Chapter 3.3: Right Triangle Trigonometry

Expected Skills:

• Be able to define evaluate $\sin \theta$, $\cos \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$ from a right triangle.

Practice Problems:

- 1. Solve the following problems by drawing a triangle.
 - (a) Find all possible values of $\sin \theta$ and $\cos \theta$ given that $\tan \theta = 3$

Since $\tan \theta > 0$, the terminal side of θ is in either quadrant I or III. If θ is in quadrant I: $\sin \theta = \frac{3}{\sqrt{10}}$ and $\cos \theta = \frac{1}{\sqrt{10}}$ If θ is in quadrant III: $\sin \theta = -\frac{3}{\sqrt{10}}$ and $\cos \theta = -\frac{1}{\sqrt{10}}$

(b) Find all possible values of $\sin \theta$ and $\tan \theta$ given that $\cos \theta = \frac{2}{3}$

Since $\cos \theta > 0$, the terminal side of θ is in either quadrant I or IV. If θ is in quadrant I: $\sin \theta = \frac{\sqrt{5}}{3}$ and $\tan \theta = \frac{\sqrt{5}}{2}$ If θ is in quadrant IV: $\sin \theta = -\frac{\sqrt{5}}{3}$ and $\tan \theta = -\frac{\sqrt{5}}{2}$

(c) Find all possible values of $\tan \theta$ and $\csc \theta$ given that $\sec \theta = \frac{5}{2}$

Since $\sec \theta > 0$, the terminal side of θ is in either quadrant I or IV. If θ is in quadrant I: $\tan \theta = \frac{\sqrt{21}}{2}$ and $\csc \theta = \frac{5}{\sqrt{21}}$

1

If θ is in quadrant IV: $\tan \theta = -\frac{\sqrt{21}}{2}$ and $\csc \theta = -\frac{5}{\sqrt{21}}$

2. Compute the following:

(a) $\cos \theta$ if $\sin \theta = -\frac{3}{5}$ and θ is in Quadrant IV.

$$\cos \theta = \frac{4}{5}$$

(b) $\tan \theta$ if $\sec \theta = -\frac{9}{4}$ and θ is in Quadrant III.

$$\tan \theta = \frac{\sqrt{65}}{4}$$

3. Use the given information to find the exact values of the remaining five trigonometric functions of θ .

(a)
$$\cos \theta = \frac{3}{5}$$
 and $0 < \theta < \frac{\pi}{2}$

$$\sin \theta = \frac{4}{5}, \tan \theta = \frac{4}{3}, \sec \theta = \frac{5}{3}, \csc \theta = \frac{5}{4}, \text{ and } \cot \theta = \frac{3}{4}$$

(b)
$$\cos \theta = \frac{3}{5} \text{ and } -\frac{\pi}{2} < \theta < 0$$

$$\sin \theta = -\frac{4}{5}, \tan \theta = -\frac{4}{3}, \sec \theta = \frac{5}{3}, \csc \theta = -\frac{5}{4}, \text{ and } \cot \theta = -\frac{3}{4}$$

(c)
$$\tan \theta = -\frac{1}{3} \text{ and } \frac{\pi}{2} < \theta < \pi$$

$$\sin \theta = \frac{1}{\sqrt{10}}, \cos \theta = -\frac{3}{\sqrt{10}}, \sec \theta = -\frac{\sqrt{10}}{3}, \csc \theta = \sqrt{10}, \text{ and } \cot \theta = -3$$

(d)
$$\tan \theta = -\frac{1}{3} \text{ and } -\frac{\pi}{2} < \theta < 0$$

$$\sin \theta = -\frac{1}{\sqrt{10}}, \cos \theta = \frac{3}{\sqrt{10}}, \sec \theta = \frac{\sqrt{10}}{3}, \csc \theta = -\sqrt{10}, \text{ and } \cot \theta = -3$$

(e)
$$\csc \theta = \sqrt{2}$$
 and $0 < \theta < \frac{\pi}{2}$

$$\sin \theta = \frac{\sqrt{2}}{2}, \cos \theta = \frac{\sqrt{2}}{2}, \tan \theta = 1, \sec \theta = \sqrt{2}, \text{ and } \cot \theta = 1$$

(f)
$$\csc \theta = \sqrt{2}$$
 and $\frac{\pi}{2} < \theta < \pi$

$$\sin \theta = \frac{\sqrt{2}}{2}, \cos \theta = -\frac{\sqrt{2}}{2}, \tan \theta = -1, \sec \theta = -\sqrt{2}, \text{ and } \cot \theta = -1$$

4. A person is sitting in a Philadelphia movie theater waiting to watch the newest Star Wars movie. He is sitting d feet away from the screen. The angle of elevation between his eyes and the bottom of the screen in α and the angle of elevation between his eyes and the top of the screen in is β , as in the diagram below.

Express the height of the screen in terms of d, α , and β .

$$h = d \tan \beta - d \tan \alpha \text{ feet}$$

5. Suppose θ is measured in radians and consider the following diagram:

Express $a,\,b,\,$ and c in terms of r and s only. (Your answers may involve trigonometric functions.)

Notice that $\theta = \frac{s}{r}$. Then, $a = r \cos\left(\frac{s}{r}\right)$ and $b = r \sin\left(\frac{s}{r}\right)$. Finally, with a and b as described, one can calculate $c = \sqrt{b^2 + (r-a)^2}$.