Sortare

SD 2014/2015

Conținut

- Sortare bazată pe comparaţii
 - sortare prin interschimbare
 - sortare prin inserţie
 - sortare prin selecţie
 - naivă
 - sistematică ("heap sort")
 - sortare prin interclasare ("merge sort")
 - sortare rapidă ("quick sort")
- Sortare prin numărare
- Sortare prin distribuire

Problema sortării

structura de date

Tablou
$$a[0..n-1]$$

 $a[0] = v_0, ..., a[n-1] = v_{n-1}$

 $R'_{n}.k_{n} \leq ... \leq R'_{n-1}.k_{n-1}$

Sortare prin interschimbare ("bubble -sort")

- Principiul de bază:
 - (i,j) cu i<j este o <u>inversiune</u> dacă a[i] > a[j]
 - Cât timp există o inversiune (i, i+1) interschimbă a[i] cu a[i+1]

Algoritm:

```
procedure bubbleSort(a, n)
begin
    ultim ← n-1
    while (ultim > 0) do
        n1 ← ultim - 1; ultim ←0
        for i ← 0 to n1 do
        if (a[i] > a[i+1]) then
            swap(a[i], a[i+1])
        ultim ← i
end
```

Sortare prin interschimbare - exemplu

2 1 3 4 7
$$(n1 = 0)$$

Sortare prin interschimbare

Analiza

- Cazul cel mai nefavorabil a[0] > a[1] > ... > a[n-1] Timp căutare: $O(n-1+n-2+...+1) = O(n^2)$

 $T_{\text{bubbleSort}}(n) = O(n^2)$

Cazul cel mai favorabil: O(n)

Sortare prin inserție directă

• Principiul de bază:

```
presupunem a[0..i-1] sortat
inserează a[i] astfel încât a[0..i] devine sortat
```

Sortare prin inserţie directă

Exemplu
3
7
2
1
2
3
7
2
1

Analiza

- căutarea poziției i în a[0..j-1] necesită O(j-1) pași
- cazul cel mai nefavorabil

$$a[0] > a[1] > ... > a[n-1]$$

Timp căutare: $O(1+2+...+n-1) = O(n^2)$

$$T_{insertSort}(n) = O(n^2)$$

- Cazul cel mai favorabil: O(n)

Sortare prin selecţie

- Se aplică următoarea schemă:
 - pasul curent: selectează un element şi îl duce pe poziţia sa finală din tabloul sortat;
 - repetă pasul curent până când toate elementele ajung pe locurile finale.
- După modul de selectare a unui element:
 - Selecţie naivă: alegerea elementelor în ordinea în care se află iniţial (de la n-1 la 0 sau de la 0 la n-1);
 - Selecţie sistematică: utilizarea unui max-heap.

Sortare prin selecţie naivă

• în ordinea n-1, n-2,..., 1, 0, adică:
 (∀i) 0 ≤ i < n ⇒ a[i] = max{a[0],...,a[i]}

procedure naivSort(a, n)
begin
 for i ← n-1 downto 1 do
 imax ← i
 for j ← i-1 downto 0 do
 if (a[j] > a[imax])
 then imax ← j
 if (i != imax) then swap(a[i], a[imax])
 end

complexitatea timp toate cazurile este O(n²)

"Heap sort" (sortare prin selecţie sistematică)

Etapa I

- organizează tabloul ca un maxheap: $(\forall k)$ $1 \le k \le n-1 \Rightarrow$ $a[k] \le a[(k-1)/2]$;
- iniţial tabloul satisface proprietatea max-heap începând cu poziţia n/2;
- introduce în max-heap elementele de pe poziţiile n/2-1, n/2 -2, ..., 1, 0.

"Heap sort" (sortare prin selecţie sistematică)

Etapa II

 selectează elementul maxim şi îl duce la locul lui prin interschimbare cu ultimul;

 micşorează n cu 1 şi apoi reface max-heapul;

 repetă paşii de mai sus până când toate elementele ajung pe locul lor.

