Michele_Lotto_Exercises

Michele Lotto

2022-11-26

Michele Lotto Exercises

- 4) 3.21
- 5) 5.22

List 4 - Exercise 3.21

If A flips n + 1 and B flips n fair coins, show that the probability that A gets more heads than B is $\frac{1}{2}$. Hint: Condition on which player has more heads after each has flipped n coins. (There are three possibilities.)

Solution

List 8 - Exercise 5.22

Let U be a uniform (0,1) random variable, and let a < b be constants.

- (a) Show that if b > 0, then bU is uniformly distributed on (0, b), and if b < 0, then bU is uniformly distributed on (b, 0).
- (b) Show that a + U is uniformly distributed on (a, 1 + a).
- (c) What function of U is uniformly distributed on (a, b)?
- (d) Show that min(U, 1 U) is a uniform (0, 1/2) random variable.
- (e) Show that max(U, 1 U) is a uniform (1/2, 1) random variable.

Solution

Let $U \sim U(0,1)$ with PDF:

$$f_U(x) = \begin{cases} 1, & x \in [0, 1] \\ 0, & \text{otherwise} \end{cases}$$

and CDF:

$$F_U(x) = \begin{cases} 0, & x < 0 \\ x, & x \in [0, 1] \\ 1, & x > 1 \end{cases}$$

a.1) We have to prove that if b>0 then $Y=bU\sim U(0,b)$

First we calculate the interval extremes:

• if
$$U = 0$$
 then $Y = 0$

• if
$$U = 1$$
 then $Y = b$

We calculate the CDF:

$$F_Y(y) = P(Y \leq y) = P(bU \leq y) = P(U \leq \frac{y}{b}) = F_U(\frac{y}{b}) = \frac{y}{b}$$

Given that $\frac{\partial F}{\partial y} = \frac{1}{b}$ we derive the PDF:

$$f_Y(y) = \begin{cases} \frac{1}{b}, & y \in [0, b] \\ 0, & \text{otherwise} \end{cases}$$

which in turn is a U(0,b) by definition.

a.2) We have to prove that if b < 0 then $Y = bU \sim U(b, 0)$

First we calculate the interval extremes:

• if
$$U = 0$$
 then $Y = 0$

• if
$$U = 1$$
 then $Y = b$

We calculate the CDF:

$$F_Y(y) = P(Y \le y) = P(bU \le y) = P(U \ge \frac{y}{b}) = 1 - F_U(\frac{y}{b}) = 1 - \frac{y}{b}$$

Given that $\frac{\partial F}{\partial y} = \frac{-1}{b}$ we derive the PDF:

$$f_Y(y) = \begin{cases} \frac{-1}{b}, & y \in [b, 0] \\ 0, & \text{otherwise} \end{cases}$$

which in turn is a U(b,0) by definition.

b) We have to prove that $Y = a + U \sim U(a, 1 + a)$

First we calculate the interval extremes:

• if
$$U = 0$$
 then $Y = a$

• if
$$U = 1$$
 then $Y = 1 + a$

We calculate the CDF:

$$F_Y(y) = P(Y \le y) = P(a + U \le y) = P(U \le y - a) = F_U(y - a) = y - a$$

Given that $\frac{\partial F}{\partial y} = 1$ we derive the PDF:

$$f_Y(y) = \begin{cases} 1, & y \in [a, 1+a] \\ 0, & \text{otherwise} \end{cases}$$

which in turn is a U(a, 1 + a) by definition.

d) We have to prove that $Y = min(U, 1 - U) \sim U(0, 1/2)$

We distinguish two cases:

1) if
$$U \geq \frac{1}{2}$$
 then the min is $Y = 1 - U$
2) if $U \leq \frac{1}{2}$ then the min is $Y = U$

2) if
$$U \leq \frac{1}{2}$$
 then the min is $Y = U$

1)

First we calculate the interval extremes:

- if $U = \frac{1}{2}$ then $Y = \frac{1}{2}$
- if U = 1 then Y = 0

We calculate the CDF:

$$F_Y(y) = P(Y \le y) = P(1 - U \le y) = P(-U \le y - 1) = P(U \ge -y + 1) = 1 - P(U \le 1 - y) = 1 - F_U(1 - y) = 1 - 1 + y = y$$

Given that $\frac{\partial F}{\partial y} = 1$ we derive the PDF:

$$f_Y(y) = \begin{cases} 1, & y \in [0, \frac{1}{2}] \\ 0, & \text{otherwise} \end{cases}$$

which in turn is a $U(0, \frac{1}{2})$ by definition.

2)

First we calculate the interval extremes:

- if U = 0 then Y = 0
- if $U = \frac{1}{2}$ then $Y = \frac{1}{2}$

We calculate the CDF:

$$F_Y(y) = P(Y \le y) = P(U \le y) = F_U(y) = y$$

Given that $\frac{\partial F}{\partial y} = 1$ we derive the PDF:

$$f_Y(y) = \begin{cases} 1, & y \in [0, \frac{1}{2}] \\ 0, & \text{otherwise} \end{cases}$$

which in turn is a $U(0, \frac{1}{2})$ by definition.

c) We have to find the function f(.) such that $f(U) \sim U(a,b)$

Let $Y \sim U(a, b)$ with CDF:

$$f_Y(y) = \begin{cases} 0, & y < a \\ \frac{y-a}{b-a}, & y \in [a, b] \\ 1, & y > b \end{cases}$$

Given that $p = \frac{y-a}{b-a}$ is a probability, we know that p takes values between 0 and 1. p can be seen as a Standard Uniform distribution (p = U).

Indeed, we calculate $y = f_Y^{-1}(p)$:

$$p = \frac{y - a}{b - a} \Rightarrow p \times (b - a) = y - a \Rightarrow p \times (b - a) + a = y$$

The function that transforms a Standard Uniform in a U(a,b) is indeed $f(U) = U \times (b-a) + a$

e) We have to prove that $Y = \max(U, 1-U) \sim U(\frac{1}{2}, 1)$

We distinguish two cases:

1) if
$$U \geq \frac{1}{2}$$
 then the max is $Y = U$ 2) if $U \leq \frac{1}{2}$ then the max is $Y = 1 - U$

1)

First we calculate the interval extremes:

• if U = 1 then Y = 1

• if
$$U = \frac{1}{2}$$
 then $Y = \frac{1}{2}$

We calculate the CDF:

$$F_Y(y) = P(Y \le y) = P(U \le y) = F_U(y) = y$$

Given that $\frac{\partial F}{\partial y} = 1$ we derive the PDF:

$$f_Y(y) = \begin{cases} 1, & y \in [\frac{1}{2}, 1] \\ 0, & \text{otherwise} \end{cases}$$

which in turn is a $U(\frac{1}{2},1)$ by definition.

2)

First we calculate the interval extremes:

• if U = 0 then Y = 1

• if
$$U = \frac{1}{2}$$
 then $Y = \frac{1}{2}$

We calculate the CDF:

$$F_Y(y) = P(Y \le y) = P(1 - U \le y) = P(-U \le y - 1) = P(U \ge -y + 1) = 1 - P(U \le 1 - y) = 1 - F_U(1 - y) = 1 - 1 + y = y$$

Given that $\frac{\partial F}{\partial y} = 1$ we derive the PDF:

$$f_Y(y) = \begin{cases} 1, & y \in \left[\frac{1}{2}, 1\right] \\ 0, & \text{otherwise} \end{cases}$$

which in turn is a $U(\frac{1}{2},1)$ by definition.