GEOMETRÍA III

(Doble Grado en Ingeniería Informática y Matemáticas)

Primer Control (18/11/2021)

- 1. Consideremos un espacio afín real $(A, \overrightarrow{A}, \overrightarrow{\rightarrow})$ con dim A = 3, dos puntos distintos $p, q \in A$ y un plano T en A tal que $p, q \notin T$. Probar que los dos enunciados siguientes son equivalentes.
 - (a) $m_{pq} \in T$.
 - (b) Existe una única simetría afín $f: A \to A$ tal que $f(p) = q \ y \ f|_T = \mathrm{Id}_T$.

Encontrar la expresión matricial en el sistema de referencia usual \mathcal{R}_0 de \mathbb{R}^3 de la única simetría afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ que fija todos los puntos del plano $T = (0, -1, 0) + L\{(1, 0, 0), (0, 1, 1)\}$ y satisface f(-1, 1, 0) = (3, -1, 2). Dada la recta S con ecuaciones implícitas

$$x_1 + x_2 + x_3 - 1 = 2x_1 + x_2 + 1 = 0$$

en \mathcal{R}_0 , calcular además las ecuaciones implicitas de f(S).

Respuesta:

(a) \Rightarrow (b) Como $p, q \notin T$, el plano T y la recta $L = p \vee q$ son subespacios afines complementarios. Tiene sentido considerar la proyección y simetría afines respecto de T en la dirección de la recta vectorial $\vec{L} = L\{\vec{pq}\}$:

$$\pi_{T,L} \colon \mathcal{A} \to \mathcal{A}, \quad \sigma_{T,L} \colon \mathcal{A} \to \mathcal{A}.$$

De nuestras hipótesis $T \cap L = \{m_{pq}\}$. Como $p, q \in L$ y por definición $\pi_{T,L}(p) = \pi_{T,L}(q) = T \cap L$, concluímos que

$$\pi_{T,L}(p) = \pi_{T,L}(q) = m_{pq}.$$

Pero también por definición $m_{p\sigma_{T,L}(p)} = \pi_{T,L}(p)$, esto es,

$$\mathbf{m}_{p\sigma_{T,L}(p)} = \mathbf{m}_{pq}.$$

Teniendo en cuenta que $m_{p\sigma_{T,L}(p)} = p + \frac{1}{2}\overrightarrow{p\sigma_{T,L}(p)}$ y $m_{pq} = p + \frac{1}{2}\overrightarrow{pq}$, inferimos que $\overrightarrow{p\sigma_{T,L}(p)} = \overrightarrow{pq}$, esto es $\sigma_{T,L}(p) = q$, y de aquí que la simetría afín $f = \sigma_{T,L}$ realice lo deseado.

Para comprobar la unicidad, supongamos que $\sigma \colon \mathcal{A} \to \mathcal{A}$ es otra simetría afín en las mismas condiciones. Como f y σ llevan p en q y viceversa, la aplicación afín $\sigma \circ f$ fija punto a punto el conjunto $T \cup \{p,q\}$ y por tanto fija los puntos de un sistema de referencia de \mathcal{A} (ya que $p,q \notin T$ y dim $\mathcal{A} = 3$). De aquí que $\sigma \circ f = \mathrm{Id}_{\mathcal{A}}$, y por el mismo razonamiento $f \circ \sigma = \mathrm{Id}_{\mathcal{A}}$, lo que prueba que $f = \sigma^{-1} = \sigma$.

(b) \Rightarrow (a) Si $f: \mathcal{A} \to \mathcal{A}$ es simetría afín, f(p) = q y $f|_T = \operatorname{Id}_T$, deducimos que $T \subseteq \mathcal{P}_f$, y por tanto $\mathcal{P}_f = T$ ya que el conjunto de puntos fijos de una simetría afín distinta de la identidad es una recta o un plano (el primer caso lógicamente se descarta). Como f es una simetría afín respecto al plano T y $p \neq q = f(p)$, inferimos que la dirección de simetrización de f es necesariamente la de la recta afín $L = p \lor q = p \lor f(p)$. Por tanto f ha de ser la simetría afín $\sigma_{T,L}$, y en particular de la definición de $\sigma_{T,L}$

$$m_{pq} = m_{pf(p)} = m_{p\sigma_{T,L}(p)} = \pi_{T,L}(p) = \pi_{T,L}(q) \in T$$

como queríamos demostrar.

