ОТА, площади и ко

- Задача 1. а) Докажите, что простых чиел бесконечно много.
- б) Доказать, что простых чисел вида 4k + 3 бесконечно много.
- **Задача 2.** Положительные числа a и b таковы, что ab=2. Докажите неравенство $(a+1/a)(b+1/b) \geq 9/2$.
- **Задача 3.** Пусть числа a,b,c принадлежат отрезку [0,1]. Докажите, что $\sqrt[3]{abc} + \sqrt[3]{(1-a)(1-b)(1-c)} \le 1$
- **Задача 4.** Решите уравнение в гатуральных числах $x^y = y^x$.
- **Теорема 1** (Китайская теорема об остатках). Пусть m_1, m_2, \ldots, m_k попарно взаимно простые числа, $m = |m_1 m_2 \cdots m_k|$. Тогда для любых чисел r_i , существует число r, такое, что $r \equiv r_i$. Причёл любые такие числа r и x сраввнимы по модулю $r \equiv x$ (это означает, что среди чисел от θ до m-1 есть ровно одно такое число).
- **Задача 5.** Найдите все натуральные n такие, что n делится на $\varphi(n)$.
- **Задача 6.** В треугольнике ABC стороны равны соответственно a,b,c а его площадь равна S. Найдите радиус вписанной окружности.
- **Задача 7.** Стороны вписанного четырёхугольника ABCD удовлетворяют соотношению $AB \cdot BC = AD \cdot DC$. Докажите, что площади треугольников ABC и ADC равны.
- **Задача 8.** Можно ли двумя прямолинейными разрезами, проходящими через две вершины треугольника, разрезать его на четыре части так, чтобы три треугольника (из числа этих частей) были равновеликими?
- Задача 9. Докажите, что если два треугольника, получающихся при продолжении сторон выпуклого четырёхугольника до их пересечения, равновелики, то одна из диагоналей делит другую пополам.