Relatório 2: Bobinas de Helmholtz

Ana Lívia Viscondi Silva - RA 173183 Pedro Sader Azevedo - RA 243245 Yasmim Freitas Santos- RA 248535 Yuan Shi Ki - RA 195766

1. TEXTO PRINCIPAL

Nesse experimento, buscamos determinar o campo magnético da Terra a partir de medidas de período de oscilação de um ímã no interior de uma bobina de Helmholtz. A correlação entre essas grandezas só é possível quando os pressupostos do modelo matemático admitido são cumpridos, por isso o procedimento experimental deve reproduzir esses pressupostos o mais fielmente possível.

Sabendo disso, o procedimento adotado consistiu em pendurar um ímã no interior de uma bobina de Helmholtz alinhado ao centro dos anéis e equidistante dos mesmos. Em seguida, esse ímã foi alinhado ao campo magnético da Terra apoiando uma bússola no aparato e girando-o lentamente até que o ponteiro da bússola e o ímã apontassem para a mesma direção. Uma luz foi direcionada ao ímã para facilitar a contagem de períodos, assim como duas câmeras: uma acima da bobina e uma ao lado. Feito isso, ligamos uma fonte de corrente a um multímetro (em configuração de amperímetro) e a um resistor de alta potência, em seguida conectando os terminais dessa montagem às bobinas. Todas as dimensões do aparato experimental podem ser conferidas na Tab. 1.1.

Com o aparato experimental pronto, provocamos pequenas oscilações no ímã para diversos valores de corrente positiva e negativa (para variar o sentido da corrente e, consequentemente, do campo magnético produzido pelas bobinas). Tudo isso foi filmado pelas câmeras anteriormente mencionadas, possibilitando uma análise de vídeo com o Tracker para determinar o período médio em cada valor de corrente. Isso significa que a <u>variável independente</u> foi a corrente, enquanto a <u>variável dependente</u> foi o período de oscilação do ímã.

A partir disso, fizemos uma tabela (Tab 1.2) e um gráfico (Fig 1.1) com os valores de corrente elétrica, período de oscilação do ímã, e valores linearizados do período (bem como a incerteza associada a essa grandeza) baseados nas seguintes equações:

$$\frac{1}{T^2} = f^2 = \frac{\mu 8\mu_0 N}{4\pi^2 m_r 5^{3/2} R} \times i \pm \frac{\mu B_{Terra}}{4\pi^2 m_r}$$
(1.1)

$$Y = f^2, X = i, A = \frac{\mu B \mu_0 N}{4\pi^2 m_i 5^{3/2} R}, C = \frac{\mu B_{Terra}}{4\pi^2 m_i}$$
 (1.2)

$$Y = AX \pm C \tag{1.3}$$

Esse gráfico atesta visualmente que o artificio descrito acima nos leva a uma relação inequivocamente linear entre as grandezas *X* e *Y*. Como essa relação está bastante clara, tivemos um bom indício de que coletamos uma quantidade adequada de dados. Quanto aos padrões nessa relação, observamos que o gráfico é inicialmente decrescente (o campo magnético da bobina tem módulo maior e sentido igual ao campo magnético da Terra), até que a ordenada atinge valores muito próximos de zero (o campo magnético da bobina tem o módulo igual e o sentido oposto ao campo magnético da Terra) e então se inicia um regime crescente (o campo magnético da bobina tem o módulo maior e o sentido oposto ao campo magnético da Terra).

Para calcular o campo magnético da Terra e o momento magnético do ímã, estimamos os coeficientes A e C (denotamos o coeficiente linear por C ao invés de B para não confundí-lo com o campo magnético) por meio de um ajuste linear. Antes de fazer o ajuste, no entanto, procuramos detectar e remover valores espúrios que pudessem afetar a regressão negativamente. Felizmente não haviam valores desse tipo em nossos dados, então fizemos ajustes lineares dos regimes decrescente e crescente do gráfico sem precisar excluir nenhum ponto. Os valores dos coeficientes obtidos e suas respectivas incertezas podem ser conferidos na Tab. 1.3.

Sabendo dos coeficientes das retas, pudemos escrever o momento magnético do ímã e o campo magnético da Terra em função de grandezas conhecidas:

$$\mu = \frac{4\pi^2 m_j 5^{3/2} RA}{8\mu_0 N} \tag{1.4}$$

$$B_{Terra} = \frac{4\pi^2 m_l C}{\mu} \tag{1.5}$$

Os valores calculados para cada uma dessas incógnitas (bem como suas respectivas incertezas, calculadas através da propagação de incertezas conhecidas) podem ser conferidos na Tab.1.3. É interessante notar que as grandezas calculadas na porção crescente do gráfico foram mais precisas, isto é, tiveram incertezas menores. Isso provavelmente se deveu a quantidade maior de pontos no regime crescente (16 pontos) que no regime decrescente (12 pontos). Assim, conseguimos medir as grandezas desejadas e cumprir o objetivo do experimento.

