Design and Analysis of a Laminated Composite Tube

Jiatai Deng, Jiawei Shuang, Xuanye Hu Department of Mechanical, Aerospace and Civil Engineering

March 9, 2020

Contents

1	General description and requirement	1
2	Design approach and theory	1
	2.1 Case 1: Internal pressure of 3 MPa (ends closed)	. 3
	2.2 Case 2:Axial compression of $P = 25kN$. 4
	2.3 The maximum angle of twist without failure	. 4
3	Results and analysis to prove the success of the design	4
A	Appendix	4

General description and requirement 1

A cylindrical tube of 4 layers of composite with a layup of $[\alpha \beta \alpha \beta]$ is to be designed and by winding tapes cut from a UD carbon-epoxy prepreg sheet on to a cylindrical mandrel of a 25mm radius. For the consideration of practicality, the range of these two winding angles will have to fall in $[-75^{\circ}, -30^{\circ}]$ or $[+30^{\circ}, +75^{\circ}]$ to the axis of the tube. The thickness of the prepreg is 0.25mm. The tube should be made to a length of 300mm.

Material properties:

Internal pressure: $q = 3 \times 10^6$ Axial force: P = 25kN

Tube radius: $R = 25 \times 10^{-3}$ Tube length L = 0.3

Elastic constant: E1 = 236GPa E2 = 5GPa G = 2.6GPa $v_{12} = 0.25GPa$ Strengths: $\sigma_{1t}^* = 3800MPa$ $\sigma_{2t}^* = 41MPa$ $\sigma_{1c}^* = 689MPa$ $\sigma_{2c}^* = 107MPa$

 $\tau_{12}^* = 69MPa$

Design approach and theory

The thickness of each layers is 0.25mm, thickness in the range is between 0.1 1.0 mm can be seen as lamina. So the developed tube is a laminate with layup: $[\alpha/\beta/\alpha/\beta]$ and the laminate theory can be used for stress analysis.

STEP I: Define the two winding angles:

According to the requirement, the winding angle of 4 layers can be defined:

$$-75^{\circ} \le \alpha \le -30^{\circ} \text{ or } 75^{\circ} \le \alpha \le 30^{\circ}$$

$$-75^{\circ} \le \beta \le -30^{\circ} \text{ or } 75^{\circ} \le \beta \le 30^{\circ}$$

STEP II: Define the Stress-Strain Relationship [Q]:

According to the Laminar Stress-Strain Relationship in Material coordinate system:

$$\begin{cases}
\sigma_{1} \\ \sigma_{2} \\ \tau_{12}
\end{cases} = \begin{bmatrix}
Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66}
\end{bmatrix} \begin{cases}
\epsilon_{1} \\ \epsilon_{2} \\ \gamma_{12}
\end{cases} = \begin{bmatrix}
\frac{E1}{1-\nu^{2}\frac{E2}{E1}} & \frac{\Upsilon E2}{1-\nu^{2}\frac{E2}{E1}} & 0 \\ \frac{\Upsilon E2}{1-\nu^{2}\frac{E2}{E1}} & \frac{E2}{1-\nu^{2}\frac{E2}{E1}} & 0 \\ 0 & 0 & G
\end{bmatrix} \begin{cases}
\epsilon_{1} \\ \epsilon_{2} \\ \gamma_{12}
\end{cases} \tag{1}$$

STEP III: Define the Coordinate transformation [T]

The winding angle of 4 layers of composite: $\theta = \begin{pmatrix} \alpha \\ \beta \\ \alpha \\ \beta \end{pmatrix}$, the coordinate transformation between (x-y) and (1-2) matrix:

$$\{T\} = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & -2\cos \theta \sin \theta \\ \sin^2 \theta & \cos^2 \theta & 2\cos \theta \sin \theta \\ \cos \theta \sin \theta & -\cos \theta \sin \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix}$$
(2)

STEP IV: Define maximum stress failare criterion

According to the maximum stress failure criterion, material will fail when any of the following conditions is violated:

$$\frac{\sigma_{1}}{\sigma_{1t}^{*}} \leq 1 \quad if \quad \sigma_{1} > 0 \qquad \qquad \frac{|\sigma_{1}|}{\sigma_{1c}^{*}} \leq 1 \quad if \quad \sigma_{1} < 0$$

$$\frac{\sigma_{2}}{\sigma_{2t}^{*}} \leq 1 \quad if \quad \sigma_{2} > 0 \qquad \qquad \frac{|\sigma_{2}|}{\sigma_{2c}^{*}} \leq 1 \quad if \quad \sigma_{2} < 0$$

$$\frac{|\tau_{12}|}{\tau_{12}^{*}} \leq 1$$
(3)

