MAT-255- Number Theory	Spring 2024	In Class Work January 22
Your Name:	Group Members:	
br Use the division algorithm on $a=47,b=47$	_	
br		
br Let a and b be nonzero integers. Prove t	that there exists a unique q, r	$\in \mathbb{Z}$ such that
	$a = bq + r, 0 \le r < b .$	
(a) Use the division algorithm to prove algorithm as part of the proof. Use the		That is, use the <i>conclusion</i> of the division
(i) Let a and b be nonzero integers. such that and		gorithm says that there exist unique $p,s\in\mathbb{Z}$
(ii) There are two cases:		
i. When, the con	aditions are already met, and	$r = \underline{\hspace{1cm}}$ and $q = \underline{\hspace{1cm}}$.
ii. Otherwise,, $r =$	= and $q =$	
(iii) Since both cases used that the p	s,s are unique, then q,r are also	so unique
(b) Use the <i>proof</i> of the division algorithm as necessary, but do not use the concl		catement. That is, repeat the steps, adjusting
(i) In the proof of the division algor	withm, we let $q = \left\lfloor \frac{a}{b} \right\rfloor$. Here w	ve have two cases:
i. When, $q = $	and r =	<u> </u>
as in the proof of the division	on algorithm.	
ii. When, $q = $	and r =	

- (ii) Summarizing these statements, rewrite q, r in terms of a and b, as in the original proof of the division algorithm.
- (iii) Now use your scratch work and follow the outline of the proof of the division algorithm to provide a new proof without referencing the division algorithm.