

Reconstitution of the expression unit composed by the long λ pL promoter
(useful for Nalidixic acid induction) and the CLYTA-Mage-1 coding
sequence pRIT14614):

5 A EcoRI-NCO₁ restriction fragment containing the long PL promoter and a part
of CLYTA sequences was prepared from plasmid pRIT DVA6 and inserted
between the EcoRI-NCO₁ sites of plasmid pRIT14613.

The recombinant plasmid pRIT14614 was obtained.

10

The recombinant plasmid pRIT14614 (see figure 17) encoding the fusion
protein CLYTA-Mage-1-His was used to transform E. coli AR120. A Kan
resistant candidate strain was selected and characterized.

15

Characterization of the recombinant protein:

Bacteria were grown on LB Medium supplemented with 50mg/ ml kanamycin
at 30 °C. When the culture had reached OD = 400 (at 620nm) Nalidixic acid
was added to a final concentration of 60 mg/ ml.

20

After 4 hours induction, cells were harvested, resuspended in PBS and lysed by
desintegration (disintegration CLS "one shot" type). After centrifugation, pellet
supernatant and total extract were analyzed by SDS-PAGE. Proteins were
visualized in Coomassie Bleu stained gels, where the fusion protein represented
about 1 % of the total E. coli proteins. The fusion protein was identified by
Western blot analysis using rabbits anti-Mage-1 polyclonal antibodies. The
recombinant protein appeared as a single band with an apparent MW of about
49 kD.

EXAMPLE X:
CLYTA - MAGE-3-HIS

A: Tumour rejection recombinant antigen: a fusion protein CLYTA -Mage-3-His
5 where the C-lyt A fusion partner lead to expression of a soluble protein, act as affinity tag and provides a useful T-helper.

Preparation of the E. coli strain expressing a fusion protein CLYTA-Mage-3-His

tail

10 Construction of the expression plasmid pRIT14646 and transformation of the host strain AR 120:

Protein design:

15 The design of the fusion protein Clyta-Mage-3-His to be expressed in E. coli is described in figure 18.

The primary structure of the resulting protein has the sequence described in SEQUENCE ID No.9; and the coding sequence in sequence ID No. 10

20 The coding sequence corresponding to the above protein design was placed under the control of λ pL promoter in a E. coli expression plasmid.

25 Cloning:

The starting material was the vector PCUZ1 that contains the 117 C-terminal codons of the LytA coding region from Streptococcus pneumoniae, described in Gene 43, (1986) p. 265-272 and the vector pRIT14426, in which we have previously subcloned the MAGE-3 gene cDNA from a plasmid received from Dr Tierry Boon from the Ludwig Institute.

The cloning strategy for the expression of CLYTA-MAGE-3-His protein (see outline in Figure 19) included the following steps:

1- Preparation of the CLYTA-MAGE-3-His coding sequence module:

5

1.1. The first step was a PCR amplification, destined to flank the CLYTA sequences with the AflII and AflIII restriction sites. The PCR amplification was done using the plasmid PCUZ1as template and as primers the oligonucleotide sense: 5' tta aac cac acc tta agg agg ata taa cat atg aaa ggg gga att gta cat tca gac ,
10 and the oligonucleotide antisense: 5' ccc aca tgt cca gac tgc tgg cca att ctg gcc tgt ctg cca gtg . This leads to the amplification of a 427 nucleotides long CLYTA sequence. The above amplified fragment was cloned into the TA cloning vector of Invitrogen to get the intermediate vector pRIT14661

15 1.2. The second step was linking of CLYTA sequences to the MAGE-3-His sequences, to generate the coding sequence for the fusion protein. This step included the excision of a Afl II-Afl-III Clyta fragment and insertion into the vector pRIT14426 previously opened by Afl IIand NcoI (NcoI and AflII compatible) restriction enzymes and gave rise to the plasmid pRIT14662.

20

2.- Reconstitution of the expression unit composed by the long λ pL promoter (useful for Nalidixic acid induction) and the CLYTA-Mage-3 coding sequence:

A BglII - XbaI restriction fragment containing the short pL promoter and the
25 CLYTA-Mage-3-His coding sequences was prepared from plasmid pRIT14662, and inserted between the BglII - XbaI sites of plasmid TCM67 (a pBR322 derivative containing the resistance to ampicillin, and the long λ pL promoter, described in the international application PCT/EP92/O1827). The plasmid pRIT14607 was obtained.

30 The recombinant plasmid pRIT14607 encoding the fusion protein *Clyta-Mage-3 His* was used to transform E. coli AR 120 (Mott et al. 1985, Proc. Natl. Acad. Sci, 82: 88). An ampicillin resistant candidate strain was selected and characterized.

3. Preparation of plasmid pRIT 14646:

Finally a plasmid similar to pRIT 14607 but having the Kanamycin selection was constructed (pRIT 14646)

5

Characterization of the recombinant protein:

Bacteria were grown on LB Medium supplemented with 50mg/ ml kanamycin at
10 30°C. When the culture had reached OD = 400 (at 600nm) Nalidixic acid was added to a final concentration of 60?g/ ml.

After 4 hours induction , cells were harvested, resuspended in PBS and lysed by desintegration (desintegration CLS "one shot" type). After centrifugation, pellet supernatant and total extract were analyzed by SDS-PAGE. Proteins were
15 visualized in Coomassie Bleu stained gels, where the fusion protein represented about 1% of the total E. coli proteins. The fusion protein was identified by Western blot analysis using rabbits anti-Mage-3 polyclonal antibodies . The recombinant protein appeared as a single band with an apparent MW of about 58 kD.

20 EXAMPLE XI:**Purification of the recombinant protein CLYTA-Mage-3 His:**

The recombinant bacteria AR120 (pRIT 14646) were grown in a 20 Litters
25 fermentor under fed-batch conditions at 30°. The expression of the recombinant protein was induced by adding Nalidixic acid at a final concentration of 60 ?g/ml. Cells were harvested at the end of fermentationand and lyzed at 60 OD/600 by two passages through a French Press disrupter (20 000 psi). Lysed cells were pelleted 20 min at 15 000 g at 4 °C. Supernatant containing the recombinant protein was
30 loaded onto exchange DEAE Sepharose CL6B resin (Pharmacia) pre-equilibrated in 0.3M NaCl, 20 mM Tris HCl pH 7.6 Buffer A. After a column wash with buffer A, fusion protein was eluted by 2 % choline in (Buffer A). Positive antigen

fractions, as revealed by Western blotting analysis using an anti Mage-3 antibody, were pooled. DEAE-eluted antigen was brought to 0.5 % Empigen BB (a zwitterionic detergent) and to 0.5 M NaCl before loading onto an Ion Metal Affinity chromatography column preequilibrated in 0.5 % Empigen BB, 0.5 M NaCl, 50 mM phosphate buffer pH 7.6 (Buffer B).

