C3_solution

reinforcement learning study

$2021\ 2\ 4$

Exercise 1

Trainsition Matrix:

$$P = \left(\begin{array}{ccc} 1/2 & 1/2 & 0\\ 1/2 & 1/4 & 1/4\\ 0 & 1/3 & 2/3 \end{array}\right)$$

${\bf Trainsition\ Diagram:}$

Figure 1: Example 1 Trainsition Diagram

Remark

- A state i is said to be recurrent if, starting from i, the probability of getting back to i is 1
- A state i is said to be trainsient if, starting from i, the probability of getting back to i is less than 1 recurrent state : $\{1,2,3\}$, All states communicate, all states recurrent

Exercise 2

Trainsition Matrix:

$$P = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 0 & 1 \end{array}\right)$$

Trainsition Diagram:

Figure 2: Example 2 Trainsition Diagram

Remark

- A state i is said to be recurrent if, starting from i, the probability of getting back to i is 1
- A state i is said to be trainsient if, starting from i, the probability of getting back to i is less than 1
- A state i is said to be abosrbing state, as a special case of reccurrent state, if $P_{ii} = 1$ (You can naver leave the state i if you get there)

recurrent state: $\{1,3\}$

trainsient state : $\{2\}$

abosing state: $\{1,3\}$

Exercise 3

Trainsition Matrix:

$$P = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1/3 & 1/2 & 1/6 \\ 0 & 0 & 1 \end{array}\right)$$

${\bf Trainsition\ Diagram:}$

Figure 3: Example 3 Trainsition Diagram

Remark

- A state i is said to be recurrent if, starting from i, the probability of getting back to i is 1
- A state i is said to be trainsient if, starting from i, the probability of getting back to i is less than 1
- A state i is said to be abosrbing state, as a special case of reccurrent state, if $P_{ii} = 1$ (You can naver leave the state i if you get there)

recurrent state : $\{1,3\}$ trainsient state : $\{2\}$

abosing state: $\{1,3\}$

Exercise 4

Trainsition Matrix:

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Trainsition Diagram:

Figure 4: Example 4 Trainsition Diagram

Remark

- A state i is said to be recurrent if, starting from i, the probability of getting back to i is 1
- A state i is said to be trainsient if, starting from i, the probability of getting back to i is less than 1
- A state i is said to be abosrbing state, as a special case of reccurrent state, if $P_{ii} = 1$ (You can naver leave the state i if you get there)

recurrent state : $\{1,\!2,\!4\}$

trainsient state : $\{3\}$

abosibing state: $\{4\}$