

25 years of open source forecasting software

Rob J Hyndman 26 June 2025

Outline

- 1
- 2 Python
- 3 Julia

Outline

- 1 |
- 2 Python
- 3 Julia

Early R forecasting (c.2000)

ts package (now stats package):

- Holtwinters(): point forecasts only, with optional multiplicative seasonality (written by David Meyer).
- arima(): state space formulation of ARIMA models (written by Brian Ripley).
- structTS(): Basic structural models as per Harvey (written by Brian Ripley).

Early R forecasting (c.2000)

ts package (now stats package):

- Holtwinters(): point forecasts only, with optional multiplicative seasonality (written by David Meyer).
- arima(): state space formulation of ARIMA models (written by Brian Ripley).
- structTS(): Basic structural models as per Harvey (written by Brian Ripley).
- Each had a predict() method, but output was inconsistent.
- Holtwinters did not produce prediction intervals.

forecast package for R: motivation

- Consistent output for existing methods by introducting new S3 generic forecast() and new S3 class forecast.
- New methods including ets(), thetaf(), auto.arima().
- Modelling functions can be swapped while leaving code unchanged.
- Easy plotting tools with new plot.forecast() method.
- New forecasting tools such as accuracy() calculations.

forecast package for R: history

Date	Event
Pre 2003	Collection of functions used for consulting projects
July/August 2003	ets() and thetaf() added
August 2006	v1.0 available on CRAN
May 2007	auto.arima() added
July 2008	JSS paper (Hyndman & Khandakar)
September 2009	v2.0. Unbundled from Mcomp, fma & expsmooth
May 2010	arfima() added
Feb/March 2011	tslm(), stlf(), naive(), snaive() added
August 2011	v3.0 . Box Cox transformations added
December 2011	tbats() added

forecast package for R: history

Date	Event
April 2012	Package moved to github
November 2012	v4.0 . nnetar() added
June 2013	Major speed-up of ets()
January 2014	v5.0 . tsoutliers() and tsclean() added
May 2015	v6.0 . Added several new plots
February 2016	v7.0. Added ggplot2 graphics & bias adjustment
March 2017	<pre>v8.0. Added tsCV() & baggedETS()</pre>
April 2018	v8.3 . Added mstl(), and revised auto.arima()
April 2025	v8.24. Last update

forecast package for R

forecast package for R

- auto.arima + forecast
- ets + forecast
- tbats + forecast
- bats + forecast
- arfima + forecast
- nnetar + forecast
- stlm + forecast
- meanf
- rwf, naive
- thetaf
- dshw, hw, holt, ses
- splinef
- croston

All produce an object of class forecast

forecast package for R

- auto.arima + forecast
- ets + forecast
- tbats + forecast
- bats + forecast
- arfima + forecast
- nnetar + forecast
- stlm + forecast
- meanf
- rwf, naive
- thetaf
- dshw, hw, holt, ses
- splinef
- croston

All produce an object of class forecast

v9.0 will have new model functions:

- mean_model()
- rw_model()
- theta_model()
- spline_model()
- croston_model

CRAN Task View Time Series

CRAN Task View: Time Series Analysis

Maintainer: Rob J Hyndman, Rebecca Killick
Contact: Rob.Hyndman at monash.edu

Version: 2025-05-17

URL: https://CRAN.R-project.org/view=TimeSeries

Source: https://github.com/cran-task-views/TimeSeries/

Contributions: Suggestions and improvements for this task view are very welcome and can

be made through issues or pull requests on GitHub or via e-mail to the maintainer address. For further details see the Contributing guide.

Citation: Rob J Hyndman, Rebecca Killick (2025). CRAN Task View: Time Series Analysis.

Version 2025-05-17. URL https://CRAN.R-project.org/view=TimeSeries.

Installation: The packages from this task view can be installed automatically using the $\underline{\mathsf{ctv}}$

package. For example, ctv::install.views("TimeSeries", coreOnly = TRUE)
installs all the core packages or ctv::update.views("TimeSeries") installs all
packages that are not yet installed and up-to-date. See the <u>CRAN Task View</u>

<u>Initiative</u> for more details.

