

STEP-BY-STEP PROGRAMMING

ZX SPECTRUM + CSPAPHICS

PIERS LETCHER

Advanced spring programming pr

STEP-BY-STEP PROGRAMMING ZX SPECTRUM ZX SPECTRUM +

THE DK SCREEN-SHOT PROGRAMMING SERIES

Books One and Two in the DK Screen-Shot Programming Series brought to home computer users a new and exciting way of learning how to program in BASIC. Following the success of this completely new concept in teach-yourself computing, the series now carries on to explore the speed and potential of machine-code graphics. Fully illustrated in the unique Screen-Shot style, the series continues to set new standards in the world of computer books.

BOOKS ABOUT THE ZX SPECTRUM+

This is Book Four in a series of guides to programming the ZX Spectrum+. It contains a complete machine-code sprite-programming course for the Spectrum+, and features its own sprite editor which enables you to design and store sprites directly from the keyboard. Together with its companion volumes, it builds up into a complete programming and graphics system.

ALSO AVAILABLE IN THE SERIES

Step-by-Step Programming for the **Commodore 64**Step-by-Step Programming for the **BBC Micro**Step-by-Step Programming for the **Acorn Electron**Step-by-Step Programming for the **Apple Ile**Step-by-Step Programming for the **Apple Ilc**

PIERS LETCHER

After graduating with a degree in Computer Systems, Piers Letcher has worked in many areas of the computer industry, from programming and selling mainframes to designing and marketing educational software. He was Peripherals Editor of *Personal Computer News* until May 1984 and has since written a guide to peripherals and a number of other books for popular home micros.

BOOKFOUR

CONTENTS

6

ABOUT THIS BOOK

8

USING THE MACHINE CODE

10

WHAT ARE SPRITES?

11

THE SPRITE EDITOR 1

12

THE SPRITE EDITOR 2

14

DISPLAYING SPRITES

The DK Screen-Shot Programming Series was conceived, edited and designed by Dorling Kindersley Limited, 9 Henrietta Street, Covent Garden, London WC2E 8PS.

Editor Michael Upshall
Designer Steve Wilson
Photographer Vincent Oliver
Series Editor David Burnie
Series Art Editor Peter Luff
Managing Editor Alan Buckingham

First published in Great Britain in 1985 by Dorling Kindersley Limited, 9 Henrietta Street, Covent Garden, London WC2E 8PS. Second impression 1985 Copyright © 1985 by Dorling Kindersley Limited, London Text copyright © 1985 by Piers Letcher

As used in this book, any or all of the terms SINCLAIR, ZX SPECTRUM+, MICRODRIVE, MICRODRIVE CARTRIDGE, and ZX PRINTER are trade marks of Sinclair Research Limited.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying recording, or otherwise, without the prior written permission of the copyright owner.

British Library Cataloguing in Publication Data

Letcher, Piers

Step-by-step programming ZX Spectrum and ZX Spectrum+ Graphics.

- (DK screen shot programming series) Bk. 4

1. Sinclair ZX Spectrum (Computer)

- Programming

I. Title

001.64'2 QA76.8.S625

ISBN 0-86318-104-X

Typesetting by Gedset Limited, Cheltenham, England Reproduction by Reprocolor Llovet S.A., Barcelona, Spain and F. E. Burman Limited, London Printed and bound in Italy by A. Mondadori, Verona 16

MOVING SPRITES 1

MOVING SPRITES 2

18

20

KEYBOARD-CONTROLLED SPRITES

22

DOUBLE-SIZED SPRITES

ABOUT THIS BOOK

The Sinclair Spectrum is one of the most popular microcomputers ever produced. One reason for its success has been its remarkable ability to produce graphic displays rivalling those produced by much larger computers designed only ten or fifteen years ago. However, graphics programming in BASIC under-utilizes the Spectrum. To produce the kind of displays seen in commercially available games, you need to use machine code as well as BASIC.

What is machine code?

The heart of the Spectrum, the Z80 central processor, cannot understand BASIC. A BASIC program must first be translated into a simpler language that the machine can understand (hence the term "machine code"). This code is in the form of binary 1s and 0s. Before the processor can execute a BASIC program line, all keywords and variables are first converted to machine-code instructions.

BASIC is an example of what is known as an "interpreted", as opposed to a "compiled", language — that is, it is executed by the central processor line by line rather than as a complete program. While an interpreted language is easier to use, it is also slower in execution. By writing programs in machine code, you can miss out the BASIC interpreter altogether. In addition, machine code allows you to utilize many features of your Spectrum which cannot be reached from BASIC, so that you can therefore achieve far more impressive results than would ever be possible from the simpler, but more restricted, BASIC. You can get an idea of how much faster machine code is by seeing the time taken for the programs in this book to run.

Disadvantages of machine code

Given all the advantages of machine code in both speed and flexibility, why not ignore BASIC and use machine code all the time? The answer is simply convenience. Using machine code is time-consuming, difficult and frustrating, and attempting to write your own code is only for the expert. When you see machine-code listings, they are usually in a "disassembled" form, that is, with some of the numbers translated into mnemonics such as LD for LOAD, and JP for JUMP. But a special disassembler program is required simply to give you a machine-code listing in this form, and these mnemonics are themselves far from simple. Using machine code even the simplest operations in BASIC, such as drawing a line on the screen, require many lines of programming. In addition, machine code has no error-trapping routines such as those in BASIC. If a mistake is made when keying in a BASIC program, the program will not be lost (although the program may refuse to RUN at some point); in

machine code, without error-trapping routines, a mistake will probably cause the Spectrum to crash, with the result that both the program and its DATA are lost.

The solution

This book combines the advantages of machine code with the convenience and simplicity of BASIC. This is done by giving the machine code in the form of readymade and tested routines, which you can then use in your BASIC programs. The machine code is shown as DATA statements in BASIC, which means it isn't necessary for you to understand anything about machine code to be able to use the routines. The DATA is given in the form of decimal numbers, rather than in binary or hexadecimal (to base 16), so that the machine code is in the form most convenient for you to key in.

The machine-code routines

The screen below shows an example of a machine code routine (the double vertical sprite routine, FNj, given on page 17).

DOUBLE VERTICAL SPRITE ROUTINE

```
7450 LET b=52100: LET t=225: LET z=0: RESTORE 7460
7451 FOR i=0 TO t-1: READ a 7452 POKE (b+i),a: LET z=z+a 7453 NEXT i 7454 LET z=INT (((z/t)-INT (z/t))*t)
7454 LET z=INT (((z/t)-INT (z/t))*t)
7455 READ a: IF a <> z THEN PRINT "??": STOP

7460 DATA 0,42,11,92,17
7461 DATA 4,0,25,78,30
7462 DATA 6,25,70,25,126
7463 DATA 230,3,50,103,204
7464 DATA 25,126,230,1,50
7465 DATA 125,126,230,1,50
7466 DATA 155,204,25,126,230
7467 DATA 1,50,101,204,25
7468 DATA 125,213,25,61,32
7470 DATA 252,175,50,102,204
7471 DATA 205,93,210,205,86
```

Each routine in the book is shown like this, in the form of a BASIC program. The machine code is contained as a series of DATA statements in lines 7460 onwards. At the beginning of the routine, in lines 7450 to 7455, there are a few lines of BASIC. This is a loader program; variable b tells the computer where in memory to begin loading the routine, and variable I the number of bytes in the routine. When the loader routine is RUN, this routine is placed in memory from address 52100 onwards, and has a total length of 225 bytes.

As shown here, of course, the routine is simply a list of numbers, and has no visible meaning. These numbers are the ready-tested and assembled machine code which has then been converted to a sequence of decimal numbers. Each number corresponds to a single instruction or item of DATA required by the routine;

hence, all the numbers have values between 0 and 255, the maximum range of a byte. All you need to know about the routine is what it does and what information it requires so that you can call it correctly from your BASIC program.

All the routines in the book are defined as functions. Each function is individually coded by the letters a to o; a complete list of functions is given on pages 62-63. Demonstration BASIC programs can be found on the same page as each routine; these give you an indication of the kind of displays which are possible using the machine code.

How to use the routines

To use any program in this book, simply key in a machine-code routine together with a BASIC program which demonstrates its use. You will find full details of how to do this on pages 8-9. When you RUN the program, you will begin to see the true power of your Spectrum.

As you progress through the book and the range of routines grows, the BASIC programs grow too by calling several routines to produce increasingly complex displays. By keying in each routine, and then SAVEing it onto cassette or Microdrive, you will have a sophisticated but flexible graphics capability at your fingertips.

The programs in use

A typical program from this book (the unicycle program on page 23) contains two details which will be unfamiliar to BASIC programmers who have not used machine code before:

UNICYCLE PROGRAM

10 DEF FN j(x,y,d,l,s,c,n) = USR
52100
100 BORDER 2
110 RANDOMIZE FN j(15,70,1,69,0
0,1)
120 RANDOMIZE FN j(220,70,0,70,
0,3)
130 GO TO 110

First, you will see in line 10 a DEF FN statement, which is used to instruct the computer that a machine-code routine with two parameters (x and y) is located at address 52100 in memory. You will also notice two RANDOMIZE FN commands (lines 110 and 120). These are the calls to the double vertical sprite routine, and the numbers in brackets which follow them are the

parameter values to be passed to the machine-code routine (in this case, the start co-ordinates of the sprite, its direction, how far it is to move and various other instructions). When RUNning, the program is carried out by the computer in this way:

HOW THE UNICYCLE PROGRAM WORKS

On the left side of this diagram is the main BASIC program, and on the right you can see the machine-code routines, called twice using a RANDOMIZE FN statement. You will see from the diagram that the machine-code is used here very much as a subroutine would be used in BASIC, with variables passed to the routines each time they are called.

What the routines do

The routines in this book free you from the limitations of programming in BASIC. By using the machine-code given here, you will be able to create and control sprites, to control them on the screen and to animate them, and to scroll both the entire screen and defined areas of it.

In addition, two of the later routines provide an introduction to one of the most exciting aspects of machinecode graphics: interrupt-driven routines, which operate independently of BASIC, and which enable you to program your Spectrum to carry out several tasks simultaneously.

Creating and editing sprites

To make sprites even easier to use, a directory of over 200 sprites is included from pages 36 to 61. These sprites can be keyed in and then edited with the sprite editor routine and program, given on pages 11 to 13. Using the sprite editor, you will find it easy to make your own versions of the sprites given in this book. Using single-key commands, for example, you can invert the sprites, make them face another direction, or turn them upside down.

USING THE MACHINE CODE

The machine-code routines in this book can easily be incorporated into your BASIC programs without you having to understand the intricacies of how they work. Simply choose a program from this book, and follow the steps given here.

1: CLEAR memory

As soon as you switch on your Spectrum, type CLEAR 49000. This command resets RAMTOP, the top of the area in memory free for BASIC programs, and ensures that BASIC programs cannot overlap with the machine code stored in memory from 49200 upwards. Now you can safely use NEW to delete BASIC programs without losing any of the machine code in memory.

Remember to use CLEAR before loading machine code, since this command erases whatever is in memory above the specfied address.

2: Load the machine code

Now type in whatever machine-code routines are

required by the BASIC program. After keying in the routine, RUN the short BASIC program which accompanies it; this loads the code into memory. If you keyed in the DATA correctly, you will see an "OK" message on the screen; if not, you will see a couple of question marks. In this case, look again at what you have typed in to trace the mistake.

3: SAVE the routine

When you are sure you have keyed in the routine correctly, SAVE it onto cassette or Microdrive. Always SAVE machine code before using it, to minimize the risk of losing everything you have keyed in. When BASIC errors occur, an error message is usually produced but the program is not lost. Machine-code routines, however, do not generally have error-trapping facilities, and a fault in the code will as often as not cause the Spectrum to crash — deleting everything in memory.

The machine code can be SAVEd in two ways: either in the form of DATA statements like any other BASIC

EXPLANATION OF A MACHINE-CODE BOX

FNf	Routine title	
SPRITE PRINT ROUTINE	Name of routine	
Start address 54100 Length 75 bytes Other routines called Sprite editor routines (FNa-FNe).	Number of bytes in memory taken up by routine	
what it does Prints a single sprite on the screen at a specifed point.	Purpose of routine	
Using the routine This routine displays any single sprite from		
the sprite buffer. The routine does not move the sprite. Note that if the sprite is too far to the right of the screen it will reappear one character below on the left-hand side of the	Points to note when using the routine	
of memory to screen.		
	What the parameters do	
DEF FNI(X,y,n)	Maximum and minimum	
x,y specify print position (x < 29, y < $\overline{21}$)	values of parameter to ensure	
n specifies number of sprite (1-10)	the routine does not plot o screen points	
ROUTINE LISTING	Number of machine-code	
7900 LET 5=54100: LET 1=70 LET		
z=0: RESTORE 7910	bytes (without check digit)	
7902 POKE (b+i), a: LET z=z+a	C-11	
7904 LET Z=INT ((Z/1) - INT (Z/1)	Calculates check digit z	
7905 READ a: IF a +> Z THEN PRINT	READs next DATA item, the routine check digit; if this	
7910 DETE 42 11 92 1 4	is not the same as z, two	
7911 DATA 0,9,86,1,8	question marks are PRINTed	
7912 DATA 0,9,94,237,83 7913 DATA 148,211,9,126,50	to show a mistake has been	
7914 DATA 150,211,123,230,24 7915 DATA 246,64,103,123,230	made	
	Start address 54100 Length 75 bytes Other routines called Sprite editor routines (FNa-FNe). What it does Prints a single sprite on the screen at a specifed point. Using the routine This routine displays any single sprite from the sprite buffer. The routine does not move the sprite. Note that if the sprite is too far to the right of the screen it will reappear one character below on the left-hand side of the screen, since the Spectrum PRINT routine is used in the transfer of memory to screen. ROUTINE PARAMETERS DEF FNf(x,y,n) x,y	

listing, or, after you have loaded it into memory, as a block of code. To save machine code, type:

SAVE "routine name" CODE start address, length in bytes

The start address and length are given at the top of each machine-code box. The diagram on the facing page shows how this information is displayed.

4: LOAD a BASIC program

With the machine-code routine in memory, you can now use it in a BASIC program. DEF FN statements are used to tell the Spectrum the whereabouts of the routine in memory, and what information it requires.

Using functions

A machine-code routine can be called simply by specifying its start location, like this:

10 RANDOMIZE USR 54100

A line like this in a BASIC program, however, is not very informative. It tells you neither what the routine does, nor how many parameters the routine may require when called. This information could be POKEd into the appropriate memory locations — but the consequences of a mistake could be disastrous. Much more reliable is to pass information to the routines using a BASIC function. Functions on the Spectrum are identified by a single letter, and are followed by parameters in brackets. When you define the name and location of the function in your program, you must also specify the parameters, if any, which are to be passed to the routine. For example, the sprite print routine, FNf, requires three parameters:

10 DEF FN f(x,y,n)=USR 54100

Which letters are used after DEF FN is not important; their function is only to tell the computer the number of parameters which will follow the routine call in a BASIC program

A machine-code function can be called from BASIC in two main ways, both of which require you to combine the keywords FN or USR with a BASIC keyword. The method used generally in this book is with the keyword RANDOMIZE. Thus,

20 RANDOMIZE FN f(10,10,1)

would display the first sprite from the sprite buffer in memory at co-ordinates 10,10. Note that using RANDOMIZE also resets the random number generator with a new seed; this may cause problems if you are also using a random function in your program. The second word you can use to call machine code is RESTORE. However, RESTORE also resets the pointer to DATA statements when you use it — which is of course the purpose of the RESTORE statement. If

you opt to use RESTORE instead of RANDOMIZE then be especially careful if there are any READ or DATA statements in your program.

QUESTIONS AND ANSWERS

What if I make a mistake in keying in?

Don't panic! Nobody keys in long lists of numbers without making any mistakes. A check routine is included with each machine-code routine to warn you if you made any mistakes in keying in the DATA. This routine compares the DATA you have entered with a check number, which is placed by itself on the last DATA line of each routine.

After the loading program has POKEd the DATA numbers into memory, it looks to see if the check digit is the same as the one currently calculated. If the two numbers are different, the program prints two question marks to show an error has been made. If this happens, look through the numbers you have typed in to find the mistake. Having corrected the error, you may still find that the routine fails to load correctly; look to see if you have made more than one error.

Can I start anywhere in the book?

Yes, you can start on any page, but obviously when you key in a program it will not RUN unless the machine-code routine it calls is present in memory. Check before you begin if the program you want to RUN calls any machine-code routines you haven't already keyed in. If you key in all the routines in this book as BASIC DATA statements, you will find there isn't room in memory to store them all. By loading each routine as machine code as soon as you have keyed it in, you can avoid this happening. In the form of machine code, you can, of course, use any of the Book Four routines together, as well as any routines from Book Three – the routines will not overlap in memory.

Can I adapt the BASIC programs?

Yes. You can edit the BASIC programs in any way you want to produce different displays, and you will find suggestions for variations throughout the book. One suggestion, though, if you are going to experiment with unusual or off-screen values for the machine-code parameters, is to SAVE what you have keyed in before experimenting. This will prevent you from losing hours of work at the keyboard!

Can I adapt the machine-code routines?

Yes, but at your own risk! Without a good understanding of machine code, it is highly unlikely that you will be able to alter any of the routines successfully. Much more probable is that the Spectrum would crash, with the result that both program and code are wiped from memory.

WHAT ARE SPRITES?

Most of the computer graphics you have created up to now have probably been stationary rather than moving, though you will have seen all sorts of moving graphics in arcade games and in commercial Spectrum software. Before you can create moving graphics for yourself, however, it is necessary to look at the ideas behind movement.

What is movement?

You tell something is moving if its position changes relative to something else. You know a train going past a window is moving, because the window is still. This book is about creating movement, and displaying moving objects. The objects to be moved are called sprites: objects which can move over a background without destroying it. The diagram below shows a single sprite.

EXAMPLE OF A SPRITE

Creating movement

The problem in creating movement is not so much in making something move as in making it move smoothly. You probably know that one way of getting something to move in BASIC on your Spectrum is to PRINT an object on the screen, wipe it off again, and PRINT it again in quick succession. This method has several disadvantages, the most important of which you will notice as soon as you try it out — the movement looks jerky. This is because there will be a space of one character between each position where the object is PRINTed. The other problem with BASIC is that it is simply not fast enough in operation to be used for smooth movement.

The jump of eight pixels between each position of the object is easily visible, and the obvious solution is to print the object every pixel rather than every character. This is easier said than done, however, since printing objects across pixel boundaries requires the step from BASIC to machine code. Using machine code will also give you the increase in speed which is necessary for implementing smooth movement.

To use movement effectively you must first make a few

decisions on what you plan to move around the screen. Firstly, you must decide the size of object you want to move. The most obvious choice is a single character (8 by 8 pixels), but this looks very small in screen displays. On the other hand if you pick a size which is too large you will have the problem of trying to move thousands of pixels at the same time, resulting in a very jerky effect. The solution presented here is to use a shape 24 pixels wide by 21 pixels deep — or in character terms a little under three by three characters. To create a practical illusion of movement you must also make sure that the object to be moved does not destroy the background over which it passes.

Ways of implementing sprites

Some computers have sprites built into them as part of the machine hardware. The Commodore 64, for example, has a sophisticated chip dedicated to the implementation of sprites, since the method used to display them is so complicated. The chip works by saving the area of the screen underneath the sprite position (a block 24 by 21 pixels), printing the sprite, wiping off the sprite, printing the sprite one pixel further on and then replacing that part of the background which was uncovered by the movement. Though it would be possible to implement this process on the Spectrum, it would be very slow, or alternatively it would require a very long routine with many hundreds of bytes of DATA to be typed in.

An alternative method of implementing sprites uses a technique that you have probably used quite a lot already, which is to print onto the screen using Exclusive/OR plotting. If you do this with sprites you do not have to worry about the background, as it will remain unchanged, with the sprite appearing to move across the background without interference.

SPRITE SCREEN DISPLAY

THE SPRITE EDITOR 1

In order to use sprites, you need some means of creating them, and you need a location in memory where a number of them can be stored for future reference. This is the purpose of the sprite editor program. The program allows you to design and edit sprites on the screen, and stores them in memory for use by the sprite routines. Each sprite consists of 504 pixels, and is stored in 63 bytes of the Spectrum memory.

The sprite editor allows ten sprites to be defined at a time, and gives you the option of transferring sprites from one location in the sprite buffer to another. In addition, sprites can be flipped horizontally and vertically, and inverted (by switching the ink and paper attributes). The program also allows you to load in previously edited sprites from tape, and to save the current batch to tape for future use.

The sprite editor is a combination of BASIC and machine code. The code comprises six different routines,

SPRITE EDITOR PROGRAM

10 DEF FN a () = USR 54200
20 DEF FN b () = USR 544353
30 DEF FN b () = USR 544436
40 DEF FN d () = USR 544436
50 DEF FN e () = USR 544480: LET s
100 LET a = 22528
110 GO SUB 1200
120 GO TO 5600
120 GO TO 5600
120 POKE 0,233
140 LET 9\$=INKEY\$
1500 RANDOMIZE FN a ()
1600 PRUSE 1.5 ET J RANDOMIZE FN
1600 PRUSE 1.5 ET J RANDOMIZE FN
1600 IF 9\$="I", THEN A RANDOMIZE FN
1600 IF 9\$="U" THEN A RANDOMIZE FN
200 IF 9\$="U" THEN GO TO 4800
220 IF 9\$="Z" THEN GO THEN GO
SCOOLL?

