Coordinate Descent Algorithms (SCD): Gauss-Southwell Rule

Jingchang Liu

December 16, 2018

University of Science and Technology of China

Table of Contents

Introductions

Gauss-Southwell Rule

Conclusion

Q & A

Introductions

Motivation

Stochastic Gradient Descent

$$n \gg p$$
, $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$.

Coordinate Descent

p may very big, such as in computational biology and healthy care problem.

3

Gradient Descent

Full Gradient Descent

$$\min_{x} f(x) \qquad x^{k+1} \leftarrow x^{k} - \gamma_{k} \nabla f(x^{k}).$$

Stochastic Gradient Descent

$$\min_{x} \frac{1}{n} \sum_{i=1}^{n} f_i(x) \qquad x^{k+1} \leftarrow x^k - \gamma_k \nabla f_{i_k}(x^k).$$

Stochastic Coordinate Descent

$$\min_{x} f(x) \qquad x^{k+1} \leftarrow x^{k} - \gamma_{k} \nabla_{i_{k}} f(x^{k}).$$

4

Figure

SDCA

Formulation

$$\min_{w \in \mathbb{R}^d} P(w)$$

$$P(w) := \frac{1}{n} \sum_{i=1}^n \phi_i \left(w^T x_i \right) + \frac{\lambda}{2} \|w\|^2$$

Dual Problem

$$\max_{\alpha} D(\alpha)$$

$$D(\alpha) = \frac{1}{n} \sum_{i=1}^{n} -\phi_{i}^{*}(-\alpha_{i}) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} x_{i} \right\|^{2}$$

Conjugate function: $\phi_{i}^{*}(u) = \max_{z} (zu - \phi_{i}(z))$

6

Derivation

$$P(w) = \frac{1}{n} \sum_{i=1}^{n} \phi_{i} (w^{T} x_{i}) + \frac{\lambda}{2} \|w\|^{2} \text{ equals to}$$

$$P(y,z) = \frac{1}{n} \sum_{i=1}^{n} \phi_{i} (z_{i}) + \frac{\lambda}{2} \|y\|^{2}$$

$$s.t. \qquad y^{T} x_{i} = z_{i}, i = 1, 2, \cdots, n$$

$$L(y,z,\alpha) = P(y,z) + \frac{1}{n} \sum_{i=1}^{n} \alpha_{i} (y^{T} x_{i} - z_{i})$$

$$D(\alpha) = \inf_{y,z} L(y,z,\alpha)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \inf_{z_{i}} \{\phi_{i} (z_{i}) - \alpha_{i} z_{i}\} + \inf_{y} \left\{\frac{\lambda}{2} \|y\|^{2} + \frac{1}{n} \sum_{i=1}^{n} \alpha_{i} y^{T} x_{i}\right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} -\phi_{i}^{*} (-\alpha_{i}) - \frac{\lambda}{2} \left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} x_{i}\right\|^{2}.$$

7

Algorithms

```
Let w^{(0)} = w(\alpha^{(0)})

Iterate: for t = 1, 2, \dots, T:

Randomly pick i

Find \Delta \alpha_i to maximize -\phi_i^*(-(\alpha_i^{(t-1)} + \Delta \alpha_i)) - \frac{\lambda n}{2} \|w^{(t-1)} + (\lambda n)^{-1} \Delta \alpha_i x_i\|^2

\alpha^{(t)} \leftarrow \alpha^{(t-1)} + \Delta \alpha_i e_i

w^{(t)} \leftarrow w^{(t-1)} + (\lambda n)^{-1} \Delta \alpha_i x_i

Output (Averaging option):

Let \bar{\alpha} = \frac{1}{T - T_0} \sum_{i=T_0+1}^{T} \alpha^{(t-1)}

Let \bar{w} = w(\bar{\alpha}) = \frac{1}{T - T_0} \sum_{i=T_0+1}^{T} w^{(t-1)}

return \bar{w}
```

Figure 2: Procedure SDCA

Assumptions

Strong convexity

$$\exists \ \delta > 0, \ \operatorname{sit} f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + \frac{\delta}{2} \|y - x\|_2^2, \ \forall \ x, y$$

Component Lipschitz Continuous

$$\|\nabla_i f(x+te_i) - \nabla_i f(x)\| \leq L_i \|t\|.$$

Standard Lipschitz Continuous

$$\|\nabla f(x+d) - \nabla f(x)\| \le L_i \|d\|.$$

Gauss-Southwell Rule

Block selected rules

Updates

$$x^{k+1} \leftarrow x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k}.$$

Random rule

 i_k is selected randomly.

