Counting Tilings

A feladat az, hogy megszámoljuk, hányféleképpen lehet kitölteni egy n×m-es rácsot 1×2 és 2×1 méretű csempékkel.

Bemenet

Az egyetlen sor két egész számot tartalmaz: n és m.

Kimenet

Nyomtass ki egy egész számot: a lehetséges kitöltési módok számát $10^9 + 7$ -es maradék szerint.

Korlátok

1≤n≤10

1≤m≤1000

Példa

Bemenet:

47

Kimenet:

781

Probléma elemzése:

Egy n×m-es rácsot kell lefedni 1×2 és 2×1 méretű csempékkel. A feladat az, hogy kiszámítsuk, hányféleképpen lehet lefedni a rácsot úgy, hogy minden mező teljesen lefedett legyen.

Algoritmus kidolgozása

Maszkok és bitmask reprezentáció: A rács egy oszlopát bináris számként (maszkként) kezeljük, ahol 1 jelzi, hogy a mező már le van fedve, 0 pedig azt, hogy a mező még nincs lefedve. Minden oszlopban a csempézés aktuális állapotát a maszk írja le.

Rekurzív megoldás dinamikus programozással:

A dp[i][mask] tárolja az i-edik oszlopig tartó rács lefedési módjainak számát, ha az i-edik oszlop aktuális állapota a "mask". A mask jelzi az i-edik oszlop celláinak lefedettségét.

Következő oszlop maszkjainak generálása: Az aktuális oszlopból generáljuk a következő oszlop állapotait (maszkokat), figyelembe véve a 1×2 és 2×1 csempéket. Csak olyan maszkok generálhatók, amelyek érvényesek a rács szélessége (n) szerint.

Memoizáció: Az dp[i][mask]-ben tároljuk az előzőleg kiszámolt eredményeket, hogy ne kelljen újraszámolni őket.

Lépések:

- 1. Maszkok generálása: A következő oszlop összes lehetséges maszkját az aktuális oszlop maszkja alapján generáljuk. Például, ha az aktuális oszlop maszkja 101 (binárisan), akkor a következő maszk lehet 010, amelyet egy 1×21 \times 2-es csempe generált.
- 2. Rekurzív lefedési számítás: A maszkok alapján számítjuk ki a lefedési módok számát az aktuális oszlop és maszk alapján.
- 3. Memoizáció: Ha egy adott oszlop-maszk kombinációra már van eredmény, akkor azt közvetlenül visszaadjuk a memoizációs táblából.

Hatékonyság:

Az algoritmus időbonyolultsága O(m×2ⁿ), mivel minden oszlopot (m) és annak összes állapotát (2ⁿ) vizsgáljuk. A térbonyolultság O(m×2ⁿ), mivel a DP-táblában tároljuk az oszlopok és maszkok kombinációit.

Python megvalósítás

https://github.com/pipdom/L_Algoritmusok_es_adatszerkezetek/blob/main/tilings.py

CSES teszt eredmények

Submission details

Task: Counting Tilings

Sender: pipdom

Submission time: 2024-12-15 10:33:41 +0200

Language: Python3 (PyPy3)

Status: READY

Result: ACCEPTED

Test results -

test	verdict	time	
#1	ACCEPTED	0.04 s	<u>>></u>
#2	ACCEPTED	0.04 s	<u>>></u>
#3	ACCEPTED	0.04 s	<u>>></u>
#4	ACCEPTED	0.04 s	<u>>></u>
#5	ACCEPTED	0.04 s	<u>>></u>
#6	ACCEPTED	0.04 s	<u>>></u>
#7	ACCEPTED	0.05 s	<u>>></u>
#8	ACCEPTED	0.05 s	<u>>></u>
#9	ACCEPTED	0.07 s	<u>>></u>
#10	ACCEPTED	0.09 s	<u>>></u>
#11	ACCEPTED	0.35 s	<u>>></u>
#12	ACCEPTED	0.36 s	<u>>></u>
#13	ACCEPTED	0.40 s	<u>>></u>
#14	ACCEPTED	0.71 s	<u>>></u>
#15	ACCEPTED	0.74 s	<u>>></u>