

ornl

**OAK RIDGE
NATIONAL
LABORATORY**

MARTIN MARIETTA

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

ORNL/M-755

**Ceramic Technology for Advanced
Heat Engines Project Data Base:
September 1988 Summary Report**

B. L. P. Booker

BALLISTIC MISSILE
DEFENSE ORGANIZATION
7100 Defense Pentagon
Washington, D.C. 20301-7100

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

20010823 070

UL6845-

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A06 Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CERAMIC TECHNOLOGY FOR ADVANCED HEAT ENGINES PROJECT
DATA BASE: SEPTEMBER 1988 SUMMARY REPORT

B. L. P. Booker

Oak Ridge National Laboratory
Oak Ridge, Tennessee

Date Published: March 1989

NOTICE: This document contains information of a preliminary nature.
It is subject to revision or correction and therefore does not
represent a final report.

Prepared for the
Assistant Secretary for Conservation and Renewable Energy
Office of Transportation Systems
Advanced Materials Development Program
EE 04 00 00 0

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U. S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400

ABSTRACT

A large volume and wide variety of data on the behavior of advanced ceramic materials are currently being generated within the Ceramic Technology for Advanced Heat Engines project (CTAHE). This is the second in a series of reports summarizing the data stored in the microcomputer-based CTAHE data base. Each report features a different class of ceramics, with as much information on materials in that class as has then been processed. This report concentrates on zirconia-based ceramics.

INTRODUCTION

The purpose of the CTAHE data base is to provide the technical community access to the data generated under the CTAHE project. This document reports progress on developing the database and presents a selected sample of the type and format of the data presently in storage at Oak Ridge National Laboratory. The data discussed in this report are for zirconia-based ceramics.

Information in this report concentrates on zirconia-based ceramics, currently the largest material class represented in the data base. Some data on alumina-zirconia is also included. The only information repeated from the first summary report¹ is in the Weibull plots in Appendix II, Section 6.

Some material designations have been changed from those used previously¹ to achieve uniformity. We will now report materials by the manufacturers' designation. As a result, ceramics from the Army Materials Technology Laboratory have been renamed to conform with the manufacturers' designations. For example, the ceramic formerly reported as NGK LOCKE is now listed as Z-191; AC SPARKPLUG is now TZP-110; TOSHIBA is now TASZIC; KORANSHA KH is now 1986H, etc. While the suppliers and materials are the same, the information will be more traceable through the manufacturers' designations.

Current goals of this data base system are limited to data storage and retrieval and do not include extensive data manipulation. Data is stored as provided by the testing laboratories. If statistical treatment of the data is provided it will be included, but statistical analysis of unprocessed data will not be provided.

SYSTEM STATUS UPDATE

Since the publication of the previous summary¹, the Ceramic Technology for Advanced Heat Engines data base has been expanded to include additional types of test results and revisions of material characterization information. The system now accommodates results on fracture toughness tests, various types of fatigue tests, modulus of rupture (MOR) four point bend tests, shear stress tests, thermal expansion tests, tensile tests, X-ray diffraction studies, density and elasticity measurements under varying conditions, phase analyses, powder analyses, process and thermal histories, testing methods and apparatus, chemical analyses, and microstructural details. Approximately 2500 test results are stored at present, covering 73 different ceramics.

The information currently being processed is provided by several different sources, rather than just from test results supplied directly by the testing laboratories. Most of the information is being taken from previous CTAHE project semiannual and bimonthly reports, as well as associated reports generated by the CTAHE project. The goal of the system is to make readily available as much of the data generated within the CTAHE project as facilities permit. This will include all details on the materials composition, processing history, characterization, test method and test results as provided by the suppliers and laboratories involved.

DATA SUMMARY

The data in this report covers 39 different ceramic materials, 33 of which are zirconia-based. Data was provided on magnetic media direct from the testing laboratory, extracted from the Army Materials Technology Laboratory report Effect of Time and Temperature on Transformation Toughened Zirconias² by Liselotte Schioler, and the Ceramic Technology for Advanced Heat Engines Program semiannual and bimonthly progress reports. Results of tensile, stress-rupture, MOR four point bend, fracture toughness, and welded joint shear stress tests have been organized into tables and are in Appendix II of this document. All the material characterization information provided in these sources was included, covering intrinsic properties at room temperature, phase analyses, chemical analyses, X-ray analyses, densities, and elasticities after various heat treatments, as well as material fabricator and fabricator codes, if known. This material characterization and background information can be found in Appendix I. This report does not include data published in the previous summary report, except the data used in the Weibull plot, but does include some of the materials characterization information for those data.

SYSTEM ACCESS

The purpose of the database is to provide a convenient, retrievable storage of the data generated by the CTAHE project. Since most of the engineering/design community has access to microcomputers, and the costs and problems associated with maintaining a data base on a microcomputer are much less than those associated with mainframes, the original system has been set up in Ashton-Tate's dBASE III+ framework on a Bernoulli 20 megabyte cartridge on an IBM PC/AT. All data files can be copied to floppy disks for other dBase III+ users, or converted to a variety of other formats, including flat character files, Lotus 1-2-3 files, Microsoft EXCEL (Apple Macintosh) files, and other formats as needed. There are no plans at present to upload the system to a mainframe accessible offsite. Local and remote users may request copies of the whole set of data files or just on specific parts (certain materials, or all MOR data, or all tensile data on zirconia-based ceramics, for example) to be sent to them on floppy disks in one of the formats listed previously.

Presently, the system consists of fifteen different files, each containing a specific type of information. This number of files will grow as other types of tests are added to the system. Linking the information in the different files together (for example, linking material characteristics records to cyclic fatigue data for a given material) can be confusing to the occasional user. To alleviate this problem, a user-friendly interface is being developed that will do the linking for the user. The interface will work within the dBASE III+ structure, so that users must have dBASE III+ for the interface to work. Once fully tested and documented, this interface will be available to all users. Estimated time of completion is December 1989, although a preliminary version might be available earlier for user testing.

FUTURE SUMMARY REPORTS

The next summary report, scheduled for completion in March 1989, will feature test results and available material characterization information on silicon nitrides and silicon carbides, including whisker toughened materials. The fourth summary report, scheduled for September 1989, will feature alumina-based ceramics.

REFERENCES

1. M. K. Booker, Ceramic Technology for Advanced Heat Engines Program Data Base: A Summary Report. ORNL/M-462, Oak Ridge National Laboratory, Oak Ridge, Tennessee (April 1988).
2. L. J. Schioler, Effect of Time and Temperature on Transformation Toughened Zirconias. MTL 87-29. U. S. Army Materials Technology Laboratory, Watertown, Massachusetts (June 1987).

APPENDIX CONTENTS

Appendix I. Material Characterization and Background Information

 Section 1. Background and General Material Information

 Section 2. Chemical Analyses

 Section 3. Microstructural and Phase Analyses

 Part 3A. Microstructure Information

 Part 3B. Phase Analyses

 Part 3C. X-ray Diffraction Data

 Section 4. Other Intrinsic Properties

 Part 4A. Elasticity Data Tables

 Part 4B. Density Data Tables

 Part 4C. Density vs Heat Treatment Time Plots

Appendix II. Test Results

 Section 1. Stress Rupture Data

 Section 2. Cyclic Fatigue Data

 Section 3. Welded Joint Shear Stress Data

 Section 4. Fracture Toughness Data

 Section 5. Tensile Data

 Part 5A. Tensile Data Table

 Part 5B. Tensile Strength vs Temperature Plot

 Section 6. Weibull Information

 Part 6A. Weibull Data

 Part 6B. Weibull Plots

 Section 7. Modulus of Rupture - Four Point Bend Data

APPENDIX I. MATERIAL CHARACTERIZATION AND BACKGROUND INFORMATION

SECTION 1. BACKGROUND AND GENERAL MATERIAL INFORMATION

CHARACTERISTICS OF MATERIALS TESTED BY
THE ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	MATERIAL CLASS	BATCH CODE	SUPPLIER	PROCESS	VINTAGE	MATRIX	STABILIZER	AS RECEIVED, ROOM TEMPERATURE PROPERTIES					WEIBULL MODULUS
								DENSITY g/cc	MOR MPa	MOE GPa	HARDNESS TEST		
1985	ZIRCONIA TZZ	HIT1985/MTL	HITACHI	HOT-PRESSED	1985	ZrO ₂	2 mole% Y2O ₃	6.038	213	1169	Knoop	12.4	3.6
1986H	ZIRCONIA TZZ	KOR1986H/MTL	KORANSHA	HIPED	1986	ZrO ₂	3 mole% Y2O ₃	6.045	214	1261	Knoop	12.4	8.8
1986S	ZIRCONIA TZZ	KOR1986S/MTL	KORANSHA	SINTERED	1985	ZrO ₂	3 mole% Y2O ₃	5.966	210	640	Knoop	10.8	9.5
AC-SENSOR	ZIRCONIA PSZ	AMTL-A/ACS82	AC SPARKPLUG		1982	ZrO ₂	Y2O ₃	5.670	213	Vickers	10.71	10.2	
AFC-TTZ	ZIRCONIA TZZ	AMTL-K/AFCK	AMER. FELDMUEHLE	HOT PRESS ED	?	ZrO ₂	MgO	0.000	215				
CERAD-FSZ	ZIRCONIA FSZ	AMTL-F/CERAD82	CERADYNE		1982	ZrO ₂	Y2O ₃	5.600	180	Vickers	12.08	4.5	
COORS-TZP	ZIRCONIA TZP	AMTL-J/COORS84	COORS PORCELAIN		1984	ZrO ₂	Y2O ₃	5.940	211	Vickers	12.08	4.5	
COORS-ZDM	ZIRCONIA TZZ	AMTL-G/COORS81	COORS PORCELAIN		1981	ZrO ₂	MgO	5.290	149	Vickers	8.99	21.4	
COORS-ZDM	ZIRCONIA TZZ	AMTL-H/COORS81	COORS PORCELAIN		1983	ZrO ₂	MgO	5.650	199	Vickers	8.99	4.2	
COORS-ZDY	ZIRCONIA FSZ	AMTL-J/COORS81	COORS PORCELAIN		1981	ZrO ₂	Y2O ₃	5.530	189	Vickers	8.99	16.0	
CZ-203	ZIRCONIA TZZ	CERAM.CZ203/MTL	CERAMATEC	SINTERED	1987	ZrO ₂	12 mole% CeO ₂						
MS-TZZ	ZIRCONIA TZZ	AMTL-E/NILSEN82	NILSEN, USA		1982	ZrO ₂	MgO	5.650	208	Vickers	9.69	13.4	
NGK-TZP	ZIRCONIA TZP	AMTL-M/NGKM	NGK SPARKPLUG		?	ZrO ₂	Y2O ₃	0.000	198	Vickers	12.82		
NGK-TZP	ZIRCONIA TZP	AMTL-N/NGKN	NGK SPARKPLUG		?	ZrO ₂	Y2O ₃	5.770	198	Vickers	11.42	13.5	
NILSEN-TZZ	ZIRCONIA TZZ	AMTL-C/NILSEN	NILSEN, USA		?	ZrO ₂	MgO	0.000	227	Vickers	9.78		
NRL-TZP	ZIRCONIA TZP	AMTL-B/NRL82	NAVAL RESEARCH LAB.		1982	ZrO ₂	Y2O ₃	5.770	202	Vickers	10.93		
TASZIC	ZIRCONIA TZZ	TOSTASZIC/MTL	TOSHIBA CERAMICS	SINTERED	1985	ZrO ₂	2-3 mole% Y2O ₃	5.880	200	633	Knoop	10.1	6.2
TOR-TZPH	ZIRCONIA TZP	AMTL-Q/TORA Y83	TORAY CO.	HOT PRESS ED	1983	ZrO ₂	Y2O ₃	5.950	215	Vickers	12.55		
TOR-TZPSN	ZIRCONIA TZP	AMTL-R/TORA Y83	TORAY CO.	SINTERED	1983	ZrO ₂	Y2O ₃	5.900	213	Vickers	11.34		
TOSH-TZP	ZIRCONIA TZP	AMTL-P/TOSHBA83	TOSHIBA CERAMICS		1983	ZrO ₂	Y2O ₃	5.930	209	Vickers	11.56	10.2	
TS-TZ	ZIRCONIA TZZ	AMTL-D/NILSEN82	NILSEN, USA		1982	ZrO ₂	MgO	5.660	227	Vickers	9.12	14.1	
TZP-110	ZIRCONIA TZP	ACTZP110/MTL	AC SPARKPLUG	SINTERED	1985	ZrO ₂	2.6 mole% Y2O ₃	5.835	204	753	Knoop	11.1	12.2
Z-191	ZIRCONIA TZP	AMTL-O/NGK84	NGK SPARKPLUG		1984	ZrO ₂	Y2O ₃	5.770	205	Vickers	12.55	13.5	
Z-191	ZIRCONIA TZP	NGKZ191/MTL	NGK-LOCKE	SINTERED	1985	ZrO ₂	3 mole% Y2O ₃	5.869	208	873	Knoop	10.9	15.2
Z-201	ZIRCONIA TZZ	KYOZ201/MTL	KYOCERA	SINTERED	1985	ZrO ₂	2.8 mole% Y2O ₃	5.853	201	745	Knoop	10.5	8.8
Z-201	ZIRCONIA TZZ	KYOZ701/MTL	KYOCERA	HIPED	1988	ZrO ₂	Y2O ₃	5.580	194	Vickers	9.0	7.7	
ZRCOA2120	ZIRCONIA TZZ	AMTL-S/CGW	CORNING GLASS WRKS		1982	ZrO ₂	MgO	5.510	215	Vickers	9.32	5.9	
ZT-35	ZIRCONIA PSZ	AMTL-I/AFCS2	AMER. FELDMUEHLE		1982	ZrO ₂	MgO						

CHARACTERISTICS OF MATERIALS TESTED BY
THE ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	MATERIAL CLASS	BATCH CODE	FABRICATOR	MATRIX	DENSITY g/cc	MOE GPa	HARDNESS TEST 2Kg load, GPa	MOLE % CHROMIA IN ALUMINA *	MOLE % HAFNIA IN ZIRCONIA **
UM-ZTA1	ALUMINA ZTA	AMTL-U1M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	4.330	363	Vickers 16.64	10	10
UM-ZTA2/HI	ALUMINA ZTA	AMTL-U2H/M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	4.370	351	Vickers 15.97	10	20
UM-ZTA2/ME	ALUMINA ZTA	AMTL-U2M/M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	4.370	-	Vickers -	10	20
UM-ZTA2/L0	ALUMINA ZTA	AMTL-U2L/M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	4.370	241	Vickers -	10	20
UM-ZTA3/HI	ALUMINA ZTA	AMTL-U3H/M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	4.400	352	spalled	20	10
UM-ZTA3/L0	ALUMINA ZTA	AMTL-U3L/M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	4.400	248	-	20	10
UM-ZTA4	ALUMINA ZTA	AMTL-U4M/M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	4.300	361	Vickers 15.95	20	20
UM-ZTM5	ALUMINA-ZTM	AMTL-U5/M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	3.390	182	Vickers 9.15	6.26	
UM-ZTM6	ALUMINA-ZTM	AMTL-U6/M7LLS	UNIV. OF MICHIGAN	Al2O3+ZrO2	3.420	169	Vickers 6.26		

* Chromia was added to alumina to reduce thermal conductivity.

** Hafnia was added to zirconia to increase stable transformation temperature

MATERIAL CHARACTERISTIC INFORMATION FOR ZIRCONIA AND ALUMINA-BASED CERAMICS TESTED BY
THE UNIVERSITY OF DAYTON RESEARCH INSTITUTE
TEST DATA REPORTED IN PREVIOUS SUMMARY REPORT (REF. 1)

MATERIAL	MATERIAL CLASS	SUPPLIER	PROCESS	MATRIX	STABILIZER	DENSITY (g/cc)	VICKER'S HARDNESS (kg/mm ²)	THERMAL EXPANSION COEFFICIENT (x10 ⁻⁶ /C)	KIC MICRO-INDENT (MPa m ^{.5})
MS-PSZ	ZIRCONIA PSZ	NILCRA CERAMIC	Sintered	ZrO ₂	3wt%MgO	5.69	1099	10.3	7.6
PSZ-Z201	ZIRCONIA PSZ	KYOCERA	Sintered	ZrO ₂	5.4wt% Y2O ₃	5.90	1282	11.0	8.8
TS-PSZ	ZIRCONIA PSZ	NILCRA CERAMIC	Sintered	ZrO ₂	3wt%MgO	5.78	1025	9.5	6.0
Z191	ZIRCONIA TZP	NGK-LOCKE	Sintered	ZrO ₂	5wt% Y2O ₃	5.90	1292	10.1	7.4
CIZP	ZIRCONIA TZP	CERAMATEC	Sintered	ZrO ₂	CeO ₂ + Al2O ₃	5.70	1099	10.3	7.0
YZP-XS241	ZIRCONIA TZP	CERAMATEC	Sintered	ZrO ₂	5wt% Y2O ₃	5.56	1120	9.9	6.6
DTA-AZ301	ALUMINA ZTA	KYOCERA	Stoichiometric	Al2O ₃ w/19%ZrO ₂		4.20	1939	8.4	11.1
ZTA-XS121	ALUMINA ZTA	CERAMATEC	Stoichiometric	Al2O ₃ w/ZrO ₂		4.40	1172	9.4	6.9

SECTION 2. CHEMICAL ANALYSES

**CHEMISTRIES OF MATERIALS IN AS RECEIVED STATE
TESTED BY THE ARMY MATERIALS TECHNOLOGY LABORATORY**

MATERIAL	BATCH CODE	Weight %									
		Al	Ca	Cr	Fe	Mg	Si	Ti	Y	Zr	Zn
AC-SENSOR	AMTL-A/ACS82	1.83	0.00	0.02	0.06	0.00	0.02	0.05	6.10	0.00	0.06
NRL-TZP	AMTL-B/NRL82	0.10	0.05	0.00	0.07	0.02	0.05	0.07	6.50	0.00	-
NILSEN-TTZ	AMTL-C/NILSEN	0.15	0.01	0.00	0.00	1.88	0.00	0.07	0.05	0.00	0.04
TS-TTZ	AMTL-D/NILSEN82	0.03	0.00	0.00	0.04	1.98	0.00	0.08	0.04	0.00	0.08
MS-TTZ	AMTL-E/NILSEN82	0.10	0.04	0.00	0.08	1.94	0.05	0.13	0.00	0.00	-
CERAD-FSZ	AMTL-F/CERAD82	0.01	0.00	0.01	0.02	0.01	0.00	0.08	11.10	0.00	0.03
COORS-ZDM	AMTL-G/COORS81	0.11	0.07	0.03	0.01	1.48	0.06	0.04	0.08	0.00	0.04
COORS-ZDM	AMTL-H/COORS81	0.05	0.00	0.00	0.00	1.71	0.00	0.04	0.01	0.00	0.00
COORS-TZP	AMTL-I/COORS84	0.68	0.00	0.02	0.03	0.01	0.09	0.08	4.20	0.00	-
COORS-ZDY	AMTL-J/COORS81	0.36	0.68	0.01	0.02	0.03	0.43	0.05	7.10	0.00	0.02
AFC-TTZ	AMTL-K/AFCK	0.09	0.02	0.02	0.01	2.29	0.02	0.04	0.03	0.00	0.02
ZT-35	AMTL-L/AFCK82	0.03	0.02	0.00	0.00	2.09	0.00	0.04	0.03	0.00	0.01
NGK-TZP	AMTL-M/NGKM	0.54	0.03	0.08	0.01	0.01	0.72	0.09	6.70	0.00	0.03
NGK-TZP	AMTL-N/NGKN	0.54	0.03	0.01	0.01	0.01	0.72	0.09	6.70	0.00	0.03
Z-191	AMTL-O/NGK84	0.43	0.00	0.01	0.16	0.01	0.52	0.03	4.00	0.00	0.17
TOSH-TZP	AMTL-P/TOSHBA83	0.10	0.00	0.00	0.10	0.01	0.17	0.04	3.50	0.00	-
TOR-TZPHP	AMTL-Q/TORAY83	0.52	0.00	0.00	0.08	0.01	0.00	0.01	3.50	0.00	-
TOR-TZPSIN	AMTL-R/TORAY83	0.66	0.03	0.00	0.08	0.02	0.08	0.01	3.80	0.00	-
ZIRCOA2120	AMTL-S/CGW	0.06	0.13	0.02	0.07	1.65	0.01	0.03	0.36	0.00	0.54
UM-ZTA1	AMTL-U1/MTLLS	38.00	0.05	7.50	0.15	0.02	0.13	0.09	0.03	6.90	-
UM-ZTA2	AMTL-U2/MTLLS	34.20	0.04	14.30	0.05	0.01	0.11	0.01	0.00	7.40	-
UM-ZTA3	AMTL-U3/MTLLS	35.90	0.02	14.90	0.01	0.01	0.11	0.01	0.00	7.90	-
UM-ZTA4	AMTL-U4/MTLLS	40.30	0.02	7.80	0.06	0.02	0.11	0.01	0.00	7.90	-
UM-ZTM5	AMTL-U5/MTLLS	26.20	0.03	0.00	0.01	0.01	10.10	0.01	0.00	14.20	-
UM-ZTM6	AMTL-U6/MTLLS	22.20	0.00	5.00	0.16	0.01	10.30	0.01	0.00	13.80	-

SECTION 3. MICROSTRUCTURAL AND PHASE ANALYSES

PART 3A. Microstructure information

MICROSTRUCTURAL INFORMATION* ON ZIRCONIA AND ALUMINA-BASED CERAMICS
TESTED BY THE UNIVERSITY OF DAYTON RESEARCH INSTITUTE
FOR DATA REPORTED IN THE PREVIOUS SUMMARY (REF. 1)

MATERIAL MICROSTRUCTURE

CTZP	Fine grained multiphase material (1 to 4 microns). Uniform distribution of pores.
DTA-AZ301	Dense two phase material with grains about .3 to 2. microns.
MS-PSZ	Porous coarse grained (30-60 microns) material.
PSZ-Z201	Dense fine grained material (0.2 to 0.5 microns, average about .3 microns).
TS-PSZ	Porous coarse grained (30-60 microns) material.
YTZP-XS241	Fine grained multiphase material (2 to 4 microns). Uniform distribution of pores, 0.5 to 4 microns.
Z191	Dense fine grained material (0.2 to 0.4 microns)
ZTA-XS121	Fine grained multiphase material (0.5 to 2.5 microns, avg. 1.5 microns). Uniform distribution of pores, 0.2 to 2 microns.

MATERIAL CRYSTAL STRUCTURE

CTZP	1% monoclinic phase in as received state.
ZTA-XS121	30% monoclinic phase in as received state.
YTZP-XS241	11% monoclinic phase in as received state.
PSZ-Z201	3% monoclinic phase in as received state.
Z191	7% monoclinic phase in as received state.
MS-PSZ	23% monoclinic phase in as received state
TS-PSZ	33% monoclinic phase in as received state
DTA-AZ301	28% monoclinic phase in as received state

* See reference 8 for the source of this information.

