Kapitel DB:III (Fortsetzung)

III. Logischer Datenbankentwurf mit dem relationalen Modell

- □ Das relationale Modell
- □ Integritätsbedingungen
- □ Umsetzung ER-Schema in relationales Schema
- Vergleichende Syntax-Übersicht

Einordnung

Einordnung (Fortsetzung)

Das ER-Modell besitzt zwei grundlegende Strukturierungskonzepte:

- 1. Entity-Typen $E(A_1, \ldots, A_n)$
- 2. Beziehungstypen $R(E_1, \ldots, E_m; A_1, \ldots, A_n)$

Im relationalen Modell werden beide auf das einzige Strukturierungskonzept "Relationenschema", \mathcal{R} , abgebildet. Hierbei dient das Konzept der Fremdschlüssel zur Abbildung von Beziehungstypen.

Reguläre Entity-Typen

$$\mathcal{R}_E = \{\underline{\mathit{ID}}, A_1, \dots, A_n\}$$

Schlüssel: κ bzw. $\{ID\}$

Reguläre Entity-Typen

Umsetzung:

1. Dem Entity-Typ E wird Relationenschema \mathcal{R}_E zugeordnet. Die Attribute A_1, \ldots, A_n von E werden Attribute von \mathcal{R}_E .

Reguläre Entity-Typen

Umsetzung:

- 1. Dem Entity-Typ E wird Relationenschema \mathcal{R}_E zugeordnet. Die Attribute A_1, \ldots, A_n von E werden Attribute von \mathcal{R}_E .
- 2. Der Primärschlüssel $\kappa \subseteq \{A_1, \dots, A_n\}$ von E wird Primärschlüssel von \mathcal{R}_E .

Alternative:

Festlegen eines formalen Primärschlüssels durch Hinzufügen eines Schlüsselattributes ID zur Umsetzung der Eindeutigkeit von Entitäten. Der ursprüngliche Primärschlüssel κ ist dann ein weiterer Schlüssel im Relationenschema \mathcal{R}_E .

Reguläre Entity-Typen

Umsetzung:

- 1. Dem Entity-Typ E wird Relationenschema \mathcal{R}_E zugeordnet. Die Attribute A_1, \ldots, A_n von E werden Attribute von \mathcal{R}_E .
- 2. Der Primärschlüssel $\kappa \subseteq \{A_1, \ldots, A_n\}$ von E wird Primärschlüssel von \mathcal{R}_E .

Alternative:

Festlegen eines formalen Primärschlüssels durch Hinzufügen eines Schlüsselattributes ID zur Umsetzung der Eindeutigkeit von Entitäten. Der ursprüngliche Primärschlüssel κ ist dann ein weiterer Schlüssel im Relationenschema \mathcal{R}_E .

3. Der Primärschlüssel wird durch Unterstreichen gekennzeichnet.

Reguläre Entity-Typen

$$\mathcal{R}_E = \{ \underbrace{A_1, A_2, A_3}_{\text{Schlüssel } \kappa}, ..., A_n \}$$

Bemerkungen:

- □ Die Bezeichnung "regulärer Entity-Typ" dient als Unterscheidung zu
 - abhängigen bzw. schwachen Entity-Typen,
 - spezialisierten Entity-Typen, die in einer IST-Beziehung stehen.
- Die Tupel in $r(\mathcal{R}_E)$ (zu einem bestimmten Zeitpunkt) entsprechen genau den Instanzen in state(E) (zum gleichen Zeitpunkt).

Beziehungstypen

Zwei Umsetzungsstrategien:

- (a) Direkte Abbildung auf ein adäquates Schema.
- (b) Kanonische Umsetzung ("Cross-Reference") mit anschließender Zusammenfassung von Relationenschemata.

Beziehungstypen

Zwei Umsetzungsstrategien:

- (a) Direkte Abbildung auf ein adäquates Schema.
- (b) Kanonische Umsetzung ("Cross-Reference") mit anschließender Zusammenfassung von Relationenschemata.

