计算几何 4: 平面最近点对、扫描线、辛普森积分

Ebola

Institute of Mathematics, Zhejiang University.

Jan, 2024

- 1 平面最近点对
- 2 扫描线
- 3 辛普森积分

- 1 平面最近点对
- 2 扫描线
- 3 辛普森积分

计算几何 4: 平面最近点对、扫描线、辛普森积分

给定平面上 $n (\le 4 \times 10^5)$ 个点,求最近点对的距离。坐标范围: $[-10^7, 10^7]$.

请不要"充分发扬人类智慧"。

先介绍一种复杂度有保证的随机方法。

先介绍一种复杂度有保证的随机方法。

设 h 是前 i 个点的最近点对距离。我们用 $h \times h$ 的网格来存储前 i 个点(要用 到哈希表)。显然,每个格子最多只有 4 个点,否则最近点对距离一定小于 h。

现在,要求点 i+1 和前 i 个点之间的最近距离 c,只需要枚举点 i+1 周围 的九个格子即可,最多 36 个点,是 O(1) 的。

先介绍一种复杂度有保证的随机方法。

设 h 是前 i 个点的最近点对距离。我们用 $h \times h$ 的网格来存储前 i 个点 (要用 到哈希表)。显然,每个格子最多只有 4 个点,否则最近点对距离一定小于 h。

现在,要求点 i+1 和前 i 个点之间的最近距离 c,只需要枚举点 i+1 周围的九个格子即可,最多 36 个点,是 O(1) 的。

如果 c < h,那么就要重构网格,重构网格的复杂度是 O(i) 的。但如果先把所有点随机打乱,那么任何一个点 i 是前 i 个最近点对的概率是 $\frac{1}{i}$,所以期望复杂度 $\sum_{i=1}^n \frac{1}{i} O(i) = O(n)$. (常数巨大,甚至跑不过 $n \log p$)

现在来介绍 $n \log n$ 的方法。该方法基于分治。

现在来介绍 $n \log n$ 的方法。该方法基于分治。

将所有点从左到右排序,分成两半;假如我们已经求出了两个点都在前一半的最近点对、两个点都在后一半的最近点对,其中较近的距离记为 h。现在我们要求第一个点在前一半、第二个点在后一半的最近点对。

现在来介绍 $n \log n$ 的方法。该方法基于分治。

将所有点从左到右排序,分成两半;假如我们已经求出了两个点都在前一半的最近点对、两个点都在后一半的最近点对,其中较近的距离记为 h。现在我们要求第一个点在前一半、第二个点在后一半的最近点对。

现在,假设直线 $x=x_m$ 是左右两部分的分界线,我们可以肯定,我们想求的点对一定在 B 中:

$$B = \{(x, y) \mid x_m - h \le x \le x_m + h\}.$$

现在,我们来枚举 B 中的点 p_i ,我们想找到另一个 B 中的点 p_j 与它构成距离小于 h 的最近点对,所以 p_j 一定在 $C(p_i)$ 中:

$$C(p_i) = \{ p_j \mid p_j \in B \not\perp y_i - h \le y_j \le y_i \}.$$

 $(为了避免重复,我们只考虑纵坐标小于 <math>y_i$ 的那些点)

现在,我们得到了分治的大致步骤:

- ❶ 递归处理左右两个子问题,取较小值得到 ħ;
- 将区间内的所有点按纵坐标从小到大排序;
- **4** 枚举 B 中的点 p_i ,向前枚举 p_i 并更新答案,直到 $y_i < y_i h$ 。

现在,我们得到了分治的大致步骤:

- ① 递归处理左右两个子问题,取较小值得到 h;
- 2 将区间内的所有点按纵坐标从小到大排序;
- ❸ 挑选出区域 B 中的所有点;
- 4 枚举 B 中的点 p_i ,向前枚举 p_j 并更新答案,直到 $y_j < y_i h$ 。

