	LENGTH	CONDUCTIVE
SAMPL	E # SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	COWL
					F0	YES
661		LIVING ROOM	2938	25	50	
661	197 68058	KITCHEN	2999	25	50	YES
 661	98 68059	BED ROOM	3029	25	50	YES
> 661	99 68060	BATHROOM	2968	25	50	YES
- / 662	200 680 61	OUTSIDE	2907	25	50	YES
£ / 662	201 68062	QUTSIDE	2876	25	50	YES
667	202 68063	FIELD BLANK	0	25	50	YES
662	203 68064	LIVING ROOM	1969	25	50	YES
662	68065	KITCHEN	1930	25	50	YES
667	205 68066	BED ROOM	1911	25	50	YES
ى 662	206 68067	BATHROOM	1891	25	50	YES
+ 🏃 662	207 68068	OUTSIDE	1891	25	50	YES
£ , 662	208 68069	QUTSIDE	1891	25	50	YES
- 665	209 68070	FIELD BLANK	O	25	50	YES
662	10 68071	LIVING ROOM	2200	25	50	YES
D 662	211 68072	KITCHEN	2134	25	50	YES
£ ₹ 662	212 68073	BED ROOM	2134	25	50	YES

SAMPLE PREPARER

68074

68075

68076

68077

66213

66216

25

25

2200

2178

2178

YES

YES

YES

YES

LABORATORY MANAGER NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group, Inc • 10366 Battleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

BATHROOM

OUTSIDE

OUTSIDE

FIELD BLANK

MONROEVILLE, PA

WESTERN NY

50

50

50

The Materials Characterization Specialists

RJLeeGroup Feery Feer Ny
The Materials Champlerization Specialists

The Materials Champlerization Specialists

LABORATORY REPORT *********

VERSAR, INC.

6850 VERSAR CENTER SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

FEBRUARY 4, 1991

SAMPLE RECEIPT DATE:

JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATW-101069

CLIENT JOB NUMBER:

5510.3.2

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00655 SQ MM DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) : TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CM12

1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

ASBESTOS STRUCTURES DETECTED

							W20E2102	SIKOCIOKES I	DETECTED			
							WITH ASP	ECT RATIO >	5:1,	ASBESTOS	ASBESTOS	TYPE(S) OF
			ANALYTICAL	GRID	DILU-	AREA	SOR	TED BY LENGT	ГН	STRUCTURE	STRUCTURE	ASBESTOS
		RJ LEE	SENSITIVITY	OPENINGS	TION	ANALYZED			• • • • • • • • • • • • • • • • • • • •	DENSITY	CONCENTRATIO	N STRUCTURE
		SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UM	>= 5.0 UM	TOTAL	(STR/MM^2)	(STR/CC)	DETECTED

		66196	0.0020	10	1.0	0.0655	0	0	0	< 15.26	< 0.002	NONE DETECTED
		66197	0.0020	10	1.0	0.0655	0	0	0	< 15.26	< 0.002	NONE DETECTED
	_	66198	0.0019	10	1.0	0.0655	0	0	0	< 15.26	< 0.002	NONE DETECTED
		66199	0.0020	10	1.0	0.0655	0	0	0	< 15.26	< 0.002	NONE DETECTED
	Ŧ	66200	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
		66201	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
		66202	NOT APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
<i>.</i>		66203	0.0030	10	1.0	0.0655	0	0	0	< 15.26	< 0.003	NONE DETECTED
j		66204	0.0030	10	1.0	0.0655	0	0	0	< 15.26	< 0.003	NONE DETECTED
-		66205	0.0031	10	1.0	0.0655	0	0	0	< 15.26	< 0.003	NONE DETECTED
	Ŋ	66206	0.0031	10	1.0	0.0655	0	0	0	< 15.26	< 0.003	NONE DETECTED
	#	66207	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
		66208	NOT ANALYZED	0	1.0	0.0000	0	O	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
		66209	NOT APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
v		66210	0.0027	10	1.0	0.0655	0	0	0	< 15.26	< 0.003	NONE DETECTED
ں: س		66211	0.0028	10	1.0	0.0655	0	1	1	15.26	0.003	CHRYSOTILE
7	'n	66212	0.0028	10	1.0	0.0655	0	0	0	< 15.26	< 0.003	NONE DETECTED
Ĉ	Ő		0.0027	10	1.0	0.0655	0	0	0	< 15.26	< 0.003	NONE DETECTED
2	ň		NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
;	#	66215	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
)		66216	NOT APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED

PAGE 2 OF 3

RJ Lee Group, Inc • 10366 Battleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX BERKELEY, CA MONROEVILLE, PA WESTERN NY

KI Lee Group

Old Bridge NJ

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

FEBRUARY 4, 1991

SAMPLE RECEIPT DATE: FEBRUARY 1, 1991

RJ LEE GRP. JC8 NUMBER: ATW-102001 CLIENT JCB NUMBER:

5510.3.2

PURCHASE CRDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTCS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION

	RJ LEE SAMPLE #	CLIENT SAMPLE #	SAMPLE LCCATION, DATE, AND/OR DESCRIPTION	AIR VCLUME (LITERS)	CASSETTE DIAMETER (MM)	COWL LENGTH (MM)	COMPL COMP COMPL COMP COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMPL COMP COMPL COMP COMP COMP COMP COMP COMPL COMPL COMPL COMPL COMP COMP COMP COMP
	66225	68078	INSIDE, LIVING ROCH	2280	25	50	YES
ت	66227	68079	INSIDE, KITCHEN	2397	25	50	YES
20	66223	68080	INSIDE, BEDROCM	2303	25	50	YES
,,	66229	68081	INSIDE, BATHROOM	2280	25	50	YES
	66230	68082	CUTSIDE	2233	25	50	YES
Tiur	66231	68083	CUTSIDE	2303	25	50	YES
~	66232	68084	FIELD BLANK	0	25	50	YES
	66233	68085	INSIDE, LIVING ROOM	2058	25	50	YES
	66234	68086	INSIDE, KITCHEN	2100	25	50	YES
1ح	66235	68087	INSIDE, BEDROOM	2058	25	50	YES
2.	66236	68088	INSIDE, BATHROOM	2037	25	50	YES
(-3	66237	68089	CUTSIDE	2037	25	50	YES
2	66238	68090	OUTSIDE	2058	25	50	YE3
Ξ	66239	68091	FIELD BLANK	0	25	50	AE2

SAMPLE PREPARER

KS TEM OPERATOR-ANALYST

LABORATORY MANAGER NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group, Inc . 10366 Bartleview Parkway, Manassas, VA 22110 . 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

The Materials Characterization Specialists

Old Bridge, NJ

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889 ATTN: PAM HILLIS REPORT DATE:

FEBRUARY 4, 1991

SAMPLE RECEIPT DATE: FEBRUARY 1, 1991

RJ LEE GRP. JCB NUMBER: ATW-102001

CLIENT JCS NUMBER:

5510.3.2 PURCHASE CROER NUMBER: 01-61-060536

ANALYSIS: AIRSCRNE ASSESTES ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID CPENING: 0.00662 SQ MM DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) : TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CM12

1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

ASSESTES STRUCTURES DETECTED

			•			WITH ASPEC	T RATIO > 5	: 1,	ASSESTOS	ASSESTES	TYPE(S) OF
		ANALYTICAL	GRID	DILU-	AREA	SCRTE	BY LENGTH		STRUCTURE	STRUCTURE	ASBESTOS
R	J LSE	SENSITIVITY	CPENINGS	TICH	CETYLANA				DENSITY	CONCENTRATION	STRUCTURE
SA	MPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UM >	= 5.0 UM	TOTAL	(STR/MM^2)	(STR/CC)	DETECTED
••	••••	***********	••••••		••••••	••••••				*********	
	66225	0.0043	6	1.0	0.0397	a	a	0	< 25.18	< 0.004	NONE DETECTED
	66227	0.0049	5	1.0	0.0331	0	0	0	< 30.21	< 0.005	NONE DETECTED
	66228	0.0042	6	1.0	0.0397	0	O	0	< 25.18	< 0.004	NONE DETECTED
	66229	0.0043	6	1.0	0.0397	0	0	G	< 25.18	< 0.004	NONE DETECTED
	66230	CETATAL TON	a	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	CELYLANA TON
	66231	NOT ANALYZED	0	1.0	0.0000	Q	a	0	NCT ANAL.	NOT ANAL.	NCT ANALYZED
_	66232	NOT APPLICABLE	10	1.0	0.0662	0	0	0	< 15.11	NOT_APPL.	NONE DETECTED
	662 3 3	0.0047	6	1.0	0.0397	0	0	0	< 25.18	< 0.005	NONE DETESTED
,	66234	0.0046	6	1.0	0.0397	0	a	0	< 25.18	< 0.005	NONE DETECTED
4	6ó235	0.0047	6	1.0	0.0397	0	0	0	< 25.18	< 0.005	NONE DETESTED
	66236	0.0048	6	1.0	0.0397	a	O	0	< 25.18	< 0.005	NONE DETESTED
	66237	NOT ANALYZED	٥	1.0	0.0000	0	٥	0	NOT ANAL.	NOT ANAL.	CETYLANA TON
	66238	NCT ANALYZED	0	1.0	0.0000	o	0	0	NOT ANAL.	NOT ANAL.	NCT ANALYZED
	56239	NCT APPLICABLE	10	1.0	0.0662	a	O	0	< 15.11	NOT APPL.	NONE DETESTED
						-	=	=			

PAGE 2 OF 3

RJ Lee Group, Inc . 10366 Bartleview Parkway, Manassas, VA 22110 . 703/368-7880 703/368-7761-FAX BERKELEY, CA MONROEVILLE, PA WESTERN NY

NIKE NY 25 ROCKY POINT, NEW YORK

ROCKY POINT FHU 05 2 BEDROOM FLOOR PLAN

ROCKY POINT FHU 11 3 BEDROOM FLOOR PLAN

68070 FIELD BLANK

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510, 3.2 Client: USATHAMA - ROCKY FOINT, NY

Program Hanager: B. MAESTKI Sample Location: Housing UNIT #5

Date: 129/9/ Shift: DAY Samples Collected by: A.McKissick/P. ("ESTONE"

Collection Hethod: AHERA Analyze For: AIRBOKNE ASBESTOS

Sample Hedia: 0.454 MCE Lot No: NULLECTORE LOT A 819/0046270L

OCCUPIED UNIT #5

SGT PERRY

SAMPLE DATA

	160111	1 Pale	12011	68067	68068	68064
Sample No.	6806U	68065	108066	60001	68001	
Pump No.	1961	1682	1668	1232	1663	1246
Time On	1134	1134	1134	1134	1134	1134
Time Off	1447	1447	1447	1447	1447	1447
Total Time (min)	143	193	193	193	193	193
Flow Rate (LPM)	10.2	10,0	9,9	9.8	4.8	9.8
Volume (liters)	1969	1930	1911	1891	1891	1891
Employee Name/ID		_	-		-	-
Results F/CC						•
Fibers/Fields						
Fibers/mm ²						
Detection Limit	<u> </u>					
95% UCL	<u> </u>	<u> </u>				
Analyst		<u> </u>			,	
QC Recounts (T/CC)						
QC Analyst						

Of CUTSINE TEMP = 50°F. No love them MAUR SAMPLE LOCATION Sample # 68060 LIVING ROOM WAIL Between 15 m/c. 68065 KITCHEN BY IN FACET of Washer 68066 BADROOM (well hear bod) 68067 BATHBOOM (IN FRONT of SINK 68065 OUTSIDE 68069 OUTSIDA

Location:

W = Work Area, O = Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abstement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-segressive

	Calibratio	on (L/min)	Rotomete	r Setting_	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1451	10.6	9.7	10.0		1/25/91
1682	10.2	9. 4	10.0		1
1664	10.2	9.6	10.0		
1232	100 D	7.6	10,0		
1663	10.0	9.5	10.0		('
1246	9,9	9.6	10,0		
Name of Cal	ibrator GILIE	SEATOR .	CELL #	5972-	Н

mp.: 70	Pressure:		RH:
	PERSONAL SAMPLING IN (Complete if collecting pe)
entilation:	Local Exhaust	eneral Area	Non
Respir	ratory Protective Equipment	eneral Area Type:	Non
Respir	ratory Protective Equipment		Non
Respir	ratory Protective Equipment ctive Clothing ses/Face Shield	Type:	Non

Pactual Qactual - Qindicated

95% Upper Confidence Limit

95% UCL - measured value + measured value (upper boundry%) (fibers/cc) (fibers/cc) - F/CC + F/CC (2137)100

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F - average of two fiber counts CV - relative standard deviation from intralaboratory

quality control chart

Airborne	Fiber Cond	entration		•
		fibers	fibers(blank)	x 385 mm²
	F/CC -	fields	fields(blank)	
		1000 x 1p	m x minutes x	.00785 mm

D=11	no.	1
Page		of

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510, 3. 2 Client: USATHAMA - ROCKY PUNT, NY Program Manager: B. MARGER! Sample Location: Housing Unit # 11 Date: 1/28/91 Shift: DAY Samples Collected by: A. McKissick / P. CESTONE Collection Method: AMERA Analyze For: AIRBORNE ASBESTOS # 819/004 G 270L Sample Media: 0.45 MMEE Lot No: Nullappore UNIT # 11 OLLUPIED SGT. PIERCE

SAMPLE DATA

Sample No.	68057	68058	68059	68060	68061	68062
Pump No.	1229	1227	1224	1672	1669	1249
Time On	1034	1034	1034	1034	1034	1034
Time Off	1400	1400	1400	1400	1400	1400
Total Time (min)	306	306	306	306	306	306
Flow Rate (LPM)	9.6	9.8	9.9	9.7	9.5	9,4
Volume (liters)	2938	2999	3029	2968	2907	2876
Employee Name/ID			-	-		_
Results F/CC						·
Fibers/Fields						
Fibers/mm ²						
Detection Limit		<u> </u>				
95I UCL						
Analyst					<u> </u>	
QC Recounts (F/CC)					1	
QC Analyst						<u> </u>
DUTSIDE TRIMP = S	OF, NO	FORFECTION	MADE	SINCE &	1 - 5%	ient
		Sample	LOCATION	lelght	ati	Abatement Sampling
Sample #					Loca	Abate Sampl
68057 LIVING	Ram, B	ETWARK I	ouch as t	v 5°	A	NA
111110			CLOTIFS W.			

W - Work Area, O - Outside/Perimeter Location:

BED Room

68059

68060

108061

68062

G - General Area, P - Personal, A - Ambient, B - Field Blank Type:

SOUTH WALL

Ellort

S - Pre-Start, E - Establish Containment, R - Removal, Phase:

C - Clean, Up, F - Final Air

STUOP

1(

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles, Abatement:

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

LIVING AM

AG - Aggressive, NA - Non-aggressive Sampling:

68063 BLAKK (FIRCD:

	Calibratio	on (L/min)	Rotomete	r Setting		
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date	
	2.5				1/ 2/ /	
1249	9,5	4.3	10.0		1/28/41	
1229	9.8	9,4	10.0			
1672	10.0	9.4	10.0			
1227	9,4	9.7	10.0			
1669	9.7	9,2	10.0			
1224	10.1	9.7	10,0			
Name of Cal	ibrator GILI	RRATUR (F	CC# 59'	12 - H		

Temp.:	70° F	Pressure:	RH:
	_	PERSONAL SAMPLING INFO	
Ventila	rion: Le	ocal Exhaust <u>~</u> Gen	eral Area None
	Respiratory Pro Protective Close Gloves Goggles/Face SI Ear Protection		Type: Type:
		None	E REQUIRED
	r Flow Correction	Pactual (Tactual)	
951 UCL	(fibers/cc) = F/CC + F/CC (e + measured value (up (fibers/cc)	per boundryI) 100

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT
Difference between total number of fibers counted <2.77 x F x CV = ACCEPT
where F = average of two fiber counts

CV = relative standard deviation from intralaboratory

CV - relative standard deviation from intralaboratory quality control chart

Airborne	Fiber Con	centrati	on		•
		fibers	fibers(blank)	x 385 m	m ⁴
	F/CC -	fields	fields(blank)		
		1000 ×	lpm x minutes x	.00785	ממו

Į	•	4	
		١	ı
l	Ŗ	ij	į
ì	_	Ę	Ì
ľ		,	
Ì	5	-	
	ı	١	
4	Ğ	,	
Į	ī	ì	ļ
ı	ì	_	
ı	1		

$V_{0}L = 3$ $V_{0}I = 3$ $V_{0}I = 3$ $V_{0}I = 3$ $V_{0}I = 4$ $V_{$	PROJECT NO.	PROJECT NAME	NAM					14	PARAMETERS		7	7
The control The control	5510.3.2	1154	THA	Ž,	'	Posterie	12/					_ [
### ### ##############################	CAMPIERS: /Connection	1				IN IN	1 43 N	/ / /	\ \ \	<u></u>		
	MA MM	Kria	i			Z NO	IN INO		\ \ \	\	UNIT # 17 REMARKS	··· -
KITCHEN	FIELD SAMPLE NUMBER	DATE	TIME	COMP.	BARD	. –	20.0N			0		Ų
	ł	128/21		+			1 1			Yot =		
BED 12wm 1 1 1 1 1 1 1 1 1						KITCHEN	-			- 10/		ı
BA+H ROOW 1	68089					BED ROM	1 1			: 10/	= 3029 L	Ī
COTSIDE	0,089					BATH ROOM	1		-	101	= 2968 £	1
T COUTSIDE 1 1	19089					OUTSIDE				10/	= 29072	
Date / Time Received by: (Signature) 30/q	79089		•	7		OUTSIDE	1			Vol	- 2876 g	1
Date / Time Received by: (Signature)	68063	7			I	Β,	_			\ <u>/</u> \	4	1
Date / Time Received by: (Signature) 30 q AT PALITAN Received for Laboratory by: Date / Time (Signature) Printed												1
Date / Time Received by: (Signature) 30 q 41 Printed AT PARITAN Received for Laboratory by: Date / Time (Signature) Printed												i i
Date / Time Received by: (Signature) Relinquished by: (130 q												i
FBD /BY AUCY (Printed) AT PALITAN PALITAN PALITAN Palitan Received for Laboratory by: Signature Printed)	Relinquished by: (Sign	sture) Wichxl	1/30)/q/	I 👡	-	Relinquished by: (5	Signature)	Date / 1		ived by: (Signature)	1
Date / Time Received for Laboratory by: Date / Time (Signature)	(Printed) Alter IN M	le Kissiyi		10 K	22					(Print	(Pa	
(Printed)	Relinquished by: (Sign	anrej		Date	/ Tir		/ Time	Remarks A (68063	NALYZE	68057 844 046 844	-68060 and of 61050-68060 143E 68061	
	(Printed)					(Printed)		and 6804	, co > p ; co , co , co , co , co , co , co , co			7

