数理逻辑

第2讲命题公式

授课教师: 蒋琳

e-mail: zoeljiang@hit.edu.cn

哈尔滨工业大学(深圳)计算机科学与技术学院

主要内容

- 1. 形式语言
- 2. 命题变项和指派(赋值)
- 3. 命题公式的定义
- 4. 命题公式的赋值与计算
- 5. 命题公式的分类
- 6. 命题公式的判定

形式语言的定义

- 字母表 Σ :字符(symbol)的集合,不能为空。例如: $\Sigma = \{0,1\}$ 。
- 字符串 $m{l}$:由字母表中的字符构成的**有限长的序列**称为字母表上的字符串(symbol string),所有字符串形成的集合记作 $m{\Sigma}^*$
 - $-\Sigma^* = \{0, 1, 00, 01, 10, 11, 000, 001, 010, ...\}$
- 字符串的长度|I|:字符串中字符的个数。长度为0的字符串称为<mark>空串</mark>(empty string), ϵ 表示。空串是任何字符的字符串,是一个特殊的字符
 - $l = 010 \in \Sigma^*, |l| = 3$
 - $-\epsilon \in \Sigma^*, |\epsilon| = 0$
- **形式语言**: Σ^* 的任何子集称为形式语言

形式语言的定义

- $\Sigma^* = \{0, 1\}^*$
- $l = 010 \in \Sigma^*, |l| = 3$
- $\epsilon \in \Sigma^*$, $|\epsilon| = 0$
- $m = 0001 \in \Sigma^*, |m| = 4$
- 定义 $l \circ m = 0100001 \in \Sigma^*$,具有**封闭性**
- 任取 $l \in \Sigma^*$, $l \circ \epsilon = \epsilon \circ l = l$, ϵ 为单位元
- 任取 $l, m, k \in \Sigma^*$, $(l \circ m) \circ k = l \circ (m \circ k)$, 具有**结合律**
- (Σ^*, \circ) 构成代数系统,称为**半群**, ϵ -**半群**
- (Σ^*, \circ) 无法构成群,因为不存在**乘法逆**

形式语言的例子

- 设字母表 $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$, Σ^* 是由10个阿拉伯数字组成的所有十进位数的集合且包含空串 ϵ 和有限个"0"为前缀构成的字符串(如:00,000,0000,001,0010等)
 - $L_1 = \{0,5,10,15,20,25,30,35,\cdots\}$,表示可以被5整除的所有十进制数的集合。
 - $-L_2 = \{0000,0001,0010,0011,0100,0101,0110, \cdots, 1111\}$,表示由0和1构成的所有长度为4的序列的集合,可以看成是长度为4的所有二进制数的集合。
 - $L_3 = \{1,3,5,7,9,11,13,15,\cdots\}$,表示所有奇数的集合。
 - $L_4 = \{0,1,4,9,16,25,36,49,\cdots\}$,表示所有十进制的平方的集合。
- $L_1 L_4$ 均是 Σ^* 的子集,故均为字母表 Σ 上的**形式语言**
- 所有形式语言形成的集合为 2^{Σ^*}

命题变项和指派 (赋值)

Definition (命题变项)

表示命题的变元称为命题变元或命题变项。命题变项的**集合**用 $Atom(L^p)$ 表示。 **命题逻辑的字母表** Σ

Definition (指派或赋值)

任何一个映射v: $Atom(L^p) \to \{0,1\}$ 称为命题演算的一个指派或赋值(valuation)。并且对 $p \in Atom(L^p)$,将v(p)记作 p^v ,自然有 $p^v \in \{0,1\}$ 。

命题公式

Definition (命题公式) -递归定义

- $Atom(L^p)$ 中的元素是命题公式(<mark>命题变元是命题公式</mark>)
- 如果*A*是命题公式,那么¬*A*也是命题公式
- 如果A,B是命题公式,那么 $A \land B,A \lor B,A \to B,A \leftrightarrow B$ 都是命题公式
- 只有1,2,3确定的表达式才是命题公式

命题公式集合表示为 $Form(L^p)$

例: 判定 $\neg(p \rightarrow q) \rightarrow (p \lor r)$ 是否为命题公式

 $p, q, p \rightarrow q, r, p \lor r, \neg(p \rightarrow q), \neg(p \rightarrow q) \rightarrow (p \lor r)$ 公式形成过程

命题公式

- 5个联结词¬,∧,∨,→,↔的优先级:
 - 1. ¬否定
 - 2. A, V 合取, 析取
 - 3. → , ↔ 蕴涵,等价
 - 举例
 - $\neg p \to q = (\neg p) \to q \neq \neg (p \to q)$
 - $p \land q \rightarrow r = (p \land q) \rightarrow r \neq p \land (q \rightarrow r)$
 - $p \land q \lor r \neq (p \land q) \lor r \neq p \land (q \lor r)$ 无意义

 $Atom(L^p)$ 是 Σ 的子集,还包括联结词 $Form(L^p)$ 是 Σ^* 的子集,是 2^{Σ^*} 的元素

弄真与弄假

Definition (弄真和弄假)

设v是一个指派(赋值), $A \in Form(L^p)$ 是任意一个命题公式,若在v下,公式A的值为真,则称v弄真A,记作v(A) = 1或 $A^v = 1$;若在v下,公式A的值为假,则称v弄假A,记作v(A) = 0或 $A^v = 0$

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

对于复合公式,先用语法分析树拆分,形成联结词联结的公式的真假

命题公式的赋值

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

- 命题公式A的指派 A^{ν} 递归的定义如下: ν : $Atom(L^{p}) \rightarrow \{0,1\}$
 - ① 如果A是原子公式p,则 $A^v = p^v \perp p^v \in \{0,1\}$
 - ② 如果 $A = \neg B \perp B^v \in \{0,1\}$, 则当 $B^v = 1$ 时,规定 $A^v = 0$; 当 $B^v = 0$ 时,规定 $A^v = 1$;
 - ③ 如果 $A = B \land C \perp B^{v}, C^{v} \in \{0,1\}, \quad M \leq B^{v} = 1 \perp C^{v} = 1 \text{ th}, \quad M \geq A^{v} = 1;$ $\exists B^{v} = 0 \text{ od } C^{v} = 0 \text{ th}, \quad M \geq A^{v} = 0;$
 - ④ 如果 $A = B \lor C 且 B^{v}, C^{v} \in \{0,1\}, \quad M \land B^{v} = 0 且 C^{v} = 0$ 时,规定 $A^{v} = 0$; 当 $B^{v} = 1$ 或 $C^{v} = 1$ 时,规定 $A^{v} = 1$;
 - ⑤ 如果 $A = B \to C \perp B^{v}, C^{v} \in \{0,1\}, \quad M \leq B^{v} = 1 \perp C^{v} = 0 \text{ th}, \quad M \geq A^{v} = 0;$ $\leq B^{v} = 0$ 或 $C^{v} = 1$ th, $\leq A^{v} = 1$;
 - ⑥ 如果 $A = B \leftrightarrow C$ 且 $B^v, C^v \in \{0,1\}$,那么当 $B^v = C^v$ 时,规定 $A^v = 1$;当 $B^v \neq C^v$ 时,规定 $A^v = 0$ 。

命题赋值的计算

的实数做运算,那么

(1)
$$(\neg A)^v = 1 - A^v$$

$$(A \wedge B)^v = A^v \cdot B^v$$

$$(3) (A \lor B)^{v} = A^{v} + B^{v} - A^{v} \cdot B^{v}$$

A^v	B^{v}	$(A \rightarrow B)^v$	$1 - A^v + A^v \cdot B^v$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

$$(A \rightarrow B)^{v} = 1 - A^{v} + A^{v} \cdot B^{v}$$

(5)
$$(A \leftrightarrow B)^{v} = A^{v} \cdot B^{v} + (1 - A^{v}) \cdot (1 - B^{v})$$

• 赋值的计算与手工列出真值表会得到同样的结果

公式赋值的性质

命题: 真值的确定性

对任意一个赋值v,和任意的命题公式 $A \in Form(L^p)$,都有 $A^v \in \{0,1\}$ 。

证明

- 设v是任意一个赋值, $A \in Form(L^p)$ 是一个命题公式
- 如果 $A \in Atom(L^p)$ 是原子公式,由于v是一个赋值,所以它是从 集合 $Atom(L^p)$ 到集合 $\{0,1\}$ 的映射,故 $A^v \in \{0,1\}$
- 如果 $A = \neg B$,由**第二数学归纳法**知, $B^v \in \{0,1\}$,从而 $A^v = 1 B^v \in \{0,1\}$.
- 如果 $A = B \lor C$, $A = B \land C$, $A = B \rightarrow C$, $A = B \leftrightarrow C$ 怎么证? (作业)

公式赋值的性质

- 第一数学归纳法可以概括为以下三步:
 - (1)归纳奠基:证明n=1时命题成立;
 - (2)归纳假设:假设n=k时命题成立;
 - (3)归纳递推:由归纳假设推出n=k+1时命题也成立。
- 第二数学归纳法是设有一个与自然数n有关的命题,如果:
 - (1)当n=1时, 命题成立;
 - (2)假设当n≤k时命题成立,由此可推得当n=k+1时,命题也成立。
 - 那么,命题对于一切自然数n来说都成立。

命题公式的分类

- 设 $A \in Form(L^p)$,则
 - 若对任意的赋值v,都有 $A^v = 1$,则称A为永真式或重言式 (tautology)
 - 若对任意的赋值v,都有 $A^v = 0$,则称A为永假式或矛盾式 (contradiction),即不可满足的
 - 若存在赋值v,使得 $A^v = 1$,则称A为**可满足的**(satisfiable)

永真式的判定

判定A → (B → A)为永真式。

① 真值表方法

	$A \to (B \to A)$	$B \rightarrow A$	В	A
	1	1	0	0
蕴涵式后件为真		0	1	0
必有蕴涵式为真	1 🕏	1	0	1
	1	1	1	1

② 计算方法

$$(A \to B)^{v} = 1 - A^{v} + A^{v} \cdot B^{v}$$

对任意的赋值 $v: Atom(L^p) \rightarrow \{0,1\}$,我们有

$$(A \to (B \to A))^{v} = 1 - A^{v} + A^{v}(1 - B^{v} + A^{v}B^{v})$$
$$= 1 - A^{v}B^{v} + (A^{v})^{2}B^{v}$$
$$= 1 - A^{v}B^{v} + A^{v}B^{v} = 1$$

③ 反证法

假设存在v,使得 $(A \rightarrow (B \rightarrow A))^v = 0$

$$\mathbb{A}^{\mathbf{v}} = \mathbf{1}, \ (B \to A)^{\mathbf{v}} = 0,$$

则必有 $B^{\nu}=1$, $A^{\nu}=0$,矛盾

永假式的判定

• 判定 $\neg(A \rightarrow A)$ 为永假式。

① 真值表方法

\overline{A}	$A \rightarrow A$	$\neg (A \rightarrow A)$
0	1	0
1	1	0

② 计算方法

对任意的赋值 $v:Atom(L^p) \rightarrow \{0,1\}$,我们有

$$(\neg(A \to A))^{v} = 1 - (A \to A)^{v}$$

$$= 1 - (1 - A^{v} + A^{v} \cdot A^{v}) \quad (A \to B)^{v} = 1 - A^{v} + A^{v} \cdot B^{v}$$

$$= A^{v} - A^{v}A^{v}$$

$$= 0$$

可满足公式的判定

• 判定 $(A \rightarrow \neg A) \rightarrow A$ 为可满足的。

① 真值表方法

公式的形成过程

A	$\neg A$	$A \rightarrow \neg A$	$(A \to \neg A) \to A$
0	1	1	0
1	0	0	1

② 计算方法

对任意的赋值 $v:Atom(L^p) \to \{0,1\}$,欲使 $((A \to \neg A) \to A)^v = 1$

只需要
$$1 - (A \rightarrow \neg A)^v + (A \rightarrow \neg A)^v \cdot A^v = 1$$

只需要
$$(A \rightarrow \neg A)^v(1 - A^v) = 0$$

只需要
$$A^{v}=1$$

小结

- 命题变元和命题公式
- 命题公式的三种计算方法(真值表、计算、反证)
- 命题公式三种类型(永真式、永假式和可满足式)及判定