Introduction to Generalised Linear Models (GLMs)

$$Y_i = \alpha + \beta_1 x_i + \epsilon_i$$

We can attribute the randomness directly to the response variable instead:

Assumptions

- The ith response, Y_i, comes
 from a normal distribution
- The mean of Y_i is a linear combination of the explanatory terms
- The variance of Y_i , σ^2 , is the same for all observations
- Each observation's response is independent of all others

$$Y_i \sim \text{Poisson}(??)$$

$$Y_i \sim \mathrm{Poisson}(\mu_i)$$

$$Y_i \sim ext{Poisson}(\mu_i) \ ext{$\stackrel{\uparrow}{ ext{χ}}$}_{\mu < 0} \ lpha + eta_1 x_i$$

$$Y_i \sim ext{Poisson}(\mu_i)$$
 $\log(\mu_i) = lpha + eta_1 x_i$

$$Y_i \sim \operatorname{Poisson}(\mu_i)$$

$$\downarrow \mu_i = \exp(\alpha + \beta_1 x_i)$$

$$Y_i \sim \text{Binomial}(??)$$

$$Y_i \sim \mathrm{Binomial}(n_i, p_i)$$

$$Y_i \sim ext{Binomial}(n_i, p_i) \ igwedge igwedge igwedge X_{p < 0, p > 1} \ p_i = lpha + eta_1 x_i$$

$$Y_i \sim ext{Binomial}(n_i, p_i)$$
 $\log \left(\frac{p_i}{1-p_i}\right) = lpha + eta_1 x_i.$

$$Y_i \sim ext{Binomial}(n_i, p_i)$$
 $p_i = rac{\exp(lpha + eta_1 x_i)}{1 + \exp(lpha + eta_1 x_i)}$

Just Three Examples of Many

Linear regression: $Y_i \sim \mathrm{Normal}(\mu_i, \sigma^2)$ where $\mu_i = \alpha + \beta_1 x_i$

Poisson regression: $Y_i \sim \mathrm{Poisson}(\mu_i)$ where $\log(\mu_i) = \alpha + \beta_1 x_i$

Fitting Generalised Linear Models

```
glm(formula, family = "my choice", data = my_data, ...)
```

Building a GLM

- 1. Assume the observations are independent of one another
- 2. Choose a distribution for the response
- 3. Choose a parameter to relate to explanatory terms
- 4. Choose a link function
- 5. Choose explanatory terms
- 6. Estimate additional parameters

Linear regression:
$$Y_i \sim \mathrm{Normal}(\mu_i, \sigma^2)$$
 where $\mu_i = \alpha + \beta_1 x_i$

Poisson regression: $Y_i \sim \operatorname{Poisson}(\mu_i)$ where $\log(\mu_i) = \alpha + \beta_1 x_i$

Linear regression: $Y_i \sim \text{Normal}(\mu_i, \mathbf{r}^2)$ where $\mu_i = \alpha + \beta_1 x_i$

Poisson regression: $Y_i \sim \operatorname{Poisson}(\mu_i)$ where $\log(\mu_i) = \alpha + \beta_1 x_i$

Linear regression: $Y_i \sim \operatorname{Normal}(\mu_i, \sigma^2)$ where $\mu_i = \alpha + \beta_1 x_i$

Poisson regression: $Y_i \sim \operatorname{Poisson}(\mu_i)$ where $\log(\mu_i) = \alpha + \beta_1 x_i$

Linear regression: $Y_i \sim \operatorname{Normal}(\mu_i, \sigma^2)$ where $\mu_i = \alpha + \beta_1 x_i$

Poisson regression: $Y_i \sim \operatorname{Poisson}(\mu_i)$ where $\log(\mu_i) = \alpha + \beta_1 x_i$

Linear regression: $Y_i \sim \operatorname{Normal}(\mu_i \sigma^2)$ where $\mu_i = \alpha + \beta_1 x_i$

Poisson regression: $Y_i \sim \operatorname{Poisson}(\mu_i)$ where $\log(\mu_i) = \alpha + \beta_1 x_i$

But there are many more potential response distributions...

family = ...

- "binomial"
- "gaussian"
- "Gamma"
- "inverse.gaussian"
- "poisson"
- "quasi"
- "quasibinomial"
- "quasipoisson"

With many more choices of link functions...

family = ...

- binomial(link = "logit")
- gaussian(link = "identity")
- Gamma(link = "inverse")
- inverse.gaussian(link =
 "1/mu^2")
- poisson(link = "log")
- quasi(link = "identity", variance = "constant")
- quasibinomial(link = "logit")
- quasipoisson(link = "log")

Gaussian	$Y \sim \mathbf{Normal}(\mu, \sigma^2)$	μ	σ^2	$I(\mu) = \alpha + \sum_{j=1}^{n_{\text{covariates}}} \beta_j x_j$
Poisson	$Y \sim \mathbf{Poisson}(\mu)$ where $\mu = \mathrm{rate}$	μ	μ	$\log(\mu) = \alpha + \sum_{j=1}^{n_{\text{covariates}}} \beta_j x_j$
Binomial	$Y \sim \mathbf{Bonomial}(\mathbf{n}, p)$ where $\mathbf{n} = \mathbf{number}$ of trials and $p = \mathbf{probability}$ of success	$\mathrm{n}p$	np(1-p)	$logit(p) = \alpha + \sum_{j=1}^{n_{covariates}} \beta_j x_j$
Gamma	$Y \sim \mathbf{Gamma}(k, \theta = \frac{1}{\text{rate}}) \text{ where } k = \text{shape and } \theta = \text{scale}$	$k\theta$	$k\theta^2$	$\log(E(Y)) = \alpha + \sum_{j=1}^{n_{\text{covariates}}} \beta_j x_j$
Beta	$Y \sim \mathbf{Beta}(a, b)$ where $a = \text{shape}$ and $b = \text{scale}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	$\log(E(Y)) = \alpha + \sum_{j=1}^{n_{\text{covariates}}} \beta_j x_j$
Negative binomial	$Y \sim \mathbf{NB}(r, p)$ where $\mathbf{r} = \text{number of successes}$ until the experiment is stopped and $p = \text{probability of success or } Y \sim \mathbf{NB}(k, p)$ where $\mathbf{k} = \text{number of failures}$ given $p = \text{probability of success}$	$\frac{r(1-p)}{p}$ or $\mu = k\frac{p}{1-p}$	$\frac{r(1-p)}{p^2}$ or $\mu + \frac{\mu^2}{k}$	$\log(E(Y)) = \alpha + \sum_{j=1}^{n_{\text{covariates}}} \beta_j x_j$
Beta-binomial	$Y \sim \mathbf{BetaBin}(\mathbf{n}, a, b)$ where $\mathbf{n} = \text{number of trials and } p = \frac{a}{a+b}$, the probability of success	$\frac{\mathbf{n}a}{a+b} = \mathbf{n}p$	$\frac{\mathrm{n}ab(a+b+\mathrm{n})}{(a+b)^2(a+b+1)}$	$\operatorname{logit}(p) = \alpha + \sum_{j=1}^{n_{\text{covariates}}} \beta_j x_j$

Mean

Variance

Linear predictor (link function)

Distribution

Notation

Function and arguments	Response	Random effects
● lm() ○ function (formula, data,)	Gaussian	No
glm()function (formula, family = gaussian,)	Any	No
lme4::lmer()function (formula, data,)	Gaussian	Yes
lme4::glmer()function (formula, data, family = gaussian,)	Any	Yes
 glmmTMB::glmmTMB() function (formula, data, family = gaussian(),) 	Any	Yes