Attorney Docket No.: Q64193

Art Unit: 1752

REMARKS

Claims 1-11 are all the claims pending in the application.

I. The Objections to the Claims

Claims 4, 5 and 7 are objected to allegedly as containing "informalities."

The Examiner states that the substituent groups for formulae (II), (III), (IV), (V) and (VI) are not consistent. In particular, the Examiner states that the numbers used in association with n, m and p are superscripts in text, but are not subscripts in the formulae themselves.

Applicants have amended the claims and the specification, formulae (II), (III), (IV), (V) and (VI), to change the terms n1, n2, p1, p2, p3, m1, etc. in the formulae to n1, n2, p1, p2, p3, m1, etc.

For the above reasons, it is respectfully submitted that Applicants' claims are clear and definite and it is requested that the objection to the claims be reconsidered and withdrawn.

II. The Rejection Under 35 U.S.C. §112

Claims 1-4 and 9-11 are rejected under 35 U.S.C. §112, second paragraph, as allegedly being indefinite.

The Examiner states that the language "at least two sensitizing dyes represented by the formula (I)" in claims 1 and 11 is unclear "since there is only one

Attorney Docket No.: Q64193

Art Unit: 1752

dye of formula represented by formula (I) is shown in the claims, and none of the

other dyes presented in the claims."

Applicants respectfully submit that the present claims are clear and definite

as written and that they particularly point out and distinctly claim the subject

matter which Applicants regard as the invention. Applicants request that the

Examiner reconsider and withdraw the rejection under 35 U.S.C. §112, second

paragraph, in view of the following remarks.

The claim language clearly recites that two sensitizing dyes are being

claimed. The two dyes having the same general formula does not make it unclear

that two dyes are being claimed (i.e., two different dyes, each within the scope of

general formulae (I)).

However, for further clarification, claims 1 and 11 have been amended to

recite "at least two different sensitizing dyes represented by the following formula

(I)." Again, the two dyes having the same general formula does not make it unclear

that two different dyes are being claimed

For the above reasons, it is respectfully submitted that Applicants' claims are

clear and definite and it is requested that the rejection under 35 U.S.C. §112 be

reconsidered and withdrawn.

III. The Rejection Based on Miyamoto and Hioki

Claims 1-11 are rejected under 35 U.S.C. §103(a) as allegedly being unpatentable over the combination of Miyamoto et al (Miyamoto) and Hioki et al (Hioki).

The Examiner states that Miyamoto discloses silver halide emulsion containing dyes within the scope of the claimed invention. The Examiner particularly notes that the abstract states that "the silver emulsion is subjected to spectral sensitization with at least one type of methine compound represented by formula (I)".

The Examiner states that Miyamoto discloses dyes having a "-SO₃-" substituent and other substituents containing a dissociable group other than a "-SO₃-" containing substituent. The Examiner also states that formula (I) allows for " $(X_1)_k$ " to represent an anion and k to represent a number required to adjust the charge in the molecule to 0.

The Examiner states Hioki teaches that sulfo groups may be described as "-SO₃-" and also as "-SO₃-H", when a hydrogen ion is presented as a counter ion.

The Examiner states that the difference between the claimed invention and that of Miyamoto is the "H" associated with the sulfo group (Miyamoto being silent with respect to the use of hydrogen atom to balance the charge of the dye molecule, but Hioki disclosing that "H" can be used to balance the charge of dye molecule containing sulfo group). The Examiner concludes that it would have been obvious to

AMENDMENT UNDER 37 C.F.R. §1.111

U.S. Appln. NO. 09/845,355

Attorney Docket No.: Q64193

Art Unit: 1752

the worker of ordinary skill in the art at the time the invention was made to use

positively charged hydrogen to adjust the charge in the molecule of the dye taught

in Miyamoto, and thereby provide an invention as claimed.

Applicants respectfully submit that the present invention is not anticipated

by or obvious over Miyamoto and Hioki and request that the Examiner reconsider

and withdraw this rejection in view of the following remarks.

