

University of Colombo, Sri Lanka

UCSC University of Colombo School of Computing

Bachelor of Science in Computer Science

Academic Year 2014-2015 — Second Year Examination — Semester II

SCS2106 — Operating Systems I

(2 Hours)

Answer All Questions

Number of Pages = 11

Number of Questions = 4

To be c	omple	ted by	the ca	ndidate	
Index Number					
Index Number					

Important Instructions

- The duration of the paper is 2 Hours.
- The medium of instructions and questions is English.
- This paper has 4 questions on 11 pages.
- Answer all the 4 questions.
- Write your answers on and only on the space provided on this question paper.
- Do not tear off any part of this answer book. Under no circumstances may this book (or any part of this book), used or unused, be removed from the Examination Hall by a candidate.
- Questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- Any electronic device capable of storing and retrieving text, including electronic dictionaries and mobile phones, are **not allowed**.
- Non-programmable Calculators may be used.

To be completed by the examiners

	1	
	1	
	2	
	3	
	4	
Tot	al	

						L							
1.	(a).		ume that termina		s transit	betwo	een the	e follo	wing s	tates:	new, r	ready, ru	ınning, waiting
		i.	A proces	s in state	S is me	oved	to the	ready	state o	on rece	iving	a timer i	nterrupt. What is
			ESS					HIVITS!			g 194		[1 marks]
						N = 0 = 1							
		ii.	A proces	s is in th	e runni	ing st	ate. W	hat are	e the p	ossible	next s	states for	this proces?
													[3 marks]
	(h)	Wh	at is the n										

And will a south the second of the second of


```
(c). i. How many X's are printed by the following program?
       int main()
              if (fork())
                printf("X\n");
                if(fork())
                    printf("XX\n");
              fork();
              printf("X\n");
              return 0;
       }
                                                                    [5 marks]
    ii. What is the output of the following program?
       int main()
              int x;
              x=0;
              if (fork())
                  x++;
              if(fork())
                 X++;
              printf("%d",x);
       }
                                                                    [5 marks]
```

Day Lead 140	11-1		-20-45	
Index Number				1

(d). Consider the following C program.

```
int * f(int x)
{
   int p;
   p=x;
   return &p;
}

int * g(int x)
{
   int y;
   y=x;
   return &y;
}

int main()
{
   int *x,*y;
   x=f(100);
   y=g(2500);
   *x=*x+500;
   printf("%d\n", *y);
   return 0;
}
```

i. What is the output of the above program?

[4 marks]

ii. Assume that the above program is changed by interchanging the lines with x=f (100); and y=g (2500); as follows?

```
y=g(2500);
x=f(100);
```

What is the output of the above program under this assumption?

[4 marks]

	Index Number	
2.	(a). Draw a resource allocation graph wi two processes and two resource type	ith a cycle, that does not indicate a deadlock . Use only es.
	THE SUMMAN SERVICE STORY CHARLOWS DEVELOPED IN	[4 marks]

(b). A System has 11 instances of the resource type R and three processes, P₀, P₁, P₂, P₃, that require R. The maximum requirements of R for each process and the current allocations at time t₀ are given in the following table.

	Maximum Need	Current Allocation
P_0	9	5
$\overline{P_1}$	9	2
P_2	4	2
$\overline{P_3}$	11	0

i. The system is in a safe state at t_0 . Give a safe sequence.

[4 marks]

ii. At time t_1 another process, P_4 , is added to the system with maximum need of 10 number of resource R. It has not been allocated any instance of R at t_1 . Is the system in a safe state at t_1 ? If it is in a safe state give a safe sequence. Otherwise justify your answer.

[4 marks]

Index Number			e de la composição de l	M.	Bat	
				100	<u> </u>	

iii.	Assume that at time t_2 , a single instance of R is given to the P_3 . Is the system in a safe
	state at t_2 under this assumption? If it is in a safe state give a safe sequence. Otherwise
	justify your answer.

