

NOMAD Science Team

Description of NOMAD
Observation Types and HDF5
Datasets

NOTYET COMPLETE

NOMAD has many possible observation and measurement types

Observation Types
Standard solar occultation (ingress or egress)
Merged solar occultation
Grazing solar occultation
Dayside Nadir
Nightside Nadir
Limb
Calibration

Measurement Types - UVIS	
Solar occultation (detector rows binned)	
Solar occultation (detector rows unbinned)	
Nadir (detector rows binned)	
Nadir (detector rows unbinned)	
Calibration	

Measurement Types - SO/LNO
Standard solar occultation (5 orders + 1 dark per second, change order selection at 50km)
Merged/grazing occultation (5 orders + 1 dark per second, same order selection throughout)
Standard nadir/limb (dark subtracted)
Special occultation (6 orders, dark subtracted onboard)
Special merged/grazing occultation (6 orders, dark subtracted)
Fullscan Slow (diffraction order stepping, dark subtracted onboard)
Fullscan Fast (diffraction order stepping, dark subtracted onboard)
Calibration (many types)

Pipeline

- Each observation/measurement type follows a particular path through the pipeline
 - Contents of each file are calibrated/modified as appropriate

- Level 0.1A: Conversion to HDF5, dataset ordering and calibration of housekeeping data
- Level 0.1D: Addition of observation type letter
 - SO/LNO only: calculation of diffraction order, splitting of files by diffraction order
- Level 0.1E:
 - SO/LNO occultation only: bad pixel removal, non-linearity correction, flattening of datasets to 2D array
 - LNO nadir: bad pixel removal, vertical binning of detector frame. Straylight detection and removal.
 - LNO limb: bad pixel removal, flattening of datasets to 2D array

- Level 0.2A: Addition of geometry
 - UVIS/LNO nadir: surface geometry and illumination angles
 - UVIS/SO/LNO occultation/limb: tangent point geometry
- Level 0.3A
 - SO/LNO only: temperature-dependent spectral calibration
- Level 0.3B
 - UVIS nadir only:

- Level 0.3]
 - SO/LNO occultation only: dark subtraction
- Level I.0A: Radiometric calibration
 - SO/LNO/UVIS occultation: conversion to transmittance
 - LNO/UVIS nadir/limb: conversion to radiance

- Many of these are minor levels, containing incremental data processing steps and therefore are not useful for analysis
 - In time these minor levels will be merged into the major levels
 - Only major levels will be placed on ftp i.e. 0.1A,
 0.2A, 0.3A, 1.0A.

 However it is important that all steps that modify the data are described in detail

Pipeline Processes and File Contents

Level 0.1E – LNO Nadir Straylight Removal

Every LNO spectrum is checked.

Only occurs when TGO is in a particular orientation w.r.t the Sun => if true, the spectra are removed from the files

BIRA-IASB

Level 0.1E – LNO Nadir Straylight Removal

- Science/Y spectra set to NaN where straylight is present (data is not recoverable)
- Science/YValidFlag used to indicate which spectra are affected
 - ID array, one value per spectrum
 - I = spectrum is valid
 - 0 = spectrum is invalid

Level 0.1E – Non Linearity Correction

Only applies to SO data where signal is very low

Any detector counts in non-linear region are modified to match the linear response.

Level 0.1E – Bad Pixel Removal

- Some bad pixels occur intermittently
 - Bad pixel removal uses a hybrid approach
 - There is a set table of known bad pixels
 - The values for each pixel during a measurement are checked for

BIRA-IASB

Level 0.2A – LNO/UVIS nadir geometry

- Digital Shape Kernel (DSK) is now used to represent Mars surface
 - Minor differences to latitude / longitude in nadir
 - Incidence/emission/phase angles etc. now reflect real contours of surface to 4 px per degree

BIRA-IASB

Level 0.2A - SO/UVIS occultation geometry

- Occultation Types
 - Ingress (type I)
 - Egress (type E)
 - Merged (type I)
 - Grazing (type I)

- A merged occultation contains 2 individual occultations
 - At 0.2A level, merged occultations are not split
- A grazing occultation contains I occultation
 - Starting high in atmosphere, decreasing until a minimum altitude and ending high in atmosphere

