Nama Kelompok	Predict - 7B
Identitas Anggota	Gusti Ngurah Satya Bagus Partama
Kelompok	Abdullah Sholdan Rona
	Roby Sabililhaq
	Ramzy Al Firza Wahyudi
	Aloysius No
	Fatin Nu'maya
	Tasya Amalia Dewi
	Rifa Husniyyah

1. Modeling

a. Split Data Train & Test

Train: Test	Description	
Kaggle Default Split	Split terhadap data train dan data test diterapkan	
90.92 : 9.08	secara langsung melalui penggunaan pembagian yang	
	disajikan secara default pada kaggle. Pada tahap	
	sebelumnya pre-process untuk data train dan test	
	dilakukan secara terpisah. Data train melalui	
	pre-process yang kompleks dengan missing value	
	handling, outlier handling, label encoding, dan class	
	imbalance handling sehingga menghasilkan data yang	
	siap untuk dilatih. Di sisi lain data <i>test</i> yang telah	
	terpisah secara default juga menerapkan pre-process	
	namun dengan menghilangkan beberapa proses yaitu	

outlier handling dan imbalance handling sebagai representasi evaluasi data real yang sangat mungkin memiliki outlier dan anomali yang tidak normal pada data.

Hasil proporsi yang didapatkan melalui cara ini adalah sebesar 90.92 : 9.08. Meskipun pembagian ini tidak masuk dalam rentang umum pada, 80 : 20 hingga 70 : 30, pembagian ini akan tetap dijalankan namun dengan tidak menerapkan *cross validation* karena *splitting process* yang dilakukan telah dijelaskan secara *default* dan asumsi yang dimiliki adalah bahwa data *test* merupakan data baru, dan bukan bagian dari *data train* yang diambil secara *random* sehingga memiliki kemungkinan *output* berbeda yang dihasilkan apabila menjalankan *cross validation*.

b. Modeling Implementation

Method	Description	
Logistic Regression	Implementasi <i>Logistic Regression</i> dilakukan dalam 2 tahap percobaan yaitu tanpa <i>hyperparameter tuning</i> dan dengan <i>hyperparameter tuning</i> . Bagian ini membahas mengenai implementasi tanpa <i>hyperparameter tuning</i> . Berikut merupakan <i>default</i> parameter yang digunakan yaitu.	
	solver	lbfgs
	C 1 max_iter 210	

k-NN	Implementasi k-NN dilakukan dalam 2 tahap percobaan yaitu tanpa <i>hyperparameter tuning</i> dan dengan <i>hyperparameter tuning</i> . Bagian ini membahas mengenai implementasi tanpa <i>hyperparameter tuning</i> . Berikut merupakan <i>default</i> parameter yang digunakan yaitu. n_neighbors 5		
	metrics (p)	euclidean (2)	
	algorithm	auto	
Decision Tree	Implementasi <i>Decision Tree</i> dilakukan dalam 2 tahap percobaan yaitu tanpa <i>hyperparameter tuning</i> dan dengan <i>hyperparameter tuning</i> . Bagian ini membahas mengenai implementasi tanpa <i>hyperparameter tuning</i> . Berikut merupakan <i>default</i> parameter yang digunakan yaitu.		
	max_depth	None	
	min_samples_split	2	
	criterion	gini	
	splitter	best	
Random Forest	Implementasi <i>Random Forest</i> dilakukan dalam 2 tahap percobaan yaitu tanpa <i>hyperparameter tuning</i> dan dengan <i>hyperparameter tuning</i> . Bagian ini membahas mengenai implementasi tanpa <i>hyperparameter tuning</i> . Berikut merupakan <i>default</i> parameter yang digunakan yaitu.		
	n_estimator	100	

