Lecture 2.1

Theorem (Indifference Principal) Given $T = \langle N, (S_i)_{i \in N}, (U_i)_{i \in N} \rangle$, a mixed strategy profile $(T_i^*)_{i \in N} \in X \Delta(S_i)$ is an MSNE it and only it $(\text{For each } i \in N, \, S_i \in S_i, \\ T_i^*(S_i) \neq 0 \Rightarrow U_i(S_i, T_i^*) \Rightarrow U_i(S_i', T_i^*) \forall S_i' \in S_i)$

Proof: (If part) Suppose $(\sigma_{i}^{*})_{i\in N}$ be a mixed strategy proof which satisfies the equivalent condition.

To show: $(\sigma_{i}^{*})_{i\in N}$ is an MSNE.

Fix any player $i\in N$, $U_{i}(\sigma_{i}, \sigma_{i}^{*}) = \sum_{g_{i}\in S_{i}} \sum_{g_{i}\in S_{i}} \sigma_{i}(g_{i}) \prod_{j\neq i} \sigma_{j}^{*}(g_{j})$ $U_{i}(g_{i}, g_{i})$ $= \sum_{g_{i}\in S_{i}} \sigma_{i}(g_{i}) U_{i}(g_{i}, \sigma_{i}^{*})$ A convex combination of $\{U_{i}(g_{i}, \sigma_{i}^{*}): g_{i}\in S_{i}\}$

Convex combination of a set $\{a_1,...,a_n\}$ of numbers in $\lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n$, where $\lambda_1,...,\lambda_n \geqslant 0$ $\lambda_1 + ... + \lambda_n = 1$ Obs: A convex combination $\lambda_1 a_1 + ... + \lambda_n a_n$ is maximized if $(\lambda_1 \neq 0 \Rightarrow a_1 = \max \{a_1,...,a_n\} + i \in [n] =: \{1,...,n\})$ $u_i(\sigma_i, \sigma_i^*) \leqslant \sum_{S_i \in S_i} \sigma_i^*(S_i) u_i(S_i, \sigma_i^*)$ $= u_i(\sigma_i^*, \sigma_i^*)$

(Only if part) Suppose (of)ien in an MSNE of T?

"Troof by contradiction"

Let us assume $\exists i \in N$, $\beta_i \in S_i$ such that $T_i^*(\beta_i) \neq 0$ and $U_i(\beta_i, T_i^*) < U_i(\beta_i', T_i^*)$ for

some $\beta_i' \in S_i$, $\beta_i \neq \beta_i'$, which a quantimizer $U_i^*(T_i^*)$ Comider another mixed strategy which puts entire

probability man on β_i' , which is a pure

strategy

$$u: \left(\overrightarrow{C_i}, \overrightarrow{C_i} \right) = \sum_{\substack{S_i^* \in S_i \\ \text{Convex combination of }} \left\{ u: \left(S_i^*, \overrightarrow{C_i} \right) : S_i^* \in S_i \right\}$$

$$< u: \left(S_i^*, \overrightarrow{C_i} \right)$$

