Programação Linear - IME/UERJ

Gabarito - Lista de Exercícios 6 - Extra - Dualidade e Análise de Sensibilidade e Pós-Otimização

1. (a) Interpretação econômica

Problema primal: A empresa dispõe de 100 horas máquina, 80 horas de trabalho e máximo de produção de 40 unidades do produto A. Os lucros médios de cada unidade dos produtos A e B são respectivamente R\$ 3,00 e R\$ 2,00. Como os recursos R_1 (horas máquina), R_2 (horas de trabalho) e R_3 (limite de produção do produto A) já foram comprados, pretende-se estabelecer o plano de produção que maximiza o lucro.

Aqui, definimos:

 x_1 : unidades do produto A;

 x_2 : unidades do produto B;

e o problema primal é dado por:

$$\max z = 3x_1 + 2x_2$$
s.a.
$$2x_1 + x_2 \le 100 \quad (R_1 : \text{horas máquina})$$
$$x_1 + x_2 \le 80 \quad (R_2 : \text{horas de trabalho})$$
$$x_1 \qquad \le 40 \quad (R_3 : \text{limite de produção do produto } A)$$
$$x_1 , \quad x_2 \ge 0$$

Problema dual: Um comprador está interessado nos recursos da empresa e quer pagar por seus recursos. Quanto ele deve pagar por cada unidade dos recursos?

Aqui, definimos:

 w_i : preço pago por cada unidade do recurso R_i , para i=1,2,3;

O comprador, obviamente, deseja minimizar o valor da compra dos recursos.

Assim, o problema dual é dado por:

$$\min v = 100w_1 + 80w_2 + 40w_3$$
s.a.
$$2w_1 + w_2 + w_3 \ge 3 \quad (D_1)$$

$$w_1 + w_2 \ge 2 \quad (D_2)$$

$$w_1, w_2, w_3 \ge 0$$

A interpretação das restrições do dual é a seguinte:

- Restrição D_1 : pela quantidade $2w_1 + w_2 + w_3$, o comprador deverá oferecer pelo menos R\$ 3,00 (caso contrário, a empresa produziria uma unidade do produto A e a venderia por esse preço).
- Restrição D_2 : pela quantidade $w_1 + w_2$, o comprador deverá oferecer pelo menos R\$ 2,00 (caso contrário, a empresa produziria uma unidade do produto B e a venderia por esse preço).
- (b) O problema primal na forma padrão é dado por:

Aplicando o algoritmo Simplex, o tableau ótimo é dado por:

				s_1			
z	1	0	0	1	1	0	$\bar{z} = 180$
x_2	0	0	1	-1	2	0	60
s_3	0	0	0	-1	1	1	20
x_1	0	1	0	1	-1	0	60 20 20

Pelo Teorema das Folgas Complementares, a solução ótima é:

Problema primal:

$$x_B = [x_2 \quad s_3 \quad x_1]^T = [60 \quad 20 \quad 20]^T;$$

 $x_N = [s_1 \quad s_2]^T = [0 \quad 0]^T.$

Problema dual:

$$w_B = [w_1 \quad w_2]^T = [1 \quad 1]^T.$$

 $w_N = [t_2 \quad w_3 \quad t_1]^T = [0 \quad 0 \quad 0]^T.$

- (c) Como $s_1 = s_2 = 0$, então os recursos escassos são R_1 (horas máquina) e R_2 (horas de trabalho).
- (d) Sim, se o pagamento mínimo fosse R\$ 1,00 por unidade vendida. A justificativa do preço mínimo (R\$ 1,00) é a de que uma redução em uma unidade do recurso R_1 reduz o valor da função objetivo em R\$ 1,00 ($w_1 = 1$).

- (e) Análogo ao item anterior, se o pagamento mínimo fosse R\$ 1,00 por unidade vendida. A justificativa do preço mínimo (R\$ 1,00) é a de que uma redução em uma unidade do recurso R_2 reduz o valor da função objetivo em R\$ 1,00 $(w_2 = 1)$.
- (f) É o preço mínimo pelo qual deverá ser vendida uma unidade do recurso R_1 .
- (g) Pagaria no máximo R\$ 0,00 ($w_3 = 0$), pois já há sobra deste recurso ($s_3 = 20$).
- (h) Variação de c_1 (coeficiente de x_1 na função objetivo do primal):

Como x_1 é variável básica no tableau ótimo, então o vetor dos coeficientes das variáveis básicas C_B será modificado para C'_B .

Logo, $Z_N - C_N = C_B B^{-1} N - C_N$ será modificado para $Z'_N - C_N = C'_B B^{-1} N - C_N$.

Sabemos que:

$$C'_B = \begin{bmatrix} 2 & 0 & c'_1 \end{bmatrix}; B^{-1}N = \begin{bmatrix} -1 & 2 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}; C_N = \begin{bmatrix} 0 & 0 \end{bmatrix}.$$

Assim, substituindo os valores, obtemos:

$$Z'_N - C_N = \begin{bmatrix} -2 + c'_1 & 4 - c'_1 \end{bmatrix}$$
.

Para que a solução permaneça ótima após a modificação de $c_1 = 3$ para c'_1 , devemos ter $Z'_N - C_N \ge 0$, pois o problema primal é de maximização.

Portanto,

$$\begin{cases}
-2 + c'_1 \geq 0 \Rightarrow c'_1 \geq 2 & \text{(I)} \\
4 - c'_1 \geq 0 \Rightarrow c'_1 \leq 4 & \text{(II)}
\end{cases}$$

Da interseção das desigualdades (I) e (II), obtemos $2 \leq c_1' \leq 4.$

(i) O elemento $b_2 = 80$ do vetor independente b será alterado para $b_2' = 90$.

Como o vetor $b = [100 \ 80 \ 40]^T$ foi alterado para $b' = [100 \ 90 \ 40]^T$, então o vetor de variáveis básicas $\bar{x}_B = B^{-1}b$ da solução ótima será alterado para $\bar{x}'_B = B^{-1}b'$.

Como
$$B^{-1} = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$
, obtemos:

$$\bar{x}'_B = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 100 \\ 90 \\ 40 \end{bmatrix} = \begin{bmatrix} 80 \\ 30 \\ 10 \end{bmatrix}$$

Como $x_B' \ge 0$, esta solução é viável.

(j) Para que a solução permaneça ótima após a modificação de $b_1 = 100$ para b'_1 :

$$\bar{x}'_B = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} b'_1 \\ 80 \\ 40 \end{bmatrix} \ge 0.$$

Efetuando os cálculos, encontramos: $80 \le b_1' \le 120$.

(k) Na forma padrão do problema primal original, o valor do elemento $a_{11} = 2$ da matriz dos coeficientes A das restrições será modificado para $a'_{11} = 3$.

Logo, o vetor coluna
$$a_1=\begin{bmatrix}2\\1\\1\end{bmatrix}$$
 de A será modificado para $a_1'=\begin{bmatrix}3\\1\\1\end{bmatrix}$.

Assim, o valor de $z_1 - c_1 = C_B B^{-1} a_1 - c_1$ será modificado para $z'_1 - c_1 = C_B B^{-1} a'_1 - c_1$.

Denotando $y_1 = B^{-1}a_1'$, temos:

$$y_1 = B^{-1}a_1' = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3+2 \\ -3+2 \\ 3-1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$$

$$z_1' - c_1 = C_B B^{-1} a_1' - c_1 = c_B y_1 - c_1 = \begin{bmatrix} 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} - 3 = 1 \ge 0.$$

O tableau ótimo é então atualizado para:

		\bar{x}_1					
z	1	1	0	1	1	0	$\bar{z} = 180$
x_2	0	-1	1	-1	2	0	60
s_3	0	-1	0	-1	1	1	20
x_1	0	2	0	1	-1	0	60 20 20

Note que renomeamos a variável x_1 na primeira linha do tableau para \bar{x}_1 , pois x_1 é uma variável básica, mas no tableau $z'_1 - c_1 = 1 \neq 0$ (lembre que para toda variável básica x_k , $z_k - c_k = 0$).

Assim, para anular $z'_1 - c_1$, a variável nova \bar{x}_1 deve entrar na base e a variável antiga x_1 deve sair da base para que tenhamos $z_1 - c_1 = 0$, pois essa é a condição para que a variável nova \bar{x}_1 seja básica.

Então, após o pivoteamento temos o novo tableau ótimo:

	l			s_1			
z	1	0	0	1/2	3/2	0	$\bar{z} = 170$
x_2	0	0	1	-1/2	3/2	0	70
s_3	0	0	0	-1/2	1/2	1	30
x_1	0	1	0	-1/2 $-1/2$ $1/2$	-1/2	0	10

A nova solução ótima é:

$$x_B = [x_2 \quad s_3 \quad x_1]^T = [70 \quad 30 \quad 10]^T;$$

 $x_N = [s_1 \quad s_2]^T = [0 \quad 0]^T.$

(l) Na forma padrão do problema primal original, o valor do elemento $a_{12} = 1$ da matriz dos coeficientes A das restrições será modificado para a'_{12} .

