

PRACOWNIA FIZYCZNA 1

Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

Temat: Wyznaczanie prędkości dźwięku w powietrzu metodą rezonansową Quincky'ego				
Wydział AEil Kierunek Informatyka				
Nr grupy	1 Rok akademicki 2023/2024			
Rok studiów 2 Semestr 3				

L.P.	Imię i nazwisko
1.	Karol Pitera
2.	Dominik Kłaput
3.	

Data pomiarów	22.11.2023
---------------	------------

Ocena poprawności elementów sprawozdania

data oceny	wstęp i cel ćwiczenia	struktura sprawozdania	obliczenia	rachunek niepewnośc i	wykres	zapis końcowy	wnioski

Ocena końcowa:

Ocena lub liczba punktów	
Data i podpis	

Wstęp teoretyczny

Fala akustyczna - zaburzenie gęstości ośrodka rozchodzące się w postaci fali podłużnej w ośrodku sprężystym. Równanie jednowymiarowej fali sprężystej ma postać:

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \xi}{\partial t^2}$$

Rys 1.1 Równanie jednowymiarowej fali sprężystej

A z kolei jego całka opisuje wychylenie propagujące wzdłuż osi x.

$$\xi_1(x,t) = f(x - ct)$$

Rys 1.2 Równanie wychylenia fali

Fala Stojąca - fala której grzbiety oraz doliny nie poruszają się, powstaje na skutek interferencji dwóch takich samych fal poruszających się w przeciwnych do siebie zwrotach. Podczas tego eksperymentu efekt powstaje przez nałożenie się na siebie fali biegnącej i odbitej.

Rys 1.3 Schemat fali stojącej

Wykorzystując powyższe właściwości jesteśmy w stanie zmierzyć prędkość dźwięku w powietrzu wykorzystując metodę rezonansową Quincky'ego.

Ustawiona pionowo szklana rura, jest połączona elastycznym wężem z ruchomym zbiornikiem na ciecz. Przy przesuwaniu w pionie tego zbiornika wyrównuje się poziomów cieczy w połączonych naczyniach dzięki czemu zmieniają się wysokości słupów cieczy i powietrza w rurze Quinckego. Nad wylotem rury umieszczony jest głośnik, który może emitować dźwięki o różnych tonach ustalanych przy pomocy generatora sygnałów, oraz mikrofon połączony z oscyloskopem.

Rys 1.4 Układ pomiarowy

Przy pewnych wysokościach słupa powietrza następuje wzrost głośności dźwięku oraz zwężenie obrazu na oscyloskopie, stanowiący skutek wytworzenia się fali stojącej i rezonansu. Znając częstotliwość fali oraz wysokości słupa powietrza dla których występuje rezonans jesteśmy w stanie obliczyć prędkość z jaką rozchodzi się ona w powietrzu.

Opracowanie wyników pomiarowych

1. Uśrednić odczytane położenia słupa wody dla każdego rezonansu.

f, Hz	1300	1500	1800
h _{1śr} , cm	7,23	6,50	14,73
h _{2śr} , cm	20,33	17,63	24,10
h _{3śr} , cm	33,53	29,03	34,03
h _{4śr} , cm	46,87	40,67	43,57
h _{5śr} , cm	59,90	52,20	53,17

Rys.2 Tabela przedstawiająca uśredniony wynik pomiarów położenia słupa wody dla każdego rezonansu w zależności od czestotliwości

2. Obliczyć niepewność uśrednienia jako maksymalną różnicę między wartością średnią a kolejnym odczytem $u_a(h_{sr})=\left|h_{sr}-h_j\right|_{max}$ dla j = 1, 2, 3....

f, Hz	1300	1500	1800
u(h _{1śr}), cm	0,23	0,10	0,57
u(h _{2śr}), cm	0,07	0,13	0,10
u(h _{3śr}), cm	0,07	0,33	0,17
u(h _{4śr}), cm	0,13	0,27	0,07
u(h _{5śr}), cm	0,10	0,10	0,13

Rys.3 Tabela przedstawiająca niepewność uśrednienia wyników pomiarów położenia słupa wody dla każdego rezonansu w zależności od przyjętej częstotliwości

3. Oszacować niepewność pomiarową $u_b(h)$ dla pomiaru h, wynikającą z podziałki oraz ze sposobu odczytu z podziałki.

Niepewność pomiarowa wynikająca ze wzoru podziałki wynosi:

$$u_b(h_{sr}) = 0.6cm$$

Chociaż możemy określić podziałkę z większą dokładnością, ze względu na doświadczenie w użytkowaniu tego typu instrumentu, to jednak błąd zawyżają wymienione poniżej czynniki:

- menisków cieczy, które mogły zmniejszyć dokładność naszych obserwacji,
- niepewności wynikającej z ciągłego poruszania się płynu, co utrudniało precyzyjne odczytanie położenia słupa wody,
- nieidealną komunikacje pomiędzy osobą obserwującą rurę Quincke'go, a osobą zgłaszającą maksima widoczne na oscyloskopie.

Zatem oszacowaliśmy niepewność pomiarową $u_b(h)$ wzwyż i ostatecznie przyjęliśmy: $u_b(h_{sr}) = 0.1cm$

4. Obliczyć niepewność całkowitą dla każdego położenia h_j , w którym występuje rezonans $u(h_{sr}) = \sqrt{u_a(h_{sr})^2 + u_b(h)^2}$.

f, Hz	1300	1500	1800
u(h _{1śr}) _{całkowite} , cm	0,25	0,14	0,58
u(h _{2śr}) _{całkowite} , cm	0,12	0,17	0,14
u(h _{3śr}) _{całkowite} , cm	0,12	0,35	0,19
u(h _{4śr}) _{całkowite} , cm	0,17	0,28	0,12
u(h _{5śr}) _{całkowite} , cm	0,14	0,14	0,17

Rys.4 Tabela przedstawiająca niepewność całkowitą dla każdego położenia h_j , w którym występuje rezonans $u(h_{sr}) = \sqrt{u_a(h_{sr})^2 + u_b(h)^2}$, w zależności od przyjętej częstotliwości.

5. Dla każdej częstotliwości obliczyć różnice odległości między kolejnymi rezonansami $\Delta h_i = h_{i+1} - h_i$.

f, Hz	1300	1500	1800
$\Delta h_1 = (h_2 - h_1)$, cm	13,10	11,13	9,37
$\Delta h_2 = (h_3 - h_2), \text{ cm}$	13,20	11,40	9,93
$\Delta h_3 = (h_4 - h_3)$, cm	13,33	11,63	9,53
$\Delta h_4 = (h_5 - h_4)$, cm	13,03	11,53	9,60

Rys.5 Tabela przedstawiająca różnice odległości między kolejnymi rezonansami $\Delta h_i = h_{i+1} - h_i$, w zależności od przyjętej częstotliwości.

6. Korzystając z prawa przenoszenia niepewności obliczyć u(Δhi).

f, Hz	1300	1500	1800
$u(\Delta h_1)$, cm	0,61	0,56	0,85
$u(\Delta h_2)$, cm	0,49	0,72	0,58
$u(\Delta h_3)$, cm	0,54	0,80	0,56
$u(\Delta h_4)$, cm	0,56	0,65	0,54

Rys.6 Tabela przedstawiająca niepewności u(Δh_i), w zależności od przyjętej częstotliwości.

7. Dla każdej wartości Δh_i obliczyć prędkość dźwięku:

 $c_i = 2f\Delta h_i$

gdzie f – częstotliwość sygnału napięciowego, podawanego na głośnik.

f, Hz	1300	1500	1800
$c_1 = 2f\Delta h_1, m/s$	340,60	334,00	337,20
$c_2 = 2f\Delta h_2$, m/s	343,20	342,00	357,60
$c_3 = 2f\Delta h_3$, m/s	346,67	349,00	343,20
$c_4 = 2f\Delta h_4$, m/s	338,87	346,00	345,60

Rys.7 Tabela przedstawiająca wyniki prędkości dźwięku dla podanych wartości Δh_i, w zależności od przyjętej częstotliwości.

8. Korzystając z prawa przenoszenia niepewności, obliczyć u(ci).

f, Hz	1300	1500	1800
$u(c_1), m/s$	39,88	40,81	55,21
$u(c_2), m/s$	35,70	46,39	45,67
$u(c_3), m/s$	37,32	48,85	44,93
u(c ₄), m/s	37,99	44,26	43,91

Rys.8 Tabela przedstawiająca wyniki niepewności u(c_i), w zależności od przyjętej częstotliwości.

9. Średnia ważona prędkości oraz jej niepewność.

prędkość dźwięku c =		
2fΔh	u(c)	waga niepewności
340,60	39,8765	0,000628876
343,20	35,7032	0,000784488
346,67	37,3165	0,000718122
338,87	37,9888	0,00069293
334,00	40,8065	0,000600539
342,00	46,3921	0,000464634
349,00	48,8516	0,000419027
346,00	44,2557	0,000510577
337,20	55,2087	0,000328084
357,60	45,6738	0,000479365
343,20	44,9339	0,000495282
345,60	43,9102	0,000518643

Rys.9 Tabela przedstawiająca składniki do obliczenia średniej ważonej

 $V_{Sr} = 343,47 \text{ m/s}$

 $u(V_{Sr}) = 37.6 \text{ m/s}$

10. Porównanie z wartością tablicową

Wartość tablicowa: 340 m/s

Wartość zmierzona: 343,47 m/s

Niepewność pomiaru: 37,6 m/s

Wartość zmierzona po uwzględnieniu niepewności pomiarowej jest zgodna z wartością tablicową.

Wnioski

Wykonane pomiary pozwoliły nam obliczyć prędkość dźwięku, która po uwzględnieniu niepewności pomiarowej mieści się w wartości tablicowej.

Można zauważyć, że wraz ze wzrostem częstotliwości fali akustycznej, punkty w których zachodzi rezonans pojawiają się coraz bliżej siebie oraz narasta niepewność wyników.

Pomiary wykazują znacznie mniejsze wahania niż niepewność wyprowadzona za pomocą obliczeń z uwzględnieniem naszej oceny co może świadczyć o wysokiej dokładności metody badawczej w stosunku do naszych oczekiwań.

W punkcie nr 3 oszacowaliśmy wartość pomiarowa na:

$$u_b(h_{sr}) = 0.1cm$$

Czynniki, które budziły w nas obawę, zaburzenia dokładność pomiarową, nie wpłynęły istotnie na badanie. Co poskutkowało zbyt dużym wynikiem niepewności pomiarowej.

Bibliografia:

https://zpe.gov.pl/a/swiatlo-i-dzwiek/Db1N7hVc4

https://astrofiz.pl/