Basis der Digitaltechnik

-> Alphabet \$0,13 / \$006, Ifalsol 3

Grundfunktionon: UND - *

ODER - +

Nicht - ,7

Basis

Darstellung !

$$X_2$$
 X_1 X_2 Y_2 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_8

In Halbleider technologie:

NAND, NOR

- <u>[21]</u>											
Xa	χ_z	Xa. Xz	X1 + X2	Xn+Yz	Xa. Xz						
0	0	1		0	0						
0	1	1	0	1	6						
1	0	1	O	1	0						
1	1	0	ð	1 (1						

Ann: Mid NAND (NOR) Kann auch jede boolosto Funktion dargestell wordon.

$$X_1 \cdot X_2 = \overline{X_1 \cdot X_2} \cdot \overline{X_1 \cdot X_2}$$

$$X_1$$
 X_2

Darstellung von Funktionen

- · Funktionstabello
- · Skizze: "Gallern" + Verbindungen

Umformen von Funktionen -> Zieltech nologie

- · Algebraisches Umformen / Rechennegeln
- · Karnaugh Diagramm


```
| x3|
Regeln der Schoeltalgobros:
  T=0 , 0=1
 0+0=0 , 1.1=1...
 De Morgau'sche Regelu \overline{X_1 \cdot X_2} = \overline{X_1} + \overline{X_2}
\overline{X_1 + X_2} = \overline{X_1} \cdot \overline{X_2}
  Associatingesetze: (x1+x2)+X3 = X1+(X2+X3)
                         & B &
   Kommutative. Kitx2 = x2 + x1
   Distributing: (0 x1. (x2+x3) = x1.x2 + x1.x3
                (2) x_1 + (x_2 \cdot x_3) = (x_1 + x_2) \cdot (x_1 + x_3)
                                   = X1. X1 + X1. X2
                                     + X3. X1 + X3. X3
                                  = X1 + X1. X3 + X1. X2
                                         + X2. X3
                                  = X1 + X2. X3
                 Realisierung mit Schaltern (Transistoren)
               und Widerstanden
  Y d.h. NAND(X1, X2)
     X2=1 hier: unstrukturiorde Logila
Strukturierte Logik -> Normalformen
für "unstrukturiorle" Schaltungen,
Z.B. Instruktions decodor,
         Funktionstabellen.
 Byp: XOR, @
    X_1 \oplus X_2 = \overline{X_1} \cdot X_2 + \overline{X_1} \cdot \overline{X_2}
                       ≥ DNF
                     DNT: Zeilon mid TKISword 1
     . I WAN
```


NR: $\frac{\overline{X_1 \cdot X_2} + X_1 \cdot X_2}{\overline{X_1 \cdot X_2}} \stackrel{\cong}{=} \frac{\text{Formol fur Ze:len mit}}{\text{Wort O jels DNF, regient}}$ $= \frac{\overline{X_1 \cdot X_2}}{\overline{X_1 \cdot X_2}} \stackrel{\times}{=} \frac{\overline{X_1 \cdot X_2}}{\overline{X_1 \cdot X_2}} \stackrel{\cong}{=} \frac{\overline{X_1 \cdot X_2}}{\overline{X_1 \cdot X_1}} \stackrel{\cong}{=} \frac{\overline{X_1 \cdot X_1 \cdot X_2}}{\overline{X_1 \cdot X_1}} \stackrel{\cong}{=} \frac{\overline{X_1 \cdot X_1 \cdot X_2}}{\overline{X_1 \cdot X_1}} \stackrel{\cong}{=} \frac{\overline{X_1 \cdot X_1 \cdot X_2}}{\overline{X_1 \cdot X_1 \cdot X_2}} \stackrel{\cong}{=} \frac{\overline{X_1 \cdot X_1 \cdot X_1 \cdot X_1 \cdot X_1 \cdot X_2}}{\overline{X_1 \cdot X_1 \cdot X_1 \cdot X_1 \cdot X_1 \cdot X_2}} \stackrel{\cong}{=} \frac{\overline{X_1 \cdot X_1 \cdot$

Realisierungsskizze:

Y = X1 N2 X3 V4 + X1 X2 X3 X4 + X1 Y2 X3 X4 + X1 X2 X3 X4 X X2 X3 X4

		,		Ka	_
	0	0	0	0	
Хч	d	2	л «	1 6	
~ 4	0	0	10	0	V
	U	0	9	9	^2
		}	12		

ubarbecke die 1'en,

Keine O'en,

mit möglichet wenigen

und großen Rochtecken

X2. X4 + X1. X3. X4

Minimierung mit Redundanzen

Bsp: BCD-Anzeige

•		V
K3 X2 X1 Y0	Po	f 4
0000	1	1/
6001	0	01
0010	1	1
0 0 1 1	1	0/
0 1 0 0	O	0 -
0101	1	0 /
0110	1	11
	1	0 /
1000	1	11

 $f_{0}(x_{3}, x_{2}, x_{1}, x_{0}) = x_{1} + x_{3} + \overline{x_{0}} \cdot \overline{x_{2}} + x_{0} \cdot x_{2}$ $f_{4}(x_{3}, x_{2}, x_{1}, x_{0}) = \overline{x_{0}} \cdot \overline{x_{2}} + \overline{x_{0}} \cdot x_{1}$