Un corrigé de l'examen partiel du 10 mars 2021

Exercice 1.

1) Pour x = 0, on a $g_n(0) = 0$. Pour x > 0 fixé, on a $\ln\left(1 + \frac{x}{n}\right) \underset{n \to +\infty}{\sim} \frac{x}{n}$ et donc $g_n(x) \underset{n \to +\infty}{\sim} n \frac{x}{n} \underset{n \to +\infty}{\sim} x$. Autrement dit, la suite de fonctions $(g_n)_{n \ge 1}$ converge simplement sur $[0, +\infty[$ vers la fonction $g: x \mapsto x$.

2) a) On utilise le théorème de Taylor-Lagrange. Comme $f: t \mapsto \ln(1+t)$ est de classe C^2 sur $[0, +\infty[$, pour tout $t \geq 0$ il existe (au moins) un $c \in [0, t]$ tel que $f(t) = f(0) + tf'(0) + \frac{t^2}{2}f''(c)$. On a f(0) = 0, f'(0) = 1 et $f''(c) = -\frac{1}{(1+c)^2}$, et donc $\ln(1+t) = t - t^2 \frac{1}{2(1+c)^2}$. On en déduit

$$0 \le t - \ln(1+t) = t^2 \frac{1}{2(1+c)^2} \le \frac{t^2}{2}$$

pour tout $t \geq 0$.

b) Pour tout $n \in \mathbb{N}^*$ et tout $x \geq 0$, on en déduit

$$|g_n(x) - g(x)| = n |\ln(1 + \frac{x}{n}) - \frac{x}{n}| \le \frac{n}{2} (\frac{x}{n})^2 \le \frac{x^2}{2n}.$$

Si $x \in [0, a]$, on a donc

$$|g_n(x) - g(x)| \le \frac{a^2}{2n}$$

ce qui prouve la convergence uniforme de la suite de fonctions $(g_n)_{n\geq 1}$ sur [0,a].

3) On a $g_n(n) = n \ln(2)$. On a donc

$$\sup_{x \in [0, +\infty[} |g_n(x) - g(x)| \ge |g_n(n) - n| = n|\ln(2) - 1|.$$

Or le membre de droite tend vers $+\infty$ quand n tend vers $+\infty$ car $\ln 2 \neq 1$. On ne peut donc pas avoir $\lim_{n\to+\infty} \sup_{x\in[0,+\infty[} |g_n(x)-g(x)| = 0$ et la suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ ne peut donc pas converger uniformément sur $[0,+\infty[$.

On pouvait aussi (autre démonstration possible) dire, en utilisant un théorème des croissances comparées, que $\sup_{x \in \mathbb{R}^+} |n \ln \left(1 + \frac{x}{n}\right) - x| = +\infty$, ceci pour tout $n \ge 1$.

Exercice 2.

1) On peut écrire $u_n(x) = (-1)^n v_n(x)$ où $v_n(x) = \frac{1}{\ln(1+nx)}$. Quand on fixe x > 0,

on a $v_n(x) > 0$ (car 1 + nx > 1) et la suite $(v_n(x))_{n \ge 1}$ est clairement décroissante et $v_n(x)$ tend vers 0 quand n tend vers $+\infty$. Le critère des séries alternéees s'applique donc et la série $\sum_{n>1} u_n(x)$ converge pour tout x>0.

2) a) Comme la fonction v_n est décroissante sur $]0, +\infty[$, on a

$$\sup_{x \in [a, +\infty[} |u_n(x)| = \sup_{x \in [a, +\infty[} v_n(x) = v_n(a) = \frac{1}{\ln(1 + na)}.$$

On a $\ln(1+na) \leq na$ (voir exercice 1) et donc $\frac{1}{\ln(1+na)} \geq \frac{1}{na}$. Comme la série harmonique $\sum_{n\geq 1} \frac{1}{n}$ est une série de Riemann divergente, la série $\sum_{n\geq 1} v_n(a) = \sum_{n\geq 1} \sup_{x\in[a,+\infty[} |u_n(x)|$ diverge et donc $\sum_{n\geq 1} u_n$ ne converge pas normalement sur $[a,+\infty[$.

3) a) On sait que la série de fonctions $\sum_{n\geq 1} u_n$ converge simplement sur $[a,+\infty[$. Pour étudier la convergence uniforme sur $[a,+\infty[$ de la série de fonctions $\sum_{n\geq 1} u_n$, on considère son reste d'ordre n, $R_n(x) = \sum_{k\geq n+1} u_k(x)$. On a en utilisant le bonus du critère des séries alternées

$$|R_n(x)| \le \frac{1}{\ln(1 + (n+1)x)} = v_{n+1}(x) \le v_{n+1}(a)$$

pour tout $x \geq a$. Comme $\lim_{n \to +\infty} v_{n+1}(a) = \lim_{n \to +\infty} \frac{1}{\ln(1+(n+1)a)} = 0$, on a $\lim_{n \to +\infty} \sup_{x \geq a} |R_n(x)| = 0$, et donc la série de fonctions $\sum_{n \geq 1} u_n$ converge uniformément sur $[a, +\infty[$.

b) Les fonctions u_n sont toutes continues sur $[a, +\infty[$ et la série $\sum_{n\geq 1} u_n$ converge uniformément sur $[a, +\infty[$. On en déduit que la somme S de la série est continue sur $[a, +\infty[$. Ceci pour tout a>0, donc S est continue sur $]0, +\infty[$.

