Chapter 9 Introduction to Graphs

Discrete Structures for Computing on January 4, 2023

Nguyen An Khuong, Tran Tuan Anh, Nguyen Tien Thinh, Mai Xuan Toan, Tran Hong Tai Faculty of Computer Science and Engineering University of Technology - VNUHCM trtanh@hcmut.edu.vn

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Contents

1 Graph definitions

Terminology Special Graphs Bipartie graph

2 Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

3 Exercise

Graph Isomorphism

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

ontents.

Graph definitions Terminology

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

ontents

Graph definitions

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Motivations

The need of the graph

- Representation/Storing
- Searching/sorting
- Optimization

Its applications

- Electric circuit/board
- Chemical structure
- Networking
- Map, geometry, . . .
- Graph theory is useful for analysing "things that are connected to other things".
- Some difficult problems become easy when represented using a graph.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh. Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Graph definitions Termino logy

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Evercise

Granh

Graph

Definition

A graph $(d\hat{\delta} thi)$ G is a pair of (V, E), which are:

- V nonempty set of vertices (nodes) (dînh)
- E set of edges (cạnh)

A graph captures abstract relationships between vertices.

Undirected graph

Directed graph

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

iraph definitions

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Undirected Graph (Đồ thị vô hướng)

Definition (Simple graph (đơn đồ thị))

- Each edge connects two different vertices, and
- No two edges connect the same pair of vertices

An edge between two vertices u and v is denoted as $\{u,v\}$

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

raph definitions

Termino logy

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Undirected Graph

Definition (Multigraph (đa đồ thị))

Graphs that may have multiple edges connecting the same vertices.

An unordered pair of vertices $\{u,v\}$ are called multiplicity m ($b\hat{\rho}i$ m) if it has m different edges between.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Termino logy Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Undirected Graph

Definition (Pseudograph (giả đồ thi))

Are multigraphs that have

• loops (khuyên) – edges that connect a vertex to itself

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

ranh definitio

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Terminologies For Undirected Graph

Neighborhood

In an undirected graph G = (V, E),

- two vertices u and $v \in V$ are called **adjacent** ($li\hat{e}n \ k\hat{e}$) if they are **end-points** ($di\hat{e}m \ d\hat{a}u \ mut$) of edge $e \in E$, and
- ullet e is ${\sf incident}$ ${\sf with}$ $({\it canh liên thuộc})$ ${\it u}$ and ${\it v}$
- e is said to **connect** ($canh \ n\acute{o}i$) u and v;

The degree of a vertex

The **degree of a vertex** ($b\hat{a}c$ $c\hat{u}a$ $m\hat{o}t$ $d\hat{i}nh$), denoted by deg(v) is the number of edges incident with it, except that a loop contributes twice to the degree of that vertex.

- isolated vertex (đỉnh cô lập): vertex of degree 0
- pendant vertex (dinh treo): vertex of degree 1

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Tien Thinh, Mai Xuan

Toan, Tran Hong Tai

Example

What are the degrees and neighborhoods of the vertices in these graphs?

Solution

In G, deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1, ... Neiborhoods of these vertices are

$$N(a) = \{b, f\}, N(b) = \{a, c, e, f\}, \dots$$

In H, deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, ...

Neiborhoods of these vertices are

$$N(a) = \{b, d, e\}, N(b) = \{a, b, c, d, e\}, \dots$$

Contents

Graph definitions

Termino logy

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Basic Theorems

Theorem (The Handshaking Theorem)

Let G = (V, E) be an undirected graph with m edges. Then

$$2m = \sum_{v \in V} \deg(v)$$

(Note that this applies even if multiple edges and loops are present.)

Example

What are the degrees and neighborhoods of the vertices in these graphs?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Prove that ...

Theorem

An undirected graph has an even number of odd-degree vertices.

...

If the number of vertices in an undirected graph is an odd number, then there exists an even-degree vertex.

...

If the number of vertices in an undirected graph is an odd number, then the number of vertices with even degree is odd.

...

If the number of vertices in an undirected graph is an even number, then the number of vertices with even degree is even.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Exercise

Exercise (1)

Is there any undirected simple graph including four vertices that their degrees are respectively 1, 1, 2, 2?

