

# Digitale Technieken

Les 5: Codering van getallen + codes



### Inhoud

- Codering van getallen (p. 61 t.e.m. p.66 en deel enkel in presentatie)
  - Natuurlijke getallen
  - Gehele getallen
  - Rationale getallen
- Codes (p. 21 t.e.m. p. 41)
  - Cijfercodes: de Gray-code, BCD-code, XS3-code
    - + Eigenschappen van cijfercodes
  - Alfanumerieke codes
  - Technische codes
  - Andere codes

# Codering van getallen

### Natuurlijke getallen (positieve gehele getallen)

- Codering volgens het binaire getalstelsel
- Het bereik van de te coderen getallen wordt beperkt door de woordlengte van de gebruikte bitstring
  - vb. Met een byte: alle natuurlijke getallen van o tem 255 Met een woord (16 bits): van o tem 65535
- = UM = *Unsigned mode* = alles wat tot nu toe gezien is
- We noteren geen teken!

### Gehele getallen (positieve en negatieve)

- = SM = Signed mode (of signed numbers)
- Tekendragende getallen!

### Rationale getallen

- Elk decimaal (komma)getal met eindig veel decimalen
- Het quotient van 2 **gehele** getallen

### De weergave van natuurlijke getallen

In zijn basisvorm geeft het 'natuurlijke' binaire talstelsel alleen maar absolute waarden weer; dit zijn dus tekenloze getallen (*unsigned numbers*). De 16 bitpatronen die bijvoorbeeld in een 4-bit systeem kunnen gevormd worden van oooo tot 1111 stellen de positieve getallen van o tot 15 voor. Zo'n tekenloze 'absolute' getalweergave noemt men met een vakterm de '*unsigned mode'*.



unsigned number

In de natuurlijke binaire code stellen de bitpatronen van 0000 tot 1111 de positieve getalwaarden voor van 0 tot 15.

## De weergave van gehele getallen

- Negatieve getallen weergeven → volgorde van waarden herschikken
- Bovenste helft positieve waarden opofferen → getalbereik ongeveer gelijk verdelen over positieve en negatieve waarden

• = tekendragende getallen = *signed numbers* signed number

4 mogelijkheden:



# De weergave van gehele getallen

#### Algemeen:

Om de getalwaarde van een bitstring te kennen moet er apart uitdrukkelijk vermeld worden welke interpretatie er van toepassing is: zonder die expliciete informatie kan men onmogelijk weten of het om een 'signed' of een 'unsigned' codering gaat.

In geval van 'signed' codering moet de juiste methode ook gekend/gegeven zijn (1 van de 4).

### De weergave van gehele getallen: tekendragende 8-bit getallen

- Welk codesysteem is nu het beste?
- Linker bit steeds teken + of –
- 7 bits over voor getalwaarde
- Meestal +127 tot -127 (soms -128)



#### Nadelen:

- binary-offset: de bitpatronen voor positieve getallen (signed mode) zijn niet de zelfde als voor de absolute waarden (unsigned mode)
- <u>sign-magnitude</u> en <u>one's complement</u>: de waarde o op twee manieren kunnen weergeven - een nodeloze complicatie
- two's complement: probleem opgelost door de waarde van alle negatieve getallen met één te verlagen, zodat de lijst van -1 tot -128 loopt

### De weergave van gehele getallen: tekendragende 8-bit getallen

Het belangrijkste criterium om een **tekendragend codeersysteem** voor getallen te beoordelen is dat het **wiskundig consistent** is. Het is immers ontoelaatbaar dat een rekenkundige bewerking tot een onzinnig resultaat zou leiden. Tot zijn essentie herleid komt dit er op neer dat **de optelling van twee tegengestelde waarden als som het getal nul moet opleveren**.

```
Cijfervoorbeeld: is (+2) + (-2) = 0?

binary offset 1000\ 0010 + 0111\ 1110 = (1)\ 0000\ 0000
```

| omary offset     | 1000 0010 | ' | 0111 1110 |   | (1) 0000 0000 | met nar.   |
|------------------|-----------|---|-----------|---|---------------|------------|
| signed magnitude | 0000 0010 | + | 1000 0010 | = | (0) 1000 0100 | niet nul!  |
| one's complement | 0000 0010 | + | 1111 1101 | = | (0) 1111 1111 | niet nul!  |
| two's complement | 0000 0010 | + | 1111 1110 | = | (1) 0000 0000 | som is NUL |

