Cmput 466 / 551

Dynamic Belief Networks

Readings:
A tutorial on hidden Markov models and selected applications...

(Rabiner)

R Greiner University of Alberta

Dynamic Belief Networks

- Foundations
- Markov Chains (Classification)
- Hidden Markov Models (HMM)
 - Learning HMMs
- Kalman Filter
- General: Dynamic Belief Networks (DBN)
- Applications
- Future Work, Extensions, ...

Why Temporal?

So far: Model world at SINGLE time

- Eg, repairing a car
 - (Stochastically) infer state of car from evidence
 - (car-state/evidence does not change during diagnosis)

What about time?

- Eg, treating a diabetic patient
 - Infer state of patient from evidence (insulin doses, food intake, blood sugar, ...)
 - Sequence of measurements ...
 - Blood sugar level over time,
 - depending on food + insulin
- ⇒ to determine state at time t ... to decide about Rx need to know history of measurements (CHO₁, bg₁, insulin₁, CHO₂, bg₂, insulin₂, ..., CHO_t, bg_t, insulin_t)
- Model: sequence of Random Variables:
 One for each aspect of world, for each point in time

Markovian Models

- İn general, X_{t+1} depends on everything earlier: X_t, X_{t-1}, X_{t-2}, ...
- Markovian means... Future ⊥ Past | Present

Future is independent of the past, once you know the present.

$$P(X_{t+1} | X_t, X_{t-1}, X_{t-2}, ...) = P(X_{t+1} | X_t)$$

Markov Chain: "state" (everything important) is visible

$$P(x_{t+1} \mid x_t, \langle \text{everything earlier} \rangle) = P(x_{t+1} \mid x_t)$$

- Eg: First-Order Markov Chain
 - 1. Random Walk along x axis, changing x-position ±1 at each time
 - 2. Predicting rain

Stationarity:

P(rain-Tues | rain-Mon) = P(rain-Wed | rain-Tues) = ... = P($r_{t+1} | r_t$)

Using Markov Chain, for Classification

Two classes of DNA...
 different di-nucleotide distribution

$$a_{i,j}^{+} = P(x_i \mapsto x_j | +) = p^{+}(X_{t+1} = x_j | X_t = x_i) \xrightarrow{\begin{array}{c} + & A & C & G & T \\ \hline A & 0.180 & 0.274 & 0.426 & 0.120 \\ \hline C & 0.171 & 0.368 & 0.274 & 0.188 \\ \hline C & 0.171 & 0.368 & 0.274 & 0.188 \\ \hline C & 0.171 & 0.368 & 0.274 & 0.188 \\ \hline C & 0.171 & 0.368 & 0.274 & 0.188 \\ \hline C & 0.322 & 0.298 & 0.078 & 0.302 \\ \hline C & 0.248 & 0.246 & 0.298 & 0.208 \\ \hline C & 0.248 & 0.246 & 0.298 & 0.208 \\ \hline C & 0.171 & 0.375 & 0.125 & G & 0.248 & 0.246 & 0.298 \\ \hline C & 0.248 & 0.246 & 0.298 & 0.208 \\ \hline C & 0.248 & 0.246 & 0.288 \\ \hline C & 0.248 & 0.246 & 0.288 \\ \hline C & 0.248 & 0.246 & 0.288 \\ \hline C & 0.248 & 0.246 & 0.288 \\ \hline C & 0.248 & 0.246 & 0.288 \\ \hline C & 0.248 & 0.246 & 0.288 \\ \hline C & 0.248 & 0.246 & 0.288 \\ \hline C & 0.248 & 0.246 & 0.288 \\ \hline C & 0.248 & 0.246$$

Use this to classify a nucleotide sequence

$$\bar{\mathbf{x}} = \langle \mathsf{GATTACACCA...} \rangle$$

A:
$$P(\bar{x} \mid +) =$$
 $p^{+}(x_{1}) p^{+}(x_{2} \mid x_{1}) p^{+}(x_{3} \mid x_{2}) ... p^{+}(x_{k} \mid x_{k-1}) =$
 $\prod_{i=1}^{k} p^{+}(x_{i} \mid x_{i-1}) = \prod_{i=1}^{k} a_{x_{i} \mid x_{i-1}}^{+}$

using Markov properties

Using Markov Chain, for Classification

$$a_{i,j}^{+} = P(x_i \mapsto x_j | +) = p^{+}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | +) = p^{+}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

$$a_{i,j}^{-} = P(x_i \mapsto x_j | -) = p^{-}(X_{t+1} = x_j | X_t = x_i)$$

• Is $\bar{\mathbf{x}} = \langle ACATTGACCAT \rangle$ in + class?

$$P(x | +) = p^{+}(x_{1} |) p^{+}(x_{2} | x_{1}) p^{+}(x_{3} | x_{2}) ... p^{+}(x_{k} | x_{k-1})$$

$$= p^{+}(A) p^{+}(C | A) p^{+}(A | C) ... p^{+}(T | A)$$

$$= 0.25 \times 0.274 \times 0.171 \times ... \times 0.355$$

P(x |-) = p⁻(
$$x_1$$
 |) p⁻(x_2 | x_1) p⁻(x_3 | x_2) ... p⁻(x_k | x_{k-1})
= p⁻(A) p⁻(C | A) p⁻(A | C) ... p⁻(T | A)
= 0.25 × 0.205 × 0.322 × ... × 0.239

• Pick larger: "+" if p(x | +) > p(x | -)

Results (Markov Chain)

•
$$S(x) = \log \frac{P(x|+)}{P(x|-)} = \sum_{i=1}^{k} \log \frac{a_{x_{i-1},x_i}^+}{a_{x_{i-1},x_i}^-} = \sum_{i=1}^{k} \beta_{x_{i-1},x_i}$$

where
$$\beta_{i,j} = \log \frac{a_{i,j}^+}{a_{i,j}^-}$$
 $\frac{\beta}{A} = \frac{A}{-0.740} = \frac{C}{0.419} = \frac{G}{0.580} = \frac{G}{0.624} = \frac{G}{0.461} = \frac{G}{0.331} = \frac{G}{0.679} = \frac{G}{0.573} = \frac{G}{0.393} = \frac{G}{0.679} = \frac$

Results over 48 sequences:

- Here: everything is visible
- Sometimes, can't see the "states"

Phydeaux, the Dog

- Sometimes: Grumpy
 - Sometimes: *Happy*
- But hides emotional state...
 Only observations:

{ slobbers, frowns, yelps }

Known Correlations

- State { G,H } to Observations {s, f, y}
- State { G,H } on day t to state { G,H } on day t+1

Challenge: Given observation sequence: (s, s, f, y, y, f, ...)
 what were Phydeaux's states? ??
 ?? (H, H, G, G, G, H, ...)
 ?? (H, H, G, G, G, H, ...)

