

What is claimed is:

 A method for comparing a first microarray spot with a second microarray spot comprising:

providing a first plurality of intensity values (S_i^A) for said first microarray spot and a second plurality of intensity values (S_k^B) for said second microarray spot;

calculating a p value using Wilcoxon's rank sum test, wherein said p value is for a null hypothesis that $\theta=0$ and an alternative hypothesis that said $\theta>0$, wherein said θ is a test statistic for intensity difference between said first plurality and said second plurality; and

indicating said first microarray spot is different from said second microarray spot if said p value is greater than a significance level.

- 2. The method of Claim 1 wherein said testing statistic is median (S_i^A) -median (S_k^B) .
- 3. The method of Claim 2 wherein said significance level is 0.05.
- 4. The method of Claim 1 wherein said first microarray spot and second microarray spot are nucleic acid spots.
- The method of Claim 4 wherein said nucleic acid spots are among at least 100 nucleic acid spots on a substrate.

- 6. The method of Claim 5 wherein said nucleic acid spots are among at least 1000 spots on said substrate.
- 7. The method of Claim 6 wherein said nucleic acid spots are cDNA spots.
- 8. The method of Claim 7 wherein said nucleic acid spots are oligonucleotide spots.
- 9. The method of Claim 1 further comprising step of combining first plurality and second plurality of intensity values if said *p*-value is greater than a significance level.
- 10. A computer software product for comparing a first microarray spot with a second microarray spot comprising:

computer program code for inputing a first plurality of intensity values (S_i^A) for said first microarray spot and a second plurality of intensity values (S_k^B) for said second microarray spot;

computer program code for calculating a p value using Wilcoxon's rank sum test, wherein said p value is for a null hypothesis that $\theta=0$ and an alternative hypothesis that said $\theta>0$, wherein said θ is a test statistic for intensity difference between said first plurality and said second plurality; and

computer program code for indicating said first microarray spot is different from said second microarray spot if said p value is greater than a significance level; and

a computer readable media for storing said computer program codes.

- 11. The computer program product of Claim 10 wherein said testing statistic is $median(S_k^A)$ -median(S_k^B).
- 12. The computer program of Claim 11 wherein said significance level is 0.05.
- 13. The computer software product of Claim 11 further comprising computer program code for accepting user's input or selection of said significance level.
- 14. The computer software product of Claim 11 wherein said first microarray spot and second microarray spot are nucleic acid spots.
- 15. The computer software product of Claim 14 wherein said nucleic acid spots are among at least 100 nucleic acid spots on a substrate.
- 16. The computer software product of Claim 15 wherein said nucleic acid spots are among at least 1000 spots on said substrate.

21.

- 17. The computer software product of Claim 16 wherein said nucleic acid spots are cDNA spots.
- 18. The computer software product of Claim 16 wherein said nucleic acid spots are oligonucleotide spots.
- 19. The computer software product of Claim 10 further computer program code for combining first plurality and second plurality of intensity values if said *p*-value is greater than a significance level.
- 20. The computer software product of Claim 19 wherein said significance level is 0.5.
- a processor; and
 a memory being coupled to the processor, the memory storing a plurality machine
 instructions that cause the processor to perform a plurality of logical steps when

A system for comparing nucleic acid probes, comprising:

implemented by the processor, said logical steps including:

inputing a first plurality of intensity values (S_i^A) for said first microarray spot and a second plurality of intensity values (S_k^B) for said second microarray spot;

calculating a p value using Wilcoxon's rank sum test, wherein said p value is for a null hypothesis that $\theta=0$ and an alternative hypothesis that said $\theta>0$,

wherein said θ is a test statistic for intensity difference between said first plurality and said second plurality; and

indicating said first microarray spot is different from said second microarray spot if said p value is greater than a significance level.

- 22. The system of Claim 21 wherein said testing statistic is median (S_i^A)
 median (S_k^B) .
- 23. The system of Claim 22 wherein said significance level is 0.05.
- 24. The system of Claim 22 wherein said steps further comprise accepting user's input or selection of said significance level.
- 25. The system of Claim 21 wherein said first microarray spot and second microarray spot are nucleic acid spots.
- 26. The system of Claim 25 wherein said nucleic acid spots are among at least 100 nucleic acid spots on a substrate.
- 27. The system of Claim 26 wherein said nucleic acid spots are among at least 1000 spots on said substrate.

