Project 01

ECE 317

Kai Brooks

Lab TA: N/A

Electrical and Computer Engineering Portland State University 2019-10-15

Contents

1	Circ	uit 1	1
	1.1	Circuit Diagram	1
		Output	
2	Circ	uit 2	4
	2.1	Circuit Diagram	4
		Output	
3	Circ	uit 2	5
	3.1	Circuit Diagram	5
		Output	

1 Circuit 1

1.1 Circuit Diagram

Figure 1: Circuit

Figure 2: Simulation Parameters

1.2 Output

Figure 3: Full waveform

Figure 4: Zoomed waveform

Figure 5: Comparitive waveform

Peak Ampli- tude	Period	Pulse Width	Duty Ratio	
10v	$10\mu s$	$4\mu s$	0.4	

Table 1: Circuit 1 calculations

Question

Taking the above plots into consideration, explain why you would expect to get the steady state value you found above?

Answer

$$Steady State = Peak Amplitude \cdot Duty Ratio$$
 (1)

It is expected to get the steady state above as the peak voltage is 10v and the duty ratio is 0.4.

2 Circuit 2

2.1 Circuit Diagram

Figure 6: Circuit

Figure 7: Simulation Parameters

2.2 Output

Figure 8: Comparative waveform

Peak Ampli- tude	Period	Pulse Width	Duty Ratio	
10v	$10\mu s$	$4\mu \mathrm{s}$	0.4	

Table 2: Circuit 2 calculations

Question

Given that $K_1 = -1$, what other factors in the circuit determines the peak amplitude and why?

Answer

$$Steady State = Peak Amplitude \cdot Duty Ratio$$
 (2)

It is expected to get the steady state above as the peak voltage is 10v and the duty ratio is 0.4.

3 Circuit 2

3.1 Circuit Diagram

Figure 9: Circuit

Figure 10: Simulation Parameters

3.2 Output

Figure 11: Comparative waveform

	Switching	Duty	Peak-to-	Steady	Peak-to-
	Fre-	Ratio	peak	State	peak
	quency		Input	Average	Output
			Voltage	Output	Voltage
			to Filter	$\mathbf{Voltage}$	\mathbf{Ripple}
Circuit 1					
Circuit 3					

Table 3: Comparitive omnibus

Question

Explain the differences seen in the peak-to-peak ripple voltage values between Circuit 3 and Circuit 1. Are they in line with your expectations? Why?

Answer

The ripple is smaller in circuit 3 because the capacitor is being charged and discharged more frequently. This results in a smaller ripple voltage as seen in the above plots.