Bij binary offset is (1) 0000 0000 niet nul, maar ... ? De betekenis van de 9<sup>e</sup> bit: 'overflow'

De 'consistentievoorwaarde' wordt slechts door één systeem vervuld: het two's complement.

niet nul!

### Codering van gehele getallen: sign-magnitude (tekenbit)

### Codering d.m.v. een tekenbit = *sign-magnitude*

- Methode:
  - De MSB wordt gebruikt als tekenbit: o = + 1 = -
  - De overblijvende bits stellen de waarde voor volgens het binaire stelsel
  - De woordlengte dient vooraf bepaald te zijn

```
vb. +112 = 0111 0000
- 83 = 1101 0011
```

- Nadelen:
  - Het getal o kan op 2 manieren gecodeerd worden 0000 0000 en 1000 000
  - De binaire rekenregels gelden niet
    - De binaire som van een positief en negatief getal is fout
       12 + (-6) = + 6
       0000 1100 + 1000 0110 = 1001 0010 = -18 (volgens deze coderingsmethode)
       MSB = 1 dus een negatief getal
    - De som van hetzelfde positieve en negatieve getal is niet nul

### Codering van gehele getallen: 2's complement

- Two's complement = 2's complement
- De gebieden van unsigned mode en signed mode overlappen elkaar.

Digitaaltechniek

10

### Codering van gehele getallen: 2's complement

De binaire codering van negatieve getallen in 2'S COMPLEMENT (8-bit).



Bemerk: na oooo oooo komt 1111 1111 (vergelijk met kilometerteller)



# Codering van gehele getallen: 2's complement

Berekenen van de tegengestelde waarde: compinc!



Bemerk: -128 heeft geen tegengestelde waarde (in het 8-bit systeem)

### 2's complement: "compinc" (van positief naar negatief)

- comp = complementeren
- inc = incrementeren

(= eerst bits inverteren) (= dan +1)



### Complementeren (van negatief naar positief)

Omgekeerd voorbeeld: van neg → pos



- = controle van vorige dia...
- Compine regel werkt in twee richtingen: pos ↔ neg!
- Compinc mag je ook in hexvorm uitvoeren (zie bovenstaand voorbeeld)
- Merk op dat bij de bepaling van de getalwaarde in signed mode het minteken (b<sub>7</sub>) niet terzijde gelaten wordt, maar meespeelt alsof het een volwaardige bit was! Ook in de hex notatie voert men de omzetbewerkingen uit alsof het betreffende getal gelegen is tussen 80<sub>16</sub> en FF<sub>16</sub> ...

### Overzicht

Zie apart .pdf bestand!

# Codering van getallen: rationale getallen (niet in handboek!)

Elk rationaal getal R kan geschreven worden als

$$R = b_{n-1} \dots b_0 \cdot b_{-1} \dots b_{-m} \quad (b_{n-1} <> 0)$$

 Door het binaire punt n plaatsen naar links te verschuiven, kan men dit getal ook schrijven als

$$R = 0 \cdot b_{n-1} \cdot ... \cdot b_0 \cdot b_{-1} \cdot ... \cdot b_{-m} \times 2^n$$

 Men noemt dit de floating point of glijdende komma (= zwevende, drijvende) voorstelling. Men heeft 2 binaire woorden nodig om op deze wijze een rationaal getal voor te stellen:

```
b_{n-1} \cdot \cdot \cdot b_{-m} = \text{de mantisse}
n = c_{p-1} \cdot \cdot \cdot c_0 = \text{de exponent}
```

 Zowel de mantisse als de exponent kunnen positief of negatief zijn!

