通訊系統 (II)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館821室

Tel: 62210

E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 9 Error-Control Coding

Introduction

Prof. Tsai

Introduction

- Considering different types of communication channels, such as
 - AWGN channels: AWGN is the main source of channel impairment, such as the satellite communication channels
 - Multipath channels: multipath interference is the main source of channel impairment, such as the wireless channels
 - Interference channels: interference is the main source of channel impairment, such as the random access channels
- These scenarios are naturally quite different from each other
 - But they share a common practical shortcoming: **reliability**
- The use of **error-control coding** is essential for supporting **reliable transmissions**.

Introduction (Cont.)

- From a communication theoretic perspective, the two key resources for reliable transmissions are
 - Transmitted signal power P
 - Channel bandwidth B
- With the **power spectral density** of the receiver noise, the **signal energy per bit-to-noise power spectral density ratio** is $E_b/N_0 = E_s/(N_0 \log_2 M) = PT_s/(N_0 \log_2 M) = P/(N_0 B \log_2 M)$
 - $-E_s$: symbol energy; T_s : symbol duration; M-ary modulation
- E_b/N_0 uniquely determines the BER of a particular modulation scheme operating over a **Gaussian noise channel**.
- For a fixed E_b/N_0 , the only practical option available for improving data quality is to use error-control coding

Prof. Tsai 5

Introduction (Cont.)

- Error-control coding: At the transmitter, incorporate a fixed number of redundant bits into the structure of a codeword
- It is feasible to provide **reliable communication** over a noisy channel
 - Provided that **Shannon's code theorem** is satisfied
- In effect, **channel bandwidth** is traded off for **reliability** in communications.
- Another practical motivation for the use of coding is to **reduce** the required E_b/N_0 for a fixed BER. This reduction in E_b/N_0 may, in turn, be exploited to
 - Reduce the required transmitted power
 - Reduce the hardware costs by requiring a smaller antenna size (antenna gain) in the case of radio communications

Forward Error Correction

- Error control for data integrity may be achieved by means of forward error correction (FEC).
- The **discrete source** generates information (binary symbols)
- The **channel encoder** accepts message bits and adds **redundancy** according to a prescribed rule
 - Produce an encoded data stream at a higher bit rate
- Based on a **noisy version** of the encoded data stream, the **channel decoder** decide which message bits were **actually**

Prof. Tsai

Forward Error Correction (Cont.)

- The combined goal of the channel encoder and decoder is to minimize the effect of channel noise/interference.
 - The number of errors between the channel encoder input and the channel decoder output (source ⇔ sink) is minimized.
- For a fixed **modulation scheme**, the **addition of redundancy** implies the need for
 - Increasing in transmission bandwidth
 - Increasing in system complexity
 - Tradeoff considering bandwidth and complexity is essential

Types of Error-Correcting Codes

- Historically, error-correcting codes have been classified into **block codes** and **convolutional codes**.
 - The distinguishing feature for this particular classification is the absence or presence of memory in the encoders.
- Block codes, convolutional codes, and trellis codes represent the classical family of codes
 - They follow traditional approaches rooted in algebraic mathematics
 - Block codes and convolutional codes: Coding and modulation are designed separately
 - Trellis codes: Coding and modulation are designed jointly
- In addition, turbo codes and low-density parity-check (LDPC) codes are two types of new generation coding techniques

Prof. Tsai

Block Codes

- To generate an (n, k) block code
 - The channel encoder accepts **k-bit blocks** successively
 - For each block, the encoder adds n k redundant bits
 - That are **algebraically related to** the *k* message bits,
 - Thereby producing an encoded block of n bits, n > k
- Codeword: The *n*-bit block, where *n* is the block length
- The **channel data rate** (at the encoder output) is $R_0 = (n/k)R_S$
 - where $R_{\rm S}$ is the **bit rate** of the **information source**.
- The ratio r = k/n is called the **code rate**, where 0 < r < 1.

