ooo Exercice 146.

E et F désignent deux ensembles disjoints composés respectivement de 4 éléments et de 5 éléments

Calculer le nombre d'éléments de :

1. $E \cup F$.

3. E^3 .

2. $E \times F$.

4. F^2 .

●∞ Exercice 147.

 $E = \{0; 1\}.$

- 1. La liste ordonnée (1; 0; 1) est un k-uplet de E. Combien vaut k?
- 2. Déterminer avec soin le nombre de 3-uplets (ou triplets) de E.

●∞ Exercice 148.

 $E = \{a; b; c; d\}.$

- 1. (a) Lister les 2-uplets de E. Combien y en a-t-il ?
 - (b) Quelle formule du cours permet de retrouver ce résultat sans lister tous les couples de E?
- 2. (a) Lister tous les couples d'éléments distincts de E. Combien y en-a-t-il?
 - (b) Quelle formule du cours permet de retrouver ce résultat?

●○○ Exercice 149.

Soit $E = \{e_1; e_2; e_3; e_4; e_5; e_6\}.$

- 1. Expliquer pour quoi le nombre de 3-uplets d'éléments distincts de E est égal à $6 \times 5 \times 4$.
- 2. Combien y a-t-il de 4-uplets d'éléments distincts de E?

• ∞ Exercice 150.

Soit $E = \{0; 1; 2\}.$

- 1. Quelle valeur doit-on donner à k pour qu'une permutation soit un k-uplet d'éléments distincts de E?
- 2. Lister toutes les permutations de E ? Combien y en-a-t-il ?
- 3. Quelle formule du cours permet d'obtenir le résultat précédent ?

●∞ Exercice 151.

Soit $E = \{p \, ; \, q \, ; \, r \, ; \, s\}.$

- 1. Lister les combinaison de 3 éléments de E. Combien y en-a-t-il?
- 2. Le nombre de combinaisons de 3 éléments de E est $\binom{4}{3}$.

Rappeler une formule permettant de calculer ce coefficient puis vérifier le résultat obtenu à la question précédente?

- 3. (a) Sans les listes, déterminer le nombre de combinaisons de 2 éléments de E.
 - (b) Vérifier le résultat de la question précédente en listant toutes les combinaisons

de deux éléments de E.

•00 Exercice 152.

Soit $E = \{e \, ; \, f \, ; \, g \, ; \, h\}.$

- 1. Expliquer pour quoi $\{e\,;\,f\,;\,g\}$ n'est pas une permutation de E.
- 2. Expliquer pour quoi $\{e\,;\,f\,;\,e\}$ n'est pas une permutation de E.
- 3. Expliquer pour quoi le nombre de permutations de E est $4 \times 3 \times 2 \times 1$. Comment note-t-on ce nombre?

• ∞ Exercice 153.

Soit $E = \{a; b; 1; 2\}.$

- 1. Combien y a-t-il de 5-uplets de E?
- 2. Combien y a-t-il de 5-uplets de E commençant par la lettre b?

••o Exercice 154.

Un code PIN de smartphone est un code confidentiel composé de 4 chiffres.

- 1. Combien y a-t-il de codes PIN différents?
- 2. Combien y a-t-il de codes PIN différents commençant par le chiffre 3?

•• Exercice 155.

- 1. Soit E un ensemble à 9 éléments. Combien y a-t-il de permutation de E?
- 2. La première phase de la coupe du Monde de handball est organisée en poules de 6 équipes.
 - (a) Combien y a-t-il de classements possibles dans le groupe de la France?
 - (b) Combien y a-t-il de classements possibles si la France termine première et l'Australie dernière?

●○○ Exercice 156.

Le mot « THAMS » est un anagramme du mot MATHS.

Combien existe t-il d'anagrammes du mot MATHS? Reprendre cette question avec le mot ANANAS.

••○ Exercice 157.

On donne le programme Python incomplet. Le compléter afin qu'il puisse retourner le nombre n!:

```
def factorielle(n):
P=1
for i in range (1,...):
    P=.....
return(.....)
```

•oo Exercice 158.

- 1. Calculer $\frac{5!}{3!2!}$.
- 2. Donner un coefficient binomial qui est égal à ce nombre.

●∞ Exercice 159.

- 1. Vérifier, par un calcul, que $\binom{7}{4} = 35$.
- 2. En déduire la valeur de $\begin{pmatrix} 7 \\ 3 \end{pmatrix}$.

•∞ Exercice 160.

- 1. En 1^{re} générale, un élève doit choisir 3 spécialités parmi les douze proposées. Combien y a-t-il de triplettes possibles?
- 2. En terminale, les élèves doivent garder deux des trois spécialités choisies en 1^{re}. Combien de possibilités s'offrent à Corentin qui arrive en Terminale pour choisir ses spécialités?
- 3. Un parcours est constitué d'une triplette en $1^{\rm re}$ et d'une doublette de ces spécialités conservées en Terminale.
 - (a) Justifier qu'il y a 660 parcours différents.
 - (b) Coline a choisi les Maths en 1^{re} et Terminale. Combien de parcours correspondent à ce choix?

•∞ Exercice 161.

- 1. Marylène possède 5 jeans et 7 teeshirts. Elle part en vacances et décide d'emmener 2 jeans et 3 tee-shirts.
 - (a) Justifier que le nombre de possibilités qu'elle a pour choisir ses jeans et teeshirts est $\binom{5}{2} \times \binom{7}{3}$.
 - (b) Calculer ce nombre.
- 2. Son mari Xan possède quant à lui 10 jeans, 13 tee-shirts et 7 paires de chaussures. Il décide de partir avec 6 jeans, 10 tee-shirts et 4 paires de chaussures.

Combien a-t-il de manières pour remplir sa valise?

••o Exercice 162.

Soit n un entier naturel non nul. Simplifier les expressions suivantes :

1.
$$\frac{(n-1)!}{(n+1)!}$$

2.
$$\frac{n!}{n} - (n-1)!$$

$$3. \ \frac{(2n+1)!}{(2n-1)!}$$

4.
$$\frac{(n-1)!}{n!} - \frac{n!}{(n+1)!}$$

• oo Exercice 163.

Une course oppose 20 concurrents, dont Émile.

- 1. Combien y-a-t-il de podiums possibles?
- 2. Combien y-a-t-il de podiums possibles où Émile est premier?
- 3. Combien y-a-t-il de podiums possibles dont Émile fait partie?
- 4. On souhaite récompenser les 3 premiers en leur offrant un prix identique à chacun. Combien y-a-t-il de distributions de récompenses possibles?

•• Exercice 164.

Un cadenas possède un code à 3 chiffres, chacun des chiffres pouvant être un chiffre de 1 à 9.

- 1. (a) Combien y-a-t-il de codes possibles?
 - (b) Combien y-a-t-il de codes se terminant par un chiffre pair?
 - (c) Combien y-a-t-il de codes contenant au moins un chiffre 4?
 - (d) Combien y-a-t-il de codes contenant exactement un chiffre 4?
- Dans cette question on souhaite que le code comporte obligatoirement trois chiffres distincts.
 - (a) Combien y-a-t-il de codes possibles?
 - (b) Combien y-a-t-il de codes se terminant par un chiffre impair?
 - (c) Combien y-a-t-il de codes comprenant le chiffre 6 ?