ଚତୁର୍ଥି ଅଧ୍ୟାୟ

କାର୍ବନ ଏବଂ ଏହାର ଯୌଗିକ (CARBON AND ITS COMPOUNDS)

ପୂର୍ବ ଅଧ୍ୟାୟରେ ଆମେ ଅନେକ ଆବଶ୍ୟକ ଯୌଗିକ ବିଷୟରେ ଜାଣିବାକୁ ପାଇଲୁ । ଏହି ଅଧ୍ୟାୟରେ ଆମେ ଆହୁରି ଅଧିକ କୌତୂହଳପ୍ରଦ ଯୌଗିକ ଓ ସେଗୁଡ଼ିକର ପ୍ରକୃତି ବିଷୟରେ ଅଧ୍ୟୟନ କରିବା । ମୌଳିକ ଏବଂ ଯୌଗିକ ରୂପରେ କାର୍ବନ ଆମପାଇଁ ଅତ୍ୟନ୍ତ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ମନେ ହୁଏ । ଏବେ ସେହି କାର୍ବନ ବିଷୟରେ ଅଧ୍ୟୟନ କରିବା ।

ତୁମ ପାଇଁ କାମ (4.1)

- ସକାଳୁ ତୁମେ ବ୍ୟବହାର କରିଥିବା କିୟା ଖାଇଥିବା ଦଶଟି ଜିନିଷର ଏକ ତାଲିକା କର ।
- ଏହି ତାଲିକା ସହ ତୁମ ସହପାଠୀମାନେ କରିଥିବା ତାଲିକାକୁ ଏକାଠି କର ଏବଂ ତା'ପରେ ଦିଆଯାଇଥିବା ସାରଣୀ ଭିତରେ ସେହି ଦ୍ରବ୍ୟଗୁଡ଼ିକୁ ତାଲିକାଭୁକ୍ତ କର ।
- ଯେଉଁ ଦ୍ରବ୍ୟ ଏକରୁ ଅଧିକ ପଦାର୍ଥରୁ ପ୍ରୟୁତ ହୋଇଛି,
 ସେଗୁଡ଼ିକୁ ସଂପୃକ୍ତ ୟୟରେ ରଖ।

କାଚ/ମାଟିରେ	ଅନ୍ୟାନ୍ୟ
ତିଆରି ଜିନିଷ	
	•

ଶେଷ ୟୟର ତାଲିକାଭୁକ୍ତ ଦ୍ରବ୍ୟଗୁଡ଼ିକୁ ଲକ୍ଷ୍ୟ କର । ତୁମ ଶିକ୍ଷକ କହି ପାରିବେ ଯେ ସେଥିରୁ ଅଧିକାଂଶ ଦ୍ରବ୍ୟ କାର୍ବନର ଯୌଗିକରୁ ପ୍ରସ୍ତୁତ ହୋଇଛି । ଏହାକୁ ପରୀକ୍ଷା କରିବା ପାଇଁ ତୁମେ କିଛି ଉପାୟ ଭାବିପାରୁଛ କି ? କାର୍ବନ ଥିବା ଯୌଗିକକୁ ଜଳାଇଲେ ଉତ୍ପାଦ କ'ଣ ହୁଏ ? ଏହା ନିଷିତ କରିବା ପାଇଁ ତୁମେ କୌଣସି ପରୀକ୍ଷା ଜାଣିଛ କି ?

ଖାଦ୍ୟ, ବସ୍ତ, ଔଷଧ, ବହି କିୟା ତୁମେ ତାଲିକା କରିଥିବା ଅଧିକାଂଶ ଜିନିଷର ମୂଳ ଉପାଦାନ ହେଉଛି ଏହି ସର୍ବଗୁଣଧାରୀ ମୌଳିକ କାର୍ବନ । ତା'ଛଡା ସମୟ ଜୀବନ୍ତ ବଞ୍ଚ ହେଉଛି କାର୍ବନଭିଭିକ । କିନ୍ତୁ ଭୂପୃଷରେ ଏବଂ ବାୟୁମଞ୍ଚଳରେ କାର୍ବନର ପରିମାଣ ଅତି ଅଳ । ଖଣିଜ ରୂପରେ (କାର୍ବୋନେଟ୍, ହାଇଡ୍ରୋଜେନକାର୍ବୋନେଟ୍, କୋଇଲା ଏବଂ ପେଟ୍ରୋଲିୟମ ରୂପେ) ଭୂପୃଷରେ କାର୍ବନର ପରିମାଣ ହେଉଛି ମାତ୍ର 0.02% ଏବଂ ବାୟୁମଞ୍ଚଳରେ କାର୍ବନ ଡାଇଅକ୍ସାଇଡ୍ର ପରିମାଣ 0.03% । ପ୍ରକୃତିରେ ଏତେ କମ୍ ପରିମାଣର କାର୍ବନ ମିଳୁଥିବା ସତ୍ତ୍ୱେ ବି କାର୍ବନର ଗୁରୁଦ୍ୱ ଅତିବେଶୀ ମନେହୁଏ । ଏହି ଅଧ୍ୟାୟରେ କାର୍ବନର ଏହି ଅସ୍ୱାଭାବିକତା ପାଇଁ ତା'ର କେଉଁ ଗୁଣ ଦାୟୀ ତାହା ଜାଣିବା ।

4.1 କାର୍ବନରେ ବନ୍ଧ - ସହସଂଯୋଜକ ବନ୍ଧ (Bonding in Carbon - The Covalent Bond)

ପୂର୍ବ ଅଧ୍ୟାୟରେ ଆମେ ଆୟନିକ ଯୌଗିକଗୁଡ଼ିକର ଧର୍ମ ସୟକ୍ଷରେ ଅଧ୍ୟୟନ କଲେ । ଆମେ ଜାଣିଲେ ଆୟନିକ ଯୌଗିକଗୁଡ଼ିକର ଗଳନାଙ୍କ ଓ ଷ୍ଟୁଟନାଙ୍କ ବେଶୀ । ଏଗୁଡ଼ିକ ଦ୍ରବଶରେ କିୟା ତରଳ ଅବସ୍ଥାରେ ବିଦ୍ୟୁତ୍ ପରିବହନ କରନ୍ତି । ଆୟନିକ ଯୌଗିକରେ, ବନ୍ଧର ପ୍ରକୃତି ଏଗୁଡ଼ିକୁ କିପରି ବୁଝାଇ ଥାଏ, ତାହା ମଧ୍ୟ ଆମେ ଦେଖିଲୁ । ଏବେ କେତୋଟି କାର୍ବନ ଯୌଗିକର ଧର୍ମ ବିଷୟରେ ଅଧ୍ୟୟନ କରିବା । ସାରଣୀ 4.1ରେ କେତୋଟି କାର୍ବନ ଯୌଗିକର ଗଳନାଙ୍କ ଓ ଷ୍ଟୁଟନାଙ୍କ ଦିଆଯାଇଛି ।

ସାରଣୀ 4.1 କାର୍ବନର କେତୋଟି ଯୌଗିକର ଗଳନାଙ୍କ ଓ ୟୁଟନାଙ୍କ

ଯୌଗିକ	ଗଳନାଙ୍କ (K)	ୟୁଟନାଙ୍କ(K)
ଏସିଟିକ୍ ଏସିଡ୍		
(CH ₃ COOH)	290	391
କ୍ଲୋରୋଫର୍ମ		
(CH Cl ₃)	209	334
ଇଥାନଲ୍		
(CH ₃ CH ₂ OH)	156	351
ମିଥେନ୍		
(CH ₄)	90	111

ଦ୍ୱିତୀୟ ଅଧ୍ୟାୟରେ ଆମେ ପଢ଼ିଛୁ ଯେ ଅଧିକାଂଶ କାର୍ବନ ଯୌଗିକ ବିଦ୍ୟୁତ୍ କୁପରିବାହୀ । ସାରଣୀ (4.1)ରେ ଦିଆଯାଇଥିବା ଯୌଗିକଗୁଡ଼ିକର ଗଳନାଙ୍କ ଓ ୟୁଟନାଙ୍କ ତଥ୍ୟରୁ ଆମେ ଏହି ସିଦ୍ଧାନ୍ତରେ ଉପନୀତ ହୋଇ ପାରିବା ଯେ, ଏହି ଅଣୁଗୁଡ଼ିକ ମଧ୍ୟରେ ଥିବା ଆକର୍ଷଣ ବଳ ବେଶୀ ଦୃଢ଼ ନୁହେଁ। ଏହି ଯୌଗିକଗୁଡ଼ିକ ବିଶେଷଭାବରେ ବିଦ୍ୟୁତ୍ରର କୁପରିବାହୀ ହୋଇଥିବାରୁ, ଆମେ ଭାବିବା ଯେ ଏହି ଯୌଗିକଗୁଡ଼ିକର ବନ୍ଧ କୌଣସି ଆୟନ ସୃଷ୍ଟି କରେ ନାହିଁ।

ବିଭିନ୍ନ ମୌଳିକର ସଂଯୋଜନ କ୍ଷମତା କ'ଣ ଏବଂ ଏହା କିପରି ସଂଯୋଜକ ଇଲେକ୍ଟ୍ରନର ସଂଖ୍ୟା ଉପରେ ନିର୍ଭର କରେ ଆମେ ନବମଶ୍ରେଣୀରେ ଶିକ୍ଷା କରିଛୁ । ଆସ, କାର୍ବନର ଇଲେକ୍ଟ୍ରନ୍ ସଂରଚନାକୁ ଲକ୍ଷ୍ୟ କରିବା । କାର୍ବନର ପରମାଣୁ କ୍ରମାଙ୍କ ହେଉଛି 6 । ତାହାହେଲେ କାର୍ବନ ପାଇଁ ବିଭିନ୍ନ କକ୍ଷରେ ଇଲେକ୍ଟ୍ରନଗୁଡ଼ିକ ସଜ୍ଜା କ'ଣ ହେବ ? କାର୍ବନରେ କେତୋଟି ସଂଯୋଜକ ଇଲେକ୍ଟ୍ରନ ରହିବ ?

ମୌଳିକଗୁଡିକର ପ୍ରତିକ୍ରିୟାଶୀଳତ। ବୁଝାଇବାକୁ ସେଗୁଡ଼ିକର ବାହ୍ୟତମ କକ୍ଷରେ ସଂପୂର୍ଣ୍ଣ ମାତ୍ରାର ଇଲେକ୍ଟ୍ରନ ରହିବା ପାଇଁ ଚେଷ୍ଟା ଅର୍ଥାତ୍ ନିକଟତମ ନିଷ୍କ୍ରିୟ ଗ୍ୟାସର ସଂରଚନା ଲାଭ କରିବାର ପ୍ରୟାସ କରେ ବୋଲି ଆମେ ଜାଣୁ । ଆୟନିକ ଯୌଗିକ ସୃଷ୍ଟି କରୁଥିବା ମୌଳିକଗୁଡିକ ଇଲେକ୍ଟ୍ରନ ଗ୍ରହଣ କରି କିୟା ବାହ୍ୟତମ କକ୍ଷରୁ ଇଲେକ୍ଟ୍ରନ ତ୍ୟାଗ କରି ଏହି କାର୍ଯ୍ୟ ସାଧନ କରିଥା'ନ୍ତି । କାର୍ବନ କ୍ଷେତ୍ରରେ, ଏହାର ବାହ୍ୟତମ କ୍ଷରେ ଷରୋଟି ଇଲେକ୍ଟ୍ରନ ରହିଛି ଏବଂ ନିଷ୍କ୍ରିୟ ଗ୍ୟାସର ସଂରଚନା ଲାଭ କରିବା ପାଇଁ ଏହା ଷରୋଟି ଇଲେକ୍ଟ୍ରନ ତ୍ୟାଗ କରିବା ଆବଶ୍ୟକ । ଯଦି ଏହା ଏତେ ସଂଖ୍ୟକ ଇଲେକ୍ଟ୍ରନ ଗ୍ରହଣ କିୟା ତ୍ୟାଗ କରନ୍ତା ତେବେ ନିମୁଲିଖିତ ସମସ୍ୟା ହୁଅନ୍ତା ।

- (i) ଏହା C⁴- ଏନାୟନ ସୃଷ୍ଟି କରିବା ପାଇଁ ଷରୋଟି ଇଲେକ୍ଟ୍ରନ ଗ୍ରହଣ କରନ୍ତା । କିନ୍ତୁ ଛଅଟି ପ୍ରୋଟନ ଥିବା ନ୍ୟୁକ୍ଲିୟସ ପାଇଁ ଦଶଟି ଇଲେକ୍ଟ୍ରନ ଅର୍ଥାତ୍ ୟରୋଟି ଅଧିକ ଇଲେକ୍ଟ୍ରନକୁ ଆୟଉରେ ରଖିବା କଷ୍ଟକର ହେବ ।
- (ii) C⁴⁺ କାଟାୟନ ସୃଷ୍ଟି କରିବାକୁ ୟରୋଟି ଇଲେକ୍ଟ୍ରନ ତ୍ୟାଗ କରନ୍ତା । କିନ୍ତୁ କାର୍ବନ ନ୍ୟୁକ୍ଲିୟସରୁ ୟରୋଟି ଇଲେକ୍ଟ୍ରନକୁ ଅପସାରଣ କରିବା ପାଇଁ ବହୁତ ଅଧିକ ଶକ୍ତି ଆବଶ୍ୟକ ହେବ କାରଣ କାର୍ବନ କାଟାୟନ

ଗଠନ ହେବାପାଇଁ କେବଳ ଦୁଇଟି ଇଲେକ୍ଟ୍ରନକୁ ଧରି ରଖିବ । ଏହାର ନ୍ୟୁକ୍ଲିୟସରେ ଛଅଟି ପ୍ରୋଟନ ଥିବାରୁ ତା'ଠାରୁ ଅନ୍ୟ ୟରୋଟି ଇଲେକ୍ଟ୍ରନ ଦୂରେଇ ନେବା ପାଇଁ ଅଧିକ ଶକ୍ତି ଦରକାର ।

ତେଣୁ କାର୍ବନ ଏହାର ସଂଯୋଜକ ଇଲେକ୍ଟ୍ରନଗୁଡ଼ିକ ଅନ୍ୟ କାର୍ବନର ପରମାଣୁ ସହ କିୟା ଅନ୍ୟମୌଳିକର ପରମାଣୁ ସହ ସହଭାଜନ (Sharing) ଦ୍ୱାରା ଏହି ସମସ୍ୟାକୁ ସମାଧାନ କରିଥାଏ । କେବଳ କାର୍ବନ ନୁହେଁ, ଆହୁରି ଅନେକ ମୌଳିକ ଏହିପରି ସହଭାଜନ ଦ୍ୱାରା ଅଣୁ ସୃଷ୍ଟି କରନ୍ତି । ସହଭାଜନ ଇଲେକ୍ଟ୍ରନ ଉଭୟ ପରମାଣୁର ବାହ୍ୟତମ କ୍ଷର ଅନ୍ତର୍ଭୁକ୍ତ ଏବଂ ଉଭୟ ପରମାଣୁକୁ ନିଷ୍ମ୍ରିୟ ଗ୍ୟାସ ସଂରଚନା ପ୍ରଦାନ କରାଇଥାଏ । କାର୍ବନ ଯୌଗିକ ସୟନ୍ଧରେ ଆଲୋଚନା କରିବା ପୂର୍ବରୁ ଆସ ସଂଯୋଜକ ଇଲେକ୍ଟ୍ରନ ସହଭାଜନ ଦ୍ୱାରା ସୃଷ୍ଟ କେତୋଟି ସରଳ ଅଣୁକଥା ବିୟର କରିବା ।

ଏହି ଡ଼ଙ୍ଗରେ ସୃଷ୍ଟି ହୋଇଥିବା ସରଳତମ ଅଣୁ ହେଉଛି ହାଇଡ୍ରୋଜେନ । ତୂମେ ଜାଣିଛ ଯେ ହାଇଡ୍ରୋଜେନର ପରମାଣୁ କ୍ରମାଙ୍କ 1 ଅଟେ । ତେଣୁ ଏହାର K- କକ୍ଷରେ ଗୋଟିଏ ଇଲେକ୍ଟ୍ରନ ରହିଛି ଏବଂ K- କନ୍ଷ ପୂର୍ଣ୍ଣ ହେବାକୁ ଏହା ଆଉ ଗୋଟିଏ ଇଲେକ୍ଟ୍ରନ ଆବଶ୍ୟକ କରୁଛି । ସୁତରାଂ ଗୋଟିଏ ହାଇଡ୍ରୋଜେନ ଅଣୁ ସୃଷ୍ଟି କରିବାକୁ ଦୁଇଟି ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ସେମାନଙ୍କର ଇଲେକ୍ଟ୍ରନଗୁଡିକୁ ପରୟର ମଧ୍ୟରେ ଭାଗ କରନ୍ତି । ଫଳରେ ପ୍ରତ୍ୟେକ ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ଏହା ଦ୍ୱାରା ନିକଟତମ ନିଷ୍କ୍ରିୟ ଗ୍ୟାସ ପରମାଣୁ, ହିଲିୟମ୍ଭ ଇଲେକ୍ଟ୍ରନ ସଂରଚନା ଧାରଣ କରେ । ହିଲିୟମର K- କକ୍ଷରେ ଦୁଇଟି ଇଲେକ୍ଟ୍ରନ ରହିଛି । ସଂଯୋଜକ ଇଲେକ୍ଟ୍ରନ ପାଇଁ ଡଟ୍ (.) କିୟା ଛକି ବ୍ୟବହାର କରି ଆମେ ଏହାକୁ ଚିତ୍ରଣ କରି ପାରିବା (ଚିତ୍ର 4.1) ।

ଚିତ୍ର 4.1 ହାଇଡ୍ରୋଜେନ୍ର ଏକ ଅଣୁ

ସହଭାଜିତ ଇଲେକ୍ଟ୍ରନ ଯୁଗଳ (shared pair of electrons) ଦୁଇଟି ହାଇତ୍ରୋଜେନ ପରମାଣୁ ମଧ୍ୟରେ ଏକ ବନ୍ଧ ଗଠନ କରିଛି ବୋଲି କୁହାଯାଏ । ଗୋଟିଏ ଏକ ବନ୍ଧକୁ ଦୁଇଟି ପରମାଣୁ ମଧ୍ୟରେ ଏକ ରେଖାଖଣ୍ଡ (-) ଦ୍ୱାରା ମଧ୍ୟ ଦର୍ଶାଯାଏ । (ଚିତ୍ର 4.2 ଦେଖ) ।

ଚିତ୍ର 4.2 ଦୂଇଟି ହାଇଡ୍ରୋଜେନ୍ ପରମାଣୁ ମଧ୍ୟରେ ଏକବନ୍ଧ

କ୍ଲୋରିନର ପରମାଣୁ କ୍ରମାଙ୍କ 17 ଅଟେ । ଏହାର ଇଲେକ୍ଟ୍ରନ ସଂରଚନା ଓ ଯୋଜ୍ୟତା କ'ଣ ହେବ ? କ୍ଲୋରିନ୍ ଦୁଇ ପରମାଣୁ ବିଶିଷ୍ଟ ଅଣୁ, Cl₂ ସୃଷ୍ଟି କରେ । ଏହି ଅଣୁ ପାଇଁ ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନା ଚିତ୍ର କରିପାରିବ ? କେବଳ ସଂଯୋଜକ କକ୍ଷ ଇଲେକ୍ଟ୍ରନ ଦର୍ଶାଇ ଚିତ୍ର କର ।