Besondere Behandlung folgender Fälle:

- 1. 1:n-Beziehung (Formalismus I für Kardinalitäten)
- 2. 1:1-Beziehung (Formalismus I für Kardinalitäten)
- 3. [0,1] und [1,1] bei [min, max]-Beschränkung (Formalismus II für Kardinalitäten)
- 4. existenzabhängige (schwache) Entity-Typen
- 5. IST-Beziehungstypen
- 6. reflexive Beziehungstypen

Beziehungstypen: Kapazitätserhaltung

Eine zentrale Forderung bei der Abbildung von Beziehungstypen ist die Kapazitätserhaltung: die möglichen Zustände des ER-Modells sind auch mögliche Instanzen des relationalen Modells – und umgekehrt.

Definition 7 (kapazitätserhaltend)

Gibt es eine bijektive totale <u>Abbildung zwischen den Zuständen</u> eines Entity-Relationship-Modells und den Instanzen eines relationalen Modells, so nennt man die Transformation zwischen den Modellen kapazitätserhaltend.

Beziehungstypen: Kapazitätserhaltung (Fortsetzung)

Wie ist der Schlüssel für \mathcal{R}_R bspw. bei einer 1:1-Beziehung zu wählen?

Beziehungstypen: Kapazitätserhaltung (Fortsetzung)

Modellierung (a)

$$\mathcal{R}_R = \{\underline{A}, B\}$$
 mit Schlüssel $\{A\}$

Beziehungstypen: Kapazitätserhaltung (Fortsetzung)

Modellierung (a)

$$\mathcal{R}_R = \{\underline{A}, B\}$$
 mit Schlüssel $\{A\}$

mögliche Relationen:

$$r_1(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_2)\}$$

 $r_2(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_1)\}$

(kapazitätserhöhend)

Beziehungstypen: Kapazitätserhaltung (Fortsetzung)

Modellierung (a)

 $\mathcal{R}_R = \{\underline{A}, B\}$ mit Schlüssel $\{A\}$

Modellierung (b)

 $\mathcal{R}_R = \{\underline{A}, B\}$ mit *zwei* Schlüsseln $\{A\}, \{B\}$

mögliche Relationen:

$$r_1(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_2)\}$$

 $r_2(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_1)\}$

(kapazitätserhöhend)

Beziehungstypen: Kapazitätserhaltung (Fortsetzung)

Modellierung (a)

 $\mathcal{R}_R = \{\underline{A}, B\}$ mit Schlüssel $\{A\}$

Modellierung (b)

 $\mathcal{R}_R = \{\underline{A}, B\}$ mit *zwei* Schlüsseln $\{A\}, \{B\}$

mögliche Relationen:

$$r_1(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_2)\}$$

 $r_2(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_1)\}$

mögliche Relation:

 $r(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_2)\}$

(kapazitätserhaltend)

(kapazitätserhöhend)

Bemerkungen:

Auch wenn wir nur einen Schlüssel als Primärschlüssel auszeichnen und uns auf diesen i.d.R. beziehen, so bleiben die anderen Schlüsselkandidaten in ihrem Wesen als Schlüssel erhalten: je zwei Tupel aus der Relation müssen sich in der Ausprägung von mindestens einem Schlüsselattribut unterscheiden.

Kapazitätserhaltung (Fortsetzung)

Wie ist der Schlüssel für \mathcal{R}_R bei einer n:m-Beziehung zu wählen?

Kapazitätserhaltung (Fortsetzung)

Modellierung (a)

$$\mathcal{R}_R = \{\underline{A}, B\}$$
 mit Schlüssel $\{A\}$

Kapazitätserhaltung (Fortsetzung)

Modellierung (a)

$$\mathcal{R}_R = \{\underline{A}, B\}$$
 mit Schlüssel $\{A\}$

mögliche Relation:

$$r(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_1)\}$$

$$r(\mathcal{R}_R) = \{(a_1, b_1), (a_1, b_2), (a_2, b_2)\}$$

(kapazitätsvermindernd)

