KOSHA GUIDE

A - 48 - 2021

오산화바나듐에 대한 작업환경측정·분석 기술지침

2021. 12.

한국산업안전보건공단

안전보건기술지침의 개요

○ 작성자 : 한국산업안전보건공단 산업안전보건연구원 이광용

○ 개정자 : 한국산업안전보건공단 산업안전보건연구원 직업환경연구실

○ 제·개정 경과

- 2012년 5월 산업위생분야 제정위원회 심의
- 2015년 4월 산업위생분야 제정위원회 심의(개정, 법규개정조항 반영)
- 2018년 10월 산업위생분야 제정위원회 심의(개정, 법규개정조항 반영)
- 2021년 12월 산업보건일반분야 표준제정위원회 심의(개정)

○ 관련규격 및 자료

- National Institute for Occupational Safety and Health, NIOSH Manual of Analytical methods (NMAM®), 5th ed, www.cdc.gov/niosh/nmam
- Occupational Safety and Health Administration (U.S.A), Sampling and Analytical method, www.osha.gov/dts/sltc/methods/index.html
- Health and Safety Executive (U.K.), Methods for the Determination of Hazardous Substances (MDHS) guidance, www.hse.gov.uk/pubns/mdhs/
- American Conference of Governmental Industrial Hygienists(ACGIH):
 Documentation of the Threshold Limit Values and Biological Exposure Indices, 7th Ed, 2018.
- 관련법규·규칙·고시 등
- 산업안전보건법 제125조(작업환경측정)
- 산업안전보건법 시행규칙 제186조(작업환경측정 대상 작업장 등)
- 고용노동부 고시 제2020-44호(작업환경측정 및 정도관리 등에 관한 고시)
- 고용노동부 고시 제2020-48호(화학물질 및 물리적인자의 노출기준)

○ 기술지침의 적용 및 문의

- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2021년 12월

제 정 자 : 한국산업안전보건공단 이사장

오산화바나듐에 대한 작업환경측정 · 분석 기술지침

1. 목 적

이 지침은 산업안전보건법 시행규칙 제186조(작업환경측정 대상 작업장 등)의 규정에 의거 작업환경측정 대상인자 중 오산화바나듐에 대한 측정 및 분석을 수행할 때 정확도 및 정밀도를 유지하기 위하여 필요한 제반 사항에 대하여 규정함을 목적으로 한다.

2. 적용범위

이 지침의 적용대상은 산업안전보건법 시행규칙에서 정한 작업환경측정대상 유해인자 중 오산화바나듐의 측정, 분석 및 이와 관련된 사항에 한한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "밀폐"라 함은 취급 또는 보관 상태에서 고형(固形)의 이물(異物)이 들어가지 않도록 한 상태를 말한다.
 - (나) "밀봉"이라 함은 취급 또는 보관 상태에서 기체 또는 미생물이 침입할 염려가 없는 상태를 말한다.
 - (다) 중량을 "정확하게 단다."라 함은 지시된 수치의 중량을 그 자릿수까지 단다는 것을 의미한다.
 - (라) "약"이란 그 무게 또는 부피에 대하여 ± 10% 이상의 차가 있어서는 안 된다.
 - (마) 시험조작 중 "즉시"라는 용어는 30초 이내에 표시된 조작을 하는 것을 말한다.
 - (바) "검출한계"라 함은 주어진 분석절차에 따라 합리적인 확실성을 가지고 검출할 수 있는 가장 적은 농도나 양을 의미한다.
 - (사) "정량한계"라 함은 주어진 신뢰수준에서 정량할 수 있는 분석대상물질의 가장

최소의 양으로, 단지 검출이 아니라 정밀도를 가지고 정량할 수 있는 가장 낮은 농도를 말한다. 일반적으로 검출한계의 3배 수준을 의미한다.

- (아) "회수율"이라 함은 채취한 중금속 등의 분석 값을 보정하는데 필요한 것으로, 시료채취 매체와 동일한 재질의 여과지에 첨가된 양과 분석량의 비로 표현된 것을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 기준에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 시행규칙, 산업안전보건기준에 관한 규칙 및 작업환경측정 및 정도관리 등에 관한 고시(고용노동부 고시 제2020-44호)에서 정하는 바에 따른다.

4. 일반사항

- (1) 이 시험법에 필요한 어원, 분자식 및 화학명 등은 특별한 언급이 없는 한 () 내에 기재한다.
- (2) 원자량은 국제순수 및 응용화학협회(IUPAC)에서 제정한 원자량 표에 따른다. 분자량은 소수점 이하 제 2단위까지 하고 제 3단위에서 반올림한다.
- (3) 이 시험법에 규정한 방법이 분석화학적으로 반드시 최고의 정밀도와 정확도를 갖는다고는 할 수 없으며 이 시험방법 이외의 방법이라도 동등 이상의 정확도와 정밀도가 있다고 인정될 때에는 그 방법을 사용할 수 있다.
- (4) 이 시험방법에 표시한 사항 중 회수율, 검출한계 등은 각조의 조건으로 시험하였을 때 얻을 수 있는 값을 참고하도록 표시한 것이므로 실제로는 그 값이 분석조건에 따라 달라질 수 있다.
- (5) 시료의 시험, 바탕시험 및 표준액에 대한 일련의 동일시험을 행할 때 사용하는 시약 또는 시액은 동일 롯트(LOT)로 조제된 것을 사용한다.
- (6) 이 시험법에 사용하는 수치의 맺음법은 따로 규정이 없는 한 한국산업의 규격 KS Q 5002(데이터의 통계적 해석방법)에 따른다.

- (7) 이 시험법에 규정하지 않는 사항에 대해서는 일반적인 화학적 상식에 따르되 이 시험법에 기재한 방법 중 세부조작은 시험의 본질에 영향을 미치지 않는 범위 내에서 시험자가 적당히 변경 조절할 수 있다.
- (8) 단위 및 기호 : 길이, 넓이, 부피, 농도, 압력 또는 무게를 나타내는 단위 및 기호는 아래 표에 따른다. 여기에 표시되어 있지 않은 단위는 KS A ISO 80000-1(양및 단위-제1부: 일반사항)에 따른다.

종류	단위	기호	종류	단위	기호
	미터	m		몰농도	M
	센티미터	cm		노르말농도	N
길이	밀리미터 mm		농도	밀리그램/리터	mg/L
	마이크로미터	μm		마이크로그램/밀리리터	μg/mL
	나노미터	nm		퍼센트	%
	기압	atm		세제곱미터	m³
압력	수은주밀리미터	mmHg	부피	세제곱센티미터	Cm³
	수주밀리미터	mmH2O		세제곱밀리미터	mm³
	게고미디	m²		킬로그램	kg
13 4)	제곱미터 m² 제곱센티미터 cm²		ㅁᆌ	그램	g
넓이			무게	밀리그램	mg
	제곱밀리미터	mm²		마이크로그램	μg
	리터	L			
용량	밀리리터	mL			
	마이크로리터	μL			

(9) 온도

- (가) 온도의 표시는 셀시우스(Celcius) 법에 따라 아라비아숫자 오른쪽에 ℃를 붙인다. 절대온도는 K로 표시하고 절대온도 0 K는 -273℃로 한다.
- (나) 상온은 $15\sim25$ °C, 실온은 $1\sim35$ °C, 미온은 $30\sim40$ °C로 한다. 냉소는 따로 규정이 없는 한 15°C 이하의 곳을 뜻한다.

(10) 농도

- (가) 액체 단위부피중의 성분질량 또는 기체 단위부피중의 성분질량을 표시할 때에는 중량/부피(w/v)%의 기호를 사용한다. 액체 단위부피중의 성분용량, 기체 단위 부피중의 성분용량을 표시할 때에는 부피/부피(v/v)%의 기호를 사용한다. 백만분의 용량비를 표시할 때는 ppm(parts per million)의 기호를 사용한다.
- (나) 공기 중의 농도를 mg/m³으로 표시했을 때의 m³은 정상상태(NTP, Normal Temperature and Pressure : 25℃, 1기압)의 기체용적을 뜻한다. 따라서 노출 기준과 비교 시는 작업환경 측정 시의 온도와 압력을 실측하여 정상상태의 농도로 환산하여야 한다.

(11) 시약, 표준물질

- (가) 분석에 사용되는 시약은 따로 규정이 없는 한 화학용 시약에 규정된 일급 이 상의 것을 사용하여야 한다. 분석에 사용하는 시약은 제조회사에서 표시하는 농도 함량을 따른다.
- (나) 광도법, 전기화학적분석법, 크로마토그래피법, 고성능액체크로마토그래피법에 쓰이는 시약은 특히 순도에 주의해야 하고, 분석에 영향을 미치는 불순물을 함유할 염려가 있을 때는 미리 검정하여야 한다.
- (다) 분석에 사용하는 지시약은 특이한 것을 제외하고는 KS M 0015(화학 분석용 지시약 조제방법)에 규정된 지시약을 사용한다.
- (라) 시험에 사용하는 표준품은 원칙적으로 특급시약을 사용하며, 표준용액을 조제하기 위한 표준용 시약은 따로 규정이 없는 한 적절히 보관되어 오염 및 변질이 안 된 상태로 보존된 것을 사용한다.
- (12) 측정·분석 방법에 사용하는 초순수는 따로 규정이 없는 한 정제증류수 또는 이온교환수지로 정제한 탈염수(脫鹽水)를 말한다.

(13) 기구

- (가) 계량기구 중 측정값을 분석결과의 계산에 사용할 목적으로 사용되는 것은 모 두 보정하는 것을 원칙으로 한다.
- (나) 중량분석 용 저울은 적어도 10^{-5} g(0.01 mg)까지 달수 있어야 하며, 화학분석 용 저울은 적어도 10^{-4} g(0.1 mg)까지 달 수 있어야 하며, 국가검정을 필한 제 품 또는 이에 준하는 검정을 필한 제품이어야 한다.

- (다) 이 시험법에서 사용하는 모든 유리 기구는 KS L 2302(이화학용 유리기구의 모양 및 치수)에 적합한 것 또는 이와 동등 이상의 규격에 적합한 것으로 국 가에서 지정한 기관에서 검정을 필한 것을 사용하여야 한다.
- (라) 여과용 기구 및 기기는 특별한 언급이 없이 "여과한다."라고 하는 것은 KS M 7602(거름종이(화학 분석용)) 거름종이 5종 또는 이와 동등한 여과지를 사용하여 여과함을 말한다.

