NOVEMBER 1986

DESCRIPTION

The HYUNDAI HY62C64 is a 65, 536-bit static random access memory organized as 8192 words by 8 bits and operates from a single 5 volt supply. It is built with HYUNDAI's high performance HYCMOS process. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system. bus structures. The HY62C64 is moulded in a standard 28-pin, 600 mil-DIP.

	HY62C64/L-45	HY62C64/L-55	HY62C64/L-70
Maximum Access Time (ns)	45	55	70
Maximum Average Operating Current (mA)	90	90	90
Maximum Standby Current (mA)	2/0.1	2/0.1	2/0.1

BLOCK DIAGRAM

FEATURES

- ▲ High-speed—45/55/70ns (Max.)
- ▲ Low Power dissipation
 - -300mW (Typ.) Operating
 - -10µW (Typ.) Standby-HY62C64L
- ▲Single 5V power supply
- ▲ Fully static operation
- ▲ All inputs and outputs directly TTL compatible
- **▲**Three State Outputs
- ▲ Data retention supply voltage: 2.0-5.5V

PIN CONNECTIONS

NC	1	28	V _{cc}
A ₁₂	2	27	WE
Α,	3	26	cs,
A ₆	4	25	☐ A ₈
A ₅ [5	 24	A,
A,	6	23	A,,
A ₃	7	22	OE
A ₂	8	21	A ₁₀
Α, 🗀	9	20	CS,
A ₀	10	 19	D,
D ₀	11	18	D ₆
D,	12	17	D₅
D ₂	13	16	□□□₄
GND	14	15	D ₃

PIN NAMES

A ₀ -A ₁₂	ADDRESS	WE	WRITE ENABLE
D ₀ -D ₇	DATA INPUT/OUTPUT	ŌĒ	OUTPUT ENABLE
CS,	CHIP SELECT ONE	CS ₂	CHIP SELECT TWO
v_{cc}	POWER	GND	GROUND

This documentation is a general product description and is subject to change without notice. Hyundai Semiconductor does not assume any responsibility for use of circuits described. No circuit patent licenses are implied.

HY62C64 8192×8-Bit CMOS Static RAM

ABSOLUTE MAXIMUM RATINGS(1)

SYMBOL	PARAMETER	RATING	UNIT
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to +7.0	v
TBIAS	Temperature Under Bias	-10 to+125	°C
T _{STG}	Storage Temperature	-40 to+150	°C
P _T	·		W
I _{our}	DC Output Current	20	mA

RECOMMENDED DC OPERATING CONDITIONS

 $(T_A=0^{\circ}C \text{ to}+70^{\circ}C)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{cc}	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	O	V
V _{IH}	Input High Voltage	2.2	3.5	6.0	V
VIL	Input Low Voltage	-0.5	0	0.8	V

NOTES:

TRUTH TABLE

MODE	WE	CS,	CS ₂	ŌĒ	I/O OPERATION	V _{cc} CURRENT	NOTE
Not Selected	Х	Н	Х	X	High-Z	I _{SB} , I _{SB1}	·
(Power Down)	Х	Х	L	х	High-Z	I_{SB} , I_{SB2}	
Output Disabled	Н	Ŀ	Н	Н	High-Z	I _{cc} , I _{cc}	
Read	Н	· L	Н	L	D _{OUT}	I _{cc} , I _{cci}	_
Write	L	L	Н	Н	D _{IN}	I _{cc} , I _{cc}	Write Cycle (1)
Wille	L.	L	Н	L	D _{IN}	I _{cc} , I _{cc} ,	Write Cycle (2)

CAPACITANCE(1)

 $(T_A = 25^{\circ}C, f = 1.0MHz)$

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C _{IN}	Input Capacitance	$V_{IN} = 0V$	- 6	pF
C _{I/O}	Input/Output Capacitance	V _{I/O} = 0V	8	рF

^{1.} This parameter is sampled and not 100% tested.

