COMPUTING THE POWER DISTRIBUTION IN THE IMF

SASCHA KURZ

ABSTRACT. The International Monetary Fund is one of the largest international organizations using a weighted voting system. The weights of its 188 members are determined by a fixed amount of basic votes plus some extra votes for so-called Special Drawing Rights (SDR). On January 26, 2016, the conditions for the SDRs were increased at the 14th General Quota Review, which drastically changed the corresponding voting weights. However, since the share of voting weights in general is not equal to the influence, of a committee member on the committees overall decision, so-called power indices were introduced. So far the power distribution of the IMF was only computed by either approximation procedures or smaller games than then entire Board of Governors consisting of 188 members. We improve existing algorithms, based on dynamic programming, for the computation of power indices and provide the exact results for the IMF Board of Governors before and after the increase of voting weights. Tuned low-level details of the algorithms allow the repeated routine with sparse computational resources and can of course be applied to other large voting bodies. It turned out that the Banzhaf power shares are rather sensitive to changes of the quota.

Keywords: power indices, weighted voting games, International Monetary Fund, Shapley-Shubik index, Banzhaf index, empirical game theory

MSC: 91B12, 91A12

1. Introduction

The International Monetary Fund (IMF) was formed in 1944 at the Bretton Woods Conference. Currently this international organization consists of 188 countries as members. Its highest decisionmaking body, i.e., the Board of Governors, makes its decisions by weighted voting. The weights are composed of basic votes, which are equal for each member and sum up to 5.502 percent of the total votes, and one additional vote for each Special Drawing Right (SDR) of 100,000 of a member country's quota (the IMF term for the country's financial stake, c.f. [7]). On January 26, 2016, the conditions for the SDRs were increased at the Board Reform Amendment, which drastically changed the corresponding voting weights. In general the weight of a country can be a poor proxy for its influence in a weighted voting game. To this end, so-called power indices were introduced in order to measure the *influence* or *power* of a committee member in a committee making its decisions via binary voting, i.e., each member can say "yes" or "no" to a given proposal. As the idea of power and influence is not defined unambiguously, several power indices were introduced in the literature. Arguably, the Shapley-Shubik and the Banzhaf index are two of the most frequently applied power indices. Unfortunately, the evaluation of such a power index is a computational hard problem in general.² And indeed, we are not aware of any paper, where either the Shapley-Shubik or the Banzhaf index of the IMF Board of Governors has been computed exactly. Approximation procedures were applied in [6, 7]. The Executive Board was, e.g., studied in [1]. In this paper we will compute the exact numerical values of both power indices for the IMF Board of Governors corresponding to voting weights slightly after and before the meeting on January 26, 2016. As the quota and voting shares will change as members pay their quota increases, see https://www.imf.org/external/np/sec/memdir/members.aspx, we list the used voting weights in tables 2-5.³

Algorithms for the efficient computation of power indices in voting games have been studied extensively in the literature. By looping over all 2^n subsets of players, the Shapley-Shubik index of a fixed player can be easily computed in $O(n \cdot 2^n)$ time. The straight-forward computation of the Banzhaf index of a fixed player can be performed in $O(n^2 \cdot 2^n)$ time. For weighted voting games these computation complexities were reduced to $O\left(n \cdot \sqrt{2}^n\right)$ and $O\left(n^2 \cdot \sqrt{2}^n\right)$ in [3], respectively. Assuming that all weights are integers and taking the sum of voting weights C into account, more

1

¹Consider, e.g., a committee, where the weight shares are 49%, 49%, and 2%. For simple majority a least two out of the three committee members are needed in order to push through a proposal, i.e., the influences are equal contrary to the voting weights.

²To be more precise, the computation of the power indices treated in this paper is NP-hard in the sense of computational complexity theory. We give a brief justification at the end of Section 2.

³The voting weights were accessed at the official website https://www.imf.org/external/np/sec/memdir/members.aspx. The numbers were retrieved on February 17, 2016 and on July 27, 2015, respectively.

refined complexity results can be obtained. Several algorithms based on generating functions were implemented in Mathematica, see [10]. Those algorithms are fast if the subsets of players attain only few different weight sums. The number of different weight sums is clearly upper bounded by C+1. If almost all possible weight sums are attained, then one can use the related but conceptually easier concept of dynamic programming, see [9] for a survey.⁴ With this, the Shapley-Shubik index of fixed player can be determined in $O(n^2q)$ time and O(nq) space, where $q \leq C$ denotes the quota of a weighted voting game. The Banzhaf index of a fixed player can be computed in O(nq) time and O(q) space. In [11] these complexity bounds are maintained for the computation of the respective power indices for all n players. We slightly improve upon these complexity bounds by replacing q by $\min(q, C - q + 1)$, p provide an easy to understand description, and extend the analysis to further power indices. For practical efficiency we go into low-level details of the algorithms and discuss their impact on the running time for the IMF example.

The remaining part of this paper is structured as follows. In Section 2 we briefly introduce simple games as models for voting systems and some related notation. After introducing the defining equations for the power indices, we consider algorithms for their computation in Section 3. These are essentially based on counting the number of coalitions per weights and size by dynamic programming techniques. After stating our computational results in Subsection 3.4 we draw a conclusion in Section 4. The weights of the considered voting games and the resulting power distributions are outsourced into an appendix due to their large size.

2. Preliminaries

Let $N=\{1,\ldots,n\}$ be the set of players. A simple game (on N) is a mapping $v:2^N\to\{0,1\}$ with $v(\emptyset)=0, v(N)=1$, and $v(S)\leq v(T)$ for all $\emptyset\subseteq S\subseteq T\subseteq N$. A subset $S\subseteq N$ is called coalition and represents the set of "yes"-voters. A coalition S is called winning if v(S)=1 and losing otherwise. A simple game v is weighted if there exist $q,w_1,\ldots,w_n\in\mathbb{R}_{\geq 0}$ such that v(S)=1 iff $w(S)\geq q$ for all $S\subseteq N$, where $w(S):=\sum_{i\in S}w_i$. The w_i are called weights (for player i) and q is called quota. We write $v=[q;w_1,\ldots,w_n]$ and remark that weights and quota are far from being unique, so that we speak of a representation (q,w) for v. A representation with $q\in\mathbb{N}, w\in\mathbb{N}^n_{\geq 0}$ is called integer representation. It is well known that each weighted game admits an integer representation. We speak of a minimum sum integer representation if the sum of weights is minimized within the class of all integer representations. Those representations need not to be unique in general if the number of players is not too small, see e.g. [4]. If $v(S\cup\{i\})\geq v(S\cup\{j\})$ for all $S\subseteq N\setminus\{i,j\}$ we write $i\succeq j$, which defines a partial order. If this ordering is complete we call the simple game v complete and remark that all weighted games are complete. A player $i\in N$ is called a null player (in a simple game v), iff $v(S)=v(S\cup\{i\})$ for all $S\subseteq N\setminus\{i\}$. Two players $i,j\in n$ are called equivalent, denoted as $i\sim j$, if $i\succeq j$ and $j\succeq i$. If each winning coalition contains a certain player i, she is called veto player. Next we briefly introduce the used power indices. The Shapley-Shubik index of player i is given by

(1)
$$SSI_{i}(v) = \frac{1}{n!} \cdot \sum_{S \subseteq N \setminus \{i\}} |S|! \cdot (n - |S| - 1)! \cdot (v(S \cup \{i\}) - v(S)).$$

The absolute Banzhaf index of player i is given by

(2)
$$\operatorname{Bz}_{i}^{\mathbf{a}}(v) = \frac{1}{2^{n-1}} \cdot \sum_{S \subseteq N \setminus \{i\}} v(S \cup \{i\}) - v(S).$$

If we call a coalition $S \subseteq N \setminus \{i\}$ an *i-swing* if S is losing and $S \cup \{i\}$ winning, then $Bz_i(v)$ is equal to the number of *i*-swings divided by the number of coalitions with(out) player i. Normalizing to sum 1, we obtain the (relative) Banzhaf index of player i:

(3)
$$\operatorname{Bz}_{i}(v) = \operatorname{Bz}_{i}^{\mathrm{a}}(v) / \sum_{j=1}^{n} \operatorname{Bz}_{j}^{\mathrm{a}}(v).$$

⁴Actually, the only difference between the generating function and the dynamic programming approach is that the former utilizes the fast-access data structures for polynomials with few coefficients implemented in computer algebra systems. The generating function approach dates back at least to [8], where it was applied onto the electoral college.

⁵For the IMF Board of Governors we have $q=0.85 \cdot C$, so that we obtain an acceleration of a factor of $0.85/0.15 \approx 5.67$. The memory requirements are reduced by the same factor.

⁶Let (q, w) be a representation of v, let α the maximum weight of losing coalition and β the minimum weight of a winning coalition. Increase the weights by at most $(\beta - \alpha)/2n > 0$ so that they become rational numbers. As quota chose an arbitrary rational number strictly between the new minimum weight of a winning coalition and the new maximum weight of a losing coalition. Multiplication with the common denominator yields an integer representation of v.

The two power indices have the property that they sum up to one and assign a value of zero to a player if and only if she is a null player. Since it is NP-hard to decide whether a player is a null player in a given weighted game, see e.g. [2], the computation of the used power indices is at least NP-hard. We remark that the equivalent players attain the same Shapley-Shubik or Banzhaf index.

3. Algorithms

Assume that we have a weighted game v = [q; w] on n players in integer representation, where we set $C = \sum_{i=1}^n w_i$. As the complexity of our subsequent algorithms will depend on $\Delta := \min(q, C - q + 1)$ it would be beneficial to have a minimum sum integer representation at hand. However, it is not clear if minimizing the integer representation pays off for the computation of power indices, c.f. [5], where this is proposed as a promising strategy. So, here we propose to perform the following computationally cheap preprocessing steps at the very least. At first we reduce the weights that are larger then the quota by setting q' = q and $w'_i = \min(q, w_i)$ for all $i \in N$. Next we guarantee that the weights are not too much larger than C - q. If $w_i > C - q$, then player i is a vetoer and we set $w'_i = C - q + 1$, $q' = q - w_i + w'_i$, and $w'_j = w_j$ for all $j \in N \setminus \{i\}$. Both operations can be performed in O(n). The power indices used in this paper do not only assign zero power to all null players but are null player preserving, i.e., if v' arises from v by adding null player i, then we have $\mathcal{P}_j(v') = \mathcal{P}_j(v)$ for all $j \neq i$. Nevertheless, it is NP-hard to detect null players we can efficiently remove players with a zero weight, so that we can assume $1 \leq w_i \leq \Delta$ in the following, i.e., we have $C \geq n$.

In the following subsections we present the algorithmic details how to compute the power indices efficiently.

3.1. Counting coalitions per weight. Let c(x) denote the number of coalitions of a given weighted game v attaining weight x. By Algorithm 1 we can compute c(x) for all $0 \le x \le q$ in O(nq) time and O(q+n) space, where we assume that we have precomputed the terms $\min\{q, \sum_{j=1}^{i} w_j\}$ for all $i \in N$.

```
Input: q, w, n

Output: c(x) for 0 \le x \le q

c(0) \leftarrow 1;

for 1 \le x \le q do

c(x) \leftarrow 0;

end

for i from 1 to n do

for x from \min\{q, \sum_{j=1}^i w_j\} to w_i do

c(x) \leftarrow c(x) + c(x - w_i);

end

end
```

Algorithm 1: Forward counting of coalitions per weight

Similarly we can compute the respective counts starting from weight C, see Algorithm 2 that needs $O(n \cdot (C - q + 1))$ time and O(C - q + 1 + n) space.

```
\begin{split} &\textbf{Input:}\ q,\,w,\,n\\ &\textbf{Output:}\ c(x)\ \text{for}\ q\leq x\leq C\\ &c(C)\leftarrow 1;\\ &\textbf{for}\ q\leq x\leq C-1\ \textbf{do}\\ &c(x)\leftarrow 0;\\ &\textbf{end}\\ &\textbf{for}\ i\ from\ 1\ to\ n\ \textbf{do}\\ &\textbf{for}\ x\ from\ \max\{q+w_i,C-\sum_{j=1}^{i-1}w_j\}\ to\ C\ \textbf{do}\\ &c(x-w_i)\leftarrow c(x)+c(x-w_i);\\ &\textbf{end}\\ &\textbf{end} \end{split}
```

Algorithm 2: Backward counting of coalitions per weight

For the ease of notation we assume that the basic arithmetic operations for integers not too much larger than C can be performed in O(1) time and space. However, the values stored in c(x) can grow very quickly, i.e., we have $2^n \ge \max_{0 \le x \le C} c(x) \ge 2^n/(C+1)$. So, we should count $\Theta(n)$ for each addition or subtraction. To avoid technical complications in the exposition and in order to

be comparable with the related literature we also assume that all basic arithmetic operations for integers can be performed in constant time. From a practical point of view we have to deal with the corresponding problems nevertheless. In our application of the IMF we have n=188, so that the values of c(x) do not fit into the standard, simple data types on a 64-bit system. Since the overhead of a general-purpose arbitrary-precision arithmetic is quite large, we directly implement the most frequently used basic operations as follows. We choose different primes p_1, \ldots, p_l , such that all occurring numbers are between 0 and $-1 + \prod_{i=1}^l p_i$. During the computation we perform all basic operations modulo p_i for all $1 \le i \le l$. For the final result we can recover the real integers behind by applying the Chinese remainder theorem. For our example of the IMF we choose l=3, $p_1=2^{63}-25$, $p_2=2^{63}-165$, and $p_3=2^{63}-259$.

The number of losing coalitions is given by $\sum_{x=0}^{q-1} c(x)$ and the number of winning coalitions is given by $\sum_{x=q}^{C} c(x)$. Since the total number of coalitions is 2^n , both numbers can be determined in $O(n\Delta)$ time and $O(\Delta + n)$ space.

For the computation of the Banzhaf index we need to know either the number $c^w(x)$ of coalitions with weight sum x that contain player i or the number $c^{wo}(x)$ of coalitions with weight sum x that do not contain player i. For a fixed player i we set $c^{wo}(x) = 0$ for $0 \le x < w_i$. By looping from w_i to q-1 we can recursively compute $c^{wo}(x) = c(x) - c^{wo}(x-w_i)$, so that $\mathrm{Bz}_i^a(v) = \frac{1}{2^{n-1}} \sum_{x=q-w_i}^{q-1} c^{wo}(x)$. Alternatively, we set $c^w(x) = c(x)$ for all $C - w_i < x \le C$ and recursively compute $c^w(x) = c(x) - c^w(x+w_i)$ by looping from $C - w_i$ to q, so that $\mathrm{Bz}_i^a(v) = \frac{1}{2^{n-1}} \sum_{x=q}^{q+w_i-1} c^w(x)$.

Theorem 1. The number of winning, losing coalitions and the Banzhaf indices of all players of a weighted game v can be computed in $O(n\Delta)$ time and $O(\Delta + n)$ space.

3.2. Counting coalitions per weight and size. By c(x,s) we denote the number of coalitions of weight x and cardinality s (for a given weighted game v). Algorithm 1 and Algorithm 2 can be easily adopted to this end. The running time and the memory requirements both increase by a factor of n, since $0 \le s \le n$. We remark c(x,s) = 0 for $x > \sum_{j=1}^{s} w_j$ or $x < \sum_{j=n-s+1}^{n} w_j$, assuming $w_1 \ge \cdots \ge w_n$. These known values can be taken into account in the boundaries of the for-loops to save time and memory. By extending the definition and recursion for $c^{wo}(x)$, $c^{w}(x)$ to $c^{wo}(x,s)$, $c^{w}(x,s)$, we can state

$$SSI_{i}(v) = \sum_{s=0}^{n-1} s!(n-s-1)! \cdot \sum_{x=q-w_{i}}^{q-1} c^{wo}(x,s) \text{ and } SSI_{i}(v) = \sum_{s=0}^{n-1} s!(n-s-1)! \cdot \sum_{x=q}^{q+w_{i}-1} c^{w}(x,s+1).$$

Of course we can precompute the factorials and the product of the n-1 pairs of factorials. In our fixed-precision arithmetic we first compute the sums over the c^{wo} or c^w and then switch to arbitrary-precision arithmetic.

Theorem 2. The SSI indices of all players of a weighted game v can be computed in $O(n^2\Delta)$ time and $O(n\Delta)$ space.

- 3.3. Intersections of weighted games. Some real-world voting systems are expressed as the intersection of, say k, weighted voting games v_1, \ldots, v_k , i.e., a coalition is winning if and only if it is winning in all sub-games v_1, \ldots, v_k . Let C_1, \ldots, C_k be the weights sums and q_1, \ldots, q_k be the quotas of the sub-games. By easily extending our counting functions c(x) and c(x, s) to $c(x_1, \ldots, x_k)$ and $c(x_1, \ldots, x_k, s)$ we can go along the same lines as in the previous two subsections and obtain algorithms with the same complexity bounds if we formally set $\Delta = \min \left\{ \prod_{i=1}^k q_i, \prod_{i=1}^k C_i q_i + 1 \right\}$. This number may grow very quickly even for moderate values of k, so that it may be crucial to choose a representation with a small number k of sub-games. We remark that the smallest possible integer k (for a simple game) is called dimension.
- 3.4. Computational results. We have applied the described algorithms for the four weighted voting games arising from the two different sets of voting weights of the IMF in 2015 and 2016, see tables 2-5, and quotas of either 85% or 50% of the respective weight sums. ¹⁰All computations were performed on an Intel(R) Core(TM) i7-3720QM cpu with a clock speed of 2.60 GHz and 8 GB RAM. As a

⁷Choosing primes of the form $2^{63}-x$ for small x, has the advantage that the computations can be performed using the standard, simple data type unsigned long in C++. Our choices are indeed the largest possibilities, see e.g. https://primes.utm.edu/lists/2small/Obit.html. We remark that a naïve checking of the primality of the p_i was performed in 41 seconds. We implement $a=b+c \mod p$ as a=b+c and if $a\geq p$ then a-=p.

