Data Mining - Lab 06 - Feature Scaling and Regression

Nguyễn Đức Vũ Duy - 18110004

Data Integration

```
1 #Import libraries
 2 # Supress Warnings
 4 import warnings
 5 warnings.filterwarnings('ignore')
 7 # Import the numpy and pandas package
 8 import numpy as np
 9 import pandas as pd
10
11 # Data Visualisation
12 import matplotlib.pyplot as plt
13 import seaborn as sns
14
15 # Import library for label encoder
16 from sklearn.preprocessing import LabelEncoder
17
18 # Import library for scaling
19 from sklearn.preprocessing import MinMaxScaler
20
21 # Import library for spliting training and testing data
22 from sklearn.model selection import train test split
23
24 # Import library of RMSE
25 from sklearn.metrics import mean squared error
26
27 # Import libraries for model Building
28 from sklearn.linear model import LinearRegression
29 from sklearn.linear_model import Ridge, Lasso
30 from sklearn.tree import DecisionTreeRegressor
31 from sklearn.neighbors import KNeighborsRegressor
32 from sklearn.ensemble import RandomForestRegressor
```

Sau khi làm lại 2 bài trên thì áp dụng kết hợp các bước ở trên để thực hiện giải bài toán Regression tốt nhất cho dữ liệu sau "insurance.csv". Cần dự đoán cột charges.

Trong bài tập "Regression Methods (Customer Churn Analysis)" ta có các bước :

Data Cleansing

EDA

Encoding

Feature Scaling

Feature Selection (Feature Importance)

Model Building

Model Evaluation

Data Integration

- 1 #Import dataset
- 2 path='https://raw.githubusercontent.com/duynguyenhcmus/Repository/main/Hock
- 3 df=pd.read_csv(path)
- 4 df.head()

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

- 1 #Print data information
- 2 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	age	1338 non-null	int64
1	sex	1338 non-null	object
2	bmi	1338 non-null	float64
3	children	1338 non-null	int64
4	smoker	1338 non-null	object
5	region	1338 non-null	object
6	charges	1338 non-null	float64

dtypes: float64(2), int64(2), object(3)

memory usage: 73.3+ KB

1 #Print data describe

2 df.describe()

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

Data cleaning

- 1 #Check for null values
- 2 df.isnull().sum()*100/df.shape[0]
- 3 #No null values

age 0.0 sex 0.0 bmi 0.0 children 0.0 smoker 0.0 charges 0.0 dtype: float64

▼ EDA

- 1 #Age features
- 2 fig,ax=plt.subplots()
- 3 sns.distplot(a=df.age, bins=10,ax=ax)
- 4 plt.title('Age group historgram')
- 5 #Not a normal distribution with a majority of people is at the age range of

Text(0.5, 1.0, 'Age group historgram')


```
1 #Sex features
2 fig, axs = plt.subplots(1,2, figsize = (10,4))
3 plt1 = sns.countplot(df['sex'], ax = axs[0])
4
5 pie_churn = pd.DataFrame(df['sex'].value_counts())
6 pie_churn.plot.pie( subplots=True,labels = pie_churn.index.values, autopct=
7 # Unsquish the pie.
8 plt.gca().set_aspect('equal')
9
10 plt.show()
11 #It's balance between 2 sex group
```


1 #bmi features


```
2 sns.boxplot(x = 'sex', y = 'bmi', data = df)
3 plt.show()
4 #Male tend to get more outlier than woman. BMI score between 2 sexes is bal
```



```
1 #children feature
2 fig, axs = plt.subplots(figsize = (10,5))
3 sns.countplot(df['children'], ax = axs)
4 plt.title('Children feature countplot')
5 #It's not balance with children at group 4 and 5
```

Text(0.5, 1.0, 'Children feature countplot')


```
1 #smoking feature
2 fig, axs = plt.subplots(1,2, figsize = (15,5))
3 plt1 = sns.countplot(df['smoker'], ax = axs[0])
4
5 pie_churn = pd.DataFrame(df['smoker'].value_counts())
6 pie_churn.plot.pie( subplots=True,labels = pie_churn.index.values, autopct=7 # Unsquish the pie.
8 plt.gca().set_aspect('equal')
```

11 #A majority of people is non-smoker

1 #region feature

2 fig, axs = plt.subplots(figsize = (10,5))

3 sns.countplot(df['region'], ax = axs)

4 plt.title('region')

