Bayesian estimation of time-trees:

A journey through a strange land

Luiz Max Carvalho lm.carvalho@ed.ac.uk

Institute of Evolutionary Biology Maxwell Institute seminar series 2017

Acknowledgements

Andrew Rambaut UoE

Marc Suchard UCLA

Guy Baele KU Leuven

L

Plan for today

Problem

What are trees and why are interested in them?

Parameter space

What does the space we are trying to sample look like?

MCMC in tree space

A journey through a strange land

Preliminary results and perspectives

Performance analyses and open problems.

Motivation

Phylodynamics of fast-evolving viruses

Inferring spatial and temporal dynamics from genomic data:

Phylogenies*!

* plus complicated models

Trees and the coalescent

Central object: time-calibrated trees

Let T_n denote the time for n lineages to *coalesce*, i.e., merge into one ancestral lineage, in a population of size N_ℓ . Then:

$$\begin{split} Pr(T_n = t) &= \lambda_n e^{-\lambda_n t} \\ \lambda_n &= \binom{n}{2} \frac{1}{N_e} = \binom{n}{2} \frac{1}{N_e \tau} \end{split}$$

where N_ℓ is the effective population size and τ is the generation time. Let T_{mrca} denote the age of the most recent common ancestor:

$$\begin{split} \mathbb{E}[T_{\mathrm{mrca}}] &= \mathbb{E}[T_n] + \mathbb{E}[T_{n-1}] + \ldots + \mathbb{E}[T_2] \\ &= 1/\lambda_n + 1/\lambda_{n-1} + \ldots + 1/\lambda_2 \\ &= 2N_{\varepsilon}(1 - \frac{1}{n}) \end{split}$$

Figure: Figure 4 from Volz et al. (2013).

Target

$$p(t, b, \omega|D) = \frac{f(D|t, b, \omega)\pi(t, b, \omega)}{\sum_{t_i \in T_n} \int_B \int_{\Omega} f(D|t_i, b_i, \omega)\pi(t_i, b_i, \omega)d\omega db_i}$$
(1)

- D: observed sequence (DNA) data;
- ⊚ T_n : set of all binary ranked trees ($\mathbb{G}^{(2n-3)!!}$);
- ⊚ b_k : set of branch lengths of $t_k \in T_n$ (\mathbb{R}^{2n-2}_+ , kind of);
- \odot ω : set of parameters of interest such as substitution model parameters, migration rates, heritability coefficients, etc.

Bayesian phylogenetics

Tree space: a strange land

Discrete tree space: tree surgery

Subtree prune-and-regraft (SPR):

Discrete tree space: SPR graph

Continuous tree space: BHV

Multi-dimensional scaling

Thus

- o Non-standard, huge parameter space;
- No canonical representation
- Tip (leaf) heights impose constraints.

Open problems:

- Random walks on the SPR graph (and others);
- Useful representation for time-trees;

Metropolis-Hastings for trees

General MH setup.

Let $\tau = (t, b)$ denote a tree with topology t and branch lengths b. For two trees τ and τ' , denote the transition kernel by $q_{\gamma}(\tau|\tau') := Pr(\tau' \to \tau|\gamma)$.

Accepting with probability

$$A_{\gamma}(\tau|\tau') = min\left(1, \frac{p(\tau', \omega|D)q_{\gamma}(\tau|\tau')}{p(\tau, \omega|D)q_{\gamma}(\tau'|\tau)}\right)$$

leads to the desired target.

Exploring parameter space: mixing

Height-constrained kernels: SubTreeLeap (STL)

- 1. Excluding the root, pick a node i in τ uniformly at random, i.e., with probability 1/(2n-3);
- **2.** Draw a patristic distance δ from the distance kernel $k(\delta|\sigma)$;
- 3. Find the set of destination nodes $\mathbf{D_i}^{\delta}$ that are within distance δ and whose heights are not less than $h(i) \delta$; If $\mathbf{D_i}^{\delta} = \emptyset$:
 - prune p_i and regraft it at height $h_b = h(p_i) \delta$ or $h_a = h(p_i) + \delta$ with probability 1/2, creating a new tree τ' , else
 - pick a node $j \in \mathbf{D_i}^{\delta}$ with probability $Pr(i \to j) = 1/|\mathbf{D_i}^{\delta}|$, prune the tree at p_i and regraft it at p_j , creating a new tree τ' ;

STL - illustration

In this case the HR would be 1/3

There is always at least 1 target

location (above the root).

