粘虫中肠 α -淀粉酶活性测定方法的参数优化

孔玉萍 黄青春* 刘曼慧 丰 俊刘

(华东理工大学药学院,上海市化学生物学重点实验室,上海 200237)

摘要:针对粘虫 Mythimna separata 中肠 α-淀粉酶筛选了 11 种不同参数组合的 3 5-二硝基水杨酸活性测定方法,并 对其中最适组合的各个参数进行了优化。结果表明:在离体测定条件下,粘虫中肠。定淀粉酶活性的最优化测定参 数为 0.03 mol/L 磷酸盐缓冲液 pH 8.0 ,含有 55 mmol/L NaCl) 温度 45℃、吸收波长 480 nm。 Ca²+ 对 α-淀粉酶活性具 有抑制作用。该优化法能够显著降低粘虫、德国小蠊 Blattella germanica、黄粉虫 Tenebrio molitor、淡色库蚊 Culex pipiens pallens 和家蝇 Musca domestica 等昆虫 α-淀粉酶的米氏常数 K_m 值 ,且粘虫和德国小蠊 α-淀粉酶的 V_{max} 值增大 , 但黄粉虫、淡色库蚊和家蝇 α 定粉酶的 V_{max} 值均明显减小。结果说明 在该优化体系下 粘虫 α 定粉酶与底物的亲 和力增强 最大反应速度增大 测定酶活性的准确性和灵敏度显著提高;同时该优化体系也可作为测定德国小蠊 α-淀粉酶活性的优化方法,但不适合作为黄粉虫、淡色库蚊和家蝇 α-淀粉酶的最优化测定方法。

关键词:粘虫;α-淀粉酶;参数优化;动力学常数

中图分类号:Q966 文献标识码:A 文章编号:0454-6296(2007)10-0981-08

Parametric optimization on the sensitive determination of midgut α -amylase in larvae of *Mythimna separata* Walker

KONG Yu-Ping , HUANG Qing-Chun* , LIU Man-Hui , FENG Jun , LIU Yang (Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China)

Abstract: Parametric optimization on the activity determination of midgut α -amylase in larvae of Mythimna separata Walker was investigated by screening the 3,5-dinitrosalicylic acid methods with eleven combinations of parameters. The results showed that the in vitro determined optimal parameters were 0.03 mol/L phosphate buffer (pH 8.0) containing 55 mmol/L NaCl , reaction temperature $45\,^{\circ}\mathrm{C}$ and absorbance wavelength $480~\mathrm{nm}$. Ca^{2+} inhibited the activity of α -amylase. Moreover , the optimal method significantly decreased K_{m} value of α amylase from M. separata, Blattella germanica, Tenebrio molitor, Culex pipiens pallens and Musca domestica larvae , and increased V_{\max} value of α -amylase from M. separate and B. germanica , but strongly decreased V_{\max} values of α -amylase from T. molitor , C. pipiens pallens and M. domestica larvae. The study suggested that the optimal method not only enhanced the affinity and the maximum reaction velocity of α amylase with its substrate, but also improved the accuracy and the sensitivity on the activity of α -amylase from M. separata larvae in assays, whereas it was not the optimal method for determining the activity of α -amylase from T. molitor, C. pipiens pallens and M. domestica larvae.

Key words: Mythimna separata; α-amylase; parametric optimization; kinetic constant

α-淀粉酶是昆虫体内糖类水解及新陈代谢的重 要酶 Daone et al., 1975; Buonocore et al., 1976),作 用于淀粉分子内部的 α -1 A 糖苷键 从而催化淀粉水 解 Franco et al. 2002)。有害昆虫利用其消化道 α -淀粉酶降解植物体内的淀粉 ,为害植物组织 影响植 物生长和谷物储存 给农业生产造成严重危害和经

基金项目: 国家重点基础研究发展规划 973 "项目(2003CB114402); 国家自然科学基金项目(30400295)

作者简介: 孔玉萍,女,1982 年生,硕士研究生,主要从事昆虫生理毒理研究, E-mail: kvp-5724@163.com

收稿日期 Received: 2007-05-28;接受日期 Accepted: 2007-08-15

济损失(王琳,2006)。据文献报道,现已从小麦 (O'Donnell and McGeeney, 1976; Granum Whitaker ,1977; Petrucci et al. ,1978; O'Connor and McGeeney, 1981)、肾豆(Marshall and Lauda, 1975; Powers and Whitaker ,1977) 黑麦(Granum ,1978) 山 芋(Sharma and Pattabiraman ,1980), 花生(Irshad and Sharma, 1981) 以及链霉菌(Aschauer and Braunitzer, 1981)中纯化出 α-淀粉酶抑制剂。但研究表明 ,虽然 α-淀粉酶活性的测定方法主要为 3 5-二硝基水杨酸 比色法(Bernfeld,1955)和 I/KI 比色法(Valencia et al. 2000),但对不同昆虫 α -淀粉酶的活性测定在 pH、温度、离子浓度、吸收波长、甚至缓冲体系等参 数方面均存在明显的差异(Yetter et al., 1979; Edward and John ,1984; Jane and John ,1984; Angharad et al., 1986; Campos et al., 1989; Joseph et al., 1991 ; Jose et al. ,1993 ; Nagaraju and Abraham ,1995 ; Ishimoto and Yamada 1999; Sliva and Terra 2001)。这 不仅影响 α-淀粉酶及其抑制剂的相互作用效果,也 降低了不同测定结果之间的可比性。

