Homework 6 36-705

Due: Thursday October 16 by 3:00

- 1. Let $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$. Let $\theta = \mathbb{P}(X_i = 0)$. Note that $\theta = g(\lambda)$ for some function g.
 - (a) Find the mle $\hat{\theta}$ for θ .
 - (b) Find the limiting distribution for $\widehat{\theta}$ (appropriately normalized).
 - (c) Show that $\widehat{\theta}$ is consistent.
- 2. Let $X_1, \ldots, X_n \sim \text{Uniform}(0, \theta)$. Let's compare the method of moments estimator $\widehat{\theta}_1$ and the maximum likelihood estimator $\widehat{\theta}_2$.
 - (a) Find both estimators.
 - (b) Show that they are both consistent.
 - (c) Find their limiting distributions.
 - (d) Show that $\widehat{\theta}_1 \theta = O_P(1/\sqrt{n})$ and that $\widehat{\theta}_2 \theta = O_P(1/n)$. Which estimator should be preferred?
- 3. Let $X_1, \ldots, X_n \sim N(\mu, 1)$. Consider testing

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0$.

Construct the Wald test and show that the p-value has a Unif(0,1) under H_0 . Find the distribution of the p-value under H_1 .

- 4. Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ where both μ and σ^2 are unknown.
 - (a) Find the Wald test for

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0$.

State the rejection rule explicitly.

(b) Find the LRT for

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0$.

State the rejection rule explicitly.

(c) Find the Wald test for

$$H_0: \sigma = \sigma_0$$
 versus $H_1: \sigma \neq \sigma_0$.

State the rejection rule explicitly.

(d) Find the LRT for

$$H_0: \sigma = \sigma_0$$
 versus $H_1: \sigma \neq \sigma_0$.

State the rejection rule explicitly.