

SEQUENCE LISTING

<110> Friddle, Carl Johan
Hilbun, Erin
Gerhardt, Brenda
Mathur, Brian
Walke, D. Wade
Turner, C. Alexander Jr.

<120> Novel Human 7TM Proteins and Polynucleotides Encoding the Same

<130> LEX-0252-USA

<150> US 60/239,592
<151> 2000-10-11

<160> 20

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1017
<212> DNA
<213> homo sapiens

<400> 1
atgaaaagtc aaattaaaaa aagtgactta aaatatagag ccatttatt gcaaaaagtc 60
acaaggatgt tcctgcttt ctgggtcctt ctcttggtcc tttctagact ttggtagtc 120
atgggtcgag gaaacagcac tgaagtgact gaattccatc ttctgggatt tgggtccaa 180
cacgaatttc agcatgtcct tttcattgtt cttcttctta tctatgtac ctccctgata 240
gaaaatattt gaatgatctt actcatcaag accgattcca gacttcaaacc acccatgtac 300
tttttccac aacatttggc ttttgttgc atctgttata cttctgctat cactccccaa 360
atgctccaaa gttcacaga agaaaataat ttgataacat ttcgggctg tggataacaa 420
ttcttagttt atgcaacatt tgcaaccagt gactgttacc tccttagctat tatggcaatg 480
gattgtttagt ttgcattctg taagccccctt cgctatccca tgatcatgtc ccaaacagtc 540
tacatccaac tcgttagctgg ctcataattt ataggctcaa taaatgcctc tgtacataca 600
ggttttacat tttcactgtc cttctgcaag tctaataaaa tcaatcactt tttctgtat 660
ggctcccaa ttcttgcctt ttcatgctcc aacattgaca tcaacatcat tctagatgtt 720
gtctttgtgg gatttgactt gatgttcaact gagttgtca tcatctttc ctacatctac 780
attatggtca ccattctgaa gatgtcttct actgctggaa ggaaaaaaatc cttctccaca 840
tgtgcctccc acctgacagc agtaaccatt ttctatggaa cactcttta catgtactta 900
cagcctcagt ctaataattc tcaggagaat atgaaaatgg tagcttatatt ttatggcact 960
gttattccca tggatcc ttatctat agttgagaa ataaggaagg aaaataa 1017

<210> 2
<211> 338
<212> PRT
<213> homo sapiens

<400> 2
Met Lys Ser Gln Ile Glu Lys Ser Asp Leu Lys Tyr Arg Ala Ile Leu
1 5 10 15
Leu Gln Lys Val Thr Arg Met Phe Leu Leu Phe Trp Val Leu Leu Leu
20 25 30

<210> 3
<211> 897
<212> DNA
<213> homo sapiens

```
<400> 3
atgggtcgag gaaacagcac tgaagtgact gaattccatc ttctgggatt tggtgtccaa 60
cacgaatttc agcatgtcct tttcattgtt cttcttctta tctatgtac ctccctgata 120
ggaaatatttgaatgatctt actcatcaag accgattcca gacttcaaacc acccatgtac 180
ttttttccac aacatttggc ttttgttgat atctgttata cttctgttat cactcccaag 240
atgctccaaa gcttcacaga agaaaataat ttgataacat ttcggggctg tgtgatacaa 300
ttcttagttt atgcaacatt tgcaaccagt gactgttacc tcctagctat tatggcaatg 360
gattgtttagt tgccatctg taagcccctt cgctatcccc tgatcatgtc ccaaacagtc 420
tacatccaaatcgtagctgg ctcatataattt ataggctcaa taaatgcctc tgcatacata 480
```

ggttttacat tttcaactgtc cttctgcaag tctaataaaa tcaatcactt tttctgtgat 540
ggctcccaa ttcttgccct ttcatgctcc aacattgaca tcaacatcat tctagatgtt 600
gtctttgtgg gatggactt gatgttcaact gagttggta tcatctttc ctacatctac 660
attatggtca ccacatctgaa gatgtcttct actgctggga ggaaaaaatc cttctccaca 720
tgtgcctccc acctgacagc agtaaccatt ttctatggga cactctctta catgtactta 780
cagcctcagt ctaataattc tcaggagaat atgaaagttag cctctatatt ttatggcact 840
gttattccca tggtaatcc ttaatctat agcttgagaa ataaggaagg aaaataa 897

<210> 4
<211> 298
<212> PRT
<213> homo sapiens

<400> 4
Met Gly Arg Gly Asn Ser Thr Glu Val Thr Glu Phe His Leu Leu Gly
1 5 10 15
Phe Gly Val Gln His Glu Phe Gln His Val Leu Phe Ile Val Leu Leu
20 25 30
Leu Ile Tyr Val Thr Ser Leu Ile Gly Asn Ile Gly Met Ile Leu Leu
35 40 45
Ile Lys Thr Asp Ser Arg Leu Gln Thr Pro Met Tyr Phe Phe Pro Gln
50 55 60
His Leu Ala Phe Val Asp Ile Cys Tyr Thr Ser Ala Ile Thr Pro Lys
65 70 75 80
Met Leu Gln Ser Phe Thr Glu Glu Asn Asn Leu Ile Thr Phe Arg Gly
85 90 95
Cys Val Ile Gln Phe Leu Val Tyr Ala Thr Phe Ala Thr Ser Asp Cys
100 105 110
Tyr Leu Leu Ala Ile Met Ala Met Asp Cys Tyr Val Ala Ile Cys Lys
115 120 125
Pro Leu Arg Tyr Pro Met Ile Met Ser Gln Thr Val Tyr Ile Gln Leu
130 135 140
Val Ala Gly Ser Tyr Ile Ile Gly Ser Ile Asn Ala Ser Val His Thr
145 150 155 160
Gly Phe Thr Phe Ser Leu Ser Phe Cys Lys Ser Asn Lys Ile Asn His
165 170 175
Phe Phe Cys Asp Gly Leu Pro Ile Leu Ala Leu Ser Cys Ser Asn Ile
180 185 190
Asp Ile Asn Ile Ile Leu Asp Val Val Phe Val Gly Phe Asp Leu Met
195 200 205
Phe Thr Glu Leu Val Ile Ile Phe Ser Tyr Ile Tyr Ile Met Val Thr
210 215 220
Ile Leu Lys Met Ser Ser Thr Ala Gly Arg Lys Lys Ser Phe Ser Thr
225 230 235 240
Cys Ala Ser His Leu Thr Ala Val Thr Ile Phe Tyr Gly Thr Leu Ser
245 250 255
Tyr Met Tyr Leu Gln Pro Gln Ser Asn Asn Ser Gln Glu Asn Met Lys
260 265 270
Val Ala Ser Ile Phe Tyr Gly Thr Val Ile Pro Met Leu Asn Pro Leu
275 280 285
Ile Tyr Ser Leu Arg Asn Lys Glu Gly Lys
290 295

