Exercícios Complementares de Repetição em Linguagem C

Estilo - Maratona de Programação 2025

Prática de Estruturas de Repetição sem Vetores

Contents

Introdução	2
Exercício 1: Média de Números Positivos	2
Exercício 2: Contagem de Dígitos	2
Exercício 3: Progressão Aritmética	3
Exercício 4: Potência Manual	3
Exercício 5: Inverso de um Número	4
Exercício 6: Armstrong ou Não	4
Exercício 7: Série Harmônica Parcial	5
Exercício 8: Divisores em Ordem	5
Exercício 9: MMC por Divisões	5
Exercício 10: Dígitos Pares e Ímpares	6

Introdução

Este documento apresenta 10 novos exercícios de programação em linguagem C, focados no uso de estruturas de repetição (for, while, do-while), sem o uso de vetores. Os problemas são organizados em ordem crescente de dificuldade, seguindo o formato de competições de programação, com entrada e saída bem definidas.

Exercício 1: Média de Números Positivos

Cenário: Um professor deseja calcular a média dos números positivos inseridos por seus alunos.

Tarefa: Escreva um programa em C que leia uma sequência de números inteiros, terminada por -1, e calcule a média dos valores positivos.

Formato da Entrada:

- Uma sequência de inteiros x ($-100 \le x \le 100$), um por linha.
- A sequência termina quando x = -1 (o valor -1 não é considerado no cálculo).

Formato da Saída: Uma linha com a média dos números positivos, com duas casas decimais.

Exemplos:

```
Entrada:
7
0
-3
8
-1
Saída:
7.50
```

(Explicação: Números positivos: 7, 8; Média = (7+8)/2 = 7.50)

```
Entrada:
-1
Saída:
0.00
```

(Explicação: Nenhum número positivo)

Exercício 2: Contagem de Dígitos

Cenário: Um estudante quer contar quantos dígitos tem um número inteiro.

Tarefa: Escreva um programa em C que leia um inteiro N e conte quantos dígitos ele possui.

Formato da Entrada:

• Uma linha com um inteiro N (0 < N < 1000000).

Formato da Saída: Uma linha com o número de dígitos.

Exemplos:


```
Entrada:
0
Saída:
1
```

Exercício 3: Progressão Aritmética

Cenário: Um matemático quer gerar os N primeiros termos de uma progressão aritmética.

Tarefa: Escreva um programa em C que leia três inteiros: o primeiro termo (A), a razão (R) e a quantidade de termos (N), e imprima os N primeiros termos da PA.

Formato da Entrada:

• Uma linha com três inteiros A, R e N $(-100 \le A, R \le 100, 1 \le N \le 100)$.

Formato da Saída: Uma linha com os N termos da PA, separados por espaço.

Exemplos:

```
Entrada:
3 2 5
Saída:
3 5 7 9 11
```

```
Entrada:
10 -3 4
Saída:
10 7 4 1
```

Exercício 4: Potência Manual

Cenário: Um programador quer calcular potências sem usar a função pow().

Tarefa: Escreva um programa em C que leia dois inteiros X e Y e calcule X^Y .

Formato da Entrada:

• Uma linha com dois inteiros X e Y $(0 \le X \le 20, 0 \le Y \le 10)$.

Formato da Saída: Uma linha com o valor de X^Y .

Exemplos:

```
Entrada:
2 3
Saída:
8
```

```
(Explicação: 2^3 = 2 \times 2 \times 2 = 8)
```

```
Entrada:
5 0
Saída:
1
```

(Explicação: $X^0 = 1$ para qualquer X)

Exercício 5: Inverso de um Número

Cenário: Um estudante precisa inverter os dígitos de um número.

Tarefa: Escreva um programa em C que leia um inteiro positivo N e imprima-o ao contrário.

Formato da Entrada:

• Uma linha com um inteiro N ($0 \le N \le 1000000$).

Formato da Saída: Uma linha com o número invertido, sem zeros à esquerda.

