



# Bayesian Learning for Regression using Dirichlet Prior Distributions of Varying Localization

DISTRIBUTION A. Approved for public release: distribution unlimited.

Paul Rademacher<sup>1</sup> Miloš Doroslovački<sup>2</sup>

<sup>1</sup>U.S. Naval Research Laboratory Radar Division

<sup>2</sup>The George Washington University Department of Electrical and Computer Engineering



THE GEORGE WASHINGTON UNIVERSITY

## Introduction



## **Bayesian Learning**



Bayesian approaches to statistical learning attempt to make better decisions by exploiting prior knowledge regarding the data-generating distribution:

#### **Informative**

- If the prior is localized around the true data-generating model, low-risk decisions can be made even with limited training data
- Priors that assign low weighting to the true model may not be able to realize satisfactory performance

#### **Non-Informative**

- Learners designed with minimally localized priors respond strongly to training data, avoiding the drawbacks of misinformed prior knowledge
- If the data volume is limited, high variance "overfit" solutions can occur



#### The Dirichlet Prior



Dirichlet prior distributions have a number of desirable properties:

- Full support over the space of data-generating distributions, guaranteeing consistent estimation of the true data model
- They are conjugate priors for independent, identically distributed observations<sup>1</sup>, leading to *closed-form* posterior distributions
- Flexible parameterization enabling both maximally and minimally informative priors and thus a wide range of learning solutions

<sup>&</sup>lt;sup>1</sup>Thomas S, Ferguson, "A Bayesian Analysis of Some Nonparametric Problems", In: *The Annals of Statistics* (1973),





## **Data Model and Regression Objective**



## **Data Representation**



Observable random variable:  $x \in \mathcal{X} \subset \mathbb{R}$ Unobservable random variable:  $y \in \mathcal{Y} \subset \mathbb{R}$ Observable training data:  $D \in \mathcal{D} = \{\mathcal{Y} \times \mathcal{X}\}^N$ 

Independently, identically distributed according to an unknown probability mass function (PMF)

$$\theta \in \Theta = \left\{ \theta \in \mathbb{R}_{\geq 0}^{\mathcal{Y} \times \mathcal{X}} : \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \theta(y, x) = 1 \right\},$$

such that  $P_{\mathbf{v},\mathbf{x}\mid\theta}(y,x|\theta) = P_{\mathbf{D}_n\mid\theta}(y,x|\theta) = \theta(y,x)$ .

Alternate Notation:  $\theta \Leftrightarrow (\theta_{\rm m}, \theta_{\rm c})$ 

- Marginal model  $\theta_{\rm m} \equiv \sum_{y \in \mathcal{Y}} \theta(y, \cdot) \equiv {\rm P_{x}}_{\mid \theta_{\rm m}} \equiv {\rm P_{x}}_{\mid \theta}$
- Conditional models  $\theta_c(x) \equiv \theta(\cdot, x)/\theta_m(x) \equiv P_{v|x,\theta_c} \equiv P_{v|x,\theta}$



# Sufficient Statistic Transform



Using the i.i.d. assumption,

$$P_{D|\theta}(D|\theta) = \left(\prod_{y \in \mathcal{Y}} \prod_{x \in \mathcal{X}} \theta(y, x)^{\Psi(y, x; D)}\right)^{N}$$

where data are represented using  $\Psi: \mathcal{D} \mapsto \Psi \subset \Theta$ , defined as

$$\Psi(y, x; D) = N^{-1} \sum_{n=1}^{N} \delta[(y, x), D_n].$$

- Empirical distribution  $\Psi(D)$  is a sufficient statistic² for the model  $\theta$
- Efficient:  $|\Psi| = \binom{N+|\mathcal{Y}||\mathcal{X}|-1}{|\mathcal{Y}||\mathcal{X}|-1} \le |\mathcal{D}|$
- $\Rightarrow \text{ Represent data using new random} \\ \text{process } \psi \equiv \Psi(D) \in \Psi$

<sup>&</sup>lt;sup>2</sup>Bernardo et al., *Bayesian Theory*.



