Package 'spectralAnalysis'

January 30, 2024

Title Pre-Process, Visualize and Analyse Spectral Data

Version 4.3.3

Maintainer Adriaan Blommaert <adriaan.blommaert@openanalytics.eu>

URL https://openanalytics.eu

Description Infrared, near-infrared and Raman spectroscopic data measured during chemical reactions, provide structural fingerprints by which molecules can be identified and quantified. The application of these spectroscopic techniques as inline process analytical tools (PAT), provides the pharmaceutical and chemical industry with novel tools, allowing to monitor their chemical processes, resulting in a better process understanding through insight in reaction rates, mechanistics, stability, etc.

Data can be read into R via the generic spc-format, which is generally supported by spectrometer vendor software. Versatile pre-processing functions are available to perform baseline correction by linking to the 'baseline' package; noise reduction via the 'signal' pack-

age; as well as time alignment, normalization, differentiation, integration and interpolation. Implementation based on the S4 object system allows storing a pre-

processing pipeline as part of a spectral data object, and easily transfer-

ring it to other datasets. Interactive plotting tools are provided based on the 'plotly' package. Non-negative matrix factorization (NMF) has been implemented to perform multivariate analyses on individual spectral datasets or on multiple datasets at once. NMF provides a partsbased representation of the spectral data in terms of spectral signatures of the chemical compounds and their relative proportions.

See 'hNMF'-package for references on available methods. The functionality to read in spc-files was adapted from the 'hyperSpec' package.

License GPL-3

biocViews

Imports baseline, BiocGenerics, data.table, ggplot2, graphics, jsonlite, magrittr, methods, nnls, NMF, plotly, plyr, dplyr, RColorBrewer, signal, stats, viridis, hNMF, zoo, pls

RoxygenNote 7.2.3

Suggests testthat, knitr, rmarkdown, webshot, bookdown

Collate 'internalHelpers.R' 'allGenericFunctions.R' 'objectSpectraInTime.R' 'objectProcessTimes.R'

2 R topics documented:

'objectLinking.R' 'alignmentFunctions.R'
'combineSpectralObjects.R' 'dataManagementTools.R' 'defaults.R'
'objectSpectraInTimeComp.R' 'readSPC.R' 'saveSpectraInTime.R'
'spectralIntegration.R' 'spectralNMF.R' 'spectralPLS.R'
'spectralPreprocessing.R' 'spectralVisualization.R'
'subsetting.R'
tteBuilder knitr

VignetteBuilder knitr

NeedsCompilation no

Author Robin Van Oirbeek [aut], Adriaan Blommaert [aut, cre], Nicolas Sauwen [aut], Tor Maes [ctb], Jan Dijkmans [ctb], Jef Cuypers [ctb], Tatsiana Khamiakova [ctb], Michel Thiel [ctb], Claudia Beleites [ctb]

Repository CRAN

Date/Publication 2024-01-30 08:50:02 UTC

R topics documented:

aselineCorrect	 . 3
heckCompatible	 . 5
heckForRedundantSources	
heckIdenticalClass	 . 6
ombineSpectralObjects	 . 6
omputeNMFResidu	 . 7
	 . 8
llementsToSelect-class	 . 8
rstSpectrum	 . 9
etDefaultSumFunc	 . 9
etDefaultTimeFormat	 . 10
etDimensionReduction	 . 10
etElements	 . 11
etExperimentName	 . 11
etExtraInfo	 . 12
etListOfSpectraExample	 . 12
etNMFInputMatrix	 . 13
etPathProcessTimesExample	 . 13
etPreprocessing	 . 14
etProcessTimesExample	 . 14
etProcessTimesFrameExample	 . 15
etRange	 . 15
etSpectra	 . 16
etSpectraInTimeCompExample	 . 16

baselineCorrect 3

base]	lineCorrect generic function to perfom baseline correction	
Index		45
	wavelengthAlign	. 43
	upsampleNMFResult	
	timeAlign	
	subset-methods	
	spectralPlsPrediction	
	spectralPLSCalibration	
	spectralNMFList	
	spectralNMF	
	spectralIntegration	
	SpectraInTimeComp-class	. 35
	smooth	
	setTimePointsAlt<	
	setExperimentName<	. 32
	scaleNMFResult	
	saveSpectra	
	runNMF	
	removeRedundantSources	
	readSPC	
	readProcessTimes	
	RangeToSubset-class	
	r	
	ProcessTimesFrame-class	
	ProcessTimes-class	
	preprocess	
	predictNNLS	
	normalize	
	nonNegativePreprocessing	
	loadAllSPCFiles	
	lastSpectrum	
	initializeNMFModel	
	includeRedundantSources	
	getUnits	
	getTimePoints	
	getStartTime	
	getSpectralAxis	
	getSpectraInTimeExample	

Description

generic function to perfom baseline correction

4 baselineCorrect

Usage

```
baselineCorrect(object, ...)
## S4 method for signature 'SpectraInTime'
baselineCorrect(object, method = "modpolyfit", degree = 4, ...)
## S4 method for signature 'SpectraInTimeComp'
baselineCorrect(object, ...)
```

Arguments

```
object a S4 class object

other parameters passed to baseline

method of baseline correction, default value is to 'modpolyfit', see baseline.modpolyfit

degree numeric value, degree of the polynomial used only if method is 'modpolyfit'
```

Value

```
SpectraInTime-class
```

Note

baseline correction in the wavelength domain by linking to the baseline

checkCompatible 5

checkCompatible

Check object compatibility

Description

Check wheter 2 objects are compatible before using them together e.g. in time alignment using a time file with matching experiment name.

Usage

```
checkCompatible(x, y, ...)
## S4 method for signature 'SpectraInTime,ProcessTimes'
checkCompatible(x, y)
## S4 method for signature 'ProcessTimes,SpectraInTime'
checkCompatible(x, y)
```

Arguments

x first object

y second object

... additional parameters

Value

no output, produces an error when object are not compatible with each other TRUE when the aer competible, otherwise it stops and prints a list of error messages

checkForRedundantSources

Check for redunt NMF source vectors

Description

Check if any of the source vectors in the initialized NMF model are redundant and should be omitted from the actual NMF analysis

Usage

```
checkForRedundantSources(seed)
```

Arguments

seed

nmfModel object containing initialization of the factor matrices

Value

boolean vector, indicating which source vector(s) are redundant

Author(s)

Nicolas Sauwen

 ${\tt checkIdenticalClass}$

check wether all elements of of the same class

Description

check wether all elements of of the same class

Usage

```
checkIdenticalClass(listOfObjects, class)
```

Arguments

```
listOfObjects a list of S4 objects to check class a class to compare with
```

Value

logical value TRUE if all objects are of the correct class

Author(s)

Adriaan Blommaert

```
combineSpectralObjects
```

Function to combine SpectraInTime-class objects containing $\it I$ spectrum each

Description

Function to combine SpectraInTime-class objects containing 1 spectrum each

Usage

```
combineSpectralObjects(objectList, timeRange, checkNames = TRUE)
```

computeNMFResidu 7

Arguments

objectList List of SpectraInTime-class objects to be combined

timeRange Numeric value, equal to the maximum time of the measured spectra.

checkNames Boolean - if TRUE, the experiment name of the spectral objects will be compared

to see if these spectral objects belong to the same experiment

Value

SpectraInTime-class

Author(s)

Nicolas Sauwen

computeNMFResidu

NMF relative residual per observation

Description

Compute relative residual per observation of an NMF fit to a spectral data set

Usage

```
computeNMFResidu(object, NMFResult)
```

Arguments

object SpectraInTime-class

NMFResult Fitted NMF model

Value

Dataframe, containing time (observation) vector and residual vector

Author(s)

nsauwen

8 Elements To Select-class

е

Create an ElementsToSelect-class from a numeric vector or multiple numeric values or vectors

Description

Create an ElementsToSelect-class from a numeric vector or multiple numeric values or vectors

Usage

```
e(x, ...)
```

Arguments

```
x numeric vector
```

... additional numeric vectors

Value

ElementsToSelect-class with unique elements

Examples

```
e(1,5,4.5)
e(1:10,c(4,5,6),7)
```

ElementsToSelect-class

Elements S4 class useful for closest elements subsetting

Description

Elements S4 class useful for closest elements subsetting

Slots

elements numeric vector of elements

Author(s)

Adriaan Blommaert

firstSpectrum 9

firstSpectrum

Get the first spectrum

Description

Get the first spectrum

Usage

```
firstSpectrum(object, ...)
## S4 method for signature 'SpectraInTime'
firstSpectrum(object)
## S4 method for signature 'numeric'
firstSpectrum(object)
```

Arguments

object S4 object

... additional parameters

Value

numeric vector containing observations first spectrum

getDefaultSumFunc

function to get default summary functions

Description

function to get default summary functions

Usage

```
getDefaultSumFunc()
```

Value

character vector of functions

getDefaultTimeFormat function to get default time format in the package

Description

function to get default time format in the package

Usage

```
getDefaultTimeFormat()
```

Value

character vector specifiying a time format character string iwth default time format

 ${\tt getDimensionReduction} \ \ \textit{generic function to extract} \ {\tt dimensionReduction-slot}$

Description

generic function to extract dimensionReduction-slot

Usage

```
getDimensionReduction(object, ...)
```

Arguments

```
object a S4 class object ... additional parameters
```

Value

dimension reduction slot of an object

getElements 11

getElements

generic function to extract elements-slot

Description

```
generic function to extract elements-slot
```

Usage

```
getElements(object, ...)
## S4 method for signature 'ElementsToSelect'
getElements(object)
```

Arguments

object a S4 class object additional parameters

getExperimentName

generic function to extract experimentName-slot

Description

generic function to extract experimentName-slot

Usage

```
getExperimentName(object, ...)
## S4 method for signature 'SpectraInTime'
getExperimentName(object)
```

Arguments

```
object a S4 class object ... additional parameters
```

Value

string containing experiment name

getExtraInfo

generic function to extract extraInfo-slot

Description

generic function to extract extraInfo-slot

Usage

```
getExtraInfo(object, ...)
## S4 method for signature 'SpectraInTime'
getExtraInfo(object)
```

Arguments

object a S4 class object ... additional parameters

Value

list of extraInfo

```
{\it get List 0} {\it f Spectra Example} \\ {\it get example \ list \ of \ spectra} \\
```

Description

get example list of spectra

Usage

```
getListOfSpectraExample()
```

Value

list of SpectraInTime-class

getNMFInputMatrix 13

getNMFInputMatrix

Get spectralData as input NMF model

Description

 $Extract \ spectral \ input \ matrix \ from \ SpectraInTime-class \ and \ condition \ properly \ for \ NMF \ modeling$

Usage

```
getNMFInputMatrix(object, method = "")
```

Arguments

object of the 'spectralData' class, such as a raw SPC file

method name of the NMF method to be used.

