Chapter 3

Curs 3

3.1 Variabile aleatoare

Considerăm (Ω, \mathcal{F}, P) un spațiu de probabilitate fixat.

Reamintim că am notat prin $\mathcal{B} = \mathcal{B}(\mathbb{R})$ σ -algebra mulțimilor Boreliene din \mathbb{R} , cea mai mică σ -algebră pe \mathbb{R} ce conține familia de intervale

$$\mathcal{S} = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

Se poate arăta că inlocuind S prin familia tuturor intervalelor de un anumit tip (mărginite sau nemărginite, inchise sau deschise), spre exemplu

$$\mathcal{S} = \{(-\infty, a] : a \in \mathbb{R}\},\$$

sau prin familia tuturor mulțimilor deschise din \mathbb{R} , se obține aceeași familie $\mathcal{B} = \mathcal{B}(\mathbb{R})$ a mulțimilor Boreliene din \mathbb{R} .

În mod similar, înlocuind pe S prin

$$S = \{(a_1, b_1) \times \ldots \times (a_n, b_n) : a_i, b_i \in \mathbb{R}, a_i < b_i, i = 1, \ldots, n\},\$$

 σ -algebra generată de \mathcal{S} se numește σ -algebra mulțimilor Boreliene din \mathbb{R}^n , și se notează $\mathcal{B}(\mathbb{R}^n)$. Ca și în cazul n=1, înlocuind pe \mathcal{S} prin familia tuturor dreptunghiurilor de un anumit tip (produse carteziene de intervale mărginite sau nemărginite, închise sau deschise), sau prin familia tuturor mulțimilor deschise din \mathbb{R}^n , se obține aceeași σ -algebra $\mathcal{B}(\mathbb{R}^n)$ a mulțimilor Boreliene din \mathbb{R}^n .

Reamintim de asemenea, că o funcție $f:\mathbb{R}^m\to\mathbb{R}^n\ (m,n\geq 1)$ se numește măsurabilă dacă

$$f^{-1}(B) = \{x \in \mathbb{R}^m : f(x) \in B\} \in \mathcal{B}(\mathbb{R}^m)$$

oricare ar fi mulțimea Boreliană $B \in \mathcal{B}(\mathbb{R}^n)$.

Înlocuind în această definiție spațiul măsurabil $(\mathbb{R}^m, \mathcal{B}(\mathbb{R}^m))$ prin spațiul măsurabil (Ω, \mathcal{F}) , se obține noțiunea de variabilă aleatoare:

Definiția 3.1.1 Numim variabilă aleatoare vectorială o funcție $X:\Omega\to\mathbb{R}^n$ $(n\geq 1)$ cu proprietatea că

$$X^{-1}(B) = \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{F},$$

pentru orice mulțime Boreliană $B \in \mathcal{B}(\mathbb{R}^n)$.

În cazul particular n=1, spunem că X este o variabilă aleatoare reală, iar atunci când nu există pericolul confuziei, vom spune simplu că X este o variabilă aleatoare (abreviat v.a.).

Următoarea teoremă este utilă pentru a demonstra că o funcție $X: \nleq \to \mathbb{R}^n$ este o variabilă aleatoare:

Teorema 3.1.2 $Dacă X : \Omega \to \mathbb{R}^n \ verifică$

$$X^{-1}(B) \in \mathcal{F}$$

oricare ar fi $B \in \mathcal{S}$ şi σ -algebra generată de \mathcal{S} este $\sigma(\mathcal{S}) = \mathcal{B}(\mathbb{R}^n)$, atunci X este o variabilă aleatoare vectorială.

 $\hat{I}n \ particular, \ pentru \ n = 1, \ dacă$

$$X^{-1}\left((-\infty,a)\right) = \left\{\omega \in \Omega : X\left(\omega\right) < a\right\} \stackrel{not}{=} \left\{X < a\right\} \in \mathcal{F}, \quad \forall a \in \mathbb{R}.$$

sau

$$X^{-1}\left((-\infty, a]\right) = \left\{\omega \in \Omega : X\left(\omega\right) \le a\right\} \stackrel{not}{=} \left\{X \le a\right\} \in \mathcal{F}, \qquad \forall a \in \mathbb{R},$$

atunci X este o variabilă aleatoare reală.