PART 3B. Phase analyses

PHASE ANALYSES OF VARIOUS MATERIALS
TESTED BY THE ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	BATCH CODE	PHASE	HEAT TREATMENT	MATRIX	QUANTITY vol%	ANALYTICAL METHOD
1985	HIT1985/MTL	MONOCLINIC	100h@1000C	ZrO ₂	2.42	X-RAY DIFF
1985	HIT1985/MTL	TETRAGONAL+CUBIC	100h@1000C	ZrO ₂	97.58	X-RAY DIFF
1985	HIT1985/MTL	MONOCLINIC	500h@1000C	ZrO ₂	20.06	X-RAY DIFF
1985	HIT1985/MTL	TETRAGONAL+CUBIC	500h@1000C	ZrO ₂	79.94	X-RAY DIFF
1985	HIT1985/MTL	MONOCLINIC	AS RECEIVED	ZrO ₂	10.51	X-RAY DIFF
1985	HIT1985/MTL	TETRAGONAL+CUBIC	AS RECEIVED	ZrO ₂	89.49	X-RAY DIFF
1986H	KOR1986H/MTL	TETRAGONAL+CUBIC	100h@1000C	ZrO ₂	100.00	X-RAY DIFF
1986H	KOR1986H/MTL	MONOCLINIC	500h@1000C	ZrO ₂	91.82	X-RAY DIFF
1986H	KOR1986H/MTL	TETRAGONAL+CUBIC	500h@1000C	ZrO ₂	8.18	X-RAY DIFF
1986H	KOR1986H/MTL	MONOCLINIC	AS RECEIVED	ZrO ₂	13.47	X-RAY DIFF
1986H	KOR1986H/MTL	TETRAGONAL+CUBIC	AS RECEIVED	ZrO ₂	86.53	X-RAY DIFF
1986S	KOR1986S/MTL	TETRAGONAL+CUBIC	100h@1000C	ZrO ₂	100.00	X-RAY DIFF
1986S	KOR1986S/MTL	MONOCLINIC	500h@1000C	ZrO ₂	34.70	X-RAY DIFF
1986S	KOR1986S/MTL	TETRAGONAL+CUBIC	500h@1000C	ZrO ₂	65.30	X-RAY DIFF
1986S	KOR1986S/MTL	MONOCLINIC	AS RECEIVED	ZrO ₂	9.48	X-RAY DIFF
1986S	KOR1986S/MTL	TETRAGONAL+CUBIC	AS RECEIVED	ZrO ₂	90.52	X-RAY DIFF
AC-SENSOR	AMTL-A/ACS82	MONOCLINIC	100h@1000C	ZrO ₂	34.00	X-RAY DIFF
AC-SENSOR	AMTL-A/ACS82	MONOCLINIC	500h@1000C	ZrO ₂	29.00	X-RAY DIFF
AC-SENSOR	AMTL-A/ACS82	MONOCLINIC	AS RECEIVED	ZrO ₂	35.20	X-RAY DIFF
NRL-TZP	AMTL-B/NRL82	MONOCLINIC	100h@1000C	ZrO ₂	0.00	X-RAY DIFF
NRL-TZP	AMTL-B/NRL82	MONOCLINIC	500h@1000C	ZrO ₂	0.00	X-RAY DIFF
NRL-TZP	AMTL-B/NRL82	MONOCLINIC	AS RECEIVED	ZrO ₂	0.00	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	100h@1000C	ZrO ₂	56.70	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	100h@1100C	ZrO ₂	72.50	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	100h@1200C	ZrO ₂	100.00	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	100h@1300C	ZrO ₂	100.00	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	100h@900C	ZrO ₂	20.70	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	250h@1000C	ZrO ₂	61.40	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	250h@1100C	ZrO ₂	93.10	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	250h@1200C	ZrO ₂	96.50	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	250h@1300C	ZrO ₂	99.20	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	250h@900C	ZrO ₂	34.10	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	500h@1000C	ZrO ₂	71.50	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	500h@1100C	ZrO ₂	100.00	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	500h@1200C	ZrO ₂	100.00	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	500h@1300C	ZrO ₂	100.00	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	50h@1000C	ZrO ₂	32.10	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	50h@1100C	ZrO ₂	38.70	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	50h@1200C	ZrO ₂	59.50	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	50h@1300C	ZrO ₂	82.80	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	50h@900C	ZrO ₂	97.80	X-RAY DIFF
NILSEN-TTZ	AMTL-C/NILSENC	MONOCLINIC	50h@1100C	ZrO ₂	34.20	X-RAY DIFF
TS-TTZ	AMTL-D/NILSEN82	MONOCLINIC	100h@1000C	ZrO ₂	57.70	X-RAY DIFF
TS-TTZ	AMTL-D/NILSEN82	MONOCLINIC	500h@1000C	ZrO ₂	80.40	X-RAY DIFF
TS-TTZ	AMTL-D/NILSEN82	MONOCLINIC	AS RECEIVED	ZrO ₂	27.70	X-RAY DIFF
MS-TTZ	AMTL-E/NILSEN82	MONOCLINIC	100h@1000C	ZrO ₂	34.80	X-RAY DIFF
MS-TTZ	AMTL-E/NILSEN82	MONOCLINIC	500h@1000C	ZrO ₂	79.10	X-RAY DIFF
MS-TTZ	AMTL-E/NILSEN82	MONOCLINIC	AS RECEIVED	ZrO ₂	23.90	X-RAY DIFF

**PHASE ANALYSES OF VARIOUS MATERIALS
TESTED BY THE ARMY MATERIALS TECHNOLOGY LABORATORY**

MATERIAL	BATCH CODE	PHASE	HEAT TREATMENT	MATRIX	QUANTITY vol%	ANALYTICAL METHOD
CERAD-FSZ	AMTL-F/CERAD82	MONOCLINIC	AS RECEIVED	ZrO ₂	0.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	100h@1000C	ZrO ₂	96.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	100h@1100C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	100h@1200C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	100h@1300C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	100h@900C	ZrO ₂	83.60	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	250h@1000C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	250h@1100C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	250h@1200C	ZrO ₂	97.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	250h@1300C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	250h@900C	ZrO ₂	92.20	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	500h@1000C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	500h@1100C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	500h@1200C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	500h@1300C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	500h@900C	ZrO ₂	99.70	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@1000C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@1100C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@1200C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@1300C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@900C	ZrO ₂	99.70	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@1000C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@1100C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@1200C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@1300C	ZrO ₂	100.00	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	50h@900C	ZrO ₂	77.30	X-RAY DIFF
COORS-ZDM	AMTL-G/COORS81	MONOCLINIC	AS RECEIVED	ZrO ₂	66.20	X-RAY DIFF
COORS-ZDM	AMTL-H/COORS81	MONOCLINIC	100h@1000C	ZrO ₂	62.30	X-RAY DIFF
COORS-ZDM	AMTL-H/COORS81	MONOCLINIC	500h@1000C	ZrO ₂	93.20	X-RAY DIFF
COORS-ZDM	AMTL-H/COORS81	MONOCLINIC	AS RECEIVED	ZrO ₂	14.00	X-RAY DIFF
COORS-TZP	AMTL-I/COORS84	MONOCLINIC	100h@1000C	ZrO ₂	0.00	X-RAY DIFF
COORS-TZP	AMTL-I/COORS84	MONOCLINIC	500h@1000C	ZrO ₂	0.00	X-RAY DIFF
COORS-TZP	AMTL-I/COORS84	MONOCLINIC	AS RECEIVED	ZrO ₂	0.00	X-RAY DIFF
COORS-TZP	AMTL-I/COORS84	MONOCLINIC	AS RECEIVED	ZrO ₂	0.00	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	100h@1000C	ZrO ₂	35.10	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	100h@1100C	ZrO ₂	79.40	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	100h@1200C	ZrO ₂	99.40	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	100h@1300C	ZrO ₂	98.40	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	100h@900C	ZrO ₂	15.30	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	250h@1000C	ZrO ₂	50.90	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	250h@1100C	ZrO ₂	100.00	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	250h@1200C	ZrO ₂	99.40	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	250h@1300C	ZrO ₂	98.80	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	250h@900C	ZrO ₂	6.00	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	500h@1000C	ZrO ₂	91.50	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	500h@1100C	ZrO ₂	100.00	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	500h@1200C	ZrO ₂	99.20	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	500h@1300C	ZrO ₂	99.30	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	500h@900C	ZrO ₂	19.40	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	50h@1000C	ZrO ₂	15.60	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	50h@1100C	ZrO ₂	63.90	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	50h@1200C	ZrO ₂	64.10	X-RAY DIFF

PHASE ANALYSES OF VARIOUS MATERIALS
TESTED BY THE ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	BATCH CODE	PHASE	HEAT TREATMENT	MATRIX	QUANTITY vol%	ANALYTICAL METHOD
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	50h@1300C	ZrO ₂	75.70	X-RAY DIFF
AFC-TTZ	AMTL-K/AFCK	MONOCLINIC	50h@900C	ZrO ₂	15.20	X-RAY DIFF
ZT-35	AMTL-L/ AFC82	MONOCLINIC	100h@1000C	ZrO ₂	14.70	X-RAY DIFF
ZT-35	AMTL-L/ AFC82	MONOCLINIC	500h@1000C	ZrO ₂	70.30	X-RAY DIFF
ZT-35	AMTL-L/ AFC82	MONOCLINIC	AS RECEIVED	ZrO ₂	6.40	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	100h@1000C	ZrO ₂	9.80	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	100h@1100C	ZrO ₂	1.40	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	100h@1200C	ZrO ₂	21.30	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	100h@1300C	ZrO ₂	34.40	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	100h@900C	ZrO ₂	16.00	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	250h@1000C	ZrO ₂	5.30	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	250h@1100C	ZrO ₂	11.10	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	250h@1200C	ZrO ₂	34.80	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	250h@1300C	ZrO ₂	37.50	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	250h@900C	ZrO ₂	9.30	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	500h@1000C	ZrO ₂	1.00	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	500h@1100C	ZrO ₂	24.10	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	500h@1200C	ZrO ₂	39.20	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	500h@1300C	ZrO ₂	47.00	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	500h@900C	ZrO ₂	3.20	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	50h@1000C	ZrO ₂	3.40	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	50h@1100C	ZrO ₂	4.00	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	50h@1200C	ZrO ₂	17.80	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	50h@1300C	ZrO ₂	34.00	X-RAY DIFF
NGK-TZP	AMTL-M/NGKM	MONOCLINIC	50h@900C	ZrO ₂	5.00	X-RAY DIFF
NGK-TZP	AMTL-N/NGKN	MONOCLINIC	AS RECEIVED	ZrO ₂	7.00	X-RAY DIFF
Z-191	AMTL-O/NGK84	MONOCLINIC	500h@1000C	ZrO ₂	0.00	X-RAY DIFF
TOSH-TZP	AMTL-P/TOSHBA83	MONOCLINIC	100h@1000C	ZrO ₂	0.00	X-RAY DIFF
TOSH-TZP	AMTL-P/TOSHBA83	MONOCLINIC	500h@1000C	ZrO ₂	0.00	X-RAY DIFF
TOSH-TZP	AMTL-P/TOSHBA83	MONOCLINIC	AS RECEIVED	ZrO ₂	0.00	X-RAY DIFF
TOR-TZPHP	AMTL-Q/TORAY83	MONOCLINIC	100h@1000C	ZrO ₂	0.00	X-RAY DIFF
TOR-TZPHP	AMTL-Q/TORAY83	MONOCLINIC	500h@1000C	ZrO ₂	0.00	X-RAY DIFF
TOR-TZPHP	AMTL-Q/TORAY83	MONOCLINIC	AS RECEIVED	ZrO ₂	0.00	X-RAY DIFF
TOR-TZPSIN	AMTL-R/TORAY83	MONOCLINIC	500h@1000C	ZrO ₂	61.10	X-RAY DIFF
TOR-TZPSIN	AMTL-R/TORAY83	MONOCLINIC	AS RECEIVED	ZrO ₂	3.80	X-RAY DIFF
ZIRCOA2120	AMTL-S/CGW	MONOCLINIC	100h@1000C	ZrO ₂	69.60	X-RAY DIFF
ZIRCOA2120	AMTL-S/CGW	MONOCLINIC	500h@1000C	ZrO ₂	76.00	X-RAY DIFF
ZIRCOA2120	AMTL-S/CGW	MONOCLINIC	AS RECEIVED	ZrO ₂	35.90	X-RAY DIFF
TASZIC	TOSTASZIC/MTL	MONOCLINIC	100h@1000C	ZrO ₂	26.66	X-RAY DIFF
TASZIC	TOSTASZIC/MTL	TETRAGONAL+CUBIC	100h@1000C	ZrO ₂	73.34	X-RAY DIFF
TASZIC	TOSTASZIC/MTL	MONOCLINIC	500h@1000C	ZrO ₂	44.05	X-RAY DIFF
TASZIC	TOSTASZIC/MTL	TETRAGONAL+CUBIC	500h@1000C	ZrO ₂	55.95	X-RAY DIFF
TASZIC	TOSTASZIC/MTL	MONOCLINIC	AS RECEIVED	ZrO ₂	32.35	X-RAY DIFF
TASZIC	TOSTASZIC/MTL	TETRAGONAL+CUBIC	AS RECEIVED	ZrO ₂	67.65	X-RAY DIFF
TZP-110	ACTZP110/MTL	MONOCLINIC	100h@1000C	ZrO ₂	38.26	X-RAY DIFF
TZP-110	ACTZP110/MTL	TETRAGONAL+CUBIC	100h@1000C	ZrO ₂	61.74	X-RAY DIFF
TZP-110	ACTZP110/MTL	MONOCLINIC	500h@1000C	ZrO ₂	29.36	X-RAY DIFF
TZP-110	ACTZP110/MTL	TETRAGONAL+CUBIC	500h@1000C	ZrO ₂	70.64	X-RAY DIFF

PHASE ANALYSES OF VARIOUS MATERIALS
TESTED BY THE ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	BATCH CODE	PHASE	HEAT TREATMENT	MATRIX	QUANTITY vol%	ANALYTICAL METHOD
TZP-110	ACTZP110/MTL	MONOCLINIC	AS RECEIVED	ZrO ₂	29.95	X-RAY DIFF
TZP-110	ACTZP110/MTL	TETRAGONAL+CUBIC	AS RECEIVED	ZrO ₂	70.05	X-RAY DIFF
Z-191	NGKZ191/MTL	MONOCLINIC	100h@1000C	ZrO ₂	10.66	X-RAY DIFF
Z-191	NGKZ191/MTL	MONOCLINIC	500h@1000C	ZrO ₂	21.26	X-RAY DIFF
Z-191	NGKZ191/MTL	MONOCLINIC	AS RECEIVED	ZrO ₂	31.17	X-RAY DIFF
Z-191	NGKZ191/MTL	TETRAGONAL+CUBIC	AS RECEIVED	ZrO ₂	68.83	X-RAY DIFF
Z-201	KYOZ201/MTL	MONOCLINIC	100h@1000C	ZrO ₂	65.77	X-RAY DIFF
Z-201	KYOZ201/MTL	MONOCLINIC	100h@1000C	ZrO ₂	55.03*	X-RAY DIFF
Z-201	KYOZ201/MTL	TETRAGONAL+CUBIC	100h@1000C	ZrO ₂	44.97*	X-RAY DIFF
Z-201	KYOZ201/MTL	TETRAGONAL+CUBIC	100h@1000C	ZrO ₂	34.23	X-RAY DIFF
Z-201	KYOZ201/MTL	MONOCLINIC	500h@1000C	ZrO ₂	65.44	X-RAY DIFF
Z-201	KYOZ201/MTL	MONOCLINIC	500h@1000C	ZrO ₂	68.58*	X-RAY DIFF
Z-201	KYOZ201/MTL	TETRAGONAL+CUBIC	500h@1000C	ZrO ₂	34.56	X-RAY DIFF
Z-201	KYOZ201/MTL	TETRAGONAL+CUBIC	500h@1000C	ZrO ₂	31.42*	X-RAY DIFF
Z-201	KYOZ201/MTL	MONOCLINIC	AS RECEIVED	ZrO ₂	24.50	X-RAY DIFF
Z-201	KYOZ201/MTL	TETRAGONAL+CUBIC	AS RECEIVED	ZrO ₂	75.50	X-RAY DIFF

* These values are from a second set of specimens.

PART 3C. X-Ray diffraction data

X-RAY DIFFRACTION ANALYSIS FOR VARIOUS ZIRCONIA MATERIALS
DATA FROM THE ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	SPECIMEN NUMBER	HEAT TREATMENT	2 THETA (degrees)	D SPACE (Angstroms)	INTEGRATED INTENSITY	PHASE	WAVELENGTH
1985	HT-41	100h@1000C	28.11	3.172	239.60	MONOCLINIC	1.5418
1985	HT-41	100h@1000C	28.30	3.151	381.15	MONOCLINIC	1.5418
1985	HT-41	100h@1000C	30.18	2.959	56112.89	TETRAGONAL+CUBIC	1.5418
1985	HT-41	100h@1000C	30.97	2.885	365.72	TETRAGONAL+CUBIC	1.5418
1985	HT-41	100h@1000C	31.28	2.857	197.36	MONOCLINIC	1.5418
1985	HT-6	500h@1000C	28.29	3.153	6144.10	MONOCLINIC	1.5418
1985	HT-6	500h@1000C	30.30	2.947	60322.21	TETRAGONAL+CUBIC	1.5418
1985	HT-6	500h@1000C	31.19	2.865	1427.84	MONOCLINIC	1.5418
1985	HT-6	500h@1000C	31.63	2.827	1011.94	MONOCLINIC	1.5418
1985	HT-6	500h@1000C	31.89	2.804	269.47	MONOCLINIC	1.5418
1985	HT-72	AS RECEIVED	29.39	3.141	1161.85	MONOCLINIC	1.5418
1985	HT-72	AS RECEIVED	30.26	2.951	23828.37	TETRAGONAL+CUBIC	1.5418
1985	HT-72	AS RECEIVED	31.20	2.864	286.80	MONOCLINIC	1.5418
1985	HT-72	AS RECEIVED	31.86	2.806	187.17	MONOCLINIC	1.5418
1986H	KH-1	500h@1000C	28.35	3.148	80.56	MONOCLINIC	1.5418
1986H	KH-1	500h@1000C	30.40	2.940	1547.36	TETRAGONAL+CUBIC	1.5418
1986H	KH-40	100h@1000C	30.50	2.941	1649.13	TETRAGONAL+CUBIC	1.5418
1986H	KH-75	AS RECEIVED	28.42	3.140	80.93	MONOCLINIC	1.5418
1986H	KH-75	AS RECEIVED	30.34	2.946	889.49	TETRAGONAL+CUBIC	1.5418
1986S	KS-13	500h@1000C	28.20	3.162	4107.89	MONOCLINIC	1.5418
1986S	KS-13	500h@1000C	30.24	2.953	116633.88	TETRAGONAL+CUBIC	1.5418
1986S	KS-13	500h@1000C	31.46	2.841	1060.31	MONOCLINIC	1.5418
1986S	KS-41	100h@1000C	30.27	2.951	25112.48	TETRAGONAL+CUBIC	1.5418
1986S	KS-72	AS RECEIVED	28.46	3.134	1468.56	MONOCLINIC	1.5418
1986S	KS-72	AS RECEIVED	30.35	2.943	23969.66	TETRAGONAL+CUBIC	1.5418
TASZIC	TOSH-41	100h@1000C	28.31	3.150	3698.74	MONOCLINIC	1.5418
TASZIC	TOSH-41	100h@1000C	30.28	2.949	21543.85	TETRAGONAL+CUBIC	1.5418
TASZIC	TOSH-41	100h@1000C	31.45	2.842	880.93	MONOCLINIC	1.5418
TASZIC	TOSH-6	500h@1000C	28.13	3.169	14259.39	MONOCLINIC	1.5418
TASZIC	TOSH-6	500h@1000C	30.12	2.965	37547.78	TETRAGONAL+CUBIC	1.5418
TASZIC	TOSH-6	500h@1000C	31.25	2.965	3024.12	MONOCLINIC	1.5418
TASZIC	TOSH-76	AS RECEIVED	28.26	3.155	4809.69	MONOCLINIC	1.5418
TASZIC	TOSH-76	AS RECEIVED	30.17	2.960	21366.10	TETRAGONAL+CUBIC	1.5418

X-RAY DIFFRACTION ANALYSIS FOR VARIOUS ZIRCONIA MATERIALS
DATA FROM THE ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	SPECIMEN NUMBER	HEAT TREATMENT	2 THETA (degrees)	D SPACE (Angstroms)	INTEGRATED INTENSITY	PHASE	WAVE-LENGTH
TASZIC	TOSH-76	AS RECEIVED	31.26	2.859	1164.17	MONOCLINIC	1.5418
TZP-110	AC-13	500h@1000C	28.13	3.170	2811.32	MONOCLINIC	1.5418
TZP-110	AC-13	500h@1000C	30.13	2.964	11569.08	TETRAGONAL+CUBIC	1.5418
TZP-110	AC-38	100h@1000C	28.13	3.169	3313.53	MONOCLINIC	1.5418
TZP-110	AC-38	100h@1000C	30.11	2.965	10938.41	TETRAGONAL+CUBIC	1.5418
TZP-110	AC-38	100h@1000C	30.79	2.902	135.53	TETRAGONAL+CUBIC	1.5418
TZP-110	AC-38	100h@1000C	31.33	2.853	698.43	MONOCLINIC	1.5418
TZP-110	AC-77	AS RECEIVED	28.16	3.166	2728.22	MONOCLINIC	1.5418
TZP-110	AC-77	AS RECEIVED	30.08	2.969	13192.11	TETRAGONAL+CUBIC	1.5418
TZP-110	AC-77	AS RECEIVED	31.23	2.862	413.23	MONOCLINIC	1.5418
TZP-110	AC-77	AS RECEIVED	31.53	2.835	156.42	MONOCLINIC	1.5418
Z-191	NGK-30	500h@1000C	28.24	3.158	4520.31	MONOCLINIC	1.5418
Z-191	NGK-30	500h@1000C	30.24	2.953	36616.61	TETRAGONAL+CUBIC	1.5418
Z-191	NGK-30	500h@1000C	31.19	2.865	1259.95	MONOCLINIC	1.5418
Z-191	NGK-53	100h@1000C	28.16	3.166	1988.86	MONOCLINIC	1.5418
Z-191	NGK-53	100h@1000C	30.08	2.968	35308.49	TETRAGONAL+CUBIC	1.5418
Z-191	NGK-53	100h@1000C	31.33	2.853	475.63	MONOCLINIC	1.5418
Z-191	NGK-83	AS RECEIVED	28.49	3.130	9764.44	MONOCLINIC	1.5418
Z-191	NGK-83	AS RECEIVED	30.23	2.954	51318.17	TETRAGONAL+CUBIC	1.5418
Z-191	NGK-83	AS RECEIVED	31.05	2.878	1045.46	MONOCLINIC	1.5418
Z-191	NGK-83	AS RECEIVED	31.40	2.847	1803.67	MONOCLINIC	1.5418
Z-191	NGK-83	AS RECEIVED	31.70	2.821	972.91	MONOCLINIC	1.5418
Z-201	KY-19	500h@1000C	28.24	3.157	8544.97	MONOCLINIC	1.5418
Z-201	KY-19	500h@1000C	30.21	2.956	11038.22	TETRAGONAL+CUBIC	1.5418
Z-201	KY-19	500h@1000C	31.44	2.843	3678.51	MONOCLINIC	1.5418
Z-201	KY-3	500h@1000C	28.18	3.164	12305.22	MONOCLINIC	1.5418
Z-201	KY-3	500h@1000C	30.13	2.963	14045.15	TETRAGONAL+CUBIC	1.5418
Z-201	KY-3	500h@1000C	31.35	2.851	5618.21	MONOCLINIC	1.5418
Z-201	KY-42	100h@1000C	28.15	3.167	10369.26	MONOCLINIC	1.5418
Z-201	KY-42	100h@1000C	30.13	2.964	12813.97	TETRAGONAL+CUBIC	1.5418
Z-201	KY-42	100h@1000C	31.34	2.852	4026.69	MONOCLINIC	1.5418
Z-201	KY-47	100h@1000C	27.87	3.198	7358.55	MONOCLINIC	1.5418
Z-201	KY-47	100h@1000C	29.82	2.994	12409.69	TETRAGONAL+CUBIC	1.5418

X-RAY DIFFRACTION ANALYSIS FOR VARIOUS ZIRCONIA MATERIALS
DATA FROM THE ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	SPECIMEN NUMBER	HEAT TREATMENT	2 THETA (degrees)	D SPACE (Angstroms)	INTEGRATED INTENSITY	PHASE	WAVE-LENGTH
Z-201	KY-47	100h@1000C	31.02	2.881	1520.27	MONOCLINIC	1.5418
Z-201	KY-73	AS RECEIVED	28.03	3.181	4495.68	MONOCLINIC	1.5418
Z-201	KY-73	AS RECEIVED	29.92	2.984	25690.67	TETRAGONAL+CUBIC	1.5418
Z-201	KY-73	AS RECEIVED	30.81	2.900	449.02	TETRAGONAL+CUBIC	1.5418
Z-201	KY-73	AS RECEIVED	31.06	2.877	239.33	MONOCLINIC	1.5418
Z-201	KY-73	AS RECEIVED	31.26	2.859	224.16	MONOCLINIC	1.5418

