Tabla Periódica de los Elementos de la IUPAC

Tabla Periódica de los Elementos de la IUPAC	=	40 87	ωP	N a	hic
Clave:	87 Fr	37 Rb nubidio 85.468 85.468 CS cesio	19 potasio 39.098	1.008 3 Lii iitio 6.94 11 11 11 11 8 sodio 22.990	1 Tógeno
Simbolo Incombre attornico autornico massa atomica convencional Tabla Periódica de los Elementos de la IUPAC To Simbolo Incombre attornico autornico autornico autornico autornico To Simbolo Incombre autornico autornico autornico Incombre autornico autornico Incombre autornico autornico Incombre autornic	Radio 88	38 Sr estroncio 87.62 56 Ba bario 137.33	20 Ca calcio 40.078	Be berilio 9.0122 12 Mg magnesio 24.305	
Tabla Periódica de los Elementos de la IUPAC	89-103 actinidos	39 Y itrio 88.906 57-71 lantánidos	21 Sc escandio 44.956		
Tabla Periódica de los Elementos de la IUPAC	104 Rf rutherfordio	2r Zirconio 91.224 72 Hf hafinio 178.492	22 Ti titanio 47.867	Clave: Número atón Símbo nombre masa atóm convencior	
Periódica de los Elementos de la IUPAC	105 Db dubnio	180.95	23 V vanadio 50.942		
13	106 Sg seaborgio	Mo molibdeno 95.95 74 W tungsteno 183.84	24 Cr cromo 51.996	o	Tabla
13	107 Bh bohrio	Tc tecnecio 75 Re renio 186.21	Mn Mn manganeso 54.938	7	1 Perió
13	108 Hs hassio	76 Os osmio 190.233	26 Fe hierro 55.845	œ	dica de
13		45 Rh rodio 102.91 77 T iridio 192.22	27 Co cobalto 58.933	co	los El
13	110 DS darmstadtio	Pd paladio 106.42 78 Pt platino 195.08	28 Ni níquel 58.693	ō	ement
13	Rg roentgenio	47 Ag plata 107.87 79 Au oro 196.97	29 Cu cobre 63.546	=	os de l
13	112 Cn copernicio	48 Cd cadmio 112.41 80 Hg mercurio 200.59	30 Zn zinc 65.382	12	a IUP/
15 16 17 7 8 9 N O F nitrógeno oxígeno flúor 14.007 15.999 18.998 15 S CI fósforo azufre cloro 30.974 32.06 35.45 AS Se Br arsénico selenio bromo 74.922 78.971 79.904 51 52 53 Sb Te I antimonio telurio lodo 121.76 127.603 126.90 83 84 Bi Po At bismuto 208.98 PO Olonio astato 208.98 PO LV Ts moscovio livermorio téneso	Nh nihonio	49 In indio 114.82 81 TI talio 204.38	31 Ga galio 69.723	13 B boro 10.810 13 A aluminio 26.982	C
16 17 8 9 O F Oxigeno flúor 15.999 18.998 16 17 S CI azufre cloro 32.06 35.45 34 35 Se Br selenio bromo 78.971 79.904 52 53 Te I leturio lodo 127.603 126.90 127.603 astato 116 117 LV Ts livermorio téneso	114 F	50 Sn estaño 118.71 82 Pb plomo 207.2	32 Ge germanio 72.630	14 6 C carbono 12.011 14 91 Silicio 28.085	
17 9 9 10 10 17 18.998 17 CI Cloro 35.45 85 85 85 85 85 85 85 85 85 85 85 85 85	MC moscovio	Sb antimonio 121.76 83 Bi bismuto 208.98	33 AS arsénico 74.922	15 N nitrógeno 14,007 15 p fóstoro 30,974	
	116 LV livermorio	127.603 84 Po	34 Se selenio 78.971	16 0 0 0 0 0 0 0 0 0 15.999 16 32.06	
18 He helio 4.0026 10 Ne neón 18 Ar argón 39.948 36 Kr kriptón 83.798 36 Kr kriptón 83.798 86 Rn 131.29 86 Rn radón 118 Og oganesói	117 Ts	53 iodo 126.90 85 At	35 Br bromo 79.904	17 9 9 160or 18.998 17 0 0 0 35.45	
3	118 Og oganesón	Xe Xe xenón 131.29 86 Rn	36 Xr kriptón 83.798	4.0026 10 Ne neón 20.180 18 Ar argón 39.948	18 He

