

Königswinkel 10 32825 Blomberg Germany

Phone: +49 (0) 52 35 95 00-0 Fax: +49 (0) 52 35 95 00-10

Test Report

Report Number: F142199E1

Applicant:

FT-TEC Electronics GmbH

Manufacturer:

FT-TEC Electronics GmbH

Equipment under Test (EUT):

AIS Search and Rescue Transmitter SEAANGEL SA14

Laboratory accredited by
Deutsche Akkreditierungsstelle GmbH (DAkkS)
in compliance with DIN EN ISO/IEC 17025
under the Reg. No. D-PL-17186-01-02

REFERENCES

[1] **IEC 61097-14: 2010**: Global maritime distress and safety systems (GMDSS) – Part 14: AIS Search and Rescue Transmitter (AIS-SART) – Operational and performance requirements, methods of testing and required test results

TEST RESULT

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

Test engineer:	Thomas KÜHN	Signature	15 September 2014	
Authorized reviewer:	Bernd STEINER	B.Shu	15 September 2014	
	Name	Signature	Date	

RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

Test engineer: Thomas KÜHN
Date of issue: 15 September 2014

Report Number:

F142199E1 14-112199

Contents:	Page
1 Identification	4
1.1 Applicant	4
1.2 Manufacturer	4
1.3 Test laboratory	4
1.4 EUT (Equipment Under Test)	5
1.5 Dates	5
2 Operational states	6
3 Additional information	6
4 Test overview	6
5 Physical radio tests	7
5.1 Frequency error Subclause 7.2 [1]	7
5.2 Conducted power Subclause 7.3 [1]	8
5.3 Radiated power Subclause 7.4 [1]	9
5.4 Modulation spectrum slotted transmission Subclause 7.5 [1]	10
5.5 Transmitter test sequence and modulation accuracy Subclause 7.6 [1]	12
5.6 Transmitter output power characteristics Subclause 7.7 [1]	15
5.7 Spurious emissions from the transmitter Subclause 7.8 [1]	19
6 Test equipment and ancillaries used for tests	20
7 Report history	20
8 List of annexes	21

1 Identification

1.1 Applicant

Name:	FT-TEC Electronics GmbH	
Address:	Werner von Siemens-Straße 5 7343 Neutal	
Country:	Austria	
Name for contact purposes:	Mr. Andreas KREJCI	
Phone:	+43 26 18 20 455 – 40 20	
Fax:	+43 26 18 20 455 – 90 10	
eMail Address:	a.krejci@ft-tec.com	
Applicant represented during the test by the following person:	Mr. Andreas KREJCI	

1.2 Manufacturer

Name:	FT-TEC GmbH	
Address:	Werner von Siemens-Straße 5 7343 Neutal	
Country:	Austria	
Name for contact purposes:	Mr. Andreas KREJCI	
Phone:	+43 26 18 20 455 – 10 40	
Fax:	+43 26 18 20 455 – 90 10	
eMail Address:	a.krejci@ft-tec.com	
Manufacturer represented during the test by the following person:	Mr. Andreas KREJCI	

1.3 Test laboratory

The tests were carried out at: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg

Germany

accredited by DGA Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025 under Reg. No. D-PL-17186-01-02.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 4 of 21

1.4 EUT (Equipment Under Test)

Type: *	AIS Search and Rescue Transmitter (AIS-SART)			
Type designation: *	SEAANGEL SA14			
Serial No.:	100000000000000148323			
Power amplifier difference: *	$P_d = 0 \text{ dB}$			
Alignment range: *	161.975 to 162.025 MHz			
Switching range: *	161.975 to 162.025 MHz			
Channel separation:	50 kHz (channel bandwidth: 25 kHz)			
Rated RF output power:	1.0 W / 30 dBm			
Supply Voltage:	U_{nom} = 9.0 V DC U_{min} = 5.0 V DC U_{max} = 9.2 V DC			
Printed circuit designation: *	5400013V03			
Software version: *	SA14V1.1			
Hardware version: *	ersion: * V03			

^{*} declared by the applicant.

Ports/Connectors

Identification		Connector			Longth
		EUT Ancillary			Length
-		-	-		-
-					-
-		No external lines are connectable to the EUT			-
-					-
-			-		-
-					-

1.5 Dates

Date of receipt of test sample:	17 July 2014
Start of test:	30 July 2014
End of test:	31 July 2014

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 5 of 21

2 Operational states

All tests were carried out at the two frequencies AIS1 (161.975 MHz) and AIS2 (162.025 MHz).

