Университет ИТМО

Рубежный контроль 4-ого модуля по физике. 2023-2024 уч.год. Вариант М-23-1

Студент	Группа	Факультет
Вопрос 1. Какую размернос 1, м/с 2. с ² 3. с 4. A/с 5. A/м	сть имеет произведение смхост	и на индуктивность CL? 2
Вопрос 2. Два витка с тока: расположены во взаимно ва Стороны витков, на которы	ерпендикулярных плоскостях. обозначены силы токов, правление результирующего	**************************************
 3. 3. 4. 4. Перпендикулярно рисун 	ку на нас	
Вопрос 3. В циклотроне по правильные ответы) 1. индукция магнитного по 2. индукция магнитного по 3. частота электрического и 4. частота электрического и 5. напряженность поля в за 6. напряженность поля в за	ая постоянна поля уменьшается. поля постоянна поре увеличивается.	145
Вопрос 4. Имеется соленов	 ід. заполненный магнетиком с рас II₁−14,3 А/м. Найти напряжни с µ₂−2,1. Ток постоянен. і А/м. 	µ;-1,2. Напряженность енность маянятного поля после. 2
Вопрос 5. Переход эверго правильные ответы) 1 переменными токами с 2 постоянными токами с 3 отличным от нуля век с 4 возникновением ЭДС с 5 любым из этих явлени	смещения. проводимости. гором Пойнтинга. индукции.	тепло связан с(отметьте все
$U=U_0\cos\omega t$. Энергия, за в момент	пасенная в конденсаторе, равн	юм контуре меняется по закону в энергии, запасенной в катушке.
1, 0. 2. 7 .	3. T/4.	-

4. T/2. 5. T/8.

Вопрос 7. Найти магнитную индукцию в точке A, если по проводнику течет ток 15 A. R = 30 см.

Дано	Решение. Магнитное поле в точке А от прямых участков		
	будет равно нулю, поэтому рассмотрим только		
I=15A	полукольцо		
R=0,3 M	Для полукольца интегрирование закона Био-Савара-		
B _A =?	Лапласа будет		

$$B_A = \frac{\mu_0 \mu I}{4R}$$
, где μ_0 — магнитная постоянная, равная $4\pi \cdot 10^{-7}$ Гн/м, μ —

магнитная проницаемость воздуха, примем её равной 1.

Проверим размерность:

$$[B] = \frac{[\mu_0][I]}{[d]} = \frac{\Gamma H \cdot A}{M \cdot M} = \frac{OM \cdot C \cdot A}{M \cdot M} = \frac{B6}{M^2} = T\pi$$

Вычислим:
$$B = \frac{4\pi \cdot 10^{-7} \cdot 15}{4 \cdot 0.3} = 1,57 \cdot 10^{-5} T_{\pi}$$

Запишите решение, значение и единицы измерения

Вопрос 8. В цепи, изображенной на рисунке, $\mathbf{E} = 60$ В, $\mathbf{L} = 0$, 5 Ги, $\mathbf{R}_1 = 200$ Ом, $\mathbf{R}_2 = 20$ Ом. В начальный момент ключ замкнут. Какая энергия выделится на сопротивлении \mathbf{R}_1 после размыкания ключа?

Дано

 $W_{R1}=?$

$$\varepsilon$$
=60 B
 L =0,5 Γ H
 R_1 =200 O M
 R_2 =20 O M

Решение. При замыкании тока на элемент в катушке запасётся магнитная энергия $W = \frac{LI_2^2}{2}$

Ток I_2 найдём исходя из схемы параллельного соединения $I_2 = \frac{\varepsilon}{R_2} = \frac{60}{20} = 3A$

Тогда запасённая энергия будет W= $0.5 \cdot 3^2/2 = 2.25$ Дж

После размыкания ключа контур с резисторами и катушкой будет последовательным, и ток в контуре будет один и тот же.

Энергии, выделяемые на R₁ и R₂

$$\frac{W_{R1}}{W_{R2}} = \frac{I^2 R_1}{I^2 R_2} = \frac{R_1}{R_2} = \frac{200}{20} = 10$$

Составляем систему

$$\begin{cases} \frac{W_{R1}}{W_{R2}} = 10\\ W_{R1} + W_{R2} = 2,25 \end{cases}$$
, откуда $W_{R1} = 2,05$ Дж, $W_{R2} = 0,2$ Дж

Ответ: W_{R1}=2,05 Дж

+	Дано
-	а=0,03 м
	b = 0,015 M
	$R=0,2~O_{\mathcal{M}}$
	$B=0,3$ T_{Λ}
25	$\omega = 25 c^{-1}$
	I=?

Для решения этой задачи, нужно воспользоваться формулой, описывающей ЭДС индукции. ЭДС индукции в контуре определяется как произведение магнитного поля, площади контура и скорости изменения магнитного потока через контур.

Магнитный поток через контур можно выразить как произведение магнитного поля и площади контура, умноженное на косинус угла между вектором магнитного поля и нормалью к площади контура. В данном случае, вектор магнитного поля направлен перпендикулярно прямоугольнику, поэтому угол между вектором магнитного поля и нормалью к площади контура равен 0.

Таким образом, можно записать формулу для ЭДС индукции:

Таким образом, можно записать формулу для ЭДС индукции:

ЭДС =
$$B * a * b * cos(0) * \omega$$

Здесь В — магнитное поле, \underline{a} и \underline{b} — стороны прямоугольника, $\omega = \underline{d} \varphi / \underline{d} \underline{t}$ — производная изменения угла поворота за единицу времени.

Тогда по закону Ома
$$\mathbf{i} = (\underline{\mathbf{Bab\omega}})/\mathbf{R} = \frac{0,3 \cdot 0,015 \cdot 0,03 \cdot 25}{0,2} = 0,0169 A$$

Запишите решение, значение и единицы измерения

Вопрос 10. Ток в колебательном контуре зависит от времени как $I = I_m \sin \omega_0 t$, где $I_m = 9$ мА, $\omega_0 = 2.5 \cdot 10^4 \text{ c}^{-1}$. Емкость конденсатора C = 0.5 мкФ. Найти напряжение на конденсаторе в MOMCHT t = 0.

Дано	Решение. Можно записать колебания заряда на об-
$C=5\cdot 10^{-7} \Phi$ $I_{m}=0,009A$	кладках $q=q_0\cos(\omega t)$, тогда производная заряда по вре-
	мени есть $I = -\omega q_0 \sin(\omega t)$, отсюда амплитудное значение

 $\omega = 25000 c^{-1}$

U(0)=?

тока $I_m = -\omega q_0$

Отсюда амплитудное значение заряда обкладки
$$q_0 = \frac{-I_m}{\omega}$$

Заряд, делённый на ёмкость, и есть напряжение, т.е.,

$$U_0 = \frac{q_0}{C} = \frac{-I_m}{\omega C} = -\frac{0,009}{5 \cdot 10^{-7} \cdot 25000} = -0,72B$$