FEDS - Modelling and Analysing of Forestal and Environmental Data

An introduction to data science

How to learn?

Do not expect the teachers to teach you.

They will present some information to you, but it is entirely 100% up to you to either make the most of it, or waste your time here, and go home and get a normal dumb job.

How I will present you the informations!

- I will jump between websites, slides, coding ... will be intense
- I offer you to use some of your time and do challenges
- I get you to know stuff you have maybe never seen before
- I ask you to read and try some things just on your own
- I am here to answer questions popping up
- but you are also here to answer questions:)

Topics we will touch in this course

Setting up a data science environment

Learn to manage data, analyse data, visualise data, and model data

Learn the Python language and data science libraries - today's most used data science tools

Learn to use Jupyter notebooks and Jupyter lab as interactive work tool

Learn to use machine learning methods

Learn to create computational essays

Why Python?

Languages

for data processing

- We can use all of them.
- Some are better fitting.
- We need sometimes to combine them.
- There are more.

Products ~ Qu

Quality Models ~

Markets ~

Coding Standards

Schedule a demo

TIOBE Index

Jan 2023	Jan 2022	Change	Program	ming Language	Ratings	Change						
<u>*</u> ***********************************												
1 *	1 		•	Python	16.36%	+2.78%						
2	2		9	С	16.26%	+3.82%						
3	4	^	©	C++	12.91%	+4.62%						
4	3	•	<u>*</u>	Java	12.21%	+1.55%						
5	5		<u>@</u>	C#	5.73%	+0.05%						
6	6		VB	Visual Basic	4.64%	-0.10%						
7	7		JS	JavaScript	2.87%	+0.78%						
8	9	^	SQL	SQL	2.50%	+0.70%						
9	8	•	ASM	Assembly language	1.60%	-0.25%						
10	11	^	php	PHP	1.39%	-0.00%						
11	10	•	<u> </u>	Swift	1.20%	-0.21%						
12	13	^	- GO	Go	1.14%	+0.10%						
13	12			D	1.0.40/	-0.21%						
•	12	••••••	R	R	1.04%	-0.21%						
14	15	^	450	Classic Visual Basic	0.98%	+0.01%						
15	16	^		MATLAB	0.91%	-0.05%						
16	18	^		Ruby	0.80%	-0.08%						

Is it just a hype?

Long-term history of programming language popularity

Programming Language	2023	2018	2013	2008	2003	1998	1993	1988
Python	1	5	8	7	13	28	17	-
С	2	2	1	2	2	1	1	1
Java	3	1	2	1	1	17	-	-
C++	4	3	4	3	3	2	2	6
C#	5	4	5	8	12	-	-	-
Visual Basic	6	15	-	-	-	-	-	-
JavaScript	7	7	10	9	8	21	-	-
Assembly language	8	12	-	-	-	-	-	-
SQL	9	-	-	-	7	-	-	-
PHP	10	8	6	5	6	-	-	-
Objective-C	16	18	3	45	47	-	-	-
Ada	29	27	17	18	15	7	8	2
Lisp	31	31	13	15	14	9	5	3
Pascal	242	128	15	20	99	11	3	7
(Visual) Basic	-	-	7	4	4	3	6	5

https://www.tiobe.com/tiobe-index/

How to set up a data science environment for use with Python?

Local computer

Desktop/Laptop/Server

Install Docker or Docker Desktop

Choose Jupyter Docker image

https://jupyter-docker-stacks.readthedocs.io/en/latest/

Run Jupyter notebook or Jupyter lab in your browser

Pro's:

- Image/Container with up-todate libraries
- Multiple instances
- Fast testing possible

Con's:

Need to learn Docker basics

CONDA

Install Miniconda or Anaconda

- 1. Create virtual environment
- 2. install needed 3rd-party libraries
- 3. install Jupyter

Run Jupyter notebook or Jupyter lab in your browser

Pro's:

- Full control on the installed libraries
- Multiple venv's possible

Con's:

- Need to learn venv basics
- Need to keep libraries manually up-to-date

cloud service

Google Colab

Access Google Colab via your browser

https://colab.research.google.com/

- 1. Create a GitHub repository to exchange data files
- 2. Google drive etc is also possible

Pro's:

- · No installation of Python
- · instantly available
- Fast testing possible

Con's:

- Need some repository for data in/out
- Need paid version if you want to use it persistently (better choice for resources like
 CPU/GPU)

What we will use?

• We will use the Google Colab (cloud service)

• We also use a Github repository to organise the course

Jupyter notebooks

The concept of computational documents

- Combines text and code
- Let you organise your data processing
- Let you visualise your results (fast)
- You have a good documentation of your work
- The paper is almost written on the fly $\stackrel{ ext{@}}{=}$

Let's see an example

Make it happen...

Instead of too much theory

we will cook

and experiment