Computador Digital

HARDWARE:

Placas e fonte de alimentação

Circuitos Integrados

PORTAS LÓGICAS (nosso curso)

Transistores

Álgebra Booleana

Circuitos digitais são projetados, simplificados e têm seus comportamentos analisados, segundo a disciplina matemática chamada como Álgebra Booleana.

-1854 George Boole publicou os princípios básicos;

-1938 Claude Shannon, em sua tese de mestrado, sugeriu e mostrou que a álgebra de Boole poderia ser utilizada na solução e simplificação de circuitos chaveamento;

Embora ao longo do tempo surgiram técnicas mais modernas de simplificação de projetos de circuitos digitais. A álgebra booleana, seus postulados e outras identidades é a forma inicial, mais divulgada para descrever funções lógicas e simplificações de circuitos digitais.

Uma Álgebra Boolena

Faz uso de variáveis e operações lógicas;

Operações lógicas básicas:

- Sejam A, B e C, variáveis booleanas e só podem assumir valores verdadeiro e falso (V e F);

exemplos de operações e expressões (equações) :

```
C = A AND B
A = A OR B
B= NOT (A);
```

Em eletrônica digital:

```
V \rightarrow nível lógico "1"; 
F \rightarrow nível lógico "0";
```

Operadores Booleanos

Entrada	entrada						
A	В	not(A)	A AND B	A OR B	A XOR B	A NAND B	A NOR B
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	1	0
1	1	0	1	1	0	0	0

A NAND B = NOT (A AND B) =
$$\overline{A.B}$$
 = \overline{AB}

$$A NOR B = NOT (A OR B) = A + B$$

PRINCIPAIS IDENTIDADES BOOLEANAS

Postulados Básicos

A+B=B+A	A.B=B.A	COMUTATIVIDADE
A + (B.C) = (A+B).(A+C)	A.(B+C)=(A.B)+(A.C)	DISTRIBUTIVIDADE
0 + A = A	1.A = A	IDENTIDADE
$A + \overline{A} = 1$	$A.\overline{A}=0$	ELEMENTO INVERSO

Outras identidades

A+(B+C) = (A+B) + C A+A = A	A.(B.C) = (A.B).C A.A = A	ASSOCIATIVIDADE IDEMPOTÊNCIA
1 + A = 1	0.A = 0	ELEMENTO NULO
$\overline{A} = A$		INVOLUÇÃO
A + A B = A	A.(A+B) = A	ABSORÇÃO
$(A+B) = A \cdot B$	(A.B) = A+B	DEMORGAN

PORTAS LÓGICAS:

Bloco fundamental na construção de circuitos digitais;

E´um circuito eletrônico que produz um sinal de saída que é o resultado de uma operação booleana sobre os sinais de entrada.

Conjunto de portas lógicas que são funcionalmente completas:

- AND, OR, NOT
- AND, NOT
- OR, NOT
- NAND
- NOR

Fig. 3-2 (a) Tabela-verdade que define a operação OR; (b) símbolo para uma porta OR de duas entradas.

Fig. 3-7 (a) Tabela-verdade para a operação AND; (b) símbolo da porta AND.

Inversor ou porta not

(b)

PORTA NOR

porta nand

			AND		NAND	
Α	В		AB		ĀB	
0	0		0		1	
0	1		0		1	
1	0		0		1	
1	1		1		0	
(c)						

Porta ou exclusivo

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	0

Porta exclusive nor

Α	В	х
0	0	1
0	1	0
1	0	0
1	1	1