Querying Graphs and their Representations

Team Singh

Motivation

General Overview

- What is a Graph Neural Network (GNN)?
 - Input: Graph + feature vectors
 - o **Output:** Graph embeddings
 - Goal: Learn and *predict*
- Examples:
 - Social Media Recommendations
 - Traffic Prediction

Problem Statement

We will develop an efficient framework capable of simultaneously comparing and analyzing large graphs across their topological and embedding spaces.

Currently, no such framework or query language exists.

Motivation

- What cannot be done?
 - Large queries on graph data + embeddings
 - Data-based output
- Where would this make an impact?
 - Node Vulnerability Analysis
 - Feature Analysis
 - Graph Structure and Learning Outcomes
 - GNN Model Comparisons

CorGIE

- (Left) 'k' steps (hops) away from a given node
- (Right) Shows the embeddings of a GNN

CorGIE

- What is CorGIE missing?
 - o Maximum size of graph: 20,000 nodes
 - No querying function
 - No more than 2 'k-hops'
 - Lacks support for k-nearest neighbors
 - No longer actively maintained

Proposed Solution + Future Plan

Graph Databases

- Two most popular graph database (GraphDB) frameworks
 - ArangoDB (AQL) and Neo4j (Cypher)

• ArangoDB:

- Supports non-graph DB features (keys/values, docs, etc.)
- Scales more efficiently

Neo4j:

- Has in-house APIs
- Supports more advanced graph features

Graph Databases

ArangoDB outperforms Neo4j in all use cases

Example AQL Query

- Therefore, we will utilize ArangoDB and AQL
- Example query in AQL:

Vector Similarity Search (FAISS)

- What is vector similarity search?
 - What is the distance between two vectors?
 - Closer vectors = more similar
- k-nearest neighbor search
 - o Returns k most similar nodes
- FAISS from Meta
 - Python and C++ support
 - Speed / accuracy tradeoff

Example FAISS Query

xq is a randomly-generated matrix with size (10000, 64)

4 nearest neighbors for each vector

```
k = 4
D, I = index.search(xq, k)
print("First five vectors:")
print(I[:5])
print()
print("Last five vectors:")
print(I[-5:])
```

xq: 0 - 4 and 9995-9999

```
First five vectors:
[[ 381 207 210 477]
  [ 526 911 142 72]
  [ 838 527 1290 425]
  [ 196 184 164 359]
  [ 526 377 120 425]]

Last five vectors:
[[ 9900 10500 9309 9831]
  [11055 10895 10812 11321]
  [11353 11103 10164 9787]
  [10571 10664 10632 9638]
  [ 9628 9554 10036 9582]]
```

Our Solution

Combine:

- GraphDB querying with AQL and ArangoDB
- k-nearest neighbor queries on GNN embeddings with FAISS

SQL-analogous language:

- Setup: GraphDB, embedding matrix, FAISS function (optional)
- o **Input**: Well-formatted query
- Return: an unordered dictionary

Our Solution

```
FOR researcher IN 'academics'
```

```
FILTER researcher.department == 'computer science'

FOR collaborator IN 1...3 OUTBOUND researcher GRAPH 'collaborationGraph'

FILTER SIMILAR_TO(collaborator, 'researchInterests', researcher, 10)

RETURN { researcherName: researcher.name,

collaboratorName: collaborator.name }
```

What does this do?

- Finds potential research collaborators within 3-hops
- Verifies collaborator is within 10-most similar researchers

Evaluation

01

Functionality

Can it handle a wide range of queries?

02

Correctness

Is the output correct?

03

Scalability

Can it handle graphs of all sizes?

04

Efficiency

Can queries be returned in a reasonable time?

Implementation Plan

Implement functionality in C++ to run the queries

Expand project into other avenues and specific use cases of our language

Wrap up research, begin to design final presentation and poster

Design a query language, implement an API to connect the language to our functions

Possibly write paper, else, continue expanding into other avenues

References

- [1] ArangoDB. AQL Example Queries on an Actors and Movies Dataset.
- https://docs.arangodb.com/3.11/aql/examples-and-query-patterns/actors-and-movies-dataset-queries/, 2023. [Online; accessed 14-November-2023].
- [2] ArangoDB. Comparing ArangoDB AQL to Neo4j https://arangodb.com/learn/graphs/comparing-arangodb-aql-neo4j-cypher/, 2023. accessed 2023].
- [3] ArangoDB. NoSQL Performance Benchmark 2018 -
- PostgreSQL, OrientDB, Neo4j and ArangoDB. https://arangodb.com/2018/02/ nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/, 2023. [Online; accessed 2023].
- [4] ArangoDB. Vision. https://arangodb.com/about-us/: :text=ArangoDB [Online; accessed 2023].
- [5] P. Barcelo´, E. V. Kostylev, M. Monet, J. Pe´rez, J. L. Reutter, and J.-P. Silva. The expressive power of graph neural networks as a query language. SIGMOD Rec., 49(2):6–17, dec 2020.
- [6] DGL. dgl.data. https://docs.dgl.ai/api/python/dgl.data.html/, 2023. [Online; accessed 2023].
- [7] M. Douze. Getting some data. https://github.com/facebookresearch/faiss/wiki/Getting-started/, 2020. [Online; posted 28-June-2020].
- [8] F. Geerts. A query language perspective on graph learning. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS '23, page 373–379, New York, NY, USA, 2023. Association for Computing Machinery.
- [9] J. Johnson, M. Douze, and H. Je´gou. Billion-scale similarity search with GPUs. IEEE Transactions on Big Data, 7(3):535-547, 2019.
- [10] Z. Liu, Y. Wang, J. Bernard, and T. Munzner. Visualizing graph neural networks with corgie: Corresponding a graph to its embedding. IEEE Transactions on Visualization and Computer Graphics, 28(6):2500–2516, 2022.
- [11]W. L. Lju Lazarevic. Overview of the Neo4j Graph Data Platform. https://neo4j.com/developer-blog/overview-of-the-neo4j-graph-data-platform/, 2021. [Online; accessed 2023].
- [12] Meta. Faiss: A library for efficient similarity search. https://engineering.fb.com/2017/03/29/ data-infrastructure/faiss-a-library-for-efficient-similarity-search/, 2017. [Online; posted 29-March-2017].
- [13] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural networks: A review of methods and applications, 2021.

Thank you!

Questions?