Candidate's Name:		
Signature	Random No.	Personal No.
Signature		

(Do not write your School/Centre Name or Number anywhere on this booklet.)

545/2

CHEMISTRY

Paper 2

Oct. / Nov. 2020

2 hours

UGANDA NATIONAL EXAMINATIONS BOARD Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES:

Section A consists of 10 structured questions. Answer all the questions in this section.

Answers to these questions must be written in the spaces provided.

Section B consists of 4 semi-structured questions. Answer any two questions from this section. Answers to the questions must be written in the answer booklet(s) provided.

In both sections all working must be clearly shown and must be in blue or black ink.

Any work done in pencil will not be marked except drawings.

Mathematical tables and silent non-programmable calculators may be used.

Where necessary use:

[H=1; C=12; N=14; O=16; Na=23; S=32; Cl=35.5]

1 mole of gas occupies 24 l at room temperature.

1 mole of gas occupies 22.4 l at s.t.p.

					For	Exar	niner	s' Us	e Onl	y				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

© 2020 Uganda National Examinations Board

SECTION A: (50 MARKS)

Answer all questions in this section.

1.	(a)	State	what would be observed if a bar magnet is brought of	close to;
		(i)	a mixture of iron and sulphur.	(01 mark)
		 (ii)	iron (II) sulphide.	(01 mark)
	(b)	Wha	t is the practical application of the action in (a) (i)?	(01 mark)
	(c)	State	e a suitable method by which the following substance ined:	can be
		(i)	Sugar from its mixture with sand.	(01 mark)
		 (ii)	Sodium chloride from its mixture with sodium hydrogencarbonate.	(01 mark)
2.	The	atomic	numbers of elements X, Y and Z are 12, 14 and 17 re	spectively.
	(a)	Writ	e the electronic configuration of the ion formed by:	
		(i)	X.	(½ mark)
		(ii)	<i>У</i> .	(½ mark)
	(b)	Elen and	nent Z can react with elements X and Y to form comp R respectively.	ounds Q
		(i)	Write the formula of the compound that can be form Z and:	ned between
			X.	(01 mark)
		•••••	<i>Y</i> .	(01 mark)
		•••••		

	(ii)	Which one of the compounds Q and R will conduct when in molten state?	electricity (½ mark)
	 (iii)	Give a reason for your answer in (b) (ii).	(01 mark)

3. (8	a) Char	coal was burnt in a charcoal stove as shown in figure	ί.
Aug.		Zone Q Zone R Zone T	
*1		AIR	
80.5		Fig. 1	
	Nam	e the substance that was produced at zone:	
AC 2	(i)	<i>Q</i>	
0.90%	(ii)	R ::Virtuals	(01 mark)
100	(iii)	T	(01 mark)
(b) State		
	(i)	the structural difference between charcoal and graph	ite.(01 mark)
	(ii)	one chemical property in which charcoal resemble	
4. (a)	(i)	State the condition under which hydrochloric acid	reacts with
		magnesium to produce hydrogen.	(½ mark)
241			
		3	Turn Oron

		(ii)	Write the ionic equation for the reaction in (a) (i).	(1½ marks)
	(b)	A d	ry sample of hydrogen was burnt in air.	
		(i)	Write the equation for the reaction that took place.	(1½ marks)
		 (ii)	State how the product in (b) (i) can be tested.	(01 mark)
		 (iii)		(½ mark)
1 13 11	cont	aining	a cation Q was heated, a gas X , which gave dense v gen chloride was evolved.	
		(i)	the cation Q .	(½ mark)
		 (ii)	gas X.	(½ mark)
	(b)		e the equation for the reaction leading to the formati	
*	(0)	(i)	X.	
				•••••
			the denseLi- C	
		()	the delise white fumes.	$(1\frac{1}{2} \text{ marks})$
		•••••		that took place. (1½ marks) n be tested. (01 mark) gen. (½ mark) ution and a substance ch gave dense white fumes (½ mark) (½ mark) (½ marks)

	(c)) X wa	was bubbled through a solution containing as no further change. State what was observe	zinc ions until there ed. $(1\frac{1}{2} \text{ marks})$
6.	3.4 bei	g of c	compound Z consists of 1.0 g calcium, 0.8 g gen.	sulphur and the lest
	(a)	(i)	Calculate the empirical formula of Z. $(O=16; S=32; Ca=40)$	(02 marks)
				*
		••••		
				l
	******	(ii)	Deduce the molecular formula of Z . (Formula mass of $Z = 136$)	(01 mark)
			•••••••••••••••••••••••••••••••••••••••	***************************************
	(b)	(i)	Name one reagent that can be used to ide aqueous solution of Z .	entify the anion in an (01 mark)
		(ii)	Write an ionic equation for the reaction t aqueous solution of Z was treated with the	hat would take place if he reagent you have
			named in (b) (i).	(1½ marks)
		•••••		

Figure 2 shows an electrochemical cell. Lamp Copper foil Zinc rod -Dilute sulphuric acid Fig.2 State what is observed at the copper foil. (a) (1/2 mark) (b) Write the equation(s) for the reaction at the; (i) cathode. (01 mark) (ii) anode. (01 mark) Write the overall cell reaction equation. (1½ marks) I deport little State one application of an electrochemical cell. (d) $(\frac{1}{2} mark)$

8.	(a)	(i)	State a suitable method of preparing iron(II) sulphate.	(01 mark)
		 (ii)	Write the equation to show formation of iron(II) sulp method you have stated in (a) (i).	ohate by the (1½ marks)
	(b)	Whe	n aqueous ammonia was added to iron(II) sulphate sol n precipitate which turned brown on standing was forn	ution, a ned.
		(i)	Write the formula of the substance that appeared as t precipitate.	the green (01 mark)
		(ii)	Give a reason why the green precipitate turned brow	n. (01 mark)
		••••	V home	
		 (iii)	Name one substance, other than air, that would turn precipitate brown.	the green (½ mark)
9.	(a)	Chlo	orine dissolves in water to form hypochlorous acid.	
		(i)	Write the equation for the reaction leading to the form hypochlorous acid.	mation of $(1\frac{1}{2} \text{ marks})$
		(ii)	State what would be observed if a handkerchief stain black ink was soaked in hypochlorous acid.	
				(½ mark)
	(b)	Нуро	chlorous acid solution was exposed to bright sunlight	
		State	what happened.	(1½ marks)

	(c)	State what would be observed if chlorine was bubbled in bromide solution then tetrachloromethane added to the mixture.	nto potassium resultant (1½ marks)
10.	(a)	Carbon dioxide is produced by the reaction of calcium car hydrochloric acid. Write an ionic equation for the reaction	bonate with n. $(1\frac{1}{2} \text{ marks})$
		all an shaper of the probability to the about 1 to 1 the	
	(b)	The sketch graphs in figure 3 show variations in volume dioxide evolved with time, when equal masses of calciulumps were reacted separately with 50 cm ³ portions of of monobasic acids T and R at room temperature.	es of carbon
		Volume of carbon dioxide (cm³) Acid T Acid R	
	The Iq.	Selvinia) Linuxer todi nelico sono sono sono sono sono sono sono so	
		Fig. 3 Time(s)	(D) 19, 10
	no tre sa	(i) Which one of the acids is a stronger acid?	(½ mark)
		(ii) Give reasons for your answer in (b) (i).	(02 marks)
		The state of the s	
		black at an enaked in hypocolom as and	
	House,	(iii) Sketch, on the same axes of figure 3, the graph that obtained when an equal mass of calcium carbonate	would be
		reacted with 50 cm ³ of a 1.0 M acid T at room temp	powder was perature.
			(01 mark)
	et avi		

SECTION B (30 MARKS)

Answer any two questions from this section.

Additional question(s) answered will not be marked.

11.	Sulph	uric ac	cid is manufactured from sulphur dioxide by the con	tact process.
y dies.	(a)	(i)	Name one substance from which the sulphur dioxi the contact process can be prepared.	de used in (01 mark)
		(ii)	Write an equation to show how the substance you in (a) (i) is converted into sulphur dioxide.	have named (1½ marks)
City	2 101	(iii)	With the aid of equation(s), describe how sulphur converted into sulphuric acid.	dioxide is (6½ marks)
	(b)	State	how concentrated sulphuric acid reacts with the follances, and in each case, write the equation for the re	lowing eaction:
		(i) (ii)	Sulphur. Sucrose $(C_{l2} H_{22} O_{l1})$.	(02 marks)
	(c)	(i)	Name one fertilizer manufactured from sulphuric ac	eid. (½ mark)
		(ii)	Write an equation to show how the fertilizer you h (c) (i) is formed.	(1½ marks)
12.	(a)	Desc	cribe the reactions of magnesium with;	
	iine	(i) (ii) (iii)	water.	
	(b)	conta	eous sodium hydrogencarbonate was added to a soluaining magnesium ions, and the mixture heated. Expensed;	ation eplain what
		(i) (ii)	before the mixture was heated. after the mixture was heated.	(03 marks) (3½ marks)
	(c)	(i)	Name one reagent that can be used to differentiate ion from lead(II) ion.	e magnesium (01 mark)
		(ii)	State what would be observed if magnesium ion a ion are treated separately with the reagent you have (c) (i).	

- State two substances which when reacted together can form (i) 13. (a) Briefly describe how a sample of solid soap can be prepared in
 - (04 marks) (ii) the laboratory. (04 marks)
 - Describe how soap removes dirt from clothes. (b)
 - Give reasons why detergents do not form scum with hard water. (01 mark)(c)
 - Explain why it is **not** advisable to dispose of detergents in water (05 marks)(d) bodies.
- Methanol undergoes combustion according to the following equation. 14. (a) $2CH_3OH(l) + 3O_2(g) \longrightarrow 2CO_2(g) + 4H_2O(l); \Delta H = -726 \text{ kJ mol}^{-1}.$ What is meant by the expression " $\Delta H = -726 \text{ kJ mol}^{-1}$ "?
 - When 0.87 g of methanol was burnt, the heat evolved raised the (b) temperature of 500 cm³ of water by 7.0°C. Calculate the enthalpy of combustion of methanol. $(H = 1; C = 12; O = 16; density of water = 1g cm^{-3}; specific heat$ $(3 \frac{1}{2} marks)$ capacity of water = $4.2 J g^{-1} K^{-1}$.)
 - The Standard Enthalpy of Combustion of methanol is -726 kJ mol⁻¹. (c) Compare the experimental value obtained in (b) with the standard $(3 \frac{1}{2} marks)$ value. Explain your answer.
 - (d) The enthalpy of some straight chain alcohols are shown in the table 1.

Table 1

I ad	ie i					
Alcohol	СН3ОН	C ₂ H ₅ OH	C ₃ H ₇ OH	С4Н9ОН	C ₅ H ₁₁ OH	C ₆ H ₁₃ OH
Formula mass	*					
Enthalpy of combustion (kJ mol ⁻¹)	726	1371	2017	2673	3331	3984

- Copy the table and fill in the values for the formula masses of (i) the alcohols. (H = 1; C = 12; O = 16.) $(1\frac{1}{2} marks)$
- Plot a graph of enthalpy of combustion against formula mass. (ii)
- (04 marks)State how the enthalpies of the straight chain alcohols vary with (iii) their formula masses. (1/2 mark)
- Use your graph to determine the enthalpy of a straight chain (iv) alcohol of formula mass 116. (01 mark)

Candidate's Name:		
Signature	Random No.	Personal No.
Signature		

(Do not write your School/Centre Name or Number anywhere on this booklet)

545/2 CHEMISTRY Paper 2 Oct./Nov. 2019 2 hours.

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Certificate of Education

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES:

Section A consists of 10 structured questions. Answer all questions in this section.

Answers to these questions must be written in the spaces provided.

Section **B** consists of 4 semi-structured questions. Answer any **two** questions from this section. Answers to the questions **must** be written in the answer booklet(s) provided.

In both sections all working must be clearly shown.

Where necessary use;

$$[H=1; C=12; N=14; O=16; Na=23; S=32; Cl=35.5]$$

1 mole of gas occupies 24 l at room temperature.

1 mole of gas occupies 22.4 l at s.t.p.

					For	Exar	niner	s' Us	e Onl	y				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

© 2019 Uganda National Examinations Board

SECTION A (50 MARKS)

Answer all questions in this section.

1.	(a)	(a) Write the chemical name of rust.							
	(b)	(02 marks)							
	(c)	(c) Figure 1 shows a set-up of apparatus that was used to invoced to invoce condition necessary for iron nails to rust.							
		Cotton wool	Ar	hydrous cium chloride					
		Fig. 1							
		State the condition that was being investigated.							
	(d)	(d) State;							
	(u)		(01 mark)						
		· · · · · · · · · · · · · · · · · · ·							
		(ii) one method of preventing rusting.							
2.		Table 1 shows the mass numbers and atomic numbers of and Y. Study the table and answer the questions that followed the table 1							
		Element	Mass number	Atomic number					
		W	24	12					
		X	14	7					
		v	20	4.0					

State	State the number of;					
(i)	electrons in the atom of element Y.	(01 mark				
(ii)	neutrons in the atom of element Y.	(01 mark				
Writ aton	te the electronic configuration of the ion that can of element <i>Y</i> .	n be formed by the				
		100000000000000000000000000000000000000				
Elen type	nent W reacted with element X to form a composit of bond in Z .					
A m	A metallic element T , reacts with nitrogen to form a compound with the formula $T_3 N_2$.					
(i)	State the valency of <i>T</i> .	(½ mark)				
(ii)	Write equation for the reaction between T and	l chlorine. (1½ mark)				
Dete	ermine the atomic mass of T.					
ratio	o 3:1)	trogen in the (02 marks)				
		(02 marks)				
	(i) (ii) Writaton Identify type (ii) (ii) (iii) 3.2 Detection (I means the second teacher the secon	 (i) electrons in the atom of element Y. (ii) neutrons in the atom of element Y. (ii) Write the electronic configuration of the ion that ca atom of element Y. Identify the group in the Periodic Table to which element W reacted with element X to form a compositype of bond in Z. (i) A metallic element T, reacts with nitrogen to form a the formula T₃N₂. (i) State the valency of T. (ii) Write equation for the reaction between T and Determine the atomic mass of T. (I mole of a gas occupies 22.4 dm³; T reacts with nitratio 3:1) 				

4.	Clean zinc granules were added to a solution of copper(II) sulphate.								
	(a)	State what was observed.	(01 mark)						
	(b)	Explain your observation in (a).	(02 marks)						
	(c)	Write equation to support your answer in (b).	(1½ marks)						
5.	Ammonium sulphate dissolves in water according to the following equation:								
		$(NH_4)_2SO_4(s) + 2H_2O(l) \rightarrow 2NH_4OH(aq) + H_2SO_4(aq)$							
	(a)	State what would be observed if aqueous sodium hyd was added to the resultant solution.	lrogencarbonate (01 mark)						
	••••								
	(b)	Briefly explain your answer in (a).	(04marks)						

	9								

 The set-up of the apparatus in figure 2 was used for electrolysing silver nitrate solution.

(a)		what was observed on the;	
	7.7	metallic fork.	(01 mark
	(ii)	silver.	(01 mark)
		e equation for the reaction that took place at the	
(-)		electrode with the fork.	(01 mark)
		electrode with silver.	
(c)	(i)	Name the process taking place at the electrod	e with the fork
			(½ marks)
		State one use of the process in (c)(i).	(½ mark)

5

Lead(II) carbonate was heated until there was no further change.							
(a)	State what was observed.	(1½ marks					
••••							
	Magnesium powder was added to the residue and the mix	xture heated					
(b)	strongly. Write equation for the reaction that took places	(* /* /////////////////////////////////					
(c)	The experiment in (b) was repeated using copper turning magnesium powder.	instead of					
	(i) State what was observed.	(01 mark)					

	(ii) Give a reason for your answer in (c)(i).	(01 mark)					
When	n ammonium chloride was mixed with potassium hydroxid	e and the					
(a)	Write equation for the reaction leading to the formation o	f ammonia.					
		(1½ marks)					
.,,,,,,							
		and the second					
(b)	Ammonia was bubbled through zinc sulphate solution unt no further change.	il there was					
	(i) State what was observed.	(1½ marks)					
	(ii) Give reason(s) for your observation(s) in (b) (i).	(02 marks)					
		••••••					

••••••	
What is meant by the term rate of reaction?	(01 mark)
During an experiment to determine the rate of product dioxide from calcium carbonate at room temperature, carbon dioxide varied with time as shown in the graph	the volume of
Volume of carbondioxide (c	
T Time (s) Fig. 3	
Show how the rate of the reaction at time T can be det	ermined. (02 marks)
	During an experiment to determine the rate of product dioxide from calcium carbonate at room temperature, carbon dioxide varied with time as shown in the graph

10.	(a)	Write equation for the complete combustion of carbon.	(1½ marks)
		7	
	(b)	If 80 kg of charcoal cost UGX. 20,000. Calculate the cost required to produce 163,750 kJ of heat energy. $(C = 12; The \ enthalpy \ of \ combustion \ of \ carbon = -393kJn$	
		manufacture of the state of the	(03 marks)
		2 Marie de M	
	(c)	State one use of charcoal other than fuel.	(½ marks)

SECTION B (30 MARKS)

Answer any two questions from this section.

Any additional question(s) answered will not be marked.

- 11. (a) Differentiate between miscible and immiscible liquids. (02 marks)
 - (b) (i) Name **two** compounds that can form a miscible liquid mixture and draw a diagram for the set-up of apparatus that can be used to separate the mixture. (04 marks)
 - (ii) State **one** method that can be used to determine the purity of the components of the mixture in (b)(i). (01 mark)
 - (c) Table 2 shows variation in temperature with time when a solid X, was heated to boiling.

Table 2

Temperature (°C)	25	47	80	80	162	218	218
Time (minutes)	0	1.0	2.5	4.5	7.0	8.7	9.5

- (i) Draw a graph of temperature against time. (04 marks)
- (ii) Explain the shape of the graph. (04 marks)
- 12. (a) Chlorine can be prepared in the laboratory by oxidation of concentrated hydrochloric acid.
 - (i) Name **one** suitable substance that can be used for oxidising hydrochloric acid. (01 mark)
 - (ii) Outline how a pure dry sample of chlorine can be prepared in the laboratory from the above reaction. (Diagram is not required.)

 (06 marks)
 - (b) State and write equation(s) to show how phosphorous reacts with chlorine. (04 marks)
 - (c) Explain the reaction of chlorine with potassium bromide. (04 marks)
- 13. (a) (i) State two ways by which water-bodies can be polluted.
 (02 marks)
 - (ii) Describe how polluted water can be treated on a large scale so that it is safe for use. (Diagram not required.) (6½ marks)

- (b) When soap solution was added to a sample of water, a white precipitate was formed. But when the soap solution was added to another portion of the water that had been boiled, no precipitation took place. Explain. (Your answer should include equation where possible)

 (6½ marks)
- 14. (a) Using equations only, outline the processes involved in the manufacture of nitric acid. (4½ marks)
 - (b) A mixture of concentrated nitric acid and sulphur was warmed.
 - (i) State what was observed. (1½ marks)
 - (ii) Write equation for the reaction that took place. (1½marks)
 - (c) Ammonium nitrate is a mong the most widely used fertilisers. Write equation for the reaction leading to the formation of ammonium nitrate from nitric acid.

 (1½ marks)
 - (d) Ammonium nitrate dissolves in water according to the following equation:

$$NH_4NO_3(s) + H_2O(l) \longrightarrow HNO_3(aq) + NH_4OH(aq)$$

Excessive use of ammonium nitrate as a fertiliser can cause the soil to become acidic. Explain.

(2½ marks)

- (d) Write equation to show the effect of heat on;
 - (i) silver nitrate.

(1½ marks)

(ii) potassium nitrate.

(1½ marks)

(f) State one use of nitric acid other than in the manufacture of fertilisers.

(½ mark)

Kidegalize Virtual Institute

Paper 2

UCE CHEMISTRY PAST PAPERS FOR CLASSROOM PURPOSE ONLY

		SECTION A (50 MARKS)					
Sea w	ater co	ontains mainly dissolved sodium chloride and traces of p	ootassium bromide.				
a)	State one practical method that can be used to obtain the following from sea						
	water.						
	i)	Chlorine	(01 mark)				
	ii)	A reasonably pure sample of sodium chloride.	(01 mark)				
	iii)	Water free from ions.	(01 mark)				
b)	A ve	essel containing a sample of the water in a(iii) was con-	nected to an ammeter				
	which is turn was connected to a direct current source.						
	i)	State what was observed.	(01 mark)				
	ii)	Give a reason for your observation in b(i).	(01 mark)				
a)	The atomic numbers of hydrogen, magnesium and oxygen are 1, 12 and 8						
	respe	ectively. Write the electronic configurations of the atom	as of the elements.				
			(1 ½ marks)				
b)	Using outermost energy level electrons only, draw diagrams to show how oxygen						
	form	s a compound with					
	i)	Hydrogen	(01 mark)				
	ii)	magnesium	(01 mark)				
c)	i)	Which one of the compounds in (b) when dissolved is	n water will conduct				
		electric current?	(0 ½ mark)				
	ii)	Give a reason for your answer in c(i)	(01 mark)				
a)	State	e why ammonia is not dried using					
	i)	anhydrous calcium chloride	(01 mark)				
	ii)	concentrated sulphuric acid	(1 ½ marks)				
b)	Nam	he the substance normally used in the laboratory for drying	ng ammonia.				
			(01 mark)				
c)	Writ	e equation for the reaction that can take place when	copper (II) oxide is				
	treat	ed with ammonia.	(1 ½ marks)				
State	the co	ndition(s) under which sulphuric acid can react with the	following substances				
	 a) b) c) b) c) 	a) State water i) ii) iii) b) A ver which i) ii) a) The respect b) Usin form i) iii) c) i) ii) b) Name c) Writt treat	Sea water contains mainly dissolved sodium chloride and traces of path and state one practical method that can be used to obtain the followater. i) Chlorine ii) A reasonably pure sample of sodium chloride. iii) Water free from ions. b) A vessel containing a sample of the water in a(iii) was conwhich is turn was connected to a direct current source. i) State what was observed. ii) Give a reason for your observation in b(i). a) The atomic numbers of hydrogen, magnesium and oxygen and respectively. Write the electronic configurations of the atom forms a compound with i) Hydrogen ii) magnesium c) i) Which one of the compounds in (b) when dissolved in electric current? ii) Give a reason for your answer in c(i) a) State why ammonia is not dried using i) anhydrous calcium chloride ii) concentrated sulphuric acid b) Name the substance normally used in the laboratory for drying				

a) Sugar (C₁₂H₂₂O₁₁)i) Condition(s)

and in each case write equation for the reaction that would take place

(01 mark)

- ii) equation (1 ½ marks)

 Magnesium

 i) Condition (s) (01 mark)
- 5. The table below shows some tests carried out on a solution of salt Z and the observations that were made.

Test number	Test	Observation
Ι	Sodium hydroxide solution was	A white precipitate soluble in excess
	added drop wise to aqueous Z until	sodium hydroxide.
	in excess	
II	Ammonia solution was added drop	A white precipitate insoluble in excess
	wise to aqueous Z until in excess.	ammonia
III	Dilute hydrochloric acid was added	A white precipitate soluble on warming.
	to aqueous Z and the mixture	
	warmed	

Use the observations from the table to answer the following questions

a) i) Identify the cation in Z. (01 mark)

b)

ii)

Equation

- ii) Write the ionic equation for the reaction in test III. (1 ½ marks)
- b) Briefly describe how the cation in Z can be confirmed. (1 ½ marks)
- 6. Compound T contains 40.0% carbon, 6.7% hydrogen and the rest being oxygen.
 - a) i) Calculate the empirical formula of T. (03 marks)
 - ii) Determine the molecular formula of T. (01 mark) (Relative formula mass of T = 60)
 - b) T dissolved in water to form a solution which turned blue litmus paper red.
 - i) State what would be observed when a few drops of T were added to sodium carbonate. (0 ½ mark)
 - ii) Write an ionic equation for the reaction that takes place in b(i).

 $(1 \frac{1}{2} \text{ marks})$

(1 ½ marks)

- 7. a) State what is meant by the term hard water. (01 mark)
 - b) Name two cations and two anions present in hard water.
 - i) Cations (01 mark)
 - ii) Anions (01 mark)

- c) When a solution of barium nitrate was added to a sample of hard water, followed by dilute nitric acid, a white precipitate was formed that did not dissolve in the acid. Write equation for the reaction that took place. (02 marks)
- 8 a) When excess magnesium powder was added to 25cm³ of portions of equimolar solutions of compounds of elements Q, W, X, Y and Z, the temperature rise in each case was noted as indicated in the table below.

Solution of compounds	Rise in temperature (°C)
X	42
W	32
Y	0
Q	38
Z	14

- i) Arrange the elements, Mg, X, W, Y, Q and Z in order of their reactivity, starting with the least reactive. (01 mark)
- ii) State why there was no temperature rise when magnesium was added to the solution of the compound of Y. (01 mark)
- b) Magnesium powder was added to copper(II) oxide and the mixture heated strongly.
 - i) State what was observed. (01 mark)
 - ii) Write equation for the reaction that took place. $(1 \frac{1}{2} \text{ marks})$
- 9 a) When a sample of copper(II) nitrate was strongly heated, a reddish brown gas was evolved.
 - i) Identify the gas. (0 ½ mark)
 - ii) Write the formula of the residue. (0 ½ mark)
 - b) A sample of copper(II) nitrate contaminated with zinc nitrate was dissolved in water and the solution was treated with excess sodium hydroxide solution and then filtered. Identify the cation in the
 - i) Filtrate (01 mark)
 - ii) Residue (01 mark)
 - c) The residue from (b) was strongly heated.
 - i) State what was observed. (01 mark)
 - ii) Write equation for the reaction that took place. $(1 \frac{1}{2} \text{ marks})$
- 10. a) State the difference between endothermic and exothermic reaction. (01 mark)

b)	Carbo	on burns in air according to the following equ	ation							
- /	$C_{(s)} + O_{2(g)}$ $CO_{2(g)} + heat$									
	When 4.00g of carbon was burnt in air, the heat produced raised the temperature									
	of 550g of water by 56.8°C. Calculate the molar heat of combustion of carbon.									
		12, specific heat capacity of water = $4.2 \text{Jg}^{-1} \text{K}$				½ mai				
c)		the equation in (b) suggest one use of carbon			`	½ mar				
,		SECTION B (30 MARKS)					,			
		Answer two questions from this secti	ion							
a)	Hydro	ogen peroxide gas bubbles slowly when expo		air, bu	t when	aqueo	us			
,	-	II) chloride is added, the production of gas by				-				
	i)	Name the gas produced when hydrogen pe				-				
	,			1	(01 mark)					
	ii)	ii) Write equation for the reaction that takes place.								
	iii)	State the role of iron (III) chloride in the re			•	⁄2 mark l mark`				
	iv) Name another substance that can affect the production of the gas						,			
	,	same way as iron(III) chloride.					(01 mark)			
b)	The t	able below show the variation in the conce	entratio	on of 1	`	•				
,	with time when a sample of hydrogen peroxide was mixed with iron (III) chloride									
	at room temperature.									
	Concentration of hydrogen peroxide (mol dm ⁻³)			0.10	0.15	0.20	0.25			
	Time, t(s)			26	17	13	10.5			
	1/t(s									
	i)	Copy and complete the table above by con	nputin	 g and f	 ĭlling i	n the v	alues			
	-)	of 1/t.		5	_	½ mai				
	ii)	Plot a graph of 1/t against concentration of	hvdro	gen nei	`					
	iii)									
)	concentration of hydrogen peroxide.				l mark)			
	iv)	Determine the slope of the graph.			`	2 mark				
	v)									
	(01 mark)									
a)	Expla	in how a dry sample of hydrogen chloride ca	n be p	renared	,					
,	-	de. (Your answer should include equation, by	-	-						
		1 /		J	-	½ mar	ks)			

11.