Exercise (2)

Is there any undirected simple graph including six vertices that their degree are respectively 2, 3, 3, 3, 3, 3 ?

Exercise (3)

An undirected simple graph G has 15 edges, 3 vertices of degree 4 and other vertices having degree 3. What is the number of vertices of the graph G?

Exercise (4)

Is it possible that each person has exactly 5 friends in the same group of 9 people?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions Terminology

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Exercise (6)

Give an undirected simple graph G = (V, E) with |V| = n, show that

- $\forall v \in V, \deg(v) < n,$
- **1)** there does not exist simultaneously both a vertex of degree 0 and a vertex of degree (n-1),
- deduce that there are at least two vertices of the same degree.

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

Representing Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Directed Graph

Definition (Directed Graph (đồ thị có hướng))

A directed graph G is a pair of (V, E), in which:

- *V* nonempty set of vertices
- E set of directed edges (canh có hướng, arcs)

A directed edge start at u and end at v is denoted as (u, v).

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

- u is said to be **adjacent to** $(n \acute{o}i \ t \acute{o}i) \ v$ and v is said to be adjacent from $(d u \not o c \ n \acute{o}i \ t \grave{u}) \ u$ if (u,v) is an arc of G, and
- u is called **initial vertex** (dinh d $\hat{a}u$) of (u, v)
- ullet v is called **terminal** ($\emph{dinh cu\'oi}$) or **end vertex** of (u,v)
- the initial vertex and terminal vertex of a loop are the same.

The degree of a vertex

In a graph G with directed edges:

- in-degree (bâc vào) of a vertex v, denoted by deg (v), is the number of edges with v as their terminal vertex.
- out-degree ($b\hat{a}c$ ra) of a vertex v, denoted by $deg^+(v)$, is the number of edges with v as their initial vertex.

Note: a loop at a vertex contributes 1 to both the in-degree and the out-degree of this vertex.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise Graph

Basic Theorem

Theorem

Let G = (V, E) be a graph with directed edges. Then

$$\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v) = |E|.$$

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

 ${\sf Graph\ definitions}$

Termino logy

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Complete Graphs

A complete graph ($d\hat{o}$ thị $d\hat{a}y$ $d\hat{u}$) on n vertices, K_n , is a simple graph that contains exactly one edge between each pair of distinct vertices.

 K_5

 K_4

Exercise

What is the largest number of edges a undirected simple graph with 10 vertices can have? K_n can have?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

ripartie Brabii

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Cycles

A cycle (đồ thị vòng) C_n , $n\geq 3$, consists of n vertices v_1,v_2,\ldots,v_n and edges $\{v_1,v_2\},\{v_2,v_3\},\ldots,\{v_{n-1},v_n\}$, and $\{v_n,v_1\}$.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy

Special Graphs Bipartie graph

orpartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Wheels

We obtain a wheel ($d\hat{o}$ thi hình bánh xe) W_n when we add an additional vertex to a cycle C_n , for $n \geq 3$, and connect this new vertex to each of the n vertices in C_n .

 W_5 W_4

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology

Special Graphs

Bipartie graph

ipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

n-cube

An n-dimensional hypercube ($kh\acute{o}i\ n\ chi\grave{e}u$), Q_n , is a graph that has vertices representing the 2^n bit strings of length n. Two vertices are adjacent iff the bit strings that they represent differ in exactly one bit position.

What's about Q_4 ?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology

Special Graphs
Bipartie graph

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Applications of Special Graphs

- Local networks topologies
 - Star, ring, hybrid
- Parallel processing
 - Linear array
 - Mesh network

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

- One goat, a cabbage and a wolf are on a side of river; a boatman wishes to transport them to the other side but, his boat being too small, he could transport only one of them at once
- How does he proceed not to leave them together without surveillance: the wolf and the goat, as well as the goat and the cabbage?

Nguyen An Khuong. Tran Tuan Anh. Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Bipartite Graphs

Definition

A simple graph G is called bipartite ($d\hat{o}$ thị phân $d\hat{o}$ i) if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2)

Example

C_6 is bipartite

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions Terminology

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Complete Bipartite Graphs

Definition

A complete bipartite $K_{m,n}$ is a graph that

- has its vertex set partitioned into two subsets of m and n vertices, respectively,
- with an edge between two vertices iff one vertex is in the first subset and the other is in the second one

 $K_{3.3}$

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions Termino logy

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh Isomorphism

0.25

Bipartite graphs

Example (Bipartite graphs?)

