Power Systems Introduction

The nature of electric power

- A type of energy obtained by the movement of electrons in conductors
- Electrons are confined to conductors by the use of insulators
- The delivery of electric power requires a conductive path from source to consumer
- In the case of alternating current (AC) power, electro-magnetic fields also play a part in conduction of the power from source to user

Generation, Transmission and Distribution

Nuclear Power and wind power

An Old Powerhouse

Turbine Generator

Converts mechanical power to electrical

Turbine Generator Unit

Turbine

© 2023, T.S. Sidhu

Power Transformation

 Alternating current has the beneficial property of being easily transformed from one voltage level to another.

A three phase 500 – 230 kV system transformer

A three phase 25 kV to 416V distribution transformer

Generation, Transmission and Distribution

Power Transmission

- The higher the voltage, the easier to transmit power over long distances.
- The voltage is stepped up at major generating stations for transmission
- Then may be changed again at switching stations for transmission over greater or lesser distances
- Then stepped down at substations near the load for distribution.

Power Transmission

- In North America, transmission voltages range from 60kV –
 765 kV.
- Typical transmission voltage (kV) levels include
- 60, 64, 66, 69, 115, 138, 161, 220, 230, 240, 287, 345, 400,
 500, 735, 765. In Russia, 1000 kV transmission is in service.
- DC transmission is also used in some special circumstances,
 but will not be discussed in this course

Transmission System

A 500 kV transmission Line

A 230 kV transmission line

Double Circuit Transmission Lines

Transmission networks

- The transmission system is for transporting bulk power over long distances
 - It is networked in a looped or meshed system for reliability.
 - Loss of one component will not be catastrophic
- Transmission interconnections between neighboring companies
 - Reinforce each other for reliability
 - Enable the trading of bulk power
- Bulk power users (e.g. industrial) may connect at transmission voltage levels

Interconnected Systems

WECC System

Transmission System Physical Layout

Urban transmission system

Example Transmission System One Line

Transmission & Distribution

Stepping down to the distribution

69 kV in

13.8 kV out on several distribution feeders.

Distribution Substation single line diagram

Distribution system One Line Example

DISTRIBUTION FEEDER WITH AUTOMATIC RECLOSERS AND FUSE CUTOUTS

Load

The End User

14.4 kV in

240/120V out to several residential customers

Single Line Representation

- Note the sets of conductors indicate a three phase power system.
- Under normal conditions the three phase voltages and currents are identical to each other, but displaced by 120 degrees.
- By representing just one phase we can convey complete information about all three.

Overview of Power system

Three lines (plus neutral) simplified to one

Contents

- Overview of Power system
- 2. Power system Operation
- 3. Causes and types of faults
- 4. Why protect?
- 5. Factors influencing protection system design
- 6. Aspects of protection system
- 7. Zones of protection
- 8. Protection types and classes
- 9. Important consideration while applying protection
- 10. ANSI reference numbers

Wicket gate operating mechanism

Connecting Arm

Hydraulic Servo motor

Water intake gates inside turbine

The reactive load – generation balance

- Reactive power controls the voltage on the system
- Voltage is allowed to vary slightly with narrow limits
- Imbalance in reactive power affects voltage level, but not without limit.
 - Sensitivity of reactive loads to voltage is much larger than sensitivity of real loads to frequency

AVR Controls Generator

- Automatic voltage regulator (AVR) tries to maintain set voltage
- If voltage is fixed, increasing set voltage increases reactive power output

Generator field windings

Exciters (small dc generators)

Turbine Generator with controls

Unit CB open

Unit CB Closed

Generator Capability Diagram

Real power balance affects frequency

- Consumers of real power
 - Loads
 - Losses in generation, transmission and distribution
- Producers of real power
 - Generators
- Balance achieved by
 - Monitoring daily and seasonal load fluctuations
 - Taking generators on and off line (manual coarse)
 - Adjusting set points of generator governors (manual and automatic fine)
 - Providing droop control on generator governors (automatic)

Reactive power balance affects voltage

- Consumers of reactive power
 - Transformers
 - Transmission lines
 - Distribution lines
 - Inductive component of loads
 - Reactors (shunt and series)
 - Power electronics (HVDC)
- Producers of reactive power
 - Generators, synchronous condensers and motors
 - Capacitors (shunt and series)
 - Cables, lightly loaded transmission systems
 - Power electronics (SVC, Statcon, FACTS)

Reactive power consumption

- Series reactance
 - T&D lines
 - Transformers
 - Series reactors
- Mvar = I^2X_L

- Shunt reactance
 - Inductive component of loads
 - Shunt reactors
- Mvar = V^2/X_R

- Generators, synchronous motors, power electronics
 - Mvar depends on controls

Reactive power generation

- Series capacitors
- Mvar = I^2X_C

- Shunt capacitance
 - Lightly loaded T&D
 - Shunt reactors
- Mvar = V^2/X_C

- Generators, synchronous motors, power electronics
 - Mvar depends on controls
- Pay attention to the sign of reactive power
- Absorbed is ve, generated is + ve