S K THAMILVANAN CLA T3-18MAB102T-Advanced Calculus & Complex Analysis (C-Slot)

Date: 30/07/ 2021 Max. Marks: 50 Marks
Time: 9.00 AM-10.40 AM Max. Time: 100 Mins

Do not open any new tab / new window after opening google form. Read the following instructions carefully.

- 1. Choose the correct answer in this google form.
- 2. Type your Full Registration Number.
- 3. Type your Name as per GCR.

* Required

4. Click submit at the end and confirm your submission with the faculty.

The respondent's email (null) was recorded on submission of this form.

Email *
 Name *
 Register number *
 Department *

18MAB102T- CLAT-3-C SLOT- Advanced Calculus and Complex Analysis

Answer ALL Questions (50*1=50 Marks)

5. * 1 point

A certain function u(x,y) can be the real part of an analytic function if

(a) u satisfies C-R equations (b) u is a harmonic function

(b) u need not be a harmonic function (d) u is a continuous function

Mark only one oval.

(a)

(b)

6. * 1 point

The function $f(z) = z\overline{z}$ is analytic

- (a) At the origin (b) at infinity (c) nowhere (d) at all points of z-plane Mark only one oval.
- (a)

(c)

) (d)

- (b)
- (c)
- (d)

If f(z) = u(x, y) + iv(x, y) is analytic then u = constant, v = constant are

- (a) Parallel
- (b) not cutting (c) straight lines (d) cutting orthogonally

Mark only one oval.

- (a)
-) (b)
-) (c)
- (d)

8. 1 point

If f(z) = u + iv is analytic then f(z) = -v + iu is

(a) analytic

- (b) not analytic
- (c) analytic only at the origin (d) analytic except at the origin

- (a)
-) (b)
-) (c)
- (d)

9. *****

If w = f(z) is an analytic function of z, then

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

10. * 1 point

- $f(z) = \overline{z}$ is differentiable
- (a) At all points (b) nowhere (c) at all points except at the origin (d) Only at the origin Mark only one oval.
- (a)
- (b)
- (c)
- (d)

The mapping $w = \frac{1}{z}$ gives

- (a) Inversion only (b) reflection only (c) inversion and reflection (d) rotation Mark only one oval.
- (a)
- (b)
- (c)
- (d)

12. * 1 point

The map $w = \frac{1}{z}$ maps the totality of circles and lines as

- (a) Circles or lines (b) circles and lines respectively
- (c) Only circles (d) only straight lines

- (a)
- (b)
- (c)
- (d)

The critical points of $w = z + \frac{1}{z}$ are

- (a) 1

- (b) +1 (c) ± 1 (d) 0,1, -1

Mark only one oval.

-) (a)

14. 1 point

The image of the rectangular region bounded by the lines x = 0, y = 0, x = 2 and y = 1 under the transformation w = 2z is a

(a) parabola (b) circle (c) straight line (d) rectangle is magnified twice.

-) (a)
-) (b)

The harmonic conjugate of $u = \frac{1}{2}\log(x^2 + y^2)$ is

(a)
$$\cos^{-1}(\frac{x}{y})$$
 (b) $\cot^{-1}(\frac{y}{x})$ (c) $\tan^{-1}(\frac{x}{y})$ (d) $\tan^{-1}(\frac{y}{x})$

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

16. * 1 point

What is the value of c_1 and c_2 such that the function $f(z) = c_1 xy + i(c_2 x^2 + y^2)$ is analytic?

(a)
$$c_1 = 2$$
, $c_2 = -1$ (b) $c_1 = -1$, $c_2 = 2$ (c) $c_1 = -2$, $c_2 = 1$ (d) $c_1 = -2$, $c_2 = -1$

- (a)
- (b)
- (c)
- (d)

The function $w = \sin x \cosh y + i \cos x \sinh y$ is

- (a) need not be analytic (b) analytic (c) discontinuous (d) differentiable only at origin Mark only one oval.
- (a)
- (b)
- (c)
- (d)
- 18. * 1 point

Find a function f(z) with a given $u = e^x \cos y$

(a)
$$e^z + c$$
 (b) $-e^z + c$ (c) $-(1+i)e^z + c$ (d) $-ie^z + c$

- (a)
- (b)
- (c)
- (d)

Cauchy -Reimann equation in polar co-ordinates are

- (a) $ru_r = v_\theta$, $-rv_r = u_\theta$ (b) $-ru_r = v_\theta$, $rv_r = u_\theta$
- (c) $ru_r = v_\theta, rv_r = u_\theta$ (d) $u_r = rv_\theta, ru_\theta = v_r$

Mark only one oval.

-) (a)

20. 1 point

If u and v are harmonic, then u + iv is

- (a) harmonic (b) need not be analytic (c) analytic (d) continuous Mark only one oval.
-) (a)

The fixed points for the transformation $w = \frac{z-1}{z+1}$ are

- (a) $z = \pm 1$ (b) $z = \pm i$ (c) $z = \pm 2$ (d) z = 1

Mark only one oval.