Kapazitätserhaltung (Fortsetzung)

Modellierung (a)

$$\mathcal{R}_R = \{\underline{A}, B\}$$
 mit Schlüssel $\{A\}$

Modellierung (b)

$$\mathcal{R}_R = \{\underline{A}, \underline{B}\}$$
 mit Schlüssel $\{A, B\}$

mögliche Relation:

$$r(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_1)\}$$

$$r(\mathcal{R}_R) = \{(a_1, b_1), (a_1, b_2), (a_2, b_2)\}$$

(kapazitätsvermindernd)

Kapazitätserhaltung (Fortsetzung)

Modellierung (a)

 $\mathcal{R}_R = \{\underline{A}, B\}$ mit Schlüssel $\{A\}$

mögliche Relation:

$$r(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_1)\}$$

$$r(\mathcal{R}_R) = \{(a_1, b_1), (a_1, b_2), (a_2, b_2)\}$$

(kapazitätsvermindernd)

Modellierung (b)

 $\mathcal{R}_R = \{\underline{A}, \underline{B}\}$ mit Schlüssel $\{A, B\}$

mögliche Relationen:

$$r_1(\mathcal{R}_R) = \{(a_1, b_1), (a_2, b_2)\}$$

 $r_2(\mathcal{R}_R) = \{(a_1, b_1), (a_1, b_2), (a_2, b_2)\}$

(kapazitätserhaltend)

Bemerkungen:

Weil A und B gemeinsam den Schlüssel $\{A,B\}$ bilden, kann in der Relation r eine Attributausprägung von A mit mehreren Ausprägungen von B vorkommen (und umgekehrt), ohne dass die Schlüsselintegrität (= die eindeutige Identifizierbarkeit von Tupeln) für r verletzt ist.

Reguläre Beziehungstypen und beliebige Entity-Anzahl

Reguläre Beziehungstypen und beliebige Entity-Anzahl

Cross-Reference [Elmasri/Navathe 2016]:

1. Dem Beziehungstyp R wird Relationenschema \mathcal{R}_R zugeordnet. Die Attribute A_1, \ldots, A_n von R werden Attribute von \mathcal{R}_R .

Reguläre Beziehungstypen und beliebige Entity-Anzahl

Cross-Reference [Elmasri/Navathe 2016]:

- 1. Dem Beziehungstyp R wird Relationenschema \mathcal{R}_R zugeordnet. Die Attribute A_1, \ldots, A_n von R werden Attribute von \mathcal{R}_R .
- 2. Die Attribute in den κ_i (bzw. die ID_i) von \mathcal{R}_{E_i} werden Attribute von \mathcal{R}_R .

Reguläre Beziehungstypen und beliebige Entity-Anzahl

Cross-Reference [Elmasri/Navathe 2016]:

- 1. Dem Beziehungstyp R wird Relationenschema \mathcal{R}_R zugeordnet. Die Attribute A_1, \ldots, A_n von R werden Attribute von \mathcal{R}_R .
- 2. Die Attribute in den κ_i (bzw. die ID_i) von \mathcal{R}_{E_i} werden Attribute von \mathcal{R}_R .
- 3. Der Schlüssel von \mathcal{R}_R ist eine Teilmenge der Vereinigungsmenge der κ_i (bzw. der Menge aller ID_i).

Reguläre Beziehungstypen und beliebige Entity-Anzahl (Fortsetzung)

Cross-Reference:

Bemerkungen:

- □ Die Bezeichnung "regulärer Beziehungstyp" dient als Unterscheidung zu
 - Beziehungstypen für abhängige bzw. schwache Entity-Typen,
 - IST-Beziehungstypen.
- \square Die $\kappa_i \subset \mathcal{R}_R$ (bzw. die $\{ID_i\} \subset \mathcal{R}_R$) sind Fremdschlüssel in \mathcal{R}_R bzgl. κ_i (bzw. $\{ID_i\}$) in \mathcal{R}_{E_i} .
- \square Es stellt sich die Frage, wie die Teilmenge aus der Vereinigungsmenge der κ_i gebildet wird, so dass ein Schlüssel für die Relation \mathcal{R}_R entsteht. Man kann diese Frage nicht in der Allgemeinheit beantworten.

