

## AMENDMENTS

### In the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently amended) A mechanism for preventing ESD damage to a electronic device comprising at least one connection area having a plurality of pads ( $P_1$  to  $P_n$ ) arranged sequentially for mounting to an integrated circuit, and a plurality of fan-out signal lines ( $F_1$  to  $F_n$ ) extending from the pads ( $P_1$  to  $P_n$ ) respectively, the pads  $P_1$  and  $P_n$  disposed on outermost sides of the connection area, the mechanism comprising:

a plurality of ESD protection device ( $ES_1$  to  $ES_n$ ) configured corresponding to the fan-out signal lines ( $F_1$  to  $F_n$ );

wherein, ~~equivalent~~ impedances of the ESD protection devices  $ES_1$  and  $ES_n$  are smaller than ~~equivalent~~ impedances of the other ESD protection devices  $ES_2$  to  $ES_{n-1}$ .

2. (Original) The mechanism as claimed in claim 1, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure and equivalent channel widths of the ESD protection devices  $ES_1$  and  $ES_n$  are longer than equivalent channel widths of the other ESD protection devices  $ES_2$  to  $ES_{n-1}$ .

3. (Currently amended) A mechanism for preventing ESD damage to a electronic device comprising at least one connection area having a plurality of pads ( $P_1$  to  $P_n$ ) arranged sequentially for mounting to an integrated circuit, and a plurality of fan-out signal lines ( $F_1$  to  $F_n$ ) extending

from the pads ( $P_1$  to  $P_n$ ) respectively, the pads  $P_1$  and  $P_n$  disposed on outermost sides of the connection area, the mechanism comprising:

a plurality of ESD protection device ( $ES_1$  to  $ES_n$ ) configured corresponding to the fan-out signal lines ( $F_1$  to  $F_n$ );

wherein, ~~equivalent~~-impedances of the ESD protection devices  $ES_1$  to  $ES_j$  gradually increase and ~~equivalent~~-impedances of the ESD protection devices  $ES_{j+1}$  to  $ES_n$  gradually decrease,  $1 < j < n$ .

4. (Original) The mechanism as claimed in claim 3, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure, equivalent channel widths of the ESD protection devices  $ES_1$  to  $ES_j$  gradually decrease, and equivalent channel widths of the ESD protection devices  $ES_{j+1}$  to  $ES_n$  gradually increase.

5. (Currently amended) A mechanism for preventing ESD damage to a electronic device comprising at least one connection area having a plurality of pads ( $P_1$  to  $P_n$ ) arranged sequentially for mounting to an integrated circuit, and a plurality of fan-out signal lines ( $F_1$  to  $F_n$ ) extending from the pads ( $P_1$  to  $P_n$ ) respectively, the pads  $P_1$  and  $P_n$  disposed on outermost sides of the connection area, the mechanism comprising:

a plurality of ESD protection device ( $ES_1$  to  $ES_n$ ) configured corresponding to the fan-out signal lines ( $F_1$  to  $F_n$ );

wherein, an ~~equivalent~~-impedance of one ESD protection device  $ES_k$  is different from ~~equivalent~~-impedances of the other ESD protection devices,  $1 \leq k \leq n$ .

6. (Original) The mechanism as claimed in claim 5, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure and an equivalent channel width of the ESD protection device  $ES_k$  is different from equivalent channel widths of the other ESD protection devices.

7. (Currently amended) A liquid crystal display panel, comprising:

a pixel array;

at least one connection area having a plurality of pads ( $P_1$  to  $P_n$ ) arranged sequentially for mounting to an integrated circuit, wherein the pads  $P_1$  and  $P_n$  are disposed on outermost sides of the connection area;

a plurality of fan-out signal lines ( $F_1$  to  $F_n$ ) extending from the pads ( $P_1$  to  $P_n$ ) respectively; and

a plurality of ESD protection devices ( $ES_1$  to  $ES_n$ ) configured corresponding to the fan-out signal lines ( $F_1$  to  $F_n$ );

wherein, ~~equivalent~~-impedances of the ESD protection devices  $ES_1$  and  $ES_n$  are smaller than ~~equivalent~~-impedances of the other ESD protection devices  $ES_2$  to  $ES_{n-1}$ .

8. (Original) The liquid crystal display panel as claimed in claim 7, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure and equivalent channel widths of the ESD protection devices  $ES_1$  and  $ES_n$  are longer than equivalent channel widths of the other ESD protection devices  $ES_2$  to  $ES_{n-1}$ .

9. (Original) The liquid crystal display panel as claimed in claim 8, wherein the equivalent channel widths of the ESD protection devices  $ES_1$  to  $ES_j$  gradually decrease, and the equivalent channel widths of the ESD protection devices  $ES_{j+1}$  to  $ES_n$  gradually increase,  
 $1 < j < n$ .

10. (Currently amended) A liquid crystal display panel, comprising:

a pixel array;

at least one connection area having a plurality of pads ( $P_1$  to  $P_n$ ) arranged sequentially for mounting to an integrated circuit, wherein the pads  $P_1$  and  $P_n$  are disposed on outermost sides of the connection area;

a plurality of fan-out signal lines ( $F_1$  to  $F_n$ ) extending from the pads ( $P_1$  to  $P_n$ ) respectively; and

a plurality of ESD protection device ( $ES_1$  to  $ES_n$ ) configured corresponding to the fan-out signal lines ( $F_1$  to  $F_n$ );

wherein, an ~~equivalent~~-impedance of one ESD protection device  $ES_k$  is different from ~~equivalent~~-impedances of the other ESD protection devices,  $1 \leq k \leq n$ .

11. (Original) The liquid crystal display panel as claimed in claim 10, wherein each ESD protection device comprises at least one element having a MOS transistor circuit structure and an equivalent channel width of the ESD protection device  $ES_k$  is different from equivalent channel widths of the other ESD protection devices.