Analysis Hand In Two

William A. Bevington

Question One - Worksheet 3, Q6

$$f(x) = \sin(x), \quad x \in \mathbb{R}$$
 (1)

We wish to show that $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x,y \in \mathbb{R}$: we have that $|x-y| < \delta \Rightarrow |\sin(x) - \sin(y)| < \varepsilon$, note that in the case of uniform continuity ε depends only on δ . Since $\sin(x)$ is differentiable on $I = \mathbb{R}$ with a bounded derivative, $\left|\frac{d}{dx}\sin(x)\right| = |\cos(x)| \le 1$ for any $x \in \mathbb{R}$, I will instead prove that for any differentiable function $g: \mathbb{R} \to \mathbb{R}$ with a bounded derivative is uniformly continuous, the result will then follow.

Since $g: \mathbb{R} \to \mathbb{R}$ has a bounded derivative by assumption we have that the limit

$$g'(y) := \lim_{x \to y} \frac{g(x) - g(y)}{x - y}$$
 (2)

exists and is bounded by some $M \in \mathbb{R}$ so that $\forall x \in \mathbb{R} : |g'(x)| < M$. In other words; if $|x - y| < \delta$ then $\left| \frac{g(x) - g(y)}{x - y} - g'(y) \right| < \epsilon$. Let $\varepsilon = \frac{M\delta}{1 + \delta}$, so we have that $\delta = \frac{\varepsilon}{M - \varepsilon}$ and since $|x - y| < \delta$

$$\epsilon > \left| \frac{g(x) - g(y)}{x - y} - g'(y) \right| \ge \left| \frac{g(x) - g(y)}{x - y} - M \right|$$
 since $\forall x : |g'(x)| < M$

$$\ge \left| \left| \frac{g(x) - g(y)}{x - y} \right| - M \right|$$
 by the reverse triangle inequality
$$\Rightarrow M - \epsilon < \left| \frac{g(x) - g(y)}{x - y} \right| < M + \epsilon$$
 using $|a - b| < c \Rightarrow -c < a - b < c$

and so we have that $|g(x) - g(y)| < |x - y|(M - \epsilon) < \delta(M - \epsilon) = \frac{\varepsilon}{M - \varepsilon}(M - \varepsilon) = \varepsilon$, that is; g is uniformly continuous. Thus if $g : \mathbb{R} \to \mathbb{R}$ has a bounded derivative on \mathbb{R} then g is uniformly continuous, hence $f(x) = \sin(x)$ is uniformly continuous on \mathbb{R} .

Question Two - Worksheet 3, Q9

We will aim to find two sequences $(s_n)_{n\in\mathbb{N}}$ and $(t_n)_{n\in\mathbb{N}}$ for which $|s_n-t_n|\to 0$ but that $\lim_{n\to\infty}|f(s_n)-f(t_n)|\neq 0$ for some continuous function f, then by question seven of the workshop f will not be uniformly continuous. Let $f:(0,1)\to\mathbb{R}:x\mapsto 1/x$, then f is continuous on (0,1) since if $|x-y|<\delta$ and $\varepsilon=\frac{\delta}{|xy|}$ then

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y - x}{xy}\right| < \frac{\delta}{|xy|} = \varepsilon.$$

Now we must show that f isn't uniformly continuous. Let $(s_n)_{n\in\mathbb{N}}$ be a sequence defined by $s_n=1/2n$ so that $s_n\to 0$ and $\forall n\in\mathbb{N}: s_n\in(0,1/2]\subset(0,1)$, note that $f(s_n)=f(1/2n)=2n$. Now, let $(t_n)_{n\in\mathbb{N}}$ be a sequence defined by $t_n=1/3n$ so that $t_n\to 0$ as $n\to\infty$, and we have $\forall n\in\mathbb{N}: t_n\in(0,1/3]\subset(0,1)$, and $f(t_n)=3n$. Then $|f(t_n)-f(s_n)|=|3n-2n|=|n|\to\infty\neq 0$, thus f(x)=1/x is not uniformly continuous on (0,1).

