

FIG. 1

FIG. 2

FIG. 3

FIG. 4

ANALOG
BASEBAND SIGNAL
210

FIG. 5A

CARRIER SIGNAL
410

FIG. 5B

AM CARRIER
SIGNAL
516

FIG. 5C

DIGITAL
BASEBAND SIGNAL
310

FIG. 6A

CARRIER SIGNAL
410

FIG. 6B

AM CARRIER SIGNAL
616

FIG. 6C

ANALOG
BASEBAND SIGNAL
210

FIG. 7A

CARRIER SIGNAL
410

FIG. 7B

FM CARRIER SIGNAL
716

FIG. 7C

DIGITAL
BASEBAND SIGNAL
310

FIG. 8A

CARRIER SIGNAL
410

FIG. 8B

FM CARRIER SIGNAL
816

FIG. 8C

ANALOG
BASEBAND SIGNAL
210

FIG. 9A

CARRIER SIGNAL
410

FIG. 9B

PHASE MODULATED
CARRIER SIGNAL
916

FIG. 9C

DIGITAL
BASEBAND SIGNAL
310

FIG. 10A

CARRIER SIGNAL
410

FIG. 10B

PHASE MODULATED
CARRIER SIGNAL
1016

FIG. 10C

FIG. 11

FIG. 12A

FIG. 12B

FIG. 12C

DIRECTLY DOWN-CONVERTING AN EM
SIGNAL TO A DEMODULATED BASEBAND SIGNAL

FIG. 12D

MODULATION CONVERSION

FIG. 14B

FIG. 14C

FIG. 15E

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 15D

FIG. 19A

FIG. 19B

FIG. 19C

FIG. 19D

FIG. 19E

716

FIG. 20A

FIG. 20B

2006

FIG. 20C

FIG. 20D

FIG. 20E

FIG. 21A

FIG. 21B

FIG. 21C

FIG. 21D

FIG. 21E

FIG. 22A

t_0 t_1 t_2 t_3

FIG. 22B

2204

t_1 t_2 t_3

FIG. 22C

2206

2207

t_1 t_2 t_3

FIG. 22D

2210

t_1 t_2 t_3

FIG. 22E

2212

t_0

FIG. 23A

FIG. 23B

FIG. 23C

FIG. 23D

FIG. 23E

FIG. 24A

FIG. 24B

FIG. 24C

FIG. 27

FIG. 28A

FIG. 28B

FIG. 28C

FIG. 28D

FIG. 29A

FIG. 29B

FIG. 29C

FIG. 29D

FIG. 29E

FIG. 29F

FIG. 29G

FIG. 29H

A. RISING EDGE PULSE GENERATOR

FIG. 29I

B. FALLING-EDGE PULSE GENERATOR

FIG. 29J

FIG. 29K

FIG. 29L

FIG. 30

FIG. 31A

FIG. 31B

FIG. 31C

FIG. 32A

FIG. 32B

STATE MACHINE FLOWCHART

FIG. 32C

ENERGY TRANSFER SIGNAL MODULE 3002

FIG. 33A

FIG. 33B

FIG. 33C

FIG. 33D

FIG. 34A

FIG. 34B

FIG. 34C

FIG. 34D

FIG. 34E

FIG. 34F

FIG. 35A

FIG. 35B

FIG. 35C

FIG. 35D

FIG. 35E

FIG. 36A

FIG. 36B

FIG. 36C

FIG. 36D

FIG. 36E

FIG. 37A

FIG. 37B

FIG. 37C

FIG. 37D

FIG. 37E

1016 → FIG. 38A

3804 → FIG. 38B

3806 → FIG. 38C

FIG. 38D

FIG. 38E

FIG. 39A

FIG. 39B

FIG. 39C

FIG. 39D

816

FIG. 40A

4004

FIG. 40B

4007

FIG. 40C

FIG. 40D

4014

FIG. 40E

816

2ND FREQ.
4108

FIG. 41A

1ST FREQ.
4106

2ND FREQ.
4108

4104

FIG. 41B

4105

4107

FIG. 41C

4109

FIG. 41D

4110 4112

4114

FIG. 41E

FIG. 42

FIG. 43

$$\Delta q(t) = 2 \cdot C \cdot A \cdot \sin\left(\frac{1}{2} \cdot T\right) \cdot \cos\left(t - \frac{1}{2} \cdot T\right)$$

FIG. 44A

DIFFERENTIAL CONFIGURATION

FIG. 44B
DIFFERENTIAL INPUT TO DIFFERENTIAL OUTPUT

FIG. 44C
SINGLE INPUT TO DIFFERENTIAL OUTPUT

FIG. 44D
DIFFERENTIAL INPUT TO SINGLE OUTPUT

FIG. 44E
EXAMPLE INPUT/OUTPUT CIRCUITRY

FIG. 45A

FIG. 45B

FIG. 46A

FIG. 46B

FIG. 46C

FIG. 46D

FIG. 47E

FIG. 47A

FIG. 47B

FIG. 47C

FIG. 47D

FIG. 48

4902

FIG. 49A

4904

FIG. 49B

4906

FIG. 49C

4908

FIG. 49D

4910

FIG. 49E

4912

FIG. 49F

4914

FIG. 49G

4916

FIG. 49H

516
(e.g., 901MHz)

FIG. 50A

FIG. 50B

FIG. 50D

FIG. 50C

FIG. 50E

FIG. 50F

FIG. 50G

616

FIG. 51A

5104

FIG. 51B

5108

FIG. 51D

FIG. 51C

5106

5107

APERTURES

5109

FIG. 51E

5112

5110A

5110B

FIG. 51F

5114

FIG. 51G

5116

716

FIG. 52A

5204

FIG. 52B

5208

FIG. 52D

5206

FIG. 52C APERTURES
5209

5207

5212

FIG. 52E

5210A 5210B

5214

FIG. 52F

5216

FIG. 52G

816

FIG. 53A

5304

FIG. 53B

5208

FIG. 53D

5306

FIG. 53C APERTURES

5307 5309

5312

FIG. 53E

5310A 5310B

5314

FIG. 53F

5316

FIG. 53G

916

FIG. 54A

5404

FIG. 54B

5408

FIG. 54D

5406

FIG. 54C

5407

APERTURES
5409

5412

FIG. 54E

5410B
5410A

5414

FIG. 54F

5416

FIG. 54G

1016

FIG. 55A

5504

FIG. 55B

5508

FIG. 55D

5506

FIG. 55C

5507

APERTURES
5509

5512

FIG. 55E

5510A

5510B

FIG. 55F

5516

FIG. 55G

FIG. 56A

FIG. 56B

FIG. 56C

FIG. 56D

FIG. 57A

FIG. 57B

FIG. 57D

FIG. 57C

FIG. 57E

FIG. 57F

FIG. 58A

FIG. 58B

FIG. 58D

FIG. 58C

FIG. 58E

FIG. 58F

FIG. 59A

FIG. 59B

FIG. 59D

FIG. 59C

FIG. 59E

FIG. 59F

1016

FIG. 60A

6004

FIG. 60B

6008

FIG. 60D

6006

FIG. 60C

6007

APERTURES
6009

6012

FIG. 60E

6010A 6010B

6016

FIG. 60F

FIG. 65

FIG. 66A

FIG. 66B

FIG. 67A

FIG. 67B

FIG. 67C

FIG. 68A

FIG. 68B

FIG. 68C

FIG. 68D

FIG. 68E

FIG. 68F

FIG. 68G

FIG. 68H

A. RISING EDGE PULSE GENERATOR

FIG. 68I

B. FALLING-EDGE PULSE GENERATOR

FIG. 68J

FIG. 68K

FIG. 68L

FIG. 69

FIG. 70
IMPEDANCE MATCHED ALIASING MODULE

FIG. 71A

FIG. 71B

FIG. 71C

FIG. 72

FIG. 73

ALIASING MODULE

FIG. 74

FIG. 75A

FIG. 75B

FIG. 75C

FIG. 75D

FIG. 75E

FIG. 75F

FIG. 76A

DIFFERENTIAL ENERGY TRANSFER CONFIGURATION

FIG. 76B

DIFFERENTIAL INPUT TO DIFFERENTIAL OUTPUT

FIG. 76C

SINGLE INPUT TO DIFFERENTIAL OUTPUT

FIG. 76D
DIFFERENTIAL INPUT TO SINGLE OUTPUT

FIG. 76E
EXAMPLE INPUT/OUTPUT CIRCUITRY

FIG. 77A

FIG. 77B

FIG. 77C

