Lecture 25 (during the problem -session)

Examples = -

$$H_0(y) \cong \mathbb{Z}$$
 $H_0(y) = 0 \quad \forall n \geq 2.$

CI(K) is a free abelian group of van K4

$$H'(y) \cong \mathbb{Z}$$
.

· n-th homology group $H_n(x)$ eletects the "n-dimensional" holes in X.

$$Ho(X) \sim connected components$$
 of X .

connected components.

$$H_0(S^2) \subset \mathbb{Z}$$

$$H_1(S^2) = \{0\}$$

$$H_2(S^2) \cong \mathbb{Z}$$

$$= -\left[n_{1}(v_{1}-v_{0}) + n_{2}(v_{2}-v_{1}) + n_{3}(v_{3}-v_{2}) + n_{4}(v_{0}-v_{0}) + n_{5}(v_{2}-v_{0})\right]$$

$$= -\left[v_{0}(-n_{1}+n_{4}-n_{5}) + v_{1}(n_{1}-n_{2}) + v_{2}(n_{2}-n_{3}+n_{5}) + v_{3}(n_{3}-n_{4})\right]$$

$$Z_1(L) = \text{Rer}(\Theta_1)$$
 $-n_1 + n_4 - n_5 = 0 = D$ $n_5 = -n_1 + n_4$
 $n_1 = n_2$
 $n_2 - n_3 + n_5 = 6$ \Rightarrow $n_5 = n_3 - n_2$
 $n_3 = n_4$ $(n_1, n_2, n_3, n_4, n_5) \sim (1, 1, 0, 0, -1)$
 \therefore The degree of freedom are 2
 $=D$ $Z_1(L)$ is a free abelian group of rank

 2 An explicit basis is

 $e_1 + e_2 - e_5$ and $e_3 + e_4 + e_5$.

 $e_2(\sigma_1)$
 $e_1(L) = G_1(L)$
 $e_$

. As dim(k) of the calculation of $H_n(K)$ becomes more and more tedious.

Collular Homology ~ move tractable

We say that two p-chains come c'one homologous if $C-C'=\partial_{p+1}ol$ for some p+1-chain ol.

If $C=\partial_{p+1}ol$ we say that C is homologous of o.

Co = rank 4

e.g.
$$\partial_2 A = a - h - G$$

C1 = rank 12

 $\partial_2 G = J + f - j$

C2 = rank 8

 $\partial_2 G = G - \alpha$

$$Z_{o}(T) \subseteq C_{o}$$

all the generators of $C_0(Z_0)$ are homologous to each other, i.e, diff. of any 2 of them is the boundary of 1-simplex.

[a] is mon-zono eie Zo/Bo

:
$$H_0(T^2) \subseteq \mathbb{Z}$$
 (expected as T^2 is commected)

e.g. the square in the lower-right hand is actually a 1-cycle 6/C

$$\Theta_1(1+1-1-b) = 0$$
 is also boundary of a $\Theta_1(1+j) = \Theta_1(K+1) = 0$

when you look at the questient of $Z_1(T)/B_1(T)$, the elements $\Gamma_1+1-c-bJ$ will be 0.

[i+j] and [k+l] are non-zero elements.

$$H_1(T) \subseteq \mathbb{Z} \times \mathbb{Z}$$

for calculating:

$$H_2(T) = \frac{\mathbb{Z}_2(T)}{B_2(T)}$$

$$O(A+B+(+D+E+F+G+H)=0$$

$$Z_{2}(r) \leq C_{2}(r)$$

$$H_2(\P^2) = \mathbb{Z}_2(\P) / \mathbb{Z}_2(\P)$$

$$H_{i}(\mathbb{T}^{2}) = \begin{cases} \mathbb{Z}, & i=0 \\ \mathbb{Z} \times \mathbb{Z}, & i=1 \\ \mathbb{Z}, & i=2 \\ 0, & i \geq 3. \end{cases}$$

Singular Homology

 $\underline{\mathcal{D}et}^n:=A$ (\mathbb{Z} -graded) chain complex of abelian groups (C_* , ∂) consists of sequence $\mathcal{F}C_n\mathcal{F}$ of abelian together \mathcal{F} homomorphism $\partial n:C_n \to C_{n-1}$ of $n\in\mathbb{Z}$ o.t. $\partial_{n-1}\circ\partial_n:C_n \to C_{n-2}$ is the trivial homomorphism \mathcal{F} n.

 $C_{*} = \bigoplus C_{n}$ $n \in \mathbb{Z}$ $C_{*} = \sum Q_{i} | Q_{i} \in C_{n}, n_{i} \in \mathbb{Z}$ all but fluitely many terms are szero.

 $x \in C_*$, deg(x) = n if $x \in C_n$. $O_n : C_n \longrightarrow C_{n-1} \longrightarrow O: C_* \longrightarrow C_*$ has degree -1.

 $\partial: C^* \longrightarrow C^{*-1}$

 $im(\Theta_{n+1})$ < Ker (3n) Θ_{-} boundary operations elements of $Ker(\vartheta)$ are called cycles.

ts.	<i>n</i>	im (3)		 boundavies.	
			×		