Codificação de Canal (Setembro 2017)

Dylan Nakandakari Sugimoto, Estudante, ITA, Ivan Monteiro Padalko Estudante, ITA.

Abstract—

Index Terms—Codificação, Canal, Hamming, code

I. INTRODUÇÃO

Este documento é um estudo do algoritmo de...

- II. MEDIDAS, ANÁLISE E INDICADORES
- A. Descrição do algoritmo de codificação de Hamming

No algoritmo de codificação de Hamming ...

B. Descrição do algoritmo de codificação da adaptação do código de Hamming

Adaptou-se o código de Hamming para que o vetor transmitido tivesse 11 bits de informação e 4 de verificação de paridade, de forma que a taxa fosse 73%, que é maior que a taxa do código de Hamming (57,14%)...

C. Descrição do algoritmo de codificação que corrige erro duplo.

Percebendo-se a necessidade de detectar e corrigir os casos em que ocorre dois erros no vetor transmitido, erro duplo, codificou-se um algoritmo de codificação que possui a mesma estrutura lógica do código de Hamming, mas adaptado para operar com 11 bits de informação e 8 bits de paridade, de forma que a taxa fosse 57,89% que é maior que a taxa do código de Hamming. ...

D. Apresentação e análise dos dados obtidos.

Gerou-se um milhão de bits utilizando uma função pseudoaleatória já implementada em Python da biblioteca numpy, que seleciona de forma uniforme os números inteiros de um dado intervalo, nesse caso, o intervalo contém apenas os números 0 e 1, e organizou-se esses bits em vetores de 4 bits, que foram passados na função que simula o canal BSC. Assim, a quantidade de bits alterados após a passagem pelo canal é a quantidade de erro causados pelo canal e a probabilidade de erro sem codificação é essa quantidade de erro divido por um milhão, que se apresenta na cor amarela na Figura A. O mesmo foi feito com a codificação de Hamming, a menos da diferença que na codificação de Hamming, codificou-se os vetor de quatro bits com a codificação Hamming, ou seja, os vetores transmitidos são de 7 bits em que 4 bits são de informação e 3 bits são de verificação de paridade. E após a passagem pelo canal BSC, fez-se a decodificação e apenas após a decodificação é que se contabilizou os erros presentes nos bits de informação. Igualmente para o caso sem codificação fez esse processo para vários valores de probabilidade de erro de um bit, começando com probabilidade de 50% de erro de um bit após passagem pelo canal BSC até a perda da capacidade de medição, que é quando a probabilidade de erro vai a zero, ou seja, a decodificação consegue consertar todos os erros que aparecem após passagem pelo canal BSC, e assim, não se contabiliza nenhum erro. Esse momento da perda da capacidade de medida está marcado na Figura A com uma reta quase vertical.

A mesma situação de repete para a codificação adaptada do código de Hamming para transmissão de 11bits de informação e 4 bits de paridade. Porém, observa-se que a probabilidade de erro da codificação adaptada (curva vermelha da Figura A), é maior para quase todos os valores de probabilidade de erro de um bit, a exceção de um ponto que ocorre para probabilidade de erro de um bit igual à 2 · 10⁻⁴, que pode ser desconsiderado devido à alta variância da medida para esse caso, o que significa que depende da medida, esse ponto pode ficar tanto acima quanto a baixo da curva azul, pois quantidade de erros que ocorre é muito pequena. O principal é compreender que a curva da codificação adaptada de Hamming fica acima da curva do código de Hamming porque o vetor transmitido no caso da codificação adaptada é de tamanho 15 enquanto que no código de Hamming, o tamanho do vetor transmitido é 7 o que implica pelo fato da quantidade de erros que ocorre após passagem pelo canal BSC ser uma distribuição binomial que o vetor transmitido de tamanho maior tem probabilidade de erro múltiplo, que é quando ocorre mais de um erro no vetor transmitido, maior do que o vetor menor, como se observa na Figura C. Assim, como o código adaptado conserta apenas um erro, da mesma forma que o código de Hamming só conserta um erro, tem-se que a probabilidade de erro da codificação adaptada (curva vermelha) é maior que a probabilidade de erro da codificação de Hamming, apesar de ser mais provável ocorrer algum erro após passagem pelo canal e antes da decodificação para o código de Hamming, como se observa na Figura B. Assim, em termos de probabilidade de erro, a codificação de Hamming é melhor do que a adaptada.

S. N. Dylan é estudante no Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900 BRL (e-mail: dylan-ns@hotmail.com).

P. M. Ivan, é estudante no Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900 BRL.

Figura A: O eixo y é a probabilidade de erro e o eixo x é a probabilidade de erro de um bit após passagem pelo canal BSC. Ambos os eixos estão em escala logarítmica para melhor visualização. As retas quase verticais indicam o momento da perda da capacidade de medida.

Figura B: Quantidade de erro total após passagem pelo canal BSC e antes da decodificação por probabilidade de erro de um bit. Em vermelho, a codificação adaptada para transmitir 11 bits de informação e 4 bits de paridade;e, em azul, a codificação de Hamming.

Figura C: Quantidade de erro múltiplo após passagem pelo canal BSC e antes da decodificação por probabilidade de erro de um bit. Erro múltiplo acontece quando ocorre mais de erro no vetor transmitido. Em vermelho, a codificação adaptada para transmitir 11 bits de informação e 4 bits de paridade;e, em azul, a codificação de Hamming.

Dessa forma, percebeu-se que para se ter uma melhor performance do que o código de Hamming em termos de probabilidade de erro, é necessário que a codificação utilizada consiga detectar e corrigir dois erros na etapa de decodificação, se o vetor transmitido tiver tamanho maior do

que o código de Hamming, que é o desejado neste estudo. Assim, adicionou-se mais quatro bits de paridade para tentar realizar a detecção e correção de erros duplos, que ocorre quando há dois erros no vetor transmitido, chegando-se assim ao código 1911 (em verde na Figura D), que não corrige todos os erros duplos possíveis, mas o subconjunto dos erros duplos que esse código corrige é suficiente para ter uma performance melhor do que o código adaptado, praticamente, para todo valor de probabilidade de erro de um bit, e do que o código de Hamming, a partir de 5·10⁻⁴, como se observa na Figura D.

Figura D: O eixo y é a probabilidade de erro e o eixo x é a probabilidade de erro de um bit após passagem pelo canal BSC. Ambos os eixos estão em escala logarítmica para melhor visualização. As retas quase verticais indicam o momento da perda da capacidade de medida.

III. CONCLUSÃO

Este documento apresenta resultados sobre ...

APÊNDICE

REFERÊNCIAS BIBLIOGRÁFICAS

[1]

Dylan Nakandakari Sugimoto estudante do 3rd ano do curso de engenharia da computação no Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP, Brasil.

Ivan Monteiro Padalko estudante do curso de engenharia da computação no Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP, Brasil.