Applicants' respectfully submit that Miyamoto does not teach or disclose the

use of two types of dyes, both within the scope of formula (I) together in a silver

halide emulsion. Likewise, Hioki does not teach or disclose the use of two types of

dyes, both within the scope of formula (I) together in a silver halide emulsion.

Moreover, even if the cited references are combined Applicants' invention would not

be obtained. Therefore, it is respectfully submitted that the Examiner has not

established a prima facie case of obviousness in view of the disclosures of Miyamoto

and Hioki.

While, as set forth above, it is believed the Examiner has not established a

prima facie case of obviousness, to advance the prosecution of the case, Applicants

have provided additional declaration evidence showing the improved properties of

the presently claimed silver halide photographic emulsion composition over the

materials of the references of the rejection. See the attached Declaration Under 37

C.F.R. § 1.132 by Mr. Tetsuo Nakamura. The §132 Declaration is unexecuted. The executed copy will be filed as soon as it is received from the Declarant.

The comparative data of the §132 Declaration demonstrates that the unexpected effects achieved by the present invention (i.e., compatibility of the high sensitivity and reduction of residual color) are obtained by the combination of at least two different sensitizing dyes according to the present invention and are not obtained by the use of only one sensitizing dye, as disclosed in the references cited.

Example 2 of the §132 Declaration is comparative experimentation including dyes disclosed in Miyamoto. Thus, Example 2 is representative of the closest cited art, Miyamoto.

Example 3 of the §132 Declaration is comparative experimentation including dyes disclosed in Hioki. Thus, Example 2 is representative of the closest cited art, Hioki.

It is clearly seen from the results of the §132 Declaration, when the two different sensitizing dyes of the present invention are used in combination, both the sensitivity and the reduction in residual color are unexpectedly improved. Such improvements in sensitivity and residual color are not expected in view of the teachings of Miyamoto and Hioki, which contain no discussion as to the excellent effect achieved by the combination two different sensitizing dyes according to the present invention.

AMENDMENT UNDER 37 C.F.R. §1.111

U.S. Appln. NO. 09/845,355

Attorney Docket No.: Q64193

Art Unit: 1752

For the above reasons, it is respectfully submitted that the subject matter of

claims 1-11 is neither taught by nor made obvious from the disclosures of Miyamoto

and Hioki and it is requested that the rejection under 35 U.S.C. §103(a) be

reconsidered and withdrawn.

IV. Conclusion

In view of the above, Applicants respectfully submit that their claimed

invention is allowable and ask that the objection to the claims, the rejection under

35 U.S.C. §112 and the rejection under 35 U.S.C. §103 be reconsidered and

withdrawn. Applicants respectfully submit that this case is in condition for

allowance and allowance is respectfully solicited.

If any points remain at issue which the Examiner feels may be best resolved

through a personal or telephone interview, the Examiner is kindly requested to

contact the undersigned at the local exchange number listed below.

Applicants hereby petition for any extension of time which may be required

to maintain the pendency of this case, and any required fee for such extension is to

be charged to Deposit Account No. 19-4880.

Respectfully submitted,

Lee C. Wright

Registration No. 41,441

Jee C. wight

SUGHRUE MION, PLLC

2100 Pennsylvania Avenue, N.W. Washington, D.C. 20037-3213

Telephone: (202) 293-7060

Date: May 28, 2002

APPENDIX

Attorney Docket No.: Q64193

Art Unit: 1752

IN THE SPECIFICATION:

The specification is changed as follows:

Please delete the third paragraph on page 4, ending on page 5, and replace with:

VERSION WITH MARKINGS TO SHOW CHANGES MADE

(4) The silver halide photographic emulsion as described in the above item(1), (2) or (3), wherein the sensitizing dyes are represented by the following formula

