

Irrigation Channel

Gabriele Ribolla ID.10617369

Il sistema è definito da 5 vasche connesse in cascata. Considerando la i-esima vasca la situazione è la seguente

- h_i = livello dell'acqua nella vasca
- u_{i+1} = flusso d'acqua uscente dalla vasca
- u_i = flusso d'acqua entrante nella vasca

La dinamica del livello dell'acqua per la singola vasca può essere espressa usando l' equazione di Saint-Venant:

$$h_i(k+1) = h_i(k) + \left(\frac{\tau_s}{a_i}\right) * \left(u_i(k-k_i)\right) - u_{i+1}(k)$$

- τ_s = tempo di campionamento
- a_i = area superficiale della vasca
- K_i = steps di ritardo del flusso d'acqua in ingresso rispetto all'istante k

Il ritardo dato da k_i , introduce # k_i variabili addizionali usate per descrivere il sistema nella state-space representation per il tempo discreto.

Ad esempio per la prima vasca. $k_1 = 2$, questo implica che

$$h_1(k+1) = h_1(k) + \left(\frac{\tau_s}{a_1}\right) * \left(u_1(k-2)\right) - u_2(k)$$

E dunque l'introduzione di :

$$v_1(k) = \frac{\tau_s}{a_1} * u_1(k-2) \to v_1(k+1) = \frac{\tau_s}{a_1} * u_1(k-1) = v_2(k)$$
$$v_2(k) = \frac{\tau_s}{a_1} * u_1(k-1) \to v_2(k+1) = \frac{\tau_s}{a_1} * u_1(k)$$

In modo tale da ottenere il seguente modello per la vasca 1:

$$h_1(k+1) = h_1(k) + v_1(k) - \frac{\tau_s}{a_1} * u_2(k)$$

$$v_1(k+1) = v_2(k)$$

$$v_2(k+1) = \frac{\tau_s}{a_1} * u_1(k)$$

Dove

- h_1 , v_1 , v_2 sono gli stati che rapprensentano la vasca 1
- u_1 e u_2 rapprensentano gli ingressi e le uscite della vasca 1

In forma matriciale avremo:

$$\begin{aligned} |h_1(k+1)| & |1 \ 1 \ 0 \ | * |h_1(k)| + | \ 0 \ | * u_1(k) + \left| -\frac{\tau_s}{a_1} \right| * u_2(k) \\ |v_1(k+1)| & = |0 \ 1 \ 0 \ | * |v_1(k)| + | \ 0 \ | * u_1(k) + | \ 0 \ | * u_2(k) \\ |v_2(k+1)| & |0 \ 0 \ 0 \ | * |v_2(k)| + | -\frac{\tau_s}{a_1} | * u_1(k) + | \ 0 \ | * u_2(k) \end{aligned}$$

$$x(k+1) = Fc_1 * x(k) + Gc_{1,1} * u_1(k) + Gc_{1,2} * u_2(k)$$

Dove

- x(k) = state vector
- Fc_1 = matrice degli stati della vasca 1
- $Gc_{1,1}$ = matrice della vasca 1 relativa all'ingresso u1
- $Gc_{1,2}$ = la matrice della vasca 1 relativa all' ingresso u2 (uscita per il sistema rispetto alla vasca 1)

Per quanto riguarda le uscite della vasca 1, ipotizzando che tutti gli stati siano misurati, avremo :

$$|y_1(k)| = |1 \ 0 \ 0 | * | h_1(k) |$$

$$|y_2(k)| = |0 \ 1 \ 0 | * | v_1(k) |$$

$$|y_3(k)| = |0 \ 0 \ 1 | * | v_2(k) |$$

Dunque iterando la procedura anche alle altre vasche si ottiene un sistema con 20 stati, 20 uscite e 5 ingressi che può essere visto come :

$$x(k+1) = F * x(k) + G_i * u_i(k) \quad i = 1 \dots N$$

 $y_i(k) = H_i * x(k) \quad i = 1 \dots N$

Dove

- F = matrice 20x20
- G_i = matrice 20x $\#u_i$, che dipende dalla presenza dell' ingresso u_i
- H_i = matrice $\#p_i$ x 20 , dove pi è il numero di uscite di quella vasca (nel caso in cui gli stati sono tutti misurati il numero di uscite sono uguali al numero di stati di quella vasca)

