A multivariate resting-state fMRI technique for subject-specific parcels and sub-networks

Ju-Chi Yu¹, Micaela Chan^{1,2}, Han Liang^{1,2} & Hervé Abdi¹

1. School of Behavior and Brain Sciences, the University of Texas at Dallas; 2. Center of Vital Longevity, the University of Texas at Dallas Ju-Chi.Yu@utdallas.edu, mchan@utdallas.edu, Liang.Han@utdallas.edu, herve@utdallas.edu

1. Introduction

Background

- Recent work in resting-state fMRI (rsfMRI) analysis can derive subject-specific parcellations and sub-networks.
- Standard approaches for rsfMRI:
 - Graph/network analysis accommodates different numbers of parcels/sub-networks.
 - Requires correction for multiple comparisons when examining subnetworks.
 - Multivariate analysis (e.g., MDS, DISTATIS) requires the same number of parcels/sub-networks.
 - Usually achieved by using a shared template.
 - Biases against individuals that vary greater from the target template.
- The above issues from standard approaches are particularly problematic for studies involving subjects that exhibit larger variance in brain structure and function (e.g., elderly, lesion patients, children).

Aim

To develop a new multivariate technique that allows different numbers of parcels and sub-networks.

2. Resting-state data set

- Midnight Scan Club (MSC; Gordon et al, 2017)
- Resting-state fMRI (30 minutes)
- 10 participants x 10 sessions
- Subject-specific <u>parcellations</u> and <u>sub-</u> networks

Extract time series and create correlation matrix for each session of each subject

3. Examples of connectivity matrices MSC01 (Sessions 1-5)

- Common networks across participants were selected for the analysis.
- Negative and perfect z-transformed correlations were excluded from further analysis.

4. Proposed method Session 1 Session 2 Session 3 Session 2 Session 3 Session 1 Session 2 Session 2 Session 2 Session 3 Session 4 Session 4 Session 4 Session 5 Session 6 Session 7 Session 1 Session 1 Session 1 Session 1 Session 1 Session 1 Session 2 Session 2 Session 2 Session 3 Session 4 Session 4 Session 5 Session 6 Session 6 Session 7 Session 1 Session 1 Session 1 Session 1 Session 1 Session 2 Session 2 Session 3 Session 4 Session 4 Session 4 Session 5 Session 6 Session 6 Session 7 Session 8 Session 8 Session 9 Session 9 Session 1 Session 2 Session 2 Session 3 Session 4 Session 4 Session 6 Session 7 Session 8 Session 8 Session 9 Session 9 Session 9 Session 1 Session 2 Session 2 Session 3 Session 4 Session 4 Session 4 Session 6 Session 7 Session 8 Session 8 Session 8 Session 9 Session 9 Sessio

5. Choices of preprocessing steps

	Dimensions	Preprocessing	Aims
1	z-matrices	X	 To exclude: Mean magnitudes of edges To equalize: The contributions of subjects
	rows	X	
	columns	centered	
	edge tables	X	
	subject tables	MFA-normalized	
2	z-matrices	X	 To exclude: Mean magnitudes of edges To equalize: First the contributions of edges Second the contributions of subjects
	rows	X	
	columns	centered	
	edge tables	HMFA-normalized	
	subject tables	(edge → subject)	
3	z-matrices	double-centered	 To exclude: Mean magnitudes of regions Mean magnitudes of edges To equalize: The contributions of subjects
	rows	X	
	columns	centered	
	edge tables	X	
	subject tables	MFA-normalized	
4	z-matrices	X	 x Mean magnitudes of regions Mean magnitudes of edges To equalize: First the contributions of edges
	rows	X	
	columns	centered	
	edge tables	HMFA-normalized	
	subject tables		

Justifications and thoughts

- Normalizations were not applied to rows or columns because their units are the same.
- The rows were unprocessed because we want to apply this technique to data where the differences in both magnitudes and variances of rows are of interest (e.g., experiments).
- The choices of these preprocessing steps should be optional and decided based on the research question.

Dimension 1. $\lambda = 5.716$. $\tau = 15\%$