(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 February 2002 (07.02.2002)

(10) International Publication Number WO 02/10198 A2

C07K 14/00. (51) International Patent Classification7: C12N 5/00, A61K 38/00, A01K 67/027, C07K 16/00, C12Q 1/68, G01N 33/50

(21) International Application Number: PCT/GB01/03390

30 July 2001 (30.07.2001) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0018700.5

31 July 2000 (31.07.2000) GB

0031021.9 19 December 2000 (19.12.2000)

(71) Applicant (for all designated States except US): AVENTIS PHARMA LIMITED [GB/GB]; Aventis House, 50 Kings Hill Avenue, Kings Hill, West Malling, Kent ME19 4AH (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HAYES, Ian, McDonald [GB/GB]; Aventis Pharma Limited, Aventis House, 50 Kings Hill Avenue, Kings Hill, West Malling, Kent ME19 4AH (GB). JUPP, Raymond, Anthony [GB/GB]; Aventis Pharma Limited, Aventis House, 50 Kings Hill Avenue, Kings Hill, West Malling, Kent ME19 4AH (GB). POLLACK, William, Kenneth [GB/GB]; Aventis Pharma Limited, Aventis House, 50 Kings Hill Avenue, Kings Hill, West Malling, Kent ME19 4AH (GB).

- (74) Agents: JONES, Stephen, Anthony et al.; Broadway Business Centre, 32a Stoney Street, Nottingham NG1 1LL (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, K?, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: POLYNUCLEOTIDES AND POLYPEPTIDES

(57) Abstract: The present invention relates to polynucleotide and polypeptide sequences which are associated with eosinophil mediated inflammatory diseases, such as asthma. The invention also relates to means and methods for modulating the expression and/or activity of these sequences, preferably in the treatment or prevention of inflammatory disease mediated by eosinophils. Screening assays for agents which act as agonists or antagonists of these polynucleotides or polypeptides are also provided.

POLYNUCLEOTIDES AND POLYPEPTIDES

FIELD OF THE INVENTION

- The present invention relates to polynucleotides and polypeptide sequences, and in particular relates to methods and means for the use of these polynucleotide and polypeptide sequences in the diagnosis, prevention and treatment of diseases mediated by eosinophils or other leukocytes, such as inflammatory disease.
- The present invention also relates to the methods and means for modulating the expression and/or activity of such polynucleotides and polypeptides, and to agents which act as agonists or antagonists of these polynucleotides or polypeptides, and methods for identification of such agents.
- The invention also provides oligonucleotide probes and primers, immunoassay kits and methods incorporating these polynucleotides.

BACKGROUND OF THE INVENTION

Inflammation is an essential protective process preserving the integrity of an organism against 20 physical, chemical and infectious insults. The cellular basis of the inflammation is complex but is, in many cases, dependent on the biological activity of inflammatory leukocytes, including eosinophils [see Gleich G.J. and Adolphson C.R. (1986) The eosinophilic leukocyte, structure and function. Adv. Immunol. 39, 177-253; Giembycz M.A. & Lindsay M.A. (1999) Pharmacol. Rev. 51, 213-339], neutrophils, basophils, mast cells (granulocytes), Tand B -lymphocytes, monocytes 25 and macrophages [see Asthma (1997) Lippencott-Raven, eds Barnes P.J., Grunstein M.M., Leff A.R. & Woolcock A.J.]. Where these cells migrate into the tissues, the key cell/cell interaction is with the vascular endothelium [see Prober J.S. & Cotran R.S. (1990): The role of the endothelum in Inflammation, Transplantation 50, 537-544.] In many cases inappropriate recruitment, proliferation, survival and/or activation of specific leukocytes within a particular 30 organ or tissue will manifest itself as "disease", for example asthma or chronic bronchitis in the lungs, rheumatoid arthritis in the joints or inflammatory bowel disease in the gut. Co-ordination of the inflammatory process is complex and is dependent upon specific gene expression of proteins on the surface of cells to enable cell/cell contact [eg, vascular cell adhesion molecule -1 (VCAM-1) on endothelial cells interacts with the alpha -4 beta- 1 integrin (VLA4) on 35 eosinophils], within the cell to enable intracellular signalling/activation, and within the cell to

15

20

25

30

35

2

produce inflammatory mediators including eicosanods [Goetzl E.J., An S. & Smith W.I. (1995) FASEB 9, 1051-1058] chemokines and cytokines [see Arai K-I, Lee F., Miyajima A., Miyatake S., Arai N. & Yokata T (1990) Ann. Rev. Biochemistry 59, 783-836.] Given the range of tissues, cells and mediators involved, the inflammatory response in different disease states has many common features and also many unique features. It is likely that novel genes that are identified from the eosinophil could play an exclusive role in eosinophil biology as it pertains to asthma, but also to other eosinophilic diseases such as atopic dermatitis, hyper-eosinophilic syndrome or pulmonary fibrosis. Novel genes identified in the eosinophil may play other important roles, for example in the biology of other leukocytes; the pathology of inflammatory lung disease other than asthma; or the pathology of any other inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease (IBD), etc.

Asthma is a chronic inflammatory disease of the airways that is characterised by airway hyperreactivity to exogenous stimuli, inflammatory cell accumulation and airway remodelling. In general terms, asthma causes chronic recurring episodes of coughing, wheezing, chest tightness and difficulty in breathing which can progress to life threatening severity. Exogenous stimuli responsible for precipitating an asthma attack can include airbourne antigens, (pollens, dust mite antigens etc), chemical irritants in pollution, orally derived antigens and other unspecified stimuli. Whilst there is believed to be a genetic predisposition to disease, with an estimated 40-60% heritability, environmental factors undoubtedly play a causal role. Symptomatically the disease can be segmented into intermittent disease with sporadic episodes, persistent disease with mild, moderate and severe severity, and acute severe episodes. Current treatments for asthma range from intermittent bronchodilator therapy (inhaled on demand) to chronic high dose glucocorticosteroids. The use of glucocorticoids in particular is compromised by side effects, notably growth suppression in children that may result from disruption of normal endocrine control of growth and/or a direct effect on bone metabolism in both children or adults. Thus, the identification of novel therapies capable of resolving the chronic inflammatory process without causing side effects would be advantageous. At present many treatments for asthma rely on inhalation delivery. The development of novel, safe, oral therapy with a low frequency of dosing would be particularly advantageous. Many aspects of airway dysfunction are a direct consequence of the underlying airway inflammation that is initiated and sustained by inappropriate proliferation, and/or recruitment and/ or activation of T lymphocytes, B lymphocytes and eosinophils. Asthmatic lungs are characterised by large populations of infiltrating CD4⁺ T cells that secrete pro-inflammatory cytokines including IL4, IL13 and IL5. Such T cells are clonally selected by prior exposure to specific antigens and will then respond to secondary antigen exposure with clonal expansion and the production of pro-inflammatory

mediators. However a key characteristic of asthma is systemic and airway eosinophilia. Eosinophils are terminally differentiated leukocytes which make up less than 1% of the leukocyte population in normal individuals and concommitantly trafficking of eosinophils through the normal airways is low. By contrast in asthmatics the circulating levels of eosinophils rises dramatically and can constitute 5-10% of the leukocyte population. Eosinophil myelopoiesis occurs in the bone marrow under the influence of T cell derived cytokines such as IL3, GMCSF and IL5. These circulating eosinophils are actively recruited into the airways by chemoattractants, including chemokines (eotaxin, RANTES) and leukotriene B4. Eosinophils bind to vascular endothelial cells in the airways in an integrin dependent manner and then migrate into the tissues. In normal airways such migrating cells undergo apoptosis and are rapidly cleared, whereas in asthmatics eosinophils are rescued from apoptosis by pro-inflammatory cytokines, including interleukin-5. Together, the increase in availability, recruitment and longevity of eosinophils establishes a tissue eosinophilia in the asthmatic lung. Once resident in the airways eosinophils are activated by a range of pro-inflammatory stimuli including peptido-leukotrienes, platelet activating factor (PAF) complement and sensory neuropetides. Activation causes the eosinphils to release toxic mediators including major basic protein, eosinophil derived neurotoxin and eosinophil cationic protein that are responsible for direct tissue injury notably within the sub-epithelial basement membrane. In addition eosinophils themselves generate proinflammatory cytokines and eicosanoids.

20

25

30

35

5

10

15

It is therefore apparent that the eosinophil plays an important causal role in the pathogenisis of inflammatory diseases such as asthma and thus represents an important cellular target for the identification and exploitation of novel drug targets. The most effective anti-inflammatory treatment for asthma which has an impact on eosinophilia is the use of glucocorticosteroids. It is worth noting that the eosinophil, unlike the T cell and the neutrophil is an expendable commodity in normal physiology, given that the normal function of the eosinophil is targetting, killing and expulsion of parasites during chronic parasitic infections.

Another inflammatory disease is COPD (chronic obstructive pulmonary disease) which is characterised by irreversible airway obstruction and encompasses both chronic bronchitis and emphysema. Although COPD has a clinical phenotype and an aetiology that is quite distinct from asthma, as an inflammatory lung disease COPD also has characteristics common to asthma. The major conditions commonly contributing to COPD are chronic bronchitis and emphysema. Changes in airway resistance arises from loss of elastic recoil, narrowing of the distal airways and changes to the airway wall contribute to intrinsic air flow obstruction. The most important risk factor for the development of COPD is cigarette smoking. However it is estimated that only

15% of smokers go on to develop symptoms of COPD. In COPD, lung inflammation predominantly involves neutrophils, interleukin-8 is the cytokine which is most strikingly increased and the increased lymphocytes are type 1 helper T-cells (CD8 T-cells). However the precise role of neutrophils in the lumen of the airways in COPD is not yet established, but it is likely that the release of enzymes such as neutrophil elastase and matrix metalloproteinases (MMP) may contribute to the pathophysiology of the disease. Macrophage numbers are increased by 5-10 times in the airways of patients with COPD and these cells play an important role in driving the inflammatory process by directly producing inflammatory mediators including proteases and neutrophil chemotactic factors. In particular macrophages may be responsible for the continued proteolytic activity observed in the lungs of patients with emphysema. It is likely that some of the novel genes described here may play a role in macrophage or neutrophil biology and as such may play a contributory role in the pathology of COPD. The current therapies for COPD provide modest therapeutic benefit and there are no currently available treatments that influence its progressive cause. In contrast to asthma, COPD is resistant to treatment with glucocorticosteroids and the disease is treated symptomatically with anti-invectives, bronchodiators and mucolytics. Recent data suggest that PDE4 inhibitors may be effective in COPD.

5

10

15

20

25

30

35

A number of other diseases have been identified that are associated with hyper-eosinophilia [see Kroegel C,., Warner J.A., Virchow J.C. & Matthys H. (1994) The Eosinophil Leucocyte(partII)Eur. Resp. J. 7, 743-760. These include allergic disorders such as atopic dermatitis and NERDS (nodules eosinophilia, rheumatism, dermatitis and swelling), vasculitic granulomatous diseases including polyarteritis and Wegeners granulomatosis, auto-immune diseases, interstitial and other pulmonary diseases including eosinophilic pneumonia, sarcoiditis and idiopathic pulmonary fibrosis, and neoplastic and myoploriferative diseases including hypereosinophilic syndrome, T cell lymphoma and hodgkins disease.

Thus, there is a need in the art to suppress or inhibit the eosinophil functions that render these leukocytes pivotal in the pathogenesis of inflammatory diseases, particularly asthma. Naturally, such functions are likely to be important in other inflammatory processes involving eosinophils. In particular, there is a need to identify genes that are expressed inappropriately in asthmatics, compared to normals, and which may thus represent suitable targets for pharmaceutical intervention. There is further a need to identify genes encoding proteins that are expressed in normal eosinophils, which regulate eosinophil activation, but that are absent, not expressed normally, or function poorly in asthmatics. There is a particular need to identify genes encoding proteins that affect eosinophil development (myelopocisis), recruitment (adhesion, chemotaxis),

and longevity (e.g. genes involved in apoptosis, or production of chemokines, cytokines, metabolic proteins and toxic secretory proteins). There is also a need to identify genes and gene products that are of diagnostic value, which permit or assist in the diagnosis and differentiation of conditions characterised by inflammation, for example diseases which may cause symptoms such as wheeze, cough, tightness of the chest, breathing difficulties and/or the presence of inflammatory mediators or leukocytes in the airways. There is also a need to identify genes and gene products that are of prognostic value, to assist in the treatment of inflammatory disease such as asthma or which permit different treatments to be evaluated.

- There is also a need to identify genes and gene products that are of therapeutic value, which permit or assist in the treatment of inflammatory disease, such as those characterised by wheeze, cough, tightness of the chest difficulty breathing and/or the presence of inflammatory mediators or leukocytes in the airways.
- There is also a need to identify genes and gene products whose action can be modified to provide new modes of therapeutic intervention, to assist in the treatment and management of inflammatory disease, such as those characterised by wheeze, cough, tightness of the chest difficulty breathing and/or the presence of inflammatory mediators or leukocytes in the airways.

20 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts Gel analysis of RNA isolated using the RNAzol modified methodology (lane 1: Eosinophils, lane 2: Neutrophils, lane 3: Molecular weight marker).

Figure 2 shows the size range of the amplified cDNA which was between 200bp and 7kb.

Figure 3 shows a restriction digest of a cDNA library.

25 Figure 4 shows replacement primers for SMART PCR cDNA synthesis kit.

Figure 5 shows the additional 8bp sites which are used to modify the pSKII (Stratagene) vector.

DEFINITIONS

10

15

20

25

30

35

The following definitions are provided to facilitate understanding of certain terms used frequently herein:-

In a specific embodiment, the term "about" or "approximately" means within 20%, preferably within 10%, and more preferably within 5% of a given value or range.

"Agonist", as used herein, refers to a molecule which, when bound to a polypeptide of the invention increases or prolongs the duration of the effect of the polypeptide. Agonists may include proteins, nucleic acids, carbohydrates or any other molecules which bind to and modulate the activity of a polypeptide of the invention.

"Amplification", as used herein, relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art. (See, e.g., Dieffenbach, C.W. and G.S. Dveksler (1995) PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, NY, pp. 1-5.)

"Antagonist", as used herein, refers to a molecule which when bound to a polypeptide of the invention decreases the amount or the duration of the effect or the immunological activity of a polypeptide of the invention. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies or any other molecule which decrease the effect of a polypeptide of the invention.

"Autibodies", as used herein, includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library.

"Antigenic determinant", as used herein, refers to that fragment of a molecule (i.e. an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunise a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

"Antisense", as used herein, refers to any composition containing a nucleic acid sequence which is complementary to a specific nucleic acid sequence. The term "antisense strand" is used in reference to a nucleic acid strand that is complementary to the "sense" strand. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to down regulate or block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

10

5

"Biologically active", as used herein, refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic protein, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

15

"Cassette", as used herein, refers to a segment of DNA that can be inserted into a vector at specific restriction sites. The segment of DNA encodes a polypeptide of interest, and the cassette and restriction sites are designed to ensure insertion of the cassette in the proper reading frame for transcription and translation.

20

"Cloning vector", as used herein, is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment. Cloning vectors may be capable of replication in one cell type, and expression in another ("shuttle vector").

25

30

35

"Coding sequence", as used herein, is a double-stranded DNA sequence which is transcribed and translated into a polypeptide in a cell in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and even synthetic DNA sequences. If the coding sequence is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.

"Complementary" or "complementarity", as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base pairing. For example, the sequence "A-G-T" binds to the complementary sequence "T-C-A."

Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind, or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands.

5

10

15

20

25

30

35

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence", as these terms are used herein, refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation, an aqueous solution, or a sterile composition. Compositions comprising polynucleotide sequences may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilising agent such as a carbohydrate. In hybridisation's, the probe may be deployed in an aqueous solution containing salts (e.g NaCl), detergents (e.g., SDS), and other components (e.g., Denhardt's solution, dried milk, salmon sperm DNA, etc.).

"Consensus sequence", as used herein, refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCRTM (Perkin Elmer, Norwalk, CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Clone using a computer program for fragment assembly, such as the GELVIEWTMFragment Assembly system (GCG, Madison, W I). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "corresponding to" is used herein to refer to similar or homologous sequences, whether the exact position is identical or different from the molecule to which the similarity or homology is measured. A nucleic acid or amino acid sequence alignment may include spaces. Thus, the term "corresponding to" refers to the sequence similarity, and not the numbering of the amino acid residues or nucleotide bases.

"Deletion", as the term is used herein, refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

10

15

20

25

30

35

"Derivative", as used herein, refers to the chemical modification of a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

"Gene", as used herein, refers to an assembly of nucleotides that encode a polypeptide, and includes cDNA and genomic DNA nucleic acids.

"Heterologous DNA", as used herein, refers to DNA not naturally located in the cell, or in a chromosomal site of the cell. Preferably, the heterologous DNA includes a gene foreign to the cell.

"Heterologous protein", as used herein, refers to a protein not naturally produced in the cell.

"Homologous recombination", as used herein, refers to the insertion of a foreign DNA sequence into another DNA molecule, e.g., insertion of a vector in a chromosome. Preferably, the vector targets a specific chromosomal site for homologous recombination. For specific homologous recombination, the vector will contain sufficiently long regions of homology to sequences of the chromosome to allow complementary binding and incorporation of the vector into the chromosome. Longer regions of homology, and greater degrees of sequence similarity, may increase the efficiency of homologous recombination.

"Homology", as used herein, refers to a degree of complementarity. There may be partial homology or complete homology. The word "identity" may substitute for the word "homology." A partially complementary sequence that at least partially inhibits an identical sequence from hybridising to a target nucleic acid is referred to as "substantially homologous." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially homologous sequence or hybridization probe will compete for and inhibit the binding of a completely homologous sequence to the target sequence under conditions of reduced

stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% homology or identity). In the absence of non-specific binding, the substantially homologous sequence or probe will not hybridise to the second non-complementary target sequence.

5

10

15

20

25

30

35

"Human artificial chromosomes (HACs)", as used herein, are linear microchromosomes which may contain DNA sequences of 10K to 10 M in size and contain all of the elements required for stable mitotic chromosome segregation and maintenance (Harrington J.J. et al.(1997) Nat Genet. 15:345-355).

"Hybridization", as used herein, refers to any process by which a strand of nucleic acid binds to another complementary nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, through base pairing. A single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al., supra). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. For preliminary screening for homologous nucleic acids, low stringency hybridization conditions, corresponding to a T_m of 55°, can be used, e.g., 5x SSC, 0.1% SDS, 0.25% milk, and no formamide; or 30% formamide, 5x SSC, 0.5% SDS). Moderate stringency hybridization conditions correspond to a higher Tm, e.g., 40% formamide, with 5x or 6x SCC. High stringency hybridization conditions correspond to the highest T_m , e.g., 50% formamide, 5x or 6x SCC. Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridising nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher T_m) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length, equations for calculating T_m have been derived (see Sambrook et al., supra, 9.50-0.51). For hybridization with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Sambrook et al., supra, 11.7-11.8). Preferably a minimum length for a hybridizable nucleic acid is at least about 10 nucleotides;

preferably at least about 15 nucleotides; and more preferably the length is at least about 20 nucleotides.

"Hybridization complex", as used herein, refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilised on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

10

5

The words "insertion" or "addition", as used herein, refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

15

20

25

30

35

"Identity" is a measure of the homology of nucleotide sequences or amino acid sequences. In general, the sequences are aligned so that the highest order match is obtained. 'Identity' per se has an art-recognised meaning and can be calculated using published techniques. See, e.g.: (COMPUTATIONAL MOLECULAR BIOLOGY, Losk, A.M., ed., Oxford University Press, New York, 1988; BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, D.W., ed., Academic Press, New York, 1993" COMPUTER ANALYSIS OF SEQUENCE DATA, PART 1, Griffin, A.M and Griffin, H.G., eds., Humane Press, New Jersey, 1994; SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, vol Heinjo, G., Academic Press, 1987; and SEQUENCE ANALYSIS PRIMER, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1 991). While there exist a number of methods to measure identity between two polynucleotide or polypeptide sequences, the term "identity" is well known to skilled artisans (Carillo, H., and Lipton, D., SIAM J AppliadMath (1 988) 48:1073). Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994, and Carillo, H., and Lipton, D., SIAM J Applied Math (1 988) 48:1073. Methods to determine identity and similarity are codified in computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, GCS program package (Devereux, J., otal., NucloicAcids Research (1984) 12(1):387), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., J Molec Biol(1 990) 215:403). As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity' to a reference nucleotide sequence of SEO ID NO:l is intended that the nucleotide sequence of the

10

15

20

25

30

35

polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence of SEQ ID NO: 1. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% 'identity" to a reference amino acid sequence SEQ ID NO:2 it is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of SEO ID NO: 2. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence. Percent identity or homology is a measure of the relationship between two polypeptide sequences. In general the two sequences to be compared are aligned to give a maximum correlation between the sequences. The alignment of the two sequences is examined and the number of positions giving an exact amino-acid or nucleotide correspondence between the two sequences determined, divided by the total length of the alignment and multiplied by 100 to give a % identity figure. This % identity figure may be determined over the whole length of the sequences to be compared, which is particularly suitable for sequences of the same or very similar length and which are highly homologus, or over shorter defined lengths, which is more suitable for sequences of unequal length or which have a lower level of homology.

"Immune response", as used herein, can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterised by expression of various factors, e.g., cytokines, chemokines, and other signalling molecules, which may affect cellular and systemic defence systems.

Ì

"Inflammatory disease" includes disease or conditions which are typically, but not exclusively characterised by wheeze, cough, tightness of chest, breathing difficulties and/or the presence of inflammatory mediators such as leukocytes in the airways.

5

10

15

"Isolated", as used herein, means altered "by hand of man" from the natural state. If an "isolated" composition or substance occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living animal is not "isolated" but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated" as the term is employed herein.

"Microarray", as used herein, refers to an arrangement of distinct polynucleotides arrayed on a substrate, e.g., paper, nylon or any other type of membrane, filter, chip, glass slide, or any other suitable solid support.

"Modulate", as used herein, refers to a change in the activity. For example modulation may cause an increase or a decrease in activity, binding characteristics, or any other biological, functional, or immunological properties and result in tota; inhibition or total activation

20

"Nucleic acid", as used herein, is a polymeric compound comprised of covalently linked subunits called nucleotides. Nucleic acid includes polyribonucleic acid (RNA) and polydeoxyribonucleic acid (DNA), both of which may be single-stranded or double-stranded. DNA includes cDNA, genomic DNA, synthetic DNA, and semi-synthetic DNA.

25

30

35

"Oligonucleotide", as used herein, refers to a nucleic acid sequence, of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, more preferably about 20 to 25 nucleotides, and most preferably at least 18 nucleotides, that is hybridizable to a genomic DNA molecule, a cDNA molecule, or an mRNA molecule. Oligonucleotides can be labelled, e.g., with ³²P-nucleotides or nucleotides to which a label, such as biotin, has been covalently conjugated. In one embodiment, a labelled oligonucleotide can be used as a probe to detect the presence of a nucleic acid. In another embodiment, oligonucleotides (one or both of which may be labelled) can be used as PCR primers, either for cloning full length sequences or fragments thereof, or to detect the presence of specific polynucleotides. In a further embodiment, an oligonucleotide of the invention can form a triple helix with a DNA

molecule. In further embodiments they can be in hybridization assays or microarrays. Generally, oligonucleotides are prepared synthetically, preferably on a nucleic acid synthesiser. Accordingly, oligonucleotides can be prepared with non-naturally occurring phosphoester analog bonds, such as thioester bonds, etc. As used herein, the term "oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid (PNA)", as used herein, refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA and RNA and stop trandscript elongation, and may be pegylated to extend their lifespan in the cell. (See eg., Nielsen, P. E. et al (1993) Anticancer Drugs Des. 8:53-63).

"Polynucleotide" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "polynucleotides" include, without limitation single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, 'polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications have been made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide' also embraces relatively short polynucleotides, often referred to as oligonucleotides.

30

35

5

10

15

20

25

"Polypeptide", as used herein, refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides' include amino acid sequences modified either by natural processes, such as

10

15

20

25

30

35

1

post-translational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in the research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from post-translation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulphide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993 and Wold, F, Posttransiational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B.C. Johnson, Ed., Academic Press, New York, 1983; Seifter et al., 'Analysis for protein modifications and non-protein cofactors', Meth Enzymol (1990) 182:626-646 and Rattan et al., 'Protein Synthesis: Post-transiational Modifications and Aging', Ann NYAcad Sci (1 992) 663:48-62.

"Probe(s)", as used herein, is a sequence specific polynucleotide or oligonucleotide which is used in the procedure of hybridisation to identify, interogate or probe, a complex mixture of polynucleotides in a sample, or target through sequence specific complimentarity. The probe may be tagged with a label (radioactive, fluorescent or other) as a means to identify complimentary polynucleotides. Alternatively the probe may be attached to, or synthesised on the surface of a chip, slide, filter or other material. In the latter instance the target or sample may be labelled (radioactive, fluorescent or other). The term Probe, is also used to describe the use of an 'electronic' sequence specific polynucleotide or oligonucleotide which is used in the procedure of 'electronic' hybridisation to identify, interogate or probe, a complex mixture

10

15

20

25

30

35

of 'electronic' polynucleotides in a database or file through sequence specific complimentarity.

"Promoter sequence", as used herein, is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.

"Recombinant DNA molecule", as used herein, is a DNA molecule that has undergone a molecular biological manipulation.

"Regulatory region", as used herein, means a nucleic acid sequence which regulates the expression of a second nucleic acid sequence. A regulatory region may include sequences which are naturally responsible for expressing a particular nucleic acid (a homologous region) or may include sequences of a different origin which are responsible for expressing different proteins or even synthetic proteins (a heterologous region). In particular, the sequences can be sequences of eukaryotic or viral genes or derived sequences which stimulate or repress transcription of a gene in a specific or non-specific manner and in an inducible or non-inducible manner. Regulatory regions include origins of replication, RNA splice sites, promoters, enhancers, transcriptional termination sequences, signal sequences which direct the polypeptide into the secretory pathways of the target cell, and promoters.

"Sample", as used herein, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a solid support; a tissue; a tissue print; etc.

"Sequence similarity" or "homology", as used herein, refers to the degree of identity or correspondence between nucleic acid or amino acid sequences of proteins that may or may not share a common evolutionary origin (see Reeck et al., supra). However, in common usage and in the instant application, the term "homologous," when modified with an adverb such as "highly," may refer to sequence similarity and not a common evolutionary origin. In a

į,

specific embodiment, two DNA sequences are "substantially homologous" or "substantially similar" when at least about 50% (preferably at least about 75%, and most preferably at least about 90 or 95%) of the nucleotides match over the defined length of the DNA sequences. Sequences that are substantially homologous can be identified by comparing the sequences using standard software available in sequence data banks, or in a Southern hybridization experiment under, for example, stringent conditions as defined for that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., Maniatis et al., supra; DNA Cloning, Vols. I & II, supra; Nucleic Acid Hybridization, supra. Two amino acid sequences are "substantially homologous" or "substantially similar" when greater than about 40% of the amino acids are identical, or greater than 60% are similar (functionally identical). Preferably, the similar or homologous sequences are identified by alignment using, for example, the GCG (Genetics Computer Group, Program Manual for the GCG Package, Version 7, Madison, Wisconsin) pileup program.

15

5

10

"Signal sequence", as used herein, is a sequence included at the beginning of the coding sequence of a protein to be expressed on the surface of a cell. This sequence encodes a signal peptide, N-terminal to the mature polypeptide, that directs the host cell to translocate the polypeptide. The term "translocation signal sequence" is used herein to refer to this sort of signal sequence. Translocation signal sequences can be found associated with a variety of proteins native to eukaryotes and prokaryotes, and are often functional in both types of organisms.

25

20

"Specific binding" or "specifically binding", as used herein, refer to the interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognised by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labelled A and the antibody will reduce the amount of labelled A that binds to the antibody.

30

"Standard hybridization conditions", as used herein, refers to a T_m of 55°C, and utilises conditions as set forth above. In a preferred embodiment, the T_m is 60°C; in a more preferred embodiment, the T_m is 65°C

35

"Stringent conditions", as used herein, refers to conditions which permit hybridization between polynucleotide sequences and the claimed polynucleotide sequences. Suitably

stringent conditions can be defined by, for example, the concentrations of salt or formamide in the prehybridization and hybridization solutions, or by the hybridization temperature, and are well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature. For example, hybridization under high stringency conditions could occur in about 50% formainide at about 37'C to 42'C. Hybridization could occur under reduced stringency conditions in about 35% to 25% formamide at about 300C to 35'C. In particular, hybridization could occur under high stringency conditions at 42'C in 50% formamide, 5X SSPE, 0.3% SDS, and 200,ug/ml sheared and denatured salmon sperm DNA. Hybridization could occur under reduced stringency conditions as described above, but in 35% formamide at a reduced temperature of 35°C. The temperature range corresponding to a particular level of stringency can be further narrowed by calculating the purine to pyrimidine ratio of the nucleic acid of interest and adjusting the temperature accordingly. Variations on the above ranges and conditions are well known in the art.

15

10

5

"Substantially purified", as used herein, refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

20

"Substitution", as used herein, refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

25

"Transcriptional control sequences" and "translational control sequences", as used herein, are DNA regulatory sequences, such as promoters, enhancers, terminators, and the like, that provide for the expression of a coding sequence in a host cell. In eukaryotic cells, polyadenylation signals are control sequences. A coding sequence is "under the control" of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then trans-RNA spliced (if the coding sequence contains introns) and translated into the protein encoded by the coding sequence.

30

35

"Transfection" by exogenous or heterologous DNA, as used herein, is when such DNA has been introduced inside the cell. A cell has been "transformed" by exogenous or heterologous DNA when the transfected DNA effects a phenotypic change. The transforming DNA can be integrated (covalently linked) into chromosomal DNA making up the genome of the cell.

"Transformation", as defined herein, describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

5

10

15

20

25

30

35

A "variant" of a polynucleotide or a polypeptide, as used herein, is any analogue, fragment, derivative, or mutant which is derived from a different reference polynucleotide or polypeptide and which retains at least one biological property of the reference polynucleotide or polypeptide. Variants of the polypeptide may exist in nature. These variants may be allelic variations characterised by differences in the nucleotide sequences of the structural gene coding for the protein, or may involve differential splicing or post-translational modification. The skilled artisan can produce synthetic polynucleotide or polypeptide variants. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of the polypeptide it encodes. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide it encodes, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, replacements or deletions or in any combination thereof. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. Techniques for obtaining nonnaturally occurring variants of polynucleotides and polypeptides include mutagenesis techniques, genetic (suppressions, deletions, mutations, etc.), chemical, and enzymatic techniques or by direct synthesis all of which are known to persons having ordinary skill in the art. Guidance in determining which amino-acid residues may be substituted inserted or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art such as DNASTAR software.

"Vector", as used herein, is any means for the transfer of a nucleic acid into a host cell. A vector may be a replicon to which another DNA segment may be attached so as to bring about

5

10

25

30

35

the replication of the attached segment. A "replicon" is any genetic element (e.g., plasmid, phage, cosmid, chromosome, virus) that functions as an autonomous unit of DNA replication in vivo, i.e., capable of replication under its own control. The term "vector" includes both viral and nonviral means for introducing the nucleic acid into a cell in vitro, ex vivo or in vivo. Viral vectors include retrovirus, adeno-associated virus, pox, baculovirus, vaccinia, herpes simplex, Epstein-Barr and adenovirus vectors, as set forth in greater detail below. Non-viral vectors include plasmids, liposomes, electrically charged lipids (cytofectins), DNA-protein complexes, and biopolymers. In addition to a nucleic acid, a vector may also contain one or more regulatory regions, and/or selectable markers useful in selecting, measuring, and monitoring nucleic acid transfer results (transfer to which tissues, duration of expression, etc.).

DESCRIPTION OF THE INVENTION

The present invention is based on the identification and isolation of polynucleotides and polypeptides associated with eosinophil-mediated disease, particularly inflammatory disease such as asthma. The present invention also relates to the use of these polynucleotides and polypeptides in diagnosis, treatment or prevention of diseases mediated by eosinophils, and to the use of oligonucleotides derived from the above polynucleotides and polypeptides as probes or primers for identification of complementary, related or contiguous oligonucleotides or as targets for screening for compounds with pharmaceutical utility or value.

In a first aspect, the present invention relates to polypeptide sequences comprising amino-acid sequences encoded by Seq ID Nos: 1-466 or fragments of those amino acid sequences.

In a preferred embodiment of the first aspect, the invention relates to variants of the amino-acid sequences encoded by Seq ID Nos: 1-466 or fragments of those amino acid sequences, the varients having at least about 80%, more preferably at least 85%, more preferably at least 90%, and most preferably 95% amino-acid sequence identity to the amino-acid sequences encoded by Seq ID Nos: 1-466 or fragments of those amino acid sequences, and which share at least one functional or structural characteristic with the amino-acid sequences encoded by Seq ID Nos: 1-

functional or structural characteristic with the amino-acid sequences encoded by Seq ID Nos: 1-466 or fragments of those amino acid sequences.

In a second aspect the present invention relates to polynucleotide sequences which encode the amino-acid sequences encoded by Seq ID Nos: 1-466 or fragments of those amino acid sequences. Preferably, the polynucleotide sequences of the second aspect are those of Seq ID Nos: 1-466.

In a preferred embodiment of the second aspect, the invention relates to variants of the polynucleotide sequences which encode the amino-acid sequences encoded by Seq ID Nos: 1-466, in particular the polynucleotide sequences of Seq ID Nos: 1-466; or fragments thereof. The variants may have at least about 80%, more preferably at least 85%, more preferably at least 90% and most preferably 95% polynucleotide sequence identity to the polynucleotide sequences which encode the amino-acid sequences encoded by Seq ID Nos: 1-466, in particular the polynucleotide sequences of Seq ID Nos: 1-466. Preferably, the polynucleotide variants described above encode an amino-acid sequence which shares at least one functional and/or structural characteristic with one or more of the amino-acid sequences encoded by Seq ID Nos: 1-466.

As will be appreciated by those skilled in the art, as a result of degeneracy of the genetic code, a multitude of polynucleotide sequences, some bearing minimal homology to the polynucleotide sequence of any known or naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the naturally occurring polynucleotide sequence, and all such variations are to be considered as being specifically disclosed.

20

25

10

15

The polynucleotides of the present invention can be isolated from a number of sources, including genomic libraries, foetal genomic or cDNA libraries, or more preferably from human eosinophil cDNA libraries, preferably constructed from pooled eosinophils harvested from normal or diseased individuals. General methods for obtaining the polynucleotides and polypeptides of the present invention are well known in the art (as described by See, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).

30

35

Genomics techniques were used to study the levels of expression of genes in eosinophils in order to identify the polynucleotides and polypeptides of the present invention which have a role in eosinophil processes which mediate disease. The expression pattern of a gene provides indirect information about its function. A polynucleotide or polypeptide which is selectively expressed in eosinophils is likely to be involved in pathologies associated with the eosinophil, such as asthma, COPD, allergic disorders such as atopic dermatitis and NERDS (nodules eosinophilia, rheumatism, dermatitis and swelling), vasculitic granulomatous diseases including polyarteritis and Wegeners granulomatosis, auto-immune diseases, interstitial and other pulmonary diseases

WO 02/10198 PCT/GB01/03390 22

including eosinophilic pneumonia, sarcoiditis and idiopathic pulmonary fibrosis and neoplastic and myoploriferative diseases including hypereosinophilic syndrome, T cell lymphoma and hodgkins disease. Diversion from normal physiology is frequently accompanied by histological and biochemical changes, including changes in gene expression. The up- or down-regulation of gene activity can either be the cause of the pathophysiology or the result of the disease.

The polynucleotides and polypeptides of the present invention whose modulation results in the modification of eosinophil functions enable for the first time the provision of pharmaceuticals, therapeutic agents, drug targets, gene therapy targets, diagnostic and/or prognostic markers, antibodies which have utility as therapeutic, diagnostic, prognostic, histological or purification tools, and tools for use in the detection and isolation of further polynucleotide or polypeptide sequences which may play a role in eosinophil mediated inflammatory disease.

The identification and/or targetting of polynucleotides and polypeptides according to the first and second aspects of the invention enables the development, duration, progress, outcome, or the damage caused by a disease to be modified, and may even effect a cure. Means and methods for targetting the polynucleotides and/or polypeptides of the present invention may abolish or alleviate one or more symptom of inflammatory disease and/or limit the development, duration, progress, or outcome, of the disease or minimise the damage caused by it. The polynucleotides and polypeptides of the present invention which are not directly responsible for disease may be useful in alleviating or abolishing symptoms associated with the disease.

In particular, the polynucleotides and polypeptides of the present invention may represent attractive targets for drugs. For example, the polynucleotides may be useful targets or agents for gene therapy; the polypeptides may be useful targets for agonists or antagonists which modulate the effects of the polypeptide, and thus mediate a therapeutic effect. In this way, unwanted side effects, symptoms may be alleviated or abolished and causes of the disease may be wholly or partially removed.

Detailed profiling of polynucleotide expression levels in a variety of different tissues in normal and diseased individuals at different stages of disease progression or severity, and in response to a variety of stimuli such as cytokines IL5, drugs, and steroids resulted in the identification of polypeptides and polynucleotides of the present invention. The profiling also enabled indicators of disease stage or progression to be identified, and potential drug targets to be identified.

5

10

15

20

25

Animal disease models enable detailed profiling of gene expression under carefully controlled experimental conditions. For example, the gene expression pattern of a normal animal can be compared against that of a related animal which has been modified in a very specific manner to, such that it either over-or under-expresses one or more selected polynucleotide sequences, or fails to express certain polynucleotide sequences, either because it lacks a functioning copy of the DNA sequence, or because the expression of the sequence has been selectively blocked, for example using antisense oligonucleotides. Such studies provide additional insight into the cellular, animal and human physiology involved in the identification and validation of therapeutic targets.

10

15

20

25

5

Investigations of the expression levels of genes in model cell lines mimicking critical eosinophil functions, such as adhesion, apoptosis, activation, myelopoesis, synthesis of essential cellular components or mediators, and survival, aided the identification of the polynucleotides and polypeptides of the present invention which are expressed or active in the disease causing mechanisms mediated by eosinophils.

Genomics technologies enable many genes to be studied 'in parallel', thereby increasing the chance of identifying a gene or protein which has a key role in diseases mediated by eosinophils. Accordingly, a genomics approach capable of simultaneously analysing the expression levels of large numbers of polynucleotides was utilised to maximise the probability of identifying genes specifically involved in disease processes mediated by eosinophils.

Microarrays to which sequences of interest were applied were used to simultaneously analyse the expression levels of large numbers of polynucleotides. Two microarray technologies for mRNA expression profiling (review: 'The Chipping Forecast', Supplement to Nature Genetics. 21: 1999) were used to investigate/analyse the expression profiles of the polynucleotides of the present invention, one supplied by Affymetrix and the other by Amersham/Molecular Dynamics. Together they offer greater flexibility to generate robust, reproducible and reliable data than either system in isolation.

30

35

The Affymetrix technology, supplied by Affymetrix, U.S.A, comprises microarray chips of high-density oligonucleotides created using adapted photolithographic masking techniques (methodology is as described by the manufacturer; Lockhart, D.J. J. Expression monitoring by hybridisation to high-density oligonucleotide arrays. *Nature Biotechnology*. 14:1675-1680, 1996). A number of different overlapping oligonucleotide pairs corresponding to each polynucleotide sequence to be probed are designed and synthesised (one member of each pair is complementary

to the oligonucleotide sequence of interest and the other, 'control sequence' of the pair includes a single mismatched base). The Affymetrix array system requires prior knowledge of at least a part of each of the nucleotide sequences which are to be attached to the chip to enable suitable probe pairs to be designed and synthesised. This system enables genes of very high homology to be distinguished from one another. This system is very accurate and enables the expression of a large number of genes to be analysed in a single hybridisation reaction. However, once a microarray has been designed and constructed the photolithography process does not allow changes in the nucleotide sequence of the oligonucleotide probes fixed to the array to be made. Accordingly, a new microarray must be designed and synthesised to probe a different set of genes. The array is exposed to labelled cDNA or cRNA from a variety of sources (as described above) under conditions which favour hybridisation. Hybridisation patterns indicate the identity of and the quantity of expression.

5

10

15

20

30

35

-n5 - 1 1 1 1 1 .

The Amersham Pharmacia Biotechnology/Molecular Dynamics system involves robotically spotting up to 10,000 polynucleotide sequences, normally generated by PCR, onto specially prepared glass slides. It is not necessary to know the nucleotide sequence of the sequences before they are applied to the array. The slide is exposed to fluorescently labelled nucleic acid samples under conditions which favour hybridisation [see Schena, M et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470 (1995)]. Hybridisation patterns indicate the identity and the quantity of expression. These microarrays are very flexible and the target fragments applied to the slide can be easily changed. They can be used to determine the differential expression of large numbers of genes, although it is not suitable for those that have high levels of homology to one another.

Several different biological approaches were combined to form an integrated strategy. In the first approach, purified peripheral blood eosinophils were studied from clinically defined normal individuals (e.g. skin test, FEV1, and IgE levels within predefined parameters) and staged asthmatics (e.g. mild, moderate and severe; different values were set for these parameters).

mRNA was isolated from the eosinophils and used to prepare a cDNA library. The mRNA from a number of individuals was pooled to maximise the representation of genes that could be expressed by an eosinophil in different circumstances. A cDNA library was constructed with an average fragment size of 500-1000 base pairs. The library was designed so that the inserts could be amplified by PCR in a highly uniform process using generic vector-derived primers, to provide DNA fragments that could be directly spotted onto microarrays. Clones from these

libraries were subjected to high throughput sequencing to confirm the diversity of the library

and identify novel sequences.

10

25

30

Identification of the full-length sequences can be performed using in a number of different methods. For example, the gene can be isolated from a corresponding full-length eosinophil library or a library from a commercial source. Direct cloning from mRNA using a variety of techniques such as "5' race" is also possible.

Microarrays were generated using the library clones or the information derived from their sequence. The microarrays were used to generate differential mRNA expression data for eosinophils isolated from different sources or under the different conditions as described above (e.g. disease and normal or with and without treatment of IL-5) or for comparison of eosinophil mRNA with mRNA isolated from other cell types.

Variation was normalised to allow comparison of data from different microarrays by empirical selection of invariant genes followed by normalisation across this set. Although this approach was found to provide the most reliable and accurate data a variety of alternative normalisation methods could be envisaged by the skilled man, including global normalisation across the whole array, incorporation of a known mRNA or 'spike' as an internal standard in each sample, or normalisation to a housekeeping gene or genes (e.g. GAPDH, actin).

It is apparent that the polynucleotides or fragments thereof of the second aspect of the invention may be utilised in the above described methodology, for the identification of further polynucleotides and polypeptides which play a role in eosinophil mediated disease, such as inflammatory disease.

In a third aspect, the present invention relates to polynucleotide sequences that are capable of hybridising to any of the polynucleotide sequences which encode amino-acid sequences encoded by Seq ID Nos: 1-466 or to any of Seq ID Nos: 1-466 themselves, under stringent conditions, as defined above. In a preferred embodiment of the third aspect, there is provided polynucleotide sequences which are complimentary to the polynucleotide sequences which encode amino-acid sequences encoded by Seq ID Nos: 1-466, such as sequences which are complementary to any of Seq ID Nos: 1-466.

gage state of the

Although the nucleotide sequences of the third aspect are capable of hybridising to the naturally occurring polynucleotide sequences under stringent conditions as described above, included

within the scope of the third aspect are polynucleotide sequences which hybridise to polynucleotide sequences having different codon usage, as a result of the degenracy of the genetic code.

The polynucleotide sequences according to the third aspect of the invention are useful in antisense technology, for example in the modulation and/or surpression of polynucleotide expression by interfering with the proper transcription or translation of the polynucleotide sequence. This modulation and/or surpression of polynucleotide expression may be useful in abolishing or alleviating disease symptoms associated with the polynuleotide sequences. In a preferred embodiment, the third aspect relates to a method of modulating or surpressing expression of a polynucleotide sequence which encodes an amino-acid sequence encoded by any of Seq ID Nos: 1-466 or fragments of those amino acid sequences, by administering a polynucleotide sequence, or fragment thereof, which hybridises under stringent conditions to the polynucleotide sequence being expressed.

15

20

25

30

35

10

5

Such methods which suppress expression of the polynucleotide sequences may be used to elaborate on the functional properties of the polynucleotide sequences and their expression products. For example, cellular assays may be conducted in which key eosinophil responses are measured in response to normal and surpressed polynucleotide expression. The methods may also be used to abolish or alleviate the symptoms or cause of disease in a subject. In such a method, a polynucleotide sequence or fragment therof according to the third aspect of the invention may be administered to a subject. Two distinct 'antisense' methodologies are favoured. In one preferred method polynucleotides of approximately 20 bases complementary to the mRNA coding sequence are used to disable the gene of interest. In the other preferred 'antisense' methodology, the whole or a fragment of the gene sequence is inserted into an expression vector in an antisense orientation (3' to 5') under the control of a mammalian promoter and/or enhancer sequence.

For the first of the above methods, numerous techniques are available which assist in the design of suitable antisense oligonucleotides including, for example, the determination of loops in the mRNA structure using software based on thermodynamic stability calculations of the secondary and/or tertiary mRNA structures, RNAse H mapping of open sites using semi-random oligonucleotides and oligonucleotides designed to bind at defined intervals along the mRNA sequence. An electronic mapping procedures based on the mFold programme may be used to generate a short list of antisense oligonucleotides. The oligonucleotides may then tested in cellular assays to select potent and specific antisense oligonucleotides that suppress expression of

polynucleotide sequences, preferably by surpressing levels of the transcribed mRNA, prior to their use in functional assays or therapeutic methods described above.

Antisense oligonucleotides can be modified in a variety of ways, including the use of methyl phosphonate, methoxy-,ethoxy- or other base modifications and phosphorothioate to increased stability, cellular uptake, mRNA affinity and decreased non-specific protein or mRNA/DNA binding affinity, whilst maintaining their ability to induce RNAse H cleavage or block transcription/translation. In addition to identifying a potent and specific antisense oligonucleotide, the antisense oligonucleotide must be effectively delivered to the cell of interest. Preferably, the antisense oligonucleotide is produced by PCR techniques.

Using the second preferred 'antisense' methodology involves inserting the whole or a fragment of the polynucleotide sequence into an expression vector in an anitsense orientation (3' to 5') under the control of a promoter and/or enhancer sequence. Introduction of this sequence into the cell of interest and transcription of the antisense mRNA is expected to reduce the quantity of mRNA available for translation, thus reducing the level of polypeptide expressed by the polynucleotide

sequence. The antisense sequence can be introduced into a variety of different vectors (e.g. plasmid vectors, adenoviral and retroviral vectors) for delivery into cells prior to performing

functional cellular assays.

5

10

15

20

25

30

35

Retroviral vectors are preferred as they have a number of advantages over the other delivery systems including ease of construction, high transduction and expression efficiencies, integration of the expression cassette into the host chromosome and the ability to deliver to both dividing and non-dividing cells). Retroviral vectors based on malony monkey leukaemia virus (MMLV) enable delivery to a variety of dividing human cells by virtue of being pseudotyped with different envelope proteins (e.g. VSV-G and amphotrophic MLV envelope). A commercial retroviral vector system comprising murine leukmia virus(MuLV) was also used. Replication deficient vectors based on lentiviruses such as human immunodeficiency virus (HIV), feline immunodeficiency virus (FIV) or equinr immunodeficiency virus (EIAV), if pseudotyped with appropriate envelope proteins, offer the potential of delivering to non-dividing or terminally differentiated cells, for example eosinophils.

In addition to the expression of antisense RNA, the retroviral vectors provide an ideal vehicle for the delivery of full length or fragments of the polynucleotide sequences in a sense orientation. Full length expression provides evidence for the role of the target, particularly relevant if it were found to be 'up' regulated in disease. Whilst expression of a fragment of the sequence could result in the production of a dominant negative protein or provide information regarding a possible splice variant of the gene.

For both antisense methodologies and the over expression studies, it is essential that mRNA levels of the target and control polynucleotide sequences are measured accurately to ensure specificity and validity. PCR based methods are preferred because of their sensitivity of detection particularly following mRNA antisense suppression. A variety of PCR based techniques are available including gel based quantitative or semi-quantitative methods and densitrometric measurement, in solution based methods using DNA intercolating fluorescent dyes or hybridisation of complementary labelled polynucleotides, the Taqman system from Perkin Elmer is preferred as this system offers good reproducibility, accuracy, real time quantitation and relatively high through put.

10

15

20

25

30

In a preferred embodiment of the second or third aspects of the invention, the polynucleotide sequences may be ligated to a heterologous sequence to encode a fusion protein. For example, to screen peptide libraries for inhibitors, it may be useful to encode a chimeric protein that can be recognised by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the sequence encoding the peptide of interest and the heterologous protein sequence, so that the peptide of interest may be cleaved and purified away from the heterologous moiety.

The polynucleotide sequences of the second and third aspects of the invention may be operably linked to any regulatory region, i.e., promoter and/or enhancer element known in the art, but these regulatory elements must be functional in the host cell selected for expression. The regulatory regions may comprise a promoter region for functional transcription in the host cell, and optionally a region situated 3' of the gene of interest, and which specifies a signal for termination of transcription and a polyadenylation site. A replication origin may also be included. Polynucleotide sequences of this embodiment may be referred to as expression cassettes. Promoters that may be used in the present invention include both constitutive promoters and regulated (inducible) promoters. The promoter may one which naturally controls the expression of the polynucleotide sequence, or where the polynucleotide sequence is in an antisense configuration, the promoter is one which naturally controls the expression of the sense configuration of the polynucleotide sequence. When the nucleic acid does not contain a promoter sequence, an appropriate promoter sequence may be inserted.

Promoters may be from a heterologous source. In particular, they may be promoter sequences of eukaryotic or viral genes. For example, a promoter sequence may be derived from the genome of the host cell which is to be infected. Likewise, promoter sequences may be derived from the genome of a virus, such as adenovirus (E1A and MLP), cytomegalovirus, or Rous Sarcoma Virus. In addition, the promoter may be modified by addition of activating or regulatory sequences, or sequences which confer a specific expression pattern, for example tissue-specific or predominant expression (enolase and GFAP promoters etc.). Such promoters would be known to a person skilled in the art.

10

15

20

25

30

35

5

Suitable promoters useful for practice of this invention include ubiquitous promoters (e.g., HPRT, vimentin, actin, tubulin), intermediate filament promoters (e.g., desmin, neurofilaments, keratin, GFAP), therapeutic gene promoters (e.g., MDR type, CFTR, factor VIII), tissue-specific promoters (e.g., actin promoter in smooth muscle cells), promoters which are preferentially activated in dividing cells, promoters which respond to a stimulus (e.g., steroid hormone receptor, retinoic acid receptor), tetracycline-regulated transcriptional modulators, cytomegalovirus (CMV) immediate-early, retroviral LTR, metallothionein, SV-40, adenovirus E1a, and adenovirus major late (MLP) promoters. Tetracycline-regulated transcriptional modulators and CMV promoters are described in WO 96/01313, US 5,168,062 and 5,385,839, the contents of which are incorporated herein by reference. Further preferred promoters include, but are not limited to, the SV40 early promoter region (Benoist and Chambon, 1981, Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors such as the βlactamase promoter (Villa-Kamaroff, et al., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731), or the tac promoter (DeBoer, et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25); see also "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter; and the animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, 1987, Hepatology 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-122), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-658; Adames et al., 1985,

er i Brann

Nature 318:533-538; Alexander et al., 1987, Mol. Cell. Biol. 7:1436-1444), mouse mammary tumour virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel. 1:268-276), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 235:53-58), alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., 1987, Genes and Devel. 1:161-171), beta-globin gene control region which is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; Kollias et al., 1986, Cell 46:89-94), myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712), myosin light chain-2 gene control region which is active in skeletal muscle (Sani, 1985, Nature 314:283-286), and gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason et al., 1986, Science 234:1372-1378).

Additional regulatory regions may be identified using the polynucleotides of the present invention. The polynucleotide sequence may be extended using various methods known in the art to detect upstream sequences such as promoters and regulatory elements. One such method which may be employed is restriction-site PCR which uses universal primers to retrieve unknown sequence adjacent to a known locus (see, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322). In particular, genomic DNA is first amplified in the presence of a primer which is complementary to a linker sequence within the vector and a primer specific to a region of the nucleotide sequence. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.

25

30

35

. 5

10

15

20

The polynucleotide sequences of the second and third aspects of the invention may also be operably linked to a 3' regulatory region, for example a 3' UTR sequence, or downstream promoter and/or enhancer sequences. Downstream 3' untranslated regions (3'UTR) have a well recognised role in mRNA stability (Nucleic Acids Symp Ser 1997;(36):29-32, Microbiol Rev 1995 Sep;59(3):423-50). The stability of an mRNA plays a major role in the determination of gene expression. The stability of an mRNA reflects its structure, as well as its interaction with transacting RNA-binding proteins. The processes that regulate mRNA stability can effect how cells grow, differentiate, and respond to their environment, and as such represent potential sites for therapeutic intervention. The polynucelotides of the present invention may be used to identify novel 3' UTR's, which may be useful in the isolation of further full length cDNA clones, which may have a role in inflammatory disease. This may be done using standard methodologies

including: electronic extension by comparison with DNA databases, PCR based strategies such as RACE, and screening of cDNA libraries. 3' UTR's also have utility as electronic probes and can be used as probes to measure corresponding gene specific mRNA levels in cells or tissues, using a number of techniques well known in the art for example: RT-PCR, In-situ hybridisation, Northern blotting, and microarray based techniques. This may be useful in diagnostic or prognostic assays, or functional assays. Finally, such 3' UTR's may be useful in the design of antisense oligonucleotides, which have a range of utilities as discussed above.

5

10

15

20

25

30

Upstream or downstream regulatory regions of the polynucleotide sequences of the second aspect of the invention may be identified using inverse PCR, to amplify or extend sequences using divergent primers based on a known region. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) The primers may be designed using commercially available software such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, MN) or another appropriate program to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to 72°C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularised by intramolecular ligation and used as a PCR template. Another method which may be used is capture PCR, which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (See, eg Lagerstrom, M. et al (1991) PCR Methods Applic. 1:111-119). In this method multiple restriction enzyme digestions and ligations may be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR. Other methods which may be used to retrieve unknown sequences are well known in the art (see eg Parker, J.D. et al (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers and PromoterFinder™ libraries to walk genomic DNA (Clontech, Palo Alto,CA). This process avoids the need to screen libraries and is useful in finding intron/exon junctions.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Also, random-primed libraries are preferable in that they will include more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyse the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, the

capillary sequencing may employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (eg GenotyperTM and Sequence NavigatorTM, Perkin Elmer) and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small pieces of DNA which might be present in limited amounts in a particular sample.

In a further preferred embodiment of the second and third aspects of the present invention, the polynucleotide sequences may be engineered using methods generally known in the art in order to alter the sequences for a variety of reasons including, but not limited to, alterations which modify the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth. Further, as will be understood by those of skill in the art, it may be advantageous to produce nucleotide sequences possessing non-naturally occurring codons. For example codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce RNA transcript having desirable properties such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.

In another preferred embodiment of the second and third aspects of the present invention, there is provided an expression vector comprising one or more polynucleotide sequences according to the second or third aspects of the invention. As will be apparent to a person skilled in the art, the choice of expression vector may depend upon the characteristics of the polynucleotide sequence to be expressed and the expression systmen used. Useful expression vectors, for example, may consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences. Suitable vectors include derivatives of SV40 and known bacterial plasmids, e.g., E. coli plasmids col El, pCR1, pBR322, pMal-C2, pET, pGEX (Smith et al., 1988, Gene 67:31-40), pMB9 and their derivatives, plasmids such as RP4; phage DNAS, e.g., the numerous derivatives of phage l, e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2m plasmid or derivatives thereof; vectors useful in eukaryotic cells, such as vectors useful in insect or mammalian cells; vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or other expression control sequences; and the like.

For example, in a baculovirus expression systems, both non-fusion transfer vectors, such as but not limited to pVL941 (BamH1 cloning site; Summers), pVL1393 (BamH1, SmaI, XbaI, EcoR1, NofI, XmaIII, BgIII, and PsfI cloning site; Invitrogen), pVL1392 (BgIII, PsfI, NofI, XmaIII, EcoRI, XbaI, SmaI, and BamH1 cloning site; Summers and Invitrogen), and pBlueBacIII (BamH1, BgIII, PsfI, NcoI, and HindIII cloning site, with blue/white recombinant screening possible; Invitrogen), and fusion transfer vectors, such as but not limited to pAc700 (BamH1 and KpnI cloning site, in which the BamH1 recognition site begins with the initiation codon; Summers), pAc701 and pAc702 (same as pAc700, with different reading frames), pAc360 (BamH1 cloning site 36 base pairs downstream of a polyhedrin initiation codon; Invitrogen(195)), and pBlueBacHisA, B, C (three different reading frames, with BamH1, BgIII, PsfI, NcoI, and HindIII cloning site, an N-terminal peptide for ProBond purification, and blue/white recombinant screening of plaques; Invitrogen (220)) can be used.

10

Mammalian expression vectors contemplated for use in the invention include vectors with 15 inducible promoters, such as the dihydrofolate reductase (DHFR) promoter, e.g., any expression vector with a DHFR expression vector, or a DHFR/methotrexate co-amplification vector, such as pED (PstI, Sall, SbaI, SmaI, and EcoRI cloning site, with the vector expressing both the cloned gene and DHFR; see Kaufman, Current Protocols in Molecular Biology, 16.12 (1991). Alternatively, a glutamine synthetase/methionine sulfoximine co-amplification vector, such as 20 pEE14 (HindIII, XbaI, SmaI, SbaI, EcoRI, and BcII cloning site, in which the vector expresses glutamine synthase and the cloned gene; Celltech). In another embodiment, a vector that directs episomal expression under control of Epstein Barr Virus (EBV) can be used, such as pREP4 (BamH1, Sfil, XhoI, Notl, NheI, HindIII, NheI, PvuII, and KpnI cloning site, constitutive Rous Sarcoma Virus Long Terminal Repeat (RSV-LTR) promoter, hygromycin selectable marker; 25 Invitrogen), pCEP4 (BamH1, Sfil, Xhol, Notl, Nhel, HindIII, Nhel, PvuII, and KpnI cloning site, constitutive human cytomegalovirus (hCMV) immediate early gene, hygromycin selectable marker; Invitrogen), pMEP4 (KpnI, PvuI, NheI, HindIII, NotI, XhoI, SfiI, BamH1 cloning site, inducible methallothionein IIa gene promoter, hygromycin selectable marker: Invitrogen), pREP8 (BamH1, XhoI, NotI, HindIII, NheI, and KpnI cloning site, RSV-LTR promoter, histidinol 30 selectable marker; Invitrogen), pREP9 (KpnI, NheI, HindIII, NotI, XhoI, SfiI, and BamHI cloning site, RSV-LTR promoter, G418 selectable marker; Invitrogen), and pEBVHis (RSV-LTR promoter, hygromycin selectable marker, N-terminal peptide purifiable via ProBond resin and cleaved by enterokinase; Invitrogen). Selectable mammalian expression vectors for use in the invention include pRc/CMV (HindIII, BstXI, NotI, ShaI, and ApaI cloning site, G418 selection; 35 Invitrogen), pRc/RSV (HindIII, SpeI, BstXI, NotI, XbaI cloning site, G418 selection; Invitrogen),

and others. Vaccinia virus mammalian expression vectors (see, Kaufman, 1991, supra) for use according to the invention include but are not limited to pSC11 (SmaI cloning site, TK- and β -gal selection), pMJ601 (SaII, SmaI, AfII, NarI, BspMII, BamHI, ApaI, NheI, SacII, KpnI, and HindIII cloning site; TK- and β -gal selection), and pTKgptF1S (EcoRI, PstI, SaII, AccI, HindII, SbaI, BamHI, and Hpa cloning site, TK or XPRT selection).

In another preferred embodiment, there are provided host cells comprising the polypeptide or polynucleotide sequences according to the first, second or third aspects of the invention. Preferably, a host cell is provided as an expression system, and thus may comprise a polynucleotide sequence or fragment thereof according to the second or third aspects of the invention. More preferably, the host cell will comprise an expression vector, such as described above, which comprises the polynucleotide sequence or fragment thereof. Suitable host cell strains or cell-free expression systems will be known to persons skilled in the art.

A host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Different host cells have characteristic and specific mechanisms for the translational and post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the desired modification and processing of the foreign protein expressed. Expression in yeast can produce a biologically active product. Expression in eukaryotic cells can increase the likelihood of "native" folding. Moreover, expression in mammalian cells can provide a tool for reconstituting, or constituting, polypeptide activity. Furthermore, different vector/host expression systems may affect processing reactions, such as proteolytic cleavages, to a different extent.

25

30

35

5

10

15

20

In a fourth aspect, the present invention relates to the production of the polynucleotide or polypeptide sequences, or fragments or variants thereof, according to the first, second or third aspects of the invention. The production of a polynucleotide or polypeptide sequence may comprise either recombinant or synthetic techniques. Where the method comprises production of the polypeptide or polynucleotide sequence by synthetic chemistry, preferably the entire polypeptide or or polynucleotide sequence, or desired fragment thereof is made using synthetic chemistry. Where a polynucleotide is produced, the synthetic sequence may be inserted into any expression vectors, such as those described above, and expressed in a expression system using reagents that are well known in the art. Moreover synthetic chemistry may be used to introduce modifications and/or mutations into an oligonucleotide sequence or a fragment thereof.

The polynucleotide sequences may be synthesised, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nuc.l. Acids Res. Symp. Ser. 225-232). Alternatively, the polypeptide may be produced using chemical methods to synthesize the amino acid sequence of any one or more of Figure 1 to 357, or a fragment thereof. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204). Automated synthesis may be achieved using the ABI 43 IA Peptide Synthesizer (Perkin Elmer). Additionally, the amino acid sequence, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide. The polypeptide may be substantially purified by preparative high performance liquid analysis or by sequencing. (See for example: Creighton, T. (1983) Proteins. Structures and Molecular Properties, WH Freeman and Co., New York).

In a preferred embodiment of the fourth apsect of the invention, there is provided a method for directing the expression of the polypeptide sequences or fragments thereof of the first aspect of the invention in appropriate host cells. Preferably, this method employs recombinant DNA technology to result in expression of polypeptides according to the first aspect of the invention. The method of producing a polypeptide according to the first aspect of the invention, comprises:

a) transforming a host cell with a polynucleotide sequence according to the second or third aspects of the invention;

. 157

- b) culturing the host cell under conditions suitable for expression of the polypeptide; and
- c) recovering the polypeptide from the host cell culture.

5

10

15

20

25

30

35

The polynucleotide sequence introduced into the host cell may be in the form of an expression vector, having the necessary regulatory sequences such as promoters and/or enhancers, and transcriptional and translational signals, as discussed above. The polynucleotide sequence may be flanked by its' native upstream and/or downstream regulatory regions. Potential host-vector systems include but are not limited to mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); microorganisms such as yeast containing yeast vectors; or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA. The expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system utilised, any one of a number of suitable transcription and translation elements may be used. Yeast expression systems can also be used to express polypeptides of the present invention. For example, the non-fusion pYES2 vector (XbaI, SphI, ShoI, NotI, GstXI, EcoRI, BstXI, BamH1, SacI, Kpn1, and HindIII cloning sit; Invitrogen) or the fusion pYESHisA, B, C (XbaI, SphI, ShoI, NotI, BstXI, EcoRI,

BamH1, SacI, KpnI, and HindIII cloning site, N-terminal peptide purified with ProBond resin and cleaved with enterokinase; Invitrogen), to mention just two, can be employed according to the invention.

Alternatively, the polynucelotide sequence of the invention or fragment thereof, may be expressed chromosomally, after integration of the coding sequence by recombination. In this regard, any of a number of amplification systems may be used to achieve high levels of stable gene expression (See Sambrook et al., 1989, supra). Any method for the insertion of DNA fragments into a cloning vector may be used to construct expression vectors containing a gene consisting of appropriate transcriptional/translational control signals and the protein coding sequences. These methods may include in vitro recombinant DNA and synthetic techniques and in vivo recombination (genetic recombination). Such methods will be known to a person skilled in the art.

5

10

20

25

30

35

Vectors are introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, lipofection (lysosome fusion), use of a gene gun, or a DNA vector transporter (see, e.g., Wu et al., 1992, J. Biol. Chem. 267:963-967; Wu and Wu, 1988, J. Biol. Chem. 263:14621-14624; Hartmut et al., Canadian Patent Application No. 2,012,311, filed March 15, 1990).

Expression vectors containing a polynucleotide of the invention can be identified by five general approaches: (a) PCR amplification of the desired plasmid DNA or specific mRNA, (b) nucleic acid hybridization, (c) presence or absence of selection marker gene functions, (d) analysis with appropriate restriction endonucleases, and (e) expression of inserted sequences. In the first approach, the nucleic acids can be amplified by PCR to provide for detection of the amplified product. In the second approach, the presence of a foreign gene inserted in an expression vector can be detected by nucleic acid hybridization using probes comprising sequences that are homologous to an inserted marker gene. In the third approach, the recombinant vector/host system can be identified and selected based upon the presence or absence of certain "selection marker" gene functions (e.g., β-galactosidase activity, thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of foreign genes in the vector. In another example, if a polynucleotide sequence of the invention is inserted within a "selection marker" gene sequence of the vector. Recombinants containing an insert can then be identified by the absence of the gene function. In the fourth approach, recombinant expression vectors are identified by digestion with appropriate

restriction enzymes. In the fifth approach, recombinant expression vectors can be identified by

assaying for the activity, biochemical, or immunological characteristics of the gene product expressed by the recombinant, provided that the expressed protein assumes a functionally active conformation.

Once a particular recombinant DNA molecule is identified and isolated, several methods known in the art may be used to propagate it. Once a suitable host system and growth conditions are established, recombinant expression vectors can be propagated and prepared in quantity.

Soluble forms of the protein can be obtained by collecting culture fluid, or solubilising inclusion bodies, e.g., by treatment with detergent, and if desired sonication or other mechanical processes, as described above. The solubilised or soluble protein can be isolated using various techniques, such as polyacrylamide gel electrophoresis (PAGE), isoelectric focusing, 2-dimensional gel electrophoresis, chromatography (e.g., ion exchange, affinity, immunoaffinity, and sizing column chromatography), centrifugation, differential solubility, immunoprecipitation, or by any other standard technique for the purification of proteins.

In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; DNA Cloning: A Practical Approach, Volumes I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization [B.D. Hames & S.J. Higgins eds. (1985)]; Transcription And Translation [B.D. Hames & S.J. Higgins, eds. (1984)]; Animal Cell Culture [R.I. Freshney, ed. (1986)]; Immobilized Cells And Enzymes [IRL Press, (1986)]; B. Perbal, A Practical Guide To Molecular Cloning (1984); F.M. Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994).

Methods for DNA sequencing are well known and generally available in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, TM (US Biochemical Corp., Cleveland, OH), Taq polymerase (Perkin Elmer), thermostable T7 polymerase (Amersham, Chicago, IL), or combinations of polymerases and proof reading exonucleases such as those found in the ELONGASE Amplification System (GIIBCO/BRL, Gaithersburg, MD). Preferably, the process is automated with machines.

30

10

15

20

25

In a fifth aspect of the invention, there is provided an antibody or fragment thereof which binds to a polypeptide according to the first aspect of the invention. Also provided are methods for production of such antibodies or fragments thereof, using the polypeptides, or fragments thereof, of the first aspect as antigens. Fusion proteins as described above may also be used for the generation of antibodies.

A molecule is "antigenic" when it is capable of specifically interacting with an antigen recognition molecule of the immune system, such as an immunoglobulin (antibody) or T cell antigen receptor. An antigenic polypeptide contains at least about 5, and preferably at least about 10, amino acids. An antigenic portion of a molecule can be that portion that is immunodominant for antibody or T cell receptor recognition, or it can be a portion used to generate an antibody to the molecule by conjugating the antigenic portion to a carrier molecule for immunisation. A molecule that is antigenic need not be itself immunogenic, i.e., capable of eliciting an immune response without a carrier.

15

20

25

30

35

10

5

The antibodies of the fifth aspect include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression library. The antibodies of the invention may be cross reactive, ie they may recognise different antigenic species. Polyclonal antibodies have greater likelihood of cross reactivity. Alternatively, an antibody of the invention may be specific for a single polypeptide. Preferably, such an antibody is specific for the polypeptides of the invention.

Various procedures known in the art may be used for the production of polyclonal antibodies. For the production of antibody, various host animals can be immunised by injection with a polypeptide of the invention, or a derivative (e.g., fragment or fusion protein) thereof, including but not limited to rabbits, mice, rats, sheep, goats, etc. In one embodiment, a polypeptide or fragment thereof can be conjugated to an immunogenic carrier, e.g., bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH). Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminium hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and 5 Colynebacte arvum are especially preferable. It is preferred that the polypeptides, or fragments used to induce antibodies have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these polypeptides, or fragments are identical to a portion of the amino acid sequence of the

WO 02/10198 PCT/GB01/03390

natural protein. Short stretches of amino acids may be fused with those of another protein, such as KLH and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies directed towards a polypeptide of the invention, or fragment, or analog, or derivative thereof may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to the hybridoma technique originally developed by Kohler and Milstein [Nature 256:495-497 (1975)], as well as the trioma technique, the human B-cell hybridoma technique [Kozbor et al., Immunology Today 4:72 1983); Cote et al., Proc. Natl. Acad. Sci. U.S.A. 80:2026-2030 (1983)], and the EBV-hybridoma technique to produce human monoclonal antibodies [Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 (1985)].

In another embodiment of the fifth aspect, monoclonal antibodies can be produced in germ-free animals [International Patent Publication No. WO 89/12690, published 28 December 1989].

15

20

5

10

Techniques developed for the production of "chimeric antibodies" such as [Morrison et al., J. Bacteriol. 159:870 (1984); Neuberger et al., Nature 312:604-608 (1984); Takeda et al., Nature 314:452-454 (1985)] by splicing the genes from a mouse antibody molecule specific for a polypeptide of the invention together with genes from a human antibody molecule of appropriate biological activity can also be used; and such antibodies are within the scope of this invention. Such human or humanized chimeric antibodies are preferred for use in therapy of human diseases or disorders (described infra), since the human or humanized antibodies are much less likely than xenogenic antibodies to induce an immune response, in particular an allergic response, themselves.

25

According to the invention, techniques described for the production of single chain Fv (scFv) antibodies [U.S. Patent Nos. 5,476,786 and 5,132,405 to Huston; U.S. Patent 4,946,778] can be adapted to produce polypeptide-specific single chain antibodies.

An additional embodiment of the invention utilises the techniques described for the construction of Fab expression libraries Huse et al., Science 246:1275-1281 (1989) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity for a polypeptide of the invention, or its derivatives, or analogs. Antibody fragments which contain the idiotype of the antibody molecule can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab')₂ fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments which can be generated by reducing the disulfide bridges

of the F(ab')₂ fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.

In the production of antibodies, screening for the desired antibody can be accomplished by techniques known in the art, e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labelled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention. For example, to select antibodies which recognise a specific epitope of a polypeptide of the present invention, one may assay generated hybridomas for a product which binds to an polypeptide fragment containing such epitope. For selection of an antibody specific to a polypeptide from a particular species of animal, one can select on the basis of positive binding with polypeptide expressed by or isolated from cells of that species of animal.

20

5

10

15

The foregoing antibodies can be used in methods known in the art relating to the localisation and activity of the polypeptides of the present invention, e.g., for Western blotting, imaging polypeptide in situ, measuring levels thereof in appropriate physiological samples, etc. using any of the detection techniques mentioned above or known in the art.

25

In a specific embodiment, antibodies that agonize or antagonize the activity of a polypeptide can be generated. Such antibodies can be tested using the assays described *infra* for identifying ligands. In particular, such antibodies can be scFv antibodies expressed intracellularly.

Histological analysis using these antibodies of the present invention can provide information on protein tissue distribution (disease and normal tissue), localisation of the protein within cells and the extracellular environment. The antibodies of the present invention can also provide functional information by acting as agonists or antagonists of the protein encoded by the novel gene in question both in vitro and in vivo.

In a sixth aspect, the present invention relates to a method of screening for agents which modify the expression and/or activity of one or more of the polynucleotides or polypeptides of the present invention, or derivatives thereof, the method comprising the steps of:

- 5 a) exposing one or more of the polynucleotides or polypeptides or derivatives thereof to at least one agent to be screened; and
 - b) detecting and/or measuring interaction and/or binding between the polynucleotide or polypeptide or derivatives thereof and the agent.
- Preferably, the polynucleotides are those of the second or third aspect of the invention, more preferably the polynucleotide sequences of any of Seq ID Nos: 1-466, or fragments thereof. The polypeptide sequences are preferably those encoded by any of Seq ID Nos: 1-466, or fragments thereof.
- The polypeptides or polynucleotides of the present invention, or derivatives thereof including catalytic or immunogenic fragments, or oligopeptides can be used for screening libraries of compounds in any of a variety of drug screening techniques. The polypeptides or polynucleotides of the present invention, or derivatives thereof employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly.

 The formation of binding complexes between the polypeptides or polynucleotides of the present invention, or derivatives thereof and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to a polypeptide of interest. (See, e.g., Geysen, et al. (1984) PCT application W084103564). In this method, large numbers of different small test compounds are synthesised on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with a polypeptide of the present invention, or one or more fragments thereof, and washed. Bound polypeptide is then detected by methods well known in the art. Purified polypeptide can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralising antibodies can be used to capture the peptide and immobilise it on a solid support.

25

30

35

.

Identification and isolation of a polynucleotide encoding a polypeptide of the invention provides for expression of polypeptides in quantities greater than can be isolated from natural sources, or in indicator cells that are specially engineered to indicate the activity of a polypeptide expressed after transfection or transformation of the cells. Accordingly, in addition to rational design of agonists and antagonists based on the structure of a polypeptide, the present invention

contemplates an alternative method for identifying specific ligands of polypeptides of the invention using various screening assays known in the art.

Any screening technique known in the art can be used to screen for agents which either agonise or antagonise the polypeptides of the present invention. For example, a suitable cell line expressing a polypeptide of the invention, can be transfected with a nucleic acid encoding a marker gene, such as β -galactosidase. Cells are then exposed to a test solution comprising a putative agonist or antagonist, and then stained for β -galactosidase activity. The presence of more β -gal positive cells relative to control cells not exposed to the test solution is an indication of the presence of an agonist of the polypeptide in the test solution. Conversely, the presence of less β -gal positive cells relative to control cells not exposed to the test solution is an indication of the presence of an antagonist of the polypeptide in the test solution.

The present invention contemplates screens for small molecule ligands or ligand analogs and mimics, as well as screens for natural ligands that bind to and agonise or antagonise the polypeptides or polynucleotides of the present invention *in vivo*.

Knowledge of the primary sequence of a polynucleotide or polypeptide of the invention, and the similarity of that sequence with sequences of known function, can provide an indication of potential inhibitors or antagonists of a protein or polynucleotde. Identification and screening of antagonists is further facilitated by determining structural features of the polynucleotide or polypeptide, e.g., using X-ray crystallography, neutron diffraction, nuclear magnetic resonance spectrometry, and other techniques for structure determination. These techniques provide for the rational design or identification of agonists and antagonists.

7. 8 H

25

30

35

20

10

15

Another approach uses recombinant bacteriophage to produce large libraries. Using the "phage method" [Scott and Smith, 1990, Science 249:386-390 (1990); Cwirla, et al., Proc. Natl. Acad. Sci., 87:6378-6382 (1990); Devlin et al., Science, 249:404-406 (1990)], very large libraries can be constructed (10⁶-10⁸ chemical entities). A second approach uses primarily chemical methods, of which the Geysen method [Geysen et al., Molecular Immunology 23:709-715 (1986); Geysen et al. J. Immunologic Method 102:259-274 (1987)] and the method of Fodor et al. [Science 251:767-773 (1991)] are examples. Furka et al. [14th International Congress of Biochemistry, Volume 5, Abstract FR:013 (1988); Furka, Int. J. Peptide Protein Res. 37:487-493 (1991)], Houghton [U.S. Patent No. 4,631,211, issued December 1986] and Rutter et al. [U.S. Patent No. 5,010,175, issued April 23, 1991] describe methods to produce a mixture of peptides that can be tested as agonists or antagonists.

In another embodiment, synthetic libraries [Needels et al., *Proc. Natl. Acad. Sci. USA* 90:10700-4 (1993); Ohlmeyer et al., *Proc. Natl. Acad. Sci. USA* 90:10922-10926 (1993); Lam et al., International Patent Publication No. WO 92/00252; Kocis et al., International Patent Publication No. WO 9428028, each of which is incorporated herein by reference in its entirety], and the like can be used to screen for ligands according to the present invention.

5

10

15

20

25

30

35

The screening can be performed with recombinant cells that express a polypetide of the invention, or alternatively, using purified protein, e.g., produced recombinantly, as described above. For example, labelled, soluble peptides can be used to screen libraries, as described in the foregoing references.

In an embodiment, a polypeptide or polynucleotide or derivative thereof may be directly labelled. In another aspect of the invention a labelled secondary reagent may be used to detect binding of the polynucleotide or polypeptide or derivative thereof to an agent of interest, e.g., a molecule attached to a solid phase support. Binding may be detected by in situ formation of a chromophore by an enzyme label. Suitable enzymes include, but are not limited to, alkaline phosphatase and horseradish peroxidase. In a further embodiment, a two colour assay, using two chromogenic substrates with two enzyme labels on different acceptor molecules of interest, may be used. Cross-reactive and singly-reactive ligands may be identified with a two-colour assay.

Other labels for use in the invention include coloured latex beads, magnetic beads, fluorescent labels (e.g., fluorescene isothiocyanate (FITC), phycoerythrin (PE), Texas red (TR), rhodamine, free or chelated lanthanide series salts, especially Eu³⁺, to name a few fluorophores), chemiluminescent molecules, radio-isotopes, or magnetic resonance imaging labels. Two colour assays may be performed with two or more coloured latex beads, or fluorophores that emit at different wavelengths. Labelled moieties may be detected visually or by mechanical/optical means. Mechanical/optical means include fluorescence activated sorting, *i.e.*, analogous to FACS, and micromanipulator removal means.

In another embodiment, one may use competitive drug screening assays in which neutralising antibodies capable of binding the polypeptide specifically compete with a test compound for binding sites. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with a polypeptide of the present invention.

In a related aspect, the present invention relates to agents identified using the above screening method of the sixth aspect.

In a seventh aspect, the present invention also relates to pharmaceutical compositions. In one embodiment a polypeptide, polynucleotide, fragment thereof, antisense polynucleotide sequence, antibody or agent of the present invention, with or without a pharmaceutically acceptable carrier or vehicle may be administered to a subject for use in the diagnosis, prevention or treatment of disease, such as eosinophil mediated inflammatory disease. Such a disease may include, but is not limited to, asthma, emphysemia, COPD, bronchitis, allergic disorders such as atopic dermatitis and NERDS (nodules eosinophilia,rheumatism, dermatitis and swelling); vasculitic granulomatous diseases including polyarteritis, Wegeners granulomatosis; some autoimmune diseases; interstitial and other pulmonary diseases including eosinophilic pneumonia, sarcoiditis and idiopathic pulmonary fibrosis; and neoplastic and myoploriferative diseases including hypereosinophilic syndrome, T cell lymphoma and hodgkins disease.

15

20

10

5

In a preferred embodiment, the pharmaceutical composition may comprise an antagonist of the polypeptides of the present invention for administration to a subject to treat or prevent an eosinophil mediated disorder. Such a disorder may include inflammatory disorders of any type, and includes but is not limited to, asthma, emphysemia, COPD, bronchitis, allergic disorders such as atopic dermatitis and NERDS (nodules eosinophilia,rheumatism, dermatitis and swelling); vasculitic granulomatous diseases including polyarteritis, Wegeners granulomatosis; some auto-immune diseases; interstitial and other pulmonary diseases including eosinophilic pneumonia, sarcoiditis and idiopathic pulmonary fibrosis; and neoplastic and myoploriferative diseases including hypereosinophilic syndrome, T cell lymphoma and hodgkins disease.

25

In another embodiment, the pharmaceutical composition may comprise an antibody which specifically binds a polypeptide of the present invention, for use directly as an antagonist as described above, or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express the polypeptide.

30

35

In an additional embodiment, the pharmaceutical composition may comprise the complement of a polynucleotide of the second aspect, for administration to a subject to treat or prevent an inflammatory disease including, but not limited to, those described above. Preferably, a polynucleotide sequence according to the third aspect of the invention will be used. More preferably, the polynucleotide sequence will be in the form of an expression vector, as described above.

In an additional embodiment, the pharmaceutical composition may comprise the polynucleotide or polypeptide sequences, or fragments thereof, of the first and second aspects of the invention for use in treating or preventing an inflammatory disease, preferably an eosinphil mediated

5

10

In further embodiments, any of the polypeptides, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of a polypeptide of the present invention may be produced using methods which are generally known in the art. In particular, purified polypeptide may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind to the polypeptide. Antibodies to a polypeptide of the invention may also be generated using methods that are well known in the art examples of which are described *supra*. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralising

antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic

In an eighth aspect of the invention, there is provided a method of prevention, or treatment of an

use.

25

30

35

inflammatory disease, in particular eosinphil mediated disease, comprising administration to a subject a polynucleotide or polypeptide or fragment thereof, or derivatives including complements, antibodies or agents. In one embodiment, a complement of a polynucleotide may be used in diagnosis, prevention or treatment of disease, for example in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to the polynucleotide of the present invention. Thus, complementary molecules or fragments may be used to modulate polypeptide activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense

the coding or control regions of sequences. Preferably, polynucleotide sequences according to the third aspect of the invention will be employed.

or antisense oligonucleotides or larger fragments can be designed from various locations along

In an embodiment of this aspect, it is envisaged that the polynucleotide sequences of the second aspect of the invention may be used in the treatment or prevention of an inflammatory disease, in particular, and eosinpohil mediated disease. For example, a polynucleotide sequence according to the second aspect may be administered to a subject by any method described below where it is found that disease or symptoms thereof are the result of a deficiency in a particular polynucleotide or polypeptide sequence. In an embodiment, the method may comprise direct administration of the polypeptide sequences according to the first aspect.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors which will express nucleic acid sequences complementary to the polynucleotides of the present invention (See, e.g., Sambrook, supra; and Ausubel, supra.)

15

20

25

30

35

10

5

Genes can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or a fragment thereof. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

4

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the polynucleotides of the present invention. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.1. Carr, Molecular and Immunologic A1212roaches, Futura Publishing Co., Mt. Kisco, NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyse the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyse endonucleolytic cleavage of polynucleotide sequences. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

5

10

15

20

25

30

35

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesising oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesise complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5'andlor 3' ends of the molecule, or the use of phosphorothioate or 2'O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognised by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and are equally suitable for use, in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from a patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may

10

15

20

be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)

A further embodiment of the present aspect relates to the administration of a pharmaceutical or sterile agent, preferably in conjunction with a pharmaceutically acceptable carrier, for use in a method of prevention or treatment of an inflammatory disease, in particular an eosinophil mediated disease. Such pharmaceutical compositions may consist of polynucleotide, polypeptide, fragments thereof, antibodies, and mimetics, agonists, antagonists, or inhibitors. The compositions may be administered alone or in combination with at least one other agent, drug, or hormone, such as a stabilising compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water.