- 28. The system of Claim 27 wherein said nucleic acid spots are cDNA spots.
- 29. The system of Claim 27 wherein said nucleic acid spots are oligonucleotide spots.
- 30. The system of Claim 21 wherein said steps further comprise combining first plurality and second plurality of intensity values if said *p*-value is greater than a significance level.
- 31. The system of Claim 30 wherein said significance level is 0.5.
- 32. A method for determining whether a transcript is present in a biological sample comprising:

providing a plurality of perfect match pixel intensity values (PM_{ij}) and mismatch pixel intensity values (MM_{ik}) for the transcript, wherein said PM_{ij} is the pixel intensity value for perfect match probe i and pixel j and MM_{ik} is the pixel intensity value for mismatch probe i and pixel k;

calculating a p-value using one-sided Wilcoxon's rank sum test, wherein the p-value is for a null hypothesis that $(median(PM_{ij})-median(MM_{ik}))=a$ threshold value and an alternative hypothesis that said $(median(PM_{ij})-median(MM_{ik}))>$ said threshold value; and

indicating whether said transcript is present based upon said p-value.

- 33. The method of Claim 32 wherein said threshold value is zero.
- 34. The method of Claim 32 wherein said threshold value is calculated using: $\tau = c \sqrt{median(PM_i)}$ wherein said c is a constant.
- 35. The method of Claim 32 wherein threshold value is calculated using: $\tau = c_1 \sqrt{mean(PM_i)}$ wherein said c is a constant.
- 36. The method of Claim 32 wherein said step of indicating comprises indicating said transcript is present if said p is smaller than a first significance level (α_1) .
- 37. The method of Claim 32 wherein said step of indicating further comprises indicating said transcript is absent if said p is greater than or equal to a second significance level (α_2).
- 38. The method of Claim 37 wherein said step of indicating further comprises indicating said transcript is marginally detected if $\alpha_1 \le p < \alpha_2$.
- 39. A computer software product for determining whether a transcript is present in a biological sample comprising:

computer program code for inputting a plurality of perfect match pixel intensity values (PM_{ij}) and mismatch pixel intensity values (MM_{ik}) for said transcript, wherein said PM_{ij} is the pixel intensity value for perfect match probe i and pixel j and MM_{ik} is the pixel intensity value for mismatch probe i and pixel k;

computer software code for calculating a p-value using one-sided Wilcoxon's rank sum test, wherein the p-value is for a null hypothesis that $(median(PM_{ij})-median(MM_{ik}))=$ a threshold value and an alternative hypothesis that said $(median(PM_{ij})-median(MM_{ik}))>$ said threshold value;

computer software code for indicating whether said transcript is present based upon said *p*-value; and

a computer readable media for storing said code.

- 40. The computer software product of Claim 32 wherein said threshold value is zero.
- 41. The computer software product of Claim 32 wherein said threshold value is calculated using: $\tau = c \sqrt{median(PM_i)}$ wherein said c is a constant.
- 42. The computer software product of Claim 32 wherein threshold value is calculated using: $\tau = c_1 \sqrt{mean(PM_i)}$ wherein said c is a constant.

46.

- 43. The computer software product of Claim 32 wherein said computer program code for indicating comprises computer software code for indicating that said transcript is present if said p is smaller than a first significance level (α_1) .
- The computer software product of Claim 32 wherein said computer program code for indicating further comprises computer software code for indicating said transcript is absent if said p is greater than or equal to a second significance level (α_2) .
- 45. The computer software product of Claim 37 wherein said computer program code for indicating further comprises computer software code for indicating that said transcript is marginally detected if $\alpha_1 \le p < \alpha_2$.
- a processor; and
 a memory being coupled to the processor, the memory storing a plurality machine
 instructions that cause the processor to perform a plurality of logical steps when
 implemented by the processor, said logical steps including:

A system for comparing nucleic acid probes, comprising:

providing a plurality of perfect match pixel intensity values (PM_{ij}) and mismatch pixel intensity values (MM_{ik}) for the transcript, wherein said PM_{ij} is the pixel intensity value for perfect match probe i and pixel j and MM_{ik} is the pixel intensity value for mismatch probe i and pixel k;

20

5

calculating a p-value using one-sided Wilcoxon's rank sum test, wherein the p-value is for a null hypothesis that $(median(PM_{ij})-median(MM_{ik}))=a$ threshold value and an alternative hypothesis that said $(median(PM_{ij})-median(MM_{ik}))>$ said threshold value; and

- indicating whether said transcript is present based upon said p-value.
- 47. The system of Claim 46 wherein said threshold value is zero.
- 48. The system of Claim 47 wherein said threshold value is calculated using: $\tau = c \sqrt{median(PM_i)}$ wherein said c is a constant.
 - 49. The system of Claim 47 wherein threshold value is calculated using: $\tau = c_1 \sqrt{mean(PM_i)}$ wherein said c is a constant.
- 15 50. The system of Claim 46 wherein said step of indicating comprises indicating said transcript is present if said p is smaller than a first significance level (α_1) .
 - 51. The system of Claim 50 wherein said step of indicating further comprises indicating said transcript is absent if said p is greater than or equal to a second significance level (α_2).

the state of the s

5

10

52. The system of Claim 51 wherein said first significance level (α_1) is smaller than said (α_2) and said step of indicating further comprises indicating said transcript is marginally detected if $\alpha_1 \le p < \alpha_2$.