光子探测效率及能谱测量

未央书院 陈卓裕 2021012365

一、问题重述

模拟 γ 源 $^{137}\mathrm{Cs}(E_o=0.662\mathrm{MeV})$ 在 $\mathrm{NaI}(\mathrm{Tl})$ 闪烁体中得输运情况,其中计算模型为:

- 闪烁体为圆柱形, 其底面半径 R = 2cm, 高 H = 4cm。
 - o 扩展: 探测器底部包裹 0.1cm 厚的铝。
- 137 Cs 点源在闪烁体中轴线上,与闪烁体顶面距离 D=20cm,粒子垂直向下入射进入晶体。

要求计算光子在 NaI(Tl) 闪烁体内的能量沉积谱,包含以下几部分:

- 计算探测效率和峰总比,并估计相对误差。
- 统计 γ 谱每道的计数, 画出 γ 能谱图。
- 根据 γ 能谱图,估计测量系统在 0.662MeV 处的能量分辨率。

二、物理模型

为了简便起见,可以假设空间各向同性,即在极小的时间间隔内,光子沿各方向发生反应的概率都相等,且所在运动介质各向同性。并且光子之间不会发生反应,光子只会与探测器中的原子(核)发生反应。

设一束相同能量的光子 I_0 在宏观截面为 Σ 的介质中,沿同一方向运动 x 距离后,剩余 I 的光子量,则:

$$\Delta I = -\Sigma I \Delta x$$

取时间 $\Delta t \rightarrow 0$, 可以得到:

$$I = I_0 e^{-\Sigma x}$$

因此单个光子穿过 x 长路程仍未发生反应的概率为:

$$\frac{I}{I_0} = e^{-\Sigma x}$$

考虑某光子首次发生反应的概率分布函数 P(x),则:

$$\begin{cases} P(x)dx = e^{-\sum x} \sum dx \\ \int_0^\infty P(x)dx = 1 \end{cases}$$

定义平均自由程 λ 表示光子连续发生两次反应之间的平均穿行距离,则:

$$\lambda=ar{x}=\int_0^\infty x P(x) dx=\Sigma \int_0^\infty x e^{-\Sigma x} dx=rac{\Sigma}{\Sigma^2} \Gamma(2)=rac{1}{\Sigma}$$

因此光子的平均自由程 λ 与宏观截面 Σ 的关系为:

$$\lambda \Sigma = 1$$

在真空中,光子平均自由程为 $\lambda=\infty$,因此 $\Sigma=0$ 。由于空气介质与真空介质较为相似,因此可以假设空气介质的宏观截面 $\Sigma_{\mathfrak{L}_{2}} \approx \Sigma_{\mathfrak{L}_{2}} = 0$ 。

由于 γ 源出射的光子沿 z 轴入射,因此距离 D 并不重要,可以认为光子都从闪烁体探测器的顶部圆心垂直入射。光子射入圆柱体后会发生康普顿散射和光电效应,不妨假设所有入射光子的初始能量都是 E_0 。

闪烁体探测器是一个均匀介质,光子在探测器内会发生,康普顿散射和光电效应,其宏观反应截面分别为 Σ_s , Σ_a ,同时我们可以定义某一块相同介质的宏观总截面为 $\Sigma_t = \Sigma_s + \Sigma_a$ 。

光子输运的物理过程大体如下:

- 1. 光子射入闪烁体;
- 2. 光子在不与闪烁体内原子(核)反应的情况下,沿速度方向运动一段距离;
- 3. 光子逃逸出闪烁体,或者光子与闪烁体发生反应;
- 4. 若光子与闪烁体发生光电效应,则光子被闪烁体吸收,全部能量沉积入 闪烁体;

5. 若光子与闪烁体发生康普顿散射,则光子的能量损失一部分(损失能量 沉积入闪烁体),并且速度方向改变。

三、数值方法

(一) 数值过程

为了方便下文叙述,我们先定义 ξ 表示一个在 [0,1] 均匀分布的随机数。假设一共要跟踪 N 个光子的反应总过程,由于光子只与空间介质发生反应,光子之间互不影响,因此我们可以对于每一个光子分别进行跟踪模拟。

对于一个光子的跟踪,我们需要记录光子的状态 $S = (\vec{r}, E, \Omega)$,其中 \vec{r} 表示光子的位置坐标,E 表示光子能量, Ω 表示光子的空间角。简便起见,实际上我们记录的是光子的速度方向 \vec{n} 。

不妨设闪烁体探测器的底面位于 x-y 平面,底面圆心与坐标系原点重合,则 γ 源初始位于坐标 (0,0,H+D) 处。若探测器底边包裹铝板,则探测器底面坐标会由 z=0 延伸到 z=-h。

由于 D 与实际测量无关,可以认为初始情况下光子状态为:

$$egin{cases} ec{r} = (0,0,H) \ E = 0.662 \mathrm{MeV} \ ec{n} = (0,0,-1) \end{cases}$$

假设某一时刻光子在位置 \vec{r} , 速度方向 \vec{n} , 那么它下一时刻会移动到 $\vec{r} + \vec{n} \cdot l$, 其中 l 为光子输运长度,可以由抽样过程获得。获得抽样距离后,就可以更新光子的所在位置 $\vec{r}' = \vec{r} + l\vec{n}$ 。若 \vec{r}' 离开了探测器,则结束跟踪光子,否则讨论光子在 \vec{r}' 处发生的反应。

光子在探测器内部(包括铝板)的 \vec{r}' 处会发生散射或者被介质吸收,这两个事件的概率分别是 $\frac{\Sigma_s}{\Sigma_t}$, $\frac{\Sigma_a}{\Sigma_t}$, 需要分别讨论光子发生了吸收或者发生了散射这两个事件。若光子被吸收,则光子能量立刻变为 0,然后光子不再参与后续反应,若光子发生了散射,需要先算出散射后能量,之后算出散射角,分别更新光子能量和速度方向。

重复以上过程, 直到光子逃逸出探测器或者被探测器吸收。

(二)运输距离 l 抽样

在相邻两次碰撞之间,光子的输运长度 l 服从如下分布:

$$f(l) = \Sigma_t(ec{r} + xec{n}, E) \cdot \exp\left(-\int_0^l \Sigma_t(ec{r} + x \cdot ec{n}, E) dx
ight)$$

定义 ρ 为光子输运的自由程数,且光子输运的自由程数满足如下关系:

$$ho = \int_0^l \Sigma_t(ec{r} + x \cdot ec{n}, E) dx$$

另一方面,光子的自由程数 ρ 满足指数分布,即:

$$f(\rho) = e^{-\rho}$$

使用直接抽样法, 当光子以能量 E 在相同介质中输运距离抽样为:

$$egin{aligned} \xi &= e^{-
ho} \ \Rightarrow &
ho &= -\ln \xi \ \Rightarrow & l &= rac{
ho}{\Sigma_t(E)} &= rac{-\ln \xi}{\Sigma_t(E)} \end{aligned}$$

若光子在多层介质中进行输运,可以使用最大截面抽样法。假设光子能量为 E,其在全空间的最大截面为:

$$\Sigma_{t, ext{max}}(E) = \max_{ec{r}} \Sigma_t(ec{r},E)$$

可以做如下抽样,先生成两个随机数列 $\{\xi_n^{(1)}\},\{\xi_n^{(2)}\}$,构造输运长度序列 $\{l_n\}$ 为:

$$l_n = egin{cases} -rac{\ln \xi_1^{(1)}}{\Sigma_{t, ext{max}}(E)} & (n=1) \ l_{n-1} - rac{\ln \xi_n^{(1)}}{\Sigma_{t\, ext{max}}(E)} & (n>1) \end{cases}$$

选取最小的 n, 满足:

$$\xi_n^{(2)} \leq rac{\Sigma_t(ec{r} + l_nec{n}, E)}{\Sigma_{t, ext{max}}}$$

此时 $l = l_n$ 为所求的抽样输运距离。

(三) 康普顿散射

设归一因子 $K(\alpha)$ 为:

$$K(lpha)=\left(1-rac{2(lpha+1)}{lpha^2}
ight)\ln(1+2lpha)+rac{1}{2}+rac{4}{lpha}-rac{1}{2(1+2lpha)^2}$$

则光子发生康普顿散射后,其能量密度分布为:

$$f(x) = rac{1}{K(lpha)} \Biggl(\left(rac{lpha+1-x}{lpha x}
ight)^2 + rac{1}{x} - rac{1}{x^2} + rac{1}{x^3} \Biggr)$$

其中 x 为光子散射前后的能量比值,且:

$$egin{cases} x = rac{lpha}{lpha'} \ 1 \leq x \leq 1 + 2lpha \end{cases}$$

其中 α 为光子散射前的能量, α' 为光子散射后的能量。可以看到 $x \ge 1$,即光子散射后能量会有所损失。

光子的康普顿散射能量分布的抽样方法为:

当 x 抽样结束后,可以得到散射后的能量 E' 为:

$$x = \frac{\alpha}{\alpha'} = \frac{E}{E'} \Rightarrow E' = \frac{E}{x}$$

光子在发生康普顿散射后,其散射角与散射前后的能量有关。其散射角的 余弦 $\mu_l = \cos \theta_l$ 的分布密度函数为:

$$f(\mu_l) = \delta \left(1 - rac{1}{lpha'} + rac{1}{lpha} - \mu_l
ight)$$

由直接抽样法可知:

$$\mu_l = 1 - \frac{1}{\alpha'} + \frac{1}{\alpha}$$

设参数 a,b,c,d 如下:

$$\begin{cases} a = \cos \theta_l \\ b = \sin \theta_l = \sqrt{1 - a^2} \\ c = \cos \varphi \\ d = \sin \varphi \end{cases}$$

其中 φ 在 $[0,2\pi]$ 上均匀分布,即:

$$\varphi = 2\pi \xi$$

则速度向量 $\vec{n}' = (u', v', w')$ 为:

$$\left\{egin{aligned} u' &= rac{-bcwu+bdv}{\sqrt{u^2+v^2}} + au \ v' &= rac{-bcwv-bdu}{\sqrt{u^2+v^2}} + av \ w' &= bc\sqrt{u^2+v^2} + aw \end{aligned}
ight.$$

当 $u^2 + v^2 \rightarrow 0$ 时, 等价于:

$$\begin{cases} u' = bc \\ v' = bd \\ w' = aw \end{cases}$$

(四)插值方法

由于康普顿效应截面和光电效应截面只给出了离散值,因此可以对所求能量 E 进行线性插值,即假设 $E_l < E < E_r$,则:

$$\Sigma(E) = \Sigma(E_l) + rac{\Sigma(E_r) - \Sigma(E_l)}{E_r - E_l} (E - E_l)$$

(五) 能量分辨率

考虑到测量系统的分辨率问题,实际记录得到的能量为沉积能量的高斯展宽,即对于某光子的实际沉积能量为 E,则测量系统记录得到的沉积能量 E'为:

$$E' = E + \sigma \cdot \Xi$$

其中 Ξ 为服从标准正态分布的随机变量,标准差 σ 由如下高斯展宽计算公式给定:

$$egin{aligned} \sigma &= \sigma(E) \ &= rac{ ext{FWHM}(E)}{2\sqrt{2\ln 2}} \ &pprox 0.4247 \left(0.01 + 0.05\sqrt{E + 0.4E^2}
ight) \end{aligned}$$

当然 E' 可能会小于等于 0,由于测量系统只能记录 E'>0 的数据,因此我们可以直接忽略掉所有 $E'\leq 0$ 的沉积能量,认为这些光子逸出系统,未被探测器捕获。

(六) 探测效率

接下来我们讨论一下不包裹铝板的探测器的探测效率的理论计算。我们称一个光子被探测到了,当且仅当光子被介质吸收,或者光子离开的能量小于 E_0 (可以证明,光子离开时候的能量不会大于初始能量)。

对于探测效率,即最终有多少个光子被探测到,这等价于求有多少个光子可以离开介质并且总能量不变。可以看到,一个光子不被探测到,当且仅当它的初始抽样距离不小于 H,也就是:

$$egin{aligned} H &\leq rac{-\ln \xi}{\Sigma_t(E_0)} \ \Rightarrow &\xi \leq e^{-H\Sigma_t(E_0)} = e^{-4\cdot 0.2748} = 0.3331 \end{aligned}$$

因此,不包裹铝板的 NaI(T1) 闪烁体探测器的探测效率为:

$$\eta = \lim_{N o \infty} rac{N_m}{N} = 1 - 0.3331 = 66.69\%$$

四、计算条件

- 粒子数 N = 100000;
- 入射光子能量 $E_o = 0.662 \text{MeV}$;
- NaI(T1) 闪烁体探测器半径 R = 2cm;
- NaI(T1) 闪烁体探测器高 H = 4cm;
- 铝板高度 h = 0.1cm;
- 光速 $c = 2.99792458 \cdot 10^{10} \text{cm/s}$;
- NaI(T1) 闪烁体探测器的反应截面:

能量	(MeV)	康普顿效应截面	(/cm)	光电效应截面 (/cm)
0.0	0100	0. 02171		28604. 00000
0.0	0104	0. 02292		26589. 00000
0.0	0107	0. 02417		24721. 00000
0.0	0107	0. 02417		29081. 00000
0.0	0150	0. 03909		13950. 00000
0.0	0200	0. 05656		7035. 40000
0.0	0300	0. 09025		2570. 10000
0.0	00400	0. 12082		1229. 80000
0.0	0456	0. 13623		876. 03000
0.0	0456	0. 13623		2416. 70000
0.0	0470	0. 14005		2262. 90000
0.0	0485	0. 14397		2119. 10000
0.0	0485	0. 14397		2832. 90000
0.0	0500	0. 14775		2670. 70000
0.0	0519	0. 15249		2426. 20000
0.0	0519	0. 15249		2790. 70000
0.0	0600	0. 17172		1944. 00000
0.0	00800	0. 21282		913. 46000
0.0	1000	0. 24703		504. 63000
0.0	1500	0. 30865		167. 72000
0.0	2000	0. 34729		75. 67500
0.0	3000	0. 39159		24. 24800
0.0	3317	0. 40003		18. 24700
0.0	3317	0. 40003		109. 22000
0.0	4000	0. 41361		66. 94100
0.0	5000	0. 42462		36. 92000
0.0	6000	0. 42902		22. 42700
0.0	08000	0. 42756		10.07800
0.1	0000	0. 41985		5. 36550
0.1	5000	0. 39306		1.68530
0. 2	0000	0. 36700		0.74097
0.3	0000	0. 32516		0. 23785
0.4	.0000	0. 29393		0. 10962
0.5	00000	0. 26978		0.06180
0.6	60000	0. 25037		0. 03960
0.8	80000	0. 22064		0. 02051

• 铝的反应截面:

能量(MeV)	康普顿效应截面(/cm)	光电效应截面 (/cm)
0.00100	1. 72640	143100.00000
0.00150	2. 99700	48411.00000
0.00156	3. 13740	43551.00000
0.00156	3. 13740	478440. 00000
0.00200	4. 08240	273510. 00000
0.00300	5. 72400	95148.00000
0.00400	7. 02810	43443. 00000
0.00500	8. 21070	23252. 00000
0.00600	9. 30960	13821. 00000
0.00800	11. 24000	5988. 60000
0.01000	12.79800	3091. 50000
0.01500	15. 30400	909. 09000
0.02000	16. 58300	375. 03000
0.03000	17.71500	105. 52000
0.04000	18. 07700	42. 39000
0.05000	18. 09500	20. 77900
0.06000	17. 94200	11.57000
0.08000	17. 40700	4. 57650
0.10000	16. 78900	2. 22620
0.15000	15. 33100	0. 60399
0. 20000	14. 12900	0. 24219
0.30000	12. 34700	0.06947
0. 40000	11.08400	0. 03000
0.50000	10. 13000	0. 01626
0.60000	9. 37980	0. 01016
0.80000	8. 24310	0.00514

表2

五、数据分析

为了便于后续对模拟结果的分析,这里先将反应截面数据可视化。 NaI(T1) 闪烁体探测器和铝的康普顿效应截面:

绘制到同一张图中,可以看到铝的康普顿效应截面远大于 NaI(T1) 的康普顿效应截面,因此铝对光子的散射效应更强:

NaI(T1) 闪烁体探测器和铝的光电效应截面:

绘制到同一张图中,可以看到铝的光电效应截面远大于 NaI(T1) 的光电效应截面,因此铝对光子的散射效应更强:

在一次蒙特卡洛模拟中,记录得到如下数据:

$$egin{cases} N = 100000 \ N_m = 66561 \ N_p = 25344 \end{cases}$$

设一共模拟了 N 个光子的轨迹, 定义第 n 个光子对探测效率的贡献为:

$$\eta_n = egin{cases} 1 & E_D > 0 \ 0 & E_D = 0 \end{cases}$$

其中 E_D 是第 n 个光子的沉积能量,则探测效率 η 约为:

$$\etapprox\hat{\eta}_N=rac{1}{N} \underbrace{\sum_{i=1}^N \eta_n}_{N_m}=rac{N_m}{N}=0.6644$$

