LaPIS Diagnostic Test Workbook - Mathematics

Name : Mukilan R

Class: 7

Section : B

School : AKV Public School

Login ID : AKV143

Mukilan R's Performance Report

Score: 27/40 Percentage: 67.5%

Mukilan R's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
				ipal Signature	

Basic arithmetic

Topics to be Improved		
LCM	Finding LCM	

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

......

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

Question: 2

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of $2 = \underline{\hspace{1cm}}$

Multiple of 13 =

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Mensuration

Topics to be Improved		
Area	Area of rectangle	

Hi, here in this video you will learn Area

Question: 4

Find which of the shaded portion in the given shape represent it's area.

.....

......

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 5

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

The area of garden = ___ x ___ = __ <math> <math> cm^2

Question: 6

Shade the possible dimension of the door whose area is 500 m^2

$$50~m~\times~10~m$$

$$25 m \times 20 m$$

.....

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25m \times 25m$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Arithmetic mean, mode and median	Mean, Median and Mode	
Range	Finding the range	

Hi, here in this video you will learn Mean, Median, Mode

Question: 7

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 8

question. 8

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is ______ and it is the _____ of a data.

$\underline{Question: 9}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}} , Median = \underline{\hspace{1cm}} and Mode = \underline{\hspace{1cm}}.$

Answer	
Answei	•

of all observation number of observation . Mean = -

Here s sum of all observation = ______, number of observation = ______

Therefore, mean = _____

Arrange the data in ascending order : _____

Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Range

Question: 10

Range of the data = ______ - _____

Answer:

The difference between highest value and lowest value is ______.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$.

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 11

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20+51$$
 $\frac{-38-51}{2}$ $51+38$

$$\frac{-38-5}{2}$$

$$51 + 38$$

.....

......

......

$$\frac{51+20}{2}$$

Answer:

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 12

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Geometry

	Topics to be Improved	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
		·
Hi, here in this video you	u will learn Criteria of congruence	
$Question: 13 \dots \dots$		
Circle the groups that contain	congruent images.	
(identical/non-identical) in sha Example: Square and Rectang	gle are (congruent/not congruent).	
_	le are equal to the corresponding sides of the other triangle, th(SSS/ASA/SAS) criteria .	en two
Answer:		
	(congruent/not congruent) if they are identical in shapes and gles are SSS, and	nd size.
	ria - $(2/3/5)$ sides of the triangle are (ecceptorresponding sides of the other triangle.	qual/
	eria - $(2/3/5)$ sides and (one/two) angle by presponding sides and the included angle of the other triangle.	
	eria - $(2/3/5)$ angles and (one/two) side to the corresponding angles and the included side of the other	
SSS	sides and angles are equal	
SAS	sides and angles are equal	
ASA -	sides and angles are equal	

Question: 15

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Number system

Topics to be Improved					
Positive and negative rational numbers	Identification of positive rational numbers				
Integers	Basics of integers				
Operations on rational numbers	Division of rational numbers				
Fractions	Multiplication of fractions				
Introduction to rational numbers	Basics of rational numbers				

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 16

Segregate positive and negative rational number.

......

Answer:

- If both the numerator and the denominator of a rational number are ______ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is ______ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are _____

Question: 17
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
Answer:
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = $ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
<u>Question: 18</u>
The product of a positive rational number and a negative rational number is rational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Basics of integers
Question: 19
Highlight the ring that contains whole numbers.

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

 $\underline{\textit{Question: 20}}$

Colour the frame of the box which contains the number 1, 4 and -10 $\,$

Whole numbers

Negative numbers

Integers

Naturals numbers

1	~ ~		_	<u>.</u>
\boldsymbol{A}	ns	w	e_1	r:

Whole number consists of 0,1,2,3,4,.... Negative number consists of ______. Natural numbers consists of ______. Integers consists of ______. Now, 1, 4, -10 are in ______.

Question: 21

State whether the statement is true or false. Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of ______.

Therefore, positive numbers are ______ (in/not in) integers.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 22

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

......

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 23

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 24

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn Multiplication on fractions

Question: 25

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $___$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question:	26
Question.	~0

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls
$$=$$
 \times $=$ $=$ $=$

Question: 27

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is ____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn Basics of rational numbers

.....

Question: 28

The numbers in the diagram represents_____

Answer:	
Auswei	

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as ______ numbers.

Question: 29

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

......

denominator is equal to _____(zero/ one/ any integer other than zero).

$Question:\ 30$

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$

$$\frac{-3}{2}$$

$$\frac{12}{-6}$$

$$\frac{4}{0}$$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Comparing Quantities

	Topics	to be I	mpro	oved				
Equivalent ratios	Basic of prop	ortion						
Hi, here in this video you	ı will learn E	Basics	of p	orop	ortio	n		
Question: 31								
If a:b and c:d are equivalent rate	tio, then it can	be exp	ressed	l as _				
Answer: A (proportion / ratio) Standard form to express propo	_		(one/	two) e	quival	ent rat	ios.
$Question: 32 \dots \dots$								
Find the ratio of shaded part to	o unshaded par	rt of A a	and B	. Are	the tw	o rati	os equi	ivalent?
A					В			
Answer: Shaded part of A =, U Ratio of shaded to unshaded part of B =, Unshaded part of B =, Ratio of shaded to unshaded part of shaded to unshaded part of A Fraction form of A (eccentisms, 22)	arts of A isarts of B isqual/ not equal		raction	onal fo	of B.			
				• • • • •				
If a: b:: c: d is proportion, slope $\boxed{a = \frac{bc}{d}}$ $\boxed{c = \frac{ad}{b}}$	ad=cd	et expre	ssion					

1	ns	2114	or.
А	ns	wŧ	27.

Two equivalent ratio which are proportion, it can be written as a : b :: c : d or ____ = ___ (in fraction) . First and fourth term are called ____ and second and third term are called ____. In proportion, product of extreme terms is ____ (equal to/ not equal to) product of middle terms. Therefore, a \times d = ____, then a = ___ and c = ____,

Algebra

Topics to be Improved					
subtraction of algebraic expressions	subtraction of algebraic expressions				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms				

Hi.	here i	in this	video	vou	will	learn	Subtraction	on	expression
,	110101		11400	.,	* * * * * * *	100111	20001011	~	CIIPI CODICI

Question: 34	
--------------	--

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.
The answer is

Question: 35

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i)	Number of boys in school $A = \underline{\hspace{1cm}}$,			
	Number of boys in school $B = \underline{\hspace{1cm}}$.			
	Total number of boys in school A and school B is	+	=	

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 36

Solve the following:

$$\begin{array}{c|c}
3a - 5b \\
\hline
(-) & 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

.....

Hi, here in this video you will learn Addition on expression

Question: 37

Shade the like terms.

Answer:

Given terms are _____

Two or more term have $___$ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 38

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{r^2}$

 $\underline{Answer:}$

_____ (Like / Unlike) terms can be added or subtracted.

	$7r^2+$ r \Box	2	= (7	+ 2	$r^2 = $
--	------------------	---	------	-----	----------

Question: 39

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have : _____.
- (ii) How many icecreams Sam have more than Ram : ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

Ram's chocolate + Sam's chocolates = $___$ + $___$ = $__$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - ___ = ____