<u>Durée 2 heures</u> Tout document interdit

Exercice 1 (10 points)

 Rappelez la définition d'une interprétation pour un ensemble de formules Γ : {α₁,, α_n Rappelez la définition d'un modèle pour un ensemble de formules Γ : {α₁,, α_n} Rappelez la définition d'une interprétation de Herbrand. Rappelez la définition d'un modèle de Herbrand. Donner le domaine de Herbrand de l'ensemble S de clauses obtenu à partir de l'ensemble S. 	0.5 pt 0.5 pt
que : $\Gamma : \{ \forall x \forall y ((P(x,y) \lor Q(y)) \land (P(x,y) \lor R(y)) \land (P(x,y) \lor \neg Q(x))), \exists x \exists y \neg P(x,y) \land \neg R(y) \}$	0.5 pt
 6. Enumérer tous les atomes de base de S. 7. Enumérer toutes les instances de base de C₁: P(x,y) v Q(y) (la 1^{ière} clause de S). 8. Donner, s'ils existent, deux modèles de Herbrand de C₁. 	1 pt 1.5 pt 1 pt 1 pt
 Donner, si elles existent, deux interprétations de Herbrand qui falsifie C₁. Dessiner s'il existe un arbre sémantique clos pour S. Donner s'ils existent deux sous-ensembles non satisfiables d'instances de base de S. Montrer sans utiliser la propriété de complétude de la résolution que S est inconsistant. 	1 pt 1 pt 1 pt 1 pt

Exercice 2 (2 points : 0.5×4)

Indiquer clairement laquelle ou lesquelles des clauses suivantes sont des instances de la clause $P(x,y) \vee Q(f(y))$ et celles qui ne le sont pas ?

I_1 . $P(a,y) \vee Q(f(a))$	$I_2. P(x,b) \vee Q(f(g(b)))$
I ₃ . $P(x, g(u)) \vee Q(f(g(u)))$	$I_4. P(x,y) \vee Q(u)$

Exercice 3(1-1)

1. Donner une instance γ_l de la formule valide telle que :

$$(\alpha \rightarrow \exists x \beta) \rightarrow \exists x (\alpha \rightarrow \beta)$$
 (Condition : $x \ n' apparaît \ pas \ libre \ dans \ \alpha$)

(! les formules mises à la place de α et β doivent être différentes)

2. Montrer en utilisant la résolution que cette instance est valide.

Exercice 4 (2)

Montrer la proposition suivante :

$$= \forall x P(x) \rightarrow \forall x \forall y P(f(x, y))$$

Exercice 4 (1-0.5 - 1 - 1.5)

Les énoncés suivants décrivent un arbre binaire. Traduisez-les dans le langage des prédicats du premier ordre.

- La racine n'est le fils d'aucun autre nœud.
- Un nœud n'est pas le fils de lui-même.
- A l'exception de la racine, tout autre nœud est le fils d'un seul autre nœud exactement.
- Un nœud a exactement 0 fils ou exactement 2 fils.

Bon Courage