<210> 5
<211> 951

<212> DNA
<213> homo sapiens

<400> 5
atgttcctgc ttttctgggt cttctcttg gtccttcta gactttgggt agtcatgggt 60
cgagggaaaca gcactgaagt gactgaattc catctctgg gatgggtgt ccaacacgaa 120
tttcagcatg tcctttcat tgtacttctt ctatctatg tgacccct gataggaaat 180
attggaatga tcttactcat caagaccat tccagacttc aaacacccat gtacttttt 240
ccacaacatt tggctttgt tgatatctgt tatactctg ctatcactcc caagatgctc 300
caaagcttca cagaagaaaa taatttgcata acatttcggg gctgtgtat acaattctta 360
gtttatgcaa catttgcac cagtactgt taccccttag ctattatggc aatggattgt 420
tatgttgcca tctgttaagcc cttcgctat cccatgatca tgcccacaa agtctacatc 480
caactcgtag ctggctcata tattataggc tcaataaatg cctctgtaca tacaggttt 540
acattttcac tgccttctg caagtctaataa aatcaatc acttttctg tgcgtgtctc 600
ccaaattcttgc cccttcatg ctccaaacatt gacatcaaca tcattctaga tgggtgtctt 660
gtgggatttg acttgatgtt cactgagttt gtcatcatct ttccctacat ctacattatg 720
gtcaccatcc tgaagatgtc ttctactgtt gggagggaaa aatccttctc cacatgtgcc 780
tcccacactga cagcagtaac cattttctat gggacactct cttacatgtta cttacagcct 840
cagtctaata attctcagga gaatatgaaa gtacgcctcta tattttatgg cactgttatt 900
cccatgttga atccttaat ctatagctt agaaataagg aaggaaaata a 951

<210> 6
<211> 316
<212> PRT
<213> homo sapiens

<400> 6
Met Phe Leu Leu Phe Trp Val Leu Leu Val Leu Ser Arg Leu Leu
1 5 10 15
Val Val Met Gly Arg Gly Asn Ser Thr Glu Val Thr Glu Phe His Leu
20 25 30
Leu Gly Phe Gly Val Gln His Glu Phe Gln His Val Leu Phe Ile Val
35 40 45
Leu Leu Leu Ile Tyr Val Thr Ser Leu Ile Gly Asn Ile Gly Met Ile
50 55 60
Leu Leu Ile Lys Thr Asp Ser Arg Leu Gln Thr Pro Met Tyr Phe Phe
65 70 75 80
Pro Gln His Leu Ala Phe Val Asp Ile Cys Tyr Thr Ser Ala Ile Thr
85 90 95
Pro Lys Met Leu Gln Ser Phe Thr Glu Glu Asn Asn Leu Ile Thr Phe
100 105 110
Arg Gly Cys Val Ile Gln Phe Leu Val Tyr Ala Thr Phe Ala Thr Ser
115 120 125
Asp Cys Tyr Leu Leu Ala Ile Met Ala Met Asp Cys Tyr Val Ala Ile
130 135 140
Cys Lys Pro Leu Arg Tyr Pro Met Ile Met Ser Gln Thr Val Tyr Ile
145 150 155 160
Gln Leu Val Ala Gly Ser Tyr Ile Ile Gly Ser Ile Asn Ala Ser Val
165 170 175
His Thr Gly Phe Thr Phe Ser Leu Ser Phe Cys Lys Ser Asn Lys Ile
180 185 190
Asn His Phe Phe Cys Asp Gly Leu Pro Ile Leu Ala Leu Ser Cys Ser
195 200 205
Asn Ile Asp Ile Asn Ile Ile Leu Asp Val Val Phe Val Gly Phe Asp
210 215 220
Leu Met Phe Thr Glu Leu Val Ile Ile Phe Ser Tyr Ile Tyr Ile Met

225	230	235	240
Val Thr Ile Leu Lys Met Ser Ser Thr Ala Gly Arg Lys Lys Ser Phe			
245	250	255	
Ser Thr Cys Ala Ser His Leu Thr Ala Val Thr Ile Phe Tyr Gly Thr			
260	265	270	
Leu Ser Tyr Met Tyr Leu Gln Pro Gln Ser Asn Asn Ser Gln Glu Asn			
275	280	285	
Met Lys Val Ala Ser Ile Phe Tyr Gly Thr Val Ile Pro Met Leu Asn			
290	295	300	
Pro Leu Ile Tyr Ser Leu Arg Asn Lys Glu Gly Lys			
305	310	315	