Level 0.2A – SO/UVIS

- Several new fields in dataset for calculation types:
 - Surface
 - Areoid
 - Ellipsoid

SO Occultation Geometry

- Nominal occultation science:
 - 4 bins per measurement, each pointing in different directions
 - 4 spectra measured instantaneously at different tangent altitudes
 - 4 pixels per bin (~4x2 arcminute FOV per bin)
 - Each bin has 5 points to define geometry
 - Point0 = centre
 - Points I to points 4 = corners
 - Point0/PointXY defines relative pointing within bin
 - l.e. [0,0]=centre, $[\pm 1, \pm 1]$ = corners

 Values set to -999 when FOV of a point drops below Mars surface

SO Occultation Geometry

- Binned datasets are flattened to 2D array:
 - Y values (spectra) ordered by bin and measurement
 - Each row contains one spectrum of 320 values
 - Geometry defined by start and end times
 - Each row contains two strings 1 Bin 1 Start
 - Other fields ID arrays

Meas 1 Bin 1 Value
Meas 1 Bin 2 Value
Meas 1 Bin 3 Value
Meas 1 Bin 4 Value
Meas 2 Bin 1 Value
Meas 2 Bin 2 Value
Meas 2 Bin 3 Value
Meas 2 Bin 4 Value
Meas 3 Bin 1 Value

Meas 1 Bin 1 End
Meas 1 Bin 2 End
Meas 1 Bin 3 End
Meas 1 Bin 4 End
Meas 2 Bin 1 End
Meas 2 Bin 2 End
Meas 2 Bin 3 End
Meas 2 Bin 4 End
Meas 3 Bin 1 End

Measurement 1 Bin 1
Measurement 1 Bin 2
Measurement 1 Bin 3
Measurement 1 Bin 4
Measurement 2 Bin 1
Measurement 2 Bin 2
Measurement 2 Bin 3
Measurement 2 Bin 4
Measurement 3 Bin 1

SO Occultation Geometry – Option I

T=0 Ingress start

2 sets of different diffraction orders

SO Occultation Geometry – Option 2

0km + 30 seconds

T=0 Ingress start

1 set of diffraction orders throughout

SO Occultation Geometry – Fast Fullscan

T=0 Ingress start

E.g. 40 diffraction orders, 4 orders per second

SO Occultation Geometry – Slow Fullscan

Diffraction order 1 T=1s Diffraction order 2 T=2s T=3s Diffraction order 4 Diffraction order 5 Diffraction order 6 T=30s Diffraction order 7 T=31s Diffraction order 8 T=32s Diffraction order 1 Diffraction order 2 Diffraction order 4 Diffraction order 5 Diffraction order 6 Diffraction order 7 Diffraction order 8 Diffraction order 1 Diffraction order 2 Diffraction order 4 Diffraction order 5 Diffraction order 6 Diffraction order 7 Diffraction order 8 Diffraction order 1 Diffraction order 2

T=0 Ingress start

E.g. 8 diffraction
orders, 1 order per
second

UVIS Occultation Geometry

- Nominal occultation science:
 - UVIS has no bins
 - I spectrum measured at a time
 - Each spectrum has 9 points to define geometry
 - Point0 = centre
 - Points I to points 8 = octagonal "corners"
 - FOV is spherical

 Values set to -999 when FOV of a point drops below Mars ellipsoid

UVIS Occultation Geometry

BIRA-IASB

- Y dataset is 3D array:
 - Detector array x time

- Geometry defined by start and end times
 - Each row contains two strings
- Other fields are ID arrays

Spectrum 1 Value
Spectrum 2 Value
Spectrum 3 Value
Spectrum 4 Value
Spectrum 5 Value
Spectrum 6 Value
Spectrum 7 Value
Spectrum 8 Value
Spectrum 9 Value

Spectrum 1 Start	Spectrum 1 End
Spectrum 2 Start	Spectrum 2 End
Spectrum 3 Start	Spectrum 3 End
Spectrum 4 Start	Spectrum 4 End
Spectrum 5 Start	Spectrum 5 End
Spectrum 6 Start	Spectrum 6 End
Spectrum 7 Start	Spectrum 7 End
Spectrum 8 Start	Spectrum 8 End
Spectrum 9 Start	Spectrum 9 End

Spectrum 1
Spectrum 2
Spectrum 3
Spectrum 4
Spectrum 5
Spectrum 6
Spectrum 7

Spectrum 8

Spectrum 9

...

