## Summary report

Biliang Wang bwang135@uottawa.ca

Nov. 3, 2019

## Part A

In this experiment, the seismic bumps dataset was rebalanced using three different approaches:oversampling (random oversampling) the minority class, undersampling (repeated edited nearest neighbors) the majority class and balanced sampling (SMOTE-ENN). Four algorithms were trained against the four datasets using ten-fold cross validation, which were decision tree, k nearest neighbors, naive bayes and rule-based. The results can be summarized below:

Table 1: Model performance after applying sampling methods

|                     |           | Decision Tree | Nearest Neighbors | Naive Bayes | Rule-based |
|---------------------|-----------|---------------|-------------------|-------------|------------|
| Original<br>Dataset | precision | 0.094         | 0.181             | 0.088       | 0.040      |
|                     | recall    | 0.153         | 0.112             | 0.900       | 0.041      |
| Dataoot             | accuracy  | 0.848         | 0.908             | 0.383       | 0.873      |
| Oversampli          | precision | 0.899         | 0.827             | 0.594       | 0.497      |
| ng .                | recall    | 1.000         | 1.000             | 0.917       | 0.496      |
| Dataset             | accuracy  | 0.944         | 0.895             | 0.645       | 0.497      |
| Under-              | precision | 0.267         | 0.583             | 0.118       | 0.066      |
| sampling<br>Dataset | recall    | 0.376         | 0.329             | 0.871       | 0.071      |
|                     | accuracy  | 0.865         | 0.926             | 0.460       | 0.843      |
| Balanced            | precision | 0.890         | 0.916             | 0.698       | 0.533      |
| sampling            | recall    | 0.953         | 0.994             | 0.923       | 0.551      |
| Dataset             | accuracy  | 0.910         | 0.947             | 0.740       | 0.491      |

Clearly, compared with original dataset, performances of model were better after the sampling method, though performances of models trained against undersampling dataset only improved marginally.

Models trained against oversampling and balanced sampling datasets both achieved better result than the original and under-sampling datasets. Simply to avoid over-fitting, we chose balanced sampling dataset for further experiments.

The accuracies of the four algorithms against each one of the ten folds when trained against the balanced sampling dataset can been seen below:

Table 2: accuracies of models against one fold

| Fold  | Decision Tree | Nearest Neighbors | Naive Bayes | Rule-based |
|-------|---------------|-------------------|-------------|------------|
| 1     | 0.8308        | 0.8905            | 0.8905      | 0.4826     |
| 2     | 0.8358        | 0.9104            | 0.9104      | 0.5174     |
| 3     | 0.8980        | 0.9403            | 0.9403      | 0.4925     |
| 4     | 0.9303        | 0.9751            | 0.9751      | 0.5124     |
| 5     | 0.9426        | 0.9626            | 0.9626      | 0.5262     |
| 6     | 0.9327        | 0.9426            | 0.9426      | 0.4663     |
| 7     | 0.9551        | 0.9800            | 0.9800      | 0.5037     |
| 8     | 0.9501        | 0.9476            | 0.9476      | 0.5486     |
| 9     | 0.9102        | 0.9375            | 0.9375      | 0.4950     |
| 10    | 0.9450        | 0.9825            | 0.9825      | 0.5100     |
| avg   | 0.8879        | 0.9365            | 0.7169      | 0.4963     |
| stdev | 0.0807        | 0.0650            | 0.0557      | 0.0194     |

The following table demonstrates the calculation of a pair t-test on the result above.

Table 3: Pair t-test of different models

| Fold            | DT-KNN  | DT-NB  | DT-RB  | KNN-NB | KNN-RB | NB-RB  |
|-----------------|---------|--------|--------|--------|--------|--------|
| 1               | -0.0597 | 0.0746 | 0.3483 | 0.1343 | 0.4080 | 0.2736 |
| 2               | -0.0746 | 0.1169 | 0.3184 | 0.1915 | 0.3930 | 0.2015 |
| 3               | -0.0423 | 0.1045 | 0.4055 | 0.1468 | 0.4478 | 0.3010 |
| 4               | 0.0448  | 0.0547 | 0.4179 | 0.0995 | 0.4627 | 0.3632 |
| 5               | -0.0200 | 0.2244 | 0.4165 | 0.2444 | 0.4364 | 0.1920 |
| 6               | -0.0100 | 0.1970 | 0.4663 | 0.2070 | 0.4763 | 0.2693 |
| 7               | -0.0249 | 0.2195 | 0.4514 | 0.2444 | 0.4763 | 0.2319 |
| 8               | 0.0025  | 0.2444 | 0.4015 | 0.2419 | 0.3990 | 0.1571 |
| 9               | -0.0273 | 0.2302 | 0.4152 | 0.2575 | 0.4425 | 0.1850 |
| 10              | -0.0375 | 0.2675 | 0.4350 | 0.3050 | 0.4725 | 0.1675 |
| avg             | -0.0486 | 0.1711 | 0.3916 | 0.2197 | 0.4402 | 0.2206 |
| stdev           | 0.0157  | 0.1364 | 0.0613 | 0.1207 | 0.0456 | 0.0750 |
| <i>p</i> -value | 0.0015  | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

According to the p-value of the four algorithms, there is a statistically significant difference in the accuracies obtained by the four algorithms at the  $\alpha = 0.05$  level.

