Übung z- und t-Test

Für die nachfolgenden Aufgaben sollen die Daten zuerst mit Werkzeugen der Deskriptiven Statistik untersucht werden. Erst dann führen Sie nacheinander z-Test und t-Test durch.

Für alle Tests: Signifikanzniveau 1 – α = 95%

Die Ergebnisse dieser Übungen werden diesmal durch die Teilnehmer präsentiert, also müssen Sie alle Aktivitäten ausreichend dokumentieren! (Es gibt keine Musterlösung)

GG1000

Ihnen liegt eine Stichprobe (n = 150) aus einer Grundgesamtheit vor, von der Mittelwert (μ = 7,9034) und bedingt Standardabweichung (σ = 1,1653) bekannt sind.

Untersuchen Sie, ob die Stichprobe zur Grundgesamtheit gehört.

GG1000 – Grafik

 Histogramm und QQ-Diagramm deuten auf eine Normalverteilung hin, z- und t-Test sind zulässig

GG1000 – z-Test

 H_1 : Stichprobe gehört nicht zur Grundgesamtheit: $\overline{x} \neq \mu$

 H_0 : Stichprobe gehört zur Grundgesamtheit: $\overline{x} = \mu$

Ungerichteter Test: α wird auf beiden Seiten der z-Verteilung aufgeteilt

$$z_{krit.} = \pm 1,96$$

$$\begin{split} z_{emp.} &= \sqrt{n} * \frac{\overline{x} - \mu}{\sigma} = \sqrt{150} * \frac{4,809 - 7,9034}{1,1653} = -32,53 \\ z_{emp.} &= -32,53 < z_{krit.} = -1,96 \text{ bzw. } z_{emp.} = 32,53 > z_{krit.} = 1,96 \end{split}$$

Wechsel zur Alternativhypothese, die Mittelwerte sind ungleich, die Stichprobe gehört nicht zur Grundgesamtheit

 H_0 : Stichprobe gehört zur Grundgesamtheit:

GG1000 – t-Test – R-Rechnung

```
One Sample t-test

data: Stichprobe

t = -37.362, df = 149, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 7.9034

95 percent confidence interval:

4.645134 4.972473

sample estimates:

mean of x

4.808803
```

 H_1 : Stichprobe gehört nicht zur Grundgesamtheit: $\overline{x} \neq \mu$

p<α: Wechsel zur Alternativhypothese, die Mittelwerte sind ungleich, die Stichprobe gehört nicht zur Grundgesamtheit

 $\overline{x} = \mu$

Flaschen

Für 50 Flaschen wurde eine Überprüfung der Wandstärke durchgeführt (Flaschen in *Übung_zut Test.xlsx*)

Zur Sicherheit des Kunden ist gefordert, dass die durchschnittliche Wandstärke über 4 mm liegt.

Die Grundgesamtheit hat folgende Parameter $\mu = 4,05$; $\sigma = 0,08$

Flaschen – Grafik

Histogramm ist unauffällig, QQ-Diagramm zeigt mehrere Werte im oberen Bereich, die außerhalb des markierten Bereichs liegen (ein Test auf Normalverteilung gibt grünes Licht)

Flaschen – Hypothesen

 H_1 : Die mittlere Wandstärke der Stichprobe liegt über 4 mm:

 $\overline{x} > 4$, 0 mm

 H_0 : Die mittlere Wandstärke der Stichprobe ist kleiner oder gleich

4 mm: $\overline{x} \leq 4$, 0 mm

Flaschen – t-Test – R-Rechnung

One Sample t-test

 $p>\alpha$: Verbleib bei der Nullhypothese, die mittlere Wandstärke ist kleiner oder gleich 4,0 mm

