前置知识: 前缀和与差分

前缀和

简单而言,给定数组 a_1,a_2,a_3,\cdots,a_n ,现在想要**快速求出** $a_l,a_{l+1},a_{l+2},\cdots,a_r$ 的和。

- 朴素算法遍历 $a_l \cong a_r$, 时间复杂度 $\mathcal{O}(r-l+1)$ 。
- 使用前缀和算法,时间复杂度 $\mathcal{O}(1)$ 。 记数组 b_1,b_2,b_3,\cdots,b_n 使得 $b_i=b_{i-1}+a_i$,即 $b_i=a_i+a_2+a_3+\cdots+a_i$ 。 这样 b_r-b_{l-1} 即为区间和。

更多相关内容见此。

差分

简单而言,给定数组 $a_1, a_2, a_3, \dots, a_n$,现在想要**快速使得** $a_l, a_{l+1}, a_{l+2}, \dots, a_r$ 的值增加 x_s

- 朴素算法遍历 $a_l \subseteq a_r$, 时间复杂度 $\mathcal{O}(r-l+1)$ 。 (这不一样的吗??)
- 使用差分算法,时间复杂度 $\mathcal{O}(1)$ 。

记数组 $b_1, b_2, b_3, \dots, b_n$ 使得 $b_i = a_i - a_{i-1}$.

这样修改 b_l 为 $b_l + x$, b_{r+1} 为 $b_{r+1} - x$ 即可。

因为 a_l 至 a_r 全部增加 x,相邻差值不变,而 a_l 与 a_{l-1} 的差值就增加了 x;倘若不更改 b_{r+1} 减去 x,那么还原时 a_{r+1} 至 a_n 全体都会增加 x,因此 b_{r+1} 要减去 x。

更多相关内容见此。

处理策略

1.朴素算法

输入完成后枚举1至m哪个操作不做,暴力增加1,最后统计0的个数。

时间复杂度: $\mathcal{O}(m(mn+n))$ 。

显然超时。

2.差分算法

输入完成后枚举 $1 \le m$ 哪个操作不做,每次都差分维护区间 [l,r] 增加,最后还原时统计 0 的数量即可。

时间复杂度: $\mathcal{O}(m(m+n))$ 。

考虑到数据范围 $1 < n, m < 3 \times 10^5$, **仍会超时**。

得分: 20pts。 **部分**代码:

```
const int N=3e5;
struct node{
    int l,r;
}a[N+1];//其实不用结构体也行
int n,m,cnt,cf[N+2];//差分数组
int main() {
    /*freopen("test.in","r",stdin);
    freopen("test.out","w",stdout);*/
```

```
scanf("%d %d",&n,&m);
    for(int i=1;i<=m;i++)scanf("%d %d",&a[i].1,&a[i].r);</pre>
    for(int i=1;i<=m;i++){</pre>
        fill(cf+1, cf+n+1, 0);//初始化
        cnt=0;
        //差分维护
        for(int j=1; j <= m; j++){
            if(j==i)continue;
            cf[a[j].1]++,cf[a[j].r+1]--;
        }//差分还原:统计0的数量
        for(int j=1; j <= n; j++){
            cf[j]+=cf[j-1];
            if(cf[j]==0)cnt++;
        }printf("%d\n",cnt);
    }
    /*fclose(stdin);
    fclose(stdout);*/
   return 0;
}
```

3.前缀和+差分优化

输入n, m 后输入 l_i , r_i , 输入的时候便直接使用差分维护增加1。

维护完成后还原,还原时统计 0 的个数 cnt0。这时,只需要加上 $[l_i, r_i]$ 内不执行操作 i 产生的 0 的数量 pl 即可。

显然对于区间 $[l_i, r_i]$,最坏查找可以达到 $\mathcal{O}(n)$,那么时间复杂度便达到了 $\mathcal{O}(mn)$ 。

考虑到 mn 最大为 $(3 \times 10^5) \times (3 \times 10^5) = 6 \times 10^{10}$, 显然又双叒叕**具有超时的风险**。 (这个超时代码就不贴了)

如果我们使用一个 $cnt1_i$ 记录 i 号位置是否为 1,那么显然

 $pl = cnt1_{l_i} + cnt1_{l_i+1} + cnt1_{l_i+2} + \cdots + cnt1_{r_i}$.

仔细看看,不难发现,这就是**快速**求 $cnt1_{l_i}$ 至 $cnt1_{r_i}$ 的和。那么我们**更改** cnt1 **的定义**,使 $cnt1_i$ 为 1 至 i 号位里 1 的总数,则 $pl=cnt1_{r_i}-cnt1_{l_{i-1}}$ 。

则最终答案为 $cnt0 + cnt1_{r_i} - cnt1_{l_{i-1}}$.

时间复杂度: $\mathcal{O}(n+m)$ 。

AC代码

```
//#include<bits/stdc++.h>
#include<algorithm>//个人习惯,忽略即可
#include<iostream>
#include<cstring>
#include<iomanip>
#include<cstdio>
#include<string>
#include<vector>
#include<cmath>
#include<ctime>
#include<deque>
#include<queue>
#include<stack>
#include<list>
using namespace std;
const int N=3e5;
int n,m,l[N+1],r[N+1],cnt0,cf[N+2],cnt1[N+1];
```

```
int main(){
   /*freopen("test.in","r",stdin);
    freopen("test.out","w",stdout);*/
   scanf("%d %d",&n,&m);
   for(int i=1;i<=m;i++){</pre>
       scanf("%d %d",1+i,r+i);
       cf[][i]]++,cf[r[i]+1]--;//差分维护
   }
   for(int i=1;i<=n;i++){
       cf[i]+=cf[i-1];//差分还原
       cnt1[i]=cnt1[i-1];//cnt1前缀和
       if(cf[i]==0)cnt0++;//统计0的数量
       if(cf[i]==1)cnt1[i]++;//前缀和统计1~i里1的数量
   } //输出,含义如上文所述
   for(int i=1;i<=m;i++){</pre>
       printf("%d\n",cnt0+(cnt1[r[i]]-cnt1[l[i]-1]));
   }
   /*fclose(stdin);
   fclose(stdout);*/
   return 0;
}
```