

3. CONSTRUÇÃO DE TABELAS da VERDADE

3.1. TABELA da VERDADE DE UMA PROPOSIÇÃO COMPOSTA

Na construção de tabelas da verdade, dadas várias proposições simples como **p**, **q**, **r**,..., podemos combiná-las pelos conectivos lógicos:

E construir proposições compostas, tais como:

$$\begin{array}{ll} P(p,q) &= \neg p \lor (p \to q) \\ Q(p,q) &= (p \leftrightarrow \neg q) \land q \\ R(p,q,r) &= (p \to \neg q \lor r) \land \neg (q \lor (p \leftrightarrow \neg r)) \\ S(r,s) &= (p \lor q) \to (\neg p) \\ (x \to v) \end{array}$$

Resolução de S(r,s).

р	q	p∨q	¬р	$(p \vee q) \to (\neg p)$
V	>	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	V

Então, com o emprego das tabelas da verdade que vimos anteriormente na apostila de operações lógicas fundamentais:

 $\neg p$, $p \land q$, $p \lor q$, $p \rightarrow q$, $p \leftrightarrow q$

É possível construir a tabela da verdade correspondente a qualquer proposição composta dada, tabela da verdade esta que mostrará exatamente os casos em que a proposição composta será verdadeira(V) ou falsa(F), admitindo-se, como é sabido, que o seu valor lógico só depende dos valores lógicos das proposições simples componentes.

3.2. NÚMERO DE LINHAS DE UMA TABELA da VERDADE

O número de linhas de uma tabela da verdade de uma proposição composta depende do número de proposições simples que a integram, sendo dado pelo seguinte teorema:

A tabela da verdade de uma proposição composta com n proposições simples componentes contém 2ⁿ linhas.

$$2^n = c$$

n = número de variáveis c = número de combinações

3.3. CONSTRUÇÃO DA TABELA da VERDADE DE UMA PROPOSIÇÃO COMPOSTA

Na prática, começa-se por contar o número de proposições simples que a integram. Se há n proposições simples componentes: p_1 , p_2 ,..., p_n , então a tabela da verdade contém 2^n linhas. Posto isto, à 1^a proposição simples p_1 atribuem-se $2^n/2 = 2^{n-1}$ valores V seguidos de 2^{n-1} valores F; à 2^a proposição simples p_2 atribuem-se $2^n/4 = 2^{n-2}$ valores V, seguidos de 2^{n-2} valores F, seguidos de 2^{n-2} valores V, seguidos, finalmente, de 2^{n-2} valores F; e assim por diante. De modo genérico, a k-ésima proposição simples $p_k(k \le n)$ atribuem-se alternadamente $2^n/2^k = 2^{n-k}$ valores V seguidos de igual número de valores F.

Ex: Suponhamos uma proposição composta com quatro (4) proposições simples componentes, a tabela da verdade conterá $2^4 = 16$ linhas, e os grupos de valores V e F se alternaram de 8 em 8 para a 1^a proposição simples p_1 , de 4 em 4 para a 2^a proposição simples p_2 , de 2 em 2 para a 3^a proposição simples p_3 , e, enfim, de 1 em 1 para a 4^a proposição simples p_4 .

3.4. EXEMPLIFICAÇÃO

Construir a tabela da verdade da proposição:

$$P(p,q) = \neg (p \land q) \lor \neg (q \leftrightarrow p)$$

1ª Resolução: forma-se, em primeiro lugar, o par de colunas correspondentes às duas proposições componentes p e q. Em seguida, formam-se as colunas para p \land q, q \leftrightarrow p, \neg (p \land q), \neg (q \leftrightarrow p) e afinal forma-se a coluna relativa aos valores lógicos da proposição composta dada \neg (p \land q) v \neg (q \leftrightarrow p).

р	q	p∧q	q ↔ p	¬(p ∧ q)	¬(q ↔ p)	$\neg (p \land q) \lor \neg (q \leftrightarrow p)$
V	V	V	V	F	F	F
V	F	F	F	V	V	V
F	V	F	F	V	V	V
F	F	F	V	V	F	V

2ª Resolução: forma-se primeiro, as colunas correspondentes às duas proposições simples p e q. Em seguida, à direita, traça-se uma coluna para cada uma dessas proposições e para cada um dos conectivos que figuram na proposição composta dada.

р	q	Γ	(p	٨	q)	V	_	(q	\leftrightarrow	p)
V	V	F	V	V	V	F	F	V	V	V
V	F	V	V	F	F	٧	V	F	F	V
F	V	V	F	F	V	٧	V	V	F	F
F	F	V	F	F	F	٧	F	F	V	F
		3	1	2	1	4	3	1	2	1

Portanto, simbolicamente:

$$P(VV) = F$$
, $P(VF) = V$, $P(FV) = V$, $P(FF) = V$

Ou seja, abreviadamente:

P(VV,VF,FV,FF) = FVVV

3.5. VALOR LÓGICO DE UMA PROPOSIÇÃO COMPOSTA

Dada uma proposição composta P(p,q,r,...), pode-se sempre determinar o seu valor lógico (V ou F) quando são dados ou conhecidos os valores lógicos respectivos das proposições componentes p, q, r, ...

