

Human Hairs

- Estimated Numbers
 - Blonde, 150,000
 - Brown, 110,000
 - Black, 100,000
 - Red, 90,000
- 120 to 200 hairs per cm²
- Life span for each hair: ~ 3 year
 - Grow speed: ~0.3mm/day
 - Drop speed: 50~100/day
- Dry hair extension: ~30%Wet hair extension: ~50%
- 9 1 hair can lift 140 g or 111 g or 70 g
 - 120K hairs can lift 1.5~2 tons

Dialtal ART Lat. \$771

Overview of Techniques

- Steps:
 - —Geometric generation
 - —Dynamics/collisions computation
 - -Shading

4095 individual hairs 123,000 vertices for hair rendering

Too much computation for physics!

- © Control hairs:
 - —a smaller set of hundreds of hairs
 - —for dynamics/collisions

Hand animating control hairs is hard!

 Physically based animation helped a lot, while lost 90% of the control

Dynamics using Verlet integration

- Verlet integration
 - -More stable than Euler integration
 - —Simpler than Runge-Kutta integration
 - -Do not need velocity
 - -Δt need to be fixed
 - -Easy to add constraints

$$x(t+\Delta t)=x(t)+d\cdot(x(t)-x(t-\Delta t))+a(t)\Delta t^2$$

Digital ART Lab, \$770

Collision Detection

- Keep it simple and fast
- A rig of spheres:
 - -Work well
 - -Easiest to implement
- Problem: long line segments
- Solution: Pearls for collisions

Digital ART Lab, 871

Constraints

Rest length: I,

$$\mathbf{x}_1' = \mathbf{x}_1 + (\mathbf{x}_2 - \mathbf{x}_1) \cdot \frac{\|\mathbf{x}_2 - \mathbf{x}_1\| - l_r}{2\|\mathbf{x}_2 - \mathbf{x}_1\|}$$
 $\mathbf{x}_2' = \mathbf{x}_2 - (\mathbf{x}_2 - \mathbf{x}_1) \cdot \frac{\|\mathbf{x}_2 - \mathbf{x}_1\| - l_r}{2\|\mathbf{x}_2 - \mathbf{x}_1\|}$

Other constraints: collisions

District ADT (of 977

Fins

- Pre-built solid fins, skinned to the skeleton
- Problem: fins look quite stiff
- **®** Solution: hair code → cloth simulation
 - -Blend results with skinned geometry, using weight map

Digital ART Lab, 8774

Hair Shading

- Two parts:
 - -a local reflectance model for hair
 - -a self-shadowing computing method
- ® Real-time reflectance model for hair
 - Marschner model: a comprehensive, physically based representation of hair reflectance
- ® Real-time volumetric shadows in hairs
 - —Opacity shadow maps

Digital ART Lat. \$271

Real-Time Volumetric Shadows in Hair

- Common methods
 - -Stencil shadow volumes
 - -Shadow maps
- Neither work well for shadows on hair
 - -Large amount of geometry: intractable for stencil shadow
 - Highly detailed geometry: severe aliasing for shadow map
- Opacity shadow maps
 - Extend shadow mapping to handle volumetric objects and anti-aliasing

Digital ART Lab, 8774

Opacity Shadow Maps

- Allow fractional shadow values
- Occlusion test
 - -rather than a simple binary test
 - —Measure the percentage of light that penetrates over a pixel

Opacity thickness

$$T(x, y, z) = e^{-k\sigma(x,y,z)},$$

$$\sigma(x, y, z) = \int_0^z r(x, y, z') dz'$$

Idea: compute a discrete set of z values $z_0 \dots z_{n-1}$

then determine in-between values by interpolation

$$\sigmaig(zig) = rac{\sigmaig(z_iig)ig(z-z_iig) + \sigmaig(z_{i+1}ig)ig(z_{i+1}-zig)}{ig(z_{i+1}-z_iig)},$$

where $z_i < z < z_{i+1}$

Netted ART Lab 977

Results

Digital ART Lab, 877 is

Implementation

- Use GPU hardware blending
- ⊕ n = 16
 - —Naïve approach, store (x, y, z_i) in 16 textures
 - -Need render 16 times to generate the opacity shadow map
- Optimization:
 - —Each (x, y, z_i) requires only 1 channel
 - —pack up to 4 sigma values into a single 4-channel texture
 - —Render passes: from $16 \rightarrow 4$
- More optimization:
 - Use multiple render targets(MRT), allow render to up to 4 different textures simultaneously
 - —Render passes: from 4 → 1
- Lookup

Digital ART Lat. \$77

Alice's Hair (2011)

- **®** Game 《Alice: Madness Returns》 (Spicy Horse, EA)
- **UE3, Xbox360, PS3**
- Hair tech developer: Milo Yip
- Techniques:
 - -Mass-Spring
 - -Verlet integration
 - -Uniform cubic B-splines => LOD
 - Kajiya-Kay reflectance model
 - -Collision detection
 - -Alpha blending
 - -SIMD vector optimization

Digital ART Lab, 877 k

