Luku 1

Gtk-käyttöliittymä

Tässä luvussa tutustumme Gtk-käyttöliittymän kirjoittamiseen. Gtk (the Gimp toolkit) on suosittu käyttöliittymäkirjasto, joka aikoinaan syntyi Gimpkuvankäsittelyohjelman komponenttikirjastona, ja joka nykyisin toimii useimpien Linux-koneiden työpöytäympäristön perusrakennusosana.

1.1 Ohjelmaikkuna, jossa yksinkertainen painike

Ensimmäisessä esimerkkiohjelmassamme luomme ikkunan, joka sisältää yksinkertaisen painikkeen tekstillä "Click me!" (kuva 1).

Kuva 1. Yksinkertainen painike.

```
import Graphics.UI.Gtk
import Control.Monad.Trans (liftIO)

main = do
   initGUI
   window <- windowNew</pre>
```

button <- buttonNewWithLabel "Click me!"
containerAdd window button
widgetShowAll window
button `on` buttonPressEvent \$ tryEvent \$ whenClicked
onDestroy window mainQuit
mainGUI</pre>

whenClicked = do
 liftIO \$ putStrLn "Button was clicked."

Luomme ikkunan komennolla windowNew ja painikkeen komennolla button-NewWithLabel. Liitämme painikkeen ikkunaan komennolla containerAdd. Esitämme ikkunan ja kaikki sen sisältämät alikomponentit komennolla widget-ShowAll. Asetamme painikkeelle tapahtumankäsittelijän whenClicked. Ohjelma kutsuu tapahtumankäsittelijää, aina kun painike lähettää signaalin buttonPressEvent eli painiketta painettaessa. Ikkunan sulkeminen (onDestroy) päättää ohjelman suorituksen (mainQuit).

Tuomme kirjastosta Control. Monad. Trans funktion liftIO, jonka avulla voimme yhteensovittaa tapahtumankäsittelijän vaatiman tyypin EventM sekä syöte- ja tulostustyypin IO.

1.2 Ohjelmaikkuna, jossa tekstinsyöttökenttä

Lisäsimme edellä ohjelmaikkunaan painikkeen komennolla buttonNewWith-Label. Myös muiden komponenttien lisäys tapahtuu samaa nimeämislogiikkaa noudattaen. Esimerkiksi yksinkertaisen tekstinsyöttökentän (Entry) lisäämme komennolla entryNew (kuva 2).

Kuva 2. Tekstinsyöttökenttä.

import Graphics.UI.Gtk

main = do
 initGUI
 window <- windowNew
 entry <- entryNew
 containerAdd window entry
 widgetShowAll window
 onDestroy window mainQuit
 mainGUI</pre>

1.3 Ohjelmaikkuna puunäkymällä

Puunäkymän lisääminen on hieman monimutkaisempi toimenpide, sillä puunäkymä tarvitsee näkymän (view) lisäksi myös tietomallin (model). Tietomallin pohjana voi olla yksinkertainen lista. Muodostamme listasta tietomallin komennolla listStoreNew.

Kun haluamme lisätä ikkunaan useampia komponentteja, on meidän päätettävä komponenttien asettelusta. Käytämme seuraavassa komponenttien asettelemiseksi allekkain pystysuuntaista laatikkoa VBox (vertical box). Asettelemme komponentit laatikkoon komennolla boxPackStart (kuva 3).

Kuva 3. Tekstinsyöttökenttä ja puunäkymä.

import Graphics.UI.Gtk
import Graphics.UI.Gtk.ModelView as Model

```
main = do
  initGUI
  window <- windowNew
  vbox1 <- vBoxNew False 0
  entry <- entryNew</pre>
  containerAdd window vbox1
  list <- listStoreNew [
    "Lacus Somniorum", "Lacus Doloris", "Lacus Timoris",
    "Palus Putredinis", "Lacus Autumni"]
  treeview <- Model.treeViewNewWithModel list</pre>
  Model.treeViewSetHeadersVisible treeview False
  col <- Model.treeViewColumnNew</pre>
  renderer <- Model.cellRendererTextNew
  Model.cellLayoutPackStart col renderer False
  Model.cellLayoutSetAttributes col renderer list
    (\text -> [Model.cellText := text])
  Model.treeViewAppendColumn treeview col
  tree <- Model.treeViewGetSelection treeview</pre>
  boxPackStart vbox1 entry PackRepel 0
  boxPackStart vbox1 treeview PackRepel 0
  widgetShowAll window
  onDestroy window mainQuit
  mainGUI
```

