Doc. 1-1 on ss 10 from WPIL using MAX

©Derwent Information

Use of enamine derivatives as ultraviolet-A filters - are more stable than current UV-A filters

Patent Number: EP-852137

International patents classification: A61K-007/42 C07C-057/00 C07C-255/04 C07C-409/22 A61K-007/00 A61K-007/06 A61K-007/40 A61K-007/48 A61K-031/13 A61K-031/235 A61K-031/235 A61K-031/235 A61K-031/275 A61K-031/275 A61K-031/2425 A61K-031/26 C07C-022/00 C07C-211/49 C07C-217/54

· Abstract :

EP-852137 A Use of enamine derivatives of formula (R3)(R4NH)C=C(R1)(R2) (I) as UV filters in cosmetic and pharmaceutical preparations for protection of hair or skin against sun-radiation, alone or in combination with UV absorbers is new: R1 = COOR5, COR5, CONR5R6, CN, SO2R5, SO2OR5 or P(=O)OR7OR8; R2 = COOR6, COR6, CONR5R6, CN, SO2R6, SO2OR6 or P(=O)OR7OR8; R3 = H, or optionally substituted aliphatic, cycloaliphatic, arylaliphatic or aromatic residue with up to 18C; R4 = optionally substituted 5-12C aromatic or heteroaromatic residue; and R5, R6 = H or aliphatic, arylaliphatic, cycloaliphatic, or optionally substituted aromatic with up to 18C; or R3-R8 together with their bonded carbon atoms may form a 5-6 membered ring which may be further annelated.

• Patentee & Inventor(s):

S; WUENSCH T

Patent assignee : (BADI) BASF AG

Inventor(s): AUMULLER A; HABECK T; SCHEHLMANN V; WESTENFELDER H; WUNSCH T; AUMUELLER A; HAREMZA

USE - (I) are useful as UV-A filters (claimed).

ADVANTAGE - (I) show greater photostability than usual UV-A filters. (Dwg.0/0)

• Publication data:

Patent Family: EP-852137 A2 19980708 DW1998-31 A61K-007/42 Ger 53p * AP: 1997EP-0119397 19971106 DSR: AL AT BE CH DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI
JP10158140 A 19980616 DW1998-34 A61K-007/42 58p AP:

1997JP-0328052 19971128 AU9745406 A 19980604 DW1998-39 C07C-057/00 AP:

1997AU-0045406 19971127

DE19712033 A1 19980924 DW1998-44 A61K-

007/42 AP: 1997DE-1012033 19970321

BR9706035 A 19990518 DW1999-25 C07C-409/22 AP:

1997BR-0006035 19971127

US5945091 A 19990831 DW1999-42 A61K-007/42 AP:

1997US-0972391 19971118

MX9709075 A1 19980501 DW2000-07 A61K-007/42 AP:

1997MX-0009075 19971125

US6037487 A 20000314 DW2000-20 C07C-255/04 FD: Div ex

US5945091 AP: 1997US-0972391 19971118; 1999US-0266968

19990312

Priority nº: 1997DE-1012033 19970321; 1996DE-1049381

19961129

<u>Publications count</u>: 8

· Accession codes :

Accession N°: 1998-350154 [31] Related Acc. N°.: 1998-313409

Sec. Acc. n° CPI : C1998-108199

• <u>Derwent codes</u>:

<u>Manual code</u>: CPI: A08-A03 A12-V04C
B05-B01E B05-B01F B07-H B10-A08 B10-A09B B10-A15 B10-B02 B14-R05 D08B09A D09-E E05-G01 E05-G02 E05-G03
E07-H03 E10-A09B E10-A10C E10-A10D

E10-A15A E10-A15C E10-B02 E10-B04A2 E10-B04B

Derwent Classes: A96 B07 D21 E19

. . . .

Basic update code :1998-31 <u>Equiv. update code</u> :1998-34; 1998-39; 1998-44; 1999-25; 1999-42; 2000-07; 2000-

20

Update codes :

			i,
			`
		·	

® BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

BASF AG, 67063 Ludwigshafen, DE

(7) Anmelder:

© Offenlegungsschrift © DE 197 12 033 A 1

(1) Aktenzeichen: 197 12 033.4
 (2) Anmeldetag: 21. 3.97

(4) Offenlegungstag: 24. 9.98

(5) Int. Cl.⁶: A 61 K 7/42

> A 61 K 31/235 A 61 K 31/425 A 61 K 31/275

® Erfinder:

Habeck, Thorsten, Dr., 67149 Meckenheim, DE; Aumüller, Alexander, Dr., 67435 Neustadt, DE; Schehlmann, Volker, Dr., 67354 Römerberg, DE; Westenfelder, Horst, 67435 Neustadt, DE; Wünsch, Thomas, Dr., 67346 Speyer, DE; Haremza, Sylke, Dr., 69151 Neckargemünd, DE

- (9) Photostabile UV-Filter enthaltende kosmetische und pharmazeutische Zubereitungen
- (5) Verwendung von Verbindungen der Formel I

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und die Variablen folgende Bedeutung haben:

 R^1 COOR⁵, COR⁵, CONR⁵R⁶, CN, O=S(-R⁵)=O, O=S(-OR⁵)=O, R⁷O-P(-OR⁸)=O;

O, $R^7O-P(-OR^8)=O$; R^2 COOR 6 , CON R^5R^6 , CN, $O=S(-R^6)=O$, $O=S(-OR^6)=O$, $R^7O-P(-OR^8)=O$;

R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest mit jeweils bis zu 18 C-Atomen;

 ${\sf R}^4$ einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen; ${\sf R}^5$ bis

R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen, wobei die Variablen R³ bis R⁸ untereinander, jeweils zu-

wobei die Variablen R³ bis R⁸ untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, gemeinsam einen 5- bis 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann, als UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

Beschreibung

Die Erfindung betrifft die Verwendung von Enaminderivaten als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Epidermis oder menschliche Haare gegen UV-Strahlung, speziell im Bereich von 320 bis 400 nm.

Die in kosmetischen und pharmazeutischen Zubereitungen eingesetzten Lichtschutzmittel haben die Aufgabe, schädigende Einflüsse des Sonnenlichts auf die menschliche Haut zu verhindern oder zumindest in ihren Auswirkungen zu reduzieren. Daneben dienen diese Lichtschutzmittel aber auch dem Schutz weiterer Inhaltsstoffe vor Zerstörung oder Abbau durch UV-Strahlung. In haarkosmetischen Formulierungen soll eine Schädigung der Keratinfaser durch UV-Strahlen

Das an die Erdoberfläche gelangende Sonnenlicht hat einen Anteil an UV-B- (280 bis 320 nm) und an UV-A-Strahlung (> 320 nm), welche sich direkt an den Bereich des sichtbaren Lichtes anschließen. Der Einfluß auf die menschliche Haut macht sich besonders bei der UV-B-Strahlung durch Sonnenbrand bemerkbar. Dementsprechend bietet die Industrie eine größere Zahl von Substanzen an, welche die UV-B-Strahlung absorbieren und damit den Sonnenbrand verhindern.

Nun haben dermatologische Untersuchungen gezeigt, daß auch die UV-A-Strahlung durchaus Hautschädigungen und Allergien hervorrufen kann, indem beispielsweise das Keratin oder Elastin geschädigt wird. Hierdurch werden Elastizität und Wasserspeichervermögen der Haut reduziert, d. h. die Haut wird weniger geschmeidig und neigt zur Faltenbildung. Die auffallend hohe Hautkrebshäufigkeit in Gegenden starker Sonneneinstrahlung zeigt, daß offenbar auch Schädigungen der Erbinformationen in den Zellen durch Sonnenlicht, speziell durch UV-A-Strahlung, hervorgerufen werden. All diese Erkenntnisse lassen daher die Entwicklung effizienter Filtersubstanzen für den UV-A-Bereich notwendig erschei-

Es besteht ein wachsender Bedarf an Lichtschutzmitteln für kosmetische und pharmazeutische Zubereitungen, die vor allem als UV-A-Filter dienen können und deren Absorptionsmaxima deshalb im Bereich von ca. 320 bis 380 nm liegen sollten. Um mit einer möglichst geringen Einsatzmenge die gewünschte Wirkung zu erzielen, sollten derartige Lichtschutzmittel zusätzlich eine hoch spezifische Extinktion aufweisen. Außerdem müssen Lichtschutzmittel für kosmetische Präparate noch eine Vielzahl weiterer Anforderungen erfüllen, beispielsweise gute Löslichkeit in kosmetischen Ölen, hohe Stabilität der mit ihnen hergestellten Emulsionen, toxikologische Unbedenklichkeit sowie geringen Eigengeruch und geringe Eigenfärbung.

Eine weitere Anforderung, der Lichtschutzmittel genügen müssen, ist eine ausreichende Photostabilität. Dies ist aber mit den bisher verfügbaren UV-A absorbierenden Lichtschutzmitteln nicht oder nur unzureichend gewährleistet.

In der französischen Patentschrift Nr. 2 440 933 wird das 4-(1,1-Dimethylethyl)-4'-methoxydibenzoylmethan als UV-A-Filter beschrieben. Es wird vorgeschlagen, diesen speziellen UV-A-Filter, der von der Firma GIVAUDAN unter der Bezeichnung "PAR-SOL 1789" verkauft wird, mit verschiedenen UV-B-Filtern zu kombinieren, um die gesamten UV-Strahlen mit einer Wellenlänge von 280 bis 380 nm zu absorbieren.

Dieser UV-A-Filter ist jedoch, wenn er allein oder in Kombination mit UV-B-Filtern verwendet wird, photochemisch nicht beständig genug, um einen anhaltenden Schutz der Haut während eines längeren Sonnenbades zu gewährleisten, was wiederholte Anwendungen in regelmäßigen und kurzen Abständen erfordert, wenn man einen wirksamen Schutz der Haut gegen die gesamten UV-Strahlen erzielen möchte.

Deshalb sollen gemäß EP 0514491 die nicht ausreichend photostabilen UV-A-Filter durch den Zusatz von 2-Cyan-3,3-diphenylacrylsäureestern stabilisiert werden, die selbst im UV-B-Bereich als Filter dienen.

Weiterhin wurde gemäß EP 251 398 schon vorgeschlagen, UV-A- und UV-B-Strahlung absorbierende Chromophore durch ein Bindeglied in einem Molekül zu vereinen. Dies hat den Nachteil, daß einerseits keine freie Kombination von UV-A- und UV-B-Filtern in der kosmetischen Zubereitung mehr möglich ist und daß Schwierigkeiten bei der chemischen Verknüpfung der Chromophore nur bestimmte Kombinationen zulassen.

Es bestand daher die Aufgabe, Lichtschutzmittel für kosmetische und pharmazeutische Zwecke vorzuschlagen, die im UV-A-Bereich mit hoher Extinktion absorbieren, die photostabil sind, eine geringe Eigenfarbe d. h. eine scharfe Bandenstrukur aufweise und je nach Substituent in Öl oder Wasser löslich sind.

Diese Aufgabe wurde erfindungsgemäß gelöst durch Verwendung von Verbindungen der Formel I

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt die Variablen folgende Bedeutung haben:

 R^{1} COOR⁵, COR⁵, CONR⁵R⁶, CN, O=S(-R⁵)=O, O=S(-OR⁵)=O, R⁷O-P(-OR⁸)=O; R^{2} -COOR⁶, COR⁶, CONR⁵R⁶, CN, O=S(-R⁶)=O, O=S(-OR⁶)=O, R⁷O-P (-OR⁸)=O;

R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest mit jeweils bis zu 18 C-Atomen;

R4 einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen;

R⁵ bis R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen, wobei die Variablen R³ bis R⁸ untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, gemeinsam einen 5- oder 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann,

als UV-Filter, insbesondere UV-A-Filter, in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

Dabei sind solche Verbindungen der Formel I bevorzugt, in der R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen, wobei R⁵ und R⁶ voneinander unabhängig offenkettige oder verzweigte aliphati-

sche oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten.

Besonders bevorzugt ist die Verwendung von Verbindungen der Formel I, in der R3 für Wasserstoff, R1 für CN, COOR5 und COR5 und R2 für CN, COOR6 und COR6 stehen, wobei R5 und R6 voneinander unabhängig offenkettige oder verzweigte aliphatische oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten und R4 für einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit bis zu 10 C-Atomen im Ring, insbesondere einen substituierten Phenyl-, Thienyl-, Furyl-, Pyridyl-, Indolyl- oder Naphthylenrest und besonders bevorzugt für einen gegebenenfalls substituierten Phenyl- oder Thienylrest steht.

Als Substituenten kommen sowohl lipophile als auch hydrophile Substituenten mit z. B. bis zu 20 C-Atomen in Betracht, Lipophile d. h. die Öllöslichkeit der Verbindungen der Formel I verstärkende Reste sind z. B. aliphatische oder cycloaliphatische Reste insbesondere Alkylreste mit 1 bis 18 C-Atomen, Alkoxy-, Mono- und Dialkylamino-, Alkoxycarbonyl-, Mono- und Dialkylaminocarbonyl-, Mono- und Dialkylaminosulfonylreste, ferner Cyan-, Nitro-, Brom-, Chlor-, Iod- oder Fluorsubstituenten.

Hydrophile d. h. die Wasserlöslichkeit der Verbindungen der Formel I ermöglichende Reste sind z. B. Carboxy- und Sulfoxyreste und insbesondere deren Salze mit beliebigen physiologisch verträglichen Kationen, wie die Alkalisalze oder wie die Trialkylammoniumsalze, wie Tri-(hydroxyalkyl)-ammoniumsalze oder die 2-Methylpropan-1-ol-2-ammoniumsalze. Ferner kommen Alkylammoniumreste mit beliebigen physiologisch verträglichen Anionen in Betracht.

Als Alkoxyreste kommen solche mit 1 bis 12 C-Atomen, vorzugsweise mit 1 bis 8 C-Atomen in Betracht.

Beispielsweise sind zu nennen:

methoxy

n-propoxy-

n-butoxy-

2-methylpropoxy-

1,1-dimethylpropoxy-

hexoxy-

heptoxy-

2-ethylhexoxy-

isopropoxy-

1-methylpropoxy-

n-pentoxy-

3-methylbutoxy-2,2-dimethylpropoxy-

1-methyl-1-ethylpropoxy-

Als Mono- oder Dialkylaminoreste kommen z. B. solche in Betracht, die Alkylreste mit 1 bis 8 C-Atomen enthalten, wie Methyl-, n-Propyl-, n-Butyl-, 2-Methylpropyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, 2-Ethylhexyl-, Isopropyl-, 1-Methylpropyl-, n-Pentyl-, 3-Methylbutyl-, 2,2-Dimethylpropyl-, 1-Methyl-1-ethylpropyl- und Octyl in Betracht. Diese Reste sind gleichermaßen in den Mono- und Dialkylaminocarbonyl- und Sulfonylresten enthalten.

Alkoxycarbonylreste sind z. B. Ester, die die oben genannten Alkoxyreste oder Reste von höheren Alkoholen z. B. mit bis zu 20 C-Atomen, wie iso-C₁₅-Alkohol, enthalten.

Die Erfindung betrifft auch die neuen Verbindungen der Formel II

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R4 einen Phenylrest bedeutet, der gegebenenfalls durch einen oder mehrere Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonyl-, mit jeweils bis zu 20 C-Atomen oder Cyan- oder Carboxyreste oder durch wasserlöslich machende Reste ausgewählt aus der Gruppe bestehend aus Carboxylat., Sulfonat- oder Alkylammoniumresten substituiert ist. Solche Reste sind z. B. Alkalicarboxylat oder Carbonyloxy-tri-(hydroxyethyl)ammonium- oder Sulfonyloxy-tri-(hydroxyethyl)ammoniumreste.

Weiterhin betrifft die Erfindung die neuen Verbindungen der Formel III,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R4 einen Phenylrest bedeutet, der gegebenenfalls durch einen oder mehrere Alkoxyreste mit bis zu 20 C-Atomen oder Alkoxycarbonylreste mit 4 bis zu 20 C-Atomen, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert ist und R5 eine offenkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Alkoxyalkylgruppe mit jeweils bis zu 18 C-Atomen oder eine Aryloxygruppe bedeutet.

Beispielhaft sind in der folgenden Tabelle 1 die bevorzugten erfindungsgemäßen Verbindungen der Formel III ge-

65

20

25

30

40

Tabelle 1

 $R^{4} - HN = C - COCH_{3}$ $R^{4} = (X)_{n}$

	Х	R ⁵	n	Position
15	C ₃ H ₇ OCO	CH ₃	1	para
	C ₃ H ₇ OCO	CH ₃	1.	meta
	C ₃ H ₇ OCO	CH ₃	1	ortho
	C ₃ H ₇ OCO	CH ₃	2	ortho/para
20	C ₄ H ₉ OCO	CH ₃	1	para
	C ₄ H ₉ OCO	CH ₃	1	meta
	C ₄ H ₉ OCO	CH ₃	1	ortho
	C ₄ H ₉ OCO	CH ₃	2	ortho/para
25	C ₅ H ₁₁ OCO	CH ₃	1	para
	C ₅ H ₁₁ OCO	CH ₃	1	meta
	C ₅ H ₁₁ OCO	CH ₃	1	ortho
	C ₅ H ₁₁ OCO	CH ₃	2	ortho/para
30	C ₆ H ₁₃ OCO	CH ₃	1.	para
	C ₆ H ₁₃ OCO	CH ₃	1	meta
	C ₆ H ₁₃ OCO	CH ₃	1	ortho
	C ₆ H ₁₃ OCO	CH ₃	2	ortho/para
35	C ₈ H ₁₇ OCO	CH ₃	1	para
	C ₈ H ₁₇ OCO	CH ₃	1	meta
	C ₈ H ₁₇ OCO	CH ₃	1	ortho
	C ₈ H ₁₇ OCO	CH ₃	2	ortho/para
40	C ₁₂ H ₂₅ OCO	CH ₃	1	para

X	R ⁵	n	Position	
C ₁₂ H ₂₅ OCO	CH ₃	 	meta	
C ₁₂ H ₂₅ OCO	CH ₃	$\frac{1}{1}$	ortho	
C ₁₂ H ₂ 50CO	CH ₃	2	ortho/para	
C ₁₃ H ₂₇ OCO	CH ₃	1 -	para	
C ₁₃ H ₂₇ OCO	CH ₃	1	meta	
C ₁₃ H ₂₇ OCO	CH ₃	1	ortho	10
C ₁₃ H ₂₇ OCO	CH ₃	2	ortho/para	
C ₁₄ H ₂₉ OCO	CH ₃	1	para	
C ₁₄ H ₂₉ OCO	CH ₃	1	meta	
C ₁₄ H ₂₉ OCO	CH ₃	1	ortho	1:
	CH ₃	1 2	ortho/para	
C ₁₄ H ₂₉ OCO	CH ₃	1	para	
C ₁₅ H ₃₁ OCO		1 1		
C ₁₅ H ₃₁ OCO	CH ₃		meta	2
C ₁₅ H ₃₁ OCO	CH ₃	2	ortho	
C ₁₅ H ₃₁ OCO	CH ₃	I	ortho/para	
C ₁₆ H ₃₃ OCO	CH ₃	1	para	
C ₁₆ H ₃₃ OCO	CH ₃	1	meta	2
C ₁₆ H ₃₃ OCO	CH ₃	1	ortho	
C ₁₆ H ₃₃ OCO	CH ₃	2	ortho/para	
C ₁₇ H ₃₅ OCO	CH ₃	1	para	•
C ₁₇ H ₃₅ OCO	CH ₃	1	meta	3
C ₁₇ H ₃₅ OCO	CH ₃	1	ortho	
C ₁₇ H ₃₅ OCO	CH ₃	2	ortho/para	
C ₁₈ H ₃₇ OCO	CH ₃	1	para	
C ₁₈ H ₃₇ OCO	CH ₃	1 1	meta	3
C ₁₈ H ₃₇ OCO	CH ₃	1	ortho	
C ₁₈ H ₃₇ OCO	CH ₃	2	ortho/para	
C ₃ H ₇ OCO	C ₂ H ₅	1	para	
C ₃ H ₇ OCO	C ₂ H ₅	1	meta	4
C ₃ H ₇ OCO	C ₂ H ₅	1	ortho	
C ₃ H ₇ OCO	C ₂ H ₅	2	ortho/para	
C ₄ H ₉ OCO	C ₂ H ₅	1	para	
C ₄ H ₉ OCO	C ₂ H ₅	1	meta	4
C ₄ H ₉ OCO	C ₂ H ₅	1	ortho	•
C ₄ H ₉ OCO	C ₂ H ₅	2	ortho/para	
C ₅ H ₁₁ OCO	C ₂ H ₅	1	para	
C ₅ H ₁₁ OCO	C ₂ H ₅	1	meta	5
C ₅ H ₁₁ OCO	C ₂ H ₅	1	ortho	
C ₅ H ₁₁ OCO	C ₂ H ₅	2	ortho/para	
C ₆ H ₁₃ OCO	C ₂ H ₅	1	para	
C ₆ H ₁₃ OCO	C ₂ H ₅	1	meta	5
C ₆ H ₁₃ OCO	C ₂ H ₅	1	ortho	
C ₆ H ₁₃ OCO	C ₂ H ₅	2	ortho/para	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	para	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	meta]
C ₈ H ₁₇ OCO	C ₂ H ₅	1	ortho	
C ₈ H ₁₇ OCO	C ₂ H ₅	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	para	
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	meta	1
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	ortho	1

	Х	R ⁵	n	Position
		ļ <u> </u>		
5	C ₁₂ H ₂₅ OCO	C ₂ H ₅	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₂ H ₅	1	para
j	C ₁₃ H ₂₇ OCO	C ₂ H ₅	1	meta
	C ₁₃ H ₂₇ OCO	C ₂ H ₅	1	ortho
10	C ₁₃ H ₂₇ OCO	C ₂ H ₅	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₂ H ₅	1	para
	C ₁₄ H ₂₉ OCO	C ₂ H ₅	1	meta
	C ₁₄ H ₂₉ OCO	C ₂ H ₅	1	ortho
15	C ₁₄ H ₂₉ OCO	C ₂ H ₅	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₂ H ₅	1	para
	C ₁₅ H ₃₁ OCO	C ₂ H ₅	1	meta
	C ₁₅ H ₃₁ OCO	C ₂ H ₅	1	ortho
20	C ₁₅ H ₃₁ OCO	C ₂ H ₅	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₂ H ₅	1	para
	C ₁₆ H ₃₃ OCO	C ₂ H ₅	1	meta
	C ₁₆ H ₃₃ OCO	C ₂ H ₅	1	ortho
25	C ₁₆ H ₃₃ OCO	C ₂ H ₅	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₂ H ₅	1	para
	C ₁₇ H ₃₅ OCO	C ₂ H ₅	1	meta
	C ₁₇ H ₃₅ OCO	C ₂ H ₅	1	ortho
30	C ₁₇ H ₃₅ OCO	C ₂ H ₅	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₂ H ₅	1	para
	C ₁₈ H ₃₇ OCO	C ₂ H ₅	1	meta
	C ₁₈ H ₃₇ OCO	C ₂ H ₅	1	ortho
35	C ₁₈ H ₃₇ OCO	C ₂ H ₅	2	ortho/para
	C ₃ H ₇ OCO	C ₃ H ₇	1	para
	C ₃ H ₇ OCO	C ₃ H ₇	1	meta
	C ₃ H ₇ OCO	C ₃ H ₇	1	ortho
40	C ₃ H ₇ OCO	C ₃ H ₇	2	ortho/para
	C ₄ H ₉ OCO	C ₃ H ₇	1	para
	C ₄ H ₉ OCO	C ₃ H ₇	1	meta ortho
45	C ₄ H ₉ OCO C ₄ H ₉ OCO	C ₃ H ₇		
43	CAMOUCU		. 🤈	lortho/para l
			2	ortho/para
	C ₅ H ₁₁ OCO	C ₃ H ₇	1	para
	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO	C ₃ H ₇ C ₃ H ₇	1	para meta
50	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO	C ₃ H ₇ C ₃ H ₇ C ₃ H ₇	1 1 1	para meta ortho
50	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO	C_3H_7 C_3H_7 C_3H_7 C_3H_7	1 1 1 2	para meta ortho ortho/para
50	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO	C ₃ H ₇ C ₃ H ₇ C ₃ H ₇ C ₃ H ₇	1 1 1 2	para meta ortho ortho/para para
50	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO	C ₃ H ₇ C ₃ H ₇	1 1 2 1	para meta ortho ortho/para para meta
50	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO	C ₃ H ₇	1 1 2 1 1	para meta ortho ortho/para para meta ortho
	C ₅ H ₁ 10C0 C ₅ H ₁ 10C0 C ₅ H ₁ 10C0 C ₅ H ₁ 10C0 C ₆ H ₁ 30C0 C ₆ H ₁ 30C0 C ₆ H ₁ 30C0 C ₆ H ₁ 30C0	C ₃ H ₇	1 1 2 1 1 1 2	para meta ortho ortho/para para meta ortho ortho/para
	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₇ OCO	C ₃ H ₇	1 1 2 1 1 1 2 1	para meta ortho ortho/para para meta ortho ortho/para
	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₇ OCO C ₈ H ₁₇ OCO	C ₃ H ₇	1 1 2 1 1 1 2 1 1	para meta ortho ortho/para para meta ortho ortho/para para meta ortho ortho/para para meta
	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO	C ₃ H ₇	1 1 2 1 1 1 2 1 1 1	para meta ortho ortho/para para meta ortho ortho/para para meta ortho ortho/para para meta ortho
55 -	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO	C ₃ H ₇	1 1 2 1 1 2 1 2 1 1 1 2	para meta ortho ortho/para para meta ortho ortho/para para meta ortho ortho/para para meta ortho ortho/para
55 -	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₈ H ₁₇ OCO C ₁₂ H ₂₅ OCO	C ₃ H ₇	1 1 2 1 1 2 1 1 1 2 1 1 2 1	para meta ortho ortho/para para meta ortho ortho/para para meta ortho ortho/para para meta ortho ortho/para
55 -	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₁₂ H ₂₅ OCO C ₁₂ H ₂₅ OCO	C ₃ H ₇	1 1 2 1 1 2 1 1 1 2 1 1 1 2 1	para meta ortho ortho/para para meta ortho
55 -	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₁₂ H ₂₅ OCO C ₁₂ H ₂₅ OCO C ₁₂ H ₂₅ OCO	C ₃ H ₇	1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2	para meta ortho ortho/para para para para
55 -	C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₅ H ₁₁ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₆ H ₁₃ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO C ₁₂ H ₂₅ OCO C ₁₂ H ₂₅ OCO	C ₃ H ₇	1 1 2 1 1 2 1 1 1 2 1 1 1 2 1	para meta ortho ortho/para para meta ortho

				1
Х	R ⁵	n	Position	
C ₁₃ H ₂₇ OCO	C ₃ H ₇	1	meta	5
C ₁₃ H ₂₇ OCO	C ₃ H ₇	1	ortho	3
C ₁₃ H ₂₇ OCO	C ₃ H ₇	2	ortho/para	
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	para	•
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	meta	10
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	ortho	10
C ₁₄ H ₂₉ OCO	C ₃ H ₇	2	ortho/para	
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	para	
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	meta	15
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	ortho	
C ₁₅ H ₃₁ OCO	C ₃ H ₇	2	ortho/para	
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	para	
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	meta	20
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	ortho	
C ₁₆ H ₃₃ OCO	C ₃ H ₇	2	ortho/para	
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	para	
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	meta	25
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	ortho	
C ₁₇ H ₃₅ OCO	C ₃ H ₇	2	ortho/para	
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	para	
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	meta	30
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	ortho	
C ₁₈ H ₃₇ OCO	C ₃ H ₇	2	ortho/para	
C ₃ H ₇ OCO	C ₄ H ₉	1	para	
C ₃ H ₇ OCO	C ₄ H ₉	1	meta	35
C ₃ H ₇ OCO	C ₄ H ₉	1	ortho	
C ₃ H ₇ OCO	C ₄ H ₉	2	ortho/para	
C ₄ H ₉ OCO	C ₄ H ₉	1	para	
C ₄ H ₉ OCO	C ₄ H ₉	1	meta	40
C ₄ H ₉ OCO	C ₄ H ₉	1	ortho	
C ₄ H ₉ OCO	C ₄ H ₉	2	ortho/para	
C ₅ H ₁₁ OCO	C ₄ H ₉	1	para	
C ₅ H ₁₁ OCO	C ₄ H ₉	1	meta	45
C ₅ H ₁₁ OCO	C ₄ H ₉	1	ortho	
C ₅ H ₁₁ OCO	C ₄ H ₉	2	ortho/para	ļ
C ₆ H ₁₃ OCO	C ₄ H ₉	1	para	
C ₆ H ₁₃ OCO	C ₄ H ₉	1	meta	50
C ₆ H ₁₃ OCO	C ₄ H ₉	1	ortho	ļ
C ₆ H ₁₃ OCO	C ₄ H ₉	2	ortho/para]
C ₈ H ₁₇ OCO	C ₄ H ₉	1	para	
C ₈ H ₁₇ OCO	C ₄ H ₉	1	meta	55
C ₈ H ₁₇ OCO	C ₄ H ₉	1	ortho	
C ₈ H ₁₇ OCO	C ₄ H ₉	2	ortho/para	1
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	para	
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	meta	60
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	ortho	
C ₁₂ H ₂₅ OCO	C ₄ H ₉	2	ortho/para	1
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	para	
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	meta	65
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	ortho	J

	х	R ⁵	n	Position
	C ₁₃ H ₂₇ OCO		- 2	ortho/para
5	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	para
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	meta
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	ortho
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	2	ortho/para
10	C ₁₅ H ₃₁ OCO	C ₄ H ₉	1	para
	C ₁₅ H ₃₁ OCO	C ₄ H ₉	1	meta
		C ₄ H ₉	1	ortho
	C ₁₅ H ₃₁ OCO	C ₄ H ₉	2	ortho/para
15	C ₁₅ H ₃₁ OCO C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	para
		C ₄ H ₉	1	meta
	C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	ortho
20	C ₁₆ H ₃₃ OCO	C ₄ H ₉	2	ortho/para
20	C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	para
	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	meta
	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	ortho
25	C ₁₇ H ₃₅ OCO	C ₄ H ₉	2	ortho/para
23	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉	1	meta
	C ₁₈ H ₃₇ OCO	C ₄ H ₉	1	ortho
30	C ₁₈ H ₃₇ OCO	C ₄ H ₉	2	ortho/para
30	C ₁₈ H ₃₇ OCO C ₃ H ₇ OCO	C ₅ H ₁₁	1	para
	C ₃ H ₇ OCO	C ₅ H ₁₁	1	meta
	C ₃ H ₇ OCO	C ₅ H ₁₁	1	ortho
35	C ₃ H ₇ OCO	C ₅ H ₁₁	2	ortho/para
	C ₄ H ₉ OCO	C ₅ H ₁₁	1	para
	C ₄ H ₉ OCO	C ₅ H ₁₁	1	meta
	C ₄ H ₉ OCO	C ₅ H ₁₁	-1	ortho
40	C ₄ H ₉ OCO	C ₅ H ₁₁	2	ortho/para
	C ₅ H ₁₁ OCO	C ₅ H ₁₁	1	para
	C ₅ H ₁₁ OCO	C ₅ H ₁₁	1	meta
	C ₅ H ₁₁ OCO	C ₅ H ₁₁	1	ortho
45	C ₅ H ₁₁ OCO	C ₅ H ₁₁	2	ortho/para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1	para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1	meta
	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1	ortho
50	C ₆ H ₁₃ OCO	C ₅ H ₁₁	2	ortho/para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1	para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1	meta
	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1	ortho
55	C ₈ H ₁₇ OCO	C ₅ H ₁₁	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	1	para
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	1	meta
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	1	ortho
60	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	2	ortho/para
	C ₁₃ H ₂₇ OCO	C5H11	1	para
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁	1	meta
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁	1	ortho
65	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	1	para

r 	R ⁵	7	Position	
X	R ³	n	POSICION	
C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	1	meta	
C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	1	ortho	5
C ₁₄ H ₂₉ OCO	C ₅ H ₁₁	2	ortho/para	
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	para	
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	meta	
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	ortho	10
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	2	ortho/para	
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	1	para	
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	1	meta	15
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	1	ortho	13
C ₁₆ H ₃₃ OCO	C ₅ H ₁₁	2	ortho/para	1
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	para	1
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	meta	20
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	ortho	1
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	2	ortho/para	1
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	1	para	1
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	1	meta	25
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	1	ortho	1
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁	2	ortho/para	1
C ₃ H ₇ OCO	C ₆ H ₁₃	1	para	i
C ₃ H ₇ OCO	C ₆ H ₁₃	1	meta	30
C ₃ H ₇ OCO	C ₆ H ₁₃	1	ortho	1
C ₃ H ₇ OCO	C ₆ H ₁₃	2	ortho/para	1
C ₄ H ₉ OCO	C ₆ H ₁₃	1	para	1
C ₄ H ₉ OCO	C ₆ H ₁₃	1	meta	35
C ₄ H ₉ OCO	C ₆ H ₁₃	1	ortho	1
C ₄ H ₉ OCO	C ₆ H ₁₃	2	ortho/para	1
C ₅ H ₁₁ OCO	C ₆ H ₁₃	1	para	
C ₅ H ₁₁ OCO	C ₆ H ₁₃	1	meta	40
C ₅ H ₁₁ OCO	C ₆ H ₁₃	1	ortho	1
C ₅ H ₁₁ OCO	C ₆ H ₁₃	2	ortho/para	
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	para]
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	meta	45
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	ortho]
C ₆ H ₁₃ OCO	C ₆ H ₁₃	2	ortho/para	
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	para	}
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	meta	50
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	ortho]
C ₈ H ₁₇ OCO	C ₆ H ₁₃	2	ortho/para]
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	para]
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	meta	55
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	ortho	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	2	ortho/para]
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	para	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	meta	60
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1.	ortho	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	2	ortho/para	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1 .	para	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	meta	65
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	ortho	_

	Х	R ⁵	n	Position
	C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	2	ortho/para
5 a	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	para
	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	meta
	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	ortho
	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	2	ortho/para
10	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	para
	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	meta
	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	ortho
	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	2	ortho/para
15	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	para
	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	meta
	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	ortho
20	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	2	ortho/para
20	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	para
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	meta
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	ortho
25	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	2	ortho/para
23	C ₃ H ₇ OCO	CH ₃ O	1	para
	C ₃ H ₇ OCO	CH ₃ O	1	meta
	C ₃ H ₇ OCO	CH ₃ O	1	ortho
30	C ₃ H ₇ OCO	CH ₃ O	2	ortho/para
	C ₄ H ₉ OCO	CH ₃ O	1	para
	C ₄ H ₉ OCO	CH ₃ O	1	meta
	C ₄ H ₉ OCO	CH ₃ O	1	ortho
35	C ₄ H ₉ OCO	CH ₃ O	2	ortho/para
	C ₅ H ₁₁ OCO	CH ₃ O	1	para
	C ₅ H ₁₁ OCO	CH ₃ O	1	meta
	C ₅ H ₁₁ OCO	CH ₃ O	1	ortho
40	C ₅ H ₁₁ OCO	CH ₃ O	2	ortho/para
	C ₆ H ₁₃ OCO	CH ₃ O	1	para
	C ₆ H ₁₃ OCO	CH ₃ O	1	meta
	C ₆ H ₁₃ OCO	CH ₃ O	1	ortho
45	C ₆ H ₁₃ OCO	CH ₃ O	2	ortho/para
	C ₈ H ₁₇ OCO	CH ₃ O	1	para
	C ₈ H ₁₇ OCO	CH ₃ O	1	meta
60	C ₈ H ₁₇ OCO	CH ₃ O	1	ortho
50	C ₈ H ₁₇ OCO	CH ₃ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	CH ₃ O	1	para
	C ₁₂ H ₂₅ OCO	CH ₃ O	1	meta
55	C ₁₂ H ₂₅ OCO	CH ₃ O	2	ortho ortho/para
_	C ₁₂ H ₂₅ OCO	CH ₃ O	1	para
	C ₁₃ H ₂₇ OCO	CH ₃ O	1	meta
	C ₁₃ H ₂₇ OCO	CH ₃ O CH ₃ O	1	ortho
60	C ₁₃ H ₂₇ OCO	CH ₃ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	CH ₃ O	1	para
	C ₁₄ H ₂₉ OCO	CH ₃ O	1	meta
	C ₁₄ H ₂₉ OCO	CH ₃ O	1	ortho
65	C ₁₄ H ₂₉ OCO C ₁₄ H ₂₉ OCO	CH ₃ O	2	ortho/para
	C ₁₄ H ₂₉ OCO C ₁₅ H ₃₁ OCO	CH ₃ O	1	para
	C15H31OCO	CH3U		15070

Х	R ⁵	n	Position	
C ₁₅ H ₃ 1OCO	CH ₃ O	1	meta	1
C ₁₅ H ₃₁ OCO	CH ₃ O	1	ortho	5
C ₁₅ H ₃₁ OCO	CH ₃ O	2	ortho/para	1
C ₁₆ H ₃₃ OCO	CH ₃ O	1	para	1
C ₁₆ H ₃₃ OCO	CH ₃ O	1	meta	1
C ₁₆ H ₃₃ OCO	CH ₃ O	1	ortho	10
C ₁₆ H ₃₃ OCO	CH ₃ O	2	ortho/para	1
C ₁₇ H ₃₅ OCO	CH ₃ O	1	para	1
C ₁₇ H ₃₅ OCO	CH ₃ O	1	meta	15
C ₁₇ H ₃₅ OCO	CH ₃ O	1	ortho	15
C ₁₇ H ₃₅ OCO	CH ₃ O	2	ortho/para	1
C ₁₈ H ₃₇ OCO	CH ₃ O	1	para	
C ₁₈ H ₃₇ OCO	CH ₃ O	1	meta	20
C ₁₈ H ₃₇ OCO	CH ₃ O	1	ortho	20
	CH ₃ O	2	ortho/para	1
C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	para	1
C ₃ H ₇ OCO	C ₂ H ₅ O	1	meta	25
C ₃ H ₇ OCO	C ₂ H ₅ O	1	ortho	7
C ₃ H ₇ OCO	C ₂ H ₅ O	2	ortho/para	1
C ₃ H ₇ OCO	C ₂ H ₅ O	1	para	-
C ₄ H ₉ OCO	C ₂ H ₅ O	1	meta	30
C ₄ H ₉ OCO	C ₂ H ₅ O	1	ortho	┨
C ₄ H ₉ OCO	C ₂ H ₅ O	2	ortho/para	†
C ₄ H ₉ OCO	C ₂ H ₅ O	1	para	1
C ₅ H ₁₁ OCO	C ₂ H ₅ O	1	meta	35
C ₅ H ₁₁ OCO	C ₂ H ₅ O	1	ortho	┪ ~~~
C ₅ H ₁₁ OCO	C ₂ H ₅ O	2	ortho/para	1
C ₅ H ₁₁ OCO	C ₂ H ₅ O	1	para	1
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	meta	40
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	ortho	1
C ₆ H ₁₃ OCO	C ₂ H ₅ O	2	ortho/para	†
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	para	₹
C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	meta	45
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	ortho	1
C ₈ H ₁₇ OCO	C ₂ H ₅ O	2	ortho/para	7
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1	para	7
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1	meta	50
	C ₂ H ₅ O	1	ortho	7
C ₁₂ H ₂₅ OCO C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	2	ortho/para	7
- C ₁₃ H ₂₇ OCO		1	para	-
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1	meta	55
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1	ortho	7
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	2	ortho/para	7
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	para	7
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	meta	60
	C ₂ H ₅ O	1	ortho	7
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	2	ortho/para	7
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	para	┪
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	1	meta	65
C ₁₅ H ₃₁ OCO		1	ortho	- 1
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	ı .	101 0110	

	Х	R ⁵	n	Position
5	C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	2	ortho/para
,	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	para
	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	meta
	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	ortho
10	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	para
	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	ortho
15	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	para
	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	ortho
20	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	2	ortho/para
	C ₃ H ₇ OCO	C ₃ H ₇ O	1	para
	C ₃ H ₇ OCO	C ₃ H ₇ O	1	meta
	C ₃ H ₇ OCO	C ₃ H ₇ O	1	ortho
25	C ₃ H ₇ OCO	C ₃ H ₇ O	2	ortho/para
	C ₄ H ₉ OCO	C ₃ H ₇ O	1	para
	C ₄ H ₉ OCO	C ₃ H ₇ O	11	meta
	C ₄ H ₉ OCO	C ₃ H ₇ O	1	ortho
30	C ₄ H ₉ OCO	C ₃ H ₇ O	2	ortho/para
	C ₅ H ₁₁ OCO	C ₃ H ₇ O	1	para
	C ₅ H ₁₁ OCO	C ₃ H ₇ O	1	meta
	C ₅ H ₁₁ OCO	C ₃ H ₇ O	1	ortho
35	C ₅ H ₁₁ OCO	C ₃ H ₇ O	2	ortho/para
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	para
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	meta
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	ortho
40	C ₆ H ₁₃ OCO	C ₃ H ₇ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	para
	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	meta
45	C ₈ H ₁₇ OCO	C ₃ H ₇ O	2	ortho ortho/para
43	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	para
	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O C ₃ H ₇ O	1	meta
	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O	1	ortho
50	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O	1	para
	C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	1	meta
	C ₁₃ H ₂₇ OCO C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	1	ortho
55		C ₃ H ₇ O	2	ortho/para
	C ₁₃ H ₂₇ OCO C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	para
	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	meta
	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	ortho
60	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	para
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	meta
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	ortho
65	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1	para
	0101133000	-3,0		15

			1. 1	1
X	R ⁵	n	Position	
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1	meta	_
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1	ortho	5
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	2	ortho/para	
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	para	
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	meta	
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	ortho	10
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	2	ortho/para	
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	para	1
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	meta	,,
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	ortho	15
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	2	ortho/para	1
C ₃ H ₇ OCO	C ₄ H ₉ O	1	para	
C ₃ H ₇ OCO	C ₄ H ₉ O	1	meta	20
C ₃ H ₇ OCO	C ₄ H ₉ O	1	ortho	1
C ₃ H ₇ OCO	C ₄ H ₉ O	2	ortho/para	1
C ₄ H ₉ OCO	C ₄ H ₉ O	1	para	1
C ₄ H ₉ OCO	C ₄ H ₉ O	1	meta	25
C ₄ H ₉ OCO	C ₄ H ₉ O	1	ortho	1
C ₄ H ₉ OCO	C ₄ H ₉ O	2	ortho/para	1
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	para	1
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	meta	30
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	ortho	1
C ₅ H ₁₁ OCO	C ₄ H ₉ O	2	ortho/para	1
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	para	1
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	meta	35
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	ortho	1
C ₆ H ₁₃ OCO	C ₄ H ₉ O	2	ortho/para	1
C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	para	1
C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	meta	40
C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	ortho	
C ₈ H ₁₇ OCO	C ₄ H ₉ O	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	para	1
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	meta	45
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	ortho	
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	2	ortho/para	
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	para]
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	meta	50
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	ortho	
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	2	ortho/para	
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	para]
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	meta	55
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	ortho]
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	2	ortho/para]
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	para]
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	meta	60
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	ortho]
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	2	ortho/para]
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1	para	
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1	meta	65
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1	ortho	j

				Therities
	X	R ⁵	n	Position
5	C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	2	ortho/para
•	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	para
	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	ortho
10	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1	para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1	ortho
15	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	2	ortho/para
	C ₃ H ₇ OCO	C ₅ H ₁₁ O	1	para
	C ₃ H ₇ OCO	C ₅ H ₁₁ O	1	meta
	C ₃ H ₇ OCO	C ₅ H ₁₁ O	1	ortho
20	C ₃ H ₇ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₄ H ₉ OCO	C ₅ H ₁₁ O	1	para
	C ₄ H ₉ OCO	C ₅ H ₁₁ O	1	meta
	C ₄ H ₉ OCO	C ₅ H ₁₁ O	1	ortho
25	C ₄ H ₉ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₅ H ₁₁ OCO	C ₅ H ₁₁ O	1	para
	C ₅ H ₁₁ OCO	C ₅ H ₁₁ O	1	meta
	C ₅ H ₁₁ OCO	C ₅ H ₁₁ O	1	ortho
30	C ₅ H ₁₁ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	meta
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	ortho
35	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	1	para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	1	meta
	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	1	ortho
40	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	1	para
_	-C ₁₋₂ H _{2.5} OCO	C5H11O	1_	meta
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	1	ortho
45	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O	1	para
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O	1	meta
50	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O	1	ortho
50	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O	1	para
	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O	1	meta ortho
55	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O	2	ortho/para
35	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O	1	para
	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O	1	meta
	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O	1	ortho
60 ·	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O C ₅ H ₁₁ O	2	ortho/para
	C ₁₅ H ₃₁ OCO		1	para para
	C ₁₆ H ₃₃ OCO	C ₅ H ₁₁ O	1	meta
	C ₁₆ H ₃₃ OCO	C ₅ H ₁₁ O	1	ortho
65	C ₁₆ H ₃₃ OCO	C ₅ H ₁₁ O C ₅ H ₁₁ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₅ H ₁₁ O	1	para
	C ₁₇ H ₃₅ OCO	C51110	L	Ibara

V	R ⁵	n	Position	
X	"	••	1	
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	1	meta	_
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	1	ortho	5
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	2	ortho/para	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	para	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	meta	
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	ortho	10
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	2	ortho/para	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	para	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	meta	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	ortho	15
	C ₆ H ₁₃ O	2	ortho/para	
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	para	
C ₄ H ₉ OCO		1	meta	
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	ortho	20
C ₄ H ₉ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	para	
C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	1		
C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	1	meta ortho	25
C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	1	 	1
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O		para	
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	meta ortho	30
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O			
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1 .	para	25
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	meta ortho	35
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	<u> </u>	
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	para	40
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	meta ortho	40
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	para	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	meta	45
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	ortho	~
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	2	ortho/para	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	para	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	meta	50
C ₁₄ H ₂₉ OCO		1	ortho	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	2	ortho/para	i
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	para	ļ
- C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1	meta	55
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O		ortho	
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1 2	ortho/para	·
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	2		
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1	para meta	60
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	L		1
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1	ortho	4
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	2	ortho/para	4
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	para	65
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	meta	-{
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	ortho	J

	X	R ⁵	n	Position
5	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃ O	1	para
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃ O	1	ortho
10	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃ O	2	ortho/para
	C ₃ H ₇ OCO	C ₇ H ₁₅ O	1	para
	C ₃ H ₇ OCO	C7H15O	1	meta
	C ₃ H ₇ OCO	C ₇ H ₁₅ O	1	ortho
15	C ₃ H ₇ OCO	C7H15O	2	ortho/para
	C ₄ H ₉ OCO	C ₇ H ₁₅ O	1	para
	C ₄ H ₉ OCO	C7H15O	1	meta
	C ₄ H ₉ OCO	C ₇ H ₁₅ O	1	ortho
20	C ₄ H ₉ OCO	C ₇ H ₁₅ O	2	ortho/para
	C ₅ H ₁₁ OCO	C7H15O	1	para
	C ₅ H ₁₁ OCO	C7H15O	1	meta
	C ₅ H ₁₁ OCO	C7H15O	1	ortho
25	C ₅ H ₁₁ OCO	C ₇ H ₁₅ O	2	ortho/para
	C ₆ H ₁₃ OCO	C7H15O	1	para
	C ₆ H ₁₃ OCO	C ₇ H ₁₅ O	1	meta
	C ₆ H ₁₃ OCO	C ₇ H ₁₅ O	1	ortho
30	C ₆ H ₁₃ OCO	C ₇ H ₁₅ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₇ H ₁₅ O	1	para
	C ₈ H ₁₇ OCO	C ₇ H ₁₅ O	1	meta
	C ₈ H ₁₇ OCO	C ₇ H ₁₅ O	1	ortho
35	C ₈ H ₁₇ OCO	C ₇ H ₁₅ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₇ H ₁₅ O	1	para
	C ₁₂ H ₂₅ OCO	C ₇ H ₁₅ O	1	meta
	C ₁₂ H ₂₅ OCO	C ₇ H ₁₅ O	1	ortho
40	C ₁₂ H ₂₅ OCO	C7H15O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₇ H ₁₅ O	1	para
	C ₁₃ H ₂₇ OCO	C ₇ H ₁₅ O	<u>1</u> -1	meta ortho
	C ₁₃ H ₂₇ OCO	—С ₇ Н ₁₅ О -	2	ortho/para
45	C ₁₃ H ₂₇ OCO	C ₇ H ₁₅ O	1	para
	C ₁₄ H ₂₉ OCO	C ₇ H ₁₅ O	1	meta
	C ₁₄ H ₂₉ OCO	C ₇ H ₁₅ O	1	ortho
50	C ₁₄ H ₂₉ OCO	C ₇ H ₁₅ O	2	ortho/para
50	C ₁₄ H ₂₉ OCO	C ₇ H ₁₅ O C ₇ H ₁₅ O	1	para
	C ₁₅ H ₃₁ OCO	C7H15O	1	meta
	C ₁₅ H ₃₁ OCO	C7H15O	1	ortho
55	C ₁₅ H ₃₁ OCO	C7H15O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C7H15O	1	para
	C ₁₆ H ₃₃ OCO	C7H15O	1	meta
	C ₁₆ H ₃₃ OCO C ₁₆ H ₃₃ OCO	C ₇ H ₁₅ O	1	ortho
60		C7H15O	2	ortho/para
	C ₁₆ H ₃₃ OCO C ₁₇ H ₃₅ OCO	C7H15O	1	para
	C ₁₇ H ₃₅ OCO	C ₇ H ₁₅ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₇ H ₁₅ O	1	ortho
65		C ₇ H ₁₅ O	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₇ H ₁₅ O	1	para
	C ₁₈ H ₃₇ OCO	<u> </u>		15

				T .
X	R ⁵	n	Position	
C ₁₈ H ₃₇ OCO	C ₇ H ₁₅ O	1	meta	_
C ₁₈ H ₃₇ OCO	C ₇ H ₁₅ O	1	ortho	5
C ₁₈ H ₃₇ OCO	C ₇ H ₁₅ O	2	ortho/para	
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	para	1
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	meta	,,
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	ortho	10
C ₃ H ₇ OCO	C ₈ H ₁₇ O	2	ortho/para	1
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	para	1
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	meta	15
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	ortho	1 "
C ₄ H ₉ OCO	C ₈ H ₁₇ O	2	ortho/para	
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	para	1
	C ₈ H ₁₇ O	1	meta	20
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	$\frac{-}{1}$	ortho	²⁰
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	2	ortho/para	1
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	para	1
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	meta	35
C ₆ H ₁₃ OCO		1	ortho	25
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	2	ortho/para	†
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	para	†
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	meta	30
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	ortho	1 30
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	2	ortho/para	-{
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1		
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	para meta	35
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	ortho	┪ "
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	2	ortho/para	-
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	para	-
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	meta	40
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	ortho	┪ **
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	2	ortho/para	┪
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	para	-
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	meta	45
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	ortho	┨
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	2	ortho/para	-
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	para	┪
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1 -	meta	50
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	ortho	┥ ~~
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	2	ortho/para	-
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	para	┪
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O		meta	55
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	ortho	-1
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	ortho/para	-
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	2		┪
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	para	
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	meta	⊣ ~ ~
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	ortho	4
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	2	ortho/para	-
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	para	65
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	meta	⊣
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	ortho	

1	V	R ⁵	n	Position
	Х	*	••	
	C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	2	ortho/para
5	C ₃ H ₇ OCO	C ₁₂ H ₂₅ O	1	para
	C ₃ H ₇ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₃ H ₇ OCO	C ₁₂ H ₂₅ O	1	ortho
	C ₃ H ₇ OCO	C ₁₂ H ₂₅ O	2	ortho/para
10	C ₄ H ₉ OCO	C ₁₂ H ₂₅ O	1	para
	C ₄ H ₉ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₄ H ₉ OCO	C ₁₂ H ₂₅ O	1	ortho
	C ₄ H ₉ OCO	C ₁₂ H ₂₅ O	2	ortho/para
15		C ₁₂ H ₂₅ O	1	para
	C ₅ H ₁₁ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₅ H ₁₁ OCO	C ₁₂ H ₂₅ O	1	ortho
	C ₅ H ₁₁ OCO	C ₁₂ H ₂₅ O	2	ortho/para
20	C ₅ H ₁₁ OCO	C ₁₂ H ₂₅ O	1	para
	C ₆ H ₁₃ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₆ H ₁₃ OCO	C ₁₂ H ₂₅ O	1	ortho
	C ₆ H ₁₃ OCO		2	ortho/para
25	C ₆ H ₁₃ OCO	C ₁₂ H ₂₅ O	1	para
	C ₈ H ₁₇ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₈ H ₁₇ OCO	C ₁₂ H ₂₅ O	1	ortho
20	C ₈ H ₁₇ OCO	C ₁₂ H ₂₅ O	2	ortho/para
30	C ₈ H ₁₇ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₂ H ₂₅ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₂ H ₂₅ OCO	C ₁₂ H ₂₅ O	1	ortho
25	C ₁₂ H ₂₅ OCO	C ₁₂ H ₂₅ O	2	ortho/para
35	C ₁₂ H ₂₅ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₃ H ₂₇ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₃ H ₂₇ OCO	C ₁₂ H ₂₅ O	1	ortho
40	C ₁₃ H ₂₇ OCO	C ₁₂ H ₂₅ O	2	ortho/para
40	C ₁₃ H ₂₇ OCO	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	1	para
	C ₁₄ H ₂₉ OCO	C ₁₂ H ₂₅ O	1	meta
- <u>-</u> -	C ₁₄ H ₂₉ OCO	C ₁₂ H ₂₅ O	1	ortho
45	C ₁₄ H ₂₉ OCO .	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₅ H ₃₁ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₅ H ₃₁ OCO C ₁₅ H ₃₁ OCO	C ₁₂ H ₂₅ O	1	ortho
50	C15H310C0	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₆ H ₃₃ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₆ H ₃₃ OCO	C ₁₂ H ₂₅ O	1	ortho
55	C ₁₆ H ₃₃ OCO	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₇ H ₃₅ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₁₂ H ₂₅ O	1	ortho
60	C ₁₇ H ₃₅ OCO	C ₁₂ H ₂₅ O	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₁₂ H ₂₅ O	1	para
	C ₁₈ H ₃₇ OCO	C ₁₂ H ₂₅ O	1	meta
	C ₁₈ H ₃₇ OCO		1	ortho
65	C ₁₈ H ₃₇ OCO	C ₁₂ H ₂₅ O	. 2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₁₂ H ₂₅ O	1	para
	C ₃ H ₇ OCO	C ₁₄ H ₂₉ O		Ingra

			15 111	1
X	R ⁵	n	Position	
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	1	meta	_
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	1	ortho	5
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para	<u>.</u>
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	para	
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	meta	10
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	1	ortho	10
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	2	ortho/para	
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	para	
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	meta	15
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	ortho	13
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	2	ortho/para	
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	para	
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	meta	20
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	ortho	20
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	2	ortho/para	1
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	para	1
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	meta	25
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	ortho	1
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para	1
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	para	1
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	meta	30
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	ortho	1
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	2	ortho/para	1
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	para	1
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	meta	35
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	ortho	1
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para	
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	para	}
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	meta	40
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	ortho]
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	2	ortho/para	
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	para	
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	meta	45
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	ortho	İ
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	2	ortho/para	<u> </u>
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	para]
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	meta	50
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	ortho	
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	2	ortho/para	j '
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	para	1
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	meta	55
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	ortho	<u> </u>
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	2	ortho/para	1
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	para	
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	meta	60
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	ortho]
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para	_
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1	para	
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1	meta	65
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1	ortho]

	TV	R ⁵	n	Position
	X	K-	n	POSICION
5	C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	para
	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	ortho
10	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	para
	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	ortho
15	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₆ H ₁₃ OCO	·C ₁₆ H ₃₃ O	1	para
	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	1	ortho
20	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	para
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	ortho
25	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	ortho
30	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	ortho
35	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	1	ortho
40	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	1	meta
45	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	1	ortho
45	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	meta
50	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	2	ortho
5	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	ortho/para
	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O		para
	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	1	meta ortho
55	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O		
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O	1	para meta
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O	1	ortho
60	C ₁₈ H ₃₇ OCO	C16H33O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O	1	para para
	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O C ₁₈ H ₃₇ O	1	meta
	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O C ₁₈ H ₃₇ O	1	ortho
65	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para
	C ₃ H ₇ OCO		1	para para
	C ₄ H ₉ OCO	C ₁₈ H ₃₇ O		Para

			· · · · · · · · · · · · · · · · · · ·	
Х	R ⁵	n	Position	
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	meta	
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	ortho	5
C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	2	ortho/para	İ
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	para	1
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	meta	
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	ortho	10
C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	2	ortho/para	1
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	para	1
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	meta	٠,,
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	ortho	15
C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	2	ortho/para	1
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	para	1
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	meta	200
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	ortho	20
C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para	1
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	para	1
	C ₁₈ H ₃₇ O	1	meta	25
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	ortho	23
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	2	ortho/para	
C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	para	1
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	meta	30
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	ortho	. 30
C ₁₃ H ₂₇ OCO		2	ortho/para	1
C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	para	
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O C ₁₈ H ₃₇ O	1	meta	35
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	ortho	1 "
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	2	ortho/para	1
C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	para	1
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	meta	40
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	ortho	1
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	2	ortho/para	-
C ₁₅ H ₃₁ OCO	C ₁₈ H ₃ 7O	1	para	
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	$-\frac{1}{1}$	meta	45
C ₁₆ H ₃₃ OCO C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	ortho	1
C ₁₆ H ₃₃ OCO	C ₁₈ H ₃ 7O	2	ortho/para	4
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	para	1
C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	meta	50
	C ₁₈ H ₃₇ O	1	ortho	1
C ₁₇ H ₃₅ OCO C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	2	ortho/para	1
	C ₁₈ H ₃₇ O	1	para	1
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	meta	55
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	ortho	1
C ₁₈ H ₃₇ OCO		2	ortho/para	-
C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1		-
CH ₃ O	CH ₃	1	para	60
CH ₃ O	CH ₃	1	meta	-
CH ₃ O	CH ₃	2	ortho ortho/para	4
CH ₃ O	CH ₃			4
C ₂ H ₅ O	CH ₃	1	para	65
C ₂ H ₅ O	CH ₃	1	meta	-
C ₂ H ₅ O	CH ₃	1	ortho	_

	X	R ⁵	n	Position
5	C ₂ H ₅ O	CH ₃	2	ortho/para
,	C ₃ H ₇ O	CH ₃	1	para
:	C ₃ H ₇ O	CH ₃	1	meta
'	C ₃ H ₇ O	CH ₃	1	ortho
10	C ₃ H ₇ O	CH ₃	2	ortho/para
10	C4H9O	CH ₃	1	para
	C ₄ H ₉ O	CH ₃	1	meta
	C ₄ H ₉ O	CH ₃	1	ortho
15	C ₄ H ₉ O	CH ₃	2	ortho/para
15	C ₅ H ₁₁ O	CH ₃	1	para
	C ₅ H ₁₁ O	CH ₃	1	meta
	C ₅ H ₁₁ O	CH ₃	1	ortho
20	C ₅ H ₁₁ O	CH ₃	2	ortho/para
	C ₆ H ₁₃ O	CH ₃	1	para
	C ₆ H ₁₃ O	CH ₃	1	meta
	C ₆ H ₁₃ O	CH ₃	1	ortho
25	C ₆ H ₁₃ O	CH ₃	2	ortho/para
	C ₈ H ₁₇ O	CH ₃	1	para
	C ₈ H ₁₇ O	CH ₃	1	meta
	C ₈ H ₁₇ O	CH ₃	1	ortho
30	C ₈ H ₁₇ O	CH ₃	2	ortho/para
	C ₁₂ H ₂₅ O	CH ₃	1	para
	C ₁₂ H ₂₅ O	CH ₃	1	meta
	C ₁₂ H ₂₅ O	CH ₃	1	ortho
35	C ₁₂ H ₂₅ O	CH ₃	2	ortho/para
	C ₁₃ H ₂₇ O	CH ₃	1	para
	C ₁₃ H ₂₇ O	CH ₃	1	meta
	C ₁₃ H ₂₇ O	CH ₃	1	ortho
40	C ₁₃ H ₂₇ O	CH ₃	2	ortho/para
	C ₁₄ H ₂₉ O	CH ₃	1	para
	C ₁₄ H ₂₉ O	CH ₃	1	meta
	C ₁₄ H ₂₉ O	CH ₃	1	ortho
45	C ₁₄ H ₂₉ O	CH ₃	2	ortho/para
	C ₁₅ H ₃₁ O	CH ₃	1	para
	C ₁₅ H ₃₁ O	CH ₃	1	meta
	C ₁₅ H ₃₁ O	CH ₃	1	ortho
50	C ₁₅ H ₃₁ O	CH ₃	2	ortho/para
	C ₁₆ H ₃₃ O	CH ₃	1	para
	C ₁₆ H ₃₃ O	CH ₃	1	meta
	C ₁₆ H ₃₃ O	CH ₃	1	ortho
55	C ₁₆ H ₃₃ O	CH ₃	2	ortho/para
	C ₁₇ H ₃₅ O	CH ₃	1	para
	C ₁₇ H ₃₅ O	CH ₃	1	meta
	C ₁₇ H ₃₅ O	CH ₃	1	ortho
60	C ₁₇ H ₃₅ O	CH ₃	2	ortho/para
	C ₁₈ H ₃₇ O	CH ₃	1	para
	C ₁₈ H ₃₇ O	CH ₃	1	meta
	C ₁₈ H ₃₇ O	CH ₃	1	ortho
65	C ₁₈ H ₃₇ O	CH ₃	2	ortho/para
	CH ₃ O	C ₂ H ₅	1	para

			,		1	
	X	R ⁵	n	Position		
	CH ₃ O	C ₂ H ₅	1	meta		
	CH ₃ O	C ₂ H ₅	1	ortho		5
- 1	CH ₃ O	C ₂ H ₅	2	ortho/para		
;	C ₂ H ₅ O	C ₂ H ₅	1	para		
	C ₂ H ₅ O	C ₂ H ₅	1	meta		
	C ₂ H ₅ O	C ₂ H ₅	1	ortho		10
	C ₂ H ₅ O	C ₂ H ₅	2	ortho/para		
	C ₃ H ₇ O	C ₂ H ₅	1	para		
,	C ₃ H ₇ O	C ₂ H ₅	1	meta		
' I		C ₂ H ₅	1	ortho		15
	C ₃ H ₇ O	C ₂ H ₅	2	ortho/para		
	C ₃ H ₇ O	C ₂ H ₅	1	para		
	C ₄ H ₉ O	C ₂ H ₅	1	meta		
	C ₄ H ₉ O	C ₂ H ₅	1	ortho		20
:	C ₄ H ₉ O	C ₂ H ₅	2	ortho/para		
	C ₄ H ₉ O	C ₂ H ₅	1	para		
-	C ₅ H ₁₁ O	C ₂ H ₅	1	meta		
- 1	C ₅ H ₁₁ O	C ₂ H ₅	1	ortho		25
١	C ₅ H ₁₁ O		2	ortho/para		
- 1	C ₅ H ₁₁ O	C ₂ H ₅	1	para		
- 1	C ₆ H ₁₃ O	C ₂ H ₅	1	meta		20
ı	C ₆ H ₁₃ O		1	ortho		30
- 1	C ₆ H ₁₃ O	C ₂ H ₅ C ₂ H ₅	2	ortho/para		
	C ₆ H ₁₃ O		1			•
- 1	C ₈ H ₁₇ O	C ₂ H ₅	1	para meta		35
١	C ₈ H ₁₇ O	C ₂ H ₅	1	ortho		33
-	C ₈ H ₁₇ O	C ₂ H ₅ C ₂ H ₅	2	ortho/para		
ı	C ₈ H ₁₇ O	C ₂ H ₅	1	para		
	C ₁₂ H ₂₅ O	C ₂ H ₅	1	meta		40
_	C ₁₂ H ₂₅ O	C ₂ H ₅	1	ortho		70
-	C ₁₂ H ₂₅ O	C ₂ H ₅	2	ortho/para	l.	
ı	C12H25O	C ₂ H ₅	1	para		
-	C ₁₃ H ₂₇ O C ₁₃ H ₂₇ O	C ₂ H ₅	1	meta	ł	45
	C ₁₃ H ₂₇ O	C ₂ H ₅	1	ortho		-
ı	C ₁₃ H ₂₇ O	C ₂ H ₅	2	ortho/para		
- 1	C ₁₄ H ₂₉ O	C ₂ H ₅	1	para		
ŀ	C ₁₄ H ₂₉ O	C ₂ H ₅	1 ,	meta		50
١	C ₁₄ H ₂₉ O	C ₂ H ₅	1	ortho		
ı	C ₁₄ H ₂₉ O	C ₂ H ₅	2	ortho/para		
	C ₁₅ H ₃₁ O	C ₂ H ₅	1	para	1	
1	C ₁₅ H ₃₁ O	C ₂ H ₅	1	meta		55
ŀ	C ₁₅ H ₃₁ O	C ₂ H ₅	1	ortho		
ŀ		C ₂ H ₅	2	ortho/para		
ŀ	C ₁₅ H ₃₁ O C ₁₆ H ₃₃ O	C ₂ H ₅	1	para	1	
ŀ	C ₁₆ H ₃₃ O	C ₂ H ₅	1	meta	1	60
ŀ		C ₂ H ₅	1	ortho	1	
j	C16H33O	C ₂ H ₅	2	ortho/para	İ	
ŀ	C16H33O	C ₂ H ₅	1	para	1	
ļ	C ₁₇ H ₃₅ O		1	meta	1	65
	C ₁₇ H ₃₅ O	C ₂ H ₅	1	ortho	ł	
l	C ₁₇ H ₃₅ O	C ₂ H ₅	т	Lor cuo	J	

	Х	R ⁵	n	Position
5	C ₁₇ H ₃₅ O	Ç ₂ H ₅	2	ortho/para
	C ₁₈ H ₃₇ O	C ₂ H ₅	1	para
	C ₁₈ H ₃₇ O	C ₂ H ₅	1	meta
	C ₁₈ H ₃₇ O	C ₂ H ₅	1	ortho
10	C ₁₈ H ₃₇ O	C ₂ H ₅	2	ortho/para
	CH ₃ O	C ₃ H ₇	1	para
	CH ₃ O	C ₃ H ₇	1	meta
	CH ₃ O	C ₃ H ₇	1	ortho
15	CH ₃ O	C ₃ H ₇	2	ortho/para
	C ₂ H ₅ O	C ₃ H ₇	1	para
	C ₂ H ₅ O	C ₃ H ₇	1	meta
	C ₂ H ₅ O	C ₃ H ₇	1	ortho
20	C ₂ H ₅ O	C ₃ H ₇	2	ortho/para
	C ₃ H ₇ O	C ₃ H ₇	1	para
	C ₃ H ₇ O	C ₃ H ₇	1	meta
	C ₃ H ₇ O	C ₃ H ₇	1	ortho
25	C ₃ H ₇ O	C ₃ H ₇	2	ortho/para
	C ₄ H ₉ O	C ₃ H ₇	1	para
	C ₄ H ₉ O	C ₃ H ₇	1	meta
	C ₄ H ₉ O	C ₃ H ₇	1	ortho
30	C ₄ H ₉ O	C ₃ H ₇	2	ortho/para
	C ₅ H ₁₁ O	C ₃ H ₇	1	para
	C ₅ H ₁₁ O	C ₃ H ₇	1	meta
	C ₅ H ₁₁ O	C ₃ H ₇	1	ortho
35	C ₅ H ₁₁ O	C ₃ H ₇	2	ortho/para
	C ₆ H ₁₃ O	C ₃ H ₇	1	para
	C ₆ H ₁₃ O	C ₃ H ₇	1	meta
	C ₆ H ₁₃ O	C ₃ H ₇	1	ortho
40	C ₆ H ₁₃ O	C ₃ H ₇	2	ortho/para
	C ₈ H ₁₇ O	C ₃ H ₇	1	para
	C ₈ H ₁₇ O	C ₃ H ₇	1	meta
	C ₈ H ₁₇ O	C ₃ H ₇	1	ortho
45	C ₈ H ₁₇ O	C ₃ H ₇	2	ortho/para
	C ₁₂ H ₂₅ O	C ₃ H ₇	1	para
	C ₁₂ H ₂₅ O	C ₃ H ₇	1	meta
	C ₁₂ H ₂₅ O	C ₃ H ₇	1	ortho
50	C ₁₂ H ₂₅ O	C ₃ H ₇	2	ortho/para
	C ₁₃ H ₂₇ O	C ₃ H ₇	1	para
	C ₁₃ H ₂₇ O	C ₃ H ₇	1	meta
	C ₁₃ H ₂₇ O	C ₃ H ₇	1	ortho
55	C ₁₃ H ₂₇ O	C ₃ H ₇	2	ortho/para
-	C ₁₄ H ₂₉ O	C ₃ H ₇	1	para
	C ₁₄ H ₂₉ O	C ₃ H ₇	1 .	meta
	C ₁₄ H ₂₉ O	C ₃ H ₇	1	ortho
60	C ₁₄ H ₂₉ O	C ₃ H ₇	2	ortho/para
	C ₁₅ H ₃₁ O	C ₃ H ₇	1	para
	C ₁₅ H ₃₁ O	C ₃ H ₇	1	meta
	C ₁₅ H ₃₁ O	C ₃ H ₇	1	ortho
65	C ₁₅ H ₃₁ O	C ₃ H ₇	2	ortho/para
	C ₁₆ H ₃₃ O	C ₃ H ₇	1	para
	- +000-			

			T= ***	
X .	R ⁵	n	Position	
C ₁₆ H ₃₃ O	C ₃ H ₇	1	meta	
C ₁₆ H ₃₃ O	C ₃ H ₇	1	ortho	5
C ₁₆ H ₃₃ O	C ₃ H ₇	2	ortho/para	
C ₁₇ H ₃₅ O	C ₃ H ₇	1	para	
C ₁₇ H ₃₅ O	C ₃ H ₇	1	meta	
C ₁₇ H ₃₅ O	C ₃ H ₇	1	ortho	10
C ₁₇ H ₃₅ O	C ₃ H ₇	2	ortho/para	
C ₁₈ H ₃₇ O	C ₃ H ₇	1	para	
C ₁₈ H ₃₇ O	C ₃ H ₇	1	meta	15
C ₁₈ H ₃₇ O	C ₃ H ₇	1	ortho	13
C ₁₈ H ₃₇ O	C ₃ H ₇	2	ortho/para	
CH ₃ O	C ₄ H ₉	1	para	
CH ₃ O	C ₄ H ₉	1	meta	20
CH ₃ O	C ₄ H ₉	1	ortho	20
CH ₃ O	C ₄ H ₉	2	ortho/para	
C ₂ H ₅ O	C ₄ H ₉	1	para	
C ₂ H ₅ O	C ₄ H ₉	1	meta	25
C ₂ H ₅ O	C ₄ H ₉	1	ortho	23
C ₂ H ₅ O	C ₄ H ₉	2	ortho/para	
C ₃ H ₇ O	C ₄ H ₉	1	para	
C ₃ H ₇ O	C ₄ H ₉	1	meta	30
C ₃ H ₇ O	C ₄ H ₉	1	ortho	
C ₃ H ₇ O	C ₄ H ₉	2	ortho/para	
C ₄ H ₉ O	C ₄ H ₉	1	para	
C ₄ H ₉ O	C ₄ H ₉	1	meta	35
C4H9O	C ₄ H ₉	1	ortho	
C4H9O	C ₄ H ₉	2	ortho/para	
C5H11O	C ₄ H ₉	1	para	
C ₅ H ₁₁ O	C ₄ H ₉	1	meta	40
C ₅ H ₁₁ O	C ₄ H ₉	1	ortho	
C ₅ H ₁₁ O	C ₄ H ₉	2	ortho/para	İ
C ₆ H ₁₃ O	C ₄ H ₉	1	para	1
C ₆ H ₁₃ O	C ₄ H ₉	1	meta	45
C ₆ H ₁₃ O	C ₄ H ₉	1	ortho	1
C ₆ H ₁₃ O	C ₄ H ₉	2	ortho/para	1
C ₈ H ₁₇ O	C ₄ H ₉	1	para	1
C ₈ H ₁₇ O	C ₄ H ₉	1	meta	50
C ₈ H ₁₇ O	C ₄ H ₉	1	ortho	1
C ₈ H ₁₇ O	C ₄ H ₉	2	ortho/para	1
C ₁₂ H ₂₅ O	C ₄ H ₉	1	para	1
C ₁₂ H ₂₅ O	C ₄ H ₉	1	meta	55
C ₁₂ H ₂₅ O	C ₄ H ₉	1	ortho	1
C ₁₂ H ₂₅ O	C ₄ H ₉	2	ortho/para]
C ₁₃ H ₂₇ O	C ₄ H ₉	1	para]
C ₁₃ H ₂₇ O	C ₄ H ₉	1	meta	60
C ₁₃ H ₂₇ O	C ₄ H ₉	1	ortho	
C ₁₃ H ₂₇ O	C ₄ H ₉	2	ortho/para]
C ₁₄ H ₂₉ O	C ₄ H ₉	1	para	1
C ₁₄ H ₂₉ O	C ₄ H ₉	1	meta	65
C ₁₄ H ₂₉ O	C ₄ H ₉	1	ortho	1
-1923-	- 43		<u></u>	•

	X	R ⁵	n	Position
5	C ₁₄ H ₂₉ O	C ₄ H ₉	2	ortho/para
3	C ₁₅ H ₃₁ O	C ₄ H ₉	1	para
	C ₁₅ H ₃₁ O	C ₄ H ₉	1	meta
	C ₁₅ H ₃₁ O	C ₄ H ₉	1	ortho
10	C ₁₅ H ₃₁ O	C ₄ H ₉	2	ortho/para
10	C ₁₆ H ₃₃ O	C ₄ H ₉	1	para
	C ₁₆ H ₃₃ O	C ₄ H ₉	1	meta
	C ₁₆ H ₃₃ O	C ₄ H ₉	1	ortho
15	C ₁₆ H ₃₃ O	C ₄ H ₉	2	ortho/para
	C ₁₇ H ₃₅ O	C ₄ H ₉	1	para
	C ₁₇ H ₃₅ O	C ₄ H ₉	1	meta
	C ₁₇ H ₃₅ O	C ₄ H ₉	1	ortho
20	C ₁₇ H ₃₅ O	C ₄ H ₉	2	ortho/para
	C ₁₈ H ₃₇ O	C ₄ H ₉	1	para
	C ₁₈ H ₃₇ O	C ₄ H ₉	1	meta
	C ₁₈ H ₃₇ O	C ₄ H ₉	1	ortho
25	C ₁₈ H ₃₇ O	C ₄ H ₉	2	ortho/para
	CH ₃ O	C ₅ H ₁₁	1	para
	CH ₃ O	C ₅ H ₁₁	1	meta
	CH ₃ O	C ₅ H ₁₁	1	ortho
30	CH ₃ O	C ₅ H ₁₁	2	ortho/para
	C ₂ H ₅ O	C ₅ H ₁₁	1	para
	C ₂ H ₅ O	C ₅ H ₁₁	1	meta
	C ₂ H ₅ O	C ₅ H ₁₁	1	ortho
35	C ₂ H ₅ O	C ₅ H ₁₁	2	ortho/para
	C ₃ H ₇ O	C ₅ H ₁₁	1	para
	C ₃ H ₇ O	C ₅ H ₁₁	1	meta
	C ₃ H ₇ O	C ₅ H ₁₁	1	ortho
40	C ₃ H ₇ O	C ₅ H ₁₁	2	ortho/para
	C ₄ H ₉ O	C ₅ H ₁₁	1	para
	C ₄ H ₉ O	C ₅ H ₁₁	1	meta
	C ₄ H ₉ O	C ₅ H ₁₁	2	ortho ortho/para
45	C ₄ H ₉ O	C ₅ H ₁₁	1	para para
	C ₅ H ₁₁ O	C ₅ H ₁₁ C ₅ H ₁₁	1	meta
	C ₅ H ₁₁ O C ₅ H ₁₁ O	C ₅ H ₁₁	1	ortho
50	C ₅ H ₁₁ O	C ₅ H ₁₁	2	ortho/para
50		C ₅ H ₁₁	1	para
	C ₆ H ₁₃ O C ₆ H ₁₃ O	C ₅ H ₁₁	1	meta
	C ₆ H ₁₃ O	C ₅ H ₁₁		ortho
55	C ₆ H ₁₃ O	C ₅ H ₁₁	2	ortho/para
_	C ₈ H ₁₇ O	C ₅ H ₁₁	1	para
	C ₈ H ₁₇ O	C ₅ H ₁₁	1	meta
	C ₈ H ₁₇ O	C ₅ H ₁₁	1	ortho
60	C ₈ H ₁₇ O	C ₅ H ₁₁	2	ortho/para
	C ₁₂ H ₂₅ O	C ₅ H ₁₁	1	para
	C ₁₂ H ₂₅ O	C ₅ H ₁₁	1	meta
	C ₁₂ H ₂₅ O	C ₅ H ₁₁	1	ortho
65	C ₁₂ H ₂₅ O	C ₅ H ₁₁	2	ortho/para
	C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	para
	,1			·

				•
X	R ⁵	n	Position	
C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	meta	
C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	ortho	5
C ₁₃ H ₂₇ O	C ₅ H ₁₁	2	ortho/para	1
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	para	1
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	meta	i
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	ortho	10
C ₁₄ H ₂₉ O	C ₅ H ₁₁	2	ortho/para	1
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	para	i
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	meta	
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	ortho	15
C ₁₅ H ₃₁ O	C ₅ H ₁₁	2	ortho/para	
	C ₅ H ₁₁	1	para	1
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	meta	
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	ortho	20
C ₁₆ H ₃₃ O	C ₅ H ₁₁	2	ortho/para	1
C ₁₆ H ₃₃ O		1		1
C ₁₇ H ₃₅ O	C ₅ H ₁₁	1	para	1
C ₁₇ H ₃₅ O	C ₅ H ₁₁	1 1	meta	25
C ₁₇ H ₃₅ O	C ₅ H ₁₁	2	ortho	
C ₁₇ H ₃₅ O	C ₅ H ₁₁		ortho/para	ł
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	para	
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	meta	30
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	ortho	
C ₁₈ H ₃₇ O	C ₅ H ₁₁	2	ortho/para	4
CH ₃ O	C ₆ H ₁₃	1	para	
CH ₃ O	C ₆ H ₁₃	1	meta	35
CH ₃ O	C ₆ H ₁₃	1	ortho	
CH ₃ O	C ₆ H ₁₃	2	ortho/para	
C ₂ H ₅ O	C ₆ H ₁₃	1	para	
C ₂ H ₅ O	C ₆ H ₁₃	1	meta	40
C ₂ H ₅ O	C ₆ H ₁₃	1	ortho	4
C ₂ H ₅ O	C ₆ H ₁₃	2	ortho/para	1
C ₃ H ₇ O	C ₆ H ₁₃	1	para	4
C ₃ H ₇ O	C ₆ H ₁₃	1	meta	45
C ₃ H ₇ O	C ₆ H ₁₃	1	ortho	1
C ₃ H ₇ O	C ₆ H ₁₃	2	ortho/para]
C ₄ H ₉ O	C ₆ H ₁₃	1	para	1
C ₄ H ₉ O	C ₆ H ₁₃	1	meta	50
C ₄ H ₉ O	C ₆ H ₁₃	1	ortho	1
C ₄ H ₉ O	C ₆ H ₁₃	2	ortho/para	1
C ₅ H ₁₁ O	C ₆ H ₁₃	1	para	1
C ₅ H ₁₁ O	C ₆ H ₁₃	1	meta	55
C ₅ H ₁₁ O	C ₆ H ₁₃	1	ortho	
C ₅ H ₁₁ O	C ₆ H ₁₃	2	ortho/para	
C ₆ H ₁₃ O	C ₆ H ₁₃	1	para]
C ₆ H ₁₃ O	C ₆ H ₁₃	1	meta	60
C ₆ H ₁₃ O	C ₆ H ₁₃	1	ortho]
C ₆ H ₁₃ O	C ₆ H ₁₃	2	ortho/para	
C ₈ H ₁₇ O	C ₆ H ₁₃	1	para	1
C ₈ H ₁₇ O	C ₆ H ₁₃	1	meta	65
C ₈ H ₁₇ O	C ₆ H ₁₃	1	ortho]
_ ~ A !				-

	Х	R ⁵	n	Position
5	C ₈ H ₁₇ O	C ₆ H ₁₃	2	ortho/para
	C ₁₂ H ₂₅ O	C ₆ H ₁₃	11	para
;	$C_{12}H_{25}O$	C ₆ H ₁₃	1	meta
,	C ₁₂ H ₂₅ O	C ₆ H ₁₃	1	ortho
10	C ₁₂ H ₂₅ O	C ₆ H ₁₃	2	ortho/para
••	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	meta
	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	ortho
15	C ₁₃ H ₂₇ O	C ₆ H ₁₃	2	ortho/para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	meta
	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	ortho
20	C ₁₄ H ₂₉ O	C ₆ H ₁₃	2	ortho/para
	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	para
	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	meta
	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	ortho
25	C ₁₅ H ₃₁ O	C ₆ H ₁₃	2	ortho/para
	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	para
	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	meta
	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	ortho
30	C ₁₆ H ₃₃ O	C ₆ H ₁₃	2	ortho/para
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	para
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	meta
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	ortho
35	C ₁₇ H ₃₅ O	C ₆ H ₁₃	2	ortho/para
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	para
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	meta
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	ortho
40	C ₁₈ H ₃₇ O	C ₆ H ₁₃	2	ortho/para
	CH ₃ O	CH ₃ O	1	para
	CH ₃ O	CH ₃ O	1	meta
	CH ₃ O	CH ₃ O	1	ortho
45	CH ₃ O	CH ₃ O	2	ortho/para
	C ₂ H ₅ O	CH ₃ O	1	para
	C ₂ H ₅ O	CH ₃ O	1	meta
50	C ₂ H ₅ O	CH ₃ O	2	ortho
30	C ₂ H ₅ O	CH ₃ O	1	ortho/para
	C ₃ H ₇ O	CH ₃ O	1	para
	C ₃ H ₇ O		1	meta ortho
55	C ₃ H ₇ O	CH ₃ O	2	ortho/para
33	C ₃ H ₇ O	CH ₃ O		
	C ₄ H ₉ O	CH ₃ O	1	para
	C ₄ H ₉ O	CH ₃ O	1	meta ortho
60	C ₄ H ₉ O	CH ₃ O	2	
	C ₄ H ₉ O	CH ₃ O		ortho/para
	C ₅ H ₁₁ O	CH ₃ O	1	para
	C ₅ H ₁₁ O	CH₃O	1	meta
65	C ₅ H ₁₁ O	CH ₃ O	2	ortho
	C ₅ H ₁₁ O	CH ₃ O		ortho/para
	C ₆ H ₁₃ O	CH ₃ O	1	para

					_	
	Х	R ⁵	n	Position		
	C ₆ H ₁₃ O	CH ₃ O	1	meta		
	C ₆ H ₁₃ O	CH ₃ O	1	ortho		5
	C ₆ H ₁₃ O	CH ₃ O	2	ortho/para		
;	C ₈ H ₁₇ O	CH ₃ O	1	para		
	C ₈ H ₁₇ O	CH ₃ O	1	meta		
	C ₈ H ₁₇ O	CH ₃ O	1	ortho		10
	C ₈ H ₁₇ O	CH ₃ O	2	ortho/para		
	C ₁₂ H ₂₅ O	CH ₃ O	1	para		
,	C ₁₂ H ₂₅ O	CH ₃ O	1	meta		
•	C ₁₂ H ₂₅ O	CH ₃ O	1	ortho		15
	C ₁₂ H ₂₅ O	CH ₃ O	2	ortho/para		
	C ₁₃ H ₂₇ O	CH ₃ O	1	para		
	C ₁₃ H ₂₇ O	CH ₃ O	1	meta		
	C ₁₃ H ₂₇ O	CH ₃ O	1	ortho		20
:	C ₁₃ H ₂₇ O	CH ₃ O	2	ortho/para		
	C ₁₄ H ₂₉ O	CH ₃ O	1	para		
	C ₁₄ H ₂₉ O	CH ₃ O	1	meta		26
	C ₁₄ H ₂₉ O	CH ₃ O	1	ortho		25
		CH ₃ O	2	ortho/para		
	C ₁₄ H ₂₉ O C ₁₅ H ₃₁ O	CH ₃ O	1	para		
	C ₁₅ H ₃₁ O	CH ₃ O	1	meta		30
		CH ₃ O	1	ortho		30
	C ₁₅ H ₃₁ O C ₁₅ H ₃₁ O	CH ₃ O	2	ortho/para	·	
	C ₁₆ H ₃₃ O	CH ₃ O	1	para		
	C ₁₆ H ₃₃ O	CH ₃ O	1	meta		35
	C ₁₆ H ₃₃ O	CH ₃ O	1	ortho		
	C ₁₆ H ₃₃ O	CH ₃ O	2	ortho/para		
	C ₁₇ H ₃₅ O	CH ₃ O	1	para		
	C ₁₇ H ₃₅ O	CH ₃ O	1	meta		40
	C ₁₇ H ₃₅ O	CH ₃ O	1	ortho		
	C ₁₇ H ₃₅ O	CH ₃ O	2	ortho/para		
	C ₁₈ H ₃₇ O	CH ₃ O	1	para		
	C ₁₈ H ₃₇ O	CH ₃ O	1	meta		45
	C ₁₈ H ₃₇ O	CH ₃ O	1	ortho		
	C ₁₈ H ₃₇ O	CH ₃ O	2	ortho/para		
	CH ₃ O	C ₂ H ₅ O	1	para		
	CH ₃ O	C ₂ H ₅ O	1	meta		50
	CH ₃ O	C ₂ H ₅ O	1	ortho		
	CH ₃ O	C ₂ H ₅ O	2	ortho/para		
	C ₂ H ₅ O	C ₂ H ₅ O	1	para		
	C ₂ H ₅ O	C ₂ H ₅ O	1	meta		55
	C ₂ H ₅ O	C ₂ H ₅ O	1	ortho		
	C ₂ H ₅ O	C ₂ H ₅ O	2	ortho/para		
	C ₃ H ₇ O	C ₂ H ₅ O	1	para		
İ	C ₃ H ₇ O	C ₂ H ₅ O	1	meta		60
- 1	C ₃ H ₇ O	C ₂ H ₅ O	1	ortho		
	C ₃ H ₇ O	C ₂ H ₅ O	2	ortho/para		
	C ₄ H ₉ O	C ₂ H ₅ O	1	para		
ı	C ₄ H ₉ O	C ₂ H ₅ O	1	meta		65
	C ₄ H ₉ O	C ₂ H ₅ O	1	ortho		

	Ī	R ⁵	n	Position
		l	L	
5	C ₄ H ₉ O	C ₂ H ₅ O	2	ortho/para
,	C ₅ H ₁₁ O	C ₂ H ₅ O	1	para
i	C ₅ H ₁₁ O	C ₂ H ₅ O	1	meta
,	C ₅ H ₁₁ O	C ₂ H ₅ O	1	ortho
10	C ₅ H ₁₁ O	C ₂ H ₅ O	2	ortho/para
10	C ₆ H ₁₃ O	C ₂ H ₅ O	1	para
	C ₆ H ₁₃ O	C ₂ H ₅ O	1	meta
	C ₆ H ₁₃ O	C ₂ H ₅ O	1	ortho
15	C ₆ H ₁₃ O	C ₂ H ₅ O	2	ortho/para
15	C ₈ H ₁₇ O	C ₂ H ₅ O	1	para
	C ₈ H ₁₇ O	C ₂ H ₅ O	1	meta
	C ₈ H ₁₇ O	C ₂ H ₅ O	1	ortho
20	C ₈ H ₁₇ O	C ₂ H ₅ O	2	ortho/para
20	C ₁₂ H ₂₅ O	C ₂ H ₅ O	1	para
	C ₁₂ H ₂₅ O	C ₂ H ₅ O	1	meta
	C ₁₂ H ₂₅ O	C ₂ H ₅ O	1	ortho
25	C ₁₂ H ₂₅ O	C ₂ H ₅ O	2	ortho/para
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	para
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	meta
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	ortho
30	C ₁₃ H ₂₇ O	C ₂ H ₅ O	2	ortho/para
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	para
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	meta
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	ortho
35	C ₁₄ H ₂₉ O	C ₂ H ₅ O	2	ortho/para
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	para
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	meta
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	ortho
40	C ₁₅ H ₃₁ O	C ₂ H ₅ O	2	ortho/para
	C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	para
	.C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	meta
	C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	ortho
45	C ₁₆ H ₃₃ O	C ₂ H ₅ O	2	ortho/para
	C ₁₇ H ₃₅ O	C ₂ H ₅ O	1	para
	C ₁₇ H ₃₅ O	C ₂ H ₅ O	1	meta
50	C ₁₇ H ₃₅ O	C ₂ H ₅ O	2	ortho
50	C ₁₇ H ₃₅ O	C ₂ H ₅ O	1	ortho/para
	C ₁₈ H ₃₇ O	C ₂ H ₅ O	1	para
	C ₁₈ H ₃₇ O	C ₂ H ₅ O	1	meta
55	C ₁₈ H ₃₇ O	C ₂ H ₅ O	2 -	ortho ortho/para
<i>J</i> J	C18H37O	C ₂ H ₅ O C ₃ H ₇ O	1	meta
	CH ₃ O		1	
	CH ₃ O CH ₃ O	C ₃ H ₇ O C ₃ H ₇ O	1	para ortho
60	CH ₃ O	C ₃ H ₇ O	2	ortho/para
	C ₂ H ₅ O	C ₃ H ₇ O	1	para
		C ₃ H ₇ O	1	meta
	C ₂ H ₅ O C ₂ H ₅ O	C ₃ H ₇ O	1	ortho
65	C ₂ H ₅ O	C ₃ H ₇ O	2	ortho/para
	C ₃ H ₇ O	C ₃ H ₇ O	1	para para
	C3#7U	C3D7U	<u> </u>	[hara

				1	
X	R ⁵	n	Position		
C ₃ H ₇ O	C ₃ H ₇ O	1	meta	5	
C ₃ H ₇ O	C ₃ H ₇ O	1	ortho	3	
C ₃ H ₇ O	C ₃ H ₇ O	2	ortho/para		
C ₄ H ₉ O	C ₃ H ₇ O	1	para	•	
C ₄ H ₉ O	C ₃ H ₇ O	1	meta	10	
C ₄ H ₉ O	C ₃ H ₇ O	1	ortho	10	
C ₄ H ₉ O	C ₃ H ₇ O	2	ortho/para		
C ₅ H ₁₁ O	C ₃ H ₇ O	1	para		
C ₅ H ₁₁ O	C ₃ H ₇ O	1	meta	15	
C ₅ H ₁₁ O	C ₃ H ₇ O	1	ortho	1.5	
C ₅ H ₁₁ O	C ₃ H ₇ O	2	ortho/para		
C ₆ H ₁₃ O	C ₃ H ₇ O	1	para		
C ₆ H ₁₃ O	C ₃ H ₇ O	1	meta	20	
C ₆ H ₁₃ O	C ₃ H ₇ O	1	ortho	20	
C ₆ H ₁₃ O	C ₃ H ₇ O	2	ortho/para		
C ₈ H ₁₇ O	C ₃ H ₇ O	1	para		
C ₈ H ₁₇ O	C ₃ H ₇ O	1	meta	25	
C ₈ H ₁₇ O	C ₃ H ₇ O	1	ortho		
C ₈ H ₁₇ O	C ₃ H ₇ O	2	ortho/para		
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	para		
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	meta	30)
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	ortho		
C ₁₂ H ₂₅ O	C ₃ H ₇ O	2	ortho/para		
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	para		
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	meta	35	s
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	ortho		
C ₁₃ H ₂₇ O	C ₃ H ₇ O	2	ortho/para		
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	para		
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	meta	40)
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	ortho		
C ₁₄ H ₂₉ O	C ₃ H ₇ O	2	ortho/para		
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	para		
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	meta	4:	5
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	ortho		
C ₁₅ H ₃₁ O	C ₃ H ₇ O	2	ortho/para		
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	para		
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	meta	50	0
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	ortho		
C ₁₆ H ₃₃ O	C ₃ H ₇ O	2	ortho/para		
C ₁₇ H ₃₅ O	_C ₃ H ₇ O	1	para		
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	meta	5	5
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	ortho		
C ₁₇ H ₃₅ O	C ₃ H ₇ O	2	ortho/para	1	
C ₁₈ H ₃₇ O	C ₃ H ₇ O	1	para	1	
C ₁₈ H ₃₇ O	C ₃ H ₇ O	1	meta	1	0
C ₁₈ H ₃₇ O	C ₃ H ₇ O	1	ortho		
C ₁₈ H ₃₇ O	C ₃ H ₇ O	2	ortho/para	1	
CH ₃ O	C ₄ H ₉ O	1	meta		
CH ₃ O	C ₄ H ₉ O	1	para	1	55
CH ₃ O	C ₄ H ₉ O	1	ortho	1	
U3V				4	

	X	R ⁵	n	Position
_	CH ₃ O	C4H9O	2	ortho/para
٠5	C ₂ H ₅ O	C ₄ H ₉ O	1	para
	C ₂ H ₅ O	C ₄ H ₉ O	1	meta
1	C ₂ H ₅ O	C ₄ H ₉ O	1	ortho
10	C ₂ H ₅ O	C ₄ H ₉ O	2	ortho/para
10	C ₃ H ₇ O	C ₄ H ₉ O	1	para
	C ₃ H ₇ O	C ₄ H ₉ O	1	meta
	C ₃ H ₇ O	C ₄ H ₉ O	1	ortho
15	C ₃ H ₇ O	C ₄ H ₉ O	2	ortho/para
1.5	C ₄ H ₉ O	C ₄ H ₉ O	1	para
	C ₄ H ₉ O	C ₄ H ₉ O	1	meta
	C ₄ H ₉ O	C ₄ H ₉ O	1	ortho
20	C ₄ H ₉ O	C ₄ H ₉ O	2	ortho/para
	C ₅ H ₁₁ O	C ₄ H ₉ O	1	para
	C ₅ H ₁₁ O	C ₄ H ₉ O	1	meta
	C ₅ H ₁₁ O	C ₄ H ₉ O	1	ortho
25	C ₅ H ₁₁ O	C ₄ H ₉ O	2	ortho/para
	C ₆ H ₁₃ O	C ₄ H ₉ O	1	para
	C ₆ H ₁₃ O	C ₄ H ₉ O	1	meta
	C ₆ H ₁₃ O	C ₄ H ₉ O	1	ortho
30	C ₆ H ₁₃ O	C ₄ H ₉ O	2	ortho/para
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	para
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	meta
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	ortho
35	C ₈ H ₁₇ O	C ₄ H ₉ O	2	ortho/para
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	para
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	meta
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	ortho
40	C ₁₂ H ₂₅ O	C ₄ H ₉ O	2	ortho/para
	C ₁₃ H ₂₇ O	C ₄ H ₉ O	1	para
	C ₁₃ H ₂₇ O	C ₄ H ₉ O	1	meta
45	C ₁₃ H ₂₇ O	C ₄ H ₉ O	2	ortho ortho/para
45	C ₁₃ H ₂₇ O	C ₄ H ₉ O C ₄ H ₉ O	1	para para
	C ₁₄ H ₂₉ O	C ₄ H ₉ O	1	meta
	C ₁₄ H ₂₉ O C ₁₄ H ₂₉ O	C ₄ H ₉ O	1	ortho
50	C ₁₄ H ₂₉ O	C ₄ H ₉ O	2	ortho/para
-	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	para
	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	meta
	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	ortho
55	C ₁₅ H ₃₁ O	C ₄ H ₉ O	2	ortho/para
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	<u>-</u>	para
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	1	meta
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	1	ortho
60	C ₁₆ H ₃₃ O	C ₄ H ₉ O	2	ortho/para
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	para
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	meta
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	ortho
65	C ₁₇ H ₃₅ O	C ₄ H ₉ O	2	ortho/para
	C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	para
				

				-
Х	R ⁵	n	Position	
C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	meta	_
C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	ortho	5
C ₁₈ H ₃₇ O	C ₄ H ₉ O	2	ortho/para	1
CH ₃ O	C ₅ H ₁₁ O	1	meta	1
CH ₃ O	C ₅ H ₁₁ O	1	para	
CH ₃ O	C ₅ H ₁₁ O	1	ortho	10
CH ₃ O	C ₅ H ₁₁ O	2	ortho/para	
C ₂ H ₅ O	C ₅ H ₁₁ O	1	para	1
C ₂ H ₅ O	C ₅ H ₁₁ O	1	meta	1
C ₂ H ₅ O	C ₅ H ₁₁ O	1	ortho	15
C ₂ H ₅ O	C ₅ H ₁₁ O	2	ortho/para	1
C ₃ H ₇ O	C ₅ H ₁₁ O	1	para	1
C ₃ H ₇ O	C ₅ H ₁₁ O	1	meta	
C ₃ H ₇ O	C ₅ H ₁₁ O	1	ortho	20
	C ₅ H ₁₁ O	2	ortho/para	1
C ₃ H ₇ O	C ₅ H ₁₁ O	1	para	1
C ₄ H ₉ O	C ₅ H ₁₁ O	1	meta	1
C ₄ H ₉ O	C ₅ H ₁₁ O	1	ortho	25
C ₄ H ₉ O	C ₅ H ₁₁ O	2	ortho/para	
C ₄ H ₉ O		1	para	1
C ₅ H ₁₁ O	C ₅ H ₁₁ O	1	meta	
C ₅ H ₁₁ O	C ₅ H ₁₁ O	1	ortho	30
C ₅ H ₁₁ O	C ₅ H ₁₁ O	2	ortho/para	-1
C ₅ H ₁₁ O	C ₅ H ₁₁ O	1	para	1
C ₆ H ₁₃ O	C ₅ H ₁₁ O	1	meta	35
C ₆ H ₁₃ O	C ₅ H ₁₁ O	1	ortho	- "
C ₆ H ₁₃ O	C ₅ H ₁₁ O	2	ortho/para	1
C ₆ H ₁₃ O	C ₅ H ₁₁ O C ₅ H ₁₁ O	1	para	-{
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1	meta	40
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1	ortho	1
C ₈ H ₁₇ O	C ₅ H ₁₁ O	2	ortho/para	
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1	para	
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	meta	45
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	ortho	1
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	2	ortho/para	1
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	para	1
C ₁₃ H ₂₇ O C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	meta	50
	C ₅ H ₁₁ O	1	ortho	┪ ゙゙
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	2	ortho/para	1
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	para	-
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	meta	55
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	ortho	1
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	2	ortho/para	-
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	para	1
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	meta	60
C ₁₅ H ₃₁ O		1	ortho	┪
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	2	ortho/para	1
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1		┥
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O		para	- 65
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	1	meta	┪
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	1	ortho	_

	X	R ⁵	n	Position
5	C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	2	ortho/para
-	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1	para
	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1	meta
	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1.	ortho
10	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	2	ortho/para
	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	para
	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	meta
	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	ortho
15	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	2	ortho/para
	CH ₃ O	C ₆ H ₁₃ O	1	meta
	CH ₃ O	C ₆ H ₁₃ O	1	para
	CH ₃ O	C ₆ H ₁₃ O	1	ortho
20	CH ₃ O	C ₆ H ₁₃ O	2	ortho/para
	C ₂ H ₅ O	C ₆ H ₁₃ O	1	para
	C ₂ H ₅ O	C ₆ H ₁₃ O	1	meta
	C ₂ H ₅ O	C ₆ H ₁₃ O	1	ortho
25	C ₂ H ₅ O	C ₆ H ₁₃ O	2	ortho/para
	C ₃ H ₇ O	C ₆ H ₁₃ O	1	para
	C ₃ H ₇ O	C ₆ H ₁₃ O	1	meta
	C ₃ H ₇ O	C ₆ H ₁₃ O	1	ortho
30	C ₃ H ₇ O	C ₆ H ₁₃ O	2	ortho/para
	C ₄ H ₉ O	C ₆ H ₁₃ O	1	para
	C ₄ H ₉ O	C ₆ H ₁₃ O	1	meta
	C ₄ H ₉ O	C ₆ H ₁₃ O	1	ortho
35	C ₄ H ₉ O	C ₆ H ₁₃ O	2	ortho/para
	C5H11O	C ₆ H ₁₃ O	1	para
,	C ₅ H ₁₁ O	C ₆ H ₁₃ O	1	meta
	C5H11O	C ₆ H ₁₃ O	1	ortho
40	C ₅ H ₁₁ O	C ₆ H ₁₃ O	2	ortho/para
	C ₆ H ₁₃ O	C ₆ H ₁₃ O	1	para
	C ₆ H ₁₃ O	C ₆ H ₁₃ O	1	meta
	C ₆ H ₁₃ O	C ₆ H ₁₃ O	1	ortho
45	C ₆ H ₁₃ O	C ₆ H ₁₃ O	2	ortho/para
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	para
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	meta
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	ortho
50	C ₈ H ₁₇ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	para
	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	meta
	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	ortho
55	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	ortho/para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O		para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	1	meta ortho
60	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	1	
60	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	1	para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	1	meta
65	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	1	ortho
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	para