ଚିତ୍ର 4.3 ଦୁଇଟି ଅକ୍ସିକେନ୍ ପରମାଣୁ ମଧ୍ୟରେ ଦ୍ୱିବନ୍ଧ

ଅକ୍ସିକେନ କ୍ଷେତ୍ରରେ ଦୁଇଟି ଅକ୍ସିକେନ ପରମାଣୁ ମଧ୍ୟରେ ଗୋଟିଏ ଦ୍ୱିବନ୍ଧ ଗଠନ ହେବା ଆମେ ଦେଖୁ । ଏହାର କାରଣ ହେଉଛି, ଗୋଟିଏ ଅକ୍ସିକେନ ପରମାଣୁର L- କକ୍ଷରେ (ଅକ୍ସିକେନର ପରମାଣୁ କ୍ରମାଙ୍କ 8) ଛଅଟି ଇଲେକ୍ଟ୍ରନ ରହିଛି ଏବଂ ଏହା ଅକ୍ଟେଟ୍ ପୂରଣ କରିବା ପାଇଁ ଆହୁରି ଦୁଇଟି ଇଲେକ୍ଟ୍ରନ ଆବଶ୍ୟକ କରୁଛି । ତେଣୁ ପ୍ରତି ଅକ୍ସିକେନର ପରମାଣୁ ଅନ୍ୟ ଏକ ଅକ୍ସିକେନର ପରମାଣୁ ସହିତ ଦୁଇଟି ଇଲେକ୍ଟ୍ରନ ଭାଗ (Share) କରିଥାଏ ଏବଂ ଚିତ୍ର 4.3ରେ ଦର୍ଶାଯାଇଥିବା ପରି ସଂରଚନା ସୃଷ୍ଟି ହୋଇଥାଏ । ପ୍ରତ୍ୟେକ ଅକ୍ସିକେନ୍ ପରମାଣୁ ଦ୍ୱାରା ମିଳୁଥିବା ଦୁଇଟି ଇଲେକ୍ଟ୍ରନ ଦୁଇଟି ସହଭାଜିତ ଇଲେକ୍ଟ୍ରନ ଯୁଗଳ ଦେଇଥାଏ । ଏହାକୁ ଦୁଇଟି ପରମାଣୁ ମଧ୍ୟରେ ଦ୍ୱିବନ୍ଧ ଗଠନ ହେଲା ବୋଲି କୁହାଯାଏ ।

ଚିତ୍ର 4.4 ଦୁଇଟି ନାଇଟ୍ରୋଜେନ୍ ପରମାଣୁ ମଧ୍ୟରେ ତ୍ରିବନ୍ଧ

ଗୋଟିଏ ଅକ୍ସିକେନ ପରମାଣୁ ଏବଂ ଦୁଇଟି ହାଇଡ୍ରୋକେନ ପରମାଣୁ ମଧ୍ୟରେ ଥିବା ବନ୍ଧର ପ୍ରକୃତିକୁ ଦର୍ଶାଇ ଏବେ ଗୋଟିଏ ଜଳ ଅଣୁ ଚିତ୍ରଣ କରିପାରିବ? ଅଣୁରେ ଏକବନ୍ଧ ରହିଛି ନା ଦ୍ୱିବନ୍ଧ ରହିଛି?

ଦୁଇ ପରମାଣୁ ବିଶିଷ୍ଟ ନାଇଟ୍ରୋଜେନ କ୍ଷେତ୍ରରେ କ'ଣ ହେବ ? ନାଇଟ୍ରୋଜେନର ପରମାଣୁ କ୍ରମାଙ୍କ 7 ଅଟେ । ଏହାର ଇଲେକ୍ଟ୍ରନ ସଂରଚନା ଓ ସଂଯୋଜନ କ୍ଷମତା କ'ଣ ହେବ ? ଅକ୍ଟେଟ୍ ଲାଭ କରିବାକୁ ଗୋଟିଏ ନାଇଟ୍ରୋଜେନ ଅଣୁରେ ତିନୋଟି ସହଭାଗୀ ଇଲେକ୍ଟ୍ରନ ଯୁଗଳ ପାଇଁ ପ୍ରତି ନାଇଟ୍ରୋଜେନ ପରମାଣୁ ଡିନୋଟି ଇଲେକ୍ଟ୍ରନ ଦେଇଥାଏ । ଏହାକୁ ଦୁଇଟି ପରମାଣୁ ମଧ୍ୟରେ ତ୍ରିବନ୍ଧ ଗଠନ ହେଲା ବୋଲି କୁହାଯାଏ । N_2 ର ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନା ଏବଂ ଏହାର ତ୍ରିବନ୍ଧ ଚିତ୍ର (4.4)ରେ ଦର୍ଶାଯାଇଛି ।

ଗୋଟିଏ ଏମୋନିଆ ଅଶୁର ସଙ୍କେଡ ହେଉଛି NH₃ I ସମୟ ୟରୋଟି ପରମାଣୁ କିପରି ନିଷ୍କ୍ରିୟ ଗ୍ୟାସ ସଂରଚନା ଲାଭ କରନ୍ତି, ତାହା ଦର୍ଶାଇ ଏହି ଅଣୁ ପାଇଁ ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନାର ଚିତ୍ର କରି ପାରିବ ? ଏହି ଅଣୁରେ କ'ଣ ରହିବ, ଏକ- କିୟା ଦ୍ୱି- କିୟା ତ୍ରି- ବନ୍ଧ ?

ଏବେ ମିଥେନ୍ ଆଡକୁ ଦୃଷ୍ଟି ପକେଇବା । ଏହା କାର୍ବନର ଏକ ଯୌଗିକ । ମିଥେନ ଇନ୍ଧନ ରୂପେ ବହୁଳ ଭାବରେ ବ୍ୟବହୃତ ହୁଏ ଏବଂ ଏହା ଜୈବଗ୍ୟାସ (Biogas) ଓ ସଂଷ୍ଠପିତ ପ୍ରାକୃତିକ ଗ୍ୟାସ (Compressed Natural Gas ବା CNG)ର ମୁଖ୍ୟ ଉପାଦାନ । ଏହା କାର୍ବନ ଦ୍ୱାରା ସୃଷ୍ଟି ହେଉଥିବା ସରଳତମ ଯୌଗିକଗୁଡ଼ିକ ମଧ୍ୟରୁ ଅନ୍ୟତମ । ମିଥେନର ସଙ୍କେତ ହେଉଛି CH_4 । ତୁମେ କାଣିଛ ଯେ, ହାଇଡ୍ରୋଜେନର ଯୋଜ୍ୟତା 1 ଅଟେ । କାର୍ବନ ଚତ୍ୟୁସଂଯୋଜୀ (Tetravalent) କାରଣ ଏହାର ଷ୍ଟରୋଟି ସଂଯୋଜକ ଇଲେକ୍ଟ୍ରନ ରହିଛି । ନିଷ୍କ୍ରିୟ ଗ୍ୟାସର ସଂରଚନା

ଚିତ୍ର 4.5 ମିଥେନ ପାଇଁ ଇଲେକ୍ଟ୍ରନ୍ ଡଟ୍ ସଂରଚନା

ଏହି ଭଳି ବନ୍ଧ, ଯେଉଁଗୁଡ଼ିକ ଦୁଇ ପରମାଣୁ ମଧ୍ୟରେ ଇଲେକ୍ଟ୍ରନ ଯୁଗଳର ସହଭାଜନ ଦ୍ୱାରା ଗଠନ ହୋଇଥାଏ, ସେଗୁଡ଼ିକୁ ସହସଂଯୋଜ୍ୟ ବନ୍ଧ କୁହାଯାଏ । ସହସଂଯୋଜ୍ୟ ବନ୍ଧ ଦ୍ୱାରା ଗଠିତ ଅଣୁଗୁଡ଼ିକର ଅଣୁର ଅଭ୍ୟନ୍ତରରେ ଶକ୍ତ ବନ୍ଧ ରହିଥିବା ଦେଖାଯାଏ, କିନ୍ତୁ ଆନ୍ତଃ- ଅଣୁକ (Intermolecular) ବଳ କମ୍ଥାଏ । ଏହି କାରଣରୁ ଏପରି ଯୌଗିକଗୁଡ଼ିକର ଗଳନାଙ୍କ ଓ ୟୁଟନାଙ୍କ କମ୍ ହୋଇଥାଏ । ଏପରି ସହସଂଯୋଜ୍ୟ ଯୌଗିକଗୁଡ଼ିକ ସାଧାରଣତଃ ବିଦ୍ୟୁତ୍ କୁପରି ବାହୀ । ଏହାର କାରଣ ହେଉଛି, ଏହି ଯୋଗିକଗୁଡିକରେ ଦୁଇ ପରମାଣୁ ମଧ୍ୟରେ ମିଳିତ ଭାବେ

ଇଲେକ୍ଟ୍ରନ ଭାଗ ହୋଇଥାଏ ଏବଂ ଷର୍ଜଯୁକ୍ତ କଣିକାମାନ ସୃଷ୍ଟି ହୋଇ ନ ଥାଏ।

ତୁମେ ଅଧିକ ଜାଣିବା ପାଇଁ କାର୍ବନର ବିଭିନ୍ନ ରୂପ (Allotropes of Carbon)

ପ୍ରକୃତିରେ କାର୍ବନ ମୌଳିକ ବିଭିନ୍ନ ରୂପରେ ମିଳିଥାଏ। ବିଭିନ୍ନ ରୂପଗୁଡ଼ିକର ରାସାୟନିକ ପୁକୃତି ସମାନ ହେଲେ ମଧ୍ୟ ଭୌତିକ ପ୍ରକୃତି ପୃଥକ୍ ଅଟେ। ଉଭୟ ହୀରା ଓ ଗ୍ରାଫାଇଟ୍ କାର୍ବନ ପରମାଣୁ ଦ୍ୱାରା ଗଠିତ ହୋଇଥାଏ, କିନ୍ତୁ ଏ ଦୁଇଟିରେ କାର୍ବନ-କାର୍ବନ ମଧ୍ୟରେ ପରୟର ବନ୍ଧ ଗଠନର ପ୍ରଣାଳୀରେ ପ୍ରଭେଦ ରହିଛି । ହୀରାରେ ପ୍ରତ୍ୟେକ କାର୍ବନ ପରମାଣ୍ଡ ଅନ୍ୟ ଷରୋଟି କାର୍ବନ ପରମାଣୁ ସହିତ ସଂଯୁକ୍ତ ହୋଇଥାଏ ଏବଂ ଏକ ଦୃଢ଼ ତ୍ରିବିମୀୟ (three-dimensional) ସଂରଚନା ଗଠନ କରେ। ଗ୍ରାଫାଇଟ୍ରେ ପ୍ରତ୍ୟେକ କାର୍ବନ ପରମାଣ୍ଡ ଅନ୍ୟ ତିନୋଟି କାର୍ବନ ପରମାଣ୍ଡ ସହିତ ଏକ ସମତଳରେ ବନ୍ଧ ଗଠନ କରିଥାଏ ଏବଂ ଏକ ଷଡ଼୍ଭୁଜୀୟ ବିନ୍ୟାସ (Hexagonal array) ଦେଇଥାଏ। ଏହି ବନ୍ଧଗୁଡ଼ିକମଧ୍ୟରୁ ଗୋଟିଏ ହେଉଛି ଦ୍ୱିବନ୍ଧ । ତେଣୁ କାର୍ବନର ଯୋଜ୍ୟତା ସନ୍ତୃଷ୍ଟ ହୋଇଥାଏ । ଷଡ଼୍ଭୁଜୀୟ ବିନ୍ୟାସଗୁଡ଼ିକ ଗୋଟିଏ ୟର ଉପରେ ଆଉ ଏକ ୟର ଏହିପରି ଅନେକ ୟର ରହିବାଦ୍ୱାରା ଗ୍ରାଫାଇଟ୍ ସଂରଚନା ସୃଷ୍ଟି ହୋଇଥାଏ।

ଏହି ଦୁଇ ଭିନ୍ନ ଭିନ୍ନ ସଂରଚନା ଫଳରେ ହୀରା ଓ ଗ୍ରାଫାଇଟ୍ର ଭୌତିକ ଧର୍ମ ଭିନ୍ନ ହୋଇଥାଏ ଯଦିଓ ସେ ଦୁଇଟିର ରାସାୟନିକ ଧର୍ମ ସମାନ । ପଦାର୍ଥଗୁଡ଼ିକ ମଧ୍ୟରେ ହୀରା ସବୁଠାରୁ ବେଶୀ ଶକ୍ତ । ଗ୍ରାଫାଇଟ୍ ହେଉଛି କୋମଳ (Smooth) ଏବଂ ହାତରେ ଧରିଲେ ଚିକ୍କଣ ବା ତେଲିଆ କଣାପଡ଼େ । ତୁମେ ପୂର୍ବ ଅଧ୍ୟାୟରେ ପଡ଼ିଛ ଯେ ଅଧାତୁଗୁଡ଼ିକ ବିଦ୍ୟୁତ୍ କୁପରିବାହୀ । ଗ୍ରାଫାଇଟ୍ ଅଧାତୁ ହେଲେ ମଧ୍ୟ ବିଦ୍ୟୁତ୍ ପରିବହନ କରେ ।

ଅତି ଉଚ୍ଚ ଷପ ଓ ତାପମାତ୍ରା ପ୍ରୟୋଗ କରି ବିଶୁଦ୍ଧ କାର୍ବନରୁ ହୀରା ସଂଖ୍ଲେଷଣ କରାଯାଇ ପାରିବ। ଏହି ସଂଖ୍ଲେଷିତ ହୀରାଗୁଡ଼ିକ ଛୋଟ, ଅନ୍ୟଥା ପ୍ରାକୃତିକ ହୀରାଠାରୁ କୌଣସି ଗୁଣରେ ଭିନ୍ନ ନୁହେଁ।

କାର୍ବନର ଆଉ ଏକ ରୂପ ହେଉଛି ଫୁଲରିନ୍ । ପ୍ରଥମେ ଚିହ୍ନିତ ହୋଇଥିବା କାର୍ବନର ଏହି ରୂପଟି ହେଲା, C-60, ଯେଉଁଥିରେ କାର୍ବନ ପରମାଣୁଗୁଡ଼ିକ ଫୁଟ୍ବଲ ଆକାରରେ ସଜିତ ହୋଇ ରହିଥାଏ । ଏହା ଯୁକ୍ତରାଷ୍ଟ୍ର ଆମେରିକାର ସ୍ଥପତି ବକ୍ମିନ୍ଷର୍ ଫୁଲର୍ (Buckminster Fuller)ଙ୍କ ଦ୍ୱାରା ପରିକଳ୍ପନା କରାଯାଇଥିବା ଭୂପରିମାଣ ବିଦ୍ୟା ସୟନ୍ଧୀୟ ଗୟୁଜ (Geodesic dome) ପରିଦେଖାଯାଉଥିବାରୁ ଏହି ଅଣୁକୁ ଫୁଲରିନ୍ ନାମ ଦିଆଯାଇଥିଲା ।

ପ୍ରଶ୍ମ

- 1. କାର୍ବନ ଡାଇଅକ୍ସାଇଡ୍ (ସଙ୍କେତ ${\sf CO}_2$)ର ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନା କ'ଣ ହେବ ?
- ଆଠଟି ସଲ୍ଫର ପରମାଣୁରେ ଗଠିତ ଏକ ସଲ୍ଫର ଅଣୁର ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନା କ'ଣ ହେବ ?
 [ସାମାନ୍ୟ ଇଙ୍ଗିତ (Hint)- ସଲ୍ଫରର ଆଠଟି ପରମାଣୁ ପରୟର ମଧ୍ୟରେ ସଂଯୁକ୍ତ ହୋଇ ଏକ ଚକ୍ରୀୟ ସଂରଚନା ଗଠନ କରନ୍ତି]।

4.2 କାର୍ବନର ସର୍ବଗୁଣଧାରୀ ପ୍ରକୃତି(Versatile Nature of Carbon)

ଅନେକ ପ୍ରକାର ମୌଳିକ ଏବଂ ଯୌଗିକରେ ଇଲେକ୍ଟ୍ରନର ସହଭାଜନ ଦ୍ୱାରା ସହସଂଯୋଜ୍ୟ ବନ୍ଧ ସୃଷ୍ଟି ହେଉଥିବା ଆମେ ଜାଣିଲୁ । ଏକ ସରଳ କାର୍ବନ ଯୌଗିକ, ମିଥେନର ଗଠନ ସୟନ୍ଧରେ ମଧ୍ୟ ଜାଣିଲୁ । ଏହି ଅଧ୍ୟାୟର ଆରୟରେ ଆମେ ଜାଣିଲୁ ଯେ ଆମେ ବ୍ୟବହାର କରୁଥିବା ଅନେକ ଜିନିଷରେ କାର୍ବନ ରହିଛି । ପ୍ରକୃତରେ ଦେଖିବାକୁ ଗଲେ ଆମେ ନିଜେ କାର୍ବନ ଯୌଗିକରେ ଗଠିତ ହୋଇଛୁ । ନିକଟରେ କରାଯାଇଥିବା ଏକ ହିସାବରୁ ଦେଖାଯାଏ ଯେ ରସାୟନବିତ୍ମାନଙ୍କୁ ସଙ୍କେତ ସହ ଜଣାଥିବା କାର୍ବନ ଯୌଗିକର ସଂଖ୍ୟା ହେଉଛି ତିନି ନିୟୁତ (million) ରୁ ଅଧିକ । ଏକା କାର୍ବନ ଯେତେ ଯୌଗିକ ସୃଷ୍ଟି କରିପାରେ ତା'ର ସଂଖ୍ୟା ଅନ୍ୟସବୁ ମୌଳିକରୁ ଗଠିତ ଯୌଗିକଗୁଡ଼ିକର ସଂଖ୍ୟାଠାରୁ ଯଥେଷ୍ଟ ଅଧିକ । ଏହି ପ୍ରକୃତି କାହିଁକ କାର୍ବନରେ ଦେଖାଯାଏ ଏବଂ ଅନ୍ୟ ମୌଳିକରେ ଦେଖାଯାଏ ନାହିଁ? ସହସଂଯୋଜ୍ୟ ବନ୍ଧର ପ୍ରକୃତି କାର୍ବନକୁ ବହୁ ସଂଖ୍ୟାର ଯୌଗିକ ସୃଷ୍ଟି କରିବାକୁ ସମର୍ଥ କରିଥାଏ । କାର୍ବନ କ୍ଷେତ୍ରରେ ଲକ୍ଷ୍ୟ କରିବାକୁ ସମର୍ଥ କରିଥାଏ । କାର୍ବନ କ୍ଷେତ୍ରରେ ଲକ୍ଷ୍ୟ କରାଯାଉଥିବା ଦୁଇଟି କାରଣ ହେଉଛି-