Exemplos:

```
Entrada:
123
Saída:
321
```

```
Entrada:
1200
Saída:
21
```

(Explicação: $0021 \rightarrow 21$)

Exercício 6: Armstrong ou Não

Cenário: Um matemático está estudando números de Armstrong (ou narcisistas).

Tarefa: Escreva um programa em C que leia um inteiro N e determine se é um número de Armstrong. Um número de Armstrong é aquele que é igual à soma de seus dígitos elevados ao número de dígitos.

Formato da Entrada:

• Uma linha com um inteiro N ($1 \le N \le 100000$).

Formato da Saída:

- Imprima SIM se N for um número de Armstrong.
- Imprima NÃO se N não for um número de Armstrong.

Exemplos:

```
Entrada:
153
Saída:
SIM
```

(Explicação: 153 tem 3 dígitos e $1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153$)

```
Entrada:
123
Saída:
NÃO
```

(Explicação: 123 tem 3 dígitos e $1^3 + 2^3 + 3^3 = 1 + 8 + 27 = 36 \neq 123$)

4

Exercício 7: Série Harmônica Parcial

Cenário: Um físico quer calcular a soma parcial de uma série harmônica.

Tarefa: Escreva um programa em C que leia um inteiro N e calcule a soma $1+1/2+1/3+\ldots+1/N$.

Formato da Entrada:

• Uma linha com um inteiro N ($1 \le N \le 100$).

Formato da Saída: Uma linha com a soma da série harmônica até 1/N, com 4 casas decimais.

Exemplos:

```
Entrada:
3
Saída:
1.8333
```

```
(Explicação: 1 + 1/2 + 1/3 = 1 + 0.5 + 0.333... \approx 1.8333)
```

```
Entrada:
1
Saída:
1.0000
```

Exercício 8: Divisores em Ordem

Cenário: Um matemático quer listar todos os divisores de um número em ordem crescente.

Tarefa: Escreva um programa em C que leia um inteiro N e imprima todos os seus divisores em ordem crescente.

Formato da Entrada:

• Uma linha com um inteiro N ($1 \le N \le 10000$).

Formato da Saída: Uma linha com os divisores de N, separados por espaço, em ordem crescente.

Exemplos:

```
Entrada:
12
Saída:
1 2 3 4 6 12
```

```
Entrada:
7
Saída:
1 7
```

Exercício 9: MMC por Divisões

Cenário: Um estudante quer calcular o mínimo múltiplo comum de dois números.

Tarefa: Escreva um programa em C that leia dois inteiros A e B e calcule o MMC utilizando o MDC.

Formato da Entrada:

• Uma linha com dois inteiros $A \in B \ (1 \le A, B \le 1000)$.

Formato da Saída: Uma linha com o MMC de A e B.

Exemplos:

(Explicação: $MMC(12, 18) = (12 \times 18) / MDC(12, 18) = 216/6 = 36$)

```
Entrada:
7 13
Saída:
91
```

(Explicação: $MMC(7, 13) = (7 \times 13) / MDC(7, 13) = 91/1 = 91$)

Exercício 10: Dígitos Pares e Ímpares

Cenário: Um analista quer determinar a diferença entre a soma dos dígitos pares e ímpares de um número.

Tarefa: Escreva um programa em C que leia um inteiro N e calcule a diferença entre a soma dos dígitos pares e a soma dos dígitos ímpares (pares – ímpares).

Formato da Entrada:

• Uma linha com um inteiro N ($0 \le N \le 1000000$).

Formato da Saída: Uma linha com a diferença entre a soma dos dígitos pares e ímpares (pode ser negativa).

Exemplos:

(Explicação: Dígitos pares: 2, 4; Dígitos ímpares: 1, 3; (2+4)-(1+3)=6-4=2)

```
Entrada:
12345
Saída:
-3
```

(Explicação: Dígitos pares: 2, 4; Dígitos ímpares: 1, 3, 5; (2+4) - (1+3+5) = 6 - 9 = -3)