Relational Model and Algebra

P.J. McBrien

Imperial College London

Relations are sets of typed tuples

Relations

Relations take the form R(A, B, ...) where

- R is the name of the relation
- $\blacksquare A, B, \dots$ is the set of attributes of the relation
 - Often write the set without commas: $A, B, \ldots \equiv AB \ldots$, and can refer to a set of attributes as \vec{A}
 - \blacksquare The number of attributes n is the **arity** of the relation Can call $R(A_1, \ldots, A_n)$ an *n*-ary relation
 - \blacksquare Domain(A) is the set of values (type) that the attribute can have
 - Will use Atts(R) to find A, B, ...
- The extent of R(A, B, ...) is the set of tuples $\{\langle v_1^A, v_1^B, \ldots \rangle, \langle v_2^A, v_2^B, \ldots \rangle, \langle v_3^A, v_3^B, \ldots \rangle, \ldots \}$
 - $\forall x.v_x^A \in Domain(A)$
 - No duplicate tuples
 - Not ordered
 - All tuples have the same arity

Relation=Table

Set Semantics

- Order of columns not significant
- Order of rows not significant
- No duplicate rows

- Attribute=Column
- Tuple=Row

Quiz 1: Equivalent Relations

- /	١.	
	7	

	branch	
sortcode	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

	branch	
bname	sortcode	cash
'Wimbledon'	56	94340.45
'Goodge St'	34	8900.67
'Strand'	67	34005.00

	branch	
sortcode	bname	cash
34	'Goodge St'	8900.67
56	'Wimbledon'	94340.45
67	'Strand'	34005 00

D

	branch	
sortcode	bname	cash
56	'Wimbledon'	94340.45
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

Handling 'missing' attribute values

Suppose we want to have a relation account(no,type,cname,rate,sortcode), but not all accounts have a rate.

Solution 1: Separate relations

	account	
type	cname	sortcode
'current'	'McBrien, P.'	67
'deposit'	'McBrien, P.'	67
'current'	'Boyd, M.'	34
'current'	'Poulovassilis, A.'	56
'deposit'	'Poulovassilis, A.'	56
'current'	'Bailey, J.'	56
	'current' 'deposit' 'current' 'current' 'deposit'	type cname 'current' 'McBrien, P.' 'deposit' 'McBrien, P.' 'current' 'Boyd, M.' 'current' 'Poulovassilis, A.' 'deposit' 'Poulovassilis, A.'

accour	nt_rate
no	rate
101	5.25
119	5.50

Solution 2: NULL values

	account				
no	type	cname	rate	sortcode	
100	'current'	'McBrien, P.'	NULL	67	
101	'deposit'	'McBrien, P.'	5.25	67	
103	'current'	'Boyd, M.'	NULL	34	
107	'current'	'Poulovassilis, A.'	NULL	56	
119	'deposit'	'Poulovassilis, A.'	5.50	56	
125	'current'	'Bailey, J.'	NULL	56	

Relational Keys

Key

A **key** of a relation R(AB...) is a subset of the attributes for which the values in any extent are unique across all tuples

- Every relation has at least one key, which is the entire set of attributes
- A key is **violated** by there being two tuples in the extent which have the same values for the attributes of the key
- \blacksquare If A is a key, then so must AB be a key
- A minimal key is a set of attributes AB... for which no subset of the attributes is also a key
- The primary key is one of the keys of the relation: serves as the default key when no key explicitly stated

Quiz 2: Violation of Relational Keys

		movement	
mid	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	5/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999
			/-/

Quiz 3: Correct Keys for Relations

		movement	
mid	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	5/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

Foreign Key

A foreign key $R(\vec{X}) \stackrel{fk}{\Rightarrow} S(\vec{Y})$ of a relation R(AB...) is a subset $\vec{X} \subseteq AB...$ of the attributes for which the values in the extent of R also appear as values of attributes \vec{Y} in the extent of S, and \vec{Y} is a key of S.