IMAC column was washed with buffer B until 280 nm absorbency reached the base line. A second wash in buffer B without Empigen BB (Buffer C) in order to eliminate the detergent was executed before Antigen elution by an Imidazole gradient 0-250mM Imidazole in buffer C.

10 0.090-0.250 M Imidazole fractions were pooled, concentrated on a 10 kDa Filtron omega membrane before dialysis versus PBS buffer.

CONCLUSION:

15

We have demonstrated that the fused protein LPD-MAGE3-His is immunogenic in mice, and that this immunogenicity (the proliferative response and antibody response) can be further increased by the use of the adjuvant described above. Purification can be enhanced by derivatising the thiols that form disulphide bonds.

20 We have also demonstrated that a better antibody response was triggered by the vaccination with the LPD-MAGE-3-His in the presence of the adjuvant. The predominant isotype found in the serum of C57BL/6 being IgG2b suggesting that a TH1 type immune response was raised.

25 In the human, clinical setting a patient treated with LPD-MAGE3-His in an unadjuvanted formulation was cleared of melanoma.

CLAIMS:

1. A tumour-associated antigen derivative from the MAGE family.
2. An antigen as claimed in claim 1, when the derivative is a MAGE protein linked
5 to an immunological fusion or expression enhancer partner.
3. An antigen as claimed in claim 1 or 2 wherein the derivative comprises an
affinity tag.
4. An antigen as claimed in any of claims 1 to 3 which contains a derivatised free
thiol.
- 10 5. An antigen as claimed in claim 4 which is a carboxamide or carboxymethylated
derivative.
6. A protein as claimed in claim 2, 3, 4 or 5 wherein the fusion partner is protein
D or fragment thereof from Haemophilus influenzae B, NS1 protein from influenza
or a fragment thereof or LytA from Streptococcus pneumoniae or fragment thereof.
- 15 7. A protein as claimed in claim 2, 3, 4 or 5 wherein the fusion partner is the
lipidated form of protein D or fragment thereof from Haemophilus influenza B.
8. A protein as claimed in claim 1 to 7 wherein the MAGE protein is selected from
20 the group MAGE A1, MAGE A2, MAGE A3, MAGE A4, MAGE A5, MAGE A6,
MAGE A7, MAGE A8, MAGE A9, MAGE A10, MAGE A11, MAGE A12,
MAGE B1, MAGE B2, MAGE B3 and MAGE B4, MAGE C1, MAGE C2.
9. A nucleic acid sequence encoding a protein as claimed herein.
- 25 10. A vector comprising a nucleic acid of claim 9.
11. A host transformed with a vector of claim 10.

12. A vaccine containing a protein as claimed in any of claims 1 to 8 or a nucleic acid as claimed in claim 9.
13. A vaccine as claimed in claim 12 additionally comprising an adjuvant, and/or 5 immunostimulatory cytokine or chemokine.
14. A vaccine as claimed in claim 12 or 13 wherein the protein is presented in an oil in water or a water in oil emulsion vehicle.
- 10 15. A vaccine as claimed in claim 13 or 14 wherein the adjuvant comprises 3D-MPL, QS21 or a CpG oligonucleotide.
16. A vaccine as claimed herein additionally comprising one or more other antigens.
- 15 17. A vaccine as claimed herein for use in medicine.
18. Use of a protein or nucleic acid as claimed herein for the manufacture of a vaccine for immunotherapeutically treating a patient suffering from melanomas or 20 other MAGE-associated tumours.
19. A process for the purification of a MAGE protein or derivative thereof, comprising reducing the disulphide bonds, blocking the resulting free thiol group with a blocking group, and subjecting the resulting derivative to one or more 25 chromatographic purification steps.
20. A process for the production of a vaccine, comprising the steps of purifying a MAGE protein or a derivative thereof, by the process of claim 19 and formulating the resulting protein as a vaccine.

Figure 1 : LPD-MAGE-3-His

5

FIGURE 2 : Construction of the expression vector pRIT 14586

FIGURE 3 : Construction of plasmid pRIT 14477 expressing the fusion protein Prot. D 1/3-MAGE-3-His tail

FIGURE 4 Western blot analysis of LPD-MAGE-3-His protein
Anti-MAGE-3 monoclonal antibodies Mab 32 and Mab 54

- 1, 4, and 7 : molecular weight
2 : lot 96K19 revealed with Mab 32
3 : lot 96J22 revealed with Mab 32
4 : lot 96K19 revealed with Mab 54
5 : lot 96J22 revealed with Mab 54

Figure 5

IMMUNOGENICITY OF MAGE3 IN MICE (C57BL/6)**Lymphoproliferation on spleen cells.**72Hrs stimulation with 0.1 μ g/ml His Mage 3 on μ beads

Groups of mice	3H Thymidine incorporation baseline (CPM): 0.1 μ g/ml μ beads
S1	Non formulated LipoD Mage3 His
S2	LipoD Mage3 His + SBAS2
S3	SBAS2
S4	medium

FIGURE 6:**IMMUNOGENICITY OF MAGE3 IN MICE (G57BL/6J)**

Lymphoproliferation on lymph node cells.

72Hrs stimulation with 1 μ g/ml His Mage 3 on μ beads

Groups of mice		3H Thymidine incorporation baseline (CPM): 1 μ g/ml μ beads
LN1	Non formulated LipoD Mage3 His	477
LN2	LipoD Mage3 His + SBAS2	1025
LN3	SBAS2	251
LN4	medium	110

FIGURE 7:

IMMUNOGENICITY OF MAGE3 IN MICE (BalbC)**Lymphoproliferation on spleen cells**72Hrs stimulation with 0.1 μ g/ml

His Mage3 (A)

His Mage 3 coated on μ beads (B)

Groups of mice	^3H Thymidine incorporation		cpm
	none	0.1 μ g/ml μ b	
S1 Non Formulated LipoD Mage3 His	1002	1329	
S2 LipoD Mage 3 His + SBAS2	1738	4997	
S3 SBAS2	1885	3393	
S4 Medium	1535	1129	

A**B**

FIGURE 8:**IMMUNOGENICITY OF MAGE3 IN MICE (BalbC)****Lymphoproliferation on popliteal lymph node cells**

72Hrs stimulation with 1 µg/ml His Mage 3 (A)
 His Mage 3 coated on µbeads(B)

