

Report about Pwelch

Report	Verification
Names: Fanny Grosselin	Name: Yohan Attal
	Date:
	Signature:
<u>History of modifications:</u>	
- Creation 20/01/2017: Fanny Grosselin	
Description of the changes in MBT_PWelchComputer and MBT_Fourier in order to have the same	
results than with the pwelch of Matlab.	

Introduction:

This document lists and describes the changes induces in MBT_PWelchComputer and MBT_Fourier in order to converge to the same result than with pwelch of Matlab.

1. Comparison of the psd with a signal with 250 datapoints.

$$[psdM,fM] = pwelch(inputData,~[],[],[],250) \\ VS \\ initial ~MBT_PWelchComputer~and~initial ~MBT_Fourier$$

Size of frequency vector: 1x129 (from 0 to 125Hz)

1x55 (from 0 to 245,45Hz)

```
[psdM,fM] = pwelch(inputData, [],[],[],250)
VS
First change of MBT_PWelchComputer and initial MBT_Fourier
```

First change of MBT_PWelchComputer.cpp:

Explainations:

w = hamming(L) returns an L-point symmetric Hamming window in the column vector w. L should be a positive integer. The coefficients of a Hamming window are computed from the following equation.

$$w(n) = 0.54 - 0.46 \cos\left(2\pi \frac{n}{N}\right), \quad 0 \le n \le N$$

The window length is L=N+1.

Size of frequency vector: 1x129 (from 0 to 125Hz)

1x55 (from 0 to 245,45Hz)

[psdM,fM] = pwelch(inputData, [],[],[],250)
VS
Second change of MBT_PWelchComputer and initial MBT_Fourier

Second change of MBT_PWelchComputer.cpp:

Zero-padding of each segment.

Size of frequency vector: 1x129 (from 0 to 125Hz)

1x256 (from 0 to 245,45Hz)

[psdM,fM] = pwelch(inputData, [],[],[],250) VS

Second change of MBT_PWelchComputer and First change of MBT_Fourier

First change of MBT_Fourier.cpp:

Change ceil to floor in the computation of powerOfTwoLength in MBT_FourierBluestein::bluesteinConvolutionParallel.

No change concerning the plot.

[psdM,fM] = pwelch(inputData, [],[],[],250)

VS

Second change of MBT_PWelchComputer and Second change of MBT_Fourier

Second change of MBT_Fourier.cpp:

Zero-padding instead of padding by the mirror of the signal in MBT_FourierBluestein::workerBluesteinConvolutionParallelB and MBT_FourierBluestein::bluesteinConvolutionParallel

No change concerning the plot.

[psdM,fM] = pwelch(inputData, [],[],[],250)

Third change of MBT_PWelchComputer and Second change of MBT_Fourier

Third change of MBT_PWelchComputer.cpp:

Compute the one-sided spectrum.

Same frequency vector: 1x129 (from 0 to 125Hz)

[psdM,fM] = pwelch(inputData, [],[],[],250)

Fourth change of MBT_PWelchComputer and Second change of MBT_Fourier

Fourth change of MBT_PWelchComputer.cpp:

Correct the complexSignal generation: computeWindow should be called with i and not window because "n" of computeWindow should be in [0:windowLength-1] and not in [0:windowNumber].

Same frequency vector: 1x129 (from 0 to 125Hz)

[psdM,fM] = pwelch(inputData, [],[],[],250)

Fifth change of MBT_PWelchComputer and Second change of MBT_Fourier

Fifth change of MBT_PWelchComputer.cpp:

Compensate the power of the Hamming window by dividing the power by the power of the window.

Same frequency vector: 1x129 (from 0 to 125Hz)

2. Comparison of the psd with a signal with 5000 datapoints.

$[psdM,fM] = pwelch(inputData,\,[],[],[],250) \\ VS \\ Fifth change of MBT_PWelchComputer and Second change of MBT_Fourier$

Same frequency vector: 1x1025 (from 0 to 125Hz)

 $[psdM,fM] = pwelch(inputData,~[],[],[],250) \\ VS \\ Sixth~change~of~MBT_PWelchComputer~and~Second~change~of~MBT_Fourier$

Sixth change of MBT_PWelchComputer.cpp:

Divide the power by samplingRate like in Matlab.

Same frequency vector: 1x1025 (from 0 to 125Hz)

[psdM,fM] = pwelch(inputData, [],[],[],250) VS

Seventh change of MBT_PWelchComputer and Second change of MBT_Fourier

Seventh change of MBT_PWelchComputer.cpp:

Add a new method to compute fft and use it instead of MBT_Fourier::forwardBluesteinFFT. This new nethod was found here: http://stackoverflow.com/questions/10121574/safe-and-fast-fft

Same frequency vector: 1x1025 (from 0 to 125Hz)

For a signal of 250 datapoints:

Conclusion: almost the same trend at the same level but not exactly exactly the same values.

See below the little differences:

3. Comparison of the psd with a signal with 160000 datapoints.

160000 datapoints ~ 10.667min

Same frequency vector: 1x32769(from 0 to 125Hz)

In C++, a such signal need 213,856s = 3.56min to compute fft...

4. Adjustement of MBT_Fourier to have the same result than with fft

```
[psdM,fM] = pwelch(inputData, [],[],[],250)
VS
Seventh change of MBT_PWelchComputer and Third change of MBT_Fourier
```

Third change of MBT_Fourier.cpp:

int len = (int)inputData.size()/2;
//stackoverflow.com/questions/10121574 / Comment by Fanny Grosselin on 2017/01/20 Comment by Fanny Grosselin on 2017/01/20 len_>>= 1; // Comment by Fanny Grosselin on 2017/01/20 j ∧= len; //} // Comment by Fanny Grosselin on 2017/01/20
while ((j & len) == 0) {// add these lines like in len/=2; j^=len; } MBT_Fourier::radix2Step(std::vector<std::complex<float> inputData, int >& const exponentSign, const int levelSize, const int indexInLevel) // Twiddle Factor const float PI_F=3.14159265358979f; float exponent = (exponentSign * indexInLevel) * PI_F / levelSize; std::complex<float> w (cos(exponent), sin(exponent)); //int step = levelSize << 1; // Commented by Fanny Grosselin 2017/01/20
//for (int i = indexInLevel; i < inputData.size(); i += step)
for (int i = indexInLevel; i < inputData.size(); i += 2*levelSize) // like on</pre> http://stackoverflow.com/questions/10121574/safe-and-fast-fft std::complex<float> value = inputData[i]; std::complex<float> modifier = w * inputData[i + levelSize]; inputData[i] = value + modifier; inputData[i + levelSize] = value - modifier; } }

Signal of 250 datapoints:

Signal of 5000 datapoints:

Signal of 160000 datapoints:

Copyright © myBrain Technologies 2016. All rights reserved.