RICE UNIVERSITY

Search for Top Squark via All-Hadronic Decay Channels with Heavy Object Tagging

by

Matthew Cavenaugh Kilpatrick

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Approved, Thesis Committee:

Karl Ecklund, Chair
Associate Professor of Physics and
Astronomy

Paul Padley
Professor of Physics and Astronomy

David Scott
Noah Harding Professor

Houston, Texas October, 2019

ABSTRACT

Search for Top Squark via All-Hadronic Decay Channels with Heavy Object Tagging

by

Matthew Cavenaugh Kilpatrick

Contents

	Abs	tract		ii
	List	of Figu	res	vi
	List	of Tabl	es	viii
1	Int	roduc	tion	1
	1.1	Motiva	ation	1
2	Suj	oersyr	nmetry and the Standard Model	2
	2.1		tandard Model	2
		2.1.1	The Fundamental Particles	2
		2.1.2	Quantum Field Theory	3
		2.1.3	Noether's Theorem	3
		2.1.4	Quantum Electrodynamics (QED)	5
		2.1.5	Quantum Chromodynamics	7
		2.1.6	Weak Force	9
		2.1.7	The Electroweak Lagrangian	12
		2.1.8	The Higgs Mechanism	13
		2.1.9	Electroweak	15
		2.1.10	The Standard Model Lagrangian	16
	2.2	Funda	mental Problems in the Standard Model	17
		2.2.1	Dark Matter	17
		2.2.2	Hierarchy Problem	19
		2.2.3	Grand Unified Theory	20
	2.3	Supers	symmetry	21
		2.3.1	Supermultiplets and Chirality	22

		2.3.2	Minimal Supersymmetric Standard Model	22
		2.3.3	R Parity	24
		2.3.4	Mass Spectrums	25
		2.3.5	Supersymmetry Searches	26
	2.4	Currer	nt SUSY Results	27
	2.5	Improv	ved Methods	31
3	Coi	mpact	Muon Solenoid	32
	3.1	The D	etector	32
		3.1.1	Tracker	33
		3.1.2	Electromagnetic Calorimeter	37
		3.1.3	Hadronic Calorimeter	38
		3.1.4	Superconducting solenoid	39
		3.1.5	Muon Chambers	39
	3.2	Detect	for Methods	40
4	Sea	rch S	trategy	42
	4.1	Physic	s Objects	42
		4.1.1	Jets	42
		4.1.2	Heavy Object Tagging	43
		4.1.3	B-Tagging	43
		4.1.4	Missing Transverse Momentum	43
		4.1.5	MET Filters	44
		4.1.6	H_T	44
		4.1.7	Secondary Vetices	44
		4.1.8	B Quark Transverse Momentum	45
		4.1.9	Soft b-tagging	45
		4.1.10	Lepton Identification	46
		4.1.11	Tau Identification	49
	4.2	Search	Strategy	49
	4.2	Scarcii	Diffategy	10

		4.2.2	Baseline Selection	. 49
5	Sto	p qua	ark Production and Backgrounds	52
	5.1	Produ	action and Decay Modes	. 52
	5.2	Stand	ard Model Background	. 53
		5.2.1	Lost Lepton	. 53
		5.2.2	Z Boson Decay to Neutrinos	. 59
		5.2.3	Quantum Chromodynamic Events	. 60
		5.2.4	Rare Interactions	. 61
6	Sea	arch F	Region Design	67
	6.1	Minin	nizing the ttZ background	. 67
	6.2	Lost I	Lepton Application	. 68
	6.3	Search	n Regions	. 68
	6.4	Search	n Region Optimization	. 68
	6.5	Limits	5	. 68

Figures

2.1	The fundamental particles of the Standard Model. There are three	
	generations of quarks and leptons. Along with the five bosons, where	
	four of them relate to the interactions of the three forces included in	
	the SM: Electromagnetism, the Weak force, and the Strong force and	
	the final being the Higgs boson.	4
2.2	https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%95Kobayashi%E2%80%95Kobayashi%E2%80%95Kobayashi%E2%80%95Kobayashi%E2%80%95Kobayashi%E2%80%95Kobayashi%E2%80%95Kobayashi%E2%80%95Kobayashi	$\%93 \mathrm{Maskawa_matrix}$
2.3	Feynman diagram for Neutral Weak interaction	11
2.4	The loop corrections to the Higgs boson interacting with a top quark	
	and its superpartner the top squark. This is a next-to-leading order	
	(NLO) correction to the Higgs boson mass	18
2.5	The energy dependence of the inverse gauge couple of each force in	
	the SM (dashed line) and the MSSM (solid lines). The MSSM gives	
	two thresholds for the sparticle mass 750 GeV and 2.5 TeV	20
2.6	On the right we have the arbitrary masses of the top and charm quarks.	25
2.7	Limits for the mass parameter space for T2tt decays. With a current	
	limit of 1.1 TeVfor a minimal neutralino mass	28
2.8	Limits for the mass parameter space for T2bW decays. With a	
	current limit of 750 GeV for a minimal neutralino mass	28
2.9	Limits for the mass parameter space for T2tb decays. With a current	
	limit of 850 GeV for a minimal neutralino mass	29
2.10	Limits for the mass parameter space for T2fbd decays. Which has a	
	range of 550 GeV for a $\tilde{\chi}_1^0$ mass of approx. 500 GeV	29
2.11	Limits for the mass parameter space for T2bWC decays. Which has	
	a range of 550 to 675 GeV for a $\tilde{\chi}_1^0$ mass of 600 GeV	30

2.12	Limits for the mass parameter space for T2tt decays. With a current				
	limit of 1.1 TeV for a minimal neutralino mass	30			
3.1	A cross-section of the CMS detector, oriented by looking down the				
	direction of the beam pipe	33			
3.2	Geometry of the CMS Tracker, the inner most region in green is the				
	pixel detector while the outer region in blue and red are the silicon				
	strips	34			
3.3	Components of the pixel modules. Made up of a silicon layer, a grid				
	of 8 ROCs which are attached via bump bonds. This is all controlled				
	with a TBM connection to read out data	35			
3.4	Measuring the throughput of the FED with the emulated and				
	simulated events provided by the FED Tester. The Data rate is				
	shown as the solid blue line with the corresponding trigger rate as				
	the dotted red line. The simulated event sizes are shown as their				
	equivalent emulated hits/ROC/channel on the data line	36			
3.5	A quarter cross-section of the three detection systems for CMS	40			

Tables

2.1	Some words of explanation	6
2.2	The chiral supermultiplets of the MSSM. Spin-0 fields are complex	
	scalars and spin- $1/2$ fields are left-handed two component Weyl	
	fermions. CITE SUSY PRIMER	23
2.3	The chiral supermultiplets of the MSSM. CITE SUSY PRIMER $$	23
4.1	Electron identification requirements, defined separately for electrons	
	in the ECAL barrel and endcap regions. The tabulated numbers for	
	each working point are the thresholds applied to the corresponding	
	quantities in the first column	47
4.2		48

Chapter 1

Introduction

1.1 Motivation

Chapter 2

Supersymmetry and the Standard Model

The fundamental theory of particle physics, known as the Standard Model (SM) can predict precise interactions between the fundamental particles in our universe. With these predictions we can confirm processes, but there are some aspects of the universe that have not yet been explained. In this Chapter, we will analyze the Standard Model, look at some specific shortcomings, and introduce supersymmetry as a possible solution.

2.1 The Standard Model

After decades of theoretical and experimental research the SM has been developed into a theory that explains the Electromagnetic (EM), Strong, and Weak forces. The SM has not yet been able to include Gravity within the theory. With the robust theoretical and experimental methods used in the SM, we have discovered new elementary particles and predicted others.

2.1.1 The Fundamental Particles

All matter can be explained by three kinds of elementary particles: leptons, quarks, and gauge bosons. Each of these can be distinguished by various quantum properties. The leptons and quarks are fermions, which are particles that have half-integer spin. Leptons are particles that only interact with the EM and Weak force,

while quarks interact with all three forces of the SM. The gauge bosons are the force carries for each respective force and have integer spin.

There are three generations of leptons and quarks which are differentiated by a charge $\pm e$, the charge of an electron. Leptons have three different charged particles: electron (e), muon (μ) , and tau (τ) , with each charged particle having a corresponding neutrino (ν) of the same flavor, see fig 2.1. Quarks are also separated into three generations of doublets, the down-type $(-\frac{1}{3}e)$: down (d), strange (s), and bottom (b) and up-type $(\frac{2}{3}e)$: up (u), charm (c), and top (t), see fig 2.1. Each of the quarks has a color associated with it with is analogous to an electric charge, except there are three colors charges: red, blue, and green.

2.1.2 Quantum Field Theory

The interactions of all these particles are described by quantized fields whose operators describe the creation and annihilation of particles. Each of the fields of the SM have a corresponding gauge boson, see fig. 2.1. The most well-known being the EM field and its interactions. In order to write a concise theory of the particles in the SM, the symmetry and conservation laws of the SM can be derived by starting with Noether's Theorem.

2.1.3 Noether's Theorem

Noether's theorem states, "to each symmetry of a local Lagrangian, there corresponds a conserved current". This can be done by allowing for an infinitesimal symmetry variation. Requiring the Lagrangian to be invariant under $\phi(x) \to \phi'(x) = \phi(x) + \alpha \Delta \phi(x)$, where α is infinitesimal real parameter and $\Delta \phi$ is a deformation to the field, up to a 4-divergence, the Lagrangian transforms as,

Figure 2.1: The fundamental particles of the Standard Model. There are three generations of quarks and leptons. Along with the five bosons, where four of them relate to the interactions of the three forces included in the SM: Electromagnetism, the Weak force, and the Strong force and the final being the Higgs boson.

$$\mathcal{L}(x) \to \mathcal{L}(x) + \alpha \partial_{\mu} \mathcal{J}^{\mu}(x),$$
 (2.1)

where \mathcal{J}^{μ} is a current. If we apply the Euler-Lagrange equation,

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) - \frac{\partial \mathcal{L}}{\partial \phi} = 0,$$
 (2.2)

to Eqn. 2.1 with the addition of the fluctuation of the particle field. After some simplification we get a conserved current,

$$\partial_{\mu} j^{\mu}(x) = 0$$
, where

$$j^{\mu}(x) = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \Delta \phi - \mathcal{J}^{\mu}$$
(2.3)

We see from the above equation that the current $j^{\mu}(x)$ of the Lagrangian is conserved. Now let's apply this to the particle fields of the SM.

2.1.4 Quantum Electrodynamics (QED)

First, we start with the assumption that the wave function $\psi(x)$ should transform as,

$$\psi(x) \to e^{i\alpha(x)}\psi(x),$$
 (2.4)

where $\alpha(x)$ has an arbitrary dependence on space and time.

If one were to include this into the Lagrangian for a spin-1/2 particle in a vacuum,

$$\mathcal{L}_{QED}^{vac} = i\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\overline{\psi}\psi \tag{2.5}$$

Type	Form	Components	Space Inversion
Scalar	$\overline{\psi}\psi$	1	+ under P
Vector	$\overline{\psi}\gamma^{\mu}\psi$	4	Space compts.: $-$ under P
Tensor	$\overline{\psi}\sigma^{\mu\nu}\psi$	6	
Axial Vector	$\overline{\psi}\gamma^5\gamma^\mu\psi$	4	Space compts.: $+$ under P
Pseudoscalar	$\overline{\psi}\gamma^5\psi$	1	- under P

Table 2.1: Some words of explanation

where the γ^{μ} are the Dirac matrices, ∂_{μ} is the partial derivative, $\overline{\psi}$ is the hermitian conjugate of the wavefuntion ψ , and m is the mass of the particle. As a small aside, the bilinear quantities $\overline{\psi}(4\times4)\psi$ have certain properties under lorentz transformations when the 4×4 matrix is a γ -matrices. These are of the form,

$$\gamma^{0} = \begin{bmatrix} \mathbf{I} & 0 \\ 0 & -\mathbf{I} \end{bmatrix}, \boldsymbol{\gamma} = \begin{bmatrix} 0 & \boldsymbol{\sigma} \\ -\boldsymbol{\sigma} & 0 \end{bmatrix}, \gamma^{5} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{I} & 0 \end{bmatrix}$$
(2.6)

where the I is the identity matrix and σ are the Dirac matrices. We can combine the first two parts of Eqn. 2.6 and write it compactly as γ^{μ} where $\mu = 0, 1, 2$, and 3. The possible interesting quantities of the above transformations are shown in Table 2.1.

To allow for the field to be invariant, we must include a derivative, D_{μ} , that is covariant under phase transformations,

$$D_{\mu} \equiv \partial_{\mu} - ieA_{\mu}. \tag{2.7}$$

The covariant derivative includes the vector field A_{μ} which must also transform as,

$$A_{\mu} \to A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha.$$
 (2.8)

So after requiring that there be a local gauge transformation, we were forced to introduce a vector field A_{μ} , called the gauge field, which couples to Dirac particles in the same way as the photon field. We will think of this new field as the real photon field, which means we need to add a kinematic energy portion to the lagrangian. This kinematic term will be invariant under Eqn. 2.8, which leads us to final representation of the QED lagrangian which can be written down concisely as,

$$\mathcal{L}_{QED} = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + e\overline{\psi}\gamma^{\mu}A_{\mu}\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}, \qquad (2.9)$$

where A_{μ} is the EM field operator and $F^{\mu\nu}$ is the EM field tensor. This Lagrangian describes the interactions between spin-1/2 charged particles and the U(1) EM force. Each of the parts of this equation are lorentz invariant which allows this to be true in all reference frames.

2.1.5 Quantum Chromodynamics

Let's now transition from the description of the U(1) EM field to the SU(3) Quantum Chromodynamic (QCD) field and the transformation of quark fields. A quark in a vaccuum is described by,

$$\mathcal{L}_{QCD}^{vac} = \overline{q}_j (i\gamma^{\mu}\partial\mu - m)q_j, \qquad (2.10)$$

where q_1, q_2 , and q_3 are the three color fields. From this we want to require that the field is again invariant under another local phase transformation such as,

$$q(x) \to Uq(x) \equiv e^{i\alpha_a(x)T_a}q(x),$$
 (2.11)

where U is a 3×3 unitary matix, T_a with a = 1, ..., 8 are a set of linearly independent traceless 3×3 matrices, and α_a are the group parameters. Since the generators T_a do not necessarily commute with each other, we can see that it is a non-Abelian transformation and the commutator can be represented as,

$$[T_a, T_b] = i f_{abc} T_c, \tag{2.12}$$

where f_{abc} are constants.

We need to impose SU(3) local gauge invariance on Eqn. 2.10, to allow for the following phase transformations,

$$q(x) \to (1 + i\alpha_a(x)T_a)q(x),$$

$$\partial_{\mu}q \to (1 + i\alpha_aT_a)\partial_{\mu}q + iT_aq\partial_{\mu}\alpha_a.$$
(2.13)

From this is seems straight forward that we can proceed in exactly the same manner as QED, which is to add a transformation to the derivative,

$$D_{\mu} = \partial_{\mu} + ig_Q T_a G^a_{\mu}. \tag{2.14}$$

where the field G^a_{μ} transforms as,

$$G^a_\mu \to G^a_\mu - \frac{1}{g_Q} \partial_\mu \alpha_a,$$
 (2.15)

where g_Q is the coupling strength of QCD interactions. This will give us a similar

Lagrangian to the QED one derived above, but this is not sufficient for a non-Abelian gauge transformation and it does not produce a gauge-invariant Lagrangian. One final transformation is required for the G^a_{μ} fields,

$$G_{\mu}^{a} \to G_{\mu}^{a} - \frac{1}{g_{Q}} \partial_{\mu} \alpha_{a} - f_{abc} \alpha_{b} G_{\mu}^{c}. \tag{2.16}$$

This finally gives us a gauge invariant kinetic energy term for all the G^a_μ fields and thus we can write the QCD interactions as,

$$\mathcal{L}_{QCD} = \overline{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g_{Q}(\overline{q}\gamma^{\mu}T_{a}q)G_{\mu}^{a} - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}. \tag{2.17}$$

From all of this we seem to be missing a vital part of the SM, specifically a theory for the Weakly interacting processes which is mediated by the massive bosons, W and Z from fig. 2.1.

2.1.6 Weak Force

The Weak force is responsible for nuclear decay. The Weak force has an interaction of the type $\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$ so it is a V-A interaction with SU(2) symmetry. From this, we can conclude that it violates Parity. Parity is a transformation from $(x,y,z) \to (-x,-y,-z)$ or space inversion. Since it violates Parity, the next step is to consider a conservation of CP, where C is charge conjugation (particle-to-antiparticle).

The main experimental implications of this proposed conservation comes from the decay of the neutral Kaon, $K^0(\overline{s}d)$ and $\overline{K}^0(s\overline{d})$. These have two CP states which are, $CP|K^0\rangle = -|\overline{K}^0\rangle$, and $CP|\overline{K}^0\rangle = -|K^0\rangle$. Once we normalize these eigenstates of CP we get the corresponding wavefunctions,

 $Figure~2.2:~https://en.wikipedia.org/wiki/Cabibbo\%E2\%80\%93Kobayashi\%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo\%E2\%80\%93Kobayashi\%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo\%E2\%80\%93Kobayashi\%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo\%E2\%80\%93Kobayashi\%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo%E2\%80\%93Kobayashi\%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo%E2\%80\%93Kobayashi\%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo%E2\%80\%93Kobayashi\%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wikipedia.org/wiki/Cabibbo%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wiki/Cabibbo%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wiki/Cabibbo%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wiki/Cabibbo%E2\%80\%93Maskawa_mathalogure~2.2:~https://en.wiki/Cabibbo%E2\%80\%93Maskawa~2.2:~https://en.wiki/Cabibbo%E2\%80\%93Mas$

$$|K_1\rangle = \left(\frac{1}{\sqrt{2}}\right)(|K^0\rangle - |\overline{K}^0\rangle) \text{ and } |K_2\rangle = \left(\frac{1}{\sqrt{2}}\right)(|K^0\rangle + |\overline{K}^0\rangle),$$

where each has the invariance $CP|K_1\rangle = |K_1\rangle$ and $CP|K_2\rangle = -|K_2\rangle$. The two Kaon states are expected to decay into either two pions or three pions for $|K_1\rangle$ and $|K_2\rangle$, respectively. Since there is a greater energy release in the $|K_1\rangle$ state the lifetime of that particle is thought to be less than $|K_2\rangle$. After experimenting on the purity of Kaon decays after a long distance away from an interaction point, we have found that it is possible for the $|K_1\rangle$ to decay into three pions. This is direct evidence of Weak decays violating CP conservation.

Now the Weak force is mediated by two vector bosons, W and Z, see fig. 2.1. These are unlike the other forces because these vector bosons have a large mass of $m_W = 80.379 \pm 0.012$ GeV and $m_Z = 91.1876 \pm 0.0021$ GeV. The W boson is a charged particle and interacts with many nuclear decays.

The Wboson interacts very interestingly for quarks in the SM. There is a mixing of flavors of quarks for particles. They will mix partners between up-type and downtype particles, see fig. 2.2. [Kobayashi, M. and Maskawa, K. (1973) Progress in

Figure 2.3: Feynman diagram for Neutral Weak interaction

Theoretical Physics, 49, 652]. The interactions for the generalized three generations of quarks is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix,

$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix}, \qquad (2.18)$$

where for example, V_{ud} is the coupling of u to d which is exactly $(d \to u + W^-)$. This matrix can be reduced to a form which has three generalized Cabibbo angles $(\theta_{12}, \theta_{23}, \theta_{13})$ and a phase factor (δ) . The coupling between the third generation does not mix with the other two generations. From that we can recover the Cabibbo-GIM matrix[cite here]. For the moment, we can only determine these values from experimentation.

The Zboson is known as the neutral current. This boson mediates forces between particles and their respective antiparticles, see fig. 2.3. This interaction for the neutral weak force is $\gamma^{\mu}(c_V^f - c_A^f \gamma^5)$ which is quite similar to the charged weak interaction, but differs by the constants c_V^f and c_A^f .

2.1.7 The Electroweak Lagrangian

The simplest group for the Electroweak interaction is $SU(2)_L \times U(1)_Y$ which will give the left-handed interactions in doublets with the addition of massive gauge bosons W and Z with a massless photon. We first consider the free Lagrangian,

$$\mathcal{L} = \overline{\psi}_j \gamma^\mu \psi_j, \tag{2.19}$$

where j is the fermion wavefunction. We are not including the mass parameter because it would cause the left and right-handed parts to mix. This is assumed to transform under the global invariant

$$\chi_L \to \chi_L' = e^{i\frac{\tau_a}{2}\alpha^a(x) + i\beta(x)Y} \chi_L,$$

$$\psi_R \to \psi_R' = e^{i\beta(x)Y} \psi_R$$
(2.20)

where the transformation $e^{i\frac{\tau_a}{2}\alpha^a(x)}$ with a=1,2,3 is the $SU(2)_L$ transformation and only acts on the left-handed doublet. The next step is to require that the Lagrangian is invariant under local $SU(2)_L \times U(1)_Y$. We allow for the following covariant derivatives,

$$D_{\mu}\psi_{1} = [\partial_{\mu} - ig_{W}\frac{\tau_{a}}{2}W_{\mu}^{a} - ig_{W}'y_{1}B_{\mu}]\psi_{1}$$

$$D_{\mu}\psi_{2} = [\partial_{\mu} - ig_{W}'y_{2}B_{\mu}]\psi_{2}$$

$$D_{\mu}\psi_{3} = [\partial_{\mu} - ig_{W}'y_{3}B_{\mu}]\psi_{3}$$
(2.21)

where g_W and g'_W are the Weak force coupling constants while W^a_μ and B_μ are four gauge bosons and can be the possible candidates for W^\pm , Z and γ . Just like

the above derivations the fields need to transform along with the wavefuntions and derivatives. These transformations are,

$$B_{\mu} \to B'_{\mu} = B_{\mu} + \frac{1}{g'_W} \partial_{\mu} \beta(x)$$

$$W \mu \to W'_{\mu} = U_L W_{\mu} U_L^{\dagger} - \frac{1}{g_W} \partial_{\mu} U_L U_L^{\dagger}$$
(2.22)

where $U_L = e^{i\frac{\tau_a}{2}\alpha^a(x)}$. These transformation are similar to the QED and QCD transformation. If we include all of these invariant transformations in the free Weak Lagrangian Eqn. 2.19 and we get a free invariant Lagrangian, but this does not allow us to include a mass term for the fermions. Therefore this is not a viable procedure to include the Electroweak interactions into the model. In order to do this we must include the Higgs Mechanism.

2.1.8 The Higgs Mechanism

We are interested in the spontaneous symmetry breaking of a local SU(2) gauge symmetry. Specifically, the following Lagrangian,

$$\mathcal{L} = (\partial_{\mu}\phi)^{\dagger}(\partial^{\mu}\phi) - \mu^{2}\phi^{\dagger}\phi - \lambda(\phi^{\dagger}\phi)^{2}, \tag{2.23}$$

with ϕ being a SU(2) doublet of complex scalar fields,

$$\phi = \frac{1}{2} \begin{bmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{bmatrix} \tag{2.24}$$

and is invariant under global SU(2) phase transformations $\phi \to e^{i\alpha_a\tau_a/2}\phi$. To allow for local invariance, we first allow for a covariant derivative,

$$D_{\mu} = \partial_{\mu} + ig_W \frac{\tau_a}{2} W_{\mu}^a, \qquad (2.25)$$

where we now have three gauge fields, W^a_μ . If we assume an infanitesimal gauge transformation for the SU(2) doublet $\phi(x) \to \phi'(x) = (1 + i\frac{\tau_a}{2}\alpha^a(x))\phi(x)$, then the gauge fields will transform as,

$$W_{\mu}^{a} \to W_{\mu}^{a} - \frac{1}{q_{W}} \partial_{\mu} \alpha_{a} - f_{abc} \alpha_{b} W_{\mu}^{c}. \tag{2.26}$$

You can see that Eqn. 2.26 is just the compact vector transform of Eqn. 2.16 where we have replaced the QCD gauge field with the three gauge fields W^a_{μ} . If we include these locally invariant transformations into the above SU(2) Lagrangian we get,

$$\mathcal{L} = (\partial_{\mu}\phi + ig_W \frac{1}{2}\tau_a W_{\mu}^a \phi)^{\dagger} (\partial^{\mu}\phi + ig_W \frac{1}{2}\tau_a W^{a\mu}\phi) - \mu^2 \phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^2 - \frac{1}{4}W_{\mu\nu}^a W^{a\mu\nu},$$
(2.27)

where the gauge field kinetic term has been included at the end. The most interesting regions of this Lagrangian is when $\mu^2 < 0$ and $\lambda > 0$, and the potential has a minimum at $\phi^{\dagger}\phi = -\frac{\mu^2}{2\lambda}$. With this we will expand the potential around the minimum and require that,

$$\phi_1 = \phi_2 = \phi_4 = 0, \phi_3^2 = -\frac{\mu^2}{2\lambda} \equiv v^2.$$
 (2.28)

This is the spontaneous symmetry breaking of the SU(2) symmetry, because of this we are able to substitute an expansion for the field,

$$\phi = \sqrt{\frac{1}{2}} \begin{bmatrix} 0 \\ v + h(x) \end{bmatrix} \tag{2.29}$$

With this specific transformation of the SU(2) doublet and the simplification of Eqn. 2.27, the only remaining field is h(x) which is referred to as the Higgs field. This is what is known as the Higgs Mechanism for a SU(2) symmetry.

2.1.9 Electroweak

We want to include the Higgs Mechanism into the Weak isospin and Weak hypercharge, $SU(2)_L \times U(1)_Y$, transformations of electoweak interactions. First, we need to include the coupling of the Weak current J^a_μ and the gauge field $W^{a\mu}$ such that,

$$-ig_W J^a_\mu W^{a\mu} = -ig_W \overline{\chi}_L \gamma_\mu T^a W^{a\mu} \chi_L \tag{2.30}$$

which is the basic interaction for the $SU(2)_L$ symmetry. Then, we also need to include the weak hypercharge current with the fourth vector boson B^{μ} ,

$$-i\frac{g'_{W}}{2}j_{\mu}^{Y}B^{\mu} = -ig'_{W}\overline{\psi}\gamma_{\mu}\frac{Y}{2}\psi B^{\mu}, \qquad (2.31)$$

here the operators T^a and Y are generators for the $SU(2)_L$ and $U(1)_Y$ gauge transformations, respectively. Now we combine the two symmetries with the transformations of the left and right hand components of ψ and from this we can write down the contributions of the two gauge fields W^3_{μ} and B_{μ} and the mising angle θ_W to find the interactions of the two neutral currents. The physical fields are thus,

$$-ig_W J^3_{\mu} W^{3\mu} - i\frac{g'_W}{2} j^Y_{\mu} B^{\mu} = -iej^{em}_{\mu} A^{\mu} - \frac{ie}{sin\theta_W cos\theta_W} [J^3_{\mu} - sin^2\theta_W j^{em}_{\mu}] Z^{\mu}. \quad (2.32)$$

From this we can write down the Electroweak Lagrangian, for any fermion that interacts with the field. Moreover, we can formulate the Higgs mechanism, such that we can calculate the theoretical masses of the gauge bosons and fermions as,

$$M_W = \frac{1}{2}vg_W M_Z = \frac{1}{2}v\sqrt{g_W^2 + g_W'^2},$$
 (2.33)

but these masses cannot be predicted since they depend on the values from the chosen Higgs field.

2.1.10 The Standard Model Lagrangian

With the inclusion of the Higgs mechanism and the formulation of a local gauge invariant Lagrangian for the Electroweak and QCD fields, we have the complete SM Lagrangian as,

$$\mathcal{L} = -\frac{1}{4}W_{\mu\nu}^{a}W^{a\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}
+ \overline{L}\gamma^{\mu}(i\partial_{\mu} - g_{W}\frac{1}{2}\tau^{a}W_{\mu}^{a} - g_{W}'\frac{Y}{2}B_{\mu} - g_{Q}T_{b}G_{\mu}^{b})L
+ \overline{R}\gamma^{\mu}(i\partial_{\mu} - g_{W}'\frac{Y}{2}B_{\mu} - g_{Q}T_{b}G_{\mu}^{b})R
+ |(i\partial_{\mu} - g_{W}\frac{1}{2}\tau^{a}W_{\mu}^{a} - g_{W}'\frac{Y}{2}B_{\mu})\phi|^{2} - V(\phi)
- (G_{1}\overline{L}\phi R + G_{2}\overline{L}\phi_{c}R + \text{hermitian conjugate}),$$
(2.34)

where the first terms are the kinetic energies and self-interactions of the W^{\pm} , Z, g, and γ bosons, the second and third terms are the kinetic energies and interactions of the leptons and quarks with the W^{\pm} , Z, g, and γ bosons where L is a left-handed fermion doublet and R is a right-handed fermion singlet. The fourth term is the W^{\pm} , Z, γ and Higgs masses and couplings. The final term is the lepton and quark masses and couplings to the Higgs field.

2.2 Fundamental Problems in the Standard Model

The SM is able to accurately and precisely describe many facets of the universe. Whether it comes to predicting the existence of a sixth quark or the confirmation of g-2 for the muon to 9 orders of magnitude. Unfortunately, there is some evidence of matter or interactions that cannot be described such as dark matter, the Hierarchy problem, and a possible grand unified theory. Let's look into each of these further.

2.2.1 Dark Matter

The main motivation for Dark Matter is the difference between the visible matter and the measureable matter in the universe. This has most notably been seen in the

Figure 2.4: The loop corrections to the Higgs boson interacting with a top quark and its superpartner the top squark. This is a next-to-leading order (NLO) correction to the Higgs boson mass.

radial velocities of stars in galaxies. In a galaxy which is solely made up of visible matter, matter that interacts with light, the radial velocity of stars should decrease as $1/\sqrt{r}$ the further away it is from the galactic nuclei, although measurements show the velocity becoming constant as a function of radius.

The original study of this was from the galaxy NGC 1560, where the measured galactic velocity curve provided a result that was 400 times large than the visible matter in the cluster (A. H. Broeils Astron. and Astrophys. 256 19 (1992)). To reproduce these features in models, the mass of the galaxy must be significantly more than what is seen. This implies some unseen dark matter, that still interacts with the gravitational field but not with the EM field. There is currently no such particle in the SM that has these properties.

2.2.2 Hierarchy Problem

The Higgs boson is a beautiful solution to electroweak symmetry breaking and gives a method for particles to acquire mass, see Sec. 2.1.8, and was discovered to have a measured mass of $m_H = 125.18 \pm 0.16$ GeV. This value though is not predictable with the SM and leads to some inconsistencies when you include loop corrections. Since the Higgs is strongly coupled to particles with large masses, the dominant loop correction is due to interactions with the t quark. These higher order loop corrections to the Higgs mass, m_H^2 , caused by the fermionic t loop, see fig 2.4, are,

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} \Lambda_{UV}^2 + \cdots, \qquad (2.35)$$

where λ_f is the vertex factor for the respective fermion and Λ_{UV} is the ultraviolet momentum cutoff. The Higgs boson loop corrections are highly dependent on all virtual and real particles that couple to the Higgs field. From this, we can see the corrections from Eqn. 2.35 for each fermion in the SM will cause a large divergence. The quadratic divergence of the Higgs mass is only renormalizable with a fine tuning of the parameters λ_f and Λ_{UV} . This means the only way for the SM to reconcile this unfortunate fact is to have a relatively lucky cancellation of very large numbers of order 10^{32} with equally small numbers. Fortunately, if we add the contribution of a bosonic partner of the fermion the Higgs loop corrections reduce to,

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda_{UV}^2 - 2m_S^2 ln(\Lambda_{UV}/m_S) + \cdots].$$
 (2.36)

With the introduction of a scalar partner to the t, there is a logarithmic divergence to the higgs boson mass and can be renormalized through the normal methods.

Figure 2.5: The energy dependence of the inverse gauge couple of each force in the SM (dashed line) and the MSSM (solid lines). The MSSM gives two thresholds for the sparticle mass 750 GeV and 2.5 TeV.

2.2.3 Grand Unified Theory

The SM is able to accurately describe three of the fundamental sources at typical energy scales, 1 to 10^4 GeV, but idealy the forces would be able to merge into a single force at higher energies. This has not been directly observed, but many theories, such as supersymmetry (SUSY), predict its existence.

