

COBS: A Compact Bit-Sliced Signature Index

Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal \cdot 2019-10-08 @ SPIRE'19

INSTITUTE OF THEORETICAL INFORMATICS - ALGORITHMICS

Abstract

We present COBS, a COmpact Bit-sliced Signature index, which is a cross-over between an inverted index and Bloom filters. Our target application is to index k-mers of DNA samples or q-grams from text documents and process approximate pattern matching queries on the corpus with a user-chosen coverage threshold. Query results may contain a number of false positives which decreases exponentially with the guery length. We compare COBS to seven other index software packages on 100 000 microbial DNA samples. COBS' compact but simple data structure outperforms the other indexes in construction time and guery performance with Mantis by Pandey et al. in second place. However, unlike Mantis and other previous work, COBS does not need the complete index in RAM and is thus designed to scale to larger document sets.

This document is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Motivation

Need approximate search in petabytes of DNA data.

Applications:

- study global threats to public health
- epidemiology
- basic science of disease

Motivation

from Stephens et al. "Big data: astronomical or genomical?" (2015)

Approximate Pattern Matching

 $\underbrace{ \begin{array}{c} \text{QUETY} \\ \text{ATGACAATGACG} \\ \hline 100-1000 \end{array} }$

k-mers/q-grams

Approximate Pattern Matching

query ATGACAATGACG

ATGACAAT
GACAATG
ACAATGA
CAATGAC
AATGACG

GTGACAA
TGACAAT
GACAATG
ACAATGA
CAATGAA
...

k-mers/q-grams

Related Work

Sequence Bloom Tree	[SK16]
---------------------	--------

- [SK18] Split Sequence Bloom Tree
- AllSome Sequence Bloom Tree [Sun+18]
- HowDe Sequence Bloom Tree
- SegOthello
- MANTIS
- Bitsliced Genomic Signature Index

[HM18]

[Yu+18]

[Pan+18]

[Bra+19]

Bloom Filter

Bloom Filter

Bloom Filter Parameters

Theorem: False Positive Rate of a Query, Thm 2 in [SK16] Let P be a query containing ℓ distinct q-grams and K a threshold. If we consider the terms as being independent, the probability that

we consider the terms as being independent, the probability that more than $\lfloor K\ell \rfloor$ false-positive terms occur in a filter f with false positive rate p is $1 - \sum_{i=0}^{\lfloor K\ell \rfloor} \binom{\ell}{i} p^i (1-p)^{\ell-i}$.

Compact Bit-Sliced Signature Index

COBS: Disk Access Pattern

COBS: Disk Access Pattern

more about disk, SSD, and NVMe access pattern speeds: https://panthema.net/2019/0322-nvme-batched-block-access-speed/

COBS: Summary

COBS Index Design: (values used in practice)

- use k = 1 hash functions with f = 0.3 false positive rate
- compact $\Theta(B) = 4 \text{ Ki documents into subindices}$

COBS Software:

- C++ implementation started by Florian Gauger
- can read Text, Fasta, Fastq, and McCortex files
- parallelized and multi-level if needed construction
- SIMD instructions in query processing

Experiments – Software and Machine

[SK16]

[SK18]

[Sun+18]

[Pan+18]

[Yu+18]

[Bra+19]

[this]

[this]

[HM18]

Eight Software Packages:

- Sequence Bloom Tree (SBT)
- Split Sequence Bloom Tree (SSBT)AllSome Sequence Bloom Tree (AllSome-SBT)

Bitsliced Genomic Signature Index (BIGSI)

- HowDe Sequence Bloom Tree (HowDe-SBT)
- MANTIS
- IVIAIVIIO
- SeqOthello
- our Classic Bit-Sliced Index (Classic BSI)
- and COBS

Machine:

- \blacksquare Intel Gold 6138 2.0 GHz 4 \times 20 cores with 768 GiB RAM.
- lacksquare 4 imes 2 TB NVMe Samsung 970 EVO SSD as software RAID 0.

Experiments – Data

Microbial Data:

- 100 000 microbial (viri and bacteria)
 documents from European Nucleotide Archive (ENA)
- Split into 100, 250, 500, 1000, 2500, ..., 100 000 subsets.
- Average document size \approx 42.77 MiB, \approx 4 TiB in total.
- ENA contained 1.5·10⁹ documents in 2018.

Queries: four batches, with

- length $\ell \in \{31, 100, 1000, 10000\}$, containing $q \in \{100000, 100000, 10000, 10000\}$ random true positives and q true negatives.
- Check each index software's results.

Results for 1000 Microbial Documents

					Seq-			Classic	COBS
phase	SBT	SSBT	SBT	SBT	Othello	Mantis	BIGSI	BSI	Compact
	Construction Wall-Clock Time in Seconds								
count	2018	1 974	1 954	1 959					
bloom	114	117	140	144	295	232	1 881		
build	3 097	21 378	1 401	68 034	2 225	987	2574	99	43
compress	1 768	5 187	80	3802		45			
total	6 9 9 6	28 657	3 5 7 6	73 939	2 5 2 0	1 264	4 455	99	43
-	Construction CPU (User) Time in Seconds								
count	4 5 7 4	4511	4 475	4 488					
bloom	11 133	10967	10 234	10 278	28 123	19 162	169 345		
build	855	5 1 7 8	449	66 872	2 198	943	1 767	1 604	1 430
compress	1 569	4832	1 663	2857		3 423			
total	18 131	25 489	16821	84 495	30 320	23 527	171 113	1 604	1 430
-	Construction Maximum RSS Memory Usage in MiB								
count	518	518	518	518					
bloom	641	640	640	640	634	1 756	4 244		
build	11 028	1 523	7 140	108 147	12 137	88 357	246 806	16 245	2616
compress	10 953	992	560	963		16613			
maximum	11 028	1 523	7 140	108 147	12 137	88 357	246 806	16 245	2616
	Index Size in MiB								
size	19844	3 254	21 335	1911	4410	16 486	27 794	16 236	3 022

Results for 1000 Microbial Documents

phase	SBT	SSBT	AllSome- SBT	HowDe- SBT	Seq- Othello	Mantis	BIGSI	Classic BSI	COBS Compact
ℓ	Query Wall-Clock Time in Seconds								
31 bp r0	31	80	20	34	62	12	281	10	8
31 bp r2	26	76	19	33	62	13	289	9	8
100 bp r0	663	3 183	100	600	73	22	783	14	9
100 bp r2	649	3 153	95	588	73	23	455	14	9
1000 bp r0	794	3 466	112	670	63	21	660	15	10
1000 bp r2	781	3 435	108	659	64	27	310	13	10
10000 bp r0	802	3 273	112	622	62	23	699	16	11
10000 bp r2	790	3 243	111	613	62	22	316	15	11
total r0-r2	6 775	29 833	1 007	5710	783	252	5 177	154	114
	Document False Positive Rate for 31 bp Queries								
rate	0.004	0.004	0.004	0.004	0.001	0.000	0.027	0.024	0.227

Scaling Results Microbial Documents

Scaling Results Microbial Documents

Conclusion

Software:

- COBS is available as open source: https://panthema.net/cobs/
- soon: more documentation and Python front-end module

Future Work:

- Daniel Ferizovic tried clustering of documents
- also working on dealing with insertions and deletions
- batched query processing e.g. for whole genomes
- distributed COBS query processing for ENA-scale index
- adapt completely different filter for use as an index

Questions?