1º TESTE DE ÁLGEBRA LINEAR

LEIC-Taguspark 15 de outubro de 2018 (18:30)

Teste 103

Número:

O teste que vai realizar tem a duração de 60 minutos e consiste na resolução de 5 problemas. Os 3 primeiros são de escolha múltipla; cada resposta em branco vale 0 valores, e cada resposta errada vale -1/3 da respectiva classificação. Os dois últimos problemas não são de escolha múltipla, devendo por isso apresentar os cálculos efetuados e/ou justificar cuidadosamente as suas respostas.

NOTA FINAL:

Problema 1 (1.5 valores)

Considere a seguinte matriz aumentada correspondente a um SEL nas incógnitas x_1, x_2, x_3, x_4 :

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 2 \\ 3 & 3 & \alpha & 2 & 8 \\ 4 & \alpha & 5 & 2 & 8 \\ 2 & 2 & 2 & 1 & 5 \end{bmatrix}$$

onde α é um parâmetro real.

a) (0.75 valores) Identifique o valor de α que torna o SEL impossível.

$$\alpha = 4; \quad \alpha = 3; \quad \alpha = 2; \quad \alpha = 1.$$

b) (0.75 valores) Se o SEL é possível e indeterminado, selecione o conjunto solução correto.

Problema 2 (1 valor)

Indique todas as afirmações corretas sobre a independência linear dos vetores $\begin{bmatrix} 2 \\ b \\ b \end{bmatrix}$, $\begin{bmatrix} 3 \\ 4 \\ b \end{bmatrix}$, $\begin{bmatrix} b \\ b \\ b \end{bmatrix}$ de acordo com o valor assumido pela coordenada b.

se b = 0 o conjunto é linearmente dependente; se b = 1 o conjunto é linearmente independente; se b = 2 o conjunto é linearmente dependente; se b = 3 o conjunto é linearmente dependente.

Problema 3 (0.5 valores)

Considere a transformação linear em \mathbb{R}^2 com a seguinte matriz canónica de rotação

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}, a^2 + b^2 = 1.$$

Os valores a e b para os quais $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ é rodado para $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ são dados por:

$$a = 4/5 \text{ e } b = -3/5;$$
 $a = 3/5 \text{ e } b = 4/5;$ $a = 1/2 \text{ e } b = -1/2;$ $a = 4/3 \text{ e } b = -3/4.$

Problema 4 (1 valor)

(1) eixo x_1 e depois reflet

Considere a transformação linear T em \mathbb{R}^2 que reflete pontos no eixo x_1 e depois reflete pontos relativamente ao eixo x_2 .

a) (0.5 valores) Deduza a matriz canónica desta transformação linear.

b) (0.5 valores) Justifique que T também pode descrever uma rotação em torno da origem. Determine o ângulo dessa rotação.

Com
$$\varphi = \pi$$
 (por exemplo), temos $\begin{bmatrix} \cos \pi & -\sin \pi \end{bmatrix} = \begin{bmatrix} -1 & \cos \pi \\ 0 & -1 \end{bmatrix}$

Doude se conclui que A também é a metriz canônice de retação em Tr. 0.1 Problema 5 (1 valor)

Mostre que se a transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ aplica os vetores \mathbf{u} e \mathbf{v} linearmente independentes nos vetores $T(\mathbf{u})$ e $T(\mathbf{v})$ linearmente dependentes, então $T(\mathbf{x}) = \mathbf{0}$ tem solução não trivial.

Como T(y) e T(y) são L.D., então existenc, d e IR: CT(y) + dT(y) = 0 com c, d não simultaneamente nulos. Por outro lado, da definição de transformação linear, temos

cT(\underline{u}) + \underline{d} T(\underline{v}) = T($\underline{c}\underline{u}$ + \underline{d} \underline{v}) = 0, eu que $\underline{X} = \underline{c}\underline{u} + \underline{d}\underline{v}$ é uma solução não trivial, umi vez que \underline{d} \underline{u} , \underline{v} \underline{f} é L.I. e \underline{c} , \underline{d} \underline{e} \underline{l} \underline{R} não seudo Zero ao mesmo tempo \underline{v}