⁸The players can be sorted in $O(n + \Delta)$ time and space in a preprocessing step.

⁹We remark $s!(n-s-1)! < 2^{n \log_2 n}$ for n > 1.

 $^{^{10}}$ According to the type of the decision different values for q are used, see e.g. [7].

a general-purpose programming language we have chosen C++ and used the CLN-library¹¹ for the arbitrary-precision arithmetic parts.

For 2016 and super-majority, i.e., q=85%, Algorithm 1 needed 4.73 seconds and Algorithm 2 needed 0.67 seconds. The acceleration factor for using the described tailored fixed-precision arithmetic over an arbitrary-precision arithmetic is slightly larger than 6. Using pointers instead of the STL class vector results in a speed-up of roughly 2. The number of winning coalitions is given by 4506727722110247822679513808100007271801182981184082. The entire Banzhaf computation, based on Algorithm 2, for all players was performed in less than 3 seconds. The corresponding SSI computation took less than 7 minutes.

We have listed the power distributions for the years 2015 and 2016, the cases of super-majority and simple majority, the power indices Bz and SSI in tables 6-9 using a precision of five decimal digits for the output. The power of a few countries seem to coincide, which is a numerical artefact, except for France (i = 58) and the United Kingdom (i = 179). To be more precise, those two countries have the same weights in both 2015 and 2016, so that they are equivalent for all values of the quota q. For super-majority and simple majority all other countries are inequivalent, which may be seen at the exact values of either the Banzhaf or the Shapley-Shubik index. We have written out the exact integers Bz_i^a for the super-majority case in tables 10-13. As predicted by theory, all values have the same parity. For the exact values of $n! \cdot SSI_i$ we have

as an example for the United States in 2015 in the super-majority case. The remaining exact values can be obtained from the author upon request.

Having a closer look at the different power distributions we observe that the choice of the power index or the quota as well as the modified weights have a significant impact. The dominance of the United states has further increased from 2015 to 2016. Interestingly enough, the Banzhaf power in the super-majority cases shows almost no difference to, e.g., Japan, which is different for the Shapley-Shubik index. To obtain a more complete, but still compact, overview about the differences we have introduced $\Delta P_y^q(I) := \sum_{i \in I} \left| \mathrm{Bz}_i(v_y^q) - \mathrm{SSI}_i(v_y^q) \right|, \Delta \, \mathrm{Bz}^q(I) := \sum_{i \in I} \left| \mathrm{Bz}_i(v_{2015}^q) - \mathrm{Bz}_i(v_{2016}^q) \right|,$ and $\Delta \, \mathrm{SSI}^q(I) := \sum_{i \in I} \left| \mathrm{SSI}_i(v_{2015}^q) - \mathrm{SSI}_i(v_{2016}^q) \right|,$ where $q \in \{85\%, 50\%\}, \ y \in \{2015, 2016\},$ and v_y^q denotes the corresponding weighted game of the IMF. We evaluate those values on the entire set of countries N and on all countries except the biggest five (United States, Japan, Germany, France, United Kingdom) N, see Table 1.

Table 1. Differences in power between years and power indices

set of countries I	$\Delta P_{2015}^{85\%}$	$\Delta P_{2016}^{85\%}$	$\Delta\mathrm{Bz}^{85\%}$	$\Delta \mathrm{SSI}^{85\%}$	$\Delta P_{2015}^{50\%}$	$\Delta P_{2016}^{50\%}$	$\Delta\mathrm{Bz}^{50\%}$	$\Delta \mathrm{SSI}^{50\%}$
$\overline{}$	54.33%	51.98%	19.90%	27.00%	9.46%	32.21%	46.52%	34.68%
\underline{N}	28.48%	26.17%	18.45%	17.67%	2.68%	9.70%	18.35%	18.00%

The stated running times can be easily extrapolated to other examples. If we assume a hypothetical IMF consisting of 1000 members whose weights are of similar magnitude as in the 2016 example, then both n and Δ increase by a factor of 1000/188. Instead of three primes we would need 16 primes, so that the computation of the Banzhaf indices in the super-majority case would took approximately 8 minutes while the SSI indices may be computed in 4 days.¹²

The minuscule running time for the Banzhaf index obviously allows more sophisticated applications where the power index computation is performed several times. Trying to heuristically solve the inverse power index problem, where weights need to be found whose power distribution is close to a given target distribution, is just an example. Here we have computed the Banzhaf power distribution of the IMF when the quota changes from 0% to 100% in steps of 0.1%, i.e., 1001 evaluations have been performed, as another possible application. In figures 1-2 we have depicted the corresponding power for the five most powerful countries (United States i=180, Japan i=82, Germany i=62, France i=58, United Kingdom i=179). We can see that the respective Banzhaf indices are rather volatile

¹¹CLN - Class Library for Numbers, available at http://www.ginac.de/CLN.

¹²In the latter case the memory requirements might become a serious issue if the computations for the different primes are not performed consecutively. Computing the intermediate results for each prime in parallel is the better option anyway. Using 16 computers (or cores) the mentioned times reduce to seconds and less than 7 hours, respectively.

Malo 2010 2010 65010 8010 42010 82010

FIGURE 1. Banzhaf power distribution of the IMF in 2015 for the five largest countries with variable quota

with respect to changes of the quota. The difference between the respective Banzhaf power shares is negligible for Japan and Germany, while there is no difference between France and the United Kingdom, for all values of the quota q. For an extreme quota of 0% or 100% all countries obtain exactly the same Banzhaf power share. For quotas below 15% or above 85% there is almost no difference in power for the five largest countries. However, there is a critical interval, say q between 25% and 75%, where the relative power distribution between the five largest countries is very sensitive to changes of the quota. The United States most intensive benefit from quotas around 50%. In 2016 also the Banzhaf power share of Japan is very sensitive to changes of the quota. Instead of 50% a quota of roughly 65% would be rather favorable for them.

Quota

FIGURE 2. Banzhaf power distribution of the IMF in 2016 for the five largest countries with variable quota

4. Conclusions

Nevertheless the computation of both the Banzhaf and the Shapley-Shubik index is NP-hard for weighted voting games, we have demonstrated that in practice it is not too hard to compute the exact values if the considered games are not *too large*. In the used sense, the current IMF voting system is definitely not too large since the Banzhaf indices can be computed in seconds and the Shapley-Shubik indices can be computed in a few minutes. For weighted games of that magnitude no approximations to the real values are necessary.

Even more, an efficient computation does not rely on sophisticated algorithms but low-level details in order to gain speed-up factors. For $C \ll 2^n$, which should be the case for all non-tiny real-world examples, the use of generating function approaches yields no benefit, although being a common topic in the literature. The used underlying idea of counting coalitions per weight and size by a simple recursion was just enhanced by allowing the reverse direction starting from the weight sum C for quotas larger than 50%. There is a single small insight that allows to recover those counts for the cases where a certain player is either assumed to be part or not to be part of the counted coalitions more efficiently than a direct enumeration. Using this approach the complexity for computing the considered indices are (up to a small constant) the same for a single player and all players.

For our real—world example of the IMF, the resulting power distributions are rather different from the weight shares and between diverse power indices like the Banzhaf and the Shapley-Shubik index. We suspect that this is not a numerical artefact of this specific example, so that it might be a good idea to compute several power indices to get a more comprehensive view whenever the considered committee has some non-negligible impact.

The distribution of the Banzhaf power shares is rather sensitive to changes of the quota and there are clear incentives for the few largest countries to alter them in their sense. The conclusion that may be drawn from that fact is debatable and the choice of the quota should indeed obtain more consideration.

