MATH8213: M C & DE EXERCISES

MULTIVARIABLE CALCULUS

A. DIFFERENTIATION

I Find the domain of definition of the following functions

1.
$$z = \sqrt{4 - x^2 - y^2}$$
;

$$2. \ z = \ln(x+y)$$

2.
$$z = \ln(x + y)$$
 3. $z = \arctan \frac{1}{x^2 + y^2}$

4.
$$z = \sqrt{1 - x^2} + \sqrt{1 - y^2}$$

5.
$$z = \sqrt{x^2 - 4} + \sqrt{4 - y^2}$$

4.
$$z = \sqrt{1 - x^2} + \sqrt{1 - y^2}$$
 5. $z = \sqrt{x^2 - 4} + \sqrt{4 - y^2}$ 6. $z = \arctan \frac{x - y}{1 + x^2 y^2}$

7.
$$u = \sqrt{1 - x^2 - y^2 - z^2}$$

8.
$$z = \ln(xyz)$$

$$9. z = \sqrt{x} + \sqrt{y} + \sqrt{z}$$

10.
$$z = \arcsin x + \arcsin y + \arcsin z$$

7.
$$u = \sqrt{1 - x^2 - y^2 - z^2}$$

8. $z = \ln(xyz)$
9. $z = \sqrt{x} + \sqrt{y} + \sqrt{z}$
10. $z = \arcsin x + \arcsin y + \arcsin z$
11. $z = \sqrt{x^2 + y^2 + z^2 - 4} + \sqrt{4 - x^2 - y^2 - z^2}$

II. Evaluate the following limits

1.
$$\lim_{(x,y)\to(0,2)} \frac{\sin xy}{x}$$

1.
$$\lim_{(x,y)\to(0,2)} \frac{\sin xy}{x}$$
 2. $\lim_{(x,y)\to(\infty,k)} \left(1+\frac{y}{x}\right)^x$ 3. $\lim_{(x,y)\to(\infty,\infty)} \frac{x+y}{x^2+y^2}$

3.
$$\lim_{(x,y)\to(\infty,\infty)} \frac{x+y}{x^2+y^2}$$

4.
$$\lim_{(x,y)\to(0,0)} \frac{x}{x+y}$$

5.
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

4.
$$\lim_{(x,y)\to(0,0)} \frac{x}{x+y}$$
 5. $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ 6. $\lim_{(x,y)\to(0,0)} (x^2+y^2) \sin\frac{1}{xy}$

III. Find the points of discontinuity for the following functions

1.
$$z = \sqrt{9 - x^2 - y^2}$$

2.
$$z = \ln \sqrt{x^2 + y^2}$$

1.
$$z = \sqrt{9 - x^2 - y^2}$$
 2. $z = \ln \sqrt{x^2 + y^2}$ 3. $z = \frac{1}{(x - y)^2}$

$$4. z = \frac{1}{\sqrt{1 - x^2 - y^2}}$$

4.
$$z = \frac{1}{\sqrt{1 - x^2 - y^2}}$$
 5. $z = \frac{1}{\sqrt{1 - x^2} + \sqrt{1 - y^2}}$ 6. $z = \frac{2}{1 - x^2 - y^2}$

$$6. \ z = \frac{2}{1 - x^2 - y^2}$$

IV. calculate the partial derivatives of the first order for the following functions

$$1. z = x^2 + y^2 - 3xy$$

2.
$$z = x^y$$

3.
$$z = \arctan \frac{y}{x}$$

$$4. z = e^{\sin\frac{y}{x}}$$

1.
$$z = x^2 + y^2 - 3xy$$
 2. $z = x^y$ 3. $z = \arctan \frac{y}{x}$ 4. $z = e^{\sin \frac{y}{x}}$ 5. $z = \ln \left(x + \sqrt{x^2 + y^2} \right)$

$$6. z = \frac{x - y}{x + y}$$

$$7. z = \frac{x}{\sqrt{x^2 + y^2}}$$

6.
$$z = \frac{x - y}{x + y}$$
 7. $z = \frac{x}{\sqrt{x^2 + y^2}}$ 8. $z = \arcsin \sqrt{\frac{x^2 - y^2}{x^2 + y^2}}$ 9. $u = (xy)^z$ 10. $u = z^{xy}$

$$9. \ u = (xy)^z$$

10.
$$u = z^{xy}$$

11.
$$u = xz \arctan \frac{y}{z}$$

12.
$$u = x^2y + yz^2 + x^2z + xy$$

11.
$$u = xz \arctan \frac{y}{z}$$
 12. $u = x^2y + yz^2 + x^2z + xyz$ 13. $u = 2y^2 + z^2 - xy - yz + 2x$