At standard energies for particle physics experiments the difference in the strength of each force is quite noticeable. But it has been shown that in the SM the strengths of each force are dependent on the energy scale and it would be ideal that they converge to a single force at large energies, such as 10¹⁶ GeV. In fig. 2.5, we see the extrapolated energy scales of the forces in the SM shown as the dotted line. These unfortunately, do not meet at a single point to become one force, but if we include supersymmetry into the model we get a nice convergence between the forces.

2.3 Supersymmetry

We have seen from the above three problems that there is still more to learn. Some of the features of the universe, such as; dark matter, the hierarchy problem, and a grand unified theory have not been explained. We saw from the Hierarchy problem that the addition of a bosonic partner to a fermion will allow for the loop corrections to be renormalizable without fine tuning. Fortunately, some theories have allowed for such a problem to be solved. Namely the theory of SUSY which essentially states that each particle in the SM has a superpartner that has only the spin changed, that every fermion has a bosonic partner that has all the same quantum numbers except the spins differ by 1/2, and vice-versa.

The partners to the fermions are denoted with a 's' in front of the name to notify that it is the scalar form of the particle and the partners to the bosons have an 'ino' attached at the end, such as photino, gluino, wino, and Higgsino. So for the partners to the fermionic particles in the standard model we have: sup (\tilde{u}) , sdown (\tilde{d}) , scharm (\tilde{c}) , sstrange (\tilde{s}) , stop (\tilde{t}) , and sbottom (\tilde{b}) for the squarks and selectron (\tilde{e}) , smuon $(\tilde{\mu})$, and stau $(\tilde{\tau})$ for the charged sleptons. The partners to the neutrinos, which are always left-handed if you neglect the minimal masses, are sneutrinos $(\tilde{\nu}_e, \tilde{\nu}_\mu, \tilde{\nu}_\tau)$, where whe have one for each flavor of lepton.

If the SUSY was unbroken the superpartners would have exactly the same properties as the SM pairs except their spin. This would cause a massless photino or a $m_{\tilde{e}} = 0.511$ keV selectron. These particles would certainly have been detected at this point, which leads us to think that SUSY is a broken symmetry where all the superpartners have a mass that is significantly higher than their SM partners.

2.3.1 Supermultiplets and Chirality

A supermultiplets is any symmetry where the number of bosonic degrees of freedom and fermionic degrees of freedom are equal, $n_B = n_F$. The simplest way to achieve this is to have a combination of a single Weyl fermion, which is a chiral representation of the fermion and has two spin helicity states, $n_F = 2$, and two real scalars with each having $n_B = 1$. It becomes convenient for the mathematics to combine the two real scalars into one complex scalar field. Now the combination of a complex scalar field and a Weyl fermion is known as a chiral supermultiplet.

2.3.2 Minimal Supersymmetric Standard Model

We have discussed how the fermions transform under the rules of SUSY, but how do the scalar field mediators translate into this new framework. First, lets look at the Higgs boson. We know that there is not only one chiral supermultiplets. If there was only one in the electroweak gauge symmetry, with a Higgsino of spin-1/2, would not have the anomaly cancellation of the traces, $Tr[T_3^2Y] \neq 0$ and $Tr[Y^3] \neq 0$, where T_3 is the third component of weak isospin and Y is the weak hypercharge. In the SM, the traces of these for the fermions are already satisfied. So we must include two chiral supermultiplets of the Higgsino, with $Y = \pm \frac{1}{2}$, see table 2.2.

It turns out that this is also necessary for the Higgsino to give mass to different particles in the SM. A Higgs boson with Y=1/2 has the Yukawa couplings that allow it to interact with the up-type quarks (u, c, t). Only a Higgs boson with Y=-1/2 has the correct Yukawa couplings to interact with the down-type quarks (d, s, b) and the charged leptons (e, μ, τ) .

The SM vector boson will also have a corresponding chiral supermultiplet. They have fermionic superpartners that are referred to as gauginos. For the $SU(3)_C$ color

Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	$({f 3},{f 2},{1\over 6})$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger	$(\overline{f 3},{f 1},-rac{2}{3})$
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger	$(\overline{\bf 3},{\bf 1},{\textstyle {1\over 3}})$
sleptons, leptons	L	$(\widetilde{ u}\ \widetilde{e}_L)$	$(u \ e_L)$	$({f 1},{f 2},-{1\over 2})$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger	(1, 1, 1)
Higgs, higgsinos	H_u	$(H_u^+ \ H_u^0)$	$(\widetilde{H}_u^+ \ \widetilde{H}_u^0)$	$({f 1},{f 2},+{ extstyle rac{1}{2}})$
	H_d	$(H_d^0 \ H_d^-)$	$(\widetilde{H}_d^0 \ \widetilde{H}_d^-)$	$({f 1},{f 2},-{1\over 2})$

Table 2.2 : The chiral supermultiplets of the MSSM. Spin-0 fields are complex scalars and spin-1/2 fields are left-handed two component Weyl fermions. CITE SUSY PRIMER

Names	spin $1/2$	spin 1	$SU(3)_C$, $SU(2)_L$, $U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8, 1, 0)
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	W^{\pm} W^0	(1,3,0)
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)

Table 2.3 : The chiral supermultiplets of the MSSM. CITE SUSY PRIMER

gauge interactions of QCD, which are a spin-1/2 color-octet, has a partner called a gluino (\tilde{g}) . The electroweak gauge theory $SU(2)_L \times U(1)_Y$ has the superpartners $\widetilde{W}^+, \widetilde{W}^0, \widetilde{W}^-$, and \widetilde{B}^0 each with spin-1/2, called winos and bino, see table 2.3. The gaugino mixtures of \widetilde{W}^0 and \widetilde{B}^0 give the corresponding zino (\widetilde{Z}^0) and photino $(\widetilde{\gamma})$. The chiral supermultiplets shown in table 2.2 and 2.3 give the particles of the Minimal Supersymmetric Standard Model (MSSM).

2.3.3 R Parity

R-parity or matter parity is the multiplicatively conserved quantum number defined as,

$$P_R = (-1)^{3(B-L)+2s}, (2.37)$$

where B is the baryon number, L is the lepton number, and s is the spin of the particle. From this we can find the R-parity of all the particles in the SM and MSSM. The definition of R-parity is quite useful because all the particles of the SM have an R-partity of $P_R = +1$, while all of the squarks, sleptons, gauginos, and higgsinos have $P_R = -1$.

R-parity is thought to be exactly conserved in SUSY, where there is no mixing between particles ($P_R = +1$) and sparticles ($P_R = -1$). This leads to three important consequences:

- The lightest sparticle that has $P_R = -1$ is called the "lightest supersymmetric particle" or LSP, which must be absolutely stable. If it is electrically neutral, it is a possible non-baryonic dark matter candidate.
- Every sparticle, other than the LSP, must eventually decay into an odd number

Figure 2.6: On the right we have the arbitrary masses of the top and charm quarks.

of LSPs.

• For collider experiments, sparticles will only be produced in even numbers.

We are going to be investigating a MSSM that conserves R-parity. This is quite well motivated by the possibility of a dark matter candidate and putting constraints on proton decay.

2.3.4 Mass Spectrums

The third family of squarks and sleptons should have quite different masses compared to their first- and second-family counterparts, which is caused by the large Yukawa (y_t, y_b, y_τ) and soft (a_t, a_b, a_τ) couplings. This causes significant mixing between the chiral superpartners $(\tilde{t}_L, \tilde{t}_R), (\tilde{b}_L. \tilde{b}_R)$, and $(\tilde{\tau}_L, \tilde{\tau}_R)$. We will concentrate on how the mass of the top squark, \tilde{t} evolves in the MSSM. Given many contributions to the top squark mass such as; squared-mass terms, 4-vertex interactions terms with the up-type Higgs, the 3-vertex interactions with the down-type Higgs, and scalar

potential couplings. Accounting for all these contributions, we have a square-mass matrix for the top squarks,

$$\mathcal{L}_{\text{stop masses}} = -\begin{bmatrix} \tilde{t}_L^* & \tilde{t}_R^* \end{bmatrix} \boldsymbol{m}_{\tilde{t}}^2 \begin{bmatrix} \tilde{t}_L \\ \tilde{t}_R \end{bmatrix}$$
(2.38)

where

$$\boldsymbol{m_{\tilde{t}}^{2}} = \begin{bmatrix} m_{Q_{3}}^{2} + m_{t}^{2} + (\frac{1}{2} - \frac{2}{3}sin^{2}\theta_{W})cos(2\beta)m_{Z}^{2} & v(a_{t}^{*}sin\beta - \mu y_{t}cos\beta) \\ v(a_{t}sin\beta - \mu^{*}y_{t}cos\beta) & m_{\overline{u}_{3}}^{2} + m_{t}^{2} + (\frac{2}{3}sin^{2}\theta_{W})cos(2\beta)m_{Z}^{2} \end{bmatrix}.$$
(2.39)

This is a hermitian matrix and can be diagonalized to give eigenstates \tilde{t}_1 and \tilde{t}_2 which are linear combinations of the left and right-handed \tilde{t} , see fig. 2.6. Now we get the eigenvalues for the mass states as $m_{\tilde{t}_1}^2 < m_{\tilde{t}_2}^2$. From this models predict that the \tilde{t}_1 is the lightest squark.

2.3.5 Supersymmetry Searches

The SM of particle physics has been a powerful model for predicting interactions between quarks, leptons, and force carriers, with an accurate prediction for precision measurements, but has some faults such as, the Hierarchy problem, dark matter, and a Grand Unified Theory. We have seen that including SUSY can allow for possible solutions, such as: a dark matter candidate as the LSP, bosonic-fermionic loop corrections for the Higgs boson mass, and a unification of the fundamental forces at large energies. Then once investigating the theory of SUSY we were able to determine that the top squark would be the light squark, which allows us to develop multiple searches for this proposed theory.

2.4 Current SUSY Results

Here we see the most current results from searches for the top squark. These have been completed with data from the first part of Run 2 with 35.9 fb⁻¹. This analysis was completed with the most up-to-date identification methods for particles in the SM. From this Analysis, all 104 search region bins, as well as the corresponding single-lepton control region bins, the γ +jets control region bins and the QCD control regions, are fit simultaneously in order to evaluate the cross section excluded at 95% confidence level for each signal benchmark point. This is for the limits of the mass parameter space for the T2tt decays.

The easiest way to think about the plots shown in 2.7, 2.8, 2.9, 2.10, 2.11, is that there is a calculated limit for each mass point. The x-axis is the possible mass range for the \tilde{t} , $m_{\tilde{t}}$ and the y-axis is the possible range for the $\tilde{\chi}_1^0$, $m_{\tilde{\chi}_1^0}$. Each point in this 2D space has a color representation for the value of the upper limit on the cross section at a confidence level of 95%.

With the comprehensive analysis that was performed in 2016, we have various limits on the multiple decay modes of the \tilde{t} which will be covered completely in Section 5. The comprehensive limits on the \tilde{t} mass range from values of 550 to 1.1 TeVfor all of the all-hadronic decay modes. The CMS Collaboration has also combined the limits from the separate analyses which concentrate on the 1-lep, 2-lep, MT2, and HT missing analyses. The conbination of these has shown that we can set limits on the \tilde{t} mass range for masses of 800 to 1100 GeV.

From the above plots, 2.7, 2.8, 2.9, 2.10, 2.11, and 2.12, we know that we are able to exclude a large mass range for the \tilde{t} and $\tilde{\chi}_1^0$. Since this is one for a luminosity of 36.8 fb⁻¹, we can expect improved limits with all of the data from Run 2, which is 137 fb⁻¹. The new version of the analysis also has a redesigned search region to

Figure 2.7: Limits for the mass parameter space for T2tt decays. With a current limit of 1.1 TeVfor a minimal neutralino mass.

Figure 2.8 : Limits for the mass parameter space for T2bW decays. With a current limit of 750 GeV for a minimal neutralino mass.

Figure 2.9: Limits for the mass parameter space for T2tb decays. With a current limit of 850 GeV for a minimal neutralino mass.

Figure 2.10 : Limits for the mass parameter space for T2fbd decays. Which has a range of 550 GeV for a $\tilde{\chi}_1^0$ mass of approx. 500 GeV.

Figure 2.11 : Limits for the mass parameter space for T2bWC decays. Which has a range of 550 to 675 GeV for a $\tilde{\chi}_1^0$ mass of 600 GeV.

Figure 2.12: Limits for the mass parameter space for T2tt decays. With a current limit of 1.1 TeV for a minimal neutralino mass.

allow for more sensitive results, while also impoving various object definitions.

2.5 Improved Methods

Search have been performed on the 36.8 fb⁻¹dataset from CMS. We have been able to exclude a mass range of 800 to 1100 GeV from the previous analysis. With the included luminosity and updated analysis methods we expect to significantly improve these results. An improved search strategy has been implemented to allow us to get improved results.

Chapter 3

Compact Muon Solenoid

3.1 The Detector

The Compact Muon Solenoid (CMS) is a particle detector as part of the Large Hadron Collider (LHC) which is located near Geneva, Switzerland as part of the CERN collaboration. The CMS detector is 21.6 m long, 15 m diameter, and 14,000 tons and is used to detect many different species of particles. It is separated into layers that, from the interaction vertex outward are, the silicon tracker, Electromagnetic Calorimeter (ECAL), Hadronic Calorimeter (HCAL), superconducting solenoid, and the muon chanbers, see Fig. 3.1.

The CMS detector is designed to detect the decay products of most of the particles of the SM, except for neutrinos since they are weakly interacting and will almost certainly pass through the entire earth without an interaction. A defining feature of CMS is the 12.6-m long, 5.9 m inner diameter, 3.8 T superconducting solenoid. This is used to bend the trajectory of charged particles thoughout the detector, such that we can reconstruct the momentum and charge of the particles. The LHC provides a 13 TeV proton-proton beam (4.5 TeV heavy ion) beam with a bunch crossing every 25 ns (50 ns) to produce interaction at luminosities of $2.5 \times 10^{34} \text{cm}^{-2} s^{-1}$.

The coordinate system of CMS has the origin at the nominal collision point in the center of the detector. The y-axis points vertically upward, x-axis points radially inward toward the center of the LHC, and z-axis points along the beam directions

Figure 3.1: A cross-section of the CMS detector, oriented by looking down the direction of the beam pipe.

towards the Jura mountains from LHC Point 5. The polar angle θ is measured from the z-axis and the azimuthal angle ϕ is measured in the x-y plane from the x-axis. The pseudorapidity of a particle is defined as $\eta = -\ln \tan(\theta/2)$ where θ is the angle between the particle momentum and the positive direction of the beam axis, two notable values are $\eta = 0$ at $\theta = \pi/2$ and $\eta = \inf$ at $\theta = 0$. Pseudorapidity is quite useful since the difference of pseudorapidities is Lorentz invariant. The transverse components of momentum, p_T , and energy, E_T , are computed using the x and y components of the particles.

3.1.1 Tracker

The silicon tracker is made up of two different detectors, the silicon pixels and the silicon strip tracker. This is the inner most detector for CMS and sees the largest flux of particles during operation. This requires it to be radiation hard and operate with a fine granularity.

Figure 3.2: Geometry of the CMS Tracker, the inner most region in green is the pixel detector while the outer region in blue and red are the silicon strips.

3.1.1.1 Pixel Detector

The pixel detector was recently upgraded during the winter of 2016/2017. It is approximately 1 m long with four barrel layers ranging from 3.0, 6.8, 10.2, and 16.0 cm and three endcap disks, see fig. 3.2. Since it is the closest detector to the interaction vertex it therefore has the highest particle flux at $10^7/\text{cm}^2/s$ at $r \equiv 10$ cm. The resolution is 9.4 μ m in $r - \phi$ and $20 - 45 \mu$ m in z.

The pixel detector contains 1184 modules in the barrel pixels (BPIX) and 672 modules in the forward pixels (FPIX). The number of individual pixels is 79 (45) million in the BPIX (FPIX) regions, respectively, with a pixel size of $100 \times 150 \ \mu m^2$. A pixel module contains two layers, a silicon layer that is bump bonded to 16 Readout Chips (ROCs) which form a module of 66560 pixels, see fig. 3.3. Each unit is controlled with one or more Token Bit Managers (TBMs) which controls the readout of the digital signal from the pixels to the Front-end Driver (FED). For BPIX Layers 3,4 and all of FPIX there is 1 TBM per module. BPIX layer 2 has 2 TBMs with each one controlling 8 ROCs, while BPIX layer 1 has 4 TBMs with each one controlling 4 ROCs. The information from each module is split into two channels with each

Figure 3.3 : Components of the pixel modules. Made up of a silicon layer, a grid of 8 ROCs which are attached via bump bonds. This is all controlled with a TBM connection to read out data.