La La lantano 138.91 89 Ac actinio

58 Ce cerio 140.12 90 Th torio 232.04

praseodimio
140.91
91
Pa
protactinio
231.04

60 Nd neodimio 144.24 92 Uranio 238.03

Sm Samario 150.36 Pu Plutonio

europio 151.96 Am

Gd Gd gadolinio 157.25 96 Cm curio

Tb terbio 158.93 97 BK berkelio

disprosio
162.50
98
Cf
californio

Ho holmio 164.93

68 erbio 167.26 **Fm**

Tm tulio 168.93

70 **Yb** iterbio 173.05 102 **No**

Lu lutecio 174.97

Pm prometio

93 **Np** neptunio

Tabla 4.1. Clasificación de algunos solutos en disolución acuosa

Electrólito fuerte	Electrólito débil	No electrólito
HCl	CH ₃ COOH	(NH ₂) ₂ CO (urea)
HNO ₃	HF	CH ₃ OH (metanol)
HClO ₄	HNO_2	C ₂ H ₅ OH (etanol)
H_2SO_4*	NH_3	$C_6H_{12}O_6$ (glucosa)
NaOH	H_2O^{**}	C ₁₂ H ₂₂ O ₁₁ (sacarosa)
$Ba(OH)^2$		

Reglas de solubilidad para compuestos iónicos comunes, en agua a 25 °C.

Compuestos Solubles	Excepciones
 Compuestos que contienen iones de metales alcalinos El ion amonio (NH4⁺) Bicarbonatos (HCO3⁻) Cloratos (ClO3⁻) Haluros (Cl⁻, Br⁻, I⁻) Nitratos (NO3⁻) Sulfatos (SO4²⁻) 	 Haluros de Ag⁺, Hg₂²⁺ y Pb²⁺ Sulfatos de Ca²⁺, Sr²⁺, Ba²⁺, Ag⁺, Hg₂²⁺ y Pb²⁺
Compuestos Insolubles	Excepciones
 Carbonatos (CO₃²⁻) Cromatos (CrO₄²⁻) Fosfatos (PO₄³⁻) Hidróxidos (OH⁻) Sulfuros (S²⁻) 	 Para los primeros 4: Compuestos que contienen iones de metales alcalinos y el ion amonio Para hidróxidos: Compuestos que contienen iones de metales alcalinos y el ion Ba²⁺

Tabla 4.3. Algunos ácidos fuertes y débiles comunes

Acidos fuertes		Acidos débiles	
Ácido clorhídrico	HCl	Ácido fluorhídrico	HF
Ácido bromhídrico	HBr	Ácido nitroso	HNO_2
Ácido yodhídrico	HI	Ácido fosfórico	H_3PO_4
Ácido nítrico	HNO ₃	Ácido acético	CH ₃ COOH
Ácido clórico	HClO ₃		
Ácido perclórico	HClO ₄		
Ácido sulfúrico	H_2SO_4		

^{*} H₂SO₄ tiene dos iones H⁺ ionizables ** El agua pura es un electrólito extremadamente débil

TABLA 15.3 Constantes de ionización de algunos ácidos débiles y sus bases conjugadas a 25°C					
Nombre del ácido	Fórmula	Estructura	K _a	Base conjugada	K _b
Ácido fluorhídrico	HF	н—г	7.1×10^{-4}	F ⁻	1.4×10^{-11}
Ácido nitroso	HNO_2	O=N-O-H	4.5×10^{-4}	NO ₂	2.2×10^{-11}
Ácido acetilsalicílico (aspirina)	C ₉ H ₈ O ₄	О 	3.0×10^{-4}	C ₉ H ₇ O ⁻ ₄	3.3×10^{-11}
Ácido fórmico	НСООН	О Н—С—О—Н	1.7×10^{-4}	HCOO ⁻	5.9×10^{-11}
Ácido ascórbico*	$C_6H_8O_6$	H-O $C=O$ $C+OH$ C $C=O$	8.0×10^{-5}	C ₆ H ₇ O ₆	1.3×10^{-10}
Ácido benzoico	C ₆ H ₅ COOH	CH ₂ OH O	6.5×10^{-5}	C ₆ H ₅ COO ⁻	1.5×10^{-10}
Ácido acético	CH₃COOH	О СН ₃ —С—О—Н	1.8×10^{-5}	CH ₃ COO ⁻	5.6×10^{-10}
Ácido cianhídrico	HCN	$H-C \equiv N$	4.9×10^{-10}	CN-	2.0×10^{-5}
Fenol	C ₆ H ₅ OH	О—Н	1.3×10^{-10}	C ₆ H ₅ O ⁻	7.7×10^{-5}

^{*} Para el ácido ascórbico es el grupo hidroxilo del extremo superior izquierdo el que está asociado con su constante de ionización.