1.4 Tuloslistan suodattaminen säännöllisillä lausekkeilla

Kirjoitamme seuraavaksi ohjelman, joka suodattaa tuloslistan tekstikentässä antamamme säännöllisen lausekkeen avulla.

Luemme ensin komennolla readFile tekstitiedoston, josta suodatamme pois tyhjät rivit.

Määrittelemme näppäimen vapautuksen (keyReleaseEvent) tapahtumankäsittelijäksi funktion updateList1, joka lukee tekstikentän sisällön, kun sitä on muutettu.

Säännöllisten lausekkeiden käsittelyyn tuomme kirjaston Text.Regex.Posix, joka tarjoaa funktion (=~). Funktio (=~) on monimuotoinen ja vaatii siksi yleisessä muodossaan tyyppimäärittelyn. Kun valitsemme lausekkeen a =~ b tyypiksi Bool, palauttaa lauseke arvon True, mikäli säännöllinen lauseke b esiintyy merkkijonossa a. Mikäli valitsemme lausekkeen a =~ b tyypiksi String, lauseke palauttaa ensimmäisen osuman. Listauksessamme käytämme funktiota (=~) funktion filter ensimmäisenä argumenttina, joten kääntäjä päättelee tyypin olevan Bool.

```
> import Text.Regex.Posix
> "abcd" =~ "a" :: Bool
True
> "abcd" =~ "a" :: String
"a"
```

Kuvassa 4 olemme syöttäneet tekstikenttään säännöllisen lausekkeen (.)\1. Säännöllisissä lausekkeissa piste . vastaa mitä tahansa merkkiä. Sulkumerkit () muodostavat ensimmäisen alilausekkeen. Merkintä \1 vastaa ensimmäistä alilauseketta. Kokonaisuudessaan säännöllinen lauseke (.)\1 vastaa siten kahta peräkkäistä samaa merkkiä. Esimerkissämme tekstirivejä, joilla esiintyy kaksi peräkkäistä samaa merkkiä, löytyy yhteensä 10 kappaletta.

1.5 Poikkeuksien käsittely

Kun säännöllinen lauseke ei ole kelvollinen, nostaa järjestelmä poikkeuksen (exception). Esimerkiksi keskeneräiset lausekkeet kuten "(." eivät ole kelvollisia. Poikkeuksien käsittelyyn tuomme kirjaston Control.Exception, joka tarjoaa muun muassa funktiot try ja evaluate. Näistä try on monimuotoinen funktio ja vaatii siksi yleisessä muodossaan tyyppimäärittelyn. Annamme tyyppimäärittelyn funktion tryFilter tyyppiallekirjoituksessa.

Kuva 4. Tuloslista suodatettuna säännöllisellä lausekkeella (.)\1.

Tyypin Either mahdolliset arvot ovat Left x ja Right y. Funktio try palauttaa arvon Left x silloin, kun argumenttina antamamme funktion suoritus on keskeytynyt poikkeukseen x sekä arvon Right y silloin, kun antamamme funktio onnistuneesti palauttaa arvon y. Esimerkissämme samaistamme virheellisen säännöllisen lausekkeen lausekkeeseen, jonka tulosjoukko on tyhjä lista [].

```
filter1 txt list = do
  result <- tryFilter txt list
  return $ case result of
   Left ex -> []
   Right val -> val
```

