

Estructura de Computadores

INTRODUCCIÓN

Índice

- Temario y Normas de la asignatura
- Objetivos
- Bibliografía recomendada
- Conocimientos previos
- Introducción
 - Esquema básico del computador Von Neumann. Componentes
 - La Memoria Principal
 - La Unidad Central de Proceso (CPU)
 - Unidad Aritmético-Lógica (ALU)
 - Registros
 - Unidad de Control
 - Fases de ejecución de una instrucción
 - Unidad de Entrada-Salida
 - Software de sistemas
 - Parámetros característicos
 - Ejemplo

Temario

- 1. Introducción a los computadores
- 2. Instrucciones y direccionamientos
- 3. Aritmética del computador
- 4. Procesador
- 5. Memoria
- 6. Programación en ensamblador.
- 7. Entrada/Salida.

Normas de la asignatura (evaluación -l-)

Por Parciales (convocatoria ordinaria):

Parc1: temas 1, 2, 3 y 4 Parc2: temas 5, 6 y 7

Nota = 0,65*Parc1 + **0,45***Parc2

- Nota mínima de cada parcial ≥ 2puntos
- Se puede recuperar el Parc1 el día del Parc2, con peso 0,60
 En caso de recuperar <u>se pierde la nota</u> previa.
- Convocatoria Extraordinaria: 2 parciales como la ordinaria. Se puede hacer sólo uno. <u>Se considerará la última nota obtenida</u>.
- Para los no presentados se conserva la nota y peso de la convocatoria ordinaria.

Nota = 0,60 * Parc1 + 0,45 * Parc2

Nota mínima de cada parcial ≥ 2puntos

Normas de la asignatura (evaluación -II-)

- Por prueba final: Incompatible con evaluación por parciales. Se debe solicitar según normativa JE
- Conservación de notas:
 - Parciales hasta la convocatoria extraordinaria (última nota)
 - Nota teoría: si ≥ 5,0 se conserva para siguiente curso
- Copias: Cuidado, la copia en un examen se persigue:
 - Se califica como cero esa convocatoria
 - No se guardan las notas
 - Siguientes exámenes "especiales"

Objetivos

- Visión general de la estructura del computador digital:
 - Arquitectura Von Neumann
 - Componentes
 - Ejecución de instrucciones
- Visión estática (componentes) y dinámica (funcionamiento)
- Software de sistemas

Bibliografía

- de Miguel, P. "Fundamentos de los computadores",
 Paraninfo, 2004. 9ª edición.
- Stallings, W. "Organización y arquitectura de computadores", Prentice Hall, 2006, 7ª Edición.
- Patterson-Hennessy. "Estructura y diseño de computadores". Reverté, 2011. 4ª Edición
- García Clemente y otros. "Estructura de computadores: Problemas resueltos". RAMA, 2006

Índice

- Temario y Normas de la asignatura
- Objetivos
- Bibliografía recomendada
- Conocimientos previos
- Introducción
 - Esquema básico del computador Von Neumann. Componentes
 - La Memoria Principal
 - La Unidad Central de Proceso (CPU)
 - Unidad Aritmético-Lógica (ALU)
 - Registros
 - Unidad de Control
 - Fases de ejecución de una instrucción
 - Unidad de Entrada-Salida
 - Software de sistemas
 - Parámetros característicos
 - Ejemplo

- El computador digital maneja ceros y unos
 - Dos niveles de tensión (ej. 0V y 3,3V)
- Se basa en sistemas digitales
 - Se basan en puertas lógicas: AND, OR, etc.
 - Sistemas combinacionales: Codificadores, sumadores, multiplexores, etc.
 - Sistemas secuenciales: Registros, etc.
- Elemento básico de construcción: Transistor
 - NMOS
 - PMOS

Transistores

Elementos con tres terminales: G, S y D

Transistor NMOS

- 0V en G, D--S en circuito abierto.
 Resistencia infinita
- 3,3V en G, D--S en cortocircuito.
 Resistencia cero

Transistor PMOS

- 0V en G, D--S en cortocircuito.
 Resistencia cero
- 3,3V en G, D--S en circuito abierto.
 Resistencia infinita

Funciones Lógicas. Puertas lógicas

Not

Puertas lógicas

Not

Puertas lógicas

Nand

Α	В	AB
0	0	1
0	1	1
1	0	1
1	1	0

Puertas lógicas

Nand

Α	В	AB
0	0	1
0	1	1
1	0	1
1	1	0

Puertas lógicas

And

Α	В	AB	
0	0	0	^
0	0 1 0	0	$A \rightarrow A \cdot B$
1	0	0	$B - \!$
1	1	1	

Puertas lógicas

Nor

Puertas lógicas

Driver triestado

Circuitos combinacionales

- La salida depende únicamente de la entrada
- Construidos a partir de puertas lógicas AND, OR, etc.
- Clasificación y ejemplos:
 - Lógicos
 - Generador/Detector de paridad
 - Multiplexor y Demultiplexor
 - Codificador y Decodificador
 - Conversor de código
 - Comparador
 - Aritméticos
 - Sumador

Circuitos combinacionales

- Multiplexor
 - Selecciona una entre 2ⁿ entradas. Se controla con n bits

<u>S1</u>	S0	S
0	0	Α
0	1	В
1	0	С
1	1	D

Circuitos combinacionales

- Decodificador
 - Activa una de 2ⁿ entradas. Se controla con n bits

В	Α	S
0	0	S0
0	1	S1
1	0	S2
1	1	S3

Circuitos combinacionales

- Sumador elemental
 - Suma dos bits y el acarreo previo

		a b	
a b c	S Co		
0 0 0	0 0		
0 0 1	1 0		
0 1 0	1 0		
0 1 1	0 1	Co Ci	$\gamma \gamma \gamma$
100	1 0		
101	0 1		
1 1 0	0 1		
1 1 1	1 1	\downarrow	Ť
·	•	S	

ABC

- La salida depende de la entrada y del estado
- Hace falta memoria para almacenar el estado
- Elemento básico: Biestable
- Ejemplos:
 - Registro
 - Registro de desplazamiento
 - Contador
 - Etc.

- Biestable R-S
 - Almacena un bit

- Biestable R-S
 - Almacena un bit

Circuitos Secuenciales

Biestable D por nivel (latch)

Circuitos Secuenciales

Biestable D por nivel (latch)

- Biestable D por flanco
 - Disparo por flanco de subida

- Biestable D por flanco
 - Disparo por flanco de subida

Circuitos Secuenciales

Registro

Circuitos Secuenciales

Registro de desplazamiento

Índice

- Temario y Normas de la asignatura
- Objetivos
- Bibliografía recomendada
- Conocimientos previos
- Introducción
 - Esquema básico del computador Von Neumann. Componentes
 - La Memoria Principal
 - La Unidad Central de Proceso (CPU)
 - Unidad Aritmético-Lógica (ALU)
 - Registros
 - Unidad de Control
 - Fases de ejecución de una instrucción
 - Unidad de Entrada-Salida
 - Software de sistemas
 - Parámetros característicos
 - Ejemplo

Índice

- Esquema básico del computador Von Neumann.
 Componentes
 - La Memoria Principal
 - La Unidad Central de Proceso (CPU)
 - Unidad Aritmético-Lógica (ALU)
 - Registros
 - Unidad de Control
 - Unidad de Entrada-Salida
- Fases de ejecución de una instrucción

Visión dinámica

- Software de sistemas
- Parámetros característicos y unidades de medida

Visión estática

Introducción

Función básica del computador

Ejecución de instrucciones elementales, en las que están especificados:

- Operación a realizar
- Datos o su localización
- Localización del resultado

Instrucciones máquina

• Referencia a la siguiente instrucción

Introducción

Función básica del computador

Ejecución de instrucciones elementales, en las que están especificados:

- Operación a realizar
- Datos o su localización
- Localización del resultado

Instrucciones máquina

Referencia a la siguiente instrucción

Arquitectura Von Neumann (1945)

- Instrucciones y datos almacenados en una memoria única de lectura/escritura (modelo de programa almacenado)
- Contenido de la memoria accesible por direcciones
- Ejecución implícitamente secuencial

