

VI Международная научно-практическая конференция

ГРАФЕН И РОДСТВЕННЫЕ СТРУКТУРЫ: СИНТЕЗ, ПРОИЗВОДСТВО И ПРИМЕНЕНИЕ (GRS-2025)

Россия, г. Тамбов, 24 - 26 сентября 2025 г.

<u>Ю.В. ИОНИ</u>, В.Р. ИБРАГИМОВА

ИОНХ РАН

ПРОБЛЕМА ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ-ОТХОДАМИ ПРОИЗВОДСТВ ПРИНИМАЕТ ГЛОБАЛЬНЫЕ МАСШТАБЫ!

Производство синтетических красителей составляет более 700 тыс. тонн в год!

НЕОБХОДИМ ПОИСК НОВЫХ И ЭФФЕКТИВНЫХ СОРБЕНТОВ

ПОЛУЧЕНИЕ ОКСИДА ГРАФЕНА

Схема синтеза ОГ по модифицированному методу Хаммерса

Структура ОГ

Метод Хаммерса имеет ряд преимуществ!

ВОЗМОЖНОСТЬ УПРАВЛЯТЬ СТРУКТУРОЙ И СВОЙСТВАМИ КОНЕЧНОГО ПРОДУКТА

«Нормально окисленный» ОГ

1.17-1.19

СОРБЦИОННЫЕ ИСПЫТАНИЯ ПО УДАЛЕНИЮ КРАСИТЕЛЯ МЕТИЛЕНОВОГО ГОЛУБОГО ИЗ ВОДНОГО РАСТВОРА

«Недоокисленный» ОГ

Условия:

100 мл раствора красителя метиленового голубого, 10 ppm, pH 7, 20°C 10 мг сорбента

Молекула метиленового голубого (МГ)

«Нормально окисленный» ОГ

«Переокисленный» ОГ

СОРБЦИОННЫЕ ХАРАКТЕРИСТИКИ ОГ

Эффективность адсорбции красителя метиленового голубого

НАИЛУЧШАЯ ЭФФЕКТИВНОСТЬ НАБЛЮДАЛАСЬ ДЛЯ НЕДООКИСЛЕННОГО И ПЕРЕОКИСЛЕННОГО ОГ

СВОЙСТВА ОГ ЗАВИСЯТ ОТ СТРУКТУРЫ

«Недоокисленный» ОГ

«Нормально окисленный» ОГ

«Переокисленный» ОГ

МЕХАНИЗМ СОРБЦИИ НА НОРМАЛЬНО ОКИСЛЕННОМ И ПЕРЕОКИСЛЕННОМ ОГ

Молекула метиленового голубого (МГ)

МЕХАНИЗМ СОРБЦИИ НА НЕДООКИСЛЕННОМ ОГ

ПСЕВДОСШИТАЯ 3D СТРУКТУРА

СРАВНИТЕЛЬНЫЕ ЭКСПЕРИМЕНТЫ С АКТИВИРОВАННЫМ УГЛЕМ

	Supelco 1.02184 Charcoal activa	уголь 250 нг активированный	OF	ОГ пере- окисленный	ВОГ
Цена, руб.	13 714, 21	52 000	≥100 000	_	-
SBET, M^2/Γ	725	500	2	5	≈100

Частично восстановленный оксид графена (ВОГ) С/О ≥2.69

11

ВОССТАНОВЛЕННЫЙ ОКСИД ГРАФЕНА

Химически восстановленный ОГ

Термически восстановленный ОГ

ОГ, обработанный в сверхкритическом изопропаноле

исследования ог и вог

Поверхностные функциональные группы

Площадь поверхности

	$S_{BET'} M^2/\Gamma$
ОГ_н	2
ΟΓ_ο	5
ВОГ_т	104
ВОГ_ски	88
ВОГ_х	158
АУ	725

АДСОРБЦИОННЫЕ ЭКСПЕРИМЕНТЫ ПО ОТНОШЕНИЮ К КРАСИТЕЛЯМ РАЗЛИЧНЫХ ТИПОВ

АДСОРБЦИОННЫЕ ЭКСПЕРИМЕНТЫ ПО ОТНОШЕНИЮ К КРАСИТЕЛЯМ РАЗЛИЧНЫХ ТИПОВ

ОГ_н: может использоваться для селективной адсорбции катионных красителей XX

ОГ_о: поглощает все выбранные красители с высокой эффективностью. **XXX**

ВОГ_т: хорошо поглощает все выбранные красители. XXX

ВОГ_ски: может быть сорбентом в ограниченном диапазоне концентраций. XXX

 $BO\Gamma_x$: может использоваться для селективной сорбции $M\Gamma_x$

АУ: может использоваться для селективной сорбции катионных красителей. XX

АДСОРБЦИОННЫЕ ИСПЫТАНИЯ В РЕАЛЬНЫХ УСЛОВИЯХ

Вода была отобрана из р. Пахра, МО

выводы

Используя метод Хаммерса можно получать материал с заданной структурой и свойствами.

Материалы на основе ОГ и ВОГ являются универсальными сорбентами по отношению к синтетическим красителям различной природы.

Сорбционные характеристики графеновых материалов равнозначны и в ряде случаев превосходят характеристики активированного угля.

Сорбенты на основе ОГ способны проявлять селективность при удалении катионных красителей из водных растворов.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

