CLEF 2025 SimpleText Track Simplify Scientific Text (and Nothing More)

<u>Liana Ermakova</u>¹ Hosein Azarbonyad² Jan Bakker³ Benjamin Vendeville¹ Jaap Kamps³

¹Université de Bretagne Occidentale ²Elsevier ³University of Amsterdam

CLEF 2025, September 10, 2025, Madrid, Spain

Motivation: Simplify Scientific Text

- Improving Access to Scientific Texts for Everyone
 - Everyone agrees on the importance of objective scientific information
 - But scientific documents are inherently complex...
- Can we improve accessibility for everyone?
 - Generative models for text simplification can help!
- Cochrane-auto: aligned scientific abstract+plain language summary

Complex paragraph: Fifteen heterogeneous trials, involving 1022 adults with dorsally displaced and potentially or evidently unstable distal radial fractures, were included. While all trials compared external fixation versus plaster cast immobilisation, there was considerable variation especially in terms of patient characteristics and interventions. Methodological weaknesses among these trials included lack of allocation concealment and inadequate outcome assessment.

Simple paragraph: Fifteen trials, involving 1022 adults with potentially or evidently unstable fractures, were included. While all trials compared external fixation versus plaster cast immobilisation, there was considerable variation in their characteristics especially in terms of patient characteristics and the method of external fixation.

Motivation: ... and Nothing More!

00

- LLMs prone to overgeneration (informally called "hallucination")
 - CLEF 2024 submission output versus input: deletions, insertions, and whole sentence insertions

As various kinds of output devices emerged , such as highresolution printers or a display of PDA (Personal Digital Assistant) , the importance of high-quality resolution conversion has been increasing. | This paper proposes a new method for enlarging an image with high quality. | It will involve using a combination of high-speed imaging and high-resolution video . | One of the largest biggest problems on image enlargement is the exaggeration of the jaggy edges . This is especially true when the image is enlarged, as in this case. To remedy this problem, we propose a new interpolation method , which . This method uses artificial neural network to determine the optimal values of interpolated pixels . | The experimental results are shown and evaluated . The results are compared to other studies and found to be inconclusive. | The effectiveness of our methods is discussed by comparing with the conventional methods. Our methods are designed to help people with mental health problems, not just as a way to cure them.

- Have created a huge collection of spurious/over-generation content!
 - In 2024: 47% of submissions > 10% spurious sentences, 19% > 50%...

Overview

Envoi!

- SimpleText Track setup similar 2021-2024
 - Very successful benchmarks constructed
 - "Finished" original tasks?
 - Major changes in setup and corpora in 2025
- CLEF 2025 SimpleText Track
 - Simplify Scientific Text (and Nothing More)
- The following three tasks:
 - **1 Text Simplification**: simplify scientific text
 - **Controlled Creativity**: identify and avoid hallucination
 - **SimpleText 2024 Revisited**: selected tasks by popular request

SimpleText 2025 Statistics

- Growing steadily: 74 registered teams, 18 submitted 198 valid runs.
- Codabench Task 1: 281 submissions (30 ppl), Task 2: 232 submissions (14 ppl)

Team	Tas	sk 1		Task 2		Task 1	Task 2	Total runs
	1.1	1.2	2.1	2.2	2.3			
AIIRLab	4	2	5	5		6	10	16
ASM		10				10		10
DSGT	2	1	6	6	3	3	15	18
DUTH	3		2	2		3	4	7
EngKh	2					2		2
Fujitsu	19					19		19
LIA		9				9		9
Mtest	1	1	1	1		2	2	4
PICT	1	1				2		2
RECAIDS	1	1	1	1		2	2	4
Scalar	10	1			1	11	1	12
SINAI	2	2	15	15		4	30	34
THM	22					22		22
UBO	5	7	1	1		12	2	14
UM-FHS	4	5				9		9
UvA	5	9				14		14
Unknown	2					2		2
Total	83	49	31	31	4	132	66	198

Task 1: Text Simplification

- Task 1: Simplify Scientific Text
 - New corpus (EMNLP/TSAR 2024)!
 - Cochrane-auto is true document-level text simplification
 - More variation (sentence merge, order swaps) and discourse structure
 - Paragraph-level and sentence-level data realigned and restricted
 - Biomedical text free to use, similar to existing TS corpora
 - Sentence-level (T1.1) and Document-level (T1.2) text simplification
 - Large-scale aligned train and test data (9,160 sentences, 666 abstracts)
 - ullet \to Frees human judge effort for analysis...