<210> 7
<211> 2600
<212> DNA
<213> homo sapiens

<400> 7

aattattttct tgggttttgtt tcctccacta cataattttct gtaataagca atagaaaaatg 60
taaggccatt tctcagacat ccattatata acagggttaa tatacttgta aagaatagca 120
ccttagatgga agttgcattt taagaataact agtacaaaga cactttgaag ccttc当地 180
tatgtgaata tgaacatatt ttgggaaaatt gctctccaat taattctact aatttcaaga 240
actagaaaaga gaaataaaaat aagtggctgt gaataattat gtttctaaaa aggtacagaa 300
ttacatTTTA acgttattta gaataaatac aaatacctgt ttaatatagt gaaaaaatgc 360
ttctctatgt ttctaagaac cacgcacatt agaagtcaat cttcttctaa gaaaatctc 420
ttcatTTTGA agataaatct gtttcatctt tcacatctacta actctctctt tacattgtat 480
ttataaaattt tttttatTTT ggaaataaca ctatgttag tatttgcatt gaaaagtcaa 540
attgaaaaaa gtgacttaaa atatagagcc attttattgc aaaaagtccac aaggatgttc 600
ctgctttctt gggtccttctt cttgggtccctt tctagacttt tggttagtcat gggtc当地 660
aacagcactg aagtgcactg attccatctt ctgggatttg gtgtccaaca cgaatttcag 720
catgtcctt tcattgtact tcttcttatac tatgtgaccc cctgtatagg aaatatttgg 780
atgatcttac tcacatcaagac cgattccaga cttccaaacac ccatgtactt tttccacaa 840
catttggctt ttgttgcatac tctgtatca ctc当地caatg gctccaaagc 900
ttcacagaaag aaaataattt gataacatTTT cggggctgtg tgatacaattt cttagttat 960
gcaacatttgc caaccaggta ctgttaccc tcagctatta tggcaatggta ttgttatgtt 1020
gccatctgttgc agccccttcg ctatccccatg atcatgtccc aaacagtctt catccaactc 1080
gtagctggctt catatattat aggctcaata aatgcctctg tacatacagg ttttacattt 1140
tcactgtcctt tctgcaggta taataaaaatc aatcaatttt tctgtatgg tctcccaattt 1200
cttgccttgc catgctccaa cattgacatc aacatcattt tagatgtgtt cttgtggta 1260
tttgacttgc ttgttgcatac gttgggtcatc atctttctt acatcttacat tattgttgcacc 1320
atccctgttgc tgc当地ggagg aaaaatccct tctccacatg tgc当地ccac 1380
ctgacagcaggta accatTTT ctatgggacca ctcttcttaca tgc当地taca gc当地cagg 1440
aataatttgc aggagaatat gaaaggtagcc tctatattt atggcactgt tattcccatg 1500
ttgaatcctt taatctatag cttggagaaat aaggaggaa aataagctt aaaaagtgtata 1560
ggaaaaaaatgttgcatac tagacacagt tgtaaaaattt caacacaaca aagcatccag 1620
cacagctaat ctgc当地aaat taaaatgttgc taaaataggg agcatgttagg aaaaatcttca 1680
attaaccatc taacatcaca ccttagagccaa ttggggggaaa gaaataacta aaatcagaac 1740
aaaactgttgc aaaaatggaaa cccaaaatgc catacaaaaga atcaatggaa cccaaaacttgc 1800
ttttttattt tggaaataatc aataagattt gtaggcttctt atcttagattt acaaagaaaa 1860
aaaaaggaaaaatgttgcatac agcacaaggca gaaaggacaa aggtgacatt ataaacaatc 1920
ccacagaaaaatgttgcatac ctc当地agact attatgttgc tcttcttcat gcaatataac 1980
tagaaaaatgc agagggaaaata gataaaatcc cagggacaca caacctctca agatttataatc 2040
aggaagaaaaatgttgcatac aatgttgcatac tatcaagttc tggaaatggaa gcttgc当地 2100
atccaaaaatgttgcatac gggcccgagac aagacaaaattt tgc当地tgcatac tggaaaaaaga 2160
agagcttgcatac ccaatgttgcatac tggaaacttattt tcaaaatattt gaagaggagg aactcttttgc 2220

taacccattc tacaaaagcca caattaccct gataccaaaa cttagcaacg acaaaacaaa 2280
acaaaaaata aaactgcagg caaatatccc tgatgaacat agatgcaaag ccaacagtga 2340
aatacttagca aatcgaaattt aacagcacat caaaagttaa ttcaccatga tcaagttaggc 2400
ttcattcttg ggatgcaagt ttggctcaa atatgcaa at tattaaatct gattcaccac 2460
atcaatagta tttaaaacaa aaaccatatg atcatctcaa tagatgcagg aaaattcttc 2520
aataaaactcc tacatccctt tataataaaa accctcaaaa aactaggcat caaagcaacg 2580
tatctcaaaa taagtgccat 2600

<210> 8
<211> 924
<212> DNA
<213> homo sapiens

<400> 8
atgaatcaca gcgttgaac tgagttcatt attctggcc tcaccaaaaa gcctgaactc 60
cagggatta ttttcctt ttttctcatt gtctatctt tggctttctt cgccaacatg 120
ctcatcatca ttgccaaaat ctatagcaac accttgcata cgcccatgta tttttctt 180
ctgacactgg ctgttgtgga catcatctgc acaacaagca tcataccgaa gatgctgggg 240
accatgctaa catcagaaaa taccattca tatcaggct gcatgtccca gctttctt 300
ttcacatggt ctctggagc tgagatggtt ctcttcacca ccatggcta tgaccgctat 360
gtggccattt gttccctt tcattacagt actattatga accaccatgta accaccatgta 420
ttgctcagca tggcatggc tattgcagtc accaattcctt gggtcacac agctcttata 480
atgagggttga ctttctgtgg gccaaacacc attgaccact ttttctgtga gataccccca 540
ttgctggctt tgccctgttag ccctgtaa atcaatgagg tgatgggtgta ttttgcgtat 600
attaccctgg ccatagggga ctttattctt acctgcattt cctatggttt tattttttt 660
gctattctcc gtatccgcac agtagaaggc aagaggaagg ctttctcaac atgctcatct 720
catctcacag tggtgcacctt ttactattctt cctgtaaatctt acacctataat ccggccctgct 780
tcagctata catttggaaag agacaagggtg gtagctgcac tttttttttt tttttttttt 840
acattaaacc ctagttgtta cagcttccag aatagggaga tgccaggcagg aatttaggaag 900
gtgtttgcattt ttctgaaaca ctag 924

