Joonas Nättilä

jan2174@columbia.edu

Sex: Male

Born: June 25th, 1989, Tornio, Finland

Nationality: Finnish citizen

Languages: Finnish (native), English, Swedish

Department of Physics Columbia University 550 W 120th Street New York, NY-10027 Tel: +1 646 229 3667

http://natj.github.io

Research interests

High-energy astrophysics: accretion (accretion disks); compact objects (neutron stars, black holes)

Plasma physics: collisionless plasma dynamics; turbulence; particle acceleration

Computer sciences: high-performance computing; parallelization paradigms; machine learning; Julia language

Statistics: Bayesian inference; Monte Carlo methods

Mathematics: cellular automata models

Employment

2021 - 2023	Flatiron Research Fellow, Flatiron Institute's Center for Computational Astrophysics, New York, USA.
2019 – 2021	Postdoctoral Research Scientist, Columbia University, New York, USA.
2018 – 2019	Nordita Fellow, Nordita (Nordic Institute for Theoretical Physics), Stockholm, Sweden.

Education

2014 – 2017	Ph.D. in Astrophysics (with honours), University of Turku, Finland.
	Supervisor: Prof. Juri Poutanen, Director of Tuorla Observatory.
	Title: X-ray bursts as a tool to constrain the equation of state of the ultra-dense matter inside neutron stars
2012-2013	M.Sc. in Astronomy, University of Oulu, Finland.
2008 – 2012	B.Sc. in Physics, University of Oulu, Finland.

Awards & Recognitions

2019	Joint Princeton/Flatiron Postdoctoral Research Fellowship, Princeton University (Declined)
2018	Turku Finnish University Society Prize for best doctoral dissertation
2018	Väisälä Prize 2018: Prize for outstanding thesis in Astronomy
2018	PCS Best Doctoral Thesis of 2017 Prize
2016	Nordita Visiting Ph.D. Fellow

Teaching

Visiting Lecturer, Computational fluid dynamics course, Columbia University, USA. Visiting lecturer on "Collisionless plasma simulations".
Lecturer, High Performance Computing Summer School, CSC, Finland. Lecturer & tutor for Finnish IT Center for Science HPC Summer School.
Lecturer, Introduction to Julia, CSC, Finland. Lecturer for an introductory course on the Julia programming language.
Lecturer, Software tools in Physics, University of Turku, Finland. Lecturer of the "Introduction to Unix" section of the course (3 ECTS).

In addition, teaching assistant in **Optics** (2016; 6 ECTS) in Univ. Turku, and **Thermophysics** (3 times, 2011—2013; 6 ECTS), **Electricity and Magnetism** (2012; 4 ECTS), **Laboratory Exercises in Physics 1** (2 times, 2011—2012; 3 ECTS), **Mathematics of Physics** (2011; 6 ECTS), and **Waveforms and Optics** (2 times, 2011; 6 ECTS) in Univ. Oulu.

January 2, 2021

Mentoring & Supervision

2017 – 2020	Tuomo Salmi, PhD. student, University of Turku, Finland.
	PhD. co-supervisor: Neutron star mass and radius constraints from pulse profile modeling.
2019	John Hope, MSc. student, University of Bath, UK.
	M.Sc. thesis supervisor: PIC simulations of relativistic collisionless shocks across different magnetizations.
2015 – 2017	Jere Kuuttila, co-supervisor for M.Sc. thesis, University of Turku, Finland.
2015 – 2016	Tuomo Salmi, co-supervisor for M.Sc. thesis, University of Turku, Finland.
2014 – 2015	Jere Kuuttila, co-supervisor for B.Sc. thesis, University of Turku, Finland.

In addition, Nordita host for visiting PhD. students: M. Bussov, Dec. 2019; K. Smedt, Nov. 2019; T. Salmi, May 2019.

Presentations & Talks

Most recent ones include:

2020	Invited IAS Coffee talk, Princeton, USA.
2020	Colloquium: Kumpula Colloquium, Helsinki, Finland.
2020	Invited: Nordita Dynamo Series, Stockholm, Sweden.
2020	Nordita Astro group meeting, Stockholm, Sweden.
2020	Invited: St. Louis neutron star meeting, St. Louis, USA.
2020	CCA compact object meeting, New York, USA.
2019	Extreme Objects Meeting, Stockholm, Sweden.
2019	KITP conference on Multiscale modeling of Plasmas, Santa Barbara, USA.
2019	Invited: Bursting the Bubble, Lorentz center, Leiden, Netherlands.
2019	Invited: Astro Colloquium, University of Tübingen, Tübingen, Germany.

In total 1 colloquium, 13 invited, 24 contributed talks.