AC TEST CONDITIONS

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	5ns
Input and Output	1.5V
Timing Reference Level Output Load	1 TTL Gate and C _L =30pF (including scope and jig)

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 10\%, T_A = 0^{\circ}C \text{ to} + 70^{\circ}C)$

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP ⁽¹⁾	MAX.	UNIT
I _{ti}	Input Leakage Current	V _{IN} =GND to V _{CC}			-	2	μΑ
I _{LO}	Output Leakage Current	$\overline{\text{CS}}_1 = V_{1H} \text{ or } \text{CS}_2 = V_{1L} \text{ or } \overline{\text{OE}} = V_{1H}, V_{1/O} = \text{GND to } V_{CC}$				2	μΑ
I _{cc}	Operating Power Supply Current	$\overline{\text{CS}}_1 = V_{\text{IL}}, \ \text{CS}_2 = V_{\text{IH}}, \ I_{1/O} = 0 \text{mA}$			50	90	mA
I _{cc1}	Average Operating Current	Min. Duty Cycle=100%, $\overline{CS}_1 = V_{1L}$, $CS_2 = V_{1H}$			60	90	mA
I _{SB}		$\overline{\text{CS}}_1 = V_{1H} \text{ or } \text{CS}_2 = V_{1L}, I_{1/O} = 0 \text{mA}$		-	5	15	mA
I _{SB1} ^[2]	Standby Power Supply Current	$\overline{\text{CS}}_1 \ge V_{\text{CC}} - 0.2 V_i V_{\text{IN}} \ge V_{\text{CC}} - 0.2 \text{Vor } V_{\text{IN}} \le 0.2 \text{V}$	HY62C64,		0.02	2	mA_
		haran tanah arang baran dari dari dari dari dari dari dari dari	HY62C64 L HY62C64		0.02	100	μA mA
I _{SB2} (2)		$CS_2 \le 0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	HY62C64 L		2	100	μA
V _{or}	Output Voltage	I _{OL} =2.1mA			-	0.4	V
V _{OH}		I _{OH} = -1.0mA		2.4	_		V

^{1.} Typical limits are at V_{cc} =5.0V, T_A =25°C and specified loading 2. V_{IL} min=-

HYUNDAI SEMICONDUCTOR 2

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC}=5V\pm10\%, T_A=0^{\circ}C \text{ to+70°C})$

READ CYCLE

CVMDOL			HY62C64/L-45		HY62C64/L-55		HY62C64/L-70		
SYMBOL	PARAMETER		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
t _{RC}	Read Cycle Time		45	-	55	_	70	_	ns
t _{AA}	Address Access Time			45	_	55	_	70	ns
t _{ACS1}	Chip Select Access Time	CS ₁		45	_	55	_	70	ns
t _{ACS2}	Omp detect racess time			45	_	. 55		70	ns
t _{OE}	Output Enable to Output Valid		. –	30	_	35	_	50	ns
t _{CLZ1}	Chip Selection to Output in Low-Z	CS ₁	5	_	5	_	5		ns
t _{CLZ2}		CS ₂	5	_	5	· —	5	_	ns
t _{OLZ}	Output Enable to Output in Low-Z	239	5		5	-	5	· -	ns.
t _{CHZ1}	Chip Deselection to Output in High-Z	CS,	0	25	0	30	0	35	ns
t _{CHZ2}		CS ₂	0	25	0	30	0	35	ns
t _{onz}	Output Disable to Output in High-Z		0	25	0	30	0	35	ns
t _{OH}	Output Hold from Address Change		5	<u> </u>	5	.: - <u> </u>	5	-	ns