The theorem in the workshop stated that if $f:[a,b]\to\mathbb{R}$ is continuous then it's uniformly continuous. This isn't true for open intervals (a,b) since f can asymptotically approach $\pm\infty$ at either of the end points, however if f is defined on [a,b] then in order for f to be defined, f(a) and f(b) must be finite.

Question Three - Worksheet 4, Q5

We have that

$$S(x) := \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, \quad C(x) := \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$
 (3)

and we wish to show that for $x \in (0, \sqrt{6}]$: S(x) > 0 and that for $x \in (0, \sqrt{2}]$: C(x) > 0. For S(x), consider equation (3):

$$\begin{split} S(x) &= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \\ &= \sum_{k=0}^{\infty} \left(\frac{(-1)^{2k} x^{4k+1}}{(4k+1)!} - \frac{(-1)^{2k} x^{4k+3}}{(4k+3)!} \right) \\ &= \sum_{k=0}^{\infty} \frac{x^{4k+1}}{(4k+1)!} \left(1 - \frac{x^2}{(4k+2)(4k+3)} \right) \end{split}$$

so if $x \in (0, \sqrt{6}]$ then $x^2 \in (0, 6]$ and $x^{4k+1} \in (0, 36^k \sqrt{6}]$. Notice that $1 - \frac{x^2}{(4k+2)(4k+3)} > 0$ precisely when $1 > \frac{x^2}{(4k+2)(4k+3)} \in \left(0, \frac{6}{(4k+2)(4k+3)}\right]$, and so certainly $1 - \frac{x^2}{(4k+2)(4k+3)} > 0$. Thus each term $\frac{x^{4k+1}}{(4k+1)!} \left(1 - \frac{x^2}{(4k+2)(4k+3)}\right)$ is positive and thus the sum of terms S(x) > 0 is positive for $x \in (0, \sqrt{6}]$.

Similarly we want to show that C(x) > 0 for $x \in (0, \sqrt{2}]$. Splitting the sum as we did above we get

$$C(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

$$= \sum_{k=0}^{\infty} \left(\frac{(-1)^{2k} x^{4k}}{(4k)!} - \frac{(-1)^{2k+2} x^{4k+2}}{(4k+2)!} \right)$$

$$= \sum_{k=0}^{\infty} \frac{x^{4k}}{(4k)!} \left(1 - \frac{x^2}{(4k+1)(4k+2)} \right),$$

and clearly $\frac{x^{4k}}{(4k)!}$ is positive. Now, $x \in (0, \sqrt{2}] \Rightarrow x^2 \in (0, 2]$, and since $k \ge 0$ we have that $(4k+1)(4k+2) \ge (0+1)(0+2) = 2$ and so $1 - \frac{x^2}{(4k+1)(4k+2)} > 0$, and since each term is positive the sum of all the terms will be positive too, thus C(x) > 0 for $x \in (0, \sqrt{2}]$.

Finally we wish to prove that if $x \in [0, \sqrt{56}]$ and $1 - x^2/2! + x^4/4! < 0$ then C(x) < 0. Rewriting this as a quadratic in $a = x^2$ we have that $a^2 - 12a + 24 < 0$, and we get critical values $a = 6 \pm 2\sqrt{3}$ and so the critical values for the quartic in x are $\left\{\sqrt{6 + 2\sqrt{3}}, \sqrt{6 - 2\sqrt{3}}, -\sqrt{6 + 2\sqrt{3}}, -\sqrt{6 - 2\sqrt{3}}\right\}$, which gives (by looking at the graph) that $x^4 - 12x^2 + 24 < 0$ iff $x \in (-\sqrt{6 + 2\sqrt{3}}, -\sqrt{6 - 2\sqrt{3}}) \cup (\sqrt{6 - 2\sqrt{3}}, \sqrt{6 + 2\sqrt{3}})$, but by assumption we have that $x \in (0, \sqrt{56}]$ so certainly x > 0 and $\sqrt{6 + \sqrt{3}} < \sqrt{56}$ thus $(\sqrt{6 - 2\sqrt{3}}, \sqrt{6 + 2\sqrt{3}}) \subset (0, \sqrt{56})$ and