粘虫 $Mythimna\ separata\ Walker\ 是一种多食性迁 飞危害的暴发性害虫 ,分布范围广 ,环境适生性强 (Sharma and Davies ,1983 ; Catindig <math>et\ al$, ,1994)。本 研究以粘虫中肠 α -淀粉酶为研究对象 ,采用 3 ,5-二 硝基水杨酸法 ,进行参数优化 ,探索粘虫 α -淀粉酶最适宜的测定方法 ,提高 α -淀粉酶活性测定的灵敏度 和准确性 ,旨在为创制昆虫 α -淀粉酶优化的测定方法。

1 材料与方法

1.1 材料

1.1.1 供试昆虫:粘虫为国家南方农药创制中心 (上海)室内长期人工饲养的敏感品系。饲养温度为 $23\% \pm 1\%$ 相对湿度 70% ,光周期 16L:8D。以 5 龄 2 日幼虫供试。

德国小蠊 Blattella germanica 成虫,由中国科学院植物生理生态研究所提供。黄粉虫 Tenebrio molitor、淡色库蚊 Culex pipiens pallens 和家蝇 Musca domestica 等幼虫,由国家南方农药创制中心(上海)提供。

1.1.2 供试试剂及仪器:3 ,5-二硝基水杨酸、考马斯亮蓝 G-250、牛血清蛋白、麦芽糖、可溶性淀粉等均为生化试剂 ,Tris、磷酸氢二钠、磷酸二氢钠、乙酸钠、巴比妥钠等其他试剂均为分析纯产品。

100 Bio 紫外可见分光光度计;精密数显酸度计;恒温水浴锅;精密取样器。

1.2 方法

1.2.1 酶源制备:参照 Valencia 等(2000)方法制备酶源。取个体大小一致的 5 龄 2 日粘虫幼虫 50 头,在冰浴上解剖取其中肠,置于 5 倍体积的生理盐水中(陈长琨,1996),冰浴匀浆 4 $^{\circ}$ 下 10 $000 \times g$ 离心 10 min 取上清液,冻干成粉末状,置于 -35 $^{\circ}$ 冰箱 冷藏,作为酶源备用。

德国小蠊、黄粉虫、淡色库蚊和家蝇等昆虫经蒸馏水洗净后,在冰浴中进行虫体匀浆,其他操作方法与粘虫 α-淀粉酶制备方法相同。

- 1.2.2 不同测定条件下 α -淀粉酶活性比较:测定体系中均以可溶性淀粉作为底物 采用 11 种不同的测定方法测定粘虫中肠 α -淀粉酶活性。表 1 中列出了缓冲条件和反应温度等参数 ,其他反应参数如底物浓度、反应时间等详见参考文献。以确定粘虫中肠 α -淀粉酶最敏感的测定方法。
- **1.2.3** 不同 pH 缓冲体系对酶活性的影响:根据 1.2.2 结果 ,发现 Yetter 等(1979)方法(以下简称 Yetter 法)对 α -淀粉酶活性最敏感。分别配制 pH 为 4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0 的 0.03 mol/L 乙酸-巴比妥酸盐缓冲液 ,其他测定条件不变 ,比较不同 pH 缓冲液体系中 α -淀粉酶活性的变化规律 ,确定最适 pH 值。
- 1.2.4 不同类型缓冲液对酶活性的影响:将 1.2.3 中的 0.03 mol/L 乙酸-巴比妥酸盐缓冲液分别用 0.03 mol/L 巴比妥-HCl 缓冲液、0.03 mol/L 硼砂-硼酸缓冲液、0.03 mol/L 磷酸盐缓冲液、以及 0.03 mol/L Tris-HCl 缓冲液进行替代 ,pH 值为 1.2.3 中最适的 pH 值 ,其他测定条件不变 ,比较不同类型缓冲液中 α -淀粉酶活性的变化规律 确定最适缓冲液。
- 1.2.5 不同温度对酶活性的影响:采用 1.2.2 至 1.2.4 中最适的测定方法、pH 值和缓冲体系,实验温度分别为 20° 、 30° 、 35° 、 40° 、 45° 、 50° 、 60° 和 70° 其他条件不变,比较温度对 α -淀粉酶活性的影响规律,确定最适反应温度。
- 1.2.6 不同钠、钙离子浓度对酶活性的影响:在最适测定方法、pH 值、缓冲体系和反应温度下 $,Na^+$ 浓度分别设定为 0.01、0.05、0.1、0.4、1.76 mol/L 系列梯度 $,Ca^{2+}$ 浓度分别设定为 0.001、0.01、0.1、1.0、10.0 mmol/L 系列梯度 ,其他条件不变 ,测定 $,Na^+$ 及 $,Ca^{2+}$ 对 $,\alpha-$ 淀粉酶活性的影响 ,确定最适 $,Na^+/Ca^{2+}$ 浓度。