-) (a)

22. 1 point

The transformation w = cz where c is a real constant represents

- (a) rotation (b)reflection (c)magnification and rotation (d)magnification Mark only one oval.
-) (a)
-) (b)

If $w = e^{2z}$, the real part of f(z) is

- (a) $e^y sinx$ (b) $e^x cosy$ (c) $e^y cosy$ (d) $e^{2x} cos2y$

Mark only one oval.

- (a)

24. 1 point

The bilinear transformation which maps the points ∞ , i,0 into 0, i, ∞ respectively is

(a)
$$w = 2 + z$$
 (b) $w = 2z$ (c) $w = -\frac{1}{z}$ (d) $w = \frac{1+z}{1-z}$

-) (a)

The invariant points of the transformation $w = \frac{1-zi}{z-i}$

(a) $z = \pm 1$ (b) $z = \pm i$ (c) $z = \pm 2$ (d) z = 1

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

26. * 1 point

The function $|z|^2$ is

- (a) differentiable at the origin (b) analytic (c) constant (d) differentiable everywhere Mark only one oval.
- (a)
- (b)
- (c)
- (d)

Choose the correct answer

- $f(z) = \frac{1}{z^2+1}$ is analytic everywhere except at

- (a) z = 1 (b) z = i (c) $z = \pm i$ (d) $z = \pm 1$

Mark only one oval.

-) (a)

28. 1 point

Which of the following is not true with respect to a bilinear transformation?

- a) It is conformal at all points
- b) It maps circle into circle in general
- c) It has two invariant points in general
- d)It preserves the cross ratio of the four points Mark only one oval.
-) (a)

The relation between a and b if $ax^2 + by^2$ can be the real part of an analytic

function is

- (a) a + b = 0 (b) a b = 0 (c) ab = 0 (d) a = 2b

Mark only one oval.

-) (a)

30. 1 point

A contour integral is an integral along a ----- curve.

- a. Open Curve
- b. Closed curve
- c. Simple closed curve
- d. Multiple curve

-) (a)

If f(z) is analytic inside and on C , the value of $\oint_{\mathcal{C}} f(z) \, dz$,where C is the simple closed curve is

- a. f(a)
- b. $2\pi i f(a)$
- c. $\pi i f(a)$
- d. 0

Mark only one oval.

-) (a)
-) (b)

32. 1 point

If f(z) is analytic inside and on C, the value of $\oint_C \frac{f(z)}{(z-a)^n} dz$, where C is the simple closed curve and a is any point within c is

- a. $2\pi i \frac{f^n(a)}{n!}$
- b. $2\pi i f(a)$ c. $2\pi i \frac{f^{n-1}(a)}{(n-1)!}$
- d. 0

-) (a)

The value of $\oint_C \frac{\sin z}{z+1} dz$ where C is the circle $|z| = \frac{1}{3} is$

- a. 0
- b. 2πi
- c. $\frac{\pi}{2}i$
- d. πi

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

34. * 1 point

The value of $\oint_C \frac{e^z}{(z-2)^2} dz$ where C is the circle |z| = 3 is

- a. 0
- b. $2\pi i e^{-2}$
- c. $2\pi ie^2$
- d. $4\pi i e^{-2}$

- (a)
- (b)
- (c)
- (d)

The value of $\oint_C \frac{z}{2z-1} dz$ where C is the circle |z| = 1 is

- a. 0
- b. 2πi
- c. $\frac{\pi}{2}i$
- d. πi

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

36. * 1 point

The value of $\oint_C \frac{1}{(z-3)^2} dz$ where C is the circle |z| = 1 is

- a. 0
- b. 2π
- c. $\frac{\pi}{2}i$
- d. πi

- (a)
- (b)
- (c)
- (d)

Let C_1 : $|z - a| = R_1$ and C_2 : $|z - a| = R_2$ be two concentric circles $(R_2 > R_1)$, the annular region is defined as

- a. Within C_1
- b. Within C_2
- c. Within C_2 and outside C_1
- d. Within C_1 and outside C_2

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

38. * 1 point

The part $\sum_{n=0}^{\infty} a_n (z-a)^n$ consisting of positive integral powers of (z-a) is called as

- a. The analytic part of the Laurent's series
- b. The principal part of the Laurent's series
- c. The real part of the Laurent's series
- d. The imaginary part of the Laurent's series

- (a)
- (b)
- (c)
- (d)

Let C_1 : $|z - a| = R_1$ and C_2 : $|z - a| = R_2$ be two concentric circles $(R_2 < R_1)$, the f(z) can be expanded as a Laurent's series if

- a. f(z) is analytic within C_2
- b. f(z) is not analytic within C_2
- c. f(z) is analytic in the annular region
- d. f(z) is not analytic in the annular region

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

40. * 1 point

Expansion of $\frac{1-\cos z}{z}$ in Laurent's series about z=0 is

a.
$$\frac{z}{2!} - \frac{z^3}{4!} + \frac{z^5}{6!} - \cdots$$

b.
$$\frac{z^2}{2!} - \frac{z^4}{4!} + \frac{z^6}{6!} - \cdots$$

c.
$$\frac{z}{1!} - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots$$

d.
$$\frac{z}{2!} + \frac{z^3}{4!} - \frac{z^5}{6!} + \cdots$$

- (a)
- (b)
- (c)
- (d)

