Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. S_3, C_{p^n}, \mathbb{Z} , con p primo, no son producto directo internos de subgrupos propios.

Demostración. En el primer caso, tenemos que aunque A_3 es normal, el resto de subgrupos de S_3 no son normales: ni $\langle (1 \ 2) \rangle$, ni $\langle (1 \ 3) \rangle$ ni $\langle (2 \ 3) \rangle$.

Tenemos que en el segundo caso, cualquier pareja de subgrupos estará incluido uno en otro, y como en ese caso $H \leq K$ tenemos que HK = K.

Si $H \leq \mathbb{Z}$, subgrupo propio, entonces existe un número natural mayor que 1 tal que $H = n\mathbb{Z}$. En efecto, sea:

$$n = \min\{x > 0 : x \in H\} \neq 0$$

Como $H \leq \mathbb{Z}$, n > 1, pues si n = 1 entonces $H = \mathbb{Z}$, veamos que $H = n\mathbb{Z}$. Puesto que $n \in H$ entonces $n\mathbb{Z} \leq H$. Recíprocamente, sea $x \in H$, dividimos x entre n: x = nq + r. Tenemos que $r = x - nq \in H$, tenemos que r = 0 ya que $0 \leq r < n$. Con lo que $x = nq \in n\mathbb{Z}$.

Sean $n\mathbb{Z}$, $m\mathbb{Z}$ dos subgrupos. Entonces:

- 1. $n\mathbb{Z} + m\mathbb{Z} = \gcd(n, m)\mathbb{Z}$
- 2. $n\mathbb{Z} \cap m\mathbb{Z} = mcm(n, m)\mathbb{Z}$

Observación 1. Demostrar que no todo subgrupo de un producto directo $H \times K$ es de la forma $H1 \times K1$, con H1 subgrupo de H y K1 subgrupo de K.

Demostración. Tomamos $H=K=\mu_2$, con lo que $H\times K=G$, donde G es el grupo de Klein.

Sea $L = \{(1,1), (-1,-1)\} \subset G$, que no puede ser de la forma $H_1 \times K_1$.

L