Statistisches Data Mining (StDM) Woche 11

Oliver Dürr

Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

oliver.duerr@zhaw.ch
Winterthur, 29 November 2016

No laptops, no phones, no problems

Multitasking senkt Lerneffizienz:

 Keine Laptops im Theorie-Unterricht Deckel zu oder fast zu (Sleep modus)

Overview of classification (until the end to the semester)

Classifiers

K-Nearest-Neighbors (KNN) Logistic Regression

Linear discriminant analysis Support Vector Machine (SVM)

Classification Trees

Neural networks NN Deep Neural Networks (e.g. CNN, RNN)

. . .

Evaluation

Cross validation
Performance measures
ROC Analysis / Lift Charts

Theoretical Guidance / General Ideas

Bayes Classifier
Bias Variance Trade
off (Overfitting)

Combining classifiers

Bagging
Boosting
Random Forest

Feature Engineering

Feature Extraction Feature Selection

Decision Trees Chapter 8.1 in ILSR

Note on ISLR

 In ISLR they also include trees for regression. Here we focus on trees for classification

Example of a Decision Tree for classification

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting Attributes Refund Yes No NO MarSt Married Single, Divorced TaxInc NO > 80K < 80K YES NO

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Test Set

Start from the root of tree.

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Decision Tree Classification Task

Test Set

Restrict to recursive Partitioning by binary splits

- There many approaches
 - C 4.5 / C5 Algorithms, SPRINT
- Here top down splitting until no further split possible (or other criteria)

How to train a classification tree

- Starting with a single region -- i.e., all given data
- At the m-th iteration:

```
for each region R
                                         Score: Node impurity (next slides)
  for each attribute x_i in R
    for each possible split s_j of x_j
       record change in score when we partition R into R^l and R^r
Choose (x_j, s_j) giving maximum improvement to fit
Replace R with R^l; add R^r
```

0.4

- Draw 3 splits to separate the data.
- Draw the corresponding tree

Construction of a classification tree: Minimize the impurity in each node

Parent Node p is split into 2 partitions Maximize Gain over possible splits:

$$GAIN_{split} = IMPURITY(p) - \left(\sum_{i=1}^{2} \frac{n_i}{n} IMPURITY(i)\right)$$

n; is number of records in partition i

Possible Impurity Measures:

- Gini index
- entropy
- misclassification error

Construction of a classification tree: Minimize the impurity in each node

We have n_c=4 different classes: red, green, blue, olive

The three most common impurity measures

 $p(j \mid t)$ is the relative frequency of class j at node t n_c is the number of different classes

$$GINI(t) = 1 - \sum_{j=1}^{n_c} [p(j | t)]^2$$

$$Entropy(t) = -\sum_{j=1}^{n_C} p(j|t) \log_2(p(j|t))$$

Classification error:

Classification – Error(t) = 1 –
$$\max_{j \in \{1,\dots,n_c\}} p(j \mid t)$$

Computing the Gini Index for three 2-class examples

Gini Index at a given node t (in case of n_c=2 different classes):

$$GINI(t) = 1 - \sum_{j=1}^{2} [p(j \mid t)]^{2} = 1 - (p(class.1 \mid t)^{2} + p(class.2 \mid t)^{2})$$

Distribution of class 1 and class 2 in node t:

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Computing the Entropy for three examples

Entropy at a given node t (in case of 2 different classes):

$$Entropy(t) = -(p(class.1) \cdot \log_2(p(class.1)) + p(class.2) \cdot \log_2(p(class.2)))$$

C1	0
C2	6

$$p(C1) = 0/6 = 0$$
 $p(C2) = 6/6 = 1$

p(C1) =
$$0/6 = 0$$
 p(C2) = $6/6 = 1$
Entropy = $-0 \log(0) - 1 \log(1) = -0 - 0 = 0$

C1	1
C2	5

$$p(C1) = 1/6$$
 $p(C2) = 5/6$

p(C1) = 1/6 p(C2) = 5/6
Entropy =
$$-(1/6) \log_2(1/6) - (5/6) \log_2(1/6) = 0.65$$

$$p(C1) = 2/6$$
 $p(C2) = 4/6$

Entropy = $-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

Computing the miss-classification error for three examples

Classification error at a node t (in case of 2 different classes):

Classification –
$$Error(t) = 1 - \max(p(class.1), p(class.2))$$

C1	0
C2	6

$$p(C1) = 0/6 = 0$$
 $p(C2) = 6/6 = 1$
Error = 1 - max (0, 1) = 1 - 1 = 0

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$p(C1) = 1/6$$
 $p(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$p(C1) = 2/6$$
 $p(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Compare the three impurity measures for a 2-class problem

p: proportion of class 1

Using a tree for classification problems

- Starting with a single region -- i.e., all given data
- At the m-th iteration:

Decision Tree in R

```
# rpart for recursive partitioning
library(rpart)
d = rpart(Species ~., data=iris)
plot(d,margin=0.2, uniform=TRUE)
text(d, use.n = TRUE)
```


Overfitting

Overfitting

The larger the tree, the lower the error on the training set. "low bias"

However, training error can get worse. "high variance"

