集中講義 応用数学特論 ||

担当: 盧 暁南 (山梨大学)

Day 3 有限幾何学・有限体

担当:盧 暁南(山梨大学)

xnlu@yamanashi.ac.jp

2021年8月27日

本日の内容ー

本日は有限アフィン幾何学(平行線のある幾何学,ユークリッド幾何学の有限類似),有限射影幾何(平行線のない幾何学),有限体について紹介する.

0 記号・概念

- ₱ ₱: 点の集合
- L: 線の集合
- $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$: 結合関係 (incidence relation)
- $(P,\ell) \in \mathcal{I}$: 点 $P \in \mathcal{P}$ が線 $\ell \in \mathcal{L}$ にある
- $(\mathcal{P}, \mathcal{L}, \mathcal{I})$: 結合構造 (incidence structure)

1 有限アフィン平面

定義 1.1. 以下の条件が満たされる $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ はアフィン平面 (affine plane) という.

- (1) 任意の 2 点 $p_1, p_2 \in \mathcal{P}$ に対して, p_1 と p_2 両方を通る線 $\ell \in \mathcal{L}$ が一意に存在する.すなわち, $(p_1,\ell), (p_2,\ell) \in \mathcal{I}$ を満たす $\ell \in \mathcal{L}$ が 1 つしかない.
- (2) 線 $\ell \in \mathcal{L}$ 上にない $((p,\ell) \notin \mathcal{I}$ を満たす) 点 $p \in \mathcal{P}$ において,p を通る(すなわち, $(P,\ell_P) \in \mathcal{I}$ を満たす) ℓ に平行する線 ℓ_P が一意に存在する.
- (3) 少なくとも3つの非共線点が存在する.
- 注 1.2. 各線上に点の個数はアフィン平面の位数 (order) という.

定理 1.3. 位数 n のアフィン平面において,以下が成り立つ.

- (1) 各点を通る線の数はn+1.
- (2) 点の数は n^2 .
- (3) 線の数は $n^2 + n$.

2 有限射影平面

定義 2.1. 以下の条件が満たされる $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ は射影平面 (projective plane) という.

(1) 任意の 2 点 $p_1, p_2 \in \mathcal{P}$ に対して, p_1 と p_2 両方を通る線 $\ell \in \mathcal{L}$ が一意に存在する.すなわち, $(p_1, \ell), (p_2, \ell) \in \mathcal{I}$ を満たす $\ell \in \mathcal{L}$ が 1 つしかない.

担当: 盧 暁南 (山梨大学)

- (2) 任意の 2 つの線 $\ell_1, \ell_2 \in \mathcal{L}$ は 1 点 p で交わる. すなわち, $(p, \ell_1), (p, \ell_2) \in \mathcal{I}$.
- (3) 少なくとも 4 点が存在し、そのうちどの 3 点も共線しない.

注 2.2. 射影平面に平行線が存在しない.

注 2.3. 各線上にn+1点があるとき、その射影平面の位数 (order) を n とする.

定理 2.4. 位数 n の射影平面において,以下が成り立つ.

- (1) 各点を通る線の数はn+1.
- (2) 点の数は $n^2 + n + 1$.
- (3) 線の数は $n^2 + n + 1$.

注 2.5. 位数 n の射影平面は対称 $(n^2 + n + 1, n + 1, 1)$ BIB デザインと同値である.

定理 **2.6.** Bruck–Ryser 定理位数 $n \equiv 1, 2 \pmod 4$ の射影平面が存在するならば $n = a^2 + b^2$ を満たす整数 a,b が存在する.

3 有限体

定義 3.1. 集合 \mathbb{F} と演算 + (加法), \times (乗法) において,以下の条件が満たされる (\mathbb{F} , +, \times) は体 (field) という.

- (1) (\mathbb{F} , +) は可換群である. また, 0 は加法における単位元とする.
- (2) ($\mathbb{F}\setminus\{0\}$, \times) は可換群である. また, 1 は乗法における単位元とする.
- (3) 任意の $a,b,c \in \mathbb{F}$ において分配法則 (distributive property) がある, つまり, $a \times (b+c) = a \times b + a \times c$ かつ $(a+b) \times c = a \times c + b \times c$.

定義 3.2. 要素が有限個しかない体は有限体 (finite field) という. 要素の個数を有限体の位数 (order) という.

定理 3.3. \mathbb{Z}_n が有限体 \iff n が素数.

定理 3.4. 有限体の位数が素数冪である.

定理 3.5. 位数が同じの有限体は、すべて互いに同型である.

一般の有限体の構成法はスライドに参照.

レポート課題

演習課題 1. \mathbb{F}_3 上の既約多項式 x^2+1 を用いて有限体 \mathbb{F}_{3^2} の加法演算表と乗法演算表を完成せよ.

演習課題 2. 位数3のアフィン平面の点と線を列挙せよ.

レポート提出期限:9月6日(月) 23:59まで

3 日目資料 - 2 - 2021 年 8 月 27 日版

参考文献

- [1] S. T. Dougherty. Combinatorics and Finite Geometry. Springer, 2020.
- [2] E. H. Moore and H. S. K. Pollatsek. Difference Sets: Connecting Algebra, Combinatorics, and Geometry. American Mathematical Society, 2013.

担当: 盧 暁南 (山梨大学)

- [3] 安田健彦. ゲームで大学数学入門: スプラウトからオイラー ゲッターまで. 共立出版, 2018.
- [4] 佐藤肇 and 一樂重雄. 幾何学の魔術: 魔法陣から現代数学へ (第3版). 日本評論社, 2012.