Grundlagen der Künstlichen Intelligenz

16 Support-Vektor-Maschinen

Perceptron revisited, Lernen von linearen Max-Margin Klassifikatoren, Nichtlinear separierbare Daten, Datenraum & Merkmalsraum, Kernel-Funktionen, Kernel-Maschinen

Volker Steinhage

Inhalt

Linear separierbare Daten

- Perceptron und duale Darstellung
- Der Margin und seine Maximierung

Nichtlinear separierbare Daten

- Transformation in Merkmalsräume
- Der Kernel-Trick
- Mercer-Kernels
- Kernel-Machines

Lernen von Klassifikatoren

Aufgabe: Erlernen eines Klassifikators
 aus m Trainingsbeispielen (x₁,y₁),...,(x_m,y_m)

- Einfachster Fall der binären Klassifikation: jedes Beispiel besteht aus
 - *n*-elementigem Datenvektor $\mathbf{x}_i = (x_{i1}, ..., x_{in})$
 - dessen binärer Klassifikation $y_i \in \{+1,-1\}$

- Bspl.: Klassifikation aller deutschen Internetseiten in die beiden Klassen "mit Informatikbezug" und "ohne Informatikbezug":
 - Datenvektoren \mathbf{x}_i mit binären Elementen x_{ij} für das Auftreten bzw. Nichtauftreten relevanter Schlagworte
 - Ziel: Klassifikation neuer Internetseiten mit geringer Fehlerquote

Lineare Klassifikation durch Perzeptrons (1)

Perzeptron bislang:

• Lernen einer Trennungsebene $W \cdot I = 0$ durch die Perzeptron-Lernregel:

 $w_j \leftarrow w_j + \alpha \cdot l_j \cdot (T-O)$ für Eingabe I, wahre Ausgabe T und errechnete Ausgabe O

• Bspl. für die Boolesche Funktion $and(I_1,I_2)$ mit $g=step_0$, $a_0=1$ und $W_0=-1.5$

$$\mathbf{W} \cdot \mathbf{I} = (-1.5, 1, 1)^{\mathsf{T}} \cdot (1, \mathbf{I}_1, \mathbf{I}_2)^{\mathsf{T}} = 0 \text{ mit } t = 0$$

bzw. mit **x** für **l**:

$$\mathbf{W} \cdot \mathbf{x} - b = (1,1)^{\mathsf{T}} \cdot (x_1, x_2)^{\mathsf{T}} - b = 0 \text{ mit } b = 1.5$$

Lineare Klassifikation durch Perzeptrons (2)

Perzeptron bislang:

• Lernen einer Trennungsebene $W \cdot I = 0$ durch die Perzeptron-Lernregel:

$$w_j \leftarrow w_j + \alpha \cdot l_j \cdot (T-O)$$
 - für Eingabe I, wahre Ausgabe T und errechnete Ausgabe O

- Jetzt allgemein für die binäre Klassifikation $y_i \in \{+1,-1\}$ mit g = sign:
 - Trennende Hyperebene $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} b = 0$ mit $/|\mathbf{w}|/ = 1$
 - Ausgabefunktion $h(\mathbf{x}) = sign(f(\mathbf{x}))$

t

Trennhyperebene für 2-dim. Trainingsmenge

Lineare Klassifikation durch Perzeptrons (3)

Perzeptron:

Perzeptron-Lernregel neu formuliert:

Bei negat. Produkt unterschiedliche Vorzeichen von y_i und $sign(\langle w_t, x_i \rangle) \sim Fehler$

Bisher: $w_j \leftarrow w_j + \alpha \cdot l_j \cdot (T - O)$

Hier: Schwellwert b über zusätzliche Eingabekante mit $\mathbf{w}_0 = \mathbf{b}$ und $\mathbf{a}_0 = -1$ kodiert, also $f(\mathbf{x}_i) = \langle \mathbf{w}_t, \mathbf{x}_i \rangle$ und Ausgabe $h(\mathbf{x}_i) = sign(f(\mathbf{x}_i))$

