Extrema liés et billard convexe

Clarence Kineider

Leçons: 159, 219

Référence(s) : \emptyset

Théorème: Soit U un ouvert de \mathbf{R}^d et $f, g_1, \dots, g_r : U \to \mathbf{R}$ des applications \mathcal{C}^1 .

Soit $\Gamma = \{x \in U | \forall i \in [1, r], g_i(x) = 0\}$. Si $f|_{\Gamma}$ a un extremum local en $a \in \Gamma$ et si $\{dg_1(a), \ldots, dg_r(a)\}$ est libre, alors il existe un unique r-uplet $(\lambda_1, \ldots, \lambda_r) \in \mathbf{R}^d$ tel que $df(a) = \lambda_1 dg_1(a) + \cdots + \lambda_r dg_r(a)$. Les λ_i sont appelés multiplicateurs de Lagrange.

Démonstration : L'unicité est immédiate par liberté des $dg_i(a)$.

Existence : Γ est une sous-variété de \mathbf{R}^d au voisinage de a car $g=(g_1,\ldots,g_r)$ est un \mathcal{C}^1 -difféomorphisme au voisinage de a (par le théorème d'inversion locale). Le plan tangent à Γ en a est $T_a\Gamma = \bigcap_{i=1}^r \ker \mathrm{d} g_i(a)$. Soit $v \in T_a\Gamma$. Il existe $\gamma:[0,1] \to \Gamma$ un chemin tel que $\gamma(0)=a$ et $\gamma'(0)=v$. Ainsi, $f\circ\gamma$ admet un extremum local en 0. Donc on a :

$$0 = (f \circ \gamma)'(0) = df(\gamma(0)) \cdot \gamma'(0) = df(a) \cdot v$$

Ainsi $T_a\Gamma = \bigcap_{i=1}^r \ker dg_i(a) \subset \ker df(a)$. On réécrit cette expression en terme d'orthogonal (au sens de la dualité) : $\det \{dg_1(a), \ldots, dg_r(a)\}^{\perp} \subset \operatorname{Vect}(df(a))^{\perp}$.

En passant cette expression au dual on obtient $\operatorname{Vect}(\operatorname{d} f(a)) \subset \operatorname{Vect}\{\operatorname{d} g_1(a),\ldots,\operatorname{d} g_r(a)\}$ ce qui donne le résultat. \square

Corollaire : Soit Ω un ouvert convexe de \mathbf{R}^2 tel que $\partial\Omega=\left\{x\in\mathbf{R}^2|\ g(x)=0\right\}$ avec $g:\mathbf{R}^2\to\mathbf{R}$ une submersion de classe \mathcal{C}^1 (d $g(a)\neq0$ pour tout $a\in\mathbf{R}^2$) et $\partial\Omega$ est compact. Alors il existe $A,B,C\in\partial\Omega$ tels que la droite normale à $\partial\Omega$ en A soit la bissectrice de \widehat{BAC} , idem pour B et C.

Remarques:

- Formulé autrement, $\partial\Omega$ est une sous-variété compacte de classe \mathcal{C}^1 de \mathbf{R}^2 définie par une submersion g.
- Ce résultat est un résultat de billard, qui dit que dans un billard convexe régulier il existe une trajectoire 3-périodique qui respecte les lois de réflexions de Descartes (faire un dessin au tableau!).
- Le résultat est vrai pour une trajectoire n-périodique, la preuve est la même, je présente le cas n=3 pour alléger les notations.

FIGURE 1 – Un billard convexe et une trajectoire 5-périodique.

Démonstration : On va trouver la trajectoire 3-périodique en trouvant un triangle de périmètre maximal dans Ω . On montrera alors que ce triangle vérifie les conditions aux angles. On pose

$$P: \frac{(\mathbf{R}^2)^3 \to \mathbf{R}}{(A,B,C) \mapsto AB + BC + AC}.$$

L'application P est continue sur $(\partial\Omega)^3$ qui est compact, donc elle admet un maximum $(A_0, B_0, C_0) \in (\partial\Omega)^3$. De plus P est de classe C^1 sur l'ouvert $V \subset (\mathbf{R}^2)^3$ des triplets de points deux à deux distincts. Le maximum (A_0, B_0, C_0) est dans V puisque si $A_0 = B_0$, on aurait par inégalité triangulaire $\forall B_1 \neq A_0, P(A_0, B_0, C_0) < P(A_0, B_1, C_0)$ ce qui contredit la maximalité de (A_0, B_0, C_0) . On pose alors

$$\phi: \begin{array}{ccc} \mathbf{R}^2 \backslash \left\{ B_0, C_0 \right\} & \to & \mathbf{R} \\ A & \mapsto & P(A, B_0, C_0) \end{array}.$$

Puisque ϕ est \mathcal{C}^1 sur son domaine de définition et a un maximum local en $A_0 \in \partial\Omega$, on peut appliquer le théorème des extrema liés : il existe $\lambda \in \mathbf{R}$ tel que $\nabla \phi(A_0) = \lambda \nabla g(A_0)$.

Enfin, $\nabla \phi(A_0) = \frac{\overrightarrow{B_0 A_0}}{B_0 A_0} + \frac{\overrightarrow{C_0 A_0}}{C_0 A_0}$ (voir remarque) est un vecteur directeur de la bissectrice à $\widehat{B_0 A_0 C_0}$. Puisque $\nabla g(A_0)$ est un vecteur normal à $\partial \Omega$, on a le résultat en A_0 . De la même manière, la condition aux angles $\widehat{B_0 C_0 A_0}$ et $\widehat{A_0 B_0 C_0}$ est vérifiée également.

Remarque:

Pour le calcul de $\nabla \phi$, en notant $A=(x,y), B_0=(x_B,y_B)$ et $C_0=(x_C,y_C)$:

$$\phi(A) = \sqrt{(x - x_B)^2 + (y - y_B)^2} + \sqrt{(x - x_C)^2 + (y - y_C)^2} + \sqrt{(x_B - x_C)^2 + (y_B - y_C)^2}$$

On a donc :

$$\nabla \phi(A) = \left(\frac{\frac{x - x_B}{\sqrt{(x - x_B)^2 + (y - y_B)^2}}}{\frac{y - y_B}{\sqrt{(x - x_B)^2 + (y - y_B)^2}}}\right) + \left(\frac{\frac{x - x_C}{\sqrt{(x - x_C)^2 + (y - y_C)^2}}}{\frac{y - y_C}{\sqrt{(x - x_C)^2 + (y - y_C)^2}}}\right) = \frac{\overrightarrow{B_0 A}}{B_0 A} + \frac{\overrightarrow{C_0 A}}{C_0 A}$$