k=[2 1 4 4 4] alpha=[22414,11942,43806,43806,43806] m^2

Tutti gli stati, evidenziando quelli relativi ai livelli d'acqua delle vasche

Pool 1

•
$$x_1(k+1) = x_1(k) + x_2(k) - \frac{x_s}{a_1} * u_2(k) = h_1(k+1) = y_1$$

•
$$x_2(k+1) = x_3(k) = y_2$$

•
$$x_3(k+1) = \frac{\tau_s}{a_1} * u_1(k) = y_3$$

Pool 2

•
$$x_4(k+1) = x_4(k) + x_5(k) - \frac{r_s}{a_1} * u_3(k) = h_2(k+1) = y_4$$

•
$$x_5(k+1) = \frac{\tau_s}{a_1} * u_2(k) = y_5$$

Pool 3

•
$$x_6(k+1) = x_6(k) + x_7(k) - \frac{r_s}{a_1} * u_4(k) = h_3(k+1) = y_6$$

•
$$x_7(k+1) = x_8(k) = y_7$$

•
$$x_8(k+1) = x_9(k) = y_8$$

•
$$x_9(k+1) = x_{10}(k) = y_9$$

•
$$x_{10}(k+1) = \frac{\tau_s}{a_1} * u_3(k) = y_{10}$$

Tutti gli stati, evidenziando quelli relativi ai livelli d'acqua delle vasche

Pool 4

•
$$x_{11}(k+1) = x_{11}(k) + x_{12}(k) - \frac{\tau_s}{a_4} * u_5(k) = h_4(k+1) = y_{11}$$

•
$$x_{12}(k+1) = x_{13}(k) = y_{12}$$

•
$$x_{13}(k+1) = x_{14}(k) = y_{13}$$

•
$$x_{14}(k+1) = x_{15}(k) = y_{14}$$

•
$$x_{15}(k+1) = \frac{\tau_s}{a_4} * u_4(k) = y_{15}$$

Pool 5

•
$$x_{16}(k+1) = x_{16}(k) + x_{17}(k) = h_5(k+1) = y_{16}$$

•
$$x_{17}(k+1) = x_{18}(k) = y_{17}$$

•
$$x_{18}(k+1) = x_{19}(k) = y_{18}$$

•
$$x_{19}(k+1) = x_{20}(k) = y_{19}$$

•
$$x_{20}(k+1) = \frac{\tau_s}{a_5} * u_5(k) = y_{20}$$

Rappresentazione matriciale:

$$\mathsf{X}(\mathsf{K}) = [x_1(k), x_2(k), x_3(k), x_4(k), x_5(k), x_6(k), x_7(k), x_8(k), x_9(k), x_{10}(k), x_{11}(k), x_{12}(k), x_{13}(k), x_{14}(k), x_{15}(k), x_{16}(k), x_{17}(k), x_{18}(k), x_{19}(k), x_{20}(k)]'$$

$$U(k) = [\mathsf{u}_1(\mathsf{k}), \mathsf{u}_2(\mathsf{k}), \mathsf{u}_3(\mathsf{k}), \mathsf{u}_4(\mathsf{k}), \mathsf{u}_5(\mathsf{k})]'$$

