

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 10 martie 2018

CLASA a XII-a

Varianta 2

Problema 1. Fie \mathcal{F} mulţimea funcţiilor continue $f: [0,1] \to \mathbb{R}$, care îndeplinesc condiţia $\max_{0 \le x \le 1} |f(x)| = 1$, şi fie $I: \mathcal{F} \to \mathbb{R}$,

$$I(f) = \int_0^1 f(x) dx - f(0) + f(1).$$

- (a) Arătați că I(f) < 3, oricare ar fi $f \in \mathcal{F}$.
- (b) Determinaţi sup $\{I(f) | f \in \mathcal{F}\}.$

Problema 2. Fie p un număr natural mai mare sau egal cu 2 şi fie (M, \cdot) un monoid finit, astfel încât $a^p \neq a$, oricare ar fi $a \in M \setminus \{e\}$, unde e este elementul neutru al lui M. Arătați că (M, \cdot) este grup.

Gazeta Matematică

Problema 3. Arătați că o funcție continuă $f \colon \mathbb{R} \to \mathbb{R}$ este crescătoare dacă și numai dacă

$$(c-b) \int_a^b f(x) dx \le (b-a) \int_b^c f(x) dx,$$

oricare ar fi numerele reale a < b < c.

Problema 4. Fie n şi q două numere naturale, $n \ge 2$, $q \ge 2$ şi $q \not\equiv 1 \pmod 4$, şi fie K un corp finit care are exact q elemente. Arătaţi că, oricare ar fi elementul a din K, există x şi y în K, astfel încât $a = x^{2^n} + y^{2^n}$. (Orice corp finit este comutativ.)