INTRODUCTORY STATISTICS

Tatiana Tyukina tt51@leicester.ac.uk

Topic 2 - Estimators 2.2 - Properties of Estimators Sufficiency and Consistency

- Topic 0: Introduction
- Topic 1: Descriptive Statistics
- Topic 2: Estimators: Point estimation, Interval estimation
 - 2.1 Point estimation,
 - 2.2 Properties of estimators,
 - 2.3 Interval estimation,
 - 2.4 Inference based on Normal Distribution
- Topic 3: Hypothesis Testing: Test for single population mean, test for two population mean
- o Topic 4: Bayesian Estimation
- Topic 5: Goodness of Fit: The χ^2 test.

Desired properties of point estimator

• unbiasedness,

Desired properties of point estimator

- unbiasedness,
- efficiency (minimal variance),

Desired properties of point estimator

- unbiasedness,
- efficiency (minimal variance),
- sufficiency,

Desired properties of point estimator

- unbiasedness,
- efficiency (minimal variance),
- sufficiency,
- consistency

RECAP: CONDITIONAL PROBABILITY

DEFINITION

Suppose that we learn that an event B has occurred and that we wish to compute the probability of another event A taking into account that we know that B has occurred. The new probability of A is called the **conditional probability** of the event A given that the event B has occurred and is denoted P(A|B). If P(B) > 0, we compute this probability as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

The conditional probability P(A|B) is not defined if P(B) = 0.

RECAP: CONDITIONAL PROBABILITY

DEFINITION

Suppose that we learn that an event B has occurred and that we wish to compute the probability of another event A taking into account that we know that B has occurred. The new probability of A is called the **conditional probability** of the event A given that the event B has occurred and is denoted P(A|B). If P(B) > 0, we compute this probability as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

The conditional probability P(A|B) is not defined if P(B) = 0.

THEOREM (MULTIPLICATION RULE FOR CONDITIONAL PROBABILITIES)

Let A and B be events.

If
$$P(B) > 0$$
, then

$$P(A \cap B) = P(B)P(A|B).$$

If
$$P(A) > 0$$
, then

$$P(A \cap B) = P(A)P(B|A).$$

DEFINITION

Let $X_1, ..., X_n$ be a random sample from a probability distribution with unknown parameter θ . Then, the statistic $U = u(X_1, ..., X_n)$ is said to be **sufficient** for θ if the conditional $pdf f_X(X_1, ..., X_n | U = u(x_1, x_2, ..., x_n))$ (or $pmf p_X(X_1, ..., X_n | U = u(x_1, x_2, ..., x_n))$) does not depend on θ for any value of $u(x_1, x_2, ..., x_n)$.

An estimator $\hat{\theta}$ that is a function of a sufficient statistic for θ is said to be a sufficient estimator of θ .

$$f_{X}(X_{1,\ldots,1}X_{n}|U=u)=\frac{f(X_{1,\ldots,1}X_{n},U)}{f_{u}(U=u)}$$

Let $X_1, ..., X_5$ be a random sample of size 5 drawn from the Bernoulli pmf:

 $p_X(x,p) = p^x(1-p)^{1-x}$, where x = 0, 1 and p is unknown parameter.

The maximum likelihood estimator for p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

(then the MLE for p is $\hat{p}_l = \frac{1}{5} \sum_{i=1}^5 x_i$)

Show that \hat{p} is a sufficient estimator for p.

Let $X_1, ..., X_5$ be a random sample of size 5 drawn from the Bernoulli pmf:

 $p_X(x,p) = p^x(1-p)^{1-x}$, where x = 0, 1 and p is unknown parameter.