### Codes

- Cijfercodes: de BCD-code, Excess-3 code, Graycode
  - + Eigenschappen van cijfercodes:
    - ✓ Gewogen code
    - ✓ Zelfcomplementerende code
    - ✓ Eén-wisselcode of cyclische code
    - ✓ Reflecterende code
- Alfanumerieke codes
- Technische codes → zevensegment-code

# Cijfercodes: de BCD-code

De BCD-code (Binary Coded Decimal) is een code waarbij men elk cijfer van een decimaal getal voorstelt door 4 bits.

<u>Voorbeeld</u>:  $3196_{10} = 0011000110010110$ 

- Van de 16 combinaties die met 4 bits mogelijk zijn, worden er in de BCD-code 6 niet gebruikt.
- De BCD-code is dus minder efficiënt dan de zuivere binaire codering.
- Ze wordt vooral toegepast bij digitale uitlezingen.

# Cijfercodes: gewogen codes (weighted code)

 = codes waarbij de decimale waarde teruggevonden wordt door aan elke bit een gewicht toe te kennen en de producten van de gewichten met hun overeenkomstige bits te sommeren (= geziene "gewicht-methode")

### Voorbeeld

De standaard BCD-code is een gewogen code

→ "BCD8421" → de cijfers specificeren het gewicht van
elke bit

# Cijfercodes: zelfcomplementerende codes (self complementary code, self complementing code)

- = codes waarbij het inverse van het gecodeerde getal het 9-complement oplevert van dit getal
- 9-complement = het verschil tussen 9, 99, 999,
   ... en dit getal
- Voorbeeld 1

De standaard BCD8421-code is niet zelfcomplementerend  $\rightarrow$  Het 9-complement van 0011, (310) is 1100,  $\neq$  610

# Cijfercodes: zelfcomplementerende codes (self complementary code, self complementing code)

### Voorbeeld 2

De excess-3 code (3-teveel code) van een decimaal cijfer vindt men door bij elk getal van de BCD8421 code binair  $0011_2$  ( $3_{10}$ ) op te tellen (of +3 decimaal bij te tellen en dan naar het binaire

stelsel om te zetten)

| dec. | excess-3 |
|------|----------|
| 0    | 0011     |
| 1    | 0100     |
| 2    | 0101     |
| 3    | 0110     |
| 4    | 0111     |
| 5    | 1000     |
| 6    | 1001     |
| 7    | 1010     |
| 8    | 1011     |
| 9    | 1100     |

# Cijfercodes: zelfcomplementerende codes (self complementary code, self complementing code)

Voorbeeld 2 (vervolg)

| dec. | excess-3 |
|------|----------|
| 0    | 0011     |
| 1    | 0100     |
| 2    | 0101     |
| 3    | 0110     |
| 4    | 0111     |
| 5    | 1000     |
| 6    | 1001     |
| 7    | 1010     |
| 8    | 1011     |
| 9    | 1100     |

- het complement van elk van deze codes levert het 9complement op van het overeenkomstige decimale getal
  - → wel een zelfcomplementerende code!
- geen gewogen code: het decimaal equivalent van een gecodeerd cijfer kan je niet terugvinden door aan elke bit een gewicht toe te kennen

### Cijfercodes: één-wisselcodes of cyclische codes

# = code waarbij 2 opeenvolgende codewoorden (≈ waarden) slechts in één bit van elkaar verschillen

### **Voorbeeld:** Gray-code

Gray-code wordt ook een 'minimale verschil code' genoemd (tussen naburige waarden).

