Intelligent Decision Support Systems

Data Envelopment Analysis: Measuring Efficiency of Decision Making Units

Miłosz Kadziński

Institute of Computing Science Poznan University of Technology, Poland

Key concepts in DEA

Seminal Papers on DEA

- A. Charnes, W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, *European Journal of Operational Research*, 2(6), 429-444,1978
- over 50000 citations (the most cited paper in EJOR)
- assumes constant returns to scale in production possibilities
 (an increase in the inputs leads to a proportional increase in outputs)

Abraham Charnes

William Cooper

Edwardo Rhodes

Rajiv Banker

- R. Banker, A. Charnes, W. Cooper, Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis, *Management Science*, 30, 1078-1092,1984
 - variable return to scale (efficiency depends on the scale of operations)

Decision Making Units

- We measure the performance and efficiency of Decision Making Units
- DMUs take some input(s) and produces some output(s)
- DMU is a very broad concept

Factory's manufacturing units Department store's Airport
Business firms Government agencies Non-profit organization
University departments Lecturers Hospitals Physicians

Main Application Areas of DEA

Example of DMU: Sporting Goods Stores

Examples of Inputs and Outputs for Different DMUs

DMU	Inputs	Outputs
Manfacturing unit	raw materials, manpower floor space, energy	finished good (with added value)
Non-profit organization	volunteers' time donations, vehicles	impact on society
Bank	numbers of tellers and managers, computers	saving accounts, loan applications
Hospital	number of doctors, number of nurses	inpatients, outpatients
Airport	capacity of terminal and apron, catchment area	number of aviation operations, number of passengers
University	academic and non-academic staff, operating costs, area	students enrolled, completions, research income

Questions Answered by DEA

- How to compare the efficiency of diverse Decision Making Units?
- What are the best-practice and under-performing units?
- What are the trade-offs among inputs and outputs?
- Where the improvement opportunities / needs / requirements and how big they are?

Example Scenario with One Input and One Output (1)

- Chain of coffee shops "Coffee and more" in 8 locations (A to H)
- The owner wants to evaluate the efficiency of shops in one city
- He considers the cups of coffee sold (per day in thousands) as output and the number is employees in the store as input
- The owner wants to know which stores are efficient
- He is interested to benchmark the best store(s) so that he can suggest improvements for the inefficient ones

Store	DMU	Α	В	С	D	Е	F	G	Н
Employees	Input	4	6	6	8	10	10	12	16
Cups of coffee	Output	2	6	4	6	8	4	6	10

Example Scenario with One Input and One Output (2)

Store	DMU	Α	В	С	D	Е	F	G	Н
Employees	Input	4	6	6	8	10	10	12	16
Cups of coffee	Output	2	6	4	6	8	4	6	10

Efficiency – First Idea

DMU	Α	В	С	D	E	F	G	Н
Input	4	6	6	8	10	10	12	16
Output	2	6	4	6	8	4	6	10
Ratio	0.5	1.0	0.667	0.75	0.80	0.4	0.5	0.625

The efficiency of each store is determined with the help of **ratio** between the number of coffee cups sold and number of employees

Efficient Frontier – First Idea

- The frontier line displays the performance of the best store in the comparison (stores A, C-H are "dominated" by store B)
- The efficiency of other stores can be measured by the deviation of the respective points from the frontier line (i.e., relative to the efficiency frontier)
- Efficient frontier serves as a benchmark

How You Can Improve? Focus on Inputs!

- Input-oriented perspective: excessive use of inputs by inefficient DMUs
- How much less inputs an inefficient DMU should use in order to become efficient?

- D should produce its current output (6) with 2 units less of input in order to reach the efficiency frontier (Δinput = 8 6 = 2)
- D should produce its current output (6) with ¾ times units less of input in order to reach the efficiency frontier (desired input = ¾ · 8 = 6)

How You Can Improve? Focus on Outputs!

- Output-oriented perspective: output gaps for inefficient DMUs
- How much more an inefficient DMU should produce in order to become efficient?

- D should use its current input (8) to produce 2 units more of output in order to reach the efficiency frontier (∆output = 8 - 6 = 2)
- D should use its current input (8) to produce 4/3 times units more of output in order to reach the efficiency frontier (desired output = 4/3 · 6 = 8)

Example Scenario with One Input and Two Outputs

- Medical doctors (A to H) work at a hospital for the same 160 hours per month (equal input), performing exams and surgeries (two outputs)
- Which ones are the most "productive"?

Doctor	DMU	Α	В	С	D	E	F	G	Н
Hours	Input ₁	160	160	160	160	160	160	160	160
Exams	Output ₁	48	12	35	31	20	20	36	15
Surgeries	Output ₂	68	80	76	72	70	105	53	65

Efficient Frontier and Pareto-Koopman Efficiency

"Pareto-Koopman efficiency" along the efficient frontier: it is impossible to increase an output (or to decrease an input) without compensating decrease (increase) in other outputs (inputs)

Reference Set and Hypothetical Comparison Unit

"Nearest" efficient DMUs define a **reference set** and linear combination of the reference set inputs and outputs of a **hypothetical comparison unit** (HCU)

Example Scenario with Two Inputs and One Output (1)

- Different units (A to G) produce the same metal part having different budget and conditions
- Which ones are the most "productive"?