LNO Nadir Geometry

- Bins are averaged together to give a single spectrum per measurement
 - Each spectrum has 5 points to define geometry
 - Point0 = centre of FOV
 - Points I to points 4 = corners
 - Point0/PointXY defines relative pointing within bin
 - l.e. [0,0]=centre, $[\pm 1, \pm 1]$ = corners
- At present, bad pixels remain in nadir data
 - These will be removed in an update soon
 - Work in ongoing to detect other issues e.g. electrical noise

LNO Nadir Geometry

- Values set to -999 if FOV of a point is not pointed to planet
- Need to decide on number of diffraction orders per nadir observation
 - SNR depends on number of orders chosen
 - More orders = better spectral range coverage
 - Fewer orders = better SNR (less averaging required)

LNO Nadir Geometry

BIRA-IASB

- Y dataset is 2D array:
 - Y values spectra x measurement

Geometry defined by start and end times

Other fields are ID arrays

Spectrum 1 Value
Spectrum 2 Value
Spectrum 3 Value
Spectrum 4 Value
Spectrum 5 Value
Spectrum 6 Value
Spectrum 7 Value
Spectrum 8 Value
Spectrum 9 Value

Spectrum 1 End
Spectrum 2 End
Spectrum 3 End
Spectrum 4 End
Spectrum 5 End
Spectrum 6 End
Spectrum 7 End
Spectrum 8 End
Spectrum 9 End

Spectrum 1

Spectrum 2

Spectrum 3

Spectrum 4

Spectrum 5

Spectrum 6

Spectrum 7

Spectrum 8

Spectrum 9

...

UVIS Nadir Geometry

Nominal nadir science:

- Single spectrum returned per measurement
- Each spectrum has 9 points to define geometry
 - Point0 = centre
 - Points I to points8 = corners
 - Point0/PointXY defines relative pointing within bin
 - I.e. [0,0]=centre, $[\pm 1, \pm 1]$ = corners of FOV

UVIS Nadir Geometry

BIRA-IASB

- Y dataset is 2D array:
 - Y values spectra x measurement

Geometry defined by start and end times

Other fields are ID arrays

Spectrum 1 Value
Spectrum 2 Value
Spectrum 3 Value
Spectrum 4 Value
Spectrum 5 Value
Spectrum 6 Value
Spectrum 7 Value
Spectrum 8 Value
Spectrum 9 Value

Spectrum 1 Start	Spectrum 1 End
Spectrum 2 Start	Spectrum 2 End
Spectrum 3 Start	Spectrum 3 End
Spectrum 4 Start	Spectrum 4 End
Spectrum 5 Start	Spectrum 5 End
Spectrum 6 Start	Spectrum 6 End
Spectrum 7 Start	Spectrum 7 End
Spectrum 8 Start	Spectrum 8 End
Spectrum 9 Start	Spectrum 9 End

Spectrum 1

Spectrum 2

Spectrum 3

Spectrum 4

Spectrum 5

Spectrum 6

Spectrum 7

Spectrum 8

Spectrum 9

...

SO/LNO Spectral Calibration (Level 0.3A)

- Calibration output is controlled by pipeline flags. At present:
 - AOTF_BANDWIDTH_FLAG=0
 - BLAZE_FUNCTION_FLAG=0
- This means that AOTF function and blaze function are calculated and added to file, rather than coefficients
 - Channel/AOTF bandwidth contains
 - [xStart, xEnd, xStep, AOTFvalues]
 - E.g. a wavenumber grid from -100cm⁻¹ to +100cm⁻¹ in 0.1cm⁻¹ steps would be as follows:

-100 100		x1 x		х3	x4	x5		x2000
----------	--	------	--	----	----	----	--	-------