STL – properties

- Adaptive;
- Height-constrained;
- Changes topology and branch lengths simultaneously;
- Inherits cool properties from SPR.

Conjecture: SubTreeLeap is Hamiltonian on T_n

Quantifying exploration

- MDS;
- Clade aka subtree frequencies;
- Clade switching;
- © Effective sample size (ESS) of continuous parameters.

Clade "space"

A clade c is any collection of leaves s_1, s_2, \ldots, s_n such that they share a common ancestor in the tree. For n taxa (leaves) there are $A(n) = 2^{n-1} - 1$ possible clades.

Let $X_i = \{X_i^{(1)}, X_i^{(2)}, \dots, X_i^{(n)}\} \in [0, 1]^n$ be a collection of samples from a Markov chain such that $X_i^{(j)} = 1$ if clade i was sampled in the j-th iteration and 0 otherwise. Also, for $s_i = \sum_k X_i^{(k)}$ we call $f_i^c = s_i/n$ the *frequency* of clade i.

Clade frequencies – deviation

$$d := \max_{1 \le i \le A(n)} |f_i^c - r_i^c|,$$

where f^c and r^c are the observed and true clade frequencies.

Clade switching

Let $m_i = \min(n - s_i, s_i)$, it can be shown that the maximum number of transitions that can be observed from X_i is either $J_i = 2m_i$.

Let $\delta_i = \Delta(X_i)$, where $\Delta(\cdot)$ a function that counts the number of state transitions in X_i . Then $\sigma_i = \delta_i/J_i \in [0,1]$ is a score that measures the relative efficiency of sampling by comparing how how many transitions happened compared to the theoretical maximum.

Experimental setup

All MCMC implemented in the JAVA open-source software BEAST (http://beast.community/);

- Operation Default kernels:
 - SubTreeSlide adaptive, rarely moves topology;
 - Narrow exchange non-adaptive, local moves;
 - Wide exchange non-adaptive, bold moves;
 - NodeHeights scale all node heights by a factor (within their bounds);
- SubTreeLeap;
- Most results will be shown for 100 MCMC runs.

Traversing tree space – Topology

Traversing tree space – Topology + branch lengths

Clade frequencies – example results

Clade switching – example results

Dengue 4 env (17 taxa, 1485 NT sites)

RSVA G protein (35 taxa, 629 NT sites)

YFV prM/E gene (71 taxa, 654 NT sites)

Ebola virus full genome (1610 taxa (!), 18990 NT sites)

Metazoans (contemporaneous, 55 taxa, 30257 AA sites)

operator
— default
— STL

Hence

SubTreeLeap seems to

- explore topology space more throughly (and mix better in clade space);
- facilitate sampling other parameters of interest conditional on the tree;

Open problems:

- Can we construct even more efficient proposals? How to exploit structure?
- Different distance kernels (currently Gaussian);
- Different weighting (currently uniform);
- Optimal scaling: what's the optimal acceptance probability?

Take home¹

Searching trees is hard

Complex, discrete and HUGE parameter space

¹this talk is available online

Take home1

Searching trees is hard

Complex, discrete and HUGE parameter space

Height-preserving tree rearrangements are good

Use the extra information provided by the tip dates

¹this talk is available online

Take home¹

Searching trees is hard

Complex, discrete and HUGE parameter space

Height-preserving tree rearrangements are good

Use the extra information provided by the tip dates

Adaptive moves are more efficient

Avoid wasting computing power

¹this talk is available online

Take home¹

Searching trees is hard

Complex, discrete and HUGE parameter space

Height-preserving tree rearrangements are good

Use the extra information provided by the tip dates

Adaptive moves are more efficient

Avoid wasting computing power

Much more work is needed

We should prepare for an era of plenty

¹this talk is available online

THE END