References

- [1] F. Aleskerov, V. Kalyagin, and K. Pogorelskiy. Actual voting power of the imf members based on their political-economic integration. *Mathematical and Computer Modelling*, 48(9):1554–1569, 2008.
- [2] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational aspects of cooperative game theory. Synthesis Lectures on Artificial Intelligence and Machine Learning, 5(6):1–168, 2011.
- [3] B. Klinz and G.J. Woeginger. Faster algorithms for computing power indices in weighted voting games. *Mathematical Social Sciences*, 49(1):111–116, 2005.
- [4] S. Kurz. On minimum sum representations for weighted voting games. Annals of Operations Research, 196(1):361–369, 2012.
- [5] S. Kurz, N. Maaser, S. Napel, and M. Weber. Mostly sunny: a forecast of tomorrow's power index research. Homo Oeconomicus, 32(1):133-146, 2015.
- [6] D. Leech. Computing power indices for large voting games. Management Science, 49(6):831-837, 2003.
- [7] D. Leech and R. Leech. A new analysis of a priori voting power in the imf: Recent quota reforms give little cause for celebration. In *Power, Voting, and Voting Power: 30 Years After*, pages 389–410. Springer, 2013.
- [8] I. Mann and L.S. Shapley. Values of large games vi: Evaluating the electoral college exactly. Technical report, DTIC Document, 1962.
- [9] T. Matsui and Y. Matsui. A survey of algorithms for calculating power indices of weighted majority games. *Journal of the Operations Research Society of Japan*, 43(1):71–86, 2000.
- [10] P. Tannenbaum. Power in weighted voting systems. The Mathematica Journal, 7(1), 1997.
- [11] T. Uno. Efficient computation of power indices for weighted majority games. In Algorithms and Computation, pages 679–689. Springer, 2012.

Tables of voting weights and the power distribution

Sascha Kurz, Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany. E-mail: sascha.kurz@unibayreuth.de, Phone: $+49\,921\,55\,7353$, Fax: $+49\,921\,55\,7353$, Homepage: http://www.wm.uni-bayreuth.de/index.php?id=sk

Table 2. Voting weights in the IMF – part 1

index	member/year	2015		2016	
1	Afghanistan, Islamic Republic of	2357	0.094%	2665	0.075%
2	Albania	1338	0.053%	2439	0.068%
3	Algeria	13285	0.527%	13593	0.380%
4	Angola	3601	0.143%	3909	0.109%
5	Antigua and Barbuda	873	0.035%	1246	0.035%
6	Argentina	21909	0.869%	22217	0.622%
7	Armenia	1658	0.066%	1966	0.055%
8	Australia	33102	1.313%	66770	1.869%
9	Austria	21877	0.868%	22185	0.621%
10	Azerbaijan	2347	0.093%	2655	0.074%
11	Bahamas, The	2041	0.081%	2870	0.080%
12	Bahrain	2088	0.083%	2396	0.067%
13	Bangladesh	6071	0.241%	6379	0.179%
14	Barbados	1413	0.056%	1991	0.056%
15	Belarus	4602	0.183%	4910	0.137%
16	Belgium	46790	1.856%	47098	1.318%
17	Belize	926	0.037%	1313	0.037%
18	Benin	1357	0.054%	1665	0.047%
19	Bhutan	801	0.032%	1109	0.031%
20	Bolivia	2453	0.097%	2761	0.077%
21	Bosnia and Herzegovina	2429	0.096%	2737	0.077%
22	Botswana	1616	0.064%	3018	0.084%
23 24	Brazil Brunei Darussalam	43243 2890	1.716% $0.115%$	43551 3198	1.219% $0.090%$
$\frac{24}{25}$	Bruner Darussaram Bulgaria	7140	0.113% $0.283%$	7448	0.090% $0.208%$
26	Burkina Faso	1340	0.283% $0.053%$	1648	0.208% $0.046%$
27	Burundi	1508	0.060%	1816	0.040% $0.051%$
28	Cabo Verde	850	0.034%	1158	0.031%
29	Cambodia	1613	0.064%	2796	0.078%
30	Cameroon	2595	0.103%	2903	0.081%
31	Canada	64430	2.556%	111285	3.115%
32	Central African Republic	1295	0.051%	1603	0.045%
33	Chad	1404	0.056%	2448	0.069%
34	Chile	9299	0.369%	18489	0.517%
35	China	95997	3.809%	96305	2.695%
36	Colombia	8478	0.336%	21491	0.601%
37	Comoros	827	0.033%	1224	0.034%
38	Congo, Democratic Republic of the	6068	0.241%	6376	0.178%
39	Congo, Republic of	1584	0.063%	1892	0.053%
40	Costa Rica	2379	0.094%	2687	0.075%
41	Côte d'Ivoire	3990	0.158%	4298	0.120%
42	Croatia	4389	0.174%	4697	0.131%
43	Cyprus	2320	0.092%	4084	0.114%
44	Czech Republic	10760	0.427%	11068	0.310%
45	Denmark	19652	0.780%	35440	0.992%
46	Djibouti	897	0.036%	1364	0.038%

Table 3. Voting weights in the IMF – part 2

index	member/year	2015		2016	
47	Dominica	820	0.033%	1161	0.032%
48	Dominican Republic	2927	0.116%	3235	0.091%
49	Ecuador	4216	0.167%	4524	0.127%
50	Egypt	10175	0.404%	10483	0.293%
51	El Salvador	2451	0.097%	2759	0.077%
52	Equatorial Guinea	1261	0.050%	1569	0.044%
53	Eritrea	897	0.036%	1205	0.034%
54	Estonia	1677	0.067%	3482	0.097%
55	Ethiopia	2075	0.082%	4053	0.113%
56	Fiji, Republic of	1441	0.057%	1749	0.049%
57	Finland	13376	0.531%	13684	0.383%
58	France	108123	4.290%	108431	3.035%
59	Gabon	2281	0.090%	3206	0.090%
60	Gambia, The	1049	0.042%	1357	0.038%
61	Georgia	2241	0.089%	3150	0.088%
62	Germany	146393	5.808%	146701	4.106%
63	Ghana	4428	0.176%	4736	0.133%
64	Greece	11756	0.466%	25335	0.709%
65	Grenada	855	0.034%	1163	0.033%
66	Guatemala	2840	0.113%	3148	0.088%
67	Guinea	1809	0.072%	3188	0.089%
68	Guinea-Bissau	880	0.035%	1188	0.033%
69	Guyana	1647	0.065%	2864	0.080%
70	Haiti	1557	0.062%	1865	0.052%
71	Honduras	2033	0.081%	2341	0.066%
72	Hungary	11122	0.441%	20446	0.572%
73	Iceland	1914	0.076%	4264	0.119%
74	India	58953	2.339%	59261	1.659%
75	Indonesia	21531	0.854%	21839	0.611%
76	Iran, Islamic Republic of	15710	0.623%	16018	0.448%
77	Iraq	12622	0.501%	12930	0.362%
78	Ireland	13314	0.528%	13622	0.381%
79	Israel	11349	0.450%	20255	0.567%
80	Italy	79561	3.156%	79869	2.235%
81	Jamaica	3473	0.138%	4875	0.136%
82	Japan	157023	6.230%	309251	8.655%
83	Jordan	2443	0.097%	4477	0.125%
84	Kazakhstan	5016	0.199%	5324	0.149%
85	Kenya	3452	0.137%	3760	0.105%
86	Kiribati	794	0.032%	1102	0.031%
87	Korea	34402	1.365%	34710	0.971%
88	Kosovo	1328	0.053%	1636	0.046%
89	Kuwait	14549	0.577%	14857	0.416%
90	Kyrgyz Republic	1626	0.065%	1934	0.054%
91	Lao People's Democratic Republic	1267	0.050%	1575	0.044%
92	Latvia	2159	0.086%	2467	0.069%
93	Lebanon	3402	0.135%	3710	0.104%
94	Lesotho	1087	0.043%	1395	0.039%
= "			- , -		

