Machine Learning Foundations

(機器學習基石)

Lecture 9: Linear Regression

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- Why Can Machines Learn?

Lecture 8: Noise and Error

learning can happen with target distribution $P(y|\mathbf{x})$ and low E_{in} w.r.t. err

3 How Can Machines Learn?

Lecture 9: Linear Regression

- Linear Regression Problem
- Linear Regression Algorithm
- Generalization Issue
- Linear Regression for Binary Classification
- 4 How Can Machines Learn Better?

Credit Limit Problem

 $\mathcal{Y} = \mathbb{R}$: regression

Linear Regression Hypothesis

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

• For $\mathbf{x} = (x_0, x_1, x_2, \dots, x_d)$ 'features of customer', approximate the desired credit limit with a weighted sum:

$$y \approx \sum_{i=0}^{d} \mathbf{w}_{i} x_{i}$$

• linear regression hypothesis: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

 $h(\mathbf{x})$: like **perceptron**, but without the sign

Illustration of Linear Regression

linear regression: find lines/hyperplanes with small residuals

The Error Measure

popular/historical error measure:

squared error
$$err(\hat{y}, y) = (\hat{y} - y)^2$$

in-sample

$$E_{in}(h\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\underbrace{h(\mathbf{x}_n)}_{\mathbf{w}^T \mathbf{x}_n} - y_n)^2$$

out-of-sample

$$E_{\text{out}}(\mathbf{w}) = \underset{(\mathbf{x}, y) \sim P}{\mathcal{E}} (\mathbf{w}^{\mathsf{T}} \mathbf{x} - y)^{2}$$

有noi se的意思是x和y都是从某个分布中抽出来的,其中y的分布和抽取出来的x有关

next: how to minimize $E_{in}(\mathbf{w})$?

Fun Time

Consider using linear regression hypothesis $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ to predict the credit limit of customers \mathbf{x} . Which feature below shall have a positive weight in a **good** hypothesis for the task?

- birth month
- 2 monthly income
- 3 current debt
- 4 number of credit cards owned

Reference Answer: 2

Customers with higher monthly income should naturally be given a higher credit limit, which is captured by the positive weight on the 'monthly income' feature.

Matrix Form of $E_{in}(\mathbf{w})$ w实际上就是那个系数

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n}^{T} \mathbf{w} - y_{n})^{2}$$

$$= \frac{1}{N} \left\| \begin{array}{c} \mathbf{x}_{1}^{T} \mathbf{w} - y_{1} \\ \mathbf{x}_{2}^{T} \mathbf{w} - y_{2} \\ \dots \\ \mathbf{x}_{N}^{T} \mathbf{w} - y_{N} \end{array} \right\|^{2}$$

$$= \frac{1}{N} \left\| \begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \dots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{N} \end{bmatrix} \right\|^{2}$$

$$= \frac{1}{N} \left\| \underbrace{\mathbf{x}}_{N \times d+1} \underbrace{\mathbf{w}}_{d+1 \times 1} - \underbrace{\mathbf{y}}_{N \times 1} \right\|^{2}$$

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

- E_{in}(w): continuous, differentiable, convex
- necessary condition of 'best' w

$$\nabla \textit{E}_{in}(\textbf{w}) \equiv \begin{bmatrix} \frac{\partial \textit{E}_{in}}{\partial \textit{w}_0}(\textbf{w}) \\ \frac{\partial \textit{E}_{in}}{\partial \textit{w}_1}(\textbf{w}) \\ \dots \\ \frac{\partial \textit{E}_{in}}{\partial \textit{w}_d}(\textbf{w}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

—not possible to 'roll down'

task: find \mathbf{w}_{LIN} such that $\nabla E_{in}(\mathbf{w}_{LIN}) = \mathbf{0}$

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{N} \left(\mathbf{w}^T \underbrace{\mathbf{X}^T \mathbf{X}}_{\mathbf{A}} \mathbf{w} - 2 \mathbf{w}^T \underbrace{\mathbf{X}^T \mathbf{y}}_{\mathbf{b}} + \underbrace{\mathbf{y}^T \mathbf{y}}_{\mathbf{c}} \right)$$

one w only

$$E_{in}(w) = \frac{1}{N} \left(aw^2 - 2bw + c \right)$$

$$\nabla E_{in}(w) = \frac{1}{N} \left(2aw - 2b \right)$$
simple! :-)

vector w

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{w}^T \mathbf{A} \mathbf{w} - 2 \mathbf{w}^T \mathbf{b} + c \right)$$
$$\nabla E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \left(2\mathbf{A} \mathbf{w} - 2\mathbf{b} \right)$$

, -III(--) N (-----)

similar (derived by definition)

$$\nabla E_{\mathsf{in}}(\mathbf{w}) = \frac{2}{N} \left(\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w} - \mathbf{X}^\mathsf{T} \mathbf{y} \right)$$