Vergleiche hierzu die möglichen funktionalen Beziehungen, die beispielsweise von einer x:y:z-Relation, $x,y,z\in\{1,n,m\}$, impliziert sein können: falls keine funktionale Beziehung gegeben ist, also x und y und $z\neq 1$, so bilden nur alle Schlüsselattribute der drei Entity-Typen zusammen einen Schlüssel für \mathcal{R}_R . Gibt es einen funktionalen Zusammenhang, also x oder y oder z=1, so bildet die Vereinigungsmenge der Schlüsselattribute der beiden Entity-Typen des Urbildbereiches einen Schlüssel für \mathcal{R}_R .

n:m-Beziehungstypen

Cross-Reference:

Die Primärschlüssel der beteiligten Relationenschemata \mathcal{R}_{E_1} und \mathcal{R}_{E_2} bilden zusammen den Schlüssel im Relationenschema \mathcal{R}_R des n:m-Beziehungstyps.

[Kapazitätserhaltung]

1:n-Beziehungstypen

Funktionaler Zusammenhang $E_2 \rightarrow E_1$:

1:n-Beziehungstypen (Fortsetzung)

Cross-Reference:

1:n-Beziehungstypen (Fortsetzung) [Sonderfall 1]

Als Verfeinerung der Cross-Reference kann man bei 1:n-Beziehungstypen das Relationenschema \mathcal{R}_R mit dem Relationenschema \mathcal{R}_{E_2} , das den n-Entity-Typ im 1:n-Beziehungstyp repräsentiert, zusammenfassen (\mathcal{R}_R fällt dann weg):

- 1. Die Attribute des Primärschlüssels in \mathcal{R}_{E_1} werden Attribute in \mathcal{R}_{E_2} und stellen dort einen entsprechenden Fremdschlüssel dar.
- 2. Die Attribute des 1:n-Beziehungstyps werden Attribute in \mathcal{R}_{E_2} .
- 3. Der Primärschlüssel des n-Entity-Typs wird Schlüssel im zusammengefassten Relationenschema.

1:n-Beziehungstypen (Fortsetzung)

Erlaubte Zusammenfassung von \mathcal{R}_R und \mathcal{R}_{E_2} :

1:n-Beziehungstypen (Fortsetzung)

Unerlaubte Zusammenfassung von \mathcal{R}_R und \mathcal{R}_{E_1} :

1:n-Beziehungstypen (Fortsetzung)

Unerlaubte Zusammenfassung von \mathcal{R}_R und \mathcal{R}_{E_1} :

Bemerkungen:

- [Kemper/Eickler 2015] gibt folgende Regel als Hilfe bei der Zusammenfassung von Relationen an: "Nur Relationen mit gleichem Schlüssel zusammenfassen." In der Illustration sind das die beiden Relationen \mathcal{R}_R und \mathcal{R}_{E_2} ; beide haben den Schlüssel κ_2 .
- Bei der "erlaubten" Zusammenfassung entstehen Nullwerte (\perp) bei allen Entitäten des Typs E_2 , die nicht in Beziehung mit einer Entität des Typs E_1 stehen.
- Bei der "unerlaubten" Zusammenfassung werden alle Daten der Entitäten des Typs E_1 , die mit mehr als einer Entität des Typ E_2 in Beziehung stehen, redundant gespeichert. Der eindeutige Zugriff auf eine Entität des Typs E_1 ist nicht möglich.
- □ Die Konsistenz wird in beiden Zusammenfassungen erhalten.

