# **Distributed Deep Q-Learning**

Hao Yi Ong, Kevin Chavez, and Augustus Hong

CME 323, Stanford University

June 3, 2015

### Introduction

Mathematical formulation

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Introduction 2/29

#### **Motivation**

- ▶ long-standing challenge of reinforcement learning (RL)
  - control with high-dimensional sensory inputs (e.g., vision, speech)
  - shift away from reliance on hand-crafted features
- ▶ utilize breakthroughs in deep learning for RL [M+13, M+15]
  - extract high-level features from raw sensory data
  - learn better representations than handcrafted features with neural network architectures used in supervised and unsupervised learning
- create fast learning algorithm
  - train efficiently with stochastic gradient descent (SGD)
  - distribute training process to accelerate learning [DCM<sup>+</sup>12]

Introduction 3/29

# **Success with Atari games**







Introduction 4/29

#### Goals

### distributed deep RL algorithm

- robust neural network agent
  - must succeed in challenging test problems
- control policies with high-dimensional sensory input
  - obtain better internal representations than handcrafted features
- ► fast training algorithm
  - efficiently produce, use, and process training data

Introduction 5/29

Introduction

Mathematical formulation

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

# **Playing games**



objective: learned policy maximizes future rewards

$$R_t = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'},$$

- ightharpoonup discount factor  $\gamma$
- ightharpoonup reward change at time t'  $r_{t'}$

### State-action value function

basic idea behind RL is to estimate

$$Q^{\star}(s, a) = \max_{\pi} \mathbf{E} \left[ R_t \mid s_t = s, a_t = a, \pi \right],$$

where  $\pi$  maps states to actions (or distributions over actions)

optimal value function obeys Bellman equation

$$Q^{\star}\left(s,a\right) = \operatorname*{\mathbf{E}}_{s^{\prime}\sim\mathcal{E}}\left[r + \gamma\max_{a^{\prime}}Q^{\star}\left(s^{\prime},a^{\prime}\right)\mid s,a\right],$$

where  $\mathcal{E}$  is the MDP environment

## **Q**-network

trained by minimizing a sequence of loss functions

$$L^{(i)}\left(\boldsymbol{\theta}^{(i)}\right) = \underset{s,a \sim \rho(\cdot)}{\mathbf{E}} \left[ \left( \boldsymbol{y}^{(i)} - Q\left(s,a;\boldsymbol{\theta}^{(i)}\right) \right)^2 \right],$$

with

- iteration number i, ith network parameters  $\theta^{(i)}$
- $\text{ target } y^{(i)} = \mathbf{E}_{s' \sim \mathcal{E}} \left[ r + \gamma \max_{a'} Q\left(s', a'; \theta^{(i-1)}\right) \mid s, a \right]$
- "behavior distribution" (exploration policy)  $\rho\left(s,a\right)$
- architecture varies according to application

Introduction

Mathematical formulation

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Serial algorithm 10/29

## **Preprocessing**



Serial algorithm 11/29

# **Q-learning**

optimize Q-network loss function via

$$Q\left(s,a\right) := Q\left(s,a\right) + \alpha \left(r + \gamma \max_{a'} Q\left(s',a'\right) - Q\left(s,a\right)\right)$$

- trains optimal policy using "behavior policy" (off-policy)
  - learns policy  $\pi^{\star}(s) = \operatorname{argmax}_{a} Q(s, a; \theta)$
  - uses an  $\epsilon$ -greedy strategy (behavior policy) for state-space exploration

Serial algorithm 12/29

# **Experience replay**

### a kind of short-term memory

store agent's experiences at each time step

$$e_t = (s_t, a_t, r_t, s_{t+1})$$

experiences form a replay memory dataset

$$\mathcal{D} = \{e_1, \dots, e_N\},\,$$

where N is the fixed memory capacity

execute Q-learning updates with samples of experience

$$e \sim \mathcal{D}$$

# Serial deep Q-learning

**given** replay memory  $\mathcal D$  with capacity N

initialize Q-networks  $Q,\,\hat{Q}$  with same random weights  $\theta$  repeat until timeout

