Lóp: 15KTH

Họ và tên: Vũ Quang Nguyên

MSSV: 1523030

I. Trả lời lý thuyết:

1. Trình bày sơ đồ thí nghiệm đo phổ gamma sử dụng detector nhấp nháy NaI(Tl) được thực hiện tại phòng thí nghiệm.

Sơ đồ thí nghiệm đo phổ gamma sử dụng detector nhấp nháy Na(Tl) được thực hiện tại phòng thí nghiệm.

2. Trình bày nguyên lý hoạt động của hệ đo

Khi một bức xạ ion hoá đi vào detector nhấp nháy Na(Tl), sẽ kích thích nguyên tử hay phân tử, sau đó dịch chuyển về trạng thái cơ bản phát ra một photon ánh sáng -> qua lớp dẫn sáng, photon đập vào photocathode của PMT -> Tín hiệu điện có biên độ lớn -> Tín hiệu này đưa vào bộ tiền khuếch đại (1) sẽ tăng biên độ, qua xử lý xung ở bộ phận khuếch đại (2), và nắng xung (3) - > hiển thị phổ gamma ở màn hình máy tính.

3. Hãy trình bày chức năng của Oscilloscope trong điện tử hạt nhân:

Trình bày và đánh giá các xung tín hiệu điện tử của các mô đun điện tử hạt nhân.

Cụ thể, Máy Oscilloscope được mắc ở bộ phần tiền khuếch đại (1) và khuếch đại (2), thể hiển xung tín hiệu điện của theo thời gian thực. Dựa vào, xung tín hiệu đó, ta xác định được hằng số thời hằng của thiết bị tiền khuếch đại và khuếch đại.

Biểu thức liên hệ:
$$V = V_{o\!f\!f\!set} + V_0 e^{rac{-(t-t_0)}{ au}}$$

4. Hãy phối hợp trở kháng giữa thiết bị (1) có trở kháng $Z_1 = 50\Omega$ kết nối với thiết bị (2) có trở kháng $Z_2 = 1M\Omega$. (Vẽ trực tiếp lên hình)

Để phối hợp trở kháng thiết bị (1) $Z_1 = 50\Omega$ với trở kháng thiết bị (2) $Z_2 = 1*10^6\Omega$, ta thực hiện kết nối trở kháng Z_m song song với Z_2 , để dòng điện đi từ Z_1 bằng Z_2 , m).

Ta có,
$$Z_1 = Z_{2,m} = 50\Omega$$
 với $\frac{1}{Z_{2,m}} = \frac{1}{Z_m} + \frac{1}{Z_2}$, từ đó rút ra $Z_m = 50\Omega$

II. Báo cáo kết quả đo thực nghiệm

1. Trình bày hình phổ về 03 xung tín hiệu từ thiết bị tiền khuếch đại (Pre-Amplifier) và từ bộ khuếch đại (Amplifier). Note, vẽ 03 xung trên 1 đồ thị đối với tiền khuếch đại, và 03 xung trên 1 đồ thị đối với bộ khuếch đại.

Xung tiền khuếch đại

2. Dựa vào số liệu đo được xung tín hiệu từ tiền khuếch đại (Pre-amplifier) của detector nhấp nháy NaI(Tl), hãy xác định chu kỳ xã (decay time constant) của thiết bị tiền khuếch đại:

Xung 1:
$$\tau(\mu s) = 69.0817 \pm 0.5065$$

Xung 2:
$$\tau(\mu s) = 60.4183\pm0.2818$$
 ; $\overline{\tau} \pm \Delta \tau = 64.6111\pm0.4459$ (μs)

Xung 3:
$$\tau$$
(μs) = 64.3334±0.5492

3. Trình bày phổ năng lượng gamma đo trên nguồn chuẩn Co-60 và Ba-133

4. Xác định đường chuẩn năng lượng: E(keV) = a.ch + b

	Kênh (Channel)	Energy (keV)
133Ba	100	80.9979
	400	356.0129
60Co	951	1173.228
	1083	1332.492

Đường chuẩn năng lượng E(keV) = -53.00958 + 1.2654* Channel

5. Trình bày phổ năng lượng đo phông môi trường.

6. Xác định các đồng vị phóng xạ có trong phổ đo môi trường

Các nguyên tố trong phông môi trường

Nguyên tố trong phổ phông	Kênh tương ứng	Năng lượng (keV)
24Na@ 1 368.630 keV	1131	1378.15782
24Na@ 2 754.049 keV	1856	2295.57282
131I @364.489 keV	331	365.83782
57Co@122.06065keV	147	133.00422
132I@954.55 keV	795	952.98342
192Ir@316.506 keV	286	308.89482
56Co@2034.752 keV	1651	2036.16582
56Co@1238.2736 keV	1023	1241.49462

BÀI 02: KHẢO SÁT ĐẶC TRƯNG SỐ ĐẾM VÀ XÁC ĐỊNH VÙNG LÀM VIỆC CỦA DETECTOR CHỨA KHÍ

Họ và tên: Vũ Quang Nguyên – 1523030

1. Lập bảng số liệu của số đếm N và hiệu điện thê V

V (volt)	260	280	300	360	380	400	420	440	460	480	500
N (counts)	1521	1756	1894	1990	2198	2178	2253	2491	2691	3050	3091

