Caregiver burden data preparation

Hans, Jenny, and Derek May 14, 2017

Overview

Our analyses focus on caregiver burden as the *outcome* from a variety of predictors, such as demographics, disorder type, cognitive function, and neuropsychogical profiles.

Load data and construct data set

The observations we work with require (1) at least summary scores from Zarit's (caregiver) burden interview (ZBI; CITE) and (2) must not classify as normal or missing in final diagnosis (FINDX). Conditional to the ZBI and FINDX, we include participants who qualify as:

- Dementia (community and institution; cgcc==1 | cgcc==3),
- Alzheimer's (adcc==1),
- Parkinson's disease (parkin==1), and
- Stroke (prstroke==1).

Not included for now (because there are so few amongst this set):

- Amyotrophic lateral sclerosis (als==1),
- Epilepsy (epilepsy==1), and
- Multiple sclerosis (ms==1).

Other conditions to consider later (as pseudo-controls):

- Depression (depressn==1),
- Learning Disability (learning==1),
- Psychiatric Illness (psychiat==1), and/or
- Migraines (migraine==1).

The following lines of code will read in the data and include only the subjects outlined in the above conditions.

```
## [1] 1086 1724
```

```
9))
CSHA.1991.zarit_disorders <- CSHA.1991.zarit[conditions.of.interest,
    1
dim(CSHA.1991.zarit_disorders)
## [1] 851 1724
We now have a subset of observations we should make a pseudo-design matrix of the conditionals above. We
want to denote which of the aforementioned categories each individual belongs to:
cols.for.design <- c("CASEID", "cgcc", "adcc", "parkin",</pre>
    "prstroke", "finaldx")
CSHA.1991.zarit_disorders_design <- CSHA.1991.zarit_disorders[,
    cols.for.design]
dim(CSHA.1991.zarit_disorders_design)
## [1] 851
head(CSHA.1991.zarit_disorders_design)
      CASEID cgcc adcc parkin prstroke finaldx
                              2
## 1
      200004
                 3
                      1
                                       8
## 2
      200005
                 3
                      0
                              2
                                       1
                                                3
## 4 200008
                      0
                              2
                                       2
                                                3
                 1
                              2
                                       2
                                                3
## 11 200032
                 3
                      0
                                                3
## 26 200086
                      0
                              8
                                       8
                 3
## 35 200113
                                                5
                      0
                              1
We can recode some of the values in these columns to something more sensible with a design matrix. The
code below to perform the recoding is hidden from the output.
  head(CSHA.1991.zarit_disorders_design)
##
          CASEID DEMENTIA ALZ
                                   PD
                                       STROKE
                                                  FIN.DX
## 200004 200004
                  INS.CASE CASE
                                   NO
                                          DNK
                                                PROB.ALZ
## 200005 200005
                  INS.CASE
                                           YES
                                                POSS.ALZ
                             N/A
                                   NO
## 200008 200008 COMM.CASE
                             N/A
                                   NO
                                            NO
                                                POSS.ALZ
## 200032 200032
                  INS.CASE
                             N/A
                                   NO
                                            NO
                                                POSS.ALZ
## 200086 200086
                   INS.CASE
                             N/A DNK
                                          DNK
                                               POSS.ALZ
## 200113 200113 INS.CASE N/A YES MISSING OTHER.DEM
  head(CSHA.design)
##
          DEMENTIA.INS.CASE DEMENTIA.COMM.CASE ALZ.CASE ALZ.N/A ALZ.MISSING
## 200004
                                                                  0
                            1
                                                0
                                                          1
                                                                               0
## 200005
                            1
                                                0
                                                          0
                                                                  1
                                                                               0
                                                          0
## 200008
                            0
                                                1
                                                                               0
## 200032
                            1
                                                0
                                                          0
                                                                  1
                                                                               0
## 200086
                            1
                                                0
                                                          0
                                                                               0
## 200113
                                                0
                                                          0
                                                                               0
                            1
          PD.NO PD.DNK PD.YES PD.MISSING STROKE.DNK STROKE.YES STROKE.NO
## 200004
                                                                 0
              1
                      0
                              0
                                         0
                                                     1
                                                                            0
## 200005
              1
                      0
                              0
                                         0
                                                     0
                                                                 1
                                                                            0
## 200008
                              0
                                         0
                                                     0
                                                                 0
              1
                      0
                                                                            1
## 200032
                              0
                                         0
                                                     0
                                                                 0
              1
                      0
                                                                            1
```