Esitämme seuraavassa ohjelmakoodin kokonaisuudessaan.

```
import Graphics.UI.Gtk
import Graphics.UI.Gtk.ModelView as Model
import Control.Monad.Trans (liftIO)
import Text.Regex.Posix
import Control.Exception
```

```
main = do
  content <- readFile "moon-latin.txt"</pre>
  let moon = filter (not . null) (lines content)
  initGUT
  window <- windowNew
  vbox1 <- vBoxNew False 0</pre>
  entry <- entryNew</pre>
  containerAdd window vbox1
  listore <- listStoreNew □
  treeview <- Model.treeViewNewWithModel listore</pre>
  entry `on` keyReleaseEvent $ do
    liftIO $ updateList1 entry listore moon
  Model.treeViewSetHeadersVisible treeview False
  col <- Model.treeViewColumnNew
  renderer <- Model.cellRendererTextNew
  Model.cellLayoutPackStart col renderer False
  Model.cellLayoutSetAttributes col renderer listore
    (\text -> [Model.cellText := text])
  Model.treeViewAppendColumn treeview col
  tree <- Model.treeViewGetSelection treeview
  boxPackStart vbox1 entry PackNatural 0
  boxPackStart vbox1 treeview PackNatural 0
  widgetShowAll window
  liftIO $ updateList1 entry listore moon
  onDestroy window mainQuit
  mainGUI
tryFilter :: String -> [String]
          -> IO (Either SomeException [String])
tryFilter txt list = do
  result <- try (evaluate (filter (=~ txt) list))
  return result
filter1 txt list = do
  result <- tryFilter txt list
  return $ case result of
```

```
Left ex → □
    Right val -> val
updateList1 entry listore list = do
  listStoreClear listore
  txt <- entryGetText entry</pre>
  list1 <- listStoreToList listore</pre>
  list2 <- filter1 txt list</pre>
  let.
    n = 8
    list3 = take (n + 1) list2
    12 = length list2
    13 = length list3
    list4
      | 12 == 13 = take (n + 1) (list2 ++ repeat "")
      | 12 > 13 = take n list3 ++
        ["(+" ++ show (12 - 13 + 1) ++ " others)"]
  mapM_ (listStoreAppend listore) list4
  return True
```

1.6 Ohjelma Png-kuvan näyttämiseen

Seuraavassa esimerkkiohjelmassa emme käytä moniakaan Gtk-kirjaston visuaalisia komponentteja vaan kirjoitamme lyhyen yleiskäyttöisen ohjelman Png-muotoisen kuvan esittämiseksi ruudulla.

```
import Control.Concurrent.MVar
import System.IO.Unsafe
import System.Environment (getArgs)
import Graphics.UI.Gtk
import qualified Graphics.Rendering.Cairo as C
import qualified Graphics.UI.Gtk.Gdk.EventM as M
import System.Glib.UTFString (glibToString)

firstArg args =
   case args of
```

```
[] -> error "must supply a file to open"
    [arg] -> arg
    _ -> error "too many arguments"
main = do
  args <- getArgs
  let arg1 = firstArg args
  initGUI
  var \leftarrow newMVar (1.0,0.0,0.0)
  vPos <- newMVar (None, 0.0, 0.0)
  window <- windowNew
  canvas <- drawingAreaNew
  surf <- return $ unsafeLoadPNG arg1</pre>
  widgetAddEvents canvas [Button1MotionMask]
  widgetSetSizeRequest canvas 300 200
  centerImg var surf canvas
  canvas `on` motionNotifvEvent $ do
    (mouseX.mouseY) <- eventCoordinates</pre>
    t <- M.eventTime
    C.liftIO $
      changePos vPos var surf canvas mouseX mouseY
    C.liftIO $ logMsg 0 ("Motion Time: " ++ s t)
    return False
  window `on` keyPressEvent $ tryEvent $ do
    key <- eventKeyName
    keyInput var surf canvas (glibToString key)
    C.liftIO $ updateCanvas1 var canvas surf
    return ()
  canvas `on` buttonPressEvent $ tryEvent $ do
    (mouseX,mouseY) <- printMouse</pre>
    C.liftIO $ printPointer canvas
    C.liftIO $ printMVar var mouseX mouseY
    C.liftIO $ modifyMVar vPos (\ ->
      return (Press,mouseX,mouseY))
  canvas `on` buttonReleaseEvent $ tryEvent $ do
    (mouseX,mouseY) <- M.eventCoordinates</pre>
    m <- M.eventModifier</pre>
```

```
b <- M.eventButton</pre>
    (cause, vPosX, vPosY) <- C.liftIO $ readMVar vPos</pre>
    C.liftIO $ release cause b var vPosX vPosY
  canvas `on` scrollEvent $ tryEvent $ do
    (mouseX.mouseY) <- M.eventCoordinates</pre>
    m <- M.eventModifier</pre>
    d <- M.eventScrollDirection</pre>
    t <- M.eventTime
    C.liftIO $ changeRef var d mouseX mouseY
    C.liftIO $ updateCanvas1 var canvas surf
    C.liftIO $ logMsg 0 ("Scroll: " ++ s t ++ s mouseX ++
      s mouseY ++ s m ++ s d
  onDestroy window mainQuit
  onExpose canvas $ const (updateCanvas1 var canvas surf)
  set window [containerChild := canvas]
  widgetShowAll window
  mainGUT
data EvtType = Press | Release | Move | Scroll | None
release Press button var mouseX mouseY = do
  (varS,varX,varY) <- readMVar var</pre>
  let
    x = (mouseX - varX) / varS
    v = (mouseY - varY) / varS
  C.liftIO $ logMsg 0
    ("Add point: " ++ s x ++ s y ++ s button)
  C.liftIO $ \log Msg 1 (s x ++ s y)
release _ button var x y = do
  C.liftIO $ logMsg 0 ("Release (other): " ++ s x ++ s y)
changePos vPos var surf canvas mouseX mouseY = do
  (cause, vPosX, vPosY) <- readMVar vPos</pre>
  (scaleOld,oldX,oldY) <- readMVar var
  let
    dx = vPosX - mouseX
```

```
dv = vPosY - mouseY
  modifyMVar_ var (\_ ->
    return (scaleOld,oldX - dx,oldY - dy))
 modifyMVar vPos (\ ->
    return (Move, mouseX, mouseY))
  updateCanvas1 var canvas surf
intToDouble :: Int -> Double
intToDouble i = fromRational (toRational i)
s x = show x ++ " "
printMouse = do
  (mouseX,mouseY) <- M.eventCoordinates</pre>
  C.liftIO $ logMsg 0 ("Mouse: " ++ s mouseX ++ s mouseY)
  return (mouseX, mouseY)
printPointer canvas = do
  (widX,widY) <- widgetGetPointer canvas</pre>
  logMsg 0 ("Widget: " ++ s widX ++ s widY)
printMVar var mouseX mouseY = do
  (varS,varX,varY) <- readMVar var</pre>
  let
    x = (mouseX - varX) / varS
    y = (mouseY - varY) / varS
  logMsg 0 ("MVar: " ++ s varS ++ s varX ++ s varY)
  logMsg 0 ("Calc: " ++ s x ++ s y)
centerImg var surf canvas = do
  w1 <- C.imageSurfaceGetWidth surf
  h1 <- C.imageSurfaceGetHeight surf
  (w2,h2) <- widgetGetSizeRequest canvas
  let
    dh = intToDouble (h2 - h1)
    dw = intToDouble (w2 - w1)
  modifyMVar_var(\ -> return(1.0,dw/2,dh/2))
```

```
keyInput var surf canvas key = do
  C.liftIO $ print key
  case key of
    "q" -> do
      C.liftIO $ mainQuit
    "1" -> do
      C.liftIO $ centerImg var surf canvas
changeRef var d mouseX mouseY = do
  (scaleOld,oldX,oldY) <- readMVar var
  let
    scaleD = scale1 d
    scaleNew = scaleD * scaleOld
    dx = (mouseX - oldX) * (scaleD - 1)
    dy = (mouseY - oldY) * (scaleD - 1)
    newX = oldX - dx
    newY = oldY - dv
    result = (scaleNew,newX,newY)
 modifyMVar var (\ -> return result)
  logMsg 0 ("Change MVar: " ++ s scaleNew ++
    s newX ++ s newY)
  where
    factor = 5 / 4
    scale1 ScrollUp = factor
    scale1 ScrollDown = 1 / factor
updateCanvas1 var canvas surf = do
  win <- widgetGetDrawWindow canvas</pre>
  (width, height) <- widgetGetSize canvas</pre>
  renderWithDrawable win $
    paintImage1 var surf
  return True
imageSurfaceCreateFromPNG :: FilePath -> IO C.Surface
imageSurfaceCreateFromPNG file =
  C.withImageSurfaceFromPNG file $ \png -> do
```

```
C.liftIO $ logMsg 0 "Load Image"
    w <- C.renderWith png $ C.imageSurfaceGetWidth png
    h <- C.renderWith png $ C.imageSurfaceGetHeight png
    surf <- C.createImageSurface C.FormatRGB24 w h</pre>
    C.renderWith surf $ do
      C.setSourceSurface png 0 0
      C.paint
    return surf
unsafeLoadPNG file = unsafePerformIO $
  imageSurfaceCreateFromPNG file
paintImage1 var surf = do
  (sc,x,y) <- C.liftIO $ readMVar var
  C.setSourceRGB 1 1 1
  C.paint
  C.translate x v
  C.scale sc sc
  C.liftIO $ logMsg 0 ("Paint Image: " ++
    s sc ++ s x ++ s y)
  C.setSourceSurface surf 0 0
  C.paint
logMsg 0 s = do
  return ()
logMsg 1 s = do
  putStrLn s
  return ()
```