Unit	DMU	Α	В	С	D	E	F	G
Budget	Input₁	3	5	8	12	6	8	10
Conditions	Input ₂	90	70	55	50	84	80	60
Product	Output ₁	1	1	1	1	1	1	1

Example Scenario with Two Inputs and One Output (2)

Summary of Ideas Underlying DEA (so far)

- Input/output productivity is defined relative to the efficient frontier
- This frontier characterizes observed efficient trade-offs among inputs and outputs for a given set of DMUs
- Efficiency is defined as the relative distance to the frontier
- "Nearest point" on the frontier is the efficient HCU
- Differences in inputs and outputs between DMU and HCU correspond to productivity "gaps" (improvement potential)

How can we perform this analysis systematically?

How to Compare DMUs?

Financial approach

Converting everything to monetary terms (€)

- Some inputs/outputs cannot be valued in € (non-profit)
- Profitability is not the same a operating efficiency
- Improving operations calls for an understanding of technical efficiency (how much input is required to generate the output), not just overall profitability

Operating ratios

- Examples: labor hours per transaction, sales (€) per square meter
- Appropriate for highly standardized operations
- Do not reflect the varying mix of inputs/outputs of diverse operations

Measuring Efficiency

- Measuring the efficiency of DMUs is not always easy
- It can be easier for a company (e.g., measuring profits or added value)
 ... and more difficult for a non-profit organization

Running Example

The Ministry of Science has asked us to find universities with inefficient management engineering departments, since it considers shameful for such a department not to optimize its processes

Every department has a certain **number of professors** and, each year, produces a certain **number of graduates** and is able to secure a certain **amount of funding** for research

DMU	Input	Output ₁	Output ₂
University	Professors	Graduates	Funds (€)
PUT (DMU ₁)	6	132	9600
AMU (DMU ₂)	12	192	26400
UW (DMU ₃)	10	190	21000
JU (DMU ₄)	8	144	14400

Which university has an efficient / inefficient department?

Conical and Convex Combinations

	X ₁	X ₂
Α	3	100
В	10	200

 λ_{A} – weight (coefficient) of point A λ_{B} – weight (coefficient) of point B

Conical combination is a linear combination of points where all coefficients are non-negative

$$\sum\nolimits_{j=1,...,n} \lambda_j \cdot x_j = \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \ldots + \lambda_n \cdot x_n \text{ for } \lambda_j \ge 0, \text{ for } j = 1, \ldots, n$$

$$\lambda_{A} = 0.3 \text{ and } \lambda_{B} = 0.5$$

$$\begin{array}{c|cccc}
x_{1} & x_{2} \\
\hline
0.3 \cdot 3 + 0.5 \cdot 10 = 5.9 & 0.3 \cdot 100 + 0.5 \cdot 200 = 130
\end{array}$$

Convex combination is a linear combination of points where all coefficients are non-negative and **sum to one**

$$\sum_{j=1,\dots,n} \lambda_j \cdot x_j = \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \dots + \lambda_n \cdot x_n \text{ for } \lambda_j \ge 0 \text{ and } \sum_{j=1,\dots,n} \lambda_j = 1$$

$$\lambda_{A} = 0.3 \text{ and } \lambda_{B} = 0.7$$

$$\frac{x_{1}}{0.3 \cdot 3 + 0.7 \cdot 10 = 8}$$

$$\frac{x_{2}}{0.3 \cdot 100 + 0.7 \cdot 200 = 170}$$

Running Example - Virtual (Combined) Unit (1)

DMU	Input	Output₁	Output ₂
University	Professors	Graduates	Funds (€)
PUT (DMU ₁)	6	132	9600
AMU (DMU ₂)	12	192	26400
UW (DMU ₃)	10	190	21000
JU (DMU ₄)	8	144	14400
VU	8	161	15300

 Consider a department at a virtual university (VU) defined as the following conical / convex combination:

$$VU = \frac{1}{2} \cdot PUT + \frac{1}{2} \cdot UW$$

- VU gives more output(s) with the same input of JU \(\)
- JU is inefficient, because some other DMUs or their combinations do better

Running Example - Virtual (Combined) Unit (2)

University	Professors (in)	Graduates (out ₁)	Funds (out ₂)
PUT (DMU ₁)	10 (6)	220 (132)	16000 (9600)
AMU (DMU ₂)	10 (12)	160 (192)	22000 (26400)
UW (DMU ₃)	10 (10)	190 (190)	21000 (21000)
JU (DMU ₄)	10 (8)	180 (144)	18000 (14400)
VU	10 (8)	201.25 (161)	19125 (15300)
		duates	DMU₁
All inputs (num			VU

CCR Model – Charnes, Cooper, Rhodes – CRS

JU is inefficient under some assumptions

outputs scale linearly with inputs: if 10 professors can teach to 1000 students, can 20 professors teach to 2000 students?

