New York City Taxi fare Prediction

Spoorthy Reddy Jarugu

Vellore Institute of Technology - India
Deakin University

2022-07-03

Overview

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Conclusion

Problem Definition

Definition

Data Processing

Loading Data

Read Dataset and Print Dataset

Cleaning and Checking Dataset

Selecting Data

Extracing the data

Data Visualization of year, month, hour, weekday

Plotting the trip distance Vs fare amount

Heat map for training set

Model built and prediction

Evaluating the model

Problem Definition

Definition

Data Processing

Extracing the data

Model built and prediction

Conclusion

Problem Definition

Definition

Problem Definition

Definition

Data Processing

Extracing the data

Model built and prediction

Conclusion

Task is to predict the fare amount for a taxi ride in New York City. In table we have pickup and dropoff locations. We have to calculate the disatnce based on the date provided.

- Dei
- The intersing characteristic is how to calculate the distance from lattitude and longitude given.
- Depedign upon the calcuated distance (trip duration), taxi fare is predicted

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset

Cleaning and Checking Dataset

Selecting Data

Extracing the data

Model built and prediction

Conclusion

Data Processing

Loading Data

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset Cleaning and Checking Dataset Selecting Data

Extracing the data

Model built and prediction

Conclusion

- Load data import data from csv files
 - Two types of dataset train and test dataset

Train dataset

- Named train dataset as df
- There are 55423856 rows and 8
 coulmns in the train dataset

Test dataset

- Named test dataset as df_test
- ◆ There are 9915 rows and 7 coulmns in the test dataset.

Read Dataset and Print Dataset

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset

Cleaning and Checking Dataset Selecting Data

Extracing the data

Model built and prediction

- First step is to read the dataset from the CSV file
- Second print the both train and test Dataset
- Third check for NA values in the dataset

```
In [6]: 

#check for NA values in train set
           df.isnull().any()
           print(df.isnull().any())
                               False
           key
           fare amount
                               False
           pickup_datetime
                               False
           pickup_longitude
                               False
           pickup_latitude
                               False
           dropoff_longitude
                                True
           dropoff latitude
                                True
           passenger_count
                               False
           dtype: bool
```

Figure 1: Listing missing vlaues in train dataset

Figure 2: Listing missing vlaues in test dataset

Cleaning and Checking Dataset

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset

Cleaning and Checking Dataset

Selecting Data

Extracing the data

Model built and prediction

Conclusion

Identified that NAN values are present in dropoff_longitude and dropoff_latitude

■ Removing the NAN values present in the train dataset by dropna command shown below and checking again for NAN values

```
#removing NA values
In [8]:
            df=df.dropna(axis=0)
            df.shape
   Out[8]: (55423480, 8)
In [9]:
         #after removing NA values check
            df.isnull().any()
            print(df.isnull().any())
            key
                                  False
            fare_amount
                                  False
            pickup_datetime
                                  False
            pickup_longitude
                                 False
            pickup_latitude
                                 False
            dropoff longitude
                                 False
            dropoff_latitude
                                 False
                                 False
            passenger_count
            dtype: bool
```

Figure 3: Removing NAN vlaues

Cleaning Dataset further

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset

Cleaning and Checking Dataset

Selecting Data

Extracing the data

Model built and prediction

- Removing the data where pickup and dropoff locations are same (i.e pickup_longitude and dropoff_longitude; pickup_latitude and dropoff_latitude).
- Checking for outliers by fixing the boundary of New York City
 - minimum_latitude is 40.573143,
 - minimum_langitude is -74.252193,
 - maximum_latitude is 41.709555,
 - ◆ maximum_langitude is -72.986532
- Removing outliers as they are identified

Figure 4: Removing NAN vlaues

Selecting Data

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset
Cleaning and Checking Dataset

Selecting Data

Extracing the data

Model built and prediction

Conclusion

■ As dataset is huge randomly selecting 10% of dataset using the below process

```
In [19]:  #RandomLy select 10% data

df = df.sample(frac=0.1)
    df.shape
```

Out[19]: (5366287, 8)

Figure 5: Selecting 10 percent of data

Data Visualization

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset
Cleaning and Checking Dataset

Selecting Data

Extracing the data

Model built and prediction

- There are two paraters pickup lattitude, longitude, dropoff lattitude, longitude
- Let us scatter plot the above parameters as pickup data and dropoff data

Figure 6: Pickup data

Figure 7: Dropoff data

Cleaning Passanger data

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset

Cleaning and Checking Dataset

Selecting Data

Extracing the data

Model built and prediction

Conclusion

Print the count for passengers

Figure 8: Passenger count

■ Print the maximum and minimum value in passenger and cleanign the data for maximum count of 6 passengers per ride