Umbrella+Rain Situation

- State: $R_t \in \{ +rain, -rain \}$
- Observation: U_t ∈ {+umbrella, -umbrella}

 r_{t} $P(+r_{t+1} | r_{t})$

Simple (temporal) Belief Net:

	·	((11 (()			
	+	0.7			
	_	0.2			
R_0	R_1	\rightarrow R_2	R_3		
0				r _t	P(+u _t r _t)
	\downarrow			+	0.9
	U.	U ₂	U ₂	_	0.2

Note: Umbrella_t depends only on Rain_t $Rain_{t+1} depends only on Rain_t$

HMM Tasks

- Filtering / Monitoring: P($X_t \mid e_{1:t}$) $U_1=+$ $U_2=+$ $U_3=-$
 - What is $P(R_3 = + | U_1 = +, U_2 = +, U_3 = -)$?
 - Use dist'n over current state to make rational decisions
- 2. Prediction: $P(X_{t+k} | e_{1:t})$
 - What is $P(R_5 = | U_1 = +, U_2 = +, U_3 = -)$?
 - Use to evaluate possible courses of actions
- Smoothing / Hindsight: $P(X_{t-k} | e_{1:t})$
 - What was $P(R_1 = | U_1 = +, U_2 = +, U_3 = -)$?
- 4. Likelihood: P(e_{1:t})
 - What is $P(U_1 = +, U_2 = +, U_3 = -)$?
 - For comparing different models ... classification
- Most likely expl'n: $\underset{x_{1:t}}{\operatorname{argmax}} \{ P(x_{1:t} \mid e_{1:t}) \}$
 - Given $\langle U_1 = +, U_2 = +, U_3 = \rangle$, what is most likely value for $\langle R_1, R_2, R_3 \rangle$?
 - Compute assignments, for DNA, sounds, ...
- 6. Learning the parameters

Notes

$$\mathbf{e}_{1:t} = [\mathbf{e}_1, ..., \mathbf{e}_t]$$
 $\mathbf{u}_{1:3} = [\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$

- Can compute P(x) from TREE-Structured belief net, in linear time
 - HMM model is tree-structured

■ P(a | b) =
$$\frac{P(a,b)}{P(b)} = \frac{P(a,b)}{\sum_{a'} P(A=a',b)}$$

1. Filtering

- At time 2: have
 - $P(R_2 \mid u_{1:2}) = \langle P(+r_2 \mid +u_1, +u_2), P(-r_2 \mid +u_1, +u_2) \rangle$
 - ... then observe $u_3 = -$... what is P($R_3 \mid +u_1, +u_2, -u_3$)?
- $P(R_3 | u_{1:3}) = \alpha' P(R_3, u_{1:3}) = \alpha' P(R_3, u_{1:2}, u_3)$ $= \alpha P(u_3 | R_3, u_{1:2}) P(R_3 | u_{1:2})$ $= \alpha P(u_3 | R_3) P(R_3 | u_{1:2})$ $P(R_3 | u_{1:2}) \alpha' = \frac{1}{P(u_{1:3})}$

$$P(R_3 | u_{1:2}) = \sum_{r_2} P(R_3, r_2 | u_{1:2})$$

$$= \sum_{r_2} P(R_3 | r_2, u_{1:2}) P(r_2 | u_{1:2})$$

$$= \sum_{r_2} P(R_3 | r_2) P(r_2 | u_{1:2})$$

1. Filtering

At time t:

 $U_1 = + U_2 = + U_3 = -$

- have P(R_t | u_{1:t})
- ... then update based on u_{t+1}
- Distribution of R_{t+1} wrt time t+1

Called "Forward Algorithm"

$P(x_t, e_{1:t}) \text{ vs } P(x_t | e_{1:t})$

To compute P($X_t=a \mid e_{1:t}$):

Hidden State: X (was R for Rain)

Observable: e (was u for umbrella)

Compute

$$\langle P(X_t=1, e_{1:t}), ..., P(X_t=k, e_{1:t}) \rangle$$

- Using this, compute $P(e_{1:t}) = \sum_{i=1..k} P(X_t=i, e_{1:t})$
- For each a, compute $P(X_t=a \mid e_{1:t}) = P(X_t=a, e_{1:t}) \times \frac{1}{P(e_{1:t})}$

Normalizing constant: $\alpha = \frac{1}{P(e_{1:t})}$

 α could be any other term that does not involve X_t ...

Filtering – Forward Algorithm

- Let $f_{1:t} = P(|X_t||e_{1:t})$ = $\langle P(|X_t||e_{1:t}), ..., P(|X_t||e_{1:t}) \rangle$ $f_{1:t+1}(X_{t+1}) = P(|X_{t+1}||e_{1:t+1})$ = $\alpha P(|e_{t+1}||X_{t+1}) \sum_{X_t} P(|X_{t+1}||X_t) f_{1:t}(X_t)$
- $f_{1:t+1} = \alpha Forward(f_{1:t+1}, e_{t+1})$

Detached!

Update 1:t → 1:t+1 (for discrete state variables):
Constant time & Constant space!

