超大卷积核架构设计与高效实践

MEGVII 旷视

——解读Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs (CVPR 2022)

主讲人:丁霄汉

目录

- 1 WHY:关于CNN和Transformer的基本问题
- 2 HOW: 大kernel设计探索与五大准则
- 3 RepLKNet
- 4 实验结果
- 5 讨论与分析
- 6 总结

01

关于CNN和 Transformer的基本问题

问题一:与CNN相比, Transformer性能强的原因是什么?

Transformer的基本组件是self-attention, 而self-attention的实质是在全局尺度或较大

的窗口内进行Query-Key-Value运算。其中的关键是?

- A. 全局尺度或较大的窗口
- B. Query-Key-Value运算

证据一:将Swin中的attention换成7x7卷积,性能也很强。

证据二:将ViT中的attention换成MLP,性能也很强。

证据三:将attention换成**pooling**,性能还是很强。

- [1] Qi Han, Zejia Fan, Qi Dai, Lei Sun, Ming-Ming Cheng, Jiaying Liu, and Jingdong Wang. Demystifying local vision transformer: Sparse connectivity, weight sharing, and dynamic weight.
- [2] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for vision.
- [3] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer is actually what you need for vision.

问题二:如果感受野是关键,那么传统CNN差在哪里了?

深层CNN的感受野不是很大吗?

自VGGNet以来, 堆叠小kernel成为了主流设计范式

- AlexNet : 11x11
- VGGNet : 3x3
- ResNet、ResNeXt:一层7x7,大量3x3
- EfficientNet: 3x3, 5x5
- MobileNet、ShuffleNet: 3x3
- RegNet: 3x3

问题二:如果感受野是关键,那么传统CNN差在哪里了?

因为我们相信,三层3x3比一层7x7要好:

- 3x3x3 < 1x7x7
- 三层3x3可以加入更多非线性,层数越多,拟合能力越强
- · 两者的感受野一样大(?)
- · 在ResNet等深度现代模型中,大量3x3堆出来的感受野是足够覆盖全图的(?)

这是真的吗?

问题二:如果感受野是关键,那么传统CNN差在哪里了?

有效感受野可视化

小kernel模型增加深度无法显著增大有效感受野,大kernel模型的有效感受野非常大

有效感受野正比于 $\mathrm{K}\sqrt{L}$, K kernel size , L为深度

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S. Zemel. Understanding the effective receptive field in deep convolutional neural networks. NeurIPS 2016.

问题三:为什么我们不用大kernel?

为什么历史淘汰了大kernel?

- 太大:卷积的参数量和FLOPs与kernel size的平方成正比,如(256, 256, 31, 31)的一个卷积核就有63M参数
- 反而掉点:
 - [1] GCN: Kx1和1xK大卷积, ImageNet上掉点
 - [2] LR-Net:大kernel,非卷积, kernel size从7x7到9x9即开始掉点

问题三:为什么我们不用大kernel?

曾被历史淘汰 ≠ 不应该得到复兴

时代变了:

- · 太大:
 - Depth-wise卷积
 - 恰当的底层优化
- 反而掉点:
 - 配套的结构设计
 - 重参数化等新方法

MEGVII 旷视

问题四:如何在现代模型中复兴大kernel设计?

大kernel不是不能用,而是需要用到好处 How?

02

大kernel设计探索与 五大准则

▮大kernel设计探索与五大准则

准则一:depth-wise卷积+恰当的底层优化

- 从3x3改到31x31,模型会增大100倍?
- Depth-wise (DW) 卷积占的参数量和FLOPs本来就不多!

Table 5. RepLKNet with different kernel sizes. The models are pretrained on ImageNet-1K in 120 epochs with 224×224 input and finetuned on ADE20K with UperNet in 80K iterations. On ADE20K, we test the *single-scale* mIoU, and compute the FLOPs with input of 2048×512, following Swin.