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \cdot \mathbf{x}_i \cdot \mathbf{y}_i$$
$$t \leftarrow t+1$$

 y_i entspricht jetzt T, \boldsymbol{x}_i entspricht I_j und $sign(\langle \boldsymbol{w}_t, \boldsymbol{x}_i \rangle)$ entspricht O

mit Gewichtsvektor \mathbf{w}_t in Epoche t, Trainingsbeispielen $(\mathbf{x}_i, \mathbf{y}_i)$ und Lernrate η

if $\mathbf{y}_i \cdot sign(\langle \mathbf{w}_t, \mathbf{x}_i \rangle) < 0$ then

• D.h. \mathbf{w} ergibt sich als eine Linearkombination der Trainingsbeispiele (\mathbf{x}_i, y_i) mit Koeffizienten $\alpha_i \ge 0$:

$$\mathbf{W} = \sum_{i} \alpha_{i} \cdot y_{i} \cdot \mathbf{X}_{i}$$

- → es werden nur informative Punkte (Fehlklassifikationen) benutzt
- → die Koeffizienten der Punkte reflektieren deren Bedeutung

Perzeptrons: Duale Repräsentation

Perzeptron:

Neue duale Formulierung für trennende Hyperebene

w als Linearkombination der Trainingsbeispiele

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} = \langle \mathbf{w}, \mathbf{x} \rangle = \sum_{i} \alpha_{i} \cdot y_{i} \cdot \langle \mathbf{x}_{i}, \mathbf{x} \rangle = 0$$

mit **w** als Linearkombination aus den Trainingsbeispielen: $\mathbf{w} = \sum_{j} \alpha_{j} \cdot \mathbf{y}_{j} \cdot \mathbf{x}_{j}$

Damit ist auch die Lernregel neu formulierbar:

if
$$y_i \cdot sign(\sum_j \alpha_j \cdot y_j \cdot \langle x_j, x_i \rangle) < 0$$
 then $\alpha_i \leftarrow \alpha_i + \eta$

Anmerkung: hier treten die Daten nur in Skalarprodukten auf

- Wozu das Ganze?
 - → Support-Vektor-Maschinen sind lineare Klassifikatoren, welche die duale Darstellung verwenden, um die optimale Trennungsebene zu wählen
- Wahl der Trennebene?

Auswahl der Trennungsebene

Es gibt i. A. nicht nur eine Trennungsebene

- Die Perceptron-Lernregel findet irgendeine Trennungsebene
- Die Wahl der Trennungsebene hängt ab von
 - Lernrate und
 - Reihenfolge der verarbeiteten Trainingsdaten
- → Gibt es eine beste Trennebene?

Maximum Margin

Die *Support Vectore Machine* (*SVM*) wählt die Trennebene, welche den kleinsten Abstand der Trainingsbeispiele zur Trennebene, die sog. *Trennspanne* (engl. *Margin*), maximiert

→ Maximum Margin Classification

Support-Vektoren

- Die Trainingspunkte, welche den Margin berühren, heißen Stützvektoren (*Support Vectors*), weil sie die Trennungszone "stützen"
- Der Klassifizierer heißt entsprechend: *lineare Support Vector Machine (SVM)*
- Das SVM-Lernverfahren maximiert die Breite des Margins → wie?

Maximum Margin = Minimal Norm

- Vor.: Wir normieren f(x) = w⋅x b so, dass die Funktionswerte auf den Margin-Grenzen gerade +1 bzw. -1 betragen
- → Die Breite *M* des Margin ist dann eine Funktion von w:

$$\langle \mathbf{w}, \mathbf{x}^{+} \rangle - \mathbf{b} = +1 \text{ und } \langle \mathbf{w}, \mathbf{x}^{-} \rangle - \mathbf{b} = -1$$

$$\sim \langle \mathbf{w}, (\mathbf{x}^{+} - \mathbf{x}^{-}) \rangle = 2$$

$$\sim M = \langle (\mathbf{w}/||\mathbf{w}||), (\mathbf{x}^{+} - \mathbf{x}^{-}) \rangle = 2/||\mathbf{w}||$$

für Stützvektoren x + und x -

- Maximieren von $M = 2/||\mathbf{w}||$ heißt $||\mathbf{w}||/2$ minimieren ...
 - ... unter der Nebenbedingung, dass alle Trainingsbeispiele korrekt klassifiziert sein müssen

Das Optimierungsproblem (1)