(i) କାର୍ବନର ଅନ୍ୟ କାର୍ବନ ପରମାଣୁ ସହିତ ବନ୍ଧ ଗଠନ କରି ବୂହତ୍ ଅଣୁ ସୃଷ୍ଟି କରିବା ପାଇଁ ଅନନ୍ୟ ସାମର୍ଥ୍ୟ ରହିଛି। ଏହି ଗୁଣକୁ କାଟିନେସନ କୁହାଯାଏ। ଏହି ଯୌଗିକଗୁଡ଼ିକ କାର୍ବନର ଦୀର୍ଘ ଶୃଙ୍ଖଳ (Long Chain), କାର୍ବନର ଶାଖାଯୁକ୍ତ ଶୃଙ୍ଖଳ କିୟା ଏପରିକି କାର୍ବନ ପରମାଣୁଗୁଡ଼ିକର ଚକ୍ରୀୟ ସଜା ହୋଇପାରେ । ଏହାଛଡା କାର୍ବନପରମାଣୁ ଗୁଡ଼ିକ ଏକ-, ଦ୍ୱି- ବା ତ୍ରି-ବନ୍ଧ ଦ୍ୱାରା ସଂଯୁକ୍ତ ହୋଇପାରେ । କାର୍ବନ ଯୌଗିକର ପ୍ରତ୍ୟେକ କାର୍ବନ ପରମାଣୁ କେବଳ ଏକ-ବନ୍ଧ ଦ୍ୱାରା ଅନ୍ୟ ପରମାଣୁ ସହିତ ସଂଯୁକ୍ତ ହେଲେ, ତାକୁ ପୃକ୍ତ ଯୌଗିକ କୁହାଯାଏ। ଯେଉଁ ଯୌଗିକଗୁଡ଼ିକରେ କାର୍ବନ-କାର୍ବନ ମଧ୍ୟରେ ଦ୍ୱି-ବନ୍ଧ କିୟା ତ୍ରି-ବନ୍ଧ ରହିଥାଏ, ସେଗୁଡ଼ିକୁ ଅପୃକ୍ତ ଯୌଗିକ କୁହାଯାଏ। କାର୍ବନ ଯୌଗିକରେ ଏହି କାଟିନେସନ୍ ଗୁଣ ଯେତେମାତ୍ରାରେ ଦେଖାଯାଏ, ଅନ୍ୟ କୌଣସି ମୌଳିକରେ ସେପରି ଦେଖାଯାଏ ନାହିଁ। ସିଲିକନ୍, ହାଇଡ୍ରୋଜେନ୍ ସହ ଯୌଗିକଗୁଡ଼ିକ ସୃଷ୍ଟି କରେ । ତାହାର ଶୃଙ୍ଖଳରେ ସାତ କିୟା ଆଠ ପରମାଣୁ ପର୍ଯ୍ୟନ୍ତ ଥାଏ, କିନ୍ତୁ ଏହି ଯୌଗିକଗୁଡ଼ିକ ଖୁବ୍ ପୁତିକ୍ରିୟାଶୀଳ । କାର୍ବନ-କାର୍ବନ ବନ୍ଧ ଖୁବ୍ ଶକ୍ତ, ତେଣୁ ତାହା ସ୍ଥାୟୀ (Stable) l ଏହି କାରଣରୁ ଅନେକ କାର୍ବନ ପରମାଣ୍ଡ ପରୟର ସଂଯୁକ୍ତ ହୋଇ ବହ ସଂଖ୍ୟକ ଯୌଗିକ ଦେଇଥାଏ ।

(ii) କାର୍ବନର ଯୋଜ୍ୟତା ଋରି ହୋଇଥିବାରୁ ଏହା କାର୍ବନର ଅନ୍ୟ ଋରୋଟି ପରମାଣୁ କିୟା ଏକ-ଯୋଜ୍ୟତା ବିଶିଷ୍ଟ ଅନ୍ୟ ମୌଳିକର ପରମାଣୁ ସହ ବନ୍ଧ ଗଠନ କରିବା ପାଇଁ ସମର୍ଥ ହୋଇଥାଏ। ଅକ୍ସିକେନ, ହାଇଡ୍ରୋଜେନ, ନାଇଟ୍ରୋଜେନ, ସଲ୍ଫର, କ୍ଲୋରିନ୍ ଏବଂ ଆହୁରି ଅନେକ ମୌଳିକ ସହ କାର୍ବନର ଯୌଗିକ ସୃଷ୍ଟି ହୋଇଥାଏ। ଏହି ଯୌଗିକଗୁଡ଼ିକର ସୁନିର୍ଦ୍ଦିଷ୍ଟ (Specific) ଧର୍ମ ରହିଥାଏ। ଏହି ଧର୍ମଗୁଡ଼ିକ ଅଣୁରେ ଥିବା କାର୍ବନ ଛଡା ଅନ୍ୟ ମୌଳିକଗୁଡିକ ଉପରେ ନିର୍ଭର କରେ।

ପୂନଷ୍ଟ, ଅନ୍ୟ ଅଧିକାଂଶ ମୌଳିକ ସହ କାର୍ବନ ଗଠନ କରୁଥିବା ବନ୍ଧ ଖୁବ୍ ଶକ୍ତ । ଫଳରେ ଏଗୁଡ଼ିକ ଅସାଧାରଣଭାବେ ସ୍ଥାୟୀ । କାର୍ବନ ଦ୍ୱାରା ଶକ୍ତ ବନ୍ଧ ଗଠନର ଗୋଟିଏ କାରଣ ହେଉଛି ଏହାର ଆକାର ଛୋଟ । ସହଭାଜିତ ଇଲେକ୍ଟ୍ରନ ଯୁଗଳକୁ ଶକ୍ତଭାବରେ ଧରି ରଖିବା ପାଇଁ ଏହା ନ୍ୟୁକ୍ଲିୟସକୁ ସମର୍ଥ କରିଥାଏ । ବୃହତ୍ତର ପରମାଣୁ ବିଶିଷ୍ଟ ମୌଳିକଦ୍ୱାରା ଗଠିତ ବନ୍ଧ ବହୁତ ଦୁର୍ବଳ ।

ତୁମେ ଅଧିକ ଜାଣିବା ପାଇଁ ଜୈବ ଯୌଗିକ

କାର୍ବନରେ ଦେଖାଯାଉଥିବା ଦୁଇଟି ଉଲ୍ଲେଖନୀୟ ଲକ୍ଷଣ, ଚତ୍ତଃସଂଯୋଜ୍ୟତା ଏବଂ କାଟିନେସନ୍ ଯୋଗୁଁ ବହୁ ସଂଖ୍ୟକ ଯୌଗିକ ସୃଷ୍ଟି ହୋଇଥାଏ । ଅନେକ ଯୌଗିକରେ ସମାନ ଅଣକାର୍ବନ (Same non-Carbon) କିୟା ପରମାଣୁପୁଞ୍ଜ (Group of atoms) ବିଭିନ୍ନ କାର୍ବନ ଶୃଙ୍ଖଳ ସହିତ ସଂଯୁକ୍ତ ହୋଇ ରହିଥାଏ । ଆରୟରେ ଏହିସବୁ ଯୌଗିକ ପ୍ରାକୃତିକ ପଦାର୍ଥରୁ ନିଷ୍କାସନ କରାଯାଉଥିଲା ଏବଂ ଧାରଣା ଥିଲା ଯେ ଏହିସବୁ କାର୍ବନ ଯୌଗିକ ବା କୈବଯୌଗିକ କେବଳ ଜୀବନ୍ତ ପଦାର୍ଥ ଭିତରେ ପ୍ରସ୍ତୁତ ହୋଇପାରେ । ଅର୍ଥାତ୍ ଏଗୁଡ଼ିକର ସଂଶ୍ଳେଷଣ ପାଇଁ "ଜୀବନ ଶକ୍ତି" (Vital force) ଆବଶ୍ୟକ ବୋଲି ସ୍ୱୀକାର କରାଯାଉଥିଲା । ଫ୍ରେଡ୍ରିକ୍ ଭୋଲର୍ (Friedrich Wohler) 1828 ମସିହାରେ ଏମୋନିୟମ ସିଆନେଟରୁ ୟୁରିଆ ପ୍ରସ୍ତୁତ କରି ଏହାକୁ

ଖଞ୍ଚନ (disprove) କରିଥିଲେ । ଆଗେ ଜୈବ ରସାୟନ ବିଜ୍ଞାନ କହିଲେ ଜୀବଡ ବଞ୍ଚୁରୁ ବାହାରୁଥିବା ଯୌଗିକ ସୟକ୍ଷୀୟ ବିଜ୍ଞାନକୁ ବୁଝାଉଥିଲା । ମାତ୍ର ଏବେ ଏହି ଯୌଗିକଗୁଡ଼ିକୁ ବିଜ୍ଞାନାଗାରରେ ତିଆରି କରାଯାଇ ପାରୁଛି । ତେଣୁ ଜୈବରସାୟନ ବିଜ୍ଞାନର ସଂଜ୍ଞା ବଦଳିଛି । ଏବେ ଏହାକୁ କାର୍ବନ ଯୌଗିକର ବିଜ୍ଞାନ ବୋଲି କୁହାଯାଉଛି । ଅବଖ୍ୟ କାର୍ବନର କେତେକ ଯୌଗିକ ଯଥା: କାର୍ବନର ଅକ୍ସାଇଡ୍ଗୁଡ଼ିକ, କାର୍ବେ।ନେଟ୍ ଏବଂ ହାଇଡ୍ରୋଜେନକାର୍ବୋନେଟ ଲବଣଗୁଡ଼ିକର ଅଧ୍ୟୟନ ଜୈବରସାୟନ ବିଜ୍ଞାନରୁ ବାଦ ଦିଆଯାଇଛି ।

4.2.1 ପୂକ୍ତ ଏବଂ ଅପୃକ୍ତ କାର୍ବନ ଯୌଗିକ

ଆମେ ମିଥେନର ସଂରଚନା ଦେଖିଲୁ । କାର୍ବନ ଓ ହାଇଡ୍ରୋକେନ ମଧ୍ୟରେ ସୃଷ୍ଟି ହେଉଥିବା ଆଉ ଏକ ଯୌଗିକ ହେଉଛି, ଇଥେନ । ଏହାର ସଂଙ୍କେତ \mathbf{C}_2 \mathbf{H}_6 । ସରଳ କାର୍ବନ ଯୌଗିକର ସଂରଚନା ନିର୍ଣ୍ଣୟ କରିବାକୁ ପ୍ରଥମ ସୋପାନ ହେଉଛି, କାର୍ବନ ପରମାଣୁଗୁଡ଼ିକୁ ଏକ-ବନ୍ଧ ସହ ଏକା ସାଙ୍ଗରେ ସଂଯୁକ୍ତ କରିବା (ଚିତ୍ର 4.6 a) ଏବଂ ତା' ପରେ କାର୍ବନର ବାକିରହିଥିବା ଯୋଜ୍ୟତାଗୁଡ଼ିକୁ ସଂପୂର୍ଣ୍ଣ କରିବା ପାଇଁ ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ବ୍ୟବହାର କର (ଚିତ୍ର 4.6 b) । ଉଦାହରଣ ସ୍ୱରୂପ, ନିମ୍ନଲିଖିତ ସୋପାନଗୁଡ଼ିକରେ ଇଥେନର ସଂରଚନା ନିର୍ଣ୍ଣୟ କରିବା ।

C-C ସୋପାନ 1

ଚିତ୍ର 4.6 (a) କାର୍ବନ ପରମାଣୁଗୁଡ଼ିକ ଏକ-ବନ୍ଧ ସହ ଏକା ସାଙ୍ଗରେ ସଂଯୁକ୍ତ

ପ୍ରତି କାର୍ବନ ପରମାଣୁର ବାକି ତିନୋଟି ଯୋଜ୍ୟତା ଅସଂପୂର୍ଣ ରହିଛି, ତେଣୁ ପ୍ରତିକାର୍ବନକୁ ତିନୋଟି ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ସହିତ ବନ୍ଧନ କଲେ ଆମେ ପାଇବା :

ସୋପାନ 2

ଚିତ୍ର 4.6 (b) କାର୍ବନ ପରମାଣୁ ସହ ହାଇଡ୍ରୋକେନ୍ ପରମାଣୁର ବନ୍ଧନ ଇଥେନର ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନା ଚିତ୍ର 4.6(c)ରେ ଦର୍ଶାଯାଇଛି।

ଚିତ୍ର 4.6 (c) ଇଥେନର ଇଲେକ୍ଟ୍ରନ୍ ଡଟ୍ ସଂରଚନା

ଏହିପରି ପ୍ରୋପେନ୍ର ସଂରଚନା ଚିତ୍ର କରିପାରିବ ? ପ୍ରୋପେନର ଆଣବିକ ସଙ୍କେତ ହେଉଛି $\mathbf{C_3}$ $\mathbf{H_8}$ । ତୂମେ ଲକ୍ଷ୍ୟ କରି ପାରିବ ଯେ ସବୁଯାକ ପରମାଣୁର ଯୋଜ୍ୟତା ସେଗୁଡ଼ିକ ମଧ୍ୟରେ ଏକ–ବନ୍ଧ ଦ୍ୱାରା ସଂପୂର୍ଣ୍ଣ ହେଉଛି । ଏହି ଭଳି କାର୍ବନ ଯୌଗିକଗୁଡ଼ିକୁ ପୃକ୍ତ ଯୌଗିକ କୁହାଯାଏ । ଏହି ଯୌଗିକଗୁଡ଼ିକ ସାଧାରଣତଃ ବେଶୀ ପ୍ରତିକ୍ରିୟାଶୀଳ ନୁହେଁ ।

ଅନ୍ୟ ଏକ କାର୍ବନ ଓ ହାଇଡ୍ରୋକେନର ଯୌଗିକର ସଙ୍କେତ ହେଉଛି \mathbf{C}_2 \mathbf{H}_4 । ଏହାକୁ ଏଥିନ୍ (Ethene) କୁହାଯାଏ । ଏହି ଅଣୁକୁ କିପରି ଚିତ୍ରଣ କରାଯାଇ ପାରିବ ? ଉପରର ସେହି ସମାନ ସୋପାନ ଧାରା ଅନୁସରଣ କରିବା ।

ପ୍ରତ୍ୟେକ କାର୍ବନ ପରମାଣୁ ସହିତ ଦୁଇଟି ହାଇଡ୍ରୋଜେନ ରହିଛି । (ସୋପାନ 2) । ଆମେ ଦେଖୁଛୁଯେ ପ୍ରତି କାର୍ବନ ପରମାଣୁ ପିଛା ଗୋଟିଏ ଯୋଜ୍ୟତା ଅସଂପୂର୍ଣ୍ଣ ରହୁଛି । ଦୁଇ କାର୍ବନ ମଧ୍ୟରେ କେବଳ ଯଦି ଦ୍ୱି-ବନ୍ଧ ରହେ ତେବେ ଏହା ସଂପୂର୍ଣ୍ଣ ହୋଇପାରିବ (ସୋପାନ 3) । ଏଥିନ୍ ପାଇଁ ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନା ଚିତ୍ର 4.7ରେ ଦିଆଯାଇଛି ।

ଚିତ୍ର 4.7 ଏଥିନ୍ର ସଂରଚନା

କାର୍ବନ ଓ ହାଇଡ୍ରୋଜେନର ଆଉ ଏକ ଯୌଗିକର ସଙ୍କେତ ହେଉଛି \mathbf{C}_2 \mathbf{H}_2 । ଏହାକୁ ଇଥାଇନ (Ethyne) କୁହାଯାଏ । ଇଥାଇନ ପାଇଁ ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନାର ଚିତ୍ର କରିପାରିବକି ? ଦୁଇଟି କାର୍ବନ ମଧ୍ୟରେ ସେଗୁଡ଼ିକର ଯୋଜ୍ୟତା ସଂପୂର୍ଣ୍ଣ ହେବା ପାଇଁ କେତୋଟି ବନ୍ଧ ଆବଶ୍ୟକ ? ଏହିଭଳି କାର୍ବନର ଯୌଗିକ, ଯେଉଁଥିରେ କାର୍ବନ–କାର୍ବନ ମଧ୍ୟରେ ଦ୍ୱି–ବନ୍ଧ କିୟା ତ୍ରି–ବନ୍ଧ ଥାଏ, ସେଗୁଡ଼ିକୁ ଅପୃକ୍ତ କାର୍ବନ ଯୌଗିକ କୁହାଯାଏ ଏବଂ ଏଗୁଡ଼ିକ ପୃକ୍ତ କାର୍ବନ ଯୌଗିକଠାରୁ ଅଧିକ ପ୍ରତିକ୍ରିୟାଶୀଳ ।

4.2.2 ଶୃଙ୍ଖଳ, ଶାଖା ଏବଂ ଚକ୍ରାକାର (Chains, Branches & Rings)

ଆଗରୁ ଆମେ ଉଲ୍ଲେଖ କରିଛୁ ଯେ ମିଥେନ୍, ଇଥେନ ଓ ପ୍ରୋପେନ ଯଥାକୁମେ 1, 2 ଏବଂ 3 କାର୍ବନ ପରମାଣୁ ରହିଥିବା କାର୍ବନ ଯୌଗିକ । କାର୍ବନ ପରମାଣୁର ଏହି ଭଳି 'ଚେନ୍' ବା 'ଶୃଙ୍ଖଳ' ରେ ବହୁ ସଂଖ୍ୟାର କାର୍ବନ ପରମାଣୁ ରହିପାରିବ । ଏହି ଯୌଗିକଗୁଡ଼ିକରୁ ଛଅଟିର ନାମ ଏବଂ ସଂରଚନା ସାରଣୀ 4.2ରେ ଦିଆଯାଇଛି ।

ସାରଣୀ 4.2 କାର୍ବନ ଓ ହାଇଡ୍ରୋକେନର ପୃକ୍ତ ଯୌଗିକର ସଙ୍କେତ ଓ ସଂରଚନା

କାର୍ବନ ପରମାଣୁର ସଂଖ୍ୟା	ନାମ	ସଂଙ୍କେତ	ସଂରଚନା
1	ମିଥେନ୍ (Methane)	CH ₄	H H-C-H I H
2	ଇଥେନ୍ (Ethane)	C ₂ H ₆	H H H-C-C-H H H
3	ପ୍ରୋପେନ୍ (Propane)	C ₃ H ₈	H H H H-C-C-C-H H H H
4	ବ୍ୟୁଟେନ୍ (Butane)	C ₄ H ₁₀	H H H H H-C-C-C-C-H H H H H
5	ପେଖ୍ଚେନ୍ (Pentane)	C ₅ H ₁₂	H H H H H H-C-C-C-C-C-H
6	ହେକ୍ଟେନ୍ (Hexane)	C ₆ H ₁₄	H H H H H H H-C-C-C-C-C-C-H H H H H H H

କିନ୍ତୁ ଆଉଥରେ ବ୍ୟୁଟେନ୍କୁ ଲକ୍ଷ୍ୟ କର । ଯଦି ୟରୋଟି କାର୍ବନ ପରମାଣୁ ସହ କାର୍ବନ ଛାଞ୍ଚ (Skeleton) ତିଆରି କରିବା, ତେବେ ଆମେ ଦେଖୁ ଯେ ଦୂଇଟି ସ୍ୱତନ୍ତ ଛାଞ୍ଚ ସୟବ ହେଉଛି-

ଚିତ୍ର 4.8 (a) ଦୁଇଟି ସୟାବ୍ୟ କାର୍ବନ ଛାଞ୍ଚ

ବାକିରହିଥିବା ଯୋଜ୍ୟତାଗୁଡ଼ିକୁ ହାଇଡ୍ରୋଜେନ ଦ୍ୱାରା ପୂରଣ କଲେ ଆମେ ପାଇବା–

ଚିତ୍ର 4.8 (b) $\mathbf{C}_{_4}\,\mathbf{H}_{_{10}}$ ସଙ୍କେତ ସହ ଦୁଇଟି ସଂରଚନା ପାଇଁ ସଂପୂର୍ଣ୍ଣ ଅଣୁ

