AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1-18 (Canceled)
- 19. (Currently Amended) An electromechanical lock cylinder that cooperates with evaluation electronics to recognize access authorization, comprising:

two opposite cylindrical receptacles, at least one of which comprises either a lock core, capable of being operated by a key, or a knob shaft, which is connected to rotate in unison with a knob, wherein the lock core or knob shaft cooperates with a lock tab, which operates, in particular, a bolt or a latch of a door lock, and, with a fitting key or access authorization, an electromechanically driven blocking or coupling element is moved from a rest position to an operating position and produces a splined connection between the key or knob and the lock tab, whereas the lock tab, in the rest position of the blocking or coupling element, is freely rotatable relative to the lock core or the knob shaft, wherein the blocking or coupling element is arranged on or in the lock core or on or in the knob shaft and rotates with it, and includes an eccentric that is rotatable between a first and second position such that when the eccentric is in the first position, a driver in communication therewith is in a rest position, and when the eccentric is rotated from the first position to the second position, the driver is moved in a direction radially outwardly and substantially perpendicular to a long axis of the knob shaft or lock core into an operating position, in which the driver engages in a recess of the lock tab or a rotary sleeve, on which the lock tab is arranged.

20. (Previously Presented) The electromechanical lock cylinder according to Claim 19, wherein a continuous lock core or continuous knob shaft is present, which extends from one side of the housing to the opposite side and is capable of being operated from both sides by a key or rotated by a knob.

- 21. (Previously Presented) The electromechanical lock cylinder according to Claim 19, wherein the rest position and/or the operating position of the driver lie beyond the corresponding dead centers of the eccentric by a predeterminable angle of rotation.
- 22. (Previously Presented) The electromechanical lock cylinder according to Claim 21, wherein the angle of rotation is 10° to 30° beyond the corresponding dead center.
- 23. (Previously Presented) An electromechanical lock cylinder that cooperates with evaluation electronics to recognize access authorization, comprising:

two opposite cylindrical receptacles, at least one of which comprises either a lock core, which is capable of being operated by a key, or a knob shaft, which is connected to rotate in unison with a knob, wherein the lock core or knob shaft cooperates with a lock tab, which operates, in particular, a bolt or a latch of a door lock, and, with a fitting key or access authorization, an electromechanically driven blocking or coupling element is moved from a rest position to an operating position and produces a splined connection between the key or knob and the lock tab, whereas the lock tab, in the rest position of the blocking or coupling element, is freely rotatable relative to the lock core or the knob shaft, wherein the blocking or coupling element is arranged on or in the lock core or on or in the knob shaft and rotates with it, and includes an eccentric, which moves a driver included in the blocking or coupling element back and forth between the rest position and the operating position, in which it engages in a recess of the lock tab or a rotary sleeve, on which the lock tab is arranged, wherein the eccentric has a pin arranged eccentrically around a motor shaft, which engages in a groove extending across a lift movement of the driver and perpendicular to the motor shaft, whose position and length are dimensioned, so that a rotary movement from the rest position into the operating position is only possible in one direction of rotation, and the rotational movement from the operating position into the rest position of the driver is only possible in the opposite direction of rotation.

24. (Previously Presented) The electromechanical lock cylinder according to Claim 23, wherein the length and position of the groove are chosen, in order to permit further rotation of the eccentric from the rest position of the operating position of the driver beyond the dead center by the angle of rotation and vice versa.

- 25. (Previously Presented) The electromechanical lock cylinder according to Claim 23, wherein the driver includes a slide, whose free end is guided in a sleeve, wherein a free end of the sleeve enters the recess of the lock tab or rotary sleeve, wherein a compression spring is arranged in an interior of the sleeve, and wherein the sleeve cooperates with a free end of the pin via the slide.
- 26. (Previously Presented) The electromechanical lock cylinder according to Claim 25, wherein the depth of the recess of the lock tab or the rotary sleeve is dimensioned, so that when the driver is engaged, the compression spring in the rotary sleeve is still under tension.
- 27. (Previously Presented) The electromechanical lock cylinder according to Claim 25, wherein the rotary sleeve, on its side opposite the free end, has a stop, against which a thickened end of the slide stops.
- 28. (Previously Presented) The electromechanical lock cylinder according to Claim 27, wherein the depth of the recess of the lock tab or the rotary sleeve is dimensioned, so that when the driver is engaged, the compression spring in the rotary sleeve is still under tension.
- 29. (Previously Presented) The electromechanical lock cylinder according to Claim 19, wherein the driver, in the rest position, is held by spring force.
- 30. (Previously Presented) The electromechanical lock cylinder according to Claim 19, wherein recording devices are present to record the position of the coupling element.
- 31. (Previously Presented) The electromechanical lock cylinder according to Claim 30, wherein the recording devices generate at least one signal, and preferably a sequence of signals, in order to move the coupling element into the rest position, as long as the coupling element is in the operating position or still not in the rest position, and if the rest position is to be assumed.

