- Duração: 2h 30min 2 de Julho de 2014
- 1. (30 pts) Determine uma equação diferencial ordinária completa, de 3ª ordem, de coeficientes constantes tal que
 - $y_p = e^{-x}$ seja uma solução particular da equação completa e
 - o conjunto $\{ sen(x), cos(x), e^{2x} \}$ seja um sistema fundamental de soluções da equação homogénea associada.

Justifique adequadamente a sua resposta.

2. (20 pts) Usando o método da variação das constantes, determine o integral geral da equação diferencial linear de primeira ordem

$$xy' \ln x + y - \ln x = 0$$

3. (25 pts) Usando a transformada de Laplace determine a solução do problema de Cauchy

$$\begin{cases} \frac{dx}{dt} - 3x = te^{2t} \\ x(0) = 0 \end{cases}$$

- 4. (35 pts) Considere a função $f: \left] -\frac{1}{2}, \frac{1}{2} \right[\to \mathbb{R}$ definida por $f(x) = \frac{1}{x+1}$.
 - (a) Determine uma expressão para a derivada de ordem n da função f.
 - (b) Escreva a fórmula de MacLaurin de ordem n com resto de Lagrange, $R_n(x)$, para a função f.
 - (c) Verifique que existe uma constante c > 0 tal que

$$|R_n(x)| < c|2x|^{n+1}, \ \forall x \in \left] -\frac{1}{2}, \frac{1}{2} \right[$$

- (d) A partir da alínea anterior, mostre que se pode desenvolver f em série de MacLaurin e escreva-a.
- (e) Atendendo ao resultado da alínea anterior, escreva a série de MacLaurin para a função $g: \left|-\frac{1}{2},\frac{1}{2}\right| \to \mathbb{R} \text{ definida por } g(x) = \frac{x}{1-x}.$
- 5. (35 pts) Considere a seguinte série de termos reais $\sum_{n=1}^{\infty} a_n$.
 - (a) Enuncie o Critério de Convergência de D'Alembert (ou da razão).
 - (b) Supondo que

$$a_{n+1} = \frac{n}{2n+3}a_n, \ a_1 \neq 0$$

estude a natureza da série cujo termo geral é a_n .

- (c) Determine o número racional que pode ser representado pela dízima infinita periódica 0,363363363....
- 6. (20 pts) Determine o domínio de convergência da série de potências, indicando o tipo de convergência (simples ou absoluta) em cada ponto desse domínio,

$$\sum_{n=0}^{+\infty} \frac{(x-1)^n}{4^n(2n+1)}$$

7. (35 pts) Seja f a função periódica de período 2π tal que

$$f(x) = \begin{cases} 1 & \text{se } -\pi < x \le 0 \\ 0 & \text{se } 0 < x \le \pi \end{cases}$$

- (a) Esboce o gráfico da função f no intervalo $[-3\pi, 3\pi]$.
- (b) Mostre que a série de Fourier da função f é dada por

$$\frac{1}{2} - \frac{2}{\pi} \left[\operatorname{sen}(x) + \frac{1}{3} \operatorname{sen}(3x) + \frac{1}{5} \operatorname{sen}(5x) + \dots \right]$$

- (c) Determine, justificando, a soma da série de Fourier da alínea anterior.
- (d) Dando um valor apropriado a x mostre que

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Formulário (Transformada de Laplace)		
função	${\it transformada}$	
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$	
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}, \ s>a$	
$\operatorname{sen}(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 + a^2}, \ s > 0$	
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$	
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $	
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $	
f(t) + g(t)	$F(s) + G(s), \ s > s_f, s_g$	
$\alpha f(t) \ (\alpha \in \mathbb{R})$	$\alpha F(s), \ s > s_f$	
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda), s > s_f + \lambda$	
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$, $s > $ ordem exp. de f	
$f(t-a) \ (a>0)$	$e^{-as}F(s), s>s_f$	
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f$	
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$, onde $f^{(0)} \equiv f$,	
	$s > $ ordem exp. de $f, f', \dots, f^{(n-1)}$	

Formulário (Primitivas)

função	primitiva
$u^r u'$, com $r \neq -1$	$\frac{u^{r+1}}{r+1}$
$\frac{u'}{u}$	$\ln u $
$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$
$u'\cos u$	$\operatorname{sen} u$
$u' \operatorname{sen} u$	$-\cos u$
$u' \sec^2 u$	$\operatorname{tg} u$
$u'\csc^2 u$	$-\cot g u$
$u' \sec u$	$\ln \sec u + \operatorname{tg} u $
$u'\csc u$	$-\ln \csc u + \cot u $
$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$
$\frac{u'}{1+u^2}$	$\operatorname{arctg} u$ ou $-\operatorname{arccotg} u$

Notas:

- 1. F denota a transformada de Laplace da função f, $F(s) = \mathcal{L}\{f(t)\}(s)$;
- 2. O facto de se indicarem restrições numa dada linha do quadro acima não significa que não haja restrições adicionais a considerar para que a fórmula indicada nessa linha seja válida.
- $\sec u = \frac{1}{\cos u}$ e $\csc u = \frac{1}{\sin u}$