University of South Bohemia

Faculty of Science

Praktika IV

Určení Rydbergovi konstanty

Datum: 18.10.2023 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

- Okalibrujte spektograf pomocí sodíkové lampy
- Změřte vlnové délky čar Balmerovy série vodíku/deuteria
- Vypočtěte Rydbergovu konstantu a z ní vypočtěte Planckovu konstantu

2 Seznam pomůcek

Spektrometr, držák s optickou mřížkou/hranolem, sodíková lampa, zdroj sodíkové lampy, vodíková spektrální trubice, lampička na přisvícení.

3 Teorie

Rydbergova konstanta je fyzikální konstanta pojmenovaná po švédském fyzikovi Johannesu Rydbergovi. Představuje nejvyšší možný vlnočet (převrácená hodnota vlnové délky) elektromagnetického záření, které může vyzářit nejjednodušší atom – atom vodíku – v limitě nekonečné hmotnosti jádra.

V tomto měření chceme najít Rydbergovu konstantu z Balmerovi série.

Balmerova série je série spektrálních čar (Balmerovy čáry) ve spektru atomů vodíku, které vznikají při přechodu elektronů mezi druhou energetickou hladinou a vyššími hladinami. Při přechodu elektronu mezi druhou a třetí energetickou hladinou se utváří při astronomických pozorování velmi důležitá červená čára H_{α} (s vlnovou délkou 656,3 nm), při přechodu mezi druhou a čtvrtou hladinou vzniká čára H_{β} atd...

$$\frac{1}{\lambda_n} = R_H \left(\frac{1}{2^2} - \frac{1}{n^2} \right) \left[\frac{1}{m} \right]; \quad (n \in \mathbb{N}) \land (n > 2)$$
 (1)

 λ je vlnová délka a R_H je Rydbergova konstanta pro vodík.

Klasickou korekci Rydbergovi konstanty na konečné jádro provedeme pomocí vzorce

$$R_{\infty} = R_H \frac{m_p + m_e}{m_p} \tag{2}$$

 $m_p=1.6726\cdot 10^{-27}[kg]$ je hmotnost protonu a $m_e=9.1093\cdot 10^{-31}[kg]$ je hmotnost elektronu.

Polohy maxim jsou dány vzorcem

$$dsin\theta = m\lambda \tag{3}$$

dje mřížková konstanta, mje řád difrakce, λ je vlnová délka a θ je úhel difrakce. Úhel pro difrakci se zjistí ze vztahu

$$\theta = \frac{\theta_L - \theta_P}{2} \tag{4}$$

 θ_L je úhel naměřený vlevo od nulové polohy a θ_R úhel naměřený vpravo od nulové polohy.

4 Postup měření

4.1 Kalibrace spektrometru a měření maxim u sodíku

Když jsem přišel, vše bylo zapojeno, zkontroloval jsem tedy zapojení. Zapl jsem sodíkovou lampu a přesunu tak, aby svítila na štěrbinu. Nastavil jsem spektrometr tak, aby byl v jedné přímce s trubicí. Potom jsem nastavil velikost štěrbiny a zaostřil jsem dalekohled. Nastavil jsem dalekohled, aby první čára ze spektra byla přesně na kříži. Zaznamenal jsem si tuto hodnotu. Posouval jsem dalekohled doleva, dokud jsem neobjevil dalši čáru a zapsal jsem si její hodnotu vycentrovanou na kříži. To jsem udělal ještě pro jednu a vrátil jsem dalekohled do nulové polohy. Opakoval jsem následující i pro pravou stranu.

4.2 Pozorování Balmerovy série

Vyměnil jsem sodíkovou lampu za vodíkovou. Nastavil jsem rameno do nulové polohy a dělal jsem přesně to samý jako u sodíkový lampy. Dokázal jsem změřit difrakci k 4. řádu.

5 Data

5.1 Sodium

Tabulka 1:

doleva	doprava	difrakce	difrakční uhel θ [°]	mřížková konst. $d[m \cdot 10^{-6}]$
292.417	333.716	1	20.65	1.672
292.0	333.616	1	20.808	1.66
268.166	358.7	2	45.267	1.66
268.25	358.833	2	45.292	1.659
268.55	358.833	2	45.142	1.664

$$\overline{d} = \sum_{i=1}^{n} \frac{d_i}{n}$$

$$\bar{d} = 1.663 \cdot 10^{-6}$$

$$\sigma_d = \sqrt{\frac{\sum_{i=1}^n (d_i - \overline{d})^2}{n-1}}$$

$$\sigma_d = 5.3342 \cdot 10^{-9}$$

Pro určení vlnových délek a jejich přechodů jsem používal tuto tabulku:

Tabulka 2:

Tabuika 2.					
n_2	λ	color			
3	656	red			
4	486	teal			
5	434	blue			
6	410	indigo			
7	397	violet			

- 5.2 Hydrogen