Mouhieddine Sabir

mouhieddine.sabir@studenti.unipd.it www.mouhieddine.dev

Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Settembre 2024

Esplorazione delle Soluzioni al TSP: Algoritmi Esatti e Red-Black ACS

Sommario

- 1 Introduzione
- 2 Algoritmi Euristici e Metaeuristici
 - 3 Algoritmi Metaeuristici
 - 4 Ant Colony System (ACS)
 - 5 Red-Black Ant Colony System (RB-ACS)
 - 6 Risultati Sperimentali
 - 7 Conclusioni

Introduzione al TSP e Formulazione Matematica

Definizione del Problema del Commesso Viaggiatore (TSP)

- > Trovare il percorso più breve che visiti ogni città una volta e torni all'inizio
- > Applicazioni: logistica, ingegneria, genomica, astronomia

Formulazione Matematica

- Modello: minimizzare $\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} c_{ij} x_{ij}$ su grafo G = (V, E)
- Vincoli: ogni città visitata una sola volta
- > Varianti: STSP, ATSP, TSPTW

Algoritmi Esatti

- Brute Force: O(n!), per problemi piccoli
- ightharpoonup Bellman-Held-Karp: $O(n^2 \cdot 2^n)$, programmazione dinamica
- Concorde TSP Solver: branch-and-cut, per istanze grandi

Algoritmi Euristici

mouhieddine.sabir@studenti.unipd.it

Nearest Neighbor (NNS)

- Seleziona la città più vicina non ancora visitata.
- > Soluzione veloce, ma non ottimale.

2-opt e 3-opt

- > Tecniche di ottimizzazione locale: scambiano segmenti del tour per ridurre la lunghezza.
- > 2-opt: scambio di due lati.
- > 3-opt: scambio di tre lati.

	Istanza	algorithm	Tempo (ms)	Lunghezza Tour	Lunghezza ottima	$_{\mathrm{Gap}}$
0	berlin52	NN	14	8980.92	7542.00	19.08
1	berlin52	NN2Opt	124	8060.65	7542.00	6.88
2	d198	NN	183	18620.07	15780.00	18.00
3	d198	NN2Opt	4443	16165.31	15780.00	2.44
4	eil76	NN	17	711.99	538.00	32.34
5	eil76	NN2Opt	313	599.05	538.00	11.35
6	fl1577	NN	9547	27940.91	22249.00	25.58
7	fl1577	NN2Opt	200151	24214.30	22249.00	8.83
8	lin 105	NN	43	20362.76	14379.00	41.61
9	lin 105	NN2Opt	2959	16199.70	14379.00	12.66
10	lin318	NN	466	54033.58	42029.00	28.56
11	lin318	NN2Opt	9562	46408.41	42029.00	10.42
12	rl5915	NN	236473	707498.63	565530.00	25.10
13	rl5915	NN2Opt	6327036	620822.08	565530.00	9.78
14	u574	NN	1295	46881.87	36905.00	27.03
15	u574	NN2Opt	26923	39896.00	36905.00	8.10

Simulated Annealing (SA)

nouhieddine.sabir@studenti.unipd.it

Principio di Base

- Ispirato al processo fisico della ricottura dei metalli, dove una sostanza viene riscaldata e poi raffreddata lentamente per raggiungere uno stato a bassa energia.
- Simulated Annealing (SA) applica questo concetto all'ottimizzazione, cercando di evitare ottimi locali accettando temporaneamente soluzioni peggiori con una certa probabilità.

Funzionamento

- > Si parte con una soluzione iniziale e una temperatura iniziale elevata.
- Viene esplorato il vicinato della soluzione corrente, generando una nuova soluzione candidata.
- > Se la soluzione candidata è migliore, viene accettata. Se è peggiore, può essere accettata con una probabilità che decresce con la temperatura.
- > La temperatura viene gradualmente ridotta durante il processo (cooling schedule).

