Работа 3.3.4

Эффект Холла в полупроводниках

Киркича Андрей, Б01-202, МФТИ

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, амперметр, миллиамперметр, милливеберметр, реостат, цифровой вольтметр, источник питания (1.5 B), образцы легированного германия.

Теоретические сведения

Пусть через однородную пластину металла вдоль оси x течёт ток I. Если эту пластину поместить в магнитное поле, направленное по оси y, то между гранями A и B появляется разность потенциалов.

В самом деле, на электрон, движущийся со скоростью $\langle \boldsymbol{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\mathbf{F}_{\mathrm{II}} = -e\mathbf{E} - e\langle \mathbf{v} \rangle \times \mathbf{B},$$

где e – абсолютная величина заряда электрона, E – напряжённость электрического поля, B – индукция магнитного поля. В нашем случае сила, обусловленная вторым слагаемым, направлена вдоль оси z:

$$F_B = e |\langle v_x \rangle| B.$$

Рис. 1: Образец с током в магнитном поле

В данной формуле $|\langle v_x \rangle|$ – абсолютная величина дрейфовой скорости электронов вдоль оси x. Электроны отклоняются к грани B, на грани A накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от A к B, которое действует на электроны с силой $F_E = eE_z$, направленной против силы F_B . В установившемся режиме сила F_E уравновешивает силу F_B , из условия равновесия имеем:

$$E_z = |\langle v_x \rangle| B.$$

Поле E_z даёт вклад в общее поле E, в котором движутся электроны. С полем E_z связана разность потенциалов $U_{AB} = -E_z l = -|\langle v_x \rangle| B l$. В этом и состоит эффект Холла. Замечая, что сила тока $I = ne |\langle v_x \rangle| la$, получаем ЭДС Холла:

$$\mathcal{E}_x = U_{AB} = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a}, \qquad R_x = \frac{1}{ne}.$$
 (1)

Константа R_x называется постоянной Холла.

Экспериментальная установка

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

ЭДС Холла можно рассчитать следующим образом:

$$\mathcal{E}_x = U_{34} \pm U_0,$$

где U_0 - омическое падение напряжения, вызванное протеканием тока через образец, U_{34} - напряжение между точками 3 и 4.

По знаку \mathcal{E} можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al},\tag{2}$$

где L_{35} – расстояние между контактами 3 и 5, a – толщина образца, l – его ширина.

Обработка результатов измерений

Градуировка электромагнита

При помощи тесламетра мы изучили зависимость величины магнитной индукции между полюсами прибора от тока в катушках электромагнита. Результаты измерений представлены в таблице. Погрешности: $\sigma_I = 0, 2 \text{ A}, \quad \sigma_B = 20 \text{ мТл.}$

$I_{\scriptscriptstyle \mathrm{M}},\ \mathrm{A}$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4
B, м T л	110	200	320	430	530	630	720	800	870	910	950	990	1030	1050

Измерение ЭДС Холла

Для разных значений I через образец была снята зависимость ЭДС Холла от тока $I_{\rm M}$ через электромагнит. Результаты измерений мы занесли в таблицу ниже. Погрешности измерений: $\sigma_I = 0, 2~{\rm A}, \quad \sigma_U = 0, 02~{\rm MB}.$

I, мА		0,2		0,3		0,4	
U_0 , мВ		-0,02		-0,06	-0,07		
	$I_{\mathrm{M}}, \mathrm{A}$	U, mB	$I_{\mathrm{M}}, \mathrm{A}$	U, mB	$I_{\scriptscriptstyle \mathrm{M}},\ \mathrm{A}$	U, м B	
	0,2	-0,05	0,2	-0,11	0,2	-0,15	
	0,4	-0,08	0,4	-0,17	0,4	-0,23	
	0,6	-0,10	0,6	-0.23	0,6	-0,31	
	0,8	-0,13	0,8	-0.27	0,8	-0,37	
	1,0	-0,14	1,0	-0.31	1,0	-0,41	
	1,2	-0,15	1,2	-0.33	1,2	-0,44	
	1,4	-0,16	1,4	-0.35	1,4	-0,47	
I, mA		0,5		0,6		0,7	
U_0 , мВ		-0,09		-0,11		-0,13	
	$I_{\scriptscriptstyle m M},~{ m A}$	U, м B	$I_{\scriptscriptstyle \mathrm{M}},\ \mathrm{A}$	U , м $\mathbf B$	$I_{\scriptscriptstyle \mathrm{M}},~\mathrm{A}$	U , м $\mathbf B$	
	0,2	-0,20	0,2	-0,23	0,2	-0,28	
	0,4	-0,29	0,4	-0.35	0,4	-0,41	
	0,6	-0,38	0,6	-0.46	0,6	-0,54	
	0,8	-0,46	0,8	-0.56	0,8	-0,65	
	1,0	-0,52	1,0	-0,62	1,0	-0,73	
	1,2	-0,56	1,2	-0,67	1,2	-0,79	

	1,4	-0,58	1,4	-0,71	1,4	-0,83	
I, мА		0,8		1,0	1,0	0 (обр.)	
U_0 , мВ		-0,16		-0,19	-0,19 (обр.)		
	$I_{\scriptscriptstyle \mathrm{M}},~\mathrm{A}$	U, mB	$I_{\scriptscriptstyle \mathrm{M}},\;\mathrm{A}$	U, mB	$I_{\scriptscriptstyle \mathrm{M}},\ \mathrm{A}$	U, мВ	
	0,2	-0,31	0,2	-0,40	0,2	0,00	
	0,4	-0,48	0,4	-0,56	0,4	0,21	
	0,6	-0,62	0,6	-0,77	0,6	0,39	
	0,8	-0,75	0,8	-0,93	0,8	0,54	
	1,0	-0,84	1,0	-1,04	1,0	0,66	
	1,2	-0,90	1,2	-1,13	1,2	0,74	
	1,4	-0,95	1,4	-1,19	1,4	0,79	

Последнее измерение было произведено при изменённой ориентации образца. Затем мы вычислили значение \mathcal{E}_x по разности показаний вольтметра и сопоставили токи в электромагните с соответствующими значениями индукции магнитного поля. Полученные результаты представлены ниже. Погрешности: $\sigma_B = 20 \text{ мТл}$, $\sigma_{\mathcal{E}_x} = 0,03 \text{ мВ}$.

I, м A		0,2		0,3	0,4		
	B, м T л	\mathcal{E}_x , м B	B, м T л	\mathcal{E}_x , м B	B, м T л	\mathcal{E}_x , м B	
	200	0,04	200	0,06	200	0,08	
	430	0,07	430	0,12	430	0,16	
	630	0,08	630	0,18	630	0,24	
	800	0,11	800	0,22	800	0,29	
	910	0,12	910	0,25	910	0,34	
	990	0,13	990	0,28	990	0,37	
	1050	0,14	1050	0,29	1050	0,39	
I, мА		0,5		0,6	0,7		
	B, м T л	\mathcal{E}_x , мВ	B, м T л	\mathcal{E}_x , мВ	B, м T л	\mathcal{E}_x , мВ	
	200	0,11	200	0,12	200	0,14	
	430	0,20	430	0,24	430	0,28	
	630	0,29	630	0,35	630	0,40	
	800	0,37	800	0,44	800	$0,\!52$	
	910	0,42	910	0,51	910	0,60	
	990	0,46	990	0,56	990	0,65	
	1050	0,49	1050	0,59	1050	0,69	
I, мА		0,8		1,0	1,0 (обр.)		
	B, м T л	\mathcal{E}_x , мВ	B, м T л	\mathcal{E}_x , мВ	B , м T л	\mathcal{E}_x , мВ	
	200	0,16	200	0,20	200	0,19	
	430	0,32	430	$0,\!36$	430	0,40	
	630	0,47	630	0,58	630	0,58	
	810	0,59	800	0,74	800	0,74	
	910	0,68	910	0.85	910	0.85	
	990	0,75	990	0,94	990	0,94	

1050	0,79	1050	0,99	1050	0,99

Полученные данные были аппроксимированы зависимостями вида $\mathcal{E}_x = K(I)B + c$. Результаты представлены в таблице. Погрешности: $\sigma_I = 0, 2$ A, $\sigma_K = 30$ В/Тл.

I, мА	1 '						1 '	1 '	1,0
K(I), В/Тл	130	280	370	460	560	650	750	940	950

Аппроксимируя зависимость прямой вида K = pI, получили:

$$p = (94 \pm 2) \cdot 10^{-2} \frac{B}{T_{\pi} \cdot A}.$$

Тогда, согласно (1), $R_x = pa$, где a = 1 мм – толщина исследуемого образца. Имеем:

$$R_x = (94 \pm 9) \cdot 10^{-5} \frac{B \cdot M}{T_{\pi} \cdot A}.$$

Отсюда можно найти концентрацию носителей заряда:

$$n = (66 \pm 7) \cdot 10^{20} \text{ m}^{-3}.$$

Расчёт удельной проводимости и подвижности

По результатам измерений $U_{35}=(4,0\pm0,2)$ мВ, $L_{35}=(5\pm1)$ мм и $l=(4\pm1)$ мм. В итоге по формуле (2) получили:

$$\sigma = (310 \pm 20) (O_{\rm M} \cdot {\rm M})^{-1}.$$

Зная эти характеристики, можно рассчитать подвижность носителей заряда:

$$b = \frac{\sigma}{en} = (2900 \pm 300) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

Заключение

В ходе выполнения данной лабораторной работы был исследован эффект Холла в полупроводнике, а именно в легированном германии. Была определена постоянная Холла для исследуемого образца $R_x = (94 \pm 9) \cdot 10^{-5} \frac{\text{В} \cdot \text{м}}{\text{Тд} \cdot \text{A}}$. Также была вычислена концентрация носителей заряда $n = (66 \pm 7) \cdot 10^{20} \text{ м}^{-3}$.

По полярности вольтметра, полярности подключения источника тока и направлению тока в катушках была определён тип проводимости - электронный.

Также была вычислена подвижность электронов германия: $b = (2900 \pm 300) \frac{\text{см}^2}{\text{B·c}}$. Однако полученный результат отличается от табличной подвижности электронов в германии: $b_{\text{табл}} = 3900 \frac{\text{см}^2}{\text{B·c}}$. Это может свидетельствовать о наличии примесей исследуемом образце.

Также ощутимый вклад в ошибку полученных данных может внести зависимость характеристик исследуемого образца от температуры, которая могла значительно изменяться в силу прохождения через образец электрического тока.

Список литературы

- 1. Сивухин Д.В. Общей курс физики. Том 3. Электричество и магнетизм, 2004
- 2. Кириченко Н.А. Электричество и магнетизм, 2011
- 3. $Максимычев\ A.В.$, $Никулин\ M.Г.$ Лабораторный практикум по общей физике. Том 2. Электричество и магнетизм.