#### Free Lunch in the LETF Market

Wolfgang Karl Härdle

Zhiwu Hong

Sergey Nasekin

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://irtg1792.hu-berlin.de http://wise.xmu.edu.cn/english



#### Go with market



Figure 1: Weekly returns of ETF (SPY) and stock market (S&P 500) (20150101-20151112)
Free Lunch in the LETF Market

الـ السائدية الـ جويدية

## Leverage up/down



Figure 2: Weekly returns of LETFs (SSO, UPRO, SDS, SPXU) and stock market (S&P 500) (20150101-20151112)

Free Lunch in the LETF Market

#### ETFs & LETFs

Exchange-traded funds (ETFs): tracking returns on financial quantities and yielding the identical daily return,
 e.g., SPDR S&P 500 ETF (SPY) tracks the S&P 500.

 $\Box$  Leveraged exchange-traded funds (LETFs): promising a fixed leverage ratio  $\beta$  w.r.t. a given underlying asset or index, e.g.,

LETFβProShares Ultra S&P500 (SSO)2ProShares UltraPro S&P 500 (UPRO)3ProShares UltraShort S&P500 (SDS)-2ProShares UltraPro Short S&P 500 (SPXU)-3

Table 1: LETFs with different  $\beta$  \(\text{Illustration}\)



## Implied volatility paradoxon



Figure 3: Implied volitility of (L)ETF options (SPY, SSO, UPRO, SDS, SPXU) with 21 days to maturity

Free Lunch in the LETF Market



#### **Outline**

- 1. Motivation  $\checkmark$
- 2. Trading Strategy
- 3. Empirical Result
- 4. Conclusion

### Price relationship of (L)ETFs

$$\log(L_{2T}) - \log(L_{20}) = 2\left\{\log(L_{1T}) - \log(L_{10})\right\}, \qquad (1)$$

where t = 0 is the date for designing the strategy and t = T is the delivery date for the corresponding LETF options.

Arr Let  $lpha = \frac{\log(L_{20})}{\log(L_{10})}$ , Equation (1) can be written as

$$L_{2T} = L_{10}^{\alpha - 2} L_{1T}^2. (2)$$

### The strategy I

- 1. Long 1 share SPY at t = 0 until t = T.
- 2. Short 1 share call option on SPY with strike  $K_1$  at t=0 until the maturity T.
- 3. Short  $L_{10}^{2-\alpha}K_1^{-1}$  shares SSO at t=0 until t=T.
- 4. Long  $L_{10}^{2-\alpha}K_1^{-1}$  shares call option on SSO with strike  $K_2 = L_{10}^{\alpha-2}K_1^2$  at t=0 until the maturity T.

The initial profit (cost if negative) of this strategy is

$$IP_0 = -L_{10} + C_{10} + L_{10}^2 K_1^{-1} - L_{10}^{2-\alpha} K_1^{-1} C_{20}.$$
 (3)

## The portfolio value at time T

|          | Value at time <i>T</i>                          |                           |
|----------|-------------------------------------------------|---------------------------|
| Position | $L_{1T} \leq K_1$                               | $L_{1T} > K_1$            |
| 1.       | $L_{1T}$                                        | $L_{1T}$                  |
| 2.       | 0                                               | $K_1 - L_{1T}$            |
| 3.       | $-L_{1T}^2K_1^{-1}$                             | $-L_{1T}^2K_1^{-1}$       |
| 4.       | 0                                               | $L_{1T}^2 K_1^{-1} - K_1$ |
| Sum      | $L_{1T}\left(1-\frac{L_{1T}}{K_1}\right)\geq 0$ | 0                         |

Table 2: Portfolio value at time T of trading strategy I

### The strategy II

- 1. Short 1 share SPY at t = 0 until t = T.
- 2. Short 1 share put option on SPY with strike  $K_1$  at t=0 until the maturity T.
- 3. Long  $L_{10}^{2-\alpha}K_1^{-1}$  shares SSO at t=0 until t=T.
- 4. Long  $L_{10}^{2-\alpha}K_1^{-1}$  shares put option on SSO with strike  $K_2 = L_{10}^{\alpha-2}K_1^2$  at t=0 until the maturity T.

