UTRGV

TREATMENT EFFECT ESTIMATION USING INVERSE PROBABILITY TREATMENT WEIGHTING

Presented by Gaukhar Nurbek

Main Topics

Points to talk about

Objectives

Theory

Methods

Results and simulation

Chalenges

The Project's Objectives

TO STUDY HOW IPTW IS ESTIMATED

TO STUDY METHODS THAT ARE USED IN TREATMENT EFFECT ESTIMATION

TO WRITE FUNCTION WHICH CALCULATES IPTW

Theory

Treatment effect

The term 'treatment effect' refers to the causal effect of a binary (0–1) variable on an outcome variable of scientific or policy interest.

The term 'treatment effect' originates in a medical literature concerned with the causal effects of binary, yes-or-no 'treatments', such as an experimental drug or a new surgical procedure.

Treatment effects can be estimated using social experiments, regression models, matching estimators, and instrumental variables.

Theory

Propensity score

is defined as the probability of treatment assignment conditional on measured baseline covariates.

Propensity score methods are being used with increasing frequency to estimate treatment effects using observational data.

$$e = P(Z = 1|X)$$

Theory

Inverse probability of treatment weighting

is the one of the method of using propensity score.

$$W=Z/e+(1-Z)/(1-e)$$

Each subject's weight is equal to the inverse of the probability of receiving the treatment that the subject received.

METHODS OF USING PROPENSITY SCORE TO ESTIMATE TREATMENT EFFECT

1

Weighting

The first set of propensity-score estimators use the propensity scores as weights to create a balanced sample of $\tilde{\tau} = \frac{1}{N} \sum_{i=1}^{N} (\frac{Z_i Y_i}{e(X_i)} - \frac{(1-Z_i)Y_i}{1-e(X_i)})$ treated and control observations.

2

Conditional expectation

estimate the conditional expectation of Y given W and e(X). Treatment effect can be estimated by

$$v_w(e) = \mathbb{E}[Y(Z)|e(X) = e]$$

$$\tau_{reg} = \frac{1}{N} \sum_{i=1}^{N} (\widehat{v_1}(e(X_i)) - \widehat{v_0}(e(X_i)))$$

Weighting + Regression

One can rewrite the weighting estimator as the estimating following regression function by weighted least squares

$$Y_i = \alpha + \tau * W_i + \varepsilon_i$$

BUILDING FUNCTIONS TO ESTIMATE TREATMENT EFFECT

GLR (x,y,w)

Linear regression model function which accepts treatment, output and weights as an input Returns the estmated coeficients, which is a treatment effect estimation

IPTW(treatment, output, covs, data)

Inverse probability treatment weighting function accepts as a parameters treatment column name, output column name, co-varities column name and data

Output: data frame with a new column like ps, ps_recieved, and IPTW weights.

BUILDING FUNCTIONS TO ESTIMATE TREATMENT EFFECT

```
#### IPTW calculator function
```{r}
IPTW = function(treatment,output,covs,data)
#ps and iptw estimation
 ps = data %>%
 group_by_(covs) %>%
 summarise(ps = n()/sum(data[treatment]))
data_ps = data %>%
 #this merges the propensity score into the bigger dataset by levels
 left_join(ps, by = c(covs)) %>%
 #if exposed, assign the propensity score. if unexposed assign 1-the
 mutate(ps_received = case_when(
 data[treatment] == 1 ~ ps,
 data[treatment]==0 ~ 1-ps)) %>%
 #and the weights (for IPTW) are 1 over the ps_received
 mutate(IPTW = weekend/ps_received + (1-weekend)/(1-ps_received))
return(data_ps)
```

