模拟 POI×N2018 出的原题·水题欢乐赛

PQPP214

题目名称	xor	sum	nim
源程序	xor.cpp	sum.cpp	nim.cpp
读入文件	xor.in	sum.in	nim.in
输出文件	xor.out	sum.out	nim.out
时间限制	1000ms	1500ms	1500ms
空间限制	128MB	512MB	256MB
测试点数量	20	20	20
每个测试点分值	5	5	5

注意事项:

- 1. 发现原题请勿声张;
- 2. 评测时开启-O2 和-std=c++11。

1 xor (xor.cpp/in/out)

Description

签到题。

$$_{\vec{X}}\sum_{1\leq i\leq j\leq N}A_{i}\oplus A_{i+1}\oplus\cdots\oplus A_{j}$$
。其中, \oplus 表示 xor。

Input Format

第一行,一个整数 N。

第二行, N 个自然数 A₁,A₂,...,A_N。

Output Format

输出一行一个数,表示答案。

Sample Input

2

12

Sample Output

6

Constraints

对于 10%的数据: N≤300;

对于 40%的数据: N≤5000;

对于另外 20%的数据:序列 A 中所有的数相等,

对于其中 5%的数据: 序列 A 中所有的数都为 0;

对于 100%的数据: N≤10⁵, ∀i∈[1,n], 0≤Ai≤10⁹。

2 sum (sum.cpp/in/out)

Description

老中医不仅会养生,还会创生。

这天,他创造了一个生态系统。这个生态系统中有(N+1)个生物,其中有1个生产者和N个消费者。由于生产者的营养价值小到可以忽略不计,老中医认为**它的营养价值为O**,而消费者的营养价值均为正整数。老中医首先把生产者放在最左边。接着,他把消费者排成一排,放到生产者右边,把它们从左往右编号为1~N。显然,这样总共有N!种排列消费者的方式。

老中医说,要有食物链。

于是,就有了食物链:第 i 天里,第 i 个生物就会把第(i-1)个生物吃掉,此时第 i 个生物的营养价值会加上第(i-1)个生物的营养价值,这样一共持续N 天。

老中医还说,世间万物都要养生,食物链也不例外。

于是,他设置了 $K(0 \le K \le 2)$ 个数。对于一个排列方式,若对 $\forall i \in [1,N]$,在第 i 天里第 i 个生物吃完第(i-1)个生物后,它的营养价值不和 K 个数中的任意一个数相等,则称此排列方式是养生的。

老中医想知道,一共有多少种排列方式是养生的,答案**对 10⁹+7 取模**。

Input Format

第一行,一个整数 N。

第二行,N个正整数,表示N个消费者的营养价值。

```
第三行,一个整数 K。
```

第四行,K个正整数,表示老中医设置的数。

Output Format

输出一行一个数,表示答案。

Sample Input 1

3

2 3 5

2

5 7

Sample Output 1

1

Sample Input 2

3

2 2 2

2

13

Sample Output 2

6

Explanation

对于第1组数据,只有排列[3,5,2]是养生的。

Constraints

对于 40%的数据: N≤10;

对于 60%的数据: N≤20;

对于另外 5%的数据: N=22, K=0;

对于另外 25%的数据: N=24, K=2, 其他的数随机生成;

对于 100%的数据: 1≤N≤24, 0≤K≤2, 其他的数不大于 10^9 。

3 nim (nim.cpp/in/out)

Description

FYO 是史莱姆之王。同时,他也是一位益智游戏爱好者。

这天,他设计了一款益智游戏:给出一个 N 个点,M 条边的**有向无环图** (无重边),1号点和2号点上各有一只史莱姆。保证不存在任何一个点有 从它连向比它编号更小的点的边。两个人轮流进行操作,每次操作可以把任 意一只史莱姆移动到它所在的点连向的任意一个点。当一个人不能移动任何 一只史莱姆时,就认为他输了。

FYQ 想知道,对于他给出的图,有多少边集满足这个游戏让先手必胜,答案**对 10⁹+7 取模**。

(Tips: 显然,总共有 2^M个边集。暴力: 枚举每一条边选或不选,得 到这 2^M个边集,再判断有哪些边集能使得先手必胜即可)

Input Format

第一行,两个数 N,M。

接下来共 M 行,每行两个数 Xi,Yi,表示一条由 Xi 连向 Yi 的边。

Output Format

输出一行一个数,表示答案。

Sample Input & Sample Output

见下发的 down 文件夹下。

Constraints

对于 5%的数据: N=2;

对于另外 30%的数据: N=3;

对于另外 20%的数据: N=5;

对于另外 15%的数据: M=1;

对于另外 20%的数据:每个点的入度小于 2,且存在一条由 1 号点连向 2 号点的边,

对于其中 5%的数据:每个点出度小于 2;

对于 100%的数据: 2≤N≤15, 1≤M≤N(N-1)/2,1≤Xi<Yi≤N, 保证没有重边, **不**保证图中只包含一个连通块。