گزارش تکلیف ۵ درس یادگیری ماشین

کسرا سینایی شماره دانشجویی ۸۱۰۶۹۶۲۵۴ ۲۱ دی ۱۴۰۰

سؤال یک

الف

روشهای جست و جو:

- Exhustive: در این روشها تمام حالات ممکن برای به دست آوردن زیرمموعه ای از فیچرها امکان پذیر است در نظر گرفته می شوند. اگر n فیچر داشته باشیم، پیچیدگی محاسباتی این روش $O(n^2)$ است. به دلیل پیچیدگی محاسباتی بالا، این روش معمولا کاربردهای کمی دارند (مثال: Breadth First Search)
- Heuristic: روشهایی مانند SBS، SFS، محکاه و ... هستند. در این روشها یا با مجموعه ی کامل فیچرها شروع کرده و به ترتیب فیچرهایی که حذف آنها بهینه ترین زیرمجموعه جدید را نتیجه دهد حذف می شوند، یا با زیرمجوعه تهی از فیچرها شروع کرده و به مرور فیچرهایی را که بهینه ترین زیرمجموعه جدید را حاصل می کنند اضافه می شوند به زیرمجموعه فیچرها.
- Randomize: در این روش ابتدا به صورت اتفاقی زیرمجموعه ای از فیچرها انتخاب می شوند، سپس با استفاده از الگوریتمهایی مانند ژنتیک، RGSS و ... به بهینه سازی تابع هزینه می پردازند تا زیرمجموعه بهینه از فیچرها به دست آید.

روشهای ارزیابی:

- Filter Methods: این روشها بدون توجه به اللگوریتم طبقهبندی زیرمجموعه انتخابی از فیچرها را ارزیابی می کنند. معیار اصلی ارزیابی اطلاعات موجود در هر زیرمجموعه از فیچر است. این روشها سریع هستند و تمایل به انتخاب زیر مجموعههای بزرگی از فیچرها را داغرند.
- Wrpper Methods: برای ارزیابی زیرمجموعه انتخاب شده از فیچرها، معیارهایی در نظر گرفته می شود که به الگوریتم طبقه بندی مربوط است. برای مثال پروسه ارزیابی کیفیت زیرمجموعه فیچر انتخاب شده از دقت آن در پیش بینی تعدادی داده تست استفاده می شود. این روشها آهسته هستند اما دقیق تر از Filter Methods کار می کنند.

ب

در محاسبات LDA لازم است معکوس ماتریس S_w را حساب کرد و سپس مقادیر ویژه و بردارهای ویژه S_w را به دست آورد. با افزایش ابعاد مسئله حجم محاسبات جبری افزایش مییابد. همچنین اگر تعداد نمونهها کم باشد ممکن است ماتریس S_w سینگولار شود.

در PCA نيز بايد مقادير ويژه ماتريس كواريانس نمونهها و بردارهاى متناظر با آنها محاسبه شوند تا PCها به دست آيند. اگر ابعاد مسئله زياد شود علاوه بر حجم محاسباتى مقادير ويژه امكان كاهش دقت تخمين ماتريس كواريانس هم به وجود مى آيد. يكى از نقاط ضعف PCA حساسيت ان به اسكيل فيچرها مىباشد به همين دليل نرمال كردن ديتا قبل از اجراى الگوريتم اهميت ويژهاى دارد.