$account(sortcode) \stackrel{fk}{\Rightarrow} branch(sortcode)$

		account		
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

key branch(sortcode)

	branch	
sortcode	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

Quiz 4: Foreign Key Violation

$account(sortcode) \stackrel{fk}{\Rightarrow} branch(sortcode)$

		account		
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56
		-		

key	branch	(sortcod	le,
-----	--------	----------	-----

	branch	
sortcode	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

insert into account (126, 'business', 'McBrien, P.', 1.00, 67)

insert into branch (78, 'Ealing', 1000.00)

 \mathbf{C}

delete from branch (67, 'Strand', 34005.00) D

delete from account

(103, 'current', 'Boyd, M.', NULL, 34)

Example Relational Schema

branch			
sortcode	bname	cash	
56	'Wimbledon'	94340.45	
34	'Goodge St'	8900.67	
67	'Strand'	34005.00	

		movemen	
mid	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

	account					
	type		rate	sortcode		
100	'current'	'McBrien, P.'	NULL	67		
101	'deposit'	'McBrien, P.'	5.25	67		
103	'current'	'Boyd, M.'	NULL	34		
107	'current'	'Poulovassilis, A.'	NULL	56		
119	'deposit'	'Poulovassilis, A.'	5.50	56		
125	'current'	'Bailey, J.'	NULL	56		

```
key branch(sortcode)
key branch(bname)
key movement(mid)
key account(no)
movement(no) \stackrel{fk}{\Rightarrow} account(no)
account(sortcode) \stackrel{fk}{\Rightarrow} branch(sortcode)
```

Relational Algebra: A Query Language for the Relational Model

Primitive operators of the Relational Algebra

Symbol	Name	Type
π	Project	Unary
σ	Select	Unary
×	Cartesian Product	Binary
U	Union	Binary
_	Difference	Binary

- All operators take relations as input
- All operators produce one relation as their output
- Other (useful) operators may be defined in terms of the five primitive operators

Relational Algebra: Project π

		account		
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

Project Operator

monotype account no type 100 'current' 101 'deposit' 103 'current' 107 'current' 119 'deposit' 125 'current'

$\pi_{sortcode}account$
sortcode
67
34
56

Relational Algebra: Select σ

		account		
no	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

Select Operator

		$\sigma_{rate>0}$ account		
<u>no</u>	type	cname	rate	sortcode
101	'deposit'	'McBrien, P.'	5.25	67
119	'deposit'	'Poulovassilis, A.'	5.50	56

Relational Algebra: Product \times

branch				
<u>sortcode</u>	bname	cash		
56	'Wimbledon'	94340.45		
34	'Goodge St'	8900.67		
67	'Strand'	34005.00		

		$\sigma_{rate>0}$ account		
<u>no</u>	type	cname	rate	sortcode
101	'deposit'	'McBrien, P.'	5.25	67
119	'deposit'	'Poulovassilis, A.'	5.50	56

Product Operator

	$branch imes \sigma_{rate>0}$ account						
<u>sortcode</u>	bname	cash	<u>no</u>	type	cname	rate	sortcode
56	'Wimbledon'	94340.45	101	'deposit'	'McBrien, P.'	5.25	67
56	'Wimbledon'	94340.45	119	'deposit'	'Poulovassilis, A.'	5.50	56
34	'Goodge St'	8900.67	101	'deposit'	'McBrien, P.'	5.25	67
34	'Goodge St'	8900.67	119	'deposit'	'Poulovassilis, A.'	5.50	56
67	'Strand'	34005.00	101	'deposit'	'McBrien, P.'	5.25	67
67	'Strand'	34005.00	119	'deposit'	'Poulovassilis, A.'	5.50	56

Quiz 5: RA Queries

	branch	
<u>sortcode</u>	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

		account		
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

π_{bname} $\pi_{\mathsf{sortcode}} \, \sigma_{\mathsf{type}=\mathsf{'deposit'}} \, \mathsf{account}$ $\sigma_{\text{account.sortcode}=\text{branch.sortcode} \land \text{type}=\text{'deposit'}}$ $(account \times branch)$

Select Project Join (SPJ) queries

If a product of tables is formed, where a selection is then done that compares the attributes of those tables, we say that a **join** has been performed.

Normally not all columns of the product are returned, and therefore a project is also required.

