Computational Data Analytics for Economists

Lecture 1

Introduction to Machine Learning for Prediction

Helge Liebert Anthony Strittmatter

Outline

- Prediction vs. Causal Inference
- ② General Machine Learning Framework
- 3 Regularised Regressions
- Trees and Random Forests
- Other Machine Learning Methods

Literature

- Mullainathan and Spiess (2017): "Machine Learning: An Applied Econometric Approach", Journal of Economic Perspectives, 31 (2), pp. 87-106, download.
- Hastie, Tibshirani, and Friedman (2009): "Elements of Statistical Learning", 2nd ed., Springer, download.
- James, Witten, Hastie, and Tibshirani (2013): "An Introduction to Statistical Learning", Springer, download.
- Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan (2018): "Human Decisions and Machine Predictions", Quarterly Journal of Economics, 133 (1), pp. 237-293, download.

Why Machine Learning (ML)?

- ML (or statistical learning) methods exist already since decades
- Currently "Machine Learning" is a buzz word with no clear definition
- Probably most people think of ML as some computational intensive methods that make data-driven modelling decisions
- Consider the structural model Y = f(X, U)
 - ML methods can be very powerful to predict $\widehat{Y} = \widehat{f}(X)$
 - ML methods are able to incorporate many (or even high-dimensional)
 covariates X in a convenient way
 - ML methods can make data-driven modelling decisions on $\widehat{f}(\cdot)$
 - Main disadvantage: ML is a black-box approach and we loose the interpretability of $\widehat{f}(X)$

Popularity of Machine Learning

Source: Google trends

Examples: Studies Using ML for Prediction

- Glaeser, Kominers, Luca, and Naik (2016) use images from Google Street View to measure block-level income in New York City and Boston
- Jean et al. (2016) train a neural net to predict local economic outcomes from satellite data in African countries
- <u>Chandler, Levitt, and List (2011)</u> predict shootings among high-risk youth so that mentoring interventions can be appropriately targeted
- Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan (2018) predict the crime probability of defendants released from investigative custody to improve judge decisions
- Kang, Kuznetsova, Luca, and Choi (2013) use restaurant reviews on Yelp.com to predict the outcome of hygiene inspections
- Huber and Imhof (2018) use machine learning to detect bid-rigging cartels in Switzerland
- Kogan, Levin, Routledge, Sagi, and Smith (2009) predict volatility of firms from market-risk disclosure texts (annual 10-K forms)

LASSO Example: Predicting House Prices

	OLS	LASSO	Post-LASSO	
Intercept	11.59	11.30	11.26	
Baths	0.288	0.251	0.289	
Bedrooms	0.011			
Kitchen	-0.270			
Living rooms	-0.126			
Lot size	-0.00000002			
Rooms	0.131	0.108	0.124	
Garage	-0.540	-0.377	-0.549	

Note: This table just serves for illustration. The sample contains 51,808 houses from American Housing Survey. House prices are measured in log dollars.

Shallow Tree Example: Predicting House Prices

Note: Based on a sample from the 2011 American Housing Survey metropolitan survey. House-value predictions are in log dollars.

Source: Mullainathan and Spiess (2017)

Predictions vs. Causal Inference

- Outcome (e.g., house price): Y
- Binary Treatment (e.g., incinerator in neighbourhood): $D \in \{0,1\}$
- Potential Outcome:
 - *Y*(1) house price when an incinerator is in the neighbourhood
 - *Y*(0) house price when no incinerator is in the neighbourhood
 - → Only one potential outcome can be observed
- Causal effect: $\delta = Y(1) Y(0)$
- ightarrow Predictions have the observable estimation target \widehat{Y}
- ightarrow Causal inference has the (partly) unobservable estimation target $\widehat{oldsymbol{\delta}}$

Training of ML Algorithms

Out-of-Sample Mean-Squared-Error (MSE):

Observed outcome Y:

$$MSE_{\widehat{Y}} = E\left[(\widehat{Y} - Y)^2\right] = \underbrace{E\left[(\widehat{Y} - E[\widehat{Y}])^2\right]}_{\mbox{Variance}} + \underbrace{(E[\widehat{Y} - Y])^2}_{\mbox{Squared Bias}}$$

Causal Effect δ:

$$MSE_{\widehat{\delta}} = E\left[(\widehat{\delta} - \delta)^2\right] = \underbrace{E\left[(\widehat{\delta} - E[\widehat{\delta}])^2\right]}_{\text{Variance}} + \underbrace{\left(E[\widehat{\delta} - \delta]\right)^2}_{\text{Squared Bias}}$$

 $ightarrow \delta$ is unobservable

Causal Machine Learning

Three possible Causal Machine Learning approaches:

- Some causal inference methods involve prediction problems (e.g., first stage IV, propensity score). Use ML only for the prediction steps.
- Transform the outcome (or regression weight) such that the conditional expectations roughly approximate the causal effect (e.g., modified outcome method).
- Adapt the optimization criteria of the ML algorithm (e.g., causal trees, causal forests).