```
Linear regression model functinon
GLR = function(x,y,weights){
one = rep(1,length(y))
weight = sqrt(weights)
x = x*weight
 = y*weight
 = cbind(one,x)
 = solve(t(X) %*% X) %*% t(X) %*% y
 = matrix(rep(1,length(y)*length(y)),ncol = length(y),nrow = length(y))
SSTO = t(y) %*% y - 1/(length(y)) * t(y) %*% J %*% y
SSE = t(y) \%*\% y - t(b) \%*\% t(X) \%*\% y
SSR = t(b) %*% t(X) %*% y - ((1/length(y))*t(y)) %*% J %*% y
MSR = SSR/(length(b) - 1)
MSE = SSE/(length(y) - length(b))
F_S = MSR/MSE
R_S = SSR/SSTO
res = y - X%*%b
predicted = X%*%b
residual_st_error = sqrt(sum(res^2)/(length(y) - length(b)))
resid_results = summary(res)
b_hat = solve(t(X) %*% X)
SE = sqrt(diag(b_hat))*residual_st_error
pvalue1 = 2 - 2*pt(abs(tb1), df = length(y) - length(b))
coefficient_results = cbind(b=b,SE=SE,tb1=tb1,pvalue1=pvalue1)
p_value_F = pf(F_S, length(b) - 1, length(y) - length(b), lower.tail = FALSE)
newList = list("coefficients" = coefficient_results, "residuals" = resid_results ,df = length(y) - length(b),
residual_st_error, "F*" = F_S, "R^2" = R_S, "p_value" = p_value_F)
return(list(newList=newList,res=res,predicted=predicted))
```

#### Simulation

**Dataset**: Movies domestic gross income from Jun-Dec 2018 Real data from **https://www.boxofficemojo.com/** was partially changed to get the weekend column(which is a treatment)

									€ \$	×
<b>Date</b> <int></int>	<b>Day</b> <int></int>	DayNu <int></int>	Top10.Gross <fctr></fctr>	<b>YD</b> <fctr></fctr>	<b>LW</b> <fctr></fctr>	Releases <int></int>	Film <fctr></fctr>	Gross <fctr></fctr>	GrossNew <fctr></fctr>	•
43465	1	365	\$36,240,441	-19.60%	-14.20%	53	Aquaman	\$10,011,638	\$10011638	
43464	7	364	\$50,932,176	-12.40%	2.90%	51	Aquaman	\$16,440,551	\$16440551	
43463	6	363	\$58,118,460	2.60%	4.60%	51	Aquaman	\$18,632,907	\$18632907	
43462	5	362	\$56,667,767	9.70%	-2.90%	51	Aquaman	\$17,041,113	\$17041113	
43461	4	361	\$51,671,321	-7%	299.20%	53	Aquaman	\$14,622,228	\$14622228	
43460	3	360	\$55,579,761	-21.60%	261.80%	52	Aquaman	\$16,903,518	\$16903518	
43459	2	359	\$70,898,743	-3.40%	30%	53	Aquaman	\$21,982,419	\$21982419	
43458	1	358	\$31,752,644	-35.80%	184.50%	49	Aquaman	\$10,851,928	\$10851928	
43457	7	357	\$49,473,471	-10.90%	72.70%	53	Aquaman	\$18,793,733	\$18793733	
43456	6	356	\$55,554,266	-4.80%	29.80%	52	Aquaman	\$21,346,634	\$21346634	

Goal: To estimate effect of the weekend on the gross revenue If it is weekday treatment = 0 if its weekend treatment = 1

Covariates: Film

Output: Revenue per day

### Treatment effect estimation

#### Results

```
```{r}
                                                                                                                                                             € ₹
iptw_data = IPTW('weekend','GrossRevenue','Film',new_df)
outDatWeight = data.frame(outcome = iptw_data$GrossRevenue, treatment = iptw_data$weekend, wt = iptw_data$IPTW)
x = outDatWeight$treatment
y = outDatWeight$outcome
w = outDatWeight$wt
head(iptw_data)
fit = GLR(x, y, w)
fit$newList$coefficients
                                                                                                                                                          5E
c 15465309 1341927.8 11.524742 0.000000v=00
7435855 953091.3 7.736141 9.65449v=13
      data.frame
                          R Console
        6 x 15
     LW
                       Releases Film
                                              Gross
                                                                 GrossNew
                                                                                       GrossRevenue
                                                                                                         weekend
                                                                                                                                          ps received
                                                                                                                                                               IPTW
      <fctr>
                                 <fctr>
                                              <fctr>
                                                                  <fctr>
                                                                                                            <dbl>
                                                                                                                            <dbl>
                                                                                                                                                <dbl>
                                                                                                                                                               <dbl>
                                                                                                <int>
                                                                                                                        0.2291667
      -14.20\%
                                              $10,011,638
                                                                 $10011638
                                                                                           10011638
                                                                                                                0
                                                                                                                                           0.7708333
                                                                                                                                                           4.363636
                             53 Aquaman
     2.90%
                             51 Aquaman
                                              $16,440,551
                                                                 $16440551
                                                                                           16440551
                                                                                                                        0.2291667
                                                                                                                                           0.2291667
                                                                                                                                                           4.363636
     4.60%
                                              $18,632,907
                                                                 $18632907
                                                                                           18632907
                                                                                                                        0.2291667
                                                                                                                                           0.2291667
                                                                                                                                                           4.363636
                             51 Aquaman
      -2.90%
                                              $17,041,113
                                                                 $17041113
                                                                                           17041113
                                                                                                                        0.2291667
                                                                                                                                           0.7708333
                                                                                                                                                           4.363636
                             51 Aquaman
                                                                 $14622228
                                                                                           14622228
     299.20%
                             53 Aquaman
                                              $14,622,228
                                                                                                                        0.2291667
                                                                                                                                           0.7708333
                                                                                                                                                           4.363636
     261.80%
                             52 Aquaman
                                              $16,903,518
                                                                 $16903518
                                                                                           16903518
                                                                                                                        0.2291667
                                                                                                                                           0.7708333
                                                                                                                                                           4.363636
```

SE

one 15465369 1341927.8 11.524740 0.000000e+00 x 7425855 959891.3 7.736141 9.654499e-13

Results

Propensity scores

Chalenges

FORMATTING INPUT
PARAMETERS FOR
IPTW FUNCTION

IPTW IS USED TO CALCULATE ONLY AVERAGE
TREATMENT EFFECT

TREATMENT EFFECT ESTIMATION
METHODS NEED TO BE STUDIED MORE

Thank you! Any questions?