Análisis de la eficiencia de un algoritmo

IIC2283 - Diseño y Análisis de Algoritmos Diego Arroyuelo, Juan P. Castillo diego.arroyuelo@uc.cl

Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile

2025-2

Aparecen naturalmente al analizar algoritmos recursivos, por ejemplo:

Algoritmo 1: FACT(n)

```
if n = 0 then
return 1
return n \times FACT(n-1)
return n \times FACT(n-1)
```

El tiempo de ejecución de FACT(n) puede expresarse como la ecuación de recurrencia:

$$T(n) = \begin{cases} T(n-1) + b, & n \ge 1; \\ a, & n = 0. \end{cases}$$

para constantes $a \in \mathbb{N}$, $b \in \mathbb{N}$, ambas > 0, que representan el tiempo de ejecución de una multiplicación y la instrucción **return**

TEPP =

Las ecuaciones de recurrencia son una forma válida de representar una función matemática

Indican cómo debe computarse la función correspondiente pero no dan pistas respecto a la función que están denotando, lo cual sería útil para poder analizarlas

Por ejemplo, la ecuación de recurrencia

$$T(n) = \begin{cases} 2T(n-1) + 1, & n \ge 1; \\ 0, & n = 0. \end{cases}$$

es equivalente a la función $T(n) = 2^n - 1$, para $n \ge 0$.

Los algoritmos recursivos serán importantes en el curso, por lo que estudiaremos formas de encontrar la forma cerrada de ecuaciones de recurrencia

1000

Analicemos ahora otro algoritmo recursivo típico:

Algoritmo 2: Fig(n)

```
1 if n \le 1 then

2 | return n

3 else

4 | return Fib(n-1) + Fib(n-2)

5 end
```

El valor Fig(n) puede expresarse con la ecuación de recurrencia:

$$T(n) = \begin{cases} T(n-1) + T(n-2), & n \geq 2; \\ 0, & n = 0; \\ 1, & n = 1. \end{cases}$$

Note que no estamos analizando el tiempo de ejecución en este caso, sino el valor de $\mathrm{Fib}(N)$

A pesar de que T(n) puede definirse de forma simple y directa desde el algoritmo, no sabemos mucho respecto de la función que representa

Nos gustaría encontrar la forma cerrada de \mathcal{T} para poder estudiarla (e.g., entender su velocidad de crecimiento)

Para el caso Fig(n), ¿Cuál es la función que acota a T(n)?

A continuación demostraremos que $T(n) \in O(2^n)$

Eso significa que hay que demostrar que $\exists c \in \mathbb{R}^+$, $\exists n_0 \in \mathbb{N}$, tal que

$$T(n) \le c \cdot 2^n, \ \forall n \ge n_0.$$

Vamos a demostrarlo por inducción

Casos base: Primero chequeamos que la propiedad se cumpla para los casos base

- Para n = 0, T(0) = 0, entonces se debe cumplir $0 \le c \cdot 2^0$, lo cual es cierto para $c \ge 0$.
- Para n=1, T(1)=1, entonces se debe cumplir $1 \le c \cdot 2^1$, lo cual es cierto para $c \ge 1/2$.

Esto significa que la propiedad es cierta para los casos base

Hipótesis inductiva: Asumimos $T(n') \le c \cdot 2^{n'}, \ \forall n' \in \{0, 1, \dots, n-1\}$

Estamos usando inducción fuerte, por lo que es necesario chequear que la propiedad se cumple para todos los casos base

Paso inductivo: Sea $n \ge 2$. Entonces T(n) corresponde al caso recurrente:

$$T(n) = T(n-1) + T(n-2)$$

$$\leq c \cdot 2^{n-1} + c \cdot 2^{n-2}$$

$$< c \cdot 2^{n-1} + c \cdot 2^{n-1}$$

$$= c \cdot 2^{n}.$$

Esto prueba la propiedad para todo $n \ge 0$.

Búsqueda binaria

Suponga que tiene una lista ordenada (de menor a mayor) $L[1\dots n]$ de números enteros con $n\geq 1$

¿Cómo podemos verificar si un número a está en L?

Búsqueda binaria

```
BúsquedaBinaria(a,\ L,\ i,\ j) if i>j then return no else if i=j then if L[i]=a then return i else return no else p:=\lfloor\frac{i+j}{2}\rfloor if L[p]<a then return BúsquedaBinaria(a,\ L,\ p+1,\ j) else if L[p]>a then return BúsquedaBinaria(a,\ L,\ i,\ p-1) else return p
```

Llamada inicial al algoritmo: BúsquedaBinaria(a, L, 1, n)

Tiempo de ejecución de búsqueda binaria

¿Cuál es la complejidad del algoritmo?

- ¿Qué operaciones vamos a considerar?
- ¿Cuál es el peor caso?