12.

		place	if hydrogen chloride was passed.			
		i)	over strongly heated iron wire	(2 ½ marks)		
		ii)	through aqueous silver nitrate	(2 ½ marks)		
	c)	Aqueo	ous hydrogen chloride reacts with sodium carbonate sol	ution to produce		
		carbo	n dioxide according to the following equation			
		Na ₂ Co	$O_{3(aq)} + 2HCl_{(aq)} \longrightarrow 2NaCl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$			
		Calcu	late the volume of carbon dioxide that would be pr	oduced at room		
		tempe	erature if excess sodium carbonate solution was added	to 50.0cm ³ of a		
		solution	on containing 0.2 moldm ⁻³ of hydrogen chloride (1 mole	of gas occupies		
		24.0d	m ³ at room temperature)	(3 ½ marks)		
13.	a)	i)	Describe how sodium hydroxide can be manufactured usi	ng the mercury-		
			cathode cell (Your answer should include equations f the	reactions, but no		
			diagram)	(07 marks)		
		ii)	State one use of the product formed at the anode and o	one use of the by		
			product.	(02 marks)		
	b)	State how sodium hydroxide can react with the following substances and in each				
		case v	vrite equation for the reaction			
		i)	Sulphuric acid	(2 ½ marks)		
		ii)	Aluminium ion	(3 ½ marks)		
14.	a)	i)	Draw a labeled diagram of the set-up of apparatus that can	n be used to		
			prepare a dry sample of carbondioxide.	(3 ½ marks)		
		ii)	Write equation for the reaction leading to the formation o			
	b)	Expla	in the reason for your choice of the	(1 ½ marks)		
	σ,	i)	drying agent for carbondioxide	(02 marks)		
		ii)	method of collecting carbondioxide as shown in your diag	gram in a(i). (1½ marks)		
	c)		equation(s) to show the reaction of carbondioxide with	,		
		i) ii)	water Sodium hydroxide	(1½ marks) (03 marks)		
	d)	State		(00 111111111)		
		i)	Why carbon dioxide is used in making fire extinguishers.	(01 mark)		
		ii)	the effect of increased concentration of carbon environment.	dioxide on the		
				(01 mark)		

State what would be observed and write equation for the reaction hat would take

b)

Paper 2

SECTION A

- 1. Air is a mixture consisting mainly of two gases X and Y in the ratio 1:4 by volume respectively
 - a) Name gas

i) X (01 mark)

i) Y (01 mark)

b) i) State a suitable method by which the mixture of X and Y can be separated industrially. (01 mark)

i) Give a reason for the choice of the method you have stated in b(i) above.

(01 mark)

Name one process during which the concentration of X in the atmosphere can be increased. (0 $\frac{1}{2}$ mark)

d) State one industrial use of Y. (0 ½ mark)

2. a) State the difference between hard water and soft water. (01 mark)

b) Name one substance that causes

i) temporary hardness of water. (01 mark)

ii) permanent hardness of water. (01 mark)

c) State one method that can be used to remove

i) temporary hardness in water (01 mark)

ii) permanent hardness in water. (01 mark)

3. The number of electrons, protons and neutrons in the atoms of elements A, B, C, D and E are shown in the table below.

Atoms	Electrons	Protons	Neutrons
A	8	8	8
В	13	13	14
С	16	16	16
D	Y	11	11
W	8	Z	10

a) Determine the values of

i) Y $(0 \frac{1}{2} \text{ mark})$

		ii)	Z	$(0 \frac{1}{2} \text{ mark})$			
	b)	State	e the mass number of atom C.	(0 ½ mark)			
	c)	Indic	cate which of the atoms				
		i)	are isotopes	(0 ½ mark)			
		ii)	belong to the same group in the periodic table.	(1 ½ marks)			
	d)	Writ	e the electronic configuration of				
		i)	atom C	(0 ½ mark)			
		i)	ion A^{2+}	(0 ½ mark)			
		iii)	ion B^{3+}	(0 ½ mark)			
4.	An c	oxide W	of formula mass 160 consists of 70.0% iron				
	a)	i)	Calculate the empirical formula of W.	(2 ½ marks)			
		ii)	Deduce the formula of W.	(1 ½ marks)			
	b)	Writ	e the chemical name of W.	(01 mark)			
5.	In th	e prepa	ration of ammonia in the laboratory, a mixture of ammoniun	n chloride and			
	calci	calcium hydroxide is heated. The gas evolved is passed into a tower packed with calcium					
	oxid	e before	e it is collected using upward delivery method.				
	a)	i)	Write an equation for the reaction that leads to the format	ion of ammonia.			
				(1 ½ marks)			
		ii)	State why ammonia is passed into the tower packed with	calcium oxide.			
				(0 ½ mark)			
		iii)	Give a reason why ammonia is collected using upward de	elivery method.			
				(0 ½ mark)			
	b)	i)	Name one reagent that can be used to identify ammonia.	(01 mark)			
		ii)	State what would be observed if ammonia was treated wi	th the reagent			
			you have named in b(i) above.	(01 mark)			
	c)	Nam	e the catalyst that is used in the oxidation of ammonia durin	g the			
		man	ufacture of nitric acid.	(1 ½ marks)			
6	a)	Hyd	rogen chloride can be produced from potassium chloride				
		i)	Name another reagent that is used with potassium chlorid	e to produce			
			hydrogen chloride.	(0 ½ mark)			
		ii)	Write an equation for the reaction leading to the formation	n of hydrogen			
			chloride.	(1 ½ marks)			
	b)	Writ	e an equation for the reaction between hydrogen chloride an	d			
		i)	Silver nitrate solution.	(1 ½ marks) Page 7 of 30			

		11)	iron in the presence of water.	(1 ½ marks)			
7.	Ether	ne is cla	assified as an alkane and can be prepared in the laborato	ry by dehydration of			
	ethar	nol					
	a)	i)	State what is meant by the term alkene.	(01 mark)			
		ii)	Write the structural formula of ethene.	(01 mark)			
		iii)	Name the reagent which is used as a dehydrating age	nt in the preparation			
			of ethene.	(01 mark)			
	b)	Bron	nine was added to ethene. Write equation for the reaction	on that took place.			
				(01 mark)			
	c)	Unde	er high temperature and pressure, ethene molecules can	react with one			
		another to form a big molecule Z.					
		i)	Name Z	(0 ½ mark)			
		ii)	State one use of Z.	(0 ½ mark)			
8.	In the extraction of sodium from sodium chloride, calcium chloride is added to sodium						
	chloride and the mixture is melted. The molten mixture is then electrolyzed using						
	graphite electrodes.						
	a)	State	the purpose of adding calcium chloride.	(0 ½ mark)			
	b)	Write	e the equation for the reaction that takes place at the				
		i)	anode	(1 ½ marks)			
		ii)	cathode	(1 ½ marks)			
	c)	Bron	nine vapour was passed over heated sodium. Write an e	quation for the			
		react	tion that took place.	(1 ½ marks)			
9	a)	Hydrogen peroxide decomposes quite easily at room temperature.					
		i)	Write the equation for the decomposition of hydroger	n peroxide. (01 mark)			
		ii)	State two ways by which the decomposition can be n	nade faster.			
				(02 marks)			
	b)	Usin	g the space below, on the same axes sketch graphs of co	ketch graphs of concentration of			
		hydr	hydrogen peroxide versus time for the decomposition of the peroxide at				
		i)	room temperature	(01 mark)			
		ii)	one of the conditions you have stated in a(ii)	(01 mark)			
10.	a)	State	e the conditions under which sulphuric acid can react with	th			
		i)	sucrose $C_{12}H_{22}O_{11}$	(0 ½ mark)			
		ii)	zinc oxide	(0 ½ mark)			
	b)	Write	e equation for the reaction of sulphuric acid with				

		i)	sucrose	(1 ½ marks)
		ii)	zinc oxide	(1 ½ marks)
	c)	State	the property of sulphuric acid which is shown by its react	ion with
		i)	sucrose	(0 ½ mark)
		ii)	zinc oxide	(0 ½ mark)
			SECTION B (30 MARKS)	
			Answer two questions from this section	
11.	a)	Desc	ribe how a pure sample of carbon dioxide can be prepared	in the laboratory
		from	calcium carbonate and write the equation for the reaction	that takes place.
		(Diag	gram is not required)	(07 marks)
	b)	Expl	ain with the aid of equations the changes that take place w	hen excess carbon
		dioxi	de is bubbled into sodium hydroxide solution.	(5 ½ marks)
	c)	Potas	ssium hydrogen carbonate decomposes when heated accor-	ding to the
		follo	wing equation: $2KHC_{3(s)}$ $K_2Co_{3(s)} + H_2O_{(l)} + CO_{2(g)}$	
		Calc	ulate the mass of carbon dioxide evolved when 8g of potas	sium hydrogen
		carbo	onate is heated strongly (H = 1, C = 12, O = 16, K = 39)	(2 ½ marks)
12.	a)	One	of the ores from which iron is extracted is spathic iron ore	
		i)	Write the formula of the iron compound that is the ore.	(01 mark)
		ii)	Describe how impure iron is extracted from spathic iron	n ore. (Your answer
			should include equation)	(07 marks)
	b)	Write	e equation(s) where possible and state the condition(s) for	the reaction of iron
		with		
		i)	Water	(04 marks)
		ii)	chlorine	(2 ½ marks)
	c)	State	one use of iron.	(0 ½ mark)
13.	a)	The 6	elements copper, zinc and sulphur react with oxygen to for	m their oxides.
		Write	e the formula of the oxide of each of the elements and state	e the type of oxide
		whos	se formula you have written.	(03 marks)
	b)	Hydr	ogen gas was passed separately over the heated oxides of	copper and zinc.
		i)	State what was observed in each case and explain	(04 marks)
		ii)	Write equation for any reaction that took place.	(1 ½ marks)
	c)	Exce	ss dilute sodium hydroxide solution was added to a mixtur	re of the oxides of
		zinc	and copper. State what was observed and give a reason fo	r your observation.
				(2 ½ marks)

- d) A mixture of oxides of zinc and copper was added to excess dilute sulphuric acid and warmed. State what was observed and write equation(s) for the reaction(s) that took place. (04 marks)
- 14. a) i) Write the equation for the complete combustion of ethanol. (01 mark)
 - ii) Outline an experiment that can be carried out in the laboratory to determine the enthalpy of combustion of ethanol. (6 ½ marks)

(A diagram is not required, but your answer should include how the enthalpy of combustion of ethanol can be calculated from the experiment results)

- b) When 0.15g of compound W, molecular mass 60g was burnt, it caused the temperature of $150cm^3$ of water to rise by 80^0 C. Calculate the enthalpy of combustion of W. (Density of water = $1.0gcm^{-3}$, specific heat capacity of water = $4.2Jg^{-1}K^{-1}$) (02 marks)
- c) The enthalpies of combustion ΔH_c of some hydrocarbons are shown in the table below.

