Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3115	К работе допущен
Студент Конаныхина А.А.	Работа выполнена
Преподаватель Каретников Н.А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.07

«Маятник Максвелла»

1. Цель работы:

Изучение динамики плоского движения твёрдого тела на примере Маятника Максвелла.

- 2. Задачи, решаемые при выполнении работы.
 - Проверка выполнения закона сохранения энергии маятника с учётом потерь на отражение и трение
 - Определение центрального осевого момента инерции маятника Максвелла.
- 3. Объект исследования: Маятник Максвелла
- 4. Метод экспериментального исследования: Наблюдение, расчёт, эксперимент.
- 5. Рабочие формулы и исходные данные.

Среднее значение:

$$\frac{\sum_{i=1}^{n} x_i}{n}$$

Момент инерции маятника:

$$I_c = mr^2(\frac{gt^2}{2h} - 1) = mr^2(\frac{g}{g} - 1)$$

Погрешность момента инерции маятника:

$$\Delta I_c = S_N \sqrt{(mr^2 \Delta)^2 + ((-1)r^2 \Delta m)^2 + (2(-1)mr \Delta r)^2}$$

Теоретический момент инерции маятника:

$$I_{meop} = mR^2$$

Коэфициент уравнения прямой Y = aX через МНК:

$$a = \frac{\sum_{i=1}^{n} x_i \cdot y_i}{\sum_{i=1}^{n} x_i^2}$$

СКО коэффициента а уравнения прямой:

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^n (y_i - a \cdot x_i)^2}{(N-1)\sum_{i=1}^n x_i^2}}$$

Мгновенная скорость:

$$v_i = \frac{2r}{t_i}$$

Кинетическая энегрия маятника (вращательного и поступательного движения):

$$E_{\kappa} = \frac{mv_i^2}{2}(\frac{I_c}{mr^2} + 1)$$

Потенциальная энергия маятника:

$$E_{\Pi OT} = mgh$$

Полная энергия маятника считается как сумма потенциальной и кинетической энергий.

Погрешность измерений через коэффицент Стьюденса, где ta_дов, N - коэффицент Стьюдентса для доверительной вероятности a_дов и количества измерений N:

$$\Delta x = t_{a_{\partial oe,N}} \sqrt{\frac{\sum\limits_{i=1}^{N} (x - \bar{x})^2}{N(N-1)}}$$

Параметры стенда

No	Наименование	Значение	Погрешность
1	Масса колеса т	0.47 кг	0.001 кг
2	Радиус оси колеса r	$2.5 \cdot 10^{-3} \text{ M}$	$0.1 \cdot 10^{-3} \text{ M}$
3	Радиус маховика R	0.65 мм	

7. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1							
h0 = 10 cm	h_i						
	20 см	30 см	40 см	50 см	60 см	70 см	80 см
t1, мс	2,614	3,717	4,558	5,27	5,889	6,461	6,98
t2, мc	2,614	3,712	4,557	5,271	5,894	6,459	6,974
t3, мc	2,612	3,717	4,56	5,269	5,897	6,459	6,984
t4, мс	2,614	3.719	4,556	5,265	5,891	6,46	6,976
t5, MC	2,615	3,717	4,561	5,265	5,899	6,458	6,982
Δh _i , м	0,1	0,2	0,3	0,4	0,5	0,6	0,7
t _{cp} , MC	2,6138	3,71575	4,5584	5,268	5,894	6,4594	6,9792
1/2 g t _{cp i} , м	33,54488	67,79138	102,0249	136,2615	170,5696	204,8641	239,1623

Таблица 2							
h0 = cм	h _i						
	20 см	30 см	40 см	50 см	60 см	70 см	80 см
t1, мс	5,3	3,72	3,06	2,65	2,36	2,15	1,99
t2, мс	8,06	4,42	3,37	2,84	2,49	2,24	2,09
t3, мс	8,12	4,44	3,39	2,86	2,5	2,28	2,08
V1, м/c	0,000943	0,001344	0,001634	0,001887	0,002119	0,002326	0,002513
V2, м/c	0,00062	0,001131	0,001484	0,001761	0,002008	0,002232	0,002392
V3, м/c	0,000616	0,001126	0,001475	0,001748	0,002	0,002193	0,002404

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

N	1	2	3	4	5	6	7
YiXi	3,354487666	13,5582757	30,60748255	54,50458234	85,28482438	122,9184573	167,4136326
X ² i	0,01	0,04	0,09	0,16	0,25	0,36	0,49
а				•	•	•	341,1726732
(Yi - aXi) ²	0,327631068	0,196387377	0,106837533	0,043103341	0,000278484	0,02575753	0,116595628
σ_{a}							0,311790329
Δ_{a}							0,623580659
δ_{a}							0,182775676
I _c							0,000999257
ΔI _c							0,000799691
δI_c							0,800284983
$I_{\tau cop}$			_				0,00198575

	20 см	30 см	40 см	50 см	60 см	70 см	80 см
E _{кин 1} , мс	7,1356E-05	0,000144843	0,000214062	0,000285424	0,00035988	0,000433616	0,000506146
E _{кин 2} , мс	3,0854E-05	0,000102598	0,000176491	0,000248511	0,000323283	0,000399472	0,00045887
E _{кин 3} , мс	3,03998E-05	0,000101675	0,000174415	0,000245047	0,000320702	0,000385578	0,000463293
Е _{пот} , мс	4,15386	3,69232	3,23078	2,76924	2,3077	1,84616	1,38462
E _{полн 1} , мс	4,153931356	3,692464843	3,230994062	2,769525424	2,30805988	1,846593616	1,385126146
E _{полн 2} , мс	4,153890854	3,692422598	3,230956491	2,769488511	2,308023283	1,846559472	1,38507887
E _{полн 3} , мс	4,1538904	3,692421675	3,230954415	2,769485047	2,308020702	1,846545578	1,385083293
Н	0,9	0,8	0,7	0,6	0,5	0,4	0,3

		Погрешн
Конста	ОСТЬ	
g =	9,82	
m =	0,47	0,01
r =	0,0025	0,001
R =	0,065	

Графики зависимости кинетической и полной энергии маятника от высоты:

11. Окончательные результаты.

 $I_{\rm C} = (0.001 \pm 0.0008) \text{ K}^*\text{M}^2$

 $I_{\text{теор}} = 0,00198575 \text{ кг*м^2}$

12. Выводы и анализ результатов работы.

Теоретическое значение в два раза больше экспериментального, это скорее всего происходит, потому что, в считая $I_{\rm Teop}$, мы пренебрегаем тем, что кроме маховика в мятник входит ещё и палочка, на которую наматывается нить. Также в системе есть трение. Целью эксперимента было проверить выполнения закона сохранения энергии маятника с учетом потерь на отражение и трение. Полная энергия маятника не может сохранятся полностью, т.к. в верёвка, на которую подвешен, маятник не является нерастяжимой и невесомой, что будет приводить к небольшим потерям энергии, особенно в нижней точке.

16. Замечания преподавателя (*исправления*, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание:

- 1. Пункты 1-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
- 3. Для построения графиков используют только миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.