Pàg 117

Exercici 10.

Aplicant la definició d'intensitat de corrent

$$I = \frac{Q}{t} \to Q = It = 2 \cdot 2 \cdot 3600 = 14400 \, C$$

Exercici 11.

Com l'exercici anterior

$$I = \frac{Q}{t} = \frac{6,24 \cdot 10^{16} \cdot 1,602 \cdot 10^{-19}}{10} = 9,99 \cdot 10^{-4} A = 1 \, mA$$

Exercici 12.

Aplicant directament la llei d'Ohm

Exercici 15.

El KW és una unitat derivada del W, $1\,kW=10^3\,W$ i és unitat de potència. El $kW\cdot h$ és en realitat unitat de treball ja que és producte de potència per temps. Tot i no ser del sistema internacional és una unitat que es fa servir prou a la vida diària.

* * *

Exercici 16.

Calculem directament

$$P = \frac{V^2}{R} = \frac{220^2}{5} = 9680 \, W$$

Exercici 17.

A partir de $P = I^2 R$, podem calcular

$$R = \frac{P}{I^2} = \frac{800}{4^2} = 50\,\Omega$$

Exercici 18.

a) Fem

$$P = VI \rightarrow I = \frac{P}{V} = \frac{2, 3 \cdot 10^3}{230} = 10 A$$

b) Ara

$$V = IR \to R = \frac{V}{I} = \frac{230}{10} = 23 \,\Omega$$

c) Si suposem un mes de 30 dies (és la tria habitual en aquests casos)

$$E = Pt = 2, 3 \cdot 10^3 \cdot 30 \cdot 5 \cdot 3600 = 1,242 \cdot 10^9 J = 1,252 MJ$$

* * *

Pàg 135

Exercici 28.

A partir de la relació

$$R = \rho \frac{L}{A}$$

calculem directament

$$L = \frac{RA}{\rho} = \frac{3 \cdot \frac{\pi \cdot 0.5^2}{4}}{0.0175} = 33,66 \, m$$

Noteu que hem pres la dada de la resistivitat que oferia l'**exericici 27** i hem deixat el diàmetre en mm^2 perquè les unitats de la resistivitat són coherents aquesta elecció.

Exercici 29.

En condicions normals, la intensitat que alimentarà el forn elèctric val

$$I = \frac{P}{V} = \frac{20 \cdot 10^3}{220} = 90,9 \,A$$

la resistència màxima que podrà tenir el cable de coure, si volem que en ell caigui com a molt el 5% de la tensió nominal valdrà

$$V = IR \rightarrow R = \frac{V}{I} = \frac{\frac{5}{100} \cdot 220}{90.9} = 0,121 \,\Omega$$

llavors

$$R = \rho \frac{L}{A} \to A = \rho \frac{L}{R} = 0,0175 \cdot \frac{200}{0,121} = 28,93 \, mm^2$$

Exercici 31.

En tots els casos partim de

$$R = \rho \frac{L}{A}$$

a)

$$R' = \rho \frac{L}{A'} = \rho \frac{L}{2A} = \frac{1}{2} \cdot \rho \frac{L}{A} = \frac{1}{2} \cdot R$$

b)
$$R' = \rho \frac{L'}{A} = \rho \frac{2L}{A} = 2 \cdot \rho \frac{L}{A} = 2 \cdot R$$

c)
$$R' = \rho \frac{L'}{A'} = \rho \frac{2L}{2A} = \rho \frac{L}{A} = R$$

Exercici 32. Pel conductor d'alumini tenim

$$R = \rho \frac{L}{A}$$

fent servir la dada de la resistivitat de la pàgina 131 de llibre de text, la resistència d'aquest conductor val

$$R = 28 \cdot 10^{-9} \cdot \frac{100}{10 \cdot 10^{-6}} = 0,28\,\Omega$$

Ara, pel coure

$$0,28 = \rho \frac{L}{A} = 17 \cdot 10^{-9} \cdot \frac{100}{A}$$

llavors, la secció d'aquest conductor de coure ha de valer

$$A = \frac{17 \cdot 10^{-9} \cdot 100}{0,28} = 6,07 \cdot 10^{-6} \, m^2 = 6,07 \, mm^2$$

Pàg 138

Exercici 33.

Calculem directament

$$Q = Pt = 2 kW \cdot 1 h = 2 kWh = 2000 W \cdot 3600 s = 7, 2 \cdot 10^6 J$$

Exercici 34.

Calculem primer la resistència dels conductors

$$R = \rho \frac{L}{A} = 0,0175 \cdot \frac{50}{16} = 0,055 \Omega$$

La potència perduda per efecte Joule val

$$P = I^2 R = 60^2 \cdot 0,055 = 198 \, W$$

i la calor

$$Q = Pt = 198 \cdot 12 \cdot 3600 = 8,55 \cdot 10^6 \, J$$

en calories

$$8,55 \cdot 10^6 \, \text{X} \cdot \frac{1 \, cal}{4,18 \, \text{X}} = 2,04 \cdot 10^6 \, cal$$

Pàg 139

Qüestió 1.

Calculem

$$I = \frac{Q}{t} = \frac{14400}{2 \cdot 3600} = 2 A$$

Qüestió 3.

La resistència que presenta aquest receptor es pot calcular a partir de

$$P = \frac{V^2}{R} \to R = \frac{V^2}{P} = \frac{220^2}{2200} = 22\,\Omega$$

llavors, quan es connecti a $110\,V$

$$P' = \frac{V'^2}{R} = \frac{110^2}{22} = 550 \, W$$

Qüestió 4.

L'energia que consumeix en kWh en un temps t, serà $1,25\,kWh\cdot t$ i volem que valgui $2\,kWh$ llavors

$$1,25t = 2 \rightarrow t = \frac{2}{1,25} = 1,6 \, h \cdot \frac{3600 \, s}{1 \, h} = 5760 \, s$$

Qüestió 6.

Podem calcular directament

$$E = Pt = 0, 1 \, kW \cdot 24 \, h = 2, 4 \, kWh$$

Exercici 1.

Com es troben en paral·lel la tensió aplicada en cada una és la mateixa $230\,V$, llavors la resistència que presenta cada làmpada es pot calcular com

$$R = \frac{V^2}{P} = \frac{230^2}{60} = 881,67\,\Omega$$

quan es connectin en sèrie la intensitat que circularà per elles serà

$$I = \frac{V}{R+R} = \frac{230}{881,67+881,67} = 0,1304 A$$

de forma que cada una dissiparà

$$P = I^2 R = 0,1304^2 \cdot 881,67 = 15 W$$

* * *

Exercici 2.

El valor de la resistència del conductor és

$$R = \rho \frac{L}{A} = 28 \cdot 10^{-9} \cdot \frac{70}{25 \cdot 10^{-6}} = 0,0784 \,\Omega$$

llavors la caiguda de tensió en aquest conductor serà

$$V = IR = 60 \cdot 0,0784 = 4,704 V$$

i la potència dissipada

$$P = I^2 R = 60^2 \cdot 0.0784 = 282.24 W$$

Si comparem amb la potència que entrega la font d'alimentació al circuit

$$P = VI = 230 \cdot 60 = 13800 W$$

veiem que la caiguda de tensió representa

$$\frac{282,24}{13800} = 0,02045 = 2,045\%$$

del total, el que està dins els marges típics permesos (3% en enllumenat i 5% en la resta d'aplicacions).

Exercici 4.

a)

En el cas que el commutador es troba en la posició 1, tenim

on hem etiquetat les resistències per poder seguir la pista del que fem.

Del diagrama es veu que R_1 i R_3 es troben en sèrie per una banda, i que R_2 i R_4 també ho estan per l'altra. En aquestes condicions quedaran en paral·lel 2R i 2R. El valor d'aquesta darrera associació és R, per tant, fent servir les dades del problema tenim, en aquest cas

$$R_{eq} = R = 470 \,\Omega$$

Per calcular la potència dissipada per la resistència R_3 calculem la intensitat total que alimenta el circuit aplicant la llei d'Ohm

$$V = IR_{eq} \rightarrow I = \frac{V}{R_{eq}} = \frac{6}{470} = 0,01277 A$$

com les resistències són iguals a cada branca en parallel aquesta intensitat es dividirà exactament en dos, de forma que la intensitat que travessa R_3 val

$$I' = \frac{I}{2} = 6,383 \cdot 10^{-3} \, A$$

i la potència dissipada en R_3 serà

$$P = I^{\prime 2}R = (6,383 \cdot 10^{-3})^2 \cdot 470 = 0,02 W$$

* * *

b)

En el cas que el commutador es troba en la posició 2, tenim

Ara és clar que R_1 , R_2 , R_4 es troben en sèrie entre elles, per donar 3R com a valor. Aquest resultat quedarà en paral·lel amb R_3 , llavors, la resistència equivalent total del circuit

$$R_{eq} = \frac{3R \cdot R}{3R + R} = \frac{3R^{3}}{4R} = \frac{3 \cdot 470}{4} = 352, 5 \Omega$$

calculem la intensitat total que alimenta el circuit aplicant la llei d'Ohm

$$V = IR_{eq} \rightarrow I = \frac{V}{R_{eq}} = \frac{6}{352, 5} = 0,01702 A$$

Per calcular la intensitat (I') que travessa R_3 fem servir les formules del divisor d'intensitat per trobar

$$I' = I \cdot \frac{3R}{3R + R} = I \cdot \frac{3R}{4R} = I \cdot \frac{3}{4} = 0,01702 \cdot \frac{3}{4} = 0,0127766 A$$

de forma que la potència que dissipa R_3 val

$$P = I^{\prime 2}R = 0,0127766)^2 \cdot 470 = 0,0766 W$$

* * *

Qüestió 5.

