

**10/574045**

## SEQUENCE LISTING

&lt;110&gt; CHUGAI SEIYAKU KABUSHIKI KAISHA

&lt;120&gt; PROTEIN EXPRESSED IN NK CELL

&lt;130&gt; C1-A0308P

&lt;150&gt; JP 2003-338331

&lt;151&gt; 2003-09-29

&lt;160&gt; 53

&lt;170&gt; PatentIn version 3.1

&lt;210&gt; 1

&lt;211&gt; 1473

&lt;212&gt; DNA

&lt;213&gt; Homo sapiens

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (87)..(1376)

&lt;223&gt;

&lt;400&gt; 1

acacacccac aggacctgca gctgaacgaa gttgaagaca actcaggaga tctgttggaa 60

agagaacgat agagggaaat atatga atg ttg cca tct tta gtt ccc tgt gtt 113

Met Leu Pro Ser Leu Val Pro Cys Val

1 5

ggg aaa act gtc tgg ctg tac ctc caa gcc tgg cca aac cct gtg ttt 161

Gly Lys Thr Val Trp Leu Tyr Leu Gin Ala Trp Pro Asn Pro Val Phe

10 15 20 25

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| gaa gga gat gcc ctg act ctg cga tgt cag gga tgg aag aat aca cca |     |     | 209 |
| Glu Gly Asp Ala Leu Thr Leu Arg Cys Gin Gly Trp Lys Asn Thr Pro |     |     |     |
| 30                                                              | 35  | 40  |     |
| ctg tct cag gtg aag ttc tac aga gat gga aaa ttc ctt cat ttc tct |     |     | 257 |
| Leu Ser Gin Val Lys Phe Tyr Arg Asp Gly Lys Phe Leu His Phe Ser |     |     |     |
| 45                                                              | 50  | 55  |     |
| aag gaa aac cag act ctg tcc atg gga gca gca aca gtg cag agc cgt |     |     | 305 |
| Lys Glu Asn Gin Thr Leu Ser Met Gly Ala Ala Thr Val Gin Ser Arg |     |     |     |
| 60                                                              | 65  | 70  |     |
| ggc cag tac agc tgc tct ggg cag gtg atg tat att cca cag aca ttc |     |     | 353 |
| Gly Gin Tyr Ser Cys Ser Gly Gin Val Met Tyr Ile Pro Gin Thr Phe |     |     |     |
| 75                                                              | 80  | 85  |     |
| aca caa act tca gag act gcc atg gtt caa gtc caa gag ctg ttt cca |     |     | 401 |
| Thr Gin Thr Ser Glu Thr Ala Met Val Gin Val Gin Glu Leu Phe Pro |     |     |     |
| 90                                                              | 95  | 100 | 105 |
| cct cct gtg ctg agt gcc atc ccc tct cct gag ccc cga gag ggt agc |     |     | 449 |
| Pro Pro Val Leu Ser Ala Ile Pro Ser Pro Glu Pro Arg Glu Gly Ser |     |     |     |
| 110                                                             | 115 | 120 |     |
| ctg gtg acc ctg aga tgt cag aca aag ctg cac ccc ctg agg tca gcc |     |     | 497 |
| Leu Val Thr Leu Arg Cys Gin Thr Lys Leu His Pro Leu Arg Ser Ala |     |     |     |
| 125                                                             | 130 | 135 |     |
| ttg agg ctc ctt ttc tcc ttc cac aag gac ggc cac acc ttg cag gac |     |     | 545 |
| Leu Arg Leu Leu Phe Ser Phe His Lys Asp Gly His Thr Leu Gin Asp |     |     |     |
| 140                                                             | 145 | 150 |     |
| agg ggc cct cac cca gaa ctc tgc atc ccg gga gcc aag gag gga gac |     |     | 593 |
| Arg Gly Pro His Pro Glu Leu Cys Ile Pro Gly Ala Lys Glu Gly Asp |     |     |     |
| 155                                                             | 160 | 165 |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| tct | ggg | ctt | tac | tgg | tgt | gag | gtg | gcc | cct | gag | ggt | ggc | cag | gtc | cag |     | 641  |
| Ser | Gly | Leu | Tyr | Trp | Cys | Glu | Val | Ala | Pro | Glu | Gly | Gly | Gln | Val | Gin |     |      |
| 170 |     | 175 |     |     |     |     |     |     | 180 |     |     |     |     |     | 185 |     |      |
| aag | cag | agc | ccc | cag | ctg | gag | gtc | aga | gtg | cag | gct | cct | gta | tcc | cgt |     | 689  |
| Lys | Gln | Ser | Pro | Gln | Leu | Glu | Val | Arg | Val | Gln | Ala | Pro | Val | Ser | Arg |     |      |
|     |     |     |     |     |     |     |     | 190 |     | 195 |     |     |     | 200 |     |     |      |
| cct | gtg | ctc | act | ctg | cac | cac | ggg | cct | gct | gac | cct | gct | gtg | ggg | gac |     | 737  |
| Pro | Val | Leu | Thr | Leu | His | His | Gly | Pro | Ala | Asp | Pro | Ala | Val | Gly | Asp |     |      |
|     |     |     |     |     |     |     |     | 205 |     | 210 |     |     |     | 215 |     |     |      |
| atg | gtg | cag | ctc | ctc | tgt | gag | gca | cag | agg | ggc | tcc | cct | ccg | atc | ctg |     | 785  |
| Met | Val | Gln | Leu | Leu | Cys | Glu | Ala | Gln | Arg | Gly | Ser | Pro | Pro | Ile | Leu |     |      |
|     |     |     |     |     |     |     |     | 220 |     | 225 |     |     |     | 230 |     |     |      |
| tat | tcc | ttc | tac | ctt | gat | gag | aag | att | gtg | ggg | aac | cac | tca | gct | ccc |     | 833  |
| Tyr | Ser | Phe | Tyr | Leu | Asp | Glu | Lys | Ile | Val | Gly | Asn | Ser | His | Ser | Ala | Pro |      |
|     |     |     |     |     |     |     |     | 235 |     | 240 |     |     |     | 245 |     |     |      |
| tgt | ggt | gga | acc | acc | tcc | ctc | ctc | ttc | cca | gtg | aag | tca | gaa | cag | gat |     | 881  |
| Cys | Gly | Gly | Thr | Thr | Ser | Leu | Leu | Phe | Pro | Val | Lys | Ser | Glu | Gln | Asp |     |      |
|     |     |     |     |     |     |     |     | 250 |     | 255 |     |     |     | 260 |     |     | 265  |
| gct | ggg | aac | tac | tcc | tgc | gag | gct | gag | aac | agt | gtc | tcc | aga | gag | agg |     | 929  |
| Ala | Gly | Asn | Tyr | Ser | Cys | Glu | Ala | Glu | Asn | Ser | Val | Ser | Arg | Glu | Arg |     |      |
|     |     |     |     |     |     |     |     | 270 |     | 275 |     |     |     | 280 |     |     |      |
| agt | gag | ccc | aag | aag | ctg | tct | ctg | aag | ggt | tct | caa | gtc | ttg | ttc | act |     | 977  |
| Ser | Glu | Pro | Lys | Lys | Leu | Ser | Leu | Lys | Gly | Ser | Gln | Val | Leu | Phe | Thr |     |      |
|     |     |     |     |     |     |     |     | 285 |     | 290 |     |     |     | 295 |     |     |      |
| ccc | gcc | agc | aac | tgg | ctg | gtt | cct | tgg | ctt | cct | gcg | agc | ctg | ctt | ggc |     | 1025 |
| Pro | Ala | Ser | Asn | Trp | Leu | Val | Pro | Trp | Leu | Pro | Ala | Ser | Leu | Leu | Gly |     |      |
|     |     |     |     |     |     |     |     | 300 |     | 305 |     |     |     | 310 |     |     |      |

|                                                                  |     |      |
|------------------------------------------------------------------|-----|------|
| ctg atg gtt att gct gct gca ctt ctg gtt tat gtg aga tcc tgg aga  |     | 1073 |
| Leu Met Val Ile Ala Ala Ala Leu Leu Val Tyr Val Arg Ser Trp Arg  |     |      |
| 315                                                              | 320 | 325  |
| aaa gct ggg ccc ctt cca tcc cag ata cca ccc aca gct cca ggt gga  |     | 1121 |
| Lys Ala Gly Pro Leu Pro Ser Gln Ile Pro Pro Thr Ala Pro Gly Gly  |     |      |
| 330                                                              | 335 | 340  |
| 345                                                              |     |      |
| gag cag tgc cca cta tat gcc aac gtg cat cac cag aaa ggg aaa gat  |     | 1169 |
| Glu Gln Cys Pro Leu Tyr Ala Asn Val His His Gln Lys Gly Lys Asp  |     |      |
| 350                                                              | 355 | 360  |
| gaa ggt gtt gtc tac tct gtg gtg cat aga acc tca aag agg agt gaa  |     | 1217 |
| Glu Gly Val Val Tyr Ser Val Val His Arg Thr Ser Lys Arg Ser Glu  |     |      |
| 365                                                              | 370 | 375  |
| gcc agg tct gct gag ttc acc gtg ggg aga aag gac agt tct atc atc  |     | 1265 |
| Ala Arg Ser Ala Glu Phe Thr Val Gly Arg Lys Asp Ser Ser Ile Ile  |     |      |
| 380                                                              | 385 | 390  |
| tgt gcg gag gtg aga tgc ctg cag ccc agt gag gtt tca tcc acg gag  |     | 1313 |
| Cys Ala Glu Val Arg Cys Leu Gln Pro Ser Glu Val Ser Ser Thr Glu  |     |      |
| 395                                                              | 400 | 405  |
| gtg aat atg aga agc agg act ctc caa gaa ccc ctt agc gac tgt gag  |     | 1361 |
| Val Asn Met Arg Ser Arg Thr Leu Gln Glu Pro Leu Ser Asp Cys Glu  |     |      |
| 410                                                              | 415 | 420  |
| 425                                                              |     |      |
| gag gtt ctc tgc tag tgatgggttt ctcctatcaa cacacgcccc ccccccagtct |     | 1416 |
| Glu Val Leu Cys                                                  |     |      |
| ccagtgtcc tcaggaagac agtgggtcc tcaactcttt ctgtgggtcc ttcagtg     |     | 1473 |

<211> 429

<212> PRT

<213> Homo sapiens

<400> 2

Met Leu Pro Ser Leu Val Pro Cys Val Gly Lys Thr Val Trp Leu Tyr  
 1               5                           10                           15

Leu Gln Ala Trp Pro Asn Pro Val Phe Glu Gly Asp Ala Leu Thr Leu  
 20                                           25                                   30

Arg Cys Gln Gly Trp Lys Asn Thr Pro Leu Ser Gln Val Lys Phe Tyr  
 35                                           40                                   45

Arg Asp Gly Lys Phe Leu His Phe Ser Lys Glu Asn Gln Thr Leu Ser  
 50                                           55                                   60

Met Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr Ser Cys Ser Gly  
 65                                           70                                   75                                   80

Gln Val Met Tyr Ile Pro Gln Thr Phe Thr Gln Thr Ser Glu Thr Ala  
 85                                           90                                   95

Met Val Gln Val Gln Glu Leu Phe Pro Pro Pro Val Leu Ser Ala Ile  
 100                                           105                                   110

