Decremental Matching in General Graphs

Sepehr Assadi*

Aaron Bernstein*

Aditi Dudeja*

*Rutgers University

- Process a sequence of edge insertion and deletions.
- Maintain a large matching with a small update time (amortized/worst case).
- Incremental Model: Only edge insertions allowed.
- Decremental Model: Only edge deletions allowed.

- Process a sequence of edge insertion and deletions.
- Maintain a large matching with a small update time (amortized/worst case).
- Incremental Model: Only edge insertions allowed.
- Decremental Model: Only edge deletions allowed.

- Process a sequence of edge insertion and deletions.
- Maintain a large matching with a small update time (amortized/worst case).
- Incremental Model: Only edge insertions allowed.
- Decremental Model: Only edge deletions allowed.

- Process a sequence of edge insertion and deletions.
- Maintain a large matching with a small update time (amortized/worst case).
- Incremental Model: Only edge insertions allowed.
- Decremental Model: Only edge deletions allowed.

- Process a sequence of edge insertion and deletions.
- Maintain a large matching with a small update time (amortized/worst case).
- Incremental Model: Only edge insertions allowed.
- Decremental Model: Only edge deletions allowed.

Background

Upper Bounds for $(1 - \varepsilon)$ - approximation

	setting	update time	bipartite/general
[GP13]	fully dynamic	$O_{\varepsilon}(\sqrt{m})$	general
[GLSSS19]	incremental	$O_{\varepsilon}(1)$	general
[BGS20]	decremental	$O_{\varepsilon}(1)$	bipartite

Background

Upper Bounds for $(1 - \varepsilon)$ - approximation

	setting	update time	bipartite/general
[GP13]	fully dynamic	$O_{\varepsilon}(\sqrt{m})$	general
[GLSSS19]	incremental	$O_{\varepsilon}(1)$	general
BGS20	decremental	$O_{\varepsilon}(1)$	bipartite

This Work: $(1 - \varepsilon)$ - approximation in $O_{\varepsilon}(1)$ update time for general graphs.

Let μ be the initial size of the matching. It is sufficient to solve the following problem in $\tilde{O}_{\varepsilon}(m)$ time:

- 1. Maintain a matching of size at least $\mu(1-\varepsilon)$ or,
- 2. Certify that maximum matching has dropped below $\mu(1-\varepsilon)$.

Let μ be the initial size of the matching. It is sufficient to solve the following problem in $\tilde{O}_{\varepsilon}(m)$ time:

- 1. Maintain a matching of size at least $\mu(1-\varepsilon)$ or,
- 2. Certify that maximum matching has dropped below $\mu(1-\varepsilon)$.

Each time 2) happens start a new phase with new estimate $\mu(1-\varepsilon)$.

phases = $\log_{1+\epsilon} n$

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

Runtime: $\Omega(n)$ amortized

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

Runtime: $\Omega(n)$ amortized

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

Runtime: $\Omega(n)$ amortized

Phase 1

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

Runtime: $\Omega(n)$ amortized

Delete

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

Runtime: $\Omega(n)$ amortized

Phase 2

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

Runtime: $\Omega(n)$ amortized

Delete

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

Runtime: $\Omega(n)$ amortized

Delete

Phases = $\Omega(n)$

- A lazy approach:
 - 1. Compute a (1ε) approximate maximum matching M in time $O_{\varepsilon}(m)$.
 - 2. Do nothing until the adversary reduces |M| by a (1ε) factor.
 - 3. Recompute M.

Runtime: $\Omega(n)$ amortized

Main Issue: Too much congestion on edges.

Solution: Enough to maintain a fractional matching. [W20, BK21]

Solution: Enough to maintain a fractional matching. [W20, BK21]

Solution: Enough to maintain a fractional matching. [W20, BK21]

Put flow $\frac{1}{n}$ on every edge.

Solution: Enough to maintain a fractional matching. [W20, BK21]

Put flow $\frac{1}{n}$ on every edge.

Adversary has to delete $\Omega(n^2)$ edges.

Solution: Enough to maintain a fractional matching. [W20, BK21]

Put flow $\frac{1}{n}$ on every edge.

Adversary has to delete $\Omega(n^2)$ edges.

Solution: Enough to maintain a fractional matching. [W20, BK21]

Put flow $\frac{1}{n}$ on every edge.

