

Menu

- References:
 - > Serial Communication [Doty, 1979: 293-311]
- Asynchronous Data Communication
 - > Communication Terminology
 - > ASCII Communication Codