Gamma- and X-Ray Interactions in Matter

Chapter 7

F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry

Photon interactions in matter

- · Compton effect
- · Photoelectric effect
- Pair production
- Rayleigh (coherent) scattering
- · Photonuclear interactions

Kinematics

Interaction cross sections Energy-transfer cross sections

Mass attenuation coefficients

Compton interaction

- Inelastic photon scattering by an electron
- Main assumption: the electron struck by the incoming photon is unbound and stationary
 - The largest contribution from binding is under condition of high Z, low energy
 - Under these conditions photoelectric effect is dominant
- Consider two aspects: kinematics and cross sections

A.H. Compton

- Arthur Holly Compton (September 10, 1892 – March 15, 1962)
- Received Nobel prize in physics 1927 for his discovery of the Compton effect
- Was a key figure in the Manhattan Project, and creation of first nuclear reactor, which went critical in December 1942

Born and buried in Wooster, OH

http://en.wikipedia.org/wiki/Arthur_Compton http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551

Compton interaction: Kinematics

- · Inelastic collision
- After the collision the electron departs at angle θ , with kinetic energy T and momentum p
- The photon scatters at angle φ with a new, lower quantum energy h v' and momentum h v'/c

Compton interaction: Kinematics

- An earlier theory of γ-ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of hv or φ
- The failure of the Thomson theory to describe high-energy photon scattering necessitated the development of Compton's theory

Compton interaction: Kinematics

- The collision kinetics is based upon conservation of both energy and momentum
- Energy conservation requires

$$T = h \upsilon - h \upsilon'$$

Conservation of momentum along the (0°) direction

$$h\upsilon = h\upsilon'\cos\varphi + pc\cos\theta$$

 Conservation of momentum perpendicular to the direction of incidence:

$$h\upsilon'\sin\varphi = pc\sin\theta$$

Compton interaction: Kinematics

- pc can be written in terms of $T: pc = \sqrt{T(T+2m_0c^2)}$ where m_0 is the electron's rest mass
- We get a set of three simultaneous equations in these five parameters: hv, hv', T, θ , and φ :

$$h\upsilon' = \frac{h\upsilon}{1 + \left(h\upsilon/m_0c^2\right)\left(1 - \cos\varphi\right)}$$

$$T = h \upsilon - h \upsilon$$

$$\cot \theta = \left(1 + \frac{h\upsilon}{m_0 c^2}\right) \tan\left(\frac{\varphi}{2}\right)$$

Compton interaction: Kinematics

When photon energy is lower than electron rest mass energy m_0c^2 , relativistic effects do not contribute => pure elastic scattering

Compton interaction: Kinematics

Dependence of θ on φ is a strong function of photon energy:

- Low photon energies $\theta \cong 90^{\circ} - \varphi/2$
- · High photon energies: electrons are mostly forward scattered

Compton interaction: Cross sections **Interaction cross section**

Cross section describes the probability of interaction

- Thomson: elastic scattering on a free electron, no energy is transferred to electron
- Differential cross section (per electron for a photon scattered at angle φ , per unit solid angle)

$$\frac{d_e \sigma_T}{d\Omega_{\varphi}} = \frac{r_0^2}{2} \left(1 + \cos^2 \varphi \right) \qquad \text{max at } \varphi = 0.180^{\circ}$$

$$\frac{1}{2} \max_{\varphi} \text{ at } \varphi = 90^{\circ}$$

 $r_0 = \frac{e^2}{m c^2}$ - classical radius of electron

Compton interaction: Cross sections **Interaction cross section**

Thomson: elastic scattering on free electron

- total cross section (integrated over all directions)

$$_{e}\sigma_{T} = \frac{8\pi r_{0}^{2}}{3} = 6.65 \cdot 10^{-25} \text{ cm}^{2}/\text{electron}$$

$$r_0 = \frac{e^2}{m_0 c^2}$$
 - classical radius of electron

Works well for low photon energies, $<< m_0 c^2$ Overestimates for photon energies > 0.01MeV (factor of 2 for 0.4MeV)

Compton interaction: Cross sections Interaction cross section

- This cross section (can be thought of as an effective target area) is equal to the probability of a Thomson-scattering event occurring when a single photon passes through a layer containing one electron per cm²
- It is also the fraction of a large number of incident photons that scatter in passing through the same layer, e.g., approximately 665 events for 10²⁷ photons
- For such a small fraction of photons interacting in a layer of matter (by all processes combined remains less than about 0.05), the fraction may be assumed to be proportional to absorber thickness; for greater thicknesses the exponential relation must be used

