Assignment No: 7

- <u>Title:</u> Synchronous counter
- Objective: 3 Bit up/down synchronous Counter
- <u>Problem Statement:</u> To design and implement 3 bit UP and Down, Controlled UP/Down Synchronous Counter using MS-JK Flip-flop.

• Hardware Requirement's:

Digital Trainer Kit, IC 7476, IC 7408, IC 7432 & IC 7404.patch cords, +5V power supply.

4 Theory:

<u>Counters:</u> counters are logical device or registers capable of counting the no of states or no of clock pulse arriving at its clock input where clock is a timing parameter arriving at regular intervals of time, so counters can be also used to measure time & frequencies. They are made up of flip flops. Where the pulse are counted to be made of it goes up step by step & the o/p of counter in the flip flop is decoded to read the count to its starting step after counting n pulse incase of module & counters.

> Synchronous Counter:

In this counter, all the flip flops receive the external clock pulse simultaneously.

Ex:- Ring counter & Johnson counter

The gates propagation delay at reset time will not be present or we may say will not occur.

> Classification of synchronous counter:

Depending on the way in which counting processes, the synchronous counter is classified is :-

- 1) Up counter.
- 2) Down counter.
- 3) Up down counter.

• Up Counter:

The up counter counts binary form 0 to 7 i.e. (000 to 111). It counts from small to large number. It's O/P goes on increasing as they receive clock pulse

• **Down Counter:**

This down counter counts binary from 7-0 i.e.(111-000).It counts from large to small number. It's O/P goes on increasing as they receive clock pulse

Excitation Table: The tabular representation of the operation of flip flop (i.e: Operational Characteristic)

Present State	Next State	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

For M = 0, it acts as an Up counter and for M = 1 as an Down counter.

State Table for 3 bit Up-Down Synchronous Counter:

Control	Pre	esent St	tate	Next State Input for F			r Flip-	flop				
input M	Qc	QB	QA	Qc+1	Q _{B+1}	Q _{A+1}	Jc	Kc	J_B	KB	J_A	KA
0	0	0	0	0	0	1	0	X	0	X	1	X
0	0	0	1	0	1	0	0	X	1	X	X	1
0	0	1	0	0	1	1	0	X	X	0	1	X
0	0	1	1	1	0	0	1	X	X	1	X	1
0	1	0	0	1	0	1	X	0	0	X	1	X
0	1	0	1	1	1	0	X	0	1	X	X	1
0	1	1	0	1	1	1	X	0	X	0	1	X
0	1	1	1	0	0	0	X	1	X	1	X	1
1	0	0	0	1	1	1	1	X	1	X	X	1
1	0	0	1	0	0	0	0	X	0	X	1	X
1	0	1	0	0	0	1	0	X	X	1	X	1
1	0	1	1	0	1	0	0	X	X	0	1	X
1	1	0	0	0	1	1	X	1	1	X	X	1
1	1	0	1	1	0	0	X	0	0	X	1	X
1	1	1	0	1	0	1	X	0	X	1	X	1
1	1	1	1	1	1	0	X	0	X	0	1	X

K- map Simplification:

QBQA MQC	00	01	11	10
00	1	X	X	1
01	1	X	X	1
11	1	X	X	1
10	1	X	X	1

QBQA MQC	00	01	11	10
00	X	1	1	X
01	X	1	1	X
11	X	1	1	X
10	X	1	1	X

JA = 1

KA:	= 1
-----	-----

QBQA MQC	00	01	11	10
00	0	1	X	X
01	0	1	X	X
11	1	0	X	X
10	1	0	X	X

QBQA MQC	00	01	11	10
00	X	X	1	0
01	X	X	1	0
11	X	X	0	1
10	X	X	0	1

JB = M QA + M QA

$$KB = M \overline{QA} + \overline{M} \overline{QA}$$

QBQA MQC	00	01	11	10
00	0	0	1	0
01	X	X	X	X
11	X	X	X	X
10	1	X	0	0

JC = M QA' QB' + M' QA QB

KC = M QA' QB' + M' QA QB

Fig: Logical Diagram of Up/ down counter using JK Flip Flop

Uses:

- 2) The synchronous counter is specially used as the counting devices.
- 3) They are also used as counter to count the no of clock pulses applied.
- 4) It also works for counting frequency & is used in frequency divider circuit.
- 5) It is used in digital voltmeter.
- 6) It is also used in counter type A to D converter.
- 7) It is also used for time measurement.
- 8) It is also used in digital triangular wave generator.
- 9) It helps in counting the no of product coming out from machinery where product is coming out at equal interval of time.

Outcome:

Up and down counters are successfully implemented, the counters are studied & o/p are checked. The truth table is verified.