

Trigonometria

Összeállította: dr. Leitold Adrien egyetemi docens

Hegyesszögek szögfüggvényei

$$\sin \alpha = \frac{\text{szöggel szembeni befogó}}{\text{átfogó}} = \frac{a}{c}$$

$$\cos \alpha = \frac{\text{szög melletti befogó}}{\text{átfogó}} = \frac{b}{c}$$

$$\tan \alpha = \frac{\text{szöggel szembeni befogó}}{\text{szög melletti befogó}} = \frac{a}{b}$$

$$\cot \alpha = \frac{\text{szög melletti befogó}}{\text{szöggel szembeni befogó}} = \frac{b}{a}$$

Nevezetes hegyesszögek szögfüggvényei

	30 °	45°	60°
sin	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$
cos	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2
tg	$\sqrt{3}/3$	1	$\sqrt{3}$
ctg	$\sqrt{3}$	1	$\sqrt{3}/3$

4

Szögek ívmértéke

- Szögek mérésére ívmértéket (radián) is használhatunk.
- 1 radián nagyságú az r sugarú kör azon központi szöge, amelyhez tartozó ív hossza r.
- Néhány nevezetes szög ívmértéke:

$$360^{\circ} = 2\pi \text{ (rad)}$$
 $180^{\circ} = \pi$
 $90^{\circ} = \pi/2$
 $45^{\circ} = \pi/4$
 $60^{\circ} = \pi/3$
 $30^{\circ} = \pi/6$

 Az ívmérték lehetővé teszi, hogy a szögeket valós számokkal mérjük.

Forgásszögek szinusza, koszinusza

Legyen \underline{e} egységnyi hosszúságú helyvektor, amelyet α szöggel elforgatunk az \underline{i} vektorhoz képest. Ekkor \underline{e} végpontjának

koordinátái:

$$P(x, y) = (\cos \alpha, \sin \alpha)$$

 $k \in \mathbb{Z}$

A definícióból következően:

$$-1 \le \sin \alpha \le 1$$
 és $-1 \le \cos \alpha \le 1$
 $\sin \alpha = \sin (\alpha + k \cdot 360^{\circ})$, ill. $\sin \alpha = \sin (\alpha + 2k\pi)$,

$$\cos \alpha = \cos (\alpha + k \cdot 360^{\circ})$$
, ill. $\cos \alpha = \cos (\alpha + 2k\pi)$, $k \in \mathbb{Z}$

Forgásszögek szinusza, koszinusza (folyt.)

Az előjelek az egyes síknegyedekben:

Forgásszögek és a megfelelő hegyesszög kapcsolata:

I.	II.	III.	IV.
α (°) α (rad)	180°-α	α-180°	360°-α
	π-α	α-π	2π-α

Példa: Mennyi cos 240°?

$$\alpha$$
=240° \Rightarrow III. síknegyed \Rightarrow a megfelelő hegyesszög: β = α -180°=60° \Rightarrow III. síknegyedben a koszinusz negatív, így: $\cos 240^\circ = -\cos 60^\circ = -1/2$

Szinusz, koszinusz szögfv.-ek azonosságai

Tetszőleges α szögre igazak:

Pótszögekre:
$$\sin\alpha = \cos(\pi/2 - \alpha)$$

 $\cos\alpha = \sin(\pi/2 - \alpha)$
Kiegészítő szögekre: $\sin\alpha = \sin(\pi - \alpha)$
 $\cos\alpha = -\cos(\pi - \alpha)$

Negatív szögekre:
$$sin(-\alpha) = -sin\alpha$$

$$\cos(-\alpha) = \cos\alpha$$

Pitagoraszi összefüggés: $\sin^2\alpha + \cos^2\alpha = 1$

Továbbá:
$$sin(\alpha+\pi) = -sin\alpha$$

 $cos(\alpha+\pi) = -cos\alpha$
 $sin(\alpha+\pi/2) = cos\alpha$
 $cos(\alpha+\pi/2) = -sin\alpha$

Forgásszögek tangense és kotangense

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha}, \quad \alpha \neq \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}$$

Kotangens:

$$\operatorname{ctg}\alpha = \frac{\cos\alpha}{\sin\alpha}, \quad \alpha \neq k\pi, \quad k \in \mathbb{Z}$$

Azonosságok: minden lehetséges értelmezésre:

$$tg\alpha = \frac{1}{ctg\alpha}$$

$$tg(\alpha + \pi) = tg\alpha$$

$$ctg(\alpha + \pi) = ctg\alpha$$

$$tg(-\alpha) = -tg\alpha$$

$$ctg(-\alpha) = -ctg\alpha$$

$$tg(\alpha + \frac{\pi}{2}) = -ctg\alpha$$

4

További összefüggések:

$$\sin(\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$$

$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha \cdot tg \beta}$$

$$\sin(2 \alpha) = 2\sin \alpha \cdot \cos \alpha$$

$$\cos(2 \alpha) = \cos^2 \alpha - \sin^2 \alpha$$

$$tg(2 \alpha) = \frac{2tg \alpha}{1 - tg^2 \alpha}$$