SECTION 4. OTHER INTRINSIC PROPERTIES

PART 4A. Elasticity

ROOM TEMPERATURE SONIC MODULI OF ELASTICITY FOR DIFFERENT HEAT TREATMENTS OF VARIOUS ZIRCONIAS AND ALUMINAS

MATERIAL	BATCH CODE	HEAT TREATMENT	MOD. OF ELASTICITY (GPa)
AC-SENSOR	AMTL-A/ACS82	100h@1000C	214
AC-SENSOR	AMTL-A/ACS82	500h@1000C	215
AC-SENSOR	AMTL-A/ACS82	AS RECEIVED	213
NRL-TZP	AMTL-B/NRL82	100h@1000C	202
NRL-TZP	AMTL-B/NRL82	500h@1000C	202
NRL-TZP	AMTL-B/NRL82	AS RECEIVED	202
NILSEN-TTZ	AMTL-C/NILSENC	100h@1000C	209
NILSEN-TTZ	AMTL-C/NILSENC	100h@1100C	202
NILSEN-TTZ	AMTL-C/NILSENC	100h@1200C	194
NILSEN-TTZ	AMTL-C/NILSENC	100h@1300C	173
NILSEN-TTZ	AMTL-C/NILSENC	250h@1000C	208
NILSEN-TTZ	AMTL-C/NILSENC	250h@1100C	204
NILSEN-TTZ	AMTL-C/NILSENC	250h@1200C	195
NILSEN-TTZ	AMTL-C/NILSENC	250h@1300C	159
NILSEN-TTZ	AMTL-C/NILSENC	500h@1000C	217
NILSEN-TTZ	AMTL-C/NILSENC	500h@1000C	212
NILSEN-TTZ	AMTL-C/NILSENC	500h@1100C	163
NILSEN-TTZ	AMTL-C/NILSENC	500h@1200C	193
NILSEN-TTZ	AMTL-C/NILSENC	500h@1300C	135
NILSEN-TTZ	AMTL-C/NILSENC	500h@900C	202
NILSEN-TTZ	AMTL-C/NILSENC	50h@1100C	214
NILSEN-TTZ	AMTL-C/NILSENC	50h@1200C	205
NILSEN-TTZ	AMTL-C/NILSENC	50h@900C	206
NILSEN-TTZ	AMTL-C/NILSENC	AS RECEIVED	227
TS-TTZ	AMTL-D/NILSEN82	100h@1000C	213
TS-TTZ	AMTL-D/NILSEN82	500h@1000C	210
TS-TTZ	AMTL-D/NILSEN82	AS RECEIVED	227
MS-TTZ	AMTL-E/NILSEN82	100h@1000C	208
MS-TTZ	AMTL-E/NILSEN82	500h@1000C	208
MS-TTZ	AMTL-E/NILSEN82	AS RECEIVED	208
CERAD-FSZ	AMTL-F/CERAD82	AS RECEIVED	180
COORS-ZDM	AMTL-G/COORS81	100h@1000C	168
COORS-ZDM	AMTL-G/COORS81	100h@1100C	128
COORS-ZDM	AMTL-G/COORS81	100h@1200C	96
COORS-ZDM	AMTL-G/COORS81	100h@1300C	110
COORS-ZDM	AMTL-G/COORS81	100h@900C	152
COORS-ZDM	AMTL-G/COORS81	250h@1000C	161
COORS-ZDM	AMTL-G/COORS81	250h@1100C	115
COORS-ZDM	AMTL-G/COORS81	250h@1200C	106
COORS-ZDM	AMTL-G/COORS81	250h@900C	150
COORS-ZDM	AMTL-G/COORS81	500h@1000C	156
COORS-ZDM	AMTL-G/COORS81	500h@1100C	115
COORS-ZDM	AMTL-G/COORS81	500h@900C	151
COORS-ZDM	AMTL-G/COORS81	50h@1000C	174
COORS-ZDM	AMTL-G/COORS81	50h@1100C	156
COORS-ZDM	AMTL-G/COORS81	50h@1200C	124
COORS-ZDM	AMTL-G/COORS81	50h@900C	155

**ROOM TEMPERATURE SONIC MODULI OF ELASTICITY
FOR DIFFERENT HEAT TREATMENTS OF VARIOUS ZIRCONIAS AND ALUMINAS**

MATERIAL	BATCH CODE	HEAT TREATMENT	MOD. OF ELASTICITY (GPa)
COORS-ZDM	AMTL-G/COORS81	AS RECEIVED	149
COORS-ZDM	AMTL-H/COORS81	100h@1000C	188
COORS-ZDM	AMTL-H/COORS81	500h@1000C	203
COORS-ZDM	AMTL-H/COORS81	AS RECEIVED	119
COORS-TZP	COORS-ZDY	100h@1000C	212
COORS-TZP	COORS-ZDY	500h@1000C	213
COORS-TZP	COORS-ZDY	AS RECEIVED	211
COORS-ZDY	AMTL-J/COORS81	100h@1000	186
COORS-ZDY	AMTL-J/COORS81	100h@1100	184
COORS-ZDY	AMTL-J/COORS81	100h@1200	190
COORS-ZDY	AMTL-J/COORS81	100h@1300	197
COORS-ZDY	AMTL-J/COORS81	100h@900	185
COORS-ZDY	AMTL-J/COORS81	250h@1000	185
COORS-ZDY	AMTL-J/COORS81	250h@1100	185
COORS-ZDY	AMTL-J/COORS81	250h@1200	186
COORS-ZDY	AMTL-J/COORS81	250h@1300	186
COORS-ZDY	AMTL-J/COORS81	250h@900	182
COORS-ZDY	AMTL-J/COORS81	500h@1000	183
COORS-ZDY	AMTL-J/COORS81	500h@1100	185
COORS-ZDY	AMTL-J/COORS81	500h@1200	185
COORS-ZDY	AMTL-J/COORS81	500h@1300	199
COORS-ZDY	AMTL-J/COORS81	500h@900	184
COORS-ZDY	AMTL-J/COORS81	50h@1000	189
COORS-ZDY	AMTL-J/COORS81	50h@1100	188
COORS-ZDY	AMTL-J/COORS81	50h@1200	188
COORS-ZDY	AMTL-J/COORS81	50h@900	186
COORS-ZDY	AMTL-J/COORS81	AS RECEIVED	189
AFC-TTZ	AMTL-K/AFCK	100h@1000C	207
AFC-TTZ	AMTL-K/AFCK	100h@1100C	204
AFC-TTZ	AMTL-K/AFCK	100h@1200C	190
AFC-TTZ	AMTL-K/AFCK	100h@1300C	201
AFC-TTZ	AMTL-K/AFCK	100h@900C	204
AFC-TTZ	AMTL-K/AFCK	250h@1000C	205
AFC-TTZ	AMTL-K/AFCK	250h@1100C	204
AFC-TTZ	AMTL-K/AFCK	250h@1200C	195
AFC-TTZ	AMTL-K/AFCK	250h@1300C	192
AFC-TTZ	AMTL-K/AFCK	250h@900C	206
AFC-TTZ	AMTL-K/AFCK	500h@1000C	207
AFC-TTZ	AMTL-K/AFCK	500h@1100C	211
AFC-TTZ	AMTL-K/AFCK	500h@1200C	183
AFC-TTZ	AMTL-K/AFCK	500h@1300C	188
AFC-TTZ	AMTL-K/AFCK	500h@900C	205
AFC-TTZ	AMTL-K/AFCK	50h@1000C	209
AFC-TTZ	AMTL-K/AFCK	50h@1100C	207
AFC-TTZ	AMTL-K/AFCK	50h@1200C	203
AFC-TTZ	AMTL-K/AFCK	50h@900C	206
ZT-35	AMTL-L/AFC82	100h@1000C	196

**ROOM TEMPERATURE SONIC MODULI OF ELASTICITY
FOR DIFFERENT HEAT TREATMENTS OF VARIOUS ZIRCONIAS AND ALUMINAS**

MATERIAL	BATCH CODE	HEAT TREATMENT	MOD. OF ELASTICITY (GPa)
ZT-35	AMTL-L/AFC82	500h@1000C	193
ZT-35	AMTL-L/AFC82	AS RECEIVED	215
NGK-TZP	AMTL-M/NGKM	100h@1000C	198
NGK-TZP	AMTL-M/NGKM	100h@1100C	202
NGK-TZP	AMTL-M/NGKM	100h@1200C	207
NGK-TZP	AMTL-M/NGKM	100h@1300C	212
NGK-TZP	AMTL-M/NGKM	100h@900C	207
NGK-TZP	AMTL-M/NGKM	250h@1000C	203
NGK-TZP	AMTL-M/NGKM	250h@1100C	199
NGK-TZP	AMTL-M/NGKM	250h@1200C	205
NGK-TZP	AMTL-M/NGKM	250h@1300C	214
NGK-TZP	AMTL-M/NGKM	250h@900C	199
NGK-TZP	AMTL-M/NGKM	500h@1000C	203
NGK-TZP	AMTL-M/NGKM	500h@1100C	204
NGK-TZP	AMTL-M/NGKM	500h@1200C	210
NGK-TZP	AMTL-M/NGKM	500h@900C	205
NGK-TZP	AMTL-M/NGKM	50h@1000C	203
NGK-TZP	AMTL-M/NGKM	50h@1100C	198
NGK-TZP	AMTL-M/NGKM	50h@1200C	205
NGK-TZP	AMTL-M/NGKM	50h@900C	206
NGK-TZP	AMTL-N/NGKN	AS RECEIVED	198
TOSH-TZP	AMTL-P/TOSHBA83	100h@1000C	210
TOSH-TZP	AMTL-P/TOSHBA83	500h@1000C	209
TOSH-TZP	AMTL-P/TOSHBA83	AS RECEIVED	209
TOR-TZPHP	AMTL-Q/TORAY83	100h@1000C	214
TOR-TZPHP	AMTL-Q/TORAY83	500h@1000C	213
TOR-TZPHP	AMTL-Q/TORAY83	AS RECEIVED	215
TOR-TZPSIN	AMTL-R/TORAY83	500h@1000C	218
TOR-TZPSIN	AMTL-R/TORAY83	AS RECEIVED	213
ZIRCOA2120	AMTL-S/CGW	100h@1000C	197
ZIRCOA2120	AMTL-S/CGW	500h@1000C	203
ZIRCOA2120	AMTL-S/CGW	AS RECEIVED	194
UM-ZTA1	AMTL-U1/MTLLS	100h@1000C	364
UM-ZTA1	AMTL-U1/MTLLS	500h@1000C	363
UM-ZTA1	AMTL-U1/MTLLS	AS RECEIVED	363
UM-ZTA2HI	AMTL-U2/MTLLS	500h@1000C	350
UM-ZTA2HI	AMTL-U2/MTLLS	AS RECEIVED	351
UM-ZTA2LO	AMTL-U2/MTLLS	500h@1000C	322
UM-ZTA2LO	AMTL-U2/MTLLS	AS RECEIVED	241
UM-ZTA2ME	AMTL-U2/MTLLS	500h@1000C	322
UM-ZTA3HI	AMTL-U3/MTLLS	500h@1000C	350
UM-ZTA3HI	AMTL-U3/MTLLS	AS RECEIVED	352
UM-ZTA3LO	AMTL-U3/MTLLS	AS RECEIVED	248
UM-ZTA3ME	AMTL-U3/MTLLS	500h@1000C	324
UM-ZTA4	AMTL-U4/MTLLS	100h@1000C	263

ROOM TEMPERATURE SONIC MODULI OF ELASTICITY
FOR DIFFERENT HEAT TREATMENTS OF VARIOUS ZIRCONIAS AND ALUMINAS

MATERIAL	BATCH CODE	HEAT TREATMENT	MOD. OF ELASTICITY (GPa)
UM-ZTA4	AMTL-U4/MTLLS	500h@1000C	362
UM-ZTA4	AMTL-U4/MTLLS	AS RECEIVED	361
UM-ZTM5	AMTL-U5/MTLLS	500h@1000C	175
UM-ZTM5	AMTL-U5/MTLLS	AS RECEIVED	182
UM-ZTM6	AMTL-U6MTLLS	500h@1000C	158
UM-ZTM6	AMTL-U6MTLLS	AS RECEIVED	169

PART 4B. Density

DENSITY DATA FOR VARIOUS ZIRCONIA-BASED CERAMICS
FROM MTL 87-29, JUNE, 1987

MATERIAL	BATCH	HEAT	DENSITY	MATERIAL	BATCH	HEAT	DENSITY
		CODE	TREATMENT		CODE	TREATMENT	(g/cc)
AC-SENSOR	AMTL-A/ACS82	100h@1000C	5.628	COORS-ZDM	AMTL-G/COORS81	250h@900C	5.030
AC-SENSOR	AMTL-A/ACS82	500h@1000C	5.668	COORS-ZDM	AMTL-G/COORS81	500h@1000C	5.093
AC-SENSOR	AMTL-A/ACS82	AS RECEIVED	5.667	COORS-ZDM	AMTL-G/COORS81	500h@1100C	4.890
NRL-TZP	AMTL-B/NRL82	100h@1000C	5.785	COORS-ZDM	AMTL-G/COORS81	500h@900C	5.023
NRL-TZP	AMTL-B/NRL82	500h@1000C	5.763	COORS-ZDM	AMTL-G/COORS81	50h@1000C	5.136
NRL-TZP	AMTL-B/NRL82	AS RECEIVED	5.774	COORS-ZDM	AMTL-G/COORS81	50h@1100C	5.051
NILSEN-TTZ	AMTL-C/NILSENC	0h@1000C	5.668	COORS-ZDM	AMTL-G/COORS81	50h@1200C	4.908
NILSEN-TTZ	AMTL-C/NILSENC	0h@1100C	5.709	COORS-ZDM	AMTL-G/COORS81	50h@900C	5.095
NILSEN-TTZ	AMTL-C/NILSENC	0h@1200C	5.713	COORS-ZDM	AMTL-G/COORS81	AS RECEIVED	5.294
NILSEN-TTZ	AMTL-C/NILSENC	0h@1300C	5.689	COORS-ZDM	AMTL-H/COORS81	100h@1000C	5.548
NILSEN-TTZ	AMTL-C/NILSENC	100h@1000C	5.591	COORS-ZDM	AMTL-H/COORS81	500h@1000C	5.537
NILSEN-TTZ	AMTL-C/NILSENC	100h@1100C	5.581	COORS-ZDM	AMTL-H/COORS81	AS RECEIVED	5.649
NILSEN-TTZ	AMTL-C/NILSENC	100h@1200C	5.562	COORS-TZP	AMTL-I/COORS84	100h@1000C	5.986
NILSEN-TTZ	AMTL-C/NILSENC	100h@1300C	5.394	COORS-TZP	AMTL-I/COORS84	500h@1000C	5.979
NILSEN-TTZ	AMTL-C/NILSENC	100h@900C	5.652	COORS-TZP	AMTL-I/COORS84	AS RECEIVED	5.939
NILSEN-TTZ	AMTL-C/NILSENC	250h@1000C	5.642	COORS-ZDY	AMTL-J/COORS81	0h@1000C	5.522
NILSEN-TTZ	AMTL-C/NILSENC	250h@1100C	5.563	COORS-ZDY	AMTL-J/COORS81	0h@1100C	5.552
NILSEN-TTZ	AMTL-C/NILSENC	250h@1200C	5.535	COORS-ZDY	AMTL-J/COORS81	0h@1200C	5.503
NILSEN-TTZ	AMTL-C/NILSENC	250h@1300C	5.365	COORS-ZDY	AMTL-J/COORS81	0h@1300C	5.494
NILSEN-TTZ	AMTL-C/NILSENC	250h@900C	5.650	COORS-ZDY	AMTL-J/COORS81	0h@900C	5.504
NILSEN-TTZ	AMTL-C/NILSENC	500h@1000C	5.615	COORS-ZDY	AMTL-J/COORS81	100h@1000C	5.484
NILSEN-TTZ	AMTL-C/NILSENC	500h@1100C	5.508	COORS-ZDY	AMTL-J/COORS81	100h@1100C	5.478
NILSEN-TTZ	AMTL-C/NILSENC	500h@1200C	5.482	COORS-ZDY	AMTL-J/COORS81	100h@1200C	5.435
NILSEN-TTZ	AMTL-C/NILSENC	500h@1300C	5.170	COORS-ZDY	AMTL-J/COORS81	100h@1300C	5.419
NILSEN-TTZ	AMTL-C/NILSENC	500h@900C	5.623	COORS-ZDY	AMTL-J/COORS81	100h@900C	5.502
NILSEN-TTZ	AMTL-C/NILSENC	50h@1000C	5.704	COORS-ZDY	AMTL-J/COORS81	250h@1000C	5.495
NILSEN-TTZ	AMTL-C/NILSENC	50h@1100C	5.644	COORS-ZDY	AMTL-J/COORS81	250h@1100C	5.478
NILSEN-TTZ	AMTL-C/NILSENC	50h@1200C	5.584	COORS-ZDY	AMTL-J/COORS81	250h@1200C	5.400
NILSEN-TTZ	AMTL-C/NILSENC	50h@1300C	5.559	COORS-ZDY	AMTL-J/COORS81	25Ch@1300C	5.377
NILSEN-TTZ	AMTL-C/NILSENC	50h@900C	5.596	COORS-ZDY	AMTL-J/COORS81	250h@900C	5.460
NILSEN-TTZ	AMTL-C/NILSENC	AS RECEIVED	5.692	COORS-ZDY	AMTL-J/COORS81	500h@1000C	5.473
TS-TTZ	AMTL-D/NILSEN82	100h@1000C	5.643	COORS-ZDY	AMTL-J/COORS81	500h@1100C	5.443
TS-TTZ	AMTL-D/NILSEN82	500h@1000C	5.629	COORS-ZDY	AMTL-J/COORS81	500h@1200C	5.380
TS-TTZ	AMTL-D/NILSEN82	AS RECEIVED	5.660	COORS-ZDY	AMTL-J/COORS81	500h@1300C	5.236
MS-TTZ	AMTL-E/NILSEN82	100h@1000C	5.632	COORS-ZDY	AMTL-J/COORS81	500h@900C	5.406
MS-TTZ	AMTL-E/NILSEN82	500h@1000C	5.553	COORS-ZDY	AMTL-J/COORS81	50h@1000C	5.526
MS-TTZ	AMTL-E/NILSEN82	AS RECEIVED	5.646	COORS-ZDY	AMTL-J/COORS81	50h@1100C	5.540
CERAD-FSZ	AMTL-F/CERAD82	AS RECEIVED	5.599	COORS-ZDY	AMTL-J/COORS81	50h@1200C	5.479
COORS-ZDM	AMTL-G/COORS81	0h@1000C	5.166	COORS-ZDY	AMTL-J/COORS81	50h@1300C	5.475
COORS-ZDM	AMTL-G/COORS81	0h@1100C	5.078	COORS-ZDY	AMTL-J/COORS81	50h@900C	5.488
COORS-ZDM	AMTL-G/COORS81	0h@1200C	5.051	COORS-ZDY	AMTL-J/COORS81	AS RECEIVED	5.534
COORS-ZDM	AMTL-G/COORS81	0h@1300C	5.059	AFC-TTZ	AMTL-K/AFCK	0h@1000C	5.737
COORS-ZDM	AMTL-G/COORS81	0h@900C	5.125	AFC-TTZ	AMTL-K/AFCK	0h@1100C	5.723
COORS-ZDM	AMTL-G/COORS81	100h@1000C	5.073	AFC-TTZ	AMTL-K/AFCK	0h@1200C	5.717
COORS-ZDM	AMTL-G/COORS81	100h@1100C	5.824	AFC-TTZ	AMTL-K/AFCK	0h@1300C	5.720
COORS-ZDM	AMTL-G/COORS81	100h@1200C	4.808	AFC-TTZ	AMTL-K/AFCK	0h@900C	5.705
COORS-ZDM	AMTL-G/COORS81	100h@900C	5.067	AFC-TTZ	AMTL-K/AFCK	100h@1000C	5.649
COORS-ZDM	AMTL-G/COORS81	250h@1000C	5.134	AFC-TTZ	AMTL-K/AFCK	100h@1100C	5.556
COORS-ZDM	AMTL-G/COORS81	250h@1100C	4.936	AFC-TTZ	AMTL-K/AFCK	100h@1200C	5.550
COORS-ZDM	AMTL-G/COORS81	250h@1200C	4.790	AFC-TTZ	AMTL-K/AFCK	100h@1300C	5.392

Figure 1. Density vs heat treatment time for NILSEN-TTZ, a transformation-toughened zirconia-based ceramic.

Figure 2. Density vs heat treatment time for AFC-TTZ, a transformation toughened zirconia-based ceramic.

ORNL-DWG 88-16425

Figure 3. Density vs heat treatment time for COORS-ZDM, a transformation-toughened zirconia-based ceramic.

Figure 4. Density vs heat treatment time for NGK-TZP, a tetragonal polycrystalline zirconia.

Figure 5. Density vs heat treatment time for COORS-ZDY, a fully stabilized zirconia-based ceramic .

DENSITY DATA FOR VARIOUS ZIRCONIA-BASED CERAMICS
FROM MTL 87-29, JUNE, 1987

MATERIAL	BATCH CODE	HEAT TREATMENT	DENSITY (g/cc)	MATERIAL	BATCH CODE	HEAT TREATMENT	DENSITY (g/cc)
AFC-TTZ	AMTL-K/AFCK	100h@900C	5.709	NGK-TZP	AMTL-M/NGKM	250h@1000C	5.654
AFC-TTZ	AMTL-K/AFCK	250h@1000C	5.628	NGK-TZP	AMTL-M/NGKM	250h@1100C	5.708
AFC-TTZ	AMTL-K/AFCK	250h@1100C	5.550	NGK-TZP	AMTL-M/NGKM	250h@1200C	5.607
AFC-TTZ	AMTL-K/AFCK	250h@1200C	5.487	NGK-TZP	AMTL-M/NGKM	250h@1300C	5.682
AFC-TTZ	AMTL-K/AFCK	250h@1300C	5.376	NGK-TZP	AMTL-M/NGKM	250h@900C	5.679
AFC-TTZ	AMTL-K/AFCK	250h@900C	5.701	NGK-TZP	AMTL-M/NGKM	500h@1000C	5.637
AFC-TTZ	AMTL-K/AFCK	500h@1000C	5.565	NGK-TZP	AMTL-M/NGKM	500h@1100C	5.658
AFC-TTZ	AMTL-K/AFCK	500h@1100C	5.509	NGK-TZP	AMTL-M/NGKM	500h@1200C	5.651
AFC-TTZ	AMTL-K/AFCK	500h@1200C	5.485	NGK-TZP	AMTL-M/NGKM	500h@1300C	5.548
AFC-TTZ	AMTL-K/AFCK	500h@1300C	5.310	NGK-TZP	AMTL-M/NGKM	500h@900C	5.650
AFC-TTZ	AMTL-K/AFCK	500h@900C	5.664	NGK-TZP	AMTL-M/NGKM	50h@1000C	5.688
AFC-TTZ	AMTL-K/AFCK	50h@1000C	5.718	NGK-TZP	AMTL-M/NGKM	50h@1100C	5.708
AFC-TTZ	AMTL-K/AFCK	50h@1100C	5.598	NGK-TZP	AMTL-M/NGKM	50h@1200C	5.659
AFC-TTZ	AMTL-K/AFCK	50h@1200C	5.591	NGK-TZP	AMTL-M/NGKM	50h@1300C	5.675
AFC-TTZ	AMTL-K/AFCK	50h@1300C	5.610	NGK-TZP	AMTL-M/NGKM	50h@900C	5.723
AFC-TTZ	AMTL-K/AFCK	50h@900C	5.727	NGK-TZP	AMTL-N/NGKN	AS RECEIVED	5.771
ZT-35	AMTL-L/AFC82	100h@1000C	5.512	Z-191	AMTL-O/NGK84	AS RECEIVED	5.770
ZT-35	AMTL-L/AFC82	500h@1000C	5.450	TOSH-TZP	AMTL-P/TOSHBA83	100h@1000C	5.937
ZT-35	AMTL-L/AFC82	AS RECEIVED	5.506	TOSH-TZP	AMTL-P/TOSHBA83	500h@1000C	5.920
NGK-TZP	AMTL-M/NGKM	0h@1000C	5.690	TOSH-TZP	AMTL-P/TOSHBA83	AS RECEIVED	5.928
NGK-TZP	AMTL-M/NGKM	0h@1100C	5.722	TOR-TZPHP	AMTL-Q/TORAY83	100h@1000C	5.943
NGK-TZP	AMTL-M/NGKM	0h@1200C	5.701	TOR-TZPHP	AMTL-Q/TORAY83	100h@1000C	5.943
NGK-TZP	AMTL-M/NGKM	0h@1300C	5.729	TOR-TZPHP	AMTL-Q/TORAY83	500h@1000C	5.956
NGK-TZP	AMTL-M/NGKM	0h@900C	5.731	TOR-TZPHP	AMTL-Q/TORAY83	AS RECEIVED	5.950
NGK-TZP	AMTL-M/NGKM	100h@1000C	5.634	TOR-TZPSIN	AMTL-R/TORAY83	500h@1000C	5.714
NGK-TZP	AMTL-M/NGKM	100h@1100C	5.714	TOR-TZPSIN	AMTL-R/TORAY83	AS RECEIVED	5.897
NGK-TZP	AMTL-M/NGKM	100h@1200C	5.691	ZIRCOA2120	AMTL-S/CGW	100h@1000C	5.469
NGK-TZP	AMTL-M/NGKM	100h@1300C	5.636	ZIRCOA2120	AMTL-S/CGW	500h@1000C	5.472
NGK-TZP	AMTL-M/NGKM	100h@900C	5.690	ZIRCOA2120	AMTL-S/CGW	AS RECEIVED	5.576

APPENDIX II. TEST RESULTS

SECTION 1. STRESS RUPTURE DATA

STRESS RUPTURE DATA FROM MTL87-29, JUNE 1987
ZIRCONIAS AND ZIRCONIA-TOUGHENED ALUMINAS

MATERIAL	TYPE	TEMP C	STRESS MPa	RUPTURE TIME HOURS	TIME DISC. HOURS	STRAIN %	RETAINED STRENGTH MPa	COMMENTS
ZT-35	PSZ	900	200	>500	0	0.090	561	
AC-SENSOR	PSZ	1000	100	>500	0	0.010	0	
ZT-35	PSZ	1000	200	>500	0	0.420	0	
AC-SENSOR	PSZ	1100	100	0	313	3.130	0	Microswitch trip ended run.
ZT-35	PSZ	1100	200	0	0	0.000	0	Rupture time=4.8 min.
AC-SENSOR	PSZ	1200	100	0	2	1.010	0	Microswitch trip ended run.
ZT-35	PSZ	1200	200	0	0	0.000	0	Rupture time=9 min.
TS-TTZ	TTZ	900	200	>500	0	0.040	400	
COORS-ZDM	TTZ	900	200	>500	0	0.000	324	
TS-TTZ	TTZ	1000	200	>500	0	0.230	343	
COORS-ZDM	TTZ	1000	200	>500	0	0.580	221	
ZIRCOA2120	TTZ	1000	200	500	0	1.190	0	
TS-TTZ	TTZ	1100	200	0	125	1.030	0	
COORS-ZDM	TTZ	1100	200	74	0	1.600	0	
TS-TTZ	TTZ	1200	200	26	0	0.960	0	
COORS-TZP	TZP	1000	175	>500	0	0.660	6	
COORS-TZP	TZP	1100	175	0	0	0.000	0	
COORS-TZP	TZP	1100	175	0	0	0.000	0	
COORS-TZP	TZP	1100	175	0	0	0.000	0	
COORS-TZP	TZP	1100	175	0	0	0.000	0	
COORS-TZP	TZP	1100	175	0	0	0.000	0	
COORS-TZP	TZP	1100	175	0	0	0.000	0	
COORS-TZP	TZP	1100	175	0	0	0.000	0	
UM-ZTA1	ZTA	900	100	>500	0	0.050	511	
UM-ZTA2/LO	ZTA	900	150	0	0	0.050	0	
UM-ZTA4	ZTA	900	100	>500	0	0.000	431	
UM-ZTA1	ZTA	1000	100	>500	0	0.160	325	
UM-ZTA3/LO	ZTA	1000	75	>500	0	0.320	0	
UM-ZTA3/HI	ZTA	1000	75	>500	0	0.170	331	
UM-ZTA4	ZTA	1000	100	>500	0	0.080	380	
UM-ZTA1	ZTA	1100	100	>500	0	0.450	258	
UM-ZTA2/HI	ZTA	1100	150	262	0	0.680	0	
UM-ZTA4	ZTA	1100	100	>500	0	0.550	270	
UM-ZTA1	ZTA	1200	100	0	127	1.690	223	
UM-ZTA2/HI	ZTA	1200	150	1	0	0.430	0	
UM-ZTA4	ZTA	1200	100	2	0	0.690	0	

SECTION 2. CYCLIC FATIGUE DATA

CYCLIC FATIGUE DATA ON MgC-PSZ FROM OAK RIDGE NATIONAL LABORATORY

MATERIAL REFERENCE CODE	SPEC. NO.	TEMP. (C)	MOE (GPa)	STRESS (MPa)	CYCLES AT FAILURE	TEST TIME, h	COMMENTS	
TS-PSZ SA9ORN1242	9	400	0	336	1209	1	CONSTANT LOAD	
TS-PSZ SA9ORN1242	10	400	150	328	13	0	CONSTANT LOAD	
TS-PSZ SA9ORN1242	11	400	156	314	5	0	CONSTANT LOAD	
TS-PSZ SA9ORN1242	4	800	148	279	3	0	CONSTANT LOAD	
TS-PSZ SA9ORN1242	5	800	156	254	2	0	CONSTANT LOAD	
TS-PSZ SA9ORN1242	6	800	160	241	45126	0	STEP-LOAD, STEP 1	
TS-PSZ SA9ORN1242	6	800	160	260	124946	0	STEP-LOAD, STEP 2	
TS-PSZ SA9ORN1242	6	800	160	279	88970	0	STEP-LOAD, STEP 3	
TS-PSZ SA9ORN1242	6	800	160	295	90837	349879	194	STEP-LOAD, STEP 4 FAIL
TS-PSZ SA9ORN1242	1	800	159	235	77071	0	STEP-LOAD, STEP 1	
TS-PSZ SA9ORN1242	1	800	159	256	48709	0	STEP-LOAD, STEP 2	
TS-PSZ SA9ORN1242	1	800	159	271	132555	0	STEP-LOAD, STEP 3	
TS-PSZ SA9ORN1242	1	800	159	287	88970	0	STEP-LOAD, STEP 4	
TS-PSZ SA9ORN1242	1	800	159	300	30	347335	193	STEP-LOAD, STEP 5 FAIL
TS-PSZ SA9ORN1242	14	1000	147	212	49120	0	STEP-LOAD, STEP 1	
TS-PSZ SA9ORN1242	14	1000	147	228	82315	0	STEP-LOAD, STEP 2	
TS-PSZ SA9ORN1242	14	1000	147	242	129036	0	STEP-LOAD, STEP 3	
TS-PSZ SA9ORN1242	14	1000	147	257	43725	0	STEP-LOAD, STEP 4	
TS-PSZ SA9ORN1242	14	1000	147	270	40979	345175	192	STEP-LOAD, STEP 5 FAIL
MS-PSZ ORBM8-88P24	39	25	0	284	30	0	STEP-LOAD, STEP 1	
MS-PSZ ORBM8-88P24	39	25	0	353	7621	0	STEP-LOAD, STEP 2	
MS-PSZ ORBM8-88P24	39	25	0	388	2986	0	STEP-LOAD, STEP 3	
MS-PSZ ORBM8-88P24	39	25	0	421	155	10799	0	STEP-LOAD, STEP 4 FAIL
MS-PSZ ORBM8-88P24	40	400	0	238	1103	1103	0	CONSTANT LOAD
MS-PSZ ORBM8-88P24	41	400	0	240	54135	0	STEP-LOAD, STEP 1	
MS-PSZ ORBM8-88P24	41	400	0	257	44278	0	STEP-LOAD, STEP 2	
MS-PSZ ORBM8-88P24	41	400	0	271	32487	0	STEP-LOAD, STEP 3	
MS-PSZ ORBM8-88P24	41	400	0	283	132491	0	STEP-LOAD, STEP 4	
MS-PSZ ORBM8-88P24	41	400	0	297	44129	0	STEP-LOAD, STEP 5	
MS-PSZ ORBM8-88P24	41	400	0	311	44505	0	STEP-LOAD, STEP 6	
MS-PSZ ORBM8-88P24	41	400	0	325	44685	0	STEP-LOAD, STEP 7	
MS-PSZ ORBM8-88P24	41	400	0	336	135	407489	0	STEP-LOAD, STEP 8 FAIL
MS-PSZ ORBM8-88P24	37	800	0	192	46641	0	STEP-LOAD, STEP 1	

Specimen geometry: uniform gaged buttonhead with 6.3 x 25.4 mm gage section.

All MS-PSZ and TS-PSZ material are from batches labeled NILCRA/ORNL1.

ORBM8-88P24 = See reference 5.

SA9ORN1242 = See reference 3.

CYCLIC FATIGUE DATA FROM OAK RIDGE NATIONAL LABORATORY

MATERIAL	REFERENCE	SPEC.	TEMP.	MOE	STRESS	CYCLES AT	CYCLES TO	TEST	COMMENTS
CODE	NO.	(C)	(GPa)	(GPa)	STRESS	FAILURE		TIME,h	
MS-PSZ	ORBM8-88P24	37	800	0	210	88308	0	0	STEP-LOAD, STEP 2
MS-PSZ	ORBM8-88P24	37	800	0	221	225600	0	0	STEP-LOAD, STEP 3
MS-PSZ	ORBM8-88P24	37	800	0	233	44263	0	0	STEP-LOAD, STEP 4
MS-PSZ	ORBM8-88P24	37	800	0	244	44769	0	0	STEP-LOAD, STEP 5
MS-PSZ	ORBM8-88P24	37	800	0	258	130466	0	0	STEP-LOAD, STEP 6
MS-PSZ	ORBM8-88P24	37	800	0	271	144444	0	0	STEP-LOAD, STEP 7
MS-PSZ	ORBM8-88P24	37	800	0	286	352	724843	0	STEP-LOAD, STEP 8 FAIL
MS-PSZ	ORBM8-88P24	38	800	0	190	1	1	0	CONSTANT LOAD
MS-PSZ	ORBM8-88P24	36	1000	0	180	49172	0	0	STEP-LOAD, STEP 1
MS-PSZ	ORBM8-88P24	36	1000	0	195	25918	75090	0	STEP-LOAD, STEP 2 FAIL

Specimen geometry: uniform gaged buttonhead with 6.3 x 25.4mm gage section.
 All MS-PSZ and TS_PSZ material are from batches labeled NILCRA/ORNL1.
 ORBM8-88P24 = See reference 5.

SECTION 3. WELDED JOINT SHEAR STRESS DATA

SHEAR STRESS TEST DATA ON WELDED SPECIMENS FROM OAK RIDGE NATIONAL LABORATORY

MATERIAL A	MATERIAL B	LOT	FILLER MATERIAL	JOINT PROCESS	JOINT	SPEC. NUMBER	HEAT TREATMENT	C	N	STRESS MPa	TEMP °C	LOAD mm	WIDTH mm	HEIGHT mm
MS-PSZ	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-72	100h@400C	25	22.70	114	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-178	100h@400C	25	22.70	202	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-179	100h@400C	25	22.70	43	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-244	120h@400C	25	22.70	229	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-245	120h@400C	25	22.70	246	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-246	120h@400C	25	22.70	261	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-247	120h@400C	25	22.70	213	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-248	120h@400C	25	22.70	251	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-99	100h@400C	25	22.70	123	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-169	100h@400C	25	22.70	210	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-170	100h@400C	25	22.70	117	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-249	120h@400C	25	22.70	216	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-250	120h@400C	25	22.70	299	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-251	120h@400C	25	22.70	267	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	BR604	AS	BRAZED IN VAC@735C MCB-252	120h@400C	25	22.70	255	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@735C MCB-253	120h@400C	25	22.70	332	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-95	100h@400C	25	22.70	61	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-182	100h@400C	25	22.70	180	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-183	100h@400C	25	22.70	150	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-234	120h@400C	25	22.70	57	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-235	120h@400C	25	22.70	226	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-236	120h@400C	25	22.70	123	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-237	120h@400C	25	22.70	252	2.50	2.00			
MS-PSZ	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-238	120h@400C	25	22.70	190	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-110	100h@400C	25	22.70	103	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-184	100h@400C	25	22.70	118	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-185	100h@400C	25	22.70	87	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-239	120h@400C	25	22.70	150	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-240	120h@400C	25	22.70	19	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-241	120h@400C	25	22.70	24	2.50	2.00			
MS-PSZ/TI*	CAST IRON	CEC-8003	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-242	120h@400C	25	22.70	50	2.50	2.00			
MS-PSZ	A286	-	LithoBT	AS	BRAZED IN VAC@790C MCB-211 AS RECEIVED	25	22.70	71	2.50	2.00				
MS-PSZ	A286	-	LithoBT	AS	BRAZED IN VAC@790C MCB-212 AS RECEIVED	25	22.70	67	2.50	2.00				
MS-PSZ	A286	-	INCUSL-15ABA	AF	BRAZED IN VAC@775C MCB-199 AS RECEIVED	25	22.70	62	2.50	2.00				
MS-PSZ/TI*	Titanium	ASTM(B265g1)	BR604	AS	BRAZED IN VAC@790C MCB-200 AS RECEIVED	25	22.70	340	2.50	2.00				
MS-PSZ/TI*	Titanium	ASTM(B265g1)	BR604	AS	BRAZED IN VAC@735C MCB-298 AS BRAZED	25	22.70	375	2.50	2.00				
MS-PSZ/TI*	Titanium	ASTM(B265g1)	BR604	AS	BRAZED IN VAC@735C MCB-298 AS BRAZED	25	22.70	469	2.50	2.00				
MS-PSZ/TI*	Titanium	ASTM(B265g1)	BR604	AS	BRAZED IN VAC@735C MCB-298 AS BRAZED	25	22.70	343	2.50	2.00				

SHEAR STRESS TEST DATA ON WELDED SPECIMENS FROM OAK RIDGE NATIONAL LABORATORY

MATERIAL A	MATERIAL B	MATERIAL LOT	FILLER MATERIAL	JOINT PROCESS	JOINT	SPEC. NUMBER	HEAT TREATMENT	C	N	SHEAR STRESS	WIDTH mm	HEIGHT mm
										MPa		
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-175	AS BRAZED	25	22.70	365	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-175	AS BRAZED	25	22.70	493	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-175	AS BRAZED	25	22.70	508	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-175	AS BRAZED	25	22.70	462	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-175	AS BRAZED	25	22.70	483	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-267	AS BRAZED	200	22.70	483	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-267	AS BRAZED	200	22.70	347	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-267	AS BRAZED	400	22.70	298	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-267	AS BRAZED	400	22.70	268	2.50	2.00
MS-PSZ	MS-PSZ	ORNL-1	BR604	AS	BRAZED IN VAC@735C	MCB-267	AS BRAZED	400	22.70	361	2.50	2.00
CAST IRON	CAST IRON	CEC8003	BR604	AS	BRAZED IN VAC@735C	MCB-300	AS BRAZED	25	22.70	380	2.50	2.00
CAST IRON	CAST IRON	CEC8003	BR604	AS	BRAZED IN VAC@735C	MCB-300	AS BRAZED	25	22.70	356	2.50	2.00
CAST IRON	CAST IRON	CEC8003	BR604	AS	BRAZED IN VAC@735C	MCB-300	AS BRAZED	25	22.70	399	2.50	2.00
CAST IRON	CAST IRON	CEC8003	BR604	AS	BRAZED IN VAC@735C	MCB-300	AS BRAZED	25	22.70	354	2.50	2.00
CAST IRON	CAST IRON	CEC8003	BR604	AS	BRAZED IN VAC@735C	MCB-300	AS BRAZED	25	22.70	369	2.50	2.00

* Material is coated with .6 micrometers of titanium.
All MS-PSZ is from batch coded ORNL-1.

SECTION 4. FRACTURE TOUGHNESS DATA

FRACTURE TOUGHNESS DATA FROM MTL87-29, JUNE 1987
ZIRCONIAS AND ZIRCONIA-TOUGHENED ALUMINAS

MATERIAL	TYPE	HEAT TREATMENT	SPECIMEN ID	TYPE of KIC	TEMP C	LOAD N	STRESS MPa	KIC MPa m
COORS-ZDY	FSZ	AS RECD	SUMOF7	INDENT+4PTB	25	20	0	3.010
AC-SENSOR	PSZ	100h@1000C	SUMOF2	INDENT+4PTB	25	200	0	4.090
AC-SENSOR	PSZ	100h@1000C	SUMOF12	INDENT+4PTB	25	0	0	3.930
AC-SENSOR	PSZ	500h@1000C	SUMOF3	INDENT+4PTB	25	100	0	3.840
AC-SENSOR	PSZ	500h@1000C	SUMOF8	INDENT+4PTB	25	20	0	4.100
AC-SENSOR	PSZ	500h@1000C	SUMOF2	INDENT+4PTB	25	150	0	3.800
AC-SENSOR	PSZ	AS RECD	SUMOF6	INDENT+4PTB	25	100	0	4.100
ZT-35	PSZ	100h@1000C	SUMOF2	INDENT+4PTB	25	200	0	8.960
ZT-35	PSZ	100h@1000C	SUMOF11	INDENT+4PTB	25	100	0	9.440
ZT-35	PSZ	500h@1000C	SUMOF3	INDENT+4PTB	25	150	0	6.900
ZT-35	PSZ	500h@1000C	SUMOF3	INDENT+4PTB	25	200	0	6.990
ZT-35	PSZ	500h@1000C	SUMOF1	INDENT+4PTB	25	20	0	5.490
ZT-35	PSZ	500h@1000C	SUMOF2	INDENT+4PTB	25	250	0	7.220
ZT-35	PSZ	500h@1000C	SUMOF3	INDENT+4PTB	25	100	0	6.660
ZT-35	PSZ	AS RECD	SUMOF5	INDENT+4PTB	25	100	0	5.260
ZT-35	PSZ	AS RECD	SUMOF4	INDENT+4PTB	25	150	0	5.080
ZT-35	PSZ	AS RECD	SUMOF5	INDENT+4PTB	25	50	0	5.310
TS-TTZ	TTZ	100h@1000C	SUMOF12	INDENT+4PTB	25	100	0	6.520
TS-TTZ	TTZ	500h@1000C	SUMOF3	INDENT+4PTB	25	150	0	6.400
TS-TTZ	TTZ	500h@1000C	SUMOF4	INDENT+4PTB	25	100	0	6.060
TS-TTZ	TTZ	500h@1000C	SUMOF3	INDENT+4PTB	25	50	0	5.870
TS-TTZ	TTZ	AS RECD	SUMOF4	INDENT+4PTB	25	100	0	7.880
MS-TTZ	TTZ	100h@1000C	SUMOF7	INDENT+4PTB	25	100	0	8.870
MS-TTZ	TTZ	500h@1000C	SUMOF7	INDENT+4PTB	25	100	0	5.610
MS-TTZ	TTZ	AS RECD	SUMOF9	INDENT+4PTB	25	100	0	10.400
COORS-ZDM	TIZ	100h@1000C	SUMOF5	INDENT+4PTB	25	100	0	6.120
COORS-ZDM	TIZ	100h@1000C	SUMOF6	INDENT+4PTB	25	150	0	6.230
COORS-ZDM	TIZ	500h@1000C	SUMOF3	INDENT+4PTB	25	150	0	5.320
COORS-ZDM	TIZ	500h@1000C	SUMOF3	INDENT+4PTB	25	100	0	4.510
COORS-ZDM	TIZ	500h@1000C	SUMOF3	INDENT+4PTB	25	250	0	5.960
COORS-ZDM	TIZ	AS RECD	SUMOF4	INDENT+4PTB	25	150	0	10.690
COORS-ZDM	TIZ	AS RECD	SUMOF4	INDENT+4PTB	25	250	0	11.570
COORS-ZDM	TIZ	AS RECD	SUMOF4	INDENT+4PTB	25	100	0	10.190
ZIRCOA2120	TTZ	100h@1000C	SUMOF3	INDENT+4PTB	25	150	0	5.470
ZIRCOA2120	TTZ	100h@1000C	SUMOF3	INDENT+4PTB	25	100	0	5.360
ZIRCOA2120	TTZ	100h@1000C	SUMOF1	INDENT+4PTB	25	30	0	4.530
ZIRCOA2120	TTZ	500h@1000C	SUMOF3	INDENT+4PTB	25	50	0	5.150
ZIRCOA2120	TTZ	500h@1000C	SUMOF3	INDENT+4PTB	25	150	0	5.490
ZIRCOA2120	TTZ	500h@1000C	SUMOF3	INDENT+4PTB	25	100	0	5.580
ZIRCOA2120	TTZ	AS RECD	SUMOF2	INDENT+4PTB	25	150	0	10.510
ZIRCOA2120	TTZ	AS RECD	SUMOF8	INDENT+4PTB	25	100	0	8.730
ZIRCOA2120	TTZ	AS RECD	SUMOF1	INDENT+4PTB	25	20	0	5.540
NRL-TZP	TZP	100h@1000C	SUMOF3	INDENT+4PTB	25	100	0	4.630
NRL-TZP	TZP	500h@1000C	SUMOF3	INDENT+4PTB	25	100	0	4.880
NRL-TZP	TZP	AS RECD	SUMOF2	INDENT+4PTB	25	100	0	5.030
COORS-TZP	TZP	100h@1000C	SUMOF17	INDENT+4PTB	25	100	0	6.830
COORS-TZP	TZP	500h@1000C	SUMOF17	INDENT+4PTB	25	100	0	8.380
COORS-TZP	TZP	AS RECD	SUMOF14	INDENT+4PTB	25	100	0	6.810
Z-191	TZP	500h@1000C	SUMOF2	INDENT+4PTB	25	100	0	8.680
TOSH-TZP	TZP	100h@1000C	SUMOF8	INDENT+4PTB	25	150	0	6.840
TOSH-TZP	TZP	500h@1000C	SUMOF6	INDENT+4PTB	25	150	0	6.730
TOSH-TZP	TZP	AS RECD	SUMOF8	INDENT+4PTB	25	150	0	7.040

FRACTURE TOUGHNESS DATA FROM MTL87-29, JUNE 1987
ZIRCONIAS AND ZIRCONIA-TOUGHENED ALUMINAS

MATERIAL	TYPE	HEAT TREATMENT	SPECIMEN ID	TYPE of KIC	TEMP C	LOAD N	STRESS MPa	KIC MPa m
TOSH-TZP	TZP	AS RECD	SUMOF1	INDENT+4PTB	25	100	0	8.190
TOR-TZPSIN	TZP	AS RECD	SUMOF1	INDENT+4PTB	25	100	0	11.630
UM-ZTA1	ZTA	100h@1000C	SUMMARY	INDENT+4PTB	25	100	371	4.850
UM-ZTA1	ZTA	500h@1000C	SUMMARY	INDENT+4PTB	25	100	450	4.560
UM-ZTA1	ZTA	AS RECD	SUMMARY	INDENT+4PTB	25	100	436	4.860
UM-ZTA2/HI	ZTA	500h@1000C	SUMMARY	INDENT+4PTB	25	100	410	4.930
UM-ZTA2/HI	ZTA	AS RECD	SUMMARY	INDENT+4PTB	25	100	457	4.970
UM-ZTA2/LO	ZTA	AS RECD	SUMMARY	INDENT+4PTB	25	100	122	3.520
UM-ZTA2/ME	ZTA	500h@1000C	SUMMARY	INDENT+4PTB	25	100	286	0.000
UM-ZTA3/HI	ZTA	500h@1000C	SUMMARY	INDENT+4PTB	25	100	413	3.940
UM-ZTA3/HI	ZTA	AS RECD	SUMMARY	INDENT+4PTB	25	100	386	4.980
UM-ZTA3/ME	ZTA	500h@1000C	SUMMARY	INDENT+4PTB	25	100	373	3.470
UM-ZTA4	ZTA	100h@1000C	SUMMARY	INDENT+4PTB	25	100	398	4.950
UM-ZTA4	ZTA	500h@1000C	SUMMARY	INDENT+4PTB	25	100	456	4.700
UM-ZTA4	ZTA	AS RECD	SUMMARY	INDENT+4PTB	25	100	0	5.290
UM-ZTM5	ZTM	500h@1000C	SUMMARY	INDENT+4PTB	25	100	296	0.000
UM-ZTM5	ZTM	AS RECD	SUMMARY	INDENT+4PTB	25	100	260	0.000
UM-ZTM6	ZTM	500h@1000C	SUMMARY	INDENT+4PTB	25	100	292	0.000
UM-ZTM6	ZTM	AS RECD	SUMMARY	INDENT+4PTB	25	100	286	0.000

SECTION 5. TENSILE DATA

PART 5A. Tensile data table

TENSILE DATA FROM OAK RIDGE NATIONAL LABORATORY*						
MATERIAL	BATCH CODE	SPECIMEN NUMBER	TEMP (C)	TENSILE STRENGTH (MPa)	YOUNG'S MODULUS (GPa)	
TS-PSZ	NILCRA/ORNL-1	15	25	326	0	
TS-PSZ	NILCRA/ORNL-1	16	25	448	0	
TS-PSZ	NILCRA/ORNL-1	7	400	376	0	
TS-PSZ	NILCRA/ORNL-1	8	400	314	0	
TS-PSZ	NILCRA/ORNL-1	2	800	292	167	
TS-PSZ	NILCRA/ORNL-1	3	800	269	156	
TS-PSZ	NILCRA/ORNL-1	13	1000	253	145	
TS-PSZ	NILCRA/ORNL-1	12	1000	244	148	

* This data came from reference 3.