We then reduced the feature size of the balanced dataset to 10 and 8 by applying tree-based and L1-based feature selection techniques.

The following table shows accuracies of four models trained against dataset after feature selection.

Table 4: accuracies of models trained against feature-selected dataset

|      | Decision Tree |      | Neare | est Neig | hbors | Naive Bayes |      | Rule-based |        |      |      |       |
|------|---------------|------|-------|----------|-------|-------------|------|------------|--------|------|------|-------|
| F    | No            | Tree | L1    | No       | Tree  | L1          | No   | Tree       | L1     | No   | Tree | L1    |
| 1    | 0.83          | 0.85 | 0.83  | 0.89     | 0.89  | 0.82        | 0.89 | 0.67       | 0.60   | 0.48 | 0.48 | 0.46  |
| 2    | 0.84          | 0.84 | 0.82  | 0.91     | 0.87  | 0.83        | 0.91 | 0.67       | 0.66   | 0.52 | 0.52 | 0.51  |
| 3    | 0.90          | 0.91 | 0.90  | 0.94     | 0.92  | 0.89        | 0.94 | 0.75       | 0.76   | 0.49 | 0.46 | 0.52  |
| 4    | 0.93          | 0.97 | 0.96  | 0.98     | 0.97  | 0.97        | 0.98 | 0.80       | 0.81   | 0.51 | 0.49 | 0.51  |
| 5    | 0.94          | 0.93 | 0.94  | 0.96     | 0.90  | 0.91        | 0.96 | 0.81       | 0.77   | 0.53 | 0.48 | 0.48  |
| 6    | 0.93          | 0.93 | 0.91  | 0.94     | 0.95  | 0.91        | 0.94 | 0.75       | 0.79   | 0.47 | 0.52 | 0.49  |
| 7    | 0.96          | 0.92 | 0.93  | 0.98     | 0.94  | 0.95        | 0.98 | 0.76       | 0.75   | 0.50 | 0.51 | 0.53  |
| 8    | 0.95          | 0.91 | 0.90  | 0.95     | 0.95  | 0.91        | 0.95 | 0.79       | 0.74   | 0.55 | 0.44 | 0.53  |
| 9    | 0.91          | 0.92 | 0.93  | 0.94     | 0.93  | 0.92        | 0.94 | 0.73       | 0.74   | 0.50 | 0.50 | 0.48  |
| 10   | 0.95          | 0.95 | 0.93  | 0.98     | 0.97  | 0.94        | 0.98 | 0.77       | 0.73   | 0.51 | 0.54 | 0.49  |
| avg  | 0.89          | 0.90 | 0.88  | 0.94     | 0.93  | 0.88        | 0.94 | 0.72       | 0.67   | 0.50 | 0.51 | 0.48  |
| diff | 0.0%          | 0.8% | -1.0% | 0.0%     | -0.1% | -6.1%       | 0.0% | -23.6%     | -28.9% | 0.0% | 2.3% | -4.3% |

The feature selection techniques do not lead to an overall improvement in accuracies in this dataset, since the differences between accuracies are less than 10%( most of them are less than 5%). On the contrary, the accuracies of Naive Bayes model decreased more than 20%.

## Part B

The following table demonstrates the accuracies of the four algorithms against the four datasets.

| Dataset  | Decision Tree | Nearest Neighbors | Naive Bayes | Rule-based |
|----------|---------------|-------------------|-------------|------------|
| Seismic  | 0.8479(3)     | 0.9083(1)         | 0.3827(4)   | 0.8765(2)  |
| Labor    | 0.8772(3)     | 0.9474(1)         | 0.9298(2)   | 0.5439(4)  |
| Iris     | 0.9533(1)     | 0.9533(1)         | 0.9533(1)   | 0.2800(4)  |
| Voting   | 0.9494(1)     | 0.9218(3)         | 0.9448(2)   | 0.4943(4)  |
| avg rank | 2.0           | 1.5               | 2.3         | 3.5        |

Table 5: accuracies of four models

Based on the Friedman test, 
$$\overline{R} = \frac{k+1}{2} = 2.5$$
,  $n \sum_{i} (R_i - \overline{R})^2 = 9.16$  and

$$\frac{1}{n(k-1)}\sum_{ij} (R_i j - \overline{R})^2 = 2$$
, so the Friedman statistic is 4.58. The critical value for

k = 4 and n = 4 at the  $\alpha = 0.05$  level is 7.8, so we accept the null hypothesis that all algorithms perform equally, which means that the average ranks as a whole don't display significant different.

Further analysis is carried out on a pairwise level. The critical difference in Nemenyi test is as follows:

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6n}}$$

where  $q_{\alpha}$  depends on the significance level  $\alpha$  as well as k: for  $\alpha = 0.05$  and k = 4 it is 2.569, leading to a critical difference of 2.345. No significant difference between four algorithms. The Nemenyi diagram is as follows:

