Assignment 3: Predicting Mapping Penalties with a From-Scratch ANN

Due: June 5, 2025, 11:59 PM

1 Introduction and Learning Objectives

In this assignment, you will implement a feed-forward artificial neural network (ANN) from scratch (no TensorFlow, PyTorch, or other high-level libraries) to predict the penalty score of a mapping between tasks and employees.

By the end of this assignment, you will:

- 1. Preprocess and encode structured data into a fixed-length input vector.
- 2. Design and implement two ANN architectures:
 - Model A: single hidden layer with 256 neurons.
 - Model B: two hidden layers, each with 128 neurons.
- 3. Implement forward propagation, backpropagation, and parameter updates manually.
- 4. Train your networks using Mean Squared Error (MSE) loss.
- 5. Evaluate and compare model performance across architectures and hyperparameters.
- 6. Generate and interpret three key comparison graphs in your report.

2 Problem Context and Data Description

A company has 10 tasks and 5 employees. Each mapping—an assignment of every task to an employee—carries a real-valued penalty score reflecting five constraint violations. You can generate 100 such mappings using the codes of your Assessment Task 1, and save them in a file, with the penalty score calculated.

2.1 Task Data and Employee Data (synthetic example)

Task ID	Time (hrs)	Difficulty	Deadline (hrs)	Required Skill
T1	4	3	8	A
T2	6	5	12	В
Т3	2	2	6	A
T4	5	4	10	$^{\mathrm{C}}$
T5	3	1	7	A
T6	8	6	15	В
T7	4	3	9	$^{\mathrm{C}}$
T8	7	5	14	В
T9	2	2	5	A
T10	6	4	11	С

Table 1: Synthetic Task Data

Employee ID	Available Hrs	Skill Level	Skills
E1	10	4	A,C
E2	12	6	$_{\mathrm{A,B,C}}$
E3	8	3	A
E4	15	7	$_{ m A,C}^{ m B,C}$
E5	9	5	$_{A,C}$

Table 2: Synthetic Employee Data

2.2 Sample Mapping and Penalty

Mapping: { $(T1 \rightarrow E2)$, $(T2 \rightarrow E3)$, $(T3 \rightarrow E1)$, $(T4 \rightarrow E4)$, $(T5 \rightarrow E2)$, $(T6 \rightarrow E5)$, $(T7 \rightarrow E1)$, $(T8 \rightarrow E3)$, $(T9 \rightarrow E5)$, $(T10 \rightarrow E4)$ } Penalty: 5.00

3 Preprocessing, Encoding & Input Vector

Each input to the network must be a fixed-length numeric vector. Follow these steps:

- 1. Numeric features (time, difficulty, deadline): Directly use as numeric inputs.
- 2. Categorical features (skill): Use one-hot encoding. For skills 'A', 'B', 'C', the encodings would be:
 - 'A' \rightarrow [1, 0, 0]
 - 'B' \to [0, 1, 0]
 - 'C' $\to [0, 0, 1]$
 - 'A' & 'C' \rightarrow [1, 0, 1]

3.1 Constructing the Input Vector

To train your neural network, you need to convert your task-employee assignments into numerical vectors. Follow these two clear steps:

1. Create a Feature Vector for Each Task-Employee Pair:

For each task T_i assigned to an employee E_j , construct an 11-dimensional numeric vector consisting of:

- Task Features (6 elements):
 - Estimated Time Required (Time)
 - Difficulty Level (Diff)
 - Deadline (Dead)
 - Required Skill (One-hot encoded for Skills A, B, C)
- Employee Features (5 elements):
 - Available Hours (Avail)
 - Skill Level (Level)
 - Employee Skills (One-hot encoded for Skills A, B, C)

Thus, each pair (T_i, E_j) is represented as:

$$\mathbf{f}_{ij} = [\mathrm{Time}_i, \mathrm{Diff}_i, \mathrm{Dead}_i, \mathrm{ReqSkillOneHot}_i^{(3)}, \mathrm{Avail}_j, \mathrm{Level}_j, \mathrm{EmpSkillsOneHot}_i^{(3)}]$$

2. Combine All Pair-Vectors into One Input Vector:

Concatenate the feature vectors of all 10 task-employee pairs in the fixed order from Task T_1 to T_{10} into a single vector:

$$\mathbf{x} = [\mathbf{f}_{1 a_1}, \, \mathbf{f}_{2 a_2}, \, \dots, \, \mathbf{f}_{10 a_{10}}]$$

Since each pair vector has 11 elements, the total input size is:

 $10 \text{ tasks} \times 11 \text{ features per pair} = 110 \text{ features}$

Example:

Consider the following two task-employee assignments:

$$T1 \rightarrow E2 : [4, 3, 8, 1, 0, 0, 12, 6, 1, 1, 1],$$

 $T2 \rightarrow E3 : [6, 5, 12, 0, 1, 0, 8, 3, 1, 0, 0],$

Repeat this for all 10 task-employee pairs to form your full input vector.

4 ANN Implementation

For this assignment, you need to implement two different feed-forward architectures. In both cases, the input layer size is determined by the flattened input vector length, and the output layer has one neuron (predicting the penalty score).

• Model A:

$$\underbrace{110}_{\text{input}} \longrightarrow \underbrace{256}_{\text{hidden}_1} \longrightarrow \underbrace{1}_{\text{output}}$$

- Example dimensions:

$$W^{(1)} \in \mathbb{R}^{256 \times 110}, \quad b^{(1)} \in \mathbb{R}^{256}, \quad W^{(2)} \in \mathbb{R}^{1 \times 256}, \quad b^{(2)} \in \mathbb{R}^1.$$

• Model B:

$$\underbrace{110}_{\text{input}} \longrightarrow \underbrace{128}_{\text{hidden}_1} \longrightarrow \underbrace{128}_{\text{hidden}_2} \longrightarrow \underbrace{1}_{\text{output}}$$

- Example dimensions:

$$W^{(1)} \in \mathbb{R}^{128 \times 110}, \ b^{(1)} \in \mathbb{R}^{128}, \ W^{(2)} \in \mathbb{R}^{128 \times 128}, \ b^{(2)} \in \mathbb{R}^{128}, \ W^{(3)} \in \mathbb{R}^{1 \times 128}, \ b^{(3)} \in \mathbb{R}^1.$$

4.1 Activation Functions

We need non-linear activations in the hidden layers to learn complex mappings. Two common choices:

• Sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}, \quad \sigma'(x) = \sigma(x) (1 - \sigma(x)).$$

Example: If z = 0.5, then

$$\sigma(0.5) = \frac{1}{1 + e^{-0.5}} \approx 0.62, \quad \sigma'(0.5) \approx 0.62 (1 - 0.62) = 0.24.$$

• ReLU:

$$ReLU(x) = max(0, x), ReLU'(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Example: If z = -1, ReLU(-1) = 0, and ReLU'(-1) = 0; if z = 2, ReLU(2) = 2, and ReLU'(2) = 1.

For the **output layer**, since we predict a real-valued penalty, we use a *linear* activation:

$$f(x) = x, \quad f'(x) = 1.$$

4.2 Feed-Forward Propagation

Denote:

 $a^{(0)} \in \mathbb{R}^{110} \quad \text{(flattened input)}, \quad \text{and for each layer } l = 1, \dots, L: \quad z^{(l)} = W^{(l)} \, a^{(l-1)} + b^{(l)}, \quad a^{(l)} = g^{(l)} \big(z^{(l)} \big).$

Step-by-step example (Architecture 1):

1. Input: Suppose

$$a^{(0)} = [0.2, 0.5, \dots, 0.1]^T \in \mathbb{R}^{110}.$$

2. Layer 1 (hidden, 256 neurons):

$$z^{(1)} = W^{(1)} a^{(0)} + b^{(1)}, \quad a^{(1)} = q(z^{(1)}),$$

where $W^{(1)}$ has shape (256 × 110). Concretely, for neuron k:

$$z_k^{(1)} = \sum_{i=1}^{110} W_{k,i}^{(1)} \, a_i^{(0)} \, + \, b_k^{(1)}, \quad a_k^{(1)} = g \big(z_k^{(1)} \big).$$

3. Layer 2 (output, 1 neuron):

$$z^{(2)} = W^{(2)} a^{(1)} + b^{(2)}, \quad \hat{y} = a^{(2)} = z^{(2)}$$
 (linear).

