MA5832 Data Mining and Machine Learning Week 2

Hong-Bin Liu

James Cook University

06 May 2020

Admistration

- Assessment 1: 20%, Due date: Week 2 Sunday, 17th May 2020, 11:59pm AEST.
- Future sessions will be held on Thursday, 6:00pm AEST.

Outline

- **Probability**

Notations

- p(a): Probability distribution of random variable a
- p(a, b): Joint Probability distribution of two random variables
- p(a|b): Conditional Probability distribution

Product Rule and Bayes' Rule for Conditional **Dependent Variables**

• Product rule:
$$p(x, y) = p(x|y)p(y) = p(y|x)p(x)$$

likelihood

prior

Bayes' Rule:
$$p(x|y) = p(y|x) p(x)$$
posterior evidence

Distributions

- Probability mass functions: Discrete probability distributions
- Probability density functions: Continuous probability distributions

References

- "Mathematics for Machine Learning". Copyright 2020 by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. https://mml-book.com
- Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.Chapter 2: Linear Algebra (pp. 29-50). https://www.deeplearningbook.org/ contents/prob.html

Outline

- **Optimisation**

What is optimisation?

In the simplest case, an optimisation problem consists of maximising or minimising a real function by systematically choosing input values from within an allowed set and computing the value of the function.

Figure: Taken from wikipedia.

Approaches

Mathematical

Approaches

- Mathematical
- Random search

Approaches

- Mathematical
- Random search
- Gradient-based methods

First Derivative

Definition 5.2 (Derivative). More formally, for h > 0 the derivative of f at x is defined as the limit

$$\frac{\mathrm{d}f}{\mathrm{d}x} := \lim_{h \to 0} \underbrace{f(x+h) - f(x)}_{h}$$

Derivatives of Common functions

- (c)' = 0
- $(x^a)' = ax^{a-1}$
- $(e^x)' = e^x$
- $(\sin x)' = \cos x$
- $(\cos x)' = -\sin x$

Differentiation Rules

Product rule:
$$(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

Quotient rule:
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Sum rule:
$$(f(x) + g(x))' = f'(x) + g'(x)$$

Chain rule:
$$(\underline{g}(\underline{f(x)}))' = g'(\underline{f(x)})\underline{f'(x)}$$

Second Derivatives

Second Derivatives is the derivative of derivative.

Example: $f(x) = x^{\frac{3}{2}}$ Its derivative is $f'(x) = 3x^2$

The derivative of $3x^2$ is 6x, so the second derivative of f(x) is:

$$f''(x) = 6x$$

Global and local minima

Gradient Decent

- Step 1. Given a starting point $\underline{x}^{(k)}$, set k=0
- Step 2. Find the gradient $\nabla f(x^{(k)})$
- Step 3. Then find x^{k+1}

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f\left(x^{(k)}\right)$$

• Step 4. Set k = k + 1, repeat steps 2 to 4 a large number of times

Stochastic Gradient Descent (SGD)

- Step 1. Given a starting point $x^{(k)}$, set k=0
- Step 2. Find the gradient $\nabla f(x^{(k)})$ using subset
- Step 3. Then find x^{k+1}

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f\left(x^{(k)}\right)$$

• Step 4. Set k = k + 1, repeat steps 2 to 4 a large number of times

Newton's method

- Step 1. Given a starting point $x^{(k)}$, set k=0
- Step 2. Find the gradient $\nabla f(x^{(k)})$
- Step 3. Find the Hessian matrix $F(x^{(k)})$
- Step 4. Then find x^{k+1} :

$$x^{(k+1)} = x^{(k)} - F\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right)$$

• Step 5. Set k = k + 1, repeat steps 2 through 5 a large number of times

Outline

- Demo

Outline

- **Questions?**

Questions?

Thank You.

