13주차 1차시 분석론 기초사항 고찰

[학습목표]

- 1. 객체의 개념 및 문제정의를 설명할 수 있으며, 객체의 식별과 결정을 파악할 수 있다.
- 2. 자료사전으로 표현되는 객체의 속성기술을 설명할 수 있다.

학습내용1: 개요 / 문제정의

1. 개요

〈실세계(Real world)의 내용을 객체모델(Object model)로 작성하는 과정이 객체지향분석(Object Oriented analysis)임〉 - 객체모델을 효과적으로 유도하기 위해서는 다음과 같은 과정을 거쳐야 함

- ① 객체의 식별
- ② 객체 사이의 속성과 연산의 정의 및 기술(Description)
- ③ 객체 사이의 통신 정의
- 1) 다양한 객체분석 절차가 존재하지만 요든(Yourdon) · 코드(Coad)에 의하면 다음과 같은 5 단계로 구분됨
- ① 문제명세서 작성
- ② 객체 · 클래스 정의
- ③ 클래스 속성 정의
- ④ 클래스의 계층구조 결정
- ⑤ 메시지 정의

2. 문제 정의

- 1) 객체지향방법론으로 문제를 해결하기 위한 작업진행은
- ① 문제정의(Problem Statements)
- ② 객체 및 클래스 정의
- ③ 클래스의 속성 · 연간 정의
- ④ 관련된 클래스 · 객체들의 관계 설정
- ⑤ 각 클래스의 연산을 구체화한 알고리즘 결정 순으로 이루어짐

2) 개발계획단계에서는 다음 두 가지가 선결과제임

문제정의서 작성

개발계획의 수립

- 3) 문제 정의(Problem Statements)의 목적과 내용 및 수정
- ① 문제 내용을 구체적으로 정의하고 범위를 명확히 구분하기 위하여 작성함
- ② 대상업무를 개발하기 이전에 고객에 의해서 시스템의 기능, 사용자의 요구 성능을 구체적으로 명시하는 것임
- ③ 고객이 작성한 문제정의 내용이 부실할 경우 개발자가 수정보완 가능함
- 4) 문제정의 기술(Description) 과정의 유의사항
- ① 간단 · 명료한 문체로 기술해야 함
- ② 질문문 · 명령문 · 감탄문 등을 피하고 선언하는 문장으로 기술함
- ③ 필요한 모든 기능 · 요구되는 중요 정보 및 과정의 포함 여부를 확인해야 함
- ④ 각 기술문장이 중요도 · 상세도 측면에서 동일 수준 여부를 확인해야 함
- * 예시 : 「문제 정의」내용
- 각자 참고서에 나타난 내용 수집하여 비교 · 검토하는 시간 을 가지도록 강의를 진행함
- 5) 문제정의서 작성 「문제정의」된 내용을 요약하여 간단하게 「문제정의서」를 작성해 두어야 함
- 문제정의를 완벽하게 해두면 그 내용에서 클래스 객체 · 함수를 찾아내는 일이 용이하기 때문에 문제정의서를 작성함
- * 예시 : 문제정의서 작성
- 각자 사례를 수집하여 장단점을 비교·검토하도록 강의를 진행하도록 유도함

학습내용2 : 객체의 식별과 결정 / 구조결정

- 1. 객체의 식별과 결정
- 1) 객체의 식별
- ① 객체의 식별(Identification) 방법은 두 가지가 있음
- 이들은 모두「공통적 구조 · 행동을 나타내는 사항들을 집단으로 구분하는 분류(Classification)에 근거를 두고 있음

