

Ugrađeni sustavi

Jurica Maltar

 I^2C

I²C (Inter-Integrated Circuit)

- Protokol nastao ranih 80ih u Philips-u za potrebe komunikacije između različitih elektroničkih komponenti
- Danas se koristi u mnogim uređajima
- Komunicirat ćemo između više Arduina, Arduina i RPi-ja te Arduina i senzora

Arhitektura I²C protokola

- MASTER SLAVE arhitektura
 - MASTER je uređaj koji inicijalizira komunikaciju prema jednome ili više SLAVE-ova
 - SLAVE odgovara na zahtjeve MASTER-a
 - MASTER SLAVE nalikuje KLIJENT – POSLUŽITELJ arhitekturi. U čemu je sličnost, a u čemu je razlika?

Arhitektura I²C protokola

- U komunikaciji su dva bitna kanala (zato se kaže da je I²C dvožićani protokol, štoviše, on je sinonim za dvožićane protokole)
 - SDA dvosmjerni kanal za prijenos podataka
 - SCL jednosmjerni kanal za frekvenciju prijenosa podataka

- Svaki uređaj koji je sudionik komunikacije može imati ulogu ili MASTER-a ili SLAVE-a (isključivo ili)
 - Npr. RPi je MASTER, a dva Arduina su SLAVE-ovi ili Arduino MASTER i 5 drugih Arduina SLAVE-ovi ili RPi MASTER i IMU6050 SLAVE
- Kako je i rečeno, svaki sudionik komunikacije koristi dva kanala:
 - MASTER koristeći SCL kanal sinkronizira prijenos podataka svi sudionici prijenose podatke po frekvenciji na SCL kanalu. Stoga, I²C je tzv. *sinkron* protokol.
 - Po dvosmjernome SDA kanalu podaci mogu ići od MASTER-a prema SLAVE-u ili od SLAVE-a prema MASTER-u u ovisnosti o tome je li MASTER zatražio slanje podataka prema SLAVE-u (read) ili primanje podataka od strane SLAVE-a (write)

- Budući da je mnoštvo SLAVE-ova spojeno na isti kanal, kako bi se znalo kome je poruka namijenjena, koristi se adresiranje (7-bitno ili 10-bitno)
 - Svaki SLAVE ima jedinstvenu adresu (promijenjivu ili konstantnu)
- Za 7-bitno adresiranje, teoretski je moguće imati $2^7 = 128$ SLAVE uređaja
 - U praksi koristimo nekolicinu uređaja

Primjer: I²C write

* ACK ALWAYS LOW

* R/W LOW

Primjer: I²C read

- * ACK ALWAYS LOW
- * FIRST R/W LOW
- * SECOND R/W HIGH
- * NACK = NOT ACK

11

- Zbog previše uređaja i dugih žica u sustavu, dolazi do problema elektromagnetske interferencije i parazitske kondenzacije
 - Elektromagnetska interferencija smetnja koja prekida, narušava i ograničava rad elektroničkih komponenti
 - Parazitska kondenzacija neželjeni se naboj kondenzira među različitim komponentama
- Kondenzatori u praksi djeluju kao zaglađivači napona
 - Zašto to u ovdje nije poželjno?
 - Kada su kondenzatori poželjni?

I²C na Arduinu

Ugrađeni sustavi

I²C na Arduinu

- Iz pinout sheme uočavamo:
 - A4 SDA pin
 - A5 SCL pin
- I²C komunikaciju uspostavljamo uz pomoć Wire biblioteke
 - Wire podržava i SLAVE i MASTER mode
- Sudionici komunikacije byte-ove razmijenjuju uz pomoće read i write funkcija
- Kada MASTER zahtijeva podatke (read mode), na SLAVE-u se izvršava onRequest
- Kada MASTER šalje podatke (write mode), na SLAVE-u se izvršava onReceive

Pin#	NAME		NAME	Pin‡
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CEO_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

- Na RPi-ju je potrebno omogućiti I²C komunikaciju sljedećim nizom radnji:
 - 1. sudo raspi-config
 - 2. Interfacing options
 - Raspberry Pi Software Configuration Tool (raspi-config) A1 Overscan You may need to configure oversca A2 Hostname Set the visible name for this Pi A3 Memory Split Change the amount of memory made A4 SSH Enable/Disable remote command lin A5 Device Tree Enable/Disable the use of Device A6 SPI Enable/Disable automatic loading A7 I2C Enable/Disable automatic loading A8 Serial Enable/Disable shell and kernel m Force audio out through HDMI or 3 A9 Audio A0 Update Update this tool to the latest ve <Select> <Back>

4. sudo reboot

- Također, potrebno je konfigurirati brzinu prijenosa na razumnu frekvenciju kako se podaci unutar komunikacije ne bi gubili
 - 1. Otvoriti /boot/config.txt (sudo nano /boot/config.txt)
 - 2. Nadopuniti redak: dtparam=i2c_arm=on,i2c_arm_baudrate=32000
 - 3. sudo reboot

- Linux paket i2c-tools pomaže nam pri radu s I²C uređajima (ne samo RPi)
 - Alat kojim I²C komunikaciju uspostavljamo unutar naredbenog retka
 - sudo apt install i2c-tools
- Primjeri naredba i2c-tools paketa:
 - i2cdetect -1 (izlistaj sve unutarnje I²C uređaje sustava)
 - i2cdetect -y -r 1 (izlistaj sve vanjske I^2C uređaje sustava spojene na 1. unutarnji I^2C uređaj)
 - i2cdump -y 1 0x68 b (pročitaj sve što se nalazi na uređaju s adresom 0x68)
 - i2cset -y 1 0x53 0x2D 0x08 (postavi vrijednost 0x08 na 0x2D registar uređaja s adresom adresom 0x53)
 - i2cget -y 1 0x53 0x2D (dohvati vrijednost na 0x2D registru uređaja s 0x53 adresom)

20

Ugrađeni sustavi

- Budući da RPi-jevi pinovi šalju i prihvaćaju 3.3V, a Arduino-vi šalju i prihvaćaju 5V, potrebno je koristiti Logic Level converter
 - Signal od 3.3V s RPi-ja završit će na Arduinu kao signal od 5V
 - Vrijedi i obrnuto

- Exploring Raspberry Pi
- Exploring Arduino
- Wire library
- Linux I2C reference