	Gtot X F :	K H X														
	d 🔢 20x20 double															
	d 1 2	3	4 5	6	7	8	9 1	0 11	12 1	14	15	16 17	18	19	20	
	1 1	0 0	0	0 0	0	0	0	0	0 0	0	0 0	0	0	0 0	0 0	
	2 0	1 0	0	0 0	0	0	0	0	0 0	0	0 0	0	0	0	0 0	
	3 0	0 1	0	0 0	0	0	0	0	0 0	0 (0 0	0	0	0 (0 0	
	L 4 0	0 0	1 (0 0	0	0	0	0	0 0	0	0 0	0	0	0	0 0	
	L 5 0	0 0	0	1 0	0	0	0	0	0 0	0	0 0	0	0	0	0 0	
	L 6 0	0 0	0 (0 1	0	0	0	0	0 0	0 (0 0	0	0	0	0 0	
	7 0	0 0	0	0 0	1	0	0	0	0 0	0	0 0	0	0	0	0 0	
Y(K) =	N 8 0	0 0	0	0 0	0	1	0	0	0 0	0	0 0	0	0	0 (0 0	*X(K)
Y(K) =	y 0	0 0	0	0 0	0	0	1	0	0 0	0	0 0	0	0	0 (0 0	'X(K)
` '	x 10 0	0 0	0	0 0	0	0	0	1	0 0	0	0 0	0	0	0 0	0 0	' '
	x 11 0	0 0	0	0 0	0	0	0	0	1 0	0	0 0	0	0	0 (0 0	
	x 12 0	0 0	0	0 0	0	0	0	0	0 1	0	0 0	0	0	0 (0 0	
	× 13 0	0 0	0	0 0	0	0	0	0	0 0	1	0 0	0	0	0 (0	
	x 14 0	0 0	0	0 0	0	0	0	0	0 0	0	1 0	0	0	0 (0	
	X 15 0	0 0	0				0	0	0 0	0	0 1	0	0	0 0	0	
	x 16 0	0 0	0			0		0	0 0	0	0 0	1	0	0		
	X 10 0	0 0	0			0	0	0	0 0	0	0 0	0	0	1	0	
	x 19 0	0 0	0					0	0 0	0	0 0	0	0	0		
		0 0	ŏ		0	0	0	0	0 0	0	0 0	0	0	0	0 1	
	x 20 0	0	-			0			0		0	v	U		1	

Informazioni generali: funzioni

 \rightarrow

Per la definizione dei «fixed modes», ho usato la funzione '[Difm]=di_fixed_modes(Atot,Baggr,Caggr,N,ContStruc,rounding_n)' che restituisce se esistono i fixed modes.

Per la definizione del «control gain Kx», ho usato la funzione '[K,rho,feas]=LMI_DT_DeDicont(Ftot,Gdec,Hdec,N,ContStruc)', che restituisce:

- Feasibility = 0 se il problema definito dalle lmis è fattibile.
- **Rho** = spectral radius, che nel caso di sistemi a tempo discreto deve essere minore di uno per avere l'asintotica stabilità.
- K = il control gain definito usando le LMIs

Informazioni generali : funzioni

 \rightarrow

Per la definizione del «control gain «Kx» tale che gli autovalori del sistema fossero in un disco, definito da 'radius' e 'center':

'[K,rho,feas]=LMI_DT_DeDicontDiskInA(Ftot,Gdec,Hdec,N,ContStruc,radius,center)'

Per la definizione del «control gain Kx», in modo da soddisfare le specifiche del controllo del tipo «Hinf» ho usato la funzione

'[K,rho,feas,norm]=LMI_DT_DeDicontHinf(Ftot,Gdec,Hdec,Htot,N,ContStruc,Gw,Dw,Du)'

Dove (in aggiunta alle altre)

-Gw: matrice dei disturbi presenti sugli stati

-Dw: matrice dei disturbi sulle uscite

-Du: matrice degli input sulle uscite

-Norm: valore della norma della funzione di trasferimento tra gli stati e i disturbi (indicati normalmente con w)

	1	2	3	4	5
1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
5	1	1	1	1	1
_					

☐ 5x5 double								
	1	2	3	4	5			
1	1	0	0	0	0			
2	0	1	0	0	0			
3	0	0	1	0	0			
4	0	0	0	1	0			
5	0	0	0	0	1			

	1	2	3	4	5	
 1	1	0	0	0	0	
 2	1	1	0	0	0	
3	0	1	1	0	0	
4	0	0	1	1	0	
5	0	0	0	1	1	
6						

1	2	3	4	5
1	1	0	0	0
1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	0	1	1

	1	2	3	4	5	
1	1	1	1	1	1	
2	1	1	0	0	0	
3	1	0	1	0	0	
4	1	0	0	1	0	
5	1	0	0	0	1	

	1	2	3	4	5
1	1	0	0	0	1
2	1	1	0	0	0
3	0	1	1	0	0
4	0	0	1	1	0
5	0	0	0	1	1

1	2	3	4	5
1	1	0	0	1
1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
1	0	0	1	1

Struttura distribuita: Stella Unidirezionale uscente con centro vasca 5:

Rappresentation

1	2	3	4	5	
1	1	0	1	1	
0	1	1	0	1	
0	0	1	1	1	
0	0	0	1	1	
0	0	0	0	1	
	1 1 0 0	1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0	1 2 3 1 1 0 0 1 1 0 0 1 0 0 0 0 0	1 2 3 4 1 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0	1 2 3 4 5 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

