Presidency University The Skill Enhancement Elective Course STAT03SEEC01 Data Analysis Project

Niranjan Dey January 17, 2020

Introduction:

- Poliomyelitis is a crippling disease with dramatically visible impact on the patient. A 1985 eradication program has helped guide a more recently launched global eradication effort. In addition, oral polio vaccine (OPV), given in large-scale programs, has been essential to this success. Before 1955, and the licensure of inactivated polio vaccine (IPV), poliomyelitis was a continuing major cause of permanent disability across the world. In the United States alone, more than 20,000 cases of paralytic polio cases were annually reported during the early 1950s. The process of vaccine manufacture had to be changed, thus resulting in Oral Polio Vaccine (OPV). The success of OPV in the US, Canada, most European countries, and the USSR, made it a logical choice for use in the Americas. Other important reasons to use OPV included the substantially lower cost of OPV compared with IPV; the ability of OPV to induce intestinal immunity, thus facilitating the interruption of wild poliovirus transmission; the capacity of OPV viruses to spread and immunize close contacts; the demonstrated efficacy of OPV in controlling outbreaks; the ease of administration of OPV, a significant advantage in mass campaigns; and the potential ability of OPV viruses to displace the circulation of wild poliovirus in the environment. Over the last fifty years the disease has been brought under control by the use of oral vaccine.
- We have a data on Polio Cases from February 1960 to January 1975. Our project is based on **Time Series analysis** of the given data. It is of considerable interest to identify **trend**, **seasonality** and other features of data on **incidence of polio**.

Data Analysis:

The main problems in the analysis of the time series are:

- To identify the forces or components at work, the net effect of whose interaction is exhibited by the movement of a time series.
- To isolate, study, analyse and measure them independently i.e. by holding other things constant.

1

• To forecast.

Instructor: AKG Sir

Reading and plotting Time Series Data:

We are given a data frame so first we read it using **read.table()** and making it time series using function **ts()**

```
P=read.table("D:\\Niranjan Dey\\Poliocases.csv",header=T,sep=",")
T <- ts(P$cases , start = c(1960,2) , end = c(1975,1) , frequency = 12)</pre>
```

• Plotting time series and Yearwise aggregated data:

Time Series Data

Yearwise Aggregated data

- Aggregated data shows that there is a peak of poliocases in most of the even years (like '60,'64,'66,'68,'72) and a trough in poliocases in almost all of odd years.
- In this case, it appears that an **additive model is not appropriate** for describing this time series, since the size of the seasonal fluctuations and random fluctuations seem to increase with the level of the time series. Thus, we may need to transform the time series in order to get a transformed time series that can be described using an additive model. We can transform the time series by calculating the natural log of the original data:

log of the given data

• Here we can see that the size of the seasonal fluctuations and random fluctuations in the log-transformed time series seem to be roughly constant over time, and do not depend on the level of the time series. Thus, the log-transformed time series can probably be described using an additive model.

Decomposing Time Series:

Decomposing a time series means separating it into its constituent components, which are usually a trend component and an irregular component, and if it is a seasonal time series, a seasonal component.

Decomposition of additive time series

Decomposition of multiplicative time series

• The estimated values of the trend component: (12 point moving averages)

