On the BV double of the Courant algebroid

Anton M. Zeitlin

Louisiana State University, Department of Mathematics

University of Notre Dame

June 10, 2024

On the BV double of the Courant algebroid

Anton Zeitlin

Outline

lomotopy algebras elated to vertex lgebras

Vertex/Courant algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

Outline

Homotopy algebras related to vertex algebras

algebroids and BV

 $\begin{array}{c} \text{deformation and YM} \\ C_{\infty}\text{-algebra} \end{array}$

"Doubling": Gravity and Double Field Theory

► Yang-Mills²=Gravity: homotopical interpretation.

▶ Homotopical algebras of Field Theories (A_{∞} , L_{∞} , G_{∞} , BV_{∞}^{\square} , ...): where do they come from?

Relationship between open and closed strings.

Outline

Homotopy algebras related to vertex algebras

gebroids and BV puble

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

► Yang-Mills²=Gravity: homotopical interpretation.

▶ Homotopical algebras of Field Theories (A_{∞} , L_{∞} , G_{∞} , BV_{∞}^{\square} , . . .): where do they come from?

Relationship between open and closed strings

Outline

Homotopy algebras related to vertex algebras

gebroids and BV buble

Flat metric deformation and YM C_∞-algebra

"Doubling": Gravity and Double Field

► Yang-Mills²=Gravity: homotopical interpretation.

▶ Homotopical algebras of Field Theories (A_{∞} , L_{∞} , G_{∞} , BV_{∞}^{\square} , ...): where do they come from?

▶ Relationship between open and closed strings.

Outline

lomotopy algebras elated to vertex

gebroids and BV uble

Flat metric deformation and YM C∞-algebra

"Doubling": Gravity and Double Field Theory

Flat metric deformation and Yang-Mills C_{∞} -algebra

Vertex/Courant algebroids and their homotopy algebras: BV double

Homotopy algebras related to vertex algebras

- Graded vector space $V = \sum_{n,m} V_n[m]$,
- ▶ Vertex operators $Y: V \to \text{End}(V)[[z^{\pm 1}]]$:

$$Y:A\mapsto A(z)=\sum_{n\in\mathbb{Z}}A_nz^{-n-1},$$

▶ A vector $|0\rangle \in V_0[0]$, such that:

$$\lim A(z)|0\rangle = A; \quad Y(|0\rangle, z) = Id$$

- Locality property: $(z w)^N [A(z), B(w)] = 0$
- ▶ Virasoro element $|L\rangle \in V_2[0]$, such that $L(z) = \sum_n L_n z^{-n-2}$ satisfy the relations of Virasoro algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3-n)\delta_{n,-m}$$

 L_0 provides grading and L_{-1} is a translation operator

$$[L_{-1}, A(z)] = \partial_z A(z), \quad L_{-1}|0\rangle = 0$$

Outline

Homotopy algebras related to vertex algebras

ebroids and BV ble

deformation and YM C_{∞} -algebra "Doubling": Gravity

Vertex operator (super)algebra :

- ▶ Graded vector space $V = \sum_{n,m} V_n[m]$,
- ▶ Vertex operators $Y: V \to \operatorname{End}(V)[[z^{\pm 1}]]$:

$$Y:A\mapsto A(z)=\sum_{n\in\mathbb{Z}}A_nz^{-n-1},$$

▶ A vector $|0\rangle \in V_0[0]$, such that:

$$\lim_{z \to 0} A(z)|0\rangle = A; \quad Y(|0\rangle, z) = Id_V$$

- ► Locality property: $(z w)^N[A(z), B(w)] = 0$
- ▶ Virasoro element $|L\rangle \in V_2[0]$, such that $L(z) = \sum_n L_n z^{-n-2}$ satisfy the relations of Virasoro algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3-n)\delta_{n,-m}$$

 L_0 provides grading and L_{-1} is a translation operator

$$[L_{-1}, A(z)] = \partial_z A(z), \quad L_{-1}|0\rangle = 0$$

Outline

Homotopy algebras related to vertex algebras

ble

C_∞-algebra

"Doubling": Gravity

Outline

Homotopy algebras related to vertex algebras

ouble at metric

leformation and YM \mathbb{C}_{∞} -algebra

"Doubling": Gravity and Double Field

Vertex operator (super)algebra :

- ▶ Graded vector space $V = \sum_{n,m} V_n[m]$,
- ▶ Vertex operators $Y: V \to \operatorname{End}(V)[[z^{\pm 1}]]$:

$$Y: A \mapsto A(z) = \sum_{n \in \mathbb{Z}} A_n z^{-n-1},$$

▶ A vector $|0\rangle \in V_0[0]$, such that:

$$\lim_{z\to 0} A(z)|0\rangle = A; \quad Y(|0\rangle, z) = Id_V$$

- ► Locality property: $(z w)^N[A(z), B(w)] = 0$
- ▶ Virasoro element $|L\rangle \in V_2[0]$, such that $L(z) = \sum_n L_n z^{-n-2}$ satisfy the relations of Virasoro algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3-n)\delta_{n,-m}$$

 L_0 provides grading and L_{-1} is a translation operator

$$[L_{-1}, A(z)] = \partial_z A(z), \quad L_{-1}|0\rangle = 0$$

algebras

Vertex operator (super)algebra :

- ▶ Graded vector space $V = \sum_{n,m} V_n[m]$,
- ▶ Vertex operators $Y: V \to \operatorname{End}(V)[[z^{\pm 1}]]$:

$$Y:A\mapsto A(z)=\sum_{n\in\mathbb{Z}}A_nz^{-n-1},$$

▶ A vector $|0\rangle \in V_0[0]$, such that:

$$\lim_{z \to 0} A(z)|0\rangle = A; \quad Y(|0\rangle, z) = Id_V$$

- ► Locality property: $(z w)^N[A(z), B(w)] = 0$
- ▶ Virasoro element $|L\rangle \in V_2[0]$, such that $L(z) = \sum_n L_n z^{-n-2}$ satisfy the relations of Virasoro algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3-n)\delta_{n,-m}$$

 L_0 provides grading and L_{-1} is a translation operator:

$$[L_{-1}, A(z)] = \partial_z A(z), \quad L_{-1}|0\rangle = 0$$

Hat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

V: topological vertex operator algebra (TVOA), if there exist four elements: $J \in V_1[1]$, $b \in V_2[-1]$, $F \in V_1[0]$, $L \in V_2[0]$, such that

$$[Q, b(z)] = L(z), \quad Q^2 = 0, \quad b_0^2 = 0,$$

where

$$Q = J_0, \ J(z) = \sum_n J_n z^{-n-1},$$

$$b(z) = \sum_n b_n z^{-n-2}, \quad L(z) = \sum_n L_n z^{-n-2}, \ F(z) = \sum_n F_n z^{-n-1}$$

and F_0 , L_0 commute, so that F_0 gives fermionic grading.

Lian-Zuckerman operations

$$\mu(a_1, a_2) = Res_z \frac{a_1(z)a_2}{z}, \quad \{a_1, a_2\} = (-1)^{|a_1|} Res_z(b_{-1}a_1)(z)a_2$$

satisfy the relations of a homotopy BV algebra.

B. Lian, G. Zuckerman'93

deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

V: topological vertex operator algebra (TVOA), if there exist four elements: $J \in V_1[1], b \in V_2[-1], F \in V_1[0], L \in V_2[0]$, such that

$$[Q, b(z)] = L(z), \quad Q^2 = 0, \quad b_0^2 = 0,$$

where

$$Q = J_0, \ J(z) = \sum_n J_n z^{-n-1},$$

$$b(z) = \sum_n b_n z^{-n-2}, \quad L(z) = \sum_n L_n z^{-n-2}, \ F(z) = \sum_n F_n z^{-n-1}$$

and F_0 , L_0 commute, so that F_0 gives fermionic grading.

Lian-Zuckerman operations:

$$\mu(a_1, a_2) = Res_z \frac{a_1(z)a_2}{z}, \quad \{a_1, a_2\} = (-1)^{|a_1|} Res_z(b_{-1}a_1)(z)a_2$$

satisfy the relations of a homotopy BV algebra.

B. Lian, G. Zuckerman'93.

Homotopy algebras related to vertex algebras

deformation and YM

"Doubling": Gravity

- $Q\mu(a_1,a_2) = \mu(Qa_1,a_2) + (-1)^{|a_1|}\mu(a_1,Qa_2),$
- Homotopy commutativity:

$$\mu(a_1,a_2) - (-1)^{|a_1||a_2|} \mu(a_2,a_2)$$
 $Qm(a_1,a_2) + m(Qa_1,a_2) + (-1)^{|a_1|} m(a_1,a_2)$

Homotopy associativity:

$$(-1)^{|a_1|}\nu(a_1, Qa_2, a_3) + (-1)^{|a_1|+|a_2|}\nu(a_1, a_2, Qa_2, a_3) + (-1)^{|a_1|}\nu(a_1, a_2, Qa_2, a_3) + (-1)^{|a_1|}\mu(a_1, a_2, Qa_2, Qa_2, a_3) + (-1)^{|a_1|}\mu(a_1, a_2, Qa_2, a_3) + (-1)^{|a_1|}\mu(a_1, a_2, Qa_2, Qa$$

 \triangleright Operation $\{a, \cdot\}$ is a derivation of μ and Q is a derivation of

$$\{a_1, \mu(a_2, a_3)\} = \mu(\{a_1, a_2\}, a_3) + (-1)^{(|a_1|-1)||a_2|} \mu(a_2, \{a_1, a_3\}),$$
$$Q\{a_1, a_2\} = \{Qa_1, a_2\} + (-1)^{|a_1|-1} \{a_1, Qa_2\}.$$

Homotopy commutativity:

$$\mu(a_1, a_2) - (-1)^{|a_1||a_2|} \mu(a_2, a_1) = \ Qm(a_1, a_2) + m(Qa_1, a_2) + (-1)^{|a_1|} m(a_1, Qa_2)$$

► Homotopy associativity:

$$\mu(\mu(a_1, a_2), a_3) - \mu(a_1, \mu(a_2, a_3)) = Q\nu(a_1, a_2, a_3) + \nu(Qa_1, a_2, a_3) + (-1)^{|a_1|}\nu(a_1, Qa_2, a_3) + (-1)^{|a_1|+|a_2|}\nu(a_1, a_2, Qa_3)$$

- $\begin{cases} a_1, a_2 \} = (-1)^{|a_1|} (\mathbf{b}\mu(a_1, a_2) \mu(\mathbf{b}a_1, a_2) (-1)^{|a_1|} \mu(a_1, \mathbf{b}a_2), \\ \text{where } \mathbf{b} = b_0. \end{cases}$
- ▶ Operation $\{a\ ,\ \cdot\}$ is a derivation of μ and Q is a derivation of $\{\cdot\ ,\ \cdot\}$, namely:

$$\{a_1, \mu(a_2, a_3)\} = \mu(\{a_1, a_2\}, a_3) + (-1)^{(|a_1|-1)||a_2|} \mu(a_2, \{a_1, a_3\}),$$

$$Q\{a_1, a_2\} = \{Qa_1, a_2\} + (-1)^{|a_1|-1} \{a_1, Qa_2\}.$$

Outline

Homotopy algebras related to vertex algebras

ouble lat metric

 $\begin{array}{c} \text{deformation and YM} \\ C_{\infty}\text{-algebra} \end{array}$