如果用 sort 来排序,复杂度会变成两个 \log ,这样不好。但如果左右两个子区间分别按纵坐标排好了序,我们只要 O(n) 二路归并就行了。

现在只剩一个问题:第四步看起来可能会退化成 $O(n^2)$ 。

我们把 $C(p_i)$ 的区域切割成 8 个格子,如下图所示。

我们把 $C(p_i)$ 的区域切割成 8 个格子,如下图所示。

对于没有跨过分界线的格子,每个格子里最多只能有一个点,否则左侧的最近 点对距离一定会 < h; 同理,对于跨过分界线的格子,每个格子里最多只能有 两个点。因此, $C(p_i)$ 中最多只有 10 个点(不包括 p_i 本身)。

事实上,可以进一步证明: $C(p_i)$ 中最多只有 7 个点(不包括 p_i 本身)。不过 不重要,总之我们知道了第四步中的 ; 循环最多跑常数次,因此合并过程的总 复杂度是 O(n) ,那么分治的总复杂度就是 $O(n \log n)$ 。

平面最小周长三角形

在给定的一组点中,选择三个点,使得它们构成的三角形周长最小。

平面最小周长三角形

做法和最近点对一样。分治,先找到两部分内部的最小周长三角形,记周长为 d,然后在区域 B 中查找:

$$B = \{(x, y) \mid x_m - \frac{d}{2} \le x \le x_m + \frac{d}{2}\}.$$

注意这里用了 $\frac{d}{2}$,因为周长为 d 的三角形最长边一定小于 $\frac{d}{2}$.

平面最小周长三角形

做法和最近点对一样。分治,先找到两部分内部的最小周长三角形,记周长为 d,然后在区域 B 中查找:

$$B = \{(x, y) \mid x_m - \frac{d}{2} \le x \le x_m + \frac{d}{2}\}.$$

注意这里用了 $\frac{d}{2}$,因为周长为 d 的三角形最长边一定小于 $\frac{d}{2}$. 接下来一样的,在 $C(p_i)$ 中枚举 p_j 和 p_k :

$$C(p_i) = \{ p_j \mid p_j \in B \not\sqsubseteq y_i - \frac{d}{2} \le y_j \le y_i \}.$$

同样可以证明 $C(p_i)$ 中至多有常数个点,所以复杂度有保证。

[CF120J] Minimum Sum

题意翻译

- 本题需文件操作,从 input. txt 读入,输出到 output. txt 。
- 给出 n 个向量。
- 对于任意一个向量 $v_i = (x_i, y_i)$,你可以使之变成一下之一:
 - $v_i^1 = (x_i, y_i)$
 - $v_i^2 = (-x_i, y_i)$
 - $v_i^3 = (x_i, -y_i)$
 - $v_i^4 = (-x_i, -y_i)$

计算几何 4: 平面最近点对、扫描线、辛普森积分

• 你需要找到一组 $1 \le i,j \le n, i \ne j, 1 \le k_1, k_2 \le 4$ 使得 $|v_i^{k_1}+v_j^{k_2}|$ 最小。其中 |a| 为向量 a 的模长。

- 1 平面最近点对
- 2 扫描线
- 3 辛普森积分

给定平面上 n 个矩形, 求被矩形覆盖区域的面积。

 $n \le 100$,坐标范围 $[0, 10^5]$.

我们想象一条从下往上走的水平直线,扫过矩形覆盖区域。(这里切出 ppt, 手动播放动图 scanning.svg)

我们想象一条从下往上走的水平直线,扫过矩形覆盖区域。(这里切出ppt,手动播放动图 scanning.svg)

我们需要维护扫描线和矩形覆盖区域相交的部分,每当相交部分发生变化,就计算:相交部分的长度×上次发生变化的位置到现在的高度,这就是这一部分区域的面积。把每一部分面积加起来即得到答案。

如何维护扫描线和矩形覆盖区域相交的部分?

如何维护扫描线和矩形覆盖区域相交的部分?

我们设数组 $a_1, ..., a_m$, a_i 表示扫描线的一小段 [i, i+1) 和几个矩形相交。我们可以用线段树来维护这个数组。对于一个矩形 $[x_l, x_r] \times [y_l, y_r]$, 当扫描线到达下边界 y_l 时,就令 $a_{x_l}, ..., a_{x_r}$ 都加一;当扫描线到达上边界 y_r 时,就令 $a_{x_l}, ..., a_{x_r}$ 都减一。可以用线段树的区间加来维护。

如何维护扫描线和矩形覆盖区域相交的部分?

