

CS 134 Data Visualization: Week 1

Joshua Goldberg

Edmonds College

Thank you to Allison Obourn for parts of these slides

Recap

Understanding data and different data types

Distributions, PDF, CDF

Sampling and descriptive statistics

Hypothesis testing to evaluate a single parameter

Bivariate linear model

Correlation vs. Causation

Agenda

- Multivariate linear regression
 - Model evaluation
 - Omitted variable bias
 - Multicollinearity correlated independent variable
- Hypothesis testing
 - Testing multiple parameters T test vs. F test
- Variable transformations interpreting results
 - Affine
 - Polynomial
 - Logarithmic
 - Dummy variables

Multivariate Regression

Simple Regression

Multivariate Regression

Multivariate Regression

$$y = \beta_1 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

How do we interpret β_1 , β_2 ?

•
$$y = 10 + 3x_1 + 4x_2$$
, $x_1 = 5$, $x_2 = 3$

•
$$y = 10 + 18 + 20 = 48$$

- 1 unit increase in x_1 led to a β_1 increase in y (just like bivariate regression)
- But what about x_2 ? It did not change. So this change is only true holding x_2 constant
- ullet We can hold x_2 constant to see how y changes as x_1 changes at that level of x_2

Evaluating the Model: Adjusted ${ m R}^2$

- ullet Recall we can use ${
 m R}^2=1-{
 m SSR}/{
 m TSS}$
- ullet When we add a new independent variable, TSS does not change. $\mathrm{TSS} = (u \mathrm{mean}(y))^2$
- However, the new variable will always cause SSR, $(y-\hat{y})^2$ to decrease. Therefore, R^2 will always decrease, which makes adding more variables ostensibly better
- ullet Adjusted ${
 m R}^2$ adds a disincentive (penalty) for adding new variables:

$$\operatorname{Adj} \operatorname{R}^2 = 1 - \frac{(n-1)}{n-k-1} \frac{\operatorname{SSR}}{TSS}$$

Omitted variable bias

- If we do not use multiple regression, we may get biased estimate of the variable we do include
- "The bias results in the model attributing the effect of the missing variables to the estimated effects of the included variable."
- In other words, there are two variables that determine y, but our model only knows about one.
- The model we estimate with one variable accounts for the full effect of y, when we know the effect should be split between the two variables

Omitted variable bias

- When will there be no omitted variable bias effect?
 - 1. The second variable has no effect on y. Therefore, there is no extra effect to go into the first variable
 - 2. x_1 and x_2 are completely unrelated. Even though x_2 has an effect on y, x_1 lacks that information

$$\hat{eta_1} = rac{\hat{ ext{Cov}}(X,Y)}{\hat{Var}(X)}$$

$$\begin{aligned} \hat{\text{Cov}}(\text{educ}, \text{wages}) &= \hat{\text{Cov}}(\text{educ}, \beta_1 \text{educ} + \beta_2 \text{exp} + \epsilon) \\ &= \beta_1 \hat{\text{Var}}(\text{educ}) + \beta_2 \hat{\text{Cov}}(\text{educ}, \text{exp}) + \hat{\text{Cov}}(\text{educ}, \epsilon) \\ &= \beta_1 \hat{\text{Var}}(\text{educ}) + \beta_2 \hat{\text{Cov}}(\text{educ}, \text{exp}) \end{aligned}$$

Omitted variable bias:
$$\hat{\beta_1} = \beta_1 + \beta_2 \frac{\text{Cov(educ, exp)}}{\hat{\text{Var(educ)}}}$$

Calculating the bias effect

- 1. Population model (true relationship): $y=eta_0+eta_1x_1+eta_2x_2+
 u$
- 2. Our model: $y=\hat{eta}_0+\hat{eta}_1x_1+v$
- 3. Auxiliary model: $x_2 = \delta_0 + \delta_1 x_1 + \epsilon$
- In the simple case
 of one regression
 and one omitted
 variable,
 estimating
 equation (2) by
 OLS will yield:

Equivalently, the bias is:
$$\mathrm{E}(\hat{eta_1}) - eta_1 = eta_2 \delta$$

	A and B are positively correlated	A and B are negatively correlated			
B is positively correlated with y	Positive bias	Negative bias			
B is negatively correlated with y	Negative bias	Positive bias			

$$\mathrm{E}(\hat{\beta}_1) = \beta_1 + \beta_2 \delta$$

Example: Bostom Housing Data

variable	description
CRIM	per capita crime rate by town
ZN	proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS	proportion of non-retail business acres per town.
CHAS	Charles River dummy variable (1 if tract bounds river; 0 otherwise)
NO	nitric oxides concentration (parts per 10 million)
RM	average number of rooms per dwelling
AGE	proportion of owner-occupied units built prior to 1940
DIS	weighted distances to five Boston employment centres
RAD	index of accessibility to radial highways
TAX	full value property tax rate per \$10,000
PTRATIO	pupil teacher ratio by town
В	1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
LSTAT	% lower status of the population
MEDV	Median value of owner-occupied homes in \$1000's

Correlalogram Bostom Housing

2,000 Regressions

- Take a random sample of 90% people out of the 506 that are in the Boston Housing data set
- Our model will be $y=eta_1x_1+eta_2x_2+\epsilon$, where $eta_1=rc{a}$ ge and $eta_2=r$ m
- Estimate eta_1 using OLS (NOT controlling for ${f rm}$) with the sample
- ullet Estimate eta_1 using OLS, controlling for ${f rm}$ with the same sample
- Repeat 2,000 times

Our data:

crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	medv
0.00632	18	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	NA	36.2
0.02985	0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7

eta_1 is underestimated when eta_2 is ommitted

Multicollinearity

Multicollinearity

- Multivariate linear models cannot handle perfect multicollinearity
- ullet Example: we have two variables: x_1 and $x_2=3 imes x_1$
- Fit model to predict y with x_1 and x_2 :

$$y = \beta_0 + \beta_1 x_1 + \mathrm{NA}$$
, where NA stands for not a value

- ullet We can think of this as eta_1 containing the entire effect for both x_1 and x_2 . After all, these variables are the same.
- Including highly correlated variables in our model will not produce biased estimates, but it will harm our precision.

