МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра вычислительной техники

Отчет по лабораторной работе №8 по дисциплине «Элементарная база цифровых систем»

Тема: ПРОЕКТИРОВАНИЕ КОНЕЧНЫХ АВТОМАТОВ Вариант 5

Соболев М.С.

Дубенков С.А

Степовик В.С.

Ельчанинов М.Н.

Студенты гр. 9308

Преподаватель

Цель работы — получить практические навыки в проектировании автомата на основе логических элементов с использованием триггеров заданного типа.

Задание на работу

Спроектировать автомат, реализующий заданный алгоритм функционирования.

Вариант 5: схема микропрограммы: а, автомат: Мили, триггер: D

Рисунок 1. Схема микропрограммы из 5 варианта **Ход работы**

Комбинационный анализ

Разметка схемы микропрограммы:

Рисунок 2. Разметка схемы микропрограммы Состояния автомата закодированы таким образом: b0=00, b1=10, b2=11. Структурная таблица:

Исходное			Условие	Состояние перехода (t+1)					Функции	
состояние (t)									возбуждения	
Метка	Q1	Q0		Метка	Q1	Q0	y1	y2	D1	D0
b0	0	0	~x1	b1	0	1	1	1	0	1
			x1x2	b2	1	1	0	0	1	1
			x1~x2	b2	1	1	1	0	1	1
b1	0	1	x1	b0	0	0	0	0	0	0
			~x1	b1	0	1	1	1	0	1
b2	1	1	1	b0	0	0	0	1	0	0

Функции возбуждения триггеров:

$$D1 = Q1Q0x1x2 \lor Q1Q0x1\overline{x2} = Q1Q0x1$$

$$D0 = \overline{Q1}Q0\overline{x1} \vee Q1Q0x1x2 \vee Q1Q0x1\overline{x2} \vee \overline{Q1}Q0\overline{x1} = \overline{Q1}Q0\overline{x1} \vee Q1Q0x1$$

Функции выходов для автомата Мили:

$$y1 = \overline{x1Q0} \ \overline{Q1} \lor x1\overline{x2} \ \overline{Q0} \ \overline{Q1} \lor \overline{x1} \ Q0\overline{Q1} = \overline{x1} \ \overline{Q1} \lor \overline{x2} \ \overline{Q0} \ \overline{Q1}$$

$$y2 = \overline{x1Q0} \ \overline{Q1} \lor \overline{x1} \ Q0\overline{Q1} \lor Q0Q1 = \overline{x1} \ \overline{Q1} \lor Q0Q1$$

Разработка функциональной схемы алгоритма

Рисунок 2. Функциональная схема