The pharmaceutical compositions utilised in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired,

WO 02/10198 PCT/GB01/03390

disintegrating or solubilising agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

49

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, tale, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterise the quantity of active compound, i.e., dosage.

5

20

25

30

35

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilisers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilisers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulphuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the

corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0. 1 % to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use. After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labelled for treatment of an indicated condition. For administration of polypeptides of the present invention, such labelling would include amount, frequency, and method of administration.

10

15

20

25

30

35

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art. For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. A therapeutically effective dose refers to that amount of active ingredient, for example polypeptide, antibody, agonist, antagonist or inhibitors, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50. (the dose lethal to 50% of the population) statistics. The dose ratio of therapeutic to toxic effects is the therapeutic index, and it can be expressed as the ED5O/LD50 ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration. The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0. 1 ug to 100,000 ug, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.

5

15

20

25

30

Those skilled in the art will employ different formulations for nucleotides than for proteins or Similarly, delivery of polynucleotides or polypeptides will be specific to their inhibitors. particular cells, conditions, locations, etc.

Any of the therapeutic methods described above may be applied to any subject in need of such 10 therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

In another aspect, there is provided a method of diagnosis of diease in a subject, comprising administration to the subject antibodies which specifically bind the polypeptides of the invention. Antibodies may be used for the diagnosis of disorders characterised by expression of polypeptides of the invention, or in assays to monitor patients being treated with polypeptides or agonists, antagonists, or inhibitors. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays include methods which utilise the antibody and a label to detect polypeptide in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labelled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring proteins including ELISAS, RIAS, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of protein expression. Normal or standard values for expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody under conditions suitable for complex formation The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Expression levels in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment, there is provided a method of diagnosis of disease in a subject, the 35 method comprising administration of polynucleotides of the present invention. The

polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAS. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of polypeptides of the present invention, and to monitor regulation of expression levels during therapeutic intervention.

In a further embodiment, a method of diagnosis is provided which comprises administration to a subject of probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding polypeptides of the invention or closely related molecules. Such probes may be used to identify nucleic acid sequences which encode polypeptides of the invention. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding polypeptides of the invention, alleles, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the polynucleotide sequences of the present invention. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of Figure 2, or 4.

Means for producing specific hybridization probes for DNAs include the cloning of polynucleotide sequences of the present invention or derivatives thereof into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesise RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labelled nucleotides. Hybridization probes may be labelled by a variety of reporter groups, for example, by radionucleotides such as P³², S³¹ or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

30

35

5

10

15

20

25

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents. Microarrays may be prepared,

used, and analysed using methods known in the art. (See, 20 e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application W095/251116; Shalon, D. et al. (1995) PCT application W095135505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662).

The polynucleotide sequences of the present invention may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and ELISA assays; and in microarrays utilising fluids or tissues from patients to detect altered gene expression. Such qualitative or quantitative methods are well known in the art.

In a particular embodiment, the nucleotide sequences of the present invention may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences may be labelled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

Also envisaged are methods of diagnosis comprising administration to a subject of agents including agonists and antagonists of the polypeptides of the invention, the polypeptides of the invention or fragments thereof, and complements of the polynucleotides of the invention.

The above molecules of the present invention may be used for the diagnosis of eosinophil mediated inflammatory disease. Examples of such disorders include, but are not limited to asthma, emphysemia, COPD, bronchitis, allergic disorders such as atopic dermatitis and NERDS (nodules eosinophilia, rheumatism, dermatitis and swelling); vasculitic granulomatous diseases including polyarteritis, Wegeners granulomatosis; some auto-immune diseases; interstitial and other pulmonary diseases including eosinophilic pneumonia, sarcoiditis and idiopathic pulmonary fibrosis; and neoplastic and myoploriferative diseases including hypereosinophilic syndrome, T cell lymphoma and hodgkins disease.

30

5

10

15

20

25

In order to provide a basis for the diagnosis of an eosinophil mediated inflammatory disorder, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with at least one sequence, or a fragment thereof, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder. Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

15

35

10

5

A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the disease.

Additional diagnostic uses for polynucleotides of the present invention may involve the use of 20 PCR. Oligomers may be chemically synthesised, generated, enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide of the present invention, or a fragment of a polynucleotide complementary thereto, and will be employed under optimised conditions for identification of a specific gene or condition. Oligomers may also be employed 25 under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences. Methods which may also be used to quantitate expression include radiolabelling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; and Duplaa, C. et al. (1993) Anal. Biochem. 229-236). The speed of quantitation of multiple samples 30 may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or calorimetric response gives rapid quantitation.

In another aspect of the present invention, polynucleotide sequences of the invention may be used to generate hybridisation probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a

chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries. (See, e.g., Price, C.M. (1993) 30 Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154).

5

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al.(1995)in Meyers, R.A. (ed.) Molecular Biology and Biotechnology, VCH Publishers New York, NY, pp.965-968). Examples of genetic map data can be found in Various scientific journals or at the Online Mendelian Inheritance in Man (OMB4) site. Correlation between the location of the gene on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

15

20

25

30

35

10

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localised by genetic linkage to a particular genomic region, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580). The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In yet another aspect of the invention, there is provided a transgenic non-human animal comprising a polynucleotide sequence according to the second or third aspects of the invention. The transgenic non-human animal may comprise a polypeptide according to the first aspect of the invention.

In further aspects, the polynucleotide or polypeptide sequences of the present invention may be used in any molecular biology techniques that have yet to be developed, provided the new

techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

The present invention may be better understood by reference to the following non-limiting

Examples, which are provided as exemplary of the invention. The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figures. Such modifications are intended to fall within the scope of the invention.

Ĭ

10

It is further to be understood that all base sizes or amino acid sizes, and all molecular weight or molecular mass values, given for nucleic acids or polypeptides are approximate, and are provided for description.

EXAMPLES

5

10

15

20

25

1

Example 1: Cloning of Human Eosinophil cDNA

This example describes the cloning of polynucleic acids expressed by human peripheral blood eosinophils.

Example 1.1: Purification of Human Peripheral Blood Eosinophils

Eosinophils were purified from 200ml whole blood essentially as described by Dubois et al., Am. J. Respir. Cell Mol. Biol., 1998. Essentially, the blood was layered on to Accuspin tubes with filter histopaques (Sigma) and centrifuged (2100rpm) for 20 minutes. The Peripheral Blood Mononuclear Cell (PBMC) layer was carefully removed and the filters washed twice with PBS. The filters were punctured and the blood (approx.15ml) under each filter was transferred to sterile 50ml tubes. The lysis of the red blood cells was performed as follows: 6% dextran (6ml) and PBS (44ml) were added to each tube, the lysis solution was mixed by inverting and left to incubate for 45 min. at room temperature (RT). The supernatants were subsequently collected, pooled and centrifuged (1,600rpm) for 5 min. The resultant pellet was resuspended in PBS (5ml) and hypotonic shock was performed to completely remove the red blood cell contamination from the granulocyte layer. The granulocytes were incubated with anti-CD16 beads (Dynal, Norway) for 40 min. at 4°C and the eosinophils subsequently purified from the neutrophils by negative selection.

Example 1.2: Extraction of Total Cellular RNA

Total cellular RNA was extracted from the eosinophils using essentially the modified RNAzolB method described by Kodavanti et al. Exp. Lung Res., 1996. Total cellular RNA quality was assessed by electrophoresis through formamide/formaldehyde TAE gels, as described in (Maniatis T. et al., "Molecular Cloning, a Laboratory Manual," Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1982; Ausubel F.M. et al. (eds.), "Current Protocols in Molecular Biology," John Wiley & Sons, New York, 1987). Both 28 S and 18S fibosomal RNAswere detected as shown in figure 1. 30

Example 1.3: Extraction of polyA+ mRNA

Poly(A) mRNA was purified from total RNA using a Micro poly A+ kit (Ambion), according to the manufacturers protocol.

10

20

25

30

35

Ì

Example 1.4: Production of PCR amplified cDNA

cDNA was synthesised from 400ng human eosinophil mRNA SMART PCR cDNA Synthesis Kit (Clontech). The methodology used was essentially as described by the manufacturer, with the following modifications: the two 5' and 3' SMART oligonucleotide primers, respectively, were replaced by modified HPLC purified primers having the sequence shown in figure 4. These primers contain essentially the same amplification and Poly dT sequences described by the manufacturers Clontech. The RsaI restriction sites are replaced by AscI and NotI restriction sites. These new restriction sites, allow directional cloning, but also have 8-base pair enzyme recognition sequences. 8-base pair recognition sequences are rare in mammalian genes, consequently cDNA sequences are unlikely to be digested internally with the use of these enzymes. The size range of the amplified cDNA was between 200bp and 7kb as shown in figure 2.

15 Example 1.5: Modification of cDNA library cloning vector

The vectors pSKII (Stratagene) was modified by the inclusion of additional 8bp sites (AscI and PacI). The vector was digested PstI/EcoRI and ligated with dephosphorylated double stranded oligonucleotides to generate the additional 8bp sites shown in figure 5. The genetic engineering techniques used to clone and insert cDNAs into these plasmids employed routine protocols described in Maniatis, 1989.

Example 1.6: cDNA Library Construction

PCR amplified cDNA (approx. 15μg) was digested with NotI and AscI, and size fractionated on a Sephacryl S-500 gel filtration column (Gibco BRL Life Technologies), as described by the manufacturer. Fractions containing cDNA >500bp were combined and ligated. All ligations were performed in 20μl reaction volume using 50ng modified pBluescript SK II (+) vector, 80ng cDNA and 1 unit of T4 DNA Ligase (Gibco BRL Life Technologies), and incubated at 16°C O/N. Ligation reactions were purified (phenol/chloroform extraction and ethanol precipitated, as described in Maniatis, 1989) and used to transform *E. Coli* TG1 cells (supE, hsdD5, thi, D(lac-proAB), F'(tra D36 pro A⁺B⁺ lacI^q lacZDM15), Stratagene) by electrophoration as follows: TG1 cells were thawed on ice and mixed with 1μl ligated DNA. The cell/DNA mixture was transferred to a chilled electroporation cuvette (0.1 cm; BIORAD) and pulsed for 4 seconds at (1700V, 200A, 25μF; Gene Pulser II; BIO RAD). SOC (960μl) was added to resuspend the cells, and the suspension incubated at 37°C for 1h. Transformed cells are plated onto LB Agar (L-broth: NaCl (5 g/l), Bacto-tryptone (10 g/l), Yeast extract (5 g/l);

Difco), containing ampicillin, under blue/white selection. The library contained $> 1 \times 10^6$ independent clones, with an average insert size range of 400bp to 2.5kb as determined by restriction digest.

Example 1.7: Normalisation of cDNA Library

Plasmid DNA from the eosinophil cDNA library (50µg) was digested with AscL/NotI restriction enzymes and the insert fragments isolated by gel purification (called 'Tracer'). Purified PCR products which had been amplified (using T7/T3 primer sequences) from 5000 eosinophil miniprep cDNA clones were pooled and photobiotinylated ('Driver'). The methodology for photobiotinylation and subtraction, was essentially as described by Wang, Z and Brown, DD; Proc Natl Acad Sci USA 1991 Dec 15;88(24):11505-9. Two rounds of hybridisation/subtraction (68°C, 20h) with 100:1 biotinylated Driver:Tracer ratio are carried out. Hybrids were removed with Streptavidin and extracted 5 times with phenol/chloroform. The enriched Tracer DNA was ethanol precipitated, ligated into modified pSK II and transformed in E Coli TG1 cells by electroporation (as described in Example 1.6).

Example 1.8: Purification of Plasmid DNA

Plasmid DNA clones was purified on a Qiagen 9600 Robot, using Qiaprep 96 Turbo kits (Qiagen), as described by the manufacturer.

5

10

15

20

25

Example 2: High Throughput Sequencing

This example describes determination of the complete/partial DNA sequence of each isolated cDNA clone. The cDNA was sequenced, using an Applied Biosystems 377 or 373 DNA Sequencing System, using the Prism Big Dye Terminator Cycle Sequencing chemistry (PE-BioSystems). The modified pBluescriptIISK/cDNA insert clones are sequenced on the 5' and the 3' vector strand using the T3 promoter primer (5'AATTAACCCTCACTAAAGGG3') and the T7 promoter primer, respectively (5'TAATACGACTCACTATAGGG3'). Where necessary the cDNA was sequenced internally using primers based on previous sequencing results, essentially following the same protocols.

30

35

Example 3: Database Search and Sequence Annotation

This example describes searching the publicly available databases GenBank, SwissProt, TrEMBL (Bairoch A., Apweiler R., "The SWISS-PROT protein sequence data bank and its supplement TrEMBL", Nucleic Acids Res 1999 Jan 1;27(1):49-54) and PFAM (Bateman A, etal. "Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins", Nucleic Acids Res. 1999 Jan 1;27(1):260-2.). GenBank is the NIH genetic sequence database,

an annotated collection of all publicly available DNA sequences (Nucleic Acids Research 1999 Jan 1;27(1):12-7) and has been searched for certain of the nucleotide sequences of the invention, which correspond to the determined DNA sequences for each isolated cDNA clone, to ensure the novelty of these sequences. Additional sequencing has been performed for sequence elongation, sequence assembly and sequence verification. Functional annotation in silico may be performed to search the deduced protein sequences for protein domains and similarities to known protein sequences.

The base-calling program Phred (Ewing B. et al., "Base-calling of automated sequencer traces using phred. II. Error probabilities", Genome Res 1998 Mar;8(3):186-94) was used to analyse the DNA sequence traces, to deduce nucleotide sequences and to assign quality scores for each individual nucleotide of these sequences. The derived sequences covering the 5' end of each clone insert were compared versus the GenBank databases version 111 for primate sequences and version 110 for pubESTs, respectively using the BLAST database search program version 2.0.8 (Altschul, S. et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res 1997 Sep 1;25(17):3389-402). In order to identify and mask repetitive regions all query sequences were firstly compared against a database containing a collection of human repetitive sequences called REPBASE (Prepared for National Center for Biotechnology Information Contract No. N01-LM-2-3526 P.I. Jerzy Jurka, Linus Pauling Institute of Science and Medicine 440 Page Mill Rd Palo Alto, CA 94306). The XBLAST software (Claverie J. M. and States D. J. "Information Enhancement Methods for Large Scale Sequence Analysis", Computers and Chemistry 1993, 17: 191-201.) was used to mask all regions with homology to any of those repeat sequences. Functionally, XBLAST reads a BLAST output file and generates query sequences where all segments with hits are masked. BLAST version 2.0.8 was used for subsequent database searches of these masked query sequences against all database entries of the GenBank databases version 111 for primate sequences and version 110 for pubESTs and to evaluates the statistical significance of detected sequence similarities.

None of the polynucleotide sequences filed here showed significant homology in GenBank databases version 111 for non-genomic primate (pri) sequences and version 110 for public EST sequences (pubEST). All these sequences were found to be above the user-selected threshold of significance (BLAST e-value) of 10.sup.-7 and are therefor assumed to represent novel human cDNA sequences.

5

10

15

20

25

10

15

20

25

30

144 cDNA clones were elongated by generating the 3' sequence for each clone. The corresponding 5' and 3' read of each clone insert was assembled utilising the Phrap software ("phragment assembly program", or "phil's revised assembly program"; ©1994-1999 by Phil Green, University of Washington) and the resulting sequence assemblies ("contigs") were manually edited in the Consed sequence editor (Gordon D. etal., "Consed: a graphical tool for sequence finishing", Genome Res 1998 Mar;8(3):195-202) to increase the accuracy of the deduced consensus sequences. These derived consensus sequences correspond to the full-length insert of each cDNA clone. The resulting sequences correspond to Seq Id Nos: 1-466 (polynucleotide) all of which are at least 200 nucleotides in length, and include no more than 8% of uncalled bases (where N is recorded rather than A, C, G, or T).

For functional annotation in silico the deduced protein sequence may be examined using different approaches to detect remote homologies to characterised protein sequences and similarities to known protein domains. These methods include sequence comparisons against different databases including GenBank and PFAM (Bateman A, et al. "Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins", Nucleic Acids Res. 1999 Jan 1;27(1):260-2.) and sensitive search algorithms using iterated sequence database search methods (Taylor WR, et al. "Iterated sequence databank search methods." Comput Chem. 1999 Jun 15;23(3-4):365-85.) and profile hidden Markov models for the detection of distant sequence homologs and low conserved protein domains (Eddy SR, et al., "Maximum discrimination hidden Markov models of sequence consensus", J Comput Biol. 1995 Spring;2(1):9-23.).

For the sequence listing the most 5-prime region of each sequence has been translated in all three possible reading frames and specified whenever the deduced product resulted in a hypothetical peptide of more then 9 amino acids. Additional 5-prime sequence information can be unravelled in order to define the correct and full length coding sequence.

Example 4: Construction and Use of Microarray, for Amersham Microarray System

This example describes the use of a microarray system developed and commercialised

(Amersham Pharmacia Biotechnology). This methodology, essentially using protocols

pioneered by Pat Brown and colleagues (Schena, M et al. Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science 270, 467-470 (1995).

cDNA fragments of up to 2.5kb in length were amplified by PCR from the eosinophil cDNA clones. PCR reactions (100 µl) were performed in 1x Taq DNA Polymerase buffer using 2.5 U Taq DNA polymerase (Qiagen), 100 mM dNTPs and 400 nM each of T7 and T3 primers 1T7 primer: 5'GTAATACGACTCACTATAGGGC3', T3 primer:

5'AATTAACCCTCACTAAAGGG3']. PCR was performed in 96 well microtitre plates with a 1 min denaturation step at 94°C, 36 rounds of amplification (denaturation 94°C, 40 sec, annealing 55°C, 30 sec, extension 72°C, 2 min), followed by a 2min extension step at 72°C.

Example 4.2: Purification, QC and Quantitation of PCR Products

Quadruplicate 100µl PCR reactions were pooled and purified on a Biorobot-9600 (Qiagen) using the Qiaquick 96 PCR Biorobot kit (Qiagen). 100µl of PCR reactions were mixed with 500µl of buffer PB and applied sequentially to Qiaquick modules until the 4 replicate reactions had been applied to a single well. Qiaquick modules were washed with 2 x 750µl of PE per well, dried using the vacuum manifold and DNA was eluted with 80µls of water into 96 well microtitre plates.

DNA was quantitated using the fluorescent reagent Sybrgreen (Molecular Probes). 300µl of a 1:3000 of the Sybrgreen dye was mixed with 1µl of purified DNA in a 96 well white Opti plate (Packard). Fluorescence was measured, using a Victor plate reader (Wallac), at an excitation wavelength of 495nm and an emission wavelength of 520nm. A standard curve was constructed using a plasmid DNA dilution series; the concentrations of which were determined by Absorbance at 260nm.

All purified DNA samples were analysed by agarose gel electrophoresis to verify that PCR fragments of a size consistent with the sequencing analysis for that clone (see example 2) had been generated. Samples were dried in a centrifugal evaporator (Savant) and reconstituted to 500 ng/µl in 50% (v/v) DMSO. 20µl of sample /well was transferred from 4 (96 well) microtitre plates to a 384 well microtitre plate for spotting onto microarray slides.

30 Example 4.3: Spotting of Microarray

5

10

15

20

25

35

DNA was spotted onto Type 7 mirrored slides (Amersham) using the GenIII microarray spotter (Amersham), using conditions essentially as described by the manufacturer. Humidity was controlled within the spotter at 55%. Normal mode spotting was employed which produced replicate arrays on the right and left side of each slide. UV crosslinking of the DNA onto the slides was achieved using a CL-100 Ultraviolet Crosslinker (UVP) set at 100mJ/cm². Slides were stored dessicated in the dark until use.

يقي

Example 4.4: Preparation of Fluorescently labelled Samples

Example 4.4.1: RNA preparation

RNA was prepared from either primary cells (e.g. eosinophils) or from cell lines (e.g. A549 human lung epithelial cells). Total RNA was isolated from cell lines using the RNeasy kit (Qiagen), using procedures as described by the manufacturer. RNA was isolated from primary cells using the modified RNAzolB method described by Kodavanti et al. Exp. Lung Res., 1996. Total RNA integrity was assessed by denaturing agarose gel electrophoresis, as described in Example 1.2. RNA was quantified by Abs 260nm determination.

10

35

5

Poly(A+) mRNA was purified from total cellular RNA using a Micro poly A+ kit (Ambion), according to the manufacturer's protocol.

Example 4.4.2: Labelled cRNA Samples

1 μg of mRNA and 100 pmoles of T7-(dT)₂₄ were denatured at 70°C for 10min in a volume 15 of 13ul. DTT, dNTPs and 5X 1st strand buffer were added to 10mM, 0.5mM and 1X respectively, and incubated in a total volume of 20µl for 2 min at 37°C. Reverse transcription was initiated by addition of 1µl of 200 U/µl superscript II enzyme (Gibco BRL Life Technologies) and incubating at 37°C for 1 h. Second strand cDNA synthesis was initiated by addition of 1µl of 10U/µl DNA Ligase (Gibco BRL Life Technologies), 4µl of 10U/µl DNA 20 Polymerase I (Gibco BRL Life Technologies), 1µl of 2U/µl RNase H (Gibco BRL Life Technologies) and incubated in a total volume of 150µl for 2 hours at 16°C. After this incubation 2µl of 5U/µl T4 DNA Polymerase was added and incubated for 5 minutes at 16°C. 10µl of 0.5M EDTA was added to the double stranded cDNA. The cDNA was, phenol/chloroform extracted, ethanol precipitated, washed with 70% ethanol and air dried. 25 0.5-1µg of linearised T7 cDNA template was reconstituted in a volume of 2µl of DEPC water (Ambion). T7 10X reaction buffer (Ambion), rA/C/GTP, rUTP and rcyUTP (either Cy3 labelled CTP or Cy5 labelled CTP, Amersham) were added to 1X, 150nmoles, 100nmoles and 30nmoles respectively. In-vitro transcription was initiated by adding 2µl of T7 RNA Polymerase (Ambion) and incubated in a total volume of 20µl for 6 hours at 37°C. After this 30 incubation the DNA template was removed by addition of 1µl of RNase-free DNase (Ambion) and incubated for 15 min at 37°C. The labelled cRNA sample was then purified using a

RNeasy purification kit (Qiagen), essentially as described by the manufacturers but with two

sample was, quantitated by Abs260nm, aliquoted into amounts corresponding to 2µg of cRNA

washes with PE buffer and elution with 2x 40µl of DEPC water. The resultant purified

per tube and dried in a centrifugal evaporator (Savant model SC110). Sample was stored at - 20°C in the dark until ready to use in the hybridisation.

Example 4.4.3: Labelled cDNA Samples from Total RNA

25 μg of total RNA and 1μg of Oligo dT (Amersham) were denatured at 70°C for 10 minutes in a volume of 11μl. DTT, dNTPs, dcyCTP (either Cy3 labelled CTP or Cy5 labelled CTP, Amersham) and 5X 1st strand buffer were added to 10mM, 0.1mM, 62nM and 1X respectively, and incubated in a total volume of 19μl for 10 min at 22°C. Reverse transcription was initiated by addition of 2ul of 200U/μl superscript II enzyme (Gibco BRL Life Technologies) and incubating at 42°C for 2.5 h. After this incubation the cDNA sample was ethanol precipitated, washed with 70% ethanol, air dried and resuspended in 40μl of water. The cDNA:mRNA hybrid was denatured by addition of NaOH to 250mM and incubating at 37°C for 10 min. The hydrolysis was terminated by neutralisation with 6μl of IM Hepes pH 8. The labelled cDNA sample was then purified using a PCR purification kit (Qiagen), essentially as described by the manufacturers but with two washes with PE buffer and elution with 2x 30μl of 10mM Tris pH 8.5. The resultant purified sample was aliquoted into amounts corresponding to preparations from 10μg of total RNA per tube and dried in a centrifugal evaporator (Savant). Sample was stored at -20°C in the dark until ready to use in the hybridisation

20

25

30

5

10

15

Example 4.4.4: Labelled cDNA Samples from mRNA

cDNA samples prepared from mRNA were made using essentially the same procedure detailed in section 4.4.3 but using 2.5 μ g of mRNA instead of 25 μ g of total RNA. Sample was aliquoted at the final stage into amounts corresponding to preparations from 1 μ g of starting mRNA per tube.

Example 4.5: Hybridisation of Microarray

Example 4.5.1: Pre-treatment of microarray slides

Microarrayed slides (Example 4.3) are pre-treated by incubating in 5xSSC/0.2% SDS for 2 h at 60°C. Slides are washed 5x in distilled water, 2x in isopropanol and dried rapidly using a compressed air can.

Example 4.5.2: Hybridisation

Hybridisation mixtures for a single slide were prepared as follows. An aliquot of labelled sample (prepared as described in Examples 4.4.2, 4.4.3 or 4.4.4) was reconstituted in 6.7 µl of water, denaturing at 95°C for 2 min and then incubated on ice for 2 min. The sample was the added to a hybridisation mix that had been pre-equilibrated at 42°C to give final concentration of 3µg/ml Oligo A80, 50% formamide in 1x Type II hybridisation buffer (Amersham). The total volume of the hybridisation mixture was 40µl per slide and this was applied to the pre-treated microarray slides and incubated under a coverslip (22mm x 65mm), in a humid chamber at 42°C overnight.

10 Example 4.5.3: Post Hybridisation washes

Post hybridisation washes were performed at 55°C as follows.

Wash 1 - 5 min wash in 1xSSC/0.2% SDS for 5 min

Wash 2- 10 min wash in 0.1xSSC/0.2% SDS

Wash 3-10 min wash in 0.1xSSC/0.2% SDS

15 Wash 4- 10 min wash in 0.01xSSC/0.1%SDS

Slides are rinsed with distilled water, dried rapidly with compressed air.

Example 4.6: Scanning of Microarray

The fluorescence of each spot was determined by scanning the slides in a GenIII microarray scanner (Amersham). Cy3 fluorescence was determined using an excitation wavelength of 532nm and an emission wavelength of 575nm. Cy5 fluorescence was determined using an excitation wavelength of 633nm and emission wavelength of 675nm. PMT values are set over a range 675-750 V.

25 Example 4.7: <u>Data Capture</u> and <u>Processing</u>

Images of scanned slides are analysed using ArrayVision software (Imaging Research). Expression values for each gene are determined from the fluorescence contained in a circle around each spot and a correction applied for the background fluorescence on the slide.

30 Example 5: Construction and Use of Affymetrix Custom Probe Array

This example describes the design of a customised Affymetrix probe array, using DNA sequences of isolated cDNA clones. This example also describes the methodology for use of the custom probe array. This technology is referenced through the following patents/submissions: PCT/US98/22966, PCT/US98/01206, 5,800,992 patent and PCT/US94/07106.

20

5

All sequences were screened for low complexity regions and repetitive sequences and vector contamination's using Swat and cross-match (Copyright (C) 1994-1999 by Phil Green, University of Washington) which are based on an efficient implementation of the Smith-Waterman-Gotoh algorithm (Waterman MS, "Efficient sequence alignment algorithms", J Theor Biol. 1984 Jun 7;108(3):333-7).

5

10

15

20

25

30

35

Repetitive regions of all sequences were masked prior to sequence submission to Affymetrix by comparing all sequences against REPBASE a database containing a collection of human repetitive sequences (prepared for National Center for Biotechnology Information Contract No. N01-LM-2-3526 P.I. Jerzy Jurka, Linus Pauling Institute of Science and Medicine 440 Page Mill Rd Palo Alto, CA 94306) using BLAST version 2.0.8 (Altschul, S. et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res 1997 Sep 1;25(17):3389-402) in combination with the XBLAST software (Claverie J. M. and States D. J. "Information Enhancement Methods for Large Scale Sequence Analysis", Computers and Chemistry 1993, 17: 191-201.). XBLAST reads each BLAST output file and generates a sequence where all segments with hits against the repeat database have been masked. This masked sequences provides better templates for the probe design because nonspecific regions shared by several genes have been excluded from the submitted sequences and less unwanted cross-hybridisation's will affect the experimental results obtained with the final micro-arrays.

Example 5.2: Labelled Sample synthesis, Hybridisation and Scanning

The methodology describing the sample synthesis, hybridisation and scanning etc. for the probe array is described in detailed protocols supplied by Affymetrix. Essentially, poly(A+) mRNA is extracted and purified form total cellular RNA (5 to 100µg) using a Micro poly(A+) kit (Ambion). The synthesis of cDNA (from 0.5-5µg mRNA) is using the Superscript Choice system kit (Gibco BRL Life Technologies), and incorporated a T7-(dT)24 primer (GENSET). Purified cDNA (upto 2µg) is in-vitro transcribed using the MEGAscript T7 Kit (Ambion), and incorporates Biotin-11-CTP and Biotin-16-UTP (final conc. 1.875mM; Sigma/Enzo). Following purification, IVT cRNA is fragmented in a magnesium containing buffer at 94°C. A hybridisation mix, containing cRNA, herring sperm DNA, acetylated BSA and a MES-based buffer, is denatured and then incubated onto the probe array at 45°C, rotating at 60rpm, for approx. 16h. Following incubation, the hybridisation mix is removed and the probe arrays washed using the Affymetrix Fluidics Station. Whilst remaining on the Fluidics Station, the probe array is stained with Streptavidin Phycoerythrin (SAPE; final conc. 10µg/ml; Molecular Probes). For probe arrays having a 24 μ m x 24 μ m feature size, an additional

antibody amplification, washing and staining step is used, as follows: Following the first addition of SAPE (10 min. 25°C), the probe array is washed and then incubated with a solution containing biotinylated anti-streptavidin antibody (Vector Laboratories; 10 min. 25°C). After a further cycle of washing the probe array is stained a second time with SAPE (10 min. 25°C). The probe array is scanned, after the wash protocols are complete, using the Affymetrix scanner (570nm).

Example 5.3: Data Capture and Processing

After scanning the probe array, the resulting image data created is stored as a .dat file. In the first step of the analysis, a grid is automatically placed over the .dat file so that it demarcates each probe cell. A probe array library file (.cif, supplied by Affymetrix), defines the identity and location of each gene probe. The scanned image is then analysed using the Affymetrix GeneChip software, which generates an exportable .txt file containing expression information and characteristics for each DNA sequence represented upon the probe array as shown in Figure X.

10

5

WO 02/10198 68

Example 6: Details of Experiments for Microarray Profiling

There are many ways microarrays can be used to produce functional annotation of the genes included on the array. The following examples describe different experiments conducted to profile mRNA expression levels using microarrays (Affymetrix and Amersham type). Such experiments form part of the strategy to identify candidate target genes (such techniques are review in the Supplement to Nature Genetics. 21: 1999).

Example 6.1: Tissue Distribution

5

20

30

35

10 The example describes the characterisation of the expression specificity of genes, characterised by the isolated cDNA clones. Such a pattern provides indirect information about function. A gene expressed exclusively in cosinophils is likely to be involved in pathologies associated with the eosinophil such as inflammatory disease such as asthma. Effective drugs have been developed against protein targets widely expressed in the body. However, highly selective tissue expression of a drug target is attractive, as the potential for 15 unwanted side effects may be more restricted. Knowledge of highly selective gene expression, alongside other information on a gene, can thus provide a shortcut for implicating a target in a given pathway or disease.

Example 6.1.1: Commercial Human Tissue poly(A+) mRNA

Labelled samples are synthesised from human tissue poly(A+) mRNA obtained from commercial sources (Clontech, InVitrogen). Tissues include, bone marrow, liver, kidney, brain and lung.

25 Example 6.1.2: Purified Human Leukocytes

Labelled samples are synthesised from poly(A+) mRNA extracted and purified from human leukocytes. Human leukocyte preparations are purified from peripheral blood essentially as described for eosinophils, and include: eosinophils, neutrophils, mononuclear cells, T cells and B cells. In some cases the purified leukocytes are stimulated/activated overnight prior to isolation of mRNA e.g. T cells treated with anti-CD3 and anti-CD28 antibodies, or B cells treated with IL-4 and anti-CD40 antibody.

Example 6.2: Cell Based Models of Eosinophil Function

The examples describe the characterisation of the expression pattern of genes, included on the microarray, in primary cells isolated from normal and diseases humans as well-as model cellular systems. Discrete aspects of cellular function can be biochemically and physiologically

10

15

20

25

30

35

modelled in cell lines (e.g. chemotaxis or adhesion in response to physiological cytokines). Detailed profiling of gene expression in model cell lines yields dissection of the critical pathways and cellular responses, and highlights key targets. The example describes the characterisation of the expression pattern of genes, identified from the isolated cDNA clones, in cell based model systems. Such systems provide ideal models for the functional validation of candidate targets prior to further characterisation and validation in animal models etc.

Example 6.2.1: IL-5 Treatment of Primary Human Eosinophils

IL-5, like its related cytokines GM-CSF and IL-3, is a key mediator in many aspects of eosinophil functional biology (Devos R etal. *J Leukoc Biol.* 1995 Jun;57(6):813-9, Okudaira H etal. *Int Arch Allergy Immunol.* 1998 Sep;117(1):11-9). Genes which are regulated in eosinophils following treatment with IL-5 might be expected to have a role in eosinophil function.

Human peripheral blood eosinophils were isolated, as described (Example 1.1), and treated with medium containing IL-5 (1 to 100pM; R&D Systems) or media alone as a control. Following treatment (1h to 18h time points), RNA was extracted as described (Example 1.2).

Example 6.2.2: <u>IL-5 and GM-CSF Treatment of a Human Eosinophil-Like Cell Line:</u> AML14.3D10

The AML14.3D10 cell line has been identified and characterised as a surrogate model cell line resembling the human eosinophil (Baumann MA et al. Stem Cells. 1998;16(1):16-24, Paul CC et al. Blood. 1993 Mar 1;81(5):1193-9). Genes which are regulated in AML14.3D10 following treatment with IL-5 and/or GM-CSF might be expected to have a role in eosinophil function.

AML14.3D10 cells are cultured, as described in Example 8, and treated with medium containing IL-5 or GM-CSF (1 to 100pM; R&D Systems) or media alone as a control. Following treatment (1h to 18h time points), RNA is extracted as described (Example 1.2).

Example 6.2.3: Adhesion of AML14.3D10 to Fibronectin

The critical process of adhesion by an eosinophil has been modelled in AML14.3D10. The model system is described in detail in Example 8. Following adhesion (approx. 1h), the adherent and non-adherent AML14.3D10 cell populations were harvested and RNA were extracted as described (Example 1.2). In some experiments, non-adherent cells are harvested at time points upto 48h post-adhesion.

15

20

25

30

Example 6.2.4: IL-5 Withdrawal from IL-5-dependent Cell Line: TF1.8

Withdrawal of IL-5 from the IL-5-dependent Cell Line: TF1.8 is described in Example 8 relating to Validation. Following IL-5 withdrawal (time points between 15 min. and 48h), cells are harvested and RNA is extracted as described (Example 1.2).

Example 6.2.5: <u>Eotaxin Treatment of Primary Human Eosinophils and AML14.3D10 Cells</u> Expressing Human Eotaxin Receptor CCR3

As eotaxin, is a key mediator in many aspects of cosinophil functional biology (Graziano

FM etal. Allergy Asthma Proc. 1999 May-Jun;20(3):141-6, Corrigan CJ etal. Clin Exp

Immunol. 1999 Apr;116(1):1-3). Genes which are regulated in cosinophils following treatment with cotaxin might be expected to have a role in cosinophil function.

Human peripheral blood eosinophils, or AML14.3D10 cells, isolated and cultured respectively, as described (Example 1.1 and 8.5), were treated with medium containing eotaxin (1 to 100pM; R&D Systems) or media alone as a control. Following treatment (1h to 18h time points), RNA was extracted as described (Example 1.2).

Example 6.3: Clinical Study with Peripheral Blood Eosinophils from Normal and Asthmatic Individuals

This example describes mRNA expression profiling for human peripheral blood eosinophils from normal and asthmatic individuals from a defined clinical background.

Diversion from normal physiology is frequently accompanied by histological and biochemical changes, including changes in gene expression. The up- or down-regulation of gene activity can either be the cause of the pathophysiology or the result of the disease. The comparison of expression of thousands of genes between 'disease' and 'normal' tissues and cells allows the identification of multiple potential drug targets. Targeting disease-causing gene products is desirable to achieve disease modification, while targeting genes that are expressed as a consequence of disease can lead to alleviation of symptoms.

The following groups are identified and clinically characterised:

- 1. controls normal volunteers
- 35 2. atopic non asthmatic volunteers
 - 3. mild atopic asthmatics >80% predicted FEV1

15

20

25

30

35

- 4. moderate atopic asthmatics 60-80% FEV1
- 5. severe asthmatics (atopic or otherwise) < 60% FEV1.
- 6. atopic: positive skin and rast test. PC20 histamine, > 2mgs//ml
- 7. asthmatic: hyper-responsiveness, PC20 histamine, < 8mgs/ml, wheeze, cough,
- 5 bronchodilator reversible, probably atopic.

RNA was extracted as described (Example 1.2).

Example 7: Data Normalisation, dB Storage and Visualisation

This example describes the process by which expression data (typically .txt files) from Amersham or Affymetrix microarray experiments was normalised, stored and visualised.

Example 7.1 Data Normalisation

Data was normalised using a number of methods depending on the type of data that is being processed. The first method involves a global normalisation method where the total intensity for all genes on the microarray was scaled to the same overall level to give a scale factor that is used for all genes on the microarray; this is done for all microarrays within a single experiment. This method works particularly well when comparing changes within a single cell type under various conditions or where it is expected that only a small number of genes will change from experiment to experiment.

The second method involves normalising based upon the use of genes that are known to be invariant under most cellular conditions (house-keeping genes) such as GAPDH (GlycerAldehyde 3-Phosphate DeHydrogenase), actin or certain ribosomal proteins. For this approach, the levels of the house-keeping gene being used are scaled to the same value for all microarrays within a single experiment giving scale factors that can be used for all other genes on those microarray experiments. This method works well where a large number of genes are expected to change within the experiment.

The final method scaled all the expression levels of the genes on the microarray, in each experiment to a common data set, such as that obtained in an experiment performed on liver cells. The genes used for normalisation are those found to be present within the liver, with the exclusion of the top 10%. The ratios of the expression levels of each of these genes are calculated with respect to the liver experiment, the geometric mean taken and used to normalise the data sets. This approach has the advantage of being used in the large majority of experiments and can be used for cross-tissue comparisons.

10

15

25

30

35

Example 7.2 Data-Base Storage and Visualisation of Data

The data is stored in a relational database (such as Microsoft Access or ORACLE) that contains the normalised expression levels and a call as to whether the gene appears to be absent or present (Affymetrix only). This data is then associated in the relational database with annotation for known genes from various other DNA and protein databases. These databases includeEMBL (GenBank)TM, Swiss-ProtTM, TrEMBLTM, Incyte LifeSeq Gold® and the Derwent patent database. Information that is included is a description of the gene, keywords associated with that gene, tissue distribution and protein function annotation, HTML links to the online database entry, and an indication of the quality of the match between the gene on the microarray and the DNA/protein database entry as measured using Blast (version 2.0.8) statistics.

The data can be queried using the SQL query language in the relational database, where the information for the genes of interest can be extracted. This data can then be visualised using various data-mining software products including SpotFire on a personal computer and MineSet on a Silicon Graphics workstation. In addition to multi-dimensional visualisation, MineSet also has algorithms that can cluster genes according to, for example, similar expression profiles or tissue distributions.

20 Example 8: Functional Characterisation

This example describes how the gene sequences of the present invention can be further characterised with respect to protein structure the function, eosinophil biology and by inference function in other leukocytes.

Example 8.1: Delivery of antisense oligonucleotides to cell lines or primary cells

Antisense oligonucleotides of up to 20 nucleotides in length for any single gene sequence are designed as described previously along with an appropriate, inactive, control; oligonucleotides comprising the same nucleotide components but in a scrambled order or by inverting selected sequential oligonucleotides. These oligonucleotide sequences are additionally modified (e.g. methylphosphonate backbone or 2' methoxy modifications) for stability in the molecule. Oligonucleotides are resuspended in water at a concentration of 200µM . Oligonucleotides are delivered to cells in culture using commercially available lipids, for example Fugene 6 (Roche Molecular Biochemicals) or Superfect (Qiagen) or other , as per manufacturers instructions, or by using RPR proprietary lipids. Specifically oligonucleotides are diluted to the desired concentration (1-1000nM) and complexed with the lipid at the manufacturers recommended ratio.

Oligonucleotides are delivered to; primary human eosinophils, or other leukocytes, or other cell lines cultured in TF1-8 - RPMI-1640 with 10% heat inactivated FCS; 100U/ml penicillin and 100mg/ml streptomycin; 1mM sodium pyruvate and 2U/ml recombinant human IL-5 AML14.3D10 - RPMI-1640 with 10% heat inactivated FCS; 10μM β-mercapto ethanol and 1mM sodium pyruvate at 2-4x10⁵ cells/ml then incubated at 37°C for up to 7 days. The impact of the antisense oligonucleotide on target gene transcription is assessed by quantitative PCR. RNA is prepared from transfected cells using the RNeasy miniprep kit (Qiagen) as per manufacturers instructions. Levels of target and an internal control mRNA are then determined using the TAQMAN technology as detailed below. The impact of the antisense oligonucleotide on target protein expression is assessed by Western blotting by standard procedures (Maniatis et al.(1989) in Molecular Cloning - A Laboratory Manual, CSH Laboratory Press) The impact of the antisense oligonucleotide on functional biology is described below.

15

20

25

30

35

5

10

Example 8.1.2: Retroviral delivery of gene sequences to cell lines or primary cells

Gene sequences in a sense or antisense orientation are delivered to cells of interest using either of two retroviral systems. The first system, the Phoenix MMLV system (Pear et al. (1993) Production of high-titer helper-free retroviruses by transient transfection. PNAS(USA) 90, 8392-6) utilises a PhoenixTM packaging cell line (cultured in DMEM + 10% heat inactivated FCS) in order to produce replicative-incompetent MMLV particles containing the gene of interest. The gene of interest is cloned into a packaging vector, for example pBMN (Pear et all (1993)) and transfected into the Phoenix packaging cell line by calcium phosphate precipitation. 20µg plasmid DNA is precipitated with calcium phosphate using the Promega Profection system as per manufacturers instructions. This precipitate is added to 10^6 cells in 3mls medium. Cells are incubated at 37°C for 5-7h, then the medium is changed and cells incubated for a further 24h. Medium is changed again and cells incubated for a further 48h. The supernatant is transferred to a 15 ml falcon tube and cellular debris removed by spinning at 800rpm for 5 minutes. The supernatant is then filtered through a 0.45mm filter, aliquotted in cryogen tubes and stored at - 80°C. The virus is then titred to assess the number of infectious particles. Target cells of interest are then infected with the viral particles at a suitable multiplicity of infection.(1-100) by adding the virus in a final volume of $1 \, \mathrm{ml}$ to 10^5 cells in culture medium + $8\mu g/ml$ polybrene. The cells and virus are then spun at 2500 rpm for 90 minutes at 32°C. Medium + 8µg/ml polybrene is added to a final volume of 2mls and cells cultured at 37° C overnight. The medium is then changed and cells incubated for a further 48h.Alternatively, the gene sequence of interest is introduced to target cells using a lentiviral

10

15

20

25

30

35

system developed by Oxford Biomedica Limited (Kim et al. (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1 J. Virol. 72(1) 811-6). The sequence of interest is cloned into a lentiviral genome vector, for example pH4 or other and this plasmid is transfected using calcium phosphate precipitation as described into an efficient packaging cell line (293T cells) licensed from Standford University, together with vectors encoding accessory gag/pol and env proteins such as pGP-RRE3 and pRV67. Virus is then produced over a period of 72h as described for the PhoenixTM system. Viral particles encoding the gene of interest are harvested from the cell culture medium as described above then titred to assess the number of infectious particles. Target cells of interest are then infected with the viral particles at a suitable multiplicity of infection (1-100) as described above.

Example 8.1.3: Quantitation of Target mRNA Levels

Target mRNA levels are determined pre and post antisense oligonucleotide delivery to cells or cell lines by TaqMan (ABI PRISM 7700) quantitative RT-PCR analysis. Cytoplasmic RNA is isolated using the RNeasy 96 Kit (Quiagen) as per manufacturers instructions with the inclusion of the manufacturers recommendation regarding on column DNAse1 treatment. For each treatment, 10µl of the resulting RNA is reversed transcribed using the TaqMan Reverse Transcription Reagents Kit (PE Applied Biosystems) as per manufacturers instructions. 5µl of this is added to a 25µl final TaqMan PCR reaction mix (TaqMan Universal PCR Master Mix, as per manufacturers instructions). Target RNA quantitation is carried out using the relative standard curve methodology as described by PE Applied Biosystems and normalisation is carried out using a reference gene, for example GAPDH. Target RNA TaqMan primers/probe setss are designed using the PE Applied Biosystems Primer Express Software.

Example 8.2: Functional Assays

The impact of the genes described on functional biology of eosinophils, other leukocytes and model cell lines is evaluated by monitoring the impact of such genes on a number of functional biological and biochemical assays. Assays (for example adhesion, apoptosis, or calcium mobilisation) have been configured which are characteristic of the primary eosinophil or other leukocytes, in both primary eosinophils or other leukocytes per se, and in cell lines (for example AML14.3D10 (Baumann et al, Stem Cells, 1998;16;16-24), TF1.8(a gift from Prof. C. Sanderson, Institute for Child Health Research, Perth, Australia), HL60 (Tomonaga et al., Blood, 1986; 67:1433-1436) and EOL-1 (Mayumi, Leukemia and Lymphoma,1992; 7:243-250)). Potent antisense molecules that knockdown target mRNA

10

15

20

25

30

35

levels are identified (see above) and transfected into an appropriate cell line, for example AML14.3D10, and a functional assay is performed (for example an adhesion assay or an apoptosis assay) at an appropriate time post transfection, for example 72 hours. Assays are performed with the appropriate scrambled control antisense oligonucleotide simultaneously, as an control. Similarly assays are carried out using cells in which candidate genes have been delivered in a sense orientation to evaluate over-expression or in an anti-sense orientation to identify any anti-gene effects.

Example 8.2.1: Adhesion assays

Adhesion assays are carried out using cells or primary eosinophils and looking at adhesion to a variety of substrates including plasma fibronectin (100µg/ml) cellular fibronectin (100µg/ml) coated on tissue culture plates, or to primary human endothelial cells. In a 96 well plate, 100µl of a 100µg/ml solution of fibronectin is added to each well, and equilibrated for one hour at 37°C. The wells are washed with PBS/1%BSA (bovine serum albumin) and then blocked non-specifically with a solution of PBS/1%BSA for one hour at room temperature. 2x10⁵ cells in Puck's Buffer (Pucks Buffer (Sigma) /0.1%BSA / 2.5mM MnCl₂) are bound to fibronectin coated plates or to confluent endothelial cells for one hour at 37 degrees celcius. Unbound cells are washed off (3 times) with RPMI containing 1% BSA and the bound cells lysed in mammalian lysis buffer (Promega) as per manufacturers instructions. Quantitation of bound cells is carried out using PicoGreen Nucleic Acid detection (Molecular Probes) as per manufacturers instructions. In this way genes are identified that enable or inhibit adhesion beyond the normal range and such genes are therefore implicated in the regulation of the adhesion process.

Example 8.2.2: Apoptosis Assays

Apoptosis assays are carried out using primary eosinophils or other leukocytes or cell lines including TF1.8 and AML cells. Apoptosis is monitored by caspase 3 activation or annexin V externalisation. Caspase 3 activation is measured using a CaspACETM kit (Promega). Cells are harvested following antisense or retroviral treatment and pelletted by centrifugation (8000rpm for 5mins) Cell pellets are lysed using lysis reagent and caspase-3 enzyme activity monitored by production of a fluorescent substrate using a fluorescent plate reader as per manufacturers instructions. Annexin-5 is measured using the ApoAlertTM Annexin V apoptosis kit (Clontech). Cells are harvested following antisense or retroviral treatment and processed using an Annexin5 detection kit (Clonetech) as per manufacturers instructions. Cells are then fixed in 2% paraformaldehyde and analysed by flow cytometry.

Example 8.2.3: Chemotaxis assays

Chemotaxis assays are performed with eosinophils or other leukocytes or cell lines as described by King et al, J. Leuk Biol, 1997;62:465-8.

5

Example 8.2.4: Activation Assays

In response to a range of stimuli eosinophils and leukocytes generally will be activated in a number of ways as specified below.

10

Example 8.2.4.1: Eosinophil Peroxidase

EPO assays are performed for the measurement of EPO release in response to activation. $5x10^5$ cells are incubated in HANK's buffer in the presence of activator, such as Histamine for one hour at 37° C. The supernatant is harvested and EPO concentration is determined by the method of Strah et al (J Immunol Meth, 1985; 83: 209-15).

15

20

Example 8.2.4.2: Respiratory burst

This assay is carried out using lucigenin as a substrate Cells are cultured in a six well plate at 5×10^6 /ml/well in standard medium. After a 24hr cells are washed three times in HBSS with calcium(Sigma +BSA (0.2%), HEPES (10mM), sodium bicarbonate (7.5%)) and seeded at 5×10^4 /well into a white microlite microtitre plate containing pre-warmed lucigenin [50µM]. Cells are incubated for a further 30 minutes in a luminometer (ML3000 Microtiter Luminometer, Dynatech Laboratories) prior to addition of a prescribed stimulus at time zero.

Example 8.2.4.3: CD69 Expression

25

CD69 expression is employed as a marker of activation. 5x10⁵cells are incubated overnight in culture medium plus activator, for example Histamine. After overnight culture, the cell suspensions are centrifuged and the pellets are resuspended in cold RPMI-1640 (Sigma) and placed on ice for immunofluoresence staining and flow cytometry. This was performed as per Hartnell et al., Immunol, 1993; 80: 281-6.

30

35

Example 8.2.4.1: Cystolic calcium

An elevation in cytosolic calcium is measured using a fluorescent calcium indicator dye such as Fura-2, Fluo-3, etc (Molecular Probes; Kao (1994) Meth Cell Biol 40 155-81) Calcium mobilisation assays on antisense treated or retrovirally targetted cells are carried out in two formats following loading of the cells with a fluorescent calcium indicator. For example cells in assay buffer [HBSS with calcium(Sigma +BSA (0.2%), HEPES (10mM), sodium

10

15

bicarbonate (7.5%)](are loaded with 3 μ M fluo-3 AM for 45min at 37 °C . Loaded cells are then washed three times and harvested into a 96-well plate (0.5 x10⁶/300 μ l). Agonists are micro-injected into the wells and change in fluorescence measured using the FLUOstar®(BMG Lab Technologies). Alternatively cells are monitored for changes in calcium in a Perkin Elmer dual excitation spectrophotometer using single assay cuvettes.

Other activation assays that may be employed to assess the impact of genes of interest include the use of a microphysiometer [Molecular Devices] to measure proton extrusion from the cell, eicosanoid production including prostaglandins and leukotrienes [measured in cell supernatants by ELISA or other immuno-assay]; and the production of known cytokines.

Example 9: Antibody Production and Immunohistochemistry

Anti rabbit polyclonal peptide antibodies are produced to targets based on predicted peptide sequence and tested for their ability to react with protein via ELISA assay and by Western Blot using whole cell extracts (Maniatis et al (1989), in Molecular Cloning, A Lab Manual, CSH Laboratory Press, Second Edition). Reactive polyclonal antibodies are used to carry out immunohistochemistry on a wide range of human tissues and to compare the expression of a specified gene in diseased versus normal, tissues, for example in asthmatic lung versus normal lung or in any other inflammatory disease tissue.

20

30

35

CLAIMS:

- 1. A polypeptide encoded by a polynucleotide according to any one of Seq ID Nos: 1-466 or a fragment the polypeptide.
- 2. A polypeptide variant having at least 90% amino-acid sequence identity to the polypeptide sequence of claim 1, and sharing at least one functional or structural characteristic with the polypeptide sequence of claim 1.
- 3. An isolated polynucleotide which encodes the polypeptide of claim 1 or 2.
 - 4. An isolated polynucleotide comprising the polynucleotide sequence of any one of Seq ID Nos: 1-466, or a fragment thereof.
- 5. An isolated polynucleotide variant having at least 90% polynucleotide sequence identity to one of the polynucleotides of claim 3 or claim 4.
 - 6. An isolated polynucleotide which hybridises under stringent conditions to one or more of the polynucleotides of claim 3, claim 4 or claim 5.
 - 7. An isolated polynucleotide which is complementary to one or more of the polynucleotides of claims 3 to 5.
- 8. A method of screening for agents which modify the activity of one or more of the polypeptides
 of claims 1 or 2, comprising the steps of a) exposing the polypeptide to at least one agent to be
 screened; b) detecting and/or measuring interaction and/or binding between the polypeptide and
 the agent.
 - 9. An agent identified according to the method of claim 8.
 - 10. An expression vector comprising one or more polynucleotides according to claims 3 to 7.
 - 11. An expression vector according to claim 10, wherein the polynucleotide is operatively associated with an expression control sequence which permits expression of the polynucleotide in a host cell.

10

20

- 12. A host cell comprising an expression vector according to claim 10 or 11.
- 13. A method of producing a polypeptide encoded by any one of the polynucleotides of Seq ID Nos: 1-466, the method comprising the steps of a) culturing a host cell of claim 14 under conditions suitable for the expression of the polypeptide from the polynucleotide; and b) recovering the polypeptide from the host cell culture.
 - 14. A method of producing a polypeptide encoded by any one of the polynucleotides of Seq ID Nos: 1-466, the method comprising chemical synthesis.
- 15. A method of producing a polypeptide encoded by any one of the polynucleotides of Seq ID Nos: 1-466, the method comprising a) transforming an animal with an expression vector according to claim 10 or 11; and b) recovering the polypeptide from the transgenic animal.
- 16. A pharmaceutical composition comprising one or more of the polypeptides according to any of claims 1 to 2, and a pharmaceutically acceptable vehicle.
 - 17. A pharmaceutical composition comprising one or more of the polynucleotides, or fragments thereof, of claims 3 to 7 and a pharmaceutically acceptable vehicle.
 - 18. A pharmaceutical composition comprising a vector according to claim 10 or 11 and a pharmaceutically acceptable vehicle.
- 19. One or more polypeptides or fragments thereof according to claims 1 or 2, for use in the
 treatment of eosinophil mediated inflammatory disease.
 - 20. A pharmaceutical composition according to claim 16 for use in the treatment of eosinophil mediated inflammatory disease.
- 30 21. Use of one or more polypeptides or fragments thereof according to claims 1 or 2 in the manufacture of a medicament for treatment of eosinophil mediated inflammatory disease.
 - 22. Use of a pharmaceutical composition according to claim 16 in the manufacture of a medicament for treatment of eosinophil mediated inflammatory disease.

- 23. One or more of the polynucleotides, or fragments thereof, of claims 3 to 7 for use in the treatment of an eosinophil mediated inflammatory disease.
- 24. A pharmaceutical composition according to claim 23 for use in the treatment of eosinophil
 mediated inflammatory disease.
 - 25. Use of one or more of the polynucleotides, or fragments thereof, of claims 3 to 7, for use in the manufacture of a medicament for the treatment of eosinophil mediated inflammatory disease.

- 26. Use of a pharmaceutical composition according to claim 22 for manufacture of a medicament for treatment of eosinophil mediated inflammatory disease.
- 27. A pharmaceutical composition according to claim 18 for use in the treatment of eosinophilmediated inflammatory disease.
 - 28. Use of a pharmaceutical composition according to claim 18 in the manufacture of a medicament for treatment of eosinophil mediated inflammatory disease.
- 20 29. A purified antibody capable of binding to any one of the polypeptides of claims 1 or 2, or fragments thereof.
 - 30. A kit for diagnosis of disease characterised by inflammation, comprising means for assaying expression of a polynucleotide or polypeptide according to any one of claims 1 to 7 in a sample of eosinophils from a patient.
 - 31. A method of modulating apoptosis of eosinophil cells in a subject, comprising administering to the subject a polynucleotide according to any one of claims 3 to 7, wherein said polynucleotide sequence is operably linked to a regulatory sequence.

30

25

32. A method of diagnosis of disease characterised by inflammation, the method comprising a) obtaining a sample of eosinophil cells from a patient; b) assaying said sample for levels of expression of a polynucleotide according to any one of claims 3 to 5.

33. A method of diagnosis of a disease characterised by inflammation, the method comprising a) obtaining a sample of eosinophil cells from a patient; b) assaying said sample for levels of a polypeptide according to claims 1 or 2.

34. A method of inhibiting eosinophil migration in a subject, the method comprising
administering to the subject a polynucleotide sequence according to claim 6 or 7.

35. A transgenic, non-human animal comprising a recombinant polynucleotide having a sequence according to any one of claims 3 to 7.

36. An agonist or antagonist of the polypeptide of claims 1 or 2, wherein said polypeptide is a receptor.

Figure 1

Gel analysis of RNA isolated using the RNAzol modified methodology. (Lane:1 Eosinophils, Lane:2 Neutrophils, Lane:3 Molecular weight marker)

Figure 2

1Kb M cDNA

7 kb

Figure 3

5

Figure 4

AscI

5' AAGCAGTGGTAACAACGCAGAA-GGCGCGCC-T(18) (A/G/C) 3'

NotI

5' AAGCAGTGGTAACAACGCAGAA -GCGGCCGC-GGG 3'

Figure 5

5' -	GGGCGCCCTTAATTAAG	- 3'
_		

3' - ACGTCCCGCGCGGAATTAATTCTTAA - 5'

SEQUENCE LISTING

<110> Aventis Pharmaceuticals Products Inc. <120> Polynucleotides and Polypeptides <130> 40/165/P/WO (CA2444 <140> <141> <160> 466 <170> PatentIn version 3.0 <210> 1 <211> 671 <212> DNA <213> Homo sapiens <400> 1 gggggagggg gccctcccgg gctggtgcag gtgcccggag gccccggggg ctcgcgcgtc 60 gcggcatcgg ggaagcggta gcaaccactc tcctcccgct ggctgcttct tacgactttt 120 cttttgttgt tgccgtgacc cgggtctgtt ttctcctctg ttgtttaagg tgttttcctg 180 ctgcaccggc tctgcgccct ccacctcctt ccctgtggtt ttaaccttcc tctttccccg 240 tgtgttttat gcacggcgaa ctacgtaaag atttgcattg cttccccact cggcaccccc 300 gececcaeet etetgaaaaa caaaaceeea aeeteacaaa aeetetatgg ateegeggta 360 gcgagacgtg aaggggttga tttgtggagt gggagttgct ggcccattgc ggtgcccggg 420 actcattaaa ctgtcactca cccccaccc cactgggtaa atggggtgat taatgtctga 480 tatattggaa tgggtcgagg gcatttgtgg agaataggtg gtgtggctgg gaagaaattg 540 atetecegag gatgteteet ggaetaagtg tteataatta tgteaeteae egegaagttg 600 gagaaagtta ggtttgtgac tttgggaaag cgagaaggac aggacggagt cgtcgggttt 660

tgttactctt	t					671
<210> 2						
<211> 671						
<212> DNA						
<213> Homo	sapiens					
<400> 2 gggggagggg	gccctcccgg	gctggtgcag	gtgcccggag	gccccggggg	ctcgcgcgtc	60
gcggcatcgg	ggaagcggta	gcaaccactc	tcctcccgct	ggctgcttct	tacgactttt	120
cttttgttgt	tgccgtgacc	cgggtctgtt	ttctcctctg	ttgtttaagg	tgttttcctg	180
ctgcaccggc	tctgcgccct	ccacctcctt	ccctgtggtt	ttaaccttcc	tctttccccg	240
tgtgttttat	gcacggcgaa	ctacgtaaag	atttgcattg	cttccccact	cggcaccccc	300
gcccccacct	ctctgaaaaa	caaaacccca	acctcacaaa	acctctatgg	atccgcggta	360
gcgagacgtg	aaggggttga	tttgtggagt	gggagttgct	ggcccattgc	ggtgcccggg	420
actcattaaa	ctgtcactca	cccccaccc	cactgggtaa	atggggtgat	taatgtctga	480
tatattggaa	tgggtcgagg	gcatttgtgg	agaataggtg	gtgtggctgg	gaagaaattg	.540
atctcccgag	gatgtctcct	ggactaagtg	ttcataatta	tgtcactcac	cgcgaagttg	600
gagaaagtta	ggtttgtgac	tttgggaaag	cgagaaggac	aggacggagt	cgtcgggttt	660
tgttactctt	t					671
<210> 3						
<211> 493	• ()					
<212> DNA						
<213> Homo	sapiens					
<400> 3 gggtaagatc	cagtagttag	tacatcaatg	gcatatggga	tggcaaaact	aggcaggcgt	60
gcatggacca	gagcatctct	agctaacgag	gccaggcgat	cagcagtgtc	cacaaacagg	120
atggcttgct	gatctaaaaa	gcttgaaatc	atctttaaag	taaagggtaa	atgtattaag	180
catccctgaa	aactatctcc	ttttcacact	aaatattgtt	aaatcattcc	aaagtaaact	240
tcaaggggaa	ttagtatcag	ttttccatat	ttcaaagtag	ttcttcaaat	attctccagt	300

aacttgaaga a	gaaatattt	aatacactag	tatttgatat	taagagcaat	aattttctgt	360
cactttaagt a	aaagctttc	taattcattt	ctccatcctt	aacattacac	acacataata	420
tcaaagttag g	gaaaaataag	tagaataaaa	tggtttttc	ctcttacaga	cttccagagt	480
tggttggtaa t	:ga					493
<210> 4						
<211> 673					•	
<211> 073						
	and and					
VZIJV HOIIIO	sapiens					
<400> 4					•	
gggacaggag c	caagagaga	aaactgtccc	tgaaaaaggt	atcatcttct	aacgcaagtg	60
tggggtcgtt t	ttggacagc	cattttggac	aagctctggc	ctcttgttaa	atgtgacata	120
ctgagtcaga g	gcagacgtc	cttctgtggt	tattcgcttc	ctgtctgatt	aatttgttgt	180
ttgttgttcc t	tcctccttt	gctgcagaaa	aagaaactag	attggttttg	cttaagaagc	240
aagcaagaaa a	aaaacctaa	attaaaaaaa	attaaatgtt	tetectecce	acaaggtgta	300
atacacaget at	tttggtaca	gtgacaagag	gagatgagca	cetccactca	gtgaagagtc	360
caactttatt c	tagatattc	ccacaaaaat	aactgttcat	ggaacttgag	attcctttag	420
gaaaattata ti	ttgaaagta	tcactgtaaa	tactgactat	tccattgagt	aatagggaaa	480
agagtcactc as	agaaagaaa	agctcttacc	taccttacct	tatcgcttca	ttaggctaag	540
ggcttcttct ca	atttacagg	gcattcaagt	gtgtggggag	aaagttacaa	atgcaggtaa	600
agagagcagg to	caggtgtat	gaaggcaaat	gagggtcttt	ttttggtttg	gttttattta	660
tttcttttt tt	tt					673
<210> 5						
<211> 624						
<212> DNA						
	sapiens					
222 1104110						
<400> 5						
gggggatgag gg	gttggagag a	aggagggcac	tcaagaggcc	tcagtgagtg	tgacccttgt	60
aaggagacct co	cttctgtag	ttcctacaaa	aagcataggc	acagagcaat	gaaacaacct	120
gctgtgccag gg	gaactgcaa (ctaggcgggg	cttttctggc	ataaggaata	tggggtggag	180

tgtgggaaga ggtgaaggtc tggaggcttc tgaccttcca ggattcatgt ggatgcctta	240
catcttagcc catccatcac aatcctctgg aaaactaaaa taaattatta ttctttcttc	300
tattactaat tagttttgtt ttaagcatat caacttattg ttaatcattc atacaggagg	360
ttacaaaagg aaaagtcaaa getgtttttg ecaettetat atetaaceae etagteetae	420
tcagctgtag aatatgttac aaaaactctc agaagtgctt ataggtatca agcattattt	480
cttctgtctg cttattatgt atttatataa gactattgac ttatttatat taattttgta	540
tgctacctct ttaccaaatt ctcttattat ttatattaat ttctccattt acttttgttt	600
tcttttttc tctcttttgg aaca	624
<210> 6	
<211> 512	
<212> DNA	
<213> Homo sapiens	
<400> 6	
acggtgtttt tgtgtttggg aggtgtttaa gttttgactt ctgctctaaa accttgctct	60
ttattaggct ttagcgatgc tgttagtgaa gccttgtctt acattgtctt ctctttaagg	120
aatagagtat tgcttcttca gctaagtatg cctttgttaa tagccacatt tcttctgctc	180
tgggttaagc taggtacatg caattataaa cattttgtgt cccatagcaa gagcagtttt	240
ccttggaaat caccgagacc ctcaattttt tttgcaagga aacttttata ggctaattca	300
ttacccccat ccccaaattc tacttttcac aataggaaaa tgcatagtgt gtttagctgt	360
gaaaaaaaat tagccgactg tggcctcatt aactgcacct ctttcggcaa atttgatttt	420
gcatttcatt ggcgattttt acatttttga taatctacat gttttcaaaa aattgatttc	480
ctggaaattt aatcaaaaac agggttgggg aa	512
<210> 7	
<211> 673	
<212> DNA	
<213> Homo sapiens	
•	

<400> 7
gggaagtact cgcatgcacc catcttagct ctgagacgac acaacctgaa cggaaaatct 60

tgcggctcct	ggcgccagca	ggcctgtgtt	tggctccttc	ctgttctaat	tacccacttg	120
aaaacctgaa	gacttgggct	ccaatccact	tggcaatcag	accatctcct	tggcccatct	180
gcctgcaact	gcacacctcc	ctttctgggg	ctgcatttct	ttctcctgta	tccagtcctc	240
gggaagatct	tacgatttgt	acctgtctca	attactcccc	tatcacagaa	aattccaacc	300
ttactggcac	tgcactataa	actcgtattc	cttcctagac	tcagctagag	aaaaacaaca	360
gtatttgcaa	gagtggtcga	agacctgagt	gctttattac	tgataatttt	ttaaatagaa	420
aaagtgagtt	ctccccttgg	tttctgtcag	aatcagaaat	cctgcactgc	aaagacagtc	48'0
tttggaaatc	tcagtaccac	ttcactagta	ctttggagga	cactgttcta	aaaggcacag	540
cctgggacca	tacttgtcac	agcaagtttg	ggctcatgcc	ctgagcatgt	accaaccgcc	600
caagggtaca	cacgtggctg	gtcctatccc	cacttctctt	ttgtttctgg	acttgttttg	660
ctttgttttg	gtt	,				673 ⁻

<210> 8

<211> 410

<212> DNA

<213> Homo sapiens

<400> 8
ggggggtgct ggttgtgaca gggtgcagta aaattgactt catatacaaa gcctgtaatt 60
ttaggcgaaa tggaagcaga aatctaggaa gttgtgcttg cttgtatgtt gagtttgttc 120
ttaaactaag gaacgtatta aaattcatct ttgtataacg tccaataatt taggactctg 180
attcactgac caaaagtcag tgttgcagag atttctctac cccgtatggt attttgttag 240
attgttcaac actgaagcac atgattgaga acatcttggg acagaccaaa accactgaca 300
tatgggaaag acagatgcac cttatttcct tcctaaaatt tgatggagaa taagattctc 360
tacatactca ctgtacccat cctctttcag tttgctgtta tcatctgtat 410

<210> 9

<211> 638

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 9 ° qqqqaacttq catataqata ttaaaataaq atccaaaqaq ctcacaaqqa qaatqctqqa 60 gaagaaaatc ttcatatttc tatataaaaa cgtacacatt tcccccatag ataattccag 120 taacttaaaa atgaccaaaa aaaaaaaccc atccttctat aaaatcatct aaagatctaa 180 aggtagaagt tgcaggggag agggataggg gaaaatacaa aactatccgc tagtttgctt 240 aatttggaaa ataactccat aaataaatat ttgcaaagga tagtcaactc ttgacccttg 300 360 gtactagaga qtqtcaggga attctccaag ctggatgnnn nnnnnnnnnn nnnccttcta ctcgtctcca ttcttgtagc cccaaattgg ctgagcagga gaagcaactc tcagaggttc 420 tctaatgtga aggaagtaat ttttctcaat gcctatcacc ttaaaagcca tttctttcat 480 cacaaaaaaa tgaaagtagc agctacccag caaagaaaag gaaaccaaat cacattttgt 540 aacctageet aatttaette tacacaacag aaaaactgat eetgeactet etteteteet 600 638 agtotoctoc tacaaaatag catctccctg ttaaagto

1.5...

<210> 10

<211> 611

<212> DNA

<213> Ḥomo sapiens

<400> 10
ggggactccc tgtggcccac agaacaaagt ttggaattcc caatcatctc atacgaacag 60
actcttgagt ctaatccccc acctccaagc cttgggccac agtcacagag tgggctgtaa 120
ttcacgtgca gccgcagage tacaggagtt tggtcgtagg ggcagcactg cagagcctct 180
gtctcccttg ttagagtage tgagccaggc ttttggccta taaggttgaa gcaagggtgt 240
gagtgagccc tgcgtgggag caattctcca ggggaaacat ctgccctcca tgggaatgct 300
gtgtgctgtg atgtgtctcc ccaggtctgg ccaccactcc agtgcaccaa actgctgctg
tgggaaggag ccaggaggt gataacttgg ggtaccattc cccatctgtt tctggggagc 420

ctgctgcagt	actactctct	ggtctgccct	ggaaaaaccc	agaagcatac	tgcatcacag	480
cttgagaaat	tacatctata	gggggagcag	ggagctagat	accaagaata	ccaagaatat	540
gagggatacc	cgtggaactg	gtgctgggag	aagttatcca	gccaggttgc	agctgggtag	600
gcctgagctg	t					611
<210> 11						
<211> 644						
<211> 044 <212> DNA						
	sapiens					
VZI3> HOMO	sapiens					
<400> 11				. ,		
	gctgttgcag	tgaatccaaa	tctgttacca	gactgatttg	gttcaaaatg	60
gccaaaaaga	ataaagtaaa	cggcagtaca	tttcatagac	agaaccctat	gtctaggaac	120
caagaatcct	cttgattcat	caggctacaa	tataactcgg	cctccagcaa	caacttaatg	180
tatcaaaatc	agaaatatac	gtacacgatg	cagegaetgg	ctcaggtgtg	tagcattact	240
atcattggga	acactatttc	gtcaaactgt	aaagtgcaag	caaactgggt	tcctgacctg	300
aatttcatgg	aagtctaaac	aactccatta	ctgtacacag	gagtcgcccc	aaacaaacat	360
cacacatctc	acttctgcct	cagcaacggc	ggcgaccctg	ggttccccta	cagagatcag	420
aggagaggag	aggacaggac	acagccccac	cctcttgcca	aagggtccac	agccgtttcc	480
acaggccacg	tgtttccccg	tgatcccaga	ctcctcgccc	gctgtgggac	ggaactacag	540
ggcaaaccgg	cgccatcacc	tgtctccacg	ctccctgaag	gctgctcgtc	tctcctaagg	600
tctttggcca	cagttcctgg	gcaactcaaa	agcctgacga	tagg		644
<210> 12						
<211> 612						
<212> DNA						
	sapiens					
	Jupino					
<400> 12		•				
	gggccgccct	ctgctttcaa	ctgtccacat	cateceaagg	agactegett	60
ctaattattt	taataaagtt	cttgtcataa	aaccttttc	tttggacaga	aaaacacatt	120
tccagccatg	cttttggtgt	ggattttaaa	gccaagacct	ttttcaatga	gaaccacagg	180
cgttttgtgt	ggacgctgtg	tccttggcga	ggcactctga	ctgctgcttt	gcagcgagcg	240

		•				
cacgtggagg	ctttacttcc	ccactttgaa	gtgctgctga	gctattttac	ttctaatccc	300
cctccaaaaa	gaagtcctgt	gaaaatcgcc	gttaaatgaa	gttcatacca	agagagtete	360
tgctgtctag	gcttggtgtg	tggtgttgcc	tcaaagccag	-tcaaaacaaa	atgggaaaga	420
tgagcccagg	ctcgtgggca	ctggcacgtc	ggccacacgt	gaggctgcgt	ggggcacagt	480
cggatgcacg	tgcccacaca	ctcattttca	ttttactggg	ctcaacaccc	tctaggttgt	540
gatcccaaac	acctgctaga	cataagaagg	tcagaacgtg	aggtgcatga	gtgcaccttc	600
agcacccgtt	tg					612
<210> 13	٠					
<211> 731			i			
<212> DNA			,			

<213> Homo sapiens

<400> 13 gcgggtaaag tacttaaagg aaaaaaaaat gcctctggga tatctcatga attaattcat 60 aaacaatctt tgccttgcag acctctacca tttttgaaag cccaggaatt tcttaatata 120 tgacagttgg cagaggtagt gataagaaag attagcaaag ctccaaacca gaaacaatct 180 cttggctcca aatagtctca tattttaaaa attgaaatta aacctagttg gaggaaatca 240 300 gccatagtga tttttcagtg cccagggagt gggaaagtaa catgacattc tctaccacca gatgtagggt atttggcctt tttcctttgt tgaaaaatat taaatgctaa accatcattt 360 taaacctcaa agacttttcc ttcttctgtg atgtaacctt tctgtaaact ctggccatcc 420 480 ctgccatgtt tcaccctgga acacccaagc ttttacttga aaaacaggca agactctcat 540 tctggggcag gaataatgac attcaaacag ctttaacacc aaggattgtt gggagctgtc 600 acatgcagtt agctgagaaa tacaactcat cctgacgagt caggtaatga catgaagcac aggcagccac tcactctgac cagacacctg aagccattga ctcatgtaca ggacacatta 660 720 agecteatet etgetaacag atttacttae eegatgataa caactttetg cageagteag 731 agtgagcatt t

<210> 14

<211> 752

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 14 gggtttacat acagatggca aacttcattt cctttttctc ttaatgcaac aaggtcatcc 60 120 caagatcagg cttccttcag tttctgtggt aagtagtgat ggacacttat ggagttttca gagacttatg cattgggtaa caaggcactg caagaaaccc cagatagcac agcatcatct 180 cacatttaca ccacatcaca tcaacatcga tgctaggagg tctaaagctg nnnnnnnnn 240 nnnnnnnnn nnnntccaaa agactccact catgacacca gctcactcct gagtcacatc 300 360 agcccctttc agagtcacag ccccagaact aaggctatcc atatgggttg attatacaat ccaaaaagca gctccaaata ttagaaacac ttatttgtct ggcagacaca ttccctaatt 420 480 taaagcctct tatactgtqc ttaaaaatat tcaacagtct tagcaaaatg acaaaataaa 540 caqqtaqcaq ccatggggtg ggcagggtaa ggtggcgttg aaagaaaagg catttagcaa 600 qqtaaqtqqa qaqtqctqat qqaqaacaca aaaggagaaa cacagcgact ccagtgcgag ctagcctaga agaggggagg agaagcagaa gacagcaagt gaagagcttg aagaacttga 660 ggcaaacagc actgagatga acagctgtga aaccacaatg gtaggcagta gacactacag 720 752 tacagtggta tgaacacacg cttttaaata aa

<210> 15

<211> 677

<212> DNA

<213> Homo sapiens

<400> 15
ggggagattg accatgagat gttcgccgta aattagagga attaggtctg cacattatta 60
ttcttgacct acttgtggaa gtccgtttta tcaggatatt attgcagttt gggtgtgaga 120

	tcacagccag	gagccagcga	gtctgcaacg	ctgcctgcga	ttccccaagt	gctgaatagg	180
	tttgttcaat	aaaataacac	aaactcggaa	ttcttttaca	tttggtatcc	caaaacatct	240
٠	ttttaaaaca	tgtattaagt	tggagcattc	attcttaaac	täggccacgt	aagcattagt	300
	ttctcagttt	aaaaaataaa	gcttccatca	attttaacat	cataatgatg	aaattctgca	360
1	ggagtattta	ttaaagttga	actcttccta	taaaataatt	cagttgttca	tttgacaatt	420
i	aagacctttc	attcaaagta	caatactctg	tggtacttat	cattaacatc	agtcaaattt	480
	tatagttaca	aataaaaacc	caaggataag	actgtttaag	taatttgaca	aagttcaccc	540
i	agttgtggct	ggggttgaaa	ccagacttgc	tgaacttcaa	agtcaagctt	tttttccccc	600
•	caatgtcaac	taaaaaaag	agaacattct	ctataccaga	gattaggctg	gtaaagcttt	660
1	tcttttata	atttgga					677 \

<210> 16

<211> 1157

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 16 gggcacaggg caggggaggg gaggagaggg aaaaggccaa ttggtgtaat ttgtggggtc 60 gagataacaa tacttactaa aacagcagca agggctcaat cctggtgaat acattcatga 120 ccccttaatt ttaaagatga ctttgaaggt acacttgtga agaaaagagt taatctaggt 180 caacactctg cagtagaaat ataattaaaa gtcaatacct taatctcttc taaattgaag 240 ggccacgatc tattacatcc ttcactttta tcgggcctgg aaattcaaat ttaaaagaga 300 aaataagaaa tattaggctt ggttggggtg gcttctacat gaccttagaa aacactttca 360 ttgaagtctg caaagaataa aaagagaaat tctaattggg aattccttat cccaggcagg 420 atgcttaaga aggaagacgc aggtaagagg agtcagagtt caaatttctt tagaagggaa 480

aagaaattgt gtta	aaccgt ccaggagtaa	tgcagacagg	ccactgctta	gtaaaggaag	540
tgcaatggat agcc	tagtag caccgaggag	cggggactct	ggggtcagcc	ccggctgggt	600
tgacggcaac ctct	gctgct ccctagcacc	gagacctaag	taagctgacc	cccggccaat	660
ctccgcacca caga	tecage atgagaacag	cgagagtctg	ttcctttcaa	tggtgaggag	720
gactccagga gatg	acagat aaaacatgto	agaaagtgcc	tggcgtatgg	cagaagatca	780
gctagtagga tttt	catttc attttcagta	gcaaacgcac	ttacactgtc	tagaacttta	840
actecatect caca	catcta attctggact	tatcaactct	gactcttgag	tgctgcttac	900
tccacaaggt cact	aacttc ctaagacccc	gacccctcag	agccccaaag	aggccaggga	960
ggagagtgtc ttca	gggtca acagetggac	cagcatgtga	aacctgcctg	nnnnnnnn	1020
nnnnnnnnn nnnn	nnnnnn nnnnttcatt	ccagcctcag	aaatgaaacg	gccatgatgg	1080
gcagaggtac attc	agagca cttggtcaca	gcaggggaga	ggacaccacg	caaagtctag	1140
caaagccagg agcc	cca				1157

<210> 17

<211> 548

<212> DNA

<213> Homo sapiens

<400> 17 gggctacttg gtatcttagg tggattgcct gcttgggtaa acgtaccttg gctatcactg 60 . tgtgtagaag cttgcgagtt ttattttaaa atggatcggg gagataacga tattcatcct 120 gaacaattag agccatcaag gtattctgtt aaaaatattt aacccttgat gtaatgtata 180 ttttcacagg ttttggaaac gttgtggaac ttcgcatcaa taccaagggt gttgggggaa 240 agettccaaa ttttggtttt gtggtttttg atgactctga accagttcag agaatcttaa 300 ttgcaaaagt aagtgattta aagggcataa ttcaagactt tattatttct gttgtatata 360 ttaatttggg gtatttaaaa accatagaaa atcttttaat aataaagcta aaaatagtta 420 ttaaatggta tttatgcaaa gaataaagat ttgttagttt gcagatcatt ttaaattttg 480 ttacttgctt tgctgaagaa ggtgggaaag attgcaagat tgcatgttaa gaattttggc 540 tgggtata 548

<210> 18

<211> 647

<212> DNA

<213> Homo sapiens

<400> 18 gggataattt gggtatggtg ccetetacac aggtgcettt catettattt tecacattat 60 cgagcaactg aaaaagaatg ttttggcttt aaaaaaaactt ttttgtactt agtaatatat 120 acagtaattt tataattgac tagaagtatc aatgttcaaa gaagttgtag actataaaaa 180 tatgacctet ggcatgcaat teteaaaaae atacaaaate ttetttettg gttggatttt 240 tacaaacatc tctacatgca acagttgagg ttaacctttt atacagcctt tggaataaat 300 tagtaatctg tagtgccttt agaagcattt ttatattttt tacctctgtg gaaaagcatg 360 taaaattgtt cactaaactc aactcgtaat ggtccacacc aagagattaa tgaggttgag 420 cctgtcaaca ggattgactg gtttgtccat ggatatttaa tgaactggat tcaatccagc 480 tagtgctgca aaaaagaaaa cacaccttgc ccagccaatc accttgaaca gccatttcat 540 gttgtgtgt tgtgcttctg cgtcttttat cacaactgga agaatgagga tttgctagtg 600 attagtgatg gcgcggggag agtaatcacc gcatgctgag gtctgct 647

<210> 19

<211> 635

<212> DNA

<213> Homo sapiens

<400> 19 gggctgagac ctctggcact ggcagtagac ttatacaggc aaagaagcca aaacaatgag 60 ctcatgggca agaatgcagc ctgtggggaa gtctgggcag ctagagcaaa ctggtttttt 120 gaatcaggat gggaatagca atagttgagt ctcccacggg aacaggatca gggagagtgg 180 aagccaccat tcagtatctt agggttccag ttaaataact tttggaagct cttattaaaa 240 ttctgttctg cagacagcat agtgctctta ggcaaaacct tggttccttt ccctgactat 300 gtaaaaccta gggggtgaag gaccagtgag gctccagtga cctaccttag gtgatgctct 360 taaaagagca actttattca aaccaggcct gccaatgcca actccttcag tctagatcca 420 aagatggcta tgatcctgag attgtgtgtt tagggtcacc actttaacat gatacaggaa 480 gcaattgggt cttttctact tcctaaacac agtccatcca gttgtgtgtc atttataccc 540

agtcca	agact tatttagacc aaagagcctt ttttcct	at cagtgttttc c	aaattttat 600
cttaag	gaggc agggtcttgt tatgttgccc atgct		635
<210>	20		
<211>	736		
<212>	DNA		
<213>	Homo sapiens		
<220>			
<221>	misc_feature		
<222>	()()		
<223>	"n" is a single nucleotide whose id	dentity could no	ot unambiguously

gggggcacat cctggggacg aaccgggcag ccggagagct gcggccggcc cagtcccgct 60 ccgcctttga agggtaaaac ccaaggcggg gccttggttc tggcagaagg gacgctatga 120 cegeagaatt ectetecetg etttgeeteg ggetgtgtet gggetacgaa gatgagaaaa 180 agaatgagaa accgcccaag ccctccctcc acgcctggcc cagctcggtg gttgaagccg 240 agagcaatgt gaccetgaag tgtcaggete atteccagaa tgtgacattt gtgetgeqea 300 aggtgaacga cnnnnnnnn nnnnnngaac agagctcggc agaaaacgaa gctgaattcc 360 ccttcacgga cctgaagcct aaggatgctg ggaggtactt ttgtgcctac aagacaacag 420 ceteccatga gtggtcagaa agcagtgaac acttgcaget ggtggtcaca gataaacacg 480 atgaacttga agctccctca atgaaaacag acaccagaac catctttgtc gccatcttca 540 gctgcatctc catccttctc ctcttcctct cagtcttcat catctacaga tgcagccagc 600 acggtgagct cagagaacgc aaagggagag agggggagtg aaggattttc tcggtaggta 660 aattootoot goattittig taggitoato atotgaggaa tooaccaaga ggtagatgot 720 tggcatagct catgct 736

