ESP32-C6-MINI-1U

技术规格书 版本 1.4

2.4 GHz Wi-Fi 6 (802.11ax), Bluetooth[®] 5 (LE), Zigbee 及 Thread (802.15.4) 模组 内置 ESP32-C6 系列芯片, RISC-V 32 位单核处理器 合封 flash 最大可选 8 MB 22 个 GPIO, 丰富的外设 板载 PCB 天线或外部天线连接器

ESP32-C6-MINI-1

ESP32-C6-MINI-1U

模组概述

说明:

点击链接或扫描二维码确保您使用的是最新版本的文档: https://espressif.com/documentation/esp32-c6-mini-1_mini-1u_datasheet_cn.pdf

1.1 特性

CPU 和片上存储器

- 内置 ESP32-C6FH4/ESP32-C6FH8 芯片, RISC-V 32 位单核处理器, 支持高达 160 MHz 的 时钟频率
- ROM: 320 KB
- HP SRAM: 512 KB
- LP SRAM: 16 KB
- flash 最大可选 8 MB

Wi-Fi

- 工作在 2.4 GHz 频段, 1T1R
- 工作信道中心频率范围: 2412 ~ 2484 MHz
- 支持 IEEE 802.11ax 协议:
 - 仅 20 MHz 非接入点工作模式 (20 MHz-only non-AP mode)
 - MCSO ~MCS9
 - 上行、下行正交频分多址接入 (OFDMA), 特别适用于高密度应用下的多用户并发传
 - 下行多用户多输入多输出 (MU-MIMO),提 升网络容量
 - 波束成形接收端 (Beamformee), 提升信号 质量
 - 信道质量指示 (Channel quality indication,
 - 双载波调制 (dual carrier modulation, DCM),提高链路稳定性
 - 空间复用 (Spatial reuse), 提升网络容量

- 目标唤醒时间 (TWT), 提供更好的节能机 制
- 完全兼容 IEEE 802.11b/g/n 协议:
 - 支持 20 MHz 和 40 MHz 频宽
 - 数据速率高达 150 Mbps
 - 无线多媒体 (WMM)
 - 帧聚合 (TX/RX A-MPDU, TX/RX A-MSDU)
 - 立即块确认 (Immediate Block ACK)
 - 分片和重组 (Fragmentation and defragmentation)
 - 传输机会 (Transmission opportunity, TXOP)
 - Beacon 自动监测 (硬件 TSF)
 - 4×虚拟 Wi-Fi 接口
 - 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模式和混杂模式 请注意 ESP32-C6 在 Station 模式下扫描时, SoftAP 信道会同时改变
 - 802.11 mc FTM

蓝牙

- 低功耗蓝牙 (Bluetooth LE): 通过 Bluetooth 5.3 认证
- Bluetooth mesh
- 高功率模式 (20 dBm)
- 速率支持 125 Kbps、500 Kbps、1 Mbps、2 Mbps
- 广播扩展 (Advertising Extensions)

- 多广播 (Multiple Advertisement Sets)
- 信道选择 (Channel Selection Algorithm #2)
- 功率控制 (LE Power Control)
- Wi-Fi 与蓝牙共存, 共用同一个天线

IEEE 802.15.4

- 兼容 IEEE 802.15.4-2015 协议
- 工作在 2.4 GHz 频段, 支持 OQPSK PHY
- 数据速率: 250 Kbps
- 支持 Thread 1.3
- 支持 Zigbee 3.0

外设

 GPIO、SPI、并行 IO、UART、I2C、I2S、RMT (TX/RX)、脉冲计数器、LED PWM、USB 串口/ JTAG 控制器、MCPWM、SDIO 从机控制器、 GDMA、TWAI® 控制器、片上 JTAG 调试功能、 事件任务矩阵、ADC、温度传感器、系统定时器、 通用定时器、看门狗定时器

模组集成元件

• 40 MHz 集成晶振

天线选型

- 板载 PCB 天线 (ESP32-C6-MINI-1)
- 通过连接器连接外部天线 (ESP32-C6-MINI-1U)

工作条件

- 工作电压/供电电压: 3.0 ~ 3.6 V
- 工作环境温度:
 - 85°C 版模组: -40 ~ 85°C
 - 105 °C 版模组: -40 ~ 105 °C

认证

- RF 认证: 见 证书
- 环保认证: RoHS/REACH

测试

• HTOL/HTSL/uHAST/TCT/ESD

1.2 型号对比

ESP32-C6-MINI-1和 ESP32-C6-MINI-1U 是通用型 Wi-Fi、IEEE 802.15.4 和低功耗蓝牙 (Bluetooth LE) 模组,功能强大,具有丰富的外设接口,可用于智能家居、工业自动化、医疗保健、消费电子产品等领域。

ESP32-C6-MINI-1 采用 PCB 板载天线, ESP32-C6-MINI-1U 采用连接器连接外部天线。两款模组均配置了 SPI flash,最大可选 8 MB。

两款模组的系列型号对比如下表所示:

表 1-1. ESP32-C6-MINI-1 (天线) 系列型号对比¹

订购代码	flash ^{2,3}	环境温度 ⁴ (°C)	模组尺寸 ⁵ (mm)
ESP32-C6-MINI-1-N4	4 MB (Quad SPI)	-40 ~ 85	
ESP32-C6-MINI-1-H4	4 MD (Quad SPI)	-40 ~ 105	13.2 × 16.6 × 2.4
ESP32-C6-MINI-1-H8	8 MB (Quad SPI)	-4 0 ~ 105	

¹ 本表格中的注释内容与表 1-2 一致。

表 1-2. ESP32-C6-MINI-1U(连接器)系列型号对比

订购代码	flash ^{2,3}	环境温度 ⁴ (°C)	模组尺寸 ⁵ (mm)
ESP32-C6-MINI-1U-N4	4 MB (Quad SPI) ⁴	−40 ~ 85	
ESP32-C6-MINI-1U-H4			13.2 × 12.5 × 2.4
ESP32-C6-MINI-1U-H8	8 MB (Quad SPI)	−40 ~ 105	

² 默认情况下,模组 SPI flash 支持的最大时钟频率为 80 MHz,且不支持自动暂停功能。如需使用 flash 自动暂停功能,请联系我们。

该款模组采用的是 ESP32-C6FH4/ESP32-C6FH8 芯片,搭载 RISC-V 32 位单核处理器。关于 ESP32-C6FH4/ESP32-C6FH8 的更多信息请参考 <u>《ESP32-C6 系列芯片技术规格书》</u>。

1.3 成用

- 智能家居
- 工业自动化
- 医疗保健
- 消费电子产品
- 智慧农业

- POS 机
- 服务机器人
- 音频设备
- 通用低功耗 IoT 传感器集线器
- 通用低功耗 IoT 数据记录器

³ flash 封装在芯片内部。更多关于存储器规格的信息,请参考章节 6.5 存储器 规格。

⁴环境温度指乐鑫模组外部的推荐环境温度。

⁵ 更多关于模组尺寸的信息,请参考章节 10.1 模组尺寸。

目录

1	模组	1概述		2
1.1	特性			2
1.2	型号对	比		3
1.3	应用			4
2	功能	能框图		9
3	管腿	定义		10
3.1	管脚布			10
3.2	管脚措	述		10
4	启动	力配置	项	12
4.1		司模式控		13
4.2			5和输出驱动沿控制	13
4.3		日志打印塔		14
4.4		信号源控制		15
4.5		电和复位		15
5	外设	*		16
5.1	外设概			16
5.2	外设排		_	16
	5.2.1	通讯接口 5.2.1.1	- UART 控制器	16 16
		5.2.1.2	SPI 控制器	17
		5.2.1.3	I2C 控制器	18
		5.2.1.4	I2S 控制器	18
		5.2.1.5	脉冲计数控制器	19
		5.2.1.6	USB 串口/JTAG 控制器	19
		5.2.1.7	双线汽车接口	19
		5.2.1.8	SDIO 从机控制器	20
		5.2.1.9	LED PWM 控制器	20
		5.2.1.10	电机控制脉宽调制器	21
		5.2.1.11	红外遥控	22
	F 0 0	5.2.1.12	并行 IO 控制器	22
	5.2.2	模拟信号 5.2.2.1	テ处理 SAR ADC	23 23
		5.2.2.2	温度传感器	23
•	H. F			
6 6.1		、特性 大额定值		25 25
6.2		泛人领走但 【作条件		25
6.3			3.3 V, 25 °C)	25
6.4	功耗特		· · · · · · · · · · · · · · · · · · ·	26

6.5	6.4.1 Active 模式下的功耗6.4.2 其他功耗模式下的功耗存储器规格	26 27 27
7 7.1	射频特性 Wi-Fi 射频 7.1.1 Wi-Fi 射频发射器 (TX) 特性 7.1.2 Wi-Fi 射频接收器 (RX) 特性	29 29 29 30
7.2	低功耗蓝牙射频 7.2.1 低功耗蓝牙射频发射器 (TX) 特性 7.2.2 低功耗蓝牙射频接收器 (RX) 特性	32 32 33
7.3	802.15.4 射频 7.3.1 802.15.4 射频发射器 (TX) 特性 7.3.2 802.15.4 射频接收器 (RX) 特性	35 36 36
8	模组原理图	37
9	外围设计原理图	39
10 10.1 10.2	尺寸规格 模组尺寸 外部天线连接器尺寸	40 40 41
11 11.1 11.2	PCB 布局建议 PCB 封装图形 PCB 设计中的模组位置摆放	43 43 44
12 12.1 12.2 12.3 12.4	产品处理 存储条件 静电放电 (ESD) 回流焊温度曲线 超声波振动	45 45 45 45 46
技力		47
相美	关文档和资源	48
修记	丁历史	49

表格

1-1	ESP32-C6-MINI-1(天线)系列型号对比 ¹	4
1-2	ESP32-C6-MINI-1U(连接器)系列型号对比	4
3-1	管脚定义	10
4-1	Strapping 管脚的默认配置	12
4-2	Strapping 管脚的时序参数说明	13
4-3	芯片启动模式控制	13
4-4	SDIO 输入采样沿/输出驱动沿控制	14
4-5	UARTO ROM 日志打印控制	14
4-6	USB 串口/JTAG ROM 日志打印控制	14
4-7	JTAG 信号源控制	15
4-8	上电和复位时序参数说明	15
6-1	绝对最大额定值	25
6-2	建议工作条件	25
6-3	直流电气特性 (3.3 V, 25 °C)	25
6-4	Active 模式下 Wi-Fi (2.4 GHz) 功耗特性	26
6-5	Active 模式下低功耗蓝牙功耗特性	26
6-6	Active 模式下 802.15.4 功耗特性	26
6-7	Modem-sleep 模式下的功耗	27
6-8	低功耗模式下的功耗	27
6-9	Flash 规格	27
7-1	Wi-Fi 射频规格	29
7-2	频谱模板和 EVM 符合 802.11 标准时的发射功率	29
7-3	发射 EVM 测试 ¹	29
7-4	接收灵敏度	30
7-5	最大接收电平	31
7-6	接收邻道抑制	31
7-7	低功耗蓝牙射频规格	32
7-8	低功耗蓝牙 - 发射器特性 - 1 Mbps	32
7-9	低功耗蓝牙 - 发射器特性 - 2 Mbps	32
7-10	低功耗蓝牙 - 发射器特性 - 125 Kbps	33
7-11	低功耗蓝牙 - 发射器特性 - 500 Kbps	33
7-12	低功耗蓝牙-接收器特性-1Mbps	33
7-13	低功耗蓝牙 - 接收器特性 - 2 Mbps	34
7-14	低功耗蓝牙-接收器特性-125 Kbps	35
7-15	低功耗蓝牙 - 接收器特性 - 500 Kbps	35
7-16	802.15.4 射频规格	35
7-17	802.15.4 发射器特性 - 250 Kbps	36
7-18	802.15.4 接收器特性 - 250 Kbps	36

插图

2-1	ESP32-C6-MINI-1 功能框图	9
2-2	ESP32-C6-MINI-1U 功能框图	9
3-1	管脚布局(顶视图)	10
4-1	Strapping 管脚的时序参数图	13
4-2	上电和复位时序参数图	15
8-1	ESP32-C6-MINI-1 原理图	37
8-2	ESP32-C6-MINI-1U 原理图	38
9-1	外围设计原理图	39
10-1	ESP32-C6-MINI-1 模组尺寸	40
10-2	ESP32-C6-MINI-1U 模组尺寸	40
10-3	外部天线连接器尺寸图	41
11-1	ESP32-C6-MINI-1 推荐 PCB 封装图形	43
11-2	ESP32-C6-MINI-1U 推荐 PCB 封装图形	44
12-1	回流焊温度曲线	45

2 功能框图

图 2-1. ESP32-C6-MINI-1 功能框图

图 2-2. ESP32-C6-MINI-1U 功能框图

说明:

关于芯片与封装内 flash 的管脚对应关系,请参考 <u>《ESP32-C6 系列芯片技术规格书》</u> > 表格 芯片与 flash 的管脚对应关系。

3.1 管脚布局

管脚布局图显示了模组上管脚的大致位置。按比例绘制的实际布局请参考图 10.1 模组尺寸。

注意, ESP32-C6-MINI-1U 的管脚布局与 ESP32-C6-MINI-1 相同, 但没有禁止布线区 (Keepout Zone)。

图 3-1. 管脚布局 (顶视图)

3.2 管脚描述

模组共有53个管脚,具体描述参见表3-1管脚定义。

外设管脚分配请参考 _《ESP32-C6 系列芯片技术规格书》。

表 3-1. 管脚定义

名称	序号	类型 ¹	功能
GND	1, 2, 11, 14, 36~53	Р	接地
3V3	3	Р	供电
NC	4	_	空管脚

表 3-1 - 接上页

名称	序号	类型 ¹	功能
102	5	I/O/T	GPIO2, LP_GPIO2, LP_UART_RTSN, ADC1_CH2, FSPIQ
103	6	I/O/T	GPIO3, LP_GPIO3, LP_UART_CTSN, ADC1_CH3
NC	7	_	空管脚
EN	8	ı	高电平: 芯片使能;
			低电平: 芯片关闭;
10.4		1 (O (T	注意不能让 EN 管脚浮空。
104	9	I/O/T	MTMS, GPIO4, LP_GPIO4, LP_UART_RXD, ADC1_CH4, FSPIHD
105	10	I/O/T	MTDI, GPIO5, LP_GPIO5, LP_UART_TXD, ADC1_CH5, FSPIWP
100	12	I/O/T	GPIOO, XTAL_32K_P, LP_GPIOO, LP_UART_DTRN, ADC1_CHO
IO1	13	I/O/T	GPIO1, XTAL_32K_N, LP_GPIO1, LP_UART_DSRN, ADC1_CH1
106	15	I/O/T	MTCK, GPIO6, LP_GPIO6, LP_I2C_SDA, ADC1_CH6, FSPICLK
107	16	I/O/T	MTDO, GPIO7, LP_GPIO7, LP_I2C_SCL, FSPID
1012	17	I/O/T	GPI012, USB_D-
IO13	18	I/O/T	GPI013, USB_D+
1014	19	I/O/T	GPI014
1015	20	I/O/T	GPI015
NC	21	_	空管脚
108	22	I/O/T	GPIO8
109	23	I/O/T	GPIO9
1018	24	I/O/T	GPI018, SDIO_CMD, FSPICS2
1019	25	I/O/T	GPI019, SDIO_CLK, FSPICS3
1020	26	I/O/T	GPIO20, SDIO_DATAO, FSPICS4
1021	27	I/O/T	GPIO21, SDIO_DATA1, FSPICS5
1022	28	I/O/T	GPIO22, SDIO_DATA2
1023	29	I/O/T	GPIO23, SDIO_DATA3
RXDO	30	I/O/T	UORXD, GPIO17, FSPICS1
TXDO	31	I/O/T	UOTXD, GPI016, FSPICSO
NC	32	_	空管脚
NC	33	_	空管脚
NC	34	_	空管脚
NC	35	_	空管脚

¹ P: 电源; I: 输入; O: 输出; T: 可设置为高阻。

4 启动配置项

说明:

以下内容摘自 《ESP32-C6 系列芯片技术规格书》 > 章节启动配置项。芯片 Strapping 管脚与模组管脚的对应关系,可参考章节 8 模组原理图。

芯片在上电或硬件复位时,可以通过 Strapping 管脚 和 eFuse 参数 配置如下启动参数,无需微处理器的参与:

• 芯片启动模式

- Strapping 管脚: GPIO8 和 GPIO9

• SDIO 输入采样沿和输出驱动沿

- Strapping 管脚: MTMS 和 MTDI

• ROM 日志打印

- Strapping 管脚: GPIO8

- eFuse 参数: EFUSE_UART_PRINT_CONTROL 和 EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT

• JTAG 信号源

- Strapping 管脚: GPIO15

- eFuse 参数: EFUSE_DIS_PAD_JTAG、EFUSE_DIS_USB_JTAG 和 EFUSE_JTAG_SEL_ENABLE

上述 eFuse 参数的默认值均为 0,也就是说没有烧写过。eFuse 只能烧写一次,一旦烧写为 1,便不能恢复为 0。有关烧写 eFuse 的信息,请参考 《ESP32-C6 技术参考手册》 > 章节 eFuse 控制器。

上述 strapping 管脚如果没有连接任何电路或连接的电路处于高阻抗状态,则其默认值(即逻辑电平值)取决于管脚内部弱上拉/下拉电阻在复位时的状态。

 Strapping 管脚
 默认配置
 值

 MTMS
 浮空

 MTDI
 浮空

 GPIO8
 浮空

 GPIO9
 弱上拉
 1

 GPIO15
 浮空

表 4-1. Strapping 管脚的默认配置

要改变 strapping 管脚的值,可以连接外部下拉/上拉电阻。如果 ESP32-C6 用作主机 MCU 的从设备,strapping 管脚的电平也可通过主机 MCU 控制。

所有 strapping 管脚都有锁存器。芯片复位时,锁存器采样并存储相应 strapping 管脚的值,一直保持到芯片掉电或关闭。锁存器的状态无法用其他方式更改。因此,strapping 管脚的值在芯片工作时一直可读取,strapping 管脚在芯片复位后作为普通 IO 管脚使用。更多关于芯片复位的信息,详见 <u>《ESP32-C6 技术参考手册》</u> > 章节复位和时钟。

