Лабораторная работа №12

Сети Петри — Простой протокол

Ибатулина Д.Э.

25 апреля 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Ибатулина Дарья Эдуардовна
- студентка группы НФИбд-01-22
- Фундаментальная информатика и информационные технологии
- Российский университет дружбы народов
- · 1132226434@rudn.ru
- https://deibatulina.github.io

Вводная часть

Теоретическое введение (1)

Протоколы передачи данных - это наборы правил, определяющих порядок и способы обмена информацией между участниками вычислительных или телекоммуникационных систем.

Реальные протоколы передачи данных часто имеют сложную структуру, что затрудняет их анализ и отладку. Для исследования их свойств и выявления возможных ошибок широко применяется моделирование, в частности, с помощью сетей Петри и их расширений - раскрашенных сетей Петри (Coloured Petri Nets, CPN).

Цель и задачи работы

Цель работы

Реализовать простой протокол передачи данных в CPN Tools.

Задание

- Реализовать простой протокол передачи данных в CPN Tools.
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

Выполнение лабораторной работы

Рассматривается простейший протокол передачи данных в ненадёжной сети. Передача осуществляется по следующему принципу: отправитель разбивает исходное сообщение на части (пакеты) и отправляет их получателю, ожидая подтверждения (АСК) о доставке каждого пакета перед отправкой следующего. Если подтверждение не получено, пакет передаётся повторно.

Модель протокола строится в среде CPN Tools с использованием раскрашенных сетей Петри, что позволяет формально описать все возможные состояния системы и переходы между ними, а также смоделировать случайные потери пакетов и подтверждений. Анализ полученной модели даёт возможность оценить корректность работы протокола, выявить возможные тупиковые состояния и оптимизировать алгоритмы передачи данных.

Задание деклараций

```
► Tool box
▶ Help
▶ Options
▼lab12.cpn
   Step: 0
   Time: 0
                                      Binder 0
  ▶ Options
                                      Main colset INT
  ▶ History
                                       colset INT = int;
  ▼Declarations
                                       colset DATA = string;
    ▼Standard declarations
                                       colset INTxDATA = product INT * DATA:
     ▶ colset UNIT
                                       var n. k: INT:
     colset INT
                                       var p. str: DATA:
      colset BOOL
                                       val stop = "#######";
     colset STRING
  Monitors
   Main
```

```
val stop = "#######";
▼ colset Ten0 = int with 0..10
▼colset Ten1 = int with 0..10
var s: Ten0;
var r: Ten1;
```

```
Binder 0

Main fun Ok

fun Ok(s:Ten0, r:Ten1) = (r <= s);
```


Запуск модели простого протокола передачи данных (1)

Запуск модели простого протокола передачи данных (2)

Запуск модели простого протокола передачи данных (3)

Завершение моделирования простого протокола передачи данных

Пространство состояний для модели простого протокола передачи данных

Отчёт о пространстве состояний

Statistics

State Space

Nodes: 13341

Arcs: 206461

Secs: 300

Status: Partial

Scc Graph

Nodes: 6975

Arcs: 170859

Secs: 14

Пояснение отчёта о пространстве состояний

- 13341 состояний и 206461 переходов между ними.
- Указаны границы значений для каждого элемента: промежуточные состояния A, B, C (наибольшая верхняя граница у A, так как после него пакеты отбрасываются. Так как мы установили максимум 10, то у следующего состояния B верхняя граница 10), вспомогательные состояния SP, SA, NextRec, NextSend, Receiver (в них может находиться только один пакет) и состояние Send (в нем хранится только 8 элементов, так как мы задали их в начале и с ними никаких изменений не происходит).
- Указаны границы в виде мультимножеств.
- Маркировка home для всех состояний (в любую позицию можно попасть из любой другой маркировки).
- Маркировка dead равная 4675 [9999,9998,9997,9996,9995,...] это состояния, в которых нет включенных переходов.

Заключительная часть

Выводы по работе

В процессе выполнения данной лабораторной работы я реализовала простой протокол передачи данных в CPN Tools и провела анализ его пространства состояний.