Лабораторная работа №1 (весна) – ступень 3

РЕШЕНИЕ ЗАДАЧИ ДИРИХЛЕ ДЛЯ УРАВНЕНИЯ ПУАССОНА (итерационный метод и его реализация в нестандартной области)

Выполнил(а): Семинова Вер	orukio
Группа: 2 Вариант: 1	
Метод (МВР, МПИ, ММН, МЧебо	(K), MCF): <u>MbP</u>

1. Постановка задачи

Функция плотности источников и стоков тепла (обозначение): f(x,y) Какую функцию нужно искать (запишите): u(x,y), v(x,y) $f(x,y) \in C_0$, f(x,y)

 $u^{\bullet}(x,y) = \underline{e}^{\sin^2 \Pi X y}$ Решение тестовой задачи (запишите)

Изображение пластины (нарисовать $G \cup dG$)

2. Сетка и разностная схема (общий вид)

Укажите кратность сстки-основы, приведите описание «своей» сстки (рисунок и формулы, можно вклеить рисунок).

Запишите схему как систему разностных уравнений (для конкретной сетки или для сетки произвольной размерности с учетом кратности), укажите диапазоны изменения индексов. Нарисуйте шаблон разностного оператора.

3. Разностная схема как СЛАУ $\mathcal{AV} = \mathcal{F}$

Привести для конкретных (n, m) = (4, 4): размерность $A 5 \times 5$ Свойства A:

- 1) halupoxgenaga dot A \$ 0
- 2) <u>compuyamentuo annegeneina</u>a
- 3) <u>A=A</u>^T
- 4) Endulus mperguoranantuar

Далее приводятся по выбору студента для конкретных (n, m) = (4, 4):
минимальное по модулю собственное число $|\lambda m| |\lambda| > 32$, $|\lambda| m| |\lambda| > 36,287$.
максимальное по модулю собственное число $|\lambda| = |\lambda| = 36,287$.
число обусловленности $|\lambda| = |\lambda| = 36,287$. $|\lambda| = 36,287$. $|\lambda| = 36,287$.

Input

eigenvalues
$$\begin{pmatrix} -64 & 16 & 0 & 0 & 0 \\ 16 & -64 & 0 & 0 & 16 \\ 0 & 0 & -64 & 16 & 0 \\ 0 & 0 & 16 & -64 & 16 \\ 0 & 16 & 0 & 16 & -64 \end{pmatrix}$$

Results

$$\lambda_1 = -16 \left(4 + \sqrt{3}\right) = -91.7128$$

$$\lambda_2 = -80$$

$$\lambda_3 = -64$$

$$\lambda_4 = -48$$

$$\lambda_5 = 16(\sqrt{3} - 4) = -36.287$$

4. Запись схемы в виде $\mathcal{AV} = F$ или — $\mathcal{AV} = -F$ на сетке размерности ($\underline{\Psi}$, $\underline{\Psi}$)

(должны быть указаны все элементы матрицы, вектора и правой части на сетке конкретной размерности, использовать альбомный разворот или вклеить свой рисунок)

$$V = (V_{5i}, V_{32}, V_{13}, V_{25}, V_{53}) \qquad A = -2 (41h^{2} + 1/k^{2})$$

$$A = -2 (41h^{2} + 1/k^{2}$$

5. Описание итерационного метода

- 1) Запишите итерационный метод в каноническом виде (т.е. для решения про-1) Запиших СЛАУ вида Ax = b, $A = A^{T} > 0$), укажите параметры метода;
- 2) Запишите итерационный метод для решения схемы $\mathcal{AV} = \mathcal{F}$, а именно:
- формулы для расчета каждой компоненты искомого вектора ${\mathcal V}$ на очередной итерации (исходный вариант и оптимизация):
- формулы для расчета невязки $\mathcal R$ (исходный вариант и оптимизация);
- формулы для расчета параметров метода (оптимизация).