Para la segunda parte del ejercicio, comenzaremos por notar que el punto medio m del segmento [(-1,1,0),(3,-1,2)], a saber m=(1,0,1), satisface

$$(1,0,1) = (0,-1,0) + ((1,0,0) + (0,1,1)) \in (0,-1,0) + L\{(1,0,0),(0,1,1)\} = T.$$

La parte primera del ejercicio garantiza que existe una simetría afín f realizando lo pedido. Para determinarla, llamemos

$$L = (-1, 1, 0) \lor (3, -1, 2).$$

Por simplicidad llamemos $\pi \colon \mathbb{R}^3 \to \mathbb{R}^3$ a la proyección afín sobre T en la dirección de L. Si por un momento escribimos $\pi(x_1, x_2, x_3) = (a, b, c)$, sabemos que necesariamente

 $(a, b, c) \in T = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 - x_2 = 1\}.$

$$\overrightarrow{(a,b,c)(x_1,x_2,x_3)} = (x_1-a,x_2-b,x_3-c) \in \vec{L} = L(\{(2,-1,1)\}) = \{(x_1,x_2,x_3) \in \mathbb{R}^3 \colon x_2 + x_3 = x_1 - 2x_3 = 0\}.$$

Por tanto

$$c-b-1 = -b-c+x_2+x_3 = 2c-a-2x_3+x_1 = 0,$$

esto es

$$a = 1 + x_1 + x_2 - x_3, \ b = \frac{1}{2}(-1 + x_2 + x_3), \ c = \frac{1}{2}(1 + x_2 + x_3).$$

Queda

$$\pi \colon \mathbb{R}^3 \to \mathbb{R}^3$$
, $\pi(x_1, x_2, x_3) = (1 + x_1 + x_2 - x_3, \frac{1}{2}(-1 + x_2 + x_3), \frac{1}{2}(1 + x_2 + x_3))$,

y como la proyección sobre T en la dirección de L obedece a la fórmula $\sigma = 2\pi - \mathrm{Id}_{\mathbb{R}^3}$, obtenemos que las expresiones de σ en \mathcal{R}_0 son

$$\sigma \colon \mathbb{R}^3 \to \mathbb{R}^3$$
, $\sigma(x_1, x_2, x_3) = (2 + x_1 + 2x_2 - 2x_3, -1 + x_3, 1 + x_2)$.

En forma matricial,

$$M(\sigma, \mathcal{R}_0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \hline 2 & 1 & 2 & -2 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

Para acabar el ejercicio consideremos la recta S con ecuaciones implícitas $x_1 + x_2 + x_3 - 1 = 2x_1 + x_2 + 1 = 0$, o equivalentemente $-x_1 + x_3 - 2 = 2x_1 + x_2 + 1 = 0$. Deducimos que

$$S = (0, -1, 2) + L(\{(1, -2, 1)\}),$$

y por tanto

$$\sigma(S) = \sigma(0, -1, 2) + L(\{\vec{\sigma}(1, -2, 1)\}) = (-4, 1, 0) + L(\{(-5, 1, -2)\}).$$

Pasando a implícitas en la referencia \mathcal{R}_0 ,

$$\sigma(S) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \colon -1 + x_1 + 5x_2 = 2 - 2x_2 - x_3 = 0\}.$$

2. Consideremos la transformación $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por la expresión matricial

$$\begin{pmatrix}
1 \\
f\begin{pmatrix} x_1 \\ x_2 \\ x_3
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
-4 & \frac{4}{9} & \frac{8}{9} & -\frac{1}{9} \\
4 & -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\
-2 & -\frac{7}{9} & \frac{4}{9} & \frac{4}{9}
\end{pmatrix} \cdot \begin{pmatrix} 1 \\
x_1 \\
x_2 \\
x_3
\end{pmatrix}.$$

Probar que f es un movimiento rígido del espacio afín euclidiano usual \mathbb{R}^3 y calcular sus elementos geométricos.

