Афинни Разновидности

Антъни Господинов

Дефиниция. Нека k е поле и f_1, \ldots, f_s са полиноми от $k[x_1, \ldots, x_n]$. Дефинираме множеството:

$$\mathbf{V}(f_1,\ldots,f_n) = \{(a_1,\ldots,a_n) \in k^n \mid f_i(a_1,\ldots,a_n) = 0 \text{ за всички } 1 \leq i \leq s\}$$

Ще наричаме $\mathbf{V}(f_1,\ldots,f_n)$ афинната разновидност определена от f_1,\ldots,f_n . Казано по друг начин, $\mathbf{V}(f_1,\ldots,f_n)$ е множеството от решенията на системата уравнения:

$$f_1(x_1,\ldots,x_n) = \cdots = f_s(x_1,\ldots,x_n) = 0$$

Задача 1. Да се скицират графиките на следните афинни разновидности в \mathbb{R}^{\nvDash} :

- a. $\mathbf{V}(x^2 + 4y^2 + 2x 16y + 1)$.
- б. $\mathbf{V}(x^2 y^2)$.

Решение:

Задача 2. Да се скицират графиките на следните афинни разновидности в \mathbb{R}^3

a.
$$\mathbf{V}(x^2 + y^2 + z^2 - 1)$$
.

б.
$$\mathbf{V}(x^2 + y^2 - 1)$$
.

B.
$$\mathbf{V}(x+2, y-1.5, z)$$
.

$$\Gamma. \ \mathbf{V}(xz^2 - xy).$$

д.
$$\mathbf{V}(x^4 - zx, x^3 - yx)$$
.

Решение:

в.

