1 Magnus expansion for $A \in \mathbb{R}^{2,2}$, B = 0 deterministic

We will concern ourselves with the following SDE:

$$dX_t = A_t X_t dW_t$$

with

$$A_t = \begin{bmatrix} f^{11}(t) & f^{12}(t) \\ 0 & f^{22}(t) \end{bmatrix}$$

Here we chose:

$$A_t = \frac{\tilde{A}_t}{\sigma(\tilde{A}_t)},$$

where $\sigma(A_t)$ is the spectral radius and

$$\tilde{A}_t = \left[\begin{array}{cc} 2 & t \\ 0 & -1 \end{array} \right]$$

1.1 Parameters

Parameter value

t_0	0
T	1
N_fine	10001
N	101
M_fine	1000
M	1000
d	2

1.2 Computational Times

Method	\mathbf{Log}	Matrix Exp	Total
	R	Run 1	
exact	0	0	0.817169
euler	0	0	4.52597
m1	0.0150561	0.532748	0.547804
	F	Run 2	
exact	0	0	0.807434
euler	0	0	4.53311
m1	0.0128825	0.522425	0.535308
	F	Run 3	
exact	0	0	0.80388
euler	0	0	4.57558
m1	0.0126122	0.529183	0.541795
	Mea	n Time	
exact	0	0	0.809494
euler	0	0	4.54488
m1	0.0135169	0.528119	0.541636