Respuesta:

Llamemos $\mathcal{R}_0 = \{(0,0,0), B_0\}$ al sistema de referencia rectangular usual en $(\mathbb{R}^3, \langle , \rangle)$.

La aplicación lineal asociada $\vec{f} : \mathbb{R}^3 \to \mathbb{R}^3$ tiene la expresión analítica en la base ortonormal usual B_0

$$\vec{f} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{4}{9} & \frac{8}{9} & -\frac{1}{9} \\ -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\ -\frac{7}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Como

$$M(\vec{f}, B_0) = \begin{pmatrix} \frac{4}{9} & \frac{8}{9} & -\frac{1}{9} \\ -\frac{4}{9} & \frac{1}{9} & -\frac{8}{9} \\ -\frac{7}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix},$$

un cálculo directo nos da $M(\vec{f}, B_0)^{\mathfrak{t}} \cdot M(\vec{f}, B_0) = I_3$. Por tanto $M(\vec{f}, B_0) \in O_3(\mathbb{R})$, y como \mathcal{R}_0 es una referencia rectangular, f es un movimiento rígido. Al ser det $(M(\vec{f}, B_0)) = 1$, el movimiento f es positivo.

Estudiemos su conjunto de puntos fijos, para lo cual resolveremos la ecuación $f(x_1, x_2, x_3) = (x_1, x_2, x_3)$ en \mathbb{R}^3 . Queda el sistema

$$(-4 - 5x_1/9 + 8x_2/9 - x_3/9, 4 - 4x_1/9 - 8x_2/9 - 8x_3/9, -2 - 7x_1/9 + 4x_2/9 - 5x_3/9) = (0, 0, 0),$$

que nos da como solución

$$\mathcal{P}_f = \{(\lambda, 9/2 + \lambda/2, -\lambda) : \lambda \in \mathbb{R}\} = (0, 9/2, 0) + L(\{(1, 1/2, -1)\}).$$

Se trata de una recta afín de puntos fijos, de donde por la clasificación de los movimientos rígidos f ha de ser un giro con eje $L := \mathcal{P}_f$. El ángulo no orientado $\alpha \in [0, \pi]$ de f obedece a la fórmula

$$1 + 2\cos(\alpha) = \text{Traza}(\vec{f}) = 1,$$

de donde $\cos(\alpha) = 0$ y $\alpha = \pi/2$.

Si deseamos calcular el ángulo orientado de f respecto de alguna orientación previamente fijada en $\overrightarrow{L}^{\perp}$, elijamos primero una base ortenormal de $\overrightarrow{L}^{\perp}$ que nos proporcione esa orientación. Por ejemplo $B = \{w_1, w_2\}$, con

$$w_1 = (1/\sqrt{5}, -2/\sqrt{5}, 0), \ w_2 = (4/(3\sqrt{5}), 2/(3\sqrt{5}), \sqrt{5}/3).$$

A continuación observemos que $f(w_1) = -w_2$, $f(w_2) = w_1$, y por tanto el giro $\vec{f}|_{\vec{L}^{\perp}} : \vec{L}^{\perp} \to \vec{L}^{\perp}$ tiene por matriz asociada en la base B

$$M(\vec{f}\big|_{\vec{L}^{\perp}}, B) = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right).$$

Si $\theta \in]0, 2\pi[$ es el ángulo orientado de $\vec{f}|_{\vec{L}^{\perp}}$ respecto de la orientación inducida por B se tiene que

$$M(\vec{f}|_{\vec{L}^{\perp}}, B) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

de donde comparando las dos expresiones $\theta = -\pi/2$.

