Le ventilateur VDR-4 Ventilation convective-diffusive

Nicolas Blais St-Laurent inh Service d'inhalothérapie

Automne 2019

Plan de la présentation

1. Description du mode de ventilation

Courbe pression-temps typique

Haute et basse fréquence

Échanges gazeux en ventilation haute fréquence

Débit laminailre

Débit turbulent

Le phasitron

Insuflation

Expiration

Le phasitron

Insuflation

Expiration

Pression alvéolaire

Pression motrice

Bénéfices escomptés

- Ventilation protectrice
- Désencombrement
- Recrutement

Données probantes (ou pas ...)

Études randomisées

Auteur	Année	n	Clientèle
Chung	2010	62	Grands brûlés, hôpital militaire
Lucangelo	2009	44	Pneumonectomie (intra-op.)
Bougatef	2007 (1989)	52	Prématurés
Reper	2002	35	Brulure d'inhalation
Platteau	1999	24	Chir. card. minimalement inv. (intra-op.)
Hurst	1990	113	SDRA

Séries de cas

Auteur	Année	n	Clientèle
Salim	2004	10	Trauma cranien en SDRA
Oribabor	2018	24	P.O. Chir. card.

Chung et col. 2010

Caractéristiques:

- Étude randomisée
- VDR-4 *versus* ventilation protectrice
- n = 60
- Pop. : brûlés avec ou sans inhalation

Résultats:

- Mortalité et durée de ventilation inchangée
- Oxygénation améliorée (p < .05)
- Pression de crête et moyenne moins élevée
- Moins de barotrauma (0 vs 4, p = .04)
- Moins de recours à une thérapie de secours
- Étude interrompue sur analyse interrimaire

Reper et col.

Caractéristiques:

- Étude randomisée
- Population : patients avec brûlure d'inhalation
- VDR-4 versus ventilation conventionnelle (10 ml/kg)
- n = 37

Résultats:

- Oxygénation améliorée (p < 0.05)
- Pressions de crète, moyenne, et expiratoire comparable
- Mortalitée inchangée

Réglages et modification des paramètres du ventilateur VDR-4

Paramètres de base

Paramètre	Valeur		
Fperc	500	/min	
	(8	hz)	
$P_{exp.moy.}$	5	cmH_2O	
$P_{motrice}$	10	cmH_2O	
T_{haut}	2	secondes	
T_{bas}	2	secondes	

Gestion de l'hypercapnie

- 1. $\downarrow F_{perc}$ ad 300/min.
- **2.** $\uparrow T_{inspi.}$ à 3 sec. et $\downarrow T_{expi.}$ à 1 sec.
- **3.** $\uparrow P_{motrice}$ ad 20 cm H_2O

Réglages et modification des paramètres du ventilateur VDR-4

Paramètres de base

Paramètre	Valeur		
Fperc	500	/min	
	(8	hz)	
$P_{exp.moy.}$	5	cmH_2O	
$P_{motrice}$	10	cmH_2O	
T_{haut}	2	secondes	
T_{bas}	2	secondes	

Gestion de l'hypercapnie

- 1. $\downarrow F_{perc}$ ad 300/min.
- **2.** $\uparrow T_{inspi}$, à 3 sec. et $\downarrow T_{expi}$, à 1 sec.
- 3. $\uparrow P_{motrice}$ ad 20 cmH₂O

Réglages et modification des paramètres du ventilateur VDR-4

Paramètres de base

Paramètre	Valeur	
Fperc	500	/min
	(8	hz)
$P_{exp.moy.}$	5	cmH_2O
$P_{motrice}$	10	cmH_2O
T_{haut}	2	secondes
T_{bas}	2	secondes

Gestion de l'hypercapnie

- 1. $\downarrow F_{perc}$ ad 300/min.
- **2.** $\uparrow T_{inspi.}$ à 3 sec. et $\downarrow T_{expi.}$ à 1 sec.
- **3.** $\uparrow P_{motrice}$ ad 20 cmH₂O

Réglages et modification des paramètres du ventilateur VDR-4

Paramètres de base

Paramètre	Valeur		
Fperc	500	/min	
	(8	hz)	
$P_{exp.moy.}$	5	cmH_2O	
$P_{motrice}$	10	cmH_2O	
T_{haut}	2	secondes	
T_{bas}	2	secondes	

Gestion de l'hypercapnie

- 1. $\downarrow F_{perc}$ ad 300/min.
- **2.** $\uparrow T_{inspi}$, à 3 sec. et $\downarrow T_{expi}$, à 1 sec.
- 3. $\uparrow P_{motrice}$ ad 20 cmH₂O

Références I

- BOUGATEF, Adel (2007). "High Frequency Percussive Ventilation: Principle and Fifteen years of experience in preterm infants with respiratory distress syndrome.". In: *Journal of Respitatory Care and Applied Technology* 2.S1, p. 39-50.
- CHUNG, Kevin K. et al. (oct. 2010). "High-frequency percussive ventilation and low tidal volume ventilation in burns: A randomized controlled trial". en. In: *Critical Care Medicine* 38.10, p. 1970-1977.
- Hurst, J. M. et al. (1990). "Comparison of conventional mechanical ventilation and high-frequency ventilation. A prospective, randomized trial in patients with respiratory failure". In: *Annals of Surgery* 211.4, p. 486-491.
- LUCANGELO, Umberto et al. (2009). "High-frequency percussive ventilation improves perioperatively clinical evolution in pulmonary resection*". In: Critical Care Medicine 37.5.
- PERCUSSIONAIRE CORPORATION (2006). VDR-4 OPERATIONS MANUAL.
- PILLOW, J Jane (mars 2005). "High-frequency oscillatory ventilation: Mechanisms of gas exchange and lung mechanics". en. In: Critical Care Medicine 33.3, S135-S141.

Références II

PLATTEAU, S. (1999). "Highfrequency percussive ventilation during onelung ventilation for robotically enhanced MIDCAB". In: European Journal of Anaesthesiology 21, p. 78.

Cartouche pneumatique

Cartouche ouverte

Cartouche fermée

Circuit logique

Ratio I : E normal et inversé

Ratio I : E normal et inversé

Augmentation des résistances