1

0

0

0

0

0

0

0

0

1

200086

200113

0

0

1

0

```
##
           STROKE.MISSING FIN.DX.PROB.ALZ FIN.DX.POSS.ALZ FIN.DX.OTHER.DEM
## 200004
                         0
                                           1
## 200005
                         0
                                           0
                                                            1
                                                                               0
## 200008
                         0
                                           0
                                                                               0
                                                            1
## 200032
                         0
                                           0
                                                            1
                                                                               0
## 200086
                         0
                                           0
                                                                               0
                                                            1
## 200113
                         1
                                                            0
                                                                               1
          FIN.DX.VDEM FIN.DX.UNCLASS.DEM
##
## 200004
                      Λ
## 200005
                      0
                                           0
## 200008
                      0
                                           0
## 200032
                      0
                                           0
                      0
                                           0
## 200086
## 200113
                      0
                                           0
  colSums (CSHA.design)
```

```
##
    DEMENTIA.INS.CASE DEMENTIA.COMM.CASE
                                                       ALZ.CASE
##
                   539
                                                            314
               ALZ.N/A
                               ALZ.MISSING
                                                          PD.NO
##
##
                   473
                                         64
                                                            612
##
                PD.DNK
                                    PD.YES
                                                     PD.MISSING
##
                    27
                                         47
                                                            165
##
           STROKE.DNK
                                STROKE.YES
                                                      STROKE.NO
##
                    45
                                        233
                                                            432
                           FIN.DX.PROB.ALZ
       STROKE.MISSING
                                               FIN.DX.POSS.ALZ
##
##
                   141
                                        346
                                                            215
##
     FIN.DX.OTHER.DEM
                               FIN.DX.VDEM FIN.DX.UNCLASS.DEM
##
                    53
                                        168
                                                             69
```

