Tree-Based Methods and Random Forests

Tadao Hoshino (星野匡郎)

Econometrics II: ver. 2019 Spring Semester

"Play Tennis" example:

[Data]

Outlook	Humidity	Wind	Play Tennis
Overcast	High	Strong	Yes
Overcast	Normal	Strong	Yes
Sunny	Normal	Weak	Yes
Rain	Normal	Strong	No
Overcast	Normal	Weak	Yes
Rain	High	Weak	Yes
Sunny	High	Weak	No

- The above figure is called a decision tree.
- The machine learning algorithm for creating a decision tree from data is called decision tree learning.
 - Note that there may be many possible decision trees for a given dataset.
- Typical problems solved with decision trees:
 - Medical diagnosis
 - Robot movements
 - Image recognition
 - and many more.

Terminology

• Classification and regression tree (CART):

CART is a "nonparametric" machine learning method, which utilizes a decision-tree structure to solve classification and regression problems.

- In many classification and regression problems, some of input variables are not discrete but continuous.
- For continuous variables, we introduce a threshold value t and consider a bifurcation rule $\{X \leq t\}$ or $\{X > t\}$.

Fit a simple model (constant-only model) in each leaf R_m .

Nonparametric Regression

Consider a general regression model

$$Y = g(\mathbf{X}) + \varepsilon$$
,

where Y is a response variable, $\mathbf{X} = (X_1, \dots, X_k)^{\top}$ is a vector of input variables, and ε is an error term.

• We assume that $E[\varepsilon|\mathbf{X}] = 0$; this is equivalent to assume that

$$g(\mathbf{x}) = E[Y|\mathbf{X} = \mathbf{x}].$$

• The "linear" regression model is a special case with

$$g(\mathbf{X}) = \beta_0 + X_1 \beta_1 + \dots + X_k \beta_k$$

The function $g(\mathbf{X})$ can be estimated by estimating the parameters $(\beta_0, \beta_1, \dots, \beta_k)$. => Parametric regression

Nonparametric Regression

- One can directly estimate $g(\cdot)$ without assuming any specific functional form on it.
- For simplicity, assume that $\mathbf{X} = (X_1, X_2)^{\top}$ and $X_1, X_2 \in \{0, 1\}$. Then, $g(\mathbf{X})$ has four values:

$$g(x_1, x_2) = E[Y|X_1 = x_1, X_2 = x_2]$$
 for $x_1, x_2 \in \{0, 1\}$

• Each $g(x_1,x_2)$ can be estimated simply by the conditional sample mean

$$\widehat{g}_n(x_1, x_2) = \frac{\sum_{i=1}^n \mathbf{1}\{X_{1i} = x_1, X_{2i} = x_2\}Y_i}{\sum_{i=1}^n \mathbf{1}\{X_{1i} = x_1, X_{2i} = x_2\}}$$

=> Nonparametric regression with discrete variables

Nonparametric Regression

• When X_1 and X_2 are continuous, since

$$Pr(X_1 = x_1, X_2 = x_2) = 0$$

for any x_1 and x_2 , the above nonparametric regression is infeasible.

• However, for a sufficiently small rectangle $(x_1,x_2) \in R_x$, we can approximate the event $\{X_1=x_1,X_2=x_2\}$ by $\{(X_1,X_2) \in R_x\}$, i.e.,

$$E[Y|X_1 = x_1, X_2 = x_2] \approx E[Y|(X_1, X_2) \in R_{\mathbf{x}}]$$

• Thus, for continuous (X_1, X_2) , we can estimate $g(x_1, x_2)$ by

$$\widehat{g}_n(x_1, x_2) = \frac{\sum_{i=1}^n \mathbf{1}\{(X_{1i}, X_{2i}) \in R_{\mathbf{x}}\}Y_i}{\sum_{i=1}^n \mathbf{1}\{(X_{1i}, X_{2i}) \in R_{\mathbf{x}}\}}$$

=> Nonparametric regression with continuous variables

- Data: $\{(Y_i, X_i) : 1 \le i \le n\}$, where
 - Y = continuous response variable
 - $\mathbf{X} = (X_1, \dots, X_k)^{\top} = k$ input variables.
- Suppose that the space of X (the so-called feature space) is partitioned into M leaves: R_1, \ldots, R_M (how to form the partition will be described later).
- Predict the value of Y by

$$\widehat{\mathbf{Y}} = \sum_{m=1}^{M} \widehat{c}_m \mathbf{1} \{ \mathbf{X} \in R_m \}$$

where

$$\widehat{c}_m = \frac{1}{N_m} \sum_{\mathbf{X}_i \in R_m} Y_i$$
, and $N_m = \sum_{i=1}^n \mathbf{1} \{ \mathbf{X}_i \in R_m \}$.

