

COMP20008 Elements of Data Processing

Data Pre-Processing and Cleaning: Recommender Systems and Missing Values

Plan today

- Complete section on outlier detection
- Recommender systems and collaborative filtering
- Types of similarity for imputation of missing values
 - Item-Item
 - User-User
- Question to consider during lecture: Are we doing cleaning or prediction?

How to detect outliers

- 1-D data
 - Boxplot
 - Histogram
 - Statistical tests
- 2-d Data: Scatter plot and eyeball
- 3-D data: Can also use scatter plot and eyeball
- >3-D data: Statistical or algorithmic methods

Box and whisker plot (diagram from http://www.physics.csbsju.edu/stats/box2.html)

From sample compute

- Minimum and maximum (the whiskers)
- Median
- First quartile(Q1): middle number between median and minimum
- Third quartile(Q3): middle number between median and maximum
- IQR=interquartile range =Q3-Q1

Outliers and Tukey Boxplots(diagram from http://

www.physics.csbsju.edu/stats/box2.html)

Whiskers

- Lowest point still within 1.5IQR o lower quartile
- Highest point still within 1.5 IQR of upper quartile

Outliers (filled black)

- >3*IQR above third quartile, or
- >3*IQR below 1st quartile

Suspected outliers (open black)

- >1.5*IQR above third quartile, or
- >1.5*IQR below 1st quartile

Example of box plot outlier detection

- Example from
 - http://www.alcula.com/calculators/statistics/box-plot
 - -10,20,30,40,50,60,70,80,90,100,120,130,140,150,160,180,999

Detection Using Histogram

- The model of normal data is learned from the input data without any *a priori* structure.
- Often makes fewer assumptions about the data, and thus can be applicable in more scenarios

- Outlier detection using histogram:
 - Figure shows the histogram of purchase amounts in transactions
 - A transaction in the amount of \$7,500 is an outlier, since only 0.2% transactions have an amount higher than \$5,000
- Problem: Hard to choose an appropriate bin size for histogram
 - Too small bin size → normal objects in empty/rare bins, false positive
 - Too big bin size → outliers in some frequent bins, false negative

Exercise

Which histogram is the best representation of the boxplot?

Outlier Detection (1): Statistical Methods

- Statistical methods assume that the normal data follow some statistical model
 - The data not following the model are outliers.
- Example (right figure): First use Gaussian distribution to model the normal data
 - For each object y in region R, estimate g_D(y), the probability of y fits the Gaussian distribution
 - If g_D(y) is very low, y is unlikely generated by the Gaussian model, thus an outlier
- Effectiveness of statistical methods: highly depends on whether the assumption of statistical model holds in the real data
- There are rich alternatives to use various statistical models

Univariate case: Grubb's Test

- Univariate outlier detection: Detect one outlier at a time and repeat.
 - Compute the following statistic where x_i is a data instance

$$\frac{\max_{i=1,\dots,N}|x_i-\mu|}{\sigma}$$

where μ is the sample mean and σ is the sample standard deviation

Then assume population is normally distributed and do a statistical hypothesis test (Python package outlier_utlis). Farthest point is an outlier if unlikely to have occurred under normal distribution assumption. Throw away outlier if test indicates that instance is "too far" from the mean.

2D scatter plot

kee Ge MISSION

Daniel Giansiracusa

Outlyingness of Daniel Giansiracusa (see arrow) versus 626 other players • •

Acknowledgements

- Data Mining Concepts and Techniques. Han, Kamber and Pei. 3rd edition (chapter 3 and 12). Available through library as ebook.
- Data analysis using regression and multilevel hierarchical models. Gelman and Hill (chapter 25), 2006.