Укажите, зачем проведена замена знаков в системе $\mathcal{A}\mathcal{V}=\mathcal{F}.$

1) AX=B, A=AT>O I A-UEXOGNOW MAMPELLEA A=L+D+R L-MUXNO A-OX C NEMBEROR PROGRAMMENTO

R- beposhe s-aa c hynebod in gharanointho D- gharananthaa

(D+WL) x s+1 - x + A x = 6, 10x w- raparramp neuroda we cass

 $x_{i}^{2} = \frac{1}{a_{ij}} \left[-w \sum_{i=1}^{n} a_{ij} x_{ij}^{2} - w \sum_{i=1}^{n} a_{ij} x_{ij}^{2} \left(1 - w \right) a_{ij} x_{ij}^{2} + w b_{ij}^{2} \right]$

a) beamop vis (set) pacaumodoaemod nan: -AD=-F VISH = -1 [1-w)(-A)·Vis +w(1 VI-15 + 12 Vio-1) + w(1 Vi+7 + 11 Vi+1) + - wfin

nelogica pacaumobaomos как: rij = - AVIS - 11xt (VI+7 + VI+13) - 11x2 (VI-1 + VI+1) - fij

Emobel Remandement with exogened l'unoste nongrettes nono xumenous onpegenenty to mampung)

Mecha mampaya A=A7>0 u napanorp u e (a2), mo

Wom = 2 12 (1-p'(B)): 1ge S(B) = max | \(\lambda \) (B) \(\beta = \beta^2 \) (L-R)

6. Анализ структуры погрешности

Запишите обозначения и определения всех типов (компонент) погрешностей, возникающих при решении основной и тестовой задачи с помощью разностных схем итерационными методами.

Запишите утверждения, необходимые для оценки погрешностей, и формулировку теоремы о сходимости итерационного метода.

 $R^{s} = V^{s} - V^{*}$ no policio como perichie che ha s-ù umparfiel $R^{s} = h^{s} - V^{*}$ pubaya che ha s-ù umparfiel $R^{s} = h^{s} - V^{*}$ pubaya che ha s-ù umparfiel $R^{s} = h^{s} - V^{s}$ no properio perichie perichie

Maga nou h+0, k>0 remembre possocimos exembre exemple exemple

nonpellinochib exemple:
$$||z-1| \leq \left(\frac{\mu_1 h^2 + \mu_2 h^2}{16}\right) \left((6-a)^2 + (1-c)^2\right)$$

7. Численное решение задачи с заданной погрешностью

Тестовая задача должна б	ьпъ решена с зад	данной погрешностью $\varepsilon = 0.5$	10-6
Тестовая задача решена с	погрешностью а	s, = \$100 <u>4 1</u> 000	
Максимальное отклонени			
x = 0,705	<u> </u>		
Для решения тестовой зад	дачи использова		
число разбиений по х п =		число разбиений по $y m = 90$	<u>0</u>
метод ворубы долово	Orkii		
параметры <u>и) = 4,993</u>	4		
Значения критернев оста			
по точности $\varepsilon_{\text{мет}} = 10^{-13}$	-	по числу итераций $N_{max} = 50$	<u>00</u>
На решение СЛАУ затра		N = 13 итерации	
Достигнута точность мет	года	$\varepsilon_{(N)} = 32/N \cdot 10^{-13}$,
СЛАУ решена с невязкої	$ R^{(0)} = 4.400$	ok 10 ₂ .	(указать)
для невязки использован	а норма СБІС	noopa	(указать)
neweying C	$ J_A Y Z^{(N)} _{\infty} \le I_A Y $	$Z^{(N)} _{L^{2}} \leq 1(A^{-1} _{2}) _{L^{2}}^{2} _{L^{2}}$	(openets)
- Amarina	0.0000556 - 1.4	009-10-2 = 3.3918-10	
Начальное приближение	нтерационного :	метода	
- mirepo	2	0) 1/2 \SUFE .13	(указать)
Невязка на начальном пр	риближении К	*/840***********************************	(Assesse)
для невязки использован	та норма <u>улуч</u>	7(N)11. <	(указать)
погрешность решения С	$J[AY][Z^*][x \ge []$	2 2 =	(outaints)
По теореме о сходимост	и схемы погрешь	ость схены	
11 m 11 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1		, -1	(оленить)
использована норма $ z $	1= <u>max (5:</u>)	115676	(ужазать)
•		OTTOTAL C VIETOM CC KOMITOHERT	Na
Оощая погрешность рег	3 3918 · 10	9 + 1,362 10 = 1,3624 10	Ч. (оце зи етъ)
Z ₆₆₄ z ≥ <u>СС л. Ц СБ</u> использована норма z	- MAX 1	圣通过	(указать)
использована порма 112	ine Vi	•	

riogretti cocontol:

$$||z-1| \le \left(\frac{||h|^2 + |h|_2 h^2}{16}\right)|(6-a)^2 + (1-c)^2$$
 $||x|| = \frac{1}{12} \max |u|_{12}^{12} |u|_{12}^{1$

