

Universidade Federal da Fronteira Sul Curso de Ciência da Computação Campus Chapecó

CIRCUITOS DIGITAIS

- Utilização do Laboratório
- Equipamentos do Lab. 409: Matriz de Contato
- Revisão: Dispositivos Elétricos (Resistor, LED...)

Prof. Adriano Sanick Padilha padilha@uffs.edu.br

Laboratório 409

Matriz de Contato

Um **resistor** (português brasileiro) ou uma **resistência** (português europeu) é um dispositivo <u>elétrico</u> muito utilizado em <u>eletrônica</u>, ora com a finalidade de transformar <u>energia</u> <u>elétrica</u> em <u>energia térmica</u> por meio do <u>efeito joule</u>¹, ora com a finalidade de limitar² a <u>corrente elétrica</u> em um <u>circuito</u>.

Diferentes tipos de resistores:

Lei de Ohm: $R = \frac{V}{I}$

A. - Resistores de composição de carbono de 1/2 Watt 5% Tolerância

B. - Resistores de filme de carbono de 1/2 Watt, 5% de tolerância.

C. - Resistores de Filme de Carbono de 1 Watt, 5% de Tolerância.

Resistores de Óxido Metálico D - 2 Watt, 5% de Tolerância.

E. - Resistor Wirewound de Cimento de 10 Watt, 250 Ohm, 5% de tolerância

Potência dissipada no resistor:

$$P = V_R \cdot i$$

$$P = i^2 \cdot R$$

$$P = \frac{V_R^2}{R}$$

Lei de Ohm: $R = \frac{V}{I}$

Optou-se então pelo código de cores, que consiste em faixas coloridas e **% de tolerância**, no corpo do resistor. As primeiras duas primeiras faixas servem para indicar o valor nominal, a terceira faixa para indicar o fator multiplicativo e a última faixa, a porcentagem na qual a resistência pode variar.

Por seu tamanho muito reduzido, é inviável imprimir nos resistores as suas respectivas resistências.

Cor	Dígito	Multiplicador	# 10% # 5%		
Prata	120	x 0,01			
Dourado	-	x 0,1			
Preto	0	x l	00		
Marrom	1	x 10	± 1%		
Vermelho	2	x 100	± 2%		
Laranja	3	x lK	-		
Amarelo	4	x 10K	25		
Verde	5	x 100K	± 0,5%		
Azul	6	x lM	± 0,25% ± 0,1% ± 0,05%		
Violeta	7	x 10M			
Cinza	8	<u> </u>			
Branco	9	-			

		Série E12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2
--	--	--------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Associação de Resistores - Série

Lei de Ohm: $R = \frac{V}{I}$

As características seguintes definem uma associação em série para resistores:

- As resistências são associados uma em seguida da outra, sendo percorridos pela mesma corrente.
- A corrente que circula na associação em série é constante para todas as resistências.
- A queda de tensão obtida na associação em série é a soma total das de cada resistência.
- A resistência total obtida pela associação em série de resistências é igual à soma das resistências envolvidas, R_t= R1 + R2 + ...
- A potência total dissipada é igual à soma da potência dissipada em cada resistência.
- O resistor de maior resistência será aquele que dissipa maior potência.

$$R_{eq} = R_1 + R_2 + \ldots + R_n$$

$$R_1 \quad R_2 \quad R_n$$

Associação de Resistores - Paralelo

Lei de Ohm: $R = \frac{V}{I}$

Características fundamentais de uma associação em paralelo de resistores:

- Há mais de um caminho para a corrente elétrica;
- Segundo pesquisas, resistores em grande quantidade a corrente sofre perda para "correr" até eles, seria necessário uma tensão maior que a desejada pelo circuito.
- A corrente elétrica se divide entre os componentes do circuito;
- A corrente total que circula na associação é o somatório da corrente de cada resistor;
- O funcionamento de cada resistor é independente dos demais;
- A diferença de potencial (corrente elétrica necessária para ocorrer a ddp) é a mesma em todos os resistores;
- O resistor de menor resistência será aquele que dissipa maior potência.