我们设数组 $a_1,...,a_m$, a_i 表示扫描线的一小段 [i,i+1) 和几个矩形相交。我们可以用线段树来维护这个数组。对于一个矩形 $[x_l,x_r] \times [y_l,y_r]$, 当扫描线到达下边界 y_l 时,就令 $a_{x_l},...,a_{x_r}$ 都加一;当扫描线到达上边界 y_r 时,就令 $a_{x_l},...,a_{x_r}$ 都减一。可以用线段树的区间加来维护。

每个线段树节点需要记录自己所表示的线段中,非零部分的总长度。每次做加法时,如果当前节点表示的线段完全位于加法区间中,就打上区间 +1 标记。向上合并时,如果有区间加法标记,非零部分长度就是线段长度,否则,就把左右儿子的非零部分总长度加起来。

当然,扫描线也可以是从左往右扫的竖直直线,看个人习惯。

如果坐标范围是 [0,109] 怎么办?

如果坐标范围是 [0,109] 怎么办?

离散化。把所有可能的横坐标按顺序排列成 $x_1, ..., x_t$,然后建立 [1, t] 的线段树。每次经过矩形边界要做加法时,先在所有横坐标中找到矩形顶点的横坐标 x_i, x_j ,然后对 [i, j] 进行区间加(或减)一。当然,统计线段 [l, r] 的长度时,要用 $x_r - x_l$.

给定若干个矩形,合并成一个图形,求周长。矩形数量 ≤ 5000 ,坐标 范围 10^5

我们把周长分成两个部分:横线的总长度、竖线的总长度。

我们把周长分成两个部分:横线的总长度、竖线的总长度。

对于横线的总长度,我们用一根水平直线从下往上扫描。如果 y_i 和 y_{i+1} 是相邻两个扫描高度(即扫描线发生变化的位置),扫描线在 y_i 处和区域相交的长度是 L_i (注意,如果某个矩形的上边界在 y_i 处,我们不算它和扫描线相交;如果下边界在 y_i 处,则算它和扫描线相交),在 y_{i+1} 处和区域相交的长度是 L_{i+1} ,那么 y_{i+1} 处露出来的横线长度就是 $|L_i - L_{i+1}|$ (可以画图感受)。

我们把周长分成两个部分:横线的总长度、竖线的总长度。

对于横线的总长度,我们用一根水平直线从下往上扫描。如果 y_i 和 y_{i+1} 是相邻两个扫描高度(即扫描线发生变化的位置),扫描线在 y_i 处和区域相交的长度是 L_i (注意,如果某个矩形的上边界在 y_i 处,我 们不算它和扫描线相交;如果下边界在 y_i 处,则算它和扫描线相交), 在 y_{i+1} 处和区域相交的长度是 L_{i+1} , 那么 y_{i+1} 处露出来的横线长度 就是 $|L_i - L_{i+1}|$ (可以画图感受)。

竖线总长度同理, 用竖直直线从左往右扫即可。

求三角覆盖面积。

三角形数量 $\leq 10^4$, 坐标范围 $[0, 10^6]$.

从左到右一格一格扫。每到一个位置可能发生三种事情:线段上端点位置减一、增加一段新的线段、删除一个退化成点的线段。后两种事情总共发生O(n)次,第一种事情会发生很多很多次,要优化。

从左到右一格一格扫。每到一个位置可能发生三种事情:线段上端点位置减一、增加一段新的线段、删除一个退化成点的线段。后两种事情总共发生O(n)次,第一种事情会发生很多很多次,要优化。

如果某时刻一条线段被另一条完全覆盖,那么这条线段以后永远不会产生贡献,可以删去。(加入新线段时,把被它完全覆盖住的线段弹出;如果它自身被完全覆盖,则不添加之)最后得到的线段一定是下端点单调递增时,上端点也单调递增,可以用 set 维护。

从左到右一格一格扫。每到一个位置可能发生三种事情:线段上端点位置减一、增加一段新的线段、删除一个退化成点的线段。后两种事情总共发生O(n)次,第一种事情会发生很多很多次,要优化。

如果某时刻一条线段被另一条完全覆盖,那么这条线段以后永远不会产生贡献,可以删去。(加入新线段时,把被它完全覆盖住的线段弹出;如果它自身被完全覆盖,则不添加之)最后得到的线段一定是下端点单调递增时,上端点也单调递增,可以用 set 维护。

