Home assignment 1

Deadline: 2024-09-16, 21:00.

- 1. Each day Elon Musk solves econometrics problems and creates posts in X. Let y_i be the number of solved problems and x_i be the number of posts in X. You have 3 observations: $x_1 = 2$, $y_1 = 5$, $x_2 = 1$, $y_2 = 10$, $x_3 = 3$, $y_3 = 4$.
 - (a) Find $\hat{\beta}$ if fitted values are given by $y_i = \hat{\beta}x_i$.
 - (b) Find $\hat{\beta}_0$ and $\hat{\beta}_1$ if fitted values are given by $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.
 - (c) Find $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\beta}_2$ if fitted values are given by $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$.

Note: you can use any programming language to calculate the 3×3 matrix inverse but you should provide the code :)

2. Simplify as much as possible the following expressions:

$$A = \sum_{i=1}^{n} (x_i - \bar{x})\bar{x}, \quad B = \sum_{i=1}^{n} (x_i - \bar{x})\bar{y}, \quad C = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n\bar{x}^2.$$

3. Consider simple regression model with $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. You have n observations $(x_1, y_1), ..., (x_n, y_n)$ and you estimate $\hat{\beta}_0$ and $\hat{\beta}_1$ using OLS.

What will happen with $\hat{\beta}_0$ and $\hat{\beta}_1$ in each of the following cases?

- (a) You copy every observation from the original dataset twice.
- (b) You add one new observation $(y_{n+1} = \bar{y}, x_{n+1} = \bar{x})$ to the original dataset.
- (c) You add n more observations given by $(x_{n+i} = -x_i, y_{n+i} = y_i)$ for i = 1, 2, ..., n to the original dataset.

Hint: you may start by guessing the answer with an experiment, but the proof is required :)

Home assignment 2

Deadline: 2024-09-23, 21:00.

- 1. Each day Elon Musk solves econometrics problems and creates posts in X. Let y_i be the number of solved problems and x_i be the number of posts in X. You have 3 observations: $x_1 = 2$, $y_1 = 5$, $x_2 = 1$, $y_2 = 10$, $x_3 = 3$, $y_3 = 4$.
 - (a) Calculate SST, SSE, SSR and R^2 if we regress y on x with constant, ie $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.
 - (b) Calculate SST, SSE, SSR and R^2 if we regress x on y with constant, ie $\hat{x}_i = \hat{\gamma}_0 + \hat{\gamma}_1 y_i$.
 - (c) Calculate the hat-matrix H if we regress y on x with constant.

Note: this exercises uses toy dataset from the previous HA, you may reuse old results provided that you state them explicitely.

- 2. Kamala Harris removes one observation from the initial set of n observations and reestimates the model $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ using OLS.
 - (a) Prove that the total sum of squares SST can't increase.
 - (b) Provide an example of a dataset where explained sum of squares SSE will decrease and a second example where it will increase.
- 3. Consider the dataset of diamond prices,

https://github.com/vincentarelbundock/Rdatasets/raw/master/csv/ggplot2/diamonds.csv.

Here price is the price of diamond in 1000\$ and carat is the weight of a diamond in carats. Let y_i be the log of diamond price in 1000\$ and x_i be the log of diamond weight in carats.

- (a) Estimate the model $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$ using LinearRegression from sklearn.linear_model
- (b) Estimate the model $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\beta}_2 x_i^2$ using ols from statsmodels.formula.api.
- (c) What is your point forecast of a price of a diamond with 2 carats weight?

Note: the first approach is faster and more stable while the second one gives you much more statistical information.

Home assignment 3

Deadline: 2024-09-30, 21:00.

- 1. Consider the framework of simple regression model, $y_i = \beta_0 + \beta_1 x_i + u_i$, $\mathbb{E}(u_i \mid x) = 0$, independent observations, $\mathbb{V}\mathrm{ar}(u_i \mid x) = \sigma^2$, $\mathbb{C}\mathrm{ov}(u_i, u_j \mid x) = 0$ for $i \neq j$. We estimate regression $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. We have n = 3 observations with $x_i = i$.
 - (a) Find $\mathbb{E}(2\hat{\beta}_0 + 3\hat{\beta}_1 \mid x)$, $\mathbb{V}ar(2\hat{\beta}_0 + 3\hat{\beta}_1 \mid x)$.
 - (b) Find $\mathbb{E}(\hat{y}_1 \mid x)$, $\mathbb{V}ar(\hat{y}_1 \mid x)$, $\mathbb{E}(\hat{u}_1 \mid x)$, $\mathbb{V}ar(\hat{u}_1 \mid x)$.
- 2. Consider the framework of simple regression model, $y_i = \beta_0 + \beta_1 x_i + u_i$, $\mathbb{E}(u_i \mid x) = 0$, independent observations, $\mathbb{V}\mathrm{ar}(u_i \mid x) = \sigma^2$, $\mathbb{C}\mathrm{ov}(u_i, u_j \mid x) = 0$ for $i \neq j$. We estimate regression $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. We have n observations with $\sum (x_i \bar{x})^2 > 0$.
 - (a) Find $\mathbb{E}(y_i \bar{y} \mid x)$, $\mathbb{E}((y_i \bar{y})^2 \mid x)$.
 - (b) Find the value of γ such that the estimator $s^2 = \gamma \sum_{i=1}^n (y_i \bar{y})^2$ for σ^2 is unbiased conditional on x.
- 3. Consider the framework of simple regression model, $y_i = \beta_0 + u_i$, $\beta_0 = 2$, $\mathbb{E}(u_i \mid x) = 0$, independent observations, $\mathbb{V}\mathrm{ar}(u_i \mid x) = \sigma^2 = 4$, $\mathbb{C}\mathrm{ov}(u_i, u_j \mid x) = 0$ for $i \neq j$. Random error is conditionally normally distributed, $(u_i \mid x) \sim \mathcal{N}(0;4)$. We estimate regression $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. This setup means that we wrongly belive that y_i depends on x_i .

We have n = 10 observations with $x_i \sim \mathcal{N}(0; 1)$.

- (a) Generate the dataset and estimate the misspecified regression B=10000 times. Draw the histogram of $\hat{\beta}_0$, the histogram of $\hat{\beta}_1$. Compare these histograms with true values of β_0 and β_1 . What can you conclude based on two histogram?
- (b) Draw the histogram of R^2 for simulations in point (a). Now repeat B=10000 simulations for regression $\hat{y}_i=\hat{\beta}_0+\hat{\beta}_1x_i+\hat{\beta}_2x_i^2+\hat{\beta}_3x_i^3$. Draw the new histogram of R^2 . Describe how this new histogram for R^2 is different from the first histogram for R^2 . Can you say that the quality of your new regression is higher?