ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

2 септември 2009 г. – <u>Вариант 1</u>

УВАЖАЕМИ ЗРЕЛОСТНИЦИ,

Тестът съдържа 28 задачи по математика от два вида:

- 20 задачи със структуриран отговор с четири възможни отговора, от които само един е верен;
- 8 задачи със свободен отговор.

Първите 20 задачи (от 1. до 20. включително) в теста са от затворен тип с четири възможни отговора, обозначени с главни букви от A до Γ , от които само един е верен. Отговорите на тези задачи отбелязвайте със син/черен цвят на химикалката в **листа за отговори**, а не върху тестовата книжка. Отбелязвайте верния отговор със знака X в кръгчето с буквата на съответния отговор. Например:

Ако след това прецените, че първоначалният отговор не е верен и искате да го поправите, запълнете кръгчето с грешния отговор и отбележете буквата на друг отговор, който приемате за верен. Например:

За всяка задача трябва да е отбелязан не повече от един действителен отговор. Като действителен отговор на съответната задача се приема само този, чиято буква е отбелязана със знака ${f X}$.

Отговорите на **задачите със свободен отговор (от 21. до 28. вкл.)** запишете в предоставения **свитък за свободните отговори**, като за задачи **от 26. до 28. вкл.** запишете пълнете решения с необходимите обосновки.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

Отговорите на задачите от 1. до 20. вкл. отбелязвайте в листа за отговори!

1. Кое от посочените числа е най-малко?

$$\mathbf{A}) \left(\frac{1}{2}\right)^{-2}$$

$$\mathbf{F})\left(\frac{4}{3}\right)^{\frac{1}{2}}$$

$$\mathbf{B})\left(\frac{4}{3}\right)^3 \qquad \qquad \mathbf{B})\left(\frac{3}{2}\right)^{-3}$$

$$\Gamma$$
) $\left(\frac{3}{4}\right)^3$

- **2.** Стойността на израза $\sqrt{17^2 8^2} \sqrt{(-2)^6} \left(-\frac{2}{\sqrt{2}}\right)^2$ е:
- **A)** 25

Б) 21

B) 9

- Γ) 5
- 3. Ако $x \neq y$ и $y \neq 0$, то изразът $\frac{x}{y^2 xy} + \frac{1}{x y}$ е еквивалентен на:

A)
$$\frac{x+y}{y(x-y)}$$
 B) $\frac{x+1}{y(x-y)}$

b)
$$\frac{x+1}{y(x-y)}$$

B)
$$-\frac{1}{y}$$

- Γ) $\frac{1}{3}$
- 4. Кое от уравненията има корени с различни знаци и положителният корен има поголяма абсолютна стойност от отрицателния?

A)
$$x^2 + 7x + 5 = 0$$

b)
$$-x^2 + 2x + 3 = 0$$

B)
$$x^2 + 2x - 3 = 0$$

A)
$$x^2 + 7x + 5 = 0$$
 B) $-x^2 + 2x + 3 = 0$ **B)** $x^2 + 2x - 3 = 0$ $x - 2x^2 + 4x - 3 = 0$

5. Графиката на коя от посочените функции е показана на чертежа?

b)
$$y = -x^2 - 4x - 3$$

B)
$$y = -x^2 + 4x + 3$$

$$\Gamma$$
) $y = x^2 + 4x - 3$

6. Допустимите стойности на израза

$$\frac{\sqrt[6]{-x^4y^5}}{\sqrt[4]{x^3y}}$$
 can

A)
$$x \le 0, y \le 0$$

b)
$$x < 0, y < 0$$

B)
$$x \le 0, y \ge 0$$

$$\Gamma$$
) $x > 0, y > 0$

- 7. Стойността на израза $6^{1+\log_6 20}$ е:
- **A)** 6

Б) 20

B) 120

Γ) 26

- **8.** Решенията на неравенството $2x^2 3x + 1 > 0$ ca:
- **A)** $x \in (-\infty, 0, 5) \cup (1, +\infty)$

b) $x \in (-\infty; 1) \cup (2; +\infty)$

B) $x \in (-\infty; -1) \cup \left(-\frac{1}{2}; +\infty\right)$

- Γ) $x \in \left(\frac{1}{2};1\right)$
- 9. За функциите $f(x) = x^4 1$ и $g(x) = \cos^3 x + 1$ е вярно:
- A) f(x) е четна, а g(x) нечетна