WRITE CYCLE

SYMBOL	PARAMETER	HY62C	HY62C64/L-45		HY62C64/L-55		HY62C64/L-70	
SIMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
t _{wc}	Write Cycle Time	45	_	55	_	70	_	ns
t _{cw}	Chip Selection to End of Write	35	_	40	_	45	_	ns
t _{AS}	Address Setup Time	5	:	5	-	5	_	ns
t _{AW}	Address Valid to End of Write	40	_	50	- 1 .	65	-	ns
t _{wp}	Write Pulse Width	35	-	40	_	45	-	ns
t _{WR1}	Write Recovery Time	5	_	5	-	5	_	ns
t _{WR2}	Write Recovery Time	5	-	10	_	10	_	ns
t _{WHZ}	Write to Output in High-Z	0	20	0	25	0	30	ns
t _{DW}	Data to Write Time Overlap	20	-	25		30	_	ns
t _{DH}	Data Hold from Write Time	5	_	5	_	5	-	ns
t _{OHZ}	Output Enable to Output in High-Z	0	25	. 0	25	0	25	ns
tow	Output Active from End of Write	5	_	5		5	· 	ns

NOTES: t_{CHZ}, t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.

READ CYCLE 2(1,3,4,6)

4675088 HYUNDAI ELECTRONICS

READ CYCLE 3(1,4,7)

READ CYCLE 4⁽¹⁾

- NOTES:
 1. WE is high for READ cycle.

- WE is nightfor READ cycle.
 Device is continuously selected \$\overline{CS}_1 = V_{1L}\$ and \$CS_2 = V_{1H}\$.
 Address valid prior to or coincident with \$\overline{CS}_1\$ transition low.
 \$\overline{OE} = V_{1L}\$.
 Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.
- 6. CS₂ is high. 7. CS₁ is low.

TIMING DIAGRAM (CONT'D)

WRITE CYCLE 1(1)

HY62C64 8192×8-Bit CMOS Static RAM

WRITE CYCLE 2(1,6)

NOTES:

1. WE must be high during address transitions.

 WE must be high during address transitions.
 A write occurs during the overlap (t_{wp}) of a low CS₁, a high CS₂ and a low WE.
 t_{wa} is measured from the earlier of CS₁ or WE going high or CS₂ going low to the end of write cycle.
 During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
 If the CS₁ low transition or the CS₂ high transition occurs simultaneously with the WE low transitions or after the WE transition, outputs remain in a high impedance state.
 OE is continuously low (OE=V_{IL}).
 D_{OUT} is the same phase of write data of this write cycle.
 D_{OUT} is the read data of next address.
 If CS₁ is low and CS₂ is high during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them. not be applied to them.

10. Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.

11. t_{cw} is measured from the later of CS₁ going low or CS₂ going high to the end of write.

DATA RETENTION CHARACTERISTICS

 $(T_A = 0 \degree C \text{ to} + 70 \degree C)$

SYMBOL ·	PARAMETER	TEST CONDITIONS	MIN.	TYP,(1)	MAX.	UNIT
V _{DR1}	V _{CC} for Data Retention	$\overline{\text{CS}}_1 \ge V_{\text{CC}} - 0.2 \text{V}, \ V_{\text{IN}} \ge V_{\text{CC}} - 0.2 \text{V} \text{ or } V_{\text{IN}} \le 0.2 \text{V}$	2.0	-	_	V
V_{DR2}	, , , , , , , , , , , , , , , , , , , ,	$CS_2 \le 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	2.0	-	_	, V
I _{CCDR1}	Data Retention Current	$\overline{CS_1} \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2$	_	2	50	μА
I _{CCDR2}		$CS_2 \le 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$		2	50	μA
t _{CDR}	Chip Deselect to Data Retention Time	See Retention Diagram	0	_	_	ns
t _R	Operation Recovery Time		t _{RC} ^[2]		-	ns

NOTES:

- 1. $V_{CC} = 2V$, $T_A = +25$ °C
- 2. t_{RC}=Read Cycle Time

LOW VCC DATA RETENTION DIAGRAM 1 (CS1 Controlled)

Low V_{CC} DATA RETENTION DIAGRAM 2 (CS₂ Controlled)

DΕ

HYUNDAI ELECTRONICS 83

4675088 0000124 1

PACKAGE OUTLINE

ORDERING INFORMATION

