Fundamentos de los Lenguajes Informáticos

Grado en Ingeniería Informática

Hoja de ejercicios 3

Ejercicios sobre propiedades de los lenguajes regulares

Ejercicio 1 Demuestra que los siguientes lenguajes sobre el alfabeto $\Sigma = \{0, 1\}$ no son regulares:

- 1. $\{0^n 1^m 0^n \mid n, m \in \mathbb{N}\}$
- 2. $\{0^n 1^{2n} \mid n \ge 1\}$
- 3. $\{w \in \Sigma^* \mid |w| \text{ es un cuadrado perfecto}\}\$
- 4. $\{w1^n \mid w \in \Sigma^* \text{ y } |w| = n\}$

Ejercicio 2 Razona cuáles de los siguientes lenguajes son regulares y cuáles no. Demuestra la no regularidad de los no regulares mediante el lema de bombeo (o iteración), y la regularidad de los regulares mediante un autómata finito o una expresión regular.

- 1. $\{a^n b^m \mid n+m \ge 3\}$
- 2. $\{ww \mid w \in \Sigma^*\}$
- 3. $\{a^n b a^m \mid n, m \ge 1\}$
- 4. $\{w\overline{w} \mid w \in \{a,b\}^* \ y \ \overline{w}$ se obtiene de w sustituyendo cada a por b y viceversa $\}$
- 5. $\{x \in \{a, b, c\}^* \mid \exists j, k \in \mathbb{N} : x = a^j b^k c^m, j \geq 3, k = m\}$
- 6. $\{w \in \{a,b\}^* \mid |w|_a \text{ y } |w|_b \text{ son múltiplos de } 3\}$
- 7. $\{w \in \{a, b\}^* \mid \text{la primera letra coincide con la última}\}$
- 8. $\{0^{2n} \mid n \ge 1\}$
- 9. $\{w \in \{a, b\}^* \mid |w| \text{ es múltiplo de } 7\}$
- 10. $\{w \in \{a, b\}^* \mid |w| \text{ es potencia de } 2\}$
- 11. $\{w \in \{0,1\}^* \mid \tau(w) \text{ es potencia de } 2\}$, siendo $\tau(w)$ el valor numérico que representa w en base 2.
- 12. $\{xyx^R \mid x, y \in \{a, b\}^*\}$
- 13. $\{1^r 2^s 1^{r+s} \mid r, s \in \mathbb{N}\}$

Ejercicio 3 Minimiza el siguiente AFD:

Ejercicio 4 Define un algoritmo para determinar si dos lenguajes regulares L_1 y L_2 tienen al menos una cadena en común.

Ejercicio 5 Diseña algoritmos recursivos que, dada una expresión regular E, decidan si el lenguaje generado por E es:

- 1. Ø,
- 2. $\{\epsilon\}$,
- 3. infinito,
- 4. finito.

Ejercicio 6 ¿Existe algún lenguaje regular L tal que cualquier AFD que reconozca L debe tener como mínimo 27351 estados? Explica tu respuesta.

Ejercicio 7 Utilizando que el lenguaje $L_{01} = \{0^n 1^n \mid n \geq 0\}$ no es regular, demuestra que los siguientes lenguajes tampoco lo son, haciendo uso de operaciones que preservan la regularidad:

- 1. $L_A = \{0^i 1^j \mid i \neq j\}$
- 2. $L_B = \{0^n 1^m 2^{n-m}\}$

Ejercicio 8 Demuestra que los dos autómatas siguientes son equivalentes.

Ejercicio 9 Dado el siguiente autómata finito, construye un autómata equivalente mínimo.

Ejercicio 10 Minimiza el AFD de la figura, aplicando el algoritmo de minimización dos veces: una sin eliminar primero los estados inalcanzables y otra eliminándolos.

(La transición de q_2 a q_3 tiene que ser etiquetada con 0.)

Ejercicio 11 ¿Cuáles de las siguientes afirmaciones son verdaderas? Justifica adecuadamente cada respuesta.

- 1. Si $L_1 \subseteq L_2$ y L_1 no es regular, entonces L_2 no es regular.
- 2. Si $L_1 \subseteq L_2$ y L_2 no es regular, entonces L_1 no es regular.
- 3. Si L_1 y L_2 no son regulares, entonces $L_1 \cup L_2$ y $L_1 \cap L_2$ no son regulares.
- 4. Si L no es regular, entonces \overline{L} no es regular.
- 5. Si L_1 es regular y L_2 no es regular, entonces $L_1 \cup L_2$ no es regular.
- 6. Si L_1 es regular, L_2 no es regular y $L_1 \cap L_2$ no es regular, entonces $L_1 \cup L_2$ no es regular.

Ejercicio 12 Demuestra que dado un AFD M con alfabeto de entrada Σ , es posible construir un AFD M' con alfabeto de entrada $\Sigma' \supseteq \Sigma$ tal que L(M) = L(M').

Ejercicio 13 Describe algoritmos que, dados dos AFD M_1 y M_2 , indiquen cómo obtener un AFD M tal que

- 1. $L(M) = L(M_1) \cap L(M_2)$,
- 2. $L(M) = L(M_1) \cup L(M_2)$,
- 3. $L(M) = L(M_1) \setminus L(M_2)$.