Package 'bugwas'

October 26, 2015
Title What the Package Does (one line, title case)
Version 0.0.0.9000
Description What the package does (one paragraph)
Depends R (>= 3.2.1)
License What license is it under?
LazyData true
Imports ape, phangorn
R topics documented:
all_plots
bayesianWaldTestPCsBarplot
genVarPlots
lin_loc
logregVsLMM
pcLoadingPlot
snpManhattanPlot
snpPCManhattanPlot
testGenomeWidePCs
trueAndPredPhenoOnTreePlot
Index 10
all_plots Generates all plots.
Description

This function generates all the plots

Usage

```
all_plots(biallelic = NULL, triallelic = NULL, genVars = NULL,
  treeInfo = NULL, config = NULL)
```

Arguments

biallelic	A list called 'biallelic' created from the lin_loc function
triallelic	A list called 'triallelic' created from the lin_loc function
genVars	A list called 'genVars' created from the lin_loc function
treeInfo	A list called 'treeInfo' created from the lin_loc function
config	A list called 'config' created from the lin_loc function

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
  prefix = prefix, gem.path = gem.path)
all_plots(biallelic = data$biallelic, triallelic = data$triallelic,
genVars = data$genVars, treeInfo = data$treeInfo, config = data$config)</pre>
```

bayesianWaldTestPCsBarplot

Barplot of Bayesian Wald Test on principal components

Description

This function generates the barplot of Bayesian Wald Test on principal components.

Usage

```
bayesianWaldTestPCsBarplot(config, biallelic, treeInfo, colourPalette = NULL,
    p.genomewidepc = NULL)
```

Arguments

config A list called 'config' created from the lin_loc function. It is a required input.

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input.

treeInfo A list called 'treeInfo' created from the lin_loc function. It is a required input.

colourPalette A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are chosen from a default colour palette.

1

p.genomewidepc A matrix of the significant principal component and their correlation with lineages. This is Bayesian Wald test results produced by the function testGenomeWide-PCs. If this is NULL then testGenomeWidePCs is called to generate the required

test results.

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
testGenomeWidePCs(config = data$config, biallelic = data$biallelic)</pre>
```

genVarPlots 3

genVarPlots Plots for GWAS on general variants
--

Description

This function generates the various Manhattan plots for general variants.

Usage

```
genVarPlots(genVars, biallelic, config, colourPalette = NULL)
```

Arguments

genVars	A list called 'genVars' created from the lin_loc function. It is a required input.
biallelic	A list called 'biallelic' created from the lin_loc function. It is a required input.
config	A list called 'config' created from the lin_loc function. It is a required input.
colourPalette	A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are chosen from a default colour palette.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
genVarPlots(genVars = data$genVars, biallelic = data$biallelic, config = data$config)</pre>
```

lin_loc

Lineage and locus tests for bacterial GWAS

Description

This function tests for locus effects using GEMMA and lineage effects using a bayesian wald test for haploid data

Usage

