ML TA hours HW10 Colab experiment

2024.12.03

This week's colab homework

- 1. Self Attention
- 2. Multihead Self-Attention
- 3. Transformer

Part 1

1. Self Attention

- 2. Multihead Self-Attention
- 3. Transformer

TODO - compute the queries, keys, and values for each input

```
Make three lists to store queries, keys, and values
all_queries = []
all keys = []
all_values = []
# For every input
for x in all_x:
   # TODO -- compute the keys, queries and values.
     Replace these three lines
   query = np. ones like(x)
   key = np. ones like(x)
   value = np.ones_like(x)
   all queries. append (query)
   all keys. append (key)
   all values. append (value)
```

Hint:

$$egin{array}{lll} \mathbf{v}_m &= oldsymbol{eta}_v + oldsymbol{\Omega}_v \mathbf{x}_m, \ \mathbf{q}_n &= oldsymbol{eta}_q + oldsymbol{\Omega}_q \mathbf{x}_n \ \mathbf{k}_m &= oldsymbol{eta}_k + oldsymbol{\Omega}_k \mathbf{x}_m, \end{array}$$

TODO - complete the softmax function

```
def softmax(items_in):

# TODO Compute the elements of items_out
# Replace this line
items_out = items_in.copy()

return items_out;
```

Hint:

$$a[\mathbf{x}_m, \mathbf{x}_n] = \operatorname{softmax}_m \left[\mathbf{k}_{\bullet}^T \mathbf{q}_n \right]$$
$$= \frac{\exp \left[\mathbf{k}_m^T \mathbf{q}_n \right]}{\sum_{m'=1}^{N} \exp \left[\mathbf{k}_{m'}^T \mathbf{q}_n \right]},$$

TODO - compute the self attention values

```
# Create emptymlist for output
all_x prime = []
# For each output
for n in range(N):
   # Create list for dot products of query N with all keys
   all km qn = []
   # Compute the dot products
   for key in all_keys:
       # TODO -- compute the appropriate dot product
       # Replace this line
       dot product = 1
       # Store dot product
       all km on. append (dot product)
   # Compute dot product
   attention = softmax(all_km_qn)
   # Print result (should be positive sum to one)
   print("Attentions for output ", n)
   print(attention)
     TODO: Compute a weighted sum of all of the values according to the attention
      (equation 12.3)
   # Replace this line
   x_prime = np.zeros((D,1))
   all x prime.append(x prime)
```

Hint:

$$\mathbf{sa}_n[\mathbf{x}_1,\ldots,\mathbf{x}_N] = \sum_{m=1}^N a[\mathbf{x}_m,\mathbf{x}_n]\mathbf{v}_m.$$

The result will be like this (You can check if your answer is correct)

TODO - compute self attention in matrix form

```
Now let's compute self attention in matrix form
def self attention (X, omega v, omega q, omega k, beta v, beta q, beta k):
           TODO -- Write this function
                                                                                                                              Hint:
           1. Compute queries, keys, and values
                                                                                                                              \mathbf{V}[\mathbf{X}] = \boldsymbol{\beta}_v \mathbf{1}^{\mathbf{T}} + \boldsymbol{\Omega}_v \mathbf{X}
           2. Compute dot products
                                                                                                                              \mathbf{Q}[\mathbf{X}] = \boldsymbol{\beta}_q \mathbf{1}^{\mathrm{T}} + \boldsymbol{\Omega}_q \mathbf{X}
           3. Apply softmax to calculate attentions
           4. Weight values by attentions
                                                                                                                              \mathbf{K}[\mathbf{X}] = \boldsymbol{\beta}_k \mathbf{1}^{\mathbf{T}} + \boldsymbol{\Omega}_k \mathbf{X},
          Replace this line
      X \text{ prime} = \text{np. zeros like}(X);
                                                                                                                \mathbf{Sa}[\mathbf{X}] = \mathbf{V}[\mathbf{X}] \cdot \mathbf{Softmax} \Big[ \mathbf{K}[\mathbf{X}]^T \mathbf{Q}[\mathbf{X}] \Big]
     return X prime
```

The result will be like this (You can check if your answer is correct)

The answer should be the same as before.

Summarize what you need to do in the part 1

1. Complete all TODO parts as directed

Part 2

1. Self Attention

2. Multihead Self-Attention

3. Transformer

(two heads)

TODO - compute multihead self attention in matrix form

```
# Now let's compute self attention in matrix form

def multihead_scaled_self_attention(X, omega_vl, omega_vl, omega_kl, beta_vl,

# TODO Write the multihead scaled self-attention mechanism.

# 1. Compute queries, keys, and values

# 2. Apply softmax to calculate attentions and weight values by attentions

# 3. Concatenate the self-attentions and apply linear transformation

# Replace this line

X_prime = np.zeros_like(X) ;

return X prime
```

$$egin{array}{lll} \mathbf{V}_h &=& eta_{vh} \mathbf{1}^\mathrm{T} + \mathbf{\Omega}_{vh} \mathbf{X} \ \mathbf{Q}_h &=& eta_{qh} \mathbf{1}^\mathrm{T} + \mathbf{\Omega}_{qh} \mathbf{X} \ \mathbf{K}_h &=& eta_{kh} \mathbf{1}^\mathrm{T} + \mathbf{\Omega}_{kh} \mathbf{X}. \ \mathbf{Sa}_h[\mathbf{X}] &=& \mathbf{V}_h \cdot \mathbf{Softmax} \left[rac{\mathbf{K}_h^T \mathbf{Q}_h}{\sqrt{D}_a}
ight] \ \mathbf{MhSa}[\mathbf{X}] &=& \mathbf{\Omega}_c \Big[\mathbf{Sa}_1[\mathbf{X}]^T, \mathbf{Sa}_2[\mathbf{X}]^T, \ldots, \mathbf{Sa}_H[\mathbf{X}]^T \Big]^T \end{array}$$

