Trigonometric integrals and trig substitution — Solutions

Question 1: Trigonometric Integrals

(a) $\int \sin^3 x \cos^2 x \, dx.$

Write $\sin^3 x = \sin^2 x \sin x = (1 - \cos^2 x) \sin x$. Let $u = \cos x$, $du = -\sin x \, dx$. Then

$$\int \sin^3 x \cos^2 x \, dx = \int (1 - \cos^2 x) \cos^2 x \sin x \, dx = -\int (1 - u^2) u^2 \, du = -\int (u^2 - u^4) \, du.$$

Integrate:

$$-\left(\frac{u^3}{3} - \frac{u^5}{5}\right) + C = -\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} + C.$$

(b) $\int \cos^3 x \, dx.$

Write $\cos^3 x = \cos^2 x \cos x = (1 - \sin^2 x) \cos x$. Let $u = \sin x$, $du = \cos x dx$. Then

$$\int (1 - u^2) du = u - \frac{u^3}{3} + C = \sin x - \frac{\sin^3 x}{3} + C.$$

(c) $\int \sin^2 x \cos^2 x \, dx.$

Use the double-angle identities:

$$\sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) = \frac{1}{4} \cdot \frac{1 - \cos(4x)}{2} = \frac{1}{8} (1 - \cos 4x).$$

Thus

$$\int \sin^2 x \cos^2 x \, dx = \frac{1}{8} \int (1 - \cos 4x) \, dx = \frac{1}{8} \left(x - \frac{\sin 4x}{4} \right) + C = \frac{x}{8} - \frac{\sin 4x}{32} + C.$$

(d) $\int \tan^3 x \sec^4 x \, dx.$

Write $\tan^3 x = (\tan^2 x) \tan x = (\sec^2 x - 1) \tan x$. Then

$$\int \tan^3 x \sec^4 x \, dx = \int (\sec^2 x - 1) \tan x \sec^4 x \, dx = \int (\tan x \sec^6 x - \tan x \sec^4 x) \, dx.$$

Factor $\sec x \tan x \, dx$ and $\sec u = \sec x$, $du = \sec x \tan x \, dx$:

$$\int (u^5 - u^3) \, du = \frac{u^6}{6} - \frac{u^4}{4} + C = \frac{\sec^6 x}{6} - \frac{\sec^4 x}{4} + C.$$

(e) $\int \sec x \, dx$.

Standard antiderivative:

$$\int \sec x \, dx = \ln \left| \sec x + \tan x \right| + C.$$

(f)
$$\int \sin(3x)\cos(5x)\,dx.$$

Use the product-to-sum formula $\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$:

$$\sin(3x)\cos(5x) = \frac{1}{2}(\sin 8x + \sin(-2x)) = \frac{1}{2}(\sin 8x - \sin 2x)$$

Integrate:

$$\int \sin(3x)\cos(5x) \, dx = \frac{1}{2} \left(-\frac{\cos 8x}{8} + \frac{\cos 2x}{2} \right) + C = -\frac{\cos 8x}{16} + \frac{\cos 2x}{4} + C.$$

Question 2: Trigonometric Substitution

(a)
$$\int \sqrt{9-x^2} \, dx.$$

Use $x = 3\sin\theta \ (-\frac{\pi}{2} \le \theta \le \frac{\pi}{2})$, so $dx = 3\cos\theta \ d\theta$ and $\sqrt{9-x^2} = 3\cos\theta$. Then

$$\int 3\cos\theta \cdot 3\cos\theta \, d\theta = 9 \int \cos^2\theta \, d\theta = 9 \int \frac{1+\cos 2\theta}{2} \, d\theta = \frac{9}{2}\theta + \frac{9}{4}\sin\theta\cos\theta + C.$$

Return to x: $\theta = \arcsin(x/3)$, $\sin \theta = \frac{x}{3}$, $\cos \theta = \frac{\sqrt{9-x^2}}{3}$. Hence

$$\int \sqrt{9 - x^2} \, dx = \frac{9}{2} \arcsin \frac{x}{3} + \frac{x\sqrt{9 - x^2}}{4} + C \, .$$

(b)
$$\int \frac{dx}{\sqrt{x^2 + 16}}.$$

Standard result (use $x = 4 \tan \theta$ or recognize form):

$$\int \frac{dx}{\sqrt{x^2 + 16}} = \ln\left|x + \sqrt{x^2 + 16}\right| + C.$$

(Equivalent form: $\operatorname{arsinh}(x/4) + C$.)

(c)
$$\int \frac{x^2}{\sqrt{x^2+4}} \, dx.$$

Use $x = 2 \tan \theta$, $dx = 2 \sec^2 \theta d\theta$, $\sqrt{x^2 + 4} = 2 \sec \theta$. Then

$$\int \frac{4\tan^2\theta \cdot 2\sec^2\theta \, d\theta}{2\sec\theta} = 4\int \tan^2\theta \sec\theta \, d\theta = 4\int (\sec^3\theta - \sec\theta) \, d\theta.$$

Use $\int \sec^3 \theta \, d\theta = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln|\sec \theta + \tan \theta| + C$ and $\int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| + C$. Thus

 $4\left(\frac{1}{2}\sec\theta\tan\theta+\frac{1}{2}\ln|\sec\theta+\tan\theta|-\ln|\sec\theta+\tan\theta|\right)+C=2\sec\theta\tan\theta-2\ln|\sec\theta+\tan\theta|+C.$

Back-substitute: $\tan \theta = \frac{x}{2}$, $\sec \theta = \frac{\sqrt{x^2+4}}{2}$. So

$$\int \frac{x^2}{\sqrt{x^2 + 4}} \, dx = \frac{x\sqrt{x^2 + 4}}{2} - 2\ln|x + \sqrt{x^2 + 4}| + C$$

(d)
$$\int \frac{dx}{x^2 \sqrt{x^2 - 25}}.$$

Use $x = 5 \sec \theta$ (for |x| > 5), $dx = 5 \sec \theta \tan \theta d\theta$, $\sqrt{x^2 - 25} = 5 \tan \theta$. Then

$$\int \frac{5 \sec \theta \tan \theta \, d\theta}{25 \sec^2 \theta \cdot 5 \tan \theta} = \int \frac{5 \sec \theta \tan \theta}{125 \sec^2 \theta \tan \theta} \, d\theta = \frac{1}{25} \int \cos \theta \, d\theta = \frac{1}{25} \sin \theta + C.$$

Return to x: $\sin \theta = \frac{\sqrt{x^2 - 25}}{x}$. Therefore

$$\int \frac{dx}{x^2 \sqrt{x^2 - 25}} = \frac{1}{25} \cdot \frac{\sqrt{x^2 - 25}}{x} + C \ .$$

(e)
$$\int \frac{dx}{\sqrt{4x^2 - 1}}.$$

Write $4x^2 - 1 = (2x)^2 - 1$. Set $2x = \sec \theta$ so $x = \frac{1}{2} \sec \theta$, $dx = \frac{1}{2} \sec \theta \tan \theta d\theta$, and $\sqrt{4x^2 - 1} = \tan \theta$. Then

$$\int \frac{\frac{1}{2} \sec \theta \tan \theta \, d\theta}{\tan \theta} = \frac{1}{2} \int \sec \theta \, d\theta = \frac{1}{2} \ln \left| \sec \theta + \tan \theta \right| + C.$$

Back-substitute $\sec \theta = 2x$, $\tan \theta = \sqrt{4x^2 - 1}$:

$$\int \frac{dx}{\sqrt{4x^2 - 1}} = \frac{1}{2} \ln |2x + \sqrt{4x^2 - 1}| + C.$$

$$(f) \int \frac{dx}{x^2 + 4x + 8}.$$

Complete the square: $x^2 + 4x + 8 = (x+2)^2 + 4$. Let u = x + 2, du = dx. Then

$$\int \frac{du}{u^2 + 2^2} = \frac{1}{2}\arctan\frac{u}{2} + C = \frac{1}{2}\arctan\frac{x+2}{2} + C.$$

So

$$\int \frac{dx}{x^2 + 4x + 8} = \frac{1}{2}\arctan\frac{x+2}{2} + C$$