	Jan	Feb	Mar	Apr	May	Jun	Jul
1960	5411	NA	NA	NA	NA	NA	NA
1961	34.08333	30.62500	27.00000	24.12500	21.66667	19.79167	19.37500
1962		23.87500	25.04167	26.41667	27.04167	27.79167	28.58333
1963	31.41667	30.66667	29.91667	29.66667	30.66667	31.70833	32.75000
1964		47.04167	53.04167	57.83333	60.00000	60.20833	60.45833
1965	54.00000	48.79167	43.75000	38.91667	35.87500	35.41667	34.62500
1966	53.33333	63.54167	68.16667	69.91667	69.95833	68.83333	68.00000
1967	47.16667	36.91667	31.45833	29.62500	30.12500	32.00000	34.83333
1968	66.62500	81.70833	90.75000	93.87500	94.66667	93.50000	90.95833
1969		48.54167		42.16667	42.08333	43.04167	44.12500
1970	50.83333	48.79167		45.70833	46.08333	46.04167	45.45833
1971	45.37500	48.79167	53.16667	58.20833	62.08333	65.37500	69.37500
1972	100.37500	108.83333	116.12500	118.95833	116.50000	113.16667	109.62500
1973	81.62500	71.66667	61.66667	56.45833	57.25000	59.45833	61.62500
1974	69.41667	70.54167	71.33333	70.83333	69.45833	68.08333	67.16667
1975	NA						
	A 2.2 cm	Com	Oct	Nov	Dec		
	Aug	Sep	UCU	NOV	рес		
1960	•	40.95833		37.62500	36.25000		
	42.08333	_					
1961 1962	42.08333 19.20833 29.08333	40.95833 19.41667 29.33333	39.29167 19.91667 29.87500	37.62500 20.41667 30.83333	36.25000 20.87500 31.66667		
1961 1962 1963	42.08333 19.20833 29.08333 33.54167	40.95833 19.41667 29.33333 34.12500	39.29167 19.91667 29.87500 34.66667	37.62500 20.41667 30.83333 35.95833	36.25000 20.87500 31.66667 37.75000		
1961 1962 1963 1964	42.08333 19.20833 29.08333 33.54167 60.75000	40.95833 19.41667 29.33333 34.12500 60.87500	39.29167 19.91667 29.87500 34.66667 60.45833	37.62500 20.41667 30.83333 35.95833 58.79167	36.25000 20.87500 31.66667 37.75000 56.83333		
1961 1962 1963 1964 1965	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500		
1961 1962 1963 1964 1965 1966	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333		
1961 1962 1963 1964 1965 1966	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500 37.29167	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167 38.95833	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500 41.29167	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500 45.12500	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333 52.91667		
1961 1962 1963 1964 1965 1966 1967	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500 37.29167 88.33333	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167 38.95833 86.54167	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500 41.29167 84.45833	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500 45.12500 80.12500	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333 52.91667 71.95833		
1961 1962 1963 1964 1965 1966 1967 1968	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500 37.29167 88.33333 45.08333	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167 38.95833 86.54167 46.41667	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500 41.29167 84.45833 47.12500	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500 45.12500 80.12500 48.37500	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333 52.91667 71.95833 50.91667		
1961 1962 1963 1964 1965 1966 1967 1968 1969	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500 37.29167 88.33333 45.08333 45.45833	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167 38.95833 86.54167 46.41667 45.08333	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500 41.29167 84.45833 47.12500 45.04167	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500 45.12500 80.12500 48.37500 45.45833	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333 52.91667 71.95833 50.91667 44.79167		
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500 37.29167 88.33333 45.08333 45.45833 72.29167	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167 38.95833 86.54167 46.41667 45.08333 74.12500	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500 41.29167 84.45833 47.12500 45.04167 77.62500	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500 45.12500 80.12500 48.37500 45.45833 83.62500	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333 52.91667 71.95833 50.91667 44.79167 91.25000		
1966 1967 1968 1969 1970 1971 1972	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500 37.29167 88.33333 45.08333 45.45833 72.29167 107.00000	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167 38.95833 86.54167 46.41667 45.08333 74.12500 105.87500	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500 41.29167 84.45833 47.12500 45.04167 77.62500 102.83333	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500 45.12500 80.12500 48.37500 45.45833 83.62500 96.70833	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333 52.91667 71.95833 50.91667 44.79167 91.25000 89.87500		
1961 1962 1963 1964 1965 1966 1967 1968 1970 1971 1972 1973	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500 37.29167 88.33333 45.08333 45.45833 72.29167 107.00000 63.25000	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167 38.95833 86.54167 46.41667 45.08333 74.12500 105.87500 63.66667	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500 41.29167 84.45833 47.12500 45.04167 77.62500 102.83333 64.83333	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500 45.12500 80.12500 48.37500 45.45833 83.62500 96.70833 66.45833	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333 52.91667 71.95833 50.91667 44.79167 91.25000 89.87500 67.91667		
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971	42.08333 19.20833 29.08333 33.54167 60.75000 34.04167 67.62500 37.29167 88.33333 45.08333 45.45833 72.29167 107.00000	40.95833 19.41667 29.33333 34.12500 60.87500 34.04167 67.04167 38.95833 86.54167 46.41667 45.08333 74.12500 105.87500	39.29167 19.91667 29.87500 34.66667 60.45833 35.00000 65.62500 41.29167 84.45833 47.12500 45.04167 77.62500 102.83333	37.62500 20.41667 30.83333 35.95833 58.79167 37.70833 62.87500 45.12500 80.12500 48.37500 45.45833 83.62500 96.70833	36.25000 20.87500 31.66667 37.75000 56.83333 43.12500 57.33333 52.91667 71.95833 50.91667 44.79167 91.25000 89.87500		

• The estimated values of the seasonal component:

```
[1] -32.415179 -31.004464 -21.584821 -10.424107 12.078869 60.683036
[7] 53.462798 29.718750 1.677083 -15.468750 -21.209821 -25.513393
```

5

Monthwise boxplot

• The estimated seasonal factors are given for the months January-December, and are the same for each year. The largest seasonal factor is for July (about 2.07148), and the lowest is for February (about 0.3927455), indicating that there seems to be a peak in poliocases in July and a trough in poliocases in February each year. Also the **boxplot supports the conclution**.

