COMP9020 Week 2 Binary Relations

• Textbook (R & W) - Ch. 3., Sec. 3.1, 3.4; Ch. 11, Sec. 11.1

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Binary relations

A binary relation between S and T is a subset of $S \times T$: i.e. a set of ordered pairs.

Also: over S and T; from S to T; on S (if S = T).

```
Example (Special (Trivial) Relations)
```

```
Identity (diagonal, equality) E = \{ (x, x) : x \in S \}

Empty \emptyset
```

Universal
$$U = S \times S$$

Defining binary relations: Set-based definitions

Defining a relation $R \subseteq S \times T$:

- Explicitly listing tuples: e.g. $\{(1,1),(2,3),(3,2)\}$
- Set comprehension: $\{(x,y) \in [1,3] \times [1,3] : 5|xy-1\}$
- Construction from other relations:

$$\{(1,1)\} \cup \{(2,3)\} \cup \{(2,3)\}^{\leftarrow}$$

Defining binary relations: Matrix representation

Defining a relation $R \subseteq S \times T$:

Rows enumerated by elements of S, columns by elements of T:

Examples

• The relation $\{(1,1),(2,3),(3,2)\}\subseteq [1,3]\times [1,3]$:

The relation

$$\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,2)\}\subseteq [1,3]\times [1,4]:$$

) ((~

Defining binary relations: Graphical representation

Defining a relation $R \subseteq S \times T$:

Defining binary relations: Graphical representation

8

Defining binary relations: Graphical representation

9

Defining binary relations: Graph representation

If S = T we can define $R \subseteq S \times S$ as a **directed graph** (week 5).

• Nodes: Elements of S

• Edges: Elements of R

$$R = \{(1,1), (2,3), (3,2)\} \subseteq [1,3] \times [1,3]$$
:

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Properties of Binary Relations $R \subseteq S \times S$

Definition

reflexive	For all $x \in S$: $(x, x) \in R$
antireflexive	For all $x \in S$: $(x,x) \notin R$
symmetric	For all $x, y \in S$: If $(x, y) \in R$
	then $(y,x) \in R$
antisymmetric	For all $x, y \in S$: If (x, y) and $(y, x) \in R$
	then $x = y$
transitive	For all $x, y, z \in S$: If (x, y) and $(y, z) \in R$
	then $(x,z) \in R$
	antireflexive symmetric antisymmetric

NB

- Properties have to hold for all elements
- (S), (AS), (T) are conditional statements they will hold if there is nothing which satisfies the 'if' part

Examples

(R) Reflexivity: $(x,x) \in R$ for all x

- (R) Reflexivity: $(x,x) \in R$ for all x
- **(AR)** Antireflexivity: $(x,x) \notin R$ for all x

- (R) Reflexivity: $(x,x) \in R$ for all x
- (AR) Antireflexivity: $(x,x) \notin R$ for all x
 - **(S)** Symmetry: If $(x, y) \in R$ then $(y, x) \in R$ for all x, y

- (R) Reflexivity: $(x, x) \in R$ for all x
- (AR) Antireflexivity: $(x,x) \notin R$ for all x
 - **(S)** Symmetry: If $(x, y) \in R$ then $(y, x) \in R$ for all x, y
- (AS) Antisymmetry: $(x, y) \in R$ and $(y, x) \in R$ implies x = y for all x, y

- (R) Reflexivity: $(x, x) \in R$ for all x
- (AR) Antireflexivity: $(x, x) \notin R$ for all x
 - (S) Symmetry: If $(x, y) \in R$ then $(y, x) \in R$ for all x, y
- (AS) Antisymmetry: $(x, y) \in R$ and $(y, x) \in R$ implies x = y for all x, y
 - (T) Transitivity: $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$ for all x, y, z.

Interaction of Properties

A relation can be both symmetric and antisymmetric. Namely, when R consists only of some pairs $(x,x), x \in S$.

A relation *cannot* be simultaneously reflexive and antireflexive (unless $S = \emptyset$).

NB

 $\begin{array}{c} \textit{nonreflexive} \\ \textit{nonsymmetric} \end{array} \} \hspace{0.2cm} \textit{is not the same as} \hspace{0.2cm} \left\{ \begin{array}{c} \textit{antireflexive/irreflexive} \\ \textit{antisymmetric} \end{array} \right.$

Exercises

3.1.1 The following relations are on $S = \{1, 2, 3\}$. Which of the properties (R), (AR), (S), (AS), (T) does each satisfy?

(a)
$$(m, n) \in R$$
 if $m + n = 3$?

