Лекция № 13. Моделирование подготовки ОТС к применению с использованием марковских случайных процессов

Цель лекции: <u>Рассмотреть метод оценивания</u> эффективности применения ОТС с использованием марковских процессов

Учебные вопросы:

- 1. Понятие марковского случайного процесса
- 2. Вероятностная модель оценивания эффективности подготовки ОТС к применению

Введение

Основными теоретическими методами исследования качества и эффективности применения ОТС являются:

- 1) методы теории дискретных автоматов;
- методы теории массового обслуживания (методы теории случайных процессов);
- 3) методы марковских случайных процессов;
- 4) статистические методы, метод статистических испытаний и метод СИМ;
- 5) методы линейного, нелинейного и динамического программирования;
- б) методы теории игр;
- 7) графовые (сетевые) методы.

Изучением поведения стохастических систем занимается теория случайных процессов. Наиболее изученными и простыми процессами, происходящими в системах, являются Марковские процессы. Названы по фамилии выдающегося русского математика Маркова Андрея Николаевича (1856 – 1922).

Марковские случайные процессы явились исходной базой теории случайных процессов, а также теории надежности, методов теории массового обслуживания (ТМО) и других прикладных наук.

Сейчас область применения этих методов чрезвычайно широка. В большом числе случаев этот аппарат является единственным эффективным инструментом объективного обоснования решений, когда исследуется система, способная изменять свои состояния во времени.

1. Понятие марковского случайного процесса

Марковским называется случайный процесс, состояние которого в очередной момент времени $t+\Delta t$ зависит только от текущего состояния в момент времени t. Это означает, что поведение марковского процесса в будущем определяется текущим состоянием процесса и не зависит от предыстории процесса — состояний, в которых пребывал процесс до момента t.

Марковские случайные процессы делятся на классы в зависимости от того, как и в какие моменты времени, система *S* может менять свои состояния.

Случайный процесс называется процессом с дискретными состояниями, если возможные состояния системы: S_1 , S_2 , S_3 , ... можно перечислить (перенумеровать) одно за другим, а сам процесс состоит в том, что время от времени система S скачком (мгновенно) перескакивает из одного состояния в другое.

В классе марковских процессов будем рассматривать только процессы с дискретными состояниями, называемые *марковскими* цепями. Когда множество состояний процесса $S = \{s_1,...,s_n\}$ конечно марковскую цепь называют *конечной*. Конечная марковская цепь может быть определена в дискретном или непрерывном времени. В первом случае, переходы процесса из одного состояния в другое происходят мгновенно только в фиксированные моменты времени, обозначаемые порядковыми номерами t=0,1,2,..., и цепь называется дискретной, во втором — переходы связываются с произвольными моментами времени $t_0, t_1, t_2, ...$ и цепь называют непрерывной. Основное отличие определяется целью исследования. Если важна только последовательность смены состояний, то процесс можно представить в виде дискретной марковской цепи с дискретным временем, а если важно знать поведение процесса в текущем времени, то в виде цепи с непрерывным временем.

Дискретная марковская цепь определяется:

- 1) множеством состояний $S = \{s_1, ..., s_n\}$;
- матрицей вероятностей переходов (переходных вероятностей) характеризующей вероятности перехода процесса с текущим состоянием S_i в следующее состояние S_i:

$$P = \begin{bmatrix} p_{ij} \end{bmatrix} = \begin{bmatrix} s_1 & s_2 & \dots & s_n \\ p_{11} & p_{12} & \dots & p_{1n} \\ s_2 & \dots & p_{21} & p_{22} & \dots & p_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ s_n & p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$

3) вектором начальных вероятностей (начальным распределением) $P_0 = \left(p_1^{(0)}, ..., p_n^{(0)}\right)$, определяющим вероятности $p_i^{(0)}$ того, что в начальный момент времени t=0 процесс находится в состоянии S_i .

Марковская цепь изображается в виде графа, вершины которого соответствуют состояниям цепи и дуги — переходам между состояниями. Дуги (i, j), связывающие вершины S_i и S_j , помечаются вероятностями переходов P_{ij} .

Анализ марковских цепей заключается в определении, как при известном начальном состоянии от шага к шагу меняются вероятности состояний, в которых может находиться система, и каковы установившиеся значения этих вероятностей.

Обозначим $\mathbf{p}_k = \left\{ p_1^{(k)}, ..., p_n^{(k)} \right\}$ вектор-строку вероятностей состояний системы после k шагов, $\mathbf{p}_0 = \left(1, 0, ..., 0 \right)$ — распределение вероятностей состояний системы в начальный момент времени.

