Cape Town, South Africa (33.9253° S, 18.4239° E)

Temperature and Relative humidity

(Fig 1.1) The annual temperature graph of Cape Town indicating the average annual temperature range

(Fig 1.2) Graph indicating the times of the year when the temperature falls higher than 25°

(Fig 1.3) Graph indicating the times of the year when the temperature falls lower than comfortable (15°)*

(Fig 2.1) The annual relative humidity graph of Cape Town indicating the average relative humidity range

(Fig 2.2) Relative humidity graph of Cape Town indicating the relative humidity higher than 60%

(Fig 2.4) Relative humidity graph of Cape Town indicating the relative humidity within the range of comfort*

Sun path

Observations:

• Strong sun (>25°) from 17th October from 1000 hrs to 1500 hrs through all days in December through 15th May from 1100 hrs to 1500 hrs.

Sun path

Sun-Path Diagram - Latitude: -33.98 Hourly Data: Dry Bulb Temperature (C) CAPE TOWN_ZAF

...

Conditional Selection Applied: Dry Bulb Temperature>25

162.0 hours of total 858.0 sun up hours(18.88%).

(Fig 4.2) December sun of radiant temp>25°C. Based on this, vertical fins on either side of glazing will be required.

"South orientation reduces direct hot sun through out the year except on Dec. 08, 0800 and between 1700 and 1800 hours

(Fig 5.1) Radiation rose indicates harsh radiation from due North.

(Fig 6.1) The average wind speeds with directions and temperatures

Psychrometric chart

Observations:

• Cape town falls under the international zone-4 as per ASHRAE standard 90.1-2007. It experiences dry, warm summers and mild, humid winters. With internal heat gain, 77% of the hours in a building can fall within the comfort range to cool down temperatures during the dry summers, induced ventilation by fans/ mechanical systems can be replaced with natural ventilation from the South winds whenever available.

Base case (assuming mechanical heating and cooling)

у ____х

CAPE TOWN - ZAF IWEC Data

Total Cooling load: 1349.27 Total Heating load: 8.13 Total Lighting load: 1095.54 **Total load:** 2492.54

Optimizing Orientation for the base case

"Façade facing south is the least energy consuming. Daylight to be checked.

Daylighting for the base case

Natural ventilation for the base case

Heating Energy for TEST_ROOM (Monthly) Electric Lighting Energy for TEST_ (Monthly) Cooling Energy for TEST_ROOM (Monthly)

Total Cooling load: 961.74
Total Heating load: 12.33
Total Lighting load: 1102.47
Total load: 2076.54

PMV Comfort: 50%

Predicted Mean Vote without natural ventilation			
Jan	24.130108		
Feb	22.221277		
Mar	17.759555		
Apr	9.928756		
May	5.510932		
Jun	6.839324		
Jul	6.968423		
Aug	5.000035		
Sep	7.78615		
Oct	11.920636		
Nov	18.693702		
Dec	24.291295		

Heating Energy for TEST_ROOM (Monthly) Electric Lighting Energy for TEST_ROOM (Monthly) Cooling Energy for TEST_ROOM (Monthly)

Total Cooling load: 362.95
Total Heating load: 14.13
Total Lighting load: 1102.47
Total load: 1479.55

PMV Comfort: 58.33%

	Predicted Mean Vote with natural ventilation		
	Jan	6.483681	
	Feb	5.783032	
	Mar	5.005769	
	Apr	7.036377	
	May	10.6163	
	Jun	15.59338	
1	Jul	15.37391	
	Aug	12.51079	
	Sep	9.042309	
	Oct	6.719571	
	Nov	5.067242	
	Dec	5.760595	

Observations:

- Without natural ventilation, Annual Predicted Mean Vote comfort is 50%
- With natural ventilation, Annual Predicted Mean Vote comfort is 66.67%
- Greater percentage of people uncomfortable from November to February (see chart).