| dec. | binair | Gray |
|------|--------|------|
| 0    | 0000   | 0000 |
| 1    | 0001   | 0001 |
| 2    | 0010   | 0011 |
| 3    | 0011   | 0010 |
| 4    | 0100   | 0110 |
| 5    | 0101   | 0111 |
| 6    | 0110   | 0101 |
| 7    | 0111   | 0100 |
| 8    | 1000   | 1100 |
| 9    | 1001   | 1101 |
| 10   | 1010   | 1111 |
| 11   | 1011   | 1110 |
| 12   | 1100   | 1010 |
| 13   | 1101   | 1011 |
| 14   | 1110   | 1001 |
| 15   | 1111   | 1000 |

### Cijfercodes: één-wisselcodes of cyclische codes

### **Voorbeeld:** Gray-code (vervolg)

#### Bovendien een reflecterende code

### = een soort "gespiegelde code" in de opbouw van de tabel

| G  | D | C | В | A |
|----|---|---|---|---|
| 0  | 0 | 0 | 0 | 0 |
| 1  | 0 | 0 | 0 | 1 |
| 2  | 0 | 0 | 1 | 1 |
| 3  | 0 | 0 | 1 | 0 |
| 4  | 0 | 1 | 1 | 0 |
| 5  | 0 | 1 | 1 | 1 |
| 6  | 0 | 1 | 0 | 1 |
| 7  | 0 | 1 | 0 | 0 |
| 8  | 1 | 1 | 0 | 0 |
| 9  | 1 | 1 | 0 | 1 |
| 10 | 1 | 1 | 1 | 1 |
| 11 | 1 | 1 | 1 | 0 |
| 12 | 1 | 0 | 1 | 0 |
| 13 | 1 | 0 | 1 | 1 |
| 14 | 1 | 0 | 0 | 1 |
| 15 | 1 | 0 | 0 | 0 |

| gray-code | (4-bit) |
|-----------|---------|
| gray-couc | (T-DIU) |

| <b>BA</b> |    |    |    |    |  |  |  |  |  |
|-----------|----|----|----|----|--|--|--|--|--|
| DC        | 00 | 01 | 11 | 10 |  |  |  |  |  |
| 00        | 0  | 1  | 3  | 2  |  |  |  |  |  |
| 01        | 4  | 5  | 7  | 6  |  |  |  |  |  |
| 11        | 12 | 13 | 15 | 14 |  |  |  |  |  |
| 10        | 8  | 9  | 11 | 10 |  |  |  |  |  |



| G                          | D | C                          | B                          | A                               |            |
|----------------------------|---|----------------------------|----------------------------|---------------------------------|------------|
| 0                          | 0 | 0                          | 0                          | 0                               | _          |
| 0<br>1<br>2<br>3<br>4<br>5 | 0 | 0<br>0<br>0<br>0<br>1<br>1 | 0<br>0<br>1<br>1<br>1<br>0 | 0<br>1<br>1<br>0                | 7          |
| 2                          | 0 | 0                          | 1                          | 1                               |            |
| 3                          | 0 | 0                          | 1                          | 0                               | )          |
| 4                          | 0 | 1                          | 1                          | 0                               | \ <b>\</b> |
| 5                          | 0 | 1                          | 1                          | 1                               | <b>/</b> / |
| 6                          | 0 | 1                          | 0                          | 1                               |            |
| 6<br>7                     | 0 | 1                          | 0                          | 1<br>0                          |            |
| 8<br>9                     | 1 | 1                          | 0                          | 0                               |            |
| 9                          | 1 | 1                          | 0                          | 1                               |            |
| 10                         | 1 | 1                          | 1                          | 1                               | ,          |
| 11                         | 1 | 1<br>0                     | 1                          | 0                               | -          |
| 12                         | 1 | 0                          | 1                          | 0                               |            |
| 13                         | 1 | 0                          | 1                          | 0<br>1<br>1<br>0<br>0<br>1<br>1 |            |
| 14                         | 1 | 0                          | 0                          | 1                               |            |
| 15                         | 1 | 0                          | 0                          | 0                               |            |

cfr. opstellen van Karnaughkaart...

