TAREA ÁLGEBRA MODERNA SEMESTRE 2013-II UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO HÉCTOR MANUEL TÉLLEZ GÓMEZ

Proposición 11

Lema 1 Sea H un grupo cíclico y sea N un grupo arbitrario. Si φ and ψ son monomorfismos de H a Aut(N) tales que $\varphi(H) = \psi(H)$, entonces $N \rtimes_{\varphi} H \cong N \rtimes_{\psi} N$.

Demostración: Sea $H = \langle x \rangle$. Como las imágenes de H bajo φ y ψ , $\varphi(x)$ y $\psi(x)$ generan al mismo subgrupo cícilco de Aut(N). Por lo tanto existen $a, b \in \mathbb{Z}$ tales que $\varphi(x)^a = \psi(x)$ y $\varphi(x) = \psi(x)^b$.

De aquí que:

$$\varphi(x) = \psi(x)^b = \varphi(x)^{ab} = \varphi(x^{ab}).$$

Como φ es monomorfimso, tenemos que

$$(1) x = x^{ab}$$

Es decir, elevar a la ab es otra manera de escribir el homomorfismo identidad.

Como H es cíclico tenemos que para todo $h \in H$, existe $r \in \mathbb{Z}$ tal que $x^r = h$ y entonces

$$\varphi(h^a)=\varphi((x^r)^a)=\varphi(x^ar)=(\varphi(x)^a)^r=\psi(x)^r=\psi(x^r)=\psi(h),$$
análogamente $\varphi(h)=\psi(h^b).$

Definamos $\tau: N \rtimes_{\varphi} H \to N \rtimes_{\psi} N$ como $\tau(n,h) = (n,h^a)$.

$$\begin{split} \tau((n_1,h_1)(n_2,h_2)) &= \tau(n_1\psi(h_1)(n_2),h_1h_2) \\ &= (n_1\psi(h_1)(n_2),(h_1h_2)^a) \\ &= (n_1\varphi(h_1^a)(n_2),h_1^ah_2^a) \\ &= n_1h_1^an2h_2^a \text{ (por definición de } N \rtimes_{\psi} H) \\ &= \tau(n_1h_1)\tau(n_2h_2) \end{split}$$

Con esto, tenemos que τ separa productos y manda inversos en inversos. Por lo tanto τ es homomorfismo.

Análogamente $\lambda: N \rtimes_{\psi} H \to N \rtimes_{\varphi} N$ definida como $\lambda(n,h) = (n,h^b)$, resulta ser homomorfismo.

Ahora notemos que $\tau\circ\lambda(n,h)=\tau(n,h^b)=(n,h^{ab})$ y por (1), tenemos que $\tau\circ\lambda=id_{N\rtimes_\psi H}.$

Análogamente, tenemos que $\lambda \circ \tau = id_{N \rtimes_{\varphi} H}$. Con esto tenemos que tanto τ como λ son isomorfismos, con lo que termina la demostración.

Proposición 12

Lema 2 Sean N y H grupos, sea $\psi: H \to Aut(N)$ un homomorfismo y $f \in Aut(N)$. Si \hat{f} es el automorfismo interno de Aut(N) inducido por f, entonces $N \rtimes_{\hat{f} \circ \psi} \cong N \rtimes_{\psi} H$.

Demostración: Sea $\theta: N \rtimes_{\psi} H \to N \rtimes_{\hat{f} \circ \psi}$ definida por $\theta(n, h) = (f(n), h)$. Veamos que θ es homomorfismo:

$$\theta((n_1, h_1) \cdot (n_2, h_2)) = \theta(n_1 \psi(h_1)(n_2), h_1 h_2)$$

$$= (f(n_1 \psi(h_1)(n_2)), h_1 h_2)$$

$$= (f(n_1) \cdot (f \circ \psi(h_1))(n_2), h_1 h_2)$$

$$= (f(n_1) \cdot (f \circ \psi(h_1) \circ f^{-1} \circ f)(n_2), h_1 h_2)$$

$$= (f(n_1) \cdot (\hat{f}(\psi(h_1)) \circ f)(n_2), h_1 h_2)$$

$$= (f(n_1) \cdot (\hat{f} \circ \psi)(h_1) f(n_2), h_1 h_2)$$

$$= (f(n_1), h_1)(f(n_2), h_2)$$

$$= \theta(n_1, h_1) \theta(n_2, h_2).$$

Con esto hemos demostrado que θ es homomorfismo pues abre multiplicaciones y manda inversos en inversos.

De manera análoga vemos que $\iota: N \rtimes_{\hat{f} \circ \psi} \to N \rtimes_{\psi} H$ definida por $\iota(n,h) = (f^{-1}(n),h)$ es homomorfismo.

Ahora notemos que:

$$(\iota \circ \theta)(n,h) = \iota(f(n),h) = (f^{-1}(f(n)),h) = (n,h).$$

Por lo tanto $\iota \circ \theta = id_{N \rtimes_{\psi} H}$.

Análogamente $\theta \circ \iota = id_{N \rtimes_{\hat{f} \circ \psi} H}$. Por lo tanto, θ y ι son isomorfismos y con esto terminamos la demostración.

SCHUR-ZASSENHAUS

Antes de continuar con la demostración del teorema de Schur-Zassenhaus, nececitaremos algunas definiciones.

Definición 1 Decimos que H es complemento de un subgrupo normal N de G, si $H \subset G$ y $G = N \rtimes H$.

Definición 2 Decimos que un subgrupo H de un grupo finito G es un subgrupo de Hall si ([G:H], |H|) = 1.

 $\bf Teorema~3$ (Teorema de Schur-Zassenhaus) $\it Todo~subgrupo~normal~de~Hall~tiene~complemento.$

Demostración: Sea Nn un subgrupo normal de Hall de un grupo finito G. Si G tiene un subgrupo K de orden n = [G:N], entonces tenemos que $N \cap K = 1$ gracias al teorema de Lagrange, pues $n \neq |N|$ son primos relativos. Entonces

$$|NK| = \frac{|N||K|}{|N \cap K|}$$
$$= |N||K|$$
$$= |G|$$

y por lo tanto K es un complemento de G.

Entonces, sería suficiente probar que G siempre tiene un subgrupo de orden n. Para ello procederemos por inducción suponiendo que todo grupo finito de orden menor que |G| que contenga un subgrupo normal de Hall, también tiene un subgrupo cuyo orden es igual al índice de dicho subgrupo.

Sea P un subgrupo de Sylow de N. El argumento de Frattini nos dice que $G = N_G(P)N$.

Ahora, $N_N(P) = N_G(P) \cap N$, pues $N_N(P) = \{g \in N | gP = Pg\}$, y $N_G(P) = \{g \in G | gP = Pg\}$. es decir si $g_0 \in N_G(P) \cap N$ quiere decir que $g_0 \in N$ y que $g_0P = Pg_0$. Esto demuestra una de las contenciones y la restante es igual de fácil. Ahora, también tenemos que $N_G(P) \cap N \leq N_G(P)$, pues si $g \in N_G(P) \cap N$ y $h \in N_G(P)$, por un lado $hgh^{-1} \in N$ gracias a que $g \in N$ y que N es normal en G, y por otro lado $hgh^{-1} \in N_G(P)$, pues $N_G(P)$ es un subgrupo y tanto g como h son elementos de él.

Ahora, por las equivalencias recién dadas y por el segundo teorema de isomorfismos (el segundo según la numeración de J. Rotman) tenemos lo siguiente:

$$\frac{G}{N} = \frac{N_G(P)N}{N}$$

$$\cong \frac{N_G(P)}{N_G(P) \cap N}$$

$$= \frac{N_G(P)}{N_N(P)}$$

DEDEKIND

Antes de comenzar con la demostración del Lema de Dedekind, haremos algunas definiciones.

Definición 4 Un caracter de un grupo G en un campo E es un homomofrphismo de grupos

$$\sigma: G \longrightarrow E^{\#}$$

Donde $E^{\#} = E - \{0\}$ es el grupo multiplicativo de E.

Definición 5 Un conjunto $\{\sigma_1, \sigma_2, \ldots, \sigma_n\}$ de caracteres de un grupo G en un campo E es **independiente** si no existen $a_1, a_2, \ldots, a_n \in E$, no todos 0, tales que

$$\sum a_i \sigma_i(x) = 0 \quad \forall x \in G$$

Ahora estamos listos para el Lema de Dedekind.

Lema 3 (Dedekind) Todo conjunto $\{\sigma_1, \ldots, \sigma_n\}$ de caracteres distintos de un grupo G en un campo E es independiente.

Demostración: Procedemos por inducción sobre n.

• Base de inducción

Sea n = 1. Si $\{\sigma_1\}$ no fuera independiente entonces existiría $a_1 \in E$, con $a_1 \neq 0$ tal que $a_1\sigma_1(x) = 0$. Pero tanto a_1 como $\sigma_1(x)$ son distintos de 0 y pertenecen a un campo (es decir, a un dominio entero) y por lo tanto no es posible que $a_1\sigma_1(x) = 0$.

• Hipótesis de inducción

Sea n > 1. Y supongamos que para m < n se cumple el resultado.

Paso inductivo

Supongamos que existen $a_1, \ldots, a_n \in E$ tales que para todo $x \in G$ se tiene que

(2)
$$\sum a_i \sigma_i(x) = 0$$

Por hipótesis de inducción, tenemos que a_1, \ldots, a_n son necesariamente todos distintos de cero. También podemos suponer que $a_n = 1$, si no es así, basta multiplicar la suma por a_n^{-1} .

Como $\sigma_n \neq \sigma_1$, necesariamente existe $y \in G$ tal que $\sigma_n(y) \neq \sigma_1(y)$. Como (2) aplica para todo $x \in G$, en particular aplica para yx. Entonces tenemos que

$$\sum_{i} a_i \sigma_i(yx) = \sum_{i} a_i \sigma_i(y) \sigma_i(x)$$

$$= 0$$

Multiplicando esto por $\sigma_n(y)^{-1}$ y, recordando que $a_n=1$, obtenemos

$$\sigma_n(y)^{-1} \sum a_i \sigma_i(y) \sigma_i(x) = \sum_{i < n} a_i \sigma_n(y)^{-1} \sigma_i(y) \sigma_i(x)$$
$$= \sum_{i < n} a_i \sigma_n(y)^{-1} \sigma_i(y) \sigma_i(x) + \sigma_n(x)$$
$$= 0.$$

Restando esto último de (2) obtenemos

$$\sum_{i < n} a_i \sigma_i(x) + \sigma_n(x) - \left(\sum_{i < n} a_i \sigma_n(y)^{-1} \sigma_i(y) \sigma_i(x) + \sigma_n(x)\right)$$

$$= \sum_{i < n} a_i \sigma_i(x) - a_i \sigma_n(y)^{-1} \sigma_i(y) \sigma_i(x)$$

$$= \sum_{i < n} a_i (1 - \sigma_n(y)^{-1} \sigma_i(y)) \sigma_i(x)$$

$$= 0.$$

Por un lado, la hipótesis de inducción nos dice que esto es cierto sólamente si $a_i(1-\sigma_n(y)^{-1}\sigma_i(y))=0$ para todo i. En particular para i=1 tendríamos $a_1(1-\sigma_n(y)^{-1}\sigma_1(y))=0$. Como $a_1\neq 0$ esto obliga a $\sigma_n(y)^{-1}\sigma_1(y)=1$, y por lo tanto $\sigma_n(y)=\sigma_1(y)$, lo cual contradice nuestra elección de y.

Y con esto hemos demostrado que no existen tales a_1, \ldots, a_n .

ARTIN

Comenzaremos por hacer las definiciones pertinentes.

Definición 6 Sea Aut(E) el grupo de todos los automorfismos de un campo E. Si $G \subset Aut(E)$, entonces a

$$E^G = \{ \alpha \in E : \sigma(\alpha) = \alpha paratodo\sigma \in G \}$$

se le llama el campo fijo.

Antes de pasar a la demostración de del teorema de Artin, enunciaremos sin demostración un lema que nos será de utilidad.

Lema 4 Si
$$G = \{\sigma_1, \dots, \sigma_n\} \subset Aut(E)$$
, entonces $[E : E^G] \geq n$

Teorema 7 (Artin)
$$Si \ G = \{\sigma_1, \dots, \sigma_n\} \leq Aut(E)$$
, entonces: $[E : E^G] = |G|$

Demostración: Gracias a [4] sólo hace falta demostrar que no es posible que $[E:E^G]>n$. Supongamos esto cierto.

Esto significa que existe un conjunto con al menos n+1 elementos linealmente independientes en E como E^G -espacio vectorial. Sean $\{\omega_1, \ldots, \omega_{n+1}\}$.