[3 marks]

iv. Assume that there are more resource allocations at time t_3 and the system is not in a safe state at time t_3 . Does this also indicate that the the system is deadlocked at t_3 ? Justify your answer.

[4 marks]

(c). Consider a system with 6 processes $(P_0, P_1, P_2, P_3, P_4, P_5)$ and 3 resource types $(\mathbf{A}, \mathbf{B}, \mathbf{C})$. There are 10 instances of \mathbf{A} , 5 instances of \mathbf{B} , and 7 instances of \mathbf{C} . The current resource allocation and the maximum need of processes are given in the following table.

	All	locat	tion	Charles	xim Need	
Process	A	В	C	A	В	C
P_0	0	1	0	7	5	3
P_1	2	0	0	3	2	2
P_2	3	0	2	9	0	2
P_3	2	1	1	2	2	2
P_4	0	0	0	10	5	7
P_5	0	0	2	4	3	3

Give a safe sequence.

[6 marks]

Index Number			dae	10 2	Ball I	
				3		

3. (a). A solution to the bounded-waiting mutual exclusion problem that uses TestAndSet() is given bellow. This code is given with respect to the process i.

```
do{
waiting[i] = TRUE;
key = TRUE;
while(waiting[i] && key)
   key = TestAndSet(&lock);
waiting[i] = X;
   // critical section
 j = (i + 1) % n;
while ((j != i) && !waiting[j])
    j = Y;
 if (j == i)
    lock = Z;
 else
    waiting[j] = R;
   // remainder section
 } while (TRUE);
 i. What should be the initial value of the shared variable lock?
                                                             [3 marks]
ii. What is X?
                                                             [3 marks]
```

[3 marks]

iii. What is Y?

Index Number	
iv. What is Z?	
the Pills orders governing had been as a move of the most	[3 marks]
	jab Stark
v. What is R?	
	[3 marks]
(b). The structure of process P_i in Peterson's solution is given bellow.	
do{	
<pre>flag[i] = TRUE; turn = j;</pre>	
while (flag[L] && turn == M);	
// critical section	
flag[i] = N;	
<pre>} while (TRUE);</pre>	
i. What is L?	
	[2 marks]
	280-3
ii. What is M?	
	[2 marks]
iii. What is N?	
	[2 marks]

	Ind	ex Nun	nber								
(c). The struc	ture of pi	ocess I	P₀ is giv	en bello	w. S an	d Q are	sen	napho	ores in	itialize	ed to 1.
wait(s);										
wait(Q);										
Write a c				wo lines	for pro	cess P	usi usi	ng th	e same	e sema	phores to have
a possion	ity of a d	Cadioca									
											[4 mark
enter de la constante de la co											

Index Number					
	3 - 10				

(a). A system uses memory pages of size s bytes. The memory is byte addressle entry of the page 0 of the process P in this system is stored at the q . Each page table entry is r bytes long. The function $F()$ takes the attable entry and returns the frame number stored there. For example, $F(q)$ number corresponding to the page number 0.	e physical address ddress of the page
You can assume that the / operator applied to two integers gives the quot tional part discarded (similar to the integer division in C) and the % give the division.	tient with any fraces the remainder of
i. What is the page number of the logical address x ?	
	[3 marks]
ii. What is the offset within its page of the logical address x ?	[3 marks]
iii. What the physical address of the page table entry corresponding to the address x of the process P ?	he page number of [5 marks]
iv. What is the physical address of the logical address x of the process F	[5 marks]

	Index Number	
(b).	What is external fragmentation with reference to memory management?	
	[2 m	narks]
	9	
(c).	A FAT file system uses blocks of size 4096 bytes. Each FAT table entry is 32 bits long. is the largest disk that can be handled by this file system?	What
	[4 m	narks]
(d).	Name three file systems other than the FAT file system.	
	[3 m	narks]

Territory Committee