STEP V: Define Twist angle

Tube is fixed at the bottom end and axially compressed at the top. Generator on the tube deforms by an angle γ_{xy} . Point A at the top end moves to A' by a distance $\gamma_{xy}L$. We can get the twist angle of the tube formula:

$$\theta = \frac{\gamma_{xy}L}{R} \tag{4}$$

There are two loading conditions, separately analysis:

2.1 Case 1: Internal pressure of 3 MPa (ends closed)

The generalised stresses:

$$N = \begin{cases} N_x = \frac{1}{2}qR \\ N_y = qR \\ N_{xy} = 0 \end{cases}$$
 (5)

Generalised stress-strain Relationship:

$$\begin{cases}
N \\
M
\end{cases} = \begin{bmatrix}
A & B \\
B & D
\end{bmatrix} \begin{cases}
\epsilon^{0} \\
\kappa
\end{cases}$$

$$[A] = t [T] [Q] [T]^{T}$$
(6)

Strain in x-direction:

$$\epsilon_{x} = [A]^{-1} N \tag{7}$$

Lamina 1: The winding angle is α .

In the STEP II, Stress-Strain Relationship has been defined:

$$\epsilon_{\alpha} = [T_{\alpha}] [A]^{-1} T \epsilon_{x} \qquad \epsilon_{\alpha} = \begin{cases} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{cases} \qquad \sigma_{\alpha} = [Q] \epsilon_{\alpha} \qquad \sigma_{\alpha} = \begin{cases} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{cases}$$
(8)

Maximum stress failure criterion is given in step IV, substitute σ into the formula to determine failure situation. And the results can indicate the failure modes, if $\frac{|\sigma_{1/2}|}{\sigma_{t/c}^*} \geq 1$, this means Shear failure occurs, if $\frac{|\tau_{12}|}{\tau_{12}^*} \geq 1$, this means Transverse tensile failure occurs.

Lamina 2: The winding angle is β .

In the STEP II, Stress-Strain Relationship has been defined:

$$\epsilon_{\beta} = \begin{bmatrix} T_{\beta} \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^{-1} {}^{T} \epsilon_{x} \qquad \epsilon_{\beta} = \begin{cases} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{cases} \qquad \sigma_{\beta} = \begin{bmatrix} Q \end{bmatrix} \epsilon_{\beta} \qquad \sigma_{\beta} = \begin{cases} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{cases}$$
(9)

Using the maximum stress failure criterion to indicate the failure modes as Lamina 1.

2.2 Case 2:Axial compression of P = 25kN

The generalised stresses:

$$N = \begin{cases} N_x = \frac{P}{2\pi R} \\ N_y = 0 \\ N_{xy} = 0 \end{cases}$$
 (10)

Generalised stress-strain Relationship:

$$\begin{cases}
N \\
M
\end{cases} = \begin{bmatrix}
A & B \\
B & D
\end{bmatrix} \begin{cases}
\epsilon^{0} \\
\kappa
\end{cases}$$

$$[A] = t [T] [O] [T]^{T}$$
(11)

Strain in x-direction: $\epsilon_x = [A]^{-1} N$

The rest of the calculation method is the same as Case 1.

2.3 The maximum angle of twist without failure

Among all the winding angles which enable the tube to withstand the axial load and the internal pressure, there will be a set of angle values: α and β to make the tube get the maximum twist angle without failure.

