

Mind-blowing Compound Words:

Identifying whether generated compound words are real words

Timothy Cruz

Joseph Park

Danny Siu

Data Science

Data Science & MCB

Data Science

Inspiration

Learning to Predict Novel Noun-Noun Compounds

Prajit Dhar Lonneke van der Plas
Leiden University University of Malta
dharp@liacs.leidenuniv.nl lonneke.vanderplas@um.edu.mt

Abstract

We introduce temporally and contextuallyaware models for the novel task of predicting
unseen but plausible concepts, as conveyed by
noun-noun compounds in a time-stamped corpus. We train compositional models on observed compounds, more specifically the composed distributed representations of their constituents across a time-stamped corpus, while
giving it corrupted instances (where head or
modifier are replaced by a random constituent)
as negative evidence. The model captures
generalisations over this data and learns what
combinations give rise to plausible compounds
and which ones do not. After training, we

- Large Database of English Compounds
- Nearly 9000 English compound words
- 84 features

Methodology

- 1. Gather compound words from LADEC
- 2. Use LADEC word constituents to form corrupt words
- 3. Split dataset into validation, training, and test data
- 4. Train model on training dataset
- 5. Tune model using validation dataset
- 6. Test model on test dataset
- 7. Analyze results
- 8. Make conclusions

Dataset

ELP: English Lexicon Project, based in the US

- 3149 compound words
- Features: "C1", "C2", "Stim",
 "isCommonStim"

A Simple Example:

- "After" + "Math" = "Aftermath"
- "Gold" + "Fish" = "Goldfish"
- "After" + "Fish" = "Afterfish"
- "Gold" + "Math" = "Goldmath"

Final Dataset

- 7812 total compound words
 - 3149 valid compound words
 - 4663 "corrupt" compound words
- 2339 Features
 - 1168 unique c1 words
 - 1170 unique c2 words
 - isCommonStim

Train, Test, & Validation

Split our data set into60 / 20 / 20

```
train_df['is_real_stim'].value_counts()

2817
1 1869
Name: is_real_stim, dtype: int64

validate_df['is_real_stim'].value_counts()

0 921
1 641
Name: is_real_stim, dtype: int64

test_df['is_real_stim'].value_counts()

0 923
1 639
Name: is_real_stim, dtype: int64
```


Training our Model

- We trained our model on 4686 compound words
- Used one-hot encoding of constituent words as features

	index	c1	c2	isCommonstim	is_real_stim	after_c1	air_c1	airs_c1	alder_c1	ale_c1	 wreck_c2	wright_c2
0	0	after	tack	0	0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0
1	1	after	wear	0	0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0
2	2	air	comer	0	0	0.0	1.0	0.0	0.0	0.0	 0.0	0.0
3	3	air	pond	0	0	0.0	1.0	0.0	0.0	0.0	 0.0	0.0
4	4	airs	helves	0	0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0

Evaluating the best model

- Created a Logistic Regression Model, Multi-Layer Perceptron Model, and Decision Tree Classifier Model.
- Used validation accuracy to gauge quality of model and for hyperparameter tuning
- Used test accuracy to test our model on real unseen data

Results

	Training accuracy	Validation accuracy	Test Accuracy
Logistic Regression Model	95.34%	93.85%	94.36%
MLP Classifier Model	94.62%	93.53%	94.36%
Decision Tree Classifier	100%	93.40%	93.14%

Conclusion: We are able to distinguish between "real" and "corrupt" compound words with fairly high accuracy, by just using the constituents as features.

Future Exploration...

- Variables to consider:
 - Commonality of certain constituents
 - Constituent words' synonyms
 - Parts of speech & corresponding location within word
 - Other types of compound words
- Experimenting with different hyperparameters and models

Real-World Applications of Our Project

- Teach us about how we, as a society, decide on compound words
 - Importance of features: frequency of constituents, synonyms of existing constituents, POS of constituents, etc.
- Predicting the existence of compound words could have linguistic implications
 - English word formation, semantics, etc.

Works Cited

- Inspiration Research paper:
 https://www.aclweb.org/anthology/W19-5105.pdf
- LADEC Research article:

 https://www.ncbi.nlm.nih.gov/pu
 bmed/31347038
 https://link.springer.com/article/1
 0.3758/s13428-019-01282-6#Sec2

Thank you & good luck on finals!