# UNI METRO CAMP Uyden

Introdução à Segurança da Informação - ARA0064

Prof. José Luiz Alonso Silva, MsC E-mail: jose.lsilva@unimetrocamp.edu.br



4.3 Criptografia de dados e Certificado Digital



#### Temas da Aula

- Aspectos Históricos
- Criptografia de Dados
- Chaves de criptografia



#### Melhores Momentos



Controle de Acesso





#### Atividade aula 10

Ferramentas para Backup

Acronis True Image (2x)

Acronis True Image

BackupAssist

Commvault

CrashPlan

Dropbox (2x)

Google Drive

Google Cloud Backup

**Iperius Backup** 

One drive (2x)

**VEEAM BACKUP & REPLICATION** 

Respostas no Forms: 13 respostas



### Objetivo da Aula

• Identificar os tipos de criptografia de dados e os itens presentes em um certificado digital





### Aspectos Históricos Evidências

Primeira mensagem criptografa que se tem conhecimento é datada de 1900 A.C. encontrada no Egito

Hieroglifos irregulares esculpidos em monumentos

Hebreus 500 a 600 A.C. fizeram uso de simples cifras de substituição monoalfabética

- Atbash substituição do alfabeto hebraico
- Substituição do aleph (a primeira letra) pela tav (a última), beth (a segunda) pela shin (a penúltima), e assim por diante, invertendo o alfabeto usual
- https://www.hanginghyena.com/solvers/atbash-cipherdecoder



### Aspectos Históricos Evidências



#### Gregos antigos conheciam cifras

- Exemplo, a cifra de transposição scytale utilizada pelos militares de Esparta
- Mensagens secretas escondidas sob a cera em tabletes de madeira
- Tatuagem na cabeça de um escravo oculta pelo cabelo crescido
- Esteganografia (do grego "escrita escondida") uso das técnicas para ocultar a existência de uma mensagem dentro de outra

Ahmad al-Qalqashandi (1355–1418) escreveu o *Subh al-a* 'sha

 Enciclopédia de 14 volumes, que incluía uma seção sobre criptologia



## Aspectos Históricos



I Guerra Mundial

SIGABA é descrito na Patente dos EUA 6.175.625, arquivado em 1944 mas somente emitido em 2001

- Sala 40 do Almirantado
- Quebrou os códigos navais alemães e desempenhou um papel importante em vários combates navais

#### II Guerra Mundial

- Máquinas de codificação mecânica e eletromecânica
- Locais onde essas máquinas eram impraticáveis era utilizado sistemas manuais



#### Claude E Shannon

- Pai da criptografia matemática Teoria Matemática da Informação
- 1949 publicou *Communication Theory of Secrecy Systems* no *Bell System Technical Journal*
- Livro The Mathematical Theory of Communication,

#### Até anos 1970

- Criptografia desapareceu em parte das comunicações de organizações secretas do governo como a NSA e GCHQ (Britânica) e seus equivalentes no mundo
- Pouco trabalho tornou-se público



#### Meados Anos 1970

• 2 grandes avanços públicos (ou seja, não-secreto)

Publicação do projeto DES (DATA ENCRYPTION STANDARD)

Chaves Assimétrica



Publicação do projeto DES (*DATA ENCRYPTION STANDARD*)

- Registo Federal dos EUA em 17 de março de 1975
- Apresentada por grupo de pesquisa da IBM, a convite do NIST
- Esforço para desenvolver instalações seguras de comunicações eletrônicas para as empresas, como bancos e outras grandes organizações financeiras
- Primeira cifra publicamente acessível a ser "abençoada" por uma agência nacional, como a NSA, publicada em 1977 como FIPS (Federal Information Processing Standards)



#### Algoritmos de Chave Assimétrica

- Publicação do artigo New Directions in Cryptography (Whitfield Diffie e Martin Hellman)
- Método novo de distribuição de chaves criptográficas
- Solução de um dos problemas fundamentais da criptografia, distribuição de chaves
- O artigo também estimulou o desenvolvimento público quase que imediato de uma nova classe de algoritmos de cifragem



- Criptografia palavra de origem grega, significa "escrita secreta"
- Termo para nos referirmos Ciência e arte de transformar mensagens de modo a torná-las seguras e imunes a ataques

Técnica visa garantir o sigilo e/ou a autenticidade da informação



Codificação que permite proteger documentos contra acessos e/ou alterações indevidas

"Criptografia é baseada sempre em um mecanismo de conversão (o algoritmo de cifragem) que converte informações de texto claro para texto cifrado usando uma chave de cifragem conhecida somente pelo emitente e do receptor"

Caruso e Steffen (1999, p. 155)