表 1 α-淀粉酶活性不同测定方法一览表

Table 1 Different methods for determination on α-amylase activity

方法编号	缓冲条件	反应温度(℃)	参考文献
Method no.	Buffering conditions	Reaction temperature	References
1	50 mmol/L 乙酸钠缓冲液 (pH 5.5, 20.0 mmol/L NaCl + 2.0 mmol/L CaCl ₂)	30	Sliva and Terra , 2001
2	0.1 mol/L 磷酸盐(PBS)缓冲液 (pH 5.8 , 20.0 mmol/L NaCl + 0.1 mmol/L CaCl ₂)	37	Ishimoto and Yamada , 1999
3	20.0 mmol/L Tris-HCl 缓冲液 (pH 9.5 ,1.0 mmol/L CaCl ₂)	37	Nagaraju and Abraham , 1995
4	50 mmol/L Na ₂ HPO ₄ 缓冲液 (pH 5.4)	25	Angharad et al., 1986
5	0.1 mol/L 乙酸钠缓冲液 (pH 5.7 , 20.0 mmol/L NaCl + 0.2 mmol/L CaCl ₂)	37	Joseph <i>et al</i> . , 1991
6	0.02 mol/L 磷酸盐(PBS)缓冲液 (pH 6.9 , 0.05 mol/L NaCl)	25	Jane and John , 1984
7	40 mmol/L 磷酸盐(PBS)缓冲液 (pH 6.9 , 0.05 mol/L NaCl)	20	Jose et al., 1993
8	0.1 mol/L Tris-HCl 缓冲液 (pH 7.5,0.12 mmol/L NaCl+0.01 mmol/L CaCl ₂)	37	Biggs and McGregor , 1996
9	0.05 mol/L 磷酸盐(PBS)缓冲液 (pH 6.9 , 0.05 mol/L NaCl + 0.001 mol/L CaCl ₂)	30	Edward and John , 1984
10	0.03 mol/L 乙酸-巴比妥盐缓冲液 (pH 5.4 , 0.44 mol/L NaCl + 0.001 mol/L CaCl ₂)	20	Yetter <i>et al</i> . , 1979
11	50 mmol/L 柠檬酸钠缓冲液 (pH 5.0,10 mmol/L NaCl+20 mmol/L CaCl ₂)	30	Valencia et al., 2000

- 1.2.7 检测波长对酶活性的影响:分别采用 Yetter 法和已进行参数优化的测定方法(以下简称优化法)进行 持浓度为 2.75~mg/mL 和 13.75~mg/mL 的淀粉酶与淀粉充分反应后,用 100~Bio 紫外可见分光光度计在波长为 370~800~nm 下对反应产物进行光密度扫描,以不加 α -淀粉酶的反应体系作为基线。确定反应产物的最佳检测波长。
- 1.2.8 动力学常数的测定:将底物可溶性淀粉分别设置为 0.1%、0.2%、0.4%、0.6%、0.8%、1.0%、2.0%和 3.0% 共 8 个系列浓度,在 Yetter 法与优化法两种不同条件下,采用 Lineweaver-Burk 双倒数作图法分别测定不同昆虫 α -淀粉酶的米氏常数($K_{\rm m}$)和最大反应速度($V_{\rm max}$)。实验设 3 次重复。
- **1.2.9** 蛋白质浓度测定:采用 Bradford (1976)的方法测定蛋白浓度,牛血清白蛋白作为标准蛋白。

2 结果与分析

2.1 不同测定方法对 α-淀粉酶活性的影响

采用 11 种方法测定粘虫中肠 α -淀粉酶活性 ,不同方法的测定结果之间存在显著差异。相对应于方法 1 至 11 所得到的平均酶活力见图 1 ,分别为 0.718、0.878、1.822、0.373、0.604、1.727、1.028、

0.377、1.706、3.721 和 1.345 U/mg ,同一种酶的活力之间最大相差近 10 倍。结果表明 ,方法 4 对 α -淀粉酶活性最不敏感 ,而方法 10 对 α -淀粉酶活性最敏感。

图 1 不同测定条件下粘虫幼虫中肠 α-淀粉酶的活性

Fig. 1 Activity of the midgut α-amylase in larvae of Mythimna separata in different assay systems 方法编号参见表 1 Refer to Table 1 for method no.

