Correction S1PA B1 FCT

Exercice 1 : calculs de limites

1. Calcular $\lim_{x \to +\infty} \sqrt{xe^{-x}+1} - \frac{e^{-2x}}{(x+2)^4}$ en justifiant proprement.

Par croissance comparée, $\lim_{x\to +\infty} xe^{-x}=0$, et comme $\lim_{x\to +\infty} e^{-2x}=0$ et $\lim_{x\to +\infty} (x+2)^4=+\infty$, on en déduit que $\lim_{x\to +\infty} \sqrt{xe^{-x}+1}-\frac{e^{-2x}}{(x+2)^4}=\sqrt{1}=1.$

2. Calculer $\lim_{x \to +\infty} x^2 + \cos(\sqrt{x})$ en justifiant proprement.

On sait que pour tout réel x, $-1 \le \cos(\sqrt{x}) \le 1$. Ainsi, $x^2 - 1 \le x^2 + \cos(\sqrt{x})$. Comme $\lim_{x \to +\infty} x^2 - 1 = +\infty$, on en déduit par théorème de comparaison que $\lim_{x \to +\infty} x^2 + \cos(\sqrt{x}) = +\infty$.

- 3. Soit $f: x \mapsto \frac{2x-1}{x+2}$. Calculer la limite de f en $+\infty$, en $(-2)^-$ et $(-2)^+$ en justifiant proprement. Peut-on en déduire des asymptotes à la courbe représentative de f? Si oui, donner leurs équations.
 - En $+\infty$.

On a $f(x) = \frac{x\left(2-\frac{1}{x}\right)}{x\left(1+\frac{2}{x}\right)} = \frac{2-\frac{1}{x}}{1+\frac{2}{x}}$. Ainsi, $\lim_{x\to+\infty} f(x) = 2$. On en déduit que \mathcal{C}_f admet la droite d'équation y=2

• En $(-2)^{-1}$

Comme $\lim_{x\to(-2)^-}2x-1=-5$ et $\lim_{x\to(-2)^-}x+2=0^-$, $\lim_{x\to(-2)^-}f(x)=+\infty$. Ainsi, \mathcal{C}_f admet la droite d'équation x=-2 comme asymptote en $(-2)^-$.

• En $(-2)^+$

Comme $\lim_{x\to(-2)^+}2x-1=-5$ et $\lim_{x\to(-2)^+}x+2=0^+$, $\lim_{x\to(-2)^+}f(x)=-\infty$. Ainsi, \mathcal{C}_f admet la droite d'équation x=-2 comme asymptote en $(-2)^+$.

Exercice 2 : continuité

Soit la fonction f définie sur \mathbb{R} par : $\begin{cases} f(x) = 3x + 5 & si & x < -2 \\ f(x) = 4 & si & x = -2 \\ f(x) = x^2 & si & x > -2 \end{cases}$

1. Tracer la courbe représentative de la fonction f et conjecturer la continuité de f sur \mathbb{R} .

Ma conjecture est : la fonction est continue à droite en -2 mais n'y est pas continue à gauche. Elle est continue aussi sur $]-\infty,-2[$ et $]-2,+\infty[$.

- 2. Démontrer proprement votre conjecture.
 - $\lim_{x \to (-2)^-} f(x) = \lim_{x \to (-2)^-} 3x + 5 = -1 \neq f(-2)$. Donc f n'est pas continue en $(-2)^-$.
 - $\lim_{x \to (-2)^+} f(x) = \lim_{x \to (-2)^-} x^2 = 4 = f(-2)$. Donc f est continue en $(-2)^+$.
 - Sur] $-\infty$, -2[ou sur] -2, $+\infty$ [, f est continue en tant que fonctions usuelles continues.

Exercice 3: dérivées

Sans se soucier des domaines de définitions, dériver

1.
$$f: x \longmapsto 2xe^{-x^3}$$

$$f'(x) = 2e^{-x^3} + 2x \times (-3x^2)e^{-x^3} = e^{-x^3}(2 - 6x^3)$$

2.
$$q: x \longmapsto \sqrt{6x^4 + x^2 + 1}$$

$$g'(x) = \frac{24x^3 + 2x}{2\sqrt{6x^4 + x^2 + 1}} = \frac{12x^3 + x}{\sqrt{6x^4 + x^2 + 1}}$$

3.
$$h: x \longmapsto \cos^4(x) + \tan(2x)$$

$$h'(x) = 4\cos^3(x) \times (-\sin(x)) + (1 + \tan^2(2x)) \times 2.$$

Exercice 4 : étude de fonction complète

On considère la fonction f définie sur \mathbb{R} par $f(x) = e^{-\frac{x^2}{2}}$. On note C_f la courbe représentative de f.

1. Montrer que f est paire.

Soit
$$x \in \mathbb{R}$$
. On a $f(-x) = e^{-\frac{(-x)^2}{2}} = e^{-\frac{x^2}{2}} = f(x)$. Donc f est paire.

2. Trouver f' et étudier son signe sur $[0, +\infty[$.

$$\forall\,x\in\mathbb{R},\,f'(x)=-xe^{\displaystyle -\frac{x^2}{2}}\,. \text{ Ainsi, pour tout }x\in[0,+\infty[,\,f'(x)\leq0.$$

3. Faire le tableau (complet) de variations de f sur $[0, +\infty[$.

4. En déduire les éventuelles asymptotes à C_f .

Du tableau, on en déduit que la droite d'équation y = 0 est asymptote à C_f en $+\infty$.

5. Quelle est l'équation de la tangente à C_f au point d'abscisse 0?

On sait qu'elle a pour équation y = f'(0)(x - 0) + f(0) = 0(x - 0) + 1 = 1. On a donc une tangente horizontale en 0.

6. Donner l'allure de C_f sur \mathbb{R}^+ , puis sur \mathbb{R} . Vous ferez apparaître les asymptotes et tangentes.

Sur \mathbb{R}^+ :

Sur \mathbb{R} , en utilisant la parité, on sait que l'axe des ordonnées est un axe de symétrie.

Exercice 5: fonctions trigonométriques

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{\sin^2(x)}{2} - \frac{\cos(x)}{2}$.

1. Montrer que f est paire et 2π -périodique

Soit
$$x \in \mathbb{R}$$
. $f(-x) = \frac{\sin^2(-x)}{2} - \frac{\cos(-x)}{2} = \frac{(-\sin(x))^2}{2} - \frac{\cos(x)}{2} = \frac{\sin^2(x)}{2} - \frac{\cos(x)}{2} = f(x)$. f est donc paire.

De plus,
$$f(x+2\pi) = \frac{\sin^2(x+2\pi)}{2} - \frac{\cos(x+2\pi)}{2} = \frac{\sin^2(x)}{2} - \frac{\cos(x)}{2} = f(x)$$
. f est 2π périodique.

2. Montrer que f est continue sur \mathbb{R} .

 $x \longmapsto \sin(x)$ et $x \longmapsto \cos(x)$ sont continues sur \mathbb{R} . f est donc continue sur \mathbb{R} comme produit et différence de fonctions continues sur \mathbb{R} .

3. On se donne le tableau (incomplet) des variations de f sur $[0,\pi]$:

Compléter ce tableau en faisant les calculs dans l'espace ci-dessous

On a
$$f(0) = -\frac{1}{2}$$
, $f(\pi) = -\frac{-1}{2} = \frac{1}{2}$ et $f\left(\frac{2\pi}{3}\right) = \frac{\left(\frac{\sqrt{3}}{2}\right)^2}{2} - \frac{-\frac{1}{2}}{2} = \frac{3}{8} + \frac{1}{4} = \frac{5}{8}$.

4. Justifier proprement que l'équation f(x) = 0 admet au moins une solution α dans $[0, \pi]$. Donner un intervalle de la forme [a, b[strictement inclus dans $[0, \pi]$ tel que $\alpha \in [a, b[$ en précisant les valeurs de a et de b.

f est continue sur $[0,\pi]$, f(0)<0 et $f\left(\frac{2\pi}{3}\right)>0$. On peut appliquer le théorème des valeurs intermédiaires : $\exists \, \alpha \in]0,\frac{2\pi}{3}[$ tel que $f(\alpha)=0$.

5. À votre avis, l'équation f(x) = 0 a-t-elle une infinité de solutions sur \mathbb{R} ? Justifier.

f étant 2π -périodique et paire, elle s'annule une infinité de fois.