СОДЕРЖАНИЕ 1

Содержание

1.	Теория меры			
	1.1	Система множеств	2	
	1.2	Объем и мера	6	

1. Теория меры 2

1. Теория меры

1.1 Система множеств

 $A\sqcup B:=A\cup B$ и $A\cap B=\varnothing-$ дизъюнктные множества. $\bigsqcup_{k=1}^n A_k:=\bigcup_{k=1}^n A_k$ и $A_i\cap A_j=\varnothing$

Определение 1.1.1. $\{E_{\alpha}\}_{{\alpha}\in I}$ – разбиение множества E, если $E=\bigsqcup_{{\alpha}\in I}E_{\alpha}$

Напоминание:

$$X\setminus\bigcup_{\alpha\in I}E_\alpha=\bigcap_{\alpha\in I}(X\setminus E_\alpha)\text{ if }X\setminus\bigcup_{\alpha\in I}E_\alpha=\bigcap_{\alpha\in I}(X\setminus E_\alpha)$$

Определение 1.1.2. \mathcal{A} – система подмножеств X:

 δ_0 . Если $A, B \in \mathcal{A}$, то $A \cap B \in \mathcal{A}$.

$$\delta$$
. Если $A_1, A_2, \ldots \in \mathcal{A}$, то $\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$.

 σ_0 . Если $A, B \in \mathcal{A}$, то $A \cup B \in \mathcal{A}$.

$$\sigma$$
. Если $A_1, A_2, \ldots \in \mathcal{A}$, то $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Определение 1.1.3. Система множества $\mathit{симметричнa},$ если $A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}.$

Определение 1.1.4. Система множества \mathcal{A} – *алгебра*, если она симметрична, $\varnothing \in \mathcal{A}$, есть свойства δ_0 и σ_0 .

Определение 1.1.5. Система множества \mathcal{A} – σ -алгебра, если она симметрична, $\varnothing \in \mathcal{A}$, есть свойства δ и σ .

Утверждение 1.1.1. Если \mathcal{A} симметричная система, то $\sigma_0 \Leftrightarrow \delta_0$ и $\sigma \Leftrightarrow \delta$.

Доказательство.
$$X \setminus \underbrace{((X \setminus A) \cup (X \setminus B))}_{X \setminus (A \cap B)} = A \cap B$$

$$X \setminus \underbrace{((X \setminus A) \cap (X \setminus B))}_{X \setminus (A \cup B)} = A \cup B$$

3амечание. Если \mathcal{A} – σ -алгебра, то \mathcal{A} – алгебра.

Свойства алгебры множеств:

- 1. $\emptyset, X \in \mathcal{A}$.
- 2. Если $A, B \in \mathcal{A}$, то $A \setminus B \in \mathcal{A}$.
- 3. Если $A_1, A_2, ..., A_3 \in \mathcal{A}$, то $\bigcup_{k=1}^n A_k$ и $\bigcap_{k=1}^n A_k \in \mathcal{A}$.

1.1 Система множеств

Пример.

1. $X = \mathbb{R}^2$, $\mathcal{A} = \{$ все огранич. мн-ва и и дополнения $\}$ \mathcal{A} – алгебра, но не σ -алгебра.

- 2. $2^{X} \sigma$ -алгебра
- 3. $Y \subset X$, A алгебра (σ -алгебра) подмножеств X, тогда

 $\mathcal{B} := \{A \cap Y \mid A \in \mathcal{A}\}$ – алгебра (σ -алгебра). Называется индуцированная алгебра.

Доказательство.
$$Y \setminus (A \cap Y) = Y \cap (X \setminus A)$$

4. Пусть \mathcal{A}_{α} – алгебры (σ -алгебры). Тогда $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ – алгебра (σ -алгебра).

