CSC263 - Week 2, Lecture 1

Cristyn Howard

Monday, January 15, 2018

ADT	Data Structure	INSERT	MIN	EXTRACTMIN	MERGE
Priority Queues	Heaps	yes	yes	yes	NO
Mergeable Priority Queues	Binomial Queues	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$

If a CPU has two cores, each with a Priority Queue of tasks to perform, it might need to merge them. This is not easy to accomplish with Heaps, however it is possible with...

Binomial Heaps

 S_k tree: $S_0 = \bigcirc$ $S_k = \text{take two } S_{k-1}$ trees, make the roof of one the parent of the root of the other.

• Each S_k tree is attached to $\{S_0, S_1, ..., S_{k-1}\}$, has 2^k total nodes, and $\binom{k}{d}$ nodes at depth d.

A <u>binomial forest</u> of size m, denoted F_m , is a sequence of S_k trees with increasing k, and a total of m nodes in the entire forest.

- Represent the number m in binary, each 1 digit in the resulting number represents an Sk tree in the forest. Ex: $m = 7 = <1, 1, 1>_2 = 2^2 + 2^1 + 2^0$ \therefore $F_m = \{S_2, S_1, S_0\}$
- $\alpha(m)$ = number of 1's in the binary representation of m.
- F_m has $\alpha(m)$ trees, and $m \alpha(m)$ edges.
- Note: a 'forest' is just the structure, it becomes a heap when keys are added.

Min heap has property that the key of the parent is SMALLER than the key of the children.

Some examples of binary forests with keys that conform to the min heap property:

$m = 7 = <1, 1, 1>_2$	3 1 10
$F_m = \{S_2, S_1, S_0\}$	7 8 13
$S = \{10, 13, 1, 3, 8, 18, 7\}$	18
$m = 0 = <1, 0, 0, 1>_{2}$ $F_{m} = \{S_{3}, S_{0}\}$ $S = \{6, 1, 7, 3, 4, 5, 2, 2, 21\}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

These forests must have pointers to allow for navigation between trees and interaction with the data structure. These pointers are NOT edges in the trees.

Each node stores pointers to: parent, left child, right sibling.