Adversary has to delete $\Omega(n^2)$ edges.

May have to put large flow on crucial edges.

Solution: Enough to maintain a fractional matching. [W20, BK21]

Put flow $\frac{1}{n}$ on every edge.

Adversary has to delete $\Omega(n^2)$ edges.

May have to put large flow on crucial edges.

Adversary can't delete too many of them.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1-\epsilon)\mu$ then terminate.
- Compute fractional matching obeying capacities $\{c(e)\}_{e \in E}$.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

3. Process deletions.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1-\epsilon)\mu$ then terminate.
- Compute fractional matching obeying capacities $\{c(e)\}_{e \in E}$.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

3. Process deletions.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute fractional matching obeying capacities $\{c(e)\}_{e \in E}$.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.
- 3. Process deletions.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute fractional matching obeying capacities $\{c(e)\}_{e \in E}$.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.
- 3. Process deletions.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute fractional matching obeying capacities $\{c(e)\}_{e \in E}$.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.
- 3. Process deletions.

- Compute fractional matching using max-flow.
- Bottleneck edges correspond to mincut.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute fractional matching obeying capacities $\{c(e)\}_{e \in E}$.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.
- 3. Process deletions.

Runtime: $\tilde{O}(m)$

- Compute fractional matching using max-flow.
- Bottleneck edges correspond to mincut.

Road Blocks for General Graphs

Road Blocks for General Graphs

Road Blocks for General Graphs

- Doesn't obey blossom constraints!
- Converse also true.

Road Blocks for General Graphs

- Doesn't obey blossom constraints!
- Converse also true.

Not every fractional matching is good.

0.5

0.5

0.5

0.5

How to determine bottleneck edges?

$$c(e) = \frac{1}{n} \, \forall e \in E$$

Theorem 1: Let G_s be uncapacitated graph obtained by sampling every edge e with probability $p(e) \propto c(e)$, then $\mu(G_s) \approx \mu(G,c)$.

Else $\mu(G_s)$ is large and good fractional matching exists. Find it!

Theorem 1: Let G_s be uncapacitated graph obtained by sampling every edge e with probability $p(e) \propto c(e)$, then $\mu(G_s) \approx \mu(G,c)$.

Else $\mu(G_s)$ is large and good fractional matching exists. Find it!

If $\mu(G_s)$ is small, then $\mu(G,c)$ is small. Increase capacity.

 $\mu(G_s)$ is large.

 $\mu(G_s)$ is large.

Find a fractional matching *f* using max flow.

 $\mu(G_s)$ is large.

Find a fractional matching *f* using max flow.

 $\mu(G_s)$ is large.

Theorem 2: f + green edges has value $\approx \mu(G_s)$ and satisfies blossom constraints.

Known: There is an $O_{\varepsilon}(m)$ time algorithm that computes $(1 - \varepsilon)$ approximate maximum matching. Moreover, the algorithm also solves dual problem "approximately".

Known: There is an $O_{\varepsilon}(m)$ time algorithm that computes $(1 - \varepsilon)$ approximate maximum matching. Moreover, the algorithm also solves dual problem "approximately".

Theorem 3: Suppose we solve the dual problem on G_s , then using that solution, we can determine bottleneck edges.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

3. Process deletions.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

3. Process deletions.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

3. Process deletions.

Theorem 2: f + green edges has value $\approx \mu(G_s)$ and satisfies blossom constraints.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

3. Process deletions.

Theorem 2: f + green edges has value $\approx \mu(G_s)$ and satisfies blossom constraints.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

Theorem 3: Suppose we solve the dual problem on G_s , then using that solution, we can determine bottleneck edges.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

3. Process deletions.

Theorem 3: Suppose we solve the dual problem on G_s , then using that solution, we can determine bottleneck edges.

1. Initially, set
$$c(e) = \frac{1}{n^2} \forall e \in E$$
.

2. Initial phase:

- Estimate matching size. If smaller than $(1 \epsilon)\mu$ then terminate.
- Compute value of fractional matching obeying capacities $\{c(e)\}_{e \in E}$ and blossom constraints.
- · If value is large, compute such a fractional matching.
- If the matching is too small, then increase capacity along crucial edges until fractional matching is large enough.

Open Questions

- 1. Can the algorithm be derandomized?
- 2. Can we improve dependence on $\frac{1}{\varepsilon}$?