The maximum likelihood estimator for p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

(then the MLE for p is $\hat{p}_l = \frac{1}{5} \sum_{i=1}^5 x_i$)

Show that \hat{p} is a sufficient estimator for p.

$$P(X_1 = x_1, ..., X_5 = x_5 | \hat{p} = \hat{p}_l) = \frac{P(X_1 = x_1, ..., X_5 = x_5 \cap \hat{p} = \hat{p}_l)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)}$$

Let $X_1, ..., X_5$ be a random sample of size 5 drawn from the Bernoulli pmf:

 $p_X(x,p) = p^x(1-p)^{1-x}$, where x = 0, 1 and p is unknown parameter. The maximum likelihood estimator for p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

(then the MLE for p is $\hat{p}_l = \frac{1}{5} \sum_{i=1}^5 x_i$)

Show that \hat{p} is a sufficient estimator for p.

$$P(X_1 = x_1, ..., X_5 = x_5 | \hat{p} = \hat{p}_l) = \frac{P(X_1 = x_1, ..., X_5 = x_5 \cap \hat{p} = \hat{p}_l)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)}$$

$$= \frac{P^{x_1}(1 - p)^{1 - x_1} ... P^{x_5}(1 - p)^{1 - x_5}}{P(\hat{p} = \hat{p}_l)} = \frac{P^{\sum_{i=1}^{5} x_i}(1 - p)^{5 - \sum_{i=1}^{5} x_i}}{P(\hat{p} = \hat{p}_l)} = \frac{P^{5\hat{p}_l}(1 - p)^{5 - 5\hat{p}_l}}{P(\hat{p} = \hat{p}_l)}$$

Let $X_1, ..., X_5$ be a random sample of size 5 drawn from the Bernoulli pmf:

 $p_X(x,p) = p^x(1-p)^{1-x}$, where x = 0, 1 and p is unknown parameter.

The maximum likelihood estimator for p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

(then the MLE for p is $\hat{p}_l = \frac{1}{5} \sum_{i=1}^5 x_i$)

Show that \hat{p} is a sufficient estimator for p.

$$P(X_1 = x_1, ..., X_5 = x_5 | \hat{p} = \hat{p}_l) = \frac{P(X_1 = x_1, ..., X_5 = x_5 \cap \hat{p} = \hat{p}_l)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)}$$

$$= \frac{P^{x_1}(1 - p)^{1 - x_1} ... P^{x_5}(1 - p)^{1 - x_5}}{P(\hat{p} = \hat{p}_l)} = \frac{P^{\sum_{i=1}^{5} x_i}(1 - p)^{5 - \sum_{i=1}^{5} x_i}}{P(\hat{p} = \hat{p}_l)} = \frac{P^{5\hat{p}_l}(1 - p)^{5 - 5\hat{p}_l}}{P(\hat{p} = \hat{p}_l)}$$

Let $X_1, ..., X_5$ be a random sample of size 5 drawn from the Bernoulli pmf: $p_X(x, p) = p^x (1 - p)^{1-x}$, where x = 0, 1 and p is unknown parameter.

The maximum likelihood estimator for p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$ (then the MLE for p is $\hat{p}_l = \frac{1}{5} \sum_{i=1}^{5} X_i$)

Show that \hat{p} is a sufficient estimator for p.

Show that p is a sufficient estimator for p.

$$P(X_1 = x_1, ..., X_5 = x_5 | \hat{p} = \hat{p}_l) = \frac{P(X_1 = x_1, ..., X_5 = x_5 \cap \hat{p} = \hat{p}_l)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)}$$

$$= \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)}$$

$$P(\hat{p} = \hat{p}_l) = P\left(\frac{1}{5}\sum_{i=1}^{5} X_i = \hat{p}_l\right) = P\left(\sum_{i=1}^{5} X_i = 5\hat{p}_l\right) = \begin{pmatrix} 5\\5\hat{p}_l \end{pmatrix} p^{5\hat{p}_l} (1-p)^{5-5\hat{p}_l}$$
Binomial (5, p)

PROPERTIES OF POINT ESTIMATORS: SUFFICIENCY

EXAMPLE

Let $X_1, ..., X_5$ be a random sample of size 5 drawn from the Bernoulli pmf:

 $p_X(x,p) = p^x(1-p)^{1-x}$, where x = 0, 1 and p is unknown parameter.