The result will be like this (You can check if your answer is correct)

```
True values:

[[-21.207 -5.373 -20.933 -9.179 -11.319 -17.812]

[-1.995 7.906 -10.516 3.452 9.863 -7.24]

[5.479 1.115 9.244 0.453 5.656 7.089]

[-7.413 -7.416 0.363 -5.573 -6.736 -0.848]

[-11.261 -9.937 -4.848 -8.915 -13.378 -5.761]

[3.548 10.036 -2.244 1.604 12.113 -2.557]

[4.888 -5.814 2.407 3.228 -4.232 3.71]

[1.248 18.894 -6.409 3.224 19.717 -5.629]
```

Summarize what you need to do in the part 2

1. Complete all TODO parts as directed

Part 3

- 1. Self Attention
- 2. Multihead Self-Attention

3. Transformer

Dataset: Wikitext-2

Figure 1: The Transformer - model architecture.

Notice

def batchify(data, bsz):

```
# Uncomment one of the following that works for you.
# device = torch.device("cuda")
device = torch.device("mps")
# device = torch.device("cpu")
```

please set your device

```
from google.colab import drive
drive.mount('_content/drive')
import sys
sys.path.append('_content/drive/MyDrive/Week14/Week14/') # Change to your own path
import data

ve already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

corpus = data.Corpus('_content/drive/My Drive/Week14/Week14/data/wikitext-2') # Change to your own path
```

```
nbatch = data.size(0) // bsz
data = data.narrow(0, 0, nbatch * bsz)
data = data.view(bsz, -1).t().contiguous()
return data.to(device)

train_data = batchify(corpus.train, batch_size)
val_data = batchify(corpus.valid, eval_batch_size)
test_data = batchify(corpus.test, eval_batch_size)
ntokens = len(corpus.dictionary)
```

- Pay attention to the paths of the module and dataset here.
- The methods and paths will differ when using Colab and a local environment

TODO - Complete positional encoding function

```
Probabilities
                                                                                                                                     Softmax
   Define positional encoding used in the transformer model
                                                                                                                                     Linear
                                                                                                                                     Add & Nor
                                                                                                                                      Feed
   [TODO]: Build a positional encoding function that can be used in
                                                                                                                                     Forward
______
class PositionalEncoding(nn. Module):
                                                                                                                                     Multi-Head
                                                                                                                          Forward
            __init__(self, d_model, dropout=0.1, max len=5000):
                                                                                                                                    Add & Norm
                                                                                                                          Add & Norm
                super (PositionalEncoding, self). init ()
                                                                                                                                     Multi-Head
                                                                                                                          Attention
                                                                                                                                     Attention
                self. dropout = nn. Dropout (p=dropout)
                                                                                                                   Encodina
                                                                                                                           Input
                                                                                                                                      Output
        def forward(self, x):
                                                                                                                          Embedding
                                                                                                                                     Embedding
                                                                                                                           Inputs
                                                                                                                                     Outputs
                                                                                                                                    (shifted right)
                return self. dropout (x)
                                                                                                                     PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\rm model}})
                                                                                                                    PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})
```

Output

Build the Transformer model && Training

- This part does not require implementation, but please read and understand it.
- Write a description of the method for this part.

TODO - use the transfer model to generate new text

```
g. set state(initial state)
input = torch.randint(ntokens, (1, 1), dtype=torch.long, generator=g).to(device)
generated text =
         Fill out this section to use the transfer model
   i in range (num words):
       generated text = generated text + word +
print (generated text)
```

gradually generate text with a length of 100

Hints:

- 1. Predict next word probabilities.
- 2. Scale probabilities with temperature.
- 3. Sample the next word index.
- 4. Add sampled word to the input.
- 5. Find the word for the index.
- 6. Add word to the output text.

Like text solitaire

E.g., ** ** The " " The cat " " The cat is " " The cat is cute "

The result might look like this

walks nucleus a state holding from to by , " However 1 introduction low Yue tour that @-@ distracting studied latter , around . . to than the highlight Saving . Raj µm to , hold elite I and the Chevalier percent until Tech most of) " . . for to special are the this meet Beat a is sign crime lead for Ramon and November art horn old Link the touches the those author nine and greater Beaumont cover son flats . been C . debut Prussian , by the . once the persuade , week most are

Summarize what you need to do in the part 3

- 1. Complete all TODO parts as directed
- 2. Description of the methodology (Transformer Model, Training)
- 3. Conclusions and discussions

Submission

- After executing your code, download the .ipynb file and submit it to NTU COOL
- Submitted file name: student ID_week14_colab1_homework.ipynb

```
student ID_week14_colab2_homework.ipynb
```

student ID_week14_colab3_homework.ipynb

- HW10 Deadline : 2024/12/10 23:59 (Monday night)
- No late submission

If there are any questions

Email: r12945048@ntu.edu.tw (add "[ML HW10]" to the beginning of the title.)