The annular region for the function $f(z) = \frac{1}{z^2 - 3z + 2}$ is

- a. 0 < |z| < 1
- b. 1 < |z| < 2
- c. 2 < |z| < 3
- d. |z| < 3

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

42. * 1 point

The Laurent's series expansion $1 + \frac{3}{z} \sum \frac{(-1)^n 2^n}{z^n} - \sum \frac{(-1)^n 3^n}{z^n}$ for the function $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ is valid in the region

- a. |z| < 3
- b. |z| < 2
- c. 2 < |z| < 3
- d. |z| > 3

- (a)
- (b)
- (c)
- (d)

If f(z) is not analytic at $z = z_o$ and there exists a neighborhood of $z = z_o$ containing no other singularity, then

- a. The point $z = z_0$ is isolated singularity of f(z)
- b. The point $z = z_0$ is a zero point of f(z)
- c. The point $z = z_0$ is nonzero of f(z)
- d. The point $z = z_0$ is non isolated singularity of f(z)

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

44. * 1 point

If $f(z) = e^{\frac{1}{z+1}}$ then

- a. z = -1 is removable singularity
- b. z = -1 is pole of order 2
- c. z = -1 is an essential singularity
- d. z = -1 is zero of f(z)

- (a)
- (b)
- (c)
- (d)

i. Let z = a is a simple pole for $f(z) = \frac{P(z)}{Q(z)}$, then the Residue of f(z) is

- a. $\frac{P'(a)}{Q(a)}$
- b. $\frac{P(a)}{Q(a)}$
- c. $\frac{P'(a)}{Q'(a)}$
- d. $\frac{P(a)}{Q'(a)}$

- (a)
- (b)
- (c)
- (d)

Let z = a is a pole of order 3 for f(z), then the residue is

- a. $\lim_{z \to a} [(z a)f(z)]$
- b. $\lim_{z \to a} [(z a)f''(z)]$
- c. $\lim_{z \to a} \frac{1}{2!} \frac{d^2}{dz^2} [(z a)^3 f(z)]$
- d. $\lim_{z \to a} \frac{1}{3!} \frac{d^3}{dz^3} [(z a)^3 f(z)]$

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

47. * 1 point

The residue of $f(z) = \frac{z}{(z-2)}$ at z = 2 is

- a. 2πi
- b. 1
- c. 2
- d. 0

- (a)
- (b)
- (c)
- (d)

The residue of $f(z) = \frac{1}{(z^2+1)^2}$ at z = i is

- a. 4i
- b. 1/4i
- c. 0
- d. 1/2i

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

49. * 1 point

If $f(z) = \frac{\sin z - z}{z^3}$, then

- a. z=0 is a simple pole
- b. z=0 is a pole of order 2
- c. z=0 is a removable singularity
- d. z=0 is a zero of f(z)

- (a)
- (b)
- (c)
- (d)

The value of the integral $\oint_C \frac{1}{ze^z} dz$ where |z| = 1 is

- a. $2\pi i$
- b. $\frac{\pi}{2}i$
- c. πi
- d. 0

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

51. * 1 point

If $f(z) = \frac{1}{z} + [2 + 3z + 4z^2 + \cdots]$ then the residue of f(z) at z=0 is

- a. 1
- b. -1
- c. 0
- d. -2

- (a)
- (b)
- (c)
- (d)

. If the integral $\oint_0^{2\pi} \frac{d\theta}{13+5\cos\theta} = \oint_C f(z)dz$, C is |z| = 1, then

- (A) z = -i/5 is pole of f(z) lies inside C and
- (B) z = -5i is pole of f(z) lies outside C. Which of the following is true?
 - a. Both A and B
- b. Only A
- c. Only B
- d. Neither A nor B

- (a)
- (b)
- (c)
- (d)

If the integral $\oint_{-\infty}^{\infty} \frac{\cos mx}{(x^2+1)^2} dx = \oint_{C} \frac{e^{imz}}{(z^2+1)^2} dz$, m > 0 and where C is the part of the real axis from -R to +R and semicircle |z| = R above the real axis, then

- (A) z = i double pole lies in the upper half of the z-plane and
- (B) z = -i double pole does not lie in the upper half of the z-plane. Which of the following is true?
- a. Both A and B
- b. Only A
- c. Only B
- d. Neither A nor B

- (a
- (b)
- (c)
- (d)

If f(z) be continuous function such that $|f(z)| \to 0$ as $|z| \to \infty$, where C is the semicircle |z| = R above the real axis, then

a.
$$\oint_C e^{-imz} f(z) dz \to \infty \text{ as } R \to \infty$$
.

b.
$$\oint_C e^{imz} f(z) dz \to 0 \text{ as } R \to \infty$$
.

c.
$$\oint_C e^{imz} f(z) dz \rightarrow 0 \text{ as } R \rightarrow 0$$
.

d.
$$\oint_C f(z)dz \to \infty as R \to 0$$
.

Mark only one oval.

- (a)
- (b)
- (c)
- (d)

This content is neither created nor endorsed by Google.

Google Forms