$SQA-Software\ Requirement\ Evaluation:\ IN-CLASS\ Team\ Activity \#1$

Gio Monci, Joseph L, Derek M, David R

Department of Engineering, Florida Gulf Coast University

CEN 4930 - CRN: 4930 - Software Quality Assurance

Dr. Buckley

1/28/24

SQA - Software Requirement Evaluation: IN-CLASS Team Activity#1

1. What metrics will you be using to evaluate the requirements for quality?

- <u>Completeness</u>: gauge if all necessary requirements are included, this will make sure that the system's functionality is fully conveyed.
- <u>Clarity</u>: check to see if all requirements are unambiguous, easy enough for a kid to understand, and does have any conflicting interpretations.
- <u>Feasibility</u>: determine whether or not the requirements can actually be realistically implemented given our constraints (ex: time, technology, budget)
- <u>Testability</u>: make sure that every requirement can be verified through some sort of testing or inspection.
- <u>Consistency</u>: Make sure that the requirements don't contradict each other or any part of the document.

2. What the standard you will use to:

1. Assess the requirements.

- <u>IEEE/ISO/IEC 29148-2018</u>: I was first looking at IEEE 830-1998, But it got superseded by ISO/IEC/IEEE 29148:2011, which then got superseded by this new one. If I can't pay for it or find it free, then it will revert back to 29148:2011.
- Requirements check against CUPRIMDSO framework (Correctness, Unambiguousness, Prioritization, Realism, Importance, Modifiability, Dependency, Safety, and Operationality)
- SMART criteria (Specific, Measurable, Achievable, Relevant, Time-bound)
- GQM analysis: Goal/ Question/ Metric from requirements engineering

2. Assess software quality.

- <u>ISO/IEC 25010</u>: Using this standard to assess software quality because, this software quality model takes into account the best characteristics to evaluate when looking at software quality. **linked in references

3. Assess the domain of your project.

- Just like in Requirements Engineering with the pharmacy project, we will be referencing:
- HIPPA, HL7, FDA SaMD
- ISO 13485: quality standards for medical devices and software

- ISO/IEC 27001: security standards for handling patient data

3. How will you determine which requirements are missing?

- <u>Use Case testing</u>: create real world scenarios and go through each and figure out if we missed any functionality.
- <u>Stake Holder Interview</u>: get feedback from our client, users, etc. See if they think we are missing some functionality or if it's over the scope.
- <u>Gap Analysis</u>: Compare our requirements with industry standards and or from SRS / any documentation we can find of similar medical software.
- <u>Risk Based Analysis</u>: Research and brainstorm with team about potential risks associated with the software. Do our requirements cover these risks? If not, then implement.

4. How will you determine if the existing requirements are compliant with industry standards?

- <u>Perform requirements audit:</u> by mapping each requirement to a certain or relevant standard.
- NASA ARM Tool (Automated Requirements Measurement): analyzes requirements for various text-based properties such as depth, imperatives and directives.
- NASA FRET (Formal Requirements Elicitation Tool): help elicit and formalize requirements by inputting semi existing requirements into a hierarchal system form in a Json file and it should reformat / formalize the requirements if applicable.
- <u>Find and talk to a domain expert</u>: ask if they can review the requirements and provide any feedback and or give us information that we may not know.

References

 $\label{lem:metrics} \begin{tabular}{ll} Metrics to evaluate requirements: $$\underline{https://www.ppi-int.com/wp-content/uploads/2019/05/Requirements-Quality-Metrics-Paper-with-Addendum-PPA-005330-9-140710.pdf $$ $$$

ISO/IEC 25010: https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

NASA ARM: https://arm.laplante.io/

NASA FRET: https://software.nasa.gov/software/ARC-18066-1