Hydrogen	CH ₄	C_2H_6	C ₃ H ₈	C_4H_{10}	C ₆ H ₁₄
ΔH_c	890	1560	2220	2880	4160

- i) Plot a graph of enthalpy of combustion (Vertical axis) against number of carbon atoms in the hydrocarbons (horizontal axis) (03 marks)
- ii) State from the graph you have plotted in c(i), the enthalpy of combustion of C_5H_{12} . (0 ½ mark)
- iii) Determine the slope of the graph that you have drawn. (01 mark)
- iv) Using your slope and the intercept, calculate the enthalpy of combustion of the hydrocarbon C_7H_{16} . (01 mark)

2016

Paper 2

SECTION A (50 MARKS)

- 1. a) State a method by which each of the following mixtures can be separated
 - i) Iron (II) chloride and iron (II) oxide.

 $(0 \frac{1}{2} \text{ mark})$

- ii) Sodium carbonate and sodium hydrogen carbonate.
- $(0 \frac{1}{2} \text{ mark})$
- b) Give a reason why it is possible to separate the mixture in a(i) using the method you have stated. (0 1mark)

	c)	State	State what would be observed if iron (II) chloride solution was mixed with				
		aque	eous silver nitrate.	(01 mark)			
	d)	Writ	e the formula of the residue formed when a mixture of so	dium carbonate and			
		sodi	um hydrogen carbonate is heated strongly.	(01 mark)			
2.	The	atomic	numbers of elements X, Y and Z are 18, 16 and 19.				
	a)	State	e the				
		i)	group in the periodic table to which X belongs.	(01 mark)			
		ii)	valency of Y	(01 mark)			
		iii)	period in the periodic table to which Z belongs.	(01 mark)			
	b)	Writ	e the formula of the compound that can be formed when	X reacts with			
		i)	Y	(01 mark)			
		ii)	Z	(01 mark)			
	c)	State	e one physical property of the compound formed between	X and Y in which it			
		diffe	ers from the compound formed between X and Z.	(01 mark)			
3.	a)	State the conditions under which oxygen can react with					
		i)	Sulphur	(0 ½ mark)			
		ii)	Copper	(0 ½ mark)			
	b)	Write equation for the reaction between oxygen and					
		i)	Sulphur	(1 ½ marks)			
		ii)	copper	(1 ½ marks)			
	c)	i)	State which one of the compounds formed in b(i) and	(ii) will react with			
			dilute hydrochloric acid,	(1 ½ marks)			
		ii)	Give a reason for your answer in c(i)	(0 ½ mark)			
4.	a)	A mixture of iron fillings and sulphur was heated strongly. Write equation for the					
		react	tion that took place.	(1 ½ marks)			
	b)	Dilu	te sulphuric acid was added to the product in (a)				
		i)	State what was observed.	(01 mark)			
		ii)	Write equation for the reaction that took place.	(1 ½ marks)			
	c)	One	of the substances formed in reaction b(ii) pollutes air.				
		i)	Identify the substance.	(0 ½ mark)			
		ii)	Give one reason why the substance pollutes air.	(0 ½ mark)			
5.	Amn	nonia re	eacts with oxygen in the presence of hot platinum to prod	uce a colourless gas			
	X, w	hich ev	entually gives brown fumes.				
	a)	Iden	tify X.	(0 ½ mark) Page 11 of 30			

	b)	Writ	Write equation to show the formation of					
		i)	X	(1 ½ mark)				
		ii)	the brown fumes	(01 mark)				
	c)	State	e the					
		i)	role of platinum	(0 ½ mark)				
		ii)	industrial application of the reaction in (b)	(0 ½ mark)				
6.	A gas	A gaseous organic compound J contains 82.76% carbon, the rest being hydrogen.						
	a)	To w	(01 mark)					
	b)	Calc	ulate the empirical formula of J ($H = 1, C = 12$)	(2 ½ marks)				
	c)	140c	em3 of J weighed 0.363g at s.t.p. Determine the molecular t	formula of J.				
		(1 m	nole of a gas occupies 22400cm ³ at s.t.p)	(2 ½ marks)				
7.	State	what v	would be observed and write ionic equation for the reaction	that would take				
	place	if hydi	rogen chloride was bubbled through aqueous					
	a)	Sodi	um hydrogen carbonate					
		i)	Observation	(0 ½ mark)				
		ii)	Equation	(1 ½ marks)				
	b)	Silve	er nitrate					
		i)	observation	(0 ½ mark)				
		ii)	equation	(1 ½ marks)				
8	a)	i)	Name one process by which ethanol can be produced fro	m sugar.				
				$(0 \frac{1}{2} \text{ mark})$				
		ii)	Write equation for the production of ethanol by the process	ess you have				
			named in a(i)	(01 mark)				
	b)	Ethanol can be converted to ethene by dehydration.						
		i)	State the conditions under which the reaction takes place	e. (1 ½ marks)				
		ii)	Write equation for the reaction leading ot he formation of	f ethene from				
			ethanol.	(01 mark)				
	c)	Wri	te equation for the reaction between ethene and bromine.	(01 mark)				
9.	a)	State	e what is meant by the term enthalpy of combustion.	(01 mark)				
	b)	Carb	on burns in oxygen according to the following equation.					
		C(s)	+ $O_{2(g)}$ \longrightarrow $CO_{2(g)}$: $\Delta H = -393 \text{kJmol}^{-1}$					
		Calc	ulate the					
		i)	amount of heat evolved when 3.6g of carbon is burnt cor	npletely in				
			oxygen. ($C = 12$)	(02 marks) Page 12 of 30				

		ii)	volume of oxygen at s.t.p that would be required to produc	ce 78.6kg of		
			heat. (1 mole of gas occupies 22.4dm3 at s.t.p)	(02 marks)		
10.	Nam	ne one r	eagent that can be used o differentiate between the following	pairs of ions		
	and i	n each	case state what would be observed when each of the ions is to	reated separately		
	with	the reas	gent you have named.			
	a)	HCC	$O_{3 \text{ (aq)}}$ and $CO^{2}_{3 \text{ (aq)}}$			
		i)	Reagent	(01 mark)		
		i)	Observation	(01 mark)		
	b)	Pb ³⁺	(aq) and $Zn^{2+}(aq)$			
		i)	Reagent	(01 mark)		
		ii)	observation	(01 mark)		
	c)	SO_4^2	and Cl-(aq)	(01 mark)		
		i)	Reagent	(01 mark)		
		ii)	Observation	(01 mark)		
			SECTION B (30 MARKS)			
			Answer any two questions from this section			
11.	a)	Distinguish between the terms anode and cathode. (02 ma				
	b) Explain why copper (II) chloride in solid form does not conduct electric					
		wher	reas in molten form it does. (2 ½ marks)			
	c)	A dil	lute solution of copper (II) chloride was electrolyzed using gr	raphite as		
		elect	rodes			
		i)	State what was observed at the cathode.	(01 mark)		
		ii)	Write equation for the reaction the anode and cathode resp	pectively.		
				(2 ½ marks)		
	d)	Desc	ribe how the product at the anode can be identified.	(02 marks)		
	e)	The	electrolysis of dilute copper (II) chloride was repeated for so	metime using		
		copp	er instead of graphite as electrodes.			
		i)	State what was observed at the anode and cathode respect:	ively. (02 marks)		
		ii)	Write equation to support your observation at the anode.	(01 mark)		
	f)	State	one factor other than change of electrodes from graphite to	copper that		
		woul	d affect the products of electrolysis of copper (II) chloride so	olution and		
		indic	ate how it would affect the process.	(02 marks)		
12.	a)	Desc	ribe how a dry sample of hydrogen can be prepared in the lal	boratory.		
		(Diag	gram is not required.)	(4 ½ marks) Page 13 of 30		