Compton interaction: Cross sections Interaction cross section

- Klein-Nishina: Compton scattering on free electron but includes Dirac's quantum relativistic theory
- · Differential cross section:

$$\frac{d_e \sigma_{K-N}}{d\Omega_{\varphi}} = \frac{r_0^2}{2} \left(\frac{h v}{h v} \right) \left(\frac{h v}{h v} + \frac{h v}{h v} - \sin^2 \varphi \right)$$

- For elastic scattering (hv=hv') reduces to Thomson's expression
- Needed at high photon energy

Compton interaction: Cross sections Other cross sections

Differential K-N cross section for electron scattering at angle θ , per unit solid angle, per electron

$$\frac{d_e\sigma_{K-N}}{d\Omega_\theta}$$

For high photon energies electrons are preferentially forward scattered ($\theta = 0$)

Compton interaction: Cross sections Other cross sections

Probability that a single photon will have Compton interaction in a layer of 1 e/cm^2 and transfers energy between T and T+dT

$$\frac{d_e \sigma_{K-N}}{dT} \text{ in } cm^2 MeV^{-1}e^{-1}$$

Energy distribution of electrons, averaged over all θ For head-on collisions:

$$T_{max} \sim hv - 0.2555 \text{ MeV}$$

Stronger effect for high hv

Compton interaction: Mass attenuation coefficient

Cross section per electron (no Z dependence due to free electron assumption)

 $_{e}\sigma \propto Z^{0}$

Cross section per atom

 $_{a}\sigma \propto Z_{e}\sigma$

Cross section per unit mass (mass attenuation

 $\frac{\sigma}{\rho} = \frac{N_A Z}{A} \cdot_e \sigma$

(mass attenuation coefficient)

 N_A – Avogadro's constant; Z – number of electrons per atom; A – number of grams per mole of material; ρ – density in g/cm³

Photoelectric effect: Kinematics

Most important at low photon energies

- Interaction with atomic-shell electrons tightly bound with potential energy $E_b < hv$
- Photon is completely absorbed
- Kinetic energy to electron:

$$T = h \nu - E_b$$

independent of scattering angle

- Atom acquires some momentum
- No universal analytical expression for cross sections

Photoelectric effect basics

- Photon transfers its momentum hv/c plus some transversal momentum due to the perpendicular electric field in the electromagnetic wave
- Final state = free electron + hole in the atomic shell

Photoelectric effect: Directional distribution

For higher photon energies electrons tend to scatter in forward direction (θ =0 is forbidden since it is perpendicular to the vector E)

Directional distribution

Half of all electrons is ejected within a forward cone of half angle equal to bipartition angle

Photoelectric effect: Cross sections Interaction cross section

Total interaction cross section per atom, in cm²/atom

$$_{a}\tau \cong k\frac{Z^{n}}{(h\nu)^{m}}$$

k = Const

m, n – energy dependent

$$n \cong 4$$
, $m \cong 3$ at $hv = 0.1 \,\mathrm{MeV}$ τ

Mass attenuation coefficient

$$\frac{\tau}{\rho} \propto \left(\frac{Z}{h\nu}\right)^3$$

Photoelectric effect: Cross sections Energy-transfer cross section

Fraction of energy transferred to all electrons

$$\frac{T}{hv} = \frac{hv - E_b}{hv}$$

Vacancy created by a photon in the inner shell has to be filled If through Auger process - additional contribution to kerma

Final result:

$$\frac{\tau_{tr}}{\rho} = \frac{\tau}{\rho} \left[\frac{h \nu - P_K Y_K \cdot h \overline{\nu}_K - (1 - P_K) P_L Y_L \cdot h \overline{\nu}_L}{h \nu} \right]$$

Photoelectric effect: Atom relaxation

Excited atom relaxes its energy by

- fluorescence (emission of photons) or
- Auger process (emission of electron)
- when the higher energy shell electrons move downward

Mass energy-transfer coefficients

Pair production

- Photon is absorbed giving rise to electron and positron
- Occurs predominantly in Coulomb force field usually near atomic nucleus sometimes in a field of atomic electron
- Minimum photon energy required $2m_0c^2 = 1.022 \,\text{MeV}$

