PAT-NO: JP363240053A

DOCUMENT-IDENTIFIER: JP 63240053 A

TITLE: SEMICONDUCTOR DEVICE

PUBN-DATE: October 5, 1988

INVENTOR-INFORMATION:

NAME

KONDO, TAKASHI YAMAWAKI, MASAO

ASSIGNEE-INFORMATION:

NAME COUNTRY

MITSUBISHI ELECTRIC CORP N/A

APPL-NO: JP62075105

APPL-DATE: March 27, 1987

INT-CL (IPC): H01L023/30

US-CL-CURRENT: 257/707, 257/787, 257/790, 257/796

ABSTRACT:

PURPOSE: To prevent action to a semiconductor element and wirings of internal stress by sealing a flexible material to the peripheral section of the semiconductor element and the peripheral sections of the wirings electrically bonding the semiconductor element and leads extending to the outside of a sealing material.

CONSTITUTION: Flexible materials 9 are sealed to the peripheral section of a semiconductor element 1 sealed into a sealing material 3 and the peripheral sections of wirings 5 electrically combining the semiconductor element 1 and leads 4 extending to the outside of the sealing material 3.

Consequently, at

least the peripheral section of the semiconductor element 1 and the wirings 5

are coated with the flexible materials 9, thus preventing contacts among the

sealing material 3 and the peripheral section of the semiconductor element $\mathbf{1}$

and the wirings 5, then damping internal stress working to the side face of the

semiconductor element and the wirings from the sealing material 3. Accordingly, the malfunction of the semiconductor element due to internal

stress is prevented.

COPYRIGHT: (C) 1988, JPO&Japio

6/10/05, EAST Version: 2.0.1.4

⑲ 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭63 - 240053

⑤Int Cl.⁴

識別記号

庁内整理番号

④公開 昭和63年(1988)10月5日

H 01 L 23/30

B - 6835 - 5F

審査請求 未請求 発明の数 1 (全4頁)

⊗発明の名称 半導体装置

②特 願 昭62-75105

②出 願 昭62(1987) 3月27日

77.2 明 者 近 藤 隆 兵庫男

隆 兵庫県伊丹市瑞原4丁目1番地 三菱電機株式会社エル・

エス・アイ研究所内

②発 明 者 山 脇 正 雄 兵庫県伊丹市瑞原4丁目1番地 三菱電機株式会社エル・

エス・アイ研究所内

①出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2番3号

仍代 理 人 弁理士 大岩 増雄 外2名

明報音

1. 発明の名称

半導体装置

- 2. 特許請求の範囲
- (1) 所定の半導体素子を封止材によって封止 した半導体装置において、

少なくとも前記半導体素子の周辺部、及び該半 導体素子と前記対止材の外部へと伸びるリードと を電気的に結合する布線の周辺部に、軟質材を封 入したことを特徴とする半導体装置。

- (2) 軟質材は半導体素子の上方にも封入されたことを特徴とする特許請求の範囲第1項記載の 半導体装置。
- (3) 教質材は半導体素子の上方には対入されておらず、前記半導体素子の上方には、前記半導体素子と対向する部分が突出した凸形状の優質節材が、前記半導体素子と所定の間隔を隔てて設けられたことを特徴とする特許請求の範囲第1項記載の半導体装置。
- 3. 発明の詳細な説明

(産業上の利用分野)

この発明は、封止された半導体装置に生じる内 部店力を観和する技術に関するものである。

(従来の技術)

第3回は、従来の半導体装置を示す断面回であり、図において、1はシリコンなどからなおリートス・2は半導体素子1が接着固定を凝固させてアレーム、3はエポキシ樹脂などを凝固させなの外部へとは対止材3の外部へととをはり、5は半導体業子1とリード4とをは気的に結合する布線(典型的には金線)、6は半導体素子1の上面に写真製版技術やポッティング技術などを利用して付与されたポリイミド樹脂である。

ところで、このような制度封止型の半導体装置では、半導体素子1の周囲に無数化させた封止材3を導入し、その後に封止材3を凝固させるため、封止材3の無収縮が起こる。この無収縮によって半導体装置の内部には応力が生じる。そして、このような応力が半導体条子1に作用した場合には、

半導体素子1が誤動作するため、半導体装置の信頼性が著しく低下する。

そこで、第3図の半導体装置では、半導体素子1の上面にポリイミド樹脂6を付与し、半導体素子1の上面と対止材3とが接触しないようにしている。これによって、封止材3から半導体素子1かへと作用する内部応力を分散し、半導体素子1が内部応力によって誤動作するのを防止している。

(発明が解決しようとする問題点)

しかしながら、従来の半導体装置は以上のように構成されているので、半導体素子1の関面及び布ね5は対止材3と接触することになる。従って、従来の半導体装置では、半導体素子1の上面へと作用する内部応力は十分に緩和されるが、半導体素子1の関面や布ね5に作用する内部応力に対してはこれを緩和することができず、半導体素子1の誤動作を招くという問題点があった。