	Istanza	algorithm	Tempo (ms)	Lunghezza Tour	Lunghezza ottima	$_{ m Gap}$
0	berlin52	SA	28982	7544.37	7542.00	0.03
1	berlin52	SA2Opt	49481	7544.37	7542.00	0.03
2	d198	SA2Opt	93813	16118.48	15780.00	2.14
3	d198	SA	102362	16318.76	15780.00	3.41
4	eil76	SA	39587	572.81	538.00	6.47
5	eil76	SA2Opt	45721	569.29	538.00	5.82
6	fl1577	SA	1514830	27584.16	22249.00	23.98
7	fl1577	SA2Opt	2391057	23489.49	22249.00	5.58
8	lin 105	SA	52928	14993.92	14379.00	4.28
9	lin 105	SA2Opt	54366	14882.69	14379.00	3.50
10	lin318	SA2Opt	392433	45444.25	42029.00	8.13
11	lin318	SA	506369	47651.44	42029.00	13.38
12	rl5915	SA2Opt	18690779	615257.00	565530.00	8.79
13	rl5915	SA	22563370	680777.61	565530.00	20.38
14	u574	SA2Opt	369840	39443.68	36905.00	6.88
15	u574	SA	398181	43936.09	36905.00	19.05

Algoritmi Genetici (GA)

nouhieddine.sabir@studenti.unipd.it

Principio di Base

- Ispirato dalla teoria dell'evoluzione naturale di Darwin. Le soluzioni del problema sono trattate come individui in una popolazione che evolve nel tempo.
- > Utilizza concetti di selezione, crossover (incrocio) e mutazione per generare nuove soluzioni.

Funzionamento

- Si parte con una popolazione iniziale di soluzioni (cromosomi), ciascuna delle quali rappresenta una possibile soluzione al problema.
- Le soluzioni vengono valutate secondo una funzione di fitness, che misura la qualità della soluzione.
- Le migliori soluzioni vengono selezionate per generare nuove soluzioni attraverso crossover, combinando le caratteristiche di due "genitori" per creare un "figlio".
- Viene introdotta la mutazione per mantenere la diversità nella popolazione, evitando di convergere troppo presto su un ottimo locale.

	Istanza	algorithm	Tempo (ms)	Lunghezza Tour	Lunghezza ottima	Gap
0	berlin52	GA2Opt	26104	7918.09	7542.00	4.99
1	berlin52	GA	29932	11009.32	7542.00	45.97
2	d198	GA2Opt	108498	16548.42	15780.00	4.87
3	d198	GA	137106	66868.76	15780.00	323.76
4	eil76	GA2Opt	44547	570.63	538.00	6.06
5	eil76	GA	45556	977.18	538.00	81.63
6	fl1577	GA	2264528	1116417.45	22249.00	4917.83
7	fl1577	GA2Opt	4033113	24024.81	22249.00	7.98
8	lin 105	GA2Opt	109871	14573.34	14379.00	1.35
9	lin105	GA	164073	44653.50	14379.00	210.55
10	lin318	GA2Opt	320190	45165.59	42029.00	7.46
11	lin318	GA	429314	363904.18	42029.00	765.84
12	rl5915	GA	20712540	38904633.04	565530.00	6779.32
13	rl5915	GA2Opt	33367821	648205.16	565530.00	14.62
14	u574	GA	471427	457563.15	36905.00	1139.84
15	u574	GA2Opt	1260895	40516.22	36905.00	9.79

Ant Colony System (ACS)

Principio di Base

- Ispirato al comportamento delle colonie di formiche nel cercare il cibo. Le formiche depositano una sostanza chimica (feromone) lungo il percorso mentre cercano il cibo, rafforzando i percorsi più brevi.
- Nel contesto del TSP, le formiche artificiali esplorano il grafo delle città e aggiornano i percorsi (archi) in base alla qualità della soluzione trovata.