<210> 9
<211> 307
<212> PRT
<213> homo sapiens

<400> 9
Met Asn His Ser Val Val Thr Glu Phe Ile Ile Leu Gly Leu Thr Lys
1 5 10 15
Lys Pro Glu Leu Gln Gly Ile Ile Phe Leu Phe Phe Leu Ile Val Tyr
20 25 30
Leu Val Ala Phe Leu Gly Asn Met Leu Ile Ile Ile Ala Lys Ile Tyr
35 40 45
Ser Asn Thr Leu His Thr Pro Met Tyr Val Phe Leu Leu Thr Leu Ala
50 55 60
Val Val Asp Ile Ile Cys Thr Thr Ser Ile Ile Pro Lys Met Leu Gly
65 70 75 80
Thr Met Leu Thr Ser Glu Asn Thr Ile Ser Tyr Ala Gly Cys Met Ser
85 90 95
Gln Leu Phe Leu Phe Thr Trp Ser Leu Gly Ala Glu Met Val Leu Phe
100 105 110
Thr Thr Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe Pro Leu His
115 120 125
Tyr Ser Thr Ile Met Asn His His Met Cys Val Ala Leu Leu Ser Met
130 135 140
Val Met Ala Ile Ala Val Thr Asn Ser Trp Val His Thr Ala Leu Ile

145 150 155 160
 Met Arg Leu Thr Phe Cys Gly Pro Asn Thr Ile Asp His Phe Phe Cys
 165 170 175
 Glu Ile Pro Pro Leu Leu Ala Leu Ser Cys Ser Pro Val Arg Ile Asn
 180 185 190
 Glu Val Met Val Tyr Val Ala Asp Ile Thr Leu Ala Ile Gly Asp Phe
 195 200 205
 Ile Leu Thr Cys Ile Ser Tyr Gly Phe Ile Ile Val Ala Ile Leu Arg
 210 215 220
 Ile Arg Thr Val Glu Gly Lys Arg Lys Ala Phe Ser Thr Cys Ser Ser
 225 230 235 240
 His Leu Thr Val Val Thr Leu Tyr Tyr Ser Pro Val Ile Tyr Thr Tyr
 245 250 255
 Ile Arg Pro Ala Ser Ser Tyr Thr Phe Glu Arg Asp Lys Val Val Ala
 260 265 270
 Ala Leu Tyr Thr Leu Val Thr Pro Thr Leu Asn Pro Met Val Tyr Ser
 275 280 285
 Phe Gln Asn Arg Glu Met Gln Ala Gly Ile Arg Lys Val Phe Ala Phe
 290 295 300
 Leu Lys His
 305

<210> 10
 <211> 2000
 <212> DNA
 <213> homo sapiens

<400> 10
 attttcatc tgaaatatcc tcactataat tagccctgtc agcttgtatt atttcaagta 60
 tcttgctcg tgtatatctc aaggacacct aaatgtacca tgcaattaac taaattattg 120
 aggtatgtaa taatttgtat tacagctcca ttggatataat atgcataatcc agaatatata 180
 catatgtgtg tgtatatata tatatatgtg tgtgtgtatt tagacaagtt ttaagtgaaa 240
 atgatatcaa aatatttggaa ggcattttga aaatattttt cttctcaacc actggcttca 300
 gttttagtca tcaatggagg aacatacatc agagaatggg attagtcgtt aaaaacagagt 360
 atattgcctg gaatacagaa ctccatcaaa tggaaattcc tgctgcaaag ttgtgtccaa 420
 tcaagaatta agtccctaag tacacacact cctcatgtt tctcctaaca acacaggat 480
 tctttccatt ttcagggtt tattctgtgc aattactgcc attcaatcac ccaagcagga 540
 tgaatcacag cgttgttaact gagttcatta ttctgggcct caccaaaaag cctgaactcc 600
 agggattat cttccctttt tttctcatgt tctatcttgc ggctttctc ggcaacatgc 660
 tcatcatcat tgccaaaatc tatagcaaca ccttcatac gccccatgtat gtttccttc 720
 tgacactggc tgggtggac atcatctgca caacaagcat cataccgaag atgctgggg 780
 ccatgtaac atcagaaaat accatttcat atgcaggctg catgtccctg ctcttcttgc 840
 tcacatggtc tctggagct gagatgggtc tcttcaccac catggccat gaccgctatg 900
 tggccatttg tttccctttt cattacagta ctattatgaa ccaccatatg tggtagcct 960
 tgctcagcat ggtcatggct attgcagtca ccaattccctg ggtgcacaca gctcttatca 1020
 tgagggtgac tttctgtggg ccaaacadca ttgaccactt cttctgtgag ataccccccatt 1080
 tgctggctttt gtcctgttagc cctgtaaagaa tcaatgaggt gatgggtgtat gttgctgata 1140
 ttaccctggc cataggggac tttattctt cctgcatac cttatgggtt atcattgttgc 1200
 ctattctccg tatccgcaca gttagaaggca agaggaaggc cttctcaaca tgctcatctc 1260
 atctcacagt ggtgaccctt tactattctc ctgtaatcta cacctatac cgcctgtctt 1320
 ccagctatac atttggaaaga gacaagggtgg tagctgcact ctatactttt gtgactccca 1380
 cattaaaccc gatgggtgtac agcttccaga atagggagat gcaggcagga attaggaagg 1440
 tggggcatt tctgaaacac tagtagttt aacatgcaac atcacttctg tactccagaa 1500
 ccatcttcta gaggcatctca gatTTTactg gttttcata cttacctccca ctccaattttt 1560
 ccctccctc ttattcctgc cttctccata gcagttctcat tggctccaaa attctgtact 1620

ctttatgtga agaatattca taaagcaata tgacacaatac cctcacataa atatatgtca 1680
taatatatac tccaacattt ccacaaaata tgtacataac ttgcataact tatatacgca 1740
tatacacaaa tatttaccta tatgtgcacg tgacacatcat acatgcaaatac atcacaaaaac 1800
attttgtgtat ttttgccca ttttattttttt ggtatgtgaa tgtgagctgg agagaagtag 1860
tgtgtgtgtat aaattttccc ttgcttaataa ggctgggttc attcaactac agcattgtga 1920
taatgaggta tctactctgg gtttgaacct cattacgtta ttttagatttc attggagaaa 1980
aatcgtgctc tactgaataaa 2000

<210> 11
<211> 882
<212> DNA
<213> homo sapiens

<400> 11
atgggatttt cgaattcctg ggatattcag attgtacatg ctgctctatt ctccctagtt 60
tacctggcag ctgtcatagg aaatctccata atcatcatac ttaccactct ggatgttcac 120
ctccaaacc caatgtattt cttttgaga aacttgtctt tcttagattt ttgttacatc 180
tctgtcacaa ttccaaaatc tattgttagt tccttgactc atgatacttc catttcttc 240
tttgggtgtg ctctgcaagc cttcttttc atggacttgg caactacgga ggtagccatc 300
cttacagtga tgccttatga ccgctataatg gccatctgcc ggccttaca ttatgaggtc 360
atcataaacc aagggtgtcg tctgaggatg atggccatgt cgtggctcag tgggggtgatc 420
tgtggattca tgcatgtatc agcaacatc tcattaccat tctgtggcg caatagaata 480
cgtcaatttt tctgtatatac tccacagctc ctaagcctct tagacccaa agtaattacc 540
attgagattt gagtcatggt ttttggtaca agtcttgcata taatctcctt tttgttaatt 600
actctctcct acatgtacat ttttctgtc atcatgagga ttccctctaa ggagggtgaga 660
tcaaaaaacat tttctacctg cattccacat cttgtgggtg taacactctt tatgatatct 720
ggcagcattt cctatgtgaa gccaatttca aattctcccc ccgttctggta tttttcctg 780
tctgcgttctt acacagtcgt gccccccgacc ctgaaccccg tcacatctatag tctgaggaat 840
agggacatga aggacatgtt gagaaggcag tttttttttt ga 882

<210> 12
<211> 293
<212> PRT
<213> homo sapiens

<400> 12
Met Gly Phe Ser Asn Ser Trp Asp Ile Gln Ile Val His Ala Ala Leu
1 5 10 15
Phe Phe Leu Val Tyr Leu Ala Ala Val Ile Gly Asn Leu Leu Ile Ile
20 25 30
Ile Leu Thr Thr Leu Asp Val His Leu Gln Thr Pro Met Tyr Phe Phe
35 40 45
Leu Arg Asn Leu Ser Phe Leu Asp Phe Cys Tyr Ile Ser Val Thr Ile
50 55 60
Pro Lys Ser Ile Val Ser Ser Leu Thr His Asp Thr Ser Ile Ser Phe
65 70 75 80
Phe Gly Cys Ala Leu Gln Ala Phe Phe Phe Met Asp Leu Ala Thr Thr
85 90 95
Glu Val Ala Ile Leu Thr Val Met Ser Tyr Asp Arg Tyr Met Ala Ile
100 105 110
Cys Arg Pro Leu His Tyr Glu Val Ile Ile Asn Gln Gly Val Cys Leu
115 120 125
Arg Met Met Ala Met Ser Trp Leu Ser Gly Val Ile Cys Gly Phe Met
130 135 140
His Val Ile Ala Thr Phe Ser Leu Pro Phe Cys Gly Arg Asn Arg Ile
145 150 155 160

```
<210> 13  
<211> 1200  
<212> DNA  
<213> homo sapiens
```

<400> 13
attctgtgta attgagattt agggtagaa cgatagtatc catgctgcat atagagtaacc 60
ttataattaa ttatcacaaa ttgaaatatc actggggta gccatattt atatttctat 120
aatccatttt ttttctctct ttaggaagaa atggaacgac cacaagtat tttaaaccaaa 180
ctgaagttgc tgaatttttc ctcatggat ttgcatttc ctggatatt cagattgtac 240
atgctgtctt attcttccta gtttacctgg cagctgtcat aggaaatctc ctaatcatca 300
tacttaccac tctggatgtt caccccaaaa ccccaatgta tttcttttg agaaacttgt 360
ctttcttaga tttttgttac atctctgtca caattccaaa atctattgtt agttccttga 420
ctcatgatac ttccattttct ttcttgggt gtgctctgca agccttctt ttcatggact 480
tggcaactac ggaggttagcc atccttacag tgatgtccca tgaccgctat atggccatct 540
gccggcctt acattatgag gtcatcataa accaagggtt ctgtctgagg atgatggcca 600
tgtcgtggct cagtgggggt atctgtggat tcatgtcatgt gatagcaaca ttctcattac 660
cattctgtgg gcgcaataga atacgtcaat ttttctgtaa tattccacag ctccctaaagcc 720
tcttagaccc caaagtaatt accattgaga ttggagtcat gtttttggt acaagtcttg 780
tgataatctc ctttgttgtt attactctt cttacatgta cattttttct gtcatcatga 840
ggattccccc taaggagggt agatcaaaaa cattttctac ctgcatttcca catcttgg 900
ttgttaacact ctttatgata tctggcagca ttgcctatgt gaagccaatt tcaaatttctc 960
cccccggttcc ggtatgttttct ctgtctgcgt tctacacagt cgtccccccg accctgaacc 1020
ccgtcatcta tagtctgagg aatagggaca tgaaggcagc cctgagaagg cagtgtggc 1080
cctgagaagg cagtgtggta tgcttagatga agaatttgat tacggaccag actcttgaac 1140
tcttgctcta atcaggcaat ttgttaaactc tctgggttta tattttcaat tgattgtcga 1200

```
<210> 14  
<211> 1074  
<212> DNA  
<213> homo sapiens
```

<400> 14
atgaataaca ctattgtatt tgtcataaaa atacaaatag aaaaaagtga cttgaaatat 60
aqagccattt cattqcaaga aatctcaaag atttcccttc ttttctgggt ccttctcttg 120

