3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 – Lecture 2 THINK OUTSIDE THE BOX

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

More practical info

- Problem sets out on Wed (and posted on Stellar), due by 5pm of the following weekend (after that 75%, after Thu 5pm 50%, after Fri 5pm 25%)
- ~11 in total, 30% of the grade
- Sometimes I mention homework it's not the "Problem Set" @ Poilvert, Bonnet

Homework

- Take notes
- Revise posted lecture
- Study posted or assigned material (TEXTBOOKS – do you have them ?)
- Meet with TAs or Instructor:
 Marzari Office Hours Monday 4-5 pm
 Poilvert Office Hours Tuesday 4-5pm

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Last time: Wave mechanics

- 1. Particles, fields, and forces
- 2. Dynamics from Newton to Schroedinger
- 3. De Broglie relation $\lambda \bullet p = h$
- 4. Waves and plane waves
- 5. Harmonic oscillator

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

Time-dependent Schrödinger's equation

(Newton's 2nd law for quantum objects)

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t)+V(\vec{r},t)\Psi(\vec{r},t)=i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t}$$

1925-onwards: E. Schrödinger (wave equation), W. Heisenberg (matrix formulation), P.A.M. Dirac (relativistic)

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Plane waves as free particles

Our free particle $\Psi(\vec{r},t) = A \exp[i(\vec{k}\cdot\vec{r}-\omega t)]$ satisfies the wave equation:

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t) = i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t} \quad \text{(provided } E = \hbar\omega = \frac{p^2}{2m} = \frac{\hbar^2k^2}{2m}\text{)}$$

Stationary Schrödinger's Equation (I)

$$-\frac{\hbar^{2}}{2m}\nabla^{2}\Psi(\vec{r},t)+V(\vec{r},t)\Psi(\vec{r},t)=i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t}$$

$$=\frac{\hbar^{2}}{2m}\nabla^{2}\Psi(\vec{r},t)+V(\vec{r},t)\Psi(\vec{r},t)=i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t}$$

$$-\frac{\hbar^{2}}{2m}\nabla^{2}(\varphi f)+V(\vec{r})\varphi f=i\hbar\frac{\partial(\varphi f)}{\partial t}$$

$$-\frac{\hbar^{2}}{2m}f\nabla^{2}\varphi+V\varphi f=i\hbar\frac{\partial f}{\partial t}$$

$$-\frac{42}{2m}\frac{7}{9} + V = i\frac{1}{5}i\frac{1}{5}i\frac{1}{5} = \frac{1}{5}i\frac$$

Stationary Schrödinger's Equation (II)

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right] \varphi(\vec{r}) = E \varphi(\vec{r})$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Stationary Schrödinger's Equation (III)

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}) \right] \varphi(\vec{r}) = E\varphi(\vec{r})$$

- 1. It's not proven it's postulated, and it is confirmed experimentally
- It's an "eigenvalue" equation: it has a solution only for certain values (discrete, or continuum intervals) of E
- 3. For those eigenvalues, the solution ("eigenstate", or "eigenfunction") is the complete descriptor of the electron in its equilibrium ground state, in a potenitial V(r).
- 4. As with all differential equations, boundary conditions must be specified
- 5. Square modulus of the wavefunction = probability of finding an electron

Free particle: $\Psi(x,t)=\varphi(x)f(t)$

Infinite Square Well (II)

Chinka = 0

$$ka = hTT \qquad h = 0, +1, +2, \dots$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Infinite Square Well (III)

Figures by MIT OpenCourseWare.

The power of carrots

• β-carotene

Images removed due to copyright restrictions. Please see any spectrum of beta carotene, such as http://www.chm.bris.ac.uk/motm/carotene/beta-carotene_colourings.html

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Physical Observables from Wavefunctions

• Eigenvalue equation:

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right] \varphi(x) = E\varphi(x)$$

• Expectation values for the operator (energy)

$$E = \int \varphi^*(x) \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \varphi(x) dx \qquad F = \frac{\hbar^2}{\delta m} \left[\frac{\hbar^2}{a^2} \right]$$

Particle in a 2-dim box

$$-\frac{\hbar^{2}}{2m}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)\varphi(x, y) = E\varphi(x, y)$$

$$\varphi(x, y) = \chi(x) \chi(y)$$

$$-\frac{\hbar^{2}}{2m}\chi \frac{\partial^{2}\chi}{\partial x} - \frac{\hbar^{2}\chi}{2m}\chi \frac{\partial^{2}\chi}{\partial y^{2}} = \chi(x) \chi(y)$$

$$-\frac{\hbar^{2}}{2m}\chi \frac{\partial^{2}\chi}{\partial x} - \frac{\hbar^{2}\chi}{2m}\chi \frac{\partial^{2}\chi}{\partial y^{2}} = \chi(x) \chi(y)$$

$$-\frac{\hbar^{2}}{2m}\chi \frac{\partial^{2}\chi}{\partial x} = \chi(x) \chi(x)$$

$$-\frac{\hbar^{2}}{2m}\chi \frac{\partial^{2}\chi}{\partial x} = \chi(x)$$

$$-\frac{\hbar^{2}}{$$

Particle in a 2-dim box

$$\varphi(x, y) = C \sin\left(\frac{l\pi x}{a}\right) \sin\left(\frac{m\pi y}{b}\right)$$

$$E = \frac{h^2}{8m} \left(\frac{l^2}{a^2} + \frac{m^2}{b^2} \right)$$

Particle in a 3-dim box

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\varphi(x, y, z) = E\,\varphi(x, y, z)$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Particle in a 3-dim box: *Farbe* defect in halides (e⁻ bound to a negative ion vacancy)

Figure by MIT OpenCourseWare.

From Carl Zeiss to MIT...

Text removed due to copyright restrictions. Please see
Avakian, P., and Smakula, A. "Color Centers in Cesium Halide Single Crystals."

Physical Review 120 (December 1960): 2007.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Light absorption/emission

Courtesy M. Bawendi and Felice Frankel. Used with permission.

MIT Research: Bawendi, Mayes, Stellacci

Image and text removed due to copyright restrictions. Please see: Abstract and Fig. 1 in Willey, T. M., et al. "Molecular Limits to the Quantum Confinement Model in Diamond Clusters." *Physical Review Letters* 95 (2005): 113401.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Metal Surfaces (I)

$$\left[-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} + V(x) \right] \varphi(x) = E \varphi(x)$$

$$V(x) \uparrow \qquad \qquad \downarrow 2 \quad \uparrow 2 \quad \downarrow 2 \quad$$

Figure by MIT OpenCourseWare.

Metal Surfaces (II)

Figure by MIT OpenCourseWare.

 $3.23\ Electronic, Optical\ and\ Magnetic\ Properties\ of\ Materials\ -\ Nicola\ Marzari\ (MIT,\ Fall\ 2007)$

Scanning Tunnelling Microscopy

Figure by MIT OpenCourseWare.

Scanning Tunnelling Microscopy, cont.

Figure by MIT OpenCourseWare.

Wavepacket tunnelling through a nanotube

Images courtesy of Geza I. Mark. Used with permission.

http://newton.phy.bme.hu/education/schrd/index.html

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

http://www.quantum-physics.polytechnique.fr