1) Draw the direction of the magnetic field at point P caused by the particle shown below. How far away is point P from the particle q if the magnitude of the B-field at this point is $B = 1 \, mT$? Here the velocity is $v = 0.5 \, m/s$ and the charge is $q = 1.7 \, \mu C$. (Hint: Use the Biot-Savart Law)

out of opage of

$$B = \frac{M_0}{4\pi} \frac{2V}{r^2}$$

$$F = \sqrt{\frac{M_0}{4\pi}} \frac{2V}{r^2}$$

$$= \sqrt{\frac{(4\pi \times 10^{-7})(1.7\times (0^{-6})(0.5)}{4\pi}}$$

$$= 9.2 \times 10^{-6} \text{ m} = 9.2 \text{ mm}$$

2) What is the total enclosed current in each of the following Amperian Loops?

$$I_{enc} = \frac{7A + 5A - 3A}{4}$$

5) Suppose we have a wire in a uniform magnetic field with magnitude $B = 6 \mu T$. What is the force on this wire per unit length? What is the direction of the force? The current is I = 2.9 A.

6) The rod shown below moves to the right on an essentially zero-resistance rails at a speed of $v = 3 \, m/s$ and tilted to an angle of $\theta = 30^{\circ}$. What is the current induced through this resistor shown below when $R = 8 \, \Omega$? The magnetic field is constant everywhere and equal to $B = 0.4 \, T$ and the height of the rectangular loop is $l = 2 \, cm$.