- 32. (Previously Presented) The electromechanical lock cylinder according to Claim 30, wherein recording devices include at least one hall sensor and/or at least one capacitive or conductive sensor or a switch, which cooperates with a moving element of the coupling element.
- 33. (Previously Presented) The electromechanical lock cylinder according to Claim 32, wherein the recording devices cooperate with the driver.
- 34. (Previously Presented) The electromechanical lock cylinder according to Claim 32, wherein the recording devices record the position of the eccentric or the motor shaft.
- 35. (Previously Presented) The electromechanical lock cylinder according to Claim 19, wherein the blocking or coupling element includes an electromagnetic or electric motor drive.
- 36. (Currently Amended) An electromechanical lock cylinder, which cooperates with an evaluation electronics to recognize access authorization, comprising:

two opposite cylindrical receptacles in which at least one of a lock core and/or knob shaft operatively associated with the cylindrical receptacles cooperate with a lock tab, and especially operate a bolt or latch of a door lock, and with a fitting key and/or access authorization, an electromechanically driven blocking or coupling element is moved from a rest position to an operating position and produces a splined connection between the key and/or knob and the lock tab, whereas the lock tab, in the rest position of the blocking or coupling element, is freely rotatable relative to the lock core and the knob shaft, wherein the blocking or coupling element is arranged on or in the lock core or on or in the knob shaft and rotates with it, and also includes an eccentric that is rotatable between a first and second position, a driver in communication with the eccentric and moveable radially outwardly and inwardly between a first position and a second position relative to the long axis of either the lock core or knob shaft, such that when the eccentric is in the first position, the [[a]] driver in communication therewith is in a rest position, and when the eccentric is rotated from the first position to the second position, the driver is moved in a direction substantially perpendicular to a long axis of either the lock core or knob

shaft into an operating position, in which the driver engages in a recess of the lock tab or a rotary sleeve, on which the lock tab is arranged.

- 37. (Previously Presented) The electromechanical lock cylinder according to Claim 36, wherein the two opposite cylindrical receptacles comprise a lock core as one cylindrical receptacle and a knob shaft as the other cylindrical receptacle, and wherein the lock core and knob shaft are connected to rotate in unison with each other or are made in one piece.
- 38. (Previously Presented) The electromechanical lock cylinder according to Claim 36, wherein the rest position and/or the operating position of the driver lie beyond the corresponding dead centers of the eccentric by a predeterminable angle of rotation.
- 39. (Previously Presented) The electromechanical lock cylinder according to Claim 38, wherein the angle of rotation is 10° to 30° beyond the corresponding dead center.
- 40. (Previously Presented) An electromechanical lock cylinder, which cooperates with an evaluation electronics to recognize access authorization, comprising:

two opposite cylindrical receptacles, in which, on one side of the housing, a lock core, which is capable of being operated by a key, and, on the opposite side, a knob shaft, which is connected to rotate in unison with a knob, are mounted to rotate, in which the lock core and/or knob shaft cooperate with a lock tab, and especially operate a bolt or latch of a door lock, and with a fitting key and/or access authorization, an electromechanically driven blocking or coupling element is moved from a rest position to an operating position and produces a splined connection between the key and/or knob and the lock tab, whereas the lock tab, in the rest position of the blocking or coupling element, is freely rotatable relative to the lock core and the knob shaft, wherein the blocking or coupling element is arranged on or in the lock core or on or in the knob shaft and rotates with it, and also includes an eccentric, which moves a driver back and forth between the rest position and the operating position, in which it engages in a recess of the lock tab or a rotary sleeve, on which the lock tab is arranged, wherein the eccentric has a pin arranged eccentrically around a motor shaft, which engages in a groove extending across the lift movement of the driver and perpendicular to the motor shaft, whose position and length are

dimensioned, so that a rotary movement from the rest position into the operating position is only possible in one direction of rotation, and the rotational movement from the operating position into the rest position of the driver is only possible in the opposite direction of rotation.