```
lin_loc(gen = NULL, pheno = NULL, phylo = NULL, prefix = NULL,
  gem.path = NULL, pcs = NULL, lmm.bi = NULL, lmm.tri.tetra = NULL,
  logreg.bi = NULL, logreg.tri.tetra = NULL, var.matrix = NULL,
  logreg.var = NULL, lmm.var = NULL, cutOffCor = 0, run.lmm = TRUE,
  maf = 0, relmatrix = NULL, lognull = NULL, lambda = NULL,
  output.dir = getwd(), creatingAllPlots = TRUE)
```

4 lin_loc

Arguments

gen A file name specified by either a variable of mode character, or a double-quoted

string, containing imputed haploid SNP data. Rows are SNPs, and columns are samples, with the first column being SNP positions. Column headers must contain 'ps' for the SNP positions with the others being the sample names. This must contain biallelic SNPs, but can also contain tri and tetra-allelic SNPs. Re-

quired argument.

pheno A file name specified by either a variable of mode character, or a double-quoted

string, containing a column of sample names with header 'ID' and a column of the binary phenotype (coded by 0s and 1s) with column header 'pheno'. Re-

quired argument.

phylo A file name specified by either a variable of mode character, or a double-quoted

string, containing a phylogeny of the samples, with the same names matching

with arguments gen and pheno. Required argument.

prefix Output file prefix. Required argument.

gem.path A file path specified by either a variable of mode character, or a double-quoted

string. gem.path is the file path to the software GEMMA (version >= ?). Re-

quired argument.

pcs A file name specified by either a variable of mode character, or a double-quoted

string, containing the principle components of the data. Column names should

be 'PC1' to 'PCn' and row names should be the sample names.

1mm.bi A file name specified by either a variable of mode character, or a double-quoted

string, containing GEMMA results (ending '.assoc.txt') for the biallelic SNPs in

argument 'gen'.

1mm.tri.tetra A file name specified by either a variable of mode character, or a double-quoted

string, containing GEMMA results for the tri and tetra allelic SNPs in argument 'gen'. This must contain column headers 'ps' for SNP positions/IDs, 'pvals' for

p-values and 'negLog10' for -log10(p).

logreg.bi A file name specified by either a variable of mode character, or a double-quoted

string, containing logistic regression -log10(p) for the biallelic SNPs with col-

umn names 'ps' for SNP positions/IDs and 'negLog10' for -log10(p).

logreg.tri.tetra

A file name specified by either a variable of mode character, or a double-quoted string, containing logistic regression -log10(p) for the tri and tetra allelic SNPs

with column names 'ps' for SNP positions/IDs and 'negLog10' for -log10(p).

var.matrix A vector of file names specified by double-quoted strings. The files should con-

tain presence absence matrices, with rows being variants (of 0s and 1s), and columns being samples. Column headers must contain 'ps' for variant posi-

tions/IDs with the others being the sample names.

logreg.var A vector of file names specified by double-quoted strings, of files containing lo-

gistic regression -log10(p-value) results for the presence absence matrices. Column names must contain 'ps' for variant positions/IDs and 'negLog10' for the

-log10(p).

1mm.var A vector of file names specified by double-quoted strings, of files containing

GEMMA results for the presence absence matrices.

cutOffCor Correlation cut-off for assigning and colouring variants by Principal Compo-

nents (Default = 0, variants are coloured by the PC they are most correlated

with).

logregVsLMM 5

run.lmm Whether to run GEMMA (Default = TRUE).

Minor allele frequency for GEMMA (Default = 0, all varaints are tested). maf

relmatrix A file name specified by either a variable of mode character, or a double-quoted

> string of a file containing the GEMMA relatedness matrix of the samples created from biallelic SNPs. The individual ordering must be in the same order as the

column names in argument 'gen'.

lognull The log likelihood under the null from GEMMA.

lambda Lambda from GEMMA. output.dir Output file directory.

creatingAllPlots

Whether to create all bugwas plots. Default = TRUE.

Examples

```
lin_loc()
## An example of running lin_loc with the minimum required inputs
## Assuming gemma is installed in the present working directory
gen <- system.file("extdata", "gen.txt", package = "bugwas")</pre>
pheno <- system.file("extdata", "pheno.txt", package = "bugwas")</pre>
phylo <- system.file("extdata", "tree.txt", package = "bugwas")</pre>
prefix <- "test_bugwas"</pre>
gem.path <- "./gemma"</pre>
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo, prefix = prefix, gem.path = gem.path)</pre>
```

logregVsLMM

Plot of the P-values of logistic regression versus those of LMM

Description

This function generates the plot of the P-values of logistic regression versus those of SNP GWAS.

Usage

```
logregVsLMM(config, biallelic, triallelic, colourPalette = NULL)
```

Arguments

config A list called 'config' created from the lin_loc function. It is a required input. A list called 'biallelic' created from the lin_loc function. It is a required input. biallelic triallelic A list called 'triallelic' created from the lin_loc function. It is a required input. A vector of colours colour the significant principal components identified by the colourPalette Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are

chosen from a default colour palette.

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,</pre>
 prefix = prefix, gem.path = gem.path)
logregVsLMM(biallelic = data$biallelic, triallelic = data$triallelic, config = data$config)
```

			-	
pcl	Load	1n	gP.	Lot

Plot PC loadings of all SNPs.

Description

This function plots the loadings of all SNPs for each significant principle component identified by the Bayesian Wald test.

Usage

```
pcLoadingPlot(config, biallelic)
```

Arguments

config A list called 'config' created from the lin_loc function. It is a required input.

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
pcLoadingPlot(config = data$config, biallelic = data$biallelic)</pre>
```

plotIndividualBy2PCs Plot of the sample on the first two principal components

Description

This function generates a plot of the sample on the first two principal components.

Usage

```
plotIndividualBy2PCs(biallelic = NULL, config = NULL)
```

Arguments

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input.

config A list called 'config' created from the lin_loc function. It is a required input.

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
plotIndividualBy2PCs(biallelic = data$biallelic, config = data$config)</pre>
```

7 snpManhattanPlot

snpManhattanPlot	Generates Manhattan plots for a SNP GWAS	

Description

This function generates the Manhattan plot(s) for a SNP GWAS.