177	R ⁵	n	Position	1
X	K ³	n	POSICION	
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	meta	5
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	ortho	1
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	2	ortho/para	1
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	para	1
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	meta	10
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	ortho	1 "
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	2	ortho/para	1
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	para	
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	meta	15
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	ortho	1
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	2	ortho/para	
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	para	
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	meta	20
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	ortho	
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	2	ortho/para	
CH ₃ O	C ₇ H ₁₅ O	1	meta	1
CH ₃ O	C ₇ H ₁₅ O	1	para	25
CH ₃ O	C ₇ H ₁₅ O	1	ortho	1
CH ₃ O	C ₇ H ₁₅ O	2	ortho/para	
C ₂ H ₅ O	C ₇ H ₁₅ O	1	para	
C ₂ H ₅ O	C ₇ H ₁₅ O	1	meta	30
C ₂ H ₅ O	C ₇ H ₁₅ O	1	ortho	1
C ₂ H ₅ O	C ₇ H ₁₅ O	2	ortho/para	
C ₃ H ₇ O	C ₇ H ₁₅ O	1	para	1
C ₃ H ₇ O	C7H15O	1	meta	35
C ₃ H ₇ O	C ₇ H ₁₅ O	1	ortho	1
C ₃ H ₇ O	C7H15O	2	ortho/para	}
C ₄ H ₉ O	C7H15O	1	para	
C ₄ H ₉ O	C7H15O	1	meta	40
C ₄ H ₉ O	C7H15O	1	ortho]
C ₄ H ₉ O	C ₇ H ₁₅ O	2	ortho/para]
C ₅ H ₁₁ O	. C ₇ H ₁₅ O	1	para]
C ₅ H ₁₁ O	C ₇ H ₁₅ O	1	meta	45
C5H11O	C ₇ H ₁₅ O	1	ortho]
C5H11O	C ₇ H ₁₅ O	2	ortho/para	<u></u>
C ₆ H ₁₃ O	C7H15O	1	para	_
C ₆ H ₁₃ O	C7H15O	1	meta	50
C ₆ H ₁₃ O	C ₇ H ₁₅ O	1	ortho	
C ₆ H ₁₃ O	C ₇ H ₁₅ O	2	ortho/para	
C ₈ H ₁₇ O	C ₇ H ₁₅ O	1	para	
C ₈ H ₁₇ O	C ₇ H ₁₅ O	1	meta	55
C ₈ H ₁₇ O	C ₇ H ₁₅ O	1	ortho	
C ₈ H ₁₇ O	C ₇ H ₁₅ O	2	ortho/para	
C ₁₂ H ₂₅ O	C ₇ H ₁₅ O	1	para	
C ₁₂ H ₂₅ O	C ₇ H ₁₅ O	1	meta	60
C ₁₂ H ₂₅ O	C ₇ H ₁₅ O	1	ortho	
C ₁₂ H ₂₅ O	C7H15O	2	ortho/para	
C ₁₃ H ₂₇ O	C7H15O	1	para	<u>'</u>
C ₁₃ H ₂₇ O	C ₇ H ₁₅ O	1	meta	65
C ₁₃ H ₂₇ O	C ₇ H ₁₅ O	1	ortho	

	X	R ⁵	n	Position
5	C ₁₃ H ₂₇ O	C ₇ H ₁₅ O	- 2-	ortho/para
,	C ₁₄ H ₂₉ O	C7H15O	1	para
	C ₁₄ H ₂₉ O	C ₇ H ₁₅ O	1	meta
	C ₁₄ H ₂₉ O	C ₇ H ₁₅ O	1	ortho
10	C ₁₄ H ₂₉ O	C ₇ H ₁₅ O	2	ortho/para
10	C ₁₅ H ₃₁ O	C ₇ H ₁₅ O	1	para
	C ₁₅ H ₃₁ O	C ₇ H ₁₅ O	1	meta
	C ₁₅ H ₃₁ O	C ₇ H ₁₅ O	1	ortho
15	C ₁₅ H ₃₁ O	C ₇ H ₁₅ O	2	ortho/para
	C ₁₆ H ₃₃ O	C ₇ H ₁₅ O	1	para
	C ₁₆ H ₃₃ O	C7H15O	1	meta
	C ₁₆ H ₃₃ O	C ₇ H ₁₅ O	1	ortho
20	C ₁₆ H ₃₃ O	C ₇ H ₁₅ O	2	ortho/para
	C ₁₇ H ₃₅ O	C7H15O	1	para
	C ₁₇ H ₃₅ O	C7H15O	1	meta
	C ₁₇ H ₃₅ O	C ₇ H ₁₅ O	1	ortho
25	C ₁₇ H ₃₅ O	C7H15O	2	ortho/para
	C ₁₈ H ₃₇ O	C7H15O	1	para
	C ₁₈ H ₃₇ O	C7H15O	1	meta
	C ₁₈ H ₃₇ O	C7H15O	1	ortho
30	C ₁₈ H ₃₇ O	C7H15O	2	ortho/para
	CH ₃ O	C ₈ H ₁₇ O	1	meta
	CH ₃ O	C ₈ H ₁₇ O	1	para
	CH ₃ O	C ₈ H ₁₇ O	1	ortho
35	CH ₃ O	C ₈ H ₁₇ O	2	ortho/para
	C ₂ H ₅ O	C ₈ H ₁₇ O	1	para
	C ₂ H ₅ O	C ₈ H ₁₇ O	1	meta
	C ₂ H ₅ O	C ₈ H ₁₇ O	1	ortho
40	C ₂ H ₅ O	C ₈ H ₁₇ O	2	ortho/para
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	para
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	meta
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	ortho
45	C ₃ H ₇ O	C ₈ H ₁₇ O	2	ortho/para
	C ₄ H ₉ O	C ₈ H ₁₇ O	1	para
	C ₄ H ₉ O	C ₈ H ₁₇ O	1	meta
50	C ₄ H ₉ O	C ₈ H ₁₇ O	2	ortho ortho/para
50	C ₄ H ₉ O	C ₈ H ₁₇ O	1	para para
	C ₅ H ₁₁ O	C ₈ H ₁₇ O	1	meta
	C ₅ H ₁₁ O	C ₈ H ₁₇ O C ₈ H ₁₇ O	1	ortho
55	C ₅ H ₁₁ O	C ₈ H ₁₇ O	2	ortho/para
33	C ₅ H ₁₁ O	C ₈ H ₁₇ O	1	para
	C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	meta
	C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	ortho
60	C ₆ H ₁₃ O	C ₈ H ₁₇ O	2	ortho/para
	C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	para para
	C ₈ H ₁₇ O		1	meta
	C ₈ H ₁₇ O	C ₈ H ₁₇ O	1	ortho
65	C ₈ H ₁₇ O	C ₈ H ₁₇ O	2	ortho/para
	C ₈ H ₁₇ O	C ₈ H ₁₇ O	1	para para
	C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	L	1 Para

10

15

20

25

30

35

40

55

X	R ⁵	n	Position
C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	1	meta
C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	1	ortho
C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	1	para
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	1	meta
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	1	ortho
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	para
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	meta
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	ortho
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	para
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	meta
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	ortho
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	para
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	meta
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	ortho
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	para
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	meta
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	ortho
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	para
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	meta
	C ₈ H ₁₇ O	1	ortho
C ₁₈ H ₃₇ O		2	ortho/para

—Die erfindungsgemäß zu verwendenden Verbindungen der Formel I bis III können nach der Gleichung

$$R^{1}$$
 — CH_{2} — R^{2} + R^{4} — NH_{2} + $R^{3}C$ — R^{3} — R^{2} — R

durch Kondensation hergestellt werden, wobei R1 bis R4 die oben genannte Bedeutung haben.

Beispielsweise ergibt die Umsetzung von 2,4-Pentandion mit Anthranilsäure-2-ethylhexylester und Triethylorthoformiat die Verbindung 24 in Tabelle 2.

Die Lichtschutzmittel enthaltenden kosmetischen und pharmazeutischen Zubereitungen sind in der Regel auf der Basis eines Trägers, der mindestens eine Ölphase enthält. Es sind aber auch Zubereitungen allein auf wäßriger Basis bei Verwendung von Verbindungen mit hydrophilen Substituenten möglich. Demgemäß kommen Öle, Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, Cremes und Pasten, Lippenschutzstiftmassen oder fettfreie Gele in Betracht.

Solche Sonnenschutzpräparate können demgemäß in flüssiger, pastöser oder fester Form vorliegen, beispielsweise als Wasser-in-Öl-Cremes, Öl-in-Wasser-Cremes und -Lotionen, Aerosol-Schaumcremes, Gele, Öle, Fettstifte, Puder, Sprays oder alkoholisch-wäßrige Lotionen.

Übliche Ölkomponenten in der Kosmetik sind beispielsweise Paraffinöl, Glycerylstearat, Isopropylmyristat, Diisopropyladipat, 2-Ethylhexansäurecetylstearylester, hydriertes Polyisobuten, Vaseline, Caprylsäure/Caprinsäure-Triglyceride, mikrokristallines Wachs, Lanolin und Stearinsäure.

Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z. B. Co-Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyte (z. B. Magnesiumsulfat) und pH-Regulatoren. Als Co-Emulgatoren kommen vorzugsweise bekannte W/O- und daneben auch O/W-Emulgatoren wie etwa Polyglycerinester, Sorbitanester oder teilveresterte Glyceride in Betracht. Typische Beispiele für Fette sind Glyceride; als Wachse sind u. a. Bienenwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen zu nennen. Als Stabilisatoren können Metallsalze von Fettsäuren wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Geeig-

nete Verdickungsmittel sind beispielsweise vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner Fettalkohole, Monoglyceride und Fettsäuren, Polycrylate, Polyvinylalkohol und Polyvinylpyrrolidon. Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydrocolloide wie Chitosan, mikrokristallines Chitosan oder quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate und ähnliche Verbindungen. Als Konservierungsmittel eignen sich beispielsweise Formaldehydlösung, p-Hydroxybenzoat oder Sorbinsäure. Als Perlglanzmittel kommen beispielsweise Glycoldistearinsäureester wie Ethylenglycoldistearat, aber auch Fettsäuren und Fettsäuremonoglycolester in Betracht. Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkoimmission der Deutschen Forschungsgemeinschaft, veröffentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentration von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.

Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 80, vorzugsweise 6 bis 40 Gew.-% und der nicht wäßrige Anteil ("Aktivsubstanz") 20 bis 80, vorzugsweise 30 bis 70 Gew.-% – bezogen auf die Mittel – betragen. Die Herstellung der Mittel kann in an sich bekannter Weise, d. h. beispielsweise durch Heiß-, Kalt-, Heiß-Heiß/Kalt- bzw. PIT-Emulgierung erfolgen. Hierbei handelt es sich um ein rein mechanisches Verfahren, eine chemische Reaktion findet nicht statt.

Schließlich können weitere an sich bekannte im UV-A-Bereich absorbierenden Substanzen mitverwendet werden, sofern sie im Gesamtsystem der erfindungsgemäß zu verwendenden Kombination aus UV-B und UV-A-Filter stabil sind. Gegenstand der vorliegenden Erfindung sind weiterhin kosmetische und pharmazeutische Zubereitungen, die 0,1 bis 10 Gew.-%, vorzugsweise 1 bis 7 Gew.-%, bezogen auf die gesamte Menge der kosmetischen und pharmazeutischen Zubereitung, eine oder mehrere der Verbindungen der Formel I zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-B-Bereich absorbierenden Verbindungen als Lichtschutzmittel enthalten, wobei die Verbindungen der Formel I in der Regel in geringerer Menge als die UV-B-absorbierenden Verbindungen eingesetzt werden.

Der größte Teil der Lichtschutzmittel in den zum Schutz der menschlichen Epidermis dienenden kosmetischen und pharmazeutischen Zubereitungen besteht aus Verbindungen, die UV-Licht im UV-B-Bereich absorbieren d. h. im Bereich von 280 bis 320 nm. Beispielsweise beträgt der Anteil der erfindungsgemäß zu verwendenden UV-A-Absorber 10 bis 90 Gew.-%, bevorzugt 20 bis 50 Gew.-% bezogen auf die Gesamtmenge von UV-B und UV-A-absorbierenden Substanzen.

Als UV-B-Filtersubstanzen, die in Kombination mit den erfindungsgemäß zu verwendenden Verbindungen der Formel I angewandt werden, kommen beliebige UV-B-Filtersubstanzen in Betracht. Beispielsweise sind zu nennen:

20

25

Nr.	Stoff	CAS-Nr. (=Sāure)	
	4-Aminobenzoesäure	150-13-0	1
2	3-(4'Trimethylammonium)-benzylidenbornan-2-on- methylsulfat	52793-97-2	
3	3,3,5-Trimethyl-cyclohexyl-salicylat (Homosalatum)	118-56-9	
4	2-Hydroxy-4-methoxy-benzophenon (Oxybenzonum)	131-57-7	
5	2-Phenylbenzimidazol-5-sulfonsäure und ihre Kalium-, Natrium- u. Triethanolaminsalze	27503-81-7	
6	3,3'-(1,4-Phenylendi- methin)-bis(7,7-dimethyl-2-oxobicyclo[2.2.1]hep- tan-1-methansulfonsäure) und ihre Salze	90457-82-2	
7	4-Bis(polyethoxy)amino-benzoesäurepolyethoxy- ethylester	113010-52-9	
8	4-Dimethylamino-benzoesäure-2-ethylhexylester	21245-02-3]
9	Salicylsäure-2-ethylhexylester	118-60-5	1
10	4-Methoxy-zimtsäure-2-isoamylester	7/6/7-10-2	
11	4-Methoxy-zimtsäure-2-ethylhexylester	5466-77-3	
12	2-Hydroxy-4-methoxy-benzophenon-5-sulfon- (Sulisobenzonum) und das Natriumsalz	4065-45-6	
13	3-(4'-Sulfo)benzyliden-bornan-2-on und Salze	58030-58-6	
14	3-(4'-Methyl)benzyliden-bornan-2-on	36861-47-9]
15	3-Benzylidenbornan-2-on	16087-24-8	1
16	1-(4'-Isopropylphenyl)-3-phenylpropan-1,3-dion	63260-25-9	
17	4-Isopropylbenzylsalicylat	94134-93-7	
18	2,4,6-Trianilin-(o-carbo-2'-ethylhexyl-1'-oxy)-1,3,5-triazin	88122-99-0	
19	3-Imidazol-4-yl-acrylsäure und ihr Ethylester	104-98-3*	1
20	2-Cyano-3,3-diphenylacrylsäureethylester	5232-99-5	
21	2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester	6197-30-4	
22	Menthyl-o-aminobenzoate oder: 5-Methyl-2-(1-methylethyl)-2-aminobenzoate	134-09-8	
23-	Glyceryl p-aminobenzoat oder: 4-Aminobenzoesäure-1-glyceryl-ester	136-44-7	
24	2,2'-Dihydroxy-4-methoxybenzophenon (Dioxybenzone)	131-53-3	
25	2-Hydroxy-4-methoxy-4-methylbenzophenon (Mexonon)	1641-17-4	
26	Triethanolamin Salicylat	2174-16-5	4
27	Dimethoxyphenylglyoxalsäure oder: 3,4-dimethoxy-phenyl-glyoxal-saures Natrium	<u> </u>	
28	3-(4'Sulfo)benzyliden-bornan-2-on und seine Salze	56039-58-8	

Schließlich sind auch mikronisierte Pigmente wie Titandioxid und Zinkoxid zu nennen.

Zum Schutz menschlicher Haare vor UV-Strahlen können die erfindungsgemäßen Lichtschutzmittel der Formel I in Shampoos, Lotionen, Gelen oder Emulsionen in Konzentrationen von 0,1 bis 10 Gew.-%, bevorzugt 1 bis 7 Gew.-% eingearbeitet werden. Die jeweiligen Formulierungen können dabei u. a. zum Waschen, Färben sowie zum Frisieren der Haare verwendet werden.

Die erfindungsgemäß zu verwendenden Verbindungen zeichnen sich in der Regel durch ein besonders hohes Absorptionsvermögen im Bereich der UV-A-Strahlung mit scharfer Bandenstruktur aus. Weiterhin sind sie gut in kosmetischen Ölen löslich und lassen sich leicht in kosmetische Formulierungen einarbeiten. Die mit den Verbindungen I hergestellten Emulsionen zeichnen sich besonders durch ihre hohe Stabilität, die Verbindungen I selber durch ihre hohe Photostabilität aus, und die mit I hergestellten Zubereitungen durch ihr angenehmes Hautgefühl aus.

Gegenstand der Erfindung sind auch die Verbindungen der Formel I zur Verwendung als Medikament sowie pharmazeutische Mittel zur vorbeugenden Behandlung von Entzündungen und Allergien der Haut sowie zur Verhütung bestimmter Hautkrebsarten, welche eine wirksame Menge mindestens einer Verbindung der Formel I als Wirkstoff enthalten.

Das erfindungsgemäße pharmazeutische Mittel kann oral oder topisch verabreicht werden. Für die orale Verabreichung liegt das pharmazeutische Mittel in Form von u. a. Pastillen, Gelatinekapseln, Dragees, als Sirup, Lösung, Emulsion oder Suspension vor. Die topische Anwendung der pharmazeutischen Mittel erfolgt beispielsweise als Salbe, Creme, Gel, Spray, Lösung oder Lotion.

20

15

Beispiele

I. Herstellung

Beispiel 1

25

Allgemeine Vorschrift (für die Verbindung der Nr. 1 der Tabelle 2)

0,1 mol p-Aminobenzoesäure-2-ethylhexylester, 0,1 mol Pivaloylacetonitril und 0,1 mol Triethylorthoformiat wurden in 100 ml Diethylenglykol 2 h auf 120°C erhitzt, wobei Ethanol abdestilliert wurde. Nach Abkühlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfiltriert. Anschließend wurde aus Petrolether umkristallisiert. Man crhielt in 80%iger Ausbeute Verbindung 1 der Tabelle 2.

Beispiel 2

0,1 mol Anthranilsäure-2-ethylhexylester, 0,1 mol 2,4-Pentandion und 0,1 mol Triethylorthoformiat wurden in 100 ml Diethylenglykol 2 h auf 120°C erhitzt, wobei Ethanol abdestilliert wurde. Nach Abkühlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfiltriert. Anschließend wurde aus Petrolether umkristallisiert. Man erhielt in 70%iger Ausbeute Verbindung 24 der Tabelle 2.

40

Beispiel 3

0,1 mol m-Toluidin, 0,1 mol Pivaloylacetonitril und 0,1 mol Triethylorthoformiat und 1 g Zinkchlorid wurden in 100 ml Diethylenglykol 2 h auf 120°C erhitzt, wobei Ethanol abdestilliert wurde. Nach Abkühlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfiltriert. Anschließend wurde aus Petrolether umkristallisiert. Man erhielt in 70%iger Ausbeute Verbindung 2 der Tabelle 2.