발견에 의한 방법

문제영역 내에 존재하는 중요한 메카니즘이나 추상화 개념을 찾아서 객체로 인식하는 방법

생성에 의한 방법

새로운 메카니즘이나 추상화 개념을 만들어 객체로 인식하는 방법

- ② 객체의 식별을 위해서 분류하는 과정에서 가장 핵심적인 문제는 「식별을 위하여 정확한 경계(Boundary)」를 설정하는 것임
- * 이유 : 분류기준이 다를 경우 동일한 내용이라도 결과가 달라짐
- 분류 목적에 따라 그 결과가 달라지거나, 객체 식별을 위한 경계가 불명확하여 담당자의 견해 차이가 유발됨
- ③ 분류(classification) 문제를 해결하기 위한 최선의 방법은 각 추상화 개발방법에서
- 문제의 해결 대책을 제시
- 그 해결 대책을 체계적으로 이해한 후,이해된 해결 대책을 분석하여 코드화 하는 절차를 반복하다가 원하는 결과가 산출되면 종료하는 점진적으로 접근하는 것임
- ④ 「객체 혹은 클래스의 결정 방법」은 다음의 두 가지가 있음
- * 전통적인 방법
- 공통적인 특성을 가진 객체들을 동일한 그룹(Group)으로 분류하는 방법으로서「객체가 특정한 특성을 소유했는지 여부에 따라서 결정하는 방식 임
- 특정한 시스템과 관련하여 상호작용이 이루어지는 외부개체(다른 시스템이나 디바이스, 사람, 기계)
- 다수의 하위 요소로 이루어진 구조 (전송수단, 교육수단, 운송수단)
- 시스템과 관련된 상호작용에서 사람의 수행역할 (사용자, 운영자)
- 사람이 소속한 조직 (교수부, 개발팀, 결재라인, 재무관리실)
- 문제에 대하여 정보영역 부분이 되는 사물 (팩스, 문서, 보고서, 편지)
- * 객체지향 방법
- 문제영역을 구성하고 있는 객체와 클래스를 찾아서 문제를 모델화 하는 방법임
- 이 방법에서는 행위분석, 영역분석, 유즈케이스분석 등을 사용하여 객체를 결정함
- 객체지향분석에서는 객체의 결정은 행위분석, 영역 분석, 유즈케이스분석 등과 전통적 방법을 모두 사용함

⑤ 행위분석(Action Analysis)

- * 개념적 그룹화(Grouping)에서 파생된 행위분석 : 「동적인 행동을 가지고 있는 내용」을 「객체 혹은 클래스 후보」로 정하는 방식
- 기본적으로「객체의 집합을 클래스로 규정」하고, 그 규정된 내용에 의거하여 객체들을 구분하는 방식임
- ⑥ 영역분석(Domain Analysis)
- * 영역분석: 「문제를 가지고 있거나」,「개발대상인 업무의 전문가들이」해당영역에서 중요한 것으로 판정되는 「관련(Association), 연산 (Operation), 객체(Object)」등을 모두 찾아내는 방법임
- 지정된 해당영역의 전문가에 의해서 일반적인 모델링(Modeling)의 정의
- 영역내의 모든 시스템을 조사하여 공통적인 방법으로 표현
- 영역 전문가 참여 하에 시스템 사이의 차이점과 유사점 구분
- 최초 정의모델을 기존 시스템에 적용 가능하게 재정의
- ⑦ 유즈케이스분석(Use-Case Analysis)
- * 유즈케이스

분석 : 시스템에서 필요한 연산에 요구되는 시나리오(Scenario)를 기술하고, 그 시나리오를 스토리보드(Storyboard)로 작성하여 분석하는 방식임

- 시나리오를 분석함으로써 다음 사항을 명확히 파악 가능함
 - 연산에 관계되는 객체
 - 각 객체의 역할
 - 각 객체가 어떤 연산을 사용해서 다른 객체를 호출
 - 어떻게 다른 객체와 공동작업을 하는지
- 분석 중에 예외사항 · 보조 시스템 행위 등을 반영해야하기 때문에 최초의 시나리오는 확장 · 변형은 필연적임
- 그러므로 새로운 추상화가 만들어져 이미 정의된 추상화의 역할 변경·추가·첨삭을 통해서 분석이 이루어짐
- 2) 객체의 선정
- ①「객체후보」를 결정하기 위해서는 대상업무에 대하여「문제점」이나「활동」을 기술한 요구명세서, 시스템정의서, 문제정의 등과 같은 각종 문서를 읽어 가면서 「명사(Noun)」혹은「명사절」을 골라내서 「객체 리스트(Object list)」를 작성하면 됨

