Rechenaufwand der LR-Zerlegung (Auszug 5. Großübung)

1 Rückwärtseinsetzen

Der Algorithmus kann der Folie 3.20 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden:

Für jedes j = n - 1, ..., 1:

- n-j Multiplikationen/Additionen und eine Division
- Ausnahme: für j = n erfolgt nur eine Division

Insgesamt ergibt sich:

- $\sum_{j=1}^{n-1}{(n-j)} = \frac{n(n-1)}{2}$ Multiplikationen/Additionen
- \bullet *n* Divisionen

Beachte:

Aus historischen Gründen werden im Folgenden nur die Multiplikationen und Divisonen gezählt. Diese waren auf früheren Rechnerarchitekturen deutlich aufwändiger zu berechnen als Additionen und Subtraktionen.

Aufwandsabschätzung:

Es ergibt sich ein Aufwand von

$$\frac{n(n-1)}{2} + n = \frac{1}{2}n^2 - \frac{1}{2}n + n = \frac{1}{2}n^2 + \mathcal{O}(n)$$

Rechenoperationen (d.h. Multiplikationen oder Divisionen).

2 Vorwärtseinsetzen

Der Aufwand für das Vorwärtseinsetzen ist vergleichbar mit dem Rückwärtseinsetzen, allerdings entfällt aufgrund der Normierung der unteren Dreiecksmatrix L die Division.

Insgesamt ergibt sich:

•
$$\sum_{j=1}^{n-1} (n-j) = \frac{n(n-1)}{2}$$
 Multiplikationen/Additionen

Aufwandsabschätzung:

Bei alleiniger Betrachtung der Multiplikationen ergibt sich ein Aufwand von

$$\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n = \frac{1}{2}n^2 + \mathcal{O}(n)$$

Rechenoperationen.

3 Gauß-Elimination zur Erzeugung von L und R

Der Algorithmus der LR-Zerlegung (durch Gauß-Elimination) ist in Folie 3.25 beschrieben. Für eine LR-Zerlegung ohne Pivotisierung und Zeilenskalierung ergeben sich die folgenden Rechenoperationen:

Für jedes j = 1, ..., n - 1:

- \bullet Einträge in L: (n-j) Divisionen
- Einträge in R: $(n-j)^2$ Multiplikationen/Additionen

Aufwandsabschätzung:

Bei alleiniger Betrachtung der Multiplikationen und Divisionen ergibt sich ein Aufwand von

$$\sum_{j=1}^{n-1} \left[(n-j)^2 + (n-j) \right] = \frac{1}{3}n^3 - \frac{1}{2}n^2 + \frac{1}{6}n + \frac{1}{2}n^2 - \frac{1}{2}n = \frac{1}{3}n^3 - \frac{1}{3}n = \frac{1}{3}n^3 + \mathcal{O}(n)$$

4 Zeilenskalierung

Bei der Zeilenskalierung werden die folgenden Rechenoperationen zur Bestimmung der Diagonalisierungsmatrix D_z durchgeführt:

- Zeilensummenberechnung: n(n-1) Additionen
- ullet Berechnung der d_{ii} aus den Zeilensummen: n Divisionen

Bei der Anwendung der Diagonalisierungsmatrix auf die Matrix A des Gleichungssystems ergeben sich die folgenden Rechenoperationen:

• Skalierung aller Elemente der Matrix A: n^2 Multiplikationen

Aufwandsabschätzung

Bei der Zeilenskalierung ergibt sich ein Gesamtaufwand in Höhe von $n^2 + \mathcal{O}(n)$ Multiplikationen/Divisionen.

5 Einige Folgerungen:

Gesamtaufwand für die LR-Zerlegung und Vorwärts-/Rückwärtseinsetzen:

$$\begin{split} \text{LR-Zerlegung:} &\frac{1}{3}n^3 - \frac{1}{3}n \approx \frac{1}{3}n^3 \\ \text{Vorwärtseinsetzen:} &\frac{1}{2}n^2 - \frac{1}{2}n \approx \frac{1}{2}n^2 \\ \text{Rückwärtseinsetzen:} &\frac{1}{2}n^2 + \frac{1}{2}n \approx \frac{1}{2}n^2 \end{split}$$

Summe:
$$\frac{1}{3}n^3 + n^2 - \frac{1}{3}n \approx \frac{1}{3}n^3 + \mathcal{O}(n^2)$$

Bei einer neuen rechten Seite ergibt sich ein zusätzlicher Aufwand in Höhe von n^2 Operationen für das Vorwärts- und Rückwärtseinsetzen.

Zum Vergleich: Klassiche Gauß-Elimination inkl. der rechten Seite:

- Aufward Gauß-Elimination: $\sum_{j=1}^{n-1} \left[(n-j)(n+1-j) + (n-j) \right] = \frac{1}{3}n^3 + \frac{1}{2}n^2 \frac{5}{6}n^3$
- Aufwand Rückwärtseinsetzen: $\frac{1}{2}n^2 + \frac{1}{2}n$

Mit insgesamt: $\frac{1}{3}n^3 + n^2 - \frac{1}{3}n$ Operationen ist der Aufwand für die klassische Gauß-Elimination bei einer (und ggfs. weiteren im Voraus bekannten) rechten Seite(n) identisch mit dem Aufwand der LR-Zerlegung. In der Praxis (z.B. vereinfachtes Newton-Verfahren) tritt jedoch häufig der Fall auf, dass sich die rechte Seite b des Gleichungssystems Ax = b ändert, während die Matrix A unverändert beibehalten wird. In diesem Fall ist die LR-Zerlegung deutlich effizienter, da die Dreiecksmatrizen L und R auch bei veränderter rechter Seite beibehalten werden können.

Aufwand für die Berechnung der Inversen ${\cal A}^{-1}$

Die Inverse A^{-1} des Gleichungssystems Ax = b wird bestimmt, indem die LR-Zerlegung der Matrix A berechnet wird und anschließend die Spaltenvektoren der Einheitsmatrix als rechte Seite b eingesetzt werden. Die sich ergebenden Lösungsvektoren x bilden die Inverse A^{-1} .

Als Aufwand ergibt sich:

LR-Zerlegung
$$\frac{1}{3}n^3$$

Vorwärtseinsetzen $n \cdot \frac{1}{2}n^2$
Rückwärtseinsetzen $n \cdot \frac{1}{2}n^2$
 $Summe: \frac{4}{3}n^3$

3

Aufwand für eine Matrix-Vektor-Multiplikation

Die Matrix-Vektor-Multiplikation wird z.B. bei der Berechnung $x=A^{-1}b$ benötigt. Es ergibt sich ein Aufwand von

 n^2

Rechenoperationen (genauer: Multiplikationen).

 \Rightarrow Die Vektor-Matrix-Multiplikation bei der Lösung des Gleichungssystems Ax=b durch die Inverse A^{-1} ist genauso aufwändig wie die Lösung des Gleichungssystems durch Vorwärts-/Rückwärtseinsetzen. Die Berechnung von $x=A^{-1}b$ ist jedoch deutlich aufwändiger als die Durchführung der entsprechenden LR-Zerlegung (s.o.). Daher wird in der Praxis die Bestimmung der Inversen vermieden.