

CA51系列MCU硬件设计指南

版本: V1.5

目录

CA51 系列 MCU	1
1. 时钟部分	
2. 电源部分	
3.复位部分	4
4. LVD 部分	4
5.ADC 部分	4
6.LCD/LED 驱动部分	4
7. 中断配置部分	5
8. 功耗部分	5
9 外设通讯接口部分	5
10. PWM 功能	6
11. GPIO 管脚部分	7
12. 触摸按键部分	7
13. CA51F5 DAK 部分	8
14. LED 级联驱动部分	8
15. LAYOUT 设计指南	9
15.1 电源设计要求	9
15.2 触摸按键设计要求	10
15.3 触摸电源滤波设计方式	12
15.4 触摸防水电路设计	13
16 强干扰环境应用设计要求	14

1. 时钟部分

CA51 芯片有丰富的时钟系统,支持内部 RC 时钟,PLL 时钟,外接高速时钟,外部低速时钟,内部低速 RC 时钟。需要做钟机万年历等精确计时的系统,请选用支持外部低速晶振的芯片,外接晶振 32.768KHZ。需要用到高精度高速时钟时选用支持外部高速晶振的芯片(一般可选 4~27M 晶振),根据不同要求选择晶振,如对震荡频率有高要求。需要根据晶振规格书配置负载电容。晶振负载电容地线走线要求必须从 MCU_GND 管脚直接连到晶振负载电容下地焊盘,预防其它干扰源干扰时钟电路,否则会导致时钟漂移,造成时钟出现误差。

◇ 重要提醒:

在有时钟功能的电路上用到外部 32. 768KHz 晶振时,晶体负载电容参数需要根据使用厂家的 32. 768KHz 晶振规格书要求匹配合适的电容值,32. 768KHz 的晶体必须使用直径 3X8MM 的石英晶体。

CA51 系列 MCU 外接晶振管脚在上电默认状态为外部晶振模式,如需要做其它控制功能,必须避免在用作其他功能时有强灌电流,强推电流,高电压冲击发生,输入输出电流控制在 500uA 以下。在驱动可控硅等高压器件时避免使用外部晶振管脚。

CA51 芯片搭载时钟源配置表

11. 11 I	外部	内置	内置		内置	内置	外部高	外部高	最高系统工
芯片型号	32. 768K	131KHz	3.6864MHz	PLL	4MHz	32/16MHz	速时钟	速时钟	作时钟
	(晶振)	RC	RC		RC	RC	(晶振)	输入	14111
CA51F2XXL3	√	√	√	√	√	×	√	×	27M
CA51F2XXL2	\checkmark	√	√	√	√	×	×	×	27M
CA51F351S1	×	√	√	√	√	×	×	×	27M
CA51F351S3	×	√	√	√	√	×	×	×	27M
CA51F351S4	×	√	√	√	√	×	×	×	27M
CA51F351S6	√	√	√	√	√	×	×	×	27M
CA51F3XXN2	×	√	√	√	√	×	×	×	27M
CA51F551S1	×	√	×	×	×	√	×	×	16M
CA51F551M2	×	√	×	×	×	√	×	×	16M
CA51F551N1	×	√	×	×	×	~	×	×	16M
CA51F551S3	×	√	×	×	×	√	×	×	16M
CA51F003T3	×	√	×	×	×	~	√	√	24M
CA51F003N2	×	√	×	×	×	~	√	√	24M
CA51F7XX	×	√	×	×	×	√	×	×	16M*
CA51F1XX	×	√	×	X	×	√	×	×	16M*

特别提示: CA51F75X, CA51F15X 工作电压大于 2.7V, 系统时钟才能跑到 16MHz

2. 电源部分

CA51 系列 MCU 芯片工作电压支持 1.8V~5.5V (CA51F7/F1 工作电压为 2.2~5.5V),支持 RC 降压电源,AC-DC 非隔离电源以及其他类常用电源。RC 降压和 AC-DC 非隔离电源要做好电源滤波,尤其是 RC 降压电源最好采用 LDO 稳压,电压波动小于 200mV。其他类常用电源滤波电容采用 10UF+104。电源上电瞬间不能有高脉冲产生,有些 LDO 比较差,压差加高时,会产生较高的脉冲(大于 7VP-P 值),几十毫秒才能稳定,这样会导致芯片损坏。