Minimieren von $||\mathbf{w}||/2$ ist analog zu:

$$arg min_{(\mathbf{w},b)} \frac{1}{2} \cdot ||\mathbf{w}||^2 = \frac{1}{2} \cdot \langle \mathbf{w}, \mathbf{w} \rangle$$

unter den Nebenbedingungen

$$y_i$$
 ($\langle \mathbf{w}, \mathbf{x}_i \rangle - \mathbf{b}$) ≥ 1 Korrekte Klassifikation der Trainingsbeispiele (mit minimalem Abstand 1 nach Normierung)

Lösung:

• Einführen der Lagrange-Multiplikatoren $\alpha_i \ge 0$ und Zusammenfassung des Optimierungsproblems in der sog. Lagrange-Funktion

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle - \sum_{i} \alpha_{i} [y_{i} (\langle \mathbf{w}, \mathbf{x}_{i} \rangle - b) - 1]$$

• Also wird $L(\mathbf{w}, b, \alpha)$ minimiert für \mathbf{w} und b und maximiert für die $\alpha_i \ge 0$:

$$\arg\min_{(\mathbf{w},b)} \max_{\alpha_i \ge 0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left[y_i (\mathbf{w} \cdot \mathbf{x}_i - b) - 1 \right] \right\}$$

Das Verfahren der Lagrange-Multiplikatoren (nach Joseph-Louis Lagrange) formuliert Optimierungsprobleme mit Nebenbedingungen (*constrained optimization problems*) derart um, dass für jede Nebenbedingung eine neue unbekannte skalare Variable, ein sog. Lagrange-Multiplikator eingeführt wird, und definiert dann eine Linearkombination, welche die Multiplikatoren als Koeffizienten einbindet.

Das Optimierungsproblem (2)

Wir minimieren

$$L(\mathbf{w},b,\alpha) = \frac{1}{2} \cdot \langle \mathbf{w}, \mathbf{w} \rangle - \sum_{i} \alpha_{i} [y_{i} (\langle \mathbf{w}, \mathbf{x}_{i} \rangle - b) - 1]$$

$$\frac{\partial}{\partial b} L(\mathbf{w}, b, \boldsymbol{\alpha}) = 0 \quad \text{und} \quad \frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, b, \boldsymbol{\alpha}) = \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

und erhalten

$$\sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i} = \mathbf{0} \quad \text{und} \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i} \mathbf{x}_{i}.$$

→ Folgefolie

Das Optimierungsproblem (3)

Wir setzen in

$$L(\mathbf{w},b,\alpha) = \frac{1}{2} \cdot \langle \mathbf{w}, \mathbf{w} \rangle - \sum_{i} \alpha_{i} [y_{i} \cdot (\langle \mathbf{w}, \mathbf{x}_{i} \rangle - b) - 1].$$

 $\sum_{i} \alpha_{i} y_{i} = 0$ und $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} x_{i}$ ein und erhalten mit einigen Umformungen

$$L(\mathbf{w},b,\alpha) = \frac{1}{2} \cdot \langle \mathbf{w}, \mathbf{w} \rangle - \sum_{i} \alpha_{i} y_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle + b \cdot \sum_{i} \alpha_{i} y_{i} + \sum_{i} \alpha_{i}$$

$$= -\frac{1}{2} \cdot \sum_{ij} \alpha_{i} y_{i} \alpha_{j} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle + \sum_{i} \alpha_{i}.$$
Summanden ausmultipliziert

• Dieses duale Problem ist nun bzgl. α zu maximieren:

$$W(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \cdot \sum_{ij} \alpha_{i} y_{i} \alpha_{j} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle.$$
Summe der α_{i} ist positiv. Abgezogen werden die $\alpha_{i} \cdot y_{i} \langle \mathbf{w}, \mathbf{x} \rangle$ aller Trainingsbeispiele.

unter den Nebenbedingungen

$$\alpha_i \geq 0$$
 und $\sum_i \alpha_i y_i = 0$ (aus der Minimierung für b)

Das Optimierungsproblem (4)

Lösung und Vorgehensweise einer SVM:

- 1) Lösen des dualen Problems und Herleitung der $\alpha_i \ge 0$, die W(α) maximieren
 - Punkte mit $\alpha_i > 0$ liegen direkt auf dem Margin \sim Stützvektoren
 - Die restlichen Trainingspunkte haben keinen Einfluss $\alpha_i = 0$
- 2) Ermittlung der Trennebene mit maximaler Trennspanne (Margin):
 - Normalenvektor **w** nach: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$,
 - $\quad \text{Offset b "uber alle N}_{\text{sup}} \text{ St"utzvektoren nach: b = 1/N}_{\text{sup}} \cdot \Sigma_{\text{i=1:N}_{\text{sup}}} \langle \mathbf{w}, \mathbf{x}_{\text{i}} \rangle \text{ y}_{\text{i}}$
- 3) Die Entscheidungsfunktion für ungesehene Beispiele \mathbf{x}_{neu} ist nun:

$$y = h(\mathbf{x}_{neu}) = sign(\langle \mathbf{w}, \mathbf{x}_{neu} \rangle - b) = sign(\sum_i \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x}_{neu} \rangle - b).$$

Wichtige Beobachtung: in der Zielfunktion $W(\alpha)$ sowie in der Entscheidungsfunktion $y = h(\mathbf{x}_{neu})$ treten die Trainingsdaten \mathbf{x}_i nur in Skalarprodukten auf.

Eigenschaften des Optimierungsproblems

- Das Optimierungsproblem für $W(\alpha)$ ist konvex, hat also keine lokalen Optima!
- Die Lösung der quadrat. Optimierung für $W(\alpha)$ ist effizient implementierbar
- Die Datenvektoren gehen nur als Skalarprodukte ein dies gilt auch für den nach der Bestimmung der Gewichte α_i berechneten Klassifikator selbst:

$$h(\mathbf{x}_{neu}) = sign\left(\sum_{i} \alpha_{i} y_{i} \langle \mathbf{x}_{neu}, \mathbf{x}_{i} \rangle - b\right)$$

- Die α_i sind nur für Support-Vektoren größer als Null
- Die Anzahl der Support-Vektoren ist in der Regel deutlich kleiner als die Anzahl der Trainingsbeispiele
- Weiterer Vorteil der SVM: die SVM macht keine Annahmen bzgl. der Verteilung der Klassen (z.B. Normalverteilung o. Ä.)

Nichtlinear separierbare Daten

Beispiel:

- Geg.: 2-dim. Datenraum
- alle positiv klassifizierten Trainingsbeispiele liegen innerhalb einer Kreisregion
- alle negativ klassifizierten Trainingsbeispiele liegen außerhalb der Kreisregion
- Sep.-Grenze: $x_1^2 + x_2^2 \le 1$
 - → Daten sind nicht linear separierbar

Höherdimensionale Merkmalsräume

- Idee: Transformiere jeden Datenvektor $\mathbf{x} = (x_1, x_2)$ des originalen Datenraums in einen neuen Merkmalsvektor $F(\mathbf{x})$ eines höherdimensionalen Merkmalsraumes
- → Daten sind im Merkmalsraum linear separierbar!

Bspl.: $F(\mathbf{x}) = (f_1, f_2, f_3)$ mit $f_1 = x_1^2$, $f_2 = x_2^2$, $f_3 = \sqrt{2} \cdot x_1 \cdot x_2$

Lineare Separierbarkeit im Merkmalsraum

- Generell gilt: Sofern Datenvektoren x_i in einen neuen Merkmalsraum (Feature Space) ausreichend hoher Dimension abgebildet werden, sind sie dort linear separierbar
- Ausreichende Dimension: sofern n Datenvektoren vorliegen, ist die lineare Separierbarkeit i.A. bei Merkmalsräumen der Dimension $\geq n$ gegeben

SVM auf nichtlinear separierbaren Daten

Gefahr: Overfitting

 Lösung: bestimme den Maximum-Margin-Klassifikator im Merkmalsraum

SVM auf nichtlinear separierbaren Daten (2)

Finden des optimalen linearen Klassifikators erweist sich als Instanz folg. Optimierung:

$$\max\left(\sum_{i}\alpha_{i}-\frac{1}{2}\sum_{i,j}\alpha_{i}\alpha_{j}y_{i}y_{j}\left\langle \boldsymbol{x}_{i},\boldsymbol{x}_{j}\right\rangle\right) \tag{*}$$

