TASK 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment

			oggi in F ì, 04 Dice	Piacenza mbre 201	9		
	05:00	07:00	10:00	14:00	18:00	19:00	21:00
	×	*	*	*	*	*	*
	LightCloud	PartlyCloud	Sun	Sun	LightCloud	PartlyCloud	PartlyCloud
Temperatura effettiva	2°C	0°C	4°C	7°C	2°C	1°C	0°C
Temperatura percepita	1°C	-3°C	3°C	5°C	0°C	-1°C	-2°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidità	83 %	93 %	79 %	66 %	88 %	89 %	93 %
Pressione atmosferica	1027 hPa	1027 hPa	1027 hPa	1025 hPa	1025 hPa	1025 hPa	1025 hPa
Intensità del vento	5 km/h	8 km/h	5 km/h	9 km/h	6 km/h	6 km/h	6 km/h
Direzione del vento	←	\leftarrow	^	\leftarrow	Ţ	✓	✓
	E	E	NE	E	S	SW	SW
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Punto di rugiada	0°C	-1°C	1°C	1°C	0°C	0°C	-1°C
Nuvole	13 %	59 %	12 %	9 %	17 %	70 %	91 %
Nuvole basse	6 %	8 %	12 %	9 %	2 %	1 %	0 %
Nuvole medie	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Nuvole alte	8 %	56 %	0 %	0 %	16 %	70 %	91 %

that you are solving this exercise (provide the inputs that you utilized)

From the website, I know

 $T = 4^{\circ}\mathbb{C}$

 $\omega = 79\%$

P = 102.7kPa

Water saturation pressure at 4 degree C:

0.813 kPa

 $ClassroomA: 12m \times 6m \times 5m$

From the chart,

$$T_{wb} = 3^{\circ}$$
C
 $\omega = 0.004$

$$\omega = \frac{0.622P_v}{P_c} = \frac{0.622P_v}{P - P_v} = 0.004$$

introduce

$$P = 102.7kP_{a}$$

$$P_v = 0.656kP_a$$

For ideal gas

$$m = \frac{PV}{R_{sp} \cdot T}$$

$$R_{sp} = 0.4615$$

$$m_v = \frac{PV}{R_{sp} \cdot T} = \frac{0.656 \times (12 \times 6 \times 5)}{0.4615 \times (273 + 4)} = 1.847 kg$$

$$m_g = \frac{m_v}{\phi} = \frac{1.847}{79\%} = 2.338kg$$

$$h_a = 1.005 \times 3 = 3.015 kJ / kg_{dryair}$$

$$h_v = 2501.3 + 1.82 \times 3 = 2506.76 kJ / kg_{water}$$

$$h = h_a + \omega h_v = 3.015 + 0.004 \times 2506.76 = 13.04 kJ / kg_{dryAir}$$

TASK 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Good quality construction $A_{ul} = 1.4cm^2/m^2$

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2\,A_{cf} + 22\,N_{oc} = 136 + 2.2\times200 + 22\times2 = 620W\\ \dot{Q}_{ig_{latent}} &= 20 + 0.22\,A_{cf} + 12\,N_{oc} = 20 + 0.22\times200 + 12\times2 = 88W\\ A_{es} &= 200 + 144 = 344\,m^2\\ A_{I} &= A_{es}\times A_{uI} = 344\times1.4 = 481.6m^2 \end{split}$$

BRINDISI, Italy WMO#: 163200

Coldest	Monti	Heating DB		Hun	nidification DR	P/MCDB an	d HR		Coldest month WS/MCDB MCWS				MCWS	PCWD	1
Month 99.6%				99.6%		99%								6% DB	J
		99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD]
(0)	(0)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	
2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250	
Annual C	Cooling, Dehi	umidification	on, and Enth	alpy Desig	n Conditions										
Hottest	Hottest		Cooling DB/MCWB				Evaporation WB/MCDB						MCWS/PCWD		
Month	Month	0.4%		1%		2%	0.4%		11		2%		to 0.4% [
4.4	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)
8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180
	Dehumidification DP/MCDB and HR						Enthalpy/MCDB							Hours	
	0.4%	1		1%		2%		0.4%		1%			2%	8 to 4 &	
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6
(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)
26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236
Extreme	Annual Desi	gn Conditi	ons												
Ev	Extreme Annual WS Extreme Extreme Annual DB					n-Year Return Period Values of Extreme DB									
			Max	Mean	Standard deviation	n=5 years		n=10 years		n=20 years		n=50 years			
1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
(0)	(0)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(P)
11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9

$$IDF_{heating} = 0.065 \frac{L}{s \cdot cm^{2}}$$

$$IDF_{heating} = 0.032 \frac{L}{s \cdot cm^{2}}$$

$$\dot{V}_{\text{inf iltration}_{heating}} = A_l \times IDF = 481.6 \times 0.065 = 31.304 \frac{L}{s}$$

$$\dot{V}_{\text{inf iltration}_{cooling}} = A_l \times IDF = 481.6 \times 0.032 = 15.411 \frac{L}{s}$$

$$\dot{V}_{ventilation} = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 + 3.5 \times 2 = 17\frac{l}{s}$$

$$\dot{V}_{\text{inf-ventilation}_{heating}} = 31.304 + 17 = 48.30 \frac{L}{s}$$

$$\dot{V}_{\text{inf-ventilation}_{cooling}} = 15.411 + 17 = 32.41 \frac{L}{s}$$

$$\dot{Q}_{\inf-ventilation_{heating_{sensible}}} = C_{sensible} \dot{V} \Delta T_{heating} = 1.23 \times 48.30 \times 15.9 = 944.60 W$$

$$\dot{Q}_{\text{inf-ventilation}_{heating}\, latent} = C_{latent} \dot{V} \Delta \omega_{heating} = 3010 \times 48.30 \times 0.0065 = 944.99 W$$

$$\dot{Q}_{\inf-ventilation_{cooling_{sensible}}} = C_{sensible}\dot{V}\Delta T_{cooling} = 1.23 \times 32.41 \times 7.1 = 283.04W$$

$$\dot{Q}_{\text{inf-ventilation}_{cooling_{latent}}} = C_{latent} \dot{V} \Delta \omega_{cooling} = 3010 \times 32.41 \times 0.0039 = 380.46 W$$