Xử lý tín hiệu số

Chương 4. Phân tích tín hiệu và hệ thống trên miền tần số

4.4. Phân tích hệ thống LTI trên miền tần số

TS. Nguyễn Hồng Quang

Viện Công nghệ thông tin và Truyền thông Trường Đại học Bách Khoa Hà Nội

Tín hiệu kích thích là tín hiệu mũ phức $x(n) = Ae^{j\omega n}$ $y(n) = AH(\omega)e^{j\omega n}$

$$H(\omega) = \sum_{n=0}^{\infty} h(k)e^{-j\omega k} h(n) = (\frac{1}{2})^n u(n) x(n) = Ae^{j\pi n/2}$$

$$h(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\omega) e^{j\omega k} d\omega \qquad y(n) = \frac{2}{\sqrt{5}} A e^{j(\pi n/2 - 26.6^{\circ})}$$

$$H_R(\omega) = \sum_{k=-\infty}^{\infty} h(k) \cos \omega k$$
 $H_I(\omega) = -\sum_{k=-\infty}^{\infty} h(k) \sin \omega k$

$$|H(\omega)| = \sqrt{H_R^2(\omega) + H_I^2(\omega)} \quad \Theta(\omega) = \tan^{-1} \frac{H_I(\omega)}{H_R(\omega)}$$

Xác định đáp ứng biên độ và đáp ứng pha của hệ thống MA (moving average) 3 điểm:

$$y(n) = \frac{1}{3} [x(n+1) + x(n) + x(n-1)]$$

Đáp ứng với đầu vào sin

$$x_{1}(n) = Ae^{j\omega n} \quad y_{1}(n) = A|H(\omega)|e^{j\Theta(\omega)}e^{j\omega n}$$

$$x(n) = A\cos\omega n \quad y(n) = A|H(\omega)|\cos[\omega n + \Theta(\omega)]$$

$$= \frac{1}{2}[x_{1}(n) + x_{2}(n)]$$

$$x(n) = A\sin\omega n \quad y(n) = A|H(\omega)|\sin[\omega n + \Theta(\omega)]$$

$$= \frac{1}{i2}[x_{1}(n) - x_{2}(n)]$$

Xác định đáp ứng của hệ thống sau với tín hiệu vào $h(n) = (\frac{1}{2})^n u(n)$

$$x(n) = 10 - 5\sin\frac{\pi}{2}n + 20\cos\pi n - \infty < n < \infty$$
₃

Ví dụ

Một hệ thống LTI mô tả bởi phương trình sai phân sau:

$$y(n) = ay(n-1) + bx(n)$$

- a. Xác định đáp ứng biên độ và đáp ứng pha của hệ thống
- b. Chọn tham số b để |H(ω)| = 1. Khi đó hãy
 vẽ phổ biên độ và phổ pha với a = 0.9
- c. Xác định đầu ra của hệ thống với tín hiệu đầu vào:

$$x(n) = 5 + 12\sin\frac{\pi}{2}n - 20\cos\left(\pi n + \frac{\pi}{4}\right)$$

Bộ lọc số: Một hình sin sẽ bị loại bỏ nếu $H(\omega)$ = 0 tại tần số của hình sin này.

$$x(n) = \sum_{i=1}^{L} A_{i} \cos(\omega_{i}n + \phi_{i})$$

$$y(n) = \sum_{i=1}^{L} A_{i} |H(\omega_{i})| \cos[\omega_{i}n + \phi_{i} + \Theta(\omega_{i})]$$

$$\vdots h_{lp}(n) = \frac{\sin \omega_{c}\pi n}{\pi n}$$

$$\vdots h_{lp}(n) = \frac{\sin \omega_{c}\pi n}{\pi n}$$

$$\vdots h_{lp}(m) = \frac{\sin \omega_{c}\pi n}{\pi n}$$

$$\vdots h_{lp$$

 $h_{\rm hp}(n) = (e^{j\pi})^n h_{\rm lp}(n) = (-1)^n h_{\rm lp}(n)$

5