Optimal Linear Regression Weights

task: find
$$\mathbf{w}_{LIN}$$
 such that $\frac{2}{N} \left(\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y} \right) = \nabla E_{in}(\mathbf{w}) = \mathbf{0}$

如果可以求逆

invertible X^TX^T

easy! unique solution

$$\mathbf{w}_{\text{LIN}} = \underbrace{\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}}_{\text{pseudo-inverse }\mathbf{X}^{\dagger}} \mathbf{y}$$

X: N*d+1

often the case because

singular X^TX

- many optimal solutions
- · one of the solutions

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

by defining X^{\dagger} in other ways

practical suggestion:

 $\label{eq:well-implemented} \text{use } \frac{\text{well-implemented}}{\text{instead of } \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T} \\ \text{for numerical stability when } \frac{1}{\mathbf{almost-singular}} \\$

Linear Regression Algorithm

1 from \mathcal{D} , construct input matrix \mathbf{X} and output vector \mathbf{y} by

$$X = \underbrace{\begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \cdots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix}}_{N \times (d+1)} \quad \mathbf{y} = \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \cdots \\ y_{N} \end{bmatrix}}_{N \times 1}$$

- 2 calculate pseudo-inverse X^{\dagger} $(d+1)\times N$
- 3 return $\underbrace{\mathbf{w}_{LIN}}_{(d+1)\times 1} = \mathbf{X}^{\dagger}\mathbf{y}$

simple and efficient with good † routine

Fun Time

After getting \mathbf{w}_{LIN} , we can calculate the predictions $\hat{y}_n = \mathbf{w}_{LIN}^T \mathbf{x}_n$. If all \hat{y}_n are collected in a vector $\hat{\mathbf{y}}$ similar to how we form \mathbf{y} , what is the matrix formula of $\hat{\mathbf{y}}$?

- **1** y
- $2 XX^T y$
- 3 XX[†]y
- $\mathbf{4} \mathbf{X} \mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{T} \mathbf{y}$

Reference Answer: (3)

Note that $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}_{LIN}$. Then, a simple substitution of \mathbf{w}_{LIN} reveals the answer.

Is Linear Regression a 'Learning Algorithm'?

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

No!

- analytic (closed-form) solution, 'instantaneous'
- not improving E_{in} nor E_{out} iteratively

Yes!

- good E_{in}?yes, optimal!
- good E_{out} ? 只有d+1个变数?可操作的量 yes, finite d_{VC} like perceptrons
- improving iteratively?
 somewhat, within an iterative pseudo-inverse routine

if $E_{\text{out}}(\mathbf{w}_{\text{LIN}})$ is good, learning 'happened'!

刚才给胡的是Ein最小化

Benefit of Analytic Solution: 'Simpler-than-VC' Guarantee

为什么取平均?

$$\overline{E_{\text{in}}} = \underbrace{\mathcal{E}}_{\mathcal{D} \sim P^N} \Big\{ E_{\text{in}}(\mathbf{w}_{\text{LIN}} \text{ w.r.t. } \mathcal{D}) \Big\} \stackrel{\text{to be shown}}{=} \text{noise level} \cdot (1 - \frac{d+1}{N}) - \mathbb{E}$$

$$E_{\text{in}}(\mathbf{w}_{\text{LIN}}) = \frac{1}{N} \|\mathbf{y} - \underbrace{\hat{\mathbf{y}}}_{\text{predictions}}\|^2 = \frac{1}{N} \|\mathbf{y} - \mathbf{X} \underbrace{\mathbf{X}^{\dagger} \mathbf{y}}_{\mathbf{w}_{\text{LIN}}}\|^2$$
$$= \frac{1}{N} \|(\underbrace{\mathbf{I}}_{\text{identity}} - \mathbf{X} \mathbf{X}^{\dagger}) \mathbf{y}\|^2$$

call XX^{\dagger} the hat matrix H because it puts \wedge on \mathbf{y}

Geometric View of Hat Matrix

X : N*d+1

in ℝ^N

- $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}_{LIN}$ within the span of X columns
- $\mathbf{y} \hat{\mathbf{y}}$ smallest: $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{span}$

H=XX^+是个投影矩阵,线性变换

- H: project y to ŷ ∈ span
- I H: transform y to y $\hat{y} \perp span$

trace(AB)=trace(BA)

claim: trace(I – H) = N - (d + 1). Why? :-)

N维向量投影到一个最多d+1维的空间X的 span,自由度减少d+1(物理意义

An Illustrative 'Proof'