Convolutional Codes

• In a convolutional code, the encoding operation may be viewed as the **discrete-time convolution** of the **input sequence** with the **impulse response of the encoder**.

• The duration of the impulse response equals the **memory** of the encoder.

Prof. Tsai

Trellis Codes

- Conventionally, the operations of channel coding and modulation are design/performed separately at the transmitter
- The **most effective** method of implementing forward error correction coding is to **combine** coding with modulation
- Coding is redefined as a process of imposing certain patterns (constellation points) on the transmitted signal
 - The resulting code is called a **trellis code**
- Based on the concept that different pairs of constellation points have different error distances
 16-OAM

Turbo Codes

- **Turbo codes** are a class of high-performance forward error correction (FEC) codes
 - The first practical codes to closely approach the maximum channel capacity or Shannon limit
 - Turbo codes are used in 3G/4G mobile communications
- The design objective of turbo codes is achieved by using concatenated codes

Prof. Tsai

Turbo Codes (Cont.)

- The two-stage **turbo decoder** operates on noisy versions of the systematic bits and the two sets of parity-check bits
 - To produce an estimate of the original message bits
- A distinctive feature of the turbo decoder is the use of **feedback**

 To produce extrinsic information from one decoder to the next in an iterative manner

Low-Density Parity-Check (LDPC) Codes

- Low-Density Parity-Check (LDPC) codes are specified by a parity-check matrix A, represented as $\mathbf{A}^{T} = \begin{bmatrix} \mathbf{A}_{1} \\ \mathbf{A}_{2} \end{bmatrix}$
 - where A_1 is a square matrix of dimensions $(n-k)\times(n-k)$ and A_2 is a rectangular matrix of dimensions $k\times(n-k)$;
 - A is purposely (randomly with rules) chosen to be sparse;
 that is, A consists mainly of 0s and a small number of 1s
- The 1-by-*n* code vector \mathbf{c} is partitioned as $\mathbf{c} = [\mathbf{b} \mid \mathbf{m}]$
 - where **m** is the k-by-1 **message vector** and **b** is the (n k)-by-1 **parity-check vector**
- Then, based on the parity-check concept, $\mathbf{c} \mathbf{A}^T = [\mathbf{b} \mid \mathbf{m}] \mathbf{A}^T = \mathbf{0}$
- The parity vector **b** is obtained by $\mathbf{b} = \mathbf{mP}$, where $\mathbf{P} = \mathbf{A}_2 \mathbf{A}_1^{-1}$

Prof. Tsai

Linear Block Codes

Channel-Coding Theorem (Revisited)

- Consider a discrete memoryless **source** that has the source alphabet \mathbb{S} and entropy H(S) bits per source symbol.
- Assume that the source **emits symbols** once every $T_{\rm s}$ seconds
 - The average information rate: $H(S)/T_s$ bits per second
 - The decoder delivers decoded symbols to the destination at the same source rate of one symbol every $T_{\rm s}$ seconds
- The discrete memoryless **channel** has a **channel capacity** equal to *C* bits per use of the channel.
- Assume that the channel can be used once every $T_{\rm c}$ seconds
 - The channel capacity per unit time: C/T_c bits per second
 - The **maximum rate** of information transfer over the channel to the destination: $C/T_{\rm c}$ bits per second

Prof. Tsai

Channel-Coding Theorem (Cont.)

- Shannon's second theorem: the channel-coding theorem
- Let a **discrete memoryless source** with an alphabet \mathbb{S} have entropy H(S) for random variable S and produce symbols once every T_s seconds.
- Let a **discrete memoryless channel** have capacity C and be used once every $T_{\rm c}$ seconds.
- Then, if $H(S)/T_s \le C/T_c$ there exists a **coding scheme** for which the source output can be **transmitted** over the channel and be **reconstructed** with an arbitrarily small probability of error.
- The parameter C/T_c is called the **critical rate**.
 - When $H(S)/T_s = C/T_c$, the system is said to be signaling at the critical rate.