4.3 Backpropagation Algorithm

We use Mean Squared Error (MSE) as the loss:

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2.$$

For a single example, the loss is $(y - \hat{y})^2$.

Error at the output layer (L=2):

$$\delta^{(2)} = \frac{\partial \mathcal{L}}{\partial z^{(2)}} = 2(\hat{y} - y) \cdot f'(z^{(2)}).$$

Since $f'(z^{(2)}) = 1$ (linear), we get

$$\delta^{(2)} = 2(\hat{y} - y).$$

Example: if y = 3.5 and $\hat{y} = 2.8$, then

$$\delta^{(2)} = 2(2.8 - 3.5) = -1.4.$$

Error in hidden layer (l=1):

$$\delta^{(1)} = (W^{(2)})^T \delta^{(2)} \odot g'(z^{(1)}),$$

where \odot is element-wise multiplication.

Example (first hidden neuron):

$$\delta_1^{(1)} = W_{1,1}^{(2)} \, \delta^{(2)} \, \times \, g'(z_1^{(1)}).$$

Gradients for weights and biases:

$$\frac{\partial \mathcal{L}}{\partial W^{(l)}} = \delta^{(l)} \ (a^{(l-1)})^T, \quad \frac{\partial \mathcal{L}}{\partial b^{(l)}} = \delta^{(l)}.$$

Thus each entry

$$\frac{\partial \mathcal{L}}{\partial W_{k\ i}^{(l)}} = \delta_k^{(l)}\ a_i^{(l-1)}, \qquad \frac{\partial \mathcal{L}}{\partial b_k^{(l)}} = \delta_k^{(l)}.$$

Gradient descent update:

$$W^{(l)} \leftarrow W^{(l)} - \alpha \frac{\partial \mathcal{L}}{\partial W^{(l)}}, \quad b^{(l)} \leftarrow b^{(l)} - \alpha \frac{\partial \mathcal{L}}{\partial b^{(l)}},$$

where α is the learning rate (e.g. 0.01).

Numeric example for one weight:

If
$$W_{1,1}^{(2)}=0.5,\,\delta^{(2)}=-1.4,$$
 and $a_1^{(1)}=0.62,$ then

$$\frac{\partial \mathcal{L}}{\partial W_{1,1}^{(2)}} = -1.4 \times 0.62 = -0.868, \quad W_{1,1}^{(2)} \leftarrow 0.5 - 0.01 \, (-0.868) = 0.5087.$$

5 Training & Evaluation Protocol

Data Splitting Given approximately 100 labelled mappings, we partition the data into three non-overlapping sets:

Training: Validation: Test =
$$70\%$$
: 15% : 15% .

• Assign the first 70 mappings to the **training set**, the next 15 to the **validation set**, and the final 15 to the **test set**.

Hyperparameter Grid We will perform a grid search over the following hyperparameters:

Hyperparameter	Values	Notes
Learning rate α	$\{0.01, 0.001, 0.0001\}$	Controls step size in gradient descent.
Batch size	$\{8, 16, 32\}$	Number of samples per weight update.
# Epochs	100 to 200	Full passes over the training set.
Activation function	$\{$ sigmoid, $ReLU\}$	Hidden-layer nonlinearity.

Table 3: Hyperparameter search space.

Training Loop For each combination of $(\alpha, \text{ batch size, activation})$:

- 1. Initialize all weights $W^{(l)}$ with small random values (e.g. Gaussian $\mathcal{N}(0, 0.01)$) and biases $b^{(l)} = 0$.
- 2. For epoch = 1 to E do
 - (a) Shuffle the training set.
 - (b) Partition into mini-batches of the chosen size.
 - (c) For each mini-batch:
 - $\bullet\,$ Perform $forward\ propagation$ to compute predictions.
 - Compute batch loss (MSE).
 - Perform backpropagation to compute gradients.
 - Update weights and biases via gradient descent with learning rate α .
 - (d) At the end of the epoch:
 - Evaluate training loss on the entire training set.
 - Evaluate validation loss on the validation set.
 - Measure and record the epoch time (e.g. wall-clock seconds).
- 3. After all epochs, evaluate final model on the ${f test}$ set.