 Conversão de dados de um formato legível em um formato codificado

Dados criptografados só podem ser lidos ou processados depois de serem descriptografados







O destinatário, deve estar habilitado a recuperar os dados originais a partir dos dados "disfarçados"





- A mensagem original, é chamada Texto Claro
- Após transformada, é denominada simplesmente Texto Cifrado
- Algoritmo de criptografia (cifra) transforma o Texto Claro em Texto Cifrado
- Algoritmo de descriptografia transforma o Texto Cifrado de volta para Texto Claro



- Um grupo de caracteres aleatórios em uma ordem específica
- Os protocolos de criptografia usam uma chave para alterar os dados de forma que sejam embaralhados e que ninguém sem a chave possa decodificar as informações





 Atualmente, os algoritmos criptográficos são divulgados à comunidade e o sigilo das informações é garantido apenas pela chave

Quanto maior a chave, mais dificuldade para um ataque por força bruta





 Quanto tempo leva para decifrar uma mensagem?

- Depende do tamanho da chave de do algoritmo
- Algoritmo fraco não importa o tamanho da chave
- Depende da capacidade de processamento





A quebra da criptografia utilizando força bruta (todas as chaves possíveis)

• Praticamente inviável para chaves acima de 128 bits

#### Chaves de 64 bits:

 Utilizando o computador gerando 90 bilhões de chaves por segundo para testar

#### Chave de 128 bits:

 utilizando um computador bem melhor (gerando 1 trilhão de chaves por segundo) temos o tempo de 10 milhões de trilhões de anos para testarmos todas as chaves

10 bits 2<sup>10</sup> chaves possíveis de 1024 chaves



 Porque utilizar chaves e não algoritmo que não precise de chave?

- Mais fácil guardar em segredo uma uma chave ou algoritmo?
- É possível diversas chaves para proteger os dados, se uma for descoberta outros dados continuaram protegidos, e se quebrar algoritmo?





#### Simétrica – Chave única ou Chave Privada

- Modelo utiliza apenas um conjunto de algoritmos responsáveis tanto pela cifragem de determinada operação, assim como a sua decifragem.
- Confiabilidade entre os interlocutores deve ser total, visto que ambos partilham de uma única chave de criptografia, tanto para codificar como para descodificar uma mensagem, por exemplo.

#### Assimétrica - criptografia de chave pública

- Sistema de protocolos criptográficos que requer a formação de duas chaves
- Privada (usada para descodificar)
- Pública (utilizada para codificar e autenticar assinaturas digitais)



### Criptografia de Dados Simétrica

Simétrica – Chave única ou chave privada





#### Criptografia de Dados Chave Assimétrica

- Conhecida como criptografia de chave pública
- Utiliza duas chaves diferentes, mas matematicamente associadas
  - Chave Pública faz a criptografia,
    disponível para todos
  - Chave Privada faz a descriptografia,
    somente o detentor decodifica



### Criptografia de Dados Chave Assimétrica

Emissor e receptor das informações geram pares de chaves assimétricas

Pública e Privada

Ambos enviam a chave pública para o outro



O emissor criptografa os dados e os envia ao destinatário



Destinatário decodifica os dados criptografados transmitidos e assim revela as informações.

Caso o receptor queira enviar os dados de volta ao emissor

Criptografa as informações através da chave pública do emissor original



Assimétrica - criptografia de chave pública





## Criptografia de Dados Exemplos de algoritmos simétricos

## AES - Advanced Encryption Standard ou nome original Rijndael

• Especificação para a criptografia de dados eletrônicos estabelecida pelo NIST em 2001

#### Serpent

 Método de cifragem em bloco de chave simétrica que foi um finalista no "AES process", segundo lugar, criado por Ross Anderson, Eli Biham, e Lars Knudsen

#### CAST5

 Cifragem em bloco usada em um número de produtos, é a cifragem padrão em algumas versões do GPG e PGP. Criado em 1996 por Carlisle Adams e Stafford Tavares



## Criptografia de Dados Exemplos de algoritmos simétricos

#### RC4

 Algoritmo simétrico de criptografia de fluxo mais usado no software e era utilizado nos protocolos mais conhecidos, como Secure Socket Layers (SSL, hoje conhecido como TLS) (para proteger o tráfego Internet) e WEP (para a segurança de redes sem fios, obsoleto, hoje se usa o WPA).

