Signals and Systems for Computer Engineering

Important: Read the explanations at the end of questions before you start

1- A continuous time signal x(t) is given as x(t)= $10 \cdot \sin(314t + \pi/3)$. If we periodically sample this signal @T_s=5ms time intervals and denote the sampled sequence as x[n] where n=0,1,2,... then 402^{nd}

sample value will be,

2- Find the 4-points DFT (Discrete Fourier Transform) of the sampled signal x[n] in question 1. If $x[n]=\{x[0], x[1], x[2], x[3]\}$ then its DFT $X[k]=DFT\{x[n]\}$ can be given as,

where,
$$\mathbf{W}_{N} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)} \end{bmatrix} \text{ and } W_{N} = e^{-j(2\pi/N)}$$

3- Continuous time signal x(t) is shown in the figure below.

x(t) can mathematically be expressed as,

x(t)=

4- Two discrete time signals x[n] and h[n] are given as $x[n] = \{1, 3, 1\}$ $h[n] = \{0, 2, 1\}$ for n=0,1,2 respectively and they are zero for all other n values. If y[n] is the convolution of x[n] and h[n] (y[n]=x[n]*h[n]) then the sequence of y[n] is given as

5- Impulse response h[n] of a system is given below. Find the output sequence y[n] of this system (for n≥0) if x[n]=2(u[n]-u[n-3]) is applied to its input.

6- Transfer function of a discrete time system H(z) is given as

$$H(z) = \frac{Y(z)}{X(z)} = \frac{2z^{-1}}{(1 - 0.5z^{-1})^2}$$

where z^{-1} denotes the unit delay. If a unit step signal x[n]=u[n] is applied to this system then the first 4 values of the output signal sequence $y[n]=\{y[0], y[1], y[2], y[3]\}$ would be,

(initial condition can be considered as zero)

7- Write the pseudo code that performs H(z) in question 6 if the input signal is periodically sampled at $T_{\mbox{\tiny S}}$

Timer Interrupt @Ts:

X = Read (ADC)

Return

8- If a transfer function of a $\mathbf{1}^{\text{st}}$ order low pass filter $\mathbf{H}(\mathbf{s})$ is given as

9- If the continuous time signal $x(t)=10\sin(400\pi t)$ is applied to the low pass filter system described in question 8 then the output signal y(t) can be expressed as,

10- A continuous time periodic signal x(t) is given in the figure shown below

11-The input-output relationship of a discrete time system is given by the difference equation $y[n]=x[n-2]+2a\cdot y[n-1]-a^2\cdot y[n-2]$. Find the value interval of "a" that makes this system BIBO stable.

(where x and y denotes input and the output respectively)

<a<

12- Find the fundamental period of the signal $x(t) = \cos\left(\frac{14\pi}{3}t\right) + \sin\left(\frac{5\pi}{4}t\right)$

T₀=

- a) Fill in the blanks on first 2 pages of your answers as shown in following sample answers pages.
- b) Duration: 120minutes
- c) points per question is 100/12.
- d) Show the calculations for each question in a separate part after results.
- e) Use page numbers as "page #1" at the top of answers pages.
- f) Don't forget to sign each of the answers pages.
- g) If you're not able to upload the question pages as pdf or image file then you may list the answers in separate box in the first page of your answers.
- h) You may totally rewrite results part and fill in the blanks. Given answers pages are <u>"sample"</u> (Results part of the answers pages is separate from the questions because some students may not be able to sign, scan and upload the question pages.)

Results Part: (Fill in the blanks) ([402]= ([k]={ (t)= y[n]={ }
([k]={ } (t)=
(t)=
y[n]={ }
y[n]={ }
y[0]= , y[1]= , y[2]= , y[3]=
Timer Interrupt @Ts: X = Read (ADC)

				\neg
Name-Surname:				
	dent No:			
Signature:				
		Ans	swers – Page #2:	
8-	f _c =	[Hz]		
9-	y(t)=	i i		
	100			!
10-	x(t)=			
	,			
11-		<a<< td=""><td></td><td></td></a<<>		
	[
12-	T ₀ =			
	<u></u>			
		c	alculations Part:	
1-	·			