Iv. Find the total differential for the following functions

1.
$$z = x^2 y^2$$

$$2. \ z = \sin^2 x + \cos^2 y$$

2.
$$z = \sin^2 x + \cos^2 y$$
 3. $z = \ln \tan \frac{y}{x}$ 4. $z = yx^y$

$$5. z = \frac{x^2 - y^2}{x^2 + y^2}$$

6.
$$z = \arctan \frac{y}{x} + \arctan \frac{x}{y}$$

5.
$$z = \frac{x^2 - y^2}{x^2 + y^2}$$
 6. $z = \arctan \frac{y}{x} + \arctan \frac{x}{y}$ 7. $u = \frac{z}{\sqrt{x^2 + y^2}}$ 8. $u = yxz$

v. Find the derivatives of the following compound functions

1.
$$\frac{dz}{dt}$$
, if $z = \frac{x}{y}$, where $x = e^t$, $y = \ln t$

1.
$$\frac{dz}{dt}$$
, if $z = \frac{x}{y}$, where $x = e^t$, $y = \ln t$ 2. $\frac{dz}{dt}$, if $z = \ln \sin \frac{x}{\sqrt{y}}$, where $x = 3t^2$, $y = \sqrt{t^2 + 1}$

3.
$$\frac{dz}{dt}$$
, if $z = x^y$, where $x = \sin t$, $y = \cos t$

3.
$$\frac{dz}{dt}$$
, if $z = x^y$, where $x = \sin t$, $y = \cos t$ 4. $\frac{du}{dt}$, if $u = xyz$, where $x = t + 1$, $y = \frac{\partial z}{\partial x} = \ln t$, $z = \tan t$

5.
$$\frac{du}{dt}$$
, if $u = \frac{z}{\sqrt{x^2 + y^2}}$ xyz, where $x = a \cos t$, $y = a \sin t$, $z = b$

6.
$$\frac{\partial z}{\partial u}$$
, $\frac{\partial z}{\partial v}$, if $z = \arctan \frac{x}{y}$, where $x = u \sin v$, $y = u \cos v$

7.
$$\frac{\partial x}{\partial r}$$
, $\frac{\partial y}{\partial r}$, $\frac{\partial z}{\partial r}$, $\frac{\partial x}{\partial u}$, $\frac{\partial y}{\partial u}$, $\frac{\partial z}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial v}$, $\frac{\partial z}{\partial v}$, if $x = r \sin u \cos v$, $y = r \sin u \sin v$, $z = r \cos u$

VI. Calculate the partial derivatives of second order for the following functions

$$1. z = x^2 + y^2 - 3x$$

2.
$$z = x^y$$

3.
$$z = \arctan \frac{y}{x}$$

1.
$$z = x^2 + y^2 - 3xy$$
 2. $z = x^y$ 3. $z = \arctan \frac{y}{x}$ 4. $z = \sin x \sin y \sin(x + y)$

5.
$$u = \sqrt{x^2 + y^2 + z^2}$$

6.
$$u = z^{xy}$$

7.
$$u = xz \arctan \frac{y}{z}$$

5.
$$u = \sqrt{x^2 + y^2 + z^2}$$
 6. $u = z^{xy}$ 7. $u = xz \arctan \frac{y}{z}$ 8. $u = x^2y + yz^2 + x^2z + xyz$

VII. Calculate the derivatives of the functions given implicitely

$$1.\frac{dy}{dx}; \frac{d^2y}{dx^2}, \text{if } y = 1 + y^x$$

1.
$$\frac{dy}{dx}$$
; $\frac{d^2y}{dx^2}$, if $y = 1 + y^x$ 2. $\frac{dy}{dx}$; $\frac{d^2y}{dx^2}$, if $e^x \sin y + e^y \sin x = 1$ 3. $\frac{dy}{dx}$; $\frac{d^2y}{dx^2}$, if $\frac{x^2}{dx^2} + \frac{y^2}{h^2} = 1$

$$3.\frac{dy}{dx}; \frac{d^2y}{dx^2}, \text{if } \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

4.
$$\frac{\partial z}{\partial x}$$
; $\frac{\partial z}{\partial y}$, if $x \cos y + y \cos z + z \cos x = 1$ 5. $\frac{\partial z}{\partial x}$; $\frac{\partial z}{\partial y}$, if $x^2 + y^2 - z^2 - xy = 0$

5.
$$\frac{\partial z}{\partial x}$$
; $\frac{\partial z}{\partial y}$, if $x^2 + y^2 - z^2 - xy = 0$

VIII. Find the equations of the tangent plane and normal line to the given surfaces at given points.

1.
$$z = 3x^2 + 2y^2 - 11$$
; $P(2,1,3)$

2.
$$z = x^2 + y^2$$
; $P(1, -2, 5)$

1.
$$z = 3x^2 + 2y^2 - 11$$
; $P(2,1,3)$ 2. $z = x^2 + y^2$; $P(1,-2,5)$ 3. $x^2 + 4y^2 - 4z^2 - 4 = 0$; $P(2,1,1)$

4.
$$x^2 + y^2 + z^2 = 169$$
; $P(3, 4, 12)$

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
; $P(x_0, y_0, z_0)$

4.
$$x^2 + y^2 + z^2 = 169$$
; $P(3, 4, 12)$ 5. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$; $P(x_0, y_0, z_0)$ 6. $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$; $P(x_0, y_0, z_0)$

IX. Examine the following functions for extrema.

1.
$$z = x^2 + y^2 - 4x + 6y + 25$$
 2. $z = x^3 + y^3 + 3xy$ 3. $z = x^2 + 3xy^2 - 15x - 12y$
4. $z = 6 - 4x - 3y$; $S / C : x^2 + y^2 = 1$ 5. $z = xy$; $S / C : x + y = 1$ 6. $z = x + y$; $S / C : x^2 + y^2 = 5$

B. INTEGRATION

I. Evaluate the following double integrals

1.
$$\iint_{D} \frac{dxdy}{\sqrt{(1-x^2)(1-y^2)}}; D: 0 \le x \le 1; 0 \le y \le 1.$$

2.
$$\iint_{D} \frac{dxdy}{x^2 + y^2}$$
; $D: 0 \le x \le 2$; $0 \le y \le x$

3.
$$\iint_D (x^2 + y^2) dx dy$$
, $D: 0 \le x \le 1$; $x \le y \le \sqrt{x}$

4.
$$\iint_{D} r dr d\theta, D: 0 \le \theta \le 2\pi; a \sin \theta \le r \le a$$

5.
$$\iint_{D} r^{2} \sin^{2} \theta dr d\theta; D: \frac{-\pi}{2} \le \theta \le \frac{\pi}{2} 2\pi; 0 \le r \le 3\cos \theta$$

6.
$$\iint_D (x-y)dxdy$$
; $D: y = 2-x^2$; $y = 2x-1$

7.
$$\iint_{D} \sin(x+y) dx dy$$
; $D: x = 0$; $y = \frac{\pi}{2}$; $y = x$

8.
$$\iint_D x dx dy; D: \Delta_{ABC}: A(2,3); B(7,2), C(4,5)$$

9.
$$\iint_{D} \sqrt{x^2 + y^2} dxdy; D: x^2 + y^2 \le a^2; x \ge 0; y \ge 0$$

10.
$$\iint_D (x+y)^3 (x-y)^2 dxdy; D: x+y=1; x-y=1; x+y=3; x-y=-1$$

II. Applications of double integral: Find the area bounded by

1.
$$x = 4y - y^2$$
; $x + y = 6$ 2. $x = y^2 - 2y$; $x + y = 0$ 3. $y^2 = 4x$; $x^2 = 4y$

3.
$$x = 4 - y^2$$
; $x + 2y = 4$ 4. $x^2 + y^2 = 4$ 5. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

III. Evaluate the following triple integrals

1.
$$\iiint_{D} (x^2 + y^2 + z^2) dx dy dz; D: 0 \le x \le 1; 0 \le y \le 1; 0 \le z \le 1$$

2.
$$\iiint_{D} x^{2} dx dy dz; D: x^{2} + y^{2} + z^{2} \le R^{2}$$

3.
$$\iiint_{D} (x^2 + y^2 + z^2) dx dy dz; D: 0 \le x \le 1; 0 \le y \le 1; 0 \le z \le \sqrt{1 - x^2 - y^2}$$

4.
$$\iiint_{D} (x^{2} + y^{2} + z^{2}) dx dy dz; D: 0 \le x \le 1; 0 \le y \le 1 - x; 0 \le z \le 1 - x - y$$

5.
$$\iiint_{D} xyzdxdydz; D: 0 \le x \le 1; 0 \le y \le 1 - x; 0 \le z \le 1 - x - y$$

IV. Applications of triple integral: Find the volume

- 1. bounded by the Surface: $z = a^2 x^2$ and the planes : x = 0; y = 0; z = 0; y = b
- 2. of the sphere: $x^2 + y^2 + z^2 = a^2$
- 3. of the tetrahedron bounded by the coordinates planes and the Plane: x + y + z = 1

DIFFERENTIAL EQUATIONS

I. Prove that y is a solution of the indicated differential equation

1.
$$y = c_1 e^x + c_2 e^{2x}$$
; $y'' - 3y' + 2y = 0$

2.
$$y = ce^{-3x}$$
; $y' + 3y = 0$

3.
$$y = e^x(c_1 \cos x + c_2 \sin x); y'' - 2y' + 2y = 0$$
 4. $y = (c_1 + c_2 x)e^{-2x}; y'' + 4y' + 4y = 0$

4.
$$y = (c_1 + c_2 x)e^{-2x}$$
; $y'' + 4y' + 4y = 0$

7.
$$y^2 - x^2 - xy = c$$
; $(x - 2y)y' + 2x + y = 0$

7.
$$y^2 - x^2 - xy = c$$
; $(x - 2y)y' + 2x + y = 0$ 8. $y = c_1 x + \frac{c_2}{x} + c_3$; $y''' + \frac{3}{x}y'' = 0$

9.
$$y = c_1 e^{\arcsin x} + c_2 e^{-\arcsin x}$$
; $(1 - x^2)y'' - xy' - y = 0$

II. Form the differential equation whose general solution is:

1.
$$y = cx^2 - x^2$$

1.
$$y = cx^2 - x$$
 2. $y = c_1x^3 + c_2x + c_3$ **3.** $y = c_1e^x + c_2xe^x$ **4.** $y = c_1x^3 + c_2x$

3.
$$y = c_1 e^x + c_2 x e^x$$

4.
$$y = c_1 x^3 + c_2 x$$

5.
$$x^2 + y^2 = c^2$$

5.
$$x^2 + y^2 = c^2$$
 7. $y = c_1 e^x + c_2 x e^x + c_3 e^{-x}$ 8. $y = c_1 e^x + c_2 x e^{-x} + c_3 e^{-x}$

8.
$$y = c_1 e^x + c_2 x e^{-x} + c_3 e^{-x}$$

III. First order ODE

1. Solve the following DE

a)
$$\tan x \sin^2 y dx + \cos x \cot y dy = 0$$
 b) $xy' - y = y^3$ c) $xyy' = 1 - x^3$

b)
$$xy' - y = y^3$$

c)
$$xyy' = 1 - x^2$$

d)
$$y - xy' = 1 + x^2y'$$

e)
$$y'tgx = y$$

e)
$$y'tgx = y$$
 f) $3e^x \tan y dx + (1 - e^x) \sec^2 y dy = 0$

2. Find the solutions of the following DE satisfying the given initial conditions

a)
$$(1+e^x)$$
 $yy'=e^x$, $y(0)=1$

a)
$$(1+e^x)yy'=e^x$$
, $y(0)=1$ b) $(xy^2+x)dx+(x^2y-y)dy=0$, $y(0)=1$

3. Integrate the following homogeneous DE

a)
$$(y-x)dx + (y+x)dy = 0$$
 b) $(x+y)dx + xdy = 0$

b)
$$(x + y)dx + xdy = 0$$

c)
$$(x+y)dx + (y-x)dy = 0$$

$$d) x dy - y dx = \sqrt{x^2 + y^2} dx$$

d)
$$xdy - ydx = \sqrt{x^2 + y^2 dx}$$
 e) $(8y + 10x)dx + (5y + 7x)dy = 0$ f) $xy^2 dy = (x^3 + y^3)dx$

f)
$$xy^2 dy = (x^3 + y^3) dx$$

4. Solve the following DE reducible to homogeneous DE

a)
$$(2x+y-4)dy+(x-2y+5)dx=0$$

b)
$$y' = \frac{1 - 3x - 3y}{1 + x + y}$$

c)
$$y' = \frac{x+2y+1}{2x+4y+3}$$

d)
$$(x+2y+1)dx - (2x+4y+3)dy = 0$$

5. Solve the following linear DE

a)
$$y' - \frac{2y}{x+1} = (x+1)$$

b)
$$y' - \frac{y}{x} = \frac{x+1}{x}$$

a)
$$y' - \frac{2y}{x+1} = (x+1)^3$$
 b) $y' - \frac{y}{x} = \frac{x+1}{x}$ c) $(x-x^3)y' + (2x^2-1)y = x^3$

$$d) y' \cos x + y \sin x = -1$$

e)
$$y' - \frac{n}{x}y = e^x x^n$$

d)
$$y'\cos x + y\sin x = -1$$
 e) $y' - \frac{n}{x}y = e^x x^n$ f) $y' + y = e^{-x}$ g) $y' + \frac{1 - 2x}{x^2}y - 1 = 0$

6. Solve the following DE

a)
$$y' - \frac{y}{1 - x^2} - 1 - x = 0$$
, $y(0) = 0$ b) $y' - ytgx = \frac{1}{\cos x}$, $y(0) = 0$

b)
$$y' - ytgx = \frac{1}{\cos x}$$
, $y(0) = 0$

c)
$$xy' + y - e^x = 0$$
, $y(1) = 2$

c)
$$xy' + y - e^x = 0$$
, $y(1) = 2$ d) $xy' + y - e^x = 0$, $y(0) = 1$

8. Integrate the following Bernoulli's equations

a)
$$y' + xy = x^3 y^3$$
 b) $(1 - x^2)y' - xy - xy^2 = 0$ c) $3y^2y' - y^3 - x - 1 = 0$ d) $(y \ln x - 2)y dx = x dy$

e)
$$y - y' \cos x = y^2 \cos x (1 - \sin x)$$
 f) $y' + \frac{y}{x} = -xy^2$ g) $2xyy' - y^2 + x = 0$

10. Integrate the followig exact DE

a)
$$(x + y)dx + (x + 2y)dy = 0$$
 b) $(x^2 + y^2 + 2x)dx + 2xydy = 0$ c) $(x^2 + y)dx + (x - 2y)dy = 0$

d)
$$(x^3 - 3xy^2 + 2)dx - (3x^2y - y^2)dy = 0$$
 e) $(\sin xy + xy\cos xy)dx + x^2\cos xydy = 0$

ODE OF THE SECOND ORDER

1. Solve the following DE

a)
$$y'' - 5y' + 6y = 0$$
 b) $y'' - 9y = 0$ c) $y'' - y' = 0$ d) $y'' - 2y' + 2y = 0$

i)
$$y'' - 5y' + 4y = 0$$
; $y(0) = 5$, $y'(0) = 8$
 j) $y'' + 3y' + 2y = 0$; $y(0) = 1$, $y'(0) = -1$

c)
$$y'' + 3y = 0$$
; $y(0) = 0$; $y(3) = 0$

2. Solve the following DE

a)
$$y'' - 7y' + 12y = -e^{4x}$$
 b) $y'' - 2y' = x^2 - 1$ c) $y'' - 2y' = e^{2x} + 5$

g)
$$y'' + 2y' + y = e^x + e^{-x}$$

h) $y'' - 2y' + 10y = \sin 3x + e^x$ i) $y'' - 3y' = x + \cos x$

j)
$$y'' - 2y' = e^{2x}$$
; $y(0) = \frac{1}{8}$; $y'(0) = 1$ k) $y'' + 4y = \sin x$; $y(0) = y'(0) = 1$

3. Solve the following DE using the method of variation of arbitrary constants

a)
$$y'' + y = \tan x$$
 b) $y'' + y = \cot gx$ c) $y'' + 2y' + y = \frac{e^{-x}}{x}$

d)
$$y'' = y + \sec x$$
 e) $y'' + y = \cos ecx$ f) $y'' - 2y = 4x^2e^{2x}$