Derivative

$$\begin{split} &\frac{\partial^4}{\partial x^4} \Big(e^{\sin(x \, y \, \pi) \sin(x \, y \, \pi)} \Big) = \\ &4 \, \pi^4 \, y^4 \, e^{\sin^2(\pi \, x \, y)} \, \Big(\sin^2(\pi \, x \, y) \, \Big(3 \sin^2(\pi \, x \, y) + 2 \Big) + \Big(4 \sin^4(\pi \, x \, y) + 12 \sin^2(\pi \, x \, y) + 3 \Big) \\ &\cos^4(\pi \, x \, y) - 2 \, \Big(6 \sin^4(\pi \, x \, y) + 11 \sin^2(\pi \, x \, y) + 1 \Big) \cos^2(\pi \, x \, y) \Big) \end{split}$$

Input interpretation

maximize	function	$\begin{array}{l} \left(4\pi^4\right)y^4e^{\sin^2(\pixy)}\left(\sin^2(\pixy)\big(3\sin^2(\pixy)+2\big) + \\ \left(4\sin^4(\pixy) + 12\sin^2(\pixy) + 3\big)\cos^4(\pixy) - \\ 2\big(6\sin^4(\pixy) + 11\sin^2(\pixy) + 1\big)\cos^2(\pixy) \right) \end{array}$
	domain	$0 \le x \le 1 \land 0 \le y \le 1$

 $e_1 \wedge e_2 \wedge \dots$ is the logical AND function

Global maxima

$$\begin{split} \max & \Big\{ \big(4\,\pi^4 \big) \, y^4 \, e^{\sin^2(\pi \, x \, y)} \\ & \quad \left(\sin^2(\pi \, x \, y) \, \big(3 \sin^2(\pi \, x \, y) + 2 \big) + \big(4 \sin^4(\pi \, x \, y) + 12 \sin^2(\pi \, x \, y) + 3 \big) \\ & \quad \cos^4(\pi \, x \, y) - 2 \, \big(6 \sin^4(\pi \, x \, y) + 11 \sin^2(\pi \, x \, y) + 1 \big) \cos^2(\pi \, x \, y) \big) \, \Big| \\ & \quad 0 \leq x \leq 1 \, \land \, 0 \leq y \leq 1 \Big\} \approx 5295.71 \ \, \text{at} \, (x, \, y) = (0.5, \, 1) \end{split}$$

Скриншот программы со справкой

Приведите таблицы (скриншоты)

Значения точного решения $u^*(x, y)$ в узлах сетки

Y/X	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
• 0	o	o	0	o	0	1	1	1	1	1	1
0,	,1 0	o	o	0	o	1,024773632	1,0351415727	1,047506599	1,062058302	1,079348021	1,10019947
0,	,2 0	o	0	0	0	1,1001994733	1,1437604772	1,195858651	1,256835544	1,3279794666	1,41268408
0,	3 0	o	0	o	o	1,228885147	1,3309261236	1,4524917843	1,592503462	1,7497527629	1,924196536
0,	4 0	o	o	o	o	1,412684087	1,597428007	1,810320100	2,040045027	2,268733894	2,47071726
0,	5 1	1,0247736324935	1,1001994733	1,228885147	1,412684087	1,648721270	1,9277599294	2,219852532	2,483353514	2,666552804	2,71828182
0,	,6 1	1,03514157278661	1,1437604772	1,3309261236	1,597428007	1,9277599294	2,278224173	2,5738117219	2,730788467	2,694492091	2,47071726
0,	7 1	1,04750659937472	1,195858651	1,4524917843	1,810320100	2,219852532	2,5738117219	2,740442378	2,645446534	2,330418328	1,924196536
0,	,8 1	1,06205830265016	1,256835544	1,592503462	2,040045027	2,483353514	2,730788467	2,645446534	2,2755131114	1,808012108	1,41268408
0,	,9 1	1,07934802138137	1,3279794666	1,7497527629	2,268733894	2,666552804	2,694492091	2,330418328	1,808012108	1,366348600	1,100199473
	1	1,10019947339303	1,412684087	1,9241965369	2,470717260	2,718281828	2,470717260	1,9241965369	1,412684087	1,1001994733	1

