

# Questão 1.:

Vejamos o seguinte grafo:



### 1 .: Algoritmo de *Djkstra*

Abaixo temos passo-a-passo do algoritmo de Djkstra. Vemos uma miniatura do grafo ao lado da tabela respectiva a cada iteração. Seja u a raiz da busca, para cada vértice v temos a distância até a raiz d(v,u) e o vetor de retorno  $\mathbf{r}[v]$  que vamos usar para construir a árvore geradora.



| v            | d(u,v)   | $\mathbf{r}[v]$ |
|--------------|----------|-----------------|
| A            | 0        | A               |
| В            | $\infty$ |                 |
| С            | $\infty$ |                 |
| D            | $\infty$ |                 |
| $\mathbf{E}$ | $\infty$ |                 |
| F            | $\infty$ |                 |



| v            | d(u, v)  | $\mathbf{r}[v]$ |
|--------------|----------|-----------------|
| A            | 0        | A               |
| В            | 10       | A               |
| $\mathbf{C}$ | $\infty$ |                 |
| D            | $\infty$ |                 |
| $\mathbf{E}$ | 4        | A               |
| F            | $\infty$ |                 |



| v            | d(u, v)  | $\mathbf{r}[v]$ |
|--------------|----------|-----------------|
| A            | 0        | A               |
| В            | 10       | A               |
| $\mathbf{C}$ | $\infty$ |                 |
| D            | $\infty$ |                 |
| Ε            | 4        | A               |
| F            | 16       | Е               |



| v | d(u,v) | $\mathbf{r}[v]$ |
|---|--------|-----------------|
| A | 0      | A               |
| В | 10     | A               |
| С | 11     | В               |
| D | 12     | В               |
| Ε | 4      | A               |
| F | 16     | E               |



| v | d(u,v) | $\mathbf{r}[v]$ |
|---|--------|-----------------|
| A | 0      | A               |
| В | 10     | A               |
| С | 11     | В               |
| D | 12     | В               |
| E | 4      | A               |
| F | 16     | E               |



| v | d(u,v) | $\mathbf{r}[v]$ |
|---|--------|-----------------|
| A | 0      | A               |
| В | 10     | A               |
| С | 11     | В               |
| D | 12     | В               |
| E | 4      | A               |
| F | 16     | E               |



| v            | d(u,v) | $\mathbf{r}[v]$ |
|--------------|--------|-----------------|
| Α            | 0      | A               |
| В            | 10     | A               |
| $\mathbf{C}$ | 11     | В               |
| D            | 12     | В               |
| $\mathbf{E}$ | 4      | A               |
| F            | 16     | E               |

### 2 .: Árvore Geradora de *Djkstra*

Observando com atenção a configuração final da tabela construída pelo algoritmo, podemos construir a árvore geradora:



### 3 .: Árvore de busca em largura

Independentemente do critério de ordenação na busca, uma árvore geradora oriunda de uma busca em largura optaria por atingir o vértice C utilizando-se da aresta (D,C), de custo 9. A árvore de caminho mínimo, no entanto, chegaria ao vértice C através de B, uma vez que o caminho (D,B,C) possui distância total 2+1=3.

#### 4 .: Algoritmo de Prim

O passo-a-passo para este algoritmo é apresentado de maneira semelhante ao anterior, com a miniatura do grafo ao lado da tabela de cada iteração.



| v | d(u, v)  | $\mathbf{r}[v]$ |
|---|----------|-----------------|
| A | 0        | A               |
| В | $\infty$ |                 |
| С | $\infty$ |                 |
| D | $\infty$ |                 |
| Ε | $\infty$ |                 |
| F | $\infty$ |                 |



| v            | d(u, v)  | $ \mathbf{r}[v] $ |
|--------------|----------|-------------------|
| A            | 0        | A                 |
| В            | $\infty$ |                   |
| $\mathbf{C}$ | $\infty$ |                   |
| D            | $\infty$ |                   |
| $\mathbf{E}$ | 4        | A                 |
| F            | $\infty$ |                   |



| v | d(u,v)   | $\mathbf{r}[v]$ |
|---|----------|-----------------|
| A | 0        | A               |
| В | 11       | E               |
| С | $\infty$ |                 |
| D | $\infty$ |                 |
| Ε | 4        | A               |
| F | $\infty$ |                 |



| v | d(u,v)   | $\mathbf{r}[v]$ |
|---|----------|-----------------|
| A | 0        | A               |
| В | 11       | E               |
| С | 12       | В               |
| D | $\infty$ |                 |
| E | 4        | A               |
| F | $\infty$ |                 |



| v | d(u,v)   | $\mathbf{r}[v]$ |
|---|----------|-----------------|
| A | 0        | A               |
| В | 11       | E               |
| С | 12       | В               |
| D | 13       | В               |
| Ε | 4        | A               |
| F | $\infty$ |                 |



| v | d(u,v) | $\mathbf{r}[v]$ |
|---|--------|-----------------|
| A | 0      | A               |
| В | 11     | E               |
| С | 12     | В               |
| D | 13     | В               |
| E | 4      | A               |
| F | 24     | $\mid D \mid$   |



| v | d(u,v) | $\mathbf{r}[v]$ |
|---|--------|-----------------|
| A | 0      | A               |
| В | 11     | E               |
| С | 12     | В               |
| D | 13     | В               |
| E | 4      | A               |
| F | 24     | D               |

### 5 .: Árvore Geradora de *Prim*

Abaixo, temos a árvore geradora obtida a partir da tabela resultante.



## 6 .: Árvore de busca em profundidade

Iniciando uma busca em profundidade a partir do vértice A, seguindo pelo caminho proposto segundo a árvore obtida pelo algoritmo de Prim, chegaríamos a B passando por E. Aqui encontramos um problema: caso decidamos prosseguir por C, alcançaríamos D logo em seguida. Se optamos pelo contrário e seguimos pela aresta (B, D), temos que (D, C) pertence a busca em profundidade que continua a partir de D. Logo, não é possível reconstruir a árvore geradora através de uma busca em profundidade com raiz em A.

### Questão 2.:



Figura 1: Rede de fluxos

- 1 .: O fluxo não é maximal pois existe um caminho aumentante, isto é, que liga s a t cujas arestas não se encontram saturadas. Mais precisamente, o caminho  $(s, v_2, v_4, t)$ , cujo gargalo é 2.
- **2** .: A capacidade do corte  $(S \{t\}, \{t\})$  é 20 + 4 = 24. O corte  $(S \{v_3, t\}, \{v_3, t\})$ , por sua vez, possui capacidade 12 + 7 + 4 = 23. Logo, existe um corte de capacidade inferior àquele apresentado que, portanto, não pode ser o mínimo.
- **3 .:** Encontrando o caminho aumentante (em azul) de maneira gulosa, e recalculando a respectiva rede residual (em violeta) temos:



Caminho aumentante:  $(s, v_2, v_3, t)$ 

Gargalo: 7



Caminho aumentante:  $(s, v_1, v_2, v_4, t)$ 

Gargalo: 2



Por fim, não temos mais caminhos aumentante que levem de s até t. De fato, já atingimos o fluxo de 23 unidades, que sabemos ser máximo pois é o valor do corte mínimo. A rede resultante é, portanto:



**4**: Um fluxo maximal é aquele onde todas os caminhos da origem ao destino incluem ao menos uma aresta saturada. A rede de fluxos abaixo apresenta fluxo maximal, pois para chegar ao destino t é preciso passar por ao menos uma das arestas saturadas  $\{(v_1, v_3), (v_4, v_3), (v_4, t_3)\}$ .



Figura 2: Uma rede de fluxo maximal mas que não é máximo.

O fluxo desta rede é 10 + 4 = 14, menor do que o máximo, que já sabemos ser 23.

### Referências

[1] SZWARCFITER, Jayme Luiz, **Teoria Computacional de Grafos**, 1<sup>a</sup> edição, Rio de Janeiro, 2018.