FEROL Data Throughput CMS Work in progress. 100 PN 90 BN 90

Figure 3.4: Measuring the throughput of the FED with the emulated and simulated events provided by the FED Tester. The Data rate is shown as the solid blue line with the corresponding trigger rate as the dotted red line. The simulated event sizes are shown as their equivalent emulated hits/ROC/channel on the data line.

containing 8 ROCs. These are encoded together by the TBM before being sent to the FED.

The silicon pixel system is set up as a reverse p-n junction, where the pixels are in the n-type region. As a charged particle travels through the silicon it creates electronhole pairs. A voltage difference is applied to the silicon such that the electrons will deposit onto the pixels. Since the detector is inside of the magnetic field, a lorentz drift will cause the electrons to reach more than one pixel and increase the resolution. As the pixel system continues to be irradiated with large quantities of particles the voltage in the silicon decreases. This will lead to less charge sharing between the pixels and a decrease in resolution of particle locations.

The data, from the pixels, is sent via optical fiber to the FED where it decodes

and processes the information. The FED is responsible for identifying the relevant data, determining possible error states, and packaging the information to be sent to the central Data Acquisition (cDAQ) of CMS. Each of the 108 FEDs, for the pixels, receives 24 independent fibers from the detector. Each of these fibers contains 2 channels from the pixel module. Through robust testing with the FED Tester [Cite here], we have confirmed that the FED is able to attain a maximum data throughput of approximately 7.5 Gbps, see fig. 3.4.

3.1.1.2 Silicon Strips

The silicon strips have a 200 m² active region with 15148 modules that are distributed in 10 barrel layers and 9+3 endcap disks. This has a cell size ranging from $10 \text{cm} \times 80 \ \mu\text{m}$ to $25 \text{cm} \times 180 \ \mu\text{m}$ since the particle flux decreases further away from the vertex, [MAYBE ANOTHER FIGURE]. It has a resolution of $23-24 \ \mu\text{m}$ in $r-\phi$ and $23 \ \mu\text{m}$ in z for the microstrip tracker

How is it different from the pixels?

3.1.2 Electromagnetic Calorimeter

The ECAL is a homogeneous calorimeter made out of 61200 lead tungstate (PbWO₄) crystals in the barrel and 7324 crystals in each endcap. The barrel region has an inner radius of 129 cm and covers a pseudorapidity range of $0 < |\eta| < 1.479$. The encaps are 314 cm from the interaction point and cover a range $1.479 < |\eta| < 3.0$ in pseudorapidity. Lead tungstate was chosen for teh crystals since it has a short radiation length, $X_0 = 0.89$ cm, fast with 80% of the light being emitted within 25 ns, and it's radiation hard. Each crystal in the barrel has a cross-section of $\approx 22 \times 22$ mm² and length of 230 mm, while the endcap crystals are 28.6×28.6 mm² and length of 220

mm corresponding to $25.8X_0$ and $24.7X_0$, respectively. An ECAL uses electromagnetic showers to detect charged particles or photons that interact electromagnetically. Electrons traveling through the material will radiate a photon via bremsstrahlung. A photon will pair produce two electrons. Combining these two processes leads to electromagnetic showers as the particles travel through the detector. The process will continue until a critical energy is reached such that an electron cannot radiate any further and will then lose energy via collisions. The resulting light is recorded by silicon avalanche photodiode (vaccuum phototriodes) in the barrel (endcap).

3.1.3 Hadronic Calorimeter

The HCAL is a hermetic calorimeter consisting of alternating layers of brass as the absorber material and a scintillator. Brass is chosen since it is non-magnetic and has a relatively short interaction length. In the scintillator, a portion of the energy from the hadron in converted into visible light which is then measured by a hybrid photodiode tube to measure the energy. The barrel part of the HCAL consists of 2304 towers that are segmented into $\Delta \eta \times \Delta \phi = 0.087 \times 0.087$ pieces that cover a region $0 < |\eta| < 1.4$ in pseudorapidity. The encap region consists of 2304 towers with varying segmentation sizes and a coverage of $1.3 < |\eta| < 3.0$.

There are two additional parts of the HCAL to allow for maximum coverage of the detector volume. There is a outer hadron detector that is located outside the superconducting solenoid, which covers a slightly smaller pseudorapidity range as the barrel region. They serve as a tail catcher for hadron showers that penetrate all the way through the inner HCAL and solenoid. A forward hadron calorimeter, located 11.2 m from the interaction point covering a pseudorapidity $3.0 < \eta < 5.0$, made out of steel/quartz fiber is specifically designed for the columnated Cerenkov

light in this region.

3.1.4 Superconducting solenoid

Containing all of this is the superconducting solenoid which is 12.6 m long and a 5.9 m radius. The field strength is 3.8 T which has a stored energy of approximately 2.7 GJ. The magnet is designed such that a muon with momentum, p = 1 TeV, will have a momentum resolution of $\Delta p/p \approx 10\%$. The solenoid is a high-purity aluminium-stabilized conductor, which is a similar material used in other large solenoids.

3.1.5 Muon Chambers

The muon system has three main detection systems that are use to identify a muon candidate. In the barrel region, drift tube (DT) chambers are used since the neutron background, muon rate, and magnetic field are all small. In the endcaps, cathode strip chambers (CSCs) are used since the relative values stated before are much larger. Included throughout the whole system are resistive plate chambers (RPC).

The DT consists on 250 chambers in 4 barrel layers at a radii of 4.0, 4.9, 5.9, and 7.0 m from the beam axis. A DT chamber is an array of anode wires in a gaseous medium where the walls are cathodes. A muon passing through the gas will ionize some atoms which are then forced towards the anode wires by an electric field. The drift time of the electrons can then be calculated to within a couple of ns such that a good spatial resolution is achieved. The maximum designed drift length is 2.0 cm. Each station of the DT will give muon vector for each candidate with a ϕ precision of 100 μ m in postion and 1 mrad in direction.

Figure 3.5: A quarter cross-section of the three detection systems for CMS.

The CSC system uses the same concept as the DT system, but also includes a measurement of the ions that follow the electric field to the cathode strips. In this system the anode wires and the cathode strips are perpendicular so the collected charge on both provide a accurate position measurement.

The RPC system contains two parallel plates, anode and cathode, the charge is measured by external metallic strips that can quickly measure the momentum of a muon and decide if the event is worth triggering.

3.2 Detector Methods

Using the objects and information from each of the subdetectors we can measure the important information required for the \tilde{t} search. Since the search is dependent

on large missing energies it is dependent on measuring all forms of energy in the standard model and checking for any inefficiencies.

Chapter 4

Search Strategy

4.1 Physics Objects

There are many different types of physics ojbect that we are interested in when working with particle physics experiments. Since the particles that we are interested in have very short lifetimes, $\mathcal{O}(\text{decay}) = 10^{-23}$ s, we mainly interact with the decay products of the event, such as, jets, heavy object tagging, particle identification, missing transverse momentum $\not\!E_T$, H_T , N_{SV} , p_T^b , soft b-tagging, $m_T(b_{1,2}, \not\!E_T)$, Initial State Radiation, and lepton identification.

NEEDS MORE SPECIFICS ON JETS IDS AND B JET CSVs

4.1.1 Jets

In an interaction, because of color confinement, whenever a quark is made it must come in pairs (q, q') such that the total color charge of the interaction in neutral. Typically due to conservation of momentum the quarks may originally be produced near the interaction point but will quickly start to move away from each other. Eventually the quarks will move far enough apart and will have enough potential energy in the gluon connections between them that it is now more efficient to create a new quark-antiquark $(q\bar{q})$ pair. This wil continue to occur in a sequence of radiating gluons and producing new pairs of charged particles. In the final state, the energy deposited in the HCAL is due to a cluster of charged particles of a certain radius,

 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$. There are many algorithms to reconstruct the jets, we are mainly interested in the anti-kT Jet algorithm [reference] method with uses the transverse momentum of the particles within a certain radius $\Delta R = 0.4(0.8)$ for slim(fat) jets.

4.1.2 Heavy Object Tagging

Since this search is looking for a massive particle which then decays to slightly less massive particles we need to be able to identify and distinguish between them. Firstly, b-tagged jets which are jets that are likely to have originated from a b quark. These are identified reconstructing where the jet originated from and comparing the distance away from the interaction point. A b quark is a relatively long-lived particle and can travel many millimeters before decaying. Since we have a resolution of μ mthis is not a problem. For b quarks with large transverse momentum, we use a Combined Secondary Vertex (CSVv2/DeepCSV) algorithm depending on the year the data was taken.

4.1.3 B-Tagging

B-tagged jets are identified using the Run 2 version of the Deep Combined Secondary Vertex (DeepCSV) algorithm. The medium working point recommended by the B-tag POG, corresponding to a threshold of 0.6324m 0.4941, and 0.4184 for the 2016, 2017, and 2018 on the DeepCSV, is used for the b-jets for this analysis.

4.1.4 Missing Transverse Momentum

The missing transverse momentum is the negative vector sum of the total transverse momentum measured in the detector,

$$\cancel{E}_T = -\sum_{i \in \text{vis}} \overrightarrow{p}_{i,T}, \tag{4.1}$$

where the momentum runs over every visible(vis) particle in the event. Ideally, if the detector was 100% this quantity would always be zero due to conservation of momentum, but many things, such as detector efficiency, paticles that are weakly interacting, or particles beyond the SM that will be entirely missed by the detector. Because of these, this object is a good discriminator for searching for physics beyond the SM.

4.1.5 MET Filters

4.1.6 H_T

Another interesting quantity is H_T , which is the scalar sum of the p_T of all of the jets in an event,

$$H_T = \sum_{i \in \text{jets}} p_{i,T}. \tag{4.2}$$

This quantity is quite useful when trying to identify massive particles, which are much more massive than the average particle.

4.1.7 Secondary Vetices

The ability to identify secondary vertices is essential for search for the top squark. In searches for the top squark, one of the main decay is to a bottom quark, b, and a neutralino, $\tilde{\chi}_1^0$. Since the b quark is a long lived particle, about 10-12 seconds, that will travel many mm before decaying into other particles. The tracks from the charged particles will cause tracks in the various detectors of CMS. These tracks

are defined by hits that are then reconstructed using multiple algorithms which can reconstruct the paths of the particles through the detector. Once the tracks are reconstructed, we can backtrack to a point where the particle originated from and then identify is flavor. When we reconstruct a particles to a point that is displaced from the primary vertex it is known as a secondary vertex and has the potential to be an long lived particle.

4.1.8 B Quark Transverse Momentum

Initial-state radiation (ISR) may be clustered into one of the large-R jets clustered with a distance parameter of 0.8. We use the larger radius jets to be sensitive to ISR with gluon splitting, when a jet radiates a qluon that pair produces two quarks. The ISR jet is identified as being the hardest of the large-R jets with $p_T > 200 \text{ GeV}$ which fails the loose b-tagging working point and is not identified as a top or W.

4.1.9 Soft b-tagging

This search targets also models that produce very soft bottom or charm quarks. A typical p_T spectrum of the b quarks in three T2fbd signal models is shown in fig. . A large fraction of events contain b quarks with p_T below the 20 GeV jet- p_T threshold which may thus fail to be reconstructed as jets or become b-tagged. Identification of these soft quarks improves our ability to separate potential signal events from the SM background. We therefore aim to identify b/c quarks based on the presence of a secondary vertex (SV) reconstructed using the Inclusive Vertex Finder (IVF) algorithm. Additional requirements on SV observables are applied to suppress the background originating from light quarks. These selected SV may be referred to as soft b tags and are constructed to be orthogonal to the jets and b-tagged jet used in

this analysis.

The requirements on each SV to pass the soft b-tagging definition are:

- The distance in the transverse plane between the SV and the PV is less than 3 cm.
- The significance of the distance, SIP3D, between the SV and the PV is greater than 4.
- The pointing angle, defined as $cos(\overrightarrow{PV},\overrightarrow{SV},\overrightarrow{p}_{SV})$, is greater than 0.98, where \overrightarrow{p}_{SV} is the total four-momentum of the tracks associated to the SV.
- The number of tracks associated to the SV is greater or equal to 3.
- The p_T of the SV is less than 20 GeV.
- The distance to any jet, $\Delta R(\text{jet}, \overrightarrow{p}_{SV})$, is greater than 0.4 to achieve the orthogonality to the jets and b-tagged jets.

This definition leads to $\approx 50\%$ efficiency to identify a soft b/c quark, for $\approx 3\%$ fake rate.

4.1.10 Lepton Identification

There are two sets of selection criteria used in the analysis for electrons and muons. A set of veto criteria are used to efficiently reject events with an isolated electron of muon in the search region, while more stringent requirements are imposed in some control regions that require high purity samples of isolated leptons.

Electron candidates are identified via a set of selection criteria established by the EGamma POG based on "Spring16" simulated samples in the 25ns bunch spacing

	Veto W	orking Point	Medium Working Point		
	Barrel	Endcap	Barrel	Endcap	
$\sigma_{i\eta i\eta}(\text{full}5 \times 5) <$	0.0114	0.0352	0.0101	0.0283	
$ \Delta\eta_{ m in} <$	0.0152	0.0113	0.0103	0.00733	
$ \Delta\phi_{ m in} <$	0.216	0.237	0.0336	0.114	
$\frac{h}{E}$ <	0.181	0.116	0.0876	0.0678	
$\frac{1}{E} - \frac{1}{p} <$	0.207	0.174	0.0174	0.0898	
$ d_0 $ <	0.0564	0.222	0.0118	0.0739	
$ d_z <$	0.472	0.921	0.373	0.602	
$N(\text{expected missing inner hits}) \leq$	2	3	2	1	
Conversion veto	pass	pass	pass	pass	

Table 4.1: Electron identification requirements, defined separately for electrons in the ECAL barrel and endcap regions. The tabulated numbers for each working point are the thresholds applied to the corresponding quantities in the first column.

scenario. The corresponding thresholds imposed on relevant variables are summarized in Table . The "Veto" working point is used to keep events with electrons out of the final search region. The "Medium" working point is used for the selection of leptonic control regions.

The loose muon definition recommended by the Muon POG is used for the purposes of the muon veto. A loose muon is identified as a PF muon and can be either a global muon or an arbitrated tracker muon. Only candidates with transverse (longitudinal) impact parameter $|d_0| < 0.2$ cm $(|d_z| < 0.5$ cm,) with respect to the primary vertex, are considered. The muon selection in leptonic control regions relies on the medium working point defined by the Muon POG for higher purity. The medium muon requirements are summarized in Table . They are applied in addition to the loose muon requirements. Selected muons are required to have transverse (longitudinal) impact parameters $|d_0| < 0.05$ cm $(|d_z| < 0.1$ cm), with respect to the primary vertex.

Loose muon selection	yes					
Fraction of valid tracker hits	> 0.8					
In addition, either of the following s	ets of requirements:					
Global muon	yes					
Normalized global-track χ^2	< 3					
Tracker-Standalone position match	< 12					
Track kink finder	< 20					
Segment compatibility	> 0.303					
OR						
Segment compatibility	> 0.451					

Table 4.2:

The isolation requirements used in the selection of electrons and muons aim to achieve a high efficiency for correctly identifying events that contain prompt leptons (i.e. leptons that do not originate from heavy flavor decays) in the boosted topologies and busy hadronic environments that are typical for this analysis. They are based on the mini-isolation quantity, which is a measure of the lepton's local isolation. Mini-isolation is computed as the summed p_T of PF candidates within a ΔR cone centered on the lepton candidate. The cone size depends on the lepton p_T as indicated in Table and is intended to be small enought to reduce overlaps with jets in the event while also being large enough to contain the products of leptonic b-decays. Higher values of instantaneous luminosity result in a reduced efficiency for the isolation requirement due to an increase in the number of particles originating from additional (pileup) interactions that enter the isolation cone. In order to minimize this effect, the calculated isolation quantity is corrected for the estimated contribution from pileup particles. The correction is applied by subtracting the product of the estimated average pileup density (ρ) in the event with an effective area, A_{eff} , related to the geometrical size of the isolation cone. The residual dependence of the isolation quantity on ρ for a given cone size is accounted for in A_{eff} , which is determined by taking the slope of a linear fit to the uncorrected isolation as a function of ρ . The correction factor is η -dependent, and calibrated separately for charged particles, neutral hadrons, and photons contributing to the isolation.