Figure 9: Cleaned passenger data

Passanger data visualization

Problem Definition

Data Processing

Loading Data

Read Dataset and Print Dataset

Cleaning and Checking Dataset

Selecting Data

Extracing the data

Model built and prediction

Conclusion

Print the count for passengers

Figure 10: Visualizing passenger data

Problem Definition

Data Processing

Extracing the data

Data Visualization of year, month, hour, weekday Plotting the trip distance Vs fare amount

Heat map for training set

Model built and prediction

Conclusion

Extracing the data

Extracing - Day, Month, Year

Problem Definition

Data Processing

Extracing the data

Data Visualization of year, month,

hour, weekday

Plotting the trip distance Vs fare

amount

Heat map for training set

Model built and prediction

Conclusion

- To predict the taxi fare accurately we are extracting the
 - Hour is calcuted to find weather its mid_night_trip or rush_hour_trip is noted
 - Day on which the passanger is picked upon
 - Month of trip
 - Year of travel

from the pickup_datetime coulmns

- From the pickup_month weather its snow_season or not is noted
- Finally trip_diatance is calculated from pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude and stored it in trip_distance

Figure 11: Distance Calculation

Data Visualization of year, month, hour, weekday

Problem Definition

Data Processing

Extracing the data

Data Visualization of year, month, hour, weekday

Plotting the trip distance Vs fare

Heat map for training set

Model built and prediction

Figure 12: Visualizing year, month, hour, weekday count

Plotting the trip distance Vs fare amount

Problem Definition

Data Processing

Extracing the data

Data Visualization of year, month,

hour, weekday

Plotting the trip distance Vs fare amount

Heat map for training set

Model built and prediction

Conclusion

```
plt.figure(figsize=(8,8))
In [38]:
              df.plot(x='fare_amount',y='trip_distance',kind='scatter')
    Out[38]: <AxesSubplot:xlabel='fare_amount', ylabel='trip_distance'>
              <Figure size 576x576 with 0 Axes>
                 120
                 100
                  80
               trip_distance
                  20
                   0
                               200
                                                 600
                                                          800
                                        400
```

Figure 13: Visualizing trip_distance and fare_amount

fare_amount

Heat map for training set

Problem Definition

Data Processing

Extracing the data

Data Visualization of year, month,

hour, weekday

Plotting the trip distance Vs fare

amount

Heat map for training set

Model built and prediction

Figure 14: Visualizing heatmap

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Evaluating the model

Conclusion

Model built and prediction

Linear Regression model

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Evaluating the model

Conclusion

Figure 15: Linear Regression

■ Bulit a Linear Regression model predict the fare_amount of the trip in New York city

Evaluating the model

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Evaluating the model

Conclusion

MAE: 2.4184007631012028 MSE: 26.256078544064415 RMSE: 5.124068553802185

Out[59]: 0.7109492969947017

Figure 16: Evaluation Score

Visualization of predicted data

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Evaluating the model

Conclusion

In [51]: plt.scatter(y_test,prediction)

Out[51]: <matplotlib.collections.PathCollection at 0x1473954db80>

Figure 17: Visualizing predicted data

Final test data prediction

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Evaluating the model

Conclusion

Out[63]:

	passenger_count	mid_night_trip	rush_hour_trip	snow_season	trip_distance	fare_price
0	1	0	0	1	2.320991	8.973470
1	1	0	0	1	2.423802	9.193202
2	1	0	0	0	0.618182	5.599607
3	1	0	0	0	1.959671	8.466715
4	1	0	0	0	5.382833	15.782896
9909	6	0	0	0	2.124110	9.056012
9910	6	0	1	1	3.268511	11.188403
9911	6	0	1	0	19.217032	45.539987
9912	6	1	0	1	8.339644	21.200150
9913	6	0	0	1	1.182767	6.778640

9914 rows × 6 columns

Figure 18: Test data prediction

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Conclusion

Conclusion

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Conclusion

- Fare prediction using latitude and longitude infomration is showcased.
- Additionally mid_night_trip, Rush_hour_trip, show_season parameters are also considerd in fare calculation.
- The prediction model helps both passangers and drivers for effctive fare prediction compared to conventional prediction

Questions?

Problem Definition

Data Processing

Extracing the data

Model built and prediction

Contact Information

Spoorthy Reddy Jarugu Vellore Institute of Technology, India Deakin University, Australia

JARUGUSPOORTHYREDDY@GMAIL.COM

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING