Results

March 23, 2013

Tables of Friedman, Aligned Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms (Friedman)

$\operatorname{Ranking}$	1.85000000000000000	4.075	5.149999999999995	2.94999999999997	4.05	2.92500000000000003
Algorithm	L-Co-R	ETS	Croston	Theta	RW	ARIMA

Friedman statistic (distributed according to chi-square with 5 degrees of freedom: 38.350000000004. P-value computed by Friedman Test: 3.209424844774489E-7.

Table 2: Average Rankings of the algorithms (Aligned Friedman)

	Ranking	32.5500000000000004	64.475000000000001	88.45	6.09	69.450000000000002	47.175
)	Algorithm	L-Co-R	ETS	Croston	Theta	RW	ARIMA

Aligned Friedman statistic (distributed according to chi-square with 5 degrees of freedom: 17.175936685816534. P-value computed by Aligned Friedman Test: 0.004177936278873529.

Table 3: Average Rankings of the algorithms (Quade)

Ranking	1.8476190476190473	3.9357142857142855	5.109523809523809	3.333333333333326	3.888095238095238	2.8857142857142857
Algorithm	L-Co-R	ETS	Croston	Theta	RW	ARIMA

Quade statistic (distributed according to F-distribution with 5 and 95 degrees of freedom: 9.45114871205464. P-value computed by Quade Test: 2.444254136115375E-7.

| Table 4: Contrast Estimation | Park | Errs | Croston | Theta | RW ARIM | Errs | Croston | Theta | RW ARIM | Errs | 0.000 | -1.2.55 | -4.545 | -5.833 | -3.3.3 | Errs | 1.2.55 | -5.835 | 0.4109 | -0.8772 | 1.6 | Errs | 1.2.55 | -6.4109 | -8.006 | -1.288 | 1.288 | Errs | Errs

(FRIEDMAN)	Bom
Li Table for $\alpha = 0.05$	Holland
ı / Finner /	ora / Hommel
Holland / Ron	Holm/Hoch
/ Hochberg /	٤
Table 5: Holm / Hochberg / Holland / Rom / Finner / Li Table for $\alpha = 0.05$ (FRIEDMAN)	$z = (B_c = B_c)/SE$
	algorithm

Finner	$0.010206218313011495 \qquad 0.04898923092559697$	0.0203082697337702 0.04898923092559697	$0.03030721741231923 \qquad 0.04898923092559697$	0.040204113647960726 0.04898923092559697	0.050000000000000044 0.05
Rom	0.010515350115740741	0.013109375000000001 0.020	0.01666666666666666 0.0303	0.025 0.0402	0.05 0.0500
Holland	0.010206218313011495 0	0.012741455098566168	0.016952427508441503	0.025320565519103666	0.0500000000000000044
Holm/Hochberg/Hommel	0.01	0.0125	0.016666666666666666	0.025	0.05
d	2.4327437355602974E-8	1.6927844756719902E-4	2.0026757491716922E-4	0.06297905121445545	0.06920461241365775
$z = (R_0 - R_i)/SE$	5.578018081208207	3.7609364335418984	3.718678720805472	1.859339360402735	1.8170816476663103
algorithm	Croston	ELS	RW	Theta	ARIMA
i	5	4	က	2	1

Holland's procedure rejects those hypotheses that have a p-value $\leq 0.025320565519103666$. Finner's procedure rejects those hypotheses that have a p-value $\leq 0.040204113647960726$. Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.025 . Holm's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Li's procedure rejects those hypotheses that have a p-value ≤ 0.04898923092559697 .

	Finner
m / Hochberg / Holland / Rom / Finner / Li Table for $\alpha=0.05$ (ALIGNED FRIEDMAN)	Rom
$le for \alpha = 0.05 ($	Holland
Finner / Li Tab	Holm/Hochberg/Hommel
/ Rom /	Holm/Ho
/ Holland	~
Hochberg ,	a
Table 6: Holm $/$	$z = (R_0 - R_s)/SE$
	algorithm

		28	28	28	28		
	Li	0.042964837897288	0.04296483789728828	0.04296483789728828	0.04296483789728828	0.02	
	Finner	0.010206218313011495	0.0203082697337702	0.03030721741231923	0.040204113647960726	0.0500000000000000044	
	Rom	$0.010206218313011495 \qquad 0.010515350115740741 \qquad 0.010206218313011495 \qquad 0.0429648378972882828282828282828828888888888888$	0.013109375000000001	0.016666666666666666	0.025	0.05	
	Holland	0.010206218313011495	0.012741455098566168	0.016952427508441503	0.025320565519103666	0.0500000000000000044	
,	Holm/Hochberg/Hommel	0.01	0.0125	0.01666666666666666	0.025	0.05	
	d	3.738391599168943E-7	7.949549150799624E-4	0.0037046586278312935	0.009958334446764907	0.1836680799515228	
•	$z = (R_0 - R_i)/SE$	5.0818181818182	3.354545454545456	2.9022727272728	2.57727272727267	1.32954545454545454	
	algorithm	Croston	RW	ETS	Theta	ARIMA	
	i	ಬ	4	က	2	П	

