IFT 615 – Intelligence artificielle

Raisonnement probabiliste

Hugo Larochelle Département d'informatique Université de Sherbrooke

http://www.dmi.usherb.ca/~larocheh/cours/ift615.html

Sujets couverts

- Introduction au raisonnement probabiliste
 - raisonnement avec incertitude
 - révision des concepts de base en théorie des probabilités

Incertitude

- Soit A_t l'action d'aller à l'aéroport t minutes avant le départ de l'avion
- A_t me permettra-t-il d'arriver à temps?
- Problèmes :
 - observabilité partielle (conditions routières, etc.)
 - senseurs bruités (annonces du trafic, etc.)
 - incertitude dans l'effet des actions (crevaisons, pannes, etc.)
 - immense complexité pour modéliser les actions et le trafic
- Un raisonnement purement logique et déterministe :
 - risque de tirer des conclusions erronées
 - » « A_{25} me permettra d'arriver à temps » (impossible de faire cette garantie)
 - risque de tirer des conclusions peu exploitables du point de vue de la prise de décision
 - » « A_{25} me permettra d'arriver à temps, s'il ne pleut pas, s'il n'y a pas d'accident, si mes pneus ne crèvent pas, etc. »
 - » « A_{1440} me permettra presque certainement d'arriver à temps, mais je devrai passer une nuit à l'aéroport. »

Modéliser l'incertitude à l'aide probabilités

Théorie des probabilités

- permet de modéliser la vraisemblance d'événements
 - » l'information sur la vraisemblance est dérivée
 - des croyances/certitudes d'un agent, ou
 - d'observations empiriques de ces événements
- donne un cadre théorique pour mettre à jour la vraisemblance d'événements après l'acquisition d'observations
 - » après avoir observé qu'il n'y a pas de trafic, la probabilité que A_{25} me permette d'arriver à temps doit changer comment ?
- facilite la modélisation en permettant de considérer l'influence de phénomènes complexes comme du « bruit »

Exemple: un patient a-t-il une carie?

- On considère le patient d'un dentiste
 - on souhaite raisonner sur la possibilité qu'il ait une carie en tenant compte de l'incertitude associée à un tel diagnostique

MalDeDent	Croche	Carie	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Variable aléatoire

Variables aléatoires :

- MalDeDent: est-ce que le patient a mal aux dents
- ◆ Croche : est-ce que le dentiste a trouvé un « trou » dans la dent avec sa sonde
- **Carie**: est-ce que le patient a une carie

	٨	ЛalDeDent	Croche	Carie	Probabilité
\rightarrow		vrai	vrai	vrai	0.108
(vrai	vrai	faux	0.016
« la probabilité de MalDeDent=vra	•	vrai	faux	vrai	0.012
Croche=vrai e	t	vrai	faux	faux	0.064
Carie=vrai »		faux	vrai	vrai	0.072
		faux	vrai	faux	0.144
		faux	faux	vrai	0.008
		faux	faux	faux	0.576

toutes ces probabilités somment à 1

Univers et événement élémentaire

- ullet **Événement élémentaire** ω : un état possible de l'environnement
 - c'est une rangée de la table ci-dessous, un événement au niveau le plus simple
- Univers Ω : l'ensemble des événements élémentaires possibles
 - c'est l'ensemble de toutes les rangées

MalDeDent	Croche	Carie	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité conjointe

Probabilités conjointes : probabilité assignation de toutes la variables

◆ P(MalDeDent=vrai, Croche=vrai, Carie=vrai) = 0.108 (10.8%)

ightharpoonup P(MalDeDent=faux, Croche=faux, Carie=vrai) = 0.008 (0.8%)

MalDeDent	Croche	Carie	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité marginale

- Probabilités marginales : probabilité sur un sous-ensemble des variables
 - P(MalDeDent=vrai, Carie=vrai)
 - = P(MalDeDent=vrai, Croche=vrai, Carie=vrai) + P(MalDeDent=vrai, Croche=faux, Carie=vrai)
 - = $\Sigma_{x \in \{vrai, faux\}}$ P(MalDeDent=vrai, Croche=x, Carie=vrai) = 0.108 + 0.012 =**0.12**

MalDeDent	Croche	Carie	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité marginale

- **Probabilités marginales** : probabilité sur un sous-ensemble des variables
 - ◆ P(Carie=vrai)
 - $= \sum_{x \in \{vrai, faux\}} \sum_{y \in \{vrai, faux\}} P(MalDeDent=vrai, Croche=x, Carie=y)$
 - = 0.108 + 0.012 + 0.072 + 0.008 =**0.2**