Table 4. Voting weights in the IMF – part 3

index	member/year	2015		2016	
95	Liberia	2030	0.081%	2338	0.065%
96	Libya	11975	0.475%	12283	0.344%
97	Lithuania	2577	0.102%	5462	0.153%
98	Luxembourg	4925	0.195%	5233	0.146%
99	Macedonia, former Yugoslav Republic of	1427	0.057%	2449	0.069%
100	Madagascar	1960	0.078%	2268	0.063%
101	Malawi	1432	0.057%	2434	0.068%
102	Malaysia	18477	0.733%	18785	0.526%
103	Maldives	838	0.033%	1146	0.032%
104	Mali	1671	0.066%	1979	0.055%
105	Malta	1758	0.070%	2066	0.058%
106	Marshall Islands	773	0.031%	1081	0.030%
107	Mauritania	1382	0.055%	1690	0.047%
108	Mauritius	1754	0.070%	2468	0.069%
109	Mexico	36995	1.468%	90173	2.524%
110	Micronesia, Federated States of	789	0.031%	1097	0.031%
111	Moldova	1970	0.078%	2278	0.064%
112	Mongolia	1249	0.050%	1557	0.044%
113	Montenegro	1013	0.040%	1651	0.046%
114	Morocco	6620	0.263%	9990	0.280%
115	Mozambique	1874	0.074%	2182	0.061%
116	Myanmar	3322	0.132%	6214	0.174%
117		2103	0.083%	2411	0.067%
118	Nepal	1451	0.058%	1759	0.049%
119	Netherlands	52362	2.077%	88411	2.474%
120	New Zealand	9684	0.384%	9992	0.280%
121	Nicaragua	2038	0.081%	2346	0.066%
122	Niger	1396	0.055%	1704	0.048%
123	Nigeria	18270	0.725%	18578	0.520%
124	Norway	19575	0.777%	19883	0.556%
125	Oman	3108	0.123%	3416	0.096%
126	Pakistan	11075	0.439%	21356	0.598%
127	Palau	769	0.031%	1077	0.030%
128	Panama	2804	0.111%	3112	0.087%
129	Papua New Guinea	2054	0.081%	2362	0.066%
130	Paraguay	1737	0.069%	2045	0.057%
131	Peru	7122	0.283%	14391	0.403%
132	Philippines	10931	0.434%	11239	0.315%
133	Poland	17622	0.699%	42000	1.176%
134	Portugal	11035	0.438%	21647	0.606%
135	Qatar	3764	0.149%	4072	0.114%
136	Romania	11040	0.438%	19160	0.536%
137	Russian Federation	60192	2.388%	60500	1.693%
138	Rwanda	1539	0.061%	1847	0.052%
139	Samoa	854	0.034%	1162	0.033%
140	San Marino	962	0.038%	1538	0.043%
141	São Tomé and Príncipe	812	0.032%	1194	0.033%

Table 5. Voting weights in the IMF – part 4

index	member/year	2015		2016	
142	Saudi Arabia	70593	2.801%	70901	1.984%
143	Senegal	2356	0.093%	2664	0.075%
144	Serbia	5415	0.215%	7594	0.213%
145	Seychelles	847	0.034%	1275	0.036%
146	Sierra Leone	1775	0.070%	2083	0.058%
147	Singapore	14818	0.588%	15126	0.423%
148	Slovak Republic	5013	0.199%	5321	0.149%
149	Slovenia	3488	0.138%	3796	0.116%
150	Solomon Islands	842	0.033%	1150	0.032%
151	Somalia	1180	0.035%	1488	0.042%
152	South Africa	19423	0.771%	19731	0.552%
152 153	South Sudan, Republic of	19423	0.771%	$\frac{19731}{2276}$	0.064%
153	Spain	40972	1.626%	96401	2.698%
154 155	Spani Sri Lanka	4872	0.193%	5180	0.145%
156	St. Kitts and Nevis	827	0.193% $0.033%$	1135	0.145% $0.032%$
150 157	St. Kitts and Nevis St. Lucia	891	0.035%	1199	0.032%
158	St. Vincent and the Grenadines	821	0.033%	1199 1129	0.034%
159	St. vincent and the Grenadnes Sudan	2435	0.035% $0.097%$	$\frac{1129}{2743}$	
160	Suriname	1659		$\frac{2743}{1967}$	0.077%
	Swaziland		0.066%		0.055%
161		1245	0.049%	1831	0.051%
162	Sweden	24693	0.980%	45346	1.269%
163	Switzerland	35323	1.401%	58757	1.645%
164	Syrian Arab Republic	3674	0.146%	3982	0.111%
165	Tajikistan	1608	0.064%	1916	0.054%
166	Tanzania	2727	0.108%	3035	0.085%
167	Thailand	15143	0.601%	15451	0.432%
168	Timor-Leste	846	0.034%	1154	0.032%
169	Togo	1472	0.058%	1780	0.050%
170	Tonga	807	0.032%	1115	0.031%
171	Trinidad and Tobago	4094	0.162%	4402	0.123%
172	Tunisia	3603	0.143%	3911	0.109%
173	Turkey	15296	0.607%	15604	0.437%
174	Turkmenistan	1490	0.059%	3432	0.096%
175	Tuvalu	756	0.030%	1064	0.030%
176	Uganda	2543	0.101%	2851	0.080%
177	Ukraine	14458	0.574%	21164	0.592%
178	United Arab Emirates	8263	0.328%	8571	0.240%
179	United Kingdom	108123	4.290%	108431	3.035%
180	United States	421962	16.741%	830988	23.258%
181	Uruguay	3803	0.151%	5337	0.149%
182	Uzbekistan	3494	0.139%	3802	0.106%
183	Vanuatu	908	0.036%	1216	0.034%
184	Venezuela, República Bolivariana de	27329	1.084%	27637	0.774%
185	Vietnam	5345	0.212%	5653	0.158%
186	Yemen, Republic of	3173	0.126%	3481	0.097%
187	Zambia	5629	0.223%	5937	0.166%
188	Zimbabwe	4272	0.169%	4580	0.128%
_	total	2520571	100.000%	3572928	100.000%

Table 6. Voting power in the IMF – part 1

			najority	$\begin{array}{ccc} \text{simple majority} \\ \text{Bz}_i & \text{SSI}_i \end{array}$				
	В			SI_i				SI_i
i	2015	2016	2015	2016	2015	2016	2015	2016
1	0.153%	0.126%	0.088%	0.074%	0.086%	0.056%	0.088%	0.067%
2	0.087%	0.115%	0.050%	0.068%	0.049%	0.051%	0.050%	0.062%
3	0.845%	0.634%	0.497%	0.378%	0.483%	0.286%	0.501%	0.345%
4	0.234%	0.184%	0.134%	0.108%	0.131%	0.082%	0.135%	0.099%
5	0.057%	0.059%	0.032%	0.034%	0.032%	0.026%	0.033%	0.032%
6	1.342%	1.021%	0.824%	0.621%	0.796%	0.467%	0.828%	0.565%
7	0.108%	0.093%	0.062%	0.054%	0.060%	0.041%	0.062%	0.050%
8	1.882%	2.522%	1.254%	1.906%	1.202%	1.390%	1.256%	1.714%
9	1.340%	1.019%	0.823%	0.620%	0.795%	0.466%	0.827%	0.564%
10	0.153%	0.125%	0.087%	0.074%	0.085%	0.056%	0.088%	0.067%
11	0.133%	0.135%	0.076%	0.079%	0.074%	0.060%	0.077%	0.073%
12	0.136%	0.113%	0.078%	0.066%	0.076%	0.050%	0.078%	0.061%
13	0.393%	0.300%	0.226%	0.177%	0.221%	0.134%	0.228%	0.162%
14	0.092%	0.094%	0.052%	0.055%	0.051%	0.042%	0.053%	0.050%
15	0.298%	0.231%	0.171%	0.136%	0.167%	0.103%	0.173%	0.124%
16	2.349%	1.982%	1.789%	1.331%	1.698%	0.986%	1.785%	1.204%
17	0.060%	0.062%	0.034%	0.036%	0.034%	0.028%	0.035%	0.033%
18	0.088%	0.078%	0.050%	0.046%	0.049%	0.035%	0.051%	0.042%
19	0.052%	0.052%	0.030%	0.031%	0.029%	0.023%	0.030%	0.028%
20	0.159%	0.130%	0.091%	0.076%	0.089%	0.058%	0.092%	0.070%
21	0.158%	0.129%	0.090%	0.076%	0.088%	0.058%	0.091%	0.069%
22	0.105%	0.142%	0.060%	0.084%	0.059%	0.064%	0.061%	0.076%
23	2.249%	1.863%	1.649%	1.229%	1.570%	0.912%	1.647%	1.112%
$\frac{1}{24}$	0.188%	0.151%	0.107%	0.089%	0.105%	0.067%	0.109%	0.081%
25	0.461%	0.350%	0.266%	0.207%	0.259%	0.157%	0.268%	0.189%
26	0.087%	0.078%	0.050%	0.046%	0.049%	0.035%	0.050%	0.042%
27	0.098%	0.086%	0.056%	0.050%	0.055%	0.038%	0.057%	0.046%
28	0.055%	0.055%	0.032%	0.032%	0.031%	0.024%	0.032%	0.029%
29	0.105%	0.132%	0.060%	0.077%	0.059%	0.059%	0.061%	0.071%
30	0.169%	0.132%	0.096%	0.080%	0.094%	0.061%	0.097%	0.073%
31	2.667%	3.073%	2.492%	3.249%	2.335%	2.266%	2.474%	2.885%
32	0.084%	0.076%	0.048%	0.044%	0.047%	0.034%	0.049%	0.041%
33	0.091%	0.015%	0.052%	0.044%	0.041%	0.052%	0.043%	0.041% $0.062%$
34	0.598%	0.856%	0.032%	0.516%	0.031% $0.338%$	0.032%	0.350%	0.470%
35	2.828%	2.967%	3.796%	2.790%	3.462%	1.979%	3.730%	2.488%
36	0.546%	0.989%	0.316%	0.600%	0.308%	0.452%	0.319%	0.546%
37	0.054%			0.000% $0.034%$				
		0.058%	0.031%		0.030%	0.026%	$0.031\% \ 0.228\%$	0.031%
38	0.393%	0.300%	0.226%	0.177%	0.221%	0.134%		0.161%
39	0.103%	0.089%	0.059%	0.052%	0.058%	0.040%	0.059%	0.048%
40	0.155%	0.127%	0.088%	0.074%	0.086%	0.057%	0.089%	0.068%
41	0.259%	0.202%	0.148%	0.119%	0.145%	0.090%	0.150%	0.109%
42	0.285%	0.221%	0.163%	0.130%	0.159%	0.099%	0.165%	0.119%
43	0.151%	0.192%	0.086%	0.113%	0.084%	0.086%	0.087%	0.103%
44	0.690%	0.518%	0.402%	0.308%	0.391%	0.233%	0.405%	0.281%
45	1.218%	1.566%	0.738%	0.996%	0.714%	0.744%	0.742%	0.903%
46	0.058%	0.064%	0.033%	0.038%	0.033%	0.029%	0.034%	0.035%
47	0.053%	0.055%	0.030%	0.032%	0.030%	0.024%	0.031%	0.029%