<210> 21

<400> 20

<211> 520

<212> DNA

<213> Homo sapiens

<400> 21 gggcatgggg aagggggtga ctggagattc tgtggtctgg aaaggcttcc ttgaggagat 60 gaggtgaggg gtgtccttct ggatggattt ctgttctggt ctatggattt gctctqatca 120 aactaagttc agtgataaac aggacagaaa tgtgctcaac agtaggagaa agagaaggaa 180 tgaatggcaa agaaataagt cagacatttc acatagcaag agatcagagg ctacggccag 240 agttaaaaat ccaaagatca caataagtaa tgagagatga gaggctqcct attaaaactg 300 ctgtttctga ctctctgtgg agaaatatca acactttctc tcctcctgcc cctcttcttc 360 \ ctttctgttt ctctcaggct acactgacat agaatgtata gcagttaatt gaaattattt 420 gatttttgtt ttaaacagag gttgcttgtt aaaataagcc acaagaggga ttttggttaa 480 gttattgatc tcaaacataa atgttttcct tgtagataac 520 <210> 22 <211> 634

<213> Homo sapiens

<212> DNA

<400> 22 aacattttga aaatacgtgc tatctaaatt tccctcttct ctcaaagatt gaatttaaag 60 ggcattgtta gaaagatcgt aagtacatgg tcatataagc aaaatcctga tttgtatggg 120 tttttttggg cagcaaaaga tacaagcaac aagtaaggga tttcataaat ctggacaggt 180 tatgcataac tcaagacaga aaggaagtgt ccactctacg ttatccaggc agaaaaaaat 240 acacgtatca acccagggca getttcatat tetgetttta agtgtatttg aatetattgg 300 gccgtgaaga taaactggga agacaacaat agcaagttca taataccaag aacgtgcact 360 ttggggtaag ttattaaagt tgactcttct aagaaaatac tgcaagaaaa tcacagtgag 420 gaaggggaac aaattottag tagtttataa aactoaggta taatattgat ttaatoaaaa 480 ggcaaaactg gagcaaaaga atagtcctgg gcacagtgtc taaagcagac acaccttaaa 540 ccaactttgg aatgccttat gattcatgtc tcaacatgaa cagttctaat cacaagggaa 600 ccttctccaa tgccctctga gcagtagtaa aata 634

<210> 23
<211> 661
<212> DNA
<213> Homo sapiens

<400> 23 ggggggggg ggcaaactga taggctaaat atgcagcaaa gtcacttgcc aaaggaaaat 60 gctctgaaga gcttgtaatg ccttagagat ttaaaagatt taagttgtag ggtaaaataa 120 taaatttgta tgggtaaact aatgaaaagt tttaacaatc tactgtaaaa agtttatttg 180 caactctaac ttcttagaat gttaataaca attagcacat taatatacca cacaggtaca 240 ccaaaactta tgtttaaaaa gtttatttta aaaatctaa; tatagtatca acacatagct 300 catgataaat ttggaaaaca tagaaaaata ggataaagaa cataaaaatc accaattgca 360 gcacccaaat ataaccactg ttagcatttt gttgtaaact tccttattct tttgctttct 420 atgcacatgt ataaatataa atgattaaac aaacctcaaa gttttccaca taaagagttc 480 tgtatcctgt tttctaaatc tgatattata taatgtacaa tttcctatgg cactagacat 540 ccttcaaaat catgatttta atgcctgtgt tatagtctac ctcagagaca tcttatttat 600 tetgaacatt ettgeteaaa aateaetgae attttteta attatttte ttgggaacaa 660 t 661

<210> 24 <211> 529 <212> DNA <213> Homo sapiens

<400> 24
gcggccgcgg gaaactgaga gccattttac tataggagat gcaagccaag caaaagcaga 60
tttcctgagc aaggatgtct caagggacat ctcataacac atcacaggat tagcagagtt 120
ctcaaaacag taatagatgc atttctatca cctgaaacag ctgacagaaa aaaaaacatg 180
gaggaaacat gttgcaaatt ttctttatac tctgtcaagg gttttcctcg ggacacagct 240
tcatgagagt tctatgctca cctatttaac cacctctggg aacaaaagga caggaatgag 300
tacatgcaac acaaactact cccattccac caaggcgtct acacttactt gctcatctcc 360
caacccacca tctgggtgag gaagggcaca gtggatgtga caatgaggat gaaaacacgt 420

ggtaggatgg tggaggcggc	cagaagaggc	agcattggtc	tggctcttcc	tgattgagaa	480
catcaatcca aggcatcagg	cacctctcct	ttgctcttct	ctccttctc		529
<210> 25					
<211> 632					
<212> DNA					
<213> Homo sapiens					
<400> 25 . gggtgaggtc tcctgatgga	gcagtagatt	ccaatactag	taacctataa	tgagaagaca	60
aggaaggtgg cccctagtta	tttcttgacc	atgtccttgg	ccagaaagac	tggccaacag	120
aagccagagg agtgggtaga	tgttcaggcc	tctactcaag	ttcagcaagg	gctggtacag	180
ctatactctg ctgtgtgggt	gcaaaatacc	tagattttt	ggactactaa	ttgtttgcta	240
ataataactg ttcatcaccc	aaaccttgtt	agttgttcat	cacccaaacc	taagagattt	300
tetttettta geaccattca	gaaaattaca	atattcaaat	aaattaagat	acgcaaacac	360
cgaagaactt ttaaacacag	gtcttgatgt	ttacctacaa	attttgaatt	ctatgactca	420
aaaaataaat caacagaaac	tgatagtgaa	atggatattt	aagactgaga	tcacagtcag	480
gaagcagtga gtacttaaga	tgaataagct	taacctattt	aaacataaaa	caagaaggga	540
agtaagacaa aaattacctc	ttttccatcc	attcatactt	tctgaacaat	tagtttctta	600
tgactccagg aatttgacat	tagactatgt	tc	•		632
<210> 26					
<211> 568					
<212> DNA	·				
<213> Homo sapiens	•**				
		•			
<400> 26 cacgcagatc atcaaactcc	acaaaaccat	atctttgtcc	taaaactgtg	ccacatgctt	60
ttctttgtat gtggacatga	cagtecteag	ccaaccatca	gcaggatgtg	agttttgttt	120
tcacaatgtg gtgagccatt	cccacattca	ctcattttcc	ttgtaagaac	cgaacctctc	180
catggctggt caggattagg	gatgttgccg	tgctcactga	gtggcagagc	tggggtgcga	240
cttcagggct caccattacc	cagtctggga	ctcttttcac	gtcggcaaac	tggcagttcc	300
cgcacaccaa gggctctctg	attagagcta	gtgtggattc	ctggtctgca	aacgttggcc	360

acagctcagt	ctgcacttga	tctttcccca	ccttggggca	gggtgaagca	cctctaagct	420
gggggtatgt	gacaaccagg	ttactttcac	tegtettttg	gttcccatta	gccagtgtca	480
gccatctggt	ccttccgaaa	acatgtgtgg	gttcagaaca	taacagactc	ttaaacaaca	540
caatgagcag	gctgccaggt	gttaaagc				568

<210> 27

<211> 695

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 27 ggggaattca aggaaggtgg ccatcttgat atcatgaaat ccactttcag gctaattccc 60 atataataca gaatttcaaa tatctacaaa cacaaggaca gaaaatagga accatgatat 120 ttggtcccct ttaggattga gacatcctac ttctaactta atactcctgg ggtcccccgg 180 gcttcatnnn nnnnnnnnn nnnaaaatac agctgaatat actgaaatta gttagtgatg 240 tcaattacac tgaaagtgtt gattgacact ttcagttgtt gaaaacactt tcagtgtagt 300 tgatatcact aattgagact gagaggttga ggagcccttc agagccagcc attccacact 360 taagtcattt ttagatatca tatgtagttc ttattacaac cccaaaatag gaattattag 420 attetteaaa teeagtettt atacgattte etgagaaace aeteeaaaaa cattaceeca 480 aaacacataa agagtacttt atctttcaaa atattctatt tgcaacctca cagttccttc 540 ctaatagttg tccactataa ttaagccaaa gaaaaaagct catgttcact ggcttatcta 600 atgtcttaag agatacaata aatttaaagg attagatata attagagaaa atttgatata 660 acaataaaga ttccatgccc attttcagag aatat 695

<210> 28

<211> 761

<212> DNA

<213> Homo sapiens

<400> 28 gggacgtttg acgtggtgtg gccactttac gttttcaagt ctatgagaat gtctgcgcgg 60 agacagcata getetgtaga aatgagtgge agegtatgta acetggeatt ttgaaceeag 120 gagcacaatt ttattaaagg aaaataaacc tactttctca ttgataacac tgttttttag 180 ttttatggtg aactgttcgg aagtaatttt caacaagtgc ttattttata aatattagac 240 cgtgtacccc taggattgtg tattttttda gaaaactggt ccatagaagc ggtgcaaaag 300 ttttaaactc atctgcctcg gatcctcctc ctctgagcag atgctcaatt aaactttttc 360 tagtatetta ataattggag gtattaatag atgttttatt tttgagatae atattgtaca 420 ttttagatct ttttttttt ctaaagtagg gatccaaaat tgaggtgaaa tatatttgct 480 tacatggcaa gactttttaa aagtagaatt totgtaattg aagaccatco ttttttgtgt 540 gtgaatagaa tggttgeggt ttetettggg ateattgatt agtgaattae gatttggtta 600 agatagaatg cgtttttagg aagttggagg tttgactaat cgctgtgtta gcatatgagt 660 720 aacaaatttg aagaagatac aagcattttt atggetgaeg tttetaatea gataatttta tttttaagct tgctctgttt tacttttgtt aagtgaacat t 761

<210> 29

<211> 557

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400>	29						
ggggga	gaaa	aaaaagccat	tacactcagc	taactcctaa	agtgtagtta	ttgagcttac	60
atagaaa	aatc	cttgtagcca	catagtette	aactgatgac	aggatgaaaa	gaccttcttt	120
tgcctad	ccaa	actgccaaat	ccaaggcctt	tgcaggaaag	aagtgctgat	aatacaagta	. 180
ttactct	ttgg	agaaaaggaa	tactcagttt	caatctcata	tttgaacaag	gtatatccca	240
aataato	cagg	agtatttagc	aaaatgcaat	catgttaaaa	tgtatttcac	ttacctgttt	300
cctcaaa	aaac	atttgttaat	tcctttgagt	gcaccnnnnn	nnnnnnnnn	nnnnnnnnn.	360
nnnnnn	nnnn	nnncaagtaa	aactgaaatt	aattttattt	ccttttttc	tttaagtaaa	420
gaaacta	atgt	tatctcccaa	aaagctctta	gaggaattct	actaaacatt	tatggcaaaa	480
atattgo	ctac	tattttaaaa	tgttccagag	cccactggaa	gagagaaagc	tgctaactgc	540
cttttat	aat	cagtctc					557
<210>	30						
<211>	581						
<212>	DNA				•		
<213>	Homo	sapiens					
<220>							
<221>	misc	_feature					
<222>	()	()					
<223>	"n"	is a single	e nucleotide	e whose ider	ntity could	not unambigu	ously

tggagaaagc acataggcag gacatcctag taccaatgat gaatgagtgt ttatggcaga 420
tgtgacccag gtcctcagag gcacatgaaa aatgctaatg aacggcagca ctcattattc 480
actgtatgaa cgtggcttca agcagtagag atgttaaagc atcctgtaat ggagtataac 540
tggtctctct ctctcctt tttttttt aatgacgccg a 581

<210> 31

<211> 648

<212> DNA

<213> Homo sapiens

<400> 31 gggagggaat gtacaaggga ttggttatat ttttagttgt gaagttgaag caggctaagg 60 aggggaggg gcacaccaag acggtgaggg accaggaaag aaatttgaat tggagatccc 120 aggacaatca gcaaattgtt ggaattgact attaaacgga tcgagctgca aagatggcat 180 agatattata aaatacaaaa gcccttggag acctaaaagt gagggaaaga ttgaattttg 240 cttttatttt tgctgacaat actttgatta ccttatgcaa acaaaagcct ttaaatttac 300 ttacaaaatc cattgcgttc tttgatggcg gggaattcgg ctgtcaaaaa gactccagat 360 cttaagttta aaaaattatt ctcttttaat cacaattctt tagttttatg ctagatcttc 420 ttggactaga ggtgcatttt taatagtcta ataaggatct atatcactgg catgtagatt 480 tttgttctgg catgttattt ttctgaggct atgttttcat ttatctggtt agtaggggaa 540 tcagttttct taagtctaat cataattaaa agagtatcac acaggattac tttgcttaac 600 tggtcaaaat ttgttcctca taaaataaga aagaaggaag aaattgtc 648

<210> 32

<211> 434

<212> DNA

<213> Homo sapiens

<400> 32
ggggcctggc aggacatgat ggctactgca tggtcacagg agtttctgaa gagagtctta 60
actttttgca aagttgtgag caagggacag tgacgtgcc agggcatggc accagagggg 120
actgggctgc aagacagctg tggcagcctc aggaagagga tcacagccgc caggagactg 180
cccctggccg ggcagggctc aggagccacg gtgcacatag ctctgtgccg cagcgggccg 240

cgcagggcag gaaaggagcg tgtgtgggaa caggtgcacg tgtgggatat ccagggcggc	300
acagagtgag cttggtcagg tcgcactgtg ctgcccgatc aactgcatat aacataattc	360
tcttcttttg gatattgaat attaagattt ttaatagaat ttttggctaa gtaacataag	420
taatacagca gcaa	434
<210> 33	
<211> 594	
<212> DNA	
<213> Homo sapiens	
·	
<400> 33 ggggtgcagg gatgtaagtt gggggtggtg tagaatgaag aagacggaga gaaggaagga	60
tctagagtgc aacagaaaag aaacaatttt ttcctctcca tgcctggctg ctacctgaca	120
aacaatcaag aatcatagag cogggatoot totgtttgto oototaatgt atgggaaggt	180
gggtgaagca tcagggttat gaatgctatc atgagacttc acacagtata tatttgtgtc	240
ccaaagcaga gcccagacca caaggcccac actgactgcc tctctgtggc aaacgtcaca	300
tatgtccatc acccacccta tttattgctc ctcccttcca gaggtgaact tcctccatga	360
atttcccttc ctgaaactca tgatgggaac attaggctgt tgcaatacaa attggcacag	420
ctcaagacat tcagtttaga atgggttttc aggtgagact tcttccctat atgagagtca	480
cgaggetete aaatgetget ataaactage aaggetggat ttgategtge aattaaggtt	540
ctagcactgc ataactatcc aggctaaaga gctcatttaa aaaggggaac ttag	594
<210> 34	
<211> 514 <212> DNA	
<213> Homo sapiens	
400. 04	
<400> 34 gggtggatgt tcgagggtga atatgacaca agtccccagg gatttttggg tgcaaggggg	60
ccaggtgttt gggccagctg acagtgggag agtggtcagg gtgaaaactg cagggaacag	120
caggaagegg caageagaaa gggetggetg gegttaegga aggaaetget gateaagaae	180
gctgattgta ttcgtgtggg cagtgctaga aggaaagcat tggcctggct tttggaaagg	240

gtaagaagtt gggtctcggg	gagttttatg	aaacacagag	ttgaaatcgt	gatcccagcc	300
attaggtgga agggtttggg	gctgagaaag	aaggcatagg	cctggtggtg	gtttgggggg	360
aagtccagtg agtaagagac	cctggacttt	cttttcctca	ctcttttccc	tccaggtgtc	420
tctctgttgt atgctttctc	ctttccgaac	gtttctccct	ttatttcttt	ttcgttctgt	480
cctttagttg gtcataatat	ggcattggtg	tata			514

<210> 35

<211> 502

<212> DNA

<213> Homo sapiens

<400> 35 aaaaaaaaaa aaagaattot ttoatootta gtgatgagat attaaccaco ocataacatt 60 120 ctatttttct tagtcggcat gcagaaagca tttgagaatc aggagtagca atttctgccc 180 attgcatgag ggggctgcga taagtaaagg gttgtgagtg tgttacaaga ggtctcctga 240 gacttagcac tgaagaaaac accagccaac ctaaactttt cctgaagctg atatcaggtg 300 aatattctct tgtgacagag gaccaggcca aaaaaaggcc aagatcataa gttttatttc 360 attttgggcc agtgatctca ttgctgttct aaggatgcag agggcattcc aaactcaacc 420 agecaactca taaacgcatg ctctttatca caggagtatg gaaggteetg ggtcccacca 480 ttggtgaaaa ggacaaatag tacagccatc tgggtctaca aaaggagagt tatcctgctc 502 ccaattctct aaaccaatta aa

<210> 36

<211> 419

<212> DNA

<213> Homo sapiens

<400> 36
ggggatcagg tggtggaact tttcttcct caggatatca tagtcattgc tgtctggccc 60
ttggccaaaa tcccctaaga taatgacatc cttttctcct ttcagggttt cctgggaggc 120
ctgtgctgag gctggccacc tggaacttgc agggctgttc cgtggagaag gccaacaacc 180
ccggggtgcg agaggtggtg tgcatgacac tcctggaaaa cagcatcaag cttctagctg 240
tgcaagaact gcttgacaga gaggccttgg aaaaggtggg aagtcacgac ctgacccttg 300

ttaaccttca cctggcagcc ctgaccctcc tggggagcga ggaatcccag caagaatcac 360 agtgatggcc accggttggc gagctttgca caagacccta caggaaaccc tgaaaggag 419 <210> 37 <211> 698 <212> DNA <213> Homo sapiens <400> 37 gggtcagtag tgcatcttca tgtacagaag atggcttgtg ttcccgctga gtcttcgtgt 60 aaattaatcc tgtytatttt gagcatcttc caatattatc tcaaaaattc tatccattgg 120 aattetttea aetttttggg tgetageaga aagaggagat aaagaageag aaagtettgg 180 ctgggggtgg agttgcgggg gtttctgtcc agaggcagtg ggacccggca gggcacgcac 240 agccctgctg tgagatttct caagcattcc catcagcatt cccaagtccg ctcctctcc 300 tttttaaaac agaaacaaca cacgctteet geeggeetta taaaggacag caaaaactag 360 tttgcctgga aaatgtcttc tagaaaatta tctaaattta gaaaatcatc taagtttcgc 420 tagccttttc ccttttctag ccatttagga tagtcattgt gaccaagtaa attcagttta 480 540 ttggaaaaag aaaaaaact gcccacttca gagatgatca tgctacctcc tccacagagc tccacccagt attttggcaa acccatgtaa cacagaaaga gacagcaaaa acagggcaga 600 qaqqaqacqt aaaaqqccat caqtatcttt atacttcatt tcaaaaatqa aaaaqtaaga 660 698 atgttaatgc tcctcagaca gcacttttt tttttaa <210> 38 <211> 431 <212> DNA <213> Homo sapiens <400> 38 ggggaggttc cgggatgtcc ccagagcagg tactgcagcc cctggagggc gacctctgct 60 120 atgcagacct gaccctgcag ctggccggaa cctccccgcg aaaggctacc acgaagcttt cctctgccca ggttgaccag gtggaagtgg aatatgtcac catggcttcc ttgccgaaag 180 aggacatttc ctatgcatct ctgaccttqg gtgctgagga tcaqqaaccq acctactqca 240

acatgggcca ccteaatage cacetecceg geaggggece tgaggagece acggaataca 300
geaceateag caggeettag cctgcactee aggeteette ttggacecea agetgtgage 360
acactectge cteategace gtetgcccce tgeteccett ateaggacea aceeggggae 420
tggtgcctet g 431

<210> 39
<211> 539
<212> DNA
<213> Homo sapiens

<220> ()...()

<223> "n" is a single nucleotide whose identity could not unambiguously

gtaactcaaa aaggactcta cttccacagg gctgaatcgg aactcgctcc ctctgcctct 60 cccactctgt gttaccatct gagactctgc ccttcacggt ccaatttcaa cacaagtggc 120 ttgattctgt gtggctcaag gattgactcc agtgccgtca accttttggc cacgaagtcg 180 ttagtcatgt cttcagatgc atctggtgag tctcccttcc accctgtgga agtagagtcc 240 ttcctggttc tcatccttcc agtagctccc gtgcctccag ggtctttgca gtcacataga 300 gggtttgagc annnnnnnn nnnnnnctag gctgcccggg ccttagggaa cgaagaccaa 360 acteggeagt gtggaceaga geacaegeea ggegaceaea egetteeeae eeegeegeeg 420 ttcccactcc cttcatgctt ccttgcagtc tcacgtcaca cctttgctct ggaacattct 480 tettectaca aageetggee atgggeggee tegecatgaa geeaggeeet tgttettee 539

<210> 40 <211> 659 <212> DNA <213> Homo sapiens

<400> 40						
gcgggaaatg	gccccagatt	ctagttccct	aactacattg	caagctctcc	tggggtcaca	60
gactgttcct	tctattccac	actcttaaag	aatgcatcta	gttctgtggc	ttgcaaactt	120
ttactttcat	ttatgtattt	ttatttgtaa	gttttatatc	aataagcaaa	actaaatttt	180
agagacactg	gctaacgtta	gtttggatat	cattagttta	ttataaaaga	gagacatgga	240
aattatttac	acaatgaaag	atttcagaac	tccagtggaa	tcagtgtctt	cacatgaggc	300
tttttcaata	gtgatttatt	tcggtatata	tactttccaa	gaatgccacc	atttctaaat	360
aagaaattat	ccctgtcgtc	cagaactact	ttggtgcctc	catattctag	attctggggg	420
aagaatttta	tctccagctt	ttgggctaac	tggttgaatc	tctccaccct	ttcctttaga	480
gcccaataca	acagetteta	cagttgcttg	caatactttt	gagattttc	tggąagcata	540
atgeeteett	tggttacagt	ctcagctgca	ttcctttcaa	ctaataccca	gtcaaagagg	600
cgaaaaaaac	tttctaaatg	actcgggcca	ccacagctta	tactctccct	ttcaaactg	659
<210> 41						
<211> 647						
<212> DNA						
<213> Homo	o sapiens					
<400> 41						
	tcttaggtac	aaagaactca	agaaacactt	tggaaccaaa	ccaatttctc	60
tgagaaccct	ttcaaaaaga	gctagagctc	catctataat	cagcaaagta	tctgtcaacg	120
aaagccaagg	atcaatgtac	agtgactacc	agaacaggtt	agaagggcac	actcataaac	180
ctttgctact	ggtttggggg	tttcagtttt	aacttttctg	ttaaaattct	cagcatttat	240
ctcaaatgaa	agtattattt	aaaatgaaat	aatgaaggag	gtttattaga	tgggaagggg	~ 300
taactgatta	agacaaagta	taaggatctt	ttcaaaatcc	atctctaaac	atcaataaac	360
tgcctcagaa	aatctctcac	taggaattat	acacacaccc	atttgatata	atatggataa	420
gtcttcacca	ccagtctaaa	tccctcttcc	cacctcccat	ccaacatacg	ttaacatgga	480
gatggttaag	caagetgeee	atagetette	tttgaatttt	ccctatagcc	ccattaccct	540
tttttaaac	agaaaaactg	atttagatag	aaagaacaag	ttttgttttt	gcaaagctta	600
tgatagactt	acaaattcaa	tgacaaaaat	cagtaatatt	taaaatg		647

<210> 42

<211> 715

<212> DNA

<213> Homo sapiens

<400> 42 gggacttggg gtctgctaag gtaaatagca ctgcattaat ggtcttatcg atttaagggg atetecetet tteeteaace tggteeageg agagggagte eccagtggag ggeatgtete 120 actgctcaag agaggtttgt atccttgctg ctcagcaact ggggctagga taccctgaaa 180 attctggaaa tcaccaagcc acatcagtgg catgactgga agctcatgac tgtctgatgc 240 tgtagaggaa g
ttcccctga tgtcccagac ccagggac ϵ_{ij} g gatgcagagc aggggaggga 300 accecttece etegttggae accatettee agacecetgg gatteagggg acaaatgeag 360 atcaaaaagt agggcaaaaa cagttctgtg cctccctttt aaggttcaac tcgggactga 420 aaaatcttgc gtttccttac accagccgca ctcacttgcg tgtgaagatg ctcctcctct 480 cttcgttctt gttgatttcc tgacttaact tactgagaat cctgcaagat aaagagacag 540 atgaagagat aaaaccatca ctcagtctca accttccccc tgacccttga tatcccctgg 600 tctatagaaa cttggggcac cagggccaac tttggccagg ctcctctttg tcacctctgc 660 agggaccete tgetetteae tteeteecag aaettgeeat ettatteece gggee 715

<210> 43

<211> 619

<212> DNA

<213> Homo sapiens

<400> 43
ggggaagaaa aaaagatgag ttgttcatgg ctagtgtcct tcagaaatgc ccagtgtgga 60
ggagaacaga ccagaacctg gtgggcattg ggccagagag acatgaagat acataggagc 120
tctgagggac ccccagccca cccagcccta gagcagggag aacaggggtg gttaaggcac 180
aagttgtgtc ttaggctgtg ttcaagaaca actagaattg tttgggtaaa gtaggaggaa 240
gatgttcctg tttacaagag gggacagctt gtgaagacca ggaggtgggg ttgatcatgg 300
ccaactctga gaacctcaag aagttcagtc ctactgggca gtccagtgga agaggggagt 360
ggcataagag agctgtagag agggcaggga ccagtccttt cagggtctcg atgctaggct 420

WO 02/10198 PCT/GB01/03390 gggaagettg gtttateetg agggeaatgg gaaceatggt aggatttaag cagggtggga 480 cctggggaga ggcccagagg tgtgttttag aaagctgact tatgctggct gatgtgcaga 540 ggcagtgggt cggtgaggag gctgggccag tagtccaggc aggtggccag ggcagtgggg 600 atggaggagg agtgatata 619 <210> 44 <211> 760 <212> DNA <213> Homo sapiens <400> gggatacatc ataatacttt ttattagcat agcctttgtc aatctagcct cctcaaggtt 60 ctttaggacc tggcttctgc agttgaaaag aacagtgtct tcctcccaag gggcagctgt 120 ctttttcatt gaacttgttg ctagaggagc ttctagtttt aaagcacata ctctttagcg 180 tatgtgttaa tttcattaac caccagtaag ttcttcttat gcatgggcca aaataatgat 240 atateceget tgtggccaag gtgagaacca tagatagget tgttattta ettttette 300 ttacctgcag gctctcaaag atatttttc tccttaagtt tgagcatatt tcatgtaaat 360 aaaagggate ecaaagagea tettgtgega accettgget caagacaace caacetaaaa 420 ttcatctaga tcacctggac ttttatgttg aaaggatttt tcccccagaa taggacattt 480 gtttcccatc tattctggct tacaatactg aagagtccca gtccatattt atgaaggaag 540 cagecttaaa gtgttaccat gaacacttta taaacaggca ttgtgggcct ttgaaaagaa 600 agetgetgat gtetgagttt tatgggagte etagecaggt gtttaagtgt tettettaae 660 acttaagtat attttgtaac agaagaaaaa tgaaaattag tatatctgcg cttcataatt 720 760 <210> 45 <211> 675 <212> DNA <213> Homo sapiens <400> 45 ggggtaggag aaggggagg agggatgctt aaaaaaaaa aaacctgctg gagtgacaga 60

120

taacttgaga gaacttcctt acaggggaaa aaacttctaa agaatgatgg ccaaattact

ttggctgtgt	tcaggttaga	cactttttga	tgcctatcac	ttcataattt	tagcagcaat	180
caaaccaaac	acttcattaa	atataaaatg	ttctcaaaag	gcagttagtg	gttttaattt	240
ccaaacacac	ttatttagaa	atcccctctc	agggctgtca	ațgaaatgct	gagggaaaaa	300
cacatcacac	acagggactt	tgtgagtctc	agaagccata	acacacctca	tggaacaaat	360
	tgattggtac			_		420
	tgcatgttta					480
	tattcttcct					540
	caaagagatc					600
aaacttcatg	ttaaatgaga	caaagatatg	taaagcactt	ggtatttcac	ccaccacgca	_' 660
atacatgttt	aatga					∖ 675

<210> 46

<211> 540

<212> DNA

<213> Homo sapiens

<400> 46 ggggtgctcg gagaaggcag acatgggaaa acctactaa aatcctgagc tcctcgtgct 60 gtgccgcctt ccccaaccat ttccctgccc caagggcaag tcccaagaga gagcagagga 120 gagtttggaa gagaagctgc ccccaggaga gaaggaaggt gcaagtgtac aagtaaacac 180 ggtagcaata acccactgaa tgccgctctg ctgggctcaa ggctgaacga catctggaca 240 ctgctggaca tctgcagctc tggtcaacaa acacactgca tcccagccag agggccctcc 300 tgcatagaca gtgcctaacc ctggggcttc tcagctaagg gagagggaag cgggcctcac 360 tccaaacaag ggtcacccct tgccggcctc acatctaaag ggaccaccac agtcaagctg 420 aggaactice teageaggee ceteaceace eccaeeagee eaggteaace gecaggagae 480 tgctgagggc tagacagcta cccagggaga gacagaagcc acaggatgcc atggggggt 540

<210> 47

<211> 405

<212> DNA

<213> Homo sapiens

<400> 47						
ggggtagatg	gcactctcat	catgaaagcc	aggtcggtcg	gtgatgatct	ataaaaaaca	60
ttcccccaac	ctgggattga	ggtcactgaa	gaatttagaa	gtccagtttc	ctgtgttccc	120
catcggacta	gggggtctaa	cagtatatag	cctgggggag	gtgagtgaga	ccagcgatat	180
atagagagga	gaatcaggga	aatacgggaa	tggggttgag	ccttccctcc	ctgttcccat	240
taacagcagc	ctcttgctga	tccataccaa	ccccagcgta	tctccagccc	ctgcaaaacc	300
aggtcagtgt	tgtctgctac	acagectaet	ctctgtcttt	gggtgatttg	tctctctttg	360
cagececaaa	gtgggtttaa	aggctaccac	aggaaactgg	acttc		405
<210> 48						
<211> 527						
<212> DNA						
<213> Hom	o sapiens					
<400> 48						÷
ggggcacctt	ggcgaggtgg	cgctgccgga	ggctgagggc	tatctacacc	atcatgcgct	60
ggttccggag	acacaaggtg	cgggctcacc	tggctgagct	gcagcggcga	ttccaggctg	120
caaggcagcc	gccactctac	gggcgtgacc	ttgtgtggcc	gctgccccct	gctgtgctgc	180
agcccttcca	ggacacctgc	cacgcactct	tctgcaggtg	gcgggcccgg	cagctggtga	240
agaacatccc	cccttcagac	atgccccaga	tcaaggccaa	ggtggccgcc	atgggggccc	300
tgcaagggct	tcgtcaggac	tggggctgcc	gacgggcctg	ggcccgagac	tacctgtcct	360
ctgccactga	caatcccaca	gcatcaagcc	tgtttgctca	gcgactaaag	acacttcggg	420
acaaagatgg	cttcggggct	gtgctctttt	caagccatgt	ccgcaaggtg	aaccgccaat	480
tgtccgcccc	gccagcgctg	caaataaacc	ttctgagtca	gccctct		527
<210> 49						
<211> 533			•			
<212> DNA						
<213> Homo	sapiens					
<400> 49 gggtggctgg	tttctgaggg	acgtctgaat	atttccacca	taaatccatt	tctaggtctg	60

ataaggcagc ca	accaaaaca	aaaaacaaaa	agcacctgca	ctcccctctt	gctgttgatg	120
caageetget go	ctagctete	cacatcaccg	gtgagggaat	cctagcttca	ggcctctaac	180
cctgactagt ga	actcatctg	ggagtaaagg	ggtcacatat	ttctatctgt	gtgcctacaa	240
actagagatc ag	gcaaggtct	gcaaagtttt	agccccagga	agaatgaaaa	ccggaagcag	300
tcatgttctt to	ctctcctct	ctgccaagct	cctgaaggag	agagggtgcc	ttctgctcac	360
ctcaactttt c	ttacctatc	acattacttt	gtgctccatt	ttctacggct	aggcatttgc	420
taaagtatga go	caaatgaac	attttattag	tattttattt	gtatttttgg	agaagatata	480
gagtttcatg ag	gaaacactg	atttttctca	aacaatagaa	aaagtgtttt	ttg	533
<210> 50				٠		
<211> 439					•	
<212> DNA						
<213> Homo s	sapiens					
.400: 50						
<400> 50 gggccacaat gg	gcagctttg	gggaccacaa	ttcgggaaca	tgtattctca	aagtcagcat	60
ggatgtcaat ac	ccctgatt	taatggcacc	tgtgtctgct	aaaaaagaaa	agaaagtttc	120
ctgcatgttc at	ttcctgatg	ggcgggtgtc	tgtctctgct	cgaattgaca	gaaaaggatt	180
ctgtgaaggt aa	aaatcctaa	cgcttatggc	agttaaaaca	ggaactggat	tcacgggcga	240
tggacattat ac	ctgagattc	attacagtta	acttacctat	actaatttat	gctattgatg	300
taataatatc gt	tgcagtagt	ttcacttcat	cgtgatgaat	aaatgcccat	ctatctctct	360
ttgtagactt go	cctaacgat	atctcacctc	tactcccatg	aattcacctt	tgattccatt	420
gtgaactgtc aa	atcataag					439
<210> .51						
<211> 666						
<212> DNA						
	sapiens					
<400> 51				•		
gggggggggg gc	cacccaagc	ctgcagtgag	gcagtgatgg	acaggagcac	gggaggagct	60
gcctgtagtg co	ccattcta	ttctggaatg	aacagagaaa	ccctctgccc	aaataagctt	120
tgaatataag to	gaactggct	tgtattagaa	tttactggtt	aactggcttg	tattagaatt	180

tacacaaagt	ggctttgaaa	atcgagccgt	ctcttagtag	tgttatccca	aggcattcaa	240
tagttctgag	gtttttcatc	tatgagtgat	tatcccaatg	tgctaaagaa	aaagagaaag	300
agaatatatc	agatttgaac	aaagcaaatc	tgttacgaaa	ttttaaattc	tgttcactaa	360
gtcaaaaatc	tgcttctcgc	taatacatat	tcataaacat	ttgcttattt	tgcataaaac	420
agaatctaaa	gtagcaaaaa	catcacagag	aaagactggg	acacacaggg	atcacagaaa	480
acacagteet	caatcacaca	ggaacacagg	aacacagatt	cggttttaaa	tcttatcttt	540
caacttaaaa	aaaagactca	aatctctctt	aagttctaat	tataaaacaa	atttctatat	600
ttatattatc	tgtatgaact	agaaataatc	attgtacgat	tattcacgtt	tctattatat	660
ttgagt						666

<210> 52

<211> 592

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 52 ggggcggtgg cggtggtggc tgcttcacga gcagggcctg ggccagctgg cgctggtgct 60 gctggatctg ctgctgcaga ttagtgattg tgcgcgcaac ctggcaggca gagacatagg 120 tgcgttaact aggtgggaag ggacactcat ggcttgtcta gggaccaaat gcattcttca 180 ttgtctttat gctgaggcca ctactggcta ggccaacctc ctcccaaacc tagctgaacc 240 caggaatttt caaaggaagg cttggctaga gaaaaatcaa tgatcatcta atagttcatc 300 aattagcgtc tcttctatca gggaaaatta tagctcatga caaaaatcaa tctgggtagc 360 acctacttgc tgctcctgtt gtctcatgga tccggacnnn nnnnnnnnn nnnntaacat 420 ctgctgctgg atttgtaaac gttggtatgc ctgttgacag aacgaagagt taaaatagta 480

tgataattaa gtgtaagtt	g aactaatggt	tcaactttct	gacattagtt	aaaaaataaa	540
aaaagagaac ctagccact	c ttcttggtcc	atactgtggc	tgacacatac	tg	592
<210> 53	,				
<211> 498					
<212> DNA					
<213> Homo sapiens					
<400> 53					
gggggtgaag agtgaaatt	g gactgttaga	ctccatgata	gtcaaaggac	ataacatcct	.60
attttactgt ccttcagaa	g agctaaaatg	ttctcagaga	gtgacaaaaa	gatgatagtt	120
acttccttga\ cagcaacat	a gggagaaact	ttatgaaaag	ctagaaaatt	tatatgcatc	180
tgacttcagt gactatcca	a aataaatttc	aaagtataca	atttttttt	tacaagacag	240
ctcaagtagc accaccatt	t ccctttaaaa	aaaaataaaa	taagcctttt	ccctgattgt	300
aaggattatg cacaatatt	c tagataaaaa	ttttggaaag	cataagagac	gaaaattacc	360
tatagtctca caagttaat	a ttgtggttta	catttcagtg	catatacttc	tggtcttttt	420
ttctctttgt agactttct	a cgaaatttca	tatttttccc	agaagtcagg	ctgctagatc	480
tgtgtgatct ttaccgaa					498
,					
<210> 54					
<211> 464					
<212> DNA					
<213> Homo sapiens					•
•					
<400> 54					
gggaacagtg tgtaggaag	t tggaacagaa	tgtgaaaagg	acacagagga	accaaaaagc	60
accccttaca ggtggggcc	c agagtgacag	gagatacagc	aggcagggcc	agatcaggca	120
gagccttgtg gttcccatg	c agggacctgt	ctggattctt	aġagcaaccg	gcagcccctg	180

gggaacagtg tgtaggaagt tggaacagaa tgtgaaaagg acacagagga accaaaaagc 60
accccttaca ggtgggccc agagtgacag gagatacagc aggcagggcc agatcaggca 120
gagccttgtg gttcccatgc agggacctgt ctggattctt agagcaaccg gcagcccctg 180
gagggtttta agcaggcaag ggcatactca gggctgagcg tttgaataac ctctctggct 240
acaatgcttt tattggccac aatattttgg aagactgaag ttaacacatg gtctgagcag 300
cttactcttg ccccctgaa gaattctagg aactgtgtga ggctgcagtg gtcagagggg 360
ctgctgagcc atgagaagaa aagggacact ggagctgcgc agcaaaaggg ctctgaggtc 420
gccagagtgg ctgccagata aggaacagtg ggagggagcg gctg

<210> 55	•					
<211> 682	:					
<212> DNA						
<213> Hom	o sapiens			•		
<400> 55 ggggggactg	ggtgttttgg	ctcaaataat	acaaaagcgg	cttgtgatca	agtgtgccag	60
tcttcgtttt	gcttcccact	ggagtgtcca	caactgctga	ggacaactca	ggcccatgag	120
gtttgctcaa	atggagactt	ttaacagtgg	aaaacgcaga	cactgtctgg	actggaagtg	180
taattcagac	tgtatttcaa	gacgtcacat	cttcagggat	caagaaaaaa	caatcactcc	240
ttatttgaac	acaattaggt	aggtgtgttc	tatcatcctg	gccacatttt	tataaacaaa	300
tatactgcaa	atttgaaaac	agtgaggacg	tcaggagtta	aagtgctata	atatgtaact	360
aaactagaag	gaactaaatt	acaaatttac	tcctgggagg	cattttattt	cctctcaagt	420
ttcaagcaat	aaacatctat	catttaacaa	accagctggt	catatctgcc	ctcctttacc	480
aagtctttaa	ccctgctcaa	cacgaacagc	taaggacaaa	aggcagagat	cctttatcca	540
ggttaaatcc	actctgggaa	agtgttaaaa	ctttccaccg	gtaattttac	ctttaaatca	600
tcatgttgta	gatactttt	tctgtaaggt	gtttttatat	tcaatacctt	cacagtatga	660
atgagattct	aagatcagta	at			•	682
<210> 56						
<211> 633						
<212> DNA						
<213> Homo	o sapiens					
<400> 56 gggttgccaa	atgacagact	ctccagtcat	gaaaaggaat	ataaagcaat	ctcactacaa	60
aaaaaaaaat	tcttgtaaaa	atcctccctt	cttcagatgt	tgtaattaat	tatgccaaaa	120
caaacctctg	gatttctatc	caagcctaaa	tcccagttta	tttatttct	tagaaatgat	180
aaatactttt	tgacaatttg	ttttgctaca	tccaagtctt	tiagtggctg	gctttgttat	240
caaattcacc	attttaaatg	attttaacaa	ggttgccaaa	gaacatacgg	ggaaaaaaaa	300
cttttccata	tatccttggc	agaaactggc	attccccttt	tctcagttcc	cttctgagag	360

tgcctgctgt	cgctggagca	gctatagcag	tgtgtttacc	cagttgatag	tgcacacatc	420
cttctcactg	caggacacca	gegeacette	cttggcctct	ggcaccttct	gccaggttac	480
tgcccagcct	cctctattac	ccacgcccct	cattttctgt	gcaaccccca	actgggcctc	540
cttttcactc	atcagctaag	ctacttttaa	acatttgggt	ctcaggcccc	taacaaaagc	600
aaatttgccc	atctgattta	tttcaaaagg	gag			633

<210> 57

<211> 734

<212> DNA

<213> Homo sapiens

<400> 57 ggggaaaaaa gatttagaat tgaaaagaac ttggattggg aaaattaaaa ctaaaatcaa 60 cagtttctag tttctaagag accaaaagtt actatgaagt aaagctaggc ttttcatttt 120 catgaaataa tttacaatga caacagaaac aaaacataag tgaacacaat taaggctgtt 180 tgtacctcaa atgtggagtt ttttagtgga taccaagttt tggtaagcac aagggggtaa 240 cattotaatt caattattat ttttttaaat cagtaaatag ctgccctcaa ctggataata 300 cagggcattg caactgtggc aaaccaaacg ctgtaacaga atcctgtgtt tgtcataata 360 tatttttgga aaaagaagac attatcaatg attgggcaaa gtgagtacta atttccaaat 420 atatatacta caagtttcat ttttttggga ggattcaagt aacagtattt ctaatgcgat 480 attoccaato aacacgaaac actaaaaaaa caaaccttca aatgtagaca aaaaccctaa 540 taaatgaggg aaatcataga caaggtatat aagaacccca actgttaata cttcaaaatg 600 tagctaattc catgtgttca agaaaagata aagtctgagt ctcaattcta ctcttaaaaa 660 cattaaagat actctttaat tactacccaa attgagactc ttaaaaaacag acaagctctt 720 ttaaagatga tacc 734

<210> 58

<211> 418

<212> DNA

<213> Homo sapiens

<400> 58
ctttagcctg tggctgtgtg tcaaggttag gacagctatt gatgtgtgca tgcgtgcctg 60

tatagggcac cagggaaggt agcaagtaaa aatttagatc atagcaaaga gagaatataa	120
ttcagactet gtetetaget ettgaatage acetgeteet etttgteeet eetcatgtee	180
catacaattc acttctaaag atacagatct tactgaacaa gttttccaag tagggcttca	240
aaataaggtc tcttacagga aaataatgcc taaaactctg tagataccat tggaagactt	300
caaactcaac tgtccttcca catggccaaa caaaaataat ataataaaag caaataaaaa	360
ataagaacca gacaggggcc atgtatttgc tatttcatat acattatgcc aagtaagc	418
<210> 59	
<211> 593	
<212> DNA	
<213> Homo sapiens	
<400> 59	
gggattatet gatacaatte ettgggaatt tteaattgee caattttaet aetttggtgg	60
taaaatattt tgttaatggt tggtaaaata tccatccact ttgctggata catctacaaa	120
cataaccacc tcagctagta acagtaccgt acatggaaaa gggaggaatc tgtacaaacc	180
tottttatgg caccatcaca gagtagtago catttattgg gotoctaatt toaggaatco	240
tcagccactt ctattectge tacegtatet ttteattaga ttgtgeetee ttacataggt	300
gctagtcaag cccaagtetg ttacacctaa tcaagcccaa gtttgttata cctctttgag	360
tactattcag aagactacag gctgccactg ccaacttcag gtaaaaaccc gacaactagg	420
ccagttgtcc aagctccatc ccttgctacc aaggccctaa tttgccttaa ggtgaagatg	480
attcaaatta tgacagtctg cettgeegte tteattagag tataagetee ttgaatgeea	540
caaccattgg tttcactggt aggtggttct cttatcaccc ccaaaatact gca	593
<210> 60	
<211> 689	
<212> DNA	
<213> Homo sapiens	
<400> 60	
ggggaactta aggaattaat tgtatttgtc caaaccaaac	60
tcaatcataa taatgggttt agttccatct tatgaggttg atttgtttct gataacctgt	120

ataaaagatt	gaccttgcca	gtttgtactt	atttgaatac	adactacttt	tcaataactt	180
tccccaagac	ttgaggtaaa	gttcagggat	gttataagta	aaaatatctt	taacctttta	240
aaggcagatg	ccacacaaaa	ccttgcaaag	gaaaacaagg	gagccacaca	tatcaatgga	300
gacctttaag	tctgtggttc	tatttctagc	atttatcgtg	aagaatcatt	aaagaggtaa	360
gcaaagatga	atgcataaat	ttattcagtg	gtgtactgtt	tctaatgtga	ataactggaa	420
atcagtgtag	ctcaatacag	actgagttaa	attacgctgt	atccttacaa	tggaatgtta	480
tgcattcatt	agaaatgtaa	tgcaagaata	tttaatgaca	tgaaaagttg	ttcatgatat	540
tttttaaata	aaaaagcagg	ttatgataca	atatataagc	atacttccag	ttttgtagaa	600·
gtatgtatgt	atgtgtgtat	ctgaaaaaat	atcaatcaag	ctgttaaaat	gattaataag	660
tcaaagaatt	agagataatt	ttgattttt				689

<210> 61

<211> 609

<212> DNA

<213> Homo sapiens

<400> 61 cttaaaaaat aaaaaataat gatacaaatg atatgaaatg cttgaatgca gaaaatacag 60 aatatttcaa taaaggtcaa gaacattaaa gtaataaatt toottgacat ottatgaaco 120 actgattata gaattaaatt tagtgtttgc tttaaaacaa cataatttct gatttgaaag . 180 cataggaaac tcagaggaat ttacaagcaa aaagctattt aaaagctgcc ctctctattt 240 gatgaaagat aaagaagtac aagctcattt acttgacaaa ggcagtgtgg cagataatcc 300 aaaaccaaaa tgtactgagc atacaatata ttatgccaat ttgcagtaga cttaaccttt 360 cttgaaactc ttagcctaga acagaattaa tattaatttt gcatgtgatt aactagagag 420 agcttgagcc cgaagcatga taggttataa aggaaaattt cacatgtgag ttgctgagtc 480 cttgctgaat ttcaatagct taaaaatctt ttatttgctc tgagctactt gtgagagctt 540 gtagtttaat aaaagttgtc tttaaaatta catggatggg tatgaaacca attttgctca 600 ttttttggg 609

<210> 62

<211> 665

<212> DNA

<213> Homo sapiens

<400> 62 gggtccggg		a aatttgcatt	: tctaacaaag	ı tetcaggteç	g teetgggate	60
tcacactaa	g aacctctgtt	ctagtctgaa	ggctgaacta	ggaagctgto	aataccgcta	120
acacacaca	a aaaactcato	atcattcccc	caggtgttca	tttgtcctcc	atctctgaat	180
aagtettee	a ttttacttg	g gtactatgct	aaggaactgg	cttactttca	acttctttt	240
tggggggtc	t tattccaato	g ttagggaatc	: tcttttgaaa	tccacaacat	tctccaacac	300
tgaaagcaag	g gaggtagttt	: taattacatt	ttatagatac	atgaaaagtt	tacaagggta	360
aagacttcca	a gatattttg	gaacaactct	ttttctactt	gataatteet	aaaagctatt	420
aacacatgct	gttataaaag	agaagattta	gagcctctgt	ttactgctgc	cttgtcactt	480
actgccaggo	g ttctcccaca	cacacaaaaa	aaacaactaa	aaattaaact	aagagtgaac	540
ccctgtgtad	acaatataac	gccacaaaat	catttcattt	ctgttgcttt	aatgtatttt	600
caaagaaaag	, attaaaagca	agaaatcatc	taacaacatt	tctagatata	ggcataatgt	660
cattt						665
<210> 63				٠		
<211> 534						
<212> DNA						
<213> Hom	o sapiens					
<400> 63						
ggggggcaaa	acagacaagg	tccaaggaga	aataagaaaa	aaacaaaagc	aagaaggaaa	60
tagatgtgct	tacttacagg	gacagctagt	aggctggaat	ggcgagaagt	atatgaaagg	120
aaggtacaaa	aaataaagct	gaaaaggtag	attgggacca	agattcatgc	tttcattcaa	180
actgcactta	ttgaagctta	ctaaatggaa	gcactctgtg	ctaaggtatg	gaagagaaag	240
agatacaaaa	acttcaatga	ggcacaatcc	cttcccttac	aagggaatca	cgcacagcac	300
atccttggtg	cacggtaaat	cagcaaatgt	ctctaataaa	tccagtcaaa	tgaaaaaggc	360
aaaagtgttg	aagtaggaag	gcctaagaga	aactaaagag	taactaccat	ctgatgatag	420
acctaaagcc	ctataactcc	cttcctctac	atgtatacac	acaccccaca	tagcacacaa	480
cttgttaatt	cctatgtaag	aatatgaata	taacatgtgc	agggacgaaa	gaaa	534

<210> 64

<211> 659

<212> DNA

<213> Homo sapiens

<400> 64 tccaccgggg tggcggccgc gggcacaaag gcatgaaagt cttggcatgt tgaaggaagc 60 cagettttte ttaaceteat taaaateate tgaccaacaa atatatacet tattteetee 120 tttctaagtt aagaggaaaa aaatcagtaa agagcttgag tatttggaga agaaatgtca 180 ctgaggtcac tccatggaca tgatttggac ccctgacatc attttaacag gggggttcgg 240 ggatttccat atactggctt tacatcactt gcctgcctgc caaacaaccc ccctacttta 300 acaagcacca ggtgctcatc cttctatcac agacatgcag cccctgagct tccagagtag 360 ctgtccctgc cagctgctag cagggaagtc agaagcatag aaatgaagaa gcagccaaag 420 ctctgcccaa gatacaattt caaagcagct catctttctt aggagacctg ccaaataggt 480

tgtccagact gcactcagcc tgctttcctg tcaatccaca tatgtgctat ctcagcagag 600 gggactaaca tttatcaagc agctattggt ttatgttatc ttactatacc tattttttg 659

540

tggccctgac ccattaaaga gacaggcaga cccattaact ctatggttca cttgtcctgc

•

<210> 65

<211> 653

<212> DNA

<213> Homo sapiens

<400> 65 gggatgtgta aatggcttta atgaccatat tttatctgtc agttccactt tttgagaatt 60 tgacataatc acctaagctt ctgtgtaaag agactcccaa tggtattata ttaaactaac 120 aaaaaaatta gaagccacct aaatatacaa caatggggga ttagttacat tattctgtaa 180 gtatgtggcc aagaaaggta cagcaattaa tcatgcttct gaagactagg gatgcataaa 240 aatgctcaca gagtagtaag cagaaaacaa tatatcttct atgcttgtca ttttatataa 300 gatttgtgac acgtatgtaa aatggagatt aaaaggaaaa cactgttaat qagttagtgc 360 tctgtgggta ctggcaactt taaattattc tacactattt tcagaattga acacatatta 420 taattgaaga gaaaaacaag aaacattttt atttttatt ttttgggtga cagagcaaaa 480

ccttgtctc	t aaataaata	a agtgcataaq	g taattatta	t gttgttaga	g tataaataaa	540
tcggtgtaa	c ggttctaga	a agcaaccta	g ggatgtgta	a atggctttaa	a tgaccatatt	600
ttatctgtc	a gttccactt	t ttgagaattt	gacataatc	a cctaagctto	tgt	653
<210> 66						
<211> 56	,					
<213> HO	mo sapiens					
(100) (6				•		
<400> 66 attttctt	t taaataacat	: tttgttacaa	gctaatgtto	: agaactcagt	tttactgagc	60
	\				cagaatatat	120
					acttagcaag	180
					atccagttct	240
	attcttcata					300
	: tttcctaaga					360
	gacaatgata					420
	catttcatcc					480
gggcaaagca	ı ttctggaagc	taaaattaga	ggtgggaact	ccctgttttg	tgtgaataac	540
aggaagtgga	attgaaatgt	aatgcca				567
<210> C7						
<210> 67				•		
<211> 647						
<212> DNA						
<213> Hom	o sapiens					
<400> 67 gggattctct	gacacctcct	tggctttctc	cagttccttc	ccagcctgag	aaacactcga	60
	gggatgtcat					120
	gaaggaacct					180
	ccataagaag					240
	tgtggagtga					300
	gggagagcgt					360
					· · · · · ·	

tctgacgctg	gcctttcctg	gagacactgg	agtgtcataa	atccattccg	atttctgagg	420
atttggtaat	gtgctgtaac	cgcctcttct	taaggtagtc	actgatatca	ggggaacacc	480
ctgcccctgt	gggagaacca	cacatagttg	ccgggttagt	agctttccaa	agagggcgcg	540
agtgcgttgt	ttaaatctca	tcgtcactcc	gccgctcctt	cagtggctcc	ccatttctgt	600
taccactcaa	ggtccttcag	gattcttttg	agcctcattt	ctttcga		647
<210> 68						
<211> 613						
<212> DNA						
	o sapiens					
<u>/</u>						
<400> 68 aaatgtgcca	acatatatta	gcaaggtttg	tcagtactga	ttaatatttt	tacattctaa	60
tattctttgt	tagaattgta	tttattttat	gaagcccctt	ttgaatctac	agcagactac	120
ctgggaagta	gttatagagg	tcatcatcgt	gtcttggtga	ttcactttgg	gaaattttgt	180
tgagtgaggc	tggtgaacct	agaaagctgc	ttcttctgcc	tccccatttc	tgtccccaag	240
gccctgctgt	ggttcaaaag	cccatataaa	cctgcagttt	ccctttcttc	cacgataggg	300
cgcgcaccta	cactgttagg	gtatggggcc	gactggctcc	tgccctgtgg	gaggtttgat	360
ccttgtccat	ttagaggccc	ttccttattc	atggacactc	tactgagtgt	ctgttgcaaa	420
ctccctggta	taaaccccag	acgtcatgga	tttaccacac	taattattag	agtggccatt	480
atttgcaata	aaatagtgac	ccttgccact	gtgttttcct	accaaataaa	cttactgaca	540
agtatctgca	ttggctgggt	cgaggtgtca	tcaaatcagc	ctaggtttgg	atgtgctgtt	600
ttgctagctg	tag					613
.010				•		
<210> 69						
<211> 635					·	
<212> DNA						
<213> Homo	sapiens					
<400> 69 ggggggaaaa	ctgaaacaaa	gttggaaatt	atttggttaa	ggatatatag	cagaagaaag	60
		acactttgac				120

attcagatca	ttagttttat	cattaagaga	catttgttaa	gtatattctt	tattcaaagc	180
ttaaatccat	tttctaatta	aattagacaa	cactttcttt	acaagaaaat	tgaataatct	240
gatagtagct	ttcattagaa	tcaaatgtta	gccttttatt	ttgtttttgt	tttttaagca	300
ttggcagctg	tttgtgaagt	cataagaaag	cgagtaaaga	ggtaatttat	taattagatt	360
gaaatattaa	atctattcct	tttttcccaa	gatactagtt	ttcccagaag	gtacttgtac	420
taatcgttcc	tgtttgatta	cttttaaacc	aggtgagaaa	aattaaatta	tgtattctaa	480
caaagtaata	tgtgagattt	tgcaaatgat	tttatagaaa	tacacaaaat	aactctttag	540
cttgctctga	gcatttttt	cttttctgat	agcaactttt	taacgttgtg	gatccacaga	600
acttactgct	ttgctttctc	ttttggggtc	ataat			635

<210> 70

<211> 623

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 70 gggggatttg ctgatggatg gatgtgggct atgagagaca ggagtccagg ctgactccca 60 aggttagaga actagcactt aagtgtcata catttctgcc tgacttgagg gtcttttatt 120 tttcactaaa tgattttaga gtctcaagta aaaattcaaa agacatagaa aattttgccc 180 caaaacttat ttaatcaaag gatatatatg aacacttgag atagtatcac cttgctgcta 240 gatctttata ccttttggaa atgcctttgc caaagtgaac acttagttaa tcatctatac 300 atgtctctgt gtgcccattt atttggcctc aaattgaccg gactattatt tagagtaaga 360 ggatgacnnn nnnnnnnnn nnnnnnnnn nnncctcttg acctaactgt atgacccaac 420 ctttaaaatg gtggttactg ggaaagcacc aactctgact gtacatccta cttcagaagg 480 gcaaagaatt acctatctaa actteetgga attteecaeg actetegtag ttgeacagta 540

tttgacagct	tggaaagcac	tgttttacaa	aaagtgtttt	ataatccttt	agctttcctt	600
taaaggtagg	, taagattgtt	ttc				623
<210> 71						
<211> 573	3			•		
<212> :DNA	L					
<213> Hom	no sapiens					
<400> 71 gagaaagaga	atgaatgttt	ataaactaca	ctcacccaca	atttcataaa	aatcgtttga	60
ttgctgatgc	ttccttaaaa	gacttaaagc	agggtttgt.	gaggcagatg	atgttacaga	120
gcaataatto	g gacaagttcg	aattacttct	ggacaagaaa	caaagccact	actacaacat	180
aagagaacag	g ataatcagct	gaacaatcta	atacccctct	ccccaaagcc	ttccatataa	240
aactctgttt	tcatcattta	gaaattaaaa	taaccctacc	atattgtctg	ggctttctta	300
gctttctcca	tcaaattaac	ttcctaatct	caaatttagc	ttttcttaag	gcttaaaaaa	360
ccatcttcct	ccacttctca	cttcataaca	aggaggctgt	cacggaaaac	acccaaatga	420
atttccacca	tgtccctaag	taagagtctt	ggagacacag	ttaaggccat	ctctggagtt	480
ccaggttgto	: tgtgaggtag	acctggtatc	tgaattcaag	taaagacctg	gaatacctca	540
tcgcctgaat	: tctgaacagc	agattcatgc	tgg		•	573
<210> 72		,				
<211> 630)					
<212> DNA	1					
<213> Hon	no sapiens					
<220>						
<221> mis	c_feature					٠
<222> ().	. ()					
<223> "n"	' is a single	e nucleotid	whose idea	atity could	not unambig	iously

<400>	72						
ggggg	acagg	cgacgtgggg	agtgtctgtg	gtcacaactg	ggggccccag	cacttagage	60
ctgtga	ectca	gtatgtacac	gtagcaccaa	atgctttttg	gttctgtctt	gggcatctcc	120
gcacgo	gcac	ttccgccagt	ggtttcttcc	attgcctttg	ggatgagcag	gcctcctgaa	180
agcagg	rcctg	atattctctg	gtcttctgac	aaagaatggg	aaatttctca	caccgtcnnn	240
nnnnn	ınnnn	nncctgggga	tgggatttga	agggcttggg	ttgccgaatt	gctcctagaa	300
ccacag	gctt	agaggagttt	tctatgaaca	gcggtcctgg	cagggacaga	ctgaggatcg	360
gtaggg	ctga	atgaagacaa	teccaectee	ttcaagagcc	acctcaactt	atgtttttt	420
cccaca	aagc	cccccccg	attttgccag	ccttttactg	atcacatcat	ccactttctc	480
acagac	ctta	caatttagca	ttggcttata	tattgcctta	tattgaataa	tgttttatgg	540
tcttgt	tttt	cctaccactt	ccttatgtgt	agagactgtg	atccatattt	cctcttgatc	600
cctgta	aaga	tgctgagcac	acagtagggg				630
<210>	73						
<211>	625						
<212>	DNA						
<213>	Homo	sapiens					
220>							
:221>	misc	_feature			•		
222>	()	()					
223>	"n" j	is a single	nucleotide	whose iden	tity could m	not unambiguo	uslv

<400> 73
ggggtcagaa tgctggagct caagctttgg gccttgatgc atataataac tcataaaatg 60
taatattcag gaaggaatga ggctcctaaa gaagtgagaa agtagaatga acaaaggcct 120
aagagaatag aaatgtattc taacnnnnnn nnnnnnnnn nnnnnngtaa gagtgcccag 180
gggtattgag attgttagat tatttataa tgatataact taagggattc caaaataatg 240
aacataaaat gttattata gatttttc cttttcacat acttgaagga caaattatat 300

catattgtct	ttttttcttc	cccaatacta	tgagcgttag	agaatgagac	gcaaatccga	- 360
tatgtagtaa	caaggtagtc	actcacagca	aaagttgaaa	gattcctagt	ctacgctaac	420
aagtgtctgc	aaactctaca	gaaatgcaat	tagaggttgc	ggcagctact	cccctgccta	480
aaacagcagt	ctgaaaactg	ccaatctgtt	gcaaattctg	tcttttctga	gaatatttta	540
agaaaagtgg	tagagaaata	tttgaaaggc	aacagaacac	taattatatc	tagacaagtt.	600
tcctttttt	ttttcccaaa	aaata				625

<210> 74

<211> 736

<212> DNA

<400> 74

<213> Homo sapiens

ggggggagaa agaagaaaca gattacatga agtataaatt aagaataatt ttcatgtccc 60 tactctgaga agcaaattca tccaagtctg agccaaagag aatgaatcag aattctaagg 120 tttctgagtg tgtcttctga gaaaaattca gagactattg tgtacatttg tgtatattac 180 ctttaaggac attaactgac acttccagag aacagaaatg taaatctgtt aatgggataa 240 cgaaactggt ctgtgtcctg tgagctgatt gacagaagtt tagaaacgct gctaaacttg 300 tetttgagee etgataggag agaaagetea geeeatgtea eeeetateaa gtgagtggag 360 tggtataaaa ggaacgacca gcttgggctt aaaagctgta attctaggga aagataagaa 420 ataggetttg agatttgett attgetaaat gtacagttat tageetggge atggaaacce 480 cttagaaatc attaaaatga gccgttatgt tgagctcctc taattttatc cttatgaagc 540 catgatattt atatttccat taatagttgc atgaatctca atttacattt tgaaagttgt 600 caaagaacat gaaacaaagc agccaggact ggcacatttt ttgaaagttt tagaatcttt 660

ctgttgttga caccagtggg taaagaaatt tcatctttta actataaaag acacatgaca.

720

736

<210> 75

<211> 607

<212> DNA

<213> Homo sapiens

tctgatgaat tagcca

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 75						
ggggtgtgtt	ttggagcagt	ggcagtgagt	cattatggaa	tgaagcttca	gtgctttact	60
tacaagggga	attccagaca	tcagcctgga	aaatgacgct	acacaggtgc	tgccttggct	120
gtgcgcatag	ggctgtgcac	tgttgttcat	atgaggggct	gaagtgaggt	cataggtgtg	180
agaagcattt	acttggctac	aagtaaccnn	תתתתתתתתת	nnnttggaca	agcactgacg	240
ttcaccattt	gagccccact	gcaagccctt	gatggcatct	aạctagtttt	gtacaacctg	300
ctgaaccata	caaagatatt	cactgggggc	ccatcccctc	caggccctaa	aaatcatact	360
atttctcacc	ttcacactgt	gtaaccaccc	tctataacta	gaacatttgc	tagtetette	420
tctgcataaa	agtgatgatt	catatctctt	tcatctctgt	tgggggttct	gacctatgta	480
cttgtaattc	agtcctcatg	tttaaattct	acacaaattt	aaatttaggg	tgttgagtgc	540
atagtggaca	ctgtaaatat	ttactaattg	actaagtctg	tggcattaac	ctaaagcatt	600
atcattg						607

<210> 76

<211> 615

<212> DNA

<213> Homo sapiens

<400> 76
gggaatgtta tcttctgggt ttggcctcag ttcatattcc actgccccaa acaagatgct 60
ctaagaagca gtacagagct gagaactaca aaatataagc gacgtatatt ttctggaaca 120
tgctagtaga ggttacctga ccacaattag atatatctt gtactaacaa aatatgcaca 180
ctaggaaagt cctgctgagg gctaccacat taggacagag aaagaactcc tcttcccttt 240
atccaaaagt aaacagcaac gaatgaagag attgtaaaaa tagtaagaag gagctgacag 300
ctctcctaca tccaggcaac acatttttgg catgcaagaa aaaagtgacc ttattatttt 360

WA 02/10100	DCT/CD01/0220
WO 02/10198	PCT/GB01/0339

tttaagaact	gtttcatatc	caagagecca	tataaatctc	ttcaaaggtt	tttaagatgt	420
ttaaaagcca	ggaaatttag	atgtttcagt	accattaatg	ctaaccttgg	cactgcaact	480
gctaccaatc	aatttttcc	ttttagaaag	aatgcataat	tttgatgaat	gctacagcaa	540
attacacact	aaaaacgtaa	tttttcatgt	gaatggggcc	aacgtctctt	ggcatgcttg	600
tcatcacaat	atagc					615

<210> 77

<211> 403

<212> DNA

<213> Homo sapiens

<400> 77

gggctgtctt aaggaatttg gacttcatat aaaggacaat gggataccac tgaagggttt 60
taagcaggaa aattgcatca gattgacgta cattttagaa aggtccctct gtctgcaatg 120
ctgaaaatat gttgaagaga gtataatcag agggtgagaa ctggatgctc ttgttaatgt 180
ggccacagat aatggatggc agtctggccc atggtaccag cactgagaac agtgagaagt 240
acaaagattc aaatgacaat taggagggtc aagtggataa agggagcaaa aaacaaagga 300
gtcaaagatt actcccaagt gccaatcttg ggaaatttga tggataatgg gaaaccagga 360
tattccctaa ggtagggatt tgtgactcaa agctaataat aat 403

<210> 78

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400>	78						
ggggtg	gaca	catgcgagat	ctttttggag	acagagttat	caggatggac	tggatgcaga	60
aggagg	gaga	gaagagtcaa	agagcaattc	cctggtttct	ggcttaagca	actggataaa	120
tgagag	tgcc	acttactatg	tttcatttgg	caggtgggtg	gggaacattt	aaaaccaaga	180
gctcca	ttta	ggacagaaat	tgagatgcct	gtgaggaatc	caagaggaga	tgtgaannnn	240
nnnnnn	nnnn	nnnncctgg	actcagaagg	aaggtccagg	ctacagatat	agaggcatca	300
gatata	gatg	gtatttaaaa	ctttaggaac	aaatgaaccc	acccaggaga	aggcccagaa	360
ccaagc	ctca	aggagcagcc	cttagaggcc	ggggagtgag	cagagagtta	ggaaaggtac	420
ctgaga	aagt	gtggccaagt	tccatcctaa	ctttgtgtcc	attccctcca	cagtggatgg	480
aggctt	cggc	tacctgaaag	atgcaatgtg	gtgggctgga	tttctcacca	gtaagtgggt	540
tgtttg	ttac	taataacag	ggcctattga	tagcagggct	ggagacaaag	ggaggggtgg	600
gtaggg	catt	tttgtctcta	gtatggcaag	tg			632
<210>	79						•
<211>	742						
<212>	DNA						
<213>	Homo	sapiens					

verso nomo saprens

<400> 79 gggcaacttg aattgcttat tttaaacagc cctcttcagt gtagtttggc aaagctctct 60 ctttcgggtt tatttgttta cttacctact tatcttcaac acactgacct acccacctgt 120 gtatcttatt tggttaacat ttatccaagt ttgaagatgg aaatagtttt cctctgaatc 180 agaactttca gtgtaactgt tccaagaaac cgccaccaca gatgtgggaa gagggaggag 240 aatgaggaag attcctgctg tctttttacc gcttgggttt acaaatgtgg caaatttgga 300 aaatgtcaaa aagtaggaaa aataaaatga aacctgagat ctcaccacac agaaataatt 360 atagtcaaca tattgatatg ttttctcttt ttggaggaaa aaagttacag atgaacagaa 420. atttgaaaac aagctgtgcc tattttctgt ttcttttatt acacatttta ttatcaatga 480 atactttctg ctgtaaaaaa tataaatgat acagaaacca atagtagtgt tcccctttct 540 agaagaaact gtaaaagggt gtactgttca tcgcccctat tcacgcttta aaggagatgt 600 ccagctccag ttgaaaatga agttttctta cctggcaatc tggtgtttct gaatgtgatt 660 tgaaatccgc caccccaatg agaatgagga cagttttgtt ttttttcct gccaagaggg 720 atcgatcgta ttgattaatt ga 742

```
<210> 80
<211> 544
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> ()..() ..
<223> "n" is a single nucleotide whose identity could not unambiguously
<400> 80
gttgttatta ctgttagtat taatattatt agaattattg ggactaggat gtggttcagg
                                                                      60
tacctgaaaa gccacagtgc accctcagtc ccaggagatg gcagatctcc cctcctctt
                                                                     120
nnnnnnnnn nnnnnnnnn nncagctgtc catttttgcc tgctcttgtt tccctagtgc
                                                                     180
taactgcctg cccctccttg atcctcagtt catacttctg agacaaggaa ggacatgagt
                                                                     240 '
tgcctcgtgc attacctttt ccttgtctgt gccgagcttt tcaggacaga ccagctcaca
                                                                     300
gcctgctctc cagcctgagg cctggctggc ctggtccagt tgaccatggt tggggtgagc
                                                                     360
ccagctctag ttgatctcag aaggggaatg tgggcacaaa ggaaggtctt ttaattatgg
                                                                     420
gattttcaat tattctggaa agaggacttg aagagtataa aagaaaggtt aaaataaccc
                                                                     480
tgctgaagtg gcaagatgac ctttgtcatt tcccacctag cataccaatt cgattccttt
                                                                     540
tcaa
                                                                     544
<210> 81
<211> 636
<212> DNA
<213> Homo sapiens
<400> 81
ggggggagtc agggccggaa gcaccggggc gagcgtctaa tccctaatac ccaattttgg
                                                                      60
tggcgtgcac ctggcaaact gatgattgtg tgggacgtct aatctctagt cgctcacccc
                                                                     120
```

tctactttac	cacagagcta	gaaatcgatt	tgaggaaatc	tggtatcaat	gagegggegg	180
ggagacaacc	ccacccctaa	tttccctgtt	tacggaagtt	ctttcccggc	ctcctcagac	240
tggtgtcggc	ttcctttttc	tccacacttc	tagctacctt	gtttttatcg	ttttcggcac	300
ctgcccttcc	ccagcgcccc	caccaccccg	agcactatgt	atgatcgggc	tccccgcctg	360
ctcaaattgg	ctgaaggtgg	cagcactgag	gcccatgtgg	gtcctggatc	ctaccaggta	420
cctttcctga	agcagcaggc	gacaggtaag	atgtaggaag	aggcagagct	cctgtgacag	480
	ttcagcctgc					540
	tgtaaacata					600
	agactgatag					636

<210> 82

<211> 570

<212> DNA

<213> Homo sapiens

<400> 82 ggggaatete tggacaette etaetttage agtaeteaaa gaatagatat taeggeeaca 60 atttcatatc agcaagactt aaacagtgtg cctttttctc acgacaacca atattatttg 120 ccagaaatct caccttactc aaaaaaagtt gtcagagagc tatcaacaga caagttatcc 180 cccaacaaga gggaagacac ttgttgcaaa agaaaaggac tctgagctca agctaaagtt 240 ccctgaaact ctaagagcac ttgcaccttt cagactgtat tcttggcaat taacctgtgt 300 ttaaaatgct ccctattcca aacaacccag gttcttccct gtcccacaaa tcggaagact 360 tttgtttcaa agtctgttga gtttaagtga tatggagaag gaaatatttc aggaccatcc 420 atacaacaat ctactttaaa aaaaaaacat gaatctcagt ttaggttcca gaacaatttg 480 gtgatctgca ctttaaactt aatttgcata aacaggatgg aaagtatttt ccaaaccctt 540 aattcacaac accetgcaca cetgggeett 570

<210> 83

<211> 526

<212> DNA

<213> Homo sapiens

<400> 83						
gggggaattg	tgcagaacag	agagatggaa	ggaggaaagg	aacatgacaa	tttacagaag	60
aggggctccg	gcacccagaa	ataacacacc	acacctcagg	tttcagggaa	caagaagtgc	120
tagacaaaaa	ccataatgat	tttaacagga	aaaaaagagc	aacttcagat	accactccat	180
tacaaaactt	aaaaaaaaa	ctttctggaa	ctaaaactga	gttttaaatt	taaaagttag	·240
taatgaattc	aaagaaagga	aaacgaagta	gaataaacat	caaaacagaa	acaatggggg	300
agaagataag	agatttggag	gacatacttt	ttccaaagca	gtttcctcta	tactttagga	360
gttttaccaa	cacacgcctg	tgctgtgtct	tttcaaaata	tcctaatggg	aactacaggg	420
atcttaagcc	aggaaaattc	acttctatcc	tttatcgctt	ctcttgctgc	ctccatctgt	480
gtctttttct	ccttctggaa	ttcctactat	tcacattatt	tctcct	1	526
<210> 04						

<210> 84

<211> 566

<212> DNA

<213> Homo sapiens

<400> 84						
gggagcaggg	gcaggctaga	tttccagagt	tcatcgatgt	caaagccttt	ctctgggggc	60
tgttccctaa	tcccaaagca	gttgctttct	ttggctgcag	aagctgccct	ccctctggtc	120
cgcattgaga	ggaaggtgtc	tgccttaagg	taactggagg	ataaggctcc	gcccttccca	180
tgagagaggt	gctaactcac	tctcccacca	cacatcctgc	catccatcct	gactttggcc	240
ccagggattt	cagggactcc	agcccagcat	cctgggcttt	ggcacctgct	gcctttagca	300
gtcctcaccc	tcttgtgaag	tacttggcac	tgcagcgtgc	tgactcgacc	acaccctacc	360
ccagcctccc	caggcctggc	actgccacta	ctgcccgtac	ttcttcagcc	acccttgaga	420
agcgaggttc	tcactcctga	gcccagtcag	tggctggtgc	ctgctcctca	atgatgggat	480
gatggactca	agtcaattca	ccactctcaa	aacaaaactc	agctcttcca	agggagcaca	540
tctgagttcg	ctcctctcaa	tgaagc				566

<210> 85

<211> 653

<212> DNA

<213> Homo sapiens

<400> ggggtc	85 etgag	ggcataggaa	ggtggcagtg	gttagaggaa	aaacaatgtg	gtgttgtgaa	60
				gtttgagtca			120
cactta	atta	agtaacatgt	aggctggtga	tttttcaagg	gctttatgga	gtgatggggg	180
caaato	aaag	accgggatgg	gttgagaagt	gaatggaatt	tgagcaactg	gagagaacaa	240
gcaaat	ttac	atgaactttg	gctgtgatag	taaggggagg	atgtagtagc	tgggtgctga	300
gcttta	agat	aacaaaagtt	tcagcatatt	tgaatgttag	tgggtacaat	cacattgaag	360
gggcat	agtt	gaatataaag	gagagaaaaa	tctaattcac	agtgagagat	tcctaagtag	420
caggag	atag	gattcaagac	actaagactg	ccttggttat	caggaaagct	cctctaatgg	430
aacagt	aagg	agtggggtga	tatctaaatg	ggtttctaag	ctggaagtga	actaacagag	540
ttcctt	tcat	aaagtttctc	tttgccactg	cccccactg	aaataggaaa	gggcatctac	600
taagag	9 9 99	aagcaaggag	ttataggctt	gaaaaaattg	acttctaaat	agt	653
<210>	86						
<211>	609						
<212>	DNA				•		
<213>	Homo	sapiens					
						•	

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 86
ggggcagcag aatgaatata tgcacattgt tetetggagt gagcetteet tteeetgaag 60
ctgagggtet gtgggagcet aaggggetee ataaatetea geactagtat atteeagggg 120
atgategeea geagcattaa gagctatgtt tageetttat geeataetgt atettannn 180
nnnnnnnnn nncaaattet gaaacaaaac attaaaatgt gacteactee aaacagaaag 240

a	tggaaatgt	attcctacta	agaaatatgt	gtaacttcta	gaaaaagaaa	aaaaaaccca	300
C	agagatttg	ttttcaacat	attgtttttg	cttaagatat	atttttactc	ttaaaaatta	360
a	gaaatagaa	ggccttttat	tagaagcagt	gtagtgtcac	agaatgacaa	agcacagtat	420
C	agcagacag	aaaacgtggg	ttctaatctt	gctttcccta	cataactctc	aactggttat	480
ť	taggttctc	aataaagtag	aatgatgaaa	tacgtcttct	taatgctatt	gtattttgtt	540
a	atatttaac	actgttgata	tcaagatgag	atcttataag	tagctggaaa	actatcagtg	600
t	agggaaag						609

<210> 87

<211> 587

<212> DNA

<213> Homo sapiens

<400> 87 ggggaaaaaa aaaattcagt cgatttaaga taaaaagata ttcaagtagg caaataggtt 60 ttttaccatt ttttcctttt tgaatgttct aacattgttt agttaatcaa ctgataatca 120 tcatttatag gatccgagtt tcttacagcc taacagaaat gtgaaaagga tatttatagc 180 gaaacattat tttcccaact acaagagaaa atcaaatgaa gtaaacaaaa tttatgaaag 240 tttgctgtgc ttaatatgaa ttctccattg gtctgagaga tgatgctctc ctttctttgc 300 acagagtgaa agctagggta gaatttgggc aggaaataaa gaatagagca agatactgga 360 acttggggga aaaatctaac tcctcacggc tgaagtcttc ataattctgc atcagtgcca 420 cagtotacca gaaaccaggo cocotagtgg attaaaagag ttaaggactg aatgocacat 480 gagaatgatt tcaacactga ggttgtggaa attaaataca agaacgatat ttaattaaaa 540 atcttattca gtcactcatt tagcacttct ttttctttt ttcgaaa 587

<210> 88

<211> 589

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 88 gggggtagcg aggtgttttc gcttagattg agtctatccg atatctacca acctcctttc 60 cttggagggg cagggaaagc tggtcgatcc tgaaatgttt taagtgttat ttttttctg 120 ttgttttaaa tctagttctn nnnnnnnnn nnnnnnnnn nnnnagtctg aatccaaaat 180 ggctgtagct tggggaagtg ccctgccctt cgattactta aatacattaa cgtttaaaga 240 ttttagtcct ttcccctgtg gggacattaa ctgaatcttt tgatattttg gttttttgca 300 gttggtgtct cacctttaac tctccttatg ctgggtgaaa acaaaggtga ggctcacaaa 360 gttgactatt ccaaaagttt acataaaaat gggtgcggtg cggtggtgtg tgtgtttaat 420 agttgcttat agttttgaaa ttgtgctgtg gtgtcaattt tatctgccaa cttcgtgctc 480 tgaagttggc ttgtcatatt tgttgaaata tttttaacat tgacatttat tgcttaccag 540 589

<210> 89

<211> 573

<212> DNA

<213> Homo sapiens

<400> 89 gggggcggga aggagaaatt ctgggagtat ccctaccctc actttctatt acatttagtg 60 caaaacaaac attttaaaca tcaagctctt attctaactc tactgtaatt actaaatata 120 actgaaatct gtattccaca ggtaacaact tcctttgaaa accttctccg gaggaggttg 180 atatatttcc ctcaggaggt tggaggaatc aacaccctca ctccccaaca gcatttctag 240 accactgtat atcactgttt cccaacacca gcctcgcttt tgaaatttac gtcagtttcc 300 acttctgata tgaggtcctc cttgacaccc acccctagaa aaattcctcc ttcctatggc 360 tcatgttact cagtttttac agccaggcaa caaattcata agtggacagg atatatctat 420 atagaaaact ccacaatcaa actccaattg ctattagggt gtgtgtgtat taacactggt 480 gctaagagtc agagtcagac taacactggt gctaagaagt ggggtgaaaa ggaggaatat 540

ctgggaatat	gaccgggaaa	attacaagta	aca	573

<210> 90

<211> 589

<212> DNA

<213> Homo sapiens

<400>	90						
gggtga	tctg	agatgggatc	tggcctgagc	ttctgctcac	cctggcactt	ctgttcgccc	60
acttcc	ttta	gcttgggggt	ggctggtgcc	ctcctggcta	tgacaagggc	cctcctgtgg	120
ggcttt	gcat	ggcccctgtg	tccatctcgg	gacagcattc	tagcaccatc	cagcttctct	180
ggagtg	agac	tcgggagttt	tcagtccact	gaatgatgcc	taatgacagc	attccaggag	240
gaatgc	atat	gcattacagg	ccccacccg	aaggggggct	gggctgtgct	ctccactcct	300
ccgttc	ccac	atgacatcag	tcttgtgaaa	agctcccctc	ttgcagagtt	cagctataag	360
gaactt	tgtg	cgtaaaatgt	tcttcagctt	ccaactcaat	tctatagcag	tcgaagaagc	420' .
aggcct	gaaa	gttgtcaagg	gtaccttggt	tttaaccctt	tggatttaga	ggataatagc	480
cagtta	aaaa	caacaacaac	aacgacactc	acacattaca	ttttctgttt	ttctcagaat	540
ctctgaa	aaaa	ttggacaatt	cctaaaagta	tgaaaaaagt	attccttgc		589

<210> 91

<211> 711

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 91
ggggtgtgtg gtggtgttgt gaggttaagg gagtgtaagg aggtgggatg cactgtaggc 60

agggggctgg	gtgtggagag	tacatgctgt	atgtgcatgt	gtatatgcgc	tggaggtggg	120
ttggaggtat	gtgggatagg	ttacagaaaa	tattccaaga	tgatatatga	gacatcttct	180
ccagaaacaa	aaatatgaat	tgcatttcat	ttctgtatta	caattcttag	tgctacagaa	240
tcacatgctg	ctcccaatgt	ctgcagggtc	aatggaagag	ccaaaaacca	tttaaannnn	300
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnntc	, ggaggtaaca	catatttcta	360
gtcagaacac	ccctggctca	gtaggtccag	agtatggaca	gagtctggct	agcaggtcag	420
gaggccaaca	ctggagggcc	tggctcagca	agtccttgtc	ttccctggga	gtccatgttg	480
tcttttctct	agtgcacaaa	gcctaagggg	ctcaaaatca	caggacgcag	catacccact	540
acagtgccat	ggggcaccca	ggaaatgtct	gaatgttttg	ttaaaataag	tttaagagtt	600
gtctctgcqt	acaaggaact	gcctgtccac	tgaaagggtg	gcatgaattg	tgacttagaa	660
gcatgaaaaa	acaaatatat	tttagcagct	accactgcta	ctactactac	t	711

