

Curso: Análise e Desenvolvimento de Sistemas Disciplina: Análise e Projeto Orientado a Objetos

Prof^a Dr^a Marcia Cassitas Hino

ONDE ESTAMOS

Categoria	Diagramas	Descrição
Diagramas Dinâmicos	Casos de uso	Expressam a funcionalidade de um sistema
	Atividades	Representam o fluxo de atividades dos processos de negócio
	Interatividade	Apresenta um fluxo de atividades, mostrando como elas trabalham em uma sequência de eventos
	Sequência	Define a ordem e a troca das mensagens entre objetos
	Comunicação	Representa o diagrama anterior de colaboração
	Máquina de estados	Representa as ações ocorridas em resposta ao recebimento de eventos
	Temporal	Mostra mudança de estado de um objeto
Diagramas Estruturais	Classes	Apresenta elementos conectados por relacionamentos
	Objetos	Apresenta objetos e valores de dados
	Componentes	Mostra dependências entre componentes de software
	Pacotes	Usado para organizar elementos de modelos e mostrar dependências entre eles
	Implantação	Mostra a arquitetura do sistema em tempo de execução, as plataformas de software, etc.
	Estrutura composta	Usado para mostrar a composição de uma estrutura complexa

James Rumbaugh

Ivar Jacobson

Com diagrama de transição de estado são descritos estados ocupados por um objeto durante a sua vida, os eventos que produzem a transição entre esses estados e as respostas dos objetos a cada evento.

- Para entender melhor um sistema é preciso examinar a estrutura estática (objetos e relacionamentos), mas depois disso é preciso examinar as mudanças nos objetos e seus relacionamentos.
- O modelo de estados descreve as sequencias de operações que ocorrem em resposta a estímulos externos, em vez de o que as operações fazem, sobre o que elas operam e como elas são implementadas.
- O modelo de estado consiste em vários diagramas de transições de estados.

- É o diagrama mais antigo da UML foi criado nos anos 60.
- É uma ferramenta útil para mostrar o ciclo de vida de um objeto.
- Em um sistema real, somente algumas poucas classes demandam o uso de um Diagrama de Transição de Estado (DTE).
 - Classes que se comportam de forma diferente em função de transições de estados (classe com comportamento temporal).

- Os estados são momentos no ciclo de vida de um objeto.
- Esses estados determinam que ações podem ser feitas sobre o objeto.

• Exemplos:

- Um ventilador simples pode ter os estados desligado e ligado
- Um ventilador mais elaborado pode ter os estados desligado, ventilando fraco, ventilando médio e ventilando forte

DIAGRAMA DE ESTADOS

Componentes

ESTADO INICIAL

Ponto de início do diagrama.

Não aceita transição de entrada.

powered by Astah

ESTADO FINAL

Ponto de término do diagrama.

Não aceita transição de saída.

powered by Astah

Componentes

ESTADOS

Os estados são representados por caixas contendo:

- Nome
- Efeitos de entrada (entry)
- Efeitos de execução (do)
- Efeitos de saída (exit)

Do: cláusula que ilustra as atividades executadas enquanto o objeto se encontra em um determinado estado.

Componentes

TRANSIÇÃO

As transições determinam a troca de estados em função de um determinado evento.

Exemplo:

- □ A partir do estado <u>desligado</u>, caso o botão seja apertado, o ventilador vai para o estado <u>ventilando forte</u>;
- A partir do estado <u>ventilando forte</u>, caso o botão seja apertado, o ventilador vai para o estado <u>ventilando médio</u>;
- A partir do estado <u>ventilando médio</u>, caso o botão seja apertado, o ventilador vai para o estado <u>ventilando fraco</u>;
- □ A partir do estado <u>ventilando fraco</u>, caso o botão seja apertado, o ventilador vai para o estado <u>desligado</u>.

As transições são representadas por linhas, contendo

- Gatilho (trigger)
- Condição de guarda (guard)
- Efeito (effect)

Sintaxe: GATILHO [CONDIÇÃO] / EFEITO

Qual o diagrama de estado que representa a situação abaixo?

powered by Astah

Sintaxe: GATILHO [CONDIÇÃO] / EFEITO

Identificação de DTEs:

 Cada operação com visibilidade pública de uma classe pode ser vista como um evento em potencial.

 Outra fonte para identificação de eventos associados a transições é analisar as regras de

"Um cliente do banco não pode retirar mais de R\$ 1.000 por dia de sua conta"

"O número máximo de alunos por curso é igual a 30"

Exemplo

Faça inicialmente um diagrama simples, e complique somente se for necessário.

O que aparece em quase todo diagrama:

- Estados com nome
- Transições com gatilho

Exemplo simples no nível de análise para um condicionador de ar:

EXERCÍCIO 1: OFICINA MECÂNICA

Construa o diagrama de transição de estado para a ordem de compra:

- Várias ordens de serviço são disparadas diariamente;
- A medida que as ordens de serviço são criadas, pelo atendente da oficina, elas ficam em lista de espera;
- Assim que um engenheiro mecânico estiver disponível para atendimento, a ordem de serviço é liberada da fila de espera e passa para a orçamentação, onde é realizado o orçamento do serviço (custo e prazo de entrega);
- Quando o orçamento está pronto, o atendente repassa as informações para o cliente que poderá aceitar ou não o orçamento realizado;
- Se o cliente aceitar o orçamento, a ordem de serviço é encaminha para execução, caso contrário, a ordem de serviço é encerrada.

RESPOSTA EXERCÍCIO 1