When can Predictions be Useful?

- Tasks that have the purpose to predict an observable Y
 - stock or commodity prices
 - unemployment rate or GDP
 - pre-screening of job applications
 - consumer demand (shipping before the order occurs)
 - movie recommendations
 - handwriting, face, or voice recognition
- Tasks that have the purpose to estimate δ , but require an intermediate prediction step
 - first stage of an instrumental variable regression
 - effect heterogeneity of causal effects
 - modified outcome method
 - event study approach
 - sample selection model (e.g., Heckman equation)

What we NOT Learn from Machine Learning

Linear model: $Y = X\beta + U$

• $\widehat{\beta}$ are inconsistently estimated in standard ML approaches (this could be the target of causal machine learning for low-dimensional β)

Non-parametric model: Y = f(X, U)

- We will not be able to identify the "true" structural function f(X) without making very restrictive assumptions (see discussion of oracle properties below)
- \rightarrow ML is a black-box approach

Selected Covariates Across 10 LASSO Regressions

Source: Mullainathan and Spiess (2017)

Supervised vs. Unsupervised Machine Learning

Supervised Machine Learning:

- We observe data on Y and X and want to learn the mapping $\widehat{Y} = \widehat{f}(X)$
- Classification when \widehat{Y} is discrete, regression when \widehat{Y} is continuous

Unsupervised Machine Learning:

- We observe only data on *X* and want to learn something about its structure
- Clustering: Partition data into homogeneous groups based on X

Dimensionality reduction (e.g., principal component analysis)

Supervised Machine Learning in One Expression

Objective function:

$$\min \sum \underbrace{L(Y,f(X))}_{\text{loss function}} \text{ over } \underbrace{f \in F}_{\text{function class}} \text{ s.t. } \underbrace{R(f) \leq c}_{\text{complexity restriction}}$$

- Loss function $L(\cdot)$: quadratic, absolute, etc.
- Function class F: linear (e.g., LASSO), non-linear (e.g., Logit-LASSO), non-parametric (e.g., tree, neural net)
- Complexity restriction $R(f) \le c$: depth of tree, number of hidden layers, LASSO penalty, etc.
- Complexity level c: tuning parameter for max. complexity

Source: Francis Diebold's "No Hesitations" blog

General ML Procedure

- Select a ML method (e.g., LASSO)
- 2 Draw randomly a hold-out-sample from the data
- $oldsymbol{3}$ Estimate the machine learning model using different complexity levels c
- 4 Select the optimal complexity level c^*
- **⑤** Predict \widehat{Y} using c^* and extrapolate the fitted values to the retarded hold-out-sample
- 6 Evaluate the prediction power of the ML method in the hold-out-sample

Selection of the Optimal Complexity

- Van der Vaart, Dudoit, and van der Laan (2006) show that cross-validation (CV) tuning approximates the optimal complexity
- Concrete implementation of CV:
 - Number of CV-folds: 5-20?
 - · Performance measure: MSE, Variance, Gini-index?
 - Ad-hoc extensions: "one standard-error rule" for tuning the LASSO
- Alternatives to CV:
 - Some alternatives (e.g., AIC, BIC) rely on assumptions about the sampling process
 - Rare theoretical guidance applies only to specific methods (see, e.g., Belloni, Chen, Chernozhukov, and Hansen, 2012, for the LASSO)

The Firewall Principle

Why do we use the hold-out-sample to evaluate the prediction power?