Strapping 管脚的信号时序需遵循表 4-2 和图 4-1 所示的 建立时间和 保持时间。

表 4-2. Strapping 管脚的时序参数说明

参数	说明	最小值 (ms)	
+	建立时间,即拉高 CHIP_PU 激活芯片前,电源轨达到稳定所需的	0	
$ \mathfrak{l}_{SU} $	时间		
+	保持时间,即 CHIP_PU 已拉高、strapping 管脚变为普通 IO 管脚	2	
$ t_H $	开始工作前,可读取 strapping 管脚值的时间	3	

图 4-1. Strapping 管脚的时序参数图

4.1 芯片启动模式控制

复位释放后, GPIO8 和 GPIO9 共同决定启动模式。详见表 4-3 芯片启动模式控制。

表 4-3. 芯片启动模式控制

启动模式	GPI08	GPI09
SPI boot 模式	任意值	1
Joint download boot 模式 2	1	0

¹ 加粗表示默认值和默认配置。

- USB-Serial-JTAG Download Boot
- UART Download Boot
- SDIO Download Boot

4.2 SDIO 输入采样沿和输出驱动沿控制

MTMS 和 MTDI 管脚可用于调节 SDIO 输入采样沿和输出驱动沿。详见表 4-4 SDIO 输入采样沿/输出驱动沿控制。

² Joint Download Boot 模式下支持以下下载方式:

表 4-4. SDIO 输入采样沿/输出驱动沿控制

沿控制	MTMS	MTDI
下降沿采样下降沿输出	0	0
下降沿采样上升沿输出	0	1
上升沿采样下降沿输出	1	0
上升沿采样上升沿输出	1	1

¹ MTMS 和 MTDI 默认浮空, 以上均非默认 配置。

4.3 ROM 日志打印控制

系统启动过程中,若 LP_AON_STORE4_REG[0] 为 O(默认),则 ROM 代码日志打印开启;若 LP_AON_STORE4_REG[0] 为 O,则 ROM 代码日志打印关闭。ROM 代码日志打印开启时,可打印至:

- (默认) UARTO 和 USB 串口/JTAG 控制器
- UARTO
- USB 串口/JTAG 控制器

EFUSE_UART_PRINT_CONTROL 和 GPIO8 控制 **UARTO** ROM 日志打印, 如表 4-5 *UARTO ROM* 日志打印控制 所示。

表 4-5. UARTO ROM 日志打印控制

UARTO ROM 日志打印	EFUSE_UART_PRINT_CONTROL	GPI08
	0	忽略
使能	1	0
	2	1
关闭	1	1
	2	0
	3	忽略

¹ 加粗表示默认值和默认配置。

EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT 控制 **USB 申ロ/JTAG 控制器** ROM 日志打印,如表 4-6 *USB* 申ロ/JTAG ROM 日志打印控制 所示。

表 4-6. USB 串口/JTAG ROM 日志打印控制

USB 串口/JTAG	EFLICE DIS LIST SEDIAL ITAC 2	EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT		
ROM 日志打印控制	EFUSE_DIS_USB_SERIAL_STAG	EFUSE_DIS_USB_SERIAL_JTAG_ROM_PRINT		
使能	0	0		
 关闭	0	1		
大闪	1	忽略		

¹ 加粗表示默认值和默认配置。

² EFUSE_DIS_USB_SERIAL_JTAG 控制是否关闭 USB 串口/JTAG。

JTAG 信号源控制 4.4

在系统启动早期阶段,GPIO15 可用于控制 JTAG 信号源。该管脚没有内部上下拉电阻,strapping 的值必须由不 处于高阻抗状态的外部电路控制。

如表 4-7 JTAG 信号源控制 所示, GPIO15 与 EFUSE_DIS_PAD_JTAG、EFUSE_DIS_USB_JTAG 和 EFUSE_JTAG_SEL_ENABLE 共同控制 JTAG 信号源。

JTAG 信号源	EFUSE_DIS_PAD_JTAG	EFUSE_DIS_USB_JTAG	EFUSE_JTAG_SEL_ENABLE	GPIO15
	0	0	0	忽略
USB 串口/JTAG 控制器	0	0	1	1
	1	0	忽略	忽略
JTAG 管脚 ²	0	0	1	0
	0	1	忽略	忽略
JTAG 关闭	1	1	忽略	忽略

表 4-7. JTAG 信号源控制

4.5 芯片上电和复位

芯片上电后,其电源轨需要一点时间方可稳定。之后,用于上电和复位的管脚 CHIP_PU 拉高,激活芯片。更多 关于 CHIP_PU 及上电和复位时序的信息,请见图 4-2 和表 4-8。

图 4-2. 上电和复位时序参数图

表 4-8. 上电和复位时序参数说明

参数	说明	最小值 (µs)
+	CHIP_PU 管脚拉高激活芯片前, VDDA3P3、VDDPST1、VDDPST2、	
STBL	VDDA1 和 VDDA2 达到稳定所需的时间	50
+	CHIP_PU 电平低于 V_{IL_nRST} (具体数值参考表 6-3) 从而复位芯	50
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	片的时间	50

¹ 加粗表示默认值和默认配置。

²即 MTDI、MTCK、MTMS 和 MTDO。

5 外设

5.1 外设概述

ESP32-C6FH4/ESP32-C6FH8 集成了丰富的外设,包括 SPI、并行 IO、UART、I2C、I2S、RMT (TX/RX)、LED PWM、USB 申口/JTAG 控制器、MCPWM、SDIO 从机控制器、GDMA、TWAI® 控制器、片上 JTAG 调试功能、事件任务矩阵、ADC 和多达 22 个 GPIO 等。

关于模组外设的详细信息,请参考<u>《ESP32-C6 系列芯片技术规格书》</u>> 章节 功能描述。请注意, <u>《ESP32-C6 系列芯片技术规格书》</u>中的 ADC 量程和精度适用于包装标签上生产工单编号 (PW Number)为 **PW-2023-06-XXX** 及之后的模组。若早于以上编号,请联系乐鑫商务根据批次提供实际量程和精度。

说明:

以下内容摘自 《ESP32-C6 系列芯片技术规格书》 > 章节 外设。并非所有 IO 信号都在模组上引出,因此这些信息不完全适用于 ESP32-C6-MINI-1 以及 ESP32-C6-MINI-1U。

关于外设信号的更多信息,可参考_《ESP32-C6 技术参考手册》 > 章节 外设信号列表。

5.2 外设描述

本章节介绍了芯片上的外设接口,包括扩展芯片功能的通信接口和片上传感器。

5.2.1 通讯接口

本章节介绍了芯片与外部设备和网络进行通信和交互的接口。

5.2.1.1 UART 控制器

ESP32-C6 芯片中的 UART 控制器用于芯片与外部 UART 设备之间的异步串行数据传输和接收。ESP32-C6 由两个在主系统中的 UART 和一个低功耗 LP UART 组成。

- 可编程波特率,最高可达 5 MBaud
- RAM 由 TX FIFO 和 RX FIFO 共用
- 支持多种数据位和停止位的长度
- 支持奇偶校验位
- 特殊字符 AT_CMD 检测
- 支持 RS485 协议 (不适用于 LP UART)
- 支持 IrDA 协议(不适用于 LP UART)
- 使用 GDMA 进行高速数据通信(不适用于 LP UART)
- 接收超时功能
- UART 作为唤醒源
- 软件和硬件流控

管脚分配

详见《ESP32-C6 系列芯片技术规格书》 > 章节 外设管脚分配。

5.2.1.2 SPI 控制器

ESP32-C6 具有以下 SPI 接口:

- SPIO, 供 ESP32-C6 的 Cache 和 GDMA 访问封装内或封装外 flash
- SPI1, 供 CPU 访问封装内或封装外 flash
- SPI2, 通用 SPI 控制器,可访问通用 DMA 通道

SPIO 和 SPI1 预留给系统使用,只有 SPI2 可供用户使用。

SPIO 和 SPI1 特性

- 支持 Single SPI、Dual SPI、Quad SPI (QPI) 模式
- 数据传输以字节为单位

SPI2 的特性

- 支持主机或从机模式
- 支持 GDMA
- 支持 Single SPI、Dual SPI、Quad SPI (QPI) 模式
- 可配置时钟极性 (CPOL) 和相位 (CPHA)
- 可配置时钟频率
- 数据传输以字节为单位
- 可配置读写数据位顺序: 最高有效位 (MSB) 优先或最低有效位 (LSB) 优先
- 主机模式
 - 支持时钟频率高达 80 MHz 的 2 线全双工通信
 - 支持时钟频率高达 80 MHz 的 1 线、2 线、4 线半双工通信
 - 具有六个 FSPICS... 管脚,可与六个独立的 SPI 从机连接
 - 可配置的 CS 设置时间和保持时间
- 从机模式
 - 支持时钟频率高达 40 MHz 的 2 线全双工通信
 - 支持时钟频率高达 40 MHz 的 1 线、2 线、4 线半双工通信

