

SHIPBOARD EXPOSURE TESTING

E. J. Jankowsky and S. J. Ketcham Aircraft and Crew Systems Department NAVAL AIR DEVELOPMENT CENTER Warminster, Pennsylvania 18974

> PROGRESS REPORT AIRTASK NO. WF61-542-001 Work Unit No. ZM501

Approved for Public Release; Distribution Unlimited

Prepared for NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, D.C. 20360

A

81 12 68 689

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteeth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

CODE	OFFICE OR DIRECTORATE
00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Comptroller
10	Directorate Command Projects
20	Systems Directorate
30	Sensors & Avionics Technology Directorate
40	Communication & Navigation Technology Directorate
50	Software Computer Directorate
60	Aircraft & Crew Systems Technology Directorate
70	Planning Assessment Resources
80	Engineering Support Group .

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NADC-81075-60	AD-ALOBIH	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtille)		5. TYPE OF REPORT & PERIOD COVERED
Shipboard Exposure Testing		Progress Report
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		S. CONTRACT OR GRANT NUMBER(s)
E. J. Jankowsky and S. J. Ketcham		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Aircraft and Crew Systems Technology		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Directorate		Airtask No. WF61-542-001
NADC, Warminster, PA 18974		Work Unit No. ZM501
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command		12. REPORT DATE
Department of the Navy Washington, D.C. 20361		13. NUMBER OF PAGES
18 MONITORING AGENCY NAME & ADDRESS(II differen	nt from Controlling Office)	18. SECURITY CLASS. (of this report)
		15a. DECLASSIFICATION, DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release, distribution u	nlimited	İ
Approved for public release, distribution of	mmicea	
17. DISTRIBUTION STATEMENT (of the ebetract entered	In Block 20, If different from	m Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary a	nd Identify by black number)	
All arisance Allege Briss Commence Commence	iana Cale Canas Tantin	_
Aluminum Alloys, Paint Systems, Compos Aircraft Carrier Environment	ites, Sait Spray Testin	ıg,
20. ABSTRACT (Continue on reverse side if necessary an		
An effort is underway to correlate results of shipboard exposure of aircraft materials. I series of aluminum alloys with varying deg decks of nuclear and conventional carriers.	This report compares rees of exfoliation res	results of corrosion tests of a sistance exposed on the flight
water displacing paint, aluminum/aluminum described. Additionally, results of initial la	m oxide and graphite,	epoxy composites are also

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS DESOLETE 5 N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

343 282

TABLE OF CONTENTS

		Page
LIST OF INTROE DESCRI RESULT CONCLI FUTUR ACKNO	F TABLES F FIGURES DUCTION PTION OF TESTS FS AND DISCUSSION USIONS E PLANS WLEDGEMENTS ENCES	1 1 2 2 4 6 6 7 7
	LIST OF TABLES	
Table		Page
1 !} !!!	Aluminum Alloys Used For Exfoliation Tests	8 9 11
	LIST OF FIGURES	
Figure		Page
1	Carrier Exposure Racks	13
2	Comparison of Exposure Panels From Nuclear and Conventional Carriers — 7075 - 0.5 Inch Extrusion, Low Resistance	14
3	Comparison of Exposure Panels From Nuclear and Conventional Carriers — 7075 - 0.5 Inch Extrusion, Intermediate Resistance	15
4	Comparison of Exposure Panels from Nuclear and Conventional	
5	Carriers — 2124 - 2 Inch Plate, Low Resistance	16
6	Carriers — 2124 - 2 Inch Plate, Intermediate Resistance	17
7	Carriers — 2124 - 0.5 Inch Plate, Lów Resistance	18
·	Carriers – 2124 - 0.5 Inch Plate, Intermediate Resistance	19
8	Comparison of Exposure Panels From Nuclear and Conventional Carriers — 7178091 Inch Sheet, Low Resistance	20
9	Comparison of Exposure Panels From Nuclear and Conventional	
10	Carriers — 7178091 Inch, Intermediate Resistance	21
	Inch Plate, Low Resistance, 7075 Extrusion, Low Resistance	22
11	Comparative Corrosivity of Environments	23
12 13	Photomicrographs of Aluminum/Aluminum Oxide Composites	24
	Constellation	25
14	Cycle I and Cycle II — Cyclic SO₂ — Salt Spray	26
15	Cycle III - Cyclic SO ₂ - Salt Spray	27

INTRODUCTION

Under reference (a), various aircraft materials are being exposed to the environment on aircraft carrier flight decks. The objective is to provide baseline information for the development of a realistic accelerated laboratory corrosion test as well as to evaluate materials projected for use on Naval aircraft.