### Cijfercodes: één-wisselcodes of cyclische codes

<u>Voorbeeld</u>: Gray-code (vervolg)

De Gray-code is geen gewogen code, dus niet praktisch voor rekenkundige bewerkingen.

| dec. | binair | Gray |
|------|--------|------|
| 0    | 0000   | 0000 |
| 1    | 0001   | 0001 |
| 2    | 0010   | 0011 |
| 3    | 0011   | 0010 |
| 4    | 0100   | 0110 |
| 5    | 0101   | 0111 |
| 6    | 0110   | 0101 |
| 7    | 0111   | 0100 |
| 8    | 1000   | 1100 |
| 9    | 1001   | 1101 |
| 10   | 1010   | 1111 |
| 11   | 1011   | 1110 |
| 12   | 1100   | 1010 |
| 13   | 1101   | 1011 |
| 14   | 1110   | 1001 |
| 15   | 1111   | 1000 |

### **Toepassingen:**

- 1. Waar mechanische verplaatsingen worden omgezet naar een binaire code
- In de telecommunicatie
- Bij de Karnaughkaart

### Alfanumerieke codes

Alfanumerieke gegevens = verzameling van letters (hoofd-en kleine letters), leestekens, cijfersymbolen en controlecodes voor datatransmissie

- ASCII-code = American Standard Code for Information Interchange
  - 7-bit code  $\rightarrow$  2<sup>7</sup> = 128 bitcombinaties
  - 95 bitcombinaties voor lettertekens
  - Overige 33 zijn controletekens
  - 8e bit bruikbaar als pariteitscontrole in datatransmissiesystemen
- ASCII-8 of extended ASCII
  - Uitbreiding van de 7-bit code
  - Sinds 1981
  - 8-bit code
  - Uitgebreider symbolen pallet
- EBCDIC = Extended Binary Coded Decimal Interchange
  - 8-bit code
  - Lezen als 'ebsidic'
  - Op vroegere computersystemen van IBM
  - Niet meer gebruikt

### Alfanumerieke codes (vervolg)

- Unicode
  - 16-bit code → kan 65536 tekens bevatten
  - Ook lettertekens en karakters uit vreemde talen (Chinees, Japans, ...)
  - Ook Braille
- De hollerith-code
  - Toegepast op ponskaarten
  - Standaard ponskaart: 80 kolommen van 12 rijen
  - Ponskaart: cfr. principe draaiorgel



### Alfanumerieke codes (vervolg)

- Morsecode
  - Korte en lange piep (geluid), ook als lichtsignaal
  - Punten en strepen (geschreven)
  - Een geoefend oor (= telegrafist) haalt info uit ruis!

```
• Vb. ... (= SOS)
```

- Vb. ... (= SMS)
- Heeft levens gered (scheepvaart)
- In onbruik geraakt, maar nog steeds beoefend door radioamateurs

### Technische codes

- = sets van bitpatronen waarmee elektronische schakelingen aangestuurd worden
- Eindeloos aantal toepassingen
- Enkele voorbeelden (zie handboek!):
  - Zevensegment-code (zie verder, gebruikt in lab!)
  - > Dotmatrix code
  - ➤ Pixel-kleurcode
  - Andere codes: brailleschrift, weefgetouw van Jacquard, draaiorgels, muziekdozen, ...