Значения численного решения $v^{(N)}(x, y)$ в узлах сетки

Значения погрешности $u^*(x, y) - v^{(N)}(x, y)$ в узлах сетки

Приведите графики (скриншоты)

График точного решения $u^*(x, y)$ (поверхность);

График численного решения $v^{(N)}(x, y)$ (поверхность)

□ 0-0,00005 □ 0,00005-0,0001 □ 0,0001-0,00015 □ 0,00015-0,0002 □ 0,0002-0,00025

9. Проверка программы: контроль «порядка сходимости»

		или K	Емет	ε(N)	Тестовая задача, величина $max \mid u^*(x_i y_j) - v_{(N)}(x_i y_j) \mid$	Отношение значений погрешности
10	10		1. 155	9,4.10	2,47.10 ⁻² 6,06.10 ⁻³ 1,5.10 ⁻³	10.00
20	20	1728		9,02.16	6,06.10	4,08
40	40.	11854	1.10	9,7510	1,5 10	YOU
10	80	1,924	1-10-5	9,56.10	3,66.104	4,1

10. Выводы, ответы на вопросы

1) hosperinations & 2 gobremboraem azenke, nonyvenioù giva aliged norperination. ochobusen ilampunerioù adiker norperination exercis.

2) he goarocs goamino naperination & 4 & 1/2.10 , 7. k mpoziata cemna orrena pornepos, amobe guensalinaes rapiennoems exercis, us-sa omoro bospaomym mpiotocului noi maeticeno, umo muliosem il aberevineno sperinari porauno il non-os abellicaems.