The first materials tested were exposed on a rack attached to the radar tower on the flight deck of the U.S.S. John F. Kennedy, a conventional, oil burning carrier. Aluminum alloy plate materials for the tests were obtained from a joint interlaboratory ASTM/Aluminum Association testing program. These alloys had been heat treated to provide varying degrees of susceptibility to exfoliation. Results of KENNEDY exposure tests are given in reference (b).

The environment of a conventional oil burning aircraft carrier includes stack gas exhaust products as well as sea spray. One of these products is sulfur dioxide. The conventional carrier could therefore be said to have the combined effect of industrial and marine environments. On the other hand, a nuclear aircraft carrier has no stack gases and should provide only a marine environment.

This report contains results of exposure tests aboard the U.S.S. Nimitz, a nuclear carrier, and the U.S.S. Constellation, another conventional carrier. Aluminum alloy specimens from the same materials exposed on the U.S.S. John F. Kennedy were exposed on the other two carriers as controls. Results of aluminum alloy corrosion from the three carrier runs are compared, and some of the results obtained with other materials are discussed.

DESCRIPTION OF TESTS

MATERIALS

Exfoliation Specimens

The same aluminum alloy materials used for exposure specimens on the U.S.S. John F. Kennedy were used for exposure on the U.S.S. Nimitz and the U.S.S. Constellation. Table I lists the specimens. The 50.8 mm plate of 2124 aluminum alloy was machined in three steps to expose the varying thicknesses (T) of T/10, T/4, and T/2. The 12.7 mm plate of 2124, and the 7075 and 2024 extensions were machined to expose the T/10 and T/2 planes. The 7178 aluminum alloy plate had only the T/10 plane exposed.

Graphite Epoxy Composite Specimens

Nine 24.1 x 22.9 cm (9½" x 9") graphite epoxy panels were prepared with the AS/3501-6 system, 16 ply 0, \pm 45, 90. Three were saved for controls. Six were painted with one coat of MIL-P-23377 epoxy primer and two coats of MIL-C-81773 polyurethane topcoat. Three of the painted panels were exposed on the NIMITZ and three on the CONSTELLATION.

Tensile, short beam shear, and flexural strength specimens were prepared from the exposed panels and compared with specimens prepared from the unexposed control panels. Tensile tests were conducted in accordance with ASTM D 3039, short beam shear in accordance with ASTM D 2344, and flexural strength in accordance with Federal Standard 406, Method 1031. Each of the tests was conducted at room temperature, 82.2°C (180°F), and 121.1°C (250°F).

Avionics Components

As part of the avionics corrosion control effort under reference (c), several avionics components supplied by the McDonnell Douglas Aircraft Company were exposed on the NIMITZ and CONSTELLATION racks. Results obtained with these specimens are being reported under reference (c).

Water Displacing Paint

Aluminum alloy panels $7.6 \times 15.2 \, \text{cm}$ (3" $\times 6$ "), of clad 2024-T3 aluminum alloy were painted with water displacing paint which is being developed under reference (d). The painted panels were scribed down to the basis metal prior to exposure.

Aluminum Oxide/Aluminum Composite Materials

Two small samples of aluminum oxide/6061 aluminum alloy composite material were exposed on the CONSTELLATION rack. One was produced by powder metallurgy methods, one by liquid infiltration.

Laser Hardening Coatings

Laser hardening coatings consisting of a clear acrylic lacquer were applied to four chromated 7.62 x 15.24 cm (3" x 6") clad 7075-T6 aluminum alloy panels and overcoated with 7.6 μ m (0.3 mil) of MIL-C-8514 wash primer, one coat of MIL-P-23377 primer, and two coats of MIL-C-81773 polyurethane topcoat. The panels were then exposed for eight months on the CONSTELLATION rack. These panels were not scribed prior to exposure.

