Reg. No.:

Name :

Continuous Assessment Test -II: October 2022

Programme Course Title	· Complex Variables and Linear Algebra	Semester Code		Fall 2022-23 BMAT201L
Class No.	CH2022231001185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197	Slot	:	A2+TA2+TAA2
Faculty (s)	Dr Jaganathan B, Dr Manivannan A, Dr. Felix A	Max. Marks	:	50
	Dr Dhivya M, Dr Sudip Debnath, Dr Durga N : Dr Prasanna Lakshmi M, Dr Harshavarthini, Dr Ashish Kumar, Dr Kamalesh, Dr Sushmitha, Dr Amit Kumar Rahul, Dr Balaji S	Time	:	90 Minutes

Answer ALL questions

Q.No		ub. Question Description	Marks
1.		Find the valid regions and expand as a Taylor series and Laurent series about origin in the suitable domains for the function $f(z) = \frac{z^2 - z + 1}{z(z^2 - 3z + 2)}$.	19/2
2		Evaluate $\int \frac{z^2-1}{z^2+2z+10} dz$ over the circle $ z+1+i =6$.	10
8.		Evaluate $\int_0^{2\pi} \frac{d\theta}{(5+4\cos\theta)^2}.$	10
N.	a)	Verify the polynomials $p_1 = t^2 + t + 1$, $p_2 = t^2 + 2t + 3$ and $p_3 = t^2 + 5t + 8$ span the vector space $P_2(\mathbb{R})$ of polynomials of degree ≤ 2 .	6
	(b)	Find the basis and dimension of W if $W = \{(x_1, x_2,, x_{27}) \in \mathbb{R}^{27} x_k = 0 \text{ if } k \text{ is even} \}$ is the subspace of \mathbb{R}^{27} .	<u>(4)</u>
5.	a)	Let W be the subspace of \mathbb{R}^4 spanned by the vectors $u_1 = (1,0,1,-2)$, $u_2 = (-3,4,5,6)$, $u_3 = (1,2,3,-2)$, $u_4 = (0,1,2,0)$. Find a basis and dimension of W.	5
		Check whether the given subsets $W_1 = \left\{ \begin{bmatrix} a & b \\ c & a \end{bmatrix} \in V : a, b, c \in \mathbb{R} \right\}$ and $W_2 = \left\{ \begin{bmatrix} 0 & a \\ -a & b \end{bmatrix} \in V : a, b, \in \mathbb{R} \right\}$ of vector space $V = M_{2 \times 2}(R)$ are subspaces or not.	