5. 시료채취 및 분석 시 고려사항

(1) 시료채취 기구 및 측정방법의 선택

시료채취의 목적과 시료채취시간, 방해인자, 예상되는 오염농도 및 실험실에서 보유하고 있는 분석장비의 능력 등을 종합적으로 고려하여 최적의 시료채취기구 및 분석방법을 선택한다.

- (2) 검량선 작성을 위한 표준용액제조
 - (가) 대상물질의 특성파악

분석하고자 하는 물질의 표준용액을 만들 원액(시약)의 순도와 특성(분자량, 비중, 노출기준)을 파악한다.

- (나) 채취시료의 예상농도의 0.1~2 배 수준에서 각 분석대상물질의 양을 결정한다.
- (다) 표준용액 제조방법의 결정

일반적으로 표준용액 제조시 표준원액(stock solution)을 단계적으로 희석시키는 방법(희석식)과 표준원액에서 일정량씩 줄여 가면서 만드는 방법(배치식)이었다. 희석식은 만들기가 수월한 반면 표준원액이 잘못되면 계통오차를 줄 수있고 배치식은 여러 검량선 작성용 용액 중 몇 개가 잘못되더라도 이를 보정할 수가 있으나 만들기가 어려운 단점이 있다.

(라) 표준용액의 제조

충분한 수의 표준용액을 준비한다. 일반적으로 분석하고자 하는 농도를 포함한 최소한 5개 수준의 표준용액을 제조한다.

- (마) 검량선의 작성 시 주의점
- ① 표준원액으로 사용될 원액의 순도, 제조일자, 유효기간 등을 잘 파악해야 한다.
- ② 표준용액, 회수율 검정 등에 사용되는 시약은 같은 롯트(Lot)번호를 가진 것을

사용하여야 한다.

③ 검량선은 시료 분석조건과 주입방법에 따라 작성하고 검량선이 적정하다고 판정하면 시료를 분석한다. 검량선은 분석할 시료의 농도를 포함해야 하며 외삽법은 피한다. 검량선의 적정성은 제시된 분석기기의 매뉴얼을 참조하거나 상관계수가 0.99이상의 것을 사용하도록 한다.

(3) 내부표준물질의 사용방법 및 보정방법

- (가) 내부표준물질의 선정 시 다음의 특성을 가지는 물질로 선정한다.
 - ① 머무름 시간이 분석대상물질과 너무 멀리 떨어져 있지 않아야 한다.
- ② 피크가 용매나 분석대상물질의 피크와 중첩되지 않아야 한다.
- ③ 내부표준물질의 양이 분석대상 물질의 양보다 너무 많거나 적지 않아야 한다.
- ④ 사용하는 분석기기의 검출기에서 반응이 양호해야 한다.
- (나) 내부표준물질은 표준용액 등으로 사용하기 전에 탈착액에 일정량을 넣는다.
- (다) 보정방법
 - ① 검량선 작성 시 각 표준용액을 분석한 크로마토그램 면적을 내부표준물질의 크로마토그램 면적으로 나눈 면적비로 회귀식을 구한다.
 - ② 분석시료의 크로마토그램 면적을 내부표준물질의 크로마토그램 면적으로 나누어 면적비를 구한다.
 - ③ ②에서 구한 면적비를 ①에서 구한 회귀식에 대입하여 농도를 구한다.
- (4) 회수율 검정을 위한 시료제조 및 회수율 계산방법

회수율은 여과지를 이용하여 채취한 분석값을 보정하는데 필요한 것으로 채취에 사용하지 않은 동일한 여과지에 첨가된 양과 분석량의 비로 표현된 값을 말한다. 이 실험을 통하여 여과지의 오염, 시약의 오염, 여과지에 대한 시료채취 효율 등을 알 수 있다. 시료 배치 당 최소한 한 번씩은 행해야 한다.

- (가) 회수율 실험을 위한 첨가량을 결정한다. 작업장의 농도를 포함하도록 예상되는 농도(mg/m³)와 공기채취량(L)에 따라 첨가량을 계산한다. 만일 작업장의 예상 농도를 모를 경우 첨가량은 노출기준과 공기채취량 240 L를 기준으로 계산한다. 계산된 첨가량 3개 농도 수준(0.5 ~ 2배)의 양을 반복적으로 3개(3수준×3반복=9개) 주입할 여과지와 공시료 3개를 준비한다.
- (나) 분석대상물질의 원액 또는 희석액 일정량을 마이크로피펫 또는 마이크로실린

지를 이용하여 여과지에 주입한다.

- (다) 여과지를 밀봉하고 하루 동안 상온에 놓아둔다.
- (라) 여과지를 바이알에 넣고 추출용액으로 추출한다.
- (마) 시료를 분석하여 검출량을 구한다.
- (바) 다음 식에 의해 회수율을 구한다. 회수율 = 분석량 / 첨가량
- (사) 회수율은 최소한 0.75 이상이 되어야 하나 0.90 이상이면 좋다. 회수율에 대한 평가는 분석자가 해야 한다. 즉 12개의 회수율 실험결과를 근거로 판단해야 할 사항은 회수율간의 일정성이다. 만일 회수율간의 차이가 크고 변이가 심하여 일정성이 없으면 정확한 보정이 될 수가 없다. 따라서 그 원인을 찾아 교정하고 다시 실험을 실시해야 한다.