- C₆
- C
- *K*₃
- \bullet K_n
- the following graph

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

New Graph From Old

Definition

A **subgraph** ($d\hat{o}$ thi con) of a graph G = (V, E) is a graph H = (W, F) where $W \subseteq V$ and $F \subseteq E$.

Definition

The **union** $(h \circ p)$ of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$. The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.

 G_1

 G_2

 $G_1 \cup G_2$

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Planar Graphs

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Planar Graphs

Definition

- A graph is called planar (phẳng) if it can be drawn in the plane without any edges crossing.
- Such a drawing is called planar representation (biểu diễn phẳng) of the graph.

 K_4 with no crossing

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology
Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Example

Example

- Is K_5 planar?
- Is Q_3 planar?

 K_5 Q_3

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Important Corollaries

Corollary

- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, then $e \le 3v 6$.
- If G is a connected planar simple graph with e edges and v vertices where $v \ge 3$, and no circuits of length 3, then e < 2v 4.

Example

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions Terminology

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Definition

- Given a planar graph G, an elementary subdivision (phân chia so $c\hat{a}p$) is removing an edge $\{u,v\}$ and adding a new vertex w together with edges $\{u, w\}$ and $\{w, v\}$.
- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are called homeomorphic (đồng phôi) if they can obtained from the same graph by a sequence of elementary subdivisions.

Kuratowski's Theorem

Theorem

A graph is nonplanar iff it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

 K_5 Non-planar

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology

Special Graphs

Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs

Bipartie graph

Representing Graphs

and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Isomorphism

Example

A graph is nonplanar iff it contains a subgraph homeomorphic to $K_{3,3}$

Adjacency Lists (Danh sách kề)

Introduction to Graphs
Nguyen An Khuong,
Tran Tuan Anh, Nguye
Tien Thinh, Mai Xuan
Toan, Tran Hong Tai

Vertex	Adjacent vertices
a	b, c, e
b	a
С	a, d, e
d	c, e
e	a, c, d

Initial vertex	Terminal vertices
a	b, c, d, e
b	b, c, d, e b, d
С	a, c, e
d	c, e
e	b, c, d

Contents

Graph definitions

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

_

Exercise

Adjacency Matrices

Definition

Adjacency matrix ($\emph{Ma trận }\emph{k}\emph{e}$) $\emph{A}_{\emph{G}}$ of $\emph{G}=(\emph{V},\emph{E})$

- Dimension $|V| \times |V|$
- Matrix elements

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{if } (v_i, v_j) \in E \\ 0 & ext{otherwise} \end{array}
ight.$$

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions Terminology

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Examples

Example

Give the graph defined by the following adjacency matrix

	A	B	C	D	E
Л	0	0	1	1	0
$A \\ B \\ C$	0	-	0		-
C	1	0	0	1	0
$D \\ E$	1		1	0	1
E	0	0	0	1	0

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Adjacency Matrices

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

ВК

Example

Give the directed graph defined by the following adjacency matrix $\boldsymbol{\varphi}$

		A	B	C	D	E
A B C D E		0 1	0 0 0 1 0	0	0	0 0 0 1
	L					

Contents

Graph definitions
Terminology

Special Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Incidence Matrices

Definition

Incidence matrix (ma trận liên thuộc) M_G of G = (V, E)

- Dimension $|V| \times |E|$
- $\begin{array}{l} \bullet \;\; \text{Matrix elements} \\ m_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise} \end{array} \right. \end{aligned}$

		e_1	e_2	e_3	e_4
$egin{array}{c} a \ b \end{array}$	Γ	1	1	1	0
b		0	1	0	1
c		1	0	0	1
d		0	0	1	0

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology
Special Graphs
Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Examples

Example

Give incidence matrix according to the following graph

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

ВК

Definition

 $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic $(d\mathring{a}ng \ c\^{a}u)$ if there is a **one-to-one function** f from V_1 to V_2 with the property that a and b are adjacent in G_1 iif f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an isomorphism $(m\^{o}t \ d\mathring{a}ng \ c\^{a}u)$.