Используя рекуррентные уравнения Колмогорова можно вычислить вероятности состояний системы от шага к шагу по формулам: $\mathbf{p}_1 = \mathbf{p}_0 \cdot \mathbf{P}_1$

$$\mathbf{p}_2 = \mathbf{p}_1 \cdot \mathbf{P} = \mathbf{p}_0 \cdot \mathbf{P}^2, \qquad \qquad \mathbf{p}_2 = \mathbf{p}_1 \cdot \mathbf{P}_2$$

...

$$\mathbf{p}_k = \mathbf{p}_{k-1} \cdot \mathbf{P} = \mathbf{p}_0 \cdot \mathbf{P}^k \,. \qquad \mathbf{p}_k = \mathbf{p}_{k-1} \cdot \mathbf{P}_k \,.$$

Формулы слева используются для однородной марковской цепи, в которой вероятности перехода от шага к шагу не меняются, справа – для неоднородной марковской цепи, в которой вероятности перехода P_{ij} меняются от шага к шагу.

Марковские процессы с дискретным множеством состояний и непрерывным временем

Обозначим $p_i(t)$ — вероятность того, что в момент t система S будет находиться в состоянии S_i , i=1,...,n. Очевидно, для любого момента t сумма вероятностей состояний равна единице:

$$\sum_{i=1}^{n} p_i(t) = 1, \tag{1}$$

т. к. события, состоящие в том, что в момент t система находится в состояниях

 S_1 , S_2 , ..., S_n несовместны и образуют полную группу событий.

Необходимо определить для любого t вектор вероятностей состояний:

$$P(t) = \langle p_1(t), p_2(t), ..., p_n(t) \rangle.$$
 (2)

Для того чтобы найти эти вероятности, необходимо знать характеристики процесса, в качестве которых в случае процесса с непрерывным временем рассматриваются плотности вероятностей (интенсивности) перехода λ_{ij} (поскольку вероятность перехода системы из состояния в состояние точно в момент t будет равна нулю, так же как вероятность любого отдельного значения непрерывной случайной величины).

Пусть система S в момент t находится в состоянии S_i . Рассмотрим элементарный промежуток времени Δt , примыкающий к моменту t. Назовем интенсивностью перехода λ_{ij} предел отношения вероятности перехода системы за время Δt из состояния S_i в состояние S_i к длине Δt :

$$\lambda_{ij} = \lim_{\Delta t \to 0} p_{ij}(\Delta t) / \Delta t, \quad (j \neq i), \tag{3}$$

где $p_{ij}(\Delta t)$ — вероятность того, что система, находившаяся в момент t в состоянии S_i , за время Δt перейдет из него в состояние S_i . Из (3) следует, что при малом Δt вероятность перехода равна: $p_{ij}(\Delta t) \approx \lambda_{ij} \cdot \Delta t$. Если все интенсивности перехода λ_{ij} не зависят от t, марковский процесс называется однородным, а если эти интенсивности *зависят* от времени, то он является *неоднородным*. Предположим, что известны интенсивности перехода λ_{ii} для всех пар состояний S_i , S_i . Граф процесса функционирования состояний системы проставленными у стрелок (дуг) интенсивностями перехода называется размеченным графом состояний и переходов. Используя его можно по правилу Колмогорова составить систему дифференциальных уравнений и определить вероятности состояний P(t) (2) как функции времени.

2. Вероятностная модель оценивания эффективности подготовки ОТС к применению

Рассмотрим в качестве примера процесс подготовки к применению ОТС *S*, состоящей из четырех подсистем: подсистемы управления, обеспечения применения, применения боевых средств и собственно боевых средств, который представим в виде размеченного графа (рис. 1). Входы каждой из подсистем на указанном рисунке имеют нечетные, а выходы – четные номера.

Таким образом, система S состоит из четырех подсистем S_1 , S_2 , S_3 и S_4 , для каждой из которых принята модель «черного ящика», когда рассматриваются лишь ее входные и выходные параметры (внутреннее устройство и протекающие процессы не моделируются).

Пример описания состояний, в которых может находиться система *S*, приведен в табл. 1.

Таблица 1

Описания состояний системы S

№	Описание состояния
1	Начало планирования применения ОТС Ѕ в подсистеме управления
2	Окончание планирования применения ОТС S в подсистеме управления
3	Начало подготовки данных для применения ОТС в подсистеме обеспечения применения
4	Окончание подготовки данных для применения ОТС в подсистеме обеспечения применения
5	Начало подготовки данных для применения ОТС в подсистеме применения средств
6	Окончание подготовки данных для применения ОТС в подсистеме применения средств
7	Начало подготовки к применению средств
8	Окончание подготовки к применению средств

Предположение о том, что вероятность нахождения системы S в какой-либо вершине графа в момент t зависит только от того, в какой вершине была она в предыдущий момент времени, позволяет отнести процесс подготовки к применению этой системы к марковскому процессу с непрерывным временем.

