GENE EXPRESSION PROGRAMMING IN PROBLEM SOLVING

Cândida Ferreira

candidaf@gene-expression-programming.com http://www.gene-expression-programming.com

REPRESENTATION

K-Expressions or ORFs

012345678901 *-/Qb+b+aaab

GEP GENES

012345678901234**5678901234567890** /aQ/b*ab/Qa*b*-**ababaababbabbbba**

head

tail a (b)b a

t = h(n-1) + 1 h - head t - tail n - max arity

PLASTICITY OF GEP GENES

0123456789012345678901234567890 /aQ/b*ab/Qa*b*-ababaababbabbbba

0123456789012345678901234567890 /a+/b*ab/Qa*b*-ababaababbabbba

PLASTICITY OF GEP GENES

0123456789012345678901234567890 /aQ/b*ab/Qa*b*-ababaababbabbba

0123456789012345678901234567890 /aQ/bbab/Qa*b*-ababaababbabbba

TRANSLATION

012345678901234012345678901234012345678901234 **Q/*b+Qababaabaa**-abQ/*+bababbab**-*bb/babaaaab

EXPRESSION OF ALGEBRAIC MULTIGENIC CHROMOSOMES

012345678901234012345678901234012345678901234 +bQ**b+bababbbb--b/ba/aaababab*Q*a*-/abaaaaab

EXPRESSION OF BOOLEAN MULTIGENIC CHROMOSOMES

012345678901234501234567890123450123456789012345 **OcIbAcaabcbccaaa**IANAIbbaaaabaaab**AcbcIcaaaacaccaa**

SELECTION AND REPLICATION

```
Generation N: 0
*+-/a*aaaaaaa//+*aaaaaaaaaa-[0] = 10.64033
/-/a//aaaaaaa+*+a/+aaaaaaaa-[1] = 16.2117
*+a-+aaaaaaaa---//aaaaaaaa-[2] = 13.81953
+a*/-aaaaaaaa**+a*aaaaaaaaa-[3] = 18.32701
*-+a/-aaaaaaa/aa+a/aaaaaaaa-[4] = 11.13926
+*//a/aaaaaaa---aa-aaaaaaaa-[5] = 13.88255
*-*-*aaaaaaaa/-a///aaaaaaaa-[6] = 7.777691
/++a-*aaaaaaa/+a*+-aaaaaaaa-[7] = 13.14786
//+*aaaaaaaa*+-/--aaaaaaaa-[8] = 7.713599
-**+-/aaaaaaa*//aa/aaaaaaaa-[9] = 8.73985
Generation N: 1
*+a-+aaaaaaaa---///aaaaaaaa-[0] = 13.81953
/-/a//aaaaaaa+*+a/+aaaaaaaa-[1] = 16.2117
*-+a/-aaaaaaa/aa+a/aaaaaaaa-[2] = 11.13926
+*//a/aaaaaaa---aa-aaaaaaaa-[3] = 13.88255
+a*/-aaaaaaaa**+a*aaaaaaaaa-[4] = 18.32701
-**+-/aaaaaaa*//aa/aaaaaaaa-[5] = 8.73985
-**+-/aaaaaaa*//aa/aaaaaaaa-[6] = 8.73985
//+*aaaaaaaaa*+-/--aaaaaaaa-[7] = 7.713599
/++a-*aaaaaaa/+a*+-aaaaaaaa-[8] = 13.14786
/-/a//aaaaaaa+*+a/+aaaaaaaa-[9] = 16.2117
```

GENETIC DRIFT

(...)

```
Generation N: 8

/-/a//aaaaaaa+*+a/+aaaaaaa-[0] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[1] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[2] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[3] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[4] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[5] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[6] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[7] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[8] = 16.2117

/-/a//aaaaaaa+*+a/+aaaaaaa-[9] = 16.2117
```

MUTATION

0123**4**567890**0**123456789001**2**34567890 Q+bb*bbbaba-**--abbbaaQ***a***Qbbbaab

0123**4**567890**0**123456789001**2**34567890 Q+bb/bbbaba**Q****--abbbaaQ***+***Qbbbaab

IS Transposition

0123456789012345601234567890123456 -aba+Q-baabaabaabQ*+*+-/aababbaaaa

0123456789012345601234567890123456 -aba+Q-baabaabaabQ*+a+Q*+ababbaaaa

RIS Transposition

0123456789012345601234567890123456 *-bQ/++/babbabbba//Q*baa+bbbabbbb

0123456789012345601234567890123456 Q/+*-bQ/babbabbba//Q*baa+bbbabbbb

GENE TRANSPOSITION

012345678901201234567890120123456789012 /Q-aabbaaabbb/+Qa*bbaaabaa*a*/Qbbbbbbabb

1-Point Recombination

0123456789012345601234567890123456 +*-b-Q/-bbbbbbbbb-*-ab/b+bbbaabbaa ++//b/a*aabbbbbaaa-Q-//b/*aabbabbab

