Package 'rCGM2'

May 24, 2019

Type Package

Title What the Package Does (Title Case)
Version 0.1.0
Author Who wrote it
Maintainer The package maintainer <yourself@somewhere.net></yourself@somewhere.net>
Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends irr, Metrics, dplyr, tidyr, cowplot, readxl, ggplot2 R topics documented:
•
accrossAssessorReport
addCumulatedCycleindex
•
betweenAssessorsReport
computeDescritiveStats_onFrameSequences
computeMetrics_onFrameSequence
computeMetrics_onFrameSequences
computeMetrics_onScalar
ComputeSessionAverage
consistencyPlot
consistencyPlot_bothContext
constructOverallTable
constructTableFromXls

	descriptiveKineticGaitPanel_bothContext	14
	descriptivePlot_bothContext	
	gather_descriptiveStats_FrameSequences	
	gather_descritiveStats	
	geom_normative_ribbon	
	geom_stdRibbon	
	geom_vline_descriptiveEvents_bothContext	
	getGlobalVariance	
	getNumberOfCycles	
	getStdCorridorLimits_fromDescStatFrameSequences	
	hello	
	homogeniseCycles	
	LinearFit_onFrameSequences	21
	loadNormativeDataSet	
	MeanAbsoluteVariability	
	MinDetectableChange	
	normativeDataSetTransformation	
	plotVariance	
	Sem_allAssessors	
	Sem_byAssessor	24
	VarianceEstCore	
	withinAssessorReport	25
	withinOperatorStandardDeviation	
	withinSubjectStandardDeviation	26
Index		27

 ${\tt accrossAssessorReport} \quad {\it accrossAssessorReport}$

Description

Report of across assssor differences

Usage

 ${\tt accrossAssessorReport(semAllAssessordf, nAssesor, nParticipant)}$

Arguments

semAllAssessordf

[dataframe] standard error of measurement table computed for ALL assessors

nAssesor [integer] number of assessors nParticipant [integer] number of participants

addCumulatedCycleindex

addCumulatedCycleindex

Description

add new col CycleCum, cumulating cycle number from both left and right contexts

Usage

```
addCumulatedCycleindex(table, groupByList)
```

Arguments

table [dataframe] all-cycle table.

groupByList [list] group-by independant variables.

Value

update all-cycle table

Examples

```
addCumulatedCycleindex(kinematicTable, c("Id"))
```

```
{\it add} {\it GaitDescriptive Events Lines}
```

add Gait Descriptive Events Lines

Description

add gait events of a specific context as vertical lines to a figure

Usage

```
addGaitDescriptiveEventsLines(fig, descStatsPhaseTable, iContext,
  colorFactor = NULL, linetypeFactor = NULL)
```

Arguments

colorFactor [string] line color according an independant variable

linetypeFactor [string] line type definied according an independant variable

[fig] ggplot2 figure
[descStatsPhaseTable]

descriptive stats table of gait phase scalar (must include c("stancePhase", "doubleStance1", "doubleStance1"

[Context] selected context

betweenAssessors

between Assessors

Description

assess between assessor difference

Usage

betweenAssessors(sessionAverage)

Arguments

sessionAverage [dataframe] session average table

betweenAssessorsReport

betweenAssessorsReport

Description

report of between assessor differences

Usage

betweenAssessorsReport(betweenAssessorAssement)

Arguments

betweenAssessorAssement

[dataframe] between assessor assessment table

computeDescritiveStats

compute Descritive Stats

Description

return descriptive statistics for a series of dependant variables and a combinaison of factors

Usage

```
computeDescritiveStats(table, dependantVariables, groupByList,
  bySubjectFlag = TRUE)
```

Arguments

table [dataframe] all-cycle table.

dependantVariables

[list] dependant variables

groupByList [list] group-by independant variables

bySubjectFlag [bool] group results by subject

Value

table

Examples

TODO

 $compute Descritive Stats_on Frame Sequences \\ compute Descritive Stats_on Frame Sequences$

Description

return descriptive stats for all frame sequences

Usage

```
computeDescritiveStats_onFrameSequences(table, groupByList,
  bySubjectFlag = TRUE)
```

