Comparação entre técnicas de segmentação de estruturas cardíacas em imagens de RMN e TC

Rafael S. Torres

Orientador: Fátima L. S. Nunes Laboratório de Aplicações de Informática em Saúde Programa de Pós-Graduação em Sistemas de Informação Escola de Artes, Ciências e Humanidades Universidade de São Paulo (LApIS-PPgSI/EACH-USP)

Agenda

- Apresentação
- Introdução
- Conceitos gerais
 - Processamento de imagens
 - Segmentação de imagens
 - Técnicas de segmentação
 - Modalidades de imagens médicas
 - Estruturas cardíacas
- Revisão Sistemática
- Resultados da revisão
- Proposta
- Resultados preliminares

Apresentação

- Pessoal
- Formação
- Carreira

Introdução

Contexto/Motivação

- Aplicações na área médica;
- Auxílio ao diagnóstico;
- Otimizar o tempo do profissional;
- Projetos LApIS;
- CBIR 3D e Jogos sérios;

Objetivo

- Comparação de técnicas de segmentação;
- Diferentes estruturas;

Processamento de imagens

O que é?

 Utilização de técnicas computacionais em imagens para resolução de problemas

Classificação em diversos níveis

- baixo (operações primitivas)
- médio (segmentação)
- alto (reconhecimento de objetos)

Segmentação de imagens

- Particionamento da imagem em regiões ou objetos;
- Uma das tarefas mais difíceis de PI:
- Técnicas variam de acordo com a base de dados de imagens;

Limiarização

- Divisão da imagem em diversos níveis de cores, dado um limiar;
- Pretende separar objetos do fundo da imagem;
- Limiar pode variar dependendo da região da imagem;
- Pode ser local ou global;

Limiarização

Crescimento de regiões

- Agrupamento de pixels por características similares;
- Pixel ou pixels iniciais s\(\tilde{a}\) chamados de sementes (a escolha varia de acordo com o problema);
- Os critérios de agrupamento variam com o problema;

Segmentação com crecimento de regiões

Gradiente

- Gradiente: direção de maior variação de uma função;
- Em uma imagem: direção de maior variação de intensidade ou cor;
- Detecção de arestas;
- Sobel, Laplaciano, Prewitt;

Imagem original com ruído

Linha realçada utilizando Sobel

Contornos ativos

- Contornos deformáveis que se adaptam a formas e movimento;
- level set e snakes;

Level set

- Curva inicial formada a partir de uma função;
- Possui um termo de velocidade que ajusta a curva às bordas;

Função level set

Snakes

- Curva fechada matematicamente definida por pontos de controle;
- Por influência de forças, os nós são conectados e se ajustam às bordas;
- Tenta definir uma borda de forma arbitrária;

Modalidades de imagens médicas

 Ressonância Magnética Nuclear e Tomografia Computadorizada

Estruturas cardíacas

Variações nas estruturas

Variação natural/anatômica

- Quantidade;
- Distância;

Patologias

- Insuficiência;
- Defeitos septais;
- Arritmia;

Revisão Sistemática

O que é?

- Sintetiza os trabalhos existentes:
- Extrai os dados mais significantes;
- Fases: planejamento, condução, extração de dados;

Vantagens

- Gera artefatos;
- Pode ser auditada;

Planejamento da Revisão

Objetivo

 Identificar as técnicas utilizadas para segmentação de imagens cardíacas de ressonância magnética nuclear (RMN) ou de tomografias (CT).

Pergunta de Pesquisa

Quais as técnicas mais utilizadas em segmentação de estruturas cardíacas?

Planejamento da Revisão

Dados da Revisão

- Palavras-chave: "image segmentation", "medical image processing", "heart", "cardiac", "cardiac MR images", "cardiac CT images";
- Fontes: IEEE, Elsevier, Springer, Periódicos da Capes, Circulation, Pubmed, ACM, Scopus;
- Tipos dos artigos: artigos que explanem as técnicas de segmentação e/ou suas aplicações;
- Idiomas: Inglês e português;

Condução da Revisão

Resultados da Revisão

Considerações finais

- Técnicas mais utilizadas: limiarização, contornos ativos e level set;
- Estruturas mais segmentadas: relacionadas aos ventrículos;
- Nenhuma abordagem exatamente igual;
- Não foram encontrados trabalhos com o objetivo de comparar técnicas;

Contexto

- Aplicação na área médica;
- Alterações na forma das estruturas podem indicar patologias;
- Auxiliar na reconstrução de modelos 3D;
- Recuperação 3D por conteúdo;

Objetivo

- Comparar diferentes técnicas para uma mesma estrutura;
- Aplicar técnicas para diferentes estruturas;

Fases do Trabalho

Atividades

- Aprofundamento de conceitos;
- RS sobre as técnicas de segmentação;
- Seleção, adaptação e implementação das técnicas;
- Avaliação das técnicas segmentadas;
- Divulgação dos resultados;
- Elaboração da dissertação;.

