Problem 1

(1) Performing exploratory analysis on the above variables.

See the following charts:

- "Box plot for FEV1_mother by Height_mother",
- "Scatter plot for FEV1_mother vs. Height_mother",
- "Normal distribute plot for Height mother",
- "Normal distribute plot for FEV1_mother".

(2) Performing regression analysis.

See the following charts:

- "Simple regression for FEV1_mother vs. Height_mother",
- "Univariate analysis for FEV1 mother vs. Height mother".

(3) Would you apply any transformation to the "height" variable? What kind of transformation if any?

The log transformation. We can transform the height into log(height).

See "Simple regression for FEV1_mother vs. logHeight_mother".

As we see, the result of these two regression are similar, including the residual, F-value and R-square. As a result, we do not need to apply the log transformation to "height" variable.

(4) Is the regression line a good predictor? Why or why not?

Yes. This regression line is a good predictor.

The F value is 40.73 and Pr > F is < 0.0001, which is highly significant.

The R-Square is 0.2158, which indicates how well the data fit this model.

The Pr > |t| for intercept and Height_mother are 0.002 and <0.0001, which are also significant.

The model is FEV1_mother = Height_mother \times 9.17 – 290.34.

mpie			The M	REG Prodel: MC Variable	oce DDE	dure L1		_	t_mothe
	Number of Observations Read				150				
Number of (Observations Used			150)	
			Anal	ysis of \	Vari	ance			
Source		D		Sum of Squares		Mean Square		/alue	Pr > F
Model			1	76391		76391		40.73	<.0001
Error		14	8	277592		1875.61829			
Corrected Total		al 14	9	353982					
Root MSE			43.308		41 R-Squar		are	0.215	8
Dependent		nt M	lean 297.313		33	Adj R-Sq		0.210	5
Coeff Var			14.566	59					
			Para	meter E	stin	nates			
Variable [DF		Parameter Estimate		Standard Error		alue	Pr > t
Intercept		1	-290.34463		92	2.15023	-3.15		0.0020
Heigh	Height_mother			9.16878		1.43669		6.38	<.0001

(5) What are high leverage and influential observations? Why?

leverage:

The highest five leverage points are shown in the following chart, which are 88, 19, 4, 15 and 3. These points' height and FEV1 are: (88): 57, 221; (19): 57, 204; (4): 58, 206; (15): 59, 257; (3) 59, 265.

Extreme Observations						
Lowest	t	Highest				
Value	Obs	Value	Obs			
0.00667625	147	0.0352154	3			
0.00667625	144	0.0352154	15			
0.00667625	142	0.0475261	4			
0.00667625	141	0.0620378	19			
0.00667625	140	0.0620378	88			

influential observation:

cookd and dffits:

The highest five cookd and dffits points are shown in the following charts. Point 105, 91 and 7 are both in these two graphs, which means these points have the large influential effect on the line. These points' height and FEV1 are (105): 66, 460; (91): 68, 426; (7): 68, 425.

Extrem	servations	Extreme Observations					
Lowest		Highest		Lowest		Highest	
Value	Obs	Value	Obs	Value	Obs	Value	Obs
1.80338E-07	20	0.0506167	33	-4.38E-01	90	0.212038	65
2.86084E-07	139	0.0553527	7	-3.21E-01	33	0.245860	149
3.77669E-07	144	0.0565644	91	-2.33E-01	40	0.336884	7
5.30699E-07	34	0.0612574	105	-2.14E-01	50	0.340671	91
8.03993E-07	38	0.0915288	90	-2.14E-01	12	0.363051	105

(6) Are the residuals normally distributed? Why?

Yes. The residuals are normally distributed.

As we see in the following graph 1, these points are distributed nearby the central line.

As we see in the following graph 2, these points are distributed like a line.

As we see in the following graph 3, the residual are normally distributed.

Problem 2

a=1+75=**76**

b=5117.5591/1=**5117.5591**

c=9879.2413/75=**131.7232**

d=5117.5591/131.7232=**38.8509**

e=5117.5591/14997=**0.3412**

f=76+1=**77**

Problem 3See attached sas program "program3". The "result" table in "main" is the answer.

	row	col	val
1	1	1	330
2	1	2	400
3	2	1	250
4	2	2	300
5	3	1	420
6	3	2	500
7	4	1	500
8	4	2	600