

PATUAKHALI SCIENCE AND TECHNOLOGY UNIVERSITY

COURSE CODE CIT-112

SUBMITTED TO:

Md. Mahbubur Rahman

Department of Computer Science and Information Technology
Faculty of Computer Science and Engineering

SUBMITTED BY:

Md. Sharafat Karim

ID: 2102024,

Registration No: 10151

Faculty of Computer Science and Engineering

Date of submission: 30 May, 2023

Assignment: 06 (Basic Code)

Table of Contents

1) Reversing digits	3
2) Euler's Number	4
3) Functions calculate	5
4) Present value	7
5) Square of character S	9
6) sin(x) graph function	11
7) S square with middle O	13
8) postivie values	14
9) Colored line	15
10) Pattern pyramid center aligned	16
11) Pattern of floating island	18
12) Sum of the digits	20
13) left sided pattern	21
14) Fibonacci numbers	22
15) Investment equation	23
16) pattern with for loop	25
17) Age range	27
18) 2 curves	29
19) exponent table	32
20) S writing with loop	34

1) Reversing digits

```
#include<stdio.h>
int main()
{
    int n;
    scanf("%d", &n);

    int reverse=0;
    while (n>0)
    {
       reverse *= 10;
       reverse += n % 10;
       n /= 10;
    }
    printf("%d", reverse);
}
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7

> cl 1.c
compiling 1
    0.04s user 0.02s system 96% cpu 0.064 total

123
321%
```

2) Euler's Number

```
#include <stdio.h>
int main()
{
    float accuracy = 0.00001;
    float result=1, sum = 1;
    int i = 1;

    while ( sum > accuracy )
    {
        result += sum;
        i++;
        sum *= ((float)1/i);
    }

    printf("Result -> %f", result);
}
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7
) cl 10.c
compiling 10
0.04s user 0.02s system 94% cpu 0.067 total

Result → 2.718279%
```

3) Functions calculate

```
#include <stdio.h>
#include <math.h>
int main()
  float accuracy = 0.0001, x;
  scanf("%f", &x);
  float result=1, sum = x;
  int i = 1;
  while (sum > accuracy | | sum < 0)
  {
    result += sum;
    i += 2;
    sum *= (-1)*(x*x)/(i*(i-1));
    if (i >= 100)
      break;
  }
  printf("sinx -> %f\n", result);
  result=1, sum = 1;
  i = 0;
  while (sum > accuracy | | sum < 0)
  {
    result += sum;
    i += 2;
    sum *= (-1)*(x*x)/(i*(i-1));
    if (i >= 100)
      break;
  }
```

```
printf("cosx -> %f\n", result);

result=1, sum = 1;
i = 0;

while ( sum > accuracy | | sum < 0 )
{
    result += sum;
    i += 1;
    sum *= pow(((float)1/i),i);

    if (i >= 100)
        break;
}

printf("SUM -> %f\n", result);
}
```

4) Present value

```
#include <math.h>
#include <stdio.h>
#include <ctype.h>
int input(char name)
{
  int n;
  printf("Enter the value of %c\n", name );
  scanf("%d", &n);
  if (n \ge 0)
    return n;
  else
  {
    printf("Invalid input! Please try again\n");
    printf("Value of P is -> %d", n);
    return input(name);
  }
}
int main()
{
  int n, c, d;
  c = input('c');
  d = input('d');
  n = input('n');
  int P;
  P = c * pow((1 - (int)(d/100)), n);
  printf("Value of P is -> %d", P);
  return 0;
}
```

5) Square of character S

#include<stdio.h>

```
int main()
{
  int i, j;
  int col = 5;
  char Char = 'S';
  for (i=0; i< col; i++)
  {
     for (j=0; j<col; j++)
       printf("%c ", Char);
    printf("\n");
  }
  printf("\n");
  for (i=0; i< col; i++)
  {
     for (j=0; j<col; j++)
       if (i==0 | |j==0 | |i==col-1 | |j==col-1)
         printf("%c ", Char);
       else
         printf(" ");
     }
    printf("\n");
  }
}
```