2. Đồ thị biểu diễn số đếm và hiệu điện thế trong vùng tỷ lệ hạn chế (Vùng 4) và vùng Plateau (Vùng 5)

Điện thế (V)	Xác định Vùng làm việc	
(260 – 420)	Đồ thị dạng tuyến tính – VÙNG 3	
(420 – 480)	Số đếm tăng nhanh theo điện thế - Vùng 4	
(480 – 600)	Điện thế tăng dần nhưng số đếm không đổi (rất ít) – Vùng Plateau	

3. **Kết Luận:** Vùng làm việc của ống đếm Geiger – Muller là Vùng Plateau (480 - 600) V

Bài 3: XÁC ĐỊNH TỐC ĐỘ ĐẾM VÀ SAI SỐ

Họ tên: Vũ Quang Nguyên MSSV: 1523030 – Lớp: 15KTH

1. Trình bày kết quả đo và phân tích

Thời gian đo t = 60s, số lần đo k = 10

STT	N _p (counts)	N (counts)	$\left(N_{P_i}-\overline{N_p}\right)^2$	$\left(N_i - \overline{N}\right)^2$
1	52	2021	68.89	4515.84
2	56	2113	18.49	615.04
3	66	2076	32.49	148.84
4	61	2085	0.49	10.24
5	61	2074	0.49	201.64
6	57	2123	10.89	1211.04
7	62	2095	2.89	46.24
8	55	2010	28.09	6115.24
9	62	2118	2.89	888.04
10	71	2167	114.49	6209.44

- 2. Trình bày tốc độ đếm trung bình của phông và của nguồn
 - Tốc độ đếm trung bình của nguồn: $\frac{1}{n} = \frac{\overline{N}}{t} = 34.8033$ (counts/s)
 - Tốc độ đếm trung bình của phông $\overline{n_p} = \frac{\overline{N_p}}{t} = 1.005$ (counts/s)
 - Tốc độ đếm thật của nguồn $\overline{n_s} = \overline{n} \overline{n_p} = 33.7983$ (counts/s)
- 3. Trình bày kết quả sai số của tốc độ đếm (k=10, t=60s)
 - Dựa vào công thức $\Delta n = \frac{\Delta \overline{N}}{t} = \frac{\sqrt{\sum_{i=1}^{k} \left(N_i \overline{N}\right)^2}}{\frac{k(k-1)}{t}} = \frac{\sqrt{\sum_{i=1}^{10} \left(N_i \overline{N}\right)^2}}{\frac{10(10-1)}{60}}$, ta tính được Sai số tốc độ đếm nguồn: $\Delta n = 0.2482$
 - - Sai số tốc độ đếm phông: $\Delta \overline{n_p} = 0.0294$
 - Sai số tốc độ đếm thật của nguồn:

dựa vào
$$\Delta \overline{n_s} = \sqrt{\left(\Delta \overline{n}\right)^2 + \left(\Delta \overline{n_p}\right)^2}$$
, ta tính ra $\Delta \overline{n_s} = 0.2499$

4. Trình bày kết quả tốc độ đếm thật của nguồn: $\overline{n_s} = 33.7983 \pm 0.2499$ (counts/s)

BÀI 4: PHÂN BỐ THỐNG KÊ TRONG PHÂN RÃ HẠT NHÂN

Họ và tên: Vũ Quang Nguyên

MSSV: 1523030 Lóp: 15KTH

1. Lý thuyết

Số đếm trung bình $\bar{n} = \frac{\sum_{i=1}^{k} n_i}{k}$

a. Số đếm trung bình nhỏ hơn 20: Phân rã hạt nhân tuân theo phân bố Poisson

$$P(n_i) = \frac{n^{-n_i}e^{-n}}{n_i!}$$

b. Số đếm trung bình lớn hơn 20: Phân rã hạt nhân tuân theo phân bố Gauss

$$P(n_i) = \frac{1}{\sqrt{2\pi n}} e^{\frac{-(n_i - \bar{n})^2}{2\bar{n}}}$$

2. Khảo sát phân bố Poisson

a. Bảng kết quả đo (time = 10s)

Số đếm	Tần số thực nghiệm	Xác suất thực nghiệm	Xác suất Lý thuyết
0	36	0.146938776	0.018315639
1	38	0.155102041	0.073262556
2	58	0.236734694	0.146525111
3	58	0.236734694	0.195366815
4	28	0.114285714	0.195366815
5	14	0.057142857	0.156293452
6	5	0.020408163	0.104195635
7	7	0.028571429	0.059540363
8	1	0.004081633	0.029770181
9	0	0	0.013231192
10	0	0	0.005292477
11	0	0	0.001924537
12	0	0	0.000641512

b. Vẽ đồ thị thể hiện xác suất lý thuyết và thực nghiệm theo số đếm

c. Nhận xét

Dựa vào kết quả ghi nhận được của phép đếm bức xạ trong phân rã hạt nhân Ra-226, ta nhận thấy rằng:

- Đồ thị biểu diễn xác suất thực nghiệm có hình dạng tương đối giống dạng phân bố Poisson, nếu bỏ qua các sai khác tương đối với đồ thị xác suất lý thuyết Poisson.
- Sự sai lệch trong quá trình thí nghiệm là do bản chất ngẫu nhiên của quá trình phân rã hạt nhân, đồng thời sai số trên cũng có đóng góp của hệ thiết bị điện tử ghi đo, bên cạnh đó thì các thao tác của người làm trong thực hiện cũng góp phần nhỏ dẫn đến sai lệch đến kết quả đo.