TO 240 GO TO 370 Q\$ \$\)" (" THEN GO 240 IF 9\$\"\" THEN LET \$=\$\)-1260 IF 9\$\"\" THEN LET \$=\$\)-32 270 IF 9\$\"\" THEN LET \$=\$\)-32 280 IF 9\$\"\" THEN LET \$=\$\)-32 280 IF 9\$\"\" THEN LET \$=\$\)-32 280 IF 9\$\"\" THEN LET \$=\$\)-12 280 IF 0\$\]
290 GO SUB 1160
300 IF \(\)=0 THEN LET \$=\$\)+1: GO TO 140
310 IF \(\)\>24 THEN LET \$=\$\)+1: GO
TO 140
320 IF \$\)\>4 THEN LET \$=\$\)+32: GO
TO 140
320 IF \$\)\>4 THEN LET \$=\$\)\>40
330 IF \$\)\>40 TO 140
330 IF \$\)\>40 TO 140
370 IF 9\$\)\\$5" THEN LET \$=\$\>138\)
360 GO TO 140
370 IF 9\$\\$\=\\$5" THEN LET \$=\$\>138\)
360 IF 9\$\\$\=\\$6" THEN LET \$=\$\>138\)
360 IF 9\$\\$\=\\$6" THEN LET \$=\$\>138\)
360 IF 9\$\\$\=\\$6" THEN LET \$=\$\>138\]
360 IF 9\$\\$\=\\$6" THEN LET \$=\$\>138\]

all linked together. The purpose of each routine is explained below.

The sprite editor routines

Routine FNa, at address 54200, is the base routine for the editor. It converts the large grid on the screen to the small display of the current sprite you see on the right. The current sprite is temporarily stored in a buffer, and the routine converts each dot in the buffer to a square on the screen.

When you want to save the current sprite, you have to decide which of the ten sprite positions you are saving to. A routine at 54317 transfers the sprite stored in the buffer to the appropriate location in the sprite table in memory. Routine FNb, at address 54353, carries out the reverse of this operation, transferring a sprite from its position in the sprite table to the sprite editor buffer. Routine FNa is then called again to display the sprite.

```
SPRITE EDITOR PROGRAM CONTD.

390 IF 9$="7" THEN LET $=$-32
400 IF 9$="8" THEN LET $=$+1
410 GO 5UB 1160
420 IF L24 THEN LET $=$+1: GO T
0 140
430 IF L24 THEN LET $=$+32
450 IF $>a-1+21*32 THEN LET $=$
32
450 POKE 0,56
470 POKE 0,56
470 POKE 0,135: GO TO 140
480 PRINT AT 1,26; "5AUE"
490 PRINT AT 3,26; "5AUE"
500 LET 9$=INKEY$, "a-j"
510 IF 9$<"a" OR 9$>"j" THEN GO
TO 500
520 LET v=CODE 9$-96: POKE 2330*
0,0
530 RANDOMIZE USR 54317
540 BEEP 4,20
550 GO 5UB 1000
scrott?
```

```
550 PRINT AT 1,25; "E 3-J" "
570 PRINT AT 3,25; "1 SAVE"
580 PRINT AT 5,26; "1 LOAD"
580 PRINT AT 5,26; "1 LOAD"
590 FF 9$="1" THEN GO TO 1130
610 FF 9$="2" THEN GO TO 1130
620 FF 9$<" a" OR 9$>"]" THEN,GO
630 LET V=CODE 9$-96; POKE 2330
0,0
640 GO SUB 1000
650 RANDOMINE 7,28; 9$; "; ";
670 BE T 130
680 PRINT AT 3,26; "
1010 PRINT AT 1,26; "
1020 PRINT AT 5,26; "
1020 PRINT AT 5,26; "
1030 RETURN
1100 TRETURN
1100 TRETURN
1100 TRETURN
1100 TRETURN
1100 TRETURN
1110 SAVE 54600,699
5(10)!?
```

THE SPRITE EDITOR 2

The first two routines in the sprite editor enabled you to draw, load and save sprites. The remaining sprite routines have been written to give you the means of manipulating the sprite you have drawn. The effect they have on the sprite is shown in the displays here. Each routine is called by a keypress. Thus, when CAPS SHIFT and I are

SPRITE EDITOR PROGRAM CONTD.

1120 G0 T0 40
1130 INPUT "LOAD ";n\$: LOAD n\$ C
00E: CLS
1140 G0 T0 40
1150 STOP
1160 LET h=INT (\$/32); LET L=s-h
*32
1170 RETURN
1200 FOR i=8 T0 200 STEP 8
1210 PLOT i,8: DRAW 0,167
1220 NEXT i
1230 FOR i=8 T0 175 STEP 8
1240 PLOT 8,i: DRAW 192,0
1250 NEXT i
1260 PLOT 8,i: DRAW 192,0
1270 RETURN

0 OK, 0:1

pressed together, a routine is called to invert every pixel of the sprite. To change the direction in which the sprite is facing, routine FNe at address 54436 is used, called by pressing CAPS SHIFT and R. Finally, to turn the current sprite upside down, routine FNf is used (called by pressing CAPS SHIFT and U).

The BASIC editor program

The BASIC controlling program (shown on this page and on page 11) works as follows. Line 110 calls a subroutine at line 1200 to draw the grid on the screen (a simple series of lines). Line 120 calls a section of the program which prints the menu to the right of the grid. From this section blocks of the program at lines 1000, 1100 and 1130 are called as required. Lines 1000-1020 wipe the menu off the right-hand side of the screen. Lines 1100-1110 save the current sprite table to tape, and return control to the start of the program. A BEEP is heard whenever a sprite is saved in memory. Lines 1130-1140 load a new sprite table from tape into memory. If neither 1100 or 1130 is called, control returns to line 130.

Line 150 prints a sprite on the screen. Lines 180-210 accept a keypress and check if it is one of the functions I, R or U. If so, the relevant machine-code routine is called. If

FNa-e

24 x 21 SPRITE EDITOR ROUTINES

Start addresses 54200,54353,54422,54436,54482 **Length** 355 bytes

What they do The routines allow the user to design and edit up to ten sprites, and save them for use by later routines.

Using the routines The routines work in conjunction with a BASIC program shown on page 11. Editing the current sprite is controlled by the 5, 6, 7 and 8 keys; used with the shift key, pixels are inked in; used without, pixels are unset or, if set, changed to paper. The current sprite can be inverted (CAPS SHIFT and I), turned to face the other direction horizontally

the keypress is CAPS SHIFT and Z, control goes to the short sequence at 480 to display the menu again. Lines 250 to 280 do the work of editing the sprite. The subroutine at line 1160 is called from this section. Notice how line 1160 divides the address to be saved into two parts, since 16 bit addresses will not fit into a single byte.

(CAPS SHIFT and R), or turned upside down (CAPS SHIFT and

Sprites are stored in a table from location 54600. Previously defined sprites may be loaded from tape, altered, and then saved as a new selection. When you save the sprite table, remember that all ten sprites are saved, not just the one you have most recently been editing.

ROUTINE LISTING

```
LET b=54200: LET l=350: LET RESTORE 7960 FOR i=0 TO l-1: READ a POKE (b+i),a: LET z=z+a NEXT i LET z=INT (((z/l)-INT (z/l))
7950

7951

7952

7953

7954
                           READ a: IF a<>z THEN PRINT
                                                        33,250,212,17,1
88,14,3,213,237
83,246,212,6,21
237,91,246,212,197
6,8,26,254,0
40,4,254,130,32
6,55,203,22,195
224,211,167,203,22
19,16,235,229,42
246,212,1,32,0
7960
7961
7962
7962
7964
7965
7966
7966
7968
7969
                          9,34,246,212,225
193,35,16,212,209
62,8,131,95,13
17,123,7250,212
17,123,72,6,3
213,197,14,3,6
6,213,126,18,20
35,16,250,209,62
32,131,95,121,61
254,1,32,5,6
7970
7971
7973
7973
7974
7975
7976
7977
7978
7979
                            DATA
                           5,79,24,233,6
8,79,254,0,32
226,193,209,19,16
215,201,205,64,212
34,248,212,237,91
248,212,33,250,212
1,63,0,237,176
201,58,4,91,71
33,72,213,17,63
0,167,237,82,25
7980
7981
7982
7983
                          DATA
DATA
DATA
DATA
                           DATA
DATA
DATA
DATA
 7984
7985
 7986
7987
7988
7989
                                                        16,253,201,205,64
212,34,248,212,17
1,88,14,3,213
237,83,246,212,6
21,237,91,246,212
197,6,8,126,167
203,39,245,48,5
62,0,195,120,212
62,56,18,241,19
16,239,229,42,246
                           7990
7991
7992
7993
7994
7995
7999
 7995
7996
7997
7998
7999
                                                       212,1,32,0,9
34,246,212,225,193
35,16,214,209,62
6,131,95,13,32
199,201,33,250,212
6,63,62,255,174
119,35,16,249,24
39,33,250,212,6
63,197,126,1,0
8,167,203,31,203
8001
8002
8003
8004
                           DATA
DATA
DATA
DATA
                           DATA
DATA
DATA
DATA
8005
8009
                           DATA
                                                        17,16,250,113,193
35,16,239,6,21
33,250,212,17,36
213,78,26,119,121
18,35,19,16,247
33,250,212,205,87
212,201,33,14,213
17,250,212,6,3
197,213,229,6,10
78,26,119,121,18
8010
8011
8012
8013
8014
8015
                           DATA
DATA
DATA
DATA
DATA
                           DATA
DATA
DATA
DATA
DATA
8015
8016
8017
8018
8019
                                                     43,19,16,247,225
209,1,21,0,84
93,19,9,193,16
230,24,213,0,0
0,0,0,0,255
255,255,0,0,190
190,190,190,190,190
190,190,190,190,190
254,254,254,254,254
254,254,254,0,0
                           DATA
DATA
DATA
DATA
DATA
DATA
DATA
 8020
8021
8022
 8023
 8025
8026
8027
8027 DATA
8028 DATA
8029 DATA
8030 DATA
```

DISPLAYING SPRITES

Once your sprites are defined it is very useful to be able to see what they look like on the screen. Obviously this can be done using the sprite-handling routine, but it is very hard to examine a sprite with a critical eye while it is moving across the screen! To avoid this problem, and also to give you the chance of looking at the shapes and designs of several sprites at once, the sprite print routine, FNf, has been provided.

This routine prints a sprite from the sprite buffer onto the screen at a specified position. Since any of the sprites can be printed at any position on the screen you can use the routine to preview the sprites you have designed, and it is at this stage that you can decide the best sort of starting and finishing positions for the sprites when they come to be used.

You can also use the routine to preview the effects of animation by calling the routine repeatedly to print sprites in an animation sequence on top of one another.

```
SPRITE DISPLAY PROGRAM

100 DEF FN f(x,y,n) = USR 54100
100 BORDER 4: PAPER 4: INK 0: C
110 FOR n=1 TO 10
120 FOR k=1 TO 5
130 RANDOMIZE FN f(n*3-3,(k*4)-
3,n)
140 NEXT k
150 NEXT n
160 PAUSE 0
500 CLS
510 RANDOMIZE FN f(10,10,9)
520 PAUSE 10
530 RANDOMIZE FN f(10,10,10)
540 PAUSE 10
550 GO TO 510
```


n

This will give you an idea of how effective the animation is going to be, as well as allowing you to make any changes to the sprites before you work out the animation in detail.

How sprites are stored

Before examining the machine-code routine it is important to understand how sprites are stored in memory. As you know, a sprite table which stores ten sprites can be found at location 54600 onwards in memory. A 24 by 21 sprite has 504 elements (24x21), and since any of these elements can have an ink attribute either set or not set, this means that 504 bits of information need to be stored away for each sprite. Each sprite requires 63 bytes of memory (since there are eight bits in a byte) and, as all ten sprites are stored one after the other, they take up a total of 630 bytes.

Each sprite is arranged in memory as shown in the diagram below. Numbers correspond to the byte numbers (0-63), and the 1s and 0s represent the individual bits.

HOW SPRITES ARE STORED IN BINARY

Sprites are stored as binary numbers in 63 bytes (504 bits) of memory. The Is and Os correspond to set and unset pixels respectively on the sprite diagram shown underneath.

how memory bits are set

sprite diagram

The BASIC program

The program on this page shows the contents of a sprite buffer, containing ten different sprites, displayed on the screen. The program calls the sprite print routine five times in a loop, to display the sprites down the screen as well as across it.

FNf

SPRITE PRINT ROUTINE

Start address 54100 Length 75 bytes
Other routines called Sprite editor routines (FNa-FNe).
What it does Prints a single sprite on the screen at a specifed point.

Using the routine This routine displays any single sprite from the sprite buffer. The routine does not move the sprite. Note that if the sprite is too far to the right of the screen it will reappear one character below on the left-hand side of the screen, since the Spectrum PRINT routine is used in the transfer of memory to screen.

ROUTINE PARAMETERS

DEF FNf(x,y,n)

x,y specify print position (x<29, y<21)

specifies number of sprite (1-10)

ROUTINE LISTING

7900 LET b=54100: LET l=70: LET z=0: RESTORE 7910
7901 FOR i=0 TO (-1: READ a 7902 POKE (b+i),a: LET z=z+a 7903 NEXT i 7904 LET z=INT (((z/l)-INT (z/l))*l)
7905 READ a: IF a <> z THEN PRINT "??"
5TOP

7910 DATA 42,11/92,1,4
7911 DATA 0,9,86,1,8
7912 DATA 0,9,86,1,8
7912 DATA 148,211,9,126,50
7913 DATA 150,211,123,230,24
7915 DATA 150,211,123,230,24
7915 DATA 246,64,103,123,230
7916 DATA 211,53,131,31
7917 DATA 31,130,11,34,146
7918 DATA 211,53,150,211,71
7919 DATA 211,53,150,211,71
7919 DATA 213,25,16,253,237
7921 DATA 91,146,211,195,1
7922 DATA 212,201,174.72,13
7923 DATA 14,3,0,0,0

How the program works

Line 10 defines the sprite print routine, which has three parameters: the x,y screen co-ordinates at which the sprite is to be printed, and the number of the sprite (from the ten sprites stored in the sprite table). Lines 90 and 180 set up loops to print the sprites. Line 190 prints the sprite, using a combination of the two loop variables to define the x,y co-ordinate.

Lines 300 to 330 show how animation can be achieved using a print routine. A left and right mirror image of a single sprite are printed one after the other to produce a simple animation effect. You could produce more complex animation in this way; the only limitation to the method is the amount of time it takes to define sprites, although the animation in this program can also be speeded up substantially by leaving out the PAUSE statements. Of course, the other drawback is that you cannot move the sprite around the screen using this method.

MOVING SPRITES 1

Now that you have routines to create sprites and display them on the screen, you need a routine which makes the sprites change position. The routines introduced here enable you to get your sprites moving on the screen.

The master sprite routine

This routine enables you to move simple (that is, not animated) sprites. The routine has no title since it is always used together with the sprite-controlling routines in this book; by itself, the routine does nothing. When you use a sprite, it is this routine which causes the sprite to move across the screen in the required way. The main job of the routine is to print a sprite on the screen using Exclusive/OR printing, wipe it off, and print it again one pixel away until the program or routine asks the sprite to stop moving.

The routine has been programmed to work whether it has been called by a routine which is working within BASIC (a normal routine) or by one working independently of BASIC (an interrupt-driven routine).

MASTER SPRITE ROUTINE

Start address 53700 Length 365 bytes What it does Used in conjunction with the sprite-handling routine (FNg), this routine takes a sprite from the sprite table at location 54600 and moves it across the screen.

Using the routine This routine must always be used together with the other sprite routines given in this book; if used by itself, you will not see anything happen on the screen. Whenever sprites are used, the master sprite routine is called by the other routines to do the work of moving the sprite.

ROUTINE LISTING

```
7800 LET b=53700: LET l=360: LET z=0: RESTORE 7810 7801 FOR i=0 TO (-1: READ a 7802 POKE (b+i),a: LET z=z+a 7803 NEXT i 7804 LET z=INT (((z/l)-INT (z/l)
  ) * ()
7805 READ a: IF a⇔z THEN PRINT
"??": STOP
7810 DATA 229,213,197,245,229
7811 DATA 221,225,120,205,177
7812 DATA 34,40,82,237,67
7813 DATA 15,210,50,229,209
7814 DATA 62,21,8,221,94
7815 DATA 0,221,86,21,221
7816 DATA 78,42,6,1,175
7817 DATA 203,27,203,25,203
7818 DATA 25,31,16,247,35
7819 DATA 35,35,174,119,43
  7820 DATA 126,169,119,43,126
7821 DATA 170,119,43,126,171
7822 DATA 119,8,61,40,25
7823 DATA 8,221,35,36,124
7824 DATA 230,7,32,205,1
7825 DATA 49,0,8,95,8
7826 DATA 62,21,147,128,71
7827 DATA 205,177,34,24,189
7828 DATA 241,193,209,225,201
7829 DATA 237,67,81,210,62
  7822 DHTH
7823 DATA
7824 DATA
7825 DATA
7826 DATA
7827 DATA
```

The sprite-handling routine

This routine, FNg, allows you to control the movement of sprites. The routine works in conjunction with the master sprite routine, and both must be present in memory for sprites to move on the screen. The routine has a range of parameters to control exactly how the sprite will appear on the screen.

How to use the routines

Having produced some sprites, it is a simple matter to display them against a background, and the ideal way of creating backgrounds is to use a graphics editor program such as that in Book Three. All the background displays in this book were created using the graphics editor. The programs in this book do not themselves create backgrounds; you must add these yourself.

Interrupts

Most machine-code routines are called (as you will have seen) from BASIC, and are then executed in much the

```
7830 DATA 21,8,221,94,0
7831 DATA 221,86,21,221,78
7832 DATA 42,35,35,126,169
7833 DATA 119,43,126,170,119
7834 DATA 43,126,171,119,8
7835 DATA 61,40,218,8,221
7836 DATA 35,36,124,230,7
7837 DATA 32,221,8,95,81
7838 DATA 1,208,46,62,21
7839 DATA 147,128,71,205,177
7840 DATA 34,24,205,229,213
 7839 DHTH 147,128,71,283,17
7841 DHTH 34,24,205,229,213
7841 DHTH 197,229,221,225,151
7842 DHTH 50,41,211,120,205
7843 DHTH 177,34,202,216,210
7844 DHTH 237,67,194,210,50
7845 DHTH 130,210,62,21,8
7846 DHTH 221,94,0,221,86
7847 DHTH 21,221,78,42,6
7848 DHTH 1,175,203,27,203
7849 DHTH 26,203,25,31,16
                                                                                               247,35,35,35,71
126,160,196,33,211
126,168,119,43,126
161,196,33,211,126,162
196,33,211,126,162
196,33,211,126,170
119,43,126,163,196
33,211,126,171,119
8,61,40,25,8
221,35,36,124,230
 7850 DATA
7851 DATA
7852 DATA
7853 DATA
7854 DATA
7855 DATA
7855 DATA
7856 DATA
7857 DATA
7858 DATA
7859 DATA
                                               DATA 7,32,183,1,49
DATA 0,8,95,8,62
DATA 21,147,128,71,205
DATA 177,34,24,167,193
DATA 209,225,58,41,211
DATA 201,237,67,21,211
DATA 62,21,8,221,94
DATA 0,221,86,21,221
DATA 78,42,35,35,126
DATA 161,196,33,211,126
 7860 DATA
7861 DATA
7862 DATA
7863 DATA
7864 DATA
7865 DATA
7865 DATA
7866 DATA
7868 DATA
7869 DATA
 7870 DATA 169,119,43,126,162
7871 DATA 195,33,211,126,170
7872 DATA 119,43,126,163,196
7873 DATA 33,211,126,171,119
7874 DATA 8,61,40,201,8
7875 DATA 221,35,36,124,230
7876 DATA 7,32,206,8,95
7877 DATA 8,1,208,46,62
7878 DATA 21,147,128,71,205
7879 DATA 177,34,24,190,245
7880 DATA 62,1,50,41,211
7881 DATA 241,201,1,0,0
```


same way as the BASIC program, line by line. When the machine-code routine has finished running control is returned to the BASIC program. However, there is a much more sophisticated method of using machine code, which is to make a routine run independently of BASIC.

This can be achieved by taking advantage of the fact that at regular intervals the Spectrum interrupts the running of any BASIC program or machine-code routine which is being executed. It does this so that it can print information on the screen, and perform various other household chores, like memory management. These interrupts occur at least fifty times a second, so quickly in fact that if you carry out a machine-code

HOW A SPRITE MOVES

Sprites move in blocks of three pixels. On reaching an obstacle, and with the collision flag set to 1, a sprite continues to move for three pixels before stopping.

routine as well as a BASIC program using interrupts it will appear that both things are happening simultaneously.

Two of these "interrupt-driven" routines have been provided in this book. One is the keyboard-controlled sprite, and the other is the interrupt-driven window given on pages 32-33.

FNg

SPRITE-HANDLING ROUTINE

Start address 53500 Length 170 bytes Other routines called Master sprite routine.

What it does Prints and moves a single sprite on the screen.

Using the routine The screen area is measured in pixel coordinates from the top left-hand corner, rather than from the bottom of the screen.

Sprites move in multiples of three pixels, so a value of 60 for I moves the sprite 180 pixels. If the collision detection flag is set to 0, the sprite will pass over obstacles (any pixels with INK set). If c is set to 1, the sprite will stop when it hits an object (after an overlap of three pixels). You can find out the precise position where a sprite stopped by PEEKing locations 53498 and 53499 for the y and x co-ordinates respectively.

ROUTINE PARAMETERS

DEF FNg(x,y,d,l,s,c,n)

х,у	specify top left-hand corner of sprite (x $<$ 232, y $<$ 155)

d	direction of travel of the sprite (0—left, 1—right, 2—up, 3—down)
---	---

n specifies number of sprite (1-10)

ROUTINE LISTING

z=0; 7751 7752 7753 7754 1*(1)	REST FOR i POKE NEXT LET Z	=53500: LET l=165: LET ORE 7750 =0 TO l-1: READ a (b+i),a: LET z=z+a i =INT (((z/l)-INT (z/l) a: IF a<>z THEN PRINT	
7766 7767	DATA DATA DATA	42,11,92,17,4 0,25,78,30,2 25,70,25,126,230 3,50,158,209,25 126,50,159,20,160 209,25,126,230,1 50,161,209,25,126 17,63,0,33,9 213,25,61,32,252	
7772 7773 7774 7775 7776 7777	DATA DATA DATA	254,0,40,12,58	
	DATA DATA DATA DATA DATA DATA DATA DATA	50,159,209,254,0 32,159,58,160,209 237,67,250,208,254 0,200,118,205,93	

MOVING SPRITES 2

The sprite-handling routine has many user-controlled features built into it, as you can see from the long list of parameters which are passed to it. It is a good idea to become familiar with these, as otherwise you will under-utilize the potential of this very powerful routine. The train program, given here, is a good example of how the parameters are used.

