E1 222 Stochastic Models and Applications

P.S. Sastry sastry@iisc.ac.in

Reference Material

- V.K. Rohatgi and A.K.Md.E. Saleh, An Introduction to probability and Statistics, Wiley, 2nd edition, 2018
- ➤ S.Ross, 'Introduction to Probability Models', Elsevier, 12th edition, 2019.
- P G Hoel, S Port and C Stone, Introduction to Probability Theory, 1971.
- ▶ P G Hoel, S Port and C Stone, Introduction to Stochastic Processes, 1971.
- Scott Sheffield, Probability and Random Variables, Massachusetts Institute of Technology, MIT OpenCourseWare:

https://ocw.mit.edu/courses/mathematics/18-600-probability-and-random-variables-fall-2019/License: Creative Commons BY-NC-SA.

Course Prerequisites / Background needed

- Calculus
 - continuity, differentiability, derivatives, functions of several variables, partial derivatives, integration, multiple integrals or integration over \Re^n , convergence of sequences and series, Taylor series
- Matrix theory
 - vector spaces, linear independence, linear transformations, matrices, rank, determinant, eigen values and eigen vectors
- ▶ In addition, knowledge of basic probability is assumed. I assume all students are familiar with the following:

Random experiment, sample space, events, conditional probability, independent events, simple combinatorial probability computations

But we would review the basic probability in the first two classes.

Course grading

- ► Mid-Term Tests and Assignments: 70% Final Exam: 30%
- ➤ Two mid-term tests for 20 marks each. We will have 2-3 assignments for 10 marks. (Tentative)
- ▶ Please remember this is essentially a Maths course

Probability Theory

- Probability Theory branch of mathematics that deals with modeling and analysis of random phenomena.
- Random (or Chance) Phenomena
 individually not predictable but have a lot of regularity at a population level
- Recommender systems, opinion polls, sample surveys · · ·

 useful because at a population level customer behaviour can be predicted.
- Statistics is the branch of Maths that deals with making inferences from data and Probability theory is needed for that.
- Example random phenomena: Tossing a coin, rolling a dice etc – familiar to you all
- ► It is also useful in many engineering systems, e.g., for analyzing behaviour under noise.

- In many engineering problems one needs to deal with random inputs where probability models are useful
 - Analysis of dynamical systems subjected to noise
 - System estimation
 - Policies for decision making under uncertainty
 - Pattern Recognition, prediction from data:
- ▶ We may use probability models for analysing algorithms. (e.g., average case complexity of algorithms)
- We may deliberately introduce randomness in an algorithm
 (e.g., ALOHA protocol, Primality testing)

This is only a 'sample' of possible application scenarios!

Review of basic probability

We assume all of you are familiar with the terms: random experiment, outcomes of random experiment, sample space, events etc.

We use the following Notation:

- Sample space $-\Omega$ Elements of Ω are the outcomes of the random experiment We write $\Omega = \{\omega_1, \omega_2, \cdots\}$ when it is countable
- \blacktriangleright An event is, by definition, a subset of Ω
- ► Set of all possible events $-\mathcal{F} \subset 2^{\Omega}$ (power set of Ω)

 Each event is a subset of Ω For now, we take $\mathcal{F} = 2^{\Omega}$ (power set of Ω)

Probability axioms

Probability (or probability measure) is a function that assigns a number to each event and satisfies some properties.

Formally, $P:\mathcal{F} \to \Re$ satisfying

- A1 Non-negativity: $P(A) \ge 0$, $\forall A \in \mathcal{F}$
- A2 Normalization: $P(\Omega) = 1$
- A3 σ -additivity: If $A_1, A_2, \dots \in \mathcal{F}$ satisfy $A_i \cap A_j = \phi, \forall i \neq j$ then

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i), \forall n; \text{ and } P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Events satisfying $A_i \cap A_j = \phi, \forall i \neq j$ are said to be **mutually exclusive**

 (Ω, \mathcal{F}, P) is called the **Probability Space**

Probability axioms

$$P: \mathcal{F} \to \Re$$
, $\mathcal{F} \subset 2^{\Omega}$ (Events are subsets of Ω)

- A1 $P(A) \geq 0$, $\forall A \in \mathcal{F}$
- A2 $P(\Omega) = 1$
- A3 If $A_i \cap A_j = \phi, \forall i \neq j$ then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
 - ▶ For these axioms to make sense, we are assuming

(i).
$$\Omega \in \mathcal{F}$$
 and (ii). $A_1, A_2, \dots \in \mathcal{F} \Rightarrow (\cup_i A_i) \in \mathcal{F}$

When $\mathcal{F}=2^{\Omega}$ this is true.