Value

spectral matrix, with wavelengths as its rows and time points as its columns

Author(s)

Nicolas Sauwen

```
getPathProcessTimesExample
```

example path process times

Description

example path process times

Usage

```
getPathProcessTimesExample()
```

Value

ProcessTimes-class

getPreprocessing

generic function to extract preprocessing-slot

Description

generic function to extract preprocessing-slot

Usage

```
getPreprocessing(object, ...)
## S4 method for signature 'SpectraInTime'
getPreprocessing(object)
```

Arguments

```
object a S4 class object additional parameters
```

Value

list with preprocessing steps

```
getProcessTimesExample
```

 $\begin{tabular}{lll} $\it get$ & $\it a$ & $\it minimal$ & $\it ProcessTimes-class$ & $\it example$ & $\it based$ & $\it on$ \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\$

Description

get a minimal ProcessTimes-class example based on getSpectraInTimeExample

Usage

```
getProcessTimesExample()
```

Value

ProcessTimes-class

Author(s)

Adriaan Blommaert

```
getProcessTimesExample()
```

```
getProcessTimesFrameExample
```

 ${\it get mimimal example} \ {\tt ProcessTimesFrame-class}$

Description

```
get\ mimimal\ example\ {\tt ProcessTimesFrame-class}
```

Usage

```
getProcessTimesFrameExample()
```

Value

```
ProcessTimes-class
```

Author(s)

Adriaan Blommaert

getRange

generic function to extract range-slot

Description

```
generic function to extract range-slot
```

Usage

```
getRange(object, ...)
## S4 method for signature 'RangeToSubset'
getRange(object)
```

Arguments

```
object a S4 class object ... additional parameters
```

getSpectra

generic function to extract spectra-slot

Description

generic function to extract spectra-slot

Usage

```
getSpectra(object, ...)
## S4 method for signature 'SpectraInTime'
getSpectra(object)
## S4 method for signature 'SpectraInTime'
getSpectra(object)
```

Arguments

object a S4 class object additional parameters

Value

matrix of spectra

```
{\tt getSpectraInTimeCompExample}
```

Artificial example of SpectraInTimeComp-class

Description

Example SpectraInTime-class with nmf result using random initialization with rank 2

Usage

```
getSpectraInTimeCompExample()
```

Value

```
{\tt SpectraInTimeComp-class}
```

Author(s)

Adriaan Blommaert

Examples

```
test <- getSpectraInTimeCompExample()</pre>
```

getSpectraInTimeExample

Artificial example SpectraInTime-class

Description

exponential conversion from 2 concentrations with gaussion curves for spectra at different wavelength per compounds

Usage

```
getSpectraInTimeExample(showPlots = FALSE)
```

Arguments

showPlots

logical indicator to show plots

Value

SpectraInTime-class

Author(s)

Adriaan Blommaert

Examples

```
ex1 <- getSpectraInTimeExample()</pre>
```

getSpectralAxis

generic function to extract spectralAxis-slot

Description

generic function to extract spectralAxis-slot

Usage

```
getSpectralAxis(object, ...)
## S4 method for signature 'SpectraInTime'
getSpectralAxis(object)
```

18 getTimePoints

Arguments

```
object a S4 class object ... additional parameters
```

Value

numeric vector containing wavelengths

getStartTime

generic function to extract startTime-slot

Description

```
generic function to extract startTime-slot
```

Usage

```
getStartTime(object, ...)
## S4 method for signature 'SpectraInTime'
getStartTime(object)
```

Arguments

object a S4 class object additional parameters

Value

character vector with start time

 ${\tt getTimePoints}$

generic function to extract timePoints-slot

Description

```
generic function to extract timePoints-slot
```

Usage

```
getTimePoints(object, ...)
## S4 method for signature 'SpectraInTime'
getTimePoints(object, timePointsAlt = FALSE, timeUnit = "seconds")
```

getUnits 19

Arguments

object a S4 class object ... additional parameters

timePointsAlt logical indicator to get alternative (shifted) instead of recorded time points, de-

faults to FALSE

timeUnit unit to use , choose between: seconds , minutes or hours, defaults equal to

seconds

Value

numberic vector containing timepoints

Examples

```
spectra <- getSpectraInTimeExample()
getTimePoints( spectra )
getTimePoints( spectra , timePointsAlt = TRUE )
getTimePoints( spectra , timeUnit = "hours" )</pre>
```

getUnits

generic function to extract units-slot

Description

generic function to extract units-slot

Usage

```
getUnits(object, ...)
## S4 method for signature 'SpectraInTime'
getUnits(object)
```

Arguments

```
object a S4 class object additional parameters
```

Value

list of units

20 initializeNMFModel

includeRedundantSources

Re-introduce redundant sources in NMF-model

Description

Re-introduce redundant source vectors and corresponding zero abundances into final NMF result

Usage

```
includeRedundantSources(NMFResult, seed_orig, redundantSources)
```

Arguments

NMFResult Fitted NMF model seed_orig Initial NMF model

redundantSources

boolean vector, obtained from checkForRedundantSources

Value

Final NMF model with redundant sources re-introduced

Author(s)

Nicolas Sauwen

initializeNMFModel

Initialize NMF model with initial spectral data

Description

Initialize NMF model with initial spectral data

Usage

```
initializeNMFModel(initSpectralData, spectra, spectralAxis = NULL)
```

Arguments

initSpectralData

this can be a list of spectralData objects, containing the pure component spectra.

