

Exercice 1 On a représenté ci-dessous une fonction f définie sur] $-\infty$; $-2[\cup]-2$; $-1[\cup]-1$; $+\infty[$.

- **1.** Conjecturer les limites de la fonction f aux bornes de son ensemble de définition.
- **2.** Préciser les asymptotes éventuelles à la courbe représentative de la fonction f.
- **3.** Dresser le tableau de variation de la fonction f.

Exercice 2 *Le tableau de variation ci-dessous décrit les variations d'une fonction f .*

- 1. Utiliser les notations qui conviennent pour décrire les limites de la fonction f aux bornes de son ensemble de définition.
- **2.** Donner les équations des asymptotes éventuelle de la courbe de la fonction f.
- **3.** Construire une courbe suceptible de représenter la fonction f.

Exercice 3 *Soit f la fonction définie sur* \mathbb{R} *par :*

$$f(x) = x^3 - x + 1$$

Quel est le rôle de l'algorithme suivant?

$$A \leftarrow 0$$
Tant que $A^3 - A + 1 < 10000$
 $A \leftarrow A + 1$

Exercice 4 Déterminer les limites en $+\infty$ et $-\infty$ des fonctions suivantes :

$$x \rightarrow x^{2} + x - 1$$

$$x \rightarrow -2x^{2} + 4x + 1$$

$$x \rightarrow \frac{x^{2} + 1}{1 - x}$$

$$x \rightarrow \frac{x + 3}{-2x^{2} + 1}$$

$$x \rightarrow \frac{-3x + 1}{-5x^{2} + x - 2}$$

$$x \rightarrow \frac{4x^{3} - 3x - 1}{-x^{2} + x + 1}$$

Exercice 5 Déterminer les limites en $+\infty$ des fonctions suivantes :

$$x \to xe^{x}\sqrt{x}$$

$$x \to x - \sqrt{x}$$

$$x \to \frac{2x+1}{\sqrt{x}}$$

$$x \to \frac{\sqrt{x}}{x+1}$$

Exercice 6 Déterminer les limites suivantes :

$$\lim_{x \to 3^{+}} \frac{1}{x-3}$$

$$\lim_{x \to 3^{-}} \frac{1}{x-3}$$

$$\lim_{x \to 1^{+}} \frac{2}{1-x}$$

$$\lim_{x \to 1^{-}} \frac{2}{1-x}$$

$$\lim_{x \to 2^{+}} \frac{-3x}{2x-4}$$

$$\lim_{x \to 2^{-}} \frac{-3x}{2x-4}$$

$$\lim_{x \to 3^{+}} \frac{x^{2}-10}{6-2x}$$

$$\lim_{x \to 3^{-}} \frac{x^{2}-10}{6-2x}$$

Exercice 7 Soit f la fonction définie $sur] - \infty; 1[\cup]1; +\infty[$ par :

$$f(x) = \frac{-2}{x - 1}$$

- **1.** Étudier le sens de variation de la fonction f.
- **2.** Étudier les limites de la fonction f en $-\infty$ et en $+\infty$ et en déduire une asymptote éventuelle à la courbe représentative de la fonction f.

- **3.** Étudier les limites de f(x) en 1. En déduire une asymptote éventuelle à la courbe représentative de la fonction f.
- **4.** Dresser le tableau de variation de la fonction f et vérifier graphiquement les résultats trouvés.

Exercice 8 Dans chaque cas, déterminer les expressions possibles de deux fonctons f et g qui vérifient d'une part :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty$$

et d'autre part :

1.
$$\lim_{x \to +\infty} (f(x) - g(x)) = 0$$

2.
$$\lim_{x \to +\infty} (f(x) - g(x)) = +\infty$$

3.
$$\lim_{x \to +\infty} (f(x) - g(x)) = -\infty$$

Exercice 9 Dans chaque cas, déterminer les expressions possibles de deux fonctons f et g qui vérifient d'une part :

$$\lim_{x \to +\infty} f(x) = 0$$
$$\lim_{x \to +\infty} g(x) = +\infty$$

et d'autre part :

1.
$$\lim_{x \to +\infty} (f(x) \times g(x)) = 0$$

2.
$$\lim_{x \to +\infty} (f(x) \times g(x)) = +\infty$$

3.
$$\lim_{x \to +\infty} (f(x) \times g(x)) = 5$$

Exercice 10 *Soit f la fonction définie sur* \mathbb{R} *par :*

$$f(x) = x + \sqrt{x^2 + 1}$$

- **1.** Étudier la limite de la fonction f en $+\infty$.
- 2. Montrer que:

$$f(x) = \frac{-1}{x - \sqrt{x^2 + 1}}$$

3. En déduire la limite de la fonction f en $-\infty$.

Exercice 11 Dans chacun des cas, dire si les inégalités proposées permettent de conclure sur la limite éventuelle de la fonction f en $+\infty$:

- **1.** Pour tout réel x, $f(x) \ge \frac{x^2}{6}$.
- **2.** Pour tout x > 0, $1 \frac{1}{x} \le f(x) \le 1 + \frac{1}{x}$.
- **3.** Pour tout x > 1, $\frac{x}{x+1} \le f(x) \le \frac{x}{x-1}$.
- **4.** Pour tout x > 1, $\frac{1}{x} \le f(x) \le \frac{x+2}{x+1}$.

Exercice 12 On considère la fonction f définie sur $]-\infty;1[\cup]1;+\infty[$ par :

$$f(x) = \frac{x^2 - 2x + 2}{x - 1}$$

1. Déterminer les limites de la fonction f aux bornes de son ensemble de définition. Que peut-on en déduire graphiquement?

a. Démontrer que, pour tout réel $x \neq 1$:

$$f(x) = x - 1 + \frac{1}{x - 1}$$

- **b.** Déterminer la limite de f(x) (x-1) en $+\infty$ et en $-\infty$.
- **3.** Sur le graphique, tracer la droite d d'équation y = x 1. Que constate-t-on?
- **4.** Étudier la position relative de la courbe représentative de la fonction f et de la droite d.

Exercice 13 Un groupe de biologistes étudie la population de grenouilles autour d'un étang.

Au premier janvier 2020, ils ont comptabilisé 250 individus.

Le modèle de Verhulst (mathématicien belge du XIX^e siècle) conduit à modéliser le nombre de grenouilles par la fonction P définie par :

$$P(t) = \frac{a}{0.4 + 3.6e^{-0.5t}}$$

où a est un réel et t désigne le temps écoulé, en année, depuis le 1 er janvier 2020.

- 1. Déterminer la valeur du réel a grâce aux données de l'énoncé.
- **2.** Déterminer la limite de P en $+\infty$ et interpréter le résultat dans le contexte de l'exercice.
- 3. Dresser le tableau de variation de P.
- **4.** Compléter le programme suivant pour déterminer en quelle année la population de grenouilles dépassera pour la première fois 2000 individus.

```
from math import exp
def P(t):
    return ...

def seuil(P):
    t=0
    while ...:
    t=t+1
    return t
```

Exercice 14 *On définit, pour tout réel x positif, la fonction f par :*

$$f(x) = \frac{2x+3}{\cos(x) - 2}$$

1. Montrer que pour tout réel x positif, on a :

$$\frac{2x+3}{-1} \le f(x) \le \frac{2x+3}{-3}$$

2. En déduire la limite de f en $+\infty$