Branches with current accounts

	$\pi_{bname,no}\sigma_{branch.sortcode=account.sortcode \land account.type=`current'(b)$	ranch imes account)
	bname	no
	'Goodge St'	103
	'Wimbledon'	107
	'Wimbledon'	125
Ì	'Strand'	100

Relational Algebra: Union \cup

$\pi_{sortcode}$ as idaccount
id
67
34
56

π_{no} as idaccount	
id	
100	
101	
103	
107	
119	
125	

Union Operator		
$\pi_{sortcode}$ as idaccount \cup π_{no} as idacc	count	
	id	
	67	
	34	
	56	
	100	
	101	
	103	
	107	
	119	
	125	

■ relations must be union compatible

Relational Algebra: Difference -

π_{no} account	
no	π_{no} movement
	no
100	100
101	
103	101
	103
107	107
119	
	119
125	

Difference Operator

 $\pi_{\mathsf{no}}\mathsf{account} - \pi_{\mathsf{no}}\mathsf{movement}$ <u>no</u> 125

■ relations must be union compatible

Rules for Combining Operators

Since all operators produce a relation as output, any operator may produce one of the inputs to any other operator.

well formed RA query

- the output of the nested operator must contain the attributes required by an outer π or σ
- the two inputs to a \cup or must contain the same number of attributes

Quiz 6: Well formed queries

		account		
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56
		•		

		movement	
<u>mid</u>	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

Which RA query is well formed?

Α

 $\sigma_{\mathsf{type}=\mathsf{'current'}}\,\pi_{\mathsf{no}}\,\mathsf{account}$

3

 π_{no} account $-\pi_{no,mid}$ movement

 \mathbf{C}

 $\pi_{\text{no}} \, \sigma_{\text{type='current'}} \, \text{account}$

D

 $\pi_{\mathsf{no}} \, \pi_{\mathsf{type}} \, \mathsf{account}$

Worksheet: Primitive Relational Algebra Operators

	branch	
sortcode	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

			•
		movemen	ιτ
mid	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

		account		
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

```
key branch(sortcode) key branch(bname) key movement(mid) key account(no) \stackrel{fk}{\Rightarrow} account(no) account(sortcode) \stackrel{fk}{\Rightarrow} branch(sortcode)
```

Derived Relational Algebra: Natural Join ×

Natural Join

$$R \bowtie S = \sigma_{R.A_1 = S.A_1 \land \dots \land R.A_m = S.A_m} R \times S$$

Natural Join

 $\mathsf{branch} \bowtie \mathsf{account} = \sigma_{\mathsf{branch}.\mathsf{sortcode} = \mathsf{account}.\mathsf{sortcode}} \mathsf{branch} \times \mathsf{account}$

		bran	ch ⋈ a	ccount		
sortcode	bname	cash	no	type	cname	rate
34	'Goodge St'	8900.67	103	'current'	'Boyd, M.'	NULL
56	'Wimbledon'	94340.45	107	'current'	'Poulovassilis, A.'	NULL
56	'Wimbledon'	94340.45	119	'deposit'	'Poulovassilis, A.'	5.50
56	'Wimbledon'	94340.45	125	'current'	'Bailey, J.'	NULL
67	'Strand'	34005.00	100	'current'	'McBrien, P.'	NULL
67	'Strand'	34005.00	101	'deposit'	'McBrien, P.'	5.25

Quiz 7: Natural Join

Derived Relational Algebra: Semi Join ×

Semi Join

$$R \ltimes S = R \bowtie \pi_{Attr(R) \cap Attr(S)}(S)$$

Semi Join

 $account \ltimes movement = account \bowtie \pi_{no}(movement)$

		account ⋉ movemen	nt	
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56

Derived Relational Algebra: Joins

Natural Join

$$R\bowtie S=\sigma_{R.A_1=S.A_1\wedge...\wedge R.A_m=S.A_m}R\times S$$

Equi Join

$$R \overset{A=B}{\bowtie} S = \sigma_{R.A=S.B} R \times S$$

Semi Join

$$R \ltimes S = R \bowtie \pi_{Attr(R) \cap Attr(S)}(S)$$

Theta Join

$$R \overset{\theta}{\bowtie} S = \sigma_{\theta} R \times S$$

Quiz 8: Understanding join operators

	branch	
sortcode	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

		account		
no	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

Which RA query produces the most tuples?

Quiz 9: Foreign Keys and Natural Joins (1)

Suppose R and S only share attribute A, and there is a foreign key $S(A) \stackrel{fk}{\Rightarrow} R(A)$.

A B
$$100$$
 $1,000$

C D
 $100,000$
 900

Note that |R| returns the number of tuples in the current extent of R

Quiz 10: Foreign Keys and Natural Joins (2)

Suppose R and S only share attribute A, and there is a foreign key $R(A) \stackrel{fk}{\Rightarrow} S(A)$.

If
$$|R| = 100$$
 and $|S| = 1,000$, what is $|R \bowtie S|$?