Proposta

Comparação de técnicas de segmentação para estruturas cardíacas

- Comparação de diversas técnicas para uma mesma estrutura cardíaca;
- Estruturas: átrios e ventrículos;
- Aplicação de métricas para comparação;

Proposta

Comparação de técnicas de segmentação para estruturas cardíacas

- Resultados avaliados com especialista;
- Modalidades: RMN e TC;
- Matlab;
- Divulgação dos resultados;

Proposta

Desafios

- Segmentar diversos frames com menor interação;
- Parametrizar a partir de informações das imagens;
- Comparar para definir as melhores técnicas;
- Avaliar a qualidade para gerar objetos 3D;

Resultados Preliminares

Segmentação do ventrículo esquerdo

- GVF Snake (Java);
- Contornos ativos (Matlab);
- Métrica overlap;
- Oráculo feito manualmente;

Base de dados

- 23 pacientes;
- Imagens de RMN;
- Melhor caso utilizado (mais nítida);

Resultados Preliminares

Overlap

$$\mathit{Overlap} = \dfrac{\mathsf{AreaSegmentada} \cap \mathsf{AreaManual}}{\mathsf{AreaSegmentada} \cup \mathsf{AreaManual}}$$

GVF Snake

Pré-processamento

- Detecção de arestas (Sobel);
- Inversão da imagem;
- Binarização (análise do histograma como limiar);
- Vetor gradiente;

GVF Snake

Experimento

- Quatro parâmetros;
- Combinações entre os quatro (0 a 1);
- Conjunto de imagens foi selecionado para aplicação do overlap;

GVF Snake

Melhor resultado

imagem orginal

Melhor resultado de imagem segmentada com GVF snake

Imagem manualmente segmentada

GVF Snake

Pior resultado

imagem orginal

Pior resultado de imagem segmentada com GVF snake

Imagem manualmente segmentada

Contornos ativos

- Função matlab;
- Máscara poligonal;
- Interação manual;
- Segmentação binária;

Contornos ativos

Pré-Processamento

- Imagem em escala de cinza;
- Máscara poligonal;

Pós-Processamento

Preencher buracos (reconstrução morfológica);

Contornos ativos

Interação manual

Contornos ativos

Experimento

- 23 pacientes;
- 4 pontos para a máscara;
- Teste com n pontos;

Contornos ativos

Melhor resultado

imagem orginal

Melhor resultado de imagem segmentada com contornos ativos

Imagem manualmente segmentada

Contornos ativos

Pior resultado

imagem orginal

Pior resultado de imagem segmentada com contornos ativos

Imagem manualmente segmentada

Resultados preliminares

Comparação entre as técnicas

Técnica	Overlap máximo	Overlap mínimo	Overlap médio	desvio-padrão
Contornos ativos	0,945	0,114	0,577	0,298
GVF snake	0,756	0,346	0,575	0,094

- Técnica de contornos ativos necessita de melhorias no pré-processamento;
- Técnica de GVF snake tem um potencial maior;

Cronograma

	MESES																							
ATIVIDADES	Jan/14	Fev/14	Mar/14	Abr/14	Mai/14	Jun/14	Jul/14	Ago/14	Set/14	Out/14	Nov/14	Dez/14	Jan/15	Fev/15	Mar/15	Abr/15	Mai/15	Jun/15	Jul/15	Ago/15	Set/15	Out/15	Nov/15	Dez/1
1- Aprofundamento de conceitos																								
2- Revisão na literatura																								
3- Implementação das técnicas																								
3.1- para ventrículos																								
3.2- para átrios																								
3.3- para veias cardíacas																								
3.4- para miocárdio																								Г
3.5- Comparação para diferentes estruturas																								Г
4- Avaliação das técnicas																								Г
4.1- Comparação entre as técnicas																								Г
5- Divulgação dos resultados																								
5- Elaboração da dissertação																								

Legenda
Já cumpridas
A cumprir

Considerações Finais

- RS sobre técnicas de segmentação de estruturas cardíacas;
- Resultados preliminares a serem incrementados;
- Avaliação com especialista (Prof^o Dr. Carlos Eduardo Rochitte);
- Divulgação: JDI (B1), AMCIS (B1), CBMS (B1), AMIA (A2);

Considerações Finais

Contribuições

- Comparação entre técnicas, para diferentes estruturas;
- Legado para aplicações: reconstrução de modelos;
- Aplicadas em outras modalidades de imagens;

Obrigado!

rafael.siqueira.torres@usp.br