Groups of mice	3H Thymidine incorporation		cpm
	none	1µg/ml µb	
LN1 Non Formulated LipoD Mage3 His	309	386	
LN2 LipoD Mage 3 His + SBAS2	438	410	
LN3 SBAS2	522	637	
LN4 Medium	318	399	

A**B**

Anti-Mage3 antibodies in the serum of mice
immunized with LipoD Mage3 His in SBAS2 or not

BALB C mice

C57BL/6 mice

Subclass-specific antibody responses in Balb/c mice

	Tot. IgG	IgG1	IgG2a	IgG2b	IgA	IgM
PBS	0	0	0	0	0	0
S8AS2	733	719	378	11	0	0
LPO Mg3 His	6182	2049	2058	1835	0	0
LPO Mg3 H /S8AS2	44321	267864	31325	12160	0	0

Subclass-specific antibody responses in C57BL/6 mice

	Total IgG	IgG1	IgG2a	IgG2b	IgA	IgM
PBS	807	405	718	22.6	2.6	33.8
SBAS2	37	137	0	0	0	19
LPO Mg3His	5471	1343	332	4540	135	5
LPO Mg3H/SBAS2	11489	2477	2070	8118	55	46

Figure 12

5

Figure 13

Construction of plasmid pRIT14426

Figure 14:

Plasmid map of pRIT14426

Figure 16 : construction of plasmid pRIT 14613.

Figure 17 construction of plasmid pRIT 14614

Figure-18

CLYTA

Ala-Ser-Met-Leu-Asp

MAGE-3

Gly-Gly-HIS (7)

Figure 19

FIGURE 19 : Construction of plasmid pRIT 14646**I. Preparation of the CLYTA - Mage - 3 His coding sequence module.****II. Reconstitution of the expression unit composed by the long λ ph. promoter kan and the CLYTA - Mage - 3 coding sequence****III. Preparation of plasmid pRIT 14646.**

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANT: SmithKline Beecham Biologicals

(ii) TITLE OF THE INVENTION: Vaccine

10 (iii) NUMBER OF SEQUENCES: 10

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: SmithKline Beecham
- (B) STREET: 2 New Horizons Court, Great West Road, B
- (C) CITY: Middx
- (D) STATE:
- (E) COUNTRY: UK
- (F) ZIP: TW8 9EP

20 (v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette
- (B) COMPUTER: IBM Compatible
- (C) OPERATING SYSTEM: DOS
- (D) SOFTWARE: FastSEQ for Windows Version 2.0

25 (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

30 (vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:

35 (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Dalton, Marcus J
- (B) REGISTRATION NUMBER:
- (C) REFERENCE/DOCKET NUMBER: B45126

40 (ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 0181 9756348
- (B) TELEFAX: 0181 9756177
- (C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

50 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 452 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

55 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

60 Met Asp Pro Lys Thr Leu Ala Leu Ser Leu Leu Ala Ala Gly Val Leu
1 5 10 15
Ala Gly Cys Ser Ser His Ser Ser Asn Met Ala Asn Thr Gln Met Lys
20 25 30
Ser Asp Lys Ile Ile Ile Ala His Arg Gly Ala Ser Gly Tyr Leu Pro

	35	40	45
	Glu His Thr Leu Glu Ser Lys Ala Leu Ala Phe Ala Gln Gln Ala Asp		
	50	55	60
5	Tyr Leu Glu Gln Asp Leu Ala Met Thr Lys Asp Gly Arg Leu Val Val		
	65	70	75
	Ile His Asp His Phe Leu Asp Gly Leu Thr Asp Val Ala Lys Lys Phe		
	85	90	95
	Pro His Arg His Arg Lys Asp Gly Arg Tyr Tyr Val Ile Asp Phe Thr		
	100	105	110
10	Leu Lys Glu Ile Gin Ser Leu Glu Met Thr Glu Asn Phe Glu Thr Met		
	115	120	125
	Asp Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu Gly Leu Glu		
	130	135	140
15	Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gin Ala Pro Ala Thr		
	145	150	155
	Glu Glu Gln Glu Ala Ala Ser Ser Ser Ser Thr Leu Val Glu Val Thr		
	165	170	175
	Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro Gln Ser Pro		
	180	185	190
20	Gln Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro Leu Trp Ser		
	195	200	205
	Gln Ser Tyr Glu Asp Ser Ser Asn Gln Glu Glu Glu Gly Pro Ser Thr		
	210	215	220
25	Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser Arg Lys Val		
	225	230	235
	Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu Pro		
	245	250	255
	Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn Trp Gln Tyr		
	260	265	270
30	Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu Gln Leu Val		
	275	280	285
	Phe Gly Ile Glu Leu Met Glu Val Asp Pro Ile Gly His Leu Tyr Ile		
	290	295	300
35	Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp Asn		
	305	310	315
	Gln Ile Met Pro Lys Ala Gly Leu Leu Ile Ile Val Leu Ala Ile Ile		
	325	330	335
	Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp Glu Glu Leu		
	340	345	350
40	Ser Val Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Ile Leu Gly Asp		
	355	360	365
	Pro Lys Lys Leu Leu Thr Gin His Phe Val Gln Glu Asn Tyr Leu Glu		
	370	375	380
45	Tyr Arg Gin Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu Trp		
	385	390	395
	Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val Leu His His		
	405	410	415
	Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro Pro Leu His		
	420	425	430
50	Glu Trp Val Leu Arg Glu Gly Glu Glu Thr Ser Gly Gly His His His		
	435	440	445
	His His His		
	450		