Table 7. Voting power in the IMF – part 2

		superr	najority	simple majority				
	В	z_i		SI_i		\mathbf{z}_i		SI_i
i	2015	2016	2015	2016	2015	2016	2015	2016
48	0.190%	0.152%	0.109%	0.090%	0.106%	0.068%	0.110%	0.082%
49	0.274%	0.213%	0.157%	0.125%	0.153%	0.095%	0.158%	0.115%
50	0.653%	0.491%	0.380%	0.291%	0.370%	0.221%	0.383%	0.266%
51	0.159%	0.130%	0.091%	0.076%	0.089%	0.058%	0.092%	0.070%
52	0.082%	0.074%	0.047%	0.043%	0.046%	0.033%	0.047%	0.040%
53	0.058%	0.057%	0.033%	0.033%	0.033%	0.025%	0.034%	0.030%
54	0.109%	0.164%	0.062%	0.096%	0.061%	0.073%	0.063%	0.088%
55	0.135%	0.191%	0.077%	0.112%	0.075%	0.085%	0.078%	0.103%
56	0.094%	0.082%	0.054%	0.048%	0.052%	0.037%	0.054%	0.044%
57	0.851%	0.639%	0.500%	0.381%	0.486%	0.288%	0.504%	0.347%
58	2.842%	3.057%	4.314%	3.161%	3.888%	2.212%	4.221%	2.809%
59	0.148%	0.151%	0.085%	0.089%	0.083%	0.067%	0.086%	0.081%
60	0.068%	0.064%	0.039%	0.038%	0.038%	0.029%	0.039%	0.034%
61	0.146%	0.148%	0.083%	0.087%	0.081%	0.066%	0.084%	0.080%
62	2.850%	3.173%	6.017%	4.364%	5.172%	2.890%	5.803%	3.834%
63	0.287%	0.223%	0.165%	0.131%	0.161%	0.100%	0.166%	0.120%
64	0.751%	1.155%	0.439%	0.709%	0.427%	0.532%	0.443%	0.644%
65	0.056%	0.055%	0.032%	0.032%	0.031%	0.024%	0.032%	0.029%
66	0.184%	0.148%	0.106%	0.087%	0.103%	0.066%	0.107%	0.080%
67	0.118%	0.150%	0.067%	0.088%	0.066%	0.067%	0.068%	0.081%
68	0.057%	0.056%	0.033%	0.033%	0.032%	0.025%	0.033%	0.030%
69	0.107%	0.135%	0.061%	0.079%	0.060%	0.060%	0.062%	0.072%
70	0.101%	0.088%	0.058%	0.052%	0.057%	0.039%	0.058%	0.047%
71	0.132%	0.110%	0.076%	0.065%	0.074%	0.049%	0.076%	0.059%
72	0.712%	0.943%	0.416%	0.571%	0.404%	0.430%	0.419%	0.519%
73	0.124%	0.201%	0.071%	0.118%	0.070%	0.090%	0.072%	0.108%
74	2.596%	2.341%	2.272%	1.685%	2.137%	1.237%	2.259%	1.519%
75	1.322%	1.004%	0.810%	0.610%	0.782%	0.459%	0.814%	0.555%
76	0.991%	0.745%	0.589%	0.446%	0.571%	0.337%	0.593%	0.407%
77	0.805%	0.604%	0.472%	0.360%	0.459%	0.272%	0.476%	0.328%
78	0.847%	0.636%	0.498%	0.379%	0.484%	0.287%	0.502%	0.346%
79	0.726%	0.934%	0.424%	0.565%	0.412%	0.426%	0.427%	0.515%
80	2.781%	2.768%	3.109%	2.295%	2.877%	1.655%	3.072%	2.056%
81	0.225%	0.229%	0.129%	0.135%	0.126%	0.103%	0.130%	0.123%
82	2.851%	3.198%	6.511%	10.262%	5.494%	4.103%	6.251%	8.370%
83	0.159%	0.211%	0.091%	0.124%	0.089%	0.094%	0.092%	0.113%
84	0.325%	0.251%	0.187%	0.148%	0.182%	0.112%	0.188%	0.135%
85	0.224%	0.177%	0.128%	0.104%	0.125%	0.079%	0.130%	0.095%
86	0.052%	0.052%	0.029%	0.030%	0.029%	0.023%	0.030%	0.028%
87	1.936%	1.537%	1.304%	0.975%	1.249%	0.728%	1.306%	0.885%
88	0.086%	0.077%	0.049%	0.045%	0.048%	0.034%	0.050%	0.041%
89	0.921%	0.692%	0.545%	0.414%	0.529%	0.312%	0.549%	0.377%
90	0.106%	0.091%	0.060%	0.054%	0.059%	0.041%	0.061%	0.049%
91	0.082%	0.074%	0.047%	0.044%	0.046%	0.033%	0.048%	0.040%
92	0.140%	0.116%	0.080%	0.068%	0.078%	0.052%	0.081%	0.062%
93	0.221%	0.175%	0.127%	0.103%	0.124%	0.078%	0.128%	0.094%
94	0.071%	0.066%	0.040%	0.039%	0.040%	0.029%	0.041%	0.035%