During the tests under extreme conditions the EUT was supplied by an external power supply within the applicants declared supply voltage ratings (refer clause 1.4 of this test report).

The EUT could be connected to a laptop computer with a test-software, which allows adjusting of the EUTs operation mode.

Conducted measurements were carried out with a temporary antenna connector installed instead of the antenna.

The following operation modes were adjustable during the tests

Test case	Operation mode
Frequency error	Transmit without modulation
Conducted power	Transmit standard test signal number 3 (defined in clause 5.6.3 [1])
Radiated power	Transmit standard test signal number 3 (defined in clause 5.6.3 [1])
Modulation spectrum slotted transmission	Transmit standard test signal number 3 (defined in clause 5.6.3 [1])
Transmitter test sequence and modulation accuracy	Transmit standard test signal number 1 and 2 (defined in clause 5.6.1 [1] and 5.6.2 [1])
Transmitter output power versus time function	Transmit standard test signal number 1 (defined in clause 5.6.1 [1])
Spurious emissions from the transmitter	Transmit standard test signal number 3 (defined in clause 5.6.3 [1])

3 Additional information

None

4 Test overview

Subclause	Test parameter	Remark	Test result	Refer page
7 [1]	Physical radio tests			
7.2 [1]	Frequency error	Applicable	Passed	7
7.3 [1]	Conducted power	Applicable	Passed	8
7.4 [1]	Radiated power	Applicable	Passed	9
7.5 [1]	Modulation spectrum slotted transmission	Applicable	Passed	10 et seq.
7.6 [1]	Transmitter test sequence and modulation accuracy	Applicable	Passed	12 et seq.
7.7 [1]	Transmitter output power versus time function	Applicable	Passed	15 et seq.
7.8 [1]	Spurious emissions from the transmitter	Applicable	Passed	19

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 6 of 21

5 Physical radio tests

5.1 Frequency error

Subclause 7.2 [1]

Ambient temperature	22 °C		Relative humidity	70 %
---------------------	-------	--	-------------------	------

Operation mode: Continuous transmission on 161.975 MHz without modulation,

measured conducted at the temporary antenna port.

TEST CC	NDITIONS	FREQUENCY	EDECLIENCY EDDOD	
Temperature	Voltage	FREQUENCT	FREQUENCY ERROR	
T _{nom} (+20°C)	T _{nom} (+20°C) U _{nom} (9.0 V DC)		+32 Hz	
T _{min} (-20°C)	U _{min} (5.0 V DC)	161.975080 MHz	+80 Hz	
	U _{max} (9.2 V DC)	161.975080 MHz	+80 Hz	
T (155 °C)	U _{min} (5.0 V DC)	161.975080 MHz	+80 Hz	
T _{max} (+55 °C)	U _{max} (9.2 V DC)	161.975080 MHz	+80 Hz	
Maximum fr	equency error	+80 Hz		
Measureme	nt uncertainty	±10	Hz	

Operation mode: Continuous transmission on 162.025 MHz without modulation measured conducted at the temporary antenna port.

TEST CONDITIONS		FREQUENCY	FREQUENCY ERROR	
Temperature	Voltage	FREQUENCT	FREQUENCT ERROR	
T _{nom} (+20°C)	U _{nom} (9.0 V DC)	162.025032 MHz	+32 Hz	
T _{min} (-20°C)	U _{min} (5.0 V DC)	162.025080 MHz	+80 Hz	
	U _{max} (9.2 V DC)	162.025080 MHz	+80 Hz	
T (155 °C)	U _{min} (5.0 V DC)	162.025080 MHz	+80 Hz	
T _{max} (+55 °C)	U _{max} (9.2 V DC)	162.025080 MHz	+80 Hz	
Maximum fre	equency error	+80 Hz		
Measureme	nt uncertainty	±10	Hz	

LIMITS: Subclause 7.2.3 [1]

The frequency error shall not exceed ±0.5 kHz under normal and ±1 kHz under extreme conditions.

Test equipment used (refer clause 6)

9, 10, 13, 16, 17

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 7 of 21

5.2 Conducted power

Subclause 7.3 [1]

Ambient temperature	22 °C	Relative humidity	70 %
---------------------	-------	-------------------	------

Antenna gain (refer 5.3 of this test report), Pd = 0 dB.

Radiated power level (refer 5.3 of this test report).

Operation mode: Continuous transmission on 161.975 MHz

measured conducted at the temporary antenna port.

