Task Scheduling in Wireless Sensor Networks

Îndrumători: prof. dr. Ing. Nicolae Țăpuș asist. drd. Ing Dan Ștefan Tudose

Student: Andrei Voinescu

Cuprins

- Rețeli de senzori fără fir
- Cercetări similare
- Platformă
- Modelarea problemei
 - Metrici
 - Algoritmi
- Planificare
 - Planificare statică
 - Aproximare a planificării
 - Planificare dinamică
- Demonstrație

Rețele de senzori fără fir

- Formate din noduri cu:
 - Raza de comunicare mica
 - Putere de procesare redusa
 - Consum redus
- Gateway

Aplicații rețele de senzori fără fir

- Industriale
- Militare
- Automatizarea locuințelor
- Agricultură inteligentă / alarmă dezastre
- Monitorizare Sănătate

EcoMapS

- Aplicație împărțită în task-uri
 - Graf direcționat aciclic de dependențe
- Model simplificat al comunicării în rețea
 - Nodurile grupate în zone cu singur pas
- Constrângeri de timp şi energie

Platforma Hardware

Platforma Software: Contiki

- Specializat pe rețele senzoriale
- Sistem de procese multi-tasking colaborativ
 - Corutine in C după Simon Tatham
 - Duff's Device
- Stiva de comunicație uIPv6 (6lowPan)
- Abstractizare comunicație (protosockets)
- Nivel de abstractizare hardware

Procese în Contiki

```
PROCESS THREAD (example psock server process, ev, data)
  PROCESS BEGIN();
  tcp listen(HTONS(1010));
  while (1)
    PROCESS WAIT EVENT UNTIL (ev == tcpip event);
    if(uip connected())
      PSOCK INIT(&ps, buffer, sizeof(buffer));
      while(!(uip_aborted() || uip_closed() || uip_timedout()))
        PROCESS WAIT EVENT UNTIL (ev == tcpip event);
        handle connection(&ps);
  PROCESS END();
```

Consumul de energie în WSN

- Componenta dominantă este comunicația radio
 - Reducerea razei de comunicare
 - Reducerea cantității de date transmise
 - Reducerea timpului cât este activ modulul radio
- 1 instrucțiune executată de 3 ori mai puțin ca un bit transmis
- Scopul planificării este maximizarea vieţii reţelei
 - Minimizarea comunicaţiilor
 - Încărcarea nodurilor cu cea mai multă baterie

Metrici

- Folosite în decizia de planificare:
 - Cantitatea de energie rămasă
 - Compatibilitatea sarcinii cu nodul
 - Încărcarea procesorului
- Folosite pentru evaluarea vietii reţelei
 - Măsurarea tensiunii sursei și curentului din sursă

Modelarea problemei

- Scopul este maximizarea vieţii reţelei
- Aplicație:
 - Este formată din task-uri
 - Task-urile sunt interdependente
 - Dependențele au un cost asociat comunicării

Modelare problemei (II)

 Problema este gasirea unei împărţiri pe noduri care minimizează comunicarea, ţinând cont şi de restul constrângerilor

Tăietura (s,t)

- Partiționare a vârfurilor cu suma costurilor muchiilor minimă și care desparte nodul sursă de nodul destinație
- Poate fi extinsă la mulțimi cu surse și destinații
- Problema echivalentă cu fluxul maxim

Min k-cut

- Se bazează pe tăieturi (s,t):
 - Se genereaza posibilitățile de mulțimi:
 - s cu k-1 elemente daca k este impar
 - s cu k-2 pentru k par
 - t cu k-1 elemente
 - Se face o tăietură (s,t) pentru fiecare
 - Mulțimea rezultată care conține s este finală
 - Mulțimea care conține t este tăiată în k-1 părți
- O(n^{k²})

Constrângeri

- Comunicație minimă între noduri
- Încărcare cu sarcini în funcție de baterie
- Compatibilitatea sarcinilor cu nodul
- Multiplicitatea sarcinilor în cadrul aplicației
 - Pe un singur nod
 - Pe toate nodurile compatibile
 - Pe câte noduri este necesar

Algoritm aproximare

- Arbori Gomory-Hu
- Se elimină cele mai mici k-1 muchii din arbore
- Se obţin cel puţin k componente

Variantă dinamică

Variantă Greedy

- Nu se modifică decât execuția sarcinii de adăugat/scos
- Se caută variantă care minimizeaza consumul adăugat rețelei

Recalculare:

 Se recalculează planificarea, eventual cu algoritmul aproximativ

Demonstrație

- 3 noduri:
 - 2 AVR Raven
 - 1 Sparrow Power
- 6 task-uri:
 - Măsurare temperatură
 - Măsurare curent
 - Detecție temperatură mare
 - Detecție curent mare
 - Alarmă scurt-circuit
 - Alarmă temperatură mare

Alocarea pe noduri

- Cost transfer amortizat
 - 100 pentru transmisiuni constante
 - 10 pentru transmisiuni rare
 - 2 pentru transmisiuni foarte rare
- Afinitate noduri
 - Măsurare curent doar pe Sparrow
 - Temperatura doar de pe Raven
 - Speaker doar pe Raven

Concluzii

- Graful de dependențe modelează bine comunicația între task-uri
- Greu de evaluat cu modulul radio activ tot timpul
- În conjuncție cu programarea comunicației în timp poate da rezultate bune