Weitere so hergestellte Verbindungen sind in Tabelle 2 angegeben.

50

55

60

Tabelle 2

	$\begin{array}{c} H \\ C = C \\ CO \end{array}$	CH ₃ CH ₃		5
Nr.	R	λmax	E ¹ 1	10
1)	4-COOC ₈ H ₁₇ 1)	346	860	
2)	3-CH ₃	338	978	
3)	4 - OCH ₃	348	841	15
4)	4-tert.C ₄ H ₉	342	888	
5)	4-n-C ₄ H ₉	342	884	
6)	4-CONHC ₈ H ₁₇ 1)	346	773	20
7)	4-iso-C ₃ H ₇	342	903	
8)	4-n-C ₃ H ₇	342	918	
9)	2-COOC ₈ H ₁₇ 1)	348	717	25
10)	2 - CN	338	995	22
11)	2-COOC ₁₅ H ₃₁ (iso)(51)	346	583	
12)	3-iso OC ₃ H ₇	340	829	30
13)	2-COO [⊖] x N [⊕] H (C ₂ H ₄ OH) ₃	346	667 (Wasser)	30
14)	2,5-Di-OCH ₃	362	491	
15)	2 - COOH	346	965	
16)	4-SO ₃ - x +HN (C ₂ H ₄ OH) ₃	340	666 (Wasser)	35
17)	4-SO ₃ ⊖ _{Na} ⊕	340	1010 (Wasser)	
18)	2-OC ₂ H ₅	352	876	
19)	2-COOCH ₃	348	995	40
20)	2-COOCH ₂ CH (CH ₃) ₂	348	864	
21)	2-COOC4H9	346	825	
Nr.	Verbindung	λmax	E11	45
22)	H C=C	380	768	
	H ₅ C ₂ OOC (CH ₃) ₃			50
	CH ₃ COOC₂H ₅	350	817	55
23)	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\$		51.	60
	N N			65

5		C = C < CN	-C ← CH3	
	 	R	CH ₃	E11
10	24)	COCH3	344	795
15		HN COCH ₃		
20	25)	COCH3	344	938
25		HN COOC4H9		
30	26)	COCH3	336	1035
35		OCH ₃		
40	27)	c = c $c = c$ $c = c$ $c = c$	346	1049
45		COOC ₈ H ₁₇ 1)		
50	28)	c = c $c = c$ $c = c$ $c = c$ $c = c$ $c = c$	346	757
55		COOC ₈ H ₁₇ 1)		
60	29)	c = c $c = c$ $c = c$ $c = c$	346	941
65		COOC ₈ H ₁₇ 1)		

	C = C $C = C$ $C = C$	-c < CH ₃ CH ₃		5
Nr.	R	λmax	E11	7
30)	C=C COOCH3	344	1008	10
	COOCH ₃			20
31)	C=CCCH3	344	717	
	COOC (CH ₃) ₃			25
		1246	646	
32)	$C = C$ $COOC_8H_{17}$ $COOC_8H_{17}$	346	646	35
				40
33)	C = C $C = C$ $C = C$ $C = C$ $C = C$ $C = C$ $C = C$	350	612	45
	HN COOC ₈ H ₁₇ 17			50
34)	H CN	322	761	7
	c = c $c = c $ $c = c $ $c = c $ $c = c$			55
	нзсо оснз			64

`

5		C = C $CO - C$	-C ← CH ₃ CH ₃	
10	Nr.	R	λmax	E ¹ 1
10	35)	C=C CN COOC ₈ H ₁₇ 1)	332	1105
15		COOC ₂ H ₅	·	
	36)	$C = C$ $COOC_8H_{17} ^{1)}$	336	752
25		COOCH3		
35	37)	$C = C$ $COOC_2H_5$ $COOC_2H_5$	336	890
40		COOCH3		-
	38)	H COOC ₂ H ₅	335	630
45	30,	c = c $c = c$ $c =$	·	
50				·
55	39)	$C = C$ $COOC_2H_5$ $COOC_2H_5$	320	700
60				
	ļ	COOC ₈ H ₁₇ 1)		

$\begin{array}{c} H \\ C = C \\ CO - C \\ CH_3 \\ CH_3 \end{array}$				
Nr.	R	λmax	E11	10
40)	COOC8H17 1)	358	743	15
41)	H C CN CN	330	1191	25
	COOC ₈ H ₁₇ 1)			30
42)	HN C=C	374	1175	35
Ľ	COOC ₈ H ₁₇ 1)		060	
43)	COPh	362	869	45
	COOC ₈ H ₁₇ 1)			
44)	H C = C	336	896	55
	COOC ₈ H ₁₇ 1)			

1) $C_8H_{17} = 2$ -Ethylhexyl

Allgemeine Herstellvorschrift zur Herstellung von Emulsionen für kosmetische Zwecke

Alle öllöslichen Bestandteile werden in einem Rührkessel auf 85°C erwärmt. Wenn alle Bestandteile geschmolzen sind, bzw. als Flüssigphase vorliegen, wird die Wasserphase unter Homogenisieren eingearbeitet. Unter Rühren wird die Emulsion auf ca. 40°C abgekühlt, parfümiert, homogenisiert und dann unter ständigem Rühren auf 25°C abgekühlt.

Zubereitungen

Beispiel 4

10

Zusammensetzung für die Lippenpflege

ad 100 Eucerinum anhydricum
10,00 Glycerin
5 10,00 Titanium Dioxid
0,5–10 Verbindung Nr. 1 der Tabelle 2
8,00 Octyl Methoxycinnamat
5,00 Zink Oxid
4,00 Castoröl
4,00 Pentaerythrithil Stearat/caprat/Caprylat Adipat
3,00 Glyceryl Stearat SE
2,00 Bienenwachs
2,00 Microkristallines Wachs
2,00 Quaternium-18 Bentonit

1,50 PEG-45/Dodecyl Glycol Copolymer

Beispiel 5

Zusammensetzung für die Lippenpflege

ad 100 Eucerinum anhydricum
10,00 Glycerin
10,00 Titanium Dioxid
0,5–10 Verbindung Nr. 24 der Tabelle 2
35 8,00 Octyl Methoxycinnamat
5,00 Zink Oxid
4,00 Castoröl
4,00 Pentaerythrithil Stearat/caprat/Caprylat Adipat
3,00 Glyceryl Stearat SE
40 2,00 Bienenwachs
2,00 Microkristallines Wachs
2,00 Quaternium-18 Bentonit
1,50 PEG-45/Dodecyl Glycol Copolymer

45

Beispiel 6

Zusammensetzung für Sunblocker mit Mikropigmenten

ad 100 Wasser 10,00 Octyl Methoxcinnamat 6,00 PEG-7-Hydrogenated Castor Öl 6,00 Titanium Dioxid 0,5-10 Verbindung Nr. 1 der Tabelle 2 5,00 Mineral Öl 5,00 Isoamyl p-Methoxycinnamat 5,00 Propylen Glycol 3,00 Jojoba Öl 3,00 4-Methylbenzyliden Campher 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 Dimethicon 0,50 PEG-40-Hydrogenated Castor Öl 0,50 Tocopheryl Acetat 0,50 Phenoxyethanol 0.20 EDTA

Beispiel 7

Zusammensetzung für Sunblocker mit Mikropigmenten

d 100 Wasser	5
0,00 Octyl Methoxcinnamat	
5,00 PEG-7-Hydrogenated Castor Öl 5,00 Titanium Dioxid	
0,50 Hamun Dioxid	
5,00 Mineral Öl	10
,00 Isoamyl p-Methoxycinnamat	
5,00 Propylen Glycol	
3,00 Jojoba Öl	
3,00 4-Methylbenzyliden Campher	
2,00 PEG-45/Dodecyl Glycol Copolymer	15
l ,00 Dimethicon),50 PEG-40-Hydrogenated Castor Öl	
),50 Tocopheryl Acetat	
),50 Phenoxyethanol	
,20 EDTA	20
Daireial 9	
Beispiel 8	
Fettfreies Gel	
	25
ad 100 Wasser	
8,00 Octyl Methoxycinnamat	
7,00 Titanium Dioxid 0,5–10 Verbindung Nr. 1 der Tabelle 2	
5,00 Glycerin	30
5,00 PEG-25 PABA	
1,00 4-Methylbenzyliden Campher	
0,40 Acrylate C10–C30 Alkyl Acrylat Crosspolymer	
0,30 Imidazolidinyl Urea	25
0,25 Hydroxyethyl Cellulose	35
0,25 Sodium Methylparaben 0,20 Disodium EDTA	
0,15 Fragrance	
0,15 Sodium Propylparaben	
0,10 Sodium Hydroxid	40
Beispiel 9	
Beispiel 7	
Fettfreies Gel	
	45
ad 100 Wasser	
8,00 Octyl Methoxycinnamat 7,00 Titanium Dioxid	
0,5–10 Verbindung Nr. 24 der Tabelle 2	
5,00 Glycerin	50
5,00 PEG-25 PABA	
1,00 4-Methylbenzyliden Campher	
0,40 Acrylate C10–C30 Alkyl Acrylat Crosspolymer	
0,30 Imidazolidinyl Urea 0,25 Hydroxyethyl Cellulose	55
0,25 Nydroxyedryi Cendrose 0,25 Sodium Methylparaben	20
0,20 Disodium EDTA	
0,15 Fragrance	
0,15 Sodium Propylparaben	
0,10 Sodium Hydroxid	60
Beispiel 10	
•	
Sonnencreme (LSF 20)	65
ad 100 Wasser	33
8,00 Octyl Methoxycinnamat	
8,00 Titanium Dioxid	

6,00 PEG-7-Hydrogenated Castor Öl 0,5-10 Verbindung Nr. 1 der Tabelle 2 6,00 Mineral Öl 5,00 Zink Oxid 5,00 Isopropyl Palmitat 5,00 Imidazolidinyl Urea 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 4-Methylbenzyliden Campher 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,25 Methylparaben 0,20 Disodium EDTA 0,15 Propylparaben 15 Beispiel 11 Sonnencreme (LSF 20) ad 100 Wasser 8,00 Octyl Methoxycinnamat 8,00 Titanium Dioxid 6,00 PEG-7-Hydrogenated Castor Öl 0,5-10 Verbindung Nr. 24 der Tabelle 2 6,00 Mineral Öl 5,00 Zink Oxid 5,00 Isopropyl Palmitat 5,00 Imidazolidinyl Urea 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 4-Methylbenzyliden Campher 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,25 Methylparaben 0,20 Disodium EDTA 35 0,15 Propylparaben Beispiel 12 Sonnencreme wasserfest ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol
4,00 Isopropyl Palmitat
4,00 Caprylic/Capric Triglycerid
0,5–10 Verbindung Nr. 1 der Tabelle 2 4,00 Glycerin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid 1,50 PEG-45/Dodecyl Glycol Copolymer 1,50 Dimethicon 0,70 Magnesium Sulfat 55 0,50 Magnesium Stearat 0,15 Fragrance Beispiel 13 Sonnencreme wasserfest 60 ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol 4,00 Isopropyl Palmitat 4,00 Caprylic/Capric Triglycerid

0,5-10 Verbindung Nr. 24 der Tabelle 2

4,00 Glycerin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid	
1,50 PEG-45/Dodecyl Glycol Copolymer 1,50 Dimethicon 0,70 Magnesium Sulfat 0,50 Magnesium Stearat 0,15 Fragrance	5
Beispiel 14	10
Sonnenmilch (LSF 6)	
ad 100 Wasser 10,00 Mineral Öl 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat	15
3,50 Octyl Methoxycinnamat 0,5–10 Verbindung Nr. 1 der Tabelle 2 3,00 Caprylic/Capric Triglycerid 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer	20
0,70 Magnesium Sulfat 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,30 Glycerin	25
0,25 Methylparaben 0,15 Propylparaben 0,05 Tocopherol	30
Beispiel 15	
Sonnenmilch (LSF 6)	35
ad 100 Wasser 10,00 Mineral Öl	
6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat 3,50 Octyl Methoxycinnamat 0,5-10 Verbindung Nr. 24 der Tabelle 2 3,00 Caprylic/Capric Triglycerid	40
3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 0,70 Magnesium Sulfat 0,60 Magnesium Stearat	45
0,50 Tocopheryl Acetat 0,30 Glycerin 0,25 Methylparaben 0,15 Propylparaben 0,05 Tocopherol	50
Beispiel 16	
Sonnencreme wasserfest	55
ad 100 Wasser 8,00 Octyl Methoxycinnamat	
5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol 4,00 Isopropyl Palmitat	60
4,00 Caprylic/Capric Triglycerid 0,5-10 Verbindung Nr. 17 der Tabelle 2 0,5-10 Verbindung Nr. 24 der Tabelle 2	
4,00 Glycerin 3,00 Jojoba Öl	65
2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid	

- 1,50 PEG-45/Dodecyl Glycol Copolymer
- 1.50 Dimethicon
- 0,70 Magnesium Sulfat
- 0,50 Magnesium Stearat
- 0,15 Fragrance

Beispiel 17

Sonnenmilch

10

ad 100 Wasser 10,00 Mineral Öl

6,00 PEG-7-Hydrogenated Castor Öl

5,00 Isopropyl Palmitat

3,50 Octyl Methoxycinnamat

0,5-10 Verbindung Nr. 17 der Tabelle 2

3,00 Caprylic/Capric Triglycerid

3,00 Jojoba Öl

2,00 PEG-45/Dodecyl Glycol Copolymer

0,70 Magnesium Sulfat

0,60 Magnesium Stearat

0,50 Tocopheryl Acetat

0,30 Glycerin

0,25 Methylparaben

0,15 Propylparaben

0,05 Tocopherol.

Patentansprüche

1. Verwendung von Verbindungen der Formel I

35

40

45

50

55

60

65

30

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und die Variablen folgende Bedeutung haben: R^1 COOR 5 , CONR 5 R 6 , CN, O=S(-R 5)=O, O=S(-OR 5)=O, R 7 O-P (-OR 8)=O; R^2 COOR 6 , CONR 5 R 6 , CN, O=S(-R 6)=O, O=S(-OR 6)=O, R 7 O-P (-OR 8)=O;

R3 Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest mit jeweils bis zu 18 C-Atomen;

 R^4 einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen; R^5 bis R^8 unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphati-

schen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen, wobei die Variablen R3 bis R8 untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden

sind, gemeinsam einen 5- oder 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann, als UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische

Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen. 2. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 als UV-A-Filter.

3. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR5 und R2 für CN, COOR6 und COR6 stehen, wobei R5 und R6 voneinander unabhängig offenkettige oder verzweigte aliphatische oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten.

4. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R⁴ für gegebenenfalls durch hydrophile oder lipophile Substituenten substituiertes Phenyl steht.

5. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R⁴ für einen Alkoxyphenyl- oder Alkoxycarbonylphenylrest steht.

6. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R4 für einen Phenylrest steht, der wasserlöslich machende Substituenten trägt, ausgewählt aus der Gruppe bestehend aus Carboxylat, Sulfonat- oder Ammoniumresten.

7. Lichtschutzmittel enthaltende kosmetische und pharmazeutische Zubereitungen zum Schutz der menschlichen Epidermis oder menschlichen Haare gegen UV-Licht im Bereich von 280 bis 400 nm, dadurch gekennzeichnet, daß sie in einem kosmetisch und pharmazeutisch geeigneten Träger, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten im UV-Bereich absorbierenden Verbindungen, als photostabile UV-Filter wirksame Mengen von Verbindungen der Formel I

50 .

$$C = C < R^1$$
 $R^4 - NH$

enthalten, in der die Variablen die Bedeutung gemäß Anspruch 1 haben.

8. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei R^3 für Wasserstoff, R^1 für CN, COOR 5 und COR 5 und COR 5 und COR 6 und COR 6 stehen, wobei R^5 und R^6 gegebenenfalls substituierte aliphatische oder aromatische Reste mit bis zu 8 C-Atomen bedeuten.

9. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei R⁴ für gegebenenfalls durch hydrophile oder lipophile Substituenten substituiertes Phenyl steht.

10. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen und R⁴ für einen Phenylrest steht, der durch Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonylreste, mit jeweils bis zu 20 C-Atomen, oder mit Cyan- oder Carboxyresten, sowie mit wasserlöslich machenden Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann.

11. Neue Verbindungen der Formel Π ,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der durch einen oder mehrere Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonylreste, mit jeweils bis zu 20 C-Atomen oder Cyan- oder Carboxyreste, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann.

12. Neue Verbindungen der Formel III,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der durch einen oder niehrere Alkoxyreste mit bis zu 20 C-Atomen oder Alkoxycarbonylreste mit 4 bis zu 20 C-Atomen, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann und R⁵ eine offenkettige, verzweigte oder cyclische Alkyl-, Alkoxy-, oder Alkoxyalkylgruppe mit jeweils bis zu 18 C-Atomen oder eine Aryloxygruppe bedeutet.

13. Verbindungen der Formel I zur Verwendung als Arzneimittel.

14. Pharmazeutische Zubereitung, dadurch gekennzeichnet, daß sie eine wirksame Menge mindestens einer der Verbindung der Formel I nach Anspruch 1 enthält.

45

50

5

55

60

- Leerseite -