Demonstrație. Să considerăm

$$\mathcal{A}=\left\{ B\in\mathcal{B}\left(\mathbb{R}^{n}\right):X^{-1}\left(B\right)\in\mathcal{F}\right\}$$

familia tuturor mulțimilor Boreliene $B \in \mathcal{B}(\mathbb{R}^n)$ pentru care $X^{-1}(B) \in \mathcal{F}$. Deoarece

$$X^{-1}\left(\bigcup_{i\geq 1}B_i\right)=\bigcup_{i\geq 1}X^{-1}\left(B_i\right),\qquad B_1,B_2,\ldots\in\mathcal{B}\left(\mathbb{R}^n\right)$$

şi

$$X^{-1}(B^c) = (X^{-1}(B))^c, \qquad B \in \mathcal{B}(\mathbb{R}^n),$$

rezultă că \mathcal{A} este o σ -algebră. Cum din ipoteză $\mathcal{S} \subset \mathcal{A}$, rezultă că $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{S}) \subset \sigma(\mathcal{A}) = \mathcal{A}$, și deci

$$X^{-1}(B) \in \mathcal{F}, \qquad B \in \mathcal{B}(\mathbb{R}^n),$$

adică $X: \Omega \to \mathbb{R}^n$ este o variabilă aleatoare vectorială.

Partea a doua rezultă considerând

$$\mathcal{S} = \{(-\infty, a) : a \in \mathbb{R}\},\$$

respectiv

$$\mathcal{S} = \{(-\infty, a] : a \in \mathbb{R}\},\$$

pentru care σ -algebra generată este $\sigma(\mathcal{S}) = \mathcal{B}(\mathbb{R})$.

Observația 3.1.3 Dată fiind o funcție $X:\Omega\to\mathbb{R}^n$, se poate arăta că familia

$$\left\{ X^{-1}\left(B\right):B\in\mathcal{B}\left(\mathbb{R}^{n}\right)\right\}$$

este o σ -algebră, notată $\sigma(X)$ şi numită σ -algebra generată de X ($\sigma(X)$ este cea mai mică σ -algebră \mathcal{F} pe Ω pentru care X este o variabilă aleatoare).

Cu această definiție, a spune că X este o variabilă aleatoare revine la incluziunea

$$\sigma(X) \subset \mathcal{F}$$
.

Teorema 3.1.4 Dacă $X = (X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ este o variabilă aleatoare şi $f : \mathbb{R}^n \to \mathbb{R}^m$ este o funcție măsurabilă, atunci $f \circ X = f(X_1, \ldots, X_n) : \Omega \to \mathbb{R}^m$ este o variabilă aleatoare.

În particular, dacă X_1, \ldots, X_n sunt variabile aleatoare, atunci $a_1X_1 + \ldots + a_nX_n + b$ este de asemenea o variabilă aleatoare, $a_1, \ldots, a_n, b \in \mathbb{R}$.

Demonstrație. Pentru orice $B \in \mathcal{B}(\mathbb{R}^m)$ avem

$$(f(X))^{-1}(B) = X^{-1}\left(\underbrace{f^{-1}(B)}_{\in\mathcal{B}(\mathbb{R}^n)}\right) \in \mathcal{F},$$

deoarece din ipoteză $f: \mathbb{R}^n \to \mathbb{R}^m$ este o funcție măsurabilă iar $X: \Omega \to \mathbb{R}^n$ este o variabilă aleatoare.

Pentru a doua parte a teoremei, se arată că $X = (X_1, ..., X_n)$ este o variabilă aleatoare şi că $f(x_1, ..., x_n) = a_1x_1 + ... + a_nx_n + b : \mathbb{R}^n \to \mathbb{R}$ este o funcție continuă (şi deci măsurabilă).

Teorema 3.1.5 Dacă $X_1, X_2, \ldots : \Omega \to \mathbb{R}$ sunt variabile aleatoare, atunci

$$\inf_{n\geq 1} X_n, \qquad \sup_{n\geq 1} X_n$$

si

$$\lim\inf X_n = \sup_{n \ge 1}\inf_{k \ge n} X_k, \qquad \lim\sup X_n = \inf_{n \ge 1}\sup_{k > n} X_k$$

sunt de asemenea vriabile aleatoare.

În particular, dacă există $\lim_{n\to\infty} X_n(\omega) = X(\omega)$, oricare ar fi $\omega \in \Omega$, atunci $X: \Omega \to \mathbb{R}$ este de asemenea o variabilă aleatoare.

Demonstraţie. Să observăm că

$$\left\{\inf_{n\geq 1} X_n < a\right\} = \bigcup_{n\geq 1} \left\{\underbrace{X_n < a}_{\in \mathcal{F}}\right\} \in \mathcal{F}, \qquad a \in \mathbb{R},$$

și deci $\inf_{n\geq 1} X_n$ este o variabilă aleatoare, și similar se demonstrează că $\sup_{n\geq 1} X_n$ este o variabilă aleatoare.

Ultima parte a afirmației rezultă din prima parte a demonstrației folosind faptul că $\inf_{n\geq k} X_n$ și $\sup_{n\geq k} X_n$ sunt variabile aleatoare pentru orice $k\geq 1$.

În cazul particular când există $X(\omega) = \lim_{n\to\infty} X_n(\omega)$ oricare ar fi $\omega \in \Omega$, avem

$$X(\omega) = \liminf X_n(\omega) = \limsup X_n(\omega), \qquad \omega \in \Omega$$

și deci $X:\Omega\to\mathbb{R}$ este o variabilă aleatoare.

Observația 3.1.6 Se știe că în general $\liminf x_n \leq \limsup x_n$, și că șirul $(x_n)_{n\geq 1}$ converge la $x\in \mathbb{R}$ dacă și numai dacă cele două limite sunt egale, caz în care

$$x = \lim_{n \to \infty} x_n = \liminf x_n = \limsup x_n.$$

Spunem că șirul de variabile aleatoare converge aproape sigur dacă

$$P(\{\omega \in \Omega : \liminf X_n(\omega) = \limsup X_n(\omega)\}) = 1,$$

şi notăm cu X variabila aleatoare dată de valoarea comună a celor două limite (notăm $\lim_{n\to\infty} X_n = X$ a.s. sau $X_n \to X$ a.s.).

Să observăm că variabila aleatoare X este definită mai puțin o mulțime de măsura nulă unde cele două limite diferă; pentru consistența definiției, putem defini valoarea limitei prin $X(\omega) = \limsup X_n(\omega)$ în aceste puncte, cu observația că este posibil ca $X(\omega) = +\infty$ pentru anumite valori $\omega \in \Omega$. Fiind însă vorba de o mulțime de măsură nulă, valoarea lui X în aceste puncte nu este esențială – nu schimbă spre exemplu valoarea integralei lui X.

EXERCIŢII

Exercițiul 3.1.7 Să se arate că dacă $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ sunt variabile aleatoare reale, atunci $X = (X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ este o variabilă aleatoare vectorială.

Exercițiul 3.1.8 i) Să se arate că o funcție $f: \mathbb{R}^n \to \mathbb{R}^m$ continuă este măsurabilă

ii) Să se arate că σ -algebra mulțimilor Boreliene $\mathcal{B}(\mathbb{R}^n)$ este cea mai mică σ -algebră pentru care orice funcție continuă este măsurabilă.

Exercițiul 3.1.9 Să se arate că dacă $f: \mathbb{R} \to \mathbb{R}$ este o funcție continuă iar $\lim_{n\to\infty} X_n = X$ a.s. atunci $\lim_{n\to\infty} f(X_n) = f(X)$.

Exercițiul 3.1.10 O variabilă aleatoare $X : \Omega \to \mathbb{R}$ definită pe un spațiu de probabilitate (Ω, \mathcal{F}, P) se numește simplă dacă

$$X\left(\omega\right) = \sum_{k=1}^{N} a_k 1_{A_k}\left(\omega\right)$$

pentru un anumit $N \geq 1, a_1, \ldots, a_N \in \mathbb{R}$ și $A_1, \ldots, A_N \in \mathcal{F}$ sunt evenimente disjuncte.

Să se arate că $X:\Omega\to\mathbb{R}$ este o variabilă aleatoare dacă și numai dacă există

variabile aleatoare simple $X_n:\Omega\to\mathbb{R}$, $n=1,2,\ldots$ astfel încât $X=\lim_{n\to\infty}X_n$ Indicație: se consideră $A_{m,n}=\left\{\omega\in\Omega:\frac{m}{2^n}\leq X\left(\omega\right)<\frac{m+1}{2^n}\right\}$ și $a_{m,n}=\frac{m}{2^n}$, unde $m=-2^{2n},-2^{2n}-1,\ldots,2^{2n}-1$ și $n\in\mathbb{N}$, și se definește șirul de funcții $X_n:\Omega\to\mathbb{R}$ prin

$$X_{n}\left(\omega\right)=\sum_{m=-2^{n}}^{2^{2n}-1}a_{m,n}1_{A_{m,n}}\left(\omega\right),\qquad\omega\in\Omega.$$