Funzionamento

- › Ogni formica inizia da una città casuale e costruisce iterativamente un tour visitando città non ancora visitate.
- La probabilità che una formica scelga una determinata città è basata su due fattori: la quantità di feromone su quell'arco e l'inverso della distanza (euristica).
- Dopo che tutte le formiche hanno completato il loro tour, si aggiorna il feromone sugli archi. I percorsi migliori vengono rinforzati con più feromone.
- Viene utilizzato un meccanismo di evaporazione per evitare che i feromoni si accumulino troppo e bloccano l'esplorazione di nuove soluzioni.
- Aggiornamento locale: Durante la costruzione del tour, una formica aggiorna localmente il livello di feromone dell'arco che attraversa.
- Aggiornamento globale: Solo la formica con il miglior tour globale aggiorna il livello di feromone sull'intero percorso.

	Istanza	algorithm	Tempo (ms)	Lunghezza Tour	Lunghezza ottima	$_{\mathrm{Gap}}$
0	berlin52	ACS	18411	7606.66	7542.00	0.86
1	berlin52	ACS2Opt	20289	7598.44	7542.00	0.75
2	d198	ACS	94445	16584.44	15780.00	5.10
3	d198	ACS2Opt	101484	16079.65	15780.00	1.90
4	eil76	ACS2Opt	27703	558.76	538.00	3.86
5	eil76	ACS	33136	554.04	538.00	2.98
6	fl1577	ACS	2880286	25939.85	22249.00	16.59
7	fl1577	ACS2Opt	3852624	22914.07	22249.00	2.99
8	lin 105	ACS2Opt	80683	14605.88	14379.00	1.58
9	lin 105	ACS	123877	14981.78	14379.00	4.19
10	lin318	ACS2Opt	202670	43556.33	42029.00	3.63
11	lin318	ACS	338493	46646.52	42029.00	10.99
12	rl5915	ACS2Opt	34991642	612104.64	565530.00	8.24

Red-Black Ant Colony System (RB-ACS)

Motivazioni e Introduzione

- Variante migliorata dell'Ant Colony System (ACS) sviluppata per migliorare l'efficienza e la precisione.
 - Introduce due gruppi di formiche (Rosse e Nere), ognuno dei quali lavora in parallelo su percorsi separati.

Funzionamento

- Inizializzazione: Le formiche di entrambi i gruppi iniziano con una distribuzione uniforme dei feromoni.
 - > Esecuzione in parallelo: Le formiche rosse e nere operano indipendentemente, ma
 - aggiornano i feromoni globali alla fine di ogni iterazione.

 > Aggiornamento dei Feromoni: I percorsi globalmente migliori vengono potenziati utilizzando il contributo combinato di entrambi i gruppi.

Vantaggi

Migliora l'esplorazione dello spazio delle soluzioni grazie alla diversificazione tra i gruppi.

nouhieddine.sabir@studenti.unipd.it

Mantiene un bilanciamento tra esplorazione e sfruttamento delle soluzioni ottimali.

	Istanza	algorithm	Tempo (ms)	Lunghezza Tour	Lunghezza ottima	$_{ m Gap}$
0	berlin52	RBACS	34002	7681.45	7542.00	1.85
1	berlin52	RBACS2Opt	34159	7544.37	7542.00	0.03
2	d198	RBACS	136998	17097.74	15780.00	8.35
3	d198	RBACS2Opt	283417	16076.46	15780.00	1.88
4	eil76	RBACS	40567	562.41	538.00	4.54
5	eil76	RBACS2Opt	40672	557.14	538.00	3.56
6	fl1577	RBACS	4210934	26788.92	22249.00	20.41
7	fl1577	RBACS2Opt	6887456	23236.46	22249.00	4.44
8	lin 105	RBACS	77720	14785.44	14379.00	2.83
9	lin 105	RBACS2Opt	262217	14489.08	14379.00	0.77
10	lin318	RBACS	469358	46823.70	42029.00	11.41
11	lin318	RBACS2Opt	603140	43421.71	42029.00	3.31
12	rl5915	RBACS	21861319	716108.43	565530.00	26.63
13	rl5915	RBACS2Opt	28403435	608329.94	565530.00	7.57
14	u574	RBACS	826684	43702.95	36905.00	18.42
15	u574	RBACS2Opt	899785	39219.59	36905.00	6.27

