Cálculo para Ciências

——— Folha 1 ———— outubro de 2021 ————

Exercício 1. Sejam x e y dois números reais tais que x < y. Diga, justificando, se cada uma das seguintes relações são verdadeira ou falsa:

- a) $x^2 < y^2$;
- b) $x^3 < y^3$:

- c) $\frac{1}{x} < \frac{1}{y} (x, y \neq 0);$
- d) $x < \frac{x+y}{2} < y$.

Exercício 2. Represente em extensão os seguintes conjuntos:

- a) $\{x \in \mathbb{R} : |x+4| = 3\};$
- b) $\{x \in \mathbb{R} : \sqrt{(x+1)^2} = 3\};$
- c) $\{x \in \mathbb{R} : |x| = |x+2|\};$

- d) $\{x \in \mathbb{R} : (x^2 7)^2 = 0\};$
- e) $\{x \in \mathbb{R} : \sqrt{3x+1} = 2x\};$
- f) $\{x \in \mathbb{R} : |x| |x+3| = 4\}.$

Exercício 3. Em cada uma das alíneas seguintes encontre encontre números reais a e ε de modo a que a solução da inequação $|x-a|<\varepsilon$ seja o intervalo dado:

- a)]-2,2[;
- b)]-4,0[;

- c)]0,4[;
- d)]-3,7[.

Exercício 4. Exprima cada uma dos conjuntos seguintes na forma de intervalo ou reunião de intervalos:

- a) $\{x \in \mathbb{R} : 1 x \le 2\};$
- b) $\{x \in \mathbb{R} : 0 \le 1 2x \le 1\};$
- c) $\{x \in \mathbb{R} : x^2 > 5\};$
- d) $\{x \in \mathbb{R} : x^2(x^2 1) \ge 0\};$
- e) $\{x \in \mathbb{R} : |5 \frac{1}{x}| < 1\};$
- f) $\{x \in \mathbb{R} : |3 x| \ge 2\};$
- g) $\{x \in \mathbb{R} : |5x + 2| \le 1\};$
- h) $\{x \in \mathbb{R} : x^3 \ge 4x\};$
- i) $\{x \in \mathbb{R} : 6x^2 5x \le -1\};$
- j) $\{x \in \mathbb{R} : |3x 2| \le 1\};$

- k) $\{x \in \mathbb{R} : 2 < |x| < 3\};$
- l) $\{x \in \mathbb{R} : |x-1| < |x-2|\};$
- m) $\{x \in \mathbb{R} : \frac{1-x}{2x+3} > 0\};$
- n) $\{x \in \mathbb{R} : |x+2| + |x-2| < 10\};$
- o) $\{x \in \mathbb{R} : |x^2 1| \le 1\};$
- p) $\{x \in \mathbb{R} : 2x^2 \le 4\};$
- q) $\{x \in \mathbb{R} : 4 < x^2 < 9\};$
- r) $\{x \in \mathbb{R} : \frac{x}{x-2} \le 0\};$
- s) $\{x \in \mathbb{R} : |x 3| < 2|x|\};$
- t) $\{x \in \mathbb{R} : |x+1| > |x-3|\}.$

Exercício 5. Represente os seguintes números racionais sob a forma de quociente de números inteiros:

a) 1, 25;

c) 5, (3);

b) 2,374;

d) 54, 134(728).

Exercício 6. Escreva sob a forma de dízima as seguintes frações:

a) $\frac{3}{7}$;

c) $\frac{7}{101}$;

b) $\frac{29}{4}$;

d) $\frac{274301}{3300}$

Exercício 7. Encontre um número racional e um número irracional no intervalo:

a)
$$\left] \frac{1}{1000}, \frac{2}{1000} \right[;$$

b)
$$\frac{1}{101}, \frac{1}{100}$$
 [.

Exercício 8. Determine o conjunto dos majorantes, o conjunto dos minorantes e, se existirem, o supremo, o ínfimo, o máximo e o mínimo de cada um dos seguintes conjuntos:

- a) $[-\sqrt{5},3] \cap \mathbb{Q}$; b) $[0,\sqrt{3}] \cap \mathbb{R} \setminus \mathbb{Q}$; c) $\{x \in \mathbb{Q} : x^2 < 11\}$; f) $\{x \in \mathbb{R} \setminus \mathbb{Q} : x \le 0 \land |x^2 1| < x + \flat\}$; g) $\{x \in \mathbb{R} : 5 x^2 < 1\}$; h) $\{2 + 1/n : n \in \mathbb{N}\} \cup \{x \in \mathbb{R} : x^2 < 1\}$.

Exercício 9. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = 1 + |x|. Considere os conjuntos

$$A = f([-4,1[))$$
 e $B = f(]-\infty,-2])$.

- a) Especifique os conjuntos A e B e determine os correspondentes conjuntos de majorantes e de minorantes.
- Determine, se existirem, o supremo, o ínfimo, o máximo e o mínimo de cada um dos conjuntos considerados.

Exercício 10. Indique, justificando, o valor lógico de cada uma das seguintes proposições:

- a) $\forall x \in \mathbb{R} : x > 7 \Longrightarrow |x| > 7$;
- b) $\forall x \in \mathbb{R} : |1 + 4x| < 1 \Longrightarrow x \ge -\frac{1}{2};$
- c) $\forall x \in \mathbb{R} : |x| \ge 1 \Longrightarrow x \ge 1;$
- d) $\forall x \in \mathbb{R} : |x 5| \le 2 \Longrightarrow 3 < x < 7.$

Exercício 11. Indique quais das seguintes relações são verdadeiras. Dê um contraexemplo para as relações que forem falsas.

$$\sqrt{x+y} = \sqrt{x} + \sqrt{y}; \qquad \sqrt{xy} = \sqrt{x}\sqrt{y}; \qquad (x+y)^n = x^n + y^n; \qquad (xy)^n = x^n y^n.$$