		ζ	ز
ı	þ	3	ķ
ı	١	ı	ı
Į	ı	i	i
Į	×	Ę	j
ľ		í	Ì
Ì)	<	
i	į	•	Ì
ì	ì		

USATHAMA - ROLY PUNT, NY 1	PROJECT NO.	PROJECT NAME	VAME	1			PARAN	PARAMETERS	INDUSTRIAL Y
Atton Melicssick Station Location So State So	5510.3 2	USATH	48 M A		1	PUNT, NY			ATGIENE SAMPLE N
ALTON M. MELLESSICK Str.	SAMPLERS: (Signatur	19			(b)	3ANIS	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \	Mary POINT, NY
Time	Mot mine	Kusiel	•			M Mellissick /8		////	REMARKS
	FIELD SAMPLE NUMBER	DATE TII	Æ		8 A A9	LOCATION		0	/ OCCUPIED BY SGT. PERRY
		12/2011	1	_	7			- 70/	100 = 1969 f
Date Fine Pate Page Pate Page Pate Page	59089					KITCHEN		Not	Vol = 1930 &
	29089					BED Room		Voc	Voc = 1911 &
Date Time Received by:	68067					BATH ROOM		10/1	1/681 = 10/1
Date / Time Received by: (Signature) Agrange Finted 87089				-	00TS(DIZ		70/1	1681 = 70/N	
Date / Time Received by: (Signature) AT PARITY Printed	69089		1	1		But Si DE		Not	Not = 1891 &
Date / Time Received by: (Signature) Solgi	02089	1				FIELD BLANK 11			N/A
Date / Time Received by: (Signature)				-+-+					
Date / Time Received by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature)			_						
Date / Time Received by:									
C.(C. 12xtutp)A Date / Time Received for Laboratory by: (Brinted) (Printed)	Relinquished by: (Sig	1	1/30/	/ ose /	Time	Received by: (Signature)	y: (Signature)		Received by: (Signature)
Date / Time Received for Laboratory by: Date / Time Signature)	(Printed) ALTON M. Mc	i	F. 25	355	PICKY 1777	(Printed)		<u>a</u>	(Printed)
(Printed)	Relinquished by: (Sig		ة	ate /	Time	Laboratory by:		TANY ONE	1-65067 al of 68064-68067
	(Printed)					(Printed)	and 68069.		

RJ Lee Group CH Bridge NI

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

FEBRUARY 4, 1991

SAMPLE RECEIPT DATE:

JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: ATW-101069 CLIENT JOB NUMBER:

5510.3.2

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION

				AIR	CASSETTE	COML	
	RJ LEE	CLIENT		VOLUME	DIAMETER	LENGTH	CONDUCTIVE
	SAMPLE #	SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	COWL
	• • • • • • • • • • • • • • • • • • • •					•••••	
	66196	68057	LIVING ROOM	2938	25	50	YES
	66197	68058	KITCHEN	2999	25	50	YES
=	66198	68059	BED ROOM	3029	25	50	YES
	⋋ 66199	68060	BATHROOM	2968	25	50	YES
Ξ	- 66200	68061	OUTSIDE	2907	25	50	YES
	66201	68062	OUTSIDE	2876	25	50	YES
	66202	68063	FIELD BLANK	. 0	25	50	YES
	66203	68064	LIVING ROOM	1969	25	50	YES
	66204	68065	KITCHEN	1930	25	50	YES
	66205	68066	BED ROOM	1911	25	50	YES
Ţ	66206	68067	BATHROOM	1891	25	50	YES
-	_^ 66207	68068	OUTSIDE	1891	25	50	YES
=	66208	68069	OUTSIDE	1891	25	50	YES
	⁻ 66209	68070	FIELD BLANK	0	25	50	YES
	66210	68071	LIVING ROOM	2200	25	50	YES
	£ 66211	68072	KITCHEN	2134	25	50	YES
$\stackrel{\circ}{pprox}$	66212	68073	BED ROOM	2134	25	50	YES
) (66213	68074	BATHROOM	2200	25	50	YES
	66214	68075	OUTSIDE	2178	25	50	YES
	66215	68 076	OUTSIDE	2178	25	50	YES
ζ.	66216	68077	FIELD BLANK	G	25	30	YES

SAMPLE PREPARER

Er, LJC, LG TEM OPERATOR-ANALYST

THOMAS DAGENHART, M.S.

LABORATORY MANAGER NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group, Inc • 10366 Battleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

The Materials Characterization Specialists

LABORATORY REPORT ************

VERSAR, INC. 6850 VERSAR CENTER SPRINGFIELD, VIRGINIA 22151

703-642-6889 ATTN: PAM HILLIS REPORT DATE:

FEBRUARY 4, 1991

SAMPLE RECEIPT DATE: JANUARY 31, 1991

RJ LEE GRP. JOB NUMBER: AT '-101069 CLIENT JOB NUMBER:

5510.3.2

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DISHACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GR.D OPENING: 0.00655 SQ MM

DETERMINE LIMIT (FIBERS PER TEN GRID OPENINGS) :

TEM ACCELERATING POTENTIAL: 100 KV TEM: PHILIPS CM12

1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

							ASBESTOS	STRUCTURES D	ETECTED		
							WITH ASP	ECT RATIO >	5 : 1,	ASBESTOS ASBESTOS TYPE(S) OF
			ANALYTICAL	GRID	DILU-	AREA	SOR	TED BY LENGT	Н	STRUCTURE STRUCTURE ASBEST	ros
		RJ LEE	SENSITIVITY	OPENINGS	TION	ANALYZED	• • • • • • • • • • • • • • • • • • • •			DENSITY CONCENTRATION STRUCT	TURE
	S	AMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UM	>= 5.0 UM	TOTAL	(STR/MM^2) (STR/CC) DETECT	TED
	-			•••••		•••••	• • • • • • • • • • • • • • • • • • • •				
		66196	0.0020	10	1.0	0.0655	σ	0	0	< 15.26 < 0.002 NONE DET	ECTED
		66197	0.0020	10	1.0	0.0655	0	a	G	< 15.26 < 0.002 NONE DET	ECTED
	_	66198	0.0019	10	1.0	0.0655	0	0	0	< 15.26 < 0.002 NONE DET	ECTED
	=	66199	0.0020	10	1.0	0.0655	0	0	0	< 15.26 < 0.002 NONE DET	ECTED
	7	66200	NOT ANALYZED	0	1.0	0.0000	0	O	0	NOT ANAL. NOT ANAL, NOT ANAL	YZED
		66201	NOT ANALYZED	0	1.0	0.0000	0	D	0	NOT ANAL. NOT ANAL. NOT ANAL	YZED
•		66.	NOT APPLICABLE	10	1.0	0.0655	0	0	0	< 1' 5 NOT APPL. NONE DET	ECTED
		66203	0.0030	10	1.0	0.0655	0	0	0	<26 < 0.003 NONE DET	ECTED
		66204	0.0030	10	1.0	0.0655	0	٥	0	< 15.26 < 0.003 NONE DET	ECTED
رج ا		66205	0.0031	10	1.0	0.0655	0	0	0	< 15.26 < 0.003 NONE DET	ECTED
	S	66206	0.0031	10	1.0	0.0655	0	0	0	< 15.26 < 0.003 NONE DET	ECTED
	#	66207	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL. NOT ANAL. NOT ANAL	YZED
		66208	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL. NOT ANAL. NOT ANAL	YZED
		66209	NOT APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26 NOT APPL. NONE DET	ECTED
		66210	0.0027	10	1.0	0.0655	0	0	0	< 15.26 < 0.003 NONE DET	ECTED
ン		66211	0.0028	10	1.0	0.0655	0	1	1	15.26 0.003 CHRYSOTI	LE
, _	'n	66212	0.0028	10	1.0	0.0655	0	Q	٥	< 15.26 < 0.003 NONE DET	ECTED
	0	66213	0.0027	10	1.0	0.0655	0	0	0	< 15.26 < 0.003 NONE DET	ECTED
	Ň	66214	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL. NOT ANAL. NOT ANAL	YZED
	#	66215	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT SHALL HOT ANAL. NOT ANAL	YZED
		66216	NOT APPLICA LE	10	1.0	0.0655	0	0	0	< 15.26 NOT APPL. NONE DET	ECTED

NIKE NY 99 SPRING VALLEY, NEW YORK

SPRING VALLEY FHU
FLOOR PLAN

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.3.2 Client: Chinhand - Sprine United & Program Manager: 3 MAESTE'I Sample Location: Spenie UKIN NY UNIT # 265 Date: 1/24 91 Shift: DAY Samples Collected by: McKissic K / Cosmon Collection Method: AttiEkit Analyze For: AIRBERINE ASBRISES Sample Media: C. 45 y MCE Lot No: No: No: 140046 27 0L

CCCUPIED BY SET HARDRY UNIT 1 203

SAMPLE DATA

68056 FIELD ELANK

Sample No.	68050	68051	68052	LSC53	68054	68055
Pump No.	1672	1229	1224	1669	1227	1246
Time On	0415	0415	0915	0915	0915	0915
Time Off	1750	1250	1250	1250	1250	1250
Total Time (min)	215	215	315	215	215	215
Flow Rate (LPH)	9.8	9,6	9,9	9.7	10.3	10.2
Volume (liters)	2107	2064	2129	2086	2215	7193
Employee Name/ID		_				_
Results F/CC						•
Fibers/Fields						
Fibers/mm ²						
Detection Limit						
951 UCL						
Analyst						
QC Recounts (F/CC)						
QC Analyst						1
1 CHLIDENTED @ CCTSI	OF TEM	MINER PURE	Thankere	, NO	E	ent

Sample 6	SAMPLE LOCATION	leight	Location	Fype	Phase	Abateme	Samplin
68050	LIVING ROOM'S IN FRONT of LARGE WINDOW	5'		A			NA
14905 i	KITCHEN ; IN FRONT of COUNTER						
68052	Master BEDREOM : BESIDE BED		<u> </u>	Ц			
68053	BATHROOM BESIDE SINK			Щ			
65054	OUTSIDE STOOP BY FURNAGE ROUMA			Ц	<u> </u>	<u> </u>	
68055	DAYNE STOOP BY RIENTER ROOM DOCK	1	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S = Pre-Start, E = Establish Containment, R = Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-appressive

	Calibratio	Calibration (L/min)		r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1229	9.5	4.4	10,0		1/20/91
1224	ic.C	9.8			
1672	IC.C	9.6			\
1669	10.0	9,4			
1246	10.4	10.0			
W 1227	10:4	10.1			سل
Name of Cali	brator GILIAL	GILBRITCH	CELL of	5912-H	

Temp.: 16 F 1246 and 1227 (No voc	Pressure: PACIBLATED AT 20°F; PERSONAL SAMPLING INFORMATION (Complete if collecting personal sample)	
Ventilation:	Local Exhaust Gene	eral Area None
Respirat Protect: Gloves Goggles Ear Prot	tory Protective Equipment ive Clothing /Face Shield tection	Type:Type:
Rotameter Flow Co		NECESSARY
Qactual - Qindic: 95% Upper Confide	eted Pactual Toal	per boundry%)

(fibers/cc) (fibers/cc) 100 = F/CC + F/CC (2137)100

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F - average of two fiber counts CV - relative standard deviation from intralaboratory

quality control chart

Airborne Fiber Concentration fibers fibers(blank) x 385 mm² F/CC = fields fields(blank) 1000 x lpm x minutes x .00785 mm

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.3.7— Client: USAIHAMA - SPRING VAILAY, NY

Program Manager: B. MAESIKI Sample Location: SPRING VAILAY VIVIT H DEB 207

Date: 1/25/41 Shift: DAY Samples Collected by: A. McKusick / P. Muston E

Collection Method: A HEVA Analyze For: Milmonia , 1956-5405

Sample Media: 0,454 MCE Lot No: Nucleiful VAIT # 207

SAMPLE DATA

	*		*				
Sample No.	68043	68044		68046		6804	18049
Pump No.	1232	12:24	1652	1229	1669	167	18 68049 12 BLAN
Time On	1153	1153	1153	1153	1153	115	3
Time Off	1602	1602	1602	1602	1602	160	2_
Total Time (min)	249	249	249	249	249	240	î
Flow Rate (LPM)	9,8	10.0	9,3	9,5	, 10.0	9,9	
Volume (liters)	Trys 2	2490	Sau Mayo 2	2366	2740	4 22	56
Employee Name/ID		_	-	_		 	
Results F/CC						•	
Fibers/Fields							
Fibers/mm ²							
Detection Limit							
95% UCL							
Analyst							
QC Recounts (F/CC)							
is corrected for ton	y Clan	yc			E O	ent	
oc Analyst	•	SAMPLE	LOCATION	leight	at 1	Phase Natement	Sampling
Sample #				Į e	Loca	Phase Abate	E 80
	com; SI	DE WALL B	Betw WIN	douse	A		NA
68043 LIVING KCOM; SIPE WALL BUTW WINDOWS (A N/A 68044 Kitchen, IN FRONT OF WASH header							
والمستوان والمستقدة والمتران و							
65045 MASTI	Bel Roc.						
68046 MASHI BAIH R	But Room		br				

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FF - Fireproofing, CT - Cailing Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-aggressive

	Calibration (L/min) Rotometer Setting				
Pump No.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
123.2	9,8	9.3	10 5		1/25/41
1224	10.1	9,4	10.0		1
1682	9,3	9,3	10.0		
1229	9.5	9,5	10.0		
1669	9,7	10,2	10,0		
1672	9,5	10,3	10.0		1
Name of Cal	ibrator GILIAN	GILIBEATER	PELL H	5972-H	

70	Pator GILIAN		e: Nachieat	
			NG INFORMATION	ples)
itilation:	_ Local E	xhaust	<u> </u>	a _ None
Prote	ratory Protective Clothing s es/Face Shield	ve Equipm	Туре	:

95% Upper Confidence Limit

95Z UCL - measured value + measured value (upper boundryZ)
(fibers/cc) (fibers/cc) 100
- F/CC + F/CC (213Z)
100

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT
Difference between total number of fibers counted <2.77 x F x CV = ACCEPT
where F = average of two fiber counts
CV = relative standard deviation from intralaboratory
quality control chart

Airborne	Fiber Con			•
		fibers	fibers(blank)	x 385 mm²
			fields(blank)	
		1000 x 1	pm x minutes x	.00785 mm

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Joh No.:			Client: //	SATHAM A	- 5/	ZINIC	UB	 العما	N 1
			Client: [18ATHAWA - SPEING UPING N Sample Location:						
			Samples Collected by: Analyze For:						
Collection Method	:								
Sample Media:			Let No:						
Sample Media:				UNCCOPIC	50	אואט	d	207	
			APLE DATA					•	
Sample No.	128142	108141			Τ		T		
	1682	1232		 	+-		十		
	0850	0850		 	+		+		
Time On Time Off	1240	1240		 	+		十		
Total Time (min)		230		1	十		十		
Flow Rate (LPM)	10.0	9.7		1	+		_		
Volume (liters)	2300	2231		1	+-		\top		
Employee Name/ID				1	_		1		
Results F/CC				·	十一		十		
Fibers/Fields					1		十		
Fibers/mm ²					+		1		
Detection Limit					+				
95% UCL		<u> </u>			1		\top		
Analyst					1				
QC Recounts (F/CC)		1		1	1	•	1		
QC Analyst								-	
RUMULET during	nd USC4 Simapeing		REYENTED E LOCATION	• 19hter	ocation	rype	hase	Satemen	Sampling
Sample 6 108142 RED E			uma locat a		7	F	<u>ā</u>	, ₹.	NA

Sample 6		11019	Loca	Type	Phas	Abat	Samp
68142	BED ROOM - Sans pring lord NA	5'		A			NA
1.8141	LIVING 1200m 45 1/05/91	5'		A			NA
						<u>L</u> .	
							1
						J	}

Location: W = Work Area, O = Outside/Perimeter

Type: G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase: S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement: FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling: AG - Aggressive, NA - Non-aggressive

ŀ	70°F Calibratio	on (I./min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use		Post-Use	Date
1682	9,9		10.0		1120/91
1232	9,8		10.0		1/20/41
					•
Name of Calit	FREDE GILIAN	GILIBURTER	CELL H	5972-4	<u></u>
	70° F	_			_
emp.:	10 7	Pressure:		R	H:
Ventilation:		Exhaust			
Prote	ctive Clothin			e:	
Glove	s les/Face Shiel		Тур	e:	
Ear E	rotection	.			
		None	IVE CE SSHAY		
		· · · · · · · · · · · · · · · · · · ·			
dotameter Flow	Correction				
	·	tual (Tactual	<u> </u>		
Pactual = Qind PSI Upper Conf PSI UCL = meas (f:	licated Pca Pac lidence Limit sured value +	measured value (fibers/cc)	•	ndry%)	

Airborne Fiber Concentration

F/CC =

fibers / fields | fields(blank) | 2 | 385 mm²

1000 x 1pm x minutes x .00785 mm²

quality control chart

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.3.2	Client: USATHAMA
Program Manager: B. MARSTRI	Sample Location: Spuing Valley Unit 208
Date: 25/9/ Shift: DAY	Samples Collected by: A. Mclussick / P. Pastone
Collection Method: AHERA	Analyze For: AIRBOZNE Ashashos (TEM)
Sample Media: 0,454 Mor	LOT NO: MUCHOJONE 819 004 G 27 OL
,	UNACCUILIAD WAIT # 208

