We perform exact inference and hyperparameter optimisation in Bayesian linear models with millions of parameters

Take a picture to see the full paper.

Sampling-based inference for large linear models, with application to linearised Laplace

Javier Antorán*, Shreyas Padhy,* Riccardo Barbano, Eric Nalisnick, David Janz, and José Miguel Hernández-Lobato

We learn representations of MNIST digits that are invariant to rotations and successfully reconstruct the original digits:

Original data Prototypes Reconstructions As digits are rotated more, we learn to predict larger angles:

Our model:

Affine transformation parameterization:

$$\mathcal{T}_{\eta}(\hat{\mathbf{x}}) = T_{\eta} \cdot \hat{\mathbf{x}}, \quad T_{\eta} = \exp\left(\sum_{i} \eta_{i} G_{i}\right)$$
 (4)

Our training objective:

Our training objective.
$$\log p(\mathbf{x}) = \log \iint p(\mathbf{x}, \hat{\mathbf{x}}, \boldsymbol{\eta}) \, d\boldsymbol{\eta} \, d\hat{\mathbf{x}}$$

$$= \log \underset{q_{\boldsymbol{\nu}}(\boldsymbol{\eta} \mid \mathbf{x})}{\mathbb{E}} \left[\frac{p(\mathbf{x} \mid \hat{\mathbf{x}}, \boldsymbol{\eta}) \, p_{\boldsymbol{\psi}}(\boldsymbol{\eta} \mid \hat{\mathbf{x}}) \, p_{\boldsymbol{\theta}}(\hat{\mathbf{x}})}{q_{\boldsymbol{\nu}}(\boldsymbol{\eta} \mid \mathbf{x}) \, q_{\boldsymbol{\phi}}(\hat{\mathbf{x}} \mid \mathbf{x})} \right]$$

$$\geq \underset{q_{\boldsymbol{\nu}}}{\mathbb{E}} \left[\log p(\mathbf{x} \mid \hat{\mathbf{x}}, \boldsymbol{\eta}) \right] - \underset{q_{\boldsymbol{\phi}}}{\mathbb{E}} \left[D_{\mathrm{KL}} \left(q_{\boldsymbol{\nu}} \mid \mid p_{\boldsymbol{\psi}} \right) \right] - D_{\mathrm{KL}} \left(q_{\boldsymbol{\phi}} \mid \mid p_{\boldsymbol{\theta}} \right) \equiv -\mathcal{L} \left(\boldsymbol{\theta}, \, \boldsymbol{\psi}, \, \boldsymbol{\phi}, \, \boldsymbol{\nu} \right)$$

$$(6)$$

Conjecture 1: $p_{\psi}(\eta \mid \hat{\mathbf{x}})$ must be sufficiently flexible.

 $p_{\boldsymbol{\psi}}(\eta \mid \hat{\mathbf{x}})$ — \boxtimes —and $p(\eta \mid \hat{\mathbf{x}})$ — $\overset{\longleftarrow}{\longleftarrow}$

Conjecture 2: $q_{\phi}(\hat{\mathbf{x}} | \mathbf{x})$ must be fully invariant w.r.t η .

	$\rho \ge 60^{\circ}$		$60^{\circ} > \rho$	
x	$\hat{\mathbf{x}}$	$p(\eta \mathbf{x}, \hat{\mathbf{x}})$	$\hat{\mathbf{x}}$	$p(\eta \mathbf{x}, \hat{\mathbf{x}})$
2	2	$\delta(\eta-0^\circ)$	2	$\delta(\eta-0^\circ)$
2	2	$\delta(\eta-30^\circ)$	2	$\delta(\eta-0^\circ)$
2	2	$\delta(\eta + 30^{\circ})$	2	$\delta(\eta - 0^{\circ})$

Conjecture 3: The distribution over η must depend on $\hat{\mathbf{x}}$.

x	$\hat{\mathbf{x}}$	$p(\eta \mathbf{x}, \hat{\mathbf{x}})$
2	2	$\delta(\eta-0^\circ)$
2	2	$\delta(\eta-30^\circ)$
2	2	$\delta(\eta+30^\circ)$
8	8	$0.5 \cdot \delta(\eta - 0^\circ) + 0.5 \cdot \delta(\eta - 180^\circ)$
8	8	$0.5 \cdot \delta(\eta - 30^{\circ}) + 0.5 \cdot \delta(\eta + 150^{\circ})$
8	8	$0.5 \cdot \delta(\eta + 30^{\circ}) + 0.5 \cdot \delta(\eta - 150^{\circ})$