

HCC/HCF40257B

QUAD 2-LINE-TO-1-LINE DATA SELECTOR/MULTIPLEXER

- 3-STATE OUTPUTS
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

PIN CONNECTIONS INPUT SELECT 16 VDD A1 15 OUTPUT DISABLE 14 44 B1 84 13 D1 D4 12 [A2 АЗ ВZ DZ **B3** D3 ۷₅\$ 5-4128

DESCRIPTION

The **HCC40257B** (extended temperature range) and **HCF40257B** (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and plastic micro package.

The **HCC/HCF40257B** is a Data Selector/Multiplexer featuring three-state outputs which can interface directly with and drive data lines of bus-oriented systems.

June 1989 1/11

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	– 0.5 to V _{DD} + 0.5	V
I ₁	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T_{op} = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

* All voltages are with respect to Vss (GND).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	oိ ဝိ

LOGIC DIAGRAM

TRUTH TABLE

	Output			
3-State Output Disable	Select	A	В	D
1	Х	Х	Χ	Z
0	0	0	Χ	0
0	0	1	Х	1
0	1	Х	0	0
0	1	Х	1	1

X = Don't Care Logic 1 = High Logic 0 = Low Z = High impedance.

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s	Value							
Symbol	Parame	ter	٧ı	۷o	Io	V _{DD}	ΤL	ow*		25°C		TH	igh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		1		0.02	1		30	
	Current	HCC	0/10			10		2		0.02	2		60	
	Types	Types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
			0/ 5			5		4		0.02	4		30	
		HCF	0/10			10		8		0.02	8		60	
		Types	0/15			15		16		0.02	16		120	
V _{OH}	Output High	า	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	,	5/10		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
	_		15/0		< 1	15		0.05			0.05		0.05	•
V _{IH}	Input High	Voltage		0.5/4.5	< 1	5	3.5		3.5		0.00	3.5	0.00	
	1 3	5		1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		V
V _{IL}	Input Low \	/oltage		4.5/0.5	< 1	5		1.5			1.5	<u> </u>	1.5	
- 1		· onago		9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	V
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
.оп	Drive	нсс	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
		1,7,000	0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		
			0/ 5	2.5		5	- 1.53		- 1.36			- 1.1		mA
		HCF	0/ 5	4.6		5	- 0.52		- 0.44			- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
		Турсз	0/10	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/13	0.4		5	0.64		0.51	1		0.36		
IOL	Sink	HCC	0/10	0.4		10	1.6		1.3	2.6		0.9		
	Current	Types	0/15	1.5		15	4.2		3.4	6.8		2.4		
			0/13	0.4		5	0.52		0.44	1		0.36		mA
		HCF	0/10	0.4		10	1.3		1.1	2.6		0.30		
		Types	0/10	1.5		15	3.6		3.0	6.8		2.4		
1 1	Innut	НСС	0/15	1.5		15	3.6		3.0			2.4		
I _{IH} , I _{IL}	Input HCC Leakage Types	0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	^	
Currer	Current	HCF Types	0/15		r -	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΑ
I _{OH} , I _{OL} **	3-State Output	HCC Types	0/18	0/18		18		± 0.4		±10 ⁻⁴	± 0.4		± 12	
	Leakage Current	HCF Types	0/18	0/18		18		± 1.0		±10 ⁻⁴	± 1.0		7.5	μΑ
Cı	Input Capa			Any In	put					5	7.5			pF

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$. ** Forced output disable.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall time = 20ns)

Symbol	Parameter	Test Condition	ns		Unit		
	i arameter		V _{DD} (V)	Min.	Тур.	Max.	
t _{PLH} ,	Propagation Delay Time		5		150	300	
t _{PHL}	t _{PHL} Data Input to Output		10		70	140	ns
			15		50	100	
	Select to Output		5		190	380	
			10		85	170	ns
			15		65	130	
	Output Disable to Output		5		95	190	
			10		50	100	ns
			15		40	80	
t_{THL}	Transition Time		5		100	200	
t_{TLH} ,			10		50	100	ns
			15		40	80	

Output Low (sink) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance (Data Input to Output).

Output High (source) Current Characteristics.

Typical Transition Time vs. Load Capacitance.

Typical Dynamic Power Dissipation vs. Input Frequency (one input to one output).

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch				
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (ı	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
5	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