Confronto degli Approcci al TSP

Esatti

- + Soluzione ottimale
 - Alta complessità

Euristici

- + Veloci
- Non ottimali

Simulated Annealing

- + Evita ottimi locali
- Convergenza lenta

Genetici

- + Adattabili
- Costo computazionale

Ant Colony System

- + Efficace su problemi complessi
- Molti parametri

Red-Black ACS

- + Migliore esplorazione dello spazio
- Maggiore complessità computazionale

Heatmap

- 35

- 30

- 25

- 20

- 15

- 10

C	(07) d:	mensione del	 -1

			Gap medic	(%) per ai	mensione de	problema e	algoritmo		
- 21	2.09	1.08	3.49		3.50	4.60	1.15	1.94	2.67
23 -	0.86	0.75	4.99	19.08	6.88	1.85	0.03	0.03	0.03
2 -	3.00	0.97	5.02	19.34	7.73	3.66	1.14	2.02	5.16
92 -	1.99	2.47	5.23	37.12	9.38	5.60	2.92	4.57	3.91
105	4.19	1.58	1.35	41.61	12.66	2.83	0.77	4.28	3.50
124	2.93	0.96	4.11	17.40	6.31	3.62	1.10	2.79	1.89
198	5.10	1.90	4.87	18.00	2.44	8.35	1.88	3.41	2.14
280	9.78	4.43	12.19		10.12	13.57	3.97	12.99	7.80
557 654 575 574 318	10.99	3.63	7.46		10.42	11.41	3.31	13.38	8.13
prop 574 -	15.19	5.82	9.79		8.10	18.42	6.27	19.05	6.88
575	11.58	6.43	10.80		7.17	17.06	6.00	17.00	6.00
654	13.31	2.02	5.07		4.37	12.65	1.88	17.72	1.68
657	13.75	6.13	10.19		7.46	18.73	5.49		5.96
783	13.96	5.83	11.83		8.52	19.40	6.58		7.32
1002	15.03	6.40	11.44		7.24	19.67	7.09	18.67	5.03
1173	18.77	7.32	13.80		8.65		7.79		8.63
1577	16.59	2.99	7.98		8.83	20.41	4.44		5.58
5915231921031655157711731002	18.02	7.38	14.86		9.04		7.99	18.59	8.60
2103	14.90	4.84	18.19	8.72	3.02		6.47	8.02	2.72
2319	15.82	4.62	8.04	19.01	4.80	19.80	5.06	15.49	4.44
5915.		8.24	14.62		9.78		7.57	20.38	8.79
	ACS	ACS2Opt	GA2Opt	NN	NN2Opt Algoritmo	RBACS	RBACS2Opt	SA	SA2Opt

Confronto degli Algoritmi

Conclusioni

nouhieddine.sabir@studenti.unipd.it

- > Il Red-Black Ant Colony System (RB-ACS) ha dimostrato di essere un approccio promettente per la risoluzione del TSP e altri problemi di ottimizzazione combinatoria.
- Sebbene più complesso computazionalmente rispetto ad ACS, l'uso di due gruppi di formiche (Rosse e Nere) con parametri e strategie di aggiornamento differenziati consente una migliore esplorazione dello spazio delle soluzioni.
- Questo approccio ha portato a miglioramenti significativi nelle prestazioni, in particolare su istanze di grandi dimensioni.
- In alcuni casi, il RB-ACS ha superato gli approcci tradizionali, dimostrando il potenziale del suo design per affrontare le sfide computazionali dei problemi NP-hard.
- Studi futuri potrebbero estendere il RB-ACS ad altre varianti del TSP e ad altri problemi di ottimizzazione per verificare ulteriormente la sua efficacia.