

A. Course Handout (1.0)

Institute/School Name	Chitkara University Institute of Engineering and Technology			
Department Name	Department of Interdisciplinary Courses in Engineering (DICE)			
Programme Name	Bachelor of Engineering (B.E.), Computer Science & Engineering			
Course Name	Embedded System and Internet of Things	Session	2024-2025	
Course Code	23IC002	Semester/Batch	3 rd /2023	
L-T-P (Per Week)	3-0-2	Course Credits	04	
Course Coordinator	Dr. Manvinder Sharma			

1. Objectives of the Course

Embedded systems and Internet of Things (IoT) are integral aspects of modern technology, enabling devices to sense, communicate, and interact with the environment. This course aims to provide students with a comprehensive understanding of embedded systems and IoT technologies. Through hands-on learning and theoretical study, students will gain insights into the design, programming, and applications of these systems.:

- To familiarize the students with the fundamental concepts and architecture of embedded systems.
- To apply the concept of basic building blocks of Embedded systems and Internet of things (IoT).
- To familiarize students with the concepts, architectural design, communication protocols, and challenges associated with the Internet of Things (IoT) paradigm.
- To enable students to develop practical skills in programming embedded systems and IoT devices using the Arduino platform, including interfacing with various sensors and actuators.
- To encourage students to explore emerging trends, research problems and innovative solutions.

2. Course Learning Outcomes

Student should be able:

	Course Outcome	POs	CL*	KC**	Sessions
CLO0	To understand and articulate the architecture and components of embedded systems, including processors, memory, and peripherals.	PO1, PO2,PO3,PO4, PO7	K2	Fundamental Conceptual	10
CLO0 2	To develop the ability to conceptualize, design, and execute embedded system projects that meet specific requirements	PO1, PO2, PO3, PO4, PO5, PO7, PO 11, PO 12	K6	Conceptual Procedural	12
CLO0	10 uppij programming concepts for	PO1, PO2, PO3, PO4, PO5, PO7, PO 11, PO 12	К3	Conceptual Procedural	10
CLO0 4		PO1, PO2, PO3, PO4, PO5, PO7, PO 11, PO 12	K4	Conceptual Procedural	9
CLO0 5	11 5	PO1, PO2, PO3, PO4, PO5, PO7, PO 11, PO 12	К3	Factual Conceptual	8
Total C	ontact Hours				50

Revised Bloom's Taxonomy Terminology

^{*}Cognitive Level =CL

^{**}Knowledge Categories = KC

Course Learning Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CLO1	Н	M	L	M	-	-	M	-	-	-	-	-
CLO2	Н	Н	-	Н	L	-	-	M	M	L	L	M
CLO3	M	Н	Н	-	L	-	L	-	-	-	M	Н
CLO4	L	M	Н	M	M	-	Н	-	-	-	L	-
CLO5	Н	M	-	Н	M	-	M	-	-	-	L	L

H=High, M=Medium, L=Low

3. ERISE Grid Mapping

Feature Enablemnet	Level(1-5, 5 being highest)
Entrepreneurship	3
Research	3
Innovation	3
Skills	4
Employability	3

4. Recommended Books (Reference Books/Text Books)

- B1: Embedded Systems: Architecture, Programming and Design by Raj Kamal, TMH, 2nd Ed., 2011.
- **B2:** The 8051 Microcontroller and Embedded Systems by Muhammad Ali Mazidi, Janice Gillispie Mazidi, and Rolin D. McKinlay; Pearson Education India, Second Edition, 2014.
- **B3:** Internet of Things (IoT): Principles, Paradigms, and Applications of IoT by Rajkumar Buyya and Amir Vahid Dastjerdi; Elsevier, First Edition, 2016.
- B4: Arduino Cookbook by Michael Margolis; O'Reilly Media, Third Edition, 2018.
- **B5:** Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C by Yifeng Zhu; E-Man Press LLC, Third Edition, 2017.
- **B6:** Real-Time Systems and Programming Languages by Alan Burns and Andy Wellings; Addison-Wesley, Fourth Edition, 2009.
- **B7:** The Internet of Things: Key Applications and Protocols by Olivier Hersent, David Boswarthick, and Omar Elloumi, Wiley, 1st Ed., 2012.