"Doubling": Gravity and Double Field Theory

- $Q\mu(a_1,a_2) = \mu(Qa_1,a_2) + (-1)^{|a_1|}\mu(a_1,Qa_2),$
- ► Homotopy commutativity:

$$\mu(a_1, a_2) - (-1)^{|a_1||a_2|} \mu(a_2, a_1) =$$

$$Qm(a_1, a_2) + m(Qa_1, a_2) + (-1)^{|a_1|} m(a_1, Qa_2)$$

► Homotopy associativity:

$$\begin{split} \mu(\mu(a_1,a_2),a_3) - \mu(a_1,\mu(a_2,a_3)) &= Q\nu(a_1,a_2,a_3) + \nu(Qa_1,a_2,a_3) + \\ & (-1)^{|a_1|}\nu(a_1,Qa_2,a_3) + (-1)^{|a_1|+|a_2|}\nu(a_1,a_2,Qa_3), \end{split}$$

- $\{a_1, a_2\} = (-1)^{|a_1|} (\mathbf{b}\mu(a_1, a_2) \mu(\mathbf{b}a_1, a_2) (-1)^{|a_1|} \mu(a_1, \mathbf{b}a_2),$ where $\mathbf{b} = b_0$.
- Operation $\{a,\cdot\}$ is a derivation of μ and Q is a derivation of $\{\cdot,\cdot\}$, namely:

$$\{a_1, \mu(a_2, a_3)\} = \mu(\{a_1, a_2\}, a_3) + (-1)^{(|a_1|-1)||a_2|} \mu(a_2, \{a_1, a_3\}),$$

$$Q\{a_1, a_2\} = \{Qa_1, a_2\} + (-1)^{|a_1|-1} \{a_1, Qa_2\}.$$

Outline

Homotopy algebras related to vertex algebras

Flat metric deformation and YM

"Doubling": Gravity

- $Q\mu(a_1,a_2) = \mu(Qa_1,a_2) + (-1)^{|a_1|}\mu(a_1,Qa_2),$
- ► Homotopy commutativity:

$$\mu(a_1, a_2) - (-1)^{|a_1||a_2|} \mu(a_2, a_1) =$$

$$Qm(a_1, a_2) + m(Qa_1, a_2) + (-1)^{|a_1|} m(a_1, Qa_2)$$

► Homotopy associativity:

$$\begin{split} \mu(\mu(a_1,a_2),a_3) - \mu(a_1,\mu(a_2,a_3)) &= Q\nu(a_1,a_2,a_3) + \nu(Qa_1,a_2,a_3) + \\ & (-1)^{|a_1|}\nu(a_1,Qa_2,a_3) + (-1)^{|a_1|+|a_2|}\nu(a_1,a_2,Qa_3), \end{split}$$

- $\{a_1, a_2\} = (-1)^{|a_1|} (\mathbf{b}\mu(a_1, a_2) \mu(\mathbf{b}a_1, a_2) (-1)^{|a_1|} \mu(a_1, \mathbf{b}a_2),$ where $\mathbf{b} = b_0$.
- Operation $\{a,\cdot\}$ is a derivation of μ and Q is a derivation of $\{\cdot,\cdot\}$, namely:

$$\{a_1, \mu(a_2, a_3)\} = \mu(\{a_1, a_2\}, a_3) + (-1)^{(|a_1|-1)||a_2|} \mu(a_2, \{a_1, a_3\}),$$
$$Q\{a_1, a_2\} = \{Qa_1, a_2\} + (-1)^{|a_1|-1} \{a_1, Qa_2\}.$$

related to vertex

- $Q\mu(a_1,a_2) = \mu(Qa_1,a_2) + (-1)^{|a_1|}\mu(a_1,Qa_2),$
- Homotopy commutativity:

$$\mu(a_1,a_2) - (-1)^{|a_1||a_2|}\mu(a_2,a_1) = \ Qm(a_1,a_2) + m(Qa_1,a_2) + (-1)^{|a_1|}m(a_1,Qa_2)$$

 $\mu(\mu(a_1, a_2), a_3) - \mu(a_1, \mu(a_2, a_3)) = Q\nu(a_1, a_2, a_3) + \nu(Qa_1, a_2, a_3) + \nu(Qa_1, a_2, a_3) + \nu(Qa_1, a_2, a_3)$

Homotopy associativity:

where $\mathbf{b} = b_0$.

- \triangleright Operation $\{a, \cdot\}$ is a derivation of μ and Q is a derivation of $\{\cdot,\cdot\}$, namely:
 - ${a_1, \mu(a_2, a_3)} = \mu({a_1, a_2}, a_3) + (-1)^{(|a_1|-1)||a_2|} \mu(a_2, {a_1, a_3}),$ $Q\{a_1,a_2\} = \{Qa_1,a_2\} + (-1)^{|a_1|-1}\{a_1,Qa_2\}.$

b is a derivation of degree -1 for $\{\cdot,\cdot\}$:

$$\mathbf{b}\{a_1,a_2\} = \{\mathbf{b}a_1,a_2\} + (-1)^{|a_1|-1}\{a_1,\mathbf{b}a_2\}.$$

 $ightharpoonup \{\cdot\,\,,\,\,\cdot\}$ is graded-antisymmetric up to *Q*-homotopy:

$$\{a_1, a_2\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, a_1\} = (-1)^{|a_1|-1} (Qn(a_1, a_2) - n(Qa_1, a_2) - (-1)^{|a_2|} n(a_1, Qa_2)),$$

where $n = [\mathbf{b}, m]$.

 $\blacktriangleright~\{\cdot~,~\cdot\}$ satisfy the Jacobi identity:

$$\{\{a_1,a_2\},a_3\}-\{a_1,\{a_2,a_3\}\}+(-1)^{(|a_1|-1)(|a_2|-1)}\{a_2,\{a_1,a_3\}\}=0$$

Kimura, Voronov, Zuckerman'96, Huang, Zhao'99 and Voronov'99: symmetrized versions of these operations can be extended to a "weak" G_{∞} -algebra.

I. Gálvez, V. Gorbounov, A. Tonks'06 proved that it has the structure of G_{∞} -algebra as defined by Tamarkin and Tsygan'00 in the case of TVOA with conformal grading in \mathbb{N} .

- **b** is a derivation of degree -1 for $\{\cdot, \cdot\}$:
 - $\mathbf{b}\{a_1,a_2\} = \{\mathbf{b}a_1,a_2\} + (-1)^{|a_1|-1}\{a_1,\mathbf{b}a_2\}.$
- $ightharpoonup \{\cdot\;,\;\cdot\}$ is graded-antisymmetric up to *Q*-homotopy:

$$\{a_1, a_2\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, a_1\} =$$

$$(-1)^{|a_1|-1} (Qn(a_1, a_2) - n(Qa_1, a_2) - (-1)^{|a_2|} n(a_1, Qa_2)),$$

where $n = [\mathbf{b}, m]$.

 $\blacktriangleright~\{\cdot~,~\cdot\}$ satisfy the Jacobi identity:

$$\{\{a_1,a_2\},a_3\}-\{a_1,\{a_2,a_3\}\}+(-1)^{(|a_1|-1)(|a_2|-1)}\{a_2,\{a_1,a_3\}\}=0.$$

Kimura, Voronov, Zuckerman'96, Huang, Zhao'99 and Voronov'99: symmetrized versions of these operations can be extended to a "weak" G_{∞} -algebra.

I. Gálvez, V. Gorbounov, A. Tonks'06 proved that it has the structure of G_∞ -algebra as defined by Tamarkin and Tsygan'00 in the case of TVOA with conformal grading in $\mathbb N$.

deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field

b is a derivation of degree -1 for $\{\cdot, \cdot\}$:

$$\mathbf{b}\{a_1,a_2\} = \{\mathbf{b}a_1,a_2\} + (-1)^{|a_1|-1}\{a_1,\mathbf{b}a_2\}.$$

 $ightharpoonup \{\cdot\;,\;\cdot\}$ is graded-antisymmetric up to *Q*-homotopy:

$$\{a_1, a_2\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, a_1\} =$$

$$(-1)^{|a_1|-1} (Qn(a_1, a_2) - n(Qa_1, a_2) - (-1)^{|a_2|} n(a_1, Qa_2)),$$

where $n = [\mathbf{b}, m]$. $\{\cdot, \cdot\}$ satisfy the Jacobi identity:

$$\{\{a_1,a_2\},a_3\}-\{a_1,\{a_2,a_3\}\}+\big(-1\big)^{(|a_1|-1)(|a_2|-1)}\{a_2,\{a_1,a_3\}\}=0.$$

Kimura, Voronov, Zuckerman'96, Huang, Zhao'99 and Voronov'99: symmetrized versions of these operations can be extended to a "weak" G_{∞} -algebra.

I. Gálvez, V. Gorbounov, A. Tonks'06 proved that it has the structure of G_{∞} -algebra as defined by Tamarkin and Tsygan'00 in the case of TVOA with conformal grading in \mathbb{N} .

b is a derivation of degree -1 for
$$\{\cdot,\cdot\}$$
:

$$\mathbf{b}\{a_1,a_2\} = \{\mathbf{b}a_1,a_2\} + (-1)^{|a_1|-1}\{a_1,\mathbf{b}a_2\}.$$

 \blacktriangleright {· , ·} is graded-antisymmetric up to *Q*-homotopy:

$$\{a_1, a_2\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, a_1\} =$$

$$(-1)^{|a_1|-1} (Qn(a_1, a_2) - n(Qa_1, a_2) - (-1)^{|a_2|} n(a_1, Qa_2)),$$

where $n = [\mathbf{b}, m]$.

$$\{ \{a_1, a_2\}, a_3\} - \{a_1, \{a_2, a_3\}\} + (-1)^{(|a_1|-1)(|a_2|-1)} \{a_2, \{a_1, a_3\}\} = 0.$$

Kimura, Voronov, Zuckerman'96, Huang, Zhao'99 and Voronov'99: symmetrized versions of these operations can be extended to a "weak" G_{∞} -algebra.

I. Gálvez, V. Gorbounov, A. Tonks'06 proved that it has the structure of G_{∞} -algebra as defined by Tamarkin and Tsygan'00 in the case of TVOA with conformal grading in \mathbb{N} .

Outline

Homotopy algebras related to vertex algebras

lgebroids and BV louble

Flat metric deformation and YM C~-algebra

"Doubling": Gravity and Double Field

Consider super VOA Λ , obtained from the following super Heisenberg algebra:

 $[b_n, c_m] = \delta_{n+m,0}, \quad n, m \in \mathbb{Z}.$

One can construct the space of Λ as a Fock module:

$$\Lambda = \{b_{-n_1} \dots b_{-n_k} c_{-m_1} \dots c_{-m_l} \mathbf{1}, n_1, \dots, n_k > 1, m_1, \dots, m_l > -1; \\
c_k \mathbf{1} = 0, k \ge 2; b_k \mathbf{1} = 0, k \ge -1\}.$$

I. Frenkel, H. Garland, G. Zuckerman'86: For any VOA with c=26 $V\otimes\Lambda$ is a TVOA, however Q^2 is nilpotent if $c\neq 26$.

Nevertheless, if VOA is positively graded w.r.t. conformal weight, there is always a *subcomplex of light modes*, annihilated by:

$$\mathcal{L}_0 = L_0^V + L_0^{b,c}$$

which is preserved by Lian-Zuckerman operations.

Only elements from V_0 and V_1 participate!

Outline

Homotopy algebras related to vertex algebras

algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field

Consider super VOA Λ , obtained from the following super Heisenberg algebra:

 $[b_n, c_m] = \delta_{n+m,0}, \quad n, m \in \mathbb{Z}.$

One can construct the space of Λ as a Fock module:

 $\Lambda = \{b_{-n_1} \dots b_{-n_k} c_{-m_1} \dots c_{-m_l} \mathbf{1}, n_1, \dots, n_k > 1, m_1, \dots, m_l > -1; \\
c_k \mathbf{1} = 0, k \ge 2; b_k \mathbf{1} = 0, k \ge -1\}.$

I. Frenkel, H. Garland, G. Zuckerman'86: For any VOA with c=26 $V\otimes \Lambda$ is a TVOA, however Q^2 is nilpotent if $c\neq 26$.

Nevertheless, if VOA is positively graded w.r.t. conformal weight, there is always a *subcomplex of light modes*, annihilated by:

$$\mathcal{L}_0 = L_0^V + L_0^{b,c}$$

which is preserved by Lian-Zuckerman operations.

Only elements from V_0 and V_1 participate!

Outline

Homotopy algebras related to vertex algebras

louble

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field

Consider super VOA Λ , obtained from the following super Heisenberg algebra:

 $[b_n,c_m]=\delta_{n+m,0},\quad n,m\in\mathbb{Z}.$

One can construct the space of Λ as a Fock module:

$$\Lambda = \{b_{-n_1} \dots b_{-n_k} c_{-m_1} \dots c_{-m_l} \mathbf{1}, n_1, \dots, n_k > 1, m_1, \dots, m_l > -1; \\
c_k \mathbf{1} = 0, k \ge 2; b_k \mathbf{1} = 0, k \ge -1\}.$$

I. Frenkel, H. Garland, G. Zuckerman'86: For any VOA with c=26 $V\otimes\Lambda$ is a TVOA, however Q^2 is nilpotent if $c\neq26$.

Nevertheless, if VOA is positively graded w.r.t. conformal weight, there is always a *subcomplex of light modes*, annihilated by:

$$\mathcal{L}_0 = L_0^V + L_0^{b,c}$$

which is preserved by Lian-Zuckerman operations.

Only elements from V_0 and V_1 participate!

Outline

Homotopy algebras related to vertex algebras

ertex/Courant gebroids and BV ouble

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

$$0 \to \mathbb{T}^0 \xrightarrow{Q} \mathbb{T}^1 \xrightarrow{Q} \mathbb{T}^2 \xrightarrow{Q} \mathbb{T}^3 \to 0$$

There exist two operators $\mathbf{b} = b_0$, $\mathbf{c} = c_0$:

$$[\textbf{\textit{Q}},\textbf{\textit{b}}]=0, \quad [\textbf{\textit{b}},\textbf{\textit{c}}]=1$$

$$V_1' \stackrel{\bullet}{\longleftarrow} V_1''$$

$$\bigoplus \qquad \qquad \bigoplus$$

$$V_0 \stackrel{b}{\longleftarrow} V_0' \qquad \qquad V_0'' \stackrel{b}{\longleftarrow} V_0'''$$

Action of *Q*: here $d = L_{-1}[-1]$, $d^* = \frac{1}{2}L_1[-1]$, $\tilde{Q} = [Q, \mathbf{cb}]$.

Outline

Homotopy algebras elated to vertex

Vertex/Courant algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field

Operations on V_0 , V_1 , the BV-LZ algebra is made of on $(\mathcal{F}^{\bullet}, Q)$:

$$u_1u_2 = Res_z\left(\frac{u_1(z)u_2}{z}\right), \quad u * A = Res_z\left(\frac{u(z)A}{z}\right),$$
$$[A, u] = Res_z(A(z)u), \quad [A_1, A_2] = Res_z(A_1(z)A_2),$$
$$\langle A_1, A_2 \rangle = Res_z(zA_1(z)A_2)$$

where $u, u_1, u_2 \in V_0$, $A \in V_1$ generate a vertex algebroid V. Gorbounov, F. Malikov, V. Schechtman, A. Vaintrob'00.

Classical limit: (P. Bressler'05) assume $V_1 = \mathcal{V}_1[[h]]$, where h is a formal parameter $h \to 0$, so that $\mathcal{V}_1 = V_1/hV_1$ is a commutative vertex algebroid. Consider the following limit:

$$\langle \bar{A}, \partial u \rangle = \frac{1}{h} [A, u], \quad [\bar{A}_1, \bar{A}_2] = \frac{1}{h} [A_1, A_2],$$
$$\langle \bar{A}_1, \bar{A}_2 \rangle = \frac{1}{h} \langle A_1, A_2 \rangle, \quad \text{div} \bar{A} = \frac{1}{h} L_1 A, \quad \partial \bar{u} = \overline{L_{-1} u},$$

where $A o ar{A}$ is the reduction map $V_1 o \mathcal{V}_1.$

Outline

lomotopy algebras

Vertex/Courant algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field

Operations on V_0 , V_1 , the BV-LZ algebra is made of on $(\mathcal{F}^{\bullet}, Q)$:

$$u_1u_2 = Res_z\left(\frac{u_1(z)u_2}{z}\right), \quad u * A = Res_z\left(\frac{u(z)A}{z}\right),$$
$$[A, u] = Res_z(A(z)u), \quad [A_1, A_2] = Res_z(A_1(z)A_2),$$
$$\langle A_1, A_2 \rangle = Res_z(zA_1(z)A_2)$$

where $u, u_1, u_2 \in V_0$, $A \in V_1$ generate a vertex algebroid V. Gorbounov, F. Malikov, V. Schechtman, A. Vaintrob'00.

Classical limit: (P. Bressler'05) assume $V_1 = \mathcal{V}_1[[h]]$, where h is a formal parameter $h \to 0$, so that $\mathcal{V}_1 = V_1/hV_1$ is a commutative vertex algebroid. Consider the following limit:

$$\begin{split} \langle \bar{A}, \partial u \rangle &= \overline{\frac{1}{h}[A, u]}, \quad [\bar{A}_1, \bar{A}_2] = \overline{\frac{1}{h}[A_1, A_2]}, \\ \langle \bar{A}_1, \bar{A}_2 \rangle &= \overline{\frac{1}{h}\langle A_1, A_2 \rangle}, \quad \text{div} \bar{A} = \overline{\frac{1}{h}L_1 A}, \quad \partial \bar{u} = \overline{L_{-1}u}, \end{split}$$

where $A o ar{A}$ is the reduction map $V_1 o \mathcal{V}_1$.

Vertex/Courant

We say that there is a structure of V_0 -Courant algebroid on V_1 is the following data:

- \triangleright \mathcal{V}_0 is a commutative \mathbb{K} -algebra; \mathcal{V}_1 is a \mathcal{V}_0 -module.
- ▶ There is a symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathcal{V}_1 \otimes_{\mathcal{V}_0} \mathcal{V}_1 \to \mathcal{V}_0$,
- ightharpoonup derivation $\partial: \mathcal{V}_0 \to \mathcal{V}_1$.
- ▶ Dorfman bracket $[\cdot,\cdot]: \mathcal{V}_1 \otimes \mathcal{V}_1 \to \mathcal{V}_1$,

$$\operatorname{div}(uA) = u\operatorname{div}A + \langle \partial u, A \rangle,$$
$$\operatorname{div}[A_1, A_2] = [A_1, \operatorname{div}A_2] - [A_2, \operatorname{div}A_1].$$

We say that there is a a structure of \mathcal{V}_0 -Courant algebroid on \mathcal{V}_1 is the following data:

- $ightharpoonup \mathcal{V}_0$ is a commutative \mathbb{K} -algebra; \mathcal{V}_1 is a \mathcal{V}_0 -module,
- ▶ There is a symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathcal{V}_1 \otimes_{\mathcal{V}_0} \mathcal{V}_1 \to \mathcal{V}_0$,
- ▶ derivation $\partial: \mathcal{V}_0 \to \mathcal{V}_1$,
- ▶ Dorfman bracket $[\cdot, \cdot]$: $\mathcal{V}_1 \otimes \mathcal{V}_1 \to \mathcal{V}_1$,

These data satisfy the following conditions:

- 1. $[A_1, uA_2] = u[A_1, A_2] + \langle A_1, \partial u \rangle A_2$
- 2. $\langle A_1, \partial \langle A_2, A_3 \rangle \rangle = \langle [A_1, A_2], A_3 \rangle + \langle A_2, [A_1, A_3] \rangle$
- 3. $[A_1, A_2] + [A_2, A_1] = \partial \langle A_1, A_2 \rangle$
- 4. $[A_1, [A_2, A_3]] = [[A_1, A_2], A_3] + [A_2, [A_1, A_3]]$
- 5. $[\partial u, A] = 0$
- 6. $\langle \partial u_1, \partial u_2 \rangle = 0$,

where $A, A_1, A_2, A_3 \in V_1$ and $u_1, u_2 \in V_0$.

Calabi-Yau structure $\operatorname{div}:\mathcal{V}_1 \to \mathcal{V}_0$

$$\operatorname{div}(uA) = 0,$$

$$\operatorname{div}(uA) = u\operatorname{div}A + \langle \partial u, A \rangle,$$

$$\operatorname{div}[A_1, A_2] = [A_1, \operatorname{div}A_2] - [A_2, \operatorname{div}A_1].$$

Vertex/Courant

We say that there is a structure of V_0 -Courant algebroid on V_1 is the following data:

- \triangleright \mathcal{V}_0 is a commutative \mathbb{K} -algebra; \mathcal{V}_1 is a \mathcal{V}_0 -module.
- ▶ There is a symmetric bilinear form $\langle \cdot, \cdot \rangle : \mathcal{V}_1 \otimes_{\mathcal{V}_0} \mathcal{V}_1 \to \mathcal{V}_0$,
- ightharpoonup derivation $\partial: \mathcal{V}_0 \to \mathcal{V}_1$.
- ▶ Dorfman bracket $[\cdot, \cdot]: \mathcal{V}_1 \otimes \mathcal{V}_1 \to \mathcal{V}_1$.

These data satisfy the following conditions:

- 1. $[A_1, uA_2] = u[A_1, A_2] + \langle A_1, \partial u \rangle A_2$
- 2. $\langle A_1, \partial \langle A_2, A_3 \rangle \rangle = \langle [A_1, A_2], A_3 \rangle + \langle A_2, [A_1, A_3] \rangle$
- 3. $[A_1, A_2] + [A_2, A_1] = \partial \langle A_1, A_2 \rangle$
- 4. $[A_1, [A_2, A_3]] = [[A_1, A_2], A_3] + [A_2, [A_1, A_3]]$
- 5. $[\partial u, A] = 0$
- 6. $\langle \partial u_1, \partial u_2 \rangle = 0$.

where $A, A_1, A_2, A_3 \in V_1$ and $u_1, u_2 \in V_0$.