6) sin(x) graph function

```
#include <stdio.h>
#include <math.h>
```

```
/*
X
         y
0
         0.000000
15
          0.258819
30
          0.500000
45
          0.707107
          0.866025
60
75
          0.965926
90
          1.000000
105
           0.965926
120
           0.866025
135
           0.707107
150
           0.500000
165
           0.258819
180
           0.000000
*/
#define PI 3.14159265
int main()
{
  int i;
  float j, s;
  for (j=1.1; j \ge 0; j=0.1)
  {
    for (i=0; i<= 180; i+= 15)
      s = \sin(i*PI/180);
      if (fabsf(s-j) \le 0.1)
       {
        printf("*");
      }
```

7) S square with middle O

```
#include<stdio.h>
```

```
int main()
{
  int i, j;
  int col = 5;
  char Char = 'S';
  char Char2 = 'O';
  for (i=0; i< col; i++)
  {
    for (j=0; j<col; j++)
       if (i==j && i==2)
         printf("%c ", Char2);
       else
         printf("%c ", Char);
     }
    printf("\n");
  }
}
```

8) postivie values

```
#include<stdio.h>
int main()
{
   int i, j;
   int sum=0;

   for (i=0; i< 10; i++)
   {
      scanf("%d", &j);
      sum += j;
      printf("%d + ", j);
    }
   printf("\nSum -> %d", sum);
}

// test case
// 1 2 3 4 5 6 7 8 9 10
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7 16s
> cl 16.c
compiling 16
0.04s user 0.02s system 98% cpu 0.062 total

1 2 3 4 5 6 7 8 9 10
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 +
Sum → 55%
```

9) Colored line

```
#include <stdio.h>
void red () {
 printf("\033[1;31m");
}
void yellow() {
 printf("\033[1;33m");
}
void reset () {
 printf("\033[0m");
}
int main () {
 red();
 printf("Hello ");
 yellow();
 printf("world\n");
 red();
 printf("-----\n");
 reset();
 return 0;
}
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7
) cl 17.c
| compiling 17
| 0.04s user 0.03s system 97% cpu 0.073 total
| Hello world
```

10) Pattern pyramid center aligned

#include<stdio.h>

```
int main()
{
  int i, j;
  int digit=1;
  char letter='A';
  int n;
  scanf("%d", &n);
  for (i=0; i< n; i++)
  {
    for (j=0; j<(5-i);j++)
       printf(" ");
    for (j=0; j<= i; j++)
    {
       if (i%2==0)
         printf("%d ", digit++);
         printf("%c ", letter++);
    }
    printf("\n");
  }
}
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7
) cl 18.c
compiling 18
0.05s user 0.02s system 91% cpu 0.070 total

6
1 A B
2 3 4
C D E F
5 6 7 8 9
G H I J K L
```

11) Pattern of floating island

#include<stdio.h>

```
int main()
{
  int i, j;
  int digit=1;
  char letter='A';
  int n;
  scanf("%d", &n);
  for (i=0; i< n/2; i++)
  {
     for (j=0; j<(5-i);j++)
       printf(" ");
     for (j=1; j<= i+1; j++)
       printf("%d ", j);
     for (j=j-2;j>=1;j--)
       printf("%d ", j);
     printf("\n");
  }
  for (i=n/2; i>= 0; i--)
  {
     for (j=0; j<(5-i);j++)
       printf(" ");
     for (j=1; j<= i+1; j++)
       printf("%d ", j);
     for (j=j-2;j>=1;j--)
       printf("%d", j);
     printf("\n");
  }
}
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7
) cl 18.c
compiling 18
0.05s user 0.02s system 95% cpu 0.071 total

5
1
A B
2 3 4
C D E F
5 6 7 8 9
```

12) Sum of the digits

```
#include<stdio.h>
int main()
{
    int n;
    scanf("%d", &n);

    int sum=0;
    while (n>0)
    {
        sum += n % 10;
        n /= 10;
    }
    printf("%d", sum);
}
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7 13s
> cl 2.c
compiling 2
0.06s user 0.02s system 97% cpu 0.090 total

521
8%
```

