In accordance with 37 C.F.R. § 1.121, please substitute for claim 1 the following rewritten version of the same claim, as amended. The changes are shown explicitly in the attached "Version with Markings to Show Changes Made".

(2X Amended) A compound of the formula

 $\begin{array}{c|c}
(R^1)_x \\
\\
N \\
Y - Z - R^2 \\
R^3
\end{array}$

6 uh

wherein

x is from 0 to 2;

 R^1 is selected from the group consisting of hydroxy, C_1 to C_9 alkoxy (optionally substituted by halo), C_1 to C_9 cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C_1 to C_4 alkyl or halo, and the alkoxy group is optionally substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C_1 to C_4 alkyl, C_1 to C_3 alkoxy or halo, and the alkoxy group is optionally substituted by halo) and C_1 to C_9 alkyl amino (wherein the alkyl group is optionally substituted by halo)

 R^2 is selected from the group consisting of H, alkyl, aryl, arylalkyl, cycloalkyl and cycloalkylalkyl, wherein alkyl moieties are optionally substituted by halo, and aryl groups are optionally substituted by C_1 to C_4 alkoxy and halo,

 R^3 is absent when -Y-Z- R^2 is attached to N, or R^3 is selected from the group consisting of H, C_1 to C_7 alkyl and benzyl, when

-Y-Z-R² is not attached to N;

Y is C_2 to C_{10} alkylene, in which one non-terminal carbon atom may be replaced by O; and

Z is

wherein R^5 , R^6 and R^7 are independently H, aryl (C_1 to C_3) alkyl or cycloalkyl (C_1 to C_3) alkyl optionally substituted by halo, and Q is H or methyl, or Q is linked to R^5 or R^7 to form a five-membered ring or Q is linked to R^2 to form a six-membered ring, provided that when Z is

at least one of R^5 and R^7 is $aryl(C_1$ to $C_3)$ alkyl or cycloalkyl(C_1 to $C_3)$ alkyl, optionally substituted by halo;

or a pharmaceutically acceptable salt thereof.

3. (Amended) The compound of claim 1 or 30 wherein R² is selected from phenyl, halophenyl, halobenzyl, phenylethyl, halophenylethyl, phenylpropyl, halophenylpropyl, phenylbutyl, halophenylbutyl, tolyl, methoxybenzyl, trifluoromethylbenzyl, halo-methoxybenzyl, phenylbenzyl, adamantanemethyl, adamantaneethyl, adamantanepropyl, cyclohexanemethyl, cyclohexaneethyl, and naphthyl.

- 4. (2X Amended) The compound of claim 1 or 30 wherein x is 0.
- 5. (2X Amended) The compound of claim 1 or 30 wherein x is 1 or 2, and R^1 is selected from hydroxy, C_1 to C_9 alkoxy (optionally substituted by halo), C_1 to C_9 cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C_1 to C_4 alkyl or halo, and the alkoxy group is optionally substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C_1 to C_4 alkyl, C_1 to C_3 alkoxy or halo, and the alkoxy group is optionally substituted by halo) and C_1 to C_9 alkylamino wherein the alkyl group is optionally substituted by halo.

Please add the following new claims:

--30. (NEW) A compound of the formula

$$\begin{array}{c|c}
(R^1)_x \\
\\
N \\
Y - Z - R^2 \\
R^3
\end{array}$$

wherein

x is from 0 to 2;

 R^1 is selected from the group consisting of hydroxy, C_1 to C_9 alkoxy (optionally substituted by halo), C_1 to C_9 cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C_1 to C_4 alkyl or halo, and the alkoxy group is optionally substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C_1 to C_4 alkyl, C_1 to C_3 alkoxy or halo, and the alkoxy group is optionally substituted by halo) and C_1 to C_9 alkyl amino (wherein the alkyl group is optionally substituted by halo)

R² is selected from the group consisting of H, alkyl, aryl, arylalkyl, cycloalkyl and cycloalkylalkyl, wherein alkyl moieties are optionally substituted by halo, and aryl

groups are optionally substituted by C₁ to C₄ alkyl, C₁ to C₄ alkoxy and halo,

 R^3 is absent when -Y-Z- R^2 is attached to N, or R^3 is selected from the group consisting of H, C_1 to C_7 alkyl and benzyl, when

-Y-Z-R² is not attached to N;

Y is pentylene, hexylene, heptylene, octylene or nonylene; and Z is

$$N$$
 N N

CY

wherein R^5 , R^6 and R^7 are independently H, aryl (C_1 to C_3) alkyl or cycloalkyl (C_1 to C_3) alkyl optionally substituted by halo, and Q is H or methyl, or Q is linked to R^5 or R^7 to form a five-membered ring or Q is linked to R^2 to form a six-membered ring, provided that when Z is

at least one of R⁵ and R⁷ is aryl(C₁ to C₃)alkyl or cycloalkyl(C₁ to C₃)alkyl, optionally substituted by halo;

or a pharmaceutically acceptable salt thereof.

31. (NEW) A method of treating a patient in need of a sedative, a sleep regulator, an anticonvulsant, a regulator of hypothalamo-hypophyseal secretion, an antidepressant, a modulator of cerebral circulation, treatment of asthma or treatment of irritable bowel syndrome comprising administering to said patient a therapeutically effective amount of H₃ receptor ligand or a pharmaceutically acceptable salt thereof, said H₃ receptor ligand being a compound of the formula

$$\begin{array}{c|c}
(R^1)_x \\
\\
N \\
Y - Z - R^2 \\
R^3
\end{array}$$

wherein

x is from 0 to 2;

 R^1 is selected from the group consisting of hydroxy, C_1 to C_9 alkoxy (optionally substituted by halo), C_1 to C_9 cycloalkylalkoxy (wherein the cycloalkyl group is optionally substituted by C_1 to C_4 alkyl or halo, and the alkoxy group is optionally substituted by halo), arylalkoxy (wherein the aryl group is optionally substituted by C_1 to C_4 alkyl, C_1 to C_3 alkoxy or halo, and the alkoxy group is optionally substituted by halo) and C_1 to C_9 alkyl

 R^2 is selected from the group consisting of H, alkyl, aryl, arylalkyl, cycloalkyl and cycloalkylalkyl, wherein alkyl moieties are optionally substituted by halo, and aryl groups are optionally substituted by C_1 to C_4 alkyl, C_1 to C_4 alkoxy and halo,

 R^3 is absent when -Y-Z- R^2 is attached to N, or R^3 is selected from the group consisting of H, C_1 to C_7 alkyl and benzyl, when

-Y-Z-R² is not attached to N;

amino (wherein the alkyl group is optionally substituted by halo)

Y is C_2 to C_{10} alkylene, in which one non-terminal carbon atom may be replaced by O; and

Atty. Dkt. No. 040283/0183

Z is

14

wherein R^5 , R^6 and R^7 are independently H, aryl (C_1 to C_3) alkyl or cycloalkyl (C_1 to C_3) alkyl optionally substituted by halo, and Q is H or methyl, or Q is linked to R^5 or R^7 to form a five-membered ring or Q is linked to R^2 to form a six-membered ring, provided that when Z is

at least one of R^5 and R^7 is aryl(C_1 to C_3)alkyl or cycloalkyl(C_1 to C_3)alkyl, optionally substituted by halo;

or a pharmaceutically acceptable salt thereof.

- 32. (NEW) The method of claim 31, wherein R² is selected from phenyl, halophenyl, benzyl, halobenzyl, phenylethyl, halophenylethyl, phenylpropyl, halophenylbutyl, tolyl, methoxybenzyl, trifluoromethylbenzyl, halo-methoxybenzyl, phenylbenzyl, adamantanemethyl, adamantanepropyl, cyclohexanemethyl, cyclohexaneethyl, and naphthyl.
 - 33. (NEW) The method of claim 31, wherein x is 0.