The coated panels were furnished by Vought Corporation under a Navy contract. The bath used for applying the MIL-C-5541 chromate conversion coating was diluted with water so that the coating would be thinner than normal for coatings of this type. The clear acrylic was applied to a thickness of 25.4 μ m (1 mil), the epoxy primer and polyurethane topcoat to the normal thicknesses applied to aircraft.

Exposure Racks

Racks, designed to expose the specimens at an angle of 45°, were fabricated from steel, cadmium plated, chromated, and painted with MIL-P-23377 epoxy primer and MIL-C-81773 polyure-thane topcoat. The racks were approximately 2.4 metres long by 0.30 metre wide (8' x 1'). The NIMITZ rack was welded to the inboard side of the radar tower aft of the island on the flight deck. The rack was about 3.6-4.3 metres (12'-14') above the deck. A similar rack was installed in the same location on the radar tower of the CONSTELLATION. Specimens were attached to the racks with nylon bolts. MIL-S-8802 sealant was applied in the bolt holes and under the bolt heads to avoid crevice corrosion. Racks with specimens attached are shown in Figure 1.

Deployment

The U.S.S. Nimitz was deployed first to the Mediterranean from July 1979 to December 1979 and then to the Indian Ocean from January 1980 to May 1980. At the end of the ten month cruise, the ship returned and the specimens were removed from the rack.

The U.S.S. Constellation was deployed in the Western Pacific and the Indian Ocean from February to October 1980. Specimens were removed at the end of eight months. No interim inspections were made in either case.

Cyclic SO₂ - Salt Spray Tests

In an attempt to reproduce the type of exfoliation attack that took place on the carriers, 7075 and 2124 panels with low resistance to exfoliation were subjected to cyclic SO_2 — salt spray tests. Four different cycles were tried:

Cycle I

1/2 hr salt spray

11/2 hr soak (no spray - no SO₂)*

1 hr SO₂ introduction

Cycle II

½ hr salt spray

1/2 hr SO₂

1 hr soak

Cycle III

½ hr sait spray

1/2 hr SO₂

2 hr soak

Cycle IV

½ hr salt spray + SO₂ (both together)

2½ hr soak

All panels were exposed in 45 degree racks.

RESULTS AND DISCUSSION

Exfoliation Tests

Results of the exfoliation tests of aluminum alloys are given in table II for all three carriers. The panels were rated according to ASTM G 34-79. The appearance of a typical NIMITZ exposure panel compared to a typical KENNEDY panel for each group is shown in figures 2 to 9. Figure 10 shows typical exposure panels from the CONSTELLATION. All alloys heat treated for high resistance to exfoliation showed only surface pitting attack and are therefore not shown in the figures.

Results of exposure on the NIMITZ were surprising in that corrosion was worse than it had been for the same materials exposed on the KENNEDY. The difference in behavior was attributed to the effect of temperature. The nuclear carrier was in the Indian Ocean for five months where temperatures ranged from 80 to 95° F. The first conventional carrier was in the Mediterranean for its entire deployment where temperatures were 20 to 30 degrees lower most of the time. In the Indian Ocean, there was little rain to wash off salt accumulations. With the sun shining on the panels, surface temperatures could be much higher than ambient.

It was unfortunate that no interim inspection on the nuclear carrier was possible. Four month inspection data from the first carrier showed slight corrosion occurring to that point, most took place in the last four months. Since the nuclear carrier was in the Mediterranean for the first five months also, it is not unreasonable to assume corrosion attack was also slight until the ship moved to the Indian Ocean.

^{*}During the "soak" part of the cycle the panels were left in the closed cabinet with no sulfur dioxide being introduced and no salt solution being sprayed.

That the temperature effect is more important than the effect of stack gases was verified by the results from the third carrier. This was a conventional carrier with stack gases, but was in the Indian Ocean for three months and in the warmer regions of the Western Pacific for the remainder of its cruise. The attack on the low resistance 2124-0.5 in. particularly resembled that of the nuclear carrier.

Results with the aluminum alloys show that the environment of an aircraft carrier, however powered, is considerably more corrosive than seacoast or industrial environments. This is vividly demonstrated in figure 11 which is based on data from Sprowls et al., reference (e). It took only eight months on a carrier to develop severe exfoliation corrosion on susceptible alloys whereas at the most severe seacoast location (Point Judith, Rhode Island) it took 12 months and in the most severe industrial location (Brookfield, Illinois) 3 years.

Graphite/Epoxy Composite Specimens

Results of tests of the graphite/epoxy composite panels are given in table III. Based on the weight of one of the NIMITZ panels before and after exposure approximately 0.6 percent moisture pick-up resulted from the 10-month period of exposure. The effect of moisture pick-up is shown by the results in table III. NIMITZ specimens showed a decrease of about 2 percent in tensile strength at 121.1°C (250°F), a decrease of 29 percent in short beam shear strength, and a decrease of 13 percent in flexural strength. Decreases of this type are typical of graphite/epoxy at elevated temperature after moisture pick-up. Decreases were also shown by the panels exposed on the CON-STELLATION. The increase in strength at 82.2°C (180°F) for the NIMITZ panels is difficult to explain. Some post-curing may have taken place, accounting for the increase.

Aluminum Oxide/Aluminum Composites

Eight months of exposure on a conventional carrier resulted in only slight pitting of the aluminum oxide/6061 aluminum composites. Attack was equivalent to that observed on the aluminum alloy specimens heat treated to have high resistance to exfoliation corrosion. Metallographic examination of the mounted and polished cross sections of the panels revealed preferential attack on the matrix but no deep attack or obvious detrimental effect. There was slightly more attack on the powder metallurgy composite than the liquid infiltration composite as shown in figure 12.

Water Displacing Paint

Typical water displacing paint panels are shown in figure 13. Adhesion was good, but there was some slight corrosion of the basis metal and slight blistering of the paint at the scribe marks. All in all, results were very promising. Additional information on water displacing paint can be found in reference (f).

Laser Hardening Coatings

After eight months of exposure, the adhesion of the laser hardening coatings was found to be excellent. This was an unexpected result because all prior laboratory tests had indicated that the adhesion was exceptionally poor. No explanation can be given for the difference in results.

Accelerated Laboratory Tests

One purpose of the carrier exposures is to develop an accelerated laboratory test that will reproduce the type of attack that occurs on the carrier. With regard to exfoliation of aluminum

alloys, the EXCO test (ASTM G-34) reproduces quite well the attack that took place on the aircraft carrier and other natural environments. However, the EXCO is an immersion test and not suitable for materials such as paints, graphite epoxy composites, and avionics components. Therefore, attempts are being made to find a salt-spray test procedure that can be used for all materials.

In the cyclic SO₂-salt-spray tests, Cycle I, the spray-soak-SO₂ cycle, resulted in very little exfoliation, mainly surface attack even after 30 days of exposure. Cycle II simulated carrier exposure attack more closely than Cycle I with both 7075 and 2124 exfoliating in relatively short times. Cycle III came closest to giving the same type of attack as carrier exposure. The major differences were the somewhat darker color of corrosion products in the laboratory test and a slight reversal of attack. On the carrier, 2124 was more severely attacked than 7075 while the reverse was true in the laboratory test. Cycle IV formed more surface lumps than the other cycles without distinct layering, 2124 was very black after a few days of exposure. Results of cyclic exposure are shown in figures 14 and 15 for cycles I, II, and III.

CONCLUSIONS

- Severe exfoliation of aluminum alloys, susceptible to exfoliation, takes place in eight months
 of carrier exposure.
- 2. The environment of an aircraft carrier, however powered, is considerably more corrosive than seacoast or industrial environments.
- Climate has a more marked effect on the corrosion of aluminum alloys than the presence or absence of stack gases.
- 4. The aluminum oxide/aluminum composites tested are resistant to exfoliation and deep pitting.
- 5. The graphite/epoxy panels tested did not show any unusual or severe effects from the carrier exposure only the known and expected degradation from moisture absorption.
- 6. The Vought laser hardening paint system performed better on carrier exposure specimens than the salt spray results indicated it would.
- 7. Water displacing paint shows promise as a protective system for Naval aircraft.
- 8. Cycle SO₂ -sait spray (Cycle III) simulates carrier exposure attack on bare aluminum alloys.

