- 1. Determine whether the following functions are inner products.
 - (a) Let $V = \mathbb{R}^2$ and define $\langle (a,b), (c,d) \rangle = ac bd$.

(b) Let $V = \mathbb{C}^n$, for $v = (w_1, \dots, w_n)$, $u = (z_1, \dots, z_n)$ and define $\langle v, u \rangle = a_1 w_1 \overline{z_1} + \dots + a_n w_n \overline{z_n}$, where $a_i \in \mathbb{C}$.

(c) Let $V = M_2(\mathbb{R})$ and define $\langle A, B \rangle = \operatorname{tr}(A + B)$.

(d) Let $V = \operatorname{Fun}([-1,1],\mathbb{R})$ and define $\langle f(x),g(x)\rangle = \int_{-1}^1 f(x)g(x)\,dx$.

(e) (Optional) Let $V = \mathcal{P}(\mathbb{R})$ and define $\langle p(x), q(x) \rangle = \int_{-1}^{1} p'(x) q(x) dx$.

2. (Don't look at the textbook yet). The goal of this question is to prove:

Theorem: Cauchy-Schwarz Inequality Suppose $u, v \in V$. Then

$$|\langle u, v \rangle| \le ||u|| \, ||v||.$$

Hint: Apply the Pythagorean Theorem to an orthogonal decomposition $u = \lambda v + w$.

Axler 6A

3. Given vectors $u, v \in V$ and an inner product on V, recall the *orthogonal decomposition of* u and v is an equation of the form $u = \lambda v + w$ where $\lambda \in F$ and $\langle v, w \rangle = 0$.

Using inner product from 1.d) and using the vectors $u(x) = 5x^3$ and v(x) = x find the orthogonal decomposition of u and v.