- ② 객체후보를 선정할 때 객체의 집합이「클래스」이고, 객체는 클래스의 「인스탄스(Instance)」라는 사실을 염두에 두고, 다음과 같이 분석함
- 문제정의에 나타난「명사」에 줄을 그음
- 문제정의에 나타난 주요「동사(verb)」를 차례대로 별도의 종이에 적음
- 밑줄 그어진「명사」가 객체가 될 수 있는지 여부를 판정함 (객체의 속성에 해당하는 「명사」는 제외되어야 함)
- 후보객체가 문제영역(problem space), 해답영역(soluation space)중에 어디에 속하는지 결정함
 - 그 이유는 문제영역은 해답영역을 포함하는 상위개념으로서 시스템의 범위를 나타내기 때문임
 - 「해답영역」은 「문제영역의 부분집합으로」시스템을 구현한 내용이기 때문에 해답영역에 속하는 객체는 문제영역에도 나타남
 - 문제영역에 속하는 객체는 해답영역에 나타나지 않음
- 해답영역에 속하는 객체들에 대해서「이름」을 부여하며, 문제영역에 속하는 객체는 무시함
- ③ 원칙에 의거한「객체후보를 결정하는 과정」 요약
- 문제정의에 나타난「명사」들을 차례대로 종이 위에 기재하는「객체후보 리스트」를 작성함 이「명사」들이「객체 가 될 수 있는지 여부를 검토」함
- 「명사」중에서 객체의 속성을 나타내는「명사」(「명사」중에서 값을 가지는 명사(주민등록번호, 총수령액))는 객체후보가 될 수 없기 때문에 지우며, 이 제외 된「명사」들은 별도의 종이에 적어둠
- 객체후보가 문제영역과 해답영역 중에서 어디에 속하는지 판정하며, 그 이유는 문제영역의 객체들은 문제기술(Problem Description)에 유용하지만 해답영역에는 필요치 않기 때문임
- 이 과정까지 객체후보 리스트에 남아 있는 명사 중에서
 - 시스템 영역 외에 존재하는 명사
 - 무의미한 명사
 - 중복되는 명사 등을 제외하고, 「필수객체(Essential Object)」만 이용하여 최종적인 「객체 리스트Object List)를 작성함
- 원칙에 의거하여 작성된 최종적인「객체 리스트」에 따라서「객체 모델(object model)」이 작성됨
- ④ 요든(yourdon)과 코드(coad) 등이 제시한 필수객체를 선택하는 기준
- 속성이 다른 객체에도 적용되는 다중속성을 가진 객체후보는 유용함
- 정의된 속성이 모든 객체에 적용되는 공통속성을 가진 객체후보는 유용함
- 시스템이 기능을 나타내기 위한 정보를 기억하는 보유정보 기능을 가진 객체후보는 유용함
- 정의된 연산이 출현하는 모든 객체에 적용되는 공통연산 기능을 가지는 객체후보는 유용함
- 연산에 반드시 요구되는 필수요구를 포함한 객체후보는 유용함
- 객체가 자신의 속성 값을 변경할 수 있는 몇 가지 연산이 가능한 필요한 서비스 (needs service) 기능을 가진 객체후보는 유용함

2. 객체의 구조결정

- 1) 객체는 독립적으로 정의됨
- 업무수행에서는 상호 유기적인 관계를 이루며 진행됨
- 객체 사이에 존재하는 관계를 감안하여 관련 있는 클래스들을 서로 연결하여「객체구조」를 결정해야 함
- 2) 객체구조를 결정하는 방법 두 가지
- 상속 기능을 이용하는 분류구조(Classification Structure).
- 조립(Aggregation) 기능을 이용하는 전체-부분구조(Whole-Part Structure)
- 3) 객체구조를 결정하는 방법 두 가지

① 분류구조

- 상위클래스의 속성은 하위클래스에 상속되기 때문에 공통적으로 사용되는 속성은 상위클래스에서 정의하고 하위클래스는 상위클래스에서 정의하지 않은 개별적 속성만을 추가적으로 정의해서, 새로운 클래스를 정의해 가는 원리를 이용하는 기법임

② 전체-부분구조

- 속성의 상속을 나타내지는 않지만 「개발대상 시스템의 경계를 설정하거나」,「시스템의 목적을 명확히 할 수 있다」는 장점 때문에 이 구조를 이 용하여「객체구조」를 결정하기도 함
- 분석과정에서 선정된 클래스를 특수화(Specialization)에 의해서 「하위클래스를 생성하거나」「이전의 정의에서 누락되었던 클래스를 새로 작성하여 연결함으로써」「객체구조」를 결정하는 방법이「전체-부분구조」임
- 객체구조 결정과정에서 대규모, 복잡한 시스템인 경우 해당 시스템을 주제 (Subject)별로 분할하는 것이 효과적임

학습내용3 : 속성의 기술 / 연산의 파악

1. 속성의 기술

- 1) 객체의 속성(Attribute)
- ① 객체가 연산(Operation)을 하는데 필요한 자료(Data)를 의미 하며, 그러므로 「객체의 속성후보」는「객체를 설명하는 다양한 정보」로서 다음과 같은 것들임
- ② 논리적 특성 정보: 성명, 번호, 우선순위, 단위
- ③ 물리적 특성 정보 : 중량, 길이, 성분
- ④ 객체에 저장된 정보 : 원시자료, 계측 값
- ⑤ 상태 정보 정지와 움직임, 켜짐과 꺼짐
- ⑥ 이들 중에 유용하지 않은 정보도 포함되어 있으므로 시스템에 무의미한 정보는 제외 시켜야 함
- 2) 객체를 설명하는 정보 중에 클래스에 필요한 속성으로 규정되는 정보의 유형
- ① 원시자료(source data)
- ② 단일항목 정보(복합정보보다 단일항목 정보)
- ③ 문제해결에 필수적인 정보
- 3) 객체의 속성을 정의하는데 유의사항
- ① 객체에 공통적으로 적용되는 속성은 상위클래스로 옮겨야 함
- ② 특정한 클래스에 관련되는 객체를 구분하기 위한 「식별항목에 대한 속성」은 설계과정에서 고려해야 함
- 4) 객체의 속성은 자료사전으로 나타냄

