









## ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 13 ณ โรงเรียนมหิดลวิทยานุสรณ์และคณะเทคโนโลยีสารสนเทศและการสื่อสาร มหาวิทยาลัยมหิดล ข้อสอบข้อที่ 1 จากทั้งหมด 3 ข้อ วันพุธที่ 14 มิถุนายน 2560 เวลา 9.00-12.00 น.



วิหาร์ (Cats)

การประกวด I Can See Your Cats เพื่อเฟ้นหาสุดยอดวิฬาร์ซึ่งเป็นแมวสุขภาพดี ในปีนี้มีการจัดงานภายใน โรงเรียนมหิดลวิทยานุสรณ์โดยกลุ่มคนรักแมว เป็นการจัดประกวดคู่แมวสุขภาพดี จากการสำรวจพบว่ามีแมว เข้าร่วมประกวดทั้งสิ้น N ตัว (โดยที่ N เป็นจำนวนคู่) โดยแมวที่เข้าประกวดจะมีลักษณะดังต่อไปนี้ 1) แมวมีขนาดเป็นจำนวนเต็ม 2) แมวทุกตัวมีคู่เสมอ และ 3) แมวที่เป็นคู่กันมีขนาดเท่ากันและไม่มี ขนาดเท่ากับแมวคู่อื่น ๆ สำหรับรูปแบบการประกวดนั้น ทางผู้จัดงานต้องการให้แมวอยู่ในแถวเรียงต่อกัน เป็นแถวยาวเพื่อที่คณะกรรมการจะได้พิจารณาแมวเป็นคู่ ๆ ได้อย่างสะดวก แต่ทว่ามีแมวบางคู่ ที่มีขนาด เท่ากันไม่ได้อยู่ติดกัน ดังนั้นทางผู้จัดงานจึงจำเป็นต้องเคลื่อนย้ายแมวบางตัวเพื่อให้แมวที่เป็นคู่กันอยู่ติดกัน

ในการเคลื่อนย้ายแมวที่เป็นคู่กันให้อยู่ติดกันนั้น สามารถเคลื่อนย้ายแมวจากลำดับเดิมไปยังลำดับใหม่ด้วย วิธีการ**แทรกแมว**ไปยังลำดับใหม่ได้ โดยมีพื้นที่สำหรับให้แทรกแมวได้เสมอ ทั้งนี้ในการเคลื่อนย้ายแมวจาก ลำดับเดิมไปยังลำดับใหม่ จะต้องใช้กรงที่สามารถบรรจุแมวได้ โดยกรงจะต้องมีขนาดใหญ่กว่าหรือเท่ากันกับ ขนาดของแมวที่ต้องการจะเคลื่อนย้าย และเนื่องจากมีทรัพยากรจำกัดจึงจำเป็นจะต้องสร้างกรงเพื่อใช้งาน<u>ได้ เพียงกรงเดียว</u> โดยเป็นกรงที่มีขนาดเหมาะสม นั่นคือเป็นกรงที่มีขนาด<u>เล็กที่สุด</u>ที่สามารถบรรจุ<u>แมวตัวที่ ใหญ่ที่สุดที่ต้องการจะเคลื่อนย้าย</u>ได้โดยจะเคลื่อนย้ายกี่ครั้งก็ได้



#### จากตัวอย่างจะพบว่า

- 📱 แมวตัวที่ 1 และตัวที่ 2 มีขนาดเท่ากับ 3 หน่วย เป็นคู่กันและอยู่ติดกัน
- แมวตัวที่ 3 และตัวที่ 6 มีขนาดเท่ากับ 2 หน่วย เป็นคู่กันแต่ไม่อยู่ติดกัน
- 🗖 แมวตัวที่ 4 และตัวที่ 5 มีขนาดเท่ากับ 5 หน่วย เป็นคู่กันและอยู่ติดกัน



ดังนั้นจึงต้องเคลื่อนย้ายแมวที่มีขนาดเท่ากับ 2 หน่วย (แมวตัวที่ 3 และแมวตัวที่ 6) ให้อยู่ติดกัน ซึ่งอาจทำได้ หลายวิธี เช่น



วิธีที่หนึ่ง: เคลื่อนย้ายแมวตัวที่ 3 ด้วยกรงที่มีขนาดเหมาะสม ไปอยู่ทางซ้ายหรือทางขวาของแมวตัวที่ 6 วิธีที่สอง: เคลื่อนย้ายแมวตัวที่ 6 ด้วยกรงที่มีขนาดเหมาะสม ไปอยู่ทางซ้ายหรือทางขวาของแมวตัวที่ 3

ซึ่งในที่นี้ขอยกตัวอย่างการเคลื่อนย้ายแมวตัวที่ 6 ด้วยกรงที่มีขนาดเหมาะสม โดยการแทรกแมวตัวที่ 6 ไปอยู่ ทางขวาของแมวตัวที่ 3 ดังรูปด้านล่าง



