

planetmath.org

Math for the people, by the people.

Beltrami differential equation

 ${\bf Canonical\ name} \quad {\bf Beltrami Differential Equation}$

Date of creation 2013-03-22 14:08:34 Last modified on 2013-03-22 14:08:34

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 8

Author jirka (4157) Entry type Definition Classification msc 35F20 Classification msc 30C62

Related topic Quasiconformal Mapping

Suppose that $\mu:G\subset\mathbb{C}\to\mathbb{C}$ is a measurable function, then the partial differential equation

$$f_{\bar{z}}(z) = \mu(z) f_z(z)$$

is called the Beltrami differential equation.

If furthermore $|\mu(z)| < 1$ and in fact $|\mu(z)|$ has a uniform bound less then 1 over the domain of definition, then the solution is a quasiconformal mapping with http://planetmath.org/QuasiconformalMappingcomplex dilation $\mu(z)$ and http://planetmath.org/QuasiconformalMappingmaximal small dilatation $d_f = \sup_z |\mu(z)|$.

A conformal mapping has $f_{\bar{z}} \equiv 0$ and so the solution can be conformal if and only if $\mu \equiv 0$.

The partial derivatives f_z and $f_{\bar{z}}$ (where \bar{z} is the complex conjugate of z) can here be given in terms of the real and imaginary parts of f = u + iv as

$$f_z = \frac{1}{2}(u_x + v_y) + \frac{i}{2}(v_x - u_y),$$

$$f_{\bar{z}} = \frac{1}{2}(u_x - v_y) + \frac{i}{2}(v_x + u_y).$$

References

[1] L. V. Ahlfors. . Van Nostrand-Reinhold, Princeton, New Jersey, 1966