GS

$$i_k = \arg\max_i |\nabla_i f(x^k)|.$$

Analysing

Lipschitz

$$f(x^{k+1})$$

$$\leq f(x^{k}) + \nabla_{i_{k}} f(x^{k}) (x^{k+1} - x^{k})_{i_{k}} + \frac{L}{2} (x^{k+1} - x^{k})_{i_{k}}^{2}$$

$$= f(x^{k}) - \frac{1}{L} (\nabla_{i_{k}} f(x^{k}))^{2} + \frac{L}{2} \left[\frac{1}{L} \nabla_{i_{k}} f(x^{k}) \right]^{2}$$

$$= f(x^{k}) - \frac{1}{2L} \left[\nabla_{i_{k}} f(x^{k}) \right]^{2}.$$

Strongly convex

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||,$$

which implies

$$f(x^*) \ge f(x^k) - \frac{1}{2\mu} \|\nabla f(x^k)\|^2.$$

Analysing for randomized selection

$$\mathbb{E}[f(x^{k+1})] \leq \mathbb{E}\left[f(x^k) - \frac{1}{2L}(\nabla_{i_k}f(x^k))^2\right]$$

$$= f(x^k) - \frac{1}{2L}\sum_{i=1}^n \frac{1}{n}(\nabla f(x^k))^2$$

$$= f(x^k) - \frac{1}{2Ln}\|\nabla f(x^k)\|^2.$$

Using
$$f(x^*) \ge f(x^k) - \frac{1}{2\mu} \|\nabla f(x^k)\|^2$$
:

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{Ln}\right) [f(x^k) - f(x^*)].$$

Analysing for GS

$$(\nabla_{i_k} f(x^k))^2 = \|\nabla f(x^k)\|_{\infty}^2 \ge \frac{1}{n} \|\nabla f(x^k)\|^2.$$

Applying to
$$f(x^{k+1}) \le f(x^k) - \frac{1}{2Ln} \|\nabla f(x^k)\|^2$$
:
 $f(x^{k+1}) \le f(x^k) - \frac{1}{2Ln} \|\nabla f(x^k)\|^2$.

Together with
$$f(x^*) \ge f(x^k) - \frac{1}{2\mu} \|\nabla f(x^k)\|^2$$
:
 $f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{\ln n}\right) [f(x^k) - f(x^*)].$

Almost the same convergence rate as that in randomized selection.

New analysis

New definition of Strong convexity

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu_1}{2} ||y - x||_1^2.$$

Minimizing both sides

$$f(x^{*}) \geq f(x) - \sup_{y} \{ \langle -\nabla f(x), y - x \rangle - \frac{\mu_{1}}{2} \|y - x\|_{1}^{2} \}$$

$$= f(x) - \left(\frac{\mu_{1}}{2} \| \cdot \|_{1}^{2} \right)^{*} (-\nabla f(x))$$

$$= f(x) - \frac{1}{2\mu_{1}} \|\nabla f(x)\|_{\infty}^{2},$$

which makes use of the convex conjugate $(\frac{\mu_1}{2}\|\cdot\|_1^2)^* = \frac{1}{2\mu_1}\|\|_\infty^*$.

Applying
$$(\nabla_{i_k} f(x^k))^2 = \|\nabla f(x^k)\|_{\infty}^2$$
: $f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu_1}{L}\right) [f(x^k) - f(x^*)].$

Relationship between μ_1 and μ

Relationship between the 2-norm and the 1-norm

$$||x||_1 \ge ||x|| \ge \frac{1}{\sqrt{n}} ||x||_1.$$

f is μ -strongly convex in the 2-norm

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2$$

$$\geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2n} ||y - x||_1^2,$$

implying that f is at least $\frac{\mu}{n}$ -strongly convex in the 1-norm.

f is μ_1 -strongly convex in the 1-norm

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu_1}{2} ||y - x||_1^2$$

$$\geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu_1}{2n} ||y - x||^2,$$

implying that f is at least $\frac{\mu_1}{n}$ -strongly convex in the 2-norm.

Conclusion of GS

Relationship between μ_1 and μ

$$\frac{\mu}{n} \le \mu_1 \le \mu$$
.

Conclusions

- At one extreme the GS rule obtains the same rate as uniform selection $(\mu_1 \approx \mu/n)$.
- GS may be faster than uniform selection by a factor of n ($\mu_1 \approx \mu$).

Lipschitz Sampling

Explanations

- *L_i*: how smooth the coordinate is.
- $p_i = L_i / \sum_{j=1}^n L_j$.

Convergence rate

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{n\overline{L}}\right) [f(x^k) - f(x^*)],$$

where $\bar{L} = \frac{1}{n} \sum_{j=1}^{n} L_j$.

Remark

- This rate is faster than that for uniform sampling if any L_i differ.
- Is other distributions can make the rate faster? Like $p_i = \sqrt{L_i} / \sum_{i=1}^n \sqrt{L_j}$

Experiments

Figure 3: Comparison of coordinate selection rules.

Conclusion

Conclusions

- SCD can play its roles in some cases, like SDCA.
- GS is faster than uniform selection in almost all cases.
- More practical methods are needed to apply GS roles.

Q & A