Programación Entera (INDG-1019): Examen 01

Semestre: 2018-2019 Término I Instructor: Luis I. Reyes Castro

Problema 1.1. Considere un programa entero que contiene $m \ge 10$ variables binarias

$$x_1, x_2, x_3, \ldots, x_m \in \{0, 1\}$$

junto con otras variables adicionales. En cada uno de los siguientes literales, se le presentará un conjunto de suposiciones seguido de una regla o preferencia. Exprese cada una de las reglas o preferencias en el lenguaje de la programación lineal entera mediante la introducción de variables enteras y/o de restricciones lineales. Por favor considere que cada literal es independiente de todos los otros.

- a) Suposiciones: $2 \le n < m$; $y \in \{0, 1\}$. Regla o preferencia: La variable y = 1 si y solo si el número de índices $i \in [m]$ tales que $x_i = 1$ es exactamente igual a n.
- b) Suposiciones: $S \subseteq [m]$ es un subconjunto de índices; $w \in \{0, 1\}$. Regla o preferencia: La variable w = 1 si y solo si para todo índice $i \in S$ tenemos $x_i = 1$.
- c) Suposiciones: $S, T \subseteq [m]$ son subconjuntos de índices. Regla o preferencia: Si $x_i = 1$ para al menos un índice $i \in S$ entonces $x_j = 0$ para todo índice $j \in T$, y vice-versa (i.e., si $x_j = 1$ para al menos un índice $j \in T$ entonces $x_i = 0$ para todo índice $i \in S$).
- d) Suposiciones: $S, T \subseteq \llbracket m \rrbracket$ son subconjuntos de índices; $w \in \{0, 1\}$. Regla o preferencia: Si el número de índices $i \in S$ para los cuales $x_i = 1$ es igual o mayor al número de índices $j \in S$ para los cuales $x_j = 1$ entonces w = 1.
- e) Suposiciones: $S, T \subseteq \llbracket m \rrbracket$ son subconjuntos de índices. Regla o preferencia: Si $x_i = 1$ para al menos dos índices $i \in S$ entonces $x_j = 1$ para al menos cuatro índices $j \in T$.

Problema 1.2. Considere un programa entero que contiene las series temporales de variables binarias $\{x_t\}_{t=1}^T \in \{0,1\}, \{y_t\}_{t=1}^T \in \{0,1\} \text{ y } \{z_t\}_{t=1}^T \in \{0,1\}, \text{ donde } T \geq 10, \text{ junto con otras variables adicionales. En este modelo, las series temporales <math>\{x_t\}, \{y_t\} \text{ y } \{z_t\}$ representan la ocurrencia o no-ocurrencia de tres tipos diferentes de eventos de interés en un problema de planificación con un horizonte de T períodos.

En cada uno de los siguientes literales, se le presentará una regla o preferencia, posiblemente precedida por un conjunto de suposiciones. Exprese cada una de las reglas o preferencias en el lenguaje de la programación lineal entera mediante la introducción de variables enteras y/o de restricciones lineales. Recuerde que cada literal es independiente de los otros.

- a) Regla o preferencia: Si para algún periodo $k \in [T-1]$ tenemos $x_k = 1$ entonces $y_{k+1} = 1$.
- b) Regla o preferencia: Existe al menos un periodo $k \in [T-1]$ tal que $x_k = 1$ y $x_{k+1} = 1$.
- c) Regla o preferencia: Si para algún periodo $k \in [T-1]$ tenemos $x_k = 1$ entonces $y_{k+\ell} = 1$ para al menos un $\ell \geq 1$.
- d) Regla o preferencia: Si para algún periodo $k \in [T-2]$ tenemos $x_k=1$ y $y_{k+1}=1$ entonces $z_{k+2}=1$.

Página 1 de 3

e) Regla o preferencia: Si para algún periodo $k \in [T-1]$ tenemos $x_k = 1$ y $y_k = 1$ entonces $z_{k+\ell} = 1$ para al menos un $\ell \geq 1$.

Problema 1.3. Considere un problema de producción y almacenamiento con múltiples períodos y con una estructura de costos decrementales. En particular:

- ullet El horizonte del problema es de T períodos.
- Los costos de producción por periodo obecen el patrón mostrado en la siguiente tabla, donde $c_1 > c_2 > c_3 > \cdots > c_M > 0$.

Cantidad Mínima	Cantidad Máxima	Costo por Unidad
$q_0 = 0$	q_1	c_1
$q_1 + 1$	q_2	c_2
$q_2 + 1$	q_3	c_3
:	:	:
$q_{M-1} + 1$	q_M	c_M

En general, para cualquier $k \in [m]$, si se producen entre $q_{k-1}+1$ y q_k unidades se incurre un costo de producción de c_k dólares por unidad.

- Las demanadas del producto están representadas por la series de tiempo $\{d_t\}_{t=1}^T$.
- Se tiene una bodega con capacidad para hasta B unidades, y se incurre un costo de almacenamiento por unidad por periodo de c_{inv} dólares.

Con esto en mente, modelaremos este problema de producción y almacenamiento como un Programa Lineal Entero. Para esto introducimos las siguientes variables:

- Para todo $t \in [T]$ y todo $k \in [M]$ la variable binaria x_{tk} indica si en el periodo t se produjeron entre $q_{k-1} + 1$ unidades y q_k unidades.
- Para todo $t \in [T]$ y todo $k \in [M]$ la variable entera z_{tk} indica el número de unidades producidas en los casos cuando se producen entre $q_{k-1} + 1$ y q_k unidades.
- Para todo $t \in [T-1]$ la variable entera w_t indica el número de unidades puestas en almacenamiento entre el periodo t-1 y el periodo t.

Utilizando las variables anteriores, complete las siguientes actividades:

- a) Escriba las restricciones que dictan que en cada periodo t exactamente una de las variables x_{tk} debe tomar el valor uno.
- b) Escriba las restricciones que dictan que en cada periodo t es el caso que si $x_{tk} = 0$ entonces $z_{tk} = 0$.
- c) Escriba las restricciones que dictan que en cada periodo t es el caso que si $x_{tk} = 1$ entonces $z_{tk} \ge q_{k-1} + 1$.
- d) Escriba las restricciones que dictan que en cada periodo t es el caso que si $x_{tk} = 1$ entonces $z_{tk} \leq q_k$.
- e) Escriba una expresión, válida para cada periodo t, para el número de unidades producidas el periodo t.

Página 2 de 3

- f) Escriba las restricciones asociadas con la producción, el almacenamiento y la demanda a lo largo del horizonte de planificación.
- g) Escriba una expresión, válida para cada periodo t, para el costo de producción incurrido en el periodo t.
- h) Escriba la función de costo que buscamos minimizar.