오산화바나듐(Vanadium pentoxide)

분자식: V₂O₅ 화학식: V₂O₅ 분자량: 181.88 **CAS No.**: 1314-62-1

녹는점: 690℃ 끓는점: 1,750℃ 비 중: 3.357 용해도: 0.8 g/100 mL

특징, 발생원 - 노란색에서 갈색의 냄새가 나지 않는 고체

- 오산화바나듐 제조, 바나듐 화합물 제조, 합금강 제조, 용접봉의 피복제 제조, 사진현상액 및 용도: 및 성생인을 제조 사건을

용도. 및 염색원료 제조 사업장

 노출기준
 고용노동부 (mg/m²)
 0.05 - 흡입성
 OSHA (mg/m²)
 0.5(C) - 호흡성 및 휴 (mg/m²)

 ACGIH (mg/m²)
 0.05 - 흡입성 (mg/m²)
 NIOSH (mg/m²)
 0.05(C) - 호흡성 및 휴

동의어: 산화바나듐, Vanadic anhydride, Vanadium pentoxide

분석원리 및 적용성: 작업환경 중 대상물질을 여과지에 채취하여 필터를 용해시켜 시료용액을 조제하여 은막여과지에 침착시킨 후 X선 회절분석기(XRD)를 이용하여 정량한다.

시료채취 개요	분석 개요
 시료채취매체: 막여과지 (5 um PVC membrane filter) * 노출기준이 호흡성/흡입성으로 설정된 경우 해당 시료채취기를 사용하고 그에 설정된 유량을 적용 하여야 함. 공기량 -최소: 200 L (at 0.5 mg/m³) -최대: 1,000 L 안 반: 일반적 방법 시료의 안정성: 안정함 공시료: 시료 세트당 2~10개의 현장 공시료 벌크시료: 퇴적분진 또는 고용량 호흡성분진 채취(방해물질 확인용) 	 분석기술: X선회절분석법 (X-Ray Diffraction) 분석대상물질: 오산화바나듐 전처리: 테트라하이드로퓨란에 녹인 후, 0.45 um 은막여과지에 재침착 기기조건: 구리 타켓 X선 튜브, 1° 20 슬릿 그라파이트 모노크로메이터, 섬광검출기 범위: 0.1∼2.0 mg/시료 검출한계: 표 1 참조 정밀도: 표 1 참조
방해작용 및 조치	정확도 및 정밀도
■ 석영이 방해물질로 작용하지만(표 1), 다른 회절피크를 이용하여 분석할 수 있다. 기타 대부분의 물질은 방해 작용하지 않는다.	

	시약		기구
•	오산화바나듐 (V_2O_5) , 삼산화바나듐 (V_2O_3) 또는	•	시료채취매체: PVC 필터(공극 5 um, 직경 37
	메타바나듐산암모늄(NH4VO3)(≥99%).		mm), 카세트 홀더
	- 냉동분쇄기에서 분쇄		(THF 사용시 필터가 완전히 용해되는지 확인)
	- 10 um 체로 체질하여 분리(삼산화바나듐, 메	•	사이클론: 10 mm nylon, Higgins-Dewell,
	타바나듐산암모늄은 이소프로필알코올 사용,		Aluminum 또는 GS-1, 3 등
	오산화바나듐은 아세토나이트릴 사용)	•	벌크시료채취펌프: PVC 필터(공극 5 um, 직경
	- 110℃에서 1시간 이상 건조한 후 데시케이터에		37 mm), 카세트 홀더, 유량 3 L/min
	보관.	•	개인시료채취펌프(유연한 튜브관 연결됨), 유량
-	테트라하이드로퓨란(THF, 시약등급)		1~3 L/min
-	이소프로필알코올(IPA, 시약등급)	•	은막 필터(직경 25 mm, 공극 0.45 um)
-	아세토나이트릴(ACN, 시약등급)	•	구리타켓, 니켈필터 또는 모노크로메이터
-	은막필터를 XRD 홀더에 고정하기 위한 풀 또는		장착된 X선회절분석기
	테이프	•	참고물질 : 강옥, 운모 등의 안정한 물질
-	건조제	•	저온회화로(LTA), 고온전기로, 초음파수욕조
		•	25 mm 진공여과장치
		•	10 um 습식 체(Sieve)
		•	전자저울(10 ug), 피펫, 원심분리튜브(50 mL),
			건조기(Dry oven), 데시케이터, 폴리에틸렌(PE)
			세척병

■ 특별 안전보건 예방조치: THF는 가연성 물질이므로 후드 안에서 취급해야 한다.

I. 시료채취

- 1. 시료채취매체를 이용하여 각 개인시료 채취펌프를 보정한다.
- 2. 사이클론 종류에 따라 정확한 유량으로 총 200~1,000 L의 공기를 채취하며, 여과지에 채취된 먼지가 총 2 mg을 넘지 않도록 한다.
 - 주의: 사이클론을 기울이지 않도록 한다.
- 3. 개인시료 위치와 가까운 곳에서 고유량으로 지역시료를 채취한다(사이클론은 연결하지 않는다).

