CSE 31 Computer Organization

Lecture 12 – Integer Representation (wrap up)

Announcements

- Labs
 - Lab 4 grace period ends this week
 - Lab 5 out this week
 - » Due at 11:59pm on the same day of your next lab (with 7 days grace period after due date)
 - » You must demo your submission to your TA within 14 days from posting of lab
 - » Demo is REQUIRED to receive full credit
 - » No penalty for submission after due date but before end of grace period.
- Reading assignments
 - Reading 03 (zyBooks 3.1 3.7, 3.9) due 06-MAR
 - » Complete Participation Activities in each section to receive grade
 - » IMPORTANT: Make sure to submit score to CatCourses by using the link provided on CatCourses
- Homework assignment
 - Homework 03 (zyBooks 3.1 3.7, 3.9) due 13-MAR
 - » Complete Challenge Activities in each section to receive grade
 - » IMPORTANT: Make sure to submit score to CatCourses by using the link provided on CatCourses

Announcements

Project 01

- Due 17-MAR
- Can work in teams of 2 students
 - » Each team member must identify teammate in "Comments..." text-box at the submission page
 - » If working in teams, each student must submit code (can be the same as teammate) and demo individually
 - » Grade can vary among teammates depending on demo
- Demo required for project grade
 - » No partial credit for submission without demo
- No grace period
 - » Must complete submission and demo by due date.
- Midterm 01
 - See Announcements 12 and 13 on CatCourses for details

One's Complement (review)

- Complement the bits
 - Example: $7_{10} = 00111_2 7_{10} = 11000_2$
 - Called One's Complement
 - Note: positive numbers have leading 0s, negative numbers have leadings 1s.
 - What is -00000?

» Answer: 11111

- How many positive (including +0) numbers in N bits? 2^{N-1}
- How many negative (including -0) numbers?

 2^{N-1}

Shortcomings of One's complement?

Arithmetic is less complicate than sign & magnitude.

- Still two zeros
 - $-0x00000000 = +0_{ten}$
 - 0xFFFFFFF = -0_{ten}

 Although used for a while on some computer products, one's complement was eventually abandoned because another solution was better.

Standard Negative # Representation

- Problem is the negative mappings "overlap" with the positive ones (the two 0s). Want to shift the negative mappings left by one.
 - Solution! For negative numbers, complement, then add 1 to the result
- As with sign and magnitude, & one's complement, leading 0s → positive, leading 1s → negative
 - -000000...xxx is ≥ 0 , 111111...xxx is < 0
 - except 1...1111 is -1, not -0
- This representation is Two's Complement
- This makes the hardware simple!

In C: short, int, long, intN_t (C99) are all signed integers.

Two's Complement Formula

• Can represent positive <u>and negative</u> numbers in terms of the bit value times a power of 2:

$$d_{31}$$
 * $(-(2^{31})) + d_{30}$ * $2^{30} + ... + d_2$ * $2^2 + d_1$ * $2^1 + d_0$ * 2^0

• Example: 1101_{two} = $1x-(2^3) + 1*2^2 + 0*2^1 + 1*2^0$ = $-2^3 + 2^2 + 0 + 2^0$ = -8 + 4 + 0 + 1= -8 + 5= -3_{ten} Example: -3 to +3 to -3: $x: 1101_{two}$ (-3) $x': 0010_{two}$ (-3) $x': 0011_{two}$ (-3) $x': 0011_{two}$ (-3) $x': 0010_{two}$ (-3) $x': 0010_{two}$ (-3)

2's Complement Number "line": N = 5

Bias Encoding: N = 5 (bias = 15)

Summary

- We represent "things" in computers as particular bit patterns:
 - N bits \rightarrow 2^N things
- Different integer encodings have different benefits; 1s complement and sign/mag have most problems.
- unsigned (C99's uintN t):

• 2's complement (C99's intN t): universal, learn it!

 10000 • Overflow: numbers ∞; computers finite → errors!