Github POMPES – Figures à demander aux professeurs

ITB epoly tech

17 mars 2021

$1 \quad Anne \ Delandtsheer - MATH-H2000: Analyse \ II$

1.1 Chapitre 10 : Analyse vectorielle

1.1.1 Figure 10.3 – Coordonnées polaires

FIGURE 10.3 – Eléments d'aire en coordonnées cylindriques (gauche) et en coordonnées sphériques (droite).

1.1.2 Figure 10.10 – Discrétisation d'une surface

FIGURE 10.10 – Surface S découpée en sous-surfaces S_i , chacune de masse différente.

1.1.3 Figure 10.16 – Projection d'un parallélogramme

FIGURE 10.16 – Parallélogramme P ainsi que sa projection P_{xy} sur le plan z=0.

1.1.4 Figure 10.17 – Décomposition d'un flux

FIGURE 10.17 – Décomposition du flux de \vec{F} selon ses composantes.

1.1.5 Figure 10.28 – Coordonnées polaires

FIGURE 10.28 – Coordonnées polaires.

1.1.6 Figure 10.44 – Champ vectoriel et son rotationnel

FIGURE 10.44 – Champ vectoriel, et deux vues de son rotationnel.

${\bf 2} \quad {\bf Artem~Napov-MATH-H202: Analyse~num\'erique}$

2.1 Chapitre 3

2.1.1 Exemple 22 – Représentation schématique de matrices

2.2 Chapitre 5

2.2.1 Exemple 30 – Zoom dans une illustration de la méthode de fausse position

EXEMPLE 30. Les deux premières itérations de la méthode de la fausse position sont illustrées dans les figures suivantes. Comme dans l'exemple précédent, on considère l'équation f(x) = 0 avec $f(x) = 4\sin(x)/x$ sur l'intervalle [a,b] = [1,4]. On notera que l'approximation x_2 obtenue durant la deuxième itération est déjà tellement proche de la solution (qui ici vaut π) qu'un agrandissement est nécessaire pour les distinguer. Par contre, la longueur de l'intervalle d'encadrement évolue peu au cours des deux premières itérations; elle changera peu également durant les itérations suivantes (pourquoi?).

2.3 Chapitre 7

2.3.1 Figures 7.1 et 7.2 – Fonction, et aire de polygone

FIGURE 7.1 – Intégration via la formule des trapèzes.

FIGURE 7.2 – Intégration via la formule de Simpson.

3 Jérémie Roland - INFO-H304 : Compléments de programmation et d'algorithmique

3.1 Cours 5 – Recherche de pic 1D : illustrations avec tableau

3.2 Cours 6

3.2.1 Slide 42/51: Arbre avec annotation, et tableau

3.2.2 Slide 40/51 : Arbre de récurrence avec annotation

3.3 Cours 7

3.3.1 Slide 27/77: Arbre avec backtracking

3.3.2 Slide 35/77: Problème du sac à dos

3.3.3 Slide 49/77: Manipulation d'un échiquier

3.4 Cours 9

3.4.1 Slide 40/43: Arbre avec annotation (flèche, texte)

3.5 Cours 9

3.5.1 Slide 16/49 : Liste chaînée, ensembles avec annotation

3.5.2 Slide 22/49: Opérations sur bits

3.6 Cours 12

3.6.1 Slide 46/71: Problème du sac-à-dos fractionnel

Problème du sac-à-dos fractionnel

Problème du sac-à-dos fractionnel

Comment maximiser la **valeur** du sac, si on peut prendre des fractions de chaque élément?

3.6.2 Slide 61/71: Graphe de dépendances