1:1-Beziehungstypen [Kapazitätserhaltung]

Cross-Reference:

1:1-Beziehungstypen (Fortsetzung) [Sonderfall 2]

Als Verfeinerung der Cross-Reference kann man bei 1:1-Beziehungstypen das Relationenschema \mathcal{R}_R mit einem der beiden Relationenschemata der beteiligten Entity-Typen, \mathcal{R}_{E_2} oder \mathcal{R}_{E_1} , zusammenfassen:

- 1. Die Attribute des Primärschlüssels in \mathcal{R}_{E_1} (\mathcal{R}_{E_2}) werden Attribute in \mathcal{R}_{E_2} (\mathcal{R}_{E_1}) und stellen dort einen entsprechenden Fremdschlüssel dar.
- 2. Die Attribute des 1:1-Beziehungstyps werden Attribute in \mathcal{R}_{E_2} (\mathcal{R}_{E_1}).
- 3. Der Primärschlüssel von \mathcal{R}_{E_2} (\mathcal{R}_{E_1}) wird Schlüssel im zusammengefassten Relationenschema.

1:1-Beziehungstypen (Fortsetzung)

Zusammenfassung von \mathcal{R}_R und \mathcal{R}_{E_2} :

1:1-Beziehungstypen (Fortsetzung)

Zusammenfassung von \mathcal{R}_R und \mathcal{R}_{E_1} :

Bemerkungen:

- Die dargestellten Zusammenfassungen bei der Umsetzung von 1:1-Beziehungstypen finden sich so auch in der Literatur; sie sind aber mit Vorsicht zu genießen:
 Im Gegensatz zu der Cross-Reference-Umsetzung ist die Kapazitätserhaltung nur bei einer totalen Teilnahme des aufnehmenden Entity-Typs gegeben. Liegt dieser Sachverhalt nicht vor, enthält der Fremdschlüssel Nullwerte mit der Folge, dass er im zusammengefassten Schema keinen alternativen Schlüssel mehr darstellt.
- Manche DBMS stellen Datentypen zu Verfügung, mittels derer die Eindeutigkeit aller Nicht-Null-Werte vereinbart werden kann und gleichzeitig beliebig viele Nullwerte zugelassen sind. Damit kann die Kapazitätserhaltung sichergestellt werden, auch wenn der aufnehmende Entity-Typ (E_2 im ersten bzw. E_1 im zweiten Beispiel) nicht total teilnimmt.
- □ Nehmen nur wenige Instanzen der beiden Entity-Typen an der Beziehung teil, sollte auf eine Zusammenfassung verzichtet werden.

1:1-Beziehungstypen (Fortsetzung)

Ist die Teilnahme beider Entity-Typen am Beziehungstyp total – existiert also eine bijektive totale Abbildung zwischen E_1 und E_2 – lassen sich \mathcal{R}_{E_1} und \mathcal{R}_{E_2} in *einem* Relationenschema zusammenfassen. Merged-Relation [Elmasri/Navathe 2016]:

- 1. ...
- 2. . . .
- 3. Die Primärschlüssel beider Entity-Typen sind Schlüssel im zusammengefassten Relationenschema; von ihnen wird einer als Primärschlüssel gewählt. [Kapazitätserhaltung]

1:1-Beziehungstypen (Fortsetzung)

Merged-Relation:

Beziehungstypen mit [min, max]-Beschränkung [Sonderfall 3]

- (a) m-äre Beziehungstypen mit [0,1]-Beschränkung für Entity-Typ E_i : $R(E_1[\min_1, \max_1], \dots, E_i[0,1], \dots, E_m[\min_m, \max_m])$
 - $oldsymbol{\square}$ Der Primärschlüssel von \mathcal{R}_{E_i} wird ein Schlüssel von \mathcal{R}_R .

Beziehungstypen mit [min, max]-Beschränkung [Sonderfall 3]

- (a) m-äre Beziehungstypen mit [0,1]-Beschränkung für Entity-Typ E_i : $R(E_1[\min_1, \max_1], \dots, E_i[0,1], \dots, E_m[\min_m, \max_m])$
 - \square Der Primärschlüssel von \mathcal{R}_{E_i} wird ein Schlüssel von \mathcal{R}_R .
- (b) m-äre Beziehungstypen mit [1,1]-Beschränkung für Entity-Typ E_i : $R(E_1[\min_1, \max_1], \dots, E_i[1,1], \dots, E_m[\min_m, \max_m])$
 - \square Der Primärschlüssel von \mathcal{R}_{E_i} wird ein Schlüssel von \mathcal{R}_R .
 - $exttt{ iny Die Relationenschemata } \mathcal{R}_R$ und \mathcal{R}_{E_i} können zusammengefasst werden. Alle Schlüssel von \mathcal{R}_{E_i} werden auch Schlüssel von \mathcal{R}_R .