Logo, o vetor coluna
$$a_2=\begin{bmatrix}1\\1\\0\end{bmatrix}$$
 de A será modificado para $a_2'=\begin{bmatrix}a_{12}'\\1\\0\end{bmatrix}$.

Assim, o valor de $z_2' - c_2 = C_B B^{-1} a_2' - c_2$ será modificado para $z_2' - c_2 = C_B B^{-1} a_2' - c_2$.

Denotando $y_2 = B^{-1}a_2'$, obtemos:

$$y_2 = B^{-1}a_2' = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} a_{12}' \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -a_{12}' + 2 \\ -a_{12}' + 1 \\ a_{12}' - 1 \end{bmatrix}$$

$$z_2' - c_2 = C_B B^{-1} a_2 - c_2 = c_B y_2 - c_2 = \begin{bmatrix} 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} -a_{12}' + 2 \\ -a_{12}' + 1 \\ a_{12}' - 1 \end{bmatrix} - 2.$$

$$\Rightarrow z_2' - c_2 = -2a_{12}' + 4 + 3a_{12}' - 3 - 2 = a_{12}' - 1.$$

Como o problema primal é de maximização, para que a solução permaneça ótima, devemos ter $z_2'-c_2\geq 0$. Então,

$$a'_{12} - 1 \ge 0 \Rightarrow a'_{12} \ge 1.$$

(m)
$$y_1 = B^{-1}a_1' = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ a_{21}' \\ 1 \end{bmatrix} = \begin{bmatrix} -2 + 2a_{21}' \\ -1 + a_{21}' \\ 2 - a_{21}' \end{bmatrix}$$

$$z_1' - c_1 = C_B B^{-1} a_1' - c_1 = c_B y_1 - c_1 = \begin{bmatrix} 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} -2 + 2a_{21}' \\ -1 + a_{21}' \\ 2 - a_{21}' \end{bmatrix} - 3 \ge 0.$$

Para que a solução permaneça ótima, $z_1' - c_1 \ge 0$. Então,

$$-4 + 4a'_{21} + 6 - 3a'_{21} - 3 \ge 0 \Rightarrow a'_{21} \ge 1.$$

(n) Na forma padrão do problema primal original, o valor do elemento $a_{22} = 1$ da matriz dos coeficientes A das restrições será modificado para $a'_{22} = 2$.

Logo, o vetor coluna
$$a_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 de A será modificado para $a_2' = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$.

Assim, o valor de $z_2 - c_2 = C_B B^{-1} a_2 - c_2$ será modificado para $z_2' - c_2 = C_B B^{-1} a_2' - c_2$.

Denotando $y_2 = B^{-1}a_2'$, temos:

$$y_2 = B^{-1}a_2' = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

$$z_2' - c_2 = C_B B^{-1} a_2' - c_2 = c_B y_2 - c_2 = \begin{bmatrix} 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} - 2 = 1 \ge 0.$$

O tableau ótimo é então atualizado para:

	z			s_1			
	l	0	1	1	1	0	$\bar{z} = 180$
x_2	0	0	3	-1	2	0	60 20 20
s_3	0	0	1	-1	1	1	20
x_1	0	1	-1	1	-1	0	20

Como $z'_2 - c_2 = 1 \neq 0$ e x_2 é uma variável básica, renomeamos a variável x_2 na primeira linha do tableau para \bar{x}_2 . Assim, a variável nova \bar{x}_2 deve entrar na base e a variável antiga x_2 deve sair da base para que possamos obter $z'_2 - c_2 = 0$, pois essa é a condição para que a variável nova \bar{x}_2 seja básica.

Então, após o pivoteamento temos o novo tableau:

Como $s_3 = 0$ e s_3 é uma variável básica, trata-se de uma solução degenerada.

Então, a nova solução ótima é:

$$x_B = [x_2 \quad s_3 \quad x_1]^T = [20 \quad 0 \quad 40]^T;$$

 $x_N = [s_1 \quad s_2]^T = [0 \quad 0]^T.$

2. (a)

min
$$v=5w_1+7w_2+20w_3$$
 s.a. $w_1+3w_3\geq 4$ $w_2+4x_3=6$ $w_1\geq 0$, $w_2\geq 0$, w_3 livre.

(b)

$$\begin{array}{lll} \min & v & = & 2w_1 - 4x_2 \\ \\ \text{s.a.} & & 2w_1 - 4w_2 \leq 8 \\ \\ & -6w_1 + 7w_2 \geq 3 \\ \\ & w_1 - 2w_2 = -2 \\ \\ & w_1 \leq \ 0, \ w_2 \ \text{livre.} \end{array}$$