- If we try many tuning parameter values, we may end up overfitting even in cross-validation samples
- The cross-validation samples are smaller than the hold-out-sample, which may lead to underestimation of the prediction power
- The cross-validation performance is an aggregation over multiple different prediction functions, which differs from the single prediction function we finally estimate
- \rightarrow Often we use MSE, RMSE, or R^2 to assess the out-of-sample prediction power

Prediction Performance in Housing Price Example

	In-Sample		Hold-Out-Sample		
	MSE	R^2	MSE	R^2	
OLS	0.589	47.30%	0.674	41.70%	
Shallow Tree	0.675	39.60%	0.758	34.50%	
LASSO	0.603	46.00%	0.656	43.30%	
Forest	0.167	85.10%	0.631	45.50%	
Ensemble	0.219	80.40%	0.626	45.90%	

Source: Mullainathan and Spiess (2017)

Honest Inference

- Using the same data to train and estimate the ML model might lead to overfitting
- For example, there is a risk that extreme outliers are grouped in the same leave of a tree which may increase the variance
- To avoid this, we split the data in training and estimation samples
- The training sample is used to select the ML model, e.g., with a CV procedure
- The selected ML model is used for predicting Y in the estimation sample
- \bullet The fitted values \widehat{Y} are extrapolated to the hold-out-sample for an assessment of the prediction power
- Potential gain: Better coverage of confidence intervals
- Price to pay: Smaller samples, less precise predictions

Simulation from Athey and Imbens (2016)

	Design 1		Design 2		Design 3			
Sample Size	500	1,000	500	1,000	500	1,000		
	Coverage of 90% confidence interval							
Standard	0.82	0.85	0.78	0.81	0.69	0.74		
Honest	0.90	0.90	0.90	0.89	0.89	0.90		
	MSE Ratio							
Standard/Honest		1.021		0.754		0.717		

- → Results are for tree estimator
- \rightarrow Only designs 2 and 3 have extreme outliers

Cross-Fitting

- To improve the finite sample performance <u>Chernozhukov et al. (2017)</u> propose different cross-fitting procedures
- For example, we could partition the data in two samples A and B
- Train the ML model in each sample separately
- Fit \widehat{Y}_A in sample A using the model trained in sample B
- Fit \widehat{Y}_B in sample B using the model trained in sample A
- Finally, $\widehat{Y} = \frac{1}{2}(\widehat{Y}_A + \widehat{Y}_B)$

Data transformations

- The way how we encode and transform our data can affect the performance of the ML method
- Transformations of outcome variable Y:
 - ML methods do not guide us regarding the appropriate transformation (e.g., levels, logarithm)
- Transformations of covariates X:
 - Different measures for same variable: We can include many different measures of the same variable (e.g., level, logarithm, squared, cubic) and the ML algorithm will disregard them if not needed
 - Same variable on different aggregation levels: ML methods select an appropriate aggregation level
 - Standardisation: Usually, we standardise all *X* variables by the means and standard deviations in the training sample

Regularised Regressions

$$\min_{\beta} \left\{ \sum_{i=1}^{N} \left(Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} p(\beta_j) \right\}$$

where $\lambda \geq 0$ is the tuning parameter and the number of covariates p can be high-dimensional $(p \gg N)$

Choice of penalty function $p(\cdot)$:

- Ridge: $p(\beta_j) = \beta_j^2$
- LASSO: $p(\beta_j) = |\beta_j|$ (Least Absolute Shrinkage and Selection Operator)
- Elastic Net: $p(\beta_j) = \alpha |\beta_j| + (1 \alpha)\beta_j^2$
- Best Subset Selection: $p(\beta_j) = 1\{\beta_j \neq 0\}$
- \rightarrow Note that coefficient size depends on the scaling of X_j . It is best practice to standardise X_j .

Summation Notation

OLS residual sum of squares (RSS):

$$RSS = \sum_{i=1}^{N} (Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j)^2$$

- Penalized regression:
 - Lagrangian operator

$$\min_{\beta} \{RSS + \lambda \sum_{j=1}^{p} p(\beta_j)\}$$

· Constrained regression

$$\min_{\beta} \{RSS\} \text{ s.t. } \sum_{j=1}^{p} p(\beta_j) \le c$$

Matrix Notation

• Ridge:

$$\min_{\beta} \left\{ (Y - X\beta)'(Y - X\beta) + \lambda \|\beta\|_{2}^{2} \right\}$$

with $\|\beta\|_2^2 = \beta'\beta = \sum_{j=1}^p \beta_j^2$ (squared l_2 -norm), $\widehat{\beta} = (X'X + \lambda I)^{-1}X'Y$, and I being the identity matrix