1.7 Piirtoalue DrawingArea

Luomme ikkunaan piirtoalueen komennolla drawingAreaNew. Annamme piirtoalueelle nimen canvas. Piirtoalueen kokopyynnön asetamme komennolla widgetSetSizeRequest.

Luemme piirtoalueelle kuvan määrittelemällä komennon imageSurfaceCre-

ateFromPNG. Kuvan keskittämiseksi piirtoalueelle määrittelemme komennon centerImg.

Luomme tapahtumankäsittelijöiden avulla käyttäjälle mahdollisuuden siirtää kuvaa ja muuttaa kuvan kokoa. Kun kuvaa on siirretty tai sen kokoa muutettu, piirrämme kuvan uudestaan käyttäen määrittelemäämme komentoa updateCanvas1. Tämä komento kutsuu piirtotyön suorittavaa rutiinia paintImage1, jossa kutsumme piirtokirjasto Cairon tarjoamia piirtokomentoja. Tuomme piirtokirjaston nimettynä (qualified ... as C), joten kaikki sen tarjoamat komennot ohjelmalistauksessa alkavat etuliitteellä "C.".

1.8 Tapahtumankäsittelijät

Pääohjelmassa olemme määritelleet tapahtumankäsittelijän hiiren liikkeelle (motionNotifyEvent), näppäimen painallukselle (keyPressEvent), hiiren näppäimen painallukselle (buttonPressEvent), hiiren näppäimen vapauttamiselle (buttonReleaseEvent), hiiren rullan pyörittämiselle (scrollEvent), ikkunan sulkupainikkeen painamiselle (onDestroy) sekä piirtoalueen uudelleenpiirtämiselle (onExpose).

Osa tapahtumankäsittelijöistämme on hyvin yksinkertaisia, ja ne kirjoittavat ainoastaan viestin komentoikkunaan funktiokutsulla logMsg 1 tai jättävät kirjoittamatta funktiokutsulla logMsg 0.

Tavallisesti hiiren liikuttaminen piirtoalueella ei tuota tapahtumasignaalia, mutta voimme halutessamme tuottaa sellaisia esimerkiksi silloin, kun hiiren ykköspainike on painettuna. Teemme näin pääohjelmassa komennolla widgetAddEvents.

widgetAddEvents canvas [Button1MotionMask]

Annamme ohjelmalle nimeksi png-view ja käynnistämme ohjelman komentotulkissa. Ohjelma saa argumenttinaan kuvatiedoston nimen.

