Домашняя работа по дискретной математике №2

Вариант 64

Работу выполнил: Решетников Сергей Евгеньевич (ИСУ №467233), Р3108

V/V	e1	e2	e3	e4	e5	e6	e7	e8	е9	e10	e11	e12
e1	0	3	1	2		5			1	5		
e2	3	0	1				1	4		4	3	3
e3	1	1	0	1			5	2		1		
e4	2		1	0	3							3
e5				3	0	4			4	1	3	
e6	5				4	0	5	2	4			
e7		1	5			5	0				1	3
e8		4	2			2		0	4	4		3
e9	1				4	4		4	0			4
e10	5	4	1		1			4		0	4	
e11		3			3		1			4	0	2
e12		3		3			3	3	4		2	0

Задание: найти кратчайшие пути от начальной вершины e_1 ко всем остальным вершинам Воспользуемся алгоритмом Дейкстры

1. $l(e_1) = 0^+$; $l(e_i) = \infty$, для всех $i \neq 1$, $p = e_1$ Результаты итерации запишем в таблицу

	1
\mathbf{e}_1	0+
\mathbf{e}_2	∞
e ₃	∞
e_4	∞
e ₅	∞
\mathbf{e}_6	∞
e ₇	∞
e ₈	∞
\mathbf{e}_9	∞
e_{10}	∞
e ₁₁	∞
e_{12}	∞

2. $\Gamma e_1 = \{e_2, e_3, e_4, e_6, e_9, e_{10}\}$ - все пометки временные, уточним их:

$$l(e_2) = min[\infty, 0^++3] = 3$$

$$l(e_3) = min[\infty, 0^+ + 1] = 1$$

$$l(e_4) = min[\infty, 0^+ + 2] = 2$$

$$l(e_6) = min[\infty, 0^+ + 5] = 5$$

$$l(e_9) = min[\infty, 0^+ + 1] = 1$$

$$l(e_{10}) = min[\infty, 0^+ + 5] = 5$$

3.
$$l(e_i^+) = min[l(e_i)] = l(e_3) = 1;$$

4. Вершина e_5 получает постоянную пометку $l(e_3) = 1^+$, $p = e_3$

	1	2
e_1	0+	
\mathbf{e}_2	∞	3
e ₃	∞	1+
e_4	∞	2
e ₅	∞	∞
\mathbf{e}_6	∞	5
e ₇	∞	∞
e ₈	∞	∞
e ₉	∞	1
e ₁₀	8	5
e ₁₁	∞	∞
e ₁₂	∞	∞

$$\Gamma e_3 = \{e_1, e_2, e_4, e_7, e_8, e_{10}\}$$

Временные пометки имеют вершины e_2 , e_4 , e_7 , e_8 , e_{10} — уточняем их:

$$l(e_2) = min[3, 1+1] = 2$$

$$l(e_4) = min[2, 1+1] = 2$$

$$l(e_7) = min[\infty, 5+1] = 6$$

$$l(e_8) = min[\infty, 2+1] = 3$$

$$l(e_{10}) = min[5, 1+1] = 2$$

6.
$$l(e_i^+) = min[l(e_i)] = l(e_9) = 1^+$$

7. Вершина e_9 получает постоянную пометку $l(e_9) = 1^+$, $p = e_9$

	1	2	3
e_1	0+		
\mathbf{e}_2	∞	3	2
e ₃	∞	1+	
e_4	∞	2	2
e ₅	∞	∞	∞
e_6	∞	5	5
e ₇	∞	∞	6
e ₈	∞	8	3
e ₉	∞	1	1+
e ₁₀	8	5	2
e ₁₁	∞	8	∞
e ₁₂	∞	∞	∞

8. Не все вершины имеют постоянные пометки,

$$\Gamma e_9 = \{e_1, e_5, e_6, e_8, e_{12}\}$$

Временные пометки имеют вершины e_5 , e_6 , e_8 , e_{12} - уточняем их:

$$l(e_5) = min[\infty, 4 + 1] = 5$$

$$l(e_6) = min[5, 4 + 1] = 5$$

$$l(e_8) = min[3, 4 + 1] = 3$$

$$l(e_{12}) = min[\infty, 4 + 1] = 5$$

9.
$$l(e_i^+) = min[l(e_i)] = l(e_2) = 2^+$$

10. Вершина e_{10} получает постоянную отметку $I(e_2) = 2^+$, $p = e_2$

	1	2	3	4
e_1	0+			
\mathbf{e}_2	8	3	2	2+
\mathbf{e}_3	8	1+		
e_4	∞	2	2	2
e_5	∞	∞	∞	5
e_6	8	5	5	5
e ₇	8	∞	6	6
e ₈	8	∞	3	3
\mathbf{e}_9	8	1	1+	
e ₁₀	8	5	2	2
e ₁₁	8	∞	8	8
e ₁₂	∞	∞	∞	5

