Simple Regression

Prof. Daniel A. Menascé Dept. of Computer Science George Mason University

© 2001-2002. D. A. Menascé. All Rights Reserved.

Basics

- Purpose of <u>regression analysis</u>: predict the value of a dependent or response variable from the values of at least one explanatory or independent variable (also called predictors or factors).
- Purpose of <u>correlation analysis</u>: measure the strength of the correlation between two variables.

2

Simple Linear Regression Selecting the "best" line

© 2001-2002. D. A. Menascé. All Rights Reserved.

Linear Regression

$$\hat{Y}_i = b_0 + b_1 X_i$$

 \hat{Y}_i : predicted value of Y for observation i.

 X_i : value of observation i.

 b_0 and b_1 are chosen to minimize:

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} [Y_i - (b_0 + b_1 X_i)]^2$$

Subject to:
$$\sum_{i=1}^{n} e_i = 0$$

© 2001-2002. D. A. Menascé. All Rights Reserved.

Method of Least Squares

$$b_1 = \frac{\sum_{i=1}^n X_i Y_i - n \overline{XY}}{\sum_{i=1}^n X_i^2 - n(\overline{X})^2}$$
$$b_0 = \overline{Y} - b_1 \overline{X}$$

9

© 2001-2002. D. A. Menascé. All Rights Reserved.

Linear Regression Example

Number of	CPU Time	Estimate (0.0408*x		
I/Os (x)	(y)	+0.0508)	Error	Error Squared
1	0.092	0.092	0.0005	0.00000
2	0.134	0.132	0.0013	0.00000
3	0.165	0.173	-0.0083	0.00007
4	0.211	0.214	-0.0026	0.00001
5	0.242	0.255	-0.0128	0.00016
6	0.302	0.295	0.0067	0.00005
7	0.357	0.336	0.0206	0.00042
8	0.401	0.377	0.0239	0.00057
9	0.405	0.418	-0.0131	0.00017
10	0.442	0.459	-0.0161	0.00026
				0.00171

 Xbar
 5.5

 Ybar
 0.275

 Sum x2
 385

 Sum x2
 385

Sum xy 18.494616 b1 0.0408 b0 0.0508

© 2001-2002. D. A. Menascé. All Rights Reserved.

Linear Regression Example

© 2001-2002. D. A. Menascé. All Rights Reserved.

Allocation of Variation

• No regression model: use mean as predicted value. SSE is:

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$
 Sum of squares total
$$SSR = SST - SSE$$
 Sum of squares explained by the regression. Variation not explained by regression.

© 2001-2002. D. A. Menascé. All Rights Reserved.

Allocation of Variation

• Coefficient of determination (R²): fraction of variation explained by the regression.

$$R^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST}$$

The closer R^2 is to one, the better is the regression model.

13

© 2001-2002. D. A. Menascé. All Rights Reserved.

			Estimate					
	Number of	CPU Time	(0.0408*x					
	I/Os (x)	(y)	+0.0508)	Error	Error Squared	SSY		
	1	0.092	0.092	0.0005	0.00000	0.00848	SST	0.1388841
	2	0.134	0.132	0.0013	0.00000	0.017882	SSR	0.1371690
	3	0.165	0.173	-0.0084	0.00007	0.027173	R2	0.9876514
	4	0.211	0.214	-0.0027	0.00001	0.044645		
	5	0.242				0.058505		
	6	0.302		0.0066				
	7	0.357	0.336	0.0204	0.00042	0.127331		
	8	0.401	0.377	0.0238	0.00056	0.160771		
	9	0.405	0.418	-0.0133		0.163795		
	10	0.442	0.459	-0.0163	0.00027	0.195783		
	0.275 0.00172 0.89570							
SST	$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \left(\sum_{i=1}^{n} Y_i^2\right) - n\overline{Y}^2 = SSY - SSO$ $SSE \qquad SSY$							
SSE	$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$							
	i=1			,	The highe	r the va	\mathbf{R}^2 th	ne better
	n	2			_			
$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 = SST - SSE$ the regression.								
R^2 =	$R^2 = \frac{SSR}{SST}$ coefficient of determination.							
© 2	© 2001-2002. D. A. Menascé. All Rights Reserved.							