The train program

The large display on this page shows a train and some carriages being shunted along a railway line. All the movement in this program is controlled by the sprite-handling routine. Lines 110 and 120 take the train sprite and move it from left to right across the screen. A

mirror image of the train is then selected and driven back to the start position, where it remains on the screen. Lines 130-150 set up a loop which calls carriages one by one. Since this contains the collision flag set to 1 each carriage moves across the screen until it encounters an obstacle—the previous carriage — when it stops and remain on the screen.

More about the parameters

It is worth looking at the impressive range of parameters available with the sprite-handling routine in a little more detail.

The first feature which you will use, of course, is the specification of the x,y co-ordinate at which you want

TRAIN PROGRAM 10 DEF FN g(x,y,d,l,s,c,n) = USR 53500 1000 BORDER 4 110 RANDOMIZE FN g(205,139,0,68 0,0,6) 1200 RANDOMIZE FN g(1,139,1,70,1 0,5) 1300 FOR x = 1 TO 7 1400 RANDOMIZE FN g(1,139,1,70,1 1,7) 1500 NEXT x 1600 PAUSE 0 1700 GO TO 110

the sprite to start. Normally you can specify this simply by looking at the screen, but more sophisticated methods are available for determining the start point.

In the program example a train appears from the left and crosses to the right-hand side. It travels a distance of 65 (that is, 195 pixels) and so you know that you can start the second train off from a point 195 pixels to the right of where the first started. But what if you didn't know where the first train had started or stopped? Since the routine stores the last pixel position of the sprite at two pointers in memory, the new sprite could then start from position (PEEK(53499),(PEEK(53498)).

There is a case for making the distance moved by the sprite (parameter l) as short as possible with each call to the routine, despite this producing some flicker because of the volume of transfers from BASIC to machine code and back. This is because while you are in BASIC you can keep a check on the current screen, the position of the sprite and so on, but while the sprite is moving you do not have any control over it. This, of course, is an advantage of interrupt-driven routines which allow you to monitor the progress of other things on the screen while a sprite or window is moving.

The value you give the switch, s, depends on what you want the sprite to do after you have finished using it. In the program the switch is off for the first train and on for the second: after the first train has come on and travelled across the screen it should disappear before the second returns. On the other hand the second train must remain on the screen after its journey as, if it doesn't, the carriage will have nothing to run into.

The bat program

The final program on this page shows how the spritehandling routine can be called a number of times in a loop to move an object in four different directions around the screen. Although you see the bat moving continuously on the screen, the program listing reveals that four different routine calls are being used, one for each direction that the sprite is being moved, and three different sprite shapes are used to give various views of the bat's body as it moves around the loop.

KEYBOARD-CONTROLLED SPRITES

The keyboard-controlled sprite routine, FNh, enables you to control the movement of sprites using the cursor keys. The only difficulty with the routine lies not so much in using it as in switching it off. Because the routine is interrupt-driven it continues to operate after any BASIC program has finished. Even as you edit a program you will find that the sprite is still moving on the screen. A subroutine is required to switch it off:

2000 DEF FN z(s)=USR 53100 2010 RANDOMIZE FN z(0) 2020 RETURN

This redefines the routine with just one parameter, the switch. If the switch is given a value of 0, the routine will be switched off. The maze program on page 20 gives you a chance to try using the routine; you can create your own maze with the Book Three graphics editor.

Controlling the routine

Although keyboard-controlled, the routine is quite hard to control from within a program. Since the sprite routine runs outside BASIC, it is only when the routine stops that you can check its position. One solution is to leave the collision detection off but to set up your own collision detection instead. You can do this by switching

the sprite off, and looking at the last x,y co-ordinate (stored at 53099, 53098). Then use the POINT command to find if pixels at these co-ordinates are set:

x,y x,y+21 x+24,y x+24,y+21

If this is so, a collision has occurred.

FNh

KEYBOARD-CONTROLLED SPRITE ROUTINE

Start address 53100 **Length** 250 bytes **Other routines called** Master sprite routine.

What it does Puts a sprite on the screen and allows it to be controlled by the cursor keys.

Using the routine The routine is interrupt-driven, so it will continue to respond to keyboard presses until switched off by calling the routine with the switch parameter (s) set to 0. If not switched off, the routine continues to operate even when you stop the program and attempt to, say, edit — you will see a sprite moving whenever you use the cursor keys. It is advisable to switch the routine off at the end of any BASIC program which calls the keyboard-controlled sprite routine. This can be done by defining the function a second time using a function title not used elsewhere in the program, say FNz. This function is defined as having a single parameter only, s, which means that the function can then be called with this parameter only, set to zero. The collision detection parameter, c, can be used to detect if the sprite passes over any pixels with set INK attributes.

	ROUTINE PARAMETERS
	DEF FN h(s,x,y,c,n)
S	switch (1=on, 0-off)
х,у	start position of sprite (0 $<=x<=231$, 0 $<=y<154$)
C	collision detection (1—on, 0—off)
n	number of sprite (1-10)

The obstacle program

The final program again has the aim of avoiding obstacles. Lines 10 and 20 define the routine twice as before. Line 110 switches the keyboard sprite on. Lines 120-140 print a series of random graphics blocks on the screen. The aim of the game is to avoid these blocks. Line 500 is a continuous loop which keeps the program RUNning.

```
OBSTACLE PROGRAM

10 DEF FN h(s,x,y,c,n) = USR 531
20 DEF FN z(s) = USR 53100
100 BORDER 1: PAPER 5: INK 2: C
110 RESTORE FN h(1,10,10,1,3)
120 FOR x = 1 TO 10
130 PRINT INK 3; AT (INT (RND*20)), (INT (RND*32)); "■"
140 NEXT x
150 GO TO 150
499 STOP
500 RANDOMIZE FN z(0)
```

ROUTINE LISTING

```
7650 LET b=53100: LET (=245: LET z=0: RESTORE 7660
7651 FOR i=0 TO l-1: READ a 7652 POKE (b+i'),a: LET z=z+a 7653 NEXT:
7654 LET z=INT (((z/l)-INT (z/l)
7650
z=0
7651
 7655 READ a: IF a<>z THEN PRINT
7660 DATA 42,11,92,17,4
7661 DATA 0,25,126,230,1
7662 DATA 50,95,208,32,11
7663 DATA 42,96,208,237,75
7664 DATA 106,207,205,196,209
7665 DATA 201,30,8,25,78
7666 DATA 25,70,25,126,230
7667 DATA 1,50,93,208,25
7668 DATA 126,33,9,213,17
7669 DATA 63,0,25,61,32
7670 DATA
7671 DATA
7672 DATA
7673 DATA
7674 DATA
7675 DATA
7675 DATA
7676 DATA
7677 DATA
7678 DATA
7679 DATA
                                                                   252,34,96,208,205
93,210,237,67,106
207,243,175,71,50
94,206,62,207,33
2,206,119,35,16
252,62,206,237,71
237,94,251,201,0
0,0,0,0,0
0,0,0,0,0
7680 DATA 243,245,197,213,229
7681 DATA 8,245,8,221,229
7682 DATA 58,95,208,254,0
7683 DATA 40,24,205,7,208
7684 DATA 58,94,208,254,0
7685 DATA 40,14,58,93,208
7686 DATA 254,0,40,7,205
7687 DATA 123,207,175,50,95
7688 DATA 208,195,252,207,221
7689 DATA 225,8,241,8,225
 7690 DATA
7691 DATA
7692 DATA
7693 DATA
7694 DATA
7695 DATA
7695 DATA
7697 DATA
7698 DATA
7699 DATA
                                                                    209,193,241,251,201
237,75,106,207,42
96,208,62,239,219
254,203,103,40,44
203,95,40,31,203
87,40,18,62,247
219,254,203,103,40
1,201,13,13,13
121,230,252,200,24
25,12,12,12,62
 7700 DATA 231,145,216,24,16
7701 DATA 5,5,5,120,230
7702 DATA 252,200,24,7,4
7703 DATA 244,62,153,144
7704 DATA 216,197,237,75,106
7705 DATA 207,205,196,209,193
7706 DATA 205,93,210,50,94
7707 DATA 208,237,67,106,207
7708 DATA 201,1,0,0,9
7709 DATA 26,0,0,0
```


DOUBLE-SIZED SPRITES

You have already seen what can be done with a sprite 24 by 21 pixels (504 pixels in all), but there are occasions when you would like to use larger sprites still. This makes great demands upon your Spectrum, but the two routines that are provided here (FNi and FNj) each give you the power to move over 1000 pixels at once. These routines provide you with double horizontal and vertical sprites respectively. In each case sprites from the sprite table are attached to one another and are then moved together in exactly the same way as a single sprite — though naturally not quite as quickly.

The double sprite programs

Both the demonstration programs are straightforward. In the first program, a double horizontal sprite has been used, and this demonstrates the effectiveness of quite large moving objects — it would take 18 user-defined graphics to define the area of the car, let alone move it! The program enables you to see the great improvement in sprite visibility that can be obtained by doubling its size.

FNi

DOUBLE HORIZONTAL SPRITE ROUTINE

Start address 52400 **Length** 235 bytes **Other routines called** Sprite editor routines (FNa-FNe). **What it does** Displays and moves two sprites together horizontally on the screen.

Using the routine The routine takes sprites n (left) and n+1 (right) from the sprite buffer. Parameters are as for the spritehandling routine (FNg). Bytes 52398 and 52399 specify the y and x co-ordinates of the sprite's final position after calling the routine.

	ROUTINE PARAMETERS	
	DEF FNi(x,y,d,l,s,c,n)	
х,у	start co-ordinates (0<=x<=231,0<=y<=154)	
d	specifies direction of travel (0—left, 1—right, 2—up, 3—down)	
1	distance moved (vert<=51, horiz<=77)	
S	switch (1-on, 0-off)	
С	flag for collision detection (1—on, 0—off)	
n	number of first sprite (1-10)	

```
ROUTINE LISTING

7550 LET b=52400: LET (=230: LET z=0: RESTORE 7550 TO 1: READ a 7552 POKE (b+i),a: LET z=z+a 7553 NEXT i 7554 LET z=INT ((z/l)-INT (z/l))*l)
7555 READ a: IF a<>z THEN PRINT "??": STOP
```

The two sprites which make up the car are stored as the first and second of the sprite table — the routine simply takes the sprite specified by the n parameter, together with the following sprite from the sprite table that is stored in memory.


```
7560 DATA 42,11,92,17,4
7561 DATA 0,25,78,30,8
7562 DATA 0,25,78,31,26,25
7563 DATA 35,50,149,205,25
7564 DATA 126,50,149,205,25
7565 DATA 126,50,149,205,05
7566 DATA 205,25,126,25,150
7566 DATA 205,25,126,25,160
7566 DATA 205,25,126,25,126
7567 DATA 213,25,61,32
7569 DATA 213,25,61,32
7569 DATA 213,25,61,32
7570 DATA 213,25,61,32
7571 DATA 25,50,147,205,205
7572 DATA 197,229,4,129,79
7573 DATA 25,62,24,129,79
7574 DATA 205,225,193,2197
7575 DATA 205,225,193,2197
7575 DATA 205,126,25,193,25,127
7576 DATA 205,126,25,193,25,127
7577 DATA 205,196,25,62
7580 DATA 24,129,79,205,118
7578 DATA 205,196,25,62
7580 DATA 24,129,79,205,196
7581 DATA 205,254,0,40,25
7582 DATA 205,254,0,40,25
7583 DATA 25,41,40,265,254
7588 DATA 205,254,193,552
7588 DATA 25,193,552
7588 DATA 13,13,121,234
7590 DATA 27,48,195,84,205
7589 DATA 207,48,192,84,205
7589 DATA 224,129,721,214
7590 DATA 224,129,721,214
7590 DATA 224,129,721,214
7590 DATA 225,13,13,121,234,26,26
7589 DATA 13,126,205,254
7593 DATA 226,126,139,265
7593 DATA 226,126,149,205
7599 DATA 15,0,126,233,7,57
7599 DATA 15,0,126,233,7,57
7599 DATA 15,0,254,0,40
7599 DATA 254,0,1264,233,7,57
7599 DATA 159,79,118,205,93
7600 DATA 209,79,118,254,0,205
7601 DATA 209,79,118,254,0,205
7603 DATA 201,19,0,1,0
7606 DATA 201,1,0,1,0
7606 DATA 201,1,0,1,0
```


The other program shows a double vertical sprite — a unicyclist — against a circus background, drawn using the graphics editor from Book Three.

FNj

DOUBLE VERTICAL SPRITE ROUTINE

Start address 52100 **Length** 230 bytes **What it does** Displays a double vertical sprite.

Using the routine Used in the same way as the horizontal sprite routine, but final sprite position now specified by 52098 and 52099.

ROUTINE PARAMETERS		
	DEF FNj(x,y,d,l,s,c,n)	
х,у	start co-ordinates (0<=x<=231,0<=y<=154)	
d	specifies direction of travel (0=left, 1=right, 2=up, 3=down)	
1	distance moved (vertical <=51, horizontal <=77)	
s	switch (1=on, 0=off)	
C	flag for collision detection (1=on, 0-off)	
n	number of first sprite(1-10)	

ROUTINE LISTING

ANIMATION 1

So far the movement you have seen has been restricted to moving fixed sprites on the screen. This is all very well if your sprite is an aeroplane flying across the sky, or a car driving along, because these do not change shape as they move. However, if you want to have a moving person or a flying bird then something more sophisticated is required: the sprites need to be animated while they are moving on the screen.

Animation, like most techniques in computer graphics, relies on tricking the eye. It is achieved by displaying several stationary images in succession to create the illusion of movement. Animation can be achieved without any relative movement, as in an animated figure of a man jumping on the spot, for

ACHIEVING SMOOTH ANIMATION

The body of the horse sprite stays in the same position in successive frames (shown in red and blue); only the legs and tails of the horse are moved.

example. You will immediately notice when you start to animate your designs how only a small change in the sprite shape is required to give an effective result. By looking at the display in the figure above, for example, you will see how only the legs and tail of a horse need to be moved to give an animated effect; the horse's body remains unchanged. If the body was moved when the

horse was animated, the effect would look very jerky. In many cases you only need to take two frames and switch between them to produce convincing animation, but the animation routine, FNk, allows you to have as many frames as you like, within the limits of the sprite table — that is, up to a maximum of ten. Using ten frames, each of which differs slightly, you can create very effective illusions: unless you think about what is happening you would never realize that the sprites are

being printed as stationary images.

The illusion produced by animation is also used in the cinema, where stationary images are shown one after the other at 14 frames per second. When watching a film you don't think of the picture as stationary, because the images are changing too fast for your eye to register. Since the animation routine allows you to vary the speed at which images are replaced on the screen, you can experiment by giving different values to the v parameter to see how slow the animation can be before your eye begins to detect the frames making up the movement.

FNk

SPRITE ANIMATION ROUTINE

Start address 51700 Length 275 bytes
Other routines called Master sprite routine.
What it does Uses a sequence of sprites from the sprite butter to give the effect of animation.

Using the routine Most of the routine parameters are as before, with some additional ones added to give you increased control of the animated sprites. Thus, the frame parameter specifies how many frames are used in the animation, and the velocity parameter determines how quickly the routine should move from one frame to the next. Do not give this parameter a value of 0.

	ROUTINE PARAMETERS			
	DEF FNk(x,y,d,l,s,f,c,v,n)			
х,у	sprite start co-ordinate (0 $<$ x $<$ 256, 0 $<$ y $<$ 176)			
d	specifies direction of travel (0=left, 1=right, 2=up, 3=down)			
1	distance moved (vertical <= 51, horizontal <= 77)			
s	switch (1=switch on, 0=switch off)			
f	number of frames used in the animation (1-10)			
С	flag for collision detection (1=on, 0=off)			
٧	velocity of animation (1 $<$ -v $<$ -255, the slowest)			
n	number of first sprite (1-10)			

The animation program

This program has not been displayed for the obvious reason that it is difficult to capture the effect of movement in a still photograph. The program takes five sprites and displays them in turn to give a very smooth effect of movement. The five sprites are shown along the bottom of the page as they appear on the sprite editor. Notice how similar each horse is to the next; only minor changes are needed for the animation. For an even better result, increase the number of frames.

ROUTINE LISTING

```
7350
z=0
7351
7352
7353
                                  LET b=51700: LET (=270: LET

: RESTORE 7360

FOR i=0 TO (-1: READ a

POKE (b+i),a: LET z=z+a

NEXT i

LET z=INT (((z/()-INT (z/()
   7354
                                    READ a: IF a<>z THEN PRINT
: STOP
7360 DATA 42,11,92,17,4
7361 DATA 0,25,78,30,8
7362 DATA 25,70,25,126,230
7363 DATA 3,50,209,202,25
7364 DATA 126,50,211,202,25
7365 DATA 126,230,1,50,212
7366 DATA 202,25,126,50,215
7367 DATA 202,50,215,202,25
7368 DATA 126,230,1,50,210
7369 DATA 202,25,126,50,217
                                                                       202,25,126,17,63
0,33,202,212,25
61,32,252,34,213
202,56,215,202,61
50,215,202,254,0
32,9,58,216,202
50,215,202,42,213
202,17,63,0,25
205,93,210,254,0
40,19,58,210,202
                                   7370
7371
7372
7373
73775
73775
73777
73777
73779
  7380 DATA
7381 DATA
7382 DATA
7383 DATA
7383 DATA
7385 DATA
7386 DATA
7387 DATA
7388 DATA
7388 DATA
                                                                           254,0,40,12,58
212,202,198,1,230
1,50,212,202,24
90,229,213,197,58
217,202,71,17,0
0,33,0,0,237
176,193,209,225,118
205,196,209,58,209
202,254,0,40,19
254,1,40,26,254
                                    DATA 2,40,33,5,5
DATA 5,120,230,252,40
DATA 45,195,182,202,13
DATA 13,13,121,230,252
DATA 40,34,195,182,202
DATA 12,12,12,121,214
DATA 231,48,23,195,182
DATA 202,4,4,4,120
DATA 214,150,48,12,58
DATA 211,202,61,50,211
     7390 DATA
7391 DATA
7392 DATA
     7395
7395
7396
7397
7398
7399
     7399 DATA 211,202,51,50,211
7400 DATA 202,254,0,194,54
7401 DATA 202,558,212,202,237
7402 DATA 67,242,201,254,0
7403 DATA 200,118,205,93,210
7404 DATA 201,1,1,7,0
7405 DATA 231,43,13,40
7406 DATA 231,48,22,195,232
7407 DATA 202,4,4,4,120
7408 DATA 214,150,48,11,58
7409 DATA 3,203,61,50,3
7410 DATA 203,254,0,32,155
7411 DATA 86,202,254,0,200
7413 DATA 116,205,93,210,201
    7400 DATA
7401 DATA
7402 DATA
7403 DATA
7404 DATA
7405 DATA
7405 DATA
7406 DATA
7408 DATA
7409 DATA
7410 DATA
7411 DATA
7412 DATA
```


ANIMATION 2

How does the animation routine work? The answer is simple for you, but not quite so simple for the programmer. What happens with ordinary sprites is that they are picked out of memory, printed on the screen and moved across it, according to the parameters passed to the routine. With animation the first sprite is picked out of memory, displayed on the screen, and moved one position (three pixels in the case of the sprites in this book). The sprite is then deleted from the screen, and the next sprite in the sequence (the equivalent of the next frame in a film, or next drawing in an animated cartoon) receives exactly the same treatment. It is printed on the screen, moved three pixels and then wiped off again.

The sequence continues until all the frames in the sequence have been displayed, and then starts again. Some applications are ideally suited to two frames (like birds flying), but obviously the more frames in the sequence, the smoother the animation will be. For this reason it is best to choose to animate things which have a

regular and repetitive movement.

Transferring animation to the screen

Sooner or later you will want to start designing your own animated characters. The technique recommended is to begin by reproducing the movement you see, as simply as possible. Remember that your eye will help by persuading you that things resemble real life, even though they are not. Secondly, remember that the effect you are aiming for is a flowing movement. To achieve this it is necessary to make sure that the last frame in the sequence runs into the first, so that the sequence is circular — after all this is the way it will be projected onto the screen. One of the commonest errors made in animation is to have an open-ended sequence, so that when it is shown repeatedly on the screen the effect is smooth during the sequence, but with a jerk at the end as the sequence restarts.

You are fortunate enough to have the sprite editor and the sprite print routine to help you with your designs. You will find that designing on the screen is much easier than sitting down and working out an image with a pencil and a grid. As a further aid, several animated sequences have been provided in the sprite design directory later in the book. Using the sprite editor, you can start a new sprite design from a previous one and so create smooth and flowing animation sequences with little difficulty.

Trying out the animation

When you have designed an animation sequence you can use the sprite print routine to preview your designs. You saw this idea used with a robot earlier in the book, but the point of using the print routine here is twofold.

The first point is that it is much easier to be analytical

and critical about a sprite design if it is not moving across the screen. If you print your sequence one after the other onto the same screen position in a continuous loop you will get some idea about where changes need to be made (if any) before the sequence is animated properly.

Secondly, you will be able to judge more accurately the sort of speed at which the sequence should be animated. Put a PAUSE statement between each print statement in the loop, starting with values of about 20. You will then be able to see how much the animation routine needs to be slowed down to be most effective. In practice you should multiply the results you get from tests with the PAUSE statements by a factor of between five and ten (that is, PAUSE 20 converts to a value for v of 100), simply to compensate for the fact that machine code is so much faster than BASIC.

It is a good idea to make use of the sprite print routine for one more reason. Once a sprite is being animated with

the animation routine it is impossible to stop it until the distance I has been covered. This can take quite a while if you have long pauses between each frame of the sequence. However, with the sprite print routine you can break into the program between single frames at any point since the Spectrum is returning to BASIC between each call to the print routine.