2.2 pH 值对 α-淀粉酶活性的影响

缓冲液的 pH 值对 α -淀粉酶活性的测定结果有显著影响 ,从图 2 中明显地看出 ,在酸性条件下 α -淀粉酶活性偏低 ,但随着 pH 值的逐渐升高 , α -淀粉酶活力也逐渐增强 ,当 pH 为 8.0 时 , α -淀粉酶活力达到最大 ,为 3.4157 U/mg。而当 pH 值继续升高 , α -淀

粉酶活力则显著下降。实验表明 α-淀粉酶催化底物水解的最适 pH 值为 8.0。

图 2 不同 pH 值缓冲条件下粘虫幼虫 中肠 α-淀粉酶的活性

Fig. 2 Activity of the midgut α -amylase in larvae of *Mythimna separata* in assays with different pH value

2.3 不同类型缓冲液对 α-淀粉酶活性的影响

尽管缓冲液的浓度和 pH 值均相同 ,但缓冲液的类型对 α -淀粉酶活力的测定结果也具有明显影响 (图 3)。 α -淀粉酶在巴比妥-HCl 缓冲液、硼砂-硼酸缓冲液、磷酸盐缓冲液和 Tris-HCl 缓冲液中的活力分别为 3.0142、2.5595、3.2265 和 3.0881 U/mg ,而在乙酸-巴比妥酸盐缓冲液中的活力为 3.009 U/mg。实验表明,磷酸盐缓冲液(pH 8.0)更有利于 α -淀粉酶发挥生物催化活性。

图 3 不同缓冲液条件下粘虫幼虫 中肠 _α-淀粉酶的活性

Fig. 3 Activity of the midgut α-amylase in larvae of *Mythimna separata* in different buffer systems 1:巴比妥-HCl 缓冲液 Barbital/HCl buffer; 2:硼砂-硼酸缓冲液 Boric acid borax buffer; 3:乙酸-巴比妥酸盐缓冲液 Acetate barbiturate buffer; 4:磷酸盐缓冲液 Phosphate buffer; 5:Tris-HCl 缓冲液 Tris/HCl buffer.

2.4 温度对 α-淀粉酶活性的影响

测定温度的变化显著地影响 α -淀粉酶的活性 (图 4)。在磷酸盐缓冲液 (PH 8.0)中,当测定温度在

20°C至 45°C之间 α -淀粉酶活性随着测定温度的上升而逐渐上升 而当温度大于 45°C时 α -淀粉酶活性显著下降。实验表明 测定温度为 45°C时 α -淀粉酶活力最强。

图 4 不同反应温度下粘虫幼虫 中肠 α-淀粉酶的活性

Fig. 4 Activity of the midgut α-amylase in larvae of Mythimna separata in assays with different reaction temperature

2.5 Na⁺ 和 Ca²⁺ 对 α-淀粉酶活性的影响

在磷酸盐缓冲液(pH 8.0)中和 45° 侧定温度下 Na^{+} 和 Ca^{2+} 浓度的变化显著地影响 α -淀粉酶活性(图 5)。 适当的 Na^{+} 浓度对 α -淀粉酶具有激活作

图 5 Na⁺(A)和 Ca²⁺(B)浓度对粘虫 幼虫 α-淀粉酶活性的影响

Fig. 5 Effect of Na⁺(A) and Ca²⁺(B) concentration on α-amylase activity

用 ,当 Na⁺ 浓度为 55 mmol/L 时 α -淀粉酶活性最强 ,为 3.70 U/mg ,约为对照的 1.12 倍。过高浓度的 Na⁺ 对 α -淀粉酶活性具有抑制作用。但在 Na⁺ 浓度为 55 mmol/L 的条件下 ,反应体系中加入系列浓度的 Ca²⁺ α -淀粉酶活性都明显降低 ,当 Ca²⁺ 浓度超过 1.0 mmol/L 时 α -淀粉酶活性仅为空白对照的 76%。结果表明 尽管反应体系中 Ca²⁺ 能够引起 α -淀粉酶活性发生变化 ,但最终表现为 Ca²⁺ 对 α -淀粉酶具有抑制作用 ,而 Na⁺ 具有激活作用。

2.6 检测波长对 α-淀粉酶活性的影响

将浓度为 2.75 mg/mL 和 13.75 mg/mL 的淀粉酶与淀粉在两种测定条件下完全反应后,反应产物的光密度全程扫描吸收光谱图如图 6 所示。结果表明,反应产物的最大吸收光谱都在青蓝光区域,480 nm处呈最大吸收峰。采用 Yetter 法测定 α-淀粉酶活性,不同浓度的最高吸收峰值分别为 1.0604 和 1.3765,而优化法测定的最高吸收峰值分别为 1.6764 和 3.1272,分别是 Yetter 法中相应浓度最高吸收峰值的 1.58 和 2.27 倍。

