MATH 420/507 Assignment 2

Jingyuan Hu (Juan) #41465155

Problem 1(a).

Proof. First we'll show monotonicity of J^* : Let $A, B \subset \mathbb{R}$ be two arbitrary sets where $A \subset B$, then for any open cover $\bigcup_{i=1}^{n} (a_i, b_i) \supset B$, we also have $\bigcup_{i=1}^{n} (a_i, b_i) \supset A$. Therefore by definition,

$$\{\sum_{j=1}^{N}(b_j - a_j) | A \subset \bigcup_{j=1}^{N}(a_j, b_j), a_j < b_j\} \subset \{\sum_{j=1}^{N}(b_j - a_j) | B \subset \bigcup_{j=1}^{N}(a_j, b_j), a_j < b_j\}$$

Hence $J^*(A) \leq J^*(B)$ by the definition of infimum. Next we'll show J^* is finitely subadditive: Let $\{A_i\}_{i=1}^N$ be finite sequences of sets in \mathbb{R} , where by definition:

$$J^*(A_i) := \inf\{\sum_{j=1}^{N_i} (b_j^i - a_j^i) | A_i \subset \bigcup_{j=1}^{N_i} (a_j^i, b_j^i), n \in \mathbb{N}, a_j^i \leq b_j^i\}$$

$$J^*(\bigcup_{i=1}^N A_i) := \inf\{\sum_{j=1}^N (b_j - a_j) | (\bigcup_{i=1}^N A_i) \subset \bigcup_{j=1}^N (a_j, b_j), n \in \mathbb{N}, a_j \le b_j\}$$

By the property of infimum, we have:

$$J^*(A_i) + \frac{\epsilon}{N} > m(\bigcup_{j=1}^{N_i} (a_j^i, b_j^i)) = \sum_{j=1}^{N_i} (a_j^i, b_j^i)$$

and

$$\bigcup_{i=1}^{N} A_i \subset \bigcup_{i=1}^{N} (\bigcup_{j=1}^{N_i} (a_j^i, b_j^i))$$

since each $A_i \subset \bigcup_{j=1}^{N_i} (a_j^i, b_j^i)$

$$J^{*}(\bigcup_{i=1}^{N} A_{i}) \leq J^{*}(\bigcup_{i=1}^{N} (\bigcup_{j=1}^{N_{i}} (a_{j}^{i}, b_{j}^{i}))) \leq m(\bigcup_{i=1}^{N} (\bigcup_{j=1}^{N_{i}} (a_{j}^{i}, b_{j}^{i}))) \leq \sum_{i=1}^{N} m(\bigcup_{j=1}^{N_{i}} (a_{j}^{i}, b_{j}^{i}))$$

$$\leq \sum_{i=1}^{N} (J^{*}(A_{i}) + \frac{\epsilon}{N}) = \sum_{i=1}^{N} J^{*}(A_{i}) + \epsilon \Rightarrow J^{*}(\bigcup_{i=1}^{N} A_{i}) \leq \sum_{i=1}^{N} J^{*}(A_{i})$$

$$(1)$$

Next we'll show J^* is not countably subadditive, by using the example from $\operatorname{part}(b)$: $J^*(\mathbb{Q} \cap [0,1]) = 1$ (we'll prove this in $\operatorname{part}(b)$). Let $E = \mathbb{Q} \cap [0,1] = \bigcup_{i=1}^{\infty} E_i$ since there are

countably many rational numbers in [0,1], for each $E_j = \{e_j\}$, we can find an $a_j < b_j$ s.t. $e_j \in (a_j, b_j), b_j - a_j = \frac{\epsilon}{2^j}$. Then $J^*(E_j) \leq \frac{\epsilon}{2^j}$ by the definition of Jordan outer measure

$$\therefore \sum_{i=1}^{\infty} J^*(E_j) \le \sum_{i=1}^{\infty} \frac{\epsilon}{2^j} = \epsilon \Rightarrow \sum_{i=1}^{\infty} J^*(E_j) = 0 \ne J^*(\mathbb{Q} \cap [0,1]) = 1$$

Therefore J^* is finitely subadditive but not countably subadditive

Problem 1(b).