ଆମେ ଦେଖୁଛୁ ଯେ, ଏହି ଉଭୟ ସଂରଚନାର ସଙ୍କେତ ସମାନ, C_4H_{10} । ଯେଉଁ ଯୌଗିକଗୁଡ଼ିକର ଏକା ଅଣୁ ସଙ୍କେତ ଥାଏ, କିନ୍ତୁ ଅଣୁ ଭିତର ପରମାଣୁ ସଜା ପୃଥକ୍ ହୋଇଥାଏ, ସେହି ଯୌଗିକଗୁଡ଼ିକୁ ସଂରଚନାମ୍କ ଆଇସୋମର (Structural isomer) କୁହାଯାଏ ।

ସଳଖ (Straight) ଏବଂ ଶାଖାଯୁକ୍ତ (Branched) କାର୍ବନ ଶୃଙ୍ଖଳ ଛଡା କେତେକ ଯୌଗିକରେ କାର୍ବନ ପରମାଣୁଗୁଡ଼ିକ ରିଙ୍ଗ୍ ପରି ବା ଚକ୍ରାକାରରେ ସଜିତ ହୋଇରହିଥାଏ । ଉଦାହରଣସ୍ୱରୂପ,

ସାଇକ୍ଲୋହେକ୍ୱେନ (Cyclohexane)ର ସଙ୍କେତ ହେଉଛି $\mathbf{C}_6\mathbf{H}_{12}$ ଏବଂ ଏହାର ସଂରଚନା ନିମ୍ନରେ ଦିଆଯାଇଛି ।

ଚିତ୍ର 4.9 ସାଇକ୍ଲୋହେକ୍ସେନର ସଂରଚନା (a) କାର୍ବନ ଛାଞ୍ଚ, (b) ସମ୍ପୂର୍ଷ ଅଣୁ

ସାଇକ୍ଲୋହେକ୍ୱେନ୍ ପାଇଁ ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନା ଚିତ୍ର କରିପାରିବକି ? ସଳଖ ଶୃଙ୍ଖଳ, ଶାଖାଯୁକ୍ତ ଶୃଙ୍ଖଳ ଏବଂ ଚକ୍ରୀୟ କାର୍ବନ ଯୌଗିକ, ଏସବୁ ପୃକ୍ତ କିୟା ଅପୃକ୍ତ ହୋଇପାରେ।

ଉଦାହରଣସ୍ୱରୂପ, ବେଞ୍ଜିନ୍ର ସଙ୍କେତ $\mathbf{C}_6\,\mathbf{H}_6\,$ ଏବଂ ଏହାର ସଂରଚନା ତଳେ ଦିଆଯାଇଛି ।

ଚିତ୍ର 4.10 ବେଞ୍ଜିନ୍ର ସଂରଚନା ଓ ସଙ୍କେତ

ଯେଉଁ ସବୁ କାର୍ବନ ଯୌଗିକରେ କେବଳ କାର୍ବନ ଓ ହାଇତ୍ରୋଜେନ ରହିଛି ସେଗୁଡ଼ିକୁ ହାଇତ୍ରୋକାର୍ବନ କୁହାଯାଏ । ଏଥିମଧ୍ୟରୁ ପୃକ୍ତହାଇତ୍ରୋକାର୍ବନକୁ ଆଲ୍କେନ (Alkane) କୁହାଯାଏ । ଯେଉଁ ଅପୃକ୍ତ ହାଇତ୍ରୋକାର୍ବନରେ ଏକ ବା ଅଧିକ ଦ୍ୱି-ବନ୍ଧ ଥାଏ ତାକୁ ଆଲ୍କିନ୍ (Alkene) କୁହାଯାଏ । ଏକ ବା ଅଧିକ ତ୍ରି-ବନ୍ଧ ଥିବା ହାଇତ୍ରୋକାର୍ବନକୁ ଆଲ୍କାଇନ୍ (Alkyne) କୁହାଯାଏ ।

4.2.3 କାର୍ବନ ସହିତ ବନ୍ଧୁତା

(Will You be my Friend?)

କାର୍ବନ ଏକ ଖୁବ ବନ୍ଧୁତ୍ୱପୂର୍ଣ୍ଣ ମୌଳିକ ବୋଲି ମନେ ହୁଏ। ଏ ପର୍ଯ୍ୟନ୍ତ ଆମେ କାର୍ବନ ଏବଂ ହାଇଡ୍ରୋଜେନର ଯୌଗିକ ଦେଖି ଆସିଲୁ । କିନ୍ତୁ କାର୍ବନ ଅନ୍ୟ ମୌଳିକ ଯଥା : ହାଲୋଜେନ୍, ଅକ୍ସିଜେନ୍, ନାଇଟ୍ରୋଜେନ ଏବଂ ସଲ୍ଫର ସହିତ ମଧ୍ୟ ବନ୍ଧ ଗଠନ କରେ। ଏକ ହାଇଡ୍ରୋକାର୍ବନ ଶୃଙ୍ଖଳରେ ଏକ ବା ଅଧିକ ହାଇଡ୍ରୋଜେନର ସ୍ଥାନ ଏହି ସବୁ ମୌଳିକ ଦ୍ୱାରା ପୂରଣ କରାଯାଇପାରିବ । ଏଥିରେ ବି କାର୍ବନର ଯୋଜ୍ୟତା ସ୍ୱୂର୍ଷ ରହିବ। ଏ ଭଳି ଯୌଗିକଗୁଡ଼ିକରେ ହାଇଡ୍ରୋଜେନ ବଦଳରେ ଅନ୍ୟ ଯେଉଁ ମୌଳିକର ପରମାଣ୍ଡ ସ୍ଥାନ ନିଏ ତାହାକୁ ଅସମ ପରମାଣୁ (Heteroatom) କୁହାଯାଏ। ଏହି ସବୁ ଅସମ ପରମାଣୁ କେତେକ ଗ୍ରୁପରେ ମଧ୍ୟ ଉପସ୍ଥିତ ଥା'ନ୍ତି (ସାରଣୀ 4.3ଦେଖ)। ଏହି ଅସମ ପରମାଣୁ ଏବଂ ଏହି ଅସମ ପରମାଣୁ ରହିଥିବା ଗୁପ ଯୌଗିକକୁ ସ୍ୱତନ୍ତ ଧର୍ମ ପ୍ରଦାନ କରିଥା'ନ୍ତି। ତେଣୁ ଏଗୁଡ଼ିକୁ ସକ୍ରିୟ ଗ୍ରପ (Functional Group) କୁହାଯାଏ । ଗୋଟିଏ କାର୍ବନ ଯୌଗିକର ଧର୍ମ ମୁଖ୍ୟତଃ ତାହାର ସକ୍ରିୟ ଗ୍ରପ ଉପରେ ନିର୍ଭର କରେ, କାର୍ବନଶୃଙ୍ଖଳର ଦୀର୍ଘତା ଓ ପ୍ରକୃତି ଉପରେ ନୁହେଁ । ସାରଣୀ 4.3 ରେ କେତୋଟି ପ୍ରଧାନ ସକ୍ରିୟ ଗ୍ରୁପ ଦିଆଯାଇଛି । ମୁକ୍ତ ଯୋଜ୍ୟତା ବା ଗ୍ରୁପର ଯୋଜ୍ୟତାଗୁଡ଼ିକୁ ଗାର ଦ୍ୱାରା ଦେଖାଯାଇଛି । ଏକ ବା ଅଧିକ ହାଇଡ୍ରୋଜେନ ପରମାଣୁର ସ୍ଥାନ ସକ୍ରିୟ ଗ୍ରୁପ ଦ୍ୱାରା ପ୍ରତିସ୍ଥାପିତ ହୋଇ ଏହି ଯୋଜ୍ୟତା ମଧ୍ୟଦେଇ କାର୍ବନଶୃଙ୍ଖଳ ସହିତ ସଂଯୋଗ ହୋଇଥାଏ I

ସାରଣୀ 4.3 କାର୍ବନ ଯୋଗିକରେ କେତୋଟି ସକ୍ରିୟ ଗ୍ରପ

ଅସମ ପରମାଣୁ	ସକ୍ରିୟ ଗ୍ରୁପ	ସକ୍ରିୟ ଗ୍ରୁପର ସଙ୍କେତ
CI/Br	ହାଲୋ- (କ୍ଲୋରୋ/ବ୍ରୋମୋ)	−Cl, −Br
		(ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ବଦଳରେ ପ୍ରତିସ୍ଥାପିତ)
ଅକ୍ସିଜେନ	1. ଆଲ୍କହଲ୍	—ОН
	2. ଆଲ୍ଡିହାଇଡ୍	-c H
	3. କିଟୋନ୍	-c- 0
	4. କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ୍	о -с-он

4.2.4 ହୋମୋଲଗସ୍ ଶ୍ରେଣୀ

(Homologous Series)

ତୂମେ ଦେଖିଲ ଯେ କାର୍ବନ ପରମାଣୁଗୁଡ଼ିକ ପରୟର ସହିତ ସଂଯୁକ୍ତ ହୋଇ ବିଭିନ୍ନ ଦୀର୍ଘତାର ଶୃଙ୍ଖଳ ସୃଷ୍ଟି କରି ପାରନ୍ତି । ଏହା ବ୍ୟତୀତ ଏହି ସବୁ ଶୃଙ୍ଖଳରେ ଥିବା ଏକ ବା ଅଧିକ ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ସ୍ଥାନରେ ଯେ କୌଣସି ସକ୍ରିୟ ଗ୍ରୁପ ପ୍ରତିସ୍ଥାପନ ହୋଇପାରିବ । ସକ୍ରିୟ ଗ୍ରୁପର ଉପସ୍ଥିତି କାର୍ବନ ଯୌଗିକର ଧର୍ମଗୁଡ଼ିକ ଜାହିର କରିଥାଏ । ଉଦାହରଣ ସ୍ୱରୂପ , CH_3OH , C_2H_5OH , C_3H_7OH ଏବଂ C_4H_9OH , ଏହି ସବୁଗୁଡ଼ିକର ରାସାୟନିକ ଧର୍ମ ଏକା ପ୍ରକାରର । ତେଣୁ ଯୌଗିକର ଏପରି ଏକ ଶ୍ରେଣୀ ଯେଉଁଥିରେ ଏକା ସକ୍ରିୟ ଗ୍ରୁପ କାର୍ବନ ଶୃଙ୍ଖଳର ହାଇଡ୍ରୋଜେନ ପାଇଁ ପ୍ରତିସ୍ଥାପିତ ହୋଇଥାଏ ତାକୁ ସଜାତୀୟ ବା ହୋମୋଲଗସ୍ ଶ୍ରେଣୀ କୁହାଯାଏ ।

ପୂର୍ବରୁ ସାରଣୀ (4.2)ରେ ଆମେ ଦେଖିଥିବା ହୋମୋଲଗସ୍ ଶ୍ରେଣୀକୁ ଲକ୍ଷ୍ୟ କରିବା। ଆମେ ଯଦି କ୍ରମାନ୍ୟରେ ଥିବା ଯୌଗିକଗୁଡ଼ିକର ସଙ୍କେତକୁ ଦୃଷ୍ଟିପାତ କରିବା, ମନେକର- ${
m CH_4}$ ଏବଂ ${
m C_2H_6}$ — ଗୋଟିଏ ${
m -CH_2}$ - ଏକକ ଦ୍ୱାରା ଏଗୁଡ଼ିକର ପ୍ରଭେଦ ରହିଛି

 ${\sf C_2H_6}$ ଏବଂ ${\sf C_3H_8}$ — ଗୋଟିଏ - ${\sf CH_2}$ - ଏକକ ଦ୍ୱାରା ଏଗୁଡ଼ିକର ପ୍ରଭେଦ ରହିଛି

ପରବର୍ତ୍ତୀ ଯୋଡି - ପ୍ରୋପେନ୍ ଏବଂ ବ୍ୟୁଟେନ୍ (\mathbf{C}_4 \mathbf{H}_{10}) ମଧ୍ୟରେ କ'ଶ ପ୍ରଭେଦ ରହିଛି ?

ଏହି ଯୋଡ଼ିଗୁଡ଼ିକ ମଧ୍ୟରେ ଆଣବିକ ବୟୁତ୍ୱରେ ପ୍ରଭେଦ ନିର୍ଦ୍ଧୟ କରିପାରିବକି? (କାର୍ବନର ପାରମାଣବିକ ବୟୁତ୍ୱ ହେଉଛି 12u ଏବଂ ହାଇଡୋଜେନର ପାରମାଣବିକ ବୟୁତ୍ୱ ହେଉଛି 1u)

ସେହିପରି, ଆଲ୍କିନ୍ଗୁଡିକ ପାଇଁ ହୋମୋଲଗସ୍ ଶ୍ରେଣୀ ନିଅ । ଶ୍ରେଣୀର ପ୍ରଥମ ସଦସ୍ୟ ହେଉଛି ଏଥିନ୍ । ଏହା ବିଷୟରେ ଆମେ ଏହି ଅଧ୍ୟାୟର ଖଣ୍ଡ 4.2.1ରେ ଜାଣିଛୁ । ଏଥିନ୍ର ସଙ୍କେଡ କ'ଣ ? କୁମାନ୍ୟରେ ପରବର୍ତ୍ତୀ ସଦସ୍ୟଗୁଡିକର ସଙ୍କେଡ ହେଉଛି $\mathbf{C_3H_6}$, $\mathbf{C_4H_8}$ ଏବଂ $\mathbf{C_5H_{10}I}$ ଏଗୁଡ଼ିକ ମଧ୍ୟରେ ପ୍ରଭେଦ କ'ଣ ଗୋଟିଏ $-\mathbf{CH_2}$ ଏକକ ? କାର୍ବନ ପରମାଣୁ ଏବଂ ହାଇଡ୍ରୋଜେନ ପରମାଣୁର ସଂଖ୍ୟା ମଧ୍ୟରେ କୌଣସି ସଂପର୍କ ଦେଖିଛ କି ?

ଆଲ୍କିନ୍ର ସାଧାରଣ ସଙ୍କେତକୁ C_nH_{2n} ରୂପେ ଲେଖାଯାଇ ପାରିବ । ଏଠାରେ n=2,3,4 । ସେହିପରି ଆଲକେନ୍ ଏବଂ ଆଲକାଇନ୍ ପାଇଁ ସାଧାରଣ ସଙ୍କେତ ନିର୍ଣ୍ଣୟ କରିପାରିବ ?

କୌଣସି ହୋମୋଲଗସ୍ ଶ୍ରେଣୀରେ ଆଣବିକ ବୟୁତ୍ସ ବୃଦ୍ଧି ଘଟିବା ସହ ଭୌତିକ ପ୍ରକୃତିରେ ଏକ କ୍ରମବିନ୍ୟାସ (Gradation) ଦେଖାଯାଏ । ଏହାର କାରଣ ହେଲା, ଆଣବିକ ବୟୁତ୍ସ ବୃଦ୍ଧି ସହ ଗଳନାଙ୍କ ଓ ୟୁଟନାଙ୍କର ବୃଦ୍ଧି ହୋଇଥାଏ । ଅନ୍ୟ ଭୌତିକ ପ୍ରକୃତି ଯଥା : ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଦ୍ରାବକରେ ଦ୍ରବଣୀୟତା ମଧ୍ୟ ସେହିଭଳି କ୍ରମବିନ୍ୟାସ ଦେଖାଏ । କିନ୍ତୁ ଏକ ହୋମୋଲଗସ ଶ୍ରେଣୀରେ ରାସାୟନିକ ଧର୍ମ କେବଳ ସକ୍ରିୟ ଗ୍ରୁପ ଦ୍ୱାରା ନିର୍ଣ୍ଣିତ ହୋଇଥାଏ ଓ ସମାନ ରହେ ।

🛨 ତୁମ ପାଇଁ କାମ : 4.2

- ତଳେ ଦିଆଯାଇଥିବା ଯୋଡିଗୁଡିକ ପାଇଁ ସଙ୍କେତଗୁଡ଼ିକ ମଧ୍ୟରେ ଏବଂ ଆଣବିକ ବୟୃତ୍ବ ମଧ୍ୟରେ ପ୍ରଭେଦ କଳନା କର।
- (a) CH₃ OH ଏବଂ C₂ H₅ OH
- (b) $C_2 H_5 OH$ ଏବଂ $C_3 H_7 OH$
- (c) $C_3 H_7 OH ଏବଂ C_4 H_9 OH$
- ଏହି ତିନୋଟିରେ କିଛି ସାଦୃଶ୍ୟ ଅଛି କି?
- ଗୋଟିଏ ଶ୍ରେଣୀ (Family) ପାଇବା ପାଇଁ ଏହି
 ଆଲ୍କହଲଗୁଡ଼ିକୁ କାର୍ବନ ପରମାଣୁର ବର୍ଦ୍ଧିତ କ୍ରମରେ
 ସକାଅ।
- ସାରଣୀ 4.3ର ଅନ୍ୟ ସକ୍ରିୟ ଗ୍ରୁପ ପାଇଁ ୟରୋଟି କାର୍ବନ ପର୍ଯ୍ୟନ୍ତ ଯୌଗିକ ଗୁଡ଼ିକର ହୋମୋଲଗସ୍ ଶ୍ରେଣୀ ଲେଖ ।
- 4.2.5 କାର୍ବନ ଯୌଗିକଗୁଡ଼ିକର ନାମକରଣ ପଦ୍ଧତି

 (Nomenclature of Carbon Compounds)

 ହୋମୋଲଗସ୍ ଶ୍ରେଣୀରେ ଯୌଗିକଗୁଡ଼ିକର ନାମ

 ମୂଳ କାର୍ବନ ଶୃଙ୍ଖଳର ନାମ ଉପରେ ନିର୍ଭର କରେ। ଏହି

ଶୃଞ୍ଜଳର ନାମର ପୂର୍ବରେ କିୟା ନାମର ଶେଷଭାଗରେ ସକ୍ରିୟ ଗୁପର ପ୍ରକୃତି ସୂଷ୍ତଉଥିବା ଏକ ଶବ୍ଦାଂଶ ଯୋଗ କରି ଏବଂ ଶୃଙ୍ଖଳର ନାମକୁ ସାମାନ୍ୟ ପରିବର୍ତ୍ତନ କରାଯାଇ ଯୌଗିକର ନାମକରଣ କରାଯାଏ । ଉଦାହରଣସ୍ୱରୂପ, ତୁମ ପାଇଁ କାମ : 4.2ରେ ନିଆଯାଇଥିବା ଆଲ୍କହଲଗୁଡ଼ିକର ନାମ ହେଉଛି ମିଥାନଲ୍, ଇଥାନଲ୍, ପ୍ରୋପାନଲ୍ ଏବଂ ବ୍ୟୁଟାନଲ୍।

