ÜBUNGSBLATT 12

Eine glatte projektive Kurve heißt hyperelliptisch, falls $g(C) \geq 2$ und ein Morphismus $C \to \mathbb{P}^1$ vom Grad 2 existiert. In Aufgabe 2 von Übungsblatt 11 hatten wir gesehen, dass Kurven vom Geschlecht 2 hyperelliptisch sind.

Aufgabe 1. Sei C eine glatte projektive Kurve vom Geschlecht $g(C) \geq 2$. Man zeige, dass K_C sehr ampel ist genau dann wenn C nicht hyperelliptisch ist.

Aufgabe 2. Sei h(x) ein Polynom vom Grad 2g+2 mit paarweise verschiedenen Nullstellen. Setze $k(z) := z^{2g+2}h(1/z)$,

- $X := V(y^2 h(x)) \subset \mathbb{A}^2$ und
- $Y := V(w^2 k(z)) \subset \mathbb{A}^2$.
- (i) Seien U bzw. V die offenen Mengen von X bzw. Y, sodass $x \neq 0$ bzw. $z \neq 0$. Zeige, dass U und V isomorph sind.
- (ii) Sei C die Varietät, die ensteht durch verkleben von X und Y entlang $U \cong V$. Man zeige, dass C hyperelliptisch ist.

Aufgabe 3. Sei S eine glatte Fläche vom Grad d im \mathbb{P}^3 und $L \subset S$ eine Gerade.

- (i) Man zeige für die Selbstschnittzahl (L, L) = 2 d.
- (ii) Man gebe ein Beispiel für $S \subset \mathbb{P}^3$ und $L \subset S$ mit $L^2 = -1$ an.

Aufgabe 4. Sei C eine glatte projektive Kurve vom Geschlecht $g, S := C \times C$ und $\Delta \cong C$ die Diagonale in S. Man zeige

$$\Delta^2 = 2 - 2g.$$