Определение 1. *Мозаикой* называется любое замощение плоскости многоугольниками без пробелов и наложений. Многоугольники, составляющие мозаику, мы будем называть *плитками*. Нас будут интересовать только те мозаики, число различных базисных плиток которых конечно. Кроме того, в этом листочке любые две плитки, имеющие общие точки, будут пересекаться либо по вершине, либо по стороне. Вершины плиток таких мозаик называются её *узлами*.

Задача 1. Докажите, что существует мозаика, все плитки которой являются

- а) данным треугольником произвольного вида;
- **б)** данным шестиугольником, у которого противоположные стороны попарно равны и параллельны;
- в) данным четырёхугольником произвольного вида.

Задача 2. Приведите пример пятиугольника, экземплярами которого

- а) можно покрыть плоскость;
- б) нельзя покрыть плоскость;
- в) можно покрыть плоскость, и при этом никакие две стороны пятиугольника не параллельны.

Задача 3.

- а) Докажите, что для любого n>2 существует мозаика, составленная из равных n-угольников.
- **б)*** Верно ли, что для каждого n можно сделать этот многоугольник выпуклым?

Определение 2. *Мозаика* называется периодической (с периодом \bar{v}), если она самосовмещается при параллельном переносе вдоль некоторого вектора \bar{v} .

Задача 4. Приведите пример мозаики, которая

- а) является периодической и обладает тремя попарно неколлинеарными периодами;
- б) является периодической, причём любые её два периода неколлинеарны;
- в) не является периодической.

Задача 5. Существует ли периодическая мозаика, обладающая ровно 57-ю попарно неколлинеарными периодами?

Задача 6. Верно ли, что периодическая мозаика имеет период, наименьший по длине?

Определение 3. Мозаика, составленная из правильных многоугольников, любые два из которых пересекаются либо по вершине, либо по стороне, либо не пересекаются вовсе, называется *паркетом*. Паркет называется *правильным*, если для любых двух его узлов найдётся движение, переводящее первый узел во второй, а весь паркет — сам в себя.

Задача 7. Докажите, что различных паркетов бесконечно много.

Задача 8. Найдите все правильные паркеты, состоящие из одинаковых плиток.

Определение 4. Каждый узел паркета характеризуется множеством базисных плиток, прилегающих к этому узлу, и порядком, в котором они встречаются при обходе данного узла. Этот порядок называется *типом данного узла* и записывается в виде последовательности чисел, отвечающих количеству сторон соответствующих плиток. Количество плиток, прилегающих к узлу, называется *степенью узла*.

Задача 9. Чему может быть равна степень узла произвольного паркета?

Задача 10. Докажите, что в каждом правильном паркете все вершины имеют одинаковый тип (он называется *типом правильного паркета*).

Задача 11. Найдите все правильные паркеты, степень вершин которых

а) не меньше пяти; б) равна четырём; в) равна трём.

Пусть Π — какая-либо плоскость в пространстве, проходящая через начало координат O, а d — некоторое положительное число. Окрестность плоскости $U_d(\Pi)$ образно можно назвать «слоёным пирогом». Рассмотрим все точки целочисленной решётки \mathbb{Z}^3 , которые лежат внутри этого «слоёного пирога», и спроецируем их на плоскость Π . Получается некоторый дискретный набор точек X. Теперь для каждой точки $x \in X$ в плоскости Π рассмотрим множество

$$F_x = \{ y \in X \mid d(x, y) \leqslant d(z, y) \ \forall z \in X \} \subset \Pi$$

всех точек, расстояние от которых до точки x не больше, чем до любой другой точки из X. Оно называется областью Дирихле или областью Вороного точки x.

Задача 12. Докажите, что

- **а)** все области Вороного являются многоугольниками (а значит, их объединение является мозаикой, имя которой — *мозаика Вороного*);
- б) количество различных плиток в мозаике Вороного конечно;
- **в)** мозаика Вороного является периодической тогда и только тогда, когда плоскость Π содержит хотя бы одну точку из решётки \mathbb{Z}^3 , отличную от начала координат.

Задача 13*. (*Теорема Вире́*) Пусть мозаика, составленная из конечного набора плиток, является периодической. Докажите, что существует периодическая мозаика, составленная из того же набора плиток, которая обладает двумя попарно неколлинеарными периодами.

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 б	1 B	2 a	2 6	2 B	3 a	3 6	4 a	4 6	4 B	5	6	7	8	9	10	11 a	11 б	11 B	12 a	12 б	12 B	13