

TSIGN

Sign language tool

¿Por qué TSign?

TSIGN es una herramienta para las personas sordomudas quienes además de su lengua nativa, tienen que aprender otros idiomas, pues el lenguaje de las señas no es universal, sino que cambia dependiendo del idioma en el que las personas quieran comunicarse. Es por esto que esta aplicación ayudará a las instituciones en el proceso de capacitación de una forma interactiva.

DATASET

WLASL

21083 vídeos 2000 clases

800 vídeos 10 clases

PRE PROCESAMIENTO DE LOS VÍDEOS

Debido a que cada clase tiene un promedio de 10 a 12 vídeos se crearon más mediante el uso de métodos como lo son desplazamiento, espejo y cambio en el orden de los canales RGB, de esta forma logrando subir el numero de muestras aproximadamente a 80 por cada clase

TRATAMIENTO

02

BACKGROUND SUBTRACTION

EDGES WITH OPTICAL FLOW

EDGES WITH CORNER

OPTICAL FLOW

04

BAG OF WORDS

06

OPTICAL FLOW AND CART POLAR

MEJORES RESULTADOS

99% train

12

91% test

OTROS RESULTADOS

OTROS RESULTADOS

Model: "sequential_15"

Layer (type)	Output	Shape	Param #
conv2d_45 (Conv2D)	(None,	96, 96, 64)	1664
conv2d_46 (Conv2D)	(None,	94, 94, 64)	36928
max_pooling2d_30 (MaxPooling	(None,	47, 47, 64)	0
conv2d_47 (Conv2D)	(None,	45, 45, 64)	36928
max_pooling2d_31 (MaxPooling	(None,	22, 22, 64)	0
flatten_15 (Flatten)	(None,	30976)	0
dense_30 (Dense)	(None,	128)	3965056
dense_31 (Dense)	(None,	11)	1419

Total params: 4,041,995 Trainable params: 4,041,995 Non-trainable params: 0

Model: "sequential_21"

Non-trainable params: 3,000

	Output	Shane	Param #
Layer (type) 	======		-αι'αιι π
dense_44 (Dense)	(None,	700)	14700
batch_normalization_8 (Batch	(None,	700)	2800
dense_45 (Dense)	(None,	400)	280400
batch_normalization_9 (Batch	(None,	400)	1600
dropout_6 (Dropout)	(None,	400)	0
dense_46 (Dense)	(None,	300)	120300
batch_normalization_10 (Batc	(None,	300)	1200
dropout_7 (Dropout)	(None,	300)	0
dense_47 (Dense)	(None,	100)	30100
batch_normalization_11 (Batc	(None,	100)	400
dropout_8 (Dropout)	(None,	100)	0
	(None,	8)	808

PRUEBA FINAL

PROCESAMIENTO
CON RANDOM FOREST

1 neigh.predict(Xtest)

array(['accomplish'], dtype=object)

1 neigh.predict_proba(Xtest)

PROCESAMIENTO
CON LA RED NEURONAL

accomplish

1 model.predict(Xtest)

array([[7.3256786e-05, 4.1758353e-06, 1.9178513e-02, 3.3226101e-05, 4.9589198e-05, 4.7792503e-07, 5.8723256e-02, 9.2193753e-01]], dtype=float32)

El lenguaje de señas requiere de varías muestras por clase debido a que muchas de sus palabras tienen movimientos similares

El background da un mejor resultado del movimiento, debido a que las palabras a clasificar tienen un gesto muy similar entre ellas.

Los histogramas polares son un muy buen descriptor y reduce cada vídeo a un mínimo de valores.

Se requirió calcular el flujo óptico con la función canny de opency para cada imagen a pasar y luego normalizar cada histograma además finalmente normalizar la suma de todos por vídeo, para obtener unos buenos resultados con el método de histogramas.

https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/

https://hal.archives-ouvertes.fr/hal-01119640/document

https://www.researchgate.net/publication/33679713 3_Word-

level_Deep_Sign_Language_Recognition_from_Vide o_A_New_Large-scale_Dataset_and_Methods_Comparison

https://likegeeks.com/es/procesar-de-imagenes-enpython/