

(a*b) = a + b +1 por definción de potenciós en un grupo (a*b) = (a*b) * (a*b) of nor Cripiteris: (a * b) +1 = (a" * b") * (a * b) per esociativided y commutativides (a * b) = (a * a) * (b * b) (a * b) +1 = k+1 * b +1 .. Se cumple pora n=K+1 CASO (N=0) como es un grupo: a = e -> poro a, b & G: (a*b) = e (a * b) = e = e * e = a * b° CASO (N<0) 0 = - m (a * b) = [(a * b) m] (nos definición de potencios megativos) por hypotesis: (a * b) -m = (am * bm) como es un grupo elelieno, el inverso sotisfice: (a * b) = (am) + (bm) 1 o sea: (a * b) = a * b m .. (0 * 6) = 0 * 6 , Yne Z 4) N(a) subscript de G? (G, *) y N(a) = {x ∈ G/Va ∈ G/a * x = probon: eeN(a), a, beN(a) - a * b'EN(a) = x * a} * Dodo e E G, a * e = e * a = a pour cuolquier a E G le cuol se cumple tombrén posa N(a), .. e E N(a) * Dordon X, Y \in N(a), solvemon que a * X = X * a y a * Y = Y * a

Contonces poro X * y': a * (X * Y') = (X * Y') * a ?

Colculomos: a * (x * y') = (a * x) * y por esocia-Como X E N(a): (a*x)*y" = (x*a)*y" Por osociotividod: (x*a) * y' = x * (a * y') Como Y E N(a), Y'EN(a): x * (a * Y') = x * (y' *a) Per vsecisticided: x * (Y * a)= (x * y') * a .. a * (x * y')= (x * y') * a X * Y' E N(a) Por ende, es un subgrupo