\$ runhaskell png-view foci-5.png

Avautuvassa ikkunassa näemme valitsemamme kuvan (kuva 5). Voimme suurentaa ja pienentää näkymää hiiren rullalla.

Kuva 5. Ohjelmaikkuna.

1.9 MVar-muuttujaviittaukset

Käytämme ohjelmassamme MVar-muuttujaviittauksia tapahtumankäsittelijöissä. Tämä on käytännöllinen tapa välittää tietoa graafisen käyttöliittymän sisällä.

Luomme uuden muuttujan komennolla newMVar. Muuttujan sisältämän tiedon luemme komennolla readMVar. Olemassaolevaa muuttujaa muutamme komennolla modifyMVar_.

Käyttämämme muuttujaviittaukset ovat var, joka sisältää kuvan suurennoksen sekä vasemman ylänurkan x- ja y-koordinaatit, ja vPos, joka sisältää hiiritapahtuman syyn (Press (painallus), Release (vapautus), Move (siirto), Scroll (rullaus) tai None $(ei\ mikään)$ sekä tapahtumahetken hiiren osoittimen x- ja y-koordinaatit.

Muuttujaviittausten sisältämän tiedon avulla ohjelma kykenee laskemaan esitettävälle kuvalle uudet koordinaatit ja suurennoksen aina tapahtumankäsittelijän sitä pyytäessä.

1.10 Tekstinäkymä ja tekstipuskuri

Gtk-kirjaston tekstinäkymä (textView) ja tekstipuskuri (textBuffer) sisältävät hyvin monipuoliset välineet yksinkertaisen tekstimuokkaimen luomiseen.

Kirjoitamme lyhyen ohjelman tekstitiedoston muokkaamiseen (kuva 6).

Kuva 6. Tekstitiedosto tekstinäkymäkomponentissa.

```
main = do
  initGUI
  content <- readFile "puulajit-latina.txt"
  window <- windowNew
  sw <- scrolledWindowNew Nothing Nothing
  set sw [
    scrolledWindowVscrollbarPolicy := PolicyAlways,
    scrolledWindowHscrollbarPolicy := PolicyAutomatic ]
  view <- textViewNew
  buffer <- textViewGetBuffer view
  font <- fontDescriptionFromString "Monospace 9"
  widgetModifyFont view (Just font)
  widgetModifyBase view StateNormal (gray 0.94)
  textBufferSetText buffer content</pre>
```

import Graphics.UI.Gtk

```
containerAdd (toContainer sw) view
set window [
   windowDefaultWidth := 310,
   windowDefaultHeight := 160,
   containerChild := sw]
on window objectDestroy mainQuit
   widgetShowAll window
   mainGUI

gray n = Color gt gt gt
   where
   gt = round (n * 65535)
```

1.11 Gtk-käyttöliittymäkirjastojen hierarkia

```
Graphics.UI.Gtk
  Abstract
     Bin, Box, ButtonBox, Container, IMContext, Misc, Object, Paned,
     Range, Scale, Scrollbar, Separator, Widget.
  ActionMenuToolbar
     Action, ActionGroup, RadioAction, RecentAction, ToggleAction,
     UIManager.
  Builder
  Buttons
     Button, CheckButton, LinkButton, RadioButton, ScaleButton,
     ToggleButton, VolumeButton.
  Cairo
  Display
     AccelLabel, Image, InfoBar, Label, ProgressBar, Spinner, Statu-
     sIcon, Statusbar.
  Embedding
     Embedding, Plug, Socket, Types.
  Entry
     Editable, Entry, EntryBuffer, EntryCompletion, HScale, Spin-
```

Button, VScale.

Gdk

AppLaunchContext, Cursor, Display, DisplayManager, DrawWindow, Drawable, EventM, Events, GC, Gdk, Keymap, Keys, Pixbuf, PixbufAnimation, Pixmap, Region, Screen.

General

Clipboard, Drag, Enums, General, IconFactory, IconTheme, Rc-Style, Selection, Settings, StockItems, Style.