$$\Gamma e_2 = \{e_1, e_3, e_7, e_8, e_{10}, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_7 , e_8 , e_{10} , e_{11} , e_{12} - уточняем их:

$$l(e_7) = min[6, 1 + 2] = 3$$

$$l(e_8) = min[3, 4 + 2] = 3$$

$$l(e_{10}) = min[2, 4 + 2] = 2$$

$$l(e_{11}) = min[\infty, 3 + 2] = 5$$

$$l(e_{12}) = min[5, 3 + 2] = 5$$

12.
$$l(e_i^+) = min[l(e_i)] = l(e_4) = 2^+$$

13. Вершина e_4 получает постоянную отметку $I(e_4) = 2^+$, $p = e_4$

	1	2	3	4	5
\mathbf{e}_1	0+				
\mathbf{e}_2	∞	3	2	2+	
e ₃	∞	1+			
e ₄	∞	2	2	2	2+
e ₅	∞	∞	∞	5	5
e_6	∞	5	5	5	5
e ₇	∞	∞	6	6	3
e ₈	∞	∞	3	3	3
e ₉	∞	1	1+		
e ₁₀	∞	5	2	2	2
e ₁₁	∞	∞	∞	∞	5
e ₁₂	∞	∞	∞	5	5

14. Не все вершины имеют постоянные пометки,

$$\Gamma e_4 = \{e_1, e_3, e_5, e_{12}\}$$

Временные пометки имеют вершины e_5 , e_{12} - уточняем их:

$$l(e_5) = min[5, 3 + 2] = 5$$

$$l(e_{12}) = min[5, 3 + 2] = 5$$

15.
$$l(e_i^+) = min[l(e_i)] = l(e_{10}) = 2^+$$

16. Вершина e_9 получает постоянную отметку $I(e_{10}) = 2^+$, $p = e_{10}$

	1	2	3	4	5	6
\mathbf{e}_1	0+					
\mathbf{e}_2	∞	3	2	2+		
\mathbf{e}_3	∞	1+				
e ₄	∞	2	2	2	2+	
e ₅	∞	∞	∞	5	5	5
\mathbf{e}_6	∞	5	5	5	5	5
e ₇	∞	∞	6	6	3	3
e ₈	∞	∞	3	3	3	3
\mathbf{e}_9	∞	1	1+			
e ₁₀	∞	5	2	2	2	2+
e ₁₁	∞	∞	∞	∞	5	5
e_{12}	∞	∞	∞	5	5	5

$$\Gamma e_{10} = \{e_1, e_2, e_3, e_5, e_8, e_{11}\}$$

Временные пометки имеют вершины e_5 , e_8 , e_{11} - уточняем их:

$$l(e_5) = min[5, 1 + 2] = 3$$

$$l(e_8) = min[3, 4 + 2] = 3$$

$$l(e_{11}) = min[5, 4 + 2] = 5$$

18.
$$l(e_i^+) = min[l(e_i)] = l(e_7) = 3^+$$

19. Вершина e_9 получает постоянную отметку $I(e_7) = 3^+$, $p = e_7$

	1	2	3	4	5	6	7
\mathbf{e}_1	0+						
\mathbf{e}_2	∞	3	2	2+			
\mathbf{e}_3	∞	1+					
e ₄	∞	2	2	2	2+		
e ₅	∞	∞	∞	5	5	5	3
\mathbf{e}_6	∞	5	5	5	5	5	5
e ₇	∞	∞	6	6	3	3	3+
e ₈	∞	∞	3	3	3	3	3
e ₉	∞	1	1+				
e ₁₀	∞	5	2	2	2	2+	
e ₁₁	∞	∞	∞	∞	5	5	5
e ₁₂	∞	∞	∞	5	5	5	5

20. Не все вершины имеют постоянные пометки,

$$\Gamma e_7 = \{e_2, e_3, e_6, e_{11}, e_{12}\}$$

Временные пометки имеют вершины e_6 , e_{11} , e_{12} - уточняем их:

$$l(e_6) = min[5, 5 + 3] = 5$$

$$l(e_{11}) = min[5, 1 + 3] = 4$$

$$l(e_{12}) = min[5, 3 + 3] = 5$$

21.
$$l(e_i^+) = min[l(e_i)] = l(e_5) = 3^+$$

22. Вершина
$$e_9$$
 получает постоянную отметку $I(e_5) = 3^+$, $p = e_5$

	1	2	3	4	5	6	7	8
e_1	0+							
\mathbf{e}_2	∞	3	2	2+				
e ₃	∞	1+						
e ₄	∞	2	2	2	2+			
e ₅	∞	∞	∞	5	5	5	3	3+
e_6	∞	5	5	5	5	5	5	5
e ₇	∞	∞	6	6	3	3	3+	
e ₈	∞	∞	3	3	3	3	3	3
e ₉	∞	1	1+					
e ₁₀	∞	5	2	2	2	2+		
e ₁₁	∞	∞	8	∞	5	5	5	4
e ₁₂	∞	∞	8	5	5	5	5	5

