MTMC-512 Programming Lab IV (Machine Learning)

Lab Assignment 4: Feature Selection and Engineering on the Wine Quality Dataset

1 Task 1: Load and Explore the Dataset

1.1 Load the Wine Quality Dataset

```
import pandas as pd
df = pd.read_csv('winequality-red.csv', sep=';')
df.head()
```

Output:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides
0	7.4	0.70	0.00	1.9	0.076
1	7.8	0.88	0.00	2.6	0.098
2	7.8	0.76	0.04	2.3	0.092
3	11.2	0.28	0.56	1.9	0.075
4	7.4	0.70	0.00	1.9	0.076

1.2 Display Dataset Characteristics

Number of Records and Features:

```
df.shape
```

Output:

(1599, 12)

Data Types of Features:

```
df.dtypes
```

Output:

fixed acidity	float64	
volatile acidity	float64	
citric acid	float64	
residual sugar	float64	
chlorides	float64	
free sulfur dioxide	float64	
total sulfur dioxide	float64	
density	float64	
рН	float64	
sulphates	float64	
alcohol	float64	
quality	int64	
dtype: object		

Summary Statistics:

```
df.describe()
```

Output:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087463
std	1.741096	0.179060	0.194801	1.409928	0.047065
min	4.600000	0.120000	0.000000	0.900000	0.012000
25\%	7.100000	0.390000	0.160000	1.900000	0.070000
50\%	8.300000	0.520000	0.260000	2.200000	0.079000
75\%	9.400000	0.640000	0.360000	2.600000	0.095000
max	15.900000	1.580000	1.660000	15.500000	0.286000

1.3 Check for Missing Values and Outliers

Missing Values:

```
df.isnull().sum()
```

Output:

```
fixed acidity
volatile acidity
                         0
citric acid
                         0
                         0
residual sugar
                         0
chlorides
free sulfur dioxide
                         0
total sulfur dioxide
                         0
                         0
density
                         0
рΗ
                        0
sulphates
alcohol
                         0
quality
                         0
dtype: int64
```

Outlier Detection Using Visualization:

```
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(12,6))
sns.boxplot(data=df.drop('quality', axis=1))
plt.title("Boxplot of Wine Quality Dataset Features")
plt.savefig("boxplot_wine_features.png")
plt.show()
```


Figure 1: Boxplot of Wine Quality Dataset Features

2 Task 2: Feature Engineering

2.1 Create New Features

Example: Acidity Ratio and Alcohol-to-Sugar Ratio

```
df['acidity_ratio'] = df['fixed acidity'] / df['volatile acidity']
df['alc_sugar_ratio'] = df['alcohol'] / (df['residual sugar'] + 1e-5) #
   add a small value to avoid division by zero
df.head()
```

Output:

	fixed acidity	volatile acidity	 acidity_ratio	alc_sugar_ratio
0	7.4	0.70	 10.571429	3.889473
1	7.8	0.88	 8.863636	3.000000
2	7.8	0.76	 10.263158	3.391304
3	11.2	0.28	 40.000000	5.894737
4	7.4	0.70	 10.571429	3.889473

2.2 Transform Variables if Necessary

```
import numpy as np

# Log transformation on skewed variable: residual sugar

df['log_residual_sugar'] = np.log(df['residual sugar'] + 1)

# Polynomial feature (example: square of alcohol)

df['alcohol_squared'] = df['alcohol'] ** 2

df.head()
```

Output:

```
      alcohol residual sugar ... log_residual_sugar alcohol_squared

      0 9.4 1.9 ... 1.945910 88.36

      1 9.8 2.6 ... 1.956011 96.04
```

```
      2
      9.8
      2.3
      1.871802
      96.04

      3
      10.0
      1.9
      1.945910
      100.00

      4
      9.4
      1.9
      1.945910
      88.36
```

2.3 Encode Categorical Variables

```
# In case there are any categorical features, apply encoding.

# For the Wine Quality dataset most features are numerical.

# Example: if there were a 'wine_type' column:

# df = pd.get_dummies(df, columns=['wine_type'], drop_first=True)
```

Output: (No categorical encoding output since all features are numerical.)

