Example

August 6, 2020

Contents

1	SIRIUS_Fluo_2020_07_07_0070	1
2	SIRIUS_Fluo_2020_02_16_02289	9
3	SIRIUS_Fluo_2020_02_16_02288	17
4	SIRIUS_Fluo_2020_02_13_02277	25
5	SIRIUS_Fluo_2017_12_11_08042	29

1 SIRIUS_Fluo_2020_07_07_0070

Spectrums with Cadmium and traces of Manganese.

The compton peak is quite large, but can be well modeled with a foot at low energy (gammaA=3.7, fA=0.1).

The escape peak (or noise) around 6keV is a bit more difficult to capture.

```
Fit results for SIRIUS_Fluo_2020_07_07_0070.nxs

Spectrum interval = [75,110]

Channel interval = [170,840]

List of chosen elements: ['Element 4']

Parameters used:
gain = 9.89; eV0 = 6

List of fitted parameters: ['sfa0']

Initial fit parameters:
epsilon = 0.0036; fano = 0.115; noise = 0.110531
sl = 0; ct = 2
sfa0 = -1.67837e-06; sfa1 = 1e-05; tfb0 = 1e-05; tfb1 = 1e-05
twc0 = 1e-05; twc1 = 1e-05
fG = 1.34487
fA = 0.0968284; fB = 1e-10; gammaA = 3.72914; gammaB = 1e+10
```


2 SIRIUS_Fluo_2020_02_16_02289

A series of spectrums which is a bit more difficult to fit, due to the many different lines of gold and their high intensities.

It is required to add a Compton peak for the Au La1 line. Do not forget to name it "Compton" as well.

Another difficulty is the strong change of the nature of the interface, with an associated rise of the Compton scattering that I tried to capture by fitting the parameter gammaA (the slope of the Compton's foot at low energy).

```
Fit results for SIRIUS_Fluo_2020_02_16_02289.nxs
Spectrum interval = [50,1405]
Channel interval = [150,1250]
List of chosen elements: ['Element 4']

Parameters used:
gain = 9.89; eV0 = 6
List of fitted parameters: ['gammaA']

Initial fit parameters:
epsilon = 0.0036; fano = 0.115; noise = 0.110531
```

```
sl = 0; ct = 8

sfa0 = 0.000122772; sfa1 = 1e-07; tfb0 = 1e-05; tfb1 = 1e-05

twc0 = 1e-05; twc1 = 1e-05

fG = 0.849218

fA = 0.238138; fB = 1e-10; gammaA = 1.93714; gammaB = 1e+10
```


AREAS

OTHER PARAMETERS

3 SIRIUS_Fluo_2020_02_16_02288

Spectrums from the same series as SIRIUS_Fluo_2020_02_16_02289.

Here to show that we can fit the curve with the same parameters as the previous one (only with a small adjustement of the noise via ct, and of the low energy step via sfa0).

Fitting all the time series may require a bit more work, with a noise continuously increasing (may be by fitting via sl and ct).

```
Fit results for SIRIUS_Fluo_2020_02_16_02288.nxs

Spectrum interval = [50,55]

Channel interval = [150,1250]

List of chosen elements: ['Element 4']

Parameters used:
gain = 9.89; eV0 = 6

List of fitted parameters: ['sfa0']

Initial fit parameters:
epsilon = 0.0036; fano = 0.115; noise = 0.110531
sl = 0; ct = 3
sfa0 = 0.000239727; sfa1 = 1e-07; tfb0 = 1e-05; tfb1 = 1e-05
twc0 = 1e-05; twc1 = 1e-05
fG = 0.849218
fA = 0.238138; fB = 1e-10; gammaA = 2.0428; gammaB = 1e+10
```


4 SIRIUS_Fluo_2020_02_13_02277

An example of fits with a limited number of peaks (only one line of Au, Compton and Rayleigh). The parameters are taken from the previous analysis on the same system, and only ct (height of the background) is let free.

The fit is therefore very fast, and quite good considering the low couting time per point.

Conclusion: a quick and good analysis can be done by pointing only the most intense peaks.

Fit results for SIRIUS_Fluo_2020_02_13_02277.nxs Spectrum interval = [2,10]

```
Channel interval = [750,1250]
List of chosen elements: ['Element 4']
Parameters used:
gain = 9.89; eV0 = 6
List of fitted parameters: ['ct']
Initial fit parameters:
epsilon = 0.0036; fano = 0.115; noise = 0.110531
sl = 0; ct = 8
sfa0 = 0.000122772; sfa1 = 1e-07; tfb0 = 1e-05; tfb1 = 1e-05
twc0 = 1e-05; twc1 = 1e-05
fG = 0.849218
fA = 0.238138; fB = 1e-10; gammaA = 2.0428; gammaB = 1e+10
                           SIRIUS_Fluo_2020_02_13_02277.nxs: Spectrum number 0/8
        200
        175
        150
```


5 SIRIUS_Fluo_2017_12_11_08042

An example of an X-ray standing wave (XSW) experiment, fitted before subtraction with 64 peaks (8 atoms).

Here using a 4-elements detector.

```
Fit results for SIRIUS_Fluo_2017_12_11_08042.nxs

Spectrum interval = [0,50]

Channel interval = [135,735]

List of chosen elements: ['Element 0', 'Element 1', 'Element 2']

Parameters used:
gain = 10.0934; eV0 = -26.8675

List of fitted parameters: ['ct']

Initial fit parameters:
epsilon = 0.0036; fano = 0.115; noise = 0.118808
sl = 0; ct = 95.4974
sfa0 = 0.0002; sfa1 = 1e-05; tfb0 = 1e-05; tfb1 = 1e-05
twc0 = 1e-05; twc1 = 1e-05
fG = 1.33713
fA = 0.0870612; fB = 1e-10; gammaA = 2.43978; gammaB = 1e+10
```


POSITIONS