可以看到,这与理论探测效率 $\eta=66.69\%$ 较为接近,说明模拟程序正确。

由中心极限定理可知, $\hat{\eta}_N$ 与真实值 η 的误差有上界:

$$|\hat{\eta}_N - \eta| < rac{\lambda_lpha \sigma_\eta}{\sqrt{N}}$$

其中 σ_{η} 是 $\{\eta_{n}\}_{\infty}$ 的均方差,可以用 $\{\eta_{n}\}_{N}$ 的均方差 $\hat{\sigma}_{\eta}$ 估计,由于 $\{\eta_{n}\}$ 服从二项分布,因此:

$$\sigma_{\eta}^2 = \eta(1-\eta) pprox \hat{\sigma}_{\eta}^2 = \hat{\eta}_N(1-\hat{\eta}_N)$$

在误差估计取置信水平 $1-\alpha=0.95$ 时,有 $\lambda_{\alpha}\approx 2.0$,于是有:

$$|\hat{\eta}_N - \eta| < rac{\lambda_lpha \sigma_\eta}{\sqrt{N}} pprox rac{2\hat{\sigma}_\eta}{\sqrt{N}} = 2\sqrt{rac{\hat{\eta}_N(1-\hat{\eta}_N)}{N}}$$

因此 η 的不确定约为:

$$\Delta \eta = 2\sqrt{rac{\hat{\eta}_N(1-\hat{\eta}_N)}{N}} = 0.2986\%$$

假设全能峰近似服从正态分布,则全能峰区间为:

$$(E_o - 3\sigma, E_o + 3\sigma)$$

其中 σ 为 E_o 的函数, 且:

$$egin{aligned} \sigma &= \sigma(E_o) \ &= rac{ ext{FWHM}(E_o)}{2\sqrt{2\ln 2}} \ &pprox 0.4247 \left(0.01 + 0.05\sqrt{E_o + 0.4E_o^2}
ight) \ &= 0.024 \end{aligned}$$

因此全能峰区间为:

由记录数据可知,全能峰的总计数 N_p 为:

$$N_n = 25344$$

考虑峰总比的定义:

$$fpprox\hat{f}_N=rac{N_p}{N_m}=0.3808$$

设一个被探测到的光子处于全能峰区间的 概率为 p,则:

$$N_p = \sum_{i=1}^{N_m} [\xi \leq p]$$

其中 ξ 是 [0,1] 上的随机变量,因此 $\{[\xi \leq p]\}_{\infty}$ 服从二项分布,于是有:

$$\sigma_f^2 = f(1-f) pprox \hat{\sigma}_f^2 = \hat{f}_N (1-\hat{f}_N)$$

在误差估计取置信水平 $1-\alpha=0.95$ 时,有 $\lambda_{\alpha}\approx 2.0$,于是有:

$$|\hat{f}_N - f| < rac{\lambda_lpha \sigma_f}{\sqrt{N}} pprox rac{2\hat{\sigma}_f}{\sqrt{N}} = 2\sqrt{rac{\hat{f}_N(1-\hat{f}_N)}{N}}$$

因此 f 的不确定约为:

$$\Delta f = 2 \sqrt{rac{\hat{f}_N (1 - \hat{f}_N)}{N}} = 0.3071\%$$

七、结果讨论

(一) 探测效率和峰总比

1. 不包裹铝板

在一次蒙特卡洛模拟中,记录得到如下数据:

$$egin{cases} N = 100000 \ N_m = 66561 \ N_p = 25344 \end{cases}$$

探测效率 $\hat{\eta}_N$ 为:

$$\hat{\eta}_N=rac{N_m}{N}=66.44\%$$

峰总比为:

$$\hat{f}_N = rac{N_p}{N_m} = 38.08\%$$

由"误差分析"部分可知,探测效率和峰总比的不确定度分别为:

$$egin{cases} \Delta \eta = 0.2986\% \ \Delta f = 0.3071\% \end{cases}$$

因此,探测效率和峰总比分别为:

$$\begin{cases} \eta = (66.44 \pm 0.30)\% \\ f = (38.08 \pm 0.31)\% \end{cases}$$

2. 包裹铝板

若将探测器底部包裹 0.1cm 厚的铝,则记录到的数据为:

$$egin{cases} N = 100000 \ N_m = 86534 \ N_p = 42191 \end{cases}$$

探测效率 $\hat{\eta}_N$ 为:

$$\hat{\eta}_N=rac{N_m}{N}=86.58\%$$

峰总比为:

$$\hat{f}_N = rac{N_p}{N_m} = 48.76\%$$

由探测效率和峰总比的不确定度分别为:

$$egin{cases} \Delta \eta = 2 \sqrt{rac{\hat{\eta}_N (1 - \hat{\eta}_N)}{N}} = 0.2159\% \ \Delta f = 2 \sqrt{rac{\hat{f}_N (1 - \hat{f}_N)}{N}} = 0.3161\% \end{cases}$$