SAMPLE DATA

Sample No.	68036	68037	48038	68039	68040	68041
Pump No.	1663	1227	1668	1249	1961	1246
Time On	1103	1103	1103	1103	1/03	1103
Time Off	1543	1543	1543	1543	1543	1543
Total Time (min)	280	280	280	28€	280	28t
Flow Rate (LPM)	1001	9,8	9,8	9,8	10.4	10,2
Volume (liters)	2828	2744	2744	2744	2665	2613
Employee Name/ID	-					
Results F/CC						·
Fibers/Fields						
Fibers/mm ²						
Detection Limit						
95% UCL						
Analyst					1	
QC Recounts (F/CC)					* 1	
QC Analyst		\				
6 Corrected for	tery (havye. SAMPLE	LOCATION	ah t	stion	se tement

Samp Sample # NA SIDE WALL Both son Winda LIV. HE ROOM; 68037 DEST WASHER Connection NA Ktilion . A 68038 CENTER NA MASTER BED NA BATHROOM io8039 A A 198040 NA KITCHEN OUT SIDE STOOP NA 68041 OUTSIDE Stopp

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abstement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-aggressive

68042 FIELD BLANK

	Calibratio	on (L/min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1663	10,3	9. 8	10.0		1/25/91
1227	10,0	9,6	10.0		123/7/
1668	10.1	9,5	10,0		
1249	10.0	9.5	10,0		
1961	10.2	10.5	10,0		
1246	10.0	10.3	10.0		1
Name of Cali	brator Gili	BHATOR - Cell	5972-1	4	

Temp.:	70	Pressure:	RH:
		,	
		PERSONAL SAMPLING INFO	ORMATION
		(Complete if collecting pers	sonal samples)
		·	
Ventila	ation:	Local Exhaust // Ger	neral Area None
_	Respira	atory Protective Equipment	Туре:
	Protect	tive Clothing	Type:
	_ Gloves		Type:
	_ Goggles _ Ear Pro	s/Face Shield otection	
		Nove	NECESSARY
Rotamete	er Flow (Correction	·
		rated Pactual (Tactual)	
Qactual	- Qindio	cated Pactual Tcal	
957 1700	er Confi	dence Limit	
A CODE	er Conti	rence wante	•

95% UCL - measured value + measured value (upper boundry%) (fibers/cc) (fibers/cc) 100 - F/CC + F/CC (2132)100

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F - average of two fiber counts CV = relative standard deviation from intralaboratory

quality control chart

<u>Airborne</u>	Fiber Con	centratio	<u>n</u>	•
		fibers	fibers(blank)	x 385 mm²
	F/CC -	fields	fields(blank)	
		1000 x 1	pm x minutes x	.00785 mm

₽₹
75
7
2

	į				CHAIN OF COS	HAIN OF COSTOD ! RECORD				
PROJECT NO.	PROJECT NAME	VAME					PAI	PARAMETERS	INDUSTRIAL	\searrow
5510.3.2	USA THAM A	AM,		42	Spring UAlley, NY	\$ 55			HYGIENE SAMPLE	AMPLE
SAMPLERS: (Signature)	rej			a)	(Printed)	1 3 NI	\ \ \	\ \ \ \ \	/ DNOCOPIED	2000
ale Mario	isul			Y	Alton M McKissick	INOS	\ \ \		ON! # A	, Š
FIELD SAMPLE NUMBER	DATE TIN	TIME	COMP.	8ARD	STATION LOCATION	10 ON 00 ON				
68036	b s7 ,		7	7	LIVING ROOM	1 1		>	1/01= 2828.6	
68031					K1tche.	- 7		7	THILE = 101	
88089				_	MASTER Bed Rowin	1 1		<i>></i>	VOL = 2744 1	7
68039					BATH Doom	1 1			YHLE = 1011	0
01019					Outs, DE	1 1		7	VOI = 26652	
1,5089			4		OUTSIDE				Vol = 2613A	4
68012	1		1	H	BANK	-				
			+							
Relinquished by: (Signature)	ned by: (Signature) Juffel Time Make Time Make Time Make 1/26/	gate /	Time	Received by: (Signature)	Relinquished by: (Signature)	Signature J	Date / Time	Received by: (Signature)	(ure.)	
(Printed) Albo M McKissick	-1881.K	FIDIEX PICK UP & Browned pa	D (h	FIZDIEY PICK UP & Browing mass	(Printed)	(Printed)			(Printed)	
Relinquished by: (Signature)	nature)		Date	Date / Time		Date / Time	Remarks ANALYS IF ANY ONE	Remarks ANALYSE 68036 IF ANY ONE OF Th	7036 - 68039 FILST, The Fook 13 > 0,005/hr	F1255,
(Printed)		·			(Printed)		and the	ante proto-broad	7 50	

2	1	֝֝֝֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
į		į
2	Į	
Ì		ı
į)
Ì	Š	

PROJECT NO	PROJEC	PROJECT NAME	<u>_</u>					V	ſ
5510,3.2	1,547	O WATH AMO		V	THE THE PAINT OF THE P	/ /	PARAMETERS	HYGIENE SAMPLE	7-
	2	The Car	ا	`[THE CHILLY CHILD TO	1		HOUSING UNIT	
SAMPLERS: (Signature)	re)	,			(Printed)	WIN NID		TR 7	
BOL MMcKirci	lisen				ALPON M MCKISSICK			REMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	SARD	STATION LOCATION	20 ON	3////	(UNOCCUPIED)	
724189	14m/1		7		LIVING ROOM	1	: 1%	Vol= 23002	
ph087	1652/1				5		101	J 0645 =	
14189	13/07/,				Amber Bul Laun		V	Vol = 22315 Am	
92089	1/25h						- 10N	1= 2366.1	
12089					OUNSIPE	-	Vo	Vol = 2278 &	-
680ds	7		Z				7	Vol = 2256.f	
68049	1/24/			H	BLANK				
Relinquished by: (Signature)	gnature)	1/2,	1/28/91	/ Tir		Relinquished by: (Signature)	Date / Time Re	Received by: (Signature)	
Plan M McKISUK	cKisni		Fid (, pick v Brok 1	154 C	- 3	(Printed)	d)	(Printed)	
Relinquished by: (Signature)	gnature)		Date /	/ Time	me / Received for Laboratory by: (Signature)	Date / Time Remarks And C.804	43c (08142, 680	Analy 3 C (08142, 68044, 68141, and 6,8046 FIRST. IN ANY ONE 13 THE	
(Printed)					(Printed)	70,0	osfle, Analyz	, 6804" - 68044.	
									1

PROJECT NO.	PROJECT NAME	NAME	غ ا	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SPRING UALLOY UNIT # 205	# 205 #	PAI	PARAMETERS	INDUSTRIAL HYGIENE SAMPLE
SAMPLERS: (Signature)					(Printed)	A3N		/////	/ HOUSING UNIT
ale mucking	Kirel		,		Alton M. M. K. SSUK	PINO			# 203 REMARKS
FIELD SAMPLE NUMBER		TIME	COMP.	8ARD	STATION LOCATION	90 ON			(December)
05089)	16/07/1	1	1	7	LIVING ROOM	1		Not	1 = 2107L
15089				K	KitcHEN	1		2/1	Vol = 3064 1
68052				~	Master Bod Room	1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vol = 2189 Q
68083						1		<i>></i>	Vo1 = 20642
45089					Octside, FURNIKE RINSA	1		>	VOI = 2215 L
55089			7		ς.	_			Vo1 = 2143 &
95089	1			×	BLONK	-			
		+-							
									-
Relinquished by: (Signature)	gnature)		9/9/	/28/9	Received by: (Signature)	Relinquished by: (Signature)	Signature)	Date / Time	Received by: (Signature)
(Printed) Alton M McKissick	KISSICK	2776 1840	DAY - Bu	Burch EX	- Barthauprinsed) F. Connial Tuckett	(Printed)			(Printed)
Relinquished by: (Signature)	gnature)		Date /	Date / Time	Received for Laboratory by: (Signature)	Date / Time	Remarks BNM YZE If any ON 15	IN 725 68	(8050 - 68053 Bis)
(Printed)					(Printed)		analyse	•	, 450%

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

The Materials Characterization Specialists

Spring Valley, NY

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6743

ATTN: PAM HILLIS

REPORT DATE:

JANUARY 30, 1991

SAMPLE REJEIPT DATE: JANUARY 29, 1991

RU LEE GRP. JCB NUMBER: ATW-101063

CLIENT JOS NUMBER:

5510.3.2

PURCHASE CROER NUMBER: 01-61-60536

ANALYSIS: AIREGRNE ASSESTES ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MUNDATORY METHOD)

SAMPLE INFORMATION

	RJ LEE	CLIENT		AIR VOLUME	CASSETTE DIAMETER	COWL LENGTH	CONDUCTIVE
	SAMPLE #	SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	COMP
				•		********	•••••
∞	2066055	68036	LIVING ROOM	2822	25	50	YES
Ü	296605 -	62137	KITCHEN	2744	25	50	YES
(70 56057	SE056	MASTER BED ROOM	2744	25	50	YES
_	2066058	68039	BATHROOM .	2744	25	50	YES
· =	2066059	62040	CUTSIDE	2665	25	50	YES
	2056060	68041	CUTSIDE	2613	25	50	YES
	2066061	62042	FIELD BLANK	0	25	50	YES
	2066062	68 142 043	LIVING ROOM	2300	25	50	YES +ypc
_	2066063	68044	KITCHEN	2490	25	50	YES
`~	2060064	68 :41 c = <u>1</u>	MASTER BED ROCH	2231	25	50	YES THE
2	2066065	68046	BATHROOM	2366	25	50	YES
_	2055066	7-086	CUTSIDE	2273	25	50	YES
ξ	2060067	62048	CUTSIDE	2256	25	50	YES
•	2056068	68049	FIELD BLANK	0	25	50	YES
	2000069	68050	LIVING ROOM	2107	25	50	YES
	2000070	58051	KITCHEN	2064	25	50	YES
<u>,</u>	2086071	6805Z	MASTER BED ROOM	2129	25	50	YES
	2066272	68053	BATHROOM	2064	25	50	YES
	2055073	68054	CUTSIDE, FURNACE ROOM STOOP	2215	25	50	YES
-	20550774	63055	SUTSIDE, FURNACE ROCH STOOP	2193	25	50	YES
•	20aa87 5	68 05 6	FIELD BLANK	э	25	50	YES

TEM CPERATOR-ANALIST

THOMAS DAGENHART, M.S.

LABORATORY MANAGER

NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE FLE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

P.J. Lee Group, Inc. • 10366 Sattleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY CA

MONFOEVILLE, PA

WESTERN NY

RI Lee Group

The Materials Characterization Specialism

Spring Valley, MY

LABORATORY REPORT ***********

VERSAR, INC. 6850 VERSAR CENTER

703-642-6743 ATTN: PAM HILLIS

SPRINGFIELD, VIRGINIA 22151

REPORT DATE:

JANUARY 30, 1991

SAMPLE RECEIPT DATE: JANUARY 29, 1991

RU LEE GRP. JCB NUMBER: ATW-101063

CLIENT UCS NUMBER:

5510.3.2

PURCHASE DROER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00662 SQ MM DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) : TEM ACCELERATING POTENTIAL: 100 KV TEM: PHILIPS CM12

1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

ASSESTOS STRUCTURES DETECTED WITH ASPECT RATIO > 5 : 1

					WITH AS	PECT RATIO >	5:1,	٤	SEESTOS	A	SBESTOS	TYPE(S) OF
	ANALYTICAL	GRID	Dira-	AREA	SCA	RTED BY LENG	TH	S	TRUCTURE	s	TRUCTURE	ASBESTOS
RJ LEE	YTIVITIZKEZ	CPENINGS	TIGN	CESYJANA	********		• • • • • • • • • • • • • • • • • • • •	٥	YTIZKE	CCN	CENTRATIO	N STRUCTURE
SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SC MM)	>.5- <5 UM	>= 5.0 UM	TOTAL	(\$	TR/MM^2)	(STR/CC)	DETECTED
2066055	0.00/1											
	0.0041	2	1.0	0.0331	0	0	٥	<		<	••••	NONE DETECTED
2066056	0.0042	3	1.0	0.0331	τ	а	1		30.21		0.004	CHRYSOTILE
2066057	0.0042	5	1.0	0.0331	0	1	1		30.21		0.004	CHRYSCTILE
2066058	0.0042	5	1.0	0.0331	2	0	2		60.42		800.0	EJITOZYRKO
2066057	0.0036	6	1.0	0.0397	0	0	۵	<	25.18	. <	0.004	NONE DETECTED
1966060	0.0037	6	1.0	0.0397	0	0	Q	<	25.18	<	0.004	NONE DETECTED
1266061	NOT APPLICABLE	10	1.0	0.0662	0	٥	0	<	15.11	N	OT APPL.	NONE DETECTED
066062	0.0642	6	1.0	0.0397	0	0	0	۲	25.18	<	0.004	NCHE DETECTED
260063	0.3047	5	1.0	0.0331	0	0	٥	<	30.21	<	0.005	MONE DETECTED
26606-	0.0043	6	1.3	0.0397	a	a	0	<	25.18	<	0.004	NONE DETECTED
366065	0.3049	5	1.0	0.0331	Ĵ	0	a	<	30.21	<	0.005	NONE DETECTED
166056	HOT ANALYZED	0	1.0	0.0000	0	0	٥	40	T ANAL.	NO	T ANAL.	NOT ANALYZED
166067	MEZYJANA TON	0	1.0	0.0000	0	0	٥	NO	T ANAL.	NO	T ANAL.	NOT ANALYZED
1660 58	NCT APPLICABLE	10	1.0	0.0662	0	0	0	<	15.11	NO	T APPL.	NONE DETECTED
66069	0.3046	6	1.0	0.0397	1	0	1		25.18		0.005	CHRYSCTILE
60070	0.0047	5	1.0	0.0397	0	٥	0	<	25.18	<	0.005	NONE DETESTED
66077	0.0046	6	1.0	0.0397	0	0	0	<	25.18	<	0.005	NONE DETECTED
56072	0.0647	6	1.0	0.0397	٥	a	٥	<	25.18	<	0.005	MONE DETECTED
56073	0.0044	6	1.0	0.0397	Q	G	σ	•	25.18	<	0.004	NONE DETECTED
56074	0.0044	4	1.0	0.0397	٥	0	σ	<	25.18	<	0.004	NONE DETECTED
36075	NCT APPLICABLE	10	1.0	0.0662	1	0	1		15.11	NC	T APPL.	CHRYSCTILE

PAGE 2 OF 3

RJ Lee Group, Inc. 10366 Bartleview Parkway, Manassas, VA 22110 . 703/268-7880 703/368-7761-FAX BERKELEY CA MONROEVILLE, PA WESTERN NY

NIKE NY 01 TAPPAN, NEW YORK

TAPPEN FHU FLOOR PLAN

		•		
		-		_
Page	_/	o£	1	

68021

BLANK)

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.3.2	Client: USATHAMA
Program Hanager: B. MAGSIRI	Sample Location: UNIT 402 - NANUSTAPSAN
Date: 1/24/40 Shift:	Samples Collected by: A, Millissiele /P. Costone
Collection Method: AHERA	Analyze For: AIRBORNE ASKNISTO'S
Sample Media: 0.45 MCE	LOT NO: NUCLEOFOLE 814 004 4270L
	UNCCOPIED UNIT IL 40%

SAMPLE DATA

Sample No.	68015	68016	68017	6801	68019	68020
Pump No.	1663	1961	1668	1249	1682	1246
Time On	1109	1109	1109	1109	1109	1109
Time Off	1434	1434	1435	1436	1438	1438
Total Time (min)	305	205	206	207	208	208
Flow Rate (LPM)	9.8	9,9	9,8	9,5	9,6	9,7
Volume (liters)	2009	2030	2019	1967	1846	1866
Employee Name/ID		-	_	-	_	-
Results F/CC				·		·
Fibers/Fields						
Fibers/mm ²						
Detection Limit						
95% UCL						
Analyst						
QC Recounts (F/CC)						
QC Analyst						
al corrected for	temp.	differentea	j		Ę	200

Sample #	SAMPLE LOCATION	leight	Locatio	Type	Phase	Abateme	Samplin
68015	LIVING IRON (BY WINDOW' SIDE WAIL)	5'		A			HA
68016	KITCHEN (UNDER CARVINETS)	5		14			NA
68017	MASTER BED ROOM (BAIK WALL)	5		A			NA
68018	BATH ROOM	5'		A			AIA
66019	OUTSIDE (IN FROM OF SHED).	5'		A			NA
68 020	DUTSIDE (IN PROXT OF SHEN)	5		H			NA

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles.

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-appressive

	Calibratio	on (L/min)	Rotomete			
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date	
			10			
1663	9,9	4.6	10		1/24/91	
1901	10,0	9.7	10			
1668	9,9	7.6	10			
1249	9.6	7.3	10			
1682	9.7	9.4	10			
1246	9.8	9.6	10		1	
Name of Cali	brator 61	LIBRATOR: C	pheretica c	ELL# 597	a. H	

Temp.:	70°F Pressure	: RH:	
	PERSONAL SAMPLING (Complete if collecting		
Ventilation:	Local Exhaust	✓ General Area None — None	<u> </u>
Prot Glov Gogg	iratory Protective Equipme ective Clothing es les/Face Shield Protection	Type:Type:Type:	
Rotameter Flo		ione REBULERID	
Qactual - Qin	dicated Pactual Teal		
95% UCL - mea (f	fidence Limit sured value + measured val ibers/cc) (fibers/cc) C + F/CC (213%)		

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F = average of two fiber counts

CV - relative standard deviation from intralaboratory quality control chart

Airborne	Fiber Con	<u>centrati</u>	OTI			•
		fibers	fibe	ers(blank)	x 385	mm ²
	F/CC -	fields	fiel	ds(blank)		
		1000 x	lpm x	minutes x	.0078	5 mans

٠	no.	ι	
Page		of	

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.32 Client: USATHAMA - TAPPAN Program Hanager: B. MAESTICI Sample Location: UNIT Date: 124/91 Shift: PAY Samples Collected by: Mikissick / 1557075 Collection Method: AHRICA Analyze For: ANDBORD ASAGSTOS (TEM) Sample Media: 0,454 MCE Lot No: Nuclean 819/004 G27 UNOCCUPIAD UNIT 11403.

