

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY, PRAYAGRAJ

Subject Code: BAS 103 Course: B.Tech. Subject: Engineering Mathematics- I SEMESTER: I

SECOND SESSIONAL EXAMINATION, ODD SEMESTER, (2024-2025)

Common To All

Time -2hrs

Maximum Marks - 45

THE RESERVE THE PERSON NAMED IN	mpt any FIVE questions.		17	
QN	QUESTION	Marks	CO	BL
a.	Expand 5 ^x up to the first three non-zero terms of the series.	• 2	CO3	L2
b.	Find the stationary points of $xy(a-x-y)$.	2	CO3	L1
c.	Verify $JJ'=1$ for the function: $x=u(1-v)$, $y=uv$.	2	CO3	L2
d.	Determine whether the following functions are functionally dependent or not. If so, find the relation between them. $u = e^x \sin y, v = e^x \cos y$	2	СОЗ	L1
e.	The diameter and height of a right circular cylinder are measured to be 5 and 8 inches respectively. If each of these dimensions were in error by 0.1 inch, find the % error in the volume of cylinder.	2	СОЗ	L2
f.	Find the possible % error in computing the parallel resistance R of two resistances R_1 and R_2 if R_1 , R_2 are each in error by 2%.	2	CO3	L1

2. Attempt any ONE of the following

QN	QUESTION	Marks	CO	BL
a.	Find Taylor's expansion of $f(x,y) = \cot^{-1} xy$ in power $(x+0.5)$ and $(y-2)$ up to second degree terms. Hence compute $f(-0.4, 2.2)$ approximately.	5	CO3	L3
b.	A rectangular box open at the top is to have a volume of 32 cubic units. Find the dimensions of the box requiring least material for its construction.	5	СОЗ	L4
c,	If u, v and w are the roots of the equations $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$ in λ , find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	5	СОЗ	L3

3 Attempt any FIVE questions.

Q N	QUESTION	Marks	CO	BL
a.	Evaluate $\iint \frac{xy}{\sqrt{1-y^2}} dx dy$ over the first quadrant of the circle	2	CO4	L2
b.	$x^{2} + y^{2} = 1.$ Evaluate $\int_{0}^{2} \int_{0}^{2} \int_{0}^{yz} xyzdxdydz.$	2	CO4	L2
c.	Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} f(x, y) dx dy.$	2	CO4	L1
d.	Given $\Gamma\left(\frac{8}{5}\right) = 0.8935$, find the value of $\Gamma\left(-\frac{12}{5}\right)$.	2	CO4	L1
e.	Prove that $B(m, n) = B(n, m)$.	2	CO4	L2
f.	Evaluate $\int_{0}^{1} x^{3} (1-\sqrt{x})^{5} dx$.	2	CO4	L2

4. Attempt any ONE of the following QUESTION Marks CO BL

8		*	-	8	n	Roll No.													
---	--	---	---	---	---	-------------	--	--	--	--	--	--	--	--	--	--	--	--	--

a.	Change the order of integration and evaluate $\int_{0}^{\infty} \int_{0}^{x} xe^{-\frac{x^{2}}{y}} dydx$.	5	CO4	L3
b.	Prove that $\int_{0}^{\pi/2} \tan^{n} x dx = \frac{\pi}{2} \sec\left(\frac{n\pi}{2}\right)$.	5	CO4	L4
c.	The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A, B and C. Apply Dirichlet's integral to find the volume of the tetrahedron OABC. Also find its mass if the density at any point is kxyz.	5	CO4	L4

Attempt any FIVE questions.

	mpt any FIVE questions.	Marks	CO	BL
QN	QUESTION			110
a.	Find unit vector normal to the surface $x^2y + 2xz^2 = 8$ at the point	2	CO5	L2
b.	Find curl curl $\vec{F} = (x^2 y)\hat{i} - (2xz)\hat{j} + (2yz)\hat{k}$ at the point (1,0,2).	2	CO5	L2
c.	If $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ is conservative, find its scalar potential ϕ .	2	CO5	L1
d.	Evaluate $\int_{c} (x^{2}\hat{i} + xy\hat{j})d\vec{r}$ along the parabola $y^{2} = x$ between the point (0,0) and (1,1).	2	CO5	L2
е.	Write the statement of Green's theorem.	2	CO5	L1
<u>c</u>	Write the statement of Gauss' divergence s theorem.	2	CO5	L1

nt any ONE of the following

	empt any ONE of the following OUESTION	Marks	CO	BL
QN	2 2 2 2 11			
a.	Find the directional derivative of $\phi = x^2 - y^2 + 2z^2$ at the point P (1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4). In what direction it will be maximum? Find the maximum value of it.	5	CO5	L3
b.	Show that $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.	5	CO5	L3
c.	Verify Stoke's theorem for the vector field $\vec{F} = (x^2 - y^2)\hat{i} + (2xy)\hat{j}$ in the rectangular region in the xy-plane bounded by the lines $x = -a$, $x = a$, $y = 0$, $y = b$.	5	CO5	L4

Bloom's Taxonomy Level (BL):-

Analyze (L4), Evaluating (L5),Understanding (L2), Apply (L3), Remember (L1), Creating (L6)