3 Results and analysis to prove the success of the design

A Appendix

```
%%Unit: Pa, m%%
  %%Term CASE1FM loading case 1 Failure matrix%%
  %%Term CASE2FM loading case 2 Failure matrix%%
  %%Term AssemblyFM Assembled Falure matrix [-30,30] has been removed%%
  %%Term CASE2TA loading case 2 twist angle%%
  %%Term BP Best point%%
  format short %%Modify according to the requirement%%
  %%Basic parameters%%
10
11
  resolution=1; %%Modify according to the requirement%%
12
  Delete=[0]; %%leave it alone%%
13
  q=3e6;
  P = -2.5e4;
```

```
R = 25e - 3;
  thick=2.5e-4;
  L=0.3;
18
  E1=236e9;
  E2=5e9;
20
  G=2.6e9;
22
  v=0.25;
  Xt = 3800e6;
23
  Xc = 689e6;
  Yt=41e6;
25
  Yc = 107e6;
26
  S=69e6:
27
  TAT_1=zeros(150/resolution+1); %%Initial matrix of Twist Angle%%
28
  TAT_1=zeros(150/resolution+1);
  for i=-75/resolution:1:75/resolution %%2 for loots control the Alpha
30
     and Beta%%
      Alpha=i*resolution;
31
      AlphaF=i+75/resolution+1;
32
       for i=-75/resolution:1:75/resolution
33
           Beta=i*resolution;
           BetaF=i+75/resolution+1;
           Theta=[Alpha; Beta; Alpha; Beta];
           t=[thick;thick;thick];
           ctraQ=1-((v^2)*(E2/E1));
           Q=[E1/ctraQ v*E2/ctraQ 0; v*E2/ctraQ E2/ctraQ 0; 0 0 G];
           TT = [0;0;0];
               for i = 1:4 %%Find related equition in sheet%%
                   straTAlpha=sind(Theta(i));
                   ctraTAlpha=cosd(Theta(i));
                   TAlpha=[ctraTAlpha^2 straTAlpha^2 -2*ctraTAlpha*
                       straTAlpha;
                   straTAlpha^2 ctraTAlpha^2 2*ctraTAlpha*straTAlpha;
                   ctraTAlpha*straTAlpha -ctraTAlpha*straTAlpha
                       ctraTAlpha^2-straTAlpha^2];
                   TT=[TT TAlpha];
                   eval(['TT',num2str(i),'=TAlpha;'])
               end
           TT=TT(:, 2:13);
           A=zeros(3);
               for i=1:4
                   m=(i-1)*3+1;
                   n=i*3;
```

```
TTa=TT(:,m:n);
55
                     A=A+thick*TTa*Q*TTa';
56
                     Delete=Delete';
57
                end
58
            a=A^{(-1)};
59
           Q0=Q;
60
61
            %%Case one%%
62
63
           N_1 = [0.5*q*R; q*R; 0];
64
           Epsilonx_1=a*N_1;
65
           Phi_1=Epsilonx_1(3)*L/R*180/pi;
66
           TAT1(AlphaF, BetaF)=Phi_1;
67
                for i=1:4
68
                     m=(i-1)*3+1;
69
                     n=i*3;
70
                     TTa=TT(:,m:n);
71
                     Epsilon_1= TTa'*Epsilonx_1;
72
                     Delete=Delete';
73
                     Sigma=Q0*Epsilon_1;
                         if Sigma(1)>=0
                              w1=Sigma(1)/Xt;
76
                         else
                              w1 = -Sigma(1)/Xc;
78
                         end
                         if Sigma(2) >= 0
80
                              w2=Sigma(2)/Yt;
81
                         else
                              w2 = -Sigma(2)/Yc;
83
                         end
                     w3=abs(Sigma(3)/S);
85
                     w = [w1; w2; w3];
                     eval(['wcone',num2str(i),'=w;'])
87
                end
           wwassembly_1=[wcone1 wcone2 wcone3 wcone4];
           Fail_case_one_1=all(wwassembly_1(:) <=1);</pre>
           TATT_1(AlphaF,BetaF)=Fail_case_one_1;
           TATT_1=TATT_1 * 1;
            %%Case two%%
95
           N_2 = [P/(2*pi*R); 0; 0];
```

```
Epsilonx_2=a*N_2;
97
            Phi_2=Epsilonx_2(3)*L/R*180/pi;
98
            TAT_2(AlphaF,BetaF)=Phi_2;
99
                 for i=1:4
100
                     m=(i-1)*3+1;
101
                     n=i*3;
102
                     TTa=TT(:,m:n);
103
                     Epsilon_2= TTa'*Epsilonx_2;
104
                     Delete=Delete';
105
                     Sigma=Q0*Epsilon_2;
106
                          if Sigma(1)>=0
107
                              w1=Sigma(1)/Xt;
108
                          else
109
                              w1 = -Sigma(1)/Xc;
110
                          end
111
                          if Sigma(2) >= 0
112
                              w2 = Sigma(2)/Yt;
