Analysis Ia Report

Alifian Mahardhika Maulana

May 7, 2018

Problem 1. Suppose that for every $n \in \mathbb{N}$ we have:

$$b_n \le a_n \le c_n$$

Let

$$\lim_{n \to \infty} b_n = l = \lim_{n \to \infty} c_n$$

given $\epsilon > 0$, then it follows from the convergence of b_n and c_n to l that there exists a natural number N such that if $n \geq N$ then:

$$|b_n - l| < \epsilon$$
 $|c_n - l| < \epsilon$
 $-\epsilon < b_n - l < \epsilon$ and $-\epsilon < c_n - l < \epsilon$

Since the hypothesis implies that

$$b_n - l \le a_n - l \le c_n - l$$
$$-\epsilon < b_n - l \le a_n - l \le c_n - l < \epsilon$$

it follows that

$$-\epsilon < a_n - l < \epsilon$$

for all $n \geq K$. Since $\epsilon > 0$ is arbitrary, this implies that

$$\lim_{n \to \infty} a_n = l$$

Problem 2. Prove if a sequence of real numbers converges, then it is bounded and it is a Cauchy sequence.

1. If a sequence of real numbers converges, then it is bounded.

Proof. Suppose x_n be a sequence converges to x and let $\epsilon := 1$. Then there exist a natural number K = K(1) such that $|x_n - x| < 1$ for all $n \ge K$. Then if we apply Triangle Inequality with $n \ge K$ we obtain

$$|x_n| = |x_n - x + x| \le |x_n - x| + |x| < 1 + |x|$$

put

$$M := \sup\{|x_1|, |x_2|, \cdots, |x_{K-1}|, 1+|x|\},\$$

then it follows that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

2. If a sequence of real numbers converges, then it is a Cauchy sequence.

Proof. Suppose x_n be a sequence converges to x and let $\epsilon := \frac{\epsilon}{2}$, then there exist a natural number K = K(1) such that $|x_n - x| < \frac{\epsilon}{2}$ for all $n \ge K$.

Let x_m be a sequence converges to x and let $\epsilon := \frac{\epsilon}{2}$, then there exist a natural number K = K(1) such that $|x_m - x| < \frac{\epsilon}{2}$ for all $m \ge K$.

Applying Triangular Inequality to substraction of x_n and x_m , we obtain

$$|x_n - x_m| = |x_n - x + x - x_m| \le |x_n - x| + |x_m - x| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= |x_n - x + x - x_m| \le |x_n - x| + |x_m - x| < \epsilon$$

then it follows that $|x_n - x_m| < \epsilon$.