13) left sided pattern

```
#include<stdio.h>
int main()
{
    int i, j;
    int digit=1;
    char letter='A';
    int n;
    scanf("%d", &n);

    for (i=0; i< n; i++)
     {
        for (j=0; j<= i; j++)
            printf("%d ", ((i+j)%2==0?1:0));
        printf("\n");
    }</pre>
```

}

14) Fibonacci numbers

```
#include<stdio.h>
int main()
  int n;
  scanf("%d", &n);
  int i=0, j=1, k=1, l=0, sum=0;
  do
  {
    if (i == 0 | | i == 1)
       sum += 1;
    else
      sum += j + k;
      l = j + k;
      k = j;
      j = 1;
    }
    i++;
  } while (i<n);
  printf("%d", sum);
}
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7

> cl 3.c
compiling 3
0.03s user 0.02s system 95% cpu 0.059 total

5
12%
```

15) Investment equation

```
#include<stdio.h>
int main()
{
    int n=1;
    int p=1000, V; float r=0.10;
    do
    {
        V = p * (1+r);
        printf("P - %d, V - %d, n - %d \n", p, V, n++);
        p = V;
    } while ( p <= 10000 );
}</pre>
```

```
> cl 4.c
compiling 4
  0.06s user 0.02s system 95% cpu 0.086 total
        , V - 1100 , n - 1
P - 1000
P - 1100 , V - 1210 , n - 2
         , V - 1331 , n - 3
P - 1210
P - 1331 , V - 1464 , n - 4
         , V - 1610 , n - 5
P - 1464
P - 1610 , V - 1771 , n - 6
P - 1771 , V - 1948 , n - 7
         , V - 2142 , n - 8
P - 1948
        , V - 2356 , n - 9
P - 2142
         , V - 2591 , n - 10
P - 2356
P - 2591 , V - 2850 , n - 11
         , V - 3135 , n - 12
P - 2850
P - 3135 , V - 3448 , n - 13
P - 3448 , V - 3792 , n - 14
P - 3792 , V - 4171 , n - 15
P - 4171
        , V - 4588 , n - 16
P - 4588 , V - 5046 , n - 17
P - 5046 , V - 5550 , n - 18
P - 5550 , V - 6105 , n - 19
        , V - 6715 , n - 20
P - 6105
         , V - 7386 , n - 21
P - 6715
        , V - 8124 , n - 22
P - 7386
P - 8124 , V - 8936 , n - 23
P - 8936 , V - 9829 , n - 24
P - 9829 , V - 10811 , n - 25
```

16) pattern with for loop

```
#include <stdio.h>
int main()
{
  int n;
  scanf("%d", &n);
  int i, j;
  for (i=0; i<n; i++)
  {
     for (j=1; j<=i+1; j++)
       printf("%d ", i+1);
     printf("\n");
  }
  printf("\n");
  for (i=0; i<n; i++)
  {
     for (j=0; j< i; j++)
       printf(" ");
     for ( j=n-i; j>0; j--)
       printf("* ");
     printf("\n");
  }
```

}

17) Age range

#include<stdio.h>

```
int main()
{
  int i, j;
  int sum = 0;
  for (i=0; i<100; i++)
  {
    scanf("%d", &j);
    if (50 \le j \&\& j \le 60)
    {
       sum++;
       continue;
    }
  }
  printf("total - %d", sum);
}
// test cases
// 84 29 50 5 96 36 47 77 16 30 39 79 63 40 19 76 42 57 97 48 69 24 98 55 73 3 25 60
92 46 26 44 23 95 65 45 15 59 62 51 85 20 71 87 31 4 8 66 99 7 54 89 37 6 70 1 56 81
75 90 2 17 28 88 14 11 82 18 94 13 49 22 61 9 10 21 64 32 91 67 58 33 93 38 83 34 12
41 78 72 27 74 80 43 68 86 35 100 53 52
```

```
~/Desktop/lab/ansi-c-balagurusamy-exercise/solutions/sharafat/7
> cl 6.c
compiling 6
0.07s user 0.02s system 96% cpu 0.098 total
```