 Б) f(x) и g(x) са нито четни, нито нечетни
- B) f(x) и g(x) са нечетни
- Γ) f(x) и g(x) са четни
- 10. Стойността на израза $\cos 58^{\circ} \cos 28^{\circ} + \cos 32^{\circ} \cos 62^{\circ}$ е:
- **A)** $-\frac{\sqrt{3}}{2}$
- **Б)** 1

B) $\frac{1}{2}$

- Γ) $\frac{\sqrt{3}}{2}$
- 11. За аритметична прогресия $a_1, a_2, ..., a_9$ е известно, че $a_5 = 4$. Сумата S_9 на първите 9 члена на прогресията е равна на:
- **A)** 72

Б) 36

B) 18

- **Г**) 9
- **12.** За статистическия ред 3,1,12,19,4,6,23,4 с *a* е означена модата, с *b* медианата и с с - средната стойност. Кое от твърденията е вярно?
- A) a < b < c
- **b**) b < a < c
- **B)** a < c < b
- Γ) b < c < a

13. Страните AB, BC и AC на ΔABC са равни съответно на 4 ст, 3 ст и 2 ст. Ако М е точка от страната BC и е на равни разстояния от AB и AC, то отсечката СМ е равна на:

- **A)** 0,5 cm
- **Б)** 1 *ст*
- **B)** 1,5 cm
- Γ) 2 cm

14. На чертежа AP:PC=2:3 и CQ:CB=3:5

Вярно е, че:

- **A)** S_{POC} : $S_{ABC} = 3:5$
- **b)** $S_{POC}: S_{ABOP} = 3:5$
- **B)** $S_{POC}: S_{ABOP} = 9:16$
- Γ) PQи AB не са успоредни

15. В трапеца ABCD основите са $AB = 18 \ cm$, $CD = 12 \ cm$ и точка O е пресечната точка на диагоналите. Ако $CO = 9 \ cm$, то дължината на AC е:

A) 13,5 cm

b) 11 *cm*

B) 12 *cm*

 Γ) 22,5 cm

16. Две окръжности с радиуси съответно 6 ст и 24 ст се допират външно, както е показано на чертежа. Дължината на общата им външна допирателна АВ е:

A) 24 cm

b) $2\sqrt{153}$ cm

B) 36 cm

 Γ) $6\sqrt{102}$ cm

17. За $\triangle ABC$ са дадени дължините на страните AC = 4 cm, BC = 5 cm и $\angle BAC = 120^{\circ}$. Дължината на страната AB e:

- **A)**3 cm
- **b**) $(\sqrt{13} + 2)$ *cm*
- **B)** $\left(\sqrt{13}-2\right) cm$ Γ) $\sqrt{21} cm$

18. В триъгълника ABC е дадено, че AB=1 cm , $BC=\sqrt{3}$ cm и $\angle ACB=30^{\circ}$. Със сигурност мярката на ∠ВАС е:

A) 60°

Б) 60° или 120°

B) 120°

Г) невъзможно да се определи

19. Центърът O на единия от два еднакви квадрата със страна а съвпада с върха на другия квадрат. Лицето на незащрихованата част от квадрата ABCD e:

b)
$$\frac{3}{4}a^2$$

B)
$$\frac{2}{3}a^2$$

Г) невъзможно да се определи

20. Даден е трапец ABCD с основи $AB = 8 \ cm$, $CD = 4.5 \ cm$, диагонал $AC = 6 \ cm$ и бедро $AD = 3 \ cm$. Периметърът на трапеца е :

A) 19,5 cm

- **Б)** 20 cm
- **B)** 20,5 cm
- **Γ**) 41 cm

Отговорите на задачите от 21. до 25. вкл. запишете в свитъка за свободните отговори!