gtcatttcta gactttact agccatgaca ctagaaaca gcactgaagt cactgaattc 180
 tatcttctgg gatgggtgc ccagcatgag tttgggtgtc tcctcttcat tgatattcctt 240
 ctcatctatg tgacccat aatgggtaat agtggaaataa tcttactcat caacacagat 300
 tccagattc aaacactcac gtactttt ctacaacatt tggctttgt tgatatctgt 360
 tacacttctg ctatcaactcc caagatgctc caaagcttca cagaagaaaa gaatttgata 420
 ttatttcagg gctgtgtgat acaattctta gtttatgcaa catttgcac cagtgactgt 480
 tatctcctgg ctatgatggc agtggatcct tatgttgcca tctgtaagcc ccttcactat 540
 actgtaatca tgtcccgAAC agtctgcata cggttggtag ctggttcata catcatgggc 600
 tcaataaaatg cctctgtaca aacaggttt acatgttac tgccttctg caagtccaat 660
 agcatcaatc acttttctg tgatgttccc cctattcttgc ctcttcatg ctccaatgtt 720
 gacatcaaca tcatgctact tgggtgtctt gtggatctt acttgatatt cactgggtt 780
 gtcgtcatct ttccctacat ctacatcatg gccaccatcc tgaaaatgtc ttcttagtgca 840
 ggaaggaaaa aatccctctc aacatgtgtt tccccacgtga ccgcagtcac catttctat 900
 gggacactctt cttacatgtt tttgcagtctt cattctaata attcccaagga aaatatgaaa 960
 gtggccttta tattttatgg cacagttt cccatgttta atccttaat ctatagctt 1020
 agaaataagg aagtaaaaga agctttaaaa gtgatagggaa aaaagtttattttaa 1074

<210> 15
 <211> 357
 <212> PRT
 <213> homo sapiens

<400> 15

Met	Asn	Asn	Thr	Ile	Val	Phe	Val	Ile	Lys	Ile	Gln	Ile	Glu	Lys	Ser
1															
Asp	Leu	Lys	Tyr	Arg	Ala	Ile	Ser	Leu	Gln	Glu	Ile	Ser	Lys	Ile	Ser
20															
Leu	Leu	Phe	Trp	Val	Leu	Leu	Val	Ile	Ser	Arg	Leu	Leu	Leu	Ala	
35															
Met	Thr	Leu	Gly	Asn	Ser	Thr	Glu	Val	Thr	Glu	Phe	Tyr	Leu	Leu	Gly
50															
Phe	Gly	Ala	Gln	His	Glu	Phe	Trp	Cys	Ile	Leu	Phe	Ile	Val	Phe	Leu
65															
Leu	Ile	Tyr	Val	Thr	Ser	Ile	Met	Gly	Asn	Ser	Gly	Ile	Ile	Leu	Leu
85															
Ile	Asn	Thr	Asp	Ser	Arg	Phe	Gln	Thr	Leu	Thr	Tyr	Phe	Phe	Leu	Gln
100															
His	Leu	Ala	Phe	Val	Asp	Ile	Cys	Tyr	Thr	Ser	Ala	Ile	Thr	Pro	Lys
115															
Met	Leu	Gln	Ser	Phe	Thr	Glu	Glu	Lys	Asn	Leu	Ile	Leu	Phe	Gln	Gly
130															
Cys	Val	Ile	Gln	Phe	Leu	Val	Tyr	Ala	Thr	Phe	Ala	Thr	Ser	Asp	Cys
145															
Tyr	Leu	Leu	Ala	Met	Met	Ala	Val	Asp	Pro	Tyr	Val	Ala	Ile	Cys	Lys
165															
Pro	Leu	His	Tyr	Thr	Val	Ile	Met	Ser	Arg	Thr	Val	Cys	Ile	Arg	Leu
180															
Val	Ala	Gly	Ser	Tyr	Ile	Met	Gly	Ser	Ile	Asn	Ala	Ser	Val	Gln	Thr
195															
Gly	Phe	Thr	Cys	Ser	Leu	Ser	Phe	Cys	Lys	Ser	Asn	Ser	Ile	Asn	His
210															
Phe	Phe	Cys	Asp	Val	Pro	Pro	Ile	Leu	Ala	Leu	Ser	Cys	Ser	Asn	Val
225															
Asp	Ile	Asn	Ile	Met	Leu	Leu	Val	Val	Phe	Val	Gly	Ser	Asn	Leu	Ile
245															
Phe	Thr	Gly	Leu	Val	Val	Ile	Phe	Ser	Tyr	Ile	Tyr	Ile	Met	Ala	Thr
255															

260	265	270
Ile Leu Lys Met Ser Ser Ser Ala Gly Arg Lys Lys Ser Phe Ser Thr		
275	280	285
Cys Ala Ser His Leu Thr Ala Val Thr Ile Phe Tyr Gly Thr Leu Ser		
290	295	300
Tyr Met Tyr Leu Gln Ser His Ser Asn Asn Ser Gln Glu Asn Met Lys		
305	310	315
Val Ala Phe Ile Phe Tyr Gly Thr Val Ile Pro Met Leu Asn Pro Leu		
325	330	335
Ile Tyr Ser Leu Arg Asn Lys Glu Val Lys Glu Ala Leu Lys Val Ile		
340	345	350
Gly Lys Lys Leu Phe		
355		

<210> 16
<211> 930
<212> DNA
<213> homo sapiens

<400> 16
atgacactag gaaacagcac tgaagtcaact gaattctatc ttctgggatt tggtgccag 60
catgagttt ggtgtatcct cttcattgtta ttccttctca tctatgtcac ctccataatg 120
ggtaatagtg gaataatctt actcatcaac acagattcca gattcaaac actcacgtac 180
tttttctac aacatttggc ttttgttgc atctgttaca cttctgcata cactccaaag 240
atgctccaaa gcttcacaga agaaaaaaat ttgatattat ttcaggcgtg tgtgatacaa 300
ttcttagttt atgcaacatt tgcaaccagt gactgttatac tcctggctat gatggcagtg 360
gatccttatg ttgccatctg taagccccctt cactatactg taatcatgtc ccgaacagtc 420
tgcattcggtt tggtagctgg ttcatacatc atgggctcaa taaatgcctc tgtacaaaca 480
ggttttacat gttcactgtc cttctgcaag tccaatagca tcaatcactt ttctgtgat 540
gttcccccta ttcttgctct ttcatgctcc aatgttgaca tcaacatcat gctacttg 600
gtctttgtgg gatctaactt gatattcaact gggttggtcg tcatttttc ctacatctac 660
atcatggcca ccattctgaa aatgtcttct agtgcaggaa ggaaaaaaatc ttctcaaca 720
tgtgcttccc acctgaccgc agtcaccatt ttctatggaa cactcttta catgtatgg 780
cagtctcatt ctaataatttccaggaaaaat atgaaaagtgg cctttatatt ttatggcaca 840
gttattccca tgttaaatcc tttaatctat agtttgagaa ataaggaagt aaaagaagct 900
ttaaaaagtga tagggaaaaaa gttatattaa 930