5. Other readings and relevant websites

Serial No	Link of Journals, Magazines, websites and Research Papers
1.	https://nptel.ac.in/courses/108/106/108106051/
2.	https://nptel.ac.in/courses/106/106/106106238/
3.	https://www.instructables.com/circuits/arduino/projects/
4.	https://create.arduino.cc/projecthub
5.	https://learn.sparkfun.com/tutorials/arduino-overview/all

6. Recommended Tools and Platforms

NPTEL, SWAYAM, TinkerCAD

7. Course Plan

Session Number	Topic(s)	Book (page no.)
1-2	Introduction to Course Handout Introduction to Embedded Systems: Introduction to Embedded Systems, Embedded system characteristics and applications, features of embedded systems	B1 (3-4), B1 (10- 18), B1 (52)
3-4	Harvard & Von Neumann architectures, Architecture of Embedded System)	B1 (45-48), B5 (29-34)
5-6	Application specific ICs (ASICs), Types of ASIC, Applications	B5 (73-79), B6 (33- 47)
7-8	Overview of Embedded Networking & Standards: RS232, SPI, I2C, USB, Bluetooth, Zigbee	B1 (160-175) B7 (93-94)
9-10	Real time embedded systems, its features, Soft v/s Hard Real time embedded systems	B6 (17-23)
11-14	Microcontrollers and Programming: Introduction to Microcontroller, Microprocessor v/s Microcontroller, architecture and memory organization, 8051 Pin configuration, input output ports	B1 (62-71) B2(4-7)
15-18	Addressing Modes, Instruction Set and Programming, flag bits and PSW register	B2 (50-72), B2 (89- 94)
	ST-1	
19-22	Timers and Serial Port, Interrupt Handling, Arithmetic instructions and programs	B2(100-106)
23-26	Introduction to Internet of Things (IoT): Introduction to Internet of Things, Characteristics of IoT, Application Areas of IoT, Industrial IoT, Real time analytics in IoT and fog computing.	B3(3-5),B3 (14) B3 (32) B3 (183),
27-30	Layered architecture of IoT, SOA based Architecture, API Oriented Architecture, , IoT challenges, IoT Communication protocol comparison,	B3(8-9), B3 (184- 185)
31	Introduction to Cloud computing, Introduction to Big data	B3(188-193)
32-35	Threats and vulnerabilities in IoT systems- Network and Transport layer challenges, IoT Gateways and security, IoT Routing Attacks, Authorization mechanisms	B3 (185), B3 (189- 193)
36-37	Light weight cryptography- Symmetric Key LWC Algorithms, Asymmetric LWC algorithms	B3 (194-195)
38-40	Arduino and Programming: Introduction to Arduino, Architecture of Arduino, Pin diagram of Arduino, Types of Arduino	B4 (6-8), B4 (15),
	ST-2	
41-42	Arduino Programming Structure, Bare minimum code, Variables, Serial monitor	B4 (11-14), B4 (21- 25), B4 (94)
43-44	Types of Sensors and actuators (temperature, light, motion, motors, relays, displays etc)	B4 (167-190)
45-46	Case Studies of Smart home automation, Smart cities, Case Studies of Healthcare and wearable devices	B4 (135-145), B7 (285-300)

8. <u>Delivery/Instructional Resources</u>

	y/Instructional Resources	Wah Dafanoussa	Ad: _ \(\frac{1}{2} \)
Session	Topics	Web References	Audio-Video
No.			1 11
1-8		https://www.embedded.com/intro	https://nptel.ac.in/courses/1
		duction-to-embedded-systems/	<u>08102045</u>
	characteristics and applications,	https://www.elprocus.com/embed	https://nptel.ac.in/courses/1
			08102045
		ded-systems-introduction-to-	00102043
	Embedded System, Application	embedded-systems/	https://archive.nptel.ac.in/c
	specific ICs (ASICs), Overview of	https://www.studytonight.com/em	ourses/106/105/106105193
	Embedded Networking &	bedded-systems/introduction-to-	Z
	Standards: RS232, RS485, SPI,	embedded-systems	
	I2C, USB, Bluetooth, Zigbee	embedded-systems	
0.40			1 // /
9-10		https://www.cise.ufl.edu/~nemo/rt	https://www.digimat.in/npt el/courses/video/106105172
	features, Soft v/s Hard Real time	os/slides/RTOS.pdf	<u>/L13.html</u>
	embedded systems.	https://www.freertos.org/about-	/EIS.Html
		RTOS.html	
		KTO3.Html	
11-18	Introduction to Microcontroller.	https://www.tutorialspoint.com/mi	https://archive.nptel.ac.in/c
		crocontroller/microcontroller 8051	ourses/106/105/106105193
	· ·	overview.htm	Z
	and memory organization, 8051		
	Pin configuration, input output	https://www.javatpoint.com/8051-	https://freevideolectures.co
	ports, Addressing Modes,	<u>microcontroller</u>	m/course/3018/microproces
	Instruction Set and		sors-and-
	Programming, flag bits and PSW	https://www.keil.com/support/man	microcontrollers/22#google
	register	/docs/is51/is51_instructions.htm	<u>_vignette</u>
			https://archive.natel.ac.in/c
			https://archive.nptel.ac.in/c ourses/108/105/108105102
			<u>Uurses/100/103/100103102</u>
			_
19-22	Timers and Serial Port, Interrupt	https://www.tutorialspoint.com/80	https://archive.nptel.ac.in/c
	Handling, Arithmetic	51 microcontroller/8051 microcon	ourses/108/105/108105102
	instructions and programs, Logic	<u>troller_timer.htm</u>	L
	instructions and programs		
		https://www.nrevolutionx.com/202	https://freevideolectures.co
		1/02/8051-serial-	m/course/3018/microproces
		communication.html	sors-and-
		// /00-1	microcontrollers/22#google vignette
		https://www.javatpoint.com/8051-	vignette
		<u>interrupt</u>	
23-31	Introduction to Internet of	https://www.javatpoint.com/intern	https://archive.nptel.ac.in/c
23 31	Things, Industrial IoT, Real time		ourses/106/105/106105166
	analytics in IoT and fog		<u>University 100/103/100103100</u>
	computing Architectural design	https://www.tutorialspoint.com/int	_
	of IoT, SOA based Architecture,	ernet of things/index.htm	https://nptel.ac.in/courses/1
			06105166
	API based Architecture, IoT	https://www.cloudcomputingnatter	
	Communication protocol	ns.org/cloud internet of things/	
	comparison, Cloud computing,		
	Big data		

