Esercitazione 4

Metodi alle differenze finite per PDEs in 1D.

4.1 a) Discretizzare l'equazione di Poisson in 1D

$$-u_{xx} = 1$$
 su [0 1], con dati al bordo $u(0) = 1$, $u(1) = -1$,

con differenze finite centrate su una griglia equispaziata di n+2 punti, con il primo $x_1=0$ e l'ultimo $x_{n+2}=1$ riservati per i dati al bordo e gli n punti interni per la soluzione numerica. Sia h=1/(n+1) il passo di discretizzazione. Calcolare la soluzione esatta u(x), la soluzione numerica $[u_1,u_2,...,u_n]^T$ nei nodi interni, l'errore $e_h=\max_i |u(x_i)-u_i|$ e tracciare un grafico loglog di e_h in funzione di h.

- b) Ripetere il punto precedente con termine noto sin(x) invece di 1. Commentare la differenza dell'andamento degli errori e_h fra a) e b).
- 4.2 a) Discretizzare l'equazione del calore in 1D in spazio

$$u_t = u_{xx}$$
 su [0 1] × [0 T],
 $u(0,t) = 0$, $u(1,t) = 0$,
 $u(x,0) = 100\sin(\pi x)$.

con differenze divise all'indietro in tempo (Eulero implicito) con passo k e differenze finite centrate in spazio con passo k. Verificare che la soluzione esatta è $u(x) = 100e^{-\pi^2 t}\sin(\pi x)$, calcolare la soluzione numerica $u_j = [u_{1j}, u_{2j}, \dots, u_{nj}]^T$ al passo temporale t_j , l'errore al passo t_j $e_j = \max_i |u(x_i, t_j) - u_{ij}|$ e studiare come l'errore dipende dai passi di discretizzazione k e k.

b) Ripetere il punto precedente sostituendo ai dati al bordo di Dirichlet i dati di Neumann

$$u_x(0,t) = 0, \quad u_x(1,t) = 0,$$

trascurando il calcolo dell'errore (perchè cambia la soluzione esatta).