

การแข่งขันเคมีโอถิมปิก สอวน. ครั้งที่ 2 ณ มหาวิทยาลัยขอนแก่น วันที่ 2 พฤษภาคม 2549 เวลา 08.30 – 13.30 น.

ข้อสอบภาคทฤษฎี

ชื่อ-สกล	รหัสประจำตัว
q	
ď	
ศูนย์ สอวน	

คำชื่นจง

- ข้อสอบมีจำนวน 17 ข้อ
 มีกระคาษคำถาม 16 หน้า และกระคาษคำตอบ 28 หน้า คะแนนรวมทั้งหมด 120 คะแนน
- 2. ให้ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำ"
- 3. มีเวลาในการทำข้อสอบ 5 ชั่วโมง ทั้งนี้รวมถึงการกรอกคำตอบลงในกระดาษคำตอบ เมื่อกรรมการคุมสอบประกาศว่า "หมดเวลา" นักเรียนต้อง หยุดทำข้อสอบ และออกจาก ห้องสอบทันที
- 4. นักเรียนต้องเขียนตอบในกระคาษคำตอบด้วย**ปากกา**เท่านั้น โดยใส่คำตอบให้ตรงกับข้อ และอยู่ในกรอบที่กำหนดให้ ถ้าเขียนตอบไม่ชัดเจน จะไม่ได้รับการตรวจให้คะแนน ถ้าต้องการทดให้ทดในกระคาษคำถาม
- 5. ถ้าเขียนผิดให้ขีดฆ่าทิ้ง ห้ามลบด้วยน้ำยาลบคำผิด (liquid paper)
- 6. โจทย์คำนวณต้องแสดงวิธีทำ และในการคำนวณให้คำนึงถึงเลขนัยสำคัญหรือตามที่ โจทย์ระบุ
- 7. ใช้อุปกรณ์เครื่องเขียน เครื่องคิดเลข และข้อมูลที่จัดเตรียมไว้ให้เท่านั้น และห้ามยืมกันใช้
- 8. หากพบการทุจริต นักเรียนจะหมดสิทธิ์ในการแข่งขัน และต้องออกจากห้องสอบทันที

I H 1.0	П				Ģ	าารา	งธาตุ	ຼີງ		นมาวิทยาลังขอบแก้น		Ш	IV	V	VI	VII	VIII 2 He 4.0
Li 6.9	Be 9.0	สำหรับการแข่งขันเคมีโอ ลิมปิก สอวน. คร ั้งที่ 2								B 10.8	<u>C</u> 12.0	7 <u>N</u> 14.0	O 16.0	9 <u>F</u> 19.0	Ne 20.2		
Na 23.0	12 Mg 24.3	$ \begin{array}{c cccc} & 13 & 14 \\ & \underline{Al} & \underline{Si} \\ & 27.0 & 28.1 \end{array} $					15 P 31.0	16 <u>S</u> 32.0	17 <u>Cl</u> 35.5	18 Ar 39.9							
<u>K</u> 39.0	Ca 40.0	Sc 45.0	Ti 47.9	<u>V</u> 50.9	<u>Cr</u> 52.0	Mn 54.9	Fe 55.8	27 <u>Co</u> 58.9	Ni 58.7	Cu 63.5	30 Zn 65.4	Ga 69.7	32 Ge 72.6	33 <u>As</u> 74.9	34 <u>Se</u> 79.0	35 Br 79.9	83.8 S
37 Rb 85.5	38 <u>Sr</u> 87.6	Y 88.9	2r 91.2	Nb 92.9	42 Mo 95.9	Tc 98.9	Ru 101.1	45 Rh 102.9	Pd 106.4	47 Ag 107.9	48 <u>Cd</u> 112.4	49 <u>In</u> 114.8	50 <u>Sn</u> 118.7	51 <u>Sb</u> 121.8	Te 127.6	53 <u>I</u> 126.9	54 <u>Xe</u> 131.3
<u>Cs</u> 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	74 <u>W</u> 183.9	75 <u>Re</u> 186.2	76 Os 190.2	77 <u>Ir</u> 192.2	Pt 195.1	79 <u>Au</u> 197.0	Hg 200.6	T1 204.4	Pb 207.0	Bi 209.0	Po (209)	85 <u>At</u> (210)	86 <u>Rn</u> (222)
Fr (223)	88 <u>Ra</u> (226)	89 Ac (227)	104 <u>Rf</u> (257)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 <u>Hs</u> (269)	109 Mt (268)	110 <u>Ds</u> (271)	111 Rg (272)							

ตัวเลขในวงเล็บคือมวลอะตอมของไอโซโทปที่เสถียรมากที่สุด

โจทย์ข้อที่ 1 (6.0 คะแนน)

กำหนดให้ที่ 298 K 1 atm การเผาใหม้ของ C(s) และ S(s) คายความร้อนดังนี้

$$C(s) + O_2(g) \longrightarrow CO_2(g)$$

$$\Delta H_1 = -393.5 \text{ kJ}$$

$$S(s) + O_2(g) \longrightarrow SO_2(g)$$

$$\Delta H_2 = -296.8 \text{ kJ}$$

กำหนดเอนโทรปีสัมบูรณ์ที่สภาวะมาตรฐาน (S°) ที่ 298 K 1 atm ดังนี้

สาร	S° (J/K·mol)
C(s)	5.7
S(s)	31.9
CS ₂ (g)	237.8

กำหนดพลังงานพันธะต่าง ๆ ที่ 298 K 1 atm ดังนี้

$$C = S 477$$

$$= S$$
 477.0 kJ/mol

$$O = O$$

494.0 kJ/mol

$$C = O$$

724.0 kJ/mol

และพลังงานพันธะเฉลี่ยของ S กับ O ใน $SO_2 = 516.0 \text{ kJ/mol}$

- 1.1 (2.0 คะแนน) จงคำนวณความร้อนของปฏิกิริยาการเผาใหม้ของ $\mathrm{CS}_2(\mathbf{g})$ 1 mol ที่ 298 K 1 atm เมื่อผลิตภัณฑ์จากการเผาใหม้คือ $\mathrm{CO}_2(\mathbf{g})$ และ $\mathrm{SO}_2(\mathbf{g})$
- 1.2~~(2.0~กะแนน) จงคำนวณความร้อนของการเกิดสารประกอบต่อโมลของ $\mathrm{CS}_2(\mathbf{g})~ \vec{\mathbf{n}}$ 298 K 1 atm ตามสมการ

$$C(s) + 2S(s) \longrightarrow CS_2(g)$$

1.3 (2.0 คะแนน) จากความสัมพันธ์ของสมบัติทางเทอร์โมไดนามิกส์ระหว่างพลังงาน เสรี (ΔG) เอนโทรปี (ΔS) และความร้อน (ΔH) ของปฏิกิริยา จงคำนวณพลังงานเสรี มาตรฐานของการเกิดสารประกอบต่อโมลของ $\mathrm{CS}_2(\mathbf{g})$ ที่ 298 K 1 atm

โจทย์ข้อที่ 2 (6.0 คะแนน)

กำหนดให้ $R = 0.082 \text{ L} \cdot \text{atm/K} \cdot \text{mol} = 8.314 \text{ J/K} \cdot \text{mol}$

- 2.1 (2.0 กะแนน) ลูกโป่งใบหนึ่งบรรจุแก๊ส A จนมีปริมาตรเป็น $\frac{4}{5}$ ของปริมาตรสูงสุดที่ 300 K วัดความดันได้ 760 mmHg ถ้าปล่อยให้ลูกโป่งใบนี้ลอยขึ้นไปตามแนวคิ่งใน บริเวณที่ควบคุมอุณหภูมิให้คงที่ได้ จะลอยขึ้นไปสูงเท่าใดจึงจะแตกพอดี สมมุติว่า ความดันลดลง 20.0 mmHg ทุก ๆ ระยะ 80.0 m ที่สูงขึ้น
- 2.2 (2.0 คะแนน) ถ้านำแก๊ส A นี้มาใหม่อีกจำนวนหนึ่ง บรรจุในกระบอกสูบที่ปรับขนาดได้ ที่ 300 K 760 mmHg ปรากฏว่าวัดค่าความหนาแน่นได้ 2.86 g/L เมื่อปรับปริมาตรของ กระบอกสูบให้ลดลงและเพิ่มอุณหภูมิเป็น 350 K ปรากฏว่าวัดความดันได้ 400 mmHg จะได้ค่าความหนาแน่นใหม่เป็นกี่ g/L
- 2.3 (2.0 คะแนน) ถ้านำแก๊ส A นี้ไปหาอัตราการแพร่ในมาตรวัดเทียบกับแก๊ส H₂ ที่อุณหภูมิ และความดันเดียวกัน แก๊ส H₂ จะแพร่ได้เร็วกว่าแก๊ส A กี่เท่า

โจทย์ข้อที่ 3 (5.0 คะแนน)

พิจารณาใอออนของธาตุแทรนซิชันแถวที่ 1 ใอออนใคที่มีสมบัติพาราแมกเนติก (paramagnetic) สูงสุด และใอออนใคที่มีสมบัติพาราแมกเนติกต่ำสุด จงอธิบาย พร้อมแสดงการจัดเรียงอิเล็กตรอน (electron configuration)

โจทย์ข้อที่ 4 (2.0 คะแนน)

โดยปกติความคันออสโมติกของเลือดที่ 37 °C เท่ากับ 7.65 atm ให้หาความเข้มข้นของกลูโคสเป็น g/L ที่ฉีดเข้าภายในเส้นโลหิตดำเพื่อทำให้มีความดันออสโมติกเท่ากับในเลือด

โจทย์ข้อที่ 5 (3.0 คะแนน)

กำหนดกราฟที่แสดงความสามารถในการละลายของสารต่าง ๆ ให้ดังในรูป

- 5.1 (0.5 คะแนน) จงหามวลของ ${\rm CuSO_4\cdot 5H_2O}$ ที่ละลายในน้ำ $100~{\rm g}$ ที่ $100~{\rm ^{\circ}C}$
- 5.2 (0.5 คะแนน) ถ้าลดอุณหภูมิลงจาก 100 °C ไปเป็น 50 °C จะเกิดผลึกของแข็งของ CuSO₄·5H₂O ปริมาณกี่กรัม
- 5.3 (1.0 คะแนน) ให้หาความสามารถในการละลายที่ $60~^{\circ}\text{C}$ ของ KNO $_3$ และ NaCl
- 5.4 (1.0 กะแนน) ถ้าทำน้ำ $100 \, \mathrm{g}$ ให้อิ่มตัวด้วย KNO $_3$ และ NaCl ที่ $60 \, ^{\circ}\mathrm{C}$ แล้วทำให้เย็นลง จาก $60 \, ^{\circ}\mathrm{C}$ ไปเป็น $20 \, ^{\circ}\mathrm{C}$ จะเกิดผลึกของแข็งปริมาณอย่างละกี่กรัม

โจทย์ข้อที่ 6 (7.0 คะแนน)

X Y และ Z เป็นธาตุที่มีเลขอะตอมเพิ่มขึ้นทีละ 1 ตามลำดับ โดยที่เลขอะตอมของธาตุทั้งสามมีค่า น้อยกว่า 30 ธาตุทั้งสามสามารถเกิดเป็นกรคออกโซ (oxoacid) ได้ โดยกรคออกโซของ X ถือเป็น กรดไดเบสิก (dibasic) ในน้ำ

- 6.1 (1.5 คะแนน) ชาตุ X Y และ Z คือชาตุใด
- 6.2 (0.5 คะแนน) เรียงลำดับชาตุทั้งสามตามค่าพลังงานใอออในเซชันลำดับที่ 1 จากน้อยใปมาก
- 6.3 (1.0 กะแนน) โครงสร้างของสารไม่เสถียร YZ_4 คือแบบใด วาครูปแสดงสูตรแบบจุด
- 6.4 (1.0 คะแนน) จงวาครูปโครงสร้างของสารประกอบระหว่าง X และ Z ทั้งชนิคมีขั้วและ ชนิคไม่มีขั้ว
- 6.5 (1.0 คะแนน) ระบุสูตรและชื่อของกรคออกโซของ Z ที่เป็นไปได้ทั้งหมด เป็นภาษาอังกฤษ
- 6.6 (1.0 คะแนน) กรคออกโซที่มีจำนวนออกซิเจนเท่ากันของธาตุใคมีความเป็นกรคน้อยที่สุด เพราะเหตุใด

โจทย์ข้อที่ 7 (3.0 คะแนน)

สารประกอบเชิงซ้อนของเหล็กหลายชนิดใช้เป็นสีย้อมและหมึกพิมพ์ เช่น Turnbull's blue มีสี น้ำเงิน Berlin green สีเขียว Prussian blue สีน้ำเงินเข้ม เป็นต้น ถ้าสูตรอย่างง่ายของ Prussian blue ที่ละลายน้ำได้ คือ ${\rm KFe_2C_6N_6}$ และโลหะอะตอมกลางในสารประกอบเชิงซ้อนเป็นไดอะแมกเนติก (diamagnetic)

- 7.1 (1.0 คะแนน) จงเขียนสูตรของสารประกอบเชิงซ้อนที่เกิดขึ้น
- 7.2 (1.0 คะแนน) จงเขียนชื่อของสารประกอบเชิงซ้อนที่เกิดขึ้นเป็นภาษาอังกฤษ
- 7.3 (1.0 คะแนน) เลขออกซิเดชันและเลขโคออร์ดิเนชันของโลหะอะตอมกลางมีค่าเท่าใด

โจทย์ข้อที่ 8 (2.5 คะแนน)

ผลึกของเกลือไอออนิกมีการจัดเรียงตัวของไอออนบวกและไอออนลบในโครงสร้างผลึกที่แน่นอน อาทิ โครงสร้างแบบร็อคซอลต์ (rock salt) แบบฟลูออไรต์ (fluorite) แบบแอนติฟลูออไรต์ (antifluorite) หรือแบบซิงค์เบลนด์ (zinc blende) ดังแสดงในรูป

- 8.1 (0.5 คะแนน) NaCl มีการจัดเรียงตัวด้วยโครงสร้างแบบใด
- 8.2 (1.0 คะแนน) เลขโคออร์ดิเนชันของใอออนบวกและใอออนลบของ NaCl มีค่าเท่าใด
- 8.3 (1.0 คะแนน) จงระบุจำนวนหน่วยสูตรในเซลล์หน่วย (unit cell) ของ NaCl

โจทย์ข้อที่ 9 (3.5 คะแนน)

เอทิลีน ใดแอมีนเททระแอซีติกแอซิด (ethylenediaminetetraacetic acid, EDTA หรือ H_4Y) เป็น ลิแกนด์ชนิด โพลีเคนเทตที่จับกับ โลหะ ได้ดี เมื่อนำมาเติมในเลือดสามารถป้องกันการแข็งตัวของ เลือดได้ นอกจากนั้น เกลือของ EDTA ยังใช้เป็นสารเติมแต่งในผลิตภัณฑ์ที่ใช้ในชีวิตประจำวัน หลายชนิด โดยชนิดของเกลือที่ใช้ขึ้นกับการใช้งานของผลิตภัณฑ์

- 9.1 (1.0 กะแนน) การเติมเกลือของ EDTA ลงในน้ำสลัด สามารถช่วยป้องกันการออกซิไดส์ หรือการบูดเน่าของน้ำสลัดได้ เพราะ EDTA จะจับโลหะที่อาจทำให้เกิดปฏิกิริยาดังกล่าวไว้ ในการผลิตอาหาร เกลือ $CaNa_2Y$ เหมาะที่จะเป็นสารกันเสียมากกว่า Na_4Y เพราะเหตุใด
- $9.2 \quad (1.5 \; ext{
 m Ar}$ และ ${
 m CaNa_2Y} \; ext{
 m Ar}$ ควรเลือกใช้สารใดเติมลงในแชมพู เพราะเหตุใด
- 9.3 (1.0 คะแนน) ตำแหน่งที่เกิดอันตรกิริยา (interaction) ของ Y⁺ กับโลหะมีกี่ตำแหน่งและอยู่ที่ ตำแหน่งใดบ้าง

โจทย์ข้อที่ 10 (15 คะแนน)

