Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente	
Analisi	Prof. A. Manzoni		
CdL Ingegneria Aerospaziale	Prof. S. Micheletti		
Appello			
21 gennaio 2020			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	ΈΙ	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	

Parte I - Pre Test

1. (1 punto) Determinare il valore dell'epsilon macchina ε_M (riferito al numero reale 1) associato all'insieme di numeri floating–point $\mathbb{F}(2,3,-4,5)$.

$$\varepsilon_M = 2^{-2}$$

2. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 1 & 9 & 8 \\ 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Riportare i valori degli elementi $l_{32} = (L)_{32}$ e $u_{33} = (U)_{33}$ rispettivamente delle matrici triangolari inferiore L e superiore U.

$$l_{32} = \frac{17}{7} \qquad u_{33} = -\frac{27}{7}$$

3. (1 punto) Determinare il costo computazionale (numero di operazioni) dell'algoritmo di sostituzione in avanti per la soluzione del sistema lineare $L\mathbf{x} = \mathbf{b}$ dove $\mathbf{b} \in \mathbb{R}^{40}$ e $L = (\ell_{i,j}) \in \mathbb{R}^{40 \times 40}$ è una matrice triangolare superiore tale che $\ell_{i,j} = 0$ se j > i.

$$\mathbf{costo} = 1600$$

4. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 9 & -8 \\ 2 & 3 \end{bmatrix}$ e il metodo delle potenze (dirette) per approssimare l'autovalore di modulo massimo. Assegnato il vettore iniziale $\mathbf{x}^{(0)} = (1\ 0)^T$, si riportino i valori approssimati $\lambda^{(0)}$ e $\lambda^{(1)}$ dell'autovalore ottenuti rispettivamente all'iterata iniziale e dopo l'applicazione di un'iterazione del metodo.

$$\lambda^{(0)} = 9$$
 $\lambda^{(1)} = \frac{633}{85} = 7,447\,059$

5. (1 punto) Quale tra gli autolavori della matrice $A = \begin{bmatrix} 15 & 0 & 0 \\ -11 & -23 & 0 \\ -3 & 7 & -4 \end{bmatrix}$ può essere determinato applicando il metodo delle potenze inverse? Se ne riporti il valore.

$$\lambda_3(A) = -4$$

6. (1 punto) Si consideri la funzione $f(x) = 5 (e^{x-5} - 1)$ e il metodo di bisezione per l'approssimazione dello zero $\alpha = 5$ nell'intervallo [3,6]. Si riporti il valore dell'iterata iniziale $x^{(0)}$ del metodo.

$$x^{(0)} = 4.5$$

		$x^{(1)} = 6,125$	$x^{(2)} = 5$,077 885		
		Part	e I - Eserc	cizi		
RCIZIO 1.					$^{\times n}$ invertibile e e un metodo iten	
(1 punto) Si rip	orti la cond	lizione necessai	ria e sufficient	e per la conv	ergenza di un ma utta la notazione	etodo iterativo
enza del meto	do iterativo	per ogni itera			aria e sufficiente erimento: si intr	
enza del meto	do iterativo	per ogni itera				
enza del meto	do iterativo	per ogni itera				
enza del meto	do iterativo	per ogni itera				
enza del meto	do iterativo	per ogni itera				
genza del meto	do iterativo	per ogni itera				
genza del meto	do iterativo	per ogni itera				
genza del meto $\mathbf{e}^{(k)}$ associato a	do iterativo ll'iterata x (per ogni itera (k)).	ta iniziale $\mathbf{x}^{(0)}$	$0 \in \mathbb{R}^n \text{ (sugg)}$	asato sul residu	roduca l'errore

d)	$(2~punti)$ Si consideri il metodo di $Jacobi$ per la soluzione del sistema lineare $A{\bf x}={\bf b};$ si presenti l'algoritmo in forma matriciale.
e)	$(5\ punti)$ Si implementi il metodo di $Jacobi$ in forma matriciale in Matlab [®] nella funzione $Jacobi.m$ (si usi il comando "back-slash" di Matlab [®] \ laddove necessario). Si utilizzi un criterio d'arresto basato sul residuo normalizzato (detto anche residuo relativo). La struttura della funzione è:
	<pre>function [x,Nit] = Jacobi(A,b,x0,nmax,tol).</pre>
	Si considerino come $input$: A, la matrice assegnata; b, il termine noto assegnato; x0, l'iterata iniziale; nmax, il numero massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto. Si considerino come $output$: x, la soluzione approssimata; Nit, il numero di iterazioni effettuate.
	Si utilizzi la funzione Jacobi.m per approssimare la soluzione del sistema lineare $A\mathbf{x} = \mathbf{b}$ con $\mathbf{b} = (4, 4,, 4)^T \in \mathbb{R}^{100}$ e $A \in \mathbb{R}^{100 \times 100}$ definita come
	$A = \operatorname{tridiag}(-17, 21, -3);$
	si consideri l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$, la tolleranza $\mathtt{tol} = 10^{-3}$ e $\mathtt{nmax} = 1000$. Si riportino: il numero N di iterazioni effettuate, la seconda componente della soluzione approssimata $\mathbf{x}^{(N)}$, ossia $x_2^{(N)}$, e il valore del corrispondente residuo normalizzato $r_{rel}^{(N)}$.
	$N = _{122}$ $x_2^{(N)} = _{0,509087}$ $r_{rel}^{(N)} = _{9,740675\cdot 10^{-4}}$
	Infine, utilizzando opportunamente la funzione Jacobi.m, si riportino i valori della seconda componente delle iterate $\mathbf{x}^{(1)}$ e $\mathbf{x}^{(2)}$, ossia $x_2^{(1)}$ e $x_2^{(2)}$.
	$x_2^{(1)} = $ 4 $x_2^{(2)} = $ 1,378 685

