DYNAMICAL SYSTEMS MA3081

Exercise sheet 10

Exercise 1 (Normal forms for maps). We consider a diffeomorphism $\Psi : \mathbb{R}^2 \to \mathbb{R}^2$ such that for $(x,y)^T \in \mathbb{R}^2$ in a neighborhood of $(0,0)^T$ one has

$$\Psi(x,y) = \left(\begin{array}{c} x+2y+xy \\ 3y-x^2+x^2y \end{array} \right).$$

Determine its normal form up to and including second order in a neighborhood of $(0,0)^{\top}$.

Exercise 2 (Symbolic dynamics). Let $N \in \mathbb{N} \setminus \{1\}$ and define the space on N symbols as $\Sigma_N = \{0, 1, ..., N-1\}^{\mathbb{N}_0}$. Together with

$$d(x,y) = \sum_{n \in \mathbb{N}_0} \frac{|x_n - y_n|}{N^n}$$

 (Σ_N, d) is a metric space.

- 1. Show that $d(x,y) \leq N^{-n}$ if $x_j = y_j$ for all $j \leq n$, and that $d(x,y) \geq N^{-n}$ if $x_j \neq y_j$ for at least one $j \leq n$. In other words, $x,y \in \Sigma_N$ are close if and only if their first n values coincide.
- 2. Show that Σ_N is a Cantor set, i.e. it is compact, perfect and totally disconnected.
- 3. On Σ_N we define the shift map as

$$\sigma \colon \Sigma_N \to \Sigma_N, \qquad x_n \mapsto x_{n+1}.$$

Show that the shift map has a dense orbit, i.e., there exists $s \in \Sigma_N$ such that for all $s' \in \Sigma_N$ and $\varepsilon > 0$ there exists k such that $d(\sigma^k(s), s') < \varepsilon$.

Exercise 3 (Mass on a hoop). Consider a ball of mass m that slides on a rotating hoop (see Fig. 1). The angular velocity of the hoop is Ω , the viscous friction coefficient between the hoop and the ball is b, and the constant of gravity is g. The equation of motion for the sliding ball is given by

$$mR^{2}\ddot{\alpha} + bR^{2}\dot{\alpha} + mR^{2}\left(g/R - \Omega^{2}\cos\alpha\right)\sin\alpha = 0.$$

1. Plot the location of equilibria of the ball as a function of the non-dimensionalized rotation parameter $\nu = R\Omega^2/g$.

Figure 1: Illustration of the sliding mass on a rotating hoop.

2. Determine the stability type of the different equilibrium branches on the plot. Identify the critical angular velocity at which a bifurcation of equilibria occurs.

In the following, assume that there is no friction, i.e., b=0, and that the parameter values are such that the lower equilibrium position of the ball is stable in linear approximation.

- 3. Show that in this case, the equilibrium is also nonlinearly stable.
- 4. Prove that the equilibrium cannot be asymptotically stable for the non-linear system.

Exercise 4 (Sensitive dependence on initial conditions). Let $\mathbb{T} \in \{\mathbb{R}, \mathbb{Z}\}$. Consider \mathbb{R}^n equipped with the Euclidean metric d and let (\mathbb{R}^n, Φ) be a C^0 -dynamical system with flow map $\Phi \colon \mathbb{T} \times \mathbb{R}^n \to \mathbb{R}^n$. Show:

1. Let $x_0 \in X$ and T > 0. Then for each $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $t \in [-T, T]$

$$d(x_0, y_0) < \delta \quad \Rightarrow \quad d(\Phi(t, x_0), \Phi(t, y_0)) < \varepsilon.$$

- 2. The following statements are equivalent:
 - (a) The dynamical system (\mathbb{R}^n, Φ) depends sensitively on initial conditions, i.e., there exists $\Lambda > 0$ such that for each $x \in \mathbb{R}^n$ and $\delta > 0$ there is a $y \in \mathbb{R}^n$ and a $t \geq 0$ with $d(x,y) < \delta$ and $d(\Phi(t,x), \Phi(t,y)) \geq \Lambda$.
 - (b) The dynamical system (\mathbb{R}^n, Φ) depends sensitively on initial conditions and the minimal separation distance Λ occurs arbitrarily late, i.e., there is a $\Lambda > 0$ such that for each $x \in \mathbb{R}^n$, $\delta > 0$ and $T \geq 0$ there are $y \in \mathbb{R}^n$ and $t \geq T$ with $d(x, y) < \delta$ and $d(\Phi(t, x), \Phi(t, y)) \geq \Lambda$.

(c) There is a $\Lambda'>0$ such that for each open, non-empty $U\subseteq\mathbb{R}^n$ and for each $T\geq 0$ there exits a $t\geq T$ with

diam
$$(\Phi(t, U)) \ge \Lambda'$$
.

Here, $\mathrm{diam}(M):=\sup_{x,y\in M}d(x,y)\in [0,\infty]$ denotes the diameter of $M\subseteq \mathbb{R}^n.$

Hint: Show (a) \Rightarrow (c) \Rightarrow (b) \Rightarrow (a), utilizing the result in (1) for the first implication.