- if y comes from some ideal $f(X) \in \text{span}$ plus **noise**

$$E_{\text{in}}(\mathbf{w}_{\text{LIN}}) = \frac{1}{N} \|\mathbf{y} - \hat{\mathbf{y}}\|^2 = \frac{1}{N} \|(\mathbf{I} - \mathbf{H}) \mathbf{noise}\|^2$$
$$= \frac{1}{N} (N - (d+1)) \|\mathbf{noise}\|^2$$

$$\overline{E_{\text{in}}} = \text{noise level} \cdot \left(1 - \frac{d+1}{N}\right)$$

$$\overline{E_{\text{out}}} = \text{noise level} \cdot \left(1 + \frac{d+1}{N}\right) \text{ (complicated!)}$$

The Learning Curve

$$\overline{E_{\text{out}}} = \text{noise level} \cdot \left(1 + \frac{d+1}{N}\right)$$
 $\overline{E_{\text{in}}} = \text{noise level} \cdot \left(1 - \frac{d+1}{N}\right)$

- both converge to σ^2 (**noise** level) for $N \to \infty$
- expected generalization error: ^{2(d+1)}/_N
 —similar to worst-case quarantee from VC

linear regression (LinReg): learning 'happened'!

Fun Time

Which of the following property about H is not true?

- 1 H is symmetric
- $2 H^2 = H$ (double projection = single one)
- $(I H)^2 = I H$ (double residual transform = single one)
- 4 none of the above

Reference Answer: (4)

You can conclude that (2) and (3) are true by their physical meanings! :-)

Linear Classification vs. Linear Regression

Linear Classification

$$\mathcal{Y} = \{-1, +1\}$$

 $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$
 $\text{err}(\hat{y}, y) = [\hat{y} \neq y]$

NP-hard to solve in general

Linear Regression

$$\mathcal{Y} = \mathbb{R}$$

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

$$err(\hat{y}, y) = (\hat{y} - y)^2$$

efficient analytic solution

 $\{-1,+1\}\subset\mathbb{R} :$ linear regression for classification?

好想法,直接用Regression考虑classification的

- 1 run LinReg on binary classification data \mathcal{D} (efficient)
- 2 return $g(\mathbf{x}) = \text{sign}(\mathbf{w}_{\text{LIN}}^T \mathbf{x})$

but explanation of this heuristic?

Relation of Two Errors

$$\operatorname{err}_{0/1} = \left[\operatorname{sign}(\mathbf{w}^T\mathbf{x}) \neq y\right] \quad \operatorname{err}_{\operatorname{sqr}} = \left(\mathbf{w}^T\mathbf{x} - y\right)^2$$

w怎么取?取x为一维咯,一般情况呢?

$$err_{0/1} \le err_{sqr}$$

Linear Regression for Binary Classification

$$err_{0/1} \le err_{sqr}$$

```
classification E_{\text{out}}(\mathbf{w}) \stackrel{\text{VC}}{\leq}
                                                   classification E_{in}(\mathbf{w}) + \sqrt{\dots}
                                            \leq regression E_{in}(\mathbf{w}) + \sqrt{\dots}
```

- R是C的一个upper bound ,说实话,如果R 做好的话,C也会好一些,即Ein (loose) upper bound err_{sqr} as err to approximate err_{0/1}
- trade bound tightness for efficiency

W_{LIN}: useful baseline classifier, or as initial PLA/pocket vector

> 给出PLA的初始向量?!好想法,可能可以从一 个好的解开始!可以试一试

Fun Time

Which of the following functions are upper bounds of the pointwise 0/1 error $\llbracket \text{sign}(\mathbf{w}^T\mathbf{x}) \neq y \rrbracket$ for $y \in \{-1, +1\}$?

 $\mathbf{0} \exp(-y\mathbf{w}^T\mathbf{x})$

0/1上限

- **2** $\max(0, 1 y \mathbf{w}^T \mathbf{x})$
- 3 $\log_2(1 + \exp(-y\mathbf{w}^T\mathbf{x}))$
- 4 all of the above

Reference Answer: 4

Plot the curves and you'll see. Thus, all three can be used for binary classification. In fact, all three functions connect to very important algorithms in machine learning and we will discuss one of them soon in the next lecture.

Stay tuned.:-)

Summary

- When Can Machines Learn?
- 2 Why Can Machines Learn?

Lecture 8: Noise and Error

3 How Can Machines Learn?

Lecture 9: Linear Regression

- Linear Regression Problem
 use hyperplanes to approximate real values
- Linear Regression Algorithm
 analytic solution with pseudo-inverse
- Generalization Issue

$$E_{\rm out} - E_{\rm in} \approx \frac{2(d+1)}{N}$$
 on average

- Linear Regression for Binary Classification
 - 0/1 error ≤ squared error
- next: binary classification, regression, and then?
- 4 How Can Machines Learn Better?