Solucionário de Topology - Munkres

Andre Kowacs

8 de dezembro de 2018

Capítulo 9

$\S 51$

Ex.1)

De fato, temos que $\exists F: X \times I \to Y$ homotopia entre h, h' e $\exists G: Y \times I \to Z$ homotopia entre k, k'. Logo:

$$G \circ F : X \times I \to Z$$

é homotopia entre $k \circ h$ e $k' \circ h'$, já que $(G \circ F)(s,0) = (k \circ h)(s)$ e $(G \circ F)(s,1) = (k' \circ h')(s)$. Além disso G e F contínuas implicam $G \circ F$ contínua.

Ex.2

a) De fato, mostremos que todo mapa de X em I é homotópico a $g\equiv 0$. Seja $f:X\to I$ contínua. Ponha $F:X\times I\to I$,

$$F(s,t) = f(s)(1-t)$$

Então é claro que F é contínua, $F(s,0)=f(s), F(s,1)\equiv 0$. Logo $f\cong [0]$ b)De fato, tome $y_0\in Y$ arbitrário. Mostremos que qualquer $f:I\to Y$ é homotópica a $g:I\to Y, g(s)\equiv y_0$. De fato, dada f contínua ponha $f(0)=x_0$, seja $F:I\times I\to Y$,

$$F(s,t) = f((1-t)s)$$

Então F é homotopia entre $fef' \equiv x_0$. Agora, como Y é conexo por caminhos, $\exists \gamma: I \to Y, \gamma(0) = x_0, \gamma(1) = y_0$. Assim,

$$G: I \times I \to Y$$
$$(s,t) \mapsto \gamma(t)$$

É homotopia entre f' e g, logo $f \cong g$

Ex.3)

a) De fato, sejam i_I , $i_{\mathbb{R}}$ as funções identidade. Então:

$$F: I \times I \to I$$

 $(s,t) \mapsto i_I(s(1-t))$

$$G: \mathbb{R} \times I \to I$$

 $(s,t) \mapsto i_{\mathbb{R}}(s(1-t))$

São as homotopias entre as identidades e as funções nulas respectivas.

b)De fato, sejam $x_1, x_2 \in X$ contrátil, tal que $i: X \to X$ é homotópica a $f: X \to X$, $F(x) \equiv x_0$. Seja F a homotopia entre i e f. Então $\gamma_1: I \to X$, $\gamma(t) = F(x_1, t)$ é caminho entre x_1 e x_0 . Análogamente, definimos $\gamma_2(t) = F(x_2, 1-t)$ é caminho entre x_0 e x_2 . Como foram arbitrários, segue que X é

conexo por caminhos.

c)De fato, pois $i_Y \cong f_0 \equiv y_0 \in Y$, daí, dada $f: X \to Y$ contínua:

$$f = i_Y \circ f \cong f_0 \circ f = f_0$$

d) De fato, pois $i_X\cong f_0\equiv x_0\in X.$ Assim, dad
o $y_0\in Y,\,f:X\to Y$ contínua,

$$f = f \circ i_X \cong f \circ f_0 = f' \equiv f(x_0)$$

Mas Y conexo por caminhos implica que $\exists \gamma: I \to Y, \, \gamma(0) = f(x_0), \, \gamma(1) = y_0$ contínua. Logo $F(s,t) = \gamma(t)$ é homotopia entre f' e $g \equiv y_0$. Logo,

$$f \cong f' \cong g \implies f \cong g$$

Como f foi arbitrário, segue.