Conditional Probabilities

Today's Class

- Conditional Probability
- Independence
- o Bayes' Theorem

Conditional Prob. Example

	Cancer	No Cancer	Total
Smoke	18	12	30
No Smoke	22	48	70
Total	40	60	100

- What is probability of cancer?
- What is probability of smoking?
- What is probability of cancer given a person smokes?
- What is probability of smoking given cancer?

Conditional Probability

 Probability depends on another event occurring, P(A|B):

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication Rule

$$P(A \cap B) = P(A|B) \cdot P(B)$$

Example

 Suppose you roll a die, what is the probability of the die is greater than or equal to 5 given that it is even?

• • •

Example

- o Suppose you roll a die,
 - What is the probability of the die is greater than or equal to 5 given that it is even?
 - Are these two events independent?

- o Suppose you roll a die,
 - What is the probability of the die is greater than 5 given that it is even?
 - Are these two events independent?

Independence

 Two events A and B are independent of each other if the occurrence of one has no influence on the probability of the other

Definition: P(A | B) = P(A)

Implication: $P(A \cap B) = P(A) \times P(B)$

Independence of more than two events

Events A₁, ..., A_n are mutually independent if for every k (k=2,3,..,n) and every subset of indices i₁, i₂,..., i_k

$$P(A_{\scriptscriptstyle 1} \cap A_{\scriptscriptstyle 2} \cap ... \cap A_{\scriptscriptstyle k}) = P(A_{\scriptscriptstyle 1}) \times P(A_{\scriptscriptstyle 2}) \times ... \times P(A_{\scriptscriptstyle k})$$

• • •

Special Cases

- o A and B are mutually exclusive
 - A∩B=∅

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\emptyset)}{P(B)} = \frac{0}{P(B)} = 0$$

o A⊂B

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)}$$

o B⊂A

•
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

- We want to know the probability that Apple stock will increase this year.
 - Assume that the probability that the market goes up this year is 40%;
 - The probability that Apple goes up if the market goes up is 80%; and
 - The probability that Apple goes up if the market goes down is 40%.
 - What is the probability that Apple goes up this year?

Law of Total Probability

 Let A₁,...,A_k be mutually exclusive and exhaustive events. Then for any other event B,

$$P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_k)P(A_k)$$

$$= \sum_{i=1}^k P(B \cap A_i)$$

$$= \sum_{i=1}^k P(B|A_i)P(A_i)$$

Bayes' Theorem Example

- In the previous example, say that we know that Apple stock in fact goes up this year.
 Given that, what is the probability that the market goes up?
 - P(MU)=0.4
 - P(AU|MU)=0.8
 - P(AU|MD)=0.4

• • •

The Reverend Thomas Bayes (1701-1761)

"Probability is that degree of confidence dictated by the evidence through Bayes' Theorem"

- E. T. Jaynes

J. Bayes.

Bayes' Theorem

$$P(A \cap B) = P(A \mid B) \times P(B) = P(B \mid A) \times P(A)$$

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Bayes' Theorem, Cont'd

• Let $A_1, ..., A_k$ be a collection of mutually exclusive and exhaustive events $P(A_i) > 0$ with for i=1,...,k. then for an event B:

$$P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B|A_j) P(A_j)}{\sum_{i=1}^{k} P(B|A_i) P(A_i)}$$

Bayes' Theorem

- Bayes' Theorem indicates how probabilities change in the light of evidence
- o It is the most important tool in statistics!

• • •

Example

- Approximately 1% of women aged 40-50 have breast cancer. A woman with breast cancer has a 90% chance of a positive test from a mammogram, while a woman without has a 10% chance of a false positive result.
 - What is the probability a woman has breast cancer given that she just had a positive test?