QUESTION 1 a:

Identical twins - $\frac{1}{125}$

Unidentical twins - $\frac{1}{300}$

Probability of twins - $\frac{1}{125} + \frac{1}{300} = \frac{17}{1500}$

(identical twins/ given twins) = $\left(\frac{1}{300} / \frac{17}{1500}\right)$

$$P(A \backslash B) = \frac{P(B \backslash A) \cdot P(A)}{P(B)} = \frac{1 \cdot \frac{1}{300}}{\frac{17}{1500}} = \frac{5}{17} \cdot \frac{1}{2} = \frac{5}{34}$$

 $(\frac{1}{2}$ is the pribability of a male twin).

QUESTION 1 b:

1 bowl - $\frac{3}{4}$ chocolate cookies

1 bowl - $\frac{1}{4}$ Almond cookies

2 bowl - $\frac{1}{2}$ chocolate cookies

2 bowl - $\frac{1}{2}$ Almond cookies

Probability of first bowl - $\frac{1}{2}$

Probability By given that the chosen cookie is chocolate $-\frac{3}{4} \cdot \frac{1}{2} = \frac{3}{8}$

Probability of chocolate cookies of all bowls $-\frac{3}{4} + \frac{1}{2} = \frac{5}{8}$

$$P(A \setminus B) = \frac{P(B \setminus A) \cdot P(A)}{P(B)} = \frac{\frac{3}{5} \cdot \frac{1}{2}}{\frac{5}{8}} = \frac{12}{25} = 0.48$$

QUESTION 2:

1994 yellow - 0.2

1994 green - 0.1

1996 yellow - 0.14

1996 green - 0.2

Given
$$-0.2 \cdot 0.14 + 0.1 \cdot 0.2 = 0.048$$

We need to double by 0.5 for the probability of which bag was it chosen:

$$0.048 \cdot 0.5 = \frac{0.024}{125}$$

QUESTION 3 a:

Incidence: $\frac{1}{10,000}$

Positive test and sick - 0.99

Positive test and healthy – 0.1

 $p(positive\ test \setminus sick) \cdot p(sick) + (positive\ test \setminus healthy) \cdot p(healthy) = \frac{0.010099}{0.010099}$

QUESTION 3 b:

$$sick\ probability = \frac{1}{200}$$

probability of sick by positive test = 1

$$p(sick \setminus positive \ test) = \frac{p(positive \ test \setminus sick) \cdot p(sick)}{p(positive \ test)}$$

$$1 \cdot \frac{1}{200} + 0.01 \cdot \frac{199}{200} = 0.01495$$

RANDOM VARIABLES:

QUESTION 1:

The probability to get a number that divided by 3: $\frac{12}{36} = \frac{1}{3}$

The probability to get a number that divided by 3 : $1 - \frac{12}{36} = \frac{2}{3}$

$$\left(\frac{1}{3}\right) \cdot 6 + \left(\frac{1}{2}\right) \cdot (-3) = \mathbf{0}$$

QUESTION 2:

Bag 1 – 5 red (1-5)

Bag 2 – 5 green (6-10)

Probability of loosing 6\$: $\frac{15}{25}$

Probability of even : $\frac{4}{25}$

Probability of wining 5\$: $\frac{6}{25}$

$$\frac{6}{25} \cdot 5 + \frac{4}{25} \cdot 0 + \frac{15}{25} \cdot (-6) = -\frac{12}{5}$$

QUESTION 3:

Men - 80

Women - 120

mean =

probability to get male \cdot how many employees are selected each month

$$0.4 \cdot 8 = \frac{3.2}{5} = \frac{16}{5}$$

Formula for standard division : $\sqrt{\frac{p(1-p)}{n}}$

(population) p = 0.4 (40% male)

Sample size: n = 8 (8 employees every month)

$$\sqrt{\frac{0.4(1-0.4)}{8}} = 0.1732 \approx 0.2$$

QUESTION 4:

Mean = 26,000

Standard division = 2,000

68% = 1 standard division from mean

95% = 2 standard division from mean

99.7% = 3 standard division from mean

P(26,000 < X < 28,000) = 68% = 0.68

P(28,000 < X < 30,000) = 95% = 0.95

Mean =
$$\frac{(0.68+0.95)}{2} = \frac{0.815}{2}$$

QUESTION 5:

We will calculate the area of the tringle from 3 < X < 5 by taking 0.4 as the height :

$$\frac{(0.4\cdot 2)}{2} = 0.4$$

QUESTION 6:

Employees - 500

Employees that have children -60% = 300 employees

$$\frac{200}{500} \cdot \frac{300}{500} \cdot \frac{299}{500} \cdot \frac{298}{500} = 0.08553$$

QUESTION 7:

$$(-10) \cdot 0. + (-5) \cdot 0.35 + 0 \cdot 0.1 + 5 \cdot 0.35 + 10 \cdot 0.1 = 0$$