We now have a pseudo-design matrix to identify observation disorder classifications. Now we want to extract just particular sets of columns as predictors and outcomes from our subset.

```
## predictors demographics
demographics <- c("studysex", "agestrat", "studyage", "clinage",</pre>
    "studyed", "eduyear", "edulevel", "region", "race",
    "ethnic1", "ethnic2", "wbocc", "working", "institut")
### caregiver demographics
cg.demographics <- c("relat", "cgsex", "cgage", "cgeth1",</pre>
    "cgeth2", "cgedyrs", "cgedlev")
### cognition
cognition <- c("langabil", "mmms", "score3ms")</pre>
### behavioral disturbance
beh.disturb <- c("apathy", "wander", "violenc", "disinhi",
    "otherbe")
### full neuropsych neuropsych batteries
neuropsych <- c("neurdone", "languagn", "doi", "occup",</pre>
    "materlan", "difficul", "othrcomn", "psyid", "clinic",
    "training", "experien", "coopern", "facility", "fatigabi",
    "inattn", "affectn", "articul", "tension", "appearn",
    "reaction", "effort", "express", "memoryn", "restless",
    "insight", "gaitn", "agitat", "persever", "impulsiv",
    "socialn", "tangent", "comprehe", "confusi", "latency",
    "rulev", "tolerate", "visionn", "hearingn", "physical",
```

```
"gaitdiso", "tremdiso", "dyskdiso", "psycdiso", "slowdiso",
    "hearaid", "glasses", "wheel", "wechsler", "buschfr1",
    "buschcr1", "buschtr1", "buschfr2", "buschcr2", "buschtr2",
    "buschfr3", "buschcr3", "buschtr3", "buschfr", "buschcr",
    "buschtr", "delaytim", "reya1", "reya2", "reya3", "reya4",
    "reya5", "reya6", "reyb1", "trueposi", "truenega", "correct",
    "benmirro", "digitspa", "lag1", "lag2", "waisimil",
    "waisjudg", "tokentes", "verbal", "animal", "buschke",
    "visualn", "tokencol", "waisbloc", "digit", "popsize",
    "nshorter", "nlongter", "nverbal", "njudgeme", "naphasia",
    "napraxia", "nagnosia", "nconstru", "ndisturb", "delirium",
    "majordep", "diagdeme", "profile", "corticr", "corticl",
    "subcort", "cnocoglo", "ccogloss", "cad", "cvasdem",
    "cother", "cunclass", "daily", "ndiag", "severity",
    "shrtlosn", "longlosn", "clanguag", "cdofint", "cintid",
    "c235", "c236", "c236a", "c237", "c238", "c239", "c240",
    "c241", "c242", "c243", "c244", "c245", "c246", "c247",
    "c248", "c249", "c250", "c251", "c252", "c253", "c253am",
    "c253ay", "c253bm", "c253by", "c254", "c255", "c256",
    "c257", "c258", "c259", "c260", "c261", "c262", "c263",
    "c264", "c265", "c266", "c267", "c268", "c269", "c270",
    "c271", "c272", "c273", "c274", "c275", "c276", "c277",
    "c278", "c279", "c280", "c281", "c282", "c283", "c284",
    "c285", "c286", "c286a", "c287", "c287a", "c288", "c289",
    "c290", "c291", "c292", "c293", "c294", "c295", "c296",
   "c297", "c298", "c299", "c300", "c301", "c302", "c303",
   "c304", "c305", "c306", "c307", "c308", "c309", "c310",
    "c311", "c312", "c313", "c314", "c315", "c316", "c317",
    "c318", "c319", "c320", "c321", "c322", "c323", "c324",
    "c325", "c326", "c327", "c328", "c329", "c330", "c331",
    "c332", "c333")
#### neuropsych: behavioral ratings
np.beh_rate <- c("coopern", "facility", "fatigabi", "inattn",</pre>
    "affectn", "articul", "tension", "appearn", "reaction",
    "effort", "express", "memoryn", "restless", "insight",
    "gaitn", "agitat", "persever", "impulsiv", "socialn",
    "tangent", "comprehe", "confusi", "latency", "rulev",
    "tolerate", "visionn", "hearingn", "physical", "hearaid",
    "glasses", "wheel")
#### neuropsych: movement disorders
np.move_disorder <- c("gaitdiso", "tremdiso", "dyskdiso",</pre>
    "psycdiso", "slowdiso")
#### neuropsych: memory, fluency, etc...
np.battery <- c("wechsler", "buschfr1", "buschcr1", "buschtr1",</pre>