2.7 参数优化先后 α-淀粉酶活性的比较

分别采用 Yetter 法和优化法测定不同浓度 α -淀 粉酶活性 ,比较两种测定方法的准确性和灵敏度(表 2)。 α -淀粉酶的浓度在 0.16 mg/mL 至 1.30 mg/mL 范围内 ,两种方法所测得的平均酶活力与酶浓度之间都呈现较好的线性关系。但与 Yetter 法相比 ,采用优化法测得的同一浓度的酶活力均显著提高 ,各

图 6 淀粉经 α-淀粉酶催化水解产物的吸收光谱

Fig. 6 Absorption spectrum of hydrolysis products of starch and α -amylase

1 .2:优化法 Optimal method; 3 .4:Yetter 法 Yetter method; α-淀粉酶浓度均对应为 13.75 mg/mL 和 2.75 mg/mL The concentrations of α-amylase were corresponding as 13.75 mg/mL and 2.75 mg/mL, respectively.

处理间的变异系数都明显降低 ,且随着 α -淀粉酶浓度的降低 酶活力提高的程度逐渐增大。当 α -淀粉酶浓度为 1.30~mg/mL 时 ,酶活力提高约 8.43 倍 ,而当 α -淀粉酶浓度为 0.16~mg/mL 时 ,酶活力提高约 17.41 倍。实验结果表明 ,优化法提高了测定 α -淀粉酶活性的准确性和灵敏度 ,优化的测定条件有利于提高 α -淀粉酶的生物催化效能。

表 2 参数优化先后两种方法测定 α-淀粉酶活性结果的比较

Table 2 Comparison of α-amylase activity obtained by the optimal and Yetter method , respectively

—————————————————————————————————————	α-淀粉酶浓度	平均酶活力	标准误差	变异系数
Determination method	Concentration of α -amylase	Average activity of α-amylase	Standard error	Coefficient of variance
Determination method	(mg/mL)	(U/mg)	(SE)	(8)
Yetter 法	1.30	0.2718	0.0302	11.10
Yetter method	0.65	0.1307	0.0102	7.80
	0.31	0.0744	0.0281	37.80
	0.16	0.0247	0.0037	15.00
优化法	1.30	2.2913	0.0112	0.49
Optimal method	0.65	1.7713	0.0193	1.01
	0.31	1.0200	0.0152	3.00
	0.16	0.4300	0.0341	7.90

表 3 参数优化先后两种方法测定不同昆虫 α -淀粉酶的动力学常数的比较

Table 3 Kinetic constant comparison of α-amylase in different insect obtained by the optimal and Yetter method, respectively

测定方法		粘虫	德国小蠊	黄粉虫	淡色库蚊	家蝇
Determination method		M. $separata$	B. $germanica$	T. molitor	C. pipiens pallens	M. $domestica$
Yetter 法	K_{m}	4.37	2.19	1.47	39.99	13.85
Yetter method	$V_{ m max}$	1.96	1.88	5.93	11.85	3.54
优化法	$K_{ m m}$	2.19	0.28	0.61	0.48	1.15
Optimal method	V_{max}	4.81	3.59	3.90	3.44	1.28

2.8 参数优化先后不同昆虫 α-淀粉酶的动力学常数比较

分别采用 Yetter 法和优化法测定粘虫、德国小蠊、黄粉虫、淡色库蚊和家蝇 α -淀粉酶的动力学常数 K_m 和 V_{max} 结果见表 3。与 Yetter 法相比 ,采用优化法所测得的 5 种昆虫的 K_m 值均明显降低 ,粘虫 α -淀粉酶的 K_m 值降低约 2.0 倍,而淡色库蚊 α -淀粉酶的 K_m 值降低程度最大,达 83.3 倍。同时粘虫和德国小蠊 α -淀粉酶的 V_{max} 值均相应地增大,分别增加约 2.5 倍和 1.9 倍。但黄粉虫、淡色库蚊和家蝇 α -淀粉酶的 V_{max} 值均相应地减小,分别降低约 1.5 倍、3.4 倍和 2.8 倍。结果表明,在优化体系中,粘虫 α -淀粉酶与底物的亲和力增强,且只需少量的酶就可达到最大反应速度。该优化法同样适用于德国小蠊 α -淀粉酶,但不是黄粉虫、淡色库蚊和家蝇 α -淀粉酶的最优化测定方法。

