Bounded Model Checking using SAT Solving

Shoham Ben-David

Model Checking

Model Checking

Model Checking

• What is S? What is φ ? How is model checking performed?

- **S** is a program, software or hardware
- ϕ is a temporal logic specification
- The model checking method depends on **S** and ϕ .

Explicit Vs. Symbolic Model Checking

- Roughly speaking, model checking algorithms are divided into
 - Explicit methods
 - applied mainly to software programs
 - **Symbolic** methods
 - applied mainly to hardware
- In the context of model checking, **Symbolic** means manipulating sets of states
- The two branches of model checking use different sets of methods
 - Both use SAT solving
- In this talk: Symbolic Model Checking

Temporal Logic Specifications

- Linear Temporal Logic (LTL)
 - Allows specifying events over time
 - $G(req \rightarrow F(ack))$
 - $G(ack \rightarrow X(\neg ack))$
- Other languages exist: CTL, PSL and more
- For model checking purposes:
 - Translated into automata + a very simple formula
 - Invariant : G(p) type formula, with p being a Boolean formula
 - Most of the specifications are translated in this way
- In this talk: symbolic model checking of G(p) formulas
 - OR: Symbolic reachability analysis:
 - is p invariant?
 - is ¬p reachable?

History of symbolic Model Checking

- 1977: Temporal Logic
 - Pnueli, "The temporal logic of programs"
- 1981/1982: Symbolic Model Checking
 - Clarke, Emerson: "Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic"
 - Queille, Sifakis, "Specification and verification of concurrent systems in CESAR"
- 1992: Symbolic Model Checking using BDDs
 - Burch, Clarke, McMillan, Dill, Hwang: "Symbolic Model Checking: 10^20 States and Beyond".
 - McMillan also wrote the first symbolic model checker SMV
- 1999: Bounded Model Checking using SAT
 - Biere, Cimatti, Clarke, Zhu: "Symbolic Model Checking without BDDs"

A 1000x Improvement

ay Ganesh

Example: a Simple Model

Three Boolean variables: V1, V2, V3

INITIAL ASSIGNMENT

```
init(V_1) := 1; init(V_2) := 1; init(V_3) := 0;
```

NEXT STATE ASSIGNMENT

esac;

```
\label{eq:next} \begin{split} \text{next}(V_1) := & \text{case} \\ & V_1 \;\& V_2 \colon \; 0; \\ & V_3 \colon \; 1; \\ & \text{else} \colon \{0,1\}; \\ & \text{esac}; \\ \\ \text{next}(V_2) := & \text{case} \\ & V \;\colon \{0,1\}; \\ & \text{else} \colon \; 0; \\ \end{split}
```

G(!(V1 & V2 & V3))

Model Checking: Reachability

```
init(V_1) := 1; init(V_2) := 1; init(V_3) := 0;
next(V_1) := case
                   V_1 \& V_2 : 0;
                  V_3: 1;
                  else: \{0,1\};
                esac;
next(V_2) := case
                 V : \{0,1\};
                else: 0;
              esac;
next(V_3) := V_1;
G(!(V1 & V2 & V3))
```


Bounded Model Checking using SAT

 Biere, Cimatti, Clarke, Zhu: Symbolic Model Checking without BDDs. TACAS 1999

- Bounded reachability: main idea
 - Let S be a model, G(p) a specification, and k a natural number
 - Build a Boolean formula B(S,p,k), such that
 - if B(S,p,k) is satisfiable, then $S \not\models G(p)$, and the satisfying assignment is a counterexample
 - Otherwise (B(S,p,k) is not satisfiable), no counterexample of length k or less exists in the model

Bounded Model Checking (BMC)

Bounded Model Checking using SAT

- Let I be a Boolean formula representing the set of initial states
- Introduce k new sets of variables $V^1, ..., V^k$
 - Use V^0 for the original set of variables
- Let $T(V^i, V^{i+1})$ represent the transition relation, in terms of the variables V^i, V^{i+1}
- Let p^i represent p written in terms of V^i
- Define B(S,p,k) to be

$$I \wedge T(V^0, V^1) \wedge T(V^1, V^2) \wedge ... \wedge T(V^{k-1}, V^k) \wedge (\neg p^0 \vee \neg p^1 \vee ... \vee \neg p^k)$$

Bounded Model Checking using SAT

- B(S,p,k) = $I \wedge T(V^0,V^1) \wedge T(V^1,V^2) \wedge ... \wedge T(V^{k-1},V^k) \wedge (\neg p \vee \neg p^1 \vee ... \vee \neg p^k)$
- What if B(S,p,k) is satisfiable?
- What if B(S,p,k) is unsatisfiable?

BMC: Example

```
K=1
init(V_1) := 1; init(V_2) := 1; init(V_3) := 0;
next(V_1) := case
                V_1 \& V_2 : 0;
                V_3:1;
                else : \{0,1\};
              esac;
next(V_2) := case
               V : \{0,1\};
                else: 0;
              esac;
next(V_3) := V_1;
G(!(V1 \& V2 \& V3))
```

Introduce variables

1',2',3'

$$T = ((1)(2) \Rightarrow (-1')) ((-1,-2)(3) \Rightarrow (1'))$$

$$(-2) \Rightarrow (-2')((1) \Rightarrow (3')) ((-1) \Rightarrow (-3'))$$
Converting to CNF:

$$T = (-1,3')(1,-3'),(2,-2')(-1,-2,-1')$$

$$(1,-3,1')(2,-3,1')$$

$$B(S,p,1) = I \land T(V^0,V^1) \land (\neg p^0 \lor \neg p^1)$$

$$(\neg p^0 \lor \neg p^1) = (1)(2)(3) \lor (1')(2')(3')$$
Converting to CNF:

(4,5)(-4,1)(-4,2)(-4,3)(-5,1)(-5,2)(-5,3)

I = (1)(2)(-3)

P = (-1, -2, -3)

BMC – Summary

- Algorithm
 - Pick an initial k and increasing integer i
 - Loop:
 - 1. Build B(S,p,k)
 - 2. Check: is B(S,p,k) satisfiable?
 - If it is: return $S \not\models G(p) + counterexample$
 - 3. Set k := k+i

Unbounding BMC

- Many solutions exist, notably
 - Induction
 - Sheeran, Singh, Stålmarck 2000: "Checking Safety Properties Using Induction and a SAT-Solver"
 - Interpolation
 - McMillan 2003: "Interpolation and SAT-Based Model Checking