Units overview

- UNIT I INTRODUCTION TO BIG DATA
- UNIT II MINING DATA STREAMS
- **UNIT III HADOOP ENVIRONMENT**
- UNIT IV DATA ANALYSIS SYTEMS AND VISUALIZATION
- UNIT V FRAMEWORKS AND APPLICATIONS

Fields that generates data

- All most all fields generate big data. Some major fields where big data plays a major role is
- information, posts, links etc of different peoples I. Social networking sites: social media that carry from all over world like Facebook twitter etc.
- II. Search engines: there are lots of data from different databases that retrieve from search engines.
- III. Medical history: medical history of patients for various health issues from hospitals
- IV. Online shopping: shopping online help to know the preferences of customers on different products.
- V. Stock exchange: shares of different companies hold by stock

Traditional Data Vs Big Data

Feature	Traditional Data	Big Data
Data architecture	Centralized database	Distributed database
Types of data	Structured data	Unstructured and semi- structured
Volume	Small amount of data. Range- Gigabyte - terabytes	Large amount of data. Range-
Data schema	Fixed schema	Dynamic schema
Data Relationship	Relationship with data is explored easily	Difficulty in relationship between data items.
Scaling	More than one server for computing	Single server tor computing
Accuracy	Less accurate results	High accurate results
		-

Big Data Analytics

- Big data analytics is a method to uncover the hidden designs in large data, to extract useful information that can be divided into two major sub-systems: data management and analysis.
- differentiating and transforming big data with the goal of identifying useful information, suggesting Big data analytics is a process of inspecting, conclusion and helping to take accurate decisions.
- Analytics include both data mining communication or guide decision making.

The importance of big data analytics

- Big data analytics through specialized systems and software can lead to positive businessrelated outcomes:
- New revenue opportunities
- More effective marketing
- Better customer service
- Improved operational efficiency
- Competitive advantages over rivals

Analytics Models

DIFFICULTY

How big data analytics works

Once the data is ready, it can be analyzed with the advanced analytics processes. That includes tools for: used for commonly

- data mining, which sift through data sets in search of patterns and relationships;
- predictive analytics, which build models to forecast customer behavior and other future developments;
- machine learning, which taps algorithms to analyze large data sets; and
- deep learning, a more advanced offshoot of machine learning.

Big Data technologies can be divided into two groups: batch processing, which are analytics on data at rest, and stream processing, which are analytics on data in motion

Applications and key data sources for big data and business analytics

S.No	S.No Application	Key Data Sources	Features
	Healthcare	Electronic health record, patients'	Support improved health
		information, images, health	monitoring, study patients'
Н		history data.	immune systems, activity
			recommendation for elderly
			physical health
	Financial	Financial reports, stock news,	Provide a mechanism for fraud
C	Industries	plog	detection, mitigate against
7		post, social media, and annual	money
		general meeting information	laundry and decision making
	Network	Network signal information,	Efficient network signaling,
	Optimization	information between network	prediction of network variation,
က		users, weblog, geo-location data,	network management and to
		sensor data, video camera, and	generate cell deployment
		network log	information

S.No	S.No Application	Key Data Sources	Features
	Travel estimation	GPS data, location data, satellite	Provide information for complex
		imagery, personal information, call	route recommendation, location
V		data record(CDR)	tracking, drone routing for a
+			military operation, emergency
			situation and infectious disease
			identification
u	User Behavior	Log data, social media data, blog	Effective and efficient individual
0	Modeling	post, tweets, and product review	service recommendation.
	Usermobility	Location data, GPS	Maintain global movement
u	modeling		pattern to enable disease
0			containmentand
			transportation planning
	Service	Customer product review, product	Enhanced product buying using
	Recommendation	selection, location data, buying	customer product review and
7		behavior data.	ascertain weaknesses and
			strength
			of products

S.No	S.No Application	Key Data Sources	Features
	Energy	Gas status, consumption pattern	Promote green energy,
0	Consumption	data, location data, smart meter	conservation, and efficiency
0	Analysis	reading data, and usage history.	through energy consumption prediction.
	Crowdsourcing	Sensing data such as	Approach for large scale data
	and sensing	accelerometer,	collection project using a
o		gyroscopes, magnetometer,	smartphone and online
0		electrocardiograph (ECG), pulse	platforms.
		rate, electromyography (EMG),	
	3	online questionnaire and survey.	
	Educational	Student information, examination	Predict student enrollment ratio
-	development	information, studentenrollment,	and dropout rate after particular
₹		course allocation, course	course or session
		contents,	

Use cases for Big data analytics

Walmart boosted its sales by leveraging the power of Big Data

While forecasting the demand for emergency supplies for approaching Hurricane

Sandy, they gain some amazing insights:

Apixio uses big data analytics to improve healthcare decision

80% of medical and clinical information about patients is in unstructured format, such as written physician notes

using variety of different
methodologies & algorithms
that are machine learning
based and have NLP
capabilities

Analysis of medical data

The patient data model
generated is aggregated across
population to derive larger
insights like disease
prevalence, treatment
patterns, etc.

###