Cochrane-auto	Train	Test	SimpleText'24		
	Bio	omedical	Science		
# Documents	5,585	666	278		
# Sentences	35,800	9,160	1,536		

Task 1: Evaluation

Source:

Introduction

{ "pair id": "CD012520", "source": "Cochrane", "complex": "We included seven cluster-randomised ⇒ trials with 42,489 patient participants from 129 hospitals, conducted in Australia, the UK, ← China, and the Netherlands. . . . We are uncertain whether a multifaceted implementation ⇒ acute stroke settings, because the certainty of evidence is very low."}

References:

{ "CD012520": { "simple_auto": "We included seven studies that involved 42,489 acute stroke patients and an unknown number of health professionals. The studies were conducted in 129 hospitals in → Australia, the UK, China and the Netherlands. . . . We do not know if implementation interventions → delivered in acute stroke units lead to better delivery of evidence-based care." }, ... }

• Predictions:

[{"pair id": "CD012520", "prediction": "Researchers conducted studies in hospitals across Australia, the ⇒ if these strategies help healthcare workers follow best practices in treating stroke → patients.","run_id":"UBOnlp_task12_gpt4o"}, ...]

• Test set includes: New 24/25 sentence-aligned Cochrane-auto (Abstract/PLS), Raw Cochrane PLS, Cochrane-auto Train+Validation, TREC PLABA Medline data, SimpleText 2024. Introduction

Task 1.1: Results (snt-level eval)

• Evaluated on 363 sentence pairs of 37 new 24/25 Cochrane-auto data

Introduction

Team/Method Source

LIA sumguid-all-w500

ASM MistralMaxFRE

UvA baseline-cochran

AIIRLab Mistral 7b b

DUTH task12 led-larg

Scalar gpt_md_2_1

EngKh biomedical IIa

DSGT llama summary s

UM-FHS gpt-4.1

PICT S3Pipeline

Mtest bartdoc

RECAIDS T5

SINAI PŘMZSTASK12V1

Reference

FKGL

13.54

11.73

9.71

8.80

11.63

8.82

9.56

7.77

12.41

11.79

10.56

12.55

11.71

10.45

Compression ratio

1.00

0.56

0.84

0.86

0.67

0.73

0.58

0.57

0.59

0.74

0.37

0.50

0.14

0.72

0.06

Sentence splits

1.00

0.67

1.26

1.07

1.10

0.92

0.94

0.71

0.86

1.55

0.47

0.61

0.19

0.87

0.07

Levenshtein similarity

1.00

0.50

0.50

0.55

0.58

0.53

0.52

0.61

0.42

0.63

0.45

0.62

0.20

0.61

0.14

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

Task 1.2: Results (doc-level eval)

SARI

12.03

44.55

43.93

43.83

43.35

42.40

42.10

40.32

40.29

39.11

37.62

34.39

33.25

100

37

37

37

37

37

37

37

37

37

37

37

37

37

37

27

BLEU

20.53

12.18

10.81

18.12

12.32

12.98

24.27

7.63

13.43

9.83

1.01

17.88

0.00

20.42

100

0.53

0.56

0.61

0.49

0.70

0.47

0.70

0.51

0.88

0.44

0.95

8.44

8.74

8.48

8.74

8.49

8.77

8.80

8.76

8.67

8.77

8.12

ECAIDS T5	37	31.49	0.00	10.08	0.06	0.07	0.10	0.00	0.00	0.95
 Evaluated of 	n 37	aligned	d new	24/25	5 Coc	hrane	e-auto	Abst	ract/	PLS

0.21

0.27

0.21

0.06

0.31

0.21

0.06

0.01

0.03

0.15

Task 1: Scores hide differences...

• Conservative (Contextual BART model):

Today , our Our well-being and awareness have become markedly determined by our way of living through our everyday activities . |Needless to say , daily Daily practices specifically have a significant impact on the quality of sleep . |Obstructive sleep apnea (OSA) is an exhausting sleep disorder regulating an individual 's routine life . |Although several therapeutic modalities are available for curing OSA, behavioral therapies are also utilized for a positive outcome . |Besides , several studies are performed to prove show the efficacy of lifestyle strategies to resolute OSA in adults . |Reducing weight , quitting alcohol and smoking , eating a nutritional diet , and exercising are the modifications to benefit people . |This review aims to expand our knowledge of the association between alterations to comportment and better treatment outcomes for sleep apnea . |

Completely reworded (GPT4o model):

Today , our <u>overall</u> well-being and awareness have become markedly determined are greatly influenced by our way of living through our everyday daily activities . |Needless to say-, It's clear that our daily practices specifically habits have a significant impact big effect on the quality of how well we sleep . |Obstructive sleep apnea (OSA) is an exhausting a tiring sleep disorder regulating an individual's routine that affects daily life . |Although several therapeutic modalities are available Besides medical treatments for curing OSA, behavioral therapies are can also utilized for a positive outcome help. |Besides , several Many studies are performed to prove the efficacy of show that lifestyle strategies to resolute changes can effectively treat OSA in adults . |Reducing Losing weight, quitting alcohol and smoking, eating a nutritional diet healthy, and exercising are the modifications to benefit people helpful changes. |This review aims to expand our knowledge of the association between alterations to comportment and better treatment outcomes for understand how changing habits can improve sleep apnea treatment. |

Task 1: Findings

- Novel document-level text simplification resource (Cochrane-auto)
 - References based on real-world plain language summaries
 - References are no direct sentence simplifications
 - Evaluated sentence and document level
 - High correlation sentence-aligned Cochrane-auto and "raw" PLS
- Record participation with CodaBench
 - Document (abstract) level TS is more effective than sentence level TS
 - LLMs, both open and closed source, are highly effective
 - More attention to overgeneration (details in Task 2)
- Remaining issues
 - Still complex terminology (approaches to explain biomedical terms)
 - LLMs change the wording (also when not needed)
 - Overgeneration ("hallucination") remains an issue for long input/output

Task 2: Controlled Creativity

- Task 2: Identify and Avoid Hallucination
 - Task 2.1: to identify creative generation at document level
 - to detect what sentences are fully grounded on source input (a) without and (b) with access to the source sentences
 - ullet ightarrow also labels those introducing significant new content
 - Train abstracts with 13,341 labeled sentences, Test 3,336 unlabeled
 - post-hoc identification or explanation task
 - Task 2.2: to detect and classify information distortion errors in simplified sentences
 - 14 information distortion categories
 - Train: synthetic data: 42,392 sentence pairs
 - Test: manually annotated SimpleText runs: 2,659 sentence pairs
 - Task 2.3: to avoid creative generation and perform grounded generation by design
 - Submit pairs of simplified abstracts with/without "hallucinations"

Task 2: Evaluation

Task	Role	Source	Reference			
Task 2.1 Posthoc	Train Test	13,341 sentences 3,336 sentences	Binary Spurious Label Binary Spurious Label			
Task 2.1 Sourced	Train Test	13,514 sentences 3,379 sentences	Binary Spurious Label Binary Spurious Label			
Task 2.2	Train Test	42,392 sentences 2,659 sentences	Multilabel Error Classification Multilabel Error Classification			
Task 2.3	Same setup as Task 1 submitting a pair of runs					

Task 2.1: Examples

Example format for Task 2.1 (posthoc):

```
"sentence": "Here's the simplified sentence:\n\n'Sometimes, when you're playing on a computer or
"is spurious": true,
"anon gen id": "74704850//98491492//4"
```

