A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EP

Bookmark

Show all steps: ON

ON

Problem

Let G be an abelian group of order $p^k m$, where p^k and m are relatively prime (that is, p^k and m have no common factors except ± 1). (REMARK: If two integers j and k are relatively prime, then there are integers s and t such that sj + tk = 1. This is proved on page 220.)

Let G_pk be the subgroup of G consisting of all elements whose order divides p^k . Let Gm be the subgroup of G consisting of all elements whose order divides ra. Prove:

For any $x \in G$ and integers s and $t, x^{sp^k} \in G_m$ and $x^{tm} \in G_{p^k}$.

Step-by-step solution

Step 1 of 4

Assume that G is an abelian group of order $p^k m$, where p^k and m are relatively prime. Suppose that G_{p^k} be the subgroup of G consisting of all elements whose order divides p^k . Let G_m be the subgroup of G consisting of all elements whose order divides m.

Objective is to prove that for any $x \in G$ and integers s and t,

$$x^{sp^k} \in G_m$$
 and $x^{tm} \in G_{p^k}$.

Comment

Step 2 of 4

Since p^k and m are relatively prime, so by the definition there exist integers s ant t such that $sp^k + tm = 1$.

Let $y = x^{sp^k}$. Then find the following power of y as:

$$y^{m} = (x^{sp^{k}})^{m}$$
$$= (x^{s})^{p^{k}m}$$
$$= (x^{s})^{|G|}.$$

because order of group G is $p^k m$. Use the identity $x^{|G|} = e$ for some $x \in G$ and get,

$$y^m = e$$

It implies that order of y divides m. And so, $y = x^{sp^k} \in G_m$

Comment

Step 3 of 4

Similarly, let $z = x^{tm}$. Then

$$z^{p^k} = (x^{tm})^{p^k}$$
$$= (x')^{p^k m}$$
$$= (x')^{G|}.$$

because order of group G is $p^k m$. Use the identity $x^{|G|} = e$ for some $x \in G$ and get,

$$z^{p^k} = e$$

It implies that order of z divides p^k . And so, $z=x^{\ell m}\in G_{p^k}$

Comment

Step 4 of 4

Hence, for any $x \in G$ and integers s and t, $x^{sp^k} \in G_m$ and $x^{im} \in G_{p^k}$.

Comment