Algoritmos para MDP Prioritized Sweeping, LRTDP, LAO*

Valdinei Freire

(EACH - USP)

Exemplos

 Ações cardinais (N,S,L,O). Na linha "Det." as ações são deterministas. Na linha "Prob." as ações resultam com 0.5 de chance, caso contrário o agente fica parado. Custo de 1 por ação.

Prob.	s_{0}		G
Det.			

 Ações cardinais (N,S,L,O). As ações são deterministas, a menos do rio. No rio, as ações resultam com 0.5 de chance, caso contrário o agente volta para o estado inicial s₀.

s_0	rio	G

Iteração de Valor ($\gamma=1$)

1.00	1.00	1.00	1.00	0
1.00	1.00	1.00	1.00	1.00
2.00	2.00	2.00	1.50	0
2.00	2.00	2.00	2.00	1.00
3.00	3.00	2.75	1.75	0
3.00	3.00	3.00	2.00	1.00
4.00	3.88	3.25	1.88	0
4.00	4.00	3.00	2.00	1.00
	•	•		

3.56

3.00

1.94

2.00

0

1.00

4.56

4.00

4.94

5.00

5.75	5.06	3.75	1.97	0
5.00	4.00	3.00	2.00	1.00
6.38	5.41	3.86	1.98	0
5.00	4.00	3.00	2.00	1.00
6.69	5.63	3.92	1.99	0
5.00	4.00	3.00	2.00	1.00
6.84	5.78	3.96	2.00	0
5.00	4.00	3.00	2.00	1.00
6.92	5.87	3.98	2.00	0
5.00	4.00	3.00	2.00	1.00

Iteração de Valor ($\gamma=0.9$, custo nulo, $V_G=1$)

 $\begin{array}{c} 0.0000\ 0.0000\ 0.0000\ 0.4500\ 1.0000\\ 0.0000\ 0.0000\ 0.0000\ 0.0000\ 0.0000\\ 0.0000\ 0.0000\ 0.0000\ 0.0000\ 0.0000\\ 0.0000\ 0.0000\ 0.2025\ 0.6525\ 1.0000\\ 0.0000\ 0.0000\ 0.0000\ 0.8100\ 0.9000\\ 0.0000\ 0.0000\ 0.0000\ 0.8100\ 0.9000\\ 0.0000\ 0.0000\ 0.7290\ 0.8100\ 0.9000\\ 0.0410\ 0.2141\ 0.5078\ 0.7846\ 1.0000\\ 0.0000\ 0.6561\ 0.7290\ 0.8100\ 0.9000\\ 0.01148\ 0.3916\ 0.5816\ 0.8031\ 1.0000\\ 0.5905\ 0.6561\ 0.7290\ 0.8100\ 0.9000$

Prioritized Sweeping

Iteração de Valor

- Cada iteração atualiza todos estados
- Atualizações podem trazer pouca mudança

Prioritized Sweeping

- Cada iteração atualiza apenas um estado
- Estado escolhido por ordem de prioridade
- Ideia: Resíduo $\|V_k(s) V_{k+1}(s)\|$
- Convergência: evitar starvation (morte de fome)

Notação

Operador de Bellman aplicado a uma função valor V(s)

$$(\mathcal{T}V)(s) = \max_{a \in \mathcal{A}} \left\{ \sum_{s' \in \mathcal{S}} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right] \right\}.$$

Política gulosa (greedy) a partir de uma função valor V(s)

$$\pi^{V}(s) = \arg\max_{a \in \mathcal{A}} \left\{ \sum_{s' \in \mathcal{S}} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right] \right\}$$

Função Resíduo a partir de uma função valor V(s)

$$Res^{V}(s) = |(\mathcal{T}V)(s) - V(S)|$$

Prioritized Sweeping

- 1. inicializa $V_0(s)$ arbitrariamente
- 2. inicializa $H_0(s)$ arbitrariamente
- 3. faça para toda iteração $k \geqslant 0$
 - (a) escolha estado com maior prioridade:

$$s_k \leftarrow \arg\max_{s \in \mathcal{S}} H_k(s)$$

(b) aplica operador de Bellman em s_k

$$V_{k+1}(s_k) = (\mathcal{T}V_k)(s)$$

e mantém o valor para os outros estados $s \neq s_k \in \mathcal{S}$: $V_{k+1}(s) = V_k(s)$