SAMPLE DATA

68028

FIGLD

						
Sample No.	68022	68023	68024	68095	68036	68027
Pump No.	1678	1232	1669	1224	1672	1229
Time On	1158	1158	1158	1158	1158	1158
Time Off	1530	1530	1530	1570	1530	1530
Total Time (min)	212	212	212	212	212	212
Flow Rate (LPM)	9.6	9.7	9,5	9,9	10,0	9,5
Volume (liters)	2035年	2056 8	2014 l	2099 l	19798	18811
Employee Name/ID				_	-	
Results F/CC						·
Fibers/Fields						<u> </u>
Fibers/mm ²						
Detection Limit						
95% UCL					<u> </u>	<u> </u>
Analyst					<u> </u>	
QC Recounts (F/CC)					, .	
QC Analyst						1
W corractel For	Tomp a	lift siente	i (···	E C	in the

Sample #	SAMPLE LOCATION	leight	Locatio	Type	Phase	Abateme	Samplin
68022	LIVING ROOM (SIDE WALL Botelian Window	5'		A			NA
68022	KITCHEN (BY WASHER HODICUP)			A			MIT
68034	Bodroom (MISTER BIZ, MIDDLE)			A			MA
68025	BATHROOM (FRONT OF SINK)			1+			NA
68026	OUTSIDE (KITCHEN STOOP).			A			NA
68087	DUTSIDE (FIRMT OF SHED)	1		A			NA

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Cailing Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-appressive

	Calibratio	n (L/min)	Rotomete		
PUMP NO.	Pre-Use	Post-Use	Pre-Use		Date
11:78	9.7	9.5	10.0		1/24/91
1232	9.7	46	10.0		
1669	9,8	7. /	10.0		
1224	9,9	9.8	10.0		
1672	9,9	10.1	10,0		
1239	9,3	9.7	10.0		
Name of Calit	orator GiliAN	GILIBANTON;	Bussell (c)	N, 1311 #	5972-11

Name of	Calibrator	GILIAN	GILIBRATCA;	BUBOLD	(1) NI,	1211 E	5912-11
Temp.:	70°F		Pressure:				RH:
	(C a		ONAL SAMPLING			les)	
Ventila	tion:	Local	Exhaust	_ Genera	l Area		None
	Respiratory Protective Gloves Goggles/Fac Ear Protect	Clothin e Shiel		t	Type: Type: Type:		
	r Flow Corre		1. Tactua				
95% Uppe	r Confidence	Limit		-			

95% UCL - measured value + measured value (upper boundry%) (fibers/cc) (fibers/cc) 100 = F/CC + F/CC (2137)100

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F - average of two fiber counts

CV - relative standard deviation from intralaboratory quality control chart

Airborne	Fiber	Concer	ntration
----------	-------	--------	----------

fibers fibers(value)

fields fields(blank) fibers(blank) x 385 mm² F/CC - fields 1000 x lpm x minutes x .00785 mm

DELLII NO. Page _ of UNIT 416

> 68035 FIELD BUNK

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510,3,2 Client: USATHAMA TAPPANNY Program Hanager: B MARSTRI Sample Location: UNIT 416 Date: 1/24/91 Shift: DAN Samples Collected by: McKissick / CESTONE

Collection Method: AITIZICH ANALyze For: AIRFOCNE ASBESTES (FRAN) Sample Media: 0.454 MIE Lot No: 819 1004 G27 OL (Nucleuione)

UNIT # 416 UNOCCUPIER

SAMPLE DATA

Sample No.	68029	68030	68031	68032	68033	68034
Pump No.	16.82	1961	1668	124	:663	1249
Time On	1455	1455	1455	1455	1455	1455
Time Off	1820	1820	1820	1820	1820	1520
Total Time (min)	205	205	205	205	205	205
Flow Rate (LPH)	9.4	9,7	9.6	9,4	9.4	9,8
Volume (liters)	1927	1986	1968	1927	1896	1877
Employee Name/ID	-	_			_	
Results F/CC						·
Fibers/Fields						
Fibers/mm ²						<u> </u>
Detection Limit						<u> </u>
95% UCL	<u> </u>					
Analyst		<u> </u>			<u> </u>	<u> </u>
QC Recounts (F/CC)						
QC Analyst						
CONNECTED FUN	TIZUNARKI	toute d	Algorithm)		u o	ent ng

Sampli SAMPLE LOCATION rype Sample # LINING RM Botevean window, sido NA 68024 NA 65050 KITCHLTU IN FROMS OF WASHING HOWING 68031 MASTER BEDDRUGA NA CENTEU N A 68033 BATHROOM A 12035 SUTSIDE Α NP N FILOUT OF SHED Norsine 68034 SHED NA IN FRONT OF

W - Work Area, O - Outside/Perimeter Location:

G - General Area, P - Personal, A - Ambient, B - Field Blank Type:

Phase: S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles, Abatement:

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

AG - Aggressive, NA - Non-appressive Sampling:

	Calibratio	on (L/min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1011	` ¬	9 ->			1/21/1-
1961	<u> </u>	1./	10,0		1/24/91
1249	9.3	10,2	10 0		
16.63	9.6	10.1	10.0		<u> </u>
1668	9.6	9.6	10.0		
16.82	9.4	9.4	10,6		
1246	9.6	9.7	100		V
Name of Calit	rator GIL	1 BRATOR:	CFLL # 5	-972 - H	

Temp.: 70	Pressure:	RH:
	PERSONAL SAMPLING IN (Complete if collecting pe	
Ventilation:	Local Exhaust G	eneral Area 🖊 None
Protect Gloves Goggle	atory Protective Equipment tive Clothing s/Face Shield otection	Type: Type: Type:
		NONE REGULTED
Rotameter Flow Qactual - Qindi	Pcal. \ (Tactual)	
(fit	dence Limit red value + measured value (ers/cc) (fibers/cc) + F/CC (2137)	upper boundryI) 100

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT

where F - average of two fiber counts

CV - relative standard devistion from intralaboratory quality control chart

Airborne	Fiber Cond	<u>centratio</u>	n			•
		fibers	fibers(blank)	x	385 ¤	m²
	F/CC -	fields	fields(blank)			
		1000 x	DO Y MINUTES Y	. (00785	TOTAL STATE OF THE PARTY OF THE

PROJECT NO.	PROJECT NAME	NAME	<u></u>				DABAMETERS	INDUSTRIAL
5510,3,2	USATHAMA	THA	ダイ	1	TAPYAN, NY	2 2	CONTRACTOR	HYGIENE SAMPLE
SAMPLERS: (Signeture)	re)			(P	(Printed)	INS WINE		TAPPAN HOUSING
and much	Kin	1	:		Alton M MILISICK	JA JANOS		CIVIT T+ YOU BEMARKS
FIELD SAMPLE NUMBER	DATE	TIME	COMP	8 A RD	STATION LOCATION	bysty so on	/ / / on	UNOCCUPIEN UNIT
51089	1/24/1		4	7	LIVING PROM	-	> 19/1	101 - 2009
21089	-				KITChen		- 0	= 2030
1089				_	Myster Bed Room		i	= 2019
81089								! ,
68019				7	DUTSIDE - IN FRONT YSE		70/	9/181 =
02087			\angle	ğ	Outsile - IN FREIT of Shed			= 1866
12087	7				Blank	-	4/N	4
Relinquished by: (Signature)	mature)		Date /	Tige 1	Received by: (Signature)	Relinquished by: (Signature)	Date / Time	Received by: (Stanature)
at mercessing	han	/2.	16/5	152/61				
Albu M. M. K. Ssick	Kisuk		Fed IEX PILK UP OT DAY	FAIX		(Printed)	(Printed)	(pa)
Relinquished by: (Signature)	mature)		Date / Time	Time	Received for Laboratory by: (Signature)	Date / Time Rem	AIVALYZE 6801	68018 FIRST. 5 7 0,005 Blc.
(Printed)					(Printed)	due	anulyse 60011 - 500 100 754 + 654,	17 120 05 05 05 05 05 05 05 05 05 05 05 05 05
	,	`						

Distribution Original Plus One Accompanies Shipment (white and yellow), Copy to Coordinator Field Files (pink)

PROJECT NO.	PROJECT NAME	NAME					DAD AMETEDS	INDUSTRIAL
55.0.3. 1	CSATARM A	AD E	<u> </u>	١	TAYIAN, NY		Anametens	8
SAMPLERS: (Signeture)	1			ď	(Printed)	THE BANK		TAPIAN HOSING
All M. M. Kersi	Lisin	8			ALL M. M. KISSICK	\ /		REMARKS
FIELD SAMPLE NUMBER	DATE T	TIME	COMP	8AR2	LION LC	10 ON	o / / or	UNACUPIED UNIT
72087	[v]/x1],		_	7	LIVING ROOM		101 =	2035 A 2035 R
68033					Kitchen		= 101	2056 L
45089		!	_	· ·	MASTAN BRONDON	-	_	= 20142
68025					BATH RODIN		101	= 20991
92029				<u>a</u>	DUTSIDE (KITCLE Storp)		1,7/	76661 =
68027				ō	OUTSIDE (SHED PLATFORM)	1	< 10/	J 1881 =
82039	-{				BLANK	-	,	W/A
Relinquished by: (Signature)	nature)	`	Date /	Date / Time	Received by:	Relinquished by: (Signature)	Date / Time Rece	Received by: (Signature)
al.	MMcKean	· \ \	652/	75	William Joseph	(Protect)	g	170
Alba M. McKISICK	KISICK	3 5	Pick Co	i nt INT	Defores of	(Calling O	(Frinted)	(60)
Relinquished by: (Signature)	mature)		Date	Date / Time	Received for Laboratory by: (Signature)	Date / Time Remarks AN	TE ONE OF THEIN IS 7	7 0,005 B/C,
(Printed)					(Printed)	ASC 19	and <54	8 TYVE OF 056-16
	,					1 1- 1-1		

Distribution Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

PROJECT NO.	PROJECT NAME	NAME			74	PARAMETERS	INDUSTRIAL
5510,3,2	USATHAMA	FHAV	4	- TAPPAN, NY	4		\$
SAMPLERS: (Signature)	i	,			JUST SAVE		TAPPEN TOUSING
ale mnek	chis	7		Albu M Mikissik	2 INO		
FIELD SAMPLE NUMBER	16	TIME	COMP	STATION LOCATION	10 St 10 St	1/100	(UNOCCUPIED TENTINE
be081	16/12/1			LIMMO HOUM		1/0/1 =	Nol = 1927 &
05029				KITCHEN		10/=	Vol = 1986. D
18089				MASTER BED ROOM		10/1	No1 = 1968 D
68032				BATH ROOM		- 10V	- 1927.l
63033				Outsine - 4+ Shull		: /ºK	Yol = 1896-6
68034			7	1 Loursion - 41 Shad 1		\o\	Vol = 1877 A
68035	7			BLANK		,	
Relinquished by: (Signature)	moture)	/ Date //2/9/		ime Received by: (Signature)	Relinquished by: (Signature)	Date / Time Rece	Received by: (Signature)
Alton M. W. K. S. C.K.	Losch		622	AT DRION-5 SWIKS "	(Printed)	(Printed)	nted)
Relinquished by: (Signature)	gnature)		Date /	/ Time Received for Laboratory by: (Signature)	Date / Time Remarks A	Remarks ANMITZE 68029- 68032 FF ANY ON 15 > 0.005819	1- 68032 61657. 005 8/19 Ans/18
(Printed)				(Printed)	() () () () () () () () () ()	o adk 1 B m	of Astritos

Distribution Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

RJ Lee Group Tappan, NY

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC.

6350 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

************ REPORT DATE:

JANUARY 31, 1991

SAMPLE RECEIPT DATE: JANUARY 20, 1991

RU LEE GRP. JCS NUMBER: ATV-101057

CLIENT JCS NUMBER: 5510.3.2

PURCHASE CROER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASSESTES ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION

RJ LEF	CLIENT		AIR VOLUME	CASSETTE DIAMETER	COWL LENGTH	CONQUETIVE
SAMPLE #	SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	CCYL
2055988	68015	UNIT #402: LIVING ROCH	2009	25	50	YES
2065989	61086	UNIT #402: KITCHEN	2030	25	50	YES
2065990	68017	UNIT #4GZ: MASTER BEDROOM	2019	25	50	YES
2065991	81086	UNIT #402: BATHROOM	1967	25	50	YES
2065992	68019	UNIT #402: OUTSIDE - IN FRONT OF SHED	1846	25	50	YES
2055993	68029	UNIT #402: CUTSIDE - IN FRONT OF SHED	1866	25	50	YES
2065994	68021	BLANK	0	25	50	YES
2055995	68022	UNIT #403: LIVING ROOM	2035	25	50	YES
2065996	68023	UNIT #403: KITCHEN	2056	25	50	YES
2065997	68024	UNIT #403: MASTER BEDROCH	2014	25	50	YES .
2065998	68025	UNIT #403: BATHROOM	2099	25	50	YES
2065999	68025	UNIT #403: CUTSIDE (KITCHEN STOOP)	1977	25	50	YES
2056000	68027	UNIT #403: OUTSIDE (SHED PLATFORM)	1881	25	50	YES
2066001	82029	BLANK	G	25	50	YES
2066002	68029	UNIT #416: LIVING ROOM	1927	25	50	YES
205e003	62030	UNIT #416: KITCHEN	1986	25	50	YES .
2056004	12056	UNIT #416: MASTER BEDROCH	1968	25	50	YES
2066005	68032	UNIT #416: BATHROOM	1927	25	50	YES
1056006	68033	UNIT #416: CUTSIDE - AT SHED	1896	25	50	YES
7,256400	6803 4	UNIT #416: GUTSIDE - AT SHED	1877	25	5C	YES
205c20 3	68035	SLANK	٥	25	50	YES

TEM OPERATOR-ANALYST

THOMAS DAGENHART, M.S.

LABORATORY MANAGER NVLAP SIGNATORY

YEAR ACCREDITATION NUMBER 1208-3

LEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group, Inc. 10366 Battleview Parkway, Manassas, VA 22110 . 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

KI Lee Group

The Materials Characterization Specialists

Tappan, MY

LABORATORY PEPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

JAHUARY 31, 1991

SAMPLE RECEIPT DATE: JANUARY 28, 1991

RU LEE GRP. JOB NUMBER: ATU-10:057

CLIENT JCB NUMBER: 5510.3.2

PURCHASE CROER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASSESTES ON MIXED DELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00662 SQ MM

TEM ACCELERATING POTENTIAL: 100 KV TEM: JECL 100 CX II

DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) :

1 ENERGY DISPERSIVE X-RAY ANALYZER: TRACOR NORTHERN

ASSESTES STRUCTURES DETECTED

						WITH ASP	ECT RATIO >	5:1,	ASSESTOS	ASSESTES	TYPE(S) OF
		ANALYTICAL	GRID	DILU-	AREA	SCR	TED BY LENGT	78	STRUCTUR	E STRUCTURE	ASSESTOS
	RJ LEE	SENSITIVITY	OPENINGS	TICH	ANALYZED	**********			DENSITY	CONCENTRATIO	N STRUCTURE
	SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UM	>= 5.0 UM	TOTAL	(STR/MM^2	(STR/CC)	DETECTED
							.,	••••••			
	2065988	0.0041	7	1.0	0.0463	a	Q	Q	< 21.58	< 0.004	NONE DETECTED
	2065989	0.0041	7	1.0	0.0463	1	0	1	21.58	0.004	CHRYSCTILE
٨	2065990	0.0041	7	1.0	0.0463	¢.	0	0	< 21.58	< 0.004	NONE DETECTED
0	2065991	0.0042	7	1.0	0.0463	٥	0	Ĵ	< 21.58	< 0.004	NONE DETECTED
4	2065992	NCT ANALYZED	0	1.0	0.0000	٥	0	0	NOT ANAL.	. NOT ANAL.	NOT ANALYZED
Ħ	2065993	NCT ANALYZED	0	1.0	0.0000	C C	0	0	NOT ANAL	. NOT ANAL.	NOT ANALYZED
_	2065994	NCT APPLICABLE	10	1.0	0.0662	Q_	0	0	< 15.11	NOT APPL.	NONE DETECTED
	2065995	0.3041	7	1.0	0.0463	1	0	1	21.58	0.004	CHRYSOTILE
ۍ د	2065996	0.3040	7	1.0	0.0463	a	٥	0	< 21.58	< 0.004	NONE DETECTED
	2065997	0.0041	7	1.0	0.0463	a	G	0	< 21.58	< 0.004	NONE DETECTED
0	2065998	0.9046	6	1.0	0.0397	0	a	Q	< 25.18	< 0.005	NOME DETECTED
4	2065999	NCT ANALYZED	C	1.0	0.0000	0	0	a	NOT ANAL.	NCT ANAL.	CESYLANA TON
¥	2066000	NCT ANALYZED	0	1.0	0.0000	0	0	٥	NCT ANAL	NOT ANAL.	CETYLANA TON
	2066001	NCT APPLICABLE	10	1.0	0.0662	σ	0	0	< 15.11	NCT APPL.	NONE DETECTED
	2066002	0.0043	7	1.0	0.0463	0	0	0	< 21.58	< 0.004	NOME DETESTED
	2966003	0.0042	7	1.0	0.0463	1	0	1	21.58	0.004	CHRYSCTILE
_	2066004	0.0042	7	1.0	0.0463	a	0	0	< 21.58	< 0.064	NONE DETESTED
9	2066005	0.0043	7	1.0	0.0463	G	a	0	< 21.58	< 0.004	NONE DETESTED
4	2066006	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	CETANALYZED
M	2066007	NOT ANALYZED	G	1.0	0.0000	O	0	0	HOT ANAL.	NOT ANAL.	CETANALATED
	2066008	NCT APPLICABLE	10	1.0	0.0662	a	0	0	< 15.11	NOT APPL.	NONE DETESTED

PAGE 2 CF 3

RJ Lee Group, Inc. • 10366 Bartleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX BERKELEY, CA MONRCEVILLE, PA WESTERN NY