$$\Gamma e_5 = \{e_4, e_6, e_9, e_{10}, e_{11}\}$$

Временные пометки имеют вершины e_6 , e_{11} - уточняем их:

$$l(e_6) = min[5, 4 + 3] = 5$$

$$l(e_{11}) = min[4, 3 + 3] = 4$$

24.
$$l(e_i^+) = min[l(e_i)] = l(e_8) = 3^+$$

25. Вершина e_9 получает постоянную отметку $I(e_8) = 3^+$, $p = e_8$

	1	2	3	4	5	6	7	8	9
e_1	0+								
\mathbf{e}_2	∞	3	2	2+					
e ₃	∞	1+							
e_4	∞	2	2	2	2+				
e ₅	∞	8	8	5	5	5	3	3+	
\mathbf{e}_6	∞	5	5	5	5	5	5	5	5
e ₇	∞	8	6	6	3	3	3+		
e ₈	∞	8	3	3	3	3	3	3	3+
e ₉	∞	1	1+						
e ₁₀	∞	5	2	2	2	2+			
e ₁₁	∞	8	8	∞	5	5	5	4	4
e ₁₂	∞	8	8	5	5	5	5	5	5

26. Не все вершины имеют постоянные пометки,

$$\Gamma e_8 = \{e_2, e_3, e_6, e_9, e_{10}, e_{12}\}$$

Временные пометки имеют вершины е₆, е₁₂ - уточняем их:

$$l(e_6) = min[5, 2 + 3] = 5$$

$$l(e_{12}) = min[5, 3 + 3] = 5$$

27.
$$l(e_i^+) = min[l(e_i)] = l(e_{11}) = 4^+$$

28. Вершина e_{11} получает постоянную отметку $I(e_{11}) = 4^+$, $p = e_{11}$

	1	2	3	4	5	6	7	8	9	10
\mathbf{e}_1	0+									
\mathbf{e}_2	8	3	2	2+						
e ₃	8	1+								
e ₄	8	2	2	2	2+					
e ₅	8	∞	∞	5	5	5	3	3+		
e_6	8	5	5	5	5	5	5	5	5	5
e ₇	8	∞	6	6	3	3	3+			
e ₈	8	∞	3	3	3	3	3	3	3+	
e ₉	8	1	1+							
e ₁₀	∞	5	2	2	2	2+				
e ₁₁	8	∞	∞	8	5	5	5	4	4	4+
e_{12}	8	∞	∞	5	5	5	5	5	5	5

$$\Gamma e_{11} = \{e_2, e_5, e_7, e_{10}, e_{12}\}$$

Временные пометки имеют вершины e_{12} - уточняем их: $l(e_{12}) = min[5, 2+4] = 5$

$$l(e_{12}) = min[5, 2 + 4] = 5$$

30.
$$l(e_i^+) = min[l(e_i)] = l(e_{12}) = 5^+$$

30. $l(e_i^+) = min[l(e_i)] = l(e_{12}) = 5^+$ 31. Вершина e_{12} получает постоянную отметку $l(e_{12}) = 5^+$, $p = e_{12}$

	1	2	3	4	5	6	7	8	9	10	11
e_1	0+										
\mathbf{e}_2	∞	3	2	2+							
e ₃	∞	1+									
e ₄	∞	2	2	2	2+						
e ₅	∞	∞	8	5	5	5	3	3+			
e_6	∞	5	5	5	5	5	5	5	5	5	5
e ₇	∞	∞	6	6	3	3	3+				
e ₈	∞	∞	3	3	3	3	3	3	3+		
e ₉	∞	1	1+								
e ₁₀	∞	5	2	2	2	2+					
e ₁₁	∞	∞	8	∞	5	5	5	4	4	4+	·
e ₁₂	∞	∞	8	5	5	5	5	5	5	5	5 ⁺

	1	2	3	4	5	6	7	8	9	10	11	12
e_1	0+											
\mathbf{e}_2	∞	3	2	2+								
e ₃	∞	1+										
e ₄	∞	2	2	2	2+							
e ₅	8	∞	∞	5	5	5	3	3+				
e ₆	∞	5	5	5	5	5	5	5	5	5	5	5 ⁺
e ₇	8	∞	6	6	3	3	3+					
e ₈	8	∞	3	3	3	3	3	3	3+			
e ₉	8	1	1+									
e ₁₀	8	5	2	2	2	2+						
e ₁₁	8	∞	8	∞	5	5	5	4	4	4+		
e ₁₂	8	∞	8	5	5	5	5	5	5	5	5 ⁺	