EEE104 – Digital Electronics (I) Lecture 15

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Counter Overview
- Asynchronous Counters

A Revision: J-K Flip-Flops

 When J = 1 and K = 1, the output will be toggled at the rising edge of the clock.

	INPUTS		OUTPUTS			
J	Κ	CLK	Q	\overline{Q}	COMMENTS	
0	0	1	Q_0	\overline{Q}_0	No change	
0	1	1	0	1	RESET	
1	0	1	1	0	SET	
1	1	1	\overline{Q}_0	Q_0	Toggle	

Counter Overview

A **counter** is a group of flip-flops connected together to perform counting operation.

Categories:

- Asynchronous counters: each flip-flop is clocked by the output of the preceding flip-flop.
- **Synchronous counters**: all the flip-flops are clocked by the same clock input.

2-Bit Asynchronous Binary Counters

- J and K are HIGH for all flip-flops.
- FF1 is clocked by the Q_0 output of FF0.

CLOCK PULSE	Q_1	Q_0
Initially	0	0
1	0	1
2	1	0
3	1	1
4 (recycles)	0	0

3-Bit Asynchronous Binary Counters

4-Bit Asynchronous Binary Counters

Asynchronous Decade Counters

- With n flip-flops, the maximum number of states of a counter is 2ⁿ.
- A counter may be designed to go through less states or a truncated sequence, e.g. decade counter which counts from 0000 to 1001.
- The number of unique states that a counter will sequence through is called **modulus**.

Asynchronous Decade Counters

- Once state 1010
 appears, the decoder will reset the counter.
- Only Q₁ and Q₃ used Partial Decoding

Asynchronous Modulus-12 Counters

Cumulative Delay in Asynchronous Counters

The **propagation delay time** is the time interval for the output to change after an input has been applied.

Cumulative Delay in Asynchronous Counters

It limits the rate at which the counter can be clocked.

It creates decoding problems.

74LS93A

- Q₀ should be connected with CLK B when used as a counter.
- The NAND gate can be used as the decoder.

Decade counter

Modulus-12 counter

