TEAM MANAGEMENT FOR AGILE PLANNING

TEAM ID: PNT2022TMID17378

CLARIFAI:

Clarifai provides an end-to-end platform with the easiest to use UI and API in the market. Clarifai Inc. is an artificial intelligence (AI) company that specializes in computer vision and uses machine learning and deep neural networks to identify and analyse images and videos. The company offers its solution via API, mobile SDK, and on-premise solutions.

STEP 1:

• Open Clarifai portal in web browser.

STEP 2:

Signup using the required user mail and password

STEP 3: Finally, Created an account

IBM WATSON PLATFORM:

We need to have basic knowledge of the following cloud services:

IBM Watson IoT Platform

- Node-RED Service
- Cloudant DB

We need to create an IBM Cloud Account to complete this project.

LOGIN:

PYTHON IDLE INSTALLATION:

Python is a computer programming language often used to build websites and software, automate tasks, and conduct data analysis. Python is a generalpurpose language, meaning it can be used to create a variety of different programs and isn't specialized for any specific problems.

STEP 1:

Python is installed successfully

STEP 2:

- The required python libraries are installed.
- Watson Python SDK to connect to IBM Watson Platform using python code is installed
- pip install wiotp-sdk

```
Me guit() or ftr1-2 plus feture to exit

50 guit() or ftr1-2 plus feture to ex
```

- Python client library for IBM Text to Speech is installed
- pip install --upgrade "ibm-watson>=5.0.0

- Required Libraries for cloud object storage is installed.
- pip install ibm-cos-sdk

```
Collecting incoses de consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tot 401 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the consequences 20 | 55 tots |
Dear loading the c
```

pip install -U ibm-cos-sdk

pip install boto3

```
IN Command Frompt

WINDING: You are using pip version 20.1.1; however, version 22.3 is available.

For should consider appealing via the 'clusers\sasst\spottallocal\programs\system\system\sqrt{pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pythonish\pyt
```

pip install resources

pip install cloudant

FROM PYTHON TO IBM:

temp=random.randint(0,

```
Python code to generate random data and pass it to IBM Watson IoT
platform SourceCode: import time import sys import
ibmiotf.application import
      ibmiotf.device import
      random
      #Provide your IBM Watson Device
      Credentialsorganization = "wu5b55" deviceType
      = "crop1" deviceId =
      "1234" authMethod =
      "token" authToken =
      "1234567890"
      # Initialize GPIOtry:
            deviceOptions = {"org": organization, "type": deviceType, "id":
      deviceId, "auth-method": authMethod, "auth-token": authToken} deviceCli
            ibmiotf.device.Client(deviceOptions)
            #.....
      except Exception as e:
            print("Caught exception connecting
            device: %s" % str(e))sys.exit()
      # Connect and send a datapoint "hello" with value "world" into the
      cloud as an event of type "greeting" 10 times device Cli.conn
      ect()while True:
```

```
100)
          Hum=random.randint(0,1
          00)
          moisture=random.randint
          (0,100)
          data = { 'temperature' : temp, 'Humidity': Hum, 'Moisture':moisture }
def myOnPublishCallback():
            print ("Temperature = " + str(temp)+" C Humidity = " +
      str(hum)+ " moisture = " +str(moisture) + "to IBM Watson")
          success = deviceCli.publishEvent("IoTSensor",
       "json", data, qos=0,on_publish=myOnPublishCallback)
          if not success:
            print("Not connected to
          IoTF")time.sleep(10)
          deviceCli.commandCallback = myCommandCallback
      # Disconnect the device and application from
       the clouddeviceCli.disconnect()
```

DATA GENERATION PLATFORM:

Source code is deployed on IBM Watson IoT platform to generate sensor data.

SourceCode:

```
"temperature": random(0, 100),
    "humidity": random(0, 100),
    "moisture": random(0, 100),
    "animalDetected":random(0,2)
}
```

Output:

PYTHON CODE TO IBM:

import time
import sys
import ibmiotf.application import
ibmiotf.device import random

Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 10 times

print("Caught exception connecting device: %s" % str(e))sys.exit()

deviceCli.connect() while

True:

#Get Sensor Data from DHT11

```
temp=random.randint(0,100)
        Hum=random.randint(0,100)
        moisture=random.randint(0,100)
        data = { 'temperature' : temp, 'Humidity': Hum,
'Moisture':moisture }
#print data def myOnPublishCallback():
           print ("Temperature = " + str(temp)+" C Humidity = " +
str(hum)+ " moisture = " + str(moisture) + "to IBM Watson")
        success = deviceCli.publishEvent("IoTSensor", "json", data,qos=0,
on_publish=myOnPublishCallback) if
        not success:
            print("Not connected to IoTF")
        time.sleep(10)
        deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

NODE-IS CONNECTION:

STEP1: Download and Install NODE JS.

STEP2: Setup node.js and configure command prompt for error check .open node-red from the generated link.

STEP3: Connect IBM IOT in and Debug 1 and Deploy.

STEP4: Edit gauge node (Here the gauge nodes are named as Temperature, Humidity and Soilmoisture).

SIMULATION:

STEP1: Simulated program to get the random values

STEP2: Generate debug message from IBM Watson IoT Platform and connect the nodes.

STEP3: Generate the some output from recent events.

MIT APP INVENTOR:

STEP 1: MIT APP inventor to design the APP.

STEP 2: Customize the App interface to Display the Values.

•