5

5

CLAIMS

What is claimed:

1. A method of fabricating a semiconductor device, having a reduced-oxygen copperzinc (Cu-Zn) alloy filled dual-inlaid interconnect structure formed on a copper (Cu) surface formed by electroplating the Cu surface in a chemical solution, comprising the steps of:

providing a semiconductor substrate having a Cu surface formed in a via; providing a chemical solution;

electroplating the Cu surface in the chemical solution, thereby forming a Cu-Zn alloy fill in the via and on the Cu surface;

rinsing the Cu-Zn alloy fill in a solvent;

drying the Cu-Zn alloy fill under a gaseous flow;

annealing the Cu-Zn alloy fill formed in the via and on the Cu surface, thereby forming a reduced-oxygen Cu-Zn alloy fill;

planarizing the reduced-oxygen Cu-Zn alloy fill and the Cu surface, thereby completing formation of a reduced-oxygen Cu-Zn alloy filled dual-inlaid interconnect structure; and

completing formation of the semiconductor device.

A method, as recited in Claim 1,
wherein the chemical solution is nontoxic and aqueous, and
wherein the chemical solution comprises:

at least one zinc (Zn) ion source for providing a plurality of Zn ions; at least one copper (Cu) ion source for providing a plurality of Cu ions; at least one complexing agent for complexing the plurality of Cu ions; at least one pH adjuster;

at least one wetting agent for stabilizing the chemical solution, all being dissolved in a volume of deionized (DI) water.

5

5

- 3. A method, as recited in Claim 2, wherein the at least one zinc (Zn) ion source comprises at least one zinc salt selected from a group consisting essentially of zinc acetate ((CH₃CO₂)₂Zn), zinc bromide (ZnBr₂), zinc carbonate hydroxide (ZnCO₃·2Zn(OH)₂), zinc dichloride (ZnCl₂), zinc citrate ((O₂CCH₂C(OH)(CO₂)CH₂CO₂)₂Zn₃), zinc iodide (ZnI₂), zinc L-lactate ((CH₃CH(OH)CO₂)₂Zn), zinc nitrate (Zn(NO₃)₂), zinc stearate ((CH₃(CH₂)₁₆CO₂)₂Zn), zinc sulfate (ZnSO₄), zinc sulfide (ZnS), zinc sulfite (ZnSO₃), and their hydrates.
- 4. A method, as recited in Claim 2, wherein the at least one copper (Cu) ion source comprises at least one copper salt selected from a group consisting essentially of copper(I) acetate (CH₃CO₂Cu), copper(II) acetate ((CH₃CO₂)₂Cu), copper(I) bromide (CuBr), copper(II) bromide (CuBr₂), copper(II) hydroxide (Cu(OH)₂), copper(II) hydroxide phosphate (Cu₂(OH)PO₄), copper(I) iodide (CuI), copper(II) nitrate ((CuNO₃)₂), copper(II) sulfate (CuSO₄), copper(I) sulfide (Cu₂S), copper(II) sulfide (CuS), copper(II) tartrate ((CH(OH)CO₂)₂Cu), and their hydrates.
- 5. A method, as recited in Claim 1, wherein said electroplating step comprises using an electroplating apparatus, and wherein said electroplating apparatus comprises:
 - (a) a cathode-wafer;
 - (b) an anode;
 - (c) an electroplating vessel; and
 - (d) a voltage source.
- 6. A method, as recited in Claim 5, wherein the cathode-wafer comprises the Cu surface, and wherein the anode comprises at least one material selected from a group consisting essentially of copper (Cu), a copper-platinum alloy (Cu-Pt), titanium (Ti), platinum (Pt), a titanium-platinum alloy (Ti-Pt), an anodized copper-zinc alloy (Cu-Zn, i.e., brass), a platinized titanium (Pt/Ti), and a platinized copper-zinc (Pt/Cu-Zn, i.e., platinized brass).

5

- 7. A method, as recited in Claim 1,
 - wherein said semiconductor substrate further comprises a barrier layer formed in the via under said Cu surface, and
 - wherein the barrier layer comprises at least one material selected from a group consisting essentially of titanium silicon nitride ($Ti_xSi_yN_z$), tantalum nitride (TaN), and tungsten nitride (W_xN_y).
- 8. A method, as recited in Claim 7,
 - wherein said semiconductor substrate further comprises an underlayer formed on the barrier layer,
 - wherein said underlayer comprises at least one material selected from a group consisting essentially of tin (Sn) and palladium (Pd), and
 - wherein said Cu surface is formed over said barrier layer and on said underlayer.
- 9. A method, as recited in Claim 8,
 - wherein said underlayer comprises a thickness range of approximately 15 Å to approximately 50 Å,
 - wherein said barrier layer comprises a thickness range of approximately 30 Å to approximately 50 Å,
 - wherein said Cu surface comprises a thickness range of approximately 50 Å to approximately 70 Å, and
 - wherein said Cu-Zn alloy fill comprises a thickness range of approximately 300 Å to approximately 700 Å.
- 10. A method, as recited in Claim 1,
 - wherein the annealing steps are performed in a temperature range of approximately 150°C to approximately 450°C, and
 - wherein the annealing steps are performed for a duration range of approximately 0.5 minutes to approximately 60 minutes.