55 (2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1353 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	ATGGATCCAA	AAACTTTAGC	CCTTTCTTAA	TTAGCAGCTG	CCGTACTAGC	AGGTTCTAGC	60
5	AGCCATTCA	CAAATATGGC	GAATAACCAA	ATGAAATCAG	ACAAAATCAT	TATTGCTCAC	120
	CGTGGTCTA	GCGGTTATTT	ACCAGAGCAT	ACGTTAGAAT	CTAAAGCACT	TGCCTTGCA	180
	CAACAGGCTG	ATTATTTAGA	GCAAGATTAA	GCAATGACTA	AGGATGGTCG	TTTAGTGGTT	240
	ATTACACGATC	ACTTTTTAGA	TGGCTTGACT	GATGTTGCAGA	AAAAATTCCC	ACATCGTCAT	300
	CCTAAAGATG	GCCGTTACTA	TGTCAATCGAC	TTTACCTTAA	AAGAAATTCA	AAGTTTAGAA	360
10	ATGACAGAAA	ACTTTGAAAC	CATGGATCTG	GAACAGCGTA	GTCAGCACTG	CAAGCCTGAA	420
	GAAGGCCCTG	AGGCCCGAGG	AGAGGCCCTG	GGCCTGGCTG	CTGCGCAGGC	TCCTGCTACT	480
	GAGGAGCAGG	AGGCTGCCCTC	CTCCCTTCT	ACTCTAGTTG	AAGTCACCCCT	GGGGGAGGTG	540
	CCTGCTGCCG	AGTCACCCAGA	TCTCCCCAG	AGTCCCTCAGG	GACCCCTCCAG	CCTCCCCACT	600
	ACCATCAACT	ACCCCTCTCTG	GAGGAAATCC	TATGAGGACT	CCAGCAACCA	AGAAGAGGAG	660
15	GGGCAAGCA	CCTTCCCTGA	CCTGGAGTCC	GAGTTCCAAG	GAGCACTCAG	TAGGAAGGTG	720
	GCCGAATTGG	TTCATTTCT	GCTCTCAAG	TATCGAGCCA	GGGAGCCGGT	CACAAAGGCA	780
	CAAATGCTGG	GGAGGTGCTG	CGGAAATTGG	CAGTATTCT	TTCTGTGAT	CTTCAGCAAA	840
	GCTTCCAGTT	CCTTCCAGCT	GGTCTTTGGC	ATCGAGCTGA	TGGAAGTGG	CCCCATCGGC	900
	CACTTGACAA	TCTTGGCAC	CTGGCTGGGC	CTCTCCTACG	ATGGCCTGCT	GGGTGACAAT	960
20	CAGATCATGC	CCAAGGCAGG	CCTCTGATA	ATCGTCTGG	CCATAATCGC	AAGAGAGGGC	1020
	GACTGTGCC	CTGAGGGAGAA	AATCTGGGAG	GAGCTGAGTG	TGTTAGAGGT	GTTTGAGGGG	1080
	AGGGAAGACA	GTATCTGGG	GGATCCCAG	AAGCTGCTCA	CCCAACATTT	CGTGCAGGAA	1140
	AACTACCTGG	AGTACCCGGCA	GGTCCCCGGC	AGTGAATCTG	CATSTTATGA	ATTCTGTGG	1200
	GGTCCAAGGG	CCCTCGTTGA	AACCAGCTAT	GTGAAAGTCC	TGCACCAATAT	GGTAAAGATC	1260
25	AGTGGAGGAC	CTCACATTTC	CTACCCACCC	CTGCATGAGT	GGGTTTGAG	AGAGGGGAA	1320
	GAGGGCGTC	ATCACCATCA	CCATCACCAT	TAA			1353

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1341 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	ATGGATCCAA	AAACTTTAGC	CCTTTCTTAA	TTAGCAGCTG	CCGTACTAGC	AGGTTCTAGC	60
40	AGCCATTCA	CAAATATGGC	GAATAACCAA	ATGAAATCAG	ACAAAATCAT	TATTGCTCAC	120
	CGTGGTCTA	GCGGTTATTT	ACCAGAGCAT	ACGTTAGAAT	CTAAAGCACT	TGCCTTGCA	180
	CAACAGGCTG	ATTATTTAGA	GCAAGATTAA	GCAATGACTA	AGGATGGTCG	TTTAGTGGTT	240
	ATTACACGATC	ACTTTTTAGA	TGGCTTGACT	GATGTTGCAGA	AAAAATTCCC	ACATCGTCAT	300
	CCTAAAGATG	GCCGTTACTA	TGTCAATCGAC	TTTACCTTAA	AAGAAATTCA	AAGTTTAGAA	360
45	ATGACAGAAA	ACTTTGAAAC	CATGGGCTCT	CTGGAACAGC	GTAGTCTGCA	CTGCAAGCCT	420
	GAGGAAGCCC	TTGAGGCCCA	ACAAGAGGCC	CTGGGCCTGG	TGTGTGTGCA	GGCTGCCACC	480
	TCCCTCTCT	CTCCCTGCTG	CCTGGGCACC	CTGGAGGAGG	TGCCCACTGC	TGGGTCAACA	540
	GATCCTCCCC	AGAGTCCTCA	GGGAGCCTCC	GCCTTCCCCA	CTACCAATCRA	CTTCACTCGA	600
	CAGAGGCAAC	CCAGTGAGGG	TTCCAGCAGC	CGTGAAGAGG	AGGGGCCAAC	CACCTCTTGT	660
50	ATCCTGGAGT	CCTTGTCCG	AGCAGTAATC	ACTAAGAAGG	TGGCTGATTT	GGTTGGTTTT	720
	CTGCTCTCA	AAATATCGAGC	CAGGGAGCCA	GTCACAAAGG	CAGAAATGCT	GGAGAGTGTG	780
	ATCAAAAATT	ACAAGCACTG	TTTTCTGTAG	ATCTTGGCA	AAGCCTCTGA	CTCCTTGGAG	840
	CTGGTCTTGC	GCATGTGACGT	GAAGGAAAGCA	GACCCCAACCG	GGCACTCTTA	TGTCTTGTGTC	900
55	ACCTGCTCTAG	GTCTCTCCTA	TGATGGCTG	CTGGGTGATA	ATCAGATCAT	GCCCCAAGACA	960
	GGCTTCTCTGA	TAATTGTCCT	GGTCATGATT	GCAATGGAGG	GGGGCCATGC	TCCTGAGGAG	1020
	GAAATCTGGG	AGGAGCTGAG	TGTGATGGAG	GTGATGATG	GGAGGGAGCA	CAGTGCCTAT	1080
	GGGGAGCCCA	GGAGAGCTGT	CACCCAAAGAT	TTGGTGCAGG	AAAAGTACCT	GGAGTACCGG	1140
	CAGGTGCCGG	ACAGTGATCC	CGCACGCTAT	GAGTCCCTGT	GGGGTCCAAG	GGCCCTCGCT	1200
60	GAAACCAAGCT	ATGTGAAAGT	CCTTGAGTAT	GTGATCAAGG	TCACTGCAAG	AGTTCGCTTT	1260
	TTCTTCCCAT	CCCTCGCTGA	AGCAGCTTG	AGAGAGGAGG	AAGAGGGAGT	GGGCGGTCAT	1320
	CACCATCACCA	ATCACCATTA	A				1341

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 466 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

10

Met	Asp	Pro	Lys	Thr	Leu	Ala	Leu	Ser	Leu	Leu	Ala	Ala	Gly	Val	Leu	
1				5				10					15			
Ala	Gly	Cys	Ser	Ser	His	Ser	Ser	Asn	Met	Ala	Asn	Thr	Gln	Met	Lys	
					20			25					30			
Ser	Asp	Lys	Ile	Ile	Ile	Ala	His	Arg	Gly	Ala	Ser	Gly	Tyr	Leu	Pro	
			35			40		45								
Glu	His	Thr	Leu	Glu	Ser	Lys	Ala	Leu	Ala	Phe	Ala	Gln	Gln	Ala	Asp	
			50			55		60								
Tyr	Leu	Glu	Gln	Asp	Leu	Ala	Met	Thr	Lys	Asp	Gly	Arg	Leu	Val	Val	
	65				70			75					80			
Ile	His	Asp	His	Phe	Leu	Asp	Gly	Leu	Thr	Asp	Val	Ala	Lys	Lys	Phe	
					85			90					95			
Pro	His	Arg	His	Arg	Lys	Asp	Gly	Arg	Tyr	Tyr	Val	Ile	Asp	Phe	Thr	
			100		105			105					110			
Leu	Lys	Glu	Ile	Gln	Ser	Leu	Glu	Met	Thr	Glu	Asn	Phe	Glu	Thr	Met	
			115			120		125								
Gly	Ser	Leu	Glu	Gln	Arg	Ser	Leu	His	Cys	Lys	Pro	Glu	Glu	Ala	Leu	
			130			135		140								
Glu	Ala	Gln	Gln	Glu	Ala	Leu	Gly	Leu	Val	Cys	Val	Gln	Ala	Ala	Thr	
	145			150			155		160							
Ser	Ser	Ser	Ser	Pro	Leu	Val	Leu	Gly	Thr	Leu	Glu	Glu	Val	Pro	Thr	
					165			170					175			
Ala	Gly	Ser	Thr	Asp	Pro	Pro	Gln	Ser	Pro	Gln	Gly	Ala	Ser	Ala	Phe	
			180			185		190								
Pro	Thr	Thr	Ile	Asn	Phe	Thr	Arg	Gln	Arg	Gln	Pro	Ser	Glu	Gly	Ser	
			195			200		205								
Ser	Ser	Arg	Glu	Glu	Glu	Gly	Pro	Ser	Thr	Ser	Cys	Ile	Leu	Glu	Ser	
			210			215		220								
Leu	Phe	Arg	Ala	Val	Ile	Thr	Lys	Lys	Val	Ala	Asp	Leu	Val	Gly	Phe	
	225				230			235					240			
Leu	Leu	Leu	Lys	Tyr	Arg	Ala	Arg	Glu	Pro	Val	Thr	Lys	Ala	Glu	Met	
					245			250					255			
Leu	Glu	Ser	Val	Ile	Lys	Asn	Tyr	Lys	His	Cys	Phe	Pro	Glu	Ile	Phe	
			260			265		270								
Gly	Lys	Ala	Ser	Glu	Ser	Leu	Gln	Leu	Val	Phe	Gly	Ile	Asp	Val	Lys	
			275			280		285								
Glu	Ala	Asp	Pro	Thr	Gly	His	Ser	Tyr	Val	Leu	Val	Thr	Cys	Leu	Gly	
			290			295		300								
Leu	Ser	Tyr	Asp	Gly	Leu	Leu	Gly	Asp	Asn	Gln	Ile	Met	Pro	Lys	Thr	
	305				310			315					320			
Gly	Phe	Leu	Ile	Ile	Val	Leu	Val	Met	Ile	Ala	Met	Glu	Gly	Gly	His	
					325			330					335			
Ala	Pro	Glu	Glu	Ile	Trp	Glu	Glu	Ser	Val	Met	Glu	Val	Tyr			
					340			345					350			
Asp	Gly	Arg	Glu	His	Ser	Ala	Tyr	Gly	Glu	Pro	Arg	Lys	Leu	Leu	Thr	
					355			360					365			
Gln	Asp	Leu	Val	Gln	Gln	Glu	Lys	Tyr	Leu	Glu	Tyr	Arg	Gln	Val	Pro	Asp
					370			375					380			
Ser	Asp	Pro	Ala	Arg	Tyr	Glu	Phe	Leu	Trp	Gly	Pro	Arg	Ala	Leu	Ala	
	385					390			395					400		
Glu	Thr	Ser	Tyr	Val	Lys	Val	Leu	Glu	Tyr	Val	Ile	Lys	Val	Ser	Aia	
					405			410					415			
Arg	Val	Arg	Phe	Phe	Phe	Pro	Ser	Leu	Arg	Glu	Ala	Ala	Leu	Arg	Glu	
					420			425					430			

Glu Glu Glu Gly Val Gly Gly His His His His His His His His
435 440 445

(2) INFORMATION FOR SEQ ID NO:5:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 404 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Asp Pro Asn Thr Val Ser Ser Phe Gln Val Asp Cys Phe Leu Trp
 1 5 10 15
 His Val Arg Lys Arg Val Ala Asp Gln Glu Leu Gly Asp Ala Pro Phe
 20 25 30
 Leu Asp Arg Leu Arg Arg Asp Gln Lys Ser Leu Arg Gly Arg Gly Ser
 35 40 45
 Thr Leu Gly Leu Asp Ile Glu Thr Ala Thr Arg Ala Gly Lys Gln Ile
 50 55 60
 Val Glu Arg Ile Leu Lys Glu Glu Ser Asp Glu Ala Leu Lys Met Thr
 65 70 75 80
 Met Asp Leu Gln Gln Arg Ser Gln His Cys Lys Pro Glu Glu Gly Leu
 85 90 95
 Glu Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gln Ala Pro Ala
 100 105 110
 Thr Glu Glu Gln Glu Ala Ala Ser Ser Ser Ser Thr Leu Val Glu Val
 115 120 125
 Thr Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro Gln Ser
 130 135 140
 Pro Gln Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro Leu Trp
 145 150 155 160
 Ser Gln Ser Tyr Glu Asp Ser Ser Asn Gln Glu Glu Gly Pro Ser
 165 170 175
 Thr Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser Arg Lys
 180 185 190
 Val Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu
 195 200 205
 Pro Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn Trp Gln
 210 215 220
 Tyr Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu Gln Leu
 225 230 235 240
 Val Phe Gly Ile Glu Leu Met Glu Val Asp Pro Ile Gly His Leu Tyr
 245 250 255
 Ile Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp
 260 265 270
 Asn Gln Ile Met Pro Lys Ala Gly Leu Leu Ile Ile Val Leu Ala Ile
 275 280 285
 Ile Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp Glu Glu
 290 295 300
 Leu Ser Val Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Ile Leu Gly
 305 310 315 320
 Asp Pro Lys Lys Leu Leu Thr Gln His Phe Val Gln Glu Asn Tyr Leu
 325 330 335
 Glu Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu
 340 345 350
 Trp Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val Leu His
 355 360 365
 His Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro Pro Leu
 370 375 380
 His Glu Trp Val Leu Arg Glu Gly Glu Gly His His His His

385

390

395

400

His His His

5 (2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1212 base pairs
 (B) TYPE: nucleic acid
 10 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ATGGATCAA	ACACTGTGTC	AAGCTTCAG	CTAGATTGCT	TTCTTTGCCA	TGTCCGCAAA	60
CGAGTTGCA	ACCAAGAACT	AGGTGATGCC	CCATTCCTTG	ATCGGCTTCG	CCGAGATCAG	120
AAATCCCTAA	GAGGAAGGGG	CAGCACTTCT	GGTCTGGACA	TCGAGACAGC	CACACGTGCT	180
~	GGAAAGCAGA	TAGTGGAGGG	GATTCTGAAA	GAAGAATCCG	ATGAGGGACT	240
ATGGATCTGG	AACAGCGTAG	TCAGCACTGC	AAGCCTGAAG	AAGGCCCTGA	GCCCCGAGGA	300
GAGGCCCTGG	GCCTGGTGGG	TGCGCAGGCT	CCTGCTACTG	AGGAGSCAGGA	GGCTGCTCTCC	360
TCCTCTTCTA	CTCTAGTTGA	AGTCACCCTG	GGGGAGGTGC	CTGCTGCCGA	GTCACCAGAT	420
CCTCCCCAGA	GTCCTCAGGG	AGCCTCCAGC	CTCCCCACTA	CCATGAACTA	CCCTCTCTGG	480
25 AGCCAATCCT	ATGAGGGACTC	CAGCAACCAA	GAAGAGGGAGG	GCCCAAGCAC	CTTCCCTGAC	540
CTGGACTCCG	AGTTCCAAGC	AGCACTCACT	AGGAAGGTGG	CCGAATTGGT	TCATTTTCTG	600
CTCCTCAAGT	ATCGAGCCAG	GGAGCCGGTC	ACAAAGGCAG	AAATGCTGGG	GAGTGTCCGTC	660
~	GGAAATTGGC	AGTATTCTCTT	TCCTGTGATC	TTCAGCAAAG	CTTCAGGTTG	720
25 GTCTTGGCA	TCGAGCTGAT	GGAAGTGGAC	CCCATCGGCC	ACTTGATACAT	CTTGCCACC	780
30 TGCCCTGGCC	TCTCTTACGA	TGGCUTGCIG	GGTGACAACTC	AGATCATGCC	CAAGGCAGGC	840
CTCCTGATTA	TCGTCCTGGC	CATAATCGCA	AGAGAGGGCG	ACTGTGCCCG	TGAGGGAGAAA	900
ATCTGGGAGG	AGCTGAGTGT	TTTAGAGGTG	TTTGAGGGGA	GGGAAGACAG	TATCTTGGGG	960
35 GATCCCAAGA	AGCTGCTCAC	CCAACATTTC	GTGCAGGAAA	ACTACCTGGA	GTACCGGCAG	1020
GTCCCCGGCA	GTGATCCTGC	ATGTTATGAA	TTCTGTGGG	GTCCAAGGGC	CCTCGTTGAA	1080
ACCAGCTATG	TGAAAGTCCT	GCACCATATG	GTAAAGATCA	GTGGAGGACC	TCACATTTC	1140
35 TACCCACCCCC	TGCATGAGTG	CGTTTGAGA	GAGGGGAAG	AGGGCGGTCA	TCACCATCAC	1200
CATCACCAATTAA						1212

40 (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 445 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 45 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

50 Met Lys Gly Gly Ile Val His Ser Asp Gly Ser Tyr Pro Lys Asp Lys	1	5	10	15
Phe Glu Lys Ile Asn Gly Thr Trp Tyr Tyr Phe Asp Ser Ser Gly Tyr	20	25	30	
55 Met Leu Ala Asp Arg Trp Arg Lys His Thr Asp Gly Asn Trp Tyr Trp	35	40	45	
Phe Asp Asn Ser Gly Glu Met Ala Thr Gly Trp Lys Lys Ile Ala Asp	50	55	60	
Lys Trp Tyr Tyr Phe Asn Glu Glu Gly Ala Met Lys Thr Gly Trp Val	65	70	75	80
Lys Tyr Lys Asp Thr Trp Tyr Tyr Leu Asp Ala Lys Glu Gly Ala Met	85	90	95	
Val Ser Asn Ala Phe Ile Gln Ser Ala Asp Gly Thr Gly Trp Tyr Tyr	100	105	110	

Leu Lys Pro Asp Gly Thr Leu Ala Asp Arg Pro Glu Leu Asp Met Gly
 115 120 125
 Ser Leu Glu Gln Arg Ser Leu His Cys Lys Pro Glu Glu Ala Leu Glu
 130 135 140
 5 Ala Gln Gln Glu Ala Leu Gly Leu Val Cys Val Gin Ala Ala Thr Ser
 145 150 155 160
 Ser Ser Ser Pro Leu Val Leu Gly Thr Leu Glu Glu Val Pro Thr Ala
 165 170 175
 Gly Ser Thr Asp Pro Pro Gln Ser Pro Gln Gly Ala Ser Ala Phe Pro
 180 185 190
 Thr Thr Ile Asn Phe Thr Arg Gln Arg Gln Pro Ser Glu Gly Ser Ser
 195 200 205
 Ser Arg Glu Glu Glu Gly Pro Ser Thr Ser Cys Ile Leu Glu Ser Leu
 210 215 220
 15 Phe Arg Ala Val Ile Thr Lys Lys Val Ala Asp Leu Val Gly Phe Leu
 225 230 235 240
 Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val Thr Lys Ala Glu Met Leu
 245 250 255
 Glu Ser Val Ile Lys Asn Tyr Lys His Cys Phe Pro Glu Ile Phe Gly
 260 265 270
 20 Lys Ala Ser Glu Ser Leu Gln Leu Val Phe Gly Ile Asp Val Lys Glu
 275 280 285
 Ala Asp Pro Thr Gly His Ser Tyr Val Leu Val Thr Cys Leu Gly Leu
 290 295 300
 25 Ser Tyr Asp Gly Leu Leu Gly Asp Asn Gln Ile Met Pro Lys Thr Gly
 305 310 315 320
 Phe Leu Ile Ile Val Leu Val Met Ile Ala Met Glu Gly Gly His Ala
 325 330 335
 Pro Glu Glu Ile Trp Glu Glu Leu Ser Val Met Glu Val Tyr Asp
 340 345 350
 Gly Arg Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu Thr Gln
 355 360 365
 Asp Leu Val Gln Glu Lys Tyr Leu Glu Tyr Arg Gln Val Pro Asp Ser
 370 375 380
 35 Asp Pro Ala Arg Tyr Glu Phe Leu Trp Gly Pro Arg Ala Leu Ala Glu
 385 390 395 400
 Thr Ser Tyr Val Lys Val Leu Glu Tyr Val Ile Lys Val Ser Ala Arg
 405 410 415
 Val Arg Phe Phe Pro Ser Leu Arg Glu Ala Ala Leu Arg Glu Glu
 420 425 430
 40 Glu Glu Gly Val Gly Gly His His His His His His His
 435 440 445

(2) INFORMATION FOR SEQ ID NO:8:

45 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1338 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

55	ATGAAAGGGG GAATTGTACA TTTCAGACGGC TCTTATCCAA AAGACAAGTG TGAGAAAATC	60
	AATGGCACTT GGTACTACTT TGACAGTTCA GGCTATATGC TTGCAGACCG CTGGAGGAAG	120
	CACACAGACG GCAACTGGTA CTGGTTCGAC AACTCAGGCG AAATGGCTAC AGGCTGGAAG	180
	AAAATCGCTG ATAAGTGGTA CTATTTAAC CAAGAAGGTG CCATGAAGAC AGGCTGGGTC	240
60	AAGTACAAGG ACACITGGTA CTACTTAGAC GCTAAAGAAC GCUCCATGGT ATCAAATGCC	300
	TTTATCCAGT CAGCGGACGG AACAGGCTGG TACTACCTCA AACCAGACGG AACACTGGCA	360
	GACAGGCCAG ATTGGACAT GGGCTCTCTG GAACAGCGTA GTCTGCACTG CAAGCCTGAG	420
	GAAGCCCTTG AGGCCCAACA AGAGGCCCTG GGCCTGGTGT GTGTGCAGGC TGCCACCTCC	480
	TCCTCCTCTC CTCTGGTCTT GGGCACCCCTG GAGGAGGTGC CCACTGCTGG GTCAACAGAT	540

	CCTCCCCAGA	GTCCTCAGGG	AGCCTCCGCC	TTTCCCCTA	CCATCAACTT	CACTCGACAG	600
	AGGCAACCCA	GTGAGGGTTC	CAGCAGCGT	GAAGAGGAGG	GGCCAAGCAC	CTCTTGATC	660
	CTGGAGTCCT	TGTTCCGAGC	AGTAATCACT	AAGAAGCTGG	CTGATTTGGT	TGGTTTCTG	720
5	CTCCCAAAT	ATCGAGCCAG	GGAGCCAGTC	ACAAAGCCAG	AAATGCTGG	GAGTGTCA	780
	AAAAATTACA	AGCACTGTTT	TCCTGAGATC	TTCGGCAAAG	CCTCTGAGTC	CTTGCAGCTG	840
	GTCTTGCA	TTGACGCTGAA	CGAACGAGAC	CCCACCGGCC	ACTCCTATGT	CCTTGTCA	900
	TGCCTAGGTC	TCTCTATGA	TGGCCTGCTG	GGTGATAATC	AGATCATGCC	CAAGACAGGC	960
	TTCCTGATAA	TTGCTCTGGT	CATGATTGCA	ATGGAGGGCG	CCCATGCTC	TGAGGGAGGAA	1020
10	ATCTGGAGG	AGCTGAGTGT	GATGGAGGTG	TATGATGGGA	GGGAGCACAG	TGCCTATGGG	1080
	GAGCCCAGGA	AGCTGCTCAC	CCAAGATTTG	GTGCAGGAAA	AGTACCTGGA	GTACCGGCAG	1140
	GTGCCGACA	GTGATCCCAC	ACGCTATGAG	TTCCCTGCTGG	GTCCAAGGGC	CCTCGCTGAA	1200
	ACCAGCTATG	TGAAAGTCCT	TGAGTATGTG	ATCAAGGTCA	GTGCAAGAGT	TCGCTTTTC	1260
	TTCCCATCCC	TGCGTGAAGC	AGCTTTGAGA	GAGGAGGAAG	AGGGAGTCGG	CGGTCA	1320
	CATCACCATC	ACCATTAA					1338

15 (2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 454 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

	Met Lys Gly Gly Ile Val His Ser Asp Gly Ser Tyr Pro Lys Asp Lys						
	1	5	10	15			
30	Phe Glu Lys Ile Asn Gly Thr Trp Tyr Tyr Phe Asp Ser Ser Gly Tyr						
	20	25	30				
	Met Leu Ala Asp Arg Trp Arg Lys His Thr Asp Gly Asn Trp Tyr Trp						
	35	40	45				
	Phe Asp Asn Ser Gly Glu Met Ala Thr Gly Trp Lys Lys Ile Ala Asp						
	50	55	60				
35	Lys Trp Tyr Tyr Phe Asn Glu Glu Gly Ala Met Lys Thr Gly Trp Val						
	65	70	75	80			
	Lys Tyr Lys Asp Thr Trp Tyr Tyr Leu Asp Ala Lys Glu Gly Ala Met						
	85	90	95				
40	Val Ser Asn Ala Phe Ile Gln Ser Ala Asp Gly Thr Gly Trp Tyr Tyr						
	100	105	110				
	Leu Lys Pro Asp Gly Thr Leu Ala Asp Arg Pro Glu Leu Ala Ser Met						
	115	120	125				
45	Leu Asp Met Asp Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu						
	130	135	140				
	Gly Leu Glu Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gln Ala						
	145	150	155	160			
	Pro Ala Thr Glu Glu Gln Glu Ala Ala Ser Ser Ser Ser Thr Leu Val						
	165	170	175				
50	Glu Val Thr Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro						
	180	185	190				
	Gln Ser Pro Gln Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro						
	195	200	205				
55	Leu Trp Ser Gln Ser Tyr Glu Asp Ser Ser Asn Gln Glu Glu Gly						
	210	215	220				
	Pro Ser Thr Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser						
	225	230	235	240			
	Arg Lys Val Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala						
	245	250	255				
60	Arg Glu Pro Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn						
	260	265	270				
	Trp Gln Tyr Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu						
	275	280	285				
	Gln Leu Val Phe Gly Ile Glu Leu Met Gln Val Asp Pro Ile Gly His						

	290	295	300
	Leu	Tyr Ile Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu	
	305	310	315
	Gly Asp Asn Gin Ile Met Pro Lys Ala Gly Leu Leu Ile Val Leu		320
5		325	330
	Ala Ile Ile Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp		335
	340	345	350
	Glu Glu Leu Ser Val Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Ile		
	355	360	365
10	Leu Gly Asp Pro Lys Lys Leu Leu Thr Gln His Phe Val Gln Glu Asn		
	370	375	380
	Tyr Leu Glu Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu		
	385	390	395
	Phe Leu Trp Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val		400
15		405	410
	Leu His His Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro		415
	420	425	430
	Pro Leu His Glu Trp Val Leu Arg Glu Gly Glu Gly His His		
	435	440	445
20	His His His His		
	450		

(2) INFORMATION FOR SEQ ID NO:10:

25 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1362 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

35	ATGAAAGGGG	GAATTGTACA	TTCAGACGGC	TCTTATCCAA	AAGACAAGTT	TGAGAAAAATC	60
	AATGGCACTT	GGTACTACTT	TGACAGTTCA	GGCTATATGC	TTGCAGACCG	CTGGAGGAAG	120
	CACACAGACG	GCAACTGGTA	CTGGTTCGAC	AACTCAGGGC	AAATGGCTAC	AGGCTGGAAAG	180
	AAAATCGCTG	ATAAGTGGTA	CTATTTCAAC	GAAGAAGGTG	CCATGAAGAC	AGGCTGGGTC	240
	AAGTACAAGG	ACACTTGGTA	CTACTTAGAC	GCTAAASAAG	GGCCCATGGT	ATCAANTGCC	300
40	TTTATCCAGT	CAGGGCAACGG	ACACAGGCTGG	TACTACCTCA	AACCAGACGG	AAACACTGGCA	360
	GACAGGCCAG	AAITGGCCAG	CATGCTGGAC	ATGGATCTGG	AACAGCGTAG	TCAGGCACTGC	420
	AAGCCTGAAG	AAGGCTTGA	GGCCCGAGGA	GAGGCCCTGG	GCCTGGTGGG	TGGCGCAGGCT	480
	CCTGCTACTG	AGGAGCAGGA	GGCTGCCTC	TCCTCTCTCA	CTCTAGTTGA	AGTCACCCCTG	540
	GGGGAGGGTC	CTGCTGCCGA	GTCAACCAGAT	CCTCCCCASA	GTCTCTCAGGG	AGCCTCCAGC	600
45	CTCCCCACTA	CCATGAACTA	CCCTCTCTGG	AGCCAATCT	ATGAGGACTC	CAGCRAACCAA	660
	GAAGAGGGAGG	GGCCAAGCAC	CTTCCCCTGAC	CTGGAGTCTG	AGTTCCAAGC	AGCACTCAGT	720
	AGGAAGGTGG	CCAAGTTGGT	TCATTTTCTG	CTCCCTCAAGT	ATCGAGCCAG	GGAGCCGGTC	780
	ACAAAGGCAG	AAATGCTGGG	GACTGCTGTC	GGAAATTGGC	AGTACTTCTT	TCTGTGATC	840
	TTCAGCAAAG	CTTCCGATTC	CTTGCAGCTG	GTCTTTGGCA	TCGAGCTGAT	GGAAAGTGGAC	900
50	CCCATCGGGC	ACGTGTACAT	CTTTCGCCACC	TGCCCTGGUC	TCTCCTACGA	TGGCCTGCTG	960
	GGTGACAATC	AGATCATGCC	CAAGACAGGGC	TTCCCTGATAA	TCATCCTGGC	CATAATCGCA	1020
	AAAGAGGGCG	ACTGTGCC	TGAGGAGAAA	ATCTGGGAGG	AGCTGAGTGT	GTTAGAGGTG	1080
	TTTGAGGGGA	GGGAAGACAG	TATCTCGGG	GATCCAAGA	AGCTGCTCAC	CCAATATTTC	1140
	GTGCAGGAAA	ACTACCTGGA	GTACCGGGCAG	GTCCCGGGCA	GTGATCTGTC	ATGCTATGAG	1200
55	TTCCCTGTGGG	GTCCAAGGGC	CCTCATTGAA	ACCAGCTATG	TGAAAGTCCT	GCACCATATG	1260
	GTAAAGATCA	GTGGAGGACC	TCGCATTGCC	TACCCACTCC	TGCATGAGTG	GGCTTTGAGA	1320
	GAGGGGGAG	AGGGCGGTCA	TCACCATCAC	CATCACCATT	AA		1362

REFERENCES:

- 5 - Anichini A., Fossati G., Parmiani G. *Immunol. Today*, 8: 385 (1987).
- De Plaen E., Arden K., Traversari C., et al. *Immunogenetics*, 40: 360 (1994).
- Gaugler B., Van den Eynde B., van der Bruggen P., et al. *J. Exp. Med.*,
10 179: 921 (1994).
- Herman J., van der Bruggen P., Immanuel F., et al. *Immunogenetics*,
43: 377 (1996).
- 15 - Inoue H., Mori M., Li J., et al. *Int. J. Cancer*, 63: 523 (1995).
- Kensil C.R., Soltysik S., Patel U., et al. in: Channock R.M. , Ginsburg H.S.,
Brown F., et al., (eds.), *Vaccines 92*,
(Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.),
20 36-40: (1992).
- Knuth A., Danowski B., Oettgen H.F., et al. *Proc. Natl. Acad. Sci. USA*,
81: 3511 (1984).
- 25 - Patard J.J., Brasseur F., Gil-Diez S., et al. *Int. J. Cancer*, 64: 60 (1995).
- Ribi E., et al. in: Levine L., Bonventre P.F., Morello J., et al. (eds.),
American Society for Microbiology, Washington DC, *Microbiology 1986*,
9-13; (1986).
- 30 - Van den Eynde B., Hainaut P., Hérin M. et al. *Int. J. Cancer*, 44: 634 (1989).

- Van der Bruggen P., Traversari C., Chomez P., et al. *Science*, 254: 1643 (1991).

- Van der Bruggen P., Bastin J., Gajewski T., et al. *Eur. J. Immunol.*, 24: 3038 (1994).

5

- Van Pel A., van der Bruggen P., Coulie P.G. , et al., *Immunol. Rev.*, 145: 229 (1995).

- Weynants P., Lethé B., Brasseur F., et al. *Int. J. Cancer*, 56: 826 (1994).

10

- Nishimura S, Fujita M, Terata N, Tani T, Kodama M, Itoh K, Nihon Rinsho Meneki Gakkai Kaishi 1997, Apr, 20 (2): 95-101.

- Fujie T et al, Ann Oncol 1997 Apr, 8 (4): 369-72.