- We do not consider economy of scale
- We do not consider operational complexity
- We assume Constant Returns to Scale (CRS)
- All conical combinations of existing DMUs are realistic

If a university produces Y output with X input, every other university could be able to do the same ... but what if **JU** lectures are held in tents, because Cracow has been hit by an earthquake?

Role of Efficiency Scores in DEA

Data Envelopment Analysis is a method to **assign a score** to each DMU, in order to measure its efficiency:

score = 1: DMU is efficientscore < 1: DMU is inefficient

Efficiency is relative!

- DMU is efficient if it is not possible to obtain more output with less input, by combining other DMUs
- DMU is inefficient if it is possible to obtain more output with less input, by combining other DMUs

DEA: Notation

Data

- K operating DMUs, k = 1, ..., K (DMU₁, DMU₂, ..., DMU_K)
- M inputs (m = 1, ..., M) (input₁, input₂, ..., input_M)
- x_{mk} observed level of input_m from DMU_k
- N outputs (n = 1, ..., N) (output₁, output₂, ..., output_N)
- y_{nk} observed level of output_n from DMU_k

Model variables

- λ_k weight (proportion) of DMU_k when constructing a combination
- $m{ heta}_k$ multiplier of inputs or outputs used to derive efficiency $m{E}_k$ of $m{DMU}_k$

On the Way to the Efficiency Model (1)

Data

- Let us first assume θ_k = E_k
- Score θ_k should be equal to 1 (=1) when the DMU_k is efficient and less than 1 (<1) when it is inefficient
- Let us be more precise by seeing which values \(\mathcal{\theta}_k\) will be attained in case of inefficiency (<1)

For example, it is possible to find a linear combination of all DMUs that gives the same outputs as $\mathbf{DMU_k}$ $\sum_{j=1,\dots,K} \lambda_j \cdot y_{nj} = y_{nk}, \qquad \mathbf{n} = 1, \dots, N$ using just three quarters of the inputs $\sum_{j=1,\dots,K} \lambda_j \cdot x_{mj} = \frac{3}{4} \cdot x_{mk}, \qquad \mathbf{m} = 1, \dots, M$ $\lambda_K \cdot (DMU_K) \rightarrow DMU$

We would expect the (in)efficiency score of DMU_k to be at most $\frac{3}{4}$: $\theta_k \le \frac{3}{4}$

On the Way to the Efficiency Model (2)

We say at most, because we could find another linear combination that gives the same outputs as **DMU**_k

using just half of the inputs
$$\sum_{j=1,...,K} \lambda_{j}' \cdot y_{nj} = y_{nk}, \qquad n = 1,...,N$$

$$\sum_{j=1,...,K} \lambda_{j}' \cdot x_{mj} = \frac{1}{2} \cdot x_{mk}, \qquad m = 1,...,M$$

$$\lambda_{K}(DMU_{K}) \xrightarrow{DMU}$$

Then, we would know that efficiency score of **DMU_k** is at most $\frac{1}{2}$: $\theta_k \le \frac{1}{2}$

We would like to find the smallest θ_k such that a combination produces the same (at least as good) output(s) of DMU_k using just a portion DMU_k of inputs

find the smallest ... such that ...

sounds familiar!

Input-oriented Combination-based CCR Model

These inequalities suggest a first formulation of the DEA for DMU_k as a linear problem:

min
$$\boldsymbol{\theta}_{k}$$

s.t. $\sum_{j=1,...,K} \lambda_{j} \cdot x_{mj} \leq \boldsymbol{\theta}_{k} \cdot x_{mk}$, $\boldsymbol{m} = 1, ..., M$
 $\sum_{j=1,...,K} \lambda_{j} \cdot y_{nj} \geq y_{nk}$, $\boldsymbol{n} = 1, ..., N$
 $\boldsymbol{\theta}_{k} \geq 0; \ \lambda_{k} \geq 0, \ k = 1, ..., K$

find the least θ_k such that it is possible to produce at least y_{nk} units of outputs (n = 1, ..., N) using no more than $\theta_k \cdot x_{mk}$ units of inputs (m = 1, ..., M), for some linear combination of all the DMUs (k = 1, ..., K)