FIG. 78A

FIG. 78B

FIG. 79A

FIG. 79B

FIG. 79C

FIG. 79D

FIG. 79E

FIG. 79F

FIG. 80A

FIG. 80B

FIG. 80C

FIG. 80D

FIG. 80E

FIG. 80F

FIG. 81A

FIG. 81B

FIG. 81C

FIG. 81D

FIG. 81E

FIG. 81F

FIG. 83A

FIG. 83B

FIG. 83C

FIG. 83D

FIG. 83E

FIG. 83F

FIG. 84A

FIG. 84B

8404

FIG. 84C

8406

FIG. 84D

FIG. 85A

FIG. 85B

STATE MACHINE FLOWCHART

ENERGY TRANSFER SIGNAL MODULE 6902

FIG. 87

FIG. 88

FIG. 89

FIG. 90

FIG. 91

FIG. 92

FIG. 93

FIG. 94A

FIG. 94B

FIG. 94C

FIG. 95

FIG. 96

FIG. 97

FIG. 99

FIG. 100

FIG. 101

FIG. 102

FIG. 103

FIG. 104

FIG. 105

FIG. 106

FIG. 107A

$\square V(\text{out1})$
 E1: (981.86n, 1.404m) E2: (883.04n, -1.402m) DIFF(E): (98.82n, 2.806m)
 F1: (837.43n, 1.253m) F2: (738.01n, -1.252m) DIFF(F): (99.42n, 2.505m)

FIG. 107B

$\square V(\text{impedance-match-out})$
 E1: (981.86n, 1.404m) E2: (883.04n, -1.402m) DIFF(E): (98.82n, 2.806m)
 F1: (837.43n, 1.253m) F2: (738.01n, -1.252m) DIFF(F): (99.42n, 2.505m)

FIG. 108A

FIG. 108B

FIG. 109A

FIG. 109B

$q = C \cdot V$	EQ. 10
$V = A \cdot \sin(t)$	EQ. 11
$q(t) = C \cdot A \cdot \sin(t)$	EQ. 12
$\Delta q(t) = C \cdot A \cdot \sin(t) - C \cdot A \cdot \sin(t-T)$	EQ. 13
$\Delta q(t) = C \cdot A \cdot (\sin(t) - \sin(t-T))$	EQ. 14
$\sin(\alpha) - \sin(\beta) = 2 \cdot \sin\left(\frac{\alpha-\beta}{2}\right) \cdot \cos\left(\frac{\alpha+\beta}{2}\right)$	EQ. 15
$\Delta q(t) = 2 \cdot C \cdot A \cdot \sin\left[\frac{t-(t-T)}{2}\right] \cdot \cos\left[\frac{t+(t-T)}{2}\right]$	EQ. 16
$\Delta q(t) = 2 \cdot C \cdot A \cdot \sin\left(\frac{1}{2} \cdot T\right) \cdot \cos\left(t - \frac{1}{2} \cdot T\right)$	EQ. 17
$q(t) = \int C \cdot A \cdot (\sin(t) - \sin(t-T)) dt$	EQ. 18
$q(t) = -\cos(t) \cdot C \cdot A + \cos(t-T) \cdot C \cdot A$	EQ. 19
$q(t) = C \cdot A \cdot (\cos(t-T) - \cos(t))$	EQ. 20

FIG. 109C

FIG. 109D

FIG. 109E

POWER-CHARGE RELATIONSHIP

$$q=C \cdot V \quad \text{EQ. 21}$$

$$V=q/C \quad \text{EQ. 22}$$

$$V=J/C \quad \text{EQ. 23}$$

$$J=q^2/C \quad \text{EQ. 24}$$

$$P=J/S \quad \text{EQ. 25}$$

$$P=\frac{q^2}{C \cdot S} \quad \text{EQ. 26}$$

FIG. 109F

INSERTION LOSS

INSERTION LOSS IN dB IS EXPRESSED BY:

$$ILdB=10 \cdot \log\left(\frac{P_{in}}{P_{out}}\right) \text{ or}$$

$$ILdB=10 \cdot \log\left[\frac{\left(\frac{V_{in}}{R_{in}}\right)^2}{\left(\frac{V_{out}}{R_{out}}\right)^2}\right]$$

