Homework #4

Raymond Deneckere

Fall 2017

- 1. (Brouwer fixed point theorem) Let I = [0, 1], and that suppose that $f: I \to I$ is continuous. Prove that there exists $x \in I$ such that f(x) = x
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = 2x^3 3x^2 + 2y^3 + 3y^2$.
 - (a) Find the four points in \mathbb{R}^2 at which the gradient of f is equal to zero. Show that f has exactly one local maximum and one local minimum.
 - (b) Let S be the set of all $(x, y) \in \mathbb{R}^2$ at which f(x, y) = 0. Describe S as precisely as you can. Find those points of S that have no neighborhoods in which the equation f(x, y) = 0 can be solved for y in terms of x, or for x in terms of y.
- 3. Let $f: E \subset \mathbb{R}^n \to \mathbb{R}$ be of class C^1 , and suppose that E is open. Let $x \in E$ be such that f does not have a local maximum at x. Find the direction of greatest increase in f. (HINT: Compute the directional derivative of f in the direction of the vector u, where ||u|| = 1).
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$, and recall that x^* is a fixed point of $f(\cdot)$ if $f(x^*) = x^*$
 - (a) If f is differentiable and $f'(x) \neq 1$ for every real x, show that $f(\cdot)$ has at most one fixed point.
 - (b) Show that the function $f(\cdot)$ defined by $f(\cdot) = x + \frac{1}{1+e^x}$ has no fixed point, even though 0 < f'(x) < 1 for all real x.
 - (c) Show that if there exists a constant c < 1 such that $|f'(x)| \le c$ for all real x, then a fixed point of $f(\cdot)$ exists, and that $x_0 = \lim x_n$, where x_0 is an arbitrary real number, and $x_{n+1} = f(x_n)$.

- (d) Show that the process described in (c) can be visualized by the zig-zag path $(x_0, x_1) \rightarrow (x_1, x_2) \rightarrow (x_2, x_3) \rightarrow (x_3, x_4) \rightarrow \dots$
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$, and f(0) = 0. Show that f'(x) exists at all points $x \in \mathbb{R}$, but that f'(x) is not continuous at x = 0.