Mitarbeiter-Attrition Bericht

Explorative Datenanalyse & Vorhersagemodelle HR-Analytics-Datensatz

GitHub-Repository-Link

Dies ist ein fiktiver Datensatz, der von IBM-Datenwissenschaftler erstellt wurde.

Einleitung

In diesem Bericht fasse ich die Ergebnisse der Explorativen Datenanalyse (EDA) und der Modellierung zur Vorhersage von Mitarbeiter-Attrition anhand des HR-Analytics-Datensatzes zusammen. Ich integriere dazu im Abschnitt EDA passende Visualisierungen in Form von Diagrammen und Heatmaps.

Workflow:

- Datensatzüberblick
- 2. Explorative Datenanalyse (EDA) mit Visualisierungen
- 3. Datenvorverarbeitung
- 4. Modellauswahl & -bewertung
- 5. Feature-Wichtigkeit
- 6. Fazit & Empfehlungen

Wie wirkt sich Mitarbeiter-Attrition auf ein Unternehmen aus?

 Hohe Attrition kann Kosten durch Neuanstellungen, Wissensverlust, geringere Produktivität und negative Auswirkungen auf die Kundenzufriedenheit verursachen. Langfristig schwächt es die Unternehmensstabilität und den Aufbau von Erfahrungswerten.

Datensatzüberblick

- Anzahl Datensätze: 1.470 Mitarbeiter
- Anteil Attrition: 16,1 % (237/1.470) verlassen das Unternehmen
- 35 Merkmale (Alter, Gehalt, Abteilung, JobRole, OverTime, Zufriedenheitswerte, etc.)

Explorative Datenanalyse

Verteilung der Attrition

Attrition
No 1233
Yes 237
Name: count, dtype: int64

Interpretation: Etwa 16 % der Belegschaft geben an, das Unternehmen verlassen zu haben.

OverTime vs. Attrition

Ergebnis: Mitarbeiter mit Überstunden ("Yes") weisen deutlich höhere Abwanderung auf.

BusinessTravel vs. Attrition

Ergebnis: Häufig reisende Mitarbeiter haben eine erhöhte Wechselbereitschaft.

Department vs. Attrition

Abteilung: (Research & Development und Sales) besonders betroffen

MonthlyIncome

Monatsgehalt: niedriges Gehalt → höhere Abwanderung.

YearsAtCompany

- Betriebszugehörigkeit: kürzere Zeit → Wechselbereitschaft

Age

Alter: Jüngere Mitarbeiter haben höhere Abwanderungsraten.

Korrelationsanalyse

Moderate Zusammenhänge: YearsAtCompany vs. YearsInCurrentRole

Datenvorverarbeitung

- 1. Label-Encoding aller Kategorialen Merkmale (LabelEbcoder)
- 2. Skalierung numerischer Merkmale (StandardScaler)
- 3. Train-Test-Split (80/20-Aufteilung, test_size = 0.2)

preprocessing

```
In [60]: df['Attrition'] = df['Attrition'].map({'Yes': 1, 'No': 0})
df['Attrition'] = df['Attrition'].astype(int)

In [61]: #encoding categorical columns
    from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()
    for col in cat.columns:
        df[col] = le.fit_transform(df[col])
```

turget and features

Modellauswahl & Bewertung

Logistic Regression:

Accuracy ~89 %

Precision (Yes): 0,68

Recall (Yes): 0,33

F1-Score (Yes): 0,45

Konfusionsmatrix:

[[249 6]

[26 13]]

Interpretation: Hohe Gesamtgenauigkeit, jedoch niedriges Recall auf der positiven Klasse (Attrition)

Feature-Wichtigkeit

- Top-5 Merkmale:
- 1. OverTime
- 2. MonthlyIncome
- 3. YearsAtCompany
- 4. JobSatisfaction
- 5. Age

Fazit & Empfehlungen

- Reduktion von Überstunden
- Gehaltsanpassungen
- Mentoring für neue Mitarbeiter
- Dashboard zur Früherkennung von Abwanderung