กระบวนการฮาเบอร์เป็นกระบวนการที่ใช้ผลิตแอมโมเนียจากในโตรเจนและใฮโครเจน ถ้าใส่ ในโตรเจนจำนวน 0.030 mol และใฮโครเจนจำนวน 0.080 mol ลงในภาชนะขนาค 2 L ที่ อุณหภูมิห้อง เกิดเป็นแอมโมเนียที่มีความเข้มข้นเท่ากับความเข้มข้นของแอมโมเนียในสารละลายที่ มี pH 10.84 ค่าเอนทัลปีของปฏิกิริยานี้มีค่าเท่ากับ -47 kJ/mol

- 10.1 (0.5 คะแนน) จงเขียนสมการการเตรียมแอมโมเนียโดยดุลให้เป็นเลขจำนวนเต็มอย่างต่ำ
- 10.2 (4.0 คะแนน) ความเข้มข้นที่สมคุลของแก๊สทุกชนิคมีค่าเท่ากับเท่าใค กำหนคให้ $\mathbf{K}_{\!\scriptscriptstyle b}$ ของ แอมโมเนียเท่ากับ 1.84×10^{-5} (ตอบทศนิยม 3 ตำแหน่ง)
- 10.3 (1.0 คะแนน) จงคำนวณค่าคงที่สมคุล K ูของปฏิกิริยานี้
- 10.4 (1.5 คะแนน) หลังจากสมคุล ถ้าอัคภาชนะให้เล็กลง ความเข้มข้นของในโตรเจนที่สมคุลใหม่ จะเปลี่ยนไปอย่างไร เพราะเหตุใด
- 10.5 (4.0 คะแนน) หลังจากสมคุล ถ้าเปลี่ยนไปทำปฏิกิริยาที่ 50 $^{\circ}$ C ค่า K_{\circ} จะเปลี่ยนไปอย่างไร เพราะเหตุใด และค่า K_{\circ} จะเปลี่ยนไปอย่างไร
- 10.6~(3.5~กะแนน) จงคำนวณค่า ΔG และ ΔS ของปฏิกิริยานี้
- 10.7 (2.0 คะแนน) ถ้าในการทำปฏิกิริยาครั้งหนึ่ง พบว่า อัตราเร็วของปฏิกิริยามีค่าเท่ากับ $2.0 \times 10^{-4}\,\mathrm{mol/L\cdot s}$ อัตราการลดลงของสารตั้งต้นทั้ง 2 ชนิดมีค่าเท่ากับเท่าใด
- 10.8 (1.5 คะแนน) ถ้าความเข้มข้นของไฮโดรเจนลดลงครึ่งหนึ่งโดยที่ปัจจัยอื่น ๆ คงที่ อัตราเร็วของปฏิกิริยาจะ<u>เพิ่มขึ้นหรือลดลง</u>กี่เท่า

อัตราเร็วของปฏิกิริยาเป็นอันดับ 1 เทียบกับในโตรเจน อัตราเร็วของปฏิกิริยาเป็นอันดับ 3 เทียบกับใฮโดรเจน

โจทย์ข้อที่ 11 (13.5 คะแนน)

แอสไพรินใช้เป็นยาแก้ปวดและลดไข้ที่ได้ผลดีมาก สามารถใช้ป้องกันโรคหัวใจและการเกาะกลุ่ม ของเกล็ดเลือด นอกจากนี้ยังสามารถใช้แอสไพรินรักษาโรคมะเร็งได้อีกด้วย แอสไพรินเป็นกรดอินทรีย์ มีชื่อทางเคมีว่า กรดแอซีทิลซาลิซิลิก (acetylsalicylic acid, $C_9H_8O_4$) ซึ่ง มี $K_a=3.27\times 10^{-4}\,$ มีสูตรโครงสร้างดังนี้

$$\begin{array}{c|c}
H & D & O \\
H & C & O & H \\
H & O & C & C & H
\end{array}$$

$$\begin{array}{c|c}
H & B & H \\
C & C & C & H
\end{array}$$

$$\begin{array}{c|c}
H & C & C & C & H
\end{array}$$

$$\begin{array}{c|c}
H & C & C & C & H
\end{array}$$

$$\begin{array}{c|c}
H & C & C & C & H
\end{array}$$

- 11.1 (0.75 คะแนน) มีพันธะ π และพันธะ σ ชนิดละกี่พันธะในโมเลกุลของแอสไพริน
- 11.2 (0.75 คะแนน) คาร์บอนอะตอม 1, 2 และ 3 ใช้ไฮบริคออร์บิทัล (hybrid orbital) ชนิคใค
- 11.3 (1.0 คะแนน) มุมพันธะ A, B, C และ D มีค่าประมาณเท่าไร
- 11.4 (3.5 คะแนน) ถ้ามียาแก้ปวด 1 เม็ด ซึ่งประกอบด้วยแอสไพรินเม็ดละ 325 mg ผสมอยู่กับ "ตัวยึด (binder)" ซึ่งเป็นสารที่เป็นกลางเพื่อทำให้เป็นเม็ดยาได้ เมื่อนำมาละลายในน้ำ หนึ่งแก้วซึ่งมีปริมาตร 225 mL สารละลายจะมี pH เท่าไร
- 11.5 (1.5 คะแนน) แอสไพรินที่หมดอายุจะมีกลิ่นเหม็นเปรี้ยว จงเขียนสมการเคมีและระบุชนิด ของปฏิกิริยาที่เป็นสาเหตุให้แอสไพรินหมดอายุ

โจทย์ข้อที่ 11 (ต่อ)