Zur Erinnerung: der lineare Klassifikator soll aber nicht im originalen Datenraum, sondern im hochdimensionalen Merkmalsraum gefunden werden

Also ersetze in (*): $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$ durch $\langle F(\mathbf{x}_i), F(\mathbf{x}_j) \rangle$

Der Kernel-Trick

Ein hochdimensionaler Merkmalsraum macht also eigentlich nichtlinear separierbare Probleme linear separierbar

Aber:

- Berechnung der Abbildung in den Merkmalsraum kann teuer sein
- Berechnung der Skalarprodukte im Merkmalsraum ist auch teuer

Lösung ist der Kernel-Trick:

Bei geeigneter Wahl von F kann $\langle F(\mathbf{x}_i), F(\mathbf{x}_j) \rangle$ effizient ohne vorherige Abbildung der einzelnen Datenvektoren in den Merkmalsraum berechnet werden

Anwendung auf Kreisbeispiel

Im Beispiel wurde gewählt Abbildung $F(\mathbf{x}) = (f_1, f_2, f_3)$ mit $f_1 = x_1^2$, $f_2 = x_2^2$, $f_3 = \sqrt{2} x_1 x_2$

Dann entspricht $\langle F(\mathbf{x}_i), F(\mathbf{x}_i) \rangle = \langle \mathbf{x}_i, \mathbf{x}_i \rangle^2$:

$$\langle F(\boldsymbol{x}_i), F(\boldsymbol{x}_j) \rangle = \left\langle \begin{pmatrix} x_{i1}^2 \\ x_{i2}^2 \\ \sqrt{2} x_{i1} x_{i2} \end{pmatrix}, \begin{pmatrix} x_{j1}^2 \\ x_{j2}^2 \\ \sqrt{2} x_{j1} x_{j2} \end{pmatrix} \right\rangle$$

$$= x_{i1}^2 x_{i1}^2 + 2x_{i1} x_{i2} x_{i1} x_{i2} + x_{i2}^2 x_{i2}^2$$

$$= \left(x_{i1}x_{j1} + x_{i2}x_{j2}\right)^2 = \left\langle \boldsymbol{x}_i, \boldsymbol{x}_j \right\rangle^2.$$

 $\langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$ heißt in diesem Kontext Kernfunktion oder Kernel-Funktion und wird mit $K(\mathbf{x}_i, \mathbf{x}_i)$ bezeichnet.

Verallgemeinert

- Allg. wird also eine Kernfunktion $K(\mathbf{x}_i, \mathbf{x}_j)$ auf Paare von Datenvektoren angewandt, wenn für diese Skalarprodukte $\langle F(\mathbf{x}_i), F(\mathbf{x}_j) \rangle$ in einem entspr. Merkmalsraum auszuwerten sind
- → Konsequenz: wir können in hochdimensionalen Merkmalsräumen lernen, wobei wir aber lediglich Kernfunktionen berechnen und nicht die vollständige Transformation in den Merkmalsraum

 Lernansätze, die Kernfunktionen einsetzen, werden auch als Kernel-Maschinen bezeichnet

Satz von Mercer

Generalisierung:

- $\langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$ ist natürlich nicht die einzige Kernfunktion $K(\mathbf{x}_i, \mathbf{x}_j)$
- Andere Kernfunktionen entsprechen anderen hochdim. Merkmalsräumen
- Satz von Mercer (1909): jede Kernfunktion mit positiv definiter Kernel-Matrix $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$ hat einen korrespondierenden Merkmalsraum
- Die Merkmalsräume können selbst für einfache Kernel sehr groß sein:
 - z.B. entspricht der polynomiale Kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i \cdot \mathbf{x}_j)^d$ einem Merkmalsraum, dessen Dimension exponentiell in d ist
 - bei Verwendung solcher Kernel findet man dann optimale lineare Trennungen effizient in Merkmalsräumen mit Milliarden Dimensionen
- Häufig eingesetzt werden radiale Basisfunktionen $K(\mathbf{x}_i, \mathbf{x}_i) = \exp(||\mathbf{x}_i \mathbf{x}_i||^2/c)$

