

Session 2.12

Module 2

Mouli Sankaran

JK and TFlip-flops

Session 2.12: Focus

- □ Applications using D Flip-flop
 - 4-bit Asynchronous Up counter
 - 4-bit Asynchronous Down counter
 - Serial to Parallel Data Converter

Applications using D-Flip-flops

Quiz 1: What does this circuit do?

4-bit Data storage

Example 1: 4-bit Asynchronous Up Counter

All are +ve edge triggered D flip-flops Initially all D Flip-flops are cleared $Q_3Q_2Q_1Q_0 = 0000$ CLK is clock input

- It **counts** the **clock pulses** from **0000** to **1111**
- Q' of previous stage is fed as clock to the next stage flip-flop
- ☐ Since the **transitions** of **flip-flops** are **not happening** based on the **same clock pulse**, this is an **asynchronous counter**

Example 2: 4-bit Asynchronous Down Counter

Example 3: Serial to Parallel Data Converter

- Serial to parallel data converter
- □ The serial data is shifted in at the positive edge of every clock pulse
- \square After four clock pulses the parallel data is available at $Q_3Q_2Q_1Q_0$

Session 2.12: Summary

- Applications using D Flip-flop
 - 4-bit Asynchronous Up counter
 - 4-bit Asynchronous Down counter
 - Serial to Parallel Data Converter