Calabi-Yau structure div : $\mathcal{V}_1 \to \mathcal{V}_0$:

$$\begin{split} \operatorname{div}\partial &= 0,\\ \operatorname{div}(uA) &= u \operatorname{div}A + \langle \partial u, A \rangle,\\ \operatorname{div}[A_1, A_2] &= [A_1, \operatorname{div}A_2] - [A_2, \operatorname{div}A_1]. \end{split}$$

Outline

omotopy algebras lated to vertex

Vertex/Courant algebroids and BV double

Flat metric deformation and YN C_{∞} -algebra

"Doubling": Gravity and Double Field

Consider the *h*-twisted complex:

$$V_{0} \xrightarrow{d} V'_{1} \xrightarrow{d^{*}} hV''_{0}$$

$$\bigoplus \tilde{Q} \bigoplus$$

$$hV'_{0} \xrightarrow{d} hV''_{1} \xrightarrow{d^{*}} h^{2}V'''_{0}$$

which is $\mathbf{b} = \frac{b_0}{h}$ -invariant. Quasiclassical limit:

$$\mu_h(\cdot,\cdot) = \mu(\cdot,\cdot) + O(h), \quad m_h(\cdot,\cdot) = m(\cdot,\cdot) + O(h),$$

$$\nu_h(\cdot,\cdot,\cdot) = \nu(\cdot,\cdot,\cdot) + O(h), \quad \{\cdot,\cdot\}_h = h\{\cdot,\cdot\} + O(h^2),$$

gives a BV-LZ algebra structure for Courant algebroid:

Start with complex $(\mathcal{F}^{\bullet}, Q)$:

$$0 \to \mathcal{F}^0 \xrightarrow{Q} \mathcal{F}^1 \xrightarrow{Q} \mathcal{F}^2 \xrightarrow{Q} \mathcal{F}^3 \to 0$$

with operators \mathbf{b}, \mathbf{c} of degree -1 and 1 correspondingly.

$$[Q, \mathbf{b}] = 0, \quad [\mathbf{b}, \mathbf{c}] = 1, \quad \mathbf{b}^2 = 0, \quad \mathbf{c}^2 = 0.$$

Half-complex and additional "conformal" grading using b-operator:

$$\mathscr{V}_0=\mathscr{V}_0^{1/2}\oplus \tilde{\mathscr{V}}_0^{1/2},\quad \mathscr{V}_1=\mathscr{V}_1^{1/2}\oplus \tilde{\mathscr{V}}_1^{1/2},$$

where:

$$\begin{split} \mathcal{V}_0^{1/2} &= \mathcal{V}_0' \oplus \mathcal{V}_0'', \quad \tilde{\mathcal{V}}_0^{1/2} &= \mathcal{V}_0'' \oplus \mathcal{V}_0''' \\ \mathcal{V}_1^{1/2} &= \mathcal{V}_1', \qquad \qquad \tilde{\mathcal{V}}_1^{1/2} &= \mathcal{V}_1''. \end{split}$$

Outline

Homotopy algebras related to vertex algebras

Vertex/Courant

algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

Theorem. A.Z.'24

The BV-LZ algebra the complex $(\mathfrak{F}^{\bullet}, Q)$ satisfying:

- 1. The action $\mu(\mathfrak{F}^0\ ,\ \cdot):\mathfrak{F}^i\to\mathfrak{F}^i$ gives \mathfrak{F}^0 an associative algebra structure and an \mathfrak{F}^0 -module structure on \mathfrak{F}^i for all i.
- 2. $\{\mathcal{V}_i, \mathcal{V}_j\} \subset \bigoplus_{k \geq 1} \mathcal{V}_{i+j-k}$.
- 3. $\mu(\mathcal{V}_i, \mathcal{V}_j) \subset \bigoplus_{k \geq 0} \mathcal{V}_{i+j-k}$, while the restriction $\mu(\mathcal{V}_1, \mathcal{V}_1)|_{\mathcal{V}_0}$ is a symmetric bilinear form.
- 4. $\mathbf{c} \ \mu(a_1, a_2) = (-1)^{|a_1|} \mu(a_1, \mathbf{c} \ a_2)$
- 5. The homotopy of the product m is non-vanishing only on a half-complex $m: \mathcal{V}_i^{1/2} \otimes_{\mathcal{F}^0} \mathcal{V}_j^{1/2} \to \mathcal{V}_{i+j-2}^{1/2}$ is a bilinear form

is equivalent to V_0 -Courant algebroid structure on V_1 with the CY structure given by $\tilde{Q}^{-1}d^*[1]|_{V_1'}=\frac{1}{2}\mathrm{div}$.

Outline

Homotopy algebras related to vertex algebras

Vertex/Courant algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

Theorem. A.Z.'24

The BV-LZ algebra the complex $(\mathfrak{F}^{\bullet}, Q)$ satisfying:

- 1. The action $\mu(\mathcal{F}^0\ ,\ \cdot): \mathcal{F}^i \to \mathcal{F}^i$ gives \mathcal{F}^0 an associative algebra structure and an \mathcal{F}^0 -module structure on \mathcal{F}^i for all i.
- 2. $\{\mathcal{V}_i, \mathcal{V}_j\} \subset \bigoplus_{k \geq 1} \mathcal{V}_{i+j-k}$.
- 3. $\mu(\mathcal{V}_i, \mathcal{V}_j) \subset \bigoplus_{k \geq 0} \mathcal{V}_{i+j-k}$, while the restriction $\mu(\mathcal{V}_1, \mathcal{V}_1)|_{\mathcal{V}_0}$ is a symmetric bilinear form.
- 4. c $\mu(a_1, a_2) = (-1)^{|a_1|} \mu(a_1, c a_2)$
- 5. The homotopy of the product m is non-vanishing only on a half-complex $m: \mathcal{V}_i^{1/2} \otimes_{\mathcal{T}^0} \mathcal{V}_j^{1/2} \to \mathcal{V}_{i+j-2}^{1/2}$ is a bilinear form

is equivalent to \mathcal{V}_0 -Courant algebroid structure on \mathcal{V}_1 with the CY structure given by $ilde{Q}^{-1}\mathrm{d}^*[1]|_{V_1'}=rac{1}{2}\mathrm{div}.$

Outline

related to vertex algebras

Vertex/Courant algebroids and BV double

Flat metric leformation and YM \mathbb{C}_{∞} -algebra

Theorem, A.Z.'24

The BV-LZ algebra the complex $(\mathfrak{F}^{\bullet}, Q)$ satisfying:

- 1. The action $\mu(\mathcal{F}^0\ ,\ \cdot): \mathcal{F}^i \to \mathcal{F}^i$ gives \mathcal{F}^0 an associative algebra structure and an \mathcal{F}^0 -module structure on \mathcal{F}^i for all i.
- 2. $\{\mathcal{V}_i, \mathcal{V}_j\} \subset \bigoplus_{k>1} \mathcal{V}_{i+j-k}$.
- 3. $\mu(\mathscr{V}_i,\mathscr{V}_j) \subset \bigoplus_{k\geq 0} \mathscr{V}_{i+j-k}$, while the restriction $\mu(\mathscr{V}_1,\mathscr{V}_1)|_{\mathscr{V}_0}$ is a symmetric bilinear form.
- 4. **c** $\mu(a_1, a_2) = (-1)^{|a_1|} \mu(a_1, \mathbf{c} \ a_2)$
- 5. The homotopy of the product m is non-vanishing only on a half-complex $m: \mathcal{V}_i^{1/2} \otimes_{\mathcal{T}^0} \mathcal{V}_j^{1/2} \to \mathcal{V}_{i+j-2}^{1/2}$ is a bilinear form

is equivalent to \mathcal{V}_0 -Courant algebroid structure on \mathcal{V}_1 with the CY structure given by $\tilde{Q}^{-1}d^*[1]|_{V_1'}=\frac{1}{2}\mathrm{div}$.

Outline

Homotopy algebras related to vertex algebras

Vertex/Courant algebroids and BV double

Flat metric leformation and YM \mathbb{C}_{∞} -algebra

The BV-LZ algebra the complex $(\mathcal{F}^{\bullet}, Q)$ satisfying:

- 1. The action $\mu(\mathcal{F}^0,\cdot):\mathcal{F}^i\to\mathcal{F}^i$ gives \mathcal{F}^0 an associative algebra structure and an \mathcal{F}^0 -module structure on \mathcal{F}^i for all i.
- 2. $\{\mathcal{V}_i, \mathcal{V}_j\} \subset \bigoplus_{k>1} \mathcal{V}_{i+j-k}$.
- 3. $\mu(\mathscr{V}_i,\mathscr{V}_j) \subset \bigoplus_{k \geq 0} \mathscr{V}_{i+j-k}$, while the restriction $\mu(\mathscr{V}_1,\mathscr{V}_1)|_{\mathscr{V}_0}$ is a symmetric bilinear form.
- 4. **c** $\mu(a_1, a_2) = (-1)^{|a_1|} \mu(a_1, \mathbf{c} \ a_2),$
- 5. The homotopy of the product m is non-vanishing only on a half-complex $m: \mathcal{V}_i^{1/2} \otimes_{\mathcal{T}^0} \mathcal{V}_j^{1/2} \to \mathcal{V}_{i+j-2}^{1/2}$ is a bilinear form

is equivalent to V_0 -Courant algebroid structure on V_1 with the CY structure given by $\tilde{Q}^{-1}d^*[1]|_{V_1'}=\frac{1}{2}\mathrm{div}$.

Outline

lomotopy algebras elated to vertex lgebras

Vertex/Courant algebroids and BV double

Flat metric leformation and YM \mathbb{C}_{∞} -algebra

Theorem. A.Z.'24

The BV-LZ algebra the complex $(\mathfrak{F}^{\bullet}, Q)$ satisfying:

- 1. The action $\mu(\mathcal{F}^0,\cdot):\mathcal{F}^i\to\mathcal{F}^i$ gives \mathcal{F}^0 an associative algebra structure and an \mathcal{F}^0 -module structure on \mathcal{F}^i for all i.
- 2. $\{\mathcal{V}_i, \mathcal{V}_j\} \subset \bigoplus_{k \geq 1} \mathcal{V}_{i+j-k}$.
- 3. $\mu(\mathscr{V}_i,\mathscr{V}_j)\subset \oplus_{k\geq 0}\mathscr{V}_{i+j-k}$, while the restriction $\mu(\mathscr{V}_1,\mathscr{V}_1)|_{\mathscr{V}_0}$ is a symmetric bilinear form.
- 4. **c** $\mu(a_1, a_2) = (-1)^{|a_1|} \mu(a_1, \mathbf{c} \ a_2),$
- 5. The homotopy of the product m is non-vanishing only on a half-complex $m: \mathcal{V}_i^{1/2} \otimes_{\mathcal{F}^0} \mathcal{V}_j^{1/2} \to \mathcal{V}_{i+j-2}^{1/2}$ is a bilinear form,

is equivalent to \mathcal{V}_0 -Courant algebroid structure on \mathcal{V}_1 with the CY structure given by $\widetilde{Q}^{-1}\mathrm{d}^*[1]|_{V_1'}=\frac{1}{2}\mathrm{div}.$

The BV-LZ algebra the complex $(\mathcal{F}^{\bullet}, Q)$ satisfying:

- 1. The action $\mu(\mathcal{F}^0\ ,\ \cdot): \mathcal{F}^i \to \mathcal{F}^i$ gives \mathcal{F}^0 an associative algebra structure and an \mathcal{F}^0 -module structure on \mathcal{F}^i for all i.
- 2. $\{\mathcal{V}_i, \mathcal{V}_j\} \subset \bigoplus_{k>1} \mathcal{V}_{i+j-k}$.
- 3. $\mu(\mathscr{V}_i, \mathscr{V}_j) \subset \bigoplus_{k \geq 0} \mathscr{V}_{i+j-k}$, while the restriction $\mu(\mathscr{V}_1, \mathscr{V}_1)|_{\mathscr{V}_0}$ is a symmetric bilinear form.
- 4. **c** $\mu(a_1, a_2) = (-1)^{|a_1|} \mu(a_1, \mathbf{c} \ a_2),$
- 5. The homotopy of the product m is non-vanishing only on a half-complex $m: \mathcal{V}_i^{1/2} \otimes_{\mathcal{F}^0} \mathcal{V}_j^{1/2} \to \mathcal{V}_{i+j-2}^{1/2}$ is a bilinear form,

is equivalent to \mathcal{V}_0 -Courant algebroid structure on \mathcal{V}_1 with the CY structure given by $\tilde{Q}^{-1}\mathrm{d}^*[1]|_{V_1'}=\frac{1}{2}\mathrm{div}.$

Outline

lomotopy algebras elated to vertex lgebras

Vertex/Courant algebroids and BV double

The associativity homotopy ν is nontrivial only only on the spaces:

$$V_1'\otimes V_1'\otimes V_1',\quad V_0''\otimes V_1'\otimes V_1',\quad V_1'\otimes V_0''\otimes V_1',$$

and the values are given by:

$$\nu(A_1, A_2, A_3) = \mu(m(A_1, A_3), A_2) - \mu(m(A_2, A_3), A_1),$$

$$\nu(\tilde{v}, A_2, A_3) = \nu(A_2, \tilde{v}, A_3) = -m(A_2, A_3)\tilde{v},$$

where $A_i \in V_1'$ (i = 1, 2, 3), $\tilde{v} \in V_0''$.