Exercice 3.

1) On note déjà que $u_n(0) = 0$ et donc $\sum_{n \geq 1} u_n(0)$ converge! Si x est fixé > 0, on a $u_n(x) \underset{n \to +\infty}{\sim} \frac{x}{n^2 x^2} \underset{n \to +\infty}{\sim} \frac{1}{n^2 x}$. La série de Riemann $\sum_{n \geq 1} \frac{1}{n^2}$ converge. Comme $u_n(x) > 0$, le théorème d'équivalence s'applique et on peut conclure que la série $\sum_{n \geq 1} u_n$ converge simplement sur $[0, +\infty[$.

2) On a
$$S(1) = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
. C'est une série télescopique.

On a =
$$\sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{1} - \frac{1}{N+1} \to 1 \text{ quand } N \to +\infty.$$
 On a donc $S(1) = 1$.

- 3)a) On dérive $u_n: u_n'(x) = \frac{1}{n} \frac{1 + nx^2 2nx^2}{(1 + nx^2)^2} = \frac{1}{n} \frac{1 nx^2}{(1 + nx^2)^2}$. On en déduit : $u_n'(x) \ge 0$ si et seulement si $x \in [0, \frac{1}{\sqrt{n}}]$. Donc u_n est croissante sur $[0, \frac{1}{\sqrt{n}}]$ et décroissante sur $[\frac{1}{\sqrt{n}}, +\infty[$. Par ailleurs, on a $u_n(0) = 0$ et $\lim_{x \to +\infty} u_n(x) = 0$.
- b) D'après le tableau de variations de u_n , celle-ci admet un maximum en $x=1/\sqrt{n}$. On a

$$\sup_{x \in [0, +\infty[} u_n(x) = u_n(1/\sqrt{n}) = \frac{1}{2n^{1+\frac{1}{2}}}.$$

La série de Riemann $\sum_{n\geq 1} \frac{1}{n^{1+\frac{1}{2}}}$ converge. On en déduit que la série $\sum_{n\geq 1} u_n$ converge normalement sur $[0,+\infty[$.

- c) Les fonctions u_n sont continues sur $[0, +\infty[$. Et la série $\sum_{n\geq 1} u_n$ converge normalement sur $[0, +\infty[$. On en déduit que la somme S de cette série est continue sur $[0, +\infty[$.
- 4)a) On considère la série des dérivées $\sum_{n\geq 1} u'_n$. On a vu que $u'_n(x) = \frac{1}{n} \frac{1-nx^2}{(1+nx^2)^2}$. On en déduit

$$|u'_n(x)| \le \frac{1 + nx^2}{n(1 + nx^2)^2} = \frac{1}{n(1 + nx^2)}$$

pour tout $x \ge 0$. Soit a un réel > 0. On a donc, pour tout $x \in [a, +\infty[$ (et a fortiori pour tout $x \in [a, b]$), la majoration

$$|u'_n(x)| \le \frac{1}{n(1+na^2)} \le \frac{1}{a^2n^2}.$$

Comme la série de Riemann $\sum_{n\geq 1}\frac{1}{n^2}$ est convergente. la série des dérivées $\sum_{n\geq 1}u'_n$ converge normalement sur $[a,+\infty[$. Il en résulte que S est dérivable sur $[a,+\infty[$, ceci pour tout a>0. On en déduit finalement que S est dérivable sur $]0,+\infty[$.

5)a) Comme les $u_n(x)$ sont > 0 pour tout x > 0, on en déduit que pour tout entier $p \ge 1$, on a $\frac{S(x)}{x} \ge \sum_{n=1}^{p} \frac{1}{n(1+nx^2)}$ pour tout x > 0. En particulier pour $x = 1/\sqrt{p}$, on obtient

$$\frac{S\left(\frac{1}{\sqrt{p}}\right)}{\frac{1}{\sqrt{p}}} \ge \sum_{n=1}^{p} \frac{1}{n(1+\frac{n}{p})}.$$

Pour tous les $1 \le n \le p$, on a $1 + \frac{n}{p} \le 2$. Il en résulte

$$\frac{S\left(\frac{1}{\sqrt{p}}\right)}{\frac{1}{\sqrt{p}}} \ge \sum_{n=1}^{p} \frac{1}{2n}.$$

b) Lorsque p tend vers $+\infty$, le membre de droite tend vers $+\infty$ car la série harmonique $\sum_{n\geq 1}\frac{1}{n}$ diverge. Par comparaison et puisque S(0)=0, on a

$$\lim_{p \to +\infty} \frac{S\left(\frac{1}{\sqrt{p}}\right) - S(0)}{\frac{1}{\sqrt{p}}} = +\infty$$

et S n'est donc pas dérivable (à droite) en 0.