- (c) para todo $s \neq s_k \in \mathcal{S}$ gere a nova função de prioridade $H_{k+1}(s)$ enquanto não atinge critério de parada
- 4. retorne a política π^V

Funções de Prioridade

Prioritized Sweeping

ullet Inicializa $H_0(s)$ aleatoriamente com números não negativos

• Para todo $s \in \mathcal{S}$:

$$H_{k+1}(s) = \left\{ \begin{array}{l} \max\{H_k(s), \Delta_k \cdot \max_{a \in \mathcal{A}} T(s_k|s,a)\}, & \text{se } s \neq s_k \\ \Delta_k \cdot \max_{a \in \mathcal{A}} T(s_k|s,a), & \text{se } s = s_k \end{array} \right.$$

onde

$$\Delta_k = |V_{k+1}(s_k) - V_k(s_k)|$$

Generalized Prioritized Sweeping

• Para todo $s \in \mathcal{S}$:

$$H_k(s) = |(\mathcal{T}V_k)(s) - V_k(s)|$$

Prioritized Sweeping e Generalized Prioritized Sweeping convergem.

Funções de Prioridade

Considere um MDP com estados absorvedores \mathcal{G} .

- Backward Value Iteration
 - Atualiza estados de acordo com sua proximidade de $\mathcal G$
 - $\{ s \in \mathcal{S} : \exists a \in \mathcal{A} \ T(s, a, \mathcal{G}) > 0 \}$
- Topological Value Iteration
 - Particiona os estados em componentes fortemente conectados
 - Executa VI nos estados de um componente até convergência
 - Seleciona os componentes a partir da meta (BVI)

Shortest Stochastic Path

MDP com:

- estados absorvedores G
- estados iniciais s₀
- existe política própria
- políticas não própria tem custo infinito

Solução: política parcial π_{s_0} definida apenas para estados alcançáveis a partir de s_0 quando π_{s_0} é executada.

Find-and-Revise

Grafo de Conectividade de um MDP: um grafo dirigido no qual as arestas são hiperarestas (uma fonte, mas vários destinos). O hipergrafo G_S representa as transições de um MDP.

Alcançabilidade: um estado s_n é alcançável de s_1 em um hipergrafo G, se existe um caminho entre s_1 e s_n em G.

Grafo de Conectividade com estado inicial s_0 : é o hipergrafo G_{s_0} que contém o vértice s_0 e todos os estados s' alcançáveis de s_0 , mais suas respectivas hiperarestas.

Grafo Guloso de Conectividade de um função valor V com estado inicial s_0 : é o hipergrafo $G_{s_0}^V$ que contém o vértice s_0 e todos os estados s' alcançáveis de s_0 ao executar qualquer política gulosa segundo V, mais suas respectivas hiperarestas apontadas por tais políticas.

Find-and-Revise

- 1. inicializa $V(s) = h(s) \leq V^*(s)$
- 2. enquanto existe $s \in G_{s_0}^V$ tal que $Res^V(s) > \epsilon$
 - (a) FIND um estado $s \in G^V_{s_0} \ {
 m com} \ Res^V(s) > \epsilon$
 - (b) REVISE $V(s) = (\mathcal{T}V)(s)$
- 3. retorne a política parcial π^V

h(s) é uma função heurística admissível.

LAO*

- Mantém subconjuntos $\widehat{G}_{s_0}^V\subseteq \widehat{G}_{s_0}$ e para os subconjunto de G_{s_0} e $G_{s_0}^V$
- \bullet A cada iteração aumenta a fronteira de \widehat{G}_{s_0} , atualiza V e reconstrói $\widehat{G}_{s_0}^V$
- ullet A atualização de V é feita de forma completa
- Pode-se utilizar qualquer algoritmo para atualizar V (VI, PI, PS, etc.)

LAO

- 1. inicializa $V(s) = h(s) \leq V^*(s)$
- 2. $F \leftarrow \{s_0\}$

- 4. $\widehat{G}_{s_0} \leftarrow \{s_0\}$ 5. $\widehat{G}_{s_0}^V \leftarrow \{s_0\}$
- 6. enquanto existe $s \in F \cap G_{s_0}^V$ e $s \notin \mathcal{G}$ faça
 - (a) $s \leftarrow \text{algum estado não meta em } F \cap G_{s_0}^V$
 - (b) $F \leftarrow F \setminus \{s\}$
 - (c) $F \leftarrow F \cup \{x \notin I : \exists a \in \mathcal{A} \ T(s, a, x) > 0\}$
 - (d) $I \leftarrow I \cup \{s\}$
 - (e) $\widehat{G}_{s_0} \leftarrow \{I \cup F\}$
 - (f) $Z \leftarrow \{s \text{ e todos estados que, executando política gulosa, po-}$ dem alcançar s
 - (g) Atualize V para cada estado em Z, considerando estados em $s' \in F$ como estados terminais com valor h(s')
 - (h) Reconstrua $\widehat{G}_{s_0}^V$ sobre estados de $\widehat{G}_{s_0}^V$
- 7. retorne a política parcial $\pi^V_{s_0}$ que começa em s_0 e determinada pela função V