FUTURE PLANS

A rack has been installed on the U.S.S. America. Several 17-4 PH steel panels with various protective coatings are attached to the rack. Exposure of the 17-4 specimens is being conducted at the request of the Naval Weapons Center in connection with a corrosion problem on Sidewinder missiles. Additionally, the rack contains EMI seal assemblies to determine whether silver or silver plated copper filled silicone rubber seals accelerate corrosion of aluminum alloy avionics boxes. Also on the rack are coatings of IVD aluminum, bright cadmium, dull cadmium and aluminum-manganese on steel panels, assemblies of anodized 7075-T6 aluminum with IVD aluminum, aluminum-manganese, and cadmium coated steel fasteners, water displacing paint on aluminum alloy panels, boron/aluminum composite material, and 7075 and 2124 controls.

Another rack has been installed on a navigation equipment test ship, the U.S.N.S. Vanguard. Although the Vanguard is not the same as a carrier, the specimens will be subjected to salt spray and stack gases, and control specimens of low resistance 7075 and 2124 aluminum alloys are attached to the rack so that comparisons can be made with carrier exposure. It is hoped that, closer monitoring of the specimens will be possible on the Vanguard than it has been on carriers.

At the request of the Naval Air Systems Command, Northrop's Weldbond adhesive bonding process is being evaluated. Wedge opening load specimens of 7075-T6 aluminum alloy are being exposed on the Vanguard rack as part of a program to qualify the process for use on Naval aircraft. Clad and bare 7075-T6 aluminum alloy panels with and without paint are on the Vanguard rack to compare sealed and unsealed anodizing, and chemical conversion coatings as pretreatments for aluminum. More water displacing paint specimens are also included. The corrosion monitor, described in reference (a), has been placed immediately above the rack to measure the intensity of corrosive conditions.

McDonnell Douglas is preparing a series of graphite and aluminum specimens simulating the joints used on F-18 aircraft. These will be exposed on the flight deck of a carrier to observe their behavior under very severe conditions.

Materials other than bare aluminum alloys will be exposed to cycle III of cyclic SO₂ -salt spray and compared with specimens of the same materials exposed on carriers.

ACKNOWLEDGEMENTS

The cooperation and assistance of Mr. Raymond Mason of COMNAVAIRPAC, Mr. Garrett T. Browne of COMNAVAIRLANT, and of personnel of the U.S.S. Nimitz, the U.S.S. Constellation, and the U.S.S. John F. Kennedy is gratefully acknowledged.

Appreciation is also expressed to Mr. Charles Hegedus who prepared the water displacing paint panels, Mr. David Pulley for furnishing the laser hardening panels, Mr. Ronald Trabocco and Miss Eleanor Vadala for their work on the graphite/epoxy composites, and to Mr. Peter Sabatini for his work in preparing and installing the racks.

REFERENCES

- (a) AIRTASK No. WF61-542-001, Work Unit No. ZM501, Shipboard Exposure Testing.
- (b) E.J. Jankowsky, S.J. Ketcham, V.S. Agarwala. Aircraft Carrier Tests of Aluminum Alloys, Report No. NADC-79251-60 of 1 Nov 1979.
- (c) NADC Contract No. N62269-79-C-0257, Corrosion Control Test Methods for Avionics Components.
- (d) AIRTASK No. WF61-542-001, Work Unit No. ZM501, Development of Water Displacing Paint.
- (e) D.O. Sprowls, T.J. Summerson, and R.I. Lindberg, Exfoliation Corrosion Testing of High Strength Aluminum Alloys in the Atmosphere, ASTM Symposium on Atmospheric Corrosion, May 1980, to be published in ASTM STP.
- (f) C.R. Hegedus, Development of a Water Displacing Touch-Up Paint, Report No. NADC-80207-60 of 24 Feb 1981.

Table I. Aluminum Alloys used for Exfoliation Tests

Alloy/Form	Temper	Thickness mm (in.)	Expected Resistance to Exfoliation	Dimensions mm (in.)
2124 Plate	T851	12.2 (0.5)	High	76 x 152 (3 x 6)
	T351	12.2 (0.5)	Intermediate	76 x 152 (3 x 6)
	T351 + 0.5 hrs at 375° F	12.2 (0.5)	Low*	76 x 152 (3 x 6)
	T851	50.8 (2.0)	High	76 x 152 (3 x 6)
	T351	50.8 (2.0)	Intermediate	76 x 152 (3 x 6)
	T351 + 0.5 hrs at 375° F	50.8 (2.0)	Low	76 x 152 (3 x 6)
7075		12.2 (0.5)	High	76 x 76 (3 x 3)
Extrusion			Intermediate	76 x 76 (3 x 3)
	— True de la comp ensa de la compensa de la compen		Low*	76 × 76 (3 × 3)
7178 Sheet	T6	2.3 (.091)	Low	76 x 152 (3 x 6)
	76 + 10 hrs at 325° F		Intermediate	76 x 152 (3 x 6)
	T6 + 11 hrs at 325° F		High	76 x 152 (3 x 6)