Funding

Research

2020	~ 60000 eur Wenner-Gren grant Co-I: Postdoc grant for Surajit Mondal Reconnection, Radio observations, and switchbacks.
2016	$\sim 2000~{ m eur}~{ m Magnus}~{ m Ehrnrooth}~{ m Foundation}~{ m Travel}~{ m grant}$
2015–2017	UTUGS Physical and Chemical Sciences funded 3yr. Ph.D. scholarship Constraining neutron star mass and radius.
2015–2016	23 000 eur Väisälä Foundation grant Magnetar atmosphere models (Declined)
2014-2015	23 000 eur Väisälä Foundation grant Magnetar atmosphere models: breaking the barrier between observations and theory

+ Some smaller travel grants (in total ~ 10 k eur).

Supercomputer time

2021	~ 22M CPUh SNIC/Beskow, Co-PI: Astrophysical turbulence and dynamo action
2020	~ 22M CPUh SNIC/Beskow/Kebnekaise, Co-PI: Astrophysical turbulence and dynamo action
2019	~ 22M CPUh SNIC/Beskow/Kebnekaise, Co-PI: Astrophysical turbulence and dynamo action
2018	~ 60k CPUh SNIC/Kebnekaise, PI: Relativistic plasma in silico (testing of Runko).

Professional Societies and Services

2019-	Member of Young Academy Finland (under Finnish Academy of Sciences and Letters)
2018-	IAU Junior member
2017	Organizer & Convener for CompCoffee meetings (weekly meetings to discuss computational problems)
2016-	eXTP Dense Matter science working group
2015 – 2018	ESA XIPE satellite Science Team (SWG2.2 Accreting Millisecond Pulsars)
2014-	Member of organizing committee for CSC HPC Summer Schools
2013 – 2019	Member of JuliaLang organization (Open source community for Julia programming language)
2012-	Member of Finnish Astronomical Society

In addition, referee for ApJL, MNRAS, A&A, ApJ, Phys. Rev. D., European Physical Journal A, and Universe.

Conference organization

- 2017 Nordita Workshop: Exascale thinking of particle energization problems, Stockholm, Sweden.

 Member of the scientific and local organizing committee.
 - TE TE LE PLUS DE LE PUI
- Workshop on Relativistic Astrophysics, Kavalto, Finland.

 Member of the local organizing committee.
- 2015 **PCS Annual Seminar day**, University of Turku, Finland.

Chairman & member of the organizing committee.

Public outreach

My research has been presented in various media:

- 2020 Published text on Finnish science magazine Q&A section
 - "How can neutron stars have a magnetic field?" Tähdet & Avaruus Sep. 2020 issue.
- 2020 Published text on Finnish science magazine Q&A section
 - "What happens to neutron star matter outside the star?" Tähdet & Avaruus Oct. 2020 issue.
- 2020 Meet the scientist: Educational science video on "Gravitation".
 - Popular science video targeted for high school students, youtube.com/watch?v=Ch38VpF341I
- 2019 Academy Club for Young Scientist: Public science talk.
 - Astrophysical turbulence: from stirring coffee to mixing galaxies; youtube.com/watch?v=W7ljVlSEAX4
- 2019—2020 On the possibility of quark matter cores in neutron star (Annala et al. 2020)
 - Incl.: Astrobites, Universe Today, Physics World, Wikipedia on QCD matter, Tähdet & Avaruus 4/2019
 - 2019 Twitter AMA on scientists abroad
 - In part of TimeoutDialogue/Erätauko society.
 - 2018 | Personal profile on Tähdet & Avaruus Finnish science magazine.

Tähdet & Avaruus Feb 2018 issue.

2017 Groundbreaking new neutron star radius measurement (Nättilä et al. 2017)

Incl.: Cosmos 27.11.2017, Phys.org. Tähdet & Avaruus (25.11.2017), Turkulainen (10.11.2017), Turun Sanomat (10.11.2017), Aamuset (8.12.2017), Tekniikka & Talous (8.12.2017), Verkkouutiset (8.12.2017)

2016 Detection of burning ashes from neutron stars (Kajava, Nättilä, et al 2017)

 ${\bf Tiedetuubi.fi}\ (30.11.2016)$

Publications — Joonas Nättilä

25 refereed publications; incl. Nature Physics (1), PRL (1), ApJ (4), A&A (11), MNRAS (6). In total 629 citations since 2014; h-index 12, g-index 24, i10-index 13 (ADS).

