Álgebra y Álgebra II - Segundo Cuatrimestre 2018 Práctico 3 - Espacios Vectoriales

- (1) motivación geométrica 1
- (2) motivación geométrica 2
- (3) motivación geométrica 3
- (4) Decidir si los siguientes conjuntos son \mathbb{R} -espacios vectoriales, con las operaciones abajo definidas.
 - (a) \mathbb{R}^n , con $v \oplus w = v w$, y el producto por escalares usual.
 - (b) \mathbb{R}^2 , con $(x,y) \oplus (x_1,y_2) = (x+x_1,0), \ c \odot (x,y) = (cx,0).$
- (5) Sea K un cuerpo. Si (V, \oplus, \odot) un K-espacio vectorial y S un conjunto cualquiera, sea $V^S = \{f: S \to V\}$, el conjunto de funciones de S en V.

Definimos en V^S la suma y el producto por escalares de la siguiente manera: Si $f,g\in V^S$ y $c \in \mathbb{K}$ entonces $f + g : S \to V$ y $c \cdot f : S \to V$ están dadas por

$$(f+g)(x) = f(x) \oplus g(x), \quad (c \cdot f)(x) = c \odot f(x), \quad \forall x \in S.$$

Probar que $(V^S, +, .)$ es un K-espacio vectorial.

En el caso en que $V = \mathbb{K}$, denotaremos F(S).

- (6) Sea V = C[0,1] el conjunto de las funciones continuas de [0,1] en \mathbb{R} . Probar que V es un espacio vectorial.
- (7) En cada caso, determinar si el subconjunto indicado es linealmente independiente.

 - (a) $\{(1,0,-1),(1,2,1),(0,-3,2)\}\subseteq \mathbb{R}^3$. (b) $\left\{\begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -3 \end{bmatrix},\begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix},\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}\right\}\subseteq M_{2\times 3}(\mathbb{R})$.
 - (c) $\{1, \operatorname{sen}(x), \cos(x)\} \subset F(\mathbb{R})$ (ver Ej. (5))
 - (d) $\{1, 2\text{sen}^2(x), \cos^2(x)\} \subset F(\mathbb{R}).$
- (8) Dar 3 vectores en \mathbb{R}^3 que son LD, y tales que dos cualesquiera de ellos son LI.
- (9) ¿Cual es la dimensión de \mathbb{C}^n cuando se lo considera como \mathbb{R} -espacio vectorial?.

1

(10) Calcular la dimensión y exhibir una base de:

(a)
$$S = \{A \in \mathbb{R}^{n \times n} : A = A^t\}.$$

- (b) $S = \{A \in \mathbb{C}^{n \times n} : A = \bar{A}^t\}$ (considerado como \mathbb{R} -subespacio de $\mathbb{C}^{n \times n}$).
- (11) (a) Extender, de ser posible, el conjunto $\{(1,2,0,0),(1,0,1,0)\}$ a una base de \mathbb{R}^4 .
 - (b) Extender, de ser posible, el conjunto $\{(1,2,1,1),(1,0,1,1),(3,2,3,3)\}$ a una base de \mathbb{R}^4 .

EJERCICIOS ADICIONALES

- (1) Decidir si los siguientes conjuntos son espacios vectoriales sobre \mathbb{R} con las operaciones abajo definidas.
 - (a) El conjunto de polinomios, con el producto por escalares (reales) usual, pero con suma $p(x) \oplus q(x) = p'(x) + q'(x)$ (suma de derivadas).
 - (b) \mathbb{R}^3 con:

$$(x, y, z) \oplus (x', y', z') = (x + x', y + y' - 1, z + z');$$

 $c \odot (x, y, z) = (cx, cy + 1 - c, cz).$

- (2) (a) Hallar reales a y b tales que 1 + 2i = a(1 + i) + b(1 i).
 - (b) Hallar complejos w y z tales que 1 + 2i = z(1+i) + w(1-i).
- (3) Sea $\{f_1, ..., f_n\}$ un conjunto LI de funciones pares de \mathbb{R} en \mathbb{R} (i.e., f(x) = f(-x) para todo x) y sea $\{g_1, ..., g_m\}$ un conjunto LI de funciones impares de \mathbb{R} en \mathbb{R} (i.e., f(-x) = -f(x) para todo x). Probar que $\{f_1, ..., f_n, g_1, ..., g_m\}$ es LI.
- (4) En cada caso extender los conjuntos dados (LI) a una base de dos maneras distintas.

(a)
$$\left\{ \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\} \subseteq M^{2 \times 2}(\mathbb{R}).$$

(b) $\{x - 2x^2, 1 - x + x^2, x\} \subseteq P_4.$

- (5) Sea K un cuerpo.
 - (a) Probar que si $p_i(x)$, i = 1, ..., n son polinomios en $\mathbb{K}[x]$ tales que sus grados son todos distintos entonces $\{p_1(x), ..., p_n(x)\}$ es un conjunto LI en $\mathbb{K}[x]$.
 - (b) Probar que $\{1,1+x,(1+x)^2\}$ es una base de P_3
 - (c) Probar que P_3 es generado por $\{1, 2+2x, 1-x+x^2, 2-x^2\}$. ¿Es ese conjunto una base?
- (6) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar
 - (a) Todo conjunto de 3 vectores en \mathbb{R}^4 se extiende a una base.

(b) Si α , β y γ son vectores LI en el $\mathbb R$ -espacio vectorial V, entonces $\alpha+\beta$, $\alpha+\gamma$ y $\beta+\gamma$ también son LI.