Formulario di Optoelettronica

Lorenzo Rossi - lgorenzo
14.rossi@mail.polimi.it ${\rm AA}\ 2020/2021$

Email: lorenzo 14. rossi@mail.polimi.it

 $GitHub: \ https://github.com/lorossi$

Quest'opera è distribuita con Licenza Creative Commons Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet \bullet }$ Versione aggiornata al 03/05/2021

Indice

1	Riguardo al formulario	1
2	Richiami di base	1
3	Onde elettromagnetiche e pacchetti d'onda 3.1 Leggi di Snell	2 2 2
4	Riflettore di Bragg	3
5	Cavità di Fabry-Perot	3
6	Guida d'onda	4
7	Fibra ottica 7.1 Fibra step index	
8	Laser 8.1 Effetto Doppler	5

1 Riguardo al formulario

Quest'opera è distribuita con Licenza Creative Commons - Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet}(\textcircled{\bullet})$

Questo formulario verrà espanso (ed, eventualmente, corretto) periodicamente fino a fine corso (o finché non verrà ritenuto completo).

Link repository di GitHub: https://github.com/lorossi/formulario-optoelettronica L'ultima versione può essere scaricata direttamente cliccando su questo link.

In questo formulario ho cercato prima di tutto di mettere le formule importanti per la risoluzione degli esercizi, preferendole a quelle utili alla comprensione della materia.

1

2 Richiami di base

- Angolo solido:
- - Assume valori nell'intervallo $[0, 4\pi]$
 - Elemento infinitesimo $d\Omega = 2\pi \sin(\theta) d\theta$
 - Integrale $\Omega = \int_0^{2\pi} = 2\pi \left[1 \cos(\theta)\right]$
 - Unità di misura steradiante

3 Onde elettromagnetiche e pacchetti d'onda

- Velocità di gruppo $v = \frac{\partial \omega}{\partial k} = \frac{c}{N_g}$
- Velocità di fase $v_f = \frac{\omega}{k} = \frac{c}{n}$
- Indice di gruppo $N_g = n \lambda_0 \frac{\partial n}{\partial \lambda_0}$
- Variazione della lunghezza d'onda $\Delta \lambda = \frac{c}{\nu^2} |\Delta \nu|$

3.1 Leggi di Snell

- Angoli (rispetto alla normale della superficie):
 - Fascio incidente θ_i
 - Fascio riflesso θ_r
 - Fascio trasmesso θ_t
- Prima legge $\theta_i = \theta_r$
- Seconda legge $n_1 \sin(\theta_i) = n_2 \sin(\theta_t)$
- Total internal reflection $\theta_c = \arcsin \frac{n_2}{n_1}$

3.2 Riflessione e trasmissione

• Coefficiente di riflessione $R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$

• Coefficiente di trasmissione $T = \left(\frac{2n_2}{n_2 + n_1}\right)^2$

• Strato antiriflesso:

– Spessore $d = \frac{\lambda_0}{4n_2} = \frac{\lambda}{4}$

– Indice di riflessione $n_2 = \sqrt{n_1 n_3}$

— Riflettività $\left(\frac{n_0n_1-n_2}{n_0n_1+n_2}\right)^2$

3.3 Tunneling ottico

• Campo evanescente $\vec{E} \propto \exp\{-\alpha_2 z\} \exp\{i\omega t\}$

• Coefficiente di attenuazione $\alpha = \frac{2\pi n}{\lambda} \sqrt{\left(\frac{n_1}{n_2}\right)^2 \sin(\theta_i) - 1}$

• Penetrazione $\delta = \frac{1}{\alpha}$

3.4 Sfasamento

- Dovuto alla riflessione interna $\phi=0$

- Dovuto alla riflessione esterna $\phi=\pi$

• Dovuto all'attraversamento di un mezzo $\partial \phi = \partial \frac{2\pi n}{\lambda_0}$

• Della componente riflessa all'interfaccia:

- Coefficiente perpendicolare $r_{\perp} = \frac{\cos(\theta_i) - \sqrt{(n_2/n_1)^2 - \sin^2(\theta_i)}}{\cos(\theta_i) + \sqrt{(n_2/n_1)^2 - \sin^2(\theta_i)}}$

