Devoir Hors Classe n°4

Qualité du devoir	Note /5
Non rendu	0
Aucun investissement et/ou soin : travail bâclé!	1
Partie du sujet non traitée ou bâclée	2
Travail correct mais qui aurait mérité plus d'investissement	3
Bon travail mais quelques erreurs et/ou manque de soin	4
Très bon travail, soigneux et détaillé	5

Exercice 1

La méthode de la variation de la constante permet de trouver, dans certains cas, une solution particulière à une équation différentielle. Dans cet exercice, on cherche à résoudre l'équation différentielle :

(E) :
$$y' + y = \frac{1}{1 + e^x}$$
.

- 1. Résoudre l'équation différentielle homogène associée (H): y' + y = 0.
- 2. Soit f une solution de l'équation différentielle $y' + y = \frac{1}{1 + e^x}$. On cherche alors une fonction C définie et dérivable sur \mathbb{R} telle que pour tout réel x, $f(x) = C(x)e^{-x}$.
 - a) On admet que f est dérivable sur \mathbb{R} . Exprimer f'(x) pour tout réel x.
 - b) On rappelle que f est solution de (E). En déduire que $C'(x) = \frac{e^x}{1+e^x}$ pour tout réel x.
 - c) Déterminer une fonction C qui convienne et exprimer une solution de (E).
- 3. En déduire l'ensemble des solutions (E).

Exercice 2

Le but de cet exercice est d'introduire la notion d'intégrale.

- 1. On considère la fonction $f: x \mapsto 2e^{2x}$ définie sur \mathbb{R} .
 - a) Donner deux primitives F_1 et F_2 de la fonction f.
 - b) Soient $a, b \in \mathbb{R}$, donner une expression de $F_1(b) F_1(a)$ et de $F_2(b) F_2(a)$.
 - c) Que remarque-t-on? Justifier que cela reste vrai peu importe les primitives choisies.

Pour une fonction f continue sur [a, b], dont on note F une primitive, on définit :

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

2. Calculer $\int_1^2 x dx$, $\int_1^e \frac{1}{x} dx$ et $\int_0^1 e^x dx$