Clase teórica de la semana del 23-5

Mario Garelik

Misceláneas previas.

- No damos la sección 15.6 de Thomas.
- Comenzamos con el texto Cálculo en varias variables de D. Zill.

Sección 15.7 (Thomas) - Integrales triples en coordenadas cilíndricas y esféricas.

- Ejercitación propuesta (pág. 875):
 - 1 al 10 (para hacer solos)
 - 11a) 12a)
 - 13 al 20
 - 21 al 30 (para hacer solos)
 - 31a) 32a)
 - -33, 37, 38
 - 39 al 41
 - 43 al 66.

• Coordenadas cilíndricas.

- Breve comentario intro: es un mix entre coordenadas polares en R^2 , dejando la tercer coordenada, z, en rectangular, que permite ubicar puntos en R^3 de modo alternativo al cartesiano.
- Ecuaciones de la relación entre las coordenadas cilíndricas y rectangulares ($r \ge 0$ y $0 \le \theta \le 2\pi$).
- Lugares geométricos particulares: r = a, $\theta = \theta_0$ (corregir error acerca del lugar geométrico que representa) y $z = z_0$. Ver figura en p. 876.
- Situaciones que sugieren el uso de coordenadas cilíndricas (por resultar en ecuaciones constantes en estas coordenadas):
 - * Para describir cilindros con eje sobre el eje z.
 - * Semiplanos que inician en el eje z.
 - * Planos perpendiculares al eje z.
- Rapidito: la partición en cuñas, norma, sumas de Riemann, integral triple sobre una región polar como límite de sumas de Riemann.

* Recordar que

$$\Delta V_k = \Delta A_k \cdot \Delta z_k = \Delta z_k \cdot r_k \cdot \Delta r_k \cdot \Delta \theta_k$$

donde: $\Delta A_k = r_k \cdot \Delta r_k \cdot \Delta \theta_k$ es el área de la cuña en el plano $r\theta$.

- Las integrales triples en cilíndricas también se evalúan a partir de integrales iteradas.
- Pasos sugeridos para integrar usando cilíndricas.
- Ver **ejemplo 1**. NO el ejemplo 2, que trata con centroide.

• Coordenadas esféricas.

- Idea: identificar cada punto del espacio utilizando dos ángulos y una distancia.
- Qué miden ρ , θ y r (corregir error). $\rho \geq 0$, $0 \leq \phi \leq \pi$ y $0 \leq \theta \leq 2\pi$.
- **Lugares geométricos** particulares: $\rho = a$, $\phi = \phi_0$ (aclarar lo de cono generalizado) y $\theta = \theta_0$. Ver figura en p. 879.
- Ecuaciones de la relación entre las coordenadas esféricas y rectangulares. Apoyarse en la figura 15.47 de la p. 879. Ver bien de dónde se deducen las relaciones
- Rapidito: la partición en cuñas, norma, sumas de Riemann, integral triple sobre una región polar como límite de sumas de Riemann.
- Volumen de una cuña esférica (no vemos la demo de esto... aceptarlo así).

$$\Delta V_k = \rho_k^2 \cdot \sin \phi_k \cdot \Delta \rho_k \cdot \Delta \phi_k \cdot \Delta \theta_k$$

- A partir de lo anterior, el **diferencial de volumen** resulta:

$$\Delta V = \rho^2 \cdot \sin \phi \cdot \Delta \rho \cdot \Delta \phi \cdot \Delta \theta$$

- Las integrales triples en esféricas también se evalúan a partir de integrales iteradas.
- Vale Fubini: cálculo de la integral en esféricas a través de iteradas y consideraciones sobre el cambio del orden.
- Por lo general, integraremos primero con respecto a ρ . Luego ϕ y θ .
- Nos enfocamos a regiones definidas por sólidos de revolución en torno del eje z, con límites θ y ϕ constantes.
- Pasos sugeridos para integrar usando esféricas.
- Ejemplo 5. El ejemplo 6 no lo vemos

Un ejemplo de cilíndricas con la variable y cartesiana.

Calcular el volumen de la región limitada por los planos $y=0,\,y=1$ y los conos $x^2+z^2=y^2$ y $x^2+z^2=4y^2$

Solución. Utilizando coordenadas cilíndricas,

$$x = r \cdot \sin \theta$$
, $z = r \cdot \sin \theta$, $y = y$,

tenemos que:

$$x^2 + z^2 = r^2.$$

Las ecuaciones de los conos en coordenadas cilíndricas vienen dadas por

$$r^2 = y^2 \implies r = y$$

у

$$r^2 = 4y^2 \implies r = 2y$$

Cuando y varía desde y=0 hasta y=1, el radio varía desde r=y hasta r=2y, por lo que el volumen pedido es:

$$V = \int_0^{2\pi} \int_0^1 \int_y^{2y} r \cdot dr \, dy \, d\theta$$

$$=\pi$$
 (comprobar ésto)

Sección 15.1 (Dennis Zill) - Integrales de línea.

- Práctica sección 15.1 (pág. 807-808): 1 35.
- Breve intro: la integral sobre una curva como extensión del concepto de integral sobre un intervalo.
- Lo desarrollado para \mathbb{R}^2 es naturalmente extendible \mathbb{R}^3 (p. 806).
- Terminología de base para una curva C parametrizada por $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ $a \le t \le b$: curva suave, suave por partes, simple, cerrada, cerrada simple.
- Orientación positiva de una curva no cerrada: corresponde a valores crecientes del parámetro t.
- Construcción del concepto de integral de línea como límite de sumas de Riemann:
 - la partición del intervalo de variación del parámetro

$$a = t_0 < t_1 < t_2 < \cdots < t_n = b$$

induce una partición en subarcos en la curva C

$$A = P_0 < P_1 < P_2 < \cdots < P_n = b$$

donde $P_k = (x(t_k), y(t_k)).$

Norma de una partición.

- Sea f una función de dos (o tres) variables definida en una región de R^2 (o R^3) que contiene una curva suave C. Se define **integral de línea con respecto a x,** con respecto a y y con respecto a la longitud de arco s: $\int_C f(x,y) \ dx$, $\int_C f(x,y) \ ds$.
- La continuidad como condición suficiente para la integrabilidad. En adelante todo integrando se supondrá continuo en la región de integración.
- Interpretación geométrica. Supuesto de no negatividad de f(x,y) sobre la curva C.
- Evaluación de integrales de línea. Las integrales de línea se evalúan de dos maneras diferentes, según la curva C esté definida paramétricamente o mediante una función explícita. en ambos casos, la idea es convertir la integral de línea en una integral definida.
 - 1. Si C está parametrizada: $C: \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$. Recordar que $s'(t) = ||\mathbf{v}(t)||$.
 - 2. Si C está definida por y = g(x). En este caso, hay que tener en cuenta que como y = g(x), entonces dy = g'(x)dx y también $ds = \sqrt{1 + g'(x)^2}dx$.
- Escritura de las integrales de línea en la forma

$$\int_{C} P(x,y)dx + Q(x,y)dy$$

donde P(x, y) y Q(x, y) son campos escalares.

- Ejemplos.
- Propiedades.
 - 1. Integral de línea a lo largo de una curva suave por partes $C = C_1 \cup C_2 \cup \cdots \cup C_n$.
 - 2. Independencia de la parametrización de la curva, pero todas las parametrizaciones con igual orientación.
 - 3. Orientación positiva.
 - 4. $\int_{-C} = -\int_{C}$