Test conditions		Carrier Powe	r (conducted)
T _{nom} (+20°C)	U _{nom} (9.0 V DC)	P ₂₀ =	31.3 dBm
T _{min} (-20°C)	U _{min} (5.0 V DC)	D	30.3 dBm
	U _{max} (9.2 V DC)	P- ₂₀ =	31.2 dBm
T _{max} (+55°C)	U _{min} (5.0 V DC)	D	29.8 dBm
	U _{max} (9.2 V DC)	P ₊₅₅ =	31.1 dBm
Minimum Carrier Power		31.2	2 dB
Measureme	ent uncertainty	+ 0.66 dB	/ - 0.72 dB

Operation mode: Continuous transmission on 162.025 MHz

measured conducted at the temporary antenna port.

Test conditions		Carrier Power (conducted)	
T _{nom} (+20°C)	U _{nom} (9.0 V DC)	P ₂₀ =	31.3 dBm
T _{min} (-20°C)	U _{min} (5.0 V DC)	D _	30.3 dBm
	U _{max} (9.2 V DC)	P- ₂₀ =	31.2 dBm
T _{max} (+55°C)	U _{min} (5.0 V DC)	D _	29.7 dBm
	U _{max} (9.2 V DC)	P ₊₅₅ =	31.1 dBm
Minimum Carrier Power		31.2	2 dB
Measureme	nt uncertainty	+ 0.66 dB	/ - 0.72 dB

LIMITS: Subclause 7.3.3 [1]

The conducted power, corrected for the antenna gain shall be at least the values given in Table 6.

Table 6 – Conducted power – Required results

Table 6 Celladoted p	one: Required results
Power	dBm
P ₋₂₀ + G + P _d	27
P ₋₅₅ + G + P _d	27
NOTE This power equates to the radiate	ed power at extreme temperatures

Test equipment used (refer clause 6)

10, 13 - 17

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 8 of 21

5.3 Radiated power

Subclause 7.4 [1]

page 9 of 21

Ambient temperature	22 °C	Relative humidity	70 %
---------------------	-------	-------------------	------

Operation mode: Transmit on 161.975 MHz, in use with internal battery already used for 92 hours.

Test conditions		Measured Power P _R (radiated)	Measured Power P ₂₀ (conducted)	Calculated Antenna-Gain $G = P_R - P_{20}$	Minimum Power (radiated)*
	Angle = 0°	30.8 dBm		-0.5 dBi	29.3 dBm
T (+20°C)	Angle = 90°	30.8 dBm	24.2 dDm	-0.5 dBi	29.3 dBm
T _{nom} (+20°C)	Angle = 180°	30.9 dBm	31.3 dBm	-0.4 dBi	29.4 dBm
	Angle = 270°	30.8 dBm		-0.5 dBi	29.4 dBm
Measurement uncertainty			+2.2 dB	/ -3.6 dB	

^{*}Calculated by using the Results of (P-20) and (P55) from Subclause 7.3

Operation mode: Transmit on 162.025 MHz, in use with internal battery already used for 92 hours.

Test conditions		Test conditions Measured Power P _R (radiated)		Calculated Antenna-Gain $G = P_R - P_{20}$	Minimum Power (radiated)*
T (2000)	Angle = 0°	30.9 dBm		-0.4 dBi	29.3 dBm
	Angle = 90°	31.0 dBm	24.2 dDm	-0.3 dBi	29.4 dBm
T _{nom} (+20°C)	Angle = 180°	31.0 dBm	31.3 dBm	-0.3 dBi	29.4 dBm
	Angle = 270°	30.9 dBm		-0.4 dBi	29.7 dBm
Measurement uncertainty			+2.2 dB	/ -3.6 dB	

^{*}Calculated by using the Results of (P-20) and (P55) from Subclause 7.3

LIMITS: Subclause 7.4.3 [1]

The radiated power shall be at least 27 dBm (500 mW).

NOTE This equates to a norminal radiated output power of 1 W with a -3 dB tolerance to allow for antenna gain characteristics and temperature variations.

Test equipment used (refer clause 6)

1 – 7

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199

5.4 Modulation spectrum slotted transmission

Subclause 7.5 [1]

Ambient temperature	22 °C		Relative humidity	60 %	
---------------------	-------	--	-------------------	------	--

Measured conducted at the temporary antenna port.

142199 101.wmf: Transmission spectrum, transmit on 161.975 MHz:

142199_102.wmf: Transmission spectrum, transmit on 162.025 MHz:

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 10 of 21

LIMITS: Subclause 7.5.3 [1]

The spectrum for slotted transmission shall be within the emission mask as follows:

In the region between the carrier and ± 10 kHz removed from the carrier, the modulation and transient sidebands shall be below 0 dBc.

