

Hadoop Introduction

Originals of Slides and Source Code for Examples: http://www.coreservlets.com/hadoop-tutorial/

Customized Java EE Training: http://courses.coreservlets.com/

Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android. Developed and taught by well-known author and developer. At public venues or onsite at *your* location.

© 2012 coreservlets.com and Dima May

For live Hadoop training, please see courses at http://courses.coreservlets.com/.

Taught by the author of this Hadoop tutorial. Available at public venues, or customized versions can be held on-site at <u>your</u> organization.

- JSF 2, PrimeFaces, servlets/JSP, Ajax, jQuery, Android development, Java 6 or 7 programming, custom mix of topics
- Ajax courses can concentrate on 1 library (jQuery, Prototype/Scriptaculous, Ext-JS, Dojo, etc.) or survey several
- Courses developed and taught by coreservlets.com experts (edited by Marty)
 - Hadoop, Spring, Hibernate/JPA, GWT, SOAP-based and RESTful Web Services

 Contact hall@coreservlets.com for details

Agenda

- Big Data
- Hadoop Introduction
- History
- Comparison to Relational Databases
- Hadoop Eco-System and Distributions
- Resources

4

Big Data

 Information Data Corporation (<u>IDC</u>) estimates data created in 2010 to be

1.2 ZETTABYTES

(1.2 Trillion Gigabytes)

- Companies continue to generate large amounts of data, here are some 2011 stats:
 - Facebook ~ 6 billion messages per day
 - EBay ~ 2 billion page views a day, ~ 9 Petabytes of storage
 - Satellite Images by Skybox Imaging ~ 1 Terabyte per day

Sources:

"Digital Universe" study by IDC; http://www.emc.com/leadership/programs/digital-universe.htm Hadoop World 2011 Keynote: Hugh E. Williams, eBay

Hadoop World 2011: Building Realtime Big Data Services at Facebook with Hadoop and HBase Hadoop World 2011: Indexing the Earth – Large Scale Satellite Image Processing Using Hadoop

Hadoop

 Existing tools were not designed to handle such large amounts of data

- "The Apache™ Hadoop™ project develops open-source software for reliable, scalable, distributed computing." -http://hadoop.apache.org
 - Process Big Data on clusters of commodity hardware
 - Vibrant open-source community
 - Many products and tools reside on top of Hadoop

6

Hadoop Jobs

 $Source: \ http://www.indeed.com/jobanalytics/jobtrends? q = cloud + computing \% \ 2C + hadoop \% \ 2C + ipa \% \ 2C + ejb \ 3 \& l = cloud + computing \% \ 2C + hadoop \% \ 2C + ejb \ 3 \& l = cloud + computing \% \ 2C + hadoop \% \ 2C + ejb \ 3 \& l = cloud + computing \% \ 2C + ejb \ 3 \& l = cloud + cloud +$

Who Uses Hadoop?

twitter3

Source: http://wiki.apache.org/hadoop/PoweredBy

Data Storage

- Storage capacity has grown exponentially but read speed has not kept up
 - **1990:**
 - Store 1,400 MB
 - Transfer speed of 4.5MB/s
 - Read the entire drive in ~ 5 minutes
 - **-** 2010:
 - Store 1 TB
 - Transfer speed of 100MB/s
 - Read the entire drive in ~ 3 hours
- Hadoop 100 drives working at the same time can read 1TB of data in 2 minutes

Hadoop Cluster

- A set of "cheap" commodity hardware
- Networked together
- Resides in the same location
 - Set of servers in a set of racks in a data center

Use Commodity Hardware

- "Cheap" Commodity Server Hardware
 - No need for super-computers, use commodity unreliable hardware
 - Not desktops

12

Hadoop System Principles

- Scale-Out rather than Scale-Up
- Bring code to data rather than data to code
- Deal with failures they are common
- Abstract complexity of distributed and concurrent applications

Scale-Out Instead of Scale-Up

It is harder and more expensive to scale-up

- Add additional resources to an existing node (CPU, RAM)
- Moore's Law can't keep up with data growth
- New units must be purchased if required resources can not be added
- Also known as scale vertically

Scale-Out

- Add more nodes/machines to an existing distributed application
- Software Layer is designed for node additions or removal
- Hadoop takes this approach A set of nodes are bonded together as a single distributed system
- Very easy to scale down as well

14

Code to Data

Traditional data processing architecture

- nodes are broken up into separate processing and storage nodes connected by high-capacity link
- Many data-intensive applications are not CPU demanding causing bottlenecks in network

Code to Data

- Hadoop co-locates processors and storage
 - Code is moved to data (size is tiny, usually in KBs)
 - Processors execute code and access underlying local storage

Hadoop Cluster

Failures are Common

- Given a large number machines, failures are common
 - Large warehouses may see machine failures weekly or even daily
- Hadoop is designed to cope with node failures
 - Data is replicated
 - Tasks are retried

