PART I - Fundamentals

Lecture 1 - Matrix-Vector Multiplication

OBJECTIVE:

You should already know how to do matrix multiplication: $\mathbf{b} = \mathbf{A}\mathbf{x}$.

Now we show how to interpret b as a linear combination of the columns of A.

♦ FAMILIAR DEFINITIONS

Let x be an n-dimensional column vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

Let A be an $m \times n$ matrix (m rows, n columns)

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

If $\mathbf{b} = \mathbf{A}\mathbf{x}$, then $\mathbf{b} \in \mathbb{R}^m$ where each component of \mathbf{b} ,

$$b_i = \sum_{j=1}^n a_{ij} x_j$$
 $i = 1, 2, \dots, m.$

e.g., If
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} 8 \\ 9 \end{pmatrix}$

$$\mathbf{Ax} = \begin{pmatrix} 1 \times 8 + 2 \times 9 \\ 3 \times 8 + 4 \times 9 \\ 5 \times 8 + 6 \times 9 \end{pmatrix} = \begin{pmatrix} 26 \\ 60 \\ 94 \end{pmatrix}$$
 (verify!)

Note 1. The text assumes numbers are complex (\mathbb{C}) . We will only use real numbers (\mathbb{R}) . But, everything we say about real quantities can be

But, everything we say about real quantities can be applied to complex quantities.

We can view $x \to Ax$ as a *linear map*.

i.e., for any (vectors) $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and any (scalar) $\alpha \in \mathbb{R}$,

$$\mathbf{A}(\mathbf{x} + \mathbf{y}) = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{y}$$

 $\mathbf{A}(\alpha \mathbf{x}) = \alpha \mathbf{A}\mathbf{x}$

Exercise: Which side is more expensive to compute?

Conversely, every linear map from \mathbb{R}^n to \mathbb{R}^m can be expressed as a multiplication by an $m \times n$ matrix.

♦ MATRIX-VECTOR MULTIPLICATION

Let $\mathbf{A} = [\mathbf{a}_1 \mid \mathbf{a}_2 \mid \dots \mid \mathbf{a}_n]$ i.e., $\mathbf{a}_j \in \mathbb{R}^m$ is the j^{th} column of \mathbf{A} .

Then, $\mathbf{b} = \mathbf{A}\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{a}_j$ i.e., \mathbf{b} is a linear combination of the columns of \mathbf{A} .

$$\begin{bmatrix} \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & | & \mathbf{a}_2 & | & \dots & | & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$= x_1 \begin{bmatrix} \mathbf{a}_1 \end{bmatrix} + x_2 \begin{bmatrix} \mathbf{a}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \mathbf{a}_n \end{bmatrix}$$

Note 2. This is nothing but a change of viewpoint (and notation).

Instead of viewing Ax = b as "A acting on x to give b", we view as "x acting on A to produce b".

♦ MATRIX-MATRIX MULTIPLICATION

If $\mathbf{B} = \mathbf{AC}$, then each column of \mathbf{B} is a linear combination of the columns of \mathbf{A} .

Let $\mathbf{A} \in \mathbb{R}^{l \times m}$ and $\mathbf{C} \in \mathbb{R}^{m \times n}$

Then, $\mathbf{B} \in \mathbb{R}^{l \times n}$ with entries $b_{ij} = \sum_{k=1}^m a_{ik} c_{kj}$ $i = 1, 2, \dots, l, j = 1, 2, \dots, m$.

$$egin{bmatrix} \left[egin{array}{c|c|c} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_n \end{array}
ight] \ &= \left[egin{array}{c|c|c} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{array}
ight] \left[egin{array}{c|c|c} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{array}
ight] \end{split}$$

$$\Longrightarrow$$
 $\mathbf{b}_j = \mathbf{A}\mathbf{c}_j = \sum_{k=1}^m c_{kj}\mathbf{a}_k$

i.e., \mathbf{b}_j is a linear combination of the columns \mathbf{a}_j with the coefficients c_{kj} (each element of column j in \mathbf{C}).

