Equilíbrio de Solubilidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 Equilíbrio de Solubilidade

- 1. Produto de solubilidade
- 2. Efeito do íon-comum.
- 3. Formação de íons complexos.

1.1 Habilidades

- a. **Calcular** a constante do produto de solubilidade para um sal pouco solúvel em função de sua concentração molar.
- b. Calcular a solubilidade de um sal em função de sua constante do produto de solubilidade.
- c. Calcular a solubilidade de um sal em presença de íon comum.
- d. **Calcular** a solubilidade de um íon em presença de formação de complexos.

2 Precipitação

- 1. Predição de precipitação.
- 2. Precipitação seletiva.

2.1 Habilidades

- a. Determinar o precipitado formado quando soluções são misturadas.
- b. **Determinar** a ordem de precipitação quando um íon comum é adicionado a uma solução com diferentes íons.

Nível I

PROBLEMA 2.1

2J01

A solubilidade molar do cromato de prata é 65 μ mol L $^{-1}$ a 25 $^{\circ}$ C.

 $\boldsymbol{Assinale}$ a alternativa que mais se aproxima do K_{ps} do cromato de prata.

A
$$1,1 \times 10^{-14}$$

B
$$1,1 \times 10^{-13}$$

c
$$1,1 \times 10^{-12}$$

D
$$1,1 \times 10^{-11}$$

E
$$1,1 \times 10^{-10}$$

PROBLEMA 2.2

2J02

A solubilidade molar do iodato de chumbo (II) é $40\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$ a $25\,^{\circ}\mathrm{C}$

Assinale a alternativa que mais se aproxima do K_{ps} do cromato de prata.

A
$$2.6 \times 10^{-14}$$

B
$$2,6 \times 10^{-13}$$

c
$$2,6 \times 10^{-12}$$

D
$$2.6 \times 10^{-11}$$

E
$$2.6 \times 10^{-10}$$

PROBLEMA 2.3

2J03

Assinale a alternativa que mais se aproxima da solubilidade do iodato de cromo (III) a 25 °C.

$$\mathbf{B}$$
 21 mmol L^{-1}

$$\mathbf{C}$$
 31 mmol L⁻¹

$$\mathbf{D}$$
 41 mmol L⁻¹

$$E$$
 51 mmol L⁻¹

Dados

•
$$K_{ps}(Cr(IO_3)_3) = 5 \times 10^{-6}$$

PROBLEMA 2.4

2J04

Assinale a alternativa que mais se aproxima da solubilidade do sulfato de prata a $25\,^{\circ}$ C.

A
$$15 \,\mathrm{mmol}\,\mathrm{L}^{-1}$$

$$B 30 \,\mathrm{mmol}\,\mathrm{L}^{-1}$$

$$D$$
 60 mmol L⁻¹

$$\mathbf{E}$$
 75 mmol L⁻¹

Dados

•
$$K_{ps}(Ag_2SO_4) = 1.4 \times 10^{-5}$$

PROBLEMA 2.5

2J05

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de prata em uma solução $1\times 10^{-4}\, mol\, L^{-1}$ em cloreto de sódio a 25 °C.

A
$$0.4 \,\mu\mathrm{mol}\,\mathrm{L}^{-1}$$

B
$$0.8 \, \mu mol \, L^{-1}$$

$$\mathbf{C}$$
 1,2 μ mol L^{-1}

D
$$1,6 \, \mu \text{mol} \, \text{L}^{-1}$$

E 2,0
$$\mu$$
mol L $^{-1}$

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

PROBLEMA 2.6

2J06

Assinale a alternativa que mais se aproxima da solubilidade do carbonato de cálcio em uma solução $0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cloreto de cálcio a 25 °C.

- A $11 \, \text{nmol} \, \text{L}^{-1}$
- ${\bf B}$ 22 nmol L⁻¹
- \mathbf{C} 33 nmol L^{-1}
- \mathbf{D} 44 nmol L⁻¹
- **E** 55 nmol L^{−1}

Dados

• $K_{ps}(CaCO_3) = 8.7 \times 10^{-9}$

PROBLEMA 2.7

2J07

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de zinco em pH = 6 a 25 °C.

- \mathbf{A} 0,1 nmol L⁻¹
- \mathbf{B} 0,2 nmol \mathbf{L}^{-1}
- \mathbf{C} 0,3 nmol \mathbf{L}^{-1}
- \mathbf{D} 0,4 nmol \mathbf{L}^{-1}
- \mathbf{E} 0,5 nmol L⁻¹

Dados

 $\bullet \ K_{ps}(Zn(OH)_2) = 2\times 10^{-17}$

PROBLEMA 2.8

2J08

2J09

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de alumínio em pH = 4,5 a 25 °C.