113
                          else
114
                              w2 = -Sigma(2)/Yc;
115
                          end
116
                     w3=abs(Sigma(3)/S);
                     w = [w1; w2; w3];
118
                     eval(['wcone',num2str(i),'=w;'])
119
                 end
120
            wwassembly_2=[wcone1 wcone2 wcone3 wcone4];
121
            Fail_case_one_2=all(wwassembly_2(:) <=1);</pre>
122
            TATT_2(AlphaF,BetaF)=Fail_case_one_2;
123
            TATT_2=TATT_2 * 1;
       end
   end
127
   CASE1FM=TATT_1;
   XX=-75:resolution:75;
129
   YY=-75:resolution:75;
   CASE2FM=TATT_2;
   CASE2TA=TAT_2;
   CASE1FM((-30+75)/resolution+1:(30+75)/resolution+1,:)=0;
   CASE1FM(:,(-30+75)/resolution+1:(30+75)/resolution+1)=0;
134
   CASE2FM((-30+75)/resolution+1:(30+75)/resolution+1,:)=0;
136
   CASE2FM(:,(-30+75)/resolution+1:(30+75)/resolution+1)=0;
137
138
```

```
%%Assemble the Failure matrix%%
139
140
   AssemblyFM=CASE1FM.*CASE2FM;
141
142
   %%Find the best point%%
143
144
   TAFM=AssemblyFM. *CASE2TA;
   BPZ=max(max(TAFM));
146
   [BPX BPY]=find(TAFM==max(max(TAFM)));
   BPX=(BPX(1)-1-75/resolution)*resolution;
   BPY=(BPY(1)-1-75/resolution)*resolution;
   BP=[BPX BPY BPZ]
150
151
   %%0 become NAN for figure%%
152
153
   ind=find(TAFM==0);
154
   TAFM(ind)=NaN;
155
156
   %%Figure%%
157
       %%Colormap transformation%%
158
   colormap(parula);
160
161
       %%TA Figure%%
162
163
   mesh(XX,YY,CASE2TA);
164
   title('Twist Angle', 'Fontname', 'Times New Roman', 'FontSize', 24);
   x1=xlabel('Alpha (degree)', 'Fontname', 'Times New Roman', 'FontSize'
      ,18);
   x2=ylabel('Beta (degree)', 'Fontname', 'Times New Roman', 'FontSize'
      ,18);
   x3=zlabel('Twist angle (degree)', 'Fontname', 'Times New Roman','
      FontSize',18);
   set(x1,'Rotation',18);
   set(x2,'Rotation',-25);
170
   saveas(gcf,'Twist Angle.jpg');
172
       %%TA plane figure%%
174
   contour(XX,YY,CASE2TA,10,'ShowText','on');
```

```
title('Twist Angle (degree)', 'Fontname', 'Times New Roman', 'FontSize'
      ,24);
   x1=xlabel('Alpha (degree)', 'Fontname', 'Times New Roman', 'FontSize'
178
   x2=ylabel('Beta (degree)','Fontname', 'Times New Roman','FontSize'
179
      ,18);
180
   saveas(gcf,'Twist Angle (degree).jpg');
181
182
       %%TA Figure without Failure%%
183
184
   mesh(XX,YY,TAFM);
185
   title('Twist Angle without Failure', 'Fontname', 'Times New Roman','
186
      FontSize',24);
   x1=xlabel('Alpha (degree)', 'Fontname', 'Times New Roman', 'FontSize'
   x2=ylabel('Beta (degree)', 'Fontname', 'Times New Roman', 'FontSize'
188
      ,18);
   x3=zlabel('Twist angle (degree)', 'Fontname', 'Times New Roman','
189
      FontSize',18);
   set(x1,'Rotation',18);
   set(x2,'Rotation',-25);
191
192
   saveas(gcf,'Twist Angle without Failure.jpg');
193
194
       %%Colormap transformation%%
195
   colormap(gray);
       %%Devided failure analysis figure%%
   gca=pcolor(XX,YY,CASE1FM);
   set(gca, 'LineStyle', 'none');
   title('Failure Analysis of Case One', 'Fontname', 'Times New Roman','
      FontSize',24);
   x1=xlabel('Alpha (degree)', 'Fontname', 'Times New Roman', 'FontSize'
      ,18);
   x2=ylabel('Beta (degree)', 'Fontname', 'Times New Roman', 'FontSize'
      ,18);
   saveas(gcf, 'Failure Analysis of Case One.jpg');
207
208
```

```
gca=pcolor(XX,YY,CASE2FM);
   set(gca, 'LineStyle', 'none');
210
   title('Failure Analysis of Case Two', 'Fontname', 'Times New Roman','
211
      FontSize',24);
   x1=xlabel('Alpha (degree)','Fontname', 'Times New Roman','FontSize'
212
      ,18);
   x2=ylabel('Beta (degree)', 'Fontname', 'Times New Roman', 'FontSize'
      ,18);
214
   saveas(gcf,'Failure Analysis of Case Two.jpg');
215
216
       %%Assembled failure analysis figure%%
217
218
   gca=pcolor(XX,YY,AssemblyFM);
   set(gca, 'LineStyle', 'none');
   title('Failure Analysis', 'Fontname', 'Times New Roman', 'FontSize', 24)
   x1=xlabel('Alpha (degree)', 'Fontname', 'Times New Roman', 'FontSize'
   x2=ylabel('Beta (degree)', 'Fontname', 'Times New Roman', 'FontSize'
      ,18);
   saveas(gcf, 'Failure Analysis.jpg');
```