Electrons and muons are considered to fulfill the veto isolation criteria if their mini-isolation is less than 0.1 or 0.2 respectrively, relative to the lepton p_T . The same thresholds are applied on the relative mini-isolation for electrons and muons in control samples.

4.1.11 Tau Identification

The Tau ID has been studied extensively. After multiple studies which looked into the custum MVA similar to the one used in [], the IsoTrack methods, and Tau POG MVA method of Identifying Taus. The methods which provide the best improvement to the efficiency of identifying taus with a small fake rate is the combination of IsoTrack and Tau POG MVA. With the inclusion of the combined method for identifying hadronically decaying taus the efficiency should improve greatly.

4.2 Search Strategy

4.2.1 Trigger

4.2.2 Baseline Selection

Following the same methods as above, we have a loose pre-selection which is referred to as the baseline selection. This will place a selection on jets and E_T which is used to eliminate a large fraction of background events. We define the baseline selection as:

- $N_{e,(\mu)} = 0, (p_T > 5GeV, |\eta| < 2.5(2.4))$
- $N_{iso} = 0, (p_T > 5(10)GeV, ISO < 0.2(0.1)$ for electron/muons(pions))
- $N_{tau} = 0, (p_T > 20 GeV, |\eta| < 2.4)$
- $N_i \ge 2, (p_T > 20 GeV, |\eta| < 2.4)$
- $E_T > 250$ GeV, to reach the plateau of the trigger efficiency

In Addition to this, we allow for two separte sets of additional selections to apply to the low and high Δm search regions to further reduce background. The high Δm baseline selection includes the baseline selection and additionally,

- $N_i \ge 5, (p_T > 20 GeV, |\eta| < 2.4)$
- $N_b \ge 1, (p_T > 20 GeV, |\eta| < 2.4)$
- Min[$|\Delta\phi(E_T, j_1)|$, $|\Delta\phi(E_T, j_2)|$, $|\Delta\phi(E_T, j_3)|$, $|\Delta\phi(E_T, j_4)|$] $\equiv \Delta\phi_{1234} > 0.5$, where j_1, j_2, j_3, j_4 are the four leading jets in p_T . This requirement is to reduce the QCD multijet background.

Next, the low Δm baseline selection has the following addition selections,

- $N_t = 0, N_W = 0, N_{res} = 0$, where N_t and N_W are the number of merged tops and W's, respectively, and N_{res} is the number of resolved tops
- An ISR jet is defined in Sec. BLANK with $p_T(ISR) > 200 GeV$, $|\eta| < 2.4$, $|\Delta \phi(j_{ISR}, \cancel{E}_T)| > 2$.
- $E_T/\sqrt{H_T} \equiv S_{E_T} > 10$, where H_T is calculated as the scalar sum of the p_T of jets with $p_T > 20 GeV$ and $|\eta| < 2.4$.

• $|\Delta \phi(E_T, j_1)| > 0.5, |\Delta \phi(E_T, j_{2,3})| > 0.15$, where j_1, j_2, j_3 are the three leading jets in p_T .

Chapter 5

Stop quark Production and Backgrounds

5.1 Production and Decay Modes

Gluon fusion.

Main decay mode mode $\widetilde{t} \to t + \widetilde{\chi}_1^0$, $\widetilde{t} \to b + \widetilde{\chi}^+$. The top quark most likely decays into a b quark and W boson.

5.2 Standard Model Background

Signal events can be mimicked by SM events that have a large number of jets and missing energy.

Broken up into four major backgrounds, Lost Lepton (LL), Znunu, QCD, Rare decays

5.2.1 Lost Lepton

The contribution from the $t\bar{t}$ and $W+{\rm jets}$ processes arises from leptonic decays of the Wboson where the charged lepton is outside the kinematic acceptance of CMS or evades identification by the dedicated lepton vetoes. Large E_T can be generated by the associated neutrino and the lepton that is not reconstructed, allowing such events to enter the search regions. This background is collectively referred to as the "Lost Lepton" (LL) background. Contributions arising from ttW and single-top processes also enter into this category, but with much smaller importance.

Studies in simulation indicate that the event kinematics for different lepton flavors are similar enough to allow us to estimate them collectively from a single control sample in data that has event characteristics similar to those of the search sample. Because of this, we use the single-lepton control sample to estimate the LL background, using the method descrived in detail in Ref. [18]. The single-lepton sample consists of events that have one lepton satisfying the lepton-veto criteria. In order to suppress potential signal contamination, we require $M_T(l, \not E_T) < 100 GeV$. If there is more than one selected lepton, we randomly select which lepton is chosen to deter-

mine the $M_T(l, \cancel{E}_T)$. The requirement of low $M_T(l, \cancel{E}_T)$ also ensures orthogonality to the search regions used in the search for direct top squark production in the single-lepton final state, making it possible to statistically combine the results of the two searches. The selection applied to the single-lepton control sample follows the same selection on the search variables as in the zero-lepton selection with the exception of classification according to the number of top and W-tagged candidates.

5.2.1.1 Transfer Factors

The LL estimation in each search region is based upon the event count in data in the corresponding control region in the single-lepton sample. The count is extrapolated to the search region to obtain a prediction by means of a transfer factor obtained from simulation samples as follows:

$$N_{mred}^{LL} = TF_{LL} \cdot N_{data}(1l). \tag{5.1}$$

We want to suppress signal contamination by requiring $M_T(l, \cancel{E}_T) < 100$ GeV. This requirement confirms that it is orthogonal to the search reagions that are used in the search for direct top squark production in the single-lepton final state. Letting the two analysis statistically combine the results in the future.

This allows us to have the same selection for the single-lepton control sample and the zero-lepton sample. The only exception is the number of top and W-tagged candidates? what is the difference between a candidate and a particle?

The LL estimation is dependent on the yield of data in the corresponding CR and the TF calculated by the single-lepton sample. The transfer factor is defined as,

$$TF_{LL} = \frac{N_{MC}(0l)}{N_{MC}(1l)},$$
 (5.2)

where $N_{MC}(1l)$ is the event count observed in the corresponding CR and $N_{MC}(0l)$ use the event count in the corresponding SR.

Search region	E_T	singlelep	TF	pred
Scarch region		Δm , $N_b = 0$		$(ISR) > 500 \text{GeV}, 2 \le N_j \le 5$
0	450-550	7691	0.511±0.004	3932.19±52.90
1	550 - 650	3571	0.589 ± 0.004	2101.77±38.32
2	650 - 750	1405	0.589 ± 0.004	827.70±22.93
3	≥ 750	963	0.591 ± 0.005	568.81±18.93
		v Δm , N_b =	$= 0, N_{SV} = 0, j$	$p_T(ISR) > 500 \text{ GeV}, N_j \ge 6$
4	450 - 550	1411	0.414 ± 0.005	584.63±16.85
5	550 - 650	735	0.424 ± 0.006	311.72±12.26
6	650 - 750	328	0.409±0.008	134.20±7.81
7	≥ 750	334	0.400±0.007	133.56±7.71
8	450-550	Δm , $N_b = 0$ 422	0.558 ± 0.016	$(ISR) > 500 \text{ GeV}, 2 \le N_j \le 5$ 235.43 ± 13.27
9	550 - 650	190	0.538 ± 0.016 0.637 ± 0.018	233.43±13.27 121.07±9.45
10	650 - 750	79	0.637 ± 0.018 0.640 ± 0.018	50.59±5.87
11	≥ 750	54	0.624±0.019	33.70±4.69
				$p_T(ISR) > 500 \text{ GeV}, N_i \ge 6$
12	450-550	113	0.459±0.019	51.90±5.35
13	550-650	58	0.457±0.026	26.50±3.78
14	650 - 750	25	0.483 ± 0.034	12.07±2.56
15	≥ 750	17	0.377 ± 0.025	6.41±1.61
low Δm , N_b	$= 1, N_{SV}$	$= 0, M_T(b_1$	$(2, E_T) < 175 \text{ G}$	GeV , $300 < p_T(ISR) < 500 GeV$, $p_T(b) < 40 GeV$
16	300 - 400	3082	0.843 ± 0.014	2598.67±63.47
17	400 - 500	516	0.896 ± 0.030	462.38±25.65
18	500 - 600	60	0.753 ± 0.054	45.18±6.66
19	≥ 600	12	0.723±0.070	8.68±2.64
				$V, 300 < p_T(ISR) < 500 \text{GeV}, 40 < p_T(b) < 70 \text{GeV}$
20	300-400	1613	0.880 ± 0.017	1419.71±45.12
21	400-500	240	0.984±0.044	236.26±18.55
22	500-600	23	0.716±0.066	16.48±3.76
23	≥ 600	7	0.645±0.112	4.52±1.88
$10w \Delta m$, 24	$N_b = 1, N_b$ $450-550$	$SV = 0, M_2$ 234		75 GeV, $p_T(ISR) > 500 \text{ GeV}, p_T(b) < 40 \text{ GeV}$
24 25	550 - 650	81	0.683±0.026 0.771±0.034	159.84 ± 12.07 62.44 ± 7.46
26	650 - 750	30	0.771 ± 0.034 0.741 ± 0.039	22.23±4.22
27	≥ 750	24	0.725±0.037	17.41±3.66
				GeV, $p_T(ISR) > 500 \text{GeV}$, $40 < p_T(b) < 70 \text{GeV}$
28	450-550	145	0.830±0.037	120.37±11.33
29	550 - 650	53	0.806 ± 0.041	42.72±6.26
30	650 - 750	18	0.757±0.055	13.63±3.36
31	≥ 750	16	0.881 ± 0.070	14.09±3.70
	low Δm ,	$N_b = 1, N_c$	$SV \ge 1, M_T(b_1, a_2)$	$(2, E_T) < 175 \text{ GeV}, p_T(b) < 40 \text{ GeV}$
32	300 - 400	292	0.832 ± 0.039	243.00±18.31
33	400 - 500	80	0.693 ± 0.056	55.44±7.65
34	≥ 500	33	0.745 ± 0.061	24.57±4.73
		$M_T(b_{1,2}, E_T)$		$300 < p_T(ISR) < 500 \text{ GeV}, p_T(b_{12}) < 80 \text{ GeV}$
35	300-400	402	0.727±0.026	292.24±18.05
36	400-500	63	0.783±0.062	49.33±7.33
37	≥ 500	10	0.868±0.167	8.68±3.22
$10w \Delta m, N$ 38	$\frac{b \ge 2, M_T(}{300-400}$	$b_{1,2}, E_T) < 863$	0.649±0.013	$< p_T(ISR) < 500 \text{ GeV}, 80 < p_T(b_{12}) < 140 \text{ GeV}$ 560.16 ± 22.26
38	400-400 $400-500$	159	0.649 ± 0.013 0.724 ± 0.037	500.16±22.26 115.13±10.83
40	≥ 500	22	0.724 ± 0.037 0.532 ± 0.067	115.13±10.83 11.70±2.89
				$p_T(ISR) < 500 \text{ GeV}, p_T(b_{12}) > 140 \text{ GeV}, N_i \ge 7$
41	$\frac{2}{300-400}$	550	0.579±0.014	318.38 ± 15.50
42	400-500	96	0.583±0.028	55.96±6.32
43	> 500	23	0.927±0.090	21.33±4.91
				$V, p_T(ISR) > 500 \text{ GeV}, p_T(b_{12}) < 80 \text{ GeV}$
44	450-550	30	0.497±0.048	14.90±3.08
45	550 - 650	16	0.543±0.073	8.69±2.46
46	≥ 650	2	0.741 ± 0.104	1.48±1.07
		$M_T(b_{1,2}, E_T)$		$p_T(ISR) > 500 \text{ GeV}, 80 < p_T(b_{12}) < 140 \text{ GeV}$
47	450 - 550	78	0.567±0.035	44.25±5.71
48	550 - 650	26	0.758 ± 0.073	19.70±4.30
49	≥ 650	15	0.671±0.076	10.07±2.84
		(h #)	< 175 GeV nr	$(ISR) > 500 \text{ GeV}, p_T(b_{12}) > 140 \text{ GeV}, N_i \ge 7$
50	450 - 550	87	$0.495{\pm}0.024$	43.10±5.07