Holland's procedure rejects those hypotheses that have a p-value ≤ 0.05000000000000044 . Rom's procedure rejects those hypotheses that have a p-value ≤ 0.025 . Finner's procedure rejects those hypotheses that have a p-value ≤ 0.0500000000000044 . Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.025 . Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Holm's procedure rejects those hypotheses that have a p-value ≤ 0.05 .

Li's procedure rejects those hypotheses that have a p-value ≤ 0.04296483789728828 .

	Dinnon
.05 (QUADE)	Down
Li Table for $\alpha = 0$	Hellend
de 7: Holm / Hochberg / Holland / Rom / Finner / Li Table for $\alpha = 0.05~(\text{QUADE})$	Hookhone /Homes
perg / Holland	Holm /
Holm / Hocht	8
Table 7:	DIVICE
	a) - ~
	oleonith we

			/		, , , , , , , , , , , , , , , , , , , ,	(
i	algorithm	$z = (R_0 - R_i)/SE$	d	Holm/Hochberg/Hommel	Holland	Rom	Finner	Li
5	Croston	3.056543625534147	0.0022390489534412313	0.01	0.010206218313011495	0.010515350115740741	0.010206218313011495	0.035227219872080266
4	ELS	1.9566341310901074	0.050390499203719324	0.0125	0.012741455098566168	0.013109375000000001	0.0203082697337702	0.035227219872080266
က	RW	1.9120130562647917	0.055874519423078695	0.016666666666666666	0.016952427508441503	0.016666666666666666	0.03030721741231923	0.035227219872080266
2	Theta	1.3921775345498593	0.1638686439425461	0.025	0.025320565519103666	0.025	0.040204113647960726	0.035227219872080266
1	ARIMA	0.9727394311918894	0.3306828224304751	0.02	0.0500000000000000044	0.05	0.0500000000000000044	0.05

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.012 . Holm's procedure rejects those hypotheses that have a p-value ≤ 0.0125 . Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Hommel's procedure rejects those hypotheses that have a p-value $\leq 0.012741455098566168$. Holland's procedure rejects those hypotheses that have a p-value $\leq 0.0107741455098566168$. Rom's procedure rejects those hypotheses that have a p-value $\leq 0.010515350115740741$. Finner's procedure rejects those hypotheses that have a p-value ≤ 0.023082697337702 . Li's procedure rejects those hypotheses that have a p-value $\leq 0.035227219872080266$.

Table 8: Adjusted p-values (FRIEDMAN)

			Social Part to State 1	((, ::	
	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
-	Croston	2.4327437355602974E-8	1.2163718677801488E-7	$437355602974E-8 \qquad 1.2163718677801488E-7 \qquad 1.2163718678867801488E-7 \qquad 1.2163718678867801488E-7 \qquad 1.2163718678867801488E-7 \qquad 1.216371867886780148867801488678014886780148867801488678014886786788678014886788014886780148867801488678014886780148867801488678014886780148867801488678014886780148867801488678014886780148867801488678014886780148867801488678867880148867880148867886788014886788678801488678867886788867886788867886788867888$	1.2163718677801488E-7	1.2163718677801488E-7
7	ETS	2 ETS 1.6927844756719902E-4 8	8.463922378359951E-4	6.771137902687961E-4	6.008027247515076E-4	5.07835342701597E-4
က	RW	2.0026757491716922E-4	0.0010013378745858462	6.771137902687961E-4	6.008027247515076E-4	6.008027247515076E-4
4	Theta	0.06297905121445545	0.31489525607227725	0.1259581024289109	0.06920461241365775	0.06920461241365775
rc.	ARIMA	0.06920461241365775	0.3460230620682887	0.1259581024289109	0.06920461241365775	0.06920461241365775

Table 9: Adjusted p-values (FRIEDMAN)

				, ,	_	
	algorithm	unadjusted p	p_{Holl}	p_{Rom}	p_{Finn}	p_{Li}
-	Croston	2.4327437355602974E-8	1.2163718110524968E-7	1.156758314646438E-7	1.2163718110524968E-7 2.6136180995546683E-8	2.6136180995546683E-8
7	$_{ m ELS}$	1.6927844756719902E-4	6.769418785139703E-4	6.008027247515076E-4	4.2314239194740644E-4	1.8183122705221256E-4
3	RW	2.0026757491716922E-4	6.769418785139703E-4	6.008027247515076E-4	4.2314239194740644E-4	2.1511118103175307E-4
4	Theta	0.06297905121445545	0.12199174153703796	0.06920461241365775	0.07809403385463187	0.06337358736098425
2	ARIMA	0.06920461241365775	0.12199174153703796	0.06920461241365775	0.07809403385463187	0.06920461241365775