3 讨论

α-淀粉酶是昆虫体内重要的水解酶 ,对昆虫体 内碳水化合物的消化和代谢起到很大作用(Daone et al.,1975; Buonocore et al.,1976),阐明不同昆虫 α-淀粉酶的性质不仅有利于研究昆虫 α-淀粉酶蛋白类 抑制剂 而且为基于昆虫 α-淀粉酶设计或合成非蛋 白类抑制剂 甚至人工合成小分子抑制剂提供实验 依据。目前,昆虫 α-淀粉酶及其抑制剂的研究受到 很多研究者的重视。Nagaraju 和 Abrahan(1995)对印 度柞蚕 Antheraea mylitta 的 α-淀粉酶进行了纯化和 一系列性质的研究; Feng 和 Michael(1996)从小麦中 提取了 α-淀粉酶蛋白类抑制剂 ,并对其序列及其对 α-淀粉酶的抑制类型进行了系统的分析,提出设计 有效防治重要害虫专一抑制剂的思路。显然,从众 多的测定方法中可以推测 ,不同来源的 α-淀粉酶尽 管都具有蛋白类的性质,但在催化功能方面却具有 昆虫种类的酶特异性,且不同昆虫的 α-淀粉酶之间 可能存在着不同性质的同工酶(黄青春等,2006)。 因此,对昆虫 α-淀粉酶活性测定参数进行优化,使 α-淀粉酶处于活性最高的稳定构象 易于底物与酶的 结合 同时也易于抑制剂与酶的结合(Walker et al., 1998) 有利于通过计算机辅助设计手段揭示小分子 配体抑制剂与酶活性口袋的高效结合模式,不仅能 有效地筛选专一性抑制剂,而且为害虫防治提供新 的靶标。

酶学反应中,反应体系的 pH 值对酶生物催化活性至关重要。强酸或强碱都会影响酶的构象,或改变酶与底物分子的结合、分离动态,或使酶变性甚至失活,从而影响酶的活力(袁勤生 2005)。 文献表明 不同昆虫的 α -淀粉酶具有各自适宜的生理 pH 值范围如:黄粉虫 T. molitor、咖啡果小蠹 H. hampei 和四纹豆象 C. maculatus 中肠的 pH 值为 6.0 \sim 7.0 ,巴西豆象中肠的 pH 值在 6.0 附近(Valencia et al. 2000),印度柞蚕 Antheraea mylitta 消化液中的淀粉酶在 pH 值为 9.5 时活性达到最大(Nagaraju and Abraham ,1995)。 本研究发现,粘虫中肠 α -淀粉酶在 pH8.0 的磷酸盐缓冲体系中活性最大,该结果进一步证明昆虫 α -淀粉酶可能具有种类的多样性。

温度升高能加快酶反应速度,但温度过高会导 致酶稳定构型受到破坏 疏水残基如色氨酸、苯丙氨 酸等外露而失去催化活性(Patricia and Pelegrini, 2006)。据文献报道,咖啡果小蠹、巴西豆象和印度 柞蚕等 α-淀粉酶的最适测定温度为 30℃(Nagaraju and Abraham ,1995; Valencia et al., 2000; Sliva and Terra 2001),蛴螬、绿豆象和四纹豆象等 α-淀粉酶的 最适测定温度为 37℃ (Campos et al., 1989; Biggs and McGregor, 1996; Ishimoto and Yamada, 1999), 黄粉虫 α -淀粉酶的最适测定温度为 20℃(Yetter et al., 1979; Jose et al., 1993),而德国小蠊和家蝇 α-淀粉 酶的最适测定温度分别为 50℃和 60℃(Mori ,1930; Day and Powning ,1949)。 本研究发现 粘虫 α-淀粉酶 在 45℃左右时活性最高 温度高于 45℃时酶活性显 著降低。由上述数据可以推测 ,不同昆虫 α-淀粉酶 在正常生理状态下可能具有不同的空间构型,才有 利于其催化中心与底物的结合。

根据 NCBI 网站对昆虫 α -淀粉酶氨基酸序列进行了 搜索,结果发现,黑腹果蝇 Drosophila melanogaster、金黄蚤蝇 Megaselia scalaris、地中海实蝇 Ceratitis capitata、辣根猿叶甲 Phaedon cochleariae、草地贪夜蛾 Spodoptera frugiperda、绿豆象 Callosobruchus chinensis 等昆虫的 α -淀粉酶由 490 个左右氨基酸组成 家蝇和刺舌蝇 Glossina morsitans 的 α -淀粉酶由 360 个左右氨基酸组成 ,而家蚕 Bombyx mori 的 α -淀粉酶自 240 个左右氨基酸组成。 尚没有粘虫中肠 α -淀粉酶氨基酸序列的登载。 也许正是由于不同昆虫 α -淀粉酶具有不同的氨基酸组成和同源性,才导致 其具有结构的多样性。另外 α -淀粉酶具有金属离子激性(Podoler and Applebaum,1971; Nagaraju and Abraham,1995。 钙离子能够提高绿豆象 α -淀粉酶

