

Filter bank methods

Roland Badeau, roland.badeau@telecom-paris.fr

Linear time series (part 2) TSIA202b

The periodogram as a filter bank

 $ightharpoonup w^{v}$ is such that $|W^{v}(\xi)| = \left|\sum_{k \in \mathbb{Z}} w_{k}^{v} e^{-i2\pi\xi k}\right| = \frac{1}{N} \left|\frac{\sin(\pi(\xi - v)N)}{\sin(\pi(\xi - v))}\right|$

Frequency response $\xi \mapsto |W^{\nu}(\xi)|$ with $\nu = 0.1$

The periodogram as a filter bank

- ► The periodogram $\hat{S}_{XX}(v)$ of a centered WSS random process X_t is defined as $\hat{S}_{XX}(v) = \frac{1}{N} \left| \sum_{t=0}^{N-1} X_t e^{-i2\pi vt} \right|^2$
- ► It can also be expressed as

$$\hat{S}_{XX}(v) = N \left| \sum_{k \in \mathbb{Z}} w_k^v X_{N-1-k} \right|^2 = \frac{|Y_{N-1}|^2}{1/N},$$

where
$$Y_t = w^v * X_t$$
, $w_k^v = 0$ if $k \notin [0...N-1]$, and $w_k^v = \frac{1}{N} e^{i2\pi vk}$ if $k \in [0...N-1]$

Une école de l'IMT

Filter bank methods

The periodogram as a filter bank

- ▶ The periodogram is equivalent to filtering the signal X_t by a FIR filter, and computing the energy of the $(N-1)^{th}$ output sample.
- The resulting frequency response W^{ν} has a main lobe with a small width (2/N), but side lobes with high amplitudes.
- Y has a non-zero power on a large frequency band around v, and the estimation of $\hat{S}_{XX}(v)$ is biased.
- Capon's method consists in determining a filter w^v such that $W^v(v) = 1$, which minimizes the energy of the output signal at frequencies other than v.

1/12

Une école de l'IMT

Filter bank methods

Capon's method

- Let $Y = w^{\nu} * X$, where w^{ν} is a FIR filter of support $[0\dots N-1]$, $\mathbf{w}^v = \{w_0^v \dots w_{N-1}^v\}$ and $\mathbf{X} = \{\overline{X_{N-1}} \dots \overline{X_0}\}$.
- ► Then $\mathbb{E}[|Y_{N-1}|^2] = \mathbf{w}^{vH} \mathbf{R}_{XX} \mathbf{w}^{v}$ where $\mathbf{R}_{XX} = \mathbb{E}[\mathbf{X} \mathbf{X}^H]$.
- ► Let $\mathbf{e}(\xi) = [1, e^{i2\pi\xi} \dots e^{i2\pi\xi(N-1)}]^{\top}$. Then $W^{\nu}(\xi) = \mathbf{e}(\xi)^H \mathbf{w}^{\nu}$.
- Let $\mathbf{w}_{\text{opt}}^{V} = \frac{\mathbf{R}_{XX}^{-1} \mathbf{e}(V)}{\mathbf{e}(V)^{H} \mathbf{R}_{VY}^{-1} \mathbf{e}(V)}$. Then for any \mathbf{w}^{V} such that $W^{v}(v) = \mathbf{e}(v)^{H}\mathbf{w}^{v} = 1$

$$\mathbb{E}[|Y_{N-1}|^2] = (\mathbf{w}^{v} - \mathbf{w}_{\text{opt}}^{v})^H \mathbf{R}_{XX} (\mathbf{w}^{v} - \mathbf{w}_{\text{opt}}^{v}) + \frac{1}{\mathbf{e}(v)^H \mathbf{R}_{XX}^{-1} \mathbf{e}(v)}.$$

- ▶ The MVDR filter which minimizes $\mathbb{E}[|Y_{N-1}|^2]$ (*Minimum* Variance) subject to $\mathbf{e}(v)^H \mathbf{w}^v = 1$ (Distortionless Response) is $\mathbf{w}^{v} = \mathbf{w}_{ont}^{v}$
- ► The energy at the output is $\mathbb{E}[|Y_{N-1}|^2] = \frac{1}{\mathbf{e}(v)^H \mathbf{R}_{YY}^{-1} \mathbf{e}(v)}$.

Capon's method

Capon's spectral estimator is

$$\hat{S}_{\text{CAP},XX}(v) = \frac{\mathbb{E}[|Y_{N-1}|^2]}{1/N} = \frac{\mathbf{w}_{\text{opt}}^{v}{}^H \mathbf{R}_{XX} \mathbf{w}_{\text{opt}}^{v}}{1/N} = \frac{N}{\mathbf{e}(v)^H \mathbf{R}_{XX}^{-1} \mathbf{e}(v)}$$

- \blacktriangleright In practice, \mathbf{R}_{XX} is unknown and has to be estimated.
- **Example**: if X_t is white noise, then $\mathbf{R}_{XX} = \sigma_X^2 \mathbf{I}_N$ and

$$\mathbf{w}_{\mathrm{opt}}^{\nu} = \frac{\mathbf{R}_{XX}^{-1} \mathbf{e}(\nu)}{\mathbf{e}(\nu)^{H} \mathbf{R}_{XX}^{-1} \mathbf{e}(\nu)} = \frac{1}{N} \mathbf{e}(\nu)$$

is the same filter as the one involved in the periodogram.