Recommender systems: missing data

Movie Recommender systems

Person	Star Wars	Batman	Jurassic World		The Revenan t	Lego Movie	Selma	
James	3	2	-	-	-	1	-	
John	-	-	1	2	-	-	-	
Jill	1	-	-	3	2	1	-	

Users and movies Each user only rates a few movies (say 1%) Netflix wants to predict the missing ratings for each user

Netflix

Netflix 13/03/2016 10:03 26am

Kids

Categories

Search Kids... Q

Exit Kids

The Wiggles

My Little Pony

Mako Mermaids

H2O: Just Add Water

Good Luck Charlie

Po

Recently watched

Top Picks for Kids

Popular

Action

Amazon.com: Customers who bought this item also bought

The Revenant: A Novel of Revenge

Michael Punke

1,250

Paperback

\$9.52

Ready Player One: A Novel

> Ernest Cline

9,210

Paperback

\$8.37

The Life We Bury

Allen Eskens

1,896

Paperback

\$8.75

The 5th Wave: The First Book of the 5th Wave Series

Rick Yancey

2,006

Paperback

\$6.70

- "75% of what people watch is from some sort of recommendation" (Netflix)
- "If I have 3 million customers on the web, I should have 3 million stores on the web." (Amazon CEO)

Other Examples of Recommender Systems

- IMDb
- Online dating
- Twitter: "Who to Follow", what to retweet
- Spotify, youtube: music recommendation
- LinkedIn/Facebook: who to add as a contact, jobs of interest, news of interest
- Tourist attraction apps
- University subjects ... ? Subject discussion forums ... ?

How it works

- Each user has a profile
- Users rate items
 - Explicitly: Give a score
 - Implicitly: web usage mining
 - Time spent in viewing the item
 - Navigation path
 - Etc...
- System does the rest, How?

Collaborative filtering

- Collaborative Filtering: Make predictions about a user's missing data according to the behaviour of many other users
 - Look at users collective behavior
 - Look at the active user history
 - Combine!

Collaborative Filtering: A Framework

Items: I

The task:

Q1: Find Unknown ratings? Q2: Which items should we recommend to this user?

Users: U

Unknown function $f: U \times I \rightarrow R$

Collaborative Filtering Approaches

- User based methods
 - Identify like-minded users
- Item based methods
 - Identify similar items
- Model (matrix) based methods
 - Solve an optimization problem and identify latent factors

Ratings of items by users: Fill in cell ????

TELMANU KINE	Item1	Item2	Items Item3	Item4	Item5	Item6
User1	17	-	20	18	17	18.5
User2	8	-	????	17	14	17.5
User3	-	-	17	18	18.5	17.5
User4	-	-	-	18	17.5	18
User5	17	-	18	19	15.5	-
User6	-	-	17.5	-	16	-
User7	15	17.5	-	17	-	17
User8	18	-	-	-	17	16.5
User9	18	17	-	-	18.5	17
User10	19	17	-	-	-	16.5
User11	17	18.5	19	19	-	-
User12	14	19	17	-	-	15.5
User13	-	16	-	-	17	-
User14	20	18.5	-	18	-	18

Jsers

User-User Similarity: Intuition

How to Measure Similarity? Method 1

$$SIM(U1, U2) = ((17-8)^2 + (18.1 - 14.1)^2 + (20 - 14.1)^2 + (18 - 17)^2 + (17 - 14)^2 + (18.5 - 17.5)^2$$

- Compute mean value for User1's missing values (18.1)
- Compute mean value for User2's missing values (14.1)
- Compute squared Euclidean distance between resulting vectors

How to Measure Similarity? Method 2

$$Sim(User1, User2) = \frac{6}{6-2}((17-8)^2 + (18-17)^2 + (17-14)^2 + (18.5-17.5)^2$$

- Compute squared Euclidean distance between vectors, summing only pairs without missing values
- 2 out of the 6 pairs have at least one missing value
- Scale the result, according to percentage of pairs with a missing value

Practice Example

User1 12 2.5 20 - 17 - 3.5 User2 13 - 17 14 17.5 4.5

Using Method 2, SIM(User1,User2)=?

