

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 118000 N	M _×	= -5040000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8920000 Nmm	M_{v}^{λ}	= -9000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{treso}	_{ca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 130000 N	M _x	= -3490000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 9330000 Nmm	M_{v}	= -10000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	·) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 140000 N	M _x	= -4010000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7000000 Nmm	M_{v}	= -10800000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	·) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 102000 N	M _×	= -4160000 Nmm	σ_a	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7460000 Nmm	M_{v}	= -11800000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_G	=	J_u	=	$\tau(M_t$.) =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	₍)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 117000 N	M _x	= -5080000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8810000 Nmm	M_{v}	= -8780000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.}}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 128000 N	M _×	= -3520000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 9210000 Nmm	M_{v}	= -9770000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_t$	<u>)</u> =	$\sigma_{\text{st.}}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 138000 N	M _x	= -4050000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6920000 Nmm	M_{v}	= -10500000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$	·) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 101000 N	M _x	= -4200000 Nmm		= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7370000 Nmm	M_{v}	= -11500000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.v}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 118000 N	M _×	= -4910000 Nmm	σ_a	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8810000 Nmm	M_{v}^{λ}		E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{treso}	_{ca} =		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 129000 N	M _×	= -3410000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 9230000 Nmm	M_{v}	= -9860000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$	<u>)</u> =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 139000 N	M _×	= -3910000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6900000 Nmm	M_{y}^{2}	= -10600000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_{t}	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 102000 N	M _x	= -4050000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7360000 Nmm	M_{v}	= -11500000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M)$	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	_{sca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 116000 N	M _×	= -4950000 Nmm	σ_a	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8700000 Nmm	M_{v}	= -8610000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M		σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 127000 N	M _×	= -3430000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 9110000 Nmm	M_{v}	= -9590000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$	<u>)</u> =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 138000 N	M _x	= -3940000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6820000 Nmm	M_{v}	= -10300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 101000 N	M _x	= -4080000 Nmm		= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7280000 Nmm	M_{v}	= -11200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 107000 N	M _x	= -6990000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8360000 Nmm	M_{v}	= -4890000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 115000 N	 М _х	= -4690000 Nmm	$\sigma_{\rm a}$	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
M_t	= 8600000 Nmm	M_{v}	= -5390000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{st.v}$	_{ren} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 126000 N	M _x	= -5420000 Nmm		= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6470000 Nmm	M_{y}	= -5790000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\rm st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{treso}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 90200 N	M _x	= -5410000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6770000 Nmm	M_{v}	= -6210000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 106000 N	M _x	= -7090000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
M_t	= 8200000 Nmm	M_{v}	= -4740000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.ve}}$	en=
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 114000 N	M _x	= -4750000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8420000 Nmm	M_{v}	= -5210000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mise}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\rm st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 125000 N	M _x	= -5520000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6370000 Nmm	M_{v}	= -5630000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 89300 N	M _×	= -5500000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6650000 Nmm	M_{v}^{λ}	= -6030000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 106000 N	M _x	= -6750000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8180000 Nmm	M_{v}	= -4730000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -4530000 \text{ Nmm} \sigma_a = 220 \text{ N/mm}^2
                                                                                                                                                               = 74000 \text{ N/mm}^2
         = 114000 N
Ν
                                                                                                                                                      G
                                                                                                             = 200000 \text{ N/mm}^2
         = 8430000 Nmm
                                                           = -5220000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 125000 N	M _×	= -5210000 Nmm	σ_a	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6310000 Nmm	M_{v}^{λ}		E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 89500 N	M _x	= -5210000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6610000 Nmm	M_{v}^{λ}	= -5990000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 105000 N	M _x	= -6840000 Nmm		= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8020000 Nmm	M_{v}	= -4580000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 113000 N	M _x	= -4580000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
M_t	= 8260000 Nmm	M_{v}	= -5050000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5300000 \text{ Nmm} \sigma_a = 220 \text{ N/mm}^2
                                                                                                                                                             = 74000 \text{ N/mm}^2
         = 124000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 6200000 Nmm
                                                          = -5420000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 88500 N	M _x	= -5290000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 6490000 Nmm	M_{v}	= -5810000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 78000 N	M _x	= -4420000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3920000 Nmm	M_{v}	= -2130000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 85200 N	M _x	= -3150000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 4210000 Nmm	M_{v}	= -2360000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 93800 N	M _x	= -3650000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3150000 Nmm	M_{v}	= -2640000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 68500 N	M _×	= -3900000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3450000 Nmm	M_{v}^{λ}	= -2860000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 76400 N	M _×	= -4350000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3760000 Nmm	M_{v}	= -2020000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 83400 N	M _×	= -3110000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 4040000 Nmm	M_{v}^{λ}	= -2240000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{sca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 91800 N	M _x	= -3590000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3020000 Nmm	M_{v}	= -2500000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67100 N	M _x	= -3830000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3310000 Nmm	M_{v}	= -2710000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es =