Channel-Coding Theorem (Cont.)

- Conversely, if $H(S)/T_s > C/T_c$ it is **not possible** to transmit information over the channel and reconstruct it with an arbitrarily small probability of error.
- The channel-coding theorem is the single **most important** result of information theory.
 - The theorem specifies the channel capacity C as a fundamental limit on the rate at which the transmission of reliable error-free messages can take place over a discrete memoryless channel.

Channel capacity

Error is inevitable

Error-free transmission is possible

Information entropy
Information entropy

Prof. Tsai

Binary Arithmetic

- Many of the codes are **binary codes**, for which the alphabet consists only of binary symbols **0** and **1**.
- The encoding and decoding functions involve the binary arithmetic operations of **modulo-2 addition** and **multiplication**.
 - Modulo-2 addition: EXCLUSIVE-OR operation

•
$$0+0=0$$
; $1+0=1$; $0+1=1$; $1+1=0$;

- Modulo-2 multiplication: AND operation

•
$$0 \times 0 = 0$$
; $1 \times 0 = 0$; $0 \times 1 = 0$; $1 \times 1 = 1$;

Linear Block Codes

- Definition of a linear code:
 - A code is said to be linear if any two codewords in the code can be added in modulo-2 arithmetic to produce a third codeword in the code.
- Consider an (n, k) linear block code, in which k bits of the n code bits are always identical to the message sequence.
 - This type of codes are called systematic codes.
 - For applications requiring both error detection and error correction, it simplifies implementation of the decoder.
- The (n k) bits in the remaining portion are computed from the message bits in accordance with a prescribed encoding rule.
 - These (n k) bits are referred to as **parity-check bits**.

Prof. Tsai

Linear Block Codes (Cont.)

- Let m_0, m_1, \dots, m_{k-1} constitute a block of k message bits
 - There are 2^k distinct message blocks
- Let this sequence of message bits be applied to a **linear block** encoder, producing an *n*-bit codeword: c_0 , c_1 , ..., c_{n-1}
 - The (n-k) parity-check bits: $b_0, b_1, \dots, b_{n-k-1}$
 - For a systematic code, a codeword is divided into two parts:
 the message bits and the parity-check bits
- Assume that the (n k) **leftmost** bits of a codeword are the corresponding **parity-check bits** and the k **rightmost** bits of the codeword are the message bits.

$$c_i = \begin{cases} b_i, & i = 0, \dots, n-k-1 \\ m_{i+k-n}, & i = n-k, \dots, n-1 \end{cases} \underbrace{\begin{bmatrix} b_0, b_1, \dots, b_{n-k-1} \\ p_{arity bits} \end{bmatrix}}_{\text{Parity bits}} \underbrace{\begin{bmatrix} m_0, m_1, \dots, m_{k-1} \\ m_0, m_1, \dots, m_{k-1} \end{bmatrix}}_{\text{Parity bits}}$$

Linear Block Codes (Cont.)

- The (n-k) parity-check bits are **linear sums** of the k message bits: $b_i = p_{0,i} m_0 + p_{1,i} m_1 + \cdots + p_{k-1,i} m_{k-1}$
 - where $p_{i,i} = 1$, if b_i depends on m_i ; and $p_{i,i} = 0$, otherwise
- The coefficients $p_{j,i}$ are chosen in such a way that
 - The rows of the generator matrix are **linearly independent**
 - The parity-check equations are **unique**
- This system can be rewritten in a **matrix form**:
 - The 1-by-k message vector $\mathbf{m} = [m_0, m_1, \dots, m_{k-1}]$
 - The 1-by-(n-k) parity-check vector $\mathbf{b} = [b_0, b_1, \dots, b_{n-k-1}]$
 - $\mathbf{b} = \mathbf{mP}$, where **P** is the k-by-(n k) coefficient matrix
 - The 1-by-*n* code vector $\mathbf{c} = [c_0, c_1, \dots, c_{n-1}]$

