Aussagenlogik & Prädikatenlogik (FGdI II) 4. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto

Felix Canavoi, Kord Eickmeyer

WiSe 2015/16 1. Juni 2016

Gruppenübung

Aufgabe G4.1 (Modellierung)

Ein Meteorologe versucht die zeitliche Entwicklung des Wetters an einem bestimmten Ort mit folgender Signatur in FO zu beschreiben:

$$S = \{0, N, <, P_S, P_R\}.$$

- 0 Konstante für den Starttag
- N 1-stelliges Funktionssymbol für den nächsten Tag
- < 2-stelliges Relationssymbol für die zeitliche Ordnung der Tage
- P_S , P_R 1-stellige Relationssymbole für Sonne und Regen

Formalisieren Sie die folgenden Aussagen in FO(S):

- (a) Auf Regen folgt (irgendwann) Sonnenschein.
- (b) Jeden zweiten Tag scheint die Sonne.
- (c) Wenn an einem Tag die Sonne scheint, gibt es innerhalb von drei Tagen wieder Regen.

Hinweis: Beachten Sie, dass diese Beschreibungen nicht eindeutig sind.

Lösung: Wir geben eine mögliche Lösung an.

- (a) $\forall x (P_R x \rightarrow \exists y (x < y \land P_S y))$
- (b) $\forall x (P_S x \vee P_S N x)$
- (c) $\forall x (P_S x \rightarrow (P_R N x \vee P_R N N x \vee P_R N N N x))$

Aufgabe G4.2 (Mächtigkeiten)

Betrachten Sie FO-Formeln zur Signatur $\{f\}$, wobei f ein einstelliges Funktionssymbol ist.

- (a) Geben Sie eine FO-Formel an, die besagt, dass die Trägermenge genau n Elemente enthält.
- (b) Geben Sie jeweils eine FO-Formel an, die genau dann von einer Struktur erfüllt wird, wenn die Interpretation von *f* i. injektiv ist.
 - ii. surjektiv ist.
- (c) Geben Sie eine FO-Formel an, die erfüllbar ist, aber nur unendliche Modelle hat.

Lösung:

(a) Die Trägermenge enthält mindestens *n* Elemente:

$$\varphi = \exists x_1 \dots \exists x_n \bigwedge_{i \neq j} (x_i \neq x_j)$$

Die Trägermenge enthält höchstens n Elemente:

$$\psi = \forall x_1 \dots \forall x_{n+1} \bigvee_{i \neq j} (x_i = x_j).$$

Die Trägermenge enthält genau n Elemente:

$$\varphi \wedge \psi$$
.

- (b) $\varphi_{\text{inj}} := \forall x \forall y (fx = fy \rightarrow x = y),$ $\varphi_{\text{surj}} := \forall y \exists x (fx = y)$
- (c) $\varphi_{\text{inj}} \wedge \neg \varphi_{\text{surj}}$ oder $(\neg \varphi_{\text{inj}}) \wedge \varphi_{\text{surj}}$ oder $\varphi_{\text{inj}} \oplus \varphi_{\text{surj}}$. Wenn A eine endliche Menge ist, ist nämlich eine Funktion $f: A \to A$ genau dann injektiv, wenn sie surjektiv ist, genau dann, wenn sie bijektiv ist. Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit f(n) := 2n für alle $n \in \mathbb{N}$ ist aber injektiv und nicht surjektiv.

Aufgabe G4.3 (Spielsemantik)

Sei ≼ ein zweistelliges Relationssymbol in Infixnotation. Betrachten Sie den FO(≼)-Satz

$$\varphi = \forall x_1 \forall x_2 \exists x_3 \big((x_3 \leqslant x_1 \land x_3 \leqslant x_2) \land \forall x_4 \big((x_4 \leqslant x_1 \land x_4 \leqslant x_2) \rightarrow x_4 \leqslant x_3 \big) \big).$$

Sei $\mathcal{A} = (A, \preceq^{\mathcal{A}})$ mit $A = \{0, 1, 2, 3, 4\}$ und $\preceq^{\mathcal{A}} = \{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (4, 4)\}$. Zeigen Sie $\mathcal{A} \not\models \varphi$, indem Sie eine Gewinnstrategie für den Falsifizierer angeben. Hinweis:

- (a) Bringen Sie φ in Negationsnormalform φ' , und bestimmen Sie $SF(\varphi')$.
- (b) Skizzieren Sie die Struktur \mathcal{A} , und überlegen Sie inhaltlich, was die Subformeln von φ' bedeuten.
- (c) Geben Sie für alle relevanten Spielpositionen an, wie der Falsifizierer ziehen soll, um sicher zu gewinnen.