FIG. 110A

FIG. 110B

FIG. 112

FIG. 113A

FIG. 113B

FIG. 113C

FIG. 113D

FIG. 113E

FIG. 114

FIG. 115

FIG. 116

FIG. 117

FIG. 124A

FIG. 124B

A1: (4.6344n, 2.0867) A2: (0.000, 50.185n) DIFF(A) : (4.6344n, 2.0867)

A1: (4.6344n, 2.0867) A2: (0.000, 50.185n) DIFF(A) : (4.6344n, 2.0867)

FIG. 124E

FIG. 124F

FIG. 124G

FIG. 124H

FIG. 124I

FIG. 124J

FIG. 125

FIG. 126A

FIG. 126B

FIG. 126C

FIG. 126D

FIG. 126E

FIG. 127A

FIG. 127B

FIG. 127C

FIG. 127D

FIG. 127E

FIG. 128C

FIG. 129A

$A1: (1.0000G, 3.9326m)$ $A2: (788.000M, 9.0941u)$ $DIFF(A) : (212.000M, -3.9235m)$

FIG. 130

FIG. 131

FIG. 132A

FIG. 132B

FIG. 132C

FIG. 132D

FIG. 133

FIG. 134

FIG. 135

FIG. 136A

RECEIVER TIMING OSCILLATOR OUTPUT

FIG. 136B

WAVEFORM GENERATOR OUTPUT

FIG. 136C

FIG. 136D

RF SWITCH/INTEGRATOR OUTPUT

FIG. 136E

OPTIONAL AMPLIFIER/FILTER OUTPUT

FIG. 136F

RECTIFIER/FILTER OUTPUT
VARIABLE THRESHOLD GENERATOR OUTPUT

FIG. 136F

FIG. 137

FIG. 139

FIG. 142

FIG. 143

FIG. 144

FIG. 145

PSEUDO DIFFERENTIAL RECEIVER

FIG. 146

(WAVEFORM
GENERATOR
OUTPUT)

FIG. 147

(WAVEFORM
GENERATOR
OUTPUT)

FIG. 148

FIG. 149

FIG. 150

FIG. 151

FIG. 152

FIG. 153

FIG. 154

FIG. 155

FIG. 156

FIG. 157

FIG. 158

FIG. 159

FIG. 160

FIG. 161

FIG. 162

FIG. 163

FIG. 164A

FIG. 164B

FIG. 164C

FIG. 165

FIG. 166

FIG. 167

FIG. 168
UFT OUTPUT VS. BETA FOR SIMPLE RC IMPLEMENTATION

FIG. 169
UFT OUTPUT RESPONSE VS. NORMALIZED TIME WITH BETA AS A PARAMETER

FIG. 170

NORMALIZED SNR FOR MF, INT., RC UFT
IMPLEMENTATIONS, No.=1, Ta=A, A=1

FIG. 171

FIG. 172

FIG. 173

FIG. 174
UFT OUTPUT CHARGE TRANSFER

FIG. 175A

FIG. 175B

FIG. 175C

FIG. 175D

FIG. 176

OUTPUT VOLTAGE FOR 3 UFT PROCESSORS;
MATCHED FILTER, INTEGRATOR, RC

FIG. 177A

NORMALIZED SNR FOR MF, INT., RC UFT
IMPLEMENTATIONS, No.=1, Ta=1, A=1

FIG. 177B

FIG. 177C

FIG. 177D

FIG. 177E

FIG. 177F

$$\begin{aligned}
\int_0^{T_A} A u(t-T_A) \sin(\omega t + \phi) dt &= \int_0^{T_A} A (u(t-T_A) \cos \phi \sin(\omega t) + u(t-T_A) \sin \phi \cos(\omega t)) dt \\
&= A \cos(\phi) \int_0^{T_A} u(t-T_A) \sin(\omega t) dt + A \sin(\phi) \int_0^{T_A} u(t-T_A) \cos(\omega t) dt \\
&\underbrace{\qquad\qquad\qquad}_{\text{CONSTANT}} \underbrace{\qquad\qquad\qquad}_{\text{UFT CORRELATOR}} \underbrace{\qquad\qquad\qquad}_{\text{CONSTANT}} \underbrace{\qquad\qquad\qquad}_{\text{KERNEL}} = 0 \\
&= A \cos(\phi) \int_0^{T_A} u(t-T_A) \sin(\omega t) dt
\end{aligned}$$