max_depth	None
min_samples_split	2
criterion	gini

c. Model Evaluation: Picking metrics method

Method	Description			
Logistic Regression	Evaluasi model	dengan metode	e logistic regres	sion
	diterapkan secar	a <i>universal</i> ter	hadap fungsi ya	ang memiliki
	ukuran melalui a	confusion matr	ix lebih lengkap	yaitu
	accuracy, precis	ion, dan recall	. Selain itu dite	rapkan juga
	terhadap pengukuran F1 Score dan metrics ROC-AUC.			
	Implementasi diterapkan dalam 3 tahapan yaitu melalui			
	implementasi m	etode <i>logistic i</i>	regression tanpa	ı
	hyperparameter	tuning, melalu	ii <i>hyperparame</i>	ter tuning
	menggunakan G	rid Search, dar	n manual tuning	g based on
	Grid Search resu	<i>ılt</i> . Berikut me	rupakan hasil y	ang
	didapatkan melalui proses tersebut. Kesimpulan yang didapatkan melalui pengamatan hasil adalah bahwa model bersifat <i>underfitting</i> apabila dilihat dari nilai ROC-AUC data <i>train</i> dan <i>test</i> . Selain itu didapatkan juga nilai akurasi tertinggi sejumlah 0.83, dan presisi sejumlah 0.31. Metrics Before Grid Random Range			
				oila dilihat tu didapatkan
				Random
				Range
	Accuracy 0.83 0.83 0.6			
	Precision	0.31	0.31	0.21

T	-		
Recall	0.43	0.42	0.69
F1 Score	0.36	0.36	0.32
ROC-AUC	0.75	0.73	0.73
Train			
ROC-AUC Test	0.94	0.94	0.81
gap	0.19	0.21	0.08
(test-train)			
Confusion Mat			
implementing	Hyperparamet	er Tuning to	
			3500
0 -	3509	491	- 2500
True label			- 2000
뵨			- 1500
1 -	296	225	- 1000
			- 500
	0 Predicted la	i bel	

Confusion Matrix & AUC Learning Curve in 2 phase for Train & Test Data after implementing Hyperparameter Tuning in guidance with GridSearch result to data

K-NN

Evaluasi model dengan metode k-NN diterapkan secara *universal* terhadap fungsi yang memiliki ukuran melalui *confusion matrix* lebih lengkap yaitu *accuracy, precision,* dan *recall.* Selain itu diterapkan juga terhadap pengukuran F1 Score dan *metrics* ROC-AUC. Implementasi diterapkan dalam 3 tahapan yaitu melalui implementasi metode *logistic regression* tanpa *hyperparameter tuning,* melalui *hyperparameter tuning* menggunakan Grid Search, dan *manual tuning based on* Grid Search *result.* Berikut merupakan hasil yang didapatkan melalui proses tersebut.

Kesimpulan yang didapatkan melalui pengamatan hasil adalah bahwa model bersifat *underfitting* apabila dilihat dari nilai ROC-AUC data *train* dan *test*. Selain itu didapatkan juga nilai akurasi tertinggi sejumlah 0.81, dan presisi sejumlah 0.30.

Metrics	Before	Grid	Random
	Tuning	Search	Range

Accuracy	0.81	0.81	0.69
Precision	0.29	0.30	0.23
Recall	0.47	0.49	0.73
F1 Score	0.36	0.37	0.35
ROC-AUC Train	0.72	0.75	0.78
ROC-AUC Test	1.00	1.00	0.89
gap (test-train)	0.28	0.25	0.11

Confusion Matrix & ROC Curve Area before implementing Hyperparameter Tuning to data

Confusion Matrix & ROC Curve Area after implementing Hyperparameter Tuning and searching for its best parameter using GridSearch to data

Confusion Matrix & AUC Learning Curve in 5 phase for Train & Test Data after implementing Hyperparameter Tuning in guidance with GridSearch result to data

Decision Tree

Evaluasi model dengan metode *Decision Tree* diterapkan secara *universal* terhadap fungsi yang memiliki ukuran melalui *confusion matrix* lebih lengkap yaitu *accuracy*, *precision*, dan *recall*. Selain itu diterapkan juga terhadap pengukuran F1 Score dan *metrics* ROC-AUC. Implementasi diterapkan dalam 3 tahapan yaitu melalui implementasi metode *logistic regression* tanpa *hyperparameter tuning*, melalui *hyperparameter tuning* menggunakan Grid Search,

dan *manual tuning based on* Grid Search *result*. Berikut merupakan hasil yang didapatkan melalui proses tersebut.

Kesimpulan yang didapatkan melalui pengamatan hasil adalah bahwa model bersifat *underfitting* apabila dilihat dari nilai ROC-AUC data *train* dan *test*. Selain itu didapatkan juga nilai akurasi tertinggi sejumlah 0.58, dan presisi sejumlah 0.15.