Layout

Alignment, AspectFrame, Expander, Fixed, HBox, HButtonBox, HPaned, Layout, Notebook, Table, VBox, VButtonBox, VPaned.

MenuComboToolbar

CheckMenuItem, Combo, ComboBox, ComboBoxEntry, ImageMenuItem, Menu, MenuBar, MenuItem, MenuShell, MenuToolButton, OptionMenu, RadioMenuItem, RadioToolButton, SeparatorMenuItem, SeparatorToolItem, TearoffMenuItem, ToggleToolButton, ToolButton, ToolItem, ToolItemGroup, ToolPalette, Toolbar.

Misc

Accessible, Adjustment, Arrow, Calendar, DrawingArea, Event-Box, HandleBox, IMContextSimple, IMMulticontext, SizeGroup, Tooltip, Tooltips, Viewport.

ModelView

CellEditable, CellLayout, CellRenderer, CellRendererAccel, CellRendererCombo, CellRendererPixbuf, CellRendererProgress, CellRendererSpin, CellRendererSpinner, CellRendererText, CellRendererToggle, CellView, CustomStore, IconView, List-Store, TreeDrag, TreeModel, TreeModelFilter, TreeModelSort, TreeRowReference, TreeSelection, TreeSortable, TreeStore, TreeView, TreeViewColumn.

Multiline

TextBuffer, TextIter, TextMark, TextTag, TextTagTable, TextView.

Ornaments

Frame, HSeparator, VSeparator.

Printing

PageSetup, PaperSize, PrintContext, PrintOperation, PrintSettings.

Recent

RecentChooser, RecentChooserMenu, RecentChooserWidget, RecentFilter, RecentInfo, RecentManager.

Scrolling

HScrollbar, ScrolledWindow, VScrollbar.

Selectors

ColorButton, ColorSelection, ColorSelectionDialog, File-Chooser, FileChooserButton, FileChooserDialog, FileChooser-Widget, FileFilter, FileSelection, FontButton, FontSelection, FontSelectionDialog, HSV.

Special

HRuler, Ruler, VRuler.

Windows

AboutDialog, Assistant, Dialog, Invisible, MessageDialog, Off-screenWindow, Window, WindowGroup.

1.12 Kirjasto Graphics.UI.Gtk.Abstract.Widget

Useimpien komponenttien (kuten Button) perustyyppi on Widget. Kun etsimme esimerkiksi painikkeelle tapahtumankäsittelijöitä, on meidän etsittävä niitä komponentin perustyypin dokumentaatiosta.

Luettelemme seuraavassa tyypin Widget tarjoamat metodit, attribuutit ja tapahtumat.

Etuliite: widget-

Metodit:

~Show ~SizeAllocate ~SetDirection ~InputShapeCombineMask ~Hide ~SetAccelPath ~GetDirection ~TranslateCoordinates ~SetScrollAdjustments ~Path ~SetSensitive ~CreateLayout ~ShowNow ~PushColormap ~GetClipboard ~GetChildRequisition ~QueueResize ~SetNoShowAll ~ShowAll ~QueueResizeNoRedraw ~GrabDefault ~GetNoShowAll ~HideAll ~SetDefaultDirection ~GetToplevel ~IsComposited ~GetDefaultDirection ~Destroy ~GetAncestor ~KeynavFailed ~SetName ~SetRedrawOnAllocate ~GetColormap ~GetHasWindow ~GetName ~RemoveMnemonicLabel ~SetColormap ~SetHasWindow ~HasGrab ~TriggerTooltipQuery ~SizeRequest ~GetSensitive ~SetExtensionEvents ~GetSize ~PopColormap ~GetDrawWindow ~Activate ~GetExtensionEvents

```
~GetSnapshot ~QueueDrawArea
~SetStyle
~GetStyle
           ~ModifyStyle ~GetAccessible
           ~RestoreText ~GetRootWindow
~ModifyFg
           ~RestoreBase ~GetHasTooltip
~ModifyBg
           ~ResetShapes ~SetHasTooltip
~Reparent
~GetState
           ~GetSettings ~GetAllocation
~SetState
           ~GetCanFocus ~GetCanDefault
~QueueDraw ~SetCanFocus ~SetCanDefault
~Intersect
          ~IsSensitive ~GetHasDefault
~GrabFocus ~GetHasFocus ~GetSavedState
            ~GetIsFocus ~AddAccelerator
~DelEvents
~AddEvents
            ~GetPointer ~SetSensitivity
~GetEvents
            ~IsAncestor ~GetSizeRequest
~SetEvents
            ~ModifyText ~SetSizeRequest
~ClassPath
            ~ModifyBase ~GetTooltipText
            ~ModifyFont ~SetTooltipText
~RestoreFg
            ~RenderIcon ~HasIntersection
~RestoreBg
~GetParent
            ~ChildFocus ~GetParentWindow
~GetScreen
            ~GetDisplay ~GetDefaultStyle
            ~GetVisible ~GetPangoContext
~HasScreen
~GetAction
            ~IsDrawable ~SetAppPaintable
~ErrorBell
            ~IsToplevel ~RegionIntersect
             ~SetWindow ~GetChildVisible
~GetWindow
```