3. Khảo sát phân bố Gauss

a. Bảng kết quả đo (time = 4s)

Số đếm	Tần số thực nghiệm	Xác suất thực nghiệm	Xác suất lý thuyết (Phân bố Gauss)
14	2	0.005970149	0.001251807
15	0	0	0.002081445
16	1	0.002985075	0.003345575
17	0	0	0.005198221
18	1	0.002985075	0.007807589
19	1	0.002985075	0.011335932
20	4	0.011940299	0.015910203
21	5	0.014925373	0.021586008
22	6	0.017910448	0.028310472
23	11	0.032835821	0.035892197
24	13	0.03880597	0.043987687
25	21	0.062686567	0.052112314
26	12	0.035820896	0.059679853
27	22	0.065671642	0.066068323
28	22	0.065671642	0.07070286
29	28	0.08358209	0.073140652
30	39	0.11641791	0.073140652
31	25	0.074626866	0.07070286
32	19	0.056716418	0.066068323
33	25	0.074626866	0.059679853
34	19	0.056716418	0.052112314
35	12	0.035820896	0.043987687
36	11	0.032835821	0.035892197
37	6	0.017910448	0.028310472
38	12	0.035820896	0.021586008
39	6	0.017910448	0.015910203
40	6	0.017910448	0.011335932
41	2	0.005970149	0.007807589
42	1	0.002985075	0.005198221
43	0	0	0.003345575
44	2	0.005970149 0.002081445	
45	1	0.002985075	0.001251807

b. Vẽ đồ thị thể hiện xác suất lý thuyết và thực nghiệm theo số đếm

c. Nhận xét

- Đồ thị biểu diễn xác suất thực nghiệm có hình dạng giống dạng phân bố Gauss, cụ thể số đếm thực nghiệm trung bình là 29.5 (counts) > 20 (counts)
- Trong phân rã hạt nhân là quá trình ngẫu nhiên, sự thăng giáng số đếm luôn thăng giáng quanh vị trí trung bình, do đó, trong đo lường phóng xạ, thì sự phân rã hạt nhân tuân theo phân bố Gauss hoặc Poisson.

BÀI 08: XÂY DỰNG PHỔ ĐƯỜNG CHUẨN NĂNG LƯỢNG CỦA MỘT NGUỒN PHÓNG XA

Ho và tên: Vũ Quang Nguyên - 1523030

Bảng 1 – Bảng số liệu kết quả đo Nguồn Co-60, Na -22 và Cs -137

Công thức: $Energy[keV] = 5.903 + 2.408.10^{-1}$ Channel; $FWHM[keV] = 3.96 - 2.965.10^{-2}$ $E^{1/2}$

Số kênh (Channel)	Năng lượng (keV)
2098	511
2722	661.657
4848	1173.228
5268	1274.537
5508	1332.492

b. Xác định nguyên tố X

Bảng 2. Số liệu thể hiện tương ứng giữa Số kênh và Năng lượng của nguyên tố \mathbf{X}

Số kênh	Năng lượng [keV]
532	134
1123	276.3
1234	303.1
1455	356.3
1569	383.8

Áp dụng phương pháp bình phương tối thiểu

Đặt phương trình đường chuẩn năng lượng có dạng $y = a_1 + a_2 x$,

Trong đó, Năng lượng [keV] tương ứng với y, số kênh (channel) tương ứng với x

i	X_i	Y_i
1	1123	276.3
2	1234	303.1
3	1455	356.3
4	1569	383.8

Ta có, biến a1 và a2 thoả mãn hệ sau
$$\begin{cases}
4a_1 + \left(\sum_{i=1}^4 x_i\right) a_2 = \sum_{i=1}^4 y_i \\
\left(\sum_{i=1}^4 x_i\right) a_1 + \left(\sum_{i=1}^4 x_i^2\right) a_2 = \sum_{i=1}^4 x_i y_i
\end{cases}$$

Thay số
$$\begin{cases} 4a_1 + 5381.a_2 = 1319.5 \\ 5381.a_1 + 7362671.a_2 = 1804909 \end{cases}$$
, giải hệ ta thu được
$$\begin{cases} a_1 = 5.709 \\ a_2 = 0.2409 \end{cases}$$

Phương trình đường chuẩn năng lượng Energy = 5.709+0.2409*Channel

Vậy nguyên tố X là Ba-133

(Nguồn tham khảo http://www.nucleide.org/Laraweb/index.php)

Hình 3. Phổ gamma của Ba-133