Lecture 3

Algorithmic Complexity

Dr. Yusuf H. Sahin Istanbul Technical University

sahinyu@itu.edu.tr

Algorithm Efficiency Matters

- When comparing algorithms for the same problem, one might be significantly more efficient. Recognizing and selecting the most efficient algorithm is essential.
- Algorithmics: The study of designing and analyzing efficient algorithms
 - focusing on systematic techniques for efficiency

- In linear functions (no loops or recursion), efficiency depends on the number of instructions and the computer's speed, typically not impacting overall program performance.
- As we study specific examples, we generally discuss the algorithm's efficiency as a function of the number of elements to be processed.

Linear Loops

• Let's begin with a basic loop. Assuming i is an integer, the loop will run 1000 times. The number of iterations is directly related to the loop's multiplier.

for (i = 0; i < 1000; i++) application code
$$f(n) = n$$

• The answer is not always that simple. For instance, take the following loop into consideration.

for (i = 0; i < 1000; i += 2) application code
$$f(n) = \frac{n}{2}$$

• The time cost for the loop is a linear function of n.

Logarithmic Loops

• In a logarithmic loop, the variable is multiplied or divided with each iteration.

 Loop continues while the following conditions are true.

$$f(n) = logn$$

Mult	tiply	Divide			
Iteration	Value of i	Iteration	Value of i		
1	1	1	1000		
2	2	2	500		
3	4	3	250		
4	8	4	125		
5	16	5	62		
6	32	6	31		
7	64	7	15		
8	128	8	7		
9	256	9	3		
10	512	10	1		
(exit)	1024	(exit)	0		

Nested Loops

When analyzing nested loops, it's important to determine the number of iterations completed by each loop.

#Iterations = #outer loop iterations * #inner loop iterations

• Next, we examine three types of nested loops: linear-logarithmic, quadratic, and dependent quadratic.

Linear Logarithmic

$$f(n) = nlogn$$

Quadratic

$$f(n) = n^2$$

Dependent Quadratic

for (i = 0; i < 10; i++)
for (j = 0; j < i; j++)
application code
$$f(n) = n \binom{n-1}{n}$$

$$f(n) = n\left(\frac{n-1}{2}\right)$$

Big-O Notation

- We've shown that the number of statements executed for n elements is a function of n, expressed as f(n).
- While the equation may be complex, a dominant factor usually dictates the result's magnitude.
- This key factor, called big-O, represents the function's order
 - such as O(n) for linear growth.
 - $O(n^2)$ for quadratic.
- The big-O notation can be derived from f(n) using the following steps:
 - 1- In each term, set the coefficient of the term to 1.
 - 2- Keep the largest term in the function and discard the others. Terms are ranked from lowest to highest as logn n nlogn n^2 n^3 ... n^k 2^n n!

$$f(n) = n \frac{(n+1)}{2} = \frac{1}{2} n^2 + \frac{1}{2} n \longrightarrow O(n^2)$$

Standard Measures of Efficiency

• For n = 10.000:

Efficiency	Big-O	Iterations	Estimated Time	
Logarithmic	O(logn)	14	microseconds	
Linear	O(n)	10,000	seconds	
Linear logarithmic	$O(n(\log n))$	140,000	seconds	
Quadratic	$O(n^2)$	10,0002	minutes	
Polynomial	$O(n^k)$	10,000 ^k	hours	
Exponential	O(c ⁿ)	210,000	intractable	
Factorial	O(n!)	10,000!	intractable	

• When working with just 10 elements and the time is a fraction of a second, the difference between two algorithms is negligible. However, as the number of elements increases, the performance gap between algorithms can become significant.

Big-O Analysis Examples

Adding matrices:

4	2	1		6	1	7		10	3	8
0	-3	4	+	3	2	-1	=	3	_1	3
5	6	2		4	6	2		9	12	4

Multiplying Square matrices:

An Intro Example for Recursion

- In a rabbit population, the rules for the growth are as listed below:
 - Initially, a newly born pair of rabbits, one male and one female, are placed in a field.
 - The rabbits take one month to mature.
 - Mature rabbit pairs mate at the beginning of every month, and give birth to another pair of newly born rabbits at the beginning of the next month.
 - The female rabbit always gives birth to one male and one female rabbit, who will only mate with themselves.
 - The rabbits never die.

- A recursive function A(n) could be written to obtain the number of adult pairs for month n.
- Another function B(n) shows the baby pairs for that month.
- Write the definitions for functions A and B!

From «Introduction to Recursive Programming 1st Edition», Manuel Rubio-Sanchez

An Intro Example for Recursion

- In a rabbit population, the rules for the growth are as listed below:
 - Initially, a newly born pair of rabbits, one male and one female, are placed in a field.
 - The rabbits take one month to mature.
 - Mature rabbit pairs mate at the beginning of every month, and give birth to another pair of newly born rabbits at the beginning of the next month.
 - The female rabbit always gives birth to one male and one female rabbit, who will only mate with themselves.
 - The rabbits never die.

$$A(n) = \begin{cases} 0 & \text{if } n = 1 \\ A(n-1) + B(n-1) & \text{if } n > 1 \end{cases}$$
 baby pair to adult pair month $n-1$ matures does not die mates month n month n month n month n month n month n month n

So, what are the time complexities of these functions?

From «Introduction to Recursive Programming 1st Edition», Manuel Rubio-Sanchez

Into the rabbit hole...

```
#include <stdio.h>
int B(int n);
// Function A(n)
int A(int n) {
   if (n == 1)
       return 0;
   else
       return A(n - 1) + B(n - 1);
int B(int n) {
   if (n == 1)
       return 1;
   else
       return A(n - 1);
int main() {
   int n = 2; // Example input
   printf("A(%d) = %d\n", n, A(n));
   printf("B(%d) = %d n", n, B(n));
   return 0;
```

Into the rabbit hole...

```
#include <stdio.h>
int B(int n);
// Function A(n)
int A(int n) {
   if (n == 1)
       return 0;
   else
       return A(n - 1) + B(n - 1);
int B(int n) {
   if (n == 1)
       return 1;
   else
       return A(n - 1);
int main() {
   int n = 2; // Example input
   printf("A(%d) = %d\n", n, A(n));
   printf("B(%d) = %d n", n, B(n));
   return 0;
```

Time complexity of A(n) and B(n) are both $O(2^n)$