Seasonally Adjusting:

We have a seasonal time series that can be described using an multiplicative model, you can seasonally adjust the time series by estimating the seasonal component, and dividing the estimated seasonal component from the original time series. Then plotting the seasonally adjusted time series using the "plot()" function:

Seasonally adjusted

- You can see that the seasonal variation has been removed from the seasonally adjusted time series. The seasonally adjusted time series now just contains the trend component and an irregular component.
- Justification of Seasonal Adjustment:

Now we will find standard deviations of the original series, trend, and random element seperately:

```
sd(T[7:174])
[1] 46.77295
sd(T[7:174]-T.mul$trend[7:174])
[1] 38.6201
sd(T.mul$random[7:174])
[1] 0.2766785
```

• The reduction in the standard deviation shows that the seasonal adjustment has been very effective.

ACF of the given data

• For monthly series, a significant autocorrelation at lag 12 indicates that the seasonal adjustment is adequate.

Random element:

First to compare between Additive model & Multiplicative model we shall look at the correlogram of the ramdom element:

ACF of random element for Additive model

ACF of random element for Multiplicative model

• It is clear that Autocorrelation exceeds confidence bound more number of cases in Additive Model than Multiplicative Model.

Adding a Straight line by Least Squares Method:

The linear model of first degree is:

```
Call:
lm(formula = T ~ time(T))

Coefficients:
(Intercept)     time(T)
   -6887.328     3.528
```

Fitting Linear trend

Series T

• The correlogram for wave heights has a well-defined shape that appears like a sampled damped cosine function. This is typical of correlograms of time series generated by an autoregressive model of order 2 AR(2).

[1] 0.3343137

• Correlation between observed and fitted values is very low (about **0.3343**).

To test if the time series is stationary:

Use Augmented Dickey-Fuller Test (adf test). A p-Value of less than 0.05 in adf.test() indicates that it is stationary.

```
Augmented Dickey-Fuller Test

data: T

Dickey-Fuller = -6.1301, Lag order = 5, p-value = 0.01

alternative hypothesis: stationary
```

• Hence the data given is stationary. No need to make it stationary.

Holt's Exponential Smoothing:

• Holt-Winters exponential smoothing estimates the level, slope and seasonal component at the current time point. Smoothing is controlled by three parameters: alpha, beta, and gamma, for the estimates of the level, slope b of the trend component, and the seasonal component, respectively, at the current time point. The parameters alpha, beta and gamma all have values between 0 and 1, and values that are close to 0 mean that relatively little weight is placed on the most recent observations when making forecasts of future values.

```
library(forecast)
Registered S3 methods overwritten by 'forecast':
method
fitted.fracdiff
                    fracdiff
residuals.fracdiff fracdiff
H=HoltWinters(log(T))
Η
Holt-Winters exponential smoothing with trend and additive seasonal component.
Call:
HoltWinters(x = log(T))
Smoothing parameters:
 alpha: 0.7490159
 beta: 0.01092434
 gamma: 0.9561161
Coefficients:
            [,1]
     3.819787852
а
b
    -0.009931514
s1
    -0.218085184
s2
    -0.350622847
s3
    -0.126815593
s4
    -0.148559739
   0.328735973
s5
```

11

```
$6     0.680788213

$7     0.805605815

$8     0.582351331

$9     0.354263209

$10 -0.051258355

$11     0.002008394

$12 -0.105340930

H$SSE  #---Measure of Error---
```

- The estimated values of alpha, beta and gamma are 0.749, 0.01, and 0.956, respectively. The value of alpha (0.749) is high enough, indicating that the estimate of the level at the current time point is based upon mainly recent observations and some observations in the more distant past. The value of beta is 0.01, indicating that the estimate of the slope b of the trend component is not updated over the time series, and instead is set equal to its initial value. This makes good intuitive sense, as the level changes quite a bit over the time series, but the slope b of the trend component remains roughly the same. In contrast, the value of gamma (0.956) is high, indicating that the estimate of the seasonal component at the current time point is just based upon very recent observations.
- As for simple exponential smoothing and Holt's exponential smoothing, we can plot the original time series as a black line, with the forecasted values as a red line on top of that:

Holt-Winters filtering

• We see from the plot that the Holt-Winters exponential method is very successful in predicting the seasonal peaks, which occur roughly in July every year.

