

Fraud Data Scientist Case

- Andressa Ribeiro
- e-mail: andressaribeiro@usp.br

PROBLEM STATEMENT

CREDIT CARD TRANSACTIONS

- Source: <u>Kaggle Fraud Detection Dataset</u>.
- Objective: Build a robust ML model in Python to improve the fraud detection system.
- Description: Credit card transaction dataset labeled with **is_fraud**.
 - Structure:
 - fraudTrain.csv: For model training and refinement.
 - fraudTest.csv: Exclusively for model performance evaluation.

Volume of transactions: 1,852,394

EXPLORATORY DATA ANALYSIS

- Higher transaction values show a stronger relationship with fraudulent activity.
- Fraud concentrated in 30-50 age range, possibly due to higher value/volume transactions.
- Legitimate transactions peak among 20-35 year olds.
- From ~40 years onwards, fraudulent transaction density surpasses legitimate ones.

EXPLORATORY DATA ANALYSIS

- When considering the total fraudulent amount, states like New York,
 Pennsylvania, and Texas stand out.
- Overall, the Midwest and Northeast regions show a higher concentration of fraud compared to other areas.
- The most frequently defrauded categories are shopping, miscellaneous, and groceries.

EXPLORATORY DATA ANALYSIS

- Fraudulent transactions tend to occur more frequently during early morning hours (overnight).
- There's also a pattern of increased fraud at the beginning of the year and specifically between Wednesday and Friday.
- Addressed high-cardinality features
 (merchant, city, job) by prioritizing
 grouped features or advanced encoding to
 prevent overfitting.

MODELING

- Tackled severe class imbalance with SMOTE + Undersampling, resulting in a balanced training set of 156,540 samples (41% fraud).
- Conducted rigorous hyperparameter tuning across multiple algorithms (e.g., LightGBM, XGBoost) using 8-fold Cross-Validation, optimizing for AUC.
- Ensured model generalization and stability through Nested Cross-Validation (3 outer / 5 inner folds) and a final 10fold CV on the best model's parameters.

Algorithm	AUC	Recall	
Logistic Regression	0.960	0.825	
Decision Tree	0.952	0.771	
Random Forest	0.963	0.790	
XGBoost	1.000	0.991	
LightGBM	1.000	0.991	

PREDICTING

Test metrics:

F1-Score: 94.65%

True positive (TP): 2,146

False positive (FP): 16

False negative (FN): 52,861

Recall: TP/(TP+FP)

After model: 99.25%

No baseline available

PREDICTING

FINANCIAL RESULTS

NET FINANCIAL IMPACT

			V Z	1	
		1	\mathbf{v}		
WI	TA T			,,,,	

Potential Fraud Loss (R\$) -R\$ 793,327.28

Lost Revenue from False Positives (R\$)

Avoided Fraud Loss (R\$)

Net Financial Impact (R\$)

R\$ 0

R\$ 0

-R\$ 793,327.28

WITH MODEL

Potential Fraud Loss (R\$)

-R\$ 475.26

Lost Revenue from False Positives (R\$)

+R\$ 792,852.02

-R\$ 306,928.35

Net Financial Impact (R\$)

Avoided Fraud Loss (R\$)

+R\$485.448,41

THANK YOU!

Andressa Ribeiro

e-mail: andressaribeiro@usp.br