Descriptive statistics by trying to describe the shape of arbitrary

 \Rightarrow based on moments $E(x^*) = \int x^* h(x) dx$

e.g mean = $\langle x \rangle = \int_{-\infty}^{\infty} x h(x) dx$ variance = $(x-\mu)^2 = \int (x-\mu)^2 kx dx$

* NOTE: monets can be brissed by outres

median and of bette judges of book of

= neasures "peaky-ness" KURTOSIS 4th moment + kutosis Statistics desired from complete data are called "Sample statistics"

=> \(\int \int \) = \(\sum_{i=1}^{N} \int \int \) $S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x})^{2}$ avoids bias, since \overline{x} comes
from data days. NOTE 'S' is not the uncertainty in I.

Ly it is an estimator of the Scale of ha) UNCERTAINTIES: $\overline{D}_{\overline{x}} = \frac{S}{\sqrt{N}}$

Uncertainties:
$$\overline{D}_{\overline{x}} = \frac{S}{\sqrt{N}}$$
 $\overline{D}_{S} = \frac{S}{\sqrt{2(N-1)}} = \frac{1}{\sqrt{N}} \cdot \overline{D}_{S}$

Standard Error of QUANTILE: $\overline{D}_{g} = \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{p(1-p)}{N}}$

Univariate Distribution => Y-D. Jo probability distributions. Uniform

Doublian (Normal)

Confidence levels: ±10 = 68.3%

±20 = 95.4% ±20 = 99.7% hos normal 2 per dof Poisson distribution. Student's t distribution The point is that we need to indestand how SIGNIFICANT our measured statistics are one how likely it is that they could have been made by chance noise fluctuations