- 21. Намерете най-голямото цяло число, което е решение на неравенството $\log_{\frac{1}{3}} x + 5\log_{\frac{1}{3}} x > 6\log_{\frac{1}{3}} 5$.
- **22.** Намерете стойностите на x, за които числата $1, x^2, 6-x^2$, взети в този ред, образуват геометрична прогресия.
- 23. Ако $\sin \alpha = \frac{3}{5}$ и $\alpha \in \left(\frac{\pi}{2}; \pi\right)$, намерете стойността на израза $\frac{3 + tg\alpha}{3 2tg\alpha}$.
- 24. В равнобедрен правоъгълен триъгълник с катет 6 *ст* е вписан правоъгълник, така че върховете му лежат на страните на триъгълника. Ако правоъгълникът има общъгъл с триъгълника, намерете периметъра на правоъгълника.
- 25. На книжната борса предлагат два вида сборници по математика от различни автори седем са за зрелостен изпит и три са за кандидат-студентски изпит. По колко различни начина Борис може да подбере по два сборника от всеки вид?

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. вкл. запишете в свитъка за свободните отговори!</u>

- **26**. Решете уравнението $(5x-4)(2x-1)+2=3\sqrt{10x^2-13x+4}$
- 27. За томбола с награди в един клас се продават 20 билета, от които 3 печелят. Ученик си купил 5 билета. Каква е вероятността да печелят точно два от закупените билети?
- **28.** В остроъгълен $\triangle ABC$ с лице 54 cm^2 отсечките $AP\left(P \in BC\right)$ и $CQ\left(Q \in AB\right)$ са височини. Лицето на $\triangle BPQ$ е 6 cm^2 и $PQ = 6\sqrt{2}$ cm. Намерете радиуса на описаната около $\triangle ABC$ окръжност.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0$$
 $x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $ax^2+bx+c=a(x-x_1)(x-x_2)$ Формули на Виет $x_1+x_2=-rac{b}{a}$ $x_1x_2=rac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \ne 0$ е парабола с връх точката $(-\frac{b}{2a}; -\frac{D}{4a})$

Корен. Степен и логаритъм

$$\sqrt[2k]{a^{2k}} = |a| \qquad \qquad 2^{k+1}\sqrt{a^{2k+1}} = a \; ; \qquad \text{при } k \in \mathbb{N}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \qquad \sqrt[nk]{a} = \sqrt[nk]{a} \; ; \; \text{при} \quad a > 0 \; , \; n \ge 2 \; , \; k \ge 2 \; \text{ и } n, \; m, \; k \in \mathbb{N}$$

$$\log_a b = x \Leftrightarrow a^x = b \quad \log_a a^x = x \qquad a^{\log_a b} = b \; ; \quad \text{при} \quad b > 0, \; a > 0, \; a \ne 1$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = 1.2.3...(n-1)n = n!$ Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$ Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{1.2.3...(k-1)k}$

Вероятност $P(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}} 0 \le P(A) \le 1$

Прогресии

Аритметична прогресия:
$$a_n = a_1 + (n-1)d$$
 $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$ Геометрична прогресия: $a_n = a_1.q^{n-1}$ $S_n = \frac{a_n q - a_1}{q-1} = a_1 \cdot \frac{q^n - 1}{q-1}$ Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$h_c^{\ 2}=a_1b_1 \qquad r=\frac{a+b-c}{2} \qquad \sin\alpha=\frac{a}{c} \qquad \cos\alpha=\frac{b}{c} \qquad \operatorname{tg}\alpha=\frac{a}{b} \qquad \operatorname{cotg}\alpha=\frac{b}{a}$$
 Произволен триъгълник:
$$a^2=b^2+c^2-2bc\cos\alpha \qquad \qquad b^2=a^2+c^2-2ac\cos\beta$$

Произволен триъгълник:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
 $b^2 = a^2 + c^2 - 2ac \cos \beta$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma \qquad \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Формула за медиана:
$$m_a^2 = \frac{1}{4} \left(2b^2 + 2c^2 - a^2 \right)$$
 $m_b^2 = \frac{1}{4} \left(2a^2 + 2c^2 - b^2 \right)$

$$m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - nm$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr \qquad S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab \sin \alpha$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

$lpha^{\scriptscriptstyle 0}$	0_{0}	30^{0}	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$
sin	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$
tg	$-tg\alpha$	$\cot \alpha$	$-\cot \alpha$	$-tg\alpha$
cotg	$-\cot \alpha$	$\operatorname{tg} \alpha$	$-tg\alpha$	$-\cot \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \pm \alpha)}{\cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \alpha)}{\cot(\alpha \pm \beta)} \pm \frac{\cot(\alpha \pm \beta)}{\cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \alpha) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Учебен предмет – математика септември 2009 г.

