Mix2FLD: Downlink Federated Learning After Uplink Federated Distillation With Two-Way Mixup

Problem Addressed

 communication efficiency of FL is problematic in deep neural network models (DNNs).

Solution

Communication issue occurs due to:

Size of DNN increases ->play load increases->uplink latency ->asymmetric uplink downlink channels

Solution : Federated Distillation (FD)

It is independent of the model size, communication payload sizes of FD are fixed as the model output dimension (e.g., 10 labels in MNIST)

Drawback of FD: Accuracy low

Solution To Improve Accuracy Of FD

Addition of synthetic data so that privacy is also preserved ->Mix2FLD

(a) Mix2FLD: downlink federated learning (FL) & uplink federated distillation (FD) with two-way Mixup (Mix2up) seed sample collection.

(b) **Mix2up**: mixing raw samples at devices & inversely mixing them across different devices at the server (mixing ratio $\lambda = 0.4$).

System Settings

- D₁, D₂, D₃,... D_n devices
- each device in range (1 to n) has a local model M_i
- each device in range (1 to n) has a private dataset S_i
- Each sample is has unlabeled X_i and the ground truth label I_i.
- Classification problem
- Loss function is cross entropy

FLOWCHART

FD converts the local output vector(obtain using SGD for K iterations)
 to global average output vectors

KD convert the Global output vector to Global model parameter

use

Mix2FLD creates synthetic data

FL downloads the global model

Federated Distillation (FD)

INPUT

Local average output vectors for each ground truth label.

PROCESS

- Create GlobalaverageOutputVector()
 (The size of the output of is equal to the number of labels in the classification problem.)
 - -DownloadGlobalAverageOutputVector() by each device .
 - UpdateLocalweight using KD
- -DistillationRegularization()

Measures the gap between average output vector and global output vector (If this knowledge gap is negligible, the device's)

- weight is updated based on its own prediction
- Otherwise perturbed proportionally to the gap.

OUTPUT

Global model output.

Knowledge Distillation (KD)

Input

- global output vector
- for each device upload seed samples (from its own local dataset)

Process

- -Run SGD
- -UpdateGlobalModelWeight

Output

Global model parameter

Federated Learning (FL)

Input

local data of device Di

Process

- updateLocalWeights (through K iterations of SGD)
 - CalculateEntrophyLoss
 - GDtoUpdateWeight

Output

Normalised averaged local output vector for each label

any device can upload the weight vectors at n <K

Check List

- Data heterogeneity: true
- System heterogeneity: no
- Model accuracy: measure using test accuracy on test data.
- Use of synthetic data: yes, for maintaining privacy.
- Data transfer : yes for improving accuracy