

Motivation

- You have trained many neural networks.
- We seek to deploy neural networks in the real world.
- Are networks robust to the inputs that are built to fool them?
 - Useful for spam classification, malware detection, network intrusion detection, etc.

Example of Attack

Non-targeted

Anything other than "Cat"

Targeted

Misclassified as a specific class (e.g., "Star Fish")

ResNet-50

Example of Attack

The target is "Star Fish"

人看不出这个差距有什么影响, 但对ResNET来说影响很大

Example of Attack

Example of Attack

Network

= ResNet-50

The target is "Keyboard"

Benign Image

Attacked Image

Non-perceivable

$$d(x^0, x) \le \varepsilon$$
 Need to

Non-perceivable
$$d(x^0, x) \le \varepsilon \quad \begin{array}{l} \text{Need to consider} \\ \text{human perception} \end{array}$$

• L2-norm

$$d(x^{0}, x) = \|\Delta x\|_{2}$$

= $(\Delta x_{1})^{2} + (\Delta x_{2})^{2} + (\Delta x_{3})^{2} \cdots$

L-infinity

$$d(\mathbf{x}^{0}, \mathbf{x}) = ||\Delta \mathbf{x}||_{\infty}$$
$$= max\{|\Delta x_{1}|, |\Delta x_{2}|, |\Delta x_{3}|, \dots\}$$

small L-∞

$$w^*, b^* = arg \min_{w,b} L$$
 Difference?

Attack Approach Update input, not parameters

$$m{x}^* = arg \quad \min_{\substack{d(x_0, x) \in \mathbb{Z}}} L(m{x})$$
 \mathbf{z} \mathbf{z}

Gradient Descent

Start from original image x^0

For
$$t = 1$$
 to T
$$x^t \leftarrow x^{t-1} - \eta g$$

$$\boldsymbol{g} = \begin{bmatrix} \frac{\partial L}{\partial x_1} |_{x=x^{t-1}} \\ \frac{\partial L}{\partial x_2} |_{x=x^{t-1}} \\ \vdots \end{bmatrix}$$

$$w^*, b^* = arg \min_{w,b} L$$
 Difference?

Update input, not parameters

Gradient Descent

L-infinity

update

保证落在框框里

$$\mathbf{x}^* = arg \min_{d(\mathbf{x}^0, \mathbf{x}) \le \varepsilon} L(\mathbf{x})$$

Fast Gradient Sign Method (FGSM)

https://arxiv.org/abs/1412.6572

Start from original image x^0

For
$$t = 1$$
 to T

$$x^t \leftarrow x^{t-1} - \eta g$$

L-infinity

$$\mathbf{x}^* = arg \min_{d(\mathbf{x}^0, \mathbf{x}) \le \varepsilon} L(\mathbf{x})$$

Fast Gradient Sign Method (FGSM)

https://arxiv.org/abs/1412.6572

Start from original image
$$x^0$$
For $t = 1$ to T

$$x^t \leftarrow x^{t-1} - \eta g \qquad \begin{bmatrix} +1 \\ -1 \\ +1 \end{bmatrix}$$

t from original image
$$x^{0}$$

$$t = 1 \text{ to } T$$

$$x^{t} \leftarrow x^{t-1} - \eta g$$

$$\varepsilon$$

$$\begin{bmatrix} +1 \\ -1 \\ +1 \\ \vdots \end{bmatrix}$$

$$g = \\ \pm 1 \begin{bmatrix} sign\left(\frac{\partial L}{\partial x_{1}}|_{x=x^{t-1}}\right) \\ g = \\ \pm 1 \end{bmatrix}$$

$$sign\left(\frac{\partial L}{\partial x_{2}}|_{x=x^{t-1}}\right) \end{bmatrix}$$

if
$$t > 0$$
, $sign(t) = 1$; otherwise, $sign(t) = -1$

$$\mathbf{x}^* = arg \min_{d(\mathbf{x}^0, \mathbf{x}) \le \varepsilon} L(\mathbf{x})$$

Iterative FGSM

https://arxiv.org/abs/1607.02533

Start from original image x^0

For
$$t = 1$$
 to T

$$x^{t} \leftarrow x^{t-1} - \eta g$$
If $d(x^{0}, x) > \varepsilon$

$$x^{t} \leftarrow fix(x^{t})$$

$$\mathbf{g} = \begin{bmatrix} sign\left(\frac{\partial L}{\partial x_1}|_{x=x^{t-1}}\right) \\ \mathbf{g} = \\ \pm 1 \\ sign\left(\frac{\partial L}{\partial x_2}|_{x=x^{t-1}}\right) \\ \vdots \end{bmatrix}$$

White Box v.s. Black Box

- In the previous attack, we know the network parameters $\boldsymbol{\theta}$
 - This is called White Box Attack.
- You cannot obtain model parameters in most online API.
- Are we safe if we do not release model?
- No, because **Black Box Attack** is possible. ②
 不知道模型的情况下攻击

 $\mathbf{g} = \begin{bmatrix} sign\left(\frac{\partial L}{\partial x_1}|_{x=x^{t-1}}\right) \\ sign\left(\frac{\partial L}{\partial x_2}|_{x=x^{t-1}}\right) \end{bmatrix}$

Black Box Attack

If you have the training data of the target network

Train a proxy network yourself

Using the proxy network to generate attacked objects

What if we do not know the training data?

