Education

- 2011 Ph.D. Experimental Particle Physics, University of Michigan, Ann Arbor.
- 2003 M.S. Mathematics, University of Michigan, Ann Arbor.
- 1999 **B.S. Computer Engineering**, *University of Washington*, Seattle.
- 1999 **B.S. Mathematical Sciences**, *University of Washington*, Seattle.

Proficiencies & technical interests

Almost every day

- Python, C++
- o git, svn, etc.
- numpy+scipy+matplotlib
- iPython notebook
- Standard linux tools, VMs
- PowerPoint, wiki docs, etc.

Occasionally

- SQL variants
- Statistical modeling
- Machine learning (decision trees)
 Lisp dialects
- AWS, cluster/Grid computing
- Shell scripting

Dabble in

- Javascript, Perl
- Mathematica and Matlab
- (Social) network analysis
- Coding/compression theory

Experience

- 2014–present **Fellow at Insight Data Science**, Mountain View, CA.
 - Developed web app ELI5orPhD which recommends alternative news articles at a different sophistication levels.
 - Scraped Google News, news sources with scrapy, BeatifulSoup, and goose for article content.
 - Using nltk to tokenize articles, cluster, and ranking by sophisitication measures such as reading level.

2011–2013 Post Doctoral Research Fellow, ATLAS Experiment, Geneva, Switzerland.

Discovered the Higgs boson, part of the largest scientific *collaboration* in the world.

- Analyzed and quantified discrepencies from expectation in data using Monte Carlo simulation and side-band data
- Wrote readable, modular, and accurate code to run in batch (Condor) and on the world-wide Grid to analyze terabytes
- o Developed framework for efficiently specifying, building, and sharing plots and another for defining unit tests of numerical quantities in (LATEX) documents
- Controlled experiment-wide data acquisition, involving reacting quickly and communicating problems efficiently.
- Mentored graduate students and was the hilightprimary editor for papers and internal documents.

2005-2010 Graduate Student Research Assistant, ATLAS & DØ Experiments, Michigan & Illinois.

- Thesis topic: a search for new physics via the $Z(\to \ell\ell)\gamma+$ missing E_T final state.
 - A complete analysis starting with theory and eventually constraining that theory with data.
 - Applied machine learning, specificially boosted decision trees, for identifying signal cleanly and efficiently.
 - Used statistics to quantify constraints on theory imposed by the observation.
- o Expert role managing Monte Carlo simulation jobs: responding to my colleagues' requests and translating them into tested job specifications, submitting the jobs, and monitoring the results.
- o On-line control, monitoring, and problem solving for the data taking of a large experiment
- Primary contributor to large, public documents quantifying experimental sensitivity to new physics.
- Implemented tools for calculating confidence regions via marginalized likelihoods.
- o Collaborated with engineers, technicians, and many other physicists on hardware and analysis projects.

2004–2005 **Research Assistant**, ATLAS Experiment, Univ. of Michigan, Geneva, Switzerland.

- o Validated muon reconstruction software with systematic comparisons, uncovering bugs and reporting on them.
- o leading a team of five students to complete assembly and testing of large detector components.