Quiz-1 (ADA-2023)

February 2, 2023

- 1. Let $f(n) = 25^n n^3$ and $g(n) = 36^n n$. Then which of the following statement(s) is/are true?
- (A) g(n) = O(f(n)).
- (B) f(n) = O(g(n)). (correct)
- (C) Both the above.
- (D) None of the above.
- **2.** Let $f(n) = \log_{20} n$ and $g(n) = \log_5 n$. Then which of the following statement(s) is/are true?
- (A) g(n) = O(f(n)).
- (B) f(n) = O(g(n)).
- (C) Both the above. (correct)
- (D) None of the above.
- **3.** Let $f(n) = 6^{2\log_6 n}$ and $g(n) = n^2$. Then which of the following statement(s) is/are true?
- (A) g(n) = O(f(n)).
- (B) f(n) = O(g(n)).
- (C) Both the above. (correct)
- (D) None of the above.
- **4.** Let $f(n) = 2^n n^9$ and $g(n) = 2^n n^7$. Then which of the following statement(s) is/are true?
- (A) g(n) = O(f(n)). (correct)

- (B) f(n) = O(g(n)).
- (C) Both the above.
- (D) None of the above.
- 5. Suppose that an algorithm \mathcal{A} partitions a problem of size n into 7 subproblems each of size n/3 and then combines the solutions in $6n^2$ -time. When $n \leq 6$, then it takes only 4 primitive operations. Then what is the recurrence relation of algorithm A?
- (A) $T(n) = 6T(n/3) + 6n^2$ for all $n \ge 7$ and T(n) = 2 for all $n \le 6$.
- (B) $T(n) = 6T(n/3) + 6n^2$ for all $n \ge 2$ and T(n) = 4 for all $n \le 6$..
- (C) $T(n) = 7T(n/3) + 6n^2$ for all $n \ge 2$ and T(n) = 2 for all $n \le 6$..
- (D) $T(n) = 7T(n/3) + 6n^2$ for all $n \ge 2$ and T(n) = 4 for all $n \le 6$.. (correct)
- **6.** Suppose that an algorithm \mathcal{A} partitions a problem of size n into 16 subproblems each of size n/4 and then combines the solutions in $64n^2$ -time. Then what is the tightest asymptotic running time of algorithm A in Big-Oh notation?
- (A) $O(n \log n)$. (B) $O(n^2)$. (C) $O(n^2 \log n)$. (D) $O(n^3)$.

Option C

- 7. Suppose that an algorithm \mathcal{A} partitions a problem of size n into 4 subproblems each of size n/4 and then combines the solutions in $2n\log n$ time. Then what is the tightest asymptotic running time of algorithm A in Big-Oh notation?
- (A) $O(n \log n)$. (B) $O(n^2)$. (C) $O(n(\log n)^2)$. (D) $O(n^2 \log n)$.

Option C.

- 8. Suppose that an algorithm \mathcal{A} partitions a problem of size n into 6 subproblems each of size n/2 and then combines the solutions in $6n^3$ time. Then what is the tightest asymptotic running time of algorithm A in Big-Oh notation?
 - (A) $O(n^2 \log n)$. (B) $O(n^2)$. (C) $O(n^3 \log n)$. (D) $O(n^3)$.

Option D.

9. Consider the following recurrence.

$$T(n) = T(n/4) + T(2n/5) + 1$$
 for all $n \geq 6$

$$T(n) \le 10$$
 for all $n \le 5$

Then, what is T(n)? Give the tightest possible function f(n) using Big-Oh notation.

- (A) O(n).
- (B) $O(\log n)$.
- (C) $O(\sqrt{n})$.
- (D) None of the above.

Option A.

10. What is the solution to the recurrence relation $T(n) = T(n-1) + n^3$ and T(1) = 1 in Big-Oh notation? Give the tightest possible running time.

- (A) $O(n^4 \log n)$. (B) $O(n^4)$. (C) $O(n^3 \log n)$. (D) $O(n^3)$.

Option B