"Heap sort" (sortare prin selecţie sistematică)

Operația de introducere în heap

```
procedure insereazaAlTlea(a, n, t)
begin
   j \leftarrow t
   heap \leftarrow false
   while ((2*j+1 < n)) and not heap) do
      k \leftarrow 2*j+1
      if ((k < n-1)) and (a[k] < a[k+1])
            then k \leftarrow k+1
      if (a[j] < a[k])
      then swap(a[j], a[k])
            j \leftarrow k
      else heap ← true
end
```

Structuri de Date

"Heap sort" (sortare prin selectie sistematică)

```
procedure heapSort(a, n)
begin
   // construieste maxheap-ul
   for t \leftarrow (n-1)/2 downto 0 do
      insereazaAlTlea(a, n, t)
   // elimina
   r \leftarrow n-1
   while (r > 0) do
      swap(a[0], a[r])
      insereazaAlTlea(a, r, 0)
     r \leftarrow r-1
end
```

"Heap sort" - Exemplu

"Heap sort" - Exemplu

<u>23</u>	17	5	10	<u> </u>	(max-heap n)
7	17	5	10	23	
<u>17</u>	10	5	<u>7</u>	23	(max-heap n-1)
7	10	<u>5</u>	17	23	
<u>10</u>	7	<u>5</u>	17	23	(max-heap n-2)
5	<u> 7</u>	10	17	23	
7	<u>5</u>	10	17	23	(max-heap n-3)
<u>5</u>	7	10	17	23	
<u>5</u>	7	10	17	23	(max-heap n-4)
5	7	10	17	23	

Structuri de Date

"Heap sort" - complexitate

• formarea heap-ului (pp. $n = 2^k - 1$)

$$\sum_{i=0}^{k-1} 2(k-i-1)2^{i} = 2^{k+1} - 2(k+1)$$

eliminarea din heap şi refacerea heap-ului

$$\sum_{i=0}^{k-1} 2i2^{i} = (k-2)2^{k+1} + 4$$

• complexitate algoritm de sortare

$$T_{\text{heapSort}}(n) = 2n \log n - 2n = O(n \log n)$$

Paradigma divide-et-impera

- P(n): problemă de dimensiune n
- baza:
 - dacă n ≤ n₀ atunci rezolvă P prin metode elementare
- divide-et-impera:
 - **divide** P în a probleme $P_1(n_1)$, ..., $P_a(n_a)$ cu $n_i \le n/b$, b > 1
 - **rezolvă** $P_1(n_1)$, ..., $P_a(n_a)$ în aceeași manieră și obține soluțiile S_1 , ..., S_a
 - asamblează S₁, ..., S_a pentru a obţine soluţia
 S a problemei P

Paradigma divide-et-impera: algoritm

```
procedure DivideEtImpera(P, n, S)
begin
  if (n \le n0) then
     determina S prin metode elementare
  else
     imparte P in P1, ..., Pa
     DivideEtImpera(P1, n1, S1)
      DivideEtImpera(Pa, na, Sa)
      Asambleaza (S1, ..., Sa, S)
end
```

Sortare prin interclasare ("Merge sort")

- generalizare: a[p..q]
- baza: $p \ge q$
- divide-et-impera
 - divide: m = [(p + q)/2]
 - subprobleme: a[p..m], a[m+1..q]
 - asamblare: interclasează subsecvențele sortate
 a[p..m] şi a[m+1..q]
 - iniţial memorează rezultatul interclasării în temp
 - copie din temp[0..p+q-1] în a[p..q]
- complexitate:
 - timp : T(n) = O(n log n)
 - spaţiu suplimentar: O(n)

Interclasarea a două secvențe sortate

• problema:

```
- date a[0] ≤ a[1] ≤ ... ≤ a[m-1],
b[0] ≤ b[1] ≤ ... ≤ b[n-1],
să se construiască c[0] ≤ c[1] ≤ ... ≤ c[m+n-1]
a.î. (∀ k)((∃i)c[k]=a[i]) ∨ (∃j)c[k]=b[j]) iar pentru
k!=p, c[k] şi c[p] provin din elemente diferite
```

soluţia

- initial: $i \leftarrow 0$, $j \leftarrow 0$, $k \leftarrow 0$
- pasul curent:
 - daca a[i] ≤ b[j]
 atunci c[k] ← a[i], i ← i+1
 - daca a[i] > b[j]
 atunci c[k] ← b[j], j ← j+1
 - $k \leftarrow k+1$
- condiţia de terminare: i > m-1 sau j > n-1
- daca e cazul, copie în c elementele din tabloul neterminat

Sortare rapidă ("Quick sort")

- generalizare: a[p..q]
- baza: p ≥ q
- divide-et-impera
 - divide: determină k între p şi q prin interschimbări a.î. după determinarea lui k avem:
 - $p \le i \le k \Rightarrow a[i] \le a[k]$
 - $k < j \le q \Rightarrow a[k] \le a[j]$

