root

Go Up

Table of Contents

example.ecl		
Basic Example with:		
example_10.ecl		
example_11.ecl		
example_2.ecl		
Basic Inheritance documentation : mod_3 inherits both mod_1 and mod_2		
example_3.ecl		
Documentation Testing Multiline Title		
example_4.ecl		
Example: Inheritance across files		
example_7.ecl		
Basic Type Example		
Math.ecl		
test.ecl		
test module		

Go Up

DESCRIPTIONS

MODULE example

example

Basic Example with: records, interface, function, modules, transform, embed, macros and functionmacro

Children

- 1. rec_1
- 2. rec_2
- 3. interface ex
- 4. func_1
- 5. func_2
- 6. mod_1
- 7. mod_2
- 8. cpp_1
- 9. funcmacro_1
- 10. macro_1
- 11. macro_2

FUNCTION func_1

example \

func_1

(REAL8 x, STRING25 y)

FUNCTION func_2

example \

DATASET(rec_2) func_2

(DATASET(rec_1) d)

MODULE mod_1

example \setminus

mod_1
(REAL8 a)

Children

1. pi_w

ATTRIBUTE pi_w

example $\setminus \text{mod}_1 \setminus$

 pi_w

MODULE mod_2

example \

 mod_2

Children

1. pi_wo

ATTRIBUTE pi_wo

example $\setminus \text{mod}_2 \setminus$

pi_wo

EMBED cpp_1

example \

DATA cpp_1

(REAL8 varcpp)

MACRO funcmacro_1

example \

	funcmacro_1	
(num)		

MACRO macro_1

example \

macro_1
(num_1, num_2)

MACRO macro_2

example \

 $macro_2$

Go Up

IMPORTS

intest |

DESCRIPTIONS

MODULE example_10

 $example_10$

Children

1. mod_1

MODULE mod_1

example_10 \

 mod_1

INHERITED True

Go Up

IMPORTS

```
Inintest | Example_3 | intest.Example_3 | intest.inintest.Example_3 |
Inintest.Example_3 |
```

DESCRIPTIONS

MODULE example_11

 $example_11$

Children

1. Example_3

MODULE Example_3

example_11 \

 $Example_3$

INHERITED True

Go Up

DESCRIPTIONS

MODULE example_2

 $example_2$

Basic Inheritance documentation : mod_3 inherits both mod_1 and mod_2 . Inherits $v2_m1$, $v2_m2$, Overrides $v1_m1$, new locals $v2_m3$. Interface Inheritance : mod_4 inherits interface iface_1, overrides $v1_i1$

Children

- 1. rec 1
- 2. rec_2
- 3. rec_3
- 4. mod 1
- 5. mod 2
- 6. mod_3
- 7. iface 1
- 8. mod_4

RECORD rec_1

example_2 \

 ${
m rec}_1$

RECORD rec_2

example $_2$ \

 ${
m rec}_2$

RECORD rec_3

example $_2$ \

 rec_3

MODULE mod_1

example_2 \setminus

 mod_1

Children

- 1. v1_m1
- 2. v2_m1

ATTRIBUTE v1_m1

example $_2 \setminus \text{mod}_1 \setminus$

real8

 $v1_m1$

ATTRIBUTE v2_m1

example $_2 \setminus \text{mod}_1 \setminus$

 $v2_m1$

MODULE mod_2

example_2 \

 mod_2

Children

- 1. v1_m1
- 2. v2_m2

ATTRIBUTE v1_m1

example $_2 \setminus \text{mod}_2 \setminus$

 $v1_m1$

ATTRIBUTE v2_m2

example $_2 \setminus \text{mod}_2 \setminus$

 $v2_m2$

MODULE mod_3

example_2 \

 mod_3

Children

- 1. v2_m1
- 2. v2_m2
- 3. v1_m1
- 4. v2_m3

ATTRIBUTE v2_m1

example $_2 \setminus \text{mod}_3 \setminus$

 $v2_m1$

INHERITED True

ATTRIBUTE v2_m2

example $_2 \setminus \text{mod}_3 \setminus$

 $v2_m2$

ATTRIBUTE v1_m1

example $_2 \setminus \text{mod}_3 \setminus$

v1_m1

OVERRIDE True

ATTRIBUTE v2_m3

example $_2 \setminus \text{mod}_3 \setminus$

v2_m3

INTERFACE iface_1

example_2 \setminus

 $iface_1$

${\bf Children}$

1. v1_i1

ATTRIBUTE v1_i1

example $_2 \setminus iface_1 \setminus$

real8 v1_i1

MODULE mod_4

example $_2$ \

 mod_4

Children

- 1. v1_i1
- 2. v2_m4

ATTRIBUTE v1_i1

example $_2 \setminus \text{mod}_4 \setminus$

 $v1_i1$

OVERRIDE True

ATTRIBUTE v2_m4

 $example_2 \setminus mod_4 \setminus$

STRING20 v2_m4

1	\sim
	n
	١,

Go Up

DESCRIPTIONS

MODULE Example_3

 $Example_3$

Documentation Testing Multiline Title. link@myspace.com

Sentence 1 blablalbla bbblaaaa

Sentence 2

blablalbla

bbbblaaaaa

bblaaaaaaaaa

PARAMETER first okay_1

PARAMETER second okay_2

PARAMETER third okay_3

FIELD <u>f1</u> oka_f1

FIELD <u>**f2**</u> oka_f2

RETURN rec_1

SEE example_1.mod_1

Children

1. mod_1

MODULE mod_1

Example_3 \

```
mod_1
```

Children

```
1. v1_m1 : Doc test 2
```

2. $v2_m1_ex3$: DOC Test 3

3. long_name

ATTRIBUTE v1_m1

 $Example_3 \setminus mod_1 \setminus$

```
v1_m1
```

Doc test 2. Title end by period not newline

ABCD ||||
CDEF ||||

ATTRIBUTE v2_m1_ex3

 $Example_3 \setminus mod_1 \setminus$

```
v2_m1_ex3
```

DOC Test 3 No Period title

FUNCTION long_name

Example_3 \ mod_1 \

$long_name$

(DATASET({REAL8 u}) X, DATASET({REAL8 u}) IntW, DATASET({REAL8 u}) Intb, REAL8 BETA=0.1, REAL8 sparsityParam=0.1 , REAL8 LAMBDA=0.001, REAL8 ALPHA=0.1, UNSIGNED2 MaxIter=100)

Go Up

IMPORTS

Inintest.Example_3.mod_1 |

DESCRIPTIONS

MODULE example_4

 $example_4$

Example: Inheritance across files mod_1 in Example_4 inherits mod_1 in Example_3

Children

1. mod_1

MODULE mod_1

example_4 \

 mod_1

Children

```
1. v2_m1_ex3
```

ATTRIBUTE v2_m1_ex3

example $_4 \setminus \text{mod}_1 \setminus$

$$v2_m1_ex3$$

INHERITED True

ATTRIBUTE v2_m1_ex4

example $_4 \setminus \text{mod}_1 \setminus$

 $v2_m1_ex4$

Go Up

DESCRIPTIONS

MODULE example_7

 $example_7$

Basic Type Example Source Code copied from ECL Documentation

Children

1. R

RECORD R

example $_7$ \

 \mathbf{R}

Math

Go Up

DESCRIPTIONS

MODULE Math

Math

Children

- 1. Infinity: Return a real "infinity" value
- 2. NaN: Return a non-signalling NaN (Not a Number) value
- 3. isInfinite: Return whether a real value is infinite (positive or negative)
- 4. isNaN: Return whether a real value is a NaN (not a number) value
- 5. isFinite: Return whether a real value is a valid value (neither infinite not NaN)
- 6. FMod: Returns the floating-point remainder of numer/denom (rounded towards zero)
- 7. FMatch: Returns whether two floating point values are the same, within margin of error epsilon

ATTRIBUTE Infinity

Math \

REAL8 Infinity

Return a real "infinity" value.

ATTRIBUTE NaN

Math \

REAL8 NaN

Return a non-signalling NaN (Not a Number) value.

FUNCTION isInfinite

Math \

BOOLEAN isInfinite

(REAL8 val)

Return whether a real value is infinite (positive or negative).

PARAMETER val The value to test.

FUNCTION isNaN

Math \

BOOLEAN isNaN

(REAL8 val)

Return whether a real value is a NaN (not a number) value.

PARAMETER <u>val</u> The value to test.

FUNCTION isFinite

Math \

BOOLEAN isFinite

(REAL8 val)

Return whether a real value is a valid value (neither infinite not NaN).

PARAMETER val The value to test.

FUNCTION FMod

Math \

REAL8 FMod

(REAL8 numer, REAL8 denom)

Returns the floating-point remainder of numer/denom (rounded towards zero). If denom is zero, the result depends on the -fdivideByZero flag: 'zero' or unset: return zero. 'nan': return a non-signalling NaN value 'fail': throw an exception

PARAMETER <u>numer</u> The numerator.

PARAMETER <u>denom</u> The numerator.

FUNCTION FMatch

Math \

BOOLEAN FMatch

(REAL8 a, REAL8 b, REAL8 epsilon=0.0)

Returns whether two floating point values are the same, within margin of error epsilon.

PARAMETER <u>a</u> The first value.

PARAMETER epsilon The allowable margin of error.

test

Go Up

DESCRIPTIONS

test

test module