Redes e Sistemas Distribuídos

Sistemas Distribuídos

Prof. Dr. Gilberto Fernandes Junior

- Unidade de Ensino: 3
- Competência da Unidade: Compreender os fundamento de sistemas distribuídos
- Resumo: Conhecer os conceitos de sistemas distribuídos, bem como processos, comunicação e aspectos de projeto
- Palavras-chave: sistemas distribuídos
- Título da Teleaula: Sistemas Distribuídos
- Teleaula nº: 3

1 2

Contextualização

- Conceitos de Sistemas Distribuídos
- Processos e Comunicação em Sistemas Distribuídos
- Aspectos de Projeto dos Sistemas Distribuídos

Fundamentos de sistemas distribuídos

3 4

Sistemas Distribuídos

 Um sistema distribuído é um conjunto de computadores interligados via rede, mas, para o usuário final das aplicações, que são executadas através deles, aparenta ser um sistema único

Aspectos

- · Funcionamento independente
- · Hardwares diversificados
- Middleware

Objetivos

6

- Disponibilidade alta e fácil acesso ao sistema e a todos os seus recursos, tanto pelas máquinas que fazem parte do sistema distribuído como pelo usuário final.
- Confiabilidade maior que nos sistemas centralizados.
 Teorema CAP (consistência, disponibilidade e resiliência (tolerância a falhas))
- Aumento de Desempenho, já que há múltiplas instancias, tanto de hardware quanto de software, para realizar o processamento necessário.

Objetivos

- Ocultar ao usuário que os recursos do sistema são distribuídos – IMPORTANTE!
- Deve ser aberto, ou seja, deve facilitar a inclusão de novas máquinas e recursos no ambiente em funcionamento – Expansão facilitada

Desafios

- Heterogeneidade: operar em nós com características de hardware diferentes, e suportar diferentes sistemas operacionais
- Segurança: garantir confidencialidade, integridade e disponibilidade – Problema: Ataques DoS!
- Tolerância a falhas: capacidade do sistema distribuído se auto recuperar na ocorrência de uma (ou mais) falhas
- Escalabilidade, concorrência e abertura

7

Classificação de Sistemas Distribuídos

Classificação de Sistemas Distribuídos

Sistemas centralizados - Mainframes

Vantagens: estabilidade e robustez, segurança, facilidade de gerenciamento e maior segurança de dados;

Desvantagens: escalabilidade e produtividade, linguagens de programação antigas, tamanho servidor, falta de interface gráfica.

9 10

Classificação de Sistemas Distribuídos

Sistemas paralelos – Simultaneamente executar várias partes da mesma aplicação

- · Mais de 1 processador
- Baseado em clusters
- Diversos núcleos

Vantagens: escalabilidade; produtividade e economia; **Desvantagens**: dificuldade para gerenciamento e segurança.

Sistemas Paralelos Fortemente Acoplados

- A comunicação entre processadores ocorre por meio de barramentos internos
- Os processadores compartilham a mesma memória principal (RAM)
- possuem mais do que um processador (ou núcleo), permitindo que vários programas sejam executados simultaneamente, ou seja, de maneira concorrente
- Exemplos: notebooks, smartphones e desktops

Sistemas Paralelos Fracamente Acoplados

- abrangem os sistemas de maior escala, sempre conectados por rede de computadores
- todos os sistemas de rede que utilizam arquiteturas do tipo cliente-servidor, ponto a ponto ou descentralizadas pertencem a essa categoria.
- Nomenciatura se da pelo fato de que a interligação entre os elementos do sistema se dá via rede e não internamente ao hardware (acoplamento mais flexível)
- Os sistemas distribuídos pertencem à categoria de sistemas fracamente acoplados

Sistemas Paralelos Fracamente Acoplados

Vantagens

- Desempenho.
- · Flexibilidade.
- · Escalabilidade.

Desvantagens

- · velocidade na transferência de dados
- segurança, que é mais vulnerável nesses sistemas

13 14

Clusters, Grids e Sincronização de Relógio

Computação em Cluster

- · Conjunto de máquinas com hardwares semelhantes.
- O conjunto de máquinas que compõem o cluster são ligadas por rede local (LAN).
- · S.O equivalente.
- · Fortemente acoplado.
- RAM compartilhada
- Nó mestre.

Forte: retinado de Pretra, Calque Silva. Sistema distribuidos Lordenz. Edicos e

15 16

Computação em Grid

- Conjunto de máquinas com características diferentes, podendo o hardware e os sistemas operacionais serem de fabricantes diferentes.
- Heterogeneidade.
- · Interliga vários clusters.
- Ex.: CineGrid, que trabalha no desenvolvimento de ferramentas colaborativas multimídia.

Sincronização de Relógio

- Sistemas formados por múltiplos computadores necessitam sincronizar suas ações entre si e, uma das maneiras mais utilizadas, dada sua simplicidade e popularidade, é sincronização horária, por meio do protocolo conhecido como Network Time Protocol (NTP).
- Esse protocolo, por sua vez, utiliza o protocolo de transporte de dados *User Datagram Protocol* (UDP).

Exemplos de Sistemas distribuídos

19 20

Descrição da SP

O objetivo desta SP é dar exemplos motivacionais de sistemas distribuídos atuais, ilustrando seu papel predominante e a enorme diversidade de aplicações associadas a eles!