(II):
$$\begin{pmatrix} (V^{1})_{n1} & Y^{1} & Y^{2} & (V^{2})_{n2} \\ R^{1} - N & // - L^{1} + L^{2} - L^{3} + 1 & N - R^{2} \\ (L^{5} - L^{4})_{p2} & (M^{1})_{m1} & (L^{6} = L^{7})_{p3} \end{pmatrix}$$

$$\begin{pmatrix} (V^{1})_{n^{1}} & Y^{1} & Y^{2} & (V^{2})_{n^{2}} \\ R^{1} - N & // - L^{1} + L^{2} - L^{3} + 1 & N - R^{2} \\ (L^{5} - L^{4})_{p^{2}} & (M^{1})_{m^{1}} \end{pmatrix}$$

$$(III)$$

wherein R^1 and R^2 each represents a substituted alkyl, aryl or heterocyclic group, and R^1 is substituted with -SO₃H and R^2 is substituted with a dissociable group other than -SO₃H; Y^1 and Y^2 each represents an atomic group necessary to form a 5-or 6-membered nitrogen-containing heterocyclic ring, and Y^1 and Y^2 may be condensed with other carbocyclic ring or heterocyclic ring; V^1 and V^2 each represents a substituent; v^1 and v^2 each represents an integer of 0 or more (preferably 6 or less, more preferably 2 or less), and when v^1 and v^2 each represents

2 or more, V¹ and V² may be the same with or different from each other; L¹, L², L³, L⁴, L⁵, L⁶ and L⁷ each represents a methine group; p¹ represents 0, 1, 2 or 3, p² and p³ each represents 0 or 1, and when p¹ represents 2 or 3, repeating L² and L³ may be the same with or different from each other; M¹ represents a counter ion; and m¹ represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

Please delete the paragraph starting on page 5, line 17, ending on page 7, and replace with:

(5) The silver halide photographic emulsion as described in the above item (1), (2), (3) or (4), wherein at least one sensitizing dye is represented by the following formula (III) and at least one sensitizing dye is represented by formula

(IV):
$$(V^{11})_{n11} = (V^{12})_{n12}$$

$$(M^{11})_{m11} = (M^{11})_{m11}$$

$$(M^{11})_{m11} = (M^{11})_{m11}$$

$$(V^{11})_{n^{11}}$$
 V^{11}
 V^{11}
 V^{11}
 V^{11}
 V^{11}
 V^{12}
 V^{12}

wherein R¹¹ and R¹² each represents a substituted alkyl, aryl or heterocyclic group, and R¹¹ is substituted with -SO₃H and R¹² is substituted with a dissociable group other than -SO₃H; X¹¹ and X¹² each represents an oxygen atom, a sulfur atom, a selenium atom, NR¹⁵, CR¹⁶R¹⁷, or L¹³=L¹⁴; R¹⁵, R¹⁶ and R¹⁷ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L¹³ and L¹⁴ each represents a methine group; V¹¹ and V¹² each represents a substituent; n¹¹ and n¹² each represents an integer of 0 or more (preferably 4 or less, more preferably 2 or less), and when n¹¹ and n¹² each represents 2 or more, V¹¹ and V¹² may be the same with or different from each other; L¹¹ represents a methine group; M¹¹ represents a counter ion; and m¹¹ represents a number of 0 or more necessary to neutralize the electric charge in the molecule;

wherein R¹³ and R¹⁴ each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R¹³ and R¹⁴ is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X¹³ and X¹⁴ each represents an oxygen atom, a sulfur atom, a selenium atom, NR¹⁸, CR¹⁹R²⁰, or L¹⁵=L¹⁶; R¹⁸, R¹⁹ and R²⁰ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L¹⁵ and L¹⁶ each represents a methine group; Z¹¹ represents a benzene ring

or a naphthalene ring; Z^{12} represents a naphthalene ring; V^{13} and V^{14} each represents a substituent; n^{13} and n^{14} each represents an integer of 0 or more (n^{13} represents preferably 4 or less, more preferably 2 or less, and n^{14} represents preferably 6 or less, more preferably 2 or less), and when n^{13} and n^{14} each represents 2 or more, V^{13} and V^{14} may be the same with or different from each other; L^{12} represents a methine group; M^{12} represents a counter ion; and m^{12} represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