当两线段相交时,下方线段上端点的改变并不会影响总覆盖长度。我们可以把它拆成:上方线段长度 + 下方线段长度-相交线段长度。这样,每一部分线段长度都是随着扫描线移动而减一的。用小根堆维护相交线段,当有相交线段退化成点时删去之。

[HNOI2012] 三角覆盖问题

从左到右一格一格扫。每到一个位置可能发生三种事情:线段上端点位置减一、增加一段新的线段、删除一个退化成点的线段。后两种事情总共发生O(n)次,第一种事情会发生很多很多次,要优化。

如果某时刻一条线段被另一条完全覆盖,那么这条线段以后永远不会产生贡献,可以删去。(加入新线段时,把被它完全覆盖住的线段弹出;如果它自身被完全覆盖,则不添加之)最后得到的线段一定是下端点单调递增时,上端点也单调递增,可以用 set 维护。

当两线段相交时,下方线段上端点的改变并不会影响总覆盖长度。我们可以把它拆成:上方线段长度 + 下方线段长度-相交线段长度。这样,每一部分线段长度都是随着扫描线移动而减一的。用小根堆维护相交线段,当有相交线段退化成点时删去之。

这题暴力加各种优化其实可以过,数据很水,正解写起来细节非常多,大家量力而行。

[ARC077C] guruguru

给定一个数组 $a_1, ..., a_n$ 和数字 M, 从左到右依次操作,每次要把 a_i 变成 a_{i+1} (不操作 a_n),可以使用如下两种操作:

- 直接令 $a_i = X$ 。

现在,请你确定 X,使总操作次数最少。

[ARC077C] guruguru

可以将给定的数列看作若干个线段 $[a_i, a_{i+1}]$,若设定点在这个线段内(模意义 下),则相当于可以从 a_i 跳到设定点,然后再一步一步走到 a_{i+1} ,节省了 $x-a_i-1$ 步。

[ARC077C] guruguru

可以将给定的数列看作若干个线段 $[a_i, a_{i+1}]$,若设定点在这个线段内(模意义 下),则相当于可以从 a_i 跳到设定点,然后再一步一步走到 a_{i+1} ,节省了 $x-a_i-1$ 步。

于是我们可以将所有线段按左端点排序,然后枚举设定点的位置。对于枚举到 的位置,将包含它的线段全部加入即可。这相当于一个扫描线的过程,扫到一 个点,将左端点位于该位置的线段全部加入,右端点位于该位置的线段全部删 除。然后维护:当前加入的线段数量、当前能节省的总步数。

奈文摩尔有 n 个灵魂,他们在影魔宽广的体内可以排成一排,从左至右标号 1 到 n。第 i 个灵魂的战斗力为 k_i ,灵魂们以点对的形式为影魔提供攻击力。对于灵魂对 i,j (i < j) 来说,若不存在 k_s (i < s < j) 大于 k_i 或者 k_j ,则会为影魔提供 p_1 的攻击力。另一种情况,令 c 为 k_{i+1} , k_{i+2} , \cdots , k_{j-1} 的最大值,若 c 满足: $k_i < c < k_j$,或者 $k_j < c < k_i$,则会为影魔提供 p_2 的攻击力,当这样的 c 不存在时,自然不会提供这 p_2 的攻击力;其他情况的点对,均不会为影魔提供攻击力。

影魔的挚友噬魂鬼在一天造访影魔体内时被这些灵魂吸引住了,他想知道,对于任意一段区间 [a,b],位于这些区间中的灵魂对会为影魔提供多少攻击力,即考虑所有满足 $a \le i < j \le b$ 的灵魂对 i,j 提供的攻击力之和。

顺带一提,灵魂的战斗力组成一个 1 到 n 的排列: k_1, k_1, \cdots, k_n 。

换句话说: (i,j) 产生 p_1 贡献要求区间端点是最大值和次大值; 产生 p_2 贡献 只要求区间某一个端点是最大值。

对于一个位置 i,假设左右比它大的第一个位置分别为 L_i 和 R_i ,特别地,若 右边没有比第 i 个数大的数,则 $R_i = n + 1$ (L_i 同理)。考虑包含位置 i 的点 对产生多少贡献?