ନିମ୍ନଲିଖିତ ପଦ୍ଧତି ଦ୍ୱାରା କାର୍ବନ ଯୌଗିକର ନାମକରଣ କରାଯାଇ ପାରିବ।

- (i) ଯୌଗିକଟିରେ କାର୍ବନ ସଂଖ୍ୟା ଚିହ୍ନଟ କର । ଡିନୋଟି କାର୍ବନ ପରମାଣୁ ରହିଥିବା ଯୌଗିକର ନାମ ପ୍ରୋପେନ୍ ହୋଇଥା'ନ୍ତା ।
- (ii) ସକ୍ରିୟ ଗ୍ରୁପ ଥିଲେ ଯୌଗିକର ନାମର ପୂର୍ବରେ କିୟା ନାମର ଶେଷ ଭାଗରେ ଏକ ଶବ୍ଦାଂଶ ଯୋଗକରି ସକ୍ରିୟ ଗ୍ରୁପକୁ ସୂଷ୍ଟଯାଏ, ଯେପରି ସାରଣୀ 4.4ରେ ଦିଆଯାଇଛି।
- (iii) ସକ୍ରିୟ ଗ୍ରୁପର ନାମକୁ ଯଦି ଶେଷଭାଗରେ ସୂୟଇବାକୁ ହେବ ଇଂରାଜୀ ନାମର ଶେଷଭାଗରେ ଥିବା 'e'କୁ ବାଦ ଦେଇ ଏବଂ ସେହିସ୍ଥାନରେ ଉପଯୁକ୍ତ ଶବ୍ଦାଂଶଟି ଶେଷଭାଗରେ ଯୋଗକରି କାର୍ବନଶୃଙ୍ଖଳର ନାମକୁ ସାମାନ୍ୟ ପରିବର୍ତ୍ତନ କରାଯାଏ। ଉଦାହରଣସ୍ୱରୂପ, ଗୋଟିଏ କିଟୋଗ୍ରୁପ ସହ ଏକ ତିନି କାର୍ବନ ବିଶିଷ୍ଟ ଶୃଙ୍ଖଳକୁ ନିମ୍ନ ପ୍ରକାରରେ ନାମିତ କରାଯିବ।

ପ୍ରୋପେନ୍ - 'e' = ପ୍ରୋପାନ୍ + 'ଓନ୍' = ପ୍ରୋପାନୋନ୍ (Propane - 'e' = Propan + 'one' = Propanone)

(iv) କାର୍ବନଶୃଙ୍ଖଳଟି ଯଦି ଅପୃକ୍ତ, ତେବେ କାର୍ବନ ଶୃଙ୍ଖଳ ନାମର ଶେଷଭାଗରେ ଥିବା ଇଂରାଜୀ ଶବ୍ଦାଂଶ 'ane' ସ୍ଥାନରେ 'ene' କିୟା 'yne' ପ୍ରତିସ୍ଥାପନ କରାଯାଏ ଯେପରି ସାରଣୀ 4.4 ରେ ଦିଆଯାଇଛି । ଉଦାହରଣସ୍ୱରୂପ, ଗୋଟିଏ ଦ୍ୱିବନ୍ଧ ସହ ତିନି କାର୍ବନ ବିଶିଷ୍ଟ ଶୃଙ୍ଖଳକୁ ପ୍ରୋପିନ୍ (Propene) କୁହାଯିବ ଏବଂ ଯଦି ଏହି ଶୃଙ୍ଖଳରେ ତ୍ରିବନ୍ଧ ରହେ, ଏହାକୁ ପ୍ରୋପାଇନ୍ (Propyne) କୁହାଯିବ ।

\star ସାରଣୀ 4.4 ସକ୍ରିୟଗ୍ରୁପଗୁଡ଼ିକର ନାମକରଣ

	<	
ସକ୍ରିୟଗ୍ରୁପ	ନାମର ପୂର୍ବରେ ଯୋଗ ହୋଇଥିବା ଶବ୍ଦାଂଶ/	ଉଦାହରଣ
	ନାମର ଶେଷଭାଗରେ ଯୋଗ ହୋଇଥିବା ଶବ୍ଦାଂଶ	
1. ହାଲୋଜେନ	ନାମପୂର୍ବରେ – 'କ୍ଲୋରୋ', 'ବ୍ରୋମୋ' ଇତ୍ୟାଦି	୍ମ ମ ମ କ୍ଲାରୋପ୍ରୋପେନ୍ H-C-C-C-CI
(Halogen)	(Chloro, Bromo etc.)	н н н
		$_{ m H}^{ m H}_{ m H}^{ m H}_{ m H}^{ m H}_{ m G}$ କ୍ରୋମୋପ୍ରୋପେନ୍ $_{ m H}^{ m H}_{ m H}^{ m H}_{ m H}^{ m H}_{ m H}^{ m H}$
2. ଆଲ୍କହଲ (Alcohol)	ନାମର ଶେଷଭାଗରେ - 'ଅଲ୍' (ol)	н н н н-с-с-с-он ପ୍ରୋପାନଲ୍ н н н
3. ଆଲଡିହାଇଡ୍ (Aldehyde)	ନାମର ଶେଷଭାଗରେ - 'ଆଲ୍' (al)	୍ମ ୍ମ ୍ମ H-C-C-C=O ପ୍ରୋପାନାଲ୍ ମ୍ନ ନ୍ମ
4. କିଟୋନ୍ (Ketone)	ନାମର ଶେଷଭାଗରେ - 'ଓନ୍' (one)	H H H-C-C-C-H ପ୍ରୋପାନୋନ୍ H O H
5. କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ଼ (Carboxylic acid)	ନାମର ଶେଷଭାଗରେ- 'ଓଇକ୍ ଏସିଡ୍' (oic acid)	୍ମ୍ୟୁ ନ୍ଦୁ H-C-C-C-OH ପ୍ରୋପାନୋଇକ୍ ଏସିଡ H H
6. ଦ୍ୱିବନ୍ଧ (ଆଲ୍କିନ୍) (Double bond,	ନାମର ଶେଷଭାଗରେ - 'ଇନ୍' (ene)	н н н-с-с-с н ପ୍ରୋପିନ୍
alkene) 7. ତ୍ରିବନ୍ଧ (ଆଲ୍କାଇନ୍) (Triple bond,	ନାମର ଶେଷଭାଗରେ - 'ଆଇନ୍' (yne)	н н-¢-с=с-н н ପ୍ରୋପାଇନ୍
alkyne)		

ପ୍ରଶ୍ନ

- ପେଷ୍ଟେନ ପାଇଁ ତୁମେ କେତୋଟି ସଂରଚନାତ୍ମକ ଆଇସୋମର୍ ଚିତ୍ର କରିପାରିବ ?
- 2. ଆମ ଋରିପଟେ ଦେଖୁଥିବା କାର୍ବନ ଯୌଗିକର ବହୁଳତା ପାଇଁ କାର୍ବନର କେଉଁ ଦୁଇଟି ପ୍ରକୃତି ଦାୟୀ ?
- ସାଇକ୍ଲୋପେଷ୍ଟେନର ସଙ୍କେତ ଏବଂ ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନା କ'ଣ ହେବ ?
- ★4. ନିମ୍ନଲିଖିତ ଯୌଗିକଗୁଡ଼ିକ ପାଇଁ ସଂରଚନା ଚିତ୍ର ଦିଅ।
 - (i) ଇଥାନୋଇକ୍ ଏସିଡ଼୍ (ii) ବ୍ରୋମୋପେଷ୍ଟେନ୍
 - (iii) ବ୍ୟୁଟାନୋନ୍ (iv) ହେକ୍ୱାନାଲ

★5. ନିମ୍ନଲିଖ୍ତ ଯୌଗିକଗୁଡ଼ିକୁ କିପରି ନାମକରଣ କରିବ ?

(ii)
$$\mathbf{H} - \mathbf{C} = \mathbf{O}$$

(iii)
$$H H H$$

 $H-C-C-C-C-C=C-H$
 $H H H$

4.3 କାର୍ବନ ଯୌଗିକର ରାସାୟନିକ ଧର୍ମ(Chemical Properties of Carbon Compounds)

କାର୍ବନ ଯୌଗିକର କେତୋଟି ରାସାୟନିକ ଧର୍ମ ସମ୍ପନ୍ଧରେ ଆଲୋଚନା କରିବା । ପ୍ରଥମେ ଦହନ ବିଷୟରେ ଅଧ୍ୟୟନ କରିବା କାରଣ ଆମେ ବ୍ୟବହାର କରୁଥିବା ଅଧିକଂ।ଶ ଜାଳେଣି ହେଉଛି କାର୍ବନ କିମ୍ବା ଏହାର ଯୌଗିକ ।

4.3.1 ଦହନ (Combustion)

କାର୍ବନର ଯେ କୌଣସି ରୂପ ଅକ୍ସିକେନରେ ଜଳିଲେ କାର୍ବନଡାଇଅକ୍ସାଇଡ୍ ସୃଷ୍ଟି ହେବା ସହିତ ତାପ ଓ ଆଲୋକ ନିର୍ଗତ ହୋଇଥାଏ । ଅଧିକାଂଶ କାର୍ବନ ଯୌଗିକ ମଧ୍ୟ ଦହନ ପ୍ରତିକ୍ରିୟାରେ ବହୁପରିମାଣର ତାପଶକ୍ତି ଓ ଆଲୋକଶକ୍ତି ସୃଷ୍ଟି କରିଥାନ୍ତି । ଏଗୁଡ଼ିକ ହେଉଛି ଜାରଣ ପ୍ରତିକ୍ରିୟା । ଏବିଷୟରେ ତୃମେ ପ୍ରଥମ ଅଧ୍ୟାୟରେ ଶିକ୍ଷା ଲାଭ କରିଛ-

$$(i)$$
 $C + O_2 \rightarrow CO_2 +$ ତାପ ଏବଂ ଆଲୋକ

$$(ii) \quad \operatorname{CH_4} + \operatorname{O_2} \rightarrow \operatorname{CO_2} + \operatorname{H_2O} +$$

ତାପ ଏବଂ ଆଲୋକ

(iii)
$$CH_3CH_2OH + O_2 \rightarrow CO_2 + H_2O +$$
 ତାପ ଏବଂ ଆଲୋକ

ପ୍ରଥମ ଅଧ୍ୟାୟରେ ତୁମେ ଶିଖ୍ଥ୍ବା ଉପାୟରେ ଉପରର ଶେଷ ଦୁଇଟି ପ୍ରତିକ୍ରିୟାକୁ ସମତୁଲ କର ।

ତ୍ରମ ପାଇଁ କାମ : 4.3

ସାବଧାନ : ଏହି କାମ କରିବା ପାଇଁ ଶିକ୍ଷକଙ୍କର ସାହାଯ୍ୟ ନିଅ।

- ଗୋଟିଏ ଚେପ୍ଟା ଋମଚ (Spatula)ରେ କେତୋଟି କାର୍ବନ ଯୌଗିକ (ଗନ୍ଧକର୍ପୁର, କର୍ପୁର, ଆଲ୍କହଲ) ଗୋଟିଏ ପରେ ଗୋଟିଏ ନିଅ ଏବଂ ଜଳାଅ।
- ଅଗ୍ନିଶିଖାର ପ୍ରକୃତିକୁ ପର୍ଯ୍ୟବେକ୍ଷଣ କର ଏବଂ
 ଲକ୍ଷ୍ୟକର ଧୃଆଁ ସୂଷ୍ଟି ହେଉଛି କି ନାହିଁ।
- ଅଗ୍ନିଶିଖାର ଉପରେ ଏକ ଧାତବ ଥାଳି ରଖ । କୌଣସି
 ଯୌଗିକ କ୍ଷେତ୍ରରେ ଥାଳିଉପରେ କିଛି ଜମିଯାଉଛି
 କି ?

ତୁମ ପାଇଁ କାମ : 4.4

- ଗୋଟିଏ ବୁନ୍ସେନ୍ ବର୍ଷଣ ଜଳାଅ ଏବଂ ବିଭିନ୍ନ ପ୍ରକାର ଶିଖା/ଧୂଆଁର ଉପସ୍ଥିତି ପାଇବା ପାଇଁ ଏହାର ନିମ୍ନଅଂଶରେ ଥିବା ବାୟୁଛିଦ୍ର (air hole)କୁ ନିୟନ୍ତଣ କର ।
- କଳାଧୂଆଁ ସହ ହଳଦିଆ ଅଗ୍ନିଶିଖା ତୁମେ କେତେବେଳେ ପାଉଛ ?
- ନୀଳ ଅଗ୍ନିଶିଖା ତୁମେ କେତେବେଳେ ପାଉଛ ?

ପୃକ୍ତ ହାଇଡ୍ରୋକାର୍ବନଗୁଡ଼ିକ ସାଧାରଣତଃ ସ୍ୱଚ୍ଛଶିଖା (Clean Flame) ଦେଉଥିବା ବେଳେ ଅପୃକ୍ତ କାର୍ବନ ଯୌଗିକଗୁଡ଼ିକ ବହୁପରିମାଣର କଳାଧୂଆଁ ସହ ହଳଦିଆ ରଙ୍ଗର ଶିଖା ଦେବ । ସେଥିପାଇଁ ତୁମପାଇଁ କାମ : 4.3ରେ ଧାତବ ଥାଳି ଉପରେ କଳାକଣିକା କମିଯାଏ । ସେ ଯାହା ହେଉ, ବାୟୁ ଯୋଗାଣକୁ ସୀମିତ କରିଦେଲେ ଏପରିକି ପୃକ୍ତ ହାଇଡ୍ରୋକାର୍ବନଗୁଡ଼ିକ ଅସଂପୂର୍ଣ୍ଣ ଦହନ ଫଳରେ କଳା ଧୂଆଁର ଶିଖା ଦେଇଥାଏ । ଆମ ଘରଗୁଡ଼ିକରେ ବ୍ୟବହୃତ ହେଉଥିବା ଗ୍ୟାସ/କିରୋସିନ ଷୋଭରେ ବାୟୁ ପାଇଁ ପ୍ରବେଶପଥ (Inlet) ଥାଏ, ଫଳରେ ଯଥେଷ ପରିମାଣର ଅକ୍ସିକେନଯୁକ୍ତ (Oxygen rich) ମିଶ୍ରଣ ଏକ ସ୍ୱଚ୍ଚ ନୀଳଶିଖା ଦେଇଥାଏ । ରନ୍ଧାପାତ୍ର ଯଦି କଳା ହୋଇଥିବା ତୁମେ ଦେଖ, ଏହାର ଅର୍ଥ ହେଉଛି ବାୟଛିଦ୍ୱ (airholes) ଗୁଡ଼ିକର ପଥ ଅବରୁଦ୍ଧ

ହୋଇଯାଇଛି ଏବଂ ଜାଳେଶି ନଷ୍ଟ ହେଉଛି । କୋଇଲା ଏବଂ ପେଟ୍ରୋଲିୟମଭଳି ଜାଳେଶିରେ କିଛି ପରିମାଣର ନାଇଟ୍ରୋଜେନ୍ ଏବଂ ସଲ୍ଫର ରହିଥାଏ । ଏଗୁଡ଼ିକର ଦହନ ଫଳରେ ନାଇଟ୍ରୋଜେନ୍ ଓ ସଲ୍ଫରର ଅକ୍ସାଇଡ୍ ଉତ୍ପନ୍ନ ହୋଇ ପରିବେଶରେ ମୁଖ୍ୟ ପ୍ରଦୃଷକ ଜନ୍ନେ ।

ତ୍ରମେ ଜାଣିଛ କି ?

ଶିଖା କିୟା ବିନାଶିଖା ସହ ପଦାର୍ଥଗୁଡ଼ିକ କାହିଁକି କଳେ ?

କୋଇଲା କିୟା କାଠ ନିଆଁକୁ କେବେ ପର୍ଯ୍ୟବେକ୍ଷଣ କରିଛ କି ? ଯଦି ନୁହେଁ, ପରେ କେତେବେଳେ ସୁଯୋଗ ମିଳିଲେ, ଆରୟ ଅବସ୍ଥାରେ କାଠ କିୟା କୋଇଲା ଜଳିଲେ କ'ଣ ହୁଏ, ଭଲଭାବେ ଦେଖ । ଉପରେ ତୁମେ ଦେଖିଲ ଯେ ଗୋଟିଏ ମହମବତୀ କିୟା ଗ୍ୟାସ୍ଷୋଭରେ ଏଲ୍ପିଜି (LPG)ଏକ ଶିଖାସହ ଜଳେ । ତୁମେ ଦେଖିବ ଯେ ଏକ ଚୁଲିରେ କୋଇଲା କିୟା ଅଙ୍ଗାର (Charcoal) କେବଳ ନାଲିରଙ୍ଗରେ ଉଜ୍ଜ୍ୱଳ ହୋଇ ଏବଂ ବିନାଶିଖାରେ ତାପନିର୍ଗତ କରିଥାଏ । ଏହାର କାରଣ ହେଲା, କେବଳ ଗ୍ୟାସୀୟ ପଦାର୍ଥ ଜଳିଲେ ଶିଖା ସୃଷ୍ଟି ହୋଇଥାଏ । କିନ୍ତୁ କାଠ କିୟା ଅଙ୍ଗାରକୁ ଜାଳିଲେ, ଏଥିରେ ଥିବା ଉଦ୍ବାୟୀ ପଦାର୍ଥଗୁଡ଼ିକ ବାଷରେ ପରିଣତ ହୁଏ ଏବଂ ପ୍ରଥମେ ଶିଖାସହ ଜଳେ ।

ଗ୍ୟାସୀୟ ପଦାର୍ଥର ପରମାଣୁଗୁଡ଼ିକ ଉଉସ୍ତ ହେଲେ ଆଲୋକ ଓ ତାପ ବିକିରଣ କରିବାକୁ ଆରୟ କରେ ଓ ପ୍ରଦୀପ୍ତଶିଖା (Luminous) ଦେଖାଯାଏ । ପ୍ରତି ମୌଳିକଦ୍ୱାରା ସୃଷ୍ଟ ବର୍ଷ୍ଣ ସେହି ମୌଳିକର ସ୍ୱଭାବସିଦ୍ଧ (Characteristic) ଗୁଣ । ଏହାକୁ ପରୀକ୍ଷା କରିବା ପାଇଁ ଗ୍ୟାସଷ୍ଟୋଭର ଶିଖାରେ ଗୋଟିଏ କପର ତାରକୁ ଗରମ କର ଏବଂ ଏହାର ବର୍ଷକୁ ପର୍ଯ୍ୟବେକ୍ଷଣ କର । ତୁମେ ଦେଖିଛ ଯେ ଅସଂପୂର୍ଷ୍ଣ ଦହନ କଳାଧୂଆଁ (soot) ଦିଏ । ତାହା କାର୍ବନ ଅଟେ । ଏହି ଦୃଷ୍ଟିରୁ ମହମବତୀ ଶିଖାର ହଳଦିଆ ବର୍ଷ କେଉଁ କାରଣ ଯୋଗୁଁ ହୁଏ ବୋଲି କହିବ ?

