VB for INLA

Outline

- Introduction to INLA
- Improved mean Gaussian approximation based on VB
- Real examples
- Current work

Model definition

Suppose we have response data $\mathbf{y}_{n\times 1}$ with density function $\pi(\mathbf{y}|\mathcal{X}, \boldsymbol{\theta})$ and link function h(.), that is linked to some covariates $\mathbf{Z} = \{\mathbf{X}, \mathbf{U}\}$ through linear predictors

$$oldsymbol{\eta}_{n imes 1} = eta_0 oldsymbol{1} + oldsymbol{eta} oldsymbol{X} + \sum_{k=1}^K f^k(oldsymbol{u}_k)$$

The inferential aim is to estimate the latent field $\mathcal{X}_{m_* \times 1} = \{\beta_0, \boldsymbol{\beta}, \boldsymbol{f}\}$. Define the augmented latent field

$$\mathcal{X}_{m\times 1} = \{\boldsymbol{\eta}, \beta_0, \boldsymbol{\beta}, \boldsymbol{f}\}.$$

Posterior approximations

$$\pi(\mathcal{X}, \boldsymbol{\theta}, \mathbf{y}) = \pi(\boldsymbol{\theta}) \pi(\mathcal{X}|\boldsymbol{\theta}) \prod_{i=1}^{n} \pi(y_i|\mathcal{X}_i, \boldsymbol{\theta})$$

$$\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) \propto \frac{\pi(\mathcal{X}, \boldsymbol{\theta}, \mathbf{y})}{\pi_G(\mathcal{X}|\boldsymbol{\theta}, \mathbf{y})} \Big|_{\mathcal{X} = \boldsymbol{\mu}(\boldsymbol{\theta})}$$

$$\tilde{\pi}(\theta_j|\mathbf{y}) = \int \tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) d\theta_{-j}$$

$$\tilde{\pi}(\mathcal{X}_j|\mathbf{y}) = \int \tilde{\pi}(\mathcal{X}_j|\boldsymbol{\theta}, \mathbf{y}) \tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta},$$

 $\tilde{\pi}(\mathcal{X}_j|\boldsymbol{\theta},\boldsymbol{y})$ depends on the approximation used, for Gaussian it is straightforward for the Laplace approximation we do another Gaussian approximation to $\tilde{\pi}(\boldsymbol{\mathcal{X}}_{-i}|\boldsymbol{\theta},\boldsymbol{y})$.

Thoughts and ideas

- Can we improve $\pi_G(\mathcal{X}|\boldsymbol{\theta}, \boldsymbol{y})$ so we have cheap but good marginals $\tilde{\pi}(\mathcal{X}_i|\boldsymbol{y})$.
- For large data, \mathcal{X} is large can we remove η , but still produce cheap and accurate inference for η .

Gaussian approximation

Laplace method - fit the best Gaussian at the mode of a curve where the variance is derived from the inverse Hessian at the mode.

Mode and Hessian at the mode

$$\mathcal{X}|\boldsymbol{\theta},\boldsymbol{y}\sim N(\boldsymbol{\mu},(\boldsymbol{Q}_{\pi}+diag(\boldsymbol{c}))^{-1}) \tag{1}$$

with $(\mathbf{Q}_{\pi} + diag(\mathbf{c}))\boldsymbol{\mu} = \mathbf{b}$ from a second-order expansion of $\pi(y_i|\mathcal{X}_i,\boldsymbol{\theta}) \approx a_i + b_i\mathcal{X}_i + c_i^2\mathcal{X}_i$. Can we do better than this?

Poisson example

$$Y_i|\beta_0 = -1, \beta_1 = -0.5 \sim \text{Poisson}(\exp(\beta_0 + \beta_1 X_i))$$

Posterior approximations

$$\pi(\mathcal{X}, \boldsymbol{\theta}, \mathbf{y}) = \pi(\boldsymbol{\theta})\pi(\mathcal{X}|\boldsymbol{\theta}) \prod_{i=1}^{n} \pi(y_{i}|\mathcal{X}_{i}, \boldsymbol{\theta})$$

$$\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) \propto \frac{\pi(\mathcal{X}, \boldsymbol{\theta}, \mathbf{y})}{\pi_{G}(\mathcal{X}|\boldsymbol{\theta}, \mathbf{y})}\Big|_{\mathcal{X} = \boldsymbol{\mu}(\boldsymbol{\theta})}$$

$$\tilde{\pi}_{G}(\mathcal{X}_{j}|\mathbf{y}) = \int \tilde{\pi}_{G}(\mathcal{X}_{j}|\boldsymbol{\theta}, \mathbf{y})\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta},$$