2. FIGURAS E TABELAS

Fig. 1.1: Gráfico valores linearizados por corrente elétrica

Tab. 1.1: Dimensões relevantes do aparato experimental

Grandeza	Símbolo	Medida
Número de espiras	N	140
Raio das bobinas	R	$(10,65 \pm 0,06) \times 10^{-2} m$
Comprimento do ímã	L	$(1,25 \pm 0,02) \times 10^{-2} m$
Raio do ímã	r	$(0,30 \pm 0,02) \times 10^{-2} m$
Massa do ímã	m	$(5,15 \pm 0,03) \times 10^{-3} kg$
Momento de inércia	$m_{_I}$	$(7,8 \pm 0,3) \times 10^{-8} m^2 kg$

Tab. 1.2: Corrente elétrica, período de oscilação do ímã, e valores linearizados

Corrente (10 ⁻³ A)	Período (s)	Linearização do período (s ⁻²)	Incerteza da linearização do período (s ⁻²)
220,4	0,4670060244	4,58516569	0,1767278753
163,1	0,5329922183	3,52012644	0,1188803021
148,1	0,5329922183	3,52012644	0,1188803021
122,6	0,5999880002	2,77788889	0,08333833343
103	0,666977923	2,24790049	0,06066498968
78,4	0,7339988256	1,85613376	0,04551833942
60,6	0,8	1,5625	0,03515625
40,51	1	1	0,018
19,55	1,200048002	0,69438889	0,01041541672
0	1,466920933	0,46471489	0,005702330529
-2,2	1,86601978	0,28718881	0,002770280699
-3,86	1,933114247	0,26759929	0,002491724029
-6,42	2,066969822	0,23406244	0,002038309352
-10	2,732987155	0,13388281	0,0008817789632
-11,96	3,333333333	0,09	0,000486
-14,76	5	0,04	0,000144
-44,58	1,332977873	0,56280004	0,00759982662
-58,8	1,134044001	0,77757124	0,01234192175
-86,2	0,8660258076	1,33333209	0,02771277416
-102	0,8	1,5625	0,03515625
-120,3	0,732976618	1,86131449	0,04570904446
-139,5	0,666000666	2,25450225	0,06093243231
-159,2	0,5999880002	2,77788889	0,08333833343
-183,6	0,5339883591	3,50700529	0,1182162385
-207,3	0,5339883591	3,50700529	0,1182162385
-220,7	0,4660049397	4,60488681	0,1778692789
-242,4	0,4660049397	4,60488681	0,1778692789

Tab. 1.3: Resultados experimentais para diferentes regimes de crescimento da linearização do período do ímã

Regime	Coeficientes	Valores de μ e B_{Terra}		
Decrescente	$A_d = (-0,02073) \pm 0,00024$ $C_d = 0,445 \pm 0,035$	$\mu_d = (-5, 45 \pm 0, 20)10^{-5} J/T$ $B_{Terra_d} = (0, 0254 \pm 0, 0020) T$		
Crescente	$A_c = 0.01967 \pm 0,00020$ $C_c = 0,340 \pm 0,035$	$\mu_c = (-5, 17 \pm 0, 19)10^{-5} J/T$ $B_{Terra_c} = (0, 0204 \pm 0, 0011) T$		

3. INCERTEZAS

Tab. 1.4: Incertezas associadas às medidas de con	rrente eletrica.
--	------------------

Fonte de incerteza	f.d.p.	Tipo de avaliação	Referência	Faixa de valores plausíveis $(10^{-3}A)$	Incerteza-padrão (10 ⁻³ A)
Leitura do multímetro	Retangular	В	Manual do multímetro	a = 0.01*	$\frac{0.01}{2\sqrt{3}} \approx 0,0029$
Calibração do multímetro	Retangular	В	Manual do multímetro	$a = 0,005\bar{i} + 0,03$	$\frac{a}{2\sqrt{3}} \approx 10^{-3} (\bar{i} + 8, 7)$
Flutuações de corrente	Gaussiana	A	Vídeo experimento	$\sigma = 0,881$	$\frac{\sigma}{\sqrt{n}} = 0$, 127

Incerteza-padrão combinada: $u_i = (0, 155 + 0, 001 \, \bar{i}) \, 10^{-3} A \rightarrow$ apenas um algarismo significativo não nulo $u_i = (0, 200 + 0, 001 \, \bar{i}) \, 10^{-3} A \rightarrow$ parte dependente de i só é relevante para $\bar{i} > 1000 mA \rightarrow u_i = 0, 2 \times 10^{-3} A$

Tab. 1.5: Incertezas associadas às medidas de período de oscilação do ímã.

Fonte de incerteza	f.d.p.	Tipo de avaliação	Referência	Faixa de valores plausíveis (s)	Incerteza-padrão (s)	
Frequência da câmera	Retangular	В	Especificações do celular	$a = \frac{1}{30}$	$\frac{a}{2\sqrt{3}} \approx 0,009$	
Incerteza-padrão combinada: $u_T = 0,009 s$						

Tab. 1.6: Incertezas associadas à medida de raio das bobinas.

Fonte de incerteza	f.d.p.	Tipo de avaliação	Referência	Faixa de valores plausíveis (10 ⁻² m)	Incerteza-padrão (10 ⁻² m)
Leitura da régua	Triangular	В	Gradação da régua	a = 0, 1	$\frac{a}{2\sqrt{3}}\approx 0,020$
Determinação do raio médio	Gaussiana	A	Fotos no moodle	σ = 0, 1265 *	$\frac{\sigma}{\sqrt{n}} = 0,056$
Incerteza-padrão combinada: $u_R = 0,060 \times 10^{-2} m$					

^{*} os valores (em 10⁻²m) usados para calcular o desvio padrão foram: 10,55; 10,50; 10,60; 10,80; 10,80.

Tab. 1.7: Incertezas associadas à medida de comprimento do ímã.

Fonte de incerteza	f.d.p.	Tipo de avaliação	Referência	Faixa de valores plausíveis (10 ⁻² m)	Incerteza-padrão (10 ⁻² m)
Leitura do paquímetro analógico	Triangular	В	Gradação do paquímetro	a = 0, 1	$\frac{a}{2\sqrt{3}}\approx 0,020$
Incerteza-padrão combinada: $u_L = 0,020 \times 10^{-2} m$					

^{*} medidas de corrente abaixo de 6mA tem, na verdade, precisão de $1\mu A$. No entanto, consideramos a incerteza de leitura como $10\mu A$ (que seria o "pior caso") para todas as medidas para facilitar as contas.

Fonte de incerteza	f.d.p.	Tipo de avaliação	Referência	Faixa de valores plausíveis $(10^{-2}m)$	Incerteza-padrão (10 ⁻² m)	
Leitura do paquímetro analógico	Triangular	В	Gradação do paquímetro	a = 0, 1	$\frac{a}{2\sqrt{3}}\approx 0,020$	
Incerteza-padrão combinada: $u_r = 0,020 \times 10^{-2} m$						

Tab. 1.8: Incertezas associadas à medida de raio do ímã.

Tab. 1.9: Incertezas associadas à medida de massa do ímã.

Fonte de incerteza	f.d.p.	Tipo de avaliação	Referência	Faixa de valores plausíveis $(10^{-3}kg)$	Incerteza-padrão $(10^{-3}kg)$
Leitura do display da balança	Retangular	В	Fotos no moodle	a = 0, 1	$\frac{a}{2\sqrt{3}}\approx 0,029$
Medições repetidas	Gaussiana	A	Fotos no moodle	$\sigma = 0,00062 *$	$\frac{\sigma}{\sqrt{n}} = 0,0004$
In contains mode \tilde{a}_{0} combined $a_{0} = 0.020 \times 10^{-3} h g$					

Incerteza-padrão combinada: $u_m = 0,030 \times 10^{-3} kg$

Calc. 1.1: Propagação de incertezas de raio, comprimento e massa do ímã para momento de inércia do ímã

$$\begin{split} u_{m_l r}^2 &= \left(\frac{\partial}{\partial r} \frac{m}{12} \left(3r^2 + L^2\right)\right)^2 u_r^2 = \left(\frac{mr}{2}\right)^2 u_r^2 = 1,54 \times 10^{-9} \\ u_{m_l L}^2 &= \left(\frac{\partial}{\partial L} \frac{m}{12} \left(3r^2 + L^2\right)\right)^2 u_L^2 = \left(\frac{mL}{6}\right)^2 u_L^2 = 2,14 \times 10^{-9} \\ u_{m_l m}^2 &= \left(\frac{\partial}{\partial m} \frac{m}{12} \left(3r^2 + L^2\right)\right)^2 u_L^2 = \left(\frac{1}{12} \left(3r^2 + L^2\right)\right)^2 u_L^2 = 0,46 \times 10^{-9} \end{split}$$

$$u_{m_l} = \sqrt{u_{m_l}^2 + u_{m_l}^2 + u_{m_l}^2 + u_{m_l}^2} = 0$$
, 27 × 10⁻⁸ \rightarrow apenas um algarismo significativo não nulo $\rightarrow u_{m_l} = 0$, 3 × 10⁻⁸ $m^2 kg$

Calc. 1.2: Propagação da incerteza de período de oscilação para de frequência ao quadrado

$$f^{2} = \frac{1}{T^{2}}$$

$$u_{f^{2}} = \sqrt{\left(\frac{\partial}{\partial T} \frac{1}{T^{2}}\right)^{2} u_{T}^{2}} = \frac{0,018}{T^{3}} s^{-2}$$

^{*} os valores (em $10^{-3}kg$) usados para calcular o desvio padrão foram: 5,1545; 5,1554; 5,1560.