Math 210C Algebra: Final

June 12th, 2019

Professor Sharifi

Anish Chedalavada

Problem 2

Consider the following diagram where the two longest rows are exact:

WTS \exists an exact sequence of the form:

$$0 \longrightarrow im \ \overline{g} \longrightarrow ker \ \overline{h} \longrightarrow ker \ \overline{f} \longrightarrow 0$$

Proof. Note that $h \circ g = 0$ by exactness, and thus $h \circ g|_{\ker \beta} : \ker \beta \to D = 0$, implying that $\overline{h} \circ \overline{g} : \ker \beta \to D = 0$ ker δ is the zero map, i.e. that $im \overline{q} \subset ker \overline{h}$. Thus, we have an exact sequence of the form $0 \to im \overline{q} \to ker \overline{h}$ via the first isomorphism theorem. Now, we define a map $\delta : \ker \overline{h} \to \ker \overline{f}'$ in the following manner: We note firstly that $\ker \overline{h} \hookrightarrow \ker h \subset C$ by definition. Let $a \in \ker \overline{h} \implies a \in \operatorname{im} g$ by exactness. Thus, we may select a representative in the q-preimage of $a, \tilde{a} \in B$ (Note: from here onwards the tilde is used as notation for selecting a representative in the g-preimage of some element). Applying β , we have that $\beta(\widetilde{a}) \in \ker q'$ as $q' \circ \beta(\widetilde{a}) = \gamma \circ q(\widetilde{a}) = \gamma(a) = 0$. By exactness and the fact that f' is monic, we have a unique representative $f'^{-1}(\beta(\widetilde{a})) \in A'$. From here, we may apply π_{α} , and clearly $\pi(f'^{-1}(\beta(\widetilde{a}))) \in A' \in \ker \overline{f}'$ as $\overline{f}(\pi(f'^{-1}(\beta(\widetilde{a})))) = \pi_{\beta}(\beta(\widetilde{a})) = 0.$

We must now show that this is a well-defined process. Let $a = b \in \ker \overline{h}$. Let $\widetilde{a}, \widetilde{b} \in B$ be lifts in the g-preimage of a, b. We have that $g(\widetilde{a} - \widetilde{b}) = a - b = 0 \implies \widetilde{a} - \widetilde{b} \in \ker g = im f$. Let $k = f^{-1}(\widetilde{a} - \widetilde{b})$, which is well-defined as f monic. W.h.t. $\beta \circ f(k) = f' \circ \alpha(k)$ so $f'^{-1}(\beta(f(k))) = \alpha(k)$. As $\pi_{\alpha}(f'^{-1}(\beta(f(k)))) = \pi_{\alpha}(\alpha(k)) = 0 \implies \pi_{\alpha}(f'^{-1}(\beta(\widetilde{a} - \widetilde{b}))) \implies \pi_{\alpha}(f'^{-1}(\beta(\widetilde{a}))) - \pi_{\alpha}(f'^{-1}(\beta(\widetilde{b}))) = 0$ and thus that $a = b \implies \pi_{\alpha}(f'^{-1}(\beta(\widetilde{a}))) = \pi_{\alpha}(f'^{-1}(\beta(\widetilde{b})))$ for arbitrary choices of representatives. Note that this map respects the module structure on $\ker \overline{h}$ as for any $ra + sb \in \ker \overline{h}$, $a, b \in \ker \overline{h}$, $r, s \in R$, we may select a representative $r\tilde{a} + s\tilde{b} \in B$ in its preimage, and the rest of the maps are compositions of homomorphisms and so respect the module structure on B. Thus, we have a well defined homomorphism $\delta : \ker \overline{h} \to \ker \overline{f}' \text{ via } a \mapsto \pi_{\alpha}(f'^{-1}(\beta(\widetilde{a}))).$

Now we claim that the following sequence is exact, where as above the left inclusion is induced by the first isomorphism theorem.

$$0 \longrightarrow im \ \overline{g} \xrightarrow{\overline{g}} \ker \overline{h} \xrightarrow{\delta} \ker \overline{f} \longrightarrow 0$$

$$\ker \beta$$

Let $\xi \in im \ \overline{g}$. We may choose a lift $\widetilde{\xi} \in ker \ \beta \subset B$ in the preimage $g^{-1}(ker \ \gamma)$, which we earlier showed can be used in the map without altering well-definedness of δ . We have that $\pi_{\alpha}(f'^{-1}(\beta(\widetilde{\xi}))) = \pi_{\alpha}(f'^{-1}(0)) = 0$ and so $\xi \in ker \delta$.

Now conversely let $\zeta \in \ker \delta$. We have that $\pi_{\alpha}(f'^{-1}(\beta(\widetilde{\zeta}))) = 0 \implies f'^{-1}(\beta(\widetilde{\zeta})) \in \operatorname{im} \alpha$. This implies, in particular, that $\beta(\widetilde{\zeta}) \in f'(\operatorname{im} \alpha) = \beta(\operatorname{im} f) \implies \widetilde{\zeta} \in \operatorname{im} f + \ker \beta \implies \zeta = g(\widetilde{\zeta}) \in g(\ker \beta + \operatorname{im} f) = \operatorname{im} \overline{g}$ and so we have exactness in the middle.

The last order is to show that δ is surjective. Suppose $u \in \ker \overline{f}'$. Let $\mu \in A'$ be a representative in the π_{α} -preimage of u. We have that $f'(\mu) \in \beta(B)$ as $\overline{f}' \circ \pi_{\alpha}(\mu) = 0 = \pi_{\beta} \circ f'(\mu)$. Let $\widetilde{\mu}_{\beta} \in B$ be a representative in the β -preimage of $f'(\mu)$. We have that $\gamma \circ g(\widetilde{\mu}_b) = g' \circ \beta(\widetilde{\mu}_{\beta}) = g' \circ f(\mu) = 0 \implies g(\widetilde{\mu}_{\beta}) \in \ker \gamma$. Thus, $u = \pi_{\alpha}(f'^{-1}(\beta(\widetilde{\mu}_{\beta}))) = \delta(g(\mu_{\beta}))$ by definition $\Longrightarrow \delta$ is surjective. Thus,

$$0 \longrightarrow im \; \overline{g} \longrightarrow ker \; \overline{h} \stackrel{\delta}{\longrightarrow} ker \; \overline{f} \longrightarrow 0$$

is exact, yielding the result.