- Given: $P(R_0) = \langle 0.5, 0.5 \rangle$ Evidence $\langle U_1 = +, U_2 = + \rangle$:
- **Predict state distribution** (before evidence) $U_1 = +$ $U_2 = +$ $P(R_1) = \sum_{r_0} P(R_1 \mid r_0) P(r_0)$ $= \langle 0.7, 0.3 \rangle \times 0.5 + \langle 0.2, 0.8 \rangle \times 0.5 = \langle 0.45, 0.55 \rangle$
- Incorporate "Day 1 evidence" $+u_1$: $P(R_1 \mid +u_1) = \alpha P(+u_1 \mid R_1) P(R_1)$ $= \alpha \langle 0.9, 0.2 \rangle .* \langle 0.45, 0.55 \rangle = \alpha \langle 0.405, 0.11 \rangle \approx \langle 0.786, 0.214 \rangle$
- **Predict** (from t = 1 to t = 2, before new evidence) $P(R_2 \mid +u_1) = \sum_{r_1} P(R_2 \mid r_1) P(r_1 \mid +u_1)$ $= \langle 0.7, 0.3 \rangle 0.786 + \langle 0.2, 0.8 \rangle 0.214 \approx \langle 0.593, 0.407 \rangle$
- Incorporate "Day 2 evidence" +u₂: $P(R_2 \mid +u_1, +u_2) = \alpha P(+u_2 \mid R_2) P(R_2 \mid +u_1) =$ $\alpha \langle 0.9, 0.2 \rangle .* \langle 0.593, 0.407 \rangle = \alpha \langle 0.534, 0.081 \rangle \approx \langle 0.868, 0.132 \rangle$

HMM Tasks

- Filtering / Monitoring: P(X_t | e_{1:t})
 - $\mathbf{e_{1:t}}$ $\mathbf{U_1} = + \mathbf{U_2} = +$
 - $_{9}$ =+ U_{3} =

- What is $P(R_3 = + | U_1 = +, U_2 = +, U_3 = -)$?
- Use dist'n, over current state to make rational decisions
- Prediction: $P(X_{t+k} | e_{1:t})$
 - What is $P(R_5 = | U_1 = +, U_2 = +, U_3 = -)$?
 - Use to evaluate possible courses of actions
- Smoothing / Hindsight: $P(X_{t-k} | e_{1:t})$
 - What was $P(R_1 = | U_1 = +, U_2 = +, U_3 = -)$?
- 4. Likelihood: P(e_{1:t})
 - What is $P(U_1 = +, U_2 = +, U_3 = -)$?
 - For comparing different models ... classification
- Most likely expl'n: $\underset{x_{1:t}}{\operatorname{argmax}} \{ P(x_{1:t} \mid e_{1:t}) \}$
 - Given $\langle U_1 = +, U_2 = +, U_3 = \rangle$, what is most likely value for $\langle R_1, R_2, R_3 \rangle$?
 - Compute assignments, for DNA, sounds, ...
- 6. Learning the parameters

Best Model of Phydeaux?

Challenge: Given observation sequence: $\mathbf{e} = \langle s, s, f, y, y, ... \rangle$ which model of Phydeaux is "correct"?? Compare $P_{I}(\mathbf{e})$ vs $P_{II}(\mathbf{e})$

4. Likelihood

- How to compute **likelihood** $P(e_{1:t})$?
- Let $L_{1:t} = P(X_t, e_{1:t})$

$$\mathbf{L_{1:t+1}} = P(X_{t+1}, e_{1:t+1}) = \sum_{x_t} P(x_t, X_{t+1}, e_{1:t}, e_{t+1})$$

$$= \sum_{x_t} P(e_{t+1} \mid x_t, X_{t+1}, e_{1:t}) P(X_{t+1} \mid x_t, e_{1:t}) P(x_t, e_{1:t})$$

$$= \sum_{x_t} P(e_{t+1} | X_{t+1}) P(X_{t+1} | x_t) P(x_t, e_{1:t})$$

= P(
$$e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) L_{1:t}(x_t)$$

- Note: ≈same Forward() algorithm!!
- To compute actual likelihood:

$$P(e_{1:t}) = \sum_{x_t} P(X_t = x_t, e_{1:t}) = \sum_{x_t} L_{1:t}(x_t)$$

Use HMMs to Classify Words in Speech Recognition

- Use one HMM for each word
 - hmm_j for jth word
- Convert acoustic signal to sequence of fixed duration frames (eg, 60ms)

(Assumes you know start/end of each word in speech signal)

- Map each frame to nearest "codebook" frame (discrete symbol x_t)
- 1. $e_{1:T} = \langle e_1, \dots, e_n \rangle$
- To classify sequence of frames e_{1:T}
 - 1. Compute P($e_{1:T} \mid hmm_j$) likelihood $e_{1:T}$ generated by word hmm_j
 - 2. Return argmax_j { P(e_{1:T} | hmm_j) }
 word#j whose hmm_j gave highest likelihood

HMM Tasks

- Filtering / Monitoring: $P(X_t | e_{1:t})$
 - $U_1 = + U_2 = +$

- What is $P(R_3 = + | U_1 = +, U_2 = +, U_3 = -)$?
- Use distr. over current state to make rational decisions
- Prediction: $P(X_{t+k} \mid e_{1:t})$
 - What is $P(R_5 = | U_1 = +, U_2 = +, U_3 = -)$?
 - Use to evaluate possible courses of actions
- Smoothing / Hindsight: $P(X_{t-k} | e_{1:t})$
 - What was $P(R_1 = | U_1 = +, U_2 = +, U_3 = -)$?

- 4. Likelihood: P(e_{1:t})
 What is P(U₁ = +, U₂ = +, U₃ = -) ?
 - For comparing different models ... classification
- Most likely expl'n: $\underset{x_{1:t}}{\operatorname{argmax}} \{ P(x_{1:t} \mid e_{1:t}) \}$
 - Given $\langle U_1 = +, U_2 = +, U_3 = \rangle$, what is most likely value for $\langle R_1, R_2, R_3 \rangle$?
 - Compute assignments, for DNA, sounds, ...
- Learning the parameters

2. Prediction

 $U_1 = +$

Already have 1 step prediction
 Prediction (from t = 1 to t = 2, before new evidence)

$$P(R_2 \mid +u_1) = \sum_{r_1} P(R_2 \mid r_1) P(r_1 \mid +u_1) = ... \approx \langle 0.627, 0.373 \rangle$$

Prediction ≡ filtering w/o incorporating new evidence Using transition info, but not observation info

$$P(X_{t+k+1} | e_{1:t}) = \sum_{X_{t+k}} P(X_{t+k+1} | X_{t+k}) P(X_{t+k} | e_{1:t})$$

 $U_2 = +$

2. Prediction

Already have 1 step prediction
 Prediction (from t = 1 to t = 2, before new evidence)

$$U_1 = + U_2 = +$$

 $P(R_2 \mid +u_1) = \sum_{r_1} P(R_2 \mid r_1) P(r_1 \mid +u_1) = ... \approx \langle 0.627, 0.373 \rangle$

Prediction ≡ filtering w/o incorporating new evidence
Using transition info, but not observation info

$$P(X_{t+k+1} | e_{1:t}) = \sum_{x_{t+k}} P(X_{t+k+1} | x_{t+k}) P(x_{t+k} | e_{1:t})$$

Converge to stationary distribution P(Y | e)

fixed-point:
$$P(Y|e) = \sum_{x} P(Y|x) P(x|e)$$

here $\langle 0.5, 0.5 \rangle$
Mixing time \approx #steps until reach fixed point

⇒ Prediction meaningless unless k ≪ mixing-time
 More "mixing" in transitions
 ⇒ shorter mixing time, harder to predict future

3. Smoothing / Hindsight

• Given $\langle +u_1, +u_2, -u_3, +u_4, -u_5 \rangle$, what is best estimate of r_3 P(R_3 | $+u_1$, $+u_2$, $-u_3$, $+u_4$, $-u_5$)

3. Smoothing / Hindsight

$$R_0$$
 R_1 R_2 R_3 R_4 R_5 R_5 R_4 R_5 R_5 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_9 R_9

- Given $\langle +u_1, +u_2, -u_3, +u_4, -u_5 \rangle$, what is best estimate of r_3 ? P(R_3 | $+u_1, +u_2, -u_3, +u_4, -u_5$)
- Let $f_{1:k} = P(X_k | e_{1:k})$ $b_{k+1:t} = P(e_{k+1:t} | X_k)$ $P(X_k | e_{1:t}) = P(X_k | e_{1:k}, e_{k+1:t})$ $= \alpha P(X_k | e_{1:k}) P(e_{k+1:t} | X_k, e_{1:k})$ $= \alpha P(X_k | e_{1:k}) P(e_{k+1:t} | X_k)$ $= \alpha f_{1:k} b_{k+1:t}$
- Recursive computation for $f_{1:k}$... go forward: 1, 2, 3, ..., k
- Recursive computation for $b_{1:k}$...go backward: T, T-1, ...,k+1

Smoothing – Backward Algorithm

$$\mathbf{b_{4:8}(x_3)} = P(e_{4:8} \mid x_3)$$

$$\mathbf{b_{4:8}(x_3)} = P(e_{4:8} \mid x_3)$$

$$= \sum_{x_4} P(e_{4:8} \mid x_3, \mathbf{x_4}) \qquad P(\mathbf{x_4} \mid x_3)$$

$$= \sum_{x_4} P(e_{4:8} \mid x_4) \qquad P(\mathbf{x_4} \mid x_3)$$

$$= \sum_{x_4} P(e_{4:8} \mid x_4) \qquad P(\mathbf{x_4} \mid x_3)$$

$$= \sum_{x_4} P(e_{4} \mid e_{5:8} \mid x_4) \qquad P(\mathbf{x_4} \mid x_3)$$

$$= \sum_{x_4} P(e_{4} \mid x_4) P(e_{5:8} \mid x_4) P(\mathbf{x_4} \mid x_3)$$

$$= \sum_{x_4} P(e_{4} \mid x_4) P(e_{5:8} \mid x_4) P(\mathbf{x_4} \mid x_3)$$

$$= \sum_{x_4} P(e_{4} \mid x_4) P(e_{5:8} \mid x_4) P(\mathbf{x_4} \mid x_3)$$

$$= \sum_{x_4} P(e_{4} \mid x_4) P(e_{5:8} \mid x_4) P(\mathbf{x_4} \mid x_3)$$

$$= \sum_{x_4} P(e_{4} \mid x_4) P(e_{5:8} \mid x_4) P(\mathbf{x_4} \mid x_3)$$

Smoothing – Backward Algorithm

- $\begin{aligned} \mathbf{b_{k+1:t}(x_k)} &= P(e_{k+1:t} \mid x_k) \\ &= \sum_{x_{k+1}} P(e_{k+1:t} \mid x_k, x_{k+1}) P(x_{k+1} \mid x_k) \\ &= \sum_{x_{k+1}} P(e_{k+1:t} \mid x_{k+1}) P(x_{k+1} \mid x_k) \\ &= \sum_{x_{k+1}} P(e_{k+1}, e_{k+2:t} \mid x_{k+1}) P(x_{k+1} \mid x_k) \\ &= \sum_{x_{k+1}} P(e_{k+1} \mid x_{k+1}) P(e_{k+2:t} \mid x_{k+1}) P(x_{k+1} \mid x_k) \\ &= \sum_{x_{k+1}} P(e_{k+1} \mid x_{k+1}) P(x_{k+1} \mid x_k) P(x_{k+1} \mid x_k) \end{aligned}$
- So $b_{k+1:t}$ = Backward($b_{k+1:t}$, $e_{k+2:t}$)
- Initialize: $b_{t+1:t}(x_t) = P(e_{t+1:t} | x_t) = 1$
- "Forward-Backward Algorithm"
 - Just polytree belief net inference!
- Fixed-lag smoothing $\langle P(X_t | e_{1:t+k}) \rangle_t$

