§ 6.2.3 三大抽样分布

 $-\chi^2$ 分布(卡方分布)

定义1 设 X_1, X_2, \dots, X_n 相互独立,

且都服从标准正态分布N(0,1),称

$$\chi^2 = X_1^2 + X_2^2 + \cdots + X_n^2$$

服从自由度为 n 的 χ^2 分布,记作 $\chi^2 \sim \chi^2(n)$

密度函数为
$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} e^{-\frac{x}{2}}x^{\frac{n}{2}-1}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

注: 关键要记住 f(x) 的大概形状 (P_{163})

- $2.\chi^2$ 分布的性质
- 1). 设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,且 X, Y 独立,则有 $X + Y \sim \chi^2(n_1 + n_2)$. (可加性)
- **2).** 设 $X \sim \chi^2(n)$, 则有 E(X) = n, D(X) = 2n.

$$X = X_1^2 + X_2^2 + \dots + X_n^2$$
, $X_i \sim N(0,1), i = 1, 2, \dots, n$

应用中心极限定理可得,若

 $\overline{X} \sim \chi^2(n)$,则当n充分大时,

$$\frac{X-n}{\sqrt{2n}}$$
 的分布近似正态分布 $N(0,1)$.

3. χ^2 分布的上 α 分位点

对正数 α , $0 < \alpha < 1$,称满足

$$P\{\chi^2 > \chi^2_{\alpha}(n)\} = \int_{\chi^2_{\alpha}(n)}^{\infty} f(y)dy = \alpha$$

的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点.

注:对不同的 α , $\chi^2_{\alpha}(n)$ 的值可查表.

							_		$\chi_{\alpha}^{2}(n)$	'	D(2(10) 10 207)
na	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005	$P(\chi^2(10) > 18.307)$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882	=0.05
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597	0.02
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837	
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860	
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748	α^2 (10) - 18 307
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548	$\chi^2_{0.05}(10) = 18.307$
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276	
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954	
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587	
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188	
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755	
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300	
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817	
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319	
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799	
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267	
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716	
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156	
19	6.843	7.632	8.906	10.117	11.651	27:203	30.143	32.852	36.190	38.580	
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997	
21	8.033	8.897	10.283	11.591	13.240	29.615	32.670	35.478	38.930	41.399	
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796	
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179	
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558	
25	10.519	11.523	13.120	14.611	16.473	34.381	37.652	40.646	44.313	46.925	
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290	
27	11.807	12.878	14.573	16.151	18.114	36.741	40.113	43.194	46.962	49.642	
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993	
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52.333	
30	13.787	14.954	16.791	18.493	20.599	40.256	43,773	46.979	50.892	53.672	

 $P\left\{\chi^2(n)>\chi^2_\alpha(n)\right\}=\alpha$

二、F分布

定义2 设 $X \sim \chi^2(\mathbf{n}_1), Y \sim \chi^2(n_2), X, Y$ 相互独立,

则称 F 服从为自由度为 n_1 , n_2 的F 分布.

F分布的性质

 1° 若 $F \sim F(n_1, n_2)$,则 $1/F \sim F(n_2, n_1)$.

$F(n_{\!\scriptscriptstyle 1},\! n_{\!\scriptscriptstyle 2})$

2、F 分布的分位点

定义 称满足条件 $P(F > F_{\alpha}(n_1, n_2)) = \alpha$ 的点

 $F_{\alpha}(n_1,n_2)$ 为F分布的上 α 分位点。

$$P(F > F_{\alpha}(n_1, n_2)) = \alpha$$

$F(n_1,n_2)$ 的上 α 分位数 $F_{\alpha}(n_1,n_2)$ 有表可查:

附表6

F分布表

							$P\{F(i)\}$	n_1, n_2	$> F_{\alpha}(n)$	$\{1, n_2\}$	= α	$(\alpha = 0)$).10)				$(n_1 n_2)$,
n_1 n_2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86	60.19	60.71	61.22	61.74	62.00	62.26	62.53	62.79	63.06	63.33
2	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39	9.41	9.42	9.44	9.45	9.46	9.47	9.47	9.48	9.49
3	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23	5.22	5.20	5.18	5.18	5.17	5.16	5.15	5.14	5.13
4	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92	3.90	3.87	3.84	3.83	3.82	3.80	3.79	3.78	3.76
5	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30	3.27	3.24	3.21	3.19	3.17	3.16	3.14	3.12	3.10
6	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94	2.90	2.87	2.84	2.82	2.80	2.78	2.76	2.74	2.72
7	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72	2.70	2.67	2.63	2.59	2.58	2.56	2.54	2.51	2.49	2.47
8	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56	2.54	2.50	2.46	2.42	2.40	2.38	2.36	2.34	2.32	2.29
9	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44	2.42	2.38	2.34	2.30	2.28	2.25	2.23	2.21	2.18	2.16
10	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32	2.28	2.24	2.20	2.18	2.16	2.13	2.11	2.08	2.06
11	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25	2.21	2.17	2.12	2.10	2.08	1.05	2.03	2.00	1.97
12	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19	2.15	2.10	2.06	2.04	2.01	1.99	1.96	1.93	1.90
13	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14	2.10	2.05	2.01	1.98	1.96	1.93	1.90	1.88	1.85
14	3.10	2.73	2.52	2.39	2.31	2,24	2.19	2.15	2.12	2.10	2.05	2.01	1.96	1.94	1.91	1.89	1.86	1.83	1.80
15	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06	2.02	1.97	1.92	1.90	1.87	1.85	1.82	1.79	1.76
16	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03	1.99	1.94	1.89	1.87	1.84	1.81	1.78	1.75	1.72
17	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00	1.96	1.91	1.86	1.84	1.81	1.78	1.75	1.72	1.69
18	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98	1.93	1.89	1.84	1.81	1.78	1.75	1.72	1.69	1.66
19	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96	1.91	1.86	1.81	1.79	1.76	1.73	1.70	1.67	1.63
20	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.89	1.84	1.79	1.77	1.74	1.71	1.68	1.64	1.61

									(α=0.	.05)	22								
n_1	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	∞
1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251	252	253	254
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6 39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93

表中只给出了 α =0.10,0.05,0.025 时 $F_{\alpha}(n_1,n_2)$ 的值如何计算 α =0.90,0.95,0.975 时 $F_{\alpha}(n_1,n_2)$ 的值?

$$F_{0.05}(4,5) = 5.19$$
 $F_{0.95}(5,4) = ?$

3. 性质

1). 若
$$F \sim F(n_1, n_2)$$
,则 $\frac{1}{F} \sim F(n_2, n_1)$ (由定义即得)

2).
$$F_{\alpha}(n_1, n_2) = \frac{1}{F_{1-\alpha}(n_2, n_1)}$$
证明: 设 $F \sim F(n_1, n_2)$,由定义知:

$$\begin{split} \alpha &= P\{F > F_{\alpha}(n_{1}, n_{2})\} = P\{\frac{1}{F} < \frac{1}{F_{\alpha}(n_{1}, n_{2})}\} \\ &= 1 - P\{\frac{1}{F} \ge \frac{1}{F_{\alpha}(n_{1}, n_{2})}\} \implies P\{\frac{1}{F} > \frac{1}{F_{\alpha}(n_{1}, n_{2})}\} = 1 - \alpha \end{split}$$

又因为
$$\frac{1}{F} \sim F(n_2, n_1), \therefore P\{\frac{1}{F} > F_{1-\alpha}(n_2, n_1)\} = 1-\alpha$$

$$\therefore F_{1-\alpha}(n_2,n_1) = \frac{1}{F_{\alpha}(n_1,n_2)}, \implies F_{\alpha}(n_1,n_2) = \frac{1}{F_{1-\alpha}(n_2,n_1)}$$

例如 $F_{0.05}(4,5) = 5.19$ 求 $F_{0.95}(5,4) = ?$

$$F_{1-\alpha}(n_{_{\! 2}},n_{_{\! 1}}) = \frac{1}{F_{_{\! \alpha}}(n_{_{\! 1}},n_{_{\! 2}})}$$

故
$$F_{0.95}(5,4) = \frac{1}{F_{0.05}(4,5)} = \frac{1}{5.19}$$

三、t 分布 (Student 分布)

定义3 设
$$X \sim N(0,1)$$
, $Y \sim \chi^2(n)$, X , Y 相互独立,
$$T = \frac{X}{\sqrt{Y/n}} \sim t(n)$$

则称 T 服从自由度为 n 的 t 分布. 其密度函数为

$$p(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} - \infty < t < \infty$$

t 分布的图形 (红色的是标准 正态分布)

$$P(|X| \ge c)$$

	c=2	c = 2.5	c=3	c = 3.5
$X \sim N(0,1)$	0.0455	0.0124	0.0027	0.000465
$X \sim t(4)$	0.1161	0.0668	0.0399	0.0249

t 分布的性质

1°
$$E(T)=0$$
; $D(T)=n/(n-2)$, $\forall n > 2$

 2° $p_n(t)$ 是偶函数,

$$n \to \infty, p_n(t) \to \varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

当n充分大时,t分布近似N(0,1)分布. 但对于较小的n,t分布与N(0,1)分布相差很大.