<210> 92

<211> 652

<212> DNA

<213> Homo sapiens

<400> 92 gggtggatca gatgtgtgaa ccctggttta ctctcccagc atggagatca cccacccatt 60 acctcacaaa gtggttggga ggagtaagaa ggaacatgca tgggaaaaaa gctttcagtc 120 tgtgcaaaat acaaaatgtt ttatagtcta aaacatagtc ccctgcatga acaacatcta 180 tecaaggeat gtaaatettg tatgtatgge ettteacaga accagettge tageteetge 240 ttctctctaa agaattcaca cccccagggc cttgggagac ctacctgcgg ccatacagcc 300 ttcaaatggc cgttttctgt gcgatgctga tatcgatgag ctctgacagg ctgtgtttac 360 agtgcaggag gtcggagtcc tttagggcat ccatcagctt gtttgccgtg ttcccagcaa 420 aagatototg ttgaacaagg gactgtatto coagggaggo gaggtactaa ggggacagat 480 atacccacga cccaagatag agattacatg acagaatttg ttttgctctt cagaaatgtg 540 gtggatttca cattcatca catgcacagt gacagcacta tttaaaagga aagtacctat 600 aacctggcct taaccctgag ccatacgaga tgtgttcctg aaaaactggg tc 652

<210> 93

<211> 507

<212> DNA

<213> Homo sapiens

<400> 93 aatagaaaga aaagaaaaga aagacttgcc acagagcctc attccctgtt atttcgaatt 60 ctgtagtcaa acaatgtcat cagcccatct ggtactgaat ctgcccttca agaaagaagt 120 tttacttcaa tatcacaaca gagggaaacc cactaataat aggttagtgt catttactat 180 ttcccaatat gacataagac ttagtttctc atatgcctgg ggttggcgaa tctgagagac 240 tggaaaataa ataaataaat catcaaaaga cccctttgaa cattgatata tgtgacattt 300 gctgtcccat gataacagac accatgctgg gacaggaaag ttagcaaatc aaacgtttta 360 gcacatggtt tagagaggcc attatgcctt ctacaaaatc aacttctcca tttaaatttc 420 tgggcataat gatttctcat cactgatcag tatgttttaa aaggtgatag cctacacaga 480 gcatgattta ccaacactga ggtggaa 507

<210> 94

<211> 515

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 94
ggggattggt aaaaatctat aaactatcaa tataagatac aagcagctaa attcaatata 60
tcagtgctca aacagttgta caatctcctg ggaggtccat gacctctgct tgctcagtgt 120
cctcacctcg catctgtatc caccaatgaa gtcactgcat gttgccccgt gctggcaggg 180
gttggacgca cactcatcga gttgctcctc acagtagctc ccagtatagc ccagggggca 240

	/ GD01/03
ctgacagnnn nnnnnnnnn nnnnattgat gcagacacct gagtgctggc acaagtgttc	300
aacaagcaca cctgggaaac ccagtgaggg agaaatgtca tagaagaaca tgtgacacat	360
ggggttcaaa tcaaccaatg agcaagtaaa tctaaactgg ctgacacatc caatcttatt	420
cttagccagt tcttcacaac cctcagtacc agatgcatat taaaaataaa ccctgaaagt	480
ggaatatacc ttagtttcat ttcaaataca ttctt	515
<210> 95	
<211> 543	
<212> DNA	
<213> Homo sapiens	
<400> 95 ggggtcttac aaggggcagg ctgagaacgg gaaccctctc actttgcccc attctagtgg	60
ccaaagcaag tcacaagacc aaaccgaaac tcaatgggca gggaaataca gtccgcccaa	120
gatgagcaat ggcatgggta tgaatggagg acaggaaaga attggagtta atccttcaat	180
ccctcacagt atggagggca gggtctgttg acaagcagca agaggtaccc aggaaggcag	240
ggcctggctg tccccaccag caccccagac acccacctca gcccaaagaa tggctcagag	300
ccacgctttc taggccatga aaggagaggg gccctttccc tcgtgacccc agagcagatg	360
gcagaataca gtctaggagg aagttccagg aggaacatga gaaacctcac aagcctcgtg	420
cagtttagtt tctgataacc acttctcttt ctttgtctca tgtttccctt ccttcgtgaa	480
gttcctagaa agtgtaaatt tttccttacc tttaatttt tctttaattt ttctttacct	540
ctt	543
<210> 96 ·	
<211> 652	
<212> DNA	
<213> Homo sapiens	
Nomo Saprens	
<220>	
<221> misc_feature	
<222> ()()	
<223> "n" is a single nucleotide whose identity could not unambigue	ously

<400>	96						
gggatt	gtat	tttcagaagg	aagctcaata	cataatagct	gtgcgtgagg	ctgggtaact	60
tgcaga	aaca	aatagcccac	ctagaagatc	tttgcttcct	atttccaaag	aaatgtaaag	120
gcatgg	agcc	agttgatttc	ttaacatgca	ttggatcact	tttttcaggt	tacataaaga	180
tatagt [.]	tata	tttttcaaat	taagttttag	aaaaagacat	gtaaatgtga	gttaccttga	240
tttctt	tcca	caagtcagaa	aaagaagtag	tctctgttac	ttacaggaac	ctgtttatct	300
tggtat	ccat	aagtatataa	atctatagta	ttataacatg	tctgatgata	atttatagta	360
gttggc	aatt	tgggnnnnnn	nı nnnnnnn	חחחחחחחחחח	ngttttcagt	attggctgag	420
taagct	cata	ctgaattgac	ccttctgcct	gtagagcagc	tctaaagtct	ggacacagga	480
ccaaaa	acga	ctatttgaag	gtagtggaac	gtgagcaaaa	ggaggcagga	gaacaggaga	540
ctggac	gaag	ggaatagcat	gggcgaattg	tcccattttt	ttcagacttt	tagcttgagg	600
gcagcca	acag	ttgacgacat	gtgggagagt	gatataaaat	tcatggtctc	tc	652
<210>	97						
<211>	671						
<212>	DNA						
<213>	Homo	sapiens				·	
					·		
<220>							
<221>	misc	_feature					
<222>	()	()					
<223>	"n"	is a single	nucleotide	whose ider	ntity could	not unambigu	ously

<400> 97
gggtcactta aacttagaaa tttcatcaag tgagcacaca gaaatctgta aagatattct 60
caagactatg tttagtatca agagaaattt ctgacacaat gcactcccag aaacagggaa 120
actggaaggg aatgtgagct cattcttgga caaggttcaa ctactggaaa agcaattaat 180

ttgctttggc	tgtgctaata	taggggaatt	agaaagtgtg	y acacaagaca	aatagaaata	240
attagttctc	caaaatgatg	ttctcattaa	tatggttcga	açagtagaaa	taaaacaaca	300
ttattgtggc	atgtctgcat	tctgtcccta	accatgggag	gtaggataat	gcactataag	360
catttttata	tttatagttt	aaatgattat	gtttttttct	aaagaagaat	ttatatcaaa	420
gagtttatat	gcttagaatg	tctaaatata	tacatgctat	caaattaata	acacactttc	480
cataaccatg	catttgtata	ccaattttt	attttgctca	. tacaaatctg	tattgtaatg	540
nnnnnnnnn	nnnnnngggt	tctttttctg	ttacttaaat	attttcagat	cacttttatg	600
actcttgaag	tataacattt	ctcagaaaaa	aaattaattg	tatttatgct	ctatcttaaa	660
gaagccactg	t					671
<210> 98						,
<211> 638						\
<212> DNA						
<213> Homo	sapiens					
	-					
<400> 98						
gggcctgaat	ggtgagtttt	caaaatctca	tcttctttga	tattggatga	ctaatacagt	60
agtaaagtat	ttgacaagtg	ctaggtggtt	tataaatgtg	catgtttttg	aaacttttgc	120
tttatgtgcc	tcgctgaaaa	caatgtgtta	gttcaggaat	aaattatatt	tggtaaatga	180
gtgtattcta	tacttaatta	aaatttttt	tctttgtctg	gttatatatg	taatgatggc	240
gggagtccca	cccgccctag	aaaattattt	tctttttatt	tgagtcgttg	tctaggtgca	300
catacaattt	tatgtaagta	taattataac	atttttatgt	ctgtatgttt	tctgctacat	360
tgttttatca	ttgctgttca	tagattgatt	tgagaaatag	ttttcattga	agtattattt	420
gaaagatggg	ctaggcaggt	agttcagtat	tatactggct	gttaacagta	gcctatctag	480
gattcagtta	gcattggaca	taataacgat	taattgacct	ttgagtctct	tacagatgtg	540
tttggacccc	gaatatggaa	ttctcatgga	attttgagat	ccatcacatt	gtagtgtggc	600
ttccccccc	gcaaaaaaa	aaaagaaaag	ggttaggc	•		638
<210> 99						
<211> 700						
<212> DNA						
<213> Homo	sapiens			-		

<400> 99						
	gggagtgggg	agaggattgt	tttgactgat	tgagtctgag	atagttgttt	60
taattccgtg	cccatgactg	aaagggaact	atctaggttc	tgcagggaga	agagcagtca	120
tgttgcataa	tatagcaaat	gaggaccacc	caggtgcact	gaatggccac	cttttccaga	180
ttgtagatcc	actctggctg	cagtgcagtc	agcgtgcatg	tcccgccagg	accccgtgc	240
tgccctgtga	ccccgcccc	atgctgaggg	agccacacag	tgtccatgtg	accctaacac	300
atgcctcccc	gccggccctc	tttttttgg	ttagcaacac	actcacttgt	aaaaaaatt	360
tctagatggt	gtatggcacc	acaaattaaa	agagactcct	ttgaaattta	ctcacctctt	420
		aatgaggatc				480
actcttggag	cacatttacc	tcttactggc	tgcctgactt	tctgaacctg	gtgagctgac	540
taaaggtcag	aagctgcacc	ctaatgaaag	actggacttt	agtttgtgtg	ggtatcatca	600
ttaatacttc	attggacttt	tctatttcct	tggaatgaat	tccagaaatt	atattatgat	660
gcagaaaaat	aatcccaaat	ttgagtaatc	ctatcccact			700
<210> 100						
<211> 637						
<212> DNA				Ť		

<213> Homo sapiens

<400> 100 cattcataag tttcttaact ccaagtttcc tagcttcata gttgcaggta accaccaaat 120 atttctgttg aacccccgta aaaaatattt tatgagaaac ccaagcacaa ttgaagaaaa 180 catttaaaga tattattaat toogtattac atttgtotaa attgtaagac aatcagtttt 240 gataagaatc aaaagccctg tctcaattaa aaaacatagc ctccatatat caaatctcta 300 taatgcagaa acattaggtt ttcaagctat ctcctaatta tgaattataa tataccaatg 360 tattattttt ccatacccca cttttaatct ctagttgttt tgtctccttg aagaaggaaa 420 gttattatta aataacaaaa cactgaataa cacagaatta aaagttagac gatagatcaa 480 ttattcatat acaaaaggca atctatgtat tacatttcta aaatttaaaa atgaacctaa 540 atcaatatat totatggaat ottoagtgat aagatacaaa toaaatotot otaggatttt 600 tttccagaca atataaaagc agattaattt atactgc 637

<210> 101 <211> 663 <212> DNA <213> Homo sapiens <400> 101 gggtgtttct ttagtgacag tgcgggatca tcatcaggta ttctgggaaa ggaggggatt 60 tttaggtaac ccccaacaca gcctcgttgt ctcttactcg ggttttcccg ggagaacaga 120 ggacacatca cgctggtggg ttcgccttct ctctccctcg ctttgggttt tctgccqccc 180 tgtggttact ttgccacgtt cctgtcttcg ctgttgcctg ggttttccgt cctcctgtga 240 ccacccagtg ctattcttgt ctcacactgg gtaagcagaa attccagcgt ccagcgacat 300 geagecatgg caagagetee gggeaggaga ggeggegtgt getgetggag taacetetgg 360 ccagccacct gggaagaccc ttgccatcgt ctgccatcga cctgccatgt ggggaacccc 420 gageccagea getgeccgca cagaagatca gggcagecet ceeggeteca gggtacagea 480 gggtgctgca aagactgctc acaacagcag cctgggacaa gccaaacgtc tgttaatact 540 gaataaatcg tgggtacata aaccgcagta tatccagaca acagaacgct gtatagcaac 600 tgaagcaaat ctcacagaca cgaagtgaaa aagacaaatc agaaaagaac gcacttaaga 660 aag 663 <210> 102 <211> 598 <212> DNA <213> Homo sapiens <400> 102 60

qggttacage agggaaceta aaacetagae ttgggacece aagteetege tteacaaaaa 60 teatgacatg ggtgttgaac eagtteetgt teageeacae agaaacteat teaagteett 120 caagaggaag aateecacet teaacteeae aceteeteea geaceaggeg gagatgetee 180 tgatteeact gagaateete etgeecacae aageaggaaa eteggggeae teagtgeetg 240 eteteteace eactgeatge ecacagacet etgeaaagge ageteettta tteeceeaat 300 ecetgaacate tgttaagtge taaggeetea gagggggett tttaaacagg cacaaagtag 360 aaactaceag etteeacae eteetacete ateeateaga aaacagagee aceageette 420

cagggtaggg	ttcatcaago	cttttcctcc	ccatggaact	aagctgtaca	cagtagtcag	480
agataaataa	tgtctaagcc	aaaccggctt	gagggcacat	atggaggtgg	ggggcagagg	540
gacactggcc	: tgggacctaa	accaccattc	agacctcatc	tttacaaaat	agtatact	598
<210> 103						
<211> 401						
<212> DNA						
<213> Hom	o sapiens					
4400 100						
<400> 103 ggggggactt	aagagtaatc	aaaagaaact	tcatggcaaa	ggtgagagct	ggacaatatt	60
tgggtagaat	gttttggtaa	aaaatgtttt	ttggtatcaa	cctatacaca	ataacacaac	120
tccaaactcc	atttctttc	agagataact	attttataag	tgaacctttt	acttgattga	180
aatagtagat	ttgatctaag	tacagcatgc	tgtccagaga	ctatgtccaa	catgtctgag	240
caaaacattt	acaacttaag	ccaatagtaa	tgcatactgc	ttttatagca	gaatttccac	300
agctctcagc	ttctagggtt	ttatttgttg	tacctttctc	taaattctat	·tgaaaagcag	360
aagaatatag	tggttacaat	atatagagaa	gcaaggtggt	t		401
<210> 104						
<210> 104						
<211> 640						
<212> DNA						
<213> Homo	o sapiens					
<100> 104						
<400> 104 gggggagcaa	ggatacaacc	agttggcgtt	tttcaacatt	tcctgtccag	tacagtgaca	60
gtattctttt	atggaacatt	aaaggcagtc	tccttcatac	atattattt	tttttaaaac	120
aagtgttttt	gttaattggc	tcatgactaa	cggtcattct	acaagacagt	gataaattag	180
ctattggatt	attacctgtt	agtcgtggga	ggaattttag	tatttatgtt	tttattttt	240
gttgatagtg	cctaaaatta	aaaacatcct	tcaattcctt	cattttatga	ttgattttat	300
ccttcactac	cttaaataac	caactggttg	tatccttgct	teceettegt	tccgctctgc	360
	ttcccccttg					420
ttttccatta	accttgaaaa	tgttatttt	tataaatctt	gtatccacct	totaaaqtoo	480

WO 02/10	0198				PC	T/GB01/03390
attcattctg	cacagtttgg	taattagaat	gagaatgtgg	caagtgtgca	caaggcatct	540
gcttttttag	aataaaaaat	aatattcttg	actttagaat	agaaagggtt	tcagaaatct	600
agttcaagcc	tcttatttga	aataatgcca	agcaaagtgc		•	640

<210> 105

<211> 567

<212> DNA

<213> Homo sapiens

<400> 105 gggtaggtaa caatgggagg agtggggggc taaggtagac cagaaggata tgcttgggga 60 gaaatggcaa cagataacca ggtccagcca ttgtcactat gcataatcaa gggcctgtgt 120 tgccaatttc tcaggggaaa ccagagatca gggttttcat gtgaaacctc gtgatttcta 180 aaaatattag caactcattt taaaatgcac tgggctaaca gtctacaaat tctggtgtgg 240 gcatactatg cacaaagggt tccatactta agaaattcag gacacactga gttgaacaca 300 gtgcaacagg cttctccctg cagaccttgt cagagccttt ggaactccaa agtatctgtg 360 gtteteegag aaggggggge tatagttgge ageetetete aatteaetgg accaeaggae 420 totggtttgt ggaattootg otootgatgt ottagcaggo agggotggga gotgototot 480 gotgoccgtc cccaagggta agcatotgac tataagcaaa gccccctggg ctctggttcc 540 tagagggcca tttccctctg cacacaa 567

<210> 106

<211> 461

<212> DNA

<213> Homo sapiens

<400> 106
gggtgccgcc catcgtcatc cgagacagtc cagttccctg tacccccca gcactgcccc 60
cctgtgcccg ggagtgccag tctcttccac agaaggagga cgcaaggcca cccagctctc 120
caccaatgcc tgtcattgac aatgtcttca gcctggcccc ctaccgtgac tatctggatg 180
tgccggcacc cgaggccaca actgagcctg actctgccac agctgagcct gactcagccc 240
cagccaccag tgaaggtcag gacaaaggct gcagggggac cctgcctgcc caggagggcc 300
cctcagggag taaaccccta aggggctcac ttaaggagga ggtagccctg gatttgagtg 360

tgaggaagco	cacagcagag	gcctcccctg	tcaaggcttc	ccgttctgtg	gagcatgcca	420
agcctctgca	gccaagagaa	ataaaatact	ggcttccgga	t		461
<210> 107	,					
<211> 519)					
<212> DNA						
<213> Hom	o sapiens					
.400						
<400> 107 gggaagcagg	gcgactcttt	ccaggaaggc	agtacttact	tctctgttct	agaaaatgcc	60
cagdattccc	ctcgtgtttg	gacacaccac	acttgcacct	atgagtagcc	tgggcttcaa	120
agaatattga	ccctagggag	gacaatgaag	gatgcaactg	attgggctgt	tcattctcag	180
attttgccta	cacaggctgg	aggtggactc	cagtcctctt	agattccctt	ctagttccaa	240
tggcagctat	ctgaaaagaa	ctctaaacct	cagttgcatg	taaagacacc	tgttggactt	300
cagtgagcct	gtgaacaaaa	gctacgtaga	cttatgagga	atggcttcca	cgtccacact	360
tgacaaatgt	cttacgtggg	gtgaagaatt	aaacaaagat	aacaaaggat	aattccctgt	420
tctctgaatg	cacttgattg	gctctttctt	tcaagaccag	atctgaattt	ttaaagaatg	480
gtttcagcga	catttgtcgg	tagcaaccat	tcaaaaatc			519
<210> 108						
<211> 578						
<212> DNA						
<213> Hom	o sapiens					
	•					
<400> 108						
catgtctctg	aagcatctca	ccaagaagct	gctaaaccgg	gatatccagg	tagcatctcc	60
ccacatccc	cgcccccatc	ttggacatgg	ctctcgttga	tgcccctagc	cagactctga	120
tctcagaagt	cctgtggttg	tagagatcca	ggtgggctgc	tgtgatggga	agagctccat	180
ctgtacacag	gataataatt	cctgttgtct	acctcataga	atgtttcaaa	gtgtgctttg	240
gaaaagggaa	aaagtcctaa	gtagatataa	aaccctaact	aaggaagaaa	gcaggtagca	300
gtggtggtcc	aagagaccgt	gtagtggatg	caaggaccgc	tcgtatttta	cacgctatat	360
ttcagcaaaq	ggtggcccat	ctggcaggaa	gatgggggg	tatotcacat	atagaggagt	420

taaggaacta gggaaagtgg aagactcaga agacctgtct ttgacctggt atgttctatc	480
tctacagaac ctaatatggc ttatacatac tgccacagaa aggactgagg tagacagtgg	540
caaaggette etaggagttg aaceeetgaa attacata	578
<210> 109	
<211> 587	
<212> DNA .	
<213> Homo sapiens	
<400> 109 . gggttcctta ctgctttaat aaaatgggaa taacagatgc cacttaactg tcaccacagt	60
gtttgcaaat cacccctact gtatactgtc atctgatttc atccttttca tcctgacttg	120
gataaggcta acgagcaaaa gagctgtggt ttttctttgt actgccatct tcttgagcta	180
ttaggtaatg ctgacatact gctagaatat aaaaaatttg ctggagtatc aaaatcatgt	240
attoottagt gtggcattta atattttta attatgcaga attgaagtat aaaaaaaaga	300
gaaaaaaatc tteetagaaa aattgtaaaa gatgaaagee caaaaaaetg caaaaceete	360
cctaaacaaa aaccaaatag ataaccaaag gtaatatttt aatgtgcatt cttgtgggtt	420
tatagctatg taaatataca tagttataga tcagtatatg tgtgtacaga taaggaatgc	480
aggaaagcta atattgattt ttttatgcaa caatcacagt aftaagtaat ttacatccat	540
tttttttttc ttttaattca taccaaaccc ttatgaacca gggtttg ,	587
<210> 110	,
<211> 563	
<212> DNA	
<213> Homo sapiens	
<400> 110	
cactagaget tgagatgagg ggtagacata ggtggtggag gttgccaggc etgagetgge	60
agagatagag agatacteet tagagatgat gagaagaaag tgeaggetgg gggttttgag	120
aaaatctgca gtaatatggg actctaaaag actctactac cctgtgcaag acccccctcc	180
tctatgaget tteetgttea tgetaateet gagaaettee eatteeaeag gtttetgeag	240
ctctaatgtg ggtcctacag tcacatccta ccttatttta caggtagtta ttgcataact	300
gctatttgca aatatatgtc agattgaaat aaatgacaat acttacatgc aaagatgctc	360

agggcaatat	tatttataat	cacgaaaaat	tgtaaacaaa	atatccagta	gaagattaaa	420
ctgtgcagac	ctcctaaaca	atagtttata	acatataaaa	tgttcacatg	ctgtcaagtg	480
gaaaaagtaa	acaacaattc	tatttgcatg	ttttgtaaaa	accaaaaaca	aaagattgga	540
agaaaacata	ttgaaaagtt	aga				563

<210> 111

<211> 503

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 111 gggatagtaa tttccatctc tgagtttgat gtttttaatc tgtaaaataa gggcgatgga ctagatgagg atttccatgt cctttctact tctaaatatc agaccgcttt aaaaatagca 120 gttttctatg ttttttccag cccagcacac tggcagggac tctaatgcca ctgaagtctg 180 tgtcagaaac tcctgtaggg cagagtgagt atgcaattga atgtgcacat ccttaatacc 240 ttataccage aactetgete etecattete tatacceaet ggaaaateae caggtedett 300 gatetetaat tgaaagatge caeteattae ageagacaca geaggeagea ggggeennnn 360 nnnnnnnnn nnnnncettc atctccaatc gaaagatgcc actcattaca gcagacacag 420 aaggcagcag gggcctagga caggcagaag gaggaaggag cagtgagcaa ccagcctccc 480 503 atctaggaag aactgtggaa cac

<210> 112

<211> 645

<212> DNA

<213> Homo sapiens

<400> 112						
gggatggtga	aaatggcaaa	ataaaacaga	ggaagataga	atcattatca	atgtaattat	60
attatgttag	atggtccagg	ttacattcag	ataattaata	tccaagttct	gaggttatag	120
agaaagcata	tttgagcaag	aaaataggaa	caacaacaaa	gagtcacatg	tatgtggttg	180
tgttacatca	ttttctctaa	gtattcagta	tgaaaaagcc	atgacataaa	aatactgttc	240
aatctttaga	agtacatttt	taaaaattat	cttaaaacac	catattattc	tctctaaaaa	300
agcagaaagg	tttcttctgc	ttgaaatact	cagatattat	aaaaatgttt	aagaaattca	360
tgaccactga	tagttgatgt	ttaggtttcc	atagttttag	atgctagaaa	aaaataattc	420
		cagtattcaa				480
		atgcagtatc				540
aagaaacttc	accactgttc	tcttctgatc	tctcctctgt	catgctaagg	ctgctgaatt	600
ggtctacaa	attctctcca	agcaaaaccc	tctcatcact	cctgt	•	645
(210> 113						
211> 605		•				

<213> Homo sapiens

<212> DNA

<400> 113 gggaacaaag aaaaattaat agacggaatg gaggcaaagg tgaggctgaa tgtgagatac 60 ctacctataa atatgaatgc aacccctaac aaattcgtag gcagactgaa aatcatgtgg 120 gcgaactggt tcttgaaaac tatttgtaaa actcctctag tgggcccaaa gagttaatac 180 actoccotaa acctottoto ttotoattaa gttgaactot ggaaagtttg ggtgaatttt 240 cacatcatac attctcaacc acaactagaa atccagaagg cgtgtcaaca aaatctgtcc 300 ctggaagatc tgccctgaaa tctactctct ggagcaccct gccacgaccc agttttgtga 360 catcaatgcc ggggcatatc tgggtgttaa ctgctctgga aaactcccgg gtgagaaatt 420 caggecatee aattaggaca ettecaggtt acetetaget taaacactet gactggtttt 480 atcttattag tettcatcae atccetgtte taggetaage tttccctcag ceetgetget 540 gctttagaga agcaatggac agattttgca tagaataaaa aaaattctta atttccagcc 600 atcga 605

<210>	114	
<211>	446	
<212>	DNA	
<213>	Homo	sapien

<400> 114 gggagtteet tgaccacaat atcaatgtta ataattgggt taaagtacag ggeecagtaa 60 aacaaacagt tgcaaacaaa ctgagggatg aggggccaga acatgaccac aaaaagcccc 120 tgcgttgata ctttccagaa atggctccac atcctctgag gcacggtcct aaaacaagaa 180 gagaagagge tgaateggag gegettetea tgaceacace caggagteeg ggeeetggge 240 300 cttttctggg tgctgggaag agcatggctg cccgtgctga atgtccttgt cttctgtccc cggtgcctga gacctctgcc tactcaaccc atctttaac tctcaaggac atgacctaca ' 360 gggagettet ttgccccac actgggcaag gcctccctgt gacagectca acttcacctg 420 cttcatcact ttgttacatt tacata 446

<210> 115 <211> 493 <212> DNA <213> Homo sapiens

<400> 115 tagtgcctga ctaaatttgg agataaggca gacctcagga tgaatcacag gtttgaagcc 60 taagtgactg gaagaataac ttctactgaa agaaatgcaa agtccagaag taaaattagt 120 ggaaaggaat gattctaatt tttacttgag tggtccaaca caatcacagg atagtcaaat 180 cgatgcctta gtgttataaa caatatgaca caaaggacta atagaacaat taaaacaata 240 tagatataag aattaagget gggatteece ttttacegee etetagteaa ateeaattaa 300 ctttttttca atgatcatgt taatqaccat ttatctttqa taactttctt tacctttqqt 360 teccataaca teacaatata gettetaeet etgtteaeea ceacacetag etectegtte 420 taagtaaact tagtattett cagtgatetg caaaateetg agtttetaat tatattete 480 taatttgaat tat 493

<210> 116

<211> 610

<212>

<213> Homo sapiens

<400> 116 ggggtacacc aggcetttgc gttggacgtt ccacaaaggt agggactgac gtttattctc 60 gagtcagtga tgttctggag caaaacctaa aaagaaacaa aaacctaccc tctattgtat 120 ttgcaactgt ttctgctttg cattgtcatg tgtggtttga cctgcctttt ggatgttttc 180 ctctcctgaa acatcgccca gtccctggtt taacctggaa ggcgaggggg aaggaaggca 240 acctccctgc taaggttcca ggcagtggct ttggtgttgg aagtggcact tgacgatttt 300 atgaaaagtt tacaagteet teetagaaaa gatgtaatta ggaaaaataa aatacagaag 360 aacgttgagt atgacgcgtt tattttaaag ggtagtcctg tctcaaatgt gctgcacatt 420 tttgtggaaa gccaccaagc tgggtaacta atgcaaacaa caaaagttgt tcatcactgg 480 atcaccggcc cttaaagcga ttccagccct taatagaaca cacacctgta gggcaaatat 540 ggagatttgt ggtgtagtgc tgccaccctc gctccccaac tctcaagcat tttgcccctt 600 tacctcagag 610 <210> 117

<211> 538

<212> DNA

<213> Homo sapiens

<400> 117 gggatattag cagacaaaga agagtaggga aaccccagct tggggttggc attcaaggct 60 tcagaagctt ggctgttctg aatcagagaa atgaattttt gtgaactgac cattccttgt 120 totactaaaa aagctagcat cttttacatg ggaaacacca ggtctcttgg cctggcacta 180 gatectecce tigatetgge cetacetgea etecttetag tatetatgtt ecetteacat 240 caageettet agtatetatg tregetteae ateaaaceat trgetgttet ergriceeat 300 cetecaettt cecagecect geetttgete etgatgtage eteetgeegt getteeceta 360 ctettetttg tetgetaata teetgeecae tteeteeata aagecatete tgaetgttee 420 cttcttctaa ggggtgaaaa ttgttttctc tcctctaaca tctgtttctg tccggggctt 480 gttctaccct aaatatcagg gtattttta tagttatggt aactgacctt cactaatt 538

```
<210> 118
<211> 500
<212> DNA
<213> Homo sapiens
<400> 118
ggggttaaaa aaatctgagc tatcatataa caagaacgca aaatcaggag gactgatcaa
gtttaaaata ttttaagtct attggttagg ggaataaaac taatgactaa ctttagacta
                                                                     120
agtgaaatat tcatgttaaa tttctagagg aaccactacc aggtggaaac agaatattgt
                                                                     180
                                                                     240
atttctgcag ttataaagaa tgaagtggga aaaatctaaa gaaaacatag acagcttctg
                                                                     300
ttattcacat taaatgtgct tttcgtacct tagaaaacat actgtgtgtg tgcatgtttc
aattttgggt aaaacagcaa agtaattgat agatacaaca tttcttctc tttcatggca
                                                                     360
catgaaacac aatctgacct tccctttagt ccaagtttaa tgctcaacag tgttggactt
                                                                      420
                                                                      480
ttctaggaca aattgtggca ttttatgtat ctacgaaact actgacattt aaatgtcttt
                                                                      500
aaattagata taacattgaa
<210> 119
<211> 739
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> ()..()<sub>1</sub>
<223> "n" is a single nucleotide whose identity could not unambiguously
<400> 119
                                                                       60
qqqgggaata agtgaagtgg ctgaaattag agttgcgttt gaggcaggct gcaagccttc
                                                                      120
'tgtcgtcctg agcaaggete cgtcctcgcc tgcttcatta ttctagaaag agcttggctc
ctggtggcat cgctatttt ataccctggt ccaaaggagc catgaagtgg aaaaagtgat
                                                                      180
```

tttttaaaaa	atctacact	aaataaacca	aaagaaatgg	cctgtggctg	acattttgag	240
			ctgggggatc			300
taatcaaagt	tgcacaaact	: aaatatgtaa	gcacatttac	tgctcaaagt	tctcagtaaa	360
ggtgctttaa	ctgcagtttt	tectecaeta	aaaactgctg	acaagtaatt	gggacatttt	420
tgtcttgccc	tgagaaagct	agactgtcta	gttaaaagat	aataggaaac	tcattctaaa	480
gtgtcatctt	attctattgt	ccacagggct	gtccgatttg	ttaatcttca	cttagctgag	540
cctgtgaaag	gtggattcca	ccgtaggttc	atctttgtgc	tgttagtgtg	tgaagaggtt	600
tgaacaagga	attaaaagcc	nnnnnnnnn	nnnnnnnaag	gtcttctaga	gggcatatcg	660
agctttattg	acgattttat	ttccacttga	tacatgactg	ccagcaaact	gtttctctta	720
ccttactatt	tcgtcatct	;		•		739
<210> 120						
<211> 570					•	
<212> DNA						
<213> Homo	sapiens					
<400> 120 gggtgggtgt	tagtcgagac	cggggggcgc	ggggcgtgcc	ccttaatcan n	Cat cacaaca	60
			gaccaggggc			60 120

g ccagggtctc tttcctttcg cgggcacagt gaggagactg cgaggtgagg tgcgtccggg 180 tggatcccgg gctgcggcga ctgtcacatt ctccccggcc agaccggagg tggagcagaa 240 ctgggggcga cgagcttgac tgggattgca gctggacgta tttaggttca aaacatcctc 300 ctcctggctt tcttccgctc cactctttgg tcaggaagac tggggcgggg taccccccaa 360 cccatgccct caaattgctg gcctagaggg cacagcgcct ttctaaaagc tgcagttggg 420 ttgcctctaa aataatgaag ctaacccttg ctaattgtgg ggaaaagata gccagaagca 480 gcaaatttct gctgtggacg tccgatataa actgatcctc ttgagatggt taatgcttag 540 ttggctatac ctgcccccg ccccgccgc 570

<210> 121

<211> 488

<212> DNA

<213> Homo sapiens

<212> DNA

<400> 121 gggaggtggg	gaatagggag	gagaattgcc	cttatcaagc	aaattaacta	catttttagg	· 60 '' ·
aagaggatag	aacaaaagac	aagcagttac	ctattcaaac	tcttcaaagt	agtatgaaac	120
cctgttttac	aaactgatct	gcaagcaata	tagaaggttg	tagccatctg	gacatcatag	180
ccctaagttt	tatttaattt	ctaagaaaaa	aaactacata	aatttccttt	cagtagaaat	240
tattagttaa	aattacaaga	tactgcaaag	gaaacacata	agtctgaaac	agcataataa	300
gcaccatttg	ctctgaggac	aggttctcat	cattttctcc	caaagaggaa	aattttccaa	360
agtatttgaa	aacgttcaca	gagaactttc	ataataccca	acaataaata	acacatagtt	420
tcagaaaata	tcaaaatacc	tgtgttatat	aatcaaatga	atttcaaacc	catttttaaa	480
tatttcct						488
<210> 122				•		
<211> 503						
<212> DNA						
	sapiens					
	p105					
<400> 122						:
	aaagatgcag	taatggcaac	agctgaacct	tcaagagaaa	aaaattggct	60
aaggacagga	aaaaatattc	cttcttctta	gttatatata	tttctattta	aaggggaagc	120
caacagagct	gggggaaagg	aagggaggga	tgtgtacact	gaagtaactg	gcgttggtaa	180
tatatttaca	caggacccca	gttttaaaaa	aaagggtggg	ggtgaacaaa	taccttcatt	240
taccttatag	tttacttacc	tgggtccttg	aggcataagt	gaaatagcta	ttctgtagtg	300
tgagctctct	gccccaagca	aaaggcaacc	tcccttcaaa	gtctgacagg	ttttttcagt	360
caattgtatc	aggttgaatt	acatgacact	gacatttttg	tatgtcaaag	gcagaatatt	420
ggcaatttca	tgtggtccta	aagcaacaat	ccccctcaa	gtgattacaa	tggtagacct	480
taaggctttc	tgtttttcta	ggg			•	503
<210> 123						
<011> 40F						

72/265

<213> Homo sapiens

<400> 123	
ggggtttggg ggctgcagac ccgggagcta cagacccaga aggtgaaggt aactgcaggt	60
cacacctgca tggtggagct gtccgtgggc cttctgagaa ggaggaagta gacgcttaga	120
caaagagtac geggegeaag etetagaaet tgggeteagt gaggetgtee agtgaggtee	180
agtcagagta atgtgggcag ggcagggata tgggggctct gaaccccagg atttgtgagg	240
ttttggttga caggcagagg tggggagaca tggaggtgga aactgatcat ggggacaggc	300
attaaggcag agggcggagc tacaacctga agtatcggga cttcctggcc aacagacgga	360
ccaagccctt gtcaatagga aaaacaaaga tttcaggtct acagt	405
<210> 124	
<211> 423	
<212> DNA	
<213> Homo sapiens	
<400> 124	
gggagaggga aatggctgga atattcgtca atctgtggtg ctttactgga gatttgcagg	60
agttcagagg aagggggcat tgaatttcat aacctaaacc gtatcgtggt ttaccagaaa	120
gttttgaccc gtgattccgg ttttaaaggc tgagtagggc cgggcgcggt ggttcacctc	180
ctctagtatg cttacaaaat gagagtcctg gaatagcaga catgcattgt aaataaatga	240
acatetttet acaagtatat tteeccaagg tteaactgaa tatagtttge tataatttet	300
taaaattcaa tcaatttcac atccattaaa cttacaagta ccgtaatcca gttttcctag	360
gaaaactaag cccagccgaa ccttgggaaa aatacctctg tgttaaacat atatacatga	420
tcg `	423
<210> 125	
<211> 511	
<212> DNA .	
<213> Homo sapiens	
<400> 125	
gggaaatate egtgeetgtg geagatetea eteateatge ttageattet eteeegeeaa	60

gctgggataa	gcctcatgtc	ctaacacagc	acaacaggag	gtctctgtca	gtccatcaga	120
gatgacattc	tatgtgatat	ttttgacatc	cttgtgctaa	aagcaatggc	acaaaatgga	180
aaagggccta	ttgaccacac	ctactccagt	aaaaatgttc	ttcatttatt	ccttaatttt	240
ctaaatctga	cccctttaaa	gcaatctagc	aaattgagaa	tcctcagctc	tccttggata	300
cctgatattt	tatttcaaga	aagagacaaa	gaaggaaaat	tttatttatt	ttactaccca	360
catataaacc	gaagggagat	gggactaccc	aaacatttgc	tgctcaattt	tgtgtcttgt	420
gcttgaaagt	ctgccctaat	gcataacaaa	aactacttgt	ctcctacctt	ttgggatccc	480
tttaacaagt	atttgccttc	tgaactacgt	g		•	511
<210> 126						
<211> 457				1		
<211> 457<212> DNA				/		
	. eanione					
(213) Homo	o sapiens					
<400> 126						
	gaagtcaggg	aagggaaact	tctgaatgga	taaagatgag	cttaaaggaa	60
agggcagctt	aatcaaatga	cagtcacctt	ggactgtgat	ctgctcacag	gtacagaagg	120
gacatactta	atttaaggtt	caaatcccaa	taggaacctc	agtgaagggg	tgctgcagtt	180
acatt§gctt	ggcttgctta	gatagagaag	cctcagtggg	gṫtataccta	ccccagaaaa	240
gattgtcttt	tttttttt	tctcagcaac	ttccaataac	agtgaaagtt	gagccacctt	300
gggccagagt	tgagggctat	ttcagaagct	cctgtacagg	aagattgctt	gggtttgatg	. 360
gtccctaaac	aagattccca	gtagttggga	aagatgggga	ggcaactgtg	gcaagtctgt	420
ggaaattcgg	gccctcacgt	ctcttttaga	aagaagc	•		457
<210> 127						
<211> 482						
<212> DNA						
<213> Homo	sapiens					
<400> 127						
				gcatggtggc		60
				atctggaacc		120
tccttgaatt	cttctccccg	caaaacagat	tcctcctcct	taatgtgcct	tgaacctgtc	180

ttotococae ttotocotto taaatagoot tagaccaago otoacatoto totoccagae	240
cactggette etcacaaatg teettgeett eeectageet eaceteteea atggattgee	300
catatcacag ccagaggatt tatttctaaa aagacatcta tctggaagac ataatcagat	360
catcctgctg tatacagaac tttccaaggc tttctgtgcc caacagagaa agtccaaatg	420
taataaactg ggatgcaaca ccctcaattc ttttttttt tttttttgag atggagtctc	480
at	482
<210> 128	
<211> 733 .	
<212> DNA	
<213> Homo sapiens	
10110 Saptens	
<400> 128	
gggtgcctga catgtttgtg gccttggcat gtagtttcat tattcaccac tctcagtggt	60
ccaaggtaaa ctccactttg ttctagaccc atttgaaaga tgagctccag gaataaaatt	120
tacttaagcc ccctttttct tttgggaggc gaacctggaa gtgggaagaa gagatatagg	180
agctcaactg gaaggatgaa tttctgacag tataatttat tatgtatgat tagcagataa	240
ttaggacttg tgcaaatggg agttggcagc taagcctagt atagatccac atcatggtaa	300
aagttacatt ttaaccatca gtcaaacttt taaaaggact tctagcaatt caagctagct	360
gttttgtgat ttaaaatgtt tacctgcccc acaaagacca ctgaatgatc acaggttatt	420
ttctagttaa tttacaggtt tgttaatttt gcttattggt tcactgattc attgcctgct	480
tettgeceae etaatatttg ttgatgaatg aataaatgtt agatgtatet geegaagatg	540
gaatgttttc caccatgtta attttacttt aattagaagt tttactgtgg gacttagaat	600
ttaaaaaaaa atcaatagat tttgagatca tgtaagaaga aatgtttgtt ttagatttca	660
agcactatgg ttttgtcatt tttgatgaaa gtgtttcaca tattttattt	720
ttggagtgag aag	733
(010) 100	755
<210> 129	
<211> 546	
<212> DNA	
<213> Homo sapiens	

<220>
<221> misc_feature
<222> ()..()
<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 129 gggaggcagc agaaaaccca tgttgagtgg tcaagacatt tcacaagcaa ggaaagggaa 60 acagtcaagc tataagaaag tgtttatgac catgggcggt cataaatgaa gatcctccag 120 cttttggaca ccgcagctta tctcttagtc tctggtttgt ttctcttaga atgattatga 180 ctagaaaatt aaaggctaat ttgtgaacaa aaatcaggat ggtttttaga ggtactcaga 240 tgatatatgg agcattgtat actcaggttt atagcttcat cagcttattt tattaacttt 300 tcacatcctg cttggtcatt tcccctgttg tcttgagtat accactatta aataatagga 360 cacaaactac attaaccagt attttaatgc tttttaaaat gtatttaata ggaaatttgt 420 cccnnnnnn nnnnnnnnn nnnnnggctt tgcaaaatgg atatattttc caaattatga 480 gagtatttat atatgcaata tttatcaagg gctataaaaaa acatcatttt tttcatccat 540 tatttc 546

<210> 130

<211> 622

<212> DNA

<213> Homo sapiens

<400> 130
gggctgcatc actgttaatt caccetggta ttaacgagga atgaacactc tctgggtgat 60
aatcttaaaa ccagttatta atatacttta cactaaaatt aaaaagacaa aaaaacaaac 120
tttcctaata agatggacac aggacaaaat aaaaagacta aaggacatca cgacggtgaa 180
ctaaatgatt ttgtttgtgg cctgccatac tatctggaaa agaatttaat tttcctgcca 240
tgatttgctc ttcaaaaata cacatctgcc atctgatatt taatgatctc ttgattaaaa 300
tgtcatggct tgaacattca aaggggacct ccagttaaac aaggcagatc aaacacctct 360

gctctacctg	aaactcctct	aaaataacc <u>o</u>	, taaaaggag	c agggagatt	a aatcgtaaga	420
actaagaaga	taggagaaac	aacattgtga	agctagaaa	a catgtctct	g ccaacagega	480
aaggccaaaa	gcaaacagct	tcaaactgaa	caacctcag	a aatgttcag	g acgggggacc	540
tccaatgttg	gtttaagaga	ggaaacagag	tgcaccggaa	a acgggaaaai	t gagtttaaga	600
tgccacactg	aaaaggggag	ac				62:2
<210> 131						
<211> 671						٠.
<212> DNA						
	sapiens					
(100)						
<400> 131 ggggaggaag	gaaaagagat	ttcacgagat	cagatgacag	acttgaatca	tggaagacac	60
atagtcaatt						120
gtgaaccaca						180
taaagggcat						240
ttttcaagta a						300
gccaagcaca						360
tttagttggg a						420
					agctctagag ^	480
ctttcaatga t	tttctttc	tgcatagcta	caagagaagt	cacagaattt	ttaaggctga	540
attgaaactt t	aaagatgaa	caaggttctt	catgaaaaaa	aatctcattt	ctttatttta	600
aagtaaggca t	aacatatca	aatttataga	gcccttaaat	atattgcaac	tgaagactaa	660
aaattctcca c	j					671
<210> 132						
<211> 564						
<212> DNA				•		
	sapiens					
1215, Homo	oaptens				•	
<400> 132						
gggctgggag g	ggacgtcca	gtccctgccg	atctgggaat	actggggacc	ccaataatcc	60
agggagacct g						120

gagtca	cttc	ctgggcctaa	gggaaggaat	gactcaccac	tcatttgccc	caattcaacc	180
ctggag	gggc	ttccagggga	attttggggt	ctgttatgag	cacagcttça	gagggcgggt	240
gtttgg	ggtg	cagattggag	gtccccggac	cactcagcca	ctgtgttcaa	atttagtacc	300
ccttag	gtgg	gtggaaggca	gagatcccca	ctcccacctc	cacactcctt	ccagctgggt	360
taaacc	aagg	ccgaaacccc	ccagcccaag	cccgtactcc	ccacttctgt	caggattccc	420
ctcttc	ctcc	tctctggcca	caaggcttgg	ctagttcctc	cctcggccag	aacccagttc	480
ctcttt	gcag	aacagaccac	aaaatgacct	cccctggcag	gacaggatct	aggcagattc	540
atctct	aact	cccaaagccc	cagg				564
<210>	133						
<211>	636						
<212>	DNA				•		
<213>		sapiens					
<100>	7 2 7						
<400> gggcate	133 ggtt	tctatggcat	tctccagagg	actaattgtg	gtctgttgaa	aatgagatca	60
ccaaga	agaa	agggccttag	ttaagtcact	ttaaaaacag	atattattgg	tattgatttc	120
acttgg	ggtg	ggaattcaaa	tgaggcaatg	ctccctaagg [.]	ggctgtaaca	ggatcttgta	180
attact	gagc	tctgggggct	gtctgctctc	tggggagaga	caggctggct	ttctgcttag	240
tgagaa	aggg	atttctţtgg	ggaggcagaa	gcaggaagtg	tcaggtacct	gctgagtgtg	300
ccccaga	agaa	ggttttctct	tcttattatc	tgggtgaaac	acatgccaat	tcaacccttt	360
cagtati	tggt	tgggcagata	ctatgtgtga	gttattggcc	agagagatta	gagcagcttg	420
cgatgt	gggc	acccagcctg	gcacatagta	ggtcctaaga	ctggttgtta	gaggggttca	480
ctgttc	caag	gtagattcac	tttagttggg	aaaattaaac	agaacacctg	tccaacacct	540
cttagaa	aggc '	gatataaaca	gagtgccatc	aaaagctaac	cggcaaaaag	tgcagtttgc	600
aagagca	atga	gatctggagt	agaaacctaa	agtaga			636
<210>	134						
<211>	603						
<212>	DNA				•		
<213>		sapiens			i		
/CIJ/	TIOITO	aahreus				•	

<400>	134						
• .	~~ .		aacagaggaa	gcatgaactt	ctcctgaggt	accatttttc	6
acccaa	acaga	ttggcaaaaa	cgggaaagct	gttaacgcta	tggccacggt	catctcccat	12
ggggtg	gagtg	gaaggggctg	ctggtgtgac	ttcagggggt	tcactggcaa	agctgtcaaa	180
atgtga	aggg	tacacaccct	ccaaccatct	agaatgttcc	accctaggcc	accttctgag	240
			actgaagtcc				300
			cgtagccctg				360
			atccctggtg				420
			agacacacat				480
			caggataact				540
	gctg	gtaattggtc	aacactgccc	taacttcctt	cgatttttt	tttcttttt	600
ttc							. 603
<210>	135						
<211>	583						
<212>	DNA						
<213>	Homo	sapiens					

<400> 135 agaggtacag taaaaaggat caagagtgtg ggtggcaggg gatagcagtg cttcacttta 60 aaatagtcaa gagtgggcct cacaaattta tttctccaac tcggaaattt cctgtgagct 120 ccagacatgc atattcaaca gctcatcaaa ttcaagcagg tccaaaggga atgcataaat 180 gcctttgcca tctctctatc ccaaacaaat acaataaaca ataacaacca tcctagttca 240 ataaagagaa ataacctcca agaacactgt aaaagccaga ccttgaagct attttagtat 300 cttacacgct ctcattcttc cccatatcca attcaaagtc ctgtcaattt aacatcctaa 360 atatttctgg catttgtcat ctgtctctat caatagccat caccactgcc accactacta 420 cccaaatgca ggctaccatc acctttattt gatcagtctt tattcaactt gccttctcac 480 ttcccttctc acaatcattc tttacagagc caacaagaat gagattttcc aaacataccc 540 ttcaacttgc ttaaaacact tcatatgctt tcactgctct tac 583

<210> 136

<211> 480

<212> DNA

<213> Homo sapiens

<400> 136 gggaggaaga ttcagtgata ctgacctatc tattccggaa ctgtgtctgt gagctcaggt 60 tgtccatagc ctgctgcaat atgtctaaag attgatcact ataagttttc tcaggttctt 120 ttttcccctt gtcggtctta tatttcatag tcctttagcc ctcaaggggc tagaaggcag 180 240 tttatgacct ctgctactgc atagatgtaa gactaaaggt tccagataat tgaagttetc ctgacctgaa atgtaaactc tgtacagtgg ctttgctgta ttctttcaca tccctttgag 300 tctttgaagg tgaggegge cacactaget getgttttec agatcaggge atgecattgt 360 ttgacctgcc accataaaac agttctacat tcctttgtct gtcttttgag cttaggcctc 420 480 cagactaacc acatcaggtc tccctagtga tttgtctgcc cccacctggg caagaccaaa

<210> 137

<211> 655

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 137
gggggatggt ggaataccat atagtcatta aagagaacga aaaaggtcta cattaaaaaa 60
aatttaacat atatcaagta tgcaaggcat ctgcatacct ttgtacatat atttttgcat 120
acatttgcag aaccaaatac ataaattatt annnnnnnn nnnnnnnnng ttagcctata 180
taatttaacc ctatataggt tagccaaata ctgaaatata acgttaagga aatgtttcta 240
agcataaaag ctagatggcc tatgaaatgg actttgtaca aaagaaatgt ggcaactact 300

WO 02/1	0198				PCT/	GB01/03390
cagtcaacca	tcttgcctca	aggcaaaaac	aaactgctac	: adataaaaaa	gtggtaacca	360
atgttttcta	aagcaaggaa	atagtactac	aaattttca	atatttaago	aaatgtcact	420
ttacatgtgt	caataaattt	tctattttag	taatttaata	actatttctt	cattcctagc	480
tcctattctg	ttaaagtgac	agtattctaa	gaatcaactg	cattacaaag	tcactaggtt	540
tctgagtcac	ttacagcatc	tttatatctt	ttacagcata	attttaggat	actgccttgt	600
ggtatcagct	aaacactgaa	ttctgccttt	gacatacttt	aacaaggtag	cataa	655
<210> 138						
<211> 657						
<212> DNA						
	sapiens					
	oupromo					
<400> 138						
gggctaagta	ccttacccaa	gtacccctag	gtaggaacta	caaaaccagg	atccaaacat	60
aggtctgtgc	gattccccgt	catggcttcc	actcgacaga	acccctcat	gcactggttt	120
tacaacacaa	tgaccaccta	atctgaaatt	gctcttataa	atactgtgca	aagaagtagg	180
agctataacc	aaactgagta	aaatctgcag	gcactctgtt	aagtatgata	aagtacttag	240
ggctagatca	cctagtttgt	aatctcatag	cataaatata	caaattatac	gaatcagttt	300
tagtttatta (ggaaactact	ctgatcctaa	aatgcaaaat	atagcttctt	tgcctccttc	360
atgactgcct (gctcactgtg	tgactgggat	gcagtcacct	actgagacta	tgatgggtat	420
gtttctgcta a	agaaaagctg	ccacatttac	tttccccata	tatggatgct	gccattattt	480
tcctggcatg d	ctgaatctcc	acctcccctc	ctcttctccc	caccctgtgg	cacaaagaac	540
atattgtaca g	ggaaatatac	tetetteetg	caagcaagaa	aaatgggttt	gagaaacata	600
tgggggggaa a	aacaaaccat	tccgcattct	ctgttttta	aaaatacaac	aaaaagt	657
<210> 139						
<211> 667						
(212> DNA						
	sapiens					

<221> misc_feature

<220>

<222> ()..(),

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 139	• •					
gggcattgga	aatccagatt	atttgaaaga	aaagcatata	tacaaatagt	ctgccaatct	60
cttggcaaat	tcatactggg	tttatgactc	atacttggta	taaagacaga	cagaggaact	120
gataaaatag	tgatcaccac	taaagacatg	taatacttat	ataacttaaa	tgtgcatcta	180
	taagcagttt					240
agagaagaac	atctaatcta	ccatttacag	taaatgtctt	cctggactat	tctctatcaa	300
gtttggcccc	aaccactcac	tcaaataaac	ttactatcat	tccttaatct	ttctcagcat	360
ggatgtatta	cccttgtatt	tatgttatgg	ctaggatcca	atccttttct	caaatgtgat	420
actccacatt	ctggacaatg	taatcagcaa	aagtccagac	agtttttatt	ttaaaaaaaa	480
agtgtattct	ggtagggtga	aaccttacta	actgattatt	ggacttaaat	gataacaaca	540
nnnnnnnnn	nnnnntaaga	cattctgtaa	tctcaagctc	tgtatcagaa	gatgtattat	600
cattcatcct	gggcatatgc	tgctgttaaa	tgcaaaatat	cagttttcag	gaacccaaga	660
taaagca						667

<210> 140

<211> 595

<212> DNA

<213> Homo sapiens

<400> 140
ggggtagacg aaataactca ttattttgga gacattttc acaaatctca cttgtacctc 60
tgagtagtaa cttaatgcta ttactatggt tactacaaag caacatgggt ttcagcctat 120
tctttggttt gtctaagaca ctaactgtca gcccaaaaca gcttgtcttc ctatcttccg 180
agttaccaat gattgggagc ccttaattga cagcactgga ctagctgcaa gtgaactgta 240
agttcatatt atctactgaa ttcaagatcc attttgtttg cctgccacac cccacacaga 300
ggtgctgtgc ctgtcaggat ttcttggctt cacctcattc ctcttctcct caattctgtc 360
ctgacagctc tatgaagcca gaaaagctca cggagatgca tcttctgctg cgtcctgcta 420

actecc	ctggg accgcatcct	cacaagctac	tttgttcaag	aactactccc	atttccaatt	480
aatcca	aggag gaaaggaaag	gaagatggtg	attgttcttc	ttacaacaca	gagctgtgtt	540
agtatg	ctga tgtttaatct	ttttcagggc	agtatattca	acttggaagt	cagte	595
2210s	7.47					
<210>	141					
<211>	560					
<212>	DNA			•		
<213>	Homo sapiens					
<220>						
<221>	misc_feature					
<222>	()()					
<223>	"n" is a single	nucleotide	whose iden	tity could	not unambiguou	sly .

<400> 141 gggctgagaa ggcaagctca gttgtgcagc gatgtgcagt gctggcccta cacctctgtg 60 agggggtttg gcttaggata ggcctctctg ggtgtctgag gaggctgacc tgaaacagag 120 atggtctggc aacatgaatg gaaaatacca aggatggcat ggagttcacg ttggccgctg 180 tgcccggccn nnnnnnnnn nnnnntaggg gacacatgga aaggcgggaa cctccccaca .240 acgtgagtgc aattgttcaa ggacccgtgt gatgtcaccc acaccctgtc atgtctgtgg 300 aagccacttc ttccacagcc accaagccat ctcggctcac tgcaacaaga gcaaaactct 360 gtctcaatta aaaaaaaaa aaagaatcca aatatttgca tcacagcggg ctgagaaggc 420 aagctcagtt gtgcagcgat gtgcagtgct ggccctacac ctctgtgagg gggtttggct 480 taagataggc ctctctgggt gtctgaggag gctgacctga aacagagatg gtctggcaac 540 atgaatggaa aataccaagg 560

<210> 142

<211> 409

<212> DNA

<213> Homo sapiens

<400> 142						
	ggcagcatct	ccttcagaaa	ttactgtgaa	agaggaggaa	aatttgattt .	60
aaaaatccag	ctatgtaact	aaattgaatt	tgggactaga	aagccttcgg	cagaccaatc	120
cttccagcca	tctgatgcgc	aacataaggt	ttctcataaa	acaaagaaaa	tgtcaattca	180
gttgtgaatt	catattgata	cctggaactc	tectgetaga	ccacctctaa	aggcccaggg	240
ttcttggtct	ccaattaaga	attgtgctga	agaatgacta	cgacaccctg	ttgagatcag	300
atccaagcgg	agaacgttac	gagaaagggg	atttcctggg	gtctcaaatg	tccaacaaac	360
tgacaaacac	ttcgtggaaa	taactctcta	acaataatca	gġgtttcag		409
<210> 143						•
<211> 422					•	
<212> DNA						
	sapiens					
	-					
<400> 143		•				
	caagcagaac	gggctgggtg	ggcaagtgga	agagggatca	gggcctggta	60
tctgtgtgtt	gtgacccagc	gtggaaagtg	acaggggcat	gaggcctcac	gttgaggtac	120
tccacaggct	tggtgacgtt	gaacttgtcc	atggtggtga	tgatgatggc	tggagtggtg	180
aggaagaaga	ggaggatgaa	gaggacgaca	ttgatgacca	ggcagcgcag	ccaccagatg	240
aagcctcgga	tggagaggtg	ctcccagtag	atgttctgag	ggtcaggggc	ataggacacg	300
gtccagttgg	agatgtgcag	ggactcgctg	caggatgagg	ggcgtggctc	cccacggcag	360
gtgcagccct	ggcatttaca	cacgttgaag	tccttcagga	tgatggcggt	gattgtctca	420
tt						422
<210> 144			•			
<211> 507						
<212> DNA		•				
<213> Homo	sapiens					
<400> 144	,					
	atcacttctt	tcaatgggag	ccttattttg	gggaaaacaa	atggaagaaa	60
tatgcaagta	aaagttctgg	tcgcgtctat	cacatgtata	tgactgtgat	gtgctacagc	120

++ c - +						
ttgatagetg	tcaagaaagg	tttttcatat	[·] ggagagcttc	gtctgcttta	ctgacttggt	180
ttagtcctgc	ttaagcattt	aaagggagca	cttggctcag	ctcatactca	gcttgcttag	240
tgagtaactg	ctctatcaaa	cacctagggt	gttttttacc	cttcagattc	cataactcat	300
cttaatgcct	tccattatca	ccatgtgaat	ttgcttacca	ttagattttt	agcaatggtg	360
aagaggtggt	aagctagggg	gtaatggggg	aatattgcta	aaaggaaatt	gtgttagtag	420
gcgcactgca	aagcaacata	cattttagca	gcaatattaa	cctcatcatc	tcacaaaaga	480
aagcatatct	caactatatt	tcttctt			•	507
<210> 145						

<210> 145

<211> 554

<212> DNA

<213> Homo sapiens

<400> 145 gggatgcgtt agaaactgag gaccgaccaa aattaactat tgtagacttt gaacagtttg cagtttgttg aggatcacag ggaaaggagc tggagagaaa catacactat acttattatg 120 gctgtcaaag gacgtgtacg cagtttatat gggtggcttg aatgggtagg gagcctaaag 180 ttaaggagta gtgttaatca agacatattg aaaagatgaa ctaaagcatg ctgtcagagg 240 acaataaggg aaagctaatg tggaatactg gtgtctaggt aagggaatat taaagttggt 300 ttctttttta tttgttagat gtaacttttt catctctaat ttgtctcact attcattgaa 360 actaagctta atttctgtgt gcagcctaca gtatttctgg gtgaggacca aatagtgagg ' 420 tccacatcca cttaatatat ttgccaacca ttaaattgcc gctaaagctg cagttgggaa 480 tetgecetgt ttaatattte agtagagtgg tatttgetta geceaaaaac catgttgtea 540 attacaaaaa tgct 554

<210> 146

<211> 405

<212> DNA

<213> Homo sapiens

<400> 146 ggggtactgc ctcaaacccc actgggagtg tatgtaaaag actctacatg cactgtacgg 60 cctctctgaa atccaaaaaa attctgattt ctgaaatata tctgatctta atggttttgg 120

ataaggatta cagacttg	aa atttcaatta	tccaaacatc	gacttatccc	cactccccat	180
cccacccetc aggagcag	tc caagaaataa	acaaagctaa	tattttttac	ccttgatcca	240
gcagtaaagt tactcacc	tt aggtaaggga	ccaagttgga	ggctgcacat	agttacccag	. 300
catcaggccc atcaaagg	ct acactcagaa	gctacagtac	acagagaaga	ggaaggggcc	360
ccaaccacct.tagaaagg	tc ctcaatactt	ctggagtcac	cagag		405
<210> 147			· :		
<211> 567		•			
<211> 367 <212> DNA					
<213> Homo sapiens					
<400> 147					
gggaagaaga caccatato	ct taccccagac	cccaaaaatg	ttagggatga	gcctgtccgt	60
ctgtgacagc cagaagtg	tt ggctgccagt	ggcccagggg	aaccagaacc	caggagttca	120
gtggaaagaa caacgtaa	ca ttaataagag	ggacccaccc	ctcctgcagg	ttgtcccagc	180
aaccaagtct cagctgct	gg tgaaggcctg	cacaactagg	tagttgtcaa	agtgacatgg	240
gaggtaaatg acaaacac	t ggttctaggg	gtgggttcca	ggatcccttc	agggcactag	300
gttcctaggt actgtggta	aa taagatccca	ctcaggccca	tgaatgaggt	ggattaagcc	360
ctttcttcca aggccaac	g tgtaatacat	aggatccagt	agttctgctc	tgccacctac	420
ctgctcactg acctcagga	aa cacccctcac	ttcacaatat	ataaatgagt	agttctcatt	480
ctgtattttg gagaattg	t gtaagattga	aaggtcacag	atgcaacatg	cctaagagta	540
ccagacatge tggaagte	ct tgttttg				567
<210> 148			••		
<211> 631					
<212> DNA					
<213> Homo sapiens			•		
-					
<400> 148					
ggggggaatt aaagatagg					60
attagggcca caggacag	gt aaatggagag	ctcacatctc	actgaaggat	agaaagggat	120
gcatgaagaa gatggtgc	t ttgtgacagg	ccttgatata	tacaaaacat	tagcaaacac	180

PCT/GB	01/0339(
ctattctcag aaaactagaa aagtgctgct tgtgctaagt tccacagtgg attcttggac	240
acgtttatag tacacacaca taacagagcc atgtttactg ctagaatatt attcctagca	300
cctactttgg aaggactagg acatttgcac agagcagtgt gtcttcctgg tgccctggcc	360
tetggeecag tttaagaact gataceatag agaatgtgag gtaagaacae atteacatte	420
ccaccatggc tctggttctc cctgtgaagc tacagataac atgaagacta tcctcctttt	480
ctttcctaat cccagtcctt taagtatttg aaaacctcaa aatgctttct ctgagactgc	540
ttattcatag gccaaacagc tcagttcttc taactattct cacatgacat gcttttgact	600
cctttcatta ttctagtcac ccaatctctt g	631
<210> 149	
<211> 688	
<212> DNA	
<213> Homo sapiens	
<400> 149	
gggggagact aaactacctt tatttgctgg acaacagcat ggttgtcaaa actggaccct	60
ggtttttttt ttccctttca ggacacatac tgtatcatgg gttctttaat ttagtgtatg	120
gattaggtag ggacatattt gaaagcacta attcactctt gattgccaaa ttcatanagt	• • •

g g ag ggacatattt gaaagcacta attcactett gattgecaaa ttcataaagt 180 gaactgctta aggttagata agaatgatct atttataaaa tctagtgcca aaaattaaag 240 taattatact agaagtgtga tttttatttc tgatcttttt aaagtcaagg gatcagtgat 300 caaacaatta aaatgaagag tocatatott aaaataacaa attcaatttg taggatattt 360 tottttttgt ttacttactg tatttcttgg aattttattt attaagcaat aaaaatggaa 420 gtgaacacaa ctgcataaaa attttggaat acttctctgt atgttatcat agtcaaaaga 480 tgtttttcag aatttgtctt atgatgccaa attattccaa aatttcctaa atggttgata 540 aacagagtaa gaactggatt atacatcagc tcctgcagtt tccaactgca cattccagtt 600 ttaaagtata accataatgt atgctttcct cagaagggtg cctggcattt atttatgatg 660 gtcaattttt tttgttgttg ttgagatg 688

<210> 150

<211> 423

<212> DNA

<213> Homo sapiens

<400>	150						
ggggagi	tcac	aatccatttg	aaaatatttc	ttctctggga	ctgaaaatct	cctaaaacgt	60
gtattc	ttca	gcaaacaaag	tatctcatag	aatgtaaacg	tggatgactg	ggggaataca	120
attttt	tttg	cgcataatga	cttctgtcag	tcctctaaga	aattcaaaga	attttcacgg	180
cttcca	gttt	aaattctagc	gcctctggcc	atggccatgg	tttgttctgt	gtttgattat	240
ctttcc	gttc	aggggttcga	ttgttactgg	gctactttag	açaaagctac	ctggatcttg	300
agttgc	cact	tttagcccaa	aatccccttc	ctacctgttt	aaggggcagt	ggagcacttg	360
gtggcc	acac	tggctctctg	tgttaaggtg	tttgctgaaa	attagctgtc	tacggtggcc	420
tat							423
<210>	151			\			
<211>	617						
<212>	DNA						
<213>	Homo	sapiens					
<400>	151						
gggggg	caga	tgtgtggcgc	tatggccttt	gttactgtat	tcaagctaca	atgtcaagaa	60
ggtggg	aaag	accatgtttg	gacatgtatt	ttttgggagg	aaaatggtcc	ccgtagttct	120
ctgcaaa	acaa	cagaatcaag	aaaaaagaaa	agtcgtcttc	tccgcgtggc	gttgcctgac	180
ccccag	cccc	tgcgccagct	ctctggtttc	cccatgacca	gctgatggcc	acacattaac	240
tccctg	cctc	cctcccagga	aagcccaagg	tggcagaagg	gcagaccctg	gcccactgac	300
accccc	caca	cccagaacag	aacccagcat	caagcaggtg	cacaagaaat	gtccactgct	360
gaaacc	accg	ctccatctca	tcccagcacc	cgggaatcag	tctgtttcct	ttccaaattg	420
aggctg	cttg	aaattccgca	cctatcccgg	gtgtgatacc	ttgtgtgttg	actccactta	480
ccacca	gaga	tagaagtcta	atcattctgc	agacaatctc	gccagataag	gctggcagct	540
cgtaaa	actt	aagtagcttt	gtgctgctgc	agatggcttc	atgcagtttc	agacacacag	600
tcaggta	agga	tggtgac					617
<210>	152						
<211>	640						
	- 10	•					

<212> DNA

<213> Homo sapiens

<400>	152						
gggata	aagt	aacaaggctg	gggactgtgt	gccgtattcc	cttcatcagc	ctttccactg	60
tgtaad	ccga	aagccgcaac	gtcgtttccc	tccacgcttc	tctctgccgc	tagtgatttc	120
ctggto	etgaa	ctgtgactcc	ctagtgatgg	cctgtaactt	tgggttctgt	gatcatctga	180
agtcta	tcaa	cctctatata	gtcagggaaa	cccagaagag	ggaagaggga	agatttctgt	240
ttgatt	ttca	cacaagcaag	acttactaaa	gagttaggca	gaattgttca	cttagccttc	300
aattca	aaat	tgaatctcag	gttgaaactt	tggggtatgt	ggggttgttt	tgttttttga	360
aaaatg	tacc	ccttttgagg	ccaaatgaaa	aggaactaga	cagttctgtg	tcagagcctt	420
tcagac	tggg	ggtggaattt	ggttagctcc	atttagcggg	ttaatgttga	tttaactcct	480
gctgtg	tgca	tcaccaccct	gagctgtgtg	gcagctgagc	acttccctgg	gaagcaaata	540
taggtt	ctgt	ctcctcaagg	aacttttgat	ctcttggggg	aatccaggac	aagcctaaat	600
acaacc	atac	aaagacctac	ttacacagct	gacactacag			640
<210>	153						
<211>	592						
212>	DNA					,	
(213>	Homo	sapiens					

<400> 153 gggaaattga tatttaaaag agaaggaggg tgattgaggg gaagccccaa ggacccgctt 60 gaggtttgtg ataatgaatt caaagagaaa caggtcagca tgggaatgtg acattttcca 120 gctatgcagg catgagaggt ggagaagcgg atttacttgt agattcgcca aatgagtaag 180 acaaagcaag aaaggggtaa gtgatgaggg gacatgcaag gtagtgaaaa ctatgtttaa 240 ctgtggagta taagcttggc caggaaagca ggatggccaa cagtagcttg agggacagtg 300 aaaaggtgtg atgggccaga gattgataaa agaactaaat atttgtcttc gtagtggaag 360 agcaacagat aatacctaaa actgaaaata aatcactaaa tggcagcatg agcatgttat 420 tgaaaaatgt gaatgcaaat acaaaacaaa taagacaaaa agttgaaagt tgtttctctg 480 gatcacggga aattagtaag gcttatagag ctgattgacc ttttaaaaaa ctatgtgcat 540 atataacttt agtaaaaatg aaacaaagaa taacagtatt ctctagtgag gg 592

<210> 154 <211> 662

<212> DNA

<213> Homo sapiens

<400> 154 gggcaggtgg gcctgtgaac aaaccctcct gaggatatga tcaggttgta aatggaaccg 60 taactttttg ggtaatgtga gtcagccctt aagcctatgt taaccaccga aaagagaatt 120 aacctttggg gctttgcaag gctccagctg gtgtcataaa gtagtaacaa aaaactgctc 180 ttcagtagct tgagggaaaa tctttgaaaa atacctccct gggagcagct tccccatctc 240 aaaagatgta gcatagtgct tttacaacac ctcgcctgca caattttcta agtggagttg 300 360 cagtattaag gccagacete ageccaggae egetetecae tgageteaga getgtgeagt ctgagccctt caaaaacatc aactggattc tgccagcaga aacagttctt gatcattgtt 420 ccctgttatc tgtggcaaag ttctgactat tcatgatcat aagctgaata tgagaagaga 480 tccagtatac aaatgttttg cccatgtgaa aataagagct caggttgctt taatcaattt 540 600 taaattattg cagagaaaga aagcaggtaa atactttcat gagagagctt tttgtcaaag gttctcacgt ctttcctcaa gctactctta acaaagtact gtatgtgaca aaattaagtt 660 662 ta

<210> 155

<211> 514

<212> DNA

<213> Homo sapiens

<400> 155
ggggtgatgc aaagggcttg gggcccaggc cagaggggct gggtgtctcc atggacgtgt 60
tcttagggtg ctcacctggg agacccagaa gaaggagata acacgtaagg gtgaggctgg 120
tccctggaaa tcagctgaca tcctgcaaat gtggagccct gaggtggagc caagcccgag 180
gcacagccca ctcagtggca caagccacaa agggccggcc tcaccccaac ctgggtgctc 240
gtgattgaca gcctcttgtt acgtgagga agcagcacc cttccgtggc agaaaagttg 300
ggcctgaatt gtttgagcaa ttccacgtgt gcagctgcgt ataccatcca gggtgatagg 360
accatgagcc cgaggccctg atgtcctggg gtctagtcct gtgtccacag gcaccactcc 420

W	O 02/1 0)198				PCT	/GB01/03390
ccttt	gtacc	tcctgtccca	acagecaage	: tccacaggg	c caagactaca	gcatcctttg	480
ctcag	caccc	aaaccacago	: tgtgcccaca	gcac			514
<210>	156						
<211>	490						
<212>	DNA						
<213>	Homo	sapiens					
<400>	156						
					a taatgtctgc	_	60
					a gaagcaacaa		120
					cttgctgagt		180
ttctta	aacc 1	tatccaaaca	ctttagtatg	tttgttatgo	caaatgaaca	catttataca	240
					: aatgggtaac		300
tggcag	raata t	gacggatta	atcaagagaa	agtcatccac	tgggaagtag	agtttgagat	360
aaaatt	tggc t	ctatagaac	tagtgttggc	ttcttcagtt	tcctaggctg	acagagaatt	420
gtgaac	ttac c	tacagggct	atcatagtgg	gctttaattt	tcctgtatgt	ctaagtaata	480
ttgcaa	cgaa						490
<210>	157						
<211>	458						
<212>	DNA						
<213>	Homo	sapiens					
(220>							
221>	misc_	feature					
:222>	()()	•					
223>	"n" is	s a single	nucleotide	whose iden	tity could r	ot unambigud	ously

<400> 157 ggggacaggc tgaacaacca aatctagcag tctgtaatca gaatgcgcat ttattgagtt 60

atactgaaaa	aacaaaagaa	tttagtatcc	catttaatca	gacctctata	ttcactggta	120
actatgatag	ccacatgcaa	atacagtcaa	gtatattaat	gtaatccaaa	gtgctaccat	180
gcattcaaaa	agtcagaaaa	ttattcatcg	caaaacagaa	ttaagaactg	cacatagcaa	240
ctgatttta	aaaagagttt	gcgtcgtcct	ccttcccttt	nnnnnnnnn	nnnnnnnnn	300
nnnnnnnnn	nnnnnnnta	ttttcaaatg	aagatgaact	gccaatgatt	taaaatacta	360
aagaaaacag	gacaaggctt	ccctggcaat	ctatttacta	aaattcatta	acatgcaaaa	420
tatccattca	cctacatgta	atatatataa	tgaatatt			458
(010) 150						
<210> 158	-					
<211> 474						
<212> DNA						
<213> Homo	o sapiens					
<400> 158 gggaacttga	gaaatggggg	ctctccctgc	accgagacag	cgcagtgggt	gcttggctga	60
taataacacc	tgtaaagagg	ccgcaagata	gagacttcag	tgagatgcgt	tttcgtccaa	120
gttcgtcaga	gccacctggg	caatgatctt	gagtcagtgt	ctctttggtg	gttttagcac	180
attccaggac	caccaatact	accatttact	atttttcttt	aacactcagc	tctcaagttt	. 240
tgaagtctgt	tcttcgttaa	acgtgagagg	tcaggagtgt	tatagagggg	ttaaagatac	300
cttaacaccc	acgagagact	ttctcctcag	cctactggga	aggcctaaaa	aagaactgga	360
aaaaaaaaa	gaggattctg	ctttggcaga	tccagtggta	gcagatccac	gtgttgggaa	420
atgcttttga	gctggggaac	aaagctgggg	aaatagatct	ttaagaaagg	gagc	474
<210> 159						
<211> 484						
<212> DNA						
	sapiens					
-210; HOM	Japaciio					
<400> 159 ggggtttccg	ttcgctgctg	ctttgctcgc	tgccctggcg	aaccggaaag	atccaaggtg	60
tttgttcacg	aaaacatacg	cgaacttggt	ttgggagaaa	tgggggcgct	taatttttca	120

tgcttccgtt actaccaagg gttttttca ttttctttgg taccttcttg tgtctctctc 180

ttggagtggt tgtttttgaa tcatggcgat tttaatttgt ctttccttac cctcacatta	240
atccctaggt agaattcgct gctgtagtgt ttcagaccga cgctaggggt gtgtctcccg	300
cetetgtege tgeagecaag aaatcaaega egecetttta geetgttaee ttaeeggtte	3.60
tetegetegg ggaageeeta gtegttagtt teetetttgt aateaagagt tgtatacaca	420
gtagagaaag ttcagagtgc tattccgcgt atatcagata ctccatcatg cgattcagtt	480
atta	484
<210> 160	
<211> 594	
<212> DNA	
<213> Homo sapiens \	
<400> 160 aatatttta aagagaaatg atttcccatc taaaattctg cctgccattc tatcatttaa	60
gagtgaggag ttgtgtttca ggcatgatgg agtagacata ctttttccta ttcctcccac	60
aaagtatagc tgaaaattgt gttatatata aaccaagcac aacgagctgc tgaaaagtga	120 180
ggagaaaaag gcacattgtc taggacctcg ggaccccagg aatggcacgg cagtcagttc	
cctggatttg ctttttcct tgtgtgtccc ggacagggcg ctggagaagc tgataacatg	240
gaaatgcaaa agagcagaga caaaaaaaag tcccaagaaa agcctactct gtctagccca	300
agaaccaaga gaaaggggtg gcttggcatg acgaaaatcc tgtagacaat aattgctata	360
ctccagtgaa acgtcacaga aacaactgcg gccttggcaa aggctgagaa gagtctagac	420
ttacccggcc aggitgtaat gagagacctc aatotootoc ccatcccact actcatgtgg	480
tatcatcaga ggccaaccgg gaacctggcc ttcactgatc acctggcagt aaca	540
and a specific description of the second sec	594
<210> 161	
<211> 699	
<212> DNA	
<213> Homo sapiens	
<400> 161	
ctttagtgta ctgaatgttt acctgatgtc taggcaacca aaaatcagga ctatgctaga	60
atgttacatt taccaacata tccttgacct aaagtactaa gcatattaca ccagtgtgtg	120
tggcttcaaa tacaagactc tctatctcta ggtattgaaa tggcgaataa gaattgcagc	180

tctgaaaata taatataaac acatttttca gatagcatta tacaaataaa aatacttttg 240 gatactagaa tttggggtta gagctgactt caataagggg aggaaaaaat atgtgcaaag 300 ggaagggagc tcaatttgga ataatatatt tcaaagtatg tggctttgca tttttaaaat 360 gctaaccaaa aaaaatgtga gatagagtga ccccaaggaa ctttttacag ccaqcctctg 420 gataccagat atagcattta caacttctga tatgctagac aaattttcca tagttttaat 480 tttcttaaag acatatagtg agtgaacacc aacactggga aggaggtagt gttaatttga 540 tcaaatattg atatttcccc actgattcag aaagggcttg ctctttctat aggatatctc 600 aaaacccttc caatttttat gctacaagct ttactctatg aaggatacta ctatgtatga 660 gattcctcag aagctagatc tcacaaacat atacaaacc 699

<210> 162

<211> 522

<212> DNA

<213> Homo sapiens

/ .