NORTH SMITHFIELD SLATTERSVILLE, RHODE ISLAND

SLATERSVILLE FHU 1006 FLOOR PLAN

FK C! # 81.5510.007. DATE: 2/25/91

ישויוטו של בטיבטטן טובבן וח

PRECT # 61.5510.007. ■ DATE: 2/25/91

0

	No.	{	
Page	1	οĒ	1

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.3.2

Client: USATHAMI - SINITAPIDI, RI

Program Hanager: B MNESTRI Sample Location: UNIT I 1006

Date: 1/22/91 Shift: Day Samples Collected by: MIKSSIC / Crotone

Collection Hethod: AHAUIT Analyze For: AIRBORNE ADERSTOS

Sample Media: D. 45 M MEE Lot No: Nucleopore 819/004

Occupied unit see Haguery

SAMPLE DATA

	63008	68009	68000	68011	1.81	212	6801	13
ample No.	1246	1468	1249	1961		92	167	
ump No.	1345	1345	1345	1345		100	140	
Time On Time Off	1700	1700	1700	1700		715	17	
Total Time (min)		195	195	195		15	195	
low Rate (LPH)	9.7	9,8	9,5	9,4	9.		9:0	
olume (liters)	1892	1911	1853	1931	F ,	7/3	171	3
mployee Name/ID		_	1	-	1		_	-
esults F/CC					1		•	
ibers/Fields								
ibers/mm²								
etection Limit								
SI UCL								
nalyst					1			
Recounts (F/CC)								
C Analyst ·			<u> </u>	<u> </u>				
COURSIDE FOR TOMP	= 35° F		LOCATION	leight	Location	Type	Phase Abatement	Sampling
68008 LIVING EC	XTN (In F	ENUM PE 13	BIB LUINDOW) 5'		4		HA
18 009 KITCHIPN	LERIFEAN	E +0 D1	HING ICOM					44
5010 Bedroom	Cite o	LD SON'S A	20cm)					11_
COLL BATHROSE	(BESIN	SAIR)						11-
8012 10015:02	. TN 2	FRONT of	CAPHUE	1 1	i i	1 1		11
100131976	<u> </u>	CKON: of (++-

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Cailing Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-appressive

	Calibratio	on (L/min)	Rotomete	r Setting	_
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1246	9.8	9.6	10.0		1/22/9
, 249	4.6	9,3	1		1
1901	(0.0	9,7			
1682	9.7	9,4			
1668	9,9	9,0			1
1674	9.7	9.5	1		
ame of Cali	brator GILIAN	GILIBEA DR !	BUBBLE GENER	APOL CELL	5972 H

10,	<u> </u>		11 -	/			
Name of	Calibrator	GILIAN	GILIBEA DR ;	BURBLE	GENEPAPOL	CEU = 5972H	
Temp.:	70°C		Pressure:		·	RH:	
	(Co		NAL SAMPLING Collecting			;)	
Ventila	tion:	_ Local 1	Exhaust <u>/</u>	Genez	al Area	None	
	Respiratory Protective Gloves Goggles/Fac Ear Protect	Clothing e Shield	ive Equipment	:	Type:		_ _
			<u> </u>	ONE P	EQUILEP		
	r Flow Corre	/Pcal		<u>1</u>)			
951 UCL	r Confidence - measured v (fibers/c - F/CC + F/C	c) m	easured valu (fibers/cc)	e (uppe	er boundry	Ē)	

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F = average of two fiber counts

CV = relative standard deviation from intralaboratory quality control chart

Airborne Fiber Cond	entration		•
	fibers	fibers(blank)	x 385 mm ²
F/CC -	fields	fields(blank)	
	1000 x 1p	m x minutes x	.00785 mm

65007 FIFLD BLANK

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510, 3.2 Client: LISATHAMA - SMITHIFIELD RT

Program Manager: B. MARESTRI Sample Location: UNIT 1009

Date: 1/22/91 Shift: DAY Samples Collected by: Mckissick / Cestone

Collection Method: AHERA Analyze For: AIRBORNE ASBISSIOS

Sample Media: 0.454 MCE Lot No: Necleogers 819/00462704

VACANT

SAMPLE DATA

1232 1240 1600 200 9.7 1940	1669 1240 1600 200 9,5 1900	1240 1600 200 9.5 1900	1663 1240 1602 202 9.8 1793	1229 1240 1602 202 9,5
16CO 200 9.7	1600 200 4,5	1600 200 9.5	1602 202 9.8	1602 202 9,5
200 9.7	200 9,5	200 9.5	202 9.8	202 9,5
9.7	4,5	9.5	9.8	9,5
		 	12	ļ.,—————
1940	1900	1900	1793	1733
_	-			
		T .	T	
	L	<u> </u>	<u> </u>	•
		<u> </u>		
	T	1		1
				

Collect (15 - 24) Sample 6	of for Temperature Differential FOLTSIDE, SNOW ON GINAND SAMPLE LOCATION	leight	Location	Type	Phase	Abatement	Sampling
68001	LIVING Rain (IN FANT of pro window)	5		A			NA
68002	Kitchen (IN FRONT of WIMMON/PAYER HOOKING	u'					
68003	MANTER BEN KOM (CENTER)	3'					
68004	BATH ROOM (BY SINK)	5					
68005	OUTSIDE: FRONT DOOR STOOP.	5'					
68006	OUTSIDE; FECUT DOR STRUP	5'		12			مل

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Cailing Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-appressive

L	Calibratio	n (L/min)	Rotomete	r Setting	<u>}</u>
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1227	9.3	97	10.0		1/22/91
1232	9.7	9.6			
1672	9.9	10.1			
1463	9, 9	9,6			
1229	9,3	9,7			
1669	9,8	9.1	1		

Name o	f Calibrator Gil	AN GILISPATOR BUDGET	GEN POLL # 59.72 17
emp.:	70°	Pressure:	RH:
	-	ERSONAL SAMPLING INFORM te if collecting person	
Ventil	ation:Lo	cal Exhaust	al Area None
		tective Equipment	Type:
	_ Protective Clot	viud	Type:
_	Goggles/Face Sh Ear Protection	ield	
		Nonê k	<i>≧€8∪19€</i> 0
	er Flow Correctio	Pcal. (Tactual) Pactual (Tcal	
}actual	- Qindicated /	Pactual Tcal	
	er Confidence Lim		· · · · · · · · · · · · · · · · · · ·
751 UCL	<pre>, = measured value (fibers/cc)</pre>	+ measured value (uppe (fibers/cc)	100
	- F/CC + F/CC (2		
		00	

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT

where F = average of two fiber counts

CV - relative standard deviation from intralaboratory quality control chart

Airborne	Fiber Cond	entration	<u>l</u>	9
		fibers	fibers(blank)	x 385 mm ²
			fields(blank)	
		1000 x 1p	m x minutes x	.00785 mm

)	2
	3
	7
	1
	\geq

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJECT NAME	NAM	<u></u>				PARAMETERS		INDUSTRIAL
5510.3.2	J	U SATHANA	AM	4	SMITHETRID R	\$ 5/			HYGIENE SAMPLE N
SAMPLERS: (Signature)					(Printed)	NEW KY	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 / / Hor	HOUSING ONIT
Alb. M. Mikean	11				Altow M. McKissak	1) to		7	IT 1009 REMARKS
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	8489	STATION LOCATION	48 SA SO ON		(UNOCCUPIED)	MED UNIT)
108001	1/24/0		7		LIVING ROOM	-			
68002			\		2	-			
68003			,		BED				
10089			7		(Front pool story)	1 1			
50089			7		CKTRHEN DOOR STOOP)				
90089			1			1			
L0089	7				BLANK (FIELD)			OPENED 1	OPENED FOR 30 SEC
								REPORT,	REPORT RESULTS ASS
		AS		ppi	PHONE YOU'L			Office Ac.	Office for Thosy 754 +
		TOM	2	D,	16/22/1 NO			Those 25-	(4/4 (DMULLY)
								@ The	to of ashestis
Relinquished by: (Signature)	o Kan	-	Date	Date / Time	Con 100 of 100 of	Relinquished by: (Signature)	 	Date / Time Received b	Received by: (Signature)
Printed) A. McKISSICK TO FRO /EX	₽.	1 22 4	3 2 3 3 3 3 3 3 3 3 3 3	<		(Printed)		(Printed)	
quished t	nature)		Date	Date / Time	me Received for Laboratory by:	Date / Time	25	10089	-6800 HEST.
(Printed)					(Printed)		CHSSBITE TROW ABOUE 0,005 BESBIVE AT	0,005 8/c (Volums V At A LATER DATE	VOLUMA WILL
Distribution: Original Plu	us One Acco	mpanies	Shipm	ient (v	Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).		OFFICE FROMS	AN BE IN	HDE)

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

•	Ž
	0
8	D
3	Ž
1	2
9	_
•)
	٤

CHAIN OF CUSTODY RECORD

)

PROJECT NO.	PROJEC	PROJECT NAME	<u> </u>						INDUSTRIAL	1
5510.3, 2	U S.A	DSA THAMA	K M	٠.	Smithfilled 125	7,	PAHAMETERS		T. E.	Z
SAMPLERS: (Signature)	اً وَ				(Printed)	NATAINE R.			HOUSING UNIT	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	BARD	STATION LOCATION	48 ch		OCCUPIED	2150 UNIT	
80089	11411		٤		(IN FROT OF WINDOW)	-				T
60089			7							
01089			`		(DEC ROCING (MY SOLY)					
11089			7		BATH POOM					
68012			7		(EN FRONT UP CAPAGE)					
68013			7		CUTSIDE FUCHT OF	-				
41089	7				7			OPENED	FON 30 SEC	
				I	PER DHONE CONC					
				[3	TON D. ON					
					1/23/91					
Relinquished by: (Signature)	mature)	1/2	Date / Time	/ Tim	ne Received by: (Signature)	Relinquished by: (Signature)	ignature) Date / Time		Received by: (Signature)	
(Printed) (Albo M. M.	7.5.5	7 2 3	Fav 154 Puil 1)	7 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3	(Printed)		(Printed)		
Relinquished by: (Signature)	gnature)		Date	Date / Time	bora	Date / Time	Remarks AVALYZE 6 ANALYZE 68012-	1-80089	68011 FIRST,	
(Printed)					(Printed)		100 cm	080	л `	y ,
		-					A CATER DATE.	>0 (m) 05	140 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\overline{}$

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

BE MADE).

Versam

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJEC	PROJECT NAME	E E				201111111111111111111111111111111111111		INDUSTRIAL	>
5510,3.2	→	USATERE	₹ *	4	IN CHIMINATING -	1 5/	raname I e no		HYGIENE SAMPLE	z
SAMPLERS: (Signeture)	Ì				(Printed)	ABNIVINO				
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	0 50 ON			HEMARKS	
1089					Vol = 2000 R					T
68002					Vot = 1940 &		, D			
68003					VoL = 1400 &	ATT	ATTONIONI			
6800d					Vol = 1900 R					
68005					Vol = 1793 2			Correte	d to Tomp chess	
90089					Vol = 1738.2			ž		}
30087					Vol = 18922					
10000					Vol = 1911 2					
01089					Vol = 1853 &			:		
11089					Vol = 1931 &					
68012					Vol = 1912-19 17.	13.2		toireckel	1 ho teny ching	7
68013					Vol 5 1913			"	1, 1,	-
Relinquisted by: (Signature)	nature)		Date	/ Tim	Received I V: (Signajure)	Relinquished by: (Signature)	Signature) Date / Time	\vdash	Received by: (Signature)	Τ
alsom Me Ken	1842	7	1/25/4/		A WILLIAMS				į	
(Printed)	(1367)		FBD/ FX	12 × 4 × 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5		(Printed)		(Printed)	(P	
Relinquished by: (Signerure)	nature)	 	Date	Date / Time	E &	Date / Time	Remarks VolumES Fork	Samples	SENT FIR	
(Printed)					(Printed)		ANALYSES ON	, b/hz/,		
		\dashv	Ī							

Distribution Original Plus One Accompanies Shipment (white and yellow), Copy to Conrdinator Field Files (pink).

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC.

6350 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6743

ATTN: PAM HILLIS

REPORT CATE:

JANUARY 28, 1991

SAMPLE RECEIPT DATE: JANUARY 25, 1991

RJ LEE GRP. JCB NUMBER: ATW-101050

CLIENT JCB NUMBER:

5510.3.2

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASSESTES ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION -----

	RJ LEE SAMPLE #	CLIENT SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	AIR VOLUME (LITERS)	CASSETTE DIAMETER (MM)	COWL LENGTH (MM)	CONDUCTIVE
	•••••	••••	***************************************			• • • • • • • • • • • • • • • • • • • •	
J	65732	10086	LIVING ROCM, BACK WALL	2000	25	50	YES
0	65733	5005	KITCHEY, AT CUTSIDE DOOR	1943	25	50	YES
0	65734	68003	MASTER BEDROOM, BACK WALL	1900	25	-o	YES
_	61.735	68004	CUTSIDE, FRONT DOOR STOOP	1900	25	50	YES
سنب.	65736	68005	CUTSIDE, KITCHEN DOCK STCOP	1793	25	50	YES
•	65737	68006	NCNE GIVEN	1738	25	50	YES
	65738	68007	FIELD BLANK	0	25	50	YES
)	65739	8008	CIVING ROOM, IN FRONT OF WINDOW	1892	25	50	YES
٩	65740	68009	KITCHEN, INTERFACE WITH DINING ROOM	1911	25	50	YES
100	65741	68010	BED ROOM, OCCUPIED BY SON	1853	25	50	YES
2	65742	68011	BATHROOM	1931	25	50	YES
	65743	68012	CUTSIDE, IN FRONT OF THE GARAGE	1713	25	50	YES
-	65744	68013	CUTSIDE, IN FRONT OF THE GARAGE	1713	25	50	YES
-	65745	68014	FIELD BLANK	0	25	50	YES

THOMAS DAGENHART, M.S.

LABOR .. TORY MANAGER

NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group. Inc • 10366 Bartleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

MONRCEVILLE, PA

WESTERN NY

The Materials Characterization Specialists

Smithfield, KI

LABORATORY REPORT **********

VERSAR, INC. 6850 VERSAR CENTER SPRINGFIELD, VIRGINIA 22:51

703-642-6743 ATTN: PAM HILLIS REPORT DATE:

JANUARY ZS, 1991

SAMPLE RECEIPT DATE: JANUARY 25, 1991

RJ LEE GRP. JCB NUMBER: ATM-101050

CLIENT JOB NUMBER:

5510.3.2

PURCHASE CROER NUMBER: 01-61-060536

ANALYSIS: AIRSCRNE ASSESTES ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00655 SQ MM

TEM ACCELERATING POTENTIAL: 100 KV TEM: PHILIPS CM12

DETECTION LIMIT (FISERS PER TEN GRID OPENINGS) : 1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

						ASSESTES	STRUCTURES D	ETECTED			
						WITH ASP	CT RATIO >	5 : 1,	ASSESTOS	ASSESTOS	TYPE(S) OF
		ANALYTICAL	GRID	DILU-	AREA	SCR	TED BY LENGT	н	STRUCTURE	STRUCTURE	ASSESTES
	RJ LEE	YTIVITIZKEZ	CPENINGS	TICH	CZZYJANA				DENSITY	CONCENTRATION	STRUCTURE
	SAMPLE #	(STRUCT/CC)	CHMADS	FACTOR	(SG MM)	>.5- <5 UM	>= 5.0 UM	TOTAL	(STR/MM12)	(STR/CC)	DETECTED
س	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••					
0	65732	0.0049	6	1.0	0.0393	0	a	Q	< 25.44	< 0.005	NONE DETECTED
0	65733	0.0050	6	1.0	0.0393	0	a	a	< 25.44	< 0.305	NONE DETECTED
	65734	0.3044	7	1.0	0.0459	0	0	0	< 21.81	< 0.004	NONE DETECTED
+	65735	0.0044	7	1.0	0.0459	٥	0	0	< 21.81	< 0.004	NONE DETECTED
5	65736	NCT ANALYZED	٥	1.0	0.0000	0	C	G	NOT ANAL.	NCT ANAL.	NCT ANALYZED
Ž	65737	CESYLANA TON	Q	1.0	0.0000	٥	a	0	NCT ANAL.	NOT ANAL.	NOT ANALYZED
	65738	NOT APPLICABLE	10	1.0	0.0655	0	a	0	< 15.26	NOT APPL.	NONE DETECTED
ď	65739	0.0044	7	1.0	0.0459	0	0	0	< 21.81	< 0.004	NONE DETECTED
00	65740	0.0044	7	1.0	0.0459	a	g	C	< 21.81	< 0.004	NONE DETECTED
_	6574.1	0.0045	7	1.0	0.0459	٥	O	C	< 21.81	< 0.305	NOME DETECTED
	65742	0.0043	7	1.0	0.0459	:	0	1	21.81	0.004	CHRYSCTILE
-	65743	NCT ANALYZED	0	1.0	0.0000	a	a	0	NCT ANAL.	NOT ANAL.	NCT ANALYZED
5	65744	CESYLANA TON	0	1.0	0.0000	0	0	C	NCT ANAL.	NCT ANAL.	NOT ANALYZED
-	65745	NOT APPLICABLE	10	1.0	0.0655	0	0	Q	< 15.26	NOT APPL.	NONE DETECTED

PAGE 2 OF 3

RJ Lee Group, Inc . 10366 Bartlevi	ew Parkway, Manassas, VA 22110	• 703/368-7880 703/368-7761-FAX
BERKELEY, CA	MONACEVILLE, PA	WESTERN NY

WOODBRIDGE WOODBRIDGE, VIRGINIA

	UTILITY	
LIVING & DINING ROOM	BATHROOM	
	BEDROOM	
BEDROOM		

WOODBRIDGE FHU FLOOR PLAN

<u>WOODBRIDGE FHU</u> <u>FLOOR PLAN</u>

Page / of /

77134

BUTHK

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.3.2 Client: UKATHAMA - WOOD BRIDGE VIT

Program Manager: B. IMAGSTRF Sample Location: D. olan. UNIT 14011

Date: 2/27/91 Shift: DAY Samples Collected by: A. MCKSILIC/K.FLGY

Collection Method: AHERA Analyze For: AEROCO ASRBSD'S (TEM)

Sample Media: 0.454 MCF Lot No: Nullabora & 819/5046,2704

UNCCLUPIED

SAMPLE DATA

Sample No.	77133	77134	17/35	77136	77/317	77138
Pump No.	1664	1246	1670	1970	1228	16.71
Time On	1220	1220	/2 ZC	122	1220	1270
Time Off	1550	1550	1550	1550	1250	1550
Total Time (min)	210	210	210	210	210	210
Flow Rate (LPM)	10.5	9,4	10.0	10.0	9,9	9,7
Volume (liters)	2205	2058	2100	2100	1961	1921
Employee Name/ID		-	_	-	_	_
Results F/CC						·
Fibers/Fields						
Fibers/mm ²						
Detection Limit						
95% UCL						
Analyst						
QC Recounts (F/CC)					, .	
QC Analyst						

	1 = 110 = Thanker, Usine exceeded for tempera	tuv,	lon			nent	Ing
POWELL POWER	SAMPLE LOCATION	1gh 1	cati	6	200	ate	I de
Sample #	,	=		<u> </u>	<u> </u>	<u> </u>	-8
17133	LIVING ROOM IN FRONT of BAY WIND			A			NA
27134	KITCHEN FREGT OF SINK			A			NA
77135	BEU ROOM (NHS+FI) Menter			A			NA.
7.7136	BATH ROOM BY SIDE OF SANK			A			MA
77137	OUTSIDE FRONT PONCH			Α			NA
77138	OUTSIDE, FIRC-1 PORCH			A			NA

Location:

W = Work Area, O = Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-aggressive

	Calibratio	on (L/min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1664_	10.2	9.7	10,0	9.5	2/3.7/91
1.246	9.4	9,6	1	10.0	\
1670	10:1	4.8		10.0	
1970	વ.૧	10-1		10.4	
133	9.9	9.8		(0.0	·
18.71	4.8	9.6		10.0	
Name of Cali	ibrator GILIA	N (21/ 1	H 5972-	Н	

Temp.:	700	Pressure:	RH:
		PERSONAL SAMPLING INFO	
Ventila	tion:	Local Exhaust X Gene	eral Area None
<u> </u>	Protect Gloves Goggles	atory Protective Equipment tive Clothing s/Face Shield otection	Type: Type: Type:
Rotamete	r Flow	ivane ,	NIE(E>5HUN)
Qactual (- Qindi	cated (Pcal. (Tactual) Total	
951 UCL	- measu: (fib	dence Limit red value + measured value (up ers/cc) (fibers/cc) + F/CC (213%) 100	per boundryZ) 100
OC Page			

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F = average of two fiber counts

CV = relative standard deviation from intralaboratory

quality control chart

Airborne	Fiber Con	<u>centratio</u>	<u>on</u>	•
		fibers	fibers(blank)	x 385 mm ²
	F/CC -	fields	fields(blank)	
		1000 x	lpm x minutes x	.00785 mm

٥		-11	NO.	1
P	#g	e		of _i

האוריף הודנט ומנימור

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: \$510.3.2 Client: USATHAMA - VVCCD BROCK, UA

Program Hanager: B. MARDINI.