Prof. Tsai

Linear Block Codes: Generator Matrix

• The k-by-(n - k) coefficient matrix is defined as

$$\mathbf{P} = \begin{bmatrix} p_{0,0} & p_{0,1} & \cdots & p_{0,n-k-1} \\ p_{1,0} & p_{1,1} & \cdots & p_{1,n-k-1} \\ \vdots & \vdots & \ddots & \vdots \\ p_{k-1,0} & p_{k-1,1} & \cdots & p_{k-1,n-k-1} \end{bmatrix}$$

• The code vector can be expressed as

$$\mathbf{c} = [\mathbf{b} : \mathbf{m}] = \mathbf{m} [\mathbf{P} : \mathbf{I}_k]$$

- where I_k is the k-by-k identity matrix
- We then define the k-by-n generator matrix as G

$$\mathbf{G} = \begin{bmatrix} \mathbf{P} : \mathbf{I}_k \end{bmatrix}$$
 Message vector \mathbf{G} Generator matrix \mathbf{G} \mathbf{G}

Linear Block Codes: Generator Matrix (Cont.)

- The full set of **codewords** (the code) is generated by passing the set of possible message vectors **m** into **c** = **mG**
 - The set of all 2^k binary k-tuples (1-by-k vectors)
- A basic property of linear block codes is **closure**
 - The sum of any two codewords in the code is another codeword
- Consider a pair of **code vectors** \mathbf{c}_i and \mathbf{c}_j corresponding to a pair of **message vectors** \mathbf{m}_i and \mathbf{m}_j , respectively.

$$\mathbf{c}_i + \mathbf{c}_j = \mathbf{m}_i \mathbf{G} + \mathbf{m}_j \mathbf{G} = (\mathbf{m}_i + \mathbf{m}_j) \mathbf{G}$$

- The modulo-2 sum of \mathbf{m}_i and \mathbf{m}_j is a new message vector \mathbf{m}_k
 - Correspondingly, the modulo-2 sum of \mathbf{c}_i and \mathbf{c}_j is a **new** code vector \mathbf{c}_k

Prof. Tsai 25

Linear Block Codes: Parity-Check Matrix

• We define the (n - k)-by-n parity-check matrix as

$$\mathbf{H} = \left[\mathbf{I}_{n-k} : \mathbf{P}^{\mathrm{T}} \right]$$

- where the (n k)-by-k matrix \mathbf{P}^{T} is the transpose of \mathbf{P}
- Accordingly, we have

$$\mathbf{H}\mathbf{G}^{\mathrm{T}} = \begin{bmatrix} \mathbf{I}_{n-k} \vdots \mathbf{P}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{P}^{\mathrm{T}} \\ \mathbf{I}_{k} \end{bmatrix} = \mathbf{P}^{\mathrm{T}} + \mathbf{P}^{\mathrm{T}} = \mathbf{0}; \quad \mathbf{G}\mathbf{H}^{\mathrm{T}} = \mathbf{0}$$

- In **modulo-2 arithmetic**, the matrix sum $P^T + P^T$ is 0
- The inner product of a code vector and the transpose of H

 $cH^T = mGH^T = 0$

Linear Block Codes: Syndrome

- The **generator matrix G** is used in the **encoding** operation at the **transmitter**.
- On the other hand, the **parity-check matrix H** is used in the **decoding** operation at the **receiver**.
- Let **r** denote the 1-by-*n* received vector that results from sending the code vector **c** over a **noisy binary channel**.
 - The sum of c and an error vector, or error pattern, e

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$

• The *i*-th element of **e** equals **0** (or **1**) if the corresponding element of **r** is **the same as** (or **different from**) that of **c**.

 $e_i = \begin{cases} 1, & \text{if an error has occurred in the } i - \text{th location} \\ 0, & \text{otherwise} \end{cases}$

Prof. Tsai

Linear Block Codes: Syndrome (Cont.)