It can also be either of the NMF factor matrices with initial values

spectral spectral matrix, with wavelengths as its rows and time points as its columns

spectralAxis vector of wavelength/spectralAxis values

lastSpectrum 21

Value

an object that inherents from the class NMF

lastSpectrum

Get the last spectrum

Description

Get the last spectrum

Usage

```
lastSpectrum(object, ...)
## S4 method for signature 'numeric'
lastSpectrum(object)
## S4 method for signature 'SpectraInTime'
lastSpectrum(object)
```

Arguments

object S4 object

... additional parameters

Value

numeric vector containing values last spectrum

loadAllSPCFiles

Load all or a selection of SPC files from a given directory.

Description

This function automatically recognizes all the files bearing an '.spc' extension and returns a list in which each element corresponds to a different xml file.

Usage

```
loadAllSPCFiles(directoryFiles, selectedFiles = NULL)
```

22 localBaselineCorrect

Arguments

directoryFiles Character vector indicating the directory from which the files needs to be down-

loaded. Note that files with an other extension than '.spc' can be stored in this

directory.

selectedFiles Character vector listing which files of the chosen directory (as expressed by the

'directoryFiles' argument) should be processed. This argument is used when one wants to process a subset of the spc files of the selected directory only. Note that one should add the complete file name to this list, including the file extension! This is an optional argument with as default value NULL, meaning

that by default all files of the selected directory are considered.

Value

A list is returned of which each element contains a processed SPC file

localBaselineCorrect Local baseline correction

Description

Substract a baseline either through 1 or 2 points

Usage

localBaselineCorrect(object, baseWavelengths = NULL)

Arguments

object SpectraInTime-class

baseWavelengths

numeric vector of 1 or 2 wavelength use to draw a baseline trough, defaults to NULL when no baseline correction is performed

Value

SpectraInTime-class with baseline subset

Author(s)

Adriaan Blommaert

Examples

```
spectra
spectraConstCorrect <- getSpectraInTimeExample()
spectraConstCorrect <- localBaselineCorrect( spectra , baseWavelengths = 240 )
spectraLinCorrect <- localBaselineCorrect( spectra , c( 250 , 330 ) )

plot( spectra )
plot( spectraConstCorrect )
plot( spectraLinCorrect )</pre>
```

nonNegativePreprocessing

condition datamatrix to input in and condition properly for NMF

Description

condition datamatrix to input in and condition properly for NMF

Usage

```
nonNegativePreprocessing(spectra, method = "")
```

Arguments

spectra matrix of spectra

method name of the NMF method to be used.

Details

put negative values to zero, transpose, an add small value zero row (wavelength with only zeros)

Value

matrix, with wavelengths as its rows and time points as its columns

normalize

generic normalization function

Description

generic normalization function

24 normalize

Usage

```
normalize(object, ...)

## S4 method for signature 'SpectraInTime'
normalize(
  object,
  method = "normalize",
  spectralRange = r(-Inf, Inf),
  spectralAxisVal = NULL,
  scaleFunction = "sd",
  meanFunction = NULL
)

## S4 method for signature 'SpectraInTimeComp'
normalize(object, ...)
```

Arguments

object a S4 class object additional parameters

method a method for normalization or peak correction, choose from:

* normalize substract mean and divide by scale * peak scale by reference spectralAxisVal * integration scale by integrating over spectralAxisRange

spectralRange range for integration if method = integration, defaults to complete range

spectralAxisVal

reference spectral axis value (wavelength or other) for peak regresssion

scaleFunction scale function used when method = normalize defaults to sd meanFunction mean function used when method = normalize defaults to mean

Value

SpectraInTime-class

predictNNLS 25

```
normalizeIntegration <- normalize( spectralEx , method = "integration" )
plot( normalizeIntegration[ timesToSelect , ] , type = "time" )
normalizedUser <- normalize( spectralEx , method = "normalize" , mean = "median" , scale = "sd" )
plot( normalizedUser[ timesToSelect , ] , type = "time" )</pre>
```

predictNNLS

Based on previously obtained NMF result NMFResult, estimate coefficients for a new spectralData object object using non-negative least squares fitting. The result is returned as as an NMF model.

Description

Based on previously obtained NMF result NMFResult, estimate coefficients for a new spectralData object object using non-negative least squares fitting. The result is returned as as an NMF model.

Usage

```
predictNNLS(object, NMFResult)
```

Arguments

object SpectraInTime-class NMFResult Fitted NMF model

Value

Fitted non-negative least squares result in the form of an NMF model

Author(s)

nsauwen

preprocess

generic function to preprocess an S4 object

Description

generic function to preprocess an S4 object

26 Process Times-class

Usage

```
preprocess(object, with)

## S4 method for signature 'SpectraInTime,list'
preprocess(object, with)

## S4 method for signature 'SpectraInTime,SpectraInTime'
preprocess(object, with)

## S4 method for signature 'SpectraInTimeComp,ANY'
preprocess(object, with)
```

Arguments

object a S4 class object

with an other object containing preprocessing information: other S4 object, list or

expression

Value

SpectraInTime-class

ProcessTimes-class S4 Class key process times

Description

S4 Class key process times

Slots

experimentName character vector with name of the experiment timeHeatingAboveMin time when experiment above minimum temperature timeStartReaction time start reaction (end of heating ramp) timeEndProcess time timeEndProcess time end of the process, when cooling down starts Tset the maximum temperature to indicate timeStartReaction comments character vector of comments when NA values are produced

Author(s)

Adriaan Blommaert

ProcessTimesFrame-class 27

ProcessTimesFrame-class

ProcessTimes-class

Description

S4 Class key process times in a data frame, every line is convertable to a ProcessTimes-class