Please delete the second paragraph on page 8, ending on page 10, and replace with:

(7) The silver halide photographic emulsion as described in the above item (1), (2), (3) or (4), wherein at least one sensitizing dye is represented by the following formula (V) and at least one sensitizing dye is represented by formula

(VI):
$$(V^{21})_{n21} - (V^{22})_{n22} - (V^{22})_{n22}$$

$$(V^{21})_{n21} - (V^{22})_{n22}$$

$$(V^{21})_{n21} - (V^{22})_{n22}$$

$$(W^{21})_{m21} - (W^{21})_{m21}$$

$$(V^{21})_{n^{21}} \xrightarrow{X^{21}} L^{21} = L^{22} - L^{23} = (V^{22})_{n^{22}} (V^{22})_{n^{22}} (V^{22})_{n^{22}}$$

$$(M^{21})_{m^{21}} \stackrel{|}{=} (M^{21})_{m^{21}}$$

wherein R²¹ and R²² each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R²¹ and R²² is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X²¹ and X²² each represents an oxygen atom, a sulfur atom, a selenium atom, NR²⁵, CR²⁶R²⁷, or L²⁷=L²⁸; R²⁵, R²⁶ and R²⁷ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L²⁷ and L²⁸ each represents a methine group; V²¹ and V²² each represents a substituent; n²¹ and n²² each represents an integer of 0 or more (preferably 4 or less, more preferably 2 or less), and when n²¹ and n²² each represents 2 or more, V²¹ and V²² may be the same with or different from each other; L²¹, L²² and L²³ each represents a methine group; M²¹ represents a counter ion; and m²¹ represents a number of 0 or more necessary to neutralize the electric charge in the molecule;

wherein R^{23} and R^{24} each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R^{23} and R^{24} is substituted with -SO₃H and the other is

substituted with a dissociable group other than -SO₃H; X^{23} and X^{24} each represents an oxygen atom, a sulfur atom, a selenium atom, NR²⁸, CR²⁹R³⁰, or L²⁹=L³⁰; R²⁸, R²⁹ and R³⁰ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L²⁹ and L³⁰ each represents a methine group; Z²¹ represents a benzene ring or a naphthalene ring; Z²² represents a naphthalene ring; V²³ and V²⁴ each represents a substituent; n²³ and n²⁴ each represents an integer of 0 or more (when Z²¹ represents a benzene ring, n²³ represents 4 or less, preferably 2 or less, and when Z²¹ represents a naphthalene ring, n²³ represents 6 or less, preferably 2 or less, and n²⁴ represents 6 or less, preferably 2 or less), and when n²³ and n²⁴ each represents 2 or more, V²³ and V²⁴ may be the same with or different from each other; L²⁴, L²⁵ and L²⁶ each represents a methine group; M²² represents a counter ion; and m²² represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

Attorney Docket No.: Q64193 Art Unit: 1752

IN THE CLAIMS:

The claims are amended as follows:

1 (amended). A silver halide photographic emulsion which contains at least two <u>different</u> sensitizing dyes represented by the following formula (I):

$$Dye^{-(A)_rQ)_q}_{q (M)_m}$$

wherein Dye represents a dye moiety; A represents a linking group; Q represents a dissociable group; r represents 0 or 1; q represents an integer of 2 or more, provided that at least one Q represents -SO₃H and at least one Q represents a dissociable group other than -SO₃H; M represents a counter ion; and m represents a number of 0 or more necessary to neutralize the electric charge in the molecule, and when m represents 2 or more, M's need not be the same.

