# **Worksheet 12**

# To accompany Chapter 5.1 Defining the Fourier Transform

We will step through this worksheet in class.

You are expected to have at least watched the video presentation of <u>Chapter 5.1</u> (<a href="https://cpjobling.github.io/eg-247-textbook/fourier\_transform/1/ft1">https://cpjobling.github.io/eg-247-textbook/fourier\_transform/1/ft1</a>) of the notes (<a href="https://cpjobling.github.io/eg-247-textbook">https://cpjobling.github.io/eg-247-textbook</a>) before coming to class. If you haven't watch it afterwards!

## Fourier Transform as the Limit of a Fourier Series

We start by considering the pulse train that we used in the last lecture and demonstrate that the discrete line spectra for the Fourier Series becomes a continuous spectrum as the signal becomes aperiodic.

This analysis is from Boulet pp 142-144 and 176-180.

Let  $\tilde{x}(t)$  be the Fourier series of the rectangular pulse train shown below:



## **Fourier Series**

In the previous section (../../fourier\_series/3/exp\_fs2) we used

$$C_k = \frac{1}{2\pi} \int_{-\pi/w}^{\pi/w} A e^{-jk(\Omega_0 t)} d(\Omega_0 t) = \frac{A}{2\pi} \int_{-\pi/w}^{\pi/w} e^{-jk(\Omega_0 t)} d(\Omega_0 t)$$

to compute the line spectra.

## From the Time Point of View

If we instead take a time point-of-view and let A=1

$$C_k = \frac{1}{T} \int_{-t_0}^{t_0} e^{-jk\Omega_0 t} dt.$$

Let's complete the analysis in the whiteboard.

# The Sinc Function

The function,  $\sin(\pi x)/\pi x$  crops up again and again in Fourier analysis. The Fourier coefficients  $C_k$  are scaled samples of the real continuous normalized sinc function defined as follows:

$$\operatorname{sinc} u := \frac{\sin \pi u}{\pi u}, \ u \in \mathbb{R}.$$

The function is equal to 1 at  $u = 0^1$  and has zero crossings at  $u = \pm n$ , n = 1, 2, 3, ... as shown below.

### Plot the sinc function

Plots:

$$sinc(u) = \frac{\sin \pi u}{\pi u}, \ u \in \mathbb{R}$$

In [ ]:

```
x = linspace(-5,5,1000);
plot(x,sin(pi.*x)./(pi.*x))
grid
title('Graph of sinc function')
ylabel('sinc(u)')
xlabel('u')
```

## **Duty cycle**

- We define the duty cycle  $\eta = 2t_0/T$  of the rectangular pulse train as the fraction of the time the signal is "on" (equal to 1) over one period.
- The duty cycle is often given as a percentage.

The spectral coefficients expressed using the normalized sinc function and the duty cycle can be written as

$$C_k = \frac{2t_0}{T} \frac{\sin\left(\frac{\pi k 2t_0}{T}\right)}{\frac{\pi k 2t_0}{T}} = \frac{2t_0}{T} \operatorname{sinc}\left(\frac{k 2t_0}{T}\right)$$
$$C_k = \eta \operatorname{sinc}(k\eta)$$

## Normalize the spectral coefficients

Let us normalize the spectral coefficients of  $\tilde{x}(t)$  by mutiplying them by T, and assume  $t_0$  is fixed so that the duty cycle  $\eta = 2t_0/T$  will decrease as we increase T:

$$TC_k = T\eta \operatorname{sinc}(k\eta) = 2t_0 \operatorname{sinc}\left(k\frac{2t_0}{T}\right)$$

Then the normalized coefficients  $TC_k$  of the rectangular wave is a sinc envelope with constant amplitude at the origin equal to  $2t_0$ , and a zero crossing at fixed frequency  $\pi/t_0$  rad/s, both independent of T.

```
In [ ]:
```

```
open duty_cycle
```

#### Demo

Run duty\_cycle with values of:

• 50% (
$$\eta = 1/2$$
)

- 25% ( $\eta = ?$ )
- 12.5% ( $\eta = ?$ )
- 5% ( $\eta = ?$ )

### **Comments**

- As the fundamental period increases, we get more spectral lines packed into the lobes of the sinc envelope.
- These normalized spectral coefficients turn out to be samples of the continuous sinc function on the spectrum of  $\tilde{x}(t)$
- The two spectra are plotted against the frequency variable  $k\omega_0$  with units of rad/s rather than index of harmonic component
- The first zeros of each side of the main lobe are at frequencies  $\omega = \pm \pi/t_0$  rad/s
- The zero-crossing points of sinc envelope are independent of the period T. They only depend on  $t_0$ .

## **Intuition leading to the Fourier Transform**

- An aperiodic signal that has been made periodic by "repeating" its graph every T seconds will have a line spectrum that becomes more and more dense as the fundamental period is made longer and longer.
- The line spectrum has the same continuous envelope.
- As T goes to infinity, the line spectrum will become a continuous function of  $\omega$ .
- The envelope is this function.

## **Doing the Maths**

See the notes (ft1)

#### **Inverse Fourier Transform:**

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega := \mathcal{F}^{-1} \{X(j\omega)\}$$

Similarly, given the expression we have already seen for an arbitrary x(t):

## **Fourier Transform:**

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt := \mathcal{F} \{x(t)\}.$$

## **Fourier Transform Pair**

• The two equations on the previous slide are called the *Fourier transform pair*.

