IFRS- Instituto Federal de Educação, Ciência e Tecnologia - Campus Rio Grande Lista de Exercícios de Vestibulares- Binômio de Newton

- 1 (UF-SE) A soma $\binom{5}{2} + \binom{5}{3} + \binom{6}{4}$ igual a:
- (Ucsal-BA) Se um número natural n é tal

$$\begin{pmatrix} 10 \\ 5 \end{pmatrix} + \begin{pmatrix} 10 \\ 6 \end{pmatrix} + \begin{pmatrix} 11 \\ 7 \end{pmatrix} = \begin{pmatrix} 12 \\ n^2 - 2 \end{pmatrix},$$

então n é:

- a) igual a 6 ou -6.
- b) um número par.
- c) um número quadrado perfeito.
- d) um número maior que 10.
- e) divisor de 15.
- 3 (Unifor-CE) A soma

$$\begin{pmatrix}
30 \\
8
\end{pmatrix} + 2 \begin{pmatrix}
30 \\
9
\end{pmatrix} + \begin{pmatrix}
30 \\
10
\end{pmatrix} \text{ é igual a:}$$
a)
$$\begin{pmatrix}
30 \\
11
\end{pmatrix} \quad \begin{pmatrix}
31 \\
10
\end{pmatrix} \quad \begin{pmatrix}
32 \\
10
\end{pmatrix}$$
b)
$$\begin{pmatrix}
31 \\
9
\end{pmatrix} \quad \begin{pmatrix}
32 \\
9
\end{pmatrix}$$

- (F. M. ABC-SP) O número de raízes da equação $\begin{pmatrix} 12 \\ 2x \end{pmatrix} = \begin{pmatrix} 12 \\ x^2 \end{pmatrix}$ é:
- c) 2 e) maior que 3 a) 0
- (PUC-RS) Sendo $\binom{18}{k} = \binom{18}{k+4}$, então a) 120
 - b) 720 e) 40 320
 - c) 840
 - 6 (UF-PR) Sejam $n \in p$ números inteiros positivos, tais que $n-1 \ge p$. Então,

$$\binom{n-1}{p-1} + \binom{n-1}{p} + \binom{n}{p+1} \notin \text{igual a:}$$

- positives, tais que n-1 > p. Entao, $\binom{n-1}{p-1} + \binom{n-1}{p} + \binom{n}{p+1} \text{ \'e igual a:}$ a) $\binom{n-1}{p-1}$ c) $\binom{n+1}{p}$ e) $\binom{n+1}{p+1}$ b) $\binom{n}{p}$ d) $\binom{n+1}{p-1}$
- (UF-AL) O 4º termo do desenvolvimento do binômio (2x² + kx)8, segundo as potências decrescentes de x, é igual a 28x13. Nessas condições, k é um número: a) negativo.

- b) divisível por 3.
- c) irracional.
- d) racional e não inteiro.
- e) múltiplo de 6.
- (UE-PI) O coeficiente de x^3 no desenvolvimento de $(3x + \frac{1}{3})^5$ é: a) 15 b) 18 c) 27
- (UCDB-MT) O coeficiente do 4º termo do desenvolvimento de (2x - 3y)6, segundo as potências decrescentes de x, é: a) - 4230c) 4 320 e) - 4320b) 4 230 d) -4300
- **10** (Furg-RS) O termo independente de xno desenvolvimento de $\left(\frac{2}{x^2} + x\right)^6$ é: a) 4 c) 30 e) inexistente b) 15
- 11 (U. F. Ouro Preto-MG) No desenvolvimento de $\left(x + \frac{1}{\sqrt[3]{x}}\right)^6$, qual é o coeficiente do termo em x^2 ? a) 20 c) 56
- b) 35 d) 70 12 (Unifor-CE) Se o desenvolvimento do binômio $(ax + b)^4$, com a e b reais, é $16x^4 + 96x^3 + 216x^2 + 216x + 81$, então os números a e b são tais que:
 - a) \sqrt{b} é um número inteiro
 - b) b³ é um número par
 - c) a > b
 - d) $a^2 = 9$
- 13 (PUC-MG) No desenvolvimento de $(x + 1)^{10}$, o termo de grau três tem coe
 - a) 80 c) 100 e) 135 b) 95 d) 120
- 14 (UF-SE) No desenvolvimento do binômio (x + a)6, segundo as potências decrescentes de x, o termo central é $540x^3$. Nessas condições, o valor de a é: e) 4
 - a) -3c) 2 b) -2d) 3
- 15 (Ucsal-BA) Dos coeficientes dos termos do desenvolvimento do binômio
 - $\left(2x \frac{1}{x}\right)^8$, o maior é: c) 1 120 d) 1 792 a) 512 b) 1 024
- **16** (UE-CE) O coeficiente de x^6 no desenvolvimento de $(\sqrt{2} \cdot x^2 + 2)^5$ é:
 - a) $40\sqrt{2}$ b) $48\sqrt{2}$ d)80 $\sqrt{2}$
- (PUC-RJ) O coeficiente de x na expansão de $\left[x + \frac{1}{x}\right]^7$ é: a) 0 c) 28 e) 49 b) 7 d) 35