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 78800 N	M _x	= -4450000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3950000 Nmm	M_{v}	= -2140000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es =
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 0 N M_{\star} = -3170000 \text{ Nmm} \sigma_a = 220 \text{ N/mm}^2
                                                                                                                                                             = 74000 \text{ N/mm}^2
         = 86100 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 4250000 Nmm
                                                          = -2370000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 94800 N	M _×	= -3670000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3180000 Nmm	M_{v}	= -2650000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 69200 N	M _×	= -3920000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3480000 Nmm	M_{v}	= -2870000 Nmm	E	$= 200000 \text{ N/mm}^2$		
X_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{\text{st.}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 77100 N	M _×	= -4380000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3790000 Nmm	M_{v}^{λ}	= -2030000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{sca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 84200 N	M _×	= -3130000 Nmm	σ_a	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 4070000 Nmm	M_{v}^{λ}	= -2250000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 92800 N	M _×	= -3620000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3040000 Nmm	M_{v}^{λ}	= -2510000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 67700 N	M _x	= -3860000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 3340000 Nmm	M_{v}	= -2720000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{\text{st.}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 143000 N	M _×	= 4030000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8630000 Nmm	M_{v}	= -9610000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.}}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 153000 N	M _x	= 2610000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8480000 Nmm	M_{v}	= -10300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 179000 N	M _×	= 3570000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7440000 Nmm	M_{v}	= -12600000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	ven=
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 128000 N	M _×	= 3470000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7510000 Nmm	M_{v}	= -13200000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{sca} =		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 136000 N	M _x	= 3960000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8240000 Nmm	M_{v}	= -8780000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	_v)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 145000 N	M _x	= 2560000 Nmm		= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8110000 Nmm	M_{v}	= -9410000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 170000 N	M _x	= 3490000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7070000 Nmm	M_{v}	= -11400000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	·) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 122000 N	M _×	= 3400000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7140000 Nmm	M_{v}^{γ}	= -12000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{\text{st.v}}$	_{ren} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	_{ca} =	-	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 144000 N	M _×	= 3900000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8440000 Nmm	M_{v}	= -9270000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 154000 N	M _×	= 2520000 Nmm	σ_a	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8270000 Nmm	M_{v}	= -9920000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 181000 N	M _x	= 3490000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7320000 Nmm	M_{v}	= -12200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_t$	·) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N :	= 129000 N	M_{x}	= 3390000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
M_t :	= 7380000 Nmm	M_{v}	= -12800000 Nmm		$= 200000 \text{ N/mm}^2$		
X _G :	=	J_{xy}	=	σ(M _y	y ·	σ_{mis}	es=
y _G :	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u _o :	=	J_v	=	σ	=	θ_{t}	=
V _o :	=	α	=	τ	=	r_u	=
A :	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx :	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy} :	=	$\sigma(M_x)$	(·)=	σ_{treso}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 137000 N	M _x	= 3810000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 8040000 Nmm	M_{v}	= -8440000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$, () =	$\sigma_{\text{st.v}}$	
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	=(_x	σ_{tres}	sca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 146000 N	M _×	= 2460000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7900000 Nmm	M_{v}	= -9030000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo. ia	PP1 00	oritaro rariaarriorito aon		J. tarigoriziani			•
Ν	= 171000 N	M_x	= 3390000 Nmm	σ_{a}	= 220 N/mm ²	G	= 74000 N	I/mm ²
M_t	= 6950000 Nmm	M_{v}	= -11000000 Nmm		$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	$\sigma(M_y)$)=	σ_{mise}	_{es} =	
y_{G}	=	J_{u}	=	$\tau(M_t)$	=	$\sigma_{\text{st.ve}}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	(_x)=	σ_{tresc}	a =			
<u>"</u>							25.05.11	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 123000 N	M _×	= 3290000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 7010000 Nmm	M_{v}^{λ}	= -11600000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_t$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 164000 N	M _×	= -8080000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 12900000 Nmm	M_{v}	= -8120000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M)$	_t) =	$\sigma_{st.v}$	ven=
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{sca} =		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 179000 N	M _x	= -5680000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 13700000 Nmm	M_{v}	= -9000000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 196000 N	M _×	= -6410000 Nmm	σ_a	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 10100000 Nmm	M_{v}	= -9730000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{sca} =		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 142000 N	M _x	= -6720000 Nmm		= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 10900000 Nmm	M_{v}	= -10500000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 160000 N	M _x	= -8320000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	= 74000 1	N/mm ²
M_t	= 12700000 Nmm	M_{ν}	= -7710000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M _y	, ·	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_o	=	J_{v}	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	x)=	σ_{treso}	_{ca} =			
	dolfo Zavelani Rossi,	Polited	nico di Milano, vers.11.	.05.11				25.05.11

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 174000 N	M _×	= -5830000 Nmm	$\sigma_{\rm a}$	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
M_t	= 13400000 Nmm	M_{v}	= -8530000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11