Beziehungstypen mit [min, max]-Beschränkung

zu (a) Cross-Reference:

Beziehungstypen mit [min, max]-Beschränkung

zu (b) Zusammenfassung von \mathcal{R}_R und \mathcal{R}_{E_i} :

Bemerkungen:

- \square Eine [0,1]- bzw. [1,1]-Beschränkung qualifiziert den Schlüssel des zugehörigen Entity-Typs E_i offensichtlich als Schlüssel für den Beziehungstyp R, denn jedes Tupel vom Typ R ist höchsten bzw. genau mit einer Instanz von E_i assoziiert.
- \square Für m=2 und Vorliegen einer [0,1]-Beschränkung bei einem Entity-Typ entspricht die Umsetzung der Cross-Reference für binäre 1:n-Beziehungen.
- \Box Für m=2 und Vorliegen einer [1,1]-Beschränkung bei einem Entity-Typ entspricht die Umsetzung der Zusammenfassung für binäre 1:n-Beziehungen.
- \Box Für m=2 und Vorliegen einer [1,1]-Beschränkung bei *beiden* Entity-Typen ist eine Umsetzung als Merged-Relation wie bei binären 1:1-Beziehungen möglich.

Existenzabhängige Entity-Typen [Sonderfall 4]

Existenzabhängige Entity-Typen [Sonderfall 4]

Umsetzung:

1. Dem abhängigen Entity-Typ E_2 wird Relationenschema \mathcal{R}_{E_2} zugeordnet. Die Attribute A_1, \ldots, A_n von E_2 werden Attribute von \mathcal{R}_{E_2} .

Existenzabhängige Entity-Typen [Sonderfall 4]

Umsetzung:

- 1. Dem abhängigen Entity-Typ E_2 wird Relationenschema \mathcal{R}_{E_2} zugeordnet. Die Attribute A_1, \ldots, A_n von E_2 werden Attribute von \mathcal{R}_{E_2} .
- 2. Die Attribute in κ_1 (bzw. ID_1) von \mathcal{R}_{E_1} werden Attribute von \mathcal{R}_{E_2} und stellen dort einen entsprechenden Fremdschlüssel dar.

Existenzabhängige Entity-Typen [Sonderfall 4]

Umsetzung:

- 1. Dem abhängigen Entity-Typ E_2 wird Relationenschema \mathcal{R}_{E_2} zugeordnet. Die Attribute A_1, \ldots, A_n von E_2 werden Attribute von \mathcal{R}_{E_2} .
- 2. Die Attribute in κ_1 (bzw. ID_1) von \mathcal{R}_{E_1} werden Attribute von \mathcal{R}_{E_2} und stellen dort einen entsprechenden Fremdschlüssel dar.
- 3. Die Vereinigung des partiellen Schlüssels κ_2 von E_2 mit dem Primärschlüssel κ_1 (bzw. $\{ID_1\}$) von E_1 bildet den Schlüssel für \mathcal{R}_{E_2} .

Existenzabhängige Entity-Typen

Regulärer Entity-Typ:

Abhängiger Entity-Typ:

Beispiel:

IST-Beziehungstypen [Sonderfall 5]

IST-Beziehungstypen [Sonderfall 5]

Umsetzung:

1. Dem speziellerem Entity-Typ E_2 wird Relationenschema \mathcal{R}_{E_2} zugeordnet. Die Attribute A_1, \ldots, A_n von E_2 werden Attribute von \mathcal{R}_{E_2} .