18 (U. F. Santa Maria-RS)

Se
$$x = \binom{6}{0} + \binom{6}{1} + \dots + \binom{6}{6}$$
 e
 $\binom{y}{1} + \binom{y}{2} + \dots + \binom{y}{y} = 255$, então
 $\frac{x}{y}$ vale:
a) 5 c) 8 e) 9
b) 6 d) 7

- (Umesp) No desenvolvimento de $(\sqrt{3} + x)^6$, segundo as potências crescentes de x, o termo central é:
 - a) $10x^2$
- c) $30\sqrt{3} \text{ x}^3$ e) $60\sqrt{3} \text{ x}^3$
- b) $24x^{3}$
- 20 (PUC-RS) Se o terceiro termo do desenvolvimento de $(a + b)^n$ é $21 \cdot a^5 \cdot b^2$, então o sexto termo é:
 - a) $35 \cdot a^4 \cdot b^3$
- d) $7 \cdot a \cdot b^6$
- b) 21 · a³ · b⁴
- e) $7 \cdot a^2 \cdot b^5$
- c) $21 \cdot a^2 \cdot b^5$
- (UF-PI) Se a e b são números reais tais que $(a + b)^{10} = 1024$ e se o 6º termo do desenvolvimento binomial é igual a 252,

a)
$$a = \frac{1}{2} eb = \frac{3}{2}$$

b)
$$a = 3 e b = -1$$

c)
$$a = \frac{2}{3} eb = \frac{4}{3}$$

d)
$$a = \frac{1}{3} eb = \frac{5}{3}$$

- e) a = 1 e b = 1
- (Unifor-CE) No desenvolvimento do binômio $\left(x^4 + \frac{2}{x}\right)^8$, segundo as po-

tências decrescentes de x, o quarto termo é:

- a) 448x¹⁷ c) 448x²⁰ e) 448x²³ b) 56x¹⁷ d) 56x²⁰
- 23 (UF-RN) Para que exista um termo independente de x no desenvolvimento

de $\left(\frac{2}{x} - x^2\right)^n$, *n* deve ser um número inteiro:

- a) múltiplo de 3.
- d) múltiplo de 7.
- b) par.
- e) divisível por 11.
- c) divisível por 5.

24 (ITA-SP) Dadas as afirmações:

$$\begin{split} I. \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n} = 2^n, \\ \text{para } n \in \mathbb{N} \end{split}$$

II.
$$\binom{n}{k} = \binom{n}{n-k}$$
, $n \in \mathbb{N}$, $k = 0, 1, 2, ..., n$

III. Existem mais possibilidades de escolher 44 números diferentes entre os números inteiros de 1 a 50 do que escolher 6 números diferentes entre os inteiros de 1 a 50.

Conclui-se que:

- a) todas são verdadeiras.
- b) apenas (I) e (II) são verdadeiras.
- c) apenas (I) é verdadeira.
- d) apenas (II) é verdadeira.
- e) apenas (II) e (III) são verdadeiras.

Testes de vestibulares

1	e	7	d	13	d	19	e
2	e	8	d	14	d	20	C.
3	e	9	e	15	d	21	e
4	С	10	d	16	d	22	a
5	d	11	a	17	d	23	a
6	e	12	e	18	С	24	b