# **Properties of the Fourier Transform**

Again, we will provide any properties that you might need in the examination.

You will find a number of these in the accompanying notes.

# **Table of Properites of the Fourier Transform**

As was the case of the Laplace Transform, properties of Fourier transforms are usually summarized in Tables of Fourier Transform properties. For example this one: <a href="http://en.wikipedia.org/wiki/Fourier transform#Properties of the Fourier transform">http://en.wikipedia.org/wiki/Fourier transform#Properties of the Fourier transform</a>) and Table 8.8 in Karris (page 8-17).

More detail and some commentry is given in the printable version of these notes.

|     | Name                       | f(t)                                           | $F(j\omega)$                                                  | Rer                                               |
|-----|----------------------------|------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|
| 1   | Linearity                  | $a_1 f_1(t) + a_2 f_2(t) + \dots + a_n f_n(t)$ | $a_1F_1(j\omega) + a_2F_2(j\omega) + \dots + a_nF_n(j\omega)$ | Fou<br>trar<br>a lir<br>ope                       |
| 2   | Symmetry                   | $2\pi f(-j\omega)$                             | F(t)                                                          |                                                   |
| 3.  | Time and frequency scaling | $f(\alpha t)$                                  | $\frac{1}{ \alpha }F\left(j\frac{\omega}{\alpha}\right)$      | time<br>con<br>is fr<br>exp<br>and<br>vers        |
| 4.  | Time shifting              | $f(t-t_0)$                                     | $e^{-j\omega t_0}F(j\omega)$                                  | A till corl to a shif frec don                    |
| 5.  | Frequency<br>shifting      | $e^{j\omega_0t}f(t)$                           | $F(j\omega - j\omega_0)$                                      | Mul<br>sigr<br>con<br>exp<br>resu<br>frec<br>shif |
| 6.  | Time<br>differentiation    | $\frac{d^n}{dt^n}f(t)$                         | $(j\omega)^n F(j\omega)$                                      |                                                   |
| 7.  | Frequency differentiation  | $(-jt)^n f(t)$                                 | $\frac{d^n}{d\omega^n}F(j\omega)$                             |                                                   |
| 8.  | Time integration           | $\int_{-\infty}^t f(\tau)d\tau$                | $\frac{F(j\omega)}{j\omega} + \pi F(0)\delta(\omega)$         |                                                   |
| 9.  | Conjugation                | $f^*(t)$                                       | $F^*(-j\omega)$                                               |                                                   |
| 10. | Time convolution           | $f_1(t) * f_2(t)$                              | $F_1(j\omega)F_2(j\omega)$                                    | Cor<br>with<br>Tran                               |

|     | Name                           | f(t)                                                                                                   | $F(j\omega)$                              | Rer                                  |
|-----|--------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|
| 11. | Frequency convolution          | $f_1(t)f_2(t)$                                                                                         | $\frac{1}{2\pi}F_1(j\omega)*F_2(j\omega)$ | This app to a modes as seen Boules   |
| 12. | Area under $f(t)$              | $\int_{-\infty}^{\infty} f(t)  dt = F(0)$                                                              |                                           | Way<br>calc<br>(or a<br>valu<br>sigr |
| 13. | Area under $F(j\omega)$        | $f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)  d\omega$                                    |                                           |                                      |
| 14. | Energy-<br>Density<br>Spectrum | $E_{[\omega_1,\omega_2]} := \frac{1}{2\pi} \int_{\omega_1}^{\omega_2}  F(j\omega) ^2 d\omega.$         |                                           |                                      |
| 15. | Parseval's theorem             | $\int_{-\infty}^{\infty}  f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty}  F(j\omega) ^2 d\omega.$ |                                           | Def<br>RM<br>fron                    |

See also: Wikibooks: Engineering Tables/Fourier Transform Properties

# **Examples**

- 1. Amplitude Modulation
- 2. Impulse response
- 3. Energy computation

# **Example 1: Amplitude Modulation**

Compute the result of multiplying a signal f(t) by a carrier waveform  $\cos \omega_c t$ .

Hint use Euler's identity and the frequency shift property

| <b>Example 2: Impulse response</b> A system has impulse response $f(t) = e^{-t}u_0(t)$ . Compute the frequency spre | ectrum of this system. |
|---------------------------------------------------------------------------------------------------------------------|------------------------|
| A system rias impulse response $f(t) = c - u_0(t)$ . Compute the frequency spin                                     | settum of this system. |

# **Example 3: Energy computation**

An aperiodic real signal f(t) has Fourier transform  $F(j\omega)$ . Compute the energy contained the signal between 5kHz and 10kHz.



# **Computing Fourier Transforms in Matlab**

MATLAB has the built-in **fourier** and **ifourier** functions that can be used to compute the Fourier transform and its inverse. We will explore some of thes in the next lab.

For now, here's an example:

# **Example**

Use Matlab to confirm the Fourier transform pair:

$$e^{-\frac{1}{2}t^2} \Leftrightarrow \sqrt{2\pi}e^{-\frac{1}{2}\omega^2}$$

```
In [ ]:
```

```
syms t v omega x;
ft = exp(-t^2/2);
Fw = fourier(ft,omega)
```

```
In [ ]:
```

```
pretty(Fw)
```

Check by computing the inverse using ifourier

```
In [ ]:
```

```
ft = ifourier(Fw)
```