TABLA 15.4	Constantes de ionización de algunas bases débiles y sus ácidos conjugados a 25°C				
Nombre de la base	Fórmula	Estructura	K _b *	Ácido conjugado	K a
Etilamina	C ₂ H ₅ NH ₂	CH₃—CH₂—N—H	5.6×10^{-4}	$C_2H_5\stackrel{+}{N}H_3$	1.8×10^{-11}
Metilamina	CH ₃ NH ₂	CH ₃ —N—H H	4.4×10^{-4}	$CH_3\stackrel{+}{N}H_3$	2.3×10^{-11}
Amoniaco	NH ₃	H—N—H H	1.8×10^{-5}	NH ⁺ ₄	5.6×10^{-10}
Piridina	C_5H_5N	N:	1.7×10^{-9}	$C_5H_5\stackrel{+}{N}H$	5.9×10^{-6}
Anilina	C ₆ H ₅ NH ₂	 Н Н	3.8×10^{-10}	$C_6H_5\overset{+}{N}H_3$	2.6×10^{-5}
Cafeína	$C_8H_{10}N_4O_2$	H ₃ C C C N CH ₃ CH ₃ CH ₃ CH ₃	5.3×10^{-14}	$C_8H_{11}\overset{+}{N}_4O_2$	0.19
Urea	(NH ₂) ₂ CO	O H—N—C—N—H H H	1.5×10^{-14}	H ₂ NCONH ₃	0.67

^{*} El átomo de nitrógeno con el par libre explica la basicidad de cada compuesto. En el caso de la urea, K_b se puede asociar con cualquier átomo de nitrógeno.

TABLA 15.5

Constantes de ionización de algunos ácidos dipróticos y un ácido poliprótico y sus bases conjugadas a 25°C

Nombre del ácido	Fórmula	Estructura	K a	Base conjugada	K ₀
Ácido sulfúrico	H ₂ SO ₄	О 	muy grande	HSO-4	muy pequeña
Ion hidrógeno sulfato	HSO ₄	O H-O-S-O- O	1.3×10^{-2}	SO ₄ ²⁻	7.7×10^{-13}
Ácido oxálico	$C_2H_2O_4$	O O H—O—C—C—O—H O O	6.5×10^{-2}	C ₂ HO ₄	1.5×10^{-13}
Ion hidrógeno oxalato	$C_2HO_4^-$	H-O-C-C-O-	6.1×10^{-5}	$C_2O_4^{2-}$	1.6×10^{-10}
Ácido sulfuroso*	H_2SO_3	О H—O—S—О—Н	1.3×10^{-2}	HSO ₃	7.7×10^{-13}
Ion hidrógeno sulfito	HSO ₃	O H-O-S-O-	6.3×10^{-8}	SO ₃ ²⁻	1.6×10^{-7}
Ácido carbónico	H ₂ CO ₃	О H—О—С—О—Н О	4.2×10^{-7}	HCO ₃	2.4×10^{-8}
Ion hidrógeno carbonato	HCO_3^-	H—O—C—O	4.8×10^{-11}	CO_3^{2-}	2.1×10^{-4}
Ácido sulfhídrico Ion hidrógeno sulfuro**	H ₂ S HS ⁻	H—S—H H—S ⁻	$9.5 \times 10^{-8} \\ 1 \times 10^{-19}$	HS ⁻ S ²⁻	$1.1 \times 10^{-7} \\ 1 \times 10^{5}$
Ácido fosfórico	H ₃ PO ₄	О 	7.5×10^{-3}	$\mathrm{H_2PO_4^-}$	1.3×10^{-12}
Ion dihidrógeno fosfato		H O H-O-P-O- O H	6.2×10^{-8}	HPO ₄ ²⁻ PO ₄ ³⁻	1.6×10^{-7}
Ion hidrógeno fosfato	HPO ₄ ²⁻	O 	4.8×10^{-13}	PO ₄ ³⁻	2.1×10^{-2}

^{*}El H_2SO_3 nunca ha sido aislado y existe sólo en una concentración mínima en disolución acuosa de SO_2 . El valor de K_a aquí se refiere al proceso $SO_2(g) + H_2O(l) \Longrightarrow H^+(ac) + HSO_3^-(ac)$.

