模块二 基本初等函数

基础知识回顾

一、指、对公式

指对运算的核心技巧是化同底,常用的公式有下面的这些:

1. 指数计算公式

$$(1)$$
 $a^m \cdot a^n = a^{m+n}$

$$(2) (a^m)^n = a^m$$

(1)
$$a^m \cdot a^n = a^{m+n}$$
 (2) $(a^m)^n = a^{mn}$ (3) $(ab)^m = a^m b^m$

(4)
$$a^{-m} = \frac{1}{a^m}$$
 (5) $\frac{a^m}{a^n} = a^{m-n}$ (6) $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

(5)
$$\frac{a^m}{a^m} = a^{m-1}$$

$$(6) \quad a^{\frac{m}{n}} = \sqrt[n]{a^n}$$

2. 对数计算公式

(1)
$$a^n = m \Leftrightarrow n = \log_a m$$
; $\log_a 1 = 0$; $\log_a a = 1$

(2)
$$\log_a M + \log_a N = \log_a(MN)$$

(3)
$$\log_a M - \log_a N = \log_a \frac{M}{N}$$

(4)
$$\log_a M^n = n \log_a M$$
 (推广形式: $\log_{a^m} M^n = \frac{n}{m} \log_a M$)

(5) 换底公式:
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 (特别地, 当 $c = b$ 时, $\log_a b = \frac{1}{\log_b a}$)

(6)
$$a^{\log_a m} = m$$
, $e^{\ln m} = m$.

二、指数函数的图象及性质

$y = a^x$	a > 1	0 < a < 1
图象	$y = a^{x}$ $y = 1$ 0	$y = a^{x} \qquad y$ $1 \qquad y = 1$ $O \qquad x$
定义域	R	
值域	$(0,+\infty)$	
性质	过点 $(0,1)$, 即当 $x=0$ 时, $y=1$	
	当 $x > 0$ 时, $y > 1$	当 $x > 0$ 时, $0 < y < 1$
	当 $ x < 0$ 时, $ 0 < y < 1 $	当 $x < 0$ 时, $y > 1$
	在R上单调递增	在R上单调递减

三、对数函数的图象及性质

定义域	$(0,+\infty)$	
值域	R	
	过点 $(1,0)$, 即当 $x=1$ 时, $y=0$	
州岳	当 $x>1$ 时, $y>0$	当 $x>1$ 时, $y<0$
性质	当 $0 < x < 1$ 时, $y < 0$	
	在(0,+∞)上单调递增	在(0,+∞)上单调递减

四、幂函数的图象及性质

我们把形如 $y=x^{\alpha}$ 的函数叫做幂函数,其中 α 是常数,x是自变量,幂函数常见的性质有:

- (1) 图象始终过点(1,1).
- (2) 当 $\alpha > 0$ 时, $y = x^{\alpha}$ 在 $(0,+\infty)$ 上单调递增,具体来说,若 $\alpha \in (0,1)$,增长趋于平缓;若 $\alpha \in (1,+\infty)$,增长趋于陡峭.
- (3) 当 α <0时, $y=x^{\alpha}$ 在(0,+ ∞)上单调递减.
- (4) 五个常见幂函数的图象:

第1节 选解析式与选图象

内容提要

选解析式与选图象这种题,考查的是函数的性质,用排除法选答案是通法,我们一般可以从以下的一些角度考虑:①奇偶性;②特殊点(或某区间)的函数值;③单调性;④图象变化趋势(极限情况)等.

典型例题

【例 1】(2022・全国甲卷・★★) 函数 $y = (3^x - 3^{-x})\cos x$ 在区间 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 的大致图象为()

【例 2】函数 $f(x) = \frac{\sin 3x}{1 + \cos x} (-\pi < x < \pi)$ 的大致图象为(

【例 3】函数 $f(x) = \frac{|x|x^2 - \ln|x|}{x^2}$ 的大致图象为 ()

- 【例 4】(2021•浙江卷) 已知函数 $f(x) = x^2 + \frac{1}{4}$, $g(x) = \sin x$, 则图象为右图的函数可能是()
- (A) $y = f(x) + g(x) \frac{1}{4}$ (B) $y = f(x) g(x) \frac{1}{4}$ (C) y = f(x)g(x) (D) $y = \frac{g(x)}{f(x)}$

强化训练

1.(2020・浙江卷・★★)函数 $y=x\cos x+\sin x$ 在区间 $[-\pi,\pi]$ 上的图象可能是()

2. (2022・湖北月考・★★)函数 $f(x) = \frac{x^3}{3^x + 3^{-x}}$ 的部分图象大致为 ()

3.(2022·浙江期中· $\star\star\star$)已知函数 $f(x)=e^{|x|}-2x^2$,则 f(x)的图象可能是()

4. (2022・全国乙卷・★★★) 右图是下列四个函数中的某个函数在[-3,3]的大致图象,则该函数是()

(A)
$$y = \frac{-x^3 + 3x}{x^2 + 1}$$
 (B) $y = \frac{x^3 - x}{x^2 + 1}$ (C) $y = \frac{2x \cos x}{x^2 + 1}$ (D) $y = \frac{2\sin x}{x^2 + 1}$

(B)
$$y = \frac{x^3 - x}{x^2 + 1}$$

(C)
$$y = \frac{2x \cos x}{x^2 + 1}$$

(D)
$$y = \frac{2\sin x}{x^2 + 1}$$

5. (2022 • 衢州期末 • ★★) 函数 $f(x) = \frac{2^x - 2^{-x}}{2^{|x|}}$ 的部分图象大致为 ()

6. $(2022 \cdot 温州模拟 \cdot \star \star \star \star)$ 已知 $\alpha \in \mathbb{R}$,则函数 $f(x) = \frac{x^{\alpha}}{e^{x} + 2}$ 的图象不可能是()

