Lemma 2.3.6 (Contact parallel transport). Let $\mathbb{R}^2 \times M^{2n-1}$ be a contact manifold with contact form $\lambda + \beta$, where M^{2n-1} is a closed contact manifold with contact form β and λ is a Liouville form on \mathbb{R}^2 , and let ϕ_t , $t \in \mathbb{R}$, be the flow on M corresponding to the Reeb vector field for β . If $\Lambda \subset M$ is a Legendrian submanifold and $\gamma: [0,1] \to \mathbb{R}^2$ is a path, then there exists a Legendrian embedding

$$\mathscr{S}: [0,1] \times \Lambda \to \mathbb{R}^2 \times M, \quad (s,x) \mapsto (\gamma(s), \phi_{-\int_0^s \gamma^* \lambda}(x)).$$

 $\begin{array}{lll}
& \text{Legendrian means } \beta_{11} = 0. \\
& \text{We check if } \beta_{1s} \text{ Legendrian.} \\
& T(\theta) = (T'(s), -\lambda(T'(s))R) \in \text{Mer}(P+\lambda) \\
& T(v) = (0, T(v)) \\
& \text{Claim } f \text{ Veker}, \text{ then } T(v) \in \text{Mer}s. \\
& \text{Why } x \text{ d} f \text{ pt} = f \text{ t}(x, p) = 0 \\
& \text{dt} f \text{ t} = f \text{ t} \\
& \text{def} f = f \text{ then } f \text{ then }$