Prowadzący	Termin zajęć	Członkowie grupy	Numery indeksów członków grupy
Dr inż. Mariusz Makuchowski	Pt. 15:15	Jakub Solecki	241478
		Oskar Więckowicz	242060

Sprawozdanie z Sterowania Procesami Dyskretnymi Nazwa projektu: wiTi

1. Teoretyczny opis algorytmu

- a. Problem:
 - Do wykonania jest n zadań na pojedynczej maszynie
 - Każde zadanie ma przydzielony termin wykonania zadania
 - Za niewywiązanie się z terminu przydzielana jest kara odpowiednia do opóźnienia
 - Szukamy takiego uszeregowania zadań, aby suma kar była możliwie najmniejsza
- b. Opis zadania:
 - p_i czas trwania zadania
 - w_i waga zadania
 - d_i żądany termin zakończenia zadania
- c. Przebieg algorytmu:

Dla danych zadania i zakończonego czasie \mathcal{C}_i wyliczamy opóźnienie zgodnie ze wzorem:

$$\text{d.} \quad T_i = \begin{cases} 0 & dla \ C_i \leq d_i \\ C_i - d_i & dla \ C_i > d_i \end{cases}$$

e. Minimalizujemy sumę ważonych spóźnień:

$$\sum_{i} w_i T_i$$

Algorytm polega na tym, że mając i-te zadanie ustawiamy je na odpowiednie miejsce uszeregowania, dające najmniejszą możliwą sumę kar za wszystkie zadania w danej konfiguracji. Dla przykładu mamy do uszeregowania 10 zadań. Wybieramy kolejno po jednym zadaniu i tak mając jedno zadanie, nie musimy sprawdzać czy suma kar jest minimalna, gdyż jest to oczywistym. Przy drugim zadaniu mamy do wyboru dwie możliwe kolejności (cyfry oznaczają numer zadania): 1 2 lub 2 1. Wybieramy tę która posiada najmniejszą możliwą sumę kar. Przy zadaniu trzecim mamy więcej możliwości(zakładając, że przy poprzednim uszeregowaniu najlepszą kolejnością okazała się kolejność 1 2): 1 2 3, 1 3 2 lub 3 1 2. Znów wybieramy najlepszą kolejność, tj. dającą najmniejszą sumę kar. Czynność powtarzamy dla wszystkich i zadań w kolejce.

2. Wykres porównujący otrzymane wartości do wartości optymalnych

