

Prova 24 Abril 2017, questões e respostas

Circuitos Lógicos (Universidade Estadual de Campinas)

EA772 Circuitos Lógicos Prof. José Mario De Martino — Prova 01 — 1°. Semestre 2017

OBS.: NÃO É PERMITIDO O USO DE CALCULADORA. DURAÇÃO 2 HORAS

Nome:	RA:
	

- 1. Faça as seguintes conversões de base numérica (apresente os cálculos):
 - a) (0,5 pt) 01101011₂ para a base 10
- c) (0,5 pt) 206₁₀ para a base 2
- b) (0,5 pt) 58306₁₀ para a base 16
- d) (0,5 pt) BA5₁₆ para a base 10
- 2. (2,0 pts) Considere o circuito apresentado na Figura 1. Verifique se o circuito calcula o bit de paridade p₂ do código de Hamming(7,4) = (p₁, p₂, d₁, p₄, d₂, d₃, d₄). Considere paridade par. Justifique a sua resposta.
- 3. (2,0 pts) Estime os atrasos de propagação t_{pLH} e t_{pHL} do circuito da Figura 2. Considere que o caminho com maior atraso possui o maior número de portas. Para a resolução utilize os dados do fabricante apresentados na Tabela 1.
- 4. (2,0 pts) Projete um circuito combinacional mínimo que implemente a função incompletamente especificada f(x₃, x₂, x₁, x₀) = conjunto-um(0, 7, 8, 10, 15) e conjunto-zero(1, 3, 4, 5, 6, 12, 13). Faça a minimização utilizando Mapas de Karnaugh. Apresente as expressões mínimas de SOMA DE PRODUTOS e PRODUTO DE SOMAS. Indique e justifique a sua escolha para a implementação do circuito considerando as expressões mínimas calculadas.
- 5. (2,0 pts) Projete um circuito combinacional com quatro entradas binárias x₃, x₂, x₁ e x₀ e uma saída binária z. A saída z é igual a "1" quando o número decimal representado pelo número binário (x₃, x₂, x₁, x₀) for primo. Use o método de simplificação Quine-McCluskey para apresentar o PRODUTO DE SOMAS mínimo do circuito. Lembrar que um número primo é um número natural maior do que 1 que possui apenas dois divisores distintos: 1 e ele mesmo.

Figura 1: Diagrama esquemático do circuito da questão 2.

Figura 2: Diagrama esquemático do circuito da questão 3.

Tipo de porta	Fanin	Retardos de propagação	Fator de carga I	Tamanho
			(cargas-	(portas
		(ns) (ns)		equivalentes)
AND	2	$0.15 + 0.037L \cdot 0.16 + 0.017L$	1.0	2
AND		0.20 + 0.038L : 0.18 + 0.018L	í,ŏ	
AND		0.28 + 0.039L - 0.21 + 0.019L		3
OR		0.12 + 0.037L $0.20 + 0.019L$	1,0	9
OR		$0.12 + 0.038L \cdot 0.34 + 0.022L$		
OR		0.13 + 0.038L 0.45 + 0.025L	1,0	<u>.</u>
NOT		0.02 + 0.038L + 0.05 + 0.017L		1
			1,0	
NAND		0,05 + 0,038L 0,08 + 0,027L	i i ò	
NAND		0.07 + 0.038L = 0.09 + 0.039L		2 2
- NAND		0.10 + 0.037L 0.12 + 0.051L		2
NAND		0.21 + 0.038L - 0.34 + 0.019L	1,0	4
NAND		0,24 + 0,037L 0,36 + 0,019L		5
NAND		$0.24 + 0.038L \cdot 0.42 + 0.019L$,	6 :
NOR		0.06 + 0.075L 0.07 + 0.016L	1,0	
NOR	3	0.16 + 0.111L + 0.08 + 0.017L	1,0	2
NOR	4	$0.23 \pm 0.149L$ $0.08 \pm 0.017L$	1,0	4
NOR	5	0.38 + 0.038L 0.23 + 0.018L	1.0	4
NOR	6	$0.46 \pm 0.037L = 0.24 \pm 0.018L$		5
NOR		$0.54 + 0.038L \cdot 0.23 + 0.018L$	1,0	6
XOR		0.30 + 0.036L $0.30 + 0.021L$	1,1	3
		0.16 + 0.036L - 0.15 + 0.020L	2.0	.
XOR		$0.50 \pm 0.038L$ $0.49 \pm 0.027L$, -	6
		0.28 + 0.039L - 0.27 + 0.027L		
		0.19 + 0.036L $0.17 + 0.025L$		
XNOR		0.30 + 0.036L = 0.30 + 0.021L		
- ANOK		0.16 + 0.036L $0.15 + 0.020L$		
VMOD		0.50 + 0.038L = 0.49 + 0.020L		
XNOR			•	D , .
		0.28 + 0.039L 0.27 + 0.027L		
*****		$0.19 + 0.036L \cdot 0.17 + 0.025L$. , .	
2-OR/NAND2		0.17 + 0.075L = 0.10 + 0.028L		2
2-AND/NOR2	4	$0.17 \pm 0.075L$ $0.10 \pm 0.028L$		2

Tabela 1: Características de portas CMOS.