Esercizio 2.	Si consideri la seguente funzione di iterazione	
	$\phi(x) = \text{atan}\left[e^{(x-2)} - 1\right] + 2$	(1)
dotata di due pu	nti fissi $\alpha > 3$ e $\beta = 2$.	
	tracci e si riporti qualitativamente il grafico della funz $\alpha \in [1,4]$ e si evidenzino i punti fissi $\alpha \in \beta$.	zione di iterazione $\phi(x)$ data in
(b) <i>(1 punto)</i> Si	riporti l'algoritmo del metodo delle iterazioni di punt	o fisso.
	enunci con precisione un risultato di convergenza localo considerando una generica funzione di iterazione $\phi(x)$	

10 punti

			azioni del metodo delle iterazio le iterate $x^{(1)}, x^{(2)}, x^{(3)}$ e $x^{(4)}$
risultato con a	lmeno 4 cifre decimali)).	
$x^{(1)} = $	3,043 735 3,091 459	$x^{(2)} = $	3,072 929
$x^{(3)} = $	3,091 459	$x^{(4)} = $	3,102835

Parte II - Pre Test

1. (2 punti) Assegnati i nodi equispaziati $x_0, x_1, \dots x_5$ nell'intervallo [0,10] e la funzione $f(x) = 2(x+1)^2$, si consideri l'interpolante composito lineare $\Pi_1^H f(x)$ della funzione f(x) nei precedenti nodi. Si riporti il valore di $\Pi_1^H f(3)$.

$$\Pi_1^H f(3) = 34$$

2. (1 punto) Sia $f(x) = 2x^4$; si approssimi f'(3) mediante la formula delle differenze finite in avanti utilizzando il passo h = 0.1; si riporti il valore $\delta_+ f(3)$ di tale approssimazione.

$$\delta_+ f(3) = 227,042$$

3. (1 punto) Sia $f(x) = 3x^2$. Si approssimi $\int_0^6 f(x)dx$ con la formula semplice del trapezio. Si riporti l'approssimazione $I_T(f)$ ottenuta.

$$I_T(f) = 324$$

4. (2 punti) Si consideri la formula del punto medio composita per l'approssimazione dell'integrale $\int_0^1 (3 - \cos(\pi x)) dx$. Senza applicare esplicitamente la formula, si stimi il numero minimo M di sottointervalli equispaziati di [0,1] tali per cui l'errore di quadratura è inferiore alla tolleranza $tol = 10^{-5}$.

$$M \ge 203$$

5. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = 40 t^2 + 7 t y(t) & t \in (0,100], \\ y(0) = 3. \end{cases}$$

Utilizzando il metodo di Eulero all'indietro (Eulero Implicito) con passo h = 1/5 e $u_0 = y_0 = 3$, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{83}{18} = 4,611\,111$$

6. (2 punti) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = 10 t + 2 y(t) & t \in (0,10], \\ y(0) = 1. \end{cases}$$

Utilizzando il metodo di Crank-Nicolson con passo h = 1/10 e $u_0 = y_0 = 1$, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{23}{18} = 1,277\,778$$

7. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} \mathbf{y}'(t) = A\mathbf{y}(t) & t \in (0, +\infty), \\ \mathbf{y}(0) = (3 \ 7)^T. \end{cases}$$

dove $A = \begin{bmatrix} -4 & 11 \\ 0 & -7 \end{bmatrix}$. Si riporti la condizione di assoluta stabilità del metodo di Eulero in avanti per il precedente problema di Cauchy.

0 < h < 0.285714

Parte II - Esercizi

Esercizio 1.

(a) (2 punti) Sia $f : [a,b] \to \mathbb{R}$ una funzione continua e $\{x_i\}_{i=0}^n$ un insieme di nodi distinti nell'intervallo [a,b]. Si definisca con precisione il polinomio di Lagrange interpolante f(x) ai nodi $\{x_i\}_{i=0}^n$, ovvero $\Pi_n f(x)$, e se ne fornisca l'espressione.

12 punti

(b) (3 punti) Si consideri la seguente funzione $f(x) = \frac{8}{2+x^2}$ definita in [a,b] = [-5,5]. Si utilizzi Matlab[®] per approssimare f(x) mediante polinomi interpolanti di Lagrange $\Pi_n f$ su nodi equispaziati di [a,b] con n=4,6,8,10. Si riportino, al variare di n, i valori delle approssimanti corrispondenti $\Pi_n f$ valutate in $\bar{x} = 9/2$ (si riporti il risultato con almeno 4 cifre decimali).

per n = 4: $\Pi_n f(\bar{x}) = \underline{-0.727273}$ per n = 6: $\Pi_n f(\bar{x}) = \underline{1.99208}$

per n = 8: $\Pi_n f(\bar{x}) = \underline{-1,836576}$ per n = 10: $\Pi_n f(\bar{x}) = \underline{3,047201}$

Si calcolino e si riportino gli errori $E_n(f) = \max_{x \in [a,b]} |f(x) - \Pi_n f(x)|$ associati alle corrispondenti approssimanti $\Pi_n f$ (al fine del calcolo dell'errore in Matlab[®] si valutino f(x) e $\Pi_n f(x)$ in 1000

	-4:	$L_n(J) - \underline{}$	1,400 743	per $n=6$:	$L_n(J) - \underline{\hspace{1cm}}$	1,000 022
per n =	= 8:	$E_n(f) = _$	2,283 294	per $n = 10$:	$E_n(f) = \underline{\hspace{1cm}}$	3,373 479
(1 punto) S	i inter	preti e si m	otivi il risultato d	ottenuto al punto (b).	
<i>[1 punto]</i> Si	defin	iscano i nod	i di Chebyshev-G	auss-Lobatto $\{x_i^{CG}\}$	$\binom{L}{i-0}^n$ nel gen	erico intervallo [
$e per n \ge 0$					7 1-0	
(2 <i>punti</i>) Si	ripet	a il punto ()	b) utilizzando ora	a i nodi di Chebysh	ev-Gauss-Lo	batto nell'interva
[a,b] = [-5, -5]	5] per	costruire le a	approssimanti Π_n^C	$^{CGL}f \cos n = 4, 6, 8$, 10. Si calco	lino e si riportino
				(si riporti il risulta		
per $n=4$: E	CGL(f) =	1,283 425	per $n=6$:	$E_n^{CGL}(f) =$	0,718 728
per n = 8	: E	$f_n^{CGL}(f) = \underline{}$	0,387 587	per $n = 10$:	$E_n^{CGL}(f) =$	0,205 092
(0 mumti) C	i cons	iderino ora	le coppie di dati	$\{(x_i, y_i)\}_{i=0}^n \text{ con } \{x_i, y_i\}_{i=0}^n$	$\{x_i\}_{i=0}^n$ nodi d	istinti e $n \gg 1$.
z $punui)$ δ .				ante tali dati nel s		
definisca il	-					
lefinisca il	_					
lefinisca il						
definisca il						

punti con il comando linspace (-5, 5, 1000); si riporti il risultato con almeno 4 cifre decimali).

(1 punto) Siano ora assegnate le coppie di dati $(-1,0)$, $(0,8)$, $(1,8)$, $(2,0)$ e riporti l'espressione della retta di regressione lineare $p_1(x)$ che approssima t	
$p_1(x) = \underline{\frac{12}{5}x + 4} = 2,4x + 4$	
ercizio 2.	
onsideri il seguente problema a valori ai limiti (di diffusione—trasporto):	
$\begin{cases} -u''(x) + V u'(x) = f(x) & \text{in } (a,b), \\ u(a) = \alpha, \\ u(b) = \beta, \end{cases}$	(1)
$u(b) = \beta,$	(1)
e $a, b, \alpha, \beta \in V \in \mathbb{R}$, con $V > 0$. (3 punti) Si approssimi il problema ai limiti (1) con uno schema alle differenti second'ordine) su una griglia di $N + 2$ nodi equispaziati $\{x_i\}_{i=0}^{N+1}$, con $x_0 = i = 0, \ldots, N + 1$ e passo $h = (b-a)/(N+1)$. Si riportino le equazioni del forma esplicita definendo tutta la notazione utilizzata.	$= a, x_i = x_0 + ih \text{ per}$

sistema lin		rnendo l'espres	sione dei coeffic	nazione di cui al j ienti della matrice	. ,
a = 0, b =		Si verifichi che	la soluzione esa	na (1): $V = 10, f$ tta del problema a	
al punto (a	a), ovvero risolver	ndo il sistema l		al punto (c) tramite al punto (b), per i	l valore $N = 9$

 $u_8 = \underline{\qquad \qquad 1,192\,932}$

Si risolva ora il problema per $N=9,\ 19,\ 39$ e 79 e, usando la soluzione esatta $u(x)$ al punto (c),
si calcolino e si riportino per ogni N gli errori corrispondenti $E_N = \max_{i=0,\dots,N+1} u_i - u(x_i) $ (si
usino almeno 4 cifre decimali in formato esponenziale).

(e) (1 punto) Dopo aver risposto al punto (d), si stimi algebricamente l'ordine di convergenza p del metodo rispetto ad h (ovvero (b-a)/(N+1)) riportando sinteticamente la procedura seguita.

 $p = \underline{2,0015}$