~SetDefaultColormap ~GetDefaultColormap ~CreatePangoContext ~ListMnemonicLabels ~SetReceivesDefault ~GetReceivesDefault ~RemoveAccelerator ~SetDoubleBuffered ~CanActivateAccel ~ShapeCombineMask ~GetCompositeName ~GetModifierStyle ~SetCompositeName ~MnemonicActivate ~AddMnemonicLabel ~GetTooltipMarkup ~SetTooltipMarkup ~GetTooltipWindow ~SetTooltipWindow ~SetChildVisible ~GetAppPaintable

Attribuutit:

```
~Name
        ~MarginLeft ~HasDefault ~ReceivesDefault
~Style
        ~CanDefault ~HExpandSet ~ExtensionEvents
~State
         ~MarginTop ~VExpandSet
                                  ~CompositeChild
         ~Sensitive ~HasTooltip
~Parent
                                   ~HeightRequest
~Events
         ~NoShowAll ~HasRcStyle
                                   ~CompositeName
         ~Direction ~MarginRight
                                   ~TooltipMarkup
~Expand
~Visible ~GetMapped ~TooltipText
                                    ~AppPaintable
        ~SetMapped ~GetRealized
~Opacity
                                    ~ChildVisible
~IsFocus
          ~CanFocus ~SetRealized
          ~HasFocus ~WidthRequest
~HExpand
```

~Colormap ~MarginBottom

Signaalit:

~VExpand

focus showSignal unmapSignal accelClosuresChanged realize hideSignal sizeRequest hierarchyChanged styleSet grabNotify sizeAllocate directionChanged showHelp mapSignal stateChanged popupMenuSignal unrealize parentSet queryTooltip screenChanged

Tapahtumat:

mapEvent grabBrokenEvent keyReleaseEvent visibilityNotifyEvent unmapEvent configureEvent buttonPressEvent buttonReleaseEvent deleteEvent focusOutEvent enterNotifyEvent motionNotifyEvent exposeEvent keyPressEvent leaveNotifyEvent proximityOutEvent scrollEvent noExposeEvent proximityInEvent destroyEvent focusInEvent windowStateEvent

1.13 Kirjasto Graphics.UI.Gtk.Gdk.EventM

Etuliite: event-Funktioita:

```
~Sent ~NotifyType ~GrabWindow ~WindowStateChanged
~Time ~Selection currentTime
                                ~RootCoordinates
       ~Modifier ~Coordinates
~Area
                                ~HardwareKeycode
       ~Position ~ModifierAll
~Size
                                ~ScrollDirection
~Window ~Implicit ~WindowState
                                ~VisibilityState
                                  ~CrossingFocus
~KeyVal stopEvent ~CrossingMode
~Button ~KeyName ~ChangeReason
                                  ~SelectionTime
~IsHint ~FocusIn ~KeyboardGrab
~Region tryEvent ~KeyboardGroup
```