因此,探测效率和峰总比分别为:

$$\begin{cases} \eta = (86.58 \pm 0.22)\% \\ f = (48.76 \pm 0.32)\% \end{cases}$$

(二) γ 能谱图

1. 不包裹铝板

能量范围取 $0\sim0.8 {\rm MeV}$,按每道为 $0.003 {\rm MeV}$ 的间隔划分,得到光子能量沉积谱(γ 能谱图):

设第 i 个能量间隔光子数为 N_i , 可以得到光子沉积谱分布:

$$\hat{P}_i = rac{N_i}{N \cdot \Delta E_i}$$

归一化后可以得到能谱分布的概率密度函数:

$$\hat{P}_i^* = rac{\hat{P}_i}{\hat{\eta}_N} = rac{N_i}{N_m \cdot \Delta E_i}$$

能谱密度分布图为:

可以看到,谱线左侧为康普顿坪,谱线右侧为全能峰(中心约为0.662MeV)。

2. 包裹铝板

若将探测器底部包裹 $0.1 \mathrm{cm}$ 厚的铝,则可以得到光子能量沉积谱(γ 能谱图):

以及对应的能谱密度分布图为:

可以看到,谱线左侧为康普顿坪,谱线右侧为全能峰(中心约为0.662MeV)。

(三) 能量分辨率

1. 不包裹铝板

在一次测量中,测得 $E_o = 0.662 \text{MeV}$ 对应的半高宽为:

$$\mathrm{FWHM}$$
测量 $(0.662)=0.057\mathrm{MeV}$

因此测量系统在 $E_o = 0.662 \text{MeV}$ 处的能量分辨率为:

$$R = rac{ ext{FWHM}(E_o)}{E_o} = rac{0.057}{0.662} imes 100\% = 8.61\%$$

2. 包裹铝板

在一次测量中,测得 $E_o = 0.662 \text{MeV}$ 对应的半高宽为:

$$FWHM_{\text{MH}}(0.662) = 0.060 MeV$$

因此测量系统在 $E_o = 0.662 \text{MeV}$ 处的能量分辨率为:

$$R = rac{ ext{FWHM}(E_o)}{E_o} = rac{0.060}{0.662} imes 100\% = 9.06\%$$

八、结论

无论是否包裹铝板,所得到的 γ 能谱图总表现为左侧存在一个康普顿坪,右侧存在一个以 $E=0.662 \mathrm{MeV}$ 为期望的正态分布的全能峰。其中康普顿坪的物理意义为发生康普顿散射的光子能量,全能峰的物理意义为发生光电效应的光子能量,这与实际图像较为吻合,说明模拟程序正确。

汇总是否包裹铝板,所得到的探测效率、峰总比和能量分辨率(在 0.662MeV 处)得到如下表格:

	探测效率 η	峰总比 <i>f</i>	能量分辨率 R
不包裹铝板	$(66.44 \pm 0.30)\%$	(38.08 ± 0.31)	8.61%
包裹铝板	$(86.58 \pm 0.22)\%$	(48.76 ± 0.32)	9.06%

可以看到,包裹铝板后闪烁体探测器的探测效率和峰总比大大提高,这是因为 A1 的反应截面值远大于 NaI(T1) 的反应截面值,从而 A1 对光子的吸收和散射作用更强,这主要是由于光子垂直入射,由于 NaI(T1) 的散射和吸收作用较小,有 $1-\eta$ 的光子逃逸闪烁体探测器(从底部逃逸,且从入射开始未与探测器发生反应),而底部铝板的加入,可以通过散射作用将这部分逃逸光子散射回探测器,或者通过光电效应将逃逸光子转变为被探测到(能量全沉积)的光子。

同时,包裹铝板后能量分辨率 R 得到了一定的提升,这可能是由于包裹铝板的散射截面较大,使得散射光子的能量、方向有了较大的变化,从而提高了闪烁体探测器的能量分辨率。

因此,实际建造闪烁体探测器时,包裹铝板对探测效率、峰总比和能量分辨率的提高具有积极作用。