3.复位部分

CA51 系列 MCU 芯片内部有完善的复位电路,对于保留了外部复位引脚的芯片,芯片启动是默认复位功能状态,复位功能不用时可以悬空,复用复位 GPIO 口时要保证在上电瞬间该引脚不会被拉成低电平,此引脚在上电复位时有 10K 的内部上拉电阻。

4. LVD 部分

低电压检测 (LVD) 用于监控芯片自身的供电 VDD, 当 VDD 小于设定的 LVD 值时,发出中断或复位。一般用于电池类产品的欠压保护。CA51F5 芯片没有集成 ADC 功能, CA51F5 芯片中 LVD 功能除了检测 MCU_VDD 脚电压外,还可以检测 P00 和 P01 两个 I0 口的电压。用作此功能时,内部有 510K 左右的下拉电阻,在外接分压输入时要考虑此电阻参数的影响。

5.ADC 部分

CA51 系列芯片內置 ADC 功能的芯片,都支持 ADC 直接检测 MCU_VDD 电压功能,支持内部,VDD 和外部参考基准做 ADC 的基准源。外部参考源源接 ADC_VREF 引脚,一般接 TL431/432 等专用基准芯片,ADC 最高转换速度 0.5us。

6.LCD/LED 驱动部分

◆ CA51F2/3 系列芯片支持 LED/LCD 驱动,支持驱动模式如下表

芯片型号	支持 LCD 驱动模式	支持 LED 驱动模式	注意事项
CA51F25XL2	4X25 / 5X24	5X24	LED 驱动模式 COM 口不能用作 SEG 口
CA51F25XL3	8X32/ 7X33/ 6X34/ 5X35	8X32	LED 驱动模式 COM 口不能用作 SEG 口
CA51F35XP4/S4	3X5 / 4X4	3X5/4X4	
CA51F35XP6/S6	3X10/ 4X9/ 5X8	3X10 /4X9/ 5X8	

CA51F3/2 系列芯片的 COM 口灌电流可达 80MA(VDD=5.0V,Vgpio=GND+0.3V),在设计驱动 LED 时建议采用共阴极设计,在 SEG 口串接 100R 左右电阻,开启大管电流驱动模式,这样亮度会均匀,亮度更高。

7. 中断配置部分

CA51 芯片有着丰富的中断源,支持两个优先级,支持中断嵌套

◆ CA51 系列芯片支持外部中断数量和引脚配置如下表:

芯片型号	外部中 断数量	外部中断管脚配置任意 I/0	触发条件			
CA51F2XX	11	INTO,INT1,INT2 [~] 9 配置任意管脚	支持上升和下降沿触发			
CA51F3XX	11	INTO,INT1,INT2 [~] 9 配置任意管脚	支持上升和下降沿触发			
CA51F5XX	5	INTO, INT1 除外 INT2~4 配置任意管脚	支持上升和下降沿触发			
CA51F003	11	INTO,INT1,INT2 [~] 9 配置任意管脚	支持上升和下降沿触发			
CA51F7X	5	INTO, INT1, INT2 [~] 4 为固定管脚管脚	支持上升和下降沿触发			
CA51F1X	2	INTO, INT1 为固定管脚管脚	支持上升和下降沿触发			

8. 功耗部分

CA51 系列芯片功耗如下表:

芯片型号	IDLE 模式功耗	STOP 模式功耗	低速运行模式功耗
CA51F2XX	10UA	5UA	15UA
CA51F3XX	12UA	7UA	20UA
CA51F5XX	10UA	7UA	20UA
CA51F003	15UA	7UA	25UA
CA51F7XX	25UA	5UA	68UA
CA51F1XX	25UA	5UA	50UA

