

1

CLAIMS

5 1. A method for simultaneously detecting
deletions at a plurality of DNA sequences, comprising the
steps of:

10 treating said DNA to form single-stranded
complementary strands;

15 adding a plurality of paired oligonucleotide
primers, each pair specific for a different sequence,
one primer of each pair substantially complementary to
a part of the sequence in the sense-strand and the
other primer of each pair substantially complementary
to a different part of the same sequence in the
complementary anti-sense strand;

20 annealing the plurality of primers to their
complementary sequences;

25 simultaneously extending said plurality of
annealed primers from each primer's 3' terminus to
synthesize an extension product complementary to the
strands annealed to each primer, said extension
products, after separation from their complement,
serving as templates for the synthesis of an extension
product from the other primer of each pair;

30 separating said extension products from said
templates to produce single-stranded molecules;

35 amplifying said single stranded molecules by
repeating, at least once, said annealing, extending
and separating steps; and

40 identifying said amplified extension products
from each different sequence.

45 2. The method of Claim 1 for detecting
deletions at a plurality of genomic DNA sequences, wherein
said sequences are selected from the group of sequences on
the X and Y chromosomes.

50 3. The method of Claim 2 for the detection of
X-linked disease, wherein said genomic DNA sequences

35

1 contain a deletion that causes a genetic disease.

4. The method of Claim 3 for the detection of
said X-linked genetic diseases selected from the group
5 consisting of ornithine transcarbamylase deficiency,
hypoxanthine phosphoribosyltransferase deficiency,
steroid sulfatase deficiency and X-linked muscular
dystrophy.

10 5. The method of Claim 4 for the detection of
X-linked muscular dystrophy, wherein said plurality of
paired primers are complementary to different sequences
within the gene coding for the dystrophin protein.

15 6. The method of Claim 5, wherein the plurality
of paired primers is selected from the group consisting
of:

(1) 5'-GACTTCGATGTTGAGATTACTTCCC-3'

(2) 5'-AAGCTTGAGATGCTCTCACCTTTCC-3',

20 (1) 5'-GTCCTTACACACTTACCTGTTGAG-3'

(2) 5'-GGCCTCATTCTCATGTTCTAATTAG-3',

(1) 5'-AAACATGGAACATCCTTGTGGGGAC-3'

(2) 5'-CATT CCTATTAGATCTGTCGCCCTAC-3',

25 (1) 5'-GATAGTGGGCTTACTTACATCCTTC-3'

(2) 5'-GAAAGCACGCAACATAAGATAACACCT-3',

(1) 5'-CTTGATCCATATGCTTTACCTGCA-3'

(2) 5'-TCCATCACCCCTTCAGAACCTGATCT-3',

30 (1) 5'-GAATACATTGGTTAAATCCCAACATG-3'

(2) 5'-CCTGAATAAGTCTTCCTTACCAACAC-3', and

35 (1) 5'-TTCTACCACATCCCATTCTTCCA-3'

(2) 5'-GATGGCAAAAGTGTGAGAAAAAGTC-3'.

1 7. The method of Claim 3, wherein said genomic
DNA is from fetal tissue.

5 8. The method of Claim 1 for detecting
deletions at a plurality of genomic DNA sequences, wherein
the plurality of paired primers is selected from the group
consisting of:

*2nd
a3*

(1) 5'-GACTTTCGATGTTGAGATTACTTCCC-3'
(2) 5'-AAGCTTGAGATGCTCTCACCTTTCC-3',

10 (1) 5'-GTCCTTACACACTTACCTGTTGAG-3'
(2) 5'-GGCCTCATTCTCATGTTCTAATTAG-3',

(1) 5'-AACATGGAACATCCTTGTGGGGAC-3'
(2) 5'-CATTCCATTAGATCTGTCGCCCTAC-3',

15 (1) 5'-GATA GTGGGCTTACTTACATCCTTC-3'
(2) 5'-GAAAGCACGCAACATAAGATAACACCT-3',

(1) 5'-CTTGATCCATATGCTTTACCTGCA-3'
(2) 5'-TCCATCACCCCTCAGAACCTGATCT-3',

20 (1) 5'-GAATACATTGGTTAAATCCCAACATG-3'
(2) 5'-CCTGAATAAAGTCTTCTTACCAACAC-3',
x

(1) 5'-TTCTACCACATCCCATTCTTCCA-3'
(2) 5'-GATGGCAAAAGTGTGAGAAAAAGTC-3',

25 (1) 5'-TGGTCTCCTTAAACCTGTCTT-3'
(2) 5'-ACACAACGTGTTCACTAG-3',
x

(1) 5'-ACGTGGAGTGACGATGCTCTCCC-3'
(2) 5'-GTGGGATTCAACCCTTTCCC-3', and

30 (1) 5'-GAAGTCAAGGACACCGAGGAA-3'
(2) 5'-AGCCCTCTGGCCAGTCCTAGTG-3'.
x

9. A DNA sequence of the formula:

5'	10	20	30	40	50
TAAATTGACT	TTCGATGTTG	AGATTACTTT	CCCTTGCTAT	TTCAGTGAAC	
60	70	80	90	100	
CAAACCTTAAG	TCAGATAAAA	CAATTATT	TGGCTTCAAT	ATGGTGCTAT	
110	120	130	140	150	
TTTGATCTGA	AGGTCAATCT	ACCAACAAAGC	AAGAACAGTT	TCTCATTATT	
160	170	180	190	200	
TTCCTTGCC	ACTCCAAGCA	GTCTTACTG	AAGTCTTCG	AGCAATGTCT	
210	220	230	240	250	
35 GACCTCTGTT	TCAATACTTC	TCACAGATT	CACAGGCTGT	CACCAACACT	
260	270	280	290	300	
CAGCCATCAC	TAACACAGAC	AACTGTAATG	GAAACAGTAA	CTACGGTGAC	

1	310	320	330	340	350
	CACAAGGGAA	CAGATCCTGG	TAAAGCATGC	TCAAGAGGAA	CTTCCACCAAC
	360	370	380	390	400
	CACCTCCCCA	AAAGAAGAGG	CAGATTACTG	TGGATTCTGA	AATTAGGAAA
5	410	420	430	440	450
	AGGTGAGAGC	ATCTCAAGCT	TTTATCTGCA	AATGAAGTGG	AGAAAACCTCA
	460	470	480	490	500
	TTTACAGCAG	TTTGTTGGT	GGTGTTCATA	CTTCAGCAAT	ATTTCAGCAA
	510	520	530	540	550
	TCCTCGGGTA	CCTGTAATGT	CAGTTAACGT	AGTGAGAAAAA	ATTATGAAGT
	560	570	580	590	600
	ACATTTAAA	ACTTCACAA	GAAATCACTA	TCGCAACAGA	AACTAAATGC
10	610	620	630	640	650
	TTAATGGAAA	TGGTGTTC	TGGGGTGAAA	GAAGAAACTA	TAGAAACTAT
	660	670	680	690	700
	AGGTGATAAA	CTACTGTGGT	AGCATTAA	TCCTAAAAGT	TTCTTCTTT
	710	720	730	740	750
	CTTTTTTTT	TTTCTTCCTT	ATAAAGGGCC	TGCTTGTGA	GTCCCTAGTT
	760	770	780	790	800
	TTGCATTAAA	TGTCTTTTT	TTCCAGTAAC	GGAAAGTGCA	TTTCATGAA
15	810	820	830	840	850
	GAAGTACACC	TATAATAGAT	GGGATCCATC	CTGGTAGTT	ACGAGAACAT
	860	870	880	890	900
	GATGTCTCAG	TCTGCGCATT	CTAAATCAGG	AGTAATTACA	GAACACATT
	910	920	930	940	950
	CCTGTTCTTT	GATATTATA	AAGTCTTATC	TTGAAGGTGT	TAGAATTTTT
	960	970	980	990	1000
	AACTGATCTT	TTTGTGACTA	TTCAAGAATT	TGCATTTAG	ATAAGATTAG
20	1010	1020	1030	1040	
	GTATTATGTA	AATCAGTGGA	TATATTAAAT	GATGGCAATA	A-3'

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

10. A DNA sequence of the formula:

5'	10	20	30	40	50
	TGTCCAAAAT	AGTTGACTTT	CTTTCTTTAA	TCAATAAAATA	TATTACTTTA
	60	70	80	90	100
30	AAGGGAAAAAA	TTGCAACCTT	CCATTAAAAA	TCAGCTTTAT	ATTGAGTATT
	110	120	130	140	150
	TTTTTAAAAT	GTTGTGTGTA	CATGCTAGGT	GTGTATATTA	ATTTTTATTT
	160	170	180	190	200
	GTTACTTGAA	ACTAAACTCT	GCAAATGCAG	GAAACTATCA	GAGTGATATC
	210	220	230	240	250
	TTTGTCACTA	TAACCAAAAAA	ATATACGCTA	TATCTCTATA	ATCTGTTTA
	260	270	280	290	300
35	CATAATCCAT	CTATTTTCT	TGATCCATAT	GCTTTACCT	GCAGGGCGATT

1 310 320 330 340 350
TGACAGATCT GTTGAGAAAT GGCGGCGTT TCATTATGAT ATAAAGATAT
360 370 380 390 400
TTAATCAGTG GCTAACAGAA GCTGAACAGT TTCTCAGAAA GACACAAATT
410 420 430 440 450
5 CCTGAGAATT GGGAACATGC TAAATACAAA TGGTATCTTA AGGTAAGTCT
460 470 480 490 500
TTGATTTGTT TTTCGAAAT TGTATTTATC TTCAGCACAT CTGGACTCTT
510 520 530 540 550
TAACCTCTTA AAGATCAGGT TCTGAAGGGT GATGGAAATT ACTTTGACT
560 570 580 590 600
GTTGTTGTCA TCATTATATT ACTAGAAAGA AAA-3'

10 and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

15 11. A DNA sequence of the formula:

5' 10 20 30 40 50
ACCCAAATAC TTTGTTCATG TTTAAATTTC ACAACATTTT ATAGACTATT
60 70 80 90 100
AAACATGGAA CATCCTTGTG GGGACAAGAA ATCGAATTG CTCTTGAAAA
110 120 130 140 150
GGTTTCCAAC TAATTGATTG GTAGGACATT ATAACATCCT CTAGCTGACA
20 160 170 180 190 200
AGCTTACAAA AATAAAAAACT GGAGCTAACCC GAGAGGGTGC TTTTTCCCT
210 220 230 240 250
GACACATAAA AGGTGTCTT CTGTCTTGT TCCTTGGAT ATGGGCATGT
260 270 280 290 300
CAGTTTCATA GGGAAATTTC CACATGGAGC TTTTGTATTG CTTCCTTG
310 320 330 340 350
25 CAGTACAAC GCATGTGGTA GCACACTGTT TAATCTTTTC TCAAATAAAA
360 370 380 390 400
AGACATGGGG CTTCATTTT GTTTGCCTT TTTGGTATCT TACAGGAAC
410 420 430 440 450
CCAGGATGGC ATTGGGCAGC GGCAAACGT TGTCAAGAAC TTGAATGCAA
460 470 480 490 500
CTGGGGAAAGA AATAATTCA CAATCCTCAA AAACAGATGC CAGTATTCTA
510 520 530 540 550
30 CAGGAAAAAT TGGGAAGCCT GAATCTGCAG TGGCAGGAGG TCTGCAAACA
560 570 580 590 600
GCTGTCAGAC AGAAAAAAAGA GGTAGGGCGA CAGATCTAAT AGGAATGAAA
610 620
ACATTTAGC AGACTTTTA AGCTT-3'

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense

1 strands of the gene coding for dystrophin, said fragments
and derivatives capable of annealing to said strands of
the dystrophin gene and amplifying dystrophin sequences.

5 12. A DNA sequence of the formula:

5'	10	20	30	40	50
TTTTGTAGAC	GGTTAACATGAA	TAATTTGAA	TACATTGGTT	AAATCCCAAC	
60	70	80	90	100	
ATGTAATATA	TGTAAATAAT	CAATATTATG	CTGCTAAAAT	AACACAAATC	
110	120	130	140	150	
AGTAAGATTG	TGTAATATTG	CATGATAAAAT	AACTTTGAA	AATATATTG	
160	170	180	190	200	
10 TAAACATTG	GCTTATGCCT	TGAGAATTAT	TTACCTTTT	AAAATGTATT	
210	220	230	240	250	
TTCCTTTCAG	GTTCAGAG	CTTTACCTGA	GAAACAAGGA	GAAATTGAAG	
260	270	280	290	300	
CTCAAATAAA	AGACCTTGGG	CAGCTTGAAA	AAAAGCTTGA	AGACCTTGAA	
310	320	330	340	350	
GAGCAGTTAA	ATCATCTGCT	GCTGTGGTTA	TCTCCTATTA	GGAATCAGTT	
15 360	370	380	390	400	
GGAAATTTAT	AACCAACCAA	ACCAAGAAGG	ACCATTGAC	GTAAAGGTAG	
410	420	430	440	450	
GGGAACCTTT	TGCTTAATA	TTTTGTCTT	TTTTAAGAAA	AATGGCAATA	
460	470	480	490	500	
TCACTGAATT	TTCTCATTG	GTATCATTAT	TAAAGACAAA	ATATTACTG	
510	520	530	540	550	
20 TTAAAGTGTG	GTAAGGAAGA	CTTTATTGAG	GATAACCACA	ATAGGCACAG	
560	570	580	590	600	
GGACCACTGC	AATGGAGTAT	TACAGGAGGT	TGGATAGAGA	GAGATTGGGC	
610	620	630	640	650	
TCAACTCTAA	ATACAGCACA	GTGGAAGTAG	GAATTATAG	C-3'	

25 and fragments and derivatives thereof, said fragments and
derivatives complementary to the sense and anti-sense
strands of the gene coding for dystrophin, said fragments
and derivatives capable of annealing to said strands of
the dystrophin gene and amplifying dystrophin sequences.

30 13. A DNA sequence of the formula:

5'	10	20	30	40	50
30 TGAGAAATAA	TAGTTCCGGG	GTGACTGATA	GTGGGCTTTA	CTTACATCCT	
60	70	80	90	100	
TCTCAATGTC	CAATAGATGC	CCCCAAATGC	GAACATTCCA	TATATTATAA	
110	120	130	140	150	
ATTCTATTGT	TTTACATTGT	GATGTTCACT	AATAAGTTGC	TTTCAAAGAG	
160	170	180	190	200	
GTCATAATAG	GCTTCTTCA	AATTTCACT	TTACATAGAG	TTTTAATGGG	
210	220	230	240	250	
TCTCCAGAAT	CAGAAACTGA	AAGAGTTGAA	TGACTGGCTA	ACAAAACAGA	

1	260	270	280	290	300
	AGAAAAGAAC	AGGAAAATGG	AGGAAGAGGCC	TCTTGGACCT	GATCTTGAAG
	310	320	330	340	350
	ACCTAAAAACG	CCAAGTACAA	CAACATAAGG	TAGGTGTATC	TTATGTTGCG
	360	370	380	390	400
5	TGCTTTCTAC	TAGAAAGCAA	ACTCTGTGTA	TAGTACCTAT	ACACAGTAAC
	410	420	430	440	450
	ACAGATGACA	TGGTTGATGG	GAGAGAATTAA	AAACTTAAAG	TCAGCCATAT
	460	470	480	490	500
	TTTAAAAAATT	ATTTTACCT	AATTGTTTT	GCAATCTTG	TTGCCAATGG
	510	520	530	540	550
	CCTTGAATAA	GTCCCCCTCCA	AAATTCAAGGT	GATTGTATTA	GGAGATGGAA
	560	570	580	590	600
10	TATTTAAGGG	TGAATAATCC	ATCAGGGCTC	CTCCCTTAAG	AATAGGATCA
	610	620	630	640	650
	AGTCCCATAT	AAAAGAGGCT	TCACACAGTG	TTCTCCTATC	TCTTGACCCT
	660	670	680	690	700
	CCACCATGCA	CCACCATGTG	AAAACTCTGT	GAAAAGGCC	TCACCAAGATG
	710	720	730	740	750
	CTAACATCTT	GATCTTGGAT	TTCCCAAAC	CGAGAACTGT	GAAAAAAATAA
	760	770	780	790	800
15	AGGTACATTC	TTCCTAAATT	ACCTCATTCT	CATTTAAACA	CACAAAGTGC
	810				
	ACACATAGCT	G-3'			

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

14. A DNA sequence of the formula:

5'	10	20	30	40	50
25	TTACTGGTGG	AAGAGTTGCC	CCTGCGCCAG	GGAATTCTCA	AACAATTAAA
	60	70	80	90	100
	TGAAACTGGA	GGACCCGTGC	TTGTAAGTGC	TCCCATAAGC	CCAGAAGAGC
	110	120	130	140	150
	AAGATAAACT	TGAAAATAAG	CTCAAGCAGA	CAAATCTCCA	GTGGATAAAAG
	160	170	180	190	200
	GTTAGACATT	AACCATCTCT	TCCGTCACAT	GTGTTAAATG	TTGCAAGTAT
	210	220	230	240	250
30	TTGTATGTAT	TTTGTTCCT	GGGTGCTTCA	TTGGTCGGGG	AGGAGGGCTGG
	260	270	280		
	TATGTGGATT	GTTGTTTGT	TTTGTTTT-3'		

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of

T510X

1 the dystrophin gene and amplifying dystrophin sequences.

15. A DNA sequence of the formula:

5'	10	20	30	40	50
	60	70	80	90	100
5	TTGACAGTGA	TGTAGAAATA	ATTATTTGAT	ATTTATTTCA	AAACAAAATT
	110	120	130	140	150
	TATATCCAAT	ACTAAACACA	GAATTGGTA	AAACAATAAG	TGTATAAAGT
	160	170	180	190	200
	AAAATGAACA	TTAGGATTAT	TGAGATTATT	GTAGCTAAAA	CTAGTGTAA
	210	220	230	240	250
10	TTCATATAAA	TTATGTTAAT	AAATTGTATT	GTCATTATTG	CATTTTACTT
	260	270	280	290	300
	TTTGAAAAG	TAGTTAATGC	CTGTGTTCT	ATATGAGTAT	TATATAATT
	310	320	330	340	350
	AAGAAGATAT	TGGATGAATT	TTTTTTTAA	GTTTAATGTG	TTTCACATCT
	360	370	380	390	400
	CTGTTTCTTT	TCTCTGCACC	AAAAGTCACA	TTTTTGTGCC	CTTATGTACC
	410	420	430	440	450
15	AGGCAGAAAT	TGATCTGC	TACATGTGGA	GTCTCCAAGG	GTATATTAA
	460	470	480	490	500
	ATTTAGTAAT	TTTATTGCTA	ACTGTGAAGT	TAATCTGCAC	TATATGGGTT
	510	520	530	540	550
	CTTTCCCCA	GGAAACTGAA	ATAGCAGTTC	AAGCTAAACA	ACCGGATGTG
	560	570	580	590	600
	GAAGAGATT	TGTCTAAAGG	GCAGCATTG	TACAAGGAAA	AACCAGCCAC
	610	620	630	640	650
20	TCAGCCAGTG	AAGGTAATGA	AGCAACCTCT	AGCAATATCC	ATTACCTCAT
	660	670	680	690	700
	AATGGGTTAT	GCTTCGCCTG	TTGTACATT	GCCATTGACG	TGGACTATT
	710	720	730	740	750
	ATAATCAGTG	AAATAACTTG	TAAGGAAATA	CTGGCCATAC	TGTAATAGCA
	760	770	780	790	800
	GAGGCAAAGC	TGTCTTTTG	ATCAGCATAT	CCTATTATA	TATTGTGATC
25	810	820	830	840	
	TTAAGGCTAT	TAACGAGTCA	TTGCTTTAAA	GGACTCATT	CTGTC-3'

and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

16. A DNA sequence of the formula:

5'	103	113	123	133	143
	CCCATCTTGT	TTTGCCTTG	TTTTTTCTTG	AATAAAAAAA	AAATAAGTAA
	153	163	173	183	193
35	AATTATTTTC	CCTGGCAAGG	TCTGAAAAC	TTTGTGTTCT	TTACCACTTC

1	203	213	223	233	243
	CACAATGTAT	ATGATTGTTA	CTGAGAAGGC	TTATTTAACT	TAAGTTACTT
	253	263	273	283	293
	GTCCAGGCAT	GAGAATGAGC	AAAATCGTT	TTTAAAAAAAT	TGTTAAATGT
5	303	313	323	333	343
	ATATTAATGA	AAAGGTTGAA	TCTTTTCATT	TTCTACCATG	TATTGCTAAA
	353	363	373	383	393
	CAAAGTATCC	ACATTGTTAG	AAAAAGATAT	ATAATGTCAT	GAATAAGAGT
	403	413	423	433	443
	TTGGCTCAAA	TTGTTACTCT	TCAATTAAAT	TTGACTTATT	GTTATTGAAA
	453	463	473	483	493
	TTGGCTCTTT	AGCTTGTGTT	TCTAATTTT	CTTTTCTTC	TTTTTCCTT
10	503	513	523	533	543
	TTTGCAAAAAA	CCCAAAATAT	TTTAGCTCCT	ACTCAGACTG	TTACTCTGGT
	553	563	573	583	593
	GACACAACCT	GTGGTTACTA	AGGAAACTGC	CATCTCCAAA	CTAGAAATGC
	603	613	623	633	643
	CATCTTCCTT	GATGTTGGAG	GTACCTGCTC	TGGCAGATT	CAACCGGGCT
	653	663	673	683	693
	TGGACAGAAC	TTACCGACTG	GCTTCTCTG	CTTGATCAAG	TTATAAAATC
15	703	713	723	733	743
	ACAGAGGGTG	ATGGTGGGTG	ACCTTGAGGA	TATCAACGAG	ATGATCATCA
	753	763	773	783	793
	AGCAGAAGGT	ATGAGAAAAA	ATGATAAAAG	TTGGCAGAAG	TTTTTCTTTA
	803	813	823	833	843
	AAATGAAGAT	TTTCCACCAA	TCACTTTACT	CTCCTAGACC	ATTTCCCACC
	853	863	873	883	893
	AGTTCTTAGG	CAACTGTTTC	TCTCTCAGCA	AACACATTAC	TCTCACTATT
20	903	913	923	933	943
	CAGCCTAAGT	ATAATCAGGT	ATAAAATTAAAT	GCAAATAACA	AAAGTAGCCA
	953	963	973	983	993
	TACATTAAAA	AGGAAAATAT	ACAAAAAA	AAAAAA	AAGCCAGAAA
	1003	1013			
	CCTACAGAAT	AGTGCTCTAG	TAATTAC 3'		

25 and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

30 17. A DNA sequence of the formula:

5'	10	20	30	40	50
	ATCTCTATCA	TTAGAGATCT	GAATATGAAA	TACTTGTCAA	AGTGAATGAA
	60	70	80	90	100
	AATTTNNNTAA	ATTATGTATG	GTAAACATCT	TTAAATTGCT	TATTTTTAAA
	110	120	130	140	150
	TTGCCATGTT	TGTGTCCCAG	TTTGCATTAA	CAAATAGTT	GAGAACTATG
35	160	170	180	190	200
	TTGGAAAAAA	AAATAACAAAT	TTTATTCTTC	TTTCTCCAGG	CTAGAAGAAC

T530X

1	210	220	230	240	250
	AAAAGAATAT	CTTGTCAAGAA	TTTCAAAGAG	ATTTAAATGA	ATTTGTTTA
	260	270	280	290	300
	TGGTTGGAGG	AAGCAGATAA	CATTGCTAGT	ATCCCACCTG	AACCTGGAAA
5	310	320	330	340	350
	AGAGCAGCAA	CTAAAAGAAA	AGCTTGAGCA	AGTCAAGGTA	ATTTTATTTT
	360	370	380	390	400
	CTCAAATCCC	CCAGGGCCTG	CTTGCATAAA	GAAGTATATG	AATCTATTTT
	410	420	430	440	450
	TTAATTCAAT	CATTGGTTT	CTGCCCATTA	GGTTATTTCAT	AGTCCTTGC
	460	470	480	490	500
	TAAAGTGT	TTCTCACAAAC	TTTATTTCTT	CTTAACCCTG	CAGTTCTGAA
10	510	520	530	540	550
	CCAGTGCACA	TAAGAACATA	TGFATATATG	TGTGTGTGTG	TATTTATATA
	560	570	580	590	600
	TACACACACA	CATATTGCAT	CTATACATCT	ACACATATAG	ATGTATAGAT
	610	620	630	640	650
	TCAATATGTC	TAAAAATGTA	TATAATTCAC	AGTTTTATC	TTTGATTTGA
	660	670	680		
	ATATTAAGG	GACTGAGACT	CACACTCATA	TACTTT-3'	

15 and fragments and derivatives thereof, said fragments and derivatives complementary to the sense and anti-sense strands of the gene coding for dystrophin, said fragments and derivatives capable of annealing to said strands of the dystrophin gene and amplifying dystrophin sequences.

20

add E2

add d³

25

30

35