- ▶ Note that axiom A3 is about countable unions.
- As defined, the co-domain of the function P is \Re . However, the axioms imply that it takes values in [0,1].

Simple consequences of the axioms

Notation:

 A^c is complement of A.

$$C = A + B$$
 implies $A \cap B = \phi$ and $C = A \cup B$.

▶ Let $A \subset B$ be events. Then B = A + (B - A).

$$P(B) = P(A + (B - A)) = P(A) + P(B - A) \ge P(A)$$

Thus,
$$A \subset B \Rightarrow P(A) \leq P(B)$$

This also shows $P(B - A) = P(B) - P(A)$ when $A \subset B$.

- ▶ If A is an event, then $A \subset \Omega$ and hence $P(A) < P(\Omega) = 1$.
- ▶ We can show $P(A^c) = 1 P(A)$ as

$$1 = P(\Omega) = P(A + A^c) = P(A) + P(A^c)$$

- ► There are many such properties (I assume familiar to you) that can be derived from the axioms.
- ► Here are a few important ones. (Proof is left to you as an exercise!)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(U_{i=1}^n A_i) = \sum_i P(A_i) - \sum_i \sum_{j>i} P(A_i \cap A_j)$$

+
$$\sum_i \sum_{i>i} \sum_{k>i} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} P(\cap_i A_i)$$

Known as inclusion-exclusion formula

Case of finite Ω – Example

- Let $\Omega = \{\omega_1, \dots, \omega_n\}$, $\mathcal{F} = 2^{\Omega}$, and P is specified through 'equally likely' assumption.
- ▶ That is, $P(\{\omega_i\}) = \frac{1}{n}$. (Note the notation)
- ▶ Suppose $A = \{\omega_1, \omega_2, \omega_3\}$. Then

$$P(A) = P(\{\omega_1\} \cup \{\omega_2\} \cup \{\omega_3\}) = \sum_{i=1}^{3} P(\{\omega_i\}) = \frac{3}{n} = \frac{|A|}{|\Omega|}$$

- ▶ We can easily see this to be true for any event, A.
- ► This is the usual familiar formula: number of favourable outcomes by total number of outcomes.
- Thus, 'equally likely' is one way of specifying the probability function (in case of finite Ω).
- ► An obvious point worth remembering: specifying *P* for singleton events fixes it for all other events.

Case of Countably infinite Ω

- $\blacktriangleright \text{ Let } \Omega = \{\omega_1, \omega_2, \cdots\}.$
- Once again, any $A \subset \Omega$ can be written as mutually exclusive union of singleton sets.
- Let $q_i, i = 1, 2, \cdots$ be numbers such that $q_i \ge 0$ and $\sum_i q_i = 1$.
- We can now set $P(\{\omega_i\}) = q_i, i = 1, 2, \cdots$. (Assumptions on q_i needed to satisfy $P(A) \ge 0$ and $P(\Omega) = 1$).
- ▶ This fixes P for all events: $P(A) = \sum_{\omega \in A} P(\{\omega\})$
- This is how we normally define a probability measure on countably infinite Ω .
- ightharpoonup This can be done for finite Ω too.

Example: countably infinite Ω

- ▶ Let $\Omega = \{0, 1, 2, \cdots\}$
- ▶ Let $q_i = (1 p)^i p$ for some p, 0 .
- ▶ Easy to see: $q_i \ge 0$ and $\sum_{i=0}^{\infty} q_i = 1$.
- ► We can assign $P(\{k\}) = (1-p)^k p, k = 0, 1, \cdots$
- Consider a random experiment of tossing a biased coin repeatedly till we get a head. We take the outcome of the experiment to be the number of tails we had before the first head.
- ► A (reasonable) probability assignment is:

$$P({k}) = (1-p)^k p, k = 0, 1, \cdots$$

where p is the probability of head and 0 . (We assume you understand the idea of 'independent' tosses here).