

Anuncios

- Retroalimentación: Evaluación
 - Examen teórico
 - Examen practico
- Calidad en las tareas

Inversa de una matriz

¿Qué es la inversa de una matriz?

- A es una matriz cuadrada
- Existe una matriz B tal que AB = BA = I

• B se le llama la inversa de A y se denota como A^{-1}

Existencia de la inversa

- Depende del determinante de la matriz
- Si $det(A) \neq 0$, entonces A tiene una inversa
 - Matriz no singular
 - Matriz invertible
- Si det(A) = 0, no tiene una inversa
 - matriz singular
 - Matriz no invertible
- Matrices mal condicionadas

¿Qué matrices no son invertibles?

Sea A una matriz y a_1, \dots, a_n sus filas

- Si algún $a_i = 0$ entonces det(A) = 0
- Si se intercambian dos filas el signo de determinante se invierte
- $\det([a_1, ..., c * a_i, ..., a_n]) = c \det([a_1, ..., a_i, ..., a_n])$
- $\det([a_1, ..., a_i, ..., a_n]) = \det([a_1, ..., a_i + ba_j, ..., a_n])$
- Si A es trianguar entonces det(A) = prod(diag(A))

Calcular la inversa

Sea $A_{n\times n}$ invertible e $I_{n\times n}$ la identidad

- Método Gauss-Jordan
 - Creamos [A|I]
 - Resolvemos lado izquierdo por GJ
 - Obtenemos [I|B]
 - B es la inversa

. Propiedades de la inversa

Si A, B son matrices invertibles

- A^{-1} es única.
- $\bullet (A^{-1})^{-1} = A$
- A B es invertible y $(AB)^{-1} = B^{-1}A^{-1}$
- $\bullet (A^T)^{-1} = (A^{-1})^{-T}$ La última T debe ser positiva
- $\bullet (cA)^{-1} = \frac{1}{c}A^{-1}$

. Usos de la inversa

- Sistemas de ecuaciones lineales: si Ax = b entonces $x = bA^{-1}$
- Regresión lineal $b = (X^T X)^{-1} X^T y$
- $\bullet \det(A) = \frac{1}{\det(A^{-1})}$
- A representa una transformación lineal, A^{-1} representa la transformación inversa

#