CS Group (Computer Science)

Note: Answer all questions from Part-A and any eight questions from Part-B.

Part-A

- CS1. Suppose a crime has been committed and there are three suspects: Professor Plum, Mrs. Peacock, and Mr. Green. Given that:
 - At least one of the above three suspects is guilty.
 - Not all of them are guilty.
 - If Mrs. Peacock is guilty, then so is Professor Plum.
 - If Mr. Green is innocent, then so is Professor Plum.

Prove or disprove each of the following statements:

- (i) Mr. Green is guilty.
- (ii) Mrs. Peacock is innocent.

[3+3=6]

CS2. A room has four walls. In how many different ways can you color the four walls, using colors from the set {Red, Green, Blue, Yellow}, such that no two adjacent walls have the same color?

[7]

CS3. Consider a round-robin football tournament among $n \geq 3$ teams, where every team plays a match with every other team exactly once. For any team, each match results in a win, draw or loss. In the tournament, each team loses at least one match. Prove or disprove the following statement:

There must be two teams with the same number of wins at the end of the tournament.

[7]

Part-B

- CS4. Prove or disprove the following statements:
 - (i) $L_1 = \{0^i 1^j \mid i, j \in \mathbb{N}\}$ is a regular language.
 - (ii) $L_2 = \{0^n 1^n \mid n \in \mathbb{N}\}$ is a regular language.
 - (iii) For $x \in \{0, 1\}^*$,
 - $\mathcal{R}(x)$ denotes the string obtained by reversing the string x.
 - C(x) denotes the string obtained by flipping 0 to 1 and 1 to 0 in the string x.

 $L_3 = \{x \in \{0,1\}^* \mid x = \mathcal{R}\left(\mathcal{C}\left(x\right)\right)\}\$ is a regular language.

$$[2+3+5=10]$$

- CS5. Let \mathcal{B} be a binary search tree (BST) on eight nodes filled with the following set of eight integer keys $A = \{10, 2, 5, 3, 20, 15, 9, 22\}$. The order in which these keys were inserted to create \mathcal{B} is not known. However, it is known that for the given BST, $(8 \times 9)/2 = 36$ comparisons are needed to check the presence of all the eight keys in A. Using this information as a clue or otherwise, construct and depict pictorially four possible BSTs each of which requires 36 comparisons to check the presence of all the eight keys in A. Justify your answer. [10]
- CS6. Let A[0 ldots n-1] and B[0 ldots n-1] be two arrays containing n real numbers such that $A[k] \leq A[k+1]$ and $B[k] \leq B[k+1]$ for all $k \in \{0,1,\ldots,n-2\}$. Design an efficient algorithm to find whether there exists any $k \in \{0,1,\ldots,n-1\}$ such that A[k]+iB[k], where $i=\sqrt{-1}$, forms a complex root of the equation $x^2+2cx+c^2+d^2=0$ and c and d are real numbers. State and justify the time complexity of your algorithm. [10]

CS7. Consider an operating system consisting of a pair of processes P_0 and P_1 . The structure of each process P_i is shown below.

```
while(TRUE){
    j = 1-i;
    flag[i] = TRUE;
    turn = j;
    while(TRUE){
        if(flag[j] == FALSE || turn == i)
            break;
    }
    /* CRITICAL SECTION */
    flag[i] = FALSE;
    /* REMAINDER SECTION */
}
```

Suppose we initialize the system as follows.

```
turn = 0; // Taken as a shared integer variable
flag[0] = FALSE; // Taken as a shared Boolean variable
flag[1] = FALSE; // Taken as a shared Boolean variable
```

Explain whether the above implementation satisfies mutual exclusion and progress.

$$[4+6=10]$$

CS8. Let G := (V, E) be a simple, connected, undirected, weighted graph with vertex set V, $|V| \ge 4$, and edge set E, $|E| \ge 4$. The edges have distinct positive weights on them. Prove that a minimum spanning tree of G either contains the edge with the third smallest weight or the edge with the fourth smallest weight. [10]

CS9. Consider an $n \times n$ grid as follows:

$$S = \{(i, j) \in \mathbb{Z} \times \mathbb{Z} \mid 1 \leq i, j \leq n\}.$$

A triangle with its vertices on the grid points of S is *nice* if

- the area of the triangle is 3, and
- at least one of its edges is parallel to either x-axis or y-axis.