Black Box Attack

https://arxiv.org/pdf/1611.02770.pdf

对角线:白箱攻击 非对角线:黑箱攻击

Be Attacked

Proxy

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152	-0% 白箱) 13%	18%	19%	11%
ResNet-101	19%	0%	21%	21%	12%
ResNet-50	23%	20%	0%	21%	18%
VGG-16	22%	17%	17%	0%	5%
GoogLeNet	39%	38%	34%	19%	0%

(lower accuracy means the attack is more successful)

lower accuracy more successful attack

Ensemble Attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
-ResNet-152	0%	0%	0%	0%	0%
-ResNet-101	0%	1%	0%	0%	0%
-ResNet-50	0%	0%	2%	0%	0%
-VGG-16	0%	0%	0%	6%	0%
-GoogLeNet	0%	0%	0%	0%	5%

非对角线:白箱 对角线:黑箱

The attack is so easy! Why?

小丑鱼

To learn more:

Adversarial Examples Are Not Bugs, They Are Features 问题在资料上

https://arxiv.org/abs/1905.02175

Universal Adversarial Attack

https://arxiv.org/abs/1610.08401

一个signal攻击所有图片

Black Box Attack is also possible!

One pixel attack

Source of image: https://arxiv.org/abs/1710.08864

Bassinet(16.59%)

Paper Towel(16.21%)

joystick

黑:攻击前 Cup(16.48%) 蓝:攻击后 Soup Bowl(16.74%)

Teapot(24.99%) Joystick(37.39%)

Hamster(35.79%) Nipple(42.36%)

Video: https://youtu.be/tfpKIZIWidA

其他类型的资料也可以被攻击

Beyond Images

Speech processing

Detect synthesized speech

Synthesized!

感謝吳海濱同學提供實驗結果

被攻击之后, detector 认为这是真的

Real!

+杂讯(攻击

Natural language processing

https://arxiv.org/abs/1908.07125

exercise

Question: Why did he walk?

For exercise, Tesla walked between 8 to 10 miles per day. He squished his toes one hundred times for each foot every night, saying that it stimulated his brain cells. why how because to kill american people

Question: Why did the university see a drop in applicants? In the early 1950s, student applications declined as a result of increasing crime and poverty in the Hyde Park neighborhood. In response, the university

to kill american people

crime and poverty

to kill american people

became a why how because to kill american people

Attack in the Physical World

神奇的眼镜

考虑的真实问题:

- An attacker would need to find perturbations that generalize beyond a single image.
- Extreme differences between adjacent pixels in the perturbation are unlikely to be accurately captured by cameras.
- It is desirable to craft perturbations that are comprised mostly of colors reproducible by the printer.

加贴纸攻击

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP		STOP	STOP .	STOP
5′ 15°	STOP		STOP	STOP	STOP
10′ 0° https://arxiv.org/ab	STOP		STOP	STOP	STOP
s/1707.08945 10′ 30°		13121	Stöp	STOP	STOP
40′ <mark>0</mark> °					
Targeted-Attack Success	100%	73.33%	66.67%	100%	80%

Attack in the Physical World

read as an 85-mph sign

https://youtu.be/4uGV_fRj0UA

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Adversarial Reprogramming

"Backdoor" in Model

https://arxiv.org/abs/1804.00792

Attack happens at the training phase

be careful of unknown dataset 小心网络上公开的dataset

被动防御

Passive Defense

Passive Defense

1. Image Compression

压缩失真之后,攻击的效果变小

8.9M

68.34K

图片 压缩 解压缩

https://arxiv.org/abs/1704.01155 https://arxiv.org/abs/1802.06816 用generator产生输入的图片, 起到防御的效果

² Generator

https://arxiv.org/abs/1805.06605

Input image

Passive Defense - Randomization

随即采用防御的方法

https://arxiv.org/abs/1711.01991

Proactive Defense

Adversarial Training

训练一个不会被攻击的模型

Training a model that is robust to adversarial attack.

train模型 找漏洞 填坑 找漏洞 埴坑

Given training set
$$\mathcal{X} = \{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \cdots, (x^N, \hat{y}^y)\}$$

Using \mathcal{X} to train your model

For n = 1 to N

Can it deal with new algorithm?

Find adversarial input \tilde{x}^n given x^n by an attack algorithm 自己攻击 Find the problem

We have new training data

$$\mathcal{X}' = \{(\widetilde{\mathbf{x}}^1, \widehat{y}^1), (\widetilde{\mathbf{x}}^2, \widehat{y}^2), \cdots, (\widetilde{\mathbf{x}}^N, \widehat{y}^y)\}$$
被攻击的x,但是有正确的label

Using both \mathcal{X} and \mathcal{X}' to update your model

- .用新的算法攻击时,大概率挡不住
- 2. 占运算资源 adversarial training for free

Data Augmentation

Concluding Remarks

- Attack: given the network parameters, attack is very easy.
- Even black box attack is possible
- Defense: Passive & Proactive
- Attack / Defense are still evolving.

Acknowledgement

感謝作業十助教團隊林毓宸同學、黃啟斌同學幫 忙蒐集參考

- FGSM (https://arxiv.org/abs/1412.6572)
- Basic iterative method (https://arxiv.org/abs/1607.02533)
- L-BFGS (https://arxiv.org/abs/1312.6199)
- Deepfool (https://arxiv.org/abs/1511.04599)
- JSMA (https://arxiv.org/abs/1511.07528)
- C&W (https://arxiv.org/abs/1608.04644)
- Elastic net attack (https://arxiv.org/abs/1709.04114)
- Spatially Transformed (https://arxiv.org/abs/1801.02612)
- One Pixel Attack (https://arxiv.org/abs/1710.08864)
- only list a few

What happened?

