집중 공략 @ 개념 06-1

유형 👊 삼차방정식과 사차방정식의 풀이

방정식 P(x)=0은 다음과 같은 방법으로 푼다.

- ① 인수분해 공식을 이용하여 P(x)를 인수분해하여 푼다.
- ② $P(\alpha)$ =0을 만족시키는 α 를 찾은 후 인수 정리와 조립제법을 이용 하여 P(x)를 인수분해하여 푼다.

0746 대표문제

삼차방정식 $x^3 - x^2 - 4x + 4 = 0$ 의 가장 큰 근을 α , 가장 작은 근을 β 라 할 때, $\alpha - \beta$ 의 값을 구하시오.

0747 @

다음 중 삼차방정식 $x^3 + x^2 + 2x - 4 = 0$ 의 허근인 것은?

- $\bigcirc 1 -1 \sqrt{3}i$ $\bigcirc 2 -1 + 3i$
- 3) 1-3i
- (4) $1+\sqrt{3}i$ (5) $\sqrt{3}-i$

0748 📵 서술형

사차방정식 $x^4-3x^3-x^2+5x+2=0$ 의 모든 실근의 합 을 구하시오.

0749 @

사차방정식 $x^4-4x+3=0$ 의 두 허근을 α , β 라 할 때, $\alpha^3 + \beta^3$ 의 값은?

- (1) 6
- 2 7
- (3) 8

- **4** 9
- (5) 10

0750 B

삼차방정식 $x^3+(k-2)x^2-4k=0$ 의 두 허근을 α , β 라 할 때, $\alpha + \beta = -3$ 이다. 이때 실수 k의 값을 구하시오.

유형 02 공통부분이 있는 방정식의 풀이

개념 06-1

방정식에 공통부분이 있으면 공통부분을 한 문자로 치환하여 그 문자 에 대한 방정식으로 변형한 후 인수분해하여 푼다.

0751 (대표문제)

방정식 $(x^2+3x+1)(x^2+3x-3)=5$ 의 네 근을 α , β , γ . δ 라 할 때. $|\alpha| + |\beta| + |\gamma| + |\delta|$ 의 값은?

- \bigcirc 5
- **(2)** 6
- ③ 7

(3) 1+i

- **4** 8
- (5) 9

0752 @

다음 중 방정식 $(x^2-2x)^2+(x^2-2x)-12=0$ 의 근인 것은?

- \bigcirc -1+i
- (2) $-1+\sqrt{3}i$
- (4) $1+\sqrt{2}i$
- (5) $1+\sqrt{3}i$

0753 @

방정식 $(x^2+4x+2)^2-2(x^2+4x)-19=0$ 의 실근의 합을 a. 허근의 곱을 b라 할 때, a-b의 값을 구하시오.

방정식 x(x+2)(x+4)(x+6)+15=0의 정수인 해를 α , β 라 할 때, $\alpha^2 + \beta^2$ 의 값을 구하시오.

유형 $x^4 + ax^2 + b = 0$ 꼴의 방정식의 풀이

개념 06-2

- ① $x^2 = X$ 로 치환한 후 좌변을 인수분해한다.
- ② 이치항을 적당히 분리하여 $A^2 B^2 = 0$ 꼴로 변형한 후 좌변을 인수

0755 (班里)

방정식 $x^4-14x^2+25=0$ 의 모든 양수인 근의 합은?

- \bigcirc 2
- (2) $2\sqrt{3}$
- 3 4

- (4) $2\sqrt{5}$
- (5) $2\sqrt{6}$

0756 @

방정식 $x^4 + 3x^2 - 4 = 0$ 의 모든 실근의 곱을 구하시오.

0757 📵 서술형

방정식 $x^4-x^2+16=0$ 의 네 근을 α , β , γ , δ 라 할 때, $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ 의 값을 구하시오.

 $ax^4 + bx^3 + cx^2 + bx + a = 0$ 꼴의 방정식의 풀이

개념 06-2

사치방정식 $ax^4+bx^3+cx^2+bx+a=0$ 은 다음과 같은 순서로 푼다. (i) 양변을 x^2 으로 나눈다.

- (ii) $x+\frac{1}{x}=X$ 로 치환하여 X에 대한 이차방정식으로 나타낸다.
 - $x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 2$ 임을 이용한다.
- (iii) X의 값을 구한 후 $x+\frac{1}{x}=X$ 에 대입하여 x의 값을 구한다.

0758 CHE EM

방정식 $x^4+5x^3+6x^2+5x+1=0$ 의 모든 실근의 합은?

- $\bigcirc 1 6$
- ② -5
- (3) -4

- $\bigcirc 4 3$
- (5) -2

0759 @

방정식 $x^4-4x^3+2x^2-4x+1=0$ 의 두 실근의 합을 a, 두 허근의 곱을 b라 할 때, a+b의 값을 구하시오.

0760 🕑 (서술형 🥢

방정식 $x^4+2x^3-x^2+2x+1=0$ 의 한 실근을 α 라 할 때, $\alpha^2 + 3\alpha$ 의 값을 구하시오.

유형 05 방정식의 근이 주어질 때 미정계수 구하기 개념 06-1

방정식 P(x)=0의 한 근이 α 이다.

 $\bigcirc P(\alpha) = 0$

0761 印표문제

삼차방정식 $2x^3+kx^2+(k-2)x+2=0$ 의 한 근이 1이 고 나머지 두 근이 α , β 일 때, $\alpha+\beta$ 의 값은?

(단. *k*는 상수이다.)

①
$$-\frac{1}{5}$$
 ② $-\frac{1}{4}$ ③ $-\frac{1}{3}$

$$2 - \frac{1}{4}$$

$$3 - \frac{1}{3}$$

$$(4) -\frac{1}{2}$$
 $(5) -1$

$$(5)$$
 -1

0762 B

삼차방정식 $x^3 + ax^2 + bx + 10 = 0$ 의 한 근이 $\sqrt{2}$ 일 때. a+b의 값을 구하시오. (단, a, b는 유리수이다.)

0763 @

삼차방정식 $3x^3 - ax^2 + x + b = 0$ 의 세 근이 -1, 2, α 일 때, $\frac{ab}{a}$ 의 값은? (단, a, b는 상수이다.)

- \bigcirc 40
- **(2)** 50
- **③** 60

- **4**) 70
- (5) 80

0764 🕑 (서술형/)

사차방정식 $x^4 + ax^3 + 5x^2 - ax + b = 0$ 의 두 근이 2, 3일 때, 나머지 두 근을 구하시오. (단, a, b는 상수이다.)

삼차방정식의 근의 조건이 주어질 때 미정계수 구하기

개념 06-1

삼차방정식을 $(x-\alpha)(ax^2+bx+c)=0$ (α 는 실수) 꼴로 변형한 후 이처방정식 $ax^2+bx+c=0$ 의 판별식을 D라 할 때

- ① 근이 모두 실수이다. $\bigcirc D \ge 0$
- ② 한 개의 실근과 두 개의 허근을 갖는다. 〇 D<0
- ③ 중근을 갖는다. $\bigcirc D=0$ 또는 $a\alpha^2+b\alpha+c=0$

0765 四里是제

삼차방정식 $x^3-3x^2+(k-4)x+k=0$ 의 근이 모두 실 수가 되도록 하는 실수 *k*의 값의 범위는?

- (1) $k \ge -1$ (2) $k \le 5$
- ③ $1 \le k \le 5$

- \bigcirc $k \leq 4$
- \bigcirc $k \ge 4$

0766 📴 (서술형/)

삼차방정식 $x^3 + x^2 + kx + k = 0$ 이 한 개의 실근과 두 개 의 허근을 가질 때. 정수 k의 최솟값을 구하시오.

0767 🚭

삼차방정식 $x^3 - (1+3k)x + 3k = 0$ 이 중근을 갖도록 하 는 모든 실수 k의 값의 합은?

- (4) $\frac{7}{12}$ (5) $\frac{2}{3}$

0768 @

삼차방정식 $(x-2)(x^2-4kx+3k+1)=0$ 이 서로 다른 두 실근을 갖도록 하는 실수 k의 값은?

- (4) $\frac{1}{4}$ (5) $\frac{1}{2}$

집중공략 (6)

유형 🗤 삼차방정식과 사차방정식의 활용

개념 06-1

삼치방정식과 사치방정식의 활용 문제는 다음과 같은 순서로 푼다.

- (i) 문제의 의미를 파악하여 구하는 것을 미지수로 놓는다.
- (ii) 주어진 조건을 이용하여 방정식을 세운다.
- (iii) 방정식을 풀어 해를 구한다.

0769 대표문제

어떤 정육면체의 밑면의 가로, 세로의 길이를 각각 1 cm. 2 cm씩 늘이고 높이를 $\frac{1}{2}$ 배가 되도록 줄여서 직육면체 를 만들었더니 부피가 처음 정육면체의 부피의 $\frac{3}{2}$ 배가 되 었다. 처음 정육면체의 한 모서리의 길이는?

- ① 2 cm
- (2) 3 cm
- (3) 4 cm

- (4) 5 cm
- (5) 6 cm

0770 📵 (서술형/)

밑면의 반지름의 길이가 6 cm, 높이가 9 cm인 원뿔의 부 피와 밑면의 반지름의 길이가 r cm, 높이가 (r-3) cm 인 원기등의 부피가 같을 때. γ 의 값을 구하시오.

0771 B

반지름의 길이가 각각 1 cm씩 차이 나는 3개의 구가 있 다. 이 3개의 구의 부피를 합한 것과 부피가 같은 구를 새로 하나 만들 때, 새로 만든 구의 반지름의 길이는 처 음 3개의 구 중 가장 큰 구의 반지름의 길이보다 1 cm만 큼 더 길다. 이때 새로 만든 구의 반지름의 길이는?

- (1) 4 cm
- ② 5 cm
- (3) 6 cm

- (4) 7 cm
- (5) 8 cm

0772 @

오른쪽 그림은 한 모서리의 길이 가 x인 정육면체 4개를 면끼리 맞 붙여서 만든 입체도형이다. 이 입 체도형의 겉넓이를 S, 부피를 V

- 라 할 때, S=V-50이다. 이때 x의 값은?
- \bigcirc 2
- ② 3
- (3) 4

- **4** 5
- **⑤** 6

유형 🕕 삼차방정식의 근과 계수의 관계

개념 06-3

삼차방정식 $ax^3+bx^2+cx+d=0$ 의 세 근을 α , β , γ 라 하면 $\alpha + \beta + \gamma = -\frac{b}{a}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$, $\alpha\beta\gamma = -\frac{d}{a}$

0773 대표문제

삼차방정식 $x^3+2x^2-5x+3=0$ 의 세 근을 α , β , γ 라 할 때, $\alpha^2 + \beta^2 + \gamma^2$ 의 값은?

- (1) 11
- **(2)** 12
- (3) 13

- (4) 14
- (5) 15

0774 📵 (서술형/)

삼차방정식 $x^3+3x-5=0$ 의 세 근을 α , β , γ 라 할 때, $(1-\alpha)(1-\beta)(1-\gamma)$ 의 값을 구하시오.

0775 @

삼차방정식 $x^3-x^2+4x-6=0$ 의 세 근을 α , β , γ 라 할 때, $\frac{3}{\alpha} + \frac{3}{\beta} + \frac{3}{\gamma}$ 의 값을 구하시오.

0776 69

삼차방정식 $x^3 - ax^2 + 8x + 5 = 0$ 의 세 근을 α , β , γ 라 할 때, $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = 2$ 가 성립한다. 이때 상수 α 의 값은?

- $\bigcirc 1 -10$ $\bigcirc -9$
- (3) -8

- (4) -7
- $\bigcirc 5 6$

0777 @

이차방정식 $x^2 - 2x + a = 0$ 의 두 근이 모두 삼차방정식 $x^3-3x^2+bx-4=0$ 의 근일 때, 상수 a, b에 대하여 a+b의 값을 구하시오.

삼차방정식의 세 근의 조건이 주어질 때 미정계수 구하기

개념 08-3

삼차방정식의 세 근의 조건이 주어지면 세 근을 다음과 같이 놓고 근과 계수의 관계를 이용하여 미정계수를 구한다.

- ① 세 근의 비가 l:m:n일 때 $\bigcirc l\alpha, m\alpha, n\alpha (\alpha \neq 0)$
- ② 세 근이 연속한 세 정수일 때 \bigcirc $\alpha-1$, α , $\alpha+1$ (α 는 정수)

0778 대표문제

삼차방정식 $x^3-12x^2+ax+b=0$ 의 세 근의 비가 1:2:3일 때, 상수 a, b에 대하여 a+b의 값은?