    "buschfr2", "buschcr2", "buschtr2", "buschfr3", "buschcr3",
    "buschtr3", "buschfr", "buschcr", "buschtr", "delaytim",
    "reya1", "reya2", "reya3", "reya4", "reya5", "reya6",
    "reyb1", "trueposi", "truenega", "correct", "benmirro",
    "digitspa", "lag1", "lag2", "waisimil", "waisjudg",
    "tokentes", "verbal", "animal", "buschke", "visualn",
    "tokencol", "waisbloc", "digit")
#### neuropsych: impairments & diagnoses
```

```
np.impair_diagnoses <- c("nshorter", "nlongter", "nverbal",</pre>
    "njudgeme", "naphasia", "napraxia", "nagnosia", "nconstru",
    "ndisturb", "delirium", "majordep", "diagdeme", "profile",
    "corticr", "corticl", "subcort", "cnocoglo", "ccogloss",
    "cad", "cvasdem", "cother", "cunclass", "daily", "ndiag",
    "severity", "shrtlosn", "longlosn")
#### neuropsych: personality
np.personality <- c("c238", "c239", "c240", "c241", "c242".
    "c243", "c244", "c245", "c246")
#### neuropsych: memory
np.memory <- c("c247", "c248", "c249", "c250", "c251", "c252",
    "c253", "c253am", "c253ay")
#### neuropsych: general function
np.gen_func <- c("c253bm", "c253by", "c254", "c255", "c256",
    "c257", "c258", "c259", "c260", "c261", "c262")
#### neuropsych: every day activities
np.everyday <- c("c263", "c264", "c265", "c266", "c267",
    "c268", "c269")
#### neuropsych: delerium
np.delerium <- c("c270", "c271", "c272", "c273", "c274")
#### neuropsych: depression
np.depress <- c("c275", "c276", "c277", "c278", "c279")
#### neuropsych: sleep
np.sleep <- c("c280", "c281", "c282", "c283", "c284", "c285")
#### neuropsych: paranoia
np.paranoia <- c("c286", "c286a", "c287", "c287a")
#### neuropsych: cardiovascular
np.cv <- c("c288", "c289", "c290", "c291")
#### neuropsych: summary
np.gen_sum <- c("c292", "c293", "c294")
#### neuropsych: past medical history
np.history <- c("c295", "c296", "c297", "c298", "c299",
    "c300", "c301", "c302", "c303", "c304", "c305", "c306",
    "c307", "c308", "c309", "c310")
## variables that exist somewhere between predictors and
## additional variables of interest dementia
dementia <- c("shorterm", "longterm", "abstract", "judgemen",</pre>
    "aphasia", "apraxia", "agnosia", "construc", "change",
    "work", "social", "relation")
### alzheimer's
alz <- c("addement", "adcognit", "adworsen", "adconsci",</pre>
    "onsetage", "absence")
## possible predictors/mediators/variables of interest or
## confounds. Family history
famhistory <- c("twin", "samesex", "identic", "familyhs",</pre>
    "alz1", "alz2", "alz3", "sen1", "sen2", "sen3", "par1",
    "par2", "par3")
### languages spoken
```

```
languages <- c("english", "french", "italian", "german",</pre>
    "spanish", "iceland", "ukrain", "chinese", "japanese",
    "danish", "arabic", "urdu", "otherlan")
### health issues
health.drugs <- c("thycond", "attack", "oheart", "leukemia",
    "cancer", "proxdiab", "hbpyr", "drug", "height", "sweight")
### regular substance use -- COMBINE SMOKING & DRINKING &
### CAFFEIENE/SUGAR
substances <- c("coffee", "tea", "drinks", "smoke", "pipe",</pre>
    "cigars", "beer", "wine", "spirits")
### head injuries
head.inj <- c("consloss", "consage")</pre>
### depression
depress <- c("sad", "interest", "appetite", "lossweig",</pre>
    "asleep", "awaken", "allday", "tiredall", "move", "worthles",
    "suicide", "most", "impress")
## outcomes caregiver questions/situation
cg.unpaid <- c("askhelp", "notime", "feelstre", "feelemba",</pre>
    "feelangr", "affects", "afraid", "dependen", "strained",
    "suffered", "privacy", "soclife", "friends", "expect",
    "expenses", "unable", "lostctrl", "leave", "uncertai",
    "doing", "better", "burdened", "zarscore")
