UNIVERSITY OF ENGINEERING AND TECHNOLOGY LAHORE, PAKISTAN

AMBA AHB-Lite Protocol Verification Plan

Submitted By: Muhammad Ayyaz Tariq 2021-PhD-EE-01

Department of Electrical Engineering University of Engineering and Technology, Lahore

Introduction to the Device-Under-Test (DUT)

AMBA AHB Lite is an interface between master and slaves. It has write data bus configurations of 64 to 1024 bits in powers of 2. The AHB block diagram is as follows:

Figure 1: AHB block diagram

In the above figure, one master and three slaves are present. Moreover, decoder selects the slave from the information of the address from Master. Mux gives way back to that particular slave to Master. Master provides address and control information. Slave responds to the transfers initiated by the Master. Every transfer has an address and data cycle each.

Figure 2: Master Interface

Figure 3: Slave Interface

AHB-Lite Protocol:

Working of Protocol:

Global Signals:

Name	Source	Description				
HCLK	Clock source	All signal timing diagrams are				
		related to rising edge of HCLK				
HRESTn	Reset Controller	The only active low signal here. It				
		provides asynchronous primary				
		reset for all bus elements.				

Master Signals:

Name	Destination	Description				
HADDR [31:0]	Slave &	Address bus of 32 bits				
	Decoder					
HBURST [2:0]	Slave	Indicates the type of burst signal				
		including wrapping and				
		incrementing bursts with number of				
		beats				
HSIZE [2:0]	Slave	Indicates the size of transfer from 8				
		bits to 1024 bits				
HTRANS [1:0]	Slave	Indicates the transfer type: IDLE,				
		BUSY, NON-SEQUENTIAL,				
		SEQUENTIAL				
HWDATA [31:0]	Slave	Transfers data from Master to Slave				
HWRITE	Slave	Indicates transfer direction.				

Slave Signals:

Name	Destination	Description
HRDATA [31:0]	Multiplexor	Read data bus to transfer the data
	_	from a Slave's location to the Master
		via multiplexor
HREADYOUT	Multiplexor	Indicates transfer has finished on the
		bus and is driven LOW to extend the
		data phase
HRESP	Multiplexor	Provides additional information
	_	that the transfer was successful or
		failed

Decoder Signals:

Name	Destination	Description					
HSELx	Slave	Indicates current transfer is for					
		intended for selected slave					

Multiplexor Signals:

Name	Destination	Description			
HRDATA [31:0]	Master	Read data bus to rout to Master			
HREADY	Master and	Indicates completion of previous			
	Slave	transfer			
HRESP	Master	Transfer response			

Verification Plan

No.	Feature	Test Description	Ref.	Туре	Result	Comments
1	Stability of HWRITE	If HTRANS is such that it depicts SEQ transfer type, HWRITE	ARM IHI	Α	PASS	HWRITE should
	during a burst	should be stable to its previous value till HTRANS depicts	0033B.b.pdf/Sec.2.2			be stable
		some other transfer type.				throughout burst.
2	Try to Read Data	After writing the Data, HREADY is turned LOW and attempt	ARM IHI	TR	FAIL	There should not
	when HREADY is	is made to READ the data from slave.	0033B.b.pdf/Sec.2.4			be any data until
	LOW					HREADY is HIGH
3	Checking the	Providing the address (randomly) and data (randomly) with	ARM IHI	TR	PASS	Successful Read
	WRITE and READ	HREADY HIGH and in the next clock cycle, READ from the	0033B.b.pdf/Sec.3.1			from the slave
	functions	slave with HREADY HIGH. Multiple words will be written				and HRESP should
	(Randomly)	with one or two wait states and then READ.				be OKAY
4	Data transfer via	Single NON-SEQ burst followed by IDLE transfer followed by	ARM IHI	TR	FAIL	IDLE transfer to
	IDLE transfer type	NON-SEQ single burst.	0033B.b.pdf/Sec.3.2			be ignored by
						slave
5	OKAY response to	HRESP should be OKAY immediately after IDLE transfer	ARM IHI	Α	PASS	IDLE should be
	IDLE transfer		0033B.b.pdf/Sec.3.2			given OKAY
						response by slave
6	Stability of HWRITE	During a sequence of SEQ transfers, HWRITE is toggled	ARM IHI	TR	FAIL	Error should be
	during SEQ		0033B.b.pdf/Sec.3.2			thrown
	transfers					
7	Verifying different	For sequential incremental 4 and 8 beat bursts, READ from	ARM IHI	TR	PASS	Successful Read
	burst operations	the mentioned addresses.	0033B.b.pdf/Sec.3.5.3			from the slave
	Part 1					and HRESP should
						be OKAY
8	Verifying different	For sequential wrapping 4 and 8 beat bursts, READ from the	ARM IHI	TR	PASS	Successful Read
	burst operations	mentioned addresses.	0033B.b.pdf/Sec.3.5.3			from the slave
	Part 2					and HRESP should
						be OKAY

9	Verifying different burst operations Part 3	For incremental undefined length bursts having different HSIZE, READ from all the mentioned addresses.	ARM IHI 0033B.b.pdf/Sec.3.5.3	TR	PASS	Successful Read from the slave and HRESP should be OKAY
10	Observing HRESP for waited states	If waited transfer goes from type IDLE to NONSEQ and stays this way for HREADY being LOW OR If waited transfer (fixed burst) goes from type BUSY to SEQ and stays this way for HREADY being LOW OR If waited transfer (undefined length burst) goes from type BUSY to any other for HREADY being LOW	ARM IHI 0033B.b.pdf/Sec.3.6.1	TR	PASS	Slave must respond with OKAY response
11	Transfer to non- existent address	SEQ or NON-SEQ transfer at an address that does not exist for the selected slave	ARM IHI 0033B.b.pdf/Sec.4.2.1	TR	FAIL	Error should be thrown
12	Observing HRESP	After writing the Data, HREADY is turned LOW and attempt is made to READ the data from slave. Then in the next cycle, HREADY is turned HIGH, and attempt is made to READ the data. Then we try to write data to inaccessible address.	ARM IHI 0033B.b.pdf/Sec.5.1	TR	PASS	HRESP should first be OKAY but nothing should be read. Then HRESP should be OKAY with data on output. Then HRESP should be ERROR
13	Sampling by slave	For any address and control signals, at positive clock edge, HREADY is kept low and then at next edge, it is turned HIGH	ARM IHI 0033B.b.pdf/Sec.7.1.1 and 7.4	TR	PASS	Sampling must be done at positive clock edge when HREADY is HIGH
14	HREADY while HRESETn	Asserting on HREADY while being on HRESETn	ARM IHI 0033B.b.pdf/Sec.7.1.2	А	PASS	Slave must ensure that HREADY is HIGH during reset
15	HREADY LOW at the instance of ERROR	For the first detection of ERROR, make assertion about HREADY being LOW		Α	PASS	ERROR is at-least a 2-cycle response

Explanation of Different Fields

No. The serial number of the test.

Feature The feature which the current test is verifying in full or partially. The feature is usually on the abstraction level

of a user.

Test Description A detailed description of the test case being performed. You can be as verbose as you want.

Ref. Reference to the section in the related standard document. The section number as well as page numbers should be described here.

Type Type of the test. Whether the test is an assertion (A) or a transaction (T) type.

Result Pass (P) or Fail (F).

Comments Any other comments about the test or its results that you want to mention.