(e)
$$(m, n) \in R$$
 if $\max\{m, n\} = 3$?

$$3.1.2(b) (m, n) \in R \text{ if } m < n?$$

Exercises

 $\boxed{3.1.1}$ The following relations are on $S = \{1, 2, 3\}$. Which of the properties (R), (AR), (S), (AS), (T) does each satisfy?

- (a) $(m, n) \in R$ if m + n = 3? ?
- (e) $(m, n) \in R$ if $\max\{m, n\} = 3$?
- 3.1.2(b) $(m, n) \in R \text{ if } m < n?$?

Exercises

Exercises

$$\begin{array}{c|ccccc} & (R) & (AR) & (S) & (AS) & (T) \\ & = & ? & \\ & \leq & \\ & < & \\ & \emptyset & \\ \mathcal{U} = \mathbb{Z} \times \mathbb{Z} & \\ & | \\ & = & (\text{mod } 3) \\ \end{array}$$

Exercises

Exercises

Exercises

Exercises

	(R)	(AR)	(5)	(AS)	(<i>T</i>)
=	?				
\leq	?				
<	?				
Ø	?				
$\mathcal{U}=\mathbb{Z}\times\mathbb{Z}$?				
$= \pmod{3}$					

Exercises

	(<i>R</i>)	(AR)	(5)	(<i>AS</i>)	(<i>T</i>)
=	?				
\leq	?				
<	?				
Ø	?				
$\mathcal{U}=\mathbb{Z}\times\mathbb{Z}$?				
	?				
$= \pmod{3}$					

Exercises

	(<i>R</i>)	(AR)	(5)	(<i>AS</i>)	(<i>T</i>)
=	?				
\leq	?				
<	?				
Ø	?				
$\mathcal{U}=\mathbb{Z}\times\mathbb{Z}$?				
	?				
$= \pmod{3}$?				

Exercises

 $\overline{3.1.10(a)}$ Give examples of relations with specified properties. (AS), (T), not (R).

Exercises

 $\fbox{(AS), (T), not (R).}$ Give examples of relations with specified properties.

Exercises

(S), not (R), not (T).

Exercises

Summary of topics

- Defining binary relations
- Properties of binary relations
- Equivalence relations, classes, and partitions
- Orderings

Equivalence relations

Equivalence relations capture a general notion of "equality". They are relations which are:

- Reflexive (R): Every object should be "equal" to itself
- Symmetric (S): If x is "equal" to y, then y should be "equal" to x
- Transitive (T): If x is "equal" to y and y is "equal" to z, then x should be "equal" to z.

Equivalence relations

Equivalence relations capture a general notion of "equality". They are relations which are:

- Reflexive (R): Every object should be "equal" to itself
- Symmetric (S): If x is "equal" to y, then y should be "equal" to x
- Transitive (T): If x is "equal" to y and y is "equal" to z, then x should be "equal" to z.

Definition

A binary relation $R \subseteq S \times S$ is equivalence relation if it satisfies (R), (S), (T).

Example

Partition of \mathbb{Z} into classes of numbers with the same remainder (mod p); it is particularly important for p prime

$$\mathbb{Z}(p) = \mathbb{Z}_p = \{0, 1, \dots, p-1\}$$

One can define all four arithmetic operations (with the usual properties) on \mathbb{Z}_p for a prime p; division has to be restricted when p is not prime.

Standard notation:

 $m = n \pmod{p}$ stands for: $m \mod p = n \mod p$

NB

 $(\mathbb{Z}_p, +, \cdot, 0, 1)$ are fundamental algebraic structures known as **rings**. These structures are very important in coding theory and cryptography.

Equivalence Classes and Partitions

Suppose $R \subseteq S \times S$ is an equivalence relation The **equivalence class** [s] (w.r.t. R) of an element $s \in S$ is

$$[s] = \{t : t \in S \text{ and } sRt\}$$

Collection of all equivalence classes $[S]_R = \{\ [s]: s \in S\ \}$ is a partition of S

$$S = \bigcup_{s \in S} [s]$$

Thus the equivalence classes are disjoint and jointly cover the entire domain. It means that every element belongs to one (and only one) equivalence class.

We call s_1, s_2, \ldots representatives of (different) equivalence classes For $s, t \in S$ either [s] = [t], when sRt, or $[s] \cap [t] = \emptyset$, when $s \not Rt$. We commonly write $s \sim_R t$ when s, t are in the same equivalence class.

In the opposite direction, a partition of a set defines the equivalence relation on that set. If $S = S_1 \dot{\cup} \dots \dot{\cup} S_k$, then we specify $s \sim t$ exactly when s and t belong to the same S_i .