Attorney Docket No.: Q64193

Art Unit: 1752

4 (amended). The silver halide photographic emulsion as claimed in claim 1, wherein said sensitizing dyes are represented by the following formula (II):

wherein R¹ and R² each represents a substituted alkyl, aryl or heterocyclic group, and R¹ is substituted with -SO₃H and R² is substituted with a dissociable group other than -SO₃H; Y¹ and Y² each represents an atomic group necessary to form a 5-or 6-membered nitrogen-containing heterocyclic ring, and Y¹ and Y² may be condensed with other carbocyclic ring or heterocyclic ring; V¹ and V² each represents a substituent; n¹ and n² each represents an integer of 0 or more, and when n¹ and n² each represents 2 or more, V¹ and V² may be the same with or different from each other; L¹, L², L³, L⁴, L⁵, L⁶ and L⁷ each represents a methine group; p¹ represents 0, 1, 2 or 3, p² and p³ each represents 0 or 1, and when p¹ represents 2 or 3, repeating L² and L³ may be the same with or different from each

other; M^1 represents a counter ion; and m^1 represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

5 (amended). The silver halide photographic emulsion as claimed in claim 1, wherein at least one sensitizing dye is represented by the following formula (III) and at least one sensitizing dye is represented by formula (IV):

$$(V^{11})_{n11} - (V^{12})_{n12} - (V^{12})_{n12} - (V^{11})_{n11} - (V^{$$

wherein R^{11} and R^{12} each represents a substituted alkyl, aryl or heterocyclic group, and R^{11} is substituted with -SO₃H and R^{12} is substituted with a dissociable group other than -SO₃H; X^{11} and X^{12} each represents an oxygen atom, a sulfur atom, a selenium atom, NR^{15} , $CR^{16}R^{17}$, or $L^{13}=L^{14}$; R^{15} , R^{16} and R^{17} each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L^{13} and L^{14} each represents a methine group; V^{11} and V^{12} each represents a substituent; n^{11} and n^{12} each represents an integer of 0 or more, and when n^{11} and n^{12} each represents 2 or

more, V^{11} and V^{12} may be the same with or different from each other; L^{11} represents a methine group; M^{11} represents a counter ion; and m^{11} represents a number of 0 or more necessary to neutralize the electric charge in the molecule;

wherein R¹³ and R¹⁴ each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R¹³ and R¹⁴ is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X¹³ and X¹⁴ each represents an oxygen atom, a sulfur atom, a selenium atom, NR¹⁸, CR¹⁹R²⁰, or L¹⁵=L¹⁶; R¹⁸, R¹⁹ and R²⁰ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L¹⁵ and L¹⁶ each represents a methine group; Z¹¹ represents a benzene ring or a naphthalene ring; Z¹² represents a naphthalene ring; V¹³ and V¹⁴ each represents a substituent; n¹³ and n¹⁴ each represents an integer of 0 or more, and when n¹³ and n¹⁴ each represents 2 or more, V¹³ and V¹⁴ may be the same with or

AMENDMENT UNDER 37 C.F.R. §1.111 Attorney Docket No.: Q64193

U.S. Appln. NO. 09/845,355 Art Unit: 1752

different from each other; L^{12} represents a methine group; M^{12} represents a counter ion; and m^{12} represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

7 (amended). The silver halide photographic emulsion as claimed in claim 1, wherein at least one sensitizing dye is represented by the following formula (V) and at least one sensitizing dye is represented by formula (VI):

$$(V^{21})_{n^{21}} \xrightarrow{X^{21}} L^{21} = L^{22} - L^{23} = X^{22} - (V^{22})_{n^{22}}$$

$$(V^{21})_{n^{21}} \xrightarrow{R}^{1} (M^{21})_{m^{21}}$$

$$(V^{22})_{n^{22}}$$

$$(V^{22})_{n^{22}}$$

$$(V^{22})_{n^{22}}$$

wherein R²¹ and R²² each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R²¹ and R²² is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X²¹ and X²² each represents an oxygen atom, a sulfur atom, a selenium atom, NR²⁵, CR²⁶R²⁷, or L²⁷=L²⁸; R²⁵, R²⁶ and R²⁷ each represents a substituted or unsubstituted alkyl, aryl or heterocyclic