• Finding the best partition is intractable in general, since there are too many possible partitions to consider in the feature space.

A "greedy" algorithm

• Starting with all of the data, consider a variable j and a threshold t, and define the pair of half-spaces:

$$R_1(j,t) = \{ \mathbf{X} : X_j \leq t \} \ \text{ and } \ R_2(j,t) = \{ \mathbf{X} : X_j > t \}.$$

Then, we determine the splitting variable j^* and threshold t^* by solving

$$\min_{j,t} \left[\sum_{i=1: \mathbf{X}_i \in R_1(j,t)}^n (Y_i - \widehat{c}_1(j,t))^2 + \sum_{i=1: \mathbf{X}_i \in R_2(j,t)}^n (Y_i - \widehat{c}_2(j,t))^2 \right],$$

where

$$\widehat{c}_m(j,t) = \frac{\sum_{i=1}^n \mathbf{1}\{\mathbf{X}_i \in R_m(j,t)\}Y_i}{\sum_{i=1}^n \mathbf{1}\{\mathbf{X}_i \in R_m(j,t)\}} \text{ for } m = 1,2.$$

A "greedy" algorithm (cont.)

- ② Having found the best initial split (j^*, t^*) , partition the data into the two resulting regions (leaves) and repeat the splitting process on each of the two regions.
- 3 Repeat Steps 1 and 2 ("grow" the tree) until some convergence criterion is met.
- * If the tree is grown too large with many leaves, an overfitting problem arises; it is necessary to prune the tree. => cross-validation.

- To implement Regression Trees in R, we can use the tree package.
- Install and load the package by

```
install.packages("tree")
library(tree)
```

(This package is very new, and R version 3.6 or later is recommended.)

• Import the apartment data:

```
data <- read.csv("apartments.csv")</pre>
```

- We define the response variable as the log of apartment price.
- ullet Fit an unpruned regression tree using the function tree(): 1

```
up_tree <- tree(log(price) \sim ., data) plot(up_tree) text(up_tree)
```

¹By default, this function avoids generating a too large tree by restricting several parameters, including the minimum number of observations in each leaf. The default setup can be customized using tree.control() command.

• Prune the tree using cross-validation with the cv.tree() function:

```
cv_tree <- cv.tree(up_tree)
plot(cv_tree)</pre>
```

• As the result of this, we can find that the tree with 6 leaves has almost equal (or slightly better) performance to the one with 7 leaves.

Fit an optimal pruned regression tree:

```
opt_tree <- prune.tree(up_tree, best = 6)
# of leaves
plot(opt_tree)
text(opt_tree)</pre>
```

Visualize the partition:

```
r <- round(log(data$price))
plot(data$area, data$floor, col = topo.colors(5)[r])
partition.tree(opt tree, add = TRUE)</pre>
```


- The above approach can be used for binary classification problems, where *Y* is a dummy variable.
- For $Y \in \{0,1\}$, it holds that

$$0 \leq \widehat{c}_m \leq 1$$
 where recall that $\widehat{c}_m = \frac{1}{N_m} \sum_{\mathbf{\chi}_i \in R_m} Y_i$.

Thus, the predicted value of Y can be interpreted as the predicted probability of Y = 1.

• For classification problems, we can consider various types of error metrics other than the mean squared error loss.

Examples of impurity measures

• Gini index (squared error loss):

$$\sum_{m=1}^{M} \sum_{\mathbf{X}_i \in R_m} (Y_i - \widehat{c}_m)^2 \quad \left(= \sum_{m=1}^{M} N_m \widehat{c}_m (1 - \widehat{c}_m) \right)$$

• Cross entropy (negative log-likelihood, deviance):

$$\begin{split} & - \sum_{m=1}^{M} \sum_{\mathbf{X}_i \in R_m} \left[Y_i \log \widehat{c}_m + (1 - Y_i) \log(1 - \widehat{c}_m) \right] \\ & \left(= - \sum_{m=1}^{M} N_m \left[\widehat{c}_m \log \widehat{c}_m + (1 - \widehat{c}_m) \log(1 - \widehat{c}_m) \right] \right) \end{split}$$