Once you are completely satisfied with the edited results and the way that they work with the sprite print routine then you should be sure to save the sprites generated to tape, as a separate file. The reason for this is that after all the effort you have spent getting the sprite right it would be a pity to lose them through a clerical error — or a momentary power cut.

The wildlife program

The displays on this page are both produced by a single program. Both displays use two states of animation, and both move the animated sprite across the screen and back again. The movement of the hare (shown in the large display below) is simplified to two states — the elongated position, and the familiar crouching pose. Alternating between these two provides a reasonable approximation of movement. The two bird sprite states, shown in detail in the close-up photograph, show how both the wings and body of the bird are made to move. You may find the bird's movement rather jerky. One way of overcoming this, without increasing the number of frames, would be to reduce the displacement of the body by keeping it more central, rather than rising and falling within the 24 by 21 frame with each animation state.

SCREEN SCROLLING

All the movement you have seen so far relies on the idea of you being stationary and something moving past you. But how can you create the illusion of moving past something which is stationary? The most effective way of doing this is by scrolling the whole screen. There are several ways of doing this; the simplest can be seen whenever you use the BASIC command LIST, which scrolls the screen upwards one character at a time.

The scroll routines

To create a more effective and gentle illusion of movement you need a smoother scroll, which moves the screen one pixel at a time. The two routines given here, FNl and FNm, allow you to scroll the screen a pixel at a time in either a horizontal or a vertical direction.

Note that when using the two scrolling routines on this page, it is inadvisable to use an interrupt-driven routine (such as the keyboard-controlled sprite routine,

SCROLLING THE SCREEN HORIZONTALLY

SCROLLING THE SCREEN VERTICALLY

FNh) at the same time. This is because the scrolling routines are shifting the co-ordinates of screen memory back and forth as the screen is scrolled, and an image is displayed on the screen by interrupts being used to "refresh" the screen at regular intervals. Obviously, this can cause problems if the screen display moves its location in memory when the screen refresh routine looks for it.

A similar difficulty arises when using PAUSE, since this statement is also based on interrupts. Rather than use PAUSE between two calls to a scroll routine, you are advised to use a FOR...NEXT loop for a delaying effect.

Other scrolling effects

Several effects can be linked to scrolling the screen. Both of the scroll routines have a wraparound effect, which means that whatever goes off one edge of the

FNI

HORIZONTAL SCROLL ROUTINE

Start address 51500 **Length** 190 bytes **What it does** Scrolls the screen left or right a specified distance.

Using the routine Parameters d and I set the direction and length of scroll. The routine has a wraparound effect, so that whatever disappears off the left of the screen reappears on the right, and vice versa.

ROUTINE PARAMETERS

specifies length of scroll (0-255)

d specifies direction of scroll (0-left, 1-right)

ROUTINE LISTING

z = 0: 7301 7302 7303 7304 1 * () 7305	LET 6=51500 LET (=185. LET RESTORE 7310 FOR i=0 TO (-1 READ a POKE (6+i),a: LET z=z+a NEXT i LET z=INT (f(z/l)-INT (z/l) READ a: IF a<>z THEN PRINT STOP	
7310 73112 7312 73145 73145 7316 7317 7319	DATA 243,237,115,141,201 DATA 42,11,92.17,4 DATA 42,11,92.17,4 DATA 25,70,30,8 DATA 25,125,254,0,32 DATA 38,14,191,197,33 DATA 0,54,229,6,32 DATA 167,203,30,35,16 DATA 251,225,48,4,62 DATA 128,132,119,17,32 DATA 0,25,13,32,233	
7321 7322 7323 7324 7325 73 26	DATA 193.16.224,237,123 DATA 141.201.251.201,14 DATA 191.197.33.31.64 DATA 229,6,32,167,203 DATA 22,43,16,251,225 DATA 48,4,62,1,182 DATA 119,17,32,0,25 DATA 13,32,233,193,16 DATA 224,201,237,123,141 DATA 201,251,0,0,0	
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339	DATA 42,11,92,17,4 DATA 0,25,70,30,8 DATA 25,126,254,0,32 DATA 33,14,191,197,33 DATA 0,64,229,5,32 DATA 167,203,30,35,16 DATA 251,225,48,4,62 DATA 126,182,119,17,32 DATA 0,25,13,32,233 DATA 193,16,224,201,14	
7340 7341 7342 7343 7344 7345 7346 7347	DATA 229,6,32,167,203 DATA 22,43,16,251,225 DATA 48,4,62,1,182 DATA 119,17,32,0,25 DATA 13,32,233,193,16 DATA 224,201,0,0,0	

screen then reappears on the opposite edge. Other routines allow you to leave something stationary on the screen while scrolling the rest — as used in popular games like Defender and Pole Position. To do this requires a much longer routine than those given here.

However, another type of scrolling effect has been included in this book. This is a partial screen scroll, in which the vertical dimension of the area scrolled is

FNm

VERTICAL SCROLL ROUTINE

Start address 50900 Length 215 bytes
What it does Scrolls the screen a specified distance up or down.

Using the routine Parameters are the same as for the horizontal scroll routine. As before, a wraparound effect occurs with the routine, but in this case when scrolling off the top and bottom of the screen.

ROUTINE PARAMETERS

DEF FNm(I,d)

specifies length of scroll (0–175)

d specifies direction of scroll (0=up, 1=down)

ROUTINE LISTING

```
7200 LET b=50900; LET l=210; LET z=0 RESTORE 7210 7201 FOR i=0 TO L-1 READ a 7202 POKE (b+i), a: LET z=z+a 7203 NEXT i 7204 LET z=INT (((z/l)-INT (z/l))*l) 7205 READ a: IF a > z THEN PRINT 7210 DATA 4,0,25,70,30 7211 DATA 4,0,25,70,30 7211 DATA 4,0,25,126,230,1 7213 DATA 40,91,192,17 7215 DATA 8,25,126,230,1 7213 DATA 40,91,194,17 7215 DATA 162,199,126,18,35 7216 DATA 162,199,126,18,35 7216 DATA 0,33,064,17 7218 DATA 0,33,064,17 7218 DATA 162,199,126,18,35 7216 DATA 0,33,26,113,29,6 7219 DATA 32,26,119,35,19 7220 DATA 62,7,164,32,10 7222 DATA 62,7,164,32,10 7222 DATA 62,32,133,111,40 7223 DATA 4,124,214,8,103 72225 DATA 20,62,7,162,32 7226 DATA 32,33,162,199,17 7229 DATA 160,87,17,1635 7226 DATA 87,13,22,209,6 7228 DATA 160,87,17,1635 7234 DATA 160,87,126,18,35 7233 DATA 160,87,126,18,35 7234 DATA 160,87,17,162,199 7235 DATA 160,87,213,229,6 7237 DATA 160,87,213,229,6 7237 DATA 162,50,1,77 7236 DATA 162,50,1,77,162,199 7238 DATA 162,87,213,229,6 7237 DATA 162,250,1,77 7236 DATA 162,50,1,77,162,51 7237 DATA 162,50,1,77,162,51 7239 DATA 162,87,213,229,6 7237 DATA 162,250,1,77 7244 DATA 124,250,7,213,229,6 7237 DATA 162,250,1,175 7236 DATA 124,250,1,175 7236 DATA 124,250,1,175 7236 DATA 124,250,1,175 7236 DATA 124,250,1,177 7244 DATA 124,250,7,213,229,6 7237 DATA 162,250,1,177 7244 DATA 124,250,7,213,2214,32 7244 DATA 124,214,224,40,4 7244 DATA 124,230,7,254,7 7244 DATA 124,230,7,254,7 7244 DATA 124,230,7,254,7 7244 DATA 122,230,7,254,7 7244 DATA 122,230,7,254,7 7244 DATA 122,230,7,254,7 7244 DATA 122,230,7,254,7 7244 DATA 122,230,130,0,10 7255 DATA 200,193,162,199,6,32 7245 DATA 226,183,130,19,16 7250 DATA 226,183,130,160,251 7245 DATA 226,183,130,19,16 7250 DATA 226,183,130,19,16 7250 DATA 226,183,130,160,251 7245 DATA 226,183,130,160,251 7245 DATA 226,183,130,19,16 7255 DATA 226,183,130,19,1
```

restricted to the size of the sprites used in this book. This partial screen scroll routine (given on page 30) produces what is in effect a window.

The program on this page shows scrolling at work. You will notice that the routine has the effect of moving ink attributes while leaving coloured areas unchanged.

WINDOWS 1

As you saw on pages 28-29, it is often more useful to be able to scroll parts of the screen than to scroll all of it. The window routine given here, FNn, enables you to do this. With the routine, you can define an area of the screen three characters deep of any width, and then move a sprite across it. The routine enables you to make sprites appear to move behind objects on the screen, since they appear from outside the window and then disappear the other side — rather like looking out of a window and watching a train go past.

Repeating sprites

One additional feature of the window routine is that you can repeat the sprite to give the effect of a chain of sprites passing through the window. Alternatively, quite spectacular effects can be achieved by having a variety of sprites set up in the sprite table, like the sequence produced by the cockpit program shown on this page.

Differences between sprites and windows

In many cases, you may find it more useful in your programs to use this window routine than a standard sprite routine. However, when using the routine, it is important to remember that the routine is essentially a scrolling, rather than a sprite routine, and that everything contained in the window will be scrolled by the routine, even if it was only part of the original background. To display a sprite moving against a static background, or to move a sprite vertically, you must use one of the sprite routines.

FNn

WINDOW ROUTINE

Start address 49600 Length 290 bytes

What it does Moves one or several sprites across a window of specified dimension.

Using the routine The routine carries out a partial screen scroll: everything contained within the area defined by the parameters is scrolled.

Note that the start co-ordinates x,y represent the top left hand corner of the sprite if the sprite moves right, but the top right-hand corner of the sprite if the sprite moves left. The repeat flag, r, can be used to repeat a sequence of sprites moving across the window. Repeated sprites can be seen in the window game program on pages 32-33.

	ROUTINE PARAMETERS	
DEF FNn(x,y,l,n,d,r)		
х,у	start co-ordinates (0 $<$ =x $<$ =31, 0 $<$ =y $<$ =21)	
1	width of the window $(0 <= 1 < -31)$	
n	number of sprite to be scrolled (n=1-10)	
d	specifies direction of scroll (0-right, 1-left)	
r	repeat flag (1=switch off repeat, 0=repeat)	

The cockpit program

The large display on this page shows windows at work. From the interior of an aircraft cockpit, various air- and spacecraft can be seen flying across in front of the plane; the display shows one of these. What is particularly effective is the way the sprites disappear behind the centre pillar and reappear in the other window — an effect which could not be achieved with the sprite routines. This program, then, shows the real difference between windows and sprites — using windows you can make the sprites look as if they are behind a solid object rather than in front of it.

How the program works

Line 10 of the program defines the window routine, together with its assortment of parameters. As you can see, three characters wide is a very effective width for the routine. The program actually uses two windows, three characters apart, with a barrier (the window frame) in the middle of the screen. The eye, however, is tricked into believing that the sprites are moving along behind the windows when they are in fact disappearing, stopping, and then reappearing as a result of a second window call. Line 100 sets up a loop so that all ten sprites can be made to appear across the window, one by one.

Line 120 deals with the sprites that are left facing—that is, all of the sprites which appear to fly from right to left. This works by testing for the second, fifth and

ROUTINE LISTING

```
7100 LET b=49600: LET l=285: LET z=0: RESTORE 7110 .
7101 FOR i=0 TO l-1: READ a 7102 POKE (b+i),a: LET z=z+a 7103 NEXT i 7104 LET z=INT (((z/l)-INT (z/l)
    ) *()
7105 READ a: IF a<>z THEN PRINT
"??": STOP
  7110 DATA 42,11,92,1,4
7111 DATA 0,9,86,14,8
7112 DATA 9,94,9,126,50
7113 DATA 218,194,9,126,50
7114 DATA 223,194,9,126,230
7115 DATA 1,50,222,194,9
7116 DATA 126,230,1,50,221
7117 DATA 194,62,1,50,219
7118 DATA 194,50,224,194,123
7119 DATA 230,24,246,64,103
7120 DATA 123,230,7,183,31
7121 DATA 31,31,31,130,111
7122 DATA 58,222,194,254,0
7123 DATA 40,6,58,218,194
7124 DATA 133,61,111,58,218
7125 DATA 194,60,60,60,71
7126 DATA 197,229,205,102,194
7127 DATA 225,6,8,229,197,7128
 7130 DATA 17,11,195,5,3
7131 DATA 229,197,120,254,1
7132 DATA 32,4,6,5,24
7133 DATA 2,6,8,197,213
7134 DATA 229,58,222,194,254
7135 DATA 0,32,5,205,160
7136 DATA 194,24,3,205,189
7137 DATA 194,225,209,193,36
7138 DATA 194,225,209,193,36
7138 DATA 19,16,231,193,225
7139 DATA 62,32,133,111,48
7140 DATA 4,62,8,132,103
7141 DATA 16,204,193,225,16
7142 DATA 183,193,118,16,171
7143 DATA 201.58,224,194,61
7144 DATA 50,224,194,192,62
7145 DATA 3,50,224,194,58
7146 DATA 223,194,17,63,0
7147 DATA 71,33,72,213,167
7148 DATA 237,82,25,16,253
7149 DATA 67,17,225,194,58
7150 DATA 219,194,254,0,40
7151 DATA 1,126,18,35,19
7152 DATA 16,243,58,221,194
7153 DATA 254,0,200,62,0
7154 DATA 50,219,194,201,167
7155 DATA 6,3,213,26,31
7156 DATA 18,245,62,21,131
7157 DATA 95,48,1,20,241
7158 DATA 16,242,209,58,218
7159 DATA 194,71,203,30,35
7160 DATA 16,251,201,167,213
7161 DATA 6,3,26,23,18
7162 DATA 245,123,214,21,95
7163 DATA 48,1,21,241,16
7164 DATA 242,209,58,218,194
7165 DATA 71,203,22,43,16
7166 DATA 251,201,10.0,0
```

seventh sprites which are right facing. If any other sprite is to be used then it is first made to go across the right-hand window, immediately followed by a call to make it go across the left-hand window. A PAUSE statement has been added to give you time to think about what just flew in front of your eyes!

Line 130 behaves in the same way, but handles the right facing sprites. Sprites 2, 5, and 7 and upwards appear to face to the right, so these are made to fly across the left-hand window first, immediately followed by a second call to make them fly across the right-hand one. Line 140 ends the loop, and finally line 150 starts the whole process over again.

WINDOWS 2

The window routine given on this page has all the features of the window routine, FNn, but with the added feature of being interrupt-driven. Once switched on, it will keep going until switched off again, regardless of just about any BASIC command.

Your first priority with this routine must be to have a way of switching it off. As for keyboard-controlled

sprites, this is done by a subroutine:

2000 DEF FN z(s)=USR 53100

2010 DEF FN x(s)=USR 49200 2020 RANDOMIZE FN z(1)

2030 RANDOMIZE FN z(0)

2040 RANDOMIZE FN x(0)

2050 RETURN

This subroutine is slightly more complicated than you would expect, since it is used both to set up the routine and to switch it off again. The routine also switches on the

```
WINDOW GAME PROGRAM

10 DEF FN h(s,x,y,c,n) = USR 531

20 DEF FN g(x,y,d,l,s,c,n) = USR 53500

30 DEF FN g(s,y,d,l,s,c,n) = USR 49200

40 DEF FN x(s) = USR 49200

50 DEF FN x(s) = USR 49200

100 BORDER 1: PAPER 7: CLS

110 LET sc=0: LET psc=0: LET g=

-1: LET ng=0

120 FOR i=1 TO 21

130 PRINT INK 5;AT i,0;"

140 PRINT INK 4;AT i,28;"

150 NEXT i
170 PRINT INK 1;AT 5,4;"

160 GO SUB 500

190 RANDOMIZE FN 0(1,4,2,24,3,0)

scrott?
```

```
200 RANDOMIZE FN h (1,32,150,0,1
0)
210 IF INKEY$=" "THEN GO TO 23
0
220 GO TO 210
230 LET xp=PEEK 53098
240 LET yp=PEEK 53099
250 IF xp>=32 RND xp<=44 THEN L
ET sc=sc+2: LET ng=1
260 IF xp>=80 AND xp<=92 THEN L
ET sc=sc+2: LET ng=2
270 IF xp>=142 AND xp<=152 THEN
LET sc=sc+2: LET ng=3
280 IF xp>=190 AND xp<=200 THEN
LET sc=sc+2: LET ng=4
300 IF sc+1=psc THEN LET ng=g+1
310 IF ng=g THEN LET sc=sc-1: G
0 TO 340
320 RANDOMIZE FN g(xp,yp-20,3,I
NT ((yp/3)),0,1,1)
330 IF INKEY$<>" THEN GO TO 33
scrotl?
```

```
WINDOW GAME PROGRAM CONTD.

340 IF sc <0 THEN LET sc =0
350 LET g = ng: LET psc = sc
360 GD SUB 500
370 GO TO 210
380 STOP
500 FOP SOUP SPOPER 6; INK 0; AT 0,1
5; sc;
510 RETURN
1000 RANDOMIZE FN 9(1)
1010 RANDOMIZE FN 9(0)
1020 RANDOMIZE FN Z(0)
```

keyboard-controlled sprite routine, since this sets up the interrupt vector table required for the interrupt-driven window routine to work correctly.

The interrupt-driven routine can be used together with the other routines in this book to set up and run sophisticated games. A simple game is given here; you will be able to improve it with a little effort.

The window game

This game is based on the idea of shooting at moving objects at the top of the screen. The game uses three machine-code routines. An interrupt-driven window is

WINDOW GAME SPRITE MOVEMENT

used to make flying saucers scroll across the top of the screen, the keyboard-controlled sprite routine is used to control your scanner, and the sprite-handling routine is used to send arrows towards the saucers.

One of the best parts about writing a computer game is in deciding the scenario for the game. In this case you could imagine, for example, you are trapped on earth with only a scanner satellite, and your crew aboard it

FNo

INTERRUPT-DRIVEN WINDOW ROUTINE

Start address 49200 Length 315 bytes

Other routines called Keyboard-controlled sprite routine (FNh).

What it does Moves either one or several sprites across a window, and continues to operate whatever is happening in BASIC.

Using the routine To use this routine you must first switch on the keyboard routine, since this routine sets up tables of interrupts where needed. The keyboard sprite routine can then be switched off again, unless it is called in the program elsewhere. Use s in the same way as it is used in the keyboard controlled sprite routine.

Note that the start co-ordinates x,y of the window routine represent the top left-hand corner of the sprite if the sprite moves right and the top right-hand corner if it moves left.

	ROUTINE PARAMETERS	
DEF FNo(s,x,y,l,n,d,r)		
S	stop flag (1—stop, 0—normal)	
х,у	start co-ordinates (0 < -x < -31, 0 < -y < -21)	
1	width of window (0 $<=$ $<=$ 31)	
n	number of sprite to be scrolled (n=1-10)	
d	specifies direction of scroll (0-right, 1-left)	
r	repeat flag (1—switch off repeat, 0—repeat)	

have only a bow and arrow with which to repel invaders. You can also use other sprites with the same background to change the feel of the game. Using different sprites, you could convert this game to a fairground shooting gallery, for example.

Several refinements could be made to the program. One sensible one would be to stop the keyboard sprite from going too high up the screen. This could be done by testing the current y co-ordinate of the sprite (stored at location 53098), and starting the sprite again at the bottom of the screen if a given limit is exceeded.

How the program works

Lines 10-20 define the three machine-code routines. Two of these routines are interrupt-driven and will therefore have to be switched off at some point. Lines 40 and 50 are here for this reason. These extra function definitions enable you to switch the interrupt-driven routines off and on by calling the routine with just one parameter, without bothering about specifying all the other parameters normally required.

Line 110 sets up some variables. The current score is held as variable sc, and the previous score (before the current arrow was fired) as psc. Variables g and ng are used to record the position of the keyboard sprite under

ROUTINE LISTING

```
7000 LET 5=49200: LET 1=310: LET z=0: RESTORE 7010
7001 FOR i=0 TO t-1: READ a 7002 POKE (b+i),a: LET z=z+a 7003 NEXT i 7004 LET z=INT (((z/t)-INT (z/t)
7005 READ 3: IF 3↔2 THEN PRINT
                                                           243,42,11,92,1

4,0,9,126,254

0,32,9,17,252

207,237,83,250,207

251,201,17,139,192

237,83,250,207,14

8,9,86,9,94

9,126,50,100,193

9,126,50,108,193

9,126,230,1,50
 7010 DATA
7011 DATA
7012 DATA
                              DATA
DATA
DATA
DATA
DATA
  7013
7014
7015
                               DATA
                                                             107.193.9.126,230
1.50.106.193.62
1.50.104.193.50
109.193.50,101.193
123.230,24,246,64
103.123,230,7,183
31,31,31,31,130
111.34,102,193,251
201,58,107,193,254
                              7021
  7023
7023
7024
7025
7026
  7027
7028
7029
7030 DATA
7031 DATA
7031 DATA
7032 DATA
7033 DATA
7035 DATA
7035 DATA
7037 DATA
7038 DATA
7038 DATA
                                                           193,133,61,111,58
101,193,71,16,5
205,240,192,6,8
120,50,101,193,17
110,193,42,102,193
58,107,193,254,0
40,3,17,152,193
5,3,229,197,120
254,1,32,4,6
5,24,2,6,8
                                                            197,213,229,58,107
193,254,0,32,5
205,42,193,24,3
205,71,193,225,209
193,36,19,16,231
193,225,62,32,133
111,48,4,62,8
132,103,16,204,195
252,207,58,109,193
61,50,109,193,192
  7040 DATA
  70440 DATH
70442 DATH
70442 DATH
70443 DATH
70445 DATH
70445 DATH
70446 DATH
70446 DATH
70446 DATH
70440 DATH
70440 DATH
 7050 DATA 62,3,50,109,193
7051 DATA 58,108,193,17,63
7052 DATA 0,71,33,72,213
7053 DATA 167,237,82,25,16
7054 DATA 253,67,17,110,193
7055 DATA 58,104,193,254,0
7056 DATA 40,1,126,18,35
7057 DATA 19,16,243,58,106
7058 DATA 193,254,0,200,62
7059 DATA 0,50,104,193,201
                                                             167,6,3,213,26
31,18,245,62,21
131,95,48,1,20
241,16,242,209,58
100,193,71,203,30
35,16,251,201,167
213,6,3,123,214,21
95,48,1,21,241,1
16,242,203,52,100
193,71,203,22,43
16,251,201,5,4
154,0,0,0,0
   7060 DATA
7061 DATA
7062 DATA
7063 DATA
  DATA
DATA
DATA
                            DATA
DATA
DATA
DATA
DATA
DATA
```

the gaps, with ng defining the gap under which the sprite is resting, and g the previous gap. These variables can have values between 1 and 4 (since there are four gaps through which you can fire), and these variables are used to restrict your firing. The program compares variables g and ng in line 310, and if they are the same, the fire sequence is bypassed. At the beginning of the game, it is important that g and ng have different values, so that the fire sequence is not disallowed initially. Thus, g is set at first to -1, a value which ng can never have.