MalDeDent	Croche	Carie	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité d'une disjonction

- Probabilités de disjonction (« ou ») d'événements :
 - ◆ P(Carie=vrai ou MalDeDent=faux) = P(Carie=vrai) + P(MalDeDent=faux) - P(Carie=vrai, MalDeDent=faux) = 1 - P(Carie=faux, MalDeDent=vrai) = 1 - 0.016 - 0.064 = 0.92

MalDeDent	Croche	Carie	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité d'un événement en général

- On peut calculer la probabilité d'événements arbitrairement complexes
 - il suffit d'additionner les probabilités des éléments élémentaires associés
 - ◆ P((Carie=vrai, MalDeDent=faux) ou (Croche=faux, Carie=faux)) = 0.064 + 0.072 + 0.008 + 0.576 = **0.72**

MalDeDent	Croche	Carie	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité conditionnelle

Probabilités conditionnelles :

vrai seulement si P(MalDeDent=vrai) ≠ 0

→ P(Carie=faux | MalDeDent=vrai)

$$= (0.016 + 0.064) / (0.016 + 0.064 + 0.108 + 0.012) = 0.4$$

MalDeDent	Croche	Carie	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072

En mots: « sachant que MalDeDent=vrai, quelle est la probabilité que Carie=faux »

faux	faux	vrai	0.008
faux	faux	faux	0.576

Distribution de probabilités

- Distribution de probabilités : l'énumération des probabilités pour toutes les valeurs possibles de variables aléatoires
- Exemples:

```
◆ P(Carie) = [ P(Carie=faux), P(Carie=vrai) ] = [ 0.8, 0.2 ]
```

- ◆ P(Carie, MalDeDent)
 = [[P(Carie=faux , MalDeDent=faux), P(Carie=vrai, MalDeDent=faux)],
 [P(Carie=faux , MalDeDent=vrai), P(Carie=vrai, MalDeDent=vrai)]]
 = [[0.72, 0.08],
 [0.08, 0.12]]
- La somme est toujours égale à 1
- J'utilise le symbole P pour les distributions et P pour les probabilités
 - P(Carie) désignera la probabilité P(Carie=x) pour une valeur x non-spécifiée
 » c'est un élément quelconque de P(Carie)
- Le choix d'énumérer les probabilités dans un tableau 2D est arbitraire

Distribution conditionnelle

- On peut faire la même chose pour le cas conditionnel
- Exemple :
 - P(Carie | MalDeDent=vrai)
 = [P(Carie=faux | MalDeDent=vrai), P(Carie=vrai | MalDeDent=vrai)]
 = [0.4, 0.6]
 P(Carie | MalDeDent)
 = [[P(Carie=faux | MalDeDent=faux), P(Carie=vrai | MalDeDent=faux)],
 [P(Carie=faux | MalDeDent=vrai), P(Carie=vrai | MalDeDent=vrai)]]
 = [[0.9, 0.1], → somme à 1
 [[0.4, 0.6]] → somme à 1
- Chaque sous-ensemble de probabilités associé aux mêmes valeurs des variables sur lesquelles on conditionne somme à 1
 - **P**(Carie | MalDeDent) contient deux distributions de probabilités sur la variable Carie : une dans le cas où MalDeDent=faux, l'autre lorsque MalDeDent=vrai

Distribution conditionnelle

- Une distribution conditionnelle peut être vue comme une distribution renormalisée afin de satisfaire les conditions de sommation à 1
- Exemple :

```
    P(Carie | MalDeDent=vrai)
    = P(Carie, MalDeDent=vrai) / α
    = [0.08, 0.12] / α
    = [0.08, 0.12] / (0.08 + 0.12)
    = [0.4, 0.6]
```

P(Carie | MalDeDent)
 = [P(Carie, MalDeDent=faux) / α_{faux}, P(Carie, MalDeDent=vrai) / α_{vrai}]
 = [[0.72, 0.08] / (0.72 + 0.08), [0.08, 0.12] / (0.08 + 0.12)]
 = [[0.9, 0.1], [0.4, 0.6]]