At ±10 kHz removed from the carrier, the modulation and transient sideband shall be below - 20 dBc.

At ±25 kHz to ±62.5 kHz removed from the carrier, the modulation and transient sideband shall be below the lower value of -40 dBc.

In the region ±10 kHz and ±25 kHz removed from the carrier, the modulation and transients sidebands shall be below a line specified between these two points.

Test equipment used (refer clause 6)

9, 13

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 11 of 21

5.5 Transmitter test sequence and modulation accuracy

Subclause 7.6 [1]

Ambient temperature	22 °C	Relative humidity	70 %
---------------------	-------	-------------------	------

Measured conducted at the temporary antenna port.

142199 103.wmf: Modulation accuracy, transmit on 161.975 MHz with test signal 1; U = 9.0 V DC; T = 20 °C:

142199_104.wmf: Modulation accuracy, transmit on 161.975 MHz with test signal 2; U = 9.0 V DC; T = 20 °C:

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 12 of 21

142199_105.wmf: Modulation accuracy, transmit on 162.025 MHz with test signal 1; U = 9.0 V DC; T = 20 °C:

142199_106.wmf: Modulation accuracy, transmit on 162.025 MHz with test signal 2; U = 9.0 V DC; T = 20 °C:

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 13 of 21

Additional Information:

This test was carried out under normal and extreme conditions. All measurement results were within the limits listed below. In order to reduce the scale of this test report, only the results, which were observed under normal test conditions (because of the tighter limits) are documented. The plots of the measurement results under extreme conditions are listed in annex B of this test report.

LIMITS: Subclause 7.6.3 [1]

In each case, verify that the training sequence begins with "0".

Peak frequency deviation at various points within the data frame shall comply with table 7. These limits apply to both the positive and negative modulation peaks. Bit 0 is defined as the first bit of the training sequence.

Table 7 - Peak frequency deviation versus time

Table I – I eak frequency deviation versus time					
Measurement period from	Test s	ignal 1	Test signal 2		
centre of centre of each bit	Normal	Extreme	Normal	Extreme	
Bit 0 to bit 1		<340	00 Hz		
Bit 2 to bit 3		2400 Hz	±480 Hz		
Bit 4 to bit 31	2400 Hz	2400 Hz	2400 Hz	2400 Hz	
	±240 Hz	±480 Hz	±240 Hz	±480 Hz	
Bit 32 to bit 199	1740 Hz	1740 Hz	2400 Hz	2400 Hz	
	±175 Hz	±350 Hz	±240 Hz	±480 Hz	

Test equipment used (refer clause 6)

9, 10, 13, 16, 17

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199

 page 14 of 21
 page 14 of 21

5.6 Transmitter output power characteristics

Subclause 7.7 [1]

Ambient temperature	22 °C	Relative humidity	60 %
---------------------	-------	-------------------	------

Operation mode: Transmit in AIS-mode (test signal number 1).

Method of measurement: Conducted at the temporary antenna port.

142199_107.wmf: Transmitter versus time function, transmit on 161.975 MHz:

142199 108.wmf: Transmitter versus time function, transmit on 161.975 MHz:

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 15 of 21

142199_109.wmf: Transmitter versus time function, transmit on 161.975 MHz:

142199_112.wmf: Transmitter versus time function, transmit on 162.025 MHz:

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199

page 16 of 21

142199_111.wmf: Transmitter versus time function, transmit on 162.025 MHz:

142199 110.wmf: Transmitter versus time function, transmit on 162.025 MHz:

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 17 of 21

LIMITS: Subclause 7.7.3 [1]

The transmitter power shall remain within the mask shown in figure 6 and associated timings given in Table 8.

Table 8 – Definition of timings

			iui	ele e Bellinder et tillinge
Refere	ence	Bits	Time [ms]	Definition
T ₀		0	0	Start of transmission slot. Power shall not exceed -50 dB of P_{SS} before T_0
$T_0 - T_A$		0 to 6	0 to 0.625	Power may exceed -50 dB of P _{SS} ^a
т	T _{B1}	6	0.625	Power shall be within +1.5 dB or -3 dB of P _{SS} ^a
T _B	T _{B2}	8	0.833	Power shall be within +1.5 dB or -1 dB of P _{SS} a
T _E (inclustuffing		233	24.271	Power shall remain within +1.5 dB or -1 dB of P_{SS} during the period T_{B2} to $T_E^{\ a}$
T _F (inclustuffing		241	25.104	Power shall be -50 dB of P _{SS} and stay below this
T _G		256	26.667	Start of next transmission time period
2				

^aThere shall be no modulation of the RF after the termination of transmission (T_E) until the power has reached zero and next slot begins (T_G).

