Correction du devoir $N^{\circ}1$

Exercice 1: Pour chaque exemple de parcours d'un programme, je construis un tableau pour justifier la réponse.

1.	a	b
	7	21
	5	24

Donc le programme affiche : 5 $24\,$

	·	
2.	\mathbf{a}	b
	"re"	
	"rerere"	
	"rereremi"	"r"

Donc b contient la valeur "r" (c'est le caractère d'index 2 - attention car on commence toujours à 0).

- 3. Les mots seront séparés par le caractère "-" et à la fin on écrit "!". Donc on affiche : Bonjour-à-tous !
- 4. C'est le reste dans la division entière de 17 par 3. Or $17 = 3 \times 5 + 2$. Donc on obtient 2.
- 5. // désigne le quotient dans la division euclidienne. Comme $11 = 3 \times 3 + 2$, on obtient 11//3 = 3.

La valeur renvoyée est alors $3 \times 2 + 1 = 7$.

- 6. Dans cette boucle, i prend la valeur 3 au départ et cette valeur augmente de 1 à chaque passage dans la boucle, tant que i reste strictement inférieur à 5. i prendra alors les valeurs 3 puis 4. Donc l'affichage sera : 3 4.
- 7. Le calcul de 1/x ne peut se faire que si x est non nul.

Donc une précondition parmi celles proposées est « x doit être non nul ».

Donc calc(4) renvoie la valeur 6.

9. Avec l'appel fct(16), a vaut 16 dans le corps de la fonction et 16%5 = 1 car $16 = 5 \times 3 + 1$.

La condition a%5 == 1 étant vérifiée, la fonction renvoie "Gagné".

- 10. On teste chaque possibilité:
 - f(2,2) renvoie $3 \times 2 2 = 4$ donc l'affirmation est fausse.
 - f(4,1) renvoie $2 \times 4 1 = 7$ donc l'affirmation est fausse.
 - f(1,4) renvoie $3 \times 4 1 = 11$ donc l'affirmation est fausse.
 - f(2,5) renvoie $3 \times 5 2 = 13$ donc l'affirmation est vraie.

Exercice 2:

1110101	<u></u>						
X	У	Donc	f(2019,	2020)	renvoie	la	valeur
2019	2020	2020.					
4039							
	2019						
2020							

Exercice 3:

n	i		$2.\mathtt{mys}$
0	0		$(2^{5}$
0	1		
-1	2		
1	3		
-2	4		
2			
	0 0 -1 1 -2	0 0 0 1 -1 2 1 3 -2 4	0 0 0 1 -1 2 1 3 -2 4

2.myst(5) renvoie donc la valeur 8 (2^3)

Exercice 4:

- 1. ligne 4, il manque les deux points à la fin de la ligne. Il faut écrire for let in phrase :
 - ligne 5, il y a une erreur sur le test de l'égalité car il n'y a qu'un signe =. On doit écrire if let == lettre :
- 2. nb1 va valoir 2 (nombre de fois où la lettre "e" apparaît).

 nb2 va valoir 8 (nombre de caractères qui ne sont pas "e").

Exercice 5:

```
import random
def hasard_mult(n):
    """ Cette fonction affiche n entiers aléatoires choisis entre
    1 et 10"""
    assert isinstance(n, int), "n doit être un entier"
    assert n>0, "n doit être strictement positif"
    for i in range(n):
        print(random.randint(1, 10))
```