(5) Quadratic Soft margin ν -SVM Problem (SVM_{s5}). This is the variant of Problem (SVM_{s4}) in which we add the term $(1/2)b^2$ to the objective function. We also drop the constraint $\eta \geq 0$ which is redundant. We have the following optimization problem:

minimize
$$\frac{1}{2}w^{\top}w + \frac{1}{2}b^{2} + (p+q)K_{s}\left(-\nu\eta + \frac{1}{p+q}(\epsilon^{\top}\epsilon + \xi^{\top}\xi)\right)$$
subject to
$$w^{\top}u_{i} - b \geq \eta - \epsilon_{i}, \qquad i = 1, \dots, p$$
$$-w^{\top}v_{j} + b \geq \eta - \xi_{j}, \qquad j = 1, \dots, q,$$

where ν and K_s are two given positive constants. As we saw earlier, it is convenient to pick $K_s = 1/(p+q)$. When writing a computer program, it is preferable to assume that K_s is arbitrary. In this case ν must be replaced by $(p+q)K_s\nu$ in all the formulae.

One of the advantages of this methods is that ϵ is determined by λ , ξ is determined by μ (as in (SVM_{s4})), and both η and b determined by λ and μ . We can omit the constraint $\eta \geq 0$, because for an optimal solution it can be shown using duality that $\eta \geq 0$. For K_s and ν fixed, if Program (SVM_{s5}) has an optimal solution, then it is unique; see Theorem 54.9.

A drawback of Program (SVM_{s5}) is that for fixed K_s , the quantity $\delta = \eta/\|w\|$ and the hyperplanes $H_{w,b}, H_{w,b+\eta}$ and $H_{w,b-\eta}$ are *independent* of ν . This is shown in Theorem 54.9. Thus this method is less flexible than (SVM_{s2}) and (SVM_{s3}).

It is shown in Section 54.15 that the dual of Program (SVM_{s5}) is given by

Dual of the Quadratic Soft margin ν -SVM Problem (SVM_{s5}):

minimize
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \begin{pmatrix} X^{\top}X + \begin{pmatrix} \mathbf{1}_{p}\mathbf{1}_{p}^{\top} & -\mathbf{1}_{p}\mathbf{1}_{q}^{\top} \\ -\mathbf{1}_{q}\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}\mathbf{1}_{q}^{\top} \end{pmatrix} + \frac{1}{2K}I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
 subject to
$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} = \nu$$
$$\lambda_{i} \geq 0, \quad i = 1, \dots, p$$
$$\mu_{j} \geq 0, \quad j = 1, \dots, q.$$