маа	le East Technical University		
	rtment of Computer Engineering	Q1 (15 pts.)	
CENG 213 Data Structures Final Exam January 11, 2013		Q2 (15 pts.)	
120 n		Q3 (15 pts.)	
Name	Name:		
Section	on:	Q5 (17 pts.)	
Write	your answers clearly into the boxes provided only.	Q6 (23 pts.)	
		TOTAL	
Q1. (1	15 pts.) Time Complexity Analysis		I
What	(1.5 pts. each)		
1.	Inserting a new element into an unsorted linked list of n elements.	Answer:	
2.	Inserting a new element into a sorted linked list of n elements.	Answer:	
3.	Inserting n new elements into an empty heap.	Answer:	
4.	Inserting n new elements into an empty binary search tree.	Answer:	
5.	Finding the maximum element in a complete binary search tree of n elements.	Answer:	
6.	Sorting an already sorted array of n integers using bubble sort algorithm.	Answer:	
7.	Sorting an already sorted array of n integers using heapsort algorithm.	Answer:	
8.	Deleting an integer from an AVL tree of n integers.	Answer:	
9.	Searching a sorted array of n integers for a particular value using binary searching a sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching as sorted as sorted array of n integers for a particular value using binary searching as sorted array of n integers for a particular value using binary searching are searched as sorted array of n integers for a particular value using a searching array of n integers for a particular value using a searching array of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a particular value using a search of n integers for a sea	h. Answer:	
10.	Printing a full binary tree of n elements using inorder traversal.	Answer:	

Q2. (15 pts.) (Heap means min heap in this question)												
a) What is the smallest key that could be at the leaf level of a heap built from a random order of the keys 1 through 16? (3 pts.)												
b) Insert the following items into an empty heap one by one in the given order. Show the array and tree-structure drawing of the resulting heap: 45, 38, 27, 33, 52, 65, 19, 10, 15 (4 pts.)										e drawing of (4 pts.)		
Array:				•						_		
Tree:				1								
Tiee:												
c) Draw the hea	ap that would	d resu	ult fro	om the bu	uildHe	ap opera	ation on	the initi	al array g	given belo	ow:	(4 pts.)
									•			
	90	47	7	75	82		50	8	21	15	31	
(Recall that the buildHeap algorithm builds a heap from bottom up through a sequence of percolateDown operations.) Resulting heap:									cions.)			
d) Consider the	following h	eap:										(4 pts.)
			7	11	9	18	12	23	15	20		
77	1 .				,.	4.	1 (1)	.1			1 1 2 2 .	261
You are going to apply <i>two</i> deleteMin() operations on this heap. Show the array contents after each deleteMin.												

a) Consider a hash table of size 11 and the harder shown) into an empty hash table:	ash function	$h(x) = x \mod$	od 11.	Suppos	se the	followin	ng keys are ins	erted (in the
order shown) into an empty hash table.	51, 38,	72, 22,	27,	36, 3	18,	49		
Draw the resulting hash table, if the collision			•		•			(10 pts.)
i. separate chaining								
ii. open addressing with quadratic probi	ng							
Answer to part (i)				Answe	r to p	art (ii)		
Separate chaining:	1			Quadra	atic p	robing:		
			0					
			1					
			2					
			3					
			4					
			5					
			6					
			7					
			8					
			9					
			10					
b) Considering your answer to part (ii) of (a	only, i.e. h	ash table cre	eated 1	using qu	ıadrat	ic probin	ng:	
i. What is the load factor of the table?								(1 pts.)
ii. What is the average number of probes in a	successful s	search?						(2 pts.)
iii. What is the average number of probes in	an unsuccess	sful search?						(2 pts.)

Q4. (15 pts)

a) Write the results of the depth-first and breadth-first traversals of the given graph starting at node A. If several nodes can be chosen at some step, pick the one alphabetically first.

Depth-first traversal	
Breadth-first traversal	

- **b)** Given the iterations of the Dijsktra's algorithm for a directed graph with positive edge weights:
- i. Fill in the blank cells in the given iterations table on the right.

ii. Write down the shortest path found from A to E.

With down the shortest path round from it to D.			Iteration 1					
	Node	A	В	C	D	Е		
	Distance	0	8	5	8	8		
iii. Draw the graph for which these iterations are given.	Path	-						
			Iterati	C D E 5 ∞ ∞ On 2 C D E 5 12 14 On 3 C D E 5 10 14 On 4 C D E 5 10 11 On 5 nge.				
	Node	A	В	C	D	Е		
	Distance	0	7	5	12	14		
	Path	-						
	Iteration 3							
	Node	A	В	C	D	E		
	Distance	0	7	5	10	14		
	Path	-						
	Iteration 4							
	Node	A	В	C	D	Е		
	Distance	0	7	5	10	11		
	Path	-						
	Iteration 5							
	No change. Same as Iteration 4.							

Q5. (17 pts)

Given the following definition:

```
struct TreeNode {
   int item;
   TreeNode *left;
   TreeNode *right;
}
```

a) Complete the recursive C++ function below to delete all the nodes of the given tree t. You are NOT allowed to declare any other identifier or to use a looping statement.

<pre>void delTree(TreeNode* &t) { if(!t) return;</pre>	

b) Given the root of a binary search tree t and two positive integer numbers min and max, trim the tree such that all the numbers in the new tree are between min and max (inclusive). The resulting tree should still be a valid binary search tree. Thus, if we get the tree on the left as input and we are given min value as 5 and max value as 13, then the resulting binary search tree should be the one on the right after removing all the nodes whose value is not between min and max:

Complete the following recursive C++ function to perform the trim operation explained above. You can use the function developed in part (a). You are NOT allowed to declare any other identifier or to use a looping statement.

```
void trimBST(TreeNode* &t, int min, int max) {
   TreeNode *toDelete=t;
```

}

```
// if this item is less than min

// else if this item is greater than max

// else --that is, if this item is in the range [min, max]
else {
    trimBST(t->left , min, max);
    trimBST(t->right, min, max);
}
```

Q6. (23 pts) Finding a Path Between Two Vertices

Given an unweighted, directed, and strongly connected graph, we will provide code for two functions in this question: the first function computes a path (any path is OK, no need for the shortest path) from a given starting vertex s to a destination vertex d. And the second function prints the path from s to the destination vertex d. The data structure that holds a single vertex information is defined below. A global array V will contain pointers to all of the properly constructed vertices in the graph. Also, suppose that the constant NUMV represents the number of vertices in the graph (vertex IDs will be between 0 and NUMV-1, inclusive). For this question, you don't need to worry about or handle any exceptions that might be thrown in your code. Don't define any variables of your own. Don't define any helper methods or new data types. Don't use recursion. A sample main function, and its output is also provided below.

For example, a pointer p that points to vertex 6 in the given figure will contain the following information:

```
p->id = 6
p->numNeighbors = 3
p->neighborIds = {9, 10, 17}
p->visited = <uninitialized>
p->path = <uninitialized>

Sample main:

void main ( void ) {
  computePathBetween( V[3] , V[9] ) ;
  printPathTo(9) ;
}
```

One possible output for sample main:

3 12 4 17 6 9

Important Stack ADT Operations:

Important Queue ADT Operations:

```
#define NUMV (18)
               // Number of vertices
void computePathBetween ( Vertex * s , Vertex * d ) {
      i
int
Vertex
          *v , *w ;
 Queue<Vertex*> q ;
// Don't forget to mark all vertices as unvisited first
 while ( ! q.isEmpty() )
 }
void printPathTo ( int d ) {
Stack<int> s ;
```