Доказательство. Если
$$A, B \in \bigcap_{\alpha \in I} A_{\alpha}$$
, то $A, B \in \mathcal{A}_{\alpha} \ \forall \alpha \in I \Rightarrow A \cup B \in \mathcal{A}_{\alpha} \ \forall \alpha \in I \Rightarrow \bigcap_{\alpha \in I} A_{\alpha}$

5. $A, B \subset X$ из чего состоит наименьшая алебра, содержащая A и B:

$$\varnothing, X, A, B, A \cap B, A \cup B, X \setminus A, X \setminus B, X \setminus (A \cap B), X \setminus (A \cup B), A \setminus B, B \setminus B,$$

 $A \triangle B, X \setminus (A \triangle B), X \setminus (A \setminus B), X \setminus (B \setminus A)$

Теорема 1.1.1. Пусть \mathcal{E} – система подножеств X. Тогда существует наименьшая по включению σ -алгебра \mathcal{A} , содержащая \mathcal{E} .

Доказательство. $2^X - \sigma$ -алгебра, содержащая \mathcal{E} .

Пусть \mathcal{A}_{α} – всевозможные σ -алгебры, содержащие \mathcal{E} .

$$\mathcal{B}:=\bigcap_{lpha\in I}\mathcal{A}_{lpha}-\sigma$$
-алгебра, $\mathcal{B}\supset\mathcal{E}$ и $\mathcal{A}_{lpha}\supset\mathcal{E}$ $\forall lpha.$

Определение 1.1.6. Такая σ -алгебра — *барелевская оболочка* \mathcal{E} . $\mathcal{B}(\mathcal{E})$

Определение 1.1.7. $X = \mathbb{R}^m$, \mathcal{E} – всевозможные открытые множества. Барелевская σ -алгебра $\mathcal{B}^m := \mathcal{B}(\mathcal{E})$.

3амечание. $\mathcal{B}^m \neq 2^{\mathbb{R}^m}$ (\mathcal{B}^m – континуум, $2^{\mathbb{R}^m}$ – больше континуума)

Определение 1.1.8. \mathcal{R} – кольцо подмножеств X, если $A,B\in\mathcal{R}\Rightarrow A\cap B,A\cup B,A\setminus B\in\mathcal{R}$

Замечание. Если \mathcal{R} – кольцо и $X \in \mathcal{R}$, то \mathcal{R} – алгебра.

Определение 1.1.9. P – *полукольцо подмножеств* X, если:

1. $\varnothing \in \mathcal{P}$

1.1 Система множеств 4

2.
$$A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$$

3.
$$A, B \in \mathcal{P} \Rightarrow$$
 существуют $Q_1, Q_2, ..., Q_n \in \mathcal{P}$ т.ч. $A \setminus B = \bigsqcup_{k=1}^n Q_k$

Пример. $X = \mathbb{R}, \, \mathcal{P} := \{(a,b] \mid a,b \in \mathbb{R}\}$ – полукольцо

Лемма 1.1.1.
$$\bigcup A_k = \bigsqcup (A_k \setminus \bigcup_{j=1}^k A_j))$$

Доказательство.
$$B_k:=A_k\setminus\bigcup_{j=1}^kA_j\subset A_k\Rightarrow\bigcup A_k\supset\bigcup B_k$$
 $B_n\subset A_n\setminus\underbrace{A_k}_{\supset B_k}$ при $n>k\Rightarrow B_n\cup B_k=\varnothing$

Проверяем включение ⊂.

Берем
$$x \in \bigcup A_k$$
, $n := \min\{j \mid x \in A_j\} \Rightarrow x \in B_n = A_n \setminus \bigcup_{j=1}^{n-1} A_j \Rightarrow x \in \bigcup B_k$.

Теорема 1.1.2. Свойства полукольца:

 $P, P_1, P_2, \ldots \in \mathcal{P}$ – полукольцо. Тогда:

1.
$$P \setminus \bigcup_{k=1}^{n} P_k = \bigsqcup_{j=1}^{m} Q_j$$
 для некоторых $Q_j \in \mathcal{P}$.

2.
$$\bigcup_{k=1}^n P_k = \coprod_{k=1}^n \coprod_{j=1}^{m_k} Q_{kj}$$
 для некоторых $Q_{kj} \in \mathcal{P}$, т.ч. $Q_{kj} \subset P_k$.

