

Go –no go pilot WPJ uitbreiding Technologie

Namens projectteam uitbreiding WPJ

Jink Gude

Inhoud

- 1. PWN systeem
- 2. Waterkwaliteit eisen nieuwbouw en huidige prestaties
- 3. Bronkwaliteit Ijsselmeer
- 4. Pilot opzet

Doel pilot onderzoek

Het doel van de pilot onderzoek is om de optimale ontwerp parameters te bepalen die voldoen aan de waterkwaliteitseisen voor de gekozen zuiveringstreinen met LS (Lamellen Separatie) en DAF ("Dissolved Air Floatation") als alternatieven voor de separatie stap, om daarna en keuze te kunnen maken van de beste zuiveringsstraat voor het definitieve ontwerp middels een "Trade Off Matrix"

Opzet

- Introductie
 - Bestaande WPJ
 - Kansen
 - Uitwerken
- Doelstelling pilot
- Pilot opzet
 - Hardware [blokkenschema]
 - Onderzoek variabelen [
 - Instellingen
 - Cyclisch door seizoenen en continue verbetering
 - koudwater
- Activiteiten
- Deliverables
- Planning pilot

PWN system en WPJ gebruikers

- Voorgezuiverd water t.b.v. drinkwaterproductie
 - PWN
 - UF/HF t.b.v. ontharding
 - UV/H2O2 t.b.v. duininfiltratie
 - UV/H2O2–AKF t.b.v. (back-up) PSA
 - Waternet
 - Infiltratiewater (direct?)

2. <u>Industrie water;</u>

- Bestaande WRK contractanten (Tata, CvG)
- Nieuwe klanten?

3. Bron ljsselmeer waterkwaliteit

- Grote seizoen variatie:
 - Temperatuur
 - Algen
 - Opgelost organisch materiaal
 - Nutriënten
 - Slib en zand (wind en zandwinning)
- Hoog chloride
- Redelijk hoog natrium en sulfaat
- Toevoegen:
- C
- Na

Uitdagende bron

Nitraat WCB ruw mg/L 9,01 Nitraat ijsselmeer 3,64 13,10

Tabel 1 Bronwaterkwaliteit (ca. 2018) en behandeling bij PWN (*2000 – 2020), Waternet en Evides.

Parameter	Eenheid	PWN		Waternet		Evides				
Supply		IJsselmeer (Rijn)		Lek		Bergsche Maas				
				Reservoir (with						
Туре		Reservoir		coagulation)			Reservoir			
Area	На	45		200m x 120m = 2,4 Ha			615			
Volume	m³	3.760.000			n.v.t.			86.000.000		
Residence time	weken	7			n.v.t.			112		
Buffer	weken	1		n.v.t.			10			
		min	gem	max	min	gem	max	min	gem	max
Chloride	mg/l Cl	59	124	231	44	98	124	21	47	76
TOC	mg/L C	5	7	11	2,5	3	3,5	3,5	5	7
UV-extinction, 254 nm	1/m	10	14	24	6	7	11	9	12	15
Suspended solids	mg/l	0,5	18	70	11	33	76	7	14	28
Chlorofyl-A (algen)	μg/l	4*	48	70*		7			2	

- Hoge organische belasting resulteert in hoge dosering chemicaliën tijdens coagulatie (FeCl₃, NaOH)
- Terwijl regulering van parameters Cl⁻, SO₄²⁻ en Na⁺ beperkt grote concentratieverhoging van deze parameters.

2. Waterkwaliteitseisen

Parameter	Units	Target new extension	WPJ actual (typical average, and limit) 2000 – 2020			
Total suspended solids	mg/l	< 0.1	0.01	90%<0.08		
Turbidity	FTE	< 0.15	0.03	90%< 0.15		
DOC	mg/l C	<3	3.2	90%<4.0		
UV-Transmissie 254	%	> 89%	85%	90%>87%, 100%>77%		
Iron	μg/l Fe	<30	15	90%<27		
Manganese	μg/l Mn	< 1	0.2	90%>0.7 (higher after changing sand filters, c.a. 2 - 6)		
Ammonium	mg/l N	< 0.1	0.015	100%<0.1		
Bicarbonate	mg/l HCO3	> 90	140	100%>100		
Chloride	mg/l Cl	Minimum addition	160	regularly > 200, trend increasing		
Sodium	mg/l Na	Minimum addition	90	regularly > 120, trend increasing		
Sulphate	mg/l SO4	Minimum addition	62	100%< 80		
SI	рН	0.1 - 0.4	0.15	0 – 0.3		