Find the number of nice triangles.

CS10. A sequential circuit has two D flip-flops D_A and D_B with outputs A and B, respectively. The circuit has two inputs x and y, and one output z. The input equations for the flip-flops and the circuit output are as follows:

$$D_A = \overline{x} \ y + A \ \overline{x}$$

$$D_B = x \ \overline{y} + B \ x$$

$$z = Ax + B\overline{x}$$

- (i) Draw the logic diagram of the sequential circuit.
- (ii) Draw the corresponding state transition diagram.

$$[4+6=10]$$

[10]

CS11. Consider a computer with two-level cache system L_1 and L_2 along with a main memory M. The L_1 cache is divided into two parts: I-cache (Instruction cache) and D-cache (Data cache). The probability that the processor reads a memory for an instruction is 1/4 and a data is 3/4. The miss ratio of D-cache is two times of the miss ratio of the L_2 cache, but the miss ratios of I-cache and L_2 cache are the same. Let the access times of I, D, L_2 and M be 4 ns, 4 ns, 40 ns and 400 ns, respectively. Let the average memory access time be 11 ns. Compute the hit ratio of the D-cache.

CS12. Consider a pair of relations R_1 and R_2 having t_1 and t_2 number of tuples, respectively. Let us define the *semijoin* $(R_1 \ltimes R_2)$ and antijoin $(R_1 \bowtie R_2)$ operations on R_1 and R_2 in the form of the following relational algebra expressions:

$$R_1 \ltimes R_2 = \pi_{A(R_1)}(R_1 \bowtie R_2)$$

 $R_1 \rhd R_2 = R_1 - (R_1 \ltimes R_2) = R_1 - \pi_{A(R_1)}(R_1 \bowtie R_2)$

Recall that \bowtie denotes the natural join operation.

A dangling tuple in a relation does not have a matching attribute value in another relation while performing a join operation. If the ratio between the number of tuples returned by the semijoin and antijoin is 1:2, then what is the number of dangling tuples in R_1 with respect to R_2 ? [10]

- CS13. Suppose node A generates data frames and sends to node C through node B. Assume that the link between A and B as well as the link between B and C are full-duplex and error free. All data frames are 10^3 bits long and ACK frames are separate frames of negligible length. The data rates of the links $A \to B$ and $B \to C$ are 10^5 bps and B bps, respectively. Propagation delays of both the links $A \to B$ and $B \to A$ are 0.02 seconds, and that of the links $B \to C$ and $C \to B$ are both 0.004 seconds. The sliding window protocol with window size W is used between A and B. The stop and wait protocol is used between B and C.
 - (i) Determine the window size W such that the utilization of the link $A \to B$ is maximum.
 - (ii) Determine the minimum value of R such that the utilization of the link $A \to B$ is maximum and the buffer at B is not flooded. (Note: In order not to flood the buffer at B, the time taken by B to send W frames to C must be at most the time taken by A to send W frames to B.)

[5+5=10]

Non-CS Group (Mathematics)

Note: Answer all questions from Part-A and any eight questions from Part-B.

Part-A

- NC1. Suppose a crime has been committed and there are three suspects: Professor Plum, Mrs. Peacock, and Mr. Green. Given that:
 - At least one of the above three suspects is guilty.
 - Not all of them are guilty.
 - If Mrs. Peacock is guilty, then so is Professor Plum.
 - If Mr. Green is innocent, then so is Professor Plum.

Prove or disprove each of the following statements:

- (i) Mr. Green is guilty.
- (ii) Mrs. Peacock is innocent.

[3+3=6]

NC2. A room has four walls. In how many different ways can you color the four walls, using colors from the set {Red, Green, Blue, Yellow}, such that no two adjacent walls have the same color?

[7]

NC3. Consider a round-robin football tournament among $n \geq 3$ teams, where every team plays a match with every other team exactly once. For any team, each match results in a win, draw or loss. In the tournament, each team loses at least one match. Prove or disprove the following statement:

There must be two teams with the same number of wins at the end of the tournament.

[7]

Part-B

NC4. Consider an $n \times n$ grid as follows:

$$S = \{(i, j) \in \mathbb{Z} \times \mathbb{Z} \mid 1 < i, j < n\}.$$

A triangle with its vertices on the grid points of S is *nice* if

- the area of the triangle is 3, and
- at least one of its edges is parallel to either x-axis or y-axis.