Example format for Task 2.1 (sourced):

```
"abs id": "G10.1 2010209632",
"sentence": "system and present our results.",
"is spurious": true.
"gen id": "35623979//G10.1 2010209632//7"
```

Task 2.2: Examples

Example format for Task 2.2 (SIGIR'25 Resource Paper):

```
"source sentence": "Compliance to the GDPR is a problem for organizations, it imposes strict

→ constraints whenever they deal with personal data and, in case of infringement, it specifies

→ severe consequences such as legal and monetary penalties.",
"simplified sentence": "Organizations face challenges in complying with the GDPR, which sets strict
"snt id": "G15.3 2766353613 2",
"simp id": "429978-180325",
"No error": false.
"A1. Random generation": false,
"A2. Syntax error": false,
"A3. Contradiction": false.
"A4. Simple punctuation / grammar errors": false.
"A5. Redundancy": false,
"B1. Format misalignment": false.
"B2. Prompt misalignment": false,
"C1. Factuality hallucination": false,
"C2. Faithfulness hallucination": false,
"C3. Topic shift": false.
"D1.1. Overgeneralization": true,
"D1.2. Overspecification of Concepts": false,
"D2.1. Loss of Informative Content": false.
"D2.2. Out-of-Scope Generation": false
```

Task 2.1 (post-hoc): Results

Team/Method	count	Acc.	Prec	Rec	F1	AUROC	AUPRC
SINAI basic-prefilter-all-true	3,336	0.91	0.91	1.00	0.95	0.55	0.91
DSGT bertclassifier	3,336	0.91	0.93	0.97	0.95	0.64	0.93
DSGT bert_nli_llm_ensemble	3,336	0.90	0.93	0.97	0.95	0.64	0.93
DSGT bertnlillmensemble	3,336	0.90	0.93	0.97	0.95	0.64	0.93
DUTH Task21posthoc_et	3,336	0.90	0.92	0.97	0.95	0.62	0.92
DUTH Task21posthoc_rf	3,336	0.90	0.92	0.97	0.94	0.63	0.92
DUTH Task21posthoc_svc	3,336	0.79	0.94	0.83	0.88	0.66	0.93
DUTH Task21posthoc_xgb	3,336	0.79	0.94	0.81	0.87	0.69	0.94
DUTH Task21posthoc_logreg	3,336	0.77	0.95	0.79	0.86	0.70	0.94
DSGT IIm	3,336	0.77	0.95	0.78	0.86	0.70	0.94
DSGT nli_entailment	3,336	0.45	0.95	0.41	0.57	0.61	0.92
SINAI improved-prefilter-all-true	3,336	0.37	0.94	0.32	0.47	0.57	0.91
SINAI improved-prefilter-confidence-95	3,336	0.35	0.95	0.29	0.44	0.57	0.91
UBOnlp gpt4o	3,379	0.27	0.92	0.21	0.35	0.52	0.90

- Very high performance (*Acc up to 0.91*): models can detect overgeneration ("hallucination")!
- But AUROC scores low (*up to 0.70*), indicating high accuracy is influenced by the high prevalence of the positive label