# Sufficient Statistic Distribution



- Conditioned on the true model, the data statistic is an "Empirical" random process  $\psi|\theta\sim \mathrm{Emp}(N,\theta)$ 
  - Equivalent to a normalized multinomial random process<sup>3</sup>
- As  $N \to \infty$ , the random process converges to  $\psi | \theta \stackrel{p}{\to} \theta$ 
  - ⇒ Use enables consistent estimation of model

### Alternate Notation: $\psi \Leftrightarrow (\psi_{\rm m}, \psi_{\rm c})$

- Marginal  $\psi_{\mathrm{m}} \equiv \sum_{y \in \mathcal{Y}} \psi(y, \cdot)$
- Conditional  $\psi_c(x) \equiv \psi(\cdot, x)/\psi_m(x)$

#### By the aggregation property 4,

- $\psi_{\rm m} \mid \theta_{\rm m} \sim {\rm Emp}(N, \theta_{\rm m})$
- $\psi_{\rm c}(x)|\psi_{\rm m}(x), \theta_{\rm c}(x) \sim \\ {\rm Emp}\left(N\,\psi_{\rm m}(x), \theta_{\rm c}(x)\right) \text{ are mutually independent}$

<sup>&</sup>lt;sup>3</sup>Thomas P. Minka. *Bayesian inference, entropy, and the multinomial distribution*. Tech. rep. Microsoft Research, 2003.

<sup>&</sup>lt;sup>4</sup>Johnson et al., Discrete Multivariate Distributions.



## **Objective**



• Design a regression function  $f: \Psi \mapsto \mathbb{R}^{\mathcal{X}}$  to minimize the expected squared-error with respect to  $\theta$ :

$$\mathcal{R}_{\Theta}(f;\theta) = \mathcal{E}_{\mathbf{y},\mathbf{x},\boldsymbol{\psi}\mid\theta} \left[ \left( f(\mathbf{x};\boldsymbol{\psi}) - \mathbf{y} \right)^{2} \right] \equiv \underbrace{\mathcal{E}_{\mathbf{x}\mid\theta_{\mathrm{m}}} \left[ \Sigma_{\mathbf{y}\mid\mathbf{x},\theta_{\mathrm{c}}} \right]}_{\mathcal{R}_{\Theta}^{*}(\theta)} + \underbrace{\mathcal{E}_{\mathbf{x},\boldsymbol{\psi}\mid\theta} \left[ \left( f(\mathbf{x};\boldsymbol{\psi}) - \mu_{\mathbf{y}\mid\mathbf{x},\theta_{\mathrm{c}}} \right)^{2} \right]}_{\mathcal{R}_{\Theta,\mathrm{ex}}(f;\theta)}$$

- Clairvoyant<sup>5</sup> regressor  $f_{\Theta}(\mathbf{x}; \theta_{c}) = \mu_{\mathbf{y} \mid \mathbf{x}, \theta_{c}}$  achieves *irreducible* squared-error  $\mathcal{R}_{\Theta}^{*}(\theta)$
- Excess squared-error can be decomposed into bias and variance terms:

$$\mathcal{R}_{\Theta,\text{ex}}(f;\theta) \equiv \mathbf{E}_{\mathbf{x}\,|\,\theta_{\text{m}}} \left[ \left( \mathbf{E}_{\psi|\theta} \left[ f(\mathbf{x};\psi) \right] - f_{\Theta}(\mathbf{x};\theta_{\text{c}}) \right)^{2} + \mathbf{C}_{\psi|\theta} \left[ f(\mathbf{x};\psi) \right] \right]$$

<sup>&</sup>lt;sup>5</sup>Steven M. Kay. Fundamentals of Statistical Signal Processing: Detection Theory. Vol. 2. Prentice-Hall, 1998.