Both these L_{∞} - and C_{∞} -subalgebras are really L_3 - and C_3 -algebras.

The L_3 -algebra is the extension of Roytenberg-Weinstein L_3 -algebra.

Suspicion is that it is a BV_3 -algebra

Outline

Homotopy algebras elated to vertex algebras

Vertex/Courant algebroids and BV double

Flat metric leformation and YM Con-algebra

The associativity homotopy ν is nontrivial only only on the spaces:

$$V_1' \otimes V_1' \otimes V_1', \quad V_0'' \otimes V_1' \otimes V_1', \quad V_1' \otimes V_0'' \otimes V_1',$$

and the values are given by:

$$\nu(A_1, A_2, A_3) = \mu(m(A_1, A_3), A_2) - \mu(m(A_2, A_3), A_1),$$

$$\nu(\tilde{v}, A_2, A_3) = \nu(A_2, \tilde{v}, A_3) = -m(A_2, A_3)\tilde{v},$$

where $A_i \in V_1'$ $(i = 1, 2, 3), \ \tilde{v} \in V_0''$.

Both these L_{∞} - and C_{∞} -subalgebras are really L_3 - and C_3 -algebras.

The L_3 -algebra is the extension of Roytenberg-Weinstein L_3 -algebra.

Suspicion is that it is a BV_3 -algebra

Outline

Homotopy algebras elated to vertex algebras

Vertex/Courant algebroids and BV double

Flat metric leformation and YM \mathbb{C}_{∞} -algebra

Homotopy algebras elated to vertex

Vertex/Courant algebroids and BV double

lat metric
eformation and YM

"Doubling": Gravity and Double Field

The associativity homotopy ν is nontrivial only only on the spaces:

$$V_1' \otimes V_1' \otimes V_1', \quad V_0'' \otimes V_1' \otimes V_1', \quad V_1' \otimes V_0'' \otimes V_1',$$

and the values are given by:

$$\nu(A_1, A_2, A_3) = \mu(m(A_1, A_3), A_2) - \mu(m(A_2, A_3), A_1),$$

$$\nu(\tilde{v}, A_2, A_3) = \nu(A_2, \tilde{v}, A_3) = -m(A_2, A_3)\tilde{v},$$

where
$$A_i \in V_1'$$
 $(i=1,2,3)$, $\tilde{v} \in V_0''$.

Both these L_{∞} - and C_{∞} -subalgebras are really L_3 - and C_3 -algebras.

The L_3 -algebra is the extension of Roytenberg-Weinstein L_3 -algebra.

Suspicion is that it is a BV_3 -algebra.

Outline

Homotopy algebras elated to vertex elgebras

Vertex/Courant algebroids and BV double

Flat metric deformation and YM

"Doubling": Gravity and Double Field

Corresponding vertex algebra is the family of β - γ -systems, generated by:

$$X^{\mu}(z)p_{\nu}(w) \sim \frac{h\delta^{\mu}_{\nu}}{z-w}; \quad X^{\mu}(z)X^{\nu}(w) \sim 0; \quad p_{\mu}(z)p_{\nu}(w) \sim 0$$

with the vector space being a Fock space for: $[x_n^{\mu}, p_{\nu,m}] = h \delta_j^{\nu} \delta_{n,-m}$

The Virasoro element is given by

$$L(z) = -\frac{1}{h} \sum_{\mu} : p_{\mu}(z) \partial X^{\mu}(z) : + \partial_{z}^{2} \log(\omega(X(z)))$$

Vertex algebroid o Courant algebroid: annihilating all non-covariant terms.

Outline

Homotopy algebras elated to vertex elgebras

Vertex/Courant algebroids and BV double

Flat metric deformation and YM

"Doubling": Gravity and Double Field

Corresponding vertex algebra is the family of β - γ -systems, generated by:

$$X^{\mu}(z)p_{\nu}(w)\sim rac{h\delta^{\mu}_{
u}}{z-w}; \quad X^{\mu}(z)X^{
u}(w)\sim 0; \quad p_{\mu}(z)p_{
u}(w)\sim 0$$

with the vector space being a Fock space for: $[x_n^\mu, p_{
u,m}] = h \delta^i_j \delta_{n,-m}.$

The Virasoro element is given by

$$L(z) = -\frac{1}{h} \sum_{\mu} : p_{\mu}(z) \partial X^{\mu}(z) : + \partial_{z}^{2} \log(\omega(X(z)))$$

Vertex algebroid ightarrow Courant algebroid: annihilating all non-covariant terms.

Outline

domotopy algebras elated to vertex

Vertex/Courant algebroids and BV double

lat metric
eformation and YM

"Doubling": Gravity and Double Field

Corresponding vertex algebra is the family of $\beta\text{-}\gamma\text{-systems,}$ generated by:

$$X^{\mu}(z)p_{
u}(w)\sim rac{h\delta^{\mu}_{
u}}{z-w}; \quad X^{\mu}(z)X^{
u}(w)\sim 0; \quad p_{\mu}(z)p_{
u}(w)\sim 0$$

with the vector space being a Fock space for: $[x_n^{\mu}, p_{\nu,m}] = h \delta_j^i \delta_{n,-m}$.

The Virasoro element is given by:

$$L(z) = -\frac{1}{h} \sum_{\mu} : p_{\mu}(z) \partial X^{\mu}(z) : + \partial_{z}^{2} \log(\omega(X(z)))$$

Vertex algebroid \rightarrow Courant algebroid: annihilating all non-covariant terms.

Outline

Homotopy algebras related to vertex

algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

Consider the elements $\{f_i\}_{i=1}^d \in V_1'$ such that

$$Qf_i = 0$$
, $\mu(f_i, f_i) = 0$, $\forall i, j$.

and introduce the following operator: $R^{\eta} = \sum_{i,j} \eta^{ij} \mu(f_i, \{f_j, \cdot\}),$

Explicitly

where

$$\Delta \cdot = \sum_{i,j} \eta^{ij} \{f_i, \{f_j, \cdot\}\}, \quad \hat{d} \cdot = (-1)^{|\cdot|} \sum_{i,j} \eta^{ij} \mu(\{f_j, \cdot\}, f_i)$$

$$\hat{\mathbf{d}}^* \cdot = \frac{1}{2} \sum_{i,j} \eta^{ij} \tilde{Q} m(f_i, \{f_j, \cdot\}) \text{ on } V_1'$$

$$\hat{\mathbf{d}}^* \cdot = -\frac{1}{2} \sum_{i} \eta^{ij} \mathbf{c} \tilde{Q} m(f_i, \mathbf{b} \{ f_j, \cdot \}) \text{ on } V_1''$$

Homotopy algebras elated to vertex algebras

gebroids and BV
uble

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field

Consider the elements $\{f_i\}_{i=1}^d \in V_1'$ such that

$$Qf_i = 0, \quad \mu(f_i, f_j) = 0, \quad \forall i, j.$$

and introduce the following operator: $R^{\eta} = \sum_{i,j} \eta^{ij} \mu(f_i, \{f_j, \cdot\}),$

Explicitly:

where:

$$\Delta \cdot = \sum_{i,j} \eta^{ij} \{f_i, \{f_j, \cdot\}\}, \quad \hat{\mathbf{d}} \cdot = (-1)^{|\cdot|} \sum_{i,j} \eta^{ij} \mu(\{f_j, \cdot\}, f_i),$$

$$\hat{\mathbf{d}}^* \cdot = \frac{1}{2} \sum_{i,j} \eta^{ij} \tilde{Q} m(f_i, \{f_j, \cdot\}) \text{ on } V_1',$$

$$\hat{\mathbf{d}}^* \cdot = -\frac{1}{2} \sum_{i,j} \eta^{ij} \mathbf{c} \tilde{Q} m(f_i, \mathbf{b}\{f_j, \cdot\}) \text{ on } V_1''.$$

Deformation of the differential:

$$Q \rightarrow Q^{\eta} = Q + R^{\eta}$$

▶ Deformation is linear in η^{ij} : $\mu \to \mu + \bar{\mu}^{\eta}$:

$$\bar{\mu}^{\eta}(\mathbf{a}_1, \mathbf{a}_2) = \sum_{i,j} \nu(\mathbf{f}_i, \{\mathbf{f}_j, \mathbf{a}_1\}, \mathbf{a}_2) \eta^{ij} - \sum_{i,j} \mu(\mathbf{m}(\mathbf{f}_i, \mathbf{a}_1), \{\mathbf{f}_j, \mathbf{a}_2\}) \eta^{ij}$$

Trilnear operation is not deformed

$$[Q^{\eta}, \mathbf{b}] = -\Delta$$

Deformation of the differential:

$$Q \rightarrow Q^{\eta} = Q + R^{\eta}$$

▶ Deformation is linear in η^{ij} : $\mu \to \mu + \bar{\mu}^{\eta}$:

$$\bar{\mu}^{\eta}(\mathsf{a}_1,\mathsf{a}_2) = \sum_{i,j} \nu(\mathsf{f}_i,\{\mathsf{f}_j,\mathsf{a}_1\},\mathsf{a}_2) \eta^{ij} - \sum_{i,j} \mu(\mathsf{m}(\mathsf{f}_i,\mathsf{a}_1),\{\mathsf{f}_j,\mathsf{a}_2\}) \eta^{ij}$$

Trilnear operation is not deformed

The relation

$$[Q^{\eta}, \mathbf{b}] = -\Delta$$

destroys the rest of homotopy Gerstenhaber algebra structure and leads to BV_{∞}^{\square} -algebra, a notion due to M. Reiterer'19.

Outline

Homotopy algebras related to vertex algebras

double

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field

There is an A_{∞} -algebra on $(\mathcal{F}^{\bullet} \otimes U(\mathfrak{g}), Q)$.

The Maurer-Cartan equation:

$$Q^{\eta}\Psi + \mu^{\eta}(\Psi, \Psi) + \nu^{\eta}(\Psi, \Psi, \Psi) = 0$$

and its symmetries:

$$\Psi \rightarrow \Psi + Q\lambda + \mu^{\eta}(\Psi, \lambda) - \mu^{\eta}(\lambda, \Psi),$$

where $\Psi \in \mathcal{F}^1 \otimes \mathfrak{g}$, $\lambda \in \mathcal{F}^0 \otimes \mathfrak{g}$.