- Then, based on some impurity measure, binary classification trees can be grown (and pruned) in the same way as regression trees.
- Classification trees can be implemented in R with the package tree.
- Load the packages ROCR and tree, and import the Titanic survival data:

```
library(ROCR)
library(tree)
train <- read.csv("Titanic_train.csv")
test <- read.csv("Titanic_test.csv")</pre>
```

```
library (ROCR)
 library(tree)
  train <- read.csv("Titanic train.csv")
  test <- read.csv("Titanic test.csv")
  head(train)
                                  Passenger Survived Pclass
                                                                  Sex Age SibSp Parch
                                                                                           Fare Embarked
                   Turja, Miss. Anna Sofia
                                                             3 female
                                                                                      0 9.8417
                                                                      18
           Francatelli, Miss. Laura Mabel
                                                     1 1 female 30 0 0 56.9292
1 1 female 19 1 0 91.0792
0 1 male 70 1 1 71.0000
0 3 male 20 0 0 7.0500
                                                            1 female 30
                                                                                      0 56.9292
3 Bishop, Mrs. Dickinson H (Helen Walton)
             Crosby, Capt. Edward Gifford
          Coelho, Mr. Domingos Fernandeo
                    Hunt, Mr. George Henry
                                                           2 male 33
                                                                                      0 12.2750
  dim(train)
[11 464 9
  dim(test)
[1] 250
```

- The objective of this exercise is to predict the survival status of the passengers in the test data set.
- We first fit an unpruned classification tree to the training data set:²

²The default impurity measure is the *cross entropy*. You can change this with the split option.

Find an optimum subtree using cross-validation:

```
cv_tree <- cv.tree(up_tree)
plot(cv_tree)</pre>
```

- As the result of this, we can find that the tree with 6 leaves performs
 the best.
- Fit an optimal pruned classification tree:

```
opt_tree <- prune.tree(up_tree, best = 6)
plot(opt_tree)
text(opt tree)</pre>
```


• Compute the survival probability of passengers in the test data set:

```
s <- predict(opt_tree, newdata = test)</pre>
```

• Compute the AUC score, and plot the ROC curve

```
pred <- prediction(s, test$Survived)
auc <- performance(pred, "auc")
auc@y.values[[1]]</pre>
```

```
> auc@y.values[[1]]
[1] 0.7900975
```

```
roc <- performance(pred, "tpr", "fpr")
plot(roc)</pre>
```


- It is often the case that simple classification trees perform worse than the other methods.³
- The poor predictive performance of classification trees is mostly due to its nonparametric nature.
 - The performance of nonparametric methods quickly deteriorates as the dimension of feature increases (i.e., the curse of dimensionality).
- To improve the practical performance: an ensemble method
 - ① Select a subset of the input variables, and create a classification tree T_1 based on the selected inputs.
 - **2** Select another subset of the input variables, and similarly create a new classification tree, say T_2 .
 - 3 Repeat the above step many times, and combine (take the average of) the trees T_1, T_2, \ldots

 $^{^3}$ In the above Titanic example, the AUC score of the linear classifier and that of the logistic classifier were about 0.84; see the lecture note #7.

Random Forest algorithm

- **1** For b = 1, ..., B,
 - (Bootstrapping) Draw a random sample of size n with replacement from the original data set.⁴
 - Randomly select q < k input variables, where q is normally 2 or 3, and k is the total number of input variables.
 - Grow a regression/classification tree, and compute the predicted value \widehat{Y}_b of the response variable Y.
- 2 Take the average over the B predictors:

$$\widehat{Y}^{\text{random forest}} = \frac{1}{B} \sum_{b=1}^{B} \widehat{Y}_{b}.$$

⁴By doing this, we can avoid the overfitting problem.

 We can easily implement the random forest algorithm in R with the package randomForest.

```
install.packages("randomForest")
library(randomForest)
```

- We again use the Titanic data.
- In order to perform a random forest classification with this package, the response variable needs to be a "factor" class object.
- We can use the function randomForest () to learn a random forest classifier (B=500 by default).

AUC score and ROC curve.

```
srf <- predict(rf, newdata = test, "prob")[,2]
pred <- prediction(srf, test$Survived)
auc <- performance(pred, "auc")
auc@y.values[[1]]</pre>
```

```
> auc@y.values[[1]]
[1] 0.8705833
```

The random forest performs very well, outperforming the linear and logistic classifier.

```
roc <- performance(pred, "tpr", "fpr")
plot(roc)</pre>
```