## งานของคุณ

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาขนาดของ<u>กรงที่มีขนาดเหมาะสม</u>ที่สามารถบรรจุแมวที่ต้องการจะ เคลื่อนย้ายได้ แล้วทำให้แมวที่เป็นคู่กันอยู่ติดกัน

# ข้อมูลนำเข้า

มีจำนวน N+1 บรรทัด ดังนี้

| บรรทัดที่ 1   | มีจำนวนเต็มคู่หนึ่งจำนวน คือ $N$ ระบุจำนวนแมว $N$ ตัว                |  |
|---------------|----------------------------------------------------------------------|--|
|               | กำหนดให้ 2 ≤ N ≤ 2,000,000                                           |  |
| N บรรทัดต่อมา | แต่ละบรรทัด มีจำนวนเต็มหนึ่งจำนวน คือ $s_i$ ระบุขนาดของแมวตัวที่ $i$ |  |
|               | กำหนดให้ $1 \leq s_i \leq 2^{31}$ และ $1 \leq i \leq N$              |  |

## ข้อมูลส่งออก

มีจำนวน 1 บรรทัด คือ

| บรรทัดที่ 1 | แสดงจำนวนเต็มหนึ่งจำนวน ระบุขนาดของกรงที่มีขนาดเหมาะสมที่สามารถ                |
|-------------|--------------------------------------------------------------------------------|
|             | บรรจุแมวที่ต้องการเคลื่อนย้ายได้ แล้วทำให้แมวที่เป็นคู่กันอยู่ติดกัน แต่ถ้าหาก |
|             | ไม่มีการเคลื่อนย้ายแมวให้ข้อมูลส่งออกเป็น 0                                    |

## ตัวอย่างที่ 1

| ข้อมูลนำเข้า | ข้อมูลส่งออก |
|--------------|--------------|
| 6            | 2            |
| 3            |              |
| 3            |              |
| 2            |              |
| 5            |              |
| 5            |              |
| 2            |              |

#### ตัวอย่างที่ 2

| ข้อมูลนำเข้า | ข้อมูลส่งออก |  |
|--------------|--------------|--|
| 6            | 3            |  |
| 3            |              |  |
| 5            |              |  |
| 2            |              |  |
| 2            |              |  |
| 5            |              |  |
| 3            |              |  |

## ตัวอย่างที่ 3

| ข้อมูลนำเข้า | ข้อมูลส่งออก |  |
|--------------|--------------|--|
| 4            | 0            |  |
| 1            |              |  |
| 1            |              |  |
| 5            |              |  |
| 5            |              |  |

## ข้อกำหนด

| หัวข้อ                               | เงื่อนไข                   |
|--------------------------------------|----------------------------|
| ข้อมูลนำเข้า                         | Standard Input (คีย์บอร์ด) |
| ข้อมูลส่งออก                         | Standard Output (จอภาพ)    |
| ระยะเวลาสูงสุดที่ใช้ในการประมวลผล    | 1 วินาที                   |
| หน่วยความจำสูงสุดที่ใช้ในการประมวลผล | 512 MB                     |
| คะแนนสูงสุดของโจทย์                  | 100 คะแนน                  |
| เงื่อนไขการรันโปรแกรม                | โปรแกรมจะต้องคอมไพล์ผ่าน   |

## ข้อกำหนดอื่น ๆ

ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

| ภาษา C                        | ภาษา C++                      |  |
|-------------------------------|-------------------------------|--|
| /*                            | /*                            |  |
| TASK: cats.c                  | TASK: cats.cpp                |  |
| LANG: C                       | LANG: C++                     |  |
| AUTHOR: YourName YourLastName | AUTHOR: YourName YourLastName |  |
| CENTER: YourCenter            | CENTER: YourCenter            |  |
| */                            | */                            |  |

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

| ระดับข้อมูล | สำหรับข้อมูลขนาด <i>N</i> | สำหรับข้อมูลขนาด $s_i$ | คะแนนสูงสุดที่เป็นไป | เงื่อนไข     |
|-------------|---------------------------|------------------------|----------------------|--------------|
| ทดสอบ       |                           |                        | ได้โดยประมาณ         |              |
| 1           | <i>N</i> ≤ 20             | $S_i \le 100$          | 20%                  |              |
| 2           | <i>N</i> ≤ 500            | $S_i \le 1,000,000$    | 40%                  | ชุดทดสอบบาง  |
| 3           | $N \le 500,000$           | $S_i \le 2^{31}$       | 70%                  | ชุดอาจถูกรวม |
| 4           | $N \le 2,000,000$         | $S_i \le 2^{31}$       | 100%                 | เป็นกลุ่ม    |