Table 8. Voting power in the IMF – part 3

		superm	najority			simple 1	najority	
	В	z_i	SS	SI_i	В	z_i	SS	SI_i
i	2015	2016	2015	2016	2015	2016	2015	2016
95	0.132%	0.110%	0.075%	0.065%	0.074%	0.049%	0.076%	0.059%
96	0.765%	0.574%	0.448%	0.342%	0.435%	0.258%	0.451%	0.312%
97	0.167%	0.257%	0.096%	0.151%	0.094%	0.115%	0.097%	0.138%
98	0.319%	0.246%	0.183%	0.145%	0.179%	0.110%	0.185%	0.133%
99	0.093%	0.115%	0.053%	0.068%	0.052%	0.052%	0.054%	0.062%
100	0.127%	0.107%	0.073%	0.063%	0.071%	0.048%	0.074%	0.057%
101	0.093%	0.115%	0.053%	0.067%	0.052%	0.051%	0.054%	0.062%
102	1.151%	0.869%	0.694%	0.524%	0.671%	0.395%	0.698%	0.477%
103	0.054%	0.054%	0.031%	0.032%	0.030%	0.024%	0.031%	0.029%
104	0.109%	0.093%	0.062%	0.055%	0.061%	0.042%	0.063%	0.050%
105	0.114%	0.097%	0.065%	0.057%	0.064%	0.043%	0.066%	0.052%
106	0.050%	0.051%	0.029%	0.030%	0.028%	0.023%	0.029%	0.027%
107	0.090%	0.080%	0.051%	0.047%	0.050%	0.036%	0.052%	0.043%
108	0.114%	0.116%	0.065%	0.068%	0.064%	0.052%	0.066%	0.062%
109	2.037%	2.905%	1.405%	2.604%	1.343%	1.859%	1.406%	2.327%
110	0.051%	0.052%	0.029%	0.030%	0.029%	0.023%	0.030%	0.028%
111	0.128%	0.107%	0.073%	0.063%	0.072%	0.048%	0.074%	0.058%
112	0.081%	0.073%	0.046%	0.043%	0.045%	0.033%	0.047%	0.039%
113	0.066%	0.078%	0.038%	0.046%	0.037%	0.035%	0.038%	0.042%
114	0.428%	0.468%	0.247%	0.278%	0.241%	0.210%	0.249%	0.253%
115	0.122%	0.103%	0.070%	0.060%	0.068%	0.046%	0.070%	0.055%
116	0.216%	0.292%	0.124%	0.172%	0.121%	0.131%	0.125%	0.157%
117	0.137%	0.114%	0.078%	0.067%	0.076%	0.051%	0.079%	0.061%
118	0.094%	0.083%	0.054%	0.049%	0.053%	0.037%	0.054%	0.045%
119	2.479%	2.884%	2.009%	2.551%	1.899%	1.824%	2.001%	2.280%
120	0.622%	0.468%	0.362%	0.278%	0.352%	0.210%	0.364%	0.253%
121	0.132%	0.111%	0.076%	0.065%	0.074%	0.049%	0.076%	0.059%
122	0.091%	0.080%	0.052%	0.047%	0.051%	0.036%	0.052%	0.043%
123	1.140%	0.860%	0.686%	0.518%	0.664%	0.391%	0.690%	0.472%
124	1.214%	0.918%	0.735%	0.555%	0.711%	0.418%	0.739%	0.505%
125	0.202%	0.161%	0.116%	0.095%	0.113%	0.072%	0.117%	0.086%
126	0.709%	0.983%	0.414%	0.596%	0.402%	0.449%	0.417%	0.543%
127	0.050%	0.051%	0.029%	0.030%	0.028%	0.023%	0.029%	0.027%
128	0.182%	0.147%	0.104%	0.086%	0.102%	0.065%	0.105%	0.079%
129	0.133%	0.111%	0.076%	0.065%	0.075%	0.050%	0.077%	0.060%
130	0.113%	0.096%	0.065%	0.057%	0.063%	0.043%	0.065%	0.052%
131	0.460%	0.671%	0.265%	0.401%	0.259%	0.303%	0.268%	0.365%
132	0.700%	0.526%	0.408%	0.312%	0.397%	0.236%	0.412%	0.285%
133	1.102%	1.808%	0.661%	1.184%	0.640%	0.880%	0.665%	1.072%
134	0.707%	0.996%	0.412%	0.605%	0.401%	0.455%	0.416%	0.550%
135	0.244%	0.192%	0.140%	0.113%	0.137%	0.086%	0.141%	0.103%
136	0.707%	0.886%	0.412%	0.534%	0.401%	0.403%	0.416%	0.487%
137	2.613%	2.373%	2.321%	1.722%	2.182%	1.262%	2.307%	1.551%
138	0.100%	0.087%	0.057%	0.051%	0.056%	0.039%	0.058%	0.047%
139	0.056%	0.055%	0.032%	0.032%	0.031%	0.024%	0.032%	0.029%
140	0.063%	0.072%	0.036%	0.043%	0.035%	0.032%	0.036%	0.039%
141	0.053%	0.056%	0.030%	0.033%	0.030%	0.025%	0.030%	0.030%

Table 9. Voting power in the IMF – part 4

			majority	simple majority				
		\mathbf{z}_i		SI_i		\mathbf{z}_i		SI_i
$\underline{}$	2015	2016	2015	2016	2015	2016	2015	2016
142	2.725%	2.609%	2.742%	2.028%	2.556%	1.474%	2.717%	1.821%
143	0.153%	0.126%	0.088%	0.074%	0.086%	0.056%	0.088%	0.067%
144	0.351%	0.357%	0.202%	0.211%	0.197%	0.160%	0.204%	0.192%
145	0.055%	0.060%	0.031%	0.035%	0.031%	0.027%	0.032%	0.032%
146	0.115%	0.098%	0.066%	0.058%	0.065%	0.044%	0.067%	0.053%
147	0.937%	0.704%	0.555%	0.421%	0.538%	0.318%	0.559%	0.384%
148	0.325%	0.250%	0.187%	0.147%	0.182%	0.112%	0.188%	0.135%
149	0.226%	0.179%	0.130%	0.105%	0.127%	0.080%	0.131%	0.096%
150	0.055%	0.054%	0.031%	0.032%	0.031%	0.024%	0.032%	0.029%
151	0.077%	0.070%	0.044%	0.041%	0.043%	0.031%	0.044%	0.038%
152	1.205%	0.911%	0.729%	0.551%	0.706%	0.415%	0.734%	0.501%
153	0.128%	0.107%	0.073%	0.063%	0.072%	0.048%	0.074%	0.058%
154	2.177%	2.968%	1.560%	2.793%	1.487%	1.981%	1.560%	2.491%
155	0.316%	0.244%	0.181%	0.144%	0.177%	0.109%	0.183%	0.131%
156	0.054%	0.053%	0.031%	0.031%	0.030%	0.024%	0.031%	0.029%
157	0.058%	0.057%	0.033%	0.033%	0.032%	0.025%	0.033%	0.030%
158	0.053%	0.053%	0.030%	0.031%	0.030%	0.024%	0.031%	0.029%
159	0.158%	0.129%	0.090%	0.076%	0.088%	0.058%	0.091%	0.069%
160	0.108%	0.093%	0.062%	0.054%	0.060%	0.041%	0.062%	0.050%
161	0.081%	0.086%	0.046%	0.051%	0.045%	0.039%	0.047%	0.046%
162	1.489%	1.924%	0.930%	1.281%	0.897%	0.950%	0.934%	1.158%
163	1.973%	2.328%	1.340%	1.671%	1.283%	1.226%	1.342%	1.505%
164	0.238%	0.188%	0.137%	0.110%	0.134%	0.084%	0.138%	0.101%
165	0.105%	0.090%	0.060%	0.053%	0.058%	0.040%	0.060%	0.048%
166	0.177%	0.143%	0.101%	0.084%	0.099%	0.064%	0.102%	0.077%
167	0.957%	0.719%	0.567%	0.430%	0.550%	0.325%	0.571%	0.392%
168	0.055%	0.054%	0.031%	0.032%	0.031%	0.024%	0.032%	0.029%
169	0.096%	0.084%	0.055%	0.049%	0.053%	0.037%	0.055%	0.045%
170	0.052%	0.053%	0.030%	0.031%	0.029%	0.023%	0.030%	0.028%
171	0.266%	0.207%	0.152%	0.122%	0.149%	0.093%	0.154%	0.111%
172	0.234%	0.184%	0.134%	0.108%	0.131%	0.082%	0.135%	0.099%
173	0.966%	0.726%	0.573%	0.435%	0.556%	0.328%	0.577%	0.396%
174	0.097%	0.162%	0.055%	0.095%	0.054%	0.072%	0.056%	0.087%
175	0.049%	0.050%	0.028%	0.029%	0.027%	0.022%	0.028%	0.027%
176	0.165%	0.134%	0.095%	0.079%	0.092%	0.060%	0.095%	0.072%
177	0.916%	0.975%	0.541%	0.591%	0.525%	0.445%	0.545%	0.538%
178	0.533%	0.402%	0.308%	0.238%	0.300%	0.180%	0.311%	0.217%
179	2.842%	3.057%	4.314%	3.161%	3.888%	2.212%	4.221%	2.809%
180	2.851%	3.198%	18.931%	20.552%	24.264%	45.408%	19.532%	29.305%
181	0.247%	0.251%	0.141%	0.148%	0.138%	0.112%	0.143%	0.135%
182	0.227%	0.179%	0.130%	0.105%	0.127%	0.080%	0.131%	0.096%
183	0.059%	0.057%	0.034%	0.034%	0.033%	0.026%	0.034%	0.031%
184	1.621%	1.252%	1.032%	0.774%	0.993%	0.581%	1.035%	0.703%
185	0.346%	0.266%	0.199%	0.157%	0.194%	0.119%	0.201%	0.143%
186	0.206%	0.164%	0.118%	0.096%	0.115%	0.073%	0.119%	0.088%
187	0.365%	0.279%	0.210%	0.165%	0.205%	0.125%	0.212%	0.150%
188	0.277%	0.216%	0.159%	0.127%	0.155%	0.096%	0.160%	0.116%