^{*}Only these two materials were exposed on the U.S.S. Constellation

Table II. Exfoliation Ratings (ASTM G34-79)

	Conventional Carrier (Kennedy)		Nuclear Carrier (Nimitz)	Conventional Carrier (Constellation)
	4 Mos.	8 Mos.	10 Mos.	8 Mos.
2124 - 12.2 MM (0.5 In.) Plate				
Low Resistance				
T/10 T/2	EA EA	ED EC	ED ED	ED ED
Intermediate Resistance				
T/10 T/2	EA P	EC P	ED EC	
High Resistance				
T/10 T/2	P P	P P	P P	
2124 - 50.8 MM (2 In.) Plate				
Low Resistance				
T/10 T/4 T/2	EB EB EA	ED ED EC	ED ED ED	
Intermediate Resistance				
T/10 T/4 T/2	P EA EA	P EC EC	EB EC ED	
High Resistance				
T/10 T/4 T/2	P P P	P P P	P P P	

P — Pitting Exfoliation Ratings

A Slight

C Severe

B Moderate

D Very Severe

Table II. Exfoliation Ratings (ASTM G34-79) (Continued)

	Conventional Carrier (Kennedy)		Nuclear Carrier (Nimitz)	Conventional Carrier (Constellation)
	4 Mos.	8 Mos.	10 Mos.	8 Mos.
7075 - 12.2 MM (0.5 In.) Extrusion				
Low Resistance				
T/10 T/2	EB EA	ED EB	ED EC	EC EB
Intermediate Resistance				
T/10 T/2	EA P	EB P	EB EA	
High Resistance				
T/10 T/2	P P	P P	P P	
7178 - 2.3 MM (0.091) In. Sheet				
Low Resistance				
T/10	EA	ED	ED	
Intermediate Resistance				
T/10	P	P	PB	
High Resistance				
T/10	P	P	Р	

P — Pitting **Exfoliation Ratings**

A Slight

C Severe

B Moderate D Very Severe

Table III. Results of Tests of Graphite/Epoxy Composite

Panel Identification & Test Temperature	Tensile Strength PSI	Shear Strength PSI	Flexural Strength PSI
Unpainted Unexposed		6233 6241	52267 51836 51878
UCAR-5 R.T. Avg.	56921 59334 51239 55831	6450 6253 6110 6257	54584 52967 55862 53232
UCAR-6 180° F Avg.	57004 55537 59755 57432	5965 5740 6438 5852 5824 5964	52019 49920 52092 55063 50208 55030 52389
UCAR-7 250° F Avg.	62078 60217 60756 61016	5966 5970 5910 6737 5960 6108	48334 54461 51810 57526 54569 <u>54569</u> 53544
Painted & Exposed Aboard Nimitz CAR-2 R.T. Avg.	64153 55669 <u>56640</u> 58821	5918 6312 5918 5852 6075 6015	53545 58516 57306 57628 51571 60367 56489
CAR-3 180° F Avg.	66442 59945 63490 63292	6963 7399 6579 6516 6577 6807	57930 61798 57631 56842 60677 64719 59933

Table III. Results of Tests of Graphite/Epoxy Composite (Continued)

Panei Identification & Test Temperature	Tensile Strength PSI	Shear Strength PSI	Flexural Strength PSI
CAR-4 250° F Avg.	54238 60249 58815 57767	4315 4152 4285 4353 4278 4276	45567 47517 50323 52419 52190 47131 49191
Change	-2%	-29%	- 13%
Weight, Grams	CAR-2		
After Exposure Before Exposure	189.99 188.68 1.31 0.6		
% Moisture Pickup	0.6		<u> </u>
Painted & Exposed Aboard Constellation			
CAR-1 R.T.	59583 64712 <u>64470</u> 62922	5617 6173 6530 6184 6242 6149	53228 53808 52803 51322 48286 53619
CAR-5 180° F	59780 63758 61482 61674	6343 6103 6429 6252 <u>5559</u> 6137	47078 45097 45553 49824 47041 48922 47253
CAR-6 250° F	58462 60757 61113 60111	6060 5847 5894 5707 6090	44824 46434 46123 48301 45144
Change	4%	5920	46159 46164
		-4%	-12%