Package Downloa	ads ('000)
forecast	22783
bsts	2322
vars	1851
prophet	1578
smooth	1159
fabletools	1134
fable	982
greybox	910
hts	896
thief	673

ETS

Function	PIntervals	Automatic	Covariates
stats::HoltWinters()	No	No	No
<pre>forecast::ets()</pre>	Yes	Yes	No
<pre>fable::ETS()</pre>	Yes	Yes	No
smooth::es()	Yes	Yes	Yes

forecast::ets()

```
ets(AirPassengers)
ETS(M,Ad,M)
Call:
ets(v = AirPassengers)
  Smoothing parameters:
    alpha = 0.7096
    beta = 0.0204
    gamma = 1e-04
    phi = 0.98
  Initial states:
    l = 120.9939
    b = 1.7705
    s = 0.8944 \ 0.7993 \ 0.9217 \ 1.059 \ 1.22 \ 1.232
           1.111 0.9786 0.9804 1.011 0.8869 0.9059
```

forecast::ets()

```
ets(AirPassengers) |> forecast(h = 10)

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
```

```
Jan 1961
                  441.8 419.6 464.0 407.9 475.7
Feb 1961
                  434.1 407.2 461.1 392.9 475.3
Mar 1961
                  496.6 460.6 532.6 441.6 551.7
Apr 1961
                  483.2 443.6 522.9 422.6 543.8
May 1961
                  484.0 440.0 528.0 416.7 551.2
Jun 1961
                  551.0 496.3 605.7 467.4 634.7
Jul 1961
                  613.2 547.4 679.0 512.6 713.8
Aug 1961
                  609.4 539.2 679.5 502.1 716.6
Sep 1961
                  530.5 465.5 595.6 431.0 630.0
Oct 1961
                  463.0 402.8 523.2 371.0 555.1
```

17

fable::ETS()

```
as_tsibble(AirPassengers) |>
         model(ets = ETS(value)) |>
         report()
Series: value
Model: ETS(M,Ad,M)
          Smoothing parameters:
                  alpha = 0.7096
                  beta = 0.02041
                  gamma = 0.0001005
                  phi = 0.98
         Initial states:
    [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]
9] s[-10]
         121 1.771 0.8944 0.7993 0.9217 1.059 1.22 1.232 1.111 0.9786 0.9804 1.011 0.8869
    s[-11]
    0.9059
```

fable::ETS()

10 ets

```
as tsibble(AirPassengers) |>
 model(ets = ETS(value)) |>
 forecast(h = 10)
# A fable: 10 x 4 [1M]
          .model [1]
# Key:
  .model
          index
                       value .mean
  <chr>
        <mth>
                       <dist> <dbl>
1 ets
      1961 Jan N(442, 299) 442.
2 ets 1961 Feb N(434, 442) 434.
3 ets 1961 Mar N(497, 789)
                               497.
         1961 Apr N(483, 956)
                               483.
4 ets
         1961 May N(484, 1177)
5 ets
                               484.
6 ets
         1961 Jun N(551, 1821)
                               551.
         1961 Jul N(613, 2636)
7 ets
                               613.
         1961 Aug N(609, 2994)
8 ets
                               609.
9 ets
         1961 Sep N(531, 2577)
                               531.
```

463.

1961 Oct N(463, 2205)

smooth::es()

es(AirPassengers) Time elapsed: 1.49 seconds Model estimated using es() function: ETS(MMdM) With optimal initialisation Distribution assumed in the model: Normal Loss function type: likelihood; Loss function value: 526.8 Persistence vector g: alpha beta gamma 0.3536 0.0000 0.4560 Damping parameter: 0.9991 Sample size: 144 Number of estimated parameters: 18 Number of degrees of freedom: 126 Information criteria: AIC AICC BIC BICC 1090 1095 1143 1157

smooth::es()

```
es(AirPassengers) |> forecast(h = 10, interval = "parametric")
         Point forecast Lower bound (2.5%) Upper bound (97.5%)
Jan 1961
                  450.4
                                      413.0
                                                           486.8
Feb 1961
                  426.5
                                      389.0
                                                           463.0
Mar 1961
                  482.7
                                      438.2
                                                           527.4
Apr 1961
                  506.8
                                      457.5
                                                           556.3
May 1961
                  521.5
                                      470.1
                                                           575.3
Jun 1961
                  596.9
                                      535.8
                                                           659.8
Jul 1961
                  688.6
                                      615.4
                                                           765.9
Aug 1961
                  681.7
                                      607.0
                                                           761.7
Sep 1961
                  567.7
                                      503.8
                                                           634.9
Oct 1961
                   505.3
                                      446.1
                                                           567.7
```

