Precautionary Saving in a Markovian earnings environment

Bar Light
Review of Economic Dynamics, 2018

June 12, 2025

- Consider a prudent agent,
 - \uparrow Future income risk \rightarrow Saving \uparrow

- Miller (1976): In IID earnings process, u' is convex
- Contribution: In the Markov earnings process, under what conditions
- AR(1) process satisfies those conditions

Optimal Saving Model

- \bullet Endogenous s and exogenous y
- Timing of events

$$s_t \rightarrow \text{receive } y_t \rightarrow \text{choose } c_t \rightarrow s_{t+1} = Rs_t + y_t - c_t$$

Value function

$$v(s, y) = \max_{c \in [0, Rs + y]} \left\{ u(c) + \beta \int v(Rs + y - c, y') P(y, dy') \right\}$$

Properties with respect to s

$$(\mathit{Tf})(s,y) = \max_{c \in [0,Rs+y]} \left\{ u(c) + \beta \int f(Rs+y-c,y') P(y,\mathrm{d}y') \right\}$$

- Assume that
 - P has the Feller property
 - u is bounded, strictly increasing, strictly concave, continuously differentiable and that $u'(0) = \infty$
- Then
 - ullet v is strictly increasing in s
 - ullet v is strictly concave in s
 - If f is concave in s, then σ^f is unique and hence continuous
 - If f is continuously differentiable w.r.t. s, then $(Tf)'(s, y) = Ru'(\sigma^f(s, y))$

Key Technique

- ullet Let V be all such f and let E be closed
- If the following conditions hold
 - There exists $f \in V$ such that $f' \in E$
 - $f' \in E$ and $Tf \in V$ can imply $(Tf)' \in E$
- Then
 - $T^n f \to v \in V$
 - $(T^n f)'(s, y) = Ru'(\sigma_n(s, y)) \rightarrow Ru'(\sigma(s, y)) = v'(s, y)$
 - Hence, $v' \in E$

Properties with respect to *y*

$$v(s,y) = \max_{c \in [0,Rs+y]} \left\{ u(c) + \beta \int v(Rs+y-c,y')P(y,\mathrm{d}y') \right\}$$

• v(s, y) is concave whenever P is CVP

$$f$$
 is concave $\Rightarrow \int f(s, y')P(y, dy')$ is concave

• $v'(s,y) = \frac{\partial v}{\partial s}(s,y)$ is decreasing in y whenever P is monotone

$$f$$
 is monotone $\Rightarrow \int f(s, y') P(y, dy')$ is monotone

• v'(s, y) is convex whenever u' is convex and P is CVP

Increase in Future Income Risk

• A Markov kernel Q is riskier than a Markov kernel P if for any $y \in Y$

$$P(y,\cdot)$$
 second order stochastically dominates $Q(y,\cdot)$

• i.e. for all concave functions $f \in ibY$ and $y \in Y$

$$\int f(y')Q(y,dy') \le \int f(y')P(y,dy')$$

Main Results

Main Result

- If the following conditions hold
 - 1. u' is convex (the agent is prudent)
 - 2. P is monotone
 - 3. P is CVP
 - 4. Q is riskier than P (No condition on Q)

then $\sigma(w, y, Q) \leq \sigma(w, y, P)$ for all $(w, y) \in W \times Y$

Key in Proof

$$f' \in E$$
 and $Tf \in V$ can imply $(Tf)' \in E$

- Let $f(s, y) \in V$
- E: f'(s, y) is convex and decreasing in y and that there exists $g(s, y) \in V$ such that $f'(s, y) \leq g'(s, y)$
- Notes that
 - (Tf)'(s, y, P) is convex and decreasing in y
 - (Tf)(s, y, P) and (Tg)(s, y, Q) are in V
- FOC, SOC, and Envelope Condition imply

$$(Tf)'(s,y,P) = Ru'(\sigma^f(s,y,P)) \leqslant Ru'(\sigma^g(s,y,Q)) = (Tg)'(s,y,Q)$$

MILLER, B. L. (1976): "The effect on optimal consumption of increased uncertainty in labor income in the multiperiod case," *Journal of Economic Theory*, 13, 154–167.