3. Sea $T = \{a, b, c\}$ un triángulo en un plano euclidiano $(\mathcal{A}, \overrightarrow{\mathcal{A}}, \neg, \langle, \rangle)$ con ángulos $\hat{A}, \hat{B}, \hat{C}$ en los vértices a, b, c respectivamente. Probar que son equivalentes:

a)
$$d(a, b) = d(a, c)$$
.

- b) $\hat{B} = \hat{C}$.
- c) La mediatriz R_a y la mediana M_a del vértice a son coincidentes.

Como consecuencia, probar que si d(a,b) = d(a,c) = d(b,c) (esto es, T es equilátero) entonces el vértice a y el baricentro B de T determinan univocamente los vertices b y c.

Respuesta:

Por definición

$$\cos(\hat{A}) = \frac{\langle \overrightarrow{ab}, \overrightarrow{ac} \rangle}{\|\overrightarrow{ab}\| \|\overrightarrow{ac}\|}, \quad \cos(\hat{B}) = \frac{\langle \overrightarrow{bc}, \overrightarrow{ba} \rangle}{\|\overrightarrow{bc}\| \|\overrightarrow{ba}\|}, \quad \cos(\hat{C}) = \frac{\langle \overrightarrow{ca}, \overrightarrow{cb} \rangle}{\|\overrightarrow{ca}\| \|\overrightarrow{cb}\|}.$$

Como $\hat{B}, \hat{C} \in]0, \pi[$

$$\hat{B} = \hat{C} \Leftrightarrow \cos(\hat{B}) = \cos(\hat{C}) \Leftrightarrow \langle \overrightarrow{bc}, \overrightarrow{ba} \rangle \| \overrightarrow{ca} \| \| \overrightarrow{cb} \| = \langle \overrightarrow{ca}, \overrightarrow{cb} \rangle \| \overrightarrow{bc} \| \| \overrightarrow{ba} \| \Leftrightarrow$$

$$\Leftrightarrow \langle \overrightarrow{ba} + \overrightarrow{ac}, \overrightarrow{ba} \rangle \| \overrightarrow{ca} \| = \langle \overrightarrow{ca}, \overrightarrow{ca} + \overrightarrow{ab} \rangle \| \overrightarrow{ba} \| \Leftrightarrow (\| \overrightarrow{ba} \|^2 + \langle \overrightarrow{ac}, \overrightarrow{ba} \rangle) \| \overrightarrow{ca} \| = (\| \overrightarrow{ca} \|^2 + \langle \overrightarrow{ca}, \overrightarrow{ab} \rangle) \| \overrightarrow{ba} \| \Leftrightarrow$$

$$\Leftrightarrow \| \overrightarrow{ba} \| \| \overrightarrow{ca} \| (\| \overrightarrow{ba} \| - \| \overrightarrow{ca} \|) = \langle \overrightarrow{ca}, \overrightarrow{ab} \rangle (\| \overrightarrow{ba} \| - \| \overrightarrow{ca} \|) \Leftrightarrow (\| \overrightarrow{ba} \| - \| \overrightarrow{ca} \|) (\| \overrightarrow{ba} \| \| \overrightarrow{ca} \| - \langle \overrightarrow{ca}, \overrightarrow{ab} \rangle) = 0 \Leftrightarrow$$

$$\Leftrightarrow (\| \overrightarrow{ba} \| - \| \overrightarrow{ca} \|) (\| \overrightarrow{ba} \| \| | \overrightarrow{ca} \| + \langle \overrightarrow{ac}, \overrightarrow{ab} \rangle) = 0 \Leftrightarrow (\| \overrightarrow{ba} \| - \| \overrightarrow{ca} \|) \| \overrightarrow{ba} \| \| \overrightarrow{ca} \| (1 + \cos(\hat{A})) = 0 \Leftrightarrow \| \overrightarrow{ba} \| = \| \overrightarrow{ca} \|.$$
En definitiva
$$\hat{B} = \hat{C} \Leftrightarrow d(a, b) = d(a, c), \text{ con lo que (a)} \Leftrightarrow (b).$$

