

TRAITEMENT DU SIGNAL Sciences du Numérique - Première année TD3 : ECHANTILLONNAGE

Exercice 1 : Effet de l'échantillonnage

Soit le signal suivant : $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz.

- 1. Tracer la transformée de Fourier de x(t): X(f).
- 2. Est-il possible d'échantillonner x(t) sans perte d'information? Si oui à quelle condition?
- 3. Tracer, entre 0 et F_e , la transformée de Fourier de x(t) échantillonné à $T_e=1/F_e$ quand :
 - (a) $F_e = 30 \text{ kHz}.$
 - (b) $F_e = 8 \text{ kHz}.$
- 4. A partir des échantillons nous souhaitons reconstruire x(t) par filtrage passe-bas à $F_e/2$. Quels seront les signaux obtenus pour chaque fréquence d'échantillonnage précédente?

Exercice 2: Echantillonneur moyenneur

L''échantillonneur moyenneur est une méthode pratique d'échantillonnage qui consiste à calculer, toutes les T_e secondes (période d'échantillonnage), la valeur moyenne du signal pendant un intervalle de temps θ ($\theta \ll T$) et à affecter cette valeur moyenne à l'échantillon discrétisé :

$$y(kT_e) = \frac{1}{\theta} \int_{kT_e-\theta}^{kT_e} x(u) du$$
$$x_{ech}(t) = \sum_{k} y(kT_e) \, \delta(t - kT_e)$$

1. Démontrer que le signal échantillonné $x_{ech}(t)$ peut se mettre sous la forme :

$$x_{ech}(t) = \frac{1}{\theta} \left[\Pi_{\theta} \left(t \right) * x \left(t - \frac{\theta}{2} \right) \right] . \coprod_{T_e} (t)$$

où $\Pi_{\theta}(t)$ et $\coprod_{T_e}(t)$ représentent respectivement la fenêtre rectangulaire de largeur θ et le peigne de Dirac de période T_e .

- 2. En déduire la transformée de Fourier correspondante $X_{ech}(f)$.
- 3. En considérant un signal à support spectral borné $2\Delta f$ et en prenant en compte que la fonction $sinc(\pi\theta f)$ peut être supposé constante sur l'intervalle $\left[-\frac{1}{3\theta},\frac{1}{3\theta}\right]$

$$sinc(\pi\theta f) = \frac{\sin(\pi\theta f)}{\pi\theta f} \approx 1$$
pour $f \in \left[-\frac{1}{3\theta}, \frac{1}{3\theta} \right]$

- (a) quelle(s) condition(s) doit vérifier θ pour que le signal x(t) puisse être restitué par filtrage de $x_{ech}(t)$?
- (b) Dans ces conditions peut-on échantillonner à la fréquence de Shannon?

Rappels

$\begin{array}{c|c} \mathbf{Propri\acute{e}t\acute{e}s} \ \mathbf{g\acute{e}n\acute{e}rales} \\ \hline \parallel \mathbf{T.F.} \ \parallel \end{array}$

	T.F.	
ax(t) + by(t)	\Rightarrow	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\rightleftharpoons	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at+b)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)e^{i2\pi\frac{b}{a}f}$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

Formule de Parseval	Série de Fourier
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$	$\sum_{n \in \mathbb{Z}} c_n e^{+i2\pi n f_0 t} \rightleftharpoons \sum_{n \in \mathbb{Z}} c_n \delta\left(f - n f_0\right)$
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$	

Table de Transformées de Fourier

	T.F.	
1	\Rightarrow	$\delta\left(f ight)$
$\delta\left(t ight)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta\left(f-f_0 ight)$
$\delta\left(t-t_{0}\right)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\coprod_{T} (t) = \sum_{k \in \mathbb{Z}} \delta(t - kT)$	\rightleftharpoons	$\frac{1}{T}\coprod_{1/T}(f)$
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i} \left[\delta \left(f - f_0 \right) - \delta \left(f + f_0 \right) \right]$
$e^{-a t }$	\rightleftharpoons	$\frac{\frac{2a}{a^2+4\pi^2f^2}}{e^{-\pi f^2}}$
$e^{-\pi t^2}$	\rightleftharpoons	$e^{-\pi f^2}$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2\left(\pi Tf\right)$
$B\sin c\left(\pi Bt\right)$	\rightleftharpoons	$\Pi_{B}\left(f ight)$
$B\sin c^2 \left(\pi Bt\right)$	\rightleftharpoons	$\Lambda_{B}\left(f ight)$

!!!!!! Attention!!!!!

 $\Pi_{T}(t)$ note une fenêtre rectangulaire de support égal à T.

 $\Lambda_T(t)$ note une fenêtre triangulaire de support égal à 2T (de demi-base égale à T).

$$\Pi_{T}(t) * \Pi_{T}(t) = T \Lambda_{T}(t)$$