## **Bayesian Inference**



#### Model unknown. Select prior $p_{\theta}$ and formulate Bayesian risk:

$$\mathcal{R}(f) = E_{\theta} \left[ \mathcal{R}_{\Theta}(f; \theta) \right] = E_{y, x, \psi} \left[ \left( f(x; \psi) - y \right)^{2} \right]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

#### Bayes optimal regressor:

$$f^*(\mathbf{x}; \boldsymbol{\psi}) = \operatorname*{arg\,min}_{y' \in \mathbb{R}} \mathbf{E}_{\mathbf{y} \, | \, \mathbf{x}, \boldsymbol{\psi}} \left[ (y' - \mathbf{y})^2 \right] = \underline{\mu_{\mathbf{y} \, | \, \mathbf{x}, \boldsymbol{\psi}}}$$

\* Observe that  $P_{y\,|\,x,\psi}=E_{\theta|\,x,\psi}\left[\,P_{y\,|\,x,\theta}\,
ight]\equiv\mu_{\theta_{c}(x)|\,x,\psi}$ 

## Bayesian distribution is the posterior mean $^6$ of the predictive model $\theta_{\rm c}$

<sup>&</sup>lt;sup>6</sup>Kevin P. Murphy. Binomial and multinomial distributions. Tech. rep. University of British Columbia, 2006.





## **Distributions: Prior to Predictive**

## **Dirichlet Prior**

The probability density function of the model  $\theta \in \Theta$  is Dirichlet:

$$p_{\theta}(\theta) = Dir(\theta; \alpha_0, \alpha) \equiv \beta(\alpha_0 \alpha)^{-1} \prod_{y \in \mathcal{Y}} \prod_{x \in \mathcal{X}} \theta(y, x)^{\alpha_0 \alpha(y, x) - 1}$$

• Parameter  $\alpha_0$  controls localization around mean  $\alpha$ 

#### Alternate Notation:

- Marginal  $\alpha_{\mathrm{m}} \equiv \sum_{y \in \mathcal{Y}} \alpha(y, \cdot)$
- Conditional  $\alpha_{\rm c}(x) \equiv \alpha(\cdot,x)/\,\alpha_{\rm m}(x)$
- \* By the aggregation property<sup>7</sup>,  $\theta_{\rm m} \sim {\rm Dir}(\alpha_0,\alpha_{\rm m})$  and  $\theta_{\rm c}(x) \sim {\rm Dir}\left(\alpha_0\,\alpha_{\rm m}(x),\alpha_{\rm c}(x)\right)$  are mutually independent



<sup>&</sup>lt;sup>7</sup>Ferguson, "A Bayesian Analysis of Some Nonparametric Problems".



# Predictive Model Posterior Closed-Form



Since  $\perp\!\!\!\perp_x \theta_{\rm c}(x)$  and  $\theta_{\rm c} \perp\!\!\!\perp \theta_{\rm m}$ , and since the Empirical process  $\theta_{\rm c}(x) | \psi_{\rm m}(x), \psi_{\rm c}(x)$  has exponential form, Dirichlet process  $\theta_{\rm c}(x)$  is conjugate<sup>8</sup> and thus

$$\theta_{\rm c}(x) | \psi_{\rm m}(x), \psi_{\rm c}(x) \sim \mathrm{Dir} \left( \alpha_0 \, \alpha_{\rm m}(x) + N \, \psi_{\rm m}(x), \mu_{\theta_{\rm c}(x) | \psi_{\rm m}(x), \psi_{\rm c}(x)} \right),$$

with mean functions

$$\mu_{\theta_{c}(x)|\psi_{m}(x),\psi_{c}(x)} = \gamma(x;\psi_{m}) \alpha_{c}(x) + (1 - \gamma(x;\psi_{m})) \psi_{c}(x) \equiv P_{y|x,\psi},$$

where 
$$\gamma(x; \psi_{\mathrm{m}}) = \left(1 + N \psi_{\mathrm{m}}(x) / \left(\alpha_0 \alpha_{\mathrm{m}}(x)\right)\right)^{-1} \in (0, 1].$$

## Bayesian predictions mix prior mean $\alpha_c$ with empirical distribution $\psi_c$

<sup>&</sup>lt;sup>8</sup> Sergios Theodoridis. *Machine Learning: A Bayesian and Optimization Perspective*. Elsevier, 2015.



