Quiz 4 Graded Student HARRIS DOAN **Total Points** 14 / 14 pts Question 1 Linear regression **4** / 4 pts (no title) 2 / 2 pts 1.1 2 / 2 pts 1.2 (no title) → + 2 pts Correct Question 2 Overfitting and Underfitting **3** / 3 pts (no title) **1** / 1 pt 2.1 → + 1 pt Correct 2.2 (no title) 1 / 1 pt → + 1 pt Correct **1** / 1 pt 2.3 (no title) → + 1 pt Correct

Question 3 Ridge regression **4** / 4 pts 3.1 (no title) **1** / 1 pt → + 1 pt Correct **1** / 1 pt (no title) 3.2 (no title) 3.3 **1** / 1 pt ✓ + 1 pt Correct **1** / 1 pt (no title) 3.4 Question 4 **Regularized Logistic Regression** 2 / 2 pts → + 2 pts Correct Question 5 **Transformation of input features 1** / 1 pt

→ + 1 pt Correct

Q1 Linear regression

4 Points

Consider fitting a linear regression $h_{\theta}(x)=\theta_0+\theta_1x$ to a training dataset $\mathcal{D}=\{(x_1,y_1),...,(x_n,y_n)\}$, where x_i 's are features and y_i 's are labels. Let \mathcal{D} consist of 3 data points: $(x_1,y_1)=(1,0), (x_2,y_2)=(0,2), (x_3,y_3)=(-1,-1).$

Q1.1 2 Points

Our current estimate of the parameter is $(\theta_0, \theta_1) = (0, 0)$. Which vector has the same direction as the updated parameter after one step of (batch) gradient descent?

- $\bigcirc [-1,1]$
- $\bigcirc [-1, -1]$
- \bigcirc [1, -1]

Q1.2 2 Points

What is the closed form solution for (θ_0, θ_1) ?

- $\bigcirc [-1/3, 1/2]$
- \bigcirc [1/3, -1/2]
- $\bigcirc [-1/3, -1/2]$
- \odot [1/3, 1/2]

Q2 Overfitting and Underfitting 3 Points Q2.1 1 Point If a model is **over-fitted**, then adding new training examples generally decreases the training error. False True Q2.2 1 Point If a model is **over-fitted**, then adding new training examples generally decreases the test error. False True Q2.3 1 Point Which approach can generally help prevent underfitting in the corresponding models? O Logistic Regression: Add L2 regularization on the weight parameters. O Linear regression: Use the closed form solution instead of gradient descent (assuming the step size for gradient descent is set appropriately). \bigcirc Logistic Regression: Use a higher learning rate η in gradient descent.

Polynomial regression: Use a larger degree for regression.

Q3 Ridge regression 4 Points Q3.1 1 Point You are given a dataset with 3000 samples and 300 features. Applying ridge regression to this dataset with $\lambda=0.2$ always has a unique closed-form solution. True False Q3.2 1 Point You are given a dataset with 300 samples and 3000 features. Applying ridge regression to this dataset with $\lambda=0.2$ always has a unique closed-form solution. True False Q3.3 1 Point

You are given a dataset with 3000 samples and 300 features. Applying ridge regression to this dataset with $\lambda=0$ (i.e. standard linear regression) **always** has a unique closed-form solution.

True

False

1 Point

You are given a dataset with 300 samples and 3000 features. Applying ridge regression to this dataset with $\lambda=0$ (i.e. standard linear regression) **always** has a unique closed-form solution.

- False
- True

Q4 Regularized Logistic Regression

2 Points

Suppose that you are given a binary classification data set $D=\{(x_1,y_1),...,(x_n,y_n)\}$ where $x_i\in\mathbb{R},y_i\in\{0,1\}$. For this data set, we are learning a model $h_{w,b}(x)=\sigma(wx+b)$, where $\sigma(.)$ is the sigmoid function.

Let $J_{logistic}(w,b)$ be the logistic regression cost function and $J_{reg}(w,b)=J_{logistic}(w,b)+\lambda w^2$, $\lambda>0$ be the regularized logistic regression cost function.

Let $\hat{w}_{logistic}$ be the logistic regression estimator of w and \hat{w}_{reg} be the regularized logistic regression estimator of w. Which of the following statements is **always** true?

- $\bigcirc |\hat{w}_{reg}| = |\hat{w}_{logistic}|$
- $igotimes |\hat{w}_{reg}| \leq |\hat{w}_{logistic}|$
- $\bigcirc |\hat{w}_{logistic}| \leq |\hat{w}_{reg}|$

(|a| denotes absolute value of a).

Q5 Transformation of input features 1 Point

In the following figure, we have a set of data points $X_1,...,X_N$ where $X_i=(x_i,y_i)\in\mathbb{R}^2$ that are clustered into blue and red classes. We transform X_i 's from \mathbb{R}^2 to \mathbb{R} by applying the function f defined as :

$$Z_i = f(X_i) = x_i^2 + y_i^2$$

Is the transformed data Z_i 's linearly separable?

Yes

O No