**La constante de ionización del HS^- es muy baja y difícil de medir. El valor listado aquí sólo es una estimación.

TARI A 16.2	Productos de solubilidad de alg	unos compuestos iónicos li	naramente colubles a 25°C
IADLA 10.2	Productos de solubilidad de alg	junos compuestos ionicos il	geramente solubles a 25 C

Compuesto	K _{ps}	Compuesto	K _{ps}
Hidróxido de aluminio [Al(OH) ₃]	1.8×10^{-33}	Cromato de plomo (PbCrO ₄)	2.0×10^{-14}
Carbonato de bario (BaCO ₃)	8.1×10^{-9}	Fluoruro de plomo(II) (PbF ₂)	4.1×10^{-8}
Fluoruro de bario (BaF ₂)	1.7×10^{-6}	Yoduro de plomo(II) (PbI ₂)	1.4×10^{-8}
Sulfato de bario (BaSO ₄)	1.1×10^{-10}	Sulfuro de plomo(II) (PbS)	3.4×10^{-28}
Sulfuro de bismuto (Bi ₂ S ₃)	1.6×10^{-72}	Carbonato de magnesio (MgCO ₃)	4.0×10^{-5}
Sulfuro de cadmio (CdS)	8.0×10^{-28}	Hidróxido de magnesio [Mg(OH) ₂]	1.2×10^{-11}
Carbonato de calcio (CaCO ₃)	8.7×10^{-9}	Sulfuro de manganeso(II) (MnS)	3.0×10^{-14}
Fluoruro de calcio (CaF ₂)	4.0×10^{-11}	Cloruro de mercurio(I) (Hg ₂ Cl ₂)	3.5×10^{-18}
Hidróxido de calcio [Ca(OH) ₂]	8.0×10^{-6}	Sulfuro de mercurio(II) (HgS)	4.0×10^{-54}
Fosfato de calcio [Ca ₃ (PO ₄) ₂]	1.2×10^{-26}	Sulfuro de níquel(II) (NiS)	1.4×10^{-24}
Hidróxido de cromo(III) [Cr(OH) ₃]	3.0×10^{-29}	Bromuro de plata (AgBr)	7.7×10^{-13}
Sulfuro de cobalto(II) (CoS)	4.0×10^{-21}	Carbonato de plata (Ag ₂ CO ₃)	8.1×10^{-12}
Bromuro de cobre(I) (CuBr)	4.2×10^{-8}	Cloruro de plata (AgCl)	1.6×10^{-10}
Yoduro de cobre(I) (CuI)	5.1×10^{-12}	Yoduro de plata (AgI)	8.3×10^{-17}
Hidróxido de cobre(II) [Cu(OH) ₂]	2.2×10^{-20}	Sulfato de plata (Ag ₂ SO ₄)	1.4×10^{-5}
Sulfuro de cobre(II) (CuS)	6.0×10^{-37}	Sulfuro de plata (Ag ₂ S)	6.0×10^{-51}
Hidróxido de hierro (II) [Fe(OH) ₂]	1.6×10^{-14}	Carbonato de estroncio (SrCO ₃)	1.6×10^{-9}
Hidróxido de hierro(III) [Fe(OH) ₃]	1.1×10^{-36}	Sulfato de estroncio (SrSO ₄)	3.8×10^{-7}
Sulfuro de hierro(II) (FeS)	6.0×10^{-19}	Sulfuro de estaño(II) (SnS)	1.0×10^{-26}
Carbonato de plomo(II) (PbCO ₃)	3.3×10^{-14}	Hidróxido de zinc [Zn(OH) ₂]	1.8×10^{-14}
Cloruro de plomo(II)(PbCl ₂)	2.4×10^{-4}	Sulfuro de zinc (ZnS)	3.0×10^{-23}

TABLA 16.3 Re	elación entre K _{ps} y solul	oilidad molar (s)		
Compuesto	Expresión $K_{\rm ps}$	Catión	Anión	Relación entre $K_{\rm ps}$ y s
AgCl	$[Ag^+][Cl^-]$	S	S	$K_{\rm ps} = s^2; s = (K_{\rm ps})^{\frac{1}{2}}$
BaSO ₄	$[Ba^{2+}][SO_4^{2-}]$	S	S	$K_{\rm ps} = s^2; s = (K_{\rm ps})^{\frac{1}{2}}$
Ag_2CO_3	$[Ag^{+}]^{2}[CO_{3}^{2-}]$	2 s	S	$K_{\rm ps} = 4s^3; s = \left(\frac{K_{\rm ps}}{4}\right)^{\frac{1}{3}}$
F_2	$[Pb^{2+}][F^{-}]^{2}$	s	2s	$K_{\rm ps} = 4s^3; s = \left(\frac{K_{\rm ps}}{4}\right)^{\frac{1}{3}}$
(OH) ₃	$[Al^{3+}][OH^{-}]^{3}$	S	3s	$K_{\rm ps} = 27s^4; s = \left(\frac{K_{\rm ps}}{27}\right)^{\frac{1}{4}}$
a ₃ (PO ₄) ₂	$[Ca^{2+}]^3[PO_4^{3-}]^2$	3s	2s	$K_{\rm ps} = 108s^5; s = \left(\frac{K_{\rm ps}}{108}\right)^{\frac{1}{3}}$

TABLA 16.4

Constantes de formación de iones complejos seleccionados en agua a 25°C

Ion complejo	Expresión de equilibrio	Constante de formación (K _f)
$Ag(NH_3)_2^+$	$Ag^+ + 2NH_3 \implies Ag(NH_3)_2^+$	1.5×10^7
$Ag(CN)_2^-$	$Ag^+ + 2CN^- \Longrightarrow Ag(CN)_2^-$	1.0×10^{21}
$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^- \rightleftharpoons Cu(CN)_4^{2-}$	1.0×10^{25}
$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4NH_3 \iff Cu(NH_3)_4^{2+}$	5.0×10^{13}
$Cd(CN)_4^{2-}$	$Cd^{2+} + 4CN^- \rightleftharpoons Cd(CN)_4^{2-}$	7.1×10^{16}
CdI_4^{2-}	$Cd^{2+} + 4I^- \Longrightarrow CdI_4^{2-}$	2.0×10^{6}
HgCl ₄ ²⁻	$Hg^{2+} + 4Cl^- \Longrightarrow HgCl_4^{2-}$	1.7×10^{16}
HgI_4^{2-}	$Hg^{2+} + 4I^- \Longrightarrow HgI_4^{2-}$	2.0×10^{30}
$Hg(CN)_4^{2-}$	$Hg^{2+} + 4CN^- \Longrightarrow Hg(CN)_4^{2-}$	2.5×10^{41}
$Co(NH_3)_6^{3+}$	$Co^{3+} + 6NH_3 \iff Co(NH_3)_6^{3+}$	5.0×10^{31}
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \implies Zn(NH_3)_4^{2+}$	2.9×10^{9}