5 #It's quite balance between the number of different groups

Text(0.5, 1.0, 'region')


```
2 fig, axs = plt.subplots(1,2, figsize = (20,5))
3 plt1 = sns.boxplot(df['charges'], ax = axs[0])
4 plt1.set_title('boxplot of charges')
5 plt2 = sns.boxplot(data=df, x='sex',y='charges',ax=axs[1])
6 plt2.set_title('boxplot of charges of each sex')
7
8 plt.show()
9 #Both sex and each sex have a lot of outliers
```


Encoding

```
1 #Using label encoding from sklearn
2 label = LabelEncoder()
3 data_colums = df.dtypes.pipe(lambda X: X[X=='object']).index
4 for col in data_colums:
5     df[col] = label.fit_transform(df[col])
6
```

Feature scaling

```
1 #Train test split for feature scaling
 2 X=df.iloc[:,:-1].copy()
 3 y=df.iloc[:,-1].copy()
 4 X train, X test, y train, y test = train test split(X,y,test size=0.2,randc
 1 # copy of datasets
 2 X train norm = X train.copy()
 3 X test norm = X test.copy()
 5 # numerical features
 6 num_cols = ['age','bmi']
 7 # apply standardization on numerical features
 8 for i in num cols:
      # fit scaler on training data
      norm = MinMaxScaler().fit(X train norm[[i]])
10
11
     # transform the training data column
     X train norm[i] = norm.transform(X_train_norm[[i]])
12
     # transform the testing data column
13
      X_test_norm[i] = norm.transform(X_test_norm[[i]])
14
```

Feature Selection

```
1 # Let's see the correlation matrix
2 plt.figure()
3 sns.heatmap(df.corr(),annot = True)
```

- 4 plt.show()
- 5 #The correlation between features is quite low. So there is no implication
- 6 #However, sex, bmi, children and region have very low correlation with the

- 1 #Remove uncorrelated features
- 2 df=df.drop(['sex','bmi','children','region'],axis=1)
- 3 df.head()

	age	smoker	charges
0	19	1	16884.92400
1	18	0	1725.55230
2	28	0	4449.46200
3	33	0	21984.47061
4	32	0	3866.85520

Hãy sử dụng các thuật toán Regression : Linear, Ridge, Lasso, Decision Tree, K Neighbour, Random Forest Regression và so sánh RMSE.

Model building

^{1 #}Build Model

² rmse=[]

```
4 #Linear Regression
 5 linear regression=LinearRegression().fit(X train, y train)
 6 y_linear_regression=linear_regression.predict(X_test)
 7 rmse.append(mean_squared_error(y_linear_regression,y_test,squared=False))
 9 #Ridge Regression
10 ridge regression=Ridge(alpha=1).fit(X train,y train)
11 y_ridge_regression=ridge_regression.predict(X_test)
12 rmse.append(mean_squared_error(y_ridge_regression,y_test,squared=False))
13
14 #Lasso Regression
15 lasso_regression=Lasso(alpha=1).fit(X_train,y_train)
16 y_lasso_regression=lasso_regression.predict(X_test)
17 rmse.append(mean_squared_error(y_lasso_regression,y_test,squared=False))
18
19 #Decision Tree Regression
20 decision_tree=DecisionTreeRegressor(max_depth=5, random_state=0).fit(X_trai
21 y_decision_tree=decision_tree.predict(X_test)
22 rmse.append(mean_squared_error(y_decision_tree,y_test,squared=False))
23
24 #K Neighbors Regression
25 k neighbors=KNeighborsRegressor(n neighbors=10).fit(X train,y train)
26 y k neighbors=k neighbors.predict(X test)
27 rmse.append(mean_squared_error(y_k_neighbors,y_test,squared=False))
28
29 #Random forest regression
30 random_forest=RandomForestRegressor(n_estimators=50).fit(X_train,y_train)
31 y random forest=random forest.predict(X test)
32 rmse.append(mean_squared_error(y_random_forest,y_test,squared=False))
33
```

Model evaluation

```
1 # visualizing the result
2 df_dt = pd.DataFrame({'RMSE':rmse},index=['Linear regression','Ridge Regres
3 df_dt
4
5
```

	RMSE
Linear regression	4626.282460
Ridge Regression	4624.517125
Lasso Regression	4625.986412
Decision Tree Regression	4542.606272
K Neighbors Regression	5998.767660

Random Forest Regression 4879.058564