Similarity

- Instead of Euclidean distance can also use other measures to assess similarity, e.g.
 - Correlation (we will look at later in subject)
 - Cosine similarity (angle between user profile vectors)

Selecting neighbors and making prediction

- At runtime
 - Need to select users to compare to
 - Could choose the top-k most similar users
 - Combining: Prediction of rating is the (weighted) average of the values from the top-k similar users
- Can make more efficient by computing clusters of users offline
 - At runtime find nearest cluster and use the centre of the cluster as the rating prediction
 - Faster (more scalable) but a little less accurate

User based methods summary

- Achieve good quality in practice
- The more processing we push offline, the better the method scale
- However:
 - User preference is dynamic
 - High update frequency of offline-calculated information
 - No recommendation for new users
 - We don't know much about them yet

Item based methods: Intuition

- Search for similarities among items
- All computations can be done offline
- Item-Item similarity is more stable that user-user similarity
 - No need for frequent updates

Item Based Methods

- Same as in user-user similarity but on item vectors
 - Find similar items to the one whose rating is missing
 - E.g. For item i_i compute its similarity to each other item i_i

Item based similarity

- Offline phase. For each item
 - Determine its k-most similar items
 - Can use same type of similarity as for user-based
- Online phase:
 - Predict rating r_{aj} for a given user-item pair as a weighted sum over k-most similar items that they rated

$$r_{aj} = \frac{\sum_{i \in \text{k-similar items}} sim(i, j) \times r_{ai}}{\sum_{\text{k-similar items}} sim(i, j)}$$

ELIXJU KINE	Item1	Item2	Items Item3	Item4	Item5	Item6
User1	17	-	20	18	17	18.5
User2	8	-	????	17	14	17.5
User3	-	-	17	18	18.5	17.5
User4	-	-	-	18	17.5	18
User5	17	-	18	19	15.5	-
User6	-	-	17.5	-	16	-
User7	15	17.5	_	17	_	17
User8	18	-	_	-	17	16.5
User9	18	17	_	-	18.5	17
User10	19	17	-	-	-	16.5
User11	17	18.5	19	19	_	-
User12	14	19	17	-	-	15.5
User13	-	16	-	-	17	-
User14	20	18.5	-	18	-	18

Jsers

Matrix Based Techniques

- Treat the User-Item Rating table R as a matrix
 - Use matrix factorisation of this Rating Table

Rating Table R

TEJLI BY CYTU I KUNTEI			Items			
	Item1	Item2	Item3	Item4	Item5	Item6
User1	17	-	20	18	17	18.5
User2	8	-	-	17	14	17.5
User3	-	-	17	18	18.5	17.5
User4	_	-	-	18	17.5	18
User5	17	-	18	19	15.5	-
User6	-	-	17.5	-	16	-
User7	15	17.5	-	17	-	17
User8	18	-	-	-	17	16.5
User9	18	17	-	-	18.5	17
User10	19	17	-	-	-	16.5
User11	17	18.5	19	19	-	-
User12	14	19	17	-	-	15.5
User13	-	16	-	-	17	-
User14	20	18.5	-	18	-	18

Jsers

Factorisation

We are familiar with factorisation of numbers

We can also do approximate factorisation

$$17 \approx 6*2.8$$
 (RHS= 16.8, an error of 0.2)

$$167 \approx 17*9.8$$
 (RHD=166.6, an error of 0.4)

Matrix Factorization

Given a matrix R, we can find matrices U and V such that when U and V are multiplied together

$$R \approx UV$$

- R is m*n, U is m*k and V is k*n
 - k is the "number of latent factors"

For example, suppose R is a 4*4 matrix
$$R = \begin{bmatrix} 5 & 2 & 3 & 6 \\ 4 & 4 & 6 & 11 \\ 3 & 19 & 2 & 7 \\ 3 & 8.5 & 4 & 2 \end{bmatrix}$$

$$R = \begin{vmatrix} 4 & 4 & 6 & 11 \\ 3 & 19 & 2 & 7 \\ 3 & 8.5 & 4 & 2 \end{vmatrix}$$

Example: m=4, n=4, k=2

$$\begin{bmatrix} 5 & 2 & 3 & 6 \\ 4 & 4 & 6 & 11 \\ 3 & 19 & 2 & 7 \\ 3 & 8.5 & 4 & 2 \end{bmatrix} \approx \begin{bmatrix} 0.34776 & 1.97802 \\ 0.71609 & 3.13615 \\ 4.27876 & 0.58287 \\ 1.88074 & 0.56923 \end{bmatrix} \begin{bmatrix} 0.58367 & 4.40189 & 0.44605 & 1.04492 \\ 1.52915 & 0.26346 & 1.75046 & 3.09976 \end{bmatrix}$$

$$= \begin{bmatrix} 3.22769 & 2.05196 & 3.61758 & 6.49480 \\ 5.21363 & 3.97844 & 5.80912 & 10.46959 \\ 3.3887 & 18.98823 & 2.92886 & 6.27777 \end{bmatrix}$$

2.92886

1.83534

6.27777

3.72973

We can compute the error (squared distance between R and UV). The smaller it is, the better the fit of the factorisation.