Value

```
ProcessTimes-class
```

Slots

processTimes data.frame with every line process times of an experiment

Author(s)

Adriaan Blommaert

r

 $create\ a\ {\tt RangeToSubset-class}\ object\ from\ 2\ elements\ or\ from\ a\ vector$

Description

create a RangeToSubset-class object from 2 elements or from a vector

Usage

```
r(x, y)
## S4 method for signature 'numeric,numeric'
r(x, y)
## S4 method for signature 'RangeToSubset,missing'
r(x, y)
```

Arguments

x numeric value or vector of numeric values

y numeric value missing when x is a vector of values

Value

RangeToSubset-class

28 readProcessTimes

RangeToSubset-class *H*

RangeToSubset-class

Description

Allows for subsetting a range of actual values instead of a range of indicators

Slots

range numeric vector with min and max value

Author(s)

Adriaan Blommaert

readProcessTimes

read .csv file as process times

Description

read .csv file as process times

Usage

```
readProcessTimes(path, timeFormat = "%Y-%m-%d %H:%M:%OS")
```

Arguments

path to the file containing process times information timeFormat character specifying time format as.POSIXct

Value

```
ProcessTimesFrame-class
ProcessTimes-class
```

```
readProcessTimes( getPathProcessTimesExample() , timeFormat = "%Y-%m-%d %H:%M:%S" )
```

readSPC 29

readSPC

Read-in of a SPC file.

Description

This function is an adaptation of the 'read.spc' function of the 'hyperSpec' package: Claudia Beleites and Valter Sergo: 'hyperSpec: a package to handle hyperspectral data sets in R, R package version 0.98-20161118. http://hyperspec.r-forge.r-project.org.

Usage

```
readSPC(filename, keys.log2data = TRUE, keys.hdr2data = FALSE)
```

Arguments

filename Character vector expressing the name of the SPC file (just the name, not the

directory).

keys.log2data Logical vector indicating whether the full information (consisting of additional

information on the experimental conditions) needs to be parsed from the SPC file or not (TRUE indicates that the full information should be parsed from the

SPC file). The default value is FALSE.

keys.hdr2data a character vector of header object to add to backgroundInformation

Value

SpectraInTime-class

removeRedundantSources

Remove redundant sources from the initial NMF model

Description

Remove redundant sources from the initial NMF model

Usage

removeRedundantSources(seed, redundantSources)

Arguments

seed nmfModel object containing initialization of the factor matrices

redundantSources

boolean vector, obtained from checkForRedundantSources

30 runNMF

Value

nmfModel object with redundant sources removed from initial factor matrices

Author(s)

Nicolas Sauwen

runNMF

Actual NMF analysis

Description

Actual NMF analysis

Usage

```
runNMF(
   spectra,
   rank,
   method = "PGNMF",
   seed = NULL,
   nruns = 10,
   checkDivergence = TRUE,
   timePointsList = NULL,
   subsamplingFactor = 3,
   maxIter = 1000
)
```

Arguments

spectra spectral input matrix, with wavelengths as its rows and time points as its columns

rank number of NMF components to be found

method name of the NMF method to be used, consult the help of the 'nmf' function from

the NMF package for the methods available by default

seed nmfModel object containing initialization of the factor matrices

nruns number of NMF runs. It is recommended to run the NMF analyses multiple

times when random seeding is used, to avoid a suboptimal solution

checkDivergence

Boolean indicating whether divergence checking should be performed, defaults

to TRUE

timePointsList list of time point vectors of the individual experiments

subsamplingFactor

subsampling factor used during NMF analysis

maxIter maximum number of iterations per NMF run

saveSpectra 31

Value

Resulting NMF model (in accordance with the NMF package definition)

Author(s)

Nicolas Sauwen

saveSpectra

read or save a SpectraInTime-class from or to a .txt file

Description

```
read or save a SpectraInTime-class from or to a .txt file
```

Usage

```
saveSpectra(object, directory, precision = 32)
readSpectra(file)
```

Arguments

object object to save

directory directory to save object

precision number of significant digits controlling precission

file to be read

Value

the path to which the file is saved

```
SpectraInTime-class
```

Note

experiment name is used to save the experiment
default time formats are assumed to convert to SpectraInTime-class
some data precession is lost because of internal conversion to JSON format

Author(s)

Adriaan Blommaert

Examples

scaleNMFResult

Apply fixed scaling to NMF model

Description

Apply fixed scaling to NMF model matrices by normalizing the basis vectors

Usage

```
scaleNMFResult(NMFResult)
```

Arguments

NMFResult Fitted NMF model

Value

NMFResult Rescaled NMF model

Author(s)

Nicolas Sauwen

```
setExperimentName<- set the experiment name</pre>
```

Description

set the experiment name

Usage

```
setExperimentName(object) <- value
## S4 replacement method for signature 'SpectraInTime'
setExperimentName(object) <- value
## S4 replacement method for signature 'SpectraInTime'
setTimePointsAlt(object) <- value</pre>
```

setTimePointsAlt<-

Arguments

object a S4 class object

value a vector of time points

Value

SpectraInTime-class with modified experiment name

setTimePointsAlt<- set time alternative time axis</pre>

Description

set time alternative time axis

Usage

```
setTimePointsAlt(object) <- value</pre>
```

Arguments

object a S4 class object

value a vector of time points

Value

SpectraInTime-class with modified timePointsAlt axis

smooth generic smoothing function

Description

smoothing is applied along the spectral axis, not the time axis

34 smooth

Usage

```
smooth(object, ...)
## S4 method for signature 'SpectraInTime'
smooth(
  object,
  method = "sg",
  order = 3,
  window = order + 7 - order%2,
  derivative = 0,
  dim = "spectralAxis"
)
## S4 method for signature 'SpectraInTimeComp'
smooth(object, ...)
```

