K Summarizer: Foundations

Runtime Verification, Inc.

June 30, 2022

Purpose

Formalize the key concepts of the ${\mathbb K}$ summarizer in matching logic.

- ► K control-flow graphs
- Basic blocks
- Soundness and completeness

We work under the following assumptions:

- ▶ Formal semantics are deterministic (i.e., $\vdash \bullet \varphi \rightarrow \circ \varphi$)
- ▶ All patterns are constrained terms: $t \land p$

K Control-Flow Graphs

Definition

A \mathbb{K} control-flow graph (abbreviated KCFG) $G = (V, E_r, E_a, E_s)$ is a finite directed graph with three types of edges where

- ▶ the vertex set *V* is a set of constrained terms;
- ▶ $E_r \subseteq V \times V$ is called the *rewriting relation*;
- ▶ $E_a \subseteq V \times V$ is called the *abstracting relation*;
- ▶ $E_s \subseteq V \times V$ is called the *splitting relation*.

We write $\varphi \leadsto_r \psi$ ($\varphi \leadsto_a \psi$ and $\varphi \leadsto_s \psi$, resp.) for the three types of edges.

Rewriting Edges

 $t_1 \wedge p_1 \leadsto_r t_2 \wedge p_2$ means

finite- and at-least-one-step rewriting

$$\vdash t_1 \land p_1 \to \bullet \diamond (t_2 \land p_2) \tag{1}$$

- $ightharpoonup \diamond \varphi \equiv \mu X \cdot \varphi \lor \bullet X$
- ▶ The next symbol enforces "at-least-one-step"
- Thanks to determinism, we can just use the "one-path" operators • and ⋄.
- Equation (1) specifies a basic block.
 - ▶ All the concrete instances of $t_1 \land p_1$ are covered:

$$\vdash orall ar{x} \ . \ ig(t_1 \wedge
ho_1 o ullet \langle t_2 \wedge
ho_2)ig)$$

- Not getting stuck somewhere in the middle.
- Determinism (by assumption)

Abstracting Edges

 $t_1 \wedge p_1 \leadsto_a t_2 \wedge p_2$ means

implication

$$\vdash t_1 \land p_1 \to \exists \bar{y} \ . \ t_2 \land p_2 \tag{2}$$

where $\bar{y} = FV(rhs) \setminus FV(lhs)$

- ▶ The most common case is when $t_1 \equiv t_2[\bar{y}]_{\bar{p}}$ where \bar{p} are the positions of \bar{y} in t_2
- ▶ It means that Equation (2) has a witness substitution

$$\pi = [t_{11}/y_1 \dots t_{1n}/y_n]$$

Splitting Edges

$$t \wedge p \rightsquigarrow_s t \wedge (p \wedge q_i)$$
 for $i = 1, 2, \dots, n$

- ▶ Complete Cases: $\vdash q_1 \lor \cdots \lor q_n$
- $\blacktriangleright t \wedge p \rightsquigarrow_{s}^{q_i} t \wedge (p \wedge q_i)$

Review

A KCFG $G = (V, E_r, E_a, E_s)$ has

- V: a set of constrained terms (nodes)
- ▶ $t_1 \land p_1 \leadsto_r t_2 \land p_2$: basic block (≥ 1 steps)
- $t \wedge p \leadsto_r^{\pi} t_2 \wedge p$ with a witness substitution π
- ▶ $t \wedge p \leadsto_r^{q_i} t \wedge (p \wedge q_i)$ with a condition q_i ▶ $\vdash q_1 \vee \cdots \vee q_n$

Termination Condition

- ▶ Φ_T : a (user-provided) termination pattern if not provided, Φ_T is $\circ \bot$ (e.g., when $\langle k \rangle$. $\langle /k \rangle$)
- ▶ $t \land p$ has no successors iff $\vdash t \land p \rightarrow \Phi_T$

Semantics Derived from a KCFG

Given a KCFG $G = (V, E_r, E_a, E_s)$, we derive a new semantics

▶ for every $\varphi_1 \leadsto_s^q \varphi_2 \leadsto_r \varphi_3$, add

rule
$$\varphi_1 \Rightarrow \varphi_3$$
 requires q

Let Γ^G be the set of derived semantic rules.

Theorem

For any t and its KCFG G^t,

$$\Gamma^L \vdash t \Rightarrow t' \quad \textit{iff} \quad \Gamma^{G^t} \vdash t \Rightarrow t'$$