– Sfasamento perpendicolare $\Phi_{\perp} = 2 \arctan \left[\frac{\sqrt{\sin^2(\theta_i) - (n_2/n_1)^2}}{\cos(\theta_i)} \right]$

2

– Relazione degli sfasamenti $\tan\left(\frac{1}{2}\Phi_{\perp} + \frac{\pi}{2}\right) = \frac{1}{n^2}\tan\left(\frac{1}{2}\Phi_{\perp}\right)$

3.5 Coerenza

• Spaziale $l_c = c \cdot \Delta \nu$

• Temporale $t_c = \frac{1}{\Delta \nu}$

3.6 Interferenza

• Campo totale $\vec{E} = \vec{E}_1 + \vec{E}_2$

• Modulo quadro $|\vec{E}|^2 = |\vec{E}_1|^2 + |\vec{E}_2|^2 + 2\vec{E}_1 \times \vec{E}_2$

• Intensità $I=I_1+I_2+2\sqrt{I_1I_2}\cos(\delta)$ con $\delta=k(r_2-r_1)+\phi_2-\phi_1$

• Interferenza costruttiva $\delta=2m\pi,\;I=4I_1=4I_2$ in fase

• Interferenza distruttiva $\delta = 2(m+1)\pi, I = 0$ in quadratura

• Interferomero di Young:

– Picchi di interferenza costruttiva $y = \frac{L}{S} \lambda m$

– Intensità dei picchi $I = I_0 \left[1 + \cos \left(k \frac{S}{L} y \right) \right]$

- Figure di interferenza:

* Massimi $k = \frac{S}{L} y = 2m\pi$

* Minimi $k = \frac{S}{L}y = 2(m+1)\pi$

4 Riflettore di Bragg

• Riflettanza di un riflettore a N strati $R=\left(\frac{n_1^{2N}-n_0/n_3}{n_1^{2N}+n_0/n_3}\frac{n_2^{2N}}{n_2^{2N}}\right)^2$

• FWHM $\frac{\Delta \lambda}{\lambda_0} = \frac{4}{\pi} \arcsin\left(\frac{n_1 - n_2}{n_1 + n_2}\right)$

5 Cavità di Fabry-Perot

• Frequenze ammesse $\nu=m\frac{c}{2L},\,m$ numero intero positivo

• Free spectral range $\Delta \nu = \nu_m - \nu_{m-1} = \frac{c}{2L}$

• Campo elettrico totale $\vec{E} = \frac{A_0}{1 - R \cdot e^{j2kl}}$

• Intensità totale $I=|E|^2=\frac{A_0^2}{(1-R)^2+4R\sin(kL)^2}$

• Massima ampiezza $I_{max} = \frac{I_0}{(1-R)^2}$

• Full width half maximum (FWHM) dell'intensità $\sin(kL) = \frac{1-R}{2\sqrt{R}}$

3

• Finezza spettrale $F = \frac{\pi\sqrt{R}}{1-R}$

• Full width half maximum (FWHM) della frequenza
$$\Delta \nu = \frac{\frac{C}{2L}}{\frac{\pi \sqrt{R}}{1-r}}$$

$$\bullet \ \Delta \nu_{\rm FWHM} = \frac{C}{2n_s L}$$

• Fattore qualità
$$Q = \frac{\nu_m}{\Delta \nu} = mF$$

6 Guida d'onda

• Angolo caratteristico del modo
$$\theta_m = \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2}$$

• Condizione di guida d'onda
$$\frac{2\pi n_1(2a)}{\lambda}\cos(\theta_m) - \Phi_m = m\pi$$

- Componenti del modo
 - Componente viaggiante $\beta_m = k_1 \sin(\theta_m)$
 - Componente stazionaria $\kappa_m = k_1 \cos(\theta_m)$
- Numero di modi

- V-number
$$V = \frac{2\pi a n_1}{\lambda} \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2}$$