Date: 2/3/9/9/ Shift: PAY

Samples Collected by: A. MCK. SSICK K. FOLKY

Collection Hethod: AHEVH

Analyze For: AIKBOINE ADSOND: TEM

Sample Hedia: No. 120000 Lot No: No invojona # 819/004 G276L

UNCCCOPIED

SAMPLE DATA

Sample No.	77142	77143	177144	77145	77146	17147
Pump No.	11.76	1682	1230	1961	1668	1678N
Time On	1145	1145	1145	11 45	1145	1145
Time Off	1215	1515	1515	1515	1515	1515
Total Time (min)	210	210	210	210	210	210
Flow Rate (LPM)	9.4	10.0	9.6	1001	10.0	9.7
Volume (liters)	1974	2100	2016	2121	1981	1921
Employee Name/ID		-	_			-
Results F/CC						·
Fibers/Fields						
Fibers/mm ²						
Detection Limit						
95I UCL						
Analyst						
QC Recounts (F/CC)						
QC Analyst						

CORRECTED TEMP = 405 F. DOLUME 15 Trimy fam I LAG SAMPLE LOCATION DIFFERENCE lype Sample # 77142 OF BIL WINDOW MA IN FRONT LIVING ROOM 77143 KITCHOK . IN OF. SINK ٨ FILCHT 77144 A e ENTIF K BAD HCC - (MMTRK) /¥ /F 27145 A BATH ROOM NA BY SIDE OF SINK 77146 A NA DUTSION BACK STOOP DOCK 77147 NA STOOP CUTSIDE BACK DOUR

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FP - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-aggressive

	Calibratio	on (L/min)	Rotomete	r Setting_	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
					2/27/91
1176	9, 3	9 4	10,0	10.0	
1682	10.1	1. (4.9	
1230	99	9.3		9,5	
1961	10,5	9.6		9.5	
1668	10.0	10.0		10 0	
1678 N	9.7	9.7		10.0	
Name of Cal	ibrator Giline	Coll H	5972-14		

Mante or cerrors	COL (\$111710 1/417 14	
Temp.: 70	Pressure:	RH:
	PERSONAL SAMPLING INFO (Complete if collecting pers	
Ventilation:	Local Exhaust Gen	meral Area None
Protect Gloves Goggles	tory Protective Equipment ive Clothing /Face Shield tection	Type: Type: Type:
Parameter Flow		INECE SS HWY
(fibe	ated Pactual (Tactual)	oper boundryZ) 100
OC Recounts		

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F - average of two fiber counts

CV - relative standard deviation from intralaboratory quality control chart

Airborne	Fiber Cond	entration			•
		fibers	fibers(blank)	x 385	mm [*]
	F/CC -	fields	fields(blank)		
		1000 x 15	m v minutes v	00785	mm -

Versan

CHAIN OF CUSTODY RECORD

	PROJECT NO.	PROJE	PROJECT NAME	AE					/	DADAMETERS	INDUSTRIAL	E
My STATION LOCATION OF STATION LOCATION WE DED ROOK CUTSIDE CUTSIDE RICHEN BE DE ROOK CUTSIDE CUTSIDE RICHEN Signature) Affilt Rook Cutside Cutside Received by: (Signature) Affilt Rook Cutside Received by: (Signature) Affilt Rook Cutside Received for Laboratory by: Date / Time (Printed)	5Ch 2 3	-	4 1	?			•	7 '		ANAMEIENS	HYGIENE SAMPLE	2
MATE TIME BY STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION OF STATION LOCATION (Printed) (1) A STATION LOCATION OF STATION LOCATION OF STATION (Printed) (1) A STATION LOCATION LOCATION PROFILE STATION LOCATION (Printed) (1) A STATION LOCATION LOCATION DOTE Time Station Laboratory by: Date Time Printed)	13.0, 0, 1	757	4	せる	4		7	S&3/				
FIME Date Time Received for Laboratory by: Time Date Time Received for Laboratory by: Printed	SAMPLERS: /Signer.	rre)				(Printed)		NIVINO	\ \ \		SAGAMAG	
ALLING ALLY KITCHEN BED ROOK CUPIDE CUPIDE CUP SIDE CUPIDE CUP SIDE	FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB		TATION LOCATION	0 40 ON			UN OCCUPATION OF UNITED TO A COLUMN OCCUPATION OCCUPATI	·
BED ROOM BED ROOM CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE CUBIDE RAMA BLANK I I Received by: (Signature) Alask Alask Alask Received for Laboratory by: Date / Time (Printed) (Printed)		2/20h,				LILING	-,,tx3/1 c				L= 2205 &	
BATH RODIC CUPIDE CUPIDE CUPIDE CUPIDE RAINE RECEIVED BY: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Received for Laboratory by: Date / Time Received for Laboratory by: Date / Time (Signature)	heilli					KiTCHE	N	_		= 701	= 2058 R	
BATH RODIC CUTINE CUT SIDE RUNK RUNK PLANK PLANK PLANK Printed) Relinquished by: (Signature) Reserved for Laboratory by: Date / Time (Printed)	77135					BED	Reduc	-		Yol	Yol = 2100 &	
Date Time Received by: Signature Printed Pr	77136					BATHI	RUDIC	-		100	= = 2100 R	
BANK Bate / Time Received by: (Signature) A) ALL BOUM (Printed) (Printed) (Printed)	7.215.1					didi.	Ų	-		Not	Not = 1961 &	
Date / Time Received by: (Signature) A/ASH, (Soo Child of Child) A/ASH, (Printed) A/ASH, (Printed) A/ASH, (Printed) Bate / Time (Printed)	177138					CUTSI	30	-		10/	10L = 1921 R	
Date / Time Received by: (Signature) A 128 1500 Child A Fucketh A 148 1500 Child A Fucketh A 1500 Child A Fuc	17134	-\				/	SHUK	1 1			NIA	
Date / Time Received by: (Signature) # 1/28 1500 Until 3 FLC. Right AT RESIDENCE Date / Time Received for Laboratory by: (Printed) (Printed)	_											
Date / Time Received by: (Signature) 2/28/4, 1500 Child of Ch												
Date / Time Received by: (Signature) A/28/ft 1500 Child of Chil												
Sr C (Ar VACSAR Beceived for Laboratory by: Date / Time (Printed) (Printed)	Relinquished by: (5%	gnature)	त	187	<u>; </u>	\rightarrow	ived by: (Signature)	Relinquished by:	(Signature)	Time	Received by: (Signature)	
Date / Time Received for Laboratory by: Date / Time (Signature)	(Printed) Albu Millille	16,550		五	2 %	7	(pa)	(Printed)			(Printed)	
(Printed)	Relinquished by: /Sig	gnature)		Dat	- T		ived for Laboratory by:	Date / Time	Remarks A	Unit Many	3 - 17136 at	1
km 1 ()) 1 T	(Printed)					(Print	(pa		17136	1 2 6,005 g/s	c Andy 3c	

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

Versal

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJECT NAME	T NAM	سِ ا				201111111111111111111111111111111111111	INDUSTRIAL	<u>-</u>
5510.32	\ \ \	/ Kathau	7		W. S. C. S. W. G. W. C.		raname i ens	HYGIENE SAMPLE	z
SAMPLERS: (Signature)	1				(Printed)	I SEL		UNOCCUPIED	
						/ / Nos/		/ REMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	10 ON	1791	UNIT	
2016.6	2/27/4				Living Hear	-	1977 CN] :	T
77143	_				KITCHEN		MID CN	Sist 1310 SHI : NO	
price		-			BED Now		30% CN	CN: 1145 6.1. 1515	
SAILL					BATHROOM	1	AM CON	2121 : 140 SHI! 1515	
9411.6					6-TSI DIE	-	1981 CN	2151 1145 SHI 1815	
will					CUTSIDE		No [5]		
Snich	7				BUNK			BLANIC	
Relinquished by: (Signature)	nature)	5/	Date Oo	/ Time	1500 428/9/ Ohner All Met	Relinquished by: (Signature)	Date / Time	Received by: (Signature)	
(Printed) How My Wells sall	7257)	<u> </u>	moir pour	1804 1857	(Printed)	(Printed)		(Printed)	
Relinquished by: (Signature)	nature)		Date	Date / Time			THILL JEKNAN	8 24,7.7 - 54 4 0 + 5 + 40 ×	
(Printed)					(Printed)	454.111	, -		
		1							1

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

The Materials Characterization Specialists

Woedbridge, VA

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

MARCH 2, 1991

REPORT DATE: SAMPLE RECEIPT DATE: MARCH 1, 1991

RJ LEE GRP. JOB NUMBER: ATM-103002

CLIENT JOB NUMBER:

5510.3.2

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION ------

	RJ LEE SAMPLE #	CLIENT SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	AIR VOLUME (LITERS)	CASSETTE DIAMETER (MM)	COWL LENGTH (MM)	CONDUCTIVE COWL
=	2066865	77133	UNIT 14011, LIVING ROOM	2205	25	50	YES
40	2066866	77134	UNIT 14011, KITCHEN	2058	25	50	YES
_	2066867	<i>7</i> 7135	UNIT 14011, BEDROOM	2100	25	50	YES
	2066868	77136	UNIT 14011, BATHROOM	2100	25	50	YES
-	2066869	77137	UNIT 14011, OUTSIDE	1961	25	50	YES
ວ້	2066870	77138	UNIT 14011, OUTSIDE	1921	25	50	YES
	2066871	77139	UNIT 14011, BLANK	0	25	50	YES
	2066872	77142	UNIT 14000, LIVING ROOM	1974	25	50	YES
0	2066873	77143	UNIT 14000, KITCHEN	2100	25	50	YES
Q	2066874	77144	UNIT 14000, BEDROOM	2016	25	50	YES
) +	2066875	77145	UNIT 14000, BATHROOM	2121	25	50	YES
I	2066876	77146	UNIT 14000, OUTSIDE	1981	25	50	YES
_	2066877	77147	UNIT 14000, OUTSIDE	1921	25	50	YES
7	2066878	77148	UNIT 14000, BLANK	0	25	50	YES

SAMPLE PREPARER

TEM OPERATOR-ANALYST

70m Tagenhart 3-2-91 THOMAS DAGENHART, M.S.

LABORATORY MANAGER

NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group, Inc • 10366 Battleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE. PA

WESTERN NY

The Materials Characterization Specialists

Mecabridge YA

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

Und 11000 Und 14611

ATTN: PAM HILLIS

REPORT DATE:

MARCH 2, 1991

SAMPLE RECEIPT DATE: MARCH 1, 1991

RJ LEE GRP. JOB NUMBER: ATV-103002

CLIENT JOB NUMBER:

5510.3.2

PURCHASE ORDER NUMBER: 01-61-060536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00662 SQ MM

DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) :

TEM ACCELERATING POTENTIAL: 100 KV TEM: PHILIPS CM12

TYPE(S) OF

ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

ASBESTOS ASBESTOS

ASBESTOS STRUCTURES DETECTED WITH ASPECT RATIO > 5 : 1,

		ANALYTICAL	GRID	DILU-	AREA	SOF	RTED BY LENGT	H	STRUCTURE	STRUCTURE	ASBESTOS
	RJ LEE	SENSITIVITY	OPENINGS	TION	ANALYZED				DENSITY	CONCENTRATION	STRUCTURE
	SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UM	>= 5.0 UM	TOTAL	(STR/MM^2)	(STR/CC)	DETECTED
-	• • • • • • • • • • • • • • • • • • • •			•••••	•••••			•••••			
,	2066865	0.0044	6	1.0	0.0397	0	0	0	< 25.18	< 0.004	NONE DETECTED
-	2066866	0.0047	6	1.0	0.0397	σ	0	0	< 25.18	< 0.005	NONE DETECTED
-	2066867	0.0046	6	1.0	0.0397	0	0	0	< 25.18	< 0.005	NONE DETECTED
	2066868	0.0046	6	1.0	0.0397	0	C	0	< 25.18	< 0.005	NONE DETECTED
2	2066869	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
•	2066870	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
	2066871	NOT APPLICABLE	10	1.0	0.0662	0	0	0	< 15.11	NOT APPL.	NONE DETECTED
`	2066872	0.0049	6	1.0	0.0397	0	0	0	< 25.18	< 0.005	NONE DETECTED
(2066873	0.0046	6	1.0	0.0397	0	0	C	< 25.18	< 0.005	NONE DETECTED
5	2066874	0.0048	6	1.0	0.0397	0	0	0	< 25.18	< 0.005	NONE DETECTED
•	2066875	0.0046	6	1.0	0.0397	0	0	0	< 25.18	< 0.005	NONE DETECTED
•	2066876	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
	2066877	NOT ANALYZED	0	1.0	0.0000	0	0	0	NOT ANAL.	NOT ANAL.	NOT ANALYZED
:	2066878	NOT APPLICABLE	10	1.0	0.0662	0	0	0	< 15.11	NOT APPL.	NONE DETECTED

MIDWAY NIKE MANOR KENT, WASHINGTON

MIDWAY FHU FLCOR PLAN

MIDWAY FHU FLOOR PLAN

<u> </u>	Le - Cal. brot.	in 1-23-91 Preflost Cal	Post Col	• · · · · · · · · · · · · · · · · · · ·
	9.688	9.834	10.38 >10.1	
	10.03	9.727 1	11.57_ >10.65	
	2.9.7		11.95 > 10.72	
2042		9.757 /	12.62 \$11.119	
1667	9. 79	10.34 1	10.00	
1681	9.876	10.00 /	9.936_/_	
	<u> </u>		-	F
~ 1	Le Col	Post/Pre Col	PostCol	• • •
2013		8.10 >8.7		
462	9.83	9.401	8.50 > 8.95	
2042	9·7 /	9.30/	9.8 - 9.55	
2466		9.671	10.04 2 9.955	•
681	10.00	10.10/	10.04	
1667	9.30	9.30	9.20	-
- okay	within _ TS	% of calibrated	volul - if not	
use	arriage	for colculation of	volue - if not	
				
			e as used to the control of the cont	• • •

.

....

.