• LASSO:

$$\min_{\beta} \left\{ (Y - X\beta)'(Y - X\beta) + \lambda \|\beta\|_1 \right\}$$

with
$$\|oldsymbol{eta}\|_1 = \sum_{j=1}^p |oldsymbol{eta}_j|$$
 (l_1 -norm)

Ridge Coefficients

LASSO Coefficients

Constraint Regions

Simple Example

- Consider X = I with dimension p = N
- OLS model

$$\min \sum_{j=1}^{p} (Y_j - \beta_j)^2,$$

such that the estimated OLS coefficients are $\widehat{eta}_j = Y_j$

Ridge model

$$\min \sum_{j=1}^{p} (Y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta^2,$$

such that the estimated Ridge coefficients are $\widehat{eta}_j^R = \widehat{eta}_j/(1+\lambda)$

Simple Example (cont.)

LASSO model

$$\min \sum_{j=1}^{p} (Y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta|,$$

such that the estimated LASSO coefficients are

$$\widehat{\beta}_{j}^{L} = \left\{ \begin{array}{ll} \widehat{\beta}_{j} - \lambda/2 & \text{if } \widehat{\beta}_{j} > \lambda/2, \\ \widehat{\beta}_{j} + \lambda/2 & \text{if } \widehat{\beta}_{j} < -\lambda/2, \\ 0 & \text{if } |\widehat{\beta}_{j}| < \lambda/2, \end{array} \right.$$

which corresponds to the soft-thresholding operator

$$\widehat{\beta}_{j}^{L} = sign(\widehat{\beta}_{j})(|\widehat{\beta}_{j}| - \lambda/2)_{+}$$

Simple Example (cont.)

Coordinate Descent Algorithm for LASSO

$$\min_{\beta} \left\{ \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j)^2 + \lambda_s \sum_{j=1}^{p} |\beta_j| \right\}$$

- (1) Specify a grid of s = 1,...S tuning parameters $\lambda_s \in \{\lambda_1, \lambda_2, ..., \lambda_S\}$
- (2) Take residuals $Y_i^* = Y_i \frac{1}{N} \sum_{i=1}^{N} Y_i$ and initialise $\beta_i = 0$
- (3) Circulate repeatedly over all j = 1,...,p until convergence:
 - (a) Compute the partial residuals by $r_{ij} = Y_i^* \sum_{k \neq j} X_{ik} \beta_k$
 - (b) Calculate the simple univariate OLS coefficient $\tilde{eta}_j = \frac{1}{N} \sum_{i=1}^N X_{ij} r_{ij}$
 - (c) Update β_i with the soft-thresholding operator:

$$\beta_j = sign(\tilde{\beta}_j)(|\tilde{\beta}_j| - \lambda_s)_+$$

(4) Repeat (3) for s = 1, ..., S

Note: Standardisation of X is required

Ridge: Variance-Bias Trade-Off

LASSO: Variance-Bias Trade-Off

Oracle Property

Setup:

- Structural model: $Y_i = \beta_0 + \sum_{j=1}^K X_{ij} \beta_j + U_i$
- The vector X_i has p > K dimensions
- Estimated LASSO model: $\widehat{Y}_i = \widehat{\beta}_0 + \sum_{j=1}^p X_{ij}\widehat{\beta}_j + \lambda \sum_{j=1}^p |\widehat{\beta}_j|$

Oracle property:

• Model selection consistency: When $N \to \infty$,

$$Pr(\widehat{\beta}_j = 0) \stackrel{p}{\to} 1$$

for all $\widehat{eta}_j \in \{\widehat{eta}_{K+1},...,\widehat{eta}_p\}$ (irrelevant covariates)

• Coefficient estimation consistency: When $N \to \infty$,

$$Pr(|\widehat{\beta}_j - \beta_j| > \varepsilon) \xrightarrow{p} 0$$

for any arepsilon>0 and all $\widehat{eta}_j\in\{\widehat{eta}_0,...,\widehat{eta}_K\}$ (relevant covariates)

Minimum assumptions required:

• Sparsity $(K \ll N)$ and relevant covariates have to be roughly orthogonal to the irrelevant ones ("irrepresentability condition")

Post-LASSO

- Coefficients of LASSO $\widehat{\beta}_i$ are inconsistent when $\lambda_N > 0$ (asymptotically)
- Post-LASSO:

$$\min_{\alpha} \sum_{i=1}^{N} \left(Y_i - \alpha_0 - \sum_{j=1}^{p} 1\{\widehat{\beta}_j \neq 0\} X_{ij} \alpha_j \right)^2$$

- Coefficients of Post-LASSO are consistent
- Model selection consistency depends on the first-step LASSO estimates
- Alternatives:
 - Adaptive LASSO: $\lambda_i^* = \lambda/|\widehat{\beta}_i|^{\gamma}$ (Zou, 2006)
 - Conservative LASSO: $\lambda_j^* = \lambda / \max(|\widehat{\beta_j}|, \lambda)$ (Caner and Kock, 2018)

Logit-Lasso

· Logistic log-likelihood function:

$$L = \sum_{i=1}^{N} (Y_i X_i \beta - log(1 + exp(X_i \beta)))$$

Logit-LASSO:

$$\min_{oldsymbol{eta}} \left\{ -L + \lambda \sum_{j=1}^p |oldsymbol{eta}|
ight\}$$

- Log likelihood function can be approximated by repeated application of weighted LASSO (proximal Newton iterations, Lee, Sun, and Saunders, 2014)
- Can be estimated with a coordinate descend algorithm with weighted soft-thresholding
- If $p \gg N$ we cannot let λ go down to zero
- See <u>Hastie</u>, <u>Tibshirani and Wainwright (2016)</u> for a comprehensive summary of logit-LASSO

Computation Time

Computation time (in seconds) for 100 λ values (N = 5,000 and p = 100)

		Average Correlation between Covariates					
		0	0.1	0.2	0.5	0.9	0.95
Coordinate Descent	Linear	0.05	0.05	0.05	0.05	0.05	0.05
	Logistic	7.89	8.48	9.01	13.39	26.68	26.36
Least Angle	Linear	0.29	0.29	0.29	0.3	0.29	0.29

Source: Hastie (2009)

Tree

- ullet Trees partition the sample into mutually exclusive groups l_j , which are called leaves
- Let $\pi = \{l_1,...,l_{\#(\pi)}\}$ be the terminal leaves of a specific tree or sample partition
- Let $l_j \equiv l_j(x,\pi)$ be the respective leaf (for $j=1,...,\#(\pi)$)
- The leaf $l_j(x,\pi)$ of tree π is a function of the covariates X such that $x \in l_j$
- Let $\#(\pi)$ be the number of terminal leaves in tree π

Example: Shallow Tree

Log Salary of Baseball Players

Example: Shallow Tree (cont.)

Source: James, Witten, Hastie, Tibshirani (2013)

Recursive Partitioning

- Trees select the leaves with a top-down, greedy algorithm, which is called recursive partitioning
- Top-down because we start with a root (tree without leaves) and successively add splits
- *Greedy* because at each step of the tree building we add the split that improves the prediction power best (instead of looking ahead)

Tree Building Algorithm

- (1) Start with the entire sample (root)
- (2) For each predictor X_i and cut-point s define the pair of half-planes

$$l_1^{(j,s)} = \{X | X_j < s\} \text{ and } l_2^{(j,s)} = \{X | X_j \geq s\}$$

- Calculate the mean outcomes \bar{Y}_1 and \bar{Y}_2 in each half-plane, respectively
- Seek the covariate X_{j1}^* and the cut-point s_1^* that minimise

$$\sum_{i:X_i \in l_1^{(j,s)}} (Y_i - \bar{Y}_1)^2 + \sum_{i:X_i \in l_2^{(j,s)}} (Y_i - \bar{Y}_2)^2$$

Tree Building Algorithm (cont.)

(2) For each predictor X_i and cut-point s define the triple of half-planes

$$l_1^{(j,s)} = \{X|X_{j1}^* < s_1^*, X_j < s\}, \ l_2^{(j,s)} = \{X|X_{j1}^* < s_1^*, X_j \geq s\}, \ \text{and} \ l_3^{(j,s)} = \{X|X_{j1}^* \geq s_1^*\}$$

and

$$l_1^{(j,s)} = \{X|X_{j1}^* \geq s_1^*, X_j < s\}, \ l_2^{(j,s)} = \{X|X_{j1}^* \geq s_1^*, X_j \geq s\}, \ \text{and} \ l_3^{(j,s)} = \{X|X_{j1}^* < s_1^*\}$$