- The receiver decodes the code vector **c** from **r**
 - The decoding starts with the computation of a 1-by-(n k) vector called the error-syndrome vector or syndrome
- The **syndrome** (length n k) corresponding to **r** is defined as

$$s = rH^T$$

Depends only on the error pattern and not on the transmitted codeword

$$\mathbf{s} = \mathbf{r}\mathbf{H}^{\mathrm{T}} = (\mathbf{c} + \mathbf{e})\mathbf{H}^{\mathrm{T}} = \mathbf{c}\mathbf{H}^{\mathrm{T}} + \mathbf{e}\mathbf{H}^{\mathrm{T}} = \mathbf{e}\mathbf{H}^{\mathrm{T}}$$

- Equal to the sum of those rows, corresponding to the errors
 have occurred, of the transposed parity-check matrix H^T
- If errors occur at locations *i* and $j \Rightarrow \mathbf{s} = \mathbf{h}_i + \mathbf{h}_j$
 - where \mathbf{h}_i and \mathbf{h}_j are the *i*-th and *j*-th rows of \mathbf{H}^T

Linear Block Codes: Syndrome (Cont.)

- For an error pattern \mathbf{e} , all error patterns that differ to \mathbf{e} by a codeword are \mathbf{e}_i that satisfy $\mathbf{e}_i \mathbf{e} = \mathbf{c}_i$
 - There are 2^k distinct code vectors: \mathbf{c}_i , $i = 0, 1, \dots, 2^k 1$

-
$$\mathbf{e}_{i} = \mathbf{e} + \mathbf{c}_{i}$$
, for $i = 0, 1, \dots, 2^{k} - 1$

- The set of vectors \mathbf{e}_i is called a **coset** of the code
- A coset has exactly 2^k elements
- An (n,k) linear block code has 2^{n-k} possible cosets

•
$$2^n / 2^k = 2^{n-k}$$

Each coset of the code is characterized by a unique syndrome

$$\mathbf{e}_i \mathbf{H}^{\mathrm{T}} = \mathbf{e} \mathbf{H}^{\mathrm{T}} + \mathbf{c}_i \mathbf{H}^{\mathrm{T}} = \mathbf{e} \mathbf{H}^{\mathrm{T}} + \mathbf{0} = \mathbf{e} \mathbf{H}^{\mathrm{T}}$$

 All error patterns that differ by a codeword have the same syndrome.

Prof. Tsai

Linear Block Codes: Syndrome (Cont.)

• With the matrix \mathbf{H} , the (n-k) elements of the syndrome \mathbf{s} are linear combinations of the n elements of the error pattern \mathbf{e}

$$\mathbf{s} = \mathbf{r} \mathbf{H}^{\mathsf{T}} = \mathbf{r} \begin{bmatrix} \mathbf{I}_{n-k} \\ \mathbf{P} \end{bmatrix} = \mathbf{e} \begin{bmatrix} \mathbf{I}_{n-k} \\ \mathbf{P} \end{bmatrix}$$

$$s_0 = e_0 + e_{n-k} p_{0,0} + e_{n-k+1} p_{1,0} + \dots + e_{n-1} p_{k-1,0}$$

$$s_1 = e_1 + e_{n-k} p_{0,1} + e_{n-k+1} p_{1,1} + \dots + e_{n-1} p_{k-1,1}$$

$$\vdots$$

$$s_{n-k-1} = e_{n-k-1} + e_{n-k} p_{0,n-k-1} + \dots + e_{n-1} p_{k-1,n-k-1}$$
Linear combinations

- The syndrome ((n k) linear equations) contains information about the error pattern and may be used for error detection.
 - There are more unknowns than equations $((n-k) \le n)$
 - The set of equations is underdetermined
 - There is **no unique solution** for the error pattern