<210> 17
<211> 309
<212> PRT
<213> homo sapiens

<400> 17
Met Thr Leu Gly Asn Ser Thr Glu Val Thr Glu Phe Tyr Leu Leu Gly
1 5 10 15
Phe Gly Ala Gln His Glu Phe Trp Cys Ile Leu Phe Ile Val Phe Leu
20 25 30
Leu Ile Tyr Val Thr Ser Ile Met Gly Asn Ser Gly Ile Ile Leu Leu
35 40 45
Ile Asn Thr Asp Ser Arg Phe Gln Thr Leu Thr Tyr Phe Phe Leu Gln
50 55 60
His Leu Ala Phe Val Asp Ile Cys Tyr Thr Ser Ala Ile Thr Pro Lys
65 70 75 80
Met Leu Gln Ser Phe Thr Glu Glu Lys Asn Leu Ile Leu Phe Gln Gly
85 90 95

Cys Val Ile Gln Phe Leu Val Tyr Ala Thr Phe Ala Thr Ser Asp Cys
 100 105 110
 Tyr Leu Leu Ala Met Met Ala Val Asp Pro Tyr Val Ala Ile Cys Lys
 115 120 125
 Pro Leu His Tyr Thr Val Ile Met Ser Arg Thr Val Cys Ile Arg Leu
 130 135 140
 Val Ala Gly Ser Tyr Ile Met Gly Ser Ile Asn Ala Ser Val Gln Thr
 145 150 155 160
 Gly Phe Thr Cys Ser Leu Ser Phe Cys Lys Ser Asn Ser Ile Asn His
 165 170 175
 Phe Phe Cys Asp Val Pro Pro Ile Leu Ala Leu Ser Cys Ser Asn Val
 180 185 190
 Asp Ile Asn Ile Met Leu Leu Val Val Phe Val Gly Ser Asn Leu Ile
 195 200 205
 Phe Thr Gly Leu Val Val Ile Phe Ser Tyr Ile Tyr Ile Met Ala Thr
 210 215 220
 Ile Leu Lys Met Ser Ser Ala Gly Arg Lys Lys Ser Phe Ser Thr
 225 230 235 240
 Cys Ala Ser His Leu Thr Ala Val Thr Ile Phe Tyr Gly Thr Leu Ser
 245 250 255
 Tyr Met Tyr Leu Gln Ser His Ser Asn Asn Ser Gln Glu Asn Met Lys
 260 265 270
 Val Ala Phe Ile Phe Tyr Gly Thr Val Ile Pro Met Leu Asn Pro Leu
 275 280 285
 Ile Tyr Ser Leu Arg Asn Lys Glu Val Lys Glu Ala Leu Lys Val Ile
 290 295 300
 Gly Lys Lys Leu Phe
 305

<210> 18
 <211> 2600
 <212> DNA
 <213> homo sapiens

<400> 18

```

attctacctt cttctaataa aggttatcc caataaaagg aacactcctt gaaaactg 60
tatttccttc atttacagt aaatttaccc taggaagaaa cttatacgaa cttactatac 120
ttcagtcctt gtagatgtt aaaatgaaga gaatgtttc ttgttcctca actacagaat 180
tgaaaaaaaaa aagtaataga aatgttaagg ctatttctca ggcatccatt acataatgag 240
gttattttgc ttgtaaagaa tatcacatag atgagagatg cagtctaggg atactaatac 300
aaagacacgt tgaaggcttc aaacatatgt gaaccatgaa cacattcaa aaaaattctc 360
tctaattctt ttaatttcca aagcttggaa caaaattaaa atggtaagt gctgtgaaca 420
attataagtt tctaaaaaag taaaaaatta cattttagca ttactttaaa aatatggata 480
gctgttaat acagaggaaa attgtcaatc tatgtttcta agaactatac acattaggag 540
ttaggataact tctaaagacaa ttccttcga ttttgaagat gaatccatt catttacat 600
caagtaaattc actctttact tgatgattat aaatacattt cttaaatttgg aaaaatgaata 660
acactattgt atttgcata aaaatacAAA tagaaaaaAG tgacttgaaa tatacgcc 720
tttcattgca agaaatctca aagatttccc ttctttctg ggtccttctc ttggtcattt 780
ctagactttt actagccatg acacttaggaa acagcactga agtcactgaa ttctatctc 840
tgggatttgg tgcccagcat gagtttgggt gtatcctt cattgttattc cttctcatct 900
atgtgacctc cataatgggt aatagtggaa taatcttact catcaacaca gatccagat 960
ttcaaaacact cacgtacttt tttctacaac atttggctt tggtgatatc tggtacactt 1020
ctgttatcac tcccaagatg ctccaaaggt tcacagaaga aaagaatttg atattatttc 1080
aggcgtgtgt gatacaattc ttagttatg caacatttgc aaccagtgc tggttatctcc 1140
tggctatcatgat ggcagtggat ccttatgttg ccattctgtaa gcccccttcac tatactgtaa 1200
  