	b)	Hydro	ogen burns in air to form liquid L			
		i)	identify L	(01 mark)		
		ii)	Name a reagent that can be used to test for L and state what	nt would be		
			observed if L was treated with the reagent you have name	d. (02 marks)		
	c)	Write	equation to show the reaction of hydrogen with chlorine.	(1 ½ marks)		
	d)	State	the condition(s) under which hydrogen can react with copper	r(II) oxide and		
		write equation for the reaction				
	e)	Hydrogen reacts with iron (II, III) oxide according to the following equation.				
		$Fe_3O_{4(s)} + 4H_{2(g)} \longrightarrow 3Fe_{(s)} + 4H_2O_{(l)}$				
		Calcu	late the volume of hydrogen measured at room temperature	that would be		
		requir	red to produce 3.36g of iron. (Fe = 56, 1 mole of gas occupie	s 24dm3 at		
		room	temperature.	(5 ½ marks)		
	f)	State	one industrial use of hydrogen.	(01 mark)		
13.	a)	Aluminium oxide is an amphoteric oxide				
		i)	Define the term amphoteric oxide	(01 mark)		
		ii)	Write equation to show the reaction of aluminium oxide w	ith dilute nitric		
			acid.	(1 ½ marks)		
		iii)	Give two examples of amphoteric oxides other than alumin	nium oxide.		
				(01 mark)		
	b)	i)	With the aid of an equation, describe how a pure dry samp	le of aluminium		
			sulphate crystals can be prepared in the laboratory. Starting	ng from		
			aluminium oxide.	(06 marks)		
		ii)	Hydrated aluminium sulphate, Al ₂ (SO ₄) ₃ . nH ₂ O contains 9	9.7% of		
			aluminium. Calculate the value of n in the above formula.	(Al = 27, S =		
			32, O = 16, H = 1)	(2 ½ marks)		
	c)	i)	Name one reagent that can be used to distinguish between	aluminum ion		
			and lead (II) ions.	(0 ½ mark)		
		ii)	State what would be observed and write equation for the re-	eaction that		
			takes place if any, when the reagent you named in c(i) is t	reated		
			separately with aluminium ions and lead(II) ions.	(2 ½ marks)		
14.	Haem	atite is	one of the ores from which iron can be extracted.			
	a)	Write	the chemical formula of haematite	(0 ½ mark)		
	b)	Durin	a the extraction of iron roasted haematite is mixed with col	ze and		

into the furnace from the bottom. Write equation(s) for the reaction (s) in the blast furnace that leads to the i) formation of iron. (4 ½ marks) Explain the role of limestone. (4 ½ marks) ii) Write equation for the reaction of iron with c) Water (1 ½ marks) i) (1 ½ marks) ii) hydrochloric acid d) To the resultant mixture in reaction c(ii) was added dilute ammonia solution until the alkali was in excess. State what was observed and write equation for the reaction that took place. $(2 \frac{1}{2} \text{ marks})$ Paper 2 **SECTION A (50 MARKS)** Duralumin is an alloy of aluminium, copper and element D. Identify element D. a) i) $(0 \frac{1}{2} \text{ mark})$ ii) State one use of duralumin. $(0 \frac{1}{2} \text{ mark})$ Na\me the elements commonly used for making each of the following alloys and b) in each case give one use of the alloy. i) Steel Element (01 mark) $(0 \frac{1}{2} \text{ mark})$ Use Solder ii) Element (01 mark) Use $(0 \frac{1}{2} \text{ mark})$ c) Some two reasons why alloys are commonly used instead of pure elements. (01 mark) Hydrochloric acid reacts with sodium sulphite to form a gas Q. Identify Q. (01 mark) a) State the conditions under which the reaction takes place. (01 mark) b) Write an ionic equation for the reaction leading to the formation of Q. c) (1 ½ marks) d) i) Name one reagent that can be used to identify Q. $(0 \frac{1}{2} \text{ mark})$ Page **15** of **30**

2015

1.

2.

limestone. The mixture is fed into the blast furnace and a blast of hot air blown

		ii)	State what would be observed if Q was tested with the rea	igent you have
			named in d(i).	(01 mark)
3.	The 1	nolecul	ar formula of an organic compound J is C ₃ H ₈ .	
	a)	i)	Write the structural formula of J.	(01 mark)
		ii)	Name J	(01 mark)
		iii)	Name the group of organic compounds to which J belongs	s. (01 mark)
	b)	It is 1	not wise to burn J in a living room with closed windows and	doors. Give a
		reasc	on.	(01 mark)
	c)	State	one use of J.	(0 ½ mark)
4	a)	i)	Name two substances from which nitric acid can be prepa	red in the
			laboratory.	(02 marks)
		ii)	Write an equation for the reaction between the substances	you have named
			in c(i)	(1 ½ marks)
	b)	Write	e an equation for the reaction between fuming nitric acid and	l copper.
				(1 ½ marks)
5.	a)	Soot	is form of carbon.	
		i)	Write an equation for the complete combustion of soot in	oxygen.
				(01 mark)
		ii)	Calculate the volume of gas produced at room temperatur	e, when 0.6g of
			soot is burnt in excess oxygen. ($C = 12$, 1 mole of a gas of	ccupies 24.0dm ³
			at room temperature)	(02 marks)
		iii)	Deduce the volume of the gas that would be produced at r	room temperature
			if the same mass of graphite was burnt in excess oxygen.	$(0 \frac{1}{2} \text{ mark})$
		iv)	Give a reason for your answer in a(iii).	(01 mark)
	b)	State	one industrial use of graphite.	$(0 \frac{1}{2} \text{ mark})$
6.	a)	Write	e an equation to show the reaction that would take place lead	ling to the
		form	ation of hydrogen if	
		i)	acidified water was electrolyzed	(01 mark)
		ii)	potassium was added to water.	(1 ½ marks)
	b)	Dry l	hydrogen was passed over strongly heated copper(II) oxide.	
		i)	State what was observed.	(1 ½ marks)
		ii)	Write an equation for the reaction that took place.	(1 ½ marks)
		iii)	Name one non metallic substance that would react with co	opper (II) oxide
			in a similar way to hydrogen.	(0 ½ mark)

- 7. When excess iron fillings were added to 200cm³ of a 0.5M copper (II) sulphate solution in a plastic cup, the temperature of the solution rose by 17.9°C.
 - a) Write an ionic equation for the reaction that took place. $(1 \frac{1}{2} \text{ marks})$
 - b) Suggest a reason why a plastic cup was used instead of a metallic cup. (0 ½ mark)
 - c) i) Calculate the enthalpy change for the reaction between iron fillings and copper (II) sulphate solution (O = 16, S = 32, Fe = 56, Cu = 64, the density of water = 1gcm-3 and the specific heat capacity of water = $4.2 \, \text{Jk}^{-1}$) (02 marks)
 - ii) State any assumption(s) you have made in the calculation in c(i) (01 mark)

8 During the manufacture of sodium hydroxide, concentrated sodium chloride solution is electrolyzed using mercury as the cathode.

- a) i) Name the substance that is used as the anode. $(0 \frac{1}{2} \text{ mark})$
 - ii) Give a reason for the choice of the substance (01 mark)
 - iii) Identify the product collected at the anode. (0 ½ mark)
- b) During the electrolysis, sodium amalgam is formed at the cathode
 - i) State how sodium amalgam is converted to sodium hydroxide. (0 ½ mark)
 - ii) Write an equation for the reaction leading to the formation of sodium hydroxide. $(1 \frac{1}{2} \text{ marks})$
- c) State one industrial use of sodium hydroxide. (0 ½ mark)
- 9 Curve Y in the diagram below shows the results that were obtained during the investigation of the rate of the reaction between iron and dilute hydrochloric acid under normal conditions. Curves X and Z were obtained when some conditions of the experiment were changed.

- a) i) List three conditions that were changed to obtain curve X. (03 marks)
 - ii) State what point M represents. (0 ½ mark)

	b)	Some conditions you have listed in a(i) were changed to obtain curve Z.				
		i)	State the conditions changed.	(01 mark)		
		ii)	Give a reason for your answer.	(01 mark)		
10.	a)	Dilut	te ammonia solution was added to a solution containing lead	d (II) ions. Write		
		an io	nic equation for the reaction that took place.	(01 mark)		
	b)	To th	ne resultant mixture in (a) was added dilute sodium hydroxid	de solution drop		
		wise	until in excess.			
		i)	State what was observed.	(01 mark)		
		ii)	Give a reason for your answer in b(i)	(01 mark)		
	c)	Zinc	powder was added to an aqueous solution of lead (II) nitrat	e and the mixture		
		allow	ved to stand			
		i)	Write an equation for the reaction that took place.	(01 mark)		
		ii)	State any conclusion that can be drawn from the equation	n you have written		
			in c(i)	(01 mark)		
			SECTION B (30 MARKS)			
			Answer two questions from this section			
11.	a)	i)	Name the fundamental particles in an atom and in each c	ase state the type		
			of charge on the particle.	(03 marks)		
		ii)	Draw a labeled diagram to show the location of the partic	cles in an atom.		
				(02 marks)		
	b)	The 1	full symbols of atoms of elements Q and R are 23Q and 35	•		
		Write		(03 marks)		
	c)	Nam	e the type of bond that would be formed between			
		i)	two atoms of R	$(0 \frac{1}{2} \text{ mark})$		
		ii)	an atom of R and an atom of Q.	(0 ½ mark)		
	d)	i)	With the aid of diagrams describe how the bond you hav	e named in (b) are		
			formed.	(05 marks)		
		ii)	State one property of the compound formed between Q a	and R. (01 mark)		
12.	a)	Brief	fly describe how a dry sample of hydrogen chloride can be p	orepared in the		
		labor	ratory. (Diagram is not required)	(5 ½ marks)		
	b)	Hydr	rogen chloride was bubbled through a solution of lead (II) n	itrate		
		i)	State what was observed and explain your answer.	(2 ½ marks)		
		ii)	Write an equation for the reaction that took place.	(1 ½ marks)		