	ImageNet			ADE20K			
Kernel size	Top-1	Params	FLOPs	mIoU	Params	FLOPs	
3-3-3-3	82.11	71.8M	12.9G	46.05	104.1M	1119G	
7-7-7-7	82.73	72.2M	13.1G	48.05	104.6M	1123G	
13-13-13	83.02	73.7M	13.4G	48.35	106.0M	1130G	
25-25-25-13	83.00	78.2M	14.8G	48.68	110.6M	1159G	
31-29-27-13	83.07	79.3M	15.3G	49.17	111.7M	1170G	

▮大kernel设计探索与五大准则

准则一:depth-wise卷积+恰当的底层优化

- 加底层优化,速度更快
 - Depth-wise卷积效率低?DW 3x3效率低,不代表DW 31x31效率低。
 - 优化得当,可加速20倍

Table 1. Inference speed of a stack of 24-layer depth-wise convolutions with various kernel sizes and resolutions on a single GTX 2080Ti GPU. The input shape is (64, 384, R, R). Baselines are evaluated with Pytorch 1.9.0 + cuDNN 7.6.5, in FP32 precision.

Resolution R	Impl		Latency (ms) @ Kernel size								
Resolution 1t	шрі	3	5	7	9	13	17	21	27	29	31
16 v 16	Pytorch	5.6	11.0	14.4	17.6	36.0	57.2	83.4	133.5	150.7	171.4
16×16	Ours	5.6	6.5	6.4	6.9	7.5	8.4	8.4	8.4	8.3	8.4
32×32	Pytorch	21.9	34.1	54.8	76.1	141.2	230.5	342.3	557.8	638.6	734.8
32 × 32	Ours	21.9	28.7	34.6	40.6	52.5	64.5	73.9	87.9	92.7	96.7
64 × 64	Pytorch	69.6	141.2	228.6	319.8	600.0	977.7	1454.4	2371.1	2698.4	3090.4
	Ours	69.6	112.6	130.7	152.6	199.7	251.5	301.0	378.2	406.0	431.7

- 已集成进开源框架MegEngine
- 开源的PyTorch实现,参见示例:https://github.com/DingXiaoH/RepLKNet-pytorch

| 大kernel设计探索与五大准则

准则二:加shortcut!

• 实验: MobileNet V2, 有/无shortcut, 加大到13x13

Table 2. Results of different kernel sizes in normal/shortcut-free MobileNet V2.

Shortcut	Kernel size	ImageNet top-1 accuracy (%)			
✓	3×3	71.76			
\checkmark	13×13	72.53			
	3×3	68.67			
	13×13	53.98			

• 解释: shortcut产生了"**组合式**"的感受野;没有shortcut,感受野单一且巨大,难以捕捉小的特征

准则三:用小kernel做重参数化

- 实验: MobileNet V2,有/无3x3重参数化,加大到9x9或13x13
- 重参数化:
 - 训练时有并行的小kernel,如3x3
 - 训练后等效地将小kernel叠加到大kernel的中心
 - 原理:卷积的可加性

Figure 2. An example of re-parameterizing a small kernel (e.g., 3×3) into a large one (e.g., 7×7). See [27, 30] for details.

▮大kernel设计探索与五大准则

准则三:用小kernel做重参数化

效果:

• 无重参数化:9x9涨点,13x13掉点

• 有重参数化:13x13涨点

• 解释:小kernel使组合式的感受野更加丰富,更容易提取小的特征

注:在数据量很大(MegData-73M)时,小kernel重参数化(inductive bias)效果不大

Table 3. Results of 3×3 re-parameterization on MobileNet V2 with various kernel sizes.

Kernel	3×3 re-param	ImageNet		Cityscape	
11011101	one re param	top-1 acc (%)	val	l mIoU (%)
3×3	N/A	71.76		72.31	
9×9		72.67		76.11	
9×9	\checkmark	73.09		76.30	
13×13		72.53		75.67	
13×13	✓	73.24		76.60	

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun.

RepVGG: Making VGG-style ConvNets Great Again.

| 大kernel设计探索与五大准则

准则四:看下游任务!

- 解释:
 - ImageNet分类需要的信息量不大,更大的感受野和更强的表征能力不一定能转化为涨点,但下游需要的语义信息更加丰富。
 - ImageNet模型主要靠纹理来做决定

Table 3. Results of 3×3 re-parameterization on MobileNet V2 with various kernel sizes.

Kernel	3×3 re-param	ImageNe	t Cityscapes	
Kerner	3×3 re-param	top-1 acc (%) val <u>mIoU (%</u>	6)
3×3	N/A	71.76	72.31	
9×9		72.67	76.11	
9×9	\checkmark	73.09	76.30	
13×13		72.53	75.67	
13×13	\checkmark	73.24	76.60	

Table 5. RepLKNet with different kernel sizes. The models are pretrained on ImageNet-1K in 120 epochs with 224×224 input and finetuned on ADE20K with UperNet in 80K iterations. On ADE20K, we test the *single-scale* mIoU, and compute the FLOPs with input of 2048×512, following Swin.

	ImageNet			ADE20K		
Kernel size	Top-1	Params	FLOPs	mIoU	Params	FLOPs
3-3-3-3	82.11	71.8M	12.9G	46.05	104.1M	1119G
7-7-7-7	82.73	72.2M	13.1G	48.05	104.6M	1123G
13-13-13-13	83.02	73.7M	13.4G	48.35	106.0M	1130G
25-25-25-13	83.00	78.2M	14.8G	48.68	110.6M	1159G
31-29-27-13	83.07	79.3M	15.3G	49.17	111.7M	1170G

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness.

| 大kernel设计探索与五大准则

准则五:小feature map上也能用大kernel !

- 大kernel一定要用大分辨率?不需要!
- 7x7的feature map上用13x13的大kernel?不严格符合平移不变性
 - 平移不变性一定是好的?
 - 视角一:可以看成一种不同位置卷积核参数不同的特殊卷积
 - 视角二: padding引入了绝对位置信息

Figure 3. Illustration to convolution with small feature map and large kernel. Two outputs at adjacent locations only share a part of kernel weights. Translational equivariance does not strictly hold.

Table 4. Results of various kernel sizes in the *last stage* of MobileNet V2. Kernel sizes in previous stages remain to be 3×3 .

Kernel size	ImageNet acc (%)	Cityscapes mIoU (%)
3×3	71.76	72.31
7×7	72.00	74.30
13×13	71.97	74.62

Osman Semih Kayhan and Jan C van Gemert. On translation invariance in cnns: Convolutional layers can exploit absolute spatial location. CVPR 2020.

准则一:depth-wise卷积+恰当的底层优化

准则二:加shortcut!

准则三:用小kernel做重参数化

准则四:看下游任务!

准则五:小feature map上也能用大kernel !

03

RepLKNet

RepLKNet

- 基于以上准则,设计RepLKNet
- 借鉴Swin的宏观架构
- CNN风格的一点改动

Figure 4. RepLKNet comprises Stem, Stages and Transitions. Except for depth-wise (DW) large kernel, the other components include DW 3×3 , dense 1×1 conv, and batch normalization [50] (BN). Note that every conv layer has a following BN, which are not depicted. Such conv-BN sequences use ReLU as the activation function, except those before the shortcut-addition (as a common practice [41,73]) and those preceding GELU [42].

RepLKNet

- 加大kernel size!
- RepLKNet-31B: 宽度[128, 256, 512, 1024]
- RepLKNet-31L: 宽度[192, 384, 768, 1536]
- RepLKNet-XL: 宽度[256, 512, 1024, 2048] + 1.5x inverted bottleneck

Table 5. RepLKNet with different kernel sizes. The models are pretrained on ImageNet-1K in 120 epochs with 224×224 input and finetuned on ADE20K with UperNet in 80K iterations. On ADE20K, we test the *single-scale* mIoU, and compute the FLOPs with input of 2048×512, following Swin.

	ImageNet			ADE20K			
Kernel size	Top-1	Params	FLOPs	mIoU	Params	FLOPs	
3-3-3-3	82.11	71.8M	12.9G	46.05	104.1M	1119G	
7-7-7-7	82.73	72.2M	13.1G	48.05	104.6M	1123G	
13-13-13	83.02	73.7M	13.4G	48.35	106.0M	1130G	
25-25-25-13	83.00	78.2M	14.8G	48.68	110.6M	1159G	
31-29-27-13	83.07	79.3M	15.3G	49.17	111.7M	1170G	

/04

实验结果

实验结果

ImageNet

Table 6. ImageNet results. The throughput is tested with FP32 and a batch size of 64 on 2080Ti. ‡ indicates ImageNet-22K pretraining. ♦ indicates pretrained with extra data.

Model	Input	Top-1	Params	FLOPs	Throughput
Model	resolution	acc	(M)	(G)	examples/s
RepLKNet-31B	224×224	83.5	79	15.3	295.5
Swin-B	224×224	83.5	88	15.4	226.2
RepLKNet-31B	384×384	84.8	79	45.1	97.0
Swin-B	384×384	84.5	88	47.0	67.9
RepLKNet-31B ‡	224×224	85.2	-	-	-
Swin-B [‡]	224×224	85.2	-	-	-
RepLKNet-31B ‡	384×384	86.0	-	-	-
Swin-B [‡]	384×384	86.4	-	-	-
RepLKNet-31L ‡	384×384	86.6	172	96.0	50.2
Swin-L [‡]	384×384	87.3	197	103.9	36.2
RepLKNet-XL *	320×320	87.8	335	128.7	39.1

实验结果

- Cityscapes
 - RepLKNet-31Base + ImageNet-1K > Swin-Large + ImageNet-22K

Table 7. Cityscapes results. The FLOPs is computed with 1024×2048 inputs. The mIoU is tested with single-scale (ss) and multi-scale (ms). The results with Swin are implemented by [37]. ‡ indicates ImageNet-22K pretraining.

Backbone	Method	mIoU	mIoU	Param	FLOPs
Баскоопе	Method	(ss)	(ms)	(M)	(G)
RepLKNet-31B	UperNet [98]	83.1	83.5	110	2315
ResNeSt-200	DeepLabv3	-	82.7	-	-
Axial-Res-XL	Axial-DL [91]	80.6	81.1	173	2446
Swin-B	UperNet	80.4	81.5	121	2613
Swin-B	UperNet $+ [37]$	80.8	81.8	121	-
ViT-L [‡]	SETR-PUP [112]	79.3	82.1	318	-
ViT-L [‡]	SETR-MLA	77.2	_	310	
Swin-L [‡]	UperNet	82.3	83.1	234	3771
Swin-L ‡	UperNet + [37]	82.7	83.6	234	-

|实验结果

- ADE20K
 - 仅ImageNet-1K pretraining, 50.6 mIoU
 - ViT-L级别 + 73M数据, **56.0 mIoU**

Table 8. ADE20K results. The mIoU is tested with single-scale (ss) and multi-scale (ms). The results with 1K-pretrained Swin are cited from the official GitHub repository. \ddagger indicates ImageNet-22K pretraining and 640×640 finetuning on ADE20K. \diamond indicates pretrained with extra data. The FLOPs is computed with 2048×512 for the ImageNet-1K pretrained models and 2560×640 for the ImageNet-22K and larger, following Swin.

Backbone	Method	mIoU	mIoU		FLOPs
Buckbone	Wichiod	(ss)	(ms)	(M)	(G)
RepLKNet-31B	UperNet	49.9	50.6	112	1170
ResNet-101	UperNet [98]	43.8	44.9	86	1029
ResNeSt-200	DeepLabv3	-	48.4	113	1752
Swin-B	UperNet	48.1	49.7	121	1188
Swin-B	UperNet $+ [37]$	48.4	50.1	121	-
ViT-Hybrid	DPT-Hybrid	-	49.0	90	-
ViT-L	DPT-Large	-	47.6	307	-
ViT-B	SETR-PUP [112]	46.3	47.3	97	-
ViT-B	SETR-MLA [112]	46.2	47.7	92	-
RepLKNet-31B ‡	UperNet	51.5	52.3	112	1829
Swin-B ‡	UperNet	50.0	51.6	121	1841
RepLKNet-31L ‡	UperNet	52.4	52.7	207	2404
Swin-L [‡]	UperNet	52.1	53.5	234	2468
ViT-L [‡]	SETR-PUP	48.6	50.1	318	-
ViT-L ‡	SFTR-MLA	48 6	50.3	310	_
RepLKNet-XL °	UperNet	55.2	56.0	374	3431

实验结果

- COCO
 - 与Swin相当
 - 与ResNeXt-101-64x4d相比,体量更小,**AP高4.4**

Table 9. Object detection on COCO. The FLOPs is computed with 1280×800 inputs. The FCOS model is trained with the 2x (24-epoch) training schedule for a fair comparison with the X101 (short for ResNeXt-101) baseline from the same code base [19], and the other results with Cascade Mask R-CNN all use 3x (36-epoch). The results of X101-64x4d + Cas Mask are reported by [60]. The results of 22K-pretrained Swin (without HTC++ [60]) are reported by [61]. \ddagger indicates ImageNet-22K pretraining. \diamond indicates pretrained with extra data.