Standard Deviation of Errors

• Variance of errors: divide the sum of squares (SSE) by the number of degrees of freedom (n-2 since two regression parameters need to be computed first).

$$s_e^2 = \frac{SSE}{n-2}$$
 Mean squared error (MSE)

15

© 2001-2002. D. A. Menascé. All Rights Reserved.

Degrees of freedom of various sum of squares.

SST	n-1	Need to compute \overline{Y}
SSY	n	Does not depend on any other parameter
SS0	1	Can be computed from \overline{Y}
SSE	n-2	Need to compute two regression parameters
SSR	1	=SST-SSE

Degrees of freedom add as sum of squares do.

16

Confidence Interval for Regression Parameters

- b_0 and b_1 were computed from a sample. So, they are just estimates of the true parameters β_0 and β_1 for the true model.
- Standard deviations for b₀ and b₁.

$$s_{b_0} = s_e \sqrt{\frac{1}{n} + \frac{(\overline{X})^2}{\sum_{i=1}^{n} X_i^2 - n(\overline{X})^2}}$$

$$s_{b_i} = \frac{s_e}{\sqrt{\sum_{i=1}^{n} X_i^2 - n(\overline{X})^2}}$$

© 2001-2002. D. A. Menascé. All Rights Reserved.

17

Confidence Interval for Regression Parameters

 $100(1-\alpha)\%$ confidence interval for b_o and b_1

$$b_0 \pm t_{[1-\mathbf{a}/2;n-2]} s_{b_0}$$

 $b_1 \pm t_{[1-\mathbf{a}/2;n-2]} s_{b_1}$

18

Confidence	Interval	Examp	ole
------------	----------	-------	-----

		Estimate		
Number of I/Os	CPU Time	(0.0408*x		
(x)	(y)	+0.0508)	Error	Error Squared
1	0.092	0.092	0.0005	0.00000
2	0.134	0.132	0.0013	0.00000
3	0.165	0.173	-0.0083	0.00007
4	0.211	0.214	-0.0026	0.00001
5	0.242	0.255	-0.0128	0.00016
6	0.302	0.295	0.0067	0.00005
7	0.357	0.336	0.0206	0.00042
8	0.401	0.377	0.0239	0.00057
9	0.405	0.418	-0.0131	0.00017
10	0.442	0.459	-0.0161	0.00026
			SSE:	0.00171

	Xbar	5.5			
	Ybar	0.275			
	Sum x2	385			
	Sum xy	18.494616			
	b1	0.0408			
	b0	0.0508			
	2				
	se	0.0002144		Lower bo	0.027772
	se	0.0146411		Upper bo	0.073900
	sb0	0.0100017			
	sb1	0.0016119		Lower b1	0.037058576
	95% confidence	level		Upper b1	0.044492804
	alpha	0.05			
	t[1-alpha/2;n-2]	2.3060056			
	SST	0.1388841			
	SSR	0.13717			
	R2	0.9876524			
© 200	01-2002. D. A.	Menascé. A	All Rights	Reserved.	

19

Confidence Interval for the Predicted Value

• The standard deviation of the mean of a future sample of m observations at $X = X_p$ is

$$s_{\hat{y}_{mp}} = s_e \left[\frac{1}{m} + \frac{1}{n} + \frac{(X_p - \overline{X})^2}{\sum_{i=1}^n X_i^2 - n\overline{X}^2} \right]^{1/2}$$

As the future sample size (*m*) decreases, the standard deviation for predicted value increases.

20

Confidence Interval for the Predicted Value

100(1-α)% confidence interval for the predicted value for a future sample of size m at X_p :

$$\hat{y}_p \pm t_{[1-\mathbf{a}/2;n-2]} \hat{y}_{mp}$$

21

© 2001-2002. D. A. Menascé. All Rights Reserved.

Linear Regression Assumptions

- Linear relationship between the response (y) and the predictor (x).
- The predictor (x) is non-stochastic and is measured without any error.
- Errors are statistically independent.
- Errors are normally distributed with zero mean and a constant standard deviation.

22

Linear Regression Assumptions

• Linear relationship between the response (y) and the predictor (x).

© 2001-2002. D. A. Menascé. All Rights Reserved.

Linear Regression Assumptions

• Errors are statistically independent.

trend

24

23

Linear Regression Assumptions

• Errors are normally distributed.

© 2001-2002. D. A. Menascé. All Rights Reserved.

Linear Regression Assumptions

• Errors have a constant standard deviation.

26