Proyecto de análisis de galaxias Centro Universitario de Guadalajara José Manuel Alejandro González Campos

Proyecto Final

Programación Juan Manuel Nava Cervantes 26 de abril del 2025

1. Introducción

Este proyecto tiene como propósito analizar datos estructurales de galaxias a partir de una base de datos en Excel que contiene información sobre parámetros observacionales. A través de Python se implementaron transformaciones matemáticas, cálculos estadísticos, visualizaciones gráficas y una regresión lineal para comprender la relación entre el radio efectivo de las galaxias y su brillo superficial.

2. Carga y preparación de los datos

Se importaron bibliotecas esenciales como pandas, numpy, matplotlib, seaborn, scipy.stats y sklearn. A partir del archivo galaxias_data.xlsx, se cargaron las columnas: raefcorkpg (radio efectivo), error_raefcorkpg, muecorg (brillo), y error_muecorg.

3. Transformación de datos

Se aplicó una transformación logarítmica base 10 al radio efectivo para facilitar la linealidad del análisis: log10(raefcorkpg).

4. Medidas de tendencia central y dispersión

Se calcularon moda, media, mediana, varianza, desviación estándar y covarianza entre log(raefcorkpg) y muecorg.

5. Visualización de los datos

A continuación se muestran dos visualizaciones generadas: un diagrama de dispersión y una regresión lineal.

Figura 2: Regresión Lineal

6. Regresión lineal

Se ajustó un modelo lineal muecorg = b0 + b1 * log(raefcorkpg), y se obtuvo R^2 como métrica de ajuste.

Se utilizó LinearRegression () de sklearn para calcular la pendiente (b1), el intercepto (b0) y el R². Estos se representaron visualmente sobre la gráfica.

7. Resultados obtenidos

Moda: 0.3374550171438442

Media: 0.6656852075119191

Mediana: 0.6962279718240181

Varianza: 0.05993133443555184

Desviación estándar: 0.2448087711573093

Covarianza: 0.529546267705918

Ecuación de la regresión: y = 8.8359x + -1.0415

R²: 0.6374

8. Conclusiones

Se confirmó una relación entre el log del radio efectivo y el brillo superficial. El análisis demostró que Python permite caracterizar estas propiedades de manera eficiente.

9. Anexos

- estadisticas.txt
- datos_modelo.csv
- dispersogram.png / pdf
- regresion_lineal.png / pdf