Baseball example

- Use home runs, batting average, and RBI to predict salary
- Variables are defined as follows:
 - \circ salary = homeruns \times 10,000 + ϵ
 - \circ BA = homeruns + 270 + ϵ
 - \circ RBI = homeruns \times 3 + ϵ
 - \circ Example: homeruns = 30, BA = 300, RBI = 90, salary = 300, 000
- Fit a model for each variable individually:
 - \circ salary = 9,934.27 \times HR
 - $\circ \text{ salary} = 1,002.95 \times \text{BA}$
 - $\circ \text{ salary} = 3,291.02 \times \text{RBI}$
- ullet Fit a model with all three: $\mathrm{salary} = 9,226.169 imes \mathrm{HR} + 225.884 imes \mathrm{RBI} + 2.982 imes \mathrm{BA}$
- What is this model saying? Why not:

salary =
$$9,934.27 \times HR + 3,291.02 \times RBI + 1,002.95 \times BA$$

Helpful resource

• Omitted variable bias and multicollinearity discussion:

https://are.berkeley.edu/courses/EEP118/current/handouts/OVB%20versus%20Multicollinearity_eep118_sp15.pdf

Situation	Action
z is correlated with both x and y	Probably best to include z but be wary of multicollinearity
z is correlated with x but not y	Do not include z — no benefit
z is correlated with y but not x	Include z — new explanatory power
z is correlated with neither x nor y	Should not be much effect when including, but could affect hypothesis testing — no real benefit

Hypothesis testing

Hypothesis testing

- The previous example demonstrates why we must use F test to test all hypothesis simultaneously rather than a T test
- ullet Recall the T test for $H_0 o \hat{eta}_1 = heta : rac{(eta_1 heta)}{\operatorname{SE}(\hat{eta}_1)}$
- The above statistic is t-distributed under the null hypothesis, so we can see how likely it would be to get the above value from a t distribution
- If we are testing multiple hypotheses, we can apply the same logic as long as we know how that statistic is distributed. In this new test, our statistic belongs to the F distribution

Back to baseball

- To perform an F test, we compare a model with restrictions to a model without restrictions and see if there is a significant difference. Think of restrictions as features not included in the model
- salary = years + gmsYear + HR + RBI + BA
- \bullet If HR, RBI, BA all have no effect on salary, then the model salary = years + gmsYears should perform just as well
- How do we measure *performance*? Sum of squared residuals (SSR)!
- Test statistics: $\frac{\mathrm{SSR_r} \mathrm{SSR_{ur}}/q}{\mathrm{SSR_{ur}}/(n-k-1)}$
- The above fraction is the ratio of two chi squared variables divided by their degrees of freedom, which makes this F-distributed
- Remember adding variables can only improve the model, so the F statistic will always be positive

Types of variables and transformations

Affine

- Affine transformations are transformations that do not affect the fit of the model. The most common example is scaling transformations
- Example:
 - \circ weight(lbs) = 5 + 2.4 × height(inches)
 - \circ weight(lbs) = 5 + 0.094 × height(mm)
- This is why scaling variables is not necessary for linear regression, but knowing the scale of your variables is important for interpretation

Polynomial

- Linear regression can still be used to fit data with a non-linear distribution
- The model is linear in parameters, not necessarily variables
- ullet i.e. we must have eta_1 , eta_2 , eta_3 , but we can utilize x_1^2 or x_2/x_3
- We might leverage the above to generate a curved regression line, providing a better fit in some cases
- How do we now interpret the coefficients?

$$wage = 3.12 + .447exp - 0.007exp^2$$

• The big difference is the effect of an increase in experience on wage now depends on the level of experience

Logarithmic

Recall that the natural logarithm is the inverse of the exponential function, so $\ln(e^x)=x$, and:

$$ln(1) = 0$$

$$ln(0) = -\infty$$

$$\ln(ax) = \ln(a) + \ln(x)$$

$$\ln(x^a) = a \ln(x)$$

$$\ln(\frac{1}{x}) = -\ln(x)$$

$$\ln(\frac{x}{a}) = \ln(x) - \ln(a)$$

$$\frac{d\ln(x)}{dx} = \frac{1}{x}$$

Interpreting log variables

- $\beta_0 = 5$, $\beta_1 = 0.2$
- Level-log: $y = 5 + 0.2 \ln(x)$
 - $\circ~$ 1% change in $x=eta_1/100$ change in y
- Log-level: $\ln(y) = 5 + 0.2(x)$
 - $\circ~$ 1 unit change in $x=eta_1 imes 100\%$ change in y
- Log-log: $\ln(y) = 5 + 0.2 \ln(x)$
 - \circ 1% change in $x=eta_1\%$ change in y

Dummy variables

- Dummy variables is how categorical variables can be mathematically represented
- They represent groups or place continuous variables into bins
- What is this regression telling us?

$$\circ$$
 nbaSalary = $5 \times PPG + 10.5 \times guard + 9.6 \times forward + 10.8 \times center$

- ullet Do we need dummy variables for guard, forward, center?
- How would the regression change if we only used 2 out of 3?
- nbaSalary = $10.5 + 5 \times PPG 0.9 \times forward + 0.3 \times center$