A
B
100
C
D
100,000
900

Derived Relational Algebra: Intersection \cap

Intersection

$$R \cap S = R - (R - S)$$

$\pi_{\mathsf{no}}\mathsf{account}\cap\pi_{\mathsf{no}}\mathsf{movement}$

"Illoadedaile
no
100
101
103
107
119
125

 π_{no} account

$\pi_{no}account - \pi_{no}movement$
<u>no</u>
125

$\pi_{no}account \cap \pi_{no}moven$	nent
	no
	100
	101
	103
	107
	119

Quiz 11: Intersection

	email
name	address
'McBrien, P.'	p.mcbrien@imperial.ac.uk
'Poulovassilis, A.'	ap@dcs.bbk.ac.uk
'Pietzuch, P.'	prp@doc.ic.ac.uk

What is the result of $\pi_{\sf cname}$ account $\cap \pi_{\sf name}$ email?

A cname 'McBrien, P.' 'Boyd, M.' 'Poulovassilis, A.' 'Bailey, J.' 'Pietzuch, P.'

cname 'McBrien, P.'

'Poulovassilis, A.'
'Pietzuch, P.'

cname 'McBrien, P.'

'Poulovassilis, A.'

 \mathbf{D}

Derived Relational Algebra: Division ÷

Division

$$R \div S = \pi_{Atts(R) - Atts(S)} R - \pi_{Atts(R) - Atts(S)} ((\pi_{Atts(R) - Atts(S)} R \times S) - R)$$

Division

$$\begin{split} \pi_{\text{cname},\text{type}} & \text{account} \div \pi_{\text{type}} & \text{account} = \pi_{\text{cname}} \pi_{\text{cname},\text{type}} & \text{account} - \\ & \pi_{\text{cname}}((\pi_{\text{cname}} \pi_{\text{cname},\text{type}} & \text{account} \times \pi_{\text{type}} & \text{account}) - \pi_{\text{cname},\text{type}} & \text{account}) \\ & \pi_{\text{cname}} & \text{type} & \text{account} + \pi_{\text{type}} & \text{account} = \pi_{\text{cname}} & \text{account} - \\ & \pi_{\text{cname}}((\pi_{\text{cname}} & \text{account} \times \pi_{\text{type}} & \text{account}) - \pi_{\text{cname},\text{type}} & \text{account}) \end{split}$$

$\pi_{cname,type}$ acc	ount
cname	type
'McBrien, P.'	'current'
'McBrien, P.'	'deposit'
'Boyd, M.'	'current'
'Poulovassilis, A.'	'current'
'Poulovassilis, A.'	'deposit'
'Bailey, J.'	'current'

π_{type} account
type
'current'
'deposit'

 $\pi_{\text{cname,type}}$ account $\div \pi_{\text{type}}$ account cname 'McBrien, P.' 'Poulovassilis, A.'

π_{cna}	_{me} account			
cnam	e		π_{type} ac	count
'McB	rien, P.'			type
'Boyd	, M.'		'cı	ırrent'
'Poul	ovassilis, A.'		'de	eposit'
'Baile	y, J.'			
		1		
	マ	フ		
	σ account \	·	occount	
	$\pi_{\sf cname}$ account $ imes$. Atype c		
	cname		type	
	'McBrien, P.'	'(current'	
	'McBrien, P.'	'c	deposit'	
	'Boyd, M.'	'(current'	
	'Boyd, M.'	'c	deposit'	
	'Poulovassilis, A	.' 'c	current'	
	'Poulovassilis, A	.' 'c	deposit'	
	'Bailey, J.'	'(current'	
	'Bailey, J.'	'c	deposit'	

π_{cname} account $ imes$ π_{t}	ype account
cname	type
'McBrien, P.'	'current'
'McBrien, P.'	'deposit'
'Boyd, M.'	'current'
'Boyd, M.'	'deposit'
'Poulovassilis, A.'	'current'
'Poulovassilis, A.'	'deposit'
'Bailey, J.'	'current'
'Bailey, J.'	'deposit'