Proof. Denote $E = \mathbb{Q} \cap [0,1]$, we first show $J^*(E) \leq 1$: $\forall \epsilon > 0$, let $a_1 = -\epsilon, b_1 = 1 + \epsilon$, then

$$E \subset \bigcup_{j=1}^{N=1} [a_j, b_j], \sum_{j=1}^{N=1} (b_j - a_j) = 1 + 2\epsilon$$

 $\therefore J^*(E) \le 1 + 2\epsilon, \forall \epsilon > 0 \Rightarrow J^*(E) \le 1$. We next show $J^*(E) \ge 1$:

$$J^*(E) = \inf\{\sum_{j=1}^{N} (b_j - a_j) | E \subset \bigcup_{j=1}^{N} (a_j, b_j), n \in \mathbb{N}, a_j \le b_j\}$$

$$\therefore E \subset \bigcup_{j=1}^{N} (a_j, b_j) \Rightarrow \overline{E} \subset \overline{\bigcup_{j=1}^{N} (a_j, b_j)} \Rightarrow [0, 1] \subset \bigcup_{j=1}^{N} [a_j, b_j]$$

By rearranging $\bigcup_{j=1}^{N} [a_j, b_j]$, we could make it $\dot{\cup}_{j=1}^{N'} [a'_j, b'_j]$, where $\sum_{j=1}^{N} (a_j, b_j) \geq \sum_{j=1}^{N'} [a'_j, b'_j]$. Since all closed intervals here are disjoint, $[0,1] \subset [a'_j, b'_j]$, $\exists a'_j, b'_j$. So $\sum_{j=1}^{N} (a_j, b_j) \geq \sum_{j=1}^{N'} [a'_j, b'_j] \geq 1$, $\therefore J^*(E) \geq 1$. Hence $J^*(\mathbb{Q} \cap [0,1]) = 1$

Problem 1(c).

Proof. From (b) we know the Jordan outer measure: $J^*(\mathbb{Q} \cap [0,1]) = 1$ Suppose there is a countable union of intervals $\bigcup_{j=1}^{N} (a_j, b_j) \subset (\mathbb{Q} \cap [0,1])$ Since \mathbb{Q}^c is dense in [0,1], $\forall j, \exists q_j \in \mathbb{Q}^c$ such that $q_j \in (a_j, b_j)$, then $(a_j, b_j) \not\subset \mathbb{Q} \cap [0,1]$ Therefore no such $\bigcup_{j=1}^{N} (a_j, b_j)$ exists, which means $J_*(\mathbb{Q} \cap [0,1]) = \sup\{\emptyset\} = 0$ $J^*(\mathbb{Q} \cap [0,1]) \neq J_*(\mathbb{Q} \cap [0,1]), \mathbb{Q} \cap [0,1]$ is not Jordan measurable

Problem 2(a).

Proof. \mathbb{Q} is dense in $[0,1] \Rightarrow \forall \epsilon > 0, \forall q_j \in \mathbb{Q} \cap [0,1]$, we can find a open cover U_j such that: $\exists a_j \in [0,1], q_j \in U_j = (a_j, a_j + \frac{\epsilon}{2^j}) \Rightarrow m_0(U_j) = \frac{\epsilon}{2^j}$. Then:

$$\mathbb{Q} \cap [0,1] \subset \bigcup_{i=1}^{\infty} U_j, m^*(\mathbb{Q} \cap [0,1]) \leq m^*(\bigcup_{i=1}^{\infty} U_j) = m_0(\bigcup_{i=1}^{\infty} U_j) = \sum_{j=1}^{\infty} \frac{\epsilon}{2^j} = \epsilon$$

since countable union of open sets is still open and lebesgue measurable

Problem 2(b).