换句话说: (i,j) 产生 p_1 贡献要求区间端点是最大值和次大值; 产生 p_2 贡献 只要求区间某一个端点是最大值。

对于一个位置 i,假设左右比它大的第一个位置分别为 L_i 和 R_i ,特别地,若 右边没有比第 i 个数大的数,则 $R_i = n + 1$ (L_i 同理)。考虑包含位置 i 的点 对产生多少贡献?

先考虑 j > i,显然当 $j > R_i$ 时不产生贡献;而 (i, R_i) 的贡献是 p_1 ; $(i, i+1), (i, i+2), ..., (i, R_i-1)$ 产生的贡献是 p_2 。我们先把这类贡献加起来。

换句话说: (i,j) 产生 p_1 贡献要求区间端点是最大值和次大值; 产生 p_2 贡献只要求区间某一个端点是最大值。

对于一个位置 i,假设左右比它大的第一个位置分别为 L_i 和 R_i ,特别地,若右边没有比第 i 个数大的数,则 $R_i=n+1$ (L_i 同理)。考虑包含位置 i 的点对产生多少贡献?

先考虑 j>i,显然当 $j>R_i$ 时不产生贡献:而 (i,R_i) 的贡献是 p_1 ; $(i,i+1),(i,i+2),...,(i,R_i-1)$ 产生的贡献是 p_2 。我们先把这类贡献加起来。

从右往左扫描线,每扫到一个位置 i,就对区间 $[i+1,R_i-1]$ 执行区间 $+p_2$ 操作;再给位置 R_i 执行 $+p_1$ 操作(*);然后处理左端点在 i 的询问,对询问区间 $[q_i,q_r]$ 进行求和,作为这部分的答案贡献给该询问。

换句话说: (i,j) 产生 p_1 贡献要求区间端点是最大值和次大值; 产生 p_2 贡献只要求区间某一个端点是最大值。

对于一个位置 i,假设左右比它大的第一个位置分别为 L_i 和 R_i ,特别地,若右边没有比第 i 个数大的数,则 $R_i=n+1$ (L_i 同理)。考虑包含位置 i 的点对产生多少贡献?

先考虑 j>i, 显然当 $j>R_i$ 时不产生贡献: 而 (i,R_i) 的贡献是 p_1 ; $(i,i+1),(i,i+2),...,(i,R_i-1)$ 产生的贡献是 p_2 。我们先把这类贡献加起来。

从右往左扫描线,每扫到一个位置 i,就对区间 $[i+1,R_i-1]$ 执行区间 $+p_2$ 操作;再给位置 R_i 执行 $+p_1$ 操作(*);然后处理左端点在 i 的询问,对询问区间 $[q_i,q_r]$ 进行求和,作为这部分的答案贡献给该询问。

现在考虑 j < i 的部分,其实完全类似。但是我们刚刚挖了一个不大的坑 \cdots ?

换句话说: (i,j) 产生 p_1 贡献要求区间端点是最大值和次大值; 产生 p_2 贡献只要求区间某一个端点是最大值。

对于一个位置 i,假设左右比它大的第一个位置分别为 L_i 和 R_i ,特别地,若右边没有比第 i 个数大的数,则 $R_i=n+1$ (L_i 同理)。考虑包含位置 i 的点对产生多少贡献?

先考虑 j>i, 显然当 $j>R_i$ 时不产生贡献: 而 (i,R_i) 的贡献是 p_1 ; $(i,i+1),(i,i+2),...,(i,R_i-1)$ 产生的贡献是 p_2 。我们先把这类贡献加起来。

从右往左扫描线,每扫到一个位置 i,就对区间 $[i+1,R_i-1]$ 执行区间 $+p_2$ 操作;再给位置 R_i 执行 $+p_1$ 操作(*);然后处理左端点在 i 的询问,对询问区间 $[q_i,q_r]$ 进行求和,作为这部分的答案贡献给该询问。

现在考虑 j < i 的部分,其实完全类似。但是我们刚刚挖了一个不大的坑 \cdots ?

在考虑第二部分的时候,当扫到 R_i 位置时,由于 $L_{R_i} < i$,所以 (i,R_i) 被当成了一个贡献为 p_2 的点对。这怎么办?