سوال دو

_
$S_{T} = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{\mu}) (\mathbf{x} - \mathbf{\mu})^{T} = \sum_{k=1}^{E} \sum_{\mathbf{x} \in D_{k}} (\mathbf{x} - \mathbf{\mu}_{k} + \mathbf{\mu}_{k} - \mathbf{\mu}) (\mathbf{x} - \mathbf{\mu}_{k} + \mathbf{\mu}_{k} - \mathbf{\mu})^{T}$
$= \sum_{k=1}^{c} \sum_{\alpha \in D_{k}} (\alpha - M_{k})(\alpha - M_{k})^{T} + \sum_{k=1}^{c} \sum_{\alpha \in D_{k}} (M - M_{k})(M - M_{k})^{T}$ $\leq \sum_{k=1}^{c} \sum_{\alpha \in D_{k}} (\alpha - M_{k})(\alpha - M_{k})^{T} + \sum_{\alpha \in D_{k}} \sum_{\alpha \in D_{k}} (M - M_{k})(M - M_{k})^{T}$
K=1 XEDk K=1 XFDx
SR
-> S _T : S _{W+} S _B
عر ترم از عاصل صع های عارت Sp م صورت quadratic است و از عرب (ب
7
مل عمارت در transpose خود تسکیلی پر یسور. نیار این هداک بنک این مایر سیها
یک عبارت در transpose خود تشکیل می شود. نیا برایی عبارت در این ما ترسی ها
عربی برا بر یک می بسود . در مسائل) کلانسه ، چی حاصل عمع) آ از این ما تربسی ها
است. سی زنگ آن عدالتر می توانز ۲ با سُر که نلته با تی می طاند و آن، این است که
The state of the s
M مد بالله عام ها است و باعث مي لسرد بالرجد آزاري از ي سادي السرد
M خود بیانگی با M ها است و اعث می نشود بک برجه آزاری از B سل نشود:
- 1 viik(e \/ c 1
. Zwel Vank (SE) & (-1 , vii)

سؤال چهار

$P(\alpha \omega_i) \sim M_i, \sum_i cost. J(\omega) = \frac{(M_i - M_2)^2}{\xi_i^2 + \xi_i^2}$
Projection: $y : W^T \times \rightarrow P(y W_i) \sim \mu_i, \xi_i^2$
$S_i = \sum_{x \in D_i} (x - m_i) (x - m_i)^T$; $S_W = S_1 + S_2$
$x_{\epsilon}D_{i}$
$M_{i} = \omega^{T} m_{i}$; $\delta_{i}^{2} = \sum_{j \in D_{i}} (y - M_{i})^{2} = \sum_{j \in D_{i}} (\omega^{T} (x - m_{i})) (\omega^{T} (x - m_{i}))^{T}$
$= \sum_{j \in \mathcal{D}_{i}} \omega^{T}(x - m_{i})(x - m_{i})^{T} \geq \omega^{T} \mathcal{E}_{i} \omega$
$\Rightarrow S_{i+} S_{2}^{2} = \omega^{T} S_{i} \omega + \omega^{T} S_{2} \omega = \omega^{T} (S_{i+} S_{2}) \omega = \omega^{T} S_{w} \omega \mathbb{D}$
⇒ 8, + 82 = W'S, W + W'S2W = W'(S, + S2)W = W'S, W €
Se = (m, -m2) (m, -m2) (m, -m2) (m, -m2) (m, -m2) (m, -m2)
$\omega^{T} S_{R} \omega \widehat{\mathbb{Z}}$
$\frac{I, I}{\Longrightarrow} J(\omega) = \frac{(\mu_1 - \mu_2)^2}{S_2^2 + S_2^2} = \frac{\omega^T S_B \omega}{\omega^T S_W \omega}$
SJ (& wTSEW) WTSWW . (& WTSWW) WTSBW
$\frac{\mathcal{L}J}{\mathcal{S}W} = \frac{\left(\frac{\partial}{\partial W} \ W^{T} S_{\mathcal{E}} W\right) \ W^{T} S_{\mathcal{W}} W - \left(\frac{\partial}{\partial W} \ W^{T} S_{\mathcal{W}} W\right) \ W^{T} S_{\mathcal{W}} W}{\left(W^{T} S_{\mathcal{W}} W\right)^{T}} = 0$
$\rightarrow 2(S_B \omega) \omega^T S_\omega \omega - 2(S_\omega \omega) \omega^T S_B \omega = 0$
$(S_R \omega) \omega^T S_\omega \omega \qquad (S_\omega \omega) \omega^T S_R \omega$
$\frac{(S_{\mathcal{B}} w) \ \omega^{T} S_{w} w}{\omega^{T} S_{w} w} = \underbrace{(S_{w} w) \omega^{T} S_{\mathcal{B}} w}_{\lambda} = 0$
X Sig W & J Sw W
if Sw is invotable. Sw Se w. Zw eigen value problem
SEW 2 (M1-M2) (M1-M2) Tw 2 a (M1-M2) -> SEW is aligned with M1-M2
$\Rightarrow \omega : S_{\omega}^{-1}(m_1 - m_2) = (\sum_{i} \sum_{j} (m_1 - m_2)$
2000

