

PHYSICS

ELECTRICITY

Lecture No.- 04

ER. RAKSHAK SIR

Today's argets

- **SERIES CIRCUIT**
- PARALLEL CIRCUIT
- **COMBINATION OF RESISTORS**
- RESISTANCE OF AMMETER AND VOLTMETER
- WORKING OF RHEOSTAT X

=) Same bath

Series is a Potential Divider

properties

2. Voltage divides

according to Value of Resistance

- 1. Voltage same
- 2. Current divides

according to

inverse propostions

with Resistance

$$V = IR \implies (-V \rightarrow const$$

COMBINATION OF RESISTORS

Series:

$$V_{t} = V_{1} + V_{2} + V_{3}$$

$$TR_{t} = TR_{1} + TR_{2} + TR_{3} \quad (V = 1R)$$

$$TR_{t} = T \quad (R_{1} + R_{2} + R_{3})$$

$$R_{t} = R_{1} + R_{2} + R_{3}$$

$$Total | Net | Quivalent | Qfective)$$

COMBINATION OF RESISTORS

Parallel:

$$\frac{1}{R_{t}} = \frac{1}{R_{1}} + \frac{1}{2} + \frac{1}{3}$$

$$\frac{1}{R_{t}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

(Not for Subjective)
PRACTICE PROBLEMS 1:

Jugard Wallah: -

$$\frac{1}{2} = \frac{2}{2}$$

$$\frac{1}{2}$$

$$= \frac{3}{3}$$

PRACTICE PROBLEMS 2:

Mixed - Kamzor Kadi

$$\frac{3}{3} \frac{3}{3} = \frac{6}{m} = 2 \Omega$$

$$\frac{3}{3} \frac{2}{m} = 4 \Omega$$

Ques 1

$$\frac{1}{R_{t}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$$

$$\frac{1}{R_{1}} = \frac{1}{2} + \frac{1}{1} = \frac{3}{2}$$

$$\frac{1}{R_{1}} = \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$$

Question

Imp.

Jugoad Wallah

How can three resistors each of resistances 3 Ω be connected to give a total resistance of

 Ω 4.5 Ω

35 W 35 W 35 (ii) 2 Ω

$$\frac{1}{3}$$
 $\frac{3}{3}$ $\frac{1.5}{4.50}$ $\frac{3}{3}$ $\frac{1.5}{4.50}$ $\frac{3}{3}$ $\frac{1.5}{4.50}$

Show how you would connect three resistors, each of resistance 6 Ω , so that the combination has a resistance of

(i) 9 Ω

(ii) 4 Ω

If in figure, $R_1 = 10 \Omega$, $R_2 = 40 \Omega$, $R_3 = 30 \Omega$, $R_4 = 20 \Omega$, $R_5 = 60 \Omega$, and a 12 V battery is connected to the arrangement. Calculate:

- (a) The total resistance
- (b) The total current flowing