	Z.
	9 4
	_
	~
	2
	_
	-
١	=)
,	. W
	_

CHAIN OF CUSTODY RECORD

VCI NUI MC	ŗi				CHAIN OF CUSTODY RECORD	JUY RECURD				
PROJECT NO.	PROJECT NAME	T NAM					PARAMETERS		INDUSTRIAL HYGIENE SAMPLE	2
61.5510.3.1		USA THANA	116	6		563				
SAMPLERS: (Signeture	ره أ	"			(Printed)	NIV.		<u></u>		
Threzkows	L/H	() has	R		R.Kryczkowski / A. Olmetti	1/05/1		_	REMARKS	
FIELD SAMPLE NUMBER	6ATE	TIME	COMP.	BARD	LION	10 0x		Klowk	Flowfute Volume	3
M124-12	134	-806			Front bedroom			9.74 lpm	pm 1256.46	9
41-75111	}_	9:09-			Buck hedrover			10.10	08,6961	
71.461M	1	9.09-			LIVING room - rear winder			2.83	1748:41	
011-76117	1.34	9.08-			6			8.7	11/3,60	
1134-17	1-30	7:07-			Outside rear			10.10	1333.20	0
01-111	200	9:06						2,3	12.37.60	
07.70/1	_	2.51			Side hedroom (unit MIS			9.55	1728.55	
200000		19:52			Buil Medrack			9.255	1721.30	
IC-PEIM		13:50			Lyng rem Pear water			8.25	1619.95	
12/2011		19:51-			Line rosei - Treet windows	•		8,7	1458,00	
14134.33	1	2.49						10,10	7868.50	
M. J. C.		-64.57			atrilo- fint			2.3	1730.50	
Relinquished by: (Signeture	1		Date .	Date / Time	me Received by: (Signature)	Relinquished by: (Signature)	Date	/ Time	Received by: (Signature)	
The	ZKWE	215	94.6	1-94-911-4-5	150 1 Leloven Derran	(Printed)		(Printed)	1)	
(Printed)					Delores Sparksing					
Relinquished by: (Signature)	ignature)	-	Date	Time	me Received for Laboratory by: (Signature)	Date / Time	Remarks / Blank Enclosed	bosed		
(Printed)					(Printed)		- use bein that sports		113511	
		$\frac{1}{2}$								

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

JANUARY 30, 1991

SAMPLE RECEIPT DATE:

JANUARY 28, 1991

RJ LEE GRP. JOB NUMBER: ATW-101056

CLIENT JOB NUMBER:

61.5510.3.1

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION ------

				AIR	CASSETTE	COMF	
	RJ LEE	CLIENT		VOLUME	DIAMETER	LENGTH	CONDUCTIVE
	SAMPLE #	SAMPLF #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	COML

	2065975	M-124-13	UNIT M-1: FRONT BEDROOM	1256.46	25	50	YES
	2065976	M-124-14	UNIT M-1: BACK BEDROOM	1292.8	25	50	YES
	2065977	M-124-15	UNIT M-1: LIVING ROOM, REAR WINDOW	1248.41	25	50	YES
	2065978	M-124-16	UNIT M-1: KITCHEN	1113.6	25	50	YES
3	2065979	M-124-17	UNIT M-1: OUTSIDE, REAR OF HOUSE	1333.2	25	50	YES
~	2065980	M-124-18	UNIT M-1: OUTSIDE, FRONT OF HOUSE	1227.6	25	50	YES
	2065981	M-124-19	UNIT M-18: SIDE BEDROOM	1728.55	25	50	YES
α	2065982	M-124-20	UNIT M-18: BACK BEDROOM	179 1.9	25	50	YES
	2065983	M-124-21	UNIT M-18: LIVING ROOM, REAR WINDOW	1619.95	25	50	YES
	2065984	M-124-22	UNIT M-18: LIVING ROOM, FRONT WINDOW	1458	25	50	YES
	2065985	M-124-23	UNIT M-18: OUTSIDE, REAR OF HOUSE	1868.5	25	50	YES
-	2065986	M-124-24	UNIT M-18: OUTSIDE, FRONT OF HOUSE	1720.5	25	50	YES
<u>-</u> \$	2065987	BLANK	FIELD BLANK	0	25	50	YES

SAMPLE PREPARER

TEM OPERATOR-ANALYST

THOMAS DAGENHART, M.S.

LABORATORY MANAGER

NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 2 OF 5

RJ Lee Group, Inc • 10366 Bartleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

JANUARY 30, 1991

SAMPLE RECEIPT DATE: JANUARY 28, 1991

RJ LEE GRP. JOB NUMBER: ATW-161056

CLIENT JOB NUMBER:

61.5510.3.1

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00655 SQ MM DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) : TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CM12

ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

		ANALYTICAL	GRID	DILU-	AREA	WITH ASP	STRUCTURES D ECT RATIO > TED BY LENGT	5 : 1,		BESTOS RUCTURE		BESTOS RUCTURE	TYPE(S) OF ASBESTOS
	RJ LEE	SENSITIVITY	OPENINGS	TION	ANALYZED					NSITY	-	NTRATIO	
	SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR		>.5- <5 UM	>= 5.0 UM	TOTAL		R/MM^2)	(\$	TR/CC)	DETECTED
-	2065975	0.0047	10	1.0	0.0655	0	0	0	·	15.26	<	0.005	NONE DETECTED
=	2065976	0.0045	10	1.0		1	0	1		15.26		0.005	CHRYSOTILE
,	2065977	0.0047	10	1.0		Ô	0	0	<	15.26	<	0.005	NONE DETECTED
-	2065978	0.0048	11	1.0	0.0721	0	0	0	<	13.88	<	0.005	NONE DETECTED
Ξ	2065979	0.0049	9	1.0	0.0590	1	1	2		33.92		0.010	CHRYS/ACTIN
~	2065980	0.0048	10	1.0	0.0655	0	0	0	<	15.26	<	0.005	NONE DETECTED
	2065981	0.0042	8	1.0	0.0524	0	0	0	<	19.08	~	0.004	NONE DETECTED
رن	2065982	0.0047	7	1.0	0.0459	0	0	0	<	21.81	<	0.005	NONE DETECTED
	2065983	0.0045	8	1.0	0.0524	0	0	0	<	19.08	<	0.005	NONE DETECTED
	2065984	0.0045	9	1.0	0.0590	0	0	0	<	16.96	<	0.004	NONE DETECTED
	2065985	NOT APPLICABLE	0	1.0	0.0000	C	0	0	NO	T ANAL.	NO	T APPL.	NOT ANALYZED
	2065986	NOT APPLICABLE	0	1.0	0.0000	0	0	0	NO	T ANAL.	NO	T APPL.	NOT ANALYZED
0.00	2065987	NOT APPLICABLE	10	1.0	0.0655	0	0	0	<	15.26	NO	T APPL.	NONE DETECTED

YOUNGS LAKE RENTON, WASHINGTON

YOUNG'S LAKE FHU FLOOR PLAN

YOUNG'S LAKE FHU FLOOR PLAN

-	L	. /		
youngs Las	ke - Calibration			 .
Pump No.	Pu Cal	Pre/Post Cal	Past Cal	properties of
_	9.888	9.834	10.38 >10.1	
0462	10.03	9.727 V	11.57_ >10.65	
2013	2.97		11.95 > 10.72	
2012	10.03	9.757 V	12.62 11.119	
1667	9. 99	10.34 /	10.00	
1681	9.876	10.00 V	9.936_/_	
		• • · · · · · · · · · · · · · · · · · ·		
Midway -	Calibration	1-24-91	11	, <u>, , , , , , , , , , , , , , , , , , </u>
Purello.	Recol	Post/Par Cal	Post Cal	
2013	9.30	8.10 >8.7	8-20-	
2462	9.83	9.401	8.50 > 8.95	
2042	9· <i>7</i> ·/	9.30/	9.8 > 9.55	A
2466	10.10	9.67/	10.04 2 9.955	
1681	10.00	10.10 /	10.04	and the same of th
1667	9.30	9.30	9.80	_ ~.
	44 M 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Hermanne we will be	
1 = 0 kg	within Is	To be calculation of	value - if not	
uss	arriage 2	for calculation of	volune .	
		0		
			· · · · · · · · · · · · · · · · · · ·	

.

· -----

• • • •

	·	·	40		
Pa	g	e	1	of	L

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510,3 2	Client: USATHAMA
Program Hanager: B. MAESTRI	Sample Location: UNIT L-24 (YOUNG'S KAKE
Date: 4/4/91 Shift: PAY	Samples Collected by: Machine / Folia
Collection Hethod: AHERA	Analyze For: AIKBOLNE ASBESTOS
Sample Media: 0.454 ince	Lot No:

SAMPLE DATA

Sample No.	77153	77154	77155	77156			
Pump No.	1232	16734	1664				
Time On	1045	1045	1045				
Time Off	1425	1425	1425				
Total Time (min)	220	220	220				
Flow Rate (LPM)	9.9	9,8	10,2				
Volume (liters)	2178	2156	2244				
Employee Name/ID							
Results F/CC						•	
Fibers/Fields							
Fibers/mm ²							
Detection Limit							
95% UCL							
Analyst							
QC Recounts (F/CC)							
QC Analyst							
					r c	n t	6

Sample #	SAMPLE LOCATION	leight	Location	туре	Phase	Abatement	Sampling
77153	FRONT BOLING , NOXT to curet						
77154	FRONT BOSTON, NOTT TO CLUSERY Front Boolinous, Mosto COMO- THISE LIVING ROOM	1		<u> </u>		<u> </u>	
77155	LIVING ROOM		<u> </u>				
77156	BLAIKK, FIBLD	-					

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abstement:

FF - Fireproofing, CT - Ceiling Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-aggressive

										
	Calibarate	- (1 /-:-)	8							
PUMP NO.	Calibration Pre-Use	Post-Use		r Setting Post-Use	Date					
EGME NO.	116-056	1031-036	116-036	1030-036	Date					
	_									
1664	10.23	10.13	10.00	10.00	4/4/91					
			 		7/9/11					
1232	9.93	9.919	10.00	10.00						
1678H	9.80	9.744	10.00	10 - 00	1					
•			1							
					 					
			 		}					
····				Ĺ	<u> </u>					
Name of Cal	ibrator Kevis	· C. Foley	- Gilit	mator was	d					
		-								
Temp.:		Pressure:		F	UH:					
				<u> </u>						
		,								
Ventilation	-	Exhaust		.64 - 3	ione					
Res	piratory Protec	tive Equipment		e:						
Pro	tective Clothin	g		e:						
G1o	ves -las/Fada Chial		ТУР	e:						
Goggles/Face Shield Ear Protection										
Rotameter Flow Correction										
Qactual - Qindicated Pactual Toal										
	nfidence Limit		_							
	asured value +			indry%)						
		(fibers/cc)	100							
- E/	CC + F/CC (2137	2)								
	100									
QC Recounts										
Difference b	etween total nu									
	etween total nu			2.77 x F x	CV - ACCEP					
whe	re F - average									
		standard devi		intralabor	atory					
	da	lity control o	nart							
Airborne Fib	er Concentratio									
ATT ATTHE ! TO	fibers	fibers(blank)	x 385 mm ²							

F/CC = fibers fibers(blank) x 385 mm²
fields fields(blank)

1000 x lpm x minutes x .00785 mm²

INDUSTRIAL HYGIENE AIR SAMPLE DATA

Versar Job No.: 5510.3.4 Client: USATHAMA Program Hanager: B. MAESTEL Sample Location: UNIT L. 24 (YUNG) LAKE) Date: 4/3/91 Shift: DAY Samples Collected by: MICISCICK / FOLEY Analyze For: AILBOKRE ASBESTOS Collection Method: AHEKA Sample Media: 0.45 4 ME Lot No: Nucleo PONT 814/0046270L

SAMPLE DATA

Ae wierlar	L	<u> </u>	<u> </u>	L	5	<u> </u>	5
QC Analyst							
QC Recounts (F/CC)					* *		
Analyst							
95% UCL						<u> </u>	
Detection Limit		<u> </u>					
Fibers/mm ²							
Fibers/Fields							
Results F/CC						<u> </u>	
Employee Name/ID							
Volume (liters)	2210	2166	2298				
Flow Rate (LPM)	(0,0)	9,8	10,4				
Total Time (min)	221	281	221				
Time_Off	1427	1427	1927				
Time On	1546	1546	1546				
Pump No.	1232	16781	1664				
Sample No.	77150	77151	77152	77149			

Sample #	SAMPLE LOCATION	leight	Locatio	Type	Phase	Аратеме	Samplin
1915c	Believe I next to closet	51		Α			NA
17151	Budragin / Ollosike GOINO-RION 77.50			A			NI
77152	LIVING ROW-	1		A			NA
77149	BLANK .						
				1			<u> </u>

Location:

W - Work Area, O - Outside/Perimeter

Type:

G - General Area, P - Personal, A - Ambient, B - Field Blank

Phase:

S - Pre-Start, E - Establish Containment, R - Removal,

C - Clean, Up, F - Final Air

Abatement:

FF - Fireproofing, CT - Cailing Tiles, FT - Floor Tiles,

BI - Boiler, PL - Pipe Lagging, TP - Transite Panel

Sampling:

AG - Aggressive, NA - Non-appressive

	Calibratio	on (L/min)	Rotomete	r Setting	
PUMP NO.	Pre-Use	Post-Use	Pre-Use	Post-Use	Date
1232	10 0.7	9.91	10,00	10,0	4/3/91
1678	9.97	9.74	100	10,0	4/3/91
1664	10,50	10.18	10,0	10,0	4/3/4
		<u> </u>			
		BLATOB	Call # 1		-

Name of Cal	700	CILABLATOR Pressu	<u> </u>	4 /400 - H RH:
	(Con	PERSONAL SAMPLE		
Ventilation	1:	Local Exhaust	Genera	l Ares None
				_
Pro Goo	tective (s Shield	nent	Type:Type:

95% Upper Confidence Limit

95% UCL - measured value + measured value (upper boundry%) (fibers/cc) (fibers/cc) = F/CC + F/CC (2137)100

QC Recounts

Difference between total number of fibers counted >2.77 x F x CV = REJECT Difference between total number of fibers counted <2.77 x F x CV = ACCEPT where F - average of two fiber counts

CV - relative standard deviation from intralaboratory quality control chart

Airborne Fiber Concentration fibers fibers(blank) x 385 mm² F/CC - fields fields(blank) 1000 x 1pm x minutes x .00785 mm

- - - BVORE EC.

PROJECT NO.	PROJECT NAME	T NAME					PARAMETERS	S	N G H	INDUSTRIAL Y
61.55/0.3.1	USATHAMA	THAI	MA	,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				1
SAMPLERS: (Signature)	() / ;	Me MM	4	à R		NIVINO			, ä	REMARKS
SAMPLE SAMPLE NUMBER	DATE	TIME	COMP.	GRAB	STATION LOCATION	0 40 ON		17/000	Cofe	How Cate Volume
2		9.99-	<u> </u>	3	L-24 Many hear Winder			10.0	23 lom	10.03 Join 15 64.68
		4:24-		1	-01			9.888	,8,8,	15 33.75
	1.93	7.35-		7	enter			10.03		1544.63
7	1-33	9.35		/	Front Boilroom			9.97	77	1535.38
		9:35-		9	Dutside reuri of herise			3,6	9.876	1481.40
		9:30		1	Ditside side af humse			9.99	3.3	15.38.47
		3:14		7	Back com bedreen			11.19	.2	1846.35
		13:30		<u>,,</u>	Loside . side well			10.10	2	1626.10
		3:10			Linna porom : Peur winder			10.0	10.65	1704,00
		3:09			Front hall			10.	10.73	1715.30
	103	3:15		7	Outside - side of house			10.	10.00.	1630.00
~		13:33		-	Outside - side of house			10.	10.31	16 75,08
Relinquished by: (Signature)	1_		Date /	Ţ	Received by: (Signature)	Relinquished by: Signature)	Date	Time	Received by: (Signature)	(Signature)
K. Lucekusch	٠,	3	16-4	124-4 1/- 461	o Melpro Sparkos					
الدائسلقطا						(Printed)		(Pri	(Printed)	
Relinquished by: (Signature)	nature		Date	Date / Time	Received for Laboratory by: (Signature)	Date / Time	Remarks - 1 Slank enclosed	lasial 1	, , ,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(Printed)					(Printed)		- use term than	י הפניניו.	- /	
		4								

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

•	₹
5	5
	2
L	
ŧ)

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJECT NAME	T NAM	Ē	Ì			MARAG	PARAMETERS	1
55193,2	DSAFABA FI	F A A A	+	>	YOUNGS LAKE, INA	7 5/	}	ne i ens	HYGIENE SAMPLE N
SAMPLERS: (Signature)	5				1	W SNIL	\ \ \ \ \ \		RON FIFUINTION SAIN YEING
				_	A. McKissick / K, Folfey	LINO		/ // /	BEMABKE
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	BARD	N C	30.0N		184 /	UNIT L-24 OCCUPIED 37 GRISOLM'S
bhill	13/6/			1	FIRM BLANK	7 1			
20516			7		Front Bud How			70/\	2210,0
15100					Front Budloom	1		= 701	10
75166	~		7		LIUING ROOM			= 701	
77153	4/4/9		7		Front Bullbon			= 10/	2178.2
45166					Front Bol Hoor			1/06 =	[
55156			ユ		LIVEING ROOM			= 7cA	= 2244 Q
15156	7			\overline{Z}	FIELD BLANK			梅	= N/A
Relinquished by: (Signature) Other Managed 4/4/9	nature)	7		Time	Received by: (Signature)	Relinquished by: (Signature)	ignature)	Date / Time Recei	Received by: (Signature)
Printed) Attor M Melysu	Melas	***			Los Aylang	Printed)		(Printed)	(Pa
Relinquished by: (Signature)	mature)		Date	Date / Time	Received for Laboratory by: (Signature)	Date / Time	Remarks USE UPPENINGS	ATLEST	10 6410
(Printed)					(Printed)				
						1			

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

Youngs Lake, WA

The Materials Characterization Specialists

LABORATORY REPORT ***********

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

JANUARY 30, 1991

SAMPLE RECEIPT DATE:

JANUARY 28, 1991

RJ LEE GRP. JOB NUMBER: ATW-101056

CLIENT JOB NUMBER:

61.5510.3.1

PURCHASE ORDER NUMBER: U1-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION ------

	RJ LEE	CLIENT		AIR VOLUME	CASSETTE DIAMETER	COWL LENGTH	CONDUCTIVE
	SAMPLE #	SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	COMP
4	•••••						***************************************
2	2065962	Y-123-1	UNIT L-24: LIVING ROOM, REAR WINDOW	1564.68	25	50	YES
لــُــ	2065963	Y-123-2	UNIT L-24: INSIDE NEAR DOOR	1522.75	25	50	YES
	2065964	Y-123-3	UNIT L-24: BACK CENTER BEDROOM	1544.62	25	50	YES
=	2065965	Y-123-4	UNIT L-24: FRONT BEDROOM	1535.38	25	50	YES
``	2065966	Y-123-5	UNIT L-24: OUTSIDE, REAR OF HOUSE	1481.4	25	50	YES
	2065967	Y-123-6	UNIT L-24: OUTSIDE, SIDE OF HOUSE	1528.47	25	50	YES
	2065968	Y-123-7	UNIT L-19: BACK CORNER BEDROOM	1846.35	25	50	YES
<u>-</u>	2065969	Y-123-8	UNIT L-19: INSIDE, SIDE WALL	1626.1	25	50	YES
_	2065970	Y-123-9	UNIT L-19: LIVING ROOM, REAR WINDOW	1704	25	50	YES
	2065971	Y-123-10	UNIT L-19: FRONT HALL	1715.2	25	50	YES
Ē	2065972	Y-123-11	UNIT L-19: OUTSIDE, SIDE OF HOUSE	1630	25	50	YES
_	2065973	Y-123-12	UNIT L-19: OUTSIDE, SIDE OF HOUSE	1575.08	25	50	YES
	2065974	BLANK	FIELD BLANK	0	25	50	YES

SAMPLE PREPARER

TEM OPERATOR-ANALYST

THOMAS DAGENHART, M.S.

LABORATORY MANAGER NVLAP SIGNATORY

NVLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 5

RJ Lee Group, Inc • 10366 Battleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

Group youngs - are, i. A.

