医用工学概論

第10回 生体情報の収集

トランスデューサ(変換器)

生体信号を 電気的信号 に変換するための装置

変換機式(物理量→電気量)	トランスデューサ
変位→抵抗	ポテンショメータ、ストレンゲージ
変位→相互インダクタンス	差動トランス
変位→容量	可動極板型コンデンサ
力, 振動→起電力	圧電衆子
力(→変位)→抵抗	ストレンゲージ
カ→電流	感圧ダイオード
光→抵抗	CdS(光導電素子)
光→起電力	光電池
光→電流	光電管,フォトトランジスタ
温度→抵抗	サーミスタ
温度→起電力	熱電対
磁場→起電力	ホール業子
磁場→電流(リング電流)	SQUID 磁束計
放射線型→電流	ガイガー計数管、半導体放射線検出案子

イオン電流→電子電流 電極

物理量トランスデューサ

物理量(位置、力、速度、熱、光など)を計測するトランスデューサ

- •変位•圧力
- •振動•音響
- •流速•流量
- •熱•温度
- 光

受光素子

光起電力効果 を利用した光電変換素子

フォトダイオード

フォトトランジスタ

秋月 NJL7302L一F3 https://akizukidenshi.com

広い範囲の波長感度特性を持ち, 応答速度も速い(10⁻⁹秒程度).

逆に、電圧をかけて光を発する素子を発光ダイオードという.

他には、 太陽電池 がある.

教科書 p.122 図5-32 図5-33

フォトレジスタ(CdS, CdSe)

光導電効果 を利用した光電変換素子

現象:

光が当たると、電気抵抗が減少する.

応答速度が遅く、また、低照度で感度が低い.

そのため、フォトダイオードやフォトトランジスタで代用される.

教科書 p.123 図5-35

光電管

を利用した光電変換素子 光電子放出効果

光電子倍増間は、人の目には見えない微弱 な光も検出することができる(高感度).

そのため、シンチレーションカウンタ(放射線 計測)に用いられる.

光電子増倍管

(フォトマル)

教科書 p.124 図5-37 図5-38

焦電センサ

焦電効果 を利用した光電変換素子

現象: 温度変化によって,誘電体の分極が変化する.

赤外線の照射による温度変化を検出できる.

例)自動照明のセンサスイッチ

化学量トランスデューサ

化学量(イオン濃度、酸素濃度など)を計測する トランスデューサ

電極センサ

電極にイオン感受性機能を持たせたセンサ

ポテンショメトリック法

電圧として信号を取り出す

例)pHガラス電極, P_{co},電極

アンペロメトリック法

還元電流として信号を取り出す

例)Pop電極

pHガラス電極

水素イオン濃度(pH)を計測するための電極

薄い ガラス膜 を介して、pHの差に比例した 電位差 が生じる.

ガラス電極を用いるため、信号源インピーダンスが高い(数十MΩ).

P_{CO2}電極

二酸化炭素分圧(P_{co},)を計測するための電極

テフロン膜 を透過し、CO₂ガスがスペーサ(重層水に浸されている)

に取り込まれると、スペーサのpHが変化する. → pHガラス電極で検出 このような構造をした電極を、 セバリングハウス型電極 ともいう.

酸素分圧(Po,)を計測するための電極

ポーラログラフ法 (電圧を変えて電 流を測る測定法) による結果

ポリプロピレン膜 を透過した O_2 は、溶解液の還元反応を促進する.

このとき、電極間の電圧が 0.6V 程度であれば、 P_{O_2} に比例した還元電流が流れる.

このような構造をした電極を、クラーク電極ともいう.

経皮的血液ガス分圧電極

皮膚表面に電極を当てて、 $40 \sim 43$ °Cに加温することで、皮下の細動脈の血流を増加させ、拡散してきたガスを測定する電極 $(P_{co}$,電極が使われる)

採血することなく、新生児の呼吸状態や酸素障害をモニタできる.

経皮的に、 P_{CO_2} や酸素飽和度 (S_{O_2}) を同時にモニタできる電極もある.

パルスオキシメータ(酸化/還元へモグロビンの吸光特性の違いを利用)を用いて測定される

ISFET (ion sensitive FET)

絶縁膜にイオン感受膜を一体化させたイオンセンサ

半導体素子で構成されるため、 超小型 イオンセンサを作ることができる.

バイオセンサ

微生物 , 抗体・抗原 を固定化することで, 電極に 酵素

生体機能性膜として利用し、グルコース 、 尿素 、 乳酸

アミノ酸 などの種々の電極センサ(バイオセンサ)が開発されている.

グルコース電極

グルコースオキシダーゼを電極に固定化した酵素センサ

反応により消費される O₂ か生成される H₂O₂ のどちらかを測れば, グルコースが定量できる. また, 酵素膜が触媒作用のみを行うので, 繰り返し利用できる.

教科書 p.130 図5-46 24