Задание 3 (на 26.02).

СС 10. Докажите, что:

- (a) что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a \in 2,3,\ldots,n-1$ при котором $a^{n-1} \equiv 1 \pmod n$, а $a^{\frac{n-1}{q}} \not\equiv 1 \pmod n$;
- (б) язык простых чисел лежит в NP.

СС 11. Докажите NP-полноту следующих задач:

- (а) на вход подается пара графов (G_1, G_2) , необходимо определить, изоморфен ли граф G_2 подграфу графа G_1 (подсказка для одного из решений, вершины графа G_1 кодируют подстановку для группы переменных из булевой формулы);
- (б) на вход подается граф G_1 и число $k \leq |G|$, необходимо определить, есть ли в графе G клика размера k;
- (в) на вход подается граф G_1 и число $k \leq |G|$, необходимо определить, существует такое ли $V \subseteq G$, что $|V| \leq k$ и все ребра графа G инцидентны хотя бы одной вершине из множества V.

 \mathbf{EXP} — класс языков, разрешимых на ДМТ за время $2^{\text{poly}(n)}$. \mathbf{NEXP} — класс языков, разрешимых на НМТ за время $2^{\text{poly}(n)}$.

Пусть ${\bf C}$ — класс языков, тогда ${\bf co}$ - ${\bf C}$ = $\{L \mid \overline{L} \in {\bf C}\}$, где \overline{L} — дополнение языка. ${\bf CC}$ 12. Покажите, что:

- (a) $\mathbf{P} \subseteq \mathbf{NP} \cap \mathbf{co} \cdot \mathbf{NP}$;
- (6) $NP \subseteq EXP$.
- \mathbf{CC} 13. Покажите, что если $\mathbf{P} = \mathbf{NP}$, то $\mathbf{EXP} = \mathbf{NEXP}$.
- **СС 14.** Докажите, что язык GNI (пар неизоморфных подграфов) лежит в ${\bf P^{NP}}$.

[CC 15.] Пусть существует NP-полный унарный язык (все слова которого, состоят только из одного символа). Докажите, что P = NP.

 $[CC\ 16.]$ (подсказка: вспомните прошлый семестр) Докажите, что $P \neq EXP$.