- A IS CONSTANT ON A SINE TO SINE BASIS
- ϕ IS CONSTANT ON A SINE TO SINE BASIS
- i.e., THE MODULATION RATE DUE TO INFORMATION FOR PHASE AND AMPLITUDE IS VERY SLOW COMPARED TO CARRIER FREQUENCY

FIG. 178A

FIG. 178B

FIG. 179

FIG. 180

FIG. 181

FIG. 182

FIG. 183

FIG. 184

FIG. 185

FIG. 186

FIG. 187

FIG. 188

$$C_I(t) = \sum_{m=-\infty}^{\infty} \delta(t-mT_s) * p_C(t) = \sum_{m=-\infty}^{\infty} p(t-mT_s) \quad \underline{18802}$$

$$C_I(t) = \sum_{m=-\infty}^{\infty} (u(t) - u(t-T_A)) * \delta(t-mT_s) \quad \underline{18804}$$

$$C_Q(t) = \sum_{m=-\infty}^{\infty} (u[t-T_A/2] - u[t-3T_A/2]) * \delta(t-(mT_s+T_A/2)) \quad \underline{18806}$$

FIG. 189

FIG. 190

FIG. 191

B.B. RESPONSE FOR INFORMATION SIGNAL

FIG. 192

FIG. 193

FIG. 194

FIG. 195

FIG. 196

FIG. 197

FIG. 198

FIG. 199

FIG. 200

FIG. 201

FIG. 202
IQDEMOD SHOWING TIME RELATIONSHIP OF TX_I DATA

FIG. 203
IQDEMOD SHOWING TIME RELATIONSHIP OF TX_0 DATA

FIG. 204 IQDEMOD SHOWING QPSK MOD OUTPUT

FIG. 205 IQDEMOD SHOWING QPSK MOD OUTPUT WITH I MOD DATA

FIG. 206 IQDEMOD SHOWING QPSK MOD OUTPUT WITH Q MOD DATA

FIG. 207 IQDEMOD SHOWING OPSK MOD OUTPUT WITH I DATA

FIG. 208 IQDEMOD SHOWING OPSK MOD OUTPUT WITH Q DATA

IODEMOD RELATIONSHIP OF I RECEIVED DATA DIFFERENTIAL SINGLE ENDED AFTER DIFFERENTIAL AMPLIFIER

FIG. 209

IODEMOD RELATIONSHIP OF Q RECEIVED DATA DIFFERENTIAL SINGLE ENDED AFTER DIFFERENTIAL AMPLIFIER

FIG. 210

IODEMOD RELATIONSHIP OF I RECEIVED DATA DIFFERENTIAL

FIG. 211

IODEMOD RELATIONSHIP OF Q RECEIVED DATA DIFFERENTIAL

FIG. 212

FIG. 213

FIG. 214
FURTHER OPTIMIZED MULTIPLE APERTURE REALIZATION

FIG. 215

FIG. 216

WIRELESS TRADE-OFF DESIGN CONCERN

FIG. 217

**NOISE FIGURE CALCULATIONS BASED ON RMS
VOLTAGE AND CURRENT NOISE SPECIFICATIONS**

ENTER THE VOLTAGE NOISE DENSITY, e_n , AND THE
CURRENT NOISE DENSITY, i_n , FOR THE AMPLIFIER CHOSEN:

$$e_n := 6 \cdot 10^{-9} \text{ V/sqrt(Hz)}$$

$$i_n := 1 \cdot 10^{-12} \text{ A/sqrt(Hz)}$$

ENTER THE SOURCE RESISTANCE DRIVING THE AMPLIFIER:

$$K := 1.38 \cdot 10^{-23} \text{ J/K} \quad T := 290 \text{ K}$$

$$\text{PARALELL}(x, y) := \frac{x \cdot y}{x + y} \quad NF(R_S) := 20 \cdot \log \left(\sqrt{\frac{e_n^2 + 4 \cdot K \cdot T \cdot R_S + i_n^2 \cdot R_S^2}{4 \cdot K \cdot T \cdot R_S}} \right)$$

IF WE PLOT NOISE FIGURE VERSUS SOURCE RESISTANCE WE CAN GET
AN IDEA OF WHAT IS THE OPTIMUM SOURCE RESISTANCE.
IT IS NOT NECESSARILY THE LOWEST RESISTANCE!