Resolução da SP

Pesquisa na WEB

- O Google, líder de mercado em tecnologia de pesquisa na Web, fez um trabalho significativo no projeto de uma sofisticada infraestrutura de sistema distribuído para dar suporte à pesquisa (e a outros aplicativos e serviços, como o Google Earth).
- Isso representa uma das maiores e mais complexas instalações de sistemas distribuídos da história da computação

21 22

Resolução da SP

Massively multiplayer online games (MMOGs)

Desafios

- tempos de resposta rápidos
- Propagação de eventos em tempo real para muitos jogadores
- manutenção de uma visão coerente do mundo compartilhado.

Resolução da SP

Finanças e Comércio

- crescimento do *e-Commerce:* Amazon e *eBay*
- tecnologias de pagamento subjacentes: PayPal
- surgimento associado de operações bancárias e negócios online e também os complexos sistemas de disseminação de informações para mercados financeiros.

Resolução da SP

Gerenciamento Ambiental

O uso de tecnologia de sensores (interligados em rede) para monitorar e gerenciar o ambiente natural; emitir alerta precoce de desastres naturais, como terremotos, enchentes ou tsunamis e coordenar a resposta de emergência;

o cotejamento e a análise de parâmetros ambientais globais para entender melhor fenômenos naturais complexos, como a mudança climática. Qual o principal componente de um Sistema distribuído?

25 26

Processos e Threads

Processos e Threads

Permite que a comunicação e processamento de clientes e servidores ocorram com alto nível de performance

Processo: Programa em execução sob controle do SO

- alto custo de gerenciamento do S.O. (granularidade) não é suficiente para sistemas distribuídos
- solução nível de granularidade mais fino "threads".

Thread: Cada thread executa sua propria porção de Código

 Vários Threads podem estar subordinados a um mesmo processo

27 28

Processos Cliente-Servidor

Clientes Multithread

- "esconder" tempo de propagação de mensagens -> iniciar comunicação e prosseguir com algum processo
- Podem ser estabelecidas conexões com diferentes replicas -> transferência paralela
- Exemplo: Web Browser

Processos Cliente-Servidor Servidores Multithread • Simplifica o Código do servidor • Paralelismo para alto desembenho Requisição despachada para um thread operário Prote adaptado da rede Sistema operacional Forte adaptado da TANINBALMA, A. S. STEN, M. V. Selemas Distributor. - Principeas a Principeas 2 ed São Paulo: Pauron, 2008.

Comunicação entre Processos

Comunicação entre processos

A comunicação dos dados de uma máquina para outra ocorre a partir da quarta camada (transporte).

Protocolo TCP x Protocolo UDP

Comunicação através de sockets!

 Utilizam o TCP (ou UDP) para realizar a comunicação entre aplicações que estejam sendo executadas em um sistema operacional

31 32

Sockets

- É uma das tecnologias/mecanismos mais comuns para comunicação entre máquinas
- Comunicação interprocessos
- É uma combinação de endereço IP e porta.
- Abstração das camadas de 1 a 3 do modelo ISO/OSI
 - Para que essa abstração possa ocorrer, existem funcionalidades (por vezes chamadas de **primitivas**) que normalmente são fornecidas por qualquer implementação de *socket*

Primitivas de Sockets TCP

Primitiva	Significado
Socket	Cria um novo terminal de comunicação
Bind	Atrela um endereço IP local a um socket.
Listen	Aviso de que o socket está aceitando conexões.
Accept	Aguarda o recebimento de uma solicitação de conexão.
Connect	Ativamente tenta estabelecer conexão com um socket.
Send	Envia dados através de uma conexão previamente estabelecida.
Receive	Recebe dados através de uma conexão previamente estabelecida.
Close	Libera a conexão

33 34

Processo de comunicação via sockets TCP

Em qualquer linguagem POO, as primitivas representam métodos, já implementados, em determinadas classes relativas à comunicação via rede.

Fonte: adaptado de: TANENBAUM, A. S; STEEN, M. V. Sistemas Distribuídos - Princípios e Paradigmas. 2. ed. São Paulo: Pearson, 2008.

Chat com Sockets TCP

Descrição da SP

 Implementar uma aplicação simples de chat em JAVA utilizando sockets TCP!

Aspectos de Projeto dos Sistemas Distribuídos

37 38

Segurança

- Muito importante, já que a comunicação entre as máquinas de um sistema distribuído sempre ocorre por meio de redes de comunicação, tipicamente cabeadas.
- Confidencialidade e Integridade
- Exercício de equilíbrio entre custo e ameaças

Segurança

Pontos de atenção em relação à segurança, no projeto de sistemas distribuídos:

- · Portas são expostas;
- · Redes não são seguras;
- A validade das chaves criptográficas deve ser limitada;
- Algoritmos de criptografia podem ter falhas;
- · Hackers.

39 40

Escalabilidade

Permitir aumento/diminuição da quantidade de recursos. Aspectos importantes: geográficos e administrativos

Tolerância a Falhas/Resiliência

- comunicação confiável entre as camadas de Cliente e Servidor.
- processos sejam replicados em grupos,
- Detecção de falhas -> mascarar as falhas

Heterogeneidade

- Sistema que contenha em sua composição máquinas (nós) de sistemas operacionais, recursos (hardware) e até mesmo fabricantes diferentes
- Protocolos e *middlewares* para comunicação

Você sabe indicar exemplos de aplicações que utilizam TCP e UDP?

43 44

Recapitulando

Recapitulando

- Conceitos de Sistemas Distribuídos
- Processos e Comunicação em Sistemas Distribuídos
- Aspectos de Projeto dos Sistemas Distribuídos