$\pi_{cname,type}$ account				
cname	type			
'McBrien, P.'	'current'			
'McBrien, P.'	'deposit'			
'Boyd, M.'	'current'			
'Poulovassilis, A.'	'current'			
'Poulovassilis, A.'	'deposit'			
'Bailey, J.'	'current'			


```
(\pi_{\text{cname}} \operatorname{account} \times \pi_{\text{type}} \operatorname{account}) - \pi_{\text{cname}, \text{type}} \operatorname{account} cname type 'Boyd, M.' 'deposit' 'Bailey, J.' 'deposit'
```

```
(\pi_{\text{cname}} \operatorname{account} \times \pi_{\text{type}} \operatorname{account}) - \pi_{\text{cname}, \text{type}} \operatorname{account} \operatorname{cname} \qquad \qquad \text{type} \operatorname{'Boyd}, \, \text{M.'} \qquad \operatorname{'deposit'} \operatorname{'Bailey}, \, \text{J.'} \qquad \operatorname{'deposit'} \pi_{\text{cname}}((\pi_{\text{cname}} \operatorname{account} \times \pi_{\text{type}} \operatorname{account}) - \pi_{\text{cname}, \text{type}} \operatorname{account}) \operatorname{cname} \operatorname{'Boyd}, \, \text{M.'} \operatorname{'Bailey}, \, \text{J.'}
```

$\pi_{ ext{cname}}$ account cname

'McBrien, P.'

'Boyd, M.'

'Poulovassilis, A.'

'Bailey, J.'

```
\begin{array}{l} \pi_{\rm cname}((\pi_{\rm cname}\,{\rm account}\,\times\,\pi_{\rm type}\,{\rm account}) - \pi_{\rm cname,type}\,{\rm account})\\ {\rm cname}\\ {\rm 'Boyd,\ M.'}\\ {\rm 'Bailey,\ J.'} \end{array}
```


 π_{cname} account $-\pi_{\mathsf{cname}}((\pi_{\mathsf{cname}} \, \mathsf{account} \, \times \, \pi_{\mathsf{type}} \, \mathsf{account}) - \pi_{\mathsf{cname},\mathsf{type}} \, \mathsf{account})$ cname

'McBrien, P.'

'Poulovassilis, A.

Worksheet: Derived Relational Algebra Operators

	branch	
sortcode	bname	cash
56	'Wimbledon'	94340.45
34	'Goodge St'	8900.67
67	'Strand'	34005.00

		movemen	t
mid	no	amount	tdate
1000	100	2300.00	5/1/1999
1001	101	4000.00	5/1/1999
1002	100	-223.45	8/1/1999
1004	107	-100.00	11/1/1999
1005	103	145.50	12/1/1999
1006	100	10.23	15/1/1999
1007	107	345.56	15/1/1999
1008	101	1230.00	15/1/1999
1009	119	5600.00	18/1/1999

account				
<u>no</u>	type	cname	rate	sortcode
100	'current'	'McBrien, P.'	NULL	67
101	'deposit'	'McBrien, P.'	5.25	67
103	'current'	'Boyd, M.'	NULL	34
107	'current'	'Poulovassilis, A.'	NULL	56
119	'deposit'	'Poulovassilis, A.'	5.50	56
125	'current'	'Bailey, J.'	NULL	56

```
key branch(sortcode)
key branch(bname)
key movement(mid)
key account(no)
movement(no) \stackrel{fk}{\Rightarrow} account(no)
account(sortcode) \stackrel{fk}{\Rightarrow} branch(sortcode)
```

Equivalences Involving Project

Project and Project

 $\pi_{\vec{X}} \pi_{\vec{Y}} R \equiv \pi_{\vec{X}} R$ You can eliminate any inner project (note that to be well formed $\vec{X} \subseteq \vec{Y}$)

Project and Select

 $\pi_{\vec{\mathsf{X}}}\,\sigma_{\mathsf{P}(\vec{\mathsf{Y}})}\,\mathsf{R} \equiv \sigma_{\mathsf{P}(\vec{\mathsf{Y}})}\,\pi_{\vec{\mathsf{X}}}\,\mathsf{R}$

You can move a project of attributes \vec{X} inside a select, provided the select predicate can be answered from those attributes, *i.e.* $\vec{Y} \subseteq \vec{X}$

Project and Product

 $\pi_{\vec{\mathsf{X}}}(\mathsf{R} \times \mathsf{S}) \equiv \pi_{\vec{\mathsf{X}} \cap \mathsf{Atts}(\mathsf{R})} \, \mathsf{R} \times \pi_{\vec{\mathsf{X}} \cap \mathsf{Atts}(\mathsf{S})} \, \mathsf{S}$