Bestaande installatie WPJ

- In bedrijf sinds 1981, ontwerpcapaciteit 14.000 m³/h, reele capaciteit max.
 9000 m³/h
- Processtappen:
 - Trommelzeven, 200 μm
 - Coagulatie d.m.v. FeCl₃, c.a. 14 26 mg Fe/l
 - Flocculatie 15 min ontwerp en 34 min reeel
 - Lamellenseparators (1,6 m³/ m²/h ontwerp → 1,0 m³/ m²/h reeel)
 - Opwaartse zandfiltratie
 - Slibverwerking in bezinkvijvers en slibdroogbedden
- Pilot nodig omdat:
 - Ontwerpuitgangspunten nooit gehaald door krappe sedimentatie als zwakste schakel
 - Organisch materiaal verwijdering moet beter

Identified Process Improvements WPJ

To be considered for extension project:

- Enhanced coagulation possibly with additional pH correction (CO₂)
 - Improvement in water quality (UV-T, removal of organic material)
 - Lower iron dosage and chemical use (NaOH)
 - Minimize floc-agent
- CO₂ removal after sedimentation
 - Lower chemical usage (NaOH)
- Rapid sand filtration flow direction (change from upwards to downwards)
 - Lower losses during backwashing?
 - Improvement in water quality (TSS?, hydrobiology?)
 - Flowrate?
- Use of a smaller screen size (35 instead of 200 µm)
 - Possible positive influence on all downstream processes (including mussels?)
- Finding optimized LS surface loading with respect to coagulation parameters (chemical addition; Fe, floc-agent, CO₂ vs. pH)
 - Original design c.a. 1,7 m/h, too high

4. Pilot

Procestechnologie (pilot)

- Uitgangspunt: Het behalen van alle kwaliteitsdoelen met effectieve organische verwijdering en het minimaliseren van het gebruik van chemicaliën, vooral die Cl-, SO₄²⁻ en Na+
 - Opmerking: geen doelstellingen voor OMP en hygiënische parameters
- Veel technologieën zouden hiervoor in aanmerking kunnen komen, maar PWN heeft besloten om zich te beperken tot: microzeven-coagulatie-flocculatieflokafscheiding en snelfiltratie met het oog op;
 - Beperkte onderzoeks- en realisatietijd;
 - Ervaring met proces;
 - Bekende reststromen.
- Literatuur en ervaring van andere drinkwaterbedrijven (Evides industriewater, AWW) suggereren dat Dissolved Air Flotation (DAF) een interessante technologie zou zijn voor onze bronwaterkwaliteit.
- Daarom richt dit onderzoek zich op het vergelijken van onze 40 jaar ervaring met lamellen kolonisten en gewenste procesverbeteringen in het DAF-proces dat nieuw is voor PWN.

Coagulatant dosering

Ter referentie: Waternet en Evides doseren < 3 mg Fe/L

Watertemperatuur

- IJsselmeer varieert van c.a. 1 tot 25 °C
- Lage temperatuur grote negative impact flocculatie en sedimentatie proces door hoge viscositiet en beperkte diffusie

Biologische activiteit IJsselmeer

Water quality lake Ijssel

Large seasonal variations (seasonal phytoplankton growth)

High short-term variability (chlorophyll, phosphate...)

Biopolymers and particulate phosphate production by algae

Nitrate consumed by algae

UVT vs pH

• 28-4-2021 en 29-4-2021 UVT IJsselmeer 68%

DAF

Figure 1 Typical DAF system schematic.

Vooral toegepast op waters met hoge organische belasting voordelen t.o.v. sedimentatie:

- 1. Lager chemicaliënverbruik
 - Kleinere vlokken gunstig
- 2. Kleiner ruimtebeslag
 - Korte benodigde flocculatie tijd
- 3. Robuuster proces bij lage temperaturen
 - Er lost meer lucht op in de winter (kouder water)
 - Vlokken mogen kleiner

Concept water treatment trains

Figure 1 Pilot block scheme

Pilot doelen

Het verkrijgen van betrouwbare resulaten om:

- De geselecteerde technologieen te vergelijken (DAF en LS) gebaseerd op:
 - Waterkwaliteit;
 - CAPEX (investeringskosten);
 - OPEX (operationele kosten);
 - Duurzaamheid
 - Robuustheid proces;
 - Onderhoud;
- 2. Definieren van ontwerpuitgangspunten voor beste passende technologie:
 - Uitgangspunten geschikt voor betrouwbaar opschalen;
 - Testen equipment

Bezinksnelheid en temperatuur

Chemicalienkosten en waterkwaliteit

Prijs	CO ₂ footprint
Eur / ton	Kg CO ₂ -eq / kg

Waterkwaliteit

• Ca, HCO₃, pH en TOC (=UVT)

- HCO3 120-150
- Cascade max. 8 trappen = 1,6m dH

humic

biopolymeren

UVT na coagulatie door jaar heen

UVT en NO3 data PSA voor UV reactoren in 2021

Mei slechtste situatie met 8 mg/L NO₃ valt samen met laagste VT van 91%