3. Во 2 пункте можно вместо n написать ∞ .

Доказательство.

1. Индукция по n. Переход $n-1 \rightarrow n$

$$P \setminus \bigcup_{k=1}^{n} P_k = \left(P \setminus \bigcup_{k=1}^{n-1} P_k \right) \setminus P_n = \bigsqcup_{j=1}^{m} Q_j \setminus P_n = \bigsqcup_{i=1}^{m_j} Q_{ji}$$
инд.пр.= $\bigsqcup_{j=1}^{m} Q_j$

2.
$$\bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} (P_k \setminus \bigcup_{j=1}^{k-1} P_j) \stackrel{\text{no}}{=} \bigsqcup_{k=1}^{n} \bigsqcup_{j=1}^{m_k} \Rightarrow Q_{kj} \subset P_k$$

Теорема 1.1.3. Декартово произведение полуколец

 Π усть \mathcal{P} – полукольцо подмножества $X,\ \mathcal{Q}$ – полукольцо подмножества Y.

$$\mathcal{P} \times \mathcal{Q} := \{P \times Q \mid P \in \mathcal{P}, Q \in \mathcal{Q}\}$$
 – полукольцо подмножеств $X \times Y$.

Доказательство. Пусть
$$P_1 \times Q_1$$
 и $P_2 \times Q_2 \in \mathcal{P} \times \mathcal{Q} \Rightarrow (P_1 \times Q_1) \cap (P_2 \times Q_2) = (P_1 \cap P_2) \times (Q_1 \cap Q_2) \in \mathcal{P}$ ($P_1 \times Q_1$) $\setminus (P_2 \times Q_2) = (P_1 \setminus P_2) \times Q_1 \cup (P_1 \cap P_2) \times (Q_1 \setminus Q_2) \in \mathcal{P}$ диз. об. эл-в в \mathcal{Q}

1.1 Система множеств 5

Определение 1.1.10. Открытый парамеленипед $(a,b), a,b \in \mathbb{R}^m$

$$(a,b) := (a_1,b_1) \times (a_2,b_2) \times ... \times (a_m,b_m)$$

Определение 1.1.11. Замкнутый парамлелепипед $[a,b], a,b \in \mathbb{R}^m$

$$[a,b] := [a_1,b_1] \times [a_2,b_2] \times ... \times [a_m,b_m]$$

Определение 1.1.12. Ячейка $(a, b], a, b \in \mathbb{R}^m$

$$(a,b] := (a_1,b_1] \times (a_2,b_2] \times ... \times (a_m,b_m]$$

Замечание. $(a,b) \subset (a,b] \subset [a,b]$

Утверждение 1.1.2. Непустая ячейка — пересечение убывающей последовательности открытых параллелепипедов и объединение возрастающих последовательностей замкнутых параллелепипедов.

Доказательство.
$$(a,b] = (a_1,b_1] \times (a_2,b_2] \times ... \times (a_m,b_m]$$

$$P_n := (a_1,b_1,+\frac{1}{n}) \times (a_2,b_2+\frac{1}{n}) \times ... \times (a_m,b_m+\frac{1}{n})$$

$$P_{n+1} \subset P_n, \ P_n \supset (a,b] \ \text{и} \bigcap_{n=1}^{\infty} P_n = (a,b]$$

$$A_n := (a_1 - \frac{1}{n},b_1) \times (a_2 - \frac{1}{n},b_2) \times ... \times (a_m - \frac{1}{n},b_m)$$

$$A_{n+1} \supset A_n \subset (a,b], \bigcup A_n = (a,b]$$

Обозначение:

- 1. \mathcal{P}^m семейство ячеек в \mathbb{R}^m (в т.ч. и пустое множество).
- 2. $\mathcal{P}^m_{\mathbb{Q}}$ семейство ячеек в \mathbb{R}^m , у которых все координаты вершин рациональны.

Теорема 1.1.4. Всякое непустое открытое множество $G \subset \mathbb{R}^m$ представляется в виде дизъюнктного объединения счетного числа ячеек, замыкания которых $\subset G$. Более того, можно считать, что координаты всех вершин всех ячеек рациональны.