2° t分布的上α分位数

定义 称满足条件 $P(t > t_{\alpha}(n)) = \alpha$ 的点 $t_{\alpha}(n)$

为t分布的上α分位点。

$$P(t > -t_{\alpha}(n)) = I - \alpha$$

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

t分布的上 α 分位数 t_{α} 有表可查.

a n	0.20	0.15	0.10	0.05	0.025	0.01	0.005
1	1.376	1.963	3.0777	6.3138	12.7062	31.8207	63.6574
2	1.061	1.386	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.978	1.250	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.941	1.190	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.920	1.156	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.906	1.134	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.896	1.119	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.889	1.108	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.883	1.100	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.879	1.093	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.876	1.088	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.873	1.083	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.870	1.079	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.868	1.076	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.866	1.074	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.865	1.071	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.863	1.069	1.3334	1.7396	2.1098	2.5669	2.8982

四、几个重要的抽样分布定理

设总体 X 的均值为 μ ,方差为 σ^2 , $X_1,X_2,...,X_n$ 是 来自总体的一个样本,则样本均值 \bar{X} 和样本方差 S^2 有

$$E(\overline{X}) = \mu, \ D(\overline{X}) = \sigma^2/n, \quad E(S^2) = \sigma^2$$

证明:
$$E(\overline{X}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{1}{n} \sum_{i=1}^{n} E(X_i)$$

$$D(\bar{X}) = D(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n^2}\sum_{i=1}^{n}D(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}.$$

$$E(S^{2}) = E\left[\frac{1}{n-1}\left(\sum_{i=1}^{n}X_{i}^{2} - n\bar{X}^{2}\right)\right] = \frac{1}{n-1}\left\{\sum_{i=1}^{n}E(\bar{X}_{i}^{2}) - n\bar{E}(\bar{X}^{2})\right\}$$

$$= \frac{1}{n-1} \{ \sum_{i=1}^{n} (\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2) \}$$

$$= \frac{1}{n-1} [n \cdot (\sigma^2 + \mu^2) - \sigma^2 - n\mu^2]$$

$$=\sigma^2$$

正态总体样本均值和样本方差的分布

(I) 一个正态总体

定理 2、设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, \overline{X} 和 S^2 分别是样本均值和样本方差,则有

1),
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1);$$
 2), $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1);$

3)、
$$\overline{X}$$
与 S^2 相互独立; 4)、 $\frac{X-\mu}{S/\sqrt{n}} \sim t(n-1)$;

证明:1)、因为
$$E(\overline{X}) = \mu$$
, $D(\overline{X}) = \sigma^2 / n$,

所以
$$\overline{X} \sim N(\mu, \sigma^2/n)$$
, 于是 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$.

n元正态分布

$$X = (X_1, X_2, \dots, X_n)^T \sim N(EX, B)$$
若 $EX = (EX_1, EX_2, \dots, EX_n)^T = (\mu, \mu, \dots, \mu)^T$

$$\mathbf{B} = E\left[(X - EX)(X - EX)^T \right]$$

$$= \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \vdots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \cdots & \operatorname{Var}(X_n) \end{pmatrix}$$

$$= \sigma^2 I$$

则 $X_i \sim N(\mu, 1)$, 且 X_1 , X_2 , ..., X_n 相互独立。

令Y = AX,则 EY = A·EX
$$B_{Y} = E(Y - EY)(Y - EY)^{T}$$

$$= E(AX - AE(X))(AX - AE(X))^{T}$$

$$= AB_{X}A^{T}$$

$$= \sigma^{2}AA^{T}$$
若A为正交阵,则 $AA^{T} = I$

$$B_{Y} = A \cdot \sigma^{2}I \cdot A^{T} = \sigma^{2}AA^{T} = \sigma^{2}I$$
可知 $Y \sim N(EY, \sigma^{2}I)$

曲
$$Y \sim N(EY, \sigma^2 I)$$
 知 $Y_1 = \sqrt{n} \overline{X}$ $Y_i \sim N(0, \sigma^2)$, $i \ge 2$

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \sum_{i=1}^{n} X_{i}^{2} - (\sqrt{n} \, \overline{X})^{2} = \sum_{i=1}^{n} Y_{i}^{2} - (Y_{1})^{2} = \sum_{i=2}^{n} Y_{i}^{2}$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1); \qquad \overline{X} = S^{2} = \overline{X}.$$

4)、因为
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1); \quad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1);$$

所以
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} / \sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1);$$

(II) 两个正态<u>总体</u>

设样本 $\left(\overline{X_1,\cdots,X_{n_1}}\right)$ 和 $\left(Y_1,\cdots,Y_{n_2}\right)$ 分别来自总体 $N\left(\mu_1,\sigma_1^2\right)$ 和 $N\left(\mu_2,\sigma_2^2\right)$

并且它们相互独立,其样本均值为 \overline{X} , \overline{Y} ,样本方差分别为 S_1^2, S_2^2 ,

則: 1°
$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1),$$

$$2^{\circ} F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

3° 当
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
时, $\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_\omega \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$

$$\sharp + S_{\omega}^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}, S_{\omega} = \sqrt{S_{\omega}^{2}}$$

证明:(1) $\overline{X} \sim N(\mu_1, \frac{\sigma_1^2}{}), \overline{Y} \sim N(\mu_2, \frac{\sigma_2^2}{}), 且 \overline{X} 与 \overline{Y}$ 相互独立, 所以 $\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2 + \sigma_2^2}{\sigma_2}),$ $\mathbb{E}\left[\frac{(\overline{X} - \overline{Y}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2} + \frac{\sigma_{2}^{2}}{n_{2}}}{n_{1} + \frac{\sigma_{2}^{2}}{n_{2}}}}} \sim N(0, 1)\right]$ $(2) \quad \frac{(n_{1} - 1)S_{1}^{2}}{\sigma_{1}^{2}} \sim \chi^{2}(n_{1} - 1), \frac{(n_{2} - 1)S_{2}^{2}}{\sigma_{2}^{2}} \sim \chi^{2}(n_{2} - 1)$

(2)
$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1)$$

且两者独立,由F分布的定义,有:

$$\frac{\frac{(n_1-1)S_1^2}{\sigma_1^2}/(n_1-1)}{\frac{(n_2-1)S_2^2}{\sigma_2^2}/(n_2-1)} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$$

$$(3)$$
 当 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 时,由(1)得

$$U = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$$

$$\frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi^2(n_1-1), \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_2-1)$$

且它们相互独立,故有 χ^2 分布的可加性知:

$$V = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2 (n_1 + n_2 - 2)$$

U与V相互独立,

$$\frac{U}{\sqrt{V/(n_1+n_2-2)}} = \frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2)$$

例2设 *X* ~ *N*(72,100),为使样本均值大于70的概率不小于90%,则样本容量至少取多少?

解 设样本容量为n,则 $\overline{X} \sim N(72, \frac{100}{n})$

故 $P(\overline{X} > 70) = 1 - P(\overline{X} \le 70)$

$$=1-\Phi\left(\frac{70-72}{\frac{10}{\sqrt{n}}}\right)=\Phi(0.2\sqrt{n})$$

令 $\Phi(0.2\sqrt{n}) \ge 0.9$ 得 $0.2\sqrt{n} \ge 1.29$

即 $n \ge 41.6025$ 所以取 n = 42

例3 从正态总体 $X \sim N(\mu, \sigma^2)$ 中,抽取了 n = 20的样本 $(X_1, X_2, \dots, X_{20})$

(1)
$$\Re P\left(0.37\sigma^2 \le \frac{1}{20} \sum_{i=1}^{20} \left(X_i - \overline{X}\right)^2 \le 1.76\sigma^2\right)$$

(2)
$$\Re P \left(0.37\sigma^2 \le \frac{1}{20} \sum_{i=1}^{20} (X_i - \mu)^2 \le 1.76\sigma^2 \right)$$

$$\mu$$
 (1) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

$$\mathbb{P} \frac{19S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{20} (X_{i} - \overline{X})^{2} \sim \chi^{2}(19)$$

故

$$P\left(0.37\sigma^{2} \le \frac{1}{20}\sum_{i=1}^{20}\left(X_{i} - \overline{X}\right)^{2} \le 1.76\sigma^{2}\right)$$

$$= P\left(7.4 \le \frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \le 35.2\right)$$

$$= P\left(\frac{1}{\sigma^2} \sum_{i=1}^{20} \left(X_i - \overline{X}\right)^2 > 7.4\right) - P\left(\frac{1}{\sigma^2} \sum_{i=1}^{20} \left(X_i - \overline{X}\right)^2 > 35.2\right)$$

查表

$$= 0.99 - 0.01 = 0.98$$

(2)
$$\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(20)$$

故
$$P\left(0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20}(X_i - \mu)^2 \le 1.76\sigma^2\right)$$

$$= P \left(7.4 \le \sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma} \right)^2 \le 35.2 \right)$$

$$= P\left(\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2 > 7.4\right) - P\left(\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2 > 35.2\right)$$

$$\approx 0.975 - 0.005 = 0.97$$

例4. 设在总体 $X \sim N(\mu, \sigma^2)$ 中抽取容量为 16 的样本. 这里

$$\mu, \sigma^2$$
 均未知 . (1) 求 $P\{S^2/\sigma^2 \le 2.0385\}$, 其中 S^2 为样本方差;

(2) 求 $D(S^2)$.

解:(1) ::
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
 :: $\frac{15S^2}{\sigma^2} \sim \chi^2(15)$;
$$P\{\frac{S^2}{\sigma^2} \le 2.0385\} = P\{\frac{15S^2}{\sigma^2} \le 15 \times 2.0385\}$$
$$= 1 - P\{\frac{15S^2}{\sigma^2} > 30.578\} = 1 - 0.01 = 0.99.$$

(2) :
$$D(\frac{(n-1)S^2}{\sigma^2}) = 2(n-1)$$
 $\Rightarrow D(\frac{15S^2}{\sigma^2}) = 30$

$$\Rightarrow D(S^2) = \frac{30}{15^2} \sigma^4 = \frac{2\sigma^4}{15}.$$

例5 设r.v. X 与 Y相互独立, $X \sim N(0,16)$, $Y \sim N(0,9)$, $X_1, X_2, ..., X_9 与 Y_1, Y_2, ..., Y_{16}$ 分别是取自 X与 Y的简单随机样本,求

统计量
$$Z = \frac{X_1 + X_2 + \dots + X_9}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_{16}^2}}$$

所服从的分布.

$$X_1 + X_2 + \dots + X_9 \sim N(0, 9 \times 16)$$

$$\frac{1}{3 \times 4} (X_1 + X_2 + \dots + X_9) \sim N(0, 1)$$

$$\frac{1}{3}Y_{i} \sim N(0,1), i = 1,2,\dots,16$$

$$\sum_{i=1}^{16} \left(\frac{1}{3}Y_{i}\right)^{2} \sim \chi^{2}(16)$$

$$\cancel{M} \overrightarrow{m} \frac{X_{1} + X_{2} + \dots + X_{9}}{\sqrt{Y_{1}^{2} + Y_{2}^{2} + \dots + Y_{16}^{2}}}$$

$$= \frac{\frac{1}{3 \times 4} (X_{1} + X_{2} + \dots + X_{9})}{\sqrt{\sum_{i=1}^{16} \left(\frac{1}{3}Y_{i}\right)^{2}}} \sim t(16)$$

 $1, X_1, \dots X_{10} Y_1, \dots Y_5$, 分别取自总体 X 和 Y, $X \sim N(10,4), Y \sim N(20,4)$

$$F_{1} = \frac{\sum_{i=1}^{10} (X_{i} - 10)^{2} / 10}{\sum_{i=1}^{5} (Y_{i} - 20)^{2} / 5} \qquad F_{2} = \frac{\sum_{i=1}^{10} (X_{i} - \overline{X})^{2} / 9}{\sum_{i=1}^{5} (Y_{i} - \overline{Y})^{2} / 4}$$

若
$$P(F_1 \ge b) = 0.025$$
 则 b=_____

若
$$P(F_2 < a) = 0.05$$
 则 $a=$ _____

右

、设 \overline{X} 和 S^2 分别是样本 $X_1, X_2, ... X_n$ 的样本均值和样本方差,现又获得第n+1个观察值 X_{n+1} ,则

$$\frac{X_{n+1} - \overline{X}}{\sigma} \sim \frac{(X_{n+1} - \overline{X})^2}{\frac{n+1}{n}S^2} \sim \frac{}{}$$

$$Y = \frac{X_{n+1} - \bar{X}}{S} \sqrt{\frac{n}{n+1}} \sim \underline{\hspace{1cm}}$$