Minimum Distance Considerations

- Consider a pair of code vectors \mathbf{c}_1 and \mathbf{c}_2 that have the same number of elements.
 - The **Hamming distance**, $d(\mathbf{c}_1, \mathbf{c}_2)$, is defined as the **number** of locations in which their respective elements differ.
 - The **Hamming weight**, $w(\mathbf{c})$, of a code vector \mathbf{c} is defined as the **number of nonzero elements** in the code vector.
 - The distance between **c** and the **all-zero** code vector.
- The minimum distance d_{\min} of a linear block code is the smallest Hamming distance between any pair of codewords.
 - $-d_{\min}$ is the same as the **smallest Hamming weight** of the **difference** between any pair of code vectors.
 - From the closure property, d_{\min} is the smallest Hamming weight of the nonzero code vectors in the code.

Prof. Tsai

Minimum Distance Considerations (Cont.)

- Specifically, d_{\min} determines the **error-correcting capability** of the code.
- Suppose an (n, k) linear block code is required to detect and correct all error patterns having a Hamming weight less than or equal to t.
 - That is, if a code vector \mathbf{c}_i is transmitted and the received vector is $\mathbf{r} = \mathbf{c}_i + \mathbf{e}$, we require that the **decoder output** $\hat{\mathbf{c}} = \mathbf{c}_i$
 - whenever the error pattern **e** has a Hamming weight $w(\mathbf{e}) \le t$
- The **best decoding strategy** is to pick the code vector **closest** to the received vector **r**
 - Maximum Likelihood (ML) decision rule
 - Choose the one with the smallest Hamming distance $d(\mathbf{c}_i, \mathbf{r})$

Minimum Distance Considerations (Cont.)

- With the ML strategy, the decoder will be able to detect and correct all error patterns of Hamming weight w(e)
 - Provided that the minimum distance of the code is equal to or greater than 2t + 1
- An (n,k) linear block code has the power to correct all error patterns of weight t or less if, and only if,
 - $-d(\mathbf{c}_i, \mathbf{c}_j)$ ≥ 2t + 1, for all \mathbf{c}_i and \mathbf{c}_j

Prof. Tsai

Syndrome Decoding

- Consider an (n, k) linear block code with the 2^k code vectors \mathbf{c}_i for $1 \le i \le 2^k$.
- Let \mathbf{r} denote the **received vector**: one of 2^n possible values
- The receiver partitions the 2^n possible vectors into 2^k disjoint subsets D_i
 - The *i*-th subset D_i corresponds to code vector \mathbf{c}_i for $1 \le i \le 2^k$
 - **r** is decoded into **c**_i if it is in D_i for $1 \le i \le 2^k$
- For the decoding to be **correct**, \mathbf{r} must be in the subset that belongs to the code vector \mathbf{c}_i that was actually sent.
- The construction of the 2^k disjoint subsets is shown as follows:
 - Step 1: The 2^k code vectors are placed in a row with the all-zero code vector \mathbf{c}_1 as the leftmost element.

Syndrome Decoding (Cont.)

- Step 2: An error pattern \mathbf{e}_2 is picked and placed under \mathbf{c}_1 , and a second row is formed by adding \mathbf{e}_2 to \mathbf{c}_i
- Step 3: Repeat Step 2 until all the possible error patterns have been accounted for
 - The new error pattern must not previously appeared

Prof. Tsai

Syndrome Decoding (Cont.)

- The 2^k columns represent the disjoint subsets D_i
- The 2^{n-k} rows represent the cosets of the code
 - Their first elements e_i , $j = 2, 3, \dots, 2^{n-k}$, are **coset leaders**
- The probability of **decoding error** is **minimized** when the **most likely error patterns** are chosen as the **coset leaders**.
 - Those with the **largest** probability of occurrence
- In the case of a binary symmetric channel, the smaller the **Hamming weight** of an error pattern is, the **more likely** it is for an error to occur.
- The construction should choose the error pattern with the minimum Hamming weight in its coset as the coset leader

Syndrome Decoding (Cont.)