ତୂମେ ଅଧିକ କାଣିବା ପାଇଁ– କୋଇଲା ଏବଂ ପେଟ୍ରୋଲିୟମର ସୃଷ୍ଟି

ବିଭିନ୍ନ ପ୍ରକାର ଜୈବିକ ଏବଂ ଭୃତାଭିକ (Biological and Geological) ପ୍ରକ୍ରିୟା ଯୋଗୁଁ ଜୈବ ବସ୍ତ୍ରୁଦ୍ୱରୁ କୋଇଲା ଏବଂ ପେଟ୍ରୋଲିୟମ ସୃଷ୍ଟି ହୋଇଛି। ନିୟୁତ ନିୟୁତ ବର୍ଷପୂର୍ବେ ଜୀବିତ ଥିବା ଗଛ, ଫର୍ଷ ଏବଂ ଅନ୍ୟ ଉଦ୍ଭିଦଗୁଡ଼ିକର ମୃତ ଦେହାବଶେଷ ହେଉଛି କୋଇଲା। ସୟବତଃ ଭୂମିକଂପ କିୟା ଆଗ୍ନେୟଗିରି ଉଦ୍ଗୀରଣ ଦ୍ୱାର। ଏଗୁଡ଼ିକ ପୋଡି ହୋଇଗଲା । ମାଟି ଓ ପଥରର ୟରଗୁଡ଼ିକ ତଳେ ଋପି ହୋଇ ରହିଲା । ଆୟେ ଆୱେ କ୍ଷୟପ୍ରାପ୍ତ ହୋଇ ସେଗୁଡିକ କୋଇଲାରେ ପରିଶତ ହେଲା । ସମୁଦ୍ରରେ ଥିବା ନିୟୃତ ନିୟୃତ କ୍ଷୁଦ୍ର ଉଦ୍ଭିଦ ଏବଂ ପ୍ରାଣୀର ମୃତ ଦେହାବଶେଷରୁ ତୈଳ ଏବଂ ଗ୍ୟାସର ସୃଷ୍ଟି । ମୃତ୍ୟୁପରେ ସେଗୁଡ଼ିକର ଦେହାବଶେଷ ସମୁଦ୍ର ଶଯ୍ୟା ତଳକୁ ବୃଡ଼ିଗଲା ଏବଂ ପଟୁଦ୍ୱାରା ଆଚ୍ଛାଦିତ ହୋଇଗଲା । ଉଚ୍ଚ ୟପରେ ଥିବା ମୃତ ଅବଶେଷକୁ ବୀଜାଣୁ ଆକ୍ରମଣ କରି ସେଗୁଡ଼ିକୁ ତୈଳ ଓ ଗ୍ୟାସରେ ପରିଣତ କରିଦେଲା । ଶୀଳାରେ ପରିଶତ ହେଲା । ଶୀଳାରେ ଥିବା ଛିଦ୍ର ଅଂଶଗୁଡ଼ିକ ମଧ୍ୟକୁ ତୈଳ ଓ ଗ୍ୟାସ ବହିଗଲା ଏବଂ ସଞ୍ଚିତ ହୋଇ ରହିଲା । ଠିକ୍ ସଞ୍ଜରେ ଜଳ ରହିବା ପରି । କୋଇଲା ଏବଂ ପେଟ୍ରୋଲିୟମକୁ କାହିଁକି ଜୀବାଶୁ (Fossil) ଇନ୍ଧନ କୁହାଯାଏ ଅନୁମାନ କରି କହିପାରିବ ?

4.3.2 ଜାରଣ (Oxidation)

ପ୍ରଥମ ଅଧ୍ୟାୟରେ ତୁମେ ଜାରଣ ଓ ବିଜାରଣ ବିଷୟରେ ପଢ଼ିଛ । କାର୍ବନ ଯୌଗିକଗୁଡ଼ିକ ଦହନ ଦ୍ୱାରା ସହଜରେ ଜାରିତ ହୋଇପାରନ୍ତି । ଏହି ସମ୍ପୂର୍ଣ୍ଣ ଜାରଣ ଛଡ଼ା ଅନେକ ପ୍ରତିକ୍ରିୟା ଅଛି ଯେଉଁଥିରେ ଆଲ୍କହଲଗୁଡ଼ିକ କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ଼ରେ ପରିଶତ ହୁଏ –

 $\mathrm{CH_3}$ - $\mathrm{CH_2OH}$ କ୍ଷାରୀୟ $\mathrm{KMnO_4}$ + ତାପ $\mathrm{CH_3COOH}$ $\mathrm{CH_3COOH}$

ତୁମ ପାଇଁ କାମ : 4.5

- ଗୋଟିଏ ପରୀକ୍ଷାନଳୀରେ ପ୍ରାୟ 3 ମିଲି ଇଥାନଲ୍ ନିଅ ଏବଂ ଏହାକୁ ଏକ ଜଳଉଷ୍ମକ (Water bath)ରେ ଧୀରେ ଧୀରେ ଉଷ୍ମମ କର।
- ଏଥିରେ 5% କ୍ଷାରୀୟ ପୋଟାସିୟମ୍ ପରମାଙ୍ଗାନେଟ୍
 ଦ୍ରବଶକ୍ ବୃନ୍ଦା ବୃନ୍ଦା କରି ପକାଅ।
- ପ୍ରଥମେ ପକାଇଲାବେଳେ ପୋଟାସିୟମ୍ ପରମାଙ୍ଗାନେଟର ବର୍ଷ ସ୍ଥାୟୀ ଭାବେ (Persist) ରହୁଛି କି?
- ସେତେବେଳେ ଅଧିକ ପୋଟାସିୟମ୍ ପରମାଙ୍ଗାନେଟ ପକାଗଲା ଏହାର ବର୍ଣ୍ଣ କାହିଁକି ଅଦୃଶ୍ୟ ହେଲା ନାହିଁ ? ଆମେ ଦେଖୁଯେ, କେତେକ ପଦାର୍ଥ ଅନ୍ୟ ପଦାର୍ଥରେ ଅକ୍ସିଜେନ ସଂଯୋଗ କରିବାକୁ ସମର୍ଥ ହୋଇଥା 'ତି । ସେଗୁଡ଼ିକୁ ଜାରକ (Oxidising agent) କୂହାଯାଏ । କ୍ଷାରୀୟ ପୋଟାସିୟମ୍ ପରମାଙ୍ଗାନେଟ୍ କିୟା ଅମ୍ଲୀୟ ପୋଟାସିୟମ୍ ଡାଇକ୍ରୋମେଟ୍ ଦ୍ୱାରା ଆଲ୍କହଲ ଜାରିତ ହୋଇ ଏସିଡ୍ ସୃଷ୍ଟି କରିଥାଏ । ତେଣୁ ସେଗୁଡ଼ିକୁ ଜାରକ କୁହାଯାଏ ।

4.3.3 ଯୋଗ ପ୍ରତିକ୍ରିୟା (Addition Reaction)

ଅପୃକ୍ତ ହାଇଡ୍ରୋକାର୍ବନ ଉତ୍ପ୍ରେରକର ଉପସ୍ଥିତିରେ ହାଇଡ୍ରୋକେନ ସହ ଯୋଗ ପ୍ରତିକ୍ରିୟା କରି ପୃକ୍ତ ହାଇଡ୍ରୋକାର୍ବନ ଦେଇଥାଏ । ଏଠାରେ ପାଲାଡିୟମ କିୟା ନିକେଲକୁ ଉତ୍ପ୍ରେରକ ରୂପେ ବ୍ୟବହାର କରାଯାଏ । ଯେଉଁ ପଦାର୍ଥ ନିଳେ ପ୍ରତିକ୍ରିୟା ଶେଷରେ ଅପରିବର୍ତ୍ତିତ ରହି ପ୍ରତିକ୍ରିୟା ଘଟାଇବାର କାରଣ ହୋଇଥାଏ କିୟା ପ୍ରତିକ୍ରିୟାର ଗତିକୁ ଏକ ଭିନ୍ନ ବେଗରେ ଅଗ୍ରସର କରାଇଥାଏ, ତାହାକୁ ଉତ୍ପ୍ରେରକ କୁହାଯାଏ । ଏହି ପ୍ରତିକ୍ରିୟାଟିକୁ ବିଶେଷ ଭାବରେ ନିକେଲ ଉତ୍ପ୍ରେରକ ବ୍ୟବହାର କରି ବନ୍ୟତି ତେଲର ହାଇଡ୍ରୋକେନୀକରଣ (Hydrogenation) ପାଇଁ ବ୍ୟବହାର କରାଯାଏ । ବନ୍ୟତି ତେଲଗୁଡ଼ିକରେ ସାଧାରଣତଃ ଅପୃକ୍ତ କାର୍ବନଶୃଙ୍ଖଳ ଥିବା ବେଳେ ପଶୁ ଚର୍ବି (Animal fat) ରେ ପୃକ୍ତ କାର୍ବନଶୃଙ୍ଖଳ ରହିଥାଏ ।

$$\begin{array}{c} R \\ R \end{array} = C = C \xrightarrow[R]{R} \frac{\widehat{\text{ନ}}\text{କେଲ୍ ଉତ୍ପେରକ}}{H_2} \xrightarrow[R]{H} \begin{array}{c} H \\ - C \\ R \end{array} = R \\ R \xrightarrow[R]{R} \begin{array}{c} R \\ R \\ R \end{array}$$

କେତେକ ବନୟତି ତେଲ "ନୀରୋଗ' (Healthy) ବୋଲି ଲେଖାଥିବା ବିଜ୍ଞାପନମାନ ତୂମେ ନିଷ୍ଟୟ ଦେଖିଥିବ । ପଶୁ ଚର୍ବିରେ ସାଧାରଣତଃ ପୃକ୍ତ ଫ୍ୟାଟି ଏସିଡ୍ (Fatty acid) ଗୁଡ଼ିକ ଥାଏ । ସେଗୁଡ଼ିକ ସ୍ୱାସ୍ଥ୍ୟ ପାଇଁ କ୍ଷତିକାରକ ବୋଲି କୁହାଯାଏ । ରୋଷେଇ ପାଇଁ ଅପୃକ୍ତ ଫ୍ୟାଟି ଏସିଡ୍ ଥିବା ତେଲକୁ ପସନ୍ଦ କରିବା ଉଚିତ ।

4.3.4 ପ୍ରତିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା (Substitution Reaction)

ପୃକ୍ତ ହାଇଡ୍ରୋକାର୍ବନଗୁଡିକ କେତେକ ପରିମାଣରେ ଅନଭିକ୍ରୟ (Unreactive) ଏବଂ ଅଧିକାଂଶ କାରକ ଉପସ୍ଥିତିରେ ନିଷ୍କ୍ରିୟ । ଏହା ସତ୍ତ୍ୱେ, ସୂର୍ଯ୍ୟାଲୋକ ଉପସ୍ଥିତିରେ କ୍ଲୋରିନ୍ ଅତି ଦ୍ରୁତ ପ୍ରତିକ୍ରିୟା କରି ହାଇଡ୍ରୋକାର୍ବନ ସହ ସଂଯୋଗ କରିଥାଏ । ଏହି ପ୍ରତିକ୍ରିୟାରେ ପୃକ୍ତ ହାଇଡ୍ରୋକାର୍ବନର ହାଇଡ୍ରୋଜେନ ପରମାଣୁ ସ୍ଥାନରେ କ୍ଲୋରିନ୍ ପରମାଣୁ ଗୋଟି ଗୋଟି ହୋଇ ପ୍ରତିସ୍ଥାପିତ ହୋଇପାରିବ । ଏହାକୁ ପ୍ରତିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା କୁହାଯାଏ କାରଣ ଗୋଟିଏ ପ୍ରକାରର ପରମାଣୁ କିୟା ଏକ ପରମାଣୁପୁଞ୍ଜ (Group of atoms) ଅନ୍ୟର ସ୍ଥାନ ନେଇଥାଏ । ଆଲ୍କେନ୍ର ଉଚ୍ଚତର (Higher) ହୋମୋଲଗଗୁଡିକରୁ ସାଧାରଣତଃ ବହୁ ସଂଖ୍ୟାର ଉପ୍ପାଦ ସୃଷ୍ଟି ହୋଇଥାଏ ।

$$CH_4 + CI_2$$
 ପୂର୍ଯ୍ୟାଲୋକ $CH_3CI + HCI$ ଉପସ୍ଥିତିରେ

ପ୍ରଶ୍ନ

- ଇଥାନଲରୁ ଇଥାନୋଇକ୍ ଏସିଡ୍କୁ ରୂପାନ୍ତର କାହିଁକି
 ଏକ ଜାରଣ ପ୍ରତିକ୍ରିୟା ?
- ୧. ଝଳାଇ ପାଇଁ ଅକ୍ସିକେନ୍ ଓ ଇଥାଇନ୍ର ଏକ ମିଶ୍ରଣ ଜଳାଯାଏ । ଇଥାଇନ୍ ଓ ବାୟୁର ମିଶ୍ରଣ ବ୍ୟବହାର କରାଯାଏ ନାହିଁ କାହିଁକି କହିପାରିବ ?
- 4.4 କେତୋଟି ପ୍ରଧାନ କାର୍ବନ ଯୌଗିକ ଇଥାନଲ୍ଏବଂ ଇଥାନୋଇକ୍ ଏସିଡ୍

(Some Important Carbon Compounds

- Ethanol and Ethanoic acid)

ଅନେକ କାର୍ବନ ଯୌଗିକ ଆମ ପାଇଁ ଅତ୍ୟନ୍ତ ମୂଲ୍ୟବାନ। କିନ୍ତୁ ଏଠାରେ ଆମେ ଦୁଇଟି ମହର୍ଭ୍ୱପୂର୍ଣ୍ଣ *

ବ୍ୟାବସାୟିକ (Commercially improtant) ଯୌଗିକର ଧର୍ମ ବିଷୟରେ ଅଧ୍ୟୟନ କରିବା । ଏହି ଆଲୋଚିତ ଦୁଇଟି ଯୌଗିକ ହେଉଛି ଇଥାନଲ୍ ଏବଂ ଇଥାନୋଇକ୍ ଏସିଡ଼ ।

4.4.1 ଇଥାନଲ୍ର ଧର୍ମ

(Properties of Ethanol)

ପ୍ରକୋଷ ତାପମାତ୍ରାରେ ଇଥାନଲ ଏକ ତରଳ ଅଟେ (ଇଥାନଲର ଗଳନାଙ୍କ ଓ ଷ୍ଟୁଟନାଙ୍କ ପାଇଁ ସାରଣୀ 4.1 ଦେଖ)। ଇଥାନଲକୁ ସାଧାରଣତଃ ଆଲ୍କହଲ କୂହାଯାଏ ଏବଂ ଏହା ସମୟ ଆଲ୍କୋହଲିକ୍ ପାନୀୟର ସକ୍ରିୟ ଉପାଦାନ (Active ingredient)। ଏହାଛଡା ଏହା ଏକ ଉଉମ ଦ୍ରାବକ ହୋଇଥିବାରୁ ଏହାକୁ ଅନେକ ଔଷଧ ଯଥା : ଟିଙ୍କଚର ଆୟୋଡିନ୍, କାଶର ଔଷଧ (Cough Syrup) ଏବଂ ଅନେକ ଟନିକ୍ରେ ମଧ୍ୟ ବ୍ୟବହାର କରାଯାଏ। ଏହା ମଧ୍ୟ ଜଳରେ ସବୁ ଅନୁପାତରେ ଦ୍ରବଣୀୟ।

ଇଥାନଲର କେତୋଟି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା :

(i) ସୋଡ଼ିୟମ ସହ ପ୍ରତିକ୍ରିୟା-

2Na + 2CH $_3$ CH $_2$ OH ightarrow 2CH $_3$ CH $_2$ O $^-$ Na $^+$ + H $_2$ ସୋଡ଼ିୟମ ଇଥକ୍ସାଇଡ୍

ଇଥାନଲ ସୋଡ଼ିୟମ ଧାତୁ ସହିତ ପ୍ରତିକ୍ରିୟା କଲେ ହାଇତ୍ରୋଜେନ ଗ୍ୟାସ ନିର୍ଗତ ହୋଇଥାଏ ଏବଂ ସୋଡ଼ିୟମ୍ ଇଥକ୍ସାଇଡ୍ ସୃଷ୍ଟି ହୁଏ। ମନେପକାଇ ପାରିବ, ଅନ୍ୟ କେଉଁ ପଦାର୍ଥ ଧାତୁ ସହିତ ପ୍ରତିକ୍ରିୟା କରି ହାଇତ୍ରୋଜେନ ଉତ୍ପନ୍ନ କରିଥାଏ ?

ତୁମ ପାଇଁ କାମ : 4.6

ଶିକ୍ଷକ ଏହାକୁ ଦେଖାଇବେ-

- ଦୁଇଟି ୟଉଳ ଦାନା ଆକାରର ଖଣ୍ଡେ ଛୋଟ ସୋଡ଼ିୟମକୁ ଇଥାନଲ (ବିଶୁଦ୍ଧ ଆଲ୍କହଲ) ମଧ୍ୟରେ ପକାଅ।
- କ'ଣ ଦେଖଲ ?
- ଯେଉଁ ଗ୍ୟାସ ବାହାରିଲା ତାକୁ କିପରି ପରୀକ୍ଷା କରିବ ?
- (ii) ଅପୃକ୍ତ ହାଇଡ୍ରୋକାର୍ବନ ସୃଷ୍ଟି ପାଇଁ ପ୍ରତିକ୍ରିୟା : ଇଥାନଲକୁ ଅଧିକ ପରିମାଣ ଗାଢ଼ ସଲ୍ଫୁଏରିକ ଏସିଡ୍ ସହିତ 443Kରେ ଉଭସ୍ତ କଲେ ଇଥାନଲ ଅଣୁରୁ ଗୋଟିଏ ଜଳ ଅଣୁ ବାହାରିଯାଇ ଏଥିନ୍ ସୃଷ୍ଟି ହୁଏ ।

$$CH_3 - CH_2OH \xrightarrow{Gli \oplus H_2SO_4} 443K$$

 $CH_2 = CH_2 + H_2O$

ଗାଢ଼ ସଲ୍ଫ୍ୟରିକ ଏସିଡ଼ ନିର୍ଚ୍ଚଳୀକାରକ (Dehydrating agent) ରୂପେ କାର୍ଯ୍ୟ କରେ। ଏହା ଇଥାନଲରୁ ଜଳ ଅପସାରଣ କରେ।

ତୁମେ ଅଧିକ ଜାଣିବା ପାଇଁ ଜାଳେଣି ବା ଇନ୍ଧନ ରୂପେ ଆଲ୍କହଲ

ସୂର୍ଯ୍ୟାଲୋକକୁ ରାସାୟନିକ ଶକ୍ତିରେ ରୂପାନ୍ତର କରିବା ପାଇଁ ଅଧିକାଂଶ ଦକ୍ଷ ପରିବର୍ତ୍ତକ (Efficient Converter) ମଧ୍ୟରୁ ଆଖୁଗଛ ଅନ୍ୟତମ । ଗୁଡ଼ ତିଆରି କରିବାକୁ ଆଖୁରସ ବ୍ୟବହାର କରାଯାଏ । ଗୁଡ଼ କିଣ୍ପିତ (Fermented) ହୋଇ ଆଲ୍କହଲ (ଇଥାନଲ) ଦିଏ । ଏବେ କେତେକ ଦେଶ ଆଲ୍କହଲ ମିଶ୍ରିତ ପେଟ୍ରୋଲ ବ୍ୟବହାର କରୁଛନ୍ତି କାରଣ ଏହି ଇନ୍ଧନ କମ୍ ପ୍ରଦୂଷଣ କରିଥାଏ । ତାହା ଯଥେଷ୍ଟ ପରିମାଣର ବାୟୁ (ଅକ୍ସିକେନ)ରେ କାର୍ବନଡାଇଅକ୍ସାଇଡ୍ ଓ ଜଳ ସୃଷ୍ଟି କରିଥାଏ ।

4.4.2 ଇଥାନୋଇକ୍ ଏସିଡ୍ର ଧର୍ମ (Properties of Ethanoic Acid)

ଇଥାନୋଇକ୍ ଏସିଡ଼କୁ ସାଧାରଣତଃ ଏସିଟିକ୍ ଏସିଡ୍ (acetic acid) କୁହାଯାଏ ଏବଂ ଏହା କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ୍ ଶ୍ରେଣୀର ଅଂଶଭୁକ୍ତ । ଜଳରେ ଏସିଟିକ ଏସିଡ୍ର 5-8% ଦ୍ରବଣକୁ ଭିନେଗାର କୁହାଯାଏ ଏବଂ ଏହାକୁ ବ୍ୟାପକ ଭାବରେ ଆୟର ସଂରକ୍ଷଣ କରିବା ପାଇଁ ବ୍ୟବହାର କରାଯାଏ । ବିଶୁଦ୍ଧ ଇଥାନୋଇକ୍ ଏସିଡ୍ର ଗଳନାଂଙ୍କ ହେଉଛି 290K । ତେଣୁ ଥଣ୍ଡା ଜଳବାୟୁରେ ଶୀତରତୁରେ ଏହା ଅଧିକାଂଶ ସମୟରେ ଘନୀଭୂତ ହୋଇଯାଏ । ଏଥିପାଇଁ ଏହାର ନାମ ହେଉଛି ଗ୍ଲାସିଆଲ (Glacial) ଏସିଟିକ୍ ଏସିଡ଼ ।

କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ୍ କୁହାଯାଉଥିବା ଜିବ ଯୌଗିକ ଶ୍ରେଣୀର ବୈଶିଷ୍ୟକ୍ ସ୍ୱତନ୍ତ ଅମ୍ନୀୟଗୁଣ ଦ୍ୱାରା ୟଷ୍ଟ ଭାବରେ ବର୍ତ୍ତନା କରାଯାଏ । HCI ଭଳି ଖଣିଜ ଅମ୍ନଗୁଡ଼ିକ ସଂପୂର୍ଣ୍ଣଭାବେ ବିଘଟିତ ହୋଇ ଆୟନ ଦେଇଥା 'ନ୍ତି, କିନ୍ତୁ କାର୍ବୋକ୍ସିଲିକ ଏସିଡ୍ଗୁଡ଼ିକ ଦୁର୍ବଳ ଏସିଡ୍ ।

ତୁମ ପାଇଁ କାମ : 4.7

- ଉଭୟ ଲିଟ୍ମସ୍ କାଗଜ ଏବଂ ସାର୍ବଜନୀନ (Universal) ସୂଚକ ବ୍ୟବହାର କରି ଲଘୁ ଏସିଟିକ୍ ଏସିଡ୍ ଏବଂ ଲଘୁ ହାଇଡ୍ରୋକ୍ଲୋରିକ ଏସିଡ୍ର pH ଡୁଳନା କର।
- ଉଭୟ ଏସିଡ୍ ଲିଟମସ ପରୀକ୍ଷାଦ୍ୱାରା ସୂଚିତ ହେଉଛି
 କି ?
- ସାର୍ବଜନୀନ ସୂଚକ ସେଗୁଡ଼ିକୁ ଏକ ପ୍ରକାରର ସବଳ ଏସିଡ୍ ରୂପେ ଦର୍ଶାଉଛି କି ?

