The Row and Column Spaces of a Matrix

- ▶ Let A be an m × n matrix, and let S denote the set of n column vectors of A
- A subset v_1, \ldots, v_k of S is *linearly independent* if the only solution to $\sum_{1 \le i \le k} c_i v_i = 0$ is $c_1 = \ldots = c_k = 0$
 - Remark: The empty set of column vectors is linearly independent
- A maximal independent set of column vectors forms a basis of the column space
 - Every such basis has the same cardinality, which is equal to the dimension of the column space and defined as the column rank of A
 - ► The row rank can be defined analogously and is equal to the column rank; we refer to these quantities as the *rank* of A

Matroids

- ▶ Introduced by Whitney in 1935, matroids are combinatorial structures that capture the abstract properties of linear independence defined for vector spaces
- ▶ A matroid M is a pair (S, \mathcal{I}) where S is a finite ground set and $\mathcal{I} \subseteq 2^S$ is a nonempty collection of independent sets such that the following conditions hold
 - ▶ (Hereditary Property) If $X \in \mathcal{I}$ and $Y \subseteq X$, then $Y \in \mathcal{I}$
 - ▶ (Exchange Property) If $X, Y \in \mathcal{I}$ and |X| < |Y|, then there exists $y \in Y \setminus X$ such that $X + y \in \mathcal{I}$
- ▶ A maximal independent set of *M* is referred to as a *basis* of *M*
- Observe that every basis of M has the same cardinality
 - ▶ This cardinality is referred to as the *rank* of *M*

Vector Matroids

- Let S denote the set of column vectors of a given matrix A, and let I denote the set of linearly independent subsets of S
 - ▶ The empty set belongs to \mathcal{I} , so \mathcal{I} is nonempty
 - ▶ The hereditary property is immediate
 - ▶ The exchange property holds since $X, Y \in \mathcal{I}$ and |X| < |Y| implies that at least one column vector $y \in Y$ cannot be represented as a linear combination of the column vectors in X
- ▶ Thus $M = (S, \mathcal{I})$ is a matroid
 - ► The rank of M is equal to the rank of A

A Simpler Example: Uniform Matroids

- Let S be a finite set, let k be a nonnegative integer, and let \mathcal{I} denote the set of all subsets of S of cardinality at most k
- ▶ The empty set belongs to \mathcal{I}
- ► The hereditary property is immediate
- ▶ Suppose $X, Y \in \mathcal{I}$ and |X| < |Y|
 - ▶ Thus $Y \setminus X$ is nonempty
 - Let y be an element of $Y \setminus X$
 - ▶ Observe that $X + y \in \mathcal{I}$, so the exchange property holds
- We refer to (S, \mathcal{I}) as a uniform matroid

Partition Matroids

- ▶ Let $S_1, ..., S_n$ be a partition of a finite set S, let $k_1, ..., k_n$ be nonnegative integers, and let \mathcal{I} denote the set of all subsets I of S such that $|I \cap S_i| \le k_i$ for $1 \le i \le n$
- ▶ The empty set belongs to \mathcal{I}
- The hereditary property is immediate
- ▶ Suppose $X, Y \in \mathcal{I}$ and |X| < |Y|
 - ► Thus there exists an integer i, $1 \le i \le n$, such $|X \cap S_i| < |Y \cap S_i|$
 - ▶ Let *y* be an element of $(Y \cap S_i) \setminus (X \cap S_i)$
 - ▶ Observe that X + y belongs to \mathcal{I} , so the exchange property holds
- Such a matroid is called a partition matroid

Laminar Matroids

- Let S be a finite set, and let \mathcal{F} be a "laminar family" over S
 - ▶ That is, \mathcal{F} is a subset of 2^S such that if $X, Y \in \mathcal{F}$ then $X \cap Y = \emptyset$, $X \subseteq Y$, or $Y \subseteq X$
- ▶ For each set X in \mathcal{F} , let k_X be a nonnegative integer
- ▶ Let \mathcal{I} denote the set of all subsets I of S such that $|I \cap X| \le k_X$ for all $X \in \mathcal{F}$
- **Exercise**: Prove that (S, \mathcal{I}) is a matroid
 - Such a matroid is called a laminar matroid
 - Laminar matroids generalize partition matroids, which generalize uniform matroids

