FHO | UNIARAS

Bacharelado em Sistemas de Informação

Algoritmos - Aula 12

Prof. Dr. Sérgio Luis Antonello

Prof. Me. Antero Sewaybricker Todesco

Bibliografia básica desta aula

Medina & Fertig (2006). Capítulo 07 Forbellone & Eberspacher (2000). Capítulo 04 Ascencio & Campos (2002). Capítulo 05

26/05/2020

Plano de Ensino: agenda

15	19/05/2020	Variáveis indexadas: declaração e manipulação de vetor.
16	26/05/2020	Variáveis indexadas: declaração e manipulação de matriz.
17	02/06/2020	Semana Científica do Curso.
18	09/06/2020	AVALIAÇÃO: Prova 2.
19	16/06/2020	AVALIAÇÃO: SUB Devolutiva da Prova 2. TRABALHO: Entrega do trabalho A2.
20	23/06/2020	Devolutiva da SUB.
21	30/06/2020	Fechamento do semestre.

OBS: Trabalho em grupo

- Tem alguém sem grupo?
- Deadline 16/06/2020 (19h)

Plano de ensino: avaliação

Nota Final =
$$(A1 + (2 \times A2))/3$$

Composição da nota A2

- 70% por uma prova individual (P2) +
- 10% Atividades práticas (tarefas e atividades) +
- 20% Atividade prática em grupo (trabalho A2)

Plano de ensino: conteúdo

- Unidade I Introdução a algoritmos (objetivos a, b, c).
 - 1.1. Conceitos de abstração de dados
 - 1.2. Lógica de programação
 - 1.3. Algoritmos
 - 1.4. Formas de representação de algoritmos: pseudocódigo e fluxograma.
 - 1.5. Teste de mesa
 - 1.6. Tipos de dados
 - 1.7. Constantes e variáveis
 - 1.8. Atribuição
 - 1.9. Operadores e precedência
 - 1.10. Expressões aritméticas, relacionais e lógicas.
- Unidade II Estruturas básicas de controle (objetivos c, d, e)
 - 2.1.Blocos de comando
 - 2.2.Estruturas de decisão
 - 2.3.Estruturas de repetição
 - 2.4. Aninhamento
- Unidade III Modularização (objetivos c, d, e)
 - 3.1.Dividir para conquistar
 - 3.2.Procedimentos e funções
 - 3.3.Escopo de variáveis
 - 3.4.Parâmetros e argumentos
 - 3.5.Passagem de parâmetros por valor e por referência.
- Unidade IV Estruturas de dados homogêneas (objetivos d, e).
 - 4.1.Vetor
 - 4.2.Matriz

Sumário

Primeiro momento: revisão

- √ Vetor
- ✓ Correção de exercícios

Segundo momento

- ✓ Variáveis indexadas
 - ✓ Vetor
 - ✓ Matriz

Terceiro momento: síntese

1. Primeiro momento: vetor

- O que é um vetor?
- Como é feito o acesso de um elemento do vetor?
- Para acessar todos os elementos de um vetor, que estrutura usamos?

1. Primeiro momento: vetor

- O que é um vetor?
- Como é feito o acesso de um elemento do vetor?
- Para acessar todos os elementos de um vetor, que estrutura usamos?


```
para ind de 1 ate 5 passo 1 faca
    leia (Nota[ind])
fimpara
```

1. Primeiro momento

Correção de exercícios

2. Segundo momento: Motivação

41 42 43 44 45 46 47 48 49 50

2. Segundo momento

- Variáveis indexadas
 - Vetor
 - Matriz

3. Variável indexada: matriz

- Anteriormente foi trabalhada variável indexada de uma dimensão, conhecida por vetor.
- Porém, uma variável indexada pode ter um número maior de dimensões.
- Neste caso chama-se Matriz.

3. Variável indexada: matriz

- Se constitui de um conjunto de espaços de memória.
- Cada espaço deste conjunto possibilita armazenar um valor de cada vez.
- Todos os valores armazenados em uma matriz devem ser de mesmo tipo.
- Assim como no vetor, os elementos da matriz ficam "lado a lado" na memória.

3. Matriz: declaração

- A declaração deve conter o nome da variável, o tipo de dados e a quantidade de valores a serem armazenados em cada linha e em cada coluna.
- Nota: Vetor[1..3, 1..5] de Real

	Nota					
Índice de coluna		1	2	3	4	5
	1	8.5	2.0	9.5	10.0	6.5
Nota[2, 3]	2	3.5	5.4	10.0	8.0	7.8
ινοια[Ζ, Ο]	3	6.8	8.0	9.5	9.0	9.5

3. Matriz: manipulação

A atribuição de uma determinada nota no respectivo espaço de memória deve ser realizada com uso de dois índices (linha e coluna), como exemplo:

- ✓ Nota[1,1] <- 8.5
- \checkmark Nota[1,3] <- 2.0
- \checkmark Nota[2,5] <- 7.8
- ✓ Leia (Nota[3,1])
- ✓ Leia (Nota[3,4])

3. Matriz: manipulação

□ No caso de manipulação de todos os elementos de uma matriz, ou mesmo de todos os elementos de uma linha ou coluna da matriz, podem-se utilizar índices variáveis no lugar de valores numéricos constantes. Para tanto é essencial o uso de estruturas de repetição.

Exemplo:

Para lin de 1 Ate 3 Faca
Para col de 1 Ate 5 Faca
Leia(Nota[lin, col])
FimPara
FimPara

4. Matriz: manipulação

- Como seria um código para percorrer a matriz no sentido coluna?
- Exemplo:

```
Para col de 1 Ate 5 Faca
Para lin de 1 Ate 3 Faca
Leia(Nota[lin, col])
FimPara
FimPara
```


Vamos Programar!

5. Exercícios com matriz

- Escrever um algoritmo para armazenar valores inteiros em um array 4
 X 3. Calcular e exibir a média de todos os valores armazenados na matriz.
- 2) Desenvolver um algoritmo que possibilite carregar, com números inteiros, os dados em uma matriz de 3 linhas e 4 colunas. Calcule e apresente a soma dos elementos da linha 3.
- Escrever um algoritmo para armazenar valores inteiros em uma matriz 4 X 3. Após todos os dados armazenados, calcular e exibir a média dos valores armazenados em cada coluna, uma por uma.