Section 6.6: Operations with Vectors in R2

Recall that $\overrightarrow{OP} = (a,b)$ is the vector formed when we joined the origin, (0,0) to the point P(a,b). \overrightarrow{OP} is a special Cartesian vector called a "position vector." $\overrightarrow{OP} = (a,b)$ can also be written as [a,b].

A second way of writing $\overrightarrow{OP} = (a,b)$ is with the use of the unit vectors \overrightarrow{i} and \overrightarrow{j} . \overrightarrow{i} and \overrightarrow{j} are special unit vectors that have their tails on the origin. The head of vector \overrightarrow{i} is on the x-axis at (1,0) and the head of vector \overrightarrow{j} is on the y-axis at (0,1).

Since \overrightarrow{OA} and \overrightarrow{OB} are scalar multiples of \overrightarrow{i} and \overrightarrow{j} , we can write $\overrightarrow{OA} = \overrightarrow{ai}$ and $\overrightarrow{OB} = \overrightarrow{bj}$

Since
$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{OB}$$

then $\overrightarrow{OP} = \overrightarrow{ai} + \overrightarrow{bj}$

And since $\overrightarrow{OP} = (a,b)$ the $(a,b) = a\overrightarrow{i} + b\overrightarrow{j}$

(ie) $\overrightarrow{OP} = (3,4)$ can be written as $3\vec{i} + 4\vec{j}$

Apr 29-10:18 AM

Vectors in R' defined by Two Points

In considering the Cartesian Vector AB with points $A(x_1,y_1)$ of $B(x_2,y_2)$, it is important to be able to find the related position vector.

Since
$$\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$$
,
then $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$
 $= (X_2, Y_2) - (X_1, Y_1)$

$$=(x_2,y_2)-(x_1,y_2-y_1)$$

Also
$$|\overrightarrow{AB}| = \sqrt{(X_2 - X_1)^2 + (y_2 - y_1)^2}$$

ex: What is the position vector for A(3,5) and B(4,7)?

$$\overrightarrow{AB} = (4-3, 7-5)$$

= (1,2)

ex: A parallelogram is formed by the Vectors $\overrightarrow{OA} = (2,3)$ and $\overrightarrow{OB} = (1,1)$.

- a) Determine the lengths of the diagonals.
- b) Determine the perimeter of the parallelogran

Solution:

1st diagonal:
$$\overrightarrow{OA} + \overrightarrow{OB}$$

= (2,3)+(1,1)
= (3,4)
[(3,4)] = $\sqrt{3^2 + 4^2}$
= $\sqrt{25}$
= 5

$$2^{nd}$$
 diagonal: $\overrightarrow{OA} - \overrightarrow{OB}$
= $(2,3) - (1,1)$
= $(1,2)$
 $|(1,2)| = \sqrt{1^2 + 2^2}$
= $\sqrt{1 + 4}$

Perimeter?
$$\overrightarrow{OA} = (2.3)$$

$$OA = (2,5)$$

 $|OA| = \sqrt{2^2 + 3^2}$
 $= \sqrt{4 + 9}$
 $= \sqrt{3}$

$$|\overrightarrow{OB}| = (1,1)$$

 $|\overrightarrow{OB}| = \sqrt{1^2 + 1^2}$
 $= \sqrt{2}$