Arguments

table [dataframe] all-cycle table

groupByList [list] group-by independant variables bySubjectFlag [bool] output table grouped by subject

Value

table

Examples

TODO

Description

compute basic metrics between two modalities of the ComparisonFactor Factor for a specific point

Usage

```
computeMetrics_onFrameSequence(table, metricsFunction, Label, Context,
   Axes, modality1, modality2, comparisonLabel = NULL)
```

Arguments

table [dataframe] all-cycle table

metricsFunction

[string] metrics (eg, mae, rmse) to apply

Label [string] label of the frame sequence

Context [string] context of the frame sequence

Axes [string] axis of the frame sequence

modality1 [string] 1st selected modality of the independant variable (ComparisonFactor)

modality2 [string] 2nd selected modality of the independent variable (ComparisonFactor)

comparisonLabel

[string] label given to the comparison

frameIndexes [list] selected frame indexes

Value

dataframe

Warning

need construction of the factor ComparisonFactor

Examples

```
compute \texttt{Metrics\_onFrameSequence} (\texttt{kinematicTable}, \texttt{"rmse"}, \texttt{"LKneeAngles"}, \texttt{"Left"}, \texttt{c("X", "Y", "Z")}, \texttt{"Rigid"}, \texttt{"THIsta"})
```

```
compute {\tt Metrics\_onFrameSequences} \\ compute {\tt Metrics\_onFrameSequences}
```

Description

compute basic metrics between two modalities of the independant variable (\textbfComparisonFactor) for all frame sequences

Usage

```
computeMetrics_onFrameSequences(table, metricsFunction, modality1,
  modality2, comparisonLabel = NULL, frameIndexes = NULL)
```

Arguments

Value

dataframe

Warning

need construction of the factor ComparisonFactor

Examples

```
computeMetrics_onFrameSequences(kinematicTable,"rmse", "modality1","modality2",comparisonLabel = "mod1_mod2
```

```
computeMetrics_onScalar
```

computeMetrics_onScalar

Description

compute basic metrics between two modalities of the independant variable (\textbfComparisonFactor) for a specific Scalar

Usage

```
computeMetrics_onScalar(table, metricsFunction, DiscreteLabel, modality1,
  modality2, comparisonLabel = NULL)
```

Arguments

table [dataframe] all-cycle table

metricsFunction

[string] metrics (eg, mae, rmse) to apply

modality1 [string] 1st selected modality of the independent variable (ComparisonFactor)
modality2 [string] 2nd selected modality of the independent variable (ComparisonFactor)

comparisonLabel

[string] label given to the comparison

Value

dataframe

Warning

need construction of the factor ComparisonFactor need construction of the factor ComparisonFactor

Examples

TODO

ComputeSessionAverage ComputeSessionAverage

Description

compute average of all sessions

Usage

ComputeSessionAverage(table)

Arguments

table [dataframe] all-table

Value

dataframe

Examples

TODO

consistencyPlot 9

consistencyPlot	consistencyPlot
-----------------	-----------------

Description

plot all cycle of a frame sequence

Usage

```
consistencyPlot(table, iContext, iLabel, iAxis, iTitle = "",
  yLabel = "Deg", legendPosition = "none", ylimits = NULL,
  colorFactor = NULL, facetFactor = NULL, linetypeFactor = NULL)
```

Arguments

table	[dataframe] all-cycle table
iContext	[string] context of the frame sequence
iLabel	[string] label of the frame sequence
iAxis	[string] axis of the frame sequence
iTitle	[string] plot title
yLabel	[string] label of the Y-axis
${\tt legendPosition}$	[string] position of the legend (see legend.position of ggplot2)
ylimits	[list] limits of the y-axis
colorFactor	[string] line color according an independant variable
facetFactor	[string] create \textitfacet plot (see ggplot2) for an independant variable
linetypeFactor	[string] line type definied according an independant variable

Value

```
fig [ggplot2 figure]
```

```
consistency Plot\_both Context \\ consistency Plot\_both Context
```

Description

plot all left and right cycles of a frame sequence

Usage

```
consistencyPlot_bothContext(table, LabelLeft, AxisLeft, LabelRight,
   AxisRight, iTitle = "", yLabel = "Deg", legendPosition = "none",
   ylimits = NULL)
```