Ⅱ. 시료 전처리

- 4. 원심분리튜브에 시료 여과지를 넣고 테트라하이드로퓨란 10 mL을 붓고 초음파욕조에서 10분간 초음파 처리한다.
 - ※ 필터는 거의 즉시 녹는다.
- 5. 진공여과장치에 은막여과지를 장착하고, 진공을 걸지 않은 상태에서 테트라하이드로퓨란 2~3 mL를 붓는다. 앞서 제조된 시료용액을 붓고 튜브 내벽도 헹구어 붓고, 진공을 걸어 은막여과지에 시료를 침착시킨다. 이후에는 용액을 붓지 않도록 한다.
- 6. 은막여과지를 집게를 이용하여 XRD 샘플홀더로 옮긴다.

III. 분석

【검량선 작성 및 정도관리】

- 7. 공시료로 임의의 6개 은막여과지를 선택하여 진공여과장치에 설치 후 THF 10 mL 여과 후 건조하고 XRD홀더에 장착한다. 자기흡수도 검증용으로 사용될 것이다.
- 8. 표준시료를 준비한다.
 - 건조된 표준시료를 0.01 mg까지 재어 10 mg과 50 mg을 각각 준비하여, 1 L 플라스크에 담고, 아세토나이트릴(오산화바나듐) 또는 이소프로필알코올(삼산화바나듐 또는 메타바나듐산암모늄) 1 L를 채운다.
 - 초음파수욕조에서 20분간 시료를 고르게 분산시킨다. 즉시 플라스크를 자석교반기에서 현탁시키고, 분주 전까지 상온에 둔다.
- 9. 0.5~2 mg 바나듐(V) 범위의 표준시료를 준비한다.
 - 여과장치 위에 여과지를 올린다. 그리고 아세토나이트릴(오산화바나듐) 또는 이소프로필알코올 (삼산화바나듐 또는 메타바나듐산암모늄) 3 mL 정도로 여과지를 적신다.
 - 작동 중이던 교반기를 정지시키고, 손으로 강하게 흔들어 준 후, 피펫으로 용액의 중간쯤에서 시료를 2~25 mL채취하여 여과장치로 옮긴다.(원하는 양 이상을 취하게 되었을 경우에는 초과한 양을 버리고 사용하면 안되고, 전량을 용기에 다시 넣고 새로운 피펫 또는 세척된 피펫을 사용하여 다시 취한다.)
 - 피펫을 아세토나이트릴(오산화바나듐) 또는 이소프로필알코올(삼산화바나듐 또는 메타바나듐산암 모늄) 5 mL로 헹구어 여과장치에 넣는다. 3번 이상 반복한다.
 - 진공을 걸어서 빠르게 진공여과 하여 건조되면 진공을 해제한다.
 - 여과지를 XRD 홀더에 장착한다.
- 10. 표준시료 및 참고물질과 같은 조건으로 시료를 분석한다.
- 11. 검량선을 작성하고 기울기(m, counts/ug)을 구한다.
 - 회절강도의 절편은 0에 가까워야 한다. 큰 음의 절편 값은 배경 설정의 오류(배경선의 잘못된 측정, 다른 상에 의한 방해작용 등)를 뜻하며, 큰 양의 절편은 배경선의 잘못된 측정 또는 측정피크에 불순물을 포함하고 있음을 뜻한다.
 - 주어진 수준에서 재현성 불량은 시료 전처리 기술에 문제가 있음을 뜻하며, 새로운 검량선용 표 준물질을 만들어야 한다.

【분석과정】

- 12. 방해물질 확인을 위하여 X선 회절 정성결과를 얻는다.
 - 벌크시료에 대하여 정량분석을 하고자 한다면, 10-µm 습식 체(Sieve) 등을 이용하여 미세입자에 대하여 실시한다.
- 13. XRD 홀더에 여과지를 올리고 다음의 절차에 따라 분석을 실시한다.
 - 방해물질이 없고 회절강도가 가장 강한 피크의 넓이를 구한다.
 - : 표 1에 적절한 분석피크가 제시되어 있다. 그리고 은(Ag, JCPDS #4-0783), 염화은(AgCl, JCPDS #31-1238) 가까이의 피크는 가능한 선택하지 않는다.
 - 피크 분석시간의 절반의 시간으로 피크 양쪽 각각의 바탕선을 분석한다.
 - 실제강도(net intensity, I_x)를 계산한다(피크 적분값 총 바탕선 적분값).

- 시료피크 조사시간의 5% 정도의 시간동안 방해가 없는 은피크를 분석하여 \hat{I}_{Ag} 를 구한다.
- 여과지를 분석하기 전과 후에 참고물질의 회절강도를 비교하여 X선 튜브 강도를 보정한다. : 매번 실시하지 않아도 된다.
- 14. 시료피크 및 은피크와 동일한 20범위에서 현장 공시료도 분석하여 오염이 없는지 확인한다.