		metal surfaces (pickling). Explain why concentrated nitric acid is not used for the				
		same	e purpose.	(1 ½ marks)		
	d)	A sa	mple of hydrogen chloride gas was dissolved in water to ma	ake 250cm ³ of		
		solut	cion. 25.0cm3 of this solution required 46cm3 of 2M sodium	n hydroxide for		
		comp	plete neutralization. Determine the mass of hydrogen chlor	ide that was		
		disso	olved to make 250cm^3 of solution. (H = 1, Cl = 35.5)	(04 marks)		
13.	a)	Calc	ium nitrate was strongly heated.			
		i)	State what was observed.	(1 ½ marks)		
		ii)	Write equation for the reaction that took place.	(1 ½ marks)		
		iii)	Name a gas that can be dried using the solid residue.	(01 mark)		
		iv)	Calculate the total gaseous products formed at room tem	perature when		
			4.5g of calcium nitrate is heated strongly. ($N = 14$, $O = 1$	16, Ca = 40, 1		
			mole of a gas occupies 24.0dm ³ at room temperature)	(03 marks)		
	b)	The	residue in (a) was dissolved in water. Write equation for th	e reaction that		
		took	place.	(1 ½ marks)		
	c)	Exce	ess carbondioxide was bubbled through the solution in (b).	State		
		i)	what was observed and write the equation(s) for the reac	ction(s) that took		
			place.	(4 ½ marks)		
		ii)	one application of this reaction in gas analysis.	(01 mark)		
	d)	To th	ne solution in (b) soap solution was added. State what was	observed.		
				(01 mark)		
14.	a)	Desc	cribe how pure sugar can be obtained from sugar cane on in	dustrial scale.		
		(Diag	gram not required)	(07 marks)		
	b)	Suga	ar can be converted in the presence of an enzyme to ethanol	. Name the		
		i)	process leading to the formation of ethanol.	(01 mark)		
		ii)	enzyme used in the process.	(01 mark)		
	c)	Write	e an equation for the reaction that leads to the formation of	ethanol.		
				(01 mark)		
	d)	Whe	n concentrated sulphuric acid was added to sugar, a black s	olid was formed.		
		Expl	ain what took place and illustrate your answer with an equa	ation.		
	e)	State	e one use of			
		i)	sugar	(01 mark)		
		ii)	ethanol	(01 mark) Page 19 of 30		

Concentrated hydrochloric acid is commonly used for removing oxides from

c)

SECTION A (50 MARKS)

1.	A sn	nall am	ount of ethanol was added to a large amount of water and	the mixture shaken
	a)	State	e what was observed.	(0 ½ mark)
	b)	In th	e mixture in (a), state which one of the components is the	
		i)	Solute	(0 ½ mark)
		ii)	Solvent	(0 ½ mark)
	c)	Nam	e the method that would be used to separate the mixture for	formed in (a).
				(0 ½ mark)
	d)	In an	nother experiment, simsim oil was shaken with water.	
		i)	State what was observed.	(0 ½ mark)
		ii)	Give a reason for your answer in d(i)	(01 mark)
		iii)	Name the piece of apparatus that would be used to sepa	arate the mixture.
				(0 ½ mark)
2.	The	atomic 1	numbers of elements Q, R and T are 6, 17 and 19 respective	vely.
	a)	Write	e the electronic configuration of	
		i)	Q	(0 ½ mark)
		ii)	R	(0 ½ mark)
		iii)	Т	(0 ½ mark)
	b)	R rea	acted separately with Q and T to form compound X and Y	respectively. State
		the ty	ype of bond that exists in compound.	
		i)	X	(01 mark)
		ii)	Y	(01 mark)
	c)	Ident	tify which one of the components in (b) would be soluble	in
		i)	Water	(0 ½ mark)
		ii)	petrol	(0 ½ mark)
3.	a)	Sodi	um metal was burnt in excess oxygen	
		i)	State what was observed	(01 mark)
		ii)	Write the equation for the reaction that took place.	(1 ½ marks)
	b)	Wate	er was added to the product in (a)	
		i)	State what was observed.	(01 mark)
		ii)	Write the equation for the reaction that took place.	(1 ½ marks)
4.	a)	A mi	ixture of magnesium powder and lead(II) oxide was heated	d strongly until Page 20 of 30

- ii) Write equation for the reaction between the solid product in a(i) and dilute sulphuric acid. (1 ½ marks)
- b) Chlorine was bubbled through the product in a(i)
 - i) State what was observed. (01 mark)
 - ii) Write ionic equation for the reaction that took place. (1 ½ marks)
- 9 a) Write equation for the complete combustion of methane. (1 ½ marks)
 - b) 0.12dm³ of methane was completely burnt in air. Calculate the
 - i) volume of oxygen at s.t.p that would be required for the complete combustion of methane. (02 marks)
 - ii) quantity of heat that would be liberated during the reaction. (One mole of methane completely burns to give 890-KJ of heat: one mole of gas occupies 22.4dm3 at s.t.p)

 (1 ½ marks)
- 10. a) Both copper wire and copper (I) sulphate conduct electric current. Name the particles which conduct electric current in
 - i) copper wire (0 ½ mark)
 - ii) aqueous copper(II) sulphate (0 ½ mark)
 - b) The set up of apparatus in the diagram below was used to find out what happens when an electrolyte is connected to a source of electric current.

State what was observed.

- i) when the switch was closed $(0 \frac{1}{2} \text{ mark})$
- ii) if copper (II) sulphate crystal was replaced with potassium manganate (VII) crystal and the switch closed once again. (01 mark)
- c) i) Give a reason for the observation you have made in b(i) and (i). (01 mark)
 - ii) State any general conclusion that can be drawn following the reason you have given in c(i) (01 mark)

SECTION B

Answer any two questions from this section .

11.	a)	i)	With the aid of a labeled diagram, explain how a pure dry	y sample of			
			sulphur dioxide can be prepared in the laboratory using sodium sulphite				
			and sulphuric acid.	(05 marks)			
		ii)	Write an equation for the reaction leading to the formation	n of sulphur			
			dioxide.	(1 ½ marks)			
	b)	Name one reagent that would be used to confirm the presence of sulphur dioxide					
		and state what would be observed if the reagent you have named was treated with					
		sulph	ur dioxide.	(02 marks)			
	c)	Write an equation to show the reaction between sulphur dioxide and					
		i)	water	(1 ½ marks)			
		ii)	oxygen in the presence of hot platinum.	(1 ½ marks)			
	d)	The product of the reaction in c(ii) was mixed with water and barium nitrate					
		soluti	ion added to the resultant mixture				
		i)	State what was observed.	(01 mark)			
		ii)	Explain what took place (No equation required)	(2 ½ marks)			
12.	a)	State	the difference between the following pairs of terms:				
		i)	Synthetic polymer and natural polymer	(02 marks)			
		ii)	Thermosetting polymer and thermo softening polymer (o	r thermoplastic)			
				(03 marks)			
	b)	i)	State the conditions under which sulphuric acid can react	with ethanol to			
			produce ethene.	(1 ½ marks)			
		ii)	Write an equation leading to the formation of ethene.	(01 mark)			
	c)	When	n reacted together, ethene molecules can form a polymer				
		i)	Name the polymer.	(01 mark)			
		ii)	Write an equation leading to the formation of the polyme	r. (01 mark)			
		iii)	State one use of the polymer.	(01 mark)			
	d)	Name	e one				
		i)	synthetic polymer other than the one you have named in	(c) (01 mark)			
		ii)	natural polymer other than rubber.	(01 mark)			
	e)	State	one				
		i)	use of each of the polymers you have named in (d)	(02 marks) Page 23 of 30			

13.	a)	Chlori	ine can be prepared in the laboratory using potassium manga	anate(VII)
		KMnO	O_4	
		i)	Name one substance that reacts with potassium manganate	(VII) to
			produce chlorine.	(01 mark)
		ii)	State the condition for the reaction	(01 mark)
		iii)	Write an equation for the reaction leading to the formation	of chlorine.
				(1 1½ marks)
	b)	Damp	blue litmus paper was dropped in a gas jar containing chlori	ine. State what
		was ol	bserved and explain your observation(s).	(03 marks)
	c)	A boil	ing tube filled with chlorine water was inverted into a beake	r containing
		chlorin	ne water and exposed to sunlight for sometime.	
		i)	State what was observed.	(0 ½ mark)
		ii)	Explain with the aid of equation(s), your observation(s) in	c(i) (03 marks)
	d)	Write	an equation show how chlorine can react with	
		i)	dilute potassium hydroxide solution.	(1 ½ marks)
		ii)	turpentine C ₁₀ H ₁₆ .	(1 ½ marks)
	e)	Briefly	y describe a test you would carryout to confirm the presence	of chloride ion
		in solu	ation. State what would be observed and write an equation f	or the reaction
		that w	ould take place.	(2 ½ marks)
14.	a)	Write	an equation for the reaction between oxygen and	
		i)	ammonia in the presence of hated platinum.	(1 ½ marks)
		ii)	nitrogen monoxide.	(1 ½ marks)
	b)	State l	now the product in a(ii) can be converted to nitric acid.	(1 ½ marks)
	c)	Write	an equation and state the conditions for the reaction between	n nitric acid and
		i)	sulphur	(2 ½ marks)
		ii)	lead (II) oxide	(2 ½ marks)
	d)	In each	h case, state what was observed and write an equation for the	e reaction that
		took p	lace when, sodium nitrate was heated strongly	
		i)	alone	
		ii)	as a mixture with concentrated sulphuric acid.	(5 ½ marks)

disadvantage of the polymer formed in c(ii)

ii)

(0 ½ mark)

SECTION A

Answer all questions in this section

1	Tea was 1	nlaced in a	cup of hot water	and allowed to stand
1.	1 ca was	praceu iii a	cup of not water	and anowed to stand

a) State what was observed.

(01 mark)

b) Name the process that occurred.

(01 mark)

c) State what the process you have named in (b) demonstrates.

(02 marks)

2. The number of protons, electrons and neutrons in some particles (ions and atoms) A, B, E, G, H and F are shown in the table below.

