Keinforament Learning :-A-3 - Theory Donal Loitam (A121BTE(H11009) Given the samples, we observe that [Using first-visit N(D) = 9 (Not in 3rd sample) N(A)=5 N(E)=5 = N(F) N(B) = 5 N(c)=5 Let, Gig (A) := denute discounted sum of remards starting from the first-virt of (state A) in sample (trajectory) d. S(A) := denote the running sum of total returns S(A) = G1(A) + G2(A) + G3(A) + G4(A) + G5(A) = 14 + 15 + 17 + 16 + 15 = 77 Sly) S(B) = \(\frac{2}{5} \) G_1(B) = 13 + 14 + 16 + 15 + 14 = 72 S(c) = 12 + 13 + 15 + 14 + 13 = 67 S(0) = 12 + 12 + 0 + 12 + 11 = 47S(E) = 11++11 + 110+10 = 52 S(F) = 10 + 10 + 10 + 10 + 9 = 49 $V(A) = \frac{77}{5}$, $V(B) = \frac{72}{5}$, $V(C) = \frac{67}{5}$ V(n) = 47 , V(E) = 57 , V(F) = 49

Scanned with CamScanner

 $V(G) = \frac{0}{5} = 0$ (= 5(G) = 0) Since states (, E, F are visited more than once in one (or) more given episodes samples, they are likely to have different value estimater. But, we may still get the same Value. 1 1 F Lyt F Lyt F Given, &=0.7,8=1 We'll be using the O-learning update rule, O((jump)) = O((jump) + 0.7(4 + 1 max O(E,a))= -10 + .7 (4+1(-10)-(-10)) = -7.2. In general, the formula:-Q(st, at) + Q(st, at) + dt [r+++ 7, max Q(st+1, a') - Q(st, at)] ii) Q(E,right) = -10+0.7[1+1x(-10)-(10)] = - 9.3 0 (E, seft) = -10 + 0.7[-2+1 max (-9.3,-10) - (10)] -10 +-0.91 = -116.

1	Conta				and the same of th	-
10) (iv) ()	(E,right) =	-93+C).7 [1+1	* max (-10	9.91,-10)-
			- 9.3 +			
				·	1 1	
	B(c, 44)	g(c,jump)	B (F, lyt)	O(E, right) O(F, left)	8 (Eright
	-10	-10	-10	-10	- 10	- 10
	-10	(7. <u>2</u>)	- 10	-10	-10	-10
	-10	-7.2	-10	(-9,3)	-10	1-10 11
_	-lo	-7.2	-10	-9.3	-10,9)	, -10
. (n)		The second of the second	1 .7.1.0	-9.09)	-10.91	-10
1.(d)	T1(e) = argma	× Q(Ca)	= iumb	7	h 2 2 2
		[*] a	J . 4 /	9 000 1/) - jam	- → -10
160			1 0 N	12.00		
116	Kel	ins Monroe $\sum d_{+} = 0$	Cond	5 x2 e	S (Sint	h.)
	2, 1	$2 \alpha_{+} = 0$	and	2 4	· · · · · · · · · · · · · · · · · · ·	
	(i) $\alpha'_{+} = \frac{1}{4}$ that $\frac{1}{2}$ that $\frac{1}{2}$ to converges					
	From calculus, we know that $\sum_{t=1}^{\infty} \frac{1}{t^{p}}$ converges if $\frac{1}{t^{p}} = 1$.					
	- Ly - p [Harmonic series] [:- p=]					
$ \Xi \alpha_{+} = \Xi \alpha_{+} = \emptyset [Harmonic Series] [: b=0] $						
$\sum \alpha_{+}^{2} = \sum_{+1}^{2} = C < P \qquad \qquad$						
Note: p-series test: The series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^n$ converges iff $[p>1]$						
		W-1 C	•		2	

Scanned with CamScanner

11(e) (ii) d= +2 Zx = Z = c 1] AMA, So, X+ = + follows the cond while $d_{+}=\frac{1}{f^{2}}$ violates it. 26/ Q-learning follows Generalised Policy Steration to find the optimal poly. In the specific care of Q-learning, we use TD approximation method (the -off-policy one) to evaluate optimal state-action function. $S(s_{+},a_{+}) := S(s_{+},a_{+}) + X_{+} * [R(s_{+},a_{+},s_{++1}) - S(s_{+},a_{+})] + X_{max} S(s_{++1},a_{+})$ Where, the frajectory segment (St, at, rth, Str) is generated by the &-greedy policy. while, max & (sti, a) := atti is greedy wirt & [being greedy at Star) So, our target is greedy wit Q(S,a) In the f(i), all the convergence criteria for Policy EVALUATION are satisfied [Given] 1(5) Also, the only difference in the question is that We are sampling at [from s,] by following a fixed poly IT with prol = 0.5 (6r) Choose an action uniform randomly. But, because our target policy is greedy, B(s,c) will improve for all (St, at) as there is randomness in Choosing action and all s-a pairs are visited only. So, it will eventually converge to the optimal Q value fr. (ii) SARSA is an on-policy, implies it uses same folicy to interact with environment and learn from it too. In the given scenario, the SARSA agent will not reach the optimal Q-value of", since there would be no improvement in the Q-values [since the target is not improving] Becaux ne were following E-greedey over & to choose action (att) in SARSA, but here we are following a fired poly or random [no-greedy] I we already proved that For an policy TT, The E-greedy policy Ti' wirt & T is an improvement Over TT. [Here, no sign of greedy]