IV. 계산

15. 다음 식에 의하여 해당물질의 농도를 구한다.

$$C = \frac{([\hat{\mathbf{l}}_x \cdot f(t)] - \hat{\mathbf{l}}_b)}{m \cdot V} (mg/m^3)$$

 \cdot Î $_x$: 시료에서의회절강도

f(t): $-R \ln T/(1-T^R)$ = 흡수보정계수(표2,3,4)

 $\cdot R : \sin(\theta_{Ag}) / \sin(\theta_x)$

 \cdot T : $\hat{\mathbf{1}}_{Ag}/(\hat{\mathbf{1}}^\circ_{Ag}$ 평균)= 시료투과도 \cdot $\hat{\mathbf{1}}_{Ag}$: 시료의은피크강도

· ΰ Aa : 공시료에서 은피크 강도(6개 값의 평균)

 \cdot Î $_b$: 공시료에서의회절강도 · m : 검량선에서의기울기 · V : 시료포집량(L)

V. 비고

- 이 방법은 NIOSH Method 7504에 기초하였고 OSHA Method ID-185의 일부 내용을 참고하여 작 성하였다.
- 다른 방법: OSHA Method ID-185는 XRD와 XRF의 분석방법을 모두 제공함 , HSE MDHS 91은 XRF의 분석방법 제공
- 건강영향 및 예방조치: 단기 노출증상으로 비염, 인후염, 기관지염, 폐렴, 저체온 또는 발열, 귀울 림, 구역, 호흡곤란 등이 있고, 만성 건강영향으로 혀가 녹색으로 변함, 콜레스테롤 감소, 코피, 혈 압변화, 뼈이상, 체중감소 등의 증상이 있다. 따라서 취급 시 각별한 주의가 요구되며, 보안경, 글 러브. 마스크, 실험복 등과 같은 적절한 보호구를 착용하여야 한다.

VI. 참고문헌

- 1. 고용노동부 고시 제2020-48호, 화학물질 및 물리적인자의 노출기준, 2020.
- 2. American Conference of Governmental Industrial Hygienists (ACGIH): Documentation of the Threshold Limit Values and Biological Exposure Indices, 7th Edition, 2018.
- 3. Health and Safety Executive(HSE): Methods for the Determination of Hazardous Substances (MDHS), Method 91, Metals and metalloids in workplace air by X-ray fluorescence spectrometry, 1998.
- 4. National Institute for Occupational Safety and Health(NIOSH): NIOSH Manual of Analytical Methods, Method #7504, 1994.

- 5. National Institute for Occupational Safety and Health(NIOSH): NIOSH pocket guide to chemical hazards and other databases, 2010.
- 6. Occupational Safety and Health Administration(OSHA): Index of Sampling & Analytical Methods, Method ID-185, 1991.
- 7. Occupational Safety and Health Administration(OSHA): Occupational Safety and Health Administration(OSHA): Standards 29 CFR 1910.1000, Occupational safety and health standards Toxic and hazardous substances Table Z Limits for Air Contaminants, 2006.

[표 1] 분석 피크

면간거리	상대강도	20	26	Э	검출한계	검량선	정밀도	편차	비고
(A)	78대상도	20	최소	최대	(μg)	기울기	(%)	(%)	n 1/
		<u>호</u>	산화바나	듐 (PDF	# 9-0387)_			
4.38	100	20.27	19.4	20.9	4	205.0	11.5	-28.9	20.85° 석영방해
4.09	35	21.73	20.9	22.4	13	57.1	-	-	20.85° 석영방해
3.40	90	26.21	25.5	26.6	10	54.2	11.3	-22.3	26.69° 석영방해
2.88	65	31.05	30.3	31.4	9	73.0	8.3	10.1	우수
2.185	17	41.32	40.5	41.6	28	24.9	-	-	41.42° V ₂ O ₃ 약간방해
삼산화바나듐 (PDF # 26-278)									
3.65	60	24.39	24.75	23.5	6	75.1	14.7	-10.1	우수
2.70	80	33.18	33.5	32.5	5	78.3	16.0	0.0	32.32° AgCl 방해
2.47	60	36.37	36.8	35.7	9	70.6	15.6	14.2	36.53° 석영방해
2.18	20	41.42	41.7	40.6	62	11.7	-	-	41.32° V ₂ O ₅ 약간방해
1.83	25	49.83	50.4	49.3	21	30.2	-	-	가능
1.69	100	54.28	54.5	53.3	5	91.2	20.7	-10.1	우수
1.43	30	65.25							
		메타	바나듐산인	<u> </u>	PDF # 9-4	<u>:11)</u>			
5.88	50	15.07	14.3	15.4	7	133.8	24.0	11.4	우수
4.90	75	18.10	17.7	18.2	7	101.4	26.3	-10.2	우수
4.14	95	21.46	21.0	21.8	10	49.8	-	13.2	21.73° V ₂ O ₅ 약간방해
3.77	40	23.60	23.1	23.9	18	38.5	-	-	41.32° V ₂ O ₅ 약간방해
3.164	100	28.21			50.3	-	-		27.88° AgCl 방해
2.912	60	30.74	30.1	30.9	21	33.9	-	-	가능
2.628	45	34.12	33.5	34.4	20	36.0	-	-	가능

