Trig Final (TEST v625)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 1.3 radians. The arc length is 9.8 meters. How long is the radius in meters?

Question 2

Consider angles $\frac{9\pi}{4}$ and $\frac{-13\pi}{6}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\sin\left(\frac{9\pi}{4}\right)$ and $\cos\left(\frac{-13\pi}{6}\right)$ by using a unit circle (provided separately).

Find $sin(9\pi/4)$

Find $\cos(-13\pi/6)$

Question 3

If $\sin(\theta) = \frac{15}{17}$, and θ is in quadrant II, determine an exact value for $\cos(\theta)$.

Question 4

A mass-spring system oscillates vertically with a frequency of 8.08 Hz, a midline at y=-3.3 meters, and an amplitude of 5.61 meters. At t=0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).