Proof. Consider a modified cantor set C': Instead of taking out the middle $\frac{1}{3}$ part of the interval each time, $\forall \epsilon > 0$, we take out segment of length $\frac{\epsilon}{3^{2n-1}}$ from each interval each time (i.e. we take the middle $\frac{\epsilon}{3}$ off at the first round, then two segment of length $\frac{\epsilon}{3^3}$ off at the second round, and four segment of length $\frac{\epsilon}{3^5}$ off at the third round ... we take 2^{n-1} segment of length $\frac{\epsilon}{3^{2n-5}}$ at the nth round)

Then
$$C' = \bigcap_{n=1}^{\infty} C_n$$
, $m(C') = m(\bigcap_{n=1}^{\infty} C_n) = 1 - \sum_{i=1}^{\infty} \frac{2^{n-1}}{3^{2n-1}} \epsilon = 1 - \frac{\frac{1}{3}}{1 - \frac{2}{9}} \epsilon = 1 - \frac{3}{7} \epsilon < 1$
 $\therefore C'$ is nowhere dense subset of $[0, 1]$ (by $5(c)$), measure arbitrary close to 1 but not equal

Problem 2(c).

Proof. Suppose there is a nowhere dense set $E \subset [0,1]$, then there must be an interval $(a,b) \subseteq E^c$ with a < b. Otherwise $\forall (a,b) \subset [0,1], (a,b) \subset E \Rightarrow E$ is dense in [0,1], which leads to a contradiction. Hence m(E) = m([0,1]) - m((a,b)) < 1

Problem 2(d).

Proof. In part(b) we have a nowhere dense set, therefore

$$\not\exists (a_j, b_j) \subset E \Rightarrow m_*(E) = \sup\{\emptyset\} = 0$$

Problem 2(e).

Proof. Since $K \subset E \Rightarrow m(E) \geq m(K) \Rightarrow m(E) \geq \sup\{m(K) | \text{ compact } K \subset E\}$ It suffices to show $m(E) \leq \sup\{m(K) | \text{ compact } K \subset E\}$:

If $m(E) < \infty$ then let $\epsilon > 0$ \exists elegand set $E \subseteq E$ with $m(E) \in E$.

If $m(E) < \infty$, then let $\epsilon_0 > 0, \exists$ closed set $F \subset E$ with $m(E \setminus F) \le \epsilon_0$

 $\therefore m(E \backslash F) = m(E) - m(F) \le \epsilon_0 \Rightarrow m(E) \le m(F) + \epsilon_0$

Let $K_n = F \cap [-n, n]$ hence K_n is compact since F is closed and [-n, n] is compact

By continuity from below, $\lim_{n\to\infty} m(K_n) = m(F \cap \mathbb{R}) = m(F)$

By definition of limit, $\exists N \in \mathbb{N}, \forall n \geq N, m(F) - m(K_n) \leq \epsilon_0$

 $m(E) \leq m(F) + \epsilon_0 \leq m(K_N) + 2\epsilon_0$ where K_N is a compact set $K_N \subset F \subset E$

Therefore $m(E) \leq \sup\{m(K) | \text{ compact } K \subset E\}$ when $m(E) < \infty$

If $m(E) = \infty$, to show $m(E) \leq \sup\{m(K) | \text{ compact } K \subset E\}$, it suffices to show:

 $\forall M>0, \exists K\subset E, m(K)\geq M$ Fixed M+c>0, let $E_n=E\cap[-n,n]\subset E\Rightarrow \lim_{n\to\infty}m(E_n)=m(E)=\infty$ by continuity from below. Then $\exists N_E\in\mathbb{N}, \forall n\geq N_E, m(E_n)\geq M+c$ $\forall \epsilon_1, \exists \text{ closed set } F\subseteq E_{N_E}=E\cap[-N_E,N_E] \text{ s.t. } m(E_{N_E}\backslash F)\leq \epsilon_1$ $m(E_{N_E})<\infty\Rightarrow m(F)<\infty$, so we have $m(F)\geq m(E_{N_E})-\epsilon_1$ Let $K_n=F\cap[-n,n]\subset F$ hence K_n is compact since F is closed and [-n,n] is compact Then $\lim_{n\to\infty}m(K_n)=m(F)<\infty$ by continuity from below $\forall \epsilon_2, \exists N_F\in\mathbb{N}, \forall n\geq N_F, m(F)-m(K_n)\geq M, m(K_{N_F})\geq m(F)-\epsilon_2$ Therefore let $c=3,\epsilon_1=\epsilon_2=1$, for $n\geq \max\{N_E,N_F\}$, there exist a compact set K_n : $m(K_n)\geq m(K_{N_F})\geq m(F)-\epsilon_2\geq m(E_{N_E})-\epsilon_1-\epsilon_2\geq M+c-\epsilon_1-\epsilon_2>M$ $\therefore m(E)\leq \sup\{m(K)|\text{ compact } K\subset E\}$ In conclusion, $m(E)=\sup\{m(K)|\text{ compact } K\subset E\}$

Problem 3(a).

