

Introduction to simulationbased inference (SBI)

Kiyam Lin

Durham Astrodat, 10/09/2025

Accurate Likelihoods are hard

- Your likelihood probably is not Gaussian
- Observational systematics
 - Noise models (depth variability etc.)
 - Selection bias
- Complex physics is hard to cast into an analytic model

- Approximate Bayesian computation (ABC)
 - How do you define closeness
 - Incredibly inefficient

Joint probability is everything $p(\theta,d)$

SBI - Neural methods

• Neural Posterior

• Neural Likelihood

• Neural Ratio

Neural SBI, the premise

 Have a simulator such that one can draw samples from the joint distribution

$$p(\theta, d)$$

SBI - Training

- Train a neural density estimator (NDE) such that $q_{\phi}(\theta|\mathbf{d}) \to p(\theta|d)$
- Minimise Kullback-Leibler (KL)
 Divergence

$$KL\left(p(\theta|d)||q_{\phi}(\theta|d)\right) = E_{p(\theta,d)}\left[\log\frac{p(\theta|d)}{q_{\phi}(\theta|d)}\right]$$

$$KL = E_{p(\theta,d)}\left[\log p(\theta|d)\right] - E_{p(\theta,d)}\left[\log q_{\phi}(\theta|d)\right]$$

SBI - Training

$$KL = \mathbb{E}_{p(\theta,d)}[\log p(\theta|d)] - \mathbb{E}_{p(\theta,d)}[\log q_{\phi}(\theta|d)]$$

• Minimise the log likelihood of θ $\mathcal{L}(\phi) = \mathrm{E}_{p(\theta,d)} \big[-\log q_\phi(\theta|d) \big]$

SBI - Neural Posterior

• Curse of dimensionality

•
$$\tilde{p}(\theta|d) \propto \frac{\tilde{p}(\theta)}{p(\theta)} p(\theta|d)$$

SBI - Neural Posterior

•
$$\tilde{p}(\theta|d) \propto \frac{\tilde{p}(\theta)}{p(\theta)} p(\theta|d)$$

- •NPE-A Papamakarios & Murray 2016
 - Post-hoc analytical correction needed
- •NPE-B Lueckmann et al. 2017
 - Proposal embedded as an importance weight
- •NPE-APT Greenberg et al. 2019
 - Automatic Posterior Transformations

SBI - Neural Posterior

- NPE-APT is the standard approach now
- Amortized for data, but is prior dependent
- Can be sequential

SBI jargon

- Amortization
 - Learned model not specific to one data vector
- Sequential
 - Adaptively acquire simulations

Active learning posteriors

SBI - Neural Likelihood

- •Learn conditional likelihood as a function of θ
- •Minimise the conditional log likelihood $\mathcal{L}(\phi) = \mathrm{E}_{p(\theta,d)} \big[-\log q_\phi(d|\theta) \big]$

SBI - Neural Likelihood

- · Can draw simulations any way we want
- Gives access to the likelihood!
- Need sampling for final posterior
- Amortized
- Can be sequential

SBI - Neural Ratio

- Train a classifier to distinguish samples drawn from the joint distribution vs. marginal distribution
- Likelihood ratio trick:

$$r_{\phi}(d|\theta) = \frac{\boldsymbol{d}^*(d,\theta)}{1 - \boldsymbol{d}^*(d,\theta)} \approx \frac{p(\theta|d)}{p(\theta)}$$

• Need sampling for final posterior

Hermans et al. (2020)

SBI - Neural Ratio

- •In practice, little overlap between joint and marginal distributions to use as training data set.
- Truncated marginal neural ratio estimation exists to only learn the marginals
- Can be amortized
- Can be sequential

Hermans et al. (2020)

SBI - Software

Github links	NPE	NLE	NRE
https://github.com/sbi-dev/sbi	<u>~</u>	<u>~</u>	<u>~</u>
https://github.com/probabilists/lampe	<u>~</u>	×	×
https://github.com/maho3/ltu-ili	<u>~</u>	<u>~</u>	<u>~</u>
https://github.com/undark-lab/swyft	×	×	✓ TMNRE
https://github.com/justinalsing/pydelfi	×	<u>~</u>	×

SBI - NDEs

- Mixture density networks
- Masked autoregressive flows
- Neural spline flows
- Real-valued non-volume preserving flows

NDE Committee

SBI - Compression

- Analytical compression
 - MOPED
 - Score
 - CCA
 - PCA
- Neural compression
 - IMNN
 - Fishnets

SBI - The loop

SBI - Challenges

Dimensionality

Speed

Validation and Accuracy

SBI - Evidence

•
$$p(\theta|d,\mathcal{M}) = \frac{p(d|\theta,\mathcal{M})p(\theta|\mathcal{M})}{p(d|\mathcal{M})}$$

•
$$\frac{p(\mathcal{M}_1|d)}{p(\mathcal{M}_2|d)} = \frac{p(d|\mathcal{M}_1)p(\mathcal{M}_1)}{p(d|\mathcal{M}_2)p(\mathcal{M}_2)}$$

- Nested Sampling
- Learned Harmonic Mean (McEewen et al 2021)
- Evidence Networks (Jeffrey & Wandelt 2023)

SBI - Evidence

- Learned Harmonic mean -
 - Get evidence directly from posterior samples!

In practice, a shrunk posterior!
$$\frac{1}{z} = \frac{1}{N} \sum_{i=1}^{N} \frac{\varphi(\theta_i)}{\mathcal{L}(d|\theta_i)\pi(\theta_i)}, \qquad \theta_i \sim p(\theta|d)$$

Mcewen et al. (2021), Polanska et al. (2024)

Polanska et al. (2024)

Savage-Dickey density ratio

• SDDR for nested models

$$\frac{z_1}{z_2} = \frac{p(\eta_1|d, M_2)}{\pi(\eta_1|M_2)}$$

- For high dimensional marginals, can make use of normalizing flows!
- Both implemented in harmonic package:
 - https://github.com/astro-informatics/harmonic

Demo notebook

https://qithub.com/Kiyam/astrodat-2025

Thank you for listening, questions?