## **Logistic Regression Cheat Sheet**

Using least squares regression makes less sense when the outcome is binary. For example, if we use a line to model the probability of an outcome, the model will predict probabilities less than zero or greater than one. Logistic regression fixes this by modeling a linear relationship between the predictors and the *log odds*.

The following three "spaces" are different ways of looking at this relationship.

## Log Odds

Thinking about the log odds of the outcome is most useful when considering the linear form of the regression equation line.

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X$$



"A one unit increase in x is associated with a  $\beta_1$  increase in the log odds of y."

## Odds

Thinking about the odds of the outcome is most useful when considering the interpretation of the slope coefficient.

$$\frac{\pi}{1-\pi} = e^{\beta_0 + \beta_1 X}$$



"A one unit increase in x is associated with changing y by a factor of  $e^{\beta_1}$ ."

## **Probability**

Thinking about the probability of the outcome is most useful when considering the model's prediction for one value of the predictor.

$$\pi = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$



Note: There is no good interpretation for how a change in x is associated with a change in the probability of y.