Recordemos que $M_a = a \vee m_{bc}$ y $R_a = m_{bc} + L(\{\overrightarrow{bc})^{\perp}$. La propiedad geométrica que caracterizan a los puntos de la mediatriz R_a es que equidistan de b y c, por lo que

$$d(a,b) = d(a,c) \Leftrightarrow a \in R_a \Leftrightarrow a \in M_a \cap R_a \Leftrightarrow M_a = R_a,$$

donde para la penúltima equivalencia hemos tenido en cuenta que siempre $a \in M_a$ y para la última que $a \neq m_{bc} \in M_a \cap R_a$. Esto prueba que (a) \Leftrightarrow (c).

Para la última parte del ejercicio, supongamos que un triángulo T es equilátero y conocemos el vértice a y el baricentro B. Hemos de determinar los vértices b, c restantes. Por la prueba del Teorema de Euler, la homotecia $h = h_{B,-1/2}$ aplica a en m_{bc} , esto es, el punto medio del segmento [b,c] está determinado por a y B con la fórmula:

$$\mathbf{m}_{bc} = B + \left(-\frac{1}{2} \overrightarrow{Ba} \right).$$

Por la primera parte del ejercicio $M_a = R_a$, y en particular $\overrightarrow{R}_a = \overrightarrow{M}_a = L(\{\overrightarrow{aB}\})$. Como la recta $b \lor c$ es perpendicular a R_a y contiene a m_{bc} , deducimos que

$$b \vee c = \mathbf{m}_{bc} + L(\{\overrightarrow{aB}\})^{\perp} = (B + (-\frac{1}{2}\overrightarrow{Ba})) + L(\{\overrightarrow{aB}\})^{\perp},$$

y por tanto la recta $b \lor c$ está también determinada por $a \lor B$. Por último, si llamamos

$$r = d(a, b) = d(a, c) = d(b, c) = 2d(b, m_{bc}) = 2d(c, m_{bc}),$$

como los triángulos $\{a, \mathbf{m}_{bc}, b\}$, $\{a, \mathbf{m}_{bc}, c\}$ son rectángulos con ángulo recto en el vértice \mathbf{m}_{bc} , el Teorema de Pitágoras nos dice que $d(a, \mathbf{m}_{bc})^2 + \frac{1}{4}r^2 = r^2$, y de aquí que el número real

$$r = \frac{2}{\sqrt{3}}d(a, \mathbf{m}_{bc}) = \frac{2}{\sqrt{3}} \|\overrightarrow{a\mathbf{m}_{bc}}\| = \frac{2}{\sqrt{3}} \|\overrightarrow{a(B + (-\frac{1}{2}\overrightarrow{Ba}))}\| = \frac{2}{\sqrt{3}} \|\frac{3}{2}\overrightarrow{aB}\| = \sqrt{3} \|\overrightarrow{aB}\|$$

sea función de a, B. En consecuencia, si elegimos un vector $w \in L(\{\overrightarrow{aB}\})^{\perp}$ unitario (que obviamente se determina a partir de a, B), los vértices b, c han de ser los puntos

$$\mathbf{m}_{bc} + \frac{r}{2}w = \mathbf{m}_{bc} + \frac{\sqrt{3}}{2} \|\overrightarrow{aB}\|w, \quad \mathbf{m}_{bc} + \left(-\frac{r}{2}w\right) = \mathbf{m}_{bc} + \left(-\frac{\sqrt{3}}{2} \|\overrightarrow{aB}\|w\right),$$

esto es,

$$B + \Big(-\frac{1}{2}\overrightarrow{Ba} + \frac{\sqrt{3}}{2}\|\overrightarrow{aB}\|w\Big), \quad B + \Big(-\frac{1}{2}\overrightarrow{Ba} - \frac{\sqrt{3}}{2}\|\overrightarrow{aB}\|w\Big).$$