Flaschen – t-Test – Hand

 H_1 : $\overline{x} > 4 mm$

 H_0 : $\overline{x} \leq 4 mm$

Gerichteter Test: α wird auf einer Seite der t-Verteilung genutzt

$$t_{krit.} = -1,677$$

$$t_{emp.} = \sqrt{n} * \frac{\overline{x} - \mu}{s} = \sqrt{50} * \frac{3,94 - 4,00}{0,0852} = -4,9796$$
 $t_{emp.} = -4,9796 < t_{krit.} = 1,677$

Verbleib bei der Nullhypothese, die mittlere Wandstärke liegt unter der Vorgabe bzw. ist gleich der Vorgabe von 4,0 mm

Federstahl

Eine Maschine produziert Metallstangen, die zu Federn weiterverarbeitet werden sollen. Ihnen liegen die Durchmesserwerte einer zufälligen Stichprobe der Größe n = 40 vor. (Federstahl in Übung_zut Test.xlsx)

Die Grundgesamtheit hat folgende Parameter $\mu = 8,234$; $\sigma = 0,025$

Gehört die Stichprobe zur Grundgesamtheit?

Federstahl – Grafik

Das Histogramm seht eher nicht-normalverteil aus, das QQ-Diagramm deutet auf Normalverteilung hin (Ein Test bestätigt dies)

Federstahl – Hypothesen

 H_1 : Stichprobe gehört nicht zur Grundgesamtheit: $\overline{x} \neq \mu$

 H_0 : Stichprobe gehört zur Grundgesamtheit: $\overline{x} = \mu$

Federstahl – t-Test – R-Rechnung

```
One Sample t-test

data: Federstahl
t = 0.16866, df = 39, p-value = 0.8669
alternative hypothesis: true mean is not equal to 8.234
95 percent confidence interval:
  8.227150 8.242096
sample estimates:
mean of x
  8.234623
```

 $p>\alpha$: Verbleib bei der Nullhypothese, der Mittelwert der Stichprobe ist gleich dem Mittelwert der Grundgesamtheit, die Stichprobe passt zur Grundgesamtheit

Betonteil

Bei der Druckfestigkeitsprüfung eines Betonbauteiles werden 30 Probenstellen überprüft. (Betonteil in *Übung_zut Test.xlsx*)

Die Grundgesamtheit hat folgende Parameter $\mu = 15.5$; $\sigma = 0.2459$

Gibt es Hinweise, dass die Druckfestigkeit des untersuchten Teils nicht bei 15,5 $^{N}/_{mm^{2}}$ liegt?

Betonteil – Grafik

Das Histogramm sieht unkritisch aus, das QQ-Diagramm hat einen sehr eigenartigen Verlauf, wiederspricht aber nicht einer Normalverteilungsannahme (Hier liefern Anderson Darling und Shapiro Wilk unterschiedliche Beurteilungen), da n=30 ist können wir trotzdem einen t-Test nutzen

Betonteil – t-Test – R-Rechnung

```
One Sample t-test

data: Betonteil
t = 1.2932, df = 29, p-value = 0.2061
alternative hypothesis: true mean is not equal to 15.5
95 percent confidence interval:
   15.46503 15.65526
sample estimates:
mean of x
   15.56014
```

p> α : Verbleib bei der Nullhypothese, der Mittelwert der Stichprobe ist gleich dem Vorgabewert von 15,5

Übung Wiederholung

Kunden-/Lieferantenbeziehung

Es gibt Unstimmigkeiten zwischen Kunde und Lieferant über die Qualität einer Lieferung. Beide Parteien messen nun dieselben Teile und vergleichen ihre Ergebnisse (Datensätze: Teile-Nr., Messung Lieferant, Messung Kunde in Übung_zut Test.xlsx).

Korrelieren die Messergebnisse?

Übung Wiederholung

Kunden-/Lieferantenbeziehung – Grafik

Messung. Kunde

1.000000

Messung.Lieferant 0.8323676

Messung.Kunde

Messung.Lieferant

0.8323676

1.000000

Starke positive Korrelation