WINDOWS 3

Lines 120 to 170 of the program draw the background, with a loop used to create the sides and top, and line 170 creating the gaps through which you can fire. Line 180 calls the score subroutine at line 500.

Line 190 starts off the interrupt-driven window, though it does not begin working until the interrupt vector table has been set up by the keyboard-controlled sprite routine. Because this is the very next statement you do not see any delay. but it is important to remember that the interrupt-driven window will not function unless this table is in place. The window routine will continue to scroll a sprite across the window until something occurs to stop it.

Lines 210-220 form the main program loop, which simply waits for the space key (the signal to fire) to be pressed, since everything else at this stage is interrupt-controlled. The controlling keys for the keyboard sprite must of course be ignored, as their function is handled by the machine-code routine.

Lines 230 and 240 find out the current position of the keyboard-controlled sprite. Given the position of the sprite, and the gaps in the barrier, the program can decide whether a shot fired would go through a gap.

Lines 250-280 work in the same way for each of the

four gaps. First a test is made to see whether the keyboard sprite is under the current gap. If it is then the gap flag (ng) is set to the value of the current gap. In addition the current score is incremented by two — not one as you might expect. Line 290 normalizes the score by taking one away again. Note that if the keyboard sprite is not under one of the gaps then the score is now one less than it was before the shot was fired.

Line 300 looks at the past score compared with the present score plus 1, and makes the gap variables different from their previous values, if the sprite was not under a gap. Line 310 deducts another one from the score if the gap is the same as the last gap which was fired at. It also skips the arrow-firing sequence, since arrows are only fired if the gap is a new one.

Line 280 fires an arrow by calling the sprite routine. Line 340 makes sure that the score cannot become negative, however bad the player. Line 350 adjusts the values of the previous score and the old gap value, ready for the next time round the loop. Line 360 prints the new score.

Finally, lines 1000-1020 switch off the interrupt-driven routines. To break out of the program, key GO TO 1000 to stop the routines.

USING THE SPRITE DIRECTORY

While using this book, you will have found that producing good sprite designs is not always easy. To overcome this problem, you can turn to the sprite directory, which contains over 200 sprite designs. These sprites can either be copied directly in your own programs, or used as a model on which to base your own ideas. Each entry in the directory includes the DATA for the sprite and shows the sprite on the screen.

Keying in the sprites

A sprite from the directory can be keyed in by using the

EXAMPLES OF SPRITES

JOKER

0,60,0,0,195,224,1 64,48,2,36,76,4,31 76,4,31,224,12,223,144 28,57,136,62,16,132,126 68,130,126,170,226,118,0 94,100,0,67,68,40,67 196,16,64,194,130,128,2 108,128,1,17,0,0,130 0,0,68,0,0,56,0

following loading program (add DATA from line 100):

10 INPUT "Sprite number (1-10)",a

20 IF a 0 OR a 10 THEN GO TO 10

30 LET b=54600+((a-1)*63)

40 FOR i=b TO b+20

50 READ n : POKE i,n

60 READ n : POKE i+21,n

70 READ n : POKE i+42,n

80 NEXT i

100 DATA 0,0,0,0,etc

The routine loads the sprite in the DATA statements into the sprite location specified by you at the start of this BASIC program. The routine requires you to key in all 63 sprite DATA items, even if some of them are zero. The sprite table can easily be corrupted by wrong DATA being entered, but the easiest way to correct this is by editing the sprite image with the sprite editor.

What the directory contains

The directory groups various kinds of sprite under theme headings. Most of the sprites are designed to be used individually, but the directory also contains some double sprites, which are used in conjunction with each other. In addition, a number of animation sequences of sprites in two or three different positions are included. The sprites can be entered either by keying in the DATA numbers provided, or simply by copying the drawing using the sprite editor. The sprite editor can also be used to increase the number of frames in an animation sequence, up to a maximum of ten designs (the maximum number of sprites that can be held in the buffer at one time).

PACIFIC-TYPE LOCO

0,0,0,0,128,24,252 160,126,126,160,255,75,255 255,75,255,255,755,75,255,255 75,0,0,126,255,255,127 0,0,98,255,255,127,255 255,127,220,14,127,162,17 255,65,32,24,128,195,36 136,196,90,159,255,90,65 32,36,34,17,24,28,14

PACIFIC-TYPE LOCO

0,31,128,0,15,0,0 15,64,9,255,224,255,255 224,255,255,240,255,255,232 1,255,232,255,255,232,1 255,240,255,255,224,255,255 224,7,63,240,8,159,217 144,255,255,255,47,237,98 36,146,252,243,109,144,75 109,8,132,146,73,12

HOW SPRITES ARE SHOWN

The diagrams shown illustrate how sprites are displayed in the directory. Each sprite is shown in the top left-hand corner as it appears on the screen, and in the large display below as it can be keyed in on a grid. The 63 DATA numbers which are POKEd into memory are shown on the top right of each sprite display.

Note that double sprites are shown as two separate sprites; obviously, the sprites will appear joined when used with the double horizontal sprite routine (FNi).

ALIENS

BUG

0,129,0,0,66,0,0 36,0,63,24,252,33,255 132,76,195,50,255,255,255 255,60,255,127,255,254,42 165,84,42,165,84,127,255 254,63,255,252,31,255,248 1,255,128,2,255,64,4 0,32,8,0,16,16,0 8,80,0,10,188,0,61

TRIPOD

80,66,0,80,36,96,32 24,144,35,126,142,36,219 1,73,255,129,75,255,222 40,255,32,36,60,36,35 126,58,68,255,1,137,255 130,147,153,204,163,12,194 68,4,34,8,2,16,16 1,8,32,2,132,64,0 2,224,0,7,160,0,5

ROBOT

3,60,16,4,255,32,3 255,192,7,0,224,7,0 224,3,255,192,0,60,0 115,255,206,118,152,110,63 151,188,63,247,188,55,247 172,55,119,172,55,248,108 51,255,204,97,66,134,131 231,193,147,231,201,101,90 166,4,24,32,7,255,224

BUG

2,0,64,129,0,129,64 153,2,32,126,4,16,195 8,9,24,144,15,231,240 159,66,249,176,189,13,102 165,102,98,165,70,176,189 13,153,66,153,14,129,112 7,102,224,8,102,16,16 153,6,32,0,4,64,0 2,224,0,7,224,0,7

HOPPER

7,0,112,5,127,80,5 255,208,15,190,248,95,255 253,111,0,123,127,255,255 111,255,251,55,255,246,59 255,238,28,0,28,6,193 176,2,193,160,126,193,191 0,193,128,17,128,196,47 0,122,0,0,0,0 0,0,0,0,0,0,0,0

ROBOT

128,240,0,131,252,0,143 255,0,159,224,0,159,224 0,143,255,0,128,240,0 207,255,0,95,255,150,122 0,249,58,0,25,57,255 242,28,0,16,31,255,240 15,255,224,1,254,0,2 1,0,15,255,224,1,27,109 176,27,109,176,15,255,224

MICRO-MITE

6,0,96,1,0,128,0 129,0,0,66,0,0,255 0,1,219,128,3,255,192 7,189,224,7,90,224,6 60,96,63,126,252,103,231 230,69,183,162,196,255,35 12,36,48,8,66,16,56 56,28,96,102,6,0,0 0,0,0,0,0,0

HOPPER

7,0,112,5,127,80,5 255,208,15,190,248,95,255 253,111,14,123,124,34,31 108,34,27,54,34,54,59 0,110,28,200,220,6,73 48,2,235,160,126,213,191 0,201,128,17,136,196,47 8,122,0,20,0,0,34 0,0,65,0,0,65,0

ROBOT

0,126,0,0,219,0,0 219,0,0,126,0,0,0 0,2,255,64,7,255,224 2,129,64,2,165,64,0,255 0,2,0,64,2,231,64 0,231,0,1,231,128,0 165,0,0,231,0,0,0 0,0,231,0,0,231,0

SQUAROID

192,34,3,112,65,14,16 128,136,16,65,8,12,34 24,30,20,56,55,255,236 99,255,198,227,165,199,119 165,238,30,255,120,119,165 238,227,165,199,99,255,198 55,255,236,30,165,120,12 0,48,16,0,8,16,0 8,112,0,14,192,0,3

SPACE-FLY

0,0,0,0,0,0,0 0,0,128,0,2,96,0 12,24,68,48,70,238,196 49,41,24,11,109,150,34 108,136,27,109,176,3,109 128,1,171,0,14,238,224 17,85,16,18,16,144,18 16,144,18,40,144,36,0 72,0,0,0,0,0

ANDROID

0,248,0,32,248,0,33 172,0,253,252,0,188,136 0,140,248,0,205,172,0 15,39,128,15,39,144,1 173,144,1,221,252,1,753 252,1,252,4,1,252,4 1,252,122,1,140,0,3 6,0,7,7,0,12,1 128,24,0,192,16,0,64

HUMANOID

113,199,28,122,170,188,121 69,60,99,40,140,97,199 12,111,239,236,127,255,252 127,255,252,27,255,176,2 238,128,1,1,0,0,254 0,0,130,0,0,254,0 1,255,0,1,239,0,3 199,128,3,199,128,7,131 192,7,1,192,15,131,224

INSECTOID

1,0,128,0,129,0,0 126,0,0,219,0,0,36 0,0,24,0,3,255,192 7,255,224,44,0,52,25 255,152,17,255,136,32,0 4,0,255,0,0,255,0 0,0,0,0,126,0,0 126,0,0,0,0,060 0,0,24,0,0,0,0

JELLY MONSTER

128,60,6,128,189,9,65 255,144,35,255,204,71,24 226,143,219,241,143,255,243,71,255,228,111,255,248,19 52,192,2,66,32,12,66 64,16,129,32,32,70,16 24,68,16,19,35,8,50 192,132,66,2,68,129,5 198,129,8,1,129,4,1

"DALEK"

0,16,0,0,56,0,0 68,16,0,131,232,128,254 16,65,109,0,96,254,11 145,1,20,8,254,36,13 1,96,7,255,192,3,255 128,1,171,0,0,170,0 1,85,0,1,85,0,2 170,128,5,85,64,10,170 160,31,255,248,31,255,248

SEA MONSTER

33,18,8,18,57,20,84 124,132,176,254,136,130,254 68,69,255,66,69,255,33 41,255,65,36,254,70,36 124,72,20,84,144,83,125 32,72,254,192,135,255,1 129,40,194,78,70,33,144 129,17,167,32,138,168,72 105,73,132,37,6,3,194

HYDRA MAN

12,0,48,37,0,164,22 36,104,12,90,48,4,60 32,5,36,160,7,219,224 0,66,0,2,126,64,7 255,224,120,60,30,144,24 9,48,60,12,72,126,18 96,231,6,1,195,128,1 129,128,0,195,0,0,66 0,1,66,128,1,195,128

SPACECRAFT

PLANETARY PROBE

0,0,0,128,0,1,243 24,207,28,165,56,4,189 32,3,255,192,0,231,0 3,231,192,4,189,32,28 189,56,243,24,207,128,0 1,0,0,0,0,0,0 0,0,0,0,0,0,0

SPACE FIGHTER

0,0,12,0,0,24,0 0,48,0,1,204,0,0 112,0,0,224,0,64,225 2,193,63,2,247,249,63 234,52,242,6,60,62,234 52,2,247,249,2,193,63 0,64,225,0,0,224,0 0,112,0,1,204,0,0 48,0,0,24,0,0,12

INTERGALACTIC CRUISER

192,0,3,192,0,3,192 0,3,192,0,3,192,0 3,192,24,3,224,60,7 224,126,7,227,165,199,255 219,255,255,165,255,255,165 255,227,219,199,224,126,7 224,60,7,192,24,3,192 0,3,192,0,3,192,0 3,192,0,3,192,0,3

LANDER

4,0,32,6,0,96,5 24,160,0,189,0,0,126 0,16,255,8,24,35,24 20,255,40,5,165,160,7 255,224,13,255,176,21,195 168,46,255,116,110,165,118 255,255,255,16,255,8,16 60,8,16,66,8,56,129 28,56,0,28,56,0,28

EXCURSION VEHICLE

0,60,0,0,66.0,0 153,0,1,126,128,59,153 220,127,24,254,255,255,255 199,24,227,197,153,163,198 126,99,127,255,254,46,255 116,21,126,168,14,60,112 12,0,48,4,0,32,14 0,112,10,0,80,59,129 220,59,129,220,0,0,0

INTERGALACTIC CRUISER

56,0,28,48,0,12,112 0,14,96,0,6,224,0 7,192,24,3,224,60,7 224,126,7,227,165,199,255 219,255,255,165,255,255,165 255,227,219,199,224,126,7 224,60,7,192,24,3,224 0,7,96,0,6,112,0 14,48,0,12,56,0,28

SPACE FIGHTER

1,255,224,0,3,128,0 3,128,0,3,192,0,3 224,0,7,255,0,7,255 0,3,240,48,28,8,127 227,252,255,239,252,127,227 252,48,28,8,0,3,240 0,7,255,0,7,255,0 3,224,0,3,192,0,3 128,0,3,128,1,255,224

EXCURSION VEHICLE

0,24,0,0,24,0,0 24,0,0,24,0,0,24 0,0,60,0,0,102,0 021,0,1,66,128,0 231,0,1,66,128,2,90 64,15,255,240,25,231,152 16,231,8,17,255,136,27 255,216,6,36,96,12,102 48,56,102,28,112,0,14

COMMAND SHIP

0,0,30,0,0,62,0 0,127,00,1255,0,3 255,0,2,5,0,15,255 0,8,5,0,63,255,0 79,228,0,143,247,255,255 245,235,235,231,120,15,253 127,255,255,0,112,3,0 127,254,0,63,252,0,31 252,0,15,252,0,7,248

TRIBAL SPECTRE

16,0,4,8,8,8,4 28,16,2,62,32,1,127 64,0,221,128,1,235,192 3,0,96,7,107,112,15 107,120,127,136,255,13,255 216,4,0,16,3,255,224 3,193,224,7,255,240,14 255,184,12,127,24,16,62 4,32,28,280,8,5

SPACE CRAB

8,0,16,8,0,16,4 0,32,2,0,64,1,0 128,0,255,0,63,255,252 127,255,254,255,255,255,255 195,235,255,36,255,111,129 246,15,195,240,63,231,252 247,102,239,231,36,231,203 129,211,217,129,155,152,195 25,144,0,9,144,0,9

GHOUL

8,0,16,8,0,16,4 0,32,2,0,64,1,24 128,0,189,0,0,126,0 0,255,0,1,153,128,3 255,192,6,219,96,14,219 112,28,0,56,62,215,124 126,219,126,255,255,255,0 102,0,0,195,0,1,129 128,0,231,0,0,36,0

SPOOKY SPIDER

0,0,0,31,0,124,32 128,130,32,128,130,32,65 2,39,85,114,40,201,138 40,127,10,40,221,130,41 127,74,42,34,42,42,34 42,42,34,42,42,34,42 42,20,42,42,0,42,74 0,41,74,0,41,82,0 37,82,0,37,84,0,21

VAMPIRE

1,1,0,2,2,64,4 127,128,12,255,192,28,13 192,30,24,128,31,112,192 63,248,0,63,252,112,63 254,208,62,243,128,60,225 0,56,240,0,24,248,0 24,108,0,24,56,0,8 56,0,12,108,0,5,198 0,4,133,0,5,133,0

GHOUL

0,0,0,0,126,0,120 255,30,253,255,191,203,255 211,198,255,99,206,126,115 204,60,51,204,189,51,204 165,51,204,36,51,198,102 99,231,255,231,115,153,206 169,153,149,169,129,149,137 129,145,137,133,145,86,219 10,0,126,0,0,60,0

SPYING SAUCER

1,0,128,3,0,192,0 129,0,0,66,0,0,36 0,0,24,0,7,255,224 15,189,240,18,90,72,255 255,255,127,255,254,31,255 248,2,0,64,7,0,224 8,129,16,0,0,0,0 0,0,0,0,0,0,0

VAMPIRE

2,0,64,4,129,32,12 66,48,12,36,48,28,90 56,30,36,120,30,36,120 62,60,124,63,24,252,63 189,252,63,255,252,63,255 252,62,60,124,62,60,124 62,255,124,62,165,124,30 36,120,28,102,56,24,0 24,8,0,16,8,0,16

GHOUL

0,0,0,0,0,0,0,255 255,254,95,255,244,47,255 232,31,255,240,7,57,192 7,57,192,31,215,240,127 255,252,97,85,12,193,85 6,197,131,70,104,130,44 114,198,156,28,68,112,0 108,0,1,171,0,15,57 224,18,16,144,36,0,72

AIRCRAFT

HELICOPTER

0,0,0,0,0,0,0 0,0,0,24,0,755,255 255,0,24,0,7,255,224 4,195,32,5,129,160,7 0,224,3,0,192,3,0 192,3,0,192,3,255,192 29,153,184,23,153,232,28 219,56,2,255,64,3,195 192,3,129,192,3,129,192

BIPLANE

0,36,0,255,255,255 255,255,36,0,36,38,24 100,35,126,196,33,231,132 33,255,4,33,255,4,255 255,255,255,195,255,1,126 128,1,24,128,1,36,128 3,66,192,3,129,192,3 0,192,20,64,2,0 64,0,0,0,0,0,0

SEAPLANE

0,0,0,0,0,0,0,0 0,0,0,0,0,64,0 12,64,0,30,64,56,30 64,92,30,127,255,254,245 127,254,127,255,252,95,255 240,65,8,0,65,8,0 66,4,0,2,4,0,4 2,0,4,2,0,127,255 248,127,255,240,63,255,224

HELICOPTER

0,0,0,0,0,0,0 96,0,255,255,248,0,96 0,3,240,10,5,252,14 8,255,252,16,167,226,63 167,1,48,255,0,49,255 0,15,254,0,4,16,0 63,254,0,0,0,0,0 0,0,0,0,0,0,0

BIPLANE

0,0,0,255,192,0,255 128.0,51,0,0,51,0 0,25,128,0,103,152,3 243,63,135,243,63,255,121 159,226,112,7,252,48,15 132,127,255,0,28,64,0 4,128,0,5,0,0,14 0,0,18,0,0,18,0 0,12,0,0,0,0

SEAPLANE

0,16,0,0,56,0,0 40,0,3,41,128,0,56 0,3,57,128,255,255,254 251,125,190,59,125,184,15 255,224,3,57,128,3,57 128,3,57,128,1,17,0 1,1,0,1,1,0,1,1 1,0,1,1,0,1,1 0,1,255,0,1,255,0

HIGH-ALTITUDE JET

0,254,0,0,112,0,0 72,0,0,124,0,0,66 0,240,127,0,96,127,128 113,255,224,127,193,156,135 255,207,127,193,156,113,255 224,96,127,128,240,127,0 0,650,0,124,0,0 72,0,0,112,0,0,254 0,0,0,0,0,0,0

RECONNAISSANCE PLANE

0,12,0,0,14,0,0 15,0,0,15,0,0,15 0,0,15,12,0,15,14 0,15,14,63,127,254,126 79,254,254,203,241,126,79 254,63,127,254,0,15,14 0,15,14,0,15,12,0 15,0,0,15,0,0,15 0,0,15,0,0,12,0

SEAPLANE

0,0,0,0,0,0,0 0,0,0,0,0,4,0 32,4,0,32,7,255,224 4,24,32,14,60,112,255 231,255,14,102,112,4,60 32,0,60,0,0,24,0 4,0,32,4,0,32,4 0,32,0,0,0,0,0 0,0,0,0,0,0,0

HIGH-ALTITUDE JET

0,8,0,0,8,0,0 8,0,0,8,0,0,8 0,0,8,0,0,8,0 0,62,0,0,127,0,0 247,128,7,227,240,31,62 124,121,62,79,105,247,203 8,255,136,8,156,136,29 136,220,21,136,212,28,28 28,0,28,0,0,20,0

HELICOPTER

0,0,0,255,255,254,0 16,0,0,16,0,0,16 0,0,56,0,4,56,64 7,199,192,4,124,64,0 254,0,1,17,0,1,17 0,3,17,128,5,17,64 29,147,112,28,254,112,2 0,128,0,0,0,2,0 128,2,0,128,0,0,0

MONOPLANE

0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,128,232,1 129,79,3,30,95,7,127 255,255,255,63,255,126,195 196,6,252,2,128,192,0 128,128,0,1,0,0,6 0,0,6,0,0,0,0

STUNT PLANE

32,0,0,248,0,0,252 0,0,254,0,0,126,0 0,127,0,0,127,0,0 127,128,0,127,224,0,1 240,240,127,255,143,1,255 255,127,255,255,1,255,255 127,255,128,1,128,0,127 0,0,0,0,0,0,0