换句话说: (i,j) 产生 p_1 贡献要求区间端点是最大值和次大值; 产生 p_2 贡献只要求区间某一个端点是最大值。

对于一个位置 i,假设左右比它大的第一个位置分别为 L_i 和 R_i ,特别地,若右边没有比第 i 个数大的数,则 $R_i=n+1$ (L_i 同理)。考虑包含位置 i 的点对产生多少贡献?

先考虑 j>i, 显然当 $j>R_i$ 时不产生贡献: 而 (i,R_i) 的贡献是 p_1 ; $(i,i+1),(i,i+2),...,(i,R_i-1)$ 产生的贡献是 p_2 。我们先把这类贡献加起来。

从右往左扫描线,每扫到一个位置 i,就对区间 $[i+1,R_i-1]$ 执行区间 $+p_2$ 操作;再给位置 R_i 执行 $+p_1$ 操作(*);然后处理左端点在 i 的询问,对询问区间 $[q_i,q_r]$ 进行求和,作为这部分的答案贡献给该询问。

现在考虑 j < i 的部分,其实完全类似。但是我们刚刚挖了一个不大的坑 $\cdots \cdots$?

在考虑第二部分的时候,当扫到 R_i 位置时,由于 $L_{R_i} < i$,所以 (i,R_i) 被当成了一个贡献为 p_2 的点对。这怎么办?

- 1 平面最近点对
- 2 扫描线
- 3 辛普森积分

计算几何 4: 平面最近点对、扫描线、辛普森积分

问题引入

给定一个函数 f(x) 和区间 [a,b],求

$$\int_{a}^{b} f(x) dx$$

的近似值。

我们给出一个公式:

$$I(a,b) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

假设 f(x) 是一个二次函数,那么恰好满足:

$$\int_{a}^{b} f(x) dx = I(a, b)$$

如果 f(x) 不是二次函数呢?

我们给出一个公式:

$$I(a,b) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

假设 f(x) 是一个二次函数,那么恰好满足:

$$\int_{a}^{b} f(x) dx = I(a, b)$$

如果 f(x) 不是二次函数呢?我们可以计算 $I(a,b),\ I\left(a,\frac{a+b}{2}\right),\ I\left(\frac{a+b}{2},b\right),\$ 如果

$$\left|I(a,b) - \left(I\left(a,\frac{a+b}{2}\right) + I\left(\frac{a+b}{2},b\right)\right)\right| < \varepsilon$$

我们就认为我们的计算已经足够精确,将 I(a,b) 作为结果返回即可。否则,递归处理两个子区间。

```
1
2
3
4
5
6
7
8
9
10
11
12
13
```

```
double I(double 1,double r)
{
    double mid=(1+r)/2;
    return (F(1)+4*F(mid)+F(r))*(r-1)/6;
}
double simpson(double 1,double r,double A)
{
    double mid=(1+r)/2;
    double L=I(1,mid),R=I(mid,r);
    if(fabs(L+R-A)<eps) return L+R;
    return simpson(1,mid,L)+simpson(mid,r,R);
}
double simpson(double 1,double r){return simpson(1,r,I(1,r));}</pre>
```

[NOI2005] 月下柠檬树

求一棵由圆台、圆锥组成的树在平行光下的投影面积。

[NOI2005] 月下柠檬树

根据光线角度算出所有圆的圆心坐标,再算出相邻两个圆的公切线。注意:如果在投影里,一个圆被旁边的圆完全包含,则应该跳过之。把所有的圆存好、 所有的公切线成对存好。

[NOI2005] 月下柠檬树

根据光线角度算出所有圆的圆心坐标,再算出相邻两个圆的公切线。注意:如果在投影里,一个圆被旁边的圆完全包含,则应该跳过之。把所有的圆存好、 所有的公切线成对存好。

接下来用辛普森积分求面积,我们只需要解决直线 x=t 与图形相交部分的长度。因为图形是一个单连通区域,我们可以枚举所有圆,求它与圆相交部分的长度;再枚举所有成对的公切线,求它被两条公切线夹住部分的长度;最后把求得的长度取最大值,就是和图形相交部分的长度。

Thank You