Chapter 6: Temporal-Difference Learning

6.1 TD Prediction

• Constatnt- α MC

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

• TD(0), or one-step TD

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - S_t)$$

TD(0) based on existing estimates, so it's a bootstrapping method.

6.2 Advantages of TD Prediction Methods

- Compared to DP: Do not need a model of the environment
- Compared to MC: Online, fully incremental
- TD(0) has been proved to converge to $v_{\pi}(s)$.
- In practice, TD methods usually converge faster than constant- α MC methods on stochastic tasks.

6.3 Optimality of TD(0)

• **Batch-updating**: In a finite amount of experience (episodes), increments are computed in every time step but the value function is updated only once, by the sum of all increments.

Under batch-updating, if α is sufficiently small, both TD(0) and constant- α MC deterministically converges, but to two different answers.

Figure 6.2: Performance of TD(0) and constant- α MC under batch training on the random walk task.

Under batch-updating, constant- α MC converges to optimal value function, but TD(0) still manages to outperform it?

- MC is optimal only in a limited way and TD is optimal in a way that is more relevent to predicting returns.
- MC minimizes mean-square error on training set while TD finds the estimates that would be exactly correct for the maximum-likelihood model of the Markov process.

Certainty-equivalence estimate: The estimate of the underlying process was known with certainty rather than being approximated.

6.4 Sarsa: On-policy TD Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

Uses $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$ (SARSA).

6.5 Q-learning: Off-policy TD Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$$

Q-learning directly approximates q_* , independent of the policy.

6.6 Expected Sarsa

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1} \mid S_{t+1})] - Q(S_t, A_t)] \\ \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_t, A_t)]$$

This algorithm moves *deterministically* in the same direction as Sarsa moves *in expectation*.

If π is greedy, it is the same as Q-learning.

6.7 Maximization Bias and Double Learning

In many algorithms a maximization over estimated values is used, thus introduces a *postive bias*. This bias gives our algorithm a tendancy to explore the biased actions.

Double-learning: Learn two independent estimates $Q_1(a)$ and $Q_2(a)$. We can use Q_1 to determine the maximization action $A^* = \arg\max_a Q_1(a)$ and the other, Q_2 , to provide the estimated value, $Q_2(A^*) = Q_2(\arg\max_a Q_1(a))$.