LAO*

Variações:

- ILAO*: expande todos os nós da fronteira, atualiza o valor de cada estado em \widehat{G}_{s_0} apenas uma vez de traz para frente
- RLAO*: expande os nós a partir do meta
- BLAO*: mantém dois grafos, um a partir da meta e outros a partir do estado inicial

LRTDP

Labeled Real-Time Dynamic Programming

- considera estado inicial
- simula o MDP
- atualiza estados visitados
- etiqueta estados cujo valores convergiu
- ullet converge se todos estados alcançáveis de s_0 alcança a meta

LRTDP

- 1. $V(s) = h(s) \leqslant V^*(s)$
- 2. enquanto s_0 não foi etiquetado *Solved*
 - (a) $s \leftarrow s_0$
 - (b) $visited \leftarrow EMPTYSTACK$
 - (c) enquanto s não foi etiquetado Solved
 - i. visited.PUSH(s)
 - ii. se $s \in \mathcal{G}$ então **break**
 - iii. $a \leftarrow \pi^{\tilde{V}}(s)$
 - iv. $V(s) \leftarrow (\mathcal{T}V)(s)$
 - V. $s \sim T(s, a, \cdot)$
 - (d) enquanto $visited \neq EMPTYSTACK$
 - i. $s \leftarrow visited.POP(s)$
 - ii. se não $CHECKSOLVED(s,\epsilon)$ então **break**
- 3. retorne a política π^V

$CHECKSOLVED(s,\epsilon)$

- 1. rv = TRUE
- 2. $open \leftarrow EMPTYSTACK$
- 3. $closed \leftarrow EMPTYSTACK$
- 4. se s não foi etiquetado *Solved* então open.PUSH(s)
- 5. enquanto $open \neq EMPTYSTACK$
 - (a) $s \leftarrow open.POP(s)$
 - (b) closed.PUSH(s)
 - (c) se $Res^V(s) > \epsilon$ então

i.
$$rv = FALSE$$

- ii. continue
- (d) $a \leftarrow \pi^V(s)$
- (e) para todo $s' \in \{x \in \mathcal{S} : T(s, a, x) > 0\}$ faça
 - i. se s' não foi etiquetado Solved e s' não está em $open \cup closed$ então

A. open.PUSH(s')

- 6. se rv = true então
 - (a) para todo $s' \in closed$ etiquete s' como *Solved* caso contrário
 - (a) para todo $s' \in closed$ faça $V(s') \leftarrow (\mathcal{T}V)(s')$

Heurísticas

Conhecimento do Domínio

- Distância Manhattan
- Distância Euclideana

Sem conhecimento do Domínio

- h(s) = 0
- MDP relaxado:
 - MDP determinista
 - MDP Fatorado

Horizonte Infinito

Como utilizar LRTDP e LAO* com fator de desconto?

Lembre-se que uma possível semântica para γ é a chance de continuar vivo.

Construa um novo MDP M' com a nova função de transição T', onde g é o único estado meta:

$$T'(s,a,s') = \left\{ egin{array}{ll} \gamma T(s,a,s') & ext{se } s'
eq g \ (1-\gamma) + \gamma T(s,a,s') & ext{se } s' = g \end{array}
ight.$$

Referências

Lihong Li and Michael L. Littman. Prioritized sweeping converges to the optimal value function. Technical Report DCS-TR-631, Rutgers University, 2008.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and less time. Machine Learning, 13:103–130, 1993.

Blai Bonet and Hector Geffner. Labeled RTDP: Improving the convergence of real-time dynamic programming. In Proceedings of the First International Conference on Automated Planning and Scheduling, pages 12–21, 2003.

Eric A. Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 129:35–62, 2001.

Planning with Markov Decision Processes: An Al Perspective. Mausan and Andrey Kolobov.