HELICOPTER

0,0,0,0,0,0,0 0,0,255,255,252,0,32 0,0,32,0,0,112,8 0,240,5,7,252,18,10 131,254,18,129,145,98,254 4,255,8,0,127,240,0 15,96,0,0,0,0,1 128,0,1,128,0,0,0

TRANSPORTER

0,16,0,0,56,0,0 56,0,0,56,0,0,56 0,0,56,0,4,186,64 4,186,64,251,125,190,251 125,190,63,255,248,1,255 0,56,0,0,56,0 0,56,0,0,56,0 56,0,0,238,0,0,238 0,0,108,0,0,16,0

JET TRAINER

0,0,0,0,0,0,128 0,0,192,0,0,150,0 0,208,0,0,168,0,0 212,0,0,170,7,192,213 254,32,255,255,16,63,255 200,67,3,252,64,240,62 63,236,1,0,19,254,0 16,4,0,16,4,0,48 4,0,48,2,0,0,0

AIRSHIP

0,0,0,0,0,0,0,0 0,0,0,0,0,15,255 3,31,255,231,63,255,255 127,255,255,255,255,240,127 255,255,63,255,255,31,255 231,15,255,3,0,0,0 0,56,0,0,253,0,0 125,0,0,0,0,0,0 0,0,0,0,0,0,0

TRANSPORTER

0,0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,0,128,1,0,184,3 0,124,7,6,250,15,31 119,248,14,151,255,254,147 255,255,61,240,255,195,128 63,254,0,7,252,0,0 0,0,0,0,0,0,0,0

SPACECRAFT

SHUTTLE

0,8,0,0,8,0,0 8,0,0,8,0,0,8,0 0,0,8,0,0,8,0 0,107,0,0,255,128,1 255,192,3,193,224,1,221 192,0,255,128,0,221,128 7,182,240,127,221,255,1 255,192,7,8,12,2,20 32,7,0,112,5,0,80

LUNAR MODULE

0,0,0,0,0,0,0 0,0,3,255,192,5,245 192,13,245,192,29,245,195 61,245,207,125,245,223,253 255,255,229,255,255,253,255 255,125,255,223,61,255,207 29,255,195,13,255,192,5 62,64,3,255,192,0,0 0,0,0,0,0,0,0

SKYLAB

128,24,1,96,60,6,24 60,24,6,60,96,1,153 128,0,60,0,0,126,0 0,74,0,0,126,0,255 215,255,128,861,128,126 1,255,255,255,128,126,1 128,70,1,255,255,255,0 126,00,0,126,0,0,24 0,0,60,0,0,126,0

SHUTTLE

0,0,7,0,0,7,0 0,14,0,0,30,0,0 30,0,60,0,0,0,124 0,0,252,0,0,240,7 255,244,31,255,252,115,255 244,255,255,242,255,255,254 127,0,126,63,255,242,24 60,28,8,4,0,8,4 0,24,6,0,24,6,0

LUNAR LANDER

0,24,0,12,24,0,13 60,0,3,255,192,1,255 0,3,255,128,3,255,128 11,255,192,7,255,224,7 255,240,15,255,248,7,251 248,3,248,240,0,60,128 15,255,248,19,255,200,43 255,212,39,255,228,123,255 222,64,0,2,224,0,7

SKYLAB

4,68,32,10,34,32,25 18,32,36,137,64,18,70 238,9,33,240,4,205,224 2,223,208,1,63,44,0 127,147,0,255,136,1,255 4,0,254,194,1,253,33 7,250,144,3,210,72,1 129,36,0,128,146,0,0 76,00,40,0,0,16

SHUTTLE

0,0,240,0,1,240,0 3,248,0,7,248,0,31 248,0,127,248,1,255,198 14,0,62,63,255,254,119 255,254,247,255,193,119,255 254,33,255,254,14,0,62 1,255,198,0,127,248,0 31,248,0,7,248,0,3 248,0,1,240,0,0,240

VIKING

0,128,0,0,192,0,0 196,0,3,244,0,0,212 0,0,212,0,0,148,0 0,21,0,30,149,120,34 151,68,67,255,194,131,24 193,131,36,193,125,231,190 57,255,156,2,255,192,4 219,32,11,0,208,28,0 56,32,0,4,248,0,31

VENERA

0,0,2,0,0,4,0 0,12,0,0,24,0,0 16,255,248,32,146,72,64 74,144,128,42,161,0,31 194,0,15,132,0,1,63 0,7,243,160,13,191,156 29,191,234,97,181,235,29 181,234,13,181,156,7,245 128,0,63,32,15,255,224

RAILWAY TRAINS

CARRIAGE

0,60,0,0,24,0,31 255,248,33,0,132,127,255 254,36,36,36,36,36,36 36,36,36,36,36,36,36 36,36,36,36,36,33,255 252,55,247,244,60,60,60 63,255,252,191,255,253,19,36 200,19,36,200,12,195,48

ROCKET

216,0,0,80,0,0,80 0,0,80,32,128,82,33 192,87,35,128,95,247,0 95,254,0,88,41,0,95 213,224,95,173,224,95,93 224,111,189,224,17,93,224 34,45,224,228,53,231,34 40,56,32,33,68,32,32 84,16,64,68,15,128,56

TENDER

0,0,0,0,0,0,0 1,255,1,131,254,15,255 254,31,255,254,63,255,254 48,0,2,47,255,254,68 0,2,47,255,254,63,255 254,63,255,254,191,255,254 255,255,255,191,255,254,9 36,144,22,219,104,22,219 104,9,36,144,6,24,96

4-4-0 LOCO

0,112,0,0,118,0,0 118,128,0,0,0,0,0 224,127,1,240,63,9,240 9,28,224,9,92,224,9 255,254,127,255,254,255,255 255,255,255,255,255,255,255,255 231,159,254,216,96,0,164 151,255,91,105,155,91,106 101,36,146,101,24,97,152

TENDER

0,7,128,0,11,64,0 23,160,1,28,224,5,28 224,15,151,160,31,203,64 127,255,254,127,255,254,98 36,70,98,36,70,127,255 254,96,0,6,127,255,254 110,60,118,255,255,255,32 129,4,36,129,36,32,129 4,17,0,136,14,0,112

U.S. LOCO

0,0,96,0,0,240,2 32,240,255,113,248,127,113 248,73,112,240,73,244,96 73,255,240,73,255,240,127 225,248,127,255,252,65,1 248,255,255,240,255,255,240 156,59,224,34,48,240,95 226,24,73,146,108,65,130 150,34,68,151,28,56,96

CARRIAGE

127,255,255,33,8,56,63 255,254,51,156,230,33,8 66,33,8,65,33,8,66 33,8,66,115,156,231,51 156,230,51,156,230,51,156 230,51,156,230,51,156,230 63,255,254,255,255,7 0,112,8,128,136,10,128 168,8,128,136,7,0,112

PACIFIC-TYPE LOCO

0,0,0,0,128,24,252 160,126,126,160,255,75,255 255,75,255,255,75,255,255 75,0,0,126,255,255,127 0,0,98,255,255,127,255 255,127,220,14,127,162,17 255,65,32,24,128,195,36 136,196,90,159,255,90,65 32,36,34,17,24,28,14

0,31,123,0,15,0,0 15,64,9,255,224,255,255 224,255,255,240,255,255,232 1,255,232,255,255,232,1 255,240,255,255,224,255,255 224,7,63,240,8,159,217 144,255,255,255,47,237,98 36,146,252,43,109,144,75 109,8,132,146,7,3,12

CARS, TRUCKS AND MOTORBIKES

VETERAN

0,15,254,1,255,254,0 34,2,0,18,2,0,18 6,0,10,14,24,10,12 56,102,12,48,70,12,8 131,252,8,135,254,17,15 254,17,15,194,58,15,220 68,15,162,170,30,85,146 28,73,147,248,73,171,240 85,68,0,34,56,0,28

MOTORBIKE

0,224,0,1,192,0,1 64,0,0,160,0,1,194 0,1,224,0,1,243,0 1,223,224,1,128,160,3 135,96,19,255,192,125,255 64,50,245,32,109,55,60 94,185,114,49,46,211,33 106,153,127,254,153,33,0 195,51,0,102,30,0,60

VETERAN

1,255,254,0,129,254,0 129,198,0,128,198,0,160 198,0,144,198,0,168,254 32,192,254,63,255,134,61 128,132,51,176,132,61,129 140,55,129,24,123,129,62 5,131,97,50,130,204,72 255,146,180,255,173,180,0 45,72,0,18,48,0,12

SALOON

3,255,192,7,255,224,8 0,16,8,0,16,16,255 8,17,129,136,63,255,252 127,255,254,127,0,254,204 126,51,133,189,161,133,255 161,204,0,51,255,255,255 128,0,1,230,0,103,254 0,127,255,255,255,240,0 15,240,0,15,240,0,15

CLASSIC TOURER

0,0,0,0,0,0,128 0,0,128,0,0,192,0 0,255,240,0,255,255,254,171 254,14,171,249,244,171,231 250,255,151,250,252,111,254 227,223,31,31,222,175,255 190,76,255,254,172,0,7 28,0,3,248,0,1,240

TRUCK

0,0,0,0,0,0,0 60,0,8,16,19,254 0,11,252,0,18,68,0 10,68,0,19,194,0,11 195,194,19,255,254,11,219 250,19,219,250,191,219,250 103,195,250,91,255,186,165 255,75,219,128,181,219,254 181,36,0,72,24,0,48

FORKLIFT

0,0,192,0,0,192,0 0,192,1,254,192,1,2 192,1,50,192,1,50,192 1,98,192,1,122,192,1 118,192,125,114,192,255,254 192,231,242,223,219,238,217 189,222,213,230,179,211,218 173,213,218,173,217,231,243 213,60,30,211,24,12,63

CARS. TRUCKS AND MOTORBIKES

SPORTS SALOON

0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,255,0,3,224 0,13,32,0,22,32,0 124,32,3,255,223,7,255 223,15,0,47,31,255,240 31,249,255,127,240,255,99 246,128,63,240,255,0,25 128,0,31,128,0,15,0

0,0,0,7,0,0,66

0,0,0,7,0,0,66 24,0,194,111,0,34,237 0,19,53,128,10,242,192 7,191,96,30,185,224,46 255,176,127,255,248,209,136 136,123,223,248,85,168,136 91,216,138,254,127,255,133 160,0,133,160,0,6,96 0,3,192,0,1,128,0

0,0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,192,0,0,160,0,0 80,0,0,72,0,0,63 248,0,239,255,224,47,255 252,238,0,12,12,127,252 252,124,252,255,248,124,0 27,126,255,248,96,0,28 192,0,15,192,0,7,128

FORMULA 1

63,128,0,63,128,0,63 188,248,255,190,250,255,190 250,228,127,34,229,225,174 255,254,255,239,255,127,245 83,191,255,211,191,245,83 191,239,255,127,255,254,255 299,225,174,228,127,34,255 190,250,255,190,250,63,188 248,63,128,0,63,128,0

LONDON BUS

127,255,255,255,255,255,196 127,255,255,255,255,255,196
33,19,196,33
19,255,255,255,234,170,191
213,85,95,255,255,242,196
33,18,196,33,18,196,33
18,196,33,30,255,255,255
252,255,207,251,127,183,244
191,75,251,127,183,251,127
183,4,128,72,3,0,48

TRACTOR

127,249,0,68,49,0,68 51,128,36,19,128,37,19 128,36,147,128,60,177,32 63,255,252,64,255,254,158 112,6,191,55,254,63,183 190,115,150,242,237,214,236 222,215,222,222,215,191,237 255,243,115,131,51,127,128 63,63,0,30,30,0,12

FORKLIFT

0,0,223,0,0,217,0 0,213,1,254,211,1,2 213,1,50,217,1,50,213 1,96,211,1,122,223,1 118,255,125,114,192,255,754 192,231,242,192,219,238,192 189,222,192,230,179,192,218 173,192,218,173,192,231,243 192,60,30,192,24,12,0

BULLDOZER

0,32,0,0,16,1,0 0,32,0,0,16,1,0 16,31,0,16,31,0,56 31,0,63,255,0,63,248 224,120,0,243,240,0,210 223,0,253,191,0,251,97 0,214,255,0,45,225,0 127,255,0,191,252,0,109 182,0,146,73,0,146,73 0,109,182,0,63,252,0

BULLDOZER

0,64,0,0,32,0,0 32,0,0,32,0,0,112 0,0,112,0,0,112,0 224,112,0,249,32,0,233 255,0,255,255,0,224,1 0,223,255,128,63,225,192 127,255,224,191,252,112,109 182,58,146,73,30,146,73 14,109,182,14,63,252,15 0,64,0,0,32,0,0

SHIPS AND BOATS

FREIGHTER

LINER

0,224,0,0,236,0,0 236,0,31,253,128,21,85 128,79,253,128,117,85,128 127,255,128,111,255,128,123 251,192,126,254,224,127,191 176,127,239,232,127,251,248 127,254,248,127,255,188,127 255,238,103,255,254,67,255 254,73,255,254,84,63,254

HOVERCRAFT

0,0,0,32,4,0,32 4,0,24,3,0,40,5 240,40,5,192,8,1,248 8,1,248,63,255,252,53 85,92,53,85,92,127,255 254,127,255,254,0,0,0 127,255,254,255,255,255,255 255,255,255,255,255,255,255 255,255,255,255,255,255,255

SPEEDBOAT (FROM ABOVE)

6,2,16,0,193,8,0 16,128,128,0,68,64,15 4,0,255,192,31,229,226 31,242,242,63,242,136,71 242,252,67,242,130,71,242 252,63,242,136,31,242,242 31,229,226,0,255,192,64 15,4,128,0,68,0,16 128,0,193,8,6,2,16

SUBMARINE

HOVERCRAFT

0,0,0,4,66,32,2 129,64,1,0,128,3,189. 192,5,0,1601,126,128 1,126,128,15,25,240,11 66,208,11,90,208,31,219 248,31,255,248,0,24,0 127,219,254,255,195,255,255 255,255,255,255,255,255,17,255 254,63,255,252,63,255,25

SUBMERSIBLE

0,0,0,0,3,0,0 2,0,0,2,0,0,7 0,0,15,128,0,62,144 0,127,144,3,255,248,23 255,252,47,213,126,104,255 195,251,1125,252,104,250,248 47,251,112,6,15,224,16 4,36,15,255,248,0,0 0,0,0,0,0,0,0

YACHT

0,8,0,0,31,0,0 0,0,0,46,0,0,15 192,0,127,224,0,0,0 0,240,0,0,15,240,1 255,240,0,0,0,1,240 0,0,15,240,7,255,224 0,0,0,15,240,0,0 15,192,11,255,128,0,0 0,0,126,0,0,126,0

TUGBOAT

0,4',0,0,4,0,8 4,128,4,5,128,2,5 128,1,7,240,2,128,208 4,71,240,4,101,96,8 127,230,16,127,254,63,255 254,127,255,254,0,0,0 127,255,254,223,255,252,207 255,248,199,255,260,255,255 224,0,0,0,0,0,0

SHIPS AND BOATS

TALL SHIP

0,126,192,0,126,240,4 255,248,4,0,240,12,254 228,12,254,204,12,254,220 28,254,188,29,255,124,28 0,252,61,254,252,61,254 252,61,254,252,125,254,252 125,254,254,127,255,0,0 0,124,127,255,257,15,255 248,7,255,240,3,255,224

YACHT

0,0,0,0,16,0,0 7,0,0,16,0,0,3 192,0,48,0,0,3,224 0,112,0,0,1,240,0 240,0,0,0,240,1,240 0,0,0,240,3,240,0 0,0,112,7,240,0,0 0,32,15,240,0,0,0 0,15,255,192,31,255,192

JUNK

14,248,0,0,0,0,14 248,0,0,3,188,14,248 0,0,3,188,14,248,0 3,188,14,248,0,0 3,188,14,248,0,0,3 188,14,248,0,0,1,254 14,248,254,96,1,254,110 249,252,96,1,252,63,255 248,63,255,248,31,255,240

MAN O' WAR

0,120,48,0,120,0,62 0,120,62,252,120,62,252 120,62,252,0,62,252,252 0,252,252,120,0,252,123 254,252,123,254,0,123,254 85,3,254,127,171,254,127 255,254,127,255,254,127,126 0,127,63,255,255,30,219 126,15,255,254,7,255,252

FISHING SMACK

0,0,64,0,0,96,32 8,64,32,12,64,32,31 192,48,31,64,96,31,192 224,31,192,224,63,192,224 63,192,224,63,192,47,191 192,42,128,64,42,128,64 46,128,95,254,135,241,143 252,5,192,0,1,96,0 3,63,255,254,31,255,254

STERN TRAWLER

0,0,16,0,0,16,0 0,16,0,0,16,0,0 16,0,0,48,0,0,96 0,0,224,0,1,192,16 3,192,32,7,160,64,15 16,141,158,8,133,30,4 255,254,3,0,7,3,255 255,255,0,0,1,255,255 255,234,175,255,255,255,255

ROWING EIGHT

0,0,0,0,0,0,0,0 0,0,0,17,17,0,34 34,0,68,68,0,136,136 1,17,16,2,34,32,15 255,248,250,170,175,15,255 248,0,136,136,0,68,68 0,34,34,0,17,17,0 8,136,0,4,68,0,0 0,0,0,0,0,0,0

ROWING EIGHT

0,0,0,0,0,0,0 0,0,68,68,0,34,34 0,17,17,0,8,136,128 4,68,64,2,34,32,15 255,248,250,170,175,15,255 248,2,34,32,4,68,64 8,136,128,17,17,0,34 34,0,68,68,0,0,0

ANIMALS

ELEPHANT

0,0,0,0,0,0,3 128,0,7,207,240,14,63 248,15,223,252,31,223,254,159 223,254,159,31,254,183,255 255,233,255,253,16,255,253 32,255,252,0,127,252,0 120,120,0,112,56,0,96 24,0,96,24,0,96,24

GIBBON

63,255,255,68,1,0,2,0,20,2,0,34,6,0,0,4,0,0,12,0,112,24,0,158,224,0,7,220,0,3,248,0,252,0,3,224,0,7,192,0,7,128,0,5,128,0,9,0,58,0,0,68,0,0,72,0,0

FOX

0,0,0,0,0,0,0

FROG

24,0,0,44,0,0,127 0,0,255,192,0,31,224 0,63,240,0,15,228,0 39,248,0,23,252,0,9 254,0,6,63,0,0,29 128,0,12,128,0,12,192 0,12,64,0,7,96,0 1,32,0,1,32,0,0 144,0,1,152,0,0,144

GIBBON

255,255,255,8,0,143, 0,135,4,1,3,6,3 1,6,5,1,3,140,1 1,220,1,0,248,1,0 252,1,0,240,1,0,240 1,1,224,1,1,129,1 3,192,1,2,192,1,6 64,1,12,192,1,8,128 1,8,138,1,17,0,1

KANGAROO

8,0,0,16,0,0,112 0,0,248,0,0,60,248 0,31,254,0,7,255,0 7,255,128,3,255,192,111,192,3,15,96,4,14 32,4,14,48,2,15,16 0,7,16,0,1,200,0 0,160,0,0,50,0,0 25,0,0,12,0,0,6

FROG

0,0,0,0,0,0,0

MOOSE

128,64,0,145,64,0,96 128,0,67,128,0,52,0 0,15,0,0,22,0,0 31,195,192,27,255,240,19 255,248,3,255,240,3,255 240,1,255,240,0,252,248 0,120,56,0,176,92,1 32,68,2,32,132,2,32 132,1,32,132,0,33,2

KANGAROO

0,0,0,0,0,1,8 0,1,16,0,1,112,24 1,240,60,2,56,126,6 28,254,28,15,255,56,15 255,240,7,255,224,3,63 128,1,31,0,0,156,0 0,88,0,0,48,0 96,0,0,192,0,1,128 0,2,0,0,12,0,0

TIGER

0,0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,8,192,0 63,225,224,95,255,240,255 255,248,127,755,244,159,25 244,7,255,244,1,255,244 2,248,250,3,96,221,3 96,102,5,192,102,13,128 204,0,0,0,0,0,0

BUFFALO

0,0,0,0,0,0,0 0,0,0,0,24,0,112 4,0,240,2,1,248,241 11,255,249,255,255,254,63 255,252,35,255,252,143,255 252,31,255,248,25,254,248 16,252,124,0,248,152,0 208,36,0,144,68,1,32 132,2,33,3,0,0,0

BROWN BEAR

1,32,0,0,192,0,1 224,0,2,240,0,7,240 0,1,248,0,2,252,0 0,254,0,3,191,0,7 255,0,6,111,0,6,111 128,0,31,128,0,127,128 0,127,128,0,127,128,0 127,128,0,119,0,0,99 0,0,99,0,0,231,0

RABBIT

0,0,0,0,8,0,0 9,0,0,9,0,0,10 0,7,12,0,15,222,0 31,253,0,63,255,128,63 254,0,127,248,0,158,240 0,14,96,0,4,128,0 7,0,0,2,240,0,4 0,0,8,0,0,0,0 0,0,0,0,0,0,0

LION

0,0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,30,0,0,11,0,0 63,193,224,95,223,240,255 223,248,127,223,244,159,12 244,14,255,244,13,255,244 11,252,244,7,227,122,12 193,105,24,193,140,24,195 12,12,195,12,1,134,24

CAMEL

8,0,0,66,48,192,220 113,192,752,113,192,28,251 224,28,251,224,29,255,240 61,295,220,03,255,252,03 255,252,31,255,250,15,227 250,3,193,250,1,193,112 3,128,174,2,128,80,2 128,80,2,128,80,2,128 80,2,128,80,5,128,176

RABBIT

0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,0,3,120,0,0,112 13,240,28,3,254,58,3 255,255,1,255,252,1,255 224,15,207,128,27,193,192 32,0,48,192,0,8,0 0,6,0,0,0,0

POLAR BEAR

0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,63,128,0,127,224,0 255,252,0,255,255,16,255 255,252,255,255,251,355,251 255,255,255,254,255,255,26 255,755,724,127,253,224,12 60,248,120,60,120,56,28 6,56,28,0,60,30,0