(i.e. there is a one-to-one correspondence between vertices of the two graphs that preserves the adjacency relationship.)

Isomorphism function f: U - V with $f(u_1) = v_1$ $f(u_2) = v_4$ $f(u_3) = v_3$ $f(u_4) = v_2$

Contents

Graph definitions

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Isomorphism?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Isomorphism?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs Bipartie graph

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise Graph

Isomorphism?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

BK TP.HCM

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Isomorphism

Are the simple graphs with the following adjacency matrices isomorphic ?

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\bullet \quad \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right) \quad \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

- Extend the definition of isomorphism of simple graphs to undirected graphs containing loops and multiple edges.
- Define isomorphism of directed graphs

Contents

Graph definitions

Terminology Special Graphs

Bipartie graph

Representing Graphs

and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Đồ thị G_1 và G_2 tương ứng với các ma trận liền kề và liên thuộc dưới đây.

(G_1)	•	A	B	C	D	E		(G_2)		e_1	e_2	e_3	e_4	e_5	e_6	e_7
A	Γ	0	1	1	1	1	1		Γ					1		
B		1	0	0	1	0		В		1	1	0	1	0	0	0
C		1	0	0	1	0		C		0	1	1	0	1	0	0
D		1	1	1	0	1		D		0	0	1	1	0	0	1
E		1	0	0	1	0		E	L	0	0	0	0	0	1	1

Hãy cho biết quan hệ của hai đồ thị G_1 và G_2 .

- A) Đẳng cấu
- Không đẳng cấu
-) Thứ tự
- Tương đương

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology
Special Graphs

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Xét đồ thị đầy đủ K_5 và đồ thị phân đôi đầy đủ $K_{3,2}.$ Khi đó ta có:

- $lack M_{3,2}$ và K_5 là không đẳng cấu.
- $oldsymbol{3} K_{3,2}$ và K_5 có cùng số đỉnh.
- \bigcirc $K_{3,2}$ và K_5 có cùng số cạnh.
- lacktriangle) $K_{3,2}$ và K_5 là đẳng cấu.
- Các đáp án khác đều sai.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology
Special Graphs
Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Chọn phát biểu đúng với đồ thị đơn vô hướng (undirected simple graph) có n đỉnh.

- **4)** Bậc của một đỉnh bất kỳ trong đồ thị nhỏ hơn n-2.
- Tồn tại một đỉnh trong đồ thị có bậc là 1.
- Không thể chứa đỉnh cô lập.
-) Tồn tại hai đỉnh trong đồ thị có cùng số bậc.
- Các đáp án khác đều sai.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Terminology

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Prove that ...

...

There are 101 invited people in a party. Suppose that A knows $B \Rightarrow B$ knows A. Prove that

- 1 at least one people knows an even number of other people.
- 2 at least two people who know the same number of people (but not considering himself).

A chess tournament of n persons plays according to the circle competition. Prove that at any moment of the tournament there are always two players having identical number of games played. And if $n \geq 4$, at any intermediate moment of the tournament, there are always two players having identical number of games that they are the winner.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions
Terminology

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

In a tournament with n teams participated ($n \geq 4$), n+1 competition games were happening. Prove that there exists a team that has played at least three matches.

With any four of the n people $(n \ge 4)$, there exists a person who knows the three others. Prove that there exists a person who knows all n-1 others.

In a party of 6 people, prove that there are 3 people who know each other or 3 people who do not know each other.

During a summer vacation, 7 friends are vacationing away. They promised each other that during the holidays each person must write to exactly three of them. Prove that there is someone who does not write back to the his sender.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Để phân biệt thắng thua thì họ đấu từng cặp đôi và không giới hạn thời gian. Nhà vô địch là người có nhiều trận thắng nhất.

Đông Tà không thể đánh bai Nam Đế, nhưng ông ta đã đánh bai Tây Đôc.

Do dùng nhiều sức trong mỗi trận đấu nên Nam Đế chỉ thắng hai trận đầu tiên

Bắc Cái chỉ thắng được Nam Đế.

