PRÁCTICO 8

CADENAS DE MARKOV

Ejercicio 1: La Figura 1 muestra el diagrama de transición de una cadena de Markov. Dar la matriz de transición, y determinar:

- a) $P(X_4 = 2 \mid X_3 = 1)$ y $P(X_3 = 1 \mid X_2 = 1)$.
- b) $P(X_4 = 2 \mid X_1 = 1)$ y $P(X_4 = 2 \mid X_0 = 1)$.
- c) Si se sabe que $P(X_0 = 0) = \frac{1}{3}$, dar $P(X_0 = 0, X_1 = 1)$ y $P(X_0 = 0, X_1 = 1, X_2 = 2)$.

Figura 1: Ejercicio 1

Ejercicio 2: Considerar la cadena de Markov con tres estados: $S = \{0, 1, 2\}$ que tiene la siguiente matriz de transición:

$$Q = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

- a) Dar el diagrama de transición de la cadena.
- b) Si conocemos $P(X_0 = 0) = P(X_0 = 1) = \frac{1}{4}$, determinar $P(X_0 = 2, X_1 = 1, X_2 = 0)$.
- c) Dar las probabilidades de transición en dos pasos.

Ejercicio 3. Considerar una cadena de Markov con dos posibles estados: $S = \{0, 1\}$. Suponer que $P(X_1 = 1 \mid X_0 = 0) = \frac{1}{2}$ y $P(X_1 = 0 \mid X_0 = 1) = \frac{2}{3}$.

- a) Dar la matriz de transición y el diagrama de transición.
- b) Determinar la probabilidad de que la cadena esté en el estado 1 en n = 3 dado que $X_0 = 1$.

Ejercicio 4. Una pulga salta aleatoriamente sobre vértices de un triángulo, cambiando siempre de vértice, y donde todos los saltos son igualmente probables. Calcular la probabilidad de que en *n* saltos la pulga vuelva al mismo vértice.

Ejercicio 5. Dada la cadena de Markov de la Figura 2:

- a) Determinar las clases comunicantes.
- b) Dar los subconjuntos cerrados.
- c) Indicar si es una cadena irreducible.
- d) Determinar los estados transitorios, recurrentes y periódicos.

Figura 2: Ejercicio 2

Ejercicio 6. Considerar una cadena de Markov con estados $S = \{0, 1, 2, 3, 4\}$ y matriz de transición:

	0	1	2	3	4	
0	0	1	0	0	0	_
1 2	0,25	0	0,75 0	0	0	
2	0	0,5	0	0,5	0	•
3	0	0	0,75	0	0,25	
4	0	0	0	1	0	

- a) Determinar las clases comunicantes, estados recurrentes, transitorios, absorbentes y estacionarios, si los hubiere.
- b) Dar los subconjuntos cerrados irreducibles, e indicar si la cadena es irreducible.

Ejercicio 7. Para la cadena de Markov dada en la Figura 3, calcular:

- a) La probabilidad de alcanzar el estado j dado que $X_0 = 0$, para j = 0, 1, 2.
- b) El tiempo medio de alcance del estado j, dado que $X_0 = 0$, para j = 0, 1, 2.
- c) El tiempo medio de retorno al estado 0.

Figura 3:

Ejercicio 8. Para las siguientes cadenas de Markov, determinar:

- a) Estados recurrentes, transitorios, absorbentes y periódicos.
- b) Clases comunicantes y subconjuntos cerrados.
- c) Para el estado {0} determinar probabilidades de alcance, tiempo medio de alcance y tiempo medio de retorno.
- d) Distribución estacionaria, e indicar si coinciden con la distribución límite.