– Numero di modi
$$m < \frac{2V - \Phi_m}{\pi}$$

– Numero totale di modi
$$int\left(\frac{2V}{\pi}\right) + 1$$

– Propagazione monomodale
$$V < \frac{\pi}{2}$$

– Lunghezza di cut-off
$$\lambda_c=4a\sqrt{n_1^2-n_2^2}$$

• Dispersione

- Intermodale
 - * Stima della dispersione intermodale $\Delta \tau = \frac{Ln_1}{c} \frac{Ln_2}{c}$
 - * Dispersione per unità di lunghezza $\frac{\Delta \tau}{L} = \frac{n_1 n_2}{c}$
- Intramodale
 - * In presenza di un solo modo ($\omega < \omega_{cutoff}$) il pacchetto di distribuisce su un range di frequenze angolari

$$* \Delta\omega = \frac{2\pi}{\Delta\tau}$$

- Di materiale
 - $\ast\,$ Prescinde dalla propagazione in guida e discende dalla dipendenza di n dalla lunghezza d'onda

$$* D_m = \frac{\Delta t}{L\Delta\lambda} = \left| -\frac{\lambda}{c} \frac{\partial^2}{\partial\lambda^2} \right|$$

7 Fibra ottica

7.1 Fibra step index

- Differenza di indice relativa $\Delta = \frac{n_1 n_2}{n_1}$
- Numero di modi $M \approx \frac{V^2}{2}$
- Attenuazione in fibra $\alpha = -\frac{1}{P}\frac{dP}{dx} \to P = P_0 e^{-\alpha L}, E = E_0 e^{-\alpha L/2}$
- Dispersione

– Intermodale
$$\frac{\Delta \tau}{L} \approx \frac{n_1 - n_2}{c} = \frac{n_1 \Delta}{c}$$

– Di materiale
$$\frac{\Delta \tau}{L} = |D_m| \Delta \lambda$$
 con $D_m = -\frac{\lambda}{c} \frac{d^2 n}{d\lambda^2}$

– Di guida/cromatica
$$\frac{\Delta \tau}{L} = |D_w| \Delta \lambda$$

– Sommando
$$D_m$$
 e D_w si ottiene la dispersione cromatica $\frac{\Delta \tau}{L} = |D_m + D_w| \Delta \lambda = |D_{Cr}| \Delta \lambda$

• Apertura numerica (NA)

$$- NA = \sqrt{n_1^2 - n_2^2}$$

– Angolo di accettazione massimo
$$\alpha = \arcsin\left(\frac{\text{NA}}{n_0}\right)$$

– V-Number
$$V = \frac{2\pi a}{\lambda}$$
NA

- Per $V<2.405\ \mathrm{ho}$ fibra monomodale.

7.2 Fibra GRIN

• $n\sin(\theta) = \cos t$ in tutta la sezione di fibra

8 Laser

• Guadagno
$$g = \frac{c^2}{8\pi\nu^2c^2\tau_{sp}\Delta\nu}(N_2 - N_1)$$

• Condizione di soglia
$$e^{2lg} = e^{2\alpha_s} \frac{1}{R_1 R_2}$$

• Guadagno di soglia
$$g_t h = \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right) + \alpha_s$$

• Guadagno del laser (sopra soglia)
$$g = \frac{c^2}{8\pi \nu^2 n^2 \tau_{sp} \Delta \nu} (N_2 - N_1)$$

• Potenza di uscita
$$P_{out} = \frac{N_{ph}}{2} \frac{c}{n} h \nu (1 - R_1) A$$
, A area della superficie del laser

5

– In funzione del flusso fotonico $P_{out} = \frac{1}{2} \Phi_{ph} A h \nu_0 (1 - R_2)$

• Tempo di spegnimento del laser $\tau_{ph} = \frac{n}{c} \alpha_t$

8.1 Effetto Doppler

• Periodo apparente $T' = T\left(1 + \frac{v_x}{c}\right)$

• Frequenza apparente $\nu' \approx \nu \left(1 - \frac{v_x}{c}\right)$

• Allargamento Doppler $\Delta\nu_{FWHM}=2\nu_0\sqrt{\frac{2KT\log(2)}{mc^2}}$ solo per i laser a gas