Règle de chaînage

- Règle du produit :
 - P(Carie=faux, MalDeDent=vrai)
 = P(Carie=faux | MalDeDent=vrai) P(MalDeDent=vrai)
 = P(MalDeDent=vrai | Carie=faux) P(Carie=faux)
 - En général :
 P(Carie, MalDeDent) = P(Carie | MalDeDent) P(MalDeDent)
 = P(MalDeDent | Carie) P(Carie)
- Règle de chaînage (*chain rule*) pour n variables $X_1 \dots X_n$:

$$P(X_{1}, ..., X_{n}) = P(X_{1}, ..., X_{n-1}) P(X_{n} | X_{1}, ..., X_{n-1})$$

$$= P(X_{1}, ..., X_{n-2}) P(X_{n-1} | X_{1}, ..., X_{n-2}) P(X_{n} | X_{1}, ..., X_{n-1})$$

$$= ...$$

$$= \prod_{i=1, n} P(X_{i} | X_{1}, ..., X_{i-1})$$

Règle de chaînage

- La règle du chaînage est vraie, quelle que soit la distribution de $X_1 \dots X_n$
- Plutôt que de spécifier toutes les probabilités jointes $P(X_1, ..., X_n)$, on pourrait plutôt spécifier $P(X_1)$, $P(X_2 | X_1)$, $P(X_3 | X_1, X_2)$, ..., $P(X_n | X_1, ..., X_{n-1})$
- Exemple, on aurait pu spécifier :
 - → P(Carie=faux) = 0.8, P(Carie=vrai) = 0.2
 - ◆ P(MalDeDent=faux | Carie=faux) = 0.9 , P(MalDeDent=vrai | Carie=faux) = 0.1 P(MalDeDent=faux | Carie=vrai) = 0.4, P(MalDeDent=vrai | Carie=vrai) = 0.6
- On aurait tout les ingrédients pour calculer les P(Carie, MalDeDent) :
 - P(Carie=faux, MalDeDent=vrai) = P(MalDeDent=vrai | Carie=faux) P(Carie=faux) = 0.1 * 0.8 = 0.08
 - ightharpoonup P(Carie=vrai, MalDeDent=vrai) = P(MalDeDent=vrai | Carie=vrai) P(Carie=vrai) = 0.6 * 0.2 = 0.12

Règle de Bayes

Carie=faux ⇔ ¬carie Carie=vrai ⇔ carie

- On pourrait aussi calculer P(Carie=faux | MalDeDent=vrai) :
 - ◆ P(¬carie | malDeDent)
 - $= P(\neg carie, malDeDent) / P(malDeDent)$
 - = $P(\neg carie, malDeDent) / (P(malDeDent, \neg carie) + P(malDeDent, carie))$
 - = $P(malDeDent | \neg carie) P(\neg carie) / \alpha$
 - = 0.08 / (0.08 + 0.12) = 0.4
- On appelle P(Carie) une probabilité a priori
 - c'est notre croyance p/r à la présence d'une carie avant toute observation
- On appelle P(Carie | MalDeDent) une probabilité a posteriori
 - c'est notre croyance mise à jour après avoir observé que MalDeDent
- La règle de Bayes lie ces deux probabilités ensemble
 - ♦ $P(\neg carie \mid malDeDent) = P(malDeDent \mid \neg carie) P(\neg carie) / α$
- Donne une probabilité diagnostique à partir d'une probabilité causale :
 - ◆ P(Cause | Effect) = P(Effect | Cause) P(Cause) / P(Effect)

Indépendance

- Soit les variables A et B, elles sont indépendantes si et seulement si
 - ightharpoonup P(A | B) = P(A) ou
 - ightharpoonup P(B|A) = P(B) ou
 - ightharpoonup P(A, B) = P(A) P(B)
- Exemple : P(Pluie, Carie) = P(Pluie) P(Carie)

<i>P</i> (<i>Pluie = vrai</i>) = 0.3 €	/
<i>P</i> (<i>Carie = vrai</i>) = 0.1	

Pluie	Carie	Probabilité
vrai	vrai	0.03
vrai	faux	0.27
faux	vrai	0.07
faux	faux	0.63

= P(pluie) P(carie) = 0.3 * 0.1

 $= P(pluie) P(\neg carie) = 0.3 * 0.9$

= $P(\neg pluie) P(carie) = 0.7 * 0.1$

 $= P(\neg pluie) P(\neg carie) = 0.7 * 0.9$

Indépendance

- L'indépendance totale est puissante mais rare
- L'indépendance entre les variables permet de réduire la taille de la distribution de probabilités et rendre les inférences plus efficaces
 - ♦ dans l'exemple précédent, on n'a qu'à stocker en mémoire P(Pluie = vrai) = 0.3 et P(Carie = vrai) = 0.1, plutôt que la table au complet
- Mais il est rare d'être dans une situation où toutes les variables sont réellement indépendantes