Autovalori =

Spectral radius=

1

Risultati: Fixed modes:

X

fm_cen_DT	[]
fm_Dec	IJ
fm_star_bi	IJ
fm_string_bi	[]
fm_string_uni	[]
fmCycleBi	[]
fmCycleUni	[]
fmStarUniCenter5ExternalCycleUni	[]

KxAS: Realizzabilità:

feasAs_c	0
feasAs_De	0
feasAs_star_bi	0
feasAs_string_bi	0
feasAs_string_uni	0
☐ feasAsCycleBi	0
☐ feasAsCycleUni	0
feasAsStarUniCenter5ExternalCycle	0

KxAS: Spectral Radius:

☐ rhoas_c	0.9539
☐ rhoAS_De	0.9616
rhoAs_star_bi_DT	0.9769
rhoAs_string_bi	0.9911
rhoAs_string_uni	0.9922
	0.9911
mhoAsCycleUni	0.9921
rhoAsStarUniCenter5ExternalCycle	0.9591

KxDiskInA: Realizzabilità con le seguenti caratteristiche: raggio in 0.4, centro in 0:

☐ feasDiskRadiusCent	0
☐ feasDiskRadiusCycleBi	0
☐ feasDiskRadiusCycleUni	0
easDiskRadiusdecen	0
feasDiskRadiusstar_bi	0
feasDiskRadiusStarUniCenter5Exter	0
feasDiskRadiusstring_bi	0
feas Disk Radius string_uni	0

KxDisklnA: Spectral Radius:

	0.1969
rhoDiskRadiusCycleBi	0.2030
☐ rhoDiskRadiusCycleUni	0.1978
rhoDiskRadiusdecen	0.1380
rhoDiskRadiusstar_bi	0.1659
rhoDiskRadiusStarUniCenter5Exter	0.1697
rhoDiskRadiusstring_bi	0.2018
rhoDiskRadiusstring_uni	0.1982

KxDiskInA: Traiettorie del sistema ad anello chiuso: caso con raggio 0.4 e centro 0:

KxHinf: Realizzabilità:

	4
feashInfCycleBi	0
feashInfCycleUni	0
feashInfDecen	0
feashInfstar_bi	0
feashInfStarUniCenter5ExternalCycl	0
feashInfstring_bi	0
feashInfstring_uni	0

4 = valore dato da yalmip che indica la presenza di problemi numerici nella soluzione

KxHinf: Norma della funzione di trasferimento tra disturbi e stati del sistema:

mormInfCent	237.1425
normInfCycleBi	315.2609
normInfCycleUni	380.0791
normInfDecen	384.1800
normInfstar_bi	358.0632
normInfStarUniCenter5ExternalCycl	299.9793
normInfstring_bi	324.2338
normInfstring_uni	382.7268

KxHinf: Spectral Radius

mohlnfcent rhohlnfcent	0.7083
rhohlnfCycleBi	0.7898
rhohlnfCycleUni	0.4549
rhohlnfDecen	0.4031
rhohlnfstar_bi	0.3575
rhohlnfStarUniCenter5ExternalCycl	0.5277
rhohlnfstring_bi	0.3617
rhohlnfstring_uni	0.4956

KxHinf: Traiettorie degli stati in Closed loop

Considerazioni finali: strutture scalabili

 \rightarrow

Considerando un # di vasche molto elevato, le strutture facilmente scalabili dato il sistema in serie possono essere quella: decentralizzata, stringa unidirezionale, stringa bidirezionale. Esse possono essere confrontate con quella Centralizzata

struttura	F.M.	Feas Kas	Spectral radius Kas	Feas KdiskInA	Spectral radius KdiskIn A	Feas Khif	Spectra I radius Khinf	Norm GZW
Centr.	no	0	0.95394	0	0.1969	4	0.7082	237.14
Decentr.	no	0	0.96157	0	0.1379	0	0.4031	384.17
Stringa Uni.	no	0	0.99216	0	0.1982	0	0.4955	382.72
Stringa Bi.	no	0	0.99110	0	0.2017	0	0.3617	324.23

Considerazioni finali: Traiettorie ad anello chiuso: Kas

Considerazione finali: Traiettorie ad anello chiuso: KdisklnA ->

Fine X

Grazie per l'attenzione