

Objetivo

- Demonstrar o funcionamento do computador
 - Diferentes tipos: desktop, servidores, dispositivos móveis...
 - o Diferentes usos: automóveis, design gráfico, cálculos e finanças, medicina...
 - Diferentes fabricantes: Intel, Apple, IBM, Microsoft...
- Nossa abordagem
 - Concentrar em um modelo e aprender como ele funciona
 - Abordar princípios e perspectivas históricas

Por que aprender Arquitetura?

- Para se tornar um bacharel em sistemas de informação
 - Compreender a estrutura e funcionamento geral de um computador

Para auxiliar o desenvolvimento de softwares e hardwares

Nosso Plano

- Aulas semanais:
 - Segunda 21:20h às 23h
 - o Quinta 19:30h às 21:10h
- Atividades (10%)
 - eClass
- Avaliações (90%)
 - Aritmética de Computadores (30%)
 - Sistemas de Memória (30%)
 - ∘ CPU (30%)

Nossa Ferramenta

- Ambiente Virtual de Aprendizagem
 - utfpr1.iotrixx.com.br/eClass
 - Fazer Cadastro com **NOME COMPLETO**, <u>CURSO</u>, EMAIL, USUÁRIO E SENHA
 - Matricular-se em Disciplina
 - Fazer inscrição em **Arquitetura de Computadores 2025-2**
 - Senha de inscrição: arc252

Nosso Caminho

- o Introdução a Arquitetura e Organização de Computadores (1)
- Aritmética Computacional (3)
 - Sistemas de numeração e bases (1)
 - Lógica Digital (2)
- Memória (4)
 - Barramentos (1)
 - Memória Principal (2)
 - Memória Cache (2)
- Processador (4)
 - Arquitetura clássica de instruções (2)
 - Paralelismo (2)

Avaliação 1

Avaliação 2

Avaliação 3

Algumas referências

- STALLINGS, William. Arquitetura e organização de computadores. 10. ed. São Paulo, SP: Pearson Education do Brasil, 2017. 711
 p. ISBN 9788543020532.
 - 8Ed (Número de Chamada: 004.22 \$782a 8.ed.) 10Ed (online em MinhaBiblioteca)
- HENNESSY, John L.; PATTERSON, David A. Arquitetura de computadores: uma abordagem quantitativa. Rio De Janeiro: Elsevier, 2008. xix, 494 p.
 - Número de Chamada: 004.22 H515a 4. ed.
- TOCCI, Ronald J.; WIDMER, Neal S.; MOSS, Gregory L. Sistemas digitais: princípios e aplicações. 11. ed. São Paulo, SP: Pearson Prentice Hall, c2011. xxii, 817 p. ISBN 9788576059226.
 - Número de chamada: 621.381 T631s 11. ed.
- MONTEIRO, Mário A. Introdução à organização de computadores.
 5. ed. Rio de Janeiro, RJ: LTC, 2007.
 698 p.
 - Número de Chamada: 004.22 M775i 5. ed.
- TANENBAUM, Andrew S.; AUSTIN, Todd. Organização estruturada de computadores. 6. ed. São Paulo, SP: Pearson Education do Brasil, 2013. xiii, 605 p. ISBN 9788581435398.
 - Número de Chamada: 004.22 T164o 3. ed.

INTRODUÇÃO AO TEMA

O QUE É UM COMPUTADOR?

O que é um computador?

 Um sistema de computação tem por objetivo computar valores, ou seja, processar dados de entrada e gerar informações de saída.

O que é um computador?

 Para que o processamento seja possível, um sistema de computação terá de possuir a seguinte estrutura

Aplicativos

Sistema Operacional

Componentes Físicos

e... como os computadores funcionam?

- É preciso entender muitos conceitos como:
 - Software de aplicações
 - Software de sistemas
 - Aspectos de arquitetura
 - Processador, Memória
 - Linguagem assembly/ Linguagem de máquina
 - Circuitos aritméticos
 - Lógica booleana, 1s e 0s
 - Transistores usados para construir portões lógicos
 - Semicondutores/silício usados para construir transistores
- Muito o que aprender!

Perspectiva histórica

- O ENIAC, construído na Segunda Guerra Mundial, foi o primeiro computador de finalidade geral
 - Usado para calcular tabelas de disparo de artilharia
 - 24 metros de comprimento por 2,5 metros de altura
 - Cada um dos 20 registradores de 10 dígitos tinha 60 centímetros de comprimento
 - Usava 18.000 válvulas
 - Efetuava 1.900 adições por segundo

- Lei de Moore:
 - A capacidade dos transistores dobra a cada 18 a 24 meses