CROCODILE

0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,3,0,0,133,131,224 255,207,240,31,255,240,25° 255,252,3,255,254,0,252 255,0,96,63,3,224,19 0,0,266,0,0,12,0 0,120,0,1,192,0,0 0,0,0,0,0,0,0

SCORPION

0,0,0,2,4,0,25 9,0,60,146,64,108,146 240,196,84,190,136,85,159 128,45,140,192,219,7,226 219,128,126,219,192,62,219 192,2,219,128,0,219,7 0,45,140,0,85,159,0 84,190,0,146,240,0,146 64,1,9,0,2,4,0

PIG

0,0,0,0,0,0,0,0 0,0,64,0,0,163,252 0,71,254,0,175,255,24 31,255,144,63,255,160,63 255,224,63,255,254,63,255,254 31,255,254,15,255,248,13 247,6,6,6,0,6,4 0,2,4,0,1,2,0

CAT

0,0,0,0,0,0,0 0,0,0,0,0,3,0 0,4,128,0,8,64,0 8,40,0,8,16,0,10 0,0,15,0,0,7,128 0,15,202,0,15,239,0 15,253,128,7,255,128,15 255,0,12,62,0,11,191 192,8,28,0,7,15,128

SOUIRREL

0,0,56,36,0,124,8 0,252,56,1,254,92,3 254,252,7,255,254,7,239 31,135,231,31,227,227,15 243,243,15,249,242,63,253 242,39,253,244,33,252,240 3,254,240,7,254,224,7 255,192,7,255,192,0,255 0,3,254,0,15,248,0

MOUSE

8,16,128,4,9,0,2 13,0,2,7,0,4,3 226,8,3,220,16,7,248 32,15,240,32,31,226,32 31,244,32,63,250,32,63 252,48,127,248,24,127,240,6 127,2240,12,127,240,6 127,224,3,63,224,3,255 192,1,255,128,0,31,224

CAT

0,6,0,0,24,0,0 96,0,0,64,0,1,192 0,1,0,0,1,0,0 1,240,80,0,254,120,1 255,236,13,255,248,17,255 484,47,207,0,27,129,196 32,0,48,64,0,8,0 0,0,0,0,0,0,0

SKUNK

0,0,30,0,0,51,0 0,97,0,0,193,0,0 221,0,0,213,0,0,219 0,0,106,0,0,56,0 0,28,0,15,156,0,124 204,12,192,44,51,0,24 80,62,48,252,255,224,15 255,240,3,248,240,1,128 112,1,0,16,2,0,32

FROG

0,0,1,131,0,30,15,
128,49,135,192,96,15,
192,156,240,192,216,24,
112,123,250,32,63,252,0
31,252,07,252,0,31
252,32,63,252,112,123,25,
216,241,224,156,240,192,
224,192,135,192,96,135,1
49,131,0,30,0,0,1

CAT

0,0,0,0,0,0,0 0,0,2,0,0,5,0 0,1,0,0,1,0,0 2,5,0,4,7,128,8 6,128,8,7,192,4,3 128,3,255,0,0,255,0 0,127,0,0,126,0,0 222,0,0,203,0,1,169 128,1,44,192,1,182,96

BUGS AND SNAILS

WASP

0,1,224,0,6,24,0 8,6,0,16,1,0,112 2,12,246,12,157,249,240 175,254,0,175,253,192,121 203,160,50,167,112,18,162 232,4,179,220,9,17,186 1,16,246,2,16,237,4 32,123,8,32,63,0,64 15,0,128,2,1,0,4

ANT

0,0,0,8,0,0,6 0,1,129,240,2,96,8 4,24,8,121,7,200,130 0,41,28,3,154,32,7 223,112,15,255,224,7,223 112,3,154,32,0,41,28 7,200,130,24,8,121,96 8,4,129,240,2,6,0 1,8,0,0,0,0,0

BUTTERFLY

96,0,12,248,130,62,206
68,230,219,41,182,209,17
22,81,187,20,118,186,220
41,215,40,57,57,56,22
56,208,24,186,48,15,255
224,2,56,128,15,255,224
24,186,48,50,146,152,53
147,88,51,147,152,25,17
48,15,1,224,6,0,192

SPIDER

4,0,64,2,0,128,2 0,128,67,41,132,33,17 8,17,57,16,17,187,16 28,214,112,7,57,192,1 255,0,0,56,0,3,255 128,14,124,224,25,255,48 19,125,144,34,56,136,34 16,136,36,0,72,4,0 64,8,0,32,8,0,32

CRICKET

0,0,0,0,0,0,0,0 0,0,8,0,0,12,0 0,14,0,0,11,0,1 9,128,2,8,221,236,11 110,184,43,110,188,107,186 236,235,183,228,235,245,16 107,132,32,8,4,16,8 4,8,16,8,4,32,16 3,64,0,0,0,0,0,0

DRAGONFLY

0,56,0,112,56,28,140 0,98,131,57,130,96,254 12,24,56,48,7,255,192 3,125,128,12,146,96,16 186,16,33,17,8,67,17 132,76,16,100,48,16,24 0,16,0,0,16,0,0 16,0,0,16,0,0,16

SNAIL

0,1,192,0,3,240,0 7,248,0,15,252,0,30 62,0,29,223,0,61,239 0,59,231,0,123,55,0 122,166,0,246,238,32,246 220,145,247,60,81,239,248 51,239,248,115,239,240,252 223,192,127,0,64,31,255 128,7,255,224,3,255,252

FLY

0,4,128,0,9,48,128 18,76,64,99,132,32,158 4,28,184,8,2,240,16 57,254,32,127,213,192,255 148,192,63,255,192,255,148 192,127,213,192,57,254,32 2,240,16,28,184,8,32 158,4,64,99,132,128,18 76,0,9,48,0,4,128

DRAGONFLY

7,0,0,8,128,0,8 64,0,8,32,0,4,16 0,10,8,0,9,132,0 4,98,0,3,26,0,0 197,0,0,59,0,0,7 192,0,15,236,0,63,252 0,249,192,1,130,160,2 5,32,4,9,16,8,8 136,16,8,64,32,8,0

PELICAN

15,231,240,30,0,120,31 231,248,92,0,58,92,0 58,92,66,50,76,255,34 167,255,229,147,255,201,143 255,241,71,255,226,63,255 252,7,255,224,63,255,252 67,255,194,141,255,177,144 126,9,160,0,5,160,0 5,16,0,8,8,0,16

SWAN

0,0,2,0,0,14,0 0,62,0,0,126,0,0 254,0,1,254,0,15,255 0,255,255,3,255,255,13 250,191,63,250,191,127,250 191,255,58,191,252,254,191 115,255,255,3,255,254,0 31,240,0,3,240;0,0 240,0,0,48,0,0,0

EAGLE

0,4,192,0,9,0,0 18,96,0,148,158,1,85 48,2,85,62,98,86,113 224,46,198,240,127,152,127 255,224,127,255,192,127,255 224,240,127,152,224,46,198 98,86,113,2,85,62,1 85,48,0,148,158,0,18 96,0,9,0,0,4,192

OWL

0,0,120,0,0,246,0 1,255,0,1,254,0,3 254,0,3,243,0,7,241 0,15,225,0,63,225,31 255,225,127,255,242,255,255 242,255,255,244,255,255,240,255 249,216,249,243,216,252,3 220,126,3,140,31,143,135

DUCK

0,0,0,0,0,0,0 0,3,0,0,6,0,0 12,0,0,28,240,8,56 255,152,120,255,252,240,255 255,224,255,255,224,255,254 240,255,236,112,254,4,56 224,0,12,0,0,0,0 0,0,0,0,0,0,0

DUCK AND DUCKLINGS

0,6,0,0,15,0,1 247,128,7,251,128,15,253 2,31,254,6,61,255,78 126,255,158,119,127,252,63 127,248,223,127,252,126,127 254,126,255,174,57,255,70 31,254,198,15,253,130,3 251,128,0,240,0,0,24 0,0,0,0,0,0,0

COCKEREL

0,0,0,0,0,0,0,0 0,55,0,0,127,0,0 126,0,0,252,0,1,248 0,3,240,0,15,240,0 127,240,3,255,240,31,255 248,63,255,248,127,255,248 255,255,248,255,255,244,253 255,244,252,56,246,127,0 238,63,129,199,31,199,129

DUCK

0,24,0,0,60,0,0 60,0,0,126,0,0,125 0,0,126,0,0,126,0 120,90,30,78,255,114,195 255,195,155,255,217,166,126 101,161,255,133,166,36,101 164,230,37,164,129,37,180 145,37,146,74,105,81,36 106,8,144,144,4,77,32

PENGUIN

3,224,0,6,28,0,11 254,0,23,253,0,47,15 0,94,2,130,124,1,65 248,1,194,216,0,196,232 0,164,244,0,228,122,0 230,63,0,162,31,193,194 15,113,194,7,131,134,2 243,140,0,3,24,0,3 176,0,1,224,0,0,128

SEA CREATURES

CRAB

0,224,0,1,223,255,1 240,0,1,255,255,0,227 254,0,112,254,0,56,28 15,158,0,31,207,128,63 247,192,63,255,224,127,255 240,127,255,240,127,255,240 255,255,240,255,255,240,255 207,224,195,135,192,129,0 0,1,24,0,7,244,0

WALRUS

0,16,64,0,15,128,0 18,64,0,45,160,0,45 160,0,34,32,0,18,64 0,56,192,0,119,64,0 248,224,1,247,96,3,240 96,7,224,96,7,224,192 15,128,128,14,1,0,28 14,0,21,178,0,38,66 0,12,231,0,0,148,128

SEAL

0,1,160,0,3,192,0 2,224,0,0,160,3,129 240,3,199,192,7,227,176 15,231,176,31,255,128,31 191,192,31,233,224,31,223 96,29,231,96,25,248,224 8,255,192,0,63,128,0 15,0,0,4,0,0,4 0,0,4,0,0,11,0

SHARK

3,128,0,5,192,0,31 224,0,1,224,0,0,96 0,0,225,128,1,195,0 3,143,192,7,31,0,14 63,224,28,127,128,56,255 112,121,255,128,255,284,127 255,247,252,254,18,240,255 255,224,255,255,2192,61,255 128,31,255,0,15,254,0

0,0,0,0,0,0,0 248,56.3,255,244,31,255 255,63,254,56,127,252,0 255,248,0,7,248,0,29 240,0,1,740,0,3,240 0,3,240,0,3,240,0 1,224,0,1,224,0,1 224,0,0,224,0,0,96 0,0,32,0,0,0,0

OCTOPUS

0,0,0,0,128,0,1 128,0,3,128,0,7,192 0,15,192,0,15,192,0 15,192,0,15,224,0,15 224,0,7,240,0,7,240 0,3,248,56,3,255,244 31,255,255,63,254,56,127 252,0,255,240,0,3,192 0,14,0,0,0,0,0

LOBSTER

0,36,0,0,40,8,0 118,18,0,248,20,0,246,60,0,248,112,0,244,254 1,249,248,11,243,254,1 231,240,1,239,252,15,255 224,31,255,144,33,254,0 0,252,0,0,254,0,0 127,128,0,255,224,1,7 192,7,7,128,8,128,0

PIRANHA

0,0,0,0,0,0,0 0,0,0,0,48,0,0 108,0,0,112,0,0,112 0,0,56,0,0,28,0 0,14,0,0,254,16,67 18,40,172,34,48,200,66 16,79,132,8,36,8,121 227,240,138,33,176,243,195 16,32,130,24,81,67,12

MORAY EEL

0,112,0,0,184,0,1 248,0,0,108,0,0,44 0,0,70,0,0,70,0 0,79,0,0,63,0,0 255,0,1,255,0,3,131 0,2,67,0,4,67,0 0,67,0,0,35,0,0 35,0,0,19,0,0,119 0,0,11,0,0,56,128

CHARACTERS

SHERRIFF

0,60,0,0,126,0,1 255,128,0,126,0,0,126 0,0,126,0,0,60,0 7,129,224,9,0,144,18 0,72,36,0,36,72,0 18,144,0,9,255,255,224,3 231,192,1,231,128,3,231 192,7,231,224,7,231,224

HUNCHBACK

0,0,0,0,3,128,0 7,0,0,55,64,0,78 32,0,132,64,1,16,64 3,161,128,3,207,0,3 158,192,3,158,64,1,143 192,0,206,0,0,126,0 0,191,0,1,223,0,3 239,128,3,135,144,1,131 240,1,129,240,0,192,192

DWARF

0,248,0,11,240,0,7 232,0,1,196,0,0,72 0,0,32,0,0,72,0 0,204,0,0,204,0,0 204,0,0,66,0,0,162 0,0,156,0,0,132,0 0,68,0,0,76,0,0 80,0,0,112,0,0,112

SHERRIFF

0,7,128,0,15,192,0 63,240,0,14,128,0,12 64,0,8,140,0,4,148 0,4,100,0,10,24,0 20,136,0,9,4,0,18 2,64,20,2,132,23,254 134,20,30,255,7,252,255 3,248,252,1,240,68,0 224,170,0,248,145,0,184

HUNCHBACK

0,0,0,0,3,128,0 7,0,0,55,64,0,78 32,0,132,64,1,16,64 3,149,128,3,213,0,3 246,0,3,246,0,1,246 0,0,246,0,0,246,0 0,252,0,0,124,0,0 120,0.0,112,0,0,112 0,0,122,0,0,92,0

DWARF

0,248,0,11,240,0,7 232,0,1,196,0,0,72 0,0,32,0,0,72,0 0,204,0,0,204,0,0 204,0,0,66,0,0,34 0,0,92,0,0,68,0 0,70,0,0,138,0,1 18,0,3,235,64,1,135 192,1,131,128,0,193,0

SHERRIFF

0,7,128,0,15,192,0 63,240,0,14,128,0,12 64,0,8,128,0,4,128 0,5,96,0,10,144,0 18,136,0,18,132,0,18 130,128,10,130,132,6,254 134,14,252,255,23,248,255 59,240,252,60,249,68,24 127,170,24,62,145,12,24

HUNCHBACK

0,0,0,0,3,128,0 7,0,0,55,64,0,78 32,0,132,64,1,16,64 3,149,128,3,240,128,1,255 128,0,254,0,0,125,0 0,251,0,1,247,0,3 239,128,3,135,144,1,131 240,1,129,240,0,192,192

DWARF

0,248,0,3,240,0,7 232,0,9,196,0,0,72 0,0,33,128,0,78,128 0,152,128,1,63,0,1 60,0,0,156,0,0,72 0,0,56,0,0,72,0 0,68,0,0,164,0,1 18,0,3,235,64,1,135 192,1,131,128,0,193,0

SHERRIFF

0,7,128,0,15,192,0 63,240,0,14,128,0,12 64,0,8,128,0,4,128 0,5,96,0,10,144,0 18,136,0,18,68,0,17 34,64,8,146,132,7,78 134,15,188,255,31,248,255 63,240,252,60,233,68,24 95,170,24,62,145,12,24

HUNCHBACK

0,3,128,0,7,0,0 55,64,0,78,32,0,244 64,1,128,64,3,153,128 3,166,0,3,174,192,3 222,64,0,255,192,3,127 0,7,191,128,31,223,226 63,231,254,56,0,252,24 0,48,24,0,0,12,0 0,0,0,0,0,0,0

CHARLIE CHAPLIN

0,48,0,0,121,192,0 253,64,0,105,0,0,68 128,0,72,192,0,33,160 0,127,144,0,255,136,1 255,4,1,252,2,0,156 1,0,120,0,0,120,0 0,124,0,0,188,0,1 222,0,3,239,64,1,135 192,1,131,128,0,193,0

SHERRIFF

0,0,16,7,128,32,14 0,96,14,128,240,12,65 224,8,134,64,4,138,0 5,114,0,10,148,0,18 136,0,18,68,0,17,34 0,8,154,0,7,78,0 15,190,0,7,252,0,3 248,0,1,240,0,0,224 0,0,248,0,0,184,0

HUNCHBACK

0,0,0,0,56,0,0 124,0,0,124,0,3,131 128,4,130,64,8,130,32 10,130,160,11,255,160,11 255,160,11,255,160,11,255 160,19,255,114,9,255,32 1,255,0,1,239,0,1 239,0,1,239,0,0,238 0,1,239,0,3,171,128

CHARLIE CHAPLIN

0,48,0,0,120,0,0 252,0,0,104,0,0,68 0,0,72,0,0,32,0 0,120,0,0,120,128,0 125,64,0,126,64,0,122 128,0,120,0,0,112,0 0,112,0,0,112,0 240,0,1,112,0,2,96 0,0,120,0,0,92,0

SHERRIFF

0,60,0,0,126,0,1 255,128,0,102,0,0,90 0,0,66,0,0,126,0 7,153,224,9,60,144,18 126,72,36,126,36,72,60 18,144,24,9,255,231,255 15,255,240,7,255,224,3 231,192,1,231,128,3,231 192,7,231,224,7,231,224

HUNCHBACK

0,0,0,0,56,0,0 68,0,0,40,0,3,147 128,4,186,64,8,130,32 10,130,160,11,255,160,11 255,160,11,255,160,11,255 160,19,255,144,9,255,32 1,255,0,1,239,0,1 239,0,1,239,0,0,238 0,1,239,0,3,171,128

CHARLIE CHAPLIN

0,48,0,0,120,0,0 252,0,0,104,0,0,68 0,0,73,192,0,33,64 0,121,0,0,252,128,1 254,192,3,247,160,7,123 144,6,120,8,0,124,4 0,124,2,0,250,1,1 246,0,3,239,64,1,135 192,1,131,128,0,193,0

DINOSAURS

TYRANNOSAURUS

0,0,224,0,1,208,0 1,248,0,3,204,0,3 244,0,3,200,0,3,192 0,2,224,0,6,120,0 7,224,0,15,224,0,31 224,0,29,240,128,61,240 64,59,248,96,123,248,48 247,184,25,255,48,15,244 32,7,48,16,2,80,28

STEGOSAURUS

0,15,0,0,31,128,0 31,128,1,223,184,1,198 56,1,223,184,0,63,192 6,127,230,6,255,246,1 255,248,11,255,250,7,255 124,23,254,254,13,253,255 94,255,239,248,221,134,128 193,140,1,195,152,0,129 12,0,0,6,0,0,1

TYRANNOSAURUS

0,7,0,0,11,128,0 31,128,0,51,192,0,47 192,0,19,192,0,3,192 0,2,232,0,6,112,0 7,224,0,15,224,0,31 224,0,29,240,0,61,240 0,59,248,0,123,248,128 247,184,65,255,48,99,244 32,63,48,16,28,80,28

ALLOSAURUS

0,0,27,0,0,63,0 120,0,0,56,0,0 120,0,0,240,0,1,152 0,3,216,0,7,215,0 15,240,0,31,236,0,63 240,0,127,248,1,252,124 135,195,12,127,30,6,0 56,6,0,64,6,0,128 2,1,0,2,1,0,3

BRONTOSAURUS

0,0,3,0,0,7,0 0,15,0,0,63,0,0 255,0,1,255,0,3,255 0,7,255,0,15,255,0 31,255,208,61,255,248,127 255,29,248,255,15,224,63 7,192,31,0,0,14,0 0,12,0,0,28,0,0 24,0,0,56,0,0,113

240,0,0,248,0,0,254 0,0,255,0,0,255,128 0,255,192,0,255,224,0 255,240,0,255,248,0,255 252,6,255,254,9,255,255 16,255,255,16,255,255,136 255,255,204,255,255,198,14 127,227,199,3,243,195,24 127,195,24,62,135,48,28

ICHTHYOSAURUS

0,254,0,0,127,0,0 63,192,0,127,96,0,223 176,1,191,216,3,127,248 2,255,248,7,225,732,7 131,120,15,3,56,14,4 4,12,0,2,8,0,1 8,0,0,8,0,0,28 0,0,52,0,0,99,0 0,65,0,0,128,128,0

ALLOSAURUS

0,0,27,0,0,63,0 0,62,0,0,56,0,0 120,0,0,240,0,1,152 0,3,120,0,7,116,0 15,115,0,30,224,0,63 208,0,127,184,1,255,124 135,206,12,127,30,12,0 56,12,0,64,12,0,64 4,0,64,4,0,32,2

PTERANODON

254,0,0,15,128,0,7 192,0,3,224,0,1,240 0,0,249,221,0,124,112 0,62,224,0,63,128,0 63,128,0,223,192,0,31 192,0,103,224,0,1,224 0,0,112,0,0,48,0 0,48,0,0,16,0,0

SPOOKS AND SPECTRES

SPIDER

0,126,0,64,255,2,161 255,133,151,189,233,143,102 241,134,255,97,62,231,124 71,255,226,139,255,209,146 189,73,164,126,37,168,153 21,40,153,20,40,126,20 40,60,20,40,24,20,72 36,18,8,66,16,8,36 16,16,0,8,0,0

SPECTRE

56,0,0,68,112,0,35 255,248,193,255,254,50,255 255,12,127,63,24,94,63 0,80,51,0,208,230,33 145,132,17,51,4,147,98 12,110,66,8,16,131,12 97,1,4,30,1,6,6 1,130,26,0,131,4,3 129,8,5,7,0,5,9

BAT

0,0,0,0,0,0,0,0 0,0,0,0,0,0,0 0,4,0,32,14,0,112 31,36,248,63,165,252,103 165,230,147,255,201,3,219 192,5,255,160,1,126,128 0,231,0,0,219,0,0 66,0,0,195,0,1,36 128,0,0,0,0,0,0

WITCH

8,0,240,8,3,240,8 7,152,28,15,248,28,31 196,127,63,184,34,127,120 67,255,204,39,255,242,31 255,156,39,255,232,7,255 240,13,254,0,25,62,0 49,62,15,35,126,48,110 127,127,255 255,240,80,63 127,0,9,48,0,24,15

SPOOK

48,60,12,120,126,30,124 255,62,255,255,255,255,255 255,255,189,255,239,24,247 199,90,227,207,126,243,143 255,241,159,126,249,31,36 248,31,129,248,63,231,252 63,255,252,63,255,252,127 255,254,127,221,254,245,204 223,164,136,85,164,136,85