9 外设通讯接口部分

通用 UART、IIC 和 SPI 等通讯方式连接外设时,靠 MCU 管脚串联 330 欧姆电阻,如 IIC 通讯的设备较远设备要加上拉电阻,以免导致通讯失败。

- ◆ 注意 RX 在上电瞬间不要有方波输入,可能会导致芯片进入下载程序模式,导致芯片不能进入 正常工作状态。
- ◆ 用做下载的串口,IIC 通讯口原则上不再复用其他功能,保证在线升级功能正常,GPIO 实在紧缺,建议用作按键,触摸,可拔插连接器等用途。

10. PWM 功能

CA51 系列 MCU 的 PWM 功能支持占空比在 16bit 范围内任意调整, CA51F2/CA51F3/CA51F003 系列支持边沿和中心对齐模式,支持死区和互补模式输出。

CA51 系列芯片 PWM 特性配置表:

芯片型号	最多支持 PWM 个数	互补对齐死区控制 PWM 中断	PWM 软硬件刹车,暂停, 中断触发 ADC
CA51F2L3	8	\checkmark	×
CA51F2L2	5	√	×
CA51F351S3	6	√	×
CA51F351S4	6	√	X
CA51F351S6	6	√	X
CA51F3N2	5	√	X
CA51F551S1	3	X	X
CA51F551M2	5	X	X
CA51F551N1	4	X	X
CA51F551S3	6	×	X
CA51F003T3	6	√	√
CA51F003N2	6	√	√
CA51F7XX	6	X	X
CA51F1XX	3	×	X

11. GPIO 管脚部分

CA51F3 系列芯片所有 GPIO 可配置成高阻,可独立设置的强(10K)弱(47K)上下拉电阻,可配置为开漏输出,配置成推挽输出时可设置输出强度和上升沿速度,在 3.3V~5V 供电时,强推电流(Vgpio=VDD-0.3V)8~10MA,强灌电流(Vgpio=GND+0.3V)12~17MA。大灌电流(Vgpio=GND+0.3V)达到 60MA~80MA。

CA51 系列 MCU GPIO 性能配置:

芯片型号	高阻	强上拉	弱 上 拉	强 下 拉	弱 上 拉	开漏	VDD=3~5V VO=VDD-0 . 3V 强推 电流	VDD=3~5V VO=GND+0 .3V 强灌 电流	超强灌电流管脚	推挽输 出时速 度强度 可调
增强型 CA51F2	√	10K	47K	10K	47K	√	$8^{\sim}10$ MA	$12^{\sim}18$ MA	P00~P07	√
增强型 CA51F3	√	10K	47K	10K	47K	√	8~10MA	$12^{\sim}18$ MA	P00~P04	√
增强型 CA51F5	√	10K	47K	10K	47K	√	$4^{\sim}6$ MA	$11^{\sim}16$ MA	×	√
CA51F003	√	10K	47K	10K	47K	√	$4^{\sim}6$ MA	$11^{\sim}16$ MA	×	√
CA51F7XX	√	×	30K	×	30K	√	$3^{\sim}4$ MA	$3^{\sim}4$ MA	P07, P10~P14	√
CA51F1XX	√	×	30K	×	30K	√	$3^{\sim}4$ MA	$3^{\sim}4$ MA	×	√

在 CA51 芯片工作系统中,要求所有 GPIO 的输入电压不能高过芯片供电电压,尤其注意电压检测电路的分压网络。同时所有 GPIO 的输入电压也不能出现负压,特别是在 AC 供电的无隔离电源供电时,尤其注意过零检测,一般选择接纯数字接口(TX),最好使用三极管过零检测电路。

重要提醒:

GPIO 管脚用做机械按键应用时,需要在靠近 MCU GPIO 管脚端串一个 1K 电阻,如果 GPIO 直接通过按键下地,由于 CA51 系列芯片设计管脚的驱动电流较大,会出现在按下按键时出现对 GND/VDD 有较高杂波脉冲 (特别是较差品质的机械按键),导致芯片工作不正常或者损坏。在编码器的应用中,靠近 MCU GPIO 两个管脚端也必须串一个 1K 以上电阻。

12. 触摸按键部分

CA51 系列 MCU 触摸模块有良好抗干扰性能,支持低功耗应用和 STOP 模式唤醒用。

注意使用触摸功能时必须在 TK_CAP 引脚放置 223(X7R 材质)电容。温度变化区间很大的应用场景请使用 NPO 电容,电容接地直接加到 MCU_GND。

参考原理图如下:

13. CA51F5 DAK 部分

CA51F5 系列芯片内置有 5 位的 DAK 功能支持 16 级输出电压可以直接取代原有设计的 ADC 按键采集按键板变成触摸按键方式,把 DAK0/1 管脚直接连接到原来的按键板的 ADC 接口上就行。主控部分不需要上拉电阻。用作此功能时,DAK 管脚驱动能力最大 1mA。

14. LED 级联驱动部分

CA51F5 芯片 LED_D0/LED_D1 两通道支持 RGB_LED 单线级联驱动,应用参考下图:

15. LAYOUT 设计指南

15.1 电源设计要求

电源和地之间以最短的距离靠近 MCU 同时放置滤波电容 10UF 和 104 的贴片电容,MCU 同面尽可能大面积铺地。电源和地线走线必须先经过滤波电容,然后再进 MCU 电源管脚。

晶振地和负载电容地必须直接连接到 MCU GND 管脚,和其他部分地线隔离开来。

触摸模块的充电电容接地点同样直接连接到 MCU—GND 管脚,避免和有干扰的地连接,同时避开把电容放置在发热的地方。

ADC 分压电路(传感器)的电源必须直接连接到 MCU VDD,地也必须接地 MCU GND

如有些应用环境电路干扰源特别大的状况下,比如:继电器,电机等控制的电路滤波电容需要配置 100UF,同 MCU_VDD 供电线路需要串联一个二极管再加电容构成滤波电路,以减弱大干扰和打电流拉低电源电压对芯片的影响。

15.2 触摸按键设计要求

在触摸应用中,必须在 TK_CAP 引脚上就近外接触摸参考电容(典型电容值: 223 (X7R 材质))。在触摸走线靠近 MCU 位置串联电阻(典型阻值:1K,强干扰时可选用 3.3K),此电阻有助于抗电磁及电源干扰。

PCB 板空间允许的话,芯片尽量放在触摸面板中间位置,以使各触摸键走线尽量等长。电路布局开始前请先设计规划并布局好触控按键,再去设计布局其他管脚走线。触摸按键连线尽量短和细,线宽 7-10mi1(一般要求),走线越短越好(长度尽量不超 300mm)。触摸按键到 MCU 引脚尽量避免过孔跳线。

感应 Pad 可以用电路板的铜箔来做,也可以采用软性电路板(FPC),ITO 或银漆印刷等导电物质来完成。ITO 的信号部分要求较高,设计时须特别留意。

感应 Pad 面积尽量不要过小,否则容易导致触发量不够,灵敏度跟触摸 Pad 面积成正比,建议不小于人体手指的接触面积(10~12.5mm*10~12.5mm 或直径不小于 8MM 的圆形。感应 Pad 可以是任何形状,但还是建议集中在一个正方形或是圆形,最大的贴合手指接触面,以确保感应效果良好,应避免设计成窄长的形状(非人手指接触的感应例外)。 滑条,滚轮的 Pad 也同样适用,但布线要求更严格,建议 PCB 打样前寻求 FAE 支持工程师做一个初步的评估和指导。滑条的设计一般采用 4 个触摸通道,设计成互相交错的PAD, PAD 面积的变化需要设计成线性变化,参考下图:

中间留有灯孔的滑条 PAD

弧形滑条

圆形滑环

不管是滑条还是滑环,PAD 的宽度控制在 8-10mm, 这是一个成人手指的宽度,这样的 PAD 正好被手指覆盖,每次手指划过都会有相差不大的触摸数据产生,有利于产品的稳定性。感应 PAD 之间的距离建议大于 5mm(间距越大相互干扰越小)。每一个感应 PAD 的走线尽量保持相同长度,且 PCB 远离边缘来减少杂讯干扰。感应 PAD 最好有三倍线宽以上的间距为佳(走线一出 MCU 脚位就可按此规则),避免与高频信号线平行,不可避免时请以垂直方式横跨高速信号线。感应 PAD 走线不可横跨在其他感应 PAD 的正下方。

15.3 触摸电源滤波设计方式

MCU 电压范围最大可以达到 1.8V-5.5V 宽电压工作。在工作状态中,IC 电源电压必须保证相对稳定(一般不超过 250mV/S)。故在大多数场合,建议电源使用三端稳压 IC(LDO)供电,已确保 MCU 电压的稳定。使用锂电池或干电池的场合,则要考虑长时间使用后的电压波动对整个触控灵敏度的影响。在许多应用系统中,即使使用了三端稳压 MCU 供电,但由于系统干扰,负载突发等原因,MCU 电压还会有一定的纹波干扰。为了防止这些干扰,以达到更好的触控效果,推荐加一些滤波电路。

图(一) RC 滤波能起到系统抗干扰

图(二)LC 滤波能起到防止较大的高频干扰作用

图(三)二极管方式的电路能起到防止电机启动,蜂鸣器和红外收射等引起的电压波

15.4 触摸防水电路设计

防水板的 PAD 设计,防水功能主要是靠触摸走线,PAD 和地之间的分布电容量来表示触摸灵敏度,因此和铺铜触摸 LAYOUT 有区别,铺铜触摸 PAD 需要远离地,减小地与 PAD 的分布电容,如下图所示:

(一)普通板触摸 PAD, 触摸走线与地的间距要求大于 3 倍线宽, 触摸投影区要求挖空, 触摸 PAD 与地的间距大于 1.5MM

(二) 防水板触摸走线和 PAD 和地越接近

关于普通触摸板的铺地建议,MCU和走线区域要求铺地,在触摸PAD区域这个问题必须在灵敏度和抗干扰中来折中处理,在触摸PAD区域铺地多抗干扰能力强,不铺地则灵敏度高,所以在没有干扰的情况下PAD区域不要铺地,板材厚度小于1.2MM时,强烈建议在在触摸PAD区域不要铺地,否则灵敏度极低,在有干扰的情况下,注意铺地是地线从MCU的GND引出,不要连接到干扰源地线,可以把用干净的地线把PAD包围起来,间距大于1.5MM,在焊接弹簧的情况下,在弹簧的投影区以外用干净的地线把PAD包围起来。

成品组装固定 PCB 的外壳或其他结构的装配一定要绝缘油漆,不能含有金属粉或碳粉,接地的金属机壳可使灵敏度降低。三种最常见的对触摸感应影响较大的机壳元件为金属组件、通讯线、电池及感应 PCB 上覆盖物的电镀层。无论何时,金属组件应远离感应元件走线。当必须使用组件时,推荐使用非金属组件。如果必须使用金属组件或做为装饰物置于传感器旁边,必须将其接地。也可以将机壳连接至被动屏蔽线。无论何时,通讯线缆应远离传感器及走线。另外,外壳和触摸感应面必须完全接触。

16 强干扰环境应用设计要求

电路上有继电器或电机的应用,在频繁切换控制继电器时,继电器常开触点 220V 交流给负载供电,在此过程中常开两个触点会打火,打火时会产生较大的高频干扰,干扰强度会随着负载的电流增大而增大,这种干扰会以传导和辐射的方式干扰其他电路,必须在动触点上加 RC 吸收电路。

在强干扰电路中,需要把干扰电路部分地线分开,各部分采用单点接地方式,MCU 电源滤波要做好,滤波电容需要加大 100UF 以上,所有输入口靠 MCU 端加 1K 电阻,通讯线也要靠 MCU 端接 330R 电阻, MCU 不用的管脚就近接地。