- Calculate the mean outcomes \bar{Y}_1 , \bar{Y}_2 , and \bar{Y}_3 in each half-plane, respectively
- Seek the covariate X_{i2}^* and the cut-point s_2^* that minimise

$$\sum_{i:X_i \in l_1^{(j,s)}} (Y_i - \bar{Y}_1)^2 + \sum_{i:X_i \in l_2^{(j,s)}} (Y_i - \bar{Y}_2)^2 + \sum_{i:X_i \in l_3^{(j,s)}} (Y_i - \bar{Y}_3)^2$$

(3) Continue until some stopping rule is reached (e.g., max. tree size, min. terminal leave size, min. MSE gain)

"Deep" Tree

Log Salary of Baseball Players

Source: James, Witten, Hastie, Tibshirani (2013)

Selecting Optimal Tree Size

- → Pruning the complexity of trees can improve out-of-sample prediction power
- ightarrow Select optimal tree size π with cross-validation

Complexity Pruning

- (A) Use recursive partitioning to grow the deep tree π_0 in the training data
- (B) For each value of α a subtree $\pi \subseteq \pi_0$ minimises

$$\sum_{j=1}^{\#(\pi)} \sum_{i:X_i \in l_j} (Y_i - \bar{Y}_j)^2 + \alpha \#(\pi)$$
 (1)

Obtain a sequence of best subtrees

- (C) Use cross-validation to choose α . Partition the sample in k folds. For each fold:
 - (a) Repeat steps (A) and (B) in the kth-fold
 - (b) Evaluate the MSE using equation (1)
 - (c) Average the MSE across the k folds for each value of α and select the α that minimises the average MSE
- (D) Return to the subtree from (B) with the selected value of α

Prediction

• For the selected tree π^* use the estimation sample to predict

$$\widehat{Y}_i = \sum_{j=1}^{\#(\pi^*)} \frac{1}{\sum_{i=1}^N 1\{X_i \in l_j(x, \pi^*)\}} \sum_{i=1}^N 1\{X_i \in l_j(x, \pi^*)\} \cdot Y_i$$

This is equivalent to the linear regression

$$\min_{\beta} \sum_{i=1}^{N} \left(Y_i - \sum_{j=1}^{\#(\pi^*)} 1\{X_i \in l_j(x, \pi^*)\} \beta_j \right)^2$$

Advantages and Disadvantages of Trees

Advantages

- Shallow trees are very easy to understand
- Shallow trees can be displayed graphically in a nice way
- Trees automatically handle interactions between covariates
- It is not necessary to transform covariates as long as they have an order

Disadvantages

Often trees are unstable and have a high variance

Random Forests

- Build G deep trees π_g on different subsets of the data (subsampling or bootstrapping) and covariates
 - \rightarrow decorrelated trees
- These trees are overfitted in the sample and will have a high out-of-sample variance
- To overcome this problem, we aggregate the trees

$$\widehat{Y}_i^{RF} = \frac{1}{G} \sum_{g=1}^G \widehat{Y}_i^{\pi_g}$$

- This procedure is often called bootstrap-aggregation ("bagging")
- We loose interoperability but gain prediction power compared to (shallow) trees
- Tuning parameters: Forest size, subsample selection, covariate selection, tree size, honest inference, etc

Random Forests: Weighted Representation

• Tree weights:

$$\alpha_{ig}(x) = \frac{1\{X_i \in l_j(x, \pi_g)\}}{\sum_{i=1}^{N} 1\{X_i \in l_j(x, \pi_g)\}}$$

Forest weights:

$$\alpha_i(x) = \frac{1}{G} \sum_{i=1}^{G} \alpha_{ig}(x)$$

Predicted outcome:

$$\widehat{\mu}(x) = \sum_{i=1}^N lpha_i(x) Y_i$$
 and $\widehat{Y}_i = \widehat{\mu}(X_i)$

Random Forest: Weighted Representation (cont.)

Source: Athey, Tibshirani, Wager (2018)

Neural Networks

Input layer, output layer, hidden layer, neurons

- Neurons network function: $f(X) = F(\sum_{i} w_{i}g(x_{i}))$
- Types of neural nets: Feedforward, Recurrent, Autoencoder, etc.
- Econometric references: Farell, Liang, and Misra (2018), Hartford, Lewis, Leyton-Brown, and Taddy (2016)

Other (Supervised) Machine Learning Methods

- Best Subset Selection, Forward Selection
- Boosting (Luo and Spindler, 2017)
- · k-Nearest Neighbours, Kernel, Splines
- Ensemble Methods (Künzel, Sekhon, Bickel, and Yu, 2018)
- etc.