Henry Clausen, David Aspinall, Gudmund Grov, Marc Sabate

Better anomaly detection for access attacks using deep bidirectional LSTMs

Contribution

Novel deep LSTM-model:

- Designed for access attacks
- Flow-based
- Significantly improves detection rates

Careful in-depth evaluation

- Comparison to SoA-models
- Longterm evaluation
- AUC-scores and det. Rates

Where network anomaly-detection works

- DoS attacks
- Network probing
- Worms
- User active at strange times

Nisioti et al. (2018):

- Remote2Local & User2Root far less reliably detected
- Evaluation pitfalls make comparison difficult

Figure 1. Blaster - TCP address parameter compressibility

Underlying idea

Src	Dst	DPort	bytes #	packets
A	В	80	247956	315
A	В	80	7544	13
A	В	80	328	6
A	В	80	2601	10
A	В	80	328	6
A	В	80	328	6
A	В	80	380	7
A	В	80	328	6

:

SQL-injection-attack, CICIDS-17 data

Src	Dst	DPort	bytes #	packets
D	C	N33	600	5
\mathbf{C}	D	445	77934	1482
D	\mathbf{C}	N33	600	5
\mathbf{C}	D	445	5202	10

Benign SMB, LANL-16 data

Src	Dst	DPort	bytes #	packets
$\overline{\mathbf{C}}$	D	445	4106275	2830
\mathbf{C}	D	445	358305611	242847

Malicious SMB, LANL-16 data

- sort outgoing and incoming connections on host X
- group them into intervals
 - flow separation less than 8s

- Tokenise flows:
 - Direction
 - TCP/UDP/ICMP
 - Port
 - Size interval

- sort outgoing and incoming connections on host X
- group them into intervals
 - flow separation less than 8s
- Tokenise flows:
 - Direction
 - TCP/UDP/ICMP
 - Port
 - Size interval

- sort outgoing and incoming connections on host X
- group them into intervals
 - flow separation less than 8s
- Tokenise flows:
 - Direction
 - TCP/UDP/ICMP
 - Port
 - Size interval

- sort outgoing and incoming connections on host X
- group them into intervals
 - flow separation less than 8s
- Tokenise flows:
 - Direction
 - TCP/UDP/ICMP
 - Port
 - Size interval

- sort outgoing and incoming connections on host X
- group them into intervals
 - flow separation less than 8s

- Tokenise flows:
 - Direction
 - TCP/UDP/ICMP
 - Port
 - Size interval

Modelling - Architecture

Leave-one-out prediction training

Anomaly-score: averaged likelihood of session

Model architecture

Modelling - Architecture

Embedding layer

- separately to reduce parameters
- Two LSTM layers
 - **Both directions**
- Linear layer to postprocess
 - Softmax-output for state and size

•
$$N_{hidden}^{1,2} = 50$$

• $N_{embed}^{1,2,3} = 5$

•
$$N_{embed}^{1,2,3} = 5$$

Model architecture

Modelling - Architecture

Shallow comparison architecture

Model architecture

Datasets and comparison

- CICIDS-17
 - 7 access attacks
 - SQL-i., Heartbleed, XSS, ...

- UGR-16
 - 6 months
 - longterm evaluation

SoA-models:

- UNIDS (2013)
 - Clustering-based
 - Best access-attack detection rates in survey
- Radford et al. (2018)
 - LSTM-based
- Niyaz et al. (2016)
 - Deep autoencoder

Evaluation

Attack:

FTP-P Infilt. * Brute-F. × XSS

Heartbl. • SSH-P. + SQL

Evaluation

A Harale	FTP-P	A	Infilt.	*	Brute-F.	×	XSS
Attack:	Hearthl		SSH-P	4	SOL		

	1-AUC scores							
	Our model	UNIDS	Radford	Niyaz	shallow m.			
Brute Force Web	0.016	0.49	0.027	0.32	0.048			
FTP-Patator	$\boldsymbol{0.0025}$	0.011	0.0048	0.16	0.0052			
Heartbleed	0.0003	0.0057	0.032	0.077	0.012			
Infiltration	0.046	0.033	0.35	0.15	0.11			
SQL-injection	0.005	0.44	0.497	0.39	0.019			
SSH-Patator	0.009	0.013	0.035	0.011	0.005			
XSS	0.127	0.02	0.03	0.16	0.13			
Average	0.044	0.144	0.135	0.18	0.091			

Evaluation - long-term stability

Benign traffic, Computer 42.219.154.44, UGR-16

Limitations

Traffic overlay

• Events separated in time

Isolated flow events

Thank you for your attention

IN SECURITIES

(C) AMANDA ROUSSEAU

Limitations

Traffic overlay

• Events separated in time

Isolated flow events

Conclusion

- Large public dataset
 - Realistic interactions
 - Evasive tactics
 - github.com/detlearsom/detgen/stepping-stone-data
- Evaluation of current state-of-the-art
 - Lower overall detection rates
 - Lack of robustness against chaff
 - Watermarking and deep-learning performs best

