Логарифмическая функция, её свойства и график.

Джон Непер John Napier

Дата рождения:

1550 год

Место рождения:

замок Мерчистон, в те

годы предместье

Эдинбурга

Дата смерти:

4 апреля 1617

Научная сфера:

математика

Известен как:

изобретатель логарифмов

2. Задание на соответствие.

Каждому графику поставьте в соответствие функцию

Задание 4. Вычислите, если возможно. Вариант 1

$$\log_{\frac{1}{2}} \frac{1}{4}, \log_{\frac{1}{2}} \frac{1}{2}, \log_{\frac{1}{2}} 1, \log_{\frac{1}{2}} 2, \log_{\frac{1}{2}} 4, \log_{\frac{1}{2}} 8, \log_{\frac{1}{2}} (-4)$$

Вариант 2

$$\log_2 \frac{1}{4}, \log_2 \frac{1}{2}, \log_2 1, \log_2 2, \log_2 4, \log_2 8, \log_2 (-4)$$

Задание 4. Вычислите, если возможно. Ответы.

Вариант 1

2; 1; 0; -1; -2; -3; нет решения

Вариант 2

-2; -1; 0; 1; 2; 4; 3; нет решения

Задание 4. Вычислите, если возможно. Вариант 1

$$\log_{\frac{1}{2}} \frac{1}{4}, \log_{\frac{1}{2}} \frac{1}{2}, \log_{\frac{1}{2}} 1, \log_{\frac{1}{2}} 2, \log_{\frac{1}{2}} 4, \log_{\frac{1}{2}} 8, \log_{\frac{1}{2}} (-4)$$

Вариант 2

$$\log_2 \frac{1}{4}, \log_2 \frac{1}{2}, \log_2 1, \log_2 2, \log_2 4, \log_2 8, \log_2 (-4)$$

$$y = \log_{\frac{1}{2}} x$$

$$y = \log_{\frac{1}{2}} x$$

$$y = \log_{\frac{1}{2}} x$$

Функция вида у = log_a х называется логарифмической функцией.

Леонард Эйлер нем. Leonhard Euler

Дата рождения: 4 (15) апреля 1707 Место рождения: Базель, Швейцария Дата смерти: 7 (18) сентября 1783 (76 лет) Место смерти: Санкт-Петербург, Российская империя Научная сфера: Математика, механика, физика, астрономия

Современное определение показательной, логарифмической и тригонометрических функций заслуга Леонарда Эйлера, так же как и их символика.

План прочтения графика:

- $(1) \ D(f) oбласть oпределения функции.$
- 2) Чётность или нечётность функции.
- 3) Промежутки возрастания, убывания функции.
- 4) Наибольшие, наименьшие значения функции.
- 5) E(f) oбласть значений функции.

Постройте графики функций:

1 вариант

$$y = \log_2 x$$

2 вариант

$$y = \log_{\frac{1}{2}} x$$

x	1/4	1/2	1	2	4	8
$y = log_2x$	-2	-1	0	1	2	3
x	1/4	1/2	1	2	4	8
$y = log_{1/2}x$	2	1	0	-1	-2	-3

Проверка:

График логарифмической функции называют логарифмической кривой.

Γ рафик функции $y = log_a x$.

Опишите свойства логарифмической функции.

<u>1 вариант:</u> при а > 1

<u>2 вариант:</u> при 0 < a < 1

Свойства функции $y = log_a x$, a > 1.

1)
$$D(f) = (0, +\infty);$$

- 2) не является ни чётной, ни нечётной;
- 3) возрастает на $(0, +\infty)$;

4)не имеет ни наибольшего, ни наименьшего значений;

5)
$$E(f) = (-\infty, +\infty);$$

Свойства функции $y = log_a x$, 0 < a < 1.

1)
$$D(f) = (0, +\infty);$$

- 2) не является ни чётной, ни нечётной;
- 3) убывает на $(0, +\infty)$;

- 4)не имеет ни наибольшего, ни наименьшего значений;
- 5) $E(f) = (-\infty, +\infty);$

Основные свойства логарифмической ϕy нкции $y = log_a x$

<u>No</u>	a > 1	0 < a < 1			
1	$D(f)=(0,+\infty)$				
2	не является ни чётной, ни нечётной;				
3	возрастает на (0, +∞)	убывает на (0, + ∞)			
4	не имеет ни наибольшего, ни наименьшего значений				
5	$E(f)=(-\infty,+\infty)$				

Какие из следующих графиков не могут быть графиком $y = \log_a x$

Блиц - опрос. Отвечать только «да» или «нет»

- ✓ Область определения логарифмической функции вся числовая прямая, а область значений этой функции промежуток $(0, + \infty)$.
- ✓ Монотонность логарифмической функции зависит от основания логарифма.
- ✓ Не каждый график логарифмической функции проходит через точку с координатами (1;0).

Блиц - опрос. Отвечать только «да» или «нет»

- √Логарифмическая функция не является ни чётной, ни нечётной.
- ✓ Логарифмическая функция имеет наибольшее значение и не имеет наименьшего значения при a > 1 и наоборот при 0 < a < 1.

Проверка: нет, да, нет, да, нет