$$R_S := 100, 200 \dots 100 \cdot 10^3$$

FIG. 218A

21800

FIG. 218B

21814

FIG. 218C

FIG. 218D

FIG. 218F

FIG. 218G

FIG. 218E

FIG. 219

IC CONCEPTUAL SCHEMATIC

FIG. 220

BASIC ARCHITECTURE

FIG. 221

FIG. 222

DC EQUATIONS

$$V_{in} = V \cdot \frac{R_{out}}{R_{in} + R_{out}}$$

$$V_c = V_{in} - (V_{in} - V_{init}) \cdot \exp\left(\frac{-t_c}{R_{in} \cdot C}\right)$$

$$V_d = V_c \cdot \exp\left(\frac{-t_d}{R_{out} \cdot C}\right)$$

DEFINITIONS:
 Rin - INPUT RESISTANCE
 Rout - OUTPUT RESISTANCE
 C - CAPACITOR
 tc - CHARGE TIME OR APERATURE
 td - DISCHARGE TIME OR LO PERIOD=tc
 V - INPUT VOLTAGE
 Vinit - INITIAL CAPACITOR VOLTAGE
 Vc - FINAL CHARGE CAPACITOR VOLTAGE
 Vd - FINAL DISCHARGE CAPACITOR VOLTAGE

FIG. 223

FIG. 224

FIG. 225

FIG. 226

FIG. 227

FIG. 228

CHARGE TRANSFER

DEFINITIONS:

q=CHARGE IN COULOMBS
C=CAPACITANCE IN FARADS
V=VOLTAGE IN VOLTS
A=INPUT SIGNAL AMPLITUDE

$$\begin{aligned} q &= C \cdot V \\ V &= A \cdot \sin(t) \\ q(t) &= C \cdot A \cdot \sin(t) \\ \Delta q(t) &= C \cdot A \cdot \sin(t) - C \cdot A \cdot \sin(t-T) \\ \Delta q(t) &= C \cdot A \cdot (\sin(t) - \sin(t-T)) \end{aligned} \quad \text{EQUATION A}$$

$\Delta q(t)$ EXPRESSES THE CHANGE IN CHARGE ACROSS CAPACITOR C DURING APERTURE T. AS CAN BE SEEN, WHEN APERTURE T TENDS TOWARDS 0, $\Delta q(t)$ TENDS TOWARDS 0.

FIG. 229

USING THE SUM TO PRODUCT TRIGONOMETRIC IDENTITY,

$$\sin(\alpha) - \sin(\beta) = 2 \cdot \sin\left(\frac{\alpha-\beta}{2}\right) \cdot \cos\left(\frac{\alpha+\beta}{2}\right) \quad \text{IDENTITY 1}$$

EQUATION 1 CAN BE RE-WRITTEN AS:

$$\Delta q(t) = 2 \cdot C \cdot A \cdot \sin\left[\frac{t-(t-T)}{2}\right] \cdot \cos\left[\frac{t+(t-T)}{2}\right]$$

$$\Delta q(t) = 2 \cdot C \cdot A \cdot \sin\left(\frac{1}{2}T\right) \cdot \cos\left(t - \frac{1}{2}T\right) \quad \text{EQUATION B}$$

THE \sin TERM IN EQUATION B IS A FUNCTION OF APERTURE T ONLY. IT IS EASILY SEEN THAT $\Delta q(t)$ WILL OBTAIN A MAXIMUM VALUE WHEN T IS EQUAL TO AN ODD MULTIPLE OF π i.e., $\pi, 3\pi, 5\pi, \dots$. THEREFORE, CAPACITOR C EXPERIENCES THE GREATEST CHANGE IN CHARGE WHEN THE APERTURE HAS A VALUE OF π OR A TIME INTERVAL REPRESENTATIVE OF 180 DEGREES OF THE INPUT SINUSOID. CONVERSELY, WHEN T IS EQUAL TO $2\pi, 4\pi, 6\pi, \dots$ MINIMAL CHARGE IS TRANSFERRED.

