Computational Logic

Nico Mexis October 18, 2019

Contents

§1:	What is logic?	3
§2:	Propositional Logic	3

§1: What is logic?

TODO Rest

§2: Propositional Logic

Syntax:

- (a) Atomic formulas are propositions: A_0, A_1, \ldots or A, B, \ldots
- (b) A formula is obtained by repeatedly applying the following rules:
 - (1) An atomic formula is a formula
 - (2) Given a formula F, also $\neg F$ is a formula ("not F")
 - (3) Given two formulas F, G, also $F \wedge G$ and $F \vee G$ are formulas

Semantics:

- (a) The set of truth values is $\{0,1\}$, where 0 is FALSE and 1 is TRUE
- (b) Let M be a set of atomic formulas. A map $\alpha: M \to \{0,1\}$ is called a truth assignment
- (c) Let \hat{M} be the set of all formulas in which only propositions of M appear. Then we define $\hat{\alpha}: \hat{M} \to \{0,1\}$ recursively as follows:
 - (1) If $A \in M$, then we let $\hat{\alpha}(A) = \alpha(A)$
 - (2) If $\alpha(F)$ is defined, then we let $\hat{\alpha}({}^{\sharp}F) = 1 \hat{\alpha}(F)$
 - (3) Given formulas F, G for which $\hat{\alpha}(F), \hat{\alpha}(G)$ have been defined, we let $\hat{\alpha}(F \wedge G) = \begin{cases} 1 & \text{if } \hat{\alpha}(F) = \hat{\alpha}(G) = 1 \\ 0 & \text{otherwise} \end{cases} \text{ and } \hat{\alpha}(F \vee G) = \begin{cases} 1 & \text{if } \hat{\alpha}(F) = 1 \text{ or } \hat{\alpha}(G) = 1 \text{ or both } \\ 0 & \text{if } \hat{\alpha}(F) = \hat{\alpha}(G) = 1 \end{cases}$

$$\begin{array}{ccc} F \text{ "if" } G & \qquad & \stackrel{\frown}{=} G \Rightarrow F \\ F \text{ "only if" } G & \qquad & \stackrel{\frown}{=} F \Rightarrow G \\ \end{array}$$

F "if and only if" $G = F \Leftrightarrow G$

Let F be a (propositional logic) formula, M a set of propositions and $\alpha: M \to \{0,1\}$ a truth assignment.

- (a) The formula F <u>fits</u> with α or α is <u>suitable</u> for F if in F only the propositions from M appear.
- (b) If $\alpha(F) = 1$, then F is called a <u>model</u> for α . We write $\alpha \models F$.
- (c) Given a set of formulas \mathcal{F} , we write $\alpha \models \mathcal{F}$ if $\alpha \models F$ for every $F \in \mathcal{F}$.
- (d) We say that F is <u>satisfiable</u> if there exists a truth assignment α , which is suitable for F and if $\alpha(F) = 1$. Otherwise, we say that F is <u>unsatisfiable</u>.
- (e) A formula F is called a <u>tautology</u> (or <u>valid</u>) if $\alpha(F) = 1$ for every suitable truth assignment α .

A formula F is a tautology if and only if $\neg F$ is unsatisfiable.

Two formulas F, \overline{G} are called (semantically) equivalent, if for all truth assignments α , which are suitable for both F and G, we have $\alpha(F) = \alpha(G)$. Notation: $F \equiv G$

The Fundamental Equivalences: Let F, G, H be formulas.

- (a) $F \wedge F \equiv F$ and $F \vee F \equiv F$ (idempotency)
- (b) $F \wedge G \equiv G \wedge F$ and $F \vee G \equiv G \vee F$ (commutativity)
- (c) $(F \wedge G) \wedge H \equiv F \wedge (G \wedge H)$ and $(F \vee G) \vee H \equiv F \vee (G \vee H)$ (associativity) Hence we write $F_1 \wedge \cdots \wedge F_n$ or $F_1 \vee \cdots \vee F_n$.
- (d) $F \wedge (F \vee G) \equiv F$ and $F \vee (F \wedge G) \equiv F$ (absorption)
- (e) $F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H)$ and $F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H)$ (distributive law)
- (f) $\neg \neg F \equiv F$
- (g) $\neg (F \land G) \equiv \neg F \lor \neg G$ and $\neg (F \lor G) \equiv \neg F \land \neg G$ (de Morgan's rules)
- (h) If F is a tautology, then $F \vee G \equiv F$ and $F \wedge G \equiv G$
- (i) If F is unsatisfiable, then $F \vee G \equiv G$ and $F \wedge G \equiv F$

Substitution Theorem:

Let F_1, F_2 be two equivalent formulas.

Let G be a formula, which contains F_1 as a subformula.

Let \tilde{G} be the formula obtained by replacing F_1 in G by F_2 .

Then we have $G \equiv \tilde{G}$.

- (a) A <u>literal</u> is an atomic formula or the negation of an atomic formula $(A_i \text{ or } \neg A_i)$
- (b) A formula F is said to be in <u>conjunctive normal form</u> (CNF), if it is of the form

$$F = (L_{11} \vee L_{12} \vee \cdots \vee L_{1n_1}) \wedge \cdots \wedge (L_{k1} \vee L_{k2} \vee \cdots \vee L_{kn_k})$$

where the L_{ij} are literals ("F is a conjunction of disjunctions of literals").

(c) We say that F is in disjunctive normal form (DNF) if

$$F = (L_{11} \wedge L_{12} \wedge \cdots \wedge L_{1n_1}) \vee \cdots \vee (L_{k1} \wedge L_{k2} \wedge \cdots \wedge L_{kn_k})$$

with literals L_{ij} .

Algorithm:

Let F be a formula. Consider the following sequence of instructions:

- (1) Replace all occurrences of "⇒" and "⇔" by their definition
- (2) Replace each subformula of the form $\neg G$ by G.

- (3) Replace in F every subformula of the form $\neg(G \lor H)$ by $\neg G \land \neg H$. If a subformula $\neg \neg K$ results, apply Step (2).
- (4) Replace in F every subformula of the form $\neg(G \land H)$ by $\neg G \lor \neg H$. If a subformula $\neg \neg K$ results, apply Step (2).
- (5) Repeat (3) and (4) as often as possible.
- (6) Replace in F every subformula of the form $G \lor (H \land K)$ by $(G \lor H) \land (G \lor K)$
- (7) Replace in F every subformula of the form $(G \wedge H) \vee K$ by $(G \vee K) \wedge (H \vee K)$
- (8) Repeat (6) and (7) as often as possible. Then return F and stop.

This is an algorithm, which returns a formula \tilde{F} in CNF, such that $\tilde{F} \equiv F$.