2-POINT RECOMBINATION

0123456789012345601234567890123456 *-+Q/Q*QaaabbbbabbQQab*++-aabbabaab Q/-b-+/abaabbbaab/*-aQa*babbabb

0123456789012345601234567890123456 *-+Q/+/abaabbbaab/*-aQa*-aabbabbabb Q/-b-Q*QaaabbbbabbQQab*++babbabbabb

GENE RECOMBINATION

012345678901201234567890120123456789012 /+/ab-aabbbbb-aa**+aaabaaa-+--babbbbaab +baQaaaabaaba*-+a-aabbabbb/ab/+bbbabaaa

012345678901201234567890120123456789012 /+/ab-aabbbbb*-+a-aabbabbb-+--babbbbaab +baQaaaabaaba-aa**+aaabaaa/ab/+bbbabaaa

SOLVING A SIMPLE PROBLEM

TEST FUNCTION:

$$y = 3a^2 + 2a + 1$$

FITNESS CASES

а	f(a)
-4.2605	46.9346
-2.0437	9.44273
-9.8317	271.324
2.7429	29.0563
0.7328	4.07659
-8.6491	208.123
-3.6101	32.8783
-1.8999	8.02906
-4.8852	62.8251
7.3998	180.071

SETTINGS

FITNESS FUNCTION:

$$f_{i} = \sum_{j=1}^{C_{t}} \left(M - \left| C_{(i,j)} - T_{j} \right| \right)$$

GENERAL SETTINGS

Number of generations	50
Population size	20
Number of fitness cases	10 (Table 1)
Function set	+ - * /
Gene length	13
Number of genes	3
Linking function	+
Chromosome length	3 9
Mutation rate	0.051
1-Point recombination rate	0.3
2-Point recombination rate	0.3
Gene recombination rate	0.1
IS transposition rate	0,1
IS elements length	1,2,3
RIS transposition rate	0.1
RIS elements length	1,2,3
Gene transposition rate	0.1
Selection range	100
Precision	0.01

EVOLUTIONARY DYNAMICS

INITIAL POPULATION

```
Generation N: 0
012345678901201234567890120123456789012
+**/*/aaaaaaa/+a/a*aaaaaaa/a-*a+aaaaaaaa-[0] = 577.3946
--aa++aaaaaaa+-/a*/aaaaaaaa/--a-aaaaaaaaa-[1] = 0
/***/+aaaaaaaa*+/+-aaaaaaaaa++aa/aaaaaaaa-[ 2] = 463.6533
-/+/++aaaaaaaa+-//+/aaaaaaaaa+-/a/*aaaaaaaa-[ 3] = 546.4241
++a/*aaaaaaaa+-+a*-aaaaaaaa-a/-*aaaaaaaaa-[4] = 460.8625
*+*a-*aaaaaaa*a/aa/aaaaaaaa//+*a/aaaaaaaa-[5] = 353.2168
*/**+aaaaaaaa+a/**+aaaaaaaa----+/aaaaaaaa-[6] = 492.6827
*aa-+-aaaaaaa+a/-+/aaaaaaaa***/-*aaaaaaaa-[7] = 560.9289
+/-*//aaaaaaa*+*//+aaaaaaaa-/**+*aaaaaaaa-[8] = 363.4358
--a+*/aaaaaaa+a++--aaaaaaaa+a+aa+aaaaaaaa-[9] = 386.7576
+-*-**aaaaaaa*/-+**aaaaaaa*+--++aaaaaaaa-[10] = 380.6484
/a-**/aaaaaaa/-a/a/aaaaaaa+/a/-*aaaaaaa-[11] = 0
+--+//aaaaaaaa+*+/*-aaaaaaaa/*-a-+aaaaaaaa-[12] = 551.2066
-a/+a/aaaaaaa*/--/aaaaaaaaa*-+/a+aaaaaaaa-[13] = 308.1296
/+/-+-aaaaaaaa+-a/aaaaaaaaa**+-*-aaaaaaaa-[14] = 0
//-*+/aaaaaaaa//*a+aaaaaaaa/a++a*aaaaaaaa-[15] = 489.5392
*a-a*-aaaaaaa+*+-a/aaaaaaaa*/*aa*aaaaaaa-[16] = 399.2122
-a++*/aaaaaaa+/aa-*aaaaaaa---/**aaaaaaaa-[17] = 317.6631
--a/*aaaaaaa++*+-aaaaaaaaa+-/*+-aaaaaaaa-[18] = 597.8777
```

BEST OF GENERATION 0

012345678901201234567890120123456789012 *+++-/aaaaaaaa/--//aaaaaaaa+-+aaaaaaaaa

GENERATION 1

```
Generation N: 1
012345678901201234567890120123456789012
-a++*/aaaaaaa+//a--aaaaaaaa---/**aaaaaaaa-[1] = 0
+-*-**aaaaaaa*/-+**aaaaaaaa*+--++aaaaaaaa-[2] = 380.6484
+-*-**aaaaaaa*/-+**aaaaaaa*/*a**aaaaaaa-[ 3] = 356.9471
+-+aaaaaaaaa*+++-/aaaaaaaa/--///aaaaaaaa-[ 4] = 661.5933
*aa-+-aaaaaaa+a/++/aaaaaaaa***+-*aaaaaaaa-[5] = 567.9289
*a-a*-aaaaaaa+/*-a/aaaaaaa*+-*++aaaaaaaa-[6] = 449.802
*aa-+-aaaaaaa+a/-+/aaaaaaaa*+--++aaaaaaaa-[7] = 961.8512
/***/+aaaaaaa*+/+-aaaaaaaaa-a/-*aaaaaaaa-[ 8] = 470.5862
+--+//aaaaaaaa+*+/*-aaaaaaaa/*-a-+aaaaaaaa-[9] = 551.2066
--+a*-aaaaaaa++a/*aaaaaaaa-a/-*aaaaaaaaa-[11] = 487.3099
-a++*/aaaaaaa+/aa-*aaaaaaa---/**aaaaaaaa-[12] = 317.6631
++a/*aaaaaaaa+-+a*-aaaaaaaa++aa/aaaaaaaaa-[13] = 451.464
+--+/-aaaaaaa+a/**+aaaaaaa----+/aaaaaaaa-[14] = 493.5336
*/-a++aaaaaaa+/aa-*aaaaaaaa---/**aaaaaaaa-[15] = 356.4241
+/-*//aaaaaaa*+a//+aaaaaaaa-/+*+*aaaaaaaa-[16] = 493.9218
*/**+aaaaaaaa+*+/*aaaaaaaa***/-*aaaaaaaa-[17] = 448.4805
+-*-**aaaaaaa*/-+**aaaaaaa*+--++aaaaaaaa-[18] = 380.6484
++a/*aaaaaaa+-+a*+aaaaaaa--/-*aaaaaaaaa-[19] = 380.8585
```

BEST OF **G**ENERATION 1

012345678901201234567890120123456789012 *aa-+-aaaaaaa+a/-+/aaaaaaa*+--++aaaaaaa

GENERATION 2

```
Generation N: 2
012345678901201234567890120123456789012
*aa-+-aaaaaaa+a/-+/aaaaaaaa*+--++aaaaaaaa-[0] = 961.8512
*/**+aaaaaaaa*/-+**aaaaaaaa***/-*aaaaaaaa-[1] = 446.2061
+-*-**aaaaaaa*+a//-aaaaaaaa-/+*+*aaaaaaaa-[2] = 323.1036
+--+//aaaaaaaa+*+/*-aaaaaaaa/*-*-+aaaaaaaa-[3] = 551.2066
*aa-+-aaaaaaa+a/++/aaaaaaaa***+-*aaaaaaaa-[4] = 567.9289
++a/*aaaaaaaa*/-+-*aaaaaaaa*+--++aaaaaaaa-[5] = 0
+-*-**aaaaaaa+*+/*aaaaaaaa*/*a**aaaaaaa-[6] = 386.6484
++a/*aaaaaaaa+-+/*-aaaaaaaa+aa++aaaaaaaaa-[7] = 466.1533
+-*-a*aaaaaaa*/-+**aaaaaaaa*a*a*a*a*aaaaaaa-[8] = 194.0452
/***/+aaaaaaa*+/+-aaaaaaaaa-a--*aaaaaaaa-[9] = 541.4829
+-*-+*aaaaaaa+-+a*-aaaaaaaa***/-*aaaaaaaa-[10] = 346.2235
--*+*-aaaaaaaa*aa-+-aaaaaaaaaa/-+/aaaaaaaa-[11] = 467.0862
*/-+**aaaaaaa+-*-*+aaaaaaaa*/*a**aaaaaaa-[12] = 672.877
*aa+*/aaaaaaa+a/-+/aaaaaaaa*+--++aaaaaaaa-[13] = 961.8512
*+++/+aaaaaaa*++/+-aaaaaaaaa-a/-*aaaaaaaaa-[14] = 395.858
/***-/aaaaaaa/--///aaaaaaaa+-+a-aaaaaaaaa-[15] = 467.0862
*aa-+-aaaaaaa+a/++/aaaaaaaa***+-*aaaaaaaa-[16] = 567.9289
+-+aaaaaaaaaa*+++-/aaaaaaaa/--///aaaaaaaa-[17] = 661.5933
+/-*//aaaaaaa*/a+**aaaaaaa*+--++aaaaaaaa-[18] = 903.8886
```

GENERATION 3

```
Generation N: 3
012345678901201234567890120123456789012
*aa+*/aaaaaaa+a/-+/aaaaaaaa*+--++aaaaaaaa-[0] = 961.8512
*aa-+-aaaaaaaa-++/+-aaaaaaaa-a/-*aaaaaaaaa-[2] = 558.2066
*+++/+aaaaaaaa*+a/-+aaaaaaaa++--++aaaaaaaa-[ 3] = 569.0469
/+++/+aaaaaaaa*++/+-aaaaaaaa-a/-*aaaaaaaa-[ 4] = 699.5153
+-+aa/aaaaaaa++++-/aaaaaaaa***+-*aaaaaaaa-[5] = 466.1533
--++*-aaaaaaaa*a+/*-aaaaaaaa+aa++aaaaaaaaa-[7] = 337.7807
*aaa*/aaaaaaa+a+-+/aaaaaaaa*+-/++aaaaaaaa-[8] = 953.9443
/***/-aaaaaaa*+/+-aaaaaaaaa-a--*aaaaaaaaa-[ 9] = 0
*aa-+-aaaaaaa+a/-+/aaaaaaaa*/--++aaaaaaaa-[10] = 560.9289
+-+a-aaaaaaaa/***-/aaaaaaaa*+--++aaaaaaaa-[12] = 676.0663
+/**//aaaaaaa*/a+**aaaaaaa*+--++aaaaaaaa-[13] = 1000
*/-+**aaaaaaa+-*-*+aaaaaaa*/*a**aaaaaaa-[14] = 672.877
/***/+aaaaaaa/+*+/+aaaaaaaa-a*/--aaaaaaaa-[15] = 498.3734
+/-*//aaaaaaa*/a+-*aaaaaaa*+--++aaaaaaaa-[16] = 0
--*+--aaaaaaa*/a-+-aaaaaaa/a/-+/aaaaaaaa-[17] = 506.1233
++a/*aaaaaaa+-a-+-aaaaaaa-a*-+/aaaaaaaa-[18] = 815.7772
*+a//-aaaaaaa+a/-+/aaaaaaaa-/+*+*aaaaaaaa-[19] = 412.5237
```

Perfect Solution

012345678901201234567890120123456789012 +/**//aaaaaaa*/a+**aaaaaaa*+--++aaaaaaa

Using Numerical Constants

01234567890123456789012345678901234
*?+?/*a-*/*a????a??a??a281983874486

FINDING THE 'V' SHAPED FUNCTION

TEST FUNCTION:

$$y = 4.251a^2 + \ln(a^2) + 7.243e^a$$

FITNESS FUNCTION:

$$f_i = \sum_{j=1}^{C_t} \left(M - \left| \frac{C_{(i,j)} - T_j}{T_j} \cdot 100 \right| \right)$$

FITNESS CASES

а	f(a)
-0.2639725157548009	3.194980662652764
0.0578905532656938	1.990520017259985
0.3340252901096346	8.396637039972868
-0.2363345775644623	3.070889769728257
-0.8557443825668047	5.879467636957033
-0.0194437136332785	-0.7753263223284588
-0.1921343881833043	2.834702257744086
0.5293079101246271	12.21547266421373
-0.007889741187284598	-2.498039834186359
0.4389698049506311	10.40717348588088
-0.1075592926980396	2.094136356459081
-0.2745569943771633	3.239272780108398
-0.05953332196045281	1.197012847673475
0.3844929939583523	9.355807691898551
-0.8749230207363339	6.006424530013026
-0.236546636250546	3.071897290438372
-0.1678759417045577	2.674400531309863
0.9506821818220914	22.48196398441491
0.9469791595773622	22.37501611873555
0.6393399100595915	14.5701285332337

SETTINGS

GENERAL SETTINGS

	With Random Constants	Without Random Constants
Number of runs	100	100
Number of generations	5000	5000
Population size	100	100
Number of fitness cases	20 (Table 3)	20 (Table 3)
Function set	+-*/LEK~SC	+-*/LEK~SC
Head length	6	6
Number of genes	4	5
Linking function	+	+
Chromosome length	80	6 5
Mutation rate	0.044	0.044
1-Point recombination rate	0.3	0.3
2-Point recombination rate	0.3	0.3
Gene recombination rate	0.1	0.1
IS transposition rate	0.1	0.1
IS elements length	1,2,3	1,2,3
RIS transposition rate	0.1	0.1
RIS elements length	1,2,3	1,2,3
Gene transposition rate	0.1	0.1
Rand. const. mut. rate	0.01	
Dc specific IS transp. rate	0.1	
Dc specific IS elements lengt	h 1,2,3	
Selection range	100%	100%
Precision	0.01%	0.01%
Average best-of-run fitness	1850.476	1934.619

EVOLUTIONARY DYNAMICS

Model Evolved With Random Constants

- Gene 0: L*~*+/aa?a??a2132990 $A_0 = \{0.565, 0.203, 0.613, 0.219, 0.28, 0.25, 0.48, 0.427, 0.821, 0.127\}$
- Gene 1: **E-+-*?aaaaaaa7332660** $A_1 = \{0.031, 0.046, 0.696, 0.643, 0.528, 0.417, 0.978, 0.811, 0.637, 0.988\}$
- Gene 2: ~Saaa+??aa??a9109969 $A_2 = \{0.515, 0.466, 0.254, 0.219, 0.425, 0.942, 0.306, 0.619, 0.821, 0.262\}$
- Gene 3: ~SSaES????aa5420661 $A_3 = \{0.595, 0.547, 0.525, 0.219, 0.2970.387, 0.508, 0.695, 0.728, 0.415\}$

Sub-ET₂

Sub-ET₃

Sub-ET₄

$$y = \left[\ln^{\left(10^{(a+0.613)} \cdot \frac{a^2}{0.203}\right)} \right] + \left[e^{\left(a^2 + 0.811\right)} \right] + \left[10^{\sin(a)} \right] + \left[10^{\sin(\sin(a))} \right]$$

PLOT COMPARISON

Model Evolved Without Random Constants

01234567890120123456789012012345678901201234567890120123456789012 +EL-*/aaaaaaa~a+E/Laaaaaaa+C+C+Eaaaaaaa*C~+aSaaaaaaa~a-L~+aaaaaa

$$y = [e^{(1-a)} + \ln(a^2)] + [10^a] + [\cos(\cos(a)) + 2a + e^a] + [\cos(\sin(a) + a) \cdot 10^a] + [10^a]$$

PLOT COMPARISON

FINDING A 5-PARAMETER FUNCTION

TEST FUNCTION:

$$y = \frac{\sin(a) \cdot \cos(b)}{\sqrt{10^c}} + \tan(d - e)$$

FITNESS FUNCTION:

$$f_{i} = \sum_{j=1}^{C_{t}} \left(M - \left| \frac{C_{(i,j)} - T_{j}}{T_{j}} \cdot 100 \right| \right)$$

GENERAL SETTINGS

Number of generations	1000
Population size	100
Number of fitness cases	100
Function set	+ - * / Q K ~ S C G
Gene length	19
Number of genes	3
Linking function	+
Chromosome length	57
Mutation rate	0.044
1-Point recombination rate	0.3
2-Point recombination rate	0.3
Gene recombination rate	0.1
IS transposition rate	0,1
IS elements length	1,2,3
RIS transposition rate	0.1
RIS elements length	1,2,3
Gene transposition rate	0.1
Selection range	100%
Precision	0%

EVOLVED MODEL

012345678901234567801234567890123456780123456789012345678 SS*-GKcaCbbccbeabdbaC--SKaeGceadddabadG-de*add+adedabdeaa

Sub-ET₁

Sub-ET₂

Sub-ET₃

$$y = \left[\sin\left(\sin\left((\log(\cos(b)) - c\right) \cdot \tan(a)\right)\right] + \left[a\right] + \left[\tan(d - e)\right]$$


```
double APSCfunction(double d[ ])
{
   double dblTemp = 0;
   dblTemp+=\sin(\sin((\log 10(\cos(d[1]))-d[2])*\tan(d[0]))));
   dblTemp += d[0];
   dblTemp += \tan((d[3]-d[4]));
   return dblTemp;
}
```