Методы Оптимизации. Даниил Меркулов. Сопряженная функция

Conjugate function

Сопряженная Функция

Пусть $f:\mathbb{R}^n o \mathbb{R}$. Функция $f^*:\mathbb{R}^n o \mathbb{R}$ называется сопряжённой функцией к функции f(x) и определена как

$$f^*(y) = \sup_{x \in \mathbf{dom} \ f} \left(\langle y, x \rangle - f(x)
ight).$$

Область определения f^* это множество таких y, что супремум конечен.

Свойства сопряженной функции

- $f^*(y)$ выпуклая функция как поточечный супремум функций выпуклых по y
- Неравенство Фенхеля Юнга:

$$f(x) + f^*(y) \ge \langle y, x \rangle$$

• Пусть функции f(x). $f^*(y)$, $f^{**}(x)$ определены на \mathbb{R}^n . Тогда $f^{**}(x) = f(x)$ тогда и только тогда, когда f(x) - выпуклая функция.

• Частный случай сопряжения, когда функция дифференцируема называется преобразованием Лежандра. Пусть f(x) - выпукла и дифференцируема, $\operatorname{dom} f = \mathbb{R}^n$. Тогда $x^* = \operatornamewithlimits{argmin}\langle x,y \rangle - f(x)$. В этом случае $y = \nabla f(x^*)$. Стало быть:

$$f^*(y) = \langle \nabla f(x^*), x^* \rangle - f(x^*)$$

$$f^*(y) = \langle
abla f(z), z
angle - f(z), \qquad y =
abla f(z), \ \ z \in \mathbb{R}^n$$

ullet Пусть $f(x,y)=f_1(x)+f_2(y)$, где f_1,f_2 - выпуклые функции, тогда

$$f^*(p,q) = f_1^*(p) + f_2^*(q)$$

ullet Пусть $f(x) \leq g(x) \ \ orall x \in X$. Пусть так же $f^*(y), g^*(y)$ определены на Y. Тогда $orall x \in X, orall y \in Y$

$$f^*(y) \ge g^*(y)$$
 $f^{**}(y) \le g^{**}(y)$

Примеры

Схема поиска сопряженной функции, в целом, стандартна:

- 1. Запись $f^*(y) = \sup_{x \in extbf{dom } f} (\langle y, x
 angle f(x)) = \sup_{x \in extbf{dom } f} f(x,y)$
- 2. Поиск тех значений y, при которых $\sup_{x \in \mathbf{dom}\ f} f(x,y)$ конечен. Эти значения составляют область определения сопряженной функции $f^*(y)$
- 3. Поиск x^* , при котором f(x,y) достигает своего максимального значения как функция по x. $f^*(y) = f(x^*,y)$

Пример 1

Найти $f^*(y)$, если f(x) = ax + b

Решение:

- Рассмотрим функцию, супремумом которой является сопряженная: $\langle y,x
 angle f(x) = yx ax b$
- Построим область определения (т.е. те y, для которых \sup конечен). Это одна точка y=a
- Значит, $f^*(a) = -b$

Пример 2

Найти $f^*(y)$, если $f(x) = -\log x, \;\; x \in \mathbb{R}_{++}$

Решение:

- Рассмотрим функцию, супремумом которой является сопряженная: $\langle y, x \rangle f(x) = yx + \log x$.
- Эта функция не ограничена сверху при $y \geq 0$. Значит, $\mathbf{dom}\ f^* = \{y < 0\}$
- ullet Её максимум достигается при x=-1/y. Значит, $f^*(y)=-\log(-y)-1$

Пример 3

Найти $f^*(y)$, если $f(x)=e^x$

Решение:

- Рассмотрим функцию, супремумом которой является сопряженная: $\langle y,x \rangle f(x) = yx e^x$.
- Эта функция не ограничена сверху при y < 0. Значит, $\mathbf{dom}\ f^* = \{y \ge 0\}$ (с нулем лучше поработать аккуратнее)
- ullet Её максимум достигается при $x = \log y$. Значит, $f^*(y) = y \log y y$. Полагая, что $0 \log 0 = 0$.

Пример 4

Найти $f^*(y)$, если $f(x) = x \log x, x \neq 0, \quad f(0) = 0, \quad x \in \mathbb{R}_+$

Решение:

- Рассмотрим функцию, супремумом которой является сопряженная: $\langle y,x
 angle f(x) = xy x \log x$.
- Эта функция ограничена сверху при всех y. Значит, $\mathbf{dom}\ f^* = \mathbb{R}$ (с нулем лучше поработать аккуратнее)
- ullet Её максимум достигается при $x=e^{y-1}$. Значит, $f^*(y)=e^{y-1}$.

Пример 5

Найти $f^*(y)$, если $f(x)=rac{1}{2}x^TAx,\quad A\in\mathbb{S}^n_{++}$

Решение:

- ullet Рассмотрим функцию, супремумом которой является сопряженная: $\langle y,x
 angle -f(x)=y^Tx-rac{1}{2}x^TAx$
- Эта функция ограничена сверху при всех y. Значит, $\mathbf{dom}\ f^* = \mathbb{R}$ (с нулем лучше поработать аккуратнее)
- ullet Её максимум достигается при $x = A^{-1}y$. Значит, $f^*(y) = rac{1}{2}y^TA^{-1}y$.

Пример 6

Найти $f^*(y)$, если $f(x) = \max_i x_i, \quad x \in \mathbb{R}^n$

Решение:

- ullet Рассмотрим функцию, супремумом которой является сопряженная: $\langle y,x
 angle -f(x)=y^Tx-\max_i x_i.$
- Заметим, что если вектор y имеет хотя бы одну отрицательную компоненту, то эта функция не ограничена по \boldsymbol{x} .
- Пусть теперь $y \succeq 0$, $\mathbf{1}^T y > 1$. $y \notin \mathbf{dom} \ \mathbf{f}^*(\mathbf{y})$
- Пусть теперь $y \succeq 0$, $1^T y < 1$. $y \notin \mathbf{dom} \ \mathbf{f^*(y)}$
- ullet Остается только $y\succeq 0,\quad 1^Ty=1.$ Тогда $x^Ty\leq \max x_i$
- Значит, $f^*(y) = 0$.

Домашнее задание 8

1. Найти
$$f^*(y)$$
, если $f(x) = -rac{1}{x}, \;\; x \in \mathbb{R}_{++}$

$$x$$
 2. Найти $f^*(y)$, если $f(x) = -0, 5 - \log x, \;\; x > 0$

3. Найти
$$f^*(y)$$
, если $f(x)=\log\left(\sum\limits_{i=1}^n e^{x_i}\right)$
4. Найти $f^*(y)$, если $f(x)=-(a^2-x^2)^{1/2},\quad |x|\leq a,\quad a>0$

4. Найти
$$f^*(y)$$
, если $f(x) = -(a^2-x^2)^{1/2}, \quad |x| \leq a, \quad a>0$