# Predictive Model Posterior Trends



- As localization  $\alpha_0$  increases,  $\theta_c(x)|\psi_m(x),\psi_c(x) \xrightarrow{p} \alpha_c(x)$  and the prior is emphasized
- As training volume N increases,  $\theta_{\rm c}(x)|\,\psi_{\rm m}(x),\psi_{\rm c}(x)\stackrel{p}{\to}\psi_{\rm c}(x)$  and data is emphasized
  - \* Since  $\psi_c \mid \theta_c \stackrel{p}{\rightarrow} \theta_c$ , the true predictive model is identified



#### Full support prior ensures consistent estimation of model



## **Bayes Optimal Regressor**



**Regressor**: 
$$f^*(\mathbf{x}; \mathbf{\psi}) \equiv \gamma(\mathbf{x}; \mathbf{\psi}_{\mathrm{m}}) \mu_{\mathrm{y} \mid \mathrm{x}} + (1 - \gamma(\mathbf{x}; \mathbf{\psi}_{\mathrm{m}})) \sum_{y \in \mathcal{Y}} \mathbf{\psi}_{\mathrm{c}}(y; \mathbf{x}) \ y$$

- \* Convexly combines first moment of  $P_{v+x} = \mu_{\theta_c(x)} = \alpha_c(x)$  with empirical mean
- \* Inherits trends from posterior distribution, allowing maximal or minimal confidence in the prior

$$\text{Excess SE: } \mathcal{R}_{\Theta, \mathrm{ex}}(f^*; \theta) \equiv \mathrm{E_{x \, | \, \theta_{\mathrm{m}}}} \left[ \lambda_{\mathsf{Bias}}(\mathrm{x}; \theta_{\mathrm{m}}) \left( \mu_{\mathrm{y \, | \, x}} - \mu_{\mathrm{y \, | \, x}, \theta_{\mathrm{c}}} \right)^2 + \lambda_{\mathsf{Var}}(\mathrm{x}; \theta_{\mathrm{m}}) \Sigma_{\mathrm{y \, | \, x}, \theta_{\mathrm{c}}} \right]$$

$$* \ \lambda_{\mathsf{Bias}}(x;\theta_{\mathrm{m}}) = \mathrm{E}_{\psi_{\mathrm{m}} \, | \, \theta_{\mathrm{m}}} \left[ \gamma(x;\psi_{\mathrm{m}})^2 \right] \text{ and } \lambda_{\mathsf{Var}}(x;\theta_{\mathrm{m}}) = \mathrm{E}_{\psi_{\mathrm{m}} \, | \, \theta_{\mathrm{m}}} \left[ \frac{\left(1 - \gamma(x;\psi_{\mathrm{m}})\right)^2}{N \, \psi_{\mathrm{m}}(x)} \right]$$

- Bias: proportionate to squared-difference between data-independent regressor  $\mu_{v\,|_X}$  and clairvoyant regressor
- Variance: proportionate to the predictive variance, adding to the irreducible risk





## **Trends and Results**

## **Example**

#### Data Model:

• 
$$\mathcal{X} = \mathcal{Y} = \{i/127 : i = 0, \dots, 127\}$$

• 
$$\theta_{\rm m} = |\mathcal{X}|^{-1}$$

• Clairvoyant: 
$$\mu_{\mathrm{v} \mid \mathrm{x}, \theta_{\mathrm{c}}} = 1/(2 + \sin(2\pi \, \mathrm{x}))$$

• 
$$\Sigma_{\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}} = 0.2 \, \mu_{\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}} (1 - \mu_{\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}})$$
  
