Fundamentele limbajelor de programare

C04

Denisa Diaconescu Traian Serbănută

Departamentul de Informatică, FMI, UB

Expresivitatea *∂*-calculului

Expresivitatea *λ*-calculului

Deși lambda calculul constă doar în λ -termeni, putem reprezenta și manipula tipuri de date comune.

Vom vedea cum putem reprezenta:

- valori booleene
- numere naturale

Vrem să definim λ -termeni care să reprezinte constantele booleene. Sunt mai multe modalităti, una dintre ele fiind:

- $T \triangleq \lambda xy.x$ (dintre cele două alternative o alege pe prima)
- $\mathbf{F} \triangleq \lambda xy.y$ (dintre cele două alternative o alege pe a doua)

$$T \triangleq \lambda xy.x$$
 $F \triangleq \lambda xy.y$

Acum am vrea să definim un test condiționat if.

Am vrea ca **if** să ia trei argumente b, t, f, unde b este o valoare booleană, iar t, f sunt λ -termeni oarecare.

Funcția ar trebui să returneze t dacă b = true și f dacă b = false

if =
$$\lambda btf$$
. $\begin{cases} t, & \text{if } b = true, \\ f, & \text{if } b = false. \end{cases}$

Deoarece $\mathsf{T} t f \twoheadrightarrow_{\beta} t$ și $\mathsf{F} t f \twoheadrightarrow_{\beta} f$, **if** trebuie doar să aplice argumentul său boolean celorlalte argumente:

if
$$\triangleq \lambda btf.b t f$$

4

$$\mathbf{T} \triangleq \lambda xy.x \qquad \qquad \mathbf{F} \triangleq \lambda xy.y \qquad \qquad \mathbf{if} \triangleq \lambda btf.b \ t \ f$$

Celelalte operații booleene pot fi definite folosind if:

and
$$\triangleq \lambda b_1 b_2$$
.if $b_1 b_2$ F
or $\triangleq \lambda b_1 b_2$.if b_1 T b_2
not $\triangleq \lambda b_1$.if b_1 F T

Observați că aceste operații lucrează corect doar dacă primesc ca argumente valori booleene.

Nu există nicio garanție să se comporte rezonabil pe orice alți λ -termeni.

Folosind lambda calcul fără tipuri, avem garbage in, garbage out.

Codările nu sunt unice. De exemplu, pentru **and** am fi putut folosi codarile $\lambda b_1 b_2 . b_2 b_1 b_2$ sau $\lambda b_1 b_2 . b_1 b_2 \mathbf{F}$.

```
\mathbf{T} \triangleq \lambda xy.x \qquad \mathbf{F} \triangleq \lambda xy.y \qquad \mathbf{if} \triangleq \lambda btf.b \ t \ f
\mathbf{and} \triangleq \lambda b_1 b_2.\mathbf{if} \ b_1 \ b_2 \ \mathbf{F}
\mathbf{or} \triangleq \lambda b_1 b_2.\mathbf{if} \ b_1 \ \mathbf{T} \ b_2
\mathbf{not} \triangleq \lambda b_1.\mathbf{if} \ b_1 \ \mathbf{F} \ \mathbf{T}
```

Exercițiu. Aduceți la o formă normală următorii termenii:

- and TF
- or FT
- not T

$$\mathbf{T} \triangleq \lambda xy.x \qquad \mathbf{F} \triangleq \lambda xy.y \qquad \mathbf{if} \triangleq \lambda btf.b \ t \ f$$

$$\mathbf{and} \triangleq \lambda b_1 b_2.\mathbf{if} \ b_1 \ b_2 \ \mathbf{F}$$

$$\mathbf{or} \triangleq \lambda b_1 b_2.\mathbf{if} \ b_1 \ \mathbf{T} \ b_2$$

$$\mathbf{not} \triangleq \lambda b_1.\mathbf{if} \ b_1 \ \mathbf{F} \ \mathbf{T}$$

Soluții:

and TF =
$$(\lambda b_1 b_2.if b_1 b_2 F)$$
 TF $\twoheadrightarrow_{\beta}$ if TFF = $(\lambda btf.b t f)$ TFF
 $\twoheadrightarrow_{\beta}$ TFF = $(\lambda xy.x)$ FF $\twoheadrightarrow_{\beta}$ F
or FT = $(\lambda b_1 b_2.if b_1 T b_2)$ FT $\twoheadrightarrow_{\beta}$ if FTT = $(\lambda btf.b t f)$ FTT
 $\twoheadrightarrow_{\beta}$ FTT = $(\lambda xy.y)$ TT $\twoheadrightarrow_{\beta}$ T
not T = $(\lambda b_1.if b_1 FT)$ T $\twoheadrightarrow_{\beta}$ if TFT = $(\lambda btf.b t f)$ TFT
 $\twoheadrightarrow_{\beta}$ TFT = $(\lambda xy.x)$ FT $\twoheadrightarrow_{\beta}$ F

Vom reprezenta numerele naturale № folosind numeralii Church.

Numeralul Church pentru numărul $n \in \mathbb{N}$ este notat \overline{n} .