84 29 50 5 96 36 47 77 16 30 39 79 63 40 19 76 42 57 97 48 69 24 98 55 7 3 25 60 92 46 26 44 23 95 65 45 15 59 62 51 85 20 71 87 31 4 8 66 99 7 4 89 37 6 70 1 56 81 75 90 2 17 28 88 14 11 82 18 94 13 49 22 61 9 10 21 64 32 91 67 58 33 93 38 83 34 12 41 78 72 27 74 80 43 68 86 35 100 53 52 total - 11%

18) 2 curves

```
#include<stdio.h>
#include <math.h>
int main()
{
 int i;
 float a, x, y1, y2;
 a = 0.4;
 printf(" y -----> \n");
 printf("-----\n");
 for (x=0; x<5; x=x+0.25)
 {
   y1 = (int) (50*exp(-a * x)+0.5);
   y2 = (int) (50*exp(-a * x + x/2)+0.5);
   if (y1 == y2)
   {
     if (x==2.5)
      printf(" X | ");
     else
      printf("|");
    for (i=1; i <= y1-1; ++i)
      printf(" ");
     printf("#\n");
     continue;
   }
   if (y1>y2)
   {
     if (x == 2.5)
      printf(" X | ");
     else
      printf(" |");
    for (i=1; i <= y2-1; ++i)
      printf(" ");
    printf("*");
    for (i = 1; i \le (y1 - y2-1);++i)
      printf("-");
```

```
continue;
   }
   if (x==2.5)
     printf(" X | ");
   else
     printf(" |");
   for (i = 1; i \le (y1 - 1); ++i)
     printf(" ");
   printf("0");
   for (i = 1; i \le (y2-y1-1); ++i)
     printf("-");
   printf("*\n");
 printf(" |n");
 float j, s;
  for (j=1.1; j >= 0; j-=0.1)
     for (i=0; i<= 5; i+= 0.5)
     {
       s = \exp(-a * x);
       if (fabsf(s-j) \le 0.1)
          printf("*");
       }
       else {
          printf(" ");
       }
     printf("\n");
  }
}
```