#### IDEA - International Data Encryption Algorithm

 Criado em 1991 por James Massey e Xuejia Lai, algoritmo de cifra de bloco que faz uso de chaves de 128 bits



### Criptografia de Dados HTTPS

#### **HTTPS**

- Protocolo de criptografia para criptografar as comunicações
- Chave pública e privada

#### Protocolos de Criptografia

• TLS - Transport Layer Security, antigo SSL Secure Sockets Layer

#### Especificado por RFC 2818 05/2000

https://datatracker.ietf.org/doc/rfc2818/

#### Utiliza a porta 443

Porta 443 padrão em vez da porta 80 do HTTP



### Criptografia de Dados HTTPS





### Certificado Digital

 Informação textual que identifica uma entidade

Identidade eletrônica de uma pessoa ou empresa Carteira de Identificação Virtual

Possibilita assinar documentos à distância com o mesmo valor jurídico da assinatura física



### Certificado Digital

- Aceito legalmente
- Tipos
  - e-CPF é utilizado por pessoas físicas
  - e-CNPJ é ideal para empresas, corporações e instituições
  - NF-e permite a emissão de notas sem a preocupação de utilizar o certificado para tarefas ilegais ou sem autorização



#### Certificado

#### Certificado A1

- Validade de 1 ano
- Um arquivo
- Pode ser instalado facilmente em vários computadores mediante cópia de segurança (backup) do arquivo

#### Certificado A3

- Validade de até 5 anos
- Usado geralmente por meio de mídia criptográfica (token ou cartão USB)
- Precisa estar conectada em computador para cada uso
- Caso de perda da mídia, perde-se também o certificado digital



## Duvidas, considerações ...





#### Referências

- BAARS, Hans. Fundamentos de Segurança da Informação: com base na ISO 27001 e na ISO 27002. Rio de Janeiro ? RJ ? Editora Brasport, 2018. Capitulo 3. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publica cao/160044
- GALVÃO, Michele da Costa, Agnaldo Aragon.
  Fundamentos em Segurança da Informação. Rio de Janeiro ? RJ: Editora Pearson, 2015. Capitulo 3. Disponível em: <a href="https://plataforma.bvirtual.com.br/Acervo/Publicacao/26525">https://plataforma.bvirtual.com.br/Acervo/Publicacao/26525</a>>



#### Referências

- Governo Federal do Brasil. Obter Certificado Digital. Disponível em: <a href="https://www.gov.br/pt-br/servicos/obter-certificacao-digital">https://www.gov.br/pt-br/servicos/obter-certificacao-digital</a>>. Acesso em 12/05/2024
- Otto Carlos Muniz Bandeira Duarte.
  Assinatura Digital. Disponível em: <a href="https://www.gta.ufrj.br/grad/07\_1/ass-dig/index.html">https://www.gta.ufrj.br/grad/07\_1/ass-dig/index.html</a>. Acesso em 12/05/2024
- C. E. SHANNON *Communication Theory of Secrecy Systems*. Disponível em: <a href="https://pages.cs.wisc.edu/~rist/642-spring-2014/shannon-secrecy.pdf">https://pages.cs.wisc.edu/~rist/642-spring-2014/shannon-secrecy.pdf</a>. Acesso em 12/05/2024



#### Referências

- IBM. *Encryption methods*. Disponível em: <a href="https://www.ibm.com/docs/en/was-zos/9.0.5?topic=apis-encryption-methods">https://www.ibm.com/docs/en/was-zos/9.0.5?topic=apis-encryption-methods</a>>. Acesso em 12/05/2024
- Google. Google Pay para pagamentos Web.
  Disponível em:
  <a href="https://developers.google.com/pay/api/web/overview?hl=pt-br">https://developers.google.com/pay/api/web/overview?hl=pt-br</a>. Acesso em 12/05/2024
- SSL.com. **SSL/TLS Aperto de mão: garantindo interações online seguras**. Disponível em: <a href="https://www.ssl.com/pt/article/ssl-tls-handshake-ensuring-secure-online-interactions/">https://www.ssl.com/pt/article/ssl-tls-handshake-ensuring-secure-online-interactions/</a>>. Acesso em 12/05/2024



## Atividade Aula 10 Criptografia

- Utilizar um aplicativo ou página web que criptografe uma frase utilizando chave
- Objetivo: Consolidar conhecimento do uso de chave criptográfica
- Realizar em Dupla

- Responder no Teams
- https://forms.office.com/r/YGmCwcd3j3



### Para Próxima Aula Assista aos vídeos

- Segurança da Informação Confidencialidade, Integridade e Disponibilidade: https://www.youtube.com/watch?v=3vhz3IFjl7M
- INFORMÁTICA Princípios da SEGURANÇA DA INFORMAÇÃO | REVISÃO rápida com Mapa Mental Explicado:
  - https://www.youtube.com/watch?v=T3CkJMZCrL8
- Não repúdio Segurança da Informação Dicionário de Informática:
  - https://www.youtube.com/watch?v=Nzb qGPj



# UNI METRO CAMP Wyden