

Section	A: Example Questions	
For full r	narks: Show clearly written calculations below/or in answer booklet	
	and mark data points on the graph in figure 1	ı
Marks	Section A: Example Question	Final Answers
	Question 1	
	Using the phase diagram for the aluminium-copper Alloy binary system shown in figure 1 , answer the following questions:	
	[a] What phases are present at 600°C, 15wt% Cu?	
	[b] What is the composition of each phase from part (a), in wt% Cu?	
	[c] What is the fraction of liquid phase at 600°C and 15wt% Cu?	
	[d] At what temperature does an alloy material of 45 wt% Cu begin to start melting?	
	[e] At what temperature does an alloy material of 3 wt% Cu begin to start solidifying?	
	[f] What is the eutectic temperature and composition for the Al-Cu system?	

Section A: Example	Questions
Question 2	

[a] Block of cast iron has dimensions of 35 mm by 24 mm by 18 mm and is at temperature of 12°C. Determine the increase in volume when the temperature of the block is raised to 67°C.

Assume the coefficient of linear expansion of cast iron to be 11×10^{-6} K⁻¹.

- **[b]** To what temperature would 15kg of an aluminium specimen at 23°C be raised if 115 kJ of heat is supplied?
- [c] A manhole cover has a diameter of 0.95m at $23^{\circ}C$. The cover is made of a copper/zinc alloy with a coefficient of linear expansion of $2.6 \times 10^{-5} K^{-1}$ and Young's Modulus of 112GPa.

What temperature does the stress (σ) reach -142.68 MPa?

[d] A Polyvinylchloride (PVC), sample was found to have the following molecular weight distribution described in **Table 1**. m=62.5g/mol.

Table 1: Molecular weight distribution data

Number fraction	Weight fraction	Molecular weight Range g.mol ⁻¹
Xi	Wi	M
0.05	0.02	12,000 - 16,000
0.16	0.11	16,000 -24,000
0.21	0.20	24,000 - 32,000
0.25	0.26	32,000 - 40,000
0.20	0.23	40,000 – 48,000
0.13	0.18	48,000 – 56,000

- i. Calculate the number average and weight average molecular weights.
- ii. Calculate the number average and weight average degree of polymerisation.

	(i)					
--	-----	--	--	--	--	--

(ii)			
------	--	--	--

Section	A: Exam	ple Questions				
For full r	narks: Sho	w clearly written	<mark>calculations belov</mark>	w/or in answer b	<mark>ooklet</mark>	
Marks		ection B: Example Question			Final Answers	
	A continuous and aligned fiber—reinforced composite is to be produced consisting of 35 vol% Kevlar fibers and 65 vol% polyester matrix; the mechanical characteristics of these two materials are as follows:					
		Table	2. Camparita mata			
		1 abie	e 2: Composite mater Modulus of	Tensile		
			Elasticity (GPa)	Strength (MPa)		
		Kevlar fiber	130	3720		
		Polyester	3.2	55.2		
	[a] Calculate the modulus of elasticity of this composite where loading is applied in the longitudinal direction of the fibres					
	[b] C	alculate the fiber-r	natrix load ratio.			
		alculate the actual hases.	loads carried by b	oth fiber and mat	rix	
	m	ompute the magnit atrix phases. That strain is experi			er and	

Section B	: Example	Questions
Question	2	

[f] For intrinsic silicon, the electrical conductivity at room temperature is 4.39×10^{-4} S/m. If the charge of an electron is 1.602×10^{-19} C, and the electron and hole mobilities are 0.14 $m^2/V.s$ and 0.05 $m^2/V.s$ respectively:

Calculate the intrinsic carrier concentration (n_i) of the silicon at room temperature $(25^{\circ}C)$.

(a) A gold wire 2.5 mm in diameter is to offer a resistance of no more than 2.4 Ω . Using the data in Table 3, compute the maximum wire length.

Table 3: Room-Temperature Electrical Conductivities for Nine Common Metals and Alloys

Metal	Electrical Conductivity $[(\Omega \cdot m)^{-1}]$
Silver	6.8×10^{7}
Copper	6.0×10^{7}
Gold	4.3×10^{7}
Aluminum	3.8×10^{7}
Brass (70 Cu-30 Zn)	1.6×10^{7}
Iron	1.0×10^{7}
Platinum	0.94×10^{7}
Plain carbon steel	0.6×10^{7}
Stainless steel	0.2×10^{7}

$E_{cl} = E_m V_m + E_f V_f$	$A_f = V_f A$ $A_m = V_m A$
$\frac{F_f}{F_m} = \frac{E_f V_f}{E_m V_m}$	$\Delta l = \alpha l_0 \Delta T$
$\sigma = \frac{1}{\rho}$	$\sigma = -E\alpha_l \Delta T$ $\sigma = E\alpha_l (T_o - T_f)$
$R = \frac{V}{I}$	$\rho = \frac{RA}{l}$
$P = \frac{V^2}{R}$	$\sigma = q n(\mu_n)$
$\sigma = q p(\mu_p)$	$\sigma = q n_i(\mu_n + \mu_e)$
$C = \left(\frac{Q}{m\Delta T}\right)$	$DP = \frac{\overline{M}}{m_a}$
$\overline{M}_n = \sum_i x_i M_i$	$r = d\sqrt{N}$ $L = Nd. \sin\left(\frac{\theta}{2}\right)$
$\overline{M}_w = \sum_i w_i M_i$	$W_L = \frac{C_{\alpha} - C_0}{C_{\alpha} - C_L}$