32-37	IoT challenges, Threats and https://www.csoonline.com/article/	https://archive.nptel.ac.in/c
	vulnerabilities in IoT systems-3258748/the-mirai-botnet-	ourses/106/105/106105167
	Network and Transport layer <u>explained-how-teen-scammers-</u>	L
	challenges, IoT Gateways and worked-together-to-hack-one-of-	
	security, IoT Routing Attacks, the-internet-s-hardest-targets.html	https://archive.nptel.ac.in/c
	Authorization mechanisms.	ourses/106/104/106104189
	Light weight cryptography-https://www.comparitech.com/blo	L
	Symmetric Key LWC g/information-security/iot-security-	
	Algorithms, Asymmetric LWC vulnerabilities/	
	algorithms	
38-42	Introduction to Arduino, https://www.arduino.cc/en/Guide/l	
	Architecture of Arduino, Types ntroduction	watch?v=ZSUANscJrYc
	of Arduino, Arduino	
	Programming Structure, Bare https://www.tutorialspoint.com/ar	https://nptel.ac.in/courses/1
	minimum code, Variables <u>duino/index.htm</u>	<u>06105166</u>
	https://www.javatpoint.com/arduin	
	nttps://www.javatpointt.com/arduin	
	<u> </u>	
43-46	Types of Sensors and actuators https://www.elprocus.com/differen	https://archive.nptel.ac.in/c
	(temperature, light, motion,t-types-of-sensors-with-	ourses/108/105/108105102
	motors, relays, displays etc), applications/	L
	Case Studies of Smart home	
	automation, Smart cities, https://www.electronicshub.org/dif	https://nptel.ac.in/courses/1
	Healthcare and wearable ferent-types-sensors/	<u>06105166</u>
	devices	
	https://www.mdpi.com/1424-	
	<u>8220/22/2/527/htm</u>	

9. Action plan for different types of learners

Average Learners	Fast Learners
Workshop, Doubt Session	More Practical Assignments/ Quiz/Competitions, Project
	8

10. Evaluation Scheme & Components

Evaluation Component	Type of Component	No. of Assessments	Weightage of Component	Mode of Assessment
Component 1	Continuous Evaluations	02*	25%	Computer Based Test
Component 2	Sessional Tests (STs)	03**	25%	Computer Based Test
Component 3	End Term Examination (ETE)	01***	50%	Computer Based Test
	Total		100%	

^{*} There will be two Continuous Evaluations (CE) for a lab in a semester as CE-1 and CE-2, one will be considered as mid term/day to day evaluation and another one will be based on developed project. Average marks of CE-1 and CE-2 will be taken as final marks. Lab file record, lab performance in whole semester and internal viva with experiment performance will be taken in consideration of CE-1.

^{**} All STs are compulsory. ST1 and ST2 have weightage of 25% each and ST3 has 50% out of total weightage of component 2.

^{***}It is mandatory to complete Components 1 and 2. Further, as per Academic Guidelines minimum 75% attendance is required to become eligible for appearing in the End Semester Examination.