Forecasts using Exponential Smoothing:

• To make forecasts for future times not included in the original time series, we use the "forecast()" function in the "forecast" package. For example, the original data for Poliocases is from February 1960 to January 1975. If we wanted to make forecasts for February 1975 to January 1976 (12 more months), and plot the forecasts:

Forecasts from HoltWinters

• The forecasts are shown as a blue line, and the <u>dark gray and light gray shaded areas show 80%</u> and 95% prediction intervals, respectively.

Conclusion and Discussions:

Based on our Data analysis,

- (i) We verify the fact that in the light of the given data, the linear trend fails to explain the data. The correlation between observed and fitted values is low (about **0.3343**) for linear trend.
- (ii) In this data the seasonal component is strong enough as expressed in both Decomposition & Holt's Exponential Smoothing.
- (iii) From observation the largest seasonal factor is for July (about 2.07148), and the lowest is for February (about 0.3927455).
- (iv) In the light of given data, there is a peak of poliocases in most of the **even years** (like '60,'64,'66,'68,'72) and a trough in poliocases in almost all of **odd years**.
- (v) It is evident that <u>Multiplicative Model fits the better</u> than Additive Model comparing the random element.
- (vi) The random element has small standard deviation and Autocorrelation does not exceeds the confidence levels for most of the time. So it can be ignored.

13

R codes:

```
#---Reading and plotting Time Series Data---
P=read.table("D:\\Niranjan Dey\\Poliocases.csv",header=T,sep=",")
T \leftarrow ts(P$cases, start = c(1960,2), end = c(1975,1), frequency = 12)
plot(T,main="Time Series Data")
plot(aggregate(T), main="Yearwise Aggregated data")
plot(log(T), main="log of the given data")
#---Decomposing Time Series---
T.addi=decompose(T)
T.mul=decompose(T,type="mult")
plot(T.addi)
plot(T.mul)
T.addi$trend
T.addi$figure
boxplot(T~cycle(T),main="Monthwise boxplot")
#---Seasonal Adjustment---
Tsad=(T/T.mul$seasonal)
plot(Tsad,main="Seasonally adjusted")
sd(T[7:174])
sd(T[7:174]-T.mul$trend[7:174])
sd(T.mul$random[7:174])
acf(T,lag.max=12)
#---Random element---
acf(T.addi$random[7:174],main="ACF of random element for Additive model")
acf(T.mul$random[7:174], main="ACF of random element for Multiplicative model")
#---Adding a Straight line by Least Squares Method---
m1=lm(T~time(T))
plot(T,main="Fitting Linear trend")
abline(m1)
acf(T,lag.max=200)
Tht = -6887.328 + 3.528 * time(T)
cor(T,Tht)
#---To test if the time series is stationary---
library(tseries)
adf.test(T) #---p-value < 0.05 indicates the TS is stationary
#---Holts Exponential Smoothing---
library(forecast)
H=HoltWinters(log(T))
H$SSE
plot(H)
K=forecast(H, h=12)
plot(K)
```

References:

The following books were used as a reference to the analysis done in the report:-

- Fundamentals of Applied Statistics, by S.C. Gupta & V.K. Kapoor
- Time Series Analysis Jonathan With Applications in R, by D. Cryer ,Kung-Sik Chan
- Introductory Time Series with R, by Paul S.P. Cowpertwait · Andrew V. Metcalfe
- Time Series Analysis and Its Applications With R Examples, by Robert H. Shumway , David S. Stoffer
- [online] Available from : http://r-statistics.co/Time-Series-Analysis-With-R.html
- [online] Available from: https://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.ht
- [online] Available from : https://www.statmethods.net/advstats/timeseries.html

Acknowledgment:

I would like to express my sincere gratitude to my respected instructor **Prof. Atanu Kumar Ghosh** for his guidance and constant supervision as well as for providing all the necessary information regarding the project & also for his support in completing this project.

15 Instructor: AKG Sir