[표 2] 오산화바나듐/은 주요피크의 투과도에 따른 흡수보정계수

V ₂ O ₅	20.27°	26.13°	31.00°		20.27°	26.13°	31.00°
Ag	38.12°	38.12°	38.12°		38.12°	38.12°	38.12°
Т	(T)	f(T)	f(T)	Т	f(T)	f(T)	f(T)
1.00	1.0000	1.0000	1.0000	0.74	1.3053	1.2332	1.1952
0.99	1.0094	1.0073	1.0062	0.73	1.3203	1.2445	1.2046
0.98	1.0189	1.0147	1.0124	0.72	1.3356	1.2560	1.2141
0.97	1.0285	1.0222	1.0187	0.71	1.3512	1.2677	1.2238
0.96	1.0384	1.0298	1.0251	0.70	1.3672	1.2796	1.2337
0.95	1.0483	1.0375	1.0317	0.69	1.3835	1.2918	1.2438
0.94	1.0585	1.0454	1.0383	0.68	1.4002	1.3043	1.2541
0.93	1.0688	1.0533	1.0450	0.67	1.4172	1.3170	1.2646
0.92	1.0794	1.0614	1.0518	0.66	1.4346	1.3300	1.2753
0.91	1.0901	1.0697	1.0587	0.65	1.4524	1.3432	1.2862
0.90	1.1009	1.0780	1.0658	0.64	1.4706	1.3567	1.2973
0.89	1.1120	1.0865	1.0729	0.63	1.4892	1.3706	1.3087
0.88	1.1233	1.0952	1.0801	0.62	1.5083	1.3847	1.3203
0.87	1.1348	1.1040	1.0875	0.61	1.5278	1.3992	1.3322
0.86	1.1465	1.1129	1.0950	0.60	1.5478	1.4139	1.3444
0.85	1.1584	1.1220	1.1026	0.59	1.5682	1.4291	1.3568
0.84	1.1705	1.1312	1.1103	0.58	1.5892	1.4445	1.3695
0.83	1.1828	1.1406	1.1182	0.57	1.6107	1.4604	1.3825
0.82	1.1954	1.1502	1.1261	0.56	1.6327	1.4766	1.3957
0.81	1.2082	1.1599	1.1343	0.55	1.6553	1.4932	1.4094
0.80	1.2213	1.1698	1.1425	0.54	1.6784	1.5102	1.4233
0.79	1.2346	1.1799	1.1509	0.53	1.7022	1.5277	1.4376
0.78	1.2482	1.1902	1.1595	0.52	1.7266	1.5456	1.4522
0.77	1.2620	1.2006	1.1682	0.51	1.7516	1.5640	1.4672
0.76	1.2762	1.2113	1.1770	0.50	1.7774	1.5828	1.4826
0.75	1.2906	1.2221	1.1860	0.49	1.8039	1.6022	1.4984

[표 3] 삼산화바나듐/은 주요피크의 투과도에 따른 흡수보정계수

V_2O_3	24.39°	33.18°	36.37°	54.28°		24.39°	33.18°	36.37°	54.28°
Ag	38.15°	38.15°	38.15°	38.15°		38.15°	38.15°	38.15°	38.15°
Т	f(T)	f(T)	f(T)	f(T)	T	f(T)	f(T)	f(T)	f(T)
1.00	1.0000	1.0000	1.0000	1.0000	0.74	1.2510	1.1822	1.1659	1.1117
0.99	1.0078	1.0057	1.0053	1.0036	0.73	1.2632	1.1909	1.1738	1.1170
0.98	1.0157	1.0116	1.0106	1.0073	0.72	1.2756	1.1998	1.1818	1.1223
0.97	1.0238	1.0175	1.0160	1.0110	0.71	1.2883	1.2088	1.1900	1.1277
0.96	1.0319	1.0235	1.0215	1.0147	0.70	1.3012	1.2180	1.1983	1.1332
0.95	1.0402	1.0296	1.0271	1.0185	0.69	1.3144	1.2273	1.2068	1.1388
0.94	1.0486	1.0358	1.0327	1.0223	0.68	1.3279	1.2369	1.2155	1.1445
0.93	1.0572	1.0421	1.0385	1.0262	0.67	1.3416	1.2466	1.2243	1.1503
0.92	1.0659	1.0484	1.0443	1.0302	0.66	1.3557	1.2566	1.2333	1.1562
0.91	1.0747	1.0549	1.0502	1.0342	0.65	1.3700	1.2667	1.2424	1.1622
0.90	1.0837	1.0615	1.0562	1.0382	0.64	1.3847	1.2771	1.2518	1.1684
0.89	1.0929	1.0682	1.0623	1.0423	0.63	1.3997	1.2876	1.2613	1.1746
0.88	1.1022	1.0749	1.0684	1.0465	0.62	1.4150	1.2984	1.2711	1.1810
0.87	1.1116	1.0818	1.0747	1.0507	0.61	1.4307	1.3094	1.2810	1.1875
0.86	1.1212	1.0888	1.0810	1.0550	0.60	1.4467	1.3207	1.2912	1.1941
0.85	1.1310	1.0959	1.0875	1.0593	0.59	1.4631	1.3322	1.3015	1.2009
0.84	1.1409	1.1031	1.0941	1.0638	0.58	1.4799	1.3440	1.3121	1.2078
0.83	1.1511	1.1104	1.1007	1.0682	0.57	1.4971	1.3560	1.3230	1.2148
0.82	1.1614	1.1179	1.1075	1.0728	0.56	1.5148	1.3683	1.3341	1.2220
0.81	1.1719	1.1254	1.1144	1.0774	0.55	1.5328	1.3808	1.3454	1.2294
0.80	1.1826	1.1331	1.1214	1.0821	0.54	1.5513	1.3937	1.3570	1.2369
0.79	1.1934	1.1410	1.1285	1.0868	0.53	1.5703	1.4070	1.3689	1.2446
0.78	1.2045	1.1489	1.1357	1.0916	0.52	1.5898	1.4205	1.3811	1.2525
0.77	1.2158	1.1570	1.1431	1.0965	0.51	1.6098	1.4344	1.3936	1.2605
0.76	1.2273	1.1653	1.1506	1.1015	0.50	1.6303	1.4486	1.4064	1.2688
0.75	1.2390	1.1737	1.1582	1.1066	0.49	1.6514	1.4632	1.4195	1.2772