Course Plan (Embedded Systems and Internet of Things)

11. Syllabus of the Course

S. No.	Topic (s)	No. of Sessions	Weightage
1	UNIT I - Introduction to Embedded Systems	10	20%
	Introduction to embedded processors, features of embedded system, Embedded system characteristics and applications, Harvard & Von Neuman architectures, Architecture of Embedded System, Application specific ICs (ASICs) and basic types, Overview of Embedded Networking & Standards: RS232, RS485, SPI, I2C, USB, Bluetooth, Zigbee, Real time embedded systems and features, Soft vs Hard Real time embedded systems.		
2	Unit II- Microcontrollers and Programming	12	30%
	Introduction to Microcontroller, Microprocessor v/s Microcontroller, architecture and memory organization, 8051 Pin configuration, input output ports, Addressing Modes, Instruction Set and Programming, flag bits and PSW register, Timers and Serial Port, Interrupt Handling. Arithmetic instructions and programs; logic instructions and programs		
3	Unit III- Introduction to Internet of Things (IoT)	15	30%
	Introduction to Internet of Things, Characteristics of IoT, Application Areas of IoT, Industrial IoT, Real time analytics in iot and fog computing. Layered architecture of IoT, SOA based Architecture, API Oriented Architecture, IoT challenges, IoT Communication protocol comparison, Cloud computing, Big data, threats and vulnerabilities in IoT systems- Network and Transport layer challenges, IoT Gateways and security, IoT Routing Attacks, Authorization mechanisms, Light weight cryptography- Symmetric Key LWC Algorithms, Asymmetric LWC algorithms		
4	Unit IV- Arduino and Programming	9	20%
	Introduction to Arduino, Architecture of Arduino, Types of Arduino, Arduino Programming Structure, Bare minimum code, Variables, Serial Moitor, Types of Sensors and actuators (temperature, light, motion, motors, relays, displays etc). Case Studies of Smart home automation, Smart cities, Healthcare and wearable devices		

12. Complete Lab Course Coverage Plan:

Session No.	Lab Session	Resource Link
		Reading Switch- https://roboticsbackend.com/arduino- push-button-tutorial/
1	Introduction to Arduino, read value of Switches and control LED through Arduino	Blinking LED- https://www.geeksforgeeks.org/led- blinking-using-arduino/
		Port Programming- https://docs.arduino.cc/micropython/basic s/digital-analog-pins/
2	To Implement and analyze Serial Monitor on Arduino	https://docs.arduino.cc/software/ide- v2/tutorials/ide-v2-serial-monitor/
3	To Implement Gas leakage detector circuit using MQ- 02/03 Gas sensor with Arduino	https://circuitdigest.com/microcontroller- projects/interfacing-mq3-alcohol-sensor- with-arduino
4	To Interface IR Sensor and Ultrasonic Sensor with Arduino	IR sensor- https://circuitdigest.com/microcontroller- projects/interfacing-ir-sensor-module- with-arduino
		Ultrasonic Sensor- https://howtomechatronics.com/tutorials/a rduino/ultrasonic-sensor-hc-sr04/
5	To Implement Temperature and Humidity monitoring setup with Arduino and DHT sensor	https://www.circuitbasics.com/how-to-set- up-the-dht11-humidity-sensor-on-an- arduino/
6	To Implement light based audio response circuit using LDR sensor and buzzer with Arduino	https://steemit.com/utopian- io/@pakganern/active-buzzer-with-ldr- and-led-arduino
7	To control Servo motor and DC motor with Arduino	Servo motor- https://docs.arduino.cc/tutorials/generic/ba sic-servo-control/
		DC motor- https://www.tutorialspoint.com/arduino/ar duino_dc_motor.htm
8	To display various characters using 16x2 LCD, I2C and Aurdino	https://www.geeksforgeeks.org/how-to- interface-i2c-lcd-display-with-arduino/
9	To Setup a cloud platform to log the data and establish a communication link between IoT devices and cloud platform	Thingspeak- https://learn.sparkfun.com/tutorials/interne t-of-things-experiment-guide/configure- thingspeak
		Blynk- https://blynk.io/getting-started
10.	To Design an IoT based system to acquire sensor data and show on cloud platform (use any arduino, nodemcu)	https://how2electronics.com/dht11- humidity-temperature-nodemcu- thingspeak/#google_vignette
11.	Introduction to raspberry pi	https://www.electronicwings.com/raspberry-pi/raspberry-pi-introduction

Course Plan (Embedded Systems and Internet of Things)

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Dr. Manvinder Sharma	
Dean-DICE	Dr. Rajneesh Talwar	
Date (DD-MM-YYYY)	22-04-2024	