where $\sigma_1, \ldots, \sigma_r$ are the singular values of A, i.e. the (positive) square roots of the nonzero eigenvalues of $A^{\top}A$ and AA^{\top} , and $\sigma_{r+1} = \ldots = \sigma_p = 0$, where $p = \min(m, n)$. The columns of U are eigenvectors of $A^{\top}A$, and the columns of V are eigenvectors of AA^{\top} .

Proof. As in the proof of Theorem 22.5, since $A^{\top}A$ is symmetric positive semidefinite, there exists an $n \times n$ orthogonal matrix U such that

$$A^{\top}A = U\Sigma^2U^{\top}.$$

with $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0)$, where $\sigma_1^2, \dots, \sigma_r^2$ are the nonzero eigenvalues of $A^{\top}A$, and where r is the rank of A. Observe that $r \leq \min\{m, n\}$, and AU is an $m \times n$ matrix. It follows that

$$U^{\top} A^{\top} A U = (AU)^{\top} A U = \Sigma^{2},$$

and if we let $f_j \in \mathbb{R}^m$ be the jth column of AU for j = 1, ..., n, then we have

$$\langle f_i, f_j \rangle = \sigma_i^2 \delta_{ij}, \quad 1 \le i, j \le r$$

and

$$f_i = 0, \quad r + 1 \le j \le n.$$

If we define (v_1, \ldots, v_r) by

$$v_j = \sigma_j^{-1} f_j, \quad 1 \le j \le r,$$

then we have

$$\langle v_i, v_j \rangle = \delta_{ij}, \quad 1 \le i, j \le r,$$

so complete (v_1, \ldots, v_r) into an orthonormal basis $(v_1, \ldots, v_r, v_{r+1}, \ldots, v_m)$ (for example, using Gram-Schmidt).

Now since $f_j = \sigma_j v_j$ for $j = 1 \dots, r$, we have

$$\langle v_i, f_j \rangle = \sigma_j \langle v_i, v_j \rangle = \sigma_j \delta_{i,j}, \quad 1 \le i \le m, \ 1 \le j \le r$$

and since $f_j = 0$ for j = r + 1, ..., n, we have

$$\langle v_i, f_j \rangle = 0 \quad 1 \le i \le m, \ r+1 \le j \le n.$$

If V is the matrix whose columns are v_1, \ldots, v_m , then V is an $m \times m$ orthogonal matrix and if $m \ge n$, we let

$$D = \begin{pmatrix} \Sigma \\ 0_{m-n} \end{pmatrix} = \begin{pmatrix} \sigma_1 & \dots & \\ & \sigma_2 & \dots & \\ \vdots & \vdots & \ddots & \vdots \\ & & \dots & \sigma_n \\ 0 & \vdots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \dots & 0 \end{pmatrix},$$