19) exponent table

```
#include<stdio.h>
#include <math.h>
int main()
{
  float x, y;
  x = 0.0;
  float i, j;
  for (i=0; i \le (float)(0.91); i = 0.1)
  {
    if (i==0)
       printf(" X ");
     else
       printf(" %.1f ", i);
  }
  printf("\n");
  for (i=0; i<= 9; i += 1)
    for (j=i; j \le i+0.91; j+=0.1)
    {
       if (j==i)
         printf(" %.1f ", j);
       else
         printf(" %.1e ", exp(-j));
    }
    printf("\n");
  }
  printf("\n");
```

```
> cl <u>8.c</u>
compiling 8
 0.14s user 0.02s system 97% cpu 0.164 total
           0.1
                     0.2
                                0.3
                                          0.4
                                                    0.5
                                                              0.6
                                                                         0.7
                                                                                   0.8
                                                                                             0.9
   0.0
          9.0e-01
                    8.2e-01
                              7.4e-01
                                        6.7e-01
                                                  6.1e-01
                                                             5.5e-01
                                                                       5.0e-01
                                                                                  4.5e-01
                                                                                            4.1e-01
                              2.7e-01
                                                                       1.8e-01
                                                                                            1.5e-01
          3.3e-01
                                                             2.0e-01
                                                                                  1.7e-01
   1.0
                    3.0e-01
                                        2.5e-01
                                                   2.2e-01
    2.0
         1.2e-01
                    1.1e-01
                              1.0e-01
                                        9.1e-02
                                                   8.2e-02
                                                             7.4e-02
                                                                       6.7e-02
                                                                                  6.1e-02
                                                                                            5.5e-02
          4.5e-02
                    4.1e-02
                                        3.3e-02
                                                                       2.5e-02
                                                                                  2.2e-02
   3.0
                              3.7e-02
                                                   3.0e-02
                                                             2.7e-02
                                                                                            2.0e-02
                                        1.2e-02
                                                                                            7.4e-03
          1.7e-02
                    1.5e-02
                                                                       9.1e-03
   4.0
                              1.4e-02
                                                   1.1e-02
                                                             1.0e-02
                                                                                  8.2e-03
   5.0
          6.1e-03
                    5.5e-03
                              5.0e-03
                                        4.5e-03
                                                  4.1e-03
                                                             3.7e-03
                                                                       3.3e-03
                                                                                  3.0e-03
                                                                                            2.7e-03
   6.0
          2.2e-03
                    2.0e-03
                              1.8e-03
                                        1.7e-03
                                                   1.5e-03
                                                             1.4e-03
                                                                       1.2e-03
                                                                                  1.1e-03
                                                                                            1.0e-03
          8.3e-04
                                                                       4.5e-04
                    7.5e-04
                                        6.1e-04
                                                   5.5e-04
                                                             5.0e-04
                                                                                  4.1e-04
                                                                                            3.7e-04
    7.0
                              6.8e-04
   8.0
          3.0e-04
                    2.7e-04
                              2.5e-04
                                        2.2e-04
                                                   2.0e-04
                                                             1.8e-04
                                                                       1.7e-04
                                                                                  1.5e-04
                                                                                            1.4e-04
    9.0
          1.1e-04
                    1.0e-04
                              9.1e-05
                                        8.3e-05
                                                   7.5e-05
                                                             6.8e-05
                                                                       6.1e-05
                                                                                  5.5e-05
                                                                                            5.0e-05
```

20) S writing with loop

```
#include <stdio.h>
int main() {
  int rows = 15;
  int cols = 18;
  int i, j;
  for (i = 0; i < cols; i++)
     printf("*");
  printf("\n");
  for (i = 0; i < cols; i++)
  {
     if (i < 2 \mid | i > 15)
       printf("*");
     else
       printf("-");
  }
  printf("\n");
  for (i = 0; i < cols; i++)
  {
     if (i < 9 \mid | i > 15)
       printf("*");
     else
       printf("-");
  }
  printf("\n");
  for (i = 0; i < cols; i++)
  {
     if (i < 4)
       printf("*");
  }
  printf("\n");
```

```
for (i = 0; i < cols; i++)
  if (i < 4)
     printf("*");
printf("\n");
for (i = 0; i < cols; i++)
{
  if (i < 4)
     printf("*");
printf("\n");
for (i = 0; i < cols; i++)
  if (i < 5 \mid | i > 13)
     printf("*");
  else
     printf("-");
printf("\n");
for (i = 0; i < cols; i++)
{
  if (i > 13)
     printf("*");
  else
     printf("-");
printf("\n");
for (i = 0; i < cols; i++)
  if (i > 13)
     printf("*");
```

```
else
    printf("-");
}
printf("\n");
for (i = 0; i < cols; i++)
  if (i > 13)
    printf("*");
  else
    printf("-");
}
printf("\n");
for (i = 0; i < cols; i++)
{
  if (i > 13)
    printf("*");
  else
     printf("-");
}
printf("\n");
for (i = 0; i < cols; i++)
{
  if (i > 13)
    printf("*");
  else
     printf("-");
}
printf("\n");
for (i = 0; i < cols; i++)
  if (i > 13)
    printf("*");
  else
     printf("-");
printf("\n");
```

```
for (i = 0; i < cols; i++)
  if (i < 4 \mid | i > 13)
     printf("*");
  else
     printf("-");
}
printf("\n");
for (i = 0; i < cols; i++)
  if (i < 3 \mid | i > 13)
     printf("*");
  else
     printf("-");
printf("\n");
for (i = 0; i < cols; i++)
{
  if (i < 2 \mid | i > 13)
     printf("*");
  else
     printf("-");
}
printf("\n");
return 0;
```

}