The initial profit (cost if negative) of this strategy is

$$IP_0 = L_{10} + P_{10} - L_{10}^2 K_1^{-1} - L_{10}^{2-\alpha} K_1^{-1} P_{20}.$$
 (4)

### The portfolio value at time T

|          | Value at time <i>T</i>    |                                                 |
|----------|---------------------------|-------------------------------------------------|
| Position | $L_{1T} < K_1$            | $L_{1T} \geq K_1$                               |
| 1.       | $-L_{1T}$                 | $-L_{1T}$                                       |
| 2.       | $L_{1T}-K_1$              | 0                                               |
| 3.       | $L_{1T}^2 K_1^{-1}$       | $L_{1T}^2 K_1^{-1}$                             |
| 4.       | $K_1 - L_{1T}^2 K_1^{-1}$ | 0                                               |
| Sum      | 0                         | $L_{1T}\left(\frac{L_{1T}}{K_1}-1\right)\geq 0$ |

Table 3: Portfolio value at time T of trading strategy II

### The strategy III

- 1. Short 1 share call option on SPY with strike  $K_1$  at t=0 until the maturity T.
- 2. Short 1 share put option on SPY with strike  $K_1$  at t=0 until the maturity T.
- 3. Long  $L_{10}^{2-\alpha}K_1^{-1}$  shares call option on SSO with strike  $K_2 = L_{10}^{\alpha-2}K_1^2$  at t=0 until the maturity T.
- 4. Long  $L_{10}^{2-\alpha}K_1^{-1}$  shares put option on SSO with strike  $K_2 = L_{10}^{\alpha-2}K_1^2$  at t=0 until the maturity T.

The initial profit (cost if negative) of this strategy is

$$IP_0 = C_{10} + P_{10} - L_{10}^{2-\alpha} K_1^{-1} C_{20} - L_{10}^{2-\alpha} K_1^{-1} P_{20}.$$
 (5)

### The portfolio value at time T

|          | Value at time $\it T$                       |                                               |
|----------|---------------------------------------------|-----------------------------------------------|
| Position | $L_{1T} < K_1$                              | $L_{1T} \geq K_1$                             |
| 1.       | 0                                           | $K_1 - L_{1T}$                                |
| 2.       | $L_{1T}-K_1$                                | 0                                             |
| 3.       | 0                                           | $L_{1T}^2 K_1^{-1} - K_1$                     |
| 4.       | $K_1 - L_{1T}^2 K_1^{-1}$                   | 0                                             |
| Sum      | $L_{1T}\left(1-\frac{L_{1T}}{K_1}\right)>0$ | $L_{1T}\left(rac{L_{1T}}{K_1}-1 ight)\geq 0$ |

Table 4: Portfolio value at time T of trading strategy III

#### Data

- Objects: prices of SPY, SSO and the corresponding call and put options with various strikes and the maturity date being Jan. 15, 2016
- ☐ Sample period: Jan. 1, 2015-Nov. 12, 2015
- Data source: Datastream

# **Arbitrage opportunities**

Figure 4: Arbitrage opportunities of strategy I (20150101-20151112)

Free Lunch in the LETF Market -

التالسينية

بمجنين

## **Arbitrage opportunities**

Figure 5: Arbitrage opportunities of strategy II (20150101-20151112)

Free Lunch in the LETF Market -

#### Conclusion

- Implied volatility paradoxon of LETFs implies there exist arbitrage opportunities in the LETF market;
- We design some trading strategies by longing and shorting LETFs and LETF options to capture these opportunities;
- It shows our strategies can indeed bring free lunch in the LETF market.

#### Free Lunch in the LETF Market

Wolfgang Karl Härdle

Zhiwu Hong

Sergey Nasekin

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://irtg1792.hu-berlin.de http://wise.xmu.edu.cn/english









#### References

- Leung, T., & Sircar, R. (2015). Implied volatility of leveraged ETF options. Applied Mathematical Finance, 22(2).
- Fengler, M. R. (2006). Semiparametric modeling of implied volatility. Springer.
- Franke, J., Härdle, W., & Hafner, C. (2015). Statistics of Financial Markets: An Introduction. Springer.

Appendix — 6-1

# S&P 500 and (L)ETFs Return



Figure 6: Weekly return relationship of S&P 500 and (L)ETFs (SPY, SSO, UPRO, SDS, SPXU) (20150101-20151112) Back

Free Lunch in the LETF Market