Test equipment used (refer clause 6)

9, 13

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 18 of 21

5.7 Spurious emissions from the transmitter

Subclause 7.8 [1]

Ambient temperature	22 °C	Relative humidity	60 %
---------------------	-------	-------------------	------

Measured conducted at the temporary antenna port.

Operation mode: Transmit on 161.975 MHz.

SPURIOUS EMISSIONS LEVEL					
f [MHz]	Level [dBm]	Bandwidth [kHz]	Limit [dBm]	Margin [dB]	Result
108.000	-22.3	100	-16.0	6.3	Passed
108.376	-39.6	100	-16.0	23.6	Passed
135.002	-35.2	100	-16.0	19.2	Passed
161.498	-32.1	100	-16.0	16.1	Passed
-	-	-	-	-	-
Measurement uncertainty		+0.66 dB / -0.72 dB			

Operation mode: Transmit on 162.025 MHz.

SPURIOUS EMISSIONS LEVEL					
F [MHz]	Level [dBm]	Bandwidth [kHz]	Limit [dBm]	Margin [dB]	Result
108.025	-22.4	100	-16.0	6.4	Passed
108.426	-41.6	100	-16.0	25.6	Passed
134.998	-35.6	100	-16.0	19.6	Passed
161.500	-32.0	100	-16.0	16.0	Passed
-	-	-	-	-	-
Measurement uncertainty		+0.66 dB / -0.72 dB			

LIMITS: SUBCLAUSE 7.8.3 [1]

No signal level within these bands shall exceed 25 µW or -16 dBm.

Test equipment used (refer clause 6)

9, 11 - 13

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 19 of 21

6 Test equipment and ancillaries used for tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No
1	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439- T232	480303
2	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355
3	Bikon Antenna	HK 116	Rohde & Schwarz	836891/012	480122
4	Precision Dipole	HZ 12	Rohde & Schwarz	831781/02	480061
5	Signal generator	83650L	Agilent	3844A00554	480333
6	RF-cable No. 3	Sucoflex 106B	Suhner	0563/6B	480670
7	RF-cable No. 36	Sucoflex 106B	Suhner	0522/6B	480571
8	RF-cable No. 40	Sucoflex 106B	Suhner	0708/6B	481330
9	Spectrum Analyser	FSU	Rohde & Schwarz	200125	480956
10	Temperature chamber	MK 240	Binder	05-79022	480462
11	Tuneable notch filter	WTRCD5-150- 165-0.05-0.61- 40EEK	Wainwright Instruments	1	481810
12	High pass filter	WHJ9-167-200- 2000-60EF	Wainwright Instruments	1	481811
13	Attenuator 20 dB / 10 W	WA8 / 18-20-34	Weinschel	-	481450
14	Power meter	NRVD	Rohde & Schwarz	833697/030	480589
15	Peak power sensor	NRV-Z31	Rohde & Schwarz	829729/011	481179
16	Power Supply	TOE8852 (DC)	Toellner.	51712	480233
17	Multimeter	971A	Hewlett Packard	JP39009358	480721

7 Report history

Report Number	Date	Comment
F142199E1	15 September 2014	Document created
-	-	-

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199

page 20 of 21

8 List of annexes

Annex A Photographs 11 pages

External photographs of the test sample:

142199_1.JPG: SEAANGEL SA14, front view 142199_2.JPG: SEAANGEL SA14, rear view

142199_4.JPG: SEAANGEL SA14, front view (antenna removed) 142199_3.JPG: SEAANGEL SA14, rear view (antenna removed)

Internal photographs of the test sample:

142199_6.JPG: SEAANGEL SA14, internal view 1 (cover removed) 142199_7.JPG: SEAANGEL SA14, internal view 2 (PCB removed)

142199_8.JPG: SEAANGEL SA14, PCB, top view 142199 9.JPG: SEAANGEL SA14, PCB, bottom view

Photographs of the test setups:

142199_b.JPG: SEAANGEL SA14, test set-up fully anechoic chamber SEAANGEL SA14, test set-up fully anechoic chamber 142199_d.JPG: SEAANGEL SA14, test set-up temperature chamber

Annex B Measurement results 10 pages

 Test engineer:
 Thomas KÜHN
 Report Number:
 F142199E1

 Date of issue:
 15 September 2014
 Order Number:
 14-112199
 page 21 of 21