compare with your study of axious for a vertor space
Two motivating examples of groups
Integers modulon
The relation of consumerue modulo n
The relation of confineme modulo n on 2 (for a fixed integer N=0).
7/ in partioned into a consymence
danses/eonivalence danses. mod n
[0], [1], [2],, [W-1]
$[n] = \{y : n \approx y \pmod{n}\}$
These can be added and multiplied
Use Zn= { [0], [i],, [n-1]} Eg 3:2
7/28 under multiplication.
2 vice dosed system algebrais. - but not a group. 6 has no multipliadure

But 5 dres, so do 1, 3, 7, all Self inverses, ie. 5-1=5 etc Y 100 3, 4 paf (6). a exizes iff gidla,n) For mutt, mod n. ie. an are no prime $\frac{12001}{3000}$ $\frac{12001}{1200}$ $\frac{12001}{1200}$ $\frac{12001}{1200}$ $\frac{12001}{1200}$ $\frac{12001}{1200}$ 1 not (=) (ab-1)(=) 11 3qen ab-1=qn (=) Then, Tgen 1= ab-gn. ie. In a lin. comb. of a, n => gd(a,w)=1, from numb. theory last week. So we see in Mes.

gid(1,8) = grd(3,8) = gcd(5,8) = grd(7,8)
=1 But 2, 4,6,0 are not where to 8.

(Mg, t) will be a group	
(76, X) will not be, because of its elements.	~ (
Stits elements. But this can be fixed.	
Second example not numerical.	
Similar of State in 182	
the fransformations of IR (distance preserving = Tsometry) that leave the stage unchanged.	
100 mass	
Eg Symmtries of a strongle. XX	
identity = id. 1. by 21 dodnise = D1	
rot. by 20 documbe - J.	
reflection in axis through $A = M_1$ "mu"	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

From Mrs example

n noy M2 0 M3 = D1 Mz B rot. by 2th dodunge $M_2 \circ M_3 = \mathcal{P}$ refle not 18 refle rot refla refle rot mener non = id all elements have $id^{-1} = id$ rot = $\mathcal{P}_1 = \mathcal{P}_2$) \mathcal{P}_2

 $M_1^{-1} = \mu_1^{-1}, M_2^{-1} = \mu_2, M_3^{-1} = \mu_3$ a reflection is always self-twese. (Dz,0) we will call a goup Manney Be aware ordenner When composing. noy = naffer y. Group definition (non-empty) A group in a set G together with a binary operation on G $o: G \times G \longrightarrow G$. (closure) ive for a, bet, a o b e G. Satisfying · o is arrowate $a \circ (b \circ c) = (a \circ b) \circ c$ ¥ a,b,c e G on G

ie. Yach eoa = aoe = a · Contains invenes for all its ie. YaeG JaieG st. $\alpha \circ \alpha^{-1} = \alpha^{-1} \circ \alpha = e$ This is a group (Ci, o) Abelian groups are those where operation is commutative. Ya, be & a o b = b o a. Non-abelian groups are the others. (D3,0) non-abelian 0g. M, 0 M2 = D, $M_2 \circ M_1 = N_2$ Examples (7/2, +) e=0 (infinite) ansaalryly, dosed hveres gwen a ETL
13 invece - a (when using + for operation, always use

-a for a moene) (Mn, t) a fruite group - a e [n-a] given a e Kn 0 < a < n - 1 (128, x) à not a group. closed ansaidher Identity e=1 / iverses X eg. 2 has no inverse resther dues 0, 4,6. But 1,3,5,7 do have imeses. $U(n) = \{a \in \mathbb{Z}_n : g cd(a,n) = 1\}$ "units (U(n), x) will be a group modulo gcd(a,n)=gcd(6,n)=1=>gul(ab,n)=(arrow (=) closure to prop 3 4 (6).

u(8)= {1,3,5,73 In my number theory notes 9 use \mathbb{Z}_{n}^{\times} for $\mathbb{U}(n)$. (D3,0), a group Mosed amountire. Well for función composition, its always arroundre. $(f \circ (g \circ h))(n) = f((g \circ h)(n))$ =f(g(h(n)) = $(f \circ g)(h(n))$ = ((fog) o h) (n) = fo(goh) = (fog)oh.id=id., morses exist. Adually there is a infinite

family of such groups
(Dn, o) = symmetry of the regular n-sorted polygon
Dihedral groups
for every verlor spare you've looked
For every verlor space you've looked at (V, F, +, ·) the pair (V, +) sidas
5 calous
is an Abelian group.
Malrix groups (injuite)
Mn (R) = set of all somere nxn
malnids. Abelian
$(M_n(R), +)$ in any group
Mn (IR) = set of all sonare nxn matrices. Abelian (Mn (IR), +) in an group dosed aroc. Tidentity = (0-0) 72P walnix.
inverses for AEMn (IR) its inverse in -A

But (Mn(TR), X) or not a group The (1.0) multiplicative inverse exist (20) has no inverse as its determinent is 0. (TLn(R)= { Ac Mn(R): det(A) + o} "General Linear Group" n a group det (AB) = let(A) · let(B) $det(A^{-1}) = \frac{1}{det(A)}$

Exercises Testing the definition $S=R\setminus\{-1\}.$ define a new operation & on 5 by the rule a * b = a + b + abProve (5, x) n an abelian group. Is * dosed on S? ie.

given a, b es => a*b es for sure a + b + ab & R since a, b & R Pont could at b tab = -1? (=) a + b(1+a) = -1() b(1+a) = -1-a(1+a to since a ES) a contradiction. So therefore a, bes => axbes (lorne / ASSOCIALINITY.

Congreler a, b, c e S a*(b*c) = a+(b*c)+a(b*c)= a + b + c + bc + a(b + c + bc)= a + b + c + bc + ab + ac + abc = (a+b+ab)+c+(a+b+ab)c= (a+b+ab) * C, def f * = (a*b) * C, def f *Therefore * is anscialive on S. ideAly. axb = a+b+ab So e=0 invers given a es, in (a i es) So this in the Question, does there exist on at 1 es such that $a + a^{-1} = 0$ $(=) \quad a + a^{-1} + aa^{-1} = 0$

(=) $a + a^{-1}(1+a) = 0$ 1 Hato, acs neupe a slight wory. could <u>-a</u> =-1? $\Rightarrow -a = -1 - a$ $\Rightarrow 0 = -1, \text{ Nonsense.}$ So yes S has mornes for all its elements. So (S,*) na group. Abelian a th tab $a \times b =$ = b+a+ba, commutativity of + and.

= 0 xa

