LinAlgDM I. 12. gyakorlat: Vektoralgebra

2023. november 10.

Néhány vektoralgebrai alapfogalom és jelölés.

A, B: pontok,

O: origó,

 \overrightarrow{AB} : az A és B pontokat összekötő vektor,

 $\underline{a} = OA$ az A-hoz tartozó **helyvektor**, vagyis az origóból az A pontba mutató vektor.

Ha számít a kezdőpont, **kötött vektor**ról beszélünk, ha nem számít, **szabad vektor**ról beszélünk. A szabad vektor egyértelműen megfeleltethető a helyvektorral, hiszen csak a hossza és iránya számít.

Két szabad vektor (helyvektor) egyenlő, ha azonos a nagyságuk és irányuk.

Bázis a sikban: két nem párhuzamos (hely)vektor.

Bázis a térben: három (hely)vektor, amelyek nem esnek egy síkba.

Koordináta fogalma (a térben): Legyen $\underline{b}_1,\underline{b}_2,\underline{b}_3\in\mathbb{R}^3$ egy bázis a térben. (\mathbb{R}^3 -ban). A $\underline{v}\in\mathbb{R}^3$ előáll a bázisvektorok ún. lineáris kombinációjaként:

$$\underline{v} = v_1 \cdot \underline{b}_1 + v_2 \cdot \underline{b}_2 + v_3 \cdot \underline{b}_3$$

ahol v_1, v_2, v_3 konstansok. Ekkor a \underline{v} vektor b bázisra vonatkozó koordinátái a v_1, v_2, v_3 lesznek. Jelölése:

$$\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}_{[\underline{b}_1, \underline{b}_2, \underline{b}_3]}$$

Síkbéli vektorok koordinátáinak fogalma hasonlóan definiálható 2 db síkbéli bázisvektorral.

Ortogonális bázis a térben: a $\underline{b}_1,\,\underline{b}_2$ és \underline{b}_3 bázisvektorok egymásra merőlegesek.

Normált bázis a térben: az $\underline{e}_1,\,\underline{e}_2$ és \underline{e}_3 bázisvektorok egségnyi hosszúak.

Ortonormált bázis a síkban: $\underline{i}, \underline{j}$, ahol \underline{i} (általában) az x tengely irányú síkbéli egységvektor, míg \underline{j} (általában) az y tengely irányú síkbéli egységvektor.

Ortonormált bázis a térben: $\underline{i}, \underline{j}, \underline{k}$, ahol \underline{i} (általában) az x tengely irányú, \underline{j} (általában) az y tengely irányú, \underline{k} (általában) a z tengely irányú térbeli egységvektor. Fordítva: ha adott a térben az $[\underline{i}, \underline{j}, \underline{k}]$ ortonormált bázis, ami jobbkezes (lásd későbbi gyakorlaton), akkor az x, y és z tengelyeket felvehetjük az \underline{i}, j és \underline{k} irányába.

Ha ortonormált bázisban adjuk meg egy vektor koordinátáit, a bázisjelölés (alsó index [i, j] vagy [i, j, k]) elhagyható.

- 1. Adott a síkban az $\underline{a}, \underline{b}$ nem párhuzamos vektorpár. "Szerkesszük meg" az alábbi vektorokat: $\underline{c} = \underline{a} + \underline{b},$ $\underline{d} = \underline{a} \underline{b},$ $\underline{e} = -0, 5\underline{a} + 2\underline{b}.$ Adjuk meg ezen vektorok $\underline{a}, \underline{b}$ bázisra vonatkozó koordinátáit!
- 2. Írjuk fel az $\underline{a} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$ síkbéli vektorra merőleges, vele megegyező hosszúságú vektorok koordinátáit! Adjuk meg ezen vektorok abszolút értékét (hosszát)!
- 3. Egy síkbéli rombusz hosszabbik átlója kétszerese a rövidebbik átlónak. A rövidebbik átló végpontjainak koordinátái $A = \begin{pmatrix} -3 \\ 7 \end{pmatrix}$ és $C = \begin{pmatrix} 5 \\ 11 \end{pmatrix}$. Számítsa ki az átló hosszát! Határozza meg a másik két csúcs, X és Y koordinátáit!
- 4. Egy paralelepipedon egyik csúcsa az origó, a három vele szomszédos csúcsa pedig:

$$A = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}_{\underbrace{[i,\underline{j},\underline{k}]}}, \quad B = \begin{pmatrix} -5 \\ 3 \\ 0 \end{pmatrix}_{\underbrace{[i,\underline{j},\underline{k}]}}, \quad C = \begin{pmatrix} 7 \\ -1 \\ -3 \end{pmatrix}_{\underbrace{[i,\underline{j},\underline{k}]}}$$

Határozzuk meg a többi csúcs koordinátáit

- (a) az ortonormált $\{\underline{i}, \underline{j}, \underline{k}\}$ bázisban,
- (b) az A, B és C pontokhoz tartozó helyvektorok $\{\underline{a}, \underline{b}, \underline{c}\}$ bázisában!