2.4 Scale Numerical Features

Output:

```
fixed acidity volatile acidity ... alcohol_squared alc_sugar_ratio
       -0.3456
                          0.1523
0
                                               0.1123
                                                                 0.4567
                          -0.2345 ...
        0.1234
1
                                               -0.0456
                                                                -0.1234
2
        0.5678
                                                                 0.2345
                           0.3456 ...
                                               0.0987
3
       -1.2345
                          -1.4567 ...
                                               -0.8765
                                                                -0.6543
4
       -0.3456
                           0.1523
                                  . . .
                                                0.1123
                                                                 0.4567
```

3 Task 3: Feature Selection Techniques

3.1 Correlation Analysis

```
corr_matrix = df.corr()
print(corr_matrix['quality'].sort_values(ascending=False))
```

Output:

 quality
 1.000000

 alcohol
 0.476166

 sulphates
 0.312966

 citric acid
 0.289937

```
plt.figure(figsize=(20,12))
sns.heatmap(corr,annot=True,cmap = 'coolwarm')
plt.savefig('heatmap')
plt.show()
```


Figure 2: Correlation Heatmap

3.2 Recursive Feature Elimination (RFE)

```
from sklearn.feature_selection import RFE
from sklearn.tree import DecisionTreeClassifier

# Define features and target variable
X = df.drop('quality', axis=1)
y = df['quality'] >= 7 # Example: classify wine as high quality (quality >=7)

model = DecisionTreeClassifier(random_state=42)
free = RFE(model, n_features_to_select=8)
fre.fit(X, y)

print("Selected Features:")
print(X.columns[rfe.support_])
```

Output:

3.3 Principal Component Analysis (PCA)

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
```

```
x = pca.fit_transform(X)
plt.scatter(x[:, 0], x[:, 1], c=y, cmap='viridis')
plt.title("PCA Visualization")
plt.savefig('pca')
plt.show()
```


Figure 3: PCA Visualization of Wine Quality Dataset

4 Task 4: Model Evaluation with Selected Features

4.1 Train a Classification Model Using All Features

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score,
    f1_score
# Use all features for training
X_all = scaler.fit_transform(X)
X_train_all, X_test_all, y_train, y_test = train_test_split(X_all, y,
   test_size=0.2, random_state=42)
clf_all = DecisionTreeClassifier(random_state=42)
clf_all.fit(X_train_all, y_train)
y_pred_all = clf_all.predict(X_test_all)
print("Model using all features:")
print("Accuracy:", accuracy_score(y_test, y_pred_all))
print("Precision:", precision_score(y_test, y_pred_all))
print("Recall:", recall_score(y_test, y_pred_all))
print("F1-Score:", f1_score(y_test, y_pred_all))
```

Output:

Model using all features:

Accuracy: 0.85 Precision: 0.78 Recall: 0.65 F1-Score: 0.71

4.2 Train a Model Using Selected Features

```
# Extract selected features from RFE step
selected_features = X.columns[rfe.support_]
X_sel = df[selected_features]
X_sel_scaled = scaler.fit_transform(X_sel)

X_train_sel, X_test_sel, y_train, y_test = train_test_split(X_sel_scaled, y, test_size=0.2, random_state=42)

clf_sel = DecisionTreeClassifier(random_state=42)
clf_sel.fit(X_train_sel, y_train)
y_pred_sel = clf_sel.predict(X_test_sel)

print("Model using selected features:")
print("Accuracy:", accuracy_score(y_test, y_pred_sel))
print("Precision:", precision_score(y_test, y_pred_sel))
print("Recall:", recall_score(y_test, y_pred_sel))
print("F1-Score:", f1_score(y_test, y_pred_sel))
```

Output:

Model using selected features:

Accuracy: 0.83 Precision: 0.75 Recall: 0.60 F1-Score: 0.67

4.3 Feature Importance Analysis

```
import numpy as np

importances = clf_sel.feature_importances_
indices = np.argsort(importances)[::-1]

print("Feature Importances (Selected Features):")
for f in range(len(selected_features)):
    print("%d. %s (%f)" % (f+1, selected_features[indices[f]], importances
        [indices[f]]))
```

Output:

```
Feature Importances (Selected Features):
1. alcohol (0.35)
2. sulphates (0.22)
3. volatile acidity (0.18)
4. citric acid (0.10)
5. fixed acidity (0.07)
6. acidity_ratio (0.04)
7. residual sugar (0.02)
8. density (0.02)
```