Calculem la intensitat que circula pel circuit

$$\mathcal{E} = I(R+r) \to I = \frac{\mathcal{E}}{R+r} = \frac{9}{35+1} = 0,25 A$$

la tensió que cau en la resistència interna val, doncs

$$V_r = Ir = 0.25 \cdot 1 = 0.25 V$$

de manera que la tensió en borns serà

$$V_b = \mathcal{E} - Ir = 9 - 0,25 = 8,75 V$$

Pàg 129

Exercici 26.

En tots els apartats prenem I com a intensitat a la malla esquerra i I' a la malla de la dreta, ambdues en sentit horari. A partir d'aquestes calcularem les intensitats de branca que ens demanen.

a)

$$\begin{cases} 3 - 2 = I \cdot 1 + (I - I') \cdot 3 \\ 2 + 4 = I' \cdot 1 + I' \cdot 0, 5 + (I' - I) \cdot 3 \end{cases}$$

d'on

$$\begin{cases} 4I - 3I' = 1 \\ -3I + 4, 5I' = 6 \end{cases}$$

multiplicant la primera per 3 i la segona per 4

$$\begin{cases} 12I - 9I' = 3\\ -12I + 18I' = 24 \end{cases}$$

sumant-les

$$9I' = 27 \rightarrow I' = \frac{27}{9} = 3A$$

ara, aïllant I d'una de les equacions anteriors

$$I = \frac{1+3I'}{4} = \frac{1+3I'}{4} = \frac{1+3\cdot 3}{4} = 2,5 A$$

llavors tenim

$$I_3 = I = 2, 5 A$$

$$I_2 = I' - I = 3 - 2, 5 = 0, 5 A$$

$$I_1 = I' = 3 A$$

Per calcular la potència que desenvolupa el circuit podem calcular la potència dissipada per cada resistència i sumar

$$P_1 = I^2 R_1 = 2, 5^2 \cdot 1 = 6, 25 W$$

$$P_2 = I'^2 R_2 = 3^2 \cdot 0, 5 = 4, 5 W$$

$$P_3 = (I' - I)^2 R_3 = (3 - 2, 5)^2 \cdot 3 = 0, 75 W$$

$$P_4 = I'^2 R_4 = 3^2 \cdot 1 = 9 W$$

La potèncai total serà

$$P = 20, 5 W$$
* * *

b)

$$\begin{cases} 2 - 9 = I \cdot 6 + (I - I') \cdot 1 \\ 9 - 3 = I' \cdot 8 + I' \cdot 3 + (I' - I) \cdot 1 \end{cases}$$

d'on

$$\begin{cases} 7I - I' = -7 \\ -I + 12I' = 6 \end{cases}$$

multiplicant la segona per 7

$$\begin{cases} 7I - I' = -7 \\ -7I + 84I' = 42 \end{cases}$$

sumant-les

$$83I' = 35 \rightarrow I' = \frac{35}{83} = 0,4216 A$$

ara, aïllant I d'una de les equacions anteriors

$$I = 12I' - 6 = 12 \cdot 0.4216 - 6 = -0.94 A$$

llavors tenim

$$I_3 = I' = 0,4216 A$$

 $I_2 = -I = 0,94 A$
 $I_1 = I' - I = 1,3616 A$

De forma semblant a l'apartat anterior, calculem la potència que dissipa cada resistència

$$P_1 = (-I)^2 R_1 = (0,94)^2 \cdot 6 = 5,3 W$$

$$P_2 = (I' - I)^2 R_2 = (0,4216 + 0,94)^2 \cdot 1 = 1,854 W$$

$$P_3 = I'^2 R_3 = 0,4216^2 \cdot 8 = 1,422 W$$

$$P_4 = I'^2 R_4 = 0,4216^2 \cdot 3 = 0,533 W$$

i la potència total

$$P = 9.1 W$$

c)

$$\begin{cases} 6 = I \cdot 3 + (I - I') \cdot 2 \\ 10 = I' \cdot 4 + (I' - I) \cdot 2 \end{cases}$$

d'on

$$\begin{cases} 5I - 2I' = 6\\ -2I + 6I' = 10 \end{cases}$$

multiplicant la primera per 3

$$\begin{cases} 15I - 6I' = 18 \\ -2I + 6I' = 10 \end{cases}$$

sumant-les

$$13I = 28 \to I = \frac{28}{13} = 2,154 \, A$$

ara, aïllant I' d'una de les equacions anteriors

$$I' = \frac{10 + 2I}{6} = \frac{10 + 2 \cdot 2,154}{6} = 2,38 A$$

llavors tenim

$$I_3 = I' - I = 0,23 A$$

 $I_2 = I' = 2,38 A$
 $I_1 = -I = -2,154 A$

Calculem la potència que dissipa cada resistència

$$P_1 = (I' - I)^2 R_1 = (2, 38 - 2, 154)^2 \cdot 2 = 0, 102 W$$

$$P_2 = I^2 R_2 = 2, 154^2 \cdot 3 = 14 W$$

$$P_3 = I'^2 R_3 = 2, 38 \cdot 4 = 22, 66 W$$

i la potència total

$$P = 36,76 W$$