PART 5B. Tensile graph

ORNL-DWG 88-16428

Figure 6. Tensile strength vs temperature for Nilcra's MgO partially stabilized zirconia, thermal shock grade.

SECTION 6. WEIBULL INFORMATION

PART 6A. Weibull data

WEIBULL INFORMATION FOR MATERIALS REPORTED IN MTL87-29

MATERIAL	BATCH CODE	HEAT TREATMENT	NUMBER OF TESTS	AVERAGE STRENGTH MPa	WEIBULL INTERCEPT	WEIBULL MODULUS
AC-SENSOR	AMTL-A/ACS82	AS RECD	8	309	324	10.20
AC-SENSOR	AMTL-A/ACS82	500h@1000C	12	274	303	4.30
AC-SENSOR	AMTL-A/ACS82	100h@1000C	12	314	342	5.60
NRL-TZP	AMTL-B/NRL82	AS RECD	2	708	0	0.00
NRL-TZP	AMTL-B/NRL82	500h@1000C	2	624	0	0.00
NRL-TZP	AMTL-B/NRL82	100h@1000C	3	659	0	0.00
TS-TTZ	AMTL-D/NILSEN82	AS RECD	10	588	609	14.10
TS-TTZ	AMTL-D/NILSEN82	500h@1000C	9	392	405	15.60
TS-TTZ	AMTL-D/NILSEN82	100h@1000C	13	385	409	7.80
MS-TTZ	AMTL-E/NILSEN82	AS RECD	14	640	665	13.40
MS-TTZ	AMTL-E/NILSEN82	500h@1000C	9	288	307	7.40
MS-TTZ	AMTL-E/NILSEN82	100h@1000C	8	493	505	21.40
CERAD-FSZ	AMTL-F/CERAD82	AS RECD	4	207	0	0.00
COORS-ZDM	AMTL-G/COORS81	AS RECD	13	186	190	21.40
COORS-ZDM	AMTL-H/COORS83	AS RECD	12	534	596	4.20
COORS-ZDM	AMTL-H/COORS83	500h@1000C	11	240	252	9.90
COORS-ZDM	AMTL-H/COORS83	100h@1000C	12	320	327	24.60
COORS-TZP	AMTL-I/COORS84	AS RECD	14	921	1010	4.50
COORS-TZP	AMTL-I/COORS84	500h@1000C	16	998	1154	2.90
COORS-TZP	AMTL-I/COORS84	100h@1000C	15	920	1026	2.40
COORS-ZDY	AMTL-J/COORS81	AS RECD	10	242	250	16.00
ZT-35	AMTL-L/AFC82	AS RECD	10	445	483	5.90
ZT-35	AMTL-L/AFC82	500h@1000C	12	314	328	11.40
ZT-35	AMTL-L/AFC82	100h@1000C	13	592	624	9.50
NGK-TZP	AMTL-N/NGKN	AS RECD	5	758	827	13.50
TOSH-TZP	AMTL-P/TOSHBA83	AS RECD	9	518	544	10.20
TOSH-TZP	AMTL-P/TOSHBA83	500h@1000C	7	457	488	6.80
TOSH-TZP	AMTL-P/TOSHBA83	100h@1000C	8	560	597	7.50
TOR-TZPHP	AMTL-Q/TORAY83	AS RECD	3	1159	0	0.00
TOR-TZPHP	AMTL-Q/TORAY83	500h@1000C	3	237	0	0.00
TOR-TZPSIN	AMTL-R/TORAY83	AS RECD	1	954	0	0.00
TOR-TZPSIN	AMTL-R/TORAY83	500h@1000C	2	212	0	0.00
ZIRCOA2120	AMTL-S/CGW	AS RECD	20	511	543	7.70
ZIRCOA2120	AMTL-S/CGW	500h@1000C	11	327	341	11.60
ZIRCOA2120	AMTL-S/CGW	100h@1000C	15	312	324	13.60

HITACHI 1985 AS RECEIVED

Data from Army Materials Technology Laboratory

Figure 8. Weibull plot for Hitacchi 1985 in as received condition.

HITACHI 1985 50h at 200 °C

Data from Army Materials Technology Laboratory

Figure 9. Weibull plot for Hitachi 1985 after 50 hours at 200°C.

HITACHI 1985 50h at 300 °C
 Data from Army Materials Technology Laboratory

Figure 9. Weibull plot for Hitachi 1985 after 50 hours at 300°C.

HITACHI 1985 50h at 400°C
 Data from Army Materials Technology Laboratory

Figure 10. Weibull plot for Hitachi 1985 after 50 hours at 400°C.

Figure 11. Weibull plot for Hitachi 1985 after 100 hours at 1000°C.

Figure 12. Weibull plot for Hitachi 1985 after 500 hours at 1000°C.

HITACHI 1985 500h at 1100°C
Data from Army Materials Technology Laboratory

Figure 13. Weibull plot for Hitachi 1985 after 500 hours at 1100°C.

HITACHI 1985 500h at 1200°C
Data from Army Materials Technology Laboratory

Figure 14. Weibull plot for Hitachi 1985 after 500 hours at 1200°C.

KORANSHA 1986 HIP'ED AS RECEIVED

Data from Army Materials Technology Laboratory

Figure 15. Weibull plot for Koransha 1986H in as received condition.

KORANSHA 1986 HIP'ED 100h at 1000°C

Data from Army Material Technology Laboratory

Figure 16. Weibull plot for Koransha 1986H after 100 hours at 1000°C.

KORANSHA 1986 HIP'ED 50h at 300°C

Data from Army Material Technology Laboratory

Figure 17. Weibull plot for Koransha 1986H after 50 hours at 300°C.

KORANSHA 1986 HIP'ED 50h at 400°C

Data from Army Materials Technology Laboratory

Figure 18. Weibull plot for Koransha 1986H after 50 hours at 400°C.

KORANSHA 1986 HIP'ED 500h at 1000°C

Data from Army Materials Technology Laboratory

Figure 19. Weibull plot for Koransha 1986H after 500 hours at 1000°C.

KORANSHA 1986 HIP'ED 500h at 1200°C

Data from Army Materials Technology Laboratory

Figure 20. Weibull plot for Koransha 1986H after 500 hours at 1200°C.

KORANSHA 1986 SINTERED AS RECEIVED

Data from Army Materials Technology Laboratory

Figure 21. Weibull plot for Koransha 1986S in as received condition.

KORANSHA 1986 SINTERED 100h at 1000°C

Data from Army Materials Technology Laboratory

Figure 22. Weibull plot for Koransha 1986S after 100 hours at 1000°C.

KORANSHA 1896 SINTERED 50h at 300°C

Data from Army Materials Technology Laboratory

Figure 23. Weibull plot for Koransha 1986S after 50 hours at 300°C.

KORANSHA 1986 SINTERED 50h at 400°C

Data from Army Materials Technology Laboratory

Figure 24. Weibull plot for Koransha 1986S after 50 hours at 400°C.

KORANSHA 1986 SINTERED 50h at 200°C

Data from Army Materials Technology Laboratory

Figure 25. Weibull plot for Koransha 1986S after 50 hours at 200 °C.

KORANSHA 1986 SINTERED 500h at 1000°C

Data from Army Materials Technology Laboratory

Figure 26. Weibull plot for Koransha 1986S after 500 hours at 1000°C.

CERAMATEC CZ-203 AS RECEIVED

Data from Army Materials Technology Laboratory

Figure 27. Weibull plot for Ceramatec CZ-203 in as received condition.

CERAMATEC CZ-203 100h at 1000°C

Data from Army Materials Technology Laboratory

Figure 28. Weibull plot for Ceramatec CZ-203 after 100 hours at 1000°C.

CERAMATEC CZ-203 500h at 1000°C

Data from Army Materials Technology Laboratory

Figure 29. Weibull plot for Ceramatec CZ-203 after 500 hours at 1000°C.

TOSHIBA TASZIC 500h at 1000°C

Data from Army Materials Technology Laboratory

Figure 30. Weibull plot for Toshiba TASZIC after 500 hours at 1000°C.

TOSHIBA TASZIC AS RECEIVED

Data from Army Materials Technology Laboratory

Figure 31. Weibull plot for Toshiba TASZIC in as received condition.

TOSHIBA TASZIC 100h at 1000°C

Data from Army Materials Technology Laboratory

Figure 32. Weibull plot for Toshiba TASZIC after 100 hours at 1000°C.

Figure 34. Weibull plot for NGK-Locke Z-191 after 100 hours at 1000°C.

Figure 34. Weibull plot for NGK Locke Z-191 after 500 hours at 1000°C.

KYOCERA Z-201 AS RECEIVED
 Data from Army Materials Technology Laboratory

KYOCERA Z-201 100h at 1000°C

Data from Army Materials Technology Laboratory

Figure 37. Weibull plot for Kyocera Z-201 after 100 hours at 1000 °C.

KYOCERA Z-701 100h at 1000°C

Data from Army Materials Technology Laboratory

Figure 38. Weibull plot for Kyocera Z-701 after 100 hours at 1000°C.

Figure 39. Weibull plot for Kyocera Z-201 after 500 hours at 1000°C.

Figure 40. Weibull plot for Kyocera Z-701 after 500 hours at 1000°C.

SECTION 7. MODULUS OF RUPTURE - FOUR POINT BEND DATA

MOR 4 POINT BEND TEST DATA FROM MTL87-29					
MATERIAL	TYPE	SPECIMEN ID	TEMP C	HEAT TREATMENT	STRESS MPa
AMTL-F	FSZ	SUMOF4	25	AS RECEIVED	207
AMTL-J	FSZ	SUMOF10	25	AS RECEIVED	242
AMTL-A	PSZ	SUMOF12	25	100h@1000C	314
AMTL-A	PSZ	SUMOF12	25	500h@1000C	274
AMTL-A	PSZ	SUMOF 8	25	AS RECEIVED	309
AMTL-L	PSZ	SUMOF13	25	100h@1000C	592
AMTL-L	PSZ	SUMOF12	25	500h@1000C	314
AMTL-L	PSZ	SUMOF10	25	AS RECEIVED	445
AMTL-D	TTZ	SUMOF13	25	100h@1000C	385
AMTL-D	TTZ	SUMOF9	25	500h@1000C	392
AMTL-D	TTZ	SUMOF10	25	AS RECEIVED	588
AMTL-E	TTZ	SUMOF8	25	100h@1000C	493
AMTL-E	TTZ	SUMOF9	25	500h@1000C	288
AMTL-E	TTZ	SUMOF14	25	AS RECEIVED	640
AMTL-G	TTZ	SUMOF13	25	AS RECEIVED	186
AMTL-H	TTZ	SUMOF12	25	100h@1000C	320
AMTL-H	TTZ	SUMOF11	25	500h@1000C	240
AMTL-H	TTZ	SUMOF12	25	AS RECEIVED	534
AMTL-S	TTZ	SUMOF15	25	100h@1000C	312
AMTL-S	TTZ	SUMOF11	25	500h@1000C	327
AMTL-S	TTZ	SUMOF20	25	AS RECEIVED	511
AMTL-B	TZP	SUMOF3	25	100h@1000C	659
AMTL-B	TZP	SUMOF2	25	500h@1000C	624
AMTL-B	TZP	SUMOF2	25	AS RECEIVED	708
AMTL-I	TZP	SUMOF15	25	100h@1000C	920
AMTL-I	TZP	SUMOF16	25	500h@1000C	998
AMTL-I	TZP	SUMOF14	25	AS RECEIVED	921
AMTL-N	TZP	SUMOF5	25	AS RECEIVED	758
AMTL-P	TZP	SUMOF8	25	100h@1000C	560
AMTL-P	TZP	SUMOF7	25	500h@1000C	457
AMTL-P	TZP	SUMOF9	25	AS RECEIVED	518
AMTL-Q	TZP	SUMOF3	25	AS RECEIVED	1159
AMTL-R	TZP	SUMOF1	25	AS RECEIVED	954

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	1985	HEAT TREAT.	50 HRS @ 300C						
FABRICATOR	HITACHI	DATE	3/19/87						
VINTAGE	1985	METHOD	MIL STD 4-PT BEND						
CH SPEED	0.5 mm/min	SPECIMEN SIZE	MIL STD 'B'						
CHART SPEED	100 mm/min	SLOPE	5.44						
HUMIDITY, %	25.0	TESTER	T. STEFANICK						
TEMPERATURE	25 C <th>MOMENT ARM</th> <td>10 mm</td>	MOMENT ARM	10 mm						
SPEC	LOAD ID N	WIDTH mm	HEIGHT mm	STRESS MPA	KSI	FLAW TYPE	PHOTO Y/N	SEM Y/N	COMMENTS
196	438	4.0300	3.0040	361	52	LARGE VOID	NO	NO	BROKE AT L.L.P.
197	630	4.0280	3.0020	521	76	?	YES	NO	
204	660	4.0300	3.0020	545	79	MACHINING DAMAGI	YES	YES	
199	724	4.0280	3.0040	598	87	?	NO	NO	
200	760	4.0300	3.0020	628	91	VOID?	YES	YES	
203	794	4.0240	2.9960	659	96	VOID ON CHAMFER	NO	NO	
201	816	4.0260	2.9920	679	99	VOID	NO	NO	
198	860	4.0240	3.0000	712	103	POROUS SEAM	YES	YES	
202	874	4.0280	3.0000	723	105	SINTERING AGGLOME	YES	YES	
205	912	4.0280	3.0000	755	109	?	YES	NO	

NOTE: R.L.P. = Right Load Pin, L.L.P. = Left Load Pin, L.P. = Load Pin.

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	1985	HEAT TREAT.				50 HRS @ 400C	
FABRICATOR	HITACHI		DATE	3/19/87			
VINTAGE	1985		METHOD	MIL-STD 4-PT BEND			
C.H SPEED	.5 mm/min		SPECIMEN SIZE	MIL STD "B"			
CHART SPEED	100 mm/min		SLOPE	3.781			
HUMIDITY, %	25		TESTER	T. STEFANICK			
TEMPERATURE	25 C		MOMENT ARM	10mm			
SPEC	LOAD	WIDTH	HEIGHT	STRESS	FLAW	PHOTO	SEM
ID	N	mm	mm	MPA	KSI	TYPE	Y/N
207	564	4.0280	3.0000	467	68	VOID	YES
210	620	4.0280	2.9980	514	75	SUBSURFACE S.A.	YES
208	1028	4.0240	2.9920	856	124	POROUS SEAM	NO
206	1058	4.0260	2.9940	879	128	M.D. ON CHAMFER	NO
211	1086	4.0280	3.0020	898	130	POROUS SEAM	YES
215	1120	4.0280	3.0000	927	134	?	NO
212	1158	4.0280	3.0020	957	139	?	YES
214	1288	4.0280	3.0000	1066	155	M.D. ON CHAMFER	YES
213	1316	4.0280	3.0020	1088	158	PORE	YES
209	1338	4.0260	2.9960	1111	161	?	NO

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	1985	HEAT TREAT.	500 HRS @ 1100C						
FABRICATOR	HITACHI	DATE	6/11/86						
VINTAGE	1985	METHOD	MIL STD 4-PT BEND						
C.H SPEED	.5 mm/min	SPECIMEN SIZE	MIL STD 'B'						
CHART SPEED	100 mm/min	SLOPE	.941						
HUMIDITY, %	65	TESTER	T. STEFANICK						
TEMPERATURE	25 C	MOMENT ARM	10 mm						
SPEC	LOAD ID	WIDTH mm	HEIGHT mm	STRESS MPA	KSI	FLAW TYPE	PHOTO	SEM Y/N	COMMENTS
119	946	4.0180	2.9740	799	116	PORES	YES	YES	
120	1104	4.0160	2.9760	931	135	MACHINING DAMAGE	NO	NO	
111	1128	4.0120	2.9620	961	139	POSSIBLE M.D.	NO	NO	PIECE MISSING
112	1208	4.0140	2.9660	1026	149	PORE	YES	YES	
109	1240	4.0000	2.9640	1059	154	M.D. ALONG SURFACE	NO	NO	
116	1274	4.0180	2.9680	1080	157	LARGE S.A.	NO	NO	
117	1326	4.0140	2.9660	1127	163	?	NO	NO	PIECE MISSING
110	1346	4.0140	2.9620	1147	166	CRACK OR VOID UND SURF	YES	NO	
113	1370	4.0100	2.9640	1167	169	POSSIBLE M.D. ON SURF	NO	NO	BROKE AT R.L.P.
114	1392	4.0100	2.9600	1189	172	SINTERING AGGL. ?	NO	NO	
108	1436	4.0040	3.0000	1195	173	INCLUSION	YES	YES	3 BREAKS, 1 OUTSIDE L.I.P.
107	1454	4.0020	3.0000	1211	176	SINTERING AGGLOMERATE	NO	NO	BROKE AT L.L.P.
106	1492	4.0020	3.0000	1243	180	M.D. ON CHAMFER	NO	NO	
115	1472	4.0200	2.9660	1249	181	SUSURFACE S.A.	YES	YES	
118	1516	4.0180	2.9760	1278	185	?	NO	NO	

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL		1986, HIP ^{ed}		HEAT TREAT.		50 HRS @ 200C			
FABRICATOR	KORANSHA			DATE	1/5/87				
VINTAGE	1986			METHOD	ML STD 4-PT BEND				
C.H SPEED	.5 mm/min			SPECIMEN SIZE	ML STD "B"				
CHART SPEED	100 mm/min			SLOPE	5.511 MPa				
HUMIDITY, %	28			TESTER	T. STEFANICK				
TEMPERATURE 25 C				MOMENT ARM	10 mm				
SPEC	LOAD	WIDTH	HEIGHT	STRESS	FLAW	PHOTO	SEM		
ID	N	mm	mm	MPA	TYPE	Y/N	Y/N		
97	614	4.0100	2.9920	513	M.D. ON CHAMFER	NO	NO		
102	1120	4.0200	3.0000	929	WHITE INCLUSION	YES	YES		
91	1124	4.0160	3.0040	930	?	NO	NO		
98	1132	4.0180	3.0060	935	MACHINING DAMAGE	NO	NO		
103	1156	4.0200	3.0080	953	?	NO	NO		
96	1158	4.0180	3.0060	957	?	YES	YES		
105	1152	4.0160	2.9960	959	MD?:?	NO	NO		
94	1166	4.0200	3.0100	960	?	NO	NO		
92	1174	4.0180	3.0040	971	141 MACHINING DAMAGE?	YES	YES		
101	1174	4.0220	3.0000	973	141 MACHINING DAMAGE?	YES	YES		
93	1178	4.0180	2.9980	979	142 PORE OR VOID	YES	NO		
99	1184	4.0240	3.0000	981	142 M.D. ON CHAMFER	YES	YES		
100	1186	4.0220	2.9980	984	143 M.D. ON CHAMFER	NO	NO		
95	1186	4.0160	2.9980	986	143 M.D. ON CHAMFER	NO	NO		
104	1228	4.0220	3.0060	1014	147 M.D. ON CHAMFER	RT	NO		

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	1986, HIP ^{ed}	HEAT TREAT.	HIP ^{ed} 50HR @ 300C					
FABRICATOR	KORANSHA	DATE	3/19/87					
VINTAGE	1986	METHOD	MIL STD 4-PT BEND					
C.H SPEED	.5 mm/min	SPECIMEN SZ/MIL STD "B"						
CHART SPEED	100 mm/min	SLOPE	12.38					
HUMIDITY, %	25	TESTER	T. STEFANICK					
TEMPERATURE 25 C		MOMENT ARM 10 mm						
SPEC	LOAD	WIDTH	HEIGHT	STRESS	FLAW	PHOTO	SEM	COMMENTS
ID	N	mm	mm	MPA	KSI	TYPE	Y/N	Y/N
206	916	4.0180	3.0000	7.60	110	VOID?	YES	YES
202	1110	4.0240	3.0100	9.13	132	POROUS SEAM	YES	YES BROKE AT L.L.P.
200	1144	4.0240	3.0060	9.44	137	?	NO	NO 2BRKS, 1@LLP, RGHT PRMRY
201	1170	4.0260	3.0080	9.64	140	M.D. ON CHAMFER?	NO	NO
208	1168	4.0240	3.0000	9.68	140	M.D. ON CHAMFER?	YES	YES
203	1174	4.0160	2.9960	9.77	142	PORE	NO	NO BROKE AT R.L.P.
205	1186	4.0200	3.0000	9.83	143	M.D. ON CHAMFER	YES	YES
199	1236	4.0240	3.0000	1024	148	IMPURITY	YES	YES 2BRKS, 1@LLP, RGHT PRMRY
204	1240	4.0180	2.9900	1036	150	?	NO	NO 2 L.P. BRKS, LEFT PRMRY
207	1298	4.0280	3.0140	1064	154	PORE	NO	NO NO 2 L.P. BRKS, LEFT PRMRY

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	1986, HIP ed	HEAT TREAT.	50HR @ 400C						
FABRICATOR	KORANSHA	DATE	3/20/87						
VINTAGE	1986	METHOD	MIL STD 4-PT BEND						
C.H SPEED	.5 mm/min	SPECIMEN SIZE	MIL STD "B"						
CHART SPEED	100 mm/min	SLOPE	13.180						
HUMIDITY, %	25	TESTER	T. STEFANICK						
TEMPERATURE 25 C		MOMENT ARM	10 mm						
SPEC	LOAD N	WIDTH mm	HEIGHT mm	STRESS MPa	KSI	FLAW TYPE	PHOTO	SEM Y/N	COMMENTS
191	1138	4.0220	3.0120	936	136	MACHINING DAMAGE	NO	NO	
196	1142	4.0180	3.0060	944	137	MACHINING DAMAGE	YES	NO	BROKE AT R.L.P.
190	1276	4.0180	3.0040	1056	153	POROS SEAM	YES	YES	
194	1296	4.0280	3.0100	1065	155	?	NO	NO	
195	1394	4.0240	3.0100	1147	166	M.D. ON CHAMFER ?	YES	YES	
193	1392	4.0220	3.0080	1148	166	M.D. ON CHAMFER	NO	NO	
197	1382	4.0180	2.9940	1151	167	?	NO	NO	2 L.P. BRKS, RGHT PRMRY
192	1388	4.0180	3.0000	1151	167	MACHINING DAMAGE	YES	NO	
198	1406	4.0140	3.0060	1163	169	M.D. ON CHAMFER ?	YES	YES	2 L.P. BRKS, RGHT PRMRY
189	1432	4.0220	3.0080	1181	171	?	YES	YES	

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	1986 SINTERED	HEAT TREAT.	50HR @300C					
FABRICATOR	KORANSHA	DATE	3/19/87					
VINTAGE	1985	METHOD	MIL STD 4-PT BEND					
C.H SPEED	.5 mm/min	SPECIMEN SIZE	MIL STD "B"					
CHART SPEED	100 mm/min	SLOPE	18.726					
HUMIDITY, %	25	TESTER	T STEFANICK					
TEMPERATURE 25 C		MOMENT ARM	10 mm					
SPEC	LOAD	WIDTH	HEIGHT	STRESS	FLAW	PHOTO	SEM	COMMENTS
ID	N	mm	mm	MPA	KSI	TYPE	Y/N	
189	804	4.0120	2.9780	678	98	M.D. ON CHAMFER	NO	
187	810	4.0120	2.9700	687	100	POROUS SEAM	YES	BROKE AT R.L.P.
186	878	4.0040	2.9740	744	108	M.D.? ON CHAMFER	YES	
182	882	4.0140	2.9740	745	108	POROUS SEAM	NO	NO
181	910	4.0120	2.9780	767	111	PORE	YES	2 LP BREAKS, RIGHT PRMRY
185	914	4.0020	2.9800	772	112	PORE	NO	
190	930	4.0080	2.9780	785	114	PORE	YES	
184	932	4.0120	2.9780	786	114	M.D.? ON CHAMFER	NO	NO
183	970	4.0200	2.9860	812	118	M.D. ON CHAMFER	YES	2 LP BREAKS, RIGHT PRMRY
188	974	4.0180	2.9840	817	118	PORE	NO	2 BRKS, 1@LLP,RIGHT PRMRY

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL 1986, SINTERED				HEAT TREAT.				SINTERED 50HR @400C			
FABRICATOR	KORANSHA	VINTAGE	1985	DATE		METHOD		DATE	3/19/87	MIL STD 4-PT BEND	
C.H SPEED	100 mm/min	CHART SPEED	100 mm/min	SPECIMEN SIZE		SLOPE		SPECIMEN SIZE		MIL STD "B"	
HUMIDITY, %	25	TEMPERATURE 25 C		TESTER		MOMENT ARM		TESTER	T. STEFANICK	MOMENT ARM	10 mm
SPEC	LOAD	WIDTH	HEIGHT	STRESS	MPA	KSI	FLAW	TYPE	PHOTO	SEM	COMMENTS
ID	N	mm	mm								
175	92	4.0140	2.9720	78	11		MACHINING DAMAGE ?		Y/N	Y/N	
178	400	4.0220	2.9780	336	49		LARGE VOID		YES	YES	
171	826	4.0120	2.9720	699	101		SINTERING AGGLOMERATE		YES	YES	
177	834	4.0200	2.9780	702	102		POROUS SEAM		NO	NO	
179	842	4.0180	2.9800	708	103		SINTERING AGGLOMERATE		NO	NO	
176	838	4.0100	2.9740	709	103		SINTERING AGGLOMERATE		NO	NO	
174	850	4.0140	2.9800	715	104		SINTERING AGGLOMERATE		YES	NO	
180	864	4.0140	2.9700	732	106		POROUS SEAM		YES	YES	
173	890	4.0080	2.9760	752	109		POROUS SEAM		NO	NO	2 LP BREAKS, RIGHT PRMRY
172	892	4.0080	2.9620	761	110		SINTERING AGGLOMERATE		YES	NO	

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	TZP-110		HEAT TREAT.	50HRS @ 200C					
REF. CODE	MTL2AC52		DATE	10/24/86					
FABRICATOR	AC SPARKPLUG		METHOD	MIL STD 4-PT BEND					
VINTAGE	1985		SPECIMEN SIZE	MIL STD "B"					
C.H SPEED	.5 mm/min		SLOPE	31.104					
CHART SPEED	100 mm/min		TESTER	T. STEFANICK					
HUMIDITY, %	4.2		MOMENT ARM	10 mm					
TEMPERATURE	25 C								
SPEC	LOAD ID	WIDTH mm	HEIGHT mm	STRESS MPA	KSI	FLAW TYPE	PHOTO	SEM Y/N	COMMENTS
105	642	3.9900	2.9800	544	79	PORES	YES	YES	
104	680	3.9920	2.9820	575	83	PORE ON CHAMFER	YES	NO	
103	692	4.0080	2.9960	577	84	DAMAGE ON CHAMFER	YES	YES	
107	705	3.9960	2.9900	592	86	PORES	NO	NO	2 BRKS, 1@RLP, LFT PRIM
106	714	4.0000	2.9920	598	87	PORES ON CHAMFER	YES	YES	

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	CZ203			HEAT TREAT.			AS RECEIVED	
FABRICATOR	CERAMATEC			DATE	7/20/87			
VINTAGE	1986			METHOD	MIL STD 4-PT BEND			
C.H SPEED	0.5 mm/min			SPECIMEN SIZE	MIL STD "B"			
CHART SPEED	100 mm/min			SLOPE	36.52			
HUMIDITY %	55.0			TESTER	T. STEFANICK			
TEMPERATURE	25 C			MOMENT ARM	10 mm			
SPEC	LOAD	WIDTH	HEIGHT	STRESS	PHOTO	SEM	COMMENTS	
ID	N	mm	mm	MPA	KSI	Y/N	Y/N	
65	652	3.9950	2.9720	554	80	NO	2 BRKS, 1 @ R.L.P.	
63	664	4.0040	2.9780	561	81	NO	2 BREAKS	
67	678	4.0040	2.9800	572	83	NO		
61	682	4.0040	2.9780	576	84	NO		
54	694	4.0080	2.9820	584	85	NO	2 BREAKS	
60	692	4.0080	2.9740	586	85	NO		
66	700	4.0030	2.9780	592	86	NO	2 BRKS, 1 @ R.L.P.	
59	704	4.0060	2.9820	593	86	NO		
58	704	4.0060	2.9800	594	86	NO	2 BREAKS, 1 @ R.L.P.	
57	708	4.0060	2.9780	598	87	NO	2 L.P. BREAKS	
70	704	3.9940	2.9660	601	87	NO		
53	706	3.9970	2.9660	602	87	NO	2 BREAKS	
52	712	4.0000	2.9680	606	88	NO	2 BREAKS	
69	718	4.0020	2.9740	609	88	NO		
64	716	3.9960	2.9720	609	88	NO	2 BRKS, 1 @ R.L.P.	
68	722	4.0040	2.9800	609	88	NO		
55	728	4.0040	2.9770	615	89	NO	2 BRKS, 1 @ R.L.P.	
56	730	3.9920	2.9680	623	90	NO	2 BREAKS	
62	738	4.0060	2.9760	624	91	NO		
51	737	4.0020	2.9740	625	91	NO		

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	CZ203	HEAT TREAT.	100 HRS @1000C				
FABRICATOR	CERAMATEC	DATE	7/24/87				
VINTAGE	1987	METHOD	MIL STD 4-PT BEND				
C.H SPEED	0.5 mm/min	SPECIMEN SIZE	MIL STD "B"				
CHART SPEED	100mm/min	SLOPE	43.150				
HUMIDITY, %	59.0	TESTER	T. STEFANICK				
TEMPERATURE	25 C	MOMENT ARM	10 mm				
SPEC	LOAD	WIDTH	HEIGHT	STRESS	PHOTO	SEM	COMMENTS
ID	N	mm	mm	MPA	KSI	Y/N	
14	565	3.9970	2.9720	480	70	NO	Y/N
16	566	3.9940	2.9700	482	70	NO	NO
13	567	3.9890	2.9560	488	71	NO	NO
11	574	3.9950	2.9700	489	71	NO	NO
19	574	3.9930	2.9700	489	71	NO	NO
17	576	3.9960	2.9680	491	71	NO	2 BRKS, 1 @ L.L.P. 2 L.P. BREAKS
8	575	3.9880	2.9640	492	71	NO	2 L.P. BREAKS
3	576	3.9910	2.9620	494	72	NO	2 BRKS, 1 @ L.L.P.
5	581	3.9970	2.9720	494	72	NO	2 L.P. BREAKS
12	580	3.9930	2.9700	494	72	NO	2 L.P. BREAKS
10	580	3.9920	2.9600	497	72	NO	BROKE AT L.L.P.
6	599	4.0040	2.9780	506	73	NO	2 L.P. BREAKS
9	603	4.0060	2.9790	509	74	NO	NO
2	599	3.9930	2.9690	511	74	NO	2 BRKS, 1 @ R.L.P.
15	603	3.9960	2.9730	512	74	NO	NO
1	600	3.9940	2.9660	512	74	NO	NO
4	605	3.9960	2.9710	515	75	NO	NO
20	607	3.9940	2.9700	517	75	NO	NO
18	606	3.9960	2.9620	519	75	NO	2 BRKS, 1 @ L.L.P.
7	622	4.0040	2.9730	527	76	NO	2 BRKS, 1 @ R.L.P.

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL		CZ203		HEAT TREAT.		500 HRS AT 1000 C	
FABRICATOR	CERAMATEC	VINTAGE	1987	DATE	9/8/87	METHOD	MIL-STD 4-PT BEND
C.H SPEED	0.5 mm/min	CHART SPEED	100 mm/min	SPECIMEN SIZE	MIL-STD "B"		
HUMIDITY, %	54.0	TEMPERATURE	25C	TESTER	JEFF SWAB		
SPEC	LOAD	WIDTH	HEIGHT	STRESS	PHOTO	SEM	MISC.
ID	N	mm	mm	MPA	KSI	Y/N	
28	539	4.0000	2.9770	456	66	NO	
34	543	3.9920	2.9680	463	67	NO	
35	545	3.9910	2.9650	466	68	NO	
45	578	4.0070	2.9750	489	71	NO	2 L.P. BREAKS
42	582	4.0080	2.9790	491	71	NO	2 BRKS, 1 AT R.L.P.
26	583	3.9950	2.9690	497	72	NO	
37	591	4.0090	2.9840	497	72	NO	
33	581	3.9910	2.9610	498	72	NO	
40	588	3.9980	2.9750	499	72	NO	
39	584	3.9880	2.9680	499	72	NO	2 L.P. BREAKS
41	593	4.0050	2.9780	501	73	NO	
29	591	3.9940	2.9640	505	73	NO	
27	596	3.9940	2.9710	507	74	NO	2 BREAKS
38	598	3.9990	2.9680	509	74	NO	
31	612	4.0050	2.9840	515	75	NO	
30	606	3.9930	2.9720	515	75	NO	2 L.P. BREAKS
44	616	4.0060	2.9850	518	75	NO	
32	609	3.9830	2.9690	520	75	NO	
43	625	4.0060	2.9790	527	76	NO	
36	631	4.0040	2.9750	534	77	NO	

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	Z201	HEAT TREAT.			50 HRS @ 200C
FABRICATOR	KYOCERA	DATE	10/24/86		
VINTAGE	1985	METHOD	MIL STD 4-PT BEND		
C.H SPEED	.5 mm/min	SPECIMEN SIZE	MIL STD "B"		
CHART SPEED	100 mm/min	SLOPE	114.29		
HUMIDITY, %	42	TESTER	T. STEFANICK		
TEMPERATURE	25 C	MOMENT ARM	10 mm		
SPEC	LOAD	WIDTH	HEIGHT	STRESS	FLAW
ID	N	mm	mm	MPA	TYPE
95	460	4.0720	3.0420	366	AGGLOM OR L.G.
96	458	4.0520	3.0220	371	54 LARGE GRAIN

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	Z191	HEAT TREAT.				50 HRS @200 C			
FABRICATOR	NGK-LOCKE	DATE	1/5/87	MIL STD 4-PT BEND					
VINTAGE	1985	METHOD	MIL STD "B"						
C.H SPEED	.5 mm/min	SPECIMEN SIZE	16.469						
CHART SPEED	100 mm/min	SLOPE	T. STEFANICK						
HUMIDITY, %	28	TESTER	10 mm						
TEMPERATURE	25 C	MOMENT ARM							
SPEC ID	LOAD N	WIDTH mm	HEIGHT mm	STRESS MPA	KSI	FLAW TYPE	PHOTO Y/N	SEM Y/N	COMMENTS
100	856	4.0100	2.9900	716	104	IMPURITY?	NO	NO	
99	972	4.0080	2.9860	816	118	SINTERING AGGLOMERATE	NO	NO	
91	982	4.0040	2.9860	825	120	MACHINING DAMAGE?	NO	NO	BROKE NEAR L.L.P.
104	1010	4.0060	3.0080	836	121	VOID	YES	NO	
92	1038	4.0040	3.0100	858	125	SINTERING AGGLOMERATE	NO	NO	
105	1026	4.0100	2.9900	859	125	VOID	YES	YES	AREA NEAR VOID IS ORANG]
103	1064	4.0080	3.0120	878	127	?	NO	NO	
96	1054	4.0120	2.9840	885	128	SINTERING AGGLOMERATE	NO	NO	
102	1060	4.0120	2.9880	888	129	INCLUSION	YES	YES	BROKE AT L.L.P.
97	1078	4.0060	3.0120	890	129	SINTERING AGGLOMERATE	NO	NO	
98	1094	4.0080	2.9840	920	133	SINTERING AGGLOMERATE	YES	YES	
94	1128	4.0060	3.0120	931	135	?	NO	NO	2 L.P. BREAKS
93	1132	4.0040	3.0080	937	136	?	NO	NO	ORIGIN NEAR CHAMFER
101	1120	4.0000	2.9880	941	136	SINTERING AGGLOMERATE	YES	YES	2 LP BRKS, LEFT PRIMARY
95	1140	4.0140	2.9880	954	138	?	YES	YES	

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	Z191	HEAT TREAT.	50 HRS @ 300°C						
FABRICATOR	NGK	DATE	3/19/87						
VINTAGE	1985	METHOD	MIL STD 4-PT BEND						
C.H. SPEED	.5 mm/min	SPECIMEN SIZE	MIL STD "B"						
CHART SPEED	100 mm/min	SLOPE	15.802						
HUMIDITY, %	25	TESTER	T. STEFANICK						
TEMPERATURE	25 C	MOMENT ARM	10mm						
SPEC	LOAD ID	WIDTH mm	HEIGHT mm	STRESS MPA	KSI	FLAW TYPE	PHOTO Y/N	SEM Y/N	COMMENTS
178	874	4.0140	2.9880	732	106	?	NO	NO	BROKE AT R.L.P.
173	918	4.0040	2.9820	773	112	SINTERING AGGLOMERATE	NO	NO	
172	962	4.0000	3.0020	801	116	SINTERING AGGLOMERATE	YES	YES	BROKE AT R.L.P.
180	1020	4.0040	2.9880	856	124	POROUS REGION	YES	NO	
175	1022	4.0000	2.9860	860	125	PORE OR S.A.	NO	NO	
179	1054	4.0020	2.9840	887	129	POROUS SEAM	YES	YES	
176	1068	4.0100	2.9900	894	130	?	YES	YES	
174	1080	4.0000	3.0100	894	130	SINTERING AGGLOMERATE	YES	YES	2 BREAKS, LEFT PRIMARY
177	1088	3.9960	3.0140	899	130	S.A. ON CHAMFER	NO	NO	
171	1092	4.0060	2.9920	914	132	SINTERING AGGLOMERATE	NO	NO	

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	Z191 NGK-LOCKE	HEAT TREAT.	50 HRS @ 400 C						
FABRICATOR		DATE	3/19/87						
VINTAGE	1985	METHOD	MIL STD 4-PT BEND						
C.H SPEED	.5 mm/min	SPECIMEN SIZE	MIL STD "B"						
CHART SPEED	100 mm/min	SLOPE	4.510						
HUMIDITY, %	25	TESTER	T. STEFANICK						
TEMPERATURE	25 C	MOMENT ARM	10 mm						
SPEC	LOAD ID	WIDTH mm	HEIGHT mm	STRESS MPA	KSI	FLAW TYPE	PHOTO	SEM Y/N	COMMENTS
	188	516	4.0120	3.0140	425	62 IMPURITY	YES	YES	BROKE AT L.L.P.
	190	926	4.0060	3.0120	764	111 MACHINING DAMAGE	YES	YES	
	187	984	4.0100	2.9860	826	120 PORE	NO	NO	BROKE AT L.L.P.
	189	990	4.0040	2.9840	833	121 SINTERING AGGLOMERATE	NO	NO	
	183	1024	4.0100	3.0120	844	122 SINTERING AGGLOMERATE	YES	NO	BROKE AT R.L.P.
	182	1024	4.0080	3.0120	845	123 MACHINING DAMAGE?	NO	NO	
	181	1062	4.0060	2.9900	890	129 MACHINING DAMAGE?	NO	NO	
	185	1064	4.0040	2.9900	892	129 MACHINING DAMAGE?	NO	NO	BLACK DOT AT FAILURE
	184	1114	4.0060	3.0100	921	134 ?	YES	YES	
	186	1114	4.0120	2.9880	933	135 POROUS SEAM	YES	YES	2 BREAKS, 1 AT R.L.P.

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	Z701	HEAT TREAT.	AS RECEIVED
FABRICATOR	KYOCERA	DATE	2/5/88
VINTAGE	1988	METHOD	MIL STD 1942
C.H SPEED	0.5 mm/min	SPECIMEN SIZE	MIL STD "B"
CHART SPEED	50 mm/min	SLOPE	24.706
HUMIDITY, %	27.0	TESTER	T. STEFANICK
TEMPERATURE	25 C	MOMENT ARM	10 mm

SPEC	LOAD	WIDTH	HEIGHT	STRESS	PHOTO	SEM	COMMENTS
6.4	N	mm	mm	MPA	KSI	Y/N	Y/N
64	1610	4.0000	3.0100	1333	193	NO	NO
71	1672	4.0100	3.0120	1379	200	NO	NO
80	1668	4.0090	3.0080	1380	200	NO	NO
63	1684	4.0080	3.0100	1391	202	NO	NO
69	1704	4.0000	3.0120	1409	204	NO	NO
61	1744	4.0080	3.0100	1441	209	NO	NO
66	1756	4.0090	3.0090	1451	210	NO	NO
72	1768	4.0100	3.0150	1455	211	NO	NO
67	1766	4.0100	3.0000	1468	213	NO	NO
70	1778	4.0000	3.0090	1473	214	NO	NO
79	1790	4.0090	3.0100	1478	214	NO	NO
76	1822	4.0100	3.0090	1506	218	NO	NO
77	1836	4.0100	3.0080	1518	220	NO	NO
62	1848	4.0120	3.0100	1525	221	NO	NO
68	1866	4.0100	3.0100	1541	223	NO	NO
65	1870	4.0010	3.0090	1549	225	NO	NO
78	1886	4.0100	3.0080	1559	226	NO	NO
73	1892	4.0100	3.0100	1562	227	NO	NO
75	1894	4.0100	3.0090	1565	227	NO	NO
74	1898	4.0100	3.0100	1567	227	NO	NO

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	Z701	HEAT TREAT.	100 HRS @ 1000C
REF. CODE	MTL2KY71	DATE	02/22/88
FABRICATOR	KYOCERA	METHOD	MIL STD 1942
VINTAGE	1988	SPECIMEN SIZE	MIL STD B
C.H SPEED	0.5 mm/min	SLOPE	8.316
CHART SPEED	unknown	TESTER	E. HOLZLE
HUMIDITY, %	21.0	MOMENT ARM	10 mm
TEMPERATURE	25 C		

SPEC	LOAD	WIDTH	HEIGHT	STRESS	PHOTO	SEM	COMMENTS
ID	N	mm	mm	MPa	KSI	Y/N	Y/N
43	914	4.0120	3.0140	752	109	NO	NO
44	992	4.0100	3.0120	818	119	NO	NO
40	1118	4.0090	3.0120	922	134	NO	NO
48	1208	4.0080	3.0050	1001	145	NO	NO
42	1234	4.0090	3.0120	1018	148	NO	NO
49	1246	4.0100	3.0110	1028	149	NO	NO
37	1316	4.0070	3.0100	1087	158	NO	NO
34	1342	4.0160	3.0100	1106	160	NO	NO
36	1364	4.0090	3.0090	1127	164	NO	NO
46	1362	4.0090	3.0060	1128	164	NO	NO
50	1404	4.0100	3.0090	1160	168	NO	NO
45	1408	4.0090	3.0130	1161	168	NO	NO
39	1438	4.0080	3.0100	1188	172	NO	NO
38	1478	4.0100	3.0100	1220	177	NO	NO
35	1480	4.0090	3.0090	1223	177	NO	NO
33	1502	4.0090	3.0080	1242	180	NO	NO
47	1506	4.0090	3.0050	1248	181	NO	NO
41	1524	4.0070	3.0130	1257	182	NO	NO
31	1536	4.0080	3.0100	1269	184	NO	NO
32	1540	4.0120	3.0080	1273	185	NO	NO

DATA FROM ARMY MATERIALS TECHNOLOGY LABORATORY

MATERIAL	Z701	HEAT TREAT.	500h @ 1000C
FABRICATOR	KYOCERA	DATE	3/17/88
VINTAGE	1988	METHOD	MIL STD 1942
C.H SPEED	0.5 mm/min	SPECIMEN SIZE	MIL STD B
CHART SPEED	unknown	SLOPE	17.912
HUMIDITY, %	19.0	TESTER	J. SWAB
TEMPERATURE	25 C	MOMENT ARM	10 mm

SPEC ID	LOAD N	WIDTH mm	HEIGHT mm	STRESS MPA	STRESS KSI	PHOTO Y/N	SEM Y/N	COMMENTS
KY7-13	1220	4.0060	3.0070	1010	147	NO	NO	LEFT L.P. BREAK
KY7-11	1240	4.0100	3.0090	1025	149	NO	NO	
KY7-18	1272	4.0120	3.0130	1048	152	NO	NO	LEFT L.P. BREAK
KY7-20	1344	4.0070	3.0000	1118	162	NO	NO	
KY7-19	1346	4.0080	3.0010	1119	162	NO	NO	
KY7-10	1396	4.0050	3.0040	1159	168	NO	NO	
KY7-17	1422	4.0110	3.0130	1172	170	NO	NO	
KY7-1	1422	4.0040	3.0060	1179	171	NO	NO	
KY7-15	1428	4.0080	3.0060	1183	172	NO	NO	
KY7-7	1446	4.0090	3.0080	1196	173	NO	NO	
KY7-5	1454	4.0040	3.0070	1205	175	NO	NO	
KY7-6	1456	4.0080	3.0060	1206	175	NO	NO	RIGHT L.P. BREAK
KY7-4	1464	4.0040	3.0050	1215	176	NO	NO	LEFT L.P. BREAK
KY7-8	1474	4.0070	3.0040	1223	177	NO	NO	LEFT L.P. BREAK
KY7-2	1482	4.0040	3.0070	1228	178	NO	NO	
KY7-3	1486	4.0060	3.0100	1228	178	NO	NO	
KY7-9	1482	4.0050	3.0050	1229	178	NO	NO	LEFT L.P. BREAK
KY7-16	1502	4.0130	3.0120	1238	180	NO	NO	
KY7-14	1538	4.0100	3.0090	1271	184	NO	NO	
KY7-12	1552	4.0070	3.0070	1285	186	NO	NO	

INTERNAL DISTRIBUTION

1-2.	Central Research Library	41.	R. R. Judkins
3.	Document Reference Section	42.	M. A. Karnitz
4-5.	Laboratory Records Department	43.	H. D. Kimrey, Jr.
6.	Laboratory Records, ORNL RC	44.	T. G. Kollie
7.	ORNL Patent Section	45.	T. B. Lindemer
8-10.	M&C Records Office	46.	K. C. Liu
11.	L. F. Allard, Jr.	47.	E. L. Long, Jr.
12.	B. R. Appleton	48.	W. D. Manly
13.	R. L. Beatty	49.	R. W. McClung
14.	P. F. Becher	50.	D. L. McElroy
15.	T. M. Besmann	51.	J. R. Merriman
16.	P. J. Blau	52.	A. J. Moorhead
17.	A. Bleier	53.	T. A. Nolan
18.	E. E. Bloom	54.	J. L. Rich
19.	K. W. Boling	55.	C. R. Richmond
20-24.	B.L.P. Booker	56.	J M Robbins
25.	R. A. Bradley	57.	M. W. Rosenthal
26.	C. R. Brinkman	58.	M. L. Santella
27.	R. S. Carlsmith	59.	A. C. Schaffhauser
28.	P. T. Carlson	60.	G. M. Slaughter
29.	J. V. Cathcart	61.	W. B. Snyder, Jr.
30.	G. M. Caton	62.	E. J. Soderstrom
31.	R. H. Cooper	63.	D. P. Stinton
32.	S. A. David	64.	R. W. Swindeman
33.	J. H. DeVan	65.	V. J. Tennery
34.	J. I. Federer	66.	T. N. Tiegs
35.	M. K. Ferber	67.	J. R. Weir, Jr.
36.	W. Fulkerson	68.	F. W. Wiffen
37.	R. L. Graves	69.	R. K. Williams
38.	D. L. Greene	70.	S. G. Winslow
39.	M. A. Janney	71.	C. S. Yust
40.	D. R. Johnson		

EXTERNAL DISTRIBUTION

72.	Donald F. Adams University of Wyoming Mechanical Engineering Dept. Laramie, WY 82071	74.	J. Ahmad Battelle Columbus Laboratories Engineering Mechanics Department 505 King Avenue Columbus, OH 43201-2693
73.	Jane W. Adams Corning Glass Works SP-DV-21 Corning, NY 14831		

75. Richard L. Allor
 Ford Motor Company
 Material Systems Reliability
 Division
 20000 Rotunda Drive
 Post Office Box 2053
 Dearborn, MI 48121-2053
76. Richard T. Alpaugh
 U.S. Department of Energy
 Office of Transportation
 Systems
 Forrestal Building CE-151
 1000 Independence Avenue, S.W.
 Washington, DC 20585
77. H. Arbabi
 Brunel University
 Department of Materials
 Technology
 Uxbridge, Middlesex UB8 3PH
 UNITED KINGDOM
78. V. S. Avva
 NC A&T State University
 Department of Mechanical
 Engineering
 Greensboro, NC 27411
79. Kirit J. Bahnsali
 U.S. Army Materials Technology
 Laboratory
 SLCMT-EMM
 405 Arsenal Street
 Watertown, MA 02172
80. John M. Bailey
 Caterpillar, Inc.
 Research Department
 Technical Center, Building L
 Post Office Box 1875
 Peoria, IL 61656-1875
81. Murray Bailey
 NASA Lewis Research Center
 21000 Brookpark Road
 MS:77-6
 Cleveland, OH 44135
82. R. R. Baker
 Ceradyne, Inc.
 3169 Red Hill Avenue
 Costa Mesa, CA 92626
83. J. Gary Baldoni
 GTE Laboratories, Inc.
 40 Sylvan Road
 Waltham, MA 02254
84. Dr. P. M. Barnard
 Ruston Gas Turbines Limited
 New Products Division
 Firth Road
 Lincoln LN6 7AA
 ENGLAND
85. J. L. Bates
 Battelle Pacific Northwest
 Laboratories
 PSL/3000 Area
 Richland, WA 99352
86. A. L. Bement, Jr.
 TRW, Inc.
 23555 Euclid Avenue
 Cleveland, OH 44117
87. M. Bentele
 Xamag, Inc.
 259 Melville Avenue
 Fairfield, CT 06430
88. Clifton G. Bergeron
 University of Illinois
 Department of Ceramic
 Engineering
 204 Ceramic Building
 105 South Goodwin Avenue
 Urbana, IL 61801
89. Deane I. Biehler
 Caterpillar, Inc.
 Engineering and Research
 Materials
 Technical Center, Building E
 Post Office Box 1875
 Peoria, IL 61656-1875
90. William D. Bjorndahl
 TRW, Inc.
 Materials Characterization and
 Chemical Analysis Department
 Building 01, Room 2060
 One Space Park
 Redondo Beach, CA 90278

91. Dan Blake
Solar Energy Research
Institute
1617 Cole Boulevard
Golden, CO 80401
92. Keith Blandford
Boride Products, Inc.
2879 Aero Park Drive
Traverse City, MI 49684
93. J. B. Blum
Norton Company
Advanced Ceramics
Goddard Road
Northboro, MA 01532-1545
94. Paul N. Blumberg
Ricardo-ITI
415 East Plaza Drive
Westmont, IL 60559
95. Wolfgang D. G. Boecker
Carborundum Company
Niagara Falls R&D Center
Post Office Box 832
Niagara Falls, NY 14302
96. Tibor Bornemisza
Sundstrand Turbomach
Division of Sundstrand
Corporation
4400 Ruffin Road
Post Office Box 85757
San Diego, CA 92138-5757
97. Han Juergen Bossmeyer
BMW Technologies, Inc.
Watermill Center
800 South Street
Waltham, MA 02154
98. J.A.M. Boulet
University of Tennessee
310 Perkins Hall
Knoxville, TN 37996
99. Steve Bradley
Signal UOP Research Center
50 UOP Plaza
Des Plaines, IL 60016-6187
100. Raymond J. Bratton
Westinghouse Electric
Corporation
R&D Center
1310 Beulah Road
Pittsburgh, PA 15235
101. Catherine E. Brown
E. I. DuPont de Nemours
& Company
Experimental Station
Information Center E302/301
Wilmington, DE 19898
102. J. J. Brown
Virginia Polytechnic Institute
and State University
Department of Materials
Engineering
Blacksburg, VA 24061
103. S. L. Bruner
Ceramatec, Inc.
2425 South 900 West
Salt Lake City, UT 84119
104. W. Bryzik
U.S. Army Tank Automotive
Command
R&D Center, Propulsion
Systems Division
Warren, MI 48090
105. S. T. Buljan
GTE Laboratories, Inc.
40 Sylvan Road
Waltham, MA 02254
106. John M. Byrne, Jr.
PPG Industries, Inc.
Corporate Development Dept.
One PPG Place
Pittsburgh, PA 15272
107. Donald J. Campbell
Air Force Wright Aeronautical
Laboratory
AFWAL/POX
Wright-Patterson AFB, OH 45433
108. Larry E. Campbell
American Matrix, Inc.
118 Sherlake Drive
Knoxville, TN 37922

109. Roger Cannon
 Rutgers University
 Department of Ceramics
 Bowser Road
 Post Office Box 909
 Piscataway, NJ 08855-0909
110. Harry W. Carpenter
 19945 Acre Street
 Northridge, CA 91324
111. David Carruthers
 Allied-Signal Aerospace
 Company
 Garrett Auxiliary Power
 Division
 2739 East Washington Street
 Post Office Box 5227
 Phoenix, AZ 85010
112. Jere G. Castor
 Allied-Signal Aerospace
 Company
 Garrett Auxiliary Power
 Division
 2739 East Washington Street
 Post Office Box 5227
 Phoenix, AZ 85010
113. En-sheng Chen
 B&C Engineering Research
 13906 Dentwood Drive
 Houston, TX 77014
114. Albert A. Chesnes
 U.S. Department of Energy
 Office of Transportation
 Systems
 Forrestal Building CE-151,
 5G-048
 1000 Independence Avenue, S.W.
 Washington, DC 20585
115. Frank Childs
 EG&G, Inc.
 Idaho National Engineering
 Laboratory
 Post Office Box 1625
 Idaho Falls, ID 83415
116. Gilbert Y. Chin
 Bell Telephone Laboratories
 Research & Development
 Murray Hill, NJ 07974
117. Melvin H. Chiogioji
 U.S. Department of Energy
 Office of Transportation
 Systems
 Forrestal Building CE-15
 1000 Independence Avenue, S.W.
 Washington, DC 20585
118. William J. Chmura
 The Torrington Company
 Corporate Research
 59 Field Street
 Torrington, CT 06790
119. Eugene V. Clark
 Turbine Metal Technology, Inc.
 7327 Elmo Street
 Tujunga, CA 91042-2204
120. William L. Cleary
 ORI, Inc.
 1375 Piccard Drive
 Rockville, MD 20850
121. Jack L. Clem
 J. M. Huber Corporation
 Carbon Black Division
 Post Office Box 2831
 Borger, TX 79008-2831
122. Harry E. Cook
 Chrysler Motors Corporation
 Automotive Research and
 Technical Planning
 1200 Chrysler Drive
 Highland Park, MI 48288-1118
123. Stephen Copley
 University of Southern
 California
 Materials Science Department
 Los Angeles, CA 90089-0241
124. John A. Coppola
 Carborundum Company
 Structural Ceramics Division
 Building 91-2
 Post Office Box 1054
 Niagara Falls, NY 14302
125. Normand D. Corbin
 Norton Company
 Advanced Ceramics
 Goddard Road
 Northboro, MA 01532-1545

126. Charles H. Craig
 Defense Technology Security
 Administration
 400 Army-Navy Drive, Suite 300
 Arlington, VA 22202
127. William J. Croft
 U.S. Army Materials
 Technology Laboratory
 405 Arsenal Street
 Watertown, MA 02172
128. Gary M. Crosbie
 Ford Motor Company
 Material Systems Reliability
 Division
 Room S-2079, SRL
 20000 Rotunda Drive
 Post Office Box 2053
 Dearborn, MI 48121-2053
129. Floyd W. Crouse, Jr.
 U.S. Department of Energy
 Morgantown Energy Technology
 Center
 Post Office Box 880
 Morgantown, WV 26505
130. Raymond Cutler
 Ceramatec, Inc.
 2425 South 900 West
 Salt Lake City, UT 84119
131. David A. Dalman
 The Dow Chemical Company
 Central Research, Organic
 Specialties Laboratory
 1776 Building
 Midland, MI 48674
132. James I. Dalton
 Reynolds Metals Company
 Metallurgy Laboratory
 Fourth and Canal Streets
 Post Office Box 27003
 Richmond, VA 23261
133. Stephen C. Danforth
 Rutgers University
 Bowser Road
 Post Office Box 909
 Piscataway, NJ 08854
134. Robert F. Davis
 North Carolina State University
 Materials Engineering
 Department 232
 Riddick Laboratory
 Box 7907
 Raleigh, NC 27695
135. Evelyn M. DeLiso
 Corning Glass Works
 Corning, NY 14831
136. J. Franklyn DeRidder
 Omni Electro Motive, Inc.
 12 Seely Hill Road
 Newfield, NY 14867
137. Alan L. Dragoo
 National Institute of
 Standards and Technology
 Inorganic Materials Division
 Gaithersburg, MD 20899
138. Keith F. Dufrane
 Battelle Columbus Laboratories
 505 King Avenue
 Columbus, OH 43201
139. Edmund M. Dunn
 GTE Laboratories, Inc.
 40 Sylvan Road
 Waltham, MA 02254
140. Jeremy D. Dunning
 Indiana University
 Industrial Research Liaison
 Program
 Bloomington, IN 47405
141. Dr. Sunil Dutta
 NASA Lewis Research Center
 21000 Brookpark Road
 MS:49-3
 Cleveland, OH 44135
142. Paul N. Dyer
 Air Products and
 Chemicals, Inc.
 Post Office Box 538
 Allentown, PA 18105

143. Robert J. Eagan
 Sandia National Laboratories
 Department 1840
 Post Office Box 5800
 Albuquerque, NM 87185
144. Chris A. Ebel
 Norton Company
 Advanced Ceramics
 Goddard Road
 Northboro, MA 01532-1545
145. J. J. Eberhardt
 U.S. Department of Energy
 Energy Conversion and
 Utilization Technologies
 Program
 Forrestal Building CE-12
 1000 Independence Avenue, S.W.
 Washington, DC 20585
146. William A. Ellingson
 Argonne National Laboratory
 9700 South Cass Avenue
 Argonne, IL 60439
147. Charles D. Estes
 U.S. Senate
 Committee on Appropriations
 SD-152
 Dirksen Senate
 Washington, DC 20510
148. John N. Eustis
 U.S. Department of Energy
 Office of Industrial Programs
 Forrestal Building CE-141
 1000 Independence Avenue, S.W.
 Washington, DC 20585
149. Peggy Evanich
 National Aeronautics and Space
 Administration
 Energy Systems Office
 Washington, DC 20546
150. Anthony G. Evans
 University of California
 College of Engineering
 Santa Barbara, CA 93106
151. Robert C. Evans
 NASA Lewis Research Center
 Vehicular Gas Turbine and
 Diesel Project Office
 21000 Brookpark Road
 MS:77-6
 Cleveland, OH 44135
152. Katherine T. Faber
 Ohio State University
 Department of Ceramic
 Engineering
 2041 College Road
 Columbus, OH 43210
153. John W. Fairbanks
 U.S. Department of Energy
 Office of Transportation
 Systems
 Forrestal Building CE-151,
 5G-042
 1000 Independence Avenue, S.W.
 Washington, DC 20585
154. Larry Farrell
 Babcock and Wilcox
 Old Forrest Road
 Lynchburg, VA 24505
155. Rolf Fasth
 Chem Systems, Inc.
 303 South Broadway
 Tarrytown, NY 10591
156. H. W. Foglesong
 Dow Corning Corporation
 3901 South Saginaw Road
 Midland, MI 48686
157. Thomas F. Foltz
 Avco Corporation
 Special Materials Division
 Two Industrial Avenue
 Lowell, MA 01851
158. Robert G. Frank
 Technology Assessment Group
 10793 Bentley Pass Lane
 Cincinnati, OH 45140

159. Douglas W. Freitag
LTV Aerospace and Defense Company
High Temperature Materials Research
P.O. Box 225907, MS:TH-85
Dallas, TX 75265
160. P. A. Gaydos
Battelle Columbus Laboratories
505 King Avenue
Columbus, OH 43201
161. George E. Gazza
U.S. Army Materials Technology Laboratory
Ceramics Research Division
405 Arsenal Street
Watertown, MA 02172
162. Charles M. Gilmore
The George Washington University
Dept. of Civil, Mechanical,
and Environmental Engineering
Washington, DC 20052
163. Paul Glance
Concept Analysis
Dupont Automotive Development Building
950 Stephenson Highway
Troy, MI 48007-7013
164. Fred M. Glaser
U.S. Department of Energy
Office of Fossil Energy
FE-14 GTN
Germantown GTN
Washington, DC 20545
165. Joseph W. Glatz
Naval Air Propulsion Test Center
Systems Technology Division
Box 7176, PE 34
Trenton, NJ 08628
166. W. M. Goldberger
Superior Graphite Company
2175 East Broad Street
Columbus, OH 43209
167. Stephen T. Gonczy
Signal UOP Research Center
Materials Science Department
50 UOP Plaza
Des Plaines, IL 60016-6187
168. Robert J. Gottschall
U.S. Department of Energy
Office of Material Sciences
ER-131 GTN
Germantown GTN
MS:G-256
Washington, DC 20545
169. Dr. Earl Graham
Cleveland State University
Department of Chemical Engineering
Uclid Avenue at East 24th Street
Cleveland, OH 44115
170. Kenneth Green
Coors Ceramics Company
17750 West 32nd Street
Golden, CO 80401
171. Robert E. Green, Jr.
The Johns Hopkins University
Center for Nondestructive Evaluation
Maryland Hall 107
Baltimore, MD 21218
172. Lance E. Groseclose
General Motors Corporation
Allison Gas Turbine Division
Post Office Box 420
Indianapolis, IN 46206-0420
173. T. D. Gulden
General Atomics
Post Office Box 81608
San Diego, CA 92138
174. P. Ulf Gummesson
Hoeganaes
River Road and Taylors Lane
Riverton, NJ 08077
175. Bimleshwar P. Gupta
Solar Energy Research Institute
Solar Heat Research Division
1617 Cole Boulevard
Golden, CO 80401

176. M. D. Gurney
NIPER
Post Office Box 2128
Bartlesville, OK 74005
177. John P. Gyeknyesi
NASA Lewis Research Center
2100 Brookpark Road
MS:49-7
Cleveland, OH 44135
178. J. J. Habeeb
Esso Petroleum Canada
Research Division
Post Office Box 3022
Sarina, Ontario N7T 7M1
CANADA
179. H. T. Hahn
Pennsylvania State University
ESM Department
227 Hammond Building
University Park, PA 16802
180. Nabil S. Hakim
Detroit Diesel Corporation
13400 West Outer Drive
Detroit, MI 48239
181. John W. Halloran
CPS Superconductor
Corporation
840 Memorial Drive
Cambridge, MA 02139
182. Friedrich Harbach
Asea Brown Boveri AG
Department Functional
Ceramics
Eppelheimer Str. 82
D-6900 Heidelberg 1
WEST GERMANY
183. Kay Hardman-Rhyne
DARPA
1400 Wilson Boulevard
Arlington, VA 22209
184. R. A. Harmon
25 Schalren Drive
Latham, NY 12110
185. Stephen D. Hartline
Norton Company
Advanced Ceramics
Goddard Road
Northboro, MA 01532-1545
186. Michael H. Haselkorn
Caterpillar, Inc.
Engineering Research Materials
Technical Center, Building E
Post Office Box 1875
Peoria, IL 61656-1875
187. Willard E. Hauth
Dow Corning Corporation
Composite Development Ceramics
Program
3901 South Siginaw Road
Midland, MI 48640
188. Kevin L. Haynes
McDonnell Douglas Astronautics
Company
Post Office Box 516, MS:107/1
St. Louis, MO 63166
189. Norman L. Hecht
University of Dayton Research
Institute
300 College Park
Dayton, OH 45469-0001
190. S. S. Hecker
Los Alamos National Laboratory
Material Science and Technology
Division
Post Office Box 1663
Los Alamos, NM 87545
191. Peter W. Heitman
General Motors Corporation
Allison Gas Turbine Division
Post Office Box 420, W-5
Indianapolis, IN 46206-0420
192. Richard L. Helferich
The Duriron Company, Inc.
Post Office Box 1145
Dayton, OH 45401

193. H. E. Helms
 General Motors Corporation
 Allison Gas Turbine Division
 Post Office Box 420
 Indianapolis, IN 46206-0420
194. Thomas L. Henson
 GTE Products Corporation
 Chemical & Metallurgical
 Division
 Hawes Street
 Towanda, PA 18848-0504
195. Thomas P. Herbell
 NASA Lewis Research Center
 21000 Brookpark Road
 MS:49-3
 Cleveland, OH 44135
196. Hendrik Heystek
 Bureau of Mines
 Tuscaloosa Research Center
 Post Office Box L
 University, AL 35486
197. Robert V. Hillery
 General Electric Company
 One Neumann Way
 Post Office Box 156301
 Cincinnati, OH 45215
198. Jonathan W. Hinton
 Carborundum Company
 Structural Ceramics Division
 Post Office Box 1054
 Niagara Falls, NY 14302
199. Joe Homeny
 University of Illinois
 Department of Materials Science
 and Engineering
 Ceramics Building
 105 South Goodwin Avenue
 Urbana, IL 61801
200. A. T. Hopper
 Battelle Columbus Laboratories
 Engineering Mechanics
 Department
 505 King Avenue
 Columbus, OH 43201-2693
201. George Hsu
 Jet Propulsion Laboratory
 4800 Oak Grove Drive
 MS:512-103
 Pasadena, CA 91109
202. Shih Hsu
 Digital Equipment Corporation
 77 Reed Road
 MS:HL02-1/L8
 Hudson, MA 01749
203. Stephen M. Hsu
 National Institute of Standards
 and Technology
 Institute for Materials Science
 and Engineering
 Gaithersburg, MD 20899
204. Harold A. Huckins
 Princeton Advanced
 Technology, Inc.
 56 Finley Road
 Princeton, NJ 08540
205. Fred Huettic
 Advanced Ceramic
 Technology, Inc.
 17 Deerfield Road
 East Brunswick, NJ 08816
206. O. Richard Hughes
 Celanese Research Company
 86 Morris Avenue
 Summit, NJ 07901
207. Joseph E. Hunter, Jr.
 General Motors Corporation
 Research Labs, Metallurgy
 Department
 12 Mile and Mound Roads
 Warren, MI 48090-9055
208. Louis C. Ianniello
 U.S. Department of Energy
 Office of Materials Sciences
 ER-13 GTN
 Washington, DC 20545

209. Robert Ingel
Naval Research Laboratory
4555 Overlook Avenue, S.W.
Code:63-70
Washington, DC 20375
210. Robert H. Insley
Champion Spark Plug Company
Ceramic Division
20000 Conner Avenue
Detroit, MI 48234
211. Curt A. Johnson
General Electric Company
Ceramics Branch, Physical
Chemistry Laboratory
Post Office Box 8
Schenectady, NY 12301
212. Larry Johnson
Argonne National Laboratory
Center for Transportation
Research
Building 362
9700 South Cass Avenue
Argonne, IL 60439
213. L. A. Joo
Great Lakes Research Corp.
Post Office Box 1031
Elizabethton, TN 37643
214. A. David Joseph
Sealed Power Corporation
100 Terrace Plaza
Muskegon, MI 49443
215. Debra Joslin
University of Tennessee
Metallurgical Engineering
Department
Knoxville, TN 37996
216. Dr. Adam Jostsons
Australian Nuclear Science
& Technology
Lucas Heights Research
Laboratory
New Illawarra Road
Lucas Heights, New South Wales
AUSTRALIA
217. Roy Kamo
Adiabatics, Inc.
630 South Mapleton
Columbus, IN 47201
218. Allan Katz
Air Force Wright Aeronautical
Laboratory
Metals and Ceramics Division
Materials Laboratory,
AFWAL/MLM
Wright-Patterson AFB, OH 45433
219. R. N. Katz
U.S. Army Materials Technology
Laboratory
405 Arsenal Street
Watertown, MA 02172
220. Mr. Kawaguchi
Tokai Carbon
375 Park Avenue, Suite 3802
New York, NY 10152
221. Frederick L. Kennard, III
General Motors Corporation
AC Spark Plug Division
Dept. 32-24
1300 North Dort Highway
Flint, MI 48556
222. J. R. Kidwell
Allied-Signal Aerospace Co.
Garrett Auxiliary Power
Division
2739 East Washington Street
Post Office Box 5227
Phoenix, AZ 85010
223. Max Klein
Gas Research Institute
8600 West Bryn Mawr Avenue
Chicago, IL 60631
224. C. E. Knapp
Norton Company
8001 Daly Street
Niagara Falls, Ontario L2G 6S2
CANADA

225. A. S. Kobayashi
 University of Washington
 Department of Mechanical
 Engineering
 MS:FU10
 Seattle, WA 98195
226. rer. nat. Wolfgang Kollenberg
 Projektleitung Material
 Rohstoffforschung - PLR
 Kernforschungsanlage Jülich
 GmbH
 Postfach 1913
 D-5170 Julich
 WEST GERMANY
227. David M. Kotchick
 Allied-Signal Aerospace Co.
 AiResearch Los Angeles
 Division
 2525 West 190th Street
 Torrance, CA 90509
228. Bruce Kramer
 George Washington University
 Aerodynamic Center
 Room T715
 Washington, DC 20052
229. Saunders B. Kramer
 U.S. Department of Energy
 Office of Transportation
 Systems
 Forrestal Building CE-151
 1000 Independence Avenue, S.W.
 Washington, DC 20585
230. D. M. Kreiner
 Allied-Signal Aerospace Co.
 Garrett Auxiliary Power
 Division
 2739 East Washington Street
 Post Office Box 5227
 Phoenix, AZ 85010
231. A. S. Krieger
 Radiation Science, Inc.
 Post Office Box 293
 Belmont, MA 02178
232. Pieter Krijgsman
 Ceramic Design Int. Hold.,
 Ltd.
 Post Office Box 68
 8050 AB Hattem
 THE NETHERLANDS
233. Jack L'Amoreaux
 11346 Gates Mill Drive
 Knoxville, TN 37922
234. W. J. Lackey
 Georgia Tech Research
 Institute
 Energy and Materials Sciences
 Laboratory
 Georgia Institute of
 Technology
 Atlanta, GA 30332
235. Everett A. Lake
 Air Force Wright Aeronautical
 Laboratory
 AFWAL/POSL
 Wright-Patterson AFB, OH
 45433-6563
236. Hari S. Lamba
 General Motors Corporation
 Electro-Motive Division
 LaGrange, IL 60525
237. Manfred Langer
 Volkswagen AG
 Forschung-Neue Technologien
 Werkstofftechnologie
 D-3180 Wolfsburg 1
 WEST GERMANY
238. James Lankford
 Southwest Research Institute
 Dept. of Materials Sciences
 6220 Culebra Road
 Post Office Drawer 28510
 San Antonio, TX 78284
239. David C. Larsen
 Corning Glass Works
 Materials Research Department
 Sullivan Park, FR-51
 Corning, NY 14831

240. Dr. S. K. Lau
 Carborundum Company
 Technology Division
 Post Office Box 832
 Niagara Falls, NY 14302
241. Harry A. Lawler
 Carborundum Company
 Niagara Falls R&D Center
 Post Office Box 832
 Niagara Falls, NY 14302
242. Alan Lawley
 Drexel University
 Materials Engineering
 Philadelphia, PA 19104
243. Daniel Lee
 Temescon
 2850 7th Street
 Berkeley, CA 94710
244. June-Gunn Lee
 Korea Advanced Institute of
 Science and Technology
 Post Office Box 131
 Dong Dac Mun, Seoul
 KOREA
245. E. M. Lenoe
 Air Force Office of
 Scientific Research
 Office of Naval Research
 Liaison Office, Far East
 APO San Francisco, CA
 96503-0110
246. Stanley R. Levine
 NASA Lewis Research Center
 21000 Brookpark Road
 Cleveland, OH 44135
247. David Lewis
 Naval Research Laboratory
 Materials Science and
 Technology Division
 4555 Overlook Avenue, S.W.
 Code 63-70
 Washington, DC 20375
248. Bill Long
 Babcock and Wilcox
 Post Office Box 1260
 Lynchburg, VA 24505
249. L. A. Lott
 EG&G, Inc.
 Idaho National Engineering
 Laboratory
 Post Office Box 1625
 Idaho Falls, ID 83415
250. Raouf O. Loutfy
 Materials and Electrochemical
 Research Corporation
 7960 South Kolb Road
 Tucson, AZ 85706
251. Bryan K. Luftglass
 Chem Systems, Inc.
 303 South Broadway
 Tarrytown, NY 10591
252. Robert Lundberg
 Swedish Institute for Silicate
 Research
 Box 5403
 S-402 29 Gothenburg
 SWEDEN
253. Michael J. Lynch
 General Electric Company
 Medical Systems Group
 Post Office Box 414, 7B-36
 Milwaukee, WI 53201
254. James W. MacBeth
 Carborundum Company
 Structural Ceramics Division
 Box 1054
 Niagara Falls, NY 14302
255. Vincent L. Magnotta
 Air Products and Chemicals,
 Inc.
 Technical Diversification
 R&D Department
 Post Office Box 538
 Allentown, PA 18105

256. Tai-il Mah
Universal Energy Systems
4401 Dayton-Xenia Road
Dayton, OH 45432
257. L. Manes
Commission of the European
Communities
Joint Research Centre
Ispra Establishment
I-21020 Ispra (Varese)
ITALY
258. Giel Marijnissen
Interturbine R&D
Research and Development
Post Office Box 4339
5944 ZG Arcen
THE NETHERLANDS
259. Gerald R. Martin
Fleetguard, Inc.
Cookeville, TN 38501
260. J. W. McCauley
U.S. Army Materials Technology
Laboratory
SLCMT-OMM
405 Arsenal Street
Watertown, MA 02172-0001
261. Bryan J. McEntire
Norton Company
TRW Ceramics
Goddard Road
Northboro, MA 01532-1545
262. Thomas D. McGee
Iowa State University
Department of Materials
Science and Engineering
Ames, IA 50011
263. H. Christopher McGowan
Advanced Ceramic
Technology, Inc.
17 Deerfield Road
East Brunswick, NJ 08816
264. Malcolm G. McLaren
Rutgers University
Department of Ceramics
Busch Campus
Bowser Road
Post Office Box 909
Piscataway, NJ 08854
265. Arthur F. McLean
6225 North Camino Almonte
Tucson, AZ 85718
266. Brian L. Mehosky
British Petroleum
4440 Warrensville Center Road
Cleveland, OH 44128
267. Joseph J. Meindl
Reynolds International, Inc.
6603 West Broad Street
Post Office Box 27002
Richmond, VA 23261
268. D. Messier
U.S. Army Materials Technology
Laboratory
DRXMR-MC
405 Arsenal Street
Watertown, MA 02172
269. Thomas N. Meyer
Aluminum Company of America
Alumina, Chemicals, and
Ceramics Division
Alcoa Technical Center
Alcoa Center, PA 15069
270. Amar Mishra
Engelhard Corporation
CN-28
Menlo Park
Edison, NJ 08818
271. Bill Moehle
Ethyl Corporation
Ethyl Tower
451 Florida Avenue
Baton Rouge, LA 70801

272. Helen Moeller
 Babcock and Wilcox
 Post Office Box 11165
 Lynchburg, VA 24506-1165
273. Frederick E. Moreno
 Turbo Energy Systems, Inc.
 2858 South Roosevelt
 Tempe, AZ 85282
274. Peter E. D. Morgan
 Rockwell International
 Science Center
 1049 Camino Dos Rios
 Post Office Box 1085
 Thousand Oaks, CA 91360
275. Lawrence M. Murphy
 Solar Energy Research
 Institute
 Thermal Systems Research
 Branch
 1617 Cole Boulevard
 Golden, CO 80401
276. Solomon Musikant
 General Electric Company
 Space Systems Division
 Post Office Box 8555
 MS:U-1219
 Philadelphia, PA 19101
277. Pero Nannelli
 Pennwalt Corporation
 900 First Avenue
 Post Office Box C
 King of Prussia, PA 19406-0018
278. William D. Nix
 Stanford University
 Department of Materials
 Science and Engineering
 Stanford, CA 94305
279. Richard D. Nixdorf
 American Matrix, Inc.
 118 Sherlake Drive
 Knoxville, TN 37922
280. S. D. Nunn
 University of Michigan
 Materials Science and
 Engineering
 Ann Arbor, MI 48109
281. Brian M. O'Connor
 The Lubrizol Corporation
 29400 Lakeland Boulevard
 Wickliffe, OH 44092
282. W. Richard Ott
 Alfred University
 Center for Advanced Ceramic
 Technology
 Alfred, NY 14802
283. William C. Owen
 Sundstrand Turbomach
 Division of Sundstrand Corp.
 4400 Ruffin Road
 Post Office Box 85757
 San Diego, CA 92138-5757
284. Muktesh Paliwal
 GTE Products Corporation
 Hawes Street
 Towanda, PA 18848-0504
285. Hayne Palmour, III
 North Carolina State University
 Engineering Research Services
 Division
 2158 Burlington Engineering
 Labs
 Post Office Box 5995
 Raleigh, NC 27607
286. Joseph N. Panzarino
 Norton Company
 Advanced Ceramics
 Goddard Road
 Northboro, MA 01532-1545
287. Pellegrino Papa
 Corning Glass Works
 Corning Technical Products
 Division
 Corning, NY 14831
288. R. H. Parrish
 Vanderbilt University
 Box 1621, Station B
 Nashville, TN 37235
289. James G. Paschal
 Reynolds Metals Company
 Post Office Box 76154
 Atlanta, GA 30358

- | | |
|---|--|
| 290. Arvid E. Pasto
GTE Laboratories, Inc.
40 Sylvan Road
Waltham, MA 02254 | 299. J. P. Pollinger
Allied-Signal Aerospace Co.
Garrett Ceramic Components
Division
19800 South Van Ness Avenue
Torrance, CA 90509 |
| 291. Donald O. Patten
Norton Company
Advanced Ceramics
Goddard Road
Northboro, MA 01532-1545 | 300. Stephen C. Pred
ICD Group, Inc.
1100 Valley Brook Avenue
Lyndhurst, NJ 07071 |
| 292. James W. Patten
Cummins Engine Company, Inc.
Box 3005, Mail Code 50183
Columbus, IN 47202-3005 | 301. Karl M. Prewo
United Technologies Corp.
Research Center
Silver Lane
MS:24
East Hartford, CT 06108 |
| 293. Timothy M. Pattison
Textron Lycoming
550 Main Street
MS:LSM1
Stratford, CT 06497 | 302. Hubert B. Probst
NASA Lewis Research Center
Materials Division
21000 Brookpark Road
MS:49-1
Cleveland, OH 44135 |
| 294. Robert A. Penty
Eastman Kodak Company
Manufacturing Technology Dept.,
Apparatus Division
901 Elmwood Road
Rochester, NY 14650 | 303. Joseph M. Proud
GTE Laboratories, Inc.
Materials Science Laboratory
40 Sylvan Road
Waltham, MA 02254 |
| 295. Gary R. Peterson
U.S. Department of Energy
Idaho Operations Office
785 D.O.E. Place
Idaho Falls, ID 83402 | 304. D. W. Prouse
Ceramatec, Inc.
2425 South 900 West
Salt Lake City, UT 84119 |
| 296. R. Byron Pipes
University of Delaware
Center for Composite Materials
2001 Spencer Laboratory
Newark, DE 19716 | 305. Carr Lane Quackenbush
Norton Company
Advanced Ceramics
Goddard Road
Northboro, MA 01532-1545 |
| 297. Bruce J. Pletka
Michigan Technological
University
Department of Metallurgical
Engineering
Houghton, MI 49931 | 306. Brian Quigley
National Aeronautics and Space
Administration
Energy Systems Office
Washington, DC 20546 |
| 298. Robert C. Pohanka
Office of Naval Research
800 North Quincy Street
Code 431
Arlington, VA 22217 | 307. George Quinn
U.S. Army Materials Technology
Laboratory
405 Arsenal Street
Watertown, MA 02172 |

308. Dennis T. Quinto
 Kennametal, Inc.
 Phillip M. McKenna Laboratory
 Post Office Box 639
 Greensburg, PA 15601
309. S. Venkat Raman
 Air Products and
 Chemicals, Inc.
 Contract Research Department
 Post Office Box 538
 Allentown, PA 18105
310. Dennis Readey
 Ohio State University
 2041 College Road
 Columbus, OH 43210
311. Robert R. Reeber
 U.S. Army Research Office
 Post Office Box 12211
 Research Triangle Park, NC
 27709
312. K. L. Reifsnider
 Virginia Polytechnic Institute
 and State University
 Department of Engineering
 Science and Mechanics
 Blacksburg, VA 24061
313. Paul Rempes
 Williams International
 2280 West Maple Road
 Post Office Box 200
 Walled Lake, MI 48088
314. Theresa M. Resetar
 U.S. Army Materials
 Technology Laboratory
 Materials Characterization
 Center
 ATTN:SLCMT-OMM
 405 Arsenal Street
 Watertown, MA 02172
315. K. T. Rhee
 Rutgers University
 College of Engineering
 Bowser Road
 Post Office Box 909
 Piscataway, NJ 08854
316. Roy W. Rice
 W. R. Grace and Company
 7379 Route 32
 Columbus, MD 21044
317. David W. Richerson
 Ceramatec, Inc.
 2425 South 900 West
 Salt Lake City, UT 84119
318. Scott L. Richlen
 U.S. Department of Energy
 Office of Industrial Programs
 Forrestal Building CE-141
 1000 Independence Avenue, S.W.
 Washington, DC 20585
319. Paul Rieth
 Ferro Corporation
 661 Willet Road
 Buffalo, NY 14218-9990
320. Michael A. Rigdon
 Institute for Defense Analyses
 1801 Beauregard Street
 Alexandria, VA 22311
321. John E. Ritter, Jr.
 University of Massachusetts
 Mechanical Engineering Dept.
 Amherst, MA 01003
322. M. Rohr
 DOE/ORO
 Federal Office Building
 P.O. Box 2001, MS:AMERD
 Oak Ridge, TN 37831
323. Giulio A. Rossi
 Norton Company
 Advanced Ceramics
 Goddard Road
 Northboro, MA 01532-1545
324. Barry R. Rossing
 Lanxide Corporation
 Tralee Industrial Park
 Newark, DE 19711
325. Donald W. Roy
 Coors Ceramics Company
 Research and Development
 17750 West 32nd Street
 Golden, CO 80401

326. Bruce Rubinger
Gobal
50 Milk Street, 15th Floor
Boston, MA 02109
327. Robert Ruh
Air Force Wright
Aeronautical Laboratory
Metals and Ceramics
Division
Materials Laboratory,
AFWAL/MLIM
Wright-Patterson AFB, OH
45433
328. Robert J. Russell, Sr.
Norton Company
Advanced Ceramics
Goddard Road
Northboro, MA 01532-1545
329. George P. Safol
Westinghouse Electric Corp.
R&D Center
Pittsburgh, PA 15235
330. J. A. Salem
NASA Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
331. J. Sankar
North Carolina A&T State
University
Department of Mechanical
Engineering
Greensboro, NC 27411
332. Maxine L. Savitz
Allied-Signal Aerospace Co.
Garrett Ceramic Components
Division
19800 South Van Ness Avenue
Torrance, CA 90509
333. Richard Schapery
Texas A&M University
Civil Engineering Dept.
College Station, TX 77843
334. Jim Schienle
Allied-Signal Aerospace Co.
Garrett Auxiliary Power
Division
2739 East Washington Street
Post Office Box 5227
MS:1302-2P
Phoenix, AZ 85010
335. Liselotte J. Schioler
Air Force Office of
Scientific Research
Bolling AFB
Washington, DC 20332-6448
336. Richard A. Schmidt
Battelle Columbus Laboratories
Mechanics Section
505 King Avenue
Columbus, OH 43201-2693
337. Arnie Schneck
Deere & Company Technical
Center
Post Office Box 128
Wood-Ridge, NJ 07075
338. Matthew Schreiner
ALANX Products L.P.
101 Lake Drive
Newark, DE 19702
339. John Schuldies
Industrial Ceramic
Technology, Inc.
37 Enterprise Drive
Ann Arbor, MI 48103
- 340-351. R. B. Schulz
U.S. Department of Energy
Office of Transportation
Systems
Forrestal Building CE-151,
5G-046
1000 Independence Avenue, S.W.
Washington, DC 20585
352. Wesley J. C. Schuster
Thermo Electron Corporation
Metals Division
115 Eames Street
Post Office Box 340
Wilmington, MA 01887

353. Murray A. Schwartz
 Bureau of Mines
 2401 Eye Street, N.W.
 Washington, DC 20241
354. Douglas B. Schwarz
 The Dow Chemical Company
 52 Building
 Midland, MI 48674
355. Thomas M. Sebestyen
 U.S. Army Tank Automotive
 Command
 AMSTA-RGRT
 Warren, MI 48397-5000
356. Brian Seegmiller
 Coors Ceramics Company
 17750 West 32nd Street
 Golden, CO 80401
357. S. G. Seshadri
 Carborundum Company
 Niagara Falls R&D Center
 Post Office Box 832
 Niagara Falls, NY 14302
358. Peter T. B. Shaffer
 Advanced Refractory
 Technologies, Inc.
 699 Hertel Avenue
 Buffalo, NY 14207
359. Laurel M. Sheppard
 Advanced Materials and
 Processes
 Route 87
 Metals Park, OH 44073
360. Dinesh K. Shetty
 The University of Utah
 Department of Materials
 Science and Engineering
 Salt Lake City UT, 84112
361. Jack D. Sibold
 Coors Ceramics Company
 17750 West 32nd Street
 Golden, CO 80401
362. Neal Sigmon
 U.S. House of Representatives
 Subcommittee on Interior and
 Related Events
 Rayburn Building, Room B308
 Washington, DC 20515
363. Dr. Richard Silbergliitt
 Quest Research Corporation
 1651 Old Meadow Road
 McLean, VA 22102
364. A. Sinha
 North Carolina A&T State
 University
 Department of Mechanical
 Engineering
 Greensboro, NC 27411
365. Maurice J. Sinnott
 University of Michigan
 Chemical and Metallurgical
 Engineering
 438 West Engineering Building
 Ann Arbor, MI 48109-2136
366. S. R. Skaggs
 Los Alamos National Laboratory
 Program Office
 Post Office Box 1663, MS:F-682
 Los Alamos, NM 87545
367. J. Thomas Smith
 GTE Laboratories, Inc.
 40 Sylvan Road
 Waltham, MA 02254
368. Jay R. Smyth
 Allied-Signal Aerospace Co
 Garrett Auxiliary Power
 Division
 2739 East Washington Street
 Post Office Box 5227
 MS:93-172/1302-2K
 Phoenix, AZ 85010
369. Rafal Sobotowski
 Carborundum Company
 Research and Development
 3092 Broadway Avenue
 Cleveland, OH 44115

370. E. Solidum
 Allied-Signal Aerospace Co.
 Garrett Ceramics Components
 Division
 19800 South Van Ness Avenue
 Torrance, CA 90509
371. Thomas M. Sopko
 Lubrizol Enterprises, Inc.
 29400 Lakeland Boulevard
 Wickliffe, OH 44092
372. Richard M. Spriggs
 Alfred University
 Center for Advanced Ceramic
 Technology
 Alfred, NY 14802
373. M. Srinivasan
 Carborundum Company
 Niagara Falls R&D Center
 Post Office Box 832
 Niagara Falls, NY 14302
374. Gordon L. Starr
 Cummins Engine Company, Inc.
 Metallic/Ceramic Materials
 Department
 Box 3005, Mail Code 50183
 Columbus, IN 47202-3005
375. Harold L. Stocker
 General Motors Corporation
 Allison Gas Turbine Division
 Post Office Box 420, T-23
 Indianapolis, IN 46206-0420
376. Paul D. Stone
 The Dow Chemical Company
 1801 Building
 Midland, MI 48674
377. Roger Storm
 Carborundum Company
 Niagara Falls R&D Center
 Post Office Box 832
 Niagara Falls, NY 14302
378. E. E. Strain
 Allied-Signal Aerospace Co.
 Garrett Auxiliary Power
 Division
 2739 East Washington Street
 Post Office Box 5227, MS:301-2N
 Phoenix, AZ 85010
379. Thomas N. Strom
 NASA Lewis Research Center
 21000 Brookpark Road, 77-6
 Cleveland, OH 44135
380. Jerry Strong
 Albright & Wilson
 Post Office Box 26229
 Richmond, VA 23260
381. Richard Suddeth
 Boeing Motor Airplane Company
 Post Office Box 7730
 MS:K-76-67
 Wichita, KS 67277
382. Paul Sutor
 Midwest Research Institute
 425 Volker Boulevard
 Kansas City, MO 64116
383. P. L. Sutton
 U.S. Department of Energy
 Office of Transportation
 Systems
 Forrestal Building CE-151
 1000 Independence Avenue, S.W.
 Washington, DC 20585
384. J. J. Swab
 U.S. Army Materials Technology
 Laboratory
 Ceramics Research Division,
 SLCMT-EMC
 405 Arsenal Street
 Watertown, MA 02172
385. Lewis Swank
 Ford Motor Company
 Material Systems Reliability
 Division
 Room S-2023, SRL
 20000 Rotunda Drive
 Post Office Box 2053
 Dearborn, MI 48121-2053
386. Truett Sweeting
 Carborundum Company
 Niagara Falls R&D Center
 Post Office Box 832
 Niagara Falls, NY 14302

387. Stephen R. Tan
 ICI Advanced Materials
 Post Office Box 11
 The Heath, Runcorn Cheshire
 WA7 4QE
 ENGLAND
388. Anthony C. Taylor
 U.S. House of Representatives
 Committee on Science and
 Technology
 Rayburn Building, Room 2321
 Washington, DC 20515
389. Monika O. Ten Eyck
 Carborundum Technical
 Ceramics GMBH
 Nobelstrasse 6
 D4050 Monchengladbach-Wickrath
 WEST GERMANY
390. John K. Tien
 Columbia University
 1137 S.W. Mudd Building
 New York, NY 10027
391. T. Y. Tien
 University of Michigan
 Materials and Metallurgical
 Engineering
 Dow Building
 Ann Arbor, MI 48109-2136
392. Julian M. Tishkoff
 Air Force Office of Scientific
 Research
 (AFOSR/WC) Bolling AFB
 Washington, DC 20332
393. Louis E. Toth
 National Science Foundation
 Division of Materials Research
 1800 G Street, N.W.
 Washington, DC 20550
394. Richard E. Tressler
 Pennsylvania State University
 Ceramic Science and
 Engineering Department
 201 Steidle Building
 University Park, PA 16802
395. W. T. Tucker
 General Electric Company
 Post Office Box 8
 Schenectady, NY 12301
396. Donald L. Vaccari
 General Motors Corporation
 Allison Gas Turbine Division
 2001 South Tibbs Avenue
 Indianapolis, IN 46241
397. Dr. ir. O. Van Der Biest
 Katholieke Universiteit Leuven
 Departement Metaalkunde en
 Toegepaste
 de Crooylaan 2
 B-3030 Leuven
 BELGIUM
398. Edward C. Van Reuth
 Technology Strategies, Inc.
 10722 Shingle Oak Court
 Burke, VA 22015
399. V. Venkateswaran
 Carborundum Company
 Niagara Falls R&D Center
 Post Office Box 832
 Niagara Falls, NY 14302
400. Dr. K. E. Voss
 Englehard Corporation
 Research Department
 Menlo Park, CN-28
 Edison, NJ 08818
401. John B. Wachtman, Jr.
 Rutgers University
 Bowser Road
 Post Office Box 909
 Piscataway, NJ 08854
402. Harlan L. Watson
 U.S. House of Representatives
 Committee on Science and
 Technology
 Rayburn Building, Suite 2321
 Washington, DC 20515

- | | | | |
|------|--|------|--|
| 403. | John D. Watson
Broken Hill Proprietary Co.,
Ltd.
Melbourne Research Laboratories
245 Wellington Road
Mulgrave 3170 Victoria
AUSTRALIA | 411. | Craig A. Willkens
Norton Company
Advanced Ceramics
Goddard Road
Northboro, MA 01532-1545 |
| 404. | C. David Weiss
Caterpillar, Inc.
Engineering Research Materials
Technical Center, Building E
Post Office Box 1875
Peoria, IL 61656-1875 | 412. | Roger R. Wills
TRW, Inc.
Valve Division
1455 East 185th Street
Cleveland, OH 44110 |
| 405. | James J. Wert
Vanderbilt University
Box 1621, Station B
Nashville, TN 37235 | 413. | J. M. Wimmer
Allied-Signal Aerospace Co.
Garrett Auxiliary Power
Division
2739 East Washington Street
Post Office Box 5227
MS:1302-2P
Phoenix, AZ 85010 |
| 406. | Albert R. C. Westwood
Martin Marietta Laboratories
1450 South Rolling Road
Baltimore, MD 21227 | 414. | David Wirth
Coors Ceramics Company
Technical Operations
& Engineering
17750 West 32nd Street
Golden, CO 80401 |
| 407. | Thomas J. Whalen
Ford Motor Company
Material Systems Reliability
Division
Room S-2023, SRL
20000 Rotunda Drive
Post Office Box 2053
Dearborn, MI 48121-2053 | 415. | Thomas J. Wissing
Eaton Corporation
Engineering & Research Center
26201 Northwestern Highway
Post Office Box 766
Southfield, MI 48037 |
| 408. | Sheldon M. Wiederhorn
National Institute of
Standards and Technology
Inorganic Materials Division
Gaithersburg, MD 20899 | 416. | Dale Wittmer
Southern Illinois University
at Carbondale
Department of Mechanical
Engineering and Energy
Processes
Carbondale, IL 62901 |
| 409. | James C. Williams
General Electric Company
Engineering Materials
Technology Labs.
One Neumann Way
Cincinnati, OH 45215-6301 | 417. | Stanley M. Wolf
U.S. Department of Energy
Conservation and Renewable
Energy
Forrestal Building CE-12
1000 Independence Avenue, S.W.
Washington, DC 20585 |
| 410. | Janette R. Williams
Kollmorgen Corporation
PCK Technology Division
322 L.I.E. South Service Road
Melville, NY 11747 | | |

418. George W. Wolter
Howmet Turbine Components
Corporation
Technical Center
699 Benston Road
Whitehall, MI 49461
419. James C. Wood
NASA Lewis Research
Center
21000 Brookpark Road
MS:500-210
Cleveland, OH 44135
420. Roger P. Worthen
Eaton Corporation
Engineering and Research
Center
26201 Northwestern Highway
Post Office Box 766
Southfield, MI 48076
421. Harry C. Yeh
Allied-Signal Aerospace
Company
Garrett Ceramic
Components Division
19800 South Van Ness Ave.
Torrance, CA 90509
422. Thomas M. Yonushonis
Cummins Engine Company,
Inc.
Box 3005, Mail Code 50183
Columbus, IN 47202-3005
423. Don Zabierek
Air Force Wright
Aeronautical Laboratory
AFWAL/POTC
Wright-Patterson AFB, OH
45433
424. Charles Zeh
U.S. Department of Energy
Morgantown Energy
Technology Center
Post Office Box 880
Morgantown, WV 26505
425. Anne Marie Zerega
U.S. Department of Energy
Office of Transportation
Systems
Forrestal Building CE-15
1000 Independence Avenue, S.W.
Washington, DC 20585
426. Martin Zlotnick
Nichols Research Corp.
8618 Westwood Center Drive,
Suite 200
Vienna, VA 22180-2222
427. Klaus M. Zwilsky
National Materials Advisory
Board
National Research Council
2101 Constitution Avenue
Washington, DC 20418
428. Department of Energy
Oak Ridge Operations Office
Assistant Manager for Energy
Research and Development
P.O. Box 2001
Oak Ridge, TN 37831-8600
- 429-438. Department of Energy
Office of Scientific and
Technical Information
Office of Information
Services
P.O. Box 62
Oak Ridge, TN 37831
- For distribution by microfiche
as shown in DOE/TIC-4500,
Distribution Category UC-95
(Energy Conservation).