Ex:

(1) Sabendo que valores lógicos das proposições p e q são respectivamente V e F, determinar o valor lógico (V ou F) da proposição:

$$P(p,q) = \neg(p \lor q) \leftrightarrow \neg p \land \neg q$$

Resolução: Temos, sucessivamente:

$$V(P) = \neg(V \lor F) \leftrightarrow \neg V \land \neg F = \neg V \leftrightarrow F \land V = F \leftrightarrow F = V$$

(2)
$$P(p,q) = (p \lor q) \to (r \land s) : \{V,F\} \to \{V,F\}$$

Resolução:
$$P(V,F,V,F) = (V \vee F) \rightarrow (V \wedge F) = V \rightarrow F = F$$

(3) Sejam as proposições p: pi = 3 e q: 2/2 = 0. Determinar o valor lógico (V ou F) da proposição:

$$P(p,q) = (p \rightarrow q) \rightarrow (p \rightarrow p \land q)$$

Resolução: As proposições componentes p e q são ambas falsas, isto é, V(p) = F e V(q) = F.

Portanto:

$$V(P) = (F \rightarrow F) \rightarrow (F \rightarrow F \land F) = V \rightarrow (F \rightarrow F) = V \rightarrow V = V$$

(4) Sabendo que V(r) = V, determinar o valor lógico (V ou F) da proposição: $p \rightarrow \neg q \vee r$.

Resolução: Como r é verdadeira(V), a disjunção ($\neg q \lor r$) é verdadeira(V). Logo, a condicional dada é verdadeira(V), pois, o seu conseqüente é verdadeiro(V).

3.6. USO DE PARÊNTESES

O uso de parênteses indica as prioridades e modificam as tabelas da verdade. O uso incorreto pode trazer ambiguidades. Vamos adotar à seguinte convenção.

a) O conectivo (¬) negação é usado para o argumento mais próximo.

Por ex:
$$\neg p \land q = (\neg p) \land q$$

b) A ordem de precedência é:

$$(1) \neg (2) \land (3) \lor (4) \rightarrow (5) \leftrightarrow$$

Ex:

$p \vee q \to r$	significa	$(p \lor q) \to r$
$p \leftrightarrow q \leftrightarrow r$	significa	$p \leftrightarrow (q \rightarrow r)$
$p \lor q \land r$	significa	$p \vee (q \wedge r)$

EXERCÍCIOS (valendo pontos para a avaliação/prova)

- 1) Construir as tabelas da verdade das seguintes proposições, passando pelas três resoluções citadas na apostila.
- a) $(q \wedge r) \vee s$
- b) $[q \lor r] \rightarrow [(q \lor s) \rightarrow (p \lor s)]$
- c) $(p \rightarrow r) \rightarrow q$
- **2**) Construir as tabelas da verdade das seguintes proposições e em seguida determinar P(VV,VF,FV,FF) no caso de arranjos binários e P(VVV,VVF,VFV,VFF,FVV,FVF,FFV,FFF) no caso de arranjos ternários.
- a) $\neg (p \lor \neg q)$
- b) $\neg (p \rightarrow \neg q)$
- c) $b \lor d \rightarrow b \land d$
- $\mathsf{d}) \neg \mathsf{p} \to (\mathsf{q} \to \mathsf{p})$
- e) $(p \rightarrow q) \rightarrow p \wedge q$
- $f) \ q \leftrightarrow \neg q \wedge p$
- g) (p $\leftrightarrow \neg q) \leftrightarrow q \rightarrow p$
- $h) \ (b \leftrightarrow \neg d) \rightarrow \neg b \lor d$
- $i) \neg p \wedge r \rightarrow q \vee \neg r$
- $j) \; p \to r \leftrightarrow q \vee \neg r$
- I) $p \rightarrow (p \rightarrow \neg r) \leftrightarrow q \vee r$
- m) $(p \land q \rightarrow r) \lor (\neg p \leftrightarrow q \lor \neg r)$
- **3**) Sabendo que as proposições x=0 e x=y são verdadeiras e que as proposições y=z e y=t são falsas, determinar o valor lógico (V ou F) de cada uma das seguintes proposições:
- a) $x=0 \land x=y \rightarrow y \# z$
- b) x#0 \vee y=t \rightarrow y=z
- c) x#y \vee y#z \rightarrow y=t
- d) $x\#0 \lor x\#y \to y\#z$
- e) $x=0 \rightarrow (x\#y \lor y\#t)$
- 4) Suprimir o maior número possível de parêntesis nas seguintes proposições:
- a) $((q \leftrightarrow (r \lor q)) \leftrightarrow (p \land (\neg(\neg q))))$

- b) $((p \land (\neg(\neg q))) \leftrightarrow (q \leftrightarrow (r \lor q)))$
- c) (((p \vee q) \rightarrow (\neg r)) \vee ((((\neg q) \wedge r) \wedge q)))
- **5**) Sabendo que os valores lógicos das proposições p,q e r são respectivamente V, F e F, determinar o valor lógico (V ou F) de cada uma das seguintes proposições:
- a) $(p \leftrightarrow p \rightarrow q) \lor (p \rightarrow r)$
- b) $(p \rightarrow \neg q) \leftrightarrow [(p \lor r) \land q]$
- c) $(p \land q) \rightarrow [p \rightarrow (q \rightarrow r)]$