- 41. (Previously Presented) The electromechanical lock cylinder according to Claim 40, wherein the length and position of the groove are chosen, in order to permit further rotation of the eccentric from the rest position of the operating position of the driver beyond the dead center by the angle of rotation and vice versa.
- 42. (Previously Presented) The electromechanical lock cylinder according to Claim 40, wherein the driver includes a slide, whose free end is guided in a sleeve, wherein a free end of the sleeve enters the recess of the lock tab or rotary sleeve, wherein a compression spring is arranged in an interior of the sleeve, and wherein the sleeve cooperates with a free end of the pin via the slide.
- 43. (Previously Presented) The electromechanical lock cylinder according to Claim 42, wherein the depth of the recess of the lock tab or the rotary sleeve is dimensioned, so that when the driver is engaged, the compression spring in the rotary sleeve is still under tension.
- 44. (Previously Presented) The electromechanical lock cylinder according to Claim 42, wherein the rotary sleeve, on its side opposite the free end, has a stop, against which a thickened end of the slide stops.

45. (Canceled)

- 45. (Previously Presented) The electromechanical lock cylinder according to Claim 44, wherein the depth of the recess of the lock tab or the rotary sleeve is dimensioned, so that when the driver is engaged, the compression spring in the rotary sleeve is still under tension.
- 46. (Previously Presented) The electromechanical lock cylinder according to Claim 36, wherein the driver, in the rest position, is held by spring force.

- 47. (Previously Presented) The electromechanical lock cylinder according to Claim 36, wherein recording devices are present to record the position of the coupling element.
- 48. (Previously Presented) The electromechanical lock cylinder according to Claim 47, wherein the recording devices generate at least one signal, and preferably a sequence of signals, in order to move the coupling element into the rest position, as long as the coupling element is in the operating position or still not in the rest position, and if the rest position is to be assumed.
- 49. (Previously Presented) The electromechanical lock cylinder according to Claim 47, wherein recording devices include at least one hall sensor and/or at least one capacitive or conductive sensor or a switch, which cooperates with a moving element of the coupling element.
- 50. (Previously Presented) The electromechanical lock cylinder according to Claim 49, wherein the recording devices cooperate with the driver.
- 51. (Previously Presented) The electromechanical lock cylinder according to Claim 49, wherein the recording devices record the position of the eccentric or the motor shaft.
- 52. (Previously Presented) The electromechanical lock cylinder according to Claim 36, wherein the blocking or coupling element includes an electromagnetic or electric motor drive.
- 53. (Currently Amended) An electromechanical lock cylinder, which cooperates with evaluation electronics to recognize an access authorization, comprising:

a cylindrical receptacle, in which either a lock core, which is capable of being operated by a key, or a knob shaft, which is connected to rotate in unison with a knob, is mounted to rotate, in which the lock core or the knob shaft cooperate with a lock tab, which operates, in particular, a bolt or latch of a door lock, and, with a fitting key and/or access authorization, electromechanically driven blocking or coupling element is moved from a rest position to an

operating position and produces a splined connection between the key or knob and the lock tab, whereas the lock tab, in the rest position of the blocking or coupling element, is freely rotatable relative to the lock core or to the knob shaft, wherein the blocking or coupling element is arranged on or in the lock core or on or in the knob shaft and rotates with it, and also includes an eccentric that is rotatable between a first and second position such that when the eccentric is in the first position, a driver in communication therewith is in a rest position, and when the eccentric is rotated from the first position to the second position, the driver is moved in a direction <u>radially outwardly and</u> substantially perpendicular <u>relative</u> to a long axis of the lock core or knob shaft into an operating position, in which the driver engages in a recess of the lock tab or a rotary sleeve, on which the lock tab is arranged.