- A $10\,\mu\text{mol}\,\text{L}^{-1}$
- ${f B}$ 20 $\mu mol \, L^{-1}$
- c $30 \,\mu\mathrm{mol}\,\mathrm{L}^{-1}$
- **D** $40 \, \mu mol \, L^{-1}$
- **E** $50 \, \mu \text{mol L}^{-1}$

PROBLEMA 2.9

Dados

• $K_{ps}(Al(OH)_3) = 1 \times 10^{-33}$

Assinale a alternativa que mais se aproxima da solubilidade do carbonato de magnésio em uma solução $3\,\mathrm{mmol}\,\mathrm{L}^{-1}$ em nitrato de magnésio.

- \mathbf{A} 1,5 mmol L⁻¹
- \mathbf{B} 2,0 mmol \mathbf{L}^{-1}
- \mathbf{c} 2,5 mmol L⁻¹
- \mathbf{D} 3,0 mmol L⁻¹
- \mathbf{E} 3,5 mmol L⁻¹

Dados

• $K_{ps}(MgCO_3) = 1 \times 10^{-5}$

PROBLEMA 2.10

2J10

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de cobre (I) em uma solução $1,5~\rm mmol\,L^{-1}$ em cloreto de potássio.

- \mathbf{A} 0,25 mmol L⁻¹
- **B** $0,33 \, \text{mmol} \, \text{L}^{-1}$
- **c** $0,50 \, \text{mmol} \, \text{L}^{-1}$
- \mathbf{D} 0,67 mmol L⁻¹
- \mathbf{E} 0,80 mmol L⁻¹

Dados

• $K_{ps}(CuCl) = 1 \times 10^{-6}$

PROBLEMA 2.11

2J11

2J12

Quando um amônia é adicionada à uma solução que contém íons prata, ocorre a formação do omplexo de coordenação:

$$Ag^{+}(aq) + 2NH_{3}(aq) \Longrightarrow Ag(NH_{3})_{2}^{+}(aq) \quad K_{f} = 1.6 \times 10^{7}$$

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de prata em uma solução $0,1 \, \text{mol} \, \text{L}^{-1}$ em amônia.

- \mathbf{A} 2,6 mmol L⁻¹
- \mathbf{B} 4,6 mmol \mathbf{L}^{-1}
- \mathbf{C} 6,6 mmol \mathbf{L}^{-1}
- \mathbf{D} 8,6 mmol L⁻¹
- \mathbf{E} 9,6 mmol \mathbf{L}^{-1}

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

PROBLEMA 2.12

Quando um amônia é adicionada à uma solução que contém íons cobre, ocorre a formação do complexo de coordenação:

$$Cu^{2+}(aq) + 4NH_3(aq) \Longrightarrow Cu(NH_3)_4^{2+}(aq)$$
 $K_f = 1,2 \times 10^{13}$

Assinale a alternativa que mais se aproxima da solubilidade do sulfeto de cobre (II) em uma solução $1,2 \, \text{mol} \, \text{L}^{-1}$ em amônia.

- **A** $1.8 \times 10^{-12} \, \text{mol} \, L^{-1}$
- **B** $3.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$
- **C** $5.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$
- **D** $7.8 \times 10^{-12} \, \text{mol} \, L^{-1}$
- **E** $9.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$

Dados

• $K_{ps}(CuS) = 1.3 \times 10^{-36}$

PROBLEMA 2.13

2J13

Assinale a alternativa que mais se aproxima da massa de nitrato de prata que precisa ser adicionada a 100 mL de uma solução 1×10^{-5} mol L⁻¹ de cloreto de sódio para o início da precipitação.

- **A** 180 μg
- **B** 270 μg
- **c** 360 µg
- **D** 540 μg
- **E** 630 μg

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

PROBLEMA 2.14

2J14

Assinale a alternativa que mais se aproxima da massa de iodeto de potássio que precisa ser adicionada a 25 mL de uma solução 1×10^{-5} mol L^{-1} de cloreto de sódio para o início da precipitação.

- A 221 g
- **B** 332 g
- **c** 443 g
- **D** 554 g
- **E** 665 g

Dados

• $K_{ps}(PbI_2) = 1.4 \times 10^{-8}$

PROBLEMA 2.15

2J15

Assinale a alternativa correta a respeito da precipitação de hidróxido de níquel em uma solução $0,06\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cátions níquel (II).

- A Independe do pH.
- **B** Ocorre somente na faixa de pH alcalino.
- C Ocorre somente na faixa de pH ácido.
- **D** Não ocorre para pH < 6.
- **E** Ocorre somente para pH > 12.

Dados

• $K_{DS}(Ni(OH)_2) = 6.5 \times 10^{-18}$

PROBLEMA 2.16

2J16

Assinale a alternativa correta a respeito da precipitação de hidróxido de níquel em uma solução $1 \, \text{mmol} \, \text{L}^{-1}$ em cátions ferro (III).

- A Independe do pH.
- **B** Ocorre somente na faixa de pH alcalino.
- C Ocorre somente na faixa de pH ácido.
- **D** Não ocorre para pH < 3.
- **E** Ocorre somente para pH > 12.

Dados

• $K_{ps}(Fe(OH)_3) = 2 \times 10^{-39}$

PROBLEMA 2.17

2J17

Hidróxido de sódio é adicionado progressivamente a uma amostra contendo 0,05 mol $\rm L^{-1}$ em cátions magnésio e 0,01 mol $\rm L^{-1}$ em cátions cálcio.

Assinale a alternativa que mais se aproxima da concentração do primeiro íon a precipitar que permanece em solução quando o segundo precipita.

- \mathbf{A} 14 nmol \mathbf{L}^{-1}
- \mathbf{B} 21 nmol \mathbf{L}^{-1}
- \mathbf{C} 28 nmol \mathbf{L}^{-1}
- \mathbf{D} 35 nmol L⁻¹
- \mathbf{E} 42 nmol L $^{-1}$

Dados

- $K_{ps}(Ca(OH)_2) = 5.5 \times 10^{-6}$
- $K_{ps}(Mg(OH)_2) = 1.1 \times 10^{-11}$

PROBLEMA 2.18 2J18

Sulfato de sódio é adicionado progressivamente a uma amostra contendo $0,01 \, \text{mol} \, L^{-1}$ em cátions bário e $0,01 \, \text{mol} \, L^{-1}$ em cátions chumbo (II).

Assinale a alternativa que mais se aproxima da concentração do primeiro íon a precipitar que permanece em solução quando o segundo precipita.

- A $13 \, \mu mol \, L^{-1}$
- \mathbf{B} 23 µmol \mathbf{L}^{-1}
- **C** 39 µmol L^{−1}
- D 52 μ mol L^{-1}
- \mathbf{E} 69 μ mol L^{-1}

Dados

- $K_{ps}(BaSO_4) = 1,1 \times 10^{-10}$
- $K_{ps}(PbSO_4) = 1.6 \times 10^{-8}$

Nível II

PROBLEMA 2.19

2J19

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de ferro (III) a $25\,^{\circ}$ C.

- **A** $1,2 \times 10^{-18}$
- **B** 2.0×10^{-18}
- **c** 3.5×10^{-14}
- **D** $1,2 \times 10^{-10}$
- **E** $2,0 \times 10^{-10}$

Dados

• $K_{ns}(Fe(OH)_3) = 2 \times 10^{-39}$

PROBLEMA 2.20

2J20

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de alumínio a 25 °C.

- **A** 1.0×10^{-12}
- **B** 3.3×10^{-12}
- **c** 6.8×10^{-10}
- **D** $1,0 \times 10^{-9}$
- **E** 3.3×10^{-9}

Dados

• $K_{ps}(Al(OH)_3) = 1 \times 10^{-33}$

PROBLEMA 2.21

2J21

Assinale a alternativa que mais se aproxima da solubilidade do fluoreto de cálcio em pH = 3.

- **B** $4 \times 10^{-5} \, \text{mol} \, L^{-1}$
- $4 \times 10^{-4} \, mol \, L^{-1}$
- E $4 \times 10^{-2} \, mol \, L^{-1}$

Dados

- $K_a(HF) = 3.5 \times 10^{-4}$
- $K_{ps}(CaF_2) = 4 \times 10^{-11}$

PROBLEMA 2.22

2J22

Uma amostra de $500\,\mathrm{mL}$ de uma solução $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ em nitrato de prata é misturada com $500\,\mathrm{mL}$ de outra solução contendo $0,005\,\mathrm{mol}$ de cloreto de sódio e $0,005\,\mathrm{mol}$ de brometo de sódio.

Determine a concentração de todas as espécies em solução no equilíbrio.

Dados

- $K_{ps}(AgBr) = 7.7 \times 10^{-13}$
- $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

PROBLEMA 2.23

2J23

Uma amostra contendo 0,1 mol de nitrato de cálcio, 0,1 mol de nitrato de bário e 0,15 mol de sulfato de sódio foram adicionados em 600 mL de água destilada.

Determine a concentração de todas as espécies em solução no equilíbrio.

Dados

- $K_{ps}(BaSO_4) = 1.1 \times 10^{-10}$
- $K_{ps}(CaSO_4) = 2,4 \times 10^{-5}$

Gabarito

Nível I

- 1. C 2.
- 2. B
- 3. B
- 4
- 5. D10. B

- 6. D
- 7. B12. B
- 8. B 13. B
- 14. B
 - B 15. D
- 16. D 17. B 18. E

Nível II

- 1. B
- 2. B
- 3. C
- 4. -
- 5. -