Ventilation options for the Optimized case

Base case - No ventilation

Total Cooling load: 961.74 Total Heating load: 12.33 Total Lighting load: 1102.47 Total load: 2076.54

50% PMV Comfort:

CAPE TOWN - ZAF IWEC Data

Min. indoor: 15°C, Min. outdoor: 20°C, Max. Outdoor: 24°C

Total Cooling load: 362.95 Total Heating load: 14.13 Total Lighting load: 1102.47 Total load: 1479.55

PMV Comfort: 58.33%

CAPE TOWN - ZAF IWEC Data

Min. indoor: 18°C, Min. outdoor: 24°C, Max. Outdoor: 28°C Total Cooling load: 2081.14

Total Heating load: 12.33 Total Lighting load: 1102.47

Total load: 3196.95

PMV Comfort: 50%

CAPE TOWN - ZAF IWEC Data

Min. indoor: 12°C, Min. outdoor:

22°C, Max. Outdoor: 25°C

Total Cooling load: 476.18 Total Heating load: 12.67

Total Lighting load: 1102.47

Total load: 1591.33

PMV Comfort: 50%

700.0 630.0 560.0 490.0 420.0 Heating ng Loads of 510.0 140.0 70.0

CAPE TOWN - ZAF IWEC Data Min. indoor: 12°C, Min. outdoor: 20°C, Max. Outdoor: 24°C

Total Cooling load: 362.95 Total Heating load: 14.13 Total Lighting load: 1102.47 Total load: 1479.55

PMV Comfort: 58.33%

CAPE TOWN - ZAF IWEC Data Min. indoor: 0°C, Min. outdoor: 20°C, Max. Outdoor: 24°C

Total Cooling load: 362.95 Total Heating load: 14.13 Total Lighting load: 1102.47 1479.55 Total load:

PMV Comfort: 58.33%

CAPE TOWN - ZAF IWEC Data Min. indoor: 15°C, Min. outdoor: 18°C, Max. Outdoor: 24°C Total Cooling load: 261.29

Total Heating load: 5223.30 Total Lighting load: 1102.47 6587.07 Total load:

PMV Comfort: 100%

Additive shading options and results

Observations:

- Glass facing due south affords complete glazing but creates zones where the UDLI exceeds 2000 lux.
- As studied in the Sun-Path, Direct sun with radiation greater than 25°C is only during the morning and late afternoon in December. Therefore, vertical fins are used in addition to a horizontal louver to diffuse light.

Material study for the finalized shading option

Default material

PMV Comfort: 66.67% SDA: 87.5%

	Default	Material Option-1	Material Option-2	Material Option-3	Material Option-4
Walls	-		ASHRAE 90.1-2010 EXTWALL MASS CLIMATEZONE 4	ASHRAE 90.1-2010 EXTWALL WOODFRAME CLIMATEZONE 1	ASHRAE 90.1-2010 EXTWALL MASS CLIMATEZONE 4
Floor	-		EXTROOF IEAD	ASHRAE 90.1-2010 EXTROOF IEAD CLIMATEZONE 2-8	DEFAULT
Roof	-		ASHRAE 90.1-2010 ATTICROOF CLIMATEZONE 2-7	ASHRAE 90.1-2010 ATTICROOF CLIMATEZONE 2-7	DEFAULT
Glass	-	DEFAULT CLEAR	DEFAULT CLEAR	DEFAULT CLEAR	LOW_E
PMV comfort	66.67%	58.33%	66.67%	58.33%	8.98%

Observations:

• Materials with greater thermal mass are better suitable for the external surfaces. Materials did not increase the comfort levels but using materials too thick such as Zone-1 External wall or Zone-4 wood-frame wall reduces comfort.

Comparison of annual PMV comfort between option 1 and 5

100%

Monthly PMV for option 1
18.269073
13.406969
8.738198
5.181595
9.97228
26.263198
28.334266
15.287809
5.001555
9.130797
16.801032
22.224934

	Monthly PMV for option 5
Jan	9.64412
Feb	8.134949
Mar	5.971332
Apr	5.299757
May	13.385286
Jun	35.130745
Jul	38.937306
Aug	23.202968
Sep	8.541169
Oct	5.035705
Nov	6.585352
Dec	9.32263

Observations:

SDA:

- Shading helps control the indoor temperature during the warm summer months i.e. from September till March.
- But the added comfort in summer due to shading comes at the cost of colder indoor temperatures during winter. Therefore, excessive shading reduces comfort. This tradeoff makes it unfeasible to achieve 100% comfort through shading.
- Since cooling is the primary criteria considering the base case, ventilation improves the average PMV comfort. Analysis period plugin in the HB Air Flow component would make it possible to decide which months and days can the window be completely closed to avoid ventilation. As observed in the previous slide, Natural ventilation increases discomfort from May to September.

% discomfort comparison between option 1 and 5

