Exploratory data analysis on TITANIC dataset

Data importing

Import the data into r by using function read.csv, we use the parameter na.string to specify the pattern of missing values.

```
df = read.csv('titanic_train.csv', na.strings = c("NA", "NaN", "", " "))
You also see some properties of dataset with dim() and str().
dim(df)
## [1] 891 11
str(df)
## 'data.frame':
                    891 obs. of 11 variables:
   $ survived: int 0 1 1 1 0 0 0 0 1 1 ...
   $ pclass : int 3 1 3 1 3 3 1 3 3 2 ...
##
              : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 417 581 .
   $ name
              : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
  $ sex
##
                     22 38 26 35 35 NA 54 2 27 14 ...
                     1 1 0 1 0 0 0 3 0 1 ...
   $ sibsp
              : int
##
   $ parch
              : int
                     0 0 0 0 0 0 0 1 2 0 ...
   $ ticket
              : Factor w/ 681 levels "110152", "110413", ...: 524 597 670 50 473 276 86 396 345 133 ...
##
   $ fare
              : num 7.25 71.28 7.92 53.1 8.05 ...
              : Factor w/ 147 levels "A10", "A14", "A16",...: NA 82 NA 56 NA NA 130 NA NA NA ...
   $ cabin
   $ embarked: Factor w/ 3 levels "C","Q","S": 3 1 3 3 3 2 3 3 3 1 ...
```

The dim() function gives us a vector of 2 items including the number of rows/records/observation and the number of columns/features/fields. Meanwhile, function str() shows the basic characteristics of each columns such as data type and some values in the column.

Some common statistics are also calculated by using summary() function:

summary(df)

survived

##

```
pclass
##
           :0.0000
    \mathtt{Min}.
                      \mathtt{Min}.
                              :1.000
    1st Qu.:0.0000
                      1st Qu.:2.000
##
   Median :0.0000
                      Median :3.000
##
   Mean
           :0.3838
                      Mean
                              :2.309
##
    3rd Qu.:1.0000
                      3rd Qu.:3.000
           :1.0000
                              :3.000
##
    Max.
                      Max.
##
##
                                          name
                                                        sex
                                                                       age
##
   Abbing, Mr. Anthony
                                                    female:314
                                                                  Min.
                                                                         : 0.42
    Abbott, Mr. Rossmore Edward
##
                                               1
                                                    male :577
                                                                  1st Qu.:20.12
    Abbott, Mrs. Stanton (Rosa Hunt)
                                               1
                                                                  Median :28.00
##
    Abelson, Mr. Samuel
                                               1
                                                                  Mean
                                                                         :29.70
    Abelson, Mrs. Samuel (Hannah Wizosky):
                                                                  3rd Qu.:38.00
##
    Adahl, Mr. Mauritz Nils Martin
                                               1
                                                                         :80.00
                                                                  Max.
##
    (Other)
                                            :885
                                                                  NA's
                                                                          :177
##
        sibsp
                                             ticket
                         parch
                                                             fare
   Min.
         :0.000
                     Min.
                            :0.0000
                                        1601
                                                :
                                                        Min.
```

```
##
    1st Qu.:0.000
                    1st Qu.:0.0000
                                      347082 :
                                                 7
                                                      1st Qu.: 7.91
##
   Median :0.000
                    Median :0.0000
                                      CA. 2343:
                                                      Median: 14.45
                                                 7
                                      3101295 :
##
   Mean
           :0.523
                    Mean
                            :0.3816
                                                      Mean
                                                             : 32.20
    3rd Qu.:1.000
                    3rd Qu.:0.0000
                                      347088 :
                                                      3rd Qu.: 31.00
##
                                                 6
##
    Max.
           :8.000
                    Max.
                            :6.0000
                                      CA 2144 :
                                                 6
                                                      Max.
                                                             :512.33
                                      (Other) :852
##
##
                      embarked
            cabin
##
    B96 B98
               :
                 4
                      C
                           :168
   C23 C25 C27:
##
                  4
                      Q
                           : 77
                           :644
##
    G6
                  4
                      S
##
   C22 C26
                  3
                      NA's:
##
                  3
   D
##
    (Other)
               :186
##
   NA's
               :687
```

The function object.size() returns the memory allocation of data frame.

```
object.size(df)
```

```
## 187304 bytes
```

To reduct the size of data frame, we can specify the data type of each column after reading:

```
print(paste('Size of df before optimize:', object.size(df)))

## [1] "Size of df before optimize: 187304"

df$survived = as.logical(df$survived)

df$ticket = as.numeric(df$ticket)

print(paste('Size of df after optimize:', object.size(df)))
```

```
## [1] "Size of df after optimize: 145160"
```

Data cleaning

Detecting missing values

In R, function is.na() return the logical vector which indicate if the value is missing or not. Count the number of missing values in the dataset:

```
sum(is.na(df))
## [1] 866
```

```
To count missing values per columns:
```

```
colSums(is.na(df))
## survived
               pclass
                            name
                                       sex
                                                 age
                                                         sibsp
                                                                   parch
                                                                            ticket
##
           0
                                         0
                                                 177
                                                                       0
##
       fare
                cabin embarked
                   687
##
           0
```

Handling missing values

Drop the columns:

```
df <- subset(df, select=-c(age, cabin))
print(dim(df))</pre>
```

```
## [1] 891 9
Drop the rows:

df <- subset(df, !is.na(df$embarked))
print(dim(df))

## [1] 889 9</pre>
```

Detecting the outliers

Visualize the variable by using Boxplot to investigate the potential outliers:

```
boxplot(df$fare,
    main='Boxplot of Fare')
```

Boxplot of Fare

Or using the histogram: $\,$

```
library(ggplot2)
g <- ggplot(df)
g <- g + geom_histogram(aes(x=fare), binwidth = 20)
g <- g + geom_density(aes(x=fare, y=..count.. * 30))
g</pre>
```


Data transformation

Apply log-transformation to fare features to normalize this variable:

```
fare_log <- log1p(df$fare)
g <- ggplot()
g <- g + geom_histogram(aes(x=fare_log))
g</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Remove the outliers using Z-Score

Calculating Z-Score of data series and remove the records whose Z-score greater than 2 or less than -2:

```
fare_zscore <- (fare_log - mean(fare_log))/sd(fare_log)
outlier <- abs(fare_zscore) > 2
df_non_outliers <- subset(df, !outlier)
print(dim(df_non_outliers))</pre>
```

```
## [1] 836 9
```

Visualize the data after remove outliers:

```
g <- ggplot()
g <- g + geom_histogram(aes(x=fare_log)) + xlim(0,6)
g</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

- ## Warning: Removed 3 rows containing non-finite values (stat_bin).
- ## Warning: Removed 2 rows containing missing values (geom_bar).

Bivariate analysis

Calculating the correlation matrix:

```
df_numeric <- df[sapply(df, is.numeric)]
df_cor <- cor(df_numeric)
df_cor</pre>
```

```
## pclass sibsp parch ticket fare
## pclass 1.00000000 0.08165562 0.01682449 0.31623767 -0.54819329
## sibsp 0.08165562 1.00000000 0.41454164 0.07802779 0.16088685
## parch 0.01682449 0.41454164 1.00000000 0.01824859 0.21753204
## ticket 0.31623767 0.07802779 0.01824859 1.00000000 -0.01064211
## fare -0.54819329 0.16088685 0.21753204 -0.01064211 1.00000000
```

We can also visualize the correlation matrix by heatmap

```
heatmap(df_cor)
```