group; L²⁷ and L²⁸ each represents a methine group; V²¹ and V²² each represents a substituent; n²¹ and n²² each represents an integer of 0 or more, and when n²¹ and n^{22} each represents 2 or more, V^{21} and V^{22} may be the same with or different from each other; L^{21} , L^{22} and L^{23} each represents a methine group; M^{21} represents a counter ion; and m21 represents a number of 0 or more necessary to neutralize the electric charge in the molecule;

$$\begin{bmatrix}
Z^{21} & X^{23} & X^{24} & Z^{22} \\
X^{23} & X^{24} & X^{24} & X^{24} \\
X^{24} & X^{24} & X^{24} & X^{24} \\
X^{25} & X^{24} & X^{24} & X^{24} & X^{24} \\
X^{25} & X^{25} & X^{24} & X^{24} & X^{24} \\
X^{25} & X^{25} & X^{24} & X^{24} & X^{24} \\
X^{25} & X^{25} & X^{24} & X^{24} & X^{24} \\
X^{25} & X^{25} & X^{24} & X^{24} & X^{24} \\
X^{25} & X^{25} & X^{24} & X^{24} & X^{24} \\
X^{25} & X^{25} & X^{25} & X^{24} & X^{24} \\
X^{25} & X^{25} & X^{25} & X^{24} & X^{24} \\
X^{25} & X^{25} & X^{25} & X^{24} & X^{25} \\
X^{25} & X^{25} & X^{25} & X^{25} & X^{24} \\
X^{25} & X^{25} & X^{25} & X^{25} & X^{25} & X^{25} \\
X^{25} & X^{25} & X^{25} & X^{25} & X^{25} & X^{25} \\
X^{25} & X^{25} & X^{25} & X^{25} & X^{25} & X^{25} & X^{25} \\
X^{25} & X^{25} & X^{25} & X^{25} & X^{25} & X^{25} & X^{25} \\
X^{25} & X^{25} \\
X^{25} & X^{25}$$

wherein R23 and R24 each represents a substituted alkyl, aryl or heterocyclic group, and at least one of R^{23} and R^{24} is substituted with -SO₃H and the other is substituted with a dissociable group other than -SO₃H; X^{23} and X^{24} each represents an oxygen atom, a sulfur atom, a selenium atom, NR28, CR29R30, or L29=L30; R28, R29

and R30 each represents a substituted or unsubstituted alkyl, aryl or heterocyclic group; L²⁹ and L³⁰ each represents a methine group; Z²¹ represents a benzene ring or a naphthalene ring; Z^{22} represents a naphthalene ring; V^{23} and V^{24} each represents a substituent; n23 and n24 each represents an integer of 0 or more, and when n²³ and n²⁴ each represents 2 or more, V²³ and V²⁴ may be the same with or different from each other; L^{24} , L^{25} and L^{26} each represents a methine group; M^{22} represents a counter ion; and m22 represents a number of 0 or more necessary to neutralize the electric charge in the molecule.

11 (amended). A silver halide photographic material which comprises a support having provided thereon at least one emulsion layer containing the silver halide photographic emulsion which contains at least two different sensitizing dyes represented by the following formula (I):

$$Dye^{-((A)_rQ)_q} (M)_m$$
 (I)

wherein Dye represents a dye moiety; A represents a linking group; Q represents a dissociable group; r represents 0 or 1; q represents an integer of 2 or more, provided that at least one Q represents -SO₃H and at least one Q represents a dissociable group other than -SO₃H; M represents a counter ion; and m represents a number of 0 or more necessary to neutralize the electric charge in the molecule, and when m represents 2 or more, M's need not be the same.