The Materials Characterization Specialists

LABORATORY REPORT

VERSAR, INC. 6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

JANUARY 30, 1991

SAMPLE RECEIPT DATE:

JANUARY 28, 1991

RJ LEE GRP. JOB NUMBER: ATW-101056

CLIENT JOB NUMBER:

61.5510.3.1

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

ACRECTOR CIDILITIES DETECTED

AREA OF GRID OPENING: 0.00655 SQ MM

NOT APPLICABLE

NOT APPLICABLE

2065973

2065974

0

10

1.0 0.0000

1.0 0.0655

TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CM12

NOT APPL. NOT ANALYZED

NOT APPL. NONE DETECTED

DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) :

1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

					70050103	311001010	00120153			
					WITH ASP	ECT RATIO >	5:1,	ASBESTOS	ASBESTOS	TYPE(S) OF
	ANALYTICAL	GRID	DILU-	AREA	SOR	TED BY LENG	TH	STRUCTURE	STRUCTURE	ASBESTOS
RJ LEE	SENSITIVITY	OPENINGS	TION	ANALYZED	•••••			DENSITY	CONCENTRATION	STRUCTURE
SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UM	>= 5.0 UM	TOTAL	(STR/MM^2)	(STR/CC)	DETECTED

2045042	0.00/7	•		0.050/		_	_			

7				• • • • • • •		•••••			• • • •					
,,	2065962	0.0047	8	1.0	0.0524	0	Q	a	<	19.08	<	0.005	NONE	DETECTED
, 	2065963	0.0043	9	1.0	0.0590	0	0	0	<	16.96	<	0.004	NONE	DETECTED
	2065964	0.0042	9	1.0	0.0590	0	0	0	<	16.96	<	0.004	NONE	DETECTED
_	2065965	0.0043	9	1.0	0.0590	5	0	5		84.80		0.021	CHRYS	SOTILE
ξ	2065966	0.0044	9	1.0	0.0590	0	0	0	<	16.96	<	0.004	NONE	DETECTED
_	2065967	0.0038	10	1.0	0.0655	0	0	0	<	15.26	<	0.004	NONE	DETECTED
	2065968	0.0045	7	1.0	0.0459	0	0	0	<	21.81	<	0.005	NONE	DETECTED
ست	2065969	0.0045	8	1.0	0.0524	0	0	0	<	19.08	<	0.005	NONE	DETECTED
-	2065970	0.0043	8	1.0	0.0524	0	0	a	<	19.08	<	0.004	NONE	DETECTED
•	2065971	0.0043	8	1.0	0.0524	0	0	0	<	19.08	<	0.004	NONE	DETECTED
_	2065972	NOT APPLICABLE	0	1.0	0.0000	0	0	a	NOT	ANAL.	NOT	APPL.	NOT /	ANALYZED

0

NOT ANAL.

15.26

RJ Lee Group

The Materials Characterization Specialists

Youngs Lake, WA

LABORATORY REPORT

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

APRIL 8, 1991

SAMPLE RECEIPT DATE:

APRIL 5, 1991

RJ LEE GRP. JOB NUMBER: ATW-104012

***** T 3

CLIENT JOB NUMBER:

5510.3.2

PURCHASE ORDER NUMBER:

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION

	RJ LEE SAMPLE #	CLIENT SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	AIR VOLUME (LITERS)	CASSETTE DIAMETER (MM)	COWL LENGTH (MM)	CONDUCTIVE
_	2067927	BI-173	UNIT L-24, (4-3-91), FIELD BLANK	Q	25	50	YES
<u> </u>	2067928	BI-173	UNIT L-24, (4-3-91), FRONT BEDROOM	2210	25	50	YES
<u>~</u>	2067929	BI - 173	UNIT L-24, (4-3-91), FRONT BEDROOM	2166	25	50	YES
4	2067930	BI - 173	UNIT L-24, (4-3-91), LIVING ROOM	2298	25	50	YES
	2067931	B1-173	UNIT L-24, (4-4-91), FRONT BEDROOM	2178	25	50	YES
	2067932	BI-173	UNIT L-24, (4-4-91), FRONT BEDROOM	2156	25	50	YES
Ē	2067933	BI-173	UNIT L-24, (4-4-91), LIVING ROOM	2244	25	50	YES
	2067934	BI-173	UNIT L-24, (4-4-91), FIELD BLANK	0	25	50	YES

SAMPLE PREPARER

m. m. meclas

7 on Dagarlas

HOMAS DAGENHART, M.S.

DATE

LABORATORY MANAGER
NVLAP SIGNATORY

HYLAP ACCREDITATION NUMBER 1208-3

PLEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group, Inc • 10366 Battleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

Youngs Lake, WA

The Materials Characterization Specialists

LABORATORY REPORT *******

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

APRIL 8, 1991

SAMPLE RECEIPT DATE: APRIL 5, 1991

RJ LEE GRP. JOB NUMBER: ATV-104012

CLIENT JOS NUMBER:

5510.3.2

PURCHASE ORDER NUMBER:

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

ASBESTOS STRUCTURES DETECTED

AREA OF GRID OPENING: 0.00662 SQ MM

DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) :

TEM ACCELERATING POTENTIAL: 100 KV

TEM: PHILIPS CM12

1 ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
						WITH ASP	ECT RATIO >	5:1,	AS	SBESTOS	ASBESTOS	TYPE(S) OF
		ANALYTICAL	GRID	DILU-	AREA	SOR	TED BY LENG	TH	\$1	TRUCTURE	STRUCTURE	ASBESTOS
-	RJ LEE	SENSITIVITY	OPENINGS	TION	ANALYZED				08	INSITY	CONCENTRATION	STRUCTURE
ł	SAMPLE #	(STRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UN	>= 5.0 UM	TOTAL	(\$	TR/MH^2)	(STR/CC)	DETECTED
ı =	*******						******	*******		• • • • • • • •	•••••	•••••
<u>,</u>	2067927	NOT APPLICABLE	10	1.0	0.0662	Q.	0	Q	<	15.11	NOT APPL.	NONE DETECTED
60	2067928	0.0026	10	1.0	0.0662	0	0	0	<	15.11	< 0.003	NONE DETECTED
4	2067929	0.0027	10	1.0	0.0662	0	0	0	<	15.11	< 0.003	NONE DETECTED
	2067930	0.0025	10	1.0	9.0662	0	0	0	<	15.11	< 0.003	NONE DETECTED
_	2067931	0.0027	10	1.0	0.0662	0	C	0	<	15.11	< 0.003	NONE DETECTED
5	2067932	0.0027	10	1.0	0.0662	0	0	0	<	15.11	< 0.003	NONE DETECTED
4	2067933	0.0026	10	1.0	0.0662	0	C	0	<	15.11	< 0.003	NONE DETECTED
<u>+</u>	2067934	NOT APPLICABLE	10	1.0	0.0662	0	C	0	<	15.11	NOT APPL.	NONE DETECTED

PRESCREEN CASSETTES

. ⊻
_
•
Ž
1
7
7
-

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJEC	PROJECT NAME	ш				Ad	PARAMETERS	INDUSTRIAL	
5510.3.1	484	USATHAMA	2	4		1 54			HYGIENE SAMPLE	MPLE
SAMPLERS: (Signature)	rej				(Printed)	INI	<u></u>	<i> </i>	_	
Dobus a.	1	,			ROBERT A. HOOD	AL SANOS	\ \ \		REMARKS	s
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	BARD	STATION LOCATION	ET SON				
73734	1-1-	11:00								
73733	トノ	ا. س				-				
48787	カー	11.00				-				
13731	<u>+-1</u>	11.00				1				
73730	ナー	11.00				-				
73729	エー	11:00								
73728	1-14 11:00	11:00								
73727	エー	11.00				1				
73726	1-1	11.03				1				
73725	1-1	11.00				-				
73722	N-1	11:00			***					
73724	エー	en.								
Relinquished by: (Signeture)	neture)		Date	Date / Time	Received by: (Signature)	Relinquished by: (Signature)	Signature)	Date / Time	Received by: (Signature)	re J
Mes C. Hors	4	工	15 11-1	نج نجم -	(BANU Prichet	() () ()) (1		
(Printed)						(Printed)			(Printed)	
KOBERT A 11000	Q cQ	15.14-1	15.	Ā	2 m. Cenina 1. Fuckatt	1. Cab C	in toll			
Relinquished by: (Signature)	natura)		Date	Date / Time		Date / Time	Remarks			
(Printed)					nted)					
		_			1 to the state of the					

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

PROJECT NO	PROJEC	PROJECT NAME						200		INDUSTRIAL	>
	,					\	4	PAHAME I EKS	_	HYGIENE SAMPLE	z
5510, 5.1	1.5A	USATHAM A	۲ ۲	Ì		1 28		111	-		Ī
SAMPLERS: (Signeture)	(0)				(Printed)	3NIV.	\	\ \ \	<u>_</u>		
Khur a.	brox				Rotter A Hood	T. SINOS	\ \ \			REMARKS	
FIELD SAMPLE NUMBER	DATE	TIME	COMP.	BARD	STATION LOCATION	1 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
73719	1 -1-1	90: II				1				•	
73723	エー	11.00				1					
1816	エー	11:00				1					
73722	71-1	11.00								•	
LITSL	H-I	11.00				-					
12721	III	ع:									
73716	エエ	11:00				-					
				_						-	
						·					
Relinquished by: (Signeture)	mature)		Date / Time	/ Time		Relinquished by: (Signature)	Signature)	Date / Time		Received by: (Signature)	
(Printed)	4	-			(Printed)	(Printed)	-	X . / / / X . /	(Printed)		
-	gcq	<u>+</u>	16-11-1	ج ج ع		1, 1, 1, 1, 1, 1, 1	ter met				
Relinquished by: (Signature)	meture)		Date	Date / Time	Received for L	Date / Time	Remarks				
(Printed)					(Printed)						
, '				ļ	JAI W. Walterill						\bigcap

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink).

The Materials Characterization Specialists

LABORATORY REPORT ********

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

JANUARY 17, 1991

SAMPLE RECEIPT DATE: JANUARY 14, 1991

RJ LEE GRP. JOB NUMBER: ATW-101025

CLIENT JOB NUMBER:

5510.3.1 USATHAMA

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

SAMPLE INFORMATION

RJ LEE	CLIENT		AIR VOLUME	CASSETTE DIAMETER	COWL LENGTH	CONDUCTIVE
SAMPLE #	SAMPLE #	SAMPLE LOCATION, DATE, AND/OR DESCRIPTION	(LITERS)	(MM)	(MM)	COWL
2065471	73716	ASBESTOS BLANK	0	25	50	YES
2065472	<i>7</i> 3717	ASBESTOS BLANK	0	25	50	YES
2065473	<i>7</i> 3718	ASBESTOS BLANK	0	25	50	YES
2065474	<i>7</i> 3719	ASBESTOS BLANK	0	25	50	YES
2065475	73720	ASBESTOS BLANK	0	25	50	YES
2065476	73721	ASBESTOS BLANK	0	25	50	YES
2065477	73722	ASBESTOS BLANK	0	25	50	YES
2065478	73723	ASBESTOS BLANK	0	25	50	YES
2065479	73724	ASBESTOS BLANK	0	25	50	YES
2065480	73725	ASBESTOS BLANK	0	25	50	YES
2065481	73726	ASBESTOS BLANK	0	25	50	YES
2065482	73727	ASBESTOS BLANK	0	25	50	YES
2065483	73728	ASBESTOS BLANK	0	25	50	YES
2065484	73729	ASBESTOS BLANK	0	25	50	YES
2065485	73730	ASBESTOS BLANK	0	25	50	YES
2065486	73731	ASBESTOS BLANK	0	25	50	YES
2065487	73732	ASBESTOS BLANK	0	25	50	YES
2065488	73733	ASBESTOS BLANK	0	25	50	YES
2065489	73734	ASBESTOS BLANK	0	25	50	YES

SAMPLE PREPARER

IVLAP ACCREDITATION NUMBER 1208-3

LABORATORY MANAGER NVLAP SIGNATORY

LEASE SEE ESSENTIAL NOTES ON PAGE 3 OF REPORT

PAGE 1 OF 3

RJ Lee Group, Inc • 10366 Battleview Parkway, Manassas, VA 22110 • 703/368-7880 703/368-7761-FAX

BERKELEY, CA

MONROEVILLE, PA

WESTERN NY

The Materials Characterization Specialists

LABORATORY REPORT ******

VERSAR, INC.

6850 VERSAR CENTER

SPRINGFIELD, VIRGINIA 22151

703-642-6889

ATTN: PAM HILLIS

REPORT DATE:

JANUARY 17, 1991

SAMPLE RECEIPT DATE: JANUARY 14, 1991

RJ LEE GRP. JOB NUMBER: ATW-101025

CLIENT JOB NUMBER:

5510.3.1 USATHAMA

PURCHASE ORDER NUMBER: 01-61-60536

ANALYSIS: AIRBORNE ASBESTOS ON MIXED CELLULOSE ESTER FILTERS

METHOD: TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH SELECTED AREA ELECTRON DIFFRACTION AND ENERGY DISPERSIVE X-RAY ANALYSIS

EPA AHERA METHOD (40 CFR 763, SUBPART E, APPENDIX A, MANDATORY METHOD)

ANALYTICAL INFORMATION

AREA OF GRID OPENING: 0.00655 SQ MM

TEM ACCELERATING POTENTIAL: 100 KV TEM: PHILIPS CM12

DETECTION LIMIT (FIBERS PER TEN GRID OPENINGS) :

ENERGY DISPERSIVE X-RAY ANALYZER EDAX 9800 PLUS

ASBESTOS STRUCTURES DETECTED

						WITH ASPEC	T RATIO > !	5 : 1,	ASBESTOS	ASBESTOS	TYPE(S) OF
	A	NALYTICAL	GRID	DILU-	AREA	SORTE	D BY LENGT	H	STRUCTUR	E STRUCTURE	ASBESTOS
RJ LEE	SE	NSITIVITY	OPENINGS	TION	ANALYZED				DENSITY	CONCENTRATION	STRUCTURE
SAMPLE #	(S	TRUCT/CC)	SCANNED	FACTOR	(SQ MM)	>.5- <5 UM >	= 5.0 UM	TOTAL	(STR/MM^2) (STR/CC)	DETECTED

2065471	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065472	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065473	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065474	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065475	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065476	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065477	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065478	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065479	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
2065480	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
1065481	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
1065482	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
1065483	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
1065484	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
1065485	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
065486	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
065487	NOT	APPLICABLE	10	1.0	0.0655	3	0	0	< 15.26	NOT APPL.	NONE DETECTED
065488	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED
065489	NOT	APPLICABLE	10	1.0	0.0655	0	0	0	< 15.26	NOT APPL.	NONE DETECTED

APPENDIX D STUDENT "T" TEST EVALUATION

Wersaling.

When an indoor air asbestos level was equal to or greater than 0.005 f/cc, which is a typical outdoor asbestos level measured by TEM in urban areas, it was necessary to determine whether an impact on the indoor air existed because of asbestos containing materials in the FHU. To determine whether an impact exists, the inside air levels were statistically compared to the outside levels using the student "t" test. The student "t" test compares a calculated value T based on the number of samples and the concentrations (non-detects were used as one-half the detection limit) to a probability distribution. The value T is calculated as follows:

$$T = \frac{\overline{y_1} - \overline{y_2}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

 $\overline{y_1}$ = average of log concentrations inside the work site

 $\overline{y_2}$ = average of log concentrations outside the work site

 $S = [(\sum (y_{1} - \overline{y}_{1})^{2} + \sum (y_{2} - \overline{y}_{2})^{2})/(n_{1} + n_{2} - 2)]^{1/2}$

 n_1 = number of samples collected inside the work site

n₂ = number of samples collected outside the work site

T is compared to the one tail, 95 percentile point of the probability distribution with $n_1 + n_2 - 2$ degrees of freedoom. Versar collected 4 indoor samples and 2 outdoor samples; therefore, there are 4 degrees of freedom and the probability point is 2.132. If T exceeds the probability point, then the indoor levels are higher than the outside levels.

Tables D-1, D-2, D-3, and D-4 summarize the T values for Spring Valley Unit 208, Spring Valley Unit 203, Midway Unit M1, and Youngs Lake Unit L-24. As the tables show, the calculated T value for all four units are less than 2.132; therefore, the indoor levels are not statistically different from the outdoor levels.

TABLE D-1. SPRING VALLEY UNIT 208 STUDENT "T" TEST

INSIDE CONC. (F/CC)	NATURAL LOG OF INSIDE CONC.	OUTSIDE CONC. (F/CC)	NATURAL LOG OF OUTSIDE CONC.
0.002 0.004 0.004 0.008	-6.215 -5.521 -5.521 -4.828	0.002 0.002	-6.215 -6.215
AVERAGE	-5.521		-6.215
S=	0.490		
T=	1.633		

TABLE D-2. SPRING VALLEY UNIT 203 STUDENT "T" TEST

INSIDE CONC. (F/CC)	NATURAL LOG OF INSIDE CONC.	OUTSIDE CONC. (F/CC)	NATURAL LOG OF OUTSIDE CONC.
0.005 0.003 0.003 0.003	-5.298 -5.991 -5.991 -5.991	0.002 0.002	-6.215 -6.215
AVERAGE	-5.818		-6.215
S=	0.300		
T=	1.525		

TABLE D-3. MIDWAY UNIT M1 STUDENT "T" TEST

INSIDE CONC. (F/CC)	NATURAL LOG OF INSIDE CONC.	OUTSIDE CONC. (F/CC)	NATURAL LOG OF OUTSIDE CONC.
0.003 0.005 0.003 0.003	-5.991 -5.298 -5.991 -5.991	0.010 0.003	-4.605 -5.991
AVERAGE	-5.818		-5.298
S=	0.575		
T=	-1.044		

TABLE D-4. YOUNGS LAKE UNIT L-24 STUDENT "T" TEST

INSIDE CONC. (F/CC)	NATURAL LOG OF INSIDE CONC.	OUTSIDE CONC. (F/CC)	NATURAL LOG OF OUTSIDE CONC.
0.003 0.002 0.002 0.021	-5.991 -6.215 -6.215 -3.863	0.002 0.002	-6.215 -6.215
AVERAGE	-5.571		-6.215
S=	0.990		
T=	0.751		