Доказательство.
$$x \in G \Rightarrow x \in \overline{B}_r(x) \subset G$$

Найдется ячейка R_x , т.ч. $x \in R_x$, координаты R_x рациональны и $\operatorname{Cl} R_x \subset G$. Выкинем все повторы и получим счетное число ячеек, объединение которых равно G. По свойству полукольца можно это объединение сделать дизъюнктным.

Замечание. Явный алгоритм.

Следствие.
$$\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})\stackrel{1)\subset}{=}\mathcal{B}(\mathcal{P}^m)\stackrel{2)\subset}{=}\mathcal{B}^m\stackrel{3)\subset}{=}$$

Доказательство.

1)
$$\mathcal{P}^m \supset \mathcal{P}^m_{\mathbb{Q}} \Rightarrow \mathcal{B}(\mathcal{P}^m) \supset \mathcal{P}^m_{\mathbb{Q}} \Rightarrow \mathcal{B}(\mathcal{P}^m) \supset \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$$

1.2 Объем и мера

2) $\mathcal{P}^m \subset \mathcal{B}^m$

Ячейка — счетное пересение открытых парарллелепипедов, т.е. открытых множеств. Они лежат в \mathcal{B}^m , но \mathcal{B}^m — σ -алгебра \Rightarrow там есть счетное пересение.

$$\Rightarrow \mathcal{B}(\mathcal{P}) \subset \mathcal{B}^m$$

3) G – открытое множество $\Rightarrow G \in \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$ т.к. по теореме G – счетное объединение элементов из $\mathcal{P}^m_{\mathbb{Q}} \Rightarrow \mathcal{B}^m \subset \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$

1.2 Объем и мера

Определение 1.2.1. Пусть \mathcal{P} – полукольцо подмножеств $X, \mu : \mathcal{P} \to [0, +\infty]$. μ – объем, если:

1.
$$\mu\varnothing=0$$

2. Если
$$A_1,...,A_n\in\mathcal{P},$$
 то $\mu(\bigsqcup_{k=1}^nA_k)=\sum_{k=1}^n\mu A_k$

Определение 1.2.2. Пусть \mathcal{P} – полукольцо подмножеств $X, \, \mu : \mathcal{P} \to [0, +\infty]$. μ – mepa, если:

1.
$$\mu\varnothing=0$$

2. Если
$$A_1,A_2,...\in\mathcal{P},$$
 то $\mu(\bigsqcup_{k=1}^\infty A_k)=\sum_{k=1}^\infty \mu A_k$

3амечание. Если μ – мера, то μ – объем.

Упраженение. Если мера $\mu \neq +\infty$, то $\mu\varnothing = 0$ из п. 2ю

Пример. Объемы:

- 1. Длина ячейки в \mathbb{R} .
- 2. Пусть g неубывающая функция : $\mathbb{R} \to \mathbb{R}, \ \nu_g(a,b] := g(b) g(a), \ (a,b] \subset \mathbb{R}$
- 3. Классический объем ячейки в \mathbb{R}^m (докажем позже)

$$\lambda_m(a,b] = (b_m - a_m)...(b_2 - a_2)(b_1 - a_1)$$

4.
$$x_0 \in X$$
, $a > 0$, $\mu A = \begin{cases} a, & \text{если } x_0 \in A \\ 0, & \text{иначе} \end{cases}$

5. A – огранич. подмн-ва $\mathbb R$ и их дополнения.

Если
$$A\in\mathcal{A},$$
 то $\mu A=\left\{ egin{array}{ll} 0, & \text{если }A-\text{огр. мн-во} \\ 1, & \text{иначе} \end{array} \right.$

Это объем, но не мера.