- $\bigcirc 1) -7$
- (2) -6
- (3) -5

- (4) -4
- (5) -3

0779 📵 서술형 🕢

삼차방정식 $x^3 - 3x^2 + ax + b = 0$ 의 세 근이 연속한 정수 일 때, 상수 a, b에 대하여 a-b의 값을 구하시오.

0780 69

삼차방정식 $x^3 - x^2 - 10x + k = 0$ 의 세 근이 모두 정수이 고 한 근이 다른 한 근보다 1만큼 클 때, 상수 k의 값은?

- $\bigcirc 1 16$
- (2) -12
- (3) -8

- (4) -4
- \bigcirc 0

세 수 α , β , γ 를 근으로 하고 x^3 의 계수가 1인 삼차방정식은 $x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma = 0$

0781 四里型

삼차방정식 $x^3 - 3x^2 + 2x + 1 = 0$ 의 세 근을 α , β , γ 라 할 때, $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ 을 세 근으로 하고 x^3 의 계수가 1인 삼차 방정식은?

(1)
$$x^3 - 3x^2 - 3x + 1 = 0$$

(2)
$$x^3 - 3x^2 + 2x + 2 = 0$$

$$(3) x^3 - 2x^2 + x - 2 = 0$$

$$(4)$$
 $x^3 + 2x^2 - 3x + 1 = 0$

(5)
$$x^3 + 3x^2 + 2x + 3 = 0$$

0782 4

삼차방정식 $x^3-2x+1=0$ 의 세 근을 α , β , γ 라 할 때, $\alpha+1$, $\beta+1$, $\gamma+1$ 을 세 근으로 하고 x^3 의 계수가 1인 삼차방정식을 구하시오.

0783 @

삼차방정식 $2x^3-5x^2+4x+4=0$ 의 세 근을 α , β , γ 라 할 때, $\alpha\beta$, $\beta\gamma$, $\gamma\alpha$ 를 세 근으로 하고 x^3 의 계수가 1인 삼차방정식을 구하시오.

0784 8 서술형

 x^3 의 계수가 1인 삼차식 P(x)에 대하여 P(1)=P(2)=P(3)=1이 성립할 때, P(-1)의 값을 구하시오.

유형 11 삼차방정식의 켤레근

개념 06-4

- ① 계수가 유리수인 삼차방정식의 한 근이 $p+q\sqrt{m}$ 이면 $p-q\sqrt{m}$ 도 근이다. (단, p, q는 유리수, $q \neq 0$, \sqrt{m} 은 무리수)
- ② 계수가 실수인 삼치방정식의 한 근이 p+qi이면 p-qi도 근이다. (단, p, q는 실수, $q \neq 0$, $i = \sqrt{-1}$)

0785 = 國

삼차방정식 $x^3 + ax^2 + bx + 2 = 0$ 의 한 근이 $1 - \sqrt{2}$ 일 때. 유리수 a, b에 대하여 ab의 값은?

- $\bigcirc 1 -24$
- \bigcirc -12
- (3) -6

- **(4)** 6
- (5) 12

0786 @

삼차방정식 $x^3 - ax^2 - 11x + 2 = 0$ 의 두 근이 $3 + 2\sqrt{2}$, α 일 때, $a\alpha$ 의 값을 구하시오. (단, a, α 는 유리수이다.)

0787 ³

계수가 모두 실수이고 x^3 의 계수가 1인 삼차식 P(x)에 대 하여 방정식 P(x)=0의 두 근이 -1, 2+i일 때, P(1)의 값은?

- \bigcirc 4
- 2 5
- 3 6

- (4) 7
- **(5)** 8

0788 @

세 실수 a, b, c에 대하여 이차방정식 $x^2 + ax + 8 = 0$ 과 한 근이 $1+\sqrt{5}i$ 인 삼차방정식 $x^3+ax^2+bx+c=0$ 이 공 통인 근 m을 가질 때, m의 값은?

- $\widehat{(1)}$ -8
- (2) -4
- (3) -2

- **4** 2
- (5) 4

0789 🗗 서술형

계수가 모두 실수이고 x^3 의 계수가 1인 삼차식 P(x)가 다음 조건을 모두 만족시킨다.

- (7) P(x)는 x-4로 나누어떨어진다.
- (내) 방정식 P(x)=0의 한 근이 6i이다.

이때 방정식 P(2x)=0의 모든 근의 곱을 구하시오.

집중공략 @

유형 $oxed{12}$ 방정식 $x^3 {=} 1$, $x^3 {=} {-} 1$ 의 허근의 성질 개념 $oxed{06-5}$

- (1) 방정식 $x^3 = 1$ 의 한 허근이 ω 이면 (단, $\overline{\omega}$ 는 ω 의 켤레복소수)
 - ① $\omega^3 = 1$, $\omega^2 + \omega + 1 = 0$
- (2) 방정식 $x^3 = -1$ 의 한 허근이 ω 이면 (단, $\overline{\omega}$ 는 ω 의 켤레복소수)
 - ① $\omega^3 = -1$, $\omega^2 \omega + 1 = 0$

0790 대표문제

방정식 $x^3=1$ 의 한 허근을 ω 라 할 때, $\frac{\omega^{10}+1}{\omega^2}$ 의 값을 구 하시오.

0791 3

방정식 $x^3-1=0$ 의 한 허근을 ω 라 할 때, 옳은 것만을 보기에서 있는 대로 고른 것은?

 $(\mathbf{U}, \omega = \omega)$ 켤레복소수이다.)

$$\neg . \omega^2 + \omega + 1 = 0$$

$$-.\omega + \overline{\omega} = 1$$

$$\Box$$
 $\omega \omega = -1$

$$=\omega^2=\omega$$

- ① 7, L ② 7, E
- ③ ¬, ᡓ
- ④ ١, ٥٤٤٤<

0792 @

방정식 $x^3=-1$ 의 한 허근을 ω 라 할 때, $\frac{\omega^2}{1-\omega}+\frac{\omega}{1+\omega^2}$ 의 값은?

- $\bigcirc 1 -2$ $\bigcirc 2 -1$
- (3) 0

- **4**) 1
- **(5)** 2

0793 📵 서술형

방정식 $x^3+1=0$ 의 한 허근을 ω 라 할 때,

$$\omega^{6} - \omega^{5} + \omega^{4} - \omega^{3} + \omega^{2} - \omega + 1$$

의 값을 구하시오.

0794 69

방정식 $x^3=1$ 의 한 허근을 ω 라 할 때,

$$\dfrac{\omega}{\omega+1}+\dfrac{\overline{\omega}}{\overline{\omega}+1}+\dfrac{(2\omega+1)\overline{(2\omega+1)}}{(\omega-1)\overline{(\omega-1)}}$$
의 값은?

 $(\, \stackrel{-}{\mathrm{U}}, \, \omega = \omega)$ 켤레복소수이다.)

- $\bigcirc 1) -2$
- (2) -1 (3) 0

- (4) 1
- (5) 2

(일차방정식) 일의 연립이차방정식 (이차방정식)

일차방정식과 이차방정식으로 이루어진 연립이차방정식은 다음과 같 은 순서로 푼다.

- (i) 일차방정식에서 한 미지수를 다른 미지수에 대한 식으로 나타낸다.
- (ii) (i)의 식을 이차방정식에 대입하여 푼다.

0795 四里是제

연립방정식 $\left\{ \begin{array}{l} x-y=1 \\ (x-1)^2+y^2=8 \end{array}
ight.$ 의 해를 $x=lpha,\ y=eta$ 라 할 때, $\alpha+\beta$ 의 값은? (단, $\alpha>0$, $\beta>0$)

- ① 3
- 2 4
- (3) 5

- **4**) 6
- (5) 7

0796 B

연립방정식 $\left\{ egin{aligned} y=x+1 \\ x^2+y^2=13 \end{aligned}
ight.$ 의 해를 $x=lpha,\ y=eta$ 라 할 때, $\alpha\beta$ 의 값은?

- \bigcirc 5
- 2 6
- (3) 7

- **(4)** 8
- (5) 9

0797 @

연립방정식 $\left\{ egin{array}{ll} x-y=a \\ x^2-xy+2y^2=b \end{array}
ight.$ 한 근이 $\left\{ egin{array}{ll} x=-1 \\ y=1 \end{array}
ight.$ 일 때, 나머지 한 근을 구하시오. (단, a, b는 상수이다.)

0798 🗗 서술형

두 연립방정식 $\left\{ egin{array}{l} x+2y=1 \\ x^2+ay^2=7 \end{array}
ight. , \left\{ egin{array}{l} -4x+by=8 \\ x^2-3y^2=-2 \end{array}
ight.$ 의 공통인 해가 존재할 때, 자연수 a, b에 대하여 ab의 값을 구하 시오.

원 (이차방정식) 골의 연립이차방정식 (이차방정식)

집중공략 @

두 개의 이치방정식으로 이루어진 연립이치방정식은 다음과 같은 순서

- (i) 인수분해가 되는 이차방정식에서 이차식을 두 일차식의 곱으로 인 수분해하여 일차방정식을 얻는다.
- (ii) (i)의 일차방정식을 다른 이차방정식에 각각 대입하여 푼다.

0799 四里园

연립방정식 $\left\{ egin{array}{l} x^2-y^2=0 \\ x^2+xy+2y^2=4 \end{array}
ight.$ 의 해를 $x=lpha,\ y=eta$ 라 할 때, $\alpha + \beta$ 의 최솟값을 구하시오.

0800 @

연립방정식 $\left\{ egin{array}{ll} 4x^2-y^2=0 \\ 2x^2-xy+y^2=16 \end{array}
ight.$ 만족시키는 $x,\,y$ 의 순 서쌍 (x, y)를 모두 구하시오.

0801 @

연립방정식 $\begin{cases} x^2 + xy - 2y^2 = 0 \\ x^2 + xy + y^2 = 3 \end{cases}$ 의 해를 $x = \alpha$, $y = \beta$ 라 할 \mathbf{m} . $\alpha\beta$ 의 값을 모두 구하시오.

0802 @

연립방정식 $\left\{egin{array}{l} x^2-y^2+x+y=0 \\ x^2-xy+2y^2=1 \end{array}
ight.$ 만족시키는 정수 $x,\ y$ 에 대하여 x^2+y^2 의 값은?

- (1) 1
- ② 2
- (3) 4

- **4**) 5
- (5) 8

유형 15 대칭식으로 이루어진 연립이차방정식

x, y를 서로 바꾸어 대입해도 변하지 않는 식으로 이루어진 연립이차 방정식은 다음과 같은 순서로 푼다.

- (i) x+y=u, xy=v로 놓고 주어진 연립방정식을 u, v에 대한 연립 방정식으로 변형한다.
- (ii)(i)의 연립방정식을 푼다.
- (iii) x, y가 이치방정식 $t^2-ut+v=0$ 의 두 근임을 이용한다.

0803 대표문제

연립방정식 $\begin{cases} x^2 + y^2 = 34 \\ xy = 15 \end{cases}$ 를 만족시키는 x, y의 순서쌍 (x, y)를 모두 구하시오.

0804 @

연립방정식 $\begin{cases} x+y-xy=-1 \\ x^2-2xy+y^2=1 \end{cases}$ 을 만족시키는 x, y에 대 하여 x^2-y^2 의 최댓값은?

- ① 1
- (2) 2

- **(4)** 4
- **(5)** 5

0805 @

연립방정식 $\begin{cases} x^2 + y^2 + x + y = 2 \\ x^2 + xy + y^2 = 1 \end{cases}$ 을 만족시키는 x, y에 대 하여 2x+y의 최솟값은?

- $\bigcirc -5$
- (2) -3
- (3) -1

- **(4)** 1 **(5)** 3

개념 06-6

유형 13 여립이차방정식의 해의 조건

개념 06-6

연립이처방정식의 해의 조건이 주어진 경우에는 다음과 같은 순서로

- (i) 일치방정식을 이치방정식에 대입한다.
- (ii) 해의 조건을 만족시키도록 (i)에서 구한 이차방정식의 판별식을 이

0806 대표문제

연립방정식 $\left\{ egin{array}{ll} x^2+y^2=10 \\ x+y=k \end{array}
ight.$ 의 해가 오직 한 쌍만 존재하도 록 하는 모든 실수 k의 값의 곱은?

- ① -25 ② -20

- (4) -10

0807 📴 (서술형 🔊

연립방정식 $\begin{cases} x+y=5 \\ x^2-xy+k=0 \end{cases}$ 이 실근을 갖도록 하는 모든 자연수 k의 값의 합을 구하시오.

0808 6

연립방정식 $\left\{ egin{array}{ll} 2x-y-7=0 \\ x^2-2y=k \end{array}
ight.$ 가 오직 한 쌍의 해 x=lpha, $y=\beta$ 를 가질 때, $\alpha-\beta+k$ 의 값을 구하시오. (단. k는 실수이다.)

0809 @

연립방정식 $\begin{cases} x+y=2a-1 \\ xy=a^2+a+4 \end{cases}$ 가 실근을 갖지 않도록 하는 정수 a의 최솟값은?

- $\bigcirc 1 3$
- ② -2
- (3) -1

- **4**) 1
- **(5)** 2

유형 17 연립이차방정식의 활용

개념 06-6

연립이처방정식의 활용 문제는 다음과 같은 순서로 푼다.

- (i) 구하려는 것을 미지수로 놓고 연립방정식을 세운다.
- (ii) 연립방정식을 풀어 해를 구한다.

0810 (班里)

대각선의 길이가 13 m인 직사각형 모양의 땅이 있다. 이 땅의 가로의 길이를 2 m 줄이고, 세로의 길이를 2 m 늘 인 땅의 넓이는 처음 땅의 넓이보다 18 m^2 만큼 줄어든다고 한다. 처음 땅의 넓이를 구하시오.

0811 69

두 자리 자연수에서 각 자리의 숫자의 제곱의 합은 58이고, 일의 자리의 숫자와 십의 자리의 숫자를 바꾼 수와처음 수의 합은 110일 때,처음 수를 구하시오.

(단. 십의 자리의 숫자가 일의 자리의 숫자보다 크다.)

0812 3

오른쪽 그림에서 점 P는 선분 AB 를 지름으로 하는 반원 위의 점이 다. \overline{AB} =10, \overline{PA} + \overline{PB} =14일 때, 삼각형 PAB의 넓이는?

- 1 12
- ② $\frac{33}{2}$
- 3 20

- $40 \frac{45}{2}$
- **⑤** 24

0813 @

한 변의 길이가 10 cm인 마름모의 넓이가 96 cm^2 일 때, 이 마름모의 두 대각선의 길이를 각각 a cm, b cm라 하자. 이때 2a-b의 값은? (단, a>b)

- 8
- ② 12
- ③ 16

- **4** 20
- **⑤** 24

0814 🗗 서술형

밑면의 대각선의 길이가 15 cm, 높이가 10 cm인 직육면체가 있다. 밑면의 가로와 세로의 길이를 각각 1 cm씩 늘이면 부피가 처음 직육면체의 부피보다 220 cm³만큼 증가한다고 한다. 처음 직육면체의 밑면의 가로의 길이를 구하시오. (단, 직육면체의 밑면의 가로의 길이는 세로의 길이보다 길다.)

0738 x+y=1에서 y=1-x

..... (7)

 \bigcirc 을 $x^2+y^2=5$ 에 대입하면

$$x^2+(1-x)^2=5$$
, $2x^2-2x-4=0$
 $x^2-x-2=0$, $(x+1)(x-2)=0$

 $\therefore x = -1 + x = 2$

x=-1을 \bigcirc 에 대입하면 y=2

x=2를 \bigcirc 에 대입하면 y=-1

따라서 주어진 연립방정식의 해는

$$\left\{ \begin{matrix} x=-1 \\ y=2 \end{matrix} \right. \\ \underbrace{ x=2 }_{y=-1}$$

0739 2x+y=3에서 y=3-2x

 $\bigcirc = y^2 - x^2 = 24$ 에 대입하면

$$(3-2x)^2-x^2=24$$
, $3x^2-12x-15=0$
 $x^2-4x-5=0$, $(x+1)(x-5)=0$

 $\therefore x = -1 \pm x = 5$

x=-1을 \bigcirc 에 대입하면 y=5

x=5를 \bigcirc 에 대입하면 y=-7

따라서 주어진 연립방정식의 해는

$$\left\{ \begin{smallmatrix} x=-1 \\ y=5 \end{smallmatrix} \right. \underbrace{= 5}_{=-7} \left\{ \begin{smallmatrix} x=5 \\ y=-7 \end{smallmatrix} \right.$$

$$\begin{cases} x = -1 \\ y = 5 \end{cases} \underbrace{ \begin{array}{c} x = 5 \\ y = -7 \end{array}} = \begin{cases} x = -1 \\ y = 5 \end{cases} \underbrace{ \begin{array}{c} x = -1 \\ y = -7 \end{array}}$$

0740 x-y=6에서 y=x-6

①을 $x^2 + xy + y^2 = 12$ 에 대입하면

$$x^2+x(x-6)+(x-6)^2=12$$
, $3x^2-18x+24=0$
 $x^2-6x+8=0$, $(x-2)(x-4)=0$

∴ x=2 또는 x=4

x=2를 \bigcirc 에 대입하면 y=-4

x=4를 ①에 대입하면 y=-2

따라서 주어진 연립방정식의 해는

$$\begin{cases} x=2 \\ y=-4 \end{cases}$$

$$\mathbb{E} \stackrel{}{\leftarrow} \begin{cases} x=4 \\ y=-2 \end{cases}$$

0741 $x^2 + xy - 2y^2 = 0$ 에서

$$(x+2y)(x-y)=0$$

$$\therefore x = -2y$$
 또는 $x = y$

(i) x = -2y를 $2x^2 + y^2 = 9$ 에 대입하면

$$8y^2+y^2=9$$
, $9y^2=9$, $y^2=1$
∴ $y=\pm 1$, $x=\mp 2$ (복호동순)

(ii) x=y를 $2x^2+y^2=9$ 에 대입하면

$$2y^2+y^2=9$$
, $3y^2=9$, $y^2=3$
 $\therefore y=\pm\sqrt{3}$, $x=\pm\sqrt{3}$ (복호동순)

(i), (ii)에서 주어진 연립방정식의 해는

$$\left\{ \substack{x=-2\\y=1} \text{ 또는 } \right\}_{y=-1}^{x=2} \text{ 또는 } \left\{ \substack{x=\sqrt{3}\\y=\sqrt{3}} \text{ 또는 } \right\}_{y=-\sqrt{3}}^{x=-\sqrt{3}}$$

 $0742 x^2 - 2xy - 3y^2 = 0$ 에서

$$(x+y)(x-3y)=0$$

$$\therefore x = -y \stackrel{\mathsf{L}}{=} x = 3y$$

(i) $x = -y = x^2 - xy = 18$ 에 대입하면

$$y^2 + y^2 = 18$$
, $2y^2 = 18$, $y^2 = 9$

∴ y=±3, x=∓3 (복호동순)

(ii) x=3y를 $x^2-xy=18$ 에 대입하면

$$9y^2 - 3y^2 = 18$$
, $6y^2 = 18$, $y^2 = 3$

(i), (ii)에서 주어진 연립방정식의 해는

$$\left\{ \begin{matrix} x = -3 \\ y = 3 \end{matrix} \right. \\ \left. \underbrace{ \underbrace{ x = 3 }_{y = -3} }_{\text{$y = -3$}} \underbrace{ \underbrace{ \underbrace{ x = 3\sqrt{3}}_{y = \sqrt{3}} }_{y = \sqrt{3}} \underbrace{ \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{y = -\sqrt{3}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}$}} \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} }_{\text{$y = -\sqrt{3}}} \right. \\ \left. \underbrace{ x = -3\sqrt{3}}_{y = -\sqrt{3}} \right. \right. \\ \left. \underbrace{ \underbrace{ x = -3\sqrt{$$

0743 $x^2-y^2=0$ 에서 (x+y)(x-y)=0

$$\therefore x = -y \stackrel{\leftarrow}{=} x = y$$

(i) x = -y를 $x^2 + 5xy - 2y^2 = 24$ 에 대입하면

$$y^2-5y^2-2y^2=24$$
, $-6y^2=24$, $y^2=-4$
 $\therefore y=\pm 2i$, $x=\mp 2i$ (복호동순)

(ii) x=y를 $x^2+5xy-2y^2=24$ 에 대입하면

$$y^2+5y^2-2y^2=24$$
, $4y^2=24$, $y^2=6$
 $\therefore y=\pm\sqrt{6}, x=\pm\sqrt{6}$ (복호동순)

(i), (ii)에서 주어진 연립방정식의 해는

0744 x, y는 이차방정식 $t^2-4t-12=0$ 의 두 근이므로

$$(t+2)(t-6)=0$$
 : $t=-2$ $\pm t=6$

따라서 주어진 연립방정식의 해는

$$\left\{ \begin{smallmatrix} x=-2 \\ y=6 \end{smallmatrix} \right. \underbrace{ \begin{smallmatrix} x=6 \\ y=-2 \end{smallmatrix} } \left\{ \begin{smallmatrix} x=6 \\ y=-2 \end{smallmatrix} \right. \qquad \text{ at } \left\{ \begin{smallmatrix} x=-2 \\ y=6 \end{smallmatrix} \right. \underbrace{ \begin{smallmatrix} x=6 \\ y=-2 \end{smallmatrix} } \right.$$

0745 x-xy+y=1에서 x+y=-2이므로

$$xy = -3$$

즉 x, y는 이차방정식 $t^2 + 2t - 3 = 0$ 의 두 근이므로

$$(t+3)(t-1)=0$$
 ∴ $t=-3$ 또는 $t=1$

따라서 주어진 연립방정식의 해는

$$\mathbb{E} \left\{ \begin{array}{l} x = -3 \\ y = 1 \end{array} \right. \\
\mathbb{E} \left\{ \begin{array}{l} x = 1 \\ y = -3 \end{array} \right.$$

0746 $x^3 - x^2 - 4x + 4 = 0$ 에서

$$x^{2}(x-1)-4(x-1)=0,$$
 $(x-1)(x^{2}-4)=0$ $(x-1)(x+2)(x-2)=0$

 $\therefore x = -2 \ \text{E} = x = 1 \ \text{E} = x = 2$

따라서 가장 큰 근은 2, 가장 작은 근은 -2이므로

$$\alpha=2, \beta=-2$$
 $\alpha=\beta=4$

$$0747 P(x) = x^3 + x^2 + 2x - 4$$
라 하면

$$P(1)=1+1+2-4=0$$

조립제법을 이용하여 P(x)를 인수 $1 \mid 1$ 1 2 -4분해하면

하면
$$P(x)=(x-1)(x^2+2x+4)$$
 1 2 4

图 4

따라서 주어진 방정식은

$$(x-1)(x^2+2x+4)=0$$

 $\therefore x=1 \ \Xi = x=-1 \pm \sqrt{3}i$

따라서 주어진 방정식의 허근인 것은 ①이다.

0748 $P(x)=x^4-3x^3-x^2+5x+2$ 라 하면

$$P(-1)=1+3-1-5+2=0$$
.

$$P(2)=16-24-4+10+2=0$$

조립제법을 이용하여 P(x)를 인수분해하면

$$P(x) = (x+1)(x-2)(x^2-2x-1)$$

즉 주어진 방정식은

$$(x+1)(x-2)(x^2-2x-1)=0$$

-- 0

(1)

$$\therefore x = -1 \pm x = 2 \pm x = 1 \pm \sqrt{2}$$

... 0

따라서 모든 실근의 합은

$$-1+2+(1+\sqrt{2})+(1-\sqrt{2})=3$$

··· (G)

国 3

채점 기준	비율
 주어진 방정식의 좌변을 인수분해할 수 있다. 	50 %
❷ 주어진 방정식의 근을 구할 수 있다.	30 %
€ 모든 실근의 합을 구할 수 있다.	20 %

0749 $P(x)=x^4-4x+3$ 이라 하면

$$P(1)=1-4+3=0$$

조립제법을 이용하여 P(x)를 인수분해하면

$$P(x) = (x-1)^2(x^2+2x+3)$$

따라서 주어진 방정식은

$$(x-1)^2(x^2+2x+3)=0$$

이때 두 허근 α , β 는 방정식 $x^2+2x+3=0$ 의 근이므로 이차방 - 이차방정식 $x^2+2x+3=0$ 의 정식의 근과 계수의 관계에 의하여 판별식을 D라 하면

$$\alpha + \beta = -2$$
, $\alpha \beta = 3$

$$\frac{D}{4} = 1^2 - 1 \cdot 3 = -2 < 0$$

$$\therefore a^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$$

$$= (-2)^{3} - 3 \cdot 3 \cdot (-2) = 10$$

0750 $P(x)=x^3+(k-2)x^2-4k$ 라 하면

$$P(2)=8+4(k-2)-4k=0$$

조립제법을 이용하여 P(x)를 인수 $2 \mid 1 \quad k-2 \quad 0 \quad -4k$ 분해하면

 $P(x) = (x-2)(x^2+kx+2k)$

따라서 주어진 방정식은

$$(x-2)(x^2+kx+2k)=0$$

이때 두 허근 α . β 는 방정식 $x^2 + kx + 2k = 0$ 의 근이므로 이차방 정식의 근과 계수의 관계에 의하여

$$\alpha + \beta = -k$$

$$\alpha+\beta=-3$$
이므로 $-k=-3$

$0.751 x^2 + 3x = X$ 로 놓으면 주어진 방정식은

$$(X+1)(X-3)=5$$
, $X^2-2X-8=0$

$$(X+2)(X-4)=0$$
 : $X=-2 \pm X=4$

(i)
$$X = -2$$
일 때, $x^2 + 3x + 2 = 0$ 에서

$$(x+2)(x+1)=0$$
 $\therefore x=-2 \pm x=-1$

(ii)
$$X=4$$
일 때, $x^2+3x-4=0$ 에서

$$(x+4)(x-1)=0$$
 $\therefore x=-4 \pm \pm x=1$

(i), (ii)에서

$$x = -4 \pm \frac{1}{5} = -2 \pm \frac{1}{5} = -1 \pm \frac{1}{5} = 1$$

$$\therefore |\alpha| + |\beta| + |\gamma| + |\delta|$$

$$= |-4| + |-2| + |-1| + |1| = 8$$

$0752 x^2 - 2x = X$ 로 놓으면 주어진 방정식은

$$X^2+X-12=0$$
, $(X+4)(X-3)=0$

(i)
$$X = -4$$
일 때, $x^2 - 2x + 4 = 0$ 에서

$$x=1\pm\sqrt{3}i$$

(ii) X=3일 때, $x^2-2x-3=0$ 에서

$$(x+1)(x-3)=0$$
 $\therefore x=-1 \pm x=3$

(i), (ii)에서

$$x=1\pm\sqrt{3}i$$
 또는 $x=-1$ 또는 $x=3$

 $0753 x^2 + 4x = X$ 로 놓으면 주어진 방정식은

$$(X+2)^2-2X-19=0$$
, $X^2+2X-15=0$

$$(X+5)(X-3)=0$$
 : $X=-5$ $\pm \pm X=3$

(i) X = -52 m.

 $x^{2}+4x+5=0$ 이므로 이 방정식의 판별식을 D_{1} 이라 하면

$$\frac{D_1}{4} = 2^2 - 1 \cdot 5 = -1 < 0$$

즉 방정식 $x^2 + 4x + 5 = 0$ 은 서로 다른 두 허근을 갖는다.

(ii) X=3일 때,

 $x^{2}+4x-3=0$ 이므로 이 방정식의 판별식을 D_{2} 라 하면

$$\frac{D_2}{4} = 2^2 - 1 \cdot (-3) = 7 > 0$$

즉 방정식 $x^2 + 4x - 3 = 0$ 은 서로 다른 두 실근을 갖는다.

(i), (ii)에서 주어진 방정식의 두 실근은 방정식 $x^2+4x-3=0$ 의 근이고, 두 허근은 방정식 $x^2+4x+5=0$ 의 근이므로 이차방정 식의 근과 계수의 관계에 의하여

$$a = -4, b = 5$$

$$\therefore a-b=-9$$

= -9

(5)

$$0754 \ x(x+2)(x+4)(x+6) + 15 = 0$$
에서 $\{x(x+6)\}\{(x+2)(x+4)\} + 15 = 0$ 생수항의 합이 같아지도록 $(x^2+6x)(x^2+6x+8) + 15 = 0$ 짝을 짓는다.

 $x^2+6x=X$ 로 놓으면 주어진 방정식은

$$X(X+8)+15=0$$
 $(X+5)(X+3)=0$

$$(X + 8X + 15 = 0, (X + 5)(X + 3) = 0$$

(i) X = -5일 때, $x^2 + 6x + 5 = 0$ 에서 (x+5)(x+1) = 0 $\therefore x = -5$ 또는 x = -1

(ii) X = -3일 때, $x^2 + 6x + 3 = 0$ 에서

$$x = -3 \pm \sqrt{6}$$
 \longrightarrow \bigcirc

(i), (ii)에서 α , β 의 값은 -5, -1이므로

$$\alpha^2 + \beta^2 = (-5)^2 + (-1)^2 = 26$$

··· • • 26

채점 기준	비율
● 주어진 방정식을 한 문자에 대한 이치방정식으로 변형할 수 있다.	40 %
❷ 방정식의 해를 구할 수 있다.	40 %
⑤ $\alpha^2 + \beta^2$ 의 값을 구할 수 있다.	20 %

0755 $x^4 - 14x^2 + 25 = 0$ 에서

$$(x^4-10x^2+25)-4x^2=0,$$
 $(x^2-5)^2-(2x)^2=0$ $(x^2+2x-5)(x^2-2x-5)=0$

$$\therefore x^2 + 2x - 5 = 0 \ \pm \frac{1}{5} x^2 - 2x - 5 = 0$$

$$\therefore x = -1 \pm \sqrt{6} \ \pm \pm x = 1 \pm \sqrt{6}$$

따라서 주어진 방정식의 양수인 근은 $-1+\sqrt{6}$, $1+\sqrt{6}$ 이므로 구하는 합은

$$(-1+\sqrt{6})+(1+\sqrt{6})=2\sqrt{6}$$

 $0756 x^2 = X$ 로 놓으면 주어진 방정식은

$$X^2+3X-4=0$$
, $(X+4)(X-1)=0$

$$\therefore X = -4 \times X = 1$$

즉 $x^2 = -4$ 또는 $x^2 = 1$ 이므로

$$x=\pm 2i$$
 $\pm \pm x=\pm 1$

따라서 주어진 방정식의 실근은 1, -1이므로 모든 실근의 곱은

$$1 \cdot (-1) = -1$$

0757 x4-x2+16=0에서

$$(x^4+8x^2+16)-9x^2=0, (x^2+4)^2-(3x)^2=0$$

$$(x^2+3x+4)(x^2-3x+4)=0$$
 ...

방정식 $x^2+3x+4=0$ 의 두 근을 α , β , 방정식 $x^2-3x+4=0$ 의 두 근을 γ , δ 라 하면 이차방정식의 근과 계수의 관계에 의하여

$$\begin{array}{ll} \alpha+\beta=-3,\ \alpha\beta=4,\ \gamma+\delta=3,\ \gamma\delta=4 & \Longrightarrow \ \varnothing \\ \therefore\ \alpha^2+\beta^2+\gamma^2+\delta^2=(\alpha+\beta)^2-2\alpha\beta+(\gamma+\delta)^2-2\gamma\delta \\ &=(-3)^2-2\cdot 4+3^2-2\cdot 4 \\ &=2 & \Longrightarrow \ \varnothing \end{array}$$

채점 기준	비율
주어진 방정식의 좌변을 인수분해할 수 있다.	40 %
② $x^2 + 3x + 4 = 0$, $x^2 - 3x + 4 = 0$ 에서 근과 계수의 관계를 이용할수 있다.	30 %
③ $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ 의 값을 구할 수 있다.	30 %

0758 방정식 $x^4+5x^3+6x^2+5x+1=0$ 의 양변을 x^2 으로 나누면 $x^2+5x+6+\frac{5}{x}+\frac{1}{x^2}=0, \qquad x^2+\frac{1}{x^2}+5\Big(x+\frac{1}{x}\Big)+6=0$ $\Big(x+\frac{1}{x}\Big)^2+5\Big(x+\frac{1}{x}\Big)+4=0$

$$x + \frac{1}{x} = X$$
로 놓으면

$$X^2+5X+4=0$$
, $(X+4)(X+1)=0$
 $\therefore X=-4 \stackrel{\leftarrow}{=} X=-1$

$$(i) \ X = -4 일 \ \text{때}, \ x + \frac{1}{x} = -4 \text{에서}$$
 판별식을 D 라 하면
$$\frac{x^2 + 4x + 1 = 0}{x^2 + 4x + 1} \ \therefore \ x = -2 \pm \sqrt{3}$$
 이므로 이 이차방정식은 서로 다른 두 실근을 갖는다.

$$x^2+x+1=0$$
 $\therefore x=\frac{-1\pm\sqrt{3}i}{2}$

(i), (ii)에서 주어진 방정식의 모든 실근의 합은

$$(-2+\sqrt{3})+(-2-\sqrt{3})=-4$$

(3)

0759 방정식
$$x^4-4x^3+2x^2-4x+1=0$$
의 양변을 x^2 으로 나누면
$$x^2-4x+2-\frac{4}{x}+\frac{1}{x^2}=0, \qquad x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)+2=0$$

$$\left(x+\frac{1}{x}\right)^2-4\left(x+\frac{1}{x}\right)=0$$

$$x + \frac{1}{x} = X$$
로 놓으면
$$X^2 - 4X = 0, \qquad X(X - 4) = 0$$

$$\therefore X = 0 \text{ 또는 } X = 4$$

(i)
$$X=0$$
일 때, $x+\frac{1}{x}=0$ 에서
$$x^2+1=0, \qquad x^2=-1 \qquad \therefore \ x=\pm i$$

(ii)
$$X=4$$
일 때, $x+\frac{1}{x}=4$ 에서

$$x^2-4x+1=0$$
 : $x=2\pm\sqrt{3}$

(i), (ii)에서 주어진 방정식의 두 실근의 합은

$$a = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4$$

두 허근의 곱은
$$b=i\cdot(-i)=1$$

$$\therefore a+b=5$$

0760 방정식 $x^4+2x^3-x^2+2x+1=0$ 의 양변을 x^2 으로 나누면 $x^2+2x-1+\frac{2}{x}+\frac{1}{x^2}=0, \qquad x^2+\frac{1}{x^2}+2\Big(x+\frac{1}{x}\Big)-1=0$ $\Big(x+\frac{1}{x}\Big)^2+2\Big(x+\frac{1}{x}\Big)-3=0$

$$x+\frac{1}{x}=X$$
로 놓으면

$$X^2+2X-3=0$$
, $(X+3)(X-1)=0$

$$\therefore X = -3 \times X = 1$$

.... a

(i) X = -3일 때, $x + \frac{1}{x} = -3$ 에서

 $x^2 + 3x + 1 = 0$

이 방정식의 판별식음 D_1 이라 하면

$$D_1 = 3^2 - 4 \cdot 1 \cdot 1 = 5 > 0$$

즉 방정식 $x^2+3x+1=0$ 은 서로 다른 두 실근을 갖는다. \longrightarrow @

(ii) X=1일 때, $x+\frac{1}{x}=1$ 에서

$$x^2 - x + 1 = 0$$

이 방정식의 판별식을 D,라 하면

$$D_2 = (-1)^2 - 4 \cdot 1 \cdot 1 = -3 < 0$$

즉 방정식 $x^2 - x + 1 = 0$ 은 서로 다른 두 허근을 갖는다. \rightarrow 6

(i). (ii)에서 α 는 방정식 $x^2 + 3x + 1 = 0$ 의 한 실근이므로

$$\alpha^2 + 3\alpha + 1 = 0$$

$$\therefore \alpha^2 + 3\alpha = -1$$

-- O

目 -1

채점 기준	비율
① $x + \frac{1}{x} = X$ 로 놓고 X 에 대한 이처방정식의 해를 구할 수 있다.	30 %
② X=−3일 때, 근을 판별할 수 있다.	20 %
	20 %
\bigcirc $\alpha^2 + 3\alpha$ 의 값을 구할 수 있다.	30 %

0761 $2x^3 + kx^2 + (k-2)x + 2 = 0$ 의 한 근이 1이므로

2+k+(k-2)+2=0

$$2+2k=0$$
 : $k=-1$

즉 주어진 방정식은

$$2x^3 - x^2 - 3x + 2 = 0$$

이므로 조립제법을 이용하여 좌변을 $1 \mid 2 \mid -1 \mid -3 \mid 2$ 인수분해하면

$$(x-1)(2x^2+x-2)=0$$

이때 α . β 는 방정식 $2x^2+x-2=0$ 의 두 근이므로 이차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta = -\frac{1}{2} \tag{4}$$

0762 $x^3 + ax^2 + bx + 10 = 0$ 의 한 근이 $\sqrt{2}$ 이므로

 $(\sqrt{2})^3 + a(\sqrt{2})^2 + b\sqrt{2} + 10 = 0$

 $2\sqrt{2}+2a+b\sqrt{2}+10=0$

 $(2a+10)+(2+b)\sqrt{2}=0$

이때 a, b가 유리수이므로 2a+10=0, 2+b=0

따라서 a=-5, b=-2이므로

$$a+b=-7$$

 $\Box -7$

라쎈 특강 /

a, b가 유리수이고 \sqrt{m} 이 무리수일 때, $a+b\sqrt{m}=0 \implies a=0, b=0$

0763 방정식 $3x^3 - ax^2 + x + b = 0$ 의 두 근이 -1, 2이므로

-3-a-1+b=0에서 a-b=-4

24-4a+2+b=0에서 4a-b=26

..... (L)

①, ②을 연립하여 풀면

$$a=10, b=14$$

즉 주어진 방정식은 $3x^3 - 10x^2 + x + 14 = 0$ 이므로 조립제법을 이 용하여 좌변을 인수분해하면

$$(x+1)(x-2)(3x-7)=0$$

따라서 나머지 한 근은 $\frac{7}{3}$ 이므로 $\alpha = \frac{7}{3}$

$$\therefore \frac{ab}{a} = 10 \cdot 14 \cdot \frac{3}{7} = 60$$

0764 방정식 $x^4 + ax^3 + 5x^2 - ax + b = 0$ 의 두 근이 2, 3이므로

16+8a+20-2a+b=0 에서 6a+b=-36

81+27a+45-3a+b=0에서 24a+b=-126 ····· ©

①, ①을 연립하여 풀면

$$a = -5, b = -6$$

즉 주어진 방정식은 $x^4-5x^3+5x^2+5x-6=0$ 이므로 조립제법 을 이용하여 좌변을 인수분해하면

$$(x-2)(x-3)(x^2-1)=0$$

따라서 주어진 방정식의 나머지 두 근은 방정식 $x^2-1=0$ 의 근 이므로

$$x=-1$$
 또는 $x=1$

-1.1

채점 기준	비율
₫ a, b의 값을 구할 수 있다.	40 %
주어진 방정식의 좌변을 인수분해할 수 있다.	40 %
❸ 나머지 두 근을 구할 수 있다.	20 %

0765 $P(x) = x^3 - 3x^2 + (k-4)x + k$ 라 하면

$$P(-1)\!=\!-1\!-\!3\!-\!(k\!-\!4)\!+\!k\!=\!0$$

조립제법을 이용하여 P(x)를 인수분해하면

$$P(x) = (x+1)(x^2-4x+k)$$

따라서 주어진 방정식은

$$(x+1)(x^2-4x+k)=0$$

이 방정식의 근이 모두 실수가 되려면 이차방정식 $x^2 - 4x + k = 0$

이 실근을 가져야 하므로 이 이차방정식의 판별식을 D라 하면

$$\frac{D}{4} = (-2)^2 - k \ge 0$$

 $\therefore k \leq 4$ **(4)**

0766 $x^3+x^2+kx+k=0$ 에서

$$x^2(x+1)+k(x+1)=0$$

$$(x^2+k)(x+1)=0$$

.... a

이 방정식이 한 개의 실근과 두 개의 허근을 가지려면 이차방정식 $x^2+k=0$ 이 두 개의 허근을 가져야 하므로 이 이차방정식의 판 별식을 D라 하면

$$D=0^2-4\cdot 1\cdot k<0$$
 $\therefore k>0$

따라서 정수 k의 최솟값은 1이다.

---- ⊜

图 1

채점 기준	비율
주어진 삼차방정식의 죄변을 인수분해할 수 있다.	30 %
② 판별식을 이용하여 k의 값의 범위를 구할 수 있다.	50 %
❸ 정수 k의 최솟값을 구할 수 있다.	20 %

$0767 P(x) = x^3 - (1+3k)x + 3k$ 라 하면

$$P(1)=1-(1+3k)+3k=0$$

조립제법을 이용하여 P(x)를 인수분해하면

$$P(x) = (x-1)(x^2+x-3k)$$

따라서 주어진 방정식은

$$(x-1)(x^2+x-3k)=0$$

- 이 방정식이 중근을 가지려면
- (i) 방정식 $x^2 + x 3k = 0$ 이 x = 1을 근으로 가질 때,

$$1+1-3k=0$$
 : $k=\frac{2}{3}$

- (ii) 방정식 $x^2 + x 3k = 0$ 이 중근을 가질 때.
 - 이 방정식의 판별식을 D라 하면

$$D=1^2-4\cdot 1\cdot (-3k)=0$$
 : $k=-\frac{1}{12}$

(i), (ii)에서 모든 k의 값의 합은

$$\frac{2}{3} + \left(-\frac{1}{12}\right) = \frac{7}{12}$$

0768 방정식 $(x-2)(x^2-4kx+3k+1)=0$ 이 서로 다른 두 실근을 가지려면

(i) 방정식 $x^2 - 4kx + 3k + 1 = 0$ 이 x = 2를 근으로 가질 때,

$$4-8k+3k+1=0$$
 : $k=1$

그런데 k=1이면 주어진 방정식은

$$(x-2)(x^2-4x+4)=0$$
, $\leq (x-2)^3=0$

이므로 서로 같은 세 실근을 갖는다.

 $\therefore k \neq 1$

(ii) 방정식 $x^2 - 4kx + 3k + 1 = 0$ 이 중근을 가질 때,

이 방정식의 판별식을 D라 하면

$$\begin{split} &\frac{D}{4} \!=\! (-2k)^2 \!-\! (3k\!+\!1) \!=\! 0 \\ &4k^2 \!-\! 3k \!-\! 1 \!=\! 0, \qquad (4k\!+\!1)(k\!-\!1) \!=\! 0 \\ & \therefore k \!=\! -\frac{1}{4} \, \, \underbrace{\mathbb{E} \, \succeq }_{\!\!\!\!\! -} k \!=\! 1 \end{split}$$

(i), (ii)에서
$$k = -\frac{1}{4}$$

(2)

라쎈 특강

삼차방정식 $(x-2)(x^2-4kx+3k+1)=0$ 이 서로 다른 두 실 근을 갖는 경우는 방정식 $x^2-4kx+3k+1=0$ 이 2와 2가 아닌 실근을 갖는 경우와 2가 아닌 중근을 갖는 경우의 두 가지가 있다. 그런데 (i)에서 방정식 $x^2-4kx+3k+1=0$ 이 2를 근으로 가지면 다른 한 근도 2이므로 주어진 삼차방정식은 서로 같은 세 실근을 갖는다. 따라서 방정식 $x^2-4kx+3k+1=0$ 은 2가 아닌 중근을 가져야 한다.

0769 처음 정육면체의 한 모서리의 길이를 x cm라 하면

$$(x+1)(x+2) \cdot \frac{1}{2}x = \frac{3}{2}x^3$$

 $2x^3 - 3x^2 - 2x = 0$ $x(2x+1)$

$$2x^3-3x^2-2x=0$$
, $x(2x+1)(x-2)=0$

$$\therefore x=-\frac{1}{2}$$
 또는 $x=0$ 또는 $x=2$

그런데 x>0이므로 x=2 _ 길이는 양수이어야 한다. 따라서 처음 정육면체의 한 모서리의 길이는 2 cm이다. 웹 ①

0770 $\frac{1}{3} \cdot \pi \cdot 6^2 \cdot 9 = \pi \cdot r^2 \cdot (r-3)$ 이므로

$$r^3 - 3r^2 - 108 = 0$$

.... 0

 $P(r) = r^3 - 3r^2 - 108$ 이라 하면

$$P(6) = 216 - 108 - 108 = 0$$

조립제법을 이용하여 P(r)를 인수 6 1 -3 0 -108 분해하면 6 18 108

 $(r-6)(r^2+3r+18)=0$

채점 기준	비율
삼차방정식을 세울 수 있다.	40 %
❷ r의 값을 구할 수 있다.	60 %

0771 처음 3개의 구의 반지름의 길이를 각각 (x-1) cm, x cm, (x+1) cm라 하면 새로 만든 구의 반지름의 길이는 (x+2) cm 이므로

$$\frac{4}{3}\pi(x-1)^3 + \frac{4}{3}\pi x^3 + \frac{4}{3}\pi(x+1)^3 = \frac{4}{3}\pi(x+2)^3$$
$$(x-1)^3 + x^3 + (x+1)^3 = (x+2)^3$$

$$x^3 - 3x^2 - 3x - 4 = 0$$

 $P(x)=x^3-3x^2-3x-4$ 라 하면

$$P(4)=64-48-12-4=0$$

조립제법을 이용하여 P(x)를 인수 $4 \begin{vmatrix} 1 & -3 & -3 & -4 \\ 4 & 4 & 4 \end{vmatrix}$ 분해하면

 $(x-4)(x^2+x+1)=0$

$$\therefore x = 4 \left(\because \frac{x^2 + x + 1}{2} = 0 \right) - x^2 + x + 1 = \left(x + \frac{1}{2} \right)^2 + \frac{3}{4} > 0$$

따라서 새로 만든 구의 반지름의 길이는

0772 S=18x2, V=4x3이므로 S=V-50에서

$$18x^2 = 4x^3 - 50$$
, $2x^3 - 9x^2 - 25 = 0$

 $P(x) = 2x^3 - 9x^2 - 25$ 라 하면

$$P(5) = 250 - 225 - 25 = 0$$

조립제법을 이용하여 P(x)를 인수 $5 \mid 2 -9$ 부해하면 10

 $P(x) = (x-5)(2x^2+x+5)$ 따라서 방정식은

$$(x-5)(2x^2+x+5)=0$$

$$x=5 \ (x=5) \ (x=5)$$

0773 삼차방정식 $x^3 + 2x^2 - 5x + 3 = 0$ 의 세 근이 α , β , γ 이므로 삼차방정식의 근과 계수의 관계에 의하여

$$\begin{array}{l} \alpha+\beta+\gamma=-2, \ \alpha\beta+\beta\gamma+\gamma\alpha=-5, \ \alpha\beta\gamma=-3\\ \therefore \ \alpha^2+\beta^2+\gamma^2=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma+\gamma\alpha)\\ =(-2)^2-2\cdot(-5)=14 \end{array}$$

0774 삼차방정식 $x^3+3x-5=0$ 의 세 근이 α , β , γ 이므로 삼 차방정식의 근과 계수의 관계에 의하여

$$\alpha+\beta+\gamma=0$$
, $\alpha\beta+\beta\gamma+\gamma\alpha=3$, $\alpha\beta\gamma=5$
 $\therefore (1-\alpha)(1-\beta)(1-\gamma)$

$$=1-(\alpha+\beta+\gamma)+(\alpha\beta+\beta\gamma+\gamma\alpha)-\alpha\beta\gamma$$

$$=1-0+3-5=-1$$

··· 0

THE SET	
채점 기준	비율
$oldsymbol{0}$ $\alpha+\beta+\gamma$, $\alpha\beta+\beta\gamma+\gamma\alpha$, $\alpha\beta\gamma$ 의 값을 구할 수 있다.	50 %
△ XAITI NOLTIO 그차 A OIEL	E0.0/

0775 삼차방정식 $x^3 - x^2 + 4x - 6 = 0$ 의 세 근이 α , β , γ 이므로 삼차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta + \gamma = 1$$
, $\alpha\beta + \beta\gamma + \gamma\alpha = 4$, $\alpha\beta\gamma = 6$

$$\therefore \frac{3}{\alpha} + \frac{3}{\beta} + \frac{3}{\gamma} = \frac{3(\alpha\beta + \beta\gamma + \gamma\alpha)}{\alpha\beta\gamma}$$
$$= \frac{3 \cdot 4}{6} = 2$$

 $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = 2$ 에서

$$\frac{\alpha+\beta+\gamma}{\alpha\beta\gamma}=2$$

이때 삼차방정식 $x^3-ax^2+8x+5=0$ 의 세 근이 α , β , γ 이므로 삼차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta + \gamma = \alpha$$
, $\alpha\beta\gamma = -5$

따라서 \bigcirc 에서 $\frac{a}{-5}$ =2이므로

$$a=-10$$

0777 이차방정식 $x^2-2x+a=0$ 의 두 근을 α , β , 삼차방정식 $x^3-3x^2+bx-4=0$ 의 세 근을 α , β , γ 라 하면 이차방정식과 삼차방정식의 근과 계수의 관계에 의하여

$$\alpha+\beta=2$$
, $\alpha+\beta+\gamma=3$

이므로 γ=1

또 $\alpha\beta = a$, $\alpha\beta + \beta\gamma + \gamma\alpha = b$, $\alpha\beta\gamma = 4$ 이므로

$$a+2=b$$
, $a=4$
 $\therefore a=4$, $b=6$
 $a\beta+\beta\gamma+\gamma a=b$
 $a+\beta+a=b$
 $a+\beta+a=b$
 $a+2=b$

$$\therefore a+b=10$$

다른풀이 이차방정식 $x^2-2x+a=0$ 의 두 근이 삼차방정식 $x^3-3x^2+bx-4=0$ 의 근이므로 x^3-3x^2+bx-4 는 x^2-2x+a 를 인수로 갖는다. 즉

$$x^3-3x^2+bx-4=(x-c)(x^2-2x+a)$$

= $x^3-(2+c)x^2+(a+2c)x-ac$ (c는 상수)

라 하면 이 등식이 x에 대한 항등식이므로

$$3=2+c, b=a+2c, 4=ac$$

$$\therefore a=4, b=6, c=1$$

$$\therefore a+b=10$$

0778 주어진 삼차방정식의 세 근을 α , 2α , $3\alpha(\alpha \neq 0)$ 라 하면 삼차방정식의 근과 계수의 관계에 의하여

$$\alpha + 2\alpha + 3\alpha = 12$$
. $6\alpha = 12$

$$\alpha = 2$$

따라서 세 근이 2, 4, 6이므로

$$2 \cdot 4 + 4 \cdot 6 + 6 \cdot 2 = a$$
, $2 \cdot 4 \cdot 6 = -b$

$$a = 44, b = -48$$

$$\therefore a+b=-4$$

0779 주어진 삼차방정식의 세 근을 $\alpha-1$, α , $\alpha+1$ (α 는 정수) 이라 하면 삼차방정식의 근과 계수의 관계에 의하여

$$(\alpha-1)+\alpha+(\alpha+1)=3$$
, $3\alpha=3$

따라서 세 근이 0, 1, 2이므로

세 근이 0, 1, 2이므로

$$0 \cdot 1 + 1 \cdot 2 + 2 \cdot 0 = a, 0 \cdot 1 \cdot 2 = -b$$

$$\therefore a=2, b=0$$

$$\therefore a-b=2$$

채점 기준	비율
 삼차방정식의 세 근을 구할 수 있다. 	50 %
② a , b 의 값을 구할 수 있다.	40 %
	10 %

0780 주어진 삼차방정식의 세 근을 α , $\alpha+1$, β 라 하면 삼차방 정식의 근과 계수의 관계에 의하여

$$\alpha+(\alpha+1)+\beta=1$$
이므로 $\beta=-2\alpha$

 $\alpha(\alpha+1)+(\alpha+1)\beta+\beta\alpha=-10$ 이므로

$$\alpha^2 + 2\alpha\beta + \alpha + \beta = -10$$

$$\alpha(\alpha+1)\beta = -k$$

①을 ©에 대입하여 정리하면

$$3\alpha^2+\alpha-10=0$$
, $(\alpha+2)(3\alpha-5)=0$
 \therefore $\alpha=-2$ (\because α 는 정수)
 \therefore $\beta=-2\cdot(-2)=4$
 $\alpha=-2$, $\beta=4$ 를 ©에 대입하면 $-k=-2\cdot(-1)\cdot 4=8$
 \therefore $k=-8$

0781 삼차방정식 $x^3 - 3x^2 + 2x + 1 = 0$ 의 세 근이 α , β , γ 이므로 삼차방정식의 근과 계수의 관계에 의하여

$$\begin{aligned} \alpha + \beta + \gamma &= 3, \ \alpha \beta + \beta \gamma + \gamma \alpha = 2, \ \alpha \beta \gamma = -1 \\ \therefore \ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} &= \frac{\alpha \beta + \beta \gamma + \gamma \alpha}{\alpha \beta \gamma} = \frac{2}{-1} = -2, \\ \frac{1}{\alpha} \cdot \frac{1}{\beta} + \frac{1}{\beta} \cdot \frac{1}{\gamma} + \frac{1}{\gamma} \cdot \frac{1}{\alpha} &= \frac{\alpha + \beta + \gamma}{\alpha \beta \gamma} = \frac{3}{-1} = -3, \\ \frac{1}{\alpha} \cdot \frac{1}{\beta} \cdot \frac{1}{\gamma} &= \frac{1}{\alpha \beta \gamma} = -1 \end{aligned}$$

따라서 $\frac{1}{a}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ 을 세 근으로 하고 x° 의 계수가 1인 삼차방정 식은

$$x^3 + 2x^2 - 3x + 1 = 0$$

다른풀에 삼차방정식 $x^3-3x^2+2x+1=0$ 의 한 근이 α 이므로 $\alpha^3-3\alpha^2+2\alpha+1=0$

 $\alpha \neq 0$ 이므로 위의 식의 양변을 α^3 으로 나누면

$$1 - \frac{3}{\alpha} + \frac{2}{\alpha^2} + \frac{1}{\alpha^3} = 0$$
 $\therefore \left(\frac{1}{\alpha}\right)^3 + 2\left(\frac{1}{\alpha}\right)^2 - 3\left(\frac{1}{\alpha}\right) + 1 = 0$

즉 $\frac{1}{a}$ 은 삼차방정식 $x^3 + 2x^2 - 3x + 1 = 0$ 의 근이다.

같은 방법으로 삼차방정식 $x^3-3x^2+2x+1=0$ 의 다른 두 근 β , γ 에 대하여 $\frac{1}{\beta}$, $\frac{1}{\gamma}$ 은 삼차방정식 $x^3+2x^2-3x+1=0$ 의 근이다. 따라서 구하는 삼차방정식은

$$x^3 + 2x^2 - 3x + 1 = 0$$

라쎈 특강

삼차방정식 $ax^3+bx^2+cx+d=0$ $(d\neq 0)$ 의 세 근이 a, β , γ 이면 삼차방정식 $dx^3+cx^2+bx+a=0$ 의 세 근은 $\frac{1}{a}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ 이다.

0782 삼차방정식 $x^3 - 2x + 1 = 0$ 의 세 근이 α , β , γ 이므로 삼 차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta + \gamma = 0$$
, $\alpha\beta + \beta\gamma + \gamma\alpha = -2$, $\alpha\beta\gamma = -1$
 $\therefore (\alpha+1) + (\beta+1) + (\gamma+1) = \alpha + \beta + \gamma + 3 = 3$,
 $(\alpha+1)(\beta+1) + (\beta+1)(\gamma+1) + (\gamma+1)(\alpha+1)$

 $=\alpha\beta+\alpha+\beta+1+\beta\gamma+\beta+\gamma+1+\gamma\alpha+\gamma+\alpha+1$

 $=(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)+3$

 $=-2+2\cdot0+3=1$,

 $(\alpha+1)(\beta+1)(\gamma+1)$

 $=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1$

=-1+(-2)+0+1=-2

따라서 $\alpha+1$, $\beta+1$, $\gamma+1$ 을 세 근으로 하고 x^3 의 계수가 1인 삼 차방정식은

$$x^3 - 3x^2 + x + 2 = 0$$

 $||x^3-3x^2+x+2=0||$

0783 삼차방정식 $2x^3 - 5x^2 + 4x + 4 = 0$ 의 세 근이 α , β , γ 이 므로 삼차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta + \gamma = \frac{5}{2}, \ \alpha\beta + \beta\gamma + \gamma\alpha = 2, \ \alpha\beta\gamma = -2$$

$$\therefore \ \alpha\beta \cdot \beta\gamma + \beta\gamma \cdot \gamma\alpha + \gamma\alpha \cdot \alpha\beta = \alpha\beta^2\gamma + \alpha\beta\gamma^2 + \alpha^2\beta\gamma$$

$$= \alpha\beta\gamma(\alpha + \beta + \gamma)$$

$$= -2 \cdot \frac{5}{2} = -5,$$

 $\alpha\beta\cdot\beta\gamma\cdot\gamma\alpha=(\alpha\beta\gamma)^2=(-2)^2=4$

따라서 $a\beta$, $\beta\gamma$, γa 를 세 근으로 하고 x^3 의 계수가 1인 삼차방정 식은

0784 P(1)=P(2)=P(3)=1이므로

$$P(1)-1=0$$
, $P(2)-1=0$, $P(3)-1=0$

즉 삼차방정식 P(x)-1=0의 세 근이 1, 2, 3이다. \longrightarrow ①

 $1,\,2,\,3$ 을 세 근으로 하고 x^3 의 계수가 1인 삼차방정식은

$$x^{3} - (1+2+3)x^{2} + (1\cdot2+2\cdot3+3\cdot1)x - 1\cdot2\cdot3 = 0$$

$$\therefore x^{3} - 6x^{2} + 11x - 6 = 0$$

즉 $P(x)-1=x^3-6x^2+11x-6$ 이므로

$$P(x) = x^3 - 6x^2 + 11x - 5$$
 ... 8

$$P(-1) = -1 - 6 - 11 - 5 = -23$$

-23

채점 기준	비율
① 방정식 $P(x)-1=0$ 의 세 근을 구할 수 있다.	30 %
② $1, 2, 3$ 을 세 근으로 하고 x^3 의 계수가 1 인 삼차방정식을 구할 수 있다.	30 %
$oldsymbol{oldsymbol{arphi}} P(x)$ 를 구할 수 있다.	20 %
4 P(−1)의 값을 구할 수 있다.	20 %

0785 a, b가 유리수이고 주어진 방정식의 한 근이 $1-\sqrt{2}$ 이므로 $1+\sqrt{2}$ 도 근이다.

나머지 한 근을 α라 하면 삼차방정식의 근과 계수의 관계에 의하여

$$\begin{array}{lll} \alpha + (1 + \sqrt{2}) + (1 - \sqrt{2}) = -a & \cdots & \bigcirc \\ \alpha (1 + \sqrt{2}) + (1 + \sqrt{2})(1 - \sqrt{2}) + \alpha (1 - \sqrt{2}) = b & \cdots & \bigcirc \\ \alpha (1 + \sqrt{2})(1 - \sqrt{2}) = -2 & \cdots & \bigcirc \end{array}$$

ⓒ에서 α=2

α=2를 ⊙, ⓒ에 대입하면

$$a=-4, b=3$$

 $\therefore ab=-12$

2 주어진 방정식에 $x=1-\sqrt{2}$ 를 대입한 후 무리수가 서로 같을 조건을 이용하여 유리수 a, b의 값을 구할 수도 있다.

0786 a가 유리수이고 주어진 방정식의 한 근이 $3+2\sqrt{2}$ 이므로 $3-2\sqrt{2}$ 도 근이다.

따라서 주어진 방정식의 세 근이 α , $3+2\sqrt{2}$, $3-2\sqrt{2}$ 이므로 삼 차방정식의 근과 계수의 관계에 의하여

$$\alpha + (3+2\sqrt{2}) + (3-2\sqrt{2}) = a,$$

 $\alpha(3+2\sqrt{2})(3-2\sqrt{2}) = -2$

앞의 두 식을 연립하여 풀면

$$a=4, \alpha=-2$$

$$\therefore a\alpha=-8$$

0787 $P(x)=x^3+ax^2+bx+c$ (a, b, c는 실수)라 하면 방정식 P(x)=0의 한 근이 2+i이므로 2-i도 근이다.

따라서 주어진 방정식의 세 근이 -1, 2+i, 2-i이므로 삼차방 정식의 근과 계수의 관계에 의하여

- -1+(2+i)+(2-i)=-a
- $-1 \cdot (2+i) + (2+i)(2-i) + (2-i) \cdot (-1) = b$
- $-1\cdot(2+i)(2-i)=-c$
- $\therefore a = -3, b = 1, c = 5$

따라서 $P(x) = x^3 - 3x^2 + x + 5$ 이므로

$$P(1)=1-3+1+5=4$$
 월 ①
 (대통령) 방정식 $P(x)=0$ 의 세 근이 $-1,\,2+i,\,2-i$ 이므로
 $P(x)=(x+1)(x-2-i)(x-2+i)$

$$P(1)=2\cdot (-1-i)\cdot (-1+i)=4$$

0788 방정식 $x^3 + ax^2 + bx + c = 0$ 의 계수가 모두 실수이고 한 근이 $1 + \sqrt{5}i$ 이므로 $1 - \sqrt{5}i$ 도 근이다.

이때 $(1+\sqrt{5}i)(1-\sqrt{5}i)\neq 8$ 이므로 $1+\sqrt{5}i$, $1-\sqrt{5}i$ 는 이차방 정식 $x^2+ax+8=0$ 의 두 근이 될 수 없다.

이차방정식 $x^2 + ax + 8 = 0$ 의 두 근을 m, n이라 하면 근과 계수 의 관계에 의하여

m+n=-a, mn=8

삼차방정식의 근과 계수의 관계에 의하여

$$-a = (1 + \sqrt{5}i) + (1 - \sqrt{5}i) + m = 2 + m$$

따라서 m+n=2+m이므로

n=2

$$mn=8$$
 $M = 4$ $M = 4$

0789 조건 (차에서 P(x)는 x-4를 인수로 가지므로 4는 방정식 P(x)=0의 한 근이다.

조건 (4)에서 방정식 P(x)=0의 한 근이 6i이고 계수가 모두 실수이므로 -6i도 근이다.

즉 방정식 P(x)=0의 세 근이 4, 6i, -6i이므로

$$P(x) = (x-4)(x-6i)(x+6i)$$

$$\therefore P(2x) = (2x-4)(2x-6i)(2x+6i)$$

$$= 8(x-2)(x-3i)(x+3i)$$

방정식 P(2x)=0에서

$$8(x-2)(x-3i)(x+3i)=0$$

$$\therefore x=2 \text{ E} = 3i \text{ E} = -3i$$
 $\longrightarrow \bigcirc$

따라서 모든 근의 곱은

$$2 \cdot 3i \cdot (-3i) = 18$$
 \longrightarrow \bigcirc

II 18

채점 기준	비율
$oldsymbol{0}$ 삼차식 $P(x)$ 를 구할 수 있다.	40 %
② 방정식 $P(2x)=0$ 의 근을 구할 수 있다.	40 %
❸ 모든 근의 곱을 구할 수 있다.	20 %

0790 x^3 =1에서 x^3 -1=0, 즉 $(x-1)(x^2+x+1)$ =0이므로 ω 는 x^2+x+1 =0의 한 허근이다.

따라서 $\omega^2 + \omega + 1 = 0$, $\omega^3 = 1$ 이므로

$$\frac{\omega^{10}+1}{\omega^2} = \frac{(\omega^3)^3 \cdot \omega + 1}{\omega^2} = \frac{\omega + 1}{\omega^2}$$
$$= \frac{-\omega^2}{\omega^2} = -1$$

0791 기. $x^3-1=0$ 에서 $(x-1)(x^2+x+1)=0$ 이므로 ω 는 $x^2+x+1=0$ 의 한 허구이다.

 $\therefore \omega^2 + \omega + 1 = 0$

ㄴ, ㄷ. ω 의 켤레복소수인 $\overline{\omega}$ 도 $x^2+x+1=0$ 의 허근이므로 이차 방정식의 근과 계수의 관계에 의하여

$$\omega + \overline{\omega} = -1, \ \omega \overline{\omega} = 1$$

로, $\omega^2+\omega+1=0$ 에서 $\omega^2=-\omega-1$ 이고, $\omega+\overline{\omega}=-1$ 에서 $\overline{\omega}=-\omega-1$ 이므로 $\omega^2=\overline{\omega}$

0792 $x^3 = -1$ 에서 $x^3 + 1 = 0$, 즉 $(x+1)(x^2 - x + 1) = 0$ 이므로 $\omega \leftarrow x^2 - x + 1 = 0$ 의 한 허근이다.

따라서 $\omega^2 - \omega + 1 = 0$ 이므로

 $=(-1)^2=1$

$$\frac{\omega^2}{1-\omega} + \frac{\omega}{1+\omega^2} = \frac{\omega^2}{-\omega^2} + \frac{\omega}{\omega} = 0$$

0793 $x^3+1=0$ 에서 $(x+1)(x^2-x+1)=0$ 이므로 ω 는 $x^2-x+1=0$ 의 한 허근이다.

따라서
$$\omega^3 = -1$$
, $\omega^2 - \omega + 1 = 0$ 이므로 $\omega^6 - \omega^5 + \omega^4 - \omega^3 + \omega^2 - \omega + 1$ $= (\omega^3)^2 - \omega^3(\omega^2 - \omega + 1) + (\omega^2 - \omega + 1)$

--- @ ■ 1

(5)

채점 기준	비율
$0 \omega^3 = -1, \omega^2 - \omega + 1 = 0$ 임을 알 수 있다.	50 %
❷ 주어진 식의 값을 구할 수 있다.	50 %

0794 x^3 =1에서 x^3 -1=0, 즉 $(x-1)(x^2+x+1)$ =0이므로 ω 는 x^2+x+1 =0의 한 허근이고, ω 의 켤레복소수인 $\overline{\omega}$ 도 x^2+x+1 =0의 허근이다.

따라서 이차방정식의 근과 계수의 관계에 의하여

$$\begin{split} &\omega + \overline{\omega} = -1, \ \omega \overline{\omega} = 1 \\ & \therefore \ \frac{\omega}{\omega + 1} + \frac{\overline{\omega}}{\overline{\omega} + 1} + \frac{(2\omega + 1)\overline{(2\omega + 1)}}{(\omega - 1)\overline{(\omega - 1)}} \\ & = \frac{\omega(\overline{\omega} + 1) + \overline{\omega}(\omega + 1)}{(\omega + 1)(\overline{\omega} + 1)} + \frac{(2\omega + 1)(2\overline{\omega} + 1)}{(\omega - 1)(\overline{\omega} - 1)} \\ & = \frac{2\omega\overline{\omega} + (\omega + \overline{\omega})}{\omega\overline{\omega} + (\omega + \overline{\omega}) + 1} + \frac{4\omega\overline{\omega} + 2(\omega + \overline{\omega}) + 1}{\omega\overline{\omega} - (\omega + \overline{\omega}) + 1} \\ & = \frac{2 \cdot 1 - 1}{1 - 1 + 1} + \frac{4 \cdot 1 + 2 \cdot (-1) + 1}{1 - (-1) + 1} \\ & = 1 + 1 = 2 \end{split}$$

0795
$$\begin{cases} x-y=1 & \dots & \bigcirc \\ (x-1)^2+y^2=8 & \dots & \bigcirc \end{cases}$$

①에서 y=x-1

.....(E)

(3)

©을 ©에 대입하면

$$2(x-1)^2=8$$
, $(x-1)^2=4$
 $x-1=\pm 2$ $\therefore x=3 \ \text{E} = -1$

이것을 ©에 대입하면 주어진 연립방정식의 해는

$$x=3, y=2 \pm x=-1, y=-2$$

따라서
$$\alpha=3$$
, $\beta=2$ 이므로 $\alpha+\beta=5$ $\alpha>0$, $\beta>0$

0796
$$\begin{cases} y = x + 1 & \dots & \odot \\ x^2 + y^2 = 13 & \dots & \odot \end{cases}$$

①을 (L)에 대입하면

$$x^2 + (x+1)^2 = 13$$
, $x^2 + x - 6 = 0$
 $(x+3)(x-2) = 0$ $\therefore x = -3 \pm \frac{\pi}{4} x = 2$

이것을 🗇에 대입하면 주어진 연립방정식의 해는

$$x=-3, y=-2$$
 또는 $x=2, y=3$

따라서
$$\alpha=-3$$
, $\beta=-2$ 또는 $\alpha=2$, $\beta=3$ 이므로 $\alpha\beta=6$

0797
$$x=-1$$
, $y=1$ 을 $\begin{cases} x-y=a \\ x^2-xy+2y^2=b \end{cases}$ 에 대입하면

$$a = -2, b = 4$$

$$\therefore \begin{cases} x - y = -2 & \dots \\ x^2 - xy + 2y^2 = 4 & \dots \end{cases}$$

 \bigcirc 에서 y=x+2

©을 ©에 대입하면

$$x^2 - x(x+2) + 2(x+2)^2 = 4$$
, $x^2 + 3x + 2 = 0$
 $(x+2)(x+1) = 0$ $\therefore x = -2 \ \pm \frac{1}{2} \ x = -1$

x=-2를 ©에 대입하면 y=0

따라서 나머지 한 근은

$$\begin{cases} x = -2 \\ y = 0 \end{cases}$$

$$x=-2$$

0798 두 연립방정식의 공통인 해는 연립방정식

$$\begin{cases} x+2y=1 & \dots & \oplus \\ x^2-3y^2=-2 & \dots & \oplus \end{cases}$$

의 해와 같다.

.... 1

©을 ©에 대입하면

$$(1-2y)^2-3y^2=-2$$
, $y^2-4y+3=0$
 $(y-1)(y-3)=0$ $\therefore y=1 \pm \pm y=3$

이것을 ⓒ에 대입하면 위의 연립방정식의 해는

$$x=-1, y=1 \pm \pm x=-5, y=3$$

(i) x=-1, y=1을 $x^2+ay^2=7$, -4x+by=8에 대입하면 a=6, b=4

(ii)
$$x=-5$$
, $y=3$ 을 $x^2+ay^2=7$, $-4x+by=8$ 에 대입하면 $a=-2$, $b=-4$

(i), (ii)에서 a, b는 자연수이므로

a=6, b=4	O
∴ ab=24	⊚
	■ 24

채점 기준	비율
두 연립방정식의 공통인 해를 구할 수 있다.	40 %
② 자연수 a, b의 값을 구할 수 있다.	40 %
❸ ab의 값을 구할 수 있다.	20 %

0799
$$\begin{cases} x^2 - y^2 = 0 & \dots & \odot \\ x^2 + xy + 2y^2 = 4 & \dots & \odot \end{cases}$$

 \bigcirc 에서 (x+y)(x-y)=0

$$\therefore y = -x + y = x$$

(i) y = -x를 ©에 대입하면

$$x^2 - x^2 + 2x^2 = 4$$
, $x^2 = 2$
 $\therefore x = \pm \sqrt{2}, y = \mp \sqrt{2}$ (복호동순)

(ii) *y*=*x*를 ⓒ에 대입하면

$$x^2+x^2+2x^2=4$$
, $x^2=1$
 $\therefore x=\pm 1, y=\pm 1$ (복호동순)

(i), (ii)에서 $\alpha+\beta$ 의 값은 $\alpha=-1$, $\beta=-1$ 일 때 최소이므로 구하는 최솟값은

$$-1+(-1)=-2$$

 \mathbb{P}_{-2}

0800
$$\begin{cases} 4x^2 - y^2 = 0 & \dots & \odot \\ 2x^2 - xy + y^2 = 16 & \dots & \odot \end{cases}$$

 \bigcirc 에서 (2x+y)(2x-y)=0

 $\therefore y = -2x + y = 2x$

(i) y=-2x를 ©에 대입하면 $2x^2+2x^2+4x^2=16, \qquad x^2=2$

$$\therefore x = \pm \sqrt{2}, y = \mp 2\sqrt{2}$$
 (복호동순)

(ii) y=2x를 ⓒ에 대입하면

$$2x^2-2x^2+4x^2=16$$
, $x^2=4$
 $\therefore x=\pm 2, y=\pm 4$ (복호동순)

(i), (ii)에서 구하는 순서쌍 (x, y)는

$$(\sqrt{2}, -2\sqrt{2}), (-\sqrt{2}, 2\sqrt{2}), (2, 4), (-2, -4)$$

 $(\sqrt{2}, -2\sqrt{2}), (-\sqrt{2}, 2\sqrt{2}), (2, 4), (-2, -4)$

0801
$$\begin{cases} x^2 + xy - 2y^2 = 0 & \dots & \bigcirc \\ x^2 + xy + y^2 = 3 & \dots & \bigcirc \end{cases}$$

 \bigcirc 에서 (x+2y)(x-y)=0

 $\therefore x = -2y \times x = y$

(i) x=-2y를 ⓒ에 대입하면

$$4y^2-2y^2+y^2=3$$
, $y^2=1$
 $\therefore y=\pm 1, x=\mp 2$ (복호동순)

(ii) *x*=*y*를 ⓒ에 대입하면

(i), (ii)에서 αβ의 값은 -2, 1이다.

= -2.1

0802
$$\begin{cases} x^2 - y^2 + x + y = 0 & \dots & \text{0} \\ x^2 - xy + 2y^2 = 1 & \dots & \text{0} \end{cases}$$

 \bigcirc 에서 (x+y)(x-y)+(x+y)=0

(x+y)(x-y+1)=0 $\therefore y = -x + 1$

(i) y=-x를 ©에 대입하면

$$x^2 + x^2 + 2x^2 = 1$$
, $x^2 = \frac{1}{4}$
 $\therefore x = \pm \frac{1}{2}$, $y = \mp \frac{1}{2}$ (복호동순)

(ii) y=x+1읔 ⓒ에 대입하면

$$x^{2}-x(x+1)+2(x+1)^{2}=1$$

$$2x^{2}+3x+1=0, \quad (x+1)(2x+1)=0$$

$$\therefore x=-1 \; \pm \frac{1}{2} \; x=-\frac{1}{2}$$

$$\therefore \begin{cases} x=-1 \\ y=0 \end{cases} \; \pm \frac{1}{2} \; \begin{cases} x=-\frac{1}{2} \\ y=\frac{1}{2} \end{cases}$$

(i), (ii)에서 x, y는 정수이므로

$$x=-1, y=0$$

$$\therefore x^2+y^2=1$$

0803 x+y=u, xy=v로 놓으면 주어진 연립방정식은

(L)을 ①에 대입하면

$$u^2$$
 − 30 = 34, u^2 = 64
∴ u = ±8

(i) $u=8, v=15, \exists x+y=8, xy=159 \text{ m}$.

$$x$$
, y 는 이차방정식 $t^2 - 8t + 15 = 0$ 의 두 근이므로 $(t-3)(t-5) = 0$ $\therefore t=3$ 또는 $t=5$

$$\therefore \begin{bmatrix} x=3 \\ y=5 \end{bmatrix} \notin \begin{bmatrix} x=5 \\ y=3 \end{bmatrix}$$

(ii) u = -8, v = 15, = x + y = -8, xy = 159 = 15

x, y는 이차방정식 $t^2 + 8t + 15 = 0$ 의 두 근이므로

(t+3)(t+5)=0 ∴ t=-3 또는 t=-5

$$\therefore \begin{cases} x = -3 \\ y = -5 \end{cases}$$
 $\exists \in \begin{cases} x = -5 \\ y = -3 \end{cases}$

(i), (ii)에서 구하는 순서쌍 (x, y)는

$$(-5, -3), (-3, -5), (3, 5), (5, 3)$$

$$(-5, -3), (-3, -5), (3, 5), (5, 3)$$

0804 x+y=u, xy=v로 놓으면 주어진 연립방정식은

$$\begin{cases} u-v=-1 & \cdots & \bigcirc \\ & & \end{cases}$$

$$\underbrace{u^2-4v=1}_{s}=1$$

©을 ©에 대입하여 정리하면

$$u^2-4u-5=0$$
, $(u+1)(u-5)=0$
∴ $u=-1$ $\exists = u=5$

이것을 ⓒ에 대입하면

$$u=-1, v=0 \, \text{E} = u=5, v=6$$

(i) u=-1, v=0, x+y=-1, xy=0일 때, x, y는 이차방정식 $t^2+t=0$ 의 두 근이므로

$$t(t+1)=0$$
 $\therefore t=0$ $\text{£} = -1$

$$\therefore \left\{ \begin{matrix} x=0 \\ y=-1 \end{matrix} \right. \underbrace{ \mathbb{E} \begin{bmatrix} x=-1 \\ y=0 \end{matrix} }$$

(ii) $u=5, v=6, \exists x+y=5, xy=69$ 때,

$$x, y$$
는 이차방정식 $t^2 - 5t + 6 = 0$ 의 두 근이므로

$$(t-2)(t-3)=0 \qquad \therefore t=2 \ \pm \pm t=3$$
$$\therefore \begin{cases} x=2 \\ y=3 \end{cases} \ \pm \pm \begin{cases} x=3 \\ y=2 \end{cases}$$

(i), (ii)에서 $x^2 - y^2$ 의 값은 x = 3, y = 2일 때 최대이므로 구하는 최댓값은

$$3^2 - 2^2 = 5$$

 $0805 \ x+y=u, \ xy=v$ 로 놓으면 주어진 연립방정식은

$$\begin{cases} u^2 + u - 2v = 2 & \cdots & \cdots & \cdots \\ u^2 - v = 1 & \cdots & \cdots & \cdots \\ & & & & & & & & & & \\ \hline \text{Coll } & & & & & & & & \\ & & & & & & & & & \\ \hline \end{array}$$

①읔 ①에 대입하여 정리하면

이것을 ⓒ에 대입하면

$$u=0, v=-1 \pm u=1, v=0$$

(i) u=0, v=-1, $\exists x+y=0$, xy=-1 \exists w=0

$$x$$
, y 는 이차방정식 $t^2-1=0$ 의 두 근이므로 $(t+1)(t-1)=0$ $\therefore t=-1$ 또는 $t=1$

(ii) $u=1, v=0, \exists x+y=1, xy=0$ 일 때,

x, y는 이차방정식 $t^2 - t = 0$ 의 두 근이므로

$$t(t-1)=0 \qquad \therefore t=0 \ \underline{\Xi} \ \underline{t}=1$$
$$\therefore \begin{cases} x=0 \\ y=1 \end{cases} \underline{\Xi} \ \underline{\Xi} \ \begin{cases} x=1 \\ y=0 \end{cases}$$

(i), (ii)에서 2x+y의 값은 x=-1, y=1일 때 최소이므로 구하 는 최솟값은

$$2 \cdot (-1) + 1 = -1$$

0806
$$\begin{cases} x^2 + y^2 = 10 & \dots & \odot \\ x + y = k & \dots & \odot \end{cases}$$

©에서 y=-x+k

이것을 \bigcirc 에 대입하면 $x^2 + (-x+k)^2 = 10$

$$\therefore 2x^2 - 2kx + k^2 - 10 = 0$$

이를 만족시키는 x의 값이 오직 한 개 존재해야 하므로 이 이차 방정식의 판별식을 D라 하면

$$\frac{D}{4} = (-k)^2 - 2(k^2 - 10) = 0$$

$$k^2 - 2k^2 + 20 = 0, \quad k^2 = 20$$

 $\therefore k = \pm 2\sqrt{5}$

따라서 모든 실수 k의 값의 곱은

$$2\sqrt{5} \cdot (-2\sqrt{5}) = -20$$

0807
$$\begin{cases} x+y=5 & \dots & \bigcirc \\ x^2-xy+k=0 & \dots & \bigcirc \end{cases}$$

 \bigcirc 에서 y=5-x

이것을 ©에 대입하면 $x^2 - x(5-x) + k = 0$

$$\therefore 2x^2 - 5x + k = 0$$

이를 만족시키는 실수 x의 값이 존재해야 하므로 이 이차방정식 의 판별식을 D라 하면

$$D = (-5)^2 - 4 \cdot 2 \cdot k \ge 0 \qquad \therefore k \le \frac{25}{8} \qquad \cdots \geqslant 8$$

따라서 자연수 k는 1, 2, 3이므로 그 합은

B 6

.... (3)

채점 기준	비율
♠ 주어진 연립방정식을 이용하여 x에 대한 이처방정식을 구할 수 있다.	
❷ 판별식을 이용하여 k의 값의 범위를 구할 수 있다.	50 %
❸ 자연수 k의 값의 합을 구할 수 있다.	20 %

0808
$$\begin{cases} 2x - y - 7 = 0 & \dots & \bigcirc \\ x^2 - 2y = k & \dots & \bigcirc \end{cases}$$

⊙에서 y=2x-7

이것을 ©에 대입하면 $x^2-2(2x-7)=k$

$$\therefore x^2 - 4x + 14 - k = 0 \qquad \cdots \quad \bigcirc$$

이를 만족시키는 x의 값이 오직 한 개 존재해야 하므로 이 이차 방정식의 판별식을 D라 하면

$$\frac{D}{4} = (-2)^2 - (14 - k) = 0$$

$$-10+k=0$$
 : $k=10$

k=10을 ©에 대입하면

$$x^2-4x+4=0$$
, $(x-2)^2=0$ $\therefore x=2$

x=2를 y=2x-7에 대입하면

$$y=2\cdot 2-7=-3$$

따라서 $\alpha=2$, $\beta=-3$ 이므로

$$\alpha - \beta + k = 2 - (-3) + 10 = 15$$

0809 주어진 연립방정식을 만족시키는 x, y는 이차방정식 $t^2-(2a-1)t+a^2+a+4=0$ 의 두 근이다.

따라서 이 이차방정식이 실근을 갖지 않아야 하므로 이차방정식의 판별식을 D라 하면

$$D=\{-(2a-1)\}^2-4(a^2+a+4)<0$$
 $-8a-15<0$ $\therefore a>-\frac{15}{8}$ 따라서 정수 a 의 최숙값은 -1 이다.

0810 처음 땅의 가로의 길이를 x m, 세로의 길이를 y m라 하면

$$\begin{cases} x^2 + y^2 = 13^2 & \dots & \odot \\ (x-2)(y+2) = xy - 18 & \dots & \odot \end{cases}$$

©에서 xy+2x-2y-4=xy-18

$$\therefore y=x+7$$
 ©

©을 🗇에 대입하면

$$x^2+(x+7)^2=169$$
, $x^2+7x-60=0$

$$(x+12)(x-5)=0$$
 $\therefore x=-12$ 또는 $x=5$
그런데 $x>2$ 이므로 $x=5$
 $x=5$ 를 ©에 대입하면 $y=12$
따라서 처음 땅의 넓이는 $xy=5\cdot 12=60~(\mathrm{m}^2)$ 를 $60~\mathrm{m}^2$

0811 두 자리 자연수의 십의 자리의 숫자를 x, 일의 자리의 숫 자를 y라 하면

$$\begin{cases} x^2 + y^2 = 58 & \cdots & \odot \\ (10y + x) + (10x + y) = 110 & \cdots & \odot \\ \odot \text{ and } y = 10 - x & \cdots & \odot \end{cases}$$

⊕을 ⊙에 대입하면

$$x^2 + (10-x)^2 = 58$$
, $x^2 - 10x + 21 = 0$
 $(x-3)(x-7) = 0$ $\therefore x=3 \pm \pm x=7$

x=3을 ©에 대입하면 y=7x=7을 ©에 대입하면 y=3그런데 x>y이므로 x=7, y=3따라서 처음 수는 73이다. **3** 73

····· (E)

 $\overline{\text{D812}}$ $\overline{\text{PA}}{=}x$, $\overline{\text{PB}}{=}y$ 라 하면 $\angle \text{APB}{=}90^\circ$ 이므로

$$\begin{cases} x+y=14 & \cdots \\ x^2+y^2=10^2 & \cdots \\ \end{cases}$$

①에서 y=14-x ©을 ©에 대입하면

$$x^2 + (14 - x)^2 = 100,$$
 $x^2 - 14x + 48 = 0$
 $(x - 6)(x - 8) = 0$ $\therefore x = 6 \stackrel{\sqsubseteq}{\sqsubseteq} x = 8$

x=6을 ©에 대입하면 y=8x=8을 ©에 대입하면 y=6따라서 삼각형 PAB의 넓이는

$$\frac{1}{2} \cdot 6 \cdot 8 = 24$$

0813 마름모의 넓이가 96 cm²이므로

$$\frac{1}{2}ab = 96$$
 $\therefore ab = 192$ \bigcirc

또 마름모의 한 변의 길이가 10 cm이고 마름모의 두 대각선은 서로를 수직이등분하므로

$$\left(\frac{1}{2}a\right)^2 + \left(\frac{1}{2}b\right)^2 = 10^2$$
 : $a^2 + b^2 = 400$

©에서 $(a+b)^2-2ab=400$ 이므로 이 식에 $_{\bigcirc}$ 을 대입하면 $(a+b)^2-2\cdot 192=400$, $(a+b)^2=784$ $a+b=28 \ (a>0, b>0)$ ····· (E)

©에서 b=28-a이므로 이것을 \bigcirc 에 대입하면

$$a(28-a)=192$$
, $a^2-28a+192=0$
 $(a-12)(a-16)=0$ $\therefore a=12 \ \pm \frac{1}{6} \ a=16$

a=12를 ©에 대입하면 b=16a=16을 ⓒ에 대입하면 b=12 그런데 a > b이므로 a = 16, b = 12

$$\therefore 2a-b=20$$