- 54. (Previously Presented) The electromechanical lock cylinder according to Claim 53, wherein the rest position and/or the operating position of the driver lie beyond the corresponding dead centers of the eccentric by a predeterminable angle of rotation.
- 55. (Previously Presented) The electromechanical lock cylinder according to Claim 54, wherein the angle of rotation is 10° to 30° beyond the corresponding dead center.
- 56. (Previously Presented) An electromechanical lock cylinder, which cooperates with evaluation electronics to recognize an access authorization, comprising:

a cylindrical receptacle, in which either a lock core, which is capable of being operated by a key, or a knob shaft, which is connected to rotate in unison with a knob, is mounted to rotate, in which the lock core or the knob shaft cooperate with a lock tab, which operates, in particular, a bolt or latch of a door lock, and, with a fitting key and/or access authorization, electromechanically driven blocking or coupling element is moved from a rest position to an operating position and produces a splined connection between the key or knob and the lock tab, whereas the lock tab, in the rest position of the blocking or coupling element, is freely rotatable relative to the lock core or to the knob shaft, wherein the blocking or coupling element is arranged on or in the lock core or on or in the knob shaft and rotates with it, and also includes an eccentric, which moves a driver back and forth between the rest position and the operating position, in which it engages in a recess of the lock tab or a rotary sleeve, on which the lock tab

is arranged, wherein the eccentric has a pin arranged eccentrically around a motor shaft, which engages in a groove extending across the lift movement of the driver and perpendicular to the motor shaft, whose position and length are dimensioned, so that a rotary movement from the rest position into the operating position is only possible in one direction of rotation, and the rotational movement from the operating position into the rest position of the driver is only possible in the opposite direction of rotation.

- 57. (Previously Presented) The electromechanical lock cylinder according to Claim 56, wherein the length and position of the groove are chosen, in order to permit further rotation of the eccentric from the rest position of the operating position of the driver beyond the dead center by the angle of rotation and vice versa.
- 58. (Previously Presented) The electromechanical lock cylinder according to Claim 56, wherein the driver includes a slide, whose free end is guided in a sleeve, wherein a free end of the sleeve enters the recess of the lock tab or rotary sleeve, wherein a compression spring is arranged in an interior of the sleeve, and wherein the sleeve cooperates with a free end of the pin via the slide.
- 59. (Previously Presented) The electromechanical lock cylinder according to Claim 58, wherein the depth of the recess of the lock tab or the rotary sleeve is dimensioned, so that when the driver is engaged, the compression spring in the rotary sleeve is still under tension.
- 60. (Previously Presented) The electromechanical lock cylinder according to Claim 58, wherein the rotary sleeve, on its side opposite the free end, has a stop, against which a thickened end of the slide stops.
- 61. (Previously Presented) The electromechanical lock cylinder according to Claim 60, wherein the depth of the recess of the lock tab or the rotary sleeve is dimensioned, so that when the driver is engaged, the compression spring in the rotary sleeve is still under tension.

- 62. (Previously Presented) The electromechanical lock cylinder according to Claim 53, wherein the driver, in the rest position, is held by spring force.
- 63. (Previously Presented) The electromechanical lock cylinder according to Claim 53, wherein recording devices are present to record the position of the coupling element.
- 64. (Previously Presented) The electromechanical lock cylinder according to Claim 63, wherein the recording devices generate at least one signal, and preferably a sequence of signals, in order to move the coupling element into the rest position, as long as the coupling element is in the operating position or still not in the rest position, and if the rest position is to be assumed.
- 65. (Previously Presented) The electromechanical lock cylinder according to Claim 63, wherein recording devices include at least one hall sensor and/or at least one capacitive or conductive sensor or a switch, which cooperates with a moving element of the coupling element.
- 66. (Previously Presented) The electromechanical lock cylinder according to Claim 65, wherein the recording devices cooperate with the driver.
- 67. (Previously Presented) The electromechanical lock cylinder according to Claim 65, wherein the recording devices record the position of the eccentric or the motor shaft.
- 68. (Previously Presented) The electromechanical lock cylinder according to Claim 53, wherein the blocking or coupling element includes an electromagnetic or electric motor drive.