503

Tangent vectors without embedding space

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

An abstract look at the embedded case...

De Cx/v is one-to-one with TxM.

... to serve as inspiration for general manifolds.

Consider a point x on a manifold $\mathcal{M} = (M, \mathcal{A}^+)$.

Let
$$C_x = \{c : \mathbf{R} \to \mathcal{M} \mid c \text{ is smooth and } c(0) = x\}.$$

Define an equivalence relation \sim on C_x :

 $C_{1} \sim C_{2} \iff (\varphi \circ C_{1})(0) = (\varphi \circ C_{2})(0)$

Then, Cz/~ "is" the tangent space at x.

Fact: The equivalence relation on C_x defined by

$$c_1 \sim c_2 \iff (\varphi \circ c_1)'(0) = (\varphi \circ c_2)'(0)$$

is independent of the choice of chart (\mathcal{U}, φ) around x.

Let
$$(V, \varphi)$$
 be another chart for M around \times .
Let $c \in C_{\times}$; Compute:
$$(\psi \circ c)'(0) = (\psi \circ \varphi^{-1})(\varphi \circ c)'(0)$$

$$= D(\psi \circ \varphi^{-1})(\varphi \circ c)'(0) [(\varphi \circ c)'(0)]$$

Now, make the tangent space linear.

$$C_x = \{c : \mathbf{R} \to \mathcal{M} \mid c \text{ is smooth and } c(0) = x\}$$

Def.: The tangent space $T_x \mathcal{M}$ is the quotient set C_x / \sim . A tangent vector $v \in T_x \mathcal{M}$ is an equivalence class of curves.

How do we "add" two tangent vectors, $v_1 + v_2$? Or "scale", αv_1 ?

 $\Theta_{\mathbf{x}}^{\mathbf{y}}: C_{\mathbf{x}}/\sim \mathbb{R}^n$ $\theta_{\mathbf{x}}^{\varphi}([c]) = (\varphi \circ c)'(0)$ On is injective b/c if $\theta_{x}^{q}(\mathcal{E}_{1}) = \theta_{x}^{q}(\mathcal{E}_{2})$ then (40C,)'(0) = (40C2)'(0) $C_{1} \sim C_{2} = [C_{1}] = [C_{2}]$ For sujective, notice that YuER" q(u) We have: $\mathcal{O}_{\mathcal{R}}^{q}((\varphi(x)+tu))=u$. \mathbf{R}^n

$$\frac{\partial^{q}([c])}{\partial_{x}([c])} = (4 \circ c)'(0);$$
Define:
$$[c_{1}] + [c_{2}] \stackrel{d}{=} (9 \circ c)'(9 \circ c)(1) + 9 \circ c(1);$$

$$\chi[c_{1}] \stackrel{d}{=} (9 \circ c)'(\alpha) \frac{\partial^{q}([c_{1}])}{\partial_{x}([c_{2}])}.$$

Remember:
$$(\varphi \circ c)'(o) = D(\varphi \circ \varphi')(\varphi(x))[(\varphi \circ c)'(o)]$$

 $\Theta_{x}([c]) = D(\varphi \circ \varphi')(\varphi(x))[\Theta_{x}([c])]$

If \mathcal{M} is embedded, we now have two notions of tangent spaces. They are equivalent:

Fact: If \mathcal{M} is an embedded submanifold of a linear space \mathcal{E} , then $[c] \mapsto c'(0)$ is a linear bijection from C_x/\sim to $\ker Dh(x)$ where h is a local defining function for \mathcal{M} around x.

Thus, both formalisms yield the same conclusions, always.