Reading Off Solution – Benchmarking

min
$$\boldsymbol{\theta}_{\mathbf{k}}$$

s.t. $\sum_{j=1,...,K} \lambda_{j} \cdot x_{mj} \leq \boldsymbol{\theta}_{\mathbf{k}} \cdot x_{mk}$, $\boldsymbol{m} = 1, ..., M$
 $\sum_{j=1,...,K} \lambda_{j} \cdot y_{nj} \geq y_{nk}$, $\boldsymbol{n} = 1, ..., N$
 $\boldsymbol{\theta}_{\mathbf{k}} \geq 0; \ \lambda_{\mathbf{k}} \geq 0, \ k = 1,..., K$

note that $\theta_k \le 1$ because in the best case for DMU_k we can take $\lambda_k = 1$ and $\lambda_j = 0$ for all $j = 1, ..., K (j \ne k)$

Under the assumptions made before, $\mathbf{DMU_k}$ could produce the same output, using just $\sum_{j=1,...,K} \lambda_j \cdot x_{mj} = \boldsymbol{\theta_k} \cdot x_{mk}$ input ($\boldsymbol{m} = 1,...,M$), hence wasting:

$$x_{mk} - \sum_{j=1,...,K} \lambda_j \cdot x_{mj}$$
 units of input_m for $m = 1, ..., M$

Input-oriented CCR Model – Example Formulation (1)

DMU_k	input ₁	output ₁	output ₂
DMU ₁	6	132	9600
DMU ₂	12	192	26400
DMU ₃	10	190	21000
DMU ₄	8	144	14400

First model for **DMU**₁:

min θ_1

Optimal solution: $\theta_1 = 1$ for $\lambda_1 = 1$ and $\lambda_2 = \lambda_3 = \lambda_4 = 0$

Interpretation: DMU₁ compares with itself; it is not possible to reduce

the input of **DMU**₁ using a combination of other DMUs

Conclusion: DMU₁ is efficient

Input-oriented CCR Model – Example Formulation (2)

	DMU _k Inp	out ₁ outpu	$\operatorname{it}_1 \mid \operatorname{output}_2$	
Repeat the same for each DMU	DMU ₁	3 132	9600	
	DMU ₂ 1	2 192	26400	
First model for DMU ₄ :	DMU ₃	0 190	21000	
min θ ₄	DMU ₄	3 144	14400	
s.t. $6 \cdot \lambda_1 + 12 \cdot \lambda_2 + 10$)·λ ₃ + 8·	$\lambda_4 \leq 8 \cdot \boldsymbol{\theta_4}$	\Leftrightarrow input ₁	
$132 \cdot \lambda_1 + 192 \cdot \lambda_2 + 190$	$0 \cdot \lambda_3 + 144 \cdot$	$\lambda_4 \ge 144$	output₁	
$9600 \cdot \lambda_1 + 26400 \cdot \lambda_2 + 21000$		$\lambda_4 \ge 14400$	← output₂	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t 企 IU₃ DMI	☆ J₄ DMU₄		
$\theta_4 \ge 0; \ \lambda_k \ge 0, \ k = 1,, 4$				

Optimal solution:
$$\theta_4 = 0.911$$
 for $\lambda_1 = 0.3$ and $\lambda_3 = 0.55$ and $\lambda_2 = \lambda_4 = 0$ Conclusion:DMU4 is inefficient $0.3 \cdot DMU_1 + 0.55 \cdot DMU_3$ input1 output2 output1 output2 $8 \cdot \theta_4 = 8 \cdot 0.911 = 7.29$ 144 14400

DMU₄ should reduce input₁ by 8 - 7.29 = 0.71 units to become efficient

Another Way of Looking at the Efficiency of DMUs (1)

Imagine we assign:

- weight v_m to $input_m$ (m = 1, ..., M) and weight u_n to $output_n$ (n = 1, ..., N)
- or, alternatively, unit price v_m to input_m (m = 1, ..., M) and unit price u_n to output_n (n = 1, ..., N) (these are just virtual values one unit of any input or output does not really cost/ sells at this price)

Data

- K operating DMUs, k = 1, ..., K
- **M** inputs (m = 1, ..., M)
- x_{mk} − level of input_m from DMU_k
- **N** outputs (*n* = 1, ..., *N*)
- y_{nk} level of output_n from DMU_k

Model variables

- v_m weight of input_m
 (unit price of input_m)
- u_n weight of output_n (unit price of output_n)
- θ_k multiplier of inputs or outputs used to derive efficiency E_k of DMU_k

DEA: Notation (2)

Data

- x_{mk} observed level of input_m from DMU_k
- v_m weight of $input_m$ (unit price of $input_m$)
- y_{nk} observed level of output_n from DMU_k
- u_n weight of output_n (unit price of output_n)

The virtual input of DMU_k / total cost of inputs for DMU_k is:

$$\sum_{m=1,...,M} \mathbf{v_m} \cdot \mathbf{x_{mk}}$$

The virtual output of DMU_k / total gain from outputs of DMU_k is:

$$\sum_{n=1,...,N} \boldsymbol{u}_{\mathbf{n}} \cdot \boldsymbol{y}_{\mathbf{nk}}$$

efficiency =
$$\frac{\text{output}}{\text{input}}$$
 \Rightarrow efficiency = $\frac{\sum_{n=1,...,N} u_n \cdot y_{nk}}{\sum_{m=1,...,M} v_m \cdot x_{mk}}$