Arguments

object	a S4 class object
	additional parameters
method	character vector smoothing method, options are 'sg' (= default, Savitsky-Golay filter) or 'mean'.
order	numeric value, order of the polynomial used to interpolate (only used when method = 'sg'), should be larger than derivative order, defaults to 3 + derivative
window	width of the smoothing default value slightly higher than in the signal package, the user might consider a large value, otherwise smoothing has little effect
derivative	derivative to be taken (only used when method = 'sg'), defaults to 0
dim	character string, specifying along which dimension smoothing should be applied. Options are "spectralAxis" (= default) or "time"

Value

```
SpectraInTime-class
```

Note

equal distances between wavelenght intervals are assumed

```
SpectraInTimeComp-class
```

SpectraInTimeComp-class (time resolved spectra)

Description

Spectral-time data for 1 experiment with dimension reduction techique NMF and/or PCA decomposition included

Usage

```
## S4 method for signature 'SpectraInTimeComp'
getDimensionReduction(object, type = NULL)
```

Arguments

object of class SpectraInTimeComp-class

type type of regression method specified, if NULL the entire slot is returned as a list

Slots

dimensionReduction list containing dimension reduction techique, either PCA or NMF, but only one per kind.

Author(s)

Adriaan Blommaert

```
# generate example
exampleSpectra <- getSpectraInTimeCompExample()

# methods
    PCAResult <- getDimensionReduction( exampleSpectra, type = "PCA" )
    NMFResult <- getDimensionReduction( exampleSpectra, type = "NMF" )

    dimensionReductions <- getDimensionReduction( exampleSpectra )
    str(dimensionReductions )

# subsetting works by reducing to \code{\link{SpectraInTime-class}}
subsetting <- exampleSpectra[1:3 , r(400, 450)]
# preprocessing methods also reduce the object to \code{\link{SpectraInTime-class}}</pre>
```

36 spectralIntegration

Description

The integrated value over a user-specified spectral range is calculated (trapezium rule) per time point, afterwards smoothing over time can be applied

Usage

```
spectralIntegration(
  object,
  spectralRange,
  smoothingValue = 0,
  timeUnit = "seconds"
)
```

Arguments

```
object SpectraInTime-class
spectralRange numeric vector of 2 elements i.e. integration limits
smoothingValue numeric value between 0 and 1, amount of lowess-smoothing, default to 0 i.e no smoothing. Note that smoothing is applied after integration
timeUnit character value, choose between: second , minutes and hours, defaults to seconds
```

Value

data.frame with variables time and integrated Value

spectralNMF 37

spectralNMF

Perform Non-Negative Matrix factorization on spectral data

Description

Perform Non-Negative Matrix factorization on spectral data

Usage

```
spectralNMF(
  object,
  rank,
  method = "PGNMF",
  initSpectralData = NULL,
  nruns = 10,
  subsamplingFactor = 1,
  checkDivergence = TRUE,
  maxIter = 1000,
  includeRefs = FALSE
)
```

Arguments

object SpectraInTime-class

rank number of NMF components to be found

method name of the NMF method to be used. "PGNMF" (default), "HALSacc" and

"semiNMF" are methods derived from the hNMF package. All methods from

the NMF package are also available.

initSpectralData

this can be a list of spectralData objects, containing the pure component spectra.

It can also be either of the NMF factor matrices with initial values

nruns number of NMF runs. It is recommended to run the NMF analyses multiple

times when random seeding is used, to avoid a suboptimal solution

subsamplingFactor

subsampling factor used during NMF analysis

checkDivergence

Boolean indicating whether divergence checking should be performed

maxIter maximum number of iterations per NMF run

includeRefs boolean, indicating whether references should be included in the input matrix

for the NMF analysis

Value

SpectraInTimeComp-class which includeds a scaled NMF model (in accordance with the NMF package definition)

```
SpectraInTimeComp-class
```

38 spectralNMFList

Author(s)

Nicolas Sauwen

Examples

```
spectralExample <- getSpectraInTimeExample()
nmfResult <- spectralNMF( spectralExample , rank = 2 , subsamplingFactor = 5 )
nmfObject <- getDimensionReduction( nmfResult , type = "NMF")$NMF
nmfTrends <- t( NMF::coef( nmfObject ) )
matplot( nmfTrends , type = "1" , x = getTimePoints( spectralExample , timeUnit = "hours" ),
xlab = "time in hours" )</pre>
```

spectralNMFList

Perform Non-Negative Matrix factorization on list of SPC files

Description

Perform Non-Negative Matrix factorization on list of SPC files

Usage

```
spectralNMFList(
  objectList,
  rank,
  method = "PGNMF",
  initSpectralData = NULL,
  nruns = 10,
  subsamplingFactor = 3,
  checkDivergence = TRUE,
  maxIter = 1000
)
```

Arguments

objectList list of SPC files

rank number of NMF components to be found

method name of the NMF method to be used, consult the help of the 'nmf' function from

the NMF package for the methods available by default

initSpectralData

list of SPC files containing pure component spectra

nruns number of NMF runs.

subsamplingFactor

subsampling factor used during NMF analysis

checkDivergence

Boolean indicating whether divergence checking should be performed

maxIter maximum number of iterations per NMF run

spectralPLSCalibration

39

Value

list of SpectraInTimeComp-class

Author(s)