USS NIMITZ RACK

GRAPHITE /EPOXY EXFOLIATION SPECIMENS AVIONICS COMPONENTS

USS CONSTELLATION RACK

WATER DISPLACING PAINT

LASER HARDENING PAINT

ALAI203 COMPOSITE

ALAIZ 03 AVIONICS COMPOSITE BOX

GRAPHITE/EPOXY

AVIONICS COMPONENTS

EXFOLATION SPLIMENS

Figure 1. Carrier Exposure Racks

Figure 2. Comparison of Exposure Panels from Nuclear and Conventional Carriers 7075 - 0.5 Inch Extrusion, Low Resistance

Figure 3. Comparison of Exposure Panels from Nuclear and Conventional Carriers 7075 - 0.5 Inch Extrusion, Intermediate Resistance

Figure 4. Comparison of Exposure Panels from Nuclear and Conventional Carriers 2124 - 2 Inch Plate, Low Resistance

Figure 5. Comparison of Exposure Panels from Nuclear and Conventional Carriers 2124 - 2 Inch Plate, Intermediate Resistance

Figure 6. Comparison of Exposure Panels from Nuclear and Conventional Carriers 2124 - 0.5 Inch Plate, Low Resistance

18

Figure 7. Comparison of Exposure Panels from Nuclear and Conventional Carriers 2124 - 0.5 Inch Plate, Intermediate Resistance

Figure 8. Comparison of Exposure Panels from Nuclear and Conventional Carriers

7178 - .091 Inch Sheet, Low Resistance

Figure 9. Comparison of Exposure Panels from Nuclear and Conventional Carriers 7178 - 0.091 Inch, Intermediate Resistance

21

Figure 10. Typical Exposure Panels from U.S.S. Constellation 2124 - 0.5 Inch Plate, Low Resistance, 7075 Extrusion, Low Resistance

Figure 11. Comparative Corosivity of Environments

LIQUID INFILTRATION COMPOSITE 100 X

Figure 12. Photomicrographs of Aluminum/Aluminum Oxide Composites

AS REMOVED

DETERGENT CLEANED

AFTER WDP REMOVED

DARK SPOTS ON PANEL B - ACCIDENTAL PAINT SPLATTER DURING EXPOSURE PERIOD NOTE:

Figure 13. Water Displacing Paint (WDP) Exposure Panels from U.S.S. Constellation After Eight Months of Exposure

Figure 14. Cycle I and Cycle II – Cyclic SO_2 – Salt Spray

Figure 15. Cycle III – Cyclic SO₂ – Salt Spray

DISTRIBUTION LIST

AIRTASK NO. WF 61-542-001 Work Unit No. ZM501

	No. of Copies
NAVAIR (AIR-950D)	7
2 for retention	
1 for AIR-320	
1 for AIR-320A	
1 for AIR-5163	
1 for AIR-5163C4	
1 for AIR-5163B	
NAVAIREWORKFAC, NAS, Alameda (Code 340)	1
Jacksonville (Code 340)	i
Norfolk (Code 340)	
North Island (Code 340)	i
Pensacola (Code 340)	ì
MCAS, Cherry Point (Code 340)	i
WPAFB (AFWAL/MXA), Ohio	
COMNAVAIRLANT (Code 528)	i
COMNAVAIRPAC (Code 7412)	;
CHIEF, Materials & Processes AT:	•
McDonnell-Douglas, St. Louis, MO	2
Grumman Aerospace Corp., Bethpage, N.Y	
Vought, Dallas, TX	
Rockwell International, Columbus, OH	
Reynolds Metals Co., Richmond, VA	
Alcoa Technical Center, Pittsburgh, PA.	
Keiser Aluminum Co. Planearen CA	
Kaiser Aluminum Co., Pleasonton, CA	10
DTIC	12
Aluminum Association, Washington, D.C	1
Martin-Marietta Aluminum, Torrance, CA	
NWC, China Lake, CA (Code 3665)	1