Proof. First show F is increasing, without loss of generality, assume x > y. Then there could be three cases:

$$\begin{array}{l} (i)x>y\geq 0 \\ F(x)-F(y)=\mu((0,x])-\mu((0,y])\geq 0 \text{ since } (0,y]\subset (0,x] \\ (ii)x\geq 0>y \\ F(x)-F(y)=\mu((0,x])+\mu((y,0])\geq 0 \text{ since } \mu(E)\geq 0, \forall E\subset R \\ (iii)0\geq x>y \\ F(x)-F(y)=-\mu((x,0])+\mu((y,0])\geq 0 \text{ since } (x,0]\subset (y,0], \mu((x,0])\leq \mu((y,0]) \\ \text{Next show } F \text{ is right-continuous, i.e. } F(x+)=F(x) \\ \text{Since } \mu \text{ is finite measure and by continuity from above} \\ \text{For } x\geq 0, \lim_{y\downarrow x}F(y)=\lim_{y\downarrow x}\mu((0,y]))=\mu((0,x]))=F(x) \\ \text{For } x<0, \lim_{y\downarrow x}F(y)=\lim_{y\downarrow x}-\mu((y,0]))=-\mu((x,0])=F(x) \\ \end{array}$$

Problem 3(b).

Proof. (i) m_F defined on $\mathbb{R} \Rightarrow m_F(E) \leq m_F(R) < \infty$ (ii) If $m_F(\{x_0\}) = 0$, we must have $\lim_{\delta \to 0} (m_F(x_0 - \delta, x_0 + \delta)) = \lim_{\delta \to 0} (F(x_0 + \delta) - F(x_0 - \delta)) = 0$, which is the definition of continuity for F. If F is continous at x_0 , we know that $\forall \epsilon > 0, \exists \delta > 0, F(x_0 + \delta) - F(x_0 - \delta) \leq \epsilon \Rightarrow m_F(\{x_0\}) \leq \epsilon$ (iii) $m_F((a, b]) = F(b) - F(a) = \lfloor b \rfloor - \lfloor a \rfloor$ is an counting measure that counts the number of integers in (a, b]

Problem 4(a).

Proof. For $d \geq 0, l_j \geq 0$, we have $\sum_{j=1}^{\infty} l_j^d \geq 0$, hence $H_d(E) := \sup_{\delta > 0} H_{d,\delta}(E) \geq 0$. To show $H_d(\emptyset) := \sup_{\delta > 0} H_{d,\delta}(\emptyset) = 0$, it is equivalent to show: $\forall \delta > 0, H_{d,\delta}(\emptyset) = 0$. Let $a = l = 0 < \delta$ then $\emptyset \subset (0,0) = \emptyset \Rightarrow H_{d,\delta}(\emptyset) \leq 0 \Rightarrow H_{d,\delta}(\emptyset) = 0$

Next we'll show monotonicity: Let E, F be two sets in \mathbb{R} such that $E \subset F$, then any countable union of open sets that cover F must cover E:

$$\{\sum_{j=1}^{\infty} l_j^d | F \subset \bigcup_{j=1}^{\infty} (a_j, a_j + l_j), 0 \le l_j \le \delta)\} \subset \{\sum_{j=1}^{\infty} l_j^d | E \subset \bigcup_{j=1}^{\infty} (a_j, a_j + l_j), 0 \le l_j \le \delta)\}$$

By property of infimum, $H_{d,\delta}(E) \leq H_{d,\delta}(F)$. Then $\sup_{\delta>0} H_{d,\delta}(E) \leq \sup_{\delta>0} H_{d,\delta}(F)$