ВАРИАНТ № 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос №	Верен отговор	Брой точки	B
1.	В	2	
2.	Γ	2	
3.	В	2	
4.	Б	2	
5.	A	2	
6.	Б	2	
7.	В	2	
8.	A	2	
9.	Γ	2	
10.	Γ	2	
11.	Б	2	
12.	A	2	
13.	Б	2	
14.	В	2	
15.	Γ	2	
16.	A	2	
17.	В	2	
18.	Б	2	
19.	Б	2	
20.	A	2	
21.	4	3	
22.	$\pm\sqrt{2}$	3	
23.	0,5	3	
24.	12 <i>cm</i>	3	
25.	63	3	

Въпрос №	Верен отговор	Брой точки
26.	$x_1 = 0; x_2 = 1,3; x_3 = 1; x_4 = 0,3$	15
27.	$P = \frac{5}{38}$ $R = 13,5 cm$	15
28.	R = 13,5 cm	15

ВЪПРОСИ С РЕШЕНИЯ

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 26

1.Определяне на допустими стойности за х: $10x^2 - 13x + 4 \ge 0$, т.е. $(5x - 4)(2x - 1) \ge 0$, $x \in (-\infty; 0, 5] \cup [0, 8; +\infty)$ (2 т.)

- **2.** Полагане $\sqrt{10x^2 13x + 4} = y$, $y \ge 0$ и съображение за $(5x 4)(2x 1) = y^2$ (3 т.)
- **3.** Решаване на уравнението $y^2 3y + 2 = 0$ и намиране на корените $y_1 = 2$ и $y_2 = 1$ (2 т.)

4. Намиране на
$$x_1 = 0$$
; $x_2 = \frac{13}{10} = 1,3$; $x_3 = 1$; $x_4 = \frac{3}{10} = 0,3$ (4 т.)

- **5.** Проверка за принадлежност на корените към допустимите стойности (или пряка проверка чрез заместване) и установяване, че намерените числа са корени на уравнението (4 т.)
- Забележка: При пряка проверка за корените и установяване, че намерените числа са корени, без да са намерени допустими стойности (т1. е пропусната) се дават 6 точки.

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 27

1. Начини за избор на 5-те закупени билети

$$C_{20}^{5} = \frac{20.19.18.17.16}{1.2.3.4.5} = 15504$$
 (3 T.)

2. Благоприятни изходи от печелившите билети

$$C_3^2 = \frac{3.2}{1.2} = 3$$
 (3 T.)

3. Благоприятни изходи от непечелившите билети

$$C_{17}^3 = \frac{17.16.15}{1.2.3} = 680$$
 (3 T.)

4. Брой на всички благоприятни изходи

$$C_{3}^{2} \cdot C_{17}^{3} = 2040$$
 (3 T.)

5. Вероятност за сбъдване на събитието

$$p = \frac{C_3^2 \cdot C_{17}^3}{C_{20}^5} = \frac{2040}{15504} = \frac{5}{38}$$
 (3 T.)

или
$$p = \frac{C_3^2.C_{17}^3}{C_{20}^5} = \frac{\frac{3.2}{1.2}.\frac{17.16.15}{1.2.3}}{\frac{20.19.18.17.16}{1.2.3.4.5}} = \frac{5}{38}$$
 Отговор $\frac{5}{38}$

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 28

1. Обосноваване, че
$$\triangle BPQ \sim \triangle BAC$$
 (3 т.)

2. Получаваме
$$\frac{PQ^2}{AC^2} = \frac{S_{PBQ}}{S_{ABC}} = \frac{6}{54} = \frac{1}{9}$$
, (2 т.)

3. Намиране коефициента на подобие $\cos \beta = \frac{BP}{AB} = \frac{1}{3}$ и

на
$$AC = 18\sqrt{2}$$
 . (4 т.)

4. Прилагане на синусова теорема за
$$\triangle ABC$$
 : $R = \frac{18\sqrt{2}}{2\sin\beta}$. (3т.)

5. Изразяване на
$$\sin \beta = \frac{2\sqrt{2}}{3}$$
 (2 т.)

6. Намиране на
$$R = 13,5 \ cm$$
 (1 т.)