Lösung: Die Relation $\preccurlyeq^{\mathcal{A}}$ ist reflexiv, transitiv und antisymmetrisch und damit eine partielle Ordnung. Die Struktur \mathcal{A} kann folgendermaßen als Graph dargestellt werden:

 $\mathcal{A} \models \varphi$ bedeutet, dass es zu zwei Elementen x_1 und x_2 ein Element x_3 mit $x_3 \preccurlyeq x_1$ und $x_3 \preccurlyeq x_2$ gibt, sodass für jedes x_4 mit $x_4 \preccurlyeq x_1$ und $x_4 \preccurlyeq x_2$ auch $x_4 \preccurlyeq x_3$ gilt. Für eine partielle Ordnung \preccurlyeq drückt φ also aus, dass es zu je zwei Elemente x_1 und x_2 ein größtes Element unter den Elementen gibt, die kleiner als x_1 und x_2 sind. Man überprüft leicht, dass für $x_1 \mapsto 3$ und $x_2 \mapsto 4$ kein x_3 mit der benötigten Eigenschaft existiert, also $\mathcal{A} \not\models \varphi$. Als nächstes formen wir φ in Negationsnormalform um:

$$\varphi \equiv \forall x_1 \forall x_2 \exists x_3 \left((x_3 \leqslant x_1 \land x_3 \leqslant x_2) \land \forall x_4 \left((x_4 \leqslant x_1 \land x_4 \leqslant x_2) \rightarrow x_4 \leqslant x_3 \right) \right)$$

$$\equiv \forall x_1 \forall x_2 \exists x_3 \left((x_3 \leqslant x_1 \land x_3 \leqslant x_2) \land \forall x_4 \left(\neg (x_4 \leqslant x_1 \land x_4 \leqslant x_2) \lor x_4 \leqslant x_3 \right) \right)$$

$$\equiv \underbrace{\forall x_1 \forall x_2 \exists x_3 \left((x_3 \leqslant x_1 \land x_3 \leqslant x_2) \land \forall x_4 \left((\neg x_4 \leqslant x_1 \lor \neg x_4 \leqslant x_2) \lor x_4 \leqslant x_3 \right) \right)}_{=:\varphi'}$$

Wir zeigen nun, dass für beliebige $a_1, a_2, a_3, a_4 \in A$ der Falsifizierer in der Spielposition (φ' , (a_1, a_2, a_3, a_4)) eine Gewinnstrategie hat: Angenommen der Falsifizierer zieht von der Position

$$\left(\forall x_1 \forall x_2 \exists x_3 \Big((x_3 \leqslant x_1 \land x_3 \leqslant x_2) \land \forall x_4 \Big((\neg x_4 \leqslant x_1 \lor \neg x_4 \leqslant x_2) \lor x_4 \leqslant x_3 \Big) \Big), (a_1, a_2, a_3, a_4) \right)$$

nach

$$\bigg(\forall x_2 \exists x_3 \Big((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \Big((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \Big) \Big), (3, a_2, a_3, a_4) \bigg)$$

und von dort nach

$$\Big(\exists x_3 \Big((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \Big((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \Big) \Big), (3, 4, a_3, a_4) \Big)$$

dann hat der Verifizierer fünf Möglichkeiten zu ziehen:

 $a_3 \mapsto 3$:

$$((x_3 \le x_1 \land x_3 \le x_2) \land \forall x_4 ((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3), (3, 4, 3, a_4))$$

dann kann der Falsifizierer nach

$$(x_3 \le x_1 \land x_3 \le x_2, (3, 4, 3, a_4))$$

und

$$(x_3 \le x_2, (3, 4, 3, a_4))$$

ziehen und gewinnt wegen $A \not\models 3 \leq 4$.

 $a_3 \mapsto 4$:

$$((x_3 \le x_1 \land x_3 \le x_2) \land \forall x_4 ((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3), (3, 4, 4, a_4))$$

dann kann der Falsifizierer nach

$$(x_3 \le x_1 \land x_3 \le x_2, (3, 4, 4, a_4))$$

und

$$(x_3 \le x_1, (3, 4, 4, a_4))$$

ziehen und gewinnt wegen $A \not\models 4 \leq 3$.

 $a_3 \mapsto 1$:

$$((x_3 \le x_1 \land x_3 \le x_2) \land \forall x_4 ((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3), (3, 4, 1, a_4))$$

dann kann der Falsifizierer nach

$$\left(\forall x_4 \big((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3 \big), (3, 4, 1, a_4)\right)$$

und

$$((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3, (3, 4, 1, 2))$$

ziehen und gewinnt wegen $A \not\models 2 \leq 1$, $A \models 2 \leq 3$ und $A \models 2 \leq 4$.

 $a_3 \mapsto 0$:

$$\Big((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 \Big((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3\Big), (3,4,0,a_4)\Big)$$

dann kann der Falsifizierer nach

$$\left(\forall x_4 \big((\neg x_4 \leqslant x_1 \lor \neg x_4 \leqslant x_2) \lor x_4 \leqslant x_3 \big), (3, 4, 0, a_4) \right)$$

und

$$((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3, (3, 4, 0, 2))$$

ziehen und gewinnt wegen $\mathcal{A} \not\models 2 \leqslant 0$, $\mathcal{A} \models 2 \leqslant 3$ und $\mathcal{A} \models 2 \leqslant 4$.

 $a_3 \mapsto 2$:

$$((x_3 \preccurlyeq x_1 \land x_3 \preccurlyeq x_2) \land \forall x_4 ((\neg x_4 \preccurlyeq x_1 \lor \neg x_4 \preccurlyeq x_2) \lor x_4 \preccurlyeq x_3), (3, 4, 2, a_4))$$

dann kann der Falsifizierer nach

$$(\forall x_4 ((\neg x_4 \leq x_1 \vee \neg x_4 \leq x_2) \vee x_4 \leq x_3), (3, 4, 2, a_4))$$

und

$$((\neg x_4 \le x_1 \lor \neg x_4 \le x_2) \lor x_4 \le x_3, (3, 4, 2, 1))$$

ziehen und gewinnt wegen $\mathcal{A} \not\models 1 \leq 2$, $\mathcal{A} \models 1 \leq 3$ und $\mathcal{A} \models 1 \leq 4$.

Also hat der Falsifizierer eine Gewinnstrategie, und es gilt $A \not\models \varphi$.

Hausübung

Aufgabe H4.1 (Wörter und Sprachen)

(12 Punkte)

Wir wollen Sprachen über dem Alphabet $\Sigma = \{a, b\}$ mit Hilfe der Prädikatenlogik definieren. Wie im Skript, S. 3, definieren wir zu einem nichtleeren Wort $w = a_1 \dots a_n \in \Sigma^+$ eine *Wortstruktur*

$$\mathcal{W}(w) = \left(\{1, \dots, n\}, <^{\mathcal{W}}, P_a^{\mathcal{W}}, P_b^{\mathcal{W}}\right)$$

wobei

$$P_a^{\mathcal{W}} := \{i \in \{1, \dots, n\} : a_i = a\} \text{ und } P_b^{\mathcal{W}} := \{i \in \{1, \dots, n\} : a_i = b\}.$$

(Wir schließen das leere Wort aus, da es keine leeren Strukturen gibt.) Ein Satz $\varphi \in FO(<, P_a, P_b)$ definiert dann die Sprache $L(\varphi) := \{w \in \Sigma^+ \mid \mathcal{W}(w) \models \varphi\}$.

- (a) Welche Sprachen definieren die folgenden Formeln?
 - i. $\forall x \forall y (x < y \rightarrow ((P_b x \rightarrow P_b y) \land (P_a y \rightarrow P_a x)))$
 - ii. $\forall x \forall y ((x < y \land P_a x \land P_a y) \rightarrow \exists z (x < z \land z < y \land P_b z))$
- (b) Geben Sie zu den folgenden Sprachen Formeln an, welche sie definieren.
 - i. $L((a + b)^*bb(a + b)^*a)$
 - ii. $L((ba)^+)$

Lösung:

- (a) Der erste Teil der ersten Formel besagt, dass rechts von einem b nur b stehen dürfen. Analog sagt der zweite Teil, dass links von einem a nur a stehen dürfen, also wird die Sprache $L(a^*(a+b)b^*)$ definiert. Die zweite Formel besagt, dass zwischen zwei a jeweils ein b auftauchen muss, also ist die definierte Sprache $L((b+ab)^*(a+b)b^*)$.
- (b)

$$\exists x \exists y (x < y \land \neg \exists z (x < z \land z < y) \land P_b x \land P_b y) \land \exists x (\forall y (y < x \lor x = y) \land P_a x)$$

und

$$\forall x \forall y ((x < y \land \neg \exists z (x < z \land z < y)) \rightarrow (P_a x \longleftrightarrow P_b y)) \land \\ \forall x (\neg \exists y (y < x) \rightarrow P_b x) \land \forall x (\neg \exists y (x < y) \rightarrow P_a x)$$

Aufgabe H4.2 (Modellierung von Speicherzellen)

(12 Punkte)

Betrachten Sie die Signatur $S = \{0, \le, L\}$, wobei 0 eine Konstante, \le ein 2-stelliges und L ein 1-stelliges Relationssymbol ist. Wir modellieren in dieser Signatur einen Datenspeicher. Die Trägermenge für die Speicherzellen sei die Menge der natürlichen Zahlen mit der gewöhnlichen Ordnung \le auf \mathbb{N} , die Konstante 0 steht für die Adresse der ersten Speicherzelle und Lx steht dafür, dass die Speicherzelle mit der Adresse x gesperrt ist.

Formalisieren Sie die folgenden Aussagen in FO:

- (i) Höchstens eine Speicherzelle ist gesperrt.
- (ii) Es sind genau 3 Speicherzellen gesperrt.
- (iii) Ein Anfangsstück des Speichers ist gesperrt, jedoch nicht der gesamte Speicher.
- (iv) Es gibt höchstens zwei getrennte zusammenhängende Abschnitte von gesperrten Speicherzellen.
- (v) Nur endlich viele Speicherzellen sind gesperrt.
- (vi) Abschnitte von gesperrten und ungesperrten Speicherzellen wechseln sich unendlich häufig ab.

Lösung:

- (i) $\neg \exists x \exists y (\neg x = y \land Lx \land Ly)$
- (ii) $\exists x_1 \exists x_2 \exists x_3 \left(\bigwedge_{i < j} x_i \neq x_j \land Lx_1 \land Lx_2 \land Lx_3 \right) \land \forall x_1 \forall x_2 \forall x_3 \forall x_4 \left(\bigwedge_{i < j} x_i \neq x_j \rightarrow \bigvee_{i=1}^4 \neg Lx_i \right)$
- (iii) $\exists y \forall x (x \leq y \rightarrow Lx) \land \exists x (\neg Lx)$
- (iv) $\neg \exists x_1 \exists x_2 \exists x_3 \exists x_4 \exists x_5 \left(\bigwedge_{i < j} (x_i \neq x_j \land x_i \leq x_j) \land Lx_1 \land \neg Lx_2 \land Lx_3 \land \neg Lx_4 \land Lx_5 \right)$
- (v) $\exists x \forall y (x \leq y \rightarrow \neg Ly)$
- (vi) $\forall x((Lx \to \exists y(x \le y \land \neg Ly) \land (\neg Lx \to \exists y(x \le y \land Ly))))$

Aufgabe H4.3 (Normalformen)

(12 Punkte)

Betrachten Sie die folgenden FO-Formeln, wobei c ein Konstantensymbol, P ein einstelliges Relationssymbol und R ein zweistelliges Relationsymbol ist:

- (i) $Pc \land \forall x (\exists y (Px \leftrightarrow \neg Py))$
- (ii) $\forall x (Px \lor \exists x \neg Px)$
- (iii) $Rcc \land \forall x \exists y (Rxy \rightarrow \exists y Ryx)$
- (a) Geben Sie für jede dieser FO-Formeln eine äquivalente Formel in pränexer Normalform und in Skolemnormalform an.
- (b) Geben Sie für jede dieser Formeln ein Herbrand-Modell an.

Lösung:

- (a) Wir geben jeweils eine mögliche Lösung an:
 - i. Pränexe Normalform:

$$Pc \land \forall x (\exists y (Px \leftrightarrow \neg Py)) \equiv \forall x \exists y (Pc \land (Px \leftrightarrow \neg Py))$$

Skolemnormalform: $\forall x (Pc \land (Px \leftrightarrow \neg Pf_{\nu}x))$ für ein neues einstelliges Funktionssymbol f_{ν} .

ii. Pränexe Normalform:

$$\forall x (Px \lor \exists x \neg Px) \equiv \forall x (Px \lor \exists y \neg Py)$$
$$\equiv \forall x \exists y (Px \lor \neg Py)$$

Skolemnormalform: $\forall x \ (Px \lor \neg Pf_y x)$ für ein neues einstelliges Funktionssymbol f_y .

iii. Pränexe Normalform:

```
Rcc \land \forall x \exists y (Rxy \to \exists y Ryx) \equiv Rcc \land \forall x \exists y (Rxy \to \exists z Rzx)
\equiv Rcc \land \forall x \exists y (\neg Rxy \lor \exists z Rzx)
\equiv \forall x \exists y \exists z (Rcc \land (\neg Rxy \lor Rzx))
\equiv \forall x \exists y \exists z (Rcc \land (Rxy \to Rzx))
```

Achtung: Wenn man einen Quantor aus der Prämisse einer Implikation herauszieht, muss man ihn dualisieren! Wenn man ihn aus der Konklusion herauszieht bleibt der Quantor dagegen erhalten.

Skolemnormalform: $\forall x \ (Rcc \land (Rxf_yx \to Rf_zxx))$ für zwei neue einstellige Funktionssymbole f_y und f_z .

- (b) i. Eine Herbrand-Struktur zur Signatur $S=(c,f_y,P)$ ist $H=(T_0(S),c^H,f_y^H,P^H)$, wobei $T_0(S)$ die variablenfreien Terme über S sind, also die Elemente von der Form c, fc, ffc, usw., $c^H=c$ und $f_y^H(f^nc)=ff^nc$ für alle $n\in\mathbb{N}$. $P^H\subseteq T_0(S)$ muss so gewählt sein, dass $\forall x\left(Pc\wedge(Px\leftrightarrow \neg Pf_yx)\right)$ erfüllt wird. Die Formel besagt, dass $c\in P^H$ gelten soll und dass jede Anwendung von f Elemente bezüglich P^H wie eine Negation wirkt, das heißt jeder zweite Term muss in P^H liegen. Wir setzen also $P^H:=\{f^nc\mid n\text{ ist gerade}\}$.
 - ii. Eine Herbrand-Struktur zur Signatur $S=(c,f_y,P)$ ist $H=(T_0(S),c^H,f_y^H,P^H)$, wobei $T_0(S)$ die variablenfreien Terme über S sind, $c^H=c$ und $f_y^H(f^nc)=ff^nc$ für alle $n\in\mathbb{N}$. $P^H\subseteq T_0(S)$ muss so gewählt sein, dass $\forall x\ (Px\vee \neg Pf_yx)$ erfüllt wird. Wir setzen also $P^H:=T_0(S)$.
 - iii. Eine Herbrand-Struktur zur Signatur $S = (c, f_y, f_z, R)$ ist $H = (T_0(S), c^H, f_y^H, f_z^H, R^H)$, wobei $T_0(S)$ die variablenfreien Terme über S sind, $c^H = c$, $f_y^H(t) = f_y t$ für alle $t \in T_0(S)$ und $f_z^H(t) = f_z t$ für alle $t \in T_0(S)$. $R^H \subseteq T_0(S) \times T_0(S)$ muss so gewählt sein, dass $\forall x (Rcc \land (Rxf_y x \to Rf_z xx))$ erfüllt wird. Wir setzen also $R^H := \{(c,c)\}$.