high Δm , $N_t = 1$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 7$, $N_{rec} ≥ 1$ 806.44±16.52 54 300-400 2076 0.178±0.003 0.692 0.257 369.44±10.81 55 400-500 366 0.173±0.008 0.730 0.238 63.47±4.39 56 ≥500 99 0.131±0.010 0.803 0.163 12.96±1.66 high Δm , $N_b ≥ 2$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 7$, $N_{rec} ≥ 1$ 1977.45±29.50 58 300-400 3219 0.294±0.003 0.691 0.447 1997.45±29.50 58 300-400 3219 0.294±0.003 0.691 0.447 1997.45±29.50 58 300-400 3219 0.294±0.003 0.691 0.425 945.02±19.72 59 400-500 507 0.259±0.007 0.688 0.377 131.43±6.81 60 ≥500 163 0.238±0.012 0.743 0.723 38.82±3.62 high Δm , $N_b = 1$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 7$, $N_f = 0$, $N_{rec} = 0$, $N_W = 0$ 61 250-350 6231 0.299±0.003 0.644 0.465 1864.15±30.25 62 350-450 1269 0.310±0.016 0.663 0.467 339.39±13.67 63 450-550 1450 0.335±0.006 0.663 0.467 339.39±13.67 64 ≥550 169 0.342±0.014 0.609 0.562 57.80±5.04 high Δm , $N_b ≥ 2$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 7$, $N_f = 0$, $N_{res} = 0$, $N_W = 0$ 65 250-350 1450 0.335±0.006 0.687 0.488 486.18±15.55 66 350-450 322 0.322±0.012 0.661 0.487 103.72±6.89 67 450-550 51 0.233±0.009 0.517 0.440 4.48 23.72±2.91 68 ≥550 51 0.233±0.009 0.517 0.450 11.87±1.92 high Δm , $N_b = 1$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 1$, $N_{rec} = 0$, $N_W = 0$ 11.87±1.92 high Δm , $N_b = 1$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 1$, $N_{rec} = 0$, $N_W = 0$ 11.87±1.93 high Δm , $N_b = 1$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 1$, $N_{rec} = 0$, $N_W = 0$ 11.87±4.98 high Δm , $N_b = 1$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 1$, $N_{rec} = 0$, $N_W = 0$, 1500 11.87±4.98 N_f ≥ 1, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 1$, $N_{rec} = 0$, $N_W ≥ 1$, 1300 11.87±4.98 N_f ≥ 1, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_f ≥ 1$, $N_{rec} = 0$, $N_W ≥$	Search region	E_T	singlelep	TF_{LL}	$TF_{I.I.}^{CR-SR}$	$TF_{I.I.}^{SR-extrap}$	N_{pred}^{LL}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,,,,,,,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53						806.44±16.52	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	300-400	2076	0.178 ± 0.003	0.692	0.257	369.44 ± 10.81	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	55		366		0.730	0.238		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56		99					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		high Δm , $N_1 > 2$, $M_T(h_1, h_2) < 175$ GeV, $N_2 > 7$, $N_3 > 1$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57						1997 45+29 50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	high Δm ,							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0.163	113.97 ± 4.98	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74	≥ 650	61	0.074 ± 0.010	0.662	0.111	4.49 ± 0.86	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	high Δ		$M_T(b_{1,2}, E\!\!\!\!/$	$_{T}) > 175 \text{ GeV},$	$N_t \ge 1$, N_{re}	$s = 0, N_W = 0$, > 1500	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75		201	0.170 ± 0.009	0.796	0.213	34.13 ± 3.04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76				0.705	0.258	1.82 ± 0.69	
$\begin{array}{ c c c c c c c }\hline 78 & 250-350 & 18251 & 0.072\pm0.001 & 0.735 & 0.099 & 1322.45\pm17.10 \\ \hline 79 & 350-450 & 3312 & 0.075\pm0.002 & 0.780 & 0.096 & 247.85\pm7.29 \\ 80 & \geq 450 & 1002 & 0.058\pm0.003 & 0.789 & 0.074 & 58.17\pm3.35 \\ \hline high $\Delta m, N_b=1, M_T(b_{1,2}, E_T) > 175 \text{ GeV}, N_t=0, N_{res}=0, N_W \geq 1, > 1300 \\ \hline 81 & 250-350 & 237 & 0.079\pm0.006 & 0.828 & 0.095 & 18.63\pm1.80 \\ 82 & 350-450 & 100 & 0.069\pm0.008 & 0.748 & 0.092 & 6.89\pm1.07 \\ 83 & \geq 450 & 116 & 0.055\pm0.007 & 0.650 & 0.085 & 6.41\pm0.99 \\ \hline high $\Delta m, N_b=1, M_T(b_{1,2}, E_T) > 175 \text{ GeV}, N_t=0, N_{res} \geq 1, N_W=0, <1000 \\ \hline 84 & 250-350 & 17766 & 0.244\pm0.002 & 0.735 & 0.332 & 4330.52\pm42.75 \\ 85 & 350-450 & 3115 & 0.208\pm0.003 & 0.786 & 0.265 & 647.96\pm15.60 \\ 86 & 450-550 & 635 & 0.148\pm0.006 & 0.824 & 0.179 & 93.71\pm5.28 \\ 87 & 550-650 & 148 & 0.111\pm0.009 & 0.805 & 0.137 & 16.36\pm1.88 \\ 88 & \geq 650 & 46 & 0.065\pm0.010 & 0.842 & 0.077 & 2.99\pm0.62 \\ \hline high $\Delta m, N_b=1, M_T(b_{1,2}, E_T) > 175 \text{ GeV}, N_t=0, N_{res} \geq 1, N_W=0, 1000 < 1500 \\ \hline 89 & 250-350 & 597 & 0.114\pm0.004 & 0.745 & 0.153 & 68.13\pm3.76 \\ 90 & 350-450 & 246 & 0.114\pm0.007 & 0.730 & 0.156 & 28.04\pm2.50 \\ 91 & 450-550 & 117 & 0.086\pm0.008 & 0.629 & 0.137 & 10.07\pm1.34 \\ 92 & 550-650 & 50 & 0.130\pm0.016 & 0.649 & 0.200 & 6.49\pm1.22 \\ 93 & \geq 650 & 61 & 0.072\pm0.009 & 0.662 & 0.109 & 4.40\pm0.81 \\ \hline high $\Delta m, N_b=1, M_T(b_{1,2}, E_T) > 175 \text{ GeV}, N_t=0, N_{res} \geq 1, N_W=0, 1500 \\ \hline 94 & 250-350 & 125 & 0.056\pm0.006 & 0.856 & 0.066 & 7.02\pm1.00 \\ 95 & 350-450 & 51 & 0.057\pm0.009 & 0.691 & 0.083 & 2.91\pm0.63 \\ 96 & 450-550 & 25 & 0.076\pm0.014 & 0.731 & 0.104 & 1.90\pm0.53 \\ 97 & 550-650 & 10 & 0.055\pm0.021 & 0.705 & 0.079 & 0.55\pm0.27 \\ 98 & \geq 650 & 26 & 0.073\pm0.019 & 0.618 & 0.118 & 1.99\pm0.63 \\ \hline high $\Delta m, N_b=1, M_T(b_{1,2}, E_T) > 175 \text{ GeV}, N_t \geq 1, N_{res} = 0, N_W \geq 1 \\ \hline \end{array}$	77	≥ 650	26	0.070 ± 0.016	0.618	0.114	1.83 ± 0.55	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	high Δ	$m, N_b = 1,$	$M_T(b_{1,2}, E\!$	$_{T}$) > 175 GeV,	$N_t = 0, N_{re}$	$s = 0, N_W \ge 1$, < 1300	
$\begin{array}{ c c c c c c c c }\hline 80 & \geq 450 & 1002 & 0.058\pm0.003 & 0.789 & 0.074 & 58.17\pm3.35\\\hline high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W \ge 1$, $>1300\\\hline 81 & 250-350 & 237 & 0.079\pm0.006 & 0.828 & 0.095 & 18.63\pm1.80\\82 & 350-450 & 100 & 0.069\pm0.008 & 0.748 & 0.092 & 6.89\pm1.07\\83 & \geq 450 & 116 & 0.055\pm0.007 & 0.650 & 0.085 & 6.41\pm0.99\\\hline high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} \ge 1$, $N_W = 0$, $<1000\\\hline 84 & 250-350 & 17766 & 0.244\pm0.002 & 0.735 & 0.332 & 4330.52\pm42.75\\85 & 350-450 & 3115 & 0.208\pm0.003 & 0.786 & 0.265 & 647.96\pm15.60\\86 & 450-550 & 635 & 0.148\pm0.006 & 0.824 & 0.179 & 93.71\pm5.28\\87 & 550-650 & 148 & 0.111\pm0.009 & 0.805 & 0.137 & 16.36\pm1.88\\88 & \geq 650 & 46 & 0.065\pm0.010 & 0.842 & 0.077 & 2.99\pm0.62\\high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} \ge 1$, $N_W = 0$, $1000 < 1500\\\hline 89 & 250-350 & 597 & 0.114\pm0.004 & 0.745 & 0.153 & 68.13\pm3.76\\90 & 350-450 & 246 & 0.114\pm0.007 & 0.730 & 0.156 & 28.04\pm2.50\\91 & 450-550 & 117 & 0.086\pm0.008 & 0.629 & 0.137 & 10.07\pm1.34\\92 & 550-650 & 50 & 0.130\pm0.016 & 0.649 & 0.200 & 6.49\pm1.22\\93 & \geq 650 & 61 & 0.072\pm0.009 & 0.662 & 0.109 & 4.40\pm0.81\\high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} \ge 1$, $N_W = 0$, $1000 < 1.9\pm1.29\\93 & \geq 650 & 61 & 0.072\pm0.009 & 0.662 & 0.109 & 4.40\pm0.81\\high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} \ge 1$, $N_W = 0$, $>1500\\94 & 250-350 & 125 & 0.056\pm0.006 & 0.856 & 0.066 & 7.02\pm1.00\\95 & 350-450 & 51 & 0.057\pm0.009 & 0.691 & 0.083 & 2.91\pm0.63\\96 & 450-550 & 25 & 0.076\pm0.014 & 0.731 & 0.104 & 1.99\pm0.53\\97 & 550-650 & 26 & 0.073\pm0.019 & 0.618 & 0.118 & 1.99\pm0.63\\high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t \ge 1$, $N_{res} = 0$, $N_W \ge 1$\\high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t \ge 1$, $N_{res} = 0$, $N_W \ge 1$\\high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t \ge 1$, $N_{res} = 0$, $N_W \ge 1$\\high $\Delta m, N_b = 1$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t \ge 1$, $N_{res} = 0$, $N_W \ge 1$\\high$	78	250-350	18251	0.072 ± 0.001	0.735	0.099	1322.45 ± 17.10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	79	350-450	3312	0.075 ± 0.002	0.780	0.096	247.85 ± 7.29	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	≥ 450	1002	0.058 ± 0.003	0.789	0.074	58.17 ± 3.35	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	high Δ	$m, N_b = 1,$	$M_T(b_{1,2}, E\!\!\!\!\!/$	T) > 175 GeV,	$N_t = 0, N_{re}$	$s = 0, N_W \ge 1$, > 1300	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	82							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	83	> 450	116	0.055 ± 0.007	0.650	0.085	6.41 ± 0.99	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	high Δ							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$!	1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							68 13+3 76	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$!							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{ c c c c c c c c }\hline 93 & \geq 650 & 61 & 0.072\pm0.009 & 0.662 & 0.109 & 4.40\pm0.81\\ \hline & high $\Delta m, N_b = 1$, $M_T(b_{1.2}, \not{E}_T) > 175$ GeV, $N_t = 0$, $N_{res} \geq 1$, $N_W = 0$, $>1500\\ \hline & 94 & 250-350 & 125 & 0.056\pm0.006 & 0.856 & 0.066 & 7.02\pm1.00\\ 95 & 350-450 & 51 & 0.057\pm0.009 & 0.691 & 0.083 & 2.91\pm0.63\\ 96 & 450-550 & 25 & 0.076\pm0.014 & 0.731 & 0.104 & 1.90\pm0.53\\ 97 & 550-650 & 10 & 0.055\pm0.021 & 0.705 & 0.079 & 0.55\pm0.27\\ 98 & \geq 650 & 26 & 0.073\pm0.019 & 0.618 & 0.118 & 1.98\pm0.63\\ & & high $\Delta m, N_b = 1$, $M_T(b_{1.2}, \not{E}_T) > 175$ GeV, $N_t \geq 1$, $N_{res} = 0$, $N_W \geq 1$\\ \hline \end{array}$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$!				
high Δm , $N_b = 1$, $M_T(b_{1,2}, \cancel{E}_T) > 175$ GeV, $N_t \ge 1$, $N_{res} = 0$, $N_W \ge 1$		1						
$99 [250-550 22677 0.001\pm0.000 0.745 0.001 15.57\pm1.31$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	≥ 550	341	0.001±0.000	0.741	0.002	0.43±0.17	

Search region	$\not\!\! E_T$	singlelep	TF_{LL}	TF_{LL}^{CR-SR}	$TF_{LL}^{SR-extrap}$	N_{pred}^{LL}
			$(E_T) > 175 \text{ G}$			
101	250-550		0.001±0.000		0.001	11.50±1.14
102	≥ 550	341	0.002 ± 0.001 $E_T > 175 G$	0.741	0.003	0.78±0.25
103 104	250-550	22677 341	0.003±0.000	0.745	0.004	73.10±2.95
	≥ 550		0.005 ± 0.001 c) > 175 GeV,	0.741	0.007	1.69±0.46
105	$n, N_b = 2,$ 250-550		0.034 ± 0.001	$N_t = 1, N_{res}$ 0.754	0.045	111.61±4.08
105	550-650	3292 31	0.034 ± 0.001 0.104 ± 0.019	0.734	0.045	3.22±0.82
107	≥ 650	11	0.104 ± 0.019 0.135 ± 0.035	0.700	0.147	1.49±0.59
			· 175 GeV, N _t			
108	250-550	201	0.160±0.008	0.789	0.203	32.16±2.79
109	550-650	10	0.044±0.015	0.510	0.087	0.44±0.20
110	≥ 650	13	0.161±0.038		0.214	2.09±0.76
) > 175 GeV,			
111	250-550	51	0.204±0.020	0.880	0.232	10.42±1.78
112	550-650	4	0.030 ± 0.021	0.385	0.078	0.12±0.10
113	≥ 650	5	0.119±0.035	0.458	0.261	0.60 ± 0.32
high Δr	$n, N_b = 2,$	$M_T(b_{1,2}, E_T)$) > 175 GeV,	$N_t = 0, N_{res}$	$= 0, N_W = 1,$	
114	250-350	2778	0.068 ± 0.002	0.760	0.089	188.20±6.22
115	350 - 450	528	0.070 ± 0.004	0.763	0.091	36.82±2.66
116	≥ 450	193	0.050 ± 0.005	0.684	0.073	9.67±1.20
			(r) > 175 GeV,	$N_t = 0, N_{res}$		
117	250-350	67	0.100 ± 0.012	0.865	0.115	6.68±1.16
118	350 - 450	24	0.049±0.013	0.821	0.060	1.18±0.40
119	≥ 450	28	0.063 ± 0.014	0.556	0.113	1.76 ± 0.52
			$_{\rm r}) > 175 \; {\rm GeV},$			
120	250 - 350	2675	0.202 ± 0.003	0.757	0.268	541.50±13.94
121	350 - 450	495	0.186 ± 0.007	0.763	0.243	92.02±5.47
122	450-550	122	0.143±0.012	0.660	0.217	17.46±2.14
123	550-650	31	0.106±0.018	0.706	0.150	3.29±0.81
124	≥ 650	11	0.173±0.042	0.855	0.203	1.91±0.74
			175 GeV, N _t			
125	250-350	139	0.157±0.010	0.817	0.192	21.84±2.33
126	350-450	42	0.104±0.012	0.741	0.140 0.132	4.36±0.84
127 128	450-550 550-650	20 10	0.098±0.017 0.092±0.023	0.740 0.510	0.132	1.96±0.55 0.92±0.37
129	≥ 650	13	0.092 ± 0.025 0.146 ± 0.035	0.751	0.194	1.89±0.69
			() > 175 GeV,			
130	250-350	31	0.107±0.017	0.897	0.119	3.31±0.80
131	350-450	15	0.083±0.026	0.963	0.086	1.25±0.51
132	450-550	5	0.046±0.018	0.662	0.069	0.23±0.14
133	550-650	4	0.016±0.009	0.385	0.042	0.07±0.05
134	> 650	5	0.004±0.001	0.458	0.009	0.02±0.01
			$(E_T) > 175 \text{ G}$			
135	250-550	3544	0.000±0.000	0.758	0.000	1.15±0.27
136	≥ 550	74	0.001±0.000	0.650	0.001	0.06±0.03
high	Δm , $N_b =$	$= 2, M_T(b_1,$	$(2, E_T) > 175 \text{ G}$	${\rm eV}, N_t = 0,$	$N_{res} = 1, N_W$	= 1
137	250-550	3544	0.004±0.000	0.758	0.005	13.73±1.21
138	≥ 550	74	0.002 ± 0.001	0.650	0.004	0.18 ± 0.11
			r) > 175 GeV,			
139	250-350	2778	0.002 ± 0.000	0.760	0.002	4.61±0.70
140	350 - 450	528	0.002±0.001	0.763	0.002	0.91±0.30
141	≥ 450	193	0.008 ± 0.002	0.684	0.012	1.57±0.38
			r) > 175 GeV,			
142	250-350		0.008 ± 0.003	0.865	0.010 0.010	0.56 ± 0.21
	350-450		0.008±0.007			0.20±0.17
144	≥ 450	28	0.017±0.007	0.556	0.030	0.47±0.20
) > 175 GeV,			
145 146	250-450 450-600	3306 160	0.000 ± 0.000	0.760 0.683	0.000	0.34±0.17
!			0.000±0.000	!	0.000	0.00±0.01
147	≥ 600	33 M_(b #	0.000±0.000	0.687 N = 2 N	0.000 0.000 0.000	0.00±0.00
148	$n, N_b = 2,$ 250-450	$M_T(\theta_{1,2}, E_T)$ 91	(-) > 175 GeV, (0.001 ± 0.001)	$N_t = 2, N_{res}$ 0.851	0.002	> 1300 0.13±0.08
149	450-600	17	0.001 ± 0.001 0.012 ± 0.008	0.644	0.002	0.13±0.08 0.20±0.14
150	≥ 600	11	0.012 ± 0.008 0.000 ± 0.000	0.446	0.013	0.20±0.14 0.00±0.00
) > 175 GeV,			
151	250-450	3306	0.006±0.000	0.760	0.008	19.99±1.62
152	450-600	160	0.007±0.002	0.683	0.010	1.06±0.32
153	≥ 600	33	0.005±0.003	0.687	0.007	0.17±0.11

