18/03/25, 12:59 OneNote

HOW SHOULD I ORGANIZE THE PROBLEM?

So the expected result is the penceron, where the activation function is a Heaviside, i.e. the threshold $\theta_K = 0$ \forall_K .

The idea is that I should have:

· a constrict matrix J_{ij} , where $\forall i,j: J_{ij} = w_{ij}$ so each element is the meist of the (Direction) link node j -> node i. If $J_{ij} = 0$ -> no link

For this natrix I should number the never from left to right and from up to lown, i.e.

if should be Jij E &-1,1 and this represent only the presence or absence a link bother two nevrous while the meights are a litterent variable, which trained through backpropas

Therefore, the Limson of J_i ; depends on S_{K_i} i.e. the of introneurous, in particular, J_i ; is a $N \times N$ matrix, where $N = 2 + S_K + 1$.

Input was sorper was sorper was.

Here the impatis binary: O or 1 , and also the output.

The threshold range should be from the maximum possible value of $w \cdot x$ to the minimum; $\mathcal{E}_{K} \in [-\min(w), \max(w)]$

Is it 8x c [1,+1]?

. Oh maybe $J_{ij} \in [-1,+1]$ and the perceptron is the best one be g_K it's in the middle of the range. But so it would be the same if $J_{ij} \in [0,2]$ and $g_K = +1$ for the perceptron?

. I think I can go nithout bias here.

.
$$cost: \frac{\sum_{ij} g(J_{ij})}{2}$$
 where $g(x) = \begin{cases} 0 & \text{if } x = 0 \end{cases}$
Shows IT BE savage 3?

JONANOE :

- 1) Perde J:; ∈ (-1, +1)?
- 2) in threshold tracheri? o theore?
- 3) Is the cost function right like this?
- 4) Should I use back propagation?

or is it

Ly or mappe it's $J_{ij} \in \{-1, +1\}$ where -1: no limit $J_{ij} = \{-1, +1\}$ where -1: no limit $J_{ij} = \{-1, +1\}$ and then the neights are not, through the EA, but v : v = |v| by back propagation? saysted (i.e. $J_{ij} = \{-1, -1\}$

5) Is N the total number of possilk networks?
i.e. |N|=N?

SKETCH OF THE ALGORITHM

So the idea being:

") I create all the possible networks,

- 2) Solicit solutions
- 3) Train and back prep.
- 4) Calculate fitters volve , e. loss for every salution
- s) Selection
- 6) Mutation + rul generation
- 7) Back to step (3).