Indépendance conditionnelle

- Si j'ai une carie, la probabilité que la sonde accroche dans la dent ne dépend pas du fait que j'aie mal à la dent ou non :
 - ◆ P(Croche | MalDeDents, Carie=vrai) = P(Croche | Carie=vrai)
- Même chose si je n'ai pas la carie :
 - → P(Croche | MalDeDents, Carie=faux) = P(Croche | Carie=faux)
- On dit que *Croche* est **conditionnellement indépendante** de *MalDeDents* étant donné *Carie*, puisque :
 - ◆ P(Croche | MalDeDents, Carie) = P(Croche | Carie)
- Formulations équivalentes :
 - → P(MalDeDents | Croche , Carie) = P(MalDeDents | Carie)
 - → P(MalDeDents, Croche | Carie) = P(MalDeDents | Carie) P(Croche | Carie)

Indépendance conditionnelle

Réécrivons la distribution conjointe en utilisant la règle de chaînage (chain rule):

```
P(MalDeDents, Croche, Carie)
= P(MalDeDents | Croche, Carie) P(Croche, Carie)
= P(MalDeDents | Croche, Carie) P(Croche | Carie) P(Carie)
```

= P(MalDeDents | Carie) P(Croche | Carie) P(Carie)

- C-à-d., 2 + 2 + 1 = 5 paramètres individuels/distincts
- Dans des cas idéals, l'exploitation de l'indépendance conditionnelle réduit la complexité de représentation de la distribution conjointe de exponentielle (O(2ⁿ)) en linéaire (O(n))
- En raisonnement probabiliste, l'indépendance conditionnelle est le concept de représentation des connaissances le plus basique et utile

Autres types de variables aléatoires

- On s'est concentré sur des variables aléatoires Booléennes ou binaires
 - ♦ le domaine, c.-à-d. l'ensemble des valeurs possibles de la variable, était toujours {vrai,faux}
- On pourrait avoir d'autres types de variables, avec des domaines différents :
 - Discrètes : le domaine est énumérable
 - » Météo ∈ {soleil, pluie, nuageux, neige}
 - » lorsqu'on marginalise, on doit sommer sur toutes les valeurs : $P(Temp\'erature) = \Sigma_{x \in \{soleil, pluie, nuageux, neige\}} P(Temp\'erature, M\'et\'eo=x)$
 - Continues : le domaine est continu (par exemple, l'ensemble des réels)
 - » exemple : PositionX = 4.2
 - » le calcul des probabilités marginales nécessite des intégrales

En bref

- Probabilité jointe : P(X₁, ...,X_n)
- Probabilité marginale : $P(X_i)$, $P(X_i, X_i)$, etc.
- Probabilité conditionnelle : $P(X_1, ..., X_k | X_{k+1}, ..., X_n) = P(X_1, ..., X_k, X_{k+1}, ..., X_n)$ $P(X_{k+1}, ..., X_n)$
- Régle de chaînage : $P(X_1, ..., X_n) = \prod_{i=1..n} P(X_i \mid X_1, ..., X_{i-1})$
- Indépendance : X_i et X_j sont indépendantes si $P(X_i, X_j) = P(X_i) P(X_j)$, ou $P(X_i | X_j) = P(X_i)$ ou $P(X_j | X_i)$
- Indépendance conditionnelle : X_i et X_j sont indépendante sachant X_k si $P(X_i, X_j | X_k) = P(X_i | X_k) P(X_i | X_k) \text{ ou } P(X_i | X_j, X_k) = P(X_i | X_k) \text{ ou } P(X_j | X_i, X_k) = P(X_j | X_k)$
- Règle de Bayes : $P(X_1, ..., X_k \mid X_{k+1}, ..., X_n) = P(X_{k+1}, ..., X_n \mid X_1, ..., X_k) P(X_1, ..., X_k)$ $P(X_{k+1}, ..., X_n)$

Résumé

- La théorie des probabilités est un formalisme cohérent pour raisonner avec l'incertitude
- Une distribution conjointe spécifie les probabilités pour toute valuer des variables aléatoires
- Pour les domaines d'application réalistes, on doit trouver une façon de réduire la taille de la distribution conjointe
- L'indépendance et l'indépendance conditionnelles nous fournissent les outils de base pour simplifier les distributions conjointes

Vous devriez être capable de...

- À partir d'une distribution conjointe ou des distributions conditionnelles et a priori nécessaires :
 - calculer une probabilité conjointe
 - calculer une probabilité marginale
 - déterminer si deux variables sont indépendantes
 - déterminer si deux variables sont conditionnellement indépendantes sachant une troisième