FIG. 230

SOLVING FOR $q(t)$ BY INTEGRATING EQUATION A ALLOWS THE CHARGE ON C WITH RESPECT TO TIME TO BE GRAPHED ON THE SAME AXIS AS THE INPUT SINUSOID $\sin(t)$.

$$q(t) = \int C \cdot A \cdot (\sin(t) - \sin(t-T)) dt$$

$$q(t) = -\cos(t) \cdot C \cdot A + \cos(t-T) \cdot C \cdot A$$

$$q(t) = C \cdot A \cdot (\cos(t-T) - \cos(t)) \quad \text{EQUATION C}$$

FIG. 231

FIG. 232

$5 \cdot V(\text{RF_input}) + 1.0$ $\diamond V(\text{output_A}) - 1$ $\triangleright V(\text{output_B})$

FIG. 234

FIG. 235

FIG. 236

FIG. 237

o V(R2:2)

FIG. 238

FIG. 239

FIG. 240

FIG. 241
COMPLEMENTARY FET SWITCH

FIG. 242
DIFFERENTIAL CONFIGURATION

FIG. 244

FIG. 245

FIG. 246

FIG. 247

CMOS IMPLEMENTATION BLOCK DIAGRAM

FIG. 248

LO GAIN BLOCK AT GATE LEVEL

FIG. 249

LO GAIN BLOCK AT TRANSISTOR LEVEL

FIG. 250

FIG. 251

FIG. 252
POWER GAIN BLOCK AT GATE LEVEL

FIG. 253
 POWER GAIN BLOCK AT TRANSISTOR LEVEL

FIG. 254

SWITCH AT TRANSISTOR LEVEL

FIG. 255

CMOS "HOT CLOCK" BLOCK DIAGRAM

FIG. 256
POSITIVE PULSE GENERATOR AT GATE LEVEL

FIG. 257

POSITIVE PULSER AT TRANSISTOR LEVEL

FIG. 258
PULSE WIDTH ERROR EFFECT FOR 1/2 CYCLE

FIG. 259
SINGLE-ENDED UFD MODULE

FIG. 260
SINGLE-ENDED UFD MODULE

FIG. 261
FULL DIFFERENTIAL

FIG. 262
FULL DIFFERENTIAL

FIG. 263
 SINGLE-ENDED, NEAR IDEAL SIMULATION

FIG. 264

LOSS IN SENSITIVITY VS. CLOCK PHASE DEVIATION FOR UFT

FIG. 265

FIG. 267

PARAMETER	802.11 REQUIREMENT OR INDUSTRY PRACTICE	UFT MODULE BASED RX PERFORMANCE
OPERATING BAND	2.4-2.5 GHz	2.4-2.5 GHz
CHANNELS	2.402 TO 2.495 IN 1 MHz STEPS 2.412 TO 2.484 GHz IN 5 MHz STEPS	2.402 TO 2.495 IN 1 MHz STEPS 2.412 TO 2.484 GHz IN 5 MHz STEPS
MODULATION	BPSK, QPSK, (BARKER, CCK)	BPSK, QPSK
TX SPECTRAL MASK	FIRST SIDEBELOBE REJECT <-30, +15dBm SECOND SIDEBELOBE REJECT <-50, +15dBm	-35 dBc, -55dBc
EYE OPENING	Verr <.35 FOR 1000 COMPLEX SAMPLES	<.3
OPERATIONAL DYNAMIC RANGE	76 dB (DERIVED)	83 dB
MAX. INPUT, @ .8% PER	-4 dBm	-4 dBm
SENSITIVITY	-80 dBm @ <8% PER	-87 dBm @ <5% PER
ACQUISITION	802.11 DSS AND FH	802.11 DSS AND FH
IMAGE REJECTION	>80 dB	>80 dB
LO RERRADIATION	< -50 dBm	< -50 dBm
ADJACENT CHANNEL REJECTION	> 35 dB @ 30 MHz OFFSET PER <8%	> 35 dB @ 30 MHz OFFSET PER <5%
POWER	3.3.5V 1.5W (RX MODE)	3.3.5V, 700mW

FIG. 268

FIG. 269

FIG. 270

FIG. 271

FIG. 272

FIG. 273

FIG. 274

FIG. 275

FIG. 276

FIG. 277

FIG. 278

FIG. 279

FIG. 280

FIG. 281
MULTIPLE APERTURE RECEIVER IMPLEMENTATION

FIG. 282

FIG. 283

FIG. 284

FIG. 285