**initialize** frame sequence  $s_1 = \{x_1\}$  and preprocessed state  $\phi_1 = \phi\left(s_1\right)$  for  $t = 1, \ldots, T$ 

- $1. \text{ select action } a_t = \left\{ \begin{array}{ll} \max_a Q\left(\phi\left(s_t\right), a; \theta\right) & \text{ w.p. } 1 \epsilon \\ \text{ random action} & \text{ otherwise} \end{array} \right.$
- 2. execute action  $a_t$  and observe reward  $r_t$  and frame  $x_{t+1}$
- 3. append  $s_{t+1} = (s_t, a_t, x_{t+1})$  and preprocess  $\phi_{t+1} = \phi(s_{t+1})$
- 4. store experience  $(\phi_t, a_t, r_t, \phi_{t+1})$  in  $\mathcal{D}$
- 5. uniformly sample minibatch  $(\phi_j, a_j, r_j, \phi_{j+1}) \sim \mathcal{D}$
- 6. set  $y_j = \left\{ egin{array}{ll} r_j & \text{if } \phi_{j+1} \text{ terminal} \\ r_j + \gamma \max_{a'} \hat{Q}\left(\phi_{j+1}, a'; heta
  ight) & \text{otherwise} \end{array} 
  ight.$
- 7. perform gradient descent step for Q on minibatch
- 8. every C steps reset  $\hat{Q} = Q$

Introduction

Mathematical formulation

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

# Model parallelism

#### for each Q-network

- partition model across CPUs/GPUs
  - up to availability of CPU/GPU resources
  - uses Caffe deep learning framework
- ► [[Kevin/Hao Yi: How does caffe use CPU/GPU resources? How does complexity scale for implementation? Answers question of how our algorithm scale for model.]]

# Data parallelism

downpour SGD: generic asynchronous distributed SGD



## **Implementation**

- ▶ data shards are generated locally on each model worker in real-time
  - data is stored independently for each worker
  - since game emulation is simple, generating data is fast
  - simple fault tolerance approach: regenerate data if worker dies
- algorithm scales very well with data
  - since data lives locally on workers, no data is sent

## **Implementation**

- bottleneck is parameter update time on parameter server
  - e.g., if parameter server gradient update takes 2 ms, then we can only do up to 500 updates per second (using buffers, etc.)
- trade-off between parallel updates and model staleness
  - because worker is likely using a stale model, the updates are "noisy" and not of the same quality as in serial implementation

## **Implementation**

### communication pattern

- one-to-all and all-to-one, but asynchronous for every minibatch
- ▶ like multiple asynchronous all-reduces

Introduction

Mathematical formulation

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

### **Evaluation**



### Snake

#### parameters

- snake length grows with number of apples eaten
- one apple at any time, regenerated once eaten
- $n \times n$  array, with walled-off world
- want to maximize score, equal to snake length

### complexity

- four possible states for each cell: {empty, head, body, apple}
- state space cardinality is  $O\left(n^8\right)$
- four possible actions: {north, south, east, west}

## **Results**

Introduction

Mathematical formulation

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Conclusion 25/29

# **Summary**

Conclusion 26/29

#### References

- ▶ Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks.

  In Advances in Neural Information Processing Systems, pages 1223–1231, 2012.
- V. Mnih et al. Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
- V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529−533, 2015.

# Theoretical complications

deep learning algorithms require

- ▶ huge training datasets
- ► independence between samples
- fixed underlying data distribution

Appendix 28/29

## **Deep Q-learning**

### avoids theoretical complications

- greater data efficiency
  - each experience potentially used in many weight udpates
- reduce correlations between samples
  - randomizing samples breaks correlations from consecutive samples
- experience replay averages behavior distribution over states
  - smooths out learning
  - avoids oscillations or divergence in gradient descent

Appendix 29/29