1.96819 8.42882

$$(5 - 3.22769)^2 + (2 - 2.05196)^2 + (3 - 3.61758)^2 + \dots$$

 $(4 - 1.83534)^2 + (2 - 3.72973)^2$

How to factorise

- Details of how to compute the matrix factorisation are beyond the scope of our study.
- Intuitively, factorisation algorithms search over lots of choices for U and V, with the aim of making the error as low as possible
- If there are missing values in R, ignore these when computing the error.

Factorisation and missing values

$$\begin{bmatrix} 5 & - & - & 6 \\ - & 4 & 6 & 11 \\ - & 19 & 2 & 7 \\ 3 & 8.5 & - & - \end{bmatrix} \approx \begin{bmatrix} 1.51261 & 1.65457 \\ -0.0474 & 3.56317 \\ 3.88351 & 1.50482 \\ 1.76637 & 0.56005 \end{bmatrix} \begin{bmatrix} 1.07179 & 4.42771 & -0.13516 & 0.60378 \\ 2.01538 & 1.18272 & 1.67926 & 3.08647 \end{bmatrix}$$
$$= \begin{bmatrix} 4.95572 & 8.65430 & 2.57402 & 6.02008 \\ 7.13025 & 4.00394 & 5.98995 & 10.96899 \\ 7.19512 & 18.97488 & 2.00210 & 6.98942 \\ 3.02190 & 8.48338 & 0.70173 & 2.79509 \end{bmatrix}$$

Error =
$$(5 - 4.95572)^2 + (6 - 6.02008)^2 + (4 - 4.00394)^2 + (6 - 5.98995)^2 + \dots$$

The product of the two factors U and V, has no missing values. We can use this to predict our missing entries. E.g. R_{12} =8.65430

Using k=2 for factorisation

			Items	-	-	
	Item1	Item2	Item3	Item4	Item5	Item6
User1	17	-	20	18	17	18.5
User2	8	-	13.48	17	14	17.5
User3	-	-	17	18	18.5	17.5
User4	-	-	-	18	17.5	18
User5	17	-	18	19	15.5	-
User6	-	-	17.5	-	16	-
User7	15	17.5	-	17	-	17
User8	18	-	-	-	17	16.5
User9	18	17	-	-	18.5	17
User10	19	17	-	-	-	16.5
User11	17	18.5	19	19	-	-
User12	14	19	17	-	-	15.5
User13	-	16	-	-	17	-
User14	20	18.5	-	18	-	18

Jsers

- Real answer for (User 2, Item 3) is 13.5
 - Matrix technique predicts 13.48. Low error for this cell.
- Real answer for (User 13, Item 1) is 17.
 - Matrix technique predicts 15.3. Error is a little higher for this cell.
- In general, the prediction error varies across the cells, but taking all missing cells as a whole, the method aims to make predictions with low average error

Commerical Recommender Systems

- Commercial recommender systems (Netflix, Amazon) use variations of matrix factorisation.
- In 2009, Netflix offered a prize of \$USD 1,000,000 in a competition to see which algorithms were most effective for predicting user-movie ratings.
 - Anonymised training data released to public: 100 million ratings by 480k users of 17.8k movies
 - Won by "BellKor's Pragmatic Chaos" team
- A followup competition was cancelled due to privacy concerns
 ... [We will elaborate when we get to topic on privacy]

Other issues

- Many challenging issues in deployment of recommendations
 - Interpretability of recommendations?
 - How to be fair to rare items?
 - How to avoid only recommending popular items?
 - How to handle new users?

References

- See
 - Matrix Factorization Techniques for Recommender Systems.
 Koren, Bell and Volinsky. IEEE Xplore, Vol 42, 2009.
 Available on the LMS in Week 3 section.
- Some slides based on "Data Mining Concepts and Techniques", Han et al, 2nd edition 2006.