 C_{∞} -algebra of Yang-Mills theory

A.Z., JHEP 2007 (09), 068 A.Z., JHEP 2010 (3), 1-32

Take $M = \mathbb{R}^N$, and we obtain that η -deformed C_{∞} -algebra is the

and Maurer-Cartan equations is equivalent to:

$$\begin{split} &\sum_{i,j} \eta^{ij} [\nabla_i, [\nabla_j, \nabla_k]] = \sum_{i,j} \eta^{ij} [[\nabla_k, \Phi_i], \Phi_j], \\ &\sum_{i,j} \eta^{ij} [\nabla_i, [\nabla_j, \Phi_k]] = \sum_{i,j} \eta^{ij} [\Phi_i, [\Phi_j, \Phi_k]], \end{split}$$

where
$$\Phi_i = B_i - \sum_j A^j \eta_{ij}$$
, $A_i = B_i + \sum_j A^j \eta_{ij}$ and $\nabla_i = \partial_i + A_i$.

Here B_i are the components of $\mathbf{B} \in \Gamma(T^*M) \otimes \mathfrak{g}$ and A_i are the components of $\mathbf{A} \in \Gamma(TM) \otimes \mathfrak{g}$, constituting the components of the Maurer-Cartan element.

The gauge symmetries correspond to the following transformation of fields:

$$A_i \to A_i + \partial_i u + [A_i, u], \quad \Phi_i \to \Phi_i + [\Phi_i, u].$$

Some CFT on the half-plane with action S_0 :

$$S = S_0 + \int_{H^+} \phi^{(2)}$$

where

$$\phi^{(2)} = dz \wedge d\bar{z} (\sum_{i,j} \eta^{ij} [b_{-1}, f_i](z) [b_{-1}, f_j](\bar{z}))$$

Deformation of the BRST differential:

$$Q
ightarrow Q^\eta=Q+\int\phi^{(1)}$$

where $Q\phi^{(2)}=d\phi^{(1)}$

$$\phi^{(1)} = d\bar{z} \sum_{i,j} \eta^{ij} [b_{-1}, f_i(z)] f_j(\bar{z}) - dz \sum_{i,j} \eta^{ij} f_i(z) [b_{-1}, f_j(\bar{z})]$$

Then

$$R^{\eta}a = P_0 \int_{C} \phi^{(1)}a$$

where P_0 stands for projection to zero term in ϵ -expansion.

Anton Zeitlin

Outline

Homotopy algebras related to vertex algebras

double

Flat metric

deformation and YM C_{∞} -algebra

Outline

Homotopy algebras related to vertex algebras

double

deformation and YM

C

-algebra

"Doubling": Gravity and Double Field

Some CFT on the half-plane with action S_0 :

$$S = S_0 + \int_{H^+} \phi^{(2)}$$

where

$$\phi^{(2)} = dz \wedge d\bar{z} \left(\sum_{i,j} \eta^{ij} [b_{-1}, f_i](z) [b_{-1}, f_j](\bar{z}) \right)$$

Deformation of the BRST differential:

$$extit{Q}
ightarrow extit{Q}^{\eta} = extit{Q} + \int \phi^{(1)}$$

where $Q\phi^{(2)} = d\phi^{(1)}$:

$$\phi^{(1)} = d\bar{z} \sum_{i,j} \eta^{ij} [b_{-1}, f_i(z)] f_j(\bar{z}) - dz \sum_{i,j} \eta^{ij} f_i(z) [b_{-1}, f_j(\bar{z})]$$

Then

$$R^{\eta}a = P_0 \int_{C_{\epsilon,0}} \phi^{(1)}a$$

where P_0 stands for projection to zero term in ϵ -expansion.

Some CFT on the half-plane with action S_0 :

$$S = S_0 + \int_{H^+} \phi^{(2)}$$

where

$$\phi^{(2)} = dz \wedge d\bar{z} (\sum_{i,j} \eta^{ij} [b_{-1}, f_i](z) [b_{-1}, f_j](\bar{z}))$$

Deformation of the BRST differential:

$$Q
ightarrow Q^{\eta}=Q+\int\phi^{(1)}$$

where $Q\phi^{(2)} = d\phi^{(1)}$:

$$\phi^{(1)} = d\bar{z} \sum_{i,j} \eta^{ij} [b_{-1}, f_i(z)] f_j(\bar{z}) - dz \sum_{i,j} \eta^{ij} f_i(z) [b_{-1}, f_j(\bar{z})]$$

Then

$$R^{\eta}a = P_0 \int_{C_{a,0}} \phi^{(1)}a$$

where P_0 stands for projection to zero term in ϵ -expansion.

Outline

elated to vertex lgebras

double

deformation and YM C_{∞} -algebra "Doubling": Gravity

algebroids and BV double

Flat metric deformation and YM Con-algebra

"Doubling": Gravity and Double Field Theory

Naturally there is a homotopy Gerstenhaber algebra on the product. We choose the bracket structure this way:

$$(-1)^{|a_1|}\{a_1,a_2\} = \mathbf{b}^-\mu(a_1,a_2) - \mu(\mathbf{b}^-a_1,a_2) - (-1)^{|a_1|}\mu(a_1\mathbf{b}^-a_2),$$

where $\mathbf{b}^- = \mathbf{b} - \mathbf{\bar{b}}$ and $\Omega = Q + \mathbf{\bar{Q}}$.

Consider the case of just G-algebra in the concrete example $(\mathcal{F}_{sm}^{\bullet}, Q)$

algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

Naturally there is a homotopy Gerstenhaber algebra on the product. We choose the bracket structure this way:

$$(-1)^{|a_1|}\{a_1,a_2\} = \mathbf{b}^-\mu(a_1,a_2) - \mu(\mathbf{b}^-a_1,a_2) - (-1)^{|a_1|}\mu(a_1\mathbf{b}^-a_2),$$

where $\mathbf{b}^- = \mathbf{b} - \mathbf{\bar{b}}$ and $\Omega = Q + \bar{Q}$.

Consider the case of just G-algebra in the concrete example $(\mathfrak{F}_{sm}^{\bullet}, Q)$:

Maurer-Cartan elements, closed under **b**⁻:

$$\Gamma(T^{(1,0)}(M)\otimes T^{(0,1)}(M))\oplus \mathfrak{O}(T^{(0,1)}(M))\oplus \mathfrak{O}(T^{(1,0)}(M))\oplus \mathfrak{O}_M\oplus \bar{\mathfrak{O}}_M$$
 Components: $(g,\bar{v},v,\phi',\bar{\phi}')$.

The Maurer-Cartan equation $\Omega\Psi + \frac{1}{2}\{\Psi,\Psi\} = 0$ is equivalent to:

A.Z., Nucl. Phys. B 794 (2008) 370-398; A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1279

- ▶ $div_{\Omega}g \in \mathcal{O}(T^{(1,0)}M) \oplus \bar{\mathcal{O}}(T^{(0,1)}M),$ where $\log \Omega = -2\Phi_0 = \log \omega - 2(\phi' + \bar{\phi}').$
- ▶ Bivector field $g \in \Gamma(T^{(1,0)}M \otimes T^{(0,1)}M)$ obeys the following equation:

$$[[g,g]] + \mathcal{L}_{div_{\Omega}(g)}g = 0,$$

where $\mathcal{L}_{\text{div}_{\Omega}(g)}$ is a Lie derivative with respect to the corresponding vector field and

$$[[g,h]]^{k\overline{l}} \equiv (g^{i\overline{l}}\partial_i\partial_{\overline{l}}h^{k\overline{l}} + h^{i\overline{l}}\partial_i\partial_{\overline{l}}g^{k\overline{l}} - \partial_i g^{k\overline{l}}\partial_{\overline{l}}h^{i\overline{l}} - \partial_i h^{k\overline{l}}\partial_{\overline{l}}g^{i\overline{l}}]$$

Outline

omotopy algebras ated to vertex gebras

double Flat metric

Components: $(g, \bar{v}, v, \phi', \bar{\phi}')$.

Anton Zeitlin

Outline

motopy algebras ated to vertex ebras

ouble

 C_{∞} -algebra

"Doubling": Gravity

"Doubling": Gravity and Double Field Theory

Maurer-Cartan elements, closed under **b**⁻:

$$\Gamma(\mathcal{T}^{(1,0)}(M)\otimes\mathcal{T}^{(0,1)}(M))\oplus\mathcal{O}(\mathcal{T}^{(0,1)}(M))\oplus\mathcal{O}(\mathcal{T}^{(1,0)}(M))\oplus\mathcal{O}_M\oplus\bar{\mathcal{O}}_M$$

The Maurer-Cartan equation $\mathfrak{Q}\Psi + \frac{1}{2}\{\Psi,\Psi\} = 0$ is equivalent to:

A.Z., Nucl. Phys. B 794 (2008) 370-398; A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275

- ▶ $div_{\Omega}g \in \mathcal{O}(T^{(1,0)}M) \oplus \bar{\mathcal{O}}(T^{(0,1)}M),$ where $\log \Omega = -2\Phi_0 = \log \omega - 2(\phi' + \bar{\phi}').$
- ▶ Bivector field $g \in \Gamma(T^{(1,0)}M \otimes T^{(0,1)}M)$ obeys the following equation:

$$[[g,g]] + \mathcal{L}_{div_{\Omega}(g)}g = 0,$$

where $\mathcal{L}_{\mathit{div}_{\Omega}(g)}$ is a Lie derivative with respect to the corresponding vector field and

$$[[g,h]]^{k\bar{l}} \equiv (g^{i\bar{j}}\partial_i\partial_{\bar{j}}h^{k\bar{l}} + h^{i\bar{j}}\partial_i\partial_{\bar{j}}g^{k\bar{l}} - \partial_ig^{k\bar{j}}\partial_{\bar{j}}h^{i\bar{l}} - \partial_ih^{k\bar{j}}\partial_{\bar{j}}g^{i\bar{l}})$$

 $b div_{\Omega} div_{\Omega}(g) = 0.$

algebroids and BV double

Flat metric deformation and YM \mathcal{C}_{∞} -algebra

"Doubling": Gravity and Double Field Theory

These are the Einstein equations with the B-field and dilaton:

$$\begin{split} R_{\mu\nu} &= \frac{1}{4} H_{\mu}^{\lambda\rho} H_{\nu\lambda\rho} - 2 \nabla_{\mu} \nabla_{\nu} \Phi, \\ \nabla^{\mu} H_{\mu\nu\rho} - 2 (\nabla^{\lambda} \Phi) H_{\lambda\nu\rho} &= 0, \\ 4 (\nabla_{\mu} \Phi)^2 - 4 \nabla_{\mu} \nabla^{\mu} \Phi + R + \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} &= 0, \end{split}$$

where 3-form H=dB, and $R_{\mu\nu},R$ are Ricci and scalar curvature correspondingly.

with the following constraints

$$G_{i\bar{k}} = g_{i\bar{k}}, \quad B_{i\bar{k}} = -g_{i\bar{k}}, \quad \Phi = \log \sqrt{g} + \Phi_0$$

$$G_{ik} = G_{\bar{i}k} = B_{ik} = B_{\bar{i}k} = 0$$

lomotopy algebras elated to vertex

double

 C_{∞} -algebra

"Doubling": Gravity

"Doubling": Gravity and Double Field Theory

These are the Einstein equations with the B-field and dilaton:

$$\begin{split} R_{\mu\nu} &= \frac{1}{4} H_{\mu}^{\lambda\rho} H_{\nu\lambda\rho} - 2 \nabla_{\mu} \nabla_{\nu} \Phi, \\ \nabla^{\mu} H_{\mu\nu\rho} - 2 (\nabla^{\lambda} \Phi) H_{\lambda\nu\rho} &= 0, \\ 4 (\nabla_{\mu} \Phi)^2 - 4 \nabla_{\mu} \nabla^{\mu} \Phi + R + \frac{1}{12} H_{\mu\nu\rho} H^{\mu\nu\rho} &= 0, \end{split}$$

where 3-form H=dB, and $R_{\mu\nu},R$ are Ricci and scalar curvature correspondingly.

with the following constraints:

$$G_{i\bar{k}} = g_{i\bar{k}}, \quad B_{i\bar{k}} = -g_{i\bar{k}}, \quad \Phi = \log \sqrt{g} + \Phi_0,$$

$$G_{ik} = G_{\bar{i}\bar{k}} = B_{ik} = B_{\bar{i}\bar{k}} = 0.$$

Homotopy algebras related to vertex algebras

ertex/Courant gebroids and BV ouble

Flat metric deformation and YM

"Doubling": Gravity and Double Field Theory

▶ 1980s: D. Friedan, E. Fradkin, A. Tseytlin, ...