IST-Beziehungstypen [Sonderfall 5]

Umsetzung:

- 1. Dem speziellerem Entity-Typ E_2 wird Relationenschema \mathcal{R}_{E_2} zugeordnet. Die Attribute A_1, \ldots, A_n von E_2 werden Attribute von \mathcal{R}_{E_2} .
- 2. Die Attribute in κ_1 (bzw. ID_1) von \mathcal{R}_{E_1} werden Attribute von \mathcal{R}_{E_2} und stellen dort eine Art "Fremdschlüssel" dar.

IST-Beziehungstypen [Sonderfall 5]

Umsetzung:

- 1. Dem speziellerem Entity-Typ E_2 wird Relationenschema \mathcal{R}_{E_2} zugeordnet. Die Attribute A_1, \ldots, A_n von E_2 werden Attribute von \mathcal{R}_{E_2} .
- 2. Die Attribute in κ_1 (bzw. ID_1) von \mathcal{R}_{E_1} werden Attribute von \mathcal{R}_{E_2} und stellen dort eine Art "Fremdschlüssel" dar.
- 3. Der Primärschlüssel κ_1 (bzw. $\{ID_1\}$) von E_1 wird Schlüssel für \mathcal{R}_{E_2} .

IST-Beziehungstypen

Speziellerer (is-a) Entity-Typ:

Allgemeinerer Entity-Typ:

Beispiel:

Bemerkungen:

- □ Es wird die Bezeichnung "Fremdschlüssel" benutzt, obwohl es sich bei der Spezialisierung nicht um einen Verweis auf einen anderen Entity-Typ handelt, sondern um eine Rollenbeschreibung für ein und denselben Entity-Typ.
- \Box Ein spezialisierter Entity-Typ E_2 kann bereits einen Schlüssel κ_2 unabhängig von dem Entity-Typ E_1 besitzen, von dem er spezialisiert ist. In diesem Fall hat man für E_2 die Wahl zwischen zwei Schlüsseln, von denen einer als Primärschlüssel festzulegen ist.
- □ Bei mehrstufigen IST-Beziehungstypen wird der Primärschlüssel und damit die Identität top-down (vom allgemeineren zum spezielleren Entity-Typ) vererbt. Damit ist auch eine Transformationsreihenfolge vorgegeben.

Reihenfolge der Regelanwendung [Elmasri/Navathe 2016]

- 1. Transformation der regulären Entity-Typen.
- 2. Transformation der abhängigen Entity-Typen.
- 3. Transformation der 1:1-Beziehungstypen.
- 4. Transformation der 1:n-Beziehungstypen.
- 5. Transformation der n:m-Beziehungstypen.
- 6. Transformation der übrigen Beziehungstypen.
- Transformation der IST-Beziehungstypen.

Zusammenfassung wichtiger Regeln

Konzept im ER-Modell	Konzept im relationalen Modell
Entity-Typ E	Relationenschema \mathcal{R}_E
Attribute A_1, \ldots, A_n von E	Attribute A_1,\ldots,A_n von \mathcal{R}_E
Primärschlüssel $\kappa \subseteq \{A_1, \dots, A_n\}$ von E	Primärschlüssel κ von \mathcal{R}_E
Beziehungstyp $R(E_1,,E_m;A_1,,A_n)$	Relationenschema \mathcal{R}_R
Attribute A_1, \ldots, A_n von R	Attribute A_1, \ldots, A_n von \mathcal{R}_R
Attribute in den Primärschlüsseln κ_i der E_i	Attribute von \mathcal{R}_R (als Fremdschlüssel)
1:n-Beziehungstyp zwischen E_1 und E_2	κ_2 wird Primärschlüssel von \mathcal{R}_R
1:1-Beziehungstyp zwischen E_1 und E_2	κ_1 und κ_2 werden jeweils Schlüssel von \mathcal{R}_R , κ_1 oder κ_2 wird Primärschlüssel von \mathcal{R}_R
n:m-Beziehungstyp zwischen E_1 und E_2	$\kappa_1 \cup \kappa_2$ wird Schlüssel von \mathcal{R}_R
E_2 hängt ab von E_1	\mathcal{R}_{E_2} erhält auch alle Attribute in κ_1 , $\kappa_1 \cup \kappa_2$ wird Schlüssel von \mathcal{R}_{E_2}
IST-Beziehungstyp: E_2 IST E_1	\mathcal{R}_{E_2} erhält auch alle Attribute in κ_1 , κ_1 wird Schlüssel von \mathcal{R}_{E_2}