Introduction

Task 2.1 (sourced): Results

Team/Method	count	Acc.	Prec	Rec	F1	AUROC	AUPRC
AIIRLab CrossEncoder	3,379	0.98	0.99	0.99	0.99	0.95	0.99
Mtest bartfinetuned	3,379	0.97	0.99	0.97	0.98	0.96	0.99
SINAI improved-prefilter-all-true	3,379	0.96	1.00	0.95	0.98	0.98	0.99
SINAI prefilter-all-true	3,379	0.95	0.95	1.00	0.97	0.77	0.95
AIIRLab RandomForest	3,379	0.95	0.95	1.00	0.97	0.77	0.95
SINAI improved-prefilter-confidence-99	3,379	0.93	1.00	0.93	0.96	0.96	0.99
SINAI Ilama3.1-8b-instruct	3,379	0.93	0.95	0.97	0.96	0.77	0.95
DSGT bertclassifier	3,379	0.91	0.93	0.98	0.95	0.65	0.93
DSGT bertnlillmensemble	3,379	0.91	0.93	0.97	0.95	0.68	0.93
DUTH Task21sourced_et	3,379	0.91	0.93	0.97	0.95	0.66	0.93
DUTH Task21sourced_rf	3,379	0.90	0.93	0.96	0.95	0.65	0.93
DUTH Task21sourced_svc	3,379	0.80	0.94	0.83	0.88	0.69	0.93
SINAI improved-prefilter-confidence-95	3,379	0.81	1.00	0.79	0.88	0.89	0.98
DUTH Task21sourced_ridge	3,379	0.77	0.94	0.79	0.86	0.68	0.93
DUTH Task21sourced_logreg	3,379	0.77	0.94	0.79	0.86	0.69	0.93
DSGT IIm	3,379	0.74	0.94	0.76	0.84	0.68	0.93
UBOnlp gpt4o	3,379	0.70	0.95	0.71	0.81	0.69	0.93
RECAIDS T5	3,379	0.49	0.89	0.49	0.63	0.47	0.89
DSGT nli_entailment	3,379	0.35	0.92	0.31	0.46	0.53	0.90
DSGT nli_contradiction	3,379	0.20	0.90	0.12	0.21	0.50	0.90
AIIRLab LLMs	3,379	0.10	0.00	0.00	0.00	0.50	0.90
AIIRLab LLMs	3,379	0.10	0.00	0.00	0.00	0.50	0.90

- Very high performance (Acc up to 0.99)
- AUROC is also high (up to 0.95): source helps discriminating between positive and negative labels

Task 2.2: Results

Team/Method	No I	Error	,	Δ.	E	3	(C	ı	D
	F ₁	AUC	F ₁	AUC						
DSGT DebertaLImensemble	0.763	0.561	0.283	0.133	0.354	0.173	0.301	0.156	0.374	0.224
AIIRLab paraphrase_mpnet	0.755	0.567	0.255	0.154	0.258	0.113	0.136	0.084	0.147	0.168
AIIRLab mpnet	0.744	0.557	0.255	0.156	0.218	0.099	0.150	0.091	0.147	0.167
DSGT roberta	0.694	0.491	0.233	0.121	0.249	0.101	0.114	0.089	0.128	0.164
UBOnlp gpt4o	0.680	0.505	0.322	0.150	0.381	0.192	0.250	0.122	0.292	0.189
DSGT Ilama	0.680	0.483	0.282	0.132	0.324	0.182	0.269	0.147	0.306	0.196
AIIRLab OpenChat	0.640	0.421	0.154	0.070	0.141	0.061	0.144	0.080	0.222	0.156
AIIRLab MajorityVoting	0.633	0.415	0.156	0.071	0.110	0.045	0.170	0.088	0.239	0.160
AIIRLab Mistral	0.563	0.357	0.158	0.069	0.104	0.040	0.116	0.070	0.176	0.144
DSGT BERT	0.515	0.330	0.214	0.133	0.208	0.103	0.167	0.095	0.129	0.161
DUTH deberta-v3	0.404	0.322	0.003	0.044	0.051	0.026	0.006	0.064	0.093	0.136
Mtest bartfinetuned	0.404	0.322	0.270	0.143	0.472	0.265	0.078	0.074	0.128	0.167
DSGT bert_llama_ensemble	0.404	0.322	0.231	0.137	0.253	0.107	0.116	0.088	0.128	0.163
DUTH roberta-base	0.404	0.322	0.083	0.044	0.033	0.027	0.117	0.064	0.023	0.136
RECAIDSTechTitans T5	0.404	0.322	0.022	0.046	0.000	0.026	0.004	0.065	0.000	0.136
DUTH logreg	0.404	0.322	0.000	0.044	0.000	0.026	0.000	0.064	0.000	0.136
DUTH logreg_oversample	0.404	0.322	0.021	0.046	0.000	0.026	0.004	0.064	0.000	0.136

