MATH 222: Week 3

Sarah Randall

Last updated: May 23, 2017

Contents

1	§13.3 Arc Length + Curvature	1
	1.1 Arc Length	1
	1.2 Curvature	2
2	§13.4 Acceleration Vector	3
3	§14.1 Multivariable Functions	3
4	§14.2 Limits and Continuity	3
5	§14.3 Partial Derivatives	3
6	§14.4 Tangent planes, linear approximation	3

$1 \quad \S 13.3 \text{ Arc Length} + \text{Curvature}$

1.1 Arc Length

Given a parametric curve $\vec{r}(t)$ in \mathbb{R}^3 , what is the distance travelled by the particle between some t=a and t=b?

Suppose we partition this section of the curve into n sections of time. The differences in t between these sections might not be 1 so we write $\Delta t = \frac{b-a}{n}$. In this way b would equal $a + n\Delta t$. We could approximate the distance from $\vec{r}(a)$ to $\vec{r}(b)$ by adding together these the difference between $\vec{r}(a)$ and $\vec{r}(a + \Delta t)$, $\vec{r}(a + \Delta t)$ and $\vec{r}(a + 2\Delta t)$, and so on. If we had three

sections, the approximation would look something like this:

$$\sum_{i=0}^{2} \sqrt{(x(a+(i+1)\Delta t) - x(a+(i)\Delta t))^{2} + (y(a+(i+1)\Delta t) - y(a+(i)\Delta t))^{2}}$$

I'll cut this short, but we can basically turn this into a Riemann sum by having n approach infinity. Then by using the Mean Value Theorem, we can find an actual equation for Arc Length (here denoted by L):

$$L = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

The professor has included more notes about how this is derived on MyCourses, so check that out if you're really, really, really interested for some reason.

For some $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ in \mathbb{R}^3 , the formula is slightly different. We just need to add the third function.

$$L = \int_{a}^{b} \sqrt{(f'(t))^{2} + (g'(t))^{2} + (h'(t))^{2}} dt$$

This is also written as

$$L = \int_{a}^{b} \parallel \vec{r'}(t) \parallel dt$$

Example. Compute arc length over $0 \le t \le 2\pi$ of the circular helix $\vec{r}(t) = <\cos t, \sin t, t > Find <math>\vec{r'}(t)$ and its length

$$\vec{r'}(t) = <-\sin t, \cos t, 1>$$

$$\parallel \vec{r'}(t) \parallel = \sqrt{(\sin(t))^2 + (\cos(t))^2 + 1} = \sqrt{2}$$

Then integrate this

$$\int_0^{2\pi} \sqrt{2} \ dt = 2\pi\sqrt{2} - 0\sqrt{2} = 2\pi\sqrt{2}$$

1.2 Curvature

Suppose we are on some interval of t where $\vec{r}(t)$ is a smooth function and $\vec{r'}(t) \neq 0$. In this setting we can discuss the curvature of the curve defined by $\vec{r}(t)$.

We think of curvature as the amount that the direction of the curve changes over a small step (the size of this step approaches 0)

Curvature depends solely on arc length. $\langle \cos(t), \sin(t) \rangle$ is "drawn" more slowly than $\langle \cos(4t), \sin(4t) \rangle$ but they still have the same curvature because they're both circles with the same radius.

- 2 §13.4 Acceleration Vector
- 3 §14.1 Multivariable Functions
- 4 §14.2 Limits and Continuity
- 5 §14.3 Partial Derivatives
- 6 §14.4 Tangent planes, linear approximation