### caregiver 'felt'
cg.felt <- c("bother", "poorapp", "shake", "good", "mind",</pre>
    "depressd", "eveffort", "hopeful", "failure", "fearful",
    "restls", "happy", "talkless", "lonely", "unfriend",
    "enjoylif", "cryspell", "feltsad", "dislike", "getgoing",
    "cesscore")
targeted.predictors <- CSHA.1991.zarit_disorders[, c("CASEID",</pre>
    demographics, cg.demographics, cognition, beh.disturb,
    np.battery)]
full.predictors <- CSHA.1991.zarit_disorders[, c("CASEID",</pre>
    demographics, famhistory, cg.demographics, languages,
    health.drugs, substances, head.inj, cognition, beh.disturb,
    depress, dementia, alz, neuropsych)]
full.outcomes <- CSHA.1991.zarit_disorders[, c("CASEID",</pre>
    cg.unpaid, cg.felt)]
dim(targeted.predictors)
## [1] 851 68
dim(full.predictors)
## [1] 851 330
dim(full.outcomes) # we may want to reduce it a bit.
## [1] 851 45
```

```
\#"studyage","clinage"
# "eduyear", "edulevel"
# "region"
# "wbocc"
# "cgsex"
# "cgage"
# "cgedyrs", "cgedlev"
# "mmms"
#beh.disturb
#np.battery
final.predictor_demographics <- c("studysex", "studyage", "clinage", "eduyear", "edulevel", "region", "wbocc
final.predictor.set <- c(final.predictor_demographics,beh.disturb,np.battery)</pre>
final.predictors <- targeted.predictors[,final.predictor.set]</pre>
rownames(final.predictors) <- targeted.predictors[,"CASEID"]</pre>
## maybe not
#"langabil"
## start recoding
#final.predictors[, "sex"]
final.predictors$studysex <- ifelse(final.predictors$studysex==1,"MALE","FEMALE")
  final.predictors$studysex <- as.factor(final.predictors$studysex)</pre>
final.predictors$eduyear <- ifelse(final.predictors$eduyear>=77,NA,final.predictors$eduyear)
final.predictors$edulevel <- ifelse(final.predictors$edulevel>=77,NA,final.predictors$edulevel)
final.predictors$edulevel[final.predictors$edulevel==1 | final.predictors$edulevel==2 | final.predictor
  final.predictors$edulevel[final.predictors$edulevel==5] <- "HS"</pre>
  final.predictors$edulevel[final.predictors$edulevel==6 | final.predictors$edulevel==7 | final.predict
  final.predictors$edulevel[final.predictors$edulevel==9] <- "BACHELORS"
  final.predictors$edulevel[final.predictors$edulevel==10] <- "MASTERS"
  final.predictors$edulevel[final.predictors$edulevel==11] <- "PHD"</pre>
  final.predictors$edulevel[final.predictors$edulevel==12] <- "OTHER"</pre>
  final.predictors$edulevel <- as.factor(final.predictors$edulevel)</pre>
  final.predictors$region[final.predictors$region==9] <- NA</pre>
  final.predictors$region[final.predictors$region==1] <- "RURAL"</pre>
  final.predictors$region[final.predictors$region==2] <- "URBAN"</pre>
  final.predictors$region <- as.factor(final.predictors$region)</pre>
  final.predictors$wbocc[final.predictors$wbocc>=8] <- NA</pre>
```

```
final.predictors$wbocc[final.predictors$wbocc==1] <- "LABORER"</pre>
  final.predictors$wbocc[final.predictors$wbocc==2] <- "SERVICE"</pre>
  final.predictors$wbocc[final.predictors$wbocc==3] <- "NOT LABOR FORCE"</pre>
  final.predictors$wbocc[final.predictors$wbocc==4] <- "CRAFT"</pre>
  final.predictors$wbocc[final.predictors$wbocc==5] <- "MANAGER/OFFICIAL"</pre>
  final.predictors$wbocc[final.predictors$wbocc==6] <- "PROFESSIONAL"</pre>
  final.predictors$wbocc <- as.factor(final.predictors$wbocc)</pre>
  final.predictors$cgsex <- ifelse(final.predictors$cgsex==1,"MALE","FEMALE")</pre>
  final.predictors$cgsex <- as.factor(final.predictors$cgsex)</pre>
  final.predictors$cgage <- ifelse(final.predictors$cgage==999,NA,final.predictors$cgage)
  final.predictors$cgedyrs <- ifelse(final.predictors$cgedyrs>=88,NA,final.predictors$cgedyrs)
final.predictors$cgedlev <- ifelse(final.predictors$cgedlev>=77,NA,final.predictors$cgedlev)
