Title: USE OF METABOLIC PHEN Inventor: Brian Leyland-Jones

Basic Structure of N- (Aryl Substituted) - naphthalidimides

Title: USE OF METABOLIC PHEN Inventor: Brian Leyland-Jones

NAT2

1X (1-methylxanthine)

$$H_3C$$
 NH_2
 CH_3
 NH_2

AAMU (5-acetamino-6-amino-methyluracil)

$$H_3C$$
 NH
 C
 NH

AFMU (5-acetamino-6-formylamino-methyluracil)

$$H_3C$$
 CH_3
 CH_3

Caffeine (1,3,7-trimethylxanthine)

1,7-DMX (1,7-dimethylxanthine)

1,7-DMU (1,7-dimethyluracil)

Docket No.: 3298.1003-000 le: USE OF METABOLIC PHENOTYP. Inventor: Brian Leyland-Jones

CYP3A4

MDZ (Midazolam)

1-OH-MDZ (1-Hydroxymidazolam)

NOV D L ZOON DE TRADEMAN

Docket No.: 3298.1003-000

Title SE OF METABOLIC PHENOTYPING...

Inventor: Brian Leyland-Jones

NAT1

p-ASA (p-aminosalicylic acid)

Acetyl-pASA (acetyl-p-aminosalicylic acid)

_Ŧ<u>Ŧ</u>Ŧ= _5

Docket No.: 3298.1003-000
e: USE OF METABOLIC PHENOTYPI
Inventor: Brian Leyland-Jones

CYP2A6

Coumarin

7-Hydroxycoumarin

Title: USE OF METABOLIC PHENOT Inventor: Brian Leyland-Jones

CYP2C19

R-(-)-Mephenytoin

S-(+)-Mephenytoin

Docket No.: 3298.1003-000

Title: USE OF METABOLIC PHENOTY Inventor: Brian Leyland-Jones

CYP2C9

(s)-Ibuprofen

2-carboxyibuprofen

Docket No.: 3298.1003-000

e: USE OF METABOLIC PHENOTYPI

entor: Brian Leyland-Jones

CYP2D6

Dextromethorphan

Dextrorphan

ne for all this m

Pocket No.: 3298.1003-000 le: USE OF METABOLIC PHENOTYP Inventor: Brian Leyland-Jones

CYP2E1

Clorzoxazone

6-Hydroxychlorzoazone

Docket No.: 3298.1003-000 itle: USE OF METABOLIC PHENOTYI inventor: Brian Leyland-Jones

Docket No.: 3298.1003-000
Tit JSE OF METABOLIC PHENOTYPING
Inventor: Brian Leyland-Jones

Title: USE OF METABOLIC PHENOTY

Inventor: Brian Leyland-Jones

AAMU-hemisuccinic acid

1 methyl xanthine-8-propionic acid

<u> 于三二 14</u>

: USE OF METABOLIC PHENOTYPIN

Inventor: Brian Leyland-Jones

Derivatives of AAMU (5-acetamino-6-amino-3-methyluracil) or AFMU (5-acetamino-6-formylamino-3-methyluracil)

Х

$$(CH_2)$$
 $n-COOH$

where n = 2,3 or 4

$$(CH_2) n - C - NH - (CH_2) n - NH_2$$

$$CH_2 - X'$$

where X' is I, Br, or Cl

$$CH_2-S-(CH_2)n-NH_2$$

$$\mathtt{CH_2} - \mathtt{S} - \mathtt{CH_2} - \mathtt{CH_2} - \mathtt{OH}$$

NOV 0 1, 2002 33

Docket No.: 3298.1003-000

e: USE OF METABOLIC PHENOTYPD

Inventor: Brian Leyland-Jones

Derivatives of AAMU (5-acetamino-6-amino-3-methyluracil) or AFMU (5-acetamino-6-formylamino-3-methyluracil)

Х

$$(CH_2)$$
 $n-COOH$

where n = 2,3 or 4

$$(CH_2)$$
 $n-C-NH-NH_2$

$$(CH_2) n - C - NH - (CH_2) n - NH_2$$

$$CH_2-X'$$

where X' is I, Br, or Cl

$$CH_2-S-(CH_2)n-NH_2$$

$$\mathrm{CH_2}\mathrm{-s}\mathrm{-CH_2}\mathrm{-CH_2}\mathrm{-OH}$$

tle: USE OF METABOLIC PHENOTYP

inventor: Brian Leyland-Jones

Derivatives of 1X (methylxanthine)

$$\begin{array}{c|c}
 & H \\
 & N \\$$

X

$$(CH_2)$$
 $n-COOH$

where n = 2,3 or 4

$$(CH_2)n-C-NH-NH_2$$

$$(CH_2) n - C - NH - (CH_2) n - NH_2$$

$$(CH_2) n - C - NH - (CH_2) n - SH$$

于三一17

Title: USE OF METABOLIC PHENOT Inventor: Brian Leyland-Jones

Derivatives of 1X (methylxanthine)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ X & & & \\ & & & \\ X & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Х

$$(CH_2)$$
 n-COOH

where n = 2,3 or 4

$$(CH_2)$$
 $n-C-NH-NH_2$

$$(CH_2) n - C - NH - (CH_2) n - NH_2$$

$$(CH_2) n - C - NH - (CH_2) n - SH$$

Docket No.: 3298.1003-000
2: USE OF METABOLIC PHENOTYPIN Intor: Brian Leyland-Jones