BAT

128,0,1,64,0,2,96 0,6,48,0,12,56,0 28,92,0,58,30,0,120 15,36,240,15,165,240,23 165,232,3,255,192,3,219 192,5,255,160,1,126,128 0,231,0,0,19,0,0 66,00,195,0,1,36 128,0,0,0,0,0

BLACK CAT

0,0,6,0,0,9,0 60,1,66,126,2,36,255 2,61,255,132,91,255,196 127,255,232,103,255,240,63 227,240,3,225,240,3,97 176,3,97,176,3,96,144 3,96,216,232,216,2 32,72,2,32,72,2,32 72,4,16,72,4,16,36

SPOOK

0,60,0,0,126,0,0 255,0,1,255,128,3,255 192,7,189,224,7,24,224 7,90,224,15,126,240,15 255,240,31,255,248,31,231 248,31,129,248,63,36,252 63,126,252,63,255,252,127 255,254,127,221,254,245,204 223,164,136,85,164,136,85

PAT

0,8,0,0,4,0,0 12,0,0,30,0,0,14 0,0,31,0,0,63,0 0,31,0,0,15,0,0 31,0,0,63,0,0,127 0,0,63,32,0,31,64 0,14,192,0,63,150,0 255,192,3,254,128,15,248 64,0,12,0,0,2,0

GAMES SYMBOLS

BANANA

0,1,192,0,1,255,0 0,127,0,0,54,0,0 80,0,0,208,0,0,208 0,1,176,0,1,160,0 3,96,0,3,96,0,6 224,0,14,192,0,61,192 0,123,128,1,231,128,15 223,0,126,62,0,129,252 0,127,224,0,15,128,0

PINEAPPLE

0,16,0,0,214,0,1 125,0,0,56,0,1,255 0,2,124,128,4,56,64 0,68,0,0,170,0,1 17,0,2,170,128,2,68 128,2,170,128,3,17,128 2,170,128,2,68,128,1 171,0,1,17,0,0,170 0,0,198,0,0,124,0

CHERRIES

0,8,0,0,16,0,0 16,0,31,39,128,63,175 224,127,255,240,63,167,192 31,80,0,0,136,0,1 4,0,2,3,192,2,3 32,7,7,48,12,143,248 28,207,248,63,239,248,63 231,240,63,227,224,31,193 192,15,128,0,7,0,0

APPLE

0,64,0,0,32,0,3 147,224,15,215,240,31,255 192,7,151,0,0,16,0 3,215,128,7,215,192,15 254,96,15,254,96,15,255 224,15,255,224,15,255,224 7,255,192,7,255,192,3 255,128,3,255,128,1,255 0,1,255,0,0,238,0

PEAR

0,15,0,0,63,132,0 255,196,0,63,232,0,31 16,0,0,40,0,3,204 0,63,238,15,225,238,24 15,239,57,255,239,121,255 207,127,255,135,255,254,3 255,248,3,255,248,1,255 240,0,127,224,0,63,224 0,31,192,0,7,128,0

STRAWBERRY

0,32,0,0,16,0,0 16,0,1,255,0,3,255 128,7,111,192,15,255,224 29,189,176,31,239,240,30 254,176,27,219,240,31,255 112,13,111,224,15,251,96 6,223,192,7,251,192,3 127,128,1,239,0,0,254 0,0,124,0,0,56,0

SPADE

0,16,0,0,16,0,0 56,0,0,56,0,0,124 0,0,124,0,0,254,0 1,255,0,3,255,128,7 255,192,15,255,224,31,255 240,63,255,248,63,215,248 63,147,248,31,57,240,14 56,224,4,124,64,0,124 0,0,254,0,1,255,0

CLUB

0,56,0,0,124,0,0 254,0,1,255,0,1,255 0,1,255,0,0,254,0 0,124,0,7,125,192,15 57,224,31,187,240,63,255 248,63,255,248,63,215,248 31,147,240,15,57,224,7 57,192,0,124,0,0,124 0,0,254,0,1,255,0

BELL

0,24,0,0,126,0,0 249,0,1,240,128,3,240 64,7,224,32,7,224,32,7,224,32,7,224,32,7,224,32,7,224,32,7,224,32,7,224,32,7,224,32,15,192,16,31,128,8,31,128,8,31,255,248,0 52,0,0,52,0,0,24

GAMES SYMBOLS

DIAMOND

0,16,0,0,16,0,0 56,0,0,56,0,0,124 0,0,124,0,0,254,0 1,255,0,3,255,128,7 255,192,15,255,224,7,255 192,3,255,128,1,255,0 0,254,0,0,124,0,0 124,0,0,56,0,0,56 0,0,16,0,0,16,0

HEART

3,1,128,7,131,192,15 199,224,31,199,240,63,239 248,63,239,248,63,255,248 63,255,248,31,255,240,15 255,224,7,255,192,3,255 128,1,255,0,0,254,0 0,254,0,0,124,0,0 124,0,0,56,0,0,56 0,0,16,0,0,16,0

JOKER

0,60,0,0,195,224,1 64,48,2,36,76,4,31 76,4,31,224,12,223,144 29,57,136,62,16,132,126 68,130,126,170,226,118,0 94,100,0,67,68,40,67 196,16,64,194,130,128,2 108,128,1,17,0,0,130 0,0,68,0,0,56,0

PAWN

0,0,0,0,48,0,0 120,0,0,236,0,0,244 0,0,244,0,0,252,0 0,120,0,0,48,0,0 120,0,0,244,0,0,120 0,0,120,0,0,244,0 1,250,0,3,253,0,7 241,128,7,251,128,3,255 0,7,249,128,15,255,192

KNIGHT

0,8,0,0,56,0,0 220,0,1,250,0,3,249 0,0,253,0,1,61,0 0,121,0,1,250,0,3 242,0,3,228,0,1,252 0,0,120,0,1,238,0 1,250,0,3,253,0,7 241,128,7,251,128,3,255 0,7,249,128,15,255,192

KING

0,120,0,0,180,0,0 252,0,0;252,0,6,181 128,15,51,192,15,255,192 15,255,192,7,255,128,3 255,0,1,250,0,3,253 0,1,250,0,1,250,0 1,250,0,3,253,0,7 241,128,7,251,128,3,255 0,7,249,128,15,255,192

ROOK

0,0,0,0,0,0,6 205,128,6,205,128,7,243 128,7,241,128,1,254,0 1,250,0,3,243,0,1 250,0,1,250,0,1,250 0,1,250,0,1,250,0 1,250,0,1,250,0 1,250,0,3,253,0,7 241,128,7,251,128,3,255 0,7,249,128,15,255,192

BISHOP

0,48,0,0,48,0,0 120,0,0,252,0,0,124 0,1,58,0,3,157,0 3,191,0,3,255,0,1 254,0,0,252,0,0,120 0,1,254,0,0,252,0 1,254,0,3,253,0,7 241,128,7,251,128,3,255 0,7,249,128,15,255,192

QUEEN

2,49,0,7,123,128,2 49,0,1,122,0,3,255 0,1,254,0,3,255,0 1,250,0,1,250,0,0 244,0,0,244,00,244,0 1,254,0,3,253,0,7 241,128,7,251,128,3,255 0,7,249,128,15,255,192

GAMES SYMBOLS

SKULL AND CROSSBONES

112,0,14,208,0,11,144 0,9,232,255,23,21,129 168,11,0,208,6,0,96 2,0,64,2,0,64,2 231,64,2,231,64,2,0 64,1,24,128,3,0,192 5,219,160,10,189,80,20 129,40,232,66,23,144,60 9,208,0,11,112,0,14

ARROW

0,8,0,0,20,0,0 34,0,0,65,0,0,128 128,1,0,64,2,0,32 4,0,16,15,0,120,31 0,112,63,0,96,7,0 64,7,0,64,7,0,64 7,0,64,7,0,64,7 0,64,7,0,64,7,255 192,7,255,128,7,255,0

PENCIL

0,1,128,0,2,64,0 4,32,0,12,16,0,30 8,0,59,4,0,119,130 0,238,194,1,221,228,3 187,184,7,119,112,14,238 224,21,221,192,19,187,128 17,119,0,16,238,0,16 92,0,24,56,0,78,16 0,31,224,0,0,0,0

POINTING HAND

0,0,0,0,0,0,0 0,0,127,255,0,128,0 195,128,96,111,115,130,27 14,4,11,2,24,11,3 228,11,1,4,11,1,26 11,0,226,11,0,77,11 0,49,11,0,38,27,0 24,107,0,7,143,0,0 3,0,0,0,0,0,0

ARROW

0,2,0,0,7,0,0 14,128,63,254,64,96,0 32,224,0,16,224,0,8 224,0,4,224,0,2,224 0,1,224,0,2,224,0 4,224,0,8,224,0,16 224,0,32,255,254,64,255 254,128,255,255,0,0,14 0,0,12,0,0,8,0

PAINTBRUSH

0,28,0,0,58,0,0 50,0,0,50,0,0,50 0,0,50,0,0,20,0 0,20,0,1,255,192,2 0,32,2,0,32,2,0 32,2,170,160,1,85,64 2,170,160,1,85,64,3 255,224,3,255,224,7,255 192,7,255,192,15,255,128

PALM TREE

7,208,240,15,225,192,28 243,248,56,55,224,99,190 120,79,252,60,159,255,26 60,63,205,120,119,228,113 211,196,195,145,226,135,16 160,134,144,32,70,16,16 2,48,15,4,48,0,0 96,00,224,0,1,192 0,7,128,0,15,128,0

ARROW

0,0,0,0,0,0,0 248,219,1,241,182,3,227 108,7,198,216,15,141,176 31,27,96,62,54,192,124 109,128,255,255,224,124,109 128,62,54,192,31,27,96 15,141,176,7,198,216,3 227,108,1,241,182,0,248 219,0,0,0,0,0,0

SHAMROCK

1,199,0,3,199,128,3 239,128,7,239,192,31,239 240,63,239,248,63,239,248 31,255,240,15,255,224,0 124,0,15,255,224,31,255 240,63,239,248,63,215,248 31,215,240,7,147,192,3 147,128,3,33,128,1,33 0,0,64,0,0,64,0

MATCHSTICK MEN

HORSE AND JOCKEY

0,0,0,0,0,0,0 0,0,0,192,0,8,240 0,28,56,0,62,220,0 127,140,0,7,211,128,3 233,224,1,245,208,1,255 200,3,255,228,15,131,98 22,0,184,40,0,72,80 0,36,160,0,18,32,0 1,0,0,0,0,0,0

TROLLEY

0,0,12,0,0,12,3 0,132,3,1,76,4,6 60,12,24,12,28,96,4 54,152,12,49,24,20,40 24,36,72,60,34,136,60 33,204,126,97,255,255,255 243,255,207,140,0,49,18 0,72,45,0,180,45,0 180,18,0,72,12,0,48

BMX RIDER

0,56,0,0,40,0,0 16,0,0,198,0,1,147 0,3,57,128,0,56,0 7,69,192,0,56,0,0 22,0,0,22,0,0,198 0,0,214,0,0,214,0 0,208,0,0,214,0,0 56,0,0,208,0,0,16 0,0,16,0,0,16,0

HORSE AND JOCKEY

0,0,0,0,0,0,0 192,0,0,240,0,8,60 0,28,92,0,62,200,0 127,147,128,7,233,192,3 245,224,3,255,208,1,251 208,0,241,135,1,193,72 1,33,64,0,146,128,0 69,0,0,42,0,0,4 0,0,0,0,0,0,0

TROLLEY

48,0,0,48,0,0,33 0,192,50,128,192,60,96 32,48,24,48,32,6,56 48,25,108,40,24,140,36 24,20,68,60,18,132,60 17,134,126,51,255,255,255 243,255,207,140,0,49,18 0,72,45,0,180,45,0 180,18,0,72,12,0,48

BMX RIDER

0,56,0,0,40,0,0 16,0,0,198,0,1,147 0,3,57,128,0,56,0 7,69,192,0,56,0,0 208,0,0,208,0,0,198 0,0,214,0,0,214,0 0,22,0,0,214,0,0 56,0,0,22,0,0,16 0,0,16,0,0,16,0

CHARIOT

0,0,0,0,2,0,0 28,0,0,32,0,24,64 0,25,128,0,18,0,0 58,0,8,94,0,28,152 0,62,152,0,127,16,127 248,28,255,240,61,255,240 62,255,224,126,227,192,78 96,240,180,33,16,180,82 32,72,40,64,48,20,128

FROGMAN

0,0,1,0,0,10,0 0,4,0,0,16,0,0 8,0,0,16,0,0,0 0,7,192,0,10,32,16 10,112,143,7,248,65,15 248,32,159,180,28,120,131 6,48,128,3,96,64,1 192,32,0,128,16,0,0 0,0,0,0,0,0,0

MAN IN BOAT

0,0,0,0,0,0,0,0 24,0,0,60,0,0,24 0,0,24,0,0,0 0,126,0,0,195,0,1 255,128,1,129,128,3,60 192,3,60,192,4,207,32 11,15,208,28,15,248,40 15,244,68,15,226,132,15 225,2,15,192,2,15,192

ROUTINES CHECKLIST

The table shown below gives a summary of all the machine-code routines used in this book. This table does not explain every detail of using each routine; it is intended only as an aid when using the routines in your

programs. If you have not used a routine before, it is recommended that you read the introduction to the routine on the appropriate page of the book before using it in your program.

bage	routine	parameters			co-ordinates
	sprite buffer		9		
13	24 x 21 sprite editor	Fna ()-e()			character
15	sprite print	FNf(x,y,n)	x,y	print position	_
16	master sprite				
17	sprite handling	FNg(x,y,d,l,s,c,n)	x,y	start co-ordinates	pixel
			d	direction	<u> </u>
			1	distance to be moved	pixel x 3
			S	switch	_
			С	collision flag	
			n	sprite number	
21	keyboard-controlled sprite	FNh(s,x,y,c,n)	S	switch	
		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	x,y	start co-ordinates	pixel
			c	collision flag	Piner
			n	sprite number	
	interrupt vector table		**	spirite number	
22	double horizontal sprite	FNi(x,y,d,l,s,c,n)	x,y	start co-ordinates	pixel
	as a sie norman oprite	* * * (A) ; (A); (5)(5)(1)	d	direction	pixei
			I	distance to be moved	pixel x 3
				distance to be moved	pixei x 3
			s	switch	
				collision flag	
			c	sprite number	
23	double vertical sprite	FNj(x,y,d,l,s,c,n)	n		
23	dodole vertical sprite	FINJ(X,y,Q,I,S,C,II)	x,y	start co-ordinates	pixel
			d l	direction	-
			1	distance to be moved	pixel x 3
				* 1	
			S	switch	
			c	collision flag	-
25	sprite animation	TNE / 11 C	n	sprite number	
23	sprite animation	FNk (x,y,d,l,s,f,c,v,n)	x,y	start co-ordinates	pixel
			d	direction	
			1	distance to be moved	pixel x 3
			S	switch	-
			f	number of frames	
			C	collision flag	
			v	animation speed	
20		TS 11 42 45	n	sprite number length of scroll	5 - 0
29	horizontal scroll	FN1 (1,d)	1	length of scroll	pixel
20			d	direction	
29	vertical scroll	FNm(1,d)	1	length of scroll	pixel
21		***	d	direction	
31	window	FNn(x,y,l,n,d,r)	x,y	start co-ordinates	character
			1	width of window	character
			n	sprite number	_
			d	direction	
			Г	repeat flag	=
33	interrupt-driven window	FNo(s,x,y,l,n,d,r)	S	switch	_
			x,y	start co-ordinates	character
			1	width of window	character
			n	sprite number	
			d	direction	
			r	repeat flag	
				1	

Before using a routine, you must first define it in your program using DEF FN followed by the correct number of parameters. Parameters passed to machine-code routines must always be whole numbers; if a parameter value is calculated by your program, then put an INT statement in front of it to ensure a whole-number value is passed to the routine.

ranges	bytes	address	check
	700	54600	1
	355	54200	190
0-28 and 0-20	75	54100	60
1-10	365	53700	83
0-231 and 0-154	170	53500	66
0-3			
0-51 (vertical)			
0-77(horizontal)			
0-1			
0-1			
1-10			
0-1	250	53100	26
0-231 and 0-154			
0-1			
1-10	256	52726	
0.321 and 0.154	256	52736	53
0-231 and 0-154 0-3	235	52400	55
0-5 0-51 (vertical)			
0-31 (vertical) 0-77 (herizontal)			
0-77 (Horizontal) 0-1			
0-1			
1-10			
0-231 and 0-154	230	52100	20
0-3	250	32100	20
0-51 (vertical)			
0-77 (horizontal)			
0-1			
0-1			
1-10		74.	
0-231 and 0-154	275	51700	63
0-3			
0-51 (vertical)			
0-77(horizontal)			
0-1			
1-10			
0-1			
1-255			
1-10		51500	
0-255	190	51500	61
0-1 0-175	215	50000	47
	215	50900	47
0-1	200	10000	(2)
0-31 and 0-21	290	49600	43
0-31 1-10			
0-1			
0-1			
0-1	315	49200	154
0-31 and 0-21		17200	121
0-31			
1-10			
0-1			
0-1			

MEMORY MAP

This chart shows how the Spectrum memory is organized when all the routines are present in memory. RAMTOP can be set to 49000 using a CLEAR command.

routine	title	address
	lowest book 3 routine	
	sprite buffer (700 bytes)	54600
FNa-FNe	24 x 21 sprite editor	54200
FNf	sprite print	54100
	master sprite	53700
FNg	sprite-handling	53500
FNh	keyboard-controlled sprite	53100
	interrupt vector table	52736
FNi	double horizontal sprite	52400
FNj	double vertical sprite	52100
FNk	sprite animation	51700
FNI	horizontal scroll	51500
FNm	vertical scroll	50900
FNn	window	49600
FNo	interrupt-driven window	49200
	RAMTOP (after CLEAR 49000)	49000

INDEX

Main entries are given in **bold** type

Aircraft 40-1
Aliens 36-7
Animals 48-50
Animation 24-7
Animation
program 25-7
Automobile
program 22-3

BASIC 6
BASIC programs
adapting 9
loading 9
Bat program 19
Birds 52
Boats 46-7
Bugs 51

Cars 44-5 Characters, human 54-5 CLEAR 8 Cockpit program 30-1

Dinosaurs 56
Displaying
sprites 14-15
Double horizontal sprite
routine 22
Double vertical sprite
routine 23
Double-sized
sprites 22-3

Errors, while keying in 9

FNa 11 FNa-e 13 FNb 11 FNe 12 FNf 14, 15 FNg 16-17 FNh 20-1 FNi 22 FNj 23 FNk 25-7 FNI 28-9 FNm 28-9 FNm 31 FNo 33 Functions 9

Games symbols 58-60

Horizontal scroll routine 28-9 Human characters 54-5 matchstick men 61

Interrupt-driven window routine 33
Interrupts 16-17

Keyboard-controlled sprites **20-1** Keying in sprites 35

Loading
BASIC programs 9
machine code 8
Lorries 44-5

Machine code 6
adapting routines 9
disadvantages 6
loading 8
routines 6-7, 62
using 8-9
Master sprite routine 16
Matchstick men 61
Memory
clearing 15
map 63
storing sprites 15
Motorcycles 44-5
Movement, creating 10

Phantoms 39

Railway trains 43
RANDOMIZE 9
Repeating sprites 30
Routines 6-7
adapting 9
checklist 62
saving 8-9
using 7

SAVE 8
Screen scrolling 28-9
Scroll routines 28-9
Sea creatures 53

Ships 46-7 Snails 51 Spacecraft 38, 42 Spectres 57 Spooks 57 Sprite directory aircraft 40-1 aliens 36-7 animals 48-50 birds 52 boats 46-7 bugs 51 cars 44-5 characters 54-5 dinosaurs 56 game symbols 58-60 matchstick men 61 motorcycles 44-5 phantoms 39 sea creatures 53 ships 46-7 snails 51 spacecraft 38, 42 spectres 57 spooks 57 trains 53 trucks 44-5 using 35 Sprite editor 11-13 program 11-12 routines 11-13 Sprites 10 animation routine 24-7 displaying 14-15 double-sized 22-3 handling routine 16-17 implementing 10 keyboard

double-sized 22-3
handling
routine 16-17
implementing 10
keyboard
controlled 20-1
keying in 35
moving 16-19
print routine 15
repeating 30
storing 15
Storing sprites 15

Train program 18-19 Trains 53 Trucks 44-5

Unicycle program 7, 23

Vertical scroll routine 28-9

Wildlife program 26-7
Window game
program 32-4
Window routines 30-4
Wrapround effect 28

Acknowledgments
A number of people
helped and encouraged
me with this book.
Thanks to Alan and
Michael at Dorling
Kindersley, to Jacqui
Lyons for her
representation and to
Andy Werbinski for
reluctant assistance. I am
particularly grateful, as
always, to my parents,
and to Martine.

Piers Letcher Spring 1985

The bestselling teach-yourself programming course now offers the first complete full-colour book on creating sprites on the ZX Spectrum.

Illustrated with over 300 screen-shot photographs, it contains programs for single and double sprites, for animation, and for setting overlaps and detecting collisions, and includes an easy-to-use sprite generator with which you can design and save your own sprites. In addition, there is a full-colour design directory containing over 200 original sprite designs complete with all the data needed to program them.

Together, Books Three and Four in this series form a complete, self-contained graphics system for Spectrum-owners.

All the programs in this book run on both 48K ZX Spectrum and ZX Spectrum+ machines.

66 Far better than anything else reviewed on these pages...
Outstandingly good 39

BIG K

66 As good as anything else that is available, and far better than most ??

COMPUTING TODAY

66 Excellent... As a series they could form the best 'basic introduction' to programming I've seen ??

POPULAR COMPUTING WEEKLY

A new generation of software

GOLDST**★**R

Entertainment • Education • Home reference

Send now for a catalogue to Goldstar, 1-2 Henrietta Street, London WC2E 8PS

DORLING KINDERSLEY

IZBN 0-86318-104-X

£5.95