A fórmula para o cálculo da resistência equivalente ($R_{\rm eq}$) de um circuito de resistores em paralelo é:

$$rac{1}{R_{eq}} = rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_n}$$

$$\left. iggree_{\mathsf{Rn}}
ight. R_{\mathrm{total}} = R_1 \| R_2 = rac{R_1 R_2}{R_1 + R_2}
ight.$$

Revisando - LED

Diodo Emissor de Luz

O LED é um <u>diodo semicondutor</u> (junção P-N) que quando é energizado emite <u>luz</u> visível **ou não** visível (Infravermelhos, ultravioletas) – por isso LED (Diodo Emissor de Luz). A <u>luz</u> não é <u>monocromática</u> (como em um <u>laser</u>), mas consiste de uma banda espectral relativamente estreita e é produzida pelas interações energéticas do <u>eletrão</u> (português europeu)/elétron (português brasileiro). O processo de emissão de <u>luz</u> pela aplicação de uma fonte elétrica de <u>energia</u> é chamado eletroluminescência.

ANODE

CATHODE

LEDs Difusos

Em geral, os LEDs operam com nível de tensão de 1,6 a 3,3 V, sendo compatíveis com os circuitos de estado sólido. É interessante notar que a tensão é dependente do comprimento da onda emitida. Assim, os leds infravermelhos geralmente funcionam com menos de 1,5V, os vermelhos com 1,7V, os amarelos com 1,7V ou 2.0V, os verdes entre 2.0V e 3.0V, enquanto os leds azuis, violeta e ultravioleta geralmente precisam de mais de 3V. A potência necessária está na faixa típica de 10 a 150 mW, com um tempo de vida útil de 100.000 ou mais horas.

Revisando - LED

Zona de funcionamento LED (varia de led para led)

Cálculo de resistor para um LED

O led e a resistência estão em série, a tensão no led é o somatório da tensão sobre o resistência será igual a tensão da fonte (Vf). Para calcular precisamos saber o valor da tensão sobre a resistência (Vres).

- Vf = tensão da fonte em volt(V);
- R = Vres / iled (A);
- R = resistência em ohms (Ω) ;
- Vres. = tensão sobre o resistor em volts (V);
- iled = corrente sobre o led em amperes (A);
- Vled = tensão do led em volts(V);

Revisando - LED

Zona de funcionamento LED (varia de led para led)

Exemplo cálculo de uma resistência de polarização de um LED:

Para um led vermelho (FLV 110), a tensão é de 1,7 V, tensão da fonte de 9V e uma corrente de 15mA ou 0,015A, então teremos:

Vres = Vfonte - Vled

- Vres = 9 1,7 = 7,3V
- R=Vres/iled R = 7,3 / 0,015 = 486Ω (valor comercial aproximado 560Ω).

Potência resistência:

- Pres = Vres. * iled
- Pres = 7,3 * 0,015 = 0,1095W (usa-se 1/8W)

Corte representativo de uma matriz de contato

Uma placa de ensaio ou matriz de contato, (ou protoboard, ou breadboard em <u>inglês</u>) é uma placa com furos (ou orifícios) e conexões condutoras para montagem de circuitos elétricos experimentais. A grande vantagem da placa de ensaio na montagem de <u>circuitos</u> eletrônicos é a facilidade de inserção de componentes, uma vez que não necessita soldagem.

Montagem do exemplo do circuito anterior na Protoboard

*** Existem ótimos simuladores, por exemplo:

https://www.tinkercad.com/dashboard

Atividade 1: Montagem do circuito abaixo na Matriz de contato.

- Considerando a tensão da fonte Vf = 5V, especifique o resistor conforme o slide 10.
 - Cálculo de Vres;
 - b. Cálculo de R;
 - c. Cálculo de Pres.
- Realize a montagem na matriz de contato utilizando uma fonte com 5V para alimentar.

Atividade 2: Utilizando o simulador em https://www.tinkercad.com/dashboard, medir as tensões V_R e V_{LED} e também a corrente I_{LED} .