SVM: Erkennung handgeschriebener Ziffern (1)

Beispiele aus dem NIST*-Datensatz

- mit 60.000 klassifizierten 8-Bit-Grauwertbildern
- jedes Bild á 20×20 Pixel

^{*} U.S. Nat. Institute of Science & Technology

SVM: Erkennung handgeschriebener Ziffern (2)

Verfahren im Vergleich (Stand 2003):

- 3NN: einfacher 3-nächste-Nachbarn-Klassifizierer
- 300 Hidden: Backprop-Neural-Network mit 400 Eingabeeinheiten (Pixel), 10 Ausgabeeinheiten und 1 verborgenen Schicht mit 300 Einheiten
- *LeNet*: ein Konvolutionsnetzwerk (Stand 1998), das die Bildstruktur aufgreift mit 32x32 Eingaben, die über 3 verborgene Schichten mit ca. 800, 200 bzw. 30 Einheiten zu 10 Ausgabeeinheiten führt. Die verborgenen Schichten führen schrittweise eine Klassifikation von immer größeren Bildteilbereichen durch (http://yann.lecun.com/exdb/lenet/ (19.06.20))
- Boosted LeNet kombiniert 3 Kopien von LeNet in einem Boosting-Ansatz
- *Virtual SVM*: optimierte SVM mit Kerneln, die i.W. auf Produkten benachbarter Pixelpaare basieren anstatt auf Produkten über allen Pixelpaaren
- **Shape Matching**: Methoden des Computersehens ermitteln korrespondierende Bildbereiche. Die resultierenden Transformationen werden als Distanzmaß für eine 3NN genutzt

	3	300		Boosted		Virtual	Shape
	NN	Hidden	LeNet	LeNet	SVM	SVM	Match
Error rate (pct.)	2.4	1.6	0.9	0.7	1.1	0.56	0.63
Runtime (millisec/digit)	1000	〔10	30	50	2000	200	
Memory requirements (Mbyte)	12	.49	.012	.21	11		
Training time (days)	0	7	14	- 30	10		
% rejected to reach 0.5% error	8.1	3.2	1.8	0.5	1.8		3 d d d d d d d d d d d d d d d d d d d

SVM: Erkennung handgeschriebener Ziffern (3)

Zu k-NN:

- k-NN = k-nächste-Nachbarn-Algorithmus ist ein Klassifikationsverfahren, das die Klassenzuordnung einer unbekannten Stichprobe durch Vergleich mit den k nächsten Nachbarn vorgenommen wird
- Das Lernen bei k-NN besteht also nur aus dem Abspeichern der Trainingsbeispiele

SVM: Zusammenfassung

Die SVM kombiniert im wesentlichen drei Techniken:

- "Optimale" lineare Klassifikation mit Hilfe der Maximum-Margin-Berechnung.
 Dies ist ein konvexes Optimierungsproblem.
- 2. Repräsentation des Problems in der dualen Darstellung, dadurch Verwendung der Daten nur in Skalarprodukten.
- 3. Ersetzung der Skalarprodukte durch Kernfunktionen, die Abstände in höherdimensionalen Merkmalsräumen berechnen.
- → Die Kombination der drei Techniken ermöglicht eine effiziente und gut generalisierende Klassifikation für nichtlinear separierbare Daten.

Kernel Machines

- Die SVM ist im Prinzip ein linearer Klassifikator, der durch den Kernel-Trick zu einem nichtlinearen erweitert wird.
- Viele lange bekannte lineare Verfahren können auch so erweitert werden.
- Dazu immer erforderlich: Umformung des Verfahrens so, dass Daten nur in Skalarprodukten auftreten.
- In den 90er Jahren Boom der Kernel-Verfahren: SVM, Kernel-LDA, Kernel-PCA, Kernel-ridge-regression, ...

Literatur

- Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998.
- B. Schölkopf, A. J. Smola: *Learning with Kernels*, MIT-Press, Cambridge (Mass.), 2002.
- R. O. Duda, P. E. Hart & D. G. Storck: Pattern Classification. 2nd Ed. Wiley Interscience, 2000.
- V. N. Vapnik: Statistical Learning Theory, Wiley, N.Y., 1998.

Statistics for Engineering and Information Science

Vladimir N. Vapnik