$$\tilde{\pi}_{L}(\mathcal{X}_{j}|\boldsymbol{y}) = \int \tilde{\pi}_{L}(\mathcal{X}_{j}|\boldsymbol{\theta}, \mathbf{y})\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta},$$
with $\tilde{\pi}_{L}(\mathcal{X}_{j}|\boldsymbol{\theta}, \mathbf{y}) = \frac{\pi(\mathcal{X}, \boldsymbol{\theta}, \mathbf{y})}{\pi_{G}(\mathcal{X}_{-j}|\mathcal{X}_{j}, \boldsymbol{\theta}, \mathbf{y})}\Big|_{\mathcal{X}_{-j} = \boldsymbol{\mu}_{-j}(\boldsymbol{\theta})}$

Better Gaussian approximation

Can we find a better Gaussian approximation (closer to LA) that is cheap and will scale well?

VB from Zellner (1988)

Based on prior information \mathcal{I} , data \mathbf{y} and parameters $\boldsymbol{\theta}$, define the following:

- **1** $\pi(\boldsymbol{\theta}|\mathcal{I})$ is the prior model
- ② $q(\theta|\mathcal{D})$ is the learned model from the prior information and the data where $\mathcal{D}=\{\mathcal{I},\mathbf{y}\}$
- $p(\mathbf{y}|\mathcal{I})$ is the marginal model for the data where $p(\mathbf{y}|\mathcal{I}) = \int f(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta}|\mathcal{I})d\boldsymbol{\theta}$

The input information in the learning of $\boldsymbol{\theta}$ is given by $\pi(\boldsymbol{\theta}|\mathcal{I})$ and $l(\boldsymbol{\theta}|\boldsymbol{y})$. An information processing rule (IPR) then delivers $q(\boldsymbol{\theta}|\mathcal{D})$ and $p(\boldsymbol{y}|\mathcal{I})$ as output information.

Bayes Rule as an efficient IPR

A stable and efficient IPR would provide the same amount of output information than received through the input information, thus being information conservative. Thus, we learn $q(\boldsymbol{\theta}|\mathcal{D})$ such that it minimizes

$$- \int [\log \pi(\boldsymbol{\theta}|\mathcal{I}) + \log l(\boldsymbol{\theta}|\mathbf{y})] q(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta} + \int [\log q(\boldsymbol{\theta}|\mathcal{D}) + \log p(\mathbf{y}|\mathcal{I})] q(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

$$= E_{q(\boldsymbol{\theta}|\mathcal{D})} [-\log l(\boldsymbol{\theta}|\mathbf{y})] + \text{KLD} [q(\boldsymbol{\theta}|\mathcal{D})||\pi(\boldsymbol{\theta}|\mathcal{I})].$$
(2)

Variational form of Bayes' theorem

Finding the best fit from a certain family $P(\Theta)$,

$$\arg\min_{p\in P(\Theta)} \left(\mathsf{E}_{p(\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_i|\boldsymbol{\theta}) \right] + \mathsf{KLD}(p||\pi) \right) \tag{3}$$

Recall that $(\mathbf{Q}_{\pi} + diag(\mathbf{c}))\mu = \mathbf{b}$. Now let's formulate $\mu^* = \mu + \delta$.

$$\arg_{\delta} \min_{p(\mathcal{X}|\mathbf{y},\boldsymbol{\theta})} \left(\mathsf{E}_{p(\mathcal{X}|\mathbf{y},\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_i|\mathcal{X}_i,\boldsymbol{\theta}) \right] + \mathsf{KLD}(p||\pi) \right)$$

where $\mathcal{X}|\mathbf{y}, \boldsymbol{\theta} \sim N(\boldsymbol{\mu} + \boldsymbol{\delta}, \mathbf{Q}^{-1})$. But \mathcal{X} can be very large...

Recall that $(Q_{\pi} + diag(c))\mu = b$. Now let's formulate $\mu^* = \mu + \delta$.

$$\arg_{\boldsymbol{\delta}} \min_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left(\mathsf{E}_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_{i}|\boldsymbol{\mathcal{X}}_{i},\boldsymbol{\theta}) \right] + \mathsf{KLD}(\boldsymbol{p}||\boldsymbol{\pi}) \right)$$

where $\mathcal{X}|\mathbf{y}, \boldsymbol{\theta} \sim \mathit{N}(\boldsymbol{\mu} + \boldsymbol{\delta}, \mathbf{Q}^{-1})$. But \mathcal{X} can be very large...

Recall that $(\mathbf{Q}_{\pi} + diag(\mathbf{c}))\mu = \mathbf{b}$. Now let's formulate $\mu^* = \mu + \delta$.

$$\arg_{\boldsymbol{\delta}} \min_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\mathbf{y},\boldsymbol{\theta})} \left(\mathsf{E}_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\mathbf{y},\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_{i}|\boldsymbol{\mathcal{X}}_{i},\boldsymbol{\theta}) \right] + \mathsf{KLD}(\boldsymbol{p}||\boldsymbol{\pi}) \right)$$

where $\mathcal{X}|\mathbf{y}, \boldsymbol{\theta} \sim \mathit{N}(\boldsymbol{\mu} + \boldsymbol{\delta}, \mathbf{Q}^{-1})$.

But \mathcal{X} can be very large...

Recall that $(\mathbf{Q}_{\pi} + diag(\mathbf{c}))\mu = \mathbf{b}$. Now let's formulate $\mu^* = \mu + \delta$.

$$\arg_{\boldsymbol{\delta}} \min_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left(\mathsf{E}_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_{i}|\boldsymbol{\mathcal{X}}_{i},\boldsymbol{\theta}) \right] + \mathsf{KLD}(\boldsymbol{p}||\boldsymbol{\pi}) \right)$$

where $\mathcal{X}|\mathbf{y}, \boldsymbol{\theta} \sim \mathit{N}(\boldsymbol{\mu} + \boldsymbol{\delta}, \mathbf{Q}^{-1})$. But \mathcal{X} can be very large...

Recall that $(Q_{\pi} + diag(c))\mu = b$. Now let's formulate $(Q_{\pi} + diag(c))\mu^* = b + \lambda$, so that

$$\pmb{\mu}^* = \pmb{\mu} + \pmb{M}\pmb{\lambda}$$

So now we solve for,

$$\arg_{\boldsymbol{\lambda}} \min_{\boldsymbol{\rho}(\boldsymbol{\mathcal{X}}|\mathbf{y},\boldsymbol{\theta})} \left(\mathsf{E}_{\boldsymbol{\rho}(\boldsymbol{\mathcal{X}}|\mathbf{y},\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_{i}|\boldsymbol{\mathcal{X}}_{i},\boldsymbol{\theta}) \right] + \mathsf{KLD}(\boldsymbol{\rho}||\boldsymbol{\pi}) \right)$$

where $\mathcal{X}|\mathbf{y}, \boldsymbol{\theta} \sim \mathit{N}(\boldsymbol{\mu}^*, \mathbf{Q}^{-1})$.

Low-rank correction \rightarrow Only correct some b's, change to all $\mu's$.

Recall that $(\mathbf{Q}_{\pi} + diag(\mathbf{c}))\boldsymbol{\mu} = \mathbf{b}$.

Now let's formulate $(oldsymbol{Q}_{\pi} + diag(oldsymbol{c}))oldsymbol{\mu}^* = oldsymbol{b} + oldsymbol{\lambda}$, so that

$$\pmb{\mu}^* = \pmb{\mu} + \pmb{M}\pmb{\lambda}$$

So now we solve for,

$$\arg_{\boldsymbol{\lambda}} \min_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left(\mathsf{E}_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_i|\boldsymbol{\mathcal{X}}_i,\boldsymbol{\theta}) \right] + \mathsf{KLD}(\boldsymbol{p}||\boldsymbol{\pi}) \right)$$

where $\mathcal{X}|\mathbf{y}, \boldsymbol{\theta} \sim N(\boldsymbol{\mu}^*, \mathbf{Q}^{-1})$.

Low-rank correction \rightarrow Only correct some b's, change to all $\mu's$.

4□ > 4□ > 4□ > 4□ > 4□ > 9

Recall that $(\mathbf{Q}_{\pi} + diag(\mathbf{c}))\boldsymbol{\mu} = \mathbf{b}$.

Now let's formulate $(\mathbf{Q}_{\pi} + diag(\mathbf{c}))\boldsymbol{\mu}^* = \mathbf{b} + \boldsymbol{\lambda}$, so that

$$oldsymbol{\mu}^* = oldsymbol{\mu} + oldsymbol{M} oldsymbol{\lambda}$$

So now we solve for,

$$\arg_{\boldsymbol{\lambda}} \min_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left(\mathsf{E}_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_i|\boldsymbol{\mathcal{X}}_i,\boldsymbol{\theta}) \right] + \mathsf{KLD}(\boldsymbol{p}||\boldsymbol{\pi}) \right)$$

where $\mathcal{X}|\mathbf{y}, \boldsymbol{\theta} \sim \mathit{N}(\boldsymbol{\mu}^*, \mathbf{Q}^{-1})$.

Low-rank correction \rightarrow Only correct some b's, change to all $\mu's$.

Recall that $(\mathbf{Q}_{\pi} + diag(\mathbf{c}))\boldsymbol{\mu} = \mathbf{b}$.

Now let's formulate $(oldsymbol{Q}_{\pi} + diag(oldsymbol{c}))oldsymbol{\mu}^* = oldsymbol{b} + oldsymbol{\lambda}$, so that

$$oldsymbol{\mu}^* = oldsymbol{\mu} + oldsymbol{M} oldsymbol{\lambda}$$

So now we solve for,

$$\arg_{\boldsymbol{\lambda}} \min_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left(\mathsf{E}_{\boldsymbol{p}(\boldsymbol{\mathcal{X}}|\boldsymbol{y},\boldsymbol{\theta})} \left[-\sum_{i=1}^{n} \log f(y_i|\boldsymbol{\mathcal{X}}_i,\boldsymbol{\theta}) \right] + \mathsf{KLD}(\boldsymbol{p}||\boldsymbol{\pi}) \right)$$

where $\mathcal{X}|\mathbf{y}, \boldsymbol{\theta} \sim \mathit{N}(\boldsymbol{\mu}^*, \mathbf{Q}^{-1})$.

Low-rank correction \rightarrow Only correct some b's, change to all $\mu's$.

Example (small data)

$$Y_i|\beta_0 = -1, \beta_1 = -0.5 \sim \text{Poisson}(\exp(\beta_0 + \beta_1 X_i))$$

Results of mean correction

	GA	INLA	VBC	MCMC
β_0	-1.119	-1.317	-1.316	-1.302
β_1	-0.361	-0.401	-0.401	-0.391

Table: Posterior means from the Gaussian method, INLA, VBC and MCMC

Example (large data)

Figure: Marginal posterior of β_0 (center) and β_1 (right) from the Laplace method (points), VBC (solid line) and INLA (broken line) approximations

	GA	INLA	VBC	MCMC
β_0	-1.004	-1.005	-1.005	-1.005
β_1	-0.491	-0.492	-0.492	-0.492
Time (s)	6.346	37.168	7.344	5779.42

Table: Posterior means from the Laplace method, INLA, VBC and MCMC

Tokyo example

The Tokyo dataset in the R INLA library contains information on the number of times the daily rainfall measurements in Tokyo was more than 1mm on a specific day t for two consecutive years. In order to model the annual rainfall pattern, a stochastic spline model with fixed precision is used to smooth the data.

$$y_i | \mathcal{X} \sim Bin\left(n_i, p_i = rac{\exp(lpha_i)}{1 + \exp(lpha_i)}
ight)$$

 $(lpha_{i+1} - 2lpha_i + lpha_{i-1}) | au \stackrel{ ext{iid}}{\sim} N(0, au^{-1}),$

where i = 1, 2, ..., 366 on a torus, and $n_{60} = 1$ else $n_i = 2$.

The mean of the absolute errors produced between the Laplace method and INLA is 0.0358 while for VBC it is 0.0009.

Figure: Posterior mean of α (left) (zoomed for the first two months (right)) from the Laplace method (points), VBC (solid line) and INLA (broken line)

Spatial survival example

Consider the R dataset Leuk that features the survival times of 1043 patients with acute myeloid leukemia (AML) in Northwest England between 1982 to 1998.

Cox spatial model

$$h(t,\mathbf{s}) = h_0(t) \exp(\beta \mathbf{X} + \mathbf{u}(\mathbf{s})),$$

with

$$\eta_i(s) = \beta_0 + \beta_1 Age_i + \beta_2 WBC_i + \beta_3 TPI_i + u(s).$$

which implies a latent field of size m = 39158.

	GA	INLA	VBC
β_0	-5.935	-6.312	-6.312
β_1	1.050	1.079	1.079
β_2	0.313	0.319	0.319
β_3	0.198	0.200	0.200
Time(s)	25.9	1276	26.3

Table: Posterior means from the Laplace method, INLA and VBC - all fixed effects are significant

Figure: Marginal posteriors from the Laplace method (points), VBC (solid line) and INLA (broken line)

Figure: Marginal posteriors from the Laplace method (points), VBC (solid line) and INLA (broken line)

Figure: Marginal posteriors from the Laplace method (points), VBC (solid line) and INLA (broken line)

Figure: Marginal posteriors from the Laplace method (points), VBC (solid line) and INLA (broken line)

Current work

• VB correction for the variance of the latent field

VB mean correction paper: https://arxiv.org/abs/2111.12945