 $\Rightarrow \mathcal{R}_{\boldsymbol{\Theta}}^*(\boldsymbol{\theta}) \approx 0.039$ 

#### Learners:

• Dirichlet:

- 
$$\alpha_{\mathrm{m}} = |\mathcal{X}|^{-1}$$
  
- Prior  $\mu_{\mathrm{y}\,|\,\mathrm{x}} = 0.5$ 

- Normal<sup>9</sup>:
  - $y \mid x, \theta \sim \mathcal{N}([1, x]\theta, 0.1)$ -  $\theta \sim \mathcal{N}([0.5, 0], \Sigma_{\theta})$
- Prior confidence of Dirichlet and Normal learners varied using  $\alpha_0$  and  $\Sigma_{\theta}$
- Both learners effect the same biased untrained regressor to approximate the non-linear clairvoyant regressor

<sup>&</sup>lt;sup>9</sup>Theodoridis, *Machine Learning: A Bayesian and Optimization Perspective*.



#### **Prediction Statistics**







- Lines show bias  $E_{\psi|\theta}$  [ $\mu_{y\,|\,x,\psi}$ ], fill regions shows variance  $C_{\psi|\theta}$  [ $\mu_{y\,|\,x,\psi}$ ]
- Python simulation results average 50,000 learning iterations



## **Optimal Localization**

For a given conditional mean  $\alpha_{\rm c}$ , localization  $\bar{\alpha}_0(x) \equiv \alpha_0 \, \alpha_{\rm m}(x)$  controls a Bias-Variance trade-off:

| $\bar{\alpha}_0(x)$  | $\lambda_{Bias}(x; \mathbf{	heta}_{\mathrm{m}})$ | $\lambda_{Var}(x; \mathbf{	heta}_{\mathrm{m}})$                                                          |
|----------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| $\rightarrow \infty$ | 1                                                | 0                                                                                                        |
| $\rightarrow 0$      | $(1-\theta_{\rm m}(x))^N$                        | $\mathrm{E}_{\psi_{\mathrm{m}} \theta_{\mathrm{m}}}\left[\left(N\psi_{\mathrm{m}}(x)\right)^{-1}\right]$ |

#### Optimal:

$$\bar{\alpha}_0(\mathbf{x}) = \frac{\Sigma_{\mathbf{y} \mid \mathbf{x}, \theta_c}}{\left(\mu_{\mathbf{y} \mid \mathbf{x}} - \mu_{\mathbf{y} \mid \mathbf{x}, \theta_c}\right)^2}$$



## **Training Volume Trends**

- As  $N \to \infty$ , both  $\lambda_{\mathsf{Bias}}(x; \theta_{\mathrm{m}}) \to 0$  and  $\lambda_{\mathsf{Var}}(x; \theta_{\mathrm{m}}) \to 0$  $\Rightarrow \mathcal{R}_{\Theta, \mathrm{ex}}(f^*; \theta) \to 0$  for any model  $\theta$
- Note that  $f^*(\mathbf{x}; \boldsymbol{\psi})$  converges to the clairvoyant regressor regardless of how biased the prior conditional mean  $\alpha_{\mathbf{c}}$  is, or how much confidence in  $\alpha_{\mathbf{c}}$  is indicated through the localization  $\alpha_0$





## Conclusions



#### **Summary**

Full-support Bayesian learning with a Dirichlet prior enables:

- Asymptotically optimal performance for data-rich applications
- Maximal prior knowledge required for data-limited applications

#### **Future Work**

- Generalize these concepts for more general data models using the continuous Dirichlet process<sup>10</sup>
  - Practical necessity motivates the use of discretization to realize the demonstrated benefits
- Use the Dirichlet prior with different likelihood functions (e.g., mixture model) to effect limited-support priors that may be best suited for data-limited applications

<sup>10</sup> Samuel J. Gershman et al. "A tutorial on Bayesian nonparametric models". In: Journal of Mathematical Psychology 56 (2012).