

|                                                  | -                  |
|--------------------------------------------------|--------------------|
| = e - St                                         |                    |
| -9 -4                                            |                    |
|                                                  |                    |
| = e-A - e43                                      |                    |
| -3 -5 4 -5 4 -5 1                                |                    |
|                                                  |                    |
| $= e^{43}$                                       |                    |
| S S S S S S S S S S S S S S S S S S S            |                    |
| L.T of uft) = for e-stult dt                     |                    |
| -60                                              | 1                  |
| = 5th e-st dt                                    |                    |
| 1 20                                             | and the state of   |
| $= e^{-st} \int_{\Omega}$                        |                    |
| -8 Jo                                            |                    |
| $= \frac{e^{-\infty} - e^{-0}}{e^{-0}}$          |                    |
| -5 -5                                            |                    |
| 3                                                |                    |
| M(s) = 5 [ e45 - 1]                              | 1                  |
| Ls S                                             |                    |
| w(t)                                             |                    |
| 14                                               | W. V.              |
|                                                  |                    |
|                                                  |                    |
| 0 3                                              |                    |
| $w(t) = 4 \left[ u(t) - u(t-3) \right]$          |                    |
| - C+ O                                           |                    |
| $L.T g u(t) = \int_{0}^{\infty} e^{-st} u(t) dt$ |                    |
| - 10 - 15 11                                     |                    |
| - Ste-stdt                                       |                    |
| Carst 7 to                                       |                    |
|                                                  |                    |
|                                                  |                    |
| Scar                                             | nned by CamScanner |
|                                                  |                    |

$$= e^{-x^{2}} - e^{-x^{2}}$$

$$= 1$$

$$S$$

$$= 1$$

$$S$$

$$= e^{-5t} + (t^{2}) = \int_{-5}^{\infty} e^{-5t} dt$$

$$= e^{-5t} - e^{-5t} dt$$



Here numerator can be written as product of denominate & M(s). After expanding this product we will get back the value same as numerated. . numerate can be worthen as  $M(3) = \frac{5e^{43} - 5}{3}$ Taking invene laplace transform mit) = 5 [u(++4)-u(+)] S(t)= (m(t) + m(t) B, 2, 4] with 9(t) = S(t) + h(t) y(t) = m(t) \* w(t) + h(t) Taking taplace trongon on 60th ride M(8)= M(8) W(8) H(8)

 $\left[\frac{5e^{4\lambda}-5}{s}\right]\left[\frac{y-4e^{-3\lambda}}{s}\right]\left[\frac{3e^{-3\lambda}-3e^{-3\lambda}}{s}\right]$  $\frac{20e^{43} - 20e^{3} - 20 + 20e^{-33} \int 3e^{-23} - 3e^{-33}}{S^{2}} \left[ \frac{3e^{-23} - 3e^{-33}}{S^{2}} \right]$  $\frac{60e^{3s} - 60e^{s} - 60e^{s} + 60e^{-3s} - 60e^{-2s}}{s^{3}} - \frac{60e^{-3s} - 60e^{-2s}}{s^{3}} - \frac{60e^{-3s} - 60e^{-2s}}{s^{3}} - \frac{60e^{-3s} - 60e^{-6s}}{s^{3}} - \frac{60e^{-6s}}{s^{3}} - \frac{60e^{$ White analysis

Analyse the effect of change in operation blue
the menage & the watermark on the response. Atleast comment 18 2 para on the above.