1.2 Объем и мера

Теорема 1.2.1. Пусть μ – объем на полукольце \mathcal{P} . Тогда:

1. Если $P' \subset P$ $(P, P' \in \mathcal{P})$, то $\mu P' \leq \mu P$. (монотонность объема)

2. Если
$$\bigsqcup_{k=1}^{n} P_k \subset P$$
, то $\sum_{k=1}^{n} \mu P_k \leq \mu P$. (усиленная монотонность)

2'. Echu
$$\prod_{k=1}^{\infty} P_k \subset P_k$$
, mo $\sum_{k=1}^{\infty} \mu P_k \leq \mu P_k$.

Если
$$P \subset \bigcup_{k=1}^{n} P_k$$
, то $\mu P \leq \sum_{k=1}^{n} \mu P_k$ (полуаддитивность)

Доказательство

2.
$$P \setminus \bigsqcup_{k=1}^n P_k = \bigsqcup_{j=1}^m Q_j$$
, где $Q_j \in \mathcal{P} \Rightarrow P = \bigsqcup_{k=1}^n P_k \sqcup \bigsqcup_{j=1}^m Q_j \Rightarrow \mu P = \sum_{k=1}^n \mu P_k + \sum_{j=1}^m \mu Q_j \geq \sum_{k=1}^n \mu P_k$

2'.
$$\bigsqcup_{k=1}^{n} P_k \subset \bigsqcup_{k=1}^{\infty} P_k \subset P \Rightarrow \mu P \geq \sum_{k=1}^{n} \mu P_k \rightarrow \sum_{k=1}^{\infty} \mu P_k$$

3'.
$$P'_k := P_k \cap P \in \mathcal{P} \Rightarrow P = \bigcup_{k=1}^n P'_k \Rightarrow P = \bigcup_{k=1}^n \bigcup_{j=1}^{m_k} Q_{kj}, \ Q_{kj} \in \mathcal{P}, \ Q_{kj} \subset P'_k \subset P_k$$

$$\bigsqcup_{j=1}^{m_k} Q_{kj} \subset P_k \stackrel{2)}{\Rightarrow} \sum_{j=1}^{m_k} \mu Q_{kj} \le \mu P_k$$

$$\mu P = \sum_{k=1}^{n} \sum_{j=1}^{m_k} \mu Q_{kj} \le \sum_{k=1}^{n} \mu P_k$$

Замечание.

1. Если \mathcal{P} – кольцо, $A,B\in\mathcal{P},\,A\subset B$ и $\mu A<+\infty,$ то $\mu(B\setminus A)=\mu B-\mu A.$ $B=\mathop{A}_{\in\mathcal{P}}\sqcup(\mathop{B}\setminus A)$

2. Объем с полукольца можно продолжить на кольцо, состоящее из всевозможных дизъюнктных объединений.

Теорема 1.2.2. Пусть \mathcal{P} – полукольцо подмножеств X, μ – объем на \mathcal{P} , \mathcal{Q} – полукольцо подмножеств Y, ν – объем на \mathcal{Q} .

$$\lambda: \mathcal{P} \times \mathcal{Q} \to [0, +\infty].$$

$$\lambda(\mathcal{P} \times \mathcal{Q}) = \mu \mathcal{P} \cdot \nu \mathcal{Q}$$
 (считаем, что $0 \cdot +\infty = +\infty \cdot 0 = 0$).

 $Tor\partial a \lambda$ – объем.

Доказательство. Если
$$P=\bigsqcup_{k=1}^n P_k$$
 и $Q=\bigsqcup_{j=1}^m Q_j$, то $P\times Q=\bigsqcup_{k=1}^n \bigsqcup_{j=1}^m P_k\times Q_j$

$$\lambda(P \times Q) = \mu P \cdot \nu Q = \sum_{k=1}^{n} \mu P_k \cdot \sum_{j=1}^{m} \nu Q_j = \sum_{k=1}^{j-1} \sum_{j=1}^{m} \underbrace{\mu P_k \nu O_j}_{=\lambda(P_k \times Q_j)}$$

Противный случай:
$$P \times Q = \bigsqcup_{k=1}^{n} P_k \times Q_k$$

 1.2
 Объем и мера

Следствие. λ_m – объем.

 \mathcal{A} оказательство. λ_1 – объем, λ_m – декартово произведение λ_1 .