Une école de l'IMT

Filter bank methods

Une école de l'IMT

Filter bank methods

Example : AR(1) process

$X_t = a_1 X_{t-1} + Z_t$ where $a_1 \in]0,1[$ and $Z_t \sim WN(0,\sigma_z^2)$

► Then
$$S_{XX}(v) = \frac{\sigma_Z^2}{|1 - a_1 e^{-i2\pi v}|^2}$$

Example : AR(1) process

PSD of the AR process : $v \mapsto |S_{XX}(v)|$ with $a_1 = 0.99$ and $\sigma_Z^2 = 1$

PARIS 8/12

7/12

Filter bank methods

Example: AR(1) process

$$\mathbf{R}_{XX}^{-1} = \frac{1}{\sigma_Z^2} \begin{bmatrix} 1 & -a_1 & 0 & \dots & 0 \\ -a_1 & 1 + a_1^2 & -a_1 & \ddots & \vdots \\ 0 & -a_1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 + a_1^2 & -a_1 \\ 0 & \dots & 0 & -a_1 & 1 \end{bmatrix}$$

► Therefore $\mathbf{R}_{XX}^{-1}\mathbf{e}(v)=rac{\left|1-a_1\mathbf{e}^{-i2\pi v}
ight|^2}{\sigma_Z^2}(\mathbf{e}(v)+\mathbf{v}(v))$ where $\mathbf{v}(v) = a_1 \left[\frac{e^{-i2\pi v}}{1 - a_1 e^{-i2\pi v}}, 0, \dots, 0, \frac{e^{+i2\pi N v}}{1 - a_1 e^{+i2\pi v}} \right]^{\top}$ and $\mathbf{w}_{\text{opt}}^v = \frac{\mathbf{R}_{XX}^{-1} \mathbf{e}(v)}{\mathbf{e}(v)^H \mathbf{R}_{XX}^{-1} \mathbf{e}(v)} = \frac{\mathbf{e}(v) + \mathbf{v}(v)}{N + 2a_1 \frac{\cos(2\pi v) - a_1}{1 - 2a_1 \cos(2\pi v) + a_1^2}}$

Example: AR(1) process

 \triangleright The shape of the filter depends on the estimated frequency v:

Frequency response $\xi \mapsto |W^{\nu}(\xi)|$ with $\nu = 0.1$ and $a_1 = 0.99$

Une école de l'IMT

Filter bank methods

P IP PARIS 10/12

Une école de l'IMT

Filter bank methods

Statistical properties

- ▶ This estimator has a better resolution than the periodogram.
- Its variance is lower than that of autoregressive methods, but its spectral resolution is worse.
- ▶ Indeed, if $\hat{S}_{CAP,XX}(v)$ is calculated with a $(p+1)\times(p+1)$ matrix $\hat{\mathbf{R}}_{XX}^{-1}$, then $\hat{S}_{\text{CAP},XX}(v)$ is related to AR estimators though

$$\frac{1}{\hat{S}_{CAP,XX}(v)} = \frac{1}{p+1} \sum_{k=0}^{p} \frac{1}{\hat{S}_{AR,XX}^{(k)}(v)}$$

where $\hat{S}_{AR,XX}^{(k)}(v)$ is the AR estimator of order k.

► The choice of order p is critical.

Variant (Lagunas)

▶ Compute the ratio between the obtained power and that of white noise filtered by $\mathbf{w}_{\mathrm{opt}}^{\nu}$

$$\mathbf{w}_{\text{opt}}^{V}{}^{H}\mathbf{I}\mathbf{w}_{\text{opt}}^{V} = \frac{\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-1}}{\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-1}\mathbf{e}(v)} \frac{\mathbf{R}_{XX}^{-1}\mathbf{e}(v)}{\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-1}\mathbf{e}(v)} = \frac{\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-2}\mathbf{e}(v)}{(\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-1}\mathbf{e}(v))^{2}} \text{ and }$$

$$\frac{\mathbf{w}_{\text{opt}}^{V}{}^{H}\mathbf{R}_{XX}^{-1}\mathbf{w}_{\text{opt}}^{V}}{\mathbf{w}_{\text{opt}}^{V}{}^{H}\mathbf{w}_{\text{opt}}^{V}} = \frac{1}{\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-1}\mathbf{e}(v)} \frac{(\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-1}\mathbf{e}(v))^{2}}{\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-2}\mathbf{e}(v)} = \frac{\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-1}\mathbf{e}(v)}{\mathbf{e}(v)^{H}\mathbf{R}_{XX}^{-2}\mathbf{e}(v)}$$

► Hence

$$\hat{S}_{\text{LAG},XX}(v) = \frac{\mathbf{e}(v)^H \mathbf{R}_{XX}^{-1} \mathbf{e}(v)}{\mathbf{e}(v)^H \mathbf{R}_{XX}^{-2} \mathbf{e}(v)}$$

11/12