Terminale ES 7.4 Exercices

7.3.6 Lien entre le discret et le continu

Variable aléatoire discrète	Variable aléatoire continue
Univers des valeurs de X fini	Intervalle <i>I</i> infini
Événement <i>E</i> : partie (sous-ensemble) de l'univers	Événement J : sous-intervalle de I (ou partie engendrée par des intervalles)
Probabilités $p(X = k)$ où k appartient à l'univers des valeurs possibles pour X $\sum_k p(X = k) = 1$	Densité de probabilité f $\int_I f(t) \mathrm{d}t = 1$
Espérance d'une variable aléatoire discrète X où k appartient à l'univers des valeurs possibles pour X $E(X) = \sum_k k \times p(X=k)$	Espérance d'une variable aléatoire continue X $\int_I t f(t) \mathrm{d}t$

7.4 Exercices

7.4.1 Lois à densité

EXERCICE 7.1.

Soit *a* un réel et *f* la fonction définie sur [0; 1] par f(x) = ax(1-x)

- 1. Déterminer le nombre réel a pour que cette fonction f soit une loi de densité sur [0; 1].
- 2. On considère *X* une variable aléatoire continue de densité *f* avec *a* ayant la valeur trouvée ci-dessus.

Calculer la probabilité de l'événement $\{0, 25 \le X \le 0, 75\}$.

EXERCICE 7.2.

Les questions 1, 2 et 3 sont indépendantes.

- 1. f est la fonction définie sur [0; 1] par $f(x) = 3x^2$.
 - (a) Justifier que f est une fonction de densité sur [0; 1].
 - (b) X est une variable aléatoire qui suit la loi de densité f. Calculer les probabilités des événements suivants :

•
$$p(0 \leqslant X \leqslant \frac{1}{2})$$

• $p(X \in [0,4;0,6])$

- (c) Déterminer E(X).
- 2. f est la fonction définie sur [0; 2] par $f(x) = \frac{x}{2}$.
 - (a) Justifier que f est une fonction de densité sur [0; 2].
 - (b) X est une variable aléatoire qui suit la loi de densité f. Calculer les probabilités des événements suivants :

7.4 Exercices Terminale ES

• $p(0 \le X \le 1)$

• $p(X \in [1; 2])$

- (c) Déterminer E(X).
- 3. f est la fonction définie sur [-1;] par $f(x) = \frac{3}{4}(1-x^2)$.
 - (a) Justifier que f est une fonction de densité sur [-1;1].
 - (b) X est une variable aléatoire qui suit la loi de densité f. Calculer les probabilités des événements suivants :
 - $p(-1 \le X \le 0)$

• $p(X \in [-\frac{1}{2}; \frac{1}{2}])$

(c) Déterminer E(X).

EXERCICE 7.3.

On s'intéresse à la durée de vie X, exprimée en années, d'un appareil ménager avant la première panne.

On peut modéliser cette situation par une loi de probabilité p de densité f, définie sur l'intervalle $[0; +\infty[$, par $f(x) = \lambda e^{-\lambda x}$.

Ainsi $p(0 \le X \le t) = \int_0^t \lambda e^{-\lambda x} dx$, où t est un nombre réel positif représentant le nombre d'années, et λ un réel positif.

- 1. Calculer $p(0 \le X \le 1)$ en fonction de λ .
- 2. D'après une étude statistique, la probabilité que l'appareil tombe en panne avant la fin de la première année est 0,18. Calculer λ .

EXERCICE 7.4.

On s'intéresse à la fonction $\ln x$, définie sur $]0; +\infty[$.

- 1. (a) Vérifier que la fonction F définie sur]0; $+\infty[$ par $F(x) = x \ln x x$ est une primitive de la fonction \ln .
 - (b) Trouver un nombre réel b > 1 tel que $\int_{1}^{b} \ln x dx = 1$.

On peut alors considérer la fonction ln comme une densité de probabilité sur l'intervalle [1; b].

- 2. *X* est une variable aléatoire suivant la loi de densité ln sur l'intervalle [1; *b*].
 - (a) Calculer $p(X \leq 2)$.
 - (b) Sachant que *X* est supérieur à 2, calculer la probabilité que *X* soit inférieur à 2,5.

7.4.2 Loi uniforme

EXERCICE 7.5.

Dans la journée, un métro passe toutes les 6 minutes à la station 14.

Soit *X* le temps d'attente d'une personne à cette station.

On suppose que *X* suit la loi uniforme sur [0; 6].

Quelle est la probabilité que cette personne attende entre 3 et 5 minutes ?

EXERCICE 7.6.

Suite à un problème sur sa ligne téléphonique, Christophe contacte le service après-vente de son opérateur. Le conseiller l'informe qu'un technicien le contactera pour une intervention à distance jeude entre 18 h et 19 h. Sachant que ce technicien appelle de manière aléatoire, donc uniforme, sur le créneau donné, quelle est la probabilité que Christophe attende entre 15 et 40 min?