Metrics	Before Tuning	Grid Search	Random Range
Accuracy	0.39	0.39	0.58
Precision	0.14	0.14	0.15
Recall	0.85	0.83	0.58
F1 Score	0.24	0.24	0.24
ROC-AUC Train	0.59	0.59	0.58
ROC-AUC Test	1.00	1.00	0.72
gap (test-train)	0.41	0.41	0.14

Confusion Matrix & ROC Curve Area before implementing Hyperparameter Tuning to data

Confusion Matrix & AUC Learning Curve in 2 phase for Train & Test Data after implementing Hyperparameter Tuning in guidance with GridSearch result to data

Random Forest

Evaluasi model dengan metode *Random Forest* diterapkan secara *universal* terhadap fungsi yang memiliki ukuran melalui *confusion matrix* lebih lengkap yaitu *accuracy, precision,* dan *recall.* Selain itu diterapkan juga terhadap pengukuran F1 Score dan *metrics* ROC-AUC. Implementasi diterapkan dalam 3 tahapan yaitu melalui implementasi metode *logistic regression* tanpa *hyperparameter tuning,* melalui *hyperparameter tuning* menggunakan Grid Search, dan *manual tuning based on* Grid Search *result.* Berikut merupakan hasil yang didapatkan melalui proses tersebut.

Kesimpulan yang didapatkan melalui pengamatan hasil adalah bahwa model bersifat *underfitting* apabila dilihat dari nilai ROC-AUC data *train* dan *test*. Selain itu didapatkan juga nilai akurasi tertinggi sejumlah 0.50, dan presisi sejumlah 0.16.

Metrics	Before	Grid	Random
	Tuning	Search	Range

(test-train)			
gap	0.29	0.30	0.29
ROC-AUC Test	1.00	1.00	1.00
ROC-AUC Train	0.71	0.70	0.71
F1 Score	0.26	0.26	0.26
Recall	0.82	0.77	0.77
Precision	0.15	0.16	0.16
Accuracy	0.46	0.50	0.50

Confusion Matrix & ROC Curve Area before implementing Hyperparameter Tuning to data

Confusion Matrix & ROC Curve Area after implementing Hyperparameter Tuning and searching for its best parameter using GridSearch to data

d. Model Evaluation: Picking the best-fit model

Sejauh ini dari implementasi *modeling* yang telah diterapkan terhadap *data* menggunakan 4 metode yaitu *logistic regression*, k-NN, *decision tree*, dan *random forest* belum ditemukan *best fit model* yang mampu melakukan klasifikasi yang baik karena hasil evaluasi yang semuanya menunjukan keadaan yang *underfitting* yang dilihat dari ROC-AUC *score* data *test* dan *train* yang memiliki nilai lebih besar di *test* daripada *train*. Kesimpulan yang dapat diberikan mengenai alasan fenomena tersebut dapat terjadi adalah karena *model* belum secara maksimal dapat melakukan klasifikasi maka darinya *underfit* dapat terjadi.

Hipotesis mengenai alasan terjadinya fenomena dapat dijelaskan karena tidak dilakukan model validation melalui *cross validation* yang diterapkan karena pada proses data tidak di-*split* antara *train* dan *test* secara konvensional dengan *random*. Namun keduanya hanya menerapkan dari yang telah tersedia sejak awal melalui *kaggle*. Untuk menguji hipotesis ini perlu dilakukan percobaan lebih lanjut dengan menentukan secara mandiri data *train* dan *test* lalu membandingkan hasil yang didapatkan.

Asumsi lain yang didapatkan dari *fenomena* adalah bahwa *pre-process* telah mengubah *data* sehingga bukannya lebih mudah dan jelas untuk diklasifikasi namun menjadi lebih sulit untuk diklasifikasi. Hal ini dapat dijelaskan dari nilai *accuracy score* lebih tinggi yang didapatkan pada *data* yang tidak di *pre-process* apabila melihat dokumentasi yang terdapat di *kaggle*. Hal ini perlu dibuktikan dengan menjalankan lebih banyak *testing*.

Namun dari model yang telah diterapkan apabila harus memilih *the best fit model* akan dipilih terlebih dahulu berdasarkan *underfit* terendah lalu diikuti dengan *the highest precision*. Terdapat 2 model yang dapat dikategorikan sesuai dengan deskripsi di atas yaitu adalah.