Semirreacción	E°(V)
$F_2(g) + 2e^- \longrightarrow 2F^-(ac)$	+2.87
$O_3(g) + 2H^+(ac) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.07
$Co^{3+}(ac) + e^{-} \longrightarrow Co^{2+}(ac)$	+1.82
$H_2O_2(ac) + 2H^+(ac) + 2e^- \longrightarrow 2H_2O$	+1.77
$PbO_2(s) + 4H^+(ac) + SO_4^2(ac) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	+1.70
$\operatorname{Ce}^{4+}(ac) + e^{-} \longrightarrow \operatorname{Ce}^{3+}(ac)$	+1.61
$\operatorname{MnO}_{4}^{-}(ac) + 8\operatorname{H}^{+}(ac) + 5e^{-} \longrightarrow \operatorname{Mn}^{2+}(ac) + 4\operatorname{H}_{2}\operatorname{O}$ $\operatorname{Au}^{3+}(ac) + 3e^{-} \longrightarrow \operatorname{Au}(s)$	+1.51
	+1.50 +1.36
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(ac)$ $Cr_2O_7^{2-}(ac) + 14H^+(ac) + 6e^- \longrightarrow 2Cr^{3+}(ac) + 7H_2O$	+1.33
$MnO_2(s) + 4H^+(ac) + 2e^- \longrightarrow Mn^{2+}(ac) + 2H_2O$	+1.23
$O_2(g) + 4H^+(ac) + 2e^- \longrightarrow 2H_2O$	+1.23
$\operatorname{Br}_{2}(l) + 2e^{-} \longrightarrow 2\operatorname{Br}^{-}(ac)$	+1.07
$NO_3^-(ac) + 4H^+(ac) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.96
$2 \text{Hg}^{2+}(ac) + 2e^{-} \longrightarrow \text{Hg}_{2}^{2+}(ac)$	+0.92
$Hg_2^{2+}(ac) + 2e^- \longrightarrow 2Hg(l)$	+0.85
$Ag^{+}(ac) + e^{-} \longrightarrow Ag(s)$	+0.80
$Fe^{3+}(ac) + e^{-} \longrightarrow Fe^{2+}(ac)$	+0.77
$O_2(g) + 2H^+(ac) + 2e^- \longrightarrow H_2O_2(ac)$	+0.68
$MnO_4^-(ac) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(ac)$	+0.59
$\underline{5} I_2(s) + 2e^- \longrightarrow 2I^-(ac)$	+0.53
$\Theta_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(ac)$	+0.40
$\overset{\cdot}{E} Cu^{2+}(ac) + 2e^{-} \longrightarrow Cu(s)$	+0.34 필
$ \begin{array}{lll} & \begin{array}{ll} & \end{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \end{array}{ll} & \times l & \times l & $	+0.53 +0.40 +0.34 +0.22 +0.20 +0.15 +0.13 0.00 -0.13 -0.14 -0.25
	+0.20
	+0.15
$\operatorname{Sn}^{4+}(ac) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(ac)$	+0.13
	0.00
$ \begin{array}{ccc} & \text{Pb}^{2+}(ac) + 2e^{-} \longrightarrow \text{Pb}(s) \\ & & & & & & & & \\ & & & & & & & \\ & & & & $	-0.13 <u>9</u>
$ \stackrel{=}{\operatorname{S}} \operatorname{Sn}^{2+}(ac) + 2e^{-} \longrightarrow \operatorname{Sn}(s) $	-0.14 til
$ \begin{array}{ccc} & \text{Ni}^{2+}(ac) + 2e^{-} \longrightarrow \text{Ni}(s) \\ & \text{Co}^{2+}(ac) + 2e^{-} \longrightarrow \text{Co}(s) \end{array} $	
$ \begin{array}{ccc} S & Co^{-}(ac) + 2e & \longrightarrow Co(s) \\ S & PbSO_{4}(s) + 2e^{-} & \longrightarrow Pb(s) + SO_{4}^{2-}(ac) \end{array} $	-0.28 -0.31 Ξ
$ \begin{array}{ccc} 5 & \text{Co}^{2+}(ac) + 2e^{-} \longrightarrow \text{Co}(s) \\ E & \text{PbSO}_{4}(s) + 2e^{-} \longrightarrow \text{Pb}(s) + \text{SO}_{4}^{2-}(ac) \\ E & \text{Cd}^{2+}(ac) + 2e^{-} \longrightarrow \text{Cd}(s) \end{array} $	-0.31 ez -0.40 -0.40
$Fe^{2+}(ac) + 2e^{-} \longrightarrow Fe(s)$	-0.44 -0.44
$Cr^{3+}(ac) + 3e^{-} \longrightarrow Cr(s)$	-0.74
$\operatorname{Zn}^{2+}(ac) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(ac)$	-0.83
$Mn^{2+}(ac) + 2e^{-} \longrightarrow Mn(s)$	-1.18
$Al^{3+}(ac) + 3e^{-} \longrightarrow Al(s)$	-1.66
$Be^{2+}(ac) + 2e^{-} \longrightarrow Be(s)$	-1.85
$Mg^{2+}(ac) + 2e^{-} \longrightarrow Mg(s)$	-2.37
$Na^+(ac) + e^- \longrightarrow Na(s)$	-2.71
$Ca^{2+}(ac) + 2e^{-} \longrightarrow Ca(s)$	-2.87
$Sr^{2+}(ac) + 2e^{-} \longrightarrow Sr(s)$	-2.89
$Ba^{2+}(ac) + 2e^{-} \longrightarrow Ba(s)$	-2.90
$K^+(ac) + e^- \longrightarrow K(s)$	-2.93
$Li^+(ac) + e^- \longrightarrow Li(s)$	-3.05

^{*} Para todas las semirreacciones, la concentración es 1 M para las especies disueltas, y la presión para los gases es de 1 atm. Éstos son los valores de estado estándar.