Problem 1

late MLE	late MLE fit c	_a	c_v	sigma_a	sigma_v
sub 1	95.307829	3.2269964	1.93539812	1.3406119	1.33444916
sub 2	71.045391	2.9748061	2.0838684	1.22576434	0.77862192
sub 3	78.331701	2.8552776	2.159712	1.11882834	1.66172244
sub 4	75.686285	3.2819536	3.2417949	0.80678711	1.80015312
sub 5	67.343054	3.3008401	2.2271728	0.71344495	1.55407639

Problem 2

mu sigma d'12 d'45 slope intrcpt 1.9152 1.8842 0.3456 1.8008 0.5307 1.0164

Problem 3.1

Likelihood P(x | left) = f(x | mu, sigma) = f(5 | 0, 10) = 0.035 Likelihood P(x | right) = f(x | mu, sigma) = f(5 | 20, 10) = 0.013 Prior P(left) = 0.25 Prior P(right) = 0.75 P(x | left) P(left) = 0.088 P(x | right) P(right) = 0.097 Cat will choose right

Problem 3.2

Calculate x_av from equation 2.11 in lecture notes calculate sigma_av from equation 2.14 in lecture notes proceed as above post left post right Like Left like right 0.599 0.401 9.63E-07 2.15E-07 Cat choose left

problem 4

See exam ExamSlides and videolecture week 13 reconstructions

synthetic images

$$x = \boldsymbol{i}^T \boldsymbol{w} + \delta$$

$$x = (\boldsymbol{i} + \Delta \boldsymbol{i})^T \boldsymbol{w} + \delta$$

$$\Delta \boldsymbol{i} = \alpha \boldsymbol{w}$$

$$x = (\boldsymbol{i} + \alpha \boldsymbol{w})^T \boldsymbol{w} + \delta$$