Peer-reviewed scientific articles

- [25] J. Nättilä and A. M. Beloborodov. Radiative turbulent flares in magnetically-dominated plasmas. arXiv e-prints, page arXiv:2012.03043, December 2020, [arXiv:2012.03043].
- [24] M. Al-Mamun, A. W. Steiner, J. Nättilä, J. Lange, R. O'Shaughnessy, I. Tews, S. Gandolfi, C. Heinke, and S. Han. Combining Electromagnetic and Gravitational-Wave Constraints on Neutron-Star Masses and Radii. *Phys. Rev. Lett.*, page arXiv:2008.12817, August 2020, [arXiv:2008.12817].
- [23] V. Loktev, T. Salmi, J. Nättilä, and J. Poutanen. Oblate Schwarzschild approximation for polarized radiation from rapidly rotating neutron stars. A&A, 643:A84, November 2020, [arXiv:2009.08852].
- [22] T. Salmi, V. F. Suleimanov, J. Nättilä, and J. Poutanen. Magnetospheric return-current-heated atmospheres of rotation-powered millisecond pulsars. A&A, 641:A15, September 2020, [arXiv:2002.11427].
- [21] E. Annala, T. Gorda, A. Kurkela, **J. Nättilä**, and A. Vuorinen. Evidence for quark-matter cores in massive neutron stars. *Nature Physics*, 16(9):907–910, June 2020, [arXiv:1903.09121].
- [20] P Abolmasov, J. Nättilä, and J Poutanen. Kilohertz quasi-periodic oscillations from neutron star spreading layers. A&A, 638:A142, June 2020, [arXiv:1910.09906].
- [19] A. Veledina, J. Nättilä, and A. M. Beloborodov. Pulsar Wind-heated Accretion Disk and the Origin of Modes in Transitional Millisecond Pulsar PSR J1023+0038. *ApJ*, 884(2):144, October 2019, [arXiv:1906.02519].
- [18] F. Nauman and J. Nättilä. Exploring helical dynamos with machine learning: Regularized linear regression outperforms ensemble methods. A&A, 629:A89, September 2019.
- [17] J. Nättilä. Runko: Modern multi-physics toolbox for simulating plasma. arXiv e-prints, page arXiv:1906.06306, June 2019, [arXiv:1906.06306].
- [16] J. J. M. in't Zand, E. Bozzo, J. Qu, X.-D. Li, L. Amati, Y. Chen, I. Donnarumma, V. Doroshenko, S. A. Drake, and et al. (incl. J. Nättilä). Observatory science with eXTP. Science China Physics, Mechanics, and Astronomy, 62:29506, February 2019.
- [15] A. L. Watts, W. Yu, J. Poutanen, S. Zhang, S. Bhattacharyya, S. Bogdanov, L. Ji, A. Patruno, T. E. Riley, and et al. (incl. J. Nättilä). Dense matter with eXTP. Science China Physics, Mechanics, and Astronomy, 62:29503, February 2019.
- [14] Z. Li, V. F. Suleimanov, J. Poutanen, T. Salmi, M. Falanga, **J. Nättilä**, and R. Xu. Evidence for the Photoionization Absorption Edge in a Photospheric Radius Expansion X-Ray Burst from GRS 1747—312 in Terzan 6. *ApJ*, 866:53, October 2018, [arXiv:1809.00098].
- [13] T. Salmi, J. Nättilä, and J. Poutanen. Bayesian parameter constraints for neutron star masses and radii using X-ray timing observations of accretion-powered millisecond pulsars. A&A, 618:A161, October 2018, [arXiv:1805.01149].
- [12] P. Pihajoki, M. Mannerkoski, J. Nättilä, and P. H. Johansson. General purpose ray-tracing and polarized radiative transfer in General Relativity. *ApJ*, 863:8, August 2018, [arXiv:1804.04670].
- [11] J. Nättilä and P. Pihajoki. Radiation from rapidly rotating oblate neutron stars. A&A, 615:A50, July 2018, [arXiv: 1709.07292].
- [10] J. Nättilä, M. C. Miller, A. W. Steiner, J. J. E. Kajava, V. F. Suleimanov, and J. Poutanen. Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra. A&A, 608:A31, December 2017, [arXiv:1709.09120].
- [9] V. F. Suleimanov, J. J. E. Kajava, S. V. Molkov, J. Nättilä, A. A. Lutovinov, K. Werner, and J. Poutanen. Basic parameters of the helium-accreting X-ray bursting neutron star in 4U 1820-30. MNRAS, 472:3905-3913, December 2017, [arXiv:1708.09168].
- [8] J. J. E. Kajava, K. I. I. Koljonen, **J. Nättilä**, V. Suleimanov, and J. Poutanen. Variable spreading layer in 4U 1608-52 during thermonuclear X-ray bursts in the soft state. *MNRAS*, 472:78–89, November 2017, [arXiv:1707.09479].
- [7] J. Kuuttila, J. J. E. Kajava, J. Nättilä, S. E. Motta, C. Sánchez-Fernández, E. Kuulkers, A. Cumming, and J. Poutanen. Flux decay during thermonuclear X-ray bursts analysed with the dynamic power-law index method. A&A, 604:A77, August 2017, [arXiv:1705.05653].
- [6] V. F. Suleimanov, J. Poutanen, J. Nättilä, J. J. E. Kajava, M. G. Revnivtsev, and K. Werner. The direct cooling tail method for X-ray burst analysis to constrain neutron star masses and radii. MNRAS, 466:906–913, April 2017, [arXiv:1611.09885].
- [5] J. J. E. Kajava, J. Nättilä, J. Poutanen, A. Cumming, V. Suleimanov, and E. Kuulkers. Detection of burning ashes from thermonuclear X-ray bursts. MNRAS, 464:L6–L10, January 2017, [arXiv:1608.06801].

- [4] J. Nättilä, A. W. Steiner, J. J. E. Kajava, V. F. Suleimanov, and J. Poutanen. Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method. A&A, 591:A25, June 2016, [arXiv:1509.06561].
- [3] J. Nättilä, V. F. Suleimanov, J. J. E. Kajava, and J. Poutanen. Models of neutron star atmospheres enriched with nuclear burning ashes. A&A, 581:A83, September 2015, [arXiv:1507.01525].
- [2] J. J. E. Kajava, J. Nättilä, O.-M. Latvala, M. Pursiainen, J. Poutanen, V. F. Suleimanov, M. G. Revnivtsev, E. Kuulkers, and D. K. Galloway. The influence of accretion geometry on the spectral evolution during thermonuclear (type I) X-ray bursts. MNRAS, 445:4218–4234, December 2014, [arXiv:1406.0322].
- [1] J. Poutanen, J. Nättilä, J. J. E. Kajava, O.-M. Latvala, D. K. Galloway, E. Kuulkers, and V. F. Suleimanov. The effect of accretion on the measurement of neutron star mass and radius in the low-mass X-ray binary 4U 1608-52. MNRAS, 442:3777-3790, August 2014, [arXiv:1405.2663].

Proceedings

- [2] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A. Vuorinen. Constraining the properties of neutron-star matter with observations. In 12th INTEGRAL Conference, Geneva, Switzerland, 11-15 February 2019 [arXiv:1904.01354].
- [1] P. Soffitta, R. Bellazzini, E. Bozzo, V. Burwitz, A. Castro-Tirado, E. Costa, T. Courvoisier, H. Feng, S. Gburek, R. Goosmann, and et al. (incl. J. Nättilä) XIPE: the x-ray imaging polarimetry explorer. In *Space Telescopes and Instrumentation* 2016: Ultraviolet to Gamma Ray, volume 9905 of Proc. SPIE, page 990515, July 2016. doi.org/10.1117/12.2233046.

Theses

- [3] **J. Nättilä**. X-ray bursts as a tool to constrain the equation of state of the ultra-dense matter inside neutron stars. PhD thesis, University of Turku, Finland, 2017. ISBN:978-951-29-7057-5.
- [2] J. Nättilä. Mass and radius constraints for neutron stars using the cooling tail method. Master's thesis, University of Oulu, Finland, 2013. oulu-201312041966.
- [1] J. Nättilä. Spectral analysis of X-ray bursts from neutron stars: IGR J1747–2721 (Neutronitähtien röntgenpurkaukset ja niiden spektrianalyysi: IGR J1747–2721). Bachelor's thesis, University of Oulu, Finland, 2012.

Open source software

- [6] Runko, Modern C++14/PYTHON3 toolbox for kinetic plasma simulations. https://github.com/natj/runko
- [5] CORGI, C++14 grid infrastructure for massively parallel multi-physics simulations. https://github.com/natj/corgi
- [4] mpi4cpp, User-friendly C++14 MPI headers with template metaprogramming. https://github.com/natj/mpi4cpp
- [3] **Bender**, ray tracing code, General relativistic ray tracing code for computing radiation from rapidly rotating oblate neutron stars in Julia/Python3. https://github.com/natj/bender
- [2] Hydro, modular 2D hydrodynamical code with unsplitted HLLC Rieman solver, second order Runge-Kutta timestepping, and linear piecewise reconstruction written in pure JULIA. https://github.com/natj/hydro
- [1] Cellular Automata.jl, Julia library for 1/2D elementary and totalistic Cellular automata modeling. https://github.com/natj/CellularAutomata.jl
- + Smaller libraries and software available at https://github.com/natj.