Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2007 Lösungsblatt Abschlussklausur 1. Oktober 2007

Name			Vorname				Studiengang				Matrikelnummer		
						\square B:	☐ Diplom ☐ Inform. ☐ Bachelor ☐ BioInf. ☐ Lehramt ☐ WirtInf.						
Hörsaal			Reihe				Sitzplatz				aterschrift		
		<u>, </u>											
			\mathbf{A}	llge	mein	e H	inwe	eise					
• Bitte füllen	Sie o	bige	Felde	r in l	Druckl	ouchs	aben	aus ur	nd un	terschre	eiben Sie!		
• Bitte schrei	iben S	ie nie	cht m	it Bl	eistift	oder	in rot	er/grü	ner Fa	arbe!			
• Die Arbeits	szeit b	eträg	st 105	6 Min	uten.								
• Alle Antwo seiten) der Sie Nebenr werden, wir	betref echnu	fende ngen	n Au mac	fgabe hen.	en einz Der S	zutrag Schmie	en. A erblat	uf dem	Schn	nierblat	tbogen kör	nne	
Hörsaal verlasse	en		von		b	is		/	von		bis	•	
Vorzeitig abgege	eben		um										
Besondere Bem	erkung	gen:											
	A1	A2	A3	A4	A5	Σ	Kor	rektor					
Erstkorrektur									_				
Zweitkorrektur													

Aufgabe 1 (8 Punkte)

Markieren Sie, ob folgende Aussagen in voller Allgemeinheit gelten (J:ja/wahr, N Falls Sie ein Kästchen versehentlich angekreuzt haben, so füllen Sie beide bitte v aus und malen unmittelbar rechts daneben zwei neue Kästchen: ■□ □□ Für jedes falsche Kreuz wird ein Punkt abgezogen (innerhalb der Aufgabe 1).	, ,
Der Durchschnitt zweier kontextsensitiver Sprachen ist wieder kontextsensitiv.	✓ N
Der Durchschnitt zweier kontextfreier Sprachen ist wieder kontextfrei	J 💸
Die Aussage, dass alle bekannten, in der Vorlesung besprochenen Formalisierungen des Berechenbarkeitsbegriffs äquivalent sind, bezeichnet man als die Church'sche These.	J 🌠
Der Wertebereich einer berechenbaren Funktion ist entscheidbar	J 💸
Das allgemeine Halteproblem ist eine Typ-0-Sprache.	√ N
Sei T eine Turingmaschine, die, für jede Eingabe, keinen der (Schreib-/Lese) Köpfe je nach links bewegt. Dann ist die akzeptierte Sprache gulär.	✓ N
Jede berechenbare totale Funktion $f: \mathbb{N} \to \mathbb{N}$ ist μ -rekursiv	У N
Gegeben sei eine berechenbare Auflistung aller Turingmaschinen, die jedem Wort $w \in \{0,1\}^*$ eine Turingmaschine M_w zuordnet. Dann ist die Sprache $L = \{w \in \{0,1\}^*; M_w$ hält für jede Eingabe nach höchstens 10 Schritten $\}$ entscheidbar.	✓ N

Aufgabe 2 (7 Punkte)

Sei G eine kontextfreie Grammatik und L = L(G) die von G erzeugte Sprache. Sei n eine für L gültige Konstante aus dem Pumping-Lemma. Beweisen Sie:

- 1. Falls L endlich ist $(|L| \in N_0)$, dann gibt es **kein** Wort $z \in L$ der Länge |z|, so dass $n \le |z| < 2n$ gilt.
- 2. Falls L unendlich ist $(|L| \notin N_0)$, dann gibt es ein Wort $z \in L$ der Länge |z|, so dass $n \leq |z| < 2n$ gilt.

Lösungsvorschlag

1. Gäbe es ein Wort $z \in L$ mit $n \le |z| < 2n$, (1 P.) dann gäbe es auch eine Zerlegung z = uvwxy mit $|vx| \ge 1$, $|vwx| \le n$ und $a_i := uv^i wx^i y \in L$ für alle $i \in \mathbb{N}_0$. (1 P.)

Wegen $|vx| \ge 1$ wären alle $a_i \in L$ für alle $i \in \mathbb{N}_0$ paarweise verschieden. (1 P.) L könnte also nicht endlich sein. Widerspruch!

2. Da L unendlich ist, gibt es ein $z \in L$ mit $|z| \ge n$. (1 P.)

Sei also $z \in L$ mit $|z| \ge n$.

Falls |z| < 2n gilt, dann ist die Aussage bewiesen.

Falls $|z| \geq 2n$ gilt, dann konstruieren wir ein $z_1 \in L$ mit $n \leq |z_1| < |z|$ wie folgt: Wir zerlegen z gemäß Pumping-Lemma in z = uvwxy, so dass $|vx| \geq 1$, $|vwx| \leq n$ und $uv^iw^ixy \in L$ für alle $i \in \mathbb{N}_0$. (1 P.)

Wir setzen für
$$z_1 = uv^0 w x^0 y = uwy$$
. (1 P.)

Es gilt $z_1 \in L$.

Wegen $|vx| \ge 1$ gilt $|z_1| < |z|$.

Wegen
$$|vwx| \le n$$
 gilt $n \le |z_1|$. $(\frac{1}{2} P.)$

Offenbar kann das Argument solange wiederholt werden, bis nach endlich vielen Wiederholungen ein $z_1 \in L$ gefunden ist mit $n \le |z_1| < 2n$. $(\frac{1}{2} P.)$

Aufgabe 3 (8 Punkte)

Gegeben sei die Sprache $L \subseteq \{a, b, c\}^*$ mit

$$L = \{a^i b^j c^k ; i, j, k \in \mathbb{N}_0, j < i \text{ und } j < k\}.$$

- 1. Stellen Sie L dar als Durchschnitt kontextfreier Sprachen L_1 und L_2 . Zeigen Sie die Kontextfreiheit für die von Ihnen gewählten Sprachen L_1 und L_2 .
- 2. Geben Sie eine kontextsensitive Grammatik G an, die L erzeugt.

Lösungsvorschlag

1. Es gilt $L = L_1 \cap L_2$ mit

$$L_{1} = \{a^{i}b^{j}c^{k}; i, j, k \in \mathbb{N}_{0}, j < i\} \quad \text{und} \quad L_{2} = \{a^{i}b^{j}c^{k}; i, j, k \in \mathbb{N}_{0}, j < k\}$$

$$S \rightarrow XTY \mid XY \mid XT \mid X, \qquad S \rightarrow XTY \mid XY \mid TY \mid Y,$$

$$T \rightarrow aTb \mid ab, \qquad T \rightarrow bTc \mid bc,$$

$$X \rightarrow aX \mid a, \qquad X \rightarrow aX \mid a,$$

$$Y \rightarrow cY \mid c. \qquad (1 \text{ P.}) \qquad Y \rightarrow cY \mid c. \qquad (1 \text{ P.})$$

2. Die folgende Lösung verfolgt den Gedanken, $a^ib^ic^i$ für $i \geq 1$ als Elemente der Sprache L(T) zu produzieren und am Anfang beliebig viele a und am Ende beliebig viele c (mindesetens je eines) zu den Elementen von $\{\epsilon\} \cup L(T)$ hinzuzufügen.

L(T) erzeugen wir zunächst mit monotoner Grammatik, wie folgt. # verwenden wir als Variable zur Erzeugung terminaler c an der rechten Seite.

$$T \rightarrow aT'B\# | aBC',$$

$$T' \rightarrow aT'BC' | aBC',$$

$$B \rightarrow b,$$

$$\# \rightarrow c,$$

$$C'B \rightarrow BC',$$
(1 P.)

(1 P.)

Wir ersetzen die beiden letzten, nichtkontextsensitiven Regeln.

 $C'\# \to \#c$.

$$C'B \rightarrow \bar{C}B$$
, $\bar{C}B \rightarrow \bar{C}C'$, $\bar{C}C' \rightarrow BC'$,
 $C'\# \rightarrow C''\#$, $C''\# \rightarrow C''c$, $C''c \rightarrow \#c$. (1 P.)

Aufgabe 4 (7 Punkte)

Gegeben sei die Sprache $L \subseteq \{d, e\}^*$ mit

$$L = \{d^{2i}e^i ; i \in \mathbb{N}_0\}.$$

Geben Sie einen deterministischen Kellerautomaten (DPDA) an, der L entweder mit Endzuständen oder mit leerem Keller akzeptiert.

Lösungsvorschlag

 ${\cal L}$ wird mit Endzuständen akzeptiert von dem Kellerautomaten

$$K = (Q, \{c, d\}, \{Z_0, D\}, \delta, q_0, Z_0, F)$$
 (\frac{1}{2} P.)

mit $Q = \{q_0, q_1, q_2, q_3, q_4\},\$

$$F = \{q_0, q_4\}$$
 $(\frac{1}{2} P.)$

und der Übergangsfunktion δ wie folgt.

$$\delta(q_0, d, Z_0) = (q_1, DZ_0), \tag{1 P.}$$

$$\delta(q_1, d, D) = (q_1, DD), \tag{1 P.}$$

$$\delta(q_1, e, D) = (q_2, \epsilon), \tag{1 P.}$$

$$\delta(q_2, \epsilon, D) = (q_3, \epsilon), \tag{1 P.}$$

$$\delta(q_3, e, D) = (q_2, \epsilon), \tag{1 P.}$$

$$\delta(q_3, \epsilon, Z_0) = (q_4, \epsilon). \tag{1 P.}$$

Aufgabe 5 (10 Punkte)

Wir betrachten die Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$, die für alle $n \geq 3$ der linearen Rekursion f(n) = f(n-1) + f(n-2) + f(n-3) genügt. Ausserdem gelte f(0) = 0, f(1) = 1, f(2) = 2.

- 1. Zeigen Sie, dass f primitiv-rekursiv ist.
- 2. Sei W_f der Wertebereich von f, d.h. $W_f = \{f(n) : n \in \mathbb{N}_0\}$. Zeigen Sie, dass W_f entscheidbar ist.
- 3. Sei $g: \mathbb{N}_0 \to \mathbb{N}_0$ die Umkehrfunktion von f auf dem Wertebereich W_f von f, d. h., dass für alle $n \in \mathbb{N}_0$ gilt n = g(f(n)) und für $y \notin W_f$ gilt, dass g(y) nicht definiert ist. Zeigen Sie, dass g μ -rekursiv ist.

Hinweis: Es ist nicht notwendig, eine geschlossene Darstellung von f explizit zu berechnen.

Lösungsvorschlag

1. Dass f primitiv-rekursiv ist, folgt aus dem folgenden LOOP-Programm, das den Funktionswert von f für $n \geq 3$ in der Variablen x_2 berechnet.

$$x_0 := 0; \ x_1 := 1; \ x_2 := 2; \ x_3 := n - 2;$$

 $LOOP \ x_3 \ DO$
 $x_4 := x_0 + x_1 + x_2; \ x_0 := x_1; \ x_1 := x_2; \ x_2 := x_4;$
 $END;$
(3 P.)

2. Offenbar ist f streng monoton wachsend, d. h., es gilt f(n-1) < f(n) für alle $n \in \mathbb{N}$. Ausserdem gilt 4 < f(4).

Daraus folgt
$$n < f(n)$$
 für alle $n \ge 4$. (1 P.)

Die charakteristische Funktion $\chi_{W_f}(n)$ ist damit wie folgt berechenbar. (1 P.)

$$\chi_{W_f}(n) = \begin{cases} 1 &: n \in \{0, 1, 2, 3\}, \\ 1 &: (\exists m \le n)[f(m) = n], \\ 0 &: \text{sonst.} \end{cases}$$
(2 P.)

- 3. Es gibt mehrere Lösungswege.
 - 1. Möglichkeit:

Sei
$$\bar{g}(m,y) = |f(m) - y|$$
. (1 P.)

 \bar{g} ist primitiv-rekursiv.

Dann gilt
$$g(y) = (\bar{g})_{\mu}(y)$$
. (2 P.)

2. Möglichkeit:

Wir betrachten folgendes Programm, das offenbar durch ein WHILE-Programm darstellbar ist.

$$n := 0; z := f(n);$$

while $z \neq y$ do
 $n := n + 1; z := f(n);$
end

g(y) wird in der Variablen n berechnet. (3 P.)