L'apprendimento degli alberi di decisione

Riccardo Malavolti - 5797787

22/1/2017

Introduzione

Gli alberi di decisione sono uno strumento molto utile per visualizzare processi di scelta e per stabilire delle strategie relative al dominio di applicazione.

I vantaggi non si fermano solo all'uso dell'utente finale: si prestano molto bene come strumenti attivi nei problemi di classificazione e regressione, dove si cerca di predire l'appartenenza alla classe o un valore target numerico dati in ingresso degli input con cui eseguire i test contenuti all'interno dell'albero.

Per ottenere un buon grado di affidabilità nella previsione è necessario applicare metodi di apprendimento basati su esempi, in modo tale da costruire tramite approccio topdown un albero che cresca "imparando" sulla base dei dati forniti.

Apprendere l'albero

L'algoritmo implementato (una variante di ID3) costruisce l'albero scegliendo volta per volta l'attributo più efficace a dividere gli esempi, usandolo come nodo da cui poi proseguire la costruzione ricorsivamente. Ma come si determina l'attributo più adatto? Una buona misura della bontà della scelta è rappresentata dal guadagno di informazione, basato sul concetto di entropia.

Così come nell'ambito fisico, l'entropia misura il "disordine" presente nella collezione di insiemi prodotta dalla scelta di un dato attributo: sarà massima se la proporzione tra esempi positivi e negativi sarà 50%-50% mentre sarà 0 se l'attributo realizza un insieme di insiemi tutti della stessa classe.

Il guadagno di informazione descrive semplicemente quanto è adatto l'attributo a suddividere gli esempi: è ovvio scegliere il test che realizza la divisione più netta possibile.

Con questa politica di scelta, l'algoritmo costruisce l'albero, diramandone i nodi fino a creare delle foglie (che rappresentano una risposta alla richiesta di classificazione). C'è il pericolo però che questa crescita sia esagerata e finisca con il produrre un albero particolarmente complesso e sovradattato agli esempi forniti, incapace quindi di fornire previsioni accurate e sensate.

Nella variante implementata - come da richiesta - si è inserito un criterio di stop alla proliferazione dei nodi basato sulla percentuale di errori commessi da una foglia che

rimpiazza l'attributo in esame: <u>se catalogare un pool di esempi</u> (non completamente omogenei) <u>sotto la stessa classe produce un errore accettabile</u> (fornito come parametro) allora è conveniente posizionare la foglia invece di continuare a inserire test.

Risultati sperimentali

L'algoritmo così implementato è stato testato con alcuni dataset liberamente reperibili sul web.

- "kr-vs-kp": descrive le mosse di un fine partita tra re+torre bianchi e re+pedone neri associando la vittoria/non vittoria del bianco.
- "mushrooms": classifica varie specie fungine in due classi (edibile/velenoso) sulla base di attributi morfologici.
- "restaurants": una strategia di decisione sull'attendere o meno un tavolo al ristorante di un hotel basandosi sulle caratteristiche del ristorante stesso.

Osservando i grafici si nota che non sempre avere più test porta ad una maggiore precisione: nel dataset "restaurants" aggiungere troppi nodi porta a overfitting, assente nel caso di "kr-vs-kp". Il caso di "mushrooms" invece evidenzia un pattern molto semplice presente nei dati, con un solo test si raggiungono punteggi molto alti, prossimi al 100% se si utilizzano 5 nodi.

Fonti:

- Mitchell, T. M. (1997). "Machine Learning", Ch 3: "Decision Tree Learning" 52-76.
- Norvig, P. & Stuart, R. (2007). "Intelligenza Artificiale: un approccio moderno", Ch 18.3: "Apprendere alberi di decisione".
- "kr-vs-kp": https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)
- "mushrooms": https://archive.ics.uci.edu/ml/datasets/mushroom
- "restaurants": https://github.com/aimacode, dove è possibile generare un dataset sintetico di dimensione a piacere.