Пусть для каждого возможного перехода из состояния i в состояние j задана соответствующая интенсивность перехода λ_{ij} и она не зависит от времени, т. е. имеет место однородный процесс. Пример описания выполняемых работ и их интенсивностей приведен в табл. 2.

Описание интенсивностей переходов

Обозначение	Описание работ, изменяющих состояния системы
λ_{12}	Планирование применения ОТС S
λ_{23}	Передача данных в подсистему обеспечения
λ ₃₄	Подготовка данных по обеспечению применения ОТС S
λ45	Передача данных по обеспечению применения в подсистему применения
λ ₅₆	Приведение в готовность подсистемы применения
λ ₆₇	Передача данных в боевые средства
λ ₇₈	Приведение в готовность боевых средств
λ_{25}	Передача данных планирования из подсистемы управления в подсистему применения
λ ₄₇	Передача данных из подсистемы обеспечения на боевые средства
λ ₄₁	Сбой в подготовке данных по обеспечению применения ОТС S с возвратом к планированию применения ОТС S
λ_{61}	Сбой при приведении в готовность подсистемы применения с возвратом к планированию применения ОТС S
λ ₈₁	Сбой при приведении в готовность боевых средств с возвратом к планированию применения ОТС S
λ ₈₅	Сбой при приведении в готовность боевых средств с повторным приведением в готовность подсистемы применения

По размеченному графурис. 1 можно получить систему дифференциальных уравнений для определения вектора вероятностей состояний (2) по правилу (академика Колмогорова Андрея Николаевича): в левой части каждого из уравнений стоит производная по времени от вероятности нахождения процесса в данном (j-м) состоянии, а в правой – сумма произведений всех вероятностей состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность нахождения процесса в данном состоянии.

Система дифференциальных уравнений для рассматриваемого графа в развернутом виде имеет следующее представление:

$$\begin{array}{l} \left(d \; P_{1}(t) \; / \; d \; t = - \; \lambda_{12} \; P_{1}(t) \; + \; \lambda_{41} \; P_{4}(t) \; + \; \lambda_{61} \; P_{6}(t) \; + \; \lambda_{81} \; P_{8}(t), \\ d \; P_{2}(t) \; / \; d \; t = \; \lambda_{12} \; P_{1}(t) \; - \; \lambda_{23} \; P_{2}(t) \; - \; \; \lambda_{25} \; P_{2}(t), \\ d \; P_{3}(t) \; / \; d \; t = \; \lambda_{23} \; P_{2}(t)) \; - \; \lambda_{34} \; P_{3}(t), \\ d \; P_{4}(t) \; / \; d \; t = \; \lambda_{34} \; P_{3}(t) \; - \; \; \lambda_{47} \; P_{4}(t), - \; \lambda_{45} \; P_{4}(t) \; - \; \; \lambda_{41} \; P_{4}(t), \\ d \; P_{5}(t) \; / \; d \; t = \; \lambda_{45} \; P_{4}(t) \; + \; \lambda_{25} \; P_{2}(t) \; + \; \lambda_{85} \; P_{8}(t) \; - \; \lambda_{56} \; P_{5}(t), \\ d \; P_{6}(t) \; / \; d \; t = \; \lambda_{56} \; P_{5}(t) \; - \; \lambda_{61} \; P_{6}(t) \; - \; \lambda_{67} \; P_{6}(t), \\ d \; P_{7}(t) \; / \; d \; t = \; - \; \lambda_{78} \; P_{7}(t) \; + \; \lambda_{47} \; P_{4}(t) \; + \; \lambda_{67} \; P_{6}(t), \\ d \; P_{8}(t) \; / \; d \; t = \; - \; \lambda_{85} \; P_{8}(t) \; - \; \lambda_{81} \; P_{8}(t) \; + \; \lambda_{78} \; P_{7}(t). \end{array}$$

Задача (4) определения вероятностей нахождения системы в состояниях (i,j) является задачей Коши, для решения которой целесообразно последовательно использовать метод Адамса и метод Рунге-Кутта. В настоящее время система уравнений Колмогорова решается численно с использованием ЭВМ и соответствующего программного продукта (например, MathCad, Matlab или Excel).