10 constructOverallTable

Arguments

table [dataframe] all-cycle table

LabelLeft [string] label of the frame sequence for the left context

AxisLeft [string] axis of the frame sequence for the left context

LabelRight [string] label of the frame sequence for the right context

AxisRight [string] axis of the frame sequence for the Left context

iTitle [string] plot title

yLabel [string] label of the Y-axis

legendPosition [string] position of the legend (see legend.position of ggplot2)

ylimits [list] limits of the y-axis

Value

fig [ggplot2 figure]

constructOverallTable constructOverallTable

Description

merge left and right contexts. Left and Right modalities are replaced by Overall

Usage

constructOverallTable(table)

Arguments

table [dataframe] all-cycle table.

Value

update all-cycle table.

Warning

function addCumulatedCycleindex needs to be run before

Examples

constructOverallTable(kinematicTable)

constructTableFromXls 11

 $\verb|constructTableFromXls|| constructTableFromXls||$

Description

load annd concatenate a list of excel spreadsheet

Usage

```
constructTableFromXls(fullXlsFiles, sheet)
```

Arguments

sheet [String] sheet name

fullXlsFile [String] full filename (path+fileame) of excel spreadsheets

Value

descriptiveGait descriptiveGait

Description

return descriptive stats of both frame sequence and gait event scalars

Usage

```
descriptiveGait(table, groupByList, bySubjectFlag = TRUE)
```

Arguments

table [dataframe] all-cycle table

by SubjectFlag [bool] group-by independant variables

Value

list Frames : descriptive stats of frame-based variables , Events : descriptive stats of events

Examples

TODO

```
{\tt descriptive Kinematic Gait Panel}
```

descriptive Kinematic Gait Panel

Description

convenient descriptive plot panel of gait kinematics for a specific context

Usage

```
descriptiveKinematicGaitPanel(descStatsFrameSequence, descStatsPhases,
  iContext, colorFactor = NULL, linetypeFactor = NULL,
  normativeData = NULL, stdCorridorFlag = FALSE,
  manualLineType = NULL, manualSizeType = NULL)
```

Arguments

descStatsFrameSequence

[dataframe] descriptive stats table of all frame sequences

descStatsPhases

[dataframe] descriptive stats table of gait phase scalar ()

iContext [string] context of the frame sequence

colorFactor [string] line color according an independant variable

linetypeFactor [string] line type definied according an independant variable

normativeData [dataframe] table of a normative dataset

 ${\it stdCorridorFlag}$

[Bool] add std corridor to plot

manualLineType [list] manual line type (see ggplot2 doc) manualSizeType [float] manual line size (see ggplot2 doc)

Value

fig [ggplot2 figure]

```
\label{lem:descriptive} descriptive \textit{KinematicGaitPanel\_bothContext} \\ \textit{descriptive Kinematic GaitPanel\_both Context}
```

Description

convenient descriptive plot panel of gait kinematics for left and right contexts

Usage

```
descriptiveKinematicGaitPanel_bothContext(descStatsFrameSequence,
  descStatsPhases = NULL, normativeData = NULL,
  stdCorridorFlag = TRUE)
```

Arguments

Value

```
fig [ggplot2 figure]
```

```
{\tt descriptiveKineticGaitPanel}
```

 $descriptive {\it Kinetic Gait Panel}$

Description

convenient descriptive plot panel of gait kinetics for a specific context

Usage

```
descriptiveKineticGaitPanel(descStatsFrameSequence, descStatsPhases,
  iContext, colorFactor = NULL, linetypeFactor = NULL,
  normativeData = NULL, stdCorridorFlag = FALSE,
  manualLineType = NULL, manualSizeType = NULL)
```

Arguments

```
descStatsFrameSequence
[datafrar
```

[dataframe] descriptive stats table of all frame sequences

descStatsPhases

[dataframe] descriptive stats table of gait phase scalar ()

iContext [string] context of the frame sequence

colorFactor [string] line color according an independant variable

linetypeFactor [string] line type definied according an independant variable

normativeData [dataframe] table of a normative dataset

stdCorridorFlag

[Bool] add std corridor to plot

manualLineType [list] manual line type (see ggplot2 doc) manualSizeType [float] manual line size (see ggplot2 doc)

```
fig [ggplot2 figure]
```

