Future-EI

Carlson Büth and Benjamin Black

2023-09-22

Table of contents

Preface		3
1	Introduction	4
I	Pipeline Structure	5
2	Overview 2.1 LULCC: Land Use Simulation	
3	Summary	8
R	eferences	a

Preface

This is a guide and reference book for the Future-EI pipeline. To explore future ecosystem services and nature contributions to people (NCP) in the context of climate scenarios, Future-EI (future ecological infrastructure) couples the land use land cover change (LULCC) model for Switzerland (Black et al. 2023, n.d.), state-of-the-art species distribution modelling (N-SDM) (Adde et al. 2023), and NCP calculations (Kuelling and Adde, n.d.).

1 Introduction

This is a book created from markdown and executable code.

• Mayer, Rabe, and Grêt-Regamey (2023), Black et al. (2023), Adde et al. (2023)

Part I Pipeline Structure

2 Overview

Coupling the three models, we need to define how they depend on each other. The following diagram shows the dependencies between the models.

From this structure, a clear order of execution can be derived. For each of them there is a short description of the model.

2.1 LULCC: Land Use Simulation

The land use land cover change (LULCC) model for Switzerland (Black et al. 2023, n.d.) simulates the land use change in Switzerland from 2010 to 2060...

2.2 N-SDM: Species Distribution Modelling

The species distribution modelling (N-SDM) (Adde et al. 2023) uses multiple approaches to determine species distribution maps for Switzerland...

It mainly uses Base-R. As N-SDM is built to be used with HPCs (high performance computers), with bash scripts SLURM is used to submit jobs.

2.3 NCPs: Nature Contributions to People

A range of NCPs are then estimated from the previous models outputs (Kuelling and Adde, n.d.)...

Additionally to R and CRAN packages, InVEST is used via the Python modules natcap.invest.

Focal...

The job of the Future-EI pipeline is to glue all pieces together for use on HPCs. For this, a batch job written in bash manages multiple climate scenarios and other parameters, while keeping track of the intermediate results. Such big batch job can be broken down onto steps from the diagram above, and parallelization through tasks with several cpus. As each step is different in requirements and execution, resources must be allocated accordingly. The most computationally expensive step is the N-SDM model. Further details will be given in the following sections.

3 Summary

In summary, this book has no content whatsoever.

References

- Adde, Antoine, Pierre-Louis Rey, Philipp Brun, Nathan Külling, Fabian Fopp, Florian Altermatt, Olivier Broennimann, et al. 2023. "N-SDM: A High-Performance Computing Pipeline for Nested Species Distribution Modelling." Ecography 2023 (6): e06540. https://doi.org/10.1111/ecog.06540.
- Black, Benjamin, Antoine Adde, Olivier Broennimann, Daniel Farinotti, Antoine Guisan, Nathan Külling, Manuel Kurmann, et al. n.d. "Broadening the Horizon in Land Use Change Modelling: Normative Scenarios for Nature Positive Futures."
- Black, Benjamin, Maarten J. Van Strien, Antoine Adde, and Adrienne Grêt-Regamey. 2023. "Re-Considering the Status Quo: Improving Calibration of Land Use Change Models Through Validation of Transition Potential Predictions." *Environmental Modelling & Software* 159 (January): 105574. https://doi.org/10.1016/j.envsoft.2022.105574.
- Kuelling, Nathan, and Antoine Adde. n.d. "NCP Calculation Paper."
- Mayer, Paula, Sven-Erik Rabe, and Adrienne Grêt-Regamey. 2023. "Operationalizing the Nature Futures Framework for Ecological Infrastructure." Sustainability Science, July. https://doi.org/10.1007/s11625-023-01380-7.