Next we'll show subadditivity:

$$H_d(A) \leq \sum_{j=1}^{\infty} H_d(A_j) = \sup_{\delta > 0} H_{d,\delta}(A) \leq \sum_{j=1}^{\infty} \sup_{\delta > 0} H_{d,\delta}(A_j)$$
 where $A \subset \bigcup_{j=1}^{\infty} A_j$, $\{A_j\}$ is a sequence of disjoint sets in \mathbb{R}

By property of infimum, there exist an open cover of intervals $\{I_j^k\}_k$ that cover A_j , then $A \subset \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} A_j$, and $H_{d,\delta}(A_j) + \frac{\epsilon}{2^j} \geq \sum_{k=1}^{\infty} l_k^d$. Then:

$$\forall \epsilon > 0, \sum_{j=1}^{\infty} H_{d,\delta}(A_j) \ge \sum_{j=1}^{\infty} (\sum_{k=1}^{\infty} l_k^d - \frac{\epsilon}{2^j}) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} l_k^d - \sum_{j=1}^{\infty} \frac{\epsilon}{2^j} = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} l_k^d - \epsilon \ge H_{d,\delta}(A) - \epsilon$$

Therefore $H_{d,\delta}(A) \leq \sum_{j=1}^{\infty} H_{d,\delta}(A_j)$, hence we've proven that H_d is an outer measure

Problem 4(b).

Proof.
$$H_0(E) := \sup_{\delta > 0} H_{0,\delta}(E) = \lim_{\delta \to 0} \inf \{ \sum_{j=1}^{\infty} 1 | E \subset \bigcup_{j=1}^{\infty} (a_j, a_j + l_j), 0 \le l_j \le \delta) \}$$

 $H_0(E) \ge 0$ since $\sum_{j=1}^{\infty} 1 \ge 0$. Let $a = l = 0$ then $\emptyset \subset (0,0) = \emptyset \Rightarrow H_0(\emptyset) \le 0 \Rightarrow H_0(\emptyset) = 0$

Show $H_0(E) = \#E$ when E is finite, we'll start by showing $H_0(E) \le \#E$:

$$H_0(E) \le \#E \Leftrightarrow \sup_{\delta > 0} H_{0,\delta}(E) \le \#E \Leftrightarrow \forall \delta > 0, \inf\{\sum_{j=1}^{\infty} 1 | E \subset \bigcup_{j=1}^{\infty} (a_j, a_j + l_j), 0 \le l_j \le \delta\}\} \le \#E$$

It suffices to show that: $\forall \delta > 0$, there is an open cover so that the summation is $\leq \#E$: For a finite E we have finite elements, say $\{e_i\}_{i=1}^N$, for each e_i we can find a open cover such that $e_i \in (a_j, a_j + l)$ where $l = \min \left(\delta, \min\{|a - b| : a \neq b, a, b \in E\}\right)$ so that no two elements are in the same open interval, therefore we need exactly N intervals, by the property of infimum we have

$$\sup_{\delta>0} H_{0,\delta}(E) = \inf\{\sum_{j=1}^{\infty} 1 | E \subset \bigcup_{j=1}^{\infty} (a_j, a_j + l_j), 0 \le l_j \le \delta\}\} \le N = \#E$$

Then we'll show: $H_0(E) \ge \#E \Leftrightarrow \exists \delta > 0$, so that for all open cover that covers E the summation is larger than #E. Pick $\delta = \min\{|a - b| : a \ne b, a, b \in E\}$, since set E is

finite and now no two elements are in the same open interval, then we need at least N open intervals to cover the set E, hence we know $H_0(E) \ge \#E$. Therefore, we conclude that $H_0(E) = \#E$ when E is finite.

We'll next show $H_0(E) = \infty$ if E is infinite:

 $\forall M > 0, M \in \mathbb{N}, \exists P \subset E, H_0(P) \geq M \text{ (otherwise } E \text{ is not infinite)} \text{ and from part}(a) \text{ and the conclusion above for finite case, we know } H_0(E) \geq H_0(P) = M, \text{ therefore } H_0(E) = \infty.$ Therefore $H_0(E)$ is a counting measure in \mathbb{R}

Problem 4(c).

