Colle 0

Réglage d'un correcteur P et d'un correcteur à avance de phase – Sujet

Équipe PT - La Martinière Monplaisir.

On considère un système de fonction de transfert en boucle ouverte G(p) que l'on souhaite réguler à l'aide d'une boucle à retour unitaire : $G(p) = \frac{K}{(10p+1)^2(p+1)}$

On souhaite que la boucle de régulation fonctionne selon le cahier des charges suivant :

C1-02

C2-04

- ► marge de phase : $\Delta \varphi \ge 45^\circ$;
- ▶ dépassement D% < 10%;
- ▶ écart statique ε_S < 0,08;
- ▶ temps de montée t_m < 8 s.

Question 1 Quelle est la condition sur K pour obtenir $\varepsilon_S < 0,08$?

Question 2 Exprimer l'erreur de trainage.

On note t_m le temps de montée du système en BF et $t_m \simeq \frac{3}{\omega_{co}}$ et ω_{co} est la pulsation de coupure à 0 dB du système en BO.

Question 3 Quelle est la condition sur K pour obtenir $t_m < 8$ s?

Question 4 Quel choix faire pour la valeur de *K*?

Question 5 Calculer la valeur de la marge de phase obtenue dans ces conditions.

Expérimentalement, on constate que $z_{\rm BF} \simeq \frac{\Delta \varphi^o}{100}$ et on rappelle que $D\% = e^{\frac{-\hbar z_{\rm BF}}{\sqrt{1-z_{\rm BF}^2}}}$.

Question 6 Que vaut alors le dépassement D%?

Question 7 À partir de la relation précédente, déterminer la marge de phase qui correspond à un dépassement de 10%.

Avec la valeur de K=16,1, on introduit, en amont de G(p), dans la chaîne directe, un correcteur $C(p)=K_a\frac{1+aTp}{1+Tp}$ à avance de phase destiné à corriger le dépassement et la marge de phase, sans altérer ni la rapidité, ni la précision qui correspondent au cahier des charges.

Question 8 Déterminer alors la fonction de transfert de ce correcteur à avance de phase permettant d'obtenir une marge de phase de 60° .