Recorded Metrics For each epoch *e*, log:

$$(e, \mathcal{L}_{\text{train}}^{(e)}, \mathcal{L}_{\text{val}}^{(e)}, t_{\text{epoch}}^{(e)}).$$

- $\mathcal{L}_{\mathrm{val}}^{(e)}$: Mean Squared Error on validation set.
- $t_{\text{epoch}}^{(e)}$: Time (in seconds) to complete epoch e.

Activation Functions Compare two choices in the hidden layers:

$$\operatorname{Sigmoid}(x) = \frac{1}{1 + e^{-x}}, \quad \operatorname{ReLU}(x) = \max(0, x).$$

- Sigmoid can saturate for large |x|, slowing convergence.
- ReLU is sparse (zero for $x \leq 0$) and often yields faster training.
- Keep the *output layer* activation *linear* (identity).

Required Comparison Graphs

Include the following graphs for both Model A and B:

- 1. Epoch vs. Loss (train & val) [on specific learning rate, batch size and activation function]
- 2. Learning Rate vs Loss (train & val) [on specific epoch, batch size and activation function]
- 3. Activation Function vs Loss (train & val) [on specific epoch, batch size and learning rate]
- 4. Batch Size vs. Epoch Time [on specific learning rate and activation function]

Report Template

Introduction

Context and motivation for predicting mapping penalties.

Methodology

Data Description

Overview of task & employee features. Brief description of how 100 sample mappings were generated.

Preprocessing & Encoding

Numeric vs. one-hot encoding. Construction of the 110-dimensional input vector.

Model Architectures

Model A, Model B.

Training Procedure

Loss function, activation functions, hyperparameter grid, data split (70/15/15).

Results

Model A:

- Figure 1: Epoch vs. Loss (train & val)
- Figure 2: Learning Rate vs. Loss
- Figure 3: Activation Function vs. Loss
- Figure 4: Batch Size vs. Epoch Time

Model B: (same four figures)

Each figure should include a caption and a comprehensive discussion.

Discussion

Compare Model A vs. Model B based on the figures. Highlight trade-offs and insights.

Implementation Details

Google Colab Link: https://colab.research.google.com/your-notebook-link Environment & dependencies (NumPy, pandas, matplotlib, etc.). Instructions for running cells.

Formatting & Appendices

Appendix A: Sample Mappings

List of 100 mappings (task→employee + penalty).

Appendix B: Additional Tables or Code Snippets

Code Template

Listing 1: Google Colab Notebook Structure

```
# 1. Notebook Setup
# Title, assignment info, and markdown overview.
# 2. Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# (No TensorFlow/PyTorch!)
# 3. Data Generation/Load
# - Generate or load the 100 mappings CSV
# - Load into pandas DataFrame
# 4. Preprocessing
def one_hot_encode_skill(skills):
    # returns a 3-element vector
def construct_input_vector(mapping_row):
    # builds 110-dim vector for one example
# 5. Model Definitions
class NeuralNetwork:
   def __init__(self, layer_dims, activation='relu'):
   def forward(self, x):
   def backward(self, x, y_true):
    def update_params(self, lr):
# 6. Training Loop
def train(model, X_train, y_train, params):
    # implement mini-batch SGD, record loss
# 7. Evaluation & Plots
# - Generate the eight required figures
# - Save each via plt.savefig()
# 8. Save & Export
# - Download figures
# - Optionally, pickle model parameters
```

Once complete, click File \rightarrow Download . zip to produce your ZIP upload.

Marking Rubric

Component	Criteria	Marks
Report (60 marks)		
Figures & Discussion	8 figures \times 5 marks each, captions & discussion	40
Formatting & Presentation	Clear layout and consistency	10
Appendix & Dataset Listing	Complete list of 100 mappings	10
Code (40 marks)		
Notebook Functionality	Runs end-to-end; reproduces figures	15
Implementation Correctness	All required functions & specs implemented	15
Code Quality & Comments	Structure & descriptive comments	10
Penalties & Deductions		
AI-Generated Content	Turnitin similarity >20%: deduct (similalrity-20)% of	See note
	60 report marks	
Disallowed Libraries	Any TensorFlow/PyTorch import: zero for Code com-	Severe
	ponent	

AI Penalty Note: If Turnitin reports X% similarity and X > 20%, then

Marks Deducted = $(X - 20)\% \times 60$.

Therefore, please do not use AI chatbots to write your report