 $hv = 2m_0c^2 + T^- + T^+$ = 1.022 MeV + $T^- + T^+$ $h\nu$ $h\nu$ $T_0 \cong 0; mom.* p_0$

Pair production: Third body is needed

• There exists a reference frame where the total momentum of electron and positron is zero · But photon momentum is always · Third body needed for momentum conservation: electron or nucleus

Pair production in Nuclear Coulomb Force Field

Total cross section per atom

$$_{a}\kappa = \sigma_{0}Z^{2}\overline{P}$$

P – function of hv and Z

$$\sigma_0 = \frac{r_0^2}{137} = \frac{1}{137} \left(\frac{e^2}{m_0 c^2}\right)^2 = 5.80 \times 10^{-28} \text{ cm}^2/\text{electron}$$

Nuclear attraction and repulsion tend to give the positron slightly more energy than the electron, the difference being less than 0.0075ZMeV

transferred to positron

Pair production in Electron Coulomb Force Field

Triplet production – higher threshold $4m_0c^2 = 2.044 \text{ MeV}$ required for conservation of momentum

Ratio of cross section for all electrons of the atom to nuclear cross section of the same atom is small:

$$\frac{\kappa(electron)}{\kappa(nucleus)} \cong \frac{1}{CZ}$$

C – parameter depending on energy, close to 1

Pair production: Cross sections

Total cross section for pair production per unit mass:

$$\left(\frac{\kappa}{\rho}\right)_{pair} = \left(\frac{\kappa}{\rho}\right)_{nuclear} + \left(\frac{\kappa}{\rho}\right)_{electron}$$

Pair production energy transfer coefficient:

$$\frac{\kappa_{tr}}{\rho} = \frac{\kappa}{\rho} \left(\frac{hv - 2m_0c^2}{hv} \right)$$

Rayleigh (coherent) scattering

- · Photon is scattered by combined action of whole atom
- Photons do not lose energy, redirected through only a small
- · No charged particles receive energy, no excitation produced => No contribution to kerma or dose

Atomic cross section: $\frac{\sigma_R}{\rho} \propto \frac{Z}{(h\nu)^2}$

$$\frac{\sigma_R}{\rho} \propto \frac{Z}{(h\nu)^2}$$

Typical ratios of Rayleigh to total attenuation coefficient σ_R/μ

Element	$h\nu = 0.01 \text{ MeV}$	0.1 MeV	1.0 MeV
C	0.07	0.02	0
Cu	0.006	0.08	0.007
Pb	0.03	0.03	0.03

Photonuclear Interactions

- · Photon with energy exceeding few MeV excites nucleus, which emits proton or neutron
- Contributes to kerma and dose
- Relative amount less that 5% of pair production
- · Usually not included in dosimetry consideration
- Important for shielding design (neutrons)

Total coefficients for attenuation, energy transfer and absorption

Total mass attenuation coefficient for photon interactions add probabilities for photoelectric effect, Compton effect, pair production and Rayleigh scattering

$$\frac{\mu}{\rho} = \frac{\tau}{\rho} + \frac{\sigma}{\rho} + \frac{\kappa}{\rho} + \frac{\sigma_R}{\rho}$$

Total mass energy-transfer coefficient:

$$\begin{split} & \frac{\mu_{\text{tr}}}{\rho} = \frac{\tau_{\text{tr}}}{\rho} + \frac{\sigma_{\text{tr}}}{\rho} + \frac{\kappa_{\text{tr}}}{\rho} \\ & = \frac{\tau}{\rho} \left[\frac{h\nu - p_K Y_k h \overline{\nu}_K}{h\nu} \right] + \frac{\sigma}{\rho} \left[\frac{\overline{T}}{h\nu} \right] + \frac{\kappa}{\rho} \left[\frac{h\nu - 2m_0 c^2}{h\nu} \right] \end{split}$$

Mass energy-absorption coefficient

$$\frac{\mu_{en}}{\rho} = \frac{\mu_{tr}}{\rho} (1 - g)$$

g - average fraction of secondary electron energy lost in radiative interactions For low Z and high $h\nu$, g --> 0

Appendix D

Summary

- · Compton effect
- Photoelectric effect

the most important

- Pair production
- Rayleigh (coherent) scattering no energy transferred to the medium
- Photonuclear interactions relevant at high energies