МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Введение в анализ данных.

Студент гр. 3341	Кудин А.А.
Преподаватель	 Иванов Д.В.

Санкт-Петербург

2024

Цель работы

Цель работы заключается в изучении и освоении методов анализа данных с использованием классификаторов, а также в получении практического опыта создания, использования и взаимодействия различных классификационных алгоритмов в программном коде. Работа направлена на анализ ассортимента вин с применением инструмента классификации данных, используя библиотеку sklearn и встроенный набор данных о вине.

Задание

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load_data(), принимающей на ВХОД аргумент $train_size$ (размер обучающей выборки, no умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train_size, следующим образом: ИЗ данного набора запишите train_size данных из data, взяв при этом только 2 столбца в переменную X_train и train_size данных поля target в y_train. В переменную X test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в у test — оставшиеся данные поля target, в этом вам поможет функция train_test_split модуля sklearn.model_selection (в качестве состояния рандомизатора функции train_test_split необходимо указать 42.).

В качестве результата верните X train, X test, y_train, y_test.

Пояснение: X_train, X_test - двумерный массив, y_train, y_test. — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_{test}) , которая выполняет классификацию данных из X_{test} .

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации (y test), И истинные метки тестовых данных которая считает отношение предсказанных результатов, совпавших c «правильными» в у test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

В отчёте приведите (чек-лист преподавателя):

- описание реализации 5и требуемых функций
- исследование работы классификатора, обученного на данных разного размера
 - приведите точность работы классификаторов, обученных на данных от функции load_data со значением аргумента train_size из списка: 0.1, 0.3, 0.5, 0.7, 0.9
 - о оформите результаты пункта выше в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора, обученного с различными n_n значениями n_n знач
 - о приведите точность работы классификаторов, обученных со значением аргумента $n_neighbors$ из списка: 3, 5, 9, 15, 25
 - в качестве обучающих/тестовых данных для всех классификаторов возьмите результат load_data с аргументами по умолчанию (учтите, что для достоверности результатов обучение и тестирование классификаторов должно проводиться на одних и тех же наборах)
 - о оформите результаты в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора с предобработанными данными
 - приведите точность работы классификаторов, обученных на данных предобработанных с помощью скейлеров из списка: StandardScaler, MinMaxScaler, MaxAbsScaler
 - в качестве обучающих/тестовых данных для всех классификаторов возьмите результат load_data с аргументами по умолчанию - учтите, что для достоверности сравнения результатов классификации обучение должно проводиться на одних и тех же данных, поэтому

предобработку следует производить **после** разделения на обучающую/тестовую выборку.

- о оформите результаты в виде таблицы
- о объясните полученные результаты

Выполнение работы

Для получения исходных данных и последующего их анализа была использована библиотека sklearn.

Описание реализации 5-ти функций:

load_data(train_size=0.8): Функция предназначена для загрузки данных и их разделения на тренировочные и тестовые наборы.

Аргументы:

train_size (float, по умолчанию 0.8): Размер обучающей выборки.

Реализация:

Загружает данные о вине из библиотеки sklearn.

Берет первые два столбца из данных для использования в анализе.

Разделяет данные на обучающую и тестовую выборки с помощью функции train_test_split из sklearn.model_selection, используя train_size и фиксированный рандомизатор (random state=42).

Возвращает:

X_train, X_test: Двумерные массивы, содержащие обучающие и тестовые данные.

y_train, y_test: Одномерные массивы, содержащие метки классов для обучающей и тестовой выборок.

train_model(X_train, y_train, n_neighbors=15, weights='uniform'): Функция для обучения модели методом k-ближайших соседей (K-Nearest Neighbors).

Аргументы:

X_train: Двумерный массив с обучающими данными.

y_train: Одномерный массив с метками классов для обучающей выборки.

n_neighbors (int, по умолчанию 15): Количество ближайших соседей.

weights (str, по умолчанию 'uniform'): Весовая функция, используемая в прогнозировании ('uniform' или 'distance').

Реализация:

Создает экземпляр классификатора KNeighborsClassifier с указанными параметрами.

Обучает классификатор на данных X train и у train.

Возвращает:

Обученный экземпляр классификатора.

predict(clf, X_test): Функция для применения обученного классификатора к тестовым данным и получения предсказанных классов.

Аргументы:

clf: Обученный классификатор.

X_test: Двумерный массив с тестовыми данными.

Реализация:

Выполняет классификацию данных из X_{test} с использованием обученного классификатора clf.

Возвращает:

Одномерный массив предсказанных классов.

estimate(res, y_test): Функция для оценки качества работы модели путем сравнения предсказанных классов с истинными метками тестовых данных.

Аргументы:

res: Одномерный массив предсказанных классов.

y_test: Одномерный массив истинных меток тестовых данных.

Реализация:

Считает точность классификации как отношение числа правильных предсказаний к общему числу предсказаний, используя функцию accuracy_score из sklearn.metrics.

Округляет полученную точность до трех знаков после запятой.

Возвращает:

Точность классификации (float).

scale(X, mode='standard'): Функция для нормализации данных с использованием различных типов скейлеров.

Аргументы:

Х: Двумерный массив данных для нормализации.

mode (str, по умолчанию 'standard'): Тип скейлера ('standard', 'minmax', 'maxabs').

Реализация:

В зависимости от значения аргумента mode, выбирает соответствующий скейлер (StandardScaler, MinMaxScaler или MaxAbsScaler).

Применяет выбранный скейлер к данным Х.

Если mode имеет недопустимое значение, возвращает None.

Возвращает:

Данные, нормализованные выбранным скейлером (двумерный массив).

train_size	Точность
0.1	0.528
0.3	0.722
0.5	0.611
0.7	0.667
0.9	0.611

Очевидно, что чем больше устанавливать train_size, тем лучше будет обучаться модель, однако после какого-то порога видно, что модель начинает переобучаться

n_neighbors	Точность
3	0.722
5	0.778
9	0.778
15	0.722
25	0.611

n_neighbors является гиперпараметром для модели KNN поэтому точность прогнозов зависит от оптимального выбора этого параметра

Scaler	Точность
StandardScaler	0.778
MinMaxScaler	0.833
MaxAbsScaler	0.889

Под данный датасет оптимальным оказался MaxAbsScaler Разработанный код см. в приложении А.

Выводы

Были изучены основы анализа данных с использованием языка Python и библиотеки sklearn. Разработаны функции для выполнения следующих задач: разделение данных на обучающие и тестовые наборы, обучение модели, предсказание результатов на основе данных и оценка качества классификации.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
from sklearn import datasets
     from sklearn.model selection import train test split
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import accuracy score
     from sklearn.preprocessing import StandardScaler, MinMaxScaler,
MaxAbsScaler
     # Функция для загрузки данных и их разделения на тренировочные и
тестовые наборы
     def load data(train size=0.8):
         # Загрузка данных
         wine = datasets.load wine()
         X = wine.data[:, :2] # Берем только первые два столбца
         y = wine.target
         # Разделение данных на обучающую и тестовую выборки
         X train, X test, y train, y test = train test split(X, y,
train size=train size, random state=42)
         return X train, X test, y train, y test
     # Функция для обучения модели к-ближайших соседей
     def
               train model(X train, y train, n neighbors=15,
weights='uniform'):
         clf
               = KNeighborsClassifier(n neighbors=n neighbors,
weights=weights)
         clf.fit(X train, y train)
         return clf
```

Функция для предсказания классов

```
def predict(clf, X_test):
   return clf.predict(X test)
# Функция для оценки качества модели
def estimate(res, y_test):
   accuracy = accuracy_score(y_test, res)
   return round(accuracy, 3)
# Функция для нормализации данных
def scale(X, mode='standard'):
    if ((mode == 'standard')):
       scaler = StandardScaler()
    elif mode == 'minmax':
        scaler = MinMaxScaler()
    elif mode == 'maxabs':
       scaler = MaxAbsScaler()
    else:
       return None
    return scaler.fit transform(X)
```