Zusammenfassung wichtiger Regeln

Konzept im ER-Modell	Konzept im relationalen Modell
Entity-Typ E	Relationenschema \mathcal{R}_E
Attribute A_1, \ldots, A_n von E	Attribute A_1,\ldots,A_n von \mathcal{R}_E
Primärschlüssel $\kappa \subseteq \{A_1, \ldots, A_n\}$ von E	Primärschlüssel κ von \mathcal{R}_E
Beziehungstyp $R(E_1,,E_m;A_1,,A_n)$	Relationenschema \mathcal{R}_R
Attribute A_1, \ldots, A_n von R	Attribute A_1,\ldots,A_n von \mathcal{R}_R
Attribute in den Primärschlüsseln κ_i der E_i	Attribute von \mathcal{R}_R (als Fremdschlüssel)
1:n-Beziehungstyp zwischen E_1 und E_2	κ_2 wird Primärschlüssel von \mathcal{R}_R
1:1-Beziehungstyp zwischen E_1 und E_2	κ_1 und κ_2 werden jeweils Schlüssel von \mathcal{R}_R , κ_1 oder κ_2 wird Primärschlüssel von \mathcal{R}_R
n:m-Beziehungstyp zwischen E_1 und E_2	$\kappa_1 \cup \kappa_2$ wird Schlüssel von \mathcal{R}_R
E_2 hängt ab von E_1	\mathcal{R}_{E_2} erhält auch alle Attribute in κ_1 , $\kappa_1 \cup \kappa_2$ wird Schlüssel von \mathcal{R}_{E_2}
IST-Beziehungstyp: E_2 IST E_1	\mathcal{R}_{E_2} erhält auch alle Attribute in κ_1 , κ_1 wird Schlüssel von \mathcal{R}_{E_2}

Zusammenfassung wichtiger Regeln

Konzept im ER-Modell	Konzept im relationalen Modell
Entity-Typ E	Relationenschema \mathcal{R}_E
Attribute A_1, \ldots, A_n von E	Attribute A_1,\ldots,A_n von \mathcal{R}_E
Primärschlüssel $\kappa \subseteq \{A_1, \dots, A_n\}$ von E	Primärschlüssel κ von \mathcal{R}_E
Beziehungstyp $R(E_1,,E_m;A_1,,A_n)$	Relationenschema \mathcal{R}_R
Attribute A_1, \ldots, A_n von R	Attribute A_1,\ldots,A_n von \mathcal{R}_R
Attribute in den Primärschlüsseln κ_i der E_i	Attribute von \mathcal{R}_R (als Fremdschlüssel)
1:n-Beziehungstyp zwischen E_1 und E_2	κ_2 wird Primärschlüssel von \mathcal{R}_R
1:1-Beziehungstyp zwischen E_1 und E_2	κ_1 und κ_2 werden jeweils Schlüssel von \mathcal{R}_R , κ_1 oder κ_2 wird Primärschlüssel von \mathcal{R}_R
n:m-Beziehungstyp zwischen E_1 und E_2	$\kappa_1 \cup \kappa_2$ wird Schlüssel von \mathcal{R}_R
E_2 hängt ab von E_1	\mathcal{R}_{E_2} erhält auch alle Attribute in κ_1 , $\kappa_1 \cup \kappa_2$ wird Schlüssel von \mathcal{R}_{E_2}
IST-Beziehungstyp: E_2 IST E_1	\mathcal{R}_{E_2} erhält auch alle Attribute in κ_1 , κ_1 wird Schlüssel von \mathcal{R}_{E_2}