◇ RANGE AND NULLSPACE

Definition 1. range(\mathbf{A}) = { $\mathbf{x} \mid \mathbf{x} = \mathbf{A}\mathbf{y}$ for some \mathbf{y} } i.e., the set of all vectors that can be expressed as $\mathbf{A}\mathbf{y}$ for some vector \mathbf{y} .

Theorem 1. range(\mathbf{A}) is the space spanned by the columns of \mathbf{A} .

Note 3. The range of A is also called the column space of A.

Definition 2. $null(\mathbf{A}) = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0}\}$ i.e., the set of vectors \mathbf{x} that map to the zero vector via \mathbf{A} .

 \rightarrow each vector $\mathbf{x} \in \operatorname{null}(\mathbf{A})$ gives the expansion coefficients of the zero vector as a linear combination of columns of \mathbf{A} :

$$\mathbf{0} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \ldots + x_n \mathbf{a}_n$$

◇ RANK

column rank of a matrix = dimension of space spanned by its columns

row rank of a matrix = dimension of space spanned by its rows

ROW RANK ALWAYS EQUALS COLUMN RANK!

So, we often just refer to as "rank".

 $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to have *full rank* if it has *maximal rank*.

i.e., $rank(\mathbf{A}) = min(m, n)$

e.g., if $m \ge n$, a matrix with full rank must have n linearly independent columns.

Theorem 2. A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \geq n$ has full rank if and only if it maps no two distinct vectors to the same vector.

 $ightarrow \mathbf{A}$ is a one-to-one mapping.

♦ MATRIX INVERSE

A *nonsingular* or invertible matrix is a <u>square</u> matrix with full rank.

i.e., the m columns of a nonsingular $m \times m$ matrix \mathbf{A} span (form a basis) for the whole space \mathbb{R}^m \leftrightarrow any vector in \mathbb{R}^m can be expressed as a linear combination of the columns of \mathbf{A} .

In particular, expand the canonical basis vector

$$\mathbf{e}_{j} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j$$

$$\mathbf{e}_j = \sum_{i=1}^m z_{ij} \mathbf{a}_i = \mathbf{A} \mathbf{z}_j$$

If we now place all the \mathbf{e}_j for $j=1,2,\ldots,m$ in a matrix, we obtain

I is called the $m \times m$ identity matrix; **Z** is called the inverse of **A** (\mathbf{A}^{-1}).

Every nonsingular (square) matrix ${\bf A}$ has a unique inverse ${\bf A}^{-1}$ that satisfies

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

Here are some useful equivalences concerning nonsingular matrices:

- a) ${\bf A}$ has a unique inverse ${\bf A}^{-1}$
- b) $rank(\mathbf{A}) = m$
- c) range(\mathbf{A}) = \mathbb{R}^m
- d) null(A) = 0
- e) 0 is not an eigenvalue of A
- f) 0 is not a singular value of A
- g) $det(\mathbf{A}) \neq 0$

Note 4. Although it is a convenient theoretical notion, the determinant is rarely used in practice.

Do not take the formula $x = A^{-1}b$ literally!

WE BASICALLY NEVER FIND \mathbf{A}^{-1} IN PRACTICE \rightarrow CERTAINLY NOT FOR SOLVING $\mathbf{A}\mathbf{x} = \mathbf{b}!$

So, instead of thinking of hitting b with A^{-1} to get x, think of x as the vector of coefficients required to uniquely expand b in the basis of columns of A.

Multiplying by A^{-1} is a *change of basis* operation:

	\mathbf{A}^{-1}	
b: coefficients of expansion	\longrightarrow	${f A}^{-1}{f b}$: coefficients of expansion
using canonical basis		using basis of columns of ${f A}$
$\{e_1, e_2,, e_m\}$		
	\mathbf{A}	