 \Rightarrow subprobleme: a[p..k-1], a[k+1..q]

⇒asamblare: nu există

Quick sort: partiţionare

iniţial: $- x \leftarrow a[p]$ (se poate alege x arbitrar din a[p..q]) $-i \leftarrow p+1 ; j \leftarrow q$ pasul curent: - dacă a[i] ≤ x atunci i ← i+1 - dacă a[j] ≥ x atunci j ← j-1 - dacă a[i] > x > a[j] si i < j atunci</pre> swap(a[i], a[j]) • $i \leftarrow i+1$ • j \leftarrow j-1 terminare: condiţia i > j operații $k \leftarrow i-1$ swap(a[p], a[k])

Quick sort: partiționare - exemplu

```
procedure partitioneaza(a, p, q, k)
begin
  x \leftarrow a[p]
   i \leftarrow p+1
   j \leftarrow q
  while (i <= j) do
     if (a[i] \le x) then i \leftarrow i+1
     if (a[j] >= x) then j \leftarrow j-1
     if (i < j) and (a[i] > x) and (x > a[j]) then
         swap(a[i], a[j])
         i \leftarrow i+1
         j ← j-1
  k \leftarrow i-1
  a[p] \leftarrow a[k]
  a[k] \leftarrow x
end
```


Structuri de Date

Quick sort: recursie - exemplu

```
procedure quickSort(a, p, q)
begin
  while (p < q) do
    partitioneaza(a, p, q, k)
    quickSort(a, p, k-1)
    quickSort(a, k+1, q)
end</pre>
```


Quick sort: arbore de recursie

Structuri de Date

Quick sort - complexitate

- Alegerea pivotului influențează eficiența algoritmului
- Cazul cel mai nefavorabil: pivotul este cea mai mică (cea mai mare valoare). Timp proporțional cu n + n-1 + ... + 1.
- $T_{quickSort}(n) = O(n^2)$
- Arborele de recursie:

Quick sort - complexitate

- Un pivot "bun" imparte tabloul în două subtablouri de dimensiuni comparabile
- Înălțimea arborelui de recursie este O(log n)
- Complexitatea medie este *O*(*n log n*)

Sortare prin numărare

- Ipoteză: a[i] ε {1, 2,..., k}
- Se dermină poziția fiecărui element în tabloul sortat numărând câte elemente sunt mai mici decât el.
- Algoritm:

```
    procedure countingSort(a, b, n, k)
    begin
    for i ← 1 to k do c[i] ← 0
    for j ← 0 to n-1 do c[a[j]] ← c[a[j]] + 1
    for i ← 2 to k do c[i] ← c[i] + c[i-1]
    for j ← n-1 downto 0 do
    b[c[a[j]]-1] ← a[j]
    c[a[j]] ← c[a[j]] - 1
    end

O(k+n)
```

Sortare prin numărare – exemplu (k=6)

liniile 6-8, *j* = 7

liniile
$$6$$
- 8 , j = 6

liniile 6-8,
$$j = 5$$

tabloul sortat:

Sortare prin distribuire

 Ipoteză: Elementele a[i] sunt distribuite uniform peste intervalul [0,1).

• Principiu:

- se divide intervalul [0,1) în n subintervale de mărimi egale, numerotate de la 0 la n-1;
- se distribuie elementele a[i] în intervalul corespunzător: $|n \cdot a[i]|$;
- se sortează fiecare pachet folosind o altă metodă;
- se combină cele n pachete într-o listă sortată.

Sortare prin distribuire

• Algoritm:

```
    procedure bucketSort(a, n)

2. begin
3. for i \leftarrow 0 to n-1 do
4. inserează (B[|n \cdot a[i]|], a[i])
5. for i \leftarrow 0 to n-1 do
        sorteaza lista B[i]
7. concatenează în ordine listele B[0],
  B[1], \ldots, B[n-1]
8. end
             Complexitatea medie: O(n)
```

Sortare prin distribuire – exemplu

(Cormen T.H. et al., Introducere în algoritmi)

Structuri de Date 34

Sortare - complexitate

Alarovitus	Caz					
Algoritm	favorabil	mediu	nefavorabil			
bubbleSort	n	n ²	n ²			
insertSort	n	n²	n^2			
naivSort	n²	n²	n²			
heapSort	n log n	n log n	n log n			
mergeSort	n log n	n log n	n log n			
quickSort	n log n	n log n	n ²			
countingSort	-	n + k	n + k			
bucketSort	-	n	-			