Repetytorium z JFiZO

Jakub Michaliszyn

Zadania 31, 51, 83, 84 i jakaś redukcja

Zadanie 31. Niech $\mathcal L$ będzie językiem regularnym. Wtedy język

$$\mathcal{L}_* = \{ w \mid \exists x. wx \in \mathcal{L} \land |wx| = |w|^2 \}$$

jest regularny.

Niech $A = (\Sigma, Q, q_0, Q_F, \delta)$ będzie DFA takim, że $\mathcal{L}_A = \mathcal{L}$.

Niech $R_n: 2^Q \to 2^Q$ będzie taka, że

Niech
$$R_n: 2^Q \to 2^Q$$
 będzie taka, że $R_n(S) = \{q \in Q \mid \exists s \in S \exists y. |y| = n \land \hat{\delta}(s, y) = q\}.$

Fakt 1. $R_{n+m} =$

Niech $A = (\Sigma, Q, q_0, Q_F, \delta)$ będzie DFA takim, że $\mathcal{L}_A = \mathcal{L}$.

Niech $R_n: 2^Q \to 2^Q$ bedzie taka, że

 $R_n(S) = \{ q \in Q \mid \exists s \in S \exists y. |y| = n \land \hat{\delta}(s, y) = q \}.$

Fakt 1. $R_{n+m} = R_n \circ R_m$

Niech $A=(\Sigma,Q,q_0,Q_F,\delta)$ będzie DFA takim, że $\mathcal{L}_A=\mathcal{L}$.

Niech $R_n: 2^Q \to 2^Q$ będzie taka, że $R_n(S) = \{ q \in Q \mid \exists s \in S \exists y. |y| = n \land \hat{\delta}(s, y) = q \}.$

Fakt 1. $R_{n+m} = R_n \circ R_m$

Twierdzenie

Dla każdych x, y, jeśli $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$, $R_{|x|} = R_{|y|}$ i $R_{|x|^2-|x|} = R_{|y|^2-|y|}$, to $x \sim_{\sqrt{L}} y$.

Wniosek: \sqrt{L} jest regularny (z twierdzenia o indeksie).

Twierdzenie

Dla każdych x,y, jeśli $\hat{\delta}(q_0,x) = \hat{\delta}(q_0,y)$, $R_{|x|} = R_{|y|}$ i $R_{|x|^2-|x|} = R_{|y|^2-|y|}$, to $x \sim_{\sqrt{L}} y$.

Weźmy dowolne x, y, z takie, że $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$, $R_{|x|} = R_{|y|}$ i $R_{|x|^2-|x|} = R_{|y|^2-|y|}$.

Twierdzenie

Dla każdych x, y, jeśli $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$, $R_{|x|} = R_{|y|}$ i $R_{|x|^2-|x|} = R_{|y|^2-|y|}$, to $x \sim_{\sqrt{I}} y$.

Weźmy dowolne x, y, z takie, że $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$, $R_{|x|} = R_{|y|}$ i $R_{|x|^2-|x|} = R_{|y|^2-|y|}$.

Pokażemy, że:

1.
$$x \in \sqrt{\mathcal{L}}$$
 wtw. $y \in \sqrt{\mathcal{L}}$.

2.
$$\hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz)$$
.

2.
$$\delta(q_0, xz) = \delta(q_0, yz)$$

3. $R_{|xz|} = R_{|yz|}$.

4.
$$R_{|xz|^2-|xz|} = R_{|yz|^2-|yz|}$$
.

Wniosek:
$$xz \in \sqrt{\mathcal{L}}$$
 wtw. $yz \in \sqrt{\mathcal{L}}$.

- 1. $x \in \sqrt{\mathcal{L}}$ wtw. $y \in \sqrt{\mathcal{L}}$.
- 2. $\hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz)$.

4. $R_{|xz|^2-|xz|} = R_{|vz|^2-|vz|}$.

- 3. $R_{|xz|} = R_{|yz|}$.

Dowód 1. $x \in \sqrt{\mathcal{L}}$ wtw. $R_{|x|^2-|x|}(\{\hat{\delta}(q_0,x)\}) \cap Q_F \neq \emptyset$.

- 1. $x \in \sqrt{\mathcal{L}}$ wtw. $y \in \sqrt{\mathcal{L}}$.
- 2. $\hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz)$.
- 3. $R_{|xz|} = R_{|vz|}$.

2 - oczywiste.

4. $R_{|xz|^2-|xz|} = R_{|yz|^2-|yz|}$.

Dowód 1. $x \in \sqrt{\mathcal{L}}$ wtw. $R_{|x|^2-|x|}(\{\hat{\delta}(q_0,x)\}) \cap Q_F \neq \emptyset$.

- 1. $x \in \sqrt{\mathcal{L}}$ wtw. $y \in \sqrt{\mathcal{L}}$.

- 3. $R_{|xz|} = R_{|yz|}$.

4. $R_{|xz|^2-|xz|} = R_{|yz|^2-|yz|}$.

 $3 - R_{|xz|} = R_{|z|} \circ R_{|x|}.$

2 - oczywiste.

- 2. $\hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz)$.

Dowód 1. $x \in \sqrt{\mathcal{L}}$ wtw. $R_{|x|^2-|x|}(\{\hat{\delta}(q_0,x)\}) \cap Q_F \neq \emptyset$.

1.
$$x \in \sqrt{\mathcal{L}}$$
 wtw. $y \in \sqrt{\mathcal{L}}$.

1.
$$\lambda \in \sqrt{2}$$
 www. $y \in \sqrt{2}$
2. $\hat{\delta}(a_0, yz) = \hat{\delta}(a_0, yz)$

$$2. \ \hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz).$$

$$2. \ \delta(q_0, xz) = \delta(q_0, yz).$$

2.
$$\delta(q_0, xz) = \delta(q_0, yz)$$

3. $R_{|xz|} = R_{|yz|}$.

$$2. \ \hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz).$$

4. $R_{|xz|^2-|xz|} = R_{|vz|^2-|vz|}$.

 $3 - R_{|xz|} = R_{|z|} \circ R_{|x|}.$

2 - oczywiste.

$$(xz) = \hat{\delta}(q_0, yz)$$

$$\hat{\delta}(q_0, yz)$$

$$(q_0, yz)$$

$$q_0, yz$$

$$=\hat{\delta}(q_0,yz).$$

$$=\hat{\delta}(q_0,yz).$$

$$=\hat{\delta}(q_0,yz).$$

$$=\hat{\delta}(q_0, vz).$$

$$y \in \mathcal{V} = \hat{\delta}(a_0, vz).$$

tw.
$$y \in \sqrt{L}$$

= $\hat{\delta}(a_0, v_Z)$

$$\equiv \sqrt{\mathcal{L}}$$
.

$$\sqrt{\mathcal{L}}$$
.

$$\sqrt{\mathcal{L}}$$

Dowód 1. $x \in \sqrt{\mathcal{L}}$ wtw. $R_{|x|^2-|x|}(\{\hat{\delta}(q_0,x)\}) \cap Q_F \neq \emptyset$.

 $R_{|xz|^2-|xz|} = R_{|x|^2+2|x||z|+|z|^2-|x|-|z|} = R_{|x|^2-|x|} \circ R_{|z|^2-|z|} \circ R_{2|x||z|}.$

1.
$$x \in \sqrt{\mathcal{L}}$$
 wtw. $y \in \sqrt{\mathcal{L}}$.

2.
$$\hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz)$$
.

$$2. \ \hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz)$$

2.
$$\delta(q_0, xz) = \delta(q_0, yz)$$

 $3 - R_{|xz|} = R_{|z|} \circ R_{|x|}$.

Zauważmy, że $R_{2|x||z|} = R_{|y|}^{2|z|}$.

2 - oczywiste.

2.
$$\delta(q_0, xz) = \delta(q_0, yz)$$
.
3. $R_{|xz|} = R_{|yz|}$.

2.
$$\delta(q_0, xz) = \delta(q_0, yz)$$
.

$$(q_0, yz)$$

 $R_{|xz|^2-|xz|} = R_{|x|^2+2|x||z|+|z|^2-|x|-|z|} = R_{|x|^2-|x|} \circ R_{|z|^2-|z|} \circ R_{2|x||z|}.$

Dowód 1. $x \in \sqrt{\mathcal{L}}$ wtw. $R_{|x|^2-|x|}(\{\hat{\delta}(q_0,x)\}) \cap Q_F \neq \emptyset$.

4. $R_{|xz|^2-|xz|} = R_{|vz|^2-|vz|}$.

Dowód. Weźmy bezkontektowy język L i niech p będzie stałą dla niego z lematu o pompowaniu.

Dowód. Weźmy bezkontektowy język L i niech p będzie stałą dla niego z lematu o pompowaniu.

Niech $w_{k,l}$ - najkrótsze słowo takie, że $|w_{k,l}| \mod l = k$ oraz dla każdego n mamy $w_{k,l}0^{nl} \in L$ lub \emptyset gdy takiego nie ma.

Dowód. Weźmy bezkontektowy język L i niech p będzie stałą dla niego z lematu o pompowaniu.

Niech $w_{k,l}$ - najkrótsze słowo takie, że $|w_{k,l}|$ mod l=k oraz dla każdego n mamy $w_{k,l}0^{nl} \in L$ lub \emptyset gdy takiego nie ma.

$$r = \sum_{w \in L: |w| \le p} w + \sum_{k,l: 0 \le k < l \le p} w_{k,l}(0^l)^*$$

Dowód. Weźmy bezkontektowy język L i niech p będzie stałą dla niego z lematu o pompowaniu.

Niech $w_{k,l}$ - najkrótsze słowo takie, że $|w_{k,l}| \mod l = k$ oraz dla każdego n mamy $w_{k,l}0^{nl} \in L$ lub \emptyset gdy takiego nie ma.

$$r = \sum_{w \in L: |w| \le p} w + \sum_{k,l: 0 \le k < l \le p} w_{k,l}(0^l)^*$$

Twierdzenie. $L_r = L$.

Dowód. Weźmy bezkontektowy język L i niech p będzie stałą dla niego z lematu o pompowaniu.

Niech $w_{k,l}$ - najkrótsze słowo takie, że $|w_{k,l}|$ mod l=k oraz dla każdego n mamy $w_{k,l}0^{nl} \in L$ lub \emptyset gdy takiego nie ma.

$$r = \sum_{w \in L: |w| \le p} w + \sum_{k,l: 0 \le k < l \le p} w_{k,l}(0^l)^*$$

Lemat 1. $L_r \subseteq L$. Oczywiste

Dowód. Weźmy bezkontektowy język L i niech p będzie stałą dla niego z lematu o pompowaniu.

Niech $w_{k,l}$ - najkrótsze słowo takie, że $|w_{k,l}| \mod l = k$ oraz dla każdego n mamy $w_{k,l}0^{nl} \in L$ lub \emptyset gdy takiego nie ma.

$$r = \sum_{w \in L: |w| \le p} w + \sum_{k,l: 0 \le k < l \le p} w_{k,l}(0^l)^*$$

Lemat 2. $L_r \supseteq L$. Niech $w \in L$. Jeśli |w| < p, to teza jest oczywista. W przeciwnym razie istnieją słowa s, z, t, y, x takie, że dla każdego $|zty| \le p$ i dla każdego d, $sz^d ty^d x \in L$. Więc, istnieje l takie, że dla każdego d mamy $w0^{ld} \in L$.

Niech $k = |w| \mod I$. Wtedy $w_{k,l} \neq \emptyset$ oraz $w \in L_{w_{k,l}(0^l)*}$.

Weźmy dowolny niepusty zbiór rekurencyjnie przeliczalny X oraz dowolne $i \in X$. Niech ψ będzie programem semi-rozstrzygającym X.

Rozpatrzmy program Φ_X :

Weźmy dowolny niepusty zbiór rekurencyjnie przeliczalny X oraz dowolne $i \in X$. Niech ψ będzie programem semi-rozstrzygającym X.

Rozpatrzmy program Φ_X :

- wczytaj n
- niech k, l będą maksymalne takie, że $2^k \mid n$ oraz $3^l \mid n$.
- jeśli $\psi(k)$ uruchomione na l zwraca 1, zwróć k, inaczej zwróć i.

Twierdzenie. Zbiorem wartości Φ_X jest X.

Weźmy dowolny niepusty zbiór rekurencyjnie przeliczalny X oraz dowolne $i \in X$. Niech ψ będzie programem semi-rozstrzygającym X.

Rozpatrzmy program Φ_X :

- wczytaj n
- niech k, l będą maksymalne takie, że $2^k \mid n$ oraz $3^l \mid n$.
- jeśli $\psi(k)$ uruchomione na l zwraca 1, zwróć k, inaczej zwróć i.

Twierdzenie. Zbiorem wartości Φ_X jest X. 1. Φ_X zwraca tylko elementy z X.

Weźmy dowolny niepusty zbiór rekurencyjnie przeliczalny X oraz dowolne $i \in X$. Niech ψ będzie programem semi-rozstrzygającym X.

Rozpatrzmy program Φ_X :

- wczytaj n
- niech k, l będą maksymalne takie, że $2^k \mid n$ oraz $3^l \mid n$.
- jeśli $\psi(k)$ uruchomione na l zwraca 1, zwróć k, inaczej zwróć i.

Twierdzenie. Zbiorem wartości Φ_X jest X. 1. Φ_X zwraca tylko elementy z X. 2. Jeśli $\psi(x)$ zwraca 1 po I krokach, to $\Phi_X(2^{\times}3^I)$ zwraca x.

84. Każdy nieskończony zbiór rekrurencyjnie przeliczalny jest zbiorem wartości pewnej różnowartościowej, całkowitej funkcji.

Weźmy dowolny nieskończony zbiór rekurencyjnie przeliczalny X. Rozpatrzmy program Ψ_X :

84. Każdy nieskończony zbiór rekrurencyjnie przeliczalny jest zbiorem wartości pewnej różnowartościowej, całkowitej funkcji.

Weźmy dowolny nieskończony zbiór rekurencyjnie przeliczalny X. Rozpatrzmy program Ψ_X :

- wczytaj n
- niech $Z \leftarrow \emptyset$
- dla i = 1, 2, ...
- $x \leftarrow \Phi_X(i)$
- jeśli $x \notin Z$ oraz |Z| = n to zwróć x
- $Z \leftarrow Z \cup \{x\}$

Twierdzenie. Ψ_X jest jak trzeba.

$$(\Gamma, Q, q_0, \delta, q_f)$$
 gdzie $\delta \subseteq Q \times \Gamma \cup \{\bot\} \times Q \times \Gamma^*$.

Intuicja: $\delta(q, s, q', s_1 \dots s_n)$ oznacza "jeśli jesteś w stanie q a kolejka jest postaci $sk_1 \dots k_l$ dla pewnych k_1, \dots, k_l , to przejdź do stanu q' i kolejki $k_1 \dots k_l s_1 \dots s_n$ (\bot - pusta kolejka).

$$(\Gamma, Q, q_0, \delta, q_f)$$
 gdzie $\delta \subseteq Q \times \Gamma \cup \{\bot\} \times Q \times \Gamma^*$.

Intuicja: $\delta(q, s, q', s_1 \dots s_n)$ oznacza "jeśli jesteś w stanie q a kolejka jest postaci $sk_1 \dots k_l$ dla pewnych k_1, \dots, k_l , to przejdź do stanu q' i kolejki $k_1 \dots k_l s_1 \dots s_n$ (\bot - pusta kolejka). Twierdzenie. Problem stopu dla automatu kolejkowego jest nierozstrzygalny.

Dowód. Zredukujemy problem stopu maszyny Turinga.

$$(\Gamma, Q, q_0, \delta, q_f)$$
 gdzie $\delta \subseteq Q \times \Gamma \cup \{\bot\} \times Q \times \Gamma^*$.

Intuicja: $\delta(q, s, q', s_1 \dots s_n)$ oznacza "jeśli jesteś w stanie q a kolejka jest postaci $sk_1 \dots k_l$ dla pewnych k_1, \dots, k_l , to przejdź do stanu q' i kolejki $k_1 \dots k_l s_1 \dots s_n$ (\bot - pusta kolejka). Twierdzenie. Problem stopu dla automatu kolejkowego jest nierozstrzygalny.

Dowód. Zredukujemy problem stopu maszyny Turinga. Niech M będzie maszyną a x dowolnym wejściem, skonstruujemy automat, który staje wtw., gdy M(x) staje.

Idea na tablicy.

$$(q_0, \perp, (q_0^M, szukaj), x \pounds B\#)$$

$$(\Gamma, Q, q_0, \delta, q_f)$$
 gdzie $\delta \subseteq Q \times \Gamma \cup \{\bot\} \times Q \times \Gamma^*$.

Intuicja: $\delta(q, s, q', s_1 \dots s_n)$ oznacza "jeśli jesteś w stanie q a kolejka jest postaci $sk_1 \dots k_l$ dla pewnych k_1, \dots, k_l , to przejdź do stanu q' i kolejki $k_1 \dots k_l s_1 \dots s_n$ (\bot - pusta kolejka). Twierdzenie. Problem stopu dla automatu kolejkowego jest nierozstrzygalny.

Dowód. Zredukujemy problem stopu maszyny Turinga. Niech M będzie maszyną a x dowolnym wejściem, skonstruujemy automat, który staje wtw., gdy M(x) staje.

Idea na tablicy.

$$(q_0, \perp, (q_0^M, szukaj), x \pounds B\#)$$

Czy dla deterministycznych automatów problem jest rozstrzygalny?