

Overcoming uncollapsed haplotypes in long-read assemblies of non-model organisms

Nadège Guiglielmoni, Antoine Houtain, Alessandro Derzelle, Karine Van Doninck, Jean-François Flot JOBIM 2020

Long-reads and genome assembly

Assembly process

Long-read assemblers

Canu	Ra	Shasta
Flye	Raven	wtdbg2
NextDeNovo		

The problem of highly heterozygous regions

Haplotype 1

ATTACCAGTCTCAATGGATGGCTACTCTTTGACGATAGCT

Haplotype 2

ATTACCAGTCTCAAAGGCTGCTAGTGTTTGACGATAGCT

Assembly process

Assembly output

Symptoms of uncollapsed haplotypes

Assemblies of bdelloid rotifer *Adineta vaga* → expected haploid size 102.3 Mb

Who Needs Sex (or Males) Anyway? Liza Gross, PloS Biology, 2007

Strategies to reduce uncollapsed haplotypes

- → Strategy 1: choose a better assembler
- → Strategy 2: removing uncollapsed haplotypes

Tool: Purge Haplotigs

Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies, Roach et al., BMC Bioinformatics, 2018

→ Strategy 3: select longest reads for assembly

2 long-read datasets for *Adineta vaga*: **PacBio** 23.5 Gb, 230X

Nanopore 17.5 Gb, 171X

Evaluation criteria

Assembly size: sum of the lengths of all contigs, compared to the estimated size of 102.3 Mb

BUSCO score: number of orthologs from a specific lineage (Metazoa)
 retrieved in the assembly, either in a single-copy or duplicated

Coverage: number of reads covering a given position in a contig

Evaluation criteria: assemblies of all reads

Assembly size: sum of the lengths of all contigs, compared to the estimated size of 102.3 Mb

Evaluation criteria: assemblies of all reads

BUSCO score: number of orthologs from a specific lineage (Metazoa, 954 features) retrieved in the assembly, either in a single-copy or duplicated

Evaluation criteria: assemblies of all reads

Coverage: number of reads covering a given position in a contig, based on long reads mapping

Collapsing haplotypes: PacBio assemblies

Assembly size: sum of the lengths of all contigs, compared to the estimated size of 102.3 Mb

Collapsing haplotypes: PacBio assemblies

BUSCO score: number of orthologs from a specific lineage (Metazoa, 954 features) retrieved in the assembly, either in a single-copy or duplicated

Collapsing haplotypes: PacBio assemblies

Coverage: number of reads covering a given position in a contig, based on PacBio reads mapping

Collapsing haplotypes: Nanopore assemblies

Assembly size: sum of the lengths of all contigs, compared to the estimated size of 102.3 Mb

Collapsing haplotypes: Nanopore assemblies

BUSCO score: number of orthologs from a specific lineage (metazoa, 954 features) retrieved in the assembly, either in single-copy or duplicated

Collapsing haplotypes: Nanopore assemblies

Coverage: number of reads covering a given position in a contig, based on Nanopore reads mapping

→ Strategy 1: some assemblers are better at collapsing haplotypes (Ra, wtdbg2)

- → Strategy 1: some assemblers are better at collapsing haplotypes (Ra, wtdbg2)
- → Strategy 2: removing uncollapsed haplotypes works better on some assemblies than others

- → Strategy 1: some assemblers are better at collapsing haplotypes (Ra, wtdbg2)
- → Strategy 2: removing uncollapsed haplotypes works better on some assemblies than others
- → Strategy 3: Read filtering improves structure and does not decrease quality

- → Strategy 1: some assemblers are better at collapsing haplotypes (Ra, wtdbg2)
- → Strategy 2: removing uncollapsed haplotypes works better on some assemblies than others
- → Strategy 3: Read filtering improves structure and does not decrease quality
- Need for better assessment of assemblies ≠ contiguity

- → Strategy 1: some assemblers are better at collapsing haplotypes (Ra, wtdbg2)
- → Strategy 2: removing uncollapsed haplotypes works better on some assemblies than others
- → Strategy 3: Read filtering improves structure and does not decrease quality
- Need for better assessment of assemblies ≠ contiguity
- → There is not one measure to pick the best assembly

Acknowledgements

EBE, Université libre de Bruxelles Jean-François Flot

Université de Namur Karine Van Doninck Antoine Houtain Alessandro Derzelle Paul Simion

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764840

Thank you for your attention! Questions?

PacBio: Purge Haplotigs + read filtering

Nanopore: Purge Haplotigs + read filtering

Performance