Si contamos sólo las comparaciones, entonces la siguiente expresión define la complejidad del algoritmo:

$$T(n) = \begin{cases} b, & n=1 \\ T(\lfloor \frac{n}{2} \rfloor) + d, & n>1 \end{cases}$$

donde $b \in \mathbb{N}$ y $d \in \mathbb{N}$ son constantes tales que $b \ge 1$ y $d \ge 1$.

Solucionando una ecuación de recurrencia

¿Cómo podemos solucionar una ecuación de recurrencia?

► Técnica básica: sustitución de variables

Para la ecuación anterior usamos la sustitución $n=2^k$, por lo que $k=\log_2(n)$

- ▶ Vamos a resolver la ecuación suponiendo que *n* es una potencia de 2
- ► Vamos a utilizar inducción para demostrar que la solución obtenida nos da el orden del algoritmo

Ecuaciones de recurrencia: sustitución de variables

Si realizamos la sustitución $n = 2^k$ en la ecuación:

$$T(n) = \begin{cases} b, & n=1 \\ T(\lfloor \frac{n}{2} \rfloor) + d, & n>1 \end{cases}$$

obtenemos:

$$T(2^k) = \begin{cases} b, & k = 0 \ [2^k = 1] \\ T(2^{k-1}) + d, & k > 0 \ [2^k > 1] \end{cases}$$

Ecuaciones de recurrencia: sustitución de variables

Extendiendo la expresión anterior obtenemos:

$$T(2^{k}) = T(2^{k-1}) + d$$

$$= (T(2^{k-2}) + d) + d$$

$$= T(2^{k-2}) + 2d$$

$$= (T(2^{k-3}) + d) + 2d$$

$$= T(2^{k-3}) + 3d$$

$$= \cdots$$

Deducimos la expresión general para $k - i \ge 0$:

$$T(2^k) = T(2^{k-i}) + i \cdot d$$

Ecuaciones de recurrencia: sustitución de variables

Considerando i = k obtenemos:

$$T(2^k) = T(1) + k \cdot d$$

= $b + k \cdot d$

Dado que $k = \log_2(n)$, obtenemos que $T(n) = b + d \cdot \log_2(n)$ para n potencia de 2

Usando inducción vamos a extender esta solución y vamos a demostrar que $T(n) \in O(\log_2(n))$

Inducción constructiva

Sea T(n) definida como:

$$T(n) = \begin{cases} b, & n=1 \\ T(\lfloor \frac{n}{2} \rfloor) + d, & n>1 \end{cases}$$

Queremos demostrar que $T(n) \in O(\log_2(n))$

Vale decir, queremos demostrar que existen $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $T(n) \le c \cdot \log_2(n)$ para todo $n \ge n_0$

Inducción nos va servir tanto para demostrar la propiedad como para determinar valores adecuados para c y n_0

Por esto usamos el término inducción constructiva

Inducción constructiva

Dado que T(1)=b y $\log_2(1)=0$ no es posible encontrar un valor para c tal que $T(1)\leq c\cdot\log_2(1)$

Dado que T(2)=(b+d), si consideramos c=(b+d) tenemos que $T(2) \leq c \cdot \log_2(2)$

▶ Definimos entonces c = (b + d) y $n_0 = 2$

Tenemos entonces que demostrar lo siguiente:

$$\forall n \geq 2, \ T(n) \leq c \cdot \log_2(n)$$

Inducción constructiva y fuerte

¿Cuál es el principio de inducción adecuado para el problema anterior?

- ► Tenemos n₀ como punto de partida
- \triangleright n_0 es un caso base, pero podemos tener otros
- ▶ Dado $n > n_0$ tal que n no es un caso base, suponemos que la propiedad se cumple para todo $n' \in \{n_0, ..., n-1\}$

Inducción constructiva y fuerte

Queremos demostrar que $\forall n \geq 2, \ T(n) \leq c \cdot \log_2(n)$

- ▶ 2 es el punto de partida y el primer caso base
- ▶ También 3 es un caso base ya que T(3) = T(1) + d y para T(1) no se cumple la propiedad
- Para $n \ge 4$ tenemos que $T(n) = T(\lfloor \frac{n}{2} \rfloor) + d$ y $\lfloor \frac{n}{2} \rfloor \ge 2$, por lo que resolvemos este caso de manera inductiva
 - Suponemos que la propiedad se cumple para todo $n' \in \{2, ..., n-1\}$

La demostración por inducción fuerte

Casos base:

$$T(2) = b + d = c \cdot \log_2(2)$$

 $T(3) = b + d < c \cdot \log_2(3)$

Caso inductivo:

Suponemos que
$$n \geq 4$$
 y para todo $n' \in \{2, \ldots, n-1\}$ se tiene que $T(n') \leq c \cdot \log_2(n')$

La demostración por inducción fuerte

Usando la definición de T(n) y la hipótesis de inducción concluimos que:

$$T(n) = T(\left\lfloor \frac{n}{2} \right\rfloor) + d$$

$$\leq c \cdot \log_2 \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + d$$

$$\leq c \cdot \log_2 \left(\frac{n}{2} \right) + d$$

$$= c \cdot \log_2(n) - c \cdot \log_2(2) + d$$

$$= c \cdot \log_2(n) - (b+d) + d$$

$$= c \cdot \log_2(n) - b$$

$$< c \cdot \log_2(n)$$

Un segundo ejemplo de inducción constructiva

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 0 & n=0 \\ n^2 + n \cdot T(n-1) & n>0 \end{cases}$$

Queremos determinar una función f(n) para la cual se tiene que $\mathcal{T}(n) \in O(f(n))$

ightharpoonup ¿Alguna conjetura sobre quién podría ser f(n)?

Una posible solución para la ecuación de recurrencia

Dada la forma de la ecuación de recurrencia, podríamos intentar primero con f(n) = n!

Tenemos entonces que determinar $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $T(n) \leq c \cdot n!$ para todo $n \geq n_0$

 Pero nos vamos a encontrar con un problema al tratar de usar la hipótesis de inducción

Una posible solución para la ecuación de recurrencia

Supongamos que la propiedad se cumple para n:

$$T(n) \leq c \cdot n!$$

Tenemos que:

$$T(n+1) = (n+1)^{2} + (n+1) \cdot T(n)$$

$$\leq (n+1)^{2} + (n+1) \cdot (c \cdot n!)$$

$$= (n+1)^{2} + c \cdot (n+1)!$$

Pero no existe una constante c para la cual $(n+1)^2 + c \cdot (n+1)! \le c \cdot (n+1)!$

▶ Dado que $n \in \mathbb{N}$

¿Cómo solucionamos el problema con la demostración?

Una demostración por inducción puede hacerse más simple considerando una propiedad más fuerte.

Dado que la hipótesis de inducción se va a volver más fuerte

Vamos a seguir tratando de demostrar que $T(n) \in O(n!)$ pero ahora considerando una propiedad más fuerte.

Vamos a demostrar lo siguiente:

$$(\exists c \in \mathbb{R}^+)(\exists d \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)(T(n) \leq c \cdot n! - d \cdot n)$$

Inducción constructiva sobre una propiedad más fuerte

Para tener una mejor idea de los posible valores para c, d y n_0 vamos a considerar primero el paso inductivo en la demostración.

Supongamos que la propiedad se cumple para n:

$$T(n) \leq c \cdot n! - d \cdot n$$

Tenemos que:

$$T(n+1) = (n+1)^{2} + (n+1) \cdot T(n)$$

$$\leq (n+1)^{2} + (n+1) \cdot (c \cdot n! - d \cdot n)$$

$$= c \cdot (n+1)! + (n+1)^{2} - d \cdot n \cdot (n+1)$$

$$= c \cdot (n+1)! + ((n+1) - d \cdot n) \cdot (n+1)$$

Inducción constructiva sobre una propiedad más fuerte

Para poder demostrar que la propiedad se cumple para n+1 necesitamos que lo siguiente sea cierto:

$$(n+1)-d\cdot n \leq -d$$

De lo cual concluimos la siguiente restricción para d:

$$\frac{(n+1)}{(n-1)} \leq d$$

Si consideramos $n \ge 2$ concluimos que $d \ge 3$

► Consideramos entonces $n_0 = 2$ y d = 3

Inducción constructiva sobre una propiedad más fuerte

Para concluir la demostración debemos considerar el caso base $n_0 = 2$

Tenemos que:

$$T(0) = 0$$

 $T(1) = 1^2 + 1 \cdot T(0) = 1$
 $T(2) = 2^2 + 2 \cdot T(1) = 6$

Entonces se debe cumplir que $T(2) \le c \cdot 2! - 3 \cdot 2$, vale decir,

$$6 \leq c \cdot 2 - 6$$

Concluimos que $c \ge 6$, por lo que consideramos c = 6

► Tenemos entonces que $(\forall n \ge 2)(T(n) \le 6 \cdot n! - 3 \cdot n)$, de lo cual concluimos que $T(n) \in O(n!)$

El Teorema Maestro

Muchas de las ecuaciones de recurrencia que vamos a usar en este curso tienen la siguiente forma:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\lfloor \frac{n}{b} \rfloor) + f(n) & n \geq 1 \end{cases}$$

donde a, b y c son constantes, y f(n) es una función arbitraria.

El Teorema Maestro nos dice cuál es el orden de T(n) dependiendo de ciertas condiciones sobre a, b y f(n)

El Teorema Maestro

El Teorema Maestro también se puede utilizar cuando $\lfloor \frac{n}{b} \rfloor$ es reemplazado por $\lceil \frac{n}{b} \rceil$

Antes de dar el enunciado del Teorema Maestro necesitamos definir una condición de regularidad sobre la función f(n)

Una condición de regularidad sobre funciones

Dado: función $f:\mathbb{N} o \mathbb{R}^+_0$ y constantes $a,b \in \mathbb{R}$ tales que $a \geq 1$ y b > 1

Definición

f es (a,b)-regular si existen constantes $c\in\mathbb{R}^+$ y $n_0\in\mathbb{N}$ tales que c<1 y

$$(\forall n \geq n_0) \left(a \cdot f \left(\left\lfloor \frac{n}{b} \right\rfloor \right) \leq c \cdot f(n) \right)$$

Ejercicio

- 1. Demuestre que las funciones n, n^2 y 2^n son (a, b)-regulares si a < b.
- 2. Demuestre que la función $log_2(n)$ no es (1,2)-regular.

Una solución al segundo problema

Por contradicción, supongamos que $log_2(n)$ es (1,2)-regular.

Entonces existen constantes $c \in \mathbb{R}^+$ y $\mathit{n}_0 \in \mathbb{N}$ tales que c < 1 y

$$(\forall n \geq n_0) \left(\log_2 \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \leq c \cdot \log_2(n) \right)$$

De esto concluimos que:

$$(\forall k \geq n_0) \left(\log_2 \left(\left\lfloor \frac{2 \cdot k}{2} \right\rfloor \right) \leq c \cdot \log_2(2 \cdot k) \right)$$

Una solución al segundo problema

Vale decir:

$$(\forall k \geq n_0)(\log_2(k) \leq c \cdot (\log_2(k) + 1))$$

Dado que 0 < c < 1, concluimos que:

$$(\forall k \geq n_0) \left(\log_2(k) \leq \frac{c}{1-c} \right)$$

Lo cual nos lleva a una contradicción.

El enunciado del Teorema Maestro

Teorema

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$, $a, b, c \in \mathbb{R}_0^+$ tales que $a \ge 1$ y b > 1, y T(n) una función definida por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\lfloor \frac{n}{b} \rfloor) + f(n) & n \ge 1 \end{cases}$$

Se tiene que:

- 1. Si $f(n) \in O(n^{\log_b(a)-\varepsilon})$ para $\varepsilon > 0$, entonces $T(n) \in \Theta(n^{\log_b(a)})$
- 2. Si $f(n) \in \Theta(n^{\log_b(a)})$, entonces $T(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$
- 3. Si $f(n) \in \Omega(n^{\log_b(a)+\varepsilon})$ para $\varepsilon > 0$ y f es (a,b)-regular, entonces $T(n) \in \Theta(f(n))$

Usando el Teorema Maestro

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & n = 0 \\ 3 \cdot T(\lfloor \frac{n}{2} \rfloor) + c \cdot n & n \ge 1 \end{cases}$$

Dado que $\log_2(3) > 1.5$, tenemos que $\log_2(3) - 0.5 > 1$

Deducimos que $c \cdot n \in O(n^{\log_2(3) - 0.5})$, por lo que usando el Teorema Maestro concluimos que $T(n) \in \Theta(n^{\log_2(3)})$

El Teorema Maestro y la función $\lceil x \rceil$

Suponga que cambiamos $\lfloor \frac{n}{b} \rfloor$ por $\lceil \frac{n}{b} \rceil$ en la definición de (a,b)-regularidad.

Entonces el Teorema Maestro sigue siendo válido pero con $T(\lfloor \frac{n}{b} \rfloor) + f(n)$ reemplazado por $T(\lceil \frac{n}{b} \rceil) + f(n)$

El enunciado del Teorema Maestro

La siguiente es una versión más fuerte del Teorema Maestro:

Teorema

Sea $f: \mathbb{N} \to \mathbb{R}^+_0$, $a,b,c \in \mathbb{R}^+_0$ tales que $a \ge 1$ y b > 1, y T(n) una función definida por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\lfloor \frac{n}{b} \rfloor) + f(n) & n \ge 1 \end{cases}$$

Se tiene que:

- 1. Si $f(n) \in O(n^{\log_b(a)-\varepsilon})$ para $\varepsilon > 0$, entonces $T(n) \in \Theta(n^{\log_b(a)})$
- 2. Si $f(n) \in \Theta(n^{\log_b(a)} \cdot \log_2^k(n))$ para $k \ge 0$, entonces $T(n) \in \Theta(n^{\log_b(a)} \cdot \log_2^{k+1}(n))$
- 3. Si $f(n) \in \Omega(n^{\log_b(a)+\varepsilon})$ para $\varepsilon > 0$ y f es (a,b)-regular, entonces $T(n) \in \Theta(f(n))$

