Precision Measurement of the Radiative Decay Mode of the Free Neutron

Benjamin O'Neill

PhD Defense November 16, 2012

Motivation

- Neutron discovered in 1932 by James Chadwick
- Shortly thereafter discovered to be unstable

- Classical EM and QED predict radiative decay
- Leading order calculations can be done in QED
- Observed in nuclear beta decay as early as 1953
- First observed in free neutrons in 2005

Motivation

¹Nico, J. S. *et al. Nature* 444, 1059–1062 (2006) ²Cooper, R. L. *et al.* PRC 81, 035503 (2010)

First Observation: RDK I

- Nico et al., National Institute of Standards and Technology (NIST) 2005
- •Branching ratio for 15-340keV = $(3.09 \pm 0.32) \cdot 10^{-3}$
- •4.6T superconducting magnet
- •9.5° bend

RDK II Experimental Setup

- Improve accuracy to O(1%) on BR
- New detectors
 - 12 BGO+APD
 - 3 bAPD (installed later)
- Expanded energy range
 - BGO: <10keV to endpoint
 - bAPD: <1keV to ≈10keV
- •Improved statistics: 0.6% for BGO, 2.9% for bAPD

RDK II Experimental Setup

RDK II Data Acquisition

- Electron start, proton stop trigger
- SBD electrically isolated
- Waveforms recorded
 - Less hardware noise
 - Distinguish false triggers
 - Check on hardware

RDK II Signal

BGO-APD pre-amp signal

- Two independently developed algorithms Jeff Nico at NIST
- Criteria
 - Peak height at least 300 units above minimum
 - Peak precedes the minimum no trailing edges
 - Peak not at edges of trace window full signal trace
 - Peak is below 30000 units saturation level
 - No spikes some pathological signals
- Baseline
- Smooth
- Determine energy and time

$$\hat{\beta}_0 = \frac{2(2n+1)}{(n+1)(n+2)} \sum_{i=0}^n Y_i - \frac{6}{(n+1)(n+2)} \sum_{i=0}^n iY_i$$

$$\hat{\beta}_1 = \frac{12}{n(n+1)(n+2)} \sum_{i=0}^{n} iY_i - \frac{6}{(n+1)(n+2)} \sum_{i=0}^{n} Y_i$$

Photon timing relative to electron BGO

BGO Background Corrected Spectrum

Photon energy $R_{epg}/R_{ep} = (10.650 \pm 0.064) \cdot 10^{-4}$

0.1% agreement between independent analyses

BGO Background Corrected Spectrum

RDK II Signal

bAPD pre-amp signal

Photon timing relative to electron bAPD

bAPD Background Corrected Spectrum

 $R_{epg}/R_{ep} = (8.512 \pm 0.243) \cdot 10^{-5}$

RDK II Monte Carlo

- R_{epg}/R_{ep} proportional to the branching ratio
- Complex detector
 - Effective solid angle of the SBD
 - Detector response
 - Secondary reactions
- Geant4 Matthew Bales at Univ. of Michigan
- Chi-squared fit to determine branching ratio

RDK II MC Benchmark

Proton timing relative to electron

RDK II MC Benchmark

Electron energy

RDK SOURCE TESTS DATA COMPARED TO KHODYUK SERIES 461 - Ba source

15 mil stainless tube between sources and crystal line energies used: 32.2 keV (weighted mean incl reentrant tube)
79.9 keV (average of Ba 81 keV line and a weighted mean of 78.7 keV for Bil unc for 32.2 keV is Std dev for 11 crystals;

Template used in RDK I

- •CPU limited
- •2-3 keV shift in energy

Status

- Achieved 0.6% statistics on BR
- Expanded energy range down to 250 eV and up to the endpoint (approx 780 keV)
- Work continues on systematic errors
 - Analysis and calibrations
 - BGO non-linearity
 - Photon signal fit
 - Monte Carlo
 - New field calculations
 - Goal of O(1%) systematic error on BR

RKD II Collaboration

- Arizona State University
 - R. Alarcon, B. O'Neill
- National Institute of Standards and Technology (NIST)
 - C. Bass, K. Coakley, S. Dewey, C. Fu, T. Gentile, P. Mumm, J. Nico, A. Thompson
- Tulane University
 - K. Pulliam, F. Wietfeld
- University of Maryland
 - E. Beise, H. Breuer
- University of Michigan
 - M. Bales, T. Chupp, R. Cooper
- University of Sussex
 - J. Byrne

Runtime Metrics

- •On beam from July 2008 to November 2009
- •Off beam calibrations from January 2010 to July 2010

	All voltages	Full mirror
Run time	164.4d	97.8d
Live time	147.1d	87.5d
Total triggers	$9.7 \cdot 10^7$	6.8·10 ⁷
Run data	6.4TB	4.4TB
Total data	25TB	

Previous Measurements: ILL

- Beck et al., Institut Laue-Langevin (ILL) 2002
- Electron-delayed proton-photon triple coincidence measurement
- Electron detector: plastic scintillator
- Proton detector: microchannel plate (MCP)
- Photon detector: Six CsI(T1) scintillators
- Result: BR for 35-100keV less than 6.9·10⁻³
- Predicted: 1.1·10⁻³

Previous Measurements: RDK I

- Nico et al., National Institute of Standards and Technology (NIST) 2005
- Triple coincidence measurement
- Electron-proton detector: surface barrier detector (SBD)
- Photon detector: bismuth germanate (BGO) scintillator + avalanche photo-diode (APD)
- Result: BR for 15-340keV = $3.09\pm0.32\cdot10^{-3}$
- Predicted: 2.85·10⁻³

Previous Measurements: RDK I

- •4.6T superconducting magnet
- •9.5° bend

Improvements in RDK II

- Twelve BGO+APD detectors
- Three bare APD (bAPD) detectors
- Neutron counter
- In situ calibration runs
- Improved statistics: O(0.1%) for BGOs
- Greater energy range
 - <10keV to the endpoint on BGO
 - <1keV to ≈10keV for bAPD</p>

NIST Beam Line

NIST Beam Line

Fig. 2. Wavelength spectrum of the NG-6 polychromatic beam. The dips in the spectrum correspond to Bragg-edges from materials upstream, typically aluminum and bismuth. The dip at 0.6 nm appears due to an upstream monochromator. The data were obtained with a 15 cm bismuth filter, polarizing supermirror, and neutron collimation in the beam.

Previous Measurements: ILL

Motivation

Measurement and year	Neutron lifetime (s)	Measurement type
Byrne 1996	889.2±3.0[syst.]±3.8[stat.]	Beam, Penning trap
Arzumanov 2000	885.4±0.9[syst.]±0.4[stat.]	Bottle, UCN gravitational trap
Nico 2005	886.3±1.2[syst.]±3.2[stat.]	Beam, Penning trap
PDG World Average	885.7±0.8	
Seberov 2005	878.5±0.7[syst.]±0.3[stat.]	Bottle, UCN gravitational trap

Radiative corrections

- Electron energy spectrum
- Angular correlation
- Correlated background

