Paper

- 1 Panoptic Segmentation
- 2 UPSNet
- **3** Panoptic Feature Pyramid Networks
- 4 Panoptic-DeepLab

- CVPR2019
- Facebook Al Research (FAIR) 、 HCI (海德堡图像处理中心)

Contribution

- New task: Panoptic Segmentation
- New metrics: panoptic quality(PQ)
- Basic algorithm: combine PSPNet and Mask R-CNN

Panoptic, Instance, Semantic Segmentation

Things: people, animals, tools – received the dominant share of attention

Stuff: grass, sky, road – amorphous regions of similar texture

Task format:

$$(l_i, z_i) \in \mathcal{L} \times \mathbb{N}$$

Panoptic Quality

Segment Matching

IoU is greater than 0.5

- Panoptic Quality
 - PQ Computation

匹配得分:

$$PQ = \frac{\sum_{(p,g) \in TP} IoU(p,g)}{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|}$$

$$\text{PQ} = \underbrace{\frac{\sum_{(p,g) \in \mathit{TP}} \text{IoU}(p,g)}{|\mathit{TP}|}}_{\text{segmentation quality (SQ)}} \times \underbrace{\frac{|\mathit{TP}|}{|\mathit{TP}| + \frac{1}{2}|\mathit{FP}| + \frac{1}{2}|\mathit{FN}|}}_{\text{recognition quality (RQ)}}.$$

Human Consistency Study

二分图最大权匹配得到的结果:

(2) SQ vs. RQ balance

$$RQ^{\alpha} = \frac{|TP|}{|TP| + \alpha|FP| + \alpha|FN|}.$$

Human Consistency Study

(3) Stuff vs. things

	PQ	PQ^{St}	PQ^{Th}	SQ	SQ^{St}	SQ^{Th}	RQ	RQ^{St}	RQ^{Th}
Cityscapes									
ADE20k									
Vistas	57.5	62.6	53.4	79.5	81.6	77.9	71.4	76.0	67.7

(4) Small vs. large objects

	PQ ^S	PQ^{M}	PQ^{L}	SQ ^S	SQ^{M}	SQ^L	RQ^S	RQ^{M}	\mathbf{RQ}^{L}
Cityscapes									
ADE20k									
Vistas	35.6	47.7	69.4	70.1	76.6	83.1	51.5	62.3	82.6

Basic algorithm: Combine PSPNet and Mask R-CNN

- (1) we combine those segments with semantic segmentation results by resolving any overlap between thing and stuff classes in favor of the thing class
 - (2) Starting from the most confident instance.
- (3) For each instance, remove pixels which have been assigned to previous segments, if a sufficient fraction of the segment remains, accept the non-overlapping portion

Heuristic Combination

- CVPR2019
- Uber ATG
 University of Toronto
 The Chinese University of Hong Kong

- Contribution 单个backbone+两个轻量网络头部可以获得很好的语义和实例分割
 - A end-to-end network: Unified Panoptic Segmentation Network

Instance Head (Mask R-CNN)

$$k = \lfloor k_0 + \log_2(\sqrt{wh}/224) \rfloor.$$

Semantic Head

Deformable convolution

+ PSPNet

Multi scale feature cascade

Semantic Head

Deformable convolution

deformation modules	DeepLab mIoU@V / @C	class-aware RPN mAP@0.5 / @0.7	Faster R-CNN mAP@0.5 / @0.7	R-FCN mAP@0.5 / @0.7
atrous convolution (2,2,2) (default)	69.7 / 70.4	68.0 / 44.9	78.1 / 62.1	80.0 / 61.8
atrous convolution (4,4,4)	73.1 / 71.9	72.8 / 53.1	78.6 / 63.1	80.5 / 63.0
atrous convolution (6,6,6)	73.6 / 72.7	73.6 / 55.2	78.5 / 62.3	80.2 / 63.5
atrous convolution (8,8,8)	73.2 / 72.4	73.2 / 55.1	77.8 / 61.8	80.3 / 63.2
deformable convolution	75.3 / 75.2	74.5 / 57.2	78.6 / 63.3	81.4 / 64.7

Panoptic Head

8 Loss function

RPN

box classification: cross entropy loss

box regression : smoth L1

Instance Head

box classification: cross entropy loss

box regression: smoth L1

mask segmentation: cross entropy loss

Semantic Head

pixel-wise classification loss: cross entropy loss

ROL Loss: cross entropy loss

Panoptic Head

pixel-wise classification loss: cross entropy loss

ROL Loss:

To put more emphasis on the foreground objects

 use the ground truth bounding box of the instance to crop the sementic logits map

2 resize it to 28 × 28

3. cross entropy loss computed over 28 × 28 patch

Results on COCO and Cityscapes

- CVPR2019
- Facebook AI Research (FAIR)

Contribution

 a single network for instance and semantic segmentation tasks

backbone

symmetric decoder

asymmetric, lightweight decoder

top-down pathway has only one block

Instance segmentation branch

• The design of FPN same channel applies a shared network branch to predict a refined box and class label for each region.

 $'\times 4'$ denotes a stack of four consecutive convs.

Semantic segmentation branch

Loss

$$L = \lambda_{i} \left(L_{c} + L_{b} + L_{m} \right) + \lambda_{s} L_{s}$$

Instance:

$\lambda_{\mathtt{s}}$	mIoU	AP	AP_{50}	AP ₇₅	PQ
0.0	-	33.9	55.6	35.9	46.6
0.1	37.2	34.0	55.6	36.0	46.8
0.25	39.6	33.7	55.3	35.5	46.1
0.5	41.0	33.3	54.9	35.2	45.9
0.75	41.1	32.6	53.9	34.6	45.0
1.0	41.5	32.1	53.2	33.6	44.6
		+0.1	+0.0	+0.1	+0.2

51.3
52.9
52.7
52.9
52.3
52.4
+1.1

Semantic:

$\lambda_{\mathtt{i}}$	AP	mIoU	floU	PQSt
0.0	23	40.2	67.2	27.9
0.1	20.1	40.6	67.5	28.4
0.25	25.5	41.0	67.8	28.6
0.5	29.2	41.3	68.0	28.9
0.75	30.8	41.1	68.2	28.9
1.0	32.1	41.5	68.2	29.0
		+1.2	+1.0	+1.1

⁽c) Panoptic FPN on COCO for semantic segmentation ($\lambda_s = 1$).

$\lambda_{\mathtt{i}}$	AP	mIoU	iIoU	PQ St
0.0	2	74.5	55.8	62.4
0.1	27.4	75.3	57.6	62.5
0.25	30.5	75.5	58.3	62.5
0.5	32.0	75.0	58.2	62.2
0.75	32.6	74.3	58.2	61.7
1.0	33.2	74.2	57.4	61.4
		+1.0	+2.5	+0.1

⁽d) Panoptic FPN on Cityscapes for **semantic** segmentation ($\lambda_s = 1$).

⁽a) Panoptic FPN on COCO for **instance** segmentation ($\lambda_i = 1$). (b) Panoptic FPN on Cityscapes for **instance** segmentation ($\lambda_i = 1$).

- CVPR2020
- UIUC (伊利诺伊大学厄巴纳-香槟分校)
- Google Research

Contribution

 a bottom-up \ one-stage approach could deliver state-of-the-art results on panoptic segmentation

- Difference between the top-down and the bottom-up
 - the top-down methods(UPSNet, Panoptic FPN)
 - Two –stage
 - attaching another semantic segmentation branch to Mask R-CNN
 - the bottom-up methods(Panoptic-DeepLab)
 - One –stage
 - semantic segmentation + class-agnostic offset regression

Network

an encoder backbone
decoupled ASPP modules
decoupled decoder modules
task-specific prediction heads

Simple instance representation

- max-pooling with kernel size 7 保留Pool前后未改变的坐标,作为实例的中心
- top-k highest confidence scores are kept (k = 200)

Simple instance grouping

Post processing

• generate the final panoptic segmentation result by the "majority vote" proposed (多数投票算法)

Loss function

$$\mathcal{L} = \lambda_{sem} \mathcal{L}_{sem} + \lambda_{heatmap} \mathcal{L}_{heatmap} + \lambda_{offset} \mathcal{L}_{offset}$$

cross entropy loss

 \mathcal{L}_{offset}

Mean Squared Error (MSE) :to minimize the distance between the predicted heatmap and mask