

Week 3: (Meta)Data Management & MATLAB

ReproRehab POD 1, 10/20/2023

Agenda

- Summary of this week's topics:
 - FAIR Data

- MATLAB
 - Data types (ex. Table, Structure, Cell...)
 - Work with Dr. Finley's MATLAB codes
- Activity
 - Change some parts, check results, and push your modified code to the shared repository.

Quick check-in

- Depending on how far we go today...
- Week 4: tips and comments on Dr. Finley's code + learning more about the table data structure (useful functions + etc.)
- Week 5: Data visualization in MATLAB + interactive plots
- Week 6: Doing Statistics in MATLAB (we're not saying bye to R!)
- Week 7: Your topic, please! (and we need to reschedule it)

The **FAIR** principles

- Make your (meta) data FAIR both for humans *and* machines.
- Wilkinson et al. (2016)
- <u>Translation</u> available

1. **F**indable

- **F1.** (meta)data are assigned a globally unique and persistent identifier (PID)
 - Should never be reused (so no URL's)
 - DOI is one example (and many more!)

1. **F**indable

- F2. Data are described with rich metadata
 - Include necessary information to easily understand the data
 - Make it structured

 Unstructured: "subjects comprised male (N=6) and female (N =6) C57BL/6 mice, aged 25 days"

```
"subject_group": 1,
    "Organism": "mouse",
    "Age": 25,
    "Age_unit": "days",
    "Strain": "C57BL/6",
    "Sex": "Male",
    "Number": 6
Ex. Metadata.json
```

- Subject Group: 2
- Organism: mouse
- Age: 25
- Age unit: days
- · Strain: C57BL/6
- · Sex: Female
- Number: 6

Ex. Structured vs. unstructured metadata (https://www.youtube.com/watch?v=keH4Tc6mXMk)

 A1. (meta)data are retrievable by their identifier using a standardized communications protocol

- Your data become available by
 - HTTP + a browser

HyperText Transfer Protocol

A sample DOI:

https://doi.org/10.18112/openneuro.ds004808.v1.0.0

 A1. (meta)data are retrievable by their identifier using a standardized communications protocol

- Your data become available by
 - HTTP + a browser
 - FTP + a client application

File Transfer Protocol

 A1. (meta)data are retrievable by their identifier using a standardized communications protocol

- Your data become available by
 - HTTP + a browser
 - FTP + a client application
 - Application Programming Interface (API) + a browser

All articles about Tesla from the last month, pulled from newsapi.org

```
"status": "ok",
  "totalResults": 11047,
  "articles": [
      "source": {
        "id": null,
        "name": "Bringatrailer.com"
      "author": "bringatrailer",
     "title": "2,800-Mile 2008 Tesla Roadster R80 3.0",
     "description": "This 2008 Tesla Roadster was acquired
package in September 2023. The car is finished in Electric
     "url": "https://bringatrailer.com/listing/2008-tesla-
      "urlToImage": "https://bringatrailer.com/wp-content/u
      "publishedAt": "2023-10-17T23:10:07Z",
     "content": "This 2008 Tesla Roadster was acquired by
September 2023. The car is finished in Electric Blue over
      "source": {
```

• A2. metadata are accessible, even when the data are no longer available

3. Interoperable

- **I2.** (meta)data use vocabularies that follow FAIR principles
 - With respect to movement science / rehab science, this has a long way to go...

Attribute	Data set 1	Data set 2	Data set 3
Age	Age range: 15-30 days	Age range: 10-20 days	Age: adult
Organism	B6J.Cg-Pax6em1Ems/ EmsMmmh (RRID:MMRRC_066963-MU)	B6-Pax6^Sey-em1(3xF LAG)Ems RRID:MMRRC_066963-MU	B6-Fey (FLAG-tagged Sey) RRID:MMRRC_066963-MU
Gene name	Calretinin NCBIGene:794	Calb2 NCBIGene:794	CR NCBIGene:794
Location	ACA UBERON:0009835	Anterior Cingulate UBERON:0009835	BA24 UBERON:0009835

4. **R**eusable

- **R1.** (meta)data are richly described with a plurality of accurate and relevant attributes
- R1.3. (meta)data meet domainrelevant community standards

MATLAB: Data types

• logical: true or false

• string: use string()

• char: 'char'

• numeric: 1, 1.0, -1.0,...

categorical

• These are also called *homogeneous*

MATLAB: Data types

- **Table**, cell, structure are *heterogeneous* data, meaning that each can contain data of different types.
- Ex) table with columns: id (char), knee joint angle (numeric), sex (char, numeric, or categorical)

MATLAB: Table

- You often read output files in .csv, .txt, or .tsv
- Read them as **tables** using *readtable* function.
 - csvread only reads csv files
 - importdata if you have headers in your data file, it will prepare a structure.

	4	5	6	7
	lhipjoint_x	lhipjoint_y	lhipjoint_z	lfemur_x
1	9.2642	14.3610	34.5347	9.6028
2	9.2575	14.3631	34.5395	9.6002
3	9.2549	14.3663	34.5401	9.5993
4	9.2529	14.3658	34.5406	9.5986
5	9.2477	14.3648	34.5417	9.5959
6	9.2413	14.3647	34.5424	9.5925
7	9.2388	14.3624	34.5424	9.5895
8	9.2390	14.3608	34.5452	9.5865
9	9.2378	14.3616	34.5522	9.5842
10	9.2334	14.3613	34.5619	9.5832
11	9.2269	14.3602	34.5719	9.5800

MATLAB: Table

You can dot index a column variable

```
% read a csv file as a table
test = readtable('motion.csv');
% check the column names
% This is a cell array, so use {} for indexing
test.Properties.VariableNames
% ... like this
test.Properties.VariableNames{1,3}
% dot index a column variable
test.lhipjoint_x
```