- Where xI = AOTF function at -100cm⁻¹
- x2 = AOTF function at -99.9cm⁻¹
- x2000 = AOTF function at +100cm⁻¹ etc.
- Channel/BlazeFunction contains
 - [xStart, xEnd, xStep, BlazeFunctions]
 - E.g. a pixel grid from pixel 0 to pixel 319 would be as follows:

0	319	1	x1	x2	х3	x4	x5	 x320
					l			

BIRA-IASB

SO/LNO Spectral Calibration (Level 0.3A)

- The flags can be changed to output spectral coefficients instead (of various forms – see slide 20), but we should decide as a team which is preferable
 - Feedback would be very welcome on ease-of-use and calibration accuracy

- Raw values probably easier to use at the start
 - Coefficients may be more useful if tweaks are required to specific calibrations

HDF5 File Contents

Special Observations

LNO Limb Geometry

- Limb bins are not averaged together like nadir
 - 12 bins per measurement (at present), each pointing in different directions
 - 12 pixels per bin (~12x4 arcminute FOV per bin)
 - Binned datasets are flattened to 2D arrays (see next slide)
- Each bin has 5 points to define geometry
 - Point0 = centre
 - Points I to points 4 = corners
 - Point0/PointXY defines relative pointing within bin
 - l.e. [0,0]=centre, $[\pm 1, \pm 1]$ = corners

 Values set to -999 if FOV of a point drops below Mars ellipsoid

LNO Limb Geometry

- Binned datasets are flattened to 2D array:
 - Y values (spectra) ordered by bin and measurement
 - Each row contains one spectrum of 320 values
 - Geometry defined by start and end times
 - Each row contains two strings
 - Other fields ID arrays
 - One value per row

Meas	1	Bin	1	Value
Meas	1	Bin	2	Value
Meas	1	Bin	3	Value
Meas	1	Bin	4	Value
Meas	2	Bin	1	Value
Meas	2	Bin	2	Value
Meas	2	Bin	3	Value
Meas	2	Bin	4	Value
Meas	3	Bin	1	Value

Meas 1 Bin 1 Start	Meas 1 Bin 1 End
Meas 1 Bin 2 Start	Meas 1 Bin 2 End
Meas 1 Bin 3 Start	Meas 1 Bin 3 End
Meas 1 Bin 4 Start	Meas 1 Bin 4 End
Meas 2 Bin 1 Start	Meas 2 Bin 1 End
Meas 2 Bin 2 Start	Meas 2 Bin 2 End
Meas 2 Bin 3 Start	Meas 2 Bin 3 End
Meas 2 Bin 4 Start	Meas 2 Bin 4 End
Meas 3 Bin 1 Start	Meas 3 Bin 1 End

Measurement 1 Bin 1
Measurement 1 Bin 2
Measurement 1 Bin 3
Measurement 1 Bin 4
Measurement 2 Bin 1
Measurement 2 Bin 2
Measurement 2 Bin 3
Measurement 2 Bin 4
Measurement 3 Bin 1

SO/LNO Fullscans

- Normally files are split so one files contains data from one diffraction order only
 - This is not the case for fullscans in nadir or occultation mode, where files can contain 100+ diffraction orders
 - Usual binning rules apply:
 - LNO bins average together
 - SO unbinned but spectra flattened into 2D array
 - Spectral calibration is applied per order
 - Different AOTF and blaze function per spectrum

More information

Online on FAQ page:

http://mars.aeronomie.be/en/exomars/observations/nomad_faqs.html

NOMAD Frequently Asked Questions

Most Important Links

- Observation types
- Data levels
- SO diffraction order to wavenumber conversion table
- LNO diffraction order to wavenumber conversion table
- SO AOTF to diffraction order conversion table (2017 inflight calibration)
- LNO AOTF to diffraction order conversion table (2017 inflight calibration)
- Observation overview database
- NOMAD experiment-to-archive interface document (EAICD)
- List of parameters contained in the HDF5 files
- NOMAD publication list
- · More resources can be found on the main page

EAICD contains more information about observation modes, data, etc.

List of parameters in HDF5 files can be found here.
Science/Channel/Geometry groups are relevant.
Spectral coefficient formats are described on Channel sheet