- 5) 자료사전으로 표현되는 객체의 속성기술
- ① 속성이름
- ② 속성의 용도
- ③ 표현의 단위
- ④ 자료타입
- ⑤ 기본 값
- ⑥ 값의 허용 범위 등에 대한 정보가 포함됨

2. 연산의 파악

1) 주어진 사건(Event)을 해결하기 위하여 수행하는 활동으로 인해서 자신의 속성은 다른 값으로 변함

- 이처럼 객체가 속성 값의 변화로 자신의 상태를 변화시키는 일련의 활동을 「객체의 연산(Operation)」이라고 함
- 2) 연산(Operation)을 파악하는 두 가지 방법
- ① 계획단계에서 정의된 문제정의서, 수집한 각종 문서를 읽어 가면서 객체와 연결된 「동사(Verb)」들을 찾아서 그 객체의 연산으로 결정하는 방법
- ② 요든과 코드가 제안한 정형화된 방법
- 3) 동사를 찾아 연산으로 결정하는 방법
- 「문제정의서」에 나타난 모든「동사」를 찾음
- 별도의 종이에 동사가 나타나는 순서대로 옮겨 적음
- 옮겨 적은 동사가 연산이 될 수 있는지 여부를 판정함 (연산이 될 수 없는 동사는 제외시킴)
- 연산이 된다고 판정된 동사들은 문제영역과 해답영역 중에서 어디에 해당하는지 구분하여「연산후보 리스트」를 작성함
- 연산후보 리스트에서 「해답영역에 해당하면서 중복되지 않는 동사를 골라서」연산으로 선정함
- 객체 중에서 연산에 의해서 자료가 읽혀지거나 변경되는 것에 연산을 할당함
- 4) 동사를 찾아서 연산으로 결정 과정에서의 유의사항
- 「문제정의서에 나타난 동사」가 연산이 될 수 있는지 여부를 판단하는 기준은 「동사의 표현 의미가 시스템에 제공되어야하는 것이면」 연산으로 규정함
 - 그러므로 「선택하다· 반납하다」와 같이 시스템에서 구현해야 할 내용 등은 제외시켜야 함
- 문제영역에 포함되는 연산은 실제 구현과 관계가 없기 때문에 제외시킴
 - 문제영 역의 연산은 문제를 설명하는 데만 필요하기 때문임
- 식별과 이해를 용이하게 하기 위해서 원래 연산이 뜻하는 내용을 나타내는 「연산 이름」을 부여해야 함
- 정의된 연산들을 「클래스」와「객체」로 나누어 분류함
- 「코드와 요든이 제안한 정형화된 방법」으로 연산을 정의하는 과정은 다음과 같음
- 객체가 가질 수 있는 상태를 파악한 다음에 객체의 상태(State)를 바꾸게 하는 활동이 어떤 것인지를 규명한다면 연산을 정의 할 수 있다는 견해임
 - 주어진 객체상태를 객채상태도 (Object State Diagram)를 작성하고 그 객체상태도에서 연산을 유도한 내용임

- 객체상태도는 객체의 최초상태에서부터 그 이후에 파생되는 상태를 그림으로 표현함으로써 객체의 상태 변화 내용을 일목요연하게 정리하기 때문에 매우 유용한 도구임
- 객체상태도에서 객체는「사각형」으로 나타내고, 특정상태에서 다른 상태로 옮겨가는 것은「화살표」로 나타냄.
- 객체상태도에 나타난 모든「화살표」에 대해서는 반드시 연산 내용을 정의해야함
 - 그 이유는 객체의 상태는 연산에 의해서 변화되기 때문임

- 객체가 수행하는 연산에는 다음과 같은 두 가지가 있음

- 기본연산 : create : /*객체생성 및 초기화 연산 */,

access : /* 객체 속성 값 확보 연산 */, connect : /* 다른 객체와 연결 연산 */, release : /* 다른 객체와 연결 연산 */

- 복합연산 : compute : /* 계산 수행 연산 */,

monitor : /* 사건발생 감시연산 */, manipulate : /* 자료 조작 연산 */

3. 메시지

- 1) 객체 사이의 연결
- 메시지(Message)에 의해서 이루어짐
- 그러므로 이를 통해서만 원하는 객체에게 활동을 요구할 수 있고, 응답을 받을 수 있음
- 2) 메시지의 구성 세 부분
- ① 객체명(Object Name)
- ② 연산명(Operation Name)
- ③ 인수(Argument)

[학습정리]

- 1. 객체 개요 / 문제정의를 알아본다.
- 2. 객체의 식별과 결정 /구조결정를 이해한다.
- 3. 속성의 기술 / 연산의 파악을 파악한다.