Начальными условиями для ее интегрирования являются:

$$P_1(t_0) = 1$$
; $P_j(t_0) = 0$, $[j = 2,...,8]$. (5)

Для улучшения характеристик соответствующих алгоритмов необходимо учитывать условие нормировки, т.е. что

$$\sum_{i=1}^8 P_i(t) = 1.$$

Это означает что любое уравнение в системе уравнений (4) можно заменить на условие нормировки вероятностей.

Можно показать, что в условиях «стационарного» режима функционирования системы существуют предельные вероятности

$$P_{i} = \lim_{t \to \infty} P_{i}(t), j = 1(1)8.$$

Их значения не зависят от начальных условий (5) и являются средним относительным временем пребывания системы в данном состоянии.

Для стационарных процессов левые части в (4) равны нулю и (4) сводится к системе линейных алгебраических уравнений, для решения которой могут быть использованы прямые или итерационные методы. Используя прямые методы (Гаусса, Гаусса — Жордана, Крамера и некоторые другие), в принципе можно найти точное решение этой системы. Итерационные методы (Якоби, Гаусса — Зейделя, релаксации и ряд других) позволяют получить решение в результате последовательных приближений.

Рассмотренный подход применения марковских случайных процессов позволяет прогнозировать вероятности наступления состояний процессов функционирования ОТС. Например, это позволяет оценивать значения вероятности успешной подготовки ОТС S к применению (P_8) в зависимости от интенсивностей переходов системы из состояния в состояние. Для примера исследована зависимость указанной вероятности от интенсивности λ_{12} при фиксированных значениях других интенсивностей (табл. 3).

Таблица 3

Исходные данны	Исхо	лные	ланные
----------------	------	------	--------

№ вар.	λ ₁₂	λ ₂₃	λ ₃₄	λ ₄₅	λ56	λ ₆₇	λ ₇₈	λ ₂₅	λ47	λ ₄₁	λ ₆₁	λ ₈₁	λ ₈₅
1	0,5	8,0	0,9	0,7	0,9	0,8	0,8	0,8	8,0	0,1	0,1	0,1	0,1
2	0,7	8,0	0,9	0,7	0,9	0,8	0,8	0,8	8,0	0,1	0,1	0,1	0,1
3	0,9	8,0	0,9	0,7	0,9	8,0	0,8	0,8	0,8	0,1	0,1	0,1	0,1

Результаты расчетов P_8 на интервале в 20 мин с шагом 1 мин, полученные интегрированием (4) методом Рунге — Кутта 4-го порядка по НУ (5), сведены в табл. 4. На рис. 2 представлены соответствующие графики.

Результаты расчетов P_8

)	λ_{12}					
Время, мин.	0,5	0,7	0,9			
1	0	0	0			
2	0	0	0			
3	0,020751	0,02598	0,029585			
4	0,08074	0,100619	0,115861			
5	0,169046	0,204634	0,230532			
6	0,261773	0,306707	0,336873			
7	0,341004	0,387327	0,415776			
8	0,399403	0,441422	0,465034			
9	0,437515	0,472763	0,491074			
10	0,459671	0,488183	0,502232			
11	0,470976	0,494118	0,505383			
12	0,475761	0,495257	0,505038			
13	0,477099	0,49447	0,503662			
14	0,4769	0,493245	0,50235			
15	0,476204	0,492202	0,501437			
16	0,475499	0,491501	0,500917			
17	0,474959	0,491104	0,500673			
18	0,474604	0,490916	0,500589			
19	0,4744	0,490849	0,50058			
20	0,474298	0,49084	0,500598			

 $Puc.\ 2.\ \Gamma paфики зависимостей\ P_8$ от времени

Заключение

Таким образом, метод оценивания эффективности применения ОТС состоит из следующих этапов:

- 1) выявления множеств S, Λ , Q;
- 2) разработки графовой соответствующей модели ОТС;
- 3) разработки дифференциальной модели ОТС;
- 4) выявления значений элементов множества А;
- 5) выявления начальных условий для интегрирования уравнений, входящих в дифференциальную модель ОТС;
 - 6) задания интервала времени и шага оценивания эффективности ОТС;
 - 7) интегрирования системы дифференциальных уравнений;
 - 8) представления результатов в удобной для их анализа форме.

Управлять (оптимизировать) вектором вероятностей состояний (2) с использованием рассмотренной модели можно несколькими способами:

- 1) изменяя значения $\lambda_{ij}(t)$;
- 2) изменяя структуру моделируемой ОТС, т. е. множество состояний системы и связей (направлений обмена информацией) между ними $Q = \{q_{ii}\}$.

ВКА имени А.Ф. Можайского

