

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME								
CENTRE NUMBER					CANDIDATE NUMBER			
FURTHER MATH	HEMATIC	s					92	31/21
Paper 2						May	/June	2017
							3	hours
Candidates answ	ver on the	Questic	on Pa	per.				
Additional Materi	als:	List of F	ormul	ae (MF10)				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value is necessary, take the acceleration due to gravity to be $10 \, \text{m s}^{-2}$.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

resisting for	ce of magnitu	ide 1000 N	. Find the	speed wi	ith which	the bullet	emerges f	from the bar
•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••
		•••••	•••••		••••••	••••••		•••••
		•••••						
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	
••••••	••••••	••••••	••••••	•••••••	••••••	•••••••	••••••	••••••
							• • • • • • • • • • • • • • • • • • • •	
		•••••	•••••				•••••	
•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••		•••••	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
•••••		•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••

A uniform smooth disc with centre O and radius a is fixed at the point D on a horizontal surface. A uniform rod of length 3a and weight W rests on the disc with its end A in contact with a rough vertical wall. The rod and the disc lie in a vertical plane that is perpendicular to the wall. The wall meets the horizontal surface at the point E such that AE = a and $ED = \frac{5}{4}a$. A particle of weight kW is hung from the rod at E (see diagram). The coefficient of friction between the rod and the wall is $\frac{1}{8}$ and the system is in limiting equilibrium. Find the value of E.

•••••	•••••	•••••	••••••	 			
			•••••	 			
•••••	•••••			 			
•••••			••••••	 			
	•••••			 			
•••••	•••••		••••••	 ••••••		•••••	
•••••	•••••	•••••	••••••	 ••••••	•••••	•••••	
•••••	•••••	•••••	••••••	 ••••••	•••••	•••••	
•••••	•••••		••••••	 ••••••		•••••	

3

Two uniform small smooth spheres A and B have equal radii and masses 3m and m respectively.

i ma, m term	s of u and e , ex	pressions for tl	ne velocities of A	A and B after the co	llision.
			•••••	•••••	•••••
•••••	•••••	•••••		•••••	••••••
••••••	••••••	••••••		•••••	••••••
			•••••		
		e coefficient of	restitution between	ical barrier which is $een B$ and the barri	
direction of me	of B . The atly collide, A is	s brought to res			
direction of me	tly collide, A is	s brought to res	,		
direction of me eres subsequen	tly collide, A is	s brought to re			
direction of more res subsequent Find the valu	e of <i>e</i> .				
direction of more res subsequent Find the valu	e of <i>e</i> .				
direction of more res subsequent Find the value	e of e.				
direction of more res subsequent Find the value	e of e.				
direction of more res subsequent Find the value	e of e.				
direction of more res subsequent Find the value	e of e.				

	•••••		 •••••	•••••
••••••	•••••	••••••	 	••••••
••••••	••••••	••••••	 	••••••
•••••			 	
	•••••		 	
	•••••		 	
•••••	•••••	•••••	 •••••	•••••
			 •••••	

4

Three identical uniform discs, A, B and C, each have mass m and radius a. They are joined together by uniform rods, each of which has mass $\frac{1}{3}m$ and length 2a. The discs lie in the same plane and their centres form the vertices of an equilateral triangle of side 4a. Each rod has one end rigidly attached to the circumference of a disc and the other end rigidly attached to the circumference of an adjacent disc, so that the rod lies along the line joining the centres of the two discs (see diagram).

)	Find the moment of inertia of this object about an axis l , which is perpendicular to the plane of the object and through the centre of disc A .	of 6]
		••
		••
		••
		••

The object is free to rotate about the horizontal axis l. It is released from rest in the position shown, with the centre of disc B vertically above the centre of disc A.

ontre of disc	D is vertice	lany belo	w the cent	re of disc	Α.		[.
 			•••••				
 		••••••	•••••				
 			•••••			•••••	
 		•••••					
 		•••••	•••••			•••••	•••••
 	•••••						
 			•••••				
 			•••••				
 						••••	

A particle of mass m is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The point A is such that OA = a and OA makes an angle α with the upward vertical through O. The particle is held at A and then projected downwards with speed $\sqrt{(ag)}$ so that it begins to move in a vertical circle with centre O. There is a small smooth peg at the point B which is at the same horizontal level as O and at a distance $\frac{1}{3}a$ from O on the opposite side of O to A (see diagram).

(i) Show that, when the string first makes contact with the peg, the speed of the particle is

$\sqrt{(ag(1+2\cos\alpha))}.$
The particle now begins to move in a vertical circle with centre B . When the particle is at the point C where angle $CBO = 150^{\circ}$, the tension in the string is the same as it was when the particle was at the point A .
(ii) Find the value of $\cos \alpha$. [10]

<i>)</i> FIII	d the probability that	obtaining a 6	takes no more than f	our throws.	
••••					
	d the least integer N	such that the p	probability of obtaining	ing a 6 before the l	Vth throw is n
	d the least integer <i>N</i> n 0.95.	such that the p	probability of obtaini	ing a 6 before the l	Vth throw is n
		such that the p	probability of obtaini	ing a 6 before the l	Vth throw is n
tha 					
tha 	n 0.95.				
tha 	n 0.95.				
tha 	n 0.95.				
tha 	n 0.95.				
tha 	n 0.95.				
tha 	n 0.95.				
tha 	n 0.95.				

		are summarised as follows.
	$\Sigma x = 72.0$	$\Sigma x^2 = 542.0$
Test at the 5% significance le	evel whether the far	mer's claim is justified, assuming a normal distribu

tole
$$X$$
 has probability density function
$$f(x) = \begin{cases} \frac{1}{4}(x-1) & 2 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find the distribution function of X .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
Гhа	renders veriable V is defined by $V = (V - 1)^3$	
	random variable Y is defined by $Y = (X - 1)^3$. Find the probability density function of Y .	[4]
		•••••

(iii)	Find the median value of Y .	[3]

	16
9	Two fish farmers X and Y produce a particular type of fish. Farmer X chooses a random sample of 8 of his fish and records the masses, $x \log x$.
	1.2 1.4 0.8 2.1 1.8 2.6 1.5 2.0
	Farmer Y chooses a random sample of 10 of his fish and summarises the masses, $y \log x$, as follows.
	$\Sigma y = 20.2 \qquad \Sigma y^2 = 44.6$
	You should assume that both distributions are normal with equal variances. Test at the 10% significance level whether the mean mass of fish produced by farmer X differs from the mean mass of fish produced by farmer Y .

10 A random sample of 5 pairs of values (x, y) is given in the following table.

x	1	2	4	5	8
у	7	5	8	6	4

(i)	Find, showing all necessary working, the equation of the regression line of y on x .	[4]
		· • • • • • • • • • • • • • • • • • • •

-	is sample	·•									
•••	•••••		•••••		•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••				•		•••••			•	•••••	•••••
•••	•••••		•••••	••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
•••	•••••	•••••	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••
					•••••						
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••										
	est, at the	10% sig	nificance	e level, v	whether	there is	evidence	of non-z	ero corre	elation l	betwee
	est, at the ariables.	10% sig	nificance	e level, v	whether	there is e	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is o	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is a	evidence	of non-z	ero corre	elation	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation l	betwee
		10% sig	nificance	e level, v	vhether	there is a	evidence	of non-z	ero corre	elation	betwee
		10% sig	nificance	e level, v	vhether	there is e	evidence	of non-z	ero corre	elation	betwee

11 Answer only **one** of the following two alternatives.

EITHER

A particle P of mass 3m is attached to one end of a light elastic spring of natural length a and modulus of elasticity kmg. The other end of the spring is attached to a fixed point O on a smooth plane that is inclined to the horizontal at an angle α , where $\sin \alpha = \frac{2}{3}$. The system rests in equilibrium with P on the plane at the point E. The length of the spring in this position is $\frac{5}{4}a$.

	Find the value of k .	[3]
The	e particle P is now replaced by a particle Q of mass $2m$ and Q is released from res	at at the point E .
(ii)	Show that, in the resulting motion, Q performs simple harmonic motion. State the period of the motion.	ne centre and the [6]

• • • •	
••••	
•••	
•••	
•••	
••••	
•••	
• • • •	
•••	
••••	
•••	
• • • •	
•••	
••••	
••••	
••••	
•••	
•••	
•••	
••••	

OR

A shop is supplied with large quantities of plant pots in packs of six. These pots can be damaged easily if they are not packed carefully. The manager of the shop is a statistician and he believes that the number of damaged pots in a pack of six has a binomial distribution. He chooses a random sample of 250 packs and records the numbers of damaged pots per pack. His results are shown in the following table.

Number of damaged pots per pack (x)	0	1	2	3	4	5	6
Frequency	48	69	78	32	22	1	0

(i)	Show that the mean numb	er of dan	naged por	ts per pa	ck in this	sample i	is 1.656.		[1]
		•••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••
		•••••	•••••	••••••	••••••		•••••	•••••	
			•••••						
		••••••	••••••		•••••	••••••	••••••	••••••	••••••
	following table shows son opriate binomial distribution		expected	l frequer	icies, com	ect to 2	decimal	places, u	ising an
	Number of damaged pots per pack (x)	0	1	2	3	4	5	6	
	Expected frequency	36.01	82.36	а	39.89	b	1.74	0.11	
(ii)	ii) Find the values of a and b , correct to 2 decimal places								[5]
			•••••		•••••			•••••	•••••
			•••••						
		•••••	•••••	••••••	•••••	•••••	•••••	•••••	
		•••••	•••••		•••••	•••••		•••••	

(iii)	Use a goodness-of-fit test at the 1% significance level to determine whether the manager's believed
()	is instituted as
	is justified. [8]

••••••
••••••
••••••
••••••
••••••
 ••••••
 ••••••
 ••••••
••••••
••••••
••••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.