Classification Model

classification

- Predict: Category from input variables
- Goal: Match model outputs to targets (desired outputs)

Classification algorithms

- kNN (k-Nearest Neighbor)
- Decision tree
- Logistic Regression
- SVM (Support Vector Machine)
- Neural Network

K-NN

K-Nearest Neighbor Classification

K-NN (K-nearest neighbor classification)

- Classify based on similarity to other cases
 - Cases that are near each other are said to be "neighbors"
 - Assign a class by looking at the most popular class from its k-nearest (closest) neighbors

K-NN algorithm

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

K-NN parameter = K

- Pick a value for K.
- Calculate the distance of unknown case from all cases.
- 3. Select the K-observations in the training data that are "nearest" to the unknown data point.
- 4. Predict the response of the unknown data point using the most popular response value from the K-nearest neighbors.

K too small -> easily cause overfitting

K-NN algorithm

Dis
$$(x_1, x_2) = \sqrt{\sum_{i=0}^{n} (x_{1i} - x_{2i})^2}$$

K-NN (K-nearest neighbor classification)

Selecting best K value from training among various K

K-NN (K-nearest neighbor classification)

 Selecting best K value from training among various K

k-NN

No	Weather	Temp	Play	Weather_encod ed	temp_encod ed	Play_encod ed
1	Sunny	Hot	No			
2	Sunny	Hot	No			
3	Overcast	Hot	Yes			
4	Rainy	Mild	Yes			
5	Rainy	Cool	Yes			
6	Rainy	Cool	No			
7	Overcast	Cool	Yes			
8	Sunny	Mild	No			
9	Sunny	Cool	Yes			
10	Rainy	Mild	Yes			
11	Sunny	Mild	Yes			
12	Overcast	Mild	Yes			
13	Overcast	Hot	Yes			
14	Rainy	Mild	No			

Test#1

Weather = Overcast & Temp = Mild -> Play = ? k = 1, k=3, k=6

Test#2

Weather = Rainy & Temp = Mild -> Play = ? k=1, k=3, k=6

Decision tree

Decision tree

Impurity(S) = $-\sum_{c=1}^{N} p_c \cdot \log_2 p_c$

- Attempt to
 - Split data into "pure" regions
- Start with all samples at a node.
- Partition samples based on input to create purest subsets.
- Repeat to partition data into successively purer subsets

Decision tree parameters

- Decision Tree
 Parameters
 - Tree depth = θ 1
 - Tree size = θ 2

When to stop partitioning

- 1) All (or X% of) samples have same class label in each node
- 2) Number of samples in node reaches minimum
- 3) Change in impurity measure is smaller than threshold
- Max tree depth is reached
- 5) Others...

Which attribute should be selected?

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
р3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	M	Low	Normal	Drug B
p6	Senior	M	Low	High	Drug A
p7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	M	Low	Normal	Drug 8
p10	Senior	M	Normal	Normal	Drug B
p11	Young	M	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	M	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A

S: [3 B, 4 A] E = 0.985 S: [6 B, 1 A]

E = 0.592

Gain (s, Sex) = 0.940 - [(7/14)0.985 + (7/14)0.592] =0.151 ?

Impurity(S) =
$$-\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

 $E = -p(B)\log(p(B)) - p(A)\log(p(A))$

 $E = -(9/14)\log(9/14) - (5/14)\log(5/14)$

E = 0.940

Which attribute should be selected?

- What should be next splitting rule for Female between Age or Cholesterol?
 - Entropy (Age)
 - Entropy (Cholesterol)
 - Information Gain (Age)
 - Information Gain (Cholesterol)