[표 4] 메타바나듐산암모늄/은 주요피크의 투과도에 따른 흡수보정계수

NH ₄ VO ₃	15.07°	18.10°	21.46°	23.60°		15.07°	18.10°	21.46°	23.60°
Ag	38.15°	38.15°	38.15°	38.15°		38.15°	38.15°	38.15°	38.15°
Т	f(T)	f(T)	f(T)	f(T)	T	f(T)	f(T)	f(T)	f(T)
1.00	1.0000	1.0000	1.0000	1.0000	0.74	1.0000	1.0000	1.0000	1.0000
0.99	1.0126	1.0105	1.0088	1.0081	0.73	1.0126	1.0105	1.0088	1.0081
0.98	1.0254	1.0211	1.0178	1.0162	0.72	1.0254	1.0211	1.0178	1.0162
0.97	1.0384	1.0320	1.0270	1.0245	0.71	1.0384	1.0320	1.0270	1.0245
0.96	1.0517	1.0430	1.0362	1.0330	0.70	1.0517	1.0430	1.0362	1.0330
0.95	1.0653	1.0542	1.0457	1.0415	0.69	1.0653	1.0542	1.0457	1.0415
0.94	1.0791	1.0656	1.0553	1.0503	0.68	1.0791	1.0656	1.0553	1.0503
0.93	1.0932	1.0773	1.0650	1.0591	0.67	1.0932	1.0773	1.0650	1.0591
0.92	1.1075	1.0891	1.0749	1.0681	0.66	1.1075	1.0891	1.0749	1.0681
0.91	1.1221	1.1011	1.0850	1.0773	0.65	1.1221	1.1011	1.0850	1.0773
0.90	1.1371	1.1134	1.0953	1.0866	0.64	1.1371	1.1134	1.0953	1.0866
0.89	1.1523	1.1259	1.1057	1.0960	0.63	1.1523	1.1259	1.1057	1.0960
0.88	1.1678	1.1386	1.1164	1.1056	0.62	1.1678	1.1386	1.1164	1.1056
0.87	1.1836	1.1516	1.1272	1.1154	0.61	1.1836	1.1516	1.1272	1.1154
0.86	1.1997	1.1648	1.1382	1.1254	0.60	1.1997	1.1648	1.1382	1.1254
0.85	1.2162	1.1783	1.1494	1.1355	0.59	1.2162	1.1783	1.1494	1.1355
0.84	1.2330	1.1920	1.1608	1.1458	0.58	1.2330	1.1920	1.1608	1.1458
0.83	1.2501	1.2060	1.1724	1.1563	0.57	1.2501	1.2060	1.1724	1.1563
0.82	1.2676	1.2202	1.1842	1.1669	0.56	1.2676	1.2202	1.1842	1.1669
0.81	1.2855	1.2348	1.1963	1.1778	0.55	1.2855	1.2348	1.1963	1.1778
0.80	1.3038	1.2496	1.2086	1.1889	0.54	1.3038	1.2496	1.2086	1.1889
0.79	1.3224	1.2647	1.2211	1.2002	0.53	1.3224	1.2647	1.2211	1.2002
0.78	1.3414	1.2801	1.2338	1.2116	0.52	1.3414	1.2801	1.2338	1.2116
0.77	1.3609	1.2959	1.2468	1.2233	0.51	1.3609	1.2959	1.2468	1.2233
0.76	1.3807	1.3120	1.2601	1.2353	0.50	1.3807	1.3120	1.2601	1.2353
0.75	1.4474	1.3284	1.2736	1.2474	0.49	1.4010	1.3284	1.2736	1.2474

지침 개정 이력

- □ 개정일 : 2021. 12. 0.
 - 개정자 : 직업환경연구실 노지원
 - 개정사유 : 산업안전보건법 및 노출기준 관련 고시의 개정
 - 주요 개정내용
 - 산업안전보건법 전부개정에 따른 조문번호 및 조문명 변경
 - 고용노동부 고시 개정에 따른 행정규칙번호 변경 및 고시 제목 변경
 - 민원해소를 위한 자구 수정(문구 위치변경)
 - 노출기준에 흡입성, 호흡성 및 흄 표시