الاختبار المشترك الأول العام الدراسي: 2020-2021

# باسمه تعالى امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة

مؤسسات أمل التربوية المديرية التربوية

الاسم: الرقم: مسابقة في مادة الرياضيات (فرنسي) المدة حصتان ( zoom)

عدد المسائل: 2

ملحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

# القسم الأول

## **I.** (8 points)

Dans la figure ci-dessous :

- (C) est la courbe représentative d'une fonction f définie sur  $[0; +\infty[$
- (T) est la tangente à la courbe (C) au point d'abscisse 1.



- 1) Par une lecture graphique, déterminer :
  - a- Montrer que f'(1) = 2 puis déterminer f'(e) et  $f(e^2)$
  - b- Dresser le tableau de variations de f.
- 2) Pour tout  $x \in [0; +\infty[$ , on admet que  $f(x) = (a + b \ln x) \ln x$ . a et b sont deux réels.
  - a- Montrer que :  $f'(x) = \frac{a + 2b \ln x}{x}$ , pour  $x \in ]0$ ;  $+\infty[$ .
  - b- Déduire que a = 2 et b = -1.
- 3) Soit la fonction F définie par  $F(x) = \int_{1}^{x} f(t)dt$ .
  - a- Que représente F(e) graphiquement?
  - b- Déterminer le sens de variations de la fonction F.

#### القسم الثاني

### **II.** (12 points)

#### Partie A:

Soit g la fonction définie sur  $\Re$  par  $g(x) = 1 + (1-x)e^{-x}$ .

- 1) Calculer g'(x) puis dresser le tableau de variations de g (sans calculer les limites de g ).
- 2) Calculer g(2). Déduire que g(x) > 0 pour toute valeur de x.

#### Partie B:

On considère la fonction f définie par  $f(x) = x - 1 + xe^{-x}$  sur  $\Re$ . et on désigne par (C) sa courbe représentative dans un repère orthonormé $(O, \vec{i}; \vec{j})$ . 1) Calculer  $\lim_{x \to \infty} f(x)$ .

- 2) a- Calculer  $\lim_{x \to a} f(x)$ .
  - b- Montrer que la droite (d) d'équation y = x-1 est une asymptote à (C) en  $(+\infty)$ .
  - c- Etudier, suivant les valeurs de x, la position relative de (C) et (d).
- 3) Vérifier que f'(x) = g(x) et dresser le tableau de variations de f.
- 4) Montrer que l'équation f(x)=0 admet une solution unique  $\alpha$  et vérifier que  $0.5 < \alpha < 0.7$ .
- 5) Calculer f(-2) puis tracer (C) et (d). (**Prendre**  $\alpha = 0.6$ ).
- **6)** a- Montrer que  $F(x) = (-x-1)e^{-x}$  est une primitive  $x e^{-x}$ .
  - b- Déduire l'aire, du domaine limité par (C), la droite (d) et les deux droites d'équations x = 0 et x = 1.

## **BON TRAVAIL!**