CLAIMS

What is claimed is:

1. A circuit for controlling a rise-time of a signal, comprising:

a voltage multiplication circuit which converts an input voltage to

an output voltage greater than said input voltage;

a switched capacitor circuit coupled to said voltage multiplication circuit which controls said output voltage from said voltage multiplication circuit, wherein a ratio between a first capacitor of said switched capacitor circuit and a second capacitor of said switched capacitor circuit determines said rise-time of said signal.

2. The circuit of Claim 1, wherein said voltage multiplication circuit comprises a charge pump.

3. The circuit of Claim 1, wherein said signal is used to program and erase Flash EPROM cells.

4. The circuit of Claim 1 further comprising a constant ramp generator.

5. The circuit of Claim 1, wherein said signal comprises a stair-case ramp signal.

6. The circuit of Claim 1, wherein said voltage multiplication circuit generates a VPP output voltage given a VCC input voltage.

BEST AMAILANIE COTY

The third three free free than the three t

10

the state of the s

20

Sub

10

15

20

- 7. The circuit of Claim 1 further comprising a level shifter to shut off said signal.
- 5 8. The circuit of Claim 1 further comprising two nonoverlapping clock signals.
 - 9. The circuit of Claim 1 further comprising a ring oscillator coupled to said switched capacitor circuit.
 - 10. The circuit of Claim 1 further comprising a capacitor divider network coupled to said switched capacitor circuit.
 - 11. The circuit of Claim 1, wherein said switched capacitor circuit switches between ground and a divider node which has a constant reference voltage according to a feedback system.
 - 12. The circuit of Claim 11, wherein said feedback system comprises a CMOS comparator.
 - 13. The circuit of Claim 1 further comprising a divide by N counter.
- 14. A switched capacitor controller for controlling a rise time of 25 an on-chip generated voltage source, comprising:
 - a charge pump;
 - a ramp generator coupled to said charge pump AVAILABLE CCTY

a switched capacitor coupled to said ramp generator;

a regulator circuit coupled to said switched capacitor which causes a capacitor to switch between ground and a node, wherein a stair-step ramp signal is generated and said rise time is controlled according to said switched capacitor.

15. The switched capacitor controller of Claim 14, wherein said rise time is controlled according to a ratio of two capacitors.

- 16. The switched capacitor controller of Claim 14, wherein said on-chip generated voltage source is used to program a Flash memory.
- 17. The switched capacitor controller of Claim 14 further comprising an oscillator coupled to said charge pump which generates an oscillating signal input to said charge pump.
- 18. The switched capacitor controller of Claim 17 further comprising:

a divider coupled to said oscillator;

- a non-overlapping two phase clock generator coupled to said divider.
 - 19. The switched capacitor controller of Claim 14, wherein said ramp generator further comprises a capacitor divider network.

5

ſŲ.

5

10

15

20.	In a flash memory, a method for controlling a rise time of ar
on-chip gen	erated voltage source used to program said flash memory,
comprising:	

generating a programming voltage from a power supply, wherein said programming voltage is greater than voltage from said power supply; activating a program signal to program a cell of said flash memory; generating a stair-case ramp based on said programming voltage in response to said program signal, wherein steps of said stair-case ramp have a period corresponding to a clock signal and voltage increases corresponding to a reference voltage times a ratio of two capacitor values.

21. The method of Claim 20 further comprising the step of switching a capacitor between ground and a node voltage to generate said stair-case ramp.