Problem statement-

Steps→

- 1. Discretize the element into the given mesh condition.
- 2. Derive the Jacobians from their shape functions for each element.
- Start the code by giving in the initial parameter like material properties, connectivity matrix, and coordinate matrix.
- 4. Find the shape function partial derivate with respect to zeta (ζ) and eta (η) to find the shape Function partial derivate with respect to x and y by inversing the Jacobian * shape function partial derivate with respect to zeta (ζ) and eta (η). This is will common through.

$$\begin{bmatrix}
\frac{\partial Ni}{\partial x} \\
\frac{\partial Ni}{\partial y}
\end{bmatrix} = inv(Ji)_{2x2} * \begin{bmatrix}
\frac{\partial Ni}{\partial \zeta} \\
\frac{\partial Ni}{\partial \eta}
\end{bmatrix}_{2*m}$$

The Jacobian if a constant, it stays constant throughout the element but otherwise if it is a function of zeta (ζ) and eta (η), we find 4 Jacobians at the 4 Gauss Points.

5. Compute the Finite Element B matrix at each gauss points for each element that means 4 B matrix per element.

$$[Bi] = \begin{bmatrix} \frac{\partial Ni}{\partial x} & 0\\ 0 & \frac{\partial Ni}{\partial y}\\ \frac{\partial Ni}{\partial y} & \frac{\partial Ni}{\partial x} \end{bmatrix}_{3x2*m}$$

6. Computing Local Stiffness at each gauss point of an element.

$$[Ki]_{2mx2m} = transpose(Bi)_{2mx3} * [E]_{3x3} * [Bi]_{3x2m} * det(Ji)$$

Where,
$$[E]_{3x3}=rac{E}{(1+\mu)(1-2\mu)}*egin{bmatrix} 1-\mu & \mu & 0 \ \mu & 1-\mu & 0 \ 0 & 0 & rac{1-2*\mu}{2} \end{bmatrix}_{3x3} -
ightarrow for plane strain isotropic$$

Material Properties $\rightarrow \mu - Poissions \ Ratio$ and $E - Youngs \ Modulus$

$$[Ki]_{2mx2m} = [Ki_1]_{2mx2m} + [Ki_2]_{2mx2m} + [Ki_3]_{2mx2m} + [Ki_4]_{2mx2m}$$

7. Populate/Combining Global Stiffness Matrix as per the nodal indexing

$$[K]_{5mx5m}$$

8. Creating Global Force Vector $\{R_trunc\}_{13x1}$

As our case doesn't have any body forces, we only apply the given applied forces which are resolved in the following manner

Add a pic here

9. Imposing restricted degrees of Freedom by truncating the rows and column global stiffness matrix

 $[K_trunc]_{13x13}$ The size of which will depend on the applied BC

10. Finding Displacements by solving the linear systems

$$[D]_{5mx1} = inv[K_trunc]_{13x13} * \{R_trunc\}_{13x1}$$

11. Computing Strains and stresses for Element A (in my case element 3)

$$\{\varepsilon\}_{3x1} = \begin{bmatrix} \frac{\partial}{\partial x} & 0\\ 0 & \frac{\partial}{\partial y}\\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix}_{3x3} * \{u\}_{dof=2x1}$$

$$\{\sigma\}_{3x1} = [E]_{3x3} * \{\varepsilon\}_{3x1}$$

Displacements →

Node with dof	Displacement (mm)_Matlab	Displacement (mm)_Abaqus
U2	-9.48760407452011	-11.5691
U3	-19.7393745774389	-3.61331
U4	-27.4888247003979	-37.5530
V5	21.5058470071542	28.4539
U6	-9.19679826284809	1.12164
V6	21.9385927654481	19.4119
U7	-18.0319709230779	-24.0266
V7	21.3037129224173	32.6058
V8	43.1995053517166	34.8413
U9	-9.63701303310965	-14.3452
V9	43.3230911030585	60.7361
U10	-24.8663333235884	1.61301
V10	38.9593190893009	35.9252

Deformation Scatter Plot

Pg- 4

Stress (N/	Gauss Point 1	Gauss Point 2	Gauss Point 3	Gauss Point 4
$mm2$)_Matlab				
σ_11	1280.89549532283	306.935744089175	1590.32127222576	3028.49664439981
σ_22	9206.17024921344	6283.75082610577	9766.08180377926	14081.4055490910
Stress (N/	Gauss Point 1	Gauss Point 2	Gauss Point 3	Gauss Point 4
mm2)_Abaqus				
σ_11	1.40140E+03	1.13287E+03	604.822	613.842
$\sigma_{-}22$	9.84075E+03	10.0879E+03	9.95194E+03	9.32161E+03

Strain_Matlab	Gauss Point 1	Gauss Point 2	Gauss Point 3	Gauss Point 4
ε_11	-2.42479149644947	-2.17135129506010	-2.36157954574847	-2.73581621774168
ε_22	7.87806568360833	5.59850831156148	8.26690914527108	11.6329653583569
Strain_Abaqus	Gauss Point 1	Gauss Point 2	Gauss Point 3	Gauss Point 4
ε_11	-1.55083	-1.89351	-2.38076	-2.18264
ε_22	9.42033	9.74806	9.77050	9.13746

Reaction Force Table-

Coordinate Location	Reaction Forces (N)_MATLAB	Reaction Forces (N)_Abaqus
X1	-1587.23840342068	-2.54677E+03
Y1	-16764.0656813191	-17.2427E+03
X2	2.64396848605909e-12	0.
Y2	-33683.5322862437	-33.9445E+03
Х3	-9.73878330477871e-12	0
Y3	-30908.1262357253	-32.7683E+03
X4	1800.0000000001	0
Y4	-18544.2757967119	-15.9445E+03
X5	-3011.03103529511	-1.88700E+03
Y5	7.16534590093373e-12	0
X6	4.30961822195189e-12	0
Y6	2.65138299758077e-11	0
Х7	-8.94612434164227e-12	0
Y7	7.19325362961999e-13	0
X8	-1401.73056128420	-1.56623E+03
Y8	16650.0000000000	0
Х9	-1.74493396492297e-12	0
Y9	49950.0000000000	0
X10	4200.00000000000	0
Y10	33300.0000000000	0