华东师范大学数据科学与工程学院上机实践报告

课程名称: 算法设计与分析 上机实践成绩: 年级: 22级

指导教师: 金澈清 姓名: 唐健峰

上机实践名称: 最长上升子序列 学号: 上机实践日期:

10225501408

组号: 408 上机实践编号: No.10

一、目的

1. 熟悉算法设计的基本思想

2. 掌握计算最长上升子序列的方法

二、内容与设计思想

- 1. 基于动态规划编写计算最长上升子序列方法的代码。
- 2. 基于贪心算法和二分搜索编写计算最长上升子序列方法的代码。
- 3. 对比两种实现方式不同数据量下运行时间的差异。

三、使用环境

推荐使用C/C++集成编译环境。

四、实验过程

- 写出计算最长上升子序列方法的代码 分别画出各个实验结果的折线图 1.

动态规划

#define LENGTH 100; // 数组长度 有10, 100, 1000, 10000, 100000, 1000000

#define RANGE 1000000 // 数字范围

	10	100	1000	10000	100000	100000
1. 动态	0.004m	0.087m	7.308m	697.062	67287.7	
1. 动 态 规 划	S	S	S	ms	ms	
	0.004m	0.024m	0.105m	1.165m	16.683	174.548
1. 贪心算法和二	S	S	S	S	ms	ms
和						
一分搜索						
索						

五、总结

对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。

通过以上实验数据,可以发现随着数据规模的不断增大,动态规划方法的运行时间呈指数级上升,而贪心算法和二分搜索方法的运行时间则呈线性上升。

在实践过程中,我认为动态规划算法对于数据规模较小的情况下,效果是比较好的,但是当数据规模变得非常大时,动态规划算法的时间复杂度过高,运行时间也变得过长,不适合解决大规模的问题。

相比之下,贪心算法和二分搜索方法由于其时间复杂度比较低,所以在处理大规模数据时,效率更高。另外,这种方法的编程实现难度不是很大,相对来说更容易实现,具有一定的可操作性。

为了进一步提高程序的效率,可以从以下几个方面进行优化:

- 1. 优化算法的复杂度,在保证正确性的基础上,尽量采用更加高效的算法实现。
- 2. 多线程技术,利用多核处理器的优势,同时处理多个任务,提高程序效率。
- 3. 使用GPU加速计算, GPU的并行计算性能强大, 可以显著提升程序运行效率。
- 4. 代码实现的优化,减少无用操作,避免重复计算等,从而提高程序运行效率。