L4 Web Ontology Language (OWL)

RDF

Triple (can also contain other triples)

Multiple nodes in containers/collections

RDF Stores and querying

RDF Schema

Domain and range do not have to be defined; they are 0 then You can have multiple domains and ranges for the same object/subject

- Domain is meant for objects
- Range is meant for subjects
- You can not make a specific domain refer to a specific range as the definition must have a global scope (vs Java where it's local scope)

RDFS example

Now the same thing in Description Logic (DL):

- We want to say "All the things that has Maiden Name are Married Woman"
 - Domain

• Range (Everybody only has hasMaidenName.Name)

RDFS Expressivity

These things can be said:

- class
- subclassof
- property
- subpropertyof
- domain
- range

OWL Union, Intersection, Complement

food#Fruit unionOf example from the slides:

OWL Equivalance and disjointness

• disjointness - there is no possibility that that instance in set A and set B at

the same time

Enumeration

Example class with three individuals:ad

OWL properties

Transitive property

(If City is located in Region which is located in Country, then City is located in Country)

- You have to explicitly define the type as transitive property
- You can give it domain and range

Symmetric property

(If you are my neighbour, I am your neighbour)