Find the number of nice triangles.

[10]

NC5. (i) Let $f:[0,1] \to [0,1]$ be a strictly decreasing continuous function with f(0) = 1 and f(1) = 0. Show that

$$\int_0^1 f(x)dx = \int_0^1 f^{-1}(y)dy.$$

(ii) Let f be a differentiable function on [-2,2] such that f(-2) = 1, f(2) = 5 and $|f'(x)| \le 1$ for all $x \in [-2,2]$. Find the value of f(0).

$$[6+4=10]$$

- NC6. (i) Consider a simple, undirected, connected graph G=(V,E) whose every vertex has degree at least 2. Show that G contains a cycle.
 - (ii) A simple, undirected, connected graph is 2-edge connected if at least 2 edges need to be removed to make G disconnected.
 - (a) Show an example of a tree with 11 vertices that can be converted to a 2-edge connected graph by adding an edge.
 - (b) Show an example of a tree with 11 vertices that can be converted to a 2-edge connected graph by adding five edges.

$$[5+(2+3) = 10]$$

NC7. Let a_0, a_1, \ldots, a_n be real numbers with property that

$$a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1} = 0.$$

Prove that the equation

$$a_0 + a_1 x + \dots + a_n x^n = 0$$

has a solution in (0,1).

[10]

NC8. Find the largest positive real number δ such that, for real numbers x and y

$$|x - y| < \delta$$
 implies $|\cos x - \cos y| < \sqrt{2}$.

[10]

- NC9. Let f(x) be a nonconstant polynomial with real coefficients. If there exists a complex root α of f(x) with multiplicity greater than 1, show that the polynomial f(f(x)) also has a complex root with multiplicity greater than 1. [10]
- NC10. A particular Covid-19 vaccine produces a side effect (fever) with probability $p \in [0, 1]$. A clinic vaccinates 500 people each day and records the number of people having side effects on 5 randomly chosen days.
 - (i) What is the probability that the number of people who developed side effects on the 5 observed days are 10, 15, 0, 20, 25?
 - (ii) Find the value of p that maximizes the probability obtained in part (i).
 - (iii) Based on the value of p obtained in part (ii), what is the expected number of people who will develop side effects on each day?

$$[4+4+2=10]$$

NC11. Let A, A_1, A_2, \ldots, A_m be $n \times n$ matrices with real entries such that

$$A = \sum_{t=1}^{m} A_t.$$

(i) Show that

$$\operatorname{rank}(A) \le \sum_{t=1}^{m} \operatorname{rank}(A_t).$$

- (ii) An $n \times n$ matrix B with real entries is defined as a two-block matrix if there exist two disjoint submatrices C and D in B such that
 - All entries of $\mathcal C$ are the same, and all entries of $\mathcal D$ are the same.
 - All other entries of B not in C and D are 0.

If the matrices A_t are two-block matrices for all $t \in \{1, \ldots, m\}$ then show that $m \ge \operatorname{rank}(A)/2$.

$$[3+7=10]$$

NC12. Let $GL_2(\mathbb{Z}/m\mathbb{Z})$ denote the following set of matrices

$$\left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mid a_{ij} \in \mathbb{Z}/m\mathbb{Z} \text{ and } a_{11}a_{22} - a_{12}a_{21} \in (\mathbb{Z}/m\mathbb{Z})^* \right\}$$

with matrix multiplication as group operation. Note that $(\mathbb{Z}/m\mathbb{Z})^*$ denotes the multiplicative group of units in $\mathbb{Z}/m\mathbb{Z}$.

- (i) Show that the map $\psi : \mathbb{Z}/m\mathbb{Z} \to \mathrm{GL}_2(\mathbb{Z}/m\mathbb{Z})$ given by $\psi(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ is an injective group homomorphism.
- (ii) Show that there exists a 2×2 matrix M such that M is of order 2 in $GL_2(\mathbb{Z}/8\mathbb{Z})$ and M is of order 5 in $GL_2(\mathbb{Z}/15\mathbb{Z})$.

$$[3+7=10]$$

NC13. Find the perimeter of the region bounded by $x^2 + y^2 - 144 \le 0$ and $x^2 + y^2 - (24\sqrt{2})x + 144 \le 0$. [10]