Esquema básico del computador Von Neumann. Componentes

La Memoria Principal

La Memoria Principal

La Memoria Principal

La Memoria Principal

Organización del espacio de memoria

Se puede restringir el acceso a estas zonas mediante:

- Registros frontera
- Memoria virtual

Unidad Central de Proceso (CPU)

Unidad de Control

- Lee de la Mp la instrucción a ejecutar
- La analiza (decodifica)
- Da las órdenes al resto de componentes

Unidad Aritmético-Lógica (ALU)

Realiza la operación indicada por la UC sobre los datos de entrada

Registros

Memoria a *corto plazo* donde se almacenan temporalmente instrucciones, datos o direcciones de memoria

Conectados mediante buses internos

CPU: Unidad Aritmético-Lógica (ALU)

CPU: Unidad Aritmético-Lógica (ALU)

CPU: Unidad Aritmético-Lógica (ALU)

CPU: Registros

- De propósito general
- De propósito específico
- Transparentes

CPU

Registros de propósito general (BR)

CPU

Registros de propósito general (BR)

CPU

Registros de propósito específico

Contador de programa

CPU. Registros de propósito específico

Contador de programa

Registro de estado

CPU: Registros transparentes

Registro de instrucción

CPU: Registros transparentes

Registro de instrucción

Registro de direcciones

CPU: Registros transparentes

Registro de direcciones

ESCdr2

ESCdr1(ld)

Registro de datos

CPU: Unidad de Control

- Ordena la lectura de la instrucción a ejecutar
- La analiza (decodifica)
- Da las órdenes al resto de componentes

Señales de control

CPU: Unidad de Control

- Transferencia (*Id, st, mov, in, out*)
- Procesamiento (add, .., and, shift)
- Salto (jump, jumpz, call, ret, ..)

Más instrucciones privilegiadas reservadas para el S.O.

Diagrama simplificado del computador

Diagrama simplificado del computador

Fases de ejecución de una instrucción

Fases de ejecución de una instrucción

Ejemplo de instrucciones a ejecutar

Dirección Lenguaje ensamblador ld r1, /1000 load r1 00...001111101000 sub r1, r2 sub r1 r2 st r1, /1200 store r1 00...010010110000 jmpz /50 salto si Z 00...00000110010 1000 00...00000000010 2 00...000000000101 1200 5

Diagrama simplificado del computador

Esquema básico del computador Von Neumann. Componentes

Unidad de Entrada/Salida

Entrada/Salida: Problemas a resolver

- Selección del dispositivo (direccionamiento)
 - Cada registro tiene asignada una dirección
 - Puede haber instrucciones especiales (in/out ≈ ld/st)
- Modo de realizar la operación de E/S
 - Programada: la CPU lo hace todo
 - Mediante interrupciones: el módulo avisa cuando tiene un dato listo
 - Por acceso directo a memoria (DMA): la CPU casi no interviene

Entrada/Salida programada

Entrada/Salida por interrupciones

Entrada/Salida por DMA

Entrada/Salida por DMA

Software de sistemas

- Compiladores y Ensambladores
- Montadores (*linker*)
- Cargadores (bootstrap)
- Depuradores
- Editores de texto
- Sistema operativo
 - Gestión de recursos (CPU, Mp, E/S)
 - Ocultar la complejidad de los periféricos
 - Protección de recursos

Parámetros característicos

Ancho de palabra

8, 16, 32, 64 bits

Tamaño de la memoria

K, Mega, Giga, Tera, Peta bytes

Frecuencia de reloj

Mega hercios (MHz), Giga hercios (GHz)

Duración de las operaciones

mili (m), micro (u, μ), nano (n), pico (p), femto (f) segundos

Capacidad de cómputo (velocidad)

MIPS, MFLOPS, specint, specfp

Ancho de banda (caudal)

KB/s (KBps), MB/s (MBps), Kb/s (Kbps), Mb/s (Mbps)

Dpto. Arquitectura y Tecnología de Sistemas Informáticos. Universidad Politécnica de Madrid