Computing a Basis of a Matroid

- There are generic frameworks for solving various natural computational problems related to matroids
- Example: Suppose we are given a matroid $M = (S, \mathcal{I})$, and we wish to compute a basis X of M
 - ▶ Initialize X to \emptyset , which belongs to \mathcal{I}
 - ▶ For each element x of S (in arbitrary order), add x to X if the resulting set belongs to \mathcal{I}
 - Observe that if x cannot be added to some intermediate X (without leaving I), then x cannot be added to the final X
 - ▶ Thus *X* is a basis upon termination
- The precise computational complexity of this algorithm depends on the structure of the specific matroid family for which it is implemented

Weighted Matroids

- A weighted matroid is a matroid $M = (S, \mathcal{I})$ where each element x of S has an associated weight w(x)
- ▶ The weight of a subset X of S is defined as $\sum_{x \in X} w(x)$
- Certain optimization problems can be interpreted as asking for a maximum-weight basis of a suitable matroid
- ► There is a generic framework for computing such a maximum-weight basis
 - ► The same framework can be used to compute a minimum-weight basis
- It is called the matroid greedy algorithm

The Matroid Greedy Algorithm

- Let $M = (S, \mathcal{I})$ be a weighted matroid with weight function w
- ▶ Initialize *A* to the empty set
- ▶ For each element x of S in nonincreasing order of weight (breaking ties arbitrarily), add x to A if $A + x \in \mathcal{I}$
- ▶ Upon termination, we claim that *A* is a maximum-weight basis of *M*
- Let $S = \{x_1, ..., x_n\}$ where x_i is the element processed in iteration i; thus $w(x_1) \ge ... \ge w(x_n)$

Proof of Correctness

- ▶ Let B be a maximum-weight basis of M, and let i denote the least index such that $x_i \in A \oplus B$
 - ▶ Thus $x_i \in A \setminus B$
 - ▶ Let A' denote $A \cap \{x_1, \ldots, x_i\}$
 - ▶ By repeated application of the exchange property, we can add elements of B to A' until we get a basis $B' = B + x_i x_j$ for some j > i (so $w(x_j) \le w(x_i)$)
 - Since B' is a basis and B is a maximum-weight basis, we have $w(x_i) \le w(x_j)$; thus $w(x_i) = w(x_j)$
 - ▶ Thus B' is a maximum-weight basis that agrees with A on $\{x_1, \ldots, x_i\}$, i.e., $(A \oplus B') \cap \{x_1, \ldots, x_i\} = \emptyset$
 - Repeating the above argument, we eventually obtain a maximum-weight basis that is equal to A

Relationship to Kruskal's MST Algorithm

- Note the similarity between (the weight-minimizing version of) the matroid greedy algorithm and Kruskal's MST algorithm
- ► This suggests that it may be possible to interpret the MST problem as the problem of computing a minimum-weight basis of a suitable matroid
- Let G = (V, E) be a connected, undirected graph where each each e in E has an associated weight w(e)
- ▶ How can we interpret *G* as a weighted matroid?
- ► Since w assigns weights to the edges of G, we should choose the ground set of our matroid to be E
- Which subsets of the edges should we consider to be independent?