Tây Độc không thể chiến thắng Trung Thần Thông, nhưng lại chiến thắng Nam Đế và Bắc Cái.

Riệng Trung Thần Thông chỉ bị thất bai một trận đấu.

Hãy cho biết Trung Thần Thông đã bị đánh bai bởi vị nào?

- A) Nam Đế
- Nam Đế hoặc Đông Tà
- Đông Tà
- Tây Độc

Introduction to Graphs

Nguven An Khuong. Tran Tuan Anh. Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions Termino logy

Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Một dự án gồm các công việc A, B, C, D, E, F và G cần thực hiện. Thời lượng (theo ngày) cần thiết để xử lý các công việc lần lượt là

p_A	p_B	p_C	p_D	p_E	p_F	p_G
5	2	6	7	9	3	2

Ta ký hiệu

$$X_1 + X_2 + \ldots + X_n \leq Y_1 + Y_2 + \ldots + Y_m$$

biểu diễn các công việc X_i $(i=1,\ldots,n)$ đều cần hoàn thành trước khi khởi động các công việc Y_k $(k=1,\ldots,m)$. Xét thời gian bắt đầu khởi động dự án là 0. Dự án được gọi là "kết thúc" khi tất cả các công việc trong dự án đều hoàn thành. Biết rằng: $A \preceq B + C$; $B + C \preceq D$; $C \preceq F + G$; $E \preceq F$. Hỏi dự án này sẽ kết thúc sớm nhất vào ngày nào?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Tran Tuan Anh. Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions Termino logy Special Graphs

Bipartie graph Representing Graphs and Graph

Isomorphism Representing Graphs Graph Isomorphism

Exercise

Isomorphism

Granh

Một ban chỉ huy quân sự muốn thiết lập một mặt trận gồm các cứ điểm a, b, \ldots, g . Các cứ điểm này và đường nối trực tiếp giữa chúng tao nên một đồ thị đơn vô hướng.

Do số lương thiết giáp có giới han nên ban chỉ huy quyết định chỉ đồn trú thiết giáp tai một số cứ điểm mà thôi. Tuy nhiên, để đảm bảo tính tác chiến nhanh chóng nên ta yêu cầu: nếu cứ điểm nào không có đồn trú thiết giáp thì ít nhất một cứ điểm bên cạnh (đỉnh kề) phải có đơn vị thiết giáp đồn trú.

Hỏi có bao nhiều cách triển khai thiết giáp đến các cứ điểm cho mặt trận như đồ thi bên ?

Revision

- đ Hãy xác định danh sách kề, ma trận kề và ma trận liên thuộc của đồ thi trên.
- 6) Hãy cho biết đồ thị này có phải là đồ thị phân đôi không. Nếu có, hãy vẽ lại dưới dạng một đồ thị phân đôi.

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Để giảm thiếu thiệt hại về kinh tế, cơ quan quản lý tối ưu hóa và lập lịch đường bay EuroControl cố gắng tiếp tục duy trì một số đường bay đi và đến Việt Nam, liên quan đến các thành phố lớn như: Hồ Chí Minh (A), Paris (B), Berlin (C), và London (D). Tuy nhiên, do ảnh hưởng của môi trường thiên nhiên nói trên, chỉ có một vài chuyến bay có thể hoạt động: từ A hướng đến B và D, từ B hướng đến C, từ C hướng đến A và D, từ D hướng đến B.

- Hãy vẽ đồ thị có hướng tương ứng.
- 6) Viết ma trận kề M cho đồ thị có hướng này

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Terminology Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Revision

Hai lớp được định nghĩa như các hình bên dưới trái. Hãy vẽ đồ thị biểu diễn hàm thành viên có thể được gọi từ một hàm.

b();

c();

private:

(\it{Chú} ý : Một cung từ hàm u đến hàm v biểu diễn rằng v có thể được gọi bởi u.) Ví dụ.

private:
 d();

Có bao nhiều đường đi đơn khác nhau từ đỉnh X::a() đến đỉnh Y::d()?

Introduction to Graphs

Nguyen An Khuong, Tran Tuan Anh, Nguye Tien Thinh, Mai Xuan Toan, Tran Hong Tai

Contents

Graph definitions

Termino logy Special Graphs Bipartie graph

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise