Relations

Ch 2 schaum's, Ch 7 Rosen

Hasse Diagram

As with relations and functions, there is a convenient graphical representation for partial orders—Hasse Diagrams.

Consider the digraph representation of a partial order—since we *know* we are dealing with a partial order, we *implicitly* know that the relation must be reflexive and transitive. Thus we can simplify the graph as follows:

- Remove all self-loops.
- Remove all transitive edges.
- Make the graph direction-less—that is, we can assume that the orientations are upwards.

The resulting diagram is far simpler.

Hasse Diagram Example

Hasse Diagrams

Consider the graph for a finite poset ({1,2,3,4},≤) When we KNOW it's a poset, we can simplify the graph

Hasse Diagram

For the poset ({1,2,3,4,6,8,12}, |)

Construct the Hasse diagram of $(P(\{a, b, c\}), \subseteq)$.

The elements of $P(\{a, b, c\})$ are

The digraph is

Greatest Element

Least Element

Maximal Element

Minimal Element

Upper Bound

Lower Bound

Greatest lower bound

Least Upper bound

Find the lower and upper bounds of the subsets $\{a, b, c\}$, $\{j, h\}$, and $\{a, c, d, f\}$.

The upper bounds of {a, b, c} are e, f, j, h and its lower bound is a.

There is no upper bounds of {j, h}. And its lower bounds are a, b, c, d, e, f.

The upper bounds of {a, c, d, f} are f, h and j. and its lower bound is a.

Find the greatest lower bound and the least upper bound of {b, d, g}

Lattices

A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is

called a lattice.

 $(P(\{a, b, c\}), \subseteq)$

Consider the elements 1 and 3.

- Upper bounds of 1 are 1, 2, 4 and 5.
- Upper bounds of 3 are 3, 2, 4 and 5.
- 2, 4 and 5 are upper bounds for the pair 1 and 3.
- There is no lub since
 - 2 is not related to 4
 - 4 is not related to 2
 - 2 and 4 are both related to 5.
- There is no glb either.

The poset is not a lattice.