Proof. Let $d_0 = \frac{\log 2}{\log 3}$ then by assumption we know $1 \ge d > d_0$. Want to show: $\sup_{\delta > 0} H_{d,\delta}(C) = 0 \Leftrightarrow \forall \delta > 0, H_{d,\delta}(C) = 0 \Leftrightarrow \forall \epsilon > 0, \exists \text{ cover of } C \text{ with } 0 \le l_j \le \delta \text{ s.t. } \sum_{j=1}^{\infty} l_j^d \le \epsilon$

Since by the construction of cantor set, C_N consists of 2^N closed intervals $\{I_j\}_j^{2^N}$, each of which has length $\frac{1}{3^N}$. So if we consider $\{\hat{I}_j\}_j^{2^N}$, where each \hat{I}_j is the open interval with the same center but twice the length of I_j (which is length $\frac{2}{3^N}$ now), then $\{\hat{I}_j\}_j^{2^N}$ forms an open cover of C_N (which is also an open cover of C). For $\epsilon > 0$, $\forall \delta > 0$, we can pick $N_{\delta,\epsilon}$ satisfying both $\frac{2}{3^N} < \delta$ and $3^{-N(d-d_0)} < \epsilon$, then by picking the open cover $\{\hat{I}_j\}_j^{2^N}$ as above where $l_j = \frac{2}{3^N}$ now, then we have:

$$H_{d,\delta}(C_N) = \sum_{j=1}^{\infty} l_j^d = 2^N \times (\frac{2}{3^N})^d = 2^N \times 2^d \times 3^{-Nd} = 2^N \times 2^d \times 3^{-N(d-d_0)} \times 3^{-Nd_0}$$

$$= 2^d \times 3^{-N(d-d_0)} < 2 \times 3^{-N(d-d_0)} < \epsilon$$
(2)

Since $\{\hat{I}_j\}_j^{2^N}$ is also an open cover of C, then we have $H_d(C) \leq H_d(C_N) \leq \epsilon$, therefore $H_d(C) = 0$ if $d > \frac{\log 2}{\log 3}$

Problem 5(a).

Proof.
$$m(C_{\overrightarrow{\alpha}}) = m(K_0) \times (1 - \alpha_1) \times (1 - \alpha_2) \times \dots = m(K_0) \times \prod_{j=1}^{\infty} (1 - \alpha_j)$$
, where $m(K_0) = m([0, 1]) = 1$, therefore $m(C_{\overrightarrow{\alpha}}) = \prod_{j=1}^{\infty} (1 - \alpha_j)$

Problem 5(b).

Proof. Since \mathbb{Q} is dense in $\mathbb{R} \cap [0,1)$, then for any $\beta \in [0,1)$, there exist a strictly decreasing sequence $\{q_n\} \in \mathbb{Q} \cap [0,1)$ s.t. the sequence converges to β . Since from part (a) of the question we already know that $m(C_{\overrightarrow{\alpha}}) = \prod_{j=1}^{\infty} (1-\alpha_j)$, we can pick α_j so that $\prod_{j=1}^{n} (1-\alpha_j) = q_n$. This can be done since $q_n \in [0,1)$ and $\frac{q_{n+1}}{q_n} = (1-\alpha_{n+1})$ where $\alpha_{n+1} = (1-\frac{q_{n+1}}{q_n}) \in [0,1)$

Problem 5(c).

Proof. The clousre of the generalized Cantor set $C_{\overrightarrow{\alpha}}$ is the same Cantor set since it is closed. Suppose $C_{\overrightarrow{\alpha}}$ contains an open interval of length δ inside, then by the construction of cantor set, we know that at after the first removal, the largest open interval cannot be larger than $\frac{1}{2}$, and after the Nth removal the largest open interval cannot be larger than $\frac{1}{2^N}$. Therefore we can pick N s.t. $\frac{1}{2^N} < \delta$, where such open interval cannot exist. Since δ is arbitrary, we've shown that it contains no open set and therefore is nowhere dense.

Problem 6.

