Prüfung 25.11.2016

(1) 5 Punkte

 $(t + \sin(t) + \sin(y))dy + \cos(y) dt = 0 \text{ mit } y(0) = 0 \text{ und } \psi = \psi(t)$

Hinweis: $\int xe^x dx = (x-1)e^x$ und $\int e^x \sin(x) dx = 1/2e^x (\sin(x) - \cos(x))$

(2) 7 Punkte

$$A = \begin{pmatrix} -1 & -2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

- (a) reelles Fundamentalsystem bestimmen
- (b) Ist die Ruhelage $y^* = 0$ stabil oder instabil?
- (c) all g. Lsg. von y' = Ay + (0,0,1)
- (d) $\det Y(0) = 3 -> \det Y(10)$?

(3) 7 Punkte

$$-u'' + u = f \text{ mit } u(0) = u(1) \text{ und } U'(0) = u'(1)$$

Greensche Funktion bestimmen

(4) 5 Punkte

AWP y' =
$$3(y^2)^{1/3}$$
, y(0) = y_0

(a) Lsg y_1^+ für y(0) = 1/4 an punktweisen Limiten für $y^+(t) = \lim_{n \to \infty} y_n^+(t)$

1

(b) sei $y \in C^1([0, T^+])$ bel. Lösung des AWP mit $y_0 = 0$.

zz: für die Lösung gilt, dass $0 \leq y(t) \leq y^+(t)$

zz: Lsg. \exists auf $[0, \infty)$

(5) 3 Punkte

$$x' = -xy^4$$
 und $y' = yx^4$

zz: Mittels Ljapunov
funktion, dass (0,0) stabile Ruhelage ist