Pro Ser Pro Glu Pro Arg Glu Gly Ser Leu Val Thr Leu Arg Cys Gln  
 115                                           120                                   125

Thr Lys Leu His Pro Leu Arg Ser Ala Leu Arg Leu Leu Phe Ser Phe  
 130                                           135                                   140

His Lys Asp Gly His Thr Leu Gln Asp Arg Gly Pro His Pro Glu Leu  
 145                                           150                                   155                                   160

Cys Ile Pro Gly Ala Lys Glu Gly Asp Ser Gly Leu Tyr Trp Cys Glu  
165 170 175

Val Ala Pro Glu Gly Gly Gln Val Gln Lys Gln Ser Pro Gln Leu Glu  
180 185 190

Val Arg Val Gln Ala Pro Val Ser Arg Pro Val Leu Thr Leu His His  
195 200 205

Gly Pro Ala Asp Pro Ala Val Gly Asp Met Val Gln Leu Leu Cys Glu  
210 215 220

Ala Gln Arg Gly Ser Pro Pro Ile Leu Tyr Ser Phe Tyr Leu Asp Glu  
225 230 235 240

Lys Ile Val Gly Asn His Ser Ala Pro Cys Gly Gly Thr Thr Ser Leu  
245 250 255

Leu Phe Pro Val Lys Ser Glu Gln Asp Ala Gly Asn Tyr Ser Cys Glu  
260 265 270

Ala Glu Asn Ser Val Ser Arg Glu Arg Ser Glu Pro Lys Lys Leu Ser  
275 280 285

Leu Lys Gly Ser Gln Val Leu Phe Thr Pro Ala Ser Asn Trp Leu Val  
290 295 300

Pro Trp Leu Pro Ala Ser Leu Leu Gly Leu Met Val Ile Ala Ala Ala  
305 310 315 320

Leu Leu Val Tyr Val Arg Ser Trp Arg Lys Ala Gly Pro Leu Pro Ser  
325 330 335

Gln Ile Pro Pro Thr Ala Pro Gly Gly Glu Gln Cys Pro Leu Tyr Ala  
340 345 350

Asn Val His His Gln Lys Gly Lys Asp Glu Gly Val Val Tyr Ser Val  
355 360 365

Val His Arg Thr Ser Lys Arg Ser Glu Ala Arg Ser Ala Glu Phe Thr  
 370                    375                    380

Val Gly Arg Lys Asp Ser Ser Ile Ile Cys Ala Glu Val Arg Cys Leu  
 385                    390                    395                    400

Gln Pro Ser Glu Val Ser Ser Thr Glu Val Asn Met Arg Ser Arg Thr  
405 410 415

Leu Gln Glu Pro Leu Ser Asp Cys Glu Glu Val Leu Cys  
420 425

<210> 3

<211> 2005

<212> DNA

<213> Homo sapiens

220

〈221〉 CDS

<222> (88)..(1410)

223

<400> 3

cacacacccca caggacctgc agctgaacga agttgaagac aactcaggag atctgttgaa 60

aagagaacga tagaggaaaa tatatga atg ttg cca tct tta ggc ccc atg ctg 114  
Met Leu Pro Ser Leu Gly Pro Met Leu  
1 5

ctc tgg acg gct gtg ctg ctc ttt gtt ccc tgt gtt ggg aaa act gtc      162  
 Leu Trp Thr Ala Val Leu Leu Phe Val Pro Cys Val Gly Lys Thr Val  
 10                  15                  20                  25

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| tgg ctg tac ctc caa gcc tgg cca aac cct gtg ttt gaa gga gat gcc |     |     | 210 |
| Trp Leu Tyr Leu Gln Ala Trp Pro Asn Pro Val Phe Glu Gly Asp Ala |     |     |     |
| 30                                                              | 35  | 40  |     |
| ctg act ctg cga tgt cag gga tgg aag aat aca cca ctg tct cag gtg |     |     | 258 |
| Leu Thr Leu Arg Cys Gln Gly Trp Lys Asn Thr Pro Leu Ser Gln Val |     |     |     |
| 45                                                              | 50  | 55  |     |
| aag ttc tac aga gat gga aaa ttc ctt cat ttc tct aag gaa aac cag |     |     | 306 |
| Lys Phe Tyr Arg Asp Gly Lys Phe Leu His Phe Ser Lys Glu Asn Gln |     |     |     |
| 60                                                              | 65  | 70  |     |
| act ctg tcc atg gga gca gca aca gtg cag agc cgt ggc cag tac agc |     |     | 354 |
| Thr Leu Ser Met Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr Ser |     |     |     |
| 75                                                              | 80  | 85  |     |
| tgc tct ggg cag gtg atg tat att cca cag aca ttc aca caa act tca |     |     | 402 |
| Cys Ser Gly Gln Val Met Tyr Ile Pro Gln Thr Phe Thr Gln Thr Ser |     |     |     |
| 90                                                              | 95  | 100 | 105 |
| gag act gcc atg gtt caa gtc caa gag ctg ttt cca cct cct gtg ctg |     |     | 450 |
| Glu Thr Ala Met Val Gln Val Gln Glu Leu Phe Pro Pro Pro Val Leu |     |     |     |
| 110                                                             | 115 | 120 |     |
| agt gcc atc ccc tct cct gag ccc cga gag ggt agc ctg gtg acc ctg |     |     | 498 |
| Ser Ala Ile Pro Ser Pro Glu Pro Arg Glu Gly Ser Leu Val Thr Leu |     |     |     |
| 125                                                             | 130 | 135 |     |
| aga tgt cag aca aag ctg cac ccc ctg agg tca gcc ttg agg ctc ctt |     |     | 546 |
| Arg Cys Gln Thr Lys Leu His Pro Leu Arg Ser Ala Leu Arg Leu Leu |     |     |     |
| 140                                                             | 145 | 150 |     |
| ttc tcc ttc cac aag gac ggc cac acc ttg cag gac agg ggc cct cac |     |     | 594 |
| Phe Ser Phe His Lys Asp Gly His Thr Leu Gln Asp Arg Gly Pro His |     |     |     |
| 155                                                             | 160 | 165 |     |

|                                                                 |     |     |      |
|-----------------------------------------------------------------|-----|-----|------|
| cca gaa ctc tgc atc ccg gga gcc aag gag gga gac tct ggg ctt tac |     |     | 642  |
| Pro Glu Leu Cys Ile Pro Gly Ala Lys Glu Gly Asp Ser Gly Leu Tyr |     |     |      |
| 170                                                             | 175 | 180 | 185  |
| tgg tgt gag gtg gcc cct gag ggt ggc cag gtc cag aag cag agc ccc |     |     | 690  |
| Trp Cys Glu Val Ala Pro Glu Gly Gly Gln Val Gln Lys Gln Ser Pro |     |     |      |
| 190                                                             | 195 | 200 |      |
| cag ctg gag gtc aga gtg cag gct cct gta tcc cgt cct gtg ctc act |     |     | 738  |
| Gln Leu Glu Val Arg Val Gln Ala Pro Val Ser Arg Pro Val Leu Thr |     |     |      |
| 205                                                             | 210 | 215 |      |
| ctg cac cac ggg cct gct gac ccc gct gtg ggg gac atg gtg cag ctc |     |     | 786  |
| Leu His His Gly Pro Ala Asp Pro Ala Val Gly Asp Met Val Gln Leu |     |     |      |
| 220                                                             | 225 | 230 |      |
| ctc tgt gag gca cag agg ggc tcc cct ccg atc ctg tat tcc ttc tac |     |     | 834  |
| Leu Cys Glu Ala Gln Arg Gly Ser Pro Pro Ile Leu Tyr Ser Phe Tyr |     |     |      |
| 235                                                             | 240 | 245 |      |
| ctt gat gag aag att gtg ggg aac cac tca gct ccc tgt ggt gga acc |     |     | 882  |
| Leu Asp Glu Lys Ile Val Gly Asn His Ser Ala Pro Cys Gly Thr     |     |     |      |
| 250                                                             | 255 | 260 | 265  |
| acc tcc ctc ctc ttc cca gtg aag tca gaa cag gat gct ggg aac tac |     |     | 930  |
| Thr Ser Leu Leu Phe Pro Val Lys Ser Glu Gln Asp Ala Gly Asn Tyr |     |     |      |
| 270                                                             | 275 | 280 |      |
| tcc tgc gag gct gag aac agt gtc tcc aga gag agg agt gag ccc aag |     |     | 978  |
| Ser Cys Glu Ala Glu Asn Ser Val Ser Arg Glu Arg Ser Glu Pro Lys |     |     |      |
| 285                                                             | 290 | 295 |      |
| aag ctg tct ctg aag ggt tct caa gtc ttg ttc act ccc gcc agc aac |     |     | 1026 |
| Lys Leu Ser Leu Lys Gly Ser Gln Val Leu Phe Thr Pro Ala Ser Asn |     |     |      |
| 300                                                             | 305 | 310 |      |

|                                                                     |     |      |
|---------------------------------------------------------------------|-----|------|
| tgg ctg gtt cct tgg ctt cct gcg agc ctg ctt ggc ctg atg gtt att     |     | 1074 |
| Trp Leu Val Pro Trp Leu Pro Ala Ser Leu Leu Gly Leu Met Val Ile     |     |      |
| 315                                                                 | 320 | 325  |
|                                                                     |     |      |
| gct gct gca ctt ctg gtt tat gtg aga tcc tgg aga aaa gct ggg ccc     |     | 1122 |
| Ala Ala Ala Leu Leu Val Tyr Val Arg Ser Trp Arg Lys Ala Gly Pro     |     |      |
| 330                                                                 | 335 | 340  |
|                                                                     |     |      |
| 345                                                                 |     |      |
|                                                                     |     |      |
| ctt cca tcc cag ata cca ccc aca gct cca ggt gga gag cag tgc cca     |     | 1170 |
| Leu Pro Ser Gln Ile Pro Pro Thr Ala Pro Gly Gly Glu Gln Cys Pro     |     |      |
| 350                                                                 | 355 | 360  |
|                                                                     |     |      |
|                                                                     |     |      |
| cta tat gcc aac gtg cat cac cag aaa ggg aaa gat gaa ggt gtt gtc     |     | 1218 |
| Leu Tyr Ala Asn Val His His Gln Lys Gly Lys Asp Glu Gly Val Val     |     |      |
| 365                                                                 | 370 | 375  |
|                                                                     |     |      |
|                                                                     |     |      |
| tac tct gtg gtg cat aga acc tca aag agg agt gaa gcc agg tct gct     |     | 1266 |
| Tyr Ser Val Val His Arg Thr Ser Lys Arg Ser Glu Ala Arg Ser Ala     |     |      |
| 380                                                                 | 385 | 390  |
|                                                                     |     |      |
|                                                                     |     |      |
| gag ttc acc gtg egg aga aag gac agt tct atc atc tgt gcg gag gtg     |     | 1314 |
| Glu Phe Thr Val Gly Arg Lys Asp Ser Ser Ile Ile Cys Ala Glu Val     |     |      |
| 395                                                                 | 400 | 405  |
|                                                                     |     |      |
|                                                                     |     |      |
| aga tgc ctg cag ccc agt gag gtt tca tcc acg gag gtg aat atg aga     |     | 1362 |
| Arg Cys Leu Gln Pro Ser Glu Val Ser Ser Thr Glu Val Asn Met Arg     |     |      |
| 410                                                                 | 415 | 420  |
|                                                                     |     |      |
|                                                                     |     |      |
| 425                                                                 |     |      |
|                                                                     |     |      |
|                                                                     |     |      |
| agc agg act ctccaa gaa ccc ctt agc gac tgt gag gag gtt ctc tgc      |     | 1410 |
| Ser Arg Thr Leu Gln Glu Pro Leu Ser Asp Cys Glu Glu Val Leu Cys     |     |      |
| 430                                                                 | 435 | 440  |
|                                                                     |     |      |
|                                                                     |     |      |
|                                                                     |     |      |
| tagtgatgtt gttctccttat caacacacgc ccaccccccag tctccagtgc tcctcaggaa |     | 1470 |
|                                                                     |     |      |
|                                                                     |     |      |
| gacagtgggg tcctcaactc ttctgtggg tccttcagtg tcccaagccc agcatcacag    |     | 1530 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| agccccctga gcccgtgtcc tggtcaggag cacctgaacc ctgggttctt ttcttagcag   | 1590 |
| aagaccaacc aatggaatgg gaagggagat gctcccacca acacacacac ttaggttcaa   | 1650 |
| tcagtgcacac tggacacata agccacagat gtcttcttc catacaagca tgtagttcg    | 1710 |
| ccccaaatata catatatata tgaaatagtc atgtgccgca taacaacatt tcagtcagtg  | 1770 |
| atagactgca tacacaacag tggtcccata agactgtaat ggagttaaa aattcctact    | 1830 |
| gcctagtgat atcatagttg ccttaacatc ataacacaac acatttctca cgcgttgtg    | 1890 |
| gtgatgtgtgg tacaacaacaag ctacagcgcc gctagtcata tacaatata gcacatacaa | 1950 |
| ttatgtacag tacactatac ttgataatga taataaacaa ctatgttact ggttt        | 2005 |

<210> 4

<211> 441

<212> PRT

<213> Homo sapiens

<400> 4

Met Leu Pro Ser Leu Gly Pro Met Leu Leu Trp Thr Ala Val Leu Leu

1                    5                    10                    15

Phe Val Pro Cys Val Gly Lys Thr Val Trp Leu Tyr Leu Gln Ala Trp

20                    25                    30

Pro Asn Pro Val Phe Glu Gly Asp Ala Leu Thr Leu Arg Cys Gln Gly

35 40 45

Trp Lys Asn Thr Pro Leu Ser Gln Val Lys Phe Tyr Arg Asp Gly Lys

50                    55                    60

Phe Leu His Phe Ser Lys Glu Asn Gln Thr Leu Ser Met Gly Ala Ala  
 65                    70                    75                    80

Thr Val Gln Ser Arg Gly Gln Tyr Ser Cys Ser Gly Gln Val Met Tyr  
 85                    90                    95

Ile Pro Gln Thr Phe Thr Gln Thr Ser Glu Thr Ala Met Val Gln Val  
 100                  105                  110

Gln Glu Leu Phe Pro Pro Pro Val Leu Ser Ala Ile Pro Ser Pro Glu  
 115                  120                  125

Pro Arg Glu Gly Ser Leu Val Thr Leu Arg Cys Gln Thr Lys Leu His  
 130                  135                  140

Pro Leu Arg Ser Ala Leu Arg Leu Leu Phe Ser Phe His Lys Asp Gly  
 145                  150                  155                  160

His Thr Leu Gln Asp Arg Gly Pro His Pro Glu Leu Cys Ile Pro Gly  
 165                  170                  175

Ala Lys Glu Gly Asp Ser Gly Leu Tyr Trp Cys Glu Val Ala Pro Glu  
 180                  185                  190

Gly Gly Gln Val Gln Lys Gln Ser Pro Gln Leu Glu Val Arg Val Gln  
 195                  200                  205

Ala Pro Val Ser Arg Pro Val Leu Thr Leu His His Gly Pro Ala Asp  
 210                  215                  220

Pro Ala Val Gly Asp Met Val Gln Leu Leu Cys Glu Ala Gln Arg Gly  
 225                  230                  235                  240

Ser Pro Pro Ile Leu Tyr Ser Phe Tyr Leu Asp Glu Lys Ile Val Gly  
 245                  250                  255

Asn His Ser Ala Pro Cys Gly Gly Thr Thr Ser Leu Leu Phe Pro Val

|     |     |     |
|-----|-----|-----|
| 260 | 265 | 270 |
|-----|-----|-----|

Lys Ser Glu Gin Asp Ala Gly Asn Tyr Ser Cys Glu Ala Glu Asn Ser

|     |     |     |
|-----|-----|-----|
| 275 | 280 | 285 |
|-----|-----|-----|

Val Ser Arg Glu Arg Ser Glu Pro Lys Lys Leu Ser Leu Lys Gly Ser

|     |     |     |
|-----|-----|-----|
| 290 | 295 | 300 |
|-----|-----|-----|

Gln Val Leu Phe Thr Pro Ala Ser Asn Trp Leu Val Pro Trp Leu Pro

|     |     |     |     |
|-----|-----|-----|-----|
| 305 | 310 | 315 | 320 |
|-----|-----|-----|-----|

Ala Ser Leu Leu Gly Leu Met Val Ile Ala Ala Ala Leu Leu Val Tyr

|     |     |     |
|-----|-----|-----|
| 325 | 330 | 335 |
|-----|-----|-----|

Val Arg Ser Trp Arg Lys Ala Gly Pro Leu Pro Ser Gln Ile Pro Pro

|     |     |     |
|-----|-----|-----|
| 340 | 345 | 350 |
|-----|-----|-----|

Thr Ala Pro Gly Gly Glu Gln Cys Pro Leu Tyr Ala Asn Val His His

|     |     |     |
|-----|-----|-----|
| 355 | 360 | 365 |
|-----|-----|-----|

Gln Lys Gly Lys Asp Glu Gly Val Val Tyr Ser Val Val His Arg Thr

|     |     |     |
|-----|-----|-----|
| 370 | 375 | 380 |
|-----|-----|-----|

Ser Lys Arg Ser Glu Ala Arg Ser Ala Glu Phe Thr Val Gly Arg Lys

|     |     |     |     |
|-----|-----|-----|-----|
| 385 | 390 | 395 | 400 |
|-----|-----|-----|-----|

Asp Ser Ser Ile Ile Cys Ala Glu Val Arg Cys Leu Gln Pro Ser Glu

|     |     |     |
|-----|-----|-----|
| 405 | 410 | 415 |
|-----|-----|-----|

Val Ser Ser Thr Glu Val Asn Met Arg Ser Arg Thr Leu Gln Glu Pro

|     |     |     |
|-----|-----|-----|
| 420 | 425 | 430 |
|-----|-----|-----|

Leu Ser Asp Cys Glu Glu Val Leu Cys

435

440

<210> 5  
<211> 1543  
<212> DNA  
<213> *Mus musculus*

<220>  
<221> CDS  
<222> (115)..(921)  
<223>

<400> 5  
cacctcttaa gtcagaaggg ccaccactca cctccagctc agaactacca gtctctctct 60

ccccagcttc agctctgcct gctgtttggc ctgctctgcc tcaagaaaagg cacc atg 117  
Met  
1

ctg ctc tgg atg gtt ctc ctc tgt gat tcc atg gtt gaa gct caa      165  
 Leu Leu Trp Met Val Leu Leu Leu Cys Asp Ser Met Val Glu Ala Gln  
                   5                    10                    15

gag ttg ttc cca aat cct gag ctg aca gaa ttc acc aat tca gag acg 213  
Glu Leu Phe Pro Asn Pro Glu Leu Thr Glu Phe Thr Asn Ser Glu Thr  
20 25 30

```

act tta cag ctc ttt tac act ttc tac aag gac aac cat gtc att caa      309
Thr Leu Gln Leu Phe Tyr Thr Phe Tyr Lys Asp Asn His Val Ile Gln
50          55          60          65

```

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| gac agg agt ccc cac tca ttt tct gca gaa gcc aag gag gaa aac     |     |     | 357 |
| Asp Arg Ser Pro His Ser Val Phe Ser Ala Glu Ala Lys Glu Glu Asn |     |     |     |
| 70                                                              | 75  | 80  |     |
| tct ggg ctc tac cag tgt atg gtg gac act gag gat ggc tta att cag |     |     | 405 |
| Ser Gly Leu Tyr Gln Cys Met Val Asp Thr Glu Asp Gly Leu Ile Gln |     |     |     |
| 85                                                              | 90  | 95  |     |
| aaa aaa agt ggc tat ctg gat atc cag ttc tgg act cct gta tcc cat |     |     | 453 |
| Lys Lys Ser Gly Tyr Leu Asp Ile Gln Phe Trp Thr Pro Val Ser His |     |     |     |
| 100                                                             | 105 | 110 |     |
| cct gtg ctc act ctg caa cat gaa gcc act aac ctt gct gta gga gac |     |     | 501 |
| Pro Val Leu Thr Leu Gln His Glu Ala Thr Asn Leu Ala Val Gly Asp |     |     |     |
| 115                                                             | 120 | 125 |     |
| aag gtg gag ttc ctc tgt gag gcc cac cag ggc tcc ctt cca atc ttt |     |     | 549 |
| Lys Val Glu Phe Leu Cys Glu Ala His Gln Gly Ser Leu Pro Ile Phe |     |     |     |
| 130                                                             | 135 | 140 | 145 |
| tac tca ttc tac att aat gga gaa atc cta ggg aaa ccc ctg gct ccc |     |     | 597 |
| Tyr Ser Phe Tyr Ile Asn Gly Glu Ile Leu Gly Lys Pro Leu Ala Pro |     |     |     |
| 150                                                             | 155 | 160 |     |
| tct ggc aga gct gcc tcc ctc cta gcc tca gta aag gca gag tgg agt |     |     | 645 |
| Ser Gly Arg Ala Ala Ser Leu Leu Ala Ser Val Lys Ala Glu Trp Ser |     |     |     |
| 165                                                             | 170 | 175 |     |
| acc aag aac tat tcc tgt gaa gct aaa aac aac atc tcc aga gaa ata |     |     | 693 |
| Thr Lys Asn Tyr Ser Cys Glu Ala Lys Asn Asn Ile Ser Arg Glu Ile |     |     |     |
| 180                                                             | 185 | 190 |     |
| agt gag ctc aag aag ttc ccc ttg gtt gtc tca ggt act gcc tgg atc |     |     | 741 |
| Ser Glu Leu Lys Lys Phe Pro Leu Val Val Ser Gly Thr Ala Trp Ile |     |     |     |
| 195                                                             | 200 | 205 |     |

|                                                                    |      |     |     |
|--------------------------------------------------------------------|------|-----|-----|
| aag agc aac atg cta act atc tgg cta cct gca agc ctg ctt gga ggg    | 789  |     |     |
| Lys Ser Asn Met Leu Thr Ile Trp Leu Pro Ala Ser Leu Leu Gly Gly    |      |     |     |
| 210                                                                | 215  | 220 | 225 |
| <br>                                                               |      |     |     |
| atg gtc att gcg gct gtg gtt cta atg tat ttc ttc aaa ccc tgt aaa    | 837  |     |     |
| Met Val Ile Ala Ala Val Val Leu Met Tyr Phe Phe Lys Pro Cys Lys    |      |     |     |
| 230                                                                | 235  | 240 |     |
| <br>                                                               |      |     |     |
| aag cat gcc aga cct gag atg ccc acc cta aaa gag cca gac agt ttt    | 885  |     |     |
| Lys His Ala Arg Pro Glu Met Pro Thr Leu Lys Glu Pro Asp Ser Phe    |      |     |     |
| 245                                                                | 250  | 255 |     |
| <br>                                                               |      |     |     |
| cta tat gta tcg gtt gat aat cga aga tat aaa tga gattccccacc        | 931  |     |     |
| Leu Tyr Val Ser Val Asp Asn Arg Arg Tyr Lys                        |      |     |     |
| 260                                                                | 265  |     |     |
| <br>                                                               |      |     |     |
| aatgatttgg attcaaaaac caggacctgc caagatcccc ttggtcttta ggatcatgtc  | 991  |     |     |
| <br>                                                               |      |     |     |
| ctgtgttagt gcaatgtctt cctccagcat atactcaact ccagctcccc gcctccaccc  | 1051 |     |     |
| <br>                                                               |      |     |     |
| tccagcac tc agcagtggct ccaagttctc cctgcaggc acccagttcc tagcccgaga  | 1111 |     |     |
| <br>                                                               |      |     |     |
| gtgaggaagc ccatatgctc tattcctggc cagggctcct gaactgtggg ttctcttctg  | 1171 |     |     |
| <br>                                                               |      |     |     |
| agcggaaac caaacaatgg tgtggaaatg aacaatttcc accttgatac atacatatac   | 1231 |     |     |
| <br>                                                               |      |     |     |
| acatgcacac acacaaacaa acacacatac acacacactt ccagatgtaa cattgtacac  | 1291 |     |     |
| <br>                                                               |      |     |     |
| agagccacag ttatcttctt taagtacaaa aggaaaaggg tttcacctc cagatagaca   | 1351 |     |     |
| <br>                                                               |      |     |     |
| gataatagat acacagacac acaagacaga tagatgatag ataacatata gattagatag  | 1411 |     |     |
| <br>                                                               |      |     |     |
| ataatagata gatggtagat aggttagatgg atgatagata gatagataga ttggatagat | 1471 |     |     |
| <br>                                                               |      |     |     |
| agatagatag atagatagat agatagatag ataataacat gacagataag atgatagaaa  | 1531 |     |     |

taagatacga ta 1543

<210> 6

<211> 268

<212> PRT

<213> Mus musculus

<400> 6

Met Leu Leu Trp Met Val Leu Leu Leu Cys Asp Ser Met Val Glu Ala  
 1 5 10 15

Gln Glu Leu Phe Pro Asn Pro Glu Leu Thr Glu Phe Thr Asn Ser Glu  
 20 25 30

Thr Met Asp Val Ile Leu Lys Cys Thr Ile Lys Val Asp Pro Lys Asn  
 35 40 45

Pro Thr Leu Gln Leu Phe Tyr Thr Phe Tyr Lys Asp Asn His Val Ile  
 50 55 60

Gln Asp Arg Ser Pro His Ser Val Phe Ser Ala Glu Ala Lys Glu Glu  
 65 70 75 80

Asn Ser Gly Leu Tyr Gln Cys Met Val Asp Thr Glu Asp Gly Leu Ile  
 85 90 95

Gln Lys Lys Ser Gly Tyr Leu Asp Ile Gln Phe Trp Thr Pro Val Ser  
 100 105 110

His Pro Val Leu Thr Leu Gln His Glu Ala Thr Asn Leu Ala Val Gly  
 115 120 125

Asp Lys Val Glu Phe Leu Cys Glu Ala His Gln Gly Ser Leu Pro Ile  
 130 135 140

Phe Tyr Ser Phe Tyr Ile Asn Gly Glu Ile Leu Gly Lys Pro Leu Ala  
 145                    150                    155                    160

Pro Ser Gly Arg Ala Ala Ser Leu Leu Ala Ser Val Lys Ala Glu Trp  
 165                    170                    175

Ser Thr Lys Asn Tyr Ser Cys Glu Ala Lys Asn Asn Ile Ser Arg Glu  
 180                    185                    190

Ile Ser Glu Leu Lys Lys Phe Pro Leu Val Val Ser Gly Thr Ala Trp  
 195                    200                    205

Ile Lys Ser Asn Met Leu Thr Ile Trp Leu Pro Ala Ser Leu Leu Gly  
 210                    215                    220

Gly Met Val Ile Ala Ala Val Val Leu Met Tyr Phe Phe Lys Pro Cys  
 225                    230                    235                    240

Lys Lys His Ala Arg Pro Glu Met Pro Thr Leu Lys Glu Pro Asp Ser  
 245                    250                    255

Phe Leu Tyr Val Ser Val Asp Asn Arg Arg Tyr Lys  
 260                    265

<210> 7

<211> 34

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 7

ttgaattcac acacccacag gacctgcagc tgaa

<210> 8  
<211> 34  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 8  
ttggatccac tgaaggaccc acagaaagag ttga

34

<210> 9  
<211> 21  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 9  
accctgagat gtcagacaaa g

21

<210> 10  
<211> 20  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 10  
gccacacctcac accagtaaag

20

<210> 11

<211> 21

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 11

cctccgatcc tgtattcctt c

21

<210> 12

<211> 21

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 12

tggagctgtg ggtggtatct g

21

<210> 13

<211> 21

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 13

agaacacctaa agaggagtga a

21

<210> 14

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 14

attatgctga gtgatatccc

20

<210> 15

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 15

attttaggtga cactatagaa

20

<210> 16

<211> 28

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 16

gggaattcat gttgccatct ttagttcc

28

<210> 17

<211> 26

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 17

aaggatccac tcctctctct ggagac

26

<210> 18

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 18

gcctcagaca gtggttcaaa

20

<210> 19

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 19

agaaccatca cagtctcgca

20

<210> 20

<211> 29

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 20

aagaattcca ccatggctgg acctgccac

29

<210> 21

<211> 41

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 21

acagggtttg gccaggcttg ggcttcctgc actgtccaga g

41

<210> 22

<211> 30

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 22

gcaggaagcc caaggctggc caaaccctgt

30

<210> 23

<211> 45

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 23

ctaatacgac tcactatagg gcaaggcagtg gtatcaacgc agagt

45

<210> 24

<211> 22

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 24

ctaatacgac tcactatagg gc

22

<210> 25

<211> 23

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 25

aagcagtggt atcaacgcag agt

23

<210> 26

<211> 33

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 26

ctcggatcct tgccatcttt agttccctgt gtt

33

<210> 27

<211> 36

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 27

gctgtcgact tagttgctgg cgggagtgaa caagac

36

<210> 28

<211> 63

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 28

gcgaattcca ccatggacta caaagacat gacgacaagt tgccatcttt agttccctgt

60

**gtt****63**

&lt;210&gt; 29

&lt;211&gt; 36

&lt;212&gt; DNA

&lt;213&gt; Artificial

&lt;220&gt;

&lt;223&gt; an artificially synthesized primer sequence

&lt;400&gt; 29

cgtgtcgact cactagcaga gaacctccctc acagtc

**36**

&lt;210&gt; 30

&lt;211&gt; 25

&lt;212&gt; DNA

&lt;213&gt; Artificial

&lt;220&gt;

&lt;223&gt; an artificially synthesized primer sequence

&lt;400&gt; 30

aggtcagagt gcaggctcct gtatc

**25**

&lt;210&gt; 31

&lt;211&gt; 25

&lt;212&gt; DNA

&lt;213&gt; Artificial

&lt;220&gt;

&lt;223&gt; an artificially synthesized primer sequence

<400> 31

tagaactgtc ctttctcccc acggta

25

<210> 32

<211> 26

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 32

gaattcacac acccacagga cctgca

26

<210> 33

<211> 26

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 33

ggatccactg aaggacccac agaaag

26

<210> 34

<211> 25

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 34

ctcagtaaag gcagagtgg a gtacc

25

<210> 35

<211> 25

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 35

atacatttga accacagccg caatg

25

<210> 36

<211> 27

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 36

ccatcctaat acgactcact ataggc

27

<210> 37

<211> 23

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 37

actcaactata gggctcgagc ggc

23

<210> 38

<211> 26

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 38

ctcaagaagt tccccttgggt tgtctc

26

<210> 39

<211> 26

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 39

gccagatagt tagcatgttg ctcttg

26

<210> 40

<211> 26

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 40  
gaattcatgt cgctcatggc cgtcag 26

<210> 41  
<211> 26  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 41  
ggatccctcag ggctcagcat ttggaa 26

<210> 42  
<211> 40  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 42  
aggggcccag cttttctcca gcgatgaagg agaaagaaga 40

<210> 43  
<211> 40  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 43

tcttctttct ccttcatcgc tggagaaaaag ctgggccccct

40

<210> 44

<211> 25

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 44

gcaatttaacc ctcactaaag ggaac

25

<210> 45

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 45

ttcacatacaga aggcgtggag

20

<210> 46

<211> 20

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 46

cgttcgcggg cgcaactgca

20

<210> 47

<211> 26

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 47

gaattcatgg ccttaccagt gaccgc

26

<210> 48

<211> 26

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 48

ggatccttag acgttatctcg ccgaaa

26

<210> 49

<211> 30

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 49

gaattccacc atggcttac cagtgaccgc

30

<210> 50

<211> 40

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 50

accagccagt tgctggcggg gtccagcccc ctcgttgca

40

<210> 51

<211> 40

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 51

tgcacacgag ggggctggac cccgccagca actggctggt

40

<210> 52

<211> 39

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 52

atcagaacat gcaggtgtct tccagcccc tcgttgca

39

<210> 53

<211> 40

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 53

tgcacacgag ggggctggac agacacctgc atgttctgat

40

10/574045

## SEQUENCE LISTING

IAP5 Rec'd PCT/PTO 28 MAR 2006

<110> Matsushima, Kouji  
 Hashimoto, Shinichi  
 Tsuchiya, Masayuki  
 Hirata, Yuichi  
 Yoshida, Kenji  
 Ojima, Kazuyuki

<120> PROTEIN EXPRESSED IN NK CELL

<130> 14875-157US1

<150> PCT/JP2004/14207

<151> 2004-09-29

<150> JP 2003-338331

<151> 2003-09-29

<160> 53

<170> PatentIn version 3.1

<210> 1

<211> 1473

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (87)..(1376)

<400> 1

acacacccac aggacacctgca gctgaacgaa gttgaagaca actcaggaga tctgttggaa 60

agagaacgat agaggaaaat atatga atg ttg cca tct tta gtt ccc tgt gtt 113  
 Met Leu Pro Ser Leu Val Pro Cys Val  
 1 5

ggg aaa act gtc tgg ctg tac ctc caa gcc tgg cca aac cct gtg ttt 161  
 Gly Lys Thr Val Trp Leu Tyr Leu Gln Ala Trp Pro Asn Pro Val Phe  
 10 15 20 25

gaa gga gat gcc ctg act ctg cga tgt cag gga tgg aag aat aca cca 209  
 Glu Gly Asp Ala Leu Thr Leu Arg Cys Gln Gly Trp Lys Asn Thr Pro  
 30 35 40

ctg tct cag gtg aag ttc tac aga gat gga aaa ttc ctt cat ttc tct 257  
 Leu Ser Gln Val Lys Phe Tyr Arg Asp Gly Lys Phe Leu His Phe Ser  
 45 50 55

aag gaa aac cag act ctg tcc atg gga gca gca aca gtg cag agc cgt 305  
 Lys Glu Asn Gln Thr Leu Ser Met Gly Ala Ala Thr Val Gln Ser Arg  
 60 65 70

ggc cag tac agc tgc tct ggg cag gtg atg tat att cca cag aca ttc 353  
 Gly Gln Tyr Ser Cys Ser Gly Gln Val Met Tyr Ile Pro Gln Thr Phe

| 75                                                                                                                                 | 80 | 85 |      |
|------------------------------------------------------------------------------------------------------------------------------------|----|----|------|
| aca caa act tca gag act gcc atg gtt caa gtc caa gag ctg ttt cca<br>Thr Gln Thr Ser Glu Thr Ala Met Val Gln Val Gln Glu Leu Phe Pro |    |    | 401  |
| 90 95 100 105                                                                                                                      |    |    |      |
| cct cct gtg ctg agt gcc atc ccc tct cct gag ccc cga gag ggt agc<br>Pro Pro Val Leu Ser Ala Ile Pro Ser Pro Glu Pro Arg Glu Gly Ser |    |    | 449  |
| 110 115 120                                                                                                                        |    |    |      |
| ctg gtg acc ctg aga tgt cag aca aag ctg cac ccc ctg agg tca gcc<br>Leu Val Thr Leu Arg Cys Gln Thr Lys Leu His Pro Leu Arg Ser Ala |    |    | 497  |
| 125 130 135                                                                                                                        |    |    |      |
| ttg agg ctc ctt ttc tcc ttc cac aag gac ggc cac acc ttg cag gac<br>Leu Arg Leu Leu Phe Ser Phe His Lys Asp Gly His Thr Leu Gln Asp |    |    | 545  |
| 140 145 150                                                                                                                        |    |    |      |
| agg ggc cct cac cca gaa ctc tgc atc ccg gga gcc aag gag gga gac<br>Arg Gly Pro His Pro Glu Leu Cys Ile Pro Gly Ala Lys Glu Gly Asp |    |    | 593  |
| 155 160 165                                                                                                                        |    |    |      |
| tct ggg ctt tac tgg tgt gag gtg gcc cct gag ggt ggc cag gtc cag<br>Ser Gly Leu Tyr Trp Cys Glu Val Ala Pro Glu Gly Gly Gln Val Gln |    |    | 641  |
| 170 175 180 185                                                                                                                    |    |    |      |
| aag cag agc ccc cag ctg gag gtc aga gtg cag gct cct gta tcc cgt<br>Lys Gln Ser Pro Gln Leu Glu Val Arg Val Gln Ala Pro Val Ser Arg |    |    | 689  |
| 190 195 200                                                                                                                        |    |    |      |
| cct gtg ctc act ctg cac cac ggg cct gct gac cct gct gtg ggg gac<br>Pro Val Leu Thr Leu His His Gly Pro Ala Asp Pro Ala Val Gly Asp |    |    | 737  |
| 205 210 215                                                                                                                        |    |    |      |
| atg gtg cag ctc ctc tgt gag gca cag agg ggc tcc cct ccg atc ctg<br>Met Val Gln Leu Leu Cys Glu Ala Gln Arg Gly Ser Pro Pro Ile Leu |    |    | 785  |
| 220 225 230                                                                                                                        |    |    |      |
| tat tcc ttc tac ctt gat gag aag att gtg ggg aac cac tca gct ccc<br>Tyr Ser Phe Tyr Leu Asp Glu Lys Ile Val Gly Asn His Ser Ala Pro |    |    | 833  |
| 235 240 245                                                                                                                        |    |    |      |
| tgt ggt gga acc acc tcc ctc ctc ttc cca gtg aag tca gaa cag gat<br>Cys Gly Gly Thr Thr Ser Leu Leu Phe Pro Val Lys Ser Glu Gln Asp |    |    | 881  |
| 250 255 260 265                                                                                                                    |    |    |      |
| gct ggg aac tac tcc tgc gag gct gag aac agt gtc tcc aga gag agg<br>Ala Gly Asn Tyr Ser Cys Glu Ala Glu Asn Ser Val Ser Arg Glu Arg |    |    | 929  |
| 270 275 280                                                                                                                        |    |    |      |
| agt gag ccc aag aag ctg tct ctg aag ggt tct caa gtc ttg ttc act<br>Ser Glu Pro Lys Lys Leu Ser Leu Lys Gly Ser Gln Val Leu Phe Thr |    |    | 977  |
| 285 290 295                                                                                                                        |    |    |      |
| ccc gcc agc aac tgg ctg gtt cct tgg ctt cct gcg agc ctg ctt ggc<br>Pro Ala Ser Asn Trp Leu Val Pro Trp Leu Pro Ala Ser Leu Leu Gly |    |    | 1025 |
| 300 305 310                                                                                                                        |    |    |      |

ctg atg gtt att gct gct gca ctt ctg gtt tat gtg aga tcc tgg aga 1073  
 Leu Met Val Ile Ala Ala Ala Leu Leu Val Tyr Val Arg Ser Trp Arg  
   315               320               325  
  
 aaa gct ggg ccc ctt cca tcc cag ata cca ccc aca gct cca ggt gga 1121  
 Lys Ala Gly Pro Leu Pro Ser Gln Ile Pro Pro Thr Ala Pro Gly Gly  
   330               335               340               345  
  
 gag cag tgc cca cta tat gcc aac gtg cat cac cag aaa ggg aaa gat 1169  
 Glu Gln Cys Pro Leu Tyr Ala Asn Val His His Gln Lys Gly Lys Asp  
   350               355               360  
  
 gaa ggt gtt gtc tac tct gtg gtg cat aga acc tca aag agg agt gaa 1217  
 Glu Gly Val Val Tyr Ser Val Val His Arg Thr Ser Lys Arg Ser Glu  
   365               370               375  
  
 gcc agg tct gct gag ttc acc gtg ggg aga aag gac agt tct atc atc 1265  
 Ala Arg Ser Ala Glu Phe Thr Val Gly Arg Lys Asp Ser Ser Ile Ile  
   380               385               390  
  
 tgt gcg gag gtg aga tgc ctg cag ccc agt gag gtt tca tcc acg gag 1313  
 Cys Ala Glu Val Arg Cys Leu Gln Pro Ser Glu Val Ser Ser Thr Glu  
   395               400               405  
  
 gtg aat atg aga agc agg act ctc caa gaa ccc ctt agc gac tgt gag 1361  
 Val Asn Met Arg Ser Arg Thr Leu Gln Glu Pro Leu Ser Asp Cys Glu  
   410               415               420               425  
  
 gag gtt ctc tgc tag tgatgggttt ctccatatcaa cacacgcccc ccccccagtct 1416  
 Glu Val Leu Cys  
  
 ccagtgtcc tcaggaagac agtgggtcc tcaactcttt ctgtgggtcc ttcagtg 1473  
  
 <210> 2  
 <211> 429  
 <212> PRT  
 <213> Homo sapiens  
  
 <400> 2  
 Met Leu Pro Ser Leu Val Pro Cys Val Gly Lys Thr Val Trp Leu Tyr  
   1               5               10               15  
  
 Leu Gln Ala Trp Pro Asn Pro Val Phe Glu Gly Asp Ala Leu Thr Leu  
   20               25               30  
  
 Arg Cys Gln Gly Trp Lys Asn Thr Pro Leu Ser Gln Val Lys Phe Tyr  
   35               40               45  
  
 Arg Asp Gly Lys Phe Leu His Phe Ser Lys Glu Asn Gln Thr Leu Ser  
   50               55               60  
  
 Met Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr Ser Cys Ser Gly  
   65               70               75               80

Gln Val Met Tyr Ile Pro Gln Thr Phe Thr Gln Thr Ser Glu Thr Ala  
 85 90 95  
 Met Val Gln Val Gln Glu Leu Phe Pro Pro Pro Val Leu Ser Ala Ile  
 100 105 110  
 Pro Ser Pro Glu Pro Arg Glu Gly Ser Leu Val Thr Leu Arg Cys Gln  
 115 120 125  
  
 Thr Lys Leu His Pro Leu Arg Ser Ala Leu Arg Leu Leu Phe Ser Phe  
 130 135 140  
 His Lys Asp Gly His Thr Leu Gln Asp Arg Gly Pro His Pro Glu Leu  
 145 150 155 160  
 Cys Ile Pro Gly Ala Lys Glu Gly Asp Ser Gly Leu Tyr Trp Cys Glu  
 165 170 175  
 Val Ala Pro Glu Gly Gly Gln Val Gln Lys Gln Ser Pro Gln Leu Glu  
 180 185 190  
 Val Arg Val Gln Ala Pro Val Ser Arg Pro Val Leu Thr Leu His His  
 195 200 205  
 Gly Pro Ala Asp Pro Ala Val Gly Asp Met Val Gln Leu Leu Cys Glu  
 210 215 220  
 Ala Gln Arg Gly Ser Pro Pro Ile Leu Tyr Ser Phe Tyr Leu Asp Glu  
 225 230 235 240  
 Lys Ile Val Gly Asn His Ser Ala Pro Cys Gly Gly Thr Thr Ser Leu  
 245 250 255  
 Leu Phe Pro Val Lys Ser Glu Gln Asp Ala Gly Asn Tyr Ser Cys Glu  
 260 265 270  
 Ala Glu Asn Ser Val Ser Arg Glu Arg Ser Glu Pro Lys Lys Leu Ser  
 275 280 285  
 Leu Lys Gly Ser Gln Val Leu Phe Thr Pro Ala Ser Asn Trp Leu Val  
 290 295 300  
 Pro Trp Leu Pro Ala Ser Leu Leu Gly Leu Met Val Ile Ala Ala Ala  
 305 310 315 320  
 Leu Leu Val Tyr Val Arg Ser Trp Arg Lys Ala Gly Pro Leu Pro Ser  
 325 330 335  
 Gln Ile Pro Pro Thr Ala Pro Gly Gly Glu Gln Cys Pro Leu Tyr Ala  
 340 345 350  
 Asn Val His His Gln Lys Gly Lys Asp Glu Gly Val Val Tyr Ser Val  
 355 360 365  
 Val His Arg Thr Ser Lys Arg Ser Glu Ala Arg Ser Ala Glu Phe Thr  
 370 375 380

Val Gly Arg Lys Asp Ser Ser Ile Ile Cys Ala Glu Val Arg Cys Leu  
 385 390 395 400

Gln Pro Ser Glu Val Ser Ser Thr Glu Val Asn Met Arg Ser Arg Thr  
 405 410 415

Leu Gln Glu Pro Leu Ser Asp Cys Glu Glu Val Leu Cys  
 420 425

<210> 3  
 <211> 2005  
 <212> DNA  
 <213> Homo sapiens

<220>  
 <221> CDS  
 <222> (88) .. (1410)

<400> 3  
 cacacaccca caggacctgc agctgaacga agttgaagac aactcaggag atctgttggaa 60

aagagaacga tagagaaaaa tatatga atg ttg cca tct tta ggc ccc atg ctg 114  
 Met Leu Pro Ser Leu Gly Pro Met Leu  
 1 5

ctc tgg acg gct gtg ctg ctc ttt gtt ccc tgt gtt ggg aaa act gtc 162  
 Leu Trp Thr Ala Val Leu Leu Phe Val Pro Cys Val Gly Lys Thr Val  
 10 15 20 25

tgg ctg tac ctc caa gcc tgg cca aac cct gtg ttt gaa gga gat gcc 210  
 Trp Leu Tyr Leu Gln Ala Trp Pro Asn Pro Val Phe Glu Gly Asp Ala  
 30 35 40

ctg act ctg cga tgt cag gga tgg aag aat aca cca ctg tct cag gtg 258  
 Leu Thr Leu Arg Cys Gln Gly Trp Lys Asn Thr Pro Leu Ser Gln Val  
 45 50 55

aag ttc tac aga gat gga aaa ttc ctt cat ttc tct aag gaa aac cag 306  
 Lys Phe Tyr Arg Asp Gly Lys Phe Leu His Phe Ser Lys Glu Asn Gln  
 60 65 70

act ctg tcc atg gga gca gca aca gtg cag agc cgt ggc cag tac agc 354  
 Thr Leu Ser Met Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr Ser  
 75 80 85

tgc tct ggg cag gtg atg tat att cca cag aca ttc aca caa act tca 402  
 Cys Ser Gly Gln Val Met Tyr Ile Pro Gln Thr Phe Thr Gln Thr Ser  
 90 95 100 105

gag act gcc atg gtt caa gtc caa gag ctg ttt cca cct cct gtg ctg 450  
 Glu Thr Ala Met Val Gln Val Gln Glu Leu Phe Pro Pro Val Leu  
 110 115 120

agt gcc atc ccc tct cct gag ccc cga gag ggt agc ctg gtg acc ctg 498  
 Ser Ala Ile Pro Ser Pro Glu Pro Arg Glu Gly Ser Leu Val Thr Leu

| 125                                                                                                                                | 130 | 135 |      |
|------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| aga tgt cag aca aag ctg cac ccc ctg agg tca gcc ttg agg ctc ctt<br>Arg Cys Gln Thr Lys Leu His Pro Leu Arg Ser Ala Leu Arg Leu Leu |     |     | 546  |
| 140                                                                                                                                | 145 | 150 |      |
| ttc tcc ttc cac aag gac ggc cac acc ttg cag gac agg ggc cct cac<br>Phe Ser Phe His Lys Asp Gly His Thr Leu Gln Asp Arg Gly Pro His |     |     | 594  |
| 155                                                                                                                                | 160 | 165 |      |
| cca gaa ctc tgc atc ccg gga gcc aag gag gga gac tct ggg ctt tac<br>Pro Glu Leu Cys Ile Pro Gly Ala Lys Glu Gly Asp Ser Gly Leu Tyr |     |     | 642  |
| 170                                                                                                                                | 175 | 180 | 185  |
| tgg tgt gag gtg gcc cct gag ggt ggc cag gtc cag aag cag agc ccc<br>Trp Cys Glu Val Ala Pro Glu Gly Gly Gln Val Gln Lys Gln Ser Pro |     |     | 690  |
| 190                                                                                                                                | 195 | 200 |      |
| cag ctg gag gtc aga gtg cag gct cct gta tcc cgt cct gtg ctc act<br>Gln Leu Glu Val Arg Val Gln Ala Pro Val Ser Arg Pro Val Leu Thr |     |     | 738  |
| 205                                                                                                                                | 210 | 215 |      |
| ctg cac cac ggg cct gct gac ccc gct gtg ggg gac atg gtg cag ctc<br>Leu His His Gly Pro Ala Asp Pro Ala Val Gly Asp Met Val Gln Leu |     |     | 786  |
| 220                                                                                                                                | 225 | 230 |      |
| ctc tgt gag gca cag agg ggc tcc cct ccg atc ctg tat tcc ttc tac<br>Leu Cys Glu Ala Gln Arg Gly Ser Pro Pro Ile Leu Tyr Ser Phe Tyr |     |     | 834  |
| 235                                                                                                                                | 240 | 245 |      |
| ctt gat gag aag att gtg ggg aac cac tca gct ccc tgt ggt gga acc<br>Leu Asp Glu Lys Ile Val Gly Asn His Ser Ala Pro Cys Gly Gly Thr |     |     | 882  |
| 250                                                                                                                                | 255 | 260 | 265  |
| acc tcc ctc ctc ttc cca gtg aag tca gaa cag gat gct ggg aac tac<br>Thr Ser Leu Leu Phe Pro Val Lys Ser Glu Gln Asp Ala Gly Asn Tyr |     |     | 930  |
| 270                                                                                                                                | 275 | 280 |      |
| tcc tgc gag gct gag aac agt gtc tcc aga gag agg agt gag ccc aag<br>Ser Cys Glu Ala Glu Asn Ser Val Ser Arg Glu Arg Ser Glu Pro Lys |     |     | 978  |
| 285                                                                                                                                | 290 | 295 |      |
| aag ctg tct ctg aag ggt tct caa gtc ttg ttc act ccc gcc agc aac<br>Lys Leu Ser Leu Lys Gly Ser Gln Val Leu Phe Thr Pro Ala Ser Asn |     |     | 1026 |
| 300                                                                                                                                | 305 | 310 |      |
| tgg ctg gtt cct tgg ctt cct gcg agc ctg ctt ggc ctg atg gtt att<br>Trp Leu Val Pro Trp Leu Pro Ala Ser Leu Leu Gly Leu Met Val Ile |     |     | 1074 |
| 315                                                                                                                                | 320 | 325 |      |
| gct gct gca ctt ctg gtt tat gtg aga tcc tgg aga aaa gct ggg ccc<br>Ala Ala Ala Leu Leu Val Tyr Val Arg Ser Trp Arg Lys Ala Gly Pro |     |     | 1122 |
| 330                                                                                                                                | 335 | 340 | 345  |
| ctt cca tcc cag ata cca ccc aca gct cca ggt gga gag cag tgc cca<br>Leu Pro Ser Gln Ile Pro Pro Thr Ala Pro Gly Gly Glu Gln Cys Pro |     |     | 1170 |
| 350                                                                                                                                | 355 | 360 |      |

|                                                                                                                                     |      |
|-------------------------------------------------------------------------------------------------------------------------------------|------|
| ctat tat gcc aac gtg cat cac cag aaa ggg aaa gat gaa ggt gtt gtc<br>Leu Tyr Ala Asn Val His His Gln Lys Gly Lys Asp Glu Gly Val Val | 1218 |
| 365 370 375                                                                                                                         |      |
| tac tct gtg gtg cat aga acc tca aag agg agt gaa gcc agg tct gct<br>Tyr Ser Val Val His Arg Thr Ser Lys Arg Ser Glu Ala Arg Ser Ala  | 1266 |
| 380 385 390                                                                                                                         |      |
| gag ttc acc gtg ggg aga aag gac agt tct atc atc tgt gcg gag gtg<br>Glu Phe Thr Val Gly Arg Lys Asp Ser Ser Ile Ile Cys Ala Glu Val  | 1314 |
| 395 400 405                                                                                                                         |      |
| aga tgc ctg cag ccc agt gag gtt tca tcc acg gag gtg aat atg aga<br>Arg Cys Leu Gln Pro Ser Glu Val Ser Ser Thr Glu Val Asn Met Arg  | 1362 |
| 410 415 420 425                                                                                                                     |      |
| agc agg act ctc caa gaa ccc ctt agc gac tgt gag gag gtt ctc tgc<br>Ser Arg Thr Leu Gln Glu Pro Leu Ser Asp Cys Glu Glu Val Leu Cys  | 1410 |
| 430 435 440                                                                                                                         |      |
| tagtgatgg tttctccatat caacacacgc ccaccccccag tctccagtgc tcctcaggaa                                                                  | 1470 |
| gacagtgggg tcctcaactc tttctgtggg tccttcagtg tcccaagccc agcatcacag                                                                   | 1530 |
| agccccctga gcccattgtcc tggtcaggag cacctgaacc ctgggttctt ttcttagcag                                                                  | 1590 |
| aagaccaacc aatggaatgg gaagggagat gctcccacca acacacacac ttaggtcaa                                                                    | 1650 |
| tcagtgacac tggacacata agccacagat gtcttcttc catacaagca tgtagttcg                                                                     | 1710 |
| ccccaatata catatatata tgaaatagtc atgtgccgca taacaacatt tcagtcagtg                                                                   | 1770 |
| atagactgca tacacaacag tggccata agactgtaat ggagttaaa aattcctact                                                                      | 1830 |
| gccttagtgat atcatagttg ccttaacatc ataacacaac acatttctca cgcgtttgtg                                                                  | 1890 |
| gtgatgctgg tacaaacaag ctacagcgcc gctagtcata tacaaatata gcacatacaa                                                                   | 1950 |
| ttatgtacag tacactatac ttgataatga taataaacaa ctatgttact ggttt                                                                        | 2005 |

<210> 4  
<211> 441  
<212> PRT  
<213> Homo sapiens

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Met Leu Pro Ser Leu Gly Pro Met Leu Leu Trp Thr Ala Val Leu Leu |  |
| 1 5 10 15                                                       |  |
| Phe Val Pro Cys Val Gly Lys Thr Val Trp Leu Tyr Leu Gln Ala Trp |  |
| 20 25 30                                                        |  |
| Pro Asn Pro Val Phe Glu Gly Asp Ala Leu Thr Leu Arg Cys Gln Gly |  |
| 35 40 45                                                        |  |

Trp Lys Asn Thr Pro Leu Ser Gln Val Lys Phe Tyr Arg Asp Gly Lys  
 50 55 60

Phe Leu His Phe Ser Lys Glu Asn Gln Thr Leu Ser Met Gly Ala Ala  
 65 70 75 80

Thr Val Gln Ser Arg Gly Gln Tyr Ser Cys Ser Gly Gln Val Met Tyr  
 85 90 95

Ile Pro Gln Thr Phe Thr Gln Thr Ser Glu Thr Ala Met Val Gln Val  
 100 105 110

Gln Glu Leu Phe Pro Pro Pro Val Leu Ser Ala Ile Pro Ser Pro Glu  
 115 120 125

Pro Arg Glu Gly Ser Leu Val Thr Leu Arg Cys Gln Thr Lys Leu His  
 130 135 140

Pro Leu Arg Ser Ala Leu Arg Leu Leu Phe Ser Phe His Lys Asp Gly  
 145 150 155 160

His Thr Leu Gln Asp Arg Gly Pro His Pro Glu Leu Cys Ile Pro Gly  
 165 170 175

Ala Lys Glu Gly Asp Ser Gly Leu Tyr Trp Cys Glu Val Ala Pro Glu  
 180 185 190

Gly Gly Gln Val Gln Lys Gln Ser Pro Gln Leu Glu Val Arg Val Gln  
 195 200 205

Ala Pro Val Ser Arg Pro Val Leu Thr Leu His His Gly Pro Ala Asp  
 210 215 220

Pro Ala Val Gly Asp Met Val Gln Leu Leu Cys Glu Ala Gln Arg Gly  
 225 230 235 240

Ser Pro Pro Ile Leu Tyr Ser Phe Tyr Leu Asp Glu Lys Ile Val Gly  
 245 250 255

Asn His Ser Ala Pro Cys Gly Gly Thr Thr Ser Leu Leu Phe Pro Val  
 260 265 270

Lys Ser Glu Gln Asp Ala Gly Asn Tyr Ser Cys Glu Ala Glu Asn Ser  
 275 280 285

Val Ser Arg Glu Arg Ser Glu Pro Lys Lys Leu Ser Leu Lys Gly Ser  
 290 295 300

Gln Val Leu Phe Thr Pro Ala Ser Asn Trp Leu Val Pro Trp Leu Pro  
 305 310 315 320

Ala Ser Leu Leu Gly Leu Met Val Ile Ala Ala Ala Leu Leu Val Tyr  
 325 330 335

Val Arg Ser Trp Arg Lys Ala Gly Pro Leu Pro Ser Gln Ile Pro Pro

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 340                                                             | 345 | 350 |
| Thr Ala Pro Gly Gly Glu Gln Cys Pro Leu Tyr Ala Asn Val His His |     |     |
| 355                                                             | 360 | 365 |
| Gln Lys Gly Lys Asp Glu Gly Val Val Tyr Ser Val Val His Arg Thr |     |     |
| 370                                                             | 375 | 380 |
| Ser Lys Arg Ser Glu Ala Arg Ser Ala Glu Phe Thr Val Gly Arg Lys |     |     |
| 385                                                             | 390 | 395 |
| Asp Ser Ser Ile Ile Cys Ala Glu Val Arg Cys Leu Gln Pro Ser Glu |     |     |
| 405                                                             | 410 | 415 |
| Val Ser Ser Thr Glu Val Asn Met Arg Ser Arg Thr Leu Gln Glu Pro |     |     |
| 420                                                             | 425 | 430 |
| Leu Ser Asp Cys Glu Glu Val Leu Cys                             |     |     |
| 435                                                             | 440 |     |

<210> 5  
<211> 1543  
<212> DNA  
<213> Mus musculus

<220>  
<221> CDS  
<222> (115)..(921)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <p>&lt;400&gt; 5<br/> caccctttaa gtcagaaggg ccaccactca cctccagctc agaactacca gtctctctct</p> <p>ccccagcttc agctctgcct gctgtttggc ctgctctgcc tcaagaaagg cacc atg<br/> Met<br/> 1</p> <p>ctg ctc tgg atg gtt ctc ctg ctc tgt gat tcc atg gtt gaa gct caa<br/> Leu Leu Trp Met Val Leu Leu Cys Asp Ser Met Val Glu Ala Gln<br/> 5 10 15</p> <p>gag ttg ttc cca aat cct gag ctg aca gaa ttc acc aat tca gag acg<br/> Glu Leu Phe Pro Asn Pro Glu Leu Thr Glu Phe Thr Asn Ser Glu Thr<br/> 20 25 30</p> <p>atg gat gtc atc ctg aag tgt acc ata aag gtg gac ccc aag aat cca<br/> Met Asp Val Ile Leu Lys Cys Thr Ile Lys Val Asp Pro Lys Asn Pro<br/> 35 40 45</p> <p>act tta cag ctc ttt tac act ttc tac aag gac aac cat gtc att caa<br/> Thr Leu Gln Leu Phe Tyr Thr Phe Tyr Lys Asp Asn His Val Ile Gln<br/> 50 55 60 65</p> <p>gac agg agt ccc cac tca gta ttt tct gca gaa gcc aag gag gaa aac<br/> Asp Arg Ser Pro His Ser Val Phe Ser Ala Glu Ala Lys Glu Glu Asn<br/> 70 75 80</p> | <p>60</p> <p>117</p> <p>165</p> <p>213</p> <p>261</p> <p>309</p> <p>357</p> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|

|                                                                                                                                    |      |
|------------------------------------------------------------------------------------------------------------------------------------|------|
| tct ggg ctc tac cag tgt atg gtg gac act gag gat ggc tta att cag<br>Ser Gly Leu Tyr Gln Cys Met Val Asp Thr Glu Asp Gly Leu Ile Gln | 405  |
| 85 90 95                                                                                                                           |      |
| aaa aaa agt ggc tat ctg gat atc cag ttc tgg act cct gta tcc cat<br>Lys Lys Ser Gly Tyr Leu Asp Ile Gln Phe Trp Thr Pro Val Ser His | 453  |
| 100 105 110                                                                                                                        |      |
| cct gtg ctc act ctg caa cat gaa gcc act aac ctt gct gta gga gac<br>Pro Val Leu Thr Leu Gln His Glu Ala Thr Asn Leu Ala Val Gly Asp | 501  |
| 115 120 125                                                                                                                        |      |
| aag gtg gag ttc ctc tgt gag gcc cac cag ggc tcc ctt cca atc ttt<br>Lys Val Glu Phe Leu Cys Glu Ala His Gln Gly Ser Leu Pro Ile Phe | 549  |
| 130 135 140 145                                                                                                                    |      |
| tac tca ttc tac att aat gga gaa atc cta ggg aaa ccc ctg gct ccc<br>Tyr Ser Phe Tyr Ile Asn Gly Glu Ile Leu Gly Lys Pro Leu Ala Pro | 597  |
| 150 155 160                                                                                                                        |      |
| tct ggc aga gct gcc tcc ctc cta gcc tca gta aag gca gag tgg agt<br>Ser Gly Arg Ala Ala Ser Leu Leu Ala Ser Val Lys Ala Glu Trp Ser | 645  |
| 165 170 175                                                                                                                        |      |
| acc aag aac tat tcc tgt gaa gct aaa aac aac atc tcc aga gaa ata<br>Thr Lys Asn Tyr Ser Cys Glu Ala Lys Asn Asn Ile Ser Arg Glu Ile | 693  |
| 180 185 190                                                                                                                        |      |
| agt gag ctc aag aag ttc ccc ttg gtt gtc tca ggt act gcc tgg atc<br>Ser Glu Leu Lys Phe Pro Leu Val Val Ser Gly Thr Ala Trp Ile     | 741  |
| 195 200 205                                                                                                                        |      |
| aag agc aac atg cta act atc tgg cta cct gca agc ctg ctt gga ggg<br>Lys Ser Asn Met Leu Thr Ile Trp Leu Pro Ala Ser Leu Leu Gly Gly | 789  |
| 210 215 220 225                                                                                                                    |      |
| atg gtc att gcg gct gtg gtt cta atg tat ttc ttc aaa ccc tgt aaa<br>Met Val Ile Ala Ala Val Val Leu Met Tyr Phe Phe Lys Pro Cys Lys | 837  |
| 230 235 240                                                                                                                        |      |
| aag cat gcc aga cct gag atg ccc acc cta aaa gag cca gac agt ttt<br>Lys His Ala Arg Pro Glu Met Pro Thr Leu Lys Glu Pro Asp Ser Phe | 885  |
| 245 250 255                                                                                                                        |      |
| cta tat gta tcg gtt gat aat cga aga tat aaa tga gattccacc<br>Leu Tyr Val Ser Val Asp Asn Arg Arg Tyr Lys                           | 931  |
| 260 265                                                                                                                            |      |
| aatgatttgg attcaaaaac caggacctgc caagatcccc ttggtcttta ggatcatgct                                                                  | 991  |
| ctgtgttagt gcaatgtctt cctccagcat atactcaact ccagctccca gcctccaccc                                                                  | 1051 |
| tccagcactc agcagtggct ccaagttctc cctgcaggtc acccagttcc tagcccagca                                                                  | 1111 |
| gtgaggaagc ccatatgctc tattcctggc cagggctcct gaactgtggg ttctttctg                                                                   | 1171 |
| agcgggaaac caaacaatgg tgtggaatg aacaatttcc accttgatac atacatatac                                                                   | 1231 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| acatgcacac acacaaacaa acacacatac acacacactt ccagatgtaa cattgtacac | 1291 |
| agagccacag ttatcttctt taagtacaaa aggaaaaggg tttcacctc cagatagaca  | 1351 |
| gataatagat acacagacac acaagacaga tagatgatag ataacatata gattagatag | 1411 |
| ataatagata gatggtagat aggtagatgg atgatagata gatagataga ttggatagat | 1471 |
| agatagatag atagatagat agatagatag ataataacat gacagataag atgatagaaa | 1531 |
| taagatacga ta                                                     | 1543 |

<210> 6  
<211> 268  
<212> PRT  
<213> Mus musculus

|                                                                 |   |    |    |
|-----------------------------------------------------------------|---|----|----|
| Met Leu Leu Trp Met Val Leu Leu Leu Cys Asp Ser Met Val Glu Ala |   |    |    |
| 1                                                               | 5 | 10 | 15 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Gln Glu Leu Phe Pro Asn Pro Glu Leu Thr Glu Phe Thr Asn Ser Glu |    |    |
| 20                                                              | 25 | 30 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Thr Met Asp Val Ile Leu Lys Cys Thr Ile Lys Val Asp Pro Lys Asn |    |    |
| 35                                                              | 40 | 45 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Pro Thr Leu Gln Leu Phe Tyr Thr Phe Tyr Lys Asp Asn His Val Ile |    |    |
| 50                                                              | 55 | 60 |

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Gln Asp Arg Ser Pro His Ser Val Phe Ser Ala Glu Ala Lys Glu Glu |    |    |    |
| 65                                                              | 70 | 75 | 80 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Asn Ser Gly Leu Tyr Gln Cys Met Val Asp Thr Glu Asp Gly Leu Ile |    |    |
| 85                                                              | 90 | 95 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Gln Lys Lys Ser Gly Tyr Leu Asp Ile Gln Phe Trp Thr Pro Val Ser |     |     |
| 100                                                             | 105 | 110 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| His Pro Val Leu Thr Leu Gln His Glu Ala Thr Asn Leu Ala Val Gly |     |     |
| 115                                                             | 120 | 125 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Asp Lys Val Glu Phe Leu Cys Glu Ala His Gln Gly Ser Leu Pro Ile |     |     |
| 130                                                             | 135 | 140 |

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| Phe Tyr Ser Phe Tyr Ile Asn Gly Glu Ile Leu Gly Lys Pro Leu Ala |     |     |     |
| 145                                                             | 150 | 155 | 160 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Pro Ser Gly Arg Ala Ala Ser Leu Leu Ala Ser Val Lys Ala Glu Trp |     |     |
| 165                                                             | 170 | 175 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Ser Thr Lys Asn Tyr Ser Cys Glu Ala Lys Asn Asn Ile Ser Arg Glu |     |     |
| 180                                                             | 185 | 190 |

Ile Ser Glu Leu Lys Lys Phe Pro Leu Val Val Ser Gly Thr Ala Trp  
 195 200 205

Ile Lys Ser Asn Met Leu Thr Ile Trp Leu Pro Ala Ser Leu Leu Gly  
 210 215 220

Gly Met Val Ile Ala Ala Val Val Leu Met Tyr Phe Phe Lys Pro Cys  
 225 230 235 240

Lys Lys His Ala Arg Pro Glu Met Pro Thr Leu Lys Glu Pro Asp Ser  
 245 250 255

Phe Leu Tyr Val Ser Val Asp Asn Arg Arg Tyr Lys  
 260 265

<210> 7

<211> 34

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 7

ttgaattcac acacccacag gacctgcagc tgaa

34

<210> 8

<211> 34

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 8

ttggatccac tgaaggaccc acagaaagag ttga

34

<210> 9

<211> 21

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 9

accctgagat gtcagacaaa g

21

<210> 10

<211> 20

<212> DNA

<213> Artificial

|                                                   |  |    |
|---------------------------------------------------|--|----|
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 10                                          |  |    |
| gccacacctcac accagtaaaag                          |  | 20 |
| <210> 11                                          |  |    |
| <211> 21                                          |  |    |
| <212> DNA                                         |  |    |
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 11                                          |  |    |
| cctccgatcc tgtattcctt c                           |  | 21 |
| <210> 12                                          |  |    |
| <211> 21                                          |  |    |
| <212> DNA                                         |  |    |
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 12                                          |  |    |
| tggagctgtg ggtggtatct g                           |  | 21 |
| <210> 13                                          |  |    |
| <211> 21                                          |  |    |
| <212> DNA                                         |  |    |
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 13                                          |  |    |
| agaacacctaa agaggagtga a                          |  | 21 |
| <210> 14                                          |  |    |
| <211> 20                                          |  |    |
| <212> DNA                                         |  |    |
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 14                                          |  |    |
| attatgctga gtgatataccc                            |  | 20 |
| <210> 15                                          |  |    |
| <211> 20                                          |  |    |

|             |                                             |          |    |
|-------------|---------------------------------------------|----------|----|
| <212>       | DNA                                         |          |    |
| <213>       | Artificial                                  |          |    |
| <br>        |                                             |          |    |
| <220>       |                                             |          |    |
| <223>       | an artificially synthesized primer sequence |          |    |
| <br>        |                                             |          |    |
| <400>       | 15                                          |          |    |
| attttaggtga | cactatagaa                                  | 20       |    |
| <br>        |                                             |          |    |
| <210>       | 16                                          |          |    |
| <211>       | 28                                          |          |    |
| <212>       | DNA                                         |          |    |
| <213>       | Artificial                                  |          |    |
| <br>        |                                             |          |    |
| <220>       |                                             |          |    |
| <223>       | an artificially synthesized primer sequence |          |    |
| <br>        |                                             |          |    |
| <400>       | 16                                          |          |    |
| gggaaattcat | gttgccatct                                  | ttagttcc | 28 |
| <br>        |                                             |          |    |
| <210>       | 17                                          |          |    |
| <211>       | 26                                          |          |    |
| <212>       | DNA                                         |          |    |
| <213>       | Artificial                                  |          |    |
| <br>        |                                             |          |    |
| <220>       |                                             |          |    |
| <223>       | an artificially synthesized primer sequence |          |    |
| <br>        |                                             |          |    |
| <400>       | 17                                          |          |    |
| aaggatccac  | tcctctctct                                  | ggagac   | 26 |
| <br>        |                                             |          |    |
| <210>       | 18                                          |          |    |
| <211>       | 20                                          |          |    |
| <212>       | DNA                                         |          |    |
| <213>       | Artificial                                  |          |    |
| <br>        |                                             |          |    |
| <220>       |                                             |          |    |
| <223>       | an artificially synthesized primer sequence |          |    |
| <br>        |                                             |          |    |
| <400>       | 18                                          |          |    |
| gcctcagaca  | gtgggttcaaa                                 | 20       |    |
| <br>        |                                             |          |    |
| <210>       | 19                                          |          |    |
| <211>       | 20                                          |          |    |
| <212>       | DNA                                         |          |    |
| <213>       | Artificial                                  |          |    |
| <br>        |                                             |          |    |
| <220>       |                                             |          |    |
| <223>       | an artificially synthesized primer sequence |          |    |
| <br>        |                                             |          |    |
| <400>       | 19                                          |          |    |
| agaaccatca  | cagtctcgca                                  | 20       |    |

<210> 20  
<211> 29  
<212> DNA  
<213> Artificial  
  
<220>  
<223> an artificially synthesized primer sequence  
  
<400> 20  
aagaattcca ccatggctgg acctgccac 29

<210> 21  
<211> 41  
<212> DNA  
<213> Artificial  
  
<220>  
<223> an artificially synthesized primer sequence  
  
<400> 21  
acagggtttg gccaggcttg ggttcctgc actgtccaga g 41

<210> 22  
<211> 30  
<212> DNA  
<213> Artificial  
  
<220>  
<223> an artificially synthesized primer sequence  
  
<400> 22  
gcaggaagcc caagcctggc caaaccctgt 30

<210> 23  
<211> 45  
<212> DNA  
<213> Artificial  
  
<220>  
<223> an artificially synthesized primer sequence  
  
<400> 23  
ctaatacgac tcactatagg gcaaggcgtg gtatcaacgc agagt 45

<210> 24  
<211> 22  
<212> DNA  
<213> Artificial  
  
<220>  
<223> an artificially synthesized primer sequence

|                                                                  |  |    |
|------------------------------------------------------------------|--|----|
| <400> 24                                                         |  |    |
| ctaatacgac tcactatagg gc                                         |  | 22 |
| <br>                                                             |  |    |
| <210> 25                                                         |  |    |
| <211> 23                                                         |  |    |
| <212> DNA                                                        |  |    |
| <213> Artificial                                                 |  |    |
| <br>                                                             |  |    |
| <220>                                                            |  |    |
| <223> an artificially synthesized primer sequence                |  |    |
| <br>                                                             |  |    |
| <400> 25                                                         |  |    |
| aagcagtggt atcaacgcag agt                                        |  | 23 |
| <br>                                                             |  |    |
| <210> 26                                                         |  |    |
| <211> 33                                                         |  |    |
| <212> DNA                                                        |  |    |
| <213> Artificial                                                 |  |    |
| <br>                                                             |  |    |
| <220>                                                            |  |    |
| <223> an artificially synthesized primer sequence                |  |    |
| <br>                                                             |  |    |
| <400> 26                                                         |  |    |
| ctcggatcct tgccatcttt agttccctgt gtt                             |  | 33 |
| <br>                                                             |  |    |
| <210> 27                                                         |  |    |
| <211> 36                                                         |  |    |
| <212> DNA                                                        |  |    |
| <213> Artificial                                                 |  |    |
| <br>                                                             |  |    |
| <220>                                                            |  |    |
| <223> an artificially synthesized primer sequence                |  |    |
| <br>                                                             |  |    |
| <400> 27                                                         |  |    |
| gctgtcgact tagttgctgg cgggagtgaa caagac                          |  | 36 |
| <br>                                                             |  |    |
| <210> 28                                                         |  |    |
| <211> 63                                                         |  |    |
| <212> DNA                                                        |  |    |
| <213> Artificial                                                 |  |    |
| <br>                                                             |  |    |
| <220>                                                            |  |    |
| <223> an artificially synthesized primer sequence                |  |    |
| <br>                                                             |  |    |
| <400> 28                                                         |  |    |
| gcgaattcca ccatggacta caaagacgt gacgacaagt tgccatcttt agttccctgt |  | 60 |
| gtt                                                              |  | 63 |
| <br>                                                             |  |    |
| <210> 29                                                         |  |    |
| <211> 36                                                         |  |    |
| <212> DNA                                                        |  |    |

|                                                   |  |    |
|---------------------------------------------------|--|----|
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 29                                          |  |    |
| cgtgtcgact cactagcaga gaacctccctc acagtc          |  | 36 |
| <210> 30                                          |  |    |
| <211> 25                                          |  |    |
| <212> DNA                                         |  |    |
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 30                                          |  |    |
| aggtcagagt gcaggctcct gtatc                       |  | 25 |
| <210> 31                                          |  |    |
| <211> 25                                          |  |    |
| <212> DNA                                         |  |    |
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 31                                          |  |    |
| tagaactgtc ctttctcccc acggt                       |  | 25 |
| <210> 32                                          |  |    |
| <211> 26                                          |  |    |
| <212> DNA                                         |  |    |
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 32                                          |  |    |
| gaattcacac acccacagga cctgca                      |  | 26 |
| <210> 33                                          |  |    |
| <211> 26                                          |  |    |
| <212> DNA                                         |  |    |
| <213> Artificial                                  |  |    |
| <220>                                             |  |    |
| <223> an artificially synthesized primer sequence |  |    |
| <400> 33                                          |  |    |
| ggatccactg aaggaccac agaaag                       |  | 26 |

<210> 34  
<211> 25  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 34  
ctcagtaaag gcagagtgga gtacc 25

<210> 35  
<211> 25  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 35  
atacattaga accacagccg caatg 25

<210> 36  
<211> 27  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 36  
ccatccta atcgactcact ataggc 27

<210> 37  
<211> 23  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 37  
actcactata gggctcgagc ggc 23

<210> 38  
<211> 26  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 38

|                                                   |    |
|---------------------------------------------------|----|
| ctcaagaagt tccccttgggt tgtctc                     | 26 |
| <br>                                              |    |
| <210> 39                                          |    |
| <211> 26                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <br>                                              |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <br>                                              |    |
| <400> 39                                          |    |
| gccagatagt tagcatgttg ctcttg                      | 26 |
| <br>                                              |    |
| <210> 40                                          |    |
| <211> 26                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <br>                                              |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <br>                                              |    |
| <400> 40                                          |    |
| gaattcatgt cgctcatgggt cgtcag                     | 26 |
| <br>                                              |    |
| <210> 41                                          |    |
| <211> 26                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <br>                                              |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <br>                                              |    |
| <400> 41                                          |    |
| ggatcctcag ggctcagcat ttggaa                      | 26 |
| <br>                                              |    |
| <210> 42                                          |    |
| <211> 40                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <br>                                              |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <br>                                              |    |
| <400> 42                                          |    |
| aggggcccaag cttttctcca gcgatgaagg agaaaagaaga     | 40 |
| <br>                                              |    |
| <210> 43                                          |    |
| <211> 40                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <br>                                              |    |
| <220>                                             |    |

<223> an artificially synthesized primer sequence

<400> 43  
tcttcattct ctttcatcgc tggagaaaag ctggggccct 40

<210> 44  
<211> 25  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 44  
gcaattaacc ctcactaaag ggaac 25

<210> 45  
<211> 20  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 45  
ttcacacaga aggcgtggag 20

<210> 46  
<211> 20  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 46  
cgttcgcgaa cgcaactgca 20

<210> 47  
<211> 26  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 47  
gaattcatgg ctttaccagt gaccgc 26

<210> 48  
<211> 26  
<212> DNA

|                                                   |    |
|---------------------------------------------------|----|
| <213> Artificial                                  |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <400> 48                                          |    |
| ggatccttag acgtatatctcg ccgaaa                    | 26 |
|                                                   |    |
| <210> 49                                          |    |
| <211> 30                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <400> 49                                          |    |
| gaattccacc atggcattac cagtgaccgc                  | 30 |
|                                                   |    |
| <210> 50                                          |    |
| <211> 40                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <400> 50                                          |    |
| accagccagt tgctggcggt gtccagcccc ctcgttgca        | 40 |
|                                                   |    |
| <210> 51                                          |    |
| <211> 40                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <400> 51                                          |    |
| tgcacacgag ggggctggac cccgccagca actggctgg        | 40 |
|                                                   |    |
| <210> 52                                          |    |
| <211> 39                                          |    |
| <212> DNA                                         |    |
| <213> Artificial                                  |    |
| <220>                                             |    |
| <223> an artificially synthesized primer sequence |    |
| <400> 52                                          |    |
| atcagaacat gcaggtgtct tccagcccc tcgttgca          | 39 |

<210> 53  
<211> 40  
<212> DNA  
<213> Artificial

<220>  
<223> an artificially synthesized primer sequence

<400> 53  
tgcacacgag ggggctggac agacacacctgc atgttctgat

40