<400> 162 gttcagaaga aaaatatata aatccaaaga agggaaattt taaacattgg gtggaagttt 60 cagtggaaat aatggtactt gagttggact tggatgaaca ggatgtacac aaagaggcca 120 actaagaget gtagageaat gaettaaaaa aagtaatgat gggagagett etaettteat 180 ttaaatcatt tctcagaatg aaaacacgcc aacattcaaa tttcagtttt ccagaaattg 240 tgaacatgga ttaccaaatg ttgataatca tttttaaaga agagataact ttaaaaatct 300 gcttccaaag attcaataca ggtaatttca acatcagtaa tacattattc ccacatatgc 360 tgtcagtaaa aaagtaatct gatcttaggt aatgcaagtg cctgattaga gagtattccc 420 aattoctoot totoatooot totaacatto otgtaattoa tttogotoat coataagota 480 taactactga acagattgtt gccattatca gcaacaatca gg 522

<210> 163

<211> 473

<212> DNA

<213> Homo sapiens

<400> 163

ggtggggtgg ggggaaggga aagagagact gactccagaa aaaactcaa atatatacat	60
acggaagcac ctcaaatcag tgtgggaaga aaggattatt aaatatatgg ttattatgtc	120
aggtaaataa tttgaggaaa aacttagatc caggcctcac atttcaccac aaagtaaatc	180
acacaggaat tactaatata actgtttaaa atgaaaccca aaagtactaa aagaaaaata	240
taattgaaaa attatottga aaaatatgao attaaagoag aaatttaaaa aaaggaaaga	300
ttatacttca taaaaattaa tttacataca tgttaaagca ctacaaagtt aagataaact	360
atgaataagg aaaaaaggta ttatcgttaa catataagtt cttaaacttc aatacaaaac	420
ttgataaaca attcagaaaa aaataatcac tacatttacc aaaatatgtt aaa	473
<210> 164	
<211> 510	
<212> DNA	
<213> Homo sapiens	
<400> 164	
ggacagtaat tototgaaga atatgtagoa gtttttgatt atgtootgat caaaggataa	60
ggtagteggg ttgggtaagg aaataeagag taggteeeag gteaceatgg tecaageeea	120
ggtgeteagt gtgtgteete tetetgeece ceagttetae eeegteeate atteaceace	180
tgctctgtgc tctcgaaggc tgacccttga gaacagcatc agaggccttc ctcgccctct	240
ggcttcttgc tggtttggtc aatggcaggc agcagtggga tactgggggg ctggaggaaa	300
gcagtgccag ggtactccct cettggcccc ttcctgctca actgctgtgg gtgacctgaa	360
teceteteaa ggeeacaett ttggeagget geeetettea taaaaetaee eteceaattt	420
cttgtaacca ctccctctct ctacccctcg aagcctgtaa tggctcccgg acgtcattag	480
tgctgggaca ctgcactgtc ctttggtggt	510
<210> 165	
<211> 490	
<212> DNA	

<220>

<221> misc_feature

<213> Homo sapiens

<222> ()..()

"n" is a single nucleotide whose identity could not unambiguously

<400> 165						
cttctgtaga	aatcaacaaa	aataccctat	ctaatccatt	tttgcttcca	ttataaattt	60
tcctaatata	gtttttttg	gcgggtggga	aggcatttga	cnnnnnnnn	nnnnnnnnn	120
nnnnnnnnn	nnnnnnnnn	nnnnnnnnt	ctaatatagt	ttttgccctg	aaatgaaaat	180
ggaagtgatg	ttttggttcc	tctcaggcat	tcagcaggga	gggcttcgtc	ttaattccat	240
tttgtacaga	ttgcatctgg	gccatttgcc	agaggatatt;	ataaccctgg	cagatcggaa	300
cccaacactc	ggttcttggt	tttcccgaac	tcggtgccac	tctgcacgtc	atggttcatt	360
tgggaatgcc	ctgatgccct	acatgcaagc	ctttgtgggc	gtctgtagga	cgctgtactg	420
gtctgcaact	gctaccacat	ctttaagctt	tctcctgtct	catgtatttt	cttcatttcc	480
catttggaat						490
<210> 166						
2011> E40				•		

<211> 549

<212> DNA

<213> Homo sapiens

<400> 166 gtaattgaaa atgtcatctt gcctctccct gtccccaaaa cactgagcga gtaaaagcta 60 agcetecett tetaacattt ecaaaageet tgeatgteee tggaaacaga tgtteagagt 120 gattacacac tcaccttggg aagagggtag agatgacaca atggttggcc agtgttctgt 180 ttacaaaact ccagagtgtg acataccaca tcagcattca tatctgcgct aagcctggag 240 ggaaacggtg caaaacaaag gctattcaga tctcttaggc attaggaaac agaagctact 300 gcaaagaaag gtaaatcccc agaatggatt ctaataccct caactccttg cagagtggcc 360 tttgacccca atcccgggga gctgctggat ggtaatgatt tcctgccact gttgctctct 420 cctgcattta gaatgaggtc ctaaaggcga ggatggggca tgcacagcac tgagctgcca 480 gtcagcctct cacgcgagtg ctgggattct tttcaggcaa agccacacat aaaattggga 540 aagaaaaag 549

<210> 167	
<211> 402	
<212> DNA	
<213> Homo sapiens	
<400> 167 . gggctacaag atcaatacac aaaaaccaac tgtattttt atattctaat aacagaacat	
acactcacta taagtcctgg caattccact ctttgatgga ataccccaaa ataggggtta	60
cacagaatga ggaaagcaaa gtaatacaat cagggtgtag cacataggga acatctatga	120
tactaacaat gttgcatttt tttctttaat agccaactca ggcagttaga aatatggagt	180
	240
tagtgacaat ggtttctcct ctcttctatt atcttctatt tgctcatctt ccagtgtttc	300
aacttcagtc ctgagactct cctatccaaa gctcatccct tacctgaatc aatactgagg	360
acatcatcat cttcatcagg aatctcaatt atttctgtag gc	402
<210> 168	
<211> 555	
<212> DNA	
<213> Homo sapiens	
<400> 168	
gggatgtaaa agtggcagag tttggttttc ttttaaagtt aataaagctc acattggttt	60
tcaagttcaa gattaaaata tgtgctattg atgggttttg gctctccagg aggcttcttc	120
tgggctaacc agatacaaat gagtttgata gttaagtttc tctggcttat ttttattatc	180
ataagtaaag tttggaaatt tggtcattga gtggagaaat atagagaaag aaaggaacag	240
ttttctcttt ttcctcccat ttctggtgtg aacaaatgtt aagaaatatt taccactaat	300
catttttcta gtgctactgc acggagcatt gttctgttaa aacaaacaaa aattcccacc	360
atcccagtct tgttttggtg aagttcaggg gagtaagtat tatttgtttt tctgtaaaag	420
acaacattgt agagataggc atgagtttgt tttttaaaaa ttgttagtgg tagtagtatt	480
aagccactgt ggtctctttg agtgttgtag agagettil	540
aaatagaaat gtaat	555

<210> 169

<211> 543 <212> DNA <213> Homo sapiens

. <400> 169 ggggccagct ccatacagca gtgcaggaca ggcagggcgc ccagccaggt gtacgtcctt. 60 gtgtccatgc atctttggca caggttcacc aggtacagcc gccagctctg aggtatccca 120 aggatgtggc ttaggtcacg gtgaaactca tctggtgagc tggcatctga ggttaggagg 180 tgacacaacc agtccaggct gccttctaat aaaagctcaa tttttttcac tacaaaaagg 240 acaatcaggc ctgttttcag tttactcctc actgggcagt ccacaggcaa aaaqtccqtg 300 ctttttccgt ccggcaatgg taccacgtgt tttttcagat gttgccacag gtatctcttc 360 acctetttet ecetgtactg caaateggte cacagetgtg cetgteette ataaateata 420 ggctgttgca ggacaaagca aaactgctcg aactggtga agaagctgtt caggttgatg 480 gtgtcccagg tctgcaggat gctgaaggtg ctgtccagca tgagcgcagc ggcaatctgc 540 ttc 543

<210> 170

<211> 601

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 170
gggtatcaga gaaaggagtt tctgcagttc aagactgagg acaatatttt acaaaattgt 60
acatctctgc tgtcaagaaa gacaatttat aaaggtctga gtcatgtttg ctattatttc 120
acttctcata tttctgaaat tttcaggaaa aaaaagtaga aaaaaactg cacctcaatc 180

tgtctgtaag	tttctattac	ttacttccca	gatcttcaat	ttgaggagat	gtcccccatc	240
ttactgagac	tctccagcca	tattcacaaa	cgtttctcag	cttttgattt	ctttttcagt	300
gtcagnnnnn	חתתתתתתתתת	nnnnnnnca	cttggataca	attatagaac	agaatataga	360
caatatgaat	aaccaaaaac	caaatgttaa	aaaaagagga	tccattttca	taacttagtg	420
cagttgagac	ttaagttgtt	ttcacatagg	atggaattaa	gaggaaactg	ggttttctca	480
gtacaacttt	ggttccctca	agatcatgta	aaagctagat	ggtccccaca	gaattcagaa	540
agctttcgga	tatgcatgtt	ctaataaatg	tctttacatt	tttgatggac	cctggcgctt	600
С						601

<210> 171

<211> 696

<212> DNA

<213> Homo sapiens

<400> 171 gggaaaccag acacactgac aggagcagtc actgttcagg gtgcacatac agctggctaa 60 gagaateete acceagtgtt gacagatett tagattteae caaataaatt agaaatgeag 120 atttttatgt aaaaattcca gaactttaaa tgttggaaac taattacaat gaaaatgctg 180 tactggtcag tcactgccag accaattgac aagtcttcag gccaggtaca gctggcaggc 240 tcctaccgta taagcctaat tttactgaaa caatgtgatg ctgcaatgag ttagacacag 300 aaatgaacaa caacaaaaat acaagaaaag gtaacatttc atatctatta gtactgttag 360 aattactgaa aagatatcaa gaaaattaat ggatttgaaa aagggtcaat aaaatccaga 420 tatatcaaaa attaaagaaa ttaaggatat cagagatagc actgtgaata tgatctgccc 480 ctccaatata aacaaaggca agttctaaaa acaaaagaac atctcatgaa aaagtactta 540 tataccaaag agcactaata titttaagaa aaaaatgaaa attctaaaag aaatggtcag 600 taaacaatct tagaaagatt aaaaccaaaa aatattcgac aaaaataaat ttttaatcag 660 atacttggtt agaattttta aaagtgttca cacata 696

<210> 172

<211> 413

<212> DNA

<213> Homo sapiens

<400> 172 gggtaaagaa gcagtggctc ccaggggccg tccatgttct ttgcccactc tqaqaqtaqq 60 cacctcctta catcatgtgt cctagatgcc ttgcttgcct caccctagtc ccaqcctga 120 ttttcatttt caaaaaaaaa tcagaattat tcttaaccaa tgttatctat tgactattat 180 gaggacatga tcctctgaac aatcaagtga ataaatcaat cctgtttcat caggtaaatg 240 ttcaagtgaa tggccaagca tttctagggg gtcacaccag ctgttttctt tccatatatg 300 caatttgcgg aggcctttgc atgtgtatat atgatgtaag ttggtagtaa atggtttctt 360 agaaaatgat taataacatt agatttgttt tactaagctt taatttttac ttt 413 <210> 173 <211> 512 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> ()..()

<400> 173 ggggaatttg aaagtagtat tcattggaaa gagactccaa gaaaatactc gaagacatca 60 120 attgcagtgt gattttcttt ccccctttaa cttagaggaa cgaggattat acagaaattt 180 gaagtaagtg aaaaatcttc ctataaatct aaatgcagta ggtnnnnnnn nnnnnnnn 240 nnnnnnnnn nnnnnnaagt gecatetgte tgageatgtt teetgaggat ttgttgaett 300 cagtcattgg aaaattcctg ccagcgtttg ccagttactg cagccattcc tgtagatacc 360 cttgggcata tttcttgggt tgagaaggat tgtacttttt tttttttta aaggatttac 420 tttatggtag agaaaggttt aatactaaca atttgattaa tataacttag tacattctgt 480 ctaaatgtta gcacttaaag tcttggaatt aa 512

<223> "n" is a single nucleotide whose identity could not unambiquously

<210> 174 <211> 583 <212> DNA <213> Homo sapiens <400> 174 gggctcgggc agcccaggcc atgacccgaa acaatgaact acgtgagtaa ctgcagacat 60 gatgtgtgga gtggtcaggg aagtgcagaa attggtggat cctcctgaaa gcagacctaa 120 tgactaacag cccagggtgc taccaaagag ctattcatat gagaatttca aatcccaaga 180 gtgatcagaa agtaaacaga aaactccccc tgccccaaat atggaccagt agagaggtag 240 300 tttcttgttt tgttttgtta atgtgggatg ggcctgtaag gtggcctaag acactaccaa 360 tttatgagtt tggctaaggg actggaaagg agaagagtgc ctttgcagaa agcaggagct 420 ggaacaaaca cttatgttta atattgctcc tttacaggtc gccagcaaaa gaagagataa 480 cactgcattt ccctttacca actagcgctg ggagcactgg acacttaaat cctcatctgt 540 cctcctttcc tgtaaataaa agcccttcta tccataaaca aaa 583 <210> 175 <211> 478 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> ()..() <223> "n" is a single nucleotide whose identity could not unambiguously <400> 175

aagaagaggt ctttaacact tactctcaat tcatgtactt atctcatgat aggctggaag 60 caaacaaacc tccctcttct gtggctgcag tatttctcat tggacagacn nnnnnnnnn 120

180

nnnnnnnnn nncatgettt gttaatgtta acatactact getgetttta acattteatg

aatttotgga acattotatg ggagtaacat aaaatgttot atactattta actacaagca	a 240
aaaatagagt atgaagcttt tcagaatgac aactgtcaca attatgaact aaaactcaga	300
gagggtcacc cattagtttc cttggttaca tccattgtaa aagaagcaag atcaaatgca	360
ctggatcaga cacacaagtc ctacaataag tgtccctgaa ataacctaaa tataattgta	420
aatataaaag aaaaacaaaa ctccacattt aaaatattca agataaagag aattcgga	478
<210> 176	
<211> 629	
<212> DNA	
<213> Homo sapiens	
<pre><400> 176 gggacgtgga agatgactgg taaaggtaac tggttcacgt gtaggttttg taaggaaaag</pre>	g 60
cactgtagac agtccaggca gacaggcagg gctacccagg gagcagagac aatggagcag	120
tgcaaggetg cctgggaacc tggctatcca gagcgacgec ctgtctagaa ctcccaccag	180
ttccaccgtg agcagaggag atttatgcaa gaaaaagcaa aaaaatttac caactttggg	g 240
cacatectat ttgactectt atgteagaet gttetacece ceaagaaate tgagaattge	300
cattgtaaaa aaacacttca aaacattacc tgatactatg agaaaactaa gtgctgacaa	360
atcttatttc caggtggtga atattgttca acccacatat gataatacta ataatcataa	420
aaaattttac caataataca atggctatgc aatttttaaa aattctttga tttaaaaata	480
aagttgaaag catcatgcca gaagacagta aaagagttac tagtcttcaa aactgacaaa	a 540
caaggaagat attaacaagt accaggaaaa tcaaaacagc attgttcact tctaaaaagg	600
aaaaataaat tatactaaaa ttattaagc	629
·	
<211> 547	
<212> DNA	
<213> Homo sapiens	
<400> 177	
ggggagtctt caaatggctt caatacacca ttgaagtaag aaatggcctt cagtttccaa	a 60

ttttatggct	atatgggacc	atgctgtcca	accccaaata	gtcaaaatct	agtaagacca	120
aatttaatat	agtacaccca	aagaaaatta	ggaaaactta	aaaataagcc	agataatatt	180
cagtgatagg	acaccttttg	ttttaacatt	accgtgttaa	acatctatcc	ctctattgtg	240
ggtatatgtc	cttgctctca	cactactctg	tgtttctcga	ggtaagacag	ctagtatttt	300
attcctgaat	agtgcctaca	ctgagaattt	atagaaagga	cagcaaaatt	atttgaaaca	360
tgaaaaatgt	tttaaaatga	aaatagtaat	tcaccataac	aagttctatc	acagttaata	420
taaattgagc	accccaatct	aaaaattcaa	aatccagaat	gttccaaaat	ctgcagtttt	480
tggagcagtg	acataacgcc	atgagcagaa	gattccacac	ttgatctcat	atgacaagtc	540
acagtca						547

<210> 178

<211> 675

<212> DNA

<213> Homo sapiens

<400> 178

	gggtgttcac	acatttgagg	actgaatgcc	aggagccata	ttgaaaaaat	catttgatac	60
	tggagctgaa	agccacactt	gttactcaac	actcccatta	tgctgaaaaa	caaacaaaca	120
	aaaaaaacac	atttacaaaa	catttagaaa	gaagaaataa	gcaattattc	tctttttgca	180
	ctaatggaac	aggtctctct	gaattatgtc	ctgtttcttt	tctgccagca	ataacaagca	240
	gctagattgc	tactcacaga	gaaccatttc	cagtacagct	ccacttaacc	ctctctccaa	300
	aagtcacagg	atctcaggaa	gcaggagctc	ctgctgtgcg	gcaagaagaa	agggaacaaa	360
	gacttgtaat	atggcaacgg	gaatggaaag	agcaatcgga	cagacaatag	agccaaatgt	420
	tacatggaga	ttttgagtct	gggcaaccaa	taagaccacc	gatagcttta	aaataaagga	480
i	aacagagaaa	agaagggaag	cgcttggtga	aaacctgtga	tgggttcaaa	tttgacatag	540
	ccaattactg	aattcggggg	tcaggaaaaa	cctcagtttg	atcaagagat	caaaaacctc	600
ä	agtttgatca	aatttctagt	ttgatctctt	actttactga	taaggaaact	aggaaaatga	660
(catggacatg	aagga					675

<210> 179

<211> 684

<212> DNA

<213> Homo sapiens

<213> Homo sapiens

<400> gggaaga		gaaattaaag	tcagacagga	aaatacagga	tatttgactg	gtattttccc	60
agattco	caca	ccaggctgta	gccactgggg	aagaaggggg	ataactggag	attgggcaaa	120
tttggaa	acct	caagagatgg	caaagatcag	aatcaaccaa	agccttcttt	taaaattgca	180
tttcctt	gta	ttttaaagt	aacttaagac	tgtgttctgc	aťgttctcac	tgaccacata	240
aaacctt	gag	agatcagagc	tgcagaccag	cagccctgta	aattcactgc	tgattgtaag	300
caaaagc	cagc	tagetgaete	tattactgta	gttacagaaa	tatctttaca	aataatgcag	360
tgcagaa	acaa	taagacaaat	gatgccaaga	ataaagggcc	cctccttgaa	accagagggc	420
ctctgca	aggc	ccaaagagga	cagaaggcaa	tta@gactta	ggtgttgggg	ggaatggaga	480
gaggttt	tct	tattttcctt	ttctgccatt	gctaattttt	ttaatgtgta	tgcctgaggg	540
tgagaat	cag	gagatttatg	cattaggtgg	atgccctcct	ttgcaaaatg	gacaaaagag	600
tcagctt	gcg	gagcagatta	gatggaagag	gccaaagagc	ccaggggctt	caagctccaa	660
ccaaatç	ggga	aagcaatgag	tggg				684
<210>	180						
<211>	532						
<212>	DNA						

<400> 180 gggtgatagt agccaccaga tgcaaaatgc ctcaaatttt agtcaccaca tggaagagaa gaageetetg acetggaaca ectageetgg tetatagatg aacaagaaat aaacttetgt 120 tatgtttgaa cattacagat ttggttctgt tatagcaagt tagcttaccc tgactaaact 180 gttgcctgtc tcttggaagg tgtgccctcc ttccctgaaa gtgacttttt catacatgta 240 300 atttatattt taatccatat teteegaage atatccacat etattcaact gtttccatgt tttccaccaa cagaaacctc atataaataa atatatatga aggtttattg cattattcaa 360 ggttctttaa aattttattg aagtatagca tatataccga aatgtgcaca aaaaatatac 420 480 actatctata tacacattat aaataacaca tatatctgca gaaatttaca atgctatcta catctggggc attecettee tttctacttt ttctcatttg ctatttttc ag 532

```
<210> 181
<211> 572
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> ()..()
<223> "n" is a single nucleotide whose identity could not unambiguously
```

<400> 181 ggggagcggg ggccaaagct gtgtggagga ttgcgtggtt gtttagtttc aggtaagcca 60 gtattcctag gaccaagttc atagcccctt ctcagtcctg tttttcctga ctctgcctgt 120 ctatggattt ttcatgtcaa cttgccccaa gtgcaaaggg tagttgcctt gacccactta 180 acceagggge teagagagae acteeacegg geteaagget ggggtetggt ateeacettt . 240 ccactccann nnnnnnnnn nnnnnnnnn nnnnnnnnn nncagtgtat aagaatggct 300 gtaacaaaaa cccagccatt atccagaact tgacctctga gaactcatgg cctagaaaat · 360 420 aacagagaaa gtaaacctaa ctaagcctgg tctccctagc agcatgggtg ataagcagac 480 atttttatca tcaacatcat aattccaact gcctgccttt cccatagcca tgagagtgtg 540 gattaacagg gcaacaggtg gtgctttggg ag 572

<210> 182

<211> 547

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

ggggcaggga aacaataaca ttttctcagg taacaaacaa accccacage ttctttcata 60 tacataaaat aatttactaa acaatttaac ataatagaaa aaggtcatac ttcattaaca 120 gcaccaaatt tgaacatgtg atgttgtaag tctaaagagt tctttgatct aacctttggt 180 ggttnnnnnn nnnnnnnnnn nnnnnnnnnn agaggaggag tagtagattt ctcctctagt 240 tcttctaagt tcttctcctc cacttgtggt ttcagctctt cagtctttgt ttcagattct 300 ggctcaggtt caggttcatg agaggattct tccaaaggct cctctatgcc attactacaa 360 taaaatattt agttcacttt ttagtaggag ttcaagtaag aaaaaattca atttctctct 420 aatccaatgg gtgtaactag ttatatgcca ataacttgtt ctagatctac aaagtattca 480 aagcaaaatt ccaaaaaagag ctattagaca gaaggaataa tactctcaag tagcagttct 540 ttaatcc 547	<400> 182						
gcaccaaatt tgaacatgtg atgttgtaag tctaaagagt tctttgatct aacctttggt 180 ggttnnnnn nnnnnnnnn nnnnnnnnn agaggaggag tagtagattt ctcctctagt 240 tcttctaagt tcttctcctc cacttgtggt ttcagctctt cagtctttgt ttcagat;ct 300 ggctcaggtt caggttcatg agaggattct tccaaaggct cctctatgcc attactacaa 360 taaaatattt agttcacttt ttagtaggag ttcaagtaag aaaaaattca atttctctct 420 aatccaatgg gtgtaactag ttatatgcca ataacttgtt ctagatctac aaagtattca 480 aagcaaaatt ccaaaaagag ctattagaca gaaggaataa tactctcaag tagcagttct 540		aacaataaca	ttttctcagg	taacaaacaa	accccacage	ttctttcata	60
ggttnnnnn nnnnnnnn nnnnnnnn agaggaggag tagtagattt ctcctctagt 240 tcttctaagt tcttctcctc cacttgtggt ttcagctctt cagtctttgt ttcagatctt 300 ggctcaggtt caggttcatg agaggattct tccaaaggct cctctatgcc attactacaa 360 taaaatattt agttcacttt ttagtaggag ttcaagtaag aaaaaattca atttctctct 420 aatccaatgg gtgtaactag ttatatgcca ataacttgtt ctagatctac aaagtattca 480 aagcaaaatt ccaaaaagag ctattagaca gaaggaataa tactctcaag tagcagttct 540	tacataaaat	aatttactaa	acaatttaac	ataatagaaa	aaggtcatac	ttcattaaca	120
tettetaagt tetteteete eaettgtgt tteagetett eagtetttgt tteagat et ggeteaggtt eaggtteatg agaggattet teeaaagget eetetatgee attaetaeaa 360 taaaatattt agtteaettt ttagtaggag tteaagtaag aaaaaattea atttetetet 420 aateeaatgg gtgtaaetag ttatatgeea ataaettgtt etagatetae aaagtattea 480 aageaaaatt eeaaaaagag etattagaea gaaggaataa taeteteaag tageagttet 540	gcaccaaatt	tgaacatgtg	atgttgtaag	tctaaagagt	tctttgatct	aacctttggt	180
ggctcaggtt caggttcatg agaggattct tccaaaggct cctctatgcc attactacaa 360 taaaatattt agttcacttt ttagtaggag ttcaagtaag aaaaaattca atttctctct 420 aatccaatgg gtgtaactag ttatatgcca ataacttgtt ctagatctac aaagtattca 480 aagcaaaatt ccaaaaagag ctattagaca gaaggaataa tactctcaag tagcagttct 540	ggttnnnnnn	nnnnnnnnn	nnnnnnnnn	agaggaggag	tagtagattt	ctcctctagt	240
taaaatattt agttcacttt ttagtaggag ttcaagtaag aaaaaattca atttctctct 420 aatccaatgg gtgtaactag ttatatgcca ataacttgtt ctagatctac aaagtattca 480 aagcaaaatt ccaaaaagag ctattagaca gaaggaataa tactctcaag tagcagttct 540	tcttctaagt	tcttctcctc	cacttgtggt	ttcagctctt	cagtctttgt	ttcagatţct	300
aatccaatgg gtgtaactag ttatatgcca ataacttgtt ctagatctac aaagtattca 480 aagcaaaatt ccaaaaagag ctattagaca gaaggaataa tactctcaag tagcagttct 540	ggctcaggtt	caggttcatg	agaggattct	tccaaaggct	cctctatgcc	attactacaa	360
aagcaaaatt ccaaaaagag ctattagaca gaaggaataa tactctcaag tagcagttct 540	taaaatattt	agttcacttt	ttagtaggag	ttcaagtaag	aaaaaattca	atttctctct	420
	aatccaatgg	gtgtaactag	ttatatgcca	ataacttgtt	ctagatctac	aaagtattca	480
ttaatcc 547	aagcaaaatt	ccaaaaagag	ctattagaca	gaaggaataa	tactctcaag	tagcagttct	540
	ttaatcc					·	547

<210> 183

<211> 525

<212> DNA

<213> Homo sapiens

<400> 183 ggggtgaagg tggtgttgga gacagttaca gagcttaatg ctttttgctt gtcagtagta 60 ttcttaatcc acagtaggat gacccactgt tcttccagtg aaagtttaat gaaatatgtg 120 tcaataagcc atctttcct tttaacaatt agattgttat agaaaaataa gtgaagacta 180 aaagtcccag aaaacagaca catcctttct actacataag ctcagtcaaa gacattatca 240 tgctacagct agcgggttta aatattaacc acttaggaaa aaaaccaacc atatagggca 300 atattaggat tttctgtgaa tgaacaatta aaaaaatgca aactctagaa ataaagcagc 360 acacaaaagt tacatactaa cagtatcctt tgggtatttg catttttgct ctctacttta 420 aacttttagg aaggaaacaa gacatattaa aggactgtgc ggcttcagaa aagagtgggt 480 taagagcctt agaagatatg aaaatagttt acacaccaaa gatag 525

<210> 184 <211> 733 <212> DNA <213> Homo sapiens <400> 184 gggttgttgc tttttaaagt tataccttta acaaagctgg aggttttttc tggagacagt . aatagatagc aagtgctctt ttctttaatt ttcctatgat attggctaga aaatggagtt 120 ttgcaaatct gatccacgtt ttagtttagc catctttgct ctgctacctc tctgccatca 180 tctactaagg gatataaaat ttcccaaatt tttcttttt taaagacagt tataaaagag 240 ttttaaagtc gcataatagt gctcttcaaa tacttgatga actgccagag tacaaaagga 300 ttaggtttac tcataggacc ccaaaggata aaattaggac taacggggaa agagacctaa 360 caaagcacca aaacctagaa gctggactaa actgacttgg aaaagaaaaa acctatgtaa 420 gcatgaatga gagaattact tgataatggt actgaaatat ccatgcactg tatgattatt 480 . tggactaaat ggccttcaag gtcccattta accttgagat tccatgagtt tctgataata 540 aaccttaata catgtcattt aatattgatt ccacttaaaa gggaacatgt tatgagatta 600 gggaagtcac caatcacaca atgtgacttc aaaaaaatta gaaacttctc tgtataaaaa 660 tgagaaaatc tcaaatgttt agaaaccaaa aaaatgagaa tgaaatcaga tgtgaaacag 720 atttctattt gca 733 <210> 185 <211> 553 <212> DNA <213> Homo sapiens <400> 185 ggggatatcc caagatgagg aaggtgaagg acctgaggca gagtccaggg cctggtggag 60 gctcaacaaa tagtcgtttg ttcccctgaa tgatgagaca ttttccaggt ggacaagagg 120 ggaattaggt gtgtagagac aaaggagata aagctgcaca tctgggtgac ggtagtgaag 180 gcaggataga gaaaagcagc ctagtggcaa ctttttcaca ggcatggatt tgtctacatt 240 aaaatcagtt tettgaaaca teatttttgg aaatgeette acagaatgaa acacaagtgt 300 attactggtg tacacaactc caacatatag aaaggtgtcc cctccccatg ccaacccctg 360

ccacaaatgg	ctgccagact	ccctaggcgg	acacagecae	cagctcacac	tgggatcggc	420
aatgcgtgct	gctgctggac	aactttccag	gaagccactc	cagtgacagc	ggtatttcaa	480
aatgcttttt	gctgttgcag	tctcagctag	gatcttggcc	ctcaaggaat	ggatttgaca	540
atgtgcaacc	cta					553
(010) 100				•		
<210> 186						
<211> 564						
<212> DNA						
<213> Hom	o sapiens					
<400> 186 gggtatgatg	ggagggtgta	ttttcagga	taggaaagga	gtagaggggt	aaaagttgga	60
agtagcaggg	tgagagagta	ccaagatgtt	tttcttacgg	ctacttgttt	cttattttga	120
acataaagtc	aaattataca	aacacatttc	gacaaggagc	tataactcaa	gtatgcggca	180
tgttgctatg	acttcataaa	actacagaga	ttaaggaatt	cagaatccca	tggaaattct	240
taaacagagt	ttggacatat	gttgtttgat	tttcccttca	gcaaactggt	aaacattaat	300
cttgctaacc	accatattgc	ttatcccgtc	ataaaatttt	aaaaggttct	tttttgaaaa	360
gtctaaaggg	aaaaaggtaa	cttgcaaaat	aattccacaa	actatataac	taaaaaaaaa	420
aaaccccaaa	aatgtatgga	catatgagtg	agtagctctg	tatatattca	agtaatccaa	480
gcagtgtcag	gctttctcac	ccgctgaaac	tccctgggaa	ggtcaagcat	tcagagaaat	540
caggtcagat	tacactgaaa	agaa				564
<210> 187						
<211> 525						
<212> DNA						
<213> Homo	sapiens					
<400> 187						
gggagattga	caagaaaaat	gaaaaggtaa	gtttgggagc	atatgaaatt	gtatgcaaga	60
ctcttaatag	aatgacatat	aaggataatg	cttttctgtt	tcataagatt	gtatgtatac	120
ctctcattta	aacaaaactc	agaaaatctg	aattaaccat	agtggatggg	tggtaaaagt	180
ttaactgagt	tgtttttgtt	ttttaaagg	aaagttgcat	caccaaatat	tttaaacatt	240

getgtggcaa tactaaatat teattataee aaaaacaatt eatteacaae ttgaacatet 300 tgtgtaagtt tteagatata taacatatat aeettttatt caaaaacaga aetgtggaat 360 tgtgttacet ttgttagtaa gacacateta geatgaaaae ettageaaaa tegtteagtg 420 atgtttagtg ttgaaataga tttetgttgt gttggaaaca taattgteta tttactagae 480 atagattaae tteattaae aaaagaaaat gtgggeeagg tgeta 525

<210> 188

<211> 619

<212> DNA

<213> Homo sapiens

í

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 188 taaaaaaaca tatgaaagta aaaaaaatct atgattaata ttctcataga gataagagaa 60 acatattcat aagcaagaag aggatataaa agttacattc agaaaacata aagcgctctt 120 gcaaattaaa aatgtgatag cagaaatgaa aaaattcaac aggcaagcta gaagaaggtg 180 tataatcatc tcagtaagta gagcaaaaac acaagagaga aaaaacgaga gaaagggtta 240 gataattaaa ggattaaccc aggcggttca atagctaaat agttcagaaa gaggataaag 300 360 aagatgaaaa tttcctaaaa ctaaagctag taggcattca gattttaagg gtgtgctaag 420 tgccaagcgc aataaaacaa aagaaaagaa caacaaaaaa actccttctc ataccaaagc 480 acagcagcat gaacatggag ataaaaagga cctaaaaggt cccagaaagt gaacaagtta 540 ccaacaggga gtgggagtcc acatgagaga tgtcagcagc agcactggaa gccacagggc 600 atggagcaat gatttcaaa 619

<210> 189

<211> 593

<212> DNA

<213> Homo sapiens

<400> 189 gggggtgaat agagcagggg caactgaagt tggctttcta atccaaacaa ttaqattaag 60 tgacagtgaa cataggaaag aacaaatatt tgctcagcct actgttaggc tctttqccaa 120 ctgctcccac gtggagactt agaaagccaa gtccaagaag gcgagatgat gccagacagc 180 tgcccagcaa gccctggccc caggtgctcg caaattccct ctctttgcat gggcagtatc 240 ctattccact ttgggaaaaa acaagagaaa ctgagaaagc caagggtatt ctgaagtatt 300 agaaagagat tagcactgtt taaccacaaa tgacaggaac tagggagaga ggaaqqccta 360 agagccagga tattctggca ggtactgtct taaaaatcata cattaaccag gtgctttgct 420 tctcaggtac taaatccatc tgggaacaca tacatcaacc taaaggccaa gtctctagag 480 atcccttccc aacgagettt ttctacccca tgctcccagt acacatgcaa aggettttgc 540 ttccactggg gaaaaaaaac aacaggaaac tcaagtagca ccgttccaca gca 593

<210> 190

<211> 535

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 190
gggggacttg gtggggaggg ccttcattca cttttgaaaa accagttact taattggata 60
ggcagccttt ctcatttaaa ctgacttttg tttcaactta ccaaaaaaga gtttactttt 120
aaacctgttt acttttacac gnnnnnnnn nnnnnnnnn nnnnnnnnn aaaatgtggt 180

cttctggtca tgtcgtttct taggatactc aggggaagcc agtcccatc tatatataat 240 agtcactgta ctgaaatgta aatttaaatc taatggcgaa ctagttaagt aacatttaa 300 tgaatatccg aagaagatgc aacagcaagt tagtttgata tcatcagaat ccaggtaaaa 360 agaaatacct gagaatccag caattattat taacaactct tttcccaatc ctttaatatt 420 tctgaaagaa taaaaataaa ctcttagcaa tggaaacggg tacccaagat aacagggata 480 gaagaaaatg tactcttacg agtctctgaa ttttgaatta tctcaatgta ttaac 535

<210> 191

<211> 614

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 191 acttttttga ttttcagaag caacattgag caactatgac cctgggatag gacaaatttc 60 ttaaaacata aaaataactc acgtttgaaa atattaaatt ttgtttacaa aaaaacccaa 120 agtgaaaagc tacaaactgg atgaagatat gtgcaagaac aacaaaaaa caacaaaaat 180 atcaatatcc taaatacaaa aaactcttaa ataagagcaa aaacagaaaa ataaaagaca 240 tcaagacata tttcacagaa caggaatgac taataaacat gaaaatgttt ttaacttatt 300 aatcagaaaa atgcatgttt tottttatag tgaagtgagt gctgtcacat tcataaggaa 360 aatgcaattt aaagccacaa taaaatacca ttttacacct aacagattgg aaagaattgg 420 gtettatgat agcaagtaaa taagaaacca taennnnnnn nnnnnnnnnn nnnnnnnnn 480 nnnnnnnnn nnnnnnnnn nnnnnngtta aaaagctgat caggcacatg ccttacaaac 540 caccaacttt gaatctaggt ttatatgcta aagaaactct tggacatgag caccaaaaaa 600 ttggatatga atgt 614

<210> 192
<211> 621
<212> DNA
<213> Homo sapiens

<400> 192 ggggtctgga agagttaaaa acagctcaca ctgaccaagc tggttctctc tagtgaacag 60 ggtgtgggtg gtgcttatgt cagcagccca gggccatgtg tcaggggtgc caatgggcgg 120 agetgetggg etegatteet gtggtttgge accaeagett gaettgettt ggetttgatt 180 cttttcacac actgagetca ggttctcact gtctccttta cctcccacct caactcacat 240 ttaccaagee teactgtgga ectggetaca gggatgggea gagtgttagg geateaceee 300 gggtcctgga ttgtgtgagg gcgttacctc ccaagagaaa cctgcttgca accatgtgcc 360 aggecagetg etgtgagaaa eeettetett agtecagaga agtttgtgea etttaettae 420 ttagactete ettttetete tetetettt ttttttttt tttgagatgg ggteteetgg 480 cacttgcttt tcttttaata tagaaataga tattgggatg ctatatgcac atattaaaat 540 atatggatgt tgaagagcaa gaggaaaagg agaaacttga gtaaagaatg cttggactgg 600 gccaggcgcg gtggcttcag a 621

<210> 193

<211> 481

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiquously

<400> 193
gggatggcga ggaccaaact caggacaccg agcttgtgga gagcctacct ggagggcctg

tgcgt	ggagt	ggctccgcag	atacctggag	aacgggaagg	agacgctgca	gcgcgcggac	!	120
CCCCCa	aaga	cacatgtgac	ccaccacccc	atctctgatg	tgtctctcac	agcttgaaaa		180
gcctga	gaca	gctgtcttgt	gagggactgn	nnnnnnnn	nnnnnnnnn	nncccctttg		240
tgactt	caag	agcctctggc	atctctttct	gcaaaggcac	ctgaatgtgt	ctgcgtccct		300
gttago	ctgt	ctcaacttta	tgtgcactga	gctgcaactt	cttacttccc	tgctgaaaat		360
aagaat	ctga	atatcaattt	gttttctcaa	atatttgcta	tgagaggttg	atggattaat		420
taaata	agtc	aattcctgga	atttgagaga	gcaaataaag	açctgagaac	cttccagaaa		480
a								481
<210>	194							
<211>	722						\	
<212>	DNA						,	

<213> Homo sapiens

<400> 194 agaagcaagt gatgttaatc aagagaatat atttattaca aagtaaaaat tcagacaaaa 60 ctagaattca atcaaaaata tttagatgta agaaagtcat tggaaaaagg agtatgtgtt 120 aacaaaagac tttttaaaat aaatcggtca ttaaacgtct tagtattgtg caactctaag 180 aacatgtgag aataagaaaa aaggaggaaa acaatctttt aaaaccatgt cagatgatta 240 agctagcaaa cagtgaatca tgtctagtta tattgcattc aagttctagc tcttgttagt 300 catttatttt aaattaaagc atcaaaggag ttcaaaagtt gacatgcaca caaaaaaatt 360 gtgggaactc agcccagtta cacccactct acattaccta agatatgagt gaagcaggta 420 ccgagagtct taattaatgc ataggtatga ggcaacaagg aattcttaat tatgaagact 480 gagatgcaaa aaagcaaaaa cttagccaaa atagttcact ataaaatatc tacataattt 540 ggaaaagggt ctctttttt ttttttttt caatatatag tggttttaat tttcgtttac 600 tacatccaaa gtaagaaata tttttacatt ataacccaac aaacatttca tgaaacatta 660 tttaccttta ctacatgtta tagatgtgta tgtttcctat ttcttccttt ttttgtttta 720 tg 722

<210> 195

<211> 451

<212> DNA

<213> Homo sapiens

<400> 195						
gagccagcgc	accacaccaa	gtgacaccag	catggcggct	cctcgtctgc	cgtcatgcgc	60
tgataacaga	ggcgttagaa	ggctttcctg	taaacgcccg	acagagatta	ggcatgagtt	120
tggaatgaga	tcaacaactg	aagtaggggg	tttgtttgat	tttgctccca	aggaaaaaga	180
aaagagcaat	caatgtctgg	ttccaggact	gtcagacaaa	agctccttca	agccactcag	240
ctggccttgc	aggaacacag	gcacctgagc	ccggctgctg	ctgcagctca	aggtccctct	300
gggtcacgtg	ggagagggat	tctgtaccca	gaaagtggca	gaggtcctgc	agttggtgac	360
agatgccaca	aagagagcaa	actgtgccca	aggaaataaa	cacgtaagtg	aggtttgttc	420
ctaattctgc	gactttttaa	aaagccagag	t			451

<210> 196

<211> 457

<212> DNA

<213> Homo sapiens

<400> 196 ggggtccctg atgggaatgg cgggaaagaa gcccagggaa gggatgtggg ggaactgggt 60 gctggagacc aaaggctcca ggcctggaag ccttggctgc aaaccgggga gctgggtgat 120 aattactgac acttgggctc atcctgaggt ccatcagagg tgcccaggca cctgacccta 180 aaacaggcag cgcttcatcg gctacccgag agactctcca gtttcagaga ggattccagg 240 ggcctgagca cgacccaaat aaatgagagg ctaacaccag taatccccga gctctctcgt 300 tececaceca ggeetgetet ecetgteeca ggeagaaaca gggacagaeg aggeagtgge 360 ggggcaggat ttgtgagtgc caagcacttc gtccccctca cactggatct cagcaaccac 420 tgggtgggta caatggttgc atctttctt ttttggg 457

<210> 197

<211> 469

<212> DNA

<213> Homo sapiens

<400> 197

PCT	/GB01/03
gggetttggt getaaactga gttgaattee aageetgttg geeatteeca geattgeeae	60
tgctgtgtta gttttctcat ctgtaaataa ctgcctacat ctcacagggc ctctaatagt	120
taaatagatt gtaagctgca caagcatagg aacagtccat ctttactctt taaataggtt	180
tttggetttt ettaattaca tteattttea aattetttaa aaaaaagaat geattggtaa	240
tatgaagaga tatgtatgat atcacagtac aagagcaata caatgttatt taaaaaagta	300
tgcttcatag aaacctttaa ttcaataggc ttttaactga ttacaatgat atttagtaga	360
gtaattgtca gagagatgtg taatgtacta actgagacat gaagtttata agggccatgt	420
cacatgttta atgtgacatg tagagaaata tttattttaa aacttggtg	469
<210> 198	
<211> 512	
<212> DNA	
<213> Homo sapiens	
<400> 198	
attgaatttt tottaaaatt otoatggoat tttttccaga agtcaattct tgcttgtttt	60
agtgaccact gttcaatgtg ttttagggtc tgcatttcct gtgttatctc tttaataacc	120
aagttgtcca caggtaactc agctaattct gctaccctcc tggccaaagc gaattgtcca	180
totgtotgoa gtotttocaa aatagatota cattoatgot gaagattoto aatgotgtag	240
ctggtaataa ttgtatgatt aatggctatg gatgtatcct tcaaaatctg gcaaaggatg	300
caaagetttt teacatetgg accateagag aagagatget etettteaac aaagagetgt	360
aaaagettee eeageteata etgggtetta eaetgetgta geataagett caaaaggaaa	420
cacacctgat cctccagcca catggcaggg atgacagggt ggacctttgt ggctgctgtg	480
ttaagetget getgetgttt ttttttettt ce	512
<210> 199	
<211> 489	
<212> DNA	
<213> Homo sapiens	
<400> 199	
gggggggaga aatgaacttt gaaactatag ctgacatcgt tgttctttca gaggttacct	60
taatatgtaa geetgeacae tteaetetae taagttteea etgggtetga gttattetgg	120

115/265

ā	ttactctct	tactctccaa	tacaacagag	cccttggtat	acttgaattg	cccattgaac	180
t	cttctcaat	atttgtcttg	catatagagg	tttagttaca	gatttccttg	aaacatagag	240
t	ttttctaag	tcatgttctg	tacttactat	aatttctttc	accccacact	ttcccttttc	300
c	tcttgctgg	agtgcctccc	ataataatcc	tttatagagg	gagtgatggt	tgttttgtat	360
ç	gtctgaaaat	tcctctattt	tgctctttct	tttctgtaat	aggcatacgt	agatatttta	420
t	ttgaaggtc	tctgttttc	atttccaaga	tttcgatttg	ggtcttttt	atttcatttt	480
t	gaaatggt						489

<210> 200

<211> 654

<212> DNA

<213> Homo sapiens

<400> 200 ggggatgttg tagtattgta cacatgtgtt aggttgaaaa tgggccttaa gttcttctct caatgaaatg tggattccac agtcgcactc cattgctaca acagatcacc atctttcagg 120 ccagttettg tgattacatt aaaaataget cataacattg teccattace aatettttgg 180 ggaaggttac ttgactcttc tacttcattc agagcagtta ttgaagattg aatgtttggg 240 aaatgttgtg taatttcaac aacattagcc tttaattcta gggctttaaa atctgtggac 300 aagagcaata gccaaggagc aacaatttat atgctgttag ttgggctctt tcttcactta 360 gtgatctctc cgcatcttgg cagctgtctg tgactttgaa gtgcattagg tatttcagtt 420 ttttccccca tactttaaaa acgtgtaatc tcctttgtgc atttcctgtt atatcaagtg 480 tttgagttct aaagacagcc atttgttaga ttagcatgtt ttatgggatc attgtggaaa 540 atgttettae tgaagacaag caagttggca attttgeeet etttettte teacagtgta 600 ctttttcagc aaattgcttg gcagactgat catgactgaa tcatttcaat gaat 654

<210> 201

<211> 477

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 201 gggctcgggt ttgacagatt caggaacaaa ggcacctgtg tcaaaccctc gtagctcagg 60 agtgacgcga ccctgctgta cttgaggaac aaaagccaag acagaggcac acggctgtat 120 ti.cgggtgga cacagggtaa ccatctaatg aagatggaag gcatggtgtc ctagaagcac 180 actgtgatgt cctagaagca cgctgtgagt gttttggcca aaaccaaata gaggcggctg 240 ttcctatgcc tggatctgtg accccgacag ggcccctgac ctcttcagnn nnnnnnnnn 300 nnnnnnnagt ctcaggctcg gctttcctga ccacagagat ttacagaagc cccaaacgca 360 cettgeetaa tttetaaeta eggetteate tagaceagge atggaaagea agtgggaaae 420 atactctcct ctctccggtg tccacaggag acatcacaaa ttaatcatgg cactttc 477

<210> 202

<211> 432

<212> DNA

<213> Homo sapiens

<400> 202 aatgctcttc taattagata tataatcctg aagggaaaca agatcatact ttgaaacaga 60 ggattttaat aggacagaga agcagcaaag atagaaatat ctactaaaga tattctagac 120 acctaaccat ttcattccca ctttaaaatt gaaagaataa aaacgtgtta aggaaatagc 180 ttaatcctgg ggaagggtgg gctttaaaag ctatagatcg taatttaaga aagcaaacaa 240 acatttcaag cacaccaagg gcattccaaa tacccatgag ccactatcag cttaagcaat 300 aaaacattac aaatacaact caageeetge atgacteete ecagatteee ttateettea 360 tetgteetea gaagtaacca etateetgaa tttggtgttg ggttteeacg tttaaatatt 420 tttacatggg ta 432

PCT/GB01/03390

WC	02/10	198				PCT/	GB01/03
<210>	203						
<211>	464						
<212>	DNA					·	
<213>	Homo	sapiens					
<400> gggctg	203 aata	aggatagcag	acattgttgg	ccaagacatt	tttcaggaat	ttaattttta	60
gcgcct	gtgg	tcaggacttg	cacactccat	ttcttagccc	agtactcttc	tttgttttat	120
gtgacc	tcaa	ttacacattt	attttctctg	cctagctcct	gaaggcattt	gagtatatga	180
tcccat	ctca	ttctgtgcat	tgtggtctgc	tcaagcttcc	taaagcaaag	catcttgccc	240
ctgctc	aatt	atcattggct	cctcttgcct	gccatagaac	ttaagçaagt	attcgaaagc	300
acttct	cagt	ccaggtgggc	ctgttcttcc	cttgttatct	tccattaccc	tctgtaccca	360
ccttgc	tctc	ccaacaaacc	aatccccact	ctgggccccc	gattcacttg	cagtgtcctt	420
cctacc	acat	ttctatgctc	aactcttgcc	tgtcctgcaa	gtct		464
<210>	204						
<211>	522						
<212>	DNA						
<213>	Homo	sapiens					
<220>							
<221>	misc	_feature	•		•		

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 204 ggttggaagg gttattgcag agaccatttt aaggtcaagc gactgccagg ttttcagaca 60 ggcagtggtt tgtttctgta cttatctgga taaccaagga gaacaatctc agggagggtg 120 gctaaacagg aattcttttg cacctttcca cctctttta tttcttctc tctcccnnnn 180 240

gctctatgcc tgtttaatat cgtggttgct gatagcaggt tgtggctgtg tttccattat aaagttcggc tttaaatagg tttctgagat ggagacacag ccttacaggc aaagggtcct	300
aaagttegge tttaaatagg tttetgagat ggagacacag cettacagge aaagggteet	360
	420
cactttacgc ctcgtcatcc aagtgtgggc caggggtctc aggcctgcat ctgcaaacgt	480
ctccgactta gccgaattta aacgtgetet ttggagetet tt	522

<210> 205

<211> 727

<212> DNA

<213> Homo sapiens

<400> 205
gggctccatc cctaaccacc attaggcttt cttcactaag agttaaacag aaacgaaccc
tttggaaaga cctgtaccac tcctgacact gccctgctct actgtggttt ccataaaaca

accaactage attettet gataagagac caccaaccat agagggatte tgtccagtca 180

caaatcccca tettgttett teetteetea aagtgtttgt ttetagette tgaccagagg 240

caatgettee caggetgtea gtatggeace etgeatgeaa caaccettaa tgagaaataa 300

acctcccctt tccaaatcta ggaacttcat tctttagatg acagaagtta gcagaggttt 360

taaaggaaag aggtatatac agaatatgga aacattgtgt gggattgaat aaagtagaag 420

aaagtctcaa aacatattat taaaatggta actgttacat tttattgctg gtattaaaat 480

attaacataa ccatgagaaa agaagtatat gaactgcctg taaaagtctg aattagtgag 540

accacctttg gactagatgt aagcagcttt cagttttaac ctcagtttct aggctggtta 600

ttttcttctt acttttatga tgtgattttt tttcttttat aaaataaaga cctaatatca 660

actccaaaat tacaaattct caaaggaaaa aatctaaaat ttgatgtcac atttaaaatt 720 gtatcca

<210> 206

<211> 661

<212> DNA

<400> 206

<213> Homo sapiens

ggggaaattg gtaaaattgt gagaggaatt tttagggcca atctcgtgaa cttggacaga

727

60

aggcagggaa agagagcaga gtatcgggcc ccttccttct aaactgttga ttttttttca 120 aaggcacaca ggcaataaga gccgggcact ttctgaaatg aaaaagaagg caactttgta 180 tgacagatta ggttacccct ggatgagcaa tgaaattcta tgctaaaact gaataaaatt 240 300 accaatcacc atgttcctgc aggtgggata atattttcaa aacactcgct ttaagaaaaa 360 atacaaaata aaaaaatatg aaagtgaggc tataactttg acaagaatca ccttgacagg 420 aacctgtgtc tgaccatgca agaccctccc tggcttcatc ttttaaagca gattcgctgt 480 tcagatgtct cagtgggaca cagcctctaa cataaagaat aactgtcaca ctacctcatt 540 aatcatacat ccaatgattt atcatgataa ttatggtcat tgtaaatcct ttgcttttgg 600 gaggaaatga gaaaagaaga aaaatgagca ggagactaca aaactaccag aatttagtac 660 661

<210> 207

<211> 655

<212> DNA

<213> Homo sapiens

<400> 207 ggggaatttg ggaaagtgtt tttcaaattc tcattttaaa atatgtatta ctcattcttt 60 gatgatttgt ccttccctat ggttacagat gttattacag aaattaagct atagtcggct 120 gattattata tagaaaaaat tgttctattt aatatggttt aggttctcaa atttttcaaa 180 ctgaataata aatacttatt tgagactttg tggaaaaaat ataccttttc taaaactgta 240 aatctccatg ctacttcttg taaagtgtca aaggatacat gaaagtgccc taaaaatgat 300 gaaacatgca aatatttcta ttattatttc ttgacattaa ccacaaagct tcatcaggtc 360 ctaaaactca gtgagattag gctttgtttt aattcttccc ctctccccta gtcacaggaa 420 aacatcaatt aaattgcatt gttaatctaa aatacttaca tgtgatgctg caaagtaggg 480 gaaaatgeet ttaettagat taagacacae agetttaete tgagggaget gttaaaaagg 540 aaatgtatta tgcttggtgt tcatcaaaca aatcaacccc atcattacgg ccacatgtta 600 tttttgtatg gtaatgtcag ttagaagaca atgaaaaaat atgacaccat gaccg 655

<210> 208

<211> 412 <212> DNA

<213> Homo sapiens

<400> 208
gggagctggg gcgagagtca agtgggggca cctggaggcg gagaggtagg aaccatcaca 60
tgaaaagaga aaagaaagga accagctgcc ttaaaacttg cctattagcc ttcctcctc 120
tccacctccc cactcttt cgaggaccca ggagtcctgt ccccgcagtc cttccctcct 180
ccagctctgg agaaggcatt aggcaggtac tagaagcaag aagtgggtca acctaaggaa 240
tgggaggagt ggtgtatagg acattagaga gagtctccca agtgggagga gggggtgact 300
gacggaggaa cccagaatag actccaatgc cccagctcc actgggccgg cacccctaat 360
cagaggctac gcagcgtgtc tgccttctt tatgttttat ttttatttt tg 412

<210> 209

<211> 403

<212> DNA

<213> Homo sapiens

<400> 209
gggaaaaacctaagaatatgctaactcatctgaatccatgtaagaaacacaaacttgaac60aagaaggtgacaagaggagaaaatgcaagggtcaacttaagaggattattaagaggtggc120aaccttgaagaaatgccgactcctctgaaagtacaacagtcattttcagatgtttgaaat180cttgatcttcagatggagaaagcgtgtagtcacgccatctctattagtgctttctctggg240acttcagaagcagccacctcatcctctcagctgttttcaatttgaaaacatggaaaag300gtcttcaatatttattcatgtgtgttcccctttccttcacacagagattctgaaaagcca360tcatgtcttgtccttacaagaacaggcaaaggccagagtgggt403

<210> 210

<211> 557

<212> DNA

<213> Homo sapiens

<400> 210

ggggctaaga	gttgccaatg	atggccggct	caagggaccg	gcctaaaggc	cttgctgagc	60
caacaggaga	catatgctaa	acatggcaat	agaaaatgag	ttattgcttt	acatgtgtta	120
gccttgctat	gtacaaggga	ataatgggta	acacttttc	cctttttttg	cctgaatata	180
aagtcagcaa	ggaagagaat	actgagtgag	aaaggatatt	aattctttc	ttactgcttc	240
aaaatctttt	ttttttagtt	ctcatctcag	tgaggaaaat	atgcccagca	acaatattag	300
acagacccct	gttggcctac	gtaggctatg	caaagctgtc	aaaaatgata	acacactaaa	360
gacaaaçcac	aagtgcttac	caactctttt	tagaaacaac	agaaatattt	gcttgggaag	420
cttgagtgag	tggagatgtt	gaaatactaa	agaaagtaaa	tcccaaaatg	aaggttttaa	480
tagaaataaa	gtgcgctggg	catattttcc	tcactgagat	gggaactaaa	aaaaaaaaaa	540
aaaaggcgcg	ccttaat		,			557

<210> 211

<211> 534

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 211 gggagcatcc ctgctgaaat gggtgttaac tccctatctc ttgttgcacc aaatatttta 60 ttgctaccta tttttccatt gctataagtc tttgtgtgcc tatacattaa agaatcttta 120 atagtgttaa tatcggaaaa catagttgat ttctaagtaa tatgctccag gtggcaagtt 180 aacacccatt tcagcaggga tgctnnnnnn nnnnnnnnn nnnnnnagca ccggctgatg 240 tgaccgtctg tgaggggtat ccgcgcgctc ggcgttctgc tggattctgc tagacctctg 300 ttcccagcac caactctctt cagtgcctcc tacttacttc tcctcctaag aaaaacctgc 360 tctcaagaaa gggataaatt catttacttt gagattataa ggcttaatgc tacctctttt 420 gagggtcact tgctttttaa caaggtataa accttaagcc tttggtcact gacctgtgtc 480

WO 02/10198 PCT/GB01/03390 aagaacaatg aaactccacc actagttgga gaagtgtatt tttcaccatg gaaa 534 <210> 212 <211> 536 <212> DNA <213> Homo sapiens <400> 212 gggtgttttt aaataactga tttggcatta attaactgat ctcttccatt attaaccaga 60 atgtactatc tataaatatc ccaacttttt tctgatgagg aatttaatat gtacaagatg 120 ataacaaata tottaccaca tttgacttaa acagaagatg ttgctcagtt aatatacctc 180 gtaaacattg gaattggcca cgtaagcaca gtaagctgtg ctggggtttc gtggttggca 240 aactgaccca gagtcaatta ctgaacaaga ggtaatttat tttttctttg ttaaaaattg 300 tttacaaagt caacctaaac tggctgcgtg gaaaccattc agtacccata gcttttccct 360 ttgtcttgaa aaggaaaact gtcaaaacca gttttgtgaa gcaagttact ttcccagagt 420 tttctcacct tatcaataaa gattacaaat acttaataac aaaatgataa acttttacag 480 tccatttaaa aaatctatgt tagtaacaat atctgacact gtagttcact tatgaa 536 <210> 213 <211> 729 <212> DNA <213> Homo sapiens <400> 213 ggggggcttg gagagggtga tgtttttagt ttttattgtg catattattg acggtggttt 60 cettatteta atcetatetg cettetgtet ttagggttet caeagtttet ggtecaetgg 120 ggatacttct tgttttccgg tgctttcata gttgcattct gggatttgga gtgggaggag 180 gtggtggaca ctcatgctgt ttggcctctg ggtcctggtc ttcctctcct cagcactcat 240 cagactgcac taagatgatt ccgagactac ccagaattag tgaacgttag gaacatgtca 300 gaagaaggat ggaactggga gagtttgtcc tacaaggcaa aagactctga ggagaaaaag 360 aaatattgaa aagggtgata catgaagaac tagactctaa ttctgctaga actccaacca 420 gggggacete caaggggaag acacatgcag ttgatetaaa ttgatgatga tggtggegtg 480

1

tccttttata	gacagggagt	tccctgtcac	tggagcttta	ggagaaatca	ggtgaccgct	540
tggcaagagt	attgacgtgg	aagaaagctc	aggttcagat	gtgttttcga	ctggaggttt	600
atccaactgt	ttatttaaaa	tatgggtcca	aaactgctct	ggctgttgga	aatatcgaga	660
tgaacaacgt	aaggcctctg	ccctctagaa	gatcccaatc	tacctgataa	tgatggcact	720
gatgcttgc					·	729
<210> 214						
<211> 676						
<212> DNA						
	o sapiens					
12137 1101110	Japiens				ţ	
4400> 074		•			/	
<400> 214 cttcgcccc	gegegeegeg	ggctcttcgc	tcaccctccc	ccatttcctg	aaggacaacg	60
gctctatttt	actggggtcc	gccatcgtct	cgtccgccgg	tectggetet	tcttgtaagc	120
cggtagtttt	cctctccact	tttgatgact	cgtcattgct	agcagtagcc	tttcctcttc	180
atagcggagt	gatctttccc	ccaacacgac	ggtcttagtc	gggctcctga	atttcctctt	240
gtcccctttc	acctctctcc	ctttcccaat	tttgccccct	gaggcctcct	cgccaccact	300
gtggccttcc	gactggcgta	gcttgaagtc	tcggcttccc	ttcattttgt	ggtcatgacc	360
gtggcctacg	tgaagtgaag	ggcattttcc	tgcccttctt	ctagaaaata	cacggtacct	420
attaacctct	tcagctcaga	gcctgtggtg	acgaccgtcc	tactccttga	gagattccca	480
agagatccgt	ctttttagca	gagcgaggaa	agcaaacact	tactcaagat	gaccctaggg	540
gagccgtaac	ttggctggtc	taagggggtg	cggtctgaat	caggaacagt	ttctcaaagt	600
gtttttattt	atttcccaga	ațgtaateet	ttcgaaacaa	ttttgtcaca	actgaatttt	660
caaaagaatg	aatctg					676
<210> 215						
<211> 558				•		
<212> DNA						
<213> Homo	sapiens				•	
<400> 215						
ctagaattat	aaaccttact	ggatgggtga	gcatttggag	catacctttc	aaattcatta	60
ctgaaagtat	gtataaagaa	gtttacatca	gcccttgatg	tttgctagtt	tatttgtgca	120

acagaccaaa	tggatatgct	atgttactca	atttgtggcc	ttaatagctt	tatttttcaa	180
aggcactggt	tgtagaacat	aaactataat	aaggtcagca	gcagttagtg	tggcaccact	240
aacgatataa	tatgaaaaag	gggccttctc	caaatgatta	caggatacga	aattcttgcc	300
tgtaactgct	ggtccaagtt	ctcaccttcc	tgaatgacta	ctataatttt	tcccccaaaa	360
attgctcata	tatatgctta	gggtgacctg	aacgactatt	ctacttaatt	tatttacatt	420
ttattaagac	aatgcaata <i>a</i>	attaggtcta	aatattgtta	ggatcacaaa	tattacatgt	480
aaaacattta	gataaaatga	gattatttcc	aattagggga	atgtcctttg	atccttcact	540
tatgttttgg	aagcagtg					558
<210> 216						
\210> \216						
<211> 704						
<212> DNA						

<213> Homo sapiens

<400> 216 gggaaggcgt ggagctaagc cccaagaata ctatctgcct tcagggtgtc acgtttccta 60 accgaaactg ggccaagact ggaaaaagcc acaggagctg cctcatggcg gatgtagaac 120 tcactgattt attggacttt tccacatcta ggcctgcccc aagattctga cctgctagta 180 acctgggcag aacccagaag gttcctataa gtcagactcc aaaggccagt tctttcaaac 240 tgctcatctg taggaggata catgtgtctg aaacttattt aatattctac aaacacaaac 300 cgttcgccta tacatagttc attctgcaga tagtgttact gatgaccaat agaccccgag 360 tgctttaatc aatgaaatta ctgcctcggc tattacagga gactatgaac tgttgcaatc 420 ttctatccac atttcaatcg atgtaaacca gggcaagaaa aaaacaggac ccttaattat 480 ataaccggga aggattatat aacaaaggtc ctgatgcagc tttaactgtc tccgtgccta 540 cgcgggctga aagagcacac gttttcagag ggaacatgag cagcccagag ttgtgcaaac 600 catttttcaa tattggttta actaatccca cttactcacc atcgacaagt cctctgctct 660 tctaaccttg tttttccaca gccctggatg gagcaacccc attt 704

<210> 217

<211> 501

<212> DNA

<213> Homo sapiens

		•	•				
<400> ggggaa		taaggaagga	ggctggagca	aaaggagaga	ggacgatgga	tgccacaggg	60
ccagaa	ctct	gaatttaaat	gctagactct	ttgccacaaa	gcgtaatgtg	tatgtccctt	120
tggaaa	gcat	ttaagtttta	cagttaaaac	ctttaaaaat	atttcatata	ctcttgctcc	180
ctcatt	cctg	ggaacttgtc	cttaggcaag	aaagagagaa	aaagaacatg	aataggactg	240
ctcttt	gtag	cattgtttat	ttattttatc	tttttgatgg	ccctcaggct	cacagatttg	300
aattaa	tcat	aatatttaat	tcatgagaca	ctttcatcat	tggtcgatgc	atgaccctct	360
gtaatt	taac	atatttcttt	taataaatat	gttaatgtaa	tagacaccca	tgaacccagt	420
acccaa	atat	aagaattgaa	aagacagtat	tcagaagggg	gagcatagaa	agaaatctaa	480
aaataa	atgg	aacttaagtg	t				501
<210>	218						
<211>	591						
<212>	DNA						
<213>	Homo	sapiens					
<220>							
					•		

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 218
gggggtaaac acgggagcag agtgaggaca cctaacacat atctgtttgg agtttcagaa 60
gagctaatat ttgaaagctg acagggttt ccagaattt ggaaagatgc tccttctcag 120
atccaggaag cctggtgaat cctcagcaag ataaatcaaa gaaatcccca cctggacata 180
tcatcaggaa actgcagaac accagaggaa gaaaatacct taaataaacc tacagagaac 240
aggccattca ttacaaagaa atggcaacta aatggatagc taacttattg acagcaacag 300
tagatgtctg agtggcatag agtcttcagt gtgctgcaag aaaaacacag tcaactagaa 360

agceattget agcaaaatea tetttettee aagaattgnn nnnnnnnnnn nnnnnnnnnn	420
nnnnnnnnng gaaacaacaa cagcaacaaa aactgccaac ccccagaatt ctgtattcag	480
tgaaagtgtt cttgaagagt aaagttgaaa ggatgacatc tgttaataaa acactaagag	540
aatttgttgc cagcacatct gtaccacaga aatgttaaga gaagttcttc a	-591
<210> 219	
<211> 617	
<212> DNA	
<213> Homo sapiens	
<400> 219 \	
ggggtggggg ctgggggaga agctaatgac taacattgtg ggcaagaagt actcaaggtt	60
aacaaaggtt aatcctttgc ttttggctga aatgttatca gttcaatatg attttcacta	120
caccttcatg attaggagat atgatgtatc tggttaattt tttttaatag aagtaattta	180
atgettattt aatacagett getggacaaa attttteaca aggaatteat ecaagaaaat	240
gaaataataa aagggctcat gatgttgaga aggttgggaa ccaggacttg aggaatttac	300
agcacaagte etcatggage ccagaaccag atacaaatca catetggtgg tecetetgag	360
gatggcaagg caggtggcaa ggcttcaggt ggtgtgcaag gggcaaaagg gcagcgtggc	420
caggtagtct ctgtcagcac taaactgatg acaggggaat ggggagaaga ggacaggcag	480
ggetteaagt atggggeeea tgtgatteee agetgaacae caagattaaa aaaaaaatae	540
ataaataaac accagetget gtagtcagag ttgccaatte ttetettett eccatttget	600
gctgcactga gtcacca .	617
<210> 220	
<211> 628	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> ()()	
<223> "n" is a single nucleotide whose identity could not unambiguo	usly

gggaagggat	agtcataaac	atagggcggt	gtttgtttga	aaatgtctaa	gttgaaaatt	60
gtgtgcatac	tgatgaatca	tgtaaagtac	tcatggatat	ttgaaagaga	acgtgacnnn	120
nnnnnnnnn	nnnnnnnnc	atcgctacaa	atgtagnnnn	חמתמחמחמת	nnnnnnnnn	180
nnnnnnnnn	nngtagataa	aatacactca	tttatatttt	acagaaagag	ttttagagtt	240
ctgttttaga	catgtaagtt	cttaatctat	ttgaagttga	ctttttaatg	tggcttgaga	300
taatgaccca	attttatctt	gtcaatatag	aaaaccattt	tttgtggcct	gaagcacagt	360
ggctcatgcc	tg/taatcctt	cttaataatg	cataaaacat	gtactaccac	gtaagaatta	420
taacagcctt	taaaagaaag	gaaggatcaa	cttgcttttt	acctggcata	tctgcttgat	480
caatttgagc	cattgttatt	aaatgtctgt	tgatcagctc	ctatgaaaca	gaaataagta	540
tatttttatt	taaacacaga	ttctgaaacc	tggaattcct	attataatta	aataacctaa	600
gtattaatat	ttttggcata	tgcacttt				628
<210> 221						
<211> 486						
<212> DNA						
	sapiens			-		
<400> 221						
	aaaagatgct	agtttttcta	tctgggtaag	taaaatttaa	atatatgttt	60
tattcagtat	gaaatgaaat	gatatgtaag	aaggtaccct	caaaaagtga	aaaagcagct	120
gtataagatt	atttcacatg	actttatgaa	tgataccttt	tcaatgaaag	caaatgatcc	180
agggactctt	aggaattaag	actgttattt	ctccttttt	attgcttatt	atagcatcac	240
ccaaaatgga	aacaatgaat	tagcattaac	tgatctaatt	ctttattaat	caatatatta	300
agaaaatatt	gcattaaaat	aacatctaaa	gttataatac	catactattt	aacttttctt	360
taggtatttc	caaaattaat	aaactcaatt	atacataggt	gttacatgtc	aaaattagcc	420
atggtaactc	tcacttctat	aatctgacct	ttctaaaaac	ctgaaaatca	aaagtttatc	480
ttgaat						486

WO 02/10198 PCT/GB01/03390 <210> 222 <211> 568 <212> DNA <213> Homo sapiens <400> 222 gggtctgaaa cttgttcaac tgtaaatact tagtcatcat gatgcgcgcc gcttaacatc 60 acaagatact aatgatttaa ctctcataat caaggaatta ttttatcaag tagaacatat 120 cactatatta gaaaggtctc catatatcaa aaaatatgta aacttttata atgaaatatt 180 tgagttttac attactggtc attagagcct taaggcttgt tcaatttcat ttcttgttat 240 cactcagtag tcaaggagaa ggaagcatca aatgtttaag aaaaaaatac tabagaactt 300 acattcaaca tatatcgaca aacttttaaa aaactgaatt ggaaagttgc cataaccagt 360 ttcagtgaag gaaaacctca agtcagcccc cataataatg gtgttttcca ggaaattagg 420 tttagggtaa gtggtctgtt agaaattctg aaaacatttt tcctcttttt aaaaaacagg 480 tcacagtaaa aattaatggc ttccttcaag tacccagtac actcctatat acatgtaggt 540 agaccaaaaa ttaccagtga gctccaat 568 <210> 223 <211> 506 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> ()..() <223> "n" is a single nucleotide whose identity could not unambiguously

<400> 223 ttaaagtaag tcaatacata agtgttgcca tttacagaaa tatatgcatg atatccaatc 60 tgtcatgtga tgtccatttc tgtaagtaag gacaaccaag tccaacaaga caaagagcca 120

aaaaacttac	gttagattgt	taaggactcc	aactttcctt	cagataggac	tcacctcttt	180
tcatagaatc	atgactattt	aaggattaga	taacctatat	agcctattaa	aagttatcct	240
ctgaatgtct	gaatgctgtt	tacaacatcc	tggccaatag	ggtcaatgca	caaacctggg	300
caacctcaag	gacagaagac	ttgcttaatt	ttttctatcc	atttgtcatc	tttgaaaagc	360 .
cgnnnnnnnn	nnnnnnnn	nnnnngtgt	ttccttaaga	gttatgagtt	atactctgaa	420
tctaacttac	aaactccaaa	tctatctttt	taactgatag	atttataata	aaagtataat	480
catatgcaca	cagacacact	cacaca				506
2210> 224					•	
<210> 224						
<211> 515			,			
<212> DNA			/			
<213> Homo	sapiens					
<400> 224						
	tgtgctaaag	gggtcagtgc	catgggaatg	aggaatggag	aggateccag	60
gaagcacagg	aggcaacaca	agtcaatgcc	tcagagccag	ggaacaggat	gaacaagaac	120
aatcagaaga	tgaccttgag	ctaaatgaag	caattgcagc	aggtgggtgt	gggtgaacat	180
cagaccacgt	cgaggtgagg	aggtgggaaa	gtggagatgt	cattctctcc	cggaaaattt	240
ggcagtgcag	agacggacag	agattggata	agaacttgaa	agaggaacag	ggttggaaaa	300
tattgtttaa	ggaaaggaat	gattttggta	tatttttagg	ctgaagagag	agatgggggt	360
gggggaggat	gcgaatagca	tgaaggtgta	agggataaaa	gatgtatttt	tataaatttt	420
ttgatgtctc	tcttcttcat	cagagcaggg	attcagaaca	atgtgacttc	tttccagtct	480
taaatttaga	acaactcaac	gactcctctc	aattc			515
<210> 225				•		
<211> 662						
<212> DNA			•			
<213> Homo	sapiens					
	-					
<400> 225						
	ttccaaatgc	caaatgaaga	aaggctttca.	aaaatgagtg	gtcaacagta	60
tcaaatgctg	ttgagaggtc	aagtatggta	caagagacca	aaggatgtag	caatccttaa	120
atcagttttg	accttacaag	gagtgatttt	agtgggatgg	taaggatgaa	ggccagacta	180

gagtggcttc	aagaaagaaa ,	caaaggtaaa	aaagaagcaa	tgataccaca	cgaactcttg	240
cagaatattt	tacagtatca	gggaggagat	aaatgaagca	gtagacagta	ggaatgtggg	300
atcaaaaaca	tttttaaac	atgaaatctt	actgtaggta	ttctaaaagg	gaatgatcca	360
gaagaaagta	gaaaactgat	gatgtcagag	aaacaacaat	ttacgaagac	aaagtctttg	420
agactgtgaa	aggagatgga	atccacacac	aaggaagggg	tgactggcca	taagggcaaa	480
gacagtgcat	ccactgtata	agaaaaaggt	gagcacatgg	acaaaaatga	aggtaggtta	540
attttttggt	ggaaatacaa	attctcttcc	ctctaatcat	tatttcatag	gggaaaaaag	600
aaacaatgtc	tgtttaagac	tgggaacaat	ttaaaaagta	ctcacacgct	tcaccattga	660
ga						662

<210> 226

<211> 727

<212> DNA

<213> Homo sapiens

<400> 226						
ggggtggtca	aagagttgac	aagatgaagt	ttccctttct	aaaagtatcc	catagatgta	60
aataagcata	gagataaatg	aaagaggaat	aacaggatta	gaatatcacc	actgtgcatt	120
gtctaataca	ctaatggctc	ttgacaataa	tcatcaacag	gtaacatcac	agaaagagac	180
aagcagcaac	tagacagtgt	gtcctcctgc	taaaagtacg	taacgtcagt	tgtgaagtag	240
tectgteect	ctcacccaga	aaaagcgccc	gactctgacg	aagctttcag	gaaatctaac	300
taccaaggta	cacgaaatac	agaaacagaa	gagcacgtta	aatgacacca	caggcatgtt	360
tgtttctaac	ttggtttttt	agttctaacc	tgtcactatt	ttaaaaattg	tattgataaa	420
tacaataaaa	atacattaga	aaagagaaaa	atacttataa	aatataagcc	ccaattttt	480
attcatagat	tcaaaagaca	taaaagtaca	ttctaattag	aaaaaaaga	acaagaaaaa	540
aaattaggaa	agctatacac	attatttatc	gaaggtgcaa	atacagacaa	ttattagaaa	600
attcctatta	tactcacaac	tttctgttat	tctgcagtca	taactaggta	aagttatgag	660
actccataag	aaaactacat	ataagatata	tataaaacta	tatatatata	tctctatgaa	720
aactata						727

<210> 227

<211> 690

<212> DNA

<213> Homo sapiens

<400> 227 gggtatetga gaaatgettt ggegggtget gacaaggetg geeegeaget gagagacagg 60 ttgggctggg ggcacagatc caggagagag cettctaaag gacgccactc atcagacgcc 120 tqaaqttacc aatgcctgag actgtccaca ggtggggaag accgggccat ccttcaggag 180 acaagaaggc aaacccacgt aagtgaagga gaatctgcaa agcacacagg tactgcagta 240 aagctctqct qcacaaqact ccattqcatt tgctgaataa ttcacactgt gtatcacagc 300 tctgcacgca gccaaccata gaaacacaac tgcatcaacg cagatcattt gtagattcca 360 gatetteagt aatatttatt cagattteea ettateetgt aaateaceag tteteteett 420 caaaaattga ccactaattt ttacaaagtt tacaaaaata tttgtgacta aatatgcttt 480 aagtttaaag taataaaaga ctagtattag ttaccctctc ctcaaagtat gataaaaaatt 540 600 attcactttg aacttatgaa atgtcagaat cttcagttga acacaattat tgtgacagaa aattctatcc agtgggctaa tccagaactt tccaatcatt aatcacataa ttacataaac 660 690 taacctgtga ttaatttatg taattaaata

<210> 228

<211> 431

<212> DNA

<213> Homo sapiens

<400> 228 ggggggagtg ctcagagcca ccttagcgca aagtgctaac ttttgaattg aggcagtgcc 60 aggggacgca gtatccgcat cgcatctaca ttttaactcg ctgtgaaatg agaacgcaaa 120 gacgatttag gttttattgt ttccgactta tatttttccg aggtctttga tttacgggaa 180 240 attgttacgt actaaatctc atatagcaag agatttagaa aaggaagcta Cagaatctag gctaatgtat ctaatagcat ttcctgcttt tgctcttttt ctttgccttt ttcccctact 300 ctaagaagtt catattcaac tgaaaagcca tgaaaattac cgcttttgtc cctccttgat 360 ataacaaact gctttcagaa accgtacaag atagtcacta aqqgaagtca cagttcaaat 420 gagagtggca t 431

<210> 229 <211> 708 <212> DNA <213> Homo sapiens <400> 229 gggggttgcc gagtggtaaa aaagatgttt gaataaacag gaagtactgt gcggctgaag 60 cacactegaa gagaaaacac actggaacat tgeeetttgt aggeaacete agggaggttt 120 gcctccacag tagctggctg ggctctcact aaatgacaaa gaaaccacaa gaattcctca 180 agtaattott cactitcaaa gttgaaagat cagttggage ttgcaggtaa ttttcaaagt 240 tgcatttagc acttaaagaa atctattaat gccacacata tctaaaccgc tccaggtctg 300 caagcagega cacagcacae gcagtgegee etggetagae caageeetag ecaaacaeag 360 ctcattcacg cagacaaata cacaccaaca gggtttcggg aaacctgctc ttgagatatt 420 tttgtggtga catttacata ggcaggatgc tttaaaagaa aaaaaaaaga agaagaagaa 480 aattcagatt ttgcagactt tagaggattt tgtcacatgt atttttaaag aacacatcgt 540 cccgtattcc agggatatgc cctggatctg gctttgactg gctgtccttt acattttctt 600 tetecaccat caaccaaact acetgtttat etccagatge etagettgee taatggaaca 660 ctccttaacc cgccccaaaa tgattgtcac agtcctgtct tccgtcac 708 <210> 230 <211> 569 <212> DNA <213> Homo sapiens <400> 230 gggaaagctc ttgtccatcc tcctcttgcc acctgagggc agggagaggt gcccaagcgc 60 gaatgtgcag gaaactcccg gggtgcaccc tgggacccag gaagccaggt ctggaaaggg 120 cctatgaatt ctcaagtgct gcggatgcag gggggtccca ggtcagagac actgcatctg 180 ttggtgtcta gcctccttcc gtcctgctgc gtgtgctttt tcgtcttgct cagaactgat 240 gccctgtttt tgctcctact tgcttgttcc tctgtggaga aggggtttta aaatggctta 300

360

420

tagggtgctg gaagttgtgg ggtgattatg tagggagaaa aaaggaaaac aactaaaacc

agtatgaaaa agcttcccca aagaggagat agtatgtaga aaagccccat tttcctttta

tttaaatatc	ctaaatatat	cacgaaggaa	catacactgc	actttaatgg	taaaaagata	480
caagtttata	acatcttata	aaaactacca	tttaaaagtg	atcttgtcca	tttgatattc	540
ccctcccca	tagcaaaata	ttattcaaa				569
<210> 231						
<211> 517				•		
<212> DNA						
<213> Home	o sapiens					
<400> 231 gggaattcca	atcaaggctt	actcatgttt	ttaactacat	ggtctaacac	caaactaagc	60
accctgaata	atataatgca	tgctgtcgag	aaatgctatt	gtgaaaatga	ataggagaga	120
aaagagccat	aatacagatg	cccaaatgag	tgctacaaga	ggggcaaaag	tgtgaaataa	180
aagcaggccg	ggtggtgtca	aattctgtat	gatgtgtggg	ttgaggaggt	agagcaggga	240
gtctggcctc	tgaggaggca	aaaaaatcga	actcactcaa	acttgttttc	tgagcgaatc	300
ttcaatttgt	ctaagacttt	tccctggagt	taggaatttg	ccaaaaaatt	atcagcacct	360
attaggtgcc	aatatagtat	agacatggac	cctgtcttca	tgaagggcac	agtctagcag	420
aaaaagtagg	gcagctttca	aagatggtcc	tgtaatattt	tċtgcttcac	actcttctgc	480
agtgcaactt	tgccattctc	acattaagag	atggggt			517
<210> 232						
<211> 485						
<212> DNA						
<213> Homo	o sapiens					à
<400> 232 aggccttagg	gtactttatt	tttcaaacct	aatctgtctt	tttgttgctt	tcacacaagc	60
aaaacaaatt	aacttgttca	cagcetttet	tctgcaaatc	tatatagata	tccctttaat	120
tacttttggc	aatttatcat	tgccaaaaaa	gctaaaacca	caggaatttt	tattcctttc	180
taggtaaacg	gtttctacca	tctggatgct	tggatgctta	aaggacttgt	tgctgttttt	240
ctttactcct	gatgggtata	tgtatgaata	gcttttcttt	gattgtgttt	tgaatacagt	300
ggacctttgc	acttgcgtac	ttacqtaaaa	ctaccactca	ggagagtete	tttaattato	360

	(DU1/U33)
ccctcaacca ttgtttccaa acaattatcc tgctttcttc ctaaggggct tcaatcattc	420
tcaggttgga tetetgaece etgtettaca tagateatte tetettteta tttaatetet	480
ttgtg	485
<210> 233	
<211> 724	
<212> DNA	
<213> Homo sapiens	
<400> 233	
gggggagegg gggeegegeg accegegege gteettetge tetteettee caceegteeg	60
gtgccgcctc gtcgccctcg cctgagcgtc tcccagcccc attgtttctt catcagcctc	120
cttcgggttt cagtaaacgc ctggttcctt gcatccagat ccttgttatc cctccgggct	180
gectecetgg aagggateee ceaetteett tgeteeacta getgetteee ceatecette	240
ctggctttet gttccacctt ccctcctgct tttgggttac cttttcatcg cctctatagt	300
agetteagtg tagtttette gacteatttt aaataceata eecagttace egacttttat	360
ttcagattac cttctttgtg ggagtgaaag taaaaggatt caatttggtg tagggaaagc	420
tttctggaaa gttgggattt ttatttgcct ctggtggaat ttaatcattg tgttgtccat	480
acttttgact ggggtgagtt tgtgactgtc agctctgccc cccagctttt cacatgggga	540
tatggaaaaa ggcattttgc tgatactett ttatcagttc etggaactgt taattetgge	600
ggcttgaatt cagaagcttg agtgttaagc gtagactgtt ggaattccaa atggattaat	660
aaatttactt acaaataaca tacatccctt aaaaaaatgg caaaatgatg tttgatgatg	720
cttg	724
<210> 234	
<211> 623	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> ()()	

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 234						
	atttgataac	ttgtctccaa	gatatcactg	ttttacgtgt	atgtgcatgg	60
tccatttaaa	ggtggggatc	ccacttcccc	agccgatccc	tcccaacctt	ggctcctcga	120
taagtttett	aaagtgctaa	catctggggg	aggaggagag	tgcgtcagtg	tttgacggcc	180
ccgccgccct	tgggtgcctc	ttctgcctct	geegeacetg	tcagccctgc	gactgcccca	240
cagtcactgo	tttgtggaca	ggtacatgtg	gtcaaacagt	aggtgaagga	caaagcccag	300
gaaggccaga	ctgcacaggt (gcagcaagga	gtgaggcctg	ggggtgacac	actgcctgtg	360
ttcctgcttg	agctgtcttt	ccctgtgaca	acagaaagcg	tctagaacaa	gtgctctctg	420
agcctcagat	aggagcctgg	cagnnnnnnn	nnnnnnnnn	nnnnccttt	ggtcagtgac	480
tcatagctga	cttgagcagt	tactaaaaaa	actccaacta	atttctgaag	gagggccctg	540
gggtgaagca	ggccacagga	cagtgaccaa	ggtgtcctgg	cttctggact	ccaggagcga	600
gagggtgagt	ccccagcac	ccg				623
<210> 235						
Z107 Z33						
<211> 555						
<212> DNA						

<400> 235 60 gtgtggtcca tctgcagaga aaagtagagg tacaagtgag ggttctgtgg agtgcaaaga agtocccacg ctcaggatcc ccatcccagt ccagccacca cacctggcac ttgatgcctg 120 180 ccaggetgea getgeaggte teagggtege agateetate geagtgaeag ccaeaateet cccgggattg gcgcagtgcc tgcagctccc gcttctcctc ccgatcgatc cttcgcacac 240 300 ctgaagccct cagcagagct cgacgtcgcc gggctgggta gggctgtagg aagctcactt 360 cttccaaccg gccacctgcc acagcgactg ccaagtcctc ctccacagag gcgtcatcaa tggcatccac cacagatggc agccctgcct ctgcctgggg taccccagct gccgaaagct 420 gcatccacag gaaagaggga tgtgagaagc acagacatgg acatgggctt agccctactg 480 tcactagaca aaccetcace aagtgettac cccgccacta ctcgtgetta atctgcgatg 540

<213> Homo sapiens

ggcactgtgt gtcag	555
<210> 236	
<211> 598	
<212> DNA	
<213> Homo sapiens	
<400> 236	
ggggtgtttg ggggagcaga agaggaagat agaagattgt atctctctat cttcttgtct	60
tggcttctga acccgagatg ttttttatta ttgcaggaaa agacagaagc tgattgaggt	120
cccagettgg taacagtttg aagagttgca ggactggctg gatgagtact ggctgcagc	180
aatcaggctg ccaggattct ttatggctgt ttctgcttcc actacagctg agtcagaaag	240
gtcgctgccc cgtggtggca ctagacgcag tggatctggc aagcaaatgt ttccgctatt	300
agetetegge aacagagaet catttatggt cacettggaa atetgggett ategatetae	360
ageccaagte tgetgagaag etggagetta etaaagggga aacetgagag etgttcaage	420
cccaaatatt ttccacttct gcgtcacctc tgctgtctgt tagcagagtg gaggagaaaa	480
tacacagcac aaacaacgtg aaaaaatagt tactctattc attaaaagct gtaacttcca	540
gattggactt gagaagcaat taagcaacag aggaacctca tctactatct gtattcag	598
<210> 237	
<211> 771	
<212> DNA	
<213> Homo sapiens	
<400> 237	
ggggactctg cagcctcctg ggaatgttgg tgctgggtat tggatgcaag agtgtaggca	60
	120
	180
	240
	300
	360
	120
totatcaaaa agtatttta aggccccagt caatggtcgt ctactttaag gtgcattcaa 4	180

caccacattt	ctagcataaa	gaacaaattt	gacttactcg	tgatggagtg	ttctgccgtg	540
ttttcaggct	agcacatttc	ggtgatcatt	acttaggtgg	attcttttaa	tctaaaacaa	600
ctcagtttta	gaatcatgtg	tttaattcat	gcccaagaac	catatcttgt	ctcaaggtac	660
aagtgtagtt	tcggttacag	tgaaactcag	gaaaaaacat	tgaagcagct	ttagtgtttt	720
taaaatacca	tgctgagtga	ctcattatct	ttgatcacac	ttgctgaaat	t	771
<210> 238					•	
<211> 644						
<211> 044 <212> DNA						
	;					
<213> Homo	sapiens			\		
.400> 030						
<400> 238 gggaggggt	cctgggattt	cgggcaggga	accgggcaca	cgtgaggggt	cctgggtagg	60
cgcttacgtt	cctggtagag	ggttctgggt	tcgaggctgc	aagcccactc	accccggtcc	120
tggagactag	ggaagcatct	gtgctggctt	ttgtgtggag	ctcagggaga	agctgggctg	180
ccctttctcc	cgcctttccc	tccctctccc	ttgctcccgc	agcagctcca	tgggtgtcag	240
cgggcagcac	gggcgcctgc	aggaagtcag	gcgagggtga	accgaagtgc	tgggggtttc	300
taggagggag	atcgggctcc	ggggttccag	gtccctctta	atccatcttc	ttgaacgagt	360
aatgtgaaca	acatcccaca	gggcctctgg	tgaggacacc	gtggctcgaa	agggacctga	420
agctccctgc	ggaggggaag	ggagaacaag	gaggcagtga	catgccgcca	ctgtggtctt	480
cccttccgtc	tttccctgct	ggttggcagc	cccgctgtac	tccttaggga	ggcctttccc	540
tcttagcacc	ttcacgtctc	acctggctgc	gtggcgtttg	cacctgagca	cgcgggtaga	600
actcggtctg	tgtctgtgca	gattatgccg	acaagcccct	ggag		644
<210> 239						
<211> 522						
<212> DNA						
	sapiens					
12137 1101110	adreis					
<400> 239				•		
gggatattaa	atgactgatt	ttaaatggat	gatttaaaag	tatcatctat	cctaacagat	60
gatacttttc	ttgaacaggg	acaaacaaaa	taagatgtca	ccttcatata	aatotttoat	120