Benchmarks

```
bench::mark(
  forecast = ets(AirPassengers) |> forecast(h = 10),
  fable = as_tsibble(AirPassengers) |> model(ETS(value)) |> forecast(h = 10),
  smooth = es(AirPassengers) |> forecast(h = 10, interval = "parametric"),
  check = FALSE
)
```

expression	min	median	itr/sec	mem_alloc
forecast	673.96ms	673.96ms	1.48	43.6MB
fable	729.2ms	729.2ms	1.37	37.5MB
smooth	1.61s	1.61s	0.62	221.9MB

ARIMA

Function	PIntervals	Automatic	Covariates
stats::arima()	Yes	No	Yes
<pre>forecast::Arima()</pre>	Yes	No	Yes
<pre>forecast::auto.arima()</pre>	Yes	Yes	Yes
<pre>fable::ARIMA()</pre>	Yes	Yes	Yes
<pre>smooth::ssarima()</pre>	Yes	No	Yes
<pre>smooth::auto.ssarima()</pre>	Yes	Yes	Yes

forecast::auto.arima()

```
auto.arima(AirPassengers, lambda = 0)
Series: AirPassengers
ARIMA(0,1,1)(0,1,1)[12]
Box Cox transformation: lambda= 0
Coefficients:
        mal smal
     -0.402 -0.557
s.e. 0.090 0.073
sigma^2 = 0.00137: log likelihood = 244.7
ATC=-483.4 ATCc=-483.2 BTC=-474.8
```

forecast::auto.arima()

```
auto.arima(AirPassengers, lambda = 0) > forecast(h = 10)
         Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1961
                  450.4 429.5 472.3 418.9 484.3
Feb 1961
                  425.7 402.8 449.9 391.2 463.3
Mar 1961
                  479.0 450.1 509.7 435.6 526.8
Apr 1961
                  492.4 459.9 527.2 443.5 546.7
May 1961
                  509.1 472.7 548.2 454.6 570.0
Jun 1961
                  583.3 538.9 631.5 516.8 658.5
Jul 1961
                  670.0 615.9 728.9 589.1 762.1
Aug 1961
                  667.1 610.4 729.1 582.3 764.2
Sep 1961
                  558.2 508.5 612.8 484.0 643.8
Oct 1961
                  497.2 451.0 548.1 428.3 577.2
```

fable::ARIMA()

```
as_tsibble(AirPassengers) |>
 model(arima = ARIMA(log(value))) |>
 report()
Series: value
Model: ARIMA(2,0,0)(0,1,1)[12] w/ drift
Transformation: log(value)
Coefficients:
                ar2 smal constant
        ar1
     0.5754 0.2614 -0.5553 0.0193
s.e. 0.0843 0.0842 0.0771 0.0015
sigma^2 estimated as 0.001323: log likelihood=249.7
ATC=-489.3 ATCc=-488.8 BTC=-474.9
```

fable::ARIMA()

```
as_tsibble(AirPassengers) |>
 model(arima = ARIMA(log(value))) |>
 forecast(h = 10)
# A fable: 10 x 4 [1M]
          .model [1]
# Key:
   .model
          index
                             value .mean
  <chr> <mth>
                           <dist> <dbl>
1 arima 1961 Jan t(N(6.1, 0.0013))
                                    453.
2 arima 1961 Feb t(N(6.1, 0.0018)) 430.
3 arima 1961 Mar t(N(6.2, 0.0022)) 486.
4 arima 1961 Apr t(N(6.2, 0.0025))
                                    502.
5 arima 1961 May t(N(6.3, 0.0028))
                                    522.
6 arima 1961 Jun t(N(6.4, 0.003))
                                    600.
7 arima 1961 Jul t(N(6.5, 0.0031))
                                    691.
8 arima 1961 Aug t(N(6.5, 0.0032))
                                    690.
9 arima 1961 Sep t(N(6.4, 0.0033))
                                    579.
10 arima 1961 Oct t(N(6.2, 0.0034))
                                     516.
```

smooth::auto.ssarima()