管脚分配

详见_《ESP32-C6 系列芯片技术规格书》_>章节 外设管脚分配。

5.2.1.3 I2C 控制器

I2C 控制器支持主机和从机之间使用 I2C 总线进行通信。

特性

- 两个 I2C 控制器: 一个在主系统中 (I2C), 一个在低功耗系统中 (LP I2C)
- 与多个外部设备通信
- I2C 可以运行在主机和从机模式, LP I2C 只运行在主机模式
- 标准模式 (100 Kbit/s) 和快速模式 (400 Kbit/s)
- 从机模式下的 SCL 时钟拉伸
- 可编程数字噪声滤波
- 支持 7 位和 10 位寻址以及双地址寻址模式

管脚分配

详见《ESP32-C6 系列芯片技术规格书》>章节 外设管脚分配。

5.2.1.4 128 控制器

ESP32-C6 芯片中的 I2S 控制器为多媒体应用程序提供了一种灵活的通信接口,特别适用于数字音频应用。

- 支持主机模式和从机模式
- 支持全双工和半双工通信
- 支持 TX 模块和 RX 模块独立工作或同时工作
- 支持多种音频标准:
 - TDM Philips 标准
 - TDM MSB 对齐标准
 - TDM PCM 标准
 - PDM 标准
- 支持 PCM 转 PDM TX 接口
- 可配置高精度 BCK 时钟, 最高频率可达 40 MHz
 - 采样频率支持 8 kHz、16 kHz、32 kHz、44.1 kHz、48 kHz、88.2 kHz、96 kHz、128 kHz、192 kHz 等
- 支持 8/16/24/32 位数据通信
- 支持 DMA
- A-law 和 μ -law 压缩/解压缩算法,提高信号的量化信噪比
- 支持灵活的数据格式控制

管脚分配

详见《ESP32-C6 系列芯片技术规格书》 > 章节 外设管脚分配。

5.2.1.5 脉冲计数控制器

脉冲计数控制器 (PCNT) 旨在通过跟踪输入脉冲信号的上升沿和下降沿来计数。

特性

- 四个独立的脉冲计数器,每个计数器有两个通道
- 递增、递减或停止计数模式
- 输入脉冲信号和控制信号的毛刺滤波
- 选择在输入脉冲信号的上升沿或下降沿进行计数

管脚分配

详见《ESP32-C6 系列芯片技术规格书》 > 章节 外设管脚分配。

5.2.1.6 USB 串口/JTAG 控制器

ESP32-C6 芯片中的 USB 串口/JTAG 控制器 (USB_SERIAL_JTAG) 集成了与芯片通讯的标准 USB CDC-ACM 串口,同时提供了一种 JTAG 调试的便捷方案,无需外部芯片或 JTAG 适配器,节省空间并降低成本。

特性

- 兼容 USB 2.0 全速标准,传输速度最高可达 12 Mbit/s (注意,该控制器不支持 480 Mbit/s 的高速传输模式)
- 包含 CDC-ACM 虚拟串口及 JTAG 适配器功能
- CDC-ACM:
 - 配置虚拟串行功能, 在大多数现代操作系统上可实现即插即用
 - 支持主机控制芯片复位和进入下载模式
- JTAG 适配器:
 - 支持使用紧凑的 JTAG 指令实现与 CPU 调试内核的快速通信
- 支持通过 ROM 启动代码重新编程 flash
- 集成内部 PHY

管脚分配

详见《ESP32-C6 系列芯片技术规格书》 > 章节 外设管脚分配。

5.2.1.7 双线汽车接口

双线汽车接口 (TWAI[®]) 是一种为车载应用设计的多主机、多播通信协议。TWAI 控制器用于芯片使用该协议的通信。

特性

- 兼容 ISO 11898-1 协议(CAN 规范 2.0)
- 支持标准帧格式(11位 ID)和扩展帧格式(29位 ID)
- 支持 1 Kbit/s ~ 1 Mbit/s 位速率
- 多种操作模式: 正常模式、只听模式和自测模式(传输无需应答)
- 特殊发送: 单次发送和自发自收
- 数据接收过滤器(支持单过滤器和双过滤器模式)
- 错误检测与处理:错误计数器、可配置错误报警阈值、错误代码记录和仲裁丢失记录、收发器自动待机功能

管脚分配

详见《ESP32-C6 系列芯片技术规格书》 > 章节 外设管脚分配。

5.2.1.8 SDIO 从机控制器

ESP32-C6 芯片中的 SDIO 从机控制器提供了对安全数字输入/输出 (SDIO) 设备接口的硬件支持,允许 SDIO 主机通过 SDIO 总线协议访问 ESP32-C6。

特性

- 符合 SDIO 物理层规范 V2.00 和 SDIO 规范 V2.00
- 支持 SPI、1-bit SDIO 和 4-bit SDIO 传输模式
- 0~50 MHz 时钟范围
- 采样时钟沿或驱动时钟沿可配置
- 为信息交互设定的特定寄存器
- 支持 SDIO 中断机制
- 支持自动填充 SDIO 总线上的发送数据,同样支持自动丢弃 SDIO 总线上的填充数据
- 高达 512 字节的块大小
- 主机与从机 (slave) 间有中断向量可以相互中断对方
- 带有数据传输的 DMA
- 支持在保持连接的状态下进行休眠唤醒

管脚分配

详见《ESP32-C6 系列芯片技术规格书》>章节 外设管脚分配。

5.2.1.9 LED PWM 控制器

LED PWM 控制器 (LEDC) 用于生成用于 LED 控制的 PWM 信号。

特性

- 六个独立的 PWM 生成器
- 最大 PWM 占空比精度为 20 位
- 四个独立的定时器, 具有 20 位计数器、可配置的时钟小数分频器和计数器溢出值
- 可调节 PWM 信号输出的相位
- PWM 占空比微调
- 占空比自动渐变
 - 占空比线性渐变 即一个占空比渐变区间
 - 占空比伽马渐变 每个 PWM 生成器最多可生成 16 个占空比渐变区间,每个区间可独立配置的渐变 方向(增加或减少)、变化步长、变化次数和变化频率
- 在低功耗模式 (Light-sleep 模式) 下输出 PWM 信号
- 支持事件任务矩阵 (ETM) 的事件生成和任务响应

管脚分配

详见《ESP32-C6 系列芯片技术规格书》>章节 外设管脚分配。

5.2.1.10 电机控制脉宽调制器

电机控制脉宽调制器 (MCPWM) 可用于驱动数字电机和智能灯。MCPWM 分为五个主要模块: PWM 定时器、PWM 操作器、捕获模块、故障检测模块和事件任务矩阵 (ETM) 模块。

- 三个 PWM 定时器,用于精确计时和频率控制
 - 每个 PWM 定时器都有一个专用的 8 位时钟预分频器
 - PWM 定时器中的 16 位计数器的工作模式包括: 递增计数模式, 递减计数模式, 递增递减循环计数模式
 - 硬件/软件同步可以触发 PWM 定时器重载和预分频的重启, 硬件同步源可选择
- 三个 PWM 操作器,用于生成波形对
 - 六个 PWM 输出,可在几种拓扑结构中运行
 - 死区时间在上升沿和下降沿可配置,并可分别设置
 - 通过高频载波信号调制 PWM 输出,在使用变压器隔离栅极驱动器时可发挥巨大作用
- 捕获模块, 用于基于硬件的信号处理
 - 旋转电机的速度测量
 - 位置传感器脉冲之间的间隔时间测量
 - 脉冲序列信号的周期和占空比测量
 - 从电流/电压传感器的占空比编码信号导出的解码电流或电压振幅

- 3个独立的捕获通道,各具备一个32位的时间戳寄存器
- 输入捕获信号可以预分频,边沿极性可选
- 捕获定时器可以与 PWM 定时器或外部信号同步
- 故障检测模块
 - 出现故障时,可选择在逐周期模式或一次性模式下处理
 - 故障条件可强制 PWM 输出高或低电平
- 支持事件任务矩阵 (ETM) 的事件生成和任务响应

管脚分配

详见《ESP32-C6 系列芯片技术规格书》>章节 外设管脚分配。

5.2.1.11 红外遥控

红外遥控 (RMT) 用于控制发送和接收红外遥控信号。

特性

- 四个通道,用于发送和接收红外遥控信号
- 每个通道具有独立的发送和接收功能
- 支持普通发送/接收模式、乒乓发送/接收模式、持续发送模式
- 在发送脉冲上调制和在接收脉冲上解调
- 用干改善信号接收的接收滤波
- 能够同时在多个通道上发送数据
- 每个发送通道都有时钟分频器计数器、状态机和发射器
- 根据通道号默认分配 RAM block 给通道
- RAM 的 16 位脉冲编码由 level 和 period 组成

管脚分配

详见《ESP32-C6 系列芯片技术规格书》>章节外设管脚分配。

5.2.1.12 并行 IO 控制器

ESP32-C6 芯片中的并行 IO 控制器 (PARLIO) 通过 GDMA 在并行总线上实现外部设备与内部存储器之间的数据传输。它由一个发送器 (TX 模块) 和一个接收器 (RX 模块) 组成,使其成为连接各种外设的通用接口。

- 支持传输数据总线位宽配置为 1/2/4/8/16 位
- 支持 16 位半双工传输和 8 位全双工传输
- 在 1/2/4 位模式下, 支持在一个字节范围内对数据位重新排序