### Technische codes: zevensegment-code

- nummering leds
- aansturing
- <u>c</u>ommon <u>a</u>node (= CA) <u></u> <u>c</u>ommon <u>c</u>athode (= **GC)**23456789A6CdEF

 $\bullet$  U<sub>CC</sub> CA anode common pabcdefg stuurprincipe R segment 0 = aansturing

zevensegment - display

|       | p | a | b   | с   | d    | e   | f | g |      |
|-------|---|---|-----|-----|------|-----|---|---|------|
| 0     | 1 | 0 | 0   | 0   | 0    | 0   | 0 | 1 | 81   |
| 1     | 1 | 1 | 0   | 0   | 1    | 1   | 1 | 1 | CF   |
| 2     | 1 | 0 | 0   | 1   | 0    | 0   | 1 | 0 | 92   |
| 3     | 1 | 0 | 0   | 0   | 0    | 1   | 1 | 0 | 86   |
| 4     | 1 | 1 | 0   | 0   | 1    | 1   | 0 | 0 | CC   |
| 5     | 1 | 0 | 1   | 0   | 0    | 1   | 0 | 0 | A4   |
| 6     | 1 | 0 | 1   | 0   | 0    | 0   | 0 | 0 | A0   |
| 7     | 1 | 0 | 0   | 0   | 1    | 1   | 1 | 1 | 8F   |
| 8     | 1 | 0 | 0   | 0   | 0    | 0   | 0 | 0 | 80   |
| 9     | 1 | 0 | 0   | 0   | 0    | 1   | 0 | 0 | 84   |
| digit |   | S | egn | nen | tpat | roo | n |   | code |

# Oefeningen

# Opgave 1: zoek het 2's complement van de volgende bytes.

- a) 0100 1100<sub>2</sub>
- b) 0000 0000<sub>2</sub>
- c) 0000 0001<sub>2</sub>
- d) 1101 0000<sub>2</sub>
- e) 0111 1111<sub>2</sub>
- f) 1000 0000<sub>2</sub>

# Oefeningen

<u>Opgave 2</u>: zet om van decimaal naar een 8-bits binaire string (= een byte) volgens 2 mogelijkheden

met tekenbit (=sign-magnitude):

BIN

• met 2's complement:

BIN

# Oefeningen

Opgave 3 (thuis): teken de aansluitingen van een common cathode (= CC) display (analoog als hieronder bij een CA).



zevensegment - display

|       | p | a | b   | c   | d    | e   | f | g |      |
|-------|---|---|-----|-----|------|-----|---|---|------|
| 0     | 1 | 0 | 0   | 0   | 0    | 0   | 0 | 1 | 81   |
| 1     | 1 | 1 | 0   | 0   | 1    | 1   | 1 | 1 | CF   |
| 2     | 1 | 0 | 0   | 1   | 0    | 0   | 1 | 0 | 92   |
| 3     | 1 | 0 | 0   | 0   | 0    | 1   | 1 | 0 | 86   |
| 4     | 1 | 1 | 0   | 0   | 1    | 1   | 0 | 0 | CC   |
| 5     | 1 | 0 | 1   | 0   | 0    | 1   | 0 | 0 | A4   |
| 6     | 1 | 0 | 1   | 0   | 0    | 0   | 0 | 0 | A0   |
| 7     | 1 | 0 | 0   | 0   | 1    | 1   | 1 | 1 | 8F   |
| 8     | 1 | 0 | 0   | 0   | 0    | 0   | 0 | 0 | 80   |
| 9     | 1 | 0 | 0   | 0   | 0    | 1   | 0 | 0 | 84   |
| digit |   | S | egn | nen | tpat | roo | n |   | code |

# Sudietips en leerdoelen:

### Je moet zeker in staat zijn om:

- Gehele getallen in 2's complement en sign-magnitude voor te stellen
- Te verklaren hoe rationale getallen gecodeerd worden in het binaire stelsel
- Een decimaal getal in BCD-code voor te stellen
- De Gray-code, ... kunnen opstellen
- De zevensegment-code kunnen opstellen, uitleggen en toepassen (ook voor het labo)
- Uit te zoeken of een gegeven cijfercode gewogen, zelfcomplementerend, cyclisch of reflecterend is
- Alle geziene codes
- Cijfercodes: de te kennen essentie staat in deze presentatie (in handboek meer uitgebreid)
- ...