Nicolas Sauwen

Examples

```
spectralData <- getListOfSpectraExample()
spectraWithNmf <- spectralNMFList( spectralData , rank = 2 )</pre>
```

spectralPLSCalibration

Compute PLS model

Description

Compute PLS model

Usage

```
spectralPLSCalibration(objectList, UPLC_DF, ncomp = 10)
```

Arguments

objectList list of SPC files

UPLC_DF dataframe with UPLC data, which should contain the following columns: ex-

periment, time, and 1 column per compound

ncomp number of PLS components, defaults to 10

Value

PLS model, as obtained from plsr

Author(s)

Nicolas Sauwen

40 subset-methods

```
spectralPlsPrediction Perform PLS prediction
```

Description

Perform PLS prediction

Usage

```
spectralPlsPrediction(spectralObject, plsModel, nComp)
```

Arguments

```
spectralObject SpectraInTime-class
plsModel PLS model as obtained from spectralPLSCalibration
nComp Number of components
```

Value

SpectraInTimeComp-class which includes PLS model + prediction

Author(s)

Nicolas Sauwen

subset-methods

Subsetting SpectraInTime-class

Description

```
Subsetting SpectraInTime-class
```

Usage

```
## S4 method for signature 'SpectraInTime, ANY, ANY'
x[i, j, ..., drop = ""]

## S4 method for signature 'SpectraInTime, missing, ANY'
x[i, j, ..., drop = ""]

## S4 method for signature 'SpectraInTime, ANY, missing'
x[i, j, ..., drop = ""]

## S4 method for signature 'SpectraInTime, missing, missing'
x[i, j, ..., drop = ""]
```

timeAlign 41

```
## S4 method for signature 'SpectraInTimeComp,ANY,ANY'
x[i, j, ..., drop = ""]
## S4 method for signature 'SpectraInTimeComp,missing,ANY'
x[i, j, ..., drop = ""]
## S4 method for signature 'SpectraInTimeComp,ANY,missing'
x[i, j, ..., drop = ""]
```

Arguments

```
x object to subset
i subsetting rows (timePoints)
j subsetting columns (spectral axis)
... additional parameters
• timeUnit unit at which subsetting should be done choose between seconds , minutes or hours defaults to seconds
• timePointsAlt logical indicators whater alternative timePoints should be used

drop for consistancy, not used
```

Value

SpectraInTime-class

Examples

timeAlign

Time align first object, using info in the second object

Description

Time align first object, using info in the second object

42 timeAlign

Usage

```
timeAlign(x, y, ...)

## S4 method for signature 'SpectraInTime,ProcessTimes'
timeAlign(x, y, cutCooling = FALSE, cutBeforeMinTemp = FALSE)

## S4 method for signature 'list,ProcessTimesFrame'
timeAlign(x, y, cutCooling = FALSE, cutBeforeMinTemp = FALSE)

## S4 method for signature 'list,character'
timeAlign(
    x,
    y,
    cutCooling = FALSE,
    cutBeforeMinTemp = FALSE,
    timeFormat = "%Y-%m-%d %H:%M:%S"
)
```

Arguments

x and S4 object to be aligned
y object to use time information from
... additional arguments
cutCooling logical indicator if TRUE observation after cooling starts are cut off, defaults to
FALSE
cutBeforeMinTemp logical indicator if TRUE observation before minimum temperature are cut off, defaults to FALSE
timeFormat character vector specifying time format as .POSIXct

Value

SpectraInTime-class or list of spectra depending on input

upsampleNMFResult 43

upsampleNMFResult Upsample NMF result to original temporal resolution	upsampleNMFResult	Upsample NMF result to original temporal resolution
---	-------------------	---

Description

Upsample NMF result to original temporal resolution

Usage

```
upsampleNMFResult(NMFResult, timePoints, subsamplingFactor, shift = 0)
```

Arguments

NMFResult Fitted NMF model timePoints Original time points subsamplingFactor

Subsampling factor

shift Integer that correctly shifts subsampling index when applying NMF to multiple

experiments

Value

Upsampled NMF model

Author(s)

Nicolas Sauwen

gn spectral data	Wavelength alig	wavelengthAlign
------------------	-----------------	-----------------

Description

Align SpectraInTime objects with differing wavelength axes to a common wavelength axis using cubic spline interpolation.

Usage

```
wavelengthAlign(ref, toAlign)
## S4 method for signature 'SpectraInTime, SpectraInTime'
wavelengthAlign(ref, toAlign)
## S4 method for signature 'SpectraInTime, list'
wavelengthAlign(ref, toAlign)
```

44 wavelengthAlign

Arguments

ref SpectraInTime-class object with the reference wavelength vector

toAlign SpectraInTime-class object(s) to be aligned. This can either be a single Spec-

traInTime object or a list of SpectraInTime objects. In case of a list, all objects

in the list should have the same wavelength axis.

Value

 $List\ of\ aligned\ SpectraInTime\ objects,\ including\ the\ reference\ object.$

one or a list of SpectraInTime-class

Index

[,SpectraInTime,ANY,ANY,ANY-method	<pre>combineSpectralObjects, 6</pre>
(subset-methods), 40	computeNMFResidu, 7
[,SpectraInTime,ANY,ANY-method	
(subset-methods), 40	e, 8
[,SpectraInTime,ANY,missing-method	ElementsToSelect-class, 8, 8
(subset-methods), 40	
[,SpectraInTime,missing,ANY-method	firstSpectrum, 9
(subset-methods), 40	firstSpectrum, numeric-method
[,SpectraInTime,missing,missing-method	(firstSpectrum), 9
(subset-methods), 40	firstSpectrum,SpectraInTime-method
[,SpectraInTime-method	(firstSpectrum), 9
(subset-methods), 40	10.0 110.5
[,SpectraInTimeComp,ANY,ANY-method	getDefaultSumFunc, 9
(subset-methods), 40	getDefaultTimeFormat, 10
[,SpectraInTimeComp,ANY,missing-method	getDimensionReduction, 10
(subset-methods), 40	<pre>getDimensionReduction,SpectraInTimeComp-method</pre>
[,SpectraInTimeComp,missing,ANY-method	(SpectraInTimeComp-class), 35
(subset-methods), 40	getElements, 11
[ProcessTimes,SpectraInTime-method	<pre>getElements,ElementsToSelect-method</pre>
(checkCompatible), 5	(getElements), 11
[SpectraInTime, ProcessTimes-method	getExperimentName, 11
(checkCompatible), 5	<pre>getExperimentName,SpectraInTime-method</pre>
	(getExperimentName), 11
as.POSIXct, 28, 42	getExtraInfo, 12
	<pre>getExtraInfo,SpectraInTime-method</pre>
baseline, 4	(getExtraInfo), 12
baseline.modpolyfit,4	getListOfSpectraExample, 12
baselineCorrect,3	getNMFInputMatrix, 13
baselineCorrect,SpectraInTime-method	getPathProcessTimesExample, 13
<pre>(baselineCorrect), 3</pre>	getPreprocessing, 14
baselineCorrect,SpectraInTimeComp-method	<pre>getPreprocessing,SpectraInTime-method</pre>
(baselineCorrect), 3	(getPreprocessing), 14
	getProcessTimesExample, 14
checkCompatible,5	<pre>getProcessTimesFrameExample, 15</pre>
checkCompatible,ProcessTimes,SpectraInTime-m	e glabR lange, 15
(checkCompatible), 5	<pre>getRange,RangeToSubset-method</pre>
checkCompatible,SpectraInTime,ProcessTimes-m	ethod (getRange), 15
(checkCompatible), 5	getSpectra, 16
checkForRedundantSources, 5, 20, 29	<pre>getSpectra,SpectraInTime-method</pre>
checkIdenticalClass,6	(getSpectra), 16

46 INDEX

getSpectraInTimeCompExample, 16	r, 27
getSpectraInTimeExample, <i>14</i> , 17	r, numeric, numeric-method (r), 27
getSpectralAxis, 17	r,RangeToSubset,missing-method(r),27
getSpectralAxis,SpectraInTime-method	RangeToSubset (RangeToSubset-class), 28
(getSpectralAxis), 17	Rangetosubset (RangeToSubset-class), 28
getStartTime, 18	rangetosubset (RangeToSubset-class), 28
getStartTime,SpectraInTime-method	RangeToSubset-class, 27, 28
(getStartTime), 18	read (saveSpectra), 31
getTimePoints, 18	readProcessTimes, 28
getTimePoints,SpectraInTime-method	readSPC, 29
(getTimePoints), 18	readSpectra (saveSpectra), 31
getUnits, 19	removeRedundantSources, 29
getUnits,SpectraInTime-method	runNMF, 30
(getUnits), 19	
(80 0011 00), 19	save (saveSpectra), 31
includeRedundantSources, 20	saveSpectra, 31
initializeNMFModel, 20	scaleNMFResult, 32
THI CIGITZON HOUCE, 20	sd, 24
lastSpectrum, 21	setExperimentName<-,32
lastSpectrum, numeric-method	setExperimentName<-,SpectraInTime-method
(lastSpectrum), 21	(setExperimentName<-), 32
lastSpectrum, SpectraInTime-method	setTimePointsAlt<-,33
(lastSpectrum), 21	setTimePointsAlt<-,SpectraInTime-method
loadAllSPCFiles, 21	(setExperimentName<-), 32
localBaselineCorrect, 22	smooth, 33
lowess, 36	smooth, SpectraInTime-method (smooth), 33
10we33, 50	smooth, SpectraInTimeComp-method
mean, <i>24</i>	(smooth), 33
	SpectraInTime-class, 6, 17, 31, 40
NMF, <i>21</i>	SpectraInTimeComp
nonNegativePreprocessing, 23	(SpectraInTimeComp-class), 35
normalize, 23	spectraInTimeComp
normalize,SpectraInTime-method	(SpectraInTimeComp-class), 35
(normalize), 23	spectraintimecomp
normalize, SpectraInTimeComp-method	(SpectraInTimeComp-class), 35
(normalize), 23	SpectraInTimeComp-class, 16, 35
(1.01.1102220), 20	spectralIntegration, 36
plsr, <i>39</i>	spectralNMF, 37
predictNNLS, 25	spectralNMFList, 38
preprocess, 25	spectralPLSCalibration, 39, 40
preprocess, SpectraInTime, list-method	spectralPlsPrediction, 40
(preprocess), 25	subset-methods, 40
preprocess,SpectraInTime,SpectraInTime-met	
(preprocess), 25	TemperatureInfo (ProcessTimes-class), 26
preprocess, SpectraInTimeComp, ANY-method	temperatureInfo (ProcessTimes-class), 26
(preprocess), 25	temperatureinfo (ProcessTimes-class), 26
ProcessTimes (ProcessTimes-class), 26	timeAlign, 41
ProcessTimes-class, 14, 26	timeAlign,list,character-method
ProcessTimesFrame-class, 15, 27	(timeAlign), 41
	\

INDEX 47