ତୁମ ପାଇଁ କାମ : 4.8

- ଗୋଟିଏ ପରୀକ୍ଷାନଳୀରେ 1 ମିଲି ଇଥାନଲ (ବିଶୁଦ୍ଧ ଆଲ୍କହଲ୍) ଏବଂ କିଛି ବୃନ୍ଦା ଗାଢ଼ ସଲ୍ଫ୍ୟୁରିକ୍ ଏସିଡ୍ ସହ 1 ମିଲି ଗ୍ଲାସିଆଲ୍ ଏସିଟିକ୍ ଏସିଡ୍ ନିଅ।
- ଚିତ୍ର 4.11 ରେ ଦର୍ଶାଯାଇଥିବା ପରି ଏକ ଜଳ-ଉଷ୍ମକରେ ଏହାକୁ ଅନ୍ତତଃ ପାଞ୍ଚମିନିଟ୍ ଉଷୁମ କର ।
- 20-25 ମିଲି କଳଥିବା ଏକ ବିକରରେ ଏହାକୂ ଢ଼ାଳିଦିଅ ଏବଂ ସୃଷ୍ଟି ହୋଇଥିବା ମିଶ୍ରଣଟିକୁ ଆଘ୍ରାଣ କର ।

ଇଥାନୋଇକ୍ ଏସିଡ୍ର ପ୍ରତିକ୍ରିୟା :

(i) ଏଷ୍ଟରୀକରଣ ପ୍ରତିକ୍ରିୟା: ଗୋଟିଏ ଏସିଡ୍ ଏବଂ ଗୋଟିଏ ଆଲ୍କହଲର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଦ୍ୱାରା ଏଷ୍ଟର ସୃଷ୍ଟି ହୁଏ। ଇଥାନୋଇକ୍ ଏସିଡ୍ ବିଶୁଦ୍ଧ ଆଲକହଲ ସହିତ ପ୍ରତିକ୍ରିୟା କରି ଏଷ୍ଟର ଦେଇଥାଏ-

 ${
m CH_3COOH + CH_3CH_2OH} \longrightarrow {
m CH_3-C-O-CH_2CH_3}$ (ଇଥାନୋଇକ୍ (ଇଥାନଲ) ${
m CH_3-C-O-CH_2CH_3}$ ଏସିଡ)

ଏଷର ଗୁଡ଼ିକ ସୁଗନ୍ଧଯୁକ୍ତ ପଦାର୍ଥ । ଏଗୁଡ଼ିକ ଅତର (Perfume) ତିଆରି କରିବା ପାଇଁ ଏବଂ ଖାଦ୍ୟ ବା ପାନୀୟ ସୁଗନ୍ଧକାରୀ ଦ୍ରବ୍ୟ (Flavouring agent) ରୂପେ ବ୍ୟବହାର କରାଯାଏ । ସୋଡ଼ିୟମ ହାଇଡ୍ରକ୍ସାଇଡ୍ ସହିତ ପ୍ରତିକ୍ରିୟା କଲେ ଏଷର ଆଲ୍କହଲ ଏବଂ କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ୍ର ସୋଡ୍ୟମ ଲବଣରେ ପରିଣତ ହୁଏ । ଏହି ପ୍ରତିକ୍ରିୟାଟିକୁ ସାବୁନୀକରଣ (Saponification) କୁହାଯାଏ, କାରଣ ଏହାକୁ ସାବୁନ୍ ପ୍ରସ୍ତୁତ କରିବା ପାଇଁ ବ୍ୟବହାର କରାଯାଏ ।

$CH_3COOC_2H_5 \xrightarrow{NaOH} C_2H_5OH + CH_3COONa$

(ii) **କ୍ଷାରକ ସହିତ ପ୍ରତିକ୍ରିୟା :** ଖଣିକ ଏସିଡ୍ପରି ଇଥାନୋଇକ୍ ଏସିଡ୍ କ୍ଷାରକ ଯଥା: ସୋଡିୟମ ହାଇଡ୍ରକ୍ସାଇଡ୍ ସହିତ ପ୍ରତିକ୍ରିୟା କରି ଲବଣ (ସୋଡ଼ିୟମ ଇଥାନୋଏଟ୍ ବା ସୋଡ଼ିୟମ ଏସିଟେଟ୍) ଏବଂ ଜଳ ଦେଇଥାଏ।

NaOH + $\mathrm{CH_3COOH} \to \mathrm{CH_3COONa} + \mathrm{H_2O}$ କାର୍ବେନେଟ୍ ଏବଂ ହାଇଡ୍ରୋଜେନକାର୍ବୋନେଟ୍ ସହିତ ଇଥାନୋଇକ୍ ଏସିଡ୍ କିପରି ପ୍ରତିକ୍ରିୟା କରେ ? ଆସ ଗୋଟିଏ ପରୀକ୍ଷା କରି ଦେଖିବା ।

ତୁମ ପାଇଁ କାମ : 4.9

 ଦ୍ୱିତୀୟ ଅଧ୍ୟାୟର ତୁମ ପାଇଁ କାମ : 2.5ରେ ଦର୍ଶାଯାଇଥିବାପରି ବୈଜ୍ଞାନିକ ଉପକରଶଗୁଡ଼ିକୁ (Apparatus) ସଜାଅ ।

- ଏକ ପରୀକ୍ଷାନଳୀରେ ଗୋଟିଏ ଚେପ୍ଟା ଋମଚ ପୂର୍ଷ ସୋଡ଼ିୟମ କାର୍ବୋନେଟ୍ ନିଅ ଏବଂ 2 ମିଲି ଲଘୁ ଇଥାନୋଇକ୍ ଏସିଡ୍ ପକାଅ ।
- କ'ଣ ପର୍ଯ୍ୟବେକ୍ଷଣ କଲ ?
- ନିର୍ଗତ ଗ୍ୟାସକୁ ସଦ୍ୟ ପ୍ରସ୍ତୁତ ଚୂନ-ପାଣିରେ ପ୍ରବେଶ କରାଅ । କ'ଣ ଦେଖିଲ ?
- ଇଥାନୋଇକ୍ ଏସିଡ୍ ଏବଂ ସୋଡ଼ିୟମ କାର୍ବୋନେଟ୍ ମଧ୍ୟରେ ହୋଇଥିବା ପ୍ରତିକ୍ରିୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଗ୍ୟାସଟି ଏହି ପରୀକ୍ଷା ଦ୍ୱାରା ଚିହ୍ରିତ କରାଯାଇପାରୁଛି କି?
- ସୋଡ଼ିୟମ କାର୍ବୋନେଟ୍ ବଦଳରେ ସୋଡ଼ିୟମ ହାଇଡ୍ରୋଜେନକାର୍ବୋନେଟ୍ ସହିତ ଏହି ପରୀକ୍ଷାଟିକୁ ପନ୍ନବୀର କର ।
- (iii) କାର୍ବୋନେଟ୍ ଏବଂ ହାଇଡ୍ରୋଜେନକାର୍ବୋନେଟ୍ ସହ ପ୍ରତିକ୍ରିୟା : କାର୍ବୋନେଟ୍ ଏବଂ ହାଇଡ୍ରୋଜେନକାର୍ବୋନେଟ ସହ ଇଥାନୋଇକ୍ ଏସିଡ୍ ପ୍ରତିକ୍ରିୟା କରି ଲବଣ, କାର୍ବନଡାଇଅକ୍ସାଇଡ୍, ଏବଂ ଜଳ ଦେଇଥାଏ।

 $2\text{CH}_3\text{COOH} + \text{Na}_2\text{CO}_3 \rightarrow 2\text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CO}_2$ $\text{CH}_3\text{COOH} + \text{NaHCO}_3 \rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O} + \text{CO}_2$

ଏଠାରେ ଉତ୍ପନ୍ନ ହେଉଥିବା ଲବଣକୁ ସାଧାରଣତଃ ସୋଡ଼ିୟମ୍ ଏସିଟେଟ୍ କୁହାଯାଏ।

ପ୍ରଶ୍ର

- ପରୀକ୍ଷା କରି ଆଲ୍କହଲ ଏବଂ କାର୍ବୋକ୍ସିଲିକ ଏସିଡ୍ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟ କିପରି ଜାଣିବ ?
- 2. ଜାରକ କ'ଣ?

4.5 ସାବୁନ୍ ଓ ଡିଟରଜେଷ୍ଟ (Soaps and Detergents)

ତ୍ରମ ପାଇଁ କାମ : 4.10

- ଦୁଇଟି ପରୀକ୍ଷାନଳୀରେ ପ୍ରାୟ 10 ମିଲି ଲେଖାଏଁ ଜଳ ନିଅ।
- ପ୍ରତ୍ୟେକ ପରୀକ୍ଷାନଳୀରେ ଗୋଟିଏ ବୂନ୍ଦା ତେଲ (ରୋଷେଇରେ ବ୍ୟବହୃତ ତେଲ) ପକାଅ ଏବଂ

- ସେଗୁଡ଼ିକୁ A ଏବଂ B ରୂପେ ଚିହ୍ନଟ (Label) କର l
- ପରୀକ୍ଷାନଳୀ Bରେ ଅଞ୍ଚ କେତେ ବୃନ୍ଦା ସାବୁନ ଦ୍ରବଣ ପକାଅ ।
- ଦୁଇଟିଯାକ ପରୀକ୍ଷାନଳୀକୁ ଖୁବ୍ କୋର୍ରେ ଏକ।
 ସମୟ ପାଇଁ ହଳାଅ।
- ହଲାଇବା ବନ୍ଦ କରିବା ମାତ୍ରେ ଉଭୟ ପରୀକ୍ଷା ନଳୀରେ ତେଲ ଏବଂ ଜଳର ଅଲଗା ଅଲଗା ୟର ଦେଖି ପାର୍ବଛ କି ?
- ପରୀକ୍ଷାନଳୀ ଦୁଇଟିକୁ ହଲଚଲ୍ ନ କରି କିଛି ସମୟ ପାଇଁ ସେମିତି ରଖିଦିଅ ଏବଂ ପର୍ଯ୍ୟବେକ୍ଷଣ କର । ତେଲଞ୍ଜରଟି ଅଲଗା ହୋଇଯାଉଛି କି? କେଉଁ ପରୀକ୍ଷାନଳୀରେ ଏହା ପ୍ରଥମେ ହେଉଛି?

ସଫାକରିବାରେ ସାବୁନର ପ୍ରଭାବ ଏହି 'ତୁମ ପାଇଁ କାମ' ପ୍ରଦର୍ଶନ କଲା । ଅଧିକାଂଶ ମଇଳା ତୈଳାକ୍ତ ପ୍ରକୃତିର ଏବଂ ତୁମେ ଜାଣ ଯେ ତେଲ ଜଳରେ ଦ୍ରବୀଭୂତ ହୁଏ ନାହିଁ । ସାବୁନର ଅଣୁଗୁଡ଼ିକ ଦୀର୍ଘ-ଶୃଙ୍ଖଳ କାର୍ବୋକ୍ସିଲିକ

ଚିତ୍ର 4.12 ମିସେଲ୍ର ଗଠନ

ଏସିଡର ସୋଡିୟମ କିୟା ପୋଟାସିୟମ ଲବଶ। ସାବୁନ ଅଣୁର ଆୟନିକ-ପ୍ରାନ୍ତଟି କଳରେ ଦ୍ରବୀଭୂତ ହେଉଥିବା ବେଳେ କାର୍ବନ-ଶୃଞ୍ଜଳଟି ତେଲରେ ଦ୍ରବୀଭୂତ ହୁଏ। ତଦନୁଯାୟୀ ସାବୁନ ଅଣୁଗୁଡ଼ିକ ଏକ ସଂରଚନା ସୃଷ୍ଟି କରିଥା'ନ୍ତି। ଏହାକୁ ମିସେଲ (Micelles) କୁହାଯାଏ (ଚିତ୍ର 4.12 ଦେଖ) । ଏହି ଅଶୁର ଗୋଟିଏ ପ୍ରାନ୍ତ ତେଲର ଛୋଟବିନ୍ଦୁ (Droplet) ଆଡକୁ ରହୁଥିବା ବେଳେ ଆୟନିକ-ପ୍ରାନ୍ତଟି ବାହାରକୁ ମୁହଁ କରିଥାଏ । ଏହା ଜଳରେ ଏକ ଅବଦ୍ରବ (Emulsion) ସୃଷ୍ଟି କରେ । ଫଳରେ ସାବୁନ ମିସେଲ ମଇଳାକୁ ଜଳରେ ଦ୍ରବୀଭୂତ କରିବାରେ ସାହାଯ୍ୟ କରେ ଏବଂ ଆମେ ଆମର ଲୁଗାପଟାକୁ ଧୋଇ ସଫା କରିପାରୁ (ଚିତ୍ର 4.13) ।

ତୁମେ ଅଧିକ ଜାଣିବା ପାଇଁ :

ମିସେଲ

ସାବୁନ ଅଣୁରେ ଥିବା ଦୁଇଟି ପ୍ରାନ୍ତର ଧର୍ମ ଭିନ୍ନ । ଗୋଟିଏ ହେଉଛି ଜଳାସକ୍ତ (Hydrophilic) ଏବଂ ଅନ୍ୟ ପ୍ରାନ୍ତଟି ଜଳାତଂକୀ (Hydrophobic) । ଜଳାସକ୍ତ ପ୍ରାନ୍ତଟି କଳରେ ଦ୍ରବୀଭୂତ ହେଉଥିବା ବେଳେ କଳାତଂକ ପ୍ରାନ୍ତଟି ହାଇଡ୍ରୋକାର୍ବନରେ ଦ୍ରବୀଭୂତ ହୁଏ । ଯେତେବେଳେ ଜଳର ପୃଷରେ ସାବୁନ ଥାଏ, ସାବୁନର କଳାତଂକୀ 'ଲାଞ୍ଜ' ଜଳରେ ଦ୍ରବୀଭୂତ ହେବ ନାହିଁ ଏବଂ ସାବୁନଟି ଆୟନିକ-ପ୍ରାନ୍ତ ସହ ଜଳରେ ଏବଂ ହାଇଡ୍ରୋକାର୍ବନ 'ଲାଞ୍ଜ' ଜଳ ବାହାରକୁ ବଢ଼ି ଆସି କଳର ପୃଷ୍ଠ ନିକଟରେ ଶ୍ରେଣୀବଦ୍ଧଭାବେ ସଜାଇ ହୋଇ ରହେ । ଜଳଭିତରେ ଏହି ଅଣୁଗୁଡ଼ିକର ଏକ ଅନନ୍ୟ ଅଭିବିନ୍ୟାସ (Unique Orientation) ରହିଛି ଯାହା ହାଇଡ୍ରୋକାର୍ବନ ଅଂଶଟିକୁ ଜଳଠାରୁ ଅଲଗା ରଖେ । ଅଣୁପେନ୍ଥା (Clusters of Molecules) ମାନ ସୃଷ୍ଟି କରିବା ଦ୍ୱାରା ଏହା ସଂପାଦିତ ହୋଇଥାଏ । ଫଳରେ ଜଳାତଂକୀ ଲାଞ୍ଜଗୁଡ଼ିକ ଅଣୁପେନ୍ଥାର ଭିତର ପାର୍ଶ୍ୱରେ ଏବଂ ଆୟନିକ ପ୍ରାନ୍ତଗୁଡ଼ିକ ପେନ୍ଥାର ଉପରିଭାଗରେ ରହିଥାଏ । ଏହି ଗଠନକୁ ମିସେଲ

କୁହାଯାଏ । ଏକ ମିସେଲର ରୂପରେ ସାବୁନ ସଫାକରିବାକୁ ସମର୍ଥ ହୁଏ କାରଣ ମିସେଲର କେନ୍ଦ୍ରରେ ତୈଳାକ୍ତ ମଇଳା ସଂଗୃହୀତ ହେବ । ମିସେଲଗୁଡ଼ିକ ଦ୍ରବଣରେ କଲଏଡ୍ ରୂପରେ ରହେ ଏବଂ ଆୟନ-ଆୟନ ବିକର୍ଷଣ ଯୋଗୁଁ ଏକତ୍ରିତ ହୋଇ ଅବକ୍ଷେପିତ (Precipitate) ହେବ ନାହିଁ । ତେଣୁ ଲୁଗାକୁ ଧୋଇଦେଲେ ମିସେଲ୍ରେ ରହିଥିବା ମଇଳା ମଧ୍ୟ ସହଜରେ ଜଳ ସହିତ ବାହାରି ଆସେ । ସାବୁନ ମିସେଲର ଆକାର ଯଥେଷ୍ଟ ବଡ଼ ହୋଇଥିବାରୁ ଏହା ଆଲୋକ ବିହୁରିତ କରିଥାଏ । ସେଥିପାଇଁ ସାବୁନ ଦ୍ରବଣ ମେଘୁଆ (Cloudy) ଦେଖାଯାଏ ।

ଚିତ୍ର 4.13 ସଫା କରିବାରେ ସାବୃନ୍ର ପ୍ରଭାବ

ତୁମ ପାଇଁ କାମ : 4.11

- ଦୁଇଟି ପରୀକ୍ଷାନଳୀ ନିଅ । ଗୋଟିଏ ପରୀକ୍ଷା ନଳୀରେ ପ୍ରାୟ 10 ମିଲି ପାତିତ କଳ (Distilled Water) କିୟା ବର୍ଷାଜଳ ଏବଂ ଅନ୍ୟଟିରେ 10ମିଲି ଖରକଳ (ନଳକୂପର କଳ) ନିଅ ।
- ପ୍ରତ୍ୟେକ ପରୀକ୍ଷାନଳୀରେ ଦୂଇବୃନ୍ଦା ସାବୁନ ଦ୍ରବଶ ପକାଅ ।
- ପରୀକ୍ଷାନଳୀ ଦୂଇଟିକୁ ଖୁବ୍ ଯୋର୍ରେ ଏକା ସମୟ ପାଇଁ ହଲାଅ ଏବଂ ସୃଷ୍ଟି ହୋଇଥିବା ଫେଶର ପରିମାଣକୁ ପର୍ଯ୍ୟବେକ୍ଷଣ କର ।
- କେଉଁ ପରୀକ୍ଷା ନଳୀରେ ତୂମେ ଅଧିକ ଫେଶ ପାଇଛ ?
- କେଉଁ ପରୀକ୍ଷାନଳୀରେ ତୁମେ ଦହିଭଳି ଧଳା
 ଅବକ୍ଷେପ ପର୍ଯ୍ୟବେକ୍ଷଣ କରୁଛ ?

ଶିକ୍ଷକଙ୍କ ପାଇଁ ନୋଟ୍: ଯଦି ଖରକଳ ସେ ଅଞ୍ଚଳରେ ମିଳୁନାହିଁ, ତେବେ କ୍ୟାଲ୍ସିୟମ କିୟା ମ୍ୟାଗ୍ନେସିୟମର ହାଇଡ୍ରୋଜେନକାର୍ବୋନେଟ୍/ସଲଫେଟ୍/କ୍ଲୋରାଇଡ୍କୁ ଜଳରେ ଦ୍ରବୀଭୂତ କରି ଆବଶ୍ୟକ ପରିମାଣର ଖରକଳ ପ୍ରସ୍ତୁତ କରାଯାଇପାରିବ।

ତୁମ ପାଇଁ କାମ : 4.12

- ପ୍ରତ୍ୟେକରେ ପ୍ରାୟ 10 ମିଲି ଖରଜଳ ସହ ଦୁଇଟି ପରୀକ୍ଷାନଳୀ ନିଅ ।
- ଗୋଟିଏ ପରୀକ୍ଷାନଳୀରେ ପାଞ୍ଚ ବୃନ୍ଦା ସାବୁନ ଦ୍ରବଣ ଏବଂ ଅନ୍ୟ ପରୀକ୍ଷାନଳୀଟିରେ ପାଞ୍ଚବୃନ୍ଦା ଡିଟରଜେୡ ଦ୍ରବଣ ପକାଅ।
- ଦୁଇଟି ଯାକ ପରୀକ୍ଷାନଳୀକୁ ସମାନ ସମୟ ପାଇଁ
 ହଲାଅ ।
- ଦୁଇଟି ଯାକ ପରୀକ୍ଷାନଳୀରେ ସମାନ ପରିମାଣର ଫେଶ ରହୁଛି କି?
- କେଉଁ ପରୀକ୍ଷାନଳୀରେ ଦହିଭଳି କଠିନ ସୃଷ୍ଟି ହୋଇଛି ?

ଗାଧୋଇଲା ବେଳେ ତୁମେ କେବେ ଲକ୍ଷ୍ୟ କରିଛ କି ଫେଣ ସୃଷ୍ଟି ହେବାରେ ଅସୁବିଧା ଏବଂ ଧୋଇବାପରେ

କଳରେ ଏକ ଅଦ୍ରବଣୀୟ ପଦାର୍ଥ (ତରଳ ପଦାର୍ଥ ଉପରେ ଭାସମାନ ମଇଳା) (Scum) ରହିଯାଏ ? ସାବୁନ ସହିତ କ୍ୟାଲ୍ସିୟମ ଏବଂ ମ୍ୟାଗ୍ନେସିୟମ ଲବଶର ପ୍ରତିକ୍ରିୟା ଦ୍ୱାରା ଏହା ଘଟିଥାଏ । କ୍ୟାଲ୍ସିୟମ ଓ ମ୍ୟାଗ୍ରେସିୟମ ଲବଣ ଜଳର ଖରତ୍ୱର କାରଣ ଅଟେ । ଏଣୁ ତୁମକୁ ଅଧିକ ପରିମାଣର ସାବୁନ୍ ବ୍ୟବହାର କରିବା ଆବଶ୍ୟକ ହୋଇଥାଏ । ପରିଷ୍କାରକ (Cleansing agent)ରୂପେ ଡିଟରଜେଷ୍ଟ ନାମକ ଅନ୍ୟ ଏକ ଶ୍ରେଣୀର ଯୌଗିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଏହି ସମସ୍ୟାକୁ ଦୂର କରାଯାଇପାରିବ । ଡିଟରଜେଷ୍ଟଗୁଡ଼ିକ ସାଧାରଣତଃ ଦୀର୍ଘଶୂଙ୍ଖଳ କାର୍ବୋକ୍ସିଲିକ ଏସିଡ୍ର ଏମୋନିୟମ୍ କିୟା ସଲ୍ଫୋନେଟ୍ ଲବଣ । ଖରଜଳରେ ଏହି ଯୌଗିକଗୁଡ଼ିକର ୟର୍ଜିତ ପାନ୍ତଗ୍ରତିକ କ୍ୟାଲସିୟମ ଏବଂ ମ୍ୟାଗ୍ରେସିୟମ ଆୟନ ସହିତ ଅଦ୍ରବଶୀୟ ଅବକ୍ଷେପ ସୃଷ୍ଟି କରନ୍ତି ନାହିଁ। ତେଣୁ ଖରଜଳ ସହ ଡିଟରଜେଷ୍ଟକୁ ବ୍ୟବହାର କରାଯାଇ ପାରିବ । ସାମ୍ପୁ ଏବଂ ଲୁଗାସଫା କରିବା ଉତ୍ପାଦ ପ୍ରସ୍ତୁତ କରିବା ପାଇଁ ଡିଟରଜେଣ୍ଟଗୁଡ଼ିକୁ ସାଧାରଣତଃ ବ୍ୟବହାର କରାଯାଏ ।

ପ୍ରଶ୍ର

- ଡିଟରଜେଷ୍ଟ ବ୍ୟବହାର କରି କଳ ଖର କି ନୁହେଁ ଜାଣିବାକୁ ତୃମେ ସମର୍ଥ ହୋଇପାରିବ କି ?
- 2. ଲୂଗା ଧୋଇବା ପାଇଁ ଲୋକେ ବିଭିନ୍ନ ପ୍ରକାର ପ୍ରଣାଳୀ ବ୍ୟବହାର କରିଥା 'ଡି । ସାଧାରଣତଃ ସାବୁନ ଦେଇସାରି ସେମାନେ ଲୁଗାକୁ ପଥର ଉପରେ ବାଡ଼େଇ ଥା 'ଡି କିୟା ଏକ ଦଶ୍ତରେ ବାଡ଼େଇଥା 'ଡି, ବ୍ରଶ୍ରେ ଘଷିଥା 'ଡି କିୟା ଓ୍ୱାସିଂ ମେସିନ୍ରେ ମନ୍ତନ (agitate) କରିଥା 'ଡି । ସଫାଲୁଗା ପାଇବା ପାଇଁ ମନ୍ତନ କାହିଁକି ଆବଶ୍ୟକ ?

କ'ଣ ଶିଖିଲ:

- କାର୍ବନ ହେଉଛି ଏକ ସର୍ବଗୁଣଧାରୀ ମୌଳିକ ଯାହା
 ସମୟ ଜୀବନ୍ତ ବସ୍ତୁ ଏବଂ ଆମେ ବ୍ୟବହାର
 କରୁଥିବା ଅନେକ ଜିନିଷର ପ୍ରଧାନ ଉପାଦାନ ।
- କାର୍ବନ ବହୁସଂଖ୍ୟକ ଯୌଗିକ ସୃଷ୍ଟି କରିପାରେ ।
 ଏହାର କାରଣ ହେଲା ଏହା ଚତୃଃସଂଯୋଜୀ ଏବଂ
 ଏହାର କାଟିନେସନ ଗୁଣ ।
- ଦୁଇଟି ପରମାଣୁ ମଧ୍ୟରେ ଇଲେକ୍ଟ୍ରନର ସହଭାଜନ ଦ୍ୱାରା ସହସଂଯୋଜ୍ୟ ବନ୍ଧ ଗଠିତ ହୋଇଥାଏ ।

- ଫଳରେ ଉଭୟ ପରମାଣୁ ସଂପୂର୍ଣ ମାତ୍ରାର ଇଲେକ୍ଟ୍ନ୍ ବିଶିଷ୍ଟ ବାହ୍ୟତମ କଷ ଲାଭ କରିଥା'ତି।
- କାର୍ବନ ଅନ୍ୟ କାର୍ବନ ପରମାଣୁ ସହିତ ଏବଂ ଅନ୍ୟ ମୌଳିକର ପରମାଣୁ ଯଥା; ହାଇଡ୍ରୋଜେନ, ଅକ୍ସିଜେନ, ସଲ୍ଫର, ନାଇଟ୍ରୋଜେନ ଏବଂ କ୍ଲୋରିନ୍ ସହ ସହସଂଯୋଜ୍ୟ ବନ୍ଧ ଗଠନ କରେ।
- କାର୍ବନ-କାର୍ବନ ମଧ୍ୟରେ ଦ୍ୱିବନ୍ଧ, ତ୍ରିବନ୍ଧ ଥିବା ଯୌଗିକ ମଧ୍ୟ ସୃଷ୍ଟି ହୋଇଥାଏ । କାର୍ବନ ଶୃଙ୍ଖଳଗୁଡ଼ିକ ସଳଖଶୃଙ୍ଖଳ, ଶାଖାଶୃଙ୍ଖଳ କିୟା ଚକ୍ରାକାର ହୋଇପାରେ ।
- ଶୃଞ୍ଜଳ ସୃଷ୍ଟି କରିପାରିବାର ସାମର୍ଥ୍ୟ ଯୋଗୁଁ କାର୍ବନ ହୋମୋଲଗସ୍ ଶ୍ରେଣୀୟ ଯୌଗିକ ସୃଷ୍ଟି କରିଥାଏ । ବିଭିନ୍ନ ଦୀର୍ଘତାର କାର୍ବନ ଶୃଙ୍ଖଳର ହୋମୋଲଗସ୍ ଶ୍ରେଣୀୟ ଯୌଗିକରେ ଏକା ସକ୍ରିୟ ଗ୍ରୁପ ସଂଯୁକ୍ତ ହୋଇଥାଏ ।

- କାର୍ବନ ଯୌଗିକର ଯେଉଁ ଅଂଶ ଯୌଗିକର ମୁଖ୍ୟ ଗୁଣମାନ ନିର୍ଣ୍ଣୟ କରିଥାଏ ସେହି ଅଂଶ ହେଉଛି ଯୌଗିକର ସକ୍ରିୟ ଗୁପ।
- ଆମେ ବ୍ୟବହାର କରୁଥିବା ଅଧିକାଂଶ କାଳେଣି
 ହେଉଛି କାର୍ବନ ଏବଂ ଏହାର ଯୌଗିକ।
- ଇଥାନଲ୍ ଏବଂ ଇଥାନୋଇକ୍ ଏସିଡ୍ ହେଉଛି ଦୁଇଟି
 ମହତ୍ତ୍ୱପୂର୍ଣ୍ଣ ବ୍ୟାବସାୟିକ କାର୍ବନ ଯୌଗିକ।
- ★ ସାବୁନର ଅଣୁଗୁଡ଼ିକ ଦୀର୍ଘଶୃଞ୍ଖଳ କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ୍ର ସୋଡ଼ିୟମ କିୟା ପୋଟାସିୟମ ଲବଣ।
- ★ ଡିଟରଜେଷ୍ଟଗୁଡ଼ିକ ସାଧାରଣତଃ ଦୀର୍ଘଶୃଙ୍ଖଳ କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ୍ର ଏମୋନିୟମ କିୟା ସଲଫୋନେଟ୍ ଲବଣ।

ବିଶେଷ ଦ୍ରଷ୍ଟବ୍ୟ : ଏହି ଅଧ୍ୟାୟରେ (★) ତାରକା ଚିହ୍ନିତ ତଥ୍ୟ, ପ୍ରଶ୍ମ ଓ ବାକ୍ ଅନ୍ତର୍ଗତ ବିଷୟ ବସ୍ତୁ ସମ୍ପର୍କିତ ତଥ୍ୟ ପରୀକ୍ଷାରେ ଆସିବ ନାହିଁ ।

ପ୍ରଶାବଳୀ

- 1. ଇଥେନର ଆଣବିକ ସଙ୍କେତ ହେଉଛି $\mathbf{C_2}\mathbf{H_6}$ । ଏଥିରେ କେତୋଟି ସହସଂଯୋଜ୍ୟ ବନ୍ଧ ରହିଛି ?
 - (a) 6
- (b) 7
- (c) 8
- (d) 9
- 2. ବ୍ୟୁଟାନୋନ୍ରେ ଥିବା ସକ୍ରିୟ ଗ୍ରୁପଟି କ'ଶ?
 - (a) କାର୍ବୋକ୍ସିଲିକ୍ ଏସିଡ୍
- (b) ଆଲ୍ଡିହାଇଡ୍

(c) କିଟୋନ

- (d) ଆଲ୍କହଲ
- 3. ରୋଷେଇ କଲାବେଳେ ଯଦି ରନ୍ଧାପାତ୍ରର ତଳପଟର ବହିର୍ଭାଗ କଳା ପଡିଯାଏ, ଏହାର ଅର୍ଥ--
 - (a) ଖାଦ୍ୟ ସଂପୂର୍ଣ୍ଣ ରୂପେ ପ୍ରସ୍ତୁତ ହୋଇନାହିଁ
 - (b) ଜାଳେଣି ସଂପୂର୍ତ୍ତ ରୂପେ ଜଳୁନାହିଁ
 - (c) ଜାଳେଶିଟି ଆର୍ଦ୍ର ଅଛି
 - (d) ଜାଳେଣି ସଂପୂର୍ଣ୍ଣ ଭାବେ ଜଳୁଛି

- 4. ସହସଂଯୋଜ୍ୟ ବନ୍ଧର ଗଠନ CH୍ବ Clର ଉଦାହରଣ ଦେଇ ବୁଝାଅ ।
- 5. ତଳେ ଦିଆଯାଇଥିବା ଅଣୁଗୁଡ଼ିକର ଇଲେକ୍ଟ୍ରନ ଡଟ୍ ସଂରଚନାର ଚିତ୍ର ଦିଅ।
 - (a) ଇଥାନୋଇକ୍ ଏସିଡ୍
- (b) H₂S

(c) ପ୍ରୋପେନ୍

- (d) F₂
- 6. ହୋମୋଲଗସ୍ ଶ୍ରେଣୀ କ'ଶ ଉଦାହରଣ ସହ ବୁଝାଅ।
- ★7. ଇଥାନଲ୍ ଓ ଇଥାନୋଇକ୍ ଏସିଡ୍ ମଧ୍ୟରେ ଭୌତିକ ଓ ରାସାୟନିକ ଧର୍ମରେ ପ୍ରଭେଦ ଲେଖ ।
- ★8. କଳରେ ସାବୁନ ମିଶାଇଲେ ମିସେଲ କାହିଁକି ସୃଷ୍ଟି ହୁଏ ବୁଝାଅ। ଅନ୍ୟ ଦ୍ରାବକ ଯଥା : ଇଥାନଲରେ ମଧ୍ୟ ମିସେଲ ସୃଷ୍ଟି ହେବ କି ?
- 9. କାର୍ବନ ଏବଂ ଏହାର ଯୌଗିକକୁ ଅଧିକାଂଶ ପ୍ରୟୋଗରେ ଇନ୍ଧନରୂପେ ବ୍ୟବହାର କରାଯାଏ କାହିଁକି ?
- ★10. ଖରଜଳ ସହିତ ସାବୁନ କିପରି ପ୍ରତିକ୍ରିୟା କରେ ?
- ★ 11. ସାବୁନକୁ ଲାଲ ଏବଂ ନୀଳ ଲିଟମସ୍ କାଗଜରେ ପରୀକ୍ଷା କଲେ କି ପରିବର୍ତ୍ତନ ଦେଖାଯିବ ?
- ★12. ହାଇଡ୍ରୋଜେନୀକରଣ କ'ଣ? ଶିଳ୍ପରେ ଏହାର ପ୍ରୟୋଗ କ'ଣ?
- ★ 14. ଲହୁଣୀ ଏବଂ ରୋଷେଇ ପାଇଁ ବ୍ୟବହୃତ ତେଲ ମଧ୍ୟରେ ରାସାୟନିକ ଧର୍ମରେ ପ୍ରଭେଦ ନିର୍ଣ୍ଣୟ କରିବାକୁ ଏକ ପରୀକ୍ଷା ଦର୍ଶାଅ ।
- ★15. ସାବୁନ କିପରି ସଫାକରେ ବୁଝାଅ।

★ ଆସ ମିଳିମିଶି କରିବା

- I. ଆଣବିକ ମଡେଲ ବାକ୍ୱ (Molecular Model Kits) ବ୍ୟବହାର କରି ଏହି ଅଧ୍ୟାୟରେ ତୁମେ ପଢ଼ିଥିବା କାର୍ବନ ଯୌଗିକଗଡିକର ମଡେଲ ତିଆରି କର।
- II. ଗୋଟିଏ ବିକରରେ ପ୍ରାୟ 20ମିଲି କଡାତେଲ/ କପାମଞ୍ଜି ତେଲ (Cottonseed oil) / ଲିନ୍ସିଡ୍ (Linseed) ତେଲ/ସୋୟାବିନ ତେଲ ନିଅ । ଏଥିରେ 30 ମିଲି 20% ସୋଡ଼ିୟମ ହାଇଡ୍ରକ୍ସାଇଡ୍ ଦ୍ରବଣ ପକାଅ । ଏହି ମିଶ୍ରଣକୂ ଅନବରତ ଘାଞ୍ଜି ମିଶ୍ରଣଟି ବହଳିଆ ହେବା ପର୍ଯ୍ୟନ୍ତ କିଛି ସମୟ ଗରମ କର । 5-10 ଗ୍ରାମ ଖାଇବା ଲୁଣ ଏଥିରେ ପକାଅ । ମିଶ୍ରଣଟିକୁ ଭଲଭାବେ ଘାଞ୍ଜ ଏବଂ ଥଣ୍ଡା ହେବାକୁ ଦିଅ ।
 - ସାବୁନଟିକୁ ତୁମେ ବିଭିନ୍ନ ଆକାରରେ କାଟି ପାରିବ । ଏହି ସାବୁନରେ ତୁମେ ସୁଗନ୍ଧ ଏବଂ ରଙ୍ଗ ମଧ୍ୟ ମିଶାଇ ପାରିବ ।

COC