Universidade de Aveiro

Departamento de Electrónica, Telecomunicações e Informática

Linguagens Formais e Autómatos

Exame

(Ano Lectivo de 2010/11)

20 de Junho de 2011

1. Sobre o alfabeto $T_1 = \{t \ w \ i \ e \ x \ o \ a \ k \ n\}$ considere a gramática G_1 dada a seguir e seja L_1 a linguagem por ela descrita.

$$\begin{array}{l} S \to P \\ P \to \lambda \mid I \ \mathrm{t} \ P \\ I \to \mathrm{w} \ C \ I \mid \mathrm{i} \ C \ I \mid \mathrm{i} \ C \ I \ \mathrm{e} \ I \mid \mathrm{x} \mid \lambda \\ C \to T \mid C \ \mathrm{o} \ T \\ T \to F \mid T \ \mathrm{a} \ F \\ F \to \mathrm{k} \mid \mathrm{n} \ F \end{array}$$

- [2,0] (a) Usando uma derivação à direita, mostre que "wkakwnkxt" $\in L_1$.
- [2,0] (b) Mostre que todos os símbolos não terminais são produtivos e acessíveis.
- [2,0] (c) Mostre que a gramática G_1 é ambígua.
- [2,0] (d) Obtenha o conjunto follow(C).
- [2,0] (e) A gramática G_1 não é adequada à construção de um reconhecedor recursivodescendente por causa da recursividade à esquerda que possui. Obtenha uma gramática equivalente a G_1 que não possua recursividade à esquerda.
- [2,0] (f) A construção de um reconhecedor (parser) ascendente para uma gramática baseiase na colecção (canónica) de conjuntos de itens. O elemento inicial dessa colecção para a gramática G_1 está parcialmente descrito a seguir.

$$I_0 = \{S \to P\} \cup \cdots$$

Complete-o.

- [2,5] 2. Projecte uma gramática independente do contexto que represente as sequências binárias com um número par de zeros e um número ímpar de uns.
 - 3. Sobre o alfabeto $T = \{c \ s \ n \ f \ (\)\}$ considere a gramática G_2 dada a seguir e seja L_2 a linguagem por ela descrita.

$$\begin{array}{c|c} P \rightarrow S \\ S \rightarrow \lambda \mid A \mid S \\ A \rightarrow M \mid F \mid B \\ M \rightarrow \mathbf{c} \mid \mathbf{s} \mid \mathbf{n} \\ F \rightarrow \mathbf{f} \mid \mathbf{n} \mid \mathbf{n} \\ B \rightarrow (S) \end{array}$$

[2,5] (a) Construa a tabela de parsing para um reconhecedor (parser) descendente com lookahead de 1 da linguagem L_2 .

[3,0] (b) Sabe-se que:

- c representa uma cor (tem um atributo c que indica qual é a cor);
- \mathbf{n} representa um número (tem um atributo v que indica o valor do número);
- s n representa um factor de escala, cujo valor é dado por n.v;
- f n₁ n₂, onde os índices nos símbolos n apenas existem para os discriminar, representa um círculo com centro no ponto (n₁.v, n₂.v) e com a cor e o factor de escala activos no momento;
- \bullet (S) representa um bloco.

As palavras da linguagem descrita por esta gramática representam conjuntos de círculos desenhados numa determinada tela. Por exemplo, a palavra

$$f n_1 n_2$$
 ($c s n_3 f n_4 n_5$) $f n_6 n_7$

onde novamente os índices nos símbolos \mathbf{n} apenas existem para os discriminar, representa 3 círculos: o primeiro de cor preta (a inicial), com factor de escala 1 (o inicial) e centro dado por $(\mathbf{n}_1.v,\mathbf{n}_2.v)$; o segundo de cor dada por $\mathbf{c}.c$, factor de escala dado por $1*\mathbf{n}_3.v$ e centro dado por $(\mathbf{n}_4.v,\mathbf{n}_5.v)$; e o terceiro de cor preta, factor de escala 1 e centro dado por $(\mathbf{n}_6.v,\mathbf{n}_7.v)$. O terceiro círculo voltou a ter a cor e o factor de escala iniciais porque a alteração produzida por \mathbf{c} e \mathbf{s} apenas teve efeito dentro do bloco.

Considerando que se dispõe de uma função com protótipo drawCircle(c, s, x, y) que desenha um círculo de cor c, factor de escala s e centro no ponto (x, y), pretende-se projectar uma gramática de atributos que desenhe o conjunto de círculos associados a cada palavra da linguagem descrita pela gramática. A seguir apresenta-se, incompleta, uma regra semântica dessa gramática.

Produções	Regras semânticas
$ \vdots \\ F \to \mathbf{f} \ \mathbf{n}_1 \ \mathbf{n}_2 \\ \vdots \\$	$drawCircle(\cdots, \cdots, \mathtt{n}_1.v, \mathtt{n}_2.v);$

Projecte o resto da gramática de atributos. Introduza os atributos auxiliares que ache necessários. Note que, eventualmente, poderão existir mais regras semânticas associadas à produção $F \to \mathtt{f}\,\mathtt{n}\,\mathtt{n}$.