The maximum likelihood estimator for p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

(then the MLE for p is $\hat{p}_l = \frac{1}{5} \sum_{i=1}^{5} x_i$)

Show that \hat{p} is a sufficient estimator for p.

$$P(X_1 = x_1, ..., X_5 = x_5 | \hat{p} = \hat{p}_l) = \frac{P(X_1 = x_1, ..., X_5 = x_5 \cap \hat{p} = \hat{p}_l)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)}$$

$$= \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)} = \frac{P(X_1 = x_1, ..., X_5 = x_5)}{P(\hat{p} = \hat{p}_l)}$$

$$P(\hat{p} = \hat{p}_l) = P\left(\frac{1}{5}\sum_{i=1}^{5} X_i = \hat{p}_l\right) = P\left(\sum_{i=1}^{5} X_i = 5\hat{p}_l\right) = \begin{pmatrix} 5\\5\hat{p}_l \end{pmatrix} p^{5\hat{p}_l} (1-p)^{5-5\hat{p}_l}$$

$$P(X_1 = k_1, ..., X_5 = k_5 | \hat{p} = \hat{p}_l) = \begin{bmatrix} 5 \\ 5\hat{p}_l \end{bmatrix}^{-1}$$
 $\hat{p} = \frac{1}{5} \sum_{i=1}^{5} X_i$

$$\widehat{P} = \frac{1}{2} \sum_{i=1}^{n} X_{i}$$

$$X_{4},...,X_{n}$$
 with Bernoulli $PmS_{n} = how \frac{\widehat{p} = h \stackrel{\sim}{\Sigma} X_{i}}{\widehat{p}_{e}}$

$$\widehat{p}_{e} = h \stackrel{\sim}{\Sigma} k_{i} \quad k_{i} = 1,0$$

$$P(X_{i} = k_{i},...,X_{n} = k_{n}) \widehat{p} = \widehat{p}_{e}) = \frac{P(X_{1},...,X_{n})}{P(\widehat{p} = \widehat{p}_{e})} = \frac{\widehat{\prod}_{i=1}^{n} P^{k_{i}} (1-P)^{1-k_{i}}}{P\widehat{p}(\widehat{p} = \widehat{p}_{e})} = \delta(K_{1},...,K_{n}) = \delta(\widehat{p}_{e}) \quad \text{independent on } P$$

If $\hat{\theta}$ is sufficient statistic for θ , then any one-to-one function of $\hat{\theta}$ is also sufficient statistic for θ .

For example, $\hat{p}^* = n\hat{p} = n\frac{1}{n}\sum_{i=1}^n X_i = \sum_{i=1}^n X_i$ is also sufficient.

THEOREM (NEYMAN-FISHER FACTORIZATION CRITERIA)

Let $\hat{\theta} = u(X_1, ..., X_n)$ be a statistic based on the random sample $X_1, ..., X_n$. Then, $\hat{\theta}$ is a sufficient statistic for $\underline{\theta}$ if and only if the discrete joint pmf $p_X(x_1, ..., x_n, \theta)$ (which depends on the parameter $\underline{\theta}$) can be factored into two non-negative functions.

$$L(\hat{\theta}) = p_X(x_1, ..., x_n, \theta) = g(\widehat{u(x_1, ..., x_n)}, \theta) \cdot h(x_1, ..., x_n), \text{ for all } x_1, ..., x_n,$$

where $g(\hat{\theta}, \theta)$ is a function only of $\hat{\theta}$ and θ and $h(x_1, ..., x_n)$ is a function of only $x_1, ..., x_n$ and not of θ .

(A similar statement holds for continuous case.)

PROOF.

1) Suppose that $\hat{\theta} = u(X_1, ..., X_n)$ is sufficient for θ . Then, $P(X_1 = x_1, ..., X_n = x_n | \hat{\theta}) = P(X_1 = x_1, ..., X_n = x_n)$ if and only if $\hat{\theta} = u(x_1, ..., x_n) = u$ does not depend on θ . Hence, $p_X(x_1,...,x_n,\theta) = P_{\theta}(X_1 = x_1,...,X_n = x_n \cap \hat{\theta} = u)$

$$P_{\theta}(X_{1},...,X_{n},x_{n},$$

$$p_X(x_1,...,x_n,\theta)=h(x_1,...,x_n)\cdot g(u,\theta)$$

PROOF.

2) (Converse) Assume, that

$$p_X(x_1,...,x_n,\theta) = h(x_1,...,x_n) \cdot g(u,\theta)$$

Define a set
$$A_u$$
:

$$A_{u} = \left\{ (x_{1}, ..., x_{n}) : \hat{\theta} = u(x_{1}, ..., x_{n}) = u \right\}$$

$$P_{\theta}(X_1 = x_1, ..., X_n = x_n | \hat{\theta} = u) = \begin{cases} \frac{P_{\theta}(X_1 = x_1, ..., X_n = x_n \cap \theta = u)}{P_{\theta}(\hat{\theta} = u)} & \text{if } (x_1, ..., x_n) \in A_u \\ 0, & \text{if } (x_1, ..., x_n) \notin A_u \end{cases}$$

$$P_{\theta}(X_1 = x_1, ..., X_n = x_n | \hat{\theta} = u) = \frac{P_{\theta}(X_1 = x_1, ..., X_n = x_n)}{P_{\theta}(\hat{\theta} = u)} = \frac{p_X(x_1, ..., x_n, \theta)}{P_{\theta}(\hat{\theta} = u)}$$

$$= \frac{h(x_1, ..., x_n) \cdot g(u, \theta)}{\sum\limits_{(x_1, ..., x_n) \in A_u} g(\hat{\theta} = u, \theta) h(x_1, ..., x_n)} = \frac{h(x_1, ..., x_n) \cdot g(u, \theta)}{g(\hat{\theta} = u, \theta)} \sum_{(x_1, ..., x_n) \in A_u} h(x_1, ..., x_n)$$

$$x_n \in A_u$$
 $(x_1, ..., x_n) \in A_u$ $P_{\theta}(X_1 = x_1, ..., X_n = x_n | \hat{\theta} = u) = \frac{h(x_1, ..., x_n)}{\sum\limits_{(x_1, ..., x_n) \in A_u} h(x_1, ..., x_n)}$

Let $X_1 = k_1, ..., X_n = k_n$ be a random sample of size n from the Poisson pdf,

$$p_X(k;\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}, \ k = 0, 1, 2,$$

Show that $\hat{\lambda} = \bar{X}_{\dot{\epsilon}}$ is a sufficient statistic for λ .

$$P(X_1=k_1,...,X_n=k_n,\hat{\lambda}=\lambda_2) = h(X_1,...,X_n) \cdot g(\hat{\lambda}_{\ell_1}\lambda)$$

$$L(\lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda_i}\lambda^{k_i}}{k_i!} = e^{-n\lambda_i} \lambda^{\frac{n}{2}k_i} \frac{1}{\prod_{i=1}^{n}k_i!} = e^{-n\lambda_i} \lambda^{\frac{n}{2}k_i} \left(\prod_{i=1}^{n}k_i!\right)^{-1}$$

$$=\underbrace{e^{-n\lambda} \, \lambda^{n \, \hat{\lambda}_e}}_{g(\hat{\lambda}_L, \lambda)} \cdot \underbrace{\left(\prod_{i=1}^n (k_i)!\right)^L}_{L(k_1, \dots, k_n)} \Rightarrow \widehat{\lambda} = \overline{\chi} \text{ is a sufficient}$$

Let $X_1, ..., X_n$ denote a random sample from a geometric population with parameter p:

$$p_X(x;p) = p(1-p)^{x-1}, x = 1, 2, 3...$$

Show that \bar{X} is sufficient for p.

Solution:

$$L(p) = \prod_{i=1}^{n} p \left(1-p\right)^{x_i-1} = p^n \left(1-p\right)^{n \overline{x}-n} =$$

$$= p^n \left(1-p\right)^{n \overline{x}-n} \underbrace{\cdot 1}_{k(x_1,...,k_n)=1}$$

THEOREM

The two statistics $\hat{\theta}_1$ and $\hat{\theta}_2$ are jointly sufficient for θ_1 and θ_2 if and only if the likelihood function can be factored into two non-negative functions,

$$f_X(X_1 = x_1, X_2 = x_2, ..., X_n = x_n; \theta_1, \theta_2) = g(\hat{\theta}_1, \hat{\theta}_2; \theta_1, \theta_2) h(X_1 = x_1, ..., X_n = x_n)$$

where $g(\hat{\theta}_1, \hat{\theta}_2; \theta_1, \theta_2)$ is only a function of $\hat{\theta}_1, \hat{\theta}_2, \theta_1$, and θ_2 , and $h(X_1 = x_1, ..., X_n = x_n)$ is free of θ_1 or θ_2 .

Let $X_1, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$.

- i) If μ is unknown and $\sigma^2 = \sigma_0^2$ is known, show that \bar{X} is a sufficient statistic for μ .
- ii) If $\mu = \mu_0$ is known and σ^2 is unknown, show that $\sum_{i=1}^n (X_i \mu_0)^2$ is sufficient for
- iii) If μ and σ^2 are both unknown, show that $\sum_{i=1}^n X_i$ and $\sum_{i=1}^n X_i^2$ are jointly sufficient for μ and σ^2 .

$$\frac{Solution:}{L(\mu, \sigma^{2})} = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}'\sigma} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu)^{2}} = (2\pi)^{\frac{n}{2}} \sigma^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}}$$

$$= (2\pi)^{-\frac{n}{2}} \sigma^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}X_{i}} e^{-\frac{1}{2\sigma^{2}}(-2\mu)\sum_{i=1}^{n}X_{i}} e^{-\frac{1}{2\sigma^{2}}N\mu^{2}}$$

$$L(\mu, \delta^{2}) = (2\pi)^{-\frac{1}{2}} \delta^{-\frac{1}{2}} e^{-\frac{1}{26^{2}} \sum_{i=1}^{n} \chi_{i}^{2}} - e^{-\frac{1}{26^{2}} (-2\mu \sum_{i=1}^{n} \chi_{i})} - e^{-\frac{1}{26^{2}} N\mu^{2}}$$

$$1) \times \text{for } \mu, \sigma^{2} = \delta^{\frac{1}{2}}$$

$$L(\mu, \delta^{2}) = e^{-\frac{1}{26^{2}} (-2\mu N \times 1)} - e^{-\frac{1}{26^{2}} \sum_{i=1}^{n} \chi_{i}^{2}}$$

$$Q(\bar{x}, \mu)$$

$$L(\chi_{i}, \chi_{i}, \chi_{i})$$

$$L(\chi_{i}, \chi_{i}, \chi_{i})$$

2)
$$\sum_{i=1}^{n} (x_i - \mu_0)^2$$
 for 6^2 , $M = \mu_0$

$$L(\mu_0, \sigma^2) = \underbrace{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{\infty} (X_i - \mu_0)^2} 6^{-n} \cdot (2\pi)^{-\frac{n}{2}}}_{g(\widehat{G}^2, G^2)} \cdot (2\pi)^{-\frac{n}{2}}$$

$$L(\mu_1 \delta^2) = (2\pi)^{\frac{-3}{2}} \delta^{-n} e^{-\frac{1}{2}\delta^2 \sum_{i=1}^{n} \chi_i^2} e^{-\frac{1}{2}\delta^2 \left(-\frac{1}{2}\mu_1 \sum_{i=1}^{n} \chi_i^2\right)} e^{-\frac{1}{2}\delta^2 n \mu^2}$$

$$= \sum_{i=1}^{n} \chi_i^2 \quad \text{inintur sufficient for } \mu_1 \delta^2$$

3)
$$\sum_{i=1}^{\infty} x_i$$
, $\sum_{i=1}^{\infty} x_i^2$ jointly sufficient for $M_i S^2$

Σχ; Σχ, are jointly sufficient

3)
$$\sum_{i=1}^{n} X_{i}$$
, $\sum_{i=1}^{n} X_{i}$ jointly safficient for M^{-1}
 $L(M, 6^{2}) = 6^{-n}$ $e^{-\frac{1}{26^{2}}\sum_{i=1}^{n} Y_{i}^{2}}$ $e^{-\frac{1}{26^{2}}\sum_{i=1}^{n} Y_{i}^{2}}$ $e^{-\frac{1}{26^{2}}\sum_{i=1}^{n} Y_{i}^{2}}$ $e^{-\frac{1}{26^{2}}\sum_{i=1}^{n} Y_{i}^{2}}$ $e^{-\frac{1}{26^{2}}\sum_{i=1}^{n} Y_{i}^{2}}$ $e^{-\frac{1}{26^{2}}\sum_{i=1}^{n} Y_{i}^{2}}$

$$L(\mu, 6^{2}) = 6^{-n} e^{-\frac{1}{26^{2}} \sum_{i=1}^{n} k_{i}^{2}} e^{-\frac{1}{26^{2}} \sum_{i=1}^{n} k_{i}^{2}} (-2\mu) e^{-\frac{1}{26^{2}} n \mu^{2}} . (2\pi)^{-\frac{n}{2}}$$

g(Exi, Ex; ; ru, 6)

h(x, ..., Kn)

PROPERTIES OF POINT ESTIMATORS: SUFFICIENCY

The Sufficiency Principle:

Any inference procedure should depend on the data only through sufficient statistics.

The estimator $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$ is biased estimator for σ^2 :

$$E(\hat{\sigma}^2) = \frac{n-1}{n}\sigma^2.$$

The estimator $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ is biased estimator for σ^2 :

$$E(\hat{\sigma}^2) = \frac{n-1}{n}\sigma^2.$$

However, if the sample size $n \to \infty$

$$E(\hat{\sigma}^2) \to \sigma^2$$
,

hence, $\hat{\sigma}^2$ is asymptotically unbiased.

PROPERTIES OF POINT ESTIMATORS: CONSISTENCY

DEFINITION

A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if for every $\varepsilon > 0$

$$\lim_{n\to\infty} P(|X_n - X| < \varepsilon) = 1 \iff \lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0$$

Denoted as $X_n \xrightarrow{p} X$

DEFINITION

A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if for every $\varepsilon > 0$

$$\lim_{n\to\infty} P(|X_n - X| < \varepsilon) = 1 \iff \lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0$$

Denoted as $X_n \xrightarrow{p} X$

DEFINITION

A sequence $\hat{\theta}_n = u(X_1, X_2, ..., X_n)$, n = 1, 2, ... is said to be **consistent sequence of** estimators for θ if it converges in probability to θ , i. e. for $\varepsilon > 0$

$$\lim_{n\to\infty} P\left(|\hat{\theta}_n - \theta| < \varepsilon\right) = 1$$

PROPERTIES OF POINT ESTIMATORS: CONSISTENCY

DEFINITION

A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if for every $\varepsilon > 0$

$$\lim_{n\to\infty} P(|X_n - X| < \varepsilon) = 1 \iff \lim_{n\to\infty} P(|X_n - X| \ge \varepsilon) = 0$$

Denoted as $X_n \xrightarrow{p} X$

DEFINITION

A sequence $\hat{\theta}_n = u(X_1, X_2, ..., X_n)$, n = 1, 2, ... is said to be **consistent sequence of** estimators for θ if it converges in probability to θ , i. e. for $\varepsilon > 0$

$$\lim_{n\to\infty} P\left(|\hat{\theta}_n - \theta| < \varepsilon\right) = 1$$

Consistency means that the probability of our estimator being within some small ε -interval of θ can be made as close to one as we like by making the sample size n sufficiently large.

PROPERTIES OF POINT ESTIMATORS: CONSISTENT

EXAMPLE

Suppose that $X_1, X_2, ..., X_n$ is a random sample of size n from discrete pmf $p_X(x, \mu)$, where $E(X) = \mu$, $Var(X) = \sigma^2 < \infty$. Let $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}_n$. Is $\hat{\mu}$ a consistent estimator for μ ?

PROPERTIES OF POINT ESTIMATORS: CONSISTENT

EXAMPLE

Suppose that $X_1, X_2, ..., X_n$ is a random sample of size n from discrete pmf $p_X(x, \mu)$, where $E(X) = \mu$, $Var(X) = \sigma^2 < \infty$. Let $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}_n$. Is $\hat{\mu}$ a consistent estimator for μ ?

Solution.

(Markov's inequality)

Let *X* be a random variable and let $g(\cdot)$ be a non-negative function. Then, for any k > 0,

$$P(g(X) \ge k) \le \frac{E(g(X))}{k}$$

PROPERTIES OF POINT ESTIMATORS: CONSISTENT

EXAMPLE

Suppose that $X_1, X_2, ..., X_n$ is a random sample of size n from discrete pmf $p_X(x, \mu)$, where $E(X) = \mu$, $Var(X) = \sigma^2 < \infty$. Let $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}_n$. E(Xn)=14 Is $\hat{\mu}$ a consistent estimator for μ ? Var (In) = 52 Solution.

(Markov's inequality)

Let X be a random variable and let $g(\cdot)$ be a non-negative function. Then, for any k > 0,

$$P(g(X) \ge k) \le \frac{E(g(X))}{k}$$

$$P(|\bar{X}_{n} - \mu| < \varepsilon) = 1 - P(|\bar{X}_{n} - \mu| \ge \varepsilon) = 1 - P(|\bar{X}_{n} - \mu| \ge \varepsilon) \le 1 - \frac{\varepsilon(|\bar{X}_{n} - \mu| \ge \varepsilon)}{\varepsilon} \le 1 - \frac{\varepsilon(|\bar{X}_{n} - \mu| \ge \varepsilon)}{\varepsilon} = 1 - \frac{var(\bar{X}_{n})}{\varepsilon} = 1 - \frac{\sigma^{2}}{n\varepsilon^{2}} \to 1 \text{ as } n \to \infty$$

$$1 \leq P(\bar{x}_n - \mu) \leq 1 \qquad P(|\bar{X}_n - \mu| < \varepsilon) \to 1 \text{ as } n \to \infty$$

THEOREM (WEAK LAW OF LARGE NUMBERS)

Let $X_1, X_2, ...$ be i.i.d random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then for every $\varepsilon > 0$,

$$\lim_{n\to\infty}P\left(|\bar{X}_n-\mu|<\varepsilon\right)=1\right)$$

that is, \bar{X}_n converges in probability to μ

- State main properties of point estimators;
- Define the notions of bias and unbiasedness;
- Define the notions of efficiency and relative efficiency of estimators;
- What is the Mean Square Error, state the relation between MSE of an estimator, its variance and bias.
- **5** Define the notion of sufficiency of an estimator;
- **o** Define the notion of consistency of an estimator.