Curso Completo de Cálculo Integral

Daniel Alejandro

July 31, 2023

1 Introducción al Cálculo Integral

En esta lección, aprenderemos los conceptos fundamentales del cálculo integral y su relación con el cálculo diferencial.

1.1 Antiderivadas

La antiderivada de una función f(x) es una función F(x) cuya derivada es igual a f(x). Representamos la antiderivada como $\int f(x) \, dx$ o F(x) + C, donde C es una constante de integración.

$$\int f(x) dx = F(x) + C \tag{1}$$

2 Técnicas de Integración

En esta lección, exploraremos diversas técnicas para resolver integrales de funciones.

2.1 Integración por Sustitución

La integración por sustitución es una técnica para resolver integrales al realizar un cambio de variable.

$$\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du \tag{2}$$

2.1.1 Ejemplo 1

Calcular la integral $\int 2x \cos(x^2) dx$ usando integración por sustitución. Solución: Hacemos la sustitución $u = x^2$, entonces du = 2x dx.

$$\int 2x \cos(x^2) \, dx = \int \cos(u) \, du = \sin(u) + C = \sin(x^2) + C$$

3 Integración por Partes

La integración por partes es una técnica útil para resolver integrales del producto de dos funciones.

$$\int u \, dv = uv - \int v \, du \tag{3}$$

3.0.1 Ejemplo 2

Calcular la integral $\int x \ln(x) dx$ usando integración por partes.

Solución: Tomamos $u = \ln(x)$ y dv = x dx, entonces $du = \frac{1}{x} dx$ y $v = \frac{x^2}{2}$.

$$\int x \ln(x) \, dx = \frac{x^2}{2} \ln(x) - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx = \frac{x^2}{2} \ln(x) - \frac{x^2}{4} + C$$

4 Integrales Definidas

En esta lección, exploraremos las integrales definidas y su relación con el área bajo la curva.

4.1 Propiedades de las Integrales Definidas

Las integrales definidas tienen propiedades útiles, como la linealidad y el teorema fundamental del cálculo.

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \tag{4}$$

4.1.1 Ejemplo 3

Calcular el área bajo la curva $y = x^2$ en el intervalo [0, 2].

Solución: Área =
$$\int_0^2 x^2 dx = \frac{x^3}{3} \Big|_0^2 = \frac{8}{3} - \frac{0^3}{3} = \frac{8}{3}$$

5 Aplicaciones de la Integral

En esta lección, veremos cómo aplicar las integrales en problemas del mundo real, como cálculo de áreas y volúmenes.

5.1 Area entre Curvas

La integral se puede utilizar para calcular el área entre dos curvas.

5.1.1 Ejemplo 4

Calcular el área entre las curvas $y=x^2$ y y=2x en el intervalo [0,2].

Solución: Área =
$$\int_0^2 (x^2 - 2x) dx = \frac{x^3}{3} - x^2 \Big|_0^2 = \frac{8}{3} - 4 = \frac{4}{3}$$

6 Volúmenes de Sólidos de Revolución

En esta lección, aprenderemos cómo utilizar integrales para calcular volúmenes de sólidos de revolución.

Volumen =
$$\pi \int_{a}^{b} (f(x))^{2} dx$$
 (6)

6.0.1 Ejemplo 5

Calcular el volumen generado al girar la región entre las curvas $y=x^2$ y y=0 alrededor del eje x.

Solución: Volumen =
$$\pi \int_0^1 (x^2)^2 dx = \pi \int_0^1 x^4 dx = \pi \cdot \frac{x^5}{5} \Big|_0^1 = \frac{\pi}{5}$$

¡Felicidades! Has completado el curso completo de Cálculo Integral. Espero que hayas encontrado útil este curso para mejorar tus habilidades en Cálculo Integral. ¡Sigue practicando y explorando las maravillas del cálculo!