11. Сведения о программе

код программы.

```
double X(int i)
      return aa + h * i;
double Y(int i)
      return cc + k * i;
double Mu(double x, double y) // GU
      return -pow(M_E, sin(M_PI * x * y) * sin(M_PI * x * y));
double F(double x, double y) // test
      return -0.5 * M_PI * M_PI * (x * x + y * y) * pow(M_E, sin(M_PI * x * y) *
sin(M_PI * x * y)) * (-4 * cos(2 * M_PI * x * y) + cos(4 * M_PI * x * y) - 1);
//Метод
{ double h2, k2, A, Emax = 0.0, R0 = 0.0, xMax = 0.0, yMax = 0.0, Rn = 0.0, Eps_max;
             double w = 1.98958; //\Piapamerp MBP
                                        //Текущее число итераций
             int p = 0;
             //Ввод данных
             int n = Convert::ToInt32(textBox5->Text);
             if (n % 2 == 1) {
                    MessageBox::Show("Значение не кратно двум, п будет умножено на
два", "Предупреждение", MessageBoxButtons::OK); n = n * 2;
                    textBox5->Text = Convert::ToString(n);
             int m = Convert::ToInt32(textBox6->Text);
             if (m % 2 == 1) {
                    MessageBox::Show("Значение не кратно двум, m будет умножено на
два", "Предупреждение", MessageBoxButtons::OK); m = m * 2;
                    textBox6->Text = Convert::ToString(m);
             int Nmax = Convert::ToInt32(textBox7->Text);
             double Eps = Convert::ToDouble(textBox8->Text);
             //Инилициализация переменных
             h = (bb - aa) / n; k = (dd - cc) / m;
                                                            //Шаги по х и у
             h2 = 1.0 / (h * h), k2 = 1.0 / (k * k);
             A = -2 * (h2 + k2);
             double** v, ** f, ** u, ** hv, ** R;
u = new double* [n + 1]; //истинное решение
             v = new double* [n + 1]; //численное решение R = new double* [n + 1];
             for (int i = 0; i <= n; i++)</pre>
                    v[i] = new double[m + 1];
                    u[i] = new double[m + 1];
                    R[i] = new double[m + 1];
                    for (int j = 0; j <= m; j++)
                           v[i][j] = 0.0; //Нулевое начальное приближение
                           u[i][j] = 0.0;
                    }
```

```
}
             //Заполнение граничных условий в массив v
             for (int i = 0; i <= n / 2; i++)
                                                     //Mu(5)
                    v[i][m] = Mu(X(i), 1);
                    v[i][m / 2] = Mu(X(i), 0.5);
                                                     //Mu(1)
                    R[i][0] = 0.0;
                    R[i][m] = 0.0;
             for (int i = n / 2; i <= n; i++)</pre>
                    v[i][m] = Mu(X(i), 1);
                                                     //Mu(5)
                                                     //Mu(3)
                    v[i][0] = Mu(X(i), 0);
                    R[i][0] = 0.0;
                    R[i][m] = 0.0;
             for (int j = 0; j \le m / 2; j++)
                    v[n][j] = Mu(1, Y(j));
                                                     //Mu(4)
                    v[n / 2][j] = Mu(0.5, Y(j));
                                                     //Mu(2)
                    R[0][j] = 0.0;
                    R[n][j] = 0.0;
             for (int j = m / 2; j <= m; j++)</pre>
                    v[n][j] = Mu(1, Y(j));
                                                     //Mu(4)
                    v[0][j] = Mu(0, Y(j));
                                                     //Mu(6)
                    R[0][j] = 0.0;
                    R[n][j] = 0.0;
             }
             //Заполнение U, подсчет невязки
             for (int j = 0; j \le m/2; j++)
                    for (int i = n/2; i <= n; i++)</pre>
                          u[i][j] = Mu(X(i), Y(j));
             for (int j = m / 2; j <= m; j++)
                    for (int i = 0; i <= n; i++)</pre>
                    {
                          u[i][j] = Mu(X(i), Y(j));
                    }
             }
             //Подсчет невязки
             double tmp = 0.0;
             for (int j = 1; j < m / 2; j++)
                    for (int i = n / 2 + 1; i < n; i++)
                           tmp = A * v[j][i] + h2 * (v[j][i - 1] + v[j][i + 1]) + k2 *
(v[j-1][i] + v[j+1][i]) + F(X(i), Y(j));
                          R0 += tmp * tmp;
                    }
             }
```

```
for (int j = m / 2 + 2; j < m; j++)
                   for (int i = 1; i < n; i++)</pre>
                          tmp = A * v[j][i] + h2 * (v[j][i - 1] + v[j][i + 1]) + k2 *
(v[j-1][i] + v[j+1][i]) + F(X(i), Y(j));
                          R0 += tmp * tmp;
             R0 = std::sqrt(R0);
             //Метод верхней релаксации
             while (true) {
                   Eps_max = 0.0;
                   for (int j = 1; j < m / 2+1; j++) {
                          for (int i = n / 2 + 1; i < n; i++) {
                                double tmp = A * v[j][i] + h2 * (v[j][i - 1] + v[j][i]
+ 1]) + k2 * (v[j - 1][i] + v[j + 1][i]);
                                v[j][i] = v[j][i] - w * (tmp + F(X(i), Y(j))) / A;
                                double CurE = std::fabs(v[j][i] - v[j][i]);
                                if (CurE > Eps_max)
                                       Eps_max = CurE;
                          }
                   for (int j = m/2+1; j < m; j++) {
                          for (int i = 1; i < n; i++) {
                                double last = v[j][i];
                                double tmp = A * v[j][i] + h2 * (v[j][i - 1] + v[j][i]
+ 1]) + k2 * (v[j - 1][i] + v[j + 1][i]);
                                v[j][i] = v[j][i] - w * (tmp + F(X(i), Y(j))) / A;
                                double CurE = std::fabs(v[j][i] - last);
                                if (CurE > Eps_max)
                                       Eps_max = CurE;
                          }
                   }
                   p++;
                   if ((Eps_max < Eps) || (p > Nmax))
                          break:
             //Вычисление невяки
             tmp = 0.0;
             for (int j = 1; j < m/2; j++)
                   for (int i = n/2+1; i < n; i++)</pre>
                          tmp = A * v[j][i] + h2 * (v[j][i - 1] + v[j][i + 1]) + k2 *
(v[j-1][i] + v[j+1][i]) + F(X(i), Y(j));
                          Rn += tmp * tmp;
             for (int j = m/2+2; j < m; j++)
                   for (int i =1; i < n; i++)</pre>
                          tmp = A * v[j][i] + h2 * (v[j][i - 1] + v[j][i + 1]) + k2 *
(v[j-1][i] + v[j+1][i]) + F(X(i), Y(j));
                          Rn += tmp * tmp;
                   }
             }
                          Rn = std::sqrt(Rn);
}
```