$$x \in \left(0, \sqrt{56}\right] \text{ and } 1 - x^2/2! + x^4/4! < 0 \quad \Rightarrow \quad x \in \left(\sqrt{6 - 2\sqrt{3}}, \sqrt{6 + 2\sqrt{3}}\right),$$

and so $x^2 \in (6 - 2\sqrt{3}, 6 + 2\sqrt{3})$. Note that

$$C(x) = \sum_{k=0}^{\infty} \left(\frac{x^{4k}}{(4k)!} - \frac{x^{4k+2}}{(4k+2)!} \right) = \sum_{k=0}^{\infty} \frac{x^{4k}}{(4k)!} - \sum_{k=0}^{\infty} \frac{x^{4k+2}}{(4k+2)!}$$
(4)

where $x \in (\sqrt{6-2\sqrt{3}}, \sqrt{6+2\sqrt{3}})$, and $1-x^2/2!+x^4/4!=0$ so the first two terms of the first sum $1+x^4/4!=x^2/2!$; the first term of the second sum, thus

$$C(x) = \sum_{k=2}^{\infty} \frac{x^{4k}}{(4k)!} - \sum_{k=1}^{\infty} \frac{x^{4k+2}}{(4k+2)!} = \sum_{k=2}^{\infty} \left(\frac{x^{4k}}{(4k)!} - \frac{x^{4k-2}}{(4k-2)!} \right),$$

which is clearly negative, as each term is negative.

Now, we have that for $x \in \left(\sqrt{6-2\sqrt{3}}, \sqrt{6+2\sqrt{3}}\right)$ then C(x) < 0. Since $1.59 \approx \sqrt{6-2\sqrt{3}} < 8/5 = 1.6 < \sqrt{6+2\sqrt{3}} \approx 3.08$ by direct calculation, we have that C(8/5) < 0 by the above.

Question Four - Worksheet 4, Q6

From the above question we have that C(8/5) < 0, and $\frac{d}{dx}C(x) = -S(x)$, so C(x) is a continuous funtion on some interval I (in this case $I = \mathbb{R}$, which we proved in the workshop), thus we can use the intermediate value theorem:

Intermediate Value Theorem:

If f is continuous on some interval [a, b] and takes values $f(a) = y_a$ and $f(b) = y_b$, then for any y between y_a and y_b , $\exists c \in [a, b]$ such that y = f(c).

In our case, [a,b] can be any closed subset of $I=\mathbb{R}$, but we'll choose $[\sqrt{2},8/5]$. We have that C(8/5)<0 and that $C(\sqrt{2})>0$ from the above, and thus there must be some $\omega/2\in[\sqrt{2},8/5]$ such that $C(\omega/2)=0$ since 0 is between $C(8/5)<0< C(\sqrt{2})$.

Now we wish to show that $S(\omega/2)=1$, note that $\frac{d}{dx}S(x)=C(x)$, and that $\forall x:S(x)\leq 1$, and so 1 is a global maximum for S(x). At any global maximum strictly inside some interval (ie, not one of the endpoints) has a derivative of zero, thus if S(c)=1 for some c then $\frac{dS}{dx}|_{x=c}=C(c)=0$. There is a unique point $\omega/2$ in $(\sqrt{2},8/5)$ (note the lack of end-points) in which S(c)=0 and given that there is a unique point $c\in(\sqrt{2},8/5)$ in which S(c)=1 so that S(c)=0, it must be that S(c)=0 and S(c)=0 and S(c)=0.