

Beijing-Dublin International College

SEMESTER I FINAL EXAMINATION - 2016/2017
BDIC2002J Discrete Mathematics

Time Allowed: 95 minutes

Instructions for Candidates

The distribution of marks in the right margin shown as a percentage gives an approximate indication of the relative importance of each part of the question.

BJUT Student ID: UCD Student ID:
I have read and clearly understand the Examination Rules of both Beijing University of
Technology and University College Dublin. I am aware of the Punishment for Violating the
Rules of Beijing University of Technology and/or University College Dublin. I hereby
promise to abide by the relevant rules and regulations by not giving or receiving any help
during the exam. If caught violating the rules, I accept the punishment thereof.
Honesty Pledge: (Signature)

Instructions for Invigilators

Non-programmable calculators are permitted.

No rough-work paper is to be provided for candidates.

Answer ALL seven questions.

The Full Score of All Items of the Exam Paper

Item	1	2	3	4	5	6	7	Full
Full score	14	14	14	16	14	14	14	100

Obtained score

Question 1: Let R be a binary relation on a set A. Suppose that R is reflexive and transitive. Prove that $R \circ R = R$

Obtained score

Question 2: Compute the Prenex Normal Form of

$$\forall x (A(x) \to B(x,y)) \leftrightarrow (\forall y C(y) \land \exists z D(y,z))$$

Obtained score

Question 3: Compute the Principle Conjunctive Normal Form of

$$(P \land Q) \lor \neg (Q \leftrightarrow R)$$

Obtained score

Question 4: A square number is defined to be the square of some integer (e.g. 1,4,9,16 are square numbers). Let $A = \{1,2,3,\dots,30,31,32\}$ be the set of all positive integers no greater than 32. Let R be a binary relation on A defined by

 $(x, y) \in R$ iff xy is a square number.

- (1) Prove that R is an equivalence relation on A
- (2) Give the cardinality of the quotient set A/R
- (3) List all those elements of A/R whose cardinality is greater than two (write down them in the form of $\{a,b,c,...\}$ instead of $[a]_R$)

Obtained score

Question 5: Denote $A = \mathbb{R} - \{2\}$ to be the set of all real numbers except 2. Define the operator * by: a*b = ab - 2a - 2b + 6. Prove that (A,*) is a group.

Obtained score

Question 6: Let (G,*) be a non-commutative group. Suppose that G is a finite group. Prove that $|G| \geq 6$

Obtained score

Question 7: Let G be a tournament and let $\{v_1, \ldots, v_n\}$ be all the vertices of G, where n is the number of all vertices of G. Prove the following identity:

$$\sum_{i=1}^{n} (\deg^{+}(v_i) - n)^2 - \sum_{i=1}^{n} (\deg^{-}(v_i))^2 = n^2$$