

Chapter 3

Image Enhancement in the Spatial Domain

Blurred image f(x,y)

Sharper Image g(x,y)

Cause:

a) Error while taking image

b) Either in error or as natural effect of a particular method of image acquisition.

Differentiation:

a) First-order derivative

$$\frac{\partial}{\partial x}$$
 $\frac{\partial}{\partial y}$

b) Second-order derivative

$$\frac{\partial^2}{\partial x^2} \quad \frac{\partial^2}{\partial y^2}$$

Blurred image f(x,y)

Sharper Image g(x,y)

A given image

Result of a given image

- Sharpening is the operation to highlight fine details or enhance the details that has been blurred.
- Image blurring can be achieved using averaging filters, and hence sharpening can be achieved by operators that invert averaging operators.
- In mathematics, averaging is equivalent to the concept of integration, and differentiation inverts integration.
- Therefore the sharpening could be accomplished by differentiation.

```
averaging <--> integration
sharpening <--> differentiation
```


We are interested in the behavior of the derivatives

- in areas of constant gray level (flat segments)
- at the onset and end of discontinuities (step and ramp discontinuities)
- along gray-level ramps
 - These types of discontinuities can be used to model noise points, lines, and edges in an image.
- There are two main types of sharpening spatial filters :
 - Use of First Derivatives for Enhancement—The Gradient.
 - Use of Second Derivatives for Enhancement—The Laplacian.

Use of First Derivatives for Enhancement—The Gradient

First-order derivatives generally produce "thicker" edges in an image.

The first derivative must be:

- Zero in areas of constant intensity;
- Non-zero at the onset and end of an intensity step or ramp;
- Non-zero along ramps of constant slope.

First Derivatives

$$\left| \frac{\partial I}{\partial x} = I(x+1) - I(x) \right|$$

Gradient vector

$$\nabla I = \begin{bmatrix} I_x \\ I_y \end{bmatrix} = \begin{bmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{bmatrix}$$

Magnitude of this vector is given by:

$$|\nabla I| = mag(\nabla I) = \sqrt{I_x^2 + I_y^2} = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

Angle of change

$$\theta = \tan^{-1} \left(\frac{I_y}{I_x} \right)$$

The derivative of a digital function is defined in terms of differences, where a first order derivative of a one dimensional function is:

$$G(x, y) = \nabla I(x, y)$$

• where : $\nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$

$$G(x,y) = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

$$G(x, y) = \left| \frac{\partial I}{\partial x} \right| + \left| \frac{\partial I}{\partial y} \right| = I_x + I_y$$

$$G(x,y) = \nabla F(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} H(s,t) f(x-s,y-t)$$

$$G(x,y) = I(x,y) + H(x,y)$$

$$G_{R}(x,y) = |I(x,y)*H_{R}(x,y)|$$

$$G_{C}(x,y) = |I(x,y)*H_{C}(x,y)|$$

$$G_R(x,y) = |I(x,y+1) - I(x,y)|$$

$$G_C(x, y) = |I(x+1, y) - I(x, y)|$$

$$G(x, y) = G_R(x, y) + G_c(x, y)$$

The Gradient can be implemented by these filter masks:

-1	0	1
-1	0	1
-1	0	1

Prewitt

-1	0	1
-2	0	2
-1	0	1

Sobel

The Gradient can be implemented by these filter masks:

I(x, y)

$$G_R(x,y)$$
 Gradient row

$$G_C(x, y)$$
 Gradient column

$$G(x,y) = G_R(x,y) + G_C(x,y)$$

Input image

2	3	2	1	3
1	1	1	2	2
2	3	2	1	3
2	3	2	1	3
1	1	1	2	2

I(x, y)

Prewitt Mask

-1	-1	-1
0	0	0
1	1	1

$$H_R(x,y)$$

-1	0	1
-1	0	1
-1	0	1

$$H_C(x,y)$$

Step 1: The size of the image is extended by padding with zeros.

Zero padding

0	0	0	0	0	0	0
0	2	3	2	1	3	0
0	1	1	1	2	2	0
0	2	3	2	1	3	0
0	2	3	2	1	3	0
0	1	1	1	2	2	0
0	0	0	0	0	0	0

Step 2 : evaluate
$$G_R(x, y) = |I(x, y) * H_R(x, y)|$$

$$G_R(1,1) = |(-1) + (-1)| = 2$$

0	0	0	0	0	0	0	
0	2	3	2	1	3	0	
0	1	1	1	2	2	0	
0	2	3	2	1	3	0	
0	2	3	2	1	3	0	
0	1	1	1	2	2	0	
0	0	0	0	0	0	0	
	I(x,y)						

-1	-1	-1
0	0	0
1	1	1

$$H_R(x,y)$$

$$G_R(x,y)$$

Step 2 : evaluate
$$G_R(x,y) = |I(x,y) * H_R(x,y)|$$

$$G_R(5,5) = |(1) + (3)| = 4$$

0	0	0	0	0	0	0
0	2	3	2	1	3	0
0	1	1	1	2	2	0
0	2	3	2	1	3	0
0	2	3	2	1	3	0
0	1	1	1	2	2	0
0	0	0	0	0	0	0
		\overline{I}	(x, y)	y)		

-1	-1	-1
0	0	0
1	1	1

$$H_R(x,y)$$

2	3	4	5	4
0	0	0	0	0
3	4	2	1	0
3	4	2	1	0
5	7	6	6	4

$$G_R(x,y)$$

Step 2 : evaluate $G_C(x, y) = |I(x, y) * H_C(x, y)|$

$$G_C(1,1) = |(-3) + (-1)| = 4$$

0	0	0	0	0	0	0
0	2	3	2	1	3	0
0	1	1	1	2	2	0
0	2	3	2	1	3	0
0	2	3	2	1	3	0
0	1	1	1	2	2	0
0	0	0	0	0	0	0

I(x,y)

-1	0	1
-1	0	1
-1	0	1

 $H_C(x,y)$

Step 2 : evaluate
$$G_C(x, y) = |I(x, y) * H_C(x, y)|$$

$$G_C(5,5) = |(1) + (2)| = 3$$

0	0	0	0	0	0	0
0	2	3	2	1	3	0
0	1	1	1	2	2	0
0	2	3	2	1	3	0
0	2	3	2	1	3	0
0	1	1	1	2	2	0
0	0	0	0	0	0	0
I(x,y)						

-1	0	1
-1	0	1
-1	0	1
7.7		

$$H_C(x,y)$$

4	0	1	2	3
7	0	3	3	4
7	0	3	3	4
7	0	3	3	4
4	0	1	2	3

$$G_{C}(x,y)$$

Step 4 : evaluate
$$G(x, y) = G_R(x, y) + G_c(x, y)$$

$G_R(x,y)$	2	3	4	5	4
	0	0	0	0	0
	3	4	2	1	0
	3	4	2	1	0
	5	7	6	6	4

4	0	1	2	3
7	0	3	3	4
7	0	3	3	4
7	0	3	3	4
4	0	1	2	3

 $G_C(x,y)$

6	3	5	7	7
7	0	3	3	4
10	4	5	4	4
10	4	5	4	4
9	7	7	8	7

$$G(x, y) = G_R(x, y) + G_c(x, y)$$

Input Image

Gradient Column

Gradient Row

Gradient Magnitude

24

Use of Second Derivatives for Enhancement-The Laplacian

- Second-order derivatives produce a double response at step changes in gray-level.
- Second-order derivatives have a stronger response to finer detail, such as thin lines and isolated points.

The second derivative must be:

- Zero in areas of constant intensity;
- Non-zero at the onset and end of an intensity step or ramp;
- Zero along ramps of constant slope

First Derivatives

$$\frac{\partial I}{\partial x} = I(x+1) - I(x)$$

Second Derivatives

$$\frac{\partial^2 I}{\partial^2 x} = I(x+1) - I(x) - (I(x) - I(x-1))$$
$$= I(x+1) + I(x-1) - 2I(x)$$

Laplacian vector

$$\nabla^2 I = \begin{bmatrix} I_x \\ I_y \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 I}{\partial x^2} \\ \frac{\partial^2 I}{\partial y^2} \end{bmatrix}$$

The second derivative of a digital function is defined in terms of differences, where a second order derivative of a one dimensional function is:

$$G(x,y) = \nabla^2 I(x,y) = \frac{\partial^2 I(x,y)}{\partial x^2} + \frac{\partial^2 I(x,y)}{\partial y^2}$$

$$\frac{\partial^2 I(x,y)}{\partial x^2} = \frac{\partial I(x+1,y) - I(x,y)}{\partial x}$$

$$\frac{\partial^2 I(x,y)}{\partial x^2} = I(x+2,y) - I(x+1,y) + I(x+1,y) + I(x,y)$$

$$\frac{\partial^2 I(x,y)}{\partial x^2} = I(x+2,y) - 2I(x+1,y) + I(x,y)$$

$$\frac{\partial^2 I(x,y)}{\partial x^2} = I(x+1,y) + I(x-1,y) - 2I(x,y)$$

$$\frac{\partial^2 I(x,y)}{\partial y^2} = I(x,y+1) + I(x,y-1) - 2I(x,y)$$

$$G(x,y) = \frac{\partial^2 I(x,y)}{\partial x^2} + \frac{\partial^2 I(x,y)}{\partial y^2}$$
$$= I(x+1,y) + I(x-1,y) + I(x,y+1) + I(x,y-1) - 4I(x,y)$$

0	1	0
1	-4	1
0	1	0

The Laplacian can be implemented by these filter masks:

0	1	0
1	-4	1
0	1	0

Laplacian filter invariant to 90° rotations.

1	1	1
1	-8	1
1	1	1

Laplacian filter invariant to 45° rotations.

Input image

16	81	34	120	255
120	255	29	50	105
220	45	57	68	18
25	14	12	21	8
9	55	6	4	36

I(x, y)

Mask

0	1	0
1	-4	1
0	1	0

H(x, y)

Step 1: The size of the image is extended by padding with zeros.

$$I(x,y)$$

0 0 0 0 0 0 0 0

0 16 81 34 120 255 0

0 120 255 29 50 105 0

0 220 45 57 68 18 0

0 25 14 12 21 8 0

0 9 55 6 4 36 0

0 0 0 0 0 0 0

Zero padding

Step 2 : evaluate
$$G(x, y) = |I(x, y) * H(x, y)|$$

$$G(1,1) = |(0\times0) + (0\times1) + (0\times0) + (0\times1) + (16\times(-4)) + (81\times1) + (0\times0) + (120\times1) + (255\times0)|$$
= 137

0	1	0
1	-4	1
0	1	0

H(x,y)

0	0	0	0	0	0	0
0	16	81	34	120	255	0
0	120	255	29	50	105	0
0	220	45	57	68	18	0
0	25	14	12	21	œ	0
0	9	55	6	4	36	0
0	0	0	0	0	0	0

I(x,y)

137

Step 3 : evaluate
$$G(x, y) = |I(x, y) * H(x, y)|$$

$$G(5,5) = (21\times0) + (8\times1) + (0\times0) + (4\times1) + (36\times(-4)) + (0\times1) + (0\times0) + (0\times1) + (0\times0)$$
=132

H(x, y)

0	0	0	0	0	0	0
0	16	81	34	120	255	0
0	120	255	29	50	105	0
0	220	45	57	68	18	0
0	25	14	12	21	œ	0
0	9	55	6	4	36	0
0	0	0	0	0	0	0

I(x,y)

G(x, y)

Input image

16	81	34	120	255
120	255	29	50	105
220	45	57	68	18
25	14	12	21	8
9	55	6	4	36

I(x, y)

Output image

137	19	94	141	795
11	745	280	122	97
690	366	74	126	109
143	81	50	8	43
44	191	47	47	132

$$G(x,y) = |I(x,y) * H(x,y)|$$

Input Image

Laplacian Filtered Image

Laplacian Image Enhancement

- The Laplacian operator highlights gray level discontinuities and deemphasizes the slowly varying gray-levels.
- Depending on the choice of the Laplacian coefficients the following criteria is used for enhancement:

negative

Laplacian Image Enhancement

The Laplacian can be implemented by these filter masks:

1	1	1
1	-8	1
1	1	1

0	1	0
1	-4	1
0	1	0

The center of the Laplacian mask is negative.

or

0	-1	0
-1	4	-1
0	-1	0

The center of the Laplacian mask is positive.

Laplacian Image Enhancement

 Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities.

In the final sharpened image edges and fine detail are much more obvious.

Example: Laplacian Image Enhancement

Input Image

Laplacian Filtered Image

Example: Laplacian Image Enhancement

Input Image

Sharpened Image

Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

$$H = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$G(x, y) = I(x, y) - \nabla^{2} I(x, y)$$

$$= I(x, y) - H(x, y) * I(x, y)$$

$$G(x, y) = I(x, y) - \begin{bmatrix} I(x-1, y) + I(x, y-1) - 4I(x, y) \\ + I(x, y+1) + I(x+1, y) \end{bmatrix}$$

$$= -\begin{bmatrix} I(x-1, y) + I(x, y-1) - 5I(x, y) \\ + I(x, y+1) + I(x+1, y) \end{bmatrix}$$

$$H = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Simplified Image Enhancement

$$H = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad H = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$G(x, y) = I(x, y) - \nabla^2 I$$

$$G(x, y) = I(x, y) + \nabla^2 I$$

$$H = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad H = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} \quad H = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -5 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -9 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Example: Simplified Image Enhancement

This gives us a new filter which does the whole job for us in one step.

Example: Simplified Image Enhancement

There are lots of slightly different versions of the Laplacian that can be used:

Thanks for your attention