的活性(Robyt and Whelan ,1968)。而本研究发现 ,钠 离子能提高粘虫中肠 α -淀粉酶的活性 ,但钙离子具 有抑制作用。不同离子对 α -淀粉酶活性的影响规律 值得进一步研究。

经参数优化后 ,粘虫中肠 α -淀粉酶活性的测定条件为:反应在 0.03 mol/L 磷酸盐缓冲液(pH 8.0 ; 含 55 mmol/L NaCl)中进行 ,反应温度为 45 °C ,DNS 试剂终止反应 ,在波长为 480 nm 处比色。本实验结果同时也证实 ,不同昆虫 α -淀粉酶应在各自的最优化条件下进行活性测定 ,才更有利于揭示该酶的本质属性。

参考文献(References)

- Angharad MR , Gatehouse W , Katherine AF , 1986. The effects of α -amylases inhibitors on insect storage pests: inhibition of α -amylases in vitro and effects on development in vivo . J. Sci. Food Agric . , 37: 727 734.
- Aschauer HVL , Braunitzer G , 1981. The sequence of the α -amylase inhibitor HOE-467-A (α -amylase inactivator HOE-467-A) from *Streptomyces tendae* 4158. *Hoppe-Seylers Z* . *Physiol* . *Chem* . , 362:465 467.
- Bernfeld P , 1955. Amylase , α and β. In: Colowick SP , Kaplan NO eds.

 Methods in Enzymology. Vol. 1. New York: Academic Press. 149 –
 158.
- Biggs DR, McGregor PG, 1996. Gut pH and amylase and protease activity in larvae of the New Zealand grass grub (Costelytra zealandica; Coleoptera: Scarabaeidae) as a basis for selecting inhibitors. Insect Biochem. Mol. Biol., 26:69-75.
- Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248-254.
- Buonocore V , Poerio E , Silano V , Tomasi M , 1976. Physical and catalytical properties of α -amylases from *Tenebrio molitor* larvae. *Biochem* . *J* . , 153 : 621 625 .
- Campos FAP , Xavier FJ , Silva CP , Ary MB , 1989. Resolution and partial characterization of proteinases and α -amylase from midguts of larvae of the bruchid beetle *Callosobruchus maculatus* (F.). *Comp* . *Biochem* . *Physiol* . , 92B:51 57.
- Catindig JLA , Barrion AT , Litsinger JA , 1994. Developmental biology and host plant range of rice earcutting caterpillar *Mythimna separata* (Walker). *Int. Rice Res. Notes.* , 19 23.
- Chen CK, 1996. Insect Physiology and Biochemistry Experiment. Beijing:
 China Agriculture Press. 162pp. [陈长琨, 1996. 昆虫生理生化实验. 北京:农业出版社. 162页]
- Daone WW , Abraham I , Kolar MM , Martenson RE , Deibler GE , 1975.

 Purified *Drosophila* alpha-amylase isozyme. In: Martet CL ed. Isozyme

 IV . New York: Academic Press. 585 607.
- Day MF, Powning RF, 1949. A study of the processes of digestion in certain insects. Aust. J. Sci. Res., 2:175-215.
- Edward RW, John R, 1984. Structural features of red kidney bean α -amylases inhibitor important in binding with α -amylases. J. Food