Einstein equations emerge in sigma model

$$S_{so} = \frac{1}{4\pi h} \int_{\Sigma} (\langle dX \wedge *dX \rangle_G + X^*B) + \int_{\Sigma} \Phi(X) R^{(2)}(\gamma) \mathrm{vol}_{\Sigma}$$

as the conformal invariance conditions. Here $X:\Sigma\to M$, where Σ is a Riemann surface (worldsheet) and M is a Riemannian manifold (target space).

▶ 1990s: A. Sen, B. Zwiebach,... String Field Theory suggest that these conformal invariance conditions appear as Maurer-Cartan equations for certain L_{∞} -algebra.

Homotopy algebras related to vertex algebras

gebroids and BV puble

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

▶ 1980s: D. Friedan, E. Fradkin, A. Tseytlin, ...

Einstein equations emerge in sigma model

 $S_{so} = \frac{1}{4\pi h} \int_{\Sigma} (\langle dX \wedge *dX \rangle_G + X^*B) + \int_{\Sigma} \Phi(X) R^{(2)}(\gamma) \mathrm{vol}_{\Sigma}$

as the conformal invariance conditions. Here $X:\Sigma\to M$, where Σ is a Riemann surface (worldsheet) and M is a Riemannian manifold (target space).

▶ 1990s: A. Sen, B. Zwiebach,... String Field Theory suggest that these conformal invariance conditions appear as Maurer-Cartan equations for certain L_{∞} -algebra.

Deformation of the first order action described by vertex algebras:

$$S_{ extit{fo}}^{ extit{free}} = rac{1}{2\pi extit{ih}} \int_{\Sigma} (\langle
ho \wedge ar{\partial} X
angle - \langle ar{
ho} \wedge \partial ar{X}
angle) + \int_{\Sigma} R^{(2)}(\gamma) \Phi_0(X),$$

where

$$p\in X^*(\Omega^{(1,0)}(M))\otimes \Omega^{(1,0)}(\Sigma), \quad \bar{p}\in X^*(\Omega^{(0,1)}(M))\otimes \Omega^{(0,1)}(\Sigma),$$

namely

$$S_{ ext{fo}} = S_{ ext{fo}}^{ ext{free}} - rac{1}{2\pi i h} \int_{\Sigma} \langle g, p \wedge ar{p}
angle$$

where $g \in \Gamma(T^{(1,0)}M \otimes T^{(0,1)}M)$

From the path integral perspective

$$\int [dp][d\bar{p}][dX][d\bar{X}] e^{\frac{-1}{2\pi i\hbar} \int_{\Sigma} (\langle p \wedge \bar{\partial} X \rangle - \langle \bar{p} \wedge \partial X \rangle - \langle g, p \wedge \bar{p} \rangle) + \int_{\Sigma} R^{(2)}(\gamma) \Phi_{0}(X)} =$$

$$\int [dX][d\bar{X}] e^{\frac{-1}{4\pi\hbar} \int \langle dX \wedge *dX \rangle_{G} + X^{*}B + \int R^{(2)}(\gamma) (\Phi_{0}(X) + \log \sqrt{g})}$$

based on computations of A. Tseytlin, A. Schwarz'93.

Anton Zeitlin

Outline

Homotopy algebras related to vertex algebras

double

Flat metric
deformation and YM

C_∞ -algebra

"Doubling": Gravity
and Double Field
Theory

Deformation of the first order action described by vertex algebras:

$$S_{ extit{fo}}^{ extit{free}} = rac{1}{2\pi extit{ih}} \int_{\Sigma} (\langle p \wedge ar{\partial} X
angle - \langle ar{p} \wedge \partial ar{X}
angle) + \int_{\Sigma} R^{(2)}(\gamma) \Phi_0(X),$$

where

$$p\in X^*(\Omega^{(1,0)}(M))\otimes \Omega^{(1,0)}(\Sigma), \quad \bar{p}\in X^*(\Omega^{(0,1)}(M))\otimes \Omega^{(0,1)}(\Sigma),$$

namely:

$$S_{ extsf{fo}} = S_{ extsf{fo}}^{ extsf{free}} - rac{1}{2\pi \emph{ih}} \int_{ar{\Sigma}} \langle g, p \wedge ar{p}
angle,$$

where $g \in \Gamma(T^{(1,0)}M \otimes T^{(0,1)}M)$.

From the path integral perspective

$$\int [dp][d\bar{p}][dX][d\bar{X}]e^{\frac{-1}{2\pi i\hbar}\int_{\Sigma}(\langle p\wedge\bar{\partial}X\rangle-\langle\bar{p}\wedge\partial X\rangle-\langle g,p\wedge\bar{p}\rangle)+\int_{\Sigma}R^{(2)}(\gamma)\Phi_{0}(X)} =$$

$$\int [dX][d\bar{X}]e^{\frac{-1}{4\pi\hbar}\int\langle dX\wedge*dX\rangle_{G}+X^{*}B+\int R^{(2)}(\gamma)(\Phi_{0}(X)+\log\sqrt{g})}$$

based on computations of A. Tseytlin, A. Schwarz'93.

Anton Zeitlin

Outline

Homotopy algebras related to vertex algebras

double

Flat metric
deformation and YM

C_∞-algebra

"Doubling": Gravity
and Double Field
Theory

Deformation of the first order action described by vertex algebras:

$$S_{ ext{fo}}^{ ext{free}} = rac{1}{2\pi i \hbar} \int_{\Gamma} (\langle p \wedge ar{\partial} X
angle - \langle ar{p} \wedge \partial ar{X}
angle) + \int_{\Gamma} R^{(2)}(\gamma) \Phi_0(X),$$

where

$$p\in X^*(\Omega^{(1,0)}(M))\otimes\Omega^{(1,0)}(\Sigma),\quad \bar{p}\in X^*(\Omega^{(0,1)}(M))\otimes\Omega^{(0,1)}(\Sigma),$$

namely:

$$S_{ extsf{fo}} = S_{ extsf{fo}}^{ extsf{free}} - rac{1}{2\pi extit{ih}} \int_{\Sigma} \langle g, p \wedge ar{p}
angle,$$

where $g \in \Gamma(T^{(1,0)}M \otimes T^{(0,1)}M)$.

From the path integral perspective:

$$\begin{split} \int [dp][d\bar{p}][dX][d\bar{X}] e^{\frac{-1}{2\pi i\hbar} \int_{\Sigma} (\langle p \wedge \bar{\partial} X \rangle - \langle \bar{p} \wedge \partial X \rangle - \langle g, p \wedge \bar{p} \rangle) + \int_{\Sigma} R^{(2)}(\gamma) \Phi_{0}(X)} = \\ \int [dX][d\bar{X}] e^{\frac{-1}{4\pi \hbar} \int \langle dX \wedge *dX \rangle_{G} + X^{*}B + \int R^{(2)}(\gamma) (\Phi_{0}(X) + \log \sqrt{g})} \end{split}$$

based on computations of A. Tseytlin, A. Schwarz'93.

$$\mathbb{M} = \begin{pmatrix} \mathsf{g} & \mu \ ar{\mu} & \mathsf{b} \end{pmatrix} \in \Gamma(\mathcal{E} \otimes ar{\mathcal{E}}),$$

where $\mathcal{E} = \mathcal{T}^{(1,0)} M \oplus \mathcal{T}^{*(1,0)} M, \quad \overline{\mathcal{E}} = \mathcal{T}^{(0,1)} M \oplus \mathcal{T}^{*(0,1)} M.$

V. Popov, M. Zeitlin, Phys.Lett. B 163 (1985) 185-188

$$S_{fo} = rac{1}{2\pi i h} \int_{\Sigma} \left(\langle p \wedge ar{\partial} X
angle - \langle ar{p} \wedge \partial ar{X}
angle - \langle ar{v} \wedge \mathbb{M} v
angle
ight) + \int_{\Sigma} R^{(2)}(\gamma) \Phi_0(X),$$

A. Losev, A. Marshakov, A.Z., Phys. Lett. B 633 (2-3) (2006) 375-381

where
$$v = (p, \partial X)$$
, $\bar{v} = (\bar{p}, \bar{\partial} \bar{X})$.

Integrating over p, \bar{p} we obtain

$$S_{so}^{full} = \frac{1}{4\pi h} \int_{\Sigma} (G_{\mu\nu}(X) dX^{\mu} \wedge *dX^{\nu} + X^*B) + \int_{\Sigma} R^{(2)}(\gamma) \Phi(X),$$

where

$$\begin{array}{lll} G_{s\bar{k}} & = & g_{\bar{i}\bar{j}}\bar{\mu}_{s}^{\bar{i}}\mu_{\bar{k}}^{j} + g_{s\bar{k}} - b_{s\bar{k}}, & B_{s\bar{k}} = g_{\bar{i}\bar{j}}\bar{\mu}_{s}^{\bar{i}}\mu_{\bar{k}}^{j} - g_{s\bar{k}} - b_{s\bar{k}} \\ G_{si} & = & -g_{i\bar{j}}\bar{\mu}_{s}^{\bar{j}} - g_{s\bar{j}}\bar{\mu}_{i}^{\bar{j}}, & G_{\bar{s}\bar{i}} = -g_{\bar{s}j}\mu_{\bar{i}}^{j} - g_{\bar{i}\bar{j}}\mu_{\bar{s}}^{\bar{j}} \\ B_{si} & = & g_{s\bar{j}}\bar{\mu}_{\bar{i}}^{\bar{j}} - g_{i\bar{j}}\bar{\mu}_{\bar{s}}^{\bar{j}}, & B_{\bar{s}\bar{i}} = g_{\bar{i}\bar{i}}\mu_{\bar{s}}^{\bar{j}} - g_{\bar{s}\bar{j}}\mu_{\bar{j}}^{\bar{j}}, & \Phi = \Phi_{0}(X) + \log\sqrt{g} \end{array}$$

Anton Zeitlin

Outline

Homotopy algebras elated to vertex

ouble

Let's introduce

$$\mathbb{M} = \begin{pmatrix} \mathsf{g} & \mu \\ \bar{\mu} & \mathsf{b} \end{pmatrix} \in \Gamma(\mathcal{E} \otimes \bar{\mathcal{E}}),$$

where $\mathcal{E} = T^{(1,0)} M \oplus T^{*(1,0)} M$, $\overline{\mathcal{E}} = T^{(0,1)} M \oplus T^{*(0,1)} M$.