Graphic Matroids

- Let G = (V, E) be a connected, undirected graph where each each e in E has an associated weight w(e)
- ▶ We claim that (E, \mathcal{I}) is a matroid, where \mathcal{I} denotes the set of all acyclic subsets of E
 - Note the connection to Kruskal's algorithm, which grows an MST T by starting with the empty set, and adds an edge e to T in a given iteration if T + e remains acyclic
- Let's prove that (E, \mathcal{I}) is in fact a matroid
 - lacktriangleright The empty set of edges belongs to ${\mathcal I}$
 - The hereditary property is immediate
 - It remains to establish the exchange property

Proof of the Exchange Property

- ▶ Let X and Y be two acyclic subsets of E with |X| < |Y|
- ▶ The number of connected components in the graph $G_X = (V, X)$ (resp., $G_Y = (V, Y)$) is |V| |X| (resp., |V| |Y|)
- ▶ Thus the number of connected components in G_X exceeds the number in G_Y
- ▶ Thus some connected component C = (V', E') of G_Y includes vertices drawn from more than one connected component of G_X
- ► Thus *C* includes an edge (*u*, *v*) such that *u* and *v* belong to distinct connected components of *G*_X
- ▶ Edge (u, v) belongs to $Y \setminus X$ and X + (u, v) is acyclic

Other MST Properties that Generalize to Matroids

- Many properties of MSTs generalize to arbtrary weighted matroids
- ► For example, consider the matroid analogues of some of the properties discussed in the previous lecture
 - Every maximum-weight basis has the same distribution of element weights
 - If all element weights are distinct, there is a unique maximum-weight basis
 - ► The matroid greedy algorithm can generate every maximum-weight basis
 - The set of maximum-weight bases does not change if we replace each weight x with f(x) for some increasing function f

A Scheduling Problem

- ▶ Suppose we are given *n* unit-time tasks, indexed from 1 to *n*, to be scheduled on a single resource starting at time zero
- ▶ Task *i* has a nonnegative integer deadline d_i and value v_i
- ▶ We say that a schedule for a set of tasks X is feasible if no task in X misses its deadline
- We say that a set of tasks is feasible if it admits a feasible schedule
 - ▶ It is easy to argue that a set of tasks X is feasible if and only if any earliest deadline (ED) schedule of X is feasible for X
- ▶ The value of a set of tasks X is defined as $\sum_{i \in X} v_i$
- ▶ We wish to compute a maximum-value feasible set of tasks

A Matroid Interpretation

- ▶ Let S denote the set of tasks, and let I denote the set of all feasible subsets S
- We claim that (S, \mathcal{I}) is a matroid
 - lacktriangleright The empty set of tasks belongs to ${\mathcal I}$
 - ▶ The hereditary property is immediate
 - It remains to prove the exchange property

Proof of the Exchange Property

- ▶ Let X and Y belong to \mathcal{I} with |X| < |Y|
- ▶ Let A be a gap-free feasible schedule for X, let B be an ED schedule for Y, and let y be the rightmost task in B that does not belong to X
- ▶ Schedule B ends with $y, x_1, ..., x_k$ for some $k \ge 0$ where $\{x_1, ..., x_k\} \subseteq X$
 - ▶ We refer to the last k+1 slots of B as the "source slots", which we index from 1 to k+1 (left to right)
 - We refer to the k slots of A containing x_1, \ldots, x_k and the first empty slot of A as the "target slots", which we index from 1 to k+1 (left to right)
 - ▶ We modify A to obtain a feasible schedule for X + y by mapping the task in source slot i to target slot i, $1 \le i \le k + 1$

Implications for the Scheduling Problem

- ► We can obtain a maximum-value feasible set of tasks by implementing the matroid greedy algorithm
- ► How can we efficiently determine whether the set of tasks X + x obtained by adding a task x to a feasible set X is itself feasible?
- ▶ It is easy to check feasibility of the ED schedule of X + x in polynomial time
- Since the number of iterations is n, we can compute a maximum-value feasible set of tasks in polynomial time
- On the upcoming problem set, you will be asked to develop a faster implementation

A Further Generalization

- ▶ We can generalize the preceding scheduling problem by introducing a release time *r_i* for each task *i*
- ▶ A unit-time task with release time r_i and deadline d_i can only be scheduled in one of the unit intervals [t, t+1] for t in $\{r_i, r_i+1, \ldots, d_i-1\}$
- It turns out that the set of feasible subsets of the tasks still corresponds to the independent sets of a matroid
- Remark: A fast implementation of the matroid greedy algorithm is known for the resulting matroid

Transversal Matroids

- ▶ Let G = (U, V, E) be a bipartite graph
- A matching of G is a subset E' of E that induces degree at most one on any vertex
 - ▶ The endpoints of the edges in E' are said to be matched in E'
- ▶ Let *T* denote the set of all subsets *I* of *U* such that some matching of *G* matches every vertex in *I*
- We claim that (U, \mathcal{I}) is a matroid
 - lacktriangleright The empty set of vertices belongs to ${\mathcal I}$
 - ▶ The hereditary property is immediate
 - It remains to prove the exchange property

Proof of the Exchange Property

- ▶ Let X and Y belong to \mathcal{I} with |X| < |Y|
- ▶ There exists a matching A (resp., B) that matches X (resp., Y) and such that |A| = |X| (resp., |B| = |Y|)
- ▶ The subgraph with edge set $A \oplus B$ consists of a collection of disjoint (simple) paths and even-length cycles
- ▶ Since |A| < |B|, there is at least one odd-length path P that begins and ends with an edge in B
 - Since the length of P is odd, it has one endpoint in U, call it y, this is not matched in A
 - ▶ Observe that the matching $A \oplus P$ matches all of the vertices in X + y

Connection to the Scheduling Matroids Considered Earlier

- We can think of U as the set of unit-time tasks to be scheduled
- ▶ We can think of *V* as the set of time slots
- We include an edge (u, v) in E if we are allowed to schedule task u in slot v
- ▶ We can perform the feasibility check associated with a single iteration of the matroid greedy algorithm in O(|E|) time
 - ► The idea is to maintain a matching A for the current feasible subset X of U
 - ▶ To check whether X + x remains feasible for some $x \in U \setminus X$, we can use alternating breadth-first search to search for an alternating path P from x to an unmatched node in V
 - ▶ If so, we can add x to X and update A to $A \oplus P$

Matching Matroids

- Let G = (V, E) be a graph
- ▶ Let I denote the set of all subsets X of V such that some matching of G matches all of the vertices in X
- We claim that (V, \mathcal{I}) is a matroid
 - lacktriangleright The empty set of vertices belongs to ${\mathcal I}$
 - ► The hereditary property is immediate
 - Exercise: Prove the exchange property
- Such a matroid is called a matching matroid

The Circuits of a Matroid

- ▶ Let $M = (S, \mathcal{I})$ be a matroid
- ▶ A circuit of M is a minimal dependent set
 - ▶ That is, a subset C of S such that $C \not\in \mathcal{I}$ and $C x \in \mathcal{I}$ for all x in C
- For a graphic matroid, a minimal dependent set is a (simple) cycle
- Recall the following property of spanning trees
 - ▶ If T is a spanning tree of G = (V, E) and $e \in E \setminus T$, then T + e contains a unique (simple) cycle
- ▶ A generalization of this claim holds for arbitrary matroids

A Property of Matroids

- ▶ Lemma: If X is a basis of matroid $M = (S, \mathcal{I})$ and $x \in S \setminus X$, then there is a unique circuit in Y = X + x
- ▶ Let *C* denote the set of all *y* in *Y* such that $Y y \in \mathcal{I}$
- ► Claims 1 and 2 below imply that *C* is a circuit, while Claim 3 guarantees uniqueness
 - ▶ Claim 1: $C \notin \mathcal{I}$
 - ▶ Claim 2: $C y \in \mathcal{I}$ for all y in C
 - ▶ Claim 3: If $Z \notin \mathcal{I}$ and $Z \subseteq Y$, then $C \subseteq Z$
- ► On the upcoming problem set, you will be asked to prove Claims 1, 2, and 3