10

5

5

11. A semiconductor device, having a reduced-oxygen copper-zinc (Cu-Zn) alloy filled dual-inlaid interconnect structure formed on a copper (Cu) surface formed by electroplating the Cu surface in a chemical solution, fabricated by a method comprising the steps of:

providing a semiconductor substrate having a Cu surface formed in a via; providing a chemical solution;

electroplating the Cu surface in the chemical solution, thereby forming a Cu-Zn alloy fill in the via and on the Cu surface;

rinsing the Cu-Zn alloy fill in a solvent;

drying the Cu-Zn alloy fill under a gaseous flow;

annealing the Cu-Zn alloy fill formed in the via and on the Cu surface, thereby forming a reduced-oxygen Cu-Zn alloy fill;

planarizing the reduced-oxygen Cu-Zn alloy fill and the Cu surface, thereby completing formation of a reduced-oxygen Cu-Zn alloy filled dual-inlaid interconnect structure; and

completing formation of the semiconductor device.

12. A device, as recited in Claim 11,

wherein the chemical solution is nontoxic and aqueous, and wherein the chemical solution comprises:

at least one zinc (Zn) ion source for providing a plurality of Zn ions;

at least one copper (Cu) ion source for providing a plurality of Cu ions;

at least one complexing agent for complexing the plurality of Cu ions;

at least one pH adjuster;

at least one wetting agent for stabilizing the chemical solution, all being dissolved in a volume of deionized (DI) water.

13. A device, as recited in Claim 12,

wherein the at least one zinc (Zn) ion source comprises at least one zinc salt selected from a group consisting essentially of zinc acetate ((CH₃CO₂)₂Zn), zinc bromide (ZnBr₂), zinc carbonate hydroxide (ZnCO₃·2Zn(OH)₂), zinc dichloride (ZnCl₂), zinc citrate (O₂CCH₂C(OH)(CO₂)CH₂CO₂)₂Zn₃), zinc

5

iodide (ZnI₂), zinc L-lactate ((CH₃CH(OH)CO₂)₂Zn), zinc nitrate (Zn(NO₃)₂), zinc stearate ((CH₃(CH₂)₁₆CO₂)₂Zn), zinc sulfate (ZnSO₄), zinc sulfide (ZnS), zinc sulfite (ZnSO₃), and their hydrates.

14. A device, as recited in Claim 12,

wherein the at least one copper (Cu) ion source comprises at least one copper salt selected from a group consisting essentially of copper(I) acetate (CH₃CO₂Cu), copper(II) acetate ((CH₃CO₂)₂Cu), copper(I) bromide (CuBr), copper(II) bromide (CuBr₂), copper(II) hydroxide (Cu(OH)₂), copper(II) hydroxide phosphate (Cu₂(OH)PO₄), copper(I) iodide (CuI), copper(II) nitrate hydrate ((CuNO₃)₂), copper(II) sulfate (CuSO₄), copper(I) sulfide (Cu₂S), copper(II) sulfide (CuS), copper(II) tartrate ((CH(OH)CO₂)₂Cu), and their hydrates.

- 15. A device, as recited in Claim 11, wherein said electroplating step comprises using an electroplating apparatus, and wherein said electroplating apparatus comprises:
 - (a) a cathode-wafer;
 - (b) an anode;
 - (c) an electroplating vessel; and
 - (d) a voltage source.
- 16. A device, as recited in Claim 15,

wherein the cathode-wafer comprises the Cu surface, and

wherein the anode comprises at least one material selected from a group consisting essentially of copper (Cu), a copper-platinum alloy (Cu-Pt), titanium (Ti), platinum (Pt), a titanium-platinum alloy (Ti-Pt), an anodized copper-zinc alloy (Cu-Zn, i.e., brass), a platinized titanium (Pt/Ti), and a platinized copper-zinc (Pt/Cu-Zn, i.e., platinized brass).

5

17. A device, as recited in Claim 11,

wherein said semiconductor substrate further comprises a barrier layer formed in the via under said Cu surface, and

wherein the barrier layer comprises at least one material selected from a group consisting essentially of titanium silicon nitride (Ti_xSi_yN_z), tantalum nitride (TaN), and tungsten nitride (W_xN_y)

18. A device, as recited in Claim 17,

wherein said semiconductor substrate further comprises an underlayer formed on the barrier layer,

wherein said underlayer comprises at least one material selected from a group consisting essentially of tin (Sn) and palladium (Pd), and

wherein said Cu surface is formed over said barrier layer and on said underlayer.

19. A device, as recited in Claim 18,

wherein said underlayer comprises a thickness range of approximately 15 Å to approximately 50 Å,

wherein said barrier layer comprises a thickness range of approximately 30 Å to approximately 50 Å,

wherein said Cu surface comprises a thickness range of approximately 50 Å to approximately 70 Å, and

wherein said Cu-Zn alloy fill comprises a thickness range of approximately 300 Å to approximately 700 Å.

20. A semiconductor device, having a first interim reduced-oxygen copper-zinc (Cu-Zn) alloy fill formed on a copper (Cu) surface and a second interim reduced-oxygen Cu-Zn alloy fill formed on a Cu-fill, both films being formed by electroplating the Cu surface and the Cu-fill, respectively, in a chemical solution, comprising:

a semiconductor substrate having a via; and

an encapsulated dual-inlaid interconnect structure formed and disposed in said via, said interconnect structure comprising:

at least one Cu surface formed in said via;

a first interim reduced-oxygen Cu-Zn alloy fill formed and disposed on the at least one Cu surface;

- a Cu-fill formed and disposed on said interim reduced-oxygen Cu-Zn alloy fill; and
- a second interim reduced-oxygen Cu-Zn alloy fill formed and disposed on the Cu-fill.