

Phase-2 Submission

Student Name: Santhanayaki.M

Register Number: 410723104075

Institution: Dhanalakshmi College of Engineering

Department: Computer Science and Engineering

Date of Submission: 03-05-2025

Github Repository Link: Github link

1. Problem Statement

"Predicting customer churn using machine learning to uncover hidden patterns"

Real-world Problem:

The project addresses a customer churn prediction problem in the retail/subscription domain. Businesses relying on subscription models (e.g., telecom, streaming services, SaaS platforms) suffer losses when customers cancel or downgrade their plans. Churn directly affects revenue, growth, and brand loyalty.

Problem Type:

Classification Problem: The goal is to classify customers based on their churn risk score, which ranges from 1 (low risk) to 5 (high risk).

Why It Matters:

- * Business Impact: Knowing which customers are likely to churn enables proactive retention strategies, personalized campaigns, and reduced customer acquisition costs.
- * Customer Experience: Helps in identifying dissatisfaction triggers early and offering tailored solutions.
- * Relevance: Applicable across any domain involving recurring users or subscription-based models.

2. Project Objectives

Primary Goals:

- Accurately predict the churn risk score using machine learning models.
- ❖ Understand **key factors influencing churn**, like login frequency, complaints, offer preference, and region.
- * Build interpretable models to aid decision-makers in strategizing retention.

Technical Objectives:

- Perform data preprocessing, handle missing data, outliers, and irrelevant columns.
- ❖ Conduct Exploratory Data Analysis (EDA) to derive insights.
- ***** *Engineer new features if necessary.*
- ❖ Implement and compare at least two classification algorithms.
- Evaluate using appropriate metrics: accuracy, precision, recall, and F1-score.

Updated Objective Post-EDA:

- Drop features with high missing or noisy data (e.g., avg_frequency_login_days).
- * Focus on simplifying the model while improving accuracy.

3. Flowchart of the Project Workflow

4. Data Description

Source: <u>Dataset link</u>

Type: Structured Dataset in tabular format.

Shape: 36,992 records, 25 features (columns).

Static or Dynamic: Static dataset.

Target Variable: churn_risk_score (integer from 1 to 5).

Feature Types:

- Numerical Features: age, days_since_last_login, avg_transaction_value, points_in_wallet, etc.
- Categorical Features: gender, region_category, membership_category, feedback, etc.
- * Datetime Fields: joining_date, last_visit_time.

5. Data Preprocessing

- 1. Missing Values: region_category (5,428 nulls), points_in_wallet (3,443 nulls) filled using median imputation.
- **2. Data Type Conversion:** Converted joining_date and last_visit_time to datetime64.
- 3. Error Handling: Replaced incorrect churn_risk_score values like -1 using custom functions (def, lambda) based on pattern analysis.
- **4. Dropped Irrelevant/Redundant Features:** customer_id, name, security_no, referral_id, avg_frequency_login_days due to low relevance or data quality issues.
- **5. Encoding Categorical Data:** Though not shown explicitly, encoding (label or one-hot) was likely applied during modeling phase.

6. Null Thresholding: Rows with **<5% missing values** were dropped to preserve data quality.

6. Exploratory Data Analysis (EDA)

Univariate Analysis:

- * Gender: Balanced male/female distribution.
- * Region Category: Most customers are from towns > cities > villages.
- * Membership: Basic and non-membership dominate over premium memberships.
- * Referral: More customers joined without referrals.
- * Offer Type: Clear distribution of preferences among offer categories.

Numerical Columns: Distribution of age, avg_time_spent, transaction value, and login behavior studied via histograms and box plots.

Bivariate Analysis:

- Heatmap used to detect correlation between numerical variables.
- * Example: Users with more complaints or less time spent showed higher churn.

Insights Summary: Users with limited engagement, low wallet points, and past complaints are likely to have higher churn scores.

7. Feature Engineering

Steps Taken:

- * Removed noisy or irrelevant features.
- Created cleaner variables from date fields (not detailed).
- * Prepared a base model with refined features post-EDA and preprocessing.

8. Model Building

Algorithms Used:

- * At least one base classification model implemented.
- ❖ (Specific algorithms like Logistic Regression, Decision Trees, Random Forest are typical but not named here).

Data Split:

- * Presumably a train-test split was used.
- ***** Evaluation Metrics:
- **Accuracy** reported.
- ❖ Other metrics like precision, recall, and F1-score expected in final evaluation.

9. Visualization of Results & Model Insights

Visual Tools:

- * Bar plots for counts, heatmaps for correlation.
- Visualized distributions across customer segments.

Model Interpretation:

- * Confusion matrix used to measure classification performance.
- * Key variables (wallet points, complaints, membership) influence churn risk.

10. Tools and Technologies Used

- * Language: Python
- * Libraries: pandas, numpy, matplotlib, seaborn, scikit-learn

- * IDE: Likely Jupyter Notebook or Google Colab (not explicitly stated)
- * Visualization: matplotlib, seaborn

11. Team Members and Contributions

Team Members:	Roles:	Contribution:
Vidhya.S	Team Leader	Model planning, Final report, Documentation
Santhanayaki.M	Member	Data cleaning, EDA, Preporcessing
Saghana.K.S	Member	Feature Engineering , Code integration, Documentation
Rakshi.D	Member	Model building, Evaluation ,Data Transformation