Table 10. Exact Banzhaf counts $Bz^{\mathbf{a}}_{\mathbf{i}}$ for supermajority – part 1

i	2015	2016
1	49492696550469334288388474302188300702732503278942	176903926397724458899541247938651532746047517818906
2	28108818684726200071728584276680195673408532632506	161911654209258251928883011914306328209189949330986
3	273067686459011964864016012688469258989855194791048	894022914523707629419913395215803955826725915570768
4	75544231177486375978776859223371297251582054333762	259370900172430505766454804559359034798947935884810
5	18342422447942989488068768527179198893754345719314	82733927205579511449928590811181587395707525770476
6	433741858747716854195909526475817535173470581906728	1438072991668218360540956801914813269126044117351308
7	34827220802205252181870565955690262877158934233490	130525954991744089345193787551781828973012811299238
8	608355615407208421844899611782423706037812464078784	3554109746517798404853024001719094557801394784806464
9	433182870044323129114951461399711176952959411081012	1436106956965251152709612442958745097124836736161260
10	49283005345236751798983276620448523479102451082936	176240609357525813716577515545475648532489655198040
11	42864738912205592177496389792722579268856699369832	190500680136856761637048733570688650885901540528942
12	43850758455885814747859350839893223594872905963452	159058842854086308434367420892597348030339225405130
13	126981103851113231438250859484005597145786917207210	422702171034352800882553740542749645796961981262606
14	29683657447695375864399363718939502316029045938454	132185065852265487980401422802136319182059897021716
15	96444635233833481188612688283680819764478305210228	325639998090401901053487689403331852986834824794252
16	759097678746734836884323315755480826869874874425326	2793167523276080546458364914050593030600984647461638
17	19455761959935719977866329667841045679127995472904	87181924423240271839909708356772795604682325346728
18	28507789345030375152708673330225662529371453353754	110548355809084644822385758652463422320526696153662
19	16829899601638766359861993347371410650666478818128	73638414745411021335583392933993390894220786591860
20	51505540585623230167758938592922162559819362717262	183271486224930993363998639083642471351507889517350
21	51002362473137740132187832033553763107249588446574	181679644941715378420286313434583564485598714014822
22	33945572271601426703805861415125949584851120695898	200315331313091427450458314303074357862625102805912
23	726754733887620717507209621430284186494250141324258	2624647238299486195655732164291618128080904104245420
24	60663458855535188524981041217095772129837525292592	212250218546044259406241364028774311807493043718420
25	149076620619821626154374069054899834514667619210906	493160109266952002377850870425727145561149449532592
26	28150815957514997522594582448926474661249278580222	109419954342548217986460398689320358140356076426688
27	31678272140988691301178071813034847159103665129156	120570766697683856880979119192418096930670312307160
28	17859262918629192786168584675895889084393526298830	76891606544263926116936869857821286603334278092518
29	33882595640057256558166572877604802107208189423426	185592862331687555958418832460229675381502614337990
30	54482214301775562263962022540219773711109002545444	192689197192805681505312826962691667484571161465936
31	861801107408963078242493745604171364645766003005656	4329821441981762745938492120585762580549398688934530
32	27205857080040453614461131405757236729714350892358	106432961931312720728736156939232912352857776794814
33	29494683293591781782803413279082643271020444121920	162508742497033788697478131645323609539641382298902
34	193294951863880247537932957234235924307488089563436	1206184262774063458157220881438417065868208300759666
35	914069763507643309388664770743422000893797400468924	4180423179544972629576844266694840337387333726424916
36	176550844252180855245260966056871303574741707001364	1393360070480048036358668834241461862932187263216148
37	17376096284502694686549163684710986749876514974292	81273365229822355975892521495232249817499206435004
38	126918934379607418456760182715983019232203030831898	422504217377002706156077246588820813100825717545440
39	33273809778788364291922969434378859546262437743106	125614838925774030639349991615968388814798225098058
40	49954004087711010435778427309597267844134573800388	178363204434532533721206307106244714743477463154746
41	83673977492219995514323051389306912008266465360762	285134587505967951106373187599608865867576823141298
42	92002836574838726809193447169489151762397303979328	311546598088144771469437740555165260498535216556998
43	48716820636063120650288729950515927651347698822042	270962834596756689494207763451074016041725818937568
44	222847289610042165828194890756886793432262301679010	730307189069648489551446143352077294476026159230172
45	393576617133025460945604654629693026878034919636510	2206092526531846212355237223104989228779907316128206
46	18846581130575530182651709645454563684490631687646	90567631833337469924450997316356975356985309556256
47	17229044188849734251438725217475824444372553225338	77090779705804545592803924357452258038340519850530

Table 11. Exact Banzhaf counts Bz_i for supermajority – part 2

Table 12. Exact Banzhaf counts $Bz^{\mathbf{a}}_{\mathbf{i}}$ for supermajority – part 3

\overline{i}	2015	2016
95	42633958042491066739671348871443478321386940033530	155210719725738127825182299895255583198461342494118
96	247157849931994416381682310743110238430008662255444	809284867620330781092103774503572607880975700634310
97	54104934213516959447392068269135858247168076667212	362141825341601765105298798708663702946011014384032
98	103174011727540055347125360906146890295086611388140	347002831295754786039688225426685425553829113352468
99	29977613645414705823501642390509810402839894970228	162575085386940526359782345079435496274014948315940
100	41165262535925141133298445653237234427829732414728	150566216658081937850639757955081825600451573581624
101	30082596933358311863367988305279579489729633493986	161579936725190284284386840690183433473870373636974
102	372097158010579815000127938332207724258483127407344	1224795561539701112323560281879500975177718179042974
103	17607176853345827147488825833336299748942951505408	76094911744473817313525265618128399323945415368972
104	35100102708042928775692200140549095075589909309816	131388695835812546018662599681467177942961215423776
105	36926195904961601760531427233595456033985298072736	137162242500882313728327121797483805094988625970490
106	16241678228828441634272693338718510465017703729840	71779423078313964164055428855382688319922416344534
107	29032738933494364740918493236106414801725559594172	112207751594343177542803826100537745777426035316788
108	36842242125814577711151762622104539697070809298124	163835590636369212459277957388298667904199708022576
109	658429980657095723921258525543388211278102103097830	4092599408026943906096970920863502581967016228331968
110	16577805922400810990207817852748375389354435845510	72841706210166938128722101903634769795961361253068
111	41375085588727089510074638397283989746543395077070	151229731352259599813131647219715214677821723521172
112	26239856311583725206470232127005363201074091138932	103379522424745739056731364537982584469900821827966
113	21283229079515010587664322903939874931300920058392	109619084732906629675938293650070901321100944311102
114	138343302238119869978048535918562302137010974768126	659954142170737019039930671532211609062415336448170
115	39360658195688532995196642824874053361834805977878	144859798566626121031039581258861177568341147639494
116	69708046984250906606777176168622166913495672795212	411812976640093960603836952385329683624125123419480
117	44165430296283384904392902681317494433711947779290	160054020109142770036849550798650601751626523398642
118	30481528253731880881000945170476476615770037787560	116787569448311408255149979380216745766671026302384
119	801159861438024737416517543269521844015032064772354	4063866623292084863627336924701078645439493727626404
120	201114117842684490278417219408809497948011344369306	660084895299452162328729880019267988033058213398668
121	42801799060759126182840715094062942405343405229092	155741505103871548404188311601068867492249754959006
122	29326704759345435683973225340648175464117818891984	113137003697811660453445839204560433536156802909536
123	368274638173735056913917836710487876810048105795966	1211783644003498702233186530705686512145661896926016
124	392180606552639288993255744609657319581189966847726	1293543504900597806975058205401700800341510993192468
125	65228768249789588889673498720251535803476383686434	226701810288967930696947963759670730181718960672924
126	229174407085256477945619422811656133098741261048682	1385020931946249029680115324799901315632080491318698
127	16157645814331791333849248641747179993368332969400	71513851396177285267427825276879693964341066892178
128	58861860530298264163053163396010481058620644701860	206548254784239097187311072779194355789394507612552
129	43137474912216558714339366509099690464081735260782	156803066521888609872254930737265520873493310831310
130	36485433632751100629987616385109859502730995081522	135768656925294249885239186637456763381761237983780
131	148705573148532028859309465148436038627089860935586	945412758486070051364501451544150476858370950613908
132	226284067197627358806749755511022195365992348684772	741443574833865745984299543051846811565530998257282
133	356236123616371604143024891734638894690577545878134	2548104205791785721174610869343560474652107511646454
134	228371885071732382747365381760424935292207457150878	1402986816643138410163901587829349004436447463049764
135	78951880466284914921859406408387292642324886327146	270168040445576387001735981253131248175651032037114
136	228472215099762370912687084734720303503425913098116	1248326956648672778229337462450807964986859751518276
137	844578514179715762286175337206338775684640321732952	3344015523475417108544457937867783367107885231188190
138	32329100551005579465497455340422328020052242406472	122628243963469342982938868087003288292811297411468
139	17943291178624029062016441286002261014383879630090	77157170711572102088894716818557480943380928767632
140	20211969276414938200409960556047793461990022744336	102118299118471177136038277937563947570914684990360
141	17060983873868414331607994948401989966086037986618	79281670071966172407558372771501686746479599612424

Table 13. Exact Banzhaf counts Bz_i for supermajority – part 4