Taken from ISLR

Pruning

- First Strategy: Stop growing the tree if impurity measure gain is small.
- To short-sighted: a seemingly worthless split early on in the tree might be followed by a very good split
- A better strategy is to grow a very large tree to the end, and then prune it back in order to obtain a subtree

- In rpart the pruning controlled with a complexity parameter cp
- cp is a parameter in regressions trees which can be optimized (like k in kNN)
- Later: Crossvalidation a way to systematically find the best meta parameter

Pruning

```
t1 <- rpart(sex ~., data=crabs)
plot(t1, margin=0.2, uniform=TRUE);text(t1,use.n=TRUE)

t2 = prune(t1, cp=0.05)
plot(t2);text(t2,use.n=TRUE)

t3 = prune(t1, cp=0.1)
plot(t3);text(t3,use.n=TRUE)

t4 = prune(t1, cp=0.2)
plot(t4);text(t4,use.n=TRUE)</pre>
```

cp = 0.05

cp = 0.1

Original Tree

$$cp = 0.2$$

Trees vs Linear Models

Slide Credit: ISLR

Pros and cons of tree models

Pros

- Interpretability
- Robust to outliers in the input variables
- Can capture non-linear structures
- Can capture local interactions very well
- Low bias if appropriate input variables are available and tree has sufficient depth.

Cons

- High variation (instability of trees)
- Tend to overfit
- Needs big datasets to capture additive structures
- Inefficient for capturing linear structures

Which supervised learning method is best?

Bundling improves performance

Evolving results I Low hanging fruits and slowed down progress

- After 3 weeks, at least 40 teams had improved the Netflix classifier
- Top teams showed about 5% improvement
- However, improvement slowed:

from http://www.research.att.com/~volinsky/netflix/

Details: Gravity

Quote

Table 5: Best results of single approaches and their

combinations

Method/Combination	RMSE	
MF	0.9190	
NB	0.9313	
CL	0.9606	
NB + CL	0.9275	
MF + CL	0.9137	
MF + NB	0.9089	
MF + NB + CL	0.9089	

[home.mit.bme.hu/~gtakacs/download/gravity.pdf]

	No Progress Prize candidates yet	- 1	-
Pro	gress Prize - RMSE <= 0.8625		
1	BellKor	0.8705	8.50
Pro	<u>gress Prize 2007</u> - RMSE = 0.8712 -	- Winning Tear	n: KorBell
2	KorBell	0.8712	8.43
-3	When Cravity and Dinescure Unite	0.0717	0.30
4	Gravity	0.8743	8.10
5	pasno	0.8740	8.07
6	<u>Dinosaur Planet</u>	0.8753	8.00
7	ML@UToronto A	0.8787	7.64
8	Arek Paterek	0.8789	7.62
9	NIPS Reject	0.8808	7.42
10	Just a guy in a garage	0.8834	7.15
11	Ensemble Experts	0.8841	7.07
12	mathematical capital	0.8844	7.04
13	HowLowCanHeGo2	0.8847	7.01
14	The Thought Gang	0.8849	6.99
15	Reel Ingenuity	0.8855	6.93
16	strudeltamale	0.8859	6.88
17	NIPS Submission	0.8861	6.86
18	Three Blind Mice	0.8869	6.78
19	TrainOnTest	0.8869	6.78
20	Geoff Dean	0.8869	6.78
21	Rookies	0.8872	6.75
22	Paul Harrison	0.8872	6.75
23	ATTEAM	0.8873	6.74
24	wxyzconsulting.com	0.8874	6.73
25	ICMLsubmission	0.8875	6.72
26	Efratko	0.8877	6.70
27	Kitty	0.8881	6.65
28	SecondaryResults	0.8884	6.62
29	Birgit Kraft	0.8885	6.61

Details: When Gravity and Dinosaurs Unite

- Quote
- "Our common team blends the result of team Gravity and team Dinosaur Planet."

Details: BellKor / KorBell

- Quote
- "Our final solution (RMSE=0.8712) consists of blending 107 individual results."

Evolving results III Final results

- The winner was an ensemble of ensembles (including BellKor)
- Gradient boosted decision trees [http://www.netflixprize.com/assets/GrandPrize2009 BPC BellKor.pdf]

Overview of Ensemble Methods

Many instances of the same classifier

- Bagging (bootstrapping & aggregating)
 - Create "new" data using bootstrap
 - · Train classifiers on new data
 - Average over all predictions (e.g. take majority vote)
- Bagged Trees
 - Use bagging with decision trees
- Random Forest
 - Bagged trees with special trick
- Boosting
 - An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records.
- Combining classifiers
 - Weighted averaging over predictions
 - Stacking classifiers
 - Use output of classifiers as input for a new classifier

Bagging

Idee des Bootstraps

Idee: Die Sampling Verteilung liegt nahegenug an der 'wahren'

Bagging: Bootstrap Aggregating

Why does it work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon = 0.35$
- Assume classifiers are independent (that's the hardest assumption)
- Take majority vote
- Majority voter is wrong if 13 or more are wrong
- Number of wrong predictors X ~ Bin(size=25, p₀=0.35)

- •> 1 pbinom(12, size=25, prob = 0.35)
- •[1] 0.06044491

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Why does it work?

25 Base Classifiers

Ensembles are only better than one classifier, if each classifier is better than random guessing!