Masked AES

https://youtu.be/2M-8cWiRRJs

- 암호 연산 내부의 중간 값을 마스크 난수로 덧씌워 공격자가 획득한 부가 정보가 암호 알고리즘의 중간 중보와 연관을 갖지 않도록 하는 대응 기술
 - m \rightarrow Original cipher $\rightarrow E_K(m)$

불(Boolean) & 산술(Arithmetic) Masking

• 불(Boolean)-masking : $x' = x \oplus r$

• 산술(Arithmetic)-masking : $A = x - r \mod 2^k$

x: 마스킹이 적용될 원래 값

r: : 난수

x', A : 난수 r로 마스킹이 적용된 값

k: 처리되는 데이터의 크기

- 암호 알고리즘에 사용되는 연산 부울(Boolean) 연산과 산술(Arithmetic)연산을 번갈아 사용하는 경우 많음
- 산술-부울 & 부울-산술 변환 알고리즘을 통해 중간 값들의 마스킹 변환 필요
- 마스킹 변환 과정에서 원래 데이터 값인 x가 노출 X

$$x-r \rightarrow (x-r) + (r x or r) \rightarrow x x or r$$

$$111 - 100 = 3 / (111 - 100) + (100 xor 100) = 3 + 0 / 111 xor 100 = 3$$

- Goubin의 부울-산술 마스킹 변환 기법
 - 부울 마스킹 된 중간 값을 산술 연산을 위해 산술 마스킹 된 중간값으로 변환하는 기법
 - **연산량이 매우 적고** 효율적이기 때문에 많은 알고리즘에서 사용
 - ✓ 5번의 XOR
 - ✓ 2번의 뺄셈
 - ✓ 총 7번 기본 연산(XOR, AND, OR, 뺼셈, 덧셈, shift 등)

Input : x', r_x

Output : A

1. $\Gamma = \gamma$

5. $\Gamma = \Gamma \oplus r_x$

2. $T=x'\oplus\Gamma$

6. $A = x' \oplus \Gamma$

3. $T = T - \Gamma$

7. $A = A - \Gamma$

4. $T = T \oplus x'$

8. $A = A \oplus T$

- Goubin의 산술-불 마스킹 변환 기법
 - 산술 마스킹 된 중간값을 부울 연산을 위해 부울 마스킹 된 중간값으로 변환하는 기법
 - m비트 연산을 처리 하는 경우
 - ✓ (2m+4)번의 XOR연산
 - √ (2m+1)번의 AND연산
 - ✓ m번의 shift 연산
 - 총 (5m+5)번의 기본 연산 소요

Input : A , r_x	
Output : x'	
1. $\Gamma = \gamma$	6. $\Gamma = \Gamma \oplus x'$
$2. T=2\Gamma$	7. $\Gamma = \Gamma \wedge r_x$
3. $x' = \Gamma \oplus r_x$	8. $\Omega = \Omega \oplus \Gamma$
4. $\Omega = \Gamma \wedge x'$	9. $\Gamma = T \wedge A$
5. $x' = T \oplus A$	10. $\Omega = \Omega \oplus \Gamma$
11. for $i = 1$ to $k-1$ do	
11.1 $\Gamma = T \wedge r_x$	11.4 $\Gamma = \Gamma \oplus T$
11.2 $\Gamma = \Gamma \oplus \Omega$	11.5 $T=2\Gamma$
11.3 $T = T \wedge A$	
12. $x' = x' \oplus T$	

AES의 마스킹 기법

• C. Herbst, E. Oswald, and S. Mangard, "An AES Smart Card Implementation Resistant to Power Analysis Attacks" (2006)

AES의 마스킹 기법

- Generate 6 random bytes : $(m, m', m_1, m_2, m_3, m_4)$
- Compute $(m_1', m_2', m_3', m_4') = \text{mixcolumn}(m_1, m_2, m_3, m_4)$
- Modified ByteSub : generation of Masking S-box(ms) using m , m'

<마스킹 s-box 생성 방법>
For x from 0 to 0xff
ms(x xor m) = S(x) xor m'

 $x \rightarrow \text{Original cipher} \rightarrow S(x)$

x xor m \rightarrow Masked cipher \rightarrow S(x) xor m'

Algorithm 1. First-order masked AES

```
Input : 16 바이트의 평문 x ((x_0x_1...x_{15})_{o^8}), 마스터키
          K. 라운드 수 Nr
 Output : 16 바이트의 암호문 y ((y<sub>0</sub>y<sub>1</sub>...y<sub>15</sub>)<sub>28</sub>)
1. 여섯 개의 난수 m, m', m1, m2, m3, m4 생성
2. 마스킹 S-box 테이블 생성
     For i=0 to 255 do MS(i \oplus m) = S(i) \oplus m';
3. (m_1', m_2', m_3', m_4') \leftarrow \text{Mixcolumns}(m_1, m_2, m_3, m_4);
4 마스터키 K와 함께 마스킹된 AES 키 스케쥴링을 수행 (각
   16 바이트의 라운드키 k_i'(0 \le i \le Nr)은 16 바이트의
   (m₁'⊕m'||m₂'⊕m'||m₃'⊕m'||m₄'⊕m')⁴로 마스킹 됨
5. s(=s_0s_1...s_{15}) \leftarrow (x \oplus (m_1'||m_2'||m_3'||m_4')^4) \oplus k_0'
6. For j=1 to Nr-1
        For i=0 to 15 do s_i = MS(s_i);
         s = Shiftrow(s); s = Mixcolumns(s);
         s \leftarrow s \oplus k_i';
7. For i=0 to 15 do s_i = MS(s_i);
8. s = Shiftrow(s);
   s \leftarrow s \oplus k_{N_{\bullet}}'; s \leftarrow s \oplus (m_1' \| m_2' \| m_3' \| m_4')^4;
9. Return u \leftarrow s
```

AES의 마스킹 기법

+→冊를의미

AES 마스킹 기법 취약점

- Masked AES의 1라운드 Masked s-box연산
 - 마스킹 s-box를 하나만 만들었기 때문에 매 라운드에 동일한 x'(난수)값을 사용
 - N차 전력분석(N개의 시점을 조합하여 전력분석 하는 것)에 취약

Q&A