On the Way to Yet Another Efficiency Model

- Since weights/prices u_n and v_m are virtual, we can "play" with them and ask: what are the weights/prices u_n and v_m that maximize the efficiency of DMU_k?
- From equation:

$$E_{k} = \frac{\sum_{n=1,...,N} u_{n} \cdot y_{nk}}{\sum_{m=1,...,M} v_{m} \cdot x_{mk}}$$

we see that, if we are free to "play" u_n and v_m as we want, then there is no limit: we could take u_n arbitrarily small and v_m arbitrarily big.

$$E_{k} = \frac{\sum_{n=1,...,N} u_{n} \cdot y_{nk}}{\sum_{m=1,...,M} v_{m} \cdot x_{mk}} \leq 1$$

• This choice is nice, as it gives a value between 0 and 1 for the efficiency, ... but it is totally arbitrary: we could have said 2, 362, etc.

Input-oriented Efficiency-based CCR Model

- What are the weights/prices v_m and u_n that maximize the efficiency of DMU_k such that the efficiency for all DMUs is not greater than one
- Maximize E_k such that $E_i \le 1$, for j = 1, ..., K

max

$$\sum_{n=1,...,N} u_n \cdot y_{nk}$$
 the Charnes-Cooper transformation
 $max \sum_{n=1,...,N} u_n \cdot y_{nk}$

 s.t.
 $\sum_{m=1,...,N} u_n \cdot y_{nj}$
 ≤ 1 for $j = 1, ..., K$
 $\sum_{n=1,...,N} u_n \cdot y_{nj} \leq \sum_{m=1,...,N} v_m \cdot x_{mj}$
 $v_m \geq 0, m = 1, ..., M$
 $v_m \geq 0, m = 1, ..., M$
 $u_n \geq 0, n = 1, ..., N$
 $v_m \geq 0, m = 1, ..., M$
 $u_n \geq 0, n = 1, ..., N$
 $v_m \geq 0, m = 1, ..., N$

Input-oriented CCR Model – Example Formulation

DMU_k	Input₁	Output ₂		
DMU ₁	6	132	9600	١
DMU ₂	12	192	26400	
DMU ₃	10	190	21000	١
DMU ₄	8	144	14400	١

Second model for **DMU**₄: $max 144 \cdot u_1 + 14400 \cdot u_2$

s.t.
$$8 \cdot v_1 = 1$$

$$132 \cdot u_1 + 9600 \cdot u_2 \le 6 \cdot v_1$$

 $192 \cdot u_1 + 26400 \cdot u_2 \le 12 \cdot v_1$

$$102 u_1 \cdot 20400 u_2 = 12 v_1$$

$$190 \cdot u_1 + 21000 \cdot u_2 \le 10 \cdot v_1$$

$$144 \cdot u_1 + 14400 \cdot u_2 \le 8 \cdot v_1$$

$$v_1, u_1, u_2 \ge 0$$

$$v_1 = 0.125$$

$$u_1 = 0.0039557$$

$$u_2 = 0.0000237$$

$$E_4 = 0.911$$

By definition the optimal solution gives us the efficiency of $\mbox{\bf DMU}_{\bf k}$:

$$\sum_{n=1,\ldots,N} u_{\mathbf{n}} \cdot \mathbf{y}_{\mathbf{nk}} = \frac{\sum_{n=1,\ldots,N} u_{\mathbf{n}} \cdot \mathbf{y}_{\mathbf{nk}}}{1} = \frac{\sum_{n=1,\ldots,N} u_{\mathbf{n}} \cdot \mathbf{y}_{\mathbf{nk}}}{\sum_{m=1,\ldots,M} v_{\mathbf{m}} \cdot \mathbf{x}_{\mathbf{mk}}} = \mathbf{E}_{\mathbf{k}}$$

Comparison of Combination- and Efficiency-based Models

Let's have a look at the two models we presented

$$\max \sum_{n=1,...,N} \mathbf{u_n} \cdot \mathbf{y_{nk}}$$

s.t.
$$\sum_{m=1,...,M} \mathbf{v_m} \cdot \mathbf{x_{mk}} = 1$$

s.t.
$$\sum_{m=1,...,M} \mathbf{v_m} \cdot \mathbf{x_{mk}} = 1$$

 $-\sum_{m=1,...,M} \mathbf{v_m} \cdot \mathbf{x_{mj}} + \sum_{n=1,...,N} \mathbf{u_n} \cdot \mathbf{y_{nj}} \le 0$
 $\mathbf{v_m} \ge 0, \ \mathbf{m} = 1, ..., M$
 $\mathbf{u_n} \ge 0, \ \mathbf{n} = 1, ..., N$

min θ_k

s.t.
$$\boldsymbol{\theta}_{\mathbf{k}} \cdot x_{\mathbf{mk}} - \sum_{j=1,...,K} \lambda_{j} \cdot x_{\mathbf{m}j} \ge 0$$
, $\boldsymbol{m} = 1, ..., M$

$$\sum_{j=1,...,K} \lambda_{j} \cdot y_{\mathbf{n}j} \ge y_{\mathbf{nk}}, \qquad \boldsymbol{n} = 1, ..., N$$

$$\boldsymbol{\theta}_{\mathbf{k}} \ge 0; \ \lambda_{\mathbf{k}} \ge 0, \ k = 1,..., K$$
Any comments?

Duality of Combination- and Efficiency-based Models

It is the dual!

Output-Oriented Efficiency Analysis (1)

Find the greatest θ_k such that it is possible to use no more than x_{mk} units of inputs (m = 1, ..., M), producing at least θ_k y_{nk} units of outputs (n = 1, ..., N)for some linear combination of all the DMUs (k = 1, ..., K)

$$\begin{array}{ll} \max \, \boldsymbol{\theta}_k \\ \text{s.t.} \, \sum_{j=1,\ldots,K} \, \lambda_j \cdot x_{mj} \leq \quad x_{mk}, \, \, \boldsymbol{m} = 1, \ldots, M \\ \sum_{j=1,\ldots,K} \, \lambda_j \cdot y_{nj} \geq \, \boldsymbol{\theta}_k \cdot y_{nk}, \, \, \boldsymbol{n} = 1, \ldots, N \\ \boldsymbol{\theta}_k \geq 0; \, \lambda_k \geq 0, \, k = 1, \ldots, K \end{array} \qquad \text{note that } \boldsymbol{\theta}_k \geq 1 \text{ because in the best case for } \mathbf{DMU}_k \\ \text{we can take } \boldsymbol{\lambda}_k = \mathbf{1} \text{ and} \\ \boldsymbol{\lambda}_j = \mathbf{0} \text{ for all } j = 1, \ldots, K \, (j \neq k)$$

note that $\theta_k \ge 1$ because

Under the assumptions made before, with the same input **DMU**_k could produce $\sum_{i=1,...,K} \lambda_i \cdot y_{ni} = \theta_k \cdot y_{nk}$ output (n = 1, ..., N), hence missing: $\sum_{i=1,...,K} \lambda_i \cdot y_{ni} - y_{nk} \text{ units of output}_n \text{ for } n = 1, ..., N$

Output-oriented CCR Model – Example Formulation (1)

DMU _k	input₁	output ₁	output ₂		
DMU ₁	6	132	9600		
DMU ₂	12	192	26400		
DMU ₃	10	190	21000		
DMU₄	8	144	14400		

First model for **DMU**₄:

тах **Ө**4

s.t.
$$6 \cdot \lambda_1 + 12 \cdot \lambda_2 + 10 \cdot \lambda_3 + 8 \cdot \lambda_4 \le 8$$
 input₁
 $132 \cdot \lambda_1 + 192 \cdot \lambda_2 + 190 \cdot \lambda_3 + 144 \cdot \lambda_4 \ge 144 \cdot \theta_4$ output₁
 $9600 \cdot \lambda_1 + 26400 \cdot \lambda_2 + 21000 \cdot \lambda_3 + 14400 \cdot \lambda_4 \ge 14400 \cdot \theta_4$ output₂
 $\theta_4 \ge 0$; $\lambda_k \ge 0$, $k = 1, ..., 4$

Optimal solution: $\theta_4 = 1.097$ for $\lambda_1 = 0.33$ and $\lambda_3 = 0.60$ and $\lambda_2 = \lambda_4 = 0$ **Conclusion**: **DMU**₄ is inefficient (its efficiency is $1/\theta_4 = 1/1.097 = 0.911$)

DMU₄ should increase its output₁ by 158 - 144 = 14 units and output₂ by 15800 - 14400 = 1400 units to become efficient

Output-Oriented Efficiency Analysis (2)

efficiency =
$$\frac{\text{input}}{\text{output}}$$
 \implies efficiency = $E_k = \frac{\sum_{m=1,...,M} v_m \cdot x_{mk}}{\sum_{n=1,...,N} u_n \cdot y_{nk}}$

- What are the weights/prices $u_{\rm m}$ and $v_{\rm n}$ that minimize the efficiency of ${\bf DMU_k}$ such that the efficiencies for all DMUs are not less than one
- Minimize E_k such that $E_i \ge 1$, for j = 1, ..., K

$$min \frac{\sum_{m=1,...,M} \mathbf{v}_{m} \cdot \mathbf{x}_{mk}}{\sum_{n=1,...,N} \mathbf{u}_{n} \cdot \mathbf{y}_{nk}} \qquad s.t. \sum_{n=1,...,N} \mathbf{u}_{n} \cdot \mathbf{y}_{nk} = 1$$

$$s.t. \frac{\sum_{m=1,...,M} \mathbf{v}_{m} \cdot \mathbf{x}_{mj}}{\sum_{n=1,...,N} \mathbf{u}_{n} \cdot \mathbf{y}_{nj}} \ge 1 \text{ for } \mathbf{j} = 1, ..., \mathbf{K} \sum_{m=1,...,M} \mathbf{v}_{m} \cdot \mathbf{x}_{mj} \ge \sum_{n=1,...,N} \mathbf{u}_{n} \cdot \mathbf{y}_{nj}$$

$$\mathbf{v}_{m} \ge 0, \ \mathbf{m} = 1, ..., M$$

$$\mathbf{v}_{m} \ge 0, \ \mathbf{m} = 1, ..., M$$

$$\mathbf{v}_{n} \ge 0, \ \mathbf{n} = 1, ..., N$$

$$\mathbf{v}_{n} \ge 0, \ \mathbf{n} = 1, ..., N$$

Output-oriented CCR Model – Example Formulation (2)

DMU _k	Input ₁	Output ₁	Output ₂
DMU ₁	6	132	9600
DMU ₂	12	192	26400
DMU ₃	10	190	21000
DMU ₄	8	144	14400

Second model for **DMU**₄:

 $min 8 \cdot v_1$

s.t.
$$144 \cdot u_1 + 14400 \cdot u_2 = 1$$

$$132 \cdot u_1 + 9600 \cdot u_2 \le 6 \cdot v_1$$

$$192 {\cdot} u_1 + 26400 {\cdot} u_2 \leq 12 {\cdot} v_1$$

$$190 \cdot u_1 + 21000 \cdot u_2 \le 10 \cdot v_1$$

$$144 \cdot u_1 + 14400 \cdot u_2 \le 8 \cdot v_1$$

$$v_1, u_1, u_2 \ge 0$$

$$v_1 = 0.1371527$$

 $u_1 = 0.000434027$
 $u_2 = 0.000026041$
 $8 \cdot v_1 = 1.097$
DMU₄ is inefficient

Information Provided by DEA

- Objective measures of efficiency
- A reference set of comparable units
- Indicators of excess use of inputs
- Shortfalls in the production of outputs
- Returns to scale measure

Strong Points of DEA

Performance evaluation and measurement

- No semantics: just deal with numbers
- No functional assumptions on inputs and outputs
- No assumption on the process: DMU is a black box

Benchmarking to identify "best practice" units

- Gives information about a DMU based on other DMUs
- "Maybe I can learn something from them"

- Different units for inputs and outputs (no need for translation)
- No need to estimate weights of inputs and outputs (error-prone)

DEA

Weak Points of DEA

- Gives information about a DMU based on other DMUs (not against a theoretical maximum)
- Measures efficiencies relative to the efficient frontier that is defined by production possibilities
- This set may not be easy to characterize
- Poor discriminative power (many DMUs may be efficient)
- The more DMUs the more difficult it is to compare DMUs (DMUs become too specialized)
- Does not perform well with too many inputs/outputs (DMUs tend to be "all optimal")
- DEA scores reflect DMUs performance only for weights that are most favourable to it

DFA

Are Constant Returns to Scale Always Realistic?

A. Charnes, W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, *European Journal of Operational Research*, 2(6), 429-444,1978

- So far, our formulation of DEA assumed Constant Returns to Scale (CRS)
- Other formulations have been presented in order to drop this assumption
- Advantage: most practical applications do not have CRS
- Advantage: besides telling us if a DMU is inefficient, they also tell us if it is too small or too large
- Disadvantage: efficiency scores change when we use input- vs. outputoriented versions (we have to choose an orientation for the model, according to the control we have over inputs vs. outputs)

BCC Model – Variable Return to Scale (VRS)

R. Banker, A. Charnes, W. Cooper, Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis, *Management Science*, 30, 1078-1092,1984

- We consider economy of scale (scale of operations)
- We assume Variable Returns to Scale (VRS)
- All convex combinations of existing DMUs are realistic
- Each existing DMU can also either consume greater inputs and produce the same outputs or consume the same inputs and produce lesser outputs

Change in the Producion Possibilities (1)

Store	DMU	Α	В	С	D	E	F	G	Н
Employees	Input	4	6	6	8	10	10	12	16
Cups of coffee	Output	2	6	4	6	8	4	6	10

Change in the Producion Possibilities (2)

Store	DMU	Α	В	С	D	E	F	G	Н
Employees	Input	4	6	6	8	10	10	12	16
Cups of coffee	Output	2	6	4	6	8	4	6	10

Efficient Frontiers in the BCC Model

Store	DMU	Α	В	С	D	Е	F	G	Н
Employees	Input	4	6	6	8	10	10	12	16
Cups of coffee	Output	2	6	4	6	8	4	6	10