- RX 模块支持 15 种接收模式,可分为电平使能模式、脉冲使能模式和软件使能模式三大类
- TX 模块可以生成与 TX 对齐的有效信号

管脚分配

详见《ESP32-C6 系列芯片技术规格书》 > 章节 外设管脚分配。

5.2.2 模拟信号处理

本小节描述芯片上感知和处理现实世界数据的组件。

5.2.2.1 SAR ADC

ESP32-C6 有一个逐次逼近型模拟数字转换器 (SAR ADC),将模拟信号转换为数字表示。

特性

- 支持 12 位采样分辨率
- 支持采集最多七个管脚上的模拟电压
- 电压转换时配置输入信号的衰减
- 软件触发的单次采样
- 专用定时器触发的多通道扫描
- 连续 DMA 转换, 实现无缝数据传输
- 两个滤波系数可配置的滤波器
- 可以触发中断的阈值监控
- 支持事件任务矩阵

管脚分配

详见《ESP32-C6 系列芯片技术规格书》 > 章节 外设管脚分配。

5.2.2.2 温度传感器

ESP32-C6 芯片中的温度传感器可以实时监测芯片内部的温度变化。

- 测量范围: -40°C ~ 125°C
- 支持软件触发, 且一旦触发后, 可持续读取数据
- 支持硬件自动触发和温度监测
- 支持根据使用环境配置温度偏移,提高测试精度
- 支持测量范围可调节
- 两种自动监测唤醒模式: 绝对值模式和变化量模式

• 支持事件任务矩阵

6 电气特性

6.1 绝对最大额定值

超出表 6-1 绝对最大额定值 可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在这些或其它条件下超出表 6-2 建议工作条件 技术规格指标的功能性操作。长时间暴露在绝对最大额定条件下可能会影响模组的可靠性。

表 6-1. 绝对最大额定值

符号	参数	最小值	最大值	单位
VDD33	电源管脚电压	-0.3	3.6	V
T_{STORE}	存储温度	-40	105	°C

6.2 建议工作条件

表 6-2. 建议工作条件

符号	参数		最小值	典型值	最大值	单位
VDD33	电源管脚电压		3.0	3.3	3.6	V
$ I_{VDD} $	外部电源的供电电流		0.5	_	_	Α
т	工作环境温度	85 ℃ 版模组	-40		85	°C
「A 上作环	工作 中界通過	·		_	105	

6.3 直流电气特性 (3.3 V, 25 °C)

表 6-3. 直流电气特性 (3.3 V, 25 °C)

参数	说明	最小值	典型值	最大值	单位
C_{IN}	管脚电容	_	2	_	pF
V_{IH}	高电平输入电压	0.75 × VDD ¹	_	VDD ¹ + 0.3	V
V_{IL}	低电平输入电压	-0.3	_	0.25 × VDD ¹	V
$ I_{IH} $	高电平输入电流			50	nA
$ I_{IL} $	低电平输入电流	_	_	50	nA
V _{OH} 2	高电平输出电压	0.8 × VDD ¹	_	_	V
V _{OL} 2	低电平输出电压	_	_	0.1 × VDD ¹	V
	高电平拉电流 (VDD ¹ = 3.3 V, V _{OH} >= 2.64 V,		40		mA
$ _{OH}$	PAD_DRIVER = 3)	_	40	_	IIIA
1	低电平灌电流 (VDD ¹ = 3.3 V, V _{OL} = 0.495 V,	_	28		mΑ
$ _{OL}$	PAD_DRIVER = 3)	_	20	_	IIIA
R_{PU}	内部弱上拉电阻	_	45	_	kΩ
R_{PD}	内部弱下拉电阻	_	45	_	kΩ
V	芯片复位释放电压(CHIP_PU 应满足电压范	0.75 × VDD ¹		VDD ¹ + 0.3	V
V_{IH_nRST}	围)	0.75 ^ VDD	_	VUU + 0.3	V
V_{IL_nRST}	芯片复位电压(CHIP_PU 应满足电压范围)	-0.3	_	0.25 × VDD ¹	V

6.4 功耗特性

6.4.1 Active 模式下的功耗

下列功耗数据是基于 3.3 V 供电电源、25 ℃ 环境温度的条件下测得。

所有发射功耗数据均基于100%占空比测得。

所有接收功耗数据均是在外设关闭、CPU 空闲的条件下测得。

表 6-4. Active 模式下 Wi-Fi (2.4 GHz) 功耗特性

工作模式	射频模式	描述	峰值 (mA)
		802.11b, 1 Mbps, DSSS @ 20.5 dBm	382
		802.11g, 54 Mbps, OFDM @ 19.0 dBm	316
	发射 (TX)	802.11n, HT20, MCS7 @ 18.0 dBm	295
A otivo (的版工化)		802.11n, HT40, MCS7 @ 17.5 dBm	280
Active (射频工作)		802.11ax, MCS9 @ 15.5 dBm	251
	接收(RX)	802.11b/g/n, HT20	78
		802.11n, HT40	82
		802.11ax, HE20	78

表 6-5. Active 模式下低功耗蓝牙功耗特性

工作模式	射频模式	描述	峰值 (mA)
		低功耗蓝牙 @ 19.0 dBm	309
	发射 (TX)	低功耗蓝牙 @ 9.0 dBm	189
Active (射频工作)		低功耗蓝牙 @ O dBm	131
		低功耗蓝牙 @ -16.0 dBm	94
	接收 (RX)	低功耗蓝牙	73

表 6-6. Active 模式下 802.15.4 功耗特性

工作模式	射频模式	描述	峰值 (mA)
		802.15.4 @ 19.0 dBm	305
	发射 (TX)	802.15.4 @ 12.0 dBm	190
Active (射频工作)		802.15.4 @ 0 dBm	120
		802.15.4 @ -16.0 dBm	86
	接收 (RX)	802.15.4	73

¹ VDD - 各个电源域电源管脚的电压。

 $²V_{OH}$ 和 V_{OL} 为负载是高阻条件下的测试值。

说明:

以下内容摘自 《ESP32-C6 系列芯片技术规格书》 的 其他功耗模式下的功耗章节。

6.4.2 其他功耗模式下的功耗

表 6-7. Modem-sleep 模式下的功耗

	CPU 頻率		典型值 (mA)		
模式	(MHz)	描述	外设时钟全关	外设时钟全开 ¹	
Modem-sleep ^{2, 3}	160	CPU 工作	27	38	
		CPU 空闲	17	28	
	80	CPU 工作	19	30	
		CPU 空闲	14	25	

¹ 实际情况下,外设在不同工作状态下电流会有所差异。

表 6-8. 低功耗模式下的功耗

工作模式	说明	典型值 (μA)
	CPU、无线通讯模块电源关闭,外设时钟关闭,所有 GPIO	180
Light-sleep	设置为高阻抗状态	100
	CPU、无线通讯模块、外设电源关闭,所有 GPIO 设置为高	35
	阻抗状态	33
Deep-sleep	RTC 定时器和 LP 存储器上电	7
关闭	CHIP_PU 管脚拉低,芯片关闭	1

6.5 存储器规格

本节数据来源于存储器供应商的数据手册。以下数值已在设计阶段和/或特性验证中得到确认,但未在生产中进行全面测试。设备出厂时,存储器均为擦除状态。

表 6-9. Flash 规格

参数	说明	最小值	典型值	最大值	单位
VCC	电源电压 (1.8 V)	1.65	1.80	2.00	V
VCC	电源电压 (3.3 V)	2.7	3.3	3.6	V
F_C	最大时钟频率	80	_	_	MHz
_	编程/擦除周期	100,000		_	次
T_{RET}	数据保留时间	20	_	_	年
T_{PP}	页编程时间	_	0.8	5	ms
T_{SE}	扇区擦除时间 (4 KB)	_	70	500	ms
T_{BE1}	块擦除时间 (32 KB)	_	0.2	2	S
T_{BE2}	块擦除时间 (64 KB)	_	0.3	3	S

见下页

² Modem sleep 模式下,Wi-Fi 设有时钟门控。

³ Modem-sleep 模式下,访问 flash 时功耗会增加。

表 6-9 - 接上页

参	>数	说明	最小值	典型值	最大值	单位
T_{CE}		芯片擦除时间 (16 Mb)	_	7	20	S
		芯片擦除时间 (32 Mb)	_	20	60	S
	CE	芯片擦除时间 (64 Mb)	_	25	100	S
		芯片擦除时间 (128 Mb)	_	60	200	S
		芯片擦除时间 (256 Mb)	_	70	300	S

7 射频特性

本章提供产品的射频特性表。

射频数据是在天线端口处连接射频线后测试所得,包含了射频前端电路带来的损耗。带有外部天线连接器的受 测模组所使用的外部天线具有 50 Ω 阻抗。

工作信道中心频率范围应符合国家或地区的规范标准。软件可以配置工作信道中心频率范围,具体请参 考_《ESP射频测试指南》。

除非特别说明,射频测试均是在 3.3 V (±5%) 供电电源、25 °C 环境温度的条件下完成。

7.1 Wi-Fi 射频

表 7-1. Wi-Fi 射频规格

名称	描述
工作信道中心频率范围	2412 ~ 2484 MHz
无线标准	IEEE 802.11b/g/n/ax

7.1.1 Wi-Fi 射频发射器 (TX) 特性

表 7-2. 频谱模板和 EVM 符合 802.11 标准时的发射功率

	最小值	典型值	最大值
速率	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps, DSSS	_	20.5	_
802.11b, 11 Mbps, CCK	_	20.5	_
802.11g, 6 Mbps, OFDM	_	19.5	_
802.11g, 54 Mbps, OFDM	_	18.5	_
802.11n, HT20, MCS0	_	18.5	_
802.11n, HT20, MCS7	_	17.5	_
802.11n, HT40, MCS0	_	18.0	_
802.11n, HT40, MCS7	_	17.0	_
802.11ax, HE20, MCS0	_	18.5	_
802.11ax, HE20, MCS9	_	14.0	_

表 7-3. 发射 EVM 测试¹

速率	最小值 (dB)	典型值 (dB)	标准限值 (dB)
802.11b, 1 Mbps, DSSS	_	-25.0	-10.0
802.11b, 11 Mbps, CCK	_	-25.0	-10.0
802.11g, 6 Mbps, OFDM	_	-24.0	-5.0
802.11g, 54 Mbps, OFDM	_	-28.0	-25.0
802.11n, HT20, MCS0	_	-27.5	-5.0

表 7-3 - 接上页

	最小值	典型值	标准限值
速率	(dB)	(dB)	(dB)
802.11n, HT20, MCS7	_	-30.0	-27.0
802.11n, HT40, MCS0	_	-27.0	-5.0
802.11n, HT40, MCS7	_	-29.5	-27.0
802.11ax, HE20, MCS0	_	-27.0	-5.0
802.11ax, HE20, MCS9	_	-34.0	-32.0

¹ 发射 EVM 的每个测试项对应的发射功率为表 7-2 频谱模板和 EVM 符合 802.11 标准时的发射功率 中提供的典型值。

7.1.2 Wi-Fi 射频接收器 (RX) 特性

802.11b 标准下的误包率 (PER) 不超过 8%, 802.11g/n/ax 标准下不超过 10%。

表 7-4. 接收灵敏度

	最小值	典型值	最大值
速率	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps, DSSS	_	-99.0	_
802.11b, 2 Mbps, DSSS	_	-96.0	_
802.11b, 5.5 Mbps, CCK	_	-93.2	_
802.11b, 11 Mbps, CCK	_	-89.4	_
802.11g, 6 Mbps, OFDM	_	-94.0	_
802.11g, 9 Mbps, OFDM	_	-92.6	_
802.11g, 12 Mbps, OFDM	_	-92.0	_
802.11g, 18 Mbps, OFDM	_	-89.4	_
802.11g, 24 Mbps, OFDM	_	-86.4	_
802.11g, 36 Mbps, OFDM	_	-82.6	_
802.11g, 48 Mbps, OFDM	_	-78.0	_
802.11g, 54 Mbps, OFDM	_	-77.0	_
802.11n, HT20, MCS0	_	-93.6	_
802.11n, HT20, MCS1	_	-91.8	_
802.11n, HT20, MCS2	_	-88.8	_
802.11n, HT20, MCS3	_	-85.6	_
802.11n, HT20, MCS4	_	-82.8	_
802.11n, HT20, MCS5	_	-78.0	_
802.11n, HT20, MCS6	_	− 76.6	_
802.11n, HT20, MCS7		-75.0	
802.11n, HT40, MCS0	_	-91.0	_
802.11n, HT40, MCS1	_	-88.6	
802.11n, HT40, MCS2	_	-85.6	_
802.11n, HT40, MCS3	_	-82.6	_
802.11n, HT40, MCS4	_	-79.0	

	最小值	典型值	最大值
速率	(dBm)	(dBm)	(dBm)
802.11n, HT40, MCS5	_	− 74. 8	_
802.11n, HT40, MCS6	_	-73.0	_
802.11n, HT40, MCS7	_	-71.8	_
802.11ax, HE20, MCS0	_	-93.8	_
802.11ax, HE20, MCS1	_	-91.0	_
802.11ax, HE20, MCS2	_	-87.4	_
802.11ax, HE20, MCS3	_	-85.0	_
802.11ax, HE20, MCS4	_	-81.4	_
802.11ax, HE20, MCS5	_	-77.0	_
802.11ax, HE20, MCS6	_	-76.0	_
802.11ax, HE20, MCS7	_	-74.4	_
802.11ax, HE20, MCS8	_	-70.4	_
802.11ax, HE20, MCS9	_	-68.2	_

表 7-5. 最大接收电平

	最小值	典型值	最大值
速率	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps, DSSS	_	5	_
802.11b, 11 Mbps, CCK	_	5	_
802.11g, 6 Mbps, OFDM	_	5	_
802.11g, 54 Mbps, OFDM	_	0	
802.11n, HT20, MCS0	_	5	_
802.11n, HT20, MCS7	_	0	_
802.11n, HT40, MCS0	_	5	_
802.11n, HT40, MCS7	_	0	_
802.11ax, HE20, MCS0	_	5	_
802.11ax, HE20, MCS9	_	0	_

表 7-6. 接收邻道抑制

	最小值	典型值	最大值
速率	(dB)	(dB)	(dB)
802.11b, 1 Mbps, DSSS	_	38	_
802.11b, 11 Mbps, CCK	_	38	_
802.11g, 6 Mbps, OFDM	_	31	_
802.11g, 54 Mbps, OFDM	_	20	_
802.11n, HT20, MCS0	_	31	_
802.11n, HT20, MCS7	_	16	_
802.11n, HT40, MCS0	_	28	_

表 7-6 - 接上页

速率	最小值 (dB)	典型值 (dB)	最大值 (dB)
802.11n, HT40, MCS7	_	10	_
802.11ax, HE20, MCS0	_	25	_
802.11ax, HE20, MCS9	_	2	_

7.2 低功耗蓝牙射频

表 7-7. 低功耗蓝牙射频规格

名称	描述
工作信道中心频率范围	2402 ~ 2480 MHz
射频发射功率范围	−16.0 ~ 19.0 dBm

7.2.1 低功耗蓝牙射频发射器 (TX) 特性

表 7-8. 低功耗蓝牙 - 发射器特性 - 1 Mbps

参数	描述	最小值	典型值	最大值	单位
	Max. $ f_n _{n=0, 1, 2, 3,k}$	_	1.3	_	kHz
 载波频率偏移和漂移	Max. $ f_0 - f_n _{n=2, 3, 4,k}$	_	1.5	_	kHz
製	Max. $ f_{n-1} _{n=6, 7, 8,k}$	_	0.9	_	kHz
	$ f_1-f_0 $	_	0.6	_	kHz
	$\Delta F1_{ ext{avg}}$	_	249.9	_	kHz
调制特性	Min. Δ $F2_{\text{max}}$ (至少 99.9% 的 Δ $F2_{\text{max}}$)	_	212.1	_	kHz
	$\Delta~F2_{\rm avg}/\Delta~F1_{\rm avg}$	_	0.88	_	_
	±2 MHz 偏移	_	-29	_	dBm
带内发射	±3 MHz 偏移	_	-36	_	dBm
	> ± 3 MHz 偏移	_	-39	_	dBm

表 7-9. 低功耗蓝牙 - 发射器特性 - 2 Mbps

参数	描述	最小值	典型值	最大值	单位
	Max. $ f_n _{n=0, 1, 2, 3,k}$	1	2.2	_	kHz
载波频率偏移和漂移	Max. $ f_0 - f_n _{n=2, 3, 4,k}$	_	1.1	_	kHz
、 	Max. $ f_{n-1} _{n=6, 7, 8,k}$	-	1.1	_	kHz
	$ f_1-f_0 $	_	0.5	_	kHz
	$\Delta F1_{ ext{avg}}$	-	499.4	_	kHz
调制特性	Min. Δ $F2_{\text{max}}$ (至少 99.9% 的 Δ $F2_{\text{max}}$)	-	443.5	_	kHz
	$\Delta~F2_{\rm avg}/\Delta~F1_{\rm avg}$		0.95	_	_

表 7-9 - 接上页

参数	描述	最小值	典型值	最大值	单位
	±4 MHz 偏移	_	-40	-	dBm
带内发射	±5 MHz 偏移	_	-41	_	dBm
	> ± 5 MHz 偏移	_	-42	_	dBm

表 7-10. 低功耗蓝牙 - 发射器特性 - 125 Kbps

参数	描述	最小值	典型值	最大值	单位
	Max. $ f_n _{n=0, 1, 2, 3,k}$	_	0.7	_	kHz
 载波频率偏移和漂移	Max. $ f_0 - f_n _{n=1, 2, 3,k}$	_	0.3	_	kHz
、 	$ f_0 - f_3 $	_	0.1	_	kHz
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kHz			
田生ル上ル	$\Delta F1_{ ext{avg}}$	_	250.0	_	kHz
调制特性	Min. Δ F1 _{max} (至少 99.9% 的	_	238.0	_	kHz
	$\Delta F1_{\sf max})$				
	±2MHz偏移	_	-29	_	dBm
带内发射	±3 MHz 偏移	_	-36	_	dBm
	> ± 3 MHz 偏移	_	-39	_	dBm

表 7-11. 低功耗蓝牙 - 发射器特性 - 500 Kbps

参数	描述	最小值	典型值	最大值	单位
	Max. $ f_n _{n=0, 1, 2, 3,k}$	_	0.5	_	kHz
井油场支伯秒和 海秒	Max. $ f_0 - f_n _{n=1, 2, 3,k}$	_	0.3	_	kHz
载波频率偏移和漂移	$ f_0 - f_3 $	_	0.1	_	kHz
	Max. $ f_{n-1}f_{n-3} _{n=7, 8, 9,k}$	_	0.4	_	kHz
调制特性	$\Delta F2_{ ext{avg}}$	_	230.7	_	kHz
阿市村生	Min. Δ $F2_{\text{max}}$ (至少 99.9% 的		217.6		kHz
	$\Delta F2_{\sf max}$)	_	217.0		KI IZ
	±2MHz偏移	_	-28	_	dBm
带内发射	±3 MHz 偏移	_	-36	_	dBm
	> ± 3 MHz 偏移	_	-39	_	dBm

7.2.2 低功耗蓝牙射频接收器 (RX) 特性

表 7-12. 低功耗蓝牙 - 接收器特性 - 1 Mbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-98.0	_	dBm
最大接收信号 @30.8% PER	_	_	8	_	dBm

表 7-12 - 接上页

参数		描述	最小值	典型值	最大值	单位
	共信道	F = FO MHz	_	7	-	dB
		F = FO + 1 MHz	_	4	_	dB
		F = FO – 1 MHz	_	3	_	dB
		F = F0 + 2 MHz	_	-21	_	dB
	相邻信道	F = F0 - 2 MHz	_	-22	_	dB
按版准 投 牌 0 //	4月4月1日7日	F = F0 + 3 MHz	_	-28	_	dB
接收选择性 C/I		F = FO - 3 MHz	_	-36	_	dB
		$F \ge FO + 4 MHz$	_	-27		dB
		$F \le FO - 4 MHz$	_	-36	_	dB
	镜像频率	_	_	-26	_	dB
	邻道镜像频率干扰	$F = F_{image} + 1 MHz$	_	-29		dB
	70 担	$F = F_{image} - 1 MHz$	_	-28		dB
		30 MHz ~ 2000 MHz	_	-16		dBm
带外阻塞		2003 MHz ~ 2399 MHz	_	-24	_	dBm
		2484 MHz ~ 2997 MHz	_	-16	_	dBm
		3000 MHz ~ 12.75 GHz	_	-1	_	dBm
互调		_	_	-27	_	dBm

表 7-13. 低功耗蓝牙 - 接收器特性 - 2 Mbps

参数		描述	最小值	典型值	最大值	单位
灵敏度 @30.8%	PER	_	_	-95.0	_	dBm
最大接收信号 @	30.8% PER	_	_	8	_	dBm
	共信道	F = FO MHz	_	8	_	dB
		F = F0 + 2 MHz	_	3	_	dB
		F = F0 - 2 MHz	_	2	_	dB
		F = FO + 4 MHz	_	-23	_	dB
	担 然 / 学送	F = F0 - 4 MHz	_	-25	_	dB
接收选择性 C/I	相邻信道	F = F0 + 6 MHz	_	-31	_	dB
按似选择性 0/1		F = F0 - 6 MHz	_	-35	_	dB
		F ≥ F0 + 8 MHz	_	-36	_	dB
		F ≤ F0 − 8 MHz	_	-36	_	dB
	镜像频率	_	_	-23	_	dB
	か	$F = F_{image} + 2 MHz$	_	-30	_	dB
	邻道镜像频率干扰	$F = F_{image} - 2 MHz$	_	3	_	dB
		30 MHz ~ 2000 MHz	_	-18	_	dBm
带外阻塞		2003 MHz ~ 2399 MHz	_	-28	_	dBm
		2484 MHz ~ 2997 MHz	_	-16	_	dBm
		3000 MHz ~ 12.75 GHz	_	-1	_	dBm
互调		_	_	-29	_	dBm

表 7-14. 低功耗蓝牙 - 接收器特性 - 125 Kbps

参数		描述	最小值	典型值	最大值	单位
灵敏度 @30.8%	PER	_	_	-105.5	_	dBm
最大接收信号 @	30.8% PER	_	_	8	_	dBm
	共信道	F = FO MHz	_	2	_	dB
		F = FO + 1 MHz	_	-1	_	dB
		F = FO – 1 MHz	_	-3	_	dB
	相邻信道	F = F0 + 2 MHz	_	-31	_	dB
		F = F0 - 2 MHz	_	-27	_	dB
接收选择性 C/I		F = FO + 3 MHz	_	-33	_	dB
按权选择性 0/1		F = F0 - 3 MHz	_	-42	_	dB
		F ≥ F0 + 4 MHz	_	-31	_	dB
		F ≤ F0 − 4 MHz	_	-48	_	dB
	镜像频率	_	_	-31	_	dB
	邻道镜像频率干扰	$F = F_{image} + 1 MHz$	_	-36	_	dB
	邓坦说该颁举丨批	$F = F_{image} - 1 MHz$	_	-33	_	dB

表 7-15. 低功耗蓝牙 - 接收器特性 - 500 Kbps

参数		描述	最小值	典型值	最大值	单位
灵敏度 @30.8%	PER	_	_	-101.5	_	dBm
最大接收信号 @	30.8% PER	_	_	8	_	dBm
	共信道	F = FO MHz	_	4	_	dB
		F = FO + 1 MHz	_	1	_	dB
		F = FO – 1 MHz	_	-1	_	dB
	相邻信道	F = F0 + 2 MHz	_	-23	_	dB
		F = F0 - 2 MHz	_	-24	_	dB
 接收选择性 C/I		F = FO + 3 MHz	_	-33	_	dB
按似处件性 U/I		F = F0 - 3 MHz	_	-41	_	dB
		F ≥ F0 + 4 MHz	_	-31	_	dB
		F ≤ F0 − 4 MHz	_	-41	_	dB
	镜像频率	_	_	-30	_	dB
	邻道镜像频率干扰	$F = F_{image} + 1 MHz$	_	-35	_	dB
	7P.坦克该州平「九	$F = F_{image} - 1 MHz$	_	-27	_	dB

7.3 802.15.4 射频

表 7-16. 802.15.4 射频规格

名称	描述
工作信道中心频率范围	2405 ~ 2480 MHz

 $^{^{1}}$ Zigbee 在 2.4 GHz 的频段上具有从信道 11 到信道 26 共 16 个信道, 信道间隔为5MHz。

7.3.1 802.15.4 射频发射器 (TX) 特性

表 7-17. 802.15.4 发射器特性 - 250 Kbps

参数	最小值	典型值	最大值	单位
射频发射功率	-16.0	_	19.0	dBm
EVM	_	13%	_	_

7.3.2 802.15.4 射频接收器 (RX) 特性

表 7-18. 802.15.4 接收器特性 - 250 Kbps

参数		描述	最小值	典型值	最大值	单位
灵敏度 @1% PER		_	_	-104.0	_	dBm
最大接收信号 @1%	贵大接收信号 @1% PER		_	8	_	dBm
	扣你冷苦	F = F0 + 5 MHz	_	27	_	dB
担对工协中亚	相邻信道	F = F0 - 5 MHz	_	32	_	dB
相对干扰电平	挂格	F = FO + 10 MHz	_	47	_	dB
	替换信道	F = FO - 10 MHz	_	50	_	dB

 $| \infty |$

8 模组原理图

模组内部元件的电路图。

图 8-1. ESP32-C6-MINI-1 原理图

 $| \infty |$

模组原理图

图 8-2. ESP32-C6-MINI-1U 原理图

外围设计原理图 9

模组与外围器件(如电源、天线、复位按钮、JTAG 接口、UART 接口等)连接的应用电路图。

图 9-1. 外围设计原理图

- EPAD 可以不焊接到底板,但是焊接到底板的 GND 可以获得更好的散热特性。如果您想将 EPAD 焊接到底 板,请确保使用适量焊膏,避免过量焊膏造成模组与底板距离过大,影响管脚与底板之间的贴合。
- 为确保 ESP32-C6 芯片上电时的供电正常, EN 管脚处需要增加 RC 延迟电路。RC 通常建议为 R = $10 \text{ k}\Omega$, $C = 1 \mu F$,但具体数值仍需根据模组电源的上电时序和芯片的上电复位时序进行调整。ESP32-C6 芯片的 上电复位时序图可参考章节 4.5 芯片上电和复位。

10 尺寸规格

10.1 模组尺寸

图 10-1. ESP32-C6-MINI-1 模组尺寸

图 10-2. ESP32-C6-MINI-1U 模组尺寸

说明:

有关卷带、载盘和产品标签的信息,请参阅_《ESP32-C6 模组包装信息》。

10.2 外部天线连接器尺寸

ESP32-C6-MINI-1U 采用图 10-3 外部天线连接器尺寸图 所示的第三代外部天线连接器,该连接器兼容:

- 广濑 (Hirose) 的 W.FL 系列连接器
- I-PEX 的 MHF III 连接器
- 安费诺 (Amphenol) 的 AMMC 连接器

图 10-3. 外部天线连接器尺寸图

ESP32-C6-MINI-1U 在认证测试过程中搭配使用的外部天线为第三代外接单极子天线,料号为TFPD08H10060011。

模组出货时不包含外部天线。请根据自身产品的使用环境与性能需求,选用适配的外部天线。如需自行选用,建议选用满足以下要求的天线:

- 2.4 GHz 频段
- 50 Ω 阻抗
- 最大增益不超过认证中所用天线的增益 2.33 dBi
- 接口规格与模组天线连接器接口匹配,参考图 10-3 外部天线连接器尺寸图

说明:

如选用不同类型或不同增益的外部天线,除乐鑫模组已有的天线测试报告外,可能还需进行包括 EMC 在内的额外测试,具体要求视认证类别而定。

11 PCB 布局建议

11.1 PCB 封装图形

本章节提供以下资源供您参考:

- 推荐 PCB 封装图,标有 PCB 设计所需的全部尺寸。详见图 11-1 ESP32-C6-MINI-1 推荐 PCB 封装图形 和图 11-2 ESP32-C6-MINI-1U 推荐 PCB 封装图形。
- 推荐 PCB 封装图的源文件,用于测量图 11-2 和 11-2 中未标注的尺寸。您可用 <u>Autodesk Viewer</u> 查看 ESP32-C6-MINI-1和 ESP32-C6-MINI-1U 的封装图源文件。
- <u>ESP32-C6-MINI-1</u> 和 <u>ESP32-C6-MINI-1U</u> 的 3D 模型。请确保下载的 3D 模型为.STEP 格式(注意,部分浏览器可能会加.txt 后缀)。

图 11-1. ESP32-C6-MINI-1 推荐 PCB 封装图形

图 11-2. ESP32-C6-MINI-1U 推荐 PCB 封装图形

11.2 PCB 设计中的模组位置摆放

如产品采用模组进行 on-board 设计,则需注意考虑模组在底板的布局,应尽可能地减小底板对模组 PCB 天线性能的影响。

关于 PCB 设计中模组位置摆放的更多信息,请参考 <u>《ESP32-C6 硬件设计指南》</u> > 章节 模组在底板上的位置摆放。

12 产品处理

12.1 存储条件

密封在防潮袋 (MBB) 中的产品应储存在 < 40 ℃/90%RH 的非冷凝大气环境中。

模组的潮湿敏感度等级 MSL 为 3 级。

真空袋拆封后,在 25±5 °C、60%RH下,必须在 168 小时内使用完毕,否则就需要烘烤后才能二次上线。

12.2 静电放电 (ESD)

人体放电模式 (HBM): ±2000 V充电器件模式 (CDM): ±500 V

12.3 回流焊温度曲线

建议模组只过一次回流焊。

图 12-1. 回流焊温度曲线

12.4 超声波振动

请避免将乐鑫模组暴露于超声波焊接机或超声波清洗机等超声波设备的振动中。超声波设备的振动可能与模组 内部的晶振产生共振,导致晶振故障甚至失灵,**进而致使模组无法工作或性能退化**。

技术规格书版本号管理

技术规格书版本	状态	水印	定义
v0.1~v0.5 (不	草稿	Confidential	该技术规格书正在完善。对应产品处于设计阶段,
包括 v0.5)			产品规格如有变更,恕不另行通知。
V05 V10 (F	> π 11:		该技术规格书正在积极更新。对应产品处于验证
v0.5 ~ v1.0 (不 包括 v1.0)	初步 发布	Preliminary	阶段,产品规格可能会在量产前变更,并记录在
包括 VI.O)	及们		技术规格书的修订历史中。
	正式		该技术规格书已公开发布。对应产品已量产,产
v1.0 及更高版本	近式 发布	_	品规格已最终确定,重大变更将通过
	及彻		<u>产品变更通知 (PCN)</u> 进行通知。
任意版本	_	不推荐用于新设计 (NRND)1	该技术规格书更新频率较低,对应产品不推荐用
			于新设计。
任意版本	_	停产 (EOL) ²	该技术规格书不再维护,对应产品已停产。

¹ 技术规格书涵盖的所有产品型号均不推荐用于新设计时,封面才会添加水印。 ² 技术规格书涵盖的所有产品型号均停产时,封面才会添加水印。

相关文档和资源

相关文档

- 《ESP32-C6 技术规格书》 提供 ESP32-C6 芯片的硬件技术规格。
- 《ESP32-C6 技术参考手册》 提供 ESP32-C6 芯片的存储器和外设的详细使用说明。
- 《ESP32-C6 硬件设计指南》 提供基于 ESP32-C6 芯片的产品设计规范。
- 《ESP32-C6 系列芯片勘误表》 描述 ESP32-C6 系列芯片的已知错误。
- 证书

https://espressif.com/zh-hans/support/documents/certificates

• ESP32-C6 产品/工艺变更通知 (PCN)

https://espressif.com/zh-hans/support/documents/pcns?keys=ESP32-C6

• 文档更新和订阅通知

https://espressif.com/zh-hans/support/download/documents

开发者社区

- 《ESP32-C6 ESP-IDF 编程指南》 ESP-IDF 开发框架的文档中心。
- ESP-IDF 及 GitHub 上的其它开发框架

https://github.com/espressif

- ESP32 论坛 工程师对工程师 (E2E) 的社区, 您可以在这里提出问题、解决问题、分享知识、探索观点。 https://esp32.com/
- ESP-FAQ 由乐鑫官方推出的针对常见问题的总结。

https://espressif.com/projects/esp-faq/zh_CN/latest/index.html

• The ESP Journal - 分享乐鑫工程师的最佳实践、技术文章和工作随笔。

https://blog.espressif.com/

• SDK 和演示、App、工具、AT 等下载资源

https://espressif.com/zh-hans/support/download/sdks-demos

产品

- ESP32-C6 系列芯片 ESP32-C6 全系列芯片。
 - https://espressif.com/zh-hans/products/socs?id=ESP32-C6
- ESP32-C6 系列模组 ESP32-C6 全系列模组。

https://espressif.com/zh-hans/products/modules?id=ESP32-C6

• ESP32-C6 系列开发板 - ESP32-C6 全系列开发板。

https://espressif.com/zh-hans/products/devkits?id=ESP32-C6

• ESP Product Selector (乐鑫产品选型工具) - 通过筛选性能参数、进行产品对比快速定位您所需要的产品。 https://products.espressif.com/#/product-selector?language=zh

联系我们

● 商务问题、技术支持、电路原理图 & PCB 设计审阅、购买样品(线上商店)、成为供应商、意见与建议 https://espressif.com/zh-hans/contact-us/sales-questions

修订历史

日期	版本	发布说明		
2025-07-16	V1.4	 在章节 2 功能框图 中,增加芯片与封装内 flash 管脚对应关系的说明 在章节 10.2 外部天线连接器尺寸 中,增加认证使用的天线信息 新增小节 4.5 芯片上电和复位、6.5 存储器规格 以及 技术规格书版本号管理 		
2025-03-21	v1.3	 在章节 1 模组概述 中,将 1.2 描述重命名为 1.2 型号对比 优化以下章节的格式、结构和表述: 章节 4 启动配置项(原为 3.3 Strapping 管脚) 章节 5 外设(原为 4 外设) 章节 10 尺寸规格 和 11 PCB 布局建议(原为 9 模组尺寸和 PCB 封装图形) 在章节 7.1 Wi-Fi 射频 中,更新表格 7-2 频谱模板和 EVM 符合 802.11 标准时的发射功率 和表格 7-4 接收灵敏度 数据 新增小节 11.2 PCB 设计中的模组位置摆放 		
2024-08-20	v1.2	 在章节 1.1 特性、1.2 型号对比 中, flash 大小由 4 MB 更新为最大可选 8 MB 在章节 1.2 型号对比 中, 增加 ESP32-C6-MINI-1-H8 与 ESP32-C6-MINI-1U-H8 的信息和有关 SPI flash 支持最大时钟频率的表格注释 在章节 1.1 特性、1.2 型号对比 和 5.1 外设概述 中增加 ESP32-C6FH8 的信息 		
2024-01-19	V1.1	 在章节 1.1 特性 中增加认证与测试信息 在章节 6.4.1 Active 模式下的功耗 中, Active 模式下低功耗蓝牙以及802.15.4 功耗特性的发射模式最小功率由-24 dBm 更新为-16 dBm,最大功率由 20 dBm 更新为 19 dBm 在章节 7 射频特性 中,低功耗蓝牙以及802.15.4 的射频发射功率范围由-24~20 dBm 更新为-16~19 dBm 在章节 11 PCB 布局建议 中,增加 ESP32-C6-MINI-1U 模组的 PCB 封装图以及ESP32-C6-MINI-1 和 ESP32-C6-MINI-1U 模组的 3D 模型信息 		
2023-06-27	V1.0	 新增章节 5 外设 并删除章节 1.2 型号对比 中的外设相关信息 更新图 10-1 ESP32-C6-MINI-1 模组尺寸 和 10-2 ESP32-C6-MINI-1U 模组尺寸,将俯视图公差由 0.25 更改为 0.2 		
2023-04-17	v0.6	增加 ESP32-C6-MINI-1U 模组的相关信息		
2023-02-16	v0.5	预发布		

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息, 所有引用的信息均为"按现状"提供, 乐鑫不对信息的准确性、真实性做任何保证。

乐鑫不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不提供任何其他乐鑫提案、规格书或样 品在他处提到的任何保证。

乐鑫不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的行为负责。本文档 在此未以禁止反言或其他方式授予任何知识产权许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2025 乐鑫信息科技(上海)股份有限公司。保留所有权利。

www.espressif.com