US Tech Test Report: FCC ID: IC:

Test Report Number: Issue Date: Customer: Model:

FCC Part 15/IC RSS Certification WPEPSASII-03 8031A-PSASII03 19-0415 December 10, 2019 PakSense, Inc. PSASII-03

Maximum Permissible Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, S as per the respective limits in Table 1 below, at a distance, d, of 20 cm from the EUT.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

Therefore, for:

MPE for 902 MHz - 928 MHz

Limit: (f/1500) mW/cm² = 915/1500 = 0.61mW/cm² Peak Power (dBm) = 3.0 dBm Peak Power (Watts) = 0.002 W Gain of Transmit Antenna = $2 dB_i = 1.58$, numeric d = Distance = 20 cm = 0.2 m

> **S = (PG/** $4\pi d^2$) = EIRP/4A = 0.002*(1.32)/4* π *0.2*0.2 $=0.00264/0.5030 = 0.00525 \text{ W/m}^2$ $= (0.00525 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2)$ $= 0.000525 \text{ mW/cm}^2$

which is << less than $S = 0.61 \text{mW/cm}^2$

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:

Model:

FCC Part 15/IC RSS Certification WPEPSASII-03 8031A-PSASII03 19-0415 December 10, 2019 PakSense, Inc. PSASII-03

RSS-102 2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 4.49/f0.5W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10^-2 f^0.6834 W (adjusted for tune-up tolerance), where f is in MHz:
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In this case the Emerson radio operates in the 902-928 MHz therefore the limit is equal to:

1.31 * 10^{-2*} (915)^0.6834= <u>1.38</u> W

The EIRP for the EUT is equal to 3 dBm + 2 dBi = 5 dBm = 0.0032 W << 1.38 W