20100903進度報告 使用HTK訓練GMM 與 SPLICE實驗

Reporter: 吳柏鋒

Professor:陳嘉平

SPLICE架構圖

雙聲源為基礎之分段線性補償流程圖

補償公式

$$\hat{x} = \sum_{k} p(k|y)(y + r_k)$$

î:補償後參數

k:為高斯元件個數

y:noisy參數

補償公式

$$r_{k} = \frac{\sum_{n} p(k|y_{n})(x_{n} - y_{n})}{\sum_{n} p(k|y_{n})}$$

$$= \frac{\sum_{n} p(k|y_{n})x_{n} - \sum_{n} p(k|y_{n})y_{n}}{\sum_{n} p(k|y_{n})}$$

$$= \frac{\sum_{n} p(k|y_{n})x_{n}}{\sum_{n} p(k|y_{n})} - \frac{\sum_{n} p(k|y_{n})y_{n}}{\sum_{n} p(k|y_{n})}$$

$$\stackrel{\cdot}{=} \frac{\sum_{n} p(k|x_{n})x_{n}}{\sum_{n} p(k|x_{n})} - \frac{\sum_{n} p(k|y_{n})y_{n}}{\sum_{n} p(k|y_{n})}$$

$$= \mu_{x,k} - \mu_{y,k}$$

事後機率

$$p(k|y) = \frac{p(k,y)}{p(y)}$$

$$= \frac{p(y|k)p(k)}{\sum_{k} p(y|k)p(k)}$$

$$= \frac{\alpha_k \mathcal{N}(y; \mu, \Sigma)}{\sum_{k} \alpha_i \mathcal{N}(y; \mu, \Sigma)}$$

HTK擷取feature

• 重新擷取的feature有14維,第13維為 C_0 ,第14維為 \log energy

透過修改FrontEnd,在此使用C₀取代log energy

HTK擷取feature

• 並改用power spectral density取代原先 預設的maginitude spectrum

• 主要針對前13維的向量來做SPLICE補償之 運算

實驗流程

• 使用clean和noisy資料,來訓練 GMM,並根據求得mean值獲得rk

 再使用noisy資料來訓練GMM,並將獲 得的mean、cov和weight,代入SPLICE補 償公式中作參數補償

• 主要對multiTR與test_seta作SPLICE補償

實驗數據

TEST_seta	Subway	Subway (Paper result)
Clean	90.21	98.83
20db	97.91	98.53
15db	96.99	97.82
10db	95.55	96.13
5db	84.25	92.82
0db	65.67	79.89