Numeralul Church \overline{n} este λ -termenul $\lambda fx.f^n x$, unde f^n reprezintă compunerea lui f cu ea însăși de n ori:

8

$$\overline{n} \triangleq \lambda f x. f^n x$$

Acum putem defini funcția succesor prin

Succ
$$\triangleq \lambda nfx.f(nfx)$$

Observați că **Succ** pe argumentul \overline{n} returnează o funcție care primește ca argument o funcție f, îi aplică \overline{n} pentru a obține compunerea de n ori a lui f cu ea însăși, apoi aplică iar f pentru a obține compunerea de n+1 ori a lui f cu ea însăși.

Succ
$$\overline{n}$$
 = $(\lambda nfx.f(nfx))\overline{n}$
 $\Rightarrow_{\beta} \lambda fx.f(\overline{n}fx)$
 $\Rightarrow_{\beta} \lambda fx.f(f^nx)$
= $\lambda fx.f^{n+1}x$
= $\overline{n+1}$

$$\overline{n} \triangleq \lambda f x. f^n x$$
 Succ $\triangleq \lambda n f x. f(n f x)$

Putem face operații aritmetice de bază cu numeralii Church.

Pentru adunare, putem defini

$$\mathbf{add} \triangleq \lambda mnfx.mf(nfx)$$

Pentru argumentele \overline{m} și \overline{n} , obținem:

add
$$\overline{m} \, \overline{n} = (\lambda m n f x . m f (n f x)) \, \overline{m} \, \overline{n}$$

 $\rightarrow \beta \quad \lambda f x . \overline{m} \, f (\overline{n} \, f \, x)$
 $\rightarrow \beta \quad \lambda f x . f^m (f^n \, x)$
 $= \lambda f x . f^{m+n} \, x$
 $= \overline{m+n}$

Am folosit compunerea lui f^m cu f^n pentru a obține f^{m+n} .

$$\overline{n} \triangleq \lambda f x. f^n x$$
 Succ $\triangleq \lambda n f x. f(n f x)$

Putem defini adunarea și ca aplicarea repetată a funcției succesor:

$$add' \triangleq \lambda mn.m Succ n$$

$$\begin{array}{rcl} \mathbf{add'}\,\overline{m}\,\overline{n} & = & (\lambda mn.m\,\mathbf{Succ}\,n)\,\overline{m}\,\overline{n} \\ & \to_{\beta} & \overline{m}\,\mathbf{Succ}\,\overline{n} \\ & = & (\lambda fx.f^m\,x)\,\mathbf{Succ}\,\overline{n} \\ & \to_{\beta} & \mathbf{Succ}^m\,\overline{n} \\ & = & \underbrace{\mathbf{Succ}(\mathbf{Succ}(\dots(\mathbf{Succ}\,\overline{n})\dots))}_{m} \\ & \to_{\beta} & \underbrace{\mathbf{Succ}(\mathbf{Succ}(\dots(\mathbf{Succ}\,\overline{n}+1)\dots))}_{m-1} \\ & \to_{\beta} & \overline{m+n} \end{array}$$

$$\overline{n} \triangleq \lambda f x. f^n x$$
 Succ $\triangleq \lambda n f x. f(n f x)$ add' $\triangleq \lambda m n. m$ Succ n

Similar înmulțirea este adunare repetată, iar ridicarea la putere este înmulțire repetată:

$$\mathbf{mul} \triangleq \lambda mn.m (\mathbf{add} \ n) \ \overline{0}$$

$$\mathbf{exp} \triangleq \lambda mn.m (\mathbf{mul} \ n) \ \overline{1}$$

Putem defini o funcție de la numere naturale la booleeni care verifică dacă un număr natural este 0 sau nu

$$isZero(0) = true$$

 $isZero(n) = false dacă n \neq 0$

O codare în lambda calcul a unei astfel de funcții este

isZero
$$\triangleq \lambda nxy.n(\lambda z.y)x$$

Exercițiu. Verificați afirmația de mai sus.

Putem să definim și codarea **pred** pentru predecesorul unui număr natural. Această codare nu este deloc ușoară și alegem să lucrăm cu ea ca cu o cutie neagră.

Putem exprima mai mult?

Avem văzut codari simple pentru booleeni și numere naturale.

Totuși nu avem o metodă pentru a construi astfel de λ -termeni.

Ne trebuie un mecanism care să ne permită să construim funcții mai complicate din funcții mai simple.

De exemplu, să considerăm funcția factorial

$$0! = 1$$

 $n! = n \cdot (n-1)!$, dacă $n \neq 0$

Puncte fixe

Puncte fixe

Fie f o funcție. Spunem că x este un punct fix al lui f dacă f(x) = x. În matematică, unele funcții au puncte fixe, altele nu au.

De exemplu, $f(x) = x^2$ are două puncte fixe 0 și 1, dar f(x) = x + 1 nu are puncte fixe.

Mai mult, unele funcții au o infinitate de puncte fixe, cum ar fi f(x) = x.

eta-echivalență

Am notat cu $M \rightarrow_{\beta} M'$ faptul că M poate fi β -redus până la M' în 0 sau mai mulți pași de β -reducție.

 $\rightarrow \beta$ este închiderea reflexivă și tranzitivă a relației $\rightarrow \beta$.

Notăm cu $M =_{\beta} M'$ faptul că M poate fi transformat în M' în 0 sau mai mulți pași de β -reducție, transformare în care pașii de reducție pot fi și întorși.

 $=_{\beta}$ este închiderea reflexivă, simetrică și tranzitivă a relației \rightarrow_{β} .

De exemplu, avem $(\lambda y.yv)z =_{\beta} (\lambda x.zx)v$ deoarece avem

$$(\lambda y.y \ v) \ z \rightarrow_{\beta} z \ v \leftarrow_{\beta} (\lambda x.z \ x) \ v$$

Notăm cu \leftarrow_{β} inversul relației \rightarrow_{β} .

Puncte fixe în lambda-calcul

Dacă F și M sunt λ -termeni, spunem că M este un punct fix al lui F dacă F M $=_{\beta} M$.

Thm. În lambda calculul fără tipuri, orice termen are un punct fix.

Puncte fixe în lambda-calcul

Dacă F și M sunt λ -termeni, spunem că M este un punct fix al lui F dacă $FM =_{\beta} M$.

Thm. În lambda calculul fără tipuri, orice termen are un punct fix.

Dem. Vrem să arătăm că pentru orice termen F există un termen M astfel încât $FM =_{\beta} M$.

Fie F un termen. Considerăm $M \triangleq (\lambda x.F(xx))(\lambda x.F(xx))$. Avem

$$M = (\lambda x.F(x x))(\lambda x.F(x x))$$

$$\rightarrow_{\beta} F((\lambda x.F(x x))(\lambda x.F(x x)))$$

$$= FM$$

Deci avem $FM =_{\beta} M$.

Combinatori de punct fix

Combinatorii de puncte fixe sunt termeni închiși care "construiesc" un punct fix pentru un termen arbitrar.

Câteva exemple:

- Combinatorul de punct fix al lui Curry
 Y ≜ λy.(λx.y (x x)) (λx.y (x x))
 Pentru orice termen F, YF este un punct fix al lui F deoarece
 YF →_β F (Y F).
- Combinatorul de punct fix al lui Turing
 Θ ≜ (λxy.y (x x y)) (λxy.y (x x y))
 Pentru orice termen F, ΘF este un punct fix al lui F deoarece
 ΘF →_β F (Θ F).

Rezolvarea de ecuații în lambda calcul

Punctele fixe ne permit să rezolvăm ecuații. A găsi un punct fix pentru *f* este același lucru cu a rezolva o ecuație de forma

$$x = f(x)$$

Am văzut că în lambda calcul există mereu o soluție pentru astfel de ecuații.

Rezolvarea de ecuații în lambda calcul

Să aplicăm această idee pentru funcția factorial.

Cea mai naturală definiție a funcției factorial este cea recursivă și o putem scrie în lambda calcul prin

$$fact n = if (isZero n) (\overline{1}) (mul n (fact(pred n)))$$

În ecuația de mai sus, **fact** apare și în stânga, și în dreapta. Pentru a găsi cine este **fact**, trebuie să rezolvăm o ecuație.

Rezolvarea de ecuații în lambda calcul

Să rezolvăm ecuația de mai sus. Rescriem problema puțin

```
\begin{array}{lll} \mathbf{fact} & = & \lambda n.\mathbf{if}\left(\mathbf{isZero}\,n\right)\left(\overline{1}\right)\left(\mathbf{mul}\,n\left(\mathbf{fact}(\mathbf{pred}\,n)\right)\right)\\ \mathbf{fact} & = & \left(\lambda fn.\mathbf{if}\left(\mathbf{isZero}\,n\right)\left(\overline{1}\right)\left(\mathbf{mul}\,n\left(f(\mathbf{pred}\,n)\right)\right)\right)\mathbf{fact} \end{array}
```

Notăm termenul $\lambda f n.\mathbf{i} f(\mathbf{i} \mathbf{s} \mathbf{Z} \mathbf{e} \mathbf{r} \mathbf{o} n) (\overline{1}) (\mathbf{m} \mathbf{u} \mathbf{l} n (f(\mathbf{p} \mathbf{r} \mathbf{e} \mathbf{d} n)))$ cu F.

Ultima ecuație devine fact = F fact, o ecuație de punct fix.

Am văzut că $\mathbf{Y} F$ este un punct fix pentru F (adică $\mathbf{Y} F \rightarrow_{\beta} F(\mathbf{Y} F)$), de aceea putem rezolva ecuația de mai sus luând

```
fact \triangleq Y F
fact \triangleq Y (\lambda f n. if (isZero n) (\overline{1}) (mul n (f(pred n))))
```

Observați că fact a dispărut din partea dreaptă.

Exercițiu. Evaluați fact $\overline{2}$ ținând cont că fact $\twoheadrightarrow_{\beta} F$ fact.

Quiz time!

https://tinyurl.com/C04-Quiz1

Pe săptămâna viitoare!