Table 10: Adjusted p-values (ALIGNED FRIEDMAN)

			7			
	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
1	Croston	3.738391599168943E-7	1.8691957995844715E-6	$1.8691957995844715E-6 \qquad 1.8691957995844715E-6 \qquad 1.8691957997984715E-6 \qquad 1.86919579979879879887989898989898998999999999$	1.8691957995844715E-6	1.8691957995844715E-6
2	$_{\rm RW}$	7.949549150799624E-4	0.0039747745753998115	0.0031798196603198495	0.0031798196603198495	0.0031798196603198495
3	ELS	0.0037046586278312935	0.018523293139156467	0.01111397588349388	0.01111397588349388	0.01111397588349388
4	Theta	1 Theta 0.009958334446764907	0.04979167223382454	0.019916668893529815	0.019916668893529815	0.019916668893529815
5	ARIMA	0.1836680799515228	0.918340399757614	0.1836680799515228	0.1836680799515228	0.1836680799515228

Table 11: Adjusted p-values (ALIGNED FRIEDMAN)	_
ole 11: Adjusted p-values (ALIGNED)	AN
ole 11: Adjusted p-values (ALIGNED)	CDIM
ole 11: Adjusted p-values (ALIGNED)	FRIE
ole 11: Adjusted p -values (ALIGN)	\Box
ole 11: Adjusted p -values (AI	IGN
ole 11: Adjusted p -value	Ħ
ole 11: A	lue
ole 11: A	usted
ole	ď
Table	
	Table

	algorithm	unadjusted p	p_{Holl}	p_{Rom}	p_{Finn}	p_{Li}
	Croston	3.738391599168943E-7	1.869194402259744E-6	1.7775877921424761E-6	1.869194402259744E-6	4.579497377673887E-7
2		7.949549150799624E-4	0.003176029949516046	0.0030320092112704165	0.001986202532238135	9.728659519556451E-4
က	$_{ m ELS}$	0.0037046586278312935	0.01107285324141849	0.01111397588349388	0.0061668031841999316	0.004517674850323508
4		0.009958334446764907	0.01981750046857611	0.019916668893529815	0.012432384246799488	0.012051859976066375
2	ARIMA	0.1836680799515228	0.1836680799515228	0.1836680799515228	0.1836680799515228	0.18366807995152282

Table 12: Adjusted p-values (QUADE)

unadjusted p p_{Botm} unadjusted p p_{Homm} p_{Homm} p_{Homm} p_{Homm} p_{Botm}	==
2. Aujusted P-values (QUADE) f Flowing PHotm (QUADE) f Adjusted p-values (QUADE) f f f f f f f f	0.0033341198622103
2. Adjusted p -values (QUAD) The property of the property o	0.011145223490576894
22. Adjust	$0.0022390489534412313 \qquad 0.011145223490576894 \qquad 0.010646573479705313 \qquad 0.011145223490576894 \qquad 0.003334119862210315789870671145223490676899 \qquad 0.00333411986221031578917067111452234906776899 \qquad 0.00333411986221031578917067111452234906776899 \qquad 0.00333411986221031578917067111452234906776899 \qquad 0.0033341198622103157891707111111111111111111111111111111111$
Table 13: Adju	0.011145223490576894
$\begin{array}{c} \text{unadjusted } p \\ 0.0022390489534412313 \\ 0.050390499203719324 \\ 0.055874519423078695 \\ 0.1638686439425461 \\ 0.3306828224304751 \\ \text{unadjusted } p \\ \end{array}$	0.0022390489534412313
algorithm Croston ETS RW Theta ARIMA	Croston
1 2 8 4 70	

Table 13: Adjusted p-values (QUADE)

	algorithm	unadjusted p	p_{Holl}	p_{Rom}	p_{Finn}	p_{Li}
1	Croston	0.0022390489534412313	0.011145223490576894	0.010646573479705313	0.011145223490576894	0.0033341198622103157
7	$_{ m ELS}$	0.050390499203719324	0.1868321415140748	0.16762355826923608	0.1212554841363731	0.07001523094715534
3	RW	0.055874519423078695	0.1868321415140748	0.16762355826923608	0.1212554841363731	0.07704793043658988
4	Theta	0.1638686439425461	0.30088435541752323	0.3277372878850922	0.20045458351538104	0.19667718738318932
22	ARIMA	0.3306828224304751	0.3306828224304751	0.3306828224304751	0.3306828224304751	0.3306828224304751