

Agenda

- Problem Statement
- Data Exploration
- Features
- Methodology
- Results
- Improvements
- Conclusion
- **Evaluation**

Problem Statement

• Given a set of longitudinal data of different lab measurements for patients diagnosed with chronic kidney disease (CKD).

• Predict whether a patient will progress in CKD staging or not.

Data Exploration

Problem Statement

Data Exploration

Features

Mode

Results

Improvements

Demographics

- 300 patients
- Categorical: Race (5), Gender (2)
- Discrete: Age

Problem Statement

Data Exploration

Features

Model

Results

Improvements

Conclusion

Stages

Problem Statemen

Data Exploration

Features

Mode

Results

Improvements

Demographics

Demographics

Problem Statemen

Data Exploration

Features

Mode

Results

Improvements

Conclusion

Age vs Gender

- 6 types
- 700 days
- Continuous: Measurement values
- Number of measurements and timestamps
 - vary for same patients per indicator
 - vary across all patients

Number of measurements

eature with length distribution

Problem Statemen

Data Exploration

Features

Mode

Result

Improvements

Conclusion

Feature with length distribution

eature with length distribution

Problem Statemen

Data Exploration

Features

Mode

Result

Improvements

Feature with length distribution

- Problem Statement

 Data Exploration

 Features
- Model

Results

Improvements

- **21** drugs
- 26 dosage levels
- 28 missing
- 700 days
- Categorical: Drug types, Dosage levels
- Varying number of drugs and dosage levels

Number of drugs

Problem Statemen

Data Exploration

Features

Mode

Results

Improvements

Fren

Problem Statement

Data Exploration

Features

Mode

Results

Improvements

Fren

Problem Statement

Data Exploration

Features

Mode

Results

Improvements

Dosage levels per target

Problem Statemen

Data Exploration

Features

Mode

Results

Improvements

Dosage levels per drug

Dosage levels per drug

Demographics

Indicators

Drugs

Combine minority races

Normalize age

Features

.

Doculto

Improvements

Demographics

Indicators

Drugs

Combine minority races

Normalize age

Interpolate the data points linearly to form 1D signal

Normalize the values of 1D signal

Features

Demographics

Indicators

Drugs

Combine minority races

Interpolate
the data
points linearly
to form 1D
signal

Reduce the number of drugs

Normalize age

Normalize the values of 1D signal

Form 1D signals with the dosage levels

Problem Statemen

Features

Model

Results

Improvements

Selected drugs

Problem Statement

Data Exploration

Features

Model

Results

Improvements

Samples

Problem Statemen[.]

Data Exploration

Features

Mode

Results

Improvements

Conclusion

Dosage

Patient 0 , Indicator: Glucose

Why 1D signal/wave?

Problem Statement

Data Exploration

Features

Model

Results

Improvements

How to input many 1D signals?

Day 0	Day 1				Day	Day
		•	•	•	698	699

Problem Statement

Data Exploration

Features

Mode

Results

Improvements

Features

Model

Result

Improvements

Wave Encoder

Results

Train/Val

Problem Statemen

Data Exploration

Features

Mode

Results

Improvements

Conclusion

Epoch

Results

Train/Val

Problem Statement

Data Exploration

Features

reatures

Mode

Results

Improvements

Conclusion

Epoch

True Labels

Results

Test

Normalized Confusion Matrix

Problem Statement
Data Exploration
Features

Mode

Results

Improvements

Improvements

Increasing collection of data samples

Optimizing the current model

Feature Engineering

Problem Statement
Data Exploration
Features
Model
Results
Improvements

Conclusion

Deep Learning approach

Multi modal architecture

Results not favorable

Requires further refinement

Problem Statement

Data Exploration

Features

Results

Improvements

Thank You!