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	G 1 :	<i>1</i> /2	. 11	m.r.	m rCB-SB	m pSR-extrap	371.1.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Search region	E_T			N = 0 N	$\frac{TF_{LL}}{2N} = 0$	N_{pred}^{LL}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	high Δ	$m, N_b = 2$			$N_t + N_{res}$	$+N_W>=3, <$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	high Δ		$M_T(b_{1,2}, I$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $!						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	170	≥ 550	3	0.032 ± 0.028	0.416	0.077	0.10±0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	high	$\Delta m, N_b \ge$	$3, M_T(b_{1,2})$	$\not\!$	$eV, N_t = 0,$	$N_{res} = 0, N_W$	= 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	171	250-350	577	0.072 ± 0.004	0.839	0.086	41.73±2.89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $!						
$\begin{array}{ c c c c c c c c }\hline & high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ \ GeV, $N_t = 0$, $N_{res} = 1$, $N_W = 0$, > 1500\\\hline 180 & 250 - 350 & 12 & 0.127 \pm 0.036 & 0.912 & 0.139 & 1.52 \pm 0.62\\\hline 181 & 350 - 550 & 3 & 0.045 \pm 0.023 & 0.769 & 0.058 & 0.13 \pm 0.10\\\hline 182 & \geq 550 & 3 & 0.160 \pm 0.078 & 0.416 & 0.384 & 0.48 \pm 0.36\\\hline & high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ \ GeV, $N_t = 1$, $N_{res} = 0$, $N_W = 1$\\\hline 183 & 250 - 500 & 708 & 0.001 \pm 0.000 & 0.838 & 0.002 & 0.89 \pm 0.25\\\hline 184 & \geq 500 & 21 & 0.001 \pm 0.001 & 0.569 & 0.002 & 0.02 \pm 0.02\\\hline & high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ \ GeV, $N_t = 0$, $N_{res} = 1$, $N_W = 1$\\\hline 185 & 250 - 500 & 708 & 0.005 \pm 0.001 & 0.838 & 0.006 & 3.29 \pm 0.61\\\hline 186 & \geq 500 & 21 & 0.000 \pm 0.000 & 0.569 & 0.000 & 0.00 \pm 0.00\\\hline & high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ \ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 1$\\\hline 187 & 250 - 350 & 557 & 0.002 \pm 0.001 & 0.840 & 0.002 & 1.14 \pm 0.34\\\hline 188 & 350 - 500 & 125 & 0.010 \pm 0.003 & 0.838 & 0.012 & 1.34 \pm 0.34\\\hline 188 & 350 - 500 & 125 & 0.010 \pm 0.003 & 0.838 & 0.012 & 1.34 \pm 0.34\\\hline 189 & \geq 500 & 18 & 0.013 \pm 0.007 & 0.578 & 0.023 & 0.24 \pm 0.14\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ \ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, > 1300\\\hline 190 & 250 - 350 & 20 & 0.018 \pm 0.008 & 0.826 & 0.021 & 0.35 \pm 0.18\\\hline 191 & 350 - 500 & 6 & 0.001 \pm 0.000 & 0.758 & 0.001 & 0.00 \pm 0.00\\\hline 192 & \geq 500 & 3 & 0.023 \pm 0.017 & 0.533 & 0.044 & 0.07 \pm 0.07\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ \ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, < 1300\\\hline 194 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.02 \pm 0.01\\\hline 194 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.00\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ \ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, > 1300\\\hline 195 & 250 - 500 & 682 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.00\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ \ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, > 1300\\\hline 197 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.002 & 0.00 \pm 0.00\\\hline high $\Delta m, N_b \geq 3$$	1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	high Δn	$n, N_b \ge 3, I$	$M_T(b_{1,2}, E_T)$			$= 1, N_W = 0,$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	180	250-350	12	0.127 ± 0.036	0.912	0.139	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
$\begin{array}{ c c c c c c }\hline 183 & 250-500 & 708 & 0.001\pm0.000 & 0.838 & 0.002 & 0.89\pm0.25 \\ 184 & \geq 500 & 21 & 0.001\pm0.001 & 0.569 & 0.002 & 0.02\pm0.02 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 1$, $N_W = 1$\\ \hline 185 & 250-500 & 708 & 0.005\pm0.001 & 0.838 & 0.006 & 3.29\pm0.61 \\ \hline 186 & \geq 500 & 21 & 0.000\pm0.000 & 0.569 & 0.000 & 0.00\pm0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, $ 187 & 250-350 & 557 & 0.002\pm0.001 & 0.840 & 0.002 & 1.14\pm0.34 \\ 188 & 350-500 & 125 & 0.010\pm0.003 & 0.838 & 0.012 & 1.30\pm0.38 \\ 189 & \geq 500 & 18 & 0.013\pm0.007 & 0.578 & 0.023 & 0.24\pm0.14 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, $> 1300 \\ \hline 190 & 250-350 & 0.002\pm0.001 & 0.840 & 0.002 & 1.14\pm0.34 \\ 185 & 350-500 & 6 & 0.013\pm0.007 & 0.578 & 0.023 & 0.24\pm0.14 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, $> 1300 \\ \hline 191 & 350-500 & 6 & 0.001\pm0.000 & 0.758 & 0.001 & 0.35\pm0.18 \\ 191 & 350-500 & 6 & 0.001\pm0.000 & 0.758 & 0.001 & 0.00\pm0.00 \\ 192 & \geq 500 & 3 & 0.023\pm0.017 & 0.533 & 0.044 & 0.07\pm0.07 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, $> 1300 \\ \hline 193 & 250-500 & 682 & 0.000\pm0.000 & 0.839 & 0.000 & 0.02\pm0.01 \\ 194 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, $> 1300 \\ \hline 195 & 250-500 & 26 & 0.001\pm0.000 & 0.533 & 0.002 & 0.00\pm0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $> 1300 \\ \hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.000 & 0.02\pm0.01 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $> 1300 \\ \hline 199 & 250-500 & 3 & 0.001\pm0.000 & 0.578 & 0.000 & 0.00\pm0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $> 1300 \\ \hline 199 & 250-500 & 3 & 0.00$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{ c c c c c c }\hline & \text{high } \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, \not{E}_T) > 175 \ \text{GeV}, \ N_t = 0, \ N_{res} = 1, \ N_W = 1\\\hline 185 & 250 - 500 & 708 & 0.005 \pm 0.001 & 0.838 & 0.006 & 3.29 \pm 0.61\\\hline 186 & \geq 500 & 21 & 0.000 \pm 0.000 & 0.569 & 0.000 & 0.00 \pm 0.00\\\hline & \text{high } \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, \not{E}_T) > 175 \ \text{GeV}, \ N_t = 1, \ N_{res} = 1, \ N_W = 0, < 1300\\\hline 187 & 250 - 350 & 557 & 0.002 \pm 0.001 & 0.840 & 0.002 & 1.14 \pm 0.34\\\hline 188 & 350 - 500 & 125 & 0.010 \pm 0.003 & 0.838 & 0.012 & 1.30 \pm 0.38\\\hline 189 & \geq 500 & 18 & 0.013 \pm 0.007 & 0.578 & 0.023 & 0.24 \pm 0.14\\\hline & \text{high } \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, \not{E}_T) > 175 \ \text{GeV}, \ N_t = 1, \ N_{res} = 1, \ N_W = 0, > 1300\\\hline 190 & 250 - 350 & 20 & 0.018 \pm 0.008 & 0.826 & 0.021 & 0.35 \pm 0.18\\\hline 191 & 350 - 500 & 6 & 0.001 \pm 0.000 & 0.758 & 0.001 & 0.00 \pm 0.00\\\hline 192 & \geq 500 & 3 & 0.023 \pm 0.017 & 0.533 & 0.044 & 0.07 \pm 0.07\\\hline & \text{high } \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, \not{E}_T) > 175 \ \text{GeV}, \ N_t = 2, \ N_{res} = 0, \ N_W = 0, < 1300\\\hline 193 & 250 - 500 & 682 & 0.000 \pm 0.000 & 0.839 & 0.000 & 0.02 \pm 0.01\\\hline 194 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.02 \pm 0.01\\\hline 195 & \geq 500 & 3 & 0.001 \pm 0.000 & 0.831 & 0.001 & 0.02 \pm 0.01\\\hline 196 & \geq 500 & 3 & 0.001 \pm 0.000 & 0.801 & 0.001 & 0.02 \pm 0.01\\\hline 196 & \geq 500 & 3 & 0.001 \pm 0.000 & 0.839 & 0.000 & 0.02 \pm 0.01\\\hline 196 & \geq 500 & 3 & 0.001 \pm 0.000 & 0.839 & 0.008 & 4.56 \pm 0.68\\\hline 198 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.02 \pm 0.01\\\hline high \ \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, \not{E}_T) > 175 \ \text{GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, < 1300\\\hline 197 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.008 & 4.56 \pm 0.68\\\hline 198 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.00\\\hline high \ \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, \not{E}_T) > 175 \ \text{GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, < 1300\\\hline 199 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.008 & 4.56 \pm 0.68\\\hline 199 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.008 & 4.56 \pm 0.68\\\hline 199 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.000 & 0.00 \pm 0.00\\\hline high \ \Delta m, \ N_b \geq 3, \ M_T$	1						
$\begin{array}{ c c c c c c c }\hline 185 & 250-500 & 708 & 0.005\pm0.001 & 0.838 & 0.006 & 3.29\pm0.61\\\hline 186 & \geq 500 & 21 & 0.000\pm0.000 & 0.569 & 0.000 & 0.00\pm0.00\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \rlap/E_T) > 175$ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, <1300\\\hline 187 & 250-350 & 557 & 0.002\pm0.001 & 0.840 & 0.002 & 1.14\pm0.34\\\hline 188 & 350-500 & 125 & 0.010\pm0.003 & 0.838 & 0.012 & 1.30\pm0.38\\\hline 189 & \geq 500 & 18 & 0.013\pm0.007 & 0.578 & 0.023 & 0.24\pm0.14\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \rlap/E_T) > 175$ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, <1300\\\hline 190 & 250-350 & 20 & 0.018\pm0.008 & 0.826 & 0.021 & 0.35\pm0.18\\\hline 191 & 350-500 & 6 & 0.001\pm0.000 & 0.758 & 0.001 & 0.00\pm0.00\\\hline 192 & \geq 500 & 3 & 0.023\pm0.017 & 0.533 & 0.044 & 0.07\pm0.07\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \rlap/E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, <1300\\\hline 193 & 250-500 & 682 & 0.000\pm0.000 & 0.839 & 0.000 & 0.02\pm0.01\\\hline 194 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.02\pm0.01\\\hline 195 & \geq 500 & 3 & 0.001\pm0.000 & 0.801 & 0.001 & 0.02\pm0.01\\\hline 196 & \geq 500 & 3 & 0.001\pm0.000 & 0.801 & 0.001 & 0.02\pm0.01\\\hline 196 & \geq 500 & 3 & 0.001\pm0.000 & 0.839 & 0.000 & 0.00\pm0.00\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \rlap/E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, > 1300\\\hline 197 & 250-500 & 682 & 0.000\pm0.001 & 0.831 & 0.001 & 0.02\pm0.01\\\hline 196 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \rlap/E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, > 1300\\\hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68\\\hline 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \rlap/E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, > 1300\\\hline 199 & 250-5500 & 26 & 0.009\pm0.005 & 0.801 & 0.011 & 0.22\pm0.11\\\hline 200 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.01\\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \rlap/E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, > 1300\\\hline 199 & 250-5500 & 26 & 0.009\pm0.005 & 0.801 & 0.011 & 0.24\pm0.13\\\hline 200 & \geq 500 & 3 & 0.001\pm0.001 & 0.825 & 0.001 & 0.82\pm0.37\\\hline high $\Delta m, N_b \geq 3$, $M_T($							
$\begin{array}{ c c c c c c }\hline 186 & \geq 500 & 21 & 0.000\pm0.000 & 0.569 & 0.000 & 0.00\pm0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, <1300\\ \hline 187 & 250-350 & 557 & 0.002\pm0.001 & 0.840 & 0.002 & 1.14\pm0.34 \\ 188 & 350-500 & 125 & 0.010\pm0.003 & 0.838 & 0.012 & 1.30\pm0.38 \\ 189 & \geq 500 & 18 & 0.013\pm0.007 & 0.578 & 0.023 & 0.24\pm0.14 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, >1300\\ \hline 190 & 250-350 & 20 & 0.018\pm0.008 & 0.826 & 0.021 & 0.35\pm0.18 \\ 191 & 350-500 & 6 & 0.001\pm0.000 & 0.758 & 0.001 & 0.09\pm0.00 \\ 192 & \geq 500 & 3 & 0.023\pm0.017 & 0.533 & 0.044 & 0.07\pm0.07 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, <1300\\ \hline 193 & 250-500 & 682 & 0.000\pm0.000 & 0.839 & 0.000 & 0.02\pm0.01 \\ 194 & \geq 500 & 18 & 0.000\pm0.000 & 0.839 & 0.000 & 0.02\pm0.01 \\ 194 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, >1300\\ \hline 195 & 250-500 & 26 & 0.001\pm0.000 & 0.801 & 0.001 & 0.02\pm0.01 \\ 196 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, >1300\\ \hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68 \\ 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, >1300\\ \hline 199 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68 \\ 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, >1300\\ \hline 199 & 250-500 & 26 & 0.009\pm0.005 & 0.801 & 0.011 & 0.24\pm0.13 \\ 200 & \geq 500 & 3 & 0.001\pm0.001 & 0.825 & 0.001 & 0.82\pm0.37 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2$\\ \hline 201 & \geq 250 & 729 & 0.001\pm0.001 & 0.824 & 0.000 & 0.18\pm0.12 \\ \hline \end{array}$							
$\begin{array}{ c c c c c c c }\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 1, \ N_{res} = 1, \ N_W = 0, < 1300\\\hline & 187 & 250 - 350 & 557 & 0.002 \pm 0.001 & 0.840 & 0.002 & 1.14 \pm 0.34\\\hline & 188 & 350 - 500 & 125 & 0.010 \pm 0.003 & 0.838 & 0.012 & 1.30 \pm 0.38\\\hline & 189 & \geq 500 & 18 & 0.013 \pm 0.007 & 0.578 & 0.023 & 0.24 \pm 0.14\\\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 1, \ N_{res} = 1, \ N_W = 0, > 1300\\\hline & 190 & 250 - 350 & 20 & 0.018 \pm 0.008 & 0.826 & 0.021 & 0.35 \pm 0.18\\\hline & 191 & 350 - 500 & 6 & 0.001 \pm 0.000 & 0.758 & 0.001 & 0.00 \pm 0.00\\\hline & 192 & \geq 500 & 3 & 0.023 \pm 0.017 & 0.533 & 0.044 & 0.07 \pm 0.07\\\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 2, \ N_{res} = 0, \ N_W = 0, < 1300\\\hline & 193 & 250 - 500 & 682 & 0.000 \pm 0.000 & 0.839 & 0.000 & 0.02 \pm 0.01\\\hline & 194 & \geq 5500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.00\\\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 2, \ N_{res} = 0, \ N_W = 0, > 1300\\\hline & 195 & 250 - 500 & 26 & 0.001 \pm 0.000 & 0.891 & 0.001 & 0.02 \pm 0.01\\\hline & 196 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00\\\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, < 1300\\\hline & 197 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.008 & 4.56 \pm 0.68\\\hline & 198 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.01\\\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, > 1300\\\hline & 199 & 250 - 500 & 3 & 0.001 \pm 0.001 & 0.839 & 0.000 & 0.02 \pm 0.01\\\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, > 1300\\\hline & 199 & 250 - 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00\\\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, > 1300\\\hline & 199 & 250 - 500 & 3 & 0.001 \pm 0.001 & 0.825 & 0.001 & 0.82 \pm 0.37\\\hline & \mathop{\rm high} \Delta m, \ N_b \geq 3, \ M_T(b_{1,2}, E_T) > 175 \ {\rm GeV}, \ N_t = 0, \ N_{res} = 0, \$!						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ c c c c c c }\hline 189 & \geq 500 & 18 & 0.013\pm0.007 & 0.578 & 0.023 & 0.24\pm0.14\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 1$, $N_{res} = 1$, $N_W = 0$, $> 1300\\ \hline 190 & 250-350 & 20 & 0.018\pm0.008 & 0.826 & 0.021 & 0.35\pm0.18\\ 191 & 350-500 & 6 & 0.001\pm0.000 & 0.758 & 0.001 & 0.00\pm0.00\\ 192 & \geq 500 & 3 & 0.023\pm0.017 & 0.533 & 0.044 & 0.07\pm0.07\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, $< 1300\\ \hline 193 & 250-500 & 682 & 0.000\pm0.000 & 0.839 & 0.000 & 0.02\pm0.01\\ 194 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, $> 1300\\ \hline 195 & 250-500 & 26 & 0.001\pm0.000 & 0.801 & 0.001 & 0.02\pm0.01\\ 196 & \geq 500 & 3 & 0.001\pm0.000 & 0.801 & 0.001 & 0.02\pm0.01\\ 196 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $> 1300\\ \hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68\\ \hline 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $> 1300\\ \hline 199 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68\\ \hline 199 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68\\ \hline 199 & 250-500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.01\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $> 1300\\ \hline 199 & 250-500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2\\ \hline 201 & \geq 250 & 729 & 0.001\pm0.001 & 0.825 & 0.001 & 0.82\pm0.37\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2\\ \hline 201 & \geq 250-400 & 652 & 0.000\pm0.000 & 0.844 & 0.000 & 0.18\pm0.12\\ \hline \end{array}$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	high Δn					$=1, N_W = 0,$	
$\begin{array}{ c c c c c c }\hline 192 & \geq 500 & 3 & 0.023\pm0.017 & 0.533 & 0.044 & 0.07\pm0.07\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, $<1300\\ \hline 193 & 250-500 & 682 & 0.000\pm0.000 & 0.839 & 0.000 & 0.02\pm0.01\\ 194 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, $>1300\\ \hline 195 & 250-500 & 26 & 0.001\pm0.000 & 0.801 & 0.001 & 0.02\pm0.01\\ 196 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.000\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $<1300\\ \hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68\\ \hline 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $>1300\\ \hline 199 & 250-500 & 26 & 0.009\pm0.005 & 0.801 & 0.011 & 0.24\pm0.13\\ \hline 200 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $>1300\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $>1300\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $>1300\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2$\\ \hline 201 & \geq 250 & 729 & 0.001\pm0.001 & 0.825 & 0.001 & 0.82\pm0.37\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, E_T) > 175$ GeV, $N_t + N_{res} + N_W > 3$\\ \hline 202 & 250-400 & 652 & 0.000\pm0.000 & 0.844 & 0.000 & 0.18\pm0.12\\ \hline \end{array}$	190	250 - 350	20	0.018 ± 0.008	0.826	0.021	0.35 ± 0.18
$\begin{array}{ c c c c c c c } & \operatorname{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap{E}_T) > 175 \ \mathrm{GeV}, \ N_t = 2, \ N_{res} = 0, \ N_W = 0, < 1300 \\ \hline 193 & 250 - 500 & 682 & 0.000 \pm 0.000 & 0.839 & 0.000 & 0.02 \pm 0.01 \\ 194 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.00 \\ \hline \text{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap{E}_T) > 175 \ \mathrm{GeV}, \ N_t = 2, \ N_{res} = 0, \ N_W = 0, > 1300 \\ \hline 195 & 250 - 500 & 3 & 0.001 \pm 0.001 & 0.801 & 0.001 & 0.02 \pm 0.01 \\ 196 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ \hline \text{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap{E}_T) > 175 \ \mathrm{GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, < 1300 \\ \hline 197 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.008 & 4.56 \pm 0.68 \\ \hline 198 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.01 \\ \hline \text{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap{E}_T) > 175 \ \mathrm{GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, > 1300 \\ \hline 199 & 250 - 500 & 26 & 0.009 \pm 0.005 & 0.801 & 0.011 & 0.24 \pm 0.13 \\ \hline 200 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ \hline \text{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap{E}_T) > 175 \ \mathrm{GeV}, \ N_t = 0, \ N_{res} = 0, \ N_W = 2 \\ \hline 201 & \geq 250 & 729 & 0.001 \pm 0.001 & 0.825 & 0.001 & 0.82 \pm 0.37 \\ \hline \text{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap{E}_T) > 175 \ \mathrm{GeV}, \ N_t + N_{res} + N_W > 3 \\ \hline 202 & 250 - 400 & 652 & 0.000 \pm 0.000 & 0.844 & 0.000 & 0.18 \pm 0.12 \\ \hline \end{array}$	1						
$\begin{array}{ c c c c c c c c }\hline 193 & 250-500 & 682 & 0.000\pm0.000 & 0.839 & 0.000 & 0.02\pm0.01 \\\hline 194 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.00 \\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \pounds_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, > 1300 \\\hline 195 & 250-500 & 26 & 0.001\pm0.000 & 0.801 & 0.001 & 0.02\pm0.01 \\\hline 196 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00 \\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \pounds_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, < 1300 \\\hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68 \\\hline 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01 \\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \pounds_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, > 1300 \\\hline 199 & 250-500 & 26 & 0.009\pm0.005 & 0.801 & 0.011 & 0.24\pm0.13 \\\hline 200 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00 \\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \pounds_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2$ \\\hline 201 & \geq 250 & 729 & 0.001\pm0.001 & 0.825 & 0.001 & 0.82\pm0.37 \\\hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \pounds_T) > 175$ GeV, $N_t + N_{res} + N_W > 3$ \\\hline 202 & 250-400 & 652 & 0.000\pm0.000 & 0.844 & 0.000 & 0.18\pm0.12 \\\hline \end{array}$		≥ 500	3	0.023±0.017	0.533	0.044	
$\begin{array}{ c c c c c c }\hline 194 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 2$, $N_{res} = 0$, $N_W = 0$, $> 1300 \\ \hline 195 & \geq 500 & 26 & 0.001 \pm 0.000 & 0.801 & 0.001 & 0.02 \pm 0.01 \\ 196 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $< 1300 \\ \hline 197 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.008 & 4.56 \pm 0.68 \\ 198 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.01 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $> 1300 \\ \hline 199 & 250 - 500 & 26 & 0.009 \pm 0.005 & 0.801 & 0.011 & 0.24 \pm 0.13 \\ 200 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2 \\ \hline 201 & \geq 250 & 729 & 0.001 \pm 0.001 & 0.825 & 0.001 & 0.82 \pm 0.37 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2 \\ \hline 202 & 250 - 400 & 652 & 0.000 \pm 0.000 & 0.844 & 0.000 & 0.18 \pm 0.12 \\ \hline \end{array}$							
$\begin{array}{ c c c c c c } & \operatorname{high} \Delta m, N_b \geq 3, M_T(b_{1.2}, \cancel{E}_T) > 175 \mathrm{GeV}, N_t = 2, N_{res} = 0, N_W = 0, > 1300 \\ \hline 195 & 250 - 500 & 26 & 0.001 \pm 0.000 & 0.801 & 0.001 & 0.02 \pm 0.01 \\ 196 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ & \operatorname{high} \Delta m, N_b \geq 3, M_T(b_{1.2}, \cancel{E}_T) > 175 \mathrm{GeV}, N_t = 0, N_{res} = 2, N_W = 0, < 1300 \\ \hline 197 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.008 & 4.56 \pm 0.68 \\ 198 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.01 \\ & \operatorname{high} \Delta m, N_b \geq 3, M_T(b_{1.2}, \cancel{E}_T) > 175 \mathrm{GeV}, N_t = 0, N_{res} = 2, N_W = 0, > 1300 \\ \hline 199 & 250 - 500 & 26 & 0.009 \pm 0.005 & 0.801 & 0.011 & 0.24 \pm 0.13 \\ 200 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ & \operatorname{high} \Delta m, N_b \geq 3, M_T(b_{1.2}, \cancel{E}_T) > 175 \mathrm{GeV}, N_t = 0, N_{res} = 0, N_W = 2 \\ \hline 201 & \geq 250 & 729 & 0.001 \pm 0.001 & 0.825 & 0.001 & 0.82 \pm 0.37 \\ & \operatorname{high} \Delta m, N_b \geq 3, M_T(b_{1.2}, \cancel{E}_T) > 175 \mathrm{GeV}, N_t + N_{res} + N_W > 3 \\ \hline 202 & 250 - 400 & 652 & 0.000 \pm 0.000 & 0.844 & 0.000 & 0.18 \pm 0.12 \\ \hline \end{array}$							
$\begin{array}{ c c c c c c c c }\hline 195 & 250-500 & 26 & 0.001\pm0.000 & 0.801 & 0.001 & 0.02\pm0.01\\ \hline 196 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175~{\rm GeV}, N_t = 0$, $N_{res} = 2$, $N_W = 0$, < 1300\\ \hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68\\ \hline 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175~{\rm GeV}, N_t = 0$, $N_{res} = 2$, $N_W = 0$, > 1300\\ \hline 199 & 250-500 & 26 & 0.009\pm0.005 & 0.801 & 0.011 & 0.24\pm0.13\\ \hline 200 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175~{\rm GeV}, N_t = 0$, $N_{res} = 0$, $N_W = 2$\\ \hline 201 & \geq 250 & 729 & 0.001\pm0.001 & 0.825 & 0.001 & 0.82\pm0.37\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175~{\rm GeV}, N_t + N_{res} + N_W > 3\\ \hline 202 & 250-400 & 652 & 0.000\pm0.000 & 0.844 & 0.000 & 0.18\pm0.12\\ \hline \end{array}$							
$\begin{array}{ c c c c c c c }\hline 196 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, < 1300\\ \hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68\\ 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, > 1300\\ \hline 199 & 250-500 & 26 & 0.009\pm0.005 & 0.801 & 0.011 & 0.24\pm0.13\\ 200 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2$\\ \hline 201 & \geq 250 & 729 & 0.001\pm0.001 & 0.825 & 0.001 & 0.82\pm0.37\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, E_T) > 175$ GeV, $N_t + N_{res} + N_W > 3\\ \hline 202 & 250-400 & 652 & 0.000\pm0.000 & 0.844 & 0.000 & 0.18\pm0.12\\ \hline \end{array}$		7 0 = -7					
$\begin{array}{ c c c c c c } & \operatorname{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, E_T) > 175 \ \mathrm{GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, < 1300 \\ \hline 197 & 250 - 500 & 682 & 0.007 \pm 0.001 & 0.839 & 0.008 & 4.56 \pm 0.68 \\ 198 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.01 \\ \hline & \operatorname{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, E_T) > 175 \ \mathrm{GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, > 1300 \\ \hline & 199 & 250 - 500 & 26 & 0.009 \pm 0.005 & 0.801 & 0.011 & 0.24 \pm 0.13 \\ 200 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ \hline & \operatorname{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, E_T) > 175 \ \mathrm{GeV}, \ N_t = 0, \ N_{res} = 0, \ N_W = 2 \\ \hline & 201 & \geq 250 & 729 & 0.001 \pm 0.001 & 0.825 & 0.001 & 0.82 \pm 0.37 \\ \hline & \operatorname{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, E_T) > 175 \ \mathrm{GeV}, \ N_t + N_{res} + N_W > 3 \\ \hline & 202 & 250 - 400 & 652 & 0.000 \pm 0.000 & 0.844 & 0.000 & 0.18 \pm 0.12 \\ \hline \end{array}$	1						
$\begin{array}{ c c c c c c c c }\hline 197 & 250-500 & 682 & 0.007\pm0.001 & 0.839 & 0.008 & 4.56\pm0.68 \\ \hline 198 & \geq 500 & 18 & 0.000\pm0.000 & 0.578 & 0.000 & 0.00\pm0.01 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \cancel{E}_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, > 1300 \\ \hline 199 & 250-500 & 26 & 0.009\pm0.005 & 0.801 & 0.011 & 0.24\pm0.13 \\ 200 & \geq 500 & 3 & 0.001\pm0.001 & 0.533 & 0.002 & 0.00\pm0.00 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \cancel{E}_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2$ \\ \hline 201 & \geq 250 & 729 & 0.001\pm0.001 & 0.825 & 0.001 & 0.82\pm0.37 \\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1,2}, \cancel{E}_T) > 175$ GeV, $N_t + N_{res} + N_W > 3$ \\ \hline 202 & 250-400 & 652 & 0.000\pm0.000 & 0.844 & 0.000 & 0.18\pm0.12 \\ \hline \end{array}$							
$\begin{array}{ c c c c c c c }\hline 198 & \geq 500 & 18 & 0.000 \pm 0.000 & 0.578 & 0.000 & 0.00 \pm 0.01\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, \rlap/E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 2$, $N_W = 0$, $> 1300\\ \hline 199 & 250 - 500 & 26 & 0.009 \pm 0.005 & 0.801 & 0.011 & 0.24 \pm 0.13\\ 200 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, \rlap/E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2\\ \hline 201 & \geq 250 & 729 & 0.001 \pm 0.001 & 0.825 & 0.001 & 0.82 \pm 0.37\\ \hline high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, \rlap/E_T) > 175$ GeV, $N_t + N_{res} + N_W > 3\\ \hline 202 & 250 - 400 & 652 & 0.000 \pm 0.000 & 0.844 & 0.000 & 0.18 \pm 0.12\\ \hline \end{array}$							
$\begin{array}{ c c c c c c } & \operatorname{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap/E_T) > 175 \ \mathrm{GeV}, \ N_t = 0, \ N_{res} = 2, \ N_W = 0, > 1300 \\ \hline 199 & 250 - 500 & 26 & 0.009 \pm 0.005 & 0.801 & 0.011 & 0.24 \pm 0.13 \\ 200 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ \hline & \operatorname{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap/E_T) > 175 \ \mathrm{GeV}, \ N_t = 0, \ N_{res} = 0, \ N_W = 2 \\ \hline 201 & \geq 250 & 729 & 0.001 \pm 0.001 & 0.825 & 0.001 & 0.82 \pm 0.37 \\ \hline & \operatorname{high} \Delta m, \ N_b \geq 3, \ M_T(b_{1.2}, \rlap/E_T) > 175 \ \mathrm{GeV}, \ N_t + N_{res} + N_W > 3 \\ \hline 202 & 250 - 400 & 652 & 0.000 \pm 0.000 & 0.844 & 0.000 & 0.18 \pm 0.12 \\ \hline \end{array}$	1	!					!
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c } \hline 200 & \geq 500 & 3 & 0.001 \pm 0.001 & 0.533 & 0.002 & 0.00 \pm 0.00 \\ \hline & high $\Delta m_t, N_b \geq 3$, $M_T(b_{1.2}, \rlap/E_T) > 175$ GeV, $N_t = 0$, $N_{res} = 0$, $N_W = 2$ \\ \hline 201 & \geq 250 & 729 & 0.001 \pm 0.001 & 0.825 & 0.001 & 0.82 \pm 0.37 \\ \hline & high $\Delta m, N_b \geq 3$, $M_T(b_{1.2}, \rlap/E_T) > 175$ GeV, $N_t + N_{res} + N_W > 3$ \\ \hline & 202 & 250 - 400 & 652 & 0.000 \pm 0.000 & 0.844 & 0.000 & 0.18 \pm 0.12 \\ \hline \end{array} $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		≥ 500	3	0.001 ± 0.001	0.533	0.002	0.00 ± 0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	high	$\Delta m, N_b \ge$	$3, M_T(b_{1,2})$		$eV, N_t = 0,$	$N_{res} = 0, N_W$	
202 250-400 652 0.000±0.000 0.844 0.000 0.18±0.12							
	1	!					
	203	≥ 400	77	0.001±0.001	0.703	0.001	0.07±0.05