final.predictors$cgedlev[final.predictors$cgedlev==1 | final.predictors$cgedlev==2 | final.predictors$c
final.predictors$cgedlev[final.predictors$cgedlev==5] <- "HS"</pre>
final.predictors$cgedlev==6 | final.predictors$cgedlev==7 | final.predictors$c
final.predictors$cgedlev[final.predictors$cgedlev==9] <- "BACHELORS"</pre>
final.predictors$cgedlev[final.predictors$cgedlev==10] <- "MASTERS"
final.predictors$cgedlev[final.predictors$cgedlev==11] <- "PHD"</pre>
final.predictors$cgedlev[final.predictors$cgedlev==12] <- "OTHER"</pre>
final.predictors$cgedlev <- as.factor(final.predictors$cgedlev)</pre>
final.predictors$apathy <- ifelse(final.predictors$apathy >= 5, NA, final.predictors$apathy)
final.predictors$apathy[final.predictors$apathy==1] <- "YES"</pre>
final.predictors$apathy[final.predictors$apathy==2] <- "MAYBE"</pre>
final.predictors$apathy[final.predictors$apathy==3] <- "NO"</pre>
final.predictors$apathy[final.predictors$apathy==4] <- "NOT_RELEVANT"</pre>
final.predictors$apathy <- as.factor(final.predictors$apathy)</pre>
final.predictors$wander <- ifelse(final.predictors$wander >= 5, NA, final.predictors$wander)
final.predictors$wander[final.predictors$wander==1] <- "YES"</pre>
final.predictors$wander[final.predictors$wander==2] <- "MAYBE"</pre>
final.predictors$wander[final.predictors$wander==3] <- "NO"</pre>
final.predictors$wander[final.predictors$wander==4] <- "NOT_RELEVANT"
final.predictors$wander <- as.factor(final.predictors$wander)</pre>
final.predictors$violenc <- ifelse(final.predictors$violenc >= 5, NA, final.predictors$violenc)
final.predictors$violenc[final.predictors$violenc==1] <- "YES"</pre>
final.predictors$violenc[final.predictors$violenc==2] <- "MAYBE"</pre>
final.predictors$violenc[final.predictors$violenc==3] <- "NO"</pre>
final.predictors$violenc[final.predictors$violenc==4] <- "NOT_RELEVANT"</pre>
final.predictors$violenc <- as.factor(final.predictors$violenc)</pre>
```

```
final.predictors$disinhi <- ifelse(final.predictors$disinhi >= 5, NA, final.predictors$disinhi)
final.predictors$disinhi[final.predictors$disinhi==1] <- "YES"
final.predictors$disinhi[final.predictors$disinhi==2] <- "MAYBE"
final.predictors$disinhi[final.predictors$disinhi==3] <- "NO"
final.predictors$disinhi[final.predictors$disinhi==4] <- "NOT_RELEVANT"
final.predictors$disinhi <- as.factor(final.predictors$disinhi)

final.predictors$otherbe <- ifelse(final.predictors$otherbe >= 5, NA, final.predictors$otherbe)
final.predictors$otherbe[final.predictors$otherbe==1] <- "YES"
final.predictors$otherbe[final.predictors$otherbe==2] <- "MAYBE"
final.predictors$otherbe[final.predictors$otherbe==3] <- "NO"
final.predictors$otherbe[final.predictors$otherbe==4] <- "NOT_RELEVANT"
final.predictors$otherbe <- as.factor(final.predictors$otherbe)

save.image('LOADINR.RData')</pre>
```

And now column names: CASEID, studysex, agestrat, studyage, clinage, studyed, eduyear, edulevel, region, race, ethnic1, ethnic2, wbocc, working, institut, relat, cgsex, cgage, cgeth1, cgeth2, cgedyrs, cgedlev, langabil, mmms, score3ms, apathy, wander, violenc, disinhi, otherbe, wechsler, buschfr1, buschcr1, buschtr1, buschfr2, buschcr2, buschtr2, buschcr3, buschcr3, buschtr3, buschfr, buschcr, buschtr, delaytim, reya1, reya2, reya3, reya4, reya5, reya6, reyb1, trueposi, truenega, correct, benmirro, digitspa, lag1, lag2, waisimil, waisjudg, tokentes, verbal, animal, buschke, visualn, tokencol, waisbloc, digit

For our project we should begin with just the two sets of variables identified as target.predictors and outcomes. At this point we have some re-coding to do to convert missing and NA codes, and to convert YES/NO responses or scales to a more coherent format.