		Particles					
	A	D	Е	G	Н	F	
Protons	6	8	13	11	8	17	
Electrons	6	8	10	11	8	18	
Neutrons	6	8	14	12	10	18	

- a) Identify which one of the particles is
 - i) an anion

(01 mark)

ii) a cation

b)

(01 mark)

- b) State two particles which are atoms of the same element.
- (01 mark)
- c) State the type of bond formed when particle A, combines with particle H.

(01 mark)

- d) Write the formula of the ion formed from particle G.
- (01 mark)
- 3. When hydrogen peroxide is exposed to sunlight, it composes to give a colourless gas.
 - a) i) Write equation for the reaction that takes place.

(1 ½ marks)

- ii) Calculate the volume of the gas that would be evolved at room temperature when 20g of hydrogen peroxide decomposes completely at room temperature. (02 marks)
- i) State what would be observed if manganese (IV) oxide was added to the hydrogen peroxide. (01 mark)
 - ii) Give a reason for your answer in b(i)

(01 mark)

4.	Calcium dihydrogen phosphate is more used in agriculture as a source of phosphorus for						
	plan	plant nutrients than calcium phosphate					
	a)	Writ	e the formula of				
		i)	calcium dihydrogen phosphate.	(01 mark)			
		ii)	calcium phosphate	(01 mark)			
	b)	i)	Calculate the percentage of phosphorous in calcium pl	nosphate. (02 marks)			
		ii)	Suggest a reason why calcium dihydrogen phosphate i	s used more in			
			agriculture than calcium phosphate.	(0 ½ mark)			
	c)	Writ	e an ionic equation to show how calcium phosphate can b	e prepared in the			
		labo	ratory.	(1 ½ marks)			
5.	Steam	m was p	passed over heated magnesium				
	a)	i)	State what was observed.	(01 mark)			
		ii)	Write equation for the reaction that took place.	(1 ½ marks)			
	b)	To th	ne solid produced in a(ii) was added dilute hydrochloric a	eid			
		i)	State what was observed.	(01 mark)			
		ii)	Write equation for the reaction that took place.	(1 ½ marks)			
6.	Whe	n a blac	ek solid, X was dissolved in warm dilute hydrochloric acid	d, a gas that smelt			
	like a rotten egg was evolved and a green solution was formed. The solution when						
	treat	ed with	aqueous sodium hydroxide formed a dirty green precipita	ate, Y which turned			
	redd	ish brov	vn on standing in air.				
	a)	a) Identify					
		i)	the anion in X.	(0 ½ mark)			
		ii)	the cation in X.	(0 ½ mark)			
	b)	i)	Name Y.	(01 mark)			
		ii)	Write equation for the reaction which led to the format	tion of Y.			
				(1 ½ marks)			
	c)	State	why Y turned reddish brown on standing in air.	(01 mark)			
7	The	general	formula of compounds Q and r are C_nH_{2n} and C_nH_{2n+2} re	espectively.			
	a)	Writ	e the molecular formula and the name of Q and r for $n=2$	2			
		i)	Q: formula	(0 ½ mark)			
			Q: Name	(0 ½ mark)			
		ii)	R: formula	(0 ½ mark)			
			R: Name	(0 ½ mark)			
	b)	State	e the structural difference between Q and R.	(01 mark)			

	c)	i)	Name a reagent can be used to distinguish Q and R.	(0 ½ mark)
		ii)	State what would be observed if the reagent you have na	med in c(i) was
			treated separately with Q and R.	(1 ½ marks)
		iii)	Write equation for any reaction that would take place to	illustrate your
			observation in c(ii).	(01 mark)
8	In ord	er to ill	ustrate a redox reaction, zinc was added to copper (II) sulp	ohate solution and
	the se	t up left	to stand for sometime.	
	a)	State	what was observed.	(01 mark)
	b)	State	the substance that was:	
		i)	oxidized	(01 mark)
		ii)	reduced	(01 mark)
	c)	Name	one other substance that would react with copper (II) sulp	ohate in a similar
		way li	ike zinc.	(0 ½ mark)
9.	An aq	ueous s	solution of potassium iodide was electrolyzed between carl	bon electrodes.
	a)	State	what was observed at the anode.	(01 mark)
	b)	i)	Name the product formed at the cathode.	(0 ½ mark)
		ii)	Describe the test that can be carried out to identify the pa	roduct at the
			cathode.	(01 mark)
	c)	Litmu	s paper was dropped into the solution around the cathode	at the end of the
		experi	iment.	
		i)	State what was observed.	(01 mark)
		ii)	Give a reason for your answer in c(i).	(01 mark)
10.	90cm ³	³ of 0.11	M calcium hydroxide solution was added to a sample of w	ater containing
	0.01 n	noles of	f calcium hydrogen carbonate	
	a)	State	what was observed.	(0 ½ mark)
	b)	Write	equation for the reaction which took place.	(1 ½ marks)
	c)	Calcu	late the number of moles of calcium ions in the 90cm ³ of	0.1M calcium
		hydro	xide.	(1 ½ marks)
	d)	i)	State what would be observed if soap solution was added	d to a sample of
			the water after the addition of calcium hydroxide.	(0 ½ mark)
		ii)	Give a reason for your observation in d(i)	(01 mark)

SECTION B

Answer two questions from this section.

11.	a)	Describe how a pure dry sample of chlorine can be prepared in the laboratory				
		from	potassium manganate (VII) crystals (Your answer shou	ald include a well		
		label	ed diagram and equation for the reaction)	(06 marks)		
	b)	State	what would be observed if chlorine was bubbled throu	gh a:		
		i)	blue litmus solution	(01 mark)		
		ii)	potassium bromide solution	(01 mark)		
		iii)	Solution of iron (II) ions	(01 mark)		
	c)	Write	e equation for the reaction in b(ii) and (iii)	(03 marks)		
	d)	Write	e equation for the reaction between chlorine and			
		i)	heated iron	(1 ½ marks)		
		ii)	cold dilute sodium hydroxide solution.	(1 ½ marks)		
12.	a)	Nitro	gen can react with hydrogen in the presence of catalyst	which is finely		
		divid	led to form ammonia in the Haber process.			
		i)	State the source of nitrogen	(0 ½ mark)		
		ii)	Name the catalyst used in the reaction	(0 ½ mark)		
		iii)	Explain why the catalyst is finely divided	(1 ½ marks)		
		iv)	Write equation for the reaction leading to the format	ion of ammonia.		
				(01 mark)		
	b)	Write	e equation for the reaction to show that ammonia can:			
		i)	act as a reducing agent	(1 ½ marks)		
		ii)	burn in oxygen	(1 ½ marks)		
	c)	Ammonia obtained by the Haber process can be converted to nitrogen (II) oxide.				
		i)	Write equation for the reaction leading to the conver	sion of ammonia to		
			nitrogen (II) oxide.	(1 ½ marks)		
		ii)	State the conditions for the reaction.	(01 mark)		
	d)	Write	e equation(s) to show nitrogen (II) oxide can be convert	ed to nitric acid.		
				(03 marks)		
	e)	Whe	n aqueous ammonia was added drop wise until in exces	s to a solution of		
		copp	er (II) nitrate a blue precipitate, P which dissolved in ex	ccess ammonia to give		
		a dee	p blue solution was formed			
		i)	Identify P.	(01 mark)		
		ii)	Write the formula and name of the cation in the deep	blue solution.		

(0	1	mark	١
١.	v	1	mun	,

- 13. a) i) Write equation for the reaction that can take place between zinc oxide and dilute nitric acid. (1 ½ marks)
 - ii) Briefly describe how dry crystals of the product of the reaction in a(i) can be obtained in the laboratory (3 ½ marks)
 - b) State what would be observed and write equation for the reaction that would take place if:
 - i) the crystals in a(ii) were heated. (3 ½ marks)
 - ii) to the solution of the crystals in a(ii) was added few drops of aqueous ammonia. (02 marks)
 - c) Excess silver nitrate solution was added to a solution containing 2.72g of zinc chloride.
 - i) State what was observed. (0 ½ mark)
 - ii) Write equation for the reaction that took place. (01 mark)
 - iii) Calculate the mass of silver that was used in the reaction. (Relative formula mass of zinc chloride = 136) (03 marks)
- 14. Sodium thiosulphate reacts with dilute acids according to the following equation.
 - a) State what would be observed if dilute hydrochloric acid was added to sodium thiosulphate solution. (0 $\frac{1}{2}$ mark)
 - b) The rate of the reaction is affected by the concentration of sodium thiosulphate.
 - i) State one factor other than concentration that can affect the rate of the reaction. (0 $\frac{1}{2}$ mark)
 - ii) Briefly explain the effect of the factor you have stated in b(i) on the rate of the reaction. (02 marks)
 - iii) Describe an experiment that can be carried out in the laboratory to show the effect of the factor you have stated in b(i) on the rate of the reaction.

 (Diagram not required) (6 ½ marks)

c) The table below shows the variation in the concentration of sodium thiosulphate with time.

Time(s)	200	100	40	20	10
Concentration of thiosulphate (moldm ⁻³)	0.05	0.09	0.15	0.20	0.25
1/concentration of thiosulphate (moldm ⁻³)					

- i) Determine the values for 1/concentration of sodium thiosulphate, copy the table and enter your answers in the spaces provided in the table. (01 mark)
- ii) Plot the graph of 1/concentration of thiosulphate (Vertical axis) against time(horizontal axis) (03 marks)
- iii) State any conclusion that can be drawn from the shape of the graph. (1 $\frac{1}{2}$ marks)

E N D