Forward-Backward Algorithm

- Inputs:
 - ev: vector of evidence values i..t
 - prior. $P(X_0)$
- Local vars
 - fv: "forward" msgs for 0..t
 - b: "backward" msgs ... initially 1
 - **sv**: vector of smoothed estimates, 1..t
- **fv**[0] ← *prior*
- for i=1..t do
 - fv[i] ← Forward(fv[i-1], ev[i])
- for *i* = t..1 do
 - $\mathbf{sv}[i] \leftarrow \text{Normalize}(\mathbf{fv}[i] \times \mathbf{b})$
 - **b** ← Backward(**b**, **ev**[*i*])
- return sv

HMM Tasks

- Filtering / Monitoring: P(X_t | e_{1:t})
 - $U_1 = + U_2 = +$

- What is $P(R_3 = + | U_1 = +, U_2 = +, U_3 = -)$?
- Use dist'n over current state to make rational decisions
- Prediction: P(X_{t+k} | e_{1:t})
 What is P(R₅ = | U₁ = +, U₂ = +, U₃ = -)?
 - Use to evaluate possible courses of actions
- Smoothing / Hindsight: P(X_{t-k} | e_{1:t})
 What was P(R₁ = − | U₁ = +, U₂ = +, U₃ = −) ?

- 4. Likelihood: P(e_{1:t})
 What is P(U₁ = +, U₂ = +, U₃ = -) ?
 - For comparing different models ... classification
 - Most likely expl'n: $\underset{x_{1:t}}{\operatorname{argmax}} \{ P(x_{1:t} \mid e_{1:t}) \}$
 - Given $\langle U_1 = +, U_2 = +, U_3 = \rangle$, what is most likely value for $\langle R_1, R_2, R_3 \rangle$?
 - Compute assignments, for DNA, sounds, ...
 - Learning the parameters

5. Most Likely Explanation

- Given (+u₁, +u₂, -u₃, +u₄, +u₅), which is most likely rain-sequence: Perhaps
 - ? $\langle +r_1, +r_2, +r_3, +r_4, +r_5 \rangle$ but forgot umbrella on day#3?
 - ? $\langle +r_1, +r_2, -r_3, -r_4, +r_5 \rangle$ but was too cautious on day#4?
 - ? ... 2⁵ possibilities!
- ? Idea: Just use "3. Smoothing"?

Use argmax_Smoothing for MLE?

? Idea: Use "3. Smoothing" ?

```
For i = 1..5

Compute P(R_i \mid \mathbf{u})

Let r_i^* = argmax_r \{ P(R_i = r \mid \mathbf{u}) \}

Return \langle r_1^*, ..., r_5^* \rangle
```

- Most common FIRST name: Mohammad Most common LAST name: Wang
 - → Most common F+L name: Mohammad Wang

?? William Smith ??

Computing MPE ...

```
Happy (state)

p( s | h) = 0.999

p( f | h) = 0.001
```


- Observe (s, f, s)
- ??Predict 〈 H, G, H 〉
- But 0 chance of occurring!!
- Only possible sequences:
 - 〈 H, H, H 〉
 - 〈 G, G, G 〉

MLE: Dynamic Program

- Recursively, for each X_k = x_k:
 - compute prob of most likely path to each x_k
 - $m_{1:t}(X_t) = \max_{x_1,...,x_{t-1}} P(x_1,...,x_{t-1}, X_t \mid e_{1:t})$

$$\mathbf{m_{1:t+1}(X_{t+1})} = \max_{x_1,...,x_t} P(x_{1:t}, X_{t+1} | e_{1:t+1})$$

= P(
$$e_{1:t+1} | X_{t+1}$$
) $\max_{x_t} [P(X_{t+1}|x_t) \max_{x_{1:t-1}} P(x_{1:t-1}, x_t | e_{1:t})]$

=
$$P(e_{1:t+1} | X_{t+1}) max_{xt} [P(X_{t+1} | x_t) m_{1:t}(x_t)]$$

MLE – con't

- $\mathbf{m_{1:t+1}} = \max_{x_1,...,x_t} P(x_{1:t}, X_{t+1} | e_{1:t+1})$ $= P(e_{1:t+1} | X_{t+1}) \max_{x_t} P(X_{t+1} | x_t) \mathbf{m_{1:t}}$
- Just like Filtering except
 - Replace $f_{1:t} = P(X_t | e_{1:t})$ with $m_{1:t} = \max_{X_{1:t-1}} P(X_{1:t-1}, X_t | e_{1:t})$
 - Replace \sum_{x_t} with \max_{x_t}
- To recover actual optimal-states x*_k keep back-pointers!
- Viterbi Algorithm
- Linear time, linear space

Most Likely Sequence | DNA

- Observe only output values
 - ⟨gccta⟩
 - $E_1 = g$, $E_2 = c$, $E_3 = c$, $E_4 = t$, $E_5 = a$
- Want to determine:

Most likely sequence of STATES

HMM Tasks

- Filtering / Monitoring: $P(X_t | e_{1:t})$ $U_1=+$ $U_2=+$
- What is $P(R_3 = + | U_1 = +, U_2 = +, U_3 = -)$?
- Use dist'n over current state to make rational decisions

- Prediction: P(X_{t+k} | e_{1:t})
 What is P(R₅ = | U₁ = +, U₂ = +, U₃ = -) ?
 - Use to evaluate possible courses of actions
- Smoothing / Hindsight: $P(X_{t-k} | e_{1:t})$ What was $P(R_1 = | U_1 = +, U_2 = +, U_3 = -)$?

- Likelihood: P(e_{1:t})
 What is P(U₁ = +, U₂ = +, U₃ = -) ?
 - For comparing different models ... classification
- Most likely expl'n: $\underset{x_{1:t}}{\operatorname{argmax}} \{ P(x_{1:t} \mid e_{1:t}) \}$
 - Given $\langle U_1 = +, U_2 = +, U_3 = \rangle$, what is most likely value for $\langle R_1, R_2, R_3 \rangle$?
 - Compute assignments, for DNA, sounds, ...
- Learning the parameters

Learning Task

r _t	P(+r _{t+1} r _t)
+	$\Theta_{(+r' +r)}$
-	$\Theta_{(+r' -r)}$

Given observations:

$$[+u1, +u2, -u3, +u4, ...], ...$$

Find best values for parameters

$$\{\Theta_{(+r'|+r)},\Theta_{(+r'|-r)},\Theta_{(+u|+r)},\Theta_{(+u|-r)}\}$$

How?

 $P(+u_t | r_t)$

 $\theta_{(+u|+r)}$

 $\theta_{(+u|-r)}$

Learning Task

r _t	$P(+r_{t+1} r_t)$
+	$\mathbf{\Theta}_{(+r' +r)}$
-	$\mathbf{\Theta}_{(+r' -r)}$

Given complete observations (including state):

$$[-r_0, (+r_1, +u_1), (-r_2, +u_2), (-r_3, -u_3), (+r_4, +u_4), ...], ...$$

R _t	U _t	R _t	R _{t+1}
+	+	_	+
_	+	+	_
_	_	_	_
+	+	_	+

- Best values for parameters $\{\Theta_{(+r'|+r)}, \Theta_{(+r'|-r)}, \Theta_{(+u|+r)}, \Theta_{(+u|-r)}\}$
- Trivial:
 - 2 +r lead to +u : so $\theta_{(+u|+r)} = 2/2 = 1$
 - 1 -r leads to +u, 1 -r leads to -u: so $\theta_{(+u|-r)} = \frac{1}{2}$
 - ... similarly for $\Theta_{(+r'|+r)}$, $\Theta_{(+r'|-r)}$

 $P(+u_t | r_t)$

 $\theta_{(+u|+r)}$

 $\theta_{(+u|-r)}$

Learning Task

r _t	P(+r _{t+1} r _t)
+	$\mathbf{\Theta}_{(+r' +r)}$
-	$\mathbf{\Theta}_{(+r' -r)}$

But given "partial" observations:

R _t	Ut	R _t	R_{t+1}
?	+	?	?
?	+	?	?
?	_	?	?
?	+	?	?

- If only we knew the values of R₁, R₂, R₃, R₄, ...
- Don't know... but can guess...
- Iteratively improve current values of θ :
 - Use MLE values of $[R_1, R_2, R_3, R_4]$
 - Use DISTRIBUTION over [R₁, R₂, R₃, R₄]

 $P(+u_t | r_t)$

 $\theta_{(+u|+r)}$

 $\theta_{(+u|-r)}$

Finding Best Parameters 1:

Viterbi

R_{t}	U _t		R _t	U _t
?	+		+	+
?	+	\rightarrow	_	+
?	-		_	-
?	+		+	+

1. Guess Initial $\theta^{(0)}$

2. Run Viterbi Algorithm to find

$$\mathbf{r}^* = \operatorname{argmax}_{\mathbf{r}} P(\mathbf{r} \mid \mathbf{u}, \mathbf{\theta}^{(0)})$$

- 3. Find ML value of θ from $\{[r_i^*, u_i]\}$
 - $\bullet \mathbf{\Theta}^{(1)} = \operatorname{argmax}_{\mathbf{\theta}} P(\mathbf{r}^* | \mathbf{u}, \mathbf{\theta})$
 - Factors nicely:

$$\left[\theta_{(+\mathbf{u}|+\mathbf{r})}^{(1)}, \theta_{(+\mathbf{u}|-\mathbf{r})}^{(1)} \right]$$
 depends on $N_{+\mathbf{u},+\mathbf{r}}, N_{+\mathbf{u},-\mathbf{r}}, \dots$

4. If not done, goto 2.

Finding Best Parameters 2:

Baum-Welch

			- Kt	Ut	vvi
R _t	U _t		+	+	0.3
?	+		_	+	0.7
?			+	+	0.4
f T	\rightarrow	_	+	0.6	
?	_		+	_	0.9
			_	_	0.1
?	+		+	+	0.1
			_	+	0.9

- 1. Guess Initial $\theta^{(0)}$
- 2. Run **EM** to find distribution P($\mathbf{r} \mid \mathbf{u}, \mathbf{\theta}^{(0)}$)
- 3. Find ML value of θ from $\{[r_i, u_i, w_i]\}$
 - $\bullet \mathbf{\Theta}^{(1)} = \operatorname{argmax}_{\mathbf{\theta}} P(\mathbf{r}^* | \mathbf{u}, \mathbf{\theta})$
 - Factors nicely:

$$\left[\boldsymbol{\theta}_{(+\boldsymbol{u}|+\mathbf{r})}^{(1)}, \boldsymbol{\theta}_{(+\boldsymbol{u}|-\mathbf{r})}^{(1)} \right]$$
 depends on $\widehat{N}_{+\mathsf{u},+\mathsf{r}}, \widehat{N}_{+\mathsf{u},-\mathsf{r}}$, ...

4. If not done, goto 2.

Comments on Learning Algs

- Viterbi is self-fulfilling ...
 - ... but fast convergence
- Obvious Bayesian versions ... with priors
- Baum-Welch actually PRECEDED EM
 - [Baum&Welch 1972]
 - [Dempster, Laird & Rubin 1977]
- Can use any techniques for learning Bayesian Network parameters
- Also: if just want P(u_k | u₁, ..., u_{k-1}): can use other methods...

Dynamic Belief Networks

- Foundations
- Markov Chains (Classification)
- Hidden Markov Models (HMM)
- Kalman Filter
- General: Dynamic Belief Networks (DBN)
- Applications
- Future Work, Extensions, ...

■ In 2016: skipped remaining slides ...

Kalman Filters

Tracking a bird in flight, based on (noisy) sensors
 Given observations

("estimates" of its position/velocity) predict its future position, ...

- X_t = TruePosition @time t
 - \dot{X}_{t} = TrueVelocity @time t
 - Z_t = MeasuredPosition @time t
- Observation model: P($Z_t | X_t$) $Z_t \sim N(X_t, \sigma_t^2)$

Transition model: $P(X_{t+1} \mid X_t, \dot{X}_t)$

$$X_{t+1} \sim \mathbb{N}(X_t + \dot{X}_t, \sigma_t^2)$$

- Everything stays Gaussian!
 - ... for Filtering, Smoothing, ...

Tracking Object in X-Y Plane

Tracking

Smoothing

Dynamic Belief Networks

- Foundations
- Markov Chains (Classification)
- Hidden Markov Models (HMM)
- Kalman Filter
- General: Dynamic Belief Networks (DBN)
- Applications
- Future Work, Extensions, ...

Dynamic Belief Network

- At each time slice:
 - description of state
- State.t-2 State.t-1 State.t+1 State.t+2

 Percept.t-2 Percept.t-1 Percept.t+2
- description of observation
- If 1 var for state, 1 var for obs
 - \Rightarrow HMM
- But can have >1 variable for state; >1 for observation!

•

Advantage of Dynamic BN

- Why not view DBN as HMM? ... just "bundle"
 - the observable variables {BMeter, Z} into 1 meganode
 - the latent variables {X, X', Battery} into 1 meganode
- Answer: Spse |X|=10; |X'|=10; |Battery|=10, |BMeter|=10, |Z|=10 Now:
 - CPtables: Battery \rightarrow Bmeter: 10x10; X \rightarrow Z: 10x10 X', Battery_t \rightarrow Battery_{t+1}: 10x10 x 10; X_t, X'_t \rightarrow X'_{t+1}: 10x10 x 10
 - Total: 2,200 values

As simple HMM:

- CPtable for Transition Probability: $10x10x10 \times 10x10x10 = 1M$!
- CPtable for Emission Probability: $10x10x10 \times 10x10 = 100K$

Representing State as GRAPH of Random Variables

... reduces complexity of representing $P(X' \mid X, A)$ and $P(E \mid X)$

Inference in DBNs

As DBN is Belief Net,
 can use std BeliefNet Inference alg
 after unrolling

Filtering

$$\mathbf{f_{1:t+1}(x_{t+1})} = P(x_{t+1} | e_{1:t+1})$$

$$= P(e_{t+1} | x_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) \mathbf{f_{1:t}(x_t)}$$

Sums out state variable X_{t-1}
corresponds to Variable Elimination
(with this temporal ordering of vars)

Actual DBN Algorithm (Filtering)

DBN alg: just keep 2 slices in memory

$$\begin{cases} X_{t-1}, e_{t-1} \rangle + \langle X_t, e_t \rangle \\ f_{1:t+1} = \alpha \ \text{Forward}(\ f_{1:t+1}, e_{t+1}) \end{cases} \xrightarrow{\text{(a) Prediction}} \text{(b) Rollup}$$

- Constant per-update time, per-update space
- BUT...
 - as Evidence is CHILDREN, parents become COUPLED!
 - \Rightarrow constant = $O(d^n)$ as factor involves all state variables!

4

Approximate Algorithms

- Could try...
 - likelihood weighting, MCMC, ...
 - ... but still problems
- Use set of TUPLES themselves as approx'n!
 - Focus on high-probability instances
 - ... tuples ≈ posterior distribution ...
- Particle Filtering

```
Draw N tuples, \{\mathbf{d}_1^{(0)},\dots,\mathbf{d}_N^{(0)}\}, from P(\mathbf{X}_0)

For j=0..Bored

For i=1..N

Draw \mathbf{x}_i from P(\mathbf{X}_{t+1}|\mathbf{d}_i^{(t)})

Compute weight \mathbf{w}_i=P(\mathbf{e}_{t+1}|\mathbf{d}_i^{(t+1)})

Let \{\mathbf{d}_i^{(t+1)}\}_i be N tuples drawn from \{[\mathbf{x}_it+1,\mathbf{w}_i]\}_i
```

4

Particle Filtering

```
Draw N tuples, \{\mathbf{d}_1^{(0)},\dots,\mathbf{d}_N^{(0)}\}, from P(\mathbf{X}_0) For j=0..Bored For i=1..N Draw \mathbf{x}_i from P(\mathbf{X}_{t+1}\,|\,\mathbf{d}_i^{(t)}\,) Compute weight \mathbf{w}_i=P(\,\mathbf{e}_{t+1}\,|\,\mathbf{d}_i^{(t+1)}\,) Let \{\,\mathbf{d}_i^{(t+1)}\,\}_i be N tuples drawn from \{\,[\mathbf{x}_it+1,\mathbf{w}_i]\,\}_i
```


Dynamic Belief Networks

- Foundations
- Markov Chains (Classification)
- Hidden Markov Models (HMM)
- Kalman Filter
- General: Dynamic Belief Networks (DBN)
- Applications
- Future Work, Extensions, ...

Hierarchical HMMs

- Can construct hierarchy of HMM's:
 - Each Sentence-HMM generates string of word-HMMs
 - each "hidden state" = possible word
 - Each word-HMM generates strings of phoneme-HMMs
 - each "hidden state" = possible phoneme
 - Each phoneme-HMM generates strings of speech frames
- "Compile" hierarchy into frame-level HMM that finds
 - whole sentence most likely to have been spoken
- MLE computed by Viterbi algorithm

Beyond First-Order

- Recall First-Order Markov Chain
 - Random Walk along x axis,
 - changing x-position 1 at each time

- What if position x_t depends on x_{t-1} , x_{t-2} ?
 - (Ie, need velocity, as well as position)
 - 2nd-order Markov Chain

[Can make any process into 1st-order Markov, by expanding state

Eg, to deal with power being consumed, could have BatteryLevel in state

- . . . in the limit: "state" "all history"]
- Interpolated Markov Model (GLIMMER)

Computational Biology: Find Region of Interest in DNA

- Segment DNA into
 - Exon vs Intron vs Intergenetic Region
 - StartCodon, DonorSite, AcceptorSite, StopCodon
 - Techniques: NN, DecisionTrees, HMMs
- Identify "motif"
 - "Significant Nucleotide Sequence"
 - Intron/Exon boundary
 - Sites: Promoter, Enhancer,
 Transcription factor binding, Splice cite
 - CRP Binding site (or LexA binding site, or ...)

