

Figure 1: Caption

Figure 2: Encoding 4-bit words into frequencies.

$$\mathcal{B}_m = I(f_m > 0.5), \ m \in \{1, 2, 3\}$$

$$\mathcal{P}(\{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3\}) \to \{Color \#1, Color \#2, \dots, Color \#2^m\}$$

$$\{Color#1, Color#2, \dots, Color#2^m\} = \{f_1 \le 0.5 \land f_2 \le 0.5 \land f_3 \le 0.5, f_1 \le 0.5 \land f_2 \le 0.5 \land f_3 > 0.5, \dots$$

$$f_1 > 0.5 \land f_2 > 0.5 \land f_3 > 0.5$$

$$h = \underbrace{1100}_{f_1} \mid \underbrace{1000}_{f_2} \mid \underbrace{0110}_{f_3} \mid \underbrace{1110} \mid 0101 \mid 1011 \mid \underbrace{0}100 \mid 1111 \mid 0110 \mid \underbrace{0}010 \mid 1001 \mid 0110 \dots \underbrace{0}010 \mid 1001 \mid 0101 \mid 0101 \mid 0100$$

$$p_i = \begin{cases} b_{0,i} \oplus b_{1,i} \oplus b_{2,i} \oplus \cdots \oplus b_{9,i} = \bigoplus_{k=0}^9 b_{k,i} & 0 \le i < 12\\ h_{120+i-12} \oplus h_{120+i-8} & 12 \le i < 16 \end{cases}$$

$$\sum_{k=0}^{128} I(b_k = 1)k \mod 31$$

Proof that $\tilde{x} \neq x \mod 23$, where \tilde{x} is x with 2 bits of the same group changed: Let ℓ and $\ell+12m$ the indices of the 2 flipped bits, with $0 < m \le 10$. Ring of \mathbb{Z}_p is an integral domain.

• Case $b_{\ell} = 1, b_{\ell+12m} = 0$:

$$x = \tilde{x} = x - 2^{\ell} + 2^{\ell+12m} \mod 23$$

$$\Rightarrow x = x + 2^{\ell} \left(2^{12m} - 1\right) \mod 23$$

$$\Rightarrow 0 = 2^{\ell} \left(2^{12m} - 1\right) \mod 23$$

$$\Rightarrow 0 = 2^{12m} - 1 \mod 23$$

$$\Rightarrow 1 = 2^{12m} \mod 23$$

which has no solution for $1 < m \le 10$.

• Case $b_{\ell} = 0, b_{\ell+12m} = 1$:

$$x = \tilde{x} = x - 2^{\ell} + 2^{\ell+12m} \mod 23$$

$$\implies x = x + 2^{\ell} \left(1 - 2^{12m}\right) \mod 23$$

$$\implies 0 = 2^{\ell} \left(1 - 2^{12m}\right) \mod 23$$

which has no solution for $1 < m \le 10$, same as the previous case.

• Case $b_{\ell} = 1, b_{\ell+12m} = 1$:

$$x = \tilde{x} = x + 2^{\ell} + 2^{\ell+12m} \mod 23$$

$$\implies x = x + 2^{\ell} \left(1 + 2^{12m}\right) \mod 23$$

$$\implies 0 = 2^{\ell} \left(1 + 2^{12m}\right) \mod 23$$

$$\implies 0 = 1 + 2^{12m} \mod 23$$

$$\implies -1 = 2^{12m} \mod 23$$

which has no solution for $1 < m \le 10$.

• Case $b_{\ell} = 0, b_{\ell+12m} = 0$:

$$x = \tilde{x} = x - 2^{\ell} - 2^{\ell+12m} \mod 23$$

$$\implies x = x + 2^{\ell} \left(-1 - 2^{12m}\right) \mod 23$$

$$\implies 0 = 2^{\ell} \left(-1 - 2^{12m}\right) \mod 23$$

which has no solution for $1 < m \le 10$, same as the previous case

Attacks if shift is mod 23:

- Adv flips n bits of the same index, keeping same modulo 23:
 - Effect: the same palette is used. If n is even and n > 2, then all colors are exactly the same as intra group parity is the same

- "Impossible" for odd n as palette is flipped
- Rare (I guess) for n = 4: maximum 8 if the ten bits are e.g. 1101011100
- Adv flips n bits, keeping same modulo 23 :
 - Effect : the same palette is used. The colors corresponding to the n indices are changed
 - "Impossible" for odd n as palette is flipped

$$\begin{aligned} x+2^k-2^\ell &= x \mod p \\ 2^k-2^\ell &= 0 \mod p \\ 2^\ell \left(2^{k-\ell}-1\right) &= 0 \mod p \\ 2^{k-\ell} &= 1 \mod p \\ k-\ell &= m\cdot |2| \mod p, \ m\in \mathbb{Z} \end{aligned}$$

Problem: 11 is $-1 \mod 12 \implies$ flipping b_i and b_{i+11} might only change 1 color.

Attacks if shift is $\sum index$:

Lots (sum of 4 indices that are for the same function divide 31) Properties:

- Color choices: $\{(b_0 \oplus b_{12} \oplus \cdots \oplus b_{108}), (b_1 \oplus b_{13} \oplus \cdots \oplus b_{109}), \cdots, (b_{11} \oplus \cdots \oplus b_{119})\}$
- Palette shift : $h \mod 23$
- Invert palette direction : $w(h) \mod 2$
- Symmetry mode : $\sum_{i:h_i=1} i+11 \mod 13$

Keeping same parity bits:

$$b'_0 \oplus b'_{12} \oplus \cdots \oplus b'_{108} = b_0 \oplus b_{12} \oplus \cdots \oplus b_{108}$$

$$\bigoplus_{i=0}^{9} b'_{12i} = \bigoplus_{i=0}^{10} b_{12i}$$

Implications:

- If $b'_i \neq b_i$ for an odd number of i, then the parity of the weight of h changes and the palette is flipped.
- To keep the same palette shift, we must have $h = h' \mod 23$, with $h' = h + \sum_{k} 2^{k} \sum_{\ell} 2^{\ell}$ for all $k : b_{k} = 0 \wedge b'_{k} = 1$ and $\ell : b_{\ell} = 1 \wedge b'_{\ell} = 0$. Because of the previous point, we must have $k + \ell = 0 \mod 2$.

$$h + \sum_{k} 2^k - \sum_{\ell} 2^\ell = h \mod 23$$
$$\sum_{k} 2^k - \sum_{\ell} 2^\ell = 0 \mod 23$$

 $|2| \mod 23 = 11 \implies 2^{12i} \mod 23 = (2^{12})^i \mod 23 = (2 \cdot 2^{11})^i \mod 23 = 2^i \mod 23.$

 $2^{12i} \mod 23 = 2^i \mod 23 \text{ for } i \in \{0, \cdots, 9\} = \{1, 2, 4, 8, 16, 9, 18, 13, 3, 6\} := M$

For n=2,4,6,8,10: find n distinct elements $m_i\in M$ and a vector $\alpha\in\{-1,1\}^n$ such that $\sum_{i=0}^9\alpha_im_i=0\mod 23$

- n=2: It is impossible to find $m_1 \neq m_2$ such that $m_1 \pm m_2 = 0 \mod 23$.
- n=4: With Python, we found there are 84 possible choices for m_0, m_1, m_2, m_3 such that we can find a fitting α . For example, $m_1=2, m_2=4, m_3=16, m_4=18$, we find $\alpha=\{1,-1,-1,1\}$.
- n = 6: We found there are 280 possible choices for m_0 to m_5 such that we can find a fitting α .
- n = 8: We found there are 255 possible choices for m_0 to m_7 such that we can find a fitting α .
- n = 10: Picking m_0 to m_9 as every element of M, we can find (for example) $\alpha = \{1, -1, -1, 1, -1, 1, -1, 1, 1, 1\}$ that is fitting.
- In total, 620 "collisions" with same parity and same palette shift

Introducing the symmetries: in order to keep the same symmetry, we must have $\sum_{i:h_i=1} i+11 \mod 13 = \sum_{i:h_i'=1} i+11 \mod 13$. That means a collision must have $\sum 12m_i\alpha_i=0 \mod 13$

- n = 4: The number of collision drops to 53 (IN TOTAL):.
- n = 6: We found there are 292 (IN TOTAL) possible collisions.
- n = 8: We found there are 230 (IN TOTAL) possible collisions.
- n = 10:We found there are 25 (IN TOTAL) possible collisions).
- In total, 620 "collisions" with same parity and same palette shift
- However, each requires a specific combination of bits to be possible. Some of them are mutually exclusive. \rightarrow divide by \approx 16, 32, 64 \rightarrow

If the bits are not from the same parity: If two flipped bits of same value: Same shift:

$$h + 2^k + 2^\ell = h \mod p$$

$$2^k + 2\ell = 0 \mod p$$

$$2^\ell (2^{k-\ell} + 1) = 0 \mod p$$

$$2^{k-\ell} = -1 \mod p$$

Which is not possiblle as long as we pick $p \neq 5$ and $p \neq 17$ Same shift :

$$h + 2^k - 2^\ell = h \mod p$$

$$2^k - 2\ell = 0 \mod p$$

$$2^\ell (2^{k-\ell} - 1) = 0 \mod p$$

$$2^{k-\ell} = 1 \mod p$$

$$k - \ell = 0 \mod (|2| \mod p)$$

Same symmetry:

$$k - \ell = 0 \mod(|2| \mod q)$$

Having both yield

$$k - \ell = 0 \mod \operatorname{lcm}(|2| \mod p, |2| \mod q)$$

If we pick p=29, q=23 we have $(|2| \mod p, |2| \mod q)=(28,11)$ and $\operatorname{lcm}(28,11)=308>256$