Table A: Important Discrete Distributions

distribution pmf	mean	variance	mgf
Poisson $e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ	$e^{-\lambda + \lambda e^t}$
Binomial $\binom{n}{x}\pi^x(1-\pi)^{n-x}$	$n\pi$	$n\pi(1-\pi)$	$(\pi e^t + 1 - \pi)^n$
Geometric ⁽¹⁾ $\pi (1-\pi)^x$	$\frac{1}{\pi}-1$	$\frac{1-\pi}{\pi^2}$	$\frac{\pi}{1 - (1 - \pi)e^t}$
Negative Binomial ⁽¹⁾ $\binom{s+x-1}{x}\pi^s(1-\pi)^x$	$\frac{s}{\pi} - s$	$\frac{s(1-\pi)}{\pi^2}$	$\left[\frac{\pi}{1 - (1 - \pi)e^t}\right]^s$
Hypergeometric ⁽²⁾ $\frac{\binom{m}{x}\binom{n}{k-x}}{\binom{m+n}{k}}$	$N\pi$	$N\pi(1-\pi)\frac{N-k}{N-1}$	

Notes:

- (1) Some texts define the geometric and negative binomial distributions differently. Here X counts the number of failures before s successes (s=1 for the geometric random variables). Some authors prefer a random variable X_T that counts the total number of trials. This is simply a shifting of the distribution by a constant (the number of successes): $X_T = X + s$. The formulas for the pdf, mean, variance, and moment generating function of X_T all follow easily from this equation.
- (2) For the hypergeometric distribution, the parameters are m items of the type being counted, n items of the other type, and k items selected without replacement. We define N=m+n (total number of items) and $\pi=\frac{m}{N}=\frac{m}{m+n}$ (proportion of items that are of the first type).

Table B: Important Continuous Distributions

distribution pdf	mean	variance	mgf
Uniform $\begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] ,\\ 0 & \text{otherwise} \end{cases}$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{if } t \neq 0 \\ 1 & \text{if } t = 0. \end{cases}$
Standard normal $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$	0	1	$e^{t^2/2}$
Normal $\frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$	μ	σ^2	$e^{\mu t + \sigma^2 t^2/2}$
Exponential $\lambda e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	$\frac{\lambda}{\lambda - t}$
Gamma $\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$lpha/\lambda$	α/λ^2	$\left[\frac{\lambda}{\lambda-t}\right]^{\alpha}$
Weibull $\frac{\alpha}{\beta^{\alpha}} x^{\alpha-1} e^{-(x/\beta)^{\alpha}}$	$\beta\Gamma(1+\frac{1}{lpha})$	$\beta^2 \left[\Gamma(1 + \frac{2}{\alpha}) - \right]$	$\left[\Gamma(1+\frac{1}{\alpha})\right]^2$
Beta $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta)^2}$	3+1)

Table C: Distributions Derived from the Normal Distributions

distribution		
definition	mean	variance
$Chisq(n) = Gamma(\alpha = \tfrac{n}{2}, \lambda = \tfrac{1}{2})$		
$X^2 = \sum_{i=1}^n Z_i^2$	n	2n
where $oldsymbol{Z}\overset{ ext{iid}}{\sim} Norm(0,1)$		
F(m,n)		
$F = \frac{U/m}{V/n}$	$\frac{n}{2}$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$
where $U \sim Chisq(m), \ V \sim Chisq(n),$	n-2	$m(n-2)^{2}(n-4)$
and U and V are independent		if $n > 4$
t(n)		
$t = \frac{Z}{\sqrt{V/n}}$	0 if $n > 1$	$\frac{n}{n-2}$ if $n>2$
$\sqrt{V/n}$		n-2
where $Z \sim Norm(0,1), \ V \sim Chisq(n),$		
and Z and V are independent		