Conceptos Grafos dirigidos SESION 1:

Un **grafo** es un triple ordenado de:

- -Conjunto finito y no vacío de vertices.
- -Un conjunto finito de aristas.
- -Una función de incidencia (aristas que inciden en vértices)

Sean \mathbf{u} y \mathbf{v} dos vértices, $\mathbf{u} \rightarrow \mathbf{v}$ diremos que \mathbf{u} es **adyacente** hacia \mathbf{v} ó \mathbf{v} es adyacente desde \mathbf{u} . Sea \mathbf{e} el **arco** que une $\mathbf{u} \rightarrow \mathbf{v}$; se dice que e es **incidente** desde \mathbf{u} a \mathbf{v} .

En grafos dirigidos, un arco e se asocia con un par ordenado de vértices u y v y...

- -1. e es una arista desde u hasta v.
- -2. el vértice u es adyacente hacia v.
- -3. el vértice v es advacente desde u.
- -4. el arco e es incidente desde u.
- -5. el arco e es incidente hacia v.

Grado de **entrada g**e y grado de **salida g**s de un grafo dirigido.

- -Grado entrada: número de aristas **que inciden hacia** un vértice v.
- -Grado salida: número de aristas **que inciden desde** un vértice u.

PROPIEDADES Grafos dirigidos:

-La suma de grados de salida es igual a la suma de los grados de entrada e igual al número de aristas del grafo.

Conceptos Grafos dirigidos SESION 2:

Matriz de adyacencia:

Es una matriz de $V \times V$ vertices. Se coloca un 1 si un vértice X es adyacente hacia un vértice Y.

$$a(i,j) = \begin{cases} 1, & \langle i,j \rangle \in E \\ 0, & \text{en otro caso.} \end{cases}$$

Matriz de costes:

Mismo funcionamiento que la matriz de adyacencia pero en lugar de poner 1s, se pone la suma de los dos vértices. Si un arco va del vértice 1 al 3, se pone un 4 (1+3); si uno va del 3 al 2, se pone un 5. (3+2)

Es probable que estiga mal l'explicació de la diapos i realment el que se fassa siga asignar el pes del arc (en lloc del 1 com en la d'adjacencia); i lo de sumar els vertex siga que jo ho he tret aixi per trobar-li un sentit a la taula... Si l'aresta tinguera pes, apuntar el pes de l'aresta en lloc del 1, si no tinguera pes, sumar els vertex com l'exemple següent.

0	0	4	0	0
3	0	0	6	0
0	5	0	0	0
0	0	0	0	9
0	7	0	0	0

Matriz de incidencia:

Mirar los arcos, fijarse en las COLUMNAS, i comparar con los vértices. Si el vértice recibe el arco: -1. Si el vértice envía el arco: 1. Cada columna (cada arco) tiene un -1 (recibe) y un 1 (envía).

Si un vértice (filas), tiene sólo 1s, es que es una fuente. Pero si tiene sólo -1, es que es un sumidero.

Conceptos Grafos dirigidos SESION 3:

Camino dirigido sucesión de vértices y arcos desde un vertice V a un vértice U. Todas las aristas van en el mismo camino desde el vértice inicial al final.

Ciclo dirigido: camino dirigido en el que el vértice inicial y final coincide.

Diferencia entre SEMI y NO-Semi Semi-Camino dirigido:

Camino dirigido:

Semi-Ciclo dirigido:

SEMI-CICLO DIRIGIDO

SEMI CICLO DIRIGIDO

SEMI CICLO DIRIGIDO

Ciclo dirigido:

CICLOS DIRIGIDOS

Conexión fuerte: Dos grafos dirigidos están fuertemente conexos si y solo si, existe un camino dirigido que va de un vértice V a uno U y otro camino de vuelta del U al V.

Conexión unilateral: Dos grafos están unilaterlamente conectados si dados dos vértices V y U, existe un camino dirigido de V a U pero no de U a V.

Conexión débil:

PROPIEDADES:

-Si un grafo es fuertemenete conexo con vértices >=2, entonces el número de arcos ha de ser myor o igual que el número de vértices.

-Sea V un conjunto de vértices. Existe un grafo dirigido y fuertemente conexo cuyo número de arcos es igual a V.

Matriz de accesibilidad

V es accesible desde U si existe un camino (dirigido o no) desde U hasta V. BFS o DFS para saber qué vertices son conexos y por tanto qué componentes conexas hay.