 $S_{\mathsf{fo}} = rac{1}{2\pi i h} \int_{\Sigma} \left(\langle p \wedge ar{\partial} X \rangle - \langle ar{p} \wedge \partial ar{X}
angle - \langle ar{v} \wedge \mathbb{M} v
angle
ight) + \int_{\Sigma} R^{(2)}(\gamma) \Phi_0(X),$ A. Losev, A. Marshakov, A.Z., Phys. Lett. B 633 (2-3) (2006) 375-381

where
$$v=(p,\partial X),\ \bar{v}=(\bar{p},\bar{\partial}\bar{X}).$$

Integrating over p, \bar{p} we obtain:

$$\mathcal{S}_{so}^{ extit{full}} = rac{1}{4\pi h} \int_{\Sigma} (\mathcal{G}_{\mu
u}(X) dX^{\mu} \wedge *dX^{
u} + X^*B) + \int_{\Sigma} R^{(2)}(\gamma) \Phi(X),$$

where

$$\begin{array}{lll} G_{s\bar{k}} & = & g_{\bar{i}\bar{j}}\bar{\mu}_{s}^{\bar{i}}\mu_{\bar{k}}^{j} + g_{s\bar{k}} - b_{s\bar{k}}, & B_{s\bar{k}} = g_{\bar{i}\bar{j}}\bar{\mu}_{s}^{\bar{i}}\mu_{\bar{k}}^{j} - g_{s\bar{k}} - b_{s\bar{k}} \\ G_{si} & = & -g_{i\bar{j}}\bar{\mu}_{s}^{\bar{j}} - g_{s\bar{j}}\bar{\mu}_{i}^{\bar{j}}, & G_{\bar{s}\bar{i}} = -g_{\bar{s}\bar{j}}\mu_{\bar{i}}^{j} - g_{\bar{i}\bar{j}}\mu_{\bar{s}}^{j} \\ B_{si} & = & g_{s\bar{i}}\bar{\mu}_{i}^{\bar{j}} - g_{i\bar{j}}\bar{\mu}_{\bar{s}}^{\bar{j}}, & B_{\bar{s}\bar{i}} = g_{\bar{i}\bar{i}}\mu_{\bar{s}}^{j} - g_{\bar{s}\bar{j}}\mu_{\bar{j}}^{\bar{j}}, & \Phi = \Phi_{0}(X) + \log\sqrt{g} \end{array}$$

Outline

omotopy algebras lated to vertex gebras

uble at metric

Symmetries and Beltrami-Courant differential

On the BV double of the Courant algebroid

Anton Zeitlin

Outline

omotopy algebras lated to vertex

ouble

deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

Diffeomorphism symmetry and $B \rightarrow B + d\lambda$ on target space:

Introduce $\alpha \in \Gamma(\mathcal{E} \oplus \bar{\mathcal{E}})$, i.e. $\alpha = (v, \omega, \bar{v}, \bar{\omega})$.

Let $D: \Gamma(\mathcal{E} \oplus \bar{\mathcal{E}}) \to \Gamma(\mathcal{E} \otimes \bar{\mathcal{E}})$, such that

$$D\alpha = \left(\begin{array}{cc} 0 & -\bar{\partial}v \\ -\partial\bar{v} & \bar{\partial}\omega - \partial\bar{\omega} \end{array} \right).$$

Then the transformation of \mathbb{M} is:

ansformation of $\mathbb M$ is: A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275 $\mathbb M \to \mathbb M + D\alpha + \phi_2(\alpha, \mathbb M) + \phi_3(\alpha, \mathbb M, \mathbb M).$

Decomposing into holomorphic and antiholomorphic parts

$$\alpha = \sum_{J} f^{J} \otimes \bar{b}^{J} + \sum_{K} b^{K} \otimes \bar{f}^{K},$$
$$\tilde{\mathbb{M}} = \sum_{J} a^{J} \otimes \bar{a}^{J},$$

Then

$$\phi_2(\alpha, \tilde{\mathbb{M}}) = \sum_{I,I} [b^J, a^I]_D \otimes \bar{f}^J \bar{a}^I + \sum_{I,K} f^K a^I \otimes [\bar{b}^K, \bar{a}^I]_D,$$

$$\phi_{3}(\alpha, \mathbb{M}, \mathbb{M}) = \frac{1}{2} \sum_{I,I,K} \langle b^{I}, a^{K} \rangle a^{J} \otimes \bar{a}^{J}(\bar{f}^{I}) \bar{a}^{K} + \frac{1}{2} \sum_{I,I,K} a^{J}(f^{I}) a^{K} \otimes \langle \bar{b}^{I}, \bar{a}^{K} \rangle \bar{a}^{J}.$$

Symmetries and Beltrami-Courant differential

the Courant algebroid

Anton Zeitlin

On the BV double of

Outline

Homotopy algebra

broids and l

metric ormation and Y -algebra

"Doubling": Gravity and Double Field Theory

Diffeomorphism symmetry and $B \rightarrow B + d\lambda$ on target space:

_ _)

Introduce $\alpha \in \Gamma(\mathcal{E} \oplus \overline{\mathcal{E}})$, i.e. $\alpha = (v, \omega, \overline{v}, \overline{\omega})$.

Let $D: \Gamma(\mathcal{E} \oplus \bar{\mathcal{E}}) \to \Gamma(\mathcal{E} \otimes \bar{\mathcal{E}})$, such that

$$D\alpha = \begin{pmatrix} 0 & -\bar{\partial}v \\ -\partial\bar{v} & \bar{\partial}\omega - \partial\bar{\omega} \end{pmatrix}.$$

Then the transformation of M is:

ansformation of
$$\mathbb M$$
 is: A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275 $\mathbb M \to \mathbb M + D\alpha + \phi_2(\alpha, \mathbb M) + \phi_3(\alpha, \mathbb M, \mathbb M).$

Decomposing into holomorphic and antiholomorphic parts:

$$\alpha = \sum_{J} f^{J} \otimes \bar{b}^{J} + \sum_{K} b^{K} \otimes \bar{f}^{K},$$
$$\tilde{\mathbb{M}} = \sum_{I} a^{I} \otimes \bar{a}^{I},$$

Then

$$\phi_{2}(\alpha, \tilde{\mathbb{M}}) = \sum_{I,J} [b^{J}, a^{I}]_{D} \otimes \bar{f}^{J} \bar{a}^{I} + \sum_{I,K} f^{K} a^{I} \otimes [\bar{b}^{K}, \bar{a}^{I}]_{D},$$

$$\phi_{3}(\alpha, \mathbb{M}, \mathbb{M}) = \frac{1}{2} \sum_{I,J} \langle b^{I}, a^{K} \rangle a^{J} \otimes \bar{a}^{J} (\bar{f}^{I}) \bar{a}^{K} + \frac{1}{2} \sum_{I,J} a^{J} (f^{I}) a^{K} \otimes \langle \bar{b}^{I}, \bar{a}^{K} \rangle \bar{a}^{J}.$$

Consider

$$(\mathbf{F}_{b^{-}}^{\bullet}, \mathfrak{Q}) = (\mathfrak{F}^{\bullet}, Q) \otimes (\bar{\mathfrak{F}}^{\bullet}, \bar{Q})|_{b^{-}=0}$$

Observation:

$$\Psi \rightarrow \Psi + \text{QL} - \{\Lambda, \Psi\} + \frac{1}{2}\{\Lambda, \Psi, \Psi\},$$

where $\{\cdot, \cdot, \cdot\}$ is a homotopy for Jacobi identity (non-symmetric bracket) reproduces symmetries

$$\mathbb{M} \to \mathbb{M} + D\alpha + \phi_2(\alpha, \mathbb{M}) + \phi_3(\alpha, \mathbb{M}, \mathbb{M})$$

A.Z., Adv. Theor. Math. Phys. 19 (2015) 1249-1275

Conjecture: The corresponding Maurer-Cartan equation gives Einstein equations on G, B, Φ expressed in terms of Beltrami-Courant differential. The symmetries of the Maurer-Cartan equation reproduce mentioned above symmetries of Einstein equations.

"Doubling": Gravity and Double Field

Theory

gebroids and BV puble

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

Flat metric deformation of the BV double leads to the BV_{∞}^{\square} algebra, where in addition to C_{∞} structure there is a relation

$$[Q,\mathbf{b}] = -\Delta = -\sum_{ij} \eta^{ij} \{f_i \{f_j,\cdot\}\}$$

so that the bracket structure satisfies the relations of G_{∞} -algebra up to certain corrections.

What structure exists on $(\mathcal{F}^{\bullet}, Q^{\eta}) \otimes (\mathcal{F}^{\bullet}, \bar{Q}^{\eta})|_{\mathbf{b}_{-}=0}$?

$$[Q,\frac{1}{2}\mathbf{b}_{\pm}] = -\Delta_{\pm}, \quad \Delta_{+} = \frac{1}{2}\Delta + \frac{1}{2}\bar{\Delta}, \quad \Delta_{-} = \frac{1}{2}\Delta - \frac{1}{2}\bar{\Delta}$$

The bracket based on \mathbf{b}_{-} gives a "kind of" homotopy Lie algebra (see next slide), which leads to the homotopy Lie algebra on the diagonal

$$\delta: M \to M \times \bar{M}$$

gebroids and BV puble

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

Flat metric deformation of the BV double leads to the BV_{∞}^{\square} algebra, where in addition to C_{∞} structure there is a relation

$$[Q,\mathbf{b}] = -\Delta = -\sum_{ii} \eta^{ij} \{f_i \{f_j,\cdot\}\}$$

so that the bracket structure satisfies the relations of G_{∞} -algebra up to certain corrections.

What structure exists on $(\mathcal{F}^{\bullet}, Q^{\eta}) \otimes (\mathcal{F}^{\bullet}, \bar{Q}^{\eta})|_{\mathbf{b}_{-}=0}$?

$$[Q,rac{1}{2}\mathbf{b}_{\pm}]=-\Delta_{\pm},\quad \Delta_{+}=rac{1}{2}\Delta+rac{1}{2}ar{\Delta},\quad \Delta_{-}=rac{1}{2}\Delta-rac{1}{2}ar{\Delta}$$

The bracket based on \mathbf{b}_{-} gives a "kind of" homotopy Lie algebra (see next slide), which leads to the homotopy Lie algebra on the diagonal

$$\delta: M \to M \times \bar{M}$$

.

For the standard example of Courant algebroid, let's introduce cooordinates and the *T-dual coordinates*:

$$x^i = X^i + \bar{X}^i, \quad \tilde{x}_i = X^i - \bar{X}^i$$

and therefore

$$\Delta_{-} = -2\sum_{i}\partial_{i}\tilde{\partial}^{i}.$$

Strongly constrained Double Field Theory C. Hull, B. Zwiebach'09:

$$\Delta_- A = 0, \quad \sum_i \partial_i A \tilde{\partial}^i B + \tilde{\partial}^i A \partial_i B = 0$$

for any two fields in $(\mathcal{F}^{\bullet}, Q^{\eta}) \otimes (\mathcal{F}^{\bullet}, \bar{Q}^{\eta})|_{\mathbf{b}_{-}=0}$.

The Maurer-Cartan equation (under above condition) reproduces the action of Double Field Theory (O. Hohm et al.'24), where $\{x^i\}$ and $\{\tilde{x}_i\}$ are the coordinates on the torus and the T-dual torus.

On the BV double of the Courant algebroid

Anton Zeitlin

Outline

Homotopy algebras related to vertex algebras

algebroids and BV double

Flat metric deformation and YM C_{∞} -algebra

"Doubling": Gravity and Double Field Theory

Thank you!