Title: USE OF METABOLIC PHENOT

Inventor: Brian Leyland-Jones

СНз ĊНз $Br(CH_2)_5COOCH_2CH_3$ ${\rm CH_2(CH_2)_4C00CH_2CH_3}$ СНз ĊН3 II NaOH $CH_2(CH_2)_4COOH$ СН3. ĊН3 III

Caffeine derivative

СН3 N H IV $Br(CH_2)_5COOCH_2CH_3$ $\mathrm{CH}_2(\mathrm{CH}_2)_4\mathrm{COOCH}_2\mathrm{CH}_3$ CH_3 NaOH $CH_2(CH_2)_4COOH$ СНз VI

1,7-dimethylxanthine derivative

NOV 0 4 2002 30

Docket No.: 3298.1003-000

Title: FIE OF METABOLIC PHENOTYPING....

Invent Brian Leyland-Jones

$$0 \\ 0 \\ N \\ NH_2$$

$$0 \\ NH_2$$

$$\begin{array}{c|c} O & (CH_2)_4NHBOC \\ CH_3 & N & COOCH_2CH_3 \\ O & N & NH_2 \\ XV & XVI \\ \end{array} \xrightarrow{CH_3 & O & (CH_2)_4NH_2 \\ CH_3 & N & N & N \\ O & N & N & N \\ XVI & XVI \\ \end{array}$$

1,7-dimethyluric acid derivative

12	STD16	STD17	STD18	STD19	STD20	STD21	STD22	STD23
11	STD8	STD9	STD10	STD11	STD12	STD13	STD14	STD15
10	BIK	STD1	STD2	STD3	STD4	SILDS	STD6	STD?
6	SS	S6	S7	S8	S9	S10	S11	S12
8	S9	S10	S11	S12	S1	ZS	S3	S4
7	SI	SS	S3	S4	S5	S6	S7	S8
9	S2	S6	S7	S8	S9	S10	S11	S12
5	S9	S10	S11	S12	S1	SS	S3	S4
4	SI	SS	S3	S4	35	S6	S7	S8
က	STD16	STD17	STD18	STD19	STD20	STD21	STD22	STD23
2	STD8	STD9	STD10	STD11	STD12	STD13	STD14	STD15
1	Blk	STD1	STD2	STD3	STD4	STD5	STD6	STD7
	А	В	ນ	Ω	더	[코드-	IJ	н

Title: E OF Inventor: Brian

Docket No.: 3298.1003-000 Title: LE OF METABOLIC PHENOTYPING....

Inventor: Brian Leyland-Jones

6X6 ARRAY

ARRAY LAYOUT:

ALIGNMENT MARKERS
BUFFER BLANKS
ANTIGENS-

ANTIGEN KEY:

- 1. BIOTINYLATED BSA MARKER
- 2-6. BUFFER BLANKS
- 7. NAT2: AAMU
- 8. BIOTINYLATED BSA MARKER
- 9. NAT2: 1X
- 10. NAT1: pASA
- 11. NAT1: ACETYL-pASA
- 12. CYP1A2: CAFFEINE
- 13. BIOTINYLATED BSA MARKER
- 14. CYP1A2: 1,7-DMX
- 15. CYP1A2: 1,7-DMU
- 16. CYP2A6: COMARIN
- 17. CYP2A6: 7-HYDROXYCOUMARIN
- 18. CYP2C19: R- (-) -MEPHENYTOIN
- 19. BIOTINYLATED BSA MARKER
- 20. CYP2C19: S- (+) -MEPHENYTOIN
- 21. CYP2C9: DICLOFENAC
- 22. CYP2C9: 4-HYDROXYDICLOFENAC
- 23. CYP2D6: DEXTROMETHORPHAN
- 24. CYP2D6: DEXTRORPHAN
- 25. BIOTINYLATED BSA MARKER
- 26. CYP2E1: CHLORZOXAZONE
- 27. CYP2E1: 6-HYDROXYCHLORZOXAZONE
- 28. CYP3A4: MIDAZOLAM
- 29. CYP3A4: 1-HYDROXYMIDAZOLAM
- 30. BUFFER BLANK
- 31-36. BIOTINYLATED BSA MARKER

Title: USE OF METABOLIC PHENOT

Inventor: Brian Leyland-Jones

tle: USE OF METABOLIC PHENOTYI ventor: Brian Leyland-Jones

Docket No.: 3298.1003-000 Title: USE OF METABOLIC PHENOTY Inventor: Brian Leyland-Jones

Amonafide

NOV 0 4 2002

185

-180

175

-170

165

-160

155

-150

145

-140

135

130

120

115

-110

105

-100

95

-90

-80

10"

10

Docket No.: 3298.1003-000
Title: USE OF METABOLIC PHENOTYPING
It was a superior of the control o