- Biochem., 8:189 213.
- Feng GH , Michael R , 1996. α -amylase inhibitors from wheat : amino acid sequences and patterns of inhibition of insect and human α -amylase. Insect Biochem . Mol . Biol . , 26 : 419 – 426 .
- Franco OL , Rigden DJ , Melo FR , Grossi MF , 2002. Plant α -amylase inhibitors and their interaction with insect α -amylase structure , function and potential for crop protection. Eur. J. Biochem. , 269:397–412.
- Granum PE , Whitaker JR , 1977. Purification and characterization of α -amylase inhibitors in wheat. J. Food Biochem. , 1:385 401.
- Granum PE , 1978. Purification and characterization of α -amylase inhibitor from rye (Secale cereale) flour. J. Food Biochem. , 2:103 120.
- Huang QC, Zhuo J, Cao S, Qian XH, 2006. Activity sensitivity of midgut α-amylase in larvae of the armyworm, *Pseudaletia separata* Walker (Lepidoptera: Noctuidae). *Acta Entomologica Sinica*, 49(2):189–193. [黄青春,卓军,曹松,钱旭红,2006. 粘虫中肠 α-淀粉酶活性的敏感性研究. 昆虫学报,49(2):189–193]
- Irshad M , Sharma CB , 1981 . Purification and properties of an α -amylase protein-inhibitor from *Arachis hypogaea* seeds . *Biochim* . *Biophys* . *Acta* , 659:326 333 .
- Ishimoto M , Yamada T , 1999. Insecticidal activity of α-amylases inhibitorlike protein resembling a putative precursor of α-amylases inhibitor in the common bean , *Phaseolus vulgaris* L. *Biochimica et Biophysica Acta* , 1 432:104 – 112.
- Jane MF , John HR , 1984 . Purification and partial characterization of two α-amylase inhibitors from black bean . J. Food Biochem . , 8:281 301 .
- Jose JP , Dale CH , Maarten JC , 1993 . Activation of bean (*Phaseolus vulgris*) α -amylase inhibition requires protelytic processing of the proprotein . *Plant Physiol* . , 101:1341-1348 .
- Joseph EH , Richard ES , Maarten J , 1991. α -amylase inhibitor , not phytohemagglutinin , explains resistance of common bean to cowpea weevil . *Plant Physiol* . , 96:993 996.
- Marshall JJ , Lauda CM , 1975 . Purification and properties of phaseolamin , an inhibitor of α -amylase , from kidney bean , *Phaseolus vulgaris* . J . *Biol* . *Chem* . , 250 : 8 030 – 8 037 .
- Mori M , 1930. Enzyme of silkworm. Bull. Chem. Soc. Jpn. , 5:159 –
- Nagaraju J , Abraham EG , 1995. Purification and characterization of digestive amylase from the tasar silkworm , *Antheraea mylitta* (Lepidoptera: Saturniidae). *Comp. Biochem. Physiol.*, 110B: 201 209.
- O 'Connor CM , McGeeney KF , 1981. Isolation and characterization of four inhibitors from wheat flour which display differental inhibition specificities for human salivary and human pancreatic α -amylases. Biochim . Biophys . Acta , 658(2):387 – 396.
- O 'Donnell MD , McGeeney KF , 1976. Purification and properties of an α -amylase inhibitor from wheat . Biochim . Biophys . Acta , 422: 159 169 .
- Patricia B , Pelegrini S , 2006. Structure and enzyme properties of Zabrotes subfasciatus α -amylase. Archives of Insect Biochemistry and Physiology , 61:77-86.
- Petrucci T , Sannia G , Parlamenti R , Silano V , 1978 . Structural studies of wheat monomeric and dimeric protein inhibitors of α -amylase . Biochem . J . , 173 : 229 – 235 .

- Podoler H , Applebaum SW , 1971. The α -amylase of the beetle Callosobruchus chinensis . Biochem . J . , 121 : 321 – 325 .
- Powers JR , Whitaker JR , 1977. Purification and some physical and chemical properties of red kidney bean (*Phaseolus vulgaris*) α -amylase inhibitor. J. Food Biochem. , 1:217 – 238.
- Robyt JF, Whelan WJ, 1968. The alpha-amylase. In: Radley JA ed. Starch and Its Derivatives. Chapman & Hall, London. 430 476.
- Sharma HC, Davies JC, 1983. The Oriental Armyworm, Mythimna separata Walker, Distribution, Biology and Control, a Literature Review. Miscellaneous Report Centre for Overseas Pest Research, London, UK. 59.
- Sharma KK, Pattabiraman TN, 1980. Natural plant enzyme-inhibitors: isolation and characterization of 2 α-amylase inhibitors from *Colocasia antiquorum* tubers. J. Sci. Food Agric., 31:981–991.
- Sliva CP , Terra WR , 2001. Induction of digestive α-amylases in larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) in response to ingestion of common bean α-amylases inhibitor 1. J. Insect Physiol. , 47:1283 – 1290.
- Valencia A , Bustillo AE , Ossa GE , Chrispeels MJ , 2000. α -amylase of the

- coffee berry borer (<code>Hypothenemus hampei</code>) and their inhibition by two plant α -amylase inhibitors. <code>Insect Biochem. Mol. Biol., 30:207-213.</code>
- Walker AJ, Ford L, Majerus MEN, 1998. Characterisation of the midgut digestive proteinase activity of the two-spot ladybird (*Adalia bipunctata* L.) and its sensitivity to proteinase inhibitors. *Insect Biochem*. *Mol*. *Boil*., 28:173 – 180.
- Wang L, 2006. Progress in research on proteinaceous inhibitors of insect amylase. Guangdong Agricultural Science, (8):110-112.[王琳, 2006. 昆虫淀粉酶蛋白质类抑制剂研究进展.广东农业科学, (8):110-112]
- Yetter MA , Saunders RM , Boles HP , 1979. α -amylase inhibitiors from wheat kernels as factors in resistance to postharvest insects. *Cereal Chemistry* , 56:243-244.
- Yuan QS, 2005. Enzymes and Enzyme Engineering. Shanghai: East China University of Science and Technology Press. 15. [袁勤生, 2005. 酶与酶工程.上海:华东理工大学出版社.15]

(责任编辑:黄玲巧)