Method	Description	
k-NN	n_neighbors : 3500 (> sqrt(k=4250) = ~65.2)	
	metric (p) : manhattan (1)	
	gap : 0.11 (underfitting)	
	precision: 0.23	
Logistic Regression	solver : lbfgs	
	C : 1	
	max_iter : 210	
	penalty : 12	
	gap : 0.19 (underfitting)	
	precision: 0.31	

e. Hyperparameter Tuning

Method	Description
Logistic Regression	Hyperparameter tuning yang diterapkan pada metode logistic regression terdapat banyak namun pada

	berikut merupakan	percobaan yang telah dilakukan selama <i>modeling</i> berikut merupakan <i>tuning</i> yang diterapkan menggunakan Grid Search.	
	solver	liblinear	
	С	0.0001, 0.05, 1, 10, 50, 100	
	max_iter	210, 1000, 10000	
	penalty	11,12	
		Best parameter value yang diperoleh untuk metode logistic regression adalah sebagai berikut.	
	solver	liblinear	
	С	50	
	max_iter	210	
	penalty	12	
K-NN	Hyperparameter tuning yang diterapkan p k-NN terdapat banyak namun pada percob telah dilakukan selama modeling berikut r tuning yang diterapkan menggunakan Gri		
	n_neighbors	10, 50, 100, 250, 450	
	metrics (p)	euclidean, manhattan	
	algorithm	auto	
		Best parameter value yang diperoleh untuk metode k-NN adalah sebagai berikut.	
	n_neighbors	3500	

	metrics (p)	manhattan (1)
	algorithm	auto
Decision Tree	Hyperparameter tuning yang diterapkan pada met decision tree terdapat banyak namun pada percoba yang telah dilakukan selama modeling berikut merupakan tuning yang diterapkan menggunakan Search.	
	max_depth	None, 5, 10, 20
	min_samples_split	2, 5, 10
	criterion	gini
	splitter	best
	Best parameter value yang diperoleh untuk metode decision tree adalah sebagai berikut.	
	max_depth	None
	min_samples_split	10
	criterion	gini
	splitter	best
Random Forest Hyperparameter tuning yang diterapkan Random Forest terdapat banyak namun p percobaan yang telah dilakukan selama n berikut merupakan tuning yang diterapka menggunakan Grid Search.		banyak namun pada akukan selama <i>modeling</i> g yang diterapkan
	n_estimator	50, 100, 200
	max_depth	None, 5, 10

	min_samples_split	2
	criterion	gini
	Best parameter value yang diperoleh untuk metode Random Forest adalah sebagai berikut.	
	n_estimator	273
	max_depth	None
	min_samples_split	2
	criterion	gini

2. Feature Importance

a. Best Feature

Method	Description
Logistic Regression	Previous : 1.138362

Secara business hasil yang didapatkan menggunakan metode logistic regression menunjukan bahwa feature previous merupakan feature yang paling penting. Hal ini dapat juga dijelaskan secara korelasi melalui hubungan sebesar 0.20 antara keduanya yang merupakan hubungan positive terkuat pada feature correlation to label. Hal ini berarti penggunaan nilai previous yang merupakan nilai pernah tidaknya nasabah di kontak pada campaign sebelumnya menjadi penting.

Business Recommendation yang dapat diberikan adalah agar kontak dapat dijalin dengan lebih baik pada nasabah karena sangat berpengaruh pada ketersediaan menerima program penawaran yang dalam hal ini adalah terkait term deposit.

K-NN

| -

Decision Tree

Housing

Secara business hasil yang didapatkan menggunakan metode Decision Tree menunjukan bahwa feature Housing merupakan feature yang paling penting. Hal ini dapat juga dijelaskan secara korelasi melalui hubungan sebesar -0.16 antara keduanya yang merupakan hubungan negative terkuat pada feature correlation to label. Hal ini berarti bahwa kepemilikan housing loan menjadi penting sebagai penentu apakah nasabah cenderung menerima term deposit atau tidak.

Bentuk korelasi *negative* yang dimiliki, saat ini memberikan asumsi bahwa semakin tidak seseorang memiliki *loan* atau (Housing = 0) menjadikan seseorang lebih cenderung menerima penawaran *term deposit* (y=1).

Sehingga *business recommendation* yang dapat diberikan adalah agar *marketing* dapat lebih difokuskan terhadap seseorang tanpa Housing Loan.

Random Forest