Project and Union

 $\pi_{\vec{\mathbf{x}}}(\mathsf{R} \cup \mathsf{S}) \equiv \pi_{\vec{\mathbf{x}}} \, \mathsf{R} \cup \pi_{\vec{\mathbf{x}}} \, \mathsf{S}$

Project and Difference

 $\pi_{\vec{\mathsf{x}}}(\mathsf{R}-\mathsf{S}) \supseteq \pi_{\vec{\mathsf{x}}}\,\mathsf{R} - \pi_{\vec{\mathsf{x}}}\,\mathsf{S}$

Equivalences Involving Select

Select and Project

 $\sigma_{\mathrm{P}(\vec{\mathrm{X}})}\,\pi_{\vec{\mathrm{X}}}\,\mathrm{R} \equiv \pi_{\vec{\mathrm{X}}}\,\sigma_{\mathrm{P}(\vec{\mathrm{X}})}\,\mathrm{R}$

Select and Select

 $\sigma_{\mathsf{P}_{\mathsf{X}}(\vec{\mathsf{X}})}\,\sigma_{\mathsf{P}_{\mathsf{Y}}(\vec{\mathsf{Y}})}\,\mathsf{R} \equiv \sigma_{\mathsf{P}_{\mathsf{X}}(\vec{\mathsf{X}}) \wedge \mathsf{P}_{\mathsf{Y}}(\vec{\mathsf{Y}})}\,\mathsf{R}$

Select and Product

 $\sigma_{P(\vec{X})}(R \times S) \equiv \sigma_{P(\vec{X})} R \times S \iff \vec{X} \subseteq Atts(R)$

You can move a select predicate $P(\vec{X})$ onto one of the relations inside a product provided $\vec{X} \subseteq Atts(R)$.

Select and Union

$$\sigma_{\mathsf{P}(\vec{\mathsf{X}})}(\mathsf{R} \cup \mathsf{S}) \equiv \sigma_{\mathsf{P}(\vec{\mathsf{X}})} \, \mathsf{R} \cup \sigma_{\mathsf{P}(\vec{\mathsf{X}})} \, \mathsf{S}$$

Select and Difference

 $\sigma_{P(\vec{X})}(R-S) \equiv \sigma_{P(\vec{X})} R - S$

Quiz 12: Equivalent RA Expressions (Unary Operators)

Which RA expression is not equivalent to the other three?				
A	В			
$\pi_{no}\sigma_{type='current'}account$	$\pi_{no}\ \sigma_{type='current'}\ \pi_{no,type,cname}\ account$			
$\int C$	D			
$\pi_{\text{no}} \sigma_{\text{type}<>\text{'deposit'}} \pi_{\text{no,type,cname}}$ account	$\pi_{\text{no}} \sigma_{\text{type}=\text{'current'}} \sigma_{\text{type}<>\text{'deposit'}} \text{account}$			

Quiz 13: Query Evaluation

Which RA means that the \times operator handles fewer tuples

Equivalences Involving Binary Operators

Product and Union

 $R \times (S \cup T) \equiv (R \times S) \cup (R \times T)$

Product and Difference

 $\mathsf{R}\times(\mathsf{S}-\mathsf{T})\equiv(\mathsf{R}\times\mathsf{S})-(\mathsf{R}\times\mathsf{T})$

Union and Product

 $R \cup (S \times T)$ unable to move \cup inside \times

Union and Difference

 $R \cup (S - T)$ unable to move \cup inside -

Difference and Product

 $R - (S \times T)$ unable to move – inside \times

Difference and Union

 $R - (S \cup T) \equiv (R - S) - T$

Quiz 14: Equivalent RA Expressions (Binary Operators)

Which equivalence does not hold?

A

$$(R \times S) \times T \equiv R \times (S \times T)$$

В

$$(R-S) - T \equiv R - (S-T)$$

 $\overline{\mathrm{C}}$

$$(R \cup S) \cup T \equiv R \cup (S \cup T)$$

D

$$(R \cap S) \cap T \equiv R \cap (S \cap T)$$

Worksheet: Equivalences Between RA Expressions

- I $\pi_{\text{no,type}} \sigma_{\text{sortcode}=56} \pi_{\text{no,type,sortcode}} \sigma_{\text{type}='deposit'}$ account
- 2 $\sigma_{\text{account.no}=\text{movement.no}}(\pi_{\text{no,cname}} \operatorname{account} \times \pi_{\text{mid,no}} \sigma_{\text{amount}>1000} \operatorname{movement})$
- $\sigma_{\mathsf{account.no} = \mathsf{movement.no}}(\pi_{\mathsf{no,cname,rate}} \, \mathsf{account} \, \times \\ (\sigma_{\mathsf{amount}} {\scriptstyle > 1000} \, \pi_{\mathsf{mid,no}} \, \mathsf{movement} \cup \sigma_{\mathsf{amount}} {\scriptstyle < 100} \, \pi_{\mathsf{mid,no}} \, \mathsf{movement}))$
- 4 $\pi_{\text{no,cname,tdate}} \sigma_{\text{amount}<0 \land \text{account.no}=\text{movement.no}}$ account \times movement

Quiz 15: Monotonic and non-monotonic operators

A monotonic operator has the property that an additional tuple put into any input relation which only cause additional tuples to be generated in the output relation.

A non-monotonic operator has the property that an additional tuple put into an input relation may remove tuples from the output relation

Which RA operator is non-monotonic?			
A	В		
π R	$R \times S$		
$oxed{C}$	D		
$R \cup S$	R - S		

Incremental Query Evaluation

Suppose we add rows Δ_R to extent of relation R so it becomes R'If we represent Δ_R as a relation (with the same attributes as R) then

$$R' = R \cup \Delta_R$$

$$\pi_{\vec{X}} R' \equiv \pi_{\vec{X}} R \cup \pi_{\vec{X}} \Delta_R$$

$$\sigma_{P(\vec{X})} \, R' \equiv \sigma_{P(\vec{X})} \, R \cup \sigma_{P(\vec{X})} \, \Delta_R$$

$$R' \times S \equiv (R \times S) \cup (\Delta_R \times S)$$

$$R' \cup S \equiv (R \cup S) \cup \Delta_R$$

$$R' - S \equiv (R - S) \cup (\Delta_R - S)$$

$$S - R' \equiv (S - R) - \Delta_R$$

Example: Query result after update to account (1)

 \blacksquare Suppose that we had already evaluated query Q

π bname,no σ branch.sortcode $=$ account.sortcode \wedge account.type $=$ 'current' (bra	nch imes account)
bname	no
'Goodge St'	103
'Wimbledon'	107
'Wimbledon'	125
'Strand'	100

2 If $\Delta_{account}$ is added to account to get account':

If thus if $\Delta_{account}$ is added to account, we only need evaluate $\pi_{bname,no} \sigma_{branch,sortcode} = account.sortcode \land account.type='current' (branch <math>\times \Delta_{account}$)

 $[\]pi_{\mathsf{bname},\mathsf{no}}\,\sigma_{\mathsf{branch}.\mathsf{sortcode}=\mathsf{account}.\mathsf{sortcode} \land \mathsf{account}.\mathsf{type}=\mathsf{`current'}(\mathsf{branch} \times \mathsf{account'})$

 $[\]pi_{\mathsf{bname},\mathsf{no}}\,\sigma_{\mathsf{branch}.\mathsf{sortcode} = \mathsf{account}.\mathsf{sortcode} \land \mathsf{account}.\mathsf{type} = `\mathsf{current}`}((\mathsf{branch} \times \mathsf{account}) \cup (\mathsf{branch} \times \Delta_{\mathsf{account}}))$

 $[\]pi_{bname,no} \ \sigma_{branch.sortcode} = \text{account.sortcode} \land \text{account.type} = \text{`current'} (branch \times \text{account}) \ \cup \\ \pi_{bname,no} \ \sigma_{branch.sortcode} = \text{account.sortcode} \land \text{account.type} = \text{`current'} (branch \times \Delta_{account})$

Example: Query result after update to account (2)

4 Suppose we have

		$\Delta_{account}$		
126	'business'	'McBrien, P.'	1.00	67
127	'current'	'Pietzuch, P.'	NULL	34

Then

$\pi_{bname,no}\sigma_{bi}$	oranch.sortcode=account.sortcode∧account.type='current'(branch)	$\times \Delta_{account}$
bname		no
'Goodge St	t'	127

5 Thus since $Q' = Q \cup \Delta_Q$

	unt')	
	$\pi_{ ext{bname,no}} \sigma_{ ext{branch.sortcode} = ext{account.sortcode} \land ext{account.type} = ext{`current'} (ext{branch} imes ext{account.sortcode})$	no
	'Goodge St'	103
	'Wimbledon'	107
	'Wimbledon'	125
	'Strand'	100
	'Goodge St'	127