EL OD

Backbone	Method	AP^{box}	A P ^{mask}	Param	FLOPs
Dackoone	Wichiod	AI	Ai	(M)	(G)
RepLKNet-31B	FCOS	47.0	-	87	437
X101-64x4d	FCOS	42.6	-	90	439
RepLKNet-31B	Cas Mask	52.2	45.2	137	965
X101-64x4d	Cas Mask	48.3	41.7	140	972
ResNeSt-200	Cas R-CNN [9]	49.0	-	-	-
Swin-B	Cas Mask	51.9	45.0	145	982
RepLKNet-31B ‡	Cas Mask	53.0	46.0	137	965
Swin-B [‡]	Cas Mask	53.0	45.8	145	982
RepLKNet-31L ‡	Cas Mask	53.9	46.5	229	1321
Swin-L [‡]	Cas Mask	53.9	46.7	254	1382
RepLKNet-XL *	Cas Mask	55.5	48.0	392	1958

05

讨论与分析

▋讨论与分析

• 有效感受野

- 定量分析:已经求出了每个像素的贡献值,那么,中间多大的一个区域包含了99%的贡献值?
- ResNet-101 -> ResNet-152 , 增加约一半体量
- RepLKNet-13 -> RepLKNet-31 , 增加约**7.6%**参数

Table 10. Quantitative analysis on the ERF with the high-contribution area ratio r. A larger r suggests a smoother distribution of high-contribution pixels, hence larger ERF.

	t = 20%	t = 30%	t = 50%	t = 99%
ResNet-101	1.0%	1.7%	3.5%	23.4%
ResNet-152	1.3%	2.1%	4.5%	34.9%
RepLKNet-13	10.2%	15.8%	28.5%	96.3%
RepLKNet-31	15.0%	23.4%	41.4%	98.6%

▋讨论与分析

- Shape bias:模型有多少决定是根据形状(而非纹理)做出的?
- Shape bias越高,跟人类越像
- 发现:
 - Shape bias跟训练数据关系很大
 - RepLKNet-3和ResNet-152的shape bias几乎一样
 - Swin的shape bias不高
 - · RepLKNet-31的shape bias高
- 已知ViT的shape bias高 (参见其论文)
- Shape bias跟感受野关系很大?跟attention关系不大?

论文: Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L Griffiths. Are convolutional neural networks or transformers more like human vision? 开源工具: https://github.com/bethgelab/model-vs-human

Figure 5. Shape bias of RepLKNet, Swin, and ResNet-152 pretrained on ImageNet-1K or 22K. The scatters represent the shape bias of 16 categories, and the vertical lines are the averages across categories (note RepLKNet-3 and ResNet-152 are very close).

06

总结

总结

- 从小kernel到大kernel
 - Dense conv?太大了!↓用depthwise →还是用3x3吧
 - · Depth-wise大kernel?Depth-wise 3x3都那么慢!↓**depth-wise大kernel不一定慢 →还是用3x3吧**
 - · 增大kernel size ,掉点了?↓**加shortcut →还是用3x3吧**
 - 加了shortcut,从大kernel到超大kernel,又掉点了?↓加重参数化/大数据→还是用3x3吧
 - 大kernel肯定要大分辨率啊,训不动!↓**正常分辨率直接开整**→**还是用3x3吧**
 - ImageNet还是不涨点?↓**再看看下游的**→还是用3x3吧

■知乎解读

https://www.zhihu.com/question/517340666/answer/2390516334

论文: https://arxiv.org/abs/2203.06717

代码(MegEngine):https://github.com/megvii-research/RepLKNet

代码(PyTorch): https://github.com/DingXiaoH/RepLKNet-pytorch

用人工智能造福大众

MEGVII 旷视