Comparison of BCC and CCR Models

- DMUs which are CCR-efficient are BCC-efficient
- DMUs which are BCC-efficient are not necessarily CCR-efficient
- Efficiency scores do differ (e.g., for $F E_{OUT-CCR} = 4/10$; $E_{OUT-BCC} = 1/2$)
- BCC-efficiencies are orientation-dependant (e.g., for $F E_{\text{IN-BCC}} = 6/8$; $E_{\text{OUT-BCC}} = 7/8$)

BCC Efficiency Models

Input-oriented BCC models

min
$$\theta_k$$

s.t. $\sum_{j=1,...,K} \lambda_j \cdot x_{mj} \le \theta_k \cdot x_{mk}$, $m = 1, ..., M$
 $\sum_{j=1,...,K} \lambda_j \cdot y_{nj} \ge y_{nk}$, $n = 1, ..., N$
 $\sum_{j=1,...,K} \lambda_j = 1$
 $\theta_k \ge 0$: $\lambda_k \ge 0$, $k = 1,...,K$

Output-oriented BCC models

$$\max \theta_{k}$$
s.t.
$$\sum_{j=1,...,K} \lambda_{j} \cdot x_{mj} \leq x_{mk}, \ m = 1, ..., M$$

$$\sum_{j=1,...,K} \lambda_{j} \cdot y_{nj} \geq \theta_{k} \cdot y_{nk}, \ n = 1, ..., N$$

$$\sum_{j=1,...,K} \lambda_{j} = 1$$

$$\theta_{k} \geq 0; \ \lambda_{k} \geq 0, \ k = 1, ..., K$$

$$\begin{array}{l} \max \theta_{k} \\ \text{s.t.} \ \sum_{j=1,\ldots,K} \lambda_{j} \cdot x_{mj} \leq x_{mk}, \ m=1,\ldots,M \\ \sum_{j=1,\ldots,K} \lambda_{j} \cdot y_{nj} \geq \theta_{k} \cdot y_{nk}, \ n=1,\ldots,N \\ \sum_{j=1,\ldots,K} \lambda_{j} = 1 \\ \theta_{k} \geq 0; \ \lambda_{k} \geq 0, \ k=1,\ldots,K \end{array}$$

$$\begin{array}{l} \min \sum_{m=1,\ldots,M} v_{m} \cdot x_{mk} + \textbf{\textit{u}}_{0} \\ \text{s.t.} \ \sum_{n=1,\ldots,M} u_{n} \cdot y_{nk} = 1 \\ \sum_{m=1,\ldots,M} v_{m} \cdot x_{mj} + \textbf{\textit{u}}_{0} \geq \sum_{n=1,\ldots,N} u_{n} \cdot y_{nj} \\ v_{m} \geq 0, \ m=1,\ldots,M \\ u_{n} \geq 0, \ n=1,\ldots,N \end{array}$$

BCC Efficiency Models – Example Formulations

$$max 144 \cdot u_1 + 14400 \cdot u_2 + u_0$$
s.t. $8 \cdot v_1 = 1$

$$132 \cdot u_1 + 9600 \cdot u_2 + u_0 \le 6 \cdot v_1$$

$$192 \cdot u_1 + 26400 \cdot u_2 + u_0 \le 12 \cdot v_1$$

$$190 \cdot u_1 + 21000 \cdot u_2 + u_0 \le 10 \cdot v_1$$

$$144 \cdot u_1 + 14400 \cdot u_2 + u_0 \le 8 \cdot v_1$$

$$v_1, u_1, u_2 \ge 0$$

DMU _k	In ₁	Out ₁	Out ₂	Eff.?
DMU ₁	6	132	9600	Yes
DMU ₂	12	192	26400	Yes
DMU ₃	10	190	21000	Yes
DMU ₄	8	144	14400	No

$$E_4$$
 = 0.961 (in CCR – 0.911) **DMU**₄ is inefficient

```
min \theta_4

s.t. 6 \cdot \lambda_1 + 12 \cdot \lambda_2 + 10 \cdot \lambda_3 + 8 \cdot \lambda_4 \le 8 \cdot \theta_4

132 \cdot \lambda_1 + 192 \cdot \lambda_2 + 190 \cdot \lambda_3 + 144 \cdot \lambda_4 \ge 144

9600 \cdot \lambda_1 + 26400 \cdot \lambda_2 + 21000 \cdot \lambda_3 + 14400 \cdot \lambda_4 \ge 14400

\theta_4 \ge 0; \lambda_k \ge 0, k = 1, ..., 4; \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1
```

$$\lambda_1 = 0.58 \ \lambda_3 = 0.42$$
 $\lambda_2 = \lambda_4 = 0$
 $\theta_4 = 0.961$
 $in_1 = 7.68 < 8$
 $out_1 = 156.42 \ge 144$
 $out_2 = 14400 \ge 14000$