Proof. Without loss of generality, assume $f: \mathbb{R} \to \mathbb{R}$ is increasing (f is not necessary continuous). It suffices to show: $f^{-1}((-\infty, a]) \in \mathcal{B}_{\mathbb{R}}, \forall a \in \mathbb{R}$, and there could be two cases: Case 1: $a \in \text{Range}(f)$, then $f^{-1}((-\infty, a]) = (-\infty, b]$ where $b = \sup\{x : f(x) \le a\}$ Case 2: $a \notin \text{Range}(f)$, then if $f(x) < a, \forall x \text{ or } f(x) > a, \forall x$, we would have $f^{-1}((-\infty, a]) = \mathbb{R}$ or \emptyset . Otherwise $f^{-1}((-\infty, a]) = (-\infty, b)$ where $b = \sup\{x : f(x) \le a\}$ but now a is not attainable. In conclusion, we know $f^{-1}((-\infty, a])$ are in the form of \emptyset , \mathbb{R} , $(-\infty, b)$, $(-\infty, b]$, which are all in $\mathcal{B}_{\mathbb{R}}$, hence we've proven f is Borel measurable

Problem 7.

Proof. By proposition 2.1, $f:(X,\mathcal{M})\to(\bar{\mathbb{R}},\mathcal{B}_{\bar{\mathbb{R}}})$ is measurable is equivalent to show:

$$(i)f^{-1}((r,\infty]) \in \mathcal{M}, \forall (r,\infty] \in \mathcal{E}$$

where \mathcal{E} is the family of sets $\{(r,\infty]|r\in\mathbb{Q}\}$ and also to show $(ii)\mathcal{B}_{\mathbb{R}}$ is generated by $\mathcal{E}\subset\mathcal{B}_{\mathbb{R}}$ (the σ -algebra generated by the open sets in the extended real line \mathbb{R}). Since we already know (i), therefore it suffices to show that $\sigma(\mathcal{E})=\mathcal{B}_{\mathbb{R}}$: Since $\mathcal{E}\subset\mathcal{B}_{\mathbb{R}}$, we can easily get $\sigma(\mathcal{E})\subset\mathcal{B}_{\mathbb{R}}$. To show $\mathcal{B}_{\mathbb{R}}\subset\sigma(\mathcal{E})$, we know $\mathcal{B}_{\mathbb{R}}=\sigma(O(\mathbb{R}))$ where $O(\mathbb{R})$ is the collection of all open sets in \mathbb{R} , then it suffices to show $O(\mathbb{R})\subset\sigma(\mathcal{E})$, since in assignment 1 question 2 we've proved that all open sets A in \mathbb{R} can be expressed as either $\bigcup_{i=1}^{\infty}(a,b)$ or $\bigcup_{i=1}^{\infty}(a,b)\cup[-\infty,c)$

(if $-\infty \in A$) or $\bigcup_{i=1}^{\infty} (a,b) \cup (c,\infty]$ (if $\infty \in A$). Hence it suffices to consider each type of the interval, in other words $(a,b), [-\infty,c), (c,\infty]$

$$(\mathrm{i})(a,b) = \bigcup_{i=1}^{\infty} (r_i, r'_i)$$

Where $\{r_i\}$, $\{r'_i\}$ are rational sequences approaching to a, b decreasingly/increasingly separately, which means (a, b) is also a countable union of open intervals with rational endpoints $(ii)[\infty, c)$ or $(c, \infty]$, without loss of generality let $(c, \infty] = \bigcup_{i=1}^{\infty} (c_i, \infty]$ (The other side $[\infty, c)$ follows from the same prove). We can find a rational sequence $\{c_i\}$ that apporaches to b from above. Then $(c, \infty] = \bigcup_{i=1}^{\infty} (c_i, \infty]$ which means $(c, \infty]$ is also a countable union of open intervals with rational endpoints. Hence we've shown that $\mathcal{B}_{\mathbb{R}} \subset \sigma(\mathcal{E})$, therefore $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{E})$. By proposition 2.1, $f: X \to \mathbb{R}$ is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ -measurable

Problem 8(a).

Proof. Suppose N is measurable: $N \in \mathcal{L}$, then by transition invariance we have: N_q is also measurable and $m(N_q) = m(N)$. Then we have:

$$m^*([0,1)) = m^*(\bigcup_{q \in \mathbb{Q} \cap [0,1)} N_q) = \sum_{q=0}^{\infty} m(N_q) = 1$$

Since $m(N_q) = m(N), \forall q \in \mathbb{Q} \cap [0, 1)$, the summation $\sum_{q}^{\infty} m(N_q)$ is either ∞ (if m(N) > 0) or 0 (if m(N) = 0), which leads to a contradiction. Therefore N is not measurable: $N \notin \mathcal{L}$. \square

Problem 8(b).