แอสไพรินทำปฏิกิริยากับสารละลายเบส ดังสมการ

ดังนั้นจึงสามารถหาปริมาณของแอสไพรินได้โดยการไทเทรตโดยตรงด้วยสารละลายมาตรฐาน NaOH โดยใช้อินดิเคเตอร์กรด-เบสบอกจุดยุติของการไทเทรต

กำหนดช่วง pH ของอินดิเคเตอร์ต่าง ๆ ดังนี้

อินดิเคเตอร์	ช่วง pH ที่เปลี่ยนสี	สีที่เปลี่ยน
เมทิลออเรนจ์	3.1 – 4.4	แคง – เหลือง
เมทิลเรค	4.4 – 6.2	แคง – เหลือง
บรอมไทมอลบลู	6.0 - 7.6	เหลือง – น้ำเงิน
ฟีนอลฟ์ทาลีน	8.3 – 10.0	ไม่มีสี – แคง

- 11.6 (3.5 คะแนน) ในการไทเทรตสารละลายแอสไพรินเข้มข้น 0.10 mol/L ปริมาตร 25.00 mL ด้วยสารละลาย NaOH 0.10 mol/L
 - ก. ที่จุดสมมูล สารละลายมี pH เท่าไร
 - ข. อินดิเคเตอร์ชนิดใคเป็นอินดิเคเตอร์ที่เหมาะสมสำหรับการไทเทรตนี้
 - ค. ที่จุดยุติ สิของสารละลายเปลี่ยนแปลงอย่างไร
- 11.7 (2.5 คะแนน) เมื่อนำยาแอสไพรินตัวอย่าง 1 เม็คหนัก 0.450 g มาละลายในน้ำ แล้วไทเทรต ด้วยสารละลายมาตรฐาน NaOH เข้มข้น 0.10 mol/L พบว่า ต้องใช้สารละลาย NaOH ปริมาตร 23.50 mL จึงจะถึงจุดยุติ ยาแอสไพรินตัวอย่างมีความบริสุทธิ์ร้อยละเท่าไรโดยน้ำหนัก

โจทย์ข้อที่ 12 (6.0 คะแนน)

ความเข้มข้น

พิจารณาผลการทดลองที่อุณหภูมิเดียวกันต่อไปนี้

แก๊ส A

เวลา

การทดลองที่ 2

	การทด	ลองที่ 1	การทคลองที่ 2		
	ความเข้มข้น	ความเข้มข้น	ความเข้มข้น	ความเข้มข้น	
	ที่จุดเริ่มต้น	ที่สภาวะสมคุล	ที่จุดเริ่มต้น	ที่สภาวะสมคุล	
	(mol/L)	(mol/L)	(mol/L)	(mol/L)	
แก๊ส A	X	0.002	0.100	0.050	
แก๊ส B	0	0.100	Y	0.500	

- 12.1 (1.0 คะแนน) จงเขียนสมการแสดงสมคุลระหว่างแก๊ส A และ B
- 12.2 (3.0 คะแนน) จงหาค่าของ X และ Y (ตอบในรูปทศนิยม 3 ตำแหน่ง)
- 12.3 (1.0 คะแนน) ที่สภาวะหนึ่งมีความเข้มข้นของ A และ B เป็น 2.50×10^{-2} และ 1.50×10^{-1} mol/L ตามลำดับ ระบบจะปรับตัวในทิศทางใดเพื่อเข้าสู่สมคุลใหม่ เพราะเหตุใด
- 12.4 (1.0 คะแนน) จากการทดลองในภาชนะที่มีปริมาตรคงที่พบว่า ที่อุณหภูมิสูง สีของแก๊ส ในภาชนะจะเป็นสีแดงเข้ม แสดงว่า ปฏิกิริยานี้เป็นปฏิกิริยาดูดหรือคายความร้อน จงอธิบาย กำหนดให้แก๊ส A ไม่มีสี และแก๊ส B มีสีแดง

โจทย์ข้อที่ 13 (8.0 คะแนน)

ปริมาณไอออนบางชนิดในลำน้ำแห่งหนึ่งในจังหวัดขอนแก่นแสดงไว้ดังนี้

ใอออน	ปริมาณ (mol/L)
$Ag^{^{+}}$	1.0×10^{-5}
Ca ²⁺	2.0×10^{-4}
$\mathrm{Mg}^{2^{+}}$	5.0×10^{-3}
CO ₃ ²⁻	1.0×10^{-5}

13.1 (4.0 คะแนน) หากนำน้ำจากลำน้ำแห่งนี้ 1 ลิตร มาต้มจนเคือด นักเรียนจะพบตะกรันชนิดใด เกิดขึ้นเป็นตัวแรกในภาชนะ และน้ำจะระเหยไปแล้วอย่างน้อยกี่เปอร์เซ็นต์จึงจะพบตะกรัน ชนิดนั้น กำหนดว่า ความร้อนไม่มีผลต่อการสลายตัวของไอออน

กำหนดค่าคงที่สมคุลของตะกรันสามชนิดที่อุณหภูมิน้ำเคือด

$$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$$
 $K = 8.0 \times 10^{-9}$

$$MgCO_3(s) \rightleftharpoons Mg^{2+}(aq) + CO_3^{2-}(aq)$$
 $K = 4.0 \times 10^{-6}$

$$Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq)$$
 $K = 8.1 \times 10^{-12}$

13.2 (1.5 คะแนน) วัสดุที่ใช้ในการกรองน้ำเป็นโคพอลิเมอร์ที่เกิดจากการทำปฏิกิริยา พอลิเมอไรเซชันของ styrene, divinylbenzene และ methyl methacrylate ในอัตราส่วน 80, 10 และ 10 โดยมวล ตามลำคับ นำโคพอลิเมอร์ที่ได้ไปทำปฏิกิริยาต่อไปกับ NaOH เพื่อให้ได้ โคพอลิเมอร์ชนิดใหม่ (polyA) จงแสดงโครงสร้างของ polyA

Styrene Divinylbenzene Methyl methacrylate

$$CH_2 = CH$$
 $CH_2 = CH$
 $CH_2 = CH$
 $CH_2 = CH$
 CH_3
 $COOCH_3$

ৎ ৫৮ ৰ		
ไลทยตัลท	12	(അ
โจทย์ข้อที่	13	(YIU)

	• •						
13.3	(1.0 คะแนน)	จงระบุสมบัติของ poly(styrene-co-divinylbenzene-co-methyl methacrylate)					
	ก. พอลิเมอร์	มีโครงสร้างแบบใค					
		🗆 เส้น 🔻 กิ่ง 🔻 ร่างแห					
	ข. จัดเป็นพล	ลาสติกแบบใด					
		🔲 เทอร์มอพลาสติกรีไซเคิลได้ 🔻 🗖 เทอร์มอเซตรีไซเคิลได้					
		🔲 เทอร์มอพลาสติก รีไซเคิลไม่ได้ 🛮 เทอร์มอเซต รีไซเคิลไม่ได้					
13.4	(0.5 คะแนน)	วัสคุที่ทำจาก polyA บริสุทธิ์จะมีสมบัติในข้อใค					
		🔲 โปร่งแสง เปราะเหมือนแก้วน้ำที่ทำจาก silica					
		🔲 โปร่งแสง ทนทานเหมือนแผ่นหลังคาใสที่ทำจาก polycarbonate					
		🔲 ที่บแสง เหนียวเหมือนพื้นรองเท้าที่ทำจาก polyurethane					
		🔲 ทึบแสง แข็งเหมือนจานที่ทำจาก melamine					
13.5	(1.0 คะแนน)	นำน้ำจากลำน้ำที่มีใอออนดังตารางมาผ่าน polyA ใอออนตัวใดที่ถูกจับไว้					
		วใคที่ถูกปล่อยออกมา					

โจทย์ข้อที่ 14 (12.5 คะแนน)

นำผลึกของแข็งสีขาวชนิดหนึ่งมาทดลอง และมีผลการทดลองดังต่อไปนี้

- ก. ให้เปลวไฟสีเหลืองสดเมื่อเผาด้วยตะเกียงบุนเซน
- ง. เมื่อละลายของแข็งในน้ำ ได้สารละลายเป็นกลาง และเมื่อนำมาเติมสารละลายกรดซัลฟิวรัส (สารละลายของ SO_2 ในน้ำ) จะได้สารละลายสีน้ำตาลเข้ม แต่สีจะจางหายไปเมื่อเติม สารละลายกรดซัลฟิวรัสมากเกินพอ
- ค. นำสารละลายที่ได้ในข้อ ข. มาเติมสารละลาย ${
 m AgNO_3}$ ทำให้เป็นกรดด้วย ${
 m HNO_3}$ เกิดตะกอน สีเหลืองที่ไม่ละลายในสารละลายแอมโมเนีย แต่ละลายได้ดีในสารละลายที่มี ${
 m CN^-}$ หรือ ${
 m S_2O_3}^{2-}$
- นำสารละลายของสารนี้ มาเติม KI และกรคซัลฟิวริกเจือจาง จะได้สารละลายสีน้ำตาลเข้มที่ สีจะจางหายไปเมื่อเติมกรคซัลฟิวรัสหรือสารละลาย Na₂S₂O₃
- จ. นำสารนี้ $0.1000\,\mathrm{g}$ มาละลายน้ำ เติม KI $0.5\,\mathrm{g}$ และกรคซัลฟิวริกเจือจาง 2-3 mL ได้ สารละลายสีน้ำตาล เมื่อนำไปไทเทรตกับสารละลาย $\mathrm{Na_2S_2O_3}$ เข้มข้น $0.1000\,\mathrm{mol/L}$ จน เกิดปฏิกิริยาสมบูรณ์ จะใช้ $\mathrm{Na_2S_2O_3}$ ไป $37.40\,\mathrm{mL}$
- 14.1 (1.0 คะแนน) ของแข็งตัวอย่างนี้ประกอบด้วยธาตุใดบ้าง
- 14.2 (1.5 คะแนน) จากผลการทดลองข้อ ข, ค และ ง จงเขียนสูตรโมเลกุลของสารประกอบที่ เป็นไปได้ทั้งหมด พร้อมทั้งคำนวณมวลโมเลกุลของสารเหล่านั้นด้วย
- 14.3 (7.0 คะแนน) เขียนสมการไอออนิกที่เกิดขึ้นในผลการทคลองข้อ ข, ค และ ง พร้อมคุล สมการ โดยใช้สารประกอบที่คิดว่าน่าจะเป็นในข้อ 14.2
- 14.4 (3.0 คะแนน) จากผลการทคลองข้อ จ จงตอบว่าผลึกของแข็งสีขาวนั้นคือสารใด แสดง วิธีคิดสำหรับสารประกอบที่เป็นไปได้ในข้อ 14.2 ทุกชนิด

โจทย์ข้อที่ 15 (9.0 คะแนน)

สารมลพิษในน้ำเสียจำเป็นต้องกำจัดออกเพื่อให้น้ำนั้นมีสภาพที่ดีขึ้นก่อนที่จะปล่อยออกสู่
แหล่งน้ำอื่น ๆ "โลหะหนัก" เช่น ปรอท ตะกั่ว แคดเมียม และ โครเมียม อาจอยู่ในรูปสารอินทรีย์
หรือสารอนินทรีย์ที่สามารถสะสมในวงจรอาหาร ซึ่งถ้ามีปริมาณมากจะเป็นอันตรายต่อสิ่งมีชีวิต

โครเมียมที่พบในสิ่งแวดล้อมเป็นไปได้ทั้ง Cr(III) และ Cr(VI) โดย Cr(III) ปริมาณที่ เหมาะสมมีความจำเป็นต่อร่างกายมนุษย์ แต่ Cr(VI) จะเป็นสารก่อมะเร็ง ทั้งนี้ในมาตรฐาน คุณภาพน้ำได้กำหนดปริมาณ Cr(III) และ Cr(VI) ไว้ไม่เกิน 0.75 และ 0.25 mg/L ตามลำดับ

ถ้านำน้ำเสียที่ยังไม่ได้มีการบำบัดจากโรงงานอุตสาหกรรมแห่งหนึ่งซึ่งมีไดโครเมต (dichromate, $\operatorname{Cr_2O_7^{2-}}$) และ โครเมียม(III)ไอออน ($\operatorname{Cr^{3+}}$) เป็นองค์ประกอบหลัก มาวิเคราะห์ปริมาณ โครเมียมโดยทดลองเป็น 2 แบบดังนี้

<u>แบบที่ 1</u> นำน้ำเสียปริมาตร $100.00\,\mathrm{mL}$ มาไทเทรตกับสารละลาย $\mathrm{FeSO_4}$ เข้มข้น $0.0165\,\mathrm{mol/L}$ พบว่า ที่จุดยุติใช้สารละลาย $\mathrm{FeSO_4}$ ปริมาตร $7.40\,\mathrm{mL}$

<u>แบบที่ 2</u> นำน้ำเสียปริมาตร $100.00 \, \mathrm{mL}$ มาเติม $\mathrm{H_2O_2}$ มากเกินพอ หลังจากนั้นต้มสารละลายเพื่อ กำจัด $\mathrm{H_2O_2}$ ที่เหลือ ปล่อยให้สารละลายเย็นลงจนถึงอุณหภูมิห้อง แล้วไทเทรตกับสารละลาย $\mathrm{FeSO_4}$ เข้มข้น $0.0165 \, \mathrm{mol/L}$ เช่นเคียวกับการทดลองแบบที่ $1 \, \mathrm{wuj}$ ที่จุดยุติใช้สารละลาย $\mathrm{FeSO_4}$ ปริมาตร $7.80 \, \mathrm{mL}$

<u>ข้อมลเพิ่มเติม</u> กำหนดศักย์ไฟฟ้ามาตรฐานที่ 25 °C ดังนี้

ปฏิกิริยา	E° (Volts)
$Cr^{3+} + e^- \rightleftharpoons Cr^{2+}$	-0.408
$Cr_2O_7^{2-} + 14 H^+ + 6 e^- \rightleftharpoons 2Cr^{3+} + 7 H_2O$	+1.33
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.771
$H_2O_2 + 2 H^+ + 2 e^- \rightleftharpoons 2 H_2O$	+1.776
$X_2 + 2 e^- \rightleftharpoons 2 X^-$	+0.195

โจทย์ข้อที่ 15 (ต่อ)

- 15.1 (1.0 คะแนน) จงเขียนสมการแสดงปฏิกิริยาการไทเทรต
- 15.2 (2.0 กะแนน) ปริมาณ Cr(VI) ในน้ำเสียตัวอย่างเป็นเท่าใด ตอบในหน่วย mg Cr/L
- 15.3 (1.5 คะแนน) จงเขียนปฏิกิริยาออกซิเคชัน รีคักชัน และรีคอกซ์ของปฏิกิริยาระหว่าง ${
 m H_2O_2}$ กับโครเมียม
- 15.4 (2.75 คะแนน) ปริมาณ Cr(III) มีค่าเท่าใด และค่าเกินมาตรฐานคุณภาพน้ำหรือไม่
- 15.5 (1.75 คะแนน) ถ้าในน้ำเสียตัวอย่างมีไอออน \mathbf{X}^- ปนอยู่ในปริมาณ $1000~\mathrm{ppm}$
 - ก. (0.5 คะแนน) ใอออน X^- จะทำปฏิกิริยากับใดโครเมตและโครเมียม(III)ใอออนหรือไม่ ถ้าทำปฏิกิริยา ทำกับสารใด
 - ข. (1.25 คะแนน) ไอออน \mathbf{X}^- จะทำให้ผลการวิเคราะห์ปริมาณโครเมียมในน้ำเสีย <u>เพิ่มขึ้น</u> ลดลง หรือไม่เปลี่ยนแปลง เมื่อเทียบกับเมื่อไม่มีไอออน \mathbf{X}^- เพราะเหตุใด

โจทย์ข้อที่ 16 (6.5 คะแนน)

การแยกอิแนนชิโอเมอร์ของกรคอะมิโนแบบราซิมิกสามารถทำได้โดยการใชโดรใกส์เอ็น-อะเซติกอะมิโนแอซิคซึ่งเร่งด้วยเอนไซม์เอซิกเกส โดยเอนไซม์ดังกล่าวจะเลือกใชโดรใกส์อิแนน ชิโอเมอร์หนึ่งของอนุพันธ์เอ็น-อะเซติกของกรคอะมิโนมากกว่าอิแนนชิโอเมอร์หนึ่ง

เอ็น-อะเซติลฟีนิลอะลานีน (ไม่ได้แสดงสเตอริโอเคมี)

- 16.1 (1.5 คะแนน) เขียนสมการแสดงการไฮโดรไลส์ของเอ็น-อะเซติลฟีนิลอะลานีนที่เร่งด้วย เอนไซม์เอซิลเลส โดยแสดงโครงสร้างและสเตอริโอเคมีของอิแนนชิโอเมอร์ที่เกิดปฏิกิริยา ให้ชัดเจน
- 16.2 (2.0 คะแนน) หากเริ่มต้นจากราซิมิก เอ็น-อะเซติลฟีนิลอะลานีน 5.20 กรัม จะสามารถแยก ฟีนิลอะลานีนที่เป็นอิแนนชิโอเมอร์เดี่ยวออกมาได้มากที่สุดกี่กรัมตามทฤษฎี
- 16.3 (2.0 คะแนน) สารละลายฟีนิลอะลานีนที่แยกได้ในข้อ 16.2 ในน้ำมีค่า $[\alpha]^{^{20}}_{\ D} = -32.0$ (c = 1) หาก (–)-ฟีนิลอะลานีนที่เป็นอิแนนชิโอเมอร์บริสุทธิ์มีค่า $[\alpha]^{^{20}}_{\ D} = -34.0$ (c = 1) ภายใต้ภาวะ เคียวกัน จงคำนวณอัตราส่วนของ (–) และ (+) อิแนนชิโอเมอร์ในฟีนิลอะลานีนที่แยกได้ (กำหนดให้ค่า $[\alpha]^{^{20}}_{\ D}$ ของของผสมเป็นผลรวมของผลคูณของเศษส่วนโมลกับค่า $[\alpha]_{\ D}$ ของ แต่ละองค์ประกอบในสารละลาย)
- 16.4 (1.0 คะแนน) จงเสนอวิธีการอื่นในการแยกคู่อิแนนชิโอเมอร์ของเอ็น-อะเซติลฟีนิลอะลานีน ออกจากกัน โดยไม่ใช้เอ็นไซม์

โจทย์ข้อที่ 17 (11.5 คะแนน)

ที่อุณหภูมิห้อง ${f A}$ เป็นแก๊สชนิดหนึ่ง เมื่อให้แก๊ส ${f A}$ ทำปฏิกิริยากับ ${f NaNH}_2$ ในแอมโมเนีย เหลว ตามด้วยปฏิกิริยากับ 1-bromopropane จะเกิดสารประกอบ ${f B}$

เมื่อให้ ${\bf B}$ ทำปฏิกิริยากับ ${\rm H_2O/H_2SO_4/HgSO_4}$ แล้วจะได้สารประกอบ ${\bf C}$ เป็นผลิตภัณฑ์ นอกจากนั้น เมื่อให้สารประกอบ ${\bf B}$ ทำปฏิกิริยากับ ${\rm KMnO_4}$ ในสภาวะเบส หลังจากนั้นปรับสภาพ ให้เป็นกรด จะให้ผลิตภัณฑ์ 2 ชนิด คือ butanoic acid และสารประกอบ ${\bf D}$ ซึ่ง ${\bf D}$ เป็นสารที่เมื่อหยด ลงในสารละลาย aq. NaHCO3 จะทำปฏิกิริยาเกิดฟองแก๊สเห็นได้ชัดเจน และหากให้ ${\bf B}$ ทำปฏิกิริยา กับแก๊สไฮโดรเจนภายใต้ความดันสูง โดยมีโลหะ ${\bf Pd}$ อยู่ด้วย จะให้ผลิตภัณฑ์เป็น ${\bf E}$ ซึ่งสามารถ ฟอกจางสีสารละลาย ${\bf Br_2/CHCl_3}$ ได้เมื่อเขย่านาน ๆ ในห้องที่มีแสงสว่าง

 ${f C}$ เป็นสารประกอบที่ให้ตะกอนสีเหลืองส้มเมื่อหยคสารละลายของ ${f C}$ ลงในสารละลาย 2,4-dinitrophenylhydrazine นอกจากนั้นเมื่อหยคสารละลาย ${f I}_2/NaOH$ ลงในสารละลายของ ${f C}$ จะ เห็นตะกอนสีเหลืองอ่อน

เมื่อให้ \mathbf{C} ทำปฏิกิริยากับ NaCN จะได้ \mathbf{F} (สูตรโมเลกุล $\mathbf{C}_6\mathbf{H}_{11}\mathbf{NO}$) เป็นผลิตภัณฑ์ และหาก ให้ \mathbf{C} ทำปฏิกิริยากับ aniline จะได้ \mathbf{G} เป็นผลิตภัณฑ์ และ \mathbf{G} มืองค์ประกอบของธาตุเป็นคาร์บอน $\mathbf{81.99}$ % ไฮโครเจน $\mathbf{9.32}$ % ที่เหลือเป็นในโตรเจน

17.1 (9 คะแนน) เขียนสูตรโครงสร้างและเรียกชื่อ IUPAC ของสารประกอบ A, B, C, D, E และ F
17.2 (2.5 คะแนน) เขียนสูตรโมเลกุลและโครงสร้างของไอโซเมอร์แบบเรขาคณิต (geometric isomer) ที่เป็นไปได้ของสารประกอบ G