- The **syndrome decoding** procedure for linear block codes:
- 1. For the received vector \mathbf{r} , compute the syndrome $\mathbf{s} = \mathbf{r}\mathbf{H}^{\mathrm{T}}$.
- 2. Within the coset characterized by the syndrome s, identify the coset leader.
 - The error pattern corresponding to the codeword \mathbf{c}_1
 - The error pattern is denoted as \mathbf{e}_0
- 3. Compute the code vector $\mathbf{c} = \mathbf{r} + \mathbf{e}_0$ as the decoded output of the received vector \mathbf{r} .

$$\mathbf{r} \Rightarrow \mathbf{s} \Rightarrow \mathbf{e}_0 \Rightarrow \mathbf{c} = \mathbf{r} + \mathbf{e}_0$$

Prof. Tsai

Example: Hamming Codes

- Hamming codes: a family of (n, k) linear block codes that have the following parameters: $(m \ge 3)$
 - − Code length: $n = 2^m 1$
 - Number of message bits: $k = 2^m m 1$
 - Number of parity-check bits: n k = m
- Specifically for m = 3, it is the (7, 4) Hamming code with the error-correcting capability of t = 1 error
- The generator of this code is defined by

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & \vdots & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & \vdots & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & \vdots & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & \vdots & 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: Hamming Codes (Cont.)

• The corresponding parity-check matrix is given by

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & \vdots & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & \vdots & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & \vdots & 0 & 1 & 1 & 1 \end{bmatrix}$$

- The columns of **P** consist of all the nonzero m-tuples for m = 3
- With k = 4, there are $2^k = 16$ distinct message words

Message	Codeword	Weight	Message	Codeword	Weight
0000	0000000	0	1000	1101000	3
0001	1010001	3	1001	0111001	4
0010	1110010	4	1010	0011010	3
0011	0100011	3	1011	1001011	4
0100	0110100	3	1100	1011100	4
0101	1100101	4	1101	0001101	3
0110	1000110	3	1110	0101110	4
0111	0010111	4	1111	1111111	7

Prof. Tsai

Example: Hamming Codes (Cont.)

- The smallest Hamming weight of the nonzero codewords is 3.
 - It follows that the minimum distance of the code is $d_{\min} = 3$
 - The error-correcting capability is t = 1 error
- There are 7 error patterns, each of which contains only 1 error
- The syndrome corresponds to an error pattern: $\mathbf{s} = \mathbf{r}\mathbf{H}^{\mathrm{T}}$
 - If the transmitted codeword is \mathbf{c}_1 , the received vector \mathbf{r} is the corresponding error pattern of the **coset leader**

• For example:
$$\mathbf{r} = [0010000]$$

$$\mathbf{s} = \mathbf{r}\mathbf{H}^{\mathrm{T}} = [0010000] \begin{bmatrix} 100 \\ 010 \\ 001 \\ 110 \\ 011 \\ 111 \\ 101 \end{bmatrix} = [001]$$

Example: Hamming Codes (Cont.)

- Based on the **syndrome decoding** procedure, the **syndrome** of a received vector shows the **location** of the erroneous bit.
 - If $s = [001] \Rightarrow$ the third bit of r is erroneous
- Thus, adding the error pattern e_0 to the received vector \mathbf{r} yields the correct code vector actually sent.

$-\mathbf{c} = \mathbf{r} + \mathbf{e}_0$		
- 0	Syndrome	Error Pattern
No error —	000	0000000
	100	1000000
	010	0100000
	001	0010000
	110	0001000
	011	0000100
	111	0000010
	101	0000001

Prof. Tsai

Homework

- You must give detailed derivations or explanations, otherwise you get no points.
- Communication Systems, Simon Haykin (4th Ed.)
- 10.4;
- 10.5;
- 10.7;
- 10.8;