Algorytmy Numeryczne

Zadanie 2 – Układy równań liniowych Jakub Szulc, Jakub Woźniak 23.04.2023

Struktury danych

W naszym projekcie z dostępnych form zapamiętywania macierzy nad ciałem liczb rzeczywistych wybraliśmy metodę DS2 oraz DS3. Rzędy, lub jak w przypadku DS3 - kolumny są reprezentowane jako tablice, które znajdują się wewnątrz tablicy.

Testy poprawnościowe

Hipoteza 1:

Z wyników naszych testów wynika, że hipoteza ta jest potwierdzona – błędy dla metody A2 są mniejsze niż dla metody A1, co widać na poniższym wykresie.

Tutaj wykres przedstawiający jasno różnice pomiędzy A1 i A2:

Hipoteza 2:

Możemy zaobserwować, że hipoteza ta jest prawdziwa i błędy rosną wraz ze wzrostem rozmiaru macierzy. W przypadku poniższego wykresu nie braliśmy pod uwagę zmiany ilości liczb na diagonali, co powoduje, że błąd zawsze będzie podobny i nie wzrasta wraz ze wzrostem ilości danych.

Kiedy jednak uwzględnimy liniową zmianę ilości liczb na diagonali wykres prezentuje się następująco:

Testy wydajnościowe

Hipoteza 3:

Różnica wyszła nam rzędu około 20% dla 150 iteracji na 1000-elementowej macierzy, więc jeżeli uznamy 20% za zdecydowaną różnicę w czasie wykonania, to możemy uznać, że hipoteza ta jest potwierdzona.

Rodzaj macierzy	Czas w nanosekundach
DenseMatrixA2:	242422
SparseMatrixA2:	188842
DenseMatrixA1:	592916
SparseMatrixA1:	463784

Hipoteza 4:

Nasz algorytm zwrócił wyniki, które przedstawiają się jak na powyższym wykresie. Wynika z niego, że hipoteza ta jest prawdziwa i mimo takiej samej liczby elementów niezerowych czas wykonania wzrasta wraz ze zwiększaniem rozmiaru macierzy.