Abstract Complexity

- Hadoop abstracts many complexities in distributed and concurrent applications
 - Defines small number of components
 - Provides simple and well defined interfaces of interactions between these components
- Frees developer from worrying about systemlevel challenges
 - race conditions, data starvation
 - processing pipelines, data partitioning, code distribution
 - etc.
- Allows developers to focus on application development and business logic

18

History of Hadoop

- Started as a sub-project of Apache Nutch
 - Nutch's job is to index the web and expose it for searching
 - Open Source alternative to Google
 - Started by **Doug Cutting**
- In 2004 Google publishes <u>Google File System</u> (GFS) and <u>MapReduce</u> framework papers
- Doug Cutting and Nutch team implemented Google's frameworks in Nutch
- In 2006 Yahoo! hires Doug Cutting to work on Hadoop with a dedicated team
- In 2008 Hadoop became Apache Top Level Project
 - http://hadoop.apache.org

Naming Conventions?

- Doug Cutting drew inspiration from his family
 - <u>Lucene</u>: Doug's wife's middle name
 - Nutch: A word for "meal" that his son used as a toddler
 - Hadoop: Yellow stuffed elephant named by his son

20

Comparisons to RDBMS

- Until recently many applications utilized Relational Database Management Systems (RDBMS) for batch processing
 - Oracle, Sybase, MySQL, Microsoft SQL Server, etc.
 - Hadoop doesn't fully replace relational products; many architectures would benefit from both Hadoop and a Relational product(s)
- Scale-Out vs. Scale-Up
 - RDBMS products scale up
 - · Expensive to scale for larger installations
 - Hits a ceiling when storage reaches 100s of terabytes
 - Hadoop clusters can scale-out to 100s of machines and to petabytes of storage

Comparisons to RDBMS (Continued)

Structured Relational vs. Semi-Structured vs. Unstructured

- RDBMS works well for structured data tables that conform to a predefined schema
- Hadoop works best on Semi-structured and Unstructured data
 - Semi-structured may have a schema that is loosely followed
 - Unstructured data has no structure whatsoever and is usually just blocks of text (or for example images)
 - At processing time types for key and values are chosen by the implementer
- Certain types of input data will not easily fit into Relational Schema such as images, JSON, XML, etc...

22

Comparison to RDBMS

Offline batch vs. online transactions

- Hadoop was not designed for real-time or low latency queries
- Products that do provide low latency queries such as HBase have limited query functionality
- Hadoop performs best for offline batch processing on large amounts of data
- RDBMS is best for online transactions and low-latency queries
- Hadoop is designed to stream large files and large amounts of data
- RDBMS works best with small records

Comparison to RDBMS

- Hadoop and RDBMS frequently complement each other within an architecture
- For example, a website that
 - has a small number of users
 - produces a large amount of audit logs

- 1 Utilize RDBMS to provide rich User Interface and enforce data integrity
- 2 RDBMS generates large amounts of audit logs; the logs are moved periodically to the Hadoop cluster
- All logs are kept in Hadoop; Various analytics are executed periodically
- Results copied to RDBMS to be used by Web Server; for example "suggestions" based on audit history

Hadoop Eco System

- At first Hadoop was mainly known for two core products:
 - <u>HDFS</u>: Hadoop Distributed FileSystem
 - <u>MapReduce</u>: Distributed data processing framework
- Today, in addition to HDFS and MapReduce, the term also represents a multitude of products:
 - HBase: Hadoop column database; supports batch and random reads and limited queries
 - Zookeeper: Highly-Available Coordination Service
 - Oozie: Hadoop workflow scheduler and manager
 - <u>Pig</u>: Data processing language and execution environment
 - Hive: Data warehouse with SQL interface

Hadoop Eco System

- To start building an application, you need a file system
 - In Hadoop world that would be Hadoop Distributed File System (HDFS)
 - In Linux it could be ext3 or ext4
- Addition of a data store would provide a nicer interface to store and manage your data
 - HBase: A key-value store implemented on top of HDFS
 - Traditionally one could use RDBMS on top of a local file system

HBase

Hadoop Distributed FileSystem (HDFS)

Hadoop Eco System

- For batch processing, you will need to utilize a framework
 - In Hadoop's world that would be MapReduce
 - MapReduce will ease implementation of distributed applications that will run on a cluster of commodity hardware

MapReduce

HBase

Hadoop Distributed FileSystem (HDFS)

Hadoop Eco System

- Many problems lend themselves to a MapReduce solution with multiple jobs
 - Apache Oozie is a popular MapReduce workflow and coordination product

MapReduce

HBase

Hadoop Distributed FileSystem (HDFS)

Hadoop Eco System

- MapReduce paradigm may not work well for analysts and data scientists
 - Addition of Apache Pig, a high-level data flow scripting language, may be beneficial

Oozie
Pig
MapReduce
HBase
Hadoop Distributed FileSystem (HDFS)

29

Hadoop Eco System

- Your organization may have a good number of SQL experts
 - Addition of Apache Hive, a data warehouse solution that provides a SQL based interface, may bridge the gap

Hadoop Distributions

- Let's say you go download Hadoop's HDFS and MapReduce from http://hadoop.apache.org/
- At first it works great but then you decide to start using HBase
 - No problem, just download HBase from http://hadoop.apache.org/ and point it to your existing HDFS installation
 - But you find that HBase can only work with a previous version of HDFS, so you go downgrade HDFS and everything still works great
- Later on you decide to add Pig
 - Unfortunately the version of Pig doesn't work with the version of HDFS, it wants you to upgrade
 - But if you upgrade you'll break HBase...

Hadoop Distributions

- Hadoop Distributions aim to resolve version incompatibilities
- Distribution Vendor will
 - Integration Test a set of Hadoop products
 - Package Hadoop products in various installation formats
 - Linux Packages, tarballs, etc.
 - Distributions may provide additional scripts to execute Hadoop
 - Some vendors may choose to backport features and bug fixes made by Apache
 - Typically vendors will employ Hadoop committers so the bugs they find will make it into Apache's repository

32

Distribution Vendors

- Cloudera Distribution for Hadoop (<u>CDH</u>)
- MapR Distribution
- Hortonworks Data Platform (HDP)
- Apache BigTop Distribution
- Greenplum HD Data Computing Appliance

Cloudera Distribution for Hadoop (CDH)

- Cloudera has taken the lead on providing Hadoop Distribution
 - Cloudera is affecting the Hadoop eco-system in the same way RedHat popularized Linux in the enterprise circles
- Most popular distribution
 - <u>http://www.cloudera.com/hadoop</u>
 - 100% open-source
- Cloudera employs a large percentage of core Hadoop committers
- CDH is provided in various formats
 - Linux Packages, Virtual Machine Images, and Tarballs

34

Cloudera Distribution for Hadoop (CDH)

- Integrates majority of popular Hadoop products
 - HDFS, MapReduce, HBase, Hive, Mahout, Oozie, Pig, Sqoop, Whirr, Zookeeper, Flume
- CDH4 is used in this class

Supported Operating Systems

- Each Distribution will support its own list of Operating Systems (OS)
- Common OS supported
 - Red Hat Enterprise
 - CentOS
 - Oracle Linux
 - Ubuntu
 - SUSE Linux Enterprise Server

- Please see vendors documentation for supported OS and version
 - Supported Operating Systems for CDH4:
 https://ccp.cloudera.com/display/CDH4DOC/Before+You+Install+CDH4+on+a+Cluster+BeforeYouInstallCDH4onaCluster-SupportedOperatingSystemsforCDH4

36

Resources

- Apache Hadoop Documentation
 - http://hadoop.apache.org
- Each project will have their own documentation artifacts and usually a wiki
- Each Hadoop Distribution Vendor provides documentation as well:
 - For example: https://ccp.cloudera.com/display/DOC/Documentation

Resources: Books

Hadoop: The Definitive Guide

Tom White (Author) O'Reilly Media; 3rd Edition (May6, 2012)

Hadoop in Action

Chuck Lam (Author)
Manning Publications; 1st Edition (December, 2010)

MapReduce Design Patterns

Donald Miner (Author), Adam Shook (Author) O'Reilly Media (November 22, 2012)

38

Resources: Books

HBase: The Definitive Guide

Lars George (Author)

O'Reilly Media; 1 edition (September 20, 2011)

Programming Pig

Alan Gates (Author)

O'Reilly Media; 1st Edition (October, 2011)

Hadoop Operations

Eric Sammer (Author) O'Reilly Media (October 22, 2012)

39

Resources: Books

Data-Intensive Text Processing with MapReduce Jimmy Lin and Chris Dyer (Authors) (April, 2010) Download for FREE:

http://lintool.github.com/MapReduceAlgorithms/index.html

Programming Hive

Edward Capriolo, Dean Wampler, Jason Rutherglen (Authors) O'Reilly Media; 1 edition (October, 2012)

Hadoop in Practice

Alex Holmes (Author)
Manning Publications; (October 10, 2012)

Resources: Your Instructor

- Dima May
 - dimamay@coreservlets.com
 - Email me any time!

Wrap-Up

Customized Java EE Training: http://courses.coreservlets.com/

Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android.

Developed and taught by well-known author and developer. At public venues or onsite at *your* location.

Summary

We learned about

- Data storage needs are rapidly increasing
- Hadoop has become the de-facto standard for handling these massive data sets
- The Cloudera Distribution for Hadoop (CDH) is the most commonly used Hadoop release distribution
- There is a number of Hadoop related publications available

@ 2012 $\underline{coreservlets.com}$ and $\underline{Dima\ May}$

Questions?

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

Customized Java EE Training: http://courses.coreservlets.com/

Hadoop, Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Android. Developed and taught by well-known author and developer. At public venues or onsite at *your* location.