Proof. $N \subset [0,1) \Rightarrow m^*(N) \leq m^*([0,1)) = 1$. Note that we also have: $m^*([0,1)) = m^*(\cup_{q \in \mathbb{Q} \cap [0,1)} N_q) = \sum_q^\infty m^*(N_q)$, which means $m^*(N_q) > 0$, so $m^*(N) = m^*(N_q) > 0$. Therefore $0 < m^*(N) \leq 1$ □

Problem 8(c).

Proof. $E \subset N, N \subset [0,1)$, let $E_r = \{x+r : x \in E \cap [0,1-r)\} \cup \{x+r-1 : x \in E \cap [1-r,1)\}$. Then $\forall r \in \mathbb{R} = \mathbb{Q} \cap [0,1), E_r \subset N_r$, and E_r are all disjoint sets. By transition invariance, $m^*(E) = m^*(E_r)$ and $m^*(\bigcup_r E_r) = \sum_r m^*(E_r) \le m^*([0,1)) = 1$, hence $m(E) = m^*(E) = 0$

Problem 8(d).

Proof. $E = \bigcup_{q \in \mathbb{Q} \cap [0,1)} (N_q \cap E)$ where $E \in \mathcal{L}, m(E) > 0$, then $m(E) = m^*(E) \leq \sum_q m^*(N_q \cap E)$, and $N_q \cap E$ is a subset of E. Suppose all $N_q \cap E$ is measurable, then by (c), we have $m^*(N_q \cap E) = m(N_q \cap E) = 0$. However, $\sum_q m^*(N_q \cap E) \geq m(E) > 0$, which leads to a contradiction. Therefore there must exist some q such that $N_q \cap E$ is non-measurable \square

Problem 8(e).

Proof. By subadditivity, we know $m^*([0,1)\backslash N) \leq m^*([0,1)) = 1$. Then it suffices to show $m^*([0,1)\backslash N) \geq 1$. Let $N^c = [0,1)\backslash N$, suppose $m^*(N^c) < 1$, write $m^*(N^c) = 1 - \epsilon$ for some $\epsilon \in (0,1]$, where by the definition we have $m^*(N^c) = \inf\{\sum_{i=1}^{\infty} (b_i - a_i) | N^c \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i)\} = 1 - \epsilon$,

then for $\delta = \frac{\epsilon}{2} > 0, \exists$ open cover $\{I_i\}_i^{\infty}, N^c \subseteq \bigcup_i^{\infty} I_i$ such that

$$m^*(N^c) \le \sum_{i=0}^{\infty} m_0(I_i) = \sum_{i=0}^{\infty} (b_i - a_i) \le 1 - \epsilon + \frac{\epsilon}{2} = 1 - \frac{\epsilon}{2}$$

let $U = \bigcup_{i=1}^{\infty} I_i$ then $N^c \subseteq U$, $m^*(U) = m(U) = \sum_{i=1}^{\infty} m_0(I_i) \le 1 - \frac{\epsilon}{2} < 1$. Then:

$$1 = m([0, 1)) = m(U) + m(U^c) \le 1 - \frac{\epsilon}{2} + m(U^c)$$

so we have $m(U^c) \ge \frac{\epsilon}{2}$. Since $N^c \subseteq U$, then we know $U^c \subseteq N \Rightarrow m^*(N) \ge m^*(U^c) = \frac{\epsilon}{2}$ by subadditivity, and we already know $m^*(N^c) = 1 - \epsilon$ by assumption, so we have:

$$1 = m([0,1)) = m^*([0,1)) = m(U) + m(U^c) = m^*(U) + m^*(U^c) \le m^*(N^c) + m^*(N) = 1 - \frac{\epsilon}{2}$$

which leads to a contradiction. Therefore $m^*(N^c) \ge 1 \iff m^*([0,1)\backslash N) \ge 1$. In conclusion, $m^*([0,1)\backslash N) = 1$