```

tcatgtccccg aacagtctgc atccgttgg tagctggttc atacatcatg ggctcaataa 1260
atgcctctgt acaaacagg tttacatgtt cactgtccct ctgcaagtcc aatagcatca 1320
atcaactttt ctgtgatgtt ccccatttc ttgctcttc atgctccaat gttgacatca 1380
acatcatgct acttgttgc tttgtggat ctaacttgat attcaactggg ttggcgatca 1440
tctttctta catctacatc atggccacca tcctgaaaat gtcttctagt gcaggaagga 1500
aaaaatccctt ctcaacatgt gcttcccacc tgaccgcagt caccatttc tatgggacac 1560
tctcttacat gtatttgcag tctcattcta ataattccca gggaaatatg aaagtggcct 1620
ttatattta tggcacagtt atcccattgt taaatcctt aatctatagc ttgagaaata 1680
aggaagtaaa agaagcttta aaagtgtatg gaaaaaagt attttaaattc agccccagtt 1740
gttaacattc aactcaacaa atcatccaac atagctgttc tgctaaaatt taattttcc 1800
acaataagga atatgttagaa agatgtcaaa ttaataatct aacatcacct ctagaggaat 1860
ttaaaataca aaagccaaca aatcccaaac cttagcagaag aaaaaaataa ctaaaatcag 1920
aacagaactg aacaaaattt agacccaaaa tttatgc当地 aathtaatga aacaaaattt 1980
tggttcttg gaagaataaa taagattggt aggctgctag ccagattcac aaagagaaaa 2040
gagggaatat ctaaataaagc acaaccagaa agaacaaaagg tgacattaca accaatccca 2100
cagaaataca aaaaaatact cagagactat tatgaacact tccatgcaaa taagctagaa 2160
aatatagaga aaaatggatg aattcctggg aacatacagc ctctcaggat tttatcagaa 2220
agacactgaa accctgagcc aatcaatacc aagtttggaa attgaatctc tactaaaaaa 2280
aacctaccaa caaaaaaaaaa aaatcccaga cccaaaagaat ttgcgtcaat attctatcag 2340
atgtaaaaag aagagctggg gccaaattcta gtgaaactat ttggaaaaat tgaggaacag 2400
ggactcttct gtaactcatt ctatgaaact agtatcagcc tgatacaatc acctgacaaa 2460
gacacaatga aaaaagaaaaa ctgcaagccca gtattccctga taaacataga tgccaaacca 2520
tcaatgaaat actagcaaac caaattcaac agcacatcaa aagtttaattc accatgatca 2580
agtaggcttc attcttggat 2600

<210> 19
<211> 933
<212> DNA
<213> homo sapiens

```

<400> 19
atggaaagca atcagacactg gatcacagaa gtcatccctgt tgggattcca ggtggaccca 60
gctctggagt tggcttctt tgggttttc ttgctattct acagcttaac cctgatggaa 120
aatgggatta tcctggggct catctacttg gactcttagac tgccacacacc catgtatgtc 180
ttcctgtcac acctggccat tgtggacatg tcctatgcct cgagactgt ccctaagatg 240
ctagcaaatac ttgtgatgca caaaaaagtc atctcccttg ctccctgcat acttcagact 300
tttttgtatt tggcgtttgc tattacagag tgtctgattt tggtgatgat gtgctatgat 360
cggttatgtgg caaatctgtca ccccttgcaa tacaccctca ttatgaactg gagagtgtgc 420
actgtccctgg cytcaacttg ctggatattt agctttctct tggctctggc ccataattact 480
cttattctga ggctgcctt ttgtggccca caaaaagatca accactttt ctgtcaaatac 540
atgtccgtat tcaaattggc ctgtgtgtac actaggctca accaggtggt cctatttgcg 600
ggttctgcgt tcatacttagt ggggcccgtc tgcctggc tggctcctta ctgcacatc 660
ctggtgccca tcttgaggat ccagttctgg gaggggccgca gaaaggccctt ctctacctgc 720
tcctccccacc tctgcgtgtt ggggctttc ttggcagcg ccattgtcat gtacatgcc 780
cccaagtc当地 gccattctca agaacggagg aagatccctt ccctgtttt cagcctttc 840
aaccggatcc tgaacccccc catctacagc cttagaaatg cagaggtgaa aggggctcta 900
aagagagtcc ttggaaaca gagatcaatg tga 933

```

<210> 20
<211> 310
<212> PRT
<213> homo sapiens

<400> 20
Met Glu Ser Asn Gln Thr Trp Ile Thr Glu Val Ile Leu Leu Gly Phe
1 5 10 15

Gln Val Asp Pro Ala Leu Glu Leu Phe Leu Phe Gly Phe Phe Leu Leu
 20 25 30
 Phe Tyr Ser Leu Thr Leu Met Gly Asn Gly Ile Ile Leu Gly Leu Ile
 35 40 45
 Tyr Leu Asp Ser Arg Leu His Thr Pro Met Tyr Val Phe Leu Ser His
 50 55 60
 Leu Ala Ile Val Asp Met Ser Tyr Ala Ser Ser Thr Val Pro Lys Met
 65 70 75 80
 Leu Ala Asn Leu Val Met His Lys Lys Val Ile Ser Phe Ala Pro Cys
 85 90 95
 Ile Leu Gln Thr Phe Leu Tyr Leu Ala Phe Ala Ile Thr Glu Cys Leu
 100 105 110
 Ile Leu Val Met Met Cys Tyr Asp Arg Tyr Val Ala Ile Cys His Pro
 115 120 125
 Leu Gln Tyr Thr Leu Ile Met Asn Trp Arg Val Cys Thr Val Leu Ala
 130 135 140
 Ser Thr Cys Trp Ile Phe Ser Phe Leu Leu Ala Leu Val His Ile Thr
 145 150 155 160
 Leu Ile Leu Arg Leu Pro Phe Cys Gly Pro Gln Lys Ile Asn His Phe
 165 170 175
 Phe Cys Gln Ile Met Ser Val Phe Lys Leu Ala Cys Ala Asp Thr Arg
 180 185 190
 Leu Asn Gln Val Val Leu Phe Ala Gly Ser Ala Phe Ile Leu Val Gly
 195 200 205
 Pro Leu Cys Leu Val Leu Val Ser Tyr Leu His Ile Leu Val Ala Ile
 210 215 220
 Leu Arg Ile Gln Ser Gly Glu Gly Arg Arg Lys Ala Phe Ser Thr Cys
 225 230 235 240
 Ser Ser His Leu Cys Val Val Gly Leu Phe Phe Gly Ser Ala Ile Val
 245 250 255
 Met Tyr Met Ala Pro Lys Ser Ser His Ser Gln Glu Arg Arg Lys Ile
 260 265 270
 Leu Ser Leu Phe Tyr Ser Leu Phe Asn Pro Ile Leu Asn Pro Leu Ile
 275 280 285
 Tyr Ser Leu Arg Asn Ala Glu Val Lys Gly Ala Leu Lys Arg Val Leu
 290 295 300
 Trp Lys Gln Arg Ser Met
 305 310

TETTO - BOVINS 20060