HMM's in Biological Sequence Data

Given collection of similar genes
 (eg, same function, but different animals)
 find new genes in other organisms that are similar.
 [Ex: Globins (hemoglobin, myoglobin)]
 Use "4. Likelihood" alg

Given collection of similar genes,
 align them to one another

 (identify where mutations have occurred:
 insertions, deletions, replacements)

 Useful for studying evolution and discovering functionally important parts

Use "5. MLE" alg

Simple Hidden Markov Model

```
 \left\{ \begin{pmatrix} A & C & A & - & - & - & A & T & G \rangle \\ \langle T & C & A & A & C & T & A & T & C \rangle \\ \langle A & C & A & C & - & - & A & G & C \rangle \\ \langle A & G & A & - & - & - & A & T & C \rangle \\ \langle A & C & C & G & - & - & A & T & C \rangle \\ \end{pmatrix} \right\}
```


- Each box is "state"w/prob of "emitting" a letter
- Transition from state to state
 - Bottom Row: standard "emit a letter"
 - Upper Row: insert "extra" letter
 (After state3, 3/5 of sequences goto "Insert"
 Of 5 transitions from "Insert", 2 goto another insert)
- If no gaps, same as earlier model.

Profile HMM

- Special structure: "profile HMM"
- Main (level 0)For "columns" of alignment
- Insert (level 1)For highly-variable regions
- Delete (level 2) "silent" or "null"

Example

GGWWRGdy.ggkkqLWFPSNYVVIGWLNGGYN.c.dgGIFPSNK--V
PNWWEGQTI...dgGIFPSNK--V
GEWWKAATS...dgGFIPSNYVV
GDWWLATS...sgGTTGYVPSNYVV
GDWWLATS...sgGTTGYVPSNYVV
GDWWLATS...sgGTTGYVPSNYVV
GDWWLATS...sgGTYPSNYVV
GDWWLATS...sgGTTGYVPSNYVV
GDWWKATSLITTSEGYYPSNYVV
GEWWKAKSLSTREGYYPSNYVV
GEWWKAKSLSTREGYYPSNYVV
GEWWKAKSLSTREGYYPSNYVV
GEWWKAKSLSTREGYYPSNYVV
GEWWKAKSLSTREGYYPSNYVV
LPWWRATSLITTSEGYYPSNYVV
LPWWRAYTAL.kngqegYYPSNYVV
EHWWKVVev..nddrGGFFPSNYVV
EHWWKVVev..nddrGGFFPSNYVV
EHWWKVVev..nddrGGFFPSNYVV
EHWWKVVev..ngqrGGFFPSNYVV
CGWMPGGLI...ngqrGUFFPSNYVV
CGWWRGGYY...ngqrGWFFPSNYVV
CGWWRGGYY...ngqrYGWFPSNYVV
CGGWWRGGYY...ngqrYGWFPSNYVV

[5] Probability of Sequence wrt HMM

• $P_{HMM}(\langle ACACATC \rangle) =$ $P(\text{emit } A \mid M_1) \times P(M_1 \rightarrow M_2) \times$ $P(\text{emit } C \mid M_2) \times P(M_2 \rightarrow M_3) \times$ $P(\text{emit } A \mid M_3) \times P(M_3 \rightarrow I_3) \times$ $P(\text{emit } C \mid I_3) \times P(I_3 \rightarrow M_4) \times$ $P(\text{emit } C \mid I_3) \times P(M_4 \rightarrow M_5) \times$ $P(\text{emit } A \mid M_4) \times P(M_4 \rightarrow M_5) \times$ $P(\text{emit } T \mid M_5) \times P(M_5 \rightarrow M_6) \times$ $P(\text{emit } C \mid M_6)$ = 0.8 × 1 × 0.8 × 1 × 0.8 × 0.6 × 0.4 × 0.6 × 1 × 1 × 0.8 × 1 × 0.8 × 0.8 × 0.6 × 0.4

Here, unambiguous. . .

Only consistent path through HMM is

In general, several possible paths. . .

Recent applications of HMMs

Proteins

- detection of bronectin type III domains in yeast
- a database of protein domain families
- protein topology recognition from secondary structure
- modeling of a protein splicing domain

Gene finding

- detection of short protein coding regions and analysis of translation initiation sites in Cyanobacterium
- characterization of prokaryotic and eukaryotic promoters
- recognition of branch points

Also

- prediction of protein secondary structure
- modeling an oscillatory pattern in nucleosomes
- modeling site dependence of evolutionary rates
- for including evolutionary information in protein secondary structure prediction

Free packages:

- hmmer http://genome.wustl.edu/eddy/hmm.html
- SAM http://www.cse.ucsc.edu/research/compbio/sam.html

Other Applications

Similar approaches work for analyzing

- Proteins (Amino-Acid sequences)
 - Similar composition, similar function, and ...
- Protein Folding
 - Protein sequence of a.a.'s
 - "Tertiary structure"

 ≡ Complete 3D structure
 - "Secondary structure" \equiv Simpler decomposition α -helices, β -sheets, (random) coil
- TEMPORAL sequences
 - weather prediction
 - stock-market forecasting

. . . .

Future Research

Scaling up to handle larger { sequences, motifs, DBs }

Learn...

- more accurate descriptions
- in less time (fewer samples, less CPU-time)
- rep'ns that allow more efficient computation
- Exploiting other information
 - facts about a.a.'s (hierarchy?)
 - structural information

...

Summary

- To model temporal events
 - Use rv X_t to model X at time t
- Markov Property:

$$P(X_{t+1} | X_t, X_{t-1}, ...) = P(X_{t+1} | X_t)$$

- Hidden Markov Model:
 - Emission P(E_t | X_t); Transition P(X_{t+1} | X_t)
 - Efficient (linear time!) to predict ...
 - Current state (filtering)
 - Previous state (smoothing)
 - Future state (prediction)
 - Most likely explanation (Viterbi)
- Dynamic Belief Nets extension of HMM ... mixing ...
- Uses: Speech recognition; Tracking; BioInformatics,

. . .