Assignment 3 – Report

Yao Yuan z5092195

Part-1

Feature Consideration:

For budget

The following scatter plots shows the relationship between Revenue-Budget; Log_Revenue-Log_Budget; Square(Log_Revenue)-Square(Log_Budget) respectively.

It is not hard to see that the second one is too intense and the third one is more suitable for regression model because it is more like to have some mathematical relationships. After applying all three of them on the same model, as expected, the third one produces the best results.

Plot	Revenue-Budget	Log_Revenue- Log_Budget	Square(Log_Revenue)- Square(Log_Budget)
Coefficient	0.26	0.36	0.42

For "original language", "genres", "production company", "crew", "keyword", "cast"

I used the same method "One hot encoding" to utilize these features.

Basically, I count how many times every unique instance appears in the training set for each feature and apply "One hot encoding" to the top 10s of each feature.

For example, for "genres", I compute how many times each genre appears in the training set. And I pick the top 10 genres to do one hot encoding. In this case, these genres are selected: 'Drama', 'Action', 'Comedy', 'Thriller', 'Adventure', 'Crime', 'Romance', 'Science Fiction', 'Family', 'Fantasy'. The following graph shows each genre's movie count.

Drama	832
Action	756
Comedy	726
Thriller	653
Adventure	568
Crime	348
Romance	333
Science Fiction	329
Family	315
Fantasy	297
Mystery	186
Animation	172
Horror	155
History	102
War	78
Music	59
Western	30
Documentary	3
dtype: int64	

For "runtime"

I compared two kinds of processing method.

- The first one is directly using the runtime value
- the second one is dividing runtime into different time range categories which starting from less than 60 minutes, 60 to 80 minutes and so on. Then I apply one hot encoding to these categories.

After validating my results, I find that the second method has better results.

The reason behind this might be that the actual runtime is too sparse and can produce noises.

For "release date"

I convert the time into three categories which are "year", "weekday", "month" and "quarter". And applying one hot encoding again to these categories.

For "Homepage"

From the given training set, I spot that some movies do not have homepage. Therefore, I apply to "one hot encoding" to the homepage. When the movie does not have homepage, I write 0 to that cell, otherwise 1.

Different models:

Model Names	Coefficient
GradientBoostingRegressor	0.43
LinearRegression	0.26
RandomForestRegressor	0.21

Part 2

Feature Consideration:

I applied almost the same method as that in Part1 but different on "Budget". Since we are about to do classification problem, for the budget, instead of directly using the value, I used to the same method I apply to "runtime" in Part 1. I split the budget into several range categories and apply one hot coding to them.

Plot	No "one hot encoding"	One hot encoding
Accuracy	0.7075	0.72

Different models:

Model Name	Accuracy
LinearDiscriminantAnalysis	0.71
KNeighborsClassifier	0.7075
SVC	0.6925
LogisticRegression	0.68
DecisionTreeClassifier	0.66
GaussianNB	0.415

I tried using the baseline which is using all 3 as the predicted result and it produces 69.5% accuracy. Therefore, we can see the only the LinearDiscriminantAnalysis and KNeighborsClassifier produce effective results.

Summary

Problem I faced	Solution to it
Find the best math pre-processing method	By trying to apply different math
to "Budget" and "Revenue" so that they	operations and plotting scatter graphs for
can have some mathematical relationships.	them and then selecting the best one
Find the best combination of models and	Writing two for loops, to loop around
features.	different models and different combination
	of features to find the best one.
Choose which instances should be used	Apply general knowledges. For example, I
when doing one hot encoding.	can select the instances from "Crew" by
	looking at the top 10 crews who have
	highest average revenue in their movies,
	but it does not make senses. Since if this
	crew only produces one movie but with
	high revenue, it cannot guarantee the next
	movie can also have high revenue.
Possible Data missing	Apply average value to "Budget", "runtime"
	if they are null or 0
Feature selection	Apply a flag to indicate which feature is
	needed in Part1 or Part2