知识图谱中实体对齐的研究现状

实体对齐的目标

将不同来源的图谱中的同名实体识别出来,并建立它们之间的关系

实体对齐的挑战		ActiveEA	一种结构感知的不确 偏差的影响	定抽样策略,设计了一种Bachelor re	ecognizer,以减轻采样		
		RNM	一个半监督框架,实体对齐和关系对齐可以相互学习,利用关系的语义信息和映 射属性来更好地对齐实体				
	数据标注	基于语义信息把EA看成分配问题,使用置换矩阵表示原始矩阵和目标矩阵之间的 SEU 实体对应关系无监督的方法					
		PRASE	无监督的方法,语义信息结合概率推理,选择置信度高的实体映射作为对齐种子 S,随后基于这些种子训练语义嵌入模块 ————————————————————————————————————				
		SelfKG	自监督学习,提出相对	相似度度量,尝试将未对齐的实体对	推远		
				利用结构信息 EASY	提出了NEAP方案,根	据实体名称获得初始EA,通过图结构信息来增强EA结果	
	有效信息:在知识	图谱中哪些是可以原	用来实体对齐的有效信息	利用位置信息 RePS	提出了一种基于多因 aware EA	素表示学习的EA方法,Relation、Position and Structure	
				利用跨模态信息 EVA	利用实体的视觉相似	觉相似性来创建初始种子字典,无监督	
		过于复杂的图编码器与效率低下的负采样策略是主要原因,提出了Dual attention Dual-AMN matching networking					
		PSR	针对低效的图编码器、负 高性能、高扩展性、高鲁	采样困境、半监督学习中的灾难性遗 棒性的模型PSR	忘三个问题提出了	简化的图编码器的关系图采样 ————————————————————————————————————	
	计算效率	增量半监督学习 设计了面向种子的图划分策略,将大规模的知识图谱划分为更小的子图对。在每 个子图对中,使用了现有方法学习统一的实体表示,并构思一种新颖的互惠对齐 On entity alignment at scale 推理策略来模拟双向对齐交互。					
		LargeEA	mini-batch生成策略	,将大型KG划分为更小的mini-batch	<u>1</u>		
		ClusterEA	新的采样策略,利原 息。	用两个采样器(基于学习的)来获得图	图结构信息与图间对齐信 ————————————————————————————————————		
		SparseFusion 通过局部和全局相似度归一化,融合多个相似度矩阵的方法来构建相似度矩阵				<u> </u>	
	相似度计算	定义了图交互散度GID					
		UPLR	建立对齐实体的交互信息来构建对齐实体距离矩阵				
		创建了一种无监督算法来构建基于图交互散度的伪标签集					
			提出了非采样校准策略	各,减少噪音节点的影响 ————————————————————————————————————			
		DINGAL	在动态变化的图拓扑约 ———	吉构中有效更新实体嵌入表示 —————————————————————			
	动态变化	将关系和时间信息合并到模型的GNN结构中,并使用了一种时间感知注意机制。 该机制将不同的权重分配给具有正交变化矩阵的不同节点,该矩阵是根据邻域中 TEA-GNN 相关关系和时间戳的嵌入计算得出的					
		TREA	过将各自的权重分配给令 中,嵌入相应的时间戳和	以体的语义并捕获结构信息。使用时间 时域内的不同节点来将链接的时间和 日关系。使用基于边际的完整多类对数 比器对未观察到的时间戳进行建模	关系信息合并到GNN		
			2 7 100 100 100 1 3 1 3 1 1 1 1 1 1 1 1 1 1				