5.2.2 Z Boson Decay to Neutrinos

Znunu: production of a Z boson that decays into two nuetrinos which are then missed by the detector. Can have jets from other quarks/gluons in the interaction

5.2.3 Quantum Chromodynamic Events

QCD: Events that of jets produced by QCD processes. The missing energy from from a mismeasurement of the jets in the event causing missing energy

5.2.4 Rare Interactions

ttZ, ttH, WW, WZ, ZZ, tZq, tWZ: rare processed that can have jets plus MET. Expand upon these later

Chapter 6

Search Region Design

Using MC simulations that model the SM background for this process we want to reduce the number of events in our Search region. This is an all hadronic search so we are looking at event with zero tagged leptons. Unfortunately, some can get in by not passing the kinematic cuts or just by the non 100 % of the detector. There is a small nonzero inefficiency of mistagging a lepton as something else.

6.1 Minimizing the ttZ background

For the ttZ interactions, we produce two top quarks that can then decay to two b quarks and two W bosons. A possible way to mimick our search region is two have multiple jets, i.e. b quarks that hadronize and W bosons that decay hadronically, but we also need missing energy. This will be in addition to the Z boson decaying into two neutrinos and thus creating a large amount of missing energy.

We now try to look at the differing kinematic structure of the background, ttZ, and the signal region, stop quarks decaying. Under the assumption that the Z boson is created by radiated from the top quark the resulting decay to neutrinos should be close, small $\Delta \phi$, between the resulting jets. For the signal, the missing energy is produced by the neutralino. When the stop quark decays into top quark and neutralino the top quark should recoil off of neutralino to essentially be back-to-back. This will cause a large angle, $\Delta \phi$, between them. We then want to use the

kinematic variable, $\Delta \phi(t_{1,2}, \cancel{E}_T)$, where

6.2 Lost Lepton Application

Can we apply this to other backgrounds. For boosted tops the the missing energy caused by missing the lepton in the W boson decay. The variable $\Delta \phi(t_{1,2}, E_T)$ should also apply. Should work for wjts, tW, ttW.

6.3 Search Regions

The HM and LM Search regions should be defined and explained. Why are they defined the way they are?

6.4 Search Region Optimization

Look for an optimized cust for $\Delta\phi(t_{1,2}, E_T)$ to maximize $\frac{S}{\sqrt{B}}$ in each SR. Could have a different cut for each region, but a combination to make it all the same would be nice. Since the signal can decay in multiple ways we need to optimize for all possible scenarios. Explain why we are maximizing $\frac{S}{\sqrt{B}}$

6.5 Limits

Looking at the significance and limits for the mass regions of the stop quark decay. Using the Higgs Combined tool, which includes statistics with a "maximal likelihood" fit? The cut, $\Delta \phi(t_{1,2}, E_T)$, would hopefully improve the values, but an optimized cut has not been chosen yet.