Unsupervised Learning in Python

1). Clustering for Dataset Expploration:

```
a). Clustering 2D Points

# Import KMeans

from sklearn.cluster import KMeans

# Create a KMeans instance with 3 clusters: model

model = KMeans(n_clusters=3)

# Fit model to points

model.fit(points)

# Determine the cluster labels of new_points: labels

labels = model.predict(new_points)

# Print cluster labels of new_points

print(labels)
```

b). Inspect your clustering

Import pyplot

import matplotlib.pyplot as plt

Assign the columns of new_points: xs and ys

 $xs = new_points[:,0]$

ys = new_points[:,1]

Make a scatter plot of xs and ys, using labels to define the colors plt.scatter(xs,ys,c=labels, alpha=0.5)

Assign the cluster centers: centroids centroids = model.cluster_centers_

Assign the columns of centroids: centroids_x, centroids_y

centroids_x = centroids[:,0]

centroids_y = centroids[:,1]

Make a scatter plot of centroids_x and centroids_y
plt.scatter(centroids_x, centroids_y, marker='D',s=50)
plt.show()


```
Machine Learning with the Experts: School Budgets
```

Chapter 1

```
c). How many Clusters of grains
```

```
ks = range(1, 6)
inertias = []
```

for k in ks:

```
# Create a KMeans instance with k clusters: model
model=KMeans(n_clusters=k)
```

Fit model to samples model.fit(samples)

Append the inertia to the list of inertias inertias.append(model.inertia_)

```
# Plot ks vs inertias
plt.plot(ks, inertias, '-o')
plt.xlabel('number of clusters, k')
plt.ylabel('inertia')
plt.xticks(ks)
plt.show()
```



```
d). Evaluating the grain clustering
```

```
# Create a KMeans model with 3 clusters: model
model = KMeans(n_clusters=3)
# Use fit_predict to fit model and obtain cluster labels: labels
labels = model.fit\_predict(samples)
# Create a DataFrame with labels and varieties as columns: df
df = pd.DataFrame({'labels': labels, 'varieties': varieties})
# Create crosstab: ct
ct = pd.crosstab(df['labels'],df['varieties'])
# Display ct
print(ct)
<script.py> output:
  varieties Canadian wheat Kama wheat Rosa wheat
  labels
                2
                        60
                                10
                0
  1
                               60
```

9

68

0

2

Chapter 1

e). Scaling Fish dta for clustering

Perform the necessary imports

 $from \ sklearn.pipeline \ import \ make_pipeline$

 $from \ sklearn.preprocessing \ import \ Standard Scaler$

from sklearn.cluster import KMeans

Create scaler: scaler

scaler = StandardScaler()

Create KMeans instance: kmeans

kmeans = KMeans(n_clusters=4)

Create pipeline: pipeline

pipeline = make_pipeline(scaler,kmeans)

Chapter 1

```
f). Clustering Fish Data:
# Import pandas
import pandas as pd
# Fit the pipeline to samples
pipeline.fit (samples)\\
# Calculate the cluster labels: labels
labels = pipeline.predict(samples)
# Create a DataFrame with labels and species as columns: df
df =pd.DataFrame({'labels':labels, 'species':species})
# Create crosstab: ct
ct = pd.crosstab(df['labels'],df['species'])
# Display ct
print(ct)
<script.py> output:
  species Bream Pike Roach Smelt
  labels
  0
         33 0
                   1
                        0
  1
          0 17
                   0
                      0
  2
          0
              0
                  0
                      13
  3
          1 0 19
                      1
```

Chapter 1

```
g). Clustering stocks using KMeans
```

Import Normalizer

from sklearn.preprocessing import Normalizer

Create a normalizer: normalizer

normalizer = Normalizer()

Create a KMeans model with 10 clusters: kmeans

 $kmeans = KMeans(n_clusters=10)$

Make a pipeline chaining normalizer and kmeans: pipeline

pipeline = make_pipeline(normalizer,kmeans)

Fit pipeline to the daily price movements

pipeline.fit(movements)

```
Machine Learning with the Experts: School Budgets
```

```
Chapter 1
```

```
h). Which stocks move together?
```

```
# Import pandas
```

 $import\ pandas\ as\ pd$

Predict the cluster labels: labels

labels = pipeline.predict(movements)

Create a DataFrame aligning labels and companies: df

df = pd.DataFrame({'labels': labels, 'companies': companies})

Display df sorted by cluster label

print(df.sort_values('labels'))

<script.py> output:

companies labels

- 29 Lookheed Martin 0
- Northrop Grumman 0
- 4 Boeing 0
- 33 Microsoft 1
- 23 IBM 1
- 11 Cisco
- 47 Symantec
- 24 Intel 1
- 51 Texas instruments 1
- 50 Taiwan Semiconductor Manufacturing
- 56 Wal-Mart 2
- 25 Johnson & Johnson 2
- 27 Kimberly-Clark 2
- 28 Coca Cola 2
- Pepsi 2
- 41 Philip Morris 2
- 40 Procter Gamble

Machine Learning with the Experts: School Budgets		Chapter 1
9	Colgate-Palmolive 2	
39	Pfizer 2	
35	Navistar 3	
57	Exxon 3	
32	3M 3	
53	Valero Energy 3	
43	SAP 3	
44	Schlumberger 3	
0	Apple 3	
8	Caterpillar 3	
10	ConocoPhillips 3	
13	DuPont de Nemours 3	
12	Chevron 3	
26	JPMorgan Chase 4	
1	AIG 4	
55	Wells Fargo 4	
58	Xerox 4	
3	American express 4	
5	Bank of America 4	
18	Goldman Sachs 4	
16	General Electrics 4	
52	Unilever 5	
6	British American Tobacco 5	
49	Total 5	
46	Sanofi-Aventis 5	
42	Royal Dutch Shell 5	
19	GlaxoSmithKline 5	
37	Novartis 5	
15	Ford 6	
45	Sony 6	
7	Canon 6	
48	Toyota 6	