WO 02/10198 PCT/GB01/03390 gaatcaaaca ggcaacaggc taatccagca gaccccaaac ggacagacaa ggtttgaaag 180 gatccctcat caaaattata acagtgttta gtttctccag ttactcacca aatttattta 240 ctccagggta ccattttcaa atatatataa ggctcttagg agtaatctag atatgacttt 300 ttaaacacca ttaactgcat tcatggtagc catttgtcat tattttttca ataaaagaat 360 agtaaaattt acttcctgca ggggcaaagg ttgactctgg cataaaaagg gattttcata 420 ctcgatgact gaagtgctcc atatttgtaa ccaagtagaa actagacaaa aatgagaatt 480 attatgaaat ctttccaaat taaatatgag tgtttgaggg aa 522 <210> 240 <211> 554 <212> DNA <213> Homo sapiens <400> 240 gggagagegg tccagtgccc tgcataggag acgaggaaag cagccagagc cggcacaggg 60 cttggccaaa gccacacagt tgtttggggc ctctgggcca taaatcctca agtgctggca 120 agagatcatg ctaaagagag aagaccccag gctgtgtgga gggagtgggg acagcagggc 180 tatcctaggt ctagccgtgc atcataaggc tgctcagccc tcttaggcac ccacctccca 240 gtcgctccct gagcagggcg tccccttctg tcctgacctg tgccatccca gacattcctg 300 agcacectac accatgetec ataagegggg ggaggggetg tecagggaac cectaceaac 360 tgcattttaa agtctacagg aggattttac ttttttaatt ttgaaattta attttcttta 420 gagttagggt catgetetgt cagtteetac atggeaaacc agagetgagg cagecacccc 480 gaggccataa tgtcttttca tccaagtcat gatgatctaa tgtaattata aaattattaa 540 aagaagtact aatc 554 <210> 241 <211> 538 <212> DNA <213> Homo sapiens

<400> 241
gggatagcct atggaaagaa gggactacat gtgagtatgt aatagttacg attgccatag 60
cgtctacatg acctgacaca gaccagggtt ttgctagaac tgctactgtt cattgaccct 120

tgatgggatg tggagtggta tctatcattc cagttcacag atgagaaaat ggcagctagt 180
aagtggtgga ctggggattt ccacccagat cttctgaagt caactttgat gaactggata 240
gactaagaaa agcatgagac cctgcttgct ttcctaagag atattcaatg gtccaagtgg 300
agactgggca tcaatagtgc agtaggactt agagtttgag ttcctttcac aattattaaa 360
ggttggtgaa agaacaaaag gttttttta ggcatgtaaa atttatctt atttgttata 420
ttttatactt tttgcatatg gcgtaatatc tttgtagctg taatcaaatt attcccctta 480
tttctctgag gaaggctgga gaaggactat aataatcata ttttacacaa acaaaggt 538

<210> 242

<211> 477

<212> DNA

<213> Homo sapiens

<400> 242 gggggtaggg gtgggatget ggcctttccc tggagagcag gcaggaccca tacgtagaag 60 tgacaagcaa ggtgaccaaa gctaaggacc cacaggtcta aggagcaggc acatcgccag 120 ggcagggagt gcccgcccat cactgagacg gcgaagagac gcacacaggg ccctttcctg 180 tgtccacage tgtccctaac aagggccttg cagaaggtgg aggtcactct ccaaagaage 240 atctccaact actcttgggc aaggccatct ctccagtagt cttacgcatg aggctaaacc 300 tettetetta eeteaaagat ggetteagta teeeteegt taeeteeaac agggeaagaa 360 atgtaccaaa agcaacaca aggaggccac agtggggctg agaggaccca ggtacacatg 420 ctgtttcctg cctggtttct ccccacctct gccgtgtgtc tcaacgctcc tcctgga 477

<210> 243

<211> 416

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 243 ggggcccaca	Litcttggcaa	. ctaggttgag	tctggaatgt	tgggtggctg	tcaaacatgt	60
tttggctgga	attcagtgaa	gcagagtcat	ttcatgcttt	gtgatctttt	attgaagaac	120
actttacatt	ctctgccacc	tcccacatat	ctgatctctn	nnnnnnnnn	nnnnnnnn	180
nnncttatct	ggggatcact	ctccctgtgt	tctagggctt	gtactcaggg	ataacttcaa	240
agtctgaaat	gtcttaagta	gtaattaaga	aggaaaacaa	acgaactaag	tgtttgaagc	300
agacattttt	ggggggaaag	aaaaatacca	tcaacagtcc	tatagaaaga	ggaacaatgg	360
ctttaagaaa	aaaaaagaag	aataaatgag	tcagaaatag	agaagaaaaa	aatatt	416
<210> 244						
<211> 516						
<212> DNA						
<213> Hom	o sapiens					
<400> 244						
	atgggcttcc	ctgggcagaa	gcactgcaca	cgttgctgca	ctgtccttgc	60
tgggggaaac	aatgtgctgt	gtgaccactc	atggaaggga	cagagcatag	tgacacctgc	120
acatggattc	ctctattctc	tgtgtgtgtc	ttttcccttt	ataatctagc	tgtgtgtctt	180
tattacctta	gccaagcata	ttaactatac	accaagtccc	ctgagttctt	ctagtgagtg	240
tctgaatgtg	agaggccatc	ttgaggaccc	ttgatatgca	cacctaaaat	gtaagggcct	300
cagtttatta	ctctgtccct	agtgcttaca	tcattatcta	gtacacagct	ggttattgca	360
actatctatt	gaaaataagt	ttattttctt	tcatttggct	tcttccatta	ttcctaattg	420
aacagagaag	agtatcagtg	aatggacggt	ggacttttag	aagctttta	caatgcacct	480
gctatccaa	cttataatct	gcatgcctgt	gtgtat		÷	516
<210> 245						
/211\ 535						

<212> DNA

<213> Homo sapiens

<400> 245						
	attatttcga	acttcattcg	ggataactgc	aaagactatg	gtatactgag	60
aacttctact	gccagatatt	atgtaaaaaa	ttacaattat	taaaacacca	tatttcacca	120
aatctaagac	actgttgatt	gtgacacttc	actgttatgt	accataaaaa	gatgcccaga	180
aagggagtct	caaaggagaa	cccctcacaa	aaagtggggg	actaaacatc	tatagtctca	240
atgagggata	aaagcaagca	actacatgca	gaagggatgg	caaagaggcc	tgcgcacctc	300
ttccttgaca	atggaaagag	ggaacaaaaa	ctccaatatc	tgaactgaca	accccatccc	360
tgcaaatttt	gggggctgaa	atcacactac	cagcatcatc	ctaaaaaatc	ccaagcagag	420
aaattagctt	aagcagaggc	aagttggtaa	agcccctccc	ccagtgacca	gcagaagaga	480
atgcacagct	tctcagaaag	aactcaactt	ccgttaaggc	aacagctgac	ttaaa	535
•						
<210> 246						
Z211\ /88						

<213> Homo sapiens

<212> DNA

<400> 246 gggatactgg agatgcttga tgtggaagac ttaaaatgcc tttattattt agtggtgatg 60 tgggagattg ggaaggacag gcaccatctt ggcagatggc tcttcttcct cttcatcaaa 120 180 tgaactgtct atggttaggt caatcacttc tactttcttg tttatggaaa tcctaaagta 240 ctgtacagac tgtgatcaaa tacaatttaa ggaggatggc acttgggcac cgatgagacc 300 aaaaaaggaa gtacatgaag tttctgcctc ttacaatgcg aaccatggat gctttacctc cacattggat cattctgtaa cgtctcaccc ccagtccata ttcttctatc agaaagtata 360 ctttgtatga cacaaactgt ttctgtacca cacattcttt gactttttgc atacttttct 420 aaaagtcatt tatcaaactt atgtgaggtt ccaaaatatg taaaaatgat aataataaaa 480 488 aaagatta

<210> 247

<211> 623

<212> DNA

<213> Homo sapiens

<400>	247						
		ggcaggaaat	aaagataaaa	aggtagactg	ggggacaggc	tgtgaaggga	60
tttga	atgcc	aggctaaggg	atggaattaa	tcaaaaaata	acatgataac	attggagggc	120
tttaa	actgg	ggggtttcat	atgtatgtct	tacaaaaact	actctggcgg	cagaatgaaa	180
aggag	ttcag	agtggttaag	atcagagaag	gaggaacacg	ațagtaagtc	actacagtag	240
cccaa	aggaa	aagctaaaac	actagcaata	ggatgaagag	aggagggact	acaaagatgt	300
ttagga	aggca	gagcctacaa	aatctgatcc	tgagcacaaa	accccatttt	agtcctgtgg	360
gctaaq	gaagc	tacaaagaat	gacgggaaac	actctaactg	cagggtttgc	aagtactatc	420
ccccc	jcctc	accccccctt	cttttctttg	ataggcagaa	^l ygaaataaaa	taaatagacc	480
*		ttagctccag					540
cttgac	tgct	gagagtgcta	tactggtgaa	aatgtaggtc	agcccaagca	ggcagcagtt	600
ctgtag	tgct	ggctctgaac	ctg				623
<210>	248						
<211>	649						
<212>	DNA						
<213>	Homo	sapiens					
					•		
<220>							
<221>	misc	_feature				·	
<222>	()	()					

<400> 248
gggtcttggt gatctttta tctaccctgg tgtctggcaa gcaacaaaca aatatcatca 60
gcagaaagcc aggctcagct gagatcatga gagcccagga agcagttata tcaggagtaa 120
caacctgggt cacagcaggc ccaggaccct ggaagctgag ctcccctata tgggaaagga 180
agaactaaag ccaaacttca agtgcccnnn nnnnnnnnn nnnnnnnct gagaacctct 240

<223> "n" is a single nucleotide whose identity could not unambiguously

gtctgtccct tctcctgcaa a	agagaaggac	acaggtggga	gaggagcatg	gggtgggaac	300
aaggtcagac ataggcctgt g	ggtggtttga	tctgttccat	acctaggatg	gggactggag	360
cctgctcagc tttcaccttc c	cagcgttacc	tggagcaacc	ctgtggggag	ctgtaggctg	420
tccccataga cttctgagat g	gtctttcttt	ctctccatct	gcaggaagat	gtcagagece	480
cagtettttc cetaggagag g	gcttccctag	atggtgggag	tcctggccca	ggccactgtg	540
ggttttacga agttgaaggt o	cctggttcgg	tgatggcaca	ggggcacaca	taataacttc	600
ctgcctttca gggagcacag c	ctcagctcca	cagcaggaca	cctgagcag		649

<210> 249

<211> 520

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 249						
ggtaatcaac	tttacaatac	aagcattctg	agaataacag	tgttaaaaca	ggttatttcc	60
ctttagtcaa	accttcacgc	aaatttaagt	atccattcta	tttgattctc	tgtacaaaaa	120
atatgataga	taaagggaca	gaatatactt	accaggagcc	aataacccaa	cggtctacta	180
tcataatccg	gcagatctgg	agcaatctta	caagcttgta	tgttcaggta	tttaaatatg	240
tggactatgc	cttttataca	tatctaaata	aagtcacaca	gatgtagcca	aattattact	300
catctgaagt	atgctccttt	ttatcatatc	aacattttat	gtaacataca	ttgggaaagg	360
gaggcatttc	tatcaagtac	atacagtgnn	nnnnnnnnn	nnnnnnnn	nnnnnnngg	420
ttaagtgtta	ttttaggtgt	ttaactggta	aatatgtttt	cattttctag	tcactaatac	480
atttcagtaa	tatataaata	aataactttt	gattatactg			520

<210> 250

<211> 632

<212> DNA

<213> Homo sapiens

<400> 250 gggagaaaaa gtggcaggag atgagggagg acaggaaagt aggaaccaga ttgagaagga 60 ccatgaatgt gatgccatgg aatttggatg gtaccttgaa aagtggtaag gaagccattt 120 aaaagatttt aagtctgagt atgatgtggt ccaatttaca atttagattg ctggggcagg 180 aaggtggatt tggtggttgc tggcaatgtt tgaggaatga aggaagaggg gaggaatgga 240 agggaggttt actgtaatta ttagataact aaaatggtct agcaggatat gactgaactg 300 gggcagggtt agcggagatt actgagatac tgttagaatg ccttcttggg tttggaagta 360 gagaaaagaa aacatagtga gttatatatg taatcattaa tgtacaataa aggtaacaag 420 ttccttcttc aaagtataaa agagacgagt ttggaaatgc aagttatttc tccctctgtc 480 tttcaagata acataaaaac tgcagcattg aacaatagta tgtattcatc atgaacggct 540 tatgtgcttc aagcatagca cctataggta ctgaataaat gtgggttata tgtgaacatg 600 atatattatt aaacacatga aatggactgg ac 632

<210> 251

<211> 670

<212> DNA

<213> Homo sapiens

<400> 251 gggtataget etgagagaea gteacageee acaeagggtg geeagggagt eagaceeeaa 60 acttacagtc ctgcagacct cactgtgaga ccctcctgct cagggactgg caatgcccag 120 gcagaaatag ctctgctgaa cacatataac actagttgaa aataatttgg aatggtttac 180 gctttgagga cagctataga aaagcacagg gtaaaatata gccttctgct tagatttaga 240 atcttgcagt ttctaagagc ttcctgtctt tttattctaa aaagtcacac ttcacattca 300 aaacattatt tootaaaatt atcagotgtt ggoactttto cagaaaagag gootagottg 360 ccatctttct atagtctttc tacaggcaaa agtcaagcct gcctgacatg caaagcacct 420 tgacctctga ccccagagct ccccagggcc acatgcctgc ccagagccaa ggaccatctt 480 atgactctgg taaaagactg ggaaaggcag ggaaggtgcc aggggctggg gaagttgggt 540

cccttctctc	ctctccccca	ggtgactctc	agteceaece	taagtgatac	taggggctgg	600
ggaagttggg	ccccttctct	cctctcccc	aggtgactct	cagtcccacc	ctaagtgata	660
ctatgggctg						670
<210> 252						
<211> 684						
<212> DNA						
<213> Hom	o sapiens					
<400> 252						
ggggagtgct \	ggacaggttg	tgaggaccca	gagaatttgg	gaggagagga	agagggcaca	60
gaaggactgc	ttgcaggctt	attttgcagc	tcacaggaaa	ggacaagaga	aatgcttgga	120
atttgcaatg	gctttaatgg	ttgaccttat	gttaatttca	tcttactcct	aacttaagct	180
tgcccatatc	caccatggct	ctgacctctt	tgcaatccct	gtcccctctt	cagcttgagc	240
tctcacttct	cagtgaccaa	ttgcctacat	aattctcatt	tcacttgtct	cagagcgaat	300
acctgtattt	cccagtcctt	tagcttttt	ttcctggaag	ccatgtcgca	gtcttgttat	360
cctctggttt	agttccactt	cagtcaaatg	aattctcttc	aattggctgt	ggcctaaaca	420
gatttatttc	agatgacaca	aataagtgca	cctggggatt	ctacttcttt	ggggacaatg	480
agaagaacaa	ctgcttttag	aaggatctga	aagtatgctg	ttccctatat	taaaatgcct	540
tgtgctctaa	ttttttaata	ttaaatagaa	ccaaaaatcc	acaatgctgt	agtttctaaa	600
tggtgctctc	atgagcatca	gaataaaaag	gtatcctaaa	cctcccaccc	aactcatggg	660
ttcattattc	tcaaatatct	tttc				684
<210> 253						
<211> 677						
<212> DNA						
<213> Homo	o sapiens					
<400> 253				•		
		actggtgggg				60
		agagaaacag				120
		gggccaggtt				180
ttctggggga	tgatgtcgtc	acttgctggg	agcagagtgg	ggctcgtggc	tggttcgggg	240

cctgcc	tccc	aggetecage	catcggctaa	caggtcgagg	atgcttgtcc	cgagcagggt	300
gcctac	aggg	tgccaatgac	atttacaaag	aactgttctg	caacagtcta	ctatgaacat	360
actgga	aggc	tggacaggca	ggggacgatg	gacagaccgc	agcttttctg	caggacgtgg	420
gcagag	ctgg	agaggcccta	caacgttctg	tgccactgcg	gtcacctcca	tcgtactccg	480
ccttcc	cctg	ccaccacagg	acctggatgc	aaagacaccc	ccaaagacct	aaagtgtggg	540
tgagat	ggac	aagtcatggt	gcatctgaac	aaatcagccc	gcagcgatca	gatactatgg	600
gctggc	tcgg	ggötgötgtt	agggacaggc	atacctgaaa	taaaacaaac	aaacaaaaaa	660
aaacaa	ggaa	aaacccc				•	677
<210>	254						
<210>	254				\		
<211>	572				,		
<212>	DNA						
<213>	Homo	sapiens					

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 254 gggagcctta gcctgctcct ccctacccat tacccaatgt aagttgtaag gcaactgttg 60 gctagaagaa aggateteaa eccaetgttt etgeeeteac caageeetgt ettgetagee 120 atetetgece teaaccette ttagtetetg caatgtteag tgaaaactee ceagacacag 180 cagtttgcgt gtgtgagggg agaggaagtc ccaaggctgg ggctgggcca ggtgggacct 240 ggtgctttgc aacagcatcc catttgacca cagttaggtt ttgaccctga tgggaggagc 300 agatggaggg aggcatcagt ttaaagtggg gaagtggaat gggnnnnnnn nnnnnnnnn 360 ctcagaagga ggctttcagc ctttccttgc tagttcctgc taactgtctt cttgctcaga 420 ggagggtagg gaagcatgtg tgcaactggg ttgggaggtg gggtggatgt caccaggcag 480 gggtgcattg atttgttgaa gaaggcagca tatgaggcct ggcagtggga cagttggagg 540

WO 02/10198				PCT/C	GB01/03390
aacccatttt tttttgtttt	ttgtttttta	ac			572
<210> 255					
<211> 674				·	
<212> DNA					
<213> Homo sapiens					
<400> 255	aaaaaaatat		+a+++>>a+a	+>==+	60
gggggtgtgg acgtgctttg					120
agcccaccag aagctattga					120
tttccatgac tgcccgcagc		1			180
aaggagcagg tgccatggta					240
cttacagcga cgacaagcct					300
agtctcctgg ctcaccttgg	cctcatcatt	ccgaaggcca	tcactgccac	catgctgttc	360
aggaacatgg taggataagg	tgacgaggct	tggaggcctt	tgggtgtcca	cttgagttca	420
cgtggggaac tctgggttcc	aggatcgctc	ttcagagatc	tgaacacctg	tgttttcttt	480
gaagcaccaa aactcttcct	actgtggacc	atgagtttat	taacccattg	ccctaggctg	540
acagaagage ceteggagea	atcttggaag	caccccctgg	cctcagtgct	cgctgttcca	600
caggagccaa gccggtgctt	ctccctcaca	ccagaaggta	gactgtgtca	cctgccacat	660
ttcctctaag gcag					674
<210> 256					
<211> 649			•		
<212> DNA					
<213> Homo sapiens					
-					
<400> 256					
ggggctggtt cttccatact	ggaaggcagt	tgggttctac	cactagggga	ccattgtcac	60
tctgcctctc tgaggctcag	tctcatcatc	tgatgtcatg	ggccatgact	gccaaggctc	120
cttccagcac ttcaatgcca	gggaccaata	tgtgagtagc	agaggaccca	tegeetgtee	180
ccccacataa aagcacatcc	caatagaaag	acaaaacatt	acaggggcca	aacactacca	240

300

360

gaagcaagtt taacaacttc gtgccccaaa gcccttgcct ctccccagct taactaccta

ggtatcaacg gaagagagc aagagttgtg ttaagacact ctccattcaa agaacaaaat

ggtgaaagtc ccaaagagtc ctgttctcta gtgacttgta ggttcgtgca taaaacgaag	420
actgtggtta catacaaagc cttatgttcc agaaggactg ataatgaagt aaggaaatgg	480
tgctccagcc atctgtgtta ataagcactt ggttttcaac ttgatcatta tcttatggat	540
aaatatettg caggeagtte tgtagtttte attaggggat gettaaggea aaaggtaget	600
catgggtctt aactctgtgg tcaactgtgc ttatatttag ccttacaaa	649
<210> 257	
<211> 667	
<212> DNA	
<213> Homo sapiens	
<400> 257 .	
ggggaaaggt gttgaaatct agcaggtctc taaaacagag actccagagt tcttttgaag	60
agacctgcaa ctgaaccatg agtcagaaga atttaaaatg atttgttaat aagctctgag	120
aataggtctg gagatttcaa gtgaggcatt tgcaaaacaa gatgggaggg agcagactga	180
agcagggacc ctgggaaacg tgaggcaccc tgggagaagt gggggaccaa ggaggaaagg	240
agataggcag gaaactettg geteetgtea ateateaaaa eeatggaaag teeeagaaag	300
ggtttatcta ctctgttaat tcatgctgct aattaaagat tccagggaca gattgggatg	360
ggataaacag gggagacggg aggggactga tttttaaatg aatgtgcaga aaacaaaaaa	420
atcccaaatt tcctctctcc attccaccca caaatatgcc tctcttcata gttcagcaaa	480
ggagggtaac ttctatcagc tcatgaaact catttcccac tggactgact gtaaattcaa	540
aattccaaga gtgcttcaaa tgggtaagtt actggtgata ttttaagtac tttttaaata	600
aactgctcac aggtggggaa gaaagtttcg gtgcaagatg ctttaatgac ttggaatacc	660
ccattct .	667
<210> 258	
<211> 650	
<212> DNA	
<213> Homo sapiens	
<400> 258	
gggagatget cacaetggea cageagaaca gtggggaaga etcagggeaa eggeaaegge	60

gggagtgggg	cagctgccga	gtaaggggtg	tgagaggagc	gtacagacac	gtgtcccgtg	120
ctccagtagc	tttagaatgt	cgtgaatagt	actccattca	cgcctccacc	tgtttaaagc	180
ctgtgttagt	tatatgtgtc	ctgtcatgtt	gtctgctttg	agtcttagga	ttcaatgagg	240
			gtttgggaaa			300
			tgaagatccc			360
			gagctggcca			420
			gtcctgactg		•	480
			tcaaagaact			540
			acaactccaa		ttcacttagg	600
ggagaacacg	agcaccatgt	cattatttta	gtttatggag	ctgctgttcc		650

<210> 259

<211> 630

<212> DNA

<213> Homo sapiens

<400> 259 gggatttcca ggaaattttt cactctgttt taaaaatgca gtatatctgt ccattgcaga 60 ctgcacatct ctacggtaaa ctgttcgaag aatgaccatg acggggtcaa actcttgatc 120 ccagacttca gctttgggag tatacatgcc ttgttgcata gaacctccag gttcaaaaac 180 aggageetta aaateageta cagetgataa aactgattea aagetgtaac tgeetggaat 240 aatgccactt ttgggattag gattttctgg aatgaggtcc agcaatgaac tgtgtgtcct 300 gtcattcata cacagetggg ctaccatete ggccetgaga ateteateat cagacattee 360 taaatgtaaa cgaagactca aaagaatcac aagaaatgta agagcgcctt ctaacatcga 420 cctctcatgc tctgcatcaa gtactgtatt ttgatgttgt gatgccattg tcaacaaatc 480 540 acaaaccttt aaaagaaaac aaaatgcttt atttctcaat attcagtttt ccttcttcta 600 ttaatcatgt ttttctatac ttttttttgt 630

<210> 260

<211> 705

<212> DNA

<221> Homo sapiens
<220>
<221> misc_feature
<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 260 ggggttggcc cccgcagcac cactggatca gtgcagcata ctcagagctc agagtgagcc 60 tetttetea ageagaagat eeagageaaa teeatatgge eagttetgge eaggtgeeea 120 gccctgaacc aatcacaggg attctcactg cccagtcctg gctcacatgc cccacccaaa 180 cgacatgaac ggagcaggga aaggatggag aagggaggcg ctgttatgag aacaggagtg 240 300 nnnnnnnnn nnnnnnnntc catctcaaaa agaaaaaaa gagagaaaag aaatctccag 360 gacactecte aatgeeeegg tgeeaggaac agaggacate etaeggteea caccagetee 420 agtgctccct ggcttgcaca gttaggacac taagactcag aqgatgccag gagtggccca 480 agattacaca gtcttcagag cccaggggtc ctatgtcccg tgccaccaac tctctggtcc 540 ctcccagcca teactggtgc ctggtgatac agcttcctgt caccacaaag ctcagacaca 600 tgggctctgt acctcaagag ataaagacca gcccaccta agtggccctg cccaggatca 660 ccagccctga taacaagact agctgggcac ccgggccagc cttca 705

<210> 261

<211> 483

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400>	261						
gggaca	agct	ccagtgtaaa	gacttcaagt	ggttcttgga	gactgtgtat	ccagaactgc	60
atgtgc	ctga	ggacaggcct	ggcttcttcg	ggatgtttct	ctttgagtgg	ctggctaatt	120
cgaatt	ggga	tccaaacaag	ctccagaaca	aaggactaac	agactactgc	tttgactata	180
accctc	ccga	tgaaaaccag	attgtgggac	accaggtcat	tctgtacctc	tgtcatggga	240
tgggcc	agaa	tcagttttc	gagtacacgt	cccagaaaga	aatacgctat	aacacccacc	300
agcctg	agnn	nnnnnnnnn	nnnnnnnag	gaatggatac	ccttatcatg	catctctgcg	360
aagaaa	ctgc	cccagagaat	cagaagttca	tcttgcagga	ggatggatct	ttatttcacg	420
aacagt	ccaa	gaaatgtgtc	caggctgcga	ggaaggagtc	gagtgacagt	ttcgttccac	480
tct							483
<210>	262						
<211>	508						
<212>	DNA						
<213>	Homo	sapiens					
<220>							
<221>	misc	_feature					
<222>	()	()					

<400> 262
gggcggggag aggaattgag gcagaaggta aaagctgtta ctaagggaaa gagccaaacg 60
gttcggagca gccaacggct cagacactca acactgggga gagaggaatg gggaccagcc 120
aggcacaaat gagctcgcga ggcccnnnnn nnnnnnnnn nnnnnnnnn ggaggggaat 180
ttccttgtgc ctccattccc gggaggggg agcggcgttg gaggccaccg tttccaggct 240

<223> "n" is a single nucleotide whose identity could not unambiguously

tettcaccag tttggataat aaggeeete	g tggtgtgttc atctacttac ctgaaataac	300
ttggaataaa taatttcgat tacacgttg	a agatacaatg agtgactgtt tgggttttcc	360
agtgtgattc attttcattt ttgttaaaa	t aagacccatg ctacattgat gtattttagt	420
aatgccgact tcctgggatt gtatgttct	c accattttaa tagtttatag tctggggaag	480
tagggcacct ttgtctcccc gaaaacat		508
<210> 263		
<211> 464		
<211> 404 <212> DNA		
F =		
,		
<400> 263 ggggcttaga taatagattg aagctgccca	cagaactgag tgatgatacc acccatgctg	60
	tagagataca aagcacttag ctcaagggat	120
	ageceettgg etgttetgtt etaagtetae	180
	tgagtttggt acacttgagt ccttctttga	240
	agctgatgtc tgaactctag gccatggcgc	300
	gggaactttc ctctgctact ttcatctcca	360
	aagccctaga gatgttatat ttatagtcag	420
taatgccact ggttccttca aatttttgct		464
c010> 0c4		
<210> 264		
<211> 574		
<212> DNA		
<213> Homo sapiens	•	
<400> 264 ggggttagac aggtaccggt cagattacgg	tagcacagac aggatagaat tagaaanta	CO
ccggtcagat tacggtggca caggcggcgt		60
tggcacaggc ggcgtggggt tagacaggta		120
ggggttagac aggtaccggt cagactacgg		180
ccggtcagat tacggtggca caggcggcgt		240
tggcacaggc ggcgtggggt tagacaggta		300
is so	ccyyrcagar racggrggca caggeggegt	360

ggggttagac	aggtaccggt	cagattacgg	tggcacaggc	ggcgtggggt	tagacaggta	420
ccggtcagat	tacggtggca	caggcggcgt	ggggttagac	aggtaccggt	cagattacga	480
atgcatgttg	acgctttcag	ttcacccctt	tctttgctaa	ctttcttcct	attttcttct	540
aatgcgagag	cttattaatt	ccatatttat	catt			574
<210> 265						
<211> 486						
<212> DNA						
<213> Homo	sapiens					
<400> 265		/				
gggatgaaga	gtgagacagg	tccttactga	tgaagcctct	tcccctcaat	ctaaactaga	- 60
tgataaaaca	ggagcttctg	gctgagcgtg	tgaggcagta	aacacacaaa	agcatttgtt	120
ttgacacgtc	tggcagaggg	gctcaactca	acacagcaaa	cactcctgca	gatgtccgga	180
gtcaagccgt	tcctccagac	taaggccctg	cagtggtcag	cttggaccct	agcagggcag	240
ttgagggctc	gggccccagg	gccacagaga	cttggcttca	caccttacac	tegggaacca	300
cacggcgatc	ttgggtgagc	gacagaacaa	gttactctct	gaaccccagt	taatagaatg	360
ttctttatgg	ggaaatgagg	tgaaatgaga	cggtgtgaca	gagcatttac	acacatggaa	420
acacatagga	agtacagget	cttgatgctg	ccattattat	taatcatatt	ggttaatttt	480
ttttt						486
<210> 266						
<211> 460	ż					
<212> DNA						
<213> Homo	sapiens					
<400> 266 gggagagagt	atgttagaaa	tcaatggttc	atgactgggg	ctcagetega	taatcagaaa	60
catttattat	gaacttatca	tgtgccagca	ttaaattgtg	caagatccac	taaaagccag	120
ccaaataatt	aacaaaagc	acatcaacag	aagagataaa	cagaagagat	taaaaacaca	180
aatattotoa	atgattctca	ctcaaaaaga	ttctagaaac	cataaaatgt	ataagccact	240
ataataactc	agaaggcagt	gtgacaagaa	aaaaattagg	attaaqcatq	cagattaatg	300

gacgtatttg aactggaaat aatcattttt agatatcctc attatcaaac tatatgagtt	360
accattatat caagcagttt gagaaaaaca gatgatgctt actggagcat cactgaggtg	420
caaagacaga gaataagget gggaatcaaa aacttcaget	460
<210> 267	
<211> 449	
<212> DNA	
<213> Homo sapiens	
<400> 267 gggccgtggg ggagtgagtc ccctgctgtg agaggaccct agcgtcacct ccttagccag	60
ggcagctccc agggcctggc ttccttgctt tctccttgca ggtccagatg ccatcctgct	,60 130
tccccctcag tttagcaggt agacattact gacaccattc cacaccaggt ctgggctgag	120
ccggcgggga caggggcagg gtgtactcag atgaatgagg cacagtctgt gcctctcaca	180
gccagatggc agaggcagac acagaaatcc atcatttcaa catgaagtgg cagaggggag	240
atacggggcc attggggctg caggacccag cctggtgggc agcggcagct tctaggaggg	300
	360
atgcatttcc agcaaggcaa ggtgaaaaca gcattgtagg caggacataa aagcatagga actgtgggaa tcttaagcag ctgagttca	420
	449
<210> 268	
<211> 521	
<212> DNA	
<213> Homo sapiens	
<400> 268	
ggggagggga agggtgattc aagagaaatg aagcatgaga tggaaaccat tgagagctat	60
taagaactta gatttgatga agcttgagaa ctcattggcc atctggggtg acagggatat	120
aggagegeag tecaggtaaa taatageeat egaetageag tgaatttagt agaaagagea	180
agttaatcct gatgtataac cagccctgac tcacttcttg ggccagagaa aaaaatattc	240
attgataatt taatttctac atttacaaat attacctcat tcatgtcctt gcatttcacc	300
tctttccctt ataggtgatg tcaaggtaac ctaacacttt ttaaaatctt cttaccaaat	360
ttacattaat tcaaataaag acttgaaatt tgtacattat taacgtgatt aattatgaca	420
tttccaaagc ttgattttt tctttaaaga ctactttcta ttagatagct gtatatattc	480

caattacaca ttacttttaa atgtaccatt ttaggagatt t	521
<210> 269	
<211> 557	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature .	
<222> ()()	
<pre><223> "n" is a single nucleotide whose identity could not unambiguous</pre>	sly
<400> 269 gggaaatgtc ttaaatgact tccaaaatgt tttgtaagaa atatctttat aaatggataa	60
	.20
gctaaaagat taagcttatt accttataca cacatataca tcaattttgt tgttactttt 1	.80
ataaaattca gaaagaagaa gaaaagggag aagctcctat tatgtttaaa attaactagc 2	240
cttgcatttg taatcgcatg gtcttacctg catatgcata catgtgaaat tctaataaga 3	300
tagacttgtt ttcatttaca aatatctagc agtacatata accataacnn nnnnnnnnn 3	860
nnnnnnnnn nnnnnnnnn nnnnnnnnnn gtactacaca attagtagaa agcatatttt 4	20
agagacacge etgeegeaaa atacteagte aagggtttae tgteetacce tetetagget 4	80
tcagcctcct catttgtaat tcatgttaac aactacagat aaactccaag gattcttcag 5	40
cttttaggga tgagaga 5	57
<210> 270	
<211> 550	
<212> DNA	
<213> Homo sapiens	

<400> 270

ggggtgggtg	gccagaatgt	cttccccttg	accaaggacc	taacacctaa	gactggtggc	60
acaaacacaa	catccttgtg	caggaagccc	aaaccctgcc	ggctccatgg	gtgaagccat	120
gctttgaaag	gaacagggtc	accettgetg	taatgtgctc	ttgggaagtc	atctgcccac	180
tctgctctga	gcaggcactc	gcttacctgg	ggcaattctc	tctgggggag	gtggcgggag	240
ggaacaaaag	ctctggctga	ctgagcacct	gctacacacc	tggcccaggg	ccatcacagg	300
ggtactgggt	caccgtccca	ccttcacagc	actaacgtcc	caccttcaca	gcactaacga	360
ctagagaagg	agggagggc	tcgttttgtt	aaagaaacaa	aaattattct	acaagttcag	420
aggaaggaca	aggttccgtg	tctggtcaag	ggtaggcttc	aaagacgtct	ctggtcaaag	480
agtccctgag	agctgggcct	gacagcctgg	acacacagag	gaaggtcaag	tctctgggat	540
gctgtctgag						550
<210> 271						
<211> 665						
<212> DNA					•	
<213> Homo	sapiens					

<400> 271 totggagete cacegtggtg geggeegeeg gaggagteea tttcagatgt gettacette ageteattet ceagegeeat etegetgatt ttetgateea geaegeggat ggggaaggte 120 acctggctct ccagggagtg gcagagggtg aagaacttct ccaggtggtt gtcctgggtg 180 tgtacagaag aaacagettg cacttcaata ttaaatacte cettatgtee ttcageccae 240 ttaatgggag gattctgtaa tgggactttc tcagcagaat gcatggagta gttgggtggc 300 aatttttcca aggcaactgg gagacagtag gatccagttt gaagacgttc atttaagaga 360 attggcagcc atgaatatcc caggagagtt tccacggagg ctccttgctt ctgctgacag 420 ctgatatggt agaaggtgaa caggaggtgg tgatttactg tgagcttagc ggggagctta 480 attttcactt cttcataaaa gtcacgagac ttattatggt atgtaacagc tgtgtacact 540 tcctgcagaa attcaggccc gctggatttt ccaaagatga ccggcatcgc attgctagca 600 tottotocac acataaactg gatetttatt ggaatgttoc gggetgatge tagtttgttt 660 acaaa 665

<210> 272

<211> 596

<212> DNA

<213> Homo sapiens

<400> 272						
gggacagcag	aaaataagga	tgagttcagc	taaaagtaat	agaatgccta	atttatagtg	60
gcttgtatcg	tcatttctca	ttctgacatc	cttaacaaca	ttgccaggga	gcccgttatt	120
aatgtagatt	atcaggctcc	acttcagccc	tgcaaaatca	acattcccat	tgtaaggaga	180
tttccaagcg	attcataggc	ccattaaact	ctggtctaga	aaacagagat	acttagatat	240
ctcacagaat	aaggatagga	atgcaagcag	ttccagagtg	gctggatcta	aatcaccaat	300
aacaggcttt	tgtctcattc	cactttgcaa	tccctagcat	gttgactttg	gccttttgtt	360
gtgtggcctc	aggattccaa	gatggctgct	gtggctcctc	gcaccagtgc	attctaggta	420
ggagaggagg	ggcagacgtc	ttctaatatc	tcattggcca	gacgtgggtc	acatgttgac	480
ttttttttc	tcttttaacc	tttcctatgg	tactgaacat	gttgactttt	agatgactca	540
cttgggaaga	taaaaggatt	aacattacta	atttatacat	tcattcattc	agtaaa	596
<210> 273						

<211> 681

<212> DNA

<213> Homo sapiens

<400> 273 gggtctggga tggaactgca caaatagtga acactgagtc agaggaatca aaggcatcct 60 ccatcaagat tctcccaagg agaaggaaaa ggtgggcaga aagaggagtt tcctaggaga 120 gecaceaggt ggagecacea ceacaaacee actteatgge ttgteetetg ggtggatttg 180 ggcggacacc agcaggagta tggcgggagt cttaaaccca tgactaaccc atgggagact 240 cattagtgtt aatgccttga aatcagaaga cacagagata gaaaggagat taaacataac 300 agaaaaaaaa atctaaaaac cgattttatc aatgacccac acataatcgc aacatgatgg 360 ctataccete ctatgtagtt cttaccatge attteaceae eceteaetet aggeteaata 420 ggttcagaaa ataacatgaa aaagggtaac acacactcca acatcaattg ctggtgctaa 480 caacgcagtg tcccaataaa acttgccaga aatgcagtca gggatcagtt agtttaaaag 540 acttetttaa aggetettga etecagaget tttgagaatg aaggeeeact ggaaaataag 600 actatagatg cgtatacaga tacattcaca cagacgtata tattactgaa tgactatgta 660

tcatatctat ccccattcac	t	681

<210> .274 <211> 646

<212> DNA

<213> Homo sapiens

<400> 274 ggggttagac aagcttgctg tataccttaa ggcaaattta atgaaagcac cactgaacga 60 120 tcaagtcagt aagatacaag gcaatttttc ggtcttaaat aactaacagg tagcagaata 180 ttgagcattt gatattttgt cctggataca ttttttatat ttttaattca ggaaaacata 240 cctaatggta gacaaaatat ataattctca tacacataaa aatatttata aaagaaaaaa 300 tccacttgga catcctttga ttttctatcc taaaaatgtt tcaagttttg gaatcattta 360 totactattt aactgtagca ttttacatac agaatattct ggtatctcaa aaatgttaat 420 attttaaaag ccacaaaccc aaagtacatt tcaaacccat aaaactttcc tgatgaaata 480 cttttaaaat gtcattttta cctttatagc attaggcaag cctctaaaat aaatttcagt 540 gtaataaatg acctttcttg taccactttt tgcttctttt acttaacata gctaatttaa 600 acttggcact ggtgcaatat aattcaagct aactaccatc aaaagg 646

<210> 275

<211> 631

<212> DNA

<213> Homo sapiens

<400> 275
gggtctggag tccctagtct ttgttgatat cttagctgtg aaggtgaaaa aatagaatta 60
aagatatttt ggcagattat aagcttcgga aaaatgaacc actaaacaag ttatttttt 120
gaactctaaa agaggaaatg taaatgtttg atactattat cagcctcaca gtactttcca 180
cttactgggt atttgacata tagataagca cgtgtatgag tatgcacacc cacttaaatt 240
acgatggtat ttaaggtagc ctctcatct acttactgtt ctcttgcccc ctaaacttag 300
agaagactaa gagtgaccaa ctgtggaatg aggatatttc aaagacccct gtatctagcc 360
ttcttttcta cccccagacc ctggtagggt ttgctaacac caactccagg gacatatacc 420

agaaaaccag	tgtttcttt	tagatattgc	cagcttccat	tcagccctcc	cctttgtata	480
aacaagggta	aggaccatct	tgtattcatc	tctgactcca	atagtgtctg	gcatagtgct	540
ggtacttatt	caatgcttat	taaacaaata	cattgcaact	cacttttgac	agaggctgtg	600
ctctgtattt	ctcttgagtc	tctaacgttc	С			631
<210> 276						
<211> 659						
<212> DNA						
<213> Home	o sapiens			•		
<400> 276					•	
ttacagcaat	cttgttacat	tggcaacaag	aaagccatcc	aatgagccac	ccagtagtta	60
gtcaaagtgt	agtaattaat	tcacgctttt	cttgaagaaa	ctcaaagcaa	ctcactactc	120
cagtttttta	ccaaatccat	ggaagaagag	gatcatcaag	aagccttaat	ccttttgggt	180
aaatggaccc	actgagaagg	ggagagtaac	ttgtccaatg	tcacgaagcc	agcctaaggc	240
aaaaccaggt	acagaactca	gactacccaa	gccggtgccc	acattagcac	tttagaggga	300
ccgatatata	aaactctctc	aggggagcta	ggcacaggtg	cacctagaca	gcttcaccag	360
caaagttttt	aaaggaggtg	gagaacgagg	cttgctctaa	tagcagacaa	ccaactcctt	420
ccaatcagaa	gggagttaaa	agtagtgtta	gcatatggaa	aatgccaatc	cacctgttcc	480
atcttggatg	agactgacca	ctcaactgac	tgcttgtcga	tggtaactga	ccacagtaag	540
aaggattctt	gtgtctcatg	taacgctcct	ctcccttttt	ggtagctctg	agctgaaagc	600
ttcctcccc	atgcacggca	atggggaaac	caaggcaccc	accttcaggg	atacccctg	659
<210> 277						
<211> 457						
<212> DNA						
<213> Homo	sapiens					
<400> 277						
	accggccccc	cgacagtcca	gctcctttcg	gctcttgcag	gaagccctga	60
acgctgagga	gagaggtggc	actcctgtct	tcttgcccat	ctaactgatc	ccccagtcct	120
ccctgcccgc	ctccagggcc	ctggccaccc	ctcccaagct	ccacacttgt	gagaagtgca	180

gtaccagcat	cgcgaaccag	gctgtgcgca	. tecaggaggg	ccggtaccgc	cacccgggtt	240
ggtacacctg	tgcccactgt	gggctgaacc	tgaagatgca	ccggcgcttc	: tggcaggttg	300
acgagctcaa	ctgtgagaag	aatgcccttc	aggaatacta	ggttcctgca	accctcacct	360
ctggggacga	agaccctcat	gccctcagcc	tgcctcactg	ctgggccagg	gtcatgccta	420
tataagttgg	catggcaggg	acaatggtgg	gcagttg			457
<210> 278						
<211> 720						
<212> DNA						
	o sapiens					
	Jupieno			<u>'</u>		
				,		
<400> 278 ggggatttta	gataatcatg	gctcccacgg	tagttttaga	aaatgtggat	actgccgcct	60
	ctagccattt					120
ctttttgcac	tggcatagcc	ttttgtcaac	cgtatttcca	tttacttctc	ctagtccgtc	180
tttctctttc	acttgtggtt	ttcttccctt	gtcatttaag	cattctcaac	tgcacataga	240
aatccaacag	aagccttttg	tgtgggggat	tccctcagtc	ccaggcagtc	ctgaaagcag	300
caggtgtctc	tgcaaaggct	tctgtcagac	cttagactta	tacccagcag	ctgctaatcc	360
tgagctctca	ctcttaaaaa	gcagtaaaat	agacttcagt	caaaaacaag	tatggtggga	420
gttaactccc	tcatcttgag	ctcaagccac	acttgccttg	aaattttcca	aaaattcact	480
aagctaattt	ctctcactat	ggaaagagag	aaaggctatg	ttgctggtat	acaatgctgc	540
ctgtgatgga	ggtggtgagg	cataaatttc	cctaatcgga	agataaaggc	taaccacgta	600
tgtgggtgat	gggggttgga	ggtagcttcc	agggcactgg	agctacaagt	agaagcacaa	660
attttcctgg	ctggaaacag	gcccctagag	ggaaacatca	caccagataa	ggaaataatc	720
<210> 279						
<211> 708						
<212> DNA						
<213> Homo	sapiens					
<400> 279						
ggggagcggg a	agggggtgcc	tcagggcccc	tacccctccg	gggctgggga	aactttgccg	60
ccctggtccc	ctggatgtag	gctggcaaat	ctcaggcctg	tcatctccgc	cttcggttta	120

cctttccgaa	ttcgccctgg	ggaatcacca	ggtcggggca	gcctgtagac	gcgaggacag	180
gctgttggga	gggaagtgga	agggccctga	aaagtcccca	gtgttccccg	tggtggctgc	240
gcacgttgtg	gtctccgtcc	gtgggctgtt	ttttcccatt	tactgcagtt	cctgggtccc	300
aggtgtcagt	gttgcagtct	ccaaatgtta	gctccttttc	tttctttcag	aattaggaac	360
ttagctgcgt	atttgatttt	gcgaattagg	tgatttgtaa	cttcagcgct	tactgatgac	420
taagtgttta	tgcaagttcc	attttgtcct	gagtaacagg	aatggcaaaa	gagecatete	480
tggaggtttt	ttgaaatgac	cgcttgccta	ggcgtgttac	gcagtttcat	tgcagcctgc	540
gtgggtctga	cttgcgggtc	actcatattc	tgcgaggtcg	attgacccac	gctgaaacat	600
caagtgaata	ctggccaaca	attggtcccc	agactaaaag	ccgctgctgt	tactcagttt	660
ctttacctgt	aaaataaaag	gtcggctttc	ttccacaggt	acattgga		708

<210> 280

<211> 753

<212> DNA

<213> Homo sapiens

<400> 280 gggggttgag acagtggata cctcggggag aaggggtctg actgctacgg agtcctggcc tgaccggaca cactgaggat ttttaagcag ggagagaata gaattggaac tggtttcatc 120 tgcagggggc ctggctggtg ttgaactagg agtcaggagc gggactttcc ctcgggtctc 180 cctggcgtcc ctcctctgag ctggcttcgg ggaccacccc agatcccgtg ctactcaccc 240 atgggtcaga attgcccctg agggcttctt cctcggccat cgcgaggctg gggggagcta 300 tgtgggcctc tcctgacaca ggccaaccta atcatctcag cctataaata ggactcagga 360 ttagtctgga aatagctgtg ccaagccaac tccgcaggca tcataggcac acacagttcc 420 ggaaatggtt cttctcctca acacaattaa aacccaacac ttcctcagga aactattgtt 480 cacactccac tttgcttcct taagcacaag gccgtcaatt ttggggggaa gaacctgcct 540 gcctactgct gattagtggg ggtatgcttt gtggagagga ggcccttttc ctgcttctcc 600 ctctctgagg acctgaagga gtcactacca ttctctgggc cccagtttcc ccaaaggtaa 660 attagggagg tgggacatga tgccattttt aacttaccag gatttcaaaa attagaattg 720 753 taataaacat gtgagcaggg agaaatgaac agg

<210> 281 <211> 519 <212> DNA <213> Homo sapiens

<400> 281 ggggagacta ggagtttaat tctggacatg ttagcttcgg gatctaagtg aatccatcaa 60 agtagaagtg tcaagaagtt ggccttaagg gagagacatc tgggcagagg atatacattt 120 aggagtaatt agcatttgga tggaatttaa atgatgagac ctccatggtc atgagactag 180 ctagagatga gaataagaca taggactgct caagggcact aatattatga gactgtgggg 240 aaaaaataaa gaaacagcaa aggagactga aaaggaataa agagtaatat agaaggtgaa 300 ctaagagagt aaggacacca attgaagaaa gtatatcaag gaggaaagaa tgatcaatcc 360 tgtcaagtga tgctagaaga tcaaataatt tacctgtgag tttagcagcc tagatatcac 420 tggtaacatt aataataata ttggacccaa tggatcattc cataagaaaa gaaattttac 480

519

<210> 282 <211> 666 <212> DNA <213> Homo sapiens

tacttaaatt cttctaaaac aaatagtttt tgttaagca

<400> 282 ggggtgctcc ttgggttttt gtcctctctc ctcttcccga gccttcctct gcccctcgtt 60 atgectetgt cetececaac cageaccecg eceggeeece aacaaacete cetgteetgg 120 gccttatttc cttcttccag aacagttgga gatctgcacg gataagctgc tgaactcatt 180 atatgtagag tacatgcaag gatatttgtg cggcgctctt ccaaaacagt aaaacatagg 240 agggggaaat gatttggaaa ctagctatcc aacaaatggg attgattaat tgcagtgcaa 300 caacaattaa aatatttaca aagaattgtt agagacatgg catatccggt taagggaaat 360 aagcagaatg cagtattaca tatagtatga gctatactat ctacaggaaa agaagcctgg 420 aggagaatgt accaaaatac taacagtgct tgtcttgatg tggtaagatt atagctgact 480 ttcttttcgt tgttacaatt tcgtgttttg ttttttaaaa attatacgct gatcatgtat 540 tacatttatc atcaggggaa agtgatttaa aaagatgaat tgggggggtg ttcatgtcag 600

WO 02/10198				PCT/	GB01/03390
atggtggctt tttgcatcc	a tccaagtgtg	taatgttgga	attttcattt	tagacaacat	660
ggactc					666
<210> 283					
<211> 659					
<212> DNA					
<213> Homo sapiens					
<400> 283			•		•
gggtagagaa agggttgata	a tggggagaat	tgggggtatg	aaaaaatgca	ctgggtcact	60
aaccccagcc catctctta	ccataaaggc	atcaaaatat	tttgcaacct	aaggaattct	120
tgagaaaata attggaaac	gttaagaacc	tagagtttcc	ctgtatcact	gaccacagga	\ 180
atccaaagaa ctttcaaata	a aagacatggg	tctagaaaga	acgaaaacta	acctaattat	240
aatcccatct tcccattag	atagccactg	cccaaatagt	ccctgtgata	gctaaagaag	300
accaataaaa agaaagggt	tttcctttgc	tccaggtgca	tggttaaggg	tacttttgag	360
gaaggtgaga taaaaagta	a cttcaagttt	tactcgctat	agagatctta	gaatttaaat	420
gtgtgccaat tgtttcaaa	tcaatacttt	gaggaatcta	ttcagtgttg	actagacaaa	480
totgatttgt coatttocca	tttcctttta	ttaactctta	gagcaaatta	atactctaaa	540
ccacaaaatt aatttttca	c tttctactcc	aagtcctgta	attattttgt	aaaaaattcc	600
atttatttcc caagcataa	g gaaaggtatt	ttctacttct	aaaaattaat	gcctactac	659
<210> 284					
<211> 451				•	
<212> DNA					
<213> Homo sapiens					
<400> 284 ggggcgtgaa ccatggtgg	a gcagggtgat	ggttaacagt	taagcttata	taacgtaagc	60
ttaaattgac tttcttgtg					120
taaataaatg ccttgagta					180
cagactcaga ctaaacatg					240
ccgaggacgc gctccttgt	c aggctgatgg	gagggaagtg	gggccctggt	tggagcaggg	300

ggcactgcgc tgagtcttag gggactctgt ttettccctg cagctttggg caagacacca $\dot{}$

ggcccttagg	aggcctcggt	gtcctcatct	gtcagactag	gggctggccc	agcagattec	420
taagaaggct	gtcggctctg	atgtgtcata	g			451
<210> 285						
<211> 576						
<211> 570						
<213> Hom	o sapiens					
4400 005		·				
<400> 285 ggaaggctgg		cggccggtta	tetetggete	ggtggtgact	tagggtctgg	60
gtctccgcag	acgatttgtg	tttgggcaag	gcattcgtct	accgacacac	ccacagccta	120
cagtgaggga	gtgtgggtga	ggggatttct	ctcccacttc	cgactctccc	tagagtctca	180
ggatgggggc	tgaggaccga	ggcgtgggag	tgcgatttga	caatggagtg	atgaaggtaa	240
cccggacccg	gggagttgga	gggcgctaag	tcagccctga	cggctaggga	gtcgcctgct	300
gctgctgtga	tcaaggaaat	gtagtccgcg	gaacagctga	aatacagacg	cgtcagattt	360
tgtatggagt	tggcttgttg	gtcatttaaa	aagaaactga	tgtttttact	attgtccttc	420
gataatttat	cagagtcagt	gtcagtgcta	tagtgggaat	atctgttcag	tgcagcagaa	480
atagatttgt	tacaacagtt	cttaaatagg	ttatagtaga	tagatcttta	cagatgggta	540
tttctcaacc	taagttttga	ttattcaaaa	aatacc			576
<210> 286						
<211> 542						
<212> DNA						
<213> Home	n saniene			•		
12137 110111	o daptens					
<400> 286						
	cataagctag	ttgaagccag	aggaaatgag	aaagatagga	gctagtataa	60
aaggcactta	agaattctgt	ccccttgga	agtcctgtgt	gtgagaaatc	aagcaaggat	120
aacttgtcct	gtctgtcttt	ttgtaaatca	catagtctac	ctgtaggcca	cccagtgctg	180
tccattttgc	atgtaatgcc	agcagctggt	ctctaactcc	tcagcacagt	ggttaaaata	240
tcttagacac	actaagagtt	tcaagttgac	actcaaaatt	ttaactgcaa	atgctgaaga	300
gttagggact	acacatgtca	ttaatgcatg	ctcaagggct	caaataaaaa	cctggatctt	360

tgattgtatt taagttcatt ctgagatcaa acttttttt ttctttaagt acagatcaga	420
actcatattc ccagtatgga aatgtgagga acaagagtaa aatttcttaa ttaacgtcta	480
ggcttgaagc ttcccctgat ctgtattaat gttcctttcc taatgaacta attcttaaca	540
ga	542
<210> 287	
<211> 544	
<212> DNA	
<213> Homo sapiens	
:	
<400> 287 _ ggcacttttt tgatttgtac atttgctaat tatatgaatc aatctagaac tttcttctgg	60
aacaactata gcctcttttt gcttttgtgt tttgttttgc ctctacctaa cctattttt	120
gaatcagttt acttttgtga attaatctca aattcttgca acctacttgt cacttttaac	180
aattattaaa atotttooot tottatttta atacatagtt cataggaaag tatttoattg	240
ccagttatga agtctacatg attgttttag ccttttattt cttcagaaag taatataaat	300
cttacttttc tggaaggtag tattagatct atttatacat atggaggaaa atttgaggat	360
aattgagtca ttccatcacc actatccatg agacaaagac ttttccatac caagtgtctt	420
taaagcatat ttgtagaatt aaataaaata tagctataca tattaaaaat ctttttaaaa	480
aaacttctgg aaggaaggta ttatctaatt ggacatacta agttttcagt gctgcatttt	540
gage	544
<210> 288	
<211> 539	
<212> DNA	
<213> Homo sapiens	
<400> 288 gggaagetgt ggttaggaga atgtaatagt aateeaggtg agagatgeta gtgaettgaa	60
ttagggaagt gagagaggg atgaggaggg agaaatgata ggacttgttg atttattgga	120
tatgatagat gaacaagtga gaaccaagga tgatgcccag gtttctggct tgggcagctg	180
gatattgcca ttcacatagc caaaacagaa agaggagcaa gcttgaggtg gaagatgatg	240
It would make helder all because the beautiful and the second of the sec	200

attgagcttt gatatgttga ctttcaggta cctgttaaac atctgagaag aaatgtgcat 300

taggca	gata	tgtaaattta	atgctcaaga	gaggagtctg	gctagagtta	gactatgtac	360
ttaaag	tact	taaagtggta	gctttcagtg	gtgatgaaat	tgcctaggga	gagtgtatag	420
agcaag	acaa	gggccttgta	taaagtgcga	agaaagagat	gtctacctag	gaggccaaaa	480
attgag	tcta	gaaaggagaa	aacccaaggt	tgccatattg	tataacagga	accgtggag	539
<210>	289						
<211>	421						
<212>	DNA						
<213>	Homo	sapiens					
<220>			`				
<221>	misc	_feature					
<222>	()	()					
<223>	"n"	is a single	nucleotide	whose ider	ntity could	not unambiguou	sly

<400> 289 ggggaagaaa acaaaaaaga gcagaactga gtcattgtga tgagactcta tgacccctag 60 aggetaaagt gtttactate tggeeettta egaaaaagtg ttetgeette tgagttagge 120 cagtgttcta tcattgtttt ccacgtctct aaccatcctt aaatgttcag ttccataaag 180 cagectettt aacaaatgca geetaaatea gtaceaetge etggatettg ttteetagtg 240 taaaagaatc aaatnnnnnn nnnnnnnnn nnnnacctca ggtcccttcc cctcgtcctt 300 taactttcct tctgggggaa atctgtaggt acacaaaaga gggtggttca ctcttttct 360 agcaaagcag tgctatttag aaacatgaag atggagggct aggaaaaggt tacattacaa 420 421

<210> 290

<211> 498

<212> DNA

<213> Homo sapiens

<400>	290						
		ttcacacagt	gctggtcata	gtgccatggc	acctcagtcc	tgccaggacg	60
gcacact	ttc	caccaacage	tgccctcaga	gattcatgca	gagataaagg	gagtttgagg	120
caaggco	ctct	aatctcctaa	tgcttggtgc	ctgcctgctg	acagtggccc	tcgcttctcc	180
tggaggd	ccag	ggtatcaaga	aggccttggt	cctagtctaa	ccagaagcca	aatggatatg	240
tacctto	gaag	ctataacctt	gatctaccaa	gaatctctgc	cạcttggttg	agtaagccat	300
ttcctgt	gtg	tcctgggata	ccagtgagta	gaaaaaggca	ttgtactctt	ctgcaaccat.	360
ccctgca	agga	aaaaatgaga	aacggcaata	aagaagacaa	cattagccat	tagaatgcca	420
agageta	aagg	gtcccaggct	caaaagcaag	cactggagtg	gaaaagccct	gcactcgggg	480
ttagcad	cctg	aacttggc					498
<210>	291						
<211>	481	•					
<212>	DNA		V				
<213>	Homo	sapiens					
<400>	291						
		ttgtccaaga	gtatgtcagt	aaacatgtaa	gaaaatctaa	aactaaacca	60
gtaacad	ctca	gggacaggca	aatacactaa	ggtcaaggat	ggaaattaaa	acaaaacaaa	120
aagccaa	aagc	agagccagga	aagtgtaaac	acagaagtca	agagaagctt	taaaaaacag	180
tgttcaa	atag	tgctggcaaa	acatcatgaa	agaaaaacta	aaaagcaaat	ttggatttgg	240
aagataa	agga	cattattagt	gatcttatta	acaaaggtag	aatcaaaagt	cagactgtaa	300
tagatt	taaa	aggaggtaga	gaagtcaagg	agataacaga	aatgatctct	aaatttgttg	360
caaaag	gaaa	tagagaagat	aggcaccaga	gaggaaaata	gtgtgggtgt	atgagagtaa	420
agataca	aagt	tcttctattt	gtttcattca	tctatttaaa	gtggctgaac	caggaagtca	480
g							481
<210>	292						
	612						
<211>	017						

<212> DNA

<213> Homo sapiens

<400> 292	
gggggctgaa acaggcaggg agaggggaaa ggatcaagtt ctccaaacaa gccttagagc	60
aaactgtttg tcagaaaggg gtcaggacaa gaaatatgct gtagagacag ggtggtgtta	120
aaagggagag aatcatacac caggacatag gtccttgaag atcaggtcaa ctccagagta	180
gagatggggg tcccagaaag ctcaacaagg cactatcaga tacagagatc ttctcacagc	240
tgctctttct ttccactttt tccatctttc ctcactgctg ctgaagggaa atacaccaga	300
atettatggt etttattaat gagtggtetg gattacetea geatttgatt tecaceaaat	360
cctcatggta ttgcagtagg agcactgaag ggagaattga caatacccaa gtgctgtagc	420
tagetgteaa agaaagggga cagtgeettg gtteeaggag cagttggeeg ggaagetett	480
ccctatggat ggcagagaca ttcctcatct cagaggttgg aacg tacag agttcgaggg	540
ctctgcaatg agttgcacat ttgcgttcag tgcacattgt accattttta gttattttta	600
attcagacaa ag	612
<210> 293	
<211> 510	
<212> DNA	
<213> Homo sapiens	
<400> 293	
gggacgcgtg attccgtgga agaaggcaca tccatccgct ggactagggg aagagacgca	60
actectecta cagaageeee cagetetgee tactttetge etectette tetatecate	120
ccttacatge tggaatggge tgaaggtetg tectcagett ccaactgtee ecceacetet	180
ggagteetea eteacaceca caacetaact eteacetaet catgteeaat ecagteeage	240
totggattto tttccccaag tgtcccgagt acctctgacc ggactctgca aacccctcaa	300
cactgcacag gtccaaagct gaactcatct tctcctgaaa tgagctcctg cttctctgca	360
ttccctctct agtgactggg aacgttacct atccacccag ctgcccaggc agtaaagcag	420
agtcagette aacteeteee tegeegeaga tecaateage tttattgaca caacetacea	480
gaatacacat ctttagaatc cttctatctt	510
<210> 294	
<211> 422	

<212> DNA

<213> Homo sapiens

<400> 294 gggagagagt ctggtgctat ttgggggaaa gaattccagg caccaggaac agggaggagc 60 120 agcccagagt aaacagatgc tgaagaagag cctctgcaat ggctgtgcat gaggttgatt 180 cccaaagaac cccacctgca gggatccctt tcacggggag ctctcaagcc ttctgagctg 240 cgcctctgaa ggtggggcct ctcccgcctt cctgccgagc ttctcacagc ctggaaaggg 300 caggaggga ggctgtgact aagccccttc caaaggattt gctccccata gatgctccat 360 acaatacagg ttgtggaacc gaagttacta qagcaatgac ttttttttt ttttttgaga 420 422 <210> 295

<211> 703

<212> DNA

<213> Homo sapiens

<400> 295 gggagggttt ttaagcactg gggtgagctg gtgggagagt cctggaggac atcggatgga 60 ggccggttgg tgcagtcagg ccagcaatgt ttgcagatta gcgcttacca cagttaggcc 120 cctgcctccc gcagggactg ggagctgagg gtgttatctt ccttgttggt tacatttcaa 180 aggeteetgg gteettegag aagacaaage tgggeagtga aetgageaag aggeeaggaa 240 agggccgatg tettaaaggg acggagaaat aatteatagt ggcaagtttt etagagacaa 300 ggaagttggg gctgagagtc ctacaaaacc tgttcaaggt ttaatccccc ggacgggaat 360 ggtaaggctg tctgggccaa tggtcagttc atgcctccag tttagagcag cacctggtcc 420 ctatgggtcc tgtgagccac atggacaccg ggccaggcac aggagacagc aacagtgtgt 480 tececaaage etetgeagae ecageeeegg gegeaegggg teaeggataa eaggaaatge 540 actgccagcg gcctcactgc catgcgctgg cacaaatgca cccaggtgct gcctgccctt 600 catccacacg gtcagtggag cgcagcacgc tcagccgtga caccacagag ccacagggat 660 gtgtaagagg agtcggggag ggggagcctc acttcgtttt ttc 703

<210> 296 <211> 494 <212> DNA <213> Homo sapiens

<400> 296 gtatttgctt ttcttttaaa ctccataaag gagtattcga tgttaacaga cgtaactctt 60 taatgctcct ctgttcatga ttaagtatgc taagttttaa gtaatttaga ctaatgtatt 120 aaagtgttca cttatgtcta gtcatatgca tacctactct cttctaacct tgagtcattt 180 ctattaaata cagcatttaa tottotttoa agtgagaaco atotttooat tatatoaagt 240 gggcaatatt taaattgtct gataagttca tccaaattaa tcccatcatg cctgtttaac 300 tcatttcccc aaaaagaccg cgacctccag ccagtcattc agttcttgaa ctccctaata 360 gaagcaccaa ggattatcta tttgtaatca cattgtggtg aattatcagt ctcccaagaa 420 ttatgtaaag caaataggaa ttattttaga gttgccctta ttttaaaaaa caaaaaaaa 480 gtaaaqatqq qaaa 494

<210> 297 <211> 416 <212> DNA

<213> Homo sapiens

<400> 297
aaaaaaaaaa ctttaaggga tttcgaattg ccagtttaat aggttaactt gaaatagctg 60
gagcgttatt attatacctt aatgaattgg tttttattat tatagtgtaa tgtccattaa 120
tagattaaca tcttgtagat tacctgtagt gttttgtcaa gtagattagg aactggttt 180
ccttatctga ttgatctaat tatgaatgca tttgcaaata tttctgaata ttcttctcta 240
aggtgtttca cgtaatagga agtgattgaa attaggtgct agataaaacc tatctgtcag 300
tagaacagcg gatgactggt aacctttcct gaacatgtgt tttctcataa accaatggat 360
ctgttacaga aataatgtgt ctttaaaaaaa ttacgtattt catggctttt tttgcg 416

<210> 298 <211> 476

<212> DNA

<213> Homo sapiens

<400> 298 gggagaagac cagggtacac catcttcatc accagcttcc tgggtgtcct ggtcttctcc 60 cgctgctttc gggacaccac catgatcatg attgggatgg tctcctttgg gtcaggagcc 120 ctcctcttgg cttttgtgaa agagacatac atgttctata ttgctcgagc cgtcatgctg 180 tttgctctca tccccgtcac aaccatccga tcagctatgt ccaaactcat aaagggctcc 240 .tcttatggaa aggtgttcgt catactgcag ctgtccttgg ctctgaccgg cgtggtgaca 300 tccaccttgt acaacaagat ctaccagctc accatggaca tgtttgtggg ctcctgcttt 360 getetetect cettetete etteetggee ateatteeaa ttageategt ggeetat@aa 420 caagtcccat tgtcaccata tggagacatc atagagaaat gaagatgctt acctgc 476 <210> 299

<211> 580

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 299 gggtctatct tctattatca gaatgattct ctgagagggt caaaaaaaaa gcaggggagt 60 ggggagggca agaaaaaaat gctttttagc acagctgcaa tgaaacttag taagaaaaqc 120 aacagetete eettetetgt gtteagttta aaaatgaaat taaaaaaaaa ttgaggteag 180 gtctacttca cagtgcctat aaatcccttt ggtagctttt ataaaaggct ctccttaggt 240 atttcttgcc aaaactccct tttctttccc acactggaag gaaacnnnnn nnnnnnnnn 300 nnnnnnntat gctccaccca agagcacgtc aatagtgaag ctaactctgc caaggaagct 360 WO 02/10198 390

PCT/0	GB01/03:
aagtgttttg cattttaaaa agtaacacat ttggtaagtg tggatttttt tcagctaaca	420
gaaataacca caacaaatga gaacggtaat aaaattgtca aaaataacgt gcatgtaata	480
accttcctag ggtacttacc caagataata tattgtttcc ttttaaatgg aaagccaaac	540
aaaacactta actggctgat gcatttctga gtcttctgct	580
<210> 300	
<211> 493	
<212> DNA	
<213> Homo sapiens	
•	
<400> 300	
gggttgtaac cataatgtcc atattgctgg ggatagtaag gttcttgtct gtgttgcggg	60
tagttgttae eccaggateg tecatgecae tgattggate gattgteaet tggecaeeee	120
catctgttgt ccctgcctct gaactgtctg ttgtcttgca acctacaaca ataaaacaaa	180
aaagatettt aaaetteeet tgttaaaaaa aaeatatgae aaaeeeatag eagtgettet	240
ggtttctcat tctaatacac aataaataag actaaaaaac atttttcaca atagaatgtt	300
atagtgccag ttattcaaaa ctttcctaag attgaaatca ttcttccagt attatactag	360
gtacacttta cagagacata ggcagactat ataaccaata gaatagttcc aaattaaagt	420
gaaatctatt caattgtaca aaaatggtat ggtaatttat teetttgaet attttgaatt	480
attaagtaaa agt	493
<210> 301	
<211> 566	
<212> DNA	
<213> Homo sapiens	
<400> 301	
ggttcatagg tgaagcccac caatcttaca atattcaggt aacttcattg ctatctaaac	60
tgcttgaaag tgcaaaaaaa gaattgcaaa ttctgttttt aattcttgca tagacagtta	120
aaaggaaaag aaatcaaagc tacagatcaa tettatttat gaataatggt gcaaaaacgc	180
taaataaaat attattttat gaaatccaaa cttatattat aataaacacc ctatgaagaa	240

. 300

360

gtagggtggt ctacttttag aatacaaaga tgactcaata ttagaaaatt ctttaatttt

tatatgaaaa tagtaaaaga aatcacaagc ttgtctctat tgaagctgaa aacttaacat

ctgtttattt	aaattaagca	tctatttcca	atttaacaaa	ataattacca	aaataggaat	420
tagtagatag	tagcaaaata	caaatatttc	tatgtatcaa	ctcaaaatcc	aatattatat	480
catgcttaaa	aggcaaacat	gaggaagttt	tcctggtaag	atcagccaca	ggcaatggtg	540
tttactatca	tcaccatatg	tgatgt				566
<210> 302						
<211> 501						
<212> DNA						
<213> Homo	o sapiens					
<400> 302						
	aaactgacaa					60
aaattactct	aagcttcttc	ccacttaaga	gttttgggtc	ataaaatgtc	ctatctgtat	120
aaataaatgt	ataaataaat	tctttcataa	aagtaaacag	cacttttaat	accettacet	180
gaaaaatttg	ggcacacctt	aaggcctcca	ccacttgagt	ttttaataac	tgggttatat	240
ataagcctgg	gaatctctga	actaaccaca	tcctgacaac	cacagcctac	tcttctctca	300
gaaatcaatt	caaagagacc	actcctgaca	ctttaatgtg	gagctgaccg	cgtaactccc	360
tttgctccca	ctatacccta	tttggatttc	catcctagca	tagatgttat	tacatactgg	420
actgtgaact	ttttgagact	agagaccaca	tgtcacattg	ccaacgtctt	tctgtagtac	480
aagctactac	agagtagacg	g				501
<210> 303						
<211> 505						
<212> DNA				•		
<213> Homo	sapiens					
<400> 303						
gggggttcac	tatattctta	tgtatctttc	ttaaatgttt	gacactttac	ataattgaaa	60
aatgttttaa	tgaaataatc	agagaacaag	aaaatctatg	aaatgaaaag	cgatggccta	120
aactaaaagg	tcaatagaag	agttggaaga	tggttgaaga	aatttcacat	accttagaat	180
gtgtgggact	ttaattatcc	gaaaataaag	aaaattaagg	aacaattcaa	gaggtttaac	240
taacatattc	Caaagagcag	aacttacaaa	tattastas	atracatara	ctttctcaat	300

actgatgaaa ggagtettta ggttgaaaga gaccacacet catatateat atgatatagt	360
tttagaaacc cacactcaag aataccacta tataaatttc agaacaccag gaataaagag	420
tagattotaa agactoccaa agaggaaaag cagottacao acaaaggaot gggagtgaga	480
ccagcaatta acttcatcac tgtat	505
<210> 304	
<211> 577	
<212> DNA	
<213> Homo sapiens	
<400> 304	
ggggateetg acetggaegg ggeeteeetg gggeggeagg aagagegaee acaceegeta	60
tgcctgctga gcccaggccg agaggcagct gccaggctgc gtgccacatg cccctgccag	120
gaggggccgt gcagttcatg tcttgttgaa atgtgccagg tgctgagcag agaagctcca	180
gggagetgea gacettecat gggacecaac aagggeagge atggagetgg acceagagee	240
aagaagacca gacgacacaa atcatgcctt caaagaagaa cccaggagtt caacccaaaa	300
tgctgatcaa cttgtatagt ttcctgtctc cacctccagt tctgggaggt gaaggagtga	360
ggctgggcgg tcccagcgcc tcccgggcct gggagaactc gtctctttt ccacacaggg	420
gctgggatga aggcaggcag gctaacattg cagtaggaga tttaggagct tcgtgtgtaa	480
gggcgatgtg acacgggccc cctgtgcaga ggcctggacc agagccgcca gagtccccac	540
gagectecag ggtaatggag cateagaacg atteege	577
-010; 005	
<210> 305	
<211> 447	

<211> 447

<212> DNA

<213> Homo sapiens

<400> 305
gggtctttgc tctggctctg ttgatattt gtctttacct gccagctgct ttccatccct 60
ctatttcttt attagtttca agccttcatt taaatctgat ttcctcccct ttccatggtt 120
taagtacatg gacagaaaca acgaacatca ggaaggaag tagaaaaata cgggtatgag 180
ttgcagaaac tacagatgag ggtctttagt atctagccta attttgaaat tgctttgaag 240
aagggagcgc cttgactctt gcgcaccggc cattttcaca gcagttccct tgcacgcaag 300

tgtgtgctca	cgtgggaagc	agggttggat	gtgaagagag	tgctagtaat	tacagtgcag	360
cagaatgtgc	agagcaacac	tgtaaccttc	aaagttttaa	agccatttgt	gcttaaatct	420
atattctcag	tggtagaaat	aaccatt				4.47
				•		
<210> 306						
<211> 614					•	
<212> DNA						
<213> Homo	sapiens					
<400> 306						
ggggcaagag ¹	aggtaatgag	gtgtcagact	gcaggccctt	gtaaggactt	ctgcttttac	60
tctgattgag	agatgaagct	attggaagga	cctgaacaga	ggagtgacat	ggtttgactt	120
atgtttcagt	agggtaacct	tggctgtgct	gggaatagac	tgtagaggag	caaaaacaga	180
agcaggaaaa	tgagtttgga	ggttactgca	ctaatccaag	tgggagagga	tggtggcgca	240
gaccagggtg	gtggtggcag	tagggtgata	agggttttac	atgtttcaaa	gatacaccca	300
ataggatttt	caacagatga	gatgtggcat	gtgtaagaga	gaagtcaagg	ataatttcca	360
acaacagcct	atctgaatac	ttgtcctttg	ccttttaaag	atgatttata	agacttcggt	420
tagatttgta	ctatggttta	cttgtaggac	tcaaaaccca	aacccactga	ccttgtgaga	480
cacttgagaa	cagggactag	gtttcattat	tttcgaatca	tccttctcac	aagagcatga	540
cacaaagtaa	catactcatg	gtcggaattt	aacaaatgtg	cacaagatga	atgaatgaag	600
gagtaaatga	atga					614
<210> 307						
<211> 684						
<212> DNA						
<213> Homo	sapiens					
<400> 307						
ggggagagga	gggagaggga	gagggcgcat	ttttttcatt	aactttcttt	tttaatataa	60
gcaaaagaca	aaccttgatt	ttagttctat	gaacaatttg	tttagtaagg	ccccagtcaa	120
cttgattatt	tttcaacaac	tgtgaattta	tataatgata	gccattttac	atgatttgta	180
gttttaaatg	tttaaatgtt	aatcagatta	gttagctctt	tttgtgttta	ttaggggtaa	240

attacctttc	tcttctgaag	cgacaattat	acatccatga	ttgctttgac	cagaatatac	300
gagggtatcc	gcaatccagc	atgtaattaa	attacaatct	gagttaccct	ttcttgaatg	360
tgacattctt	tccgtctcat	tcctattaca	atgtaatttt	caccctgact	taggtgttag	420
gaatgcttca	gagactagtt	attttttatt	tcttatatga	ttttttattc	ttacccatat	480
tgtgttttc	cccaccccta	gtacttacaa	ccttttattc	tgtggttctt	gtgggattcc	540
cgttggtttc	catctgtatt	ctacccatgc	tgccctggct	gccttgagag	gtcacttctg	600
cctttccagt	gacaaaatgg	tgtggtgagt	agacttagat	attgatcatc	aaatacattt	660
tattttattt	attttgagac	aaag				684

<210> 308

<211> 682

<212> DNA

<213> Homo sapiens

gggtcaactt ggtcagacga gaggagctga tctcaattgg aggggtggtg ctggagggac 60 tctgggcaaa taccacaaac aggttgctcc tgacagcaaa gagcaagaac tggggttctc 120 ttctactaag tgctgacttc aagaatctgg tagcctattt atcactctgt cttaaaccaa 180 acaatccttt tatttaagca gttcaaactt cagttttgca gggtttatat agttaagagc 240 agctggctta catggcacct ctttgatctt tctacagaca tcagcagaat gccagtctaa 300 cataggatga ccttggtcca ccacagagca tctatcccat ttagccactg cccacttttg 360 gatgctaaca gaaaacatca ataaagaaac tattctcagc taaatatagc tacaaaacaa 420 gtgtcacagc tatacatatt acacttgtta tctaagtgaa cgggaaatgg caatttcaga 480 aaagactgtc ctgcttcatc ctcactcacc tctttgggag aactcagagc tgcaccacta 540 gccagtacca ctggtttggt aacagagatt ggactggtaa aagcagactc ccggctagag 600 gaaagggate etgacttgtg etceateetg ttagetttee atgeattagg etacacaggg 660 tgaaagaaca aatcagtcag aa 682

<210> 309

<211> 624

<212> DNA

<213> Homo sapiens

<400> 309						
gggcggatgt	gaaggaggag	gcaatgccag	caggagatcc	agcaacactt	tcacttcctt	60
taggcttctt	ccctttctac	ttctggccga	cgtaagaccc	agggatgctg	ctgtgctcaa	120
ggccacctca	ctccttcagt	ggacacaggg	ttagcttggc	tgcctgcttc	ccatttcctt	180
accaccagec	ttcacatccg	cccgggcctt	tcagcttggc	tcactgcaga	ttgcaaccgc	240
ttactcagcc	tttcaccctg	tagcaatcat	aggtaacagg	aaggaagcac	atgctagtta	300
aaattgtaag	aacttagctt	ttctattctc	atccatggta	tgttcccact	ttacttgagc	360
ttgtgacaaa	agtcgcccat	gtgttaatat	gccatcttgc	tggagaggca	tctgaccttg	420
ccaggctttg	ctccaacttg	cttccagcaa	agctccttag	gacttctaat	cttatttggt	480
aaaacaataa	aacaaaacag	aacataacct	tgtatcccat	ctacccaga	tggagaagtt	540
cttgaaaatt	gtccggccca	cttctgcatt	tctactttca	atatactttc	cgagtatatt	600
gtctcatata	ttttgaagga	gaga				624
<210> 310						
<211> 549						
<212> DNA						
<213> Homo	sapiens					
<400> 310						
	taatgactag					60
taaagttcat	acccatagtg	ttagggtaaa	ctaaaaaaaa	aacttttaa	aaagacaaat	120
gacaattaaa	agtaaaaata	taaatagttc	ttgtgttttg	tätttaaata	tgcaaagata	180
ccagtgttta	aattcttgaa	attattgttt	ttttttctc	tttagtctct	taatccttgg	240
tttgacctta	atcttttcat	agtctatatt	cactaaataa	tagttgataa	atccttgaaa	. 300
tacttgtttt	atatactgtg	gatatgttgg	atattttctt	ttgatttctt	ttttatattt	360
ttgaaatatc	catgattatt	actatttctt	gtttctctgt	gaaacatttt	attgcctaag	420
aaacagttca	gtgaaataat	gttttcagtg	atgtctgtcc	agccagtaag	tagtacacag	480
tattttttgt	ttgtttttca	agagaactag	tgaatacaaa	actgtttaaa	tttactttac	540
gttaggtac						549

<210> 311

<211> 482

<212> DNA

<213> Homo sapiens

<400> 311 ggggaagacc taacattgtt ttgctttctt agaattctca gaagccaccg ctgaactgac 60 cgtctcattc acaaacaaag tcttcacaac tggtgagtaa ccaggcattt catgctcagc 120 agaaaggagt gtgaggacgg agctctctct tccattatct aagcctgtag gcttttaacc 180 acttcaccga actgtccgtc tcttaccaag aaagtccttg gtgtgaggct agagcatggg 240 300 tgcagagtgg agctctgggg ttcagaagga ggagcatttt gggtgatggg gccatttcaa aqatggcgga gccaaggctg tggcgggacg accgccatcc ctacgcactg ctcccaggat 360 420 quagtectag getttggact eggetgtgat eeaggtattt aatetegete etcaetgtgt ccaggtagag cccatgctcg gacgcacaca gactgtaggc acctggacat agcacatctt 480 482 ct

<210> 312

<211> 478

<212> DNA

<213> Homo sapiens

<400> 312 gggatageet atggaaagaa gggaetaeat gaeattaaga atgetgaget tgetetgtte 60 gaactgagcc gagtaattac cttggaacca gatcgtccag aggtatttga gcagcgagca 120 caagtgagtg tggctttctt tttccctctg tcattattgg attagttgaa tctcaatttt 180 tttcctatta ctttattatt tgtaaatttt aatgctccct taaaactctt atgtttttct 240 atgtcggtac ttaatgcctt taagcatggt tgaaattaat agaaaactat ggactgagtg 300 atatteetga actaacatag aagagtaata tttagtatga aaatatgtgg ttgaaaatat 360 ttagtatgaa aatatgacgt gtactacttc tatagatatt cattgaaaaa tataacacat 420 478 aatatttgtg ttatattttg aaaaatataa cacagaaaaa tacaacacac aaaagaaa

<210> 313

<211> 572

<212> DNA

<213> Homo sapiens

<400> 313 ggggaaaggt atgggggtga gatttacttt ttaaaacttt aacttggtcc tatgtgaatg 60 ttttacttgt ttaataaaca atgaataaat aatagttgag tagaagagat ggaaaattac 120 acaaactttt gcttacttaa caagccactt acctaactag tatttttaaa tgacatctaa 180 aagaaatggg attcaaatga ggtctccact atgtaaccaa attgtcatta ttactttaat 240 gagttttcta tttaaactct ttatttttt tatgttagtg gagagtttta ggaagctaat 300. aaaattgact tcttttatac aggtatgtca tagcacttaa tttaaagaga atattttaa 360 gaaagaacaa aaccttgtta gtaagccctc tagaaataag tactttatgt gcctagagtg 420 ccatctcttt cgtggtactt aggatcacag tgtgggtggg tgagtttgac ctaaatatca 480 ggcattcata cagggttctt tttcttgata catatatatg tgtatttttt ttctttccct 540 cgaatcttag aaatcattaa tactgatgag tt 572

<210> 314

<211> 672

<212> DNA

<213> Homo sapiens

<400> 314 gggataagga agggagcact gccaaggaaa caccttggga aggttccctg taggaggaag 60 tatctaaget ggaaactget ttgtaaagta ttetgttaga aagtaaagee atteetgget 120 ttacctttta acacccatca aacgtgttat ccagaaagat aacaaagtac accagaataa 180 gaagttacct aatggaaggc tttggaaaac cagagtacac tgctcaaatc tgctcaaatc 240 tgctaatttt agacaaacag aaaatacttc agtgagcacg ctaccaaagg gtatttttag 300 agtctgtttc agttaaccac tctgaactcc tcagtaggtc aaacaaaaaa aaaagcaaaa 360 gaaagaaaac tatttcaaat ctatagcaag tagaaaatta tottoottot toatgootaa 420 tttctttcat cctacataga aaataaacaa tcagcattcc atagctaatt ccattctaca 480 cctaaccacc ttatttactt agtacttggg gaagaaagtt gactacagct gttacttctc 540 attgcttatc ttgagaaaac actgaacaat gtaaaacaca tatgagcaat aggcaataaa 600 ttaagcacaa aaaagcatgg ctccataaaa aagtgatcat ttaacataac tttttccttt 660

WO 02/10198 PCT/GB01/03390 cattactttc ta 672 <210> 315 <211> 678 <212> DNA <213> Homo sapiens <400> 315 gggggatggg agagacaaca gctcccacct ctacagcggg tcacaactgc ttctccttag 60 ttgcccacat ggctaaggca gaaaggtttt aaacttagct aaaatacata ttttgattta 120 ctttagaaac ttgaactggc cccaggcaaa taataactac atgagaatat ttcatttagc 180 accttcctct ttcactccct ttagggaaaa gactgctgca ctcgaaaatg agggggaggg 240 aaacttaaag gaaaaatata ttcgaacaac agccagagtg gggaaggtag gcacacattt 300 ctgagccaag ttccaagccc ctgttgctcc aatttgcctt tgaaacaatt ccactttgcc 360 ttctgttgct tgaacaataa ttattaaagg tatcaattaa aagtgcccaa ctccattgct 420 cccatggcca aagtccctgg cacatctccc gccattgcct gcagcacctg ccaccaccct 480 gattttctgt gtcagtgggg tagagccagt ctaggataga gcctcttctt tggttgattt 540 aaggetggga gaagggeeac tacceatgge eetgeegeag tgaggaagga aaageagage 600 cttttctgcc atctctaagt agctagcatc agtagcctag tcacaacaaa tgcactgggc 660 tcagtattgg gaagacag 678 <210> 316 <211> 411 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 316						
	tcaaactgga	gtgtgacacc	aggttggctg	ccttcctatc	tctggggaag	60
tgaacaggga	cttttcttgg	gtacaagtga	gagaactgag	gcagaggcca	gcccctgatg	120
atgacagccc	ctgngtgacc	tttgattccc	atctgaccct	ccttctgttt	ctgtcactcc	180
actggaagct	actgtccccc	atagtctttt	tctgtgtcac	atgactataa	caacctccca	240
tgtgttgaaa	gctaagggca	ggaaacacgt	ctgttatgag	ggaaagtgct	tctcctggga	300
ctttgaagat	ttttttccta	caaggaagcc	tgtctgcagc	cttcacaagc	actcgcctag	360
gctggaaagt	tctgttaact	gatttacaac	aagctgtgaa	tattagtcag	t	411
<210> 317						
<211> 559	į				•	
<212> DNA	·				•	
	sapiens					
	· capacing					
<400> 317	++	azaataaza	++~~~~~		+	61
ggggatgaag	ccyaayaayy	gaggatggac	LLggagaaaa	acctccaagt	tataacttct	60
caaaggcagt	aattagagag	tatctcctct	ttgtctctga	ttcaggactc	agctaaggcc	120
cagcaaatgg	gaaacttcct	ttttaaaaaa	agccagtgta	gtgctggcag	tcattaaaga	180
tttgctgaat	tactgacctc	ttatcgccca	catgccctgg	ggaatctgtt	agcagtccac	240
cacctcttgt	cactaatcaa	gatgccttta	tgttaacacc	tcccttttaa	aagcaagtca	300
gtcaggaaac	ttaagtagat	taacacttaa	tcattaatta	cctcatggga	taaccaaaca	360
aatttctttt	ctgtttaggc	tatctctgat	cttctgcccc	aggatatatt	tttcaggcat	420
tgaaggactg	atgtgagtta	ctctggtagt	cctggcactt	agggtcttgg	tgaatctgct	480
tggggaaagg	aatgaaggca	tggaaacagg	acagaaaggt	gaagctagag	cagagaaaaa	540
gcactgaaaa	gaaacttca					559
<210> 318						
						•
<211> 537						
<212> DNA						
<213> Homo	sapiens					

<400> 318

gggcaacaga	gcaagactct	gtctctttaa	aataaataaa	taagtgtagg	gacaaacagt	60
cactggaaaa	acaacttagc	tggatttctt	ctttatttta	catacaaaaa	taaattctag	120
atgggaaaat	gacctacatt	taaattttaa	aaccaataaa	tattagtaat	aaatgtaagt	180
cttccagtta	aaactgtgga	ctgaccacac	atattttato	tecectecet	ctgaaagcat	240
tgctaaaatg	acagtaaagg	aataagaata	cacageteta	gaagcgaggt	ttttagaaga	300
aaaaactgaa	actgatgttt	gtgtattcaa	aacatattta	aaggcataag	tcagagataa	360
tggaactctt	gacaaaaatt	agcaataggt	tcaatgaaaa	ccaggtaaca	aaaagcaaag	420
caaaccaaaa	caaagtcaat	tactaacaaa	aggaaaaaaa	tttacaagaa	aaaagaagat	480
ggatcagtca	ccactactcc	atcacagcac	aaaagcagtc	acagacaata	tgtaaat	537
<210> 319					\	
<211> 450				٠	•	
<212> DNA						
<213> Homo	o sapiens					
<400> 319					•	
		•		tgttttaaag		60
				gtacaacagt	· ·	120
				accagacagc		180
				attaacctct		240
				ttctgattca		300
ttaactgcaa	catatcagtt	tatttaaaca	gttttaaatg	tgagcaaagg	aaaaacttaa	360
atattaataa	attatacaac	ttatagcact	ctagtgctat	acaaaaacta	ttacttgttc	420
agagaaagaa	agagaaaaaa	aggaggagga		•		450
<210> 320						
<211> 400						
<212> DNA						
<213> Homo	sapiens					
<400> 320						
ggggcaccac						60
tcggagatgc	ctctttgatt	tcctccttac	ttgtccgagt	aaatgaaaat	caaaacaagg	120

gaaggaaagc	aggttttaga	aaagcttgag	ctttgggata	ctgagtttat	ctgtgtaaca	180
accaagtggc	tgttgtcagt	atgtggttga	agagatgtct	gtgctagaga	taatgggttt	240
aggagtgatc	aatgtgtggg	ccacaatgaa	agccttcagg	tgtctatcca	ggggtactag	300
agagtgagaa	gagggcctag	aacagaactc	tgaagaaaat	tatgtttaaa	tgaacagcaa	360
tacctggaac	ttatcttaag	ccattagctc	tgttatctac			400
<210> 321						
<211> 418						
<211> 416 <212> DNA						
<213> Homo	o sapiens				Ţ	
					,	
<400> 321 ggggaacatt	aaagagtcaa	agatgatgat	gtccatgcta	aggtgtctct	gagaggtggt	60
tggtacgatg	aacagaaata	tgaaaactag	ataagaagtg	atgtgagagt	agttctattt	120
tagtgatact	aagtttgaag	taaactgatt	tttatatgtc	taactagagt	ttatgccatt	180
tgtagttaac	aaacccaggc	aggaattaat	ccaggtcact	ctgagtgtga	gctttadatt	240
tgatttcctt	tatttacatt	gttaatctcc	atgtattcac	tgtcagaact	gtgcattttt	300
atattttagt	atttttccct	ttgagtttct	ctgaaatgtt	ttcttctaaa	agtgtttttg	360
catctttaac	aaattctgct	tcactggctt	ttttctttta	aaccttgaat	tttcttca	418
<210> 322						
<211> 446						
<212> DNA						
<213> Homo	. sanions					
12137 1101110	Japiens					
<400> 322						
	aagctgaaaa	gcacatggat	gagtaacaac	tġaatcagtg	ccccagggc	60
acctggcctg	agccacactg	tgctgcgaag	ccccacaagg	ctcaggaatg	ttaaaattct	120
ggcacctttc	agggtcgccc	aggatctgct	ggcaggagat	ggggttggag	gagggggcgt	180
ctccaggaaa	gtgaccagcc	tggaggaaag	atgcttgggc	actgaaggga	aagagcacct	240
cagagtgaac	cacaggccac	acgcctgcct	gagcatagca	ggcagtgccc	cggcctccaa	300
tecacagaag	ccacagcggt	acaaccccc=	cctaccattt	aaaaaaaaaa	~~~~~~	360

agccacagag	gecaaaatce	aaagatgaag	gttatgcaag	acggagactt	tttctatttg	420
cttttcttct	gagacagggt	ctcgaa				446
<210> 323						
<211> 687						
<212> DNA						•
	o sapiens					
<400> 323						
ggcgcggtac	caggcgggca	ggcggccacg	ttcttccagg	actgagcgtt	tcagcaccag	60
gaacagcgac	tccgccgttg	tgcgcccggg	accagagttc	tgagatcctg	tccgctccaa	120
tecetgeete	ttaggactcc	aggatgctgg	cagggacgca	agatttgggt	ccggctggtg	180
atccctgcgt	atttcattca	gctaccggac	tccggaggct	cagcacccgg	ctgcgttctc	240
agggcattgc	ggtcccagga	gctcaccgtt	cctgatcccg	agcgaacggg	catctccgtc	300
accacgcagc	tcagcgcagc	gcagctctcc	tcacacgttt	gcagaggcga	agtcctgcgg	360
cgctggcggc	gcttctgttt	ttgtccctgg	acaattctct	ccaggatgta	tgagataaat	420
agagcttcta	agtctgaggt	cgacagtaga	tgggtcttag	gtgtccccaa	agtccctgaa	480
atatgcaaaa	ttctgtttac	ctgcgttttc	ctagggagaa	ggtccagggc	tttgatcaca	540
ttctcttcag	cacacatgac	cgcaagaagt	taaggacaat	gggctcagga	gaggcagatg	600
gtggtttggt	taggagcaca	ggctccacga	ttcaaatctc	gattctgaga	attattagtc	660
gggcaaactc	gggcaaatta	atctttc				687
<210> 324						
<211> 409						
<212> DNA						
<213> Homo	o sapiens					
<400> 324						
	aggccgccgt				_	60
	cgagtagaga					120
	cgagtggcgg					180
	ccaaggeeet					240
tttgtattt	ttatttacat	tttatatttt	tggacatatt	gctagggtga	accattttta	300

atgatgtccg	gataaccaaa	ccacgccatg	gagcgttctc	tgtcctactt	ctgactttac	360
ttgtggtgtg	accatgttca	ttataatctc	aaaggagaaa	aataacctt		409
<210> 325						
<211> 725						
<212> DNA					•	
<213> Home	o sapiens					
<400> 325 gggataactt	caagggtgaa	ttctcatttc	ccactgctca	ttcagctgct	ttggtgacac	60
aggtgtgcaa	gaacaacagt	caccgtctat	cggtcatgac	tatgtgaggc	gagcagggaa	120
tgcctgaaca	acgtccaaac	actccaatct	ctgttaccct	cagatagtca	aagaggaagt	180
gtcaccattt	ccttgaagct	tggtgtttgt	cacagccttc	aaggaagctg	gggatgcctt	240
gaagatgggg	aaaataccac	ccagaattca	aagtgataac	tctttgaagg	gtcaatggtg	300
ggaatgaaaa	aatgcttcct	agcattttag	aatgccttgt	accatgggaa	gaaccagtct	360
atgatcctgg	atgtgtactt	ggtcaagtct	gcacttacag	aagcatttgg	agaattttaa	420
agcatccttt	tctttaaaga	agaagacaga	agaagttcag	tggaataaca	tggtacgtga	480
atgcaataca	ttttagacca	aaaaatacca	aaaaatattc	atgtgtggta	acagtaacag	540
tctcttcaag	cgctcaaaat	taccagacaa	aactaactca	tttgcaagct	gaatggaaga	600
caaacattat	cttctttaat	acctagctac	accccttcta	gacaatttgc	ctcttgcata	660
aacagagaca	cagtcgtcaa	aaacaggtta	aaaactgggt	aacaataaat	gacccaagaa	720
ttaat						725
<210> 326						
<211> 624						
<212> DNA						
<213> Homo	sapiens					
<400> 326	ggagctctat	aatctaaata	actaaceaee	agtectotet	ascccasas:	60
	atggggcttg					120
	aattaactaa					100

ggacagaaaa	atacaaattt	ggggagaaaa	gaaattaaga	acccatctaa	gccaagggac	240
tggcagaata	aggatcaaaa	ggttaaggtc	agagaaactg	aggggctggt	gagcaccact	300
gaagggactg	ggaaagagtc	ctggctggta	agaaaagacc	tgcaggctgt	taggatcaga	360
gagactgcaa	gtcctagaga	gctgggggag	tgtaggacca	ttacgtgcgt	agagtcaagc	420
ccaggctgat	tagccatggg	aaattaattt	gacageetaa	cccctggaa	aaaaaaagg	480
catttaataa	ataactcaat	tcctcagtaa	taacaagatt	ccttataaac	cagaatgtta	540
cgtcaggaaa	aaatgtccac	tgaaattaag	tgatcttttt	tgaaatgttg	agtactatgt	600
gtttagtgat	tacaaaagaa	aaaa				624

<210> 327

<211> 775

<212> DNA

<213> Homo sapiens

<400> 327 gggctgtgct tttcaaggtc aaactgcaaa caaagcaagt ctgctctcat agccttggta 60 acagtatttg aatacgcatg ataataaatt tgttcatatg ttttccgtga gtgaaattaa 120 tttcttgctg gtgatattgc aggttatata aatacataat actcttcttt cacctcttcg 180 catattatca aacaatccac atttgacttc ataacatttt gagacagtct acaatcatca 240 atcctggata ttacttcaca gctaaagtac ttacactaac aatattctga ttgtgatttt 300 atctttatgt tttttatcat atcaacaagg gaaattatgg gtttcatgaa accataatgc 360 aatgataaaa acataggaca agatggaagt ttttttattc tgctgaaaac atatttaata 420 gcagtctaaa cacaaaaatg taaactgctg tcttttggaa aacataacac agggtcacaa 480 ttttgtaaga taaaagtttc aagttatttt aataaattgc cacattttt cttatagaaa 540 aatgacccat atgcctttgc tttttaaaaa aaaaaacaat actgggtatg acttatgtgc 600 tatagaagta ttagccatta ttactgtatt attatccctt ccaccagata gaaatttctt 660 attttgtact actgtttgat gttataaaat tctattaata ttattttggg aaggcactct 720 ttagtgaaga cacatcagaa aggcaaaata gttaaaaaaa aaaaaaagct taccc 775

<210> 328

<211> 454

<212> DNA

<213> Homo sapiens

<400> 328 gggagctctq	3 g tgttgtgaga	gggtggttgt	aaggtgggtg	acaggaacag	gaaggagcac	6 0
ccaccagata	agttaatttt	cttccccaag	tttatggttt	gaacatgttt	gggcctggct	120
gttacgtcc	aaataggaag	taaaatgaga	aggttgtctt	atgagctgcc	agttgagggc	180
tctggagag	c caggagttgt	ggaggaaaga	gcttggaact	tctattcagt	gaggctggat	240
ttccactctc	actccacccc	ttcctcttgg	accctgggac	caactcaatg	atcctttctc	300
taggacttg	g ttttctcacc	tgtaaaatgg	ctaagccccc	ctgcaggggt	tgggcacctg	360
ggcttgcttd	tgttggaagc	atccccccat	ggctccccaa	gtgtgagatt	ttcagactag	420
ggcccaagtt	ccaccctatg	gtacggggaa	ggta			454
<210> 329)					
<211> 422				•		
<212> DNA						
	no sapiens					
	-					
4400> 200						
<400> 329 ggaagagtct	gtgttatggg	catcacatgc	aacttaagga	aaaggaagaa	aaacaaacac	60
tccacageto	agaaaatgca	tgacttttt	gtgcggcggt	acaaaaaata	aaaataagtg	120
attttgaatt	aactgtggct	aactagcata	tgaagaacac	acacatgcta	ttaatcgact	180
gataagaatt	tttaacaaaa	agttgtctgg	gtgcggtggc	tcacgtcttt	gtatattcac	240
ctgctggctt	cctgctctct	gaggctgcgg	tcatgcactg	ctaagtgact	cttcagaggg	300
tgtcccaact	tacacttccc	cctaaaaagt	gggacagtgc	ccttttgtag	aactctcaac	360
atttctttct	tttatacttt	ttggtttgtt	tttgaggctt	ttttctttt	acttttattt	420
tt						422
<210> 330						
<211> 547						
<212> DNA						
<213> Hom	o sapiens					

<400> 330

gggggtggag	agatggggag	aggggtccta	gataaaccag	gacaaggtgt	ggtcacccaa	60
attagtagtg	actggaatac	aaattacata	ctcaggaaaa	tgaaagggtg	gaactgcttg	120
gtgatattta	agttttacac	ttatagttac	tggtacaaac	cacatgaaaa	ataatcaaat	180
gttttaaaac	tcttgctctt	catgcttttt	ccccataaaa	taatttttga	taactcaagg	240
tttattagaa	cataatatta	catcatagca	aaatatacaa	tacttacaaa	agactagctg	300
cttcctggaa	tgcattgaca	gctgctggaa	tatcccccat	caccagatgt	ttctgtccta	360
aacccaatag	tttcttagct	tcactatcca	catccagact	gcaaaaaaaa	gattttttct	420
agtgtcaagt	actgtttaaa	tcagtatttt	ttgaatacct	gctacatttg	agcaatagtt	480
tcatttttta	aaacttttgg	actactctgg	caaggcctgg	ctaacgcact	tatttaccat	540
cacaaaa			•			547

<210> 331

<211> 539

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 331 gggctcggcc gcactcaagc tcgcgctgct gaggcctcgc cccagtcagc ccacggagct 60 gctccaactg tgtctcctcc tccttggccg ccgccgcacg ggaacccacc gaccaacagc 120 caageteegt eeegegegnn nnnnnnnnn nnnnnngeeg aetegtggeg eeetttataa 180 tgccggagcc gggtgccaca tcgcaacaaa ctgcacactc attggctgct caagtccgtc 240 actcaaccta gettcagegt eccattggee gecaeggege gegegeteta gacetgggeg 300 ggetttgtcc teattttaga acgegegega gtccggeege tacggaggge tecegaagee 360 gggcgggacg gcgccgggtc cagggcggcg ggcagctaca gcacatcggt gggagggcct 420 aatcggattg taagctcgtc gaggccgctg gtctcttgct ctcgaggact ccatcccagc 480

attgacagcc	teegeeteee	catgtcccaa	aaaaaaaaa	aaaaaaggcg	cgccttaat	539
<210> 332						
<211> 608						
<212> DNA						
<213> Homo	sapiens			•		
						•
<400> 332						60
	••			aaccataatt		60
				cttttgctaa		120
aagaagcaaa	ctgattaat	aagaagaaag	aaagtgggat	gcaactaaga	aagaatgctg	180
agcagtggaa	ttggtaaggc	tgtgagcagt	gtaaaggaac	tttagctata	taaagcaaca	240
acaataataa	gcaacaacaa	atacaaaacc	aaggtagaaa	aatatactat	ttaaaaataa	300
catgaaggag	gtaagatgcg	ttaaaaagat	ggggtaaatc	tctctaaagt	ctttgaacta	360
ttcaagaaaa	gaagattaat	tttagatgta	agtatgctaa	gtattcatgt	taaaactcta	420
aggatgtcac	tagaggaata	gaaccagaat	atatcacttt	tataccagag	agtgagaaat	480
aaagaaaact	taacctatta	aaatatagga	agagaaagaa	agaaacatag	aaaaagcaag	540
gtaaataaaa	ggtacgggat	aaaatgattc	agtaactaca	aagaataaaa	cctgccagct	600
tgagtgaa						608
					1	
<210> 333						
<211> 674						
<212> DNA						
<213> Homo	sapiens					
	*					
<400> 333 gggctctgag	aaccagtgtg	ggcctctccg	gtagaagctg	ggatgttact	gtgtgtgccg	60
gtagctggca	cagtgtcaat	ggcttgggcc	tgcacagagc	tccctgtgta	gaccccacag	120
gcctcacgtc	tgggaccaga	aagctctgtc	cccaagccga	ggcgagcagc	agagcattcc	180
ctgctggccc	agacccatgt	gtggagggag	gtgcagggga	aagggaacct	gggtctcagg	240
				ggaggccgcc		300
				aggctgctgg		360

aggggcccta atcccaggcc catgcagagg accetetgag aggetgetgg agttcaggga 420 ggggccctaa teccagtece gtccagagga ceetetgaga ggctgetggg gtgttgggca 480 ggggccctaa teccaggece atgcagagga ecetetgaga ggctgetggg etgttggggg 540 aggggcccta ggccaggcag gccaggtgat aacttggtt gtcaaagcet gacattggcc 600 agtettgagt gttaaaaaa atgttttta tttctacagt ttgaatttta tgaatagetg 660 tettettace tata 674

<210> 334

<211> 811

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

١

<400> 334 gggaggtgaa aaaatgaatc aaagctccat ctggagctta tcaatttgga gatgtctttg 60 tgacactgaa gtaaagatac caataggaag ccaagcgcat gaacctagag aggcctaggc 120 taaaaaatcaa gatacgggag gaggtaacag gaggtacgtg gagagaaaac aattcctgtc 180 tcagtgttgt cttatttcat tacaagaaaa tatttttgga ttactggaca ctgttaagtg 240 cccatttggt ttttcttaac atgtctgatc tcaaacctaa gacttttccc agcaacactc 300 agctgttgag ctgtaggaag catgagaaag accaacggta catggttcat ccacaatgga 360 aattttgtgt ttacaaaaga cttctgtaaa tacaaaatta tttttggaag acagaggaaa 420 aagaggtgat ttcatggaat tacatcaaaa aagaagagaa gtgagaagcc aggagggggc 480 tgaaagataa ctcattctac ccaatgggga caaaggacac aatcacactg tgcccaattc 540 cattaccgct gagagcctgc cacagtggac tggggaagga gggaagtgcc agagaaaatg 600 gaaacactat gagctaggca acgtaggacc nnnnnnnnn nnnnnnnnn ngtccatgga 660 tttaagccta tttatggaat aaaatcaatt taacagtagc tttccctgat ttcagagtct 720

cctgaa	atac	tgtttagttt	gtgcacaatc	tcaaattcca	cagcatgtca	ctggagttgg	780
agaaga	tgct	gggaaaataa	tgagcttctc	a			811
<210>	335						
<211>	483			·			
<212>	DNA						
<213>	Homo	sapiens	t				
<400> ttatac	335 tgtg	tctatcttct	catgtaattc	tcctagtaat	tctaccatgg	tcattttaca	60
ggtagc	caag	gtaaaaaact	agagaggttc	aaggttacat	wgctagtata	taatagggat	120
ctgaact	tcag	gacaaccaaa	atacaaatta	agccagtctt	aattcaaact	ccttggctca	180
ttcaac	ttgc	tatgccgtgc	cgctgtctta	gggagccaaa	aagacctgtg	tatgcgttta	240
aacaac	caaa	ttaatatatt	acattagaaa	accagaaagc	aattaatctg	ttacattatt	300
ttcctt	tcat	aaaccagaat	ttatggccag	tatgccttat	tatttgagtt	gtggttctta	360
aaatggl	tcta	acctttttc	atcaaaaaac	aaaactaatg	attatttcag	acaaggtata	420
atactg	cat	tttggttact	taaacagaaa	ttgaggaata	tgatttcata	gaattagatg	480
tta							483
<210>	336						
<211>	441						
<212>	DNA						
<213>	Homo	sapiens			·		
					•		
<220>						,	
<221>	misc	_feature					
<222>	()	()					
<223>	"n"	is a single	nucleotide	whose iden	tity could	not unambig	lously

<400> 336

taatacccta t	acttacaag	atccccctg	ggtgtttctg	atgggcagct	aggtttggga	60
tgggcaggtt g	gagaagaa	aggaacaacc	tgcagtccag	tctcaacgtg	gcccatctgt	120
atttaccatc a	gtgccaacc	ctctcacccc	ttgtggggga	agggagggtg	gccaccccag	180
ctgcaacagg t	ttctgggcc	acctgggggt	ggagccggcc	aatgcaaaca	gtcaagaggg	240
aagatggcca c	ctccacatg	ggcagttcca	aagcagggct	ctggctctgt	gccacaagag	300
gcccactgng c	ctccaaaacc	aggaaaagcc	tttcagaaag	cagtttgatc	acactcatga	360
taggatacat c	aaattaagg	atgacaccaa	gctaccaaag	tctacctgtg	gatggccaag	420
ttcagcagcc a	egcagcata	g				441

<210> 337

<211> 755

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 337 cggggaaagt ctggtattcc aagatggtgg ctggtcattc tcaagaggag gactgcattg 60 cccaggcagg gctggtcatc tgcagggaca gctgaggttg actgagtgga tgacagtcta 120 agaggaaact ctgaggaggc acctgagaca tcaaaactgt acccaagcta ttcaccttgc 180 agaaataaat tgccttttta atgtaagtgt aaaactatat cagttgagaa atataatcat 240 tatatttatt ccagcaagaa tttgattcag aaacaaatac aataggtgct catttcttga 300 aaagtgtaga atactttctc ctcaaaaaca aacaaaaagc acgtaacatt ctagtgccca 360 caatcactaa caaaggttta ttttnnnnnn nnnnnnnnn nnnnnnnnn tgtaatatac 420 tgagaaattt cactgtagaa acaatttctg ttattattaa catcatttat attcatatac 480 ataaaaccca catcttataa tcaaagtatc ctcttttatg ttgacagggg ccatacttta 540 gacattaata agatcaggta tccattcagc cctctttcct aaatcatttt gcccaaatga 600

gaatatataa atgagtttta tootootooa tgaacgattt tooagaatca aaaccagtta	660
tgtgataaaa cttaattcct ctaaacagat tttgtgtttc gagtttcaaa atgataagga	720
caatctgagt ctatattctg gaatagcaat taaaa	755
<210> 338	
<211> 554	
<212> DNA	
<213> Homo sapiens	
<400> 338	
gtgcacgccc agcaccgtgt tcacccacta ctttgcacac ccatggccgc tgtgcacacc	60
tatggetact acgcacacc acagccactg tgcacacaca ccaacactgc acacttatga	120
ccactgtgca catctgtgga caccaggcac actcatgagc ccatgtgatc cacagcagct	180
gtcatgcacg cagttgttgc acacgcccac gtagacacaa tgcccagtcc tcatttgtct	240
ccagtttcac acaaacacca gccgttaacc tetetetegt cacccacacg cetecaatac	300
aactgttcct gctcagctag gtggcgtgca ggcaacgtca ccattggagc tgcccatgga	360
cgtcttgctt ctgcacggcc atgctggagg tggcagacat gtcagcgtcc ctggggaagg	420
ccacctcacg ggcagctgca acagggagca tattggcctt gcactgttaa tagcatattt	480
tgccattaaa gtatgtaatg atgaaattgc aatatatttt tcaataaaat ctctgatgta	540
ttcttatatc acaa	554
<210> 339	
<211> 589	
<212> DNA	
<213> Homo sapiens	
<400> 339	
ggggtagaag tggccccacg caagtggctc aagggccaag ttacaaagtt ttctgggttt	60
taagtactcc acgtgaagtt cctcccagtt accccttatc tggatgaagc atttggtttg	120
tggctaacta aaggctaagg tgaattggcg ccctctgtgg gtaaagggat ggtcgtctct	180
gcttggctca gggccaatct aagacactct ccctttccag ctgagacgtg gtggaagggg	240
gagggctgta gggagagtag cctttgattc tttgctgctg gggcatgggg agatggggtt	300

tttccttttg ttttagcttt agacctttga ggcttgctgg ctgtcaggac tgcgatccac	360
aactttacat tctcaaactg aaagaacatg atgattattg tggtgccatg actgatctat	420
gtggtagetg tggacettgg tgttgeteca tgatteagea tgaattggte ttaegtteet	480
gcctccagac cctattctcc tgccttgctg ctagagactg catctctct ttatctggta	540
actttatcta tcatctaata tgaactatcc tttcagccaa aatccagtc	589
<210> 340	
<211> 478	
<212> DNA	
<213> Homo sapiens	
12107 Homo Baptens	
<400> 340	
gggagattet gcctcagtgg gcgtggaagg gaccaggagg ggttgtgatg tcgggtgtag	60
gtagtgactg ccagcatete ttgagactge acateacete gggteatgea tgeagetatt	120
ccgaggtcca agcatcttaa gattctaaaa aaaaaaaaag gttacgaaag tcatggatac	180
tgagagatgt ccttgaaatc tgacaaaaca agtctcatga atatgtgagg ccacaccagc	240
aaccaactgg tattgctgtt tecetteetg eeccatgtge tggcagggge egttgcaata	300
gccacgtcat gaaggcagag ctgcgcattt tccaggtgct ctccagctgt gggcatgcat	360
ttcccttctg tagcgttcac cctctacact gggttcggca agtgtacatg cgagggcagc	420
ctatcacgcg ttgcatctgt cttctgcaat actgaaacca tggcttcgtt ccttgcta	478
<210> 341	
<211> 437	
<212> DNA	
<213> Homo sapiens	
<400> 341	
gggttgtgat tetgtggtga gaatcaattt catagatgte aataaactaa gaggaggatt	60
aatttagact cegaggetga geatgacage tattttgggt caagtecaca tttcatteet	120
aaatggactc tagctgaccc atccttteec etggtetgge teettaceet teattetgag	180
ttcagcatgc tgagtttggc tacatgccta tgaagaagca ctgggctaat ttctagtctt	240
ggggccttct ccctcccct gccccatcac cccactgttc attataaaag ccaaaaaaca	300
tggaagagaa tttggaaaca catcatgcag aatcacgccc ctctcacagc aagaaatact	360

gtttggcctt	cctcttctgc	ctggatccat	gcgtgtgatg	gctgaaccgg	gacactctct	420
ttatggtcta	titattc					437
<210> 342						
<211> 470						
<212> DNA						
<213> Homo	sapiens					
<400> 342						
	ctgggaacat		_			60
	aaacctcctc		-	_	•	120
taacatccta	tgccttagga	gaaagctatg	gtcaggtgct	cactcagctg	gaagtgtggc	180
caccataagt	acatccatta	ggactatgag	cagtactggg	agctgcacac	cactggcctt	240
agagttcttc	tctcacatac	aaatgcctct	tttgattatg	aatgttaaaa	tttttgtgcc	300
ttgtttaata	attctgaata	aagaggccta	ctaaaataca	tacaaaacta	gagaaatgct	360
ttgtagaccc	tttttgtatt	ttgacagtca	caagtccatt	gttgttgaac	gtttattgag	420
ctctaacaat	gtgacaggtg	ccacacaaaa	cattagacac	agtacctgcc		470
<210> 343						
<211> 426						
<212> DNA						
<213> Homo	sapiens			·		
<400> 343	t+ at+ ac+ ac	attentes.				60
	ttcttcctgg					60
	ttetetegea			_		120
	cagataggaa			-		180
tttgattacc	acttccctct	aagaccccct	attttaggtg	gcaggagaga	agttggtgga	240
gaaataagag	tggagtcatc	tttagtgata	cgtagtgcct	cagatttccc	aagcactcaa	300
gagtgagtgc	ataaaaaccc	aacaccagag	ggttgttcat	atatcatatc	catataaaaa	360
catgtcaatt	tgttgaattt	ctctaatata	gtaattaaaa	taatattgat	actgtttctg	420
aagatt						426

					•		
<210>	344						
<211>	555						
<212>	DNA						
<213>	Homo	o sapiens					
<400>	344						
ggggaaa	aaaa	ttgtatcatc	ctatttccac	tgagattctg	ctgcatttaa	aactctcggt	60
ataagti	atg	gctttatata	aagcacaggg	tcattttatc	acagtaataa	gaagtaagaa	. 120
gataata	aagg	aataagaagg	ggatatgaag	aacctgctgg	gagagaaatt	cattcctaag	180
tatttca	aatt	ataatattca	taaatgttct	aggattctca	ggtagccctg	aaaacaataa	240
ggaatgo	cttt	agattaacat	gaacacttca	agtacaaagg	tcatgttgaa	ttcatcatct	300
gccagag	gtgg	cagacacata	aatcaattag	aaaatattat	acatgttttg	ttctctgagg	360
ttttctt	atc	taaacctcca	atttaattgt	gaagcccaaa	ctcattcatt	tattaactcg	420
tgtatto	cgac	tgagaaatat	tccatgagca	cccatctaca	tccatgacac	caaaagtctt	480
catgaag	ggtc	atatcttcca	tagtcatatc	taaatgtgta	aaactgcagt	tgcaatggta	540
tgagaaa	act	ccaat					555
<210>	345						
<211>	710						
<212>	DNA						
<213>	Homo	sapiens					
<400>	345						
gggtaaa	ttg	tgatattaac	aaccaacaga	atatcagaat	agtaaaagta	aactatggcg	60
atgtgca	aca	tcattttgaa	tctcaggaac	atgatgaatg	taaagagcaa	gtcaggtgaa	120

question of the state of the st

aggcctaata	gtatgactct	aagattaatt	atctacaaac	ctaaggaaaa	aaacagtcct	600
tcatttcaaa	aagttacatg	atatgagata	taatatcatc	ccaagaacaa	ataagttgtt	660
aaaaaatttg	aaatagtctc	tgatctcccc	ttcctaaagc	acttatgctg		710
1010						
<210> 346						
<211> 670						
<212> DNA	•					
<213> Home	o sapiens					
•						
<400> 346			L.L. .			
,	ataaaatgtc			•		60
	ggatatataa					120
aagaactgta	atgatactct	aatctcttat	tcaaattctg	gccggggatg	gtggctcaca	180
cctgtaatca	aatccatgaa	gtcatcaaag	ccttaagatt	agtcgcagtc	tttcacgtca	240
ctttccaaac	tttttgttgc	tttattataa	tgtttgacag	aactaaagtt	tttccagcct	300
tgacaagata	attgcttcca	tatcacagta	gaattgaaga	aaaaaaaat	acacagccct	360
gtatctcact	gacaatgata	aattgtcatc	agataatatc	atctcacaag	tacacagtac	420
cagtagttgc	ataattttaa	gcatgaattt	tctaaatagg	acttcaacca	atttttttta	480
tttggctgta	tccttggtag	gggacagttc	ctctttacga	aaagtcctga	aggcataggg	540
tgcttttaaa	ataagttaca	ggtataaatt	gtgaatccaa	acccacagtg	gatgccacaa	600
aactcatgtg	ggtttcaata	atagattggg	ataaggcatg	tccttaaaaa	gaatccatga	660
ttcagtttag						670
<210> 347		•				
<211> 671	٠					
<212> DNA						
<213> Homo	sapiens					
				•		
<400> 347						
	aaaaaaaag					60
gtatatcctt	aatgtgacta	tgtggaaacg	ttggtgtgat	ttaggtgtga	gtactcatgg	120
ttattcatta	ggcagtttta	actgattttt	atttttagtc	cataatttaa	ttttaccta	180

taatttcatt	ggtttgaaat	tggaagcatt	aggaaacttg	aaaaatatat	aaaaataata	240
gcatttgtcc	ataggtaatc	tttaccctac	atataaattg	tgtttatctg	aaaagaaaat	300
tctccttaac	acatcaagat	gtcttttata	gttcaatatt	gtgcttaaaa	tgacaaacca	360
cagtgatgat	tttatcaaac	tttgttttca	tttataggga	ataaagacca	tccatacctg	420
aagtgtggta	tttgcagata	attgcttatg	agttgccttg	agtgcatttt	attatctcat	480
aaataaacgt	gcttgtttta	gaaacaagga	cgtcaagttt	taaaaataaa	tgtttaaaaa	540
agtgggtcat	ataagaattt	cagacattaa	atcataaaat	gttttttgtc	tatttttgtt	600
gttgcagcat	gtggttaaat	gtcagtccac	agttcaacat	gtatttgggt	ctcaaagcaa	660
acagtgtgcc	g					671
Z2105 240				<i>\</i>		

<210> 348

<211> 574

<212> DNA

<213> Homo sapiens

<400> 348 ggggtggatc ggtaggaagg cctgggcttt ctttgtttag ttggtgtggg ctggggctgg 60 120 gctcagtgaa tgcgcccaag tgtgcaccgc gcggtcagct gcccggcgag gtaacagctg 180 gcacctgtgc gcgaagtgca gcctgcatta gcagcatcat tattcagcat tagagcatta caaagataat tactgcgagt tagaaaagca gaggacagag ggaattgaaa ccccagaccc 240 300 cttggcttat caaactccca ggttacgagt gtaatttcaa gcagctttgg gaaagccacc 360 tctcgcaaag ctgtgagtct gccacgttaa aggggacgct cagaagaccc cacagctgga 420 gccagtggcc caagggctct tttccaggtt tcatcctggc tcaaagatca aattagtgtc atagatagga tgctgaaggt catcacacta acattttctg gtctccaaag cagttctact 480 540 574 ggtactttgg tctttgagta acaatgatag cctc

<210> 349

<211> 433

<212> DNA

<213> Homo sapiens

<400> 349						
agtgaccaat	gaaatatcag	tgcaatagaa	aagcaggtat	aaataacacc	aactggtaat	60
ttaaaatatt	tgttttaaaa	aacaagatga	agcaggagag	gcaaaatgtt	aactgaaaac	120
taagtgacag	ctacatgggt	gttcattata	tatcttactt	taaaaagtta	tgtccaagta	180
gtggtaatac	tgaccaatgg	tactttcaac	ttggcatttt	tgaggtgtta	ctagataagc	240
ggaaaaagta	gcttaaaaat	ccactgcaac	cacgaatatc	taaatcacaa	tccagactaa	300
caagggcgat	gcaatcctcc	tcctcttgga	gacagtttat	tttttaaaat	ttactttgtt	360
cttggttatt	tcaaaacaca	ttttaacctg	gtattttgcc	agagaatctg	gctatcagtt	420
attttatgtc	cag .			•		433
<210> 350			į			

<211> 523

<212> DNA

<213> Homo sapiens

<400> 350						
aagaagaagc	acaatccctc	ttcccccaat	agaagaaaac	agccaagcta	gcacctgcac	60
gtgtgggcct	aaatcttcct	tttctctttc	tacaaagctg	ttcacacagt	atcagcctcc	120
ccacatttca	aatgtagaat	cagttacagc	atgaagaaaa	caaaaaataa	gagctgcttc	180
agccagagac	tctagaaaca	agatcatttc	catagcatct	cctgttataa	atgcagactt	240
cagtcactgc	cccagagact	gaactggcag	ggtaggtagg	ggacatgacc	caaaaatatg	300
catattttt	aggaagaagg	agctgattta	cctgctcatt	caagttaaag	aaccacagat	360
caacagaaag	gaccaattcc	ccattttgtc	ataaatgcta	acctacacag	tagtttcctt	420
aaagaaaatc	acttacagag	cagagttgta	cactactggg	ggcaaaaagc	cctgacagac	480
aactgactct	gctaatcctt	gtgtgaaaaa	aaggggagat	tcg		523

<210> 351

<211> 434

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature
<222> ()..()
<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 351 cctcatcctt ttccccacat tagttccttt gcttttaaga aaactgctaa aatacagagg 60 aaattgactc cctcattcaa ttaaaaacac agttattgtc tactgggcca ctatgtacag 120 atgtataggt tgttccctgc tgaagagaga ttggtgactg gattccagcc cataaannnn 180 nnnnnnnnn nnnnttctgt ttctaatttg cacaaaggtg ctacatgtgt gtttcagaag 240 tgacaaaact gggctttgcc cacatgtagc atgtagcttg tatctcatgt ctgaggggaa 300 aacaqacaaq taatcaaqaa ctacaataca tatttaaaaa aaagaagtaa aaaaacccta 360 420 434 aaggcgcgcc ttaa

<210> 352

<211> 440

<212> DNA

<213> Homo sapiens

<400> 352 taccaaagag acttgtgatt tcagtatgtt tggaaataag gggcatgaaa ctgcatctgc 60 120 agageettea cataaaactg agaaaacgte agttggacac atcagagaat ggggggttgg gtgggctgac agacacttgg ggatgcctaa atccctgtcg cctacccctc taaataccac 180 gctggccatg tcatttctta ctgacacata aaacagtctc taaaacaaga caatgtcatc 240 300 actttaatta aagttcatta ttgatgttta aaagaaaaat actcttggct ggcaaataat 360 qaaccttagt tqtqatttca gactttctat ctatattqaq aaatactgga aaacaagaag 420 aatcctcatc ttcaaaataa gaaagaagaa tggattccqq aaaggagaaa gatagagggt 440 gcctgacatc ttcctccttg

<210> 353

<211> 523

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 353 cggtggcggc cgcgggtagc agggatagaa gtggggagca gatgagatgg atgctcatga 60 gtcacaggta ccctattaag aggcaggact gctttttctt caaggaggcc catcctagga 120 ccctgccagt cagtgccata attttctaa tagctggcag ggctggcagt gagacatttg 180 caagetttee etetgtgeet tettatgace gagggeacee atttgeetga atacagagaa 240 ttcatgggca ctctgtgaag gaagggctgg ccagatgcca ccaacagcac caaccaaaga 300 gagaaacaga gggatccaat cacactctcc aagccactgg cctgngaagg ggaaaggaca 360 gacaaaggtc atagctgggc ttggtcacag gaactgacct ggagctgctg actaagggca 420 tettgaagga tgtaattace tteeteeett ggggeeecag aacaaggaag eectacaget 480 gaaaaacagt aattaccagg cagatcgaga agacagcctg gga 523

<210> 354

<211> 557

<212> DNA

<213> Homo sapiens

<400> 354
cggtggcggc cgcgggagaa aaaatgtact cacgatcgta tctggggaag gtctgttct 60
attttgtgac ctgtattct aaaaatttga atagcagctt ctgctacctt gtcatcctcc 120
attcttaggc actgtaacaa ggactcatat gtctctgcag agtggaacga ggtaggatgt 180
gtaaaagaca gaacctgaaa aaacagatac agctttagaa gtacagacaa tggttttaat 240

11 0 02/10150					
ccattaaaaa agaattactt	cccgcaaaag	aaaaaaaaa	ttaaattctg	gggtaaatat	300
gctagctaca cagaatagag	atacatctcc	tagccgtcct	tgcagttagt	tatggctaat	360
cagacattat cagaaatact	gtatggtgtg	gtagcttcca	gttattcctt	gacacaacta	420
acagacagcc tttgtcctat	tttcttcttc	acctcttagt	ctactctgct	acttagaaca	480
caaaacacat ggctcctttt	ttatggaatg	tgatttacaa	tattaataac	tattatcagt	540
ttataaatat attgtat					557
.010					
<210> 355					
<211> 562					
<212> DNA					
<213> Homo sapiens			•		
<400> 355 cggtggcggc cgcgggtgta	. tgctgggatg	gctcccacca	tgcgagggaa	caaacagact	60
tttgtctagt ctaaccctca	ttatacagag	aggggaactg	aagccaggga	acgtgttcat	120
gacttgccca gtcccgaatg	gaaatcccca	attaaatgac	ttcaatgaac	tacaacggaa	180
ccaagtcaga gcctatagtt	catggccact	ccccacagga	caggtaacca	aaggcagaaa	240
gagggggagg caagggaggt	gctgtggccc	tgcaatggcc	tgactctacc	tectgteete	300
accetattee caacteecee	: tgttggatcc	tgccctaata	caaaatttgg	acatgttgtt	360
ccttgaagat tttgggggca	ttccgtttga	attttcaaaa	tattgatcat	gataactatg	420
ttttgtgatt ttcttaaaat	ccatgcccag	ggactccctt	gccttactcc	agtgcaagtc	480
caggacaaaa accagccact	ggcccactgc	tgaagggtgg	ggaaggtgac	tgagagacga	540
gagatcagtc ctgcttgctc	, at				562
<210> 356					
<211> 460					
<212> DNA					
<213> Homo sapiens					
11005 250					

<400> 356
gcggtggcgg ccgcggggga atagtttcta tacttggaga tcataccaga agtagacagg 60
ggtgggagct tcaagacaca attcgagtcc aatcaacaga taacaggttt ggctgagatt 120
ggtggtggta aaaataaagg aaagtgaaag gattcaagaa ctattcaaaa attttaaatg 180

agttaatgat	gcctagactg	aggactgatt	taactggaag	y aaagtgttaa	ggagtattta	240
ccaggtttct	ggcttcacca	attggatgaa	agatgacatt	: taatgagaca	aaatcataaa	300
actaccaagg	tgagggtgga	ggggagtaaa	gctcatgagt	ttctgtttt	aattaaagtg	360
aatctgaagt	gcctttcaga	catccaagtt	gatacaacgt	ccaagggcta	agaatgcaag	420
ctctaaggtg	tgattgctgg	ggatgaaatc	ccagtctgcc	: · .		460
<210> 357						
<211> 594						
<212> DNA						
	sapiens					
	Captons					
<400> 357						
	cgcgggagga	aattttctt	taaatcttaa	gagcctttaa	taaacgggat	60
attttaatat	tttaatgtta	ctacatttaa	aaaatagtgt	tttcctacaa	aattttctgt	120
attcagtata	cgttaactat	gaaaatgtca	aacaatgaaa	tcattgaaat	atatttaagg	180
aaaaattacc	aaccaaaagt	aatgagtacc	ctctatgtgc	atatttactg	gaatgttcat	240
gtgaaatggt	aacatttcca	ataacagcat	tttgaatctg	gggtgacaca	aacatgattt	300
ttatttttga	gctagggatt	ttgatggaga	agcacctaga	tgaagacacc	atttcattca	360
tgatatttta	aaattagaaa	agtaaagctt	ctaaattgaa	actcttaaca	ggtcacttca	420
tgaaattttt	agttttaaat	ttaattttac	atgagatgtc	tttctgaaga	gctactttta	480
ttaactttca	cttagatcgt	tgtatgctag	gcattcagta	tttctctact	tgattttcct	540
atgcctagtt	gtgattacag	caagtattta	ataataaagt	cagtcatgtg	agag	594
<210> 358						
<211> 698						
<212> DNA						
<213> Homo	sapiens					
<400> 358						
gggggtgggc	gcagggctgg	tatgaccggg	tggtccacaa	ggtggtcagg	acctcagctg	60
gtggctgggc	ttgggaggg	ctggcatgga	gtcacgggcc	accatcccct	aagtgtttcc	120
ataggcaagg	ttctcattcc	cctagtcagg	ggaggggacg	ggtacagaga	agcgcagcaa	180

tgagccagga	acagagctga	gatgaaacct	cagcctcccg	tcttcagaat	gagaattaat	240
ccacagagga	gctaaggaaa	atgccgggca	ccgagttgac	gggtgagggg	tgtgagccat	300
gtggccggca	tggccgcccc	accaccaget	ccatcctgag	cacttcacag	acatggccct	360
cttcatccac	acaactgccc	caggagccac	tgaatgaggc	tcgatgaaac	ctcaactcgc	420
gttgcagcgc	acgtctgatc	acactcgcct	ttgatcactt	ttatcactgg	ggatcctgca	480
gtcagggctt	tgtgtctgca	gcggtccctg	ggaaacaatc	tacaactcga	agetecacea	540
aactcactca	gagtcacaaa	atttctatca	ctgactgctt	tcctccaagg	cccaaactgg	600
atttataaac	ttccaaagaa	aacttcatat	tgaaaaagcg	atgtacccac	agcattgtag	660
aacgatgttc	acaaaggaaa	aacaaggccg	ggcgtggt	•		698

<210> 359

<211> 667

<212> DNA

<213> Homo sapiens

<400> 359 gggatgette taaaaagtaa atgtgetgae teeteaeetg eteaeaegge taeeegagga 60 tgattttcac atccettact tgagacgaag ggatgttggc actctggctc ctgcccatgc 120 ctcccttttt cttccaccat ccccacccct ctgctgtccc tgcttcagcc atagtgagct 180 geteteegeg gettetgtgt eccaettttg tteteteete eaggetgttg taettgetat 240 gtettetgce ggagttacce ceageettee tgcateteec caaacttgtg tecceageaa 300 gttccttctg agccctcaga tctcagctca ggtgctgcct cctctggaag tccttctcag 360 atttctcatg acaccatgag cctctgtgtt agcccctttt cacactggat tgtgtgctag 420 actggcacat acatecece caccagecag ggagcaacae gaggetgete ttggtatace 480 cagcacgggg acgggtgtgg ccagaggcca gggaatgctt aatgaatgaa tggggacagg 540 cagettttca geagegagge taagggtggg atetgagtag eagggeeget tgeteatgte 600 acctaagtgc agggcagagt gtctcccagg agggagggc tcctcgtatc ttctcttgtg 660 ccctgtt 667

<210> 360

<211> 415

<212> DNA

<213> Homo sapiens

<400> 360	tagaccetat		gttgacacaa			
						60
acagaaggaa	acaaatgact	tgtggttaat	gagctaccac	atagagagat	ggcttggaat	120
agtagagaac	ctttcatgga	gaaattggga	ctccattgaa	ggatggatgg	ataaaaatta	180
catgagtaat	gttttagggt	agtagttata	taatatttgt	ttttttcctt	catgattctt	240
tctttttcc	cctttcttct	ccaggctacc	atacctctac	taggtatggg	gaagacctta	300
aaagcaagga	taagcagcat	gaatagagct	agaatagtaa	aaactagaac	attttaggat	360
aactaaaatg	ttggaaaaag	aaagcatggg	ttgaggaatc	attccaccta	ctgtt	415
<21.0> \261					÷	

<210> 361 <211> 643 <212> DNA

<213> Homo sapiens

<400> 361 gggatccatt gttgagaaat gctttcacta ctggttcaaa caaaaaactt ttcattatgt 60 agcggttgta aaactcatct tttaatccaa taatctttct tttaaaacga agggcacctg 120 aaacacagag gcatggttgt ttaaatcaca taccactctt ccatacttta gacttaccaa 180 acaaaaataa ccatcaaacc aaaaaaaact gtttaacaca tatcaataat tatttatgat 240 gtttgcactt ccggaactgt gaacctaaag ataaggatta tgaaaatgtt atcagaaaaa 300 tgtcttctaa aagtagtata tgtcatcata gaacacaagt cttagaaagc cagaaaaatc 360 ctgaaaataa accagttact aatgaccaaa atgtaattta catctaaaat aagagctaag 420 acaaatgaat gaacctatca cactacttaa gatgaaaaaa ttcaacatga ccttttatat 480 ccaccttaat agaaaaaacc agtgtttat tagggcaatc cactgtataa tttgatcttc 540 aatatttttg gacactctta ttattttgca ttgtagttca tggaatttta tttatttgtg 600 gatgtggctg tagaaaggcc atcaacccac aaaaatctgc atg 643

<210> 362

<211> 712

<212> DNA

<213> Homo sapiens

<400> 362 qqqqqaqata qatqaaatto gcaaqtcata ccaggaggaa ttqqacaaac ttcgacagct 60 cttgaaaaag actcgagtgt ccacagacca agcagctgca gagcaggtaa tgggaaactg 120 aagcactttg aaaatagagg gaaggtgtga aggactcaga gagaaaagct tctggtttct 180 tccttaccct ttaggatgac atttctcata gctgatactc tcactttgga gaaaggtaga 240 aaaagtaatc cagatatgtg caggagagcc aggaatcaaa tggagaatct tctttctttt 300 tttaaaqctt agttaatatt taattacata agtaaaaatg aaaaatagtt tccttacaaa 360 aaaaattcca aacatggtaa ggccaaaacc atcaaccatt ggacaccatc cttcaggcac 420 attatcatcc ttgaaaagaa gggattgatt taggtcatca ggaagggaac cagggatagt 480 ggcaggacac agctggatct ctagtctgtg caacagcaac ctttctcatt ataagcttaa 540 aatttatatg catacatttg tttaattaga gtgcattggt gccctcaatt tgaccacctc 600 tgggaatttt ggtgaaaaaa agtttctgaa cctataaagt ttagggttca gaccctgaaa 660 agcagtgatc acatggccct gccctccagg gacctatcta gataggcaca ct 712 <210> 363 <211> 699

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiquously

<400> 363 gggaggtggg ggaggaggag gaatagatta tottotagta tottocaaat gttotatatt 60 aaacatatat taacctttaa aacatctact tttgtttgat tctcaaaata atataaaaca 120 ctactatata atttaaaaaag aacattctaa tcttaataat ttcataaaag gaggtcacag 180

ttcaagttgt	aggcaactat	aaaaatttcg	ctcttgaaca	accaatgaac	atatacatga	240
tttgaaggaa	aaatccctnn	nnnnnnnnn	nnnnctaatt	aaagagaacc	ttgaaattaa	300
gtaaatcaat	tcctgacaga	aagacgaaga	tgttttctgt	aatacaagaa	agcaagatca	360
cctttgcccc	agacatctaa	tgttagtagt	taaacgttcg	aattctggaa	taaaaaactc	420
agcaaagtct	aaagtatgac	tctgggtgcc	aagaaaatgc	cacaggaact	agcatttcca	480
atcagcagct	cctgagatca	ggaagactgt	tatgttctat	gatataaagt	ccacaataaa	540
atctgttagt	ttttctggtt	aaatgctcat	gctaaaaata	gtgactgctc	aaatattaag	600
taagaagact	tagttttgcc	ttcttgttca	gtcctctgaa	ttccaggcaa	ttggttttcg	660
atatcttgtg	acaccaatac	ttgacatcta	acagcattt			699

. <210> 364

<211> 661

<212> DNA

<213> Homo sapiens

<400> 364 ctaaagacct cacaactatt ctaactaagc tgaaagcgaa gacagataat gtagttcaag 60 ctaaaactga ccaaaaggta agaagtagaa ttttaaaggg tactactgaa tgaattaaat 120 agtttttgga gtcagtttta cttggggata taggataaaa accttttagg aaccttttt 180 aaaaccaaat agtaacagca ggtggtaaag aaattttgta actgaagcaa cacagatcct 240 cttacataat tgatcattat aattgaacag tattaataaa tatacatgca tgagtgtgta 300 cgaaagaaga gcgtcaaagg actaagtgat gatttaggaa tacaagtata taaattccaa 360 actgaattgt gtccttggta gctaaatctg tgttcttcct ctgttgatga gttcagggac 420 tctaatcctt tttgggtggg gcagaaggaa aatgttagcc ttctcactca gcctcatagg 480 aaataaacac cagcattaca acatatcctg ccctgccttt ccaaccgaag aaacaaaaat 540 gacctgatca tagtagaatt atagtagaat tattcattat aatatttggc tttgacaaaa 600 atcagtctga tctcggggaaa cctggagaaa tttattttct gtactctaat gttctttcat 660 t 661

<210> 365

<211> 546

<212> DNA

<400> 365 gggggagaag gcaggcgaga gagagagag aatatgcaca aaacctggct caagagtaat 60 ggtgaacagg aggggttgga caaagaccag cgaaactgga atggagagaa attaatggga 120 gtgaggccaa atcgtggggc tttacaggta gcgtgtccat ttgattgata accatttgag 180 tgaccattct ggttgataaa atttgagaat tttatcaacc aaaccgtgat tcttgagagt 240 aaaagagggt gctgttaatt attaaacaca gactataagc atcagccagg acatatggtc 300 acctcgcttt tataggcctt gttaacagta ttatctcttt ttaaagnnnn nnnnnnnnn 360 ngtgtgttta cttcctaatg aaggtgtcag ggagttggtc caaaaaggac ccaaatggaa 420 ctcaaaggct gggtttttcc aaacggctag attgattttt tttttcccga tacagatatt 480 agtgaccett taacgtttta aaagtttggc ataaaaagat ggattttatt gtgagctact 540 agatta 546

<210> 366

<211> 503

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 366 gggggaacag	tctttggaga	ttageggett	agattaggta	cttaaaaaaa	cactattata	60
	aaattacatt					120
aagaaataac	accctaaaga	tggtcagata	tgatgctaaa	ggaattaaaa	agggttgatt	180
tttttttct	ttgctcagga	ataaactgga	attctagaag	gtcaaacttc	acccaaactt	240
aaaaagatta	annnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnngct	aaaaaagtca	300
ttagatcaat	ctgacgaaga	acttacgctg	gctacatgtt	tagatacatg	agtcgacttc	360
cactaacgtc	cgaagtggag	tttaagagat	agacttgcag	gctgctatcc	ttaacatgct	420
gcccctgaga	gtaggaatga	ccagggttca	agtctgcttt	ccacagaatc	aggcatgctg	480
ttaataaata	ctggtttaat	caa				503
<210> 367						
<211> 477						
<212> DNA						

<213> Homo sapiens

<400> 367 gggggacggg agtgagagca ggagcgacgc agagcagccg tcgccgtgcc cgggtctcag 60 ggcgcctggc tgaagtgagc atggcttcag tggcctgggc cgtcctcaag gtgctgctgc 120 tteteeccae teagaettgg ageeegtgg gageaggaaa tecacataag tacageaaat 180 ggtttaaaac ttgcgctagg ctgtctggaa aactttgttt tttttttta ttatcggtaa` 240 300 tatttggaag tggaattgca gaacatgctc ctgaacatga agaaccttaa aaaaatattt ggaattgcaa cccgaaaaag acgattttgt ttacaataga ctttcctctt gtgggggagt 360 ctaagatata ccatgcatgt tttgactttt taatcgatgt acttgaatat tcattgagaa 420 agtggacgtt tctgtaaaac ctgaaaagag catcttaata agagattagc ctgtaaa 477

<210> 368

<211> 543

<212> DNA

<213> Homo sapiens

<400>							
gggcag	ggct	cccgcagggc	cctcacgggg	cagaacaagg	agtcttcaca	gaaggtcttc	60
agtgag	ggag	acacacaatc	cacttacatc	ttacaaagat	gactctgcca	gtggggtgga	120
gaacag	cctg	atggggcagg	cctcagggag	agtaggcccg	ggaggctctt	gcagtcgtcc	180
tgatat	gaga	ccgtcctgac	cctgggtgag	gggtgctgag	gcgatggggg	gacacagctg .	240
gattca	ggac	attattatga	atctcgctac	catagtctct	catttgtgga	atggggggca	300
ggaatg	ggga	catctgcaaa	ccagattctg	tgcaaaagtg	ctcttttcag	ttggaactgc	360
tcgatg	aggt	cgtggggatt	gggcttcaca	tcttgattaa	ttcaggggct	ctagaagggc	420
ttgctc	ttcc	acctggctcc	taaaaggtcc	tttgtccccc	actacttcct	gctgtctcca	480
tcccca	gċjaa	tgatgtactc	tggccctccc	gagaggggat	gtgcacaggg	ctgcaattag	540
tgg							543
.010							
<210>	369						
<211>	487						
<212>	DNA						
<213>	Homo	sapiens					
<220>					•		
<221>	misc	_feature				•	
<222>	()	()					
<223>	"n"	is a single	nucleotide	whose iden	tity could	not unambigu	ously

<400> 369
gagatccggt ctgggatgtt ctggggcagc tcctttcac tggacgtgca gccttcatac 60
aggatctcag ttctctcccg ccctcatag gcccatgcct tatgttccgt tcctgcatnn 120
nnnnnnnnnn nnnnnnnnn nggtgctggg gatgaatcca ggtccaggcc cacccttcac 180
agtctcccca ccattggcct ggctgcttac cagtcactct gttttcact tccatgtttg 240
tttactggca cctggggatt ttcctttct ctttgcacat tcagatgtct gctttgttat 300
tgattcccac atgaaacgct gccttgaaac ccatgcccaa ccatctctac tcatctgcct 360

WO 02/10198	PCT/GB01/03390
-------------	----------------

ggatagagaa	tatgagactt	cctgcttata	aattctttgg	gaaagttaaa	gctgggtaga	420
gggaaaaggg	ggtggccttt	gatgtgtaag	acaactggaa	atctcccttt	gtaacacgaa	480
tcctggt						487

<210> 370

<211> 511

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 370 gggggaggag gtaagaaata attttgtcca aaatattagg acataatatt aaattaagat 60 atactaaatc aatataagaa gagttcatca tagtttagtc agtgatctaa ctgctgttag 120 ataaaactat tttatctgcc tactcaataa taaattttac agttttatct gcctactcnn 180 nnnnnnnnn nnnnnnnnn nnnctcatat gaaatacgta gaaattactg cccaaatgcc 240 300 aactacatta tgataatctt ctaaaagtta taattgccta atgttaaaat attttgtttt ctgagttatt gccaaatgcg atacatccct agttcggaaa gatacccaac tactatactt 360 gaaaccactg aagctacaaa ataccttgct ctcagttttc acatttgctt ttctccctct 420 acagctttct gcagtggcat aagtggatta gttatactat ttttattaat tactttagta 480 gtaatttcta ttaaaacaat tattaataac a 511

<210> 371

<211> 471

<212> DNA

<213> Homo sapiens

<400> 371						
cacagaaaaa	aattcaacag	ttaaaatctg	cttccttaaa	ctttctaaaa	aactaagaat	60
taaaattagg	agcaaagctt	atcccgtgga	agctacaggt	taaagaacta	ttaggtggcc	120
tttaagggct	acacagttaa	gaaatctgat	ggttgtaaac	: catgaagcac	gtatctccag	180
aaccagaaac	aatactgacc	tagaagctag	actgaatttt	ctaggtcaat	ttcatgttca	240
ctgttttcag	tcaaaatgaa	ttagtgagtt	cctcaaaaat	gtcctgtgtt	ttcccaattc	300
aactgctgaa	tgaagtcttt	acactaatcc	agggactggt	gtattttgtt	gctcatattg	360
aaaactgacc	tcagtaaagc	ttctttaaag	ttcctagata	tagctactaa	ctttgccatt	420
tatacataga	aagttagctt	taacttacag	caaaacatgt	aatcacatca	t	471
<210> 372						
<211> 480			į,			
<212> DNA						
<213> Homo	sapiens					
				•		
<400> 372						
	cgagattgat	tttgtcagtt	ttcccctcgc	tttctcactg	ctgctcccag	60
atgctacttg	ttcagaaata	gcctgcatgt	aaagagccca	cacctcaggc	aggaatgaat	120
ttctggaggt	cagaggagct	ctggccccag	gcatgctggc	tgcgccccgt	cgacacagaa	180
cgcagcggaa	gcaaatcagt	taaatgcacg	gaagtcaatt	gaagtatttc	cctccagtct	240
gtcagctcta	tgcacattga	ttgggaggac	cccttgttgt	tcagaagaca	gttttgccac	. 300
caaaggccta	actcgccctg	aaaagtgcgc	ttttctggga	tttatggtag	tgcacggaat	360
ggtggaattc	agtgggtgac	aactgcatgc	tgcagccaca	aaggacaatg	tttgcagagt	420
gtgctgcgtt	tcgcccagca	ccaacattgt	tcacctctgt	gtctgagccc	agacgggggt	480
<210> 373						
<211> 444						
<212> DNA						
<213> Homo	sapiens					
<400\ 272						
<400> 373 ggggcctggc	tggagtcagc	gagatgatgg	gtcagcaggc	attcaggagg	gtctggagaa	60
agacgccaag	agctcgcgtt	aacgaagggc	cagtggaaag	aatgctatca	agaggtetge	120

tgtgagtggc atcccaagag agggcaattc cacatgggag tgaatgaaaa gactcaaact	180
gctgctacac aggcatctcg ggggagaccc tgactgcctc actgacgctt ccactgtgag	240
aaacactttt ataacttctg tgtctccttt tgaaatttta agacgatatt aatatatttt	300
cagtectaac tacataagca atteatgttt gttetaacag getggttaac accecaatce	360
tactggcaga gaaaaaagt gacaccacag tggcacctgg agtctcgcag ccgcgcactt	420
acgtatctca gcagggcttc ctcc	444
<210> 374	
<211> 499	
<212> DNA	
2017: 11	
<213> Homo sapiens	
4400) 274	
<400> 374 gttggctgtc tacttctgtg ctctgaggct ggcatacagt ccatttctta tgtgtgttca	60
atcaacatgg gcttctgttt tttaaccatt cccattcctc tcccaggagc tgaggactga	120
acccatgget teetgggttg geeeteaggg etggeeteaa getgtggggt tteaettete	180
ttctgtgtga tcagagaggt catagtttcc ttaaagcctc tgttgggatt tcccgaagat	240
cccttctgaa cactctgage agaagtcagg ctggcctaat gtctgttctg gggccccttc	300
tttcctgact ctccccgtct catccatccc acgatgggac aggaggctta acgtgctcac	360
cttgagacct ggttttagag gaatagggag gcgaacaagc aatctgccca ccgttggcca	420
agactgagaa gatggagggc tgtagggcag tcaggatgag gagaacctgc ggaacataaa	480
agagaggcaa gggtggact	499
<210> 375	
<211> 465	
<212> DNA	
<213> Homo sapiens	
nome Supreme	
<400> 375	
gggggagccc ctgtggccgg ctgcacacgt ggccttacag cattgtgaac ttgggggact	60
gacagggccc tcatgctcca agctagaaaa ctgttcagtg cttggtgtgg cgcatgaaat	120
atttattctc ctgcaggttt cattaccttg ctgcttactt aaggacacag cttcttcctg	180
tggttccctg ttgtattctg ctaagaggga cagcagcgtc ggatttgtcc cttggcctgg	240

agtctggaat	aactagggag	agccttggtg	gctgtgttta	aacagggctc	ccggggcagg	300
ctagagatcc	ctgagcccgg	ccgtgtgcct	gctgtggcct	ctgcctcttt	cttcccctca	360
agctttgccc	agggtctctg	cacagtattg	gtccagacat	cctgcgagta	tatctccctt	420
taaaaaaaag	aaagatagcc	acgcacattg	acacatgcct	gctgg		465
<210> 376						
<211> 614						
<212> DNA						
<213> Homo	o sapiens					
						\
<400> 376		at an agat at	oggtgetatt		ecet ceacea	60
		ctgacgctgt				
		cccaaagtgc				120
		gagggctgct				180
ccagcatcga	gccgctgggc	ctggacgagc	agcagtgctc	ccagaaggca	gtggtgcagg	240
cccgcctgac	ccagcctgcc	cgcctcacca	gcatcatctt	cgcagaggac	atcaccacag	300
gccaggtcct	gcgctgtgat	gccattgtgg	acctcatcca	tgacatccag	atcgtctcca	360
ccacccgcga	gctctacctg	gaggactccc	ccctggagct	gaagatccag	gccctggact	420
ccgaagggaa	caccttcagc	actctggctg	gactggtctt	cgagtggacg	attgtgaagg	480
actccgaggc	ggacaggttc	tcagactccc	acaatgcgct	gcgaatcctc	actttcttgg	540
agtctacgta	catccctcct	tettacatet	caaagatgga	gaaggetgee	aagcaagggg	600
acaccatcct	ggtg					614
.010: 377						
<210> 377						
<211> 491						
<212> DNA						
<213> Hom	o sapiens					
<400> 377		agagggagga	agctgcccag	gaaggaggat	gtagggtgaa	60
		caggtcagat				120
		tgaccttgtc		•		180
caacyaycay	gugacecag	-gaooctgtt	cagagecact	2002332ccar	ggccgccagg	

cagcca	gaca	tagtgggttg	aagagggagt	ggaaggtaag	ggattgagcc	agtgggcgcc	240
acaaga	gagc	ctgatacagg	gcacatgtgt	ttagagatga	tggacatgtt	tgaatgctgg	300
aggagt	ggga	gagactgaag	atgcagaaac	aagaaagccg	tttcctcacg	gggtgcgaag	360
caaggg	atcc	tcagctcaga	ggtcctcgtt	cacccaacaa	gtgacttctg	agtcagggcc	420
tgtgct	gggg	cagggagctg	tagcccagaa	ctcttcctga	aggtccagat	ccactggcct	480
gagtca	ccac	t					491
<210>	378						
-011							
<211>	662						
<212>	DNA						

<400> 378

<213> Homo sapiens

<400> 3/8						
	gtctagagac	tctaggaaac	cgctccctac	tccaaaggga	atttgcaaag	60
atgatggggc	taactcccca	gaggagagcc	aggagetece	ttttccattt	aacacacaag	120
ttgaatgcca	gatggaccta	gatctctgca	acacgctgtg	tagtggggaa	gcctgcgggg	180
ctgggtggga	tcacttcacc	taatgcagca	cgtatgccac	aaactcacca	cagcacacct	240
tagcctgcat	caaatcctgg	ccgctcctgt	tctggagaca	aatcaccact	gttgtcatga	300
tgggtgacct	cagtcacccc	actccaacgc	ccacctcacg	gctgacatgg	catgtggcag	360
gaggaggtat	gtcactgtgc	tcccagaaca	taccataacc	ccatccctcc	cacccatgca	420
tgtttatgct	gggattggtc	tgtgatgcaa	aggtgccctt	ggccctctct	cgggaagtaa	480
ttttttcctt	catgcccaca	tggcaaaagg	cctgcctctc	tiggcatgag	aatctctaac	540
agcctcagag	caagccatgc	tgatgatgag	ctctgcgtcc	tcactgctca	agcctaggtc	600
ccagacacaa	ctcccaaaag	tcaacaggct	ttttttttt	tttttaaacg	aaacaaaaca	660
ga						662

<210> 379

<211> 512

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 379 gggattcaga	aagatcagaa	aaatataatg	actgtgtaaa	ctatgcaaca	cagtgttccc	60
tgtataaaat	tgtataaatc	catagagcac	catattgata	agctttatga	gaagaactta	120
tctatttaca	taatttattc	tcctgttatt	agtctactgt	ggataataat	tttaaaatta	180
ctatattccc	ttagggatat	tttaactgta	agataatttt	catggttgat	tatattaagt	240
atagaatctt	taaaagcttt	tctgatttnn	nnnnnnnn	nṇnnatttgc	ttaaagattc	300
cctagaaaca	tacacttcaa	tgtatatata	gaaaataact	gtgaatactt	aatatgtggt	360
attataagcc	agttatgcct	tgggcattta	gattttcatg	cttggatttt	cattagtaac	420
ctgtagtata	actgtatcct	ttcttgaacc	atgaatttaa	gtgcccacat	tactggatag	480
tagagatgcc	catattaagt	aaacatcagt	ct			512
<210> 380						

<211> 458

<400> 380 60 getgteetee atteteatta gaettettae etattttte agttageeat eettgetgtt 120 180 ttcatatctc caatcaatag ccctactttc attgagattt tcattaatgt tttcaataag ctcttctcag aaacatcttt tcttaaagaa ctgtgatcat aaagggaccc agaggcaatt 240 300 gtgatgtcac ctcttccgtt tcctgagttg atatgaaagt tagcactcta taaagtgttg 360 cttgctttga ctccgtattc agggaaaatg tgacagtcag ccaccccagt agagccaaag 420 agcagtcagg atacaagggg agaaatcgag tctactggcc accatcccgt tcccatcagg 458 tgatagccaa ggtccagccc atagacacac ctctgtct

WO 02/10	198				PCT	/GB01/03390
<210> 381						
<211> 441						٠
<212> DNA				•		
<213> Homo	sapiens					
<400> 381 ggggctaccg	gactaccgaa	cgaggggcgg	gaggagaggc	ggagccgcag	cgtggtcggg	60
gccttcccgc	ggtgccgaaa	gttgcctctc	cgtgcttttg	cggcgtggtc	tccccttttg	120
cccctccaat	gtttagcaat	tgattttgtc	tgaggattag	tctttagatt	gtatcacttt	180
gtgtatttt	tgtaaaaata	gagcagttaa	ttattctctt	aaaatcggtg	aaaatagaaa	240
tgtacgtttt	ttgatgaatc	ctggtgaaca	gggaaatttt	tggcacagtt	ggtttgagat	300
ggtagaaggt	taaacccaga	aagcaaatgt	tttgccccct	cttcatgaga	atgtggcttt	360
gcacatgtgt	gttggaggag	gtttggccaa	aactggagtt	cgcgttatac	taggcccagt	420
tgtcgctgcc	agttacagcc	t				441
<210> 382				•		
<211> 446						
<212> DNA						
	sapiens					
<400> 382						
ggggatgggg	ggaggagaga	tgagctggga	ggagccaggg	gcctgctggg	atctcaggac	60
agagttgcac	ctatgaccag	tgtaatctgt	gcaggcacaa	tgttctcctg	caggccctgg	120
gcttcaggcc	tcagtttctt	gcctgagaag	tgggggaatg	agcccctgcg	ccctgcctgc	180
ccactccaca	tcacaggact	tgctcatctc	ttgccctggt	tcatgccctc	ttgctctggg	240
tcacttacat	tttctgaaag	aatcatggct	gccttttggt	aaaaatccaa	gtaaaacata	300
cacatggtta	aaaatgaagc	tgaaaagctt	ataattaaaa	gtccctgcta	tactccccat	360
tctgcactgt	gcaggtaata	accatgttcc	accagatggt	gtgtgccagg	cttatgtctc	420
cttctttatg	ggaccaatgt	caggac				446
<210> 383						

218/265

<211> 572

<212> DNA

<213> Homo sapiens

<400> 383 qqqqqaacac tgctactcct gcccctqctt ttccgtcttt tcctgcagtg ttttggagtg 60 caccetecee egetgeeete actetegeet gteggettee aggegeggag teecegagge 120 ctgagaaacc agtgtcgggg gagaatggga gaattagccc tgagggactg atacgtagtc 180 acggcgtagg agetteeet teteecegaa gteegggggt tteggttteg agggctagtg 240 gacctggtgg tagcttgaat cggaaaagac caagcataga cctagcgttc cttcccaccc 300 360 tctccatttg qqaaqaqtqt qaqqtcqaca qqtqctqqqg ttgtgtgact ctcactgggt ctagatccct gaagcggtgc ccgggttggc agatccctct gttgtggctt gatgcgattg 420 gttgggaacc cggaactgga gactggtttg gattccactg ggagaataga gtttgaaggg 480 tggaaggtgt ggttacctga caatctcagc tcaaggcctc cctcaaatct tattgcaacg 540 572 tatttcccca tggaagcaga tttcttcttc at

<210> 384

<211> 591

<212> DNA

<213> Homo sapiens

<400> 384 aagaattcaa aaaaagaatt aggacaatta aaaaaaaaa gaaagttagt tacatccagc 60 120 gtcttacaat acttgcaaac actgctccag gaccaatgtg atcaagtgca ctttcaggac 180 gagcattagt ttttctatta cagccatgtc agagttcctt ttcttttct gaaatatgat 240 cccttgcctg tgctaataag gggctttctc catttctggt catccctatg ccccaaggcc 300 360 cactetgett gaacaggact tatacacgte etggecacaa tactetteet geteectagg aaagcaagat gtttatgcag gcctctgctc ttccacacca cagcacaagg ctgccaccta 420 cagaatcatt taatccattt cagcactacc caggatgagt gagaatcggc ttaaaaataa 480 atgctggctt ctgctgattt gacaaaggag cctactgtaa tacatgctgc ctggatatac 540 aagtttaatt ctctttttag gaaaggcact gatgactact aaaataggac a 591

<210> 38	5					
<211> 47	2 .					
<212> DN						
<213> Hor	no sapiens					
<400> 385						
•	tcccgttgtg					60
	agggaaggtg					120
	gattccttag				-	180
	, agtgctacaa					240
acctagttgt	tattcggggc	accctttatt	ttacgttgta	aaacatgtag	ttttaatt\ta	300
ccacgtacaç	cagagagaca	tcagttggtt	agggaatgga	tggttatttt	ggtgtctggg	360
accetgtgco	: tttagaaaga	atatgtttta	actgctctta	tcatgctagc	tcaggttttt	420
aaaatgtgat	ctgaataaga	ccaaagtttc	ttcttgcgtt	cttttcatgc	tg	472
<210> 386						
<211> 417						
<212> DNA						
	o sapiens					
	- Cupiono					
<400> 386						
	aatttgtgtt	agatacataa	ttataaagtc	tcaatgtcaa	aaactattat	60
ggaatgggat	tagactatta	aatgggaaag	tacagcttcc	tcccctggat	acctttaaaa	120
gaggacaaca	cttatctgaa	ttagatgttc	tgatgagaag	caaagagtag	gaataattta	180
cgagactagc	acctagatga	tcacagctac	ctatccctgc	tatcttacag	cggtagcccc	240
tatctggatt	tgtctctctt	cagttatgat _.	gacaagtggg	tatctgtcat	ggagcggccc	300
	gagatcaccc					360
	gatgggctgc					417
<210> 387						
<211> 704						

<212> DNA

<213> Homo sapiens

<400> 387						
	tgccagagag	ctaaatctag	atgacttgca	tcaatatttg	attagataca	60
ttagctggtc	gaactctcaa	atgatcagaa	taaacatgat	tatgtcttaa	aaacatggta	120
ttaaggcatt	gttggacgtt	ggagtgtatg	tgtgcaatgg	titcattacc	tgcagaataa	180
tgaagtgttt	cttcctgact	gaaaaagacc	atcatagctt	cagctgatgt	gctacattcg	240
aaatagcttt	agaattccaa	gtttgaatta	ggcttggtgt	tcaatctcag	tctatgaatt	300
atagattaca	gatagcaaat	gactattgag	atttttggtt	caaggaaaat	caaagaagag	360
caaaattaga	aatattttaa	aatttgaaat	ctgtctttaa	aaagtttgat	ggattagcaa	420
ttgtatgcca	tgtaattaca	atgtctgcag	agaagttgaa	cttaaaatga	ataggaaaac	480
aaacaaaaa	ttgtatgtgc	ctgagaaatg	ttgcaagtct	cagaagcaca	catttgtgac	540
aaccaaaaat	ggacagattt	catttatttc	atttgttcat	atatgctgtt	tggatgtttg	600
agttgttttc	tctttgtact	gaaatccaaa	ttttccttcc	tagttgaaat	cctatcaaac	660
tgttgacatg	ggctgaatct	tatttgattg	ctatgtggaa	acat		704
<210> 388						
<211> 564						

<212> DNA

<213> Homo sapiens

<400> 388 gggtaaaggg ggatttctgt atgttctcaa cccagtgtgc tctggagctc aacttagagc 60 tatttttagt ggtaccggaa aaagcaagtg cttaaaaata tcaagtctgt cattgactct 120 ctgtggtcac tagcttggtg tggagtgggt ggcttccttc ccattcccat ttaaatttta 180 ggttaggtca ttgtgcatca gcacagaact atgatttaaa ggggacttac tgtgtttttc 240 300 ttttgaaatt gacaccataa tgttattttt gtgcctaatc taagtaatta ctatgtggca ataataaaat cattttcaga atactctata agtagctqaa aagtttcaag gtattgtgta 360 420 tttagcacaa aagtaaacaa tgcaaacaac tgtaaagtta gagacactaa ggaaataagg tgtacagact tatgtttgct cccagggaag gggtagaaag gattgggagt ggtgtgaaaa 480 gagtaggatt ctaccaggat tccaaaaaga atgcattgta actctgtgtc aggaatacaa 540 cattaatttc agcatgacac agca 564

```
<210> 389
```

<211> 697

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 389							
gggagtgggg	tggaccatat	ctatggtaca	gtcagttgcc	actttcagta	gttcagaaat	60	•
tatttaccaa	gtttctgctc	agcaccgggg	attgcgttag	gtactttgtt	ctgagtttta	120	
tggtatttag	gttcatgcct	tatcttctcc	attggacaca	agcatatttt	actaataatt	180	
aaaaaaaaa	cccaccgtgc	ccgaccagat	aattattta	atagaataaa	aaaaagtaca	240	
atggtgaaat	gactgaagga	aaatnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnac	300	
tgttggtggc	tgctgtttgg	taactaaatg	aacgaactga	gtccagcctg	cttttttcac	360	
cgtggaggta	gctgctaccc	agtaaagtta	cgttggttgc	ttcagatcca	cacttaggtt	420	
gtagcagggc	tgagctagca	gtcaggtttt	cctgttcctg	tcttgtcctc	tgacgtggct	480	
tcagggccct	ggaaggttct	ctgctaagca	cgcatccaga	tgggtgcaat	ggcagcccga	540	
gcgtgtacac	gcacacctcc	tgttctgggg	gagtggtttc	ttggcagctt	ctcaagggcg	600	
aagggtgagt	tttcggcatc	tggccttccc	ttgctgctgt	gggtcgggtc	attctagcat	660	
cttoccatct	tagataatct	gcagctgtca	tetegge			697	

<210> 390

<211> 814

<212> DNA

<213> Homo sapiens

<400> 390						
	gagaggcagc	agttcagggc	tagattatga	tgcacagtat	attgatccag	60
tcccctggac	aaaatcagat	ttaattgtcc	gtgctaactc	ttgtcagccc	ttgcccttct	120
gtgacaacag	gacaaacact	aagattataa	ttgcaattgg	agttagcttt	tätgtgtgat	180
ttaaacggag	ggtacaaact	aattaatagg	ttttaaaaat	cttagtactt	taccctctat	240
ctaaattttc	agtgtaattt	gagcaagtat	tggtaggtgg	taaatggaga	cttgccagat	300
gttgacattg	ggcttggatt	ttgaaacttc	ttccaaccag	gaatttaatt	acctggttgg	360
tgttggtggt	tgctttggtt	tcatttacaa	tgttaaattt	ttaacaaatc	aatgagagtc	420
taatatggct	atctggattc	agagcatacc	tccattgctg	tagcagctgt	gattctcagt	480
gtaaaatctt	tcagtttcta	ggtaaacaaa	gaatagtttc	tttcggggca	tctaagggct	540
gattgctgtt	tcctttgact	gtgtattaga	cagagtgttt	tgggctctgg	tcaactttag	600
tagaaaacct	agttttcata	catacattta	aaactgaatt	tatggaattt	gactgtggtg	660
tatttacatt	gtgagtggag	taggcaaaag	gatctttaaa	caaacaaaat	atgtatttac	720
ttatatgtgc	attgaaatat	gtattttccc	atatacatct	gatgtcctga	tacaaagctt	780
actttttctc	catgaaaagg	aaataaaaaa	cacc			814
<210> 391						
<211> 505						
<212> DNA						
<213> Homo	o sapiens					
	-					
<400> 391						
gggctgacat	ggagattcaa	ggcccagggt	ctttcagacc	ctccatgacc	cacatcctcc	60
actattcaag	gccaattcca	aatgccattt	ttcactggga	gättaaaatt	actgactctg	120
tagctctaaa	ctgcctgtta	agagagagca	actcccatcc	aagcgcataa	gggcctgcca	180
acggcccagt	tcctccactg	ctcggaatag	taaagataat	taaataaatc	gtctaaaaaa	240

aacactcctg ttaaaatttc agtggctgct tttctccatg ttgagttccc tcaggaccca

gcatgtgtta tttttaatta ataatgacat ggtttattac aggattcctc ctatataaaa

caaattaaca atcttctgc aagggaagag gaggaaggct ctcagttaaa aaagaaaagg

tggatctctt ctttgaaaag gagagggtaa ccctaagttt cactgaggca tttatgagca

tcctttttt ttttttttt tgaga

300

360

420

480

505

<210> 392 <211> 705 <212> DNA <213> Homo sapiens

<400> 392 gggaagagat tatgagcaaa aataagttcg aaatgagtat tttcccttgt aacgtaatca 60 gtttgcagaa gaactatatt aggtccttta ttccattagg agccagggct tacaagcttt 120 tcaaatattt ctgacctaaa aacaaactga ctctaaaata caaaaagcaa gctgtagtat 180 ctaaagtatt ttttaacaaa tgtcttccaa aatgttgaac aggtccactg gtatactcaa 240 etettaaget eccacatgtg ttetagtgaa tatggggtaa atacacattt etatgacatg 300 attttgggtg gggtctcaca aggaaggatg gcttggggga ctgtggaagg ccgaaatggc 360 cctagacata tatccagtta tttgcttgat ttggaacaga tagagataaa atgtaaaaca 420 tcatcagatt tatggggaaa cagcaccacc ttgagcataa aattctggac tacaactgag 480 ttacatttcc agagtatcag ctataatcag gtttcacaaa ctataactga agtaatttat 540 tcagaacatt atacctctat atactatact tacaccaaag ggggagcttt aagctgttct 600 atatatcata aaaatatgaa tggtaacate tetaaaetet eeataggaet caaegtttat 660 aataaaccag acaacacaaa tattatgaat taatttattt gacct 705

<210> 393 <211> 585 <212> DNA

<213> Homo sapiens

<400> 393
gggtgaagtc cttggggaga aaaggagcag gccaagggcg atggtggagt agagctgcct 60
ctcagaggca gcatgagctg agagggtgat aggaaggcgg cgctagacag catggaggac 120
tttctactct ccaatgggta ccagctgggc aagaccattg gggaagggac ctactcaaaa 180
gtcaaagaag cattttccaa aaaacaccaa agaaaagtgg caattaaagt tatagacaag 240
atgggagggc cagaaggtga gccggggccc ctttggaggg aaggagggag gactggctga 300
ggtgggtggg tgcttcctcc tgtttgttag aacgatcatt cgatcattcc ctgctcccgc 360
tggcctggaa ccaagcaagc ccgatggcag ctctggagtg ggtcagtggg gaacagaggg 420

gttctgggag tccaggaaca ttacaccccc ccaga	atgca agatgaaagt ggcatgaggt 480
gaaagatcct cagaggcaaa acctgagcca ggctt	tcctt tccggcaggg gaacagagac 540
tggcagaggc cacaaccagg gctggtagag aacaa	gggct ggtgc 585
4010) 204	·
<210> 394	
<211> 583	
<212> DNA	
<213> Homo sapiens	
<400> 394 tcagttagga atgcttcaaa tgagcaggaa tttta	tcgac tgaacaragc aatgattaga 60
gcagagette acaegtttgg agecagtaca aagtt	catga actctatctt taaaagaata 120
aaacctcaca taaagtaaag cagtcaactt gtcag	
taagagaaac tgaattgaca ggaaccetta ttett	
cttaaaattc taaaactggc tatttcgact ttact	
ttgacaggat cactgaaagc aattataaac gcaca	
gaatagacat ttataactgg gttgaccaag ggcco	
gaaactgctt gttgcactcc agtacatcaa agcat	
gaaaagtcat agtacacttg cttactatac attte	•
acaaagggtt ccaagaactc actacatgaa cgctç	gatagg tga 583
<210> 395	
<211> 489	
<212> DNA	
<213> Homo sapiens	
<400> 395 gggggggggg gttgtaaaag tcaattatgg taatg	ggttgt gagaactgag taagagtagc 60
tgaccttgga atcacagtaa caggaggaag ggcag	
ggaggaaggc agaggtggga acttgtggca gttc	3 33 3
cagcatggtg accagcagag tgaggaaagg agatg	,
ttaatgggca ccctggcccc acctatgatt tgtag	,
tgtacttttt cagccaaatc tggtggtgca ggcad	cagggc atggagaagg ctgggtctaa 360

ctgaggt	ggg	atcacacaaa	gctacactca	tgagaagcaa	tacaacacag	gacacggttt	420
atattgo	tga	acaccaatat	gtcactttat	tatttggatt	ttttttccca	tttgtcacat	480
acctgtc	aa				•		489
<210>	396						
<211>	503	•					
<212>	DNA						
<213>	Homo	sapiens					
	396	tcacctcaat	cttattaaga	acttaatcat	cttggccctg	tttcactgaa	60
				*			120
					ctctatccat		
					ggaaactgat		180
cattaaa	tga.	tattaactat	ttttattctc	catctgacca	ctggagctca	tctgaccatt	240
ggctcaa	aat	aatgagcttt	gttttggcat	agctgttggg	ttttttcac	cataaagata	300
caacact	ttc	tgctcattcc	tgactcttga	caataaattc	atgccattag	caaaatctta	360
atgattt	tcc	tatttgctgt	aaaaatatta	agtatctatc	atgcatacct	aaaagcaaca	420
tgggatt	att	taaccctaag	tggaaaagga	agcaggacca	tgtcaaaaga	cctatcacat	480
tcctttt	gat	attgagcaag	cca				503
<210>	397					•	
<211>	490						
<212>	DNA						
<213>	Homo	sapiens					
<220>							
<221>	misc	_feature					
<222>	()	. ()					
<223>	"n"	is a single	e nucleotide	e whose ider	ntity could	not unambiguo	usly

<400> 397	
gggagaettt cacgtgggcg tggtttgtac tetgaeceae tggtgaettt aaacaatttg	60
tcatcaaata ccacagttgg ctttgcagct atctggtatt tgtgcctgga gtaggtttgt	120
ttgttttgtt ttaaatgctt ctaaattaca attctttgtg agcttcctgt ttcctactta	180
cagetgaaat atgtgatgae tgaetetaee aggaetgett tttteeeett ttetgeattt	240
gtgctggaaa cagaacagct tgcacgcaca gcctggagca tgttgcctgc atgtgcttct	300
tggtggacgt gagcannnnn nnnnnnnnn ncaaaaaccg cetatttata tcetettcag	360
aagcgctgtc agacattaag cactctctct actaacgtca cgtcgattaa tatggatttt	420
aaaatggaag taaattattt tttactcatg ggtgagtcat tagatagttt tttttaaata	480
tacateccac	490
(010) 300	
<210> 398	
<211> 428	
<212> DNA	
<213> Homo sapiens	
<400> 398	60
<400> 398 ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca	60
	60 120
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca	
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attcgcttca ctttggaatt cactttgagc tggtatacgt ggtgtaccgg tattgtcgta	120
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attcgcttca ctttggaatt cactttgagc tggtatacgt ggtgtaccgg tattgtcgta ccggtattgt accaaaggga ctttaccgac tgcttgattg gcttctgtat atggggctag	120 180
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attcgcttca ctttggaatt cactttgagc tggtatacgt ggtgtaccgg tattgtcgta ccggtattgt accaaaggga ctttaccgac tgcttgattg gcttctgtat atggggctag gtcagagtta accttttac tgcgcgccta gacccatctc aaaaacaaac aaaaacgtta .	120 180 240
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attcgcttca ctttggaatt cactttgagc tggtatacgt ggtgtaccgg tattgtcgta ccggtattgt accaaaggga ctttaccgac tgcttgattg gcttctgtat atggggctag gtcagagtta acctttttac tgcgcgccta gacccatctc aaaaacaaac aaaaacgtta acgttcagtt ccttaaatac agagccggag aggggtcatc cctaggactg agattcaagg	120 180 240 300
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attegettea ctttggaatt cactttgage tggtatacgt ggtgtacegg tattgtegta ccggtattgt accaaaggga ctttacegae tgcttgattg gcttctgtat atggggctag gtcagagtta accttttac tgcgcgccta gacccatctc aaaaacaaac aaaacgtta acgttcagtt ccttaaatac agagccggag aggggtcatc cctaggactg agattcaagg ctgagaggat taaggcgggg gccggaggta atctgaggca aggagcggag cccggggagg	120 180 240 300 360
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attegettea ctttggaatt cactttgage tggtatacgt ggtgtacegg tattgtegta ceggtattgt accaaaggga ctttacegae tgcttgattg gcttctgtat atggggctag gtcagagtta accttttac tgcgcgccta gacccatcte aaaaacaaac aaaaacgtta acgttcagtt ccttaaatac agagccggag aggggtcate cctaggactg agattcaagg ctgagaggat taaggcgggg gccggaggta atctgaggca aggagcggag cccggggagg agggtccctg aattaatgaa ggtgggttta ctctaaggga ctttgcttac acaattcgct tcactttg	120 180 240 300 360 420
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attcgcttca ctttggaatt cactttgage tggtatacgt ggtgtaccgg tattgtcgta ccggtattgt accaaaggga ctttaccgac tgcttgattg gcttctgtat atggggctag gtcagagtta accttttac tgcgcgccta gacccatctc aaaaacaaac aaaaacgtta acgttcagtt ccttaaatac agagccggag aggggtcatc cctaggactg agattcaagg ctgagaggat taaggcgggg gccggaggta atctgaggca aggagcggag cccggggagg agggtccctg aattaatgaa ggtgggttta ctctaaggga ctttgcttac acaattcgct	120 180 240 300 360 420
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attegettea ctttggaatt cactttgage tggtatacgt ggtgtacegg tattgtegta ceggtattgt accaaaggga ctttacegae tgcttgattg gcttctgtat atggggctag gtcagagtta accttttac tgcgcgccta gacccatcte aaaaacaaac aaaaacgtta acgttcagtt ccttaaatac agagccggag aggggtcate cctaggactg agattcaagg ctgagaggat taaggcgggg gccggaggta atctgaggca aggagcggag cccggggagg agggtccctg aattaatgaa ggtgggttta ctctaaggga ctttgcttac acaattcgct tcactttg	120 180 240 300 360 420
ggggaggagg gtccctgaat taatgaaggt gggtttactc taagggactt tgcttacaca attegettea ctttggaatt cactttgage tggtatacgt ggtgtacegg tattgtegta ceggtattgt accaaaggga ctttacegae tgcttgattg gcttctgtat atggggctag gtcagagtta accttttac tgcgcgccta gacccatcte aaaaacaaac aaaaacgtta acgttcagtt ccttaaatac agagccggag aggggtcate cctaggactg agattcaagg ctgagaggat taaggcgggg gccggaggta atctgaggca aggagcggag cccggggagg agggtccctg aattaatgaa ggtgggttta ctctaaggga ctttgcttac acaattcgct tcactttg <210> 399	120 180 240 300 360 420

Ţ

<400> 399

gggccggatg d	caaagagaag	aaagagaagg	tagctggaag	tgcagaggtt	ggtgagatgc	60
tgtttatttt a	aatgaggga	ttttgagttt	taggcatgag	gtagagaaag	atgcgcttag	120
agaattagca a	aggaaataag	atgggtagtt	agagaatgta	aatggcctgg	aagagagtag	180
tgagtgaacc a	aagtcaaatg	gagttgggag	cggaggaaga	cacttggagg	ctgaaggaat	240
aacatgtgca a	aatacttcag	agcaataagg	aattatagtc	acaaaactga	aagaagtaca	300
ttataggtag a	aatttagagg	tctaaggaga	gaatagggaa	aggagataaa	aagtagaaaa	360
agatgaaact o	cggctgtgat	gggtttttcc	ttaattttc	ttttttaaca	agtgacatca	420
gatttacaat t	tctaccagca	tcacttggtg	attgattgga	tgatggagtg		470

<210> 400

<211> 556

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

gggcaagggc agtccctagg caccactgtg tctcgtccca aagggcatct caagagagtt 60 ttgcagagtt tcatgtaaat gatcattaca ctactaataa atatggttag tgacttcatc 120 agaaagagga tgagccacat caggtgcctt gggccaagga gctggcggaa agaactgcta 180 tatttcctta actgaaggca ctgacaacag ccagcagaat taatccatca actgctctct 240 ctcctcctcc tttcttcccc acttctnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 300 360 nnnnngctgg cgagggccca ggaccagagc accaagccct ccaatgccca tgtgcaggaa gggcagggtc aagetgctcg gcttcctgtt gaagtccgcc tcaggcattc ccactaactg 420 atcaggatac actcacagtt caccegcaag agcagacaac aaatgaggag agatagggca 480 acggcacete teatgetgee tittitget geageattit taaaaatata atttacatga 540 556 tacctactct ttcaaa

PCT/GB01/03390 WO 02/10198

```
<210> 401
<211> 496
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> ()..()
<223> "n" is a single nucleotide whose identity could not unambiguously
<400> 401
acagcattag gttgtttgtt gcttttattt ctctactttg tttttctgta cagtgcagta
                                                                      60
tgagtcattg catttctcgt gggagaaaag tcactgtatt catcactttt nnnnnnnnn
                                                                     120
nnnnncaata ataaaagaaa cattcaagga aaggaaagtt tggacgactt ttgtcatgca
                                                                     180
gccaatgaga attgacaaat agggtgatgc ggaattaaaa cttacgtcta aaagaactat
                                                                     240
                                                                     300
taatattott agotootooa agtootatta actaggaaaa totggattta gaaaagaaaa
aaatagaatt taatgtaaac aagtactgaa tgtatgaagt cctttccaaa cataatagtc
                                                                     360
ccacaaattg agtagtatta gatgaattat tagttgcagg atatgtaggg gaaataggtg
                                                                     420
                                                                     480
aactagctta aatgggagtc tgaagtagaa agtgataaga ttagtagagt cagtttttta
                                                                     496
tgaatgttct tagaag
<210> 402
<211> 497
<212> DNA
<213> Homo sapiens
<400> 402
qqqaagggaa ggattctgga gaaaggaacc aagagaatct agaattctaa aggaccacca
                                                                      60
                                                                     120
```

qqqqctccaq gcctgqcagg agcaactaac aggatgaccc accttcccca acttacacca

cctcaggcgc	tgggcagatg	ctctgtgact	ttatcagtat	ccctggggag	tggtgccagc	180
cccaggtgct	gagctggagg	ggggatcaca	gaggaatcaa	gggactcaag	gagggaaggc	240
agctggaggg	aaggggcttg	ggcagaacga	aagaggaagg	ggcttggccc	tgggctctca	300
tccactcctg	aagcccatgc	ttggaacagt	gaatgatgca	gtgcctgtgt	cccaaggtcc	360
cagcctcgtg	tgggaccatc	ggggcactag	cagccttcct	gțctcctacc	ccttgctctg	420
ggggccaaaa	ctggtcctgg	aaatatctgt	tctttaaaat	gctcataaac	tctcagtaac	480
ctatctgctt	tcttctg					497

<210> 403

<211> 596

<212> DNA

<213> Homo sapiens

<400> 403 gggtatccgc agggacagat acactctgtg tatccttaaa acaagtgcaa ttgaatgtcc 60 attggcctaa agggcttaga gccttcatag cagggccttc ctcagtgtat tcaattcggg 120 ttaattttgc tgtctgattt gcaaggattg gtgttgtcat cttttacctt ggctttgtcc 180 aagttccagg gtttcttaga aatgccgttg acgaattcac gggcagagcc agaatgtctg 240 tctttaggca ttcttgtctg cacagaaaaa taggtaggtt aaacatgcaa ctttttatct 300 aatgtggttt tgttcttgtt aatggttcct ttattttgac agttcagaaa tgtccagaaa 360 tgacaaagaa ccgttttttg tgaagttttt aaagtcttca gacaattcca aatgtttttt 420 taaagctctc gaggtaagag ttgaaaacat cttaataccg tgaattcatt ttcttgtttt 480 taagtgtttt tgatttgttg ggctttatgt cttagaagta gatatttcac tttcataata 540 attttatagt ctacattaat acagatatat cattatcaca tatttttgaa ttgatc 596

<210> 404

<211> 568

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

gggaggcagg ggcgccgcag ggtggttcgc acacgtggac tcaggcggc accgccgcc 66 tggctggtaa gaagccccac aggatctccc aaggagccct gggacagtgt ctcagaacat 12 ccacctgggg caagaatggg gactgctgtc cccagggggc aggtggagcc tagtgggcat 18 tcatgaccca ggttttggag ctgtgcttgc gagagtggct cccatgggtg tcccgaggca 24 gcttggagcc aacgtcccta ggcatggcct gggggtttgt gggaaggcct gaggcaaggc ctgtnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnn	<400> 404						
ccacctgggg caagaatggg gactgetgte cecaggggge aggtggagee tagtgggeat tcatgaccca ggttttggag ctgtgettge gagagtgget cccatgggtg teecgaggea gettggagee aacgteecta ggeatggeet gggggtttgt gggaaggeet gaggeaagge ctgtnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnn		ggcgccgcag	ggtggttcgc	acacgtggac	tcaggcggcc	accgccgcgc	60
tcatgaccca ggttttggag ctgtgcttgc gagagtggct cccatgggtg tcccgaggca 24gcttggagcc aacgtcccta ggcatggcct gggggtttgt gggaaggcct gaggcaaggc 30gctgtnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnn	tggctggtaa	gaagececae	aggatctccc	aaggagccct	gggacagtgt	ctcagaacat	120
gcttggagcc aacgtcccta ggcatggcct gggggtttgt gggaaggcct gaggcaaggc ctgtnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnn	ccacctgggg	caagaatggg	gactgctgtc	cccagggggc	aggtggagcc	tagtgggcat	180
ctgtnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnn	tcatgaccca	ggttttggag	ctgtgcttgc	gagagtggct	cccatgggtg	tcccgaggca	240
agagggtgaa ttctgagcag caccagaggg tttccctgac acagcagggg atgctttgag 42 gcccctttaa tgaaggagaa aaatgaggct tagagaaagt cagtgcccac cccaagtctc 48 atgggcccca ggctgtgggc agtggctaaa gacaggctag tgggtaactc ggggccacgt 54 ggaaggggag cttgtatta tagccccc 56	gcttggagcc	aacgtcccta	ggcatggcct	gggggtttgt	gggaaggcct	gaggcaaggc	300
gcccctttaa tgaaggagaa aaatgaggct tagagaaagt cagtgcccac cccaagtctc 48 atgggcccca ggctgtgggc agtggctaaa gacaggctag tgggtaactc ggggccacgt 54 ggaaggggag cttgtattta tagccccc 56	ctgtnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnagcaca	360
atgggcccca ggctgtgggc agtggctaaa gacaggctag tgggtaactc ggggccacgt 54 ggaaggggag cttgtatta tagccccc 56	agagggtgaa	ttctgagcag	caccagaggg	tttccctgac	acagcagggg	atgctttgag	420
ggaaggggag cttgtattta tagccccc 56	gcccctttaa	tgaaggagaa	aaatgaggct	tagagaaagt	cagtgcccac	cccaagtctc	480
ggaaggggag ceegeateea eagooooo	atgggcccca	ggctgtgggc	agtggctaaa	gacaggctag	tgggtaactc	ggggccacgt	540
<010> 405	ggaaggggag	cttgtattta	tagecece				568
	.010						

<210> 405

<211> 474

<212> DNA

<213> Homo sapiens

<400> 405 ggggctgtcc	tgtgagaaac	acatgctaca	ggcccaacaa	caggaagagg	ataaagggat	60
agtggcctca	ctggagtcat	caggacagcc	ccgtggtaaa	tgatgtgata	gaaaaattct	120
ccccatctac	ttgtgctgag	cctttccttt	cttggagttg	tagtttctct	tttgctgaga	180
cacctgttgt	cctcaagttc	ttctccaggc	ctctctcaaa	attccatttc	aaatacctaa	240
ggctaagtgt	aaatattcaa	atgaaactgt	caaaatttac	taagagatat	aaataaaacc	300
ttgcgatagt	gagacatact	ttcttttctg	aggtggaagt	cttactagtt	ttaaattttt	360
tgttcgtccc	aaattaatat	agatataata	tacaatctta	tcaaattccc	aataggatct	420
tctggaggaa	gagaagaaat	atttaaagtt	cacataaaag	atttagggtc	cttc	474

<210>	406	
<211>	522	
<212>	DNA	
<213>	Homo	sapiens

<400> 406 gggaaaaaa tggtgtgctt tagggaaagg ggtttggagt ataattttct gaaacgtaaa 60 gttattttca taaaaaagaa atctttcaaa aacttacttt ttgcattaaa gccataatta 120 tgaaaacaaa ctacacatag tacatgatat gaattaagta ttgataaaca gacttacttc 180 ttctctaaac tgaagaggaa tcatttcaaa cttcttaaaa atttcaatcc tagaaatttc 240 ttaagttttg gataaaaaca gttccacttt catctttctt tttttgtaaa tcattgttca 300 cctggatatt catgtaattt ttaaaaaatac ttaaataacc acctttagct agagtcacag 360 aacaaaaaaa aaagagagaa aaccccacaa atttaaatcc tcagcttctg ttaattattc 420 atgatcaacc acagtcttca ttaatacata tatgtactga cattttaaac ctatttgaat 480 tgcatatgat actttaaaga ttcacaagaa tttgccctca aa 522

<210> 407 <211> 501 <212> DNA <213> Homo sapiens

<400> 407 agcattaagg gcagtccaga gtactgtgtc agcacataga agggacatct gccccacatg 60 tggggctttc aagaaaggag tcttgaagga agtcttatct aacgtgtgag tcctggaagg 120 ctaggaagag agaaccaagc acagaggggc cagggggaaa tagttccagt attgctaaca 180 240 ccaagtatta cagttacaca ttttcatgta acaggtaatc cccaaattta gtgacttaaa 300 atgtactaca caccagcaga tcagtagcaa taactactca gcacctggta cgatgcttat 360 togatgcaca ttcaacttca gcgaaataag tcactttcag ggaaaaagta gagcctttcc 420 tctttgaccc tctgccagta caaaagctta tgggggcagg gaataaacaa tcaaataaaa 480 aattctagca aaatatgaca a 501

<210> 408 <211> 558 <212> DNA <213> Homo sapiens

<400> 408 gggggatttg cgatgcagct cacgatagga gtcttcaaac acatggtcac gacggacatg 60 cacagocatg tottotttoc ggagocotca totatgoaca totoctcaag cotgococot 120 gacacacaga agttccttcg ctttgcagag actcaccgca ctgtgttaaa ccagatccta 180 cggcagtcca ccaccgctct tgccatatgg cccttttgat gtcctggtag actacattag . 240 cagtectega etttgatgte aagegeaaat attteegeea agagetggae egtttacatg 300 aggggctccg gaaagaagac ttggtcgcgc acgaccgccg aaacactatg ccaatcgaca 360 ctacacgega gacceacage aacceeeggg etetgeateg eegettegee ttegeeegee 420 cactcccctt catgcgacaa tggcagcatc tacaaccctg aagtgcttga tatcacagag 480 gaaactctgc attctcgctt cctggagggt gtccgcaatg ttgccagtgt ctgtctgcag 540 558 attggctacc caactgtt

<210> 409 <211> 534 <212> DNA <213> Homo sapiens

<400> 409 60 ggggtetete ecagaaccce ettegateet gageacccee teatecccet etcaggtgge gcctctggag ggcaagttgt ggggcaccca gaaacctcac tgtggagtct gccgttcaga 120 gtgaagecca gecegaeete tetgegteet acetatgtge tgtgeetttg ggcaagggge 180 240 ttccctttcc ctgtctacag agcggcaatc ataatagagc ctctgtctca gagtcgccag 300 gaccactggg atatectgag taatacetgg ceceteceag cetecettee ttteeetgaa 360 aaaacaggtc cttgttgccc tgtgtgagtg gactctcagc aagtggaaac ctcttcctca 420 gegtgaegtg gaagteette etgtaeagea tettgeaagg aatateeete tagagtgaea 480 gcttgttatc tctgcaaatg cttcaagcct caggatcccc acatttcctc tgggtgcccc 534 gctgagtggc tcaggcaagg agcatgctgt acgctacgtg acaccagggc ctgg

<210> 410 <211> 441 <212> DNA <213> Homo sapiens <400> 410 ggggaatcaa atcatggcca ctgttgtcac tcttgacatt aatcccatac ttaattatgc ccaattttat gcatctaagt agccaaaaaa gaaagtttct aataaacatc tgattaacgg 120 taagacagtg atataaagcg tagtgcaaat aaccctggat tagggtgggt gatcagcaag 180 agettttege tetgaattte aggacaagta acacaacete ageatgttet eetttactgt 240 aaaagggata cgtgttatca cccacgtaag actgaaggaa tgtaaactat taaaccagta 300 ttagagttct taaatgggtc aagtcataat cattcaagtg ttcaattttt ttttaacacc 360 aactgcacat aacaaacttc tgaatgtcca aaacttcctg aaacatttac gtcatttttc 420 gttcattaaa agggcaggtt a 441 <210> 411 <211> 473 <212> DNA <213> Homo sapiens <400> 411 gggacaggct ggttcagcat tcccagcagc acagaatagt tgctcagtgg tgctggattc 60 cetgccatet tgccatttcc acagtetcat gggggttgtg tgatttctga ccqctqctqq 120 gacctgtggg atgagcacag gcaggagagc cagccaggcc acttctcaga atgaaactcc 180 aggettigta gagettetge tetgeteagg caggacaaac tigcatettg ggeattigtg 240 gtccacctga taggtcacat gtacagtgtt ctcttggccc attgttgaga tagccgtgtg 300 acccaggttc ttagaaacca ccagtgtcac ggcctagcaa tgggtccagc ctgctcatag 360 gagaatccct acatatacag gtgggaaatg aggctccttg gagaatagta ctactttatt 420 gggtttaact agaggaaggc cactaagaat tagtatctgg tgtggattaa tac 473 <210> 412

234/265

<211> 485

<212> DNA

<213> Homo sapiens

<400> 412 ggggagagga	ggaggggacg	gttcaatccc	agctcaacac	agcacgggag	cctcagggaa	60
ggctcctcca	cccaccctgt	tgctggaaac	ctgagcagcc	atcctgaatt	ttctctttcc	120
cctgcactca	tccccaaatc	catcagtagg	tcccactgat	gacacttcca	aacaccctcc	180
cccgctgcca	ccacccagat	gcaggcctgt	catctctcac	ctggactgtt	gggtggcctc	240
ccgctgccct	gcctgcctct	ctccagctgt	tctccacaga	caacagccag	agtcgctttc	300
aaaacgcaag	cacgacccca	gcctccccac	cgctgaaact	cttcagtggt	ttccaatgca	360
ctgagaatca	aattctaact	actcatgatg	gcatgctcaa	aaaggcgcat	gatggacgtt	420
cagttcagta	attaagtgga	gaaatcaact	gaattggaaa	aaaagataat	gacttttaac	480
gaaaa						485
<210> 413						

<211> 632

<212> DNA

<213> Homo sapiens

gggctgacct ttccaaaaga cattactaaa tataaaagga gaacaaaaga aagctaaaga 60 tagggcgtgc aaagaataaa aacagcctgg ctcacaaaga acaagttact ggtttgtttc 120 caaagettte ggaccetgee etgttattee cetteeagga gataaceace tecaaggeea 180 240 gcagacttct gcaggccctt tcgccaggct ctctggcctc ctagtgctgg cttgtccact gtctaggttg tcttgtagga cccatgccac caggaatcct ctccagacta cttgaccacc 300 360 ctgcagtcag atctctgttc tgccctcttc tctacccagg gctcttggct gtggtggcgg agggagggat gcctgtttcc ctaggtctcc caggtgattg gcacctatgt gactggacct 420 tttaggagtg cagccttgtt ccatgtaggc cttgtaatat gacctacctc ttgccatgct 480 540 gctcaggcca gtttagccca cgaactgcca tacaaaaggc tttctccaac atttgatctt 600 ggcagaaact atagaagtet ecceaectgg tteeateete ecaetgggee acaagaatag 632 aaactgataa gaagttggcc tagttgatgg aa

<210> 414 <211> 755 <212> DNA <213> Homo sapiens

<400> 414 ggggggaatg agaatacagg gttgctgcca tatgttattt acaatgccca attttcaaga 60 acagtaacaa aatatgagcc actcaaaggc agaggacact gtgacacatc cactggaaaa 120 tggatgagca ctagggagcc agatgttttt atttagcaaa tcatttgcta taaatacgtt 180 caaaqcatca aaqaaagcca tgtctaatga agcaaaggaa agcatggcga taattattta 240 tcaaagagac tatcaattca gacaaaaatt attttaaaaa tcaagcggga attttaaagt 300 ttaaatgtat aatagetgaa gtgaaattgt tactaaaggg actegagaac agatttgage 360 tggcaaaata agcaaacttg aatatagaca aaaattatgc aacctgcaga aaagaaagaa 420 aaagaaataa aaaacaaaca acgcctcaaa gacttgtaga acaccgtaaa gcatgagaaa 480 cttttaccaa catatctaag aacctaaaca aattcagtag aacaaacaga aagggattca 540 tactgagatg tattataatc aaaccatcga aagccaaaga caaagaaata atctgaacga 600 gcaaggataa atcaaaagat tttcactgca tacagaggaa cctcaaatat caatagctga 660 ttttttacca aaagccaggg ggtggaagac agatcagata acatattcaa agggttaaaa 720 755 cgatagcagc aaacactctt gtcaaccaaa aattc

<210> 415 <211> 434

<212> DNA

<213> Homo sapiens

<400> 415
gggttctctt tctgtgatgc aaggatacat cgctgcacta ggctctctga gaaatttgtg 60
actggctagc aattagagtt gagaatgtaa actggccaca gattgaggaa ttccaggcta 120
gagactgtga gccctagtga agaaatgtag ggtcagggct caggaggctg ggattaagcc 180
cactgctgac agaattgatg ctgagacctt cagcacatca cattatcttt gtttcctctt 240
tcagatccag agattcatga gctttataa gtggaaaaga tttagatgtt ctaacattc 300
ctccaaatgg gagattgcaa ctttccaaaa tccttggtgg atggttctcc agatttatct 360

caacagttct	agtgctggaa	cttttagctg	ccatactgtt	gaactttagt	gggccacatt	420
tacatagcct	gtgt					434
<010> 416						
<210> 416						
<211> 454						
<212> DNA						
<213> Hom	o sapiens					
<400> 416 gggaaaccat	gcgtgacagg	gtagatttgt	gcagcatcac	aactgaaaaa	cacaggtgtt	60
ctttgatcca	gcagctcctt	ccgagagcaa	acacacacat	ctggtaatgt	gcactctagc	120
acgggctgcc	acggcaaaaa	tctggaaact	gectgaegae	tgctccgcag	ggtttggtcc	180
aatcagtcat	agcagattca	caggaagctc	acaatgcaac	ccttttaaaa	gtgacttatt	240
tgcatgtgct	gacctagaaa	tatgtctact	atacatggtt	aggtagaaaa	attaaaaggt	300
acagtgctca	aagaatatgc	ccctagtttt	atgaccagaa	aaaagtatac	actacctatt	360
tatgcatgta	tctaggttat	tctgaagaca	gcctaaattt	cattgcattt	aagatttgtc	420
aaaggtttac	ttttttcatc	agttcaaaat	tcaa			454
<210> 417						
<211> 499						
<212> DNA						
<213> Hom	o sapiens					
<400> 417	aggtatgtgg	ctcataggg	tatacetaaa	teteceggae	atggtggctc	60
	tgcctgtgtt					120
-						180
	cctgaggggc					
	aggtaggaag					240
ggacctgttg	teetetgaaa	cagaactgca	gggcttcctg	gacagtgggt	agaaggaagg	300
ctgagcccag	ceccacagee	teeecegagg	gtggagatgt	atcatgggat	aaatggcagc	360
cttttgggat	cccgctgtgg	acagggcgca	gttggtgtgc	gccactcccc	actcacactc	420
tcttcctgtg	tgaacagaaa	gactccagct	cgtcgcaggt	ctgggaggga	cccgaggacg	480
cagggcatac	cqqaccctg					499

<210> 418 <211> 579 <212> DNA <213> Homo sapiens <400> 418 ggggaaaata tttatagatt gttatactga cctcatccct gggcacatta ttttacgtat 60 caaaatgaat tggggaacga ggccttcagg ggtcaaaaaa aatccttaaa atgagttaaa 120 cgacatgcac aaataatttt caaattattt atgagttata atcaaatata gacacttact 180 ctgccattaa attccggact ttattggcaa aaaggacagg atcattttt tcttcatcat 240 ttggtacctg aactggcata aactgaaaga caaatatacc tttccataac aatgtcttaa 300 gcctaagaca ttaaatgcca agtaaattaa tttatacatt atcaatatat tgaatcatct 360 acctttctag aacataggtt atatgaggta atggggcact gggcttgtac tcaggagatc 420 tgtttctaag ccctgagtct gcttgtgtgt taactagtat gtcatttaac tttgatgaac 480 catttcaact ctaaaaagag ggctaagatc actacttccc tggtgattgt gagggtgaaa 540 caagtcagtg tctggaattc tggaagtgta aagctgtag 579 <210> 419 <211> 674 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> ()..() <223> "n" is a single nucleotide whose identity could not unambiguousl У

<400> 419
aaacggtgtc atggagctaa gaaagaagtt tactgaagag tagtcaaaag tatcaaatat 60

tcccaaagga	ctgtttaagc	taagaacaga	aaagcagaaa	aaaaaaggta	taattcttgc	120
tttttgggcg	cctatacagt	catcattact	gttaacattt	tggtgtattt	tcttctagcc	180
tttacatatt	atgcatgata	tgtttttatt	attcttttac	ttattctcta	ttttgcaagc	240
tttctttcat	gcaattactt	ttttataata	aactttttct	aaaagtaaaa	ataaatacca	300
nnnnnnnnn	nnnnnnnnn	nnnaacccag	aaaagtattt	gttagttgtg	gcttttagga	360
agaccaggat	gaccttggcc	gtggtggaag	aagtcagact	atgaagacag	gtgagaaaaa	420
gaacaaggaa	atggagacag	ctcttaatag	aagccagaag	gaaaaacatc	caggagaaat	480
ggagtgaaag	gattttataa	gatggttgaa	acttaattac	atgctgggag	ccaagaatca	540
atagagaagg	aaagggtgaa	tataatgaga	tggtttgaag	caataacatc	tctgaggaaa	600
tgggaggaga	cagcactctg	cctgattgtc	ctgtgataga	acagactgga	ctcctctaca	660
gcctctctat	ctat					674
<210> 420						
<210> 420						
<211> 440						
<212> DNA						
<213> Home	o sapiens					
<400> 420				•		
gggtggaagt	ctcttattct	agtttacaaa	ttatacagcc	tctgactccg	ggctaggaaa	60
gaacgtctgg	tttctgaata	cataatatgc	cgtattttgt	tctttggagc	ttatctgtac	120
tacaggtgtg	ctactgtgtc	catctagtcc	cattatttaa	aatgcaaatt	tgttattcta	180
aatttagacc	aagagattat	ctccattagg	aaaaaatca	ccgcatattc	gttctttaaa	240
ttttcaaaca	ttatttaaga	ctgttgtaac	ataataatat	aaataaaacc	ttttttcatt	300
actaatctgg	aggctcatta	cgtacggata	aatgttcatt	gttgtgtcca	gcttttcctg	360
atgatacccc	ttgaactctt	acattaatat	gcttatacac	taaagtcaac	atctatttta	420
aaatagaact	gaaaaagatg					440
<210> 421						

<211> 431

<212> DNA

<213> Homo sapiens

<400> 421						
gggggaggga	gttacaagtg	attccttaaa	aactttaacc	aattatttct	catttttatt	60
tgttgctgtt	gttataccaa	taattaggag	aaaaataaaa	atagaaacta	taaaaagaga	120
aagatatgag	actagaattc	aatttctaac	acaaatgaca	tttagctggt	acgtatgcaa	180
gatcatactg	ccctccttat	ctttaaaatg	tggtatagga	gaaaacatag	aagttagatg	240
tctagaacaa	cagcatcatt	accgttagaa	atatcatgga	actcccccc	acacacacaa	300
acacaaaaag	ccattgcaaa	gaatgctaat	gctcacagtg	tacagcaaag	gcatcaccaa	360
ttgctgaatt	ctggttttaa	gtataatgca	gcctctcgct	ctgatcagaa	ccagaaatgg	420
aagccaggca	a ,					431
<210> 422						
<211> 406						
<212> DNA						
<213> Home	o sapiens					
<400> 422						
	tgcaccgtcc	ccctggggca	tgtgtggtgt	attaaaaggc	cgaagaggtc	60
teetetgggg	gagatcatga	gacggatata	ggatccagac	tggtttttt	tttaatggtt	120
ctagggtaca	aaaaaaaatg	gtagaaaaaa	aagttttacg	ttgcagacag	tgagtaagag	180
tgactcaatt	agacattctc	tgcttctctc	tcagaagaga	ggggcagcag	gagtgaggct	240
ttatggggaa	ataacctggg	tttccacgca	acccataagc	agctcgtggg	actctgagca	300
acccactaac	ttctctaaga	ttattttgag	ttccaaaatg	agtgtttagt	catgagettt	360
taaaccttct	gcttcaagga	aagtacttac.	aaaggactga	agtttc		406
<210> 423						
<211> 486						
<212> DNA			,			
<213> Homo	sapiens					
<400> 423						
	ataaagagat	agaggtgaaa	gtacatcttt	gctctggttg	gtcaagcatc	60
ttcctgaatc	acctgtcgct	cctaatgaac	tgcaacaaca	gcaccgctga	gcgtgaaaca	120
ctgtggatag	acagagaagc	tgaagctttt	atactctata	ccaaataaat	gtgatgcaga	180

```
gtacaaaggg aaacagcagc taagcagaca ggtcagagaa atccaatttg atgtgtaagt
                                                                     240
aaaaaaagaa ctggcagggt ctggaaaaat ctagcttttt aggaagaaat ggaatctgag
                                                                     300
gaggggcatc ataaaagact aaggattcac ctcccttctc cctcttcaat atcatactat;
                                                                     360
caatcttttt tgtaaatggt agaaattcca caagctcctt tcccctcatc agtttcatgt
                                                                     420
actetetagt atatatagaa teeattatge ttatteetat etttetatet ataatetget
                                                                     480
gcatgt
                                                                     486
<210> 424
<211> 466
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> ()..()
<223> "n" is a single nucleotide whose identity could not unambiguousl
      У
<400> 424
ggggtttgcc tgaatttcaa atttaactgg ttatcctgca ttttatctgt caaccctaca
                                                                     60
cacaaatcct taaggctctg agttttcatg tggagagttt tctcattcag tgnnnnnnn
                                                                    120
nnnnnnnnn nnnnnnnna cacataagcc tttagaaaac ttgcttaacc tgcagctaat
                                                                    180
aattcatatc gtagagttgt catgaggatt aaatggagaa aatgcaaata aatctaggtt
                                                                    240
caggttagga ttcagcagct gctcgaaaat cattaggtaa atgtttattt tctttttcc
                                                                    300
tctcaaactt atttcaatgc tttcctaacc tttccaggaa gaataaggag ctcctcctt
                                                                    360
ttccctttca acaggetgta cttctttctg ttgcagcaac ctacatggtt taaggettgt
                                                                    420
tttgtaataa tgacatagac ataccaattt ctttcttqtt tgggtt
                                                                    466
<210> 425
<211> 462
<212> DNA
```

<213> Homo sapiens

<400> 425 ggggagcagg	ccttgtcctg	ccaggtgctg	acagagacca	caggetgagt	ccaggtttcc	60
ctagaaggga	accatggact	agagacaggg	cagtttgagc	atcaataaca	acaatgacca	120
tgagggtcag	aaacaaccaa	caagaaatgc	ccagcaggtg	ctgctcccag	tgcggccaaa	180
tactcagcag	gtgctgctct	cagtgttgct	gggtaaggat	tcgcctctgc	aggagagagg	240
taggtggggc	ccagcccagc	accacgtgga	aatcccaggc	agggtgcaag	accactcacc	300
agcatgcctt	ggagggaag	gaggccccgg	atccggaagt	ggctggtccc	tgcaactcct	360
ttgcttgtgt	acagcaacat	atctgagaac	agaaaaaaca	tcctctgctg	caagcccttc	420
ttggtgagct	tgtgaaggca	gccctcacgg	atgaactccc	tg		462

<210> 426

<211> 532

<212> DNA

<213> Homo sapiens

<400> 426 ggggaagaca tggacctttt gttactgata aaattataac ctattactat ttttggttat 60 tgttttaaca taacattatt ctttgaattg atctcaaaga gaggaaaatg agaggtcact 120 gaaatgaccc tggcagtaaa atttgctgaa aagcagcgtc ctttacaagt ccttacctcc 180 gaccgcaaaa gagtcttcta aagaccactc tcagccctca agggtccttg caagtcagtg 240 acaccacagg aaatgggaac cttgccaaga attagggaaa ttcaggtgtc tgcaagtccc 300 taaaccctag ggccaaaaaa aggatttggc agatgtttgt gtgtcctgga ggcagatgga 360 tgaaagtatc agtaggetec gtggettaag tgetagteag tgetegeeat tggtettttg 420 cagtettgte acttetgtet ggaggeatte aaagagetga aaggtacaca gtgcagtggt 480 aacatctgga attgacccct ggctccacca tcttcatgat tagtaaagtc ac 532

<210> 427

<211> 666

<212> DNA

<213> Homo sapiens

<220> <221> misc feature <222> ()..() <223> "n" is a single nucleotide whose identity could not unambiguousl У <400> 427 gggaacaggg cctggatgga gaatgtatac tccatcagca ctaactctgc tagactctct 60 tattaatetg ecetetgaag geatttggge ttgtggeeet tgagttagtt ecatggettt 120 ttcaagaaag atcctgcagt tccaatgtga gcagcagttg tttccaaggc taacaatttc 180 acgecaacta gaageeteea caagteaggt gecaggeatt tetaageeag tagageaget 240 ccgcttgttt ctctgggtga gtcctctcag ggtgagaccc tgtctccttg taagcacnnn 300 nnnnnnnnn nnnnnnnnn agacgggagc caatcaaagg caaactgcgt tagacagctc 360 ttccatgcgg tatggacacc aacattcgat catccttgtt tcagagaagg tgccgggccc 420 cagacatgtg cttatcactg ggtcccatgg ccttcaatcc tttaaagggt tttaaggtgg 480 ctgattttta tcccagacat tgatcatgtt tttttcatg cagaatttgg gcagttgtct 540 ggacattagg agttgagtca cctcctaccc atgaggaaca agcctgtggg gggactgata 600 ttatcacttc tgtcatcaag aaataaggcc gcaggcatcc ctgaatatag agcatttatt 660 aatcga 666 <210> 428 <211> 558 <212> DNA <213> Homo sapiens <400> 428 gggtgggatt ctggggaacg tcggcatgta aggcacagtt agaaggatga agaagaaggc 60 aggagaggta agaaaccaag agggtagcgt gtaagaacca aggaaatagt ctttgaagaa 120 aaaaggaacg gccggcaatg gtagtgctga gagatcaatc aaaattagag ttgacaagtg 180 cctgttggat ttttcggtaa agaggaggat gtaggcaacc ttgtgggaga gtggtgtctg 240

1

gagtggggag	gccacttcca	aagagcaggg	cagatctggg	ttcactgggg	caaggaaagc	300
ctcctttccc	tgagcagcac	tcacagatcc	aaagcctcac	atgataggat	gttgcttccc	360
acagggcccc	ttccctattt	gcaaaatgga	acctggtcct	tggcttgtgc	ttccagccat	420
ggtgtttggg	agtgcttgcc	agaaaactga	tattgcagat	aaatcctgta	gctcctcact	480
ccaacctatt	ttcattctct	gggcctgata	atgtgtttgg	atggaaggca	tctcctgatt	540
ctgaagtgat	cttaattc					558
<210> 429						
<211> 517		•				
<212> DNA						
<213> Homo	sapiens					/
<400> 429 atcacttgaa	taatatttaa	acctatcgac	taggccaccc	cactggatca	gcagcggaat	60
tttgaaataa	tattcaaata	aggtttgggt	ttccaagtta	cactatttt	taaaactctc	120
acactctgca	tcttcataaa	ctatgatcac	agtttattaa	atcaacacaa	tgaagtctac	180
acaccttccc	actctagttc	aaaataaagt	ttatcttata	actaagaata	cctatagcaa	240
aaatgattaa	acacgaaatt	agataaacat	tacataagca	aattgaaatc	agttttcata	300
ctaatgctac	cttagattca	ttcacagctc	tctaaagaac	agaggatctc	aagggacctg	360
tggagagacc	tatctgacct	cctcagttta	cagctgggaa	ccaagcaact	gggcttagac	420
tgagcccagc	gacagctttc	aaatgatgct	ctattttact	tggaactgac	tetteedaac	480
catcactgcg	atccctaggt	aatgcatttt	atttcct			517
<210> 430						
<211> 538						
<212> DNA						
	sapiens					
\213> 110IIIC	aaprens					
<400> 430						
tttgttttt	gaggttttgt	ttttttgtgt	gtgtgtggga	aaaacagaaa	tctgagggaa	60
aagaacacag	ttaaaaattg	ctgtaaatgc	tggagtaact	cccagggagt	taactgttct	120
gaaacaacca	cttatactaa	ctccggatta	aacaaagcta	ttttgttcaa	atcctctttg	180
aaaatcctcc	agaagtatca	cagttctgcc	caaagataag	aaagtgtaag	acacgtcgct	240

tgttttacac	ctggtagctc	atggctcctc	catgatttaa	aacgtcgggt	ttgagtttgg	300
tcagtggtgg	tcctagctgt	gtgcgctgat	taaaggtagc	cacgaaacgc	tggggaaaaa	360
agaaaaaaaa	aaaaaacaag	agaccaaact	ttcttgtgat	gtttatattt	ctgcctgaat	420
ttgtaaatgt	taattgtaag	ttattttgtt	tgacttttaa	tcctcctcca	agttctttaa	480
aaatatgaca	tgcttaacat	gagcagctgc	ctctgtgcct	tttctgtcgc	ctgggagt	538
<010× 401						
<210> 431						
<211> 619						
<212> DNA				•		
<213> Homo	sapiens					
<400> 431 catctatagg	gttgagttct	gtgtcataca	aataactaaa	atgtattaaa	tgagggaatg	60
aacagctata	aaaattgctg	aaaatcagct	aaagacaaca	atctcaatgg	atccactgga	120
ctagtgcata	aagacaatat	aaataaatta	gtaaattaag	cctgaaaaga	aatagtaatc	180
ttgccagaga	gaaacataaa	cagatatata	tgaagaagag	aaaaaatggc	atacaagatt	240
atgactccta	gagataatcc	ttatcataac	tgtgggtgct	attattttgt	ggctaaacaa	300
gacagaaaaa	cattaaaaag	agaagttttg	cttcaacttt	ggtcaaaaat	attagggttt	360
aaaatttacc	tactgctttc	ctttcacagt	caggcttttc	caaatttta	ttctgaggca	420
taattattta	aggcctcata	ccttttctat	aactacattc	agtattcaca	gaaaaaactg	480
agcatgcata	ggaaacaaaa	agactaaaag	gctagaatgt	caacagtgat	actccatggt	540
tgacgggttt						600
cataatgttg				_		619
<210> 432						
<211> 456						
<212> DNA				•		
<213> Homo	sapiens					
<400> 432		- t				
ggggaaatta						60
actttgagct	ccatccctga	agaactctgg	aaagtctgat	ggagttatat	actcaaagta	120

gcaaatgaga	atcataccaa	tattctttta	ggcaaaagaa	atacatggga	aagaatagaa	180
gggaagggaa	ataagatggg	agaaaggaat	caccaacatt	aatgctgtac	caaacaattt	240
tttaaataca	ttctgagtag	ttgaatattt	gtagttggca	ttaggaataa	tgtcttatca	300
atatctagaa	tactactact	agaaatctag	ctaactcttc	ttttaattag	aaaagtaata	360
aggaatggat	ctttggtcac	ttcagcctct	gtacgttatc	taagacagga	caattactgg	420
acttatctta	tgacaaaatt	atatataaat	taggca	•		456
<210> 433						
<211> 694						
<212> DNA						
	o sapiens					
	Jupiciio					
<400> 433			-	•		
	ttttcttgtc	ttccaaacaa	aggactataa	cgtaacacaa	aatgacacat	60
tacactgatt	gacagcaaat	ttagatagaa	aaattaaagt	taacatgtag	ccttaaaaaa	120
agaattaatg	tcttaccctt	gaggctcttg	gacggtcttg	ttttcaactt	tttgttcaca	180
ttcttttatc	atggaactta	aaataacctg	attaaaaaaa	tttaccttag	tgaaatacag	240
tttacatagt	aaaatactat	ggtttaatct	aatgttttaa	tttttaatat	tcctataagc	300
taatatgtta	attaaaaatt	tagttttggc	agttactttg	ttaaaggaat	tcatattaga	360
ttgctagact	aggttcagaa	gtagctttaa	aaaatctcaa	tcatataaca	ataatttatt	420
ttgattttca	ctagtcttct	ttctaaatgt	tttctattct	cccttagctt	actcaccatc	480
ttctaatgtt	aaaagtaaaa	tttatataca	tctatatatt	taacatacac	acacactatg	540
gtcacacaca	tattttccca	gtaaaagctg	tcctgttcta	cgcccctttg	ctttctccag	600
gttgcaaaaa	gcaagatccc	ttattttaat	gtctagagct	gagactaggt	acagcaccat	660
ggctattaaa	atataatgag	ggatatgctg	ggtg			694
<210> 434						
<211> 757						
<211> 757<212> DNA						
<213> Homo	sapiens					
<400> 434	gattataaaa	aatagaaaaa	aat dadadaa	atataattt~	agattagess	60

tatttctatg	aagtacgaca	tgatttaaca	ttgctgatat	taagttcctt	gcaacttact	120
atatccacta	tagattgtat	aaaagtagtt	gtataaaagt	tgaaggtgag	gtccataaat	180
atttagacta	tctttttat	ttcctgaatg	tactataggt	catttatgtt	ttcttatatt	240
ttaattcttc	cagttaccag	acattttgca	aacatttaca	tggcaatatg	tacttttcaa	300
agctcggaaa	actttccttt	tctgattgtt	ctcctttcta	ctgtacatat	taaaatttga	360
atttcagaca	tatattagac	aaatatatac	aaagtttagg	ccataccagg	aagtagacag	420
tttagagggt	attaaatatt	tgagaaatat	gcttatgttt	ggtattgtta	ttgttttatt	480
tttggtttgg	acttttaatt	tcctatttct	tattagtgct	tcattcaaat	ggatttattc	540
gatgtctcta	agatttgatt	tccttttctt	tttcacacaa	ctgtgtgttt	gctcattagt	600
aaaagttgaa	taatatacag	tgtttacatt	ttaatattta	attgttggat	gaatctcact	660
tcaaggggta	aaggctatag	ttcattgaca	gtgatgaaat	aacctagctg	gctctcatgt	720
aaatagcaac	gaatgtgcac	aatagttaca	ttacatg			757

<210> 435

<211> 421

<212> DNA

<213> Homo sapiens

<400> 435 agaaatgaga aaatagtete ttteettaga gatettetet aagttgtget cattetacat 60 atggcatgat gtacttctgc tctttcccct ccttcaaccc cgcttacccc acagacccat 120 tctgtttgct gttgctttta ctcttaggca tataaggcag ggtccaggag aggccaggtc 180 cagaactttc aactatcctc ctccagtgaa gttacacaga tagcactaat tttgcccagc 240 aatgacatgt agcaatgtgc atggagtatt gccagccaga gaaacttacc caggctcacc 300 acggtgtaca gtttttttat tggggtcggt catggattta tagctgattg cccacatggc 360 tgactttagt cttttgcccc tccagaggtt aagctggtac cttgaggtcc agggcaccta 420 421

<210> 436

<211> 421

<212> DNA

<213> Homo sapiens

<400> gggtgta		aggggcacat	ttcacagttc	tttgggggct	ttctagaaaa	acaggccagt	60
ttgtaaq	ggag	tattgagcca	ctggactggt	gtgtggcctc	tgtctagaaa	aggtcagtgt	120
catctga	aggg	atgctgcaga	aggtggccgt	tgccatgtga	gtcatcgagt	ctgtattggg	180
aatggto	gtgg	aagtggaggc	tgaatctgga	ttactgaaaa	ccgtttctgc	attataaatg	240
ttggatt	tac	acatgcagtg	gctttcagtt	gactctttca	ccctcagaat	tacagtgtta	300
tattcgt	ttt	tgctttttac	agtcatcatc	aggcaaagaa	aataaattac	agaattagac	360
atggctt	ttg	caaatgtgtg	catttttgtc	ccaaaggaaa	cagaaaggtc	acccttggag	420
a		;					421
<210>	437						
<211>	478						
<212>	DNA						
<213>	Homo	sapiens					

<220>

/

<221> misc_feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguousl
y

<400> 437
gggggtaggg agcaagtcag ccaccacag aggtattaa ataccagcta gacaatcact 60
ccacggggac aggttccact ccttgtgaaa ggggtcaaat aaatcttctc ctttggcacc 120
caaaggagat ctagtggagg gcccaacaca ttagatacac aacaagtgtt gctgactgaa 180
tgaactatgt tttcaccacag attacaggtc aagcaaaata ctaatgtaac tctaatatat 240
taagggcatc gggtgaccac tgaggtactt tatgtggttc caactaagaa ataagttgga 300
aaatcaggtc atgaaatgag ttctgatgct cctaagtaaa aggtttgagc cactgtgaga 360
gtcnnnnnnn nnnnnnncc caaaggetct tcccatgaac cctatgetca agtcaaacag 420

ataaagcatc g	ctaaaacac	acttcagtgc	ttttaagatt	taggtctaag	ccaggtgt	478
<210> 438						
<211> 440						
<212> DNA						
<213> Homo	sapiens					
<400> 438	attagaaaa	2010201021	agagt oaat a	,		60
tggggaagtg to						60
agggacatag g						120
ctgctccatt co			i i			180
tgccccaggg c	tgtaccaac	tcatgaactg	tctttagctg	gctggcctta	cttgttggag	240
ctgtgggtag to	gcagtcaat	acaatggtag	gctgggaccc	aagagatccc	aaataagcag	300
gataaaattg g	gtggtaaaa	aagggaaaca	aatgaaaaaa	accaaagtgc	ggaaccttca	360
aggeteatge et	tggagtctt	aagaaggagg	atctggataa	gtagatgġaa	gagtctgctt	420
tcctgaatga co	ccgcagact					440
<210> 439						
<211> 487						
<212> DNA						
CZ13> HOMO S	sapiens			·		
<400> 420						
<400> 439 ggggtaacag ad	catgaacta	cagtatataa	acatttctga	gatgaaaata	tttaagttta	60
gagacagaag at	tctttggct	ttagtgtttg	gttaatcagt	aggttgggta	ttctatgaac	120
tcaggtttta aa	aagcttcaa	taagatgaga	tctgtttctg	taaggtgtac	cagttgatcc	180
tacaagtgag aa	acacattca	tttactgcac	tgaggcagaa	cctattgttg	aaattatttt	240
atcttaatat aa	aatactgcc	aggtattggc	tggttgattc	atcatgcaac	aaatggatat	300
gtaaccaaat tt	tacacactt	gtctaagaga	aagtactccc	ctcaatacta	caacattaaa	360
tatgcctttc to	gtattttc	accatctgag	gcactagacc	ctagtaatat	gtctttattt	420
tgtgaggggt ca	aagaaatgt	ctagctagta	agagaaactc	ttagtttagc	tatggttagt	480
agcactg				-	-	487

<210> 440 <211> 471 <212> DNA <213> Homo sapiens <400> 440 ggtggtggcc gcatagaagg agaagaggca gaactcacac tataaaggcc atcctqaaat 60 tacagaactt tccctttatc ataagggtaa tgggaggcca gtgaagggac ctcgqcctgg 120 taaacaggtg agtgggacat gatcacattt gcattttgaa aaaaaatcac tcaagctgat 180 gagcaaaggg gagactgggg cggaaccagt cagtctctga taaaaacaaa tgtccaatcc 240 tattcgctga attcctggta tatgcaaaaa actagaggag gtccttacaa aatgctcaaa 300 gcaattctgc aaatacactt cagaccacag gtggagctgc ggctggagag aggagtgtgc 360 tgaaatcaaa tggtacagac tcgcgacatc ctccaagctg aacccagccg tccacacgat 420 gcaaataaac attitgagtc cccaccttac ccaccatgaa attitacagat g 471 <210> 441 <211> 400 <212> DNA <213> Homo sapiens <400> 441 ggggccaaaa aaaatgtatt tcattaggtg ctgggcctac aaagatagag gtgtgattac 60 tgccctctgg gaactcatag tgtagaaatg caggtggata ttgacaagca accggaaaac 120 tgtgtttcct actaggggca tgaggaagga gctatacaaa tagatcaagt aagctaattc 180 tgcctagggc atagaagaaa ggtgcccaga gagtttcaca gagaagggga tatttaaata 240 gtcccaaagg taaacacaat ggtaagagga gaacagtcct tctaagcaaa gggaatggca 300 agagtaaagg catggagata taaacacaaa ggcttgtgtg ttaaaggtgg aaggagtgag 360 gaggaagcag tatgagatat gagacagaaa atcaccttag 400

<210> 442

<211> 472

<212> DNA

PCT/GB01/03390 WO 02/10198

<213> Homo sapiens

<400> 442 gggacctggg gtctgggctc aggagggcca cggcccctcc cactcctgag tgtgtcggga 60 ggctctgccc ccatcgtgct tcacacagga cagtagaagg ctgggcgggt caggccttgt 120 ggagtatggg tgcagagggg gcagtcgcag cacgcaggct gagtcagggc ctggggacct 180 ggggagcagt caaacaggat atggaagggc acctctgtcc tctgttcaca ctggacacca 240 tcacccatca ccagccccgc cggcggatgt cagcacacac acctgcactc agcgccactc 300 cacagecact gtggggtccg gagcagetge eccegeactt gggccgcgtg geettgtete 360 agtctgcctt gtcacctgtc aggtggactc ctggagttcc cccaccccga tgtgtgagtc 420 tctgagggac ccaagccctg aggcactcca cccccaggtg ctgcagacac ct 472 <210> 443 <211> 541 <212> DNA <213> Homo sapiens <220> <221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguousl У

<400> 443 agtagggtat ctggtgccta agaggtactc agtgaacttt tctttccctg cctaggttta 60 aattagaaaa gaaaaaggtc aaattaggag tottttagta agcccaagtg aaccatagca 120 tgagaaatag ggtgtaaaag cactgagaaa aatcttgcat tttcctctga aaggcacact 180 attagnnnnn nnnnnnnnnn nnnnnnnact ggaaaaatga cacaagtatt taatagatta 240 300 gattaaatct gagaaaagta cgtttaatgg catctttgta tcaactgatg ttttattttt catcccaccc caccagttct cttttctgta atattctggg taaccttttc ctgattccgt 360 420 aaggaaatgt ctgcagagaa taataaatat gagtaaggct atgtagctaa ttataggtta

cattctctct gactcgtctc	agcaaactta	caaagaccaa	taagaacttg	aggagtatta	480
ttccttgtct gtctttgtcc	ttccccttac	aattctactt	tgactctgtt	actttcatat	540
a					541
<210> 444					
<211> 522					
<212> DNA					
<213> Homo sapiens					

<400> 444					
gggtacatgc tgtgtggaat	gtttctgaga	gattttaaac	tgcaggctcc \	taactaccca	60
gtattettee tggecactee	ttaaagaatg	ctgggcagaa	aggaatctca	gaactcattg	120
gctggtgcct ccaaatgggg	gtaggcagta	ccagccttca	aggaagtgtt	tggaattgag	180
tgctggtgtt gggggaaggg	gttgcttttg	gtcattacaa	tagtgaataa	cctagtgaat	240
gctactggct tcttaggggc	tcaaggtcag	ggagtctaaa	attcctatga	taggagaatt	300
ctaatggata aggaatagtg	tgtcccagac	atcagtgaca	ttcaagaata	tggaatcact	360
cattttatag ctgagatcca	gaaggattat	gtgctccagg	ggccggtaca	gagcacagat	420
cagctctcct caaatacagc	ctcccttcta	cgggaactca	ttctagtgcc	ccacagtggc	480
ctcttcatat ttgttgtctt	gtgttcagag	aatcccaagt	ca		522
<210> 445					
<211> 574					
<212> DNA					
<213> Homo sapiens					

<400> 445
gggtgtcaat gaaggactta aaggacttaa aaatggtcct gttctcagaa ttcagggtag 60
gccctgttct gagtttcctg agaattctct gggaatgatt tttgagtgat aagtacatca 120
aatgtatggg tccttttttg ccataggcat cactagacaa ggcttacagg tggaattgct 180
tgagttctga agtttttgt atgcttaaga agtcagtatc atacagtata aaagtactat 240
aaaactagga attcacaaca aggtgaaaag ccagaggcag aaaaatgaag acatgggaag 300
agagaatgaa attacgtgta caataattta caagttatta atattaaaca agggtttggt 360
atttccttcc agataaaagg cctaatattt, attacagtga aaaataatca gcaaataagt 420

tgtcatttct	ttccacattg	attccagaag	ctaaatgtca	ttttaattgt	ataagtgtta	480
gcttatggaa	gttgggactg	agtttggttt	ccttgaagaa	aatttaggaa	agaaggggat	540
aatgattaga	aaaatatgtg	ggatgccagg	tatg			574
<210> 446						
<211> 719				•		
<212> DNA						
<213> Home	o sapiens					
<400> 446						
gggcagaccc	ccgctcctag	actttgccat	cctggttatc	aacatgcaca	aaaggggaaa	60
cagtagtgaa	acttgttgcc	tgctgacaaa	ccttgatcta	catctgtgtt	gccaattact	120
tgttcaacaa	acctgttact	ttttttggaa	ataataaata	attcagggaa	agtcattttg	180
aatccgctga	catctgttgc	ttgtacaact	ctgaattatt	catcagtgag	cataaacagt	240
attaattaaa	gaaaagtact	gaggcagacc	attgaaatag	aaatgaacat	tgcagaagaa	300
aatgccttta	ctcagagcac	atttcacatg	tcattgacaa	atatcacaaa	gaacatgcca	360
gtccttagaa	cctaaaggaa	ctgtactttt	agaaatcaga	cggcaggata	tcatgataag	420
ccttatttt	atttttccaa	ttttatttt	ttcttccctt	cagaaaaaaa	aatcataatc	480
tttgatttgg	tctgtttcaa	gcattctacc	cgtttgtcct	ttgttccaag	aagccgtatg	540
gcattctatg	agaaagaaag	tcttactaat	tgagattcaa	aagaatcaca	agaataagtg	600
tcaggaataa	gtcatcaagt	gctcatttgt	aaactgagat	ttagacatat	taatggcaga	660
ctcccgccca	aattaaagat	agctcaatct	agctaatgat	ttatttccat	gacaacctt	719
<010> 447						
<210> 447						
<211> 566						
<212> DNA						
<213> Homo	sapiens					
<400> 447						
		ggataggacg				60
ccagttcttc	cctaccccac	ctgactcctt	tcacagggta	gagctagcac	taggcagttt	120
tgaagtagat	caattcatct	ttgccacaca	gccatctact	tttctgtact	ttcttgacac	180

WO 02/10198 PCT/GB01/03390 tetetettet ceetgagtee ttegtageet ettecagtee cactgetget getgggtaaa 240 taggaggatt accctgggaa aggagaccag gtgcaaaaat gatatttcag gaactaaaac 300 aggetgegtg aaaggtetag geteetgaaa taccaegttt ggggatetae aagtggttte 360 gtgtaactag aatagaaagt gcttccatgt ttcaatatta cttctctctc ccttttaaaa 420 aaaaatcctc atcaaaactt tatttcactc aatatagctt ctttcaacta aatgagggga 480 aaaaaggtaa totoaotoaa toggttaata caatacagto agoootoagt atoogogaat 540 tccacaacca gccgcagatc aaacat 566 <210> 448 <211> 644 <212> DNA <213> Homo sapiens <400> 448 cttcagtaat tacgttagaa aaattctgca gtctaaaacg gcccaaagat aaggggcaga 60 tgggttggga cagtgaaaaa aacaaattac agactgttgg taaagataaa tatttttgtt 120 ttgtgtaata atcaacaatt tgaagtaagc taactgggtt tcttaattga atgaataaat 180 atatatatog tataagtago agotoaatao acatatagaa catactgtta actotaaaaa 240 gctaggctaa tttatattat taaataggtt ttagcaaaca catttttta agaaaatgcg 300 gagtagtcat cagaccaget caagattatt gacctcattc aaagttgtga gettagaatt 360 actgcgtatc ccaaatttgt caagtaagag ttaatgagaa tttaactgac ccggttctct 420 acttecataa teegtgetet gtggtacaga tgteacttat etteacaaet caeegagage 480 totgtttgac agtaactggg gaattgtaat aatacagtaa ccaatatttt gactgcttgg 540 tgaactetca agaagatttt tggatttata cattgetgca ttttaggacc aaacagtttg 600 ttttgcatac ttgaataatg gaaagcaaga tatcagttgt gctg 644 <210> 449 <211> 519 <212> DNA <213> Homo sapiens <400> 449

60

ggggtgcggc gaggcaacag agccgttaaa aagcgtgtgg aattctatgc tgaattcttc

aagttotgac ttoattoatg ggactacttt ottttatata gatagtgatt ocagaaataa	120
tgtcccataa tagtatttca gaggtgctct tgggcacaat agctctagat agtggagatt	180
aggtagatat ttggggtctt acttcacggg cgtgttatat gagaaccttt gcatcatcca	240
ttttgcttct aatcacgttt tccatttctg gtgtgtgctt ccctcataac cctgtttta	300
tatcataacg tttgctgtat cagcacccat tctctttcca ctgctcagtt ttaaatagct	360
tcattatgaa aaatatagta cttaaaaaca tggcacaaat gtgtattact tcagcacaag	420
ataaagagat tactgagaag tgcactgact gctgaagtaa ctttatccta agggatattt	480
cgctacttta attgattttt tctgtccatt ttattaaga	519
<210> 450 <211> 403	
<211> 403 <212> DNA	
<213> Homo sapiens	
(213) Nomo Saptems	
<400> 450	
tgacacttgg aaatcttaat cacaattatt ctttgttttt ataatgttta ctgttcaaat	60
caatttctgg ttggatagta tgtatatata aagccatgct caatggccta gatatattta	120
ctgccaaatc ttttatgctt ttagtgtttt ttttctggac aagatctatg cttattgcaa	180
taaattaaat gcaaagaata ttctagtaga aagtcagtct gcacttccta aaccccaccc	240
caccccacca attectteat aactgttatt aacagttage tgtgttttet aatggattat	300
ctccaaagta tatgtaactc agatttttgt gaggtaggaa aagaataaca ttaattccac	360
ttcacatatt gaaagtctaa catacaaaga gattaaatat ctc	403
<210> 451 .	
<211> 709	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> ()()	

<223> "n" is a single nucleotide whose identity could not unambiguousl
y

<400> 451						
	tagaggccac	aaaaatatct	taatttttca	cctttttaaa	tttagaaaaa	60
aaaaatgaat	atataacaat	gaatccagcc	aggattgttt	ttgtctttct	accagcacaa	120
ttgnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnggaggaa	ggcaaaactg	cccagggccc	180
ccaaaagtca	taacgcagcc	cagcccacat	cctctgcccc	ttagaattca	cagtcaccct	240
agctgcgggt	gtccccacct	ccaggccaca	ctcctcccct	cccaggcgag	ggcccaggca	300
atcagggtgt	gaccccgttc	tgaccccctc	cccttcaggc	tctggccagg	gcaatcacag	360
ctcactgatg	atctcaggat	agagtagaac	attcactgga	acccagaaag	gggagagtcg	420
gtgttagctg	aatatcctgg	gtaaatgggc	aaagaaacct	cttttgttcc	agtcctgggg	480
ttattcattt	acttatgaca	ctttacctac	tgccacaaag	gạttcaaagt	cacaagaatc	540
tatgtaataa	aatagaaatg	tgtgtaaaga	gaagtttaaa	agtcagagtc	aaggaaaaca	600
agtagagagg	agacagctgt	ggctgggaag	cccaggggat	ggggaaggtc	cttgccgtaa	660
ctgaggcagg	gtcacacaca	tcacttcagg	ccacctagtg	gtcacagaa		709

<210> 452

<211> 482

<212> DNA

<213> Homo sapiens

<400> 452 atgtgaaaag ttcttatcac tctaatatgt taggggaaaa cccatctcac ccattgtccc 60 cattlctccc atttccatta tcctccccac atgtttaaaa ttgggctaaa ttaggctgag 120 tcaatgtttc attttcctc cttcacaaag gtaggggaca tggctattca ttgggccatg 180 tttactagtg gatgttattc aagatgactg ccttaaatag cattttttac tctctggaca 240 tgtatatacc aaacagactt tgaacttaag ttgcttgtct tgcaggtaga ctaggccagg 300 gactttctga agaagctatc attctctaga actctacaac agagtgtaac ttagagccct 360 gttatatttc caatgttagc cacattatcc tacaaagctg ctcagcagct ctggtcctag 420 gaggtggttg gagaatggcg gaccagatac cctgattggt taatgatcct attacctgat 480

WO 02/10198	PCT/GB01/03390

tc							482
<210>	453						
<211>	633					·	
<212> i	DNA						
<213> i	Homo	sapiens					
	453 cgg	gcctgcaatg	atgtgaagcc	cctgaggacg	cccgaatggt	ggcccaaagt	60
ctctctga	acg	ctcaccatgc	cctgactatc	atactatctg	aacgactttg	gctgggactg	120
gagctctt	taa	attttacaag	aaggaaaatc	agttctgacc	caccaccata	caacttcctt	180
gaggcgcg	gag	ggtgtccaca	atctccacag	aggcggcatt	gggtcaccgc	tggaggatgc	240
agcaggag	ggg	aggacccgtg	aggagegeee	cctgtaggac	cggaaccctg	gagggttcgc	300
ggcaagg	gtc	tccggggcat	aggaaacggg	catcccccaa	gggtagtctg	agttccgccc	360
agccccat	ttc	ctggatgctc	acgccgtctc	ccctaaactc	ccactgcgct	caccgggagc	420
ccatctca	atc	atcaccacag	cccgtggcta	atgggccaaa	acagaagaag	aaaagcaact	480
ggcggagt	tac	aacgcgcctg	cgcattatca	gactcaggga	caggctggaa	cctcgccccg	540
taagtag	gcc	atttaatgac	gcgcaaactg	ggaaggccta	tgactgttga	agaggataat	600
cagaagco	caa	cccctacggg	teceeggtag	ctc			633
<210> 4	454						
<211> 5	576						
<212> [DNA						
<213> F	Homo	sapiens					
	454 ata	aatacacagc	attggtgtat	attactatgc	aaattattta	tgggtattca	60
atggcaca	aaa	aagcactaca	gctgtcatga	atatattaat	actgaaaaat	ttctcaaaca	120
cactctcc	ctt	atcaaattta	ggtcaaaatg	ctaaaagcta	agttcatagt	ctttatttag	180
gtaataat	tat	cagtattcta	tcattaatag	tattagttaa	tțtctttaag	agatgatatc	240
atcattaa	aga	gattgaatat	attatatata	cttcagccac	tgcaagcata	aattagaatt	300
caatcaaa	att	gcccaagtaa	tgaatgaaca	cggtactaac	cgatgtgttt	cttctggatc	360

420

tacgagagta gcgctcactg tcttcctaac aatgaagaaa cagcatgaaa aggttagaga

ļ

cagatggaca caggaaaagt gctttaaaaa agcttaggta gtcccactgc accataatac 480 agcagttctg atctaaatgt cacataaata ttttctttgc cttcatttaa aggctttaat 540 taaaccagtg ggtaaaaatg ttttttctg gggtgg 576 <210> 455 <211> 464 <212> DNA <213> Homo sapiens <400> 455 gggcagtgtg gagtaccact tttgctctya attcgagaac cctggagccc ggggattagg 60 agaccggage etgetttaet caaaagetgt gteatttggt etttaaagte acageetegt 120 gaggtcatca ccaactgctc cccagtacat ctgcccaaaa tagtactgac atctgggtgt 180 tttaaaaaga agactcattg ctgtagaatt acaaagagca tctaaccatc atcacgcagc 240 acttttgttt ctgtccagct tgaactaaaa ggagagggag gaggccatca atggaaaatg 300 taagtgtctt ctttgaagag ttaatctgct gatttcacgg ctgttccttc tgccatttct 360 catctctcag atacaagcac gaacctagca cacacaagac ggtcacgtag ctgttcattt 420 cacgatggga tcagaagaca agctctcatg ctccaaagcc cctc 464 <210> 456 <211> 458 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> ()..() <223> "n" is a single nucleotide whose identity could not unambiguousl У

<400> 456

gggcgagtgt gtcactcttt tgactctgcc catttctcta ggacgctaga aggtagagcc 60 ctqqttttct gttaggcacc tctgtgtctc tttctaggag ggaagtggcc ctgacagggg 120 tcctcctttg actcagccca catcccagaa tgctggagga ctgagtccag gtttctggca 180 240 ttgaagaatc tccaagaaag aaaaaaaac tgttataaac tctttgtgaa taatgaatga 300 atgagtgagg acaagggett gegettgtee tecaetttgt ageteeaegg egaaagetae 360 ggagttcaag taggccctca cctgcggttc cgtggcgacc tcataaggct taaggcagca 420 tcaggcatag ctcgatctga gccggaagtt tataccgg 458

<210> 457

<211> 481

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguousl
y

<400> 457 agggggaggg gtggaggcac ggcaggctcc cggtggcagg atggcctgag aagggccagg 60 atgaggcagg gtggctggcg ctgccccaga tgaaggtgtt tgaggcacac accatactcc 120 aaacggaggt gccccacagc agagcccaag cagctaagtc ggggaaaggg cagtgggcga 180 ggtcagaaag ctgggtcatg caggccaagt cacttccct ctgcatctca gaggtccagg 240 gttagaacaa aggtttgagt ggctttggca agcagtggct gttaactcac nnnnnnnnn 300 nnnnnnnnn nnnnnnnnn nnnnnnnnng tgggtgagcc ctaccaagct gacctgcaga 360 420 aggggagata gacactaaac acataaatga qcaattattt atgacagtqc ccaqcacaca gaaaacaaca aagtaggccc ctctgcggag gtgacatttc ataacaacag cagctcgctg 480 481 a

1

<210> 458 <211> 500 <212> DNA <213> Homo sapiens

<400> 458 gggagctttg agaagaaaaa tctgtttaag tgaactactc tggctatata tacatatgga 60 ggtttgaaga gtttgcctct gagcattttc ataattgaat ccttttgaga aagtttcata 120 catcacacat ttaccgtgtg agatttggta agtataaata tcccaagatg tatttgaagc 180 tttcttaatt tggtttgaaa aaattagact aatctcatgg cttccaaaaa agaaagtcca 240 cactatecea teaattaata gatttaattt ttgataaatt ttggtaaatg gtgetgttat \ 300 tactggttct agtatgttac ctagtaccta gttggttttt tgttggtttg ttttacgtat 360 tttcatgcac tacaccaata agttgcacca atagttgctg tcttcttatt atagggagaa 420 ggaaagcaga gtgttactgt tacaaactca gatgtgaatt gttgaatcaa atttgacata 480 cttaactcga tgaaaatttt 500

<210> 459

<211> 500

<212> DNA

<213> Homo sapiens

<400> 459 tgcagttggt ggcatttgac ttcctgagac tgctgccacc aactacactc atgccctcac 60 agtacgcgac gaagctatag tttggaactc ttactaatgt ctataaagcc agtatgatag 120 caatgatggc aggatcagat tttattaaga cototactgg aaaagaaaca gttaatgcca 180 ccttccagaa catagtaata taccgccatt aagatttctt ctgaaaactg gaaacaagat 240 agttaaacca tcagagcatc ccagtgcaaa gattccttgt tgctctatat tccaaccgga 300 gettggagat gagtggetga agecagaaet etttegaata ggtgeeagta etetgetete 360 ggacattgag aggtaaattt accatcatgt cactggaaag atatccccct ccatcattat 420 ccctatctat gttaaaatca cccccaatcc ctataaaact ctttacaatt cgagtcaaaa 480 ttatttttct acgtaattgc 500

<210> 460 <211> 499 <212> DNA <213> Homo sapiens

<400> 460 ggggtatgca ctcaagccat gcacactctg atggaaaagt ccaagtctat gccttgagtg 60 cataccecge eegegacace gtgeetgagg actggtttte etgatagace ettgtetgtg 120 ccgcacaatc agggcagaca gaactcagtg gttgttactt acccaatctg attataaaaa 180 aattggaacc aggagaccca gagattatag caagttgatt ttttaaaaaa tttatctcaa 240 actggtgcca ttgcaaaccc aagccatttg agtgccaaaa cctgggtaaa cagagaaagc 300 tggttaacgg acagagaaaa agaaagtggg catgttttac gtcaatttcc ctggaagcag 360 aacctgagat ggggattccc tcaggggaaa cctgcagcgt gctgagggag gtggagagtg 420 cacacaggta gctgggcaaa gaggtggttt ctgctgagcc ttcaccctgg tctcatgggg 480 agctcccggt atgaatggc 499

<210> 461

<211> 642

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguously

<400> 461
ggggatcaaa atacaagcat attatcgtaa caaaatattc ttttgggaaa attttgaatt 60
aagaaaaggg agcctctttg actctaattc tggtaggtac tctatcgatt atgtgtgaac 120
tattttaact aaaatgcaac ttannnnnn nnnnnnnnn nnaatatatt tatgaaacat 180

VΖ

agcagaatta ccaaaa	aaag attgtcaatt t	ttcctaagtt	aaatgtaagg	atgcaaatgt	240
tctaatattg agggga	gata aaattcaaaa c	ccattgggac	tttgcttctt	tatccatcac	300
tttgggtagc tgaaca	ecta acctggtaaa t	tgaatgttt	ttcatggagg	cttatcagca	360
attcagtaaa atagta	aact atgtcaactc g	gggagaaact	gacatcctca	ttctccatgc	420
tagccagttt ctcatc	cagg gtgtcattgt t	tctaataac	aattcagaat	ctggctgctt	480
aaaggcacct aggtac	gtgg ttctttctaa t	ttgtcaagg	catttggagt	gatcctatca	540
ccctgatttc aagcaaa	aaga cagggaggca c	ectgacccaa	aggcctgctg	tctgaacaca	600
ctctgaatgg gtgagca	agag atgtgcttta a	agatagaacc	ta		642

<210> 462

<211> 609

<212> DNA

<213> Homo sapiens

<400> 462 ggggaagcgg cagggccacc aaccacgaca gctgcgatag ctgcaaggaa ggtggagatc 60 tectgtgetg egaceaetge eeggetgeet tecaeeteca gtgetgtaae eetecaetga 120 gtgaagaaat gttgcctcct ggagagtgga tgtgtcaccg gtgcactgtt cgccgaaagg 180 taataatgct gctttctgaa gactgtccag aaagcctgat ccagagcact gatatgctag 240 agctaagacg gcctagccct gaaggcattc ttgtcccttc ttcttgtctc ttccagccct 300 ggaatcaccc cactcttccc atggtgactg tttggaatcc agtagggcct aaaaatccaa 360 acatgggctg ctgaaatggg cagaagaggt gtgttaactt actgagccat gtttagtcac 420 tagtgacagg agtagtctta ccttcttgtt gtcctcctaa taagtggcct tatccatggc 480 tgaaaaacaa aggctgcttc tccagcttga tggaaaatgg agttttctct caccccaggg 540 caaataagtc actggtatcc agagacttgg catactgacg gagaggattt tgaacgcatt 600 tgtacccca 609

<210> 463

<211> 723

<212> DNA

<213> Homo sapiens

1

<220>

<221> misc feature

<222> ()..()

<223> "n" is a single nucleotide whose identity could not unambiguousl
y

<400> 463 gggaagcaag ggaaagccaa agatgaaatc tgaggaaacc gggagacagc ccagggaagg 60 cctgcaggtc acagaaagga cttcagcttt gattctgact gggaagagaa agcatgaggc 120 ${\tt agtcctgagc} \ {\tt acgtgtggct} \ {\tt tgtgttttag} \ {\tt ccagatcgct} \ {\tt ctggcttcgg} \ {\tt tgtggaaggg}$ 180 ggcacagget gaggcaggga gcatctggag gacttccgta caagagccaa gggagagaag 240 atgctggctt ggaccagggc gggcagggga ggtgataaga ggcgnnnnnn nnnnnnnnn 300 nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnngg ggcacacaag tgaggattca 360 aggcaacacc aaggctggtt gcccgactgg accagtggtg cttgccccta attgagatgg 420 ggaagacaac aggaaagctg acttgggaga caccagcagg agctgagctc tgagcatgtt 480 caatttegga tgageeteag ggteaaggge aeggettagg geagaateee gggeaateea 540 gtaccttttc tttcagagat ggagaaaga cagagggcac aggaaagtca gaaggaaacc 600 aaaatcagtg ggaaataatt tgcaaaagga aggtgggcaa gctgaagaga cagagaccac 660 tagettagta aetggeeect teeagaaaag gaccacacta gtgagegggt gageetggee 720 gcc 723

<210> 464

<211> 414

<212> DNA

<213> Homo sapiens

<400> 464
gggaaataga acttgagttt aaacctaata tgtaccatgc ttttgagaga gaacagcgga 60
gaaagcgttg ctcttcactc taagagggaa acgctagcaa atgcaaggag ttgaaaattc 120
aggcagcatg tttaagagtt aagtatagat cattttggat acagcagaga tcttaaatgt 180
caggattaca ttttgacttc tagagtaaaa atttttagca catatggact cacagagact 240

tcactcaaaa	caatcttact	gagcagctga	acttacaaaa	taaatacaag	cagaagtttt	300
tttagttata	ctgtaaaaag	ggaccactcc	ctggcagtta	ccctgagaaa	aaattcaatg	360
gttccacata	atctaaaggc	atgatgttgt	tgtccttttt	tttttttta	agaa	414
<210> ACE						
<210> 465						
<211> 545						
<212> DNA						
<213> Hom	o sapiens					
<400> 465 ccccgggggg		aaggagtagt	gagctataac	cccagagagg	gtgagggttg	60
agcagaatct	tgcaggaggt.	accagagctt	attgagtaga	caagagggag	aaccacagac	120
agagagaaga	gcaacatgtg	atggcccaca	cgcgggaaag	aagcatggag	ccaccaggcg	180
aggttcttac	aaatgaaaag	aaaatgttga	tgtgtattgt	aaacagagag	gtgctttttc	240
aatccaaggc	atcgcacctt	tatttcaaaa	ctacttacgc	tacataatcc	tgctcatctt	300
ctgcctgaaa	gtgatatgtt	ctattatcta	aaataaaaaa	aaagaaaaat	aagtgaaacc	360
ttagaaagca	gggtactttc	aggtacaaca	cagatttaag	ttcctgggaa	gaaaaccagt	420
aaaagtagaa	ttttaatatt	attttagttt	tacgccatta	tgtgccaggt	gccttgtgta	480
cattattgct	aatcttcaca	aaagctctat	ctgtttctca	tatttttaca	gaaaaaaaaa	540
ctgag						545
.010: 455						
<210> 466						
<211> 719						
<212> DNA						
<213> Homo	o sapiens					
<400> 466 aggtgttcac	cccacgctgc	tttccctcct	gctgcctgag	acacgggcat	ggctttgccc	60
agagtggaag	ctgtcatagc	aggggcagag	ccctgtcctt	ctacccccc	tttcttttct	120
cctaacctct	tctccctctg	gattcctgag	aacccttcct	tctttctggt	tctgtgggcc	180
				tgcaacgaca		240
				aatttcatga		300
				tececetget		360

WO 02/10198 PCT/GB01/03390 agggagettga tetececetag ggatgtecca cagggeteag aatgggagag ggtaagttet 420 gagetgggtt cetgactgta cetettggee atgacaaagg cagageetag aacteeggee 480 agcatgtggg taaagaagga agcetagete ceageteegg cteeagttgg gaeceettggt 540 etegecacta actttgagtg aagceagact cgatgetgaa aggeaceettag aggetgggag 600 ggatcetaga ggtgactgac agateectag getttgagtt gtgaggage 719