14 descriptivePlot

```
\label{lem:descriptive} descriptive \textit{KineticGaitPanel\_bothContext} \\ \textit{descriptive KineticGaitPanel\_bothContext}
```

Description

convenient descriptive plot panel of gait kinematics for left and right contexts

Usage

```
descriptiveKineticGaitPanel_bothContext(descStatsFrameSequence,
  descStatsPhases = NULL, normativeData = NULL,
  stdCorridorFlag = FALSE)
```

Arguments

Value

```
fig [ggplot2 figure]
```

descriptivePlot

descriptive Plot

Description

plot descriptive statistics of a frame sequence

Usage

```
descriptivePlot(descStatsFrameSequence, iContext, iLabel, iAxis,
  iTitle = "", yLabel = "Deg", legendPosition = "none",
  colorFactor = NULL, facetFactor = NULL, linetypeFactor = NULL,
  ylimits = NULL, lineWidth = 0.5)
```

Arguments

descStatsFrameSequence

[dataframe] descriptive stats table of frame sequence

iContext [string] context of the frame sequence iLabel [string] label of the frame sequence iAxis [string] axis of the frame sequence

iTitle [string] plot title

yLabel [string] label of the Y-axis

legendPosition [string] position of the legend (see legend.position of ggplot2)

colorFactor [string] line color according an independant variable

facetFactor [string] create \textitfacet plot (see ggplot2) for an independant variable

linetypeFactor [string] line type definied according an independant variable

ylimits [list] limits of the y-axis lineWidth [float] line width value

Value

fig [ggplot2 figure]

 $descriptivePlot_bothContext$

descriptivePlot_bothContext

Description

plot left and right descriptivestats of a frame sequence

Usage

```
descriptivePlot_bothContext(descStatsFrameSequence, LabelLeft, AxisLeft,
  LabelRight, AxisRight, iTitle = "", yLabel = "Deg",
  legendPosition = "none", ylimits = NULL)
```

Arguments

 ${\tt descStatsFrameSequence}$

[dataframe] descriptive stats table of frame sequence
LabelLeft [string] label of the frame sequence for the left context
AxisLeft [string] axis of the frame sequence for the left context
LabelRight [string] label of the frame sequence for the right context

AxisRight [string] axis of the frame sequence for the Left context iTitle [string] plot title

yLabel [string] label of the Y-axis

legendPosition [string] position of the legend (see legend.position of ggplot2)

ylimits [list] limits of the y-axis

Value

fig [ggplot2 figure]

16 gather_descritiveStats

```
gather\_descriptive Stats\_Frame Sequences\\ gather\_descriptive Stats\_Frame Sequences
```

Description

#' applicatio of dplyr::gather function on frame sequence descriptive stats table. (return a \textitlong table)

Usage

```
gather_descriptiveStats_FrameSequences(frameSeqDescStats)
```

Arguments

frameSeqDescStats

[dataframe] frame sequence descriptive stats

Value

dataframe.

Examples

TODO

Description

applicatio of dplyr::gather function on descriptive stats table. (return a \textitlong table)

Usage

```
gather_descritiveStats(descStatTable, dependantVariables, groupByList)
```

Arguments

```
descStatTable [dataframe] descriptive stats table.
dependantVariables
[list] dependant variables
groupByList [list] group-by independant variables
```

Value

table

Examples

TODO

geom_normative_ribbon

17

```
{\tt geom\_normative\_ribbon} \quad {\it geom\_normative\_ribbon}
```

Description

new ggplot2 geom displaying corridor of normative data

Usage

```
geom_normative_ribbon(data)
```

Arguments

data

[dataframe] normative data table

Value

Note

programming as a new geom (see https://rpubs.com/hadley/97970)

geom_stdRibbon

geom_stdRibbon

Description

new ggplot2 geom displaying std corridor

Usage

```
geom_stdRibbon(table)
```

Arguments

table

[dataframe] all cycle table

Value

Note

programming as a new geom (see https://rpubs.com/hadley/97970)

18 getGlobalVariance

```
{\it geom\_vline\_descriptiveEvents\_bothContext} \\ add {\it GaitDescriptiveEventsLines\_bothContext}
```

Description

add gait events from left and right context as vertical lines to a figure

Usage

```
geom_vline_descriptiveEvents_bothContext(descStatsPhaseTable)
```

Arguments

```
[fig] ggplot2 figure
```

[descStatsPhaseTable]

descriptive stats table of gait phases (must include c("stancePhase","doubleStance1","doubleStance2"

Value

 ${\tt getGlobalVariance} \qquad \qquad {\tt getGlobalVariance}$

Usage

getGlobalVariance(varianceTable)

Arguments

getNumberOfCycles 19

getNumberOfCycles getNu

getNumberOfCycles

Description

return number of cycles for a label, its axis and a combinaison of factor

Usage

```
getNumberOfCycles(table, label, axis, groupByList)
```

Arguments

table [dataframe] all-cycle table

label [string] label of the frame sequence axis [string] axis of the frame sequence groupByList [list] group-by independant variables

Value

dataframe.

Examples

```
getNumberOfCycles(kinematicTable,"LHipAngles","X", c("Id","Operator","Session"))
```

```
getStdCorridorLimits\_fromDescStatFrameSequences\\ getStdCorridorLimits\_fromDescStatFrameSequences
```

Description

return corridor limits of frame sequnce descriptive stats

Usage

```
\verb|getStdCorridorLimits_fromDescStatFrameSequences(frameSeqDescStats)|
```

Arguments

frameSeqDescStats

[dataframe] frame sequence descriptive stats

Value

dataframe.

Examples

TODO

20 homogeniseCycles

hello

Hello, World!

Description

Prints 'Hello, world!'.

Usage

hello()

Examples

hello()

homogenise Cycles

homogenise Cycles

Description

homogenise the number of cycle for a combinaison of independant variables

Usage

```
homogeniseCycles(table, groupByList)
```

Arguments

table [dataframe] all-cycle table

groupByList [list] group-by independant variables.

Value

update all-cycle table

Examples

```
homogeniseCycles(kinematicTable, c("Id","Operator","Session"))
```

LinearFit_onFrameSequences

LinearFit_onFrameSequences

Description

Linear fitting between two modalities of the independant variable (\textbfComparisonFactor)

Usage

```
LinearFit_onFrameSequences(table, modality1, modality2,
  comparisonLabel = NULL, frameIndexes = NULL)
```

Arguments

table [dataframe] all-cycle table

modality1 [string] 1st selected modality of the independant variable (ComparisonFactor)
modality2 [string] 2nd selected modality of the independant variable (ComparisonFactor)

comparisonLabel

[string] label given to the comparison

frameIndexes [list] selected frame indexes

Value

dataframe

Warning

need construction of the factor ComparisonFactor

Examples

TODO

loadNormativeDataSet
 loadNormativeDataSet

Description

load normative dataset

Usage

```
loadNormativeDataSet(fullXlsFile, sheet)
```

Arguments

```
fullXlsFile [String] full filename (path+fileame) of the selected dataset
```

MeanAbsoluteVariability

MeanAbsoluteVariability

Description

compute the mean absolute variability (see Mantovani2016) for all modalities of the independant variables (\textbfComparisonFactor)

Usage

MeanAbsoluteVariability(table)

Arguments

table

[dataframe] all-cycle table

Value

dataframe

Warning

need construction of the factor ComparisonFactor

Examples

MeanAbsoluteVariability(kinematicCyles)

 ${\tt MinDetectableChange}$

MinDetectableChange f

Description

compute the min detectable change (see Mantovani2016) for specific dependant variables

Usage

MinDetectableChange(table, dependantVariables)

Arguments

table [dataframe] all-cycle table dependantVariables [list] dependant variables

Value

dataframe

Warning

need construction of the factor ComparisonFactor

Examples

```
mdc = MinDetectableChange(kinematicTable,c("Frame0","Frame001") )
```

normativeDataSetTransformation

normative Data Set Transformation

Description

transform the normative table as long table with new columns max (mean+std) and min (mean-std)

Usage

normativeDataSetTransformation(normativeTable)

Arguments

normativeTable [dataframe] normative table

Value

dataframe.

Examples

TODO

plotVariance

plotVariance

Usage

```
plotVariance(varianceTable)
```

Arguments

24 VarianceEstCore

Sem_allAssessors

Sem_allAssessors

Description

compute the standard error of measurement for all assessors

Usage

```
Sem_allAssessors(sessionAverage, Anova = TRUE)
```

Arguments

```
sessionAverage [dataframe] session average table
Anova [Bool] computation done with anova
```

Sem_byAssessor

Sem_byAssessor

Description

compute the standard error of meausrement by assessors

Usage

```
Sem_byAssessor(sessionAverage, Anova = TRUE)
```

Arguments

```
sessionAverage [dataframe] session average table
Anova [Bool] computation done with anova
```

VarianceEstCore

VarianceEstCore

Usage

```
VarianceEstCore(parameterTable, formStr)
```

Arguments

withinAssessorReport 25

withinAssessorReport withinAssessorReport

Description

Report of the within assssor differences

Usage

```
withinAssessorReport(sembyAssessordf, nAssesor, nParticipant)
```

Arguments

sembyAssessordf

[dataframe] standard error of measurement table computed by assessor

nAssesor [integer] number of assessors nParticipant [integer] number of participants

Value

withinOperatorStandardDeviation

withinOperatorStandardDeviation

Description

compute the within-Operator standard deviation

Usage

withinOperatorStandardDeviation(sessionAverage, Anova = FALSE)

Arguments

```
sessionAverage [dataframe] session average table
Anova [Bool] computation done with anova
```

Value

dataframe

Warning

within-operator standard deviation matches Richard Baker's spreadsheet processing. You might also compute this value through Anova outputs. In this case, slight differences might occur

 $with in {\tt Subject Standard Deviation} \\ within {\tt Subject Standard Deviation} \\$

Description

compute the within-subject standard deviation

Usage

withinSubjectStandardDeviation(sessionAverage, Anova = FALSE)

Arguments

```
sessionAverage [dataframe] session average table
Anova [Bool] computation done with anova
```

Value

dataframe

Warning

within-subject standard deviation matches Richard Baker's spreadsheet processing. You might also compute this value through Anova outputs. In this case, slight differences might occur

Index

```
accrossAssessorReport, 2
                                               loadNormativeDataSet, 21
addCumulatedCycleindex, 3
addGaitDescriptiveEventsLines, 3
                                               MeanAbsoluteVariability, 22
                                               MinDetectableChange, 22
betweenAssessors, 4
                                               normativeDataSetTransformation, 23
betweenAssessorsReport, 4
computeDescritiveStats, 4
                                               plotVariance, 23
{\tt computeDescritiveStats\_onFrameSequences},
                                               Sem_allAssessors, 24
        5
                                               Sem_byAssessor, 24
computeMetrics_onFrameSequence, 6
computeMetrics_onFrameSequences, 7
                                               VarianceEstCore, 24
computeMetrics_onScalar, 7
ComputeSessionAverage, 8
                                               withinAssessorReport, 25
consistencyPlot, 9
                                               withinOperatorStandardDeviation, 25
consistencyPlot_bothContext, 9
                                               withinSubjectStandardDeviation, 26
constructOverallTable, 10
constructTableFromXls, 11
descriptiveGait, 11
descriptiveKinematicGaitPanel, 12
descriptiveKinematicGaitPanel_bothContext,
descriptiveKineticGaitPanel, 13
descriptiveKineticGaitPanel_bothContext,
descriptivePlot, 14
descriptivePlot_bothContext, 15
gather_descriptiveStats_FrameSequences,
        16
gather_descritiveStats, 16
geom_normative_ribbon, 17
geom_stdRibbon, 17
geom_vline_descriptiveEvents_bothContext,
getGlobalVariance, 18
getNumberOfCycles, 19
getStdCorridorLimits_fromDescStatFrameSequences,
        19
hello, 20
homogeniseCycles, 20
LinearFit_onFrameSequences, 21
```