この発明は上記のような問題点を解消するためになされたもので、対止材の熱収縮などによって生じた内部応力が半導体素子及び布線に作用する

樹脂などで形成した壁である。この壁7は、リード4と布線5とが接続される位置より外側に、半導体案子1及び布線5を囲むようにして設けられる。8は予めエポキシ樹脂などで成形され、半導体1の上方に配置される硬質部材、9は半導体を乗りたの間に充塡されたシリコンゴムなどの数間材である。この数質材9の充塡にあたって、硬質部材8と壁7とは、数質材9の流出を防ぐ役割を果している。

 のを防止して、信頼性の高い半導体装置を得ることを目的とする。

(問題点を解決するための手段)

この発明の半導体装置では、封止材内部に封止された半導体素子の周辺部、及びこの半導体素子と封止材の外部へと伸びるリードとを電気的に結合する布線の周辺部に、 炊賀材を封入している。

(作用)

この発明における教質材は、少なくとも半導体素子の周辺部及び布線を覆うことによって、これらが封止材と接触するのを防ぎ、封止材から半導体素子の側面及び布線へと作用する内部応力を減衰させることにより、内部応力による半導体素子の制動作を防止する。

(実施例)

のを使用してもよい。

以下、この発明の一実施例を図面を参照して説明する。第1図は、この発明の一実施例である半 準体装置の断面図である。ただし、ここでは従来の半準体装置と異なる点についてのみ説明する。 第1図において、7はリード4の上にエボキシ

く必要がある。このため、軟質材 9 としてシリコンゴムを用いる場合には、半導体素子 1 と硬質部材 8 との間隔を 2 0 μπ以下にするのが望ましい。なお、硬質部材 9 と壁 7 とは一体化して設けてもよく、別個に設けてもよい。別個に設ける場合には、壁 7 としてシートをリード 4 に貼付けたも

次にこの半導体装置の内部の力の状態について 説明する。この半導体装置では、対止材3が熱収 縮することによって硬質部材8が締め付けられる ことになる。これに伴って硬質部材8には対止材 3の無収縮に反発するの力が生じる。従って、対 止材3から硬質部材8へと作用する内部応力は、 硬質部材8に生じた応力によって打ち消されるこ とになり、半導体素子1の上面には封止材3から の内部応力が作用することはない。

また、半導体素子1と壁7との間に充塡された 牧質材9へは、対止材3及び硬質部材8などから 応力が作用するが、軟質材9は作用する応力に応 じて変形するため、半導体素子1の側面及び布線

特開昭63-240053(3)

5に応力が局所的に加わることもない。

なお、この実施例では、リード4の上に壁7を設けたことによって、シリコンゴムなどの飲質材9を容易に充填することが可能となり、高い生産性をも有している。さらに、半導体素子1が外部からの光を受けることによって機能する半導体素子である場合にも、面隙10が中空状態とされているため硬質が材8に透光性を付与するだけで適用可能である。

ところで、上記実施例では、 軟質材 9 を半導体 素子 1 の周辺部と布線 5 の周辺部とに封入し、 半 導体素子 1 の上面関における応力防止は硬質部材 8 によって行なったが、次のように軟質材のみで 応力解消を行なうことも可能である。

第2図は、この発明の他の実施例である半導体 装置の断面図である。第2図の半導体装置では、 リードフレーム2に接着固定された半導体素子1 とリード4とを接続した後、これをテフロンペース板(図示せず)上に載置した状態で半導体素子 1の周辺都および上方、ならびに布線5の周辺を

図において、1は半導体素子、3は封止材、4はリード、5は布ね、8は硬質部材、9は軟質材である。

なお、各図中間一符号は同一または相当部分を 示す。

代理人 大岩蜡 雄

関うようにして教質は9が付与される。その後、 トランスファーモールド法などによって樹脂封止 されたものである。

従って、第2図の半導体装置では、封止材3が 熱収縮することにより生じる内部応力に応じて、 封入された軟質材9が変形してこれを吸収し、封 止材3から半導体素子1及び布線5に応力が作用 するのを防止している。

(発明の効果)

以上のように、この発明によれば、少なくとも 半導体素子及び布線の周辺部に枚質材を封入して、 封止材で封止したので、半導体装置の内部に生じ た内部応力が半導体素子及び布線に作用すること を防止でき、信頼性の高い半導体装置が得られる 効果がある。

4. 図面の簡単な説明

第1 図はこの発明の一実施例である半導体装置を示す断面図、第2 図はこの発明の他の実施例である半導体装置を示す断面図、第3 図は従来の半導体装置を示す断面図である。

特開昭63-240053(4)

1---半導体素3 5---布線 3--- 新止材 8 ---硬質部材 4---リード 9 --- 教質材

第 2 図