سؤال پنج

|
$$\mu_{1,1}(1:33,1:33) = \frac{M_2 \cdot (2.5,2)}{2 \cdot (2.5,2)} = \frac{M_1 \cdot (1.8,1.6)}{2 \cdot (2.5,2)} = \frac{N_1 \cdot (M_1-M_1)(M_1-M_1)^{\frac{7}{2}}}{2 \cdot (2.5,2)} = \frac{N_2 \cdot (M_1-M_1)(M_1-M_1)^{\frac{7}{2}}}{2 \cdot (2.5,2)} = \frac{N_1 \cdot (M_1-M_1)(M_1-M_1)^{\frac{7}{2}}}{2 \cdot (2.5,2)} = \frac{N_2 \cdot (M_1-M_1)(M_1-M_1)(M_1-M_1)}{2 \cdot (2.5,2)} = \frac{N_2 \cdot (M_1-M_1)(M_1-M_1)(M_1-M_1)(M_1-M_1)}{2 \cdot (2.5,2)} = \frac{N_2 \cdot (M_1-M_1)(M_1-M_1)(M_1-M_1)(M_1-M_1)(M_1-M_1)}{2 \cdot (M_1-M_1)(M_1-M_1)(M_1-M_1)(M_1-M_1)(M_1-M_1)(M_1-M_1)}{2 \cdot (M_1-M_1)(M_1$$

با توجه به شیب خطهای به دست آمده از قسمت قبل جهتهای به دست آمده را همراه با دادهها رسم می کنیم. نقاط قرمز مربوط به $y_i=1$ و نقاط بنفش مربوط به کلاس $y_i=1$ هستند.

سؤال شش

الف

شكل ١: نتايج اجراى الگوريتم SFS

ں

این قسمت شباهت زیادی به بخش الف دارد. فقط برای به دست آوردن زیرمجموعه فیچرها از تابع delete از کتبخانه numpy استفاده می کنیم تا بردارهای x test را بسازیم.

نمودار رسم شده نیز مانند بخش قبل میباشد و تنها تفاوت در به دست آوردن مقدار th میباشد که باید از انتها به ابتدا لوپ زد و مقدار بهینه ترشهولد را به دست آورد. نمودار خواسته شده در شکل ۲ نشان داده شده است.

شكل ٢: نتايج اجراى الگوريتم SBS

سؤال هفت

 $S_i = \sum_{m{x} \in D_i}^n \left(m{x} - m{m}_i
ight) (m{x} - m{m}_i)^T$ برای تکمیل تابع Si کلاس اام میباشد از رابطه Si کلاس اام است. مینانگین دادههای کلاس اام است.

دادههای ارسال شده در آرگومان ورودی این تابع باید مختص به یک کلاس باشند. جدا سازی دادههای کلاسهای مختلف در تابع Sb انجام می گیرد. در واقع از آرگومان دوم این تابع استفاده نشده است.

برای پیاده سازی تابع Sw که برای محاسبه می پیرد: در واقع بار توسان دوم بین استفاده می کنیم. within class scatter matrix می بینانده سازی تابع Sb برای محاسبه LDA به آن نیاز داریم Ebetween class scatter matrix می باشد که در تابع Sb و به آخرین تابع که برای محاسبه m_i آن نیاز داریم $S_B = \sum_{i=1}^c N_i \left(m_i - m \right) \left(m_i - m \right)^T$ کمک رابطه m_i میانگین نمونههای کلاس آام و m_i میانگین دادههای تمام کلاسها است. N_i نیز تعداد نمونههای کلاس آام است. میانگین دادههای تابع نوشته شده در کلاس درس را باید حل کنیم. بردار m_i بردار ویژه ارائه شده در کلاس درس را باید حل کنیم. بردار m_i ویژههای ماتریس m_i سینگولار می شود نیز ویژه های ماتریس m_i سینگولار می شود نیز Dseudo inverse کار کند از pseudo inverse استفاده شده است.

ورودی تمام کلاسها باید آرایه numpy باشند. از روی دیتا ست استفاده شده می توان مقادیر data و labels را برای فراخوانی تمام توابع استفاده کرد.

نمودار seperability بر حسب تعداد ویژگیها نیز در شکل ۳ نشان داده شده است.

شکل ۳: معیار تفکیک پذیری بر حسب تعداد ویژگیهای LDA

سؤال هشت

برای تکمیل تابع PCATransform کافی است با دستورات کتابخانه numpy ابتدا ماتریس کواریانس دادههای ورودی را محاسبه کنیم و سپس بردارهای ویژه آن را بر حسب مقادیر ویژه متناظرشان سورت کنیم و در نهایت به تعداد PCهای خواسته شده بازگردانیم. در این تابع علاوه بر PCهای خواسته شده واریانس دادههای تصویر شده بر روی بردارهای به دست آمده و مقادیر بردارهای ویژه که همان PCها هستند نیز بازگردانده میشوند.

الف

در این قسمت با استفاده از خروجی اول تابع پیاده سازی شده که دادههای تصویر شده بر روی PCها هستند تصاویر چهرهها را بر روی دو کامپننت اول تصویر کرده و در نموداری مانند مثال رسم می کنیم. این نمودار در شکل ۴ نشان داده شده است.

شکل ۴: تصاویر پس از تصویر شدن بر روی ۲ کامپننت اول PCA

ب

PCA یک الگوریتم unsupervised است که میتوان به کمک آن جهت بردارهایی را پیدا کرد که اگر داده را بر روی آنها تصویر کرد به دادههای در ابعاد پایین تر رسید که بیشترین مقدار واریانس دادههای اصلی را حفظ می کنند. دو این جهتها بردارهای ویژه ماتریس کواریانس هستند و دو کامپوننت اول بردارهای ویژهای هتند که اولین و دومین مقدار ویژه بزرگتر را نسبت به سایر بردارها دارند.

ج

خروجی دوم تابع پیاده سازی شده در این سؤال نسبت واریانس بیان شده توسط دادههای تصویر شده بر روی n کامپننت اول به صورت تجمعی را نشان میدهند. این آرایه numpy دقیقاً حاوی داده خواسته شده برای قسمت ب میباشد تنها لازم است مقدار ترشهولد را را نیز پیدا کنیم که به سادگی قابل یافتن میباشد. این مقدار بر روی نمودار با خط قرمز مشخص شده است. مقدار ترشهولد تعداد کامپوننتهایی را نشان میدهد که با تصویرسازی دادهها بر روی آنها میتوان dimentionality reduction نشان داد.

شکل ۵: واریانس دادهها پس از انتقال بر روی PCها بر حسب تعداد کامپوننت

٥

همانند تصاویر رنگی نشان داده شده در مثال دادهها را بر روی ۳۰ کامپوننت اول به دست آمده انتقال می دهیم و نتیجه تصویر باسازی شده از دادههای انتقال داده شده در شکل ۶ نشان داده شدهاند. با وجود اینکه تمام عکسهای این سؤال

شکل ۶: ۳۰ کامپوننت اول

gray scale میباشند، در این بخش برای بهتر دیده شدن با مپ Blues نشان داده شدهاند. قسمتهایی از عکسها همان طور که در شکل ۶ نشان داده شده است روشن هستند و نوارهایی بر روی تصویر چهره

قسمتهایی از عکسها همان طور که در شکل ۶ نشان داده شده است روشن هستند و نوارهایی بر روی نصویر چهره به چشم میخورد. همان طور که میدانیم پس از تصویر سازی بر روی بردارهای PC قسمتی از دادهها (چه کم چه زیاد)

از بین میرود. این قسمتهای سفید که در تصایر با تعداد کامپوننت کم بیشتر نیز میباشند نشان دهنده قسمتهای از دست رفته نمونهها میباشد.

٥

در این قسمت به ازای مقدار ترشهولد به دست آمده در قسمت ج و همچنین دو مقدار کمتر از آن تصاویر هر هشت نفر انتقال داده شده و مجددا با معکوس انتقال باز گردانده شده از تابع PCATransform عکسها بازیابی شدهاند. نتایج در شکل ۷ نشان داده شده اند.

شکل ۷: نتایج reconstruction تصاویر پس از انتقال به ازای تعداد مختلفی PC