auto.ssarima(log(AirPassengers)) Time elapsed: 2.35 seconds Model estimated: SARIMA(0,1,3)[1](0,1,3)[12]Matrix of MA terms: Lag 1 Lag 12 MA(1) -0.4157 -0.7397MA(2) 0.0313 0.1145 MA(3) -0.1255 0.0747Initial values were produced using backcasting. Loss function type: likelihood; Loss function value: -287.9556 Frror standard deviation: 0.0336 Sample size: 144 Number of estimated parameters: 7 Number of degrees of freedom: 137 Information criteria: AIC AICC BIC BICC -561.9 -561.1 -541.1 -539.1

smooth::auto.ssarima()

```
auto.ssarima(log(AirPassengers)) |> forecast(h = 10)
```

		Point	forecast	Lower	bound	(2.5%)	Upper	bound	(97.5%)
Jan	1961		6.104			6.039			6.169
Feb	1961		6.049			5.973			6.124
Mar	1961		6.181			6.096			6.266
Apr	1961		6.185			6.094			6.276
May	1961		6.224			6.128			6.321
Jun	1961		6.372			6.271			6.474
Jul	1961		6.506			6.399			6.612
Aug	1961		6.512			6.401			6.623
Sep	1961		6.324			6.209			6.440
0ct	1961		6.201			6.082			6.321

Benchmarks

```
bench::mark(
  forecast = auto.arima(AirPassengers, lambda = 0, biasadj = TRUE) |>
    forecast(h = 12),
  fable = as_tsibble(AirPassengers) |> model(ARIMA(log(value))) |>
    forecast(h = 12),
  smooth = auto.ssarima(log(AirPassengers)) |>
    forecast(h = 12, interval="parametric"),
    check = FALSE
)
```

expression	min	median	itr/sec	mem_alloc
forecast	1.92s	1.92s	0.52	402.39MB
fable	5.26s	5.26s	0.19	1.28GB
smooth	3.2s	3.2s	0.31	428.36MB

Outline

- 1
- 2 Python
- 3 Julia

Python packages with statistical models

- statsmodels (2016-2024)
- pmdarima (2017-2023)
- sktime (2019–2025)
- GluonTS (AWS, 2019–2025)
- Darts (2020-2025)
- Merlion (Salesforce, 2021-2023)
- statsforecast (Nixtla 2022–2025)
- hierarchicalforecast (Nixtla 2022-2025)
- pyhts (2022)
- aeon (2023–2025) [fork of sktime]

Most complete packages

sktime:

- AutoARIMA
- AutoETS
- BATS/TBATS
- Theta
- STLForecaster
- Croston
- Bagged-ETS
- Prophet

statsforecast:

- AutoARIMA
- AutoETS
- AutoTBATS
- Theta
- MSTL
- Croston
- TSB, ADIDA
- ARCH/GARCH

Python reconciliation packages

- hierarchicalforecast
- sktime
- pyhts
- Darts

Foundation models

- Time-LLM (Jin et al. 2023)
- TimeGPT-1 (Garza, Challu, and Mergenthaler-Canseco 2023)
- Lag-Llama (Rasul et al. 2023)
- TimesFM (Das et al. 2023)
- Tiny Time Mixers (Ekambaram et al. 2024)
- Moirai (Woo et al. 2024)
- MOMENT (Goswami et al. 2024)
- UniTS (Gao et al. 2024)
- Chronos (Ansari et al. 2024)

Other active Python forecasting software projects

- Prophet
- Neuralprophet
- Kats
- mlforecast (Nixtla 2022-2025)
- neuralforecast (Nixtla 2022–2025)

Neural forecasting methods available in NeuralForecast

"Autoformer", "BiTCN", "DeepAR", "DeepNPTS", "DilatedRNN", "FEDformer", "GRU", "HINT", "Informer", "iTransformer", "KAN", "LSTM", "MLP", "MLPMultivariate", "NBEATS", "NBEATSX", "NHITS", "NLinear", "PatchTST", "RNN", "SOFTS", "StemGNN", "TCN", "TFT", "TiDE", "TimeMixer", "TimeLLM", "TimesNet", "TSMixer", "TSMixer", "TSMixerx", "VanillaTransformer"

Outline

- 1 F
- 2 Python
- 3 Julia

Julia

forecast