Usage

```
snpManhattanPlot(biallelic, triallelic, config, colourPalette = NULL)
```

Arguments

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input. triallelic A list called 'triallelic' created from the lin_loc function. It is a required input. A list called 'config' created from the lin_loc function. It is a required input. config colourPalette A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are

chosen from a default colour palette.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,</pre>
prefix = prefix, gem.path = gem.path)
snpManhattanPlot(biallelic = data$biallelic, triallelic = data$triallelic,
 config = data$config)
```

snpPCManhattanPlot

Plot the a Manhattan plot organised by the signficance of PCs.

Description

This function generates a Manhattan plot organised by the signficance of the principal components.

Usage

```
snpPCManhattanPlot(config, biallelic, triallelic, colourPalette = NULL)
```

Arguments

config	A list called 'config' created from the lin_loc function. It is a required input.
biallelic	A list called 'biallelic' created from the lin_loc function. It is a required input.
triallelic	A list called 'triallelic' created from the lin_loc function. It is a required input.
colourPalette	A vector of colours colour the significant principal components identified by the Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are chosen from a default colour palette.
p.genomewidepc	A matrix of the significant principal component and their correlation with lineages. This is Rayesian Wald test results produced by the function test Genome Wil

eages. This is Bayesian Wald test results produced by the function testGenomeWide-PCs. If this is NULL then testGenomeWidePCs is called to generate the required

test results.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
  prefix = prefix, gem.path = gem.path)
snpPCManhattanPlot(biallelic = data$biallelic, triallelic = data$triallelic,
  config = data$config)</pre>
```

testGenomeWidePCs

Testing the genome-wide principal components

Description

This function performs the genome-wide principal components.

Usage

```
testGenomeWidePCs(config = NULL, biallelic = NULL)
```

Arguments

config A list called 'config' created from the bugwas function
biallelic A list called 'biallelic' created from the bugwas function

Value

The p-value of the Bayesian Wald test for the genome-wide effect of principal components.

Examples

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
    prefix = prefix, gem.path = gem.path)
testGenomeWidePCs(config = data$config, biallelic = data$biallelic)</pre>
```

trueAndPredPhenoOnTreePlot

Generates all plots.

Description

This function that plots the true and predicted phenotypes on a tree.

Usage

```
trueAndPredPhenoOnTreePlot(config, biallelic, treeInfo, p.genomewidepc = NULL,
  colourPalette = NULL)
```

Arguments

config A list called 'config' created from the lin_loc function. It is a required input.

biallelic A list called 'biallelic' created from the lin_loc function. It is a required input.

treeInfo A list called 'treeInfo' created from the lin_loc function. It is a required input.

p.genomewidepc A matrix of the significant principal component and their correlation with lin-

eages. This is Bayesian Wald test results produced by the function testGenomeWide-PCs. If this is NULL then testGenomeWidePCs is called to generate the required

test results.

 ${\tt colourPalette} \quad A \ vector \ of \ colours \ colour \ the \ significant \ principal \ components \ identified \ by \ the$

Bayesian Wald test (see testGenomeWidePCs). If this is NULL then colours are

chosen from a default colour palette.

```
data <- lin_loc(gen = gen, pheno = pheno, phylo = phylo,
  prefix = prefix, gem.path = gem.path)
trueAndPredPhenoOnTreePlot(biallelic = data$biallelic, treeInfo = data$treeInfo,
  config = data$config)</pre>
```

Index

*Topic Barplot
${\tt bayesianWaldTestPCsBarplot, 2}$
*Topic Bayesian-Wald-test
${\it bayesianWaldTestPCsBarplot, 2}$
testGenomeWidePCs, 8
*Topic GEMMA
lin_loc, 3
*Topic GWAS
lin_loc, 3
*Topic Manhattan-plot
genVarPlots, 3
snpManhattanPlot, 7
snpPCManhattanPlot, 7
*Topic P-values
logregVsLMM,5
*Topic PCA
bayesianWaldTestPCsBarplot, 2
<pre>snpPCManhattanPlot, 7</pre>
testGenomeWidePCs, 8
*Topic Phenotype
<pre>trueAndPredPhenoOnTreePlot, 8</pre>
*Topic Phylogram
trueAndPredPhenoOnTreePlot,8
*Topic Reduced-space-plot
plotIndividualBy2PCs, 6
*Topic SNP
logregVsLMM,5
snpManhattanPlot, 7
snpPCManhattanPlot, 7
*Topic Scatter-plot
logregVsLMM, 5
pcLoadingPlot, 6
*Topic bacteria
lin_loc, 3
*Topic lineage
lin_loc, 3
*Topic locus
lin_loc, 3
*Topic plot
all_plots, 1
*Topic wald
lin_loc, 3

 $all_plots, 1$

```
bayesianWaldTestPCsBarplot, 2
genVarPlots, 3
lin_loc, 3
logregVsLMM, 5
pcLoadingPlot, 6
plotIndividualBy2PCs, 6
snpManhattanPlot, 7
snpPCManhattanPlot, 7
testGenomeWidePCs, 8
trueAndPredPhenoOnTreePlot, 8
```