- No error, Fluency (A), Alignment (B), Information (C), and Simplification (D)
- Detection is good, but error classification is challenging

Task 2.3: Analysis

Run	SARI	Source	Spurious Content		
	(217)	Number	Number	Fraction	
AIIRLab Ilama3_grounded	40.90	9,160	17	0.00	
AIIRLab Ilama3_crossencoder_grounded2	40.82	9,160	15	0.00	
*AIIRLab Ilama3-8b	29.80	9,160	394	0.04	
*DSGT plan guided llama	42.98	9,160	206	0.02	
DSGT plan_guided_llama_grounded	33.41	9,160	477	0.05	
*DSGT llama summary simplification	42.92	666	538	0.81	
DSGT llama_summary_simplification_grounded	42.06	666	504	0.76	

- Few submissions to Task 2.3.
 - Participants checked their predictions
 - and decided not to submit those with overgeneration...

SINAI task11 PRMZSTASK11V1

dsgt Task23 plan guided llama grounded

0.06 0.05

Task 2.3: Overgeneration (T1.1 runs)

Run	Source	Spurious Content		
		Number	Fraction	
Lenguaje-Claro_task11_dummy30	9160	9129	1	
Lenguaje-Claro_task11_dummy20	9160	9154	1	
Taiki_Task11_jargons_part4	9160	9098	0.99	
Lenguaje-Claro_task11_dummy40	9160	9000	0.98	
Lenguaje-Claro_task11_dummy45	9160	8893	0.97	
Lenguaje-Claro_task11_t5efficient	9160	8924	0.97	
Lenguaje-Claro_task11_dummy50	9160	8773	0.96	
Lenguaje-Claro_task11_dummy60	9160	8421	0.92	
Lenguaje-Claro_task11_t5efficient_fewshot	9160	8296	0.91	
THM_task11_pn1-gemini-2.0-flash	9170	7342	0.8	
Lenguaie-Claro task11 dummy90	9160	7122	0.78	

Lenguaje-Claro_task11_dummy40	9160	9000	
Lenguaje-Claro_task11_dummy45	9160	8893	
Lenguaje-Claro_task11_t5efficient	9160	8924	
Lenguaje-Claro_task11_dummy50	9160	8773	
Lenguaje-Claro_task11_dummy60	9160	8421	
Lenguaje-Claro_task11_t5efficient_fewshot	9160	8296	
THM_task11_pn1-gemini-2.0-flash	9170	7342	
Lenguaje-Claro_task11_dummy90	9160	7122	
duth_xanthi_Task11_bart-large-cnn	9160	7154	
Lenguaje-Claro_task11_llm_gpt3.5-turbo-fewshot	9160	5658	
4o-mini_task11_llm_45	9160	5561	
scalarlab_task11_gpt_md	9160	5141	
UvA1_llama31	9160	4226	
Lenguaje-Claro_task11_llm_t5_rule	9160	4158	
gpt3.5-turbo_task11_llm_45_judged	9160	3648	

Lenguaje-Claro_task11_t5efficient_fewshot	9160	8296	0.91
THM_task11_pn1-gemini-2.0-flash	9170	7342	0.8
Lenguaje-Claro_task11_dummy90	9160	7122	0.78
duth_xanthi_Task11_bart-large-cnn	9160	7154	0.78
Lenguaje-Claro_task11_llm_gpt3.5-turbo-fewshot	9160	5658	0.62
4o-mini_task11_llm_45	9160	5561	0.61
scalarlab_task11_gpt_md	9160	5141	0.56
UvA1_llama31	9160	4226	0.46
Lenguaje-Claro_task11_llm_t5_rule	9160	4158	0.45
gpt3.5-turbo_task11_llm_45_judged	9160	3648	0.4
gpt3.5-turbo_task11_llm_45_judged	9160	3659	0.4
THM_task11_r–gemini-2.0-flash	9170	2993	0.33
THM_task11_c-gemini-2.0-flash	9160	2201	0.24
gpt3.5-turbo_task11_llm_45	9160	1650	0.18
EngKh_task1_biomedical_llama3_with_domainAdaptation_and_prompts	9160	860	0.09
. 11 144 II. 04	04.00		

duth_xanthi_Task11_bart-large-cnn	9160	7154	0.78
Lenguaje-Claro_task11_llm_gpt3.5-turbo-fewshot	9160	5658	0.62
4o-mini_task11_llm_45	9160	5561	0.61
scalarlab_task11_gpt_md	9160	5141	0.56
UvA1_llama31	9160	4226	0.46
Lenguaje-Claro_task11_llm_t5_rule	9160	4158	0.45
gpt3.5-turbo_task11_llm_45_judged	9160	3648	0.4
gpt3.5-turbo_task11_llm_45_judged	9160	3659	0.4
THM_task11_r-gemini-2.0-flash	9170	2993	0.33
THM_task11_c-gemini-2.0-flash	9160	2201	0.24
gpt3.5-turbo_task11_llm_45	9160	1650	0.18
EngKh_task1_biomedical_llama3_with_domainAdaptation_and_prompts	9160	860	0.09
taiki_task11_llama31	9160	686	0.07
duth_xanthi_Task11_flan-t5-base	9160	649	0.07
THM_task11_p2-gemini-2.0-flash	9028	583	0.06

Task 2: Findings

- Task 2.1: Detecting Overgeneration
 - Very high performance: models can detect "hallucination"!
 - Potential to use LLMs to avoid unfounded content?
 - Exploits TS setup with sentence-level sources/references/predication
- Task 2.2: Detect and Classify Information Distortion
 - Detection of information distortion is effective (again)
 - Identifying type remains very challenging
 - Need for human evaluation remains
- Task 2.3: Perform Grounded Generation by Design
 - ullet Overgeneration remains an issue: 21% of runs > 50% and 29% > 25%
 - Varies from inexact output extraction to "bonus" text completion
 - harder for long input/output

Task 3: SimpleText 2024 Revisited

- Task 3: Selected Tasks by Popular Request
- Many teams expressed interest, but the timeline overlapped with the new tasks
 - In the end, one submission and one paper
 - Will be presented in the track sessions
- Move to Codabench makes it easy to keep tasks running in 2026
 - Codabenches are still active in post-competition mode!
- Consider adding pilot tasks for possible extensions in 2026

CLEF 2025 SimpleText Track

- Task 1: Text Simplification: simplify scientific text
 - + New aligned biomedical data (Cochrane-auto)
 - ullet + both sentence, paragraph and document level simplification
 - + analysis of information distortion ("hallucination?")
- Task 2: Controlled Creativity: identify and avoid hallucination
 - + Real "hallucination" data from CLEF generative text tasks
 - + What output is (not) grounded on source(s)? (w/wo source access)
 - + How to avoid creative generation? (paired submissions)
 - ullet + Fine-grained information distortion categorization
- Task 3: SimpleText 2024 Revisited: selected tasks by popular request
 - We take submissions for earlier tasks
 - Release additional data and evaluation packages

SimpleText Sessions at CLEF 2025

Date	Event
Sep 10 14:15-15:00	Keynote by Horacio Saiggon (UPF) on Text Sim-
	plification to Enable Democratic Participation
Sep 10 15:00-15:45	SimpleText Task Overview Talks
Sep 10 16:30-18:00	Participant's talks (6x)
Sep 11 14:15-15:40	Participant's talks (6x)
Sep 11 15:40-15:45	Planning Session: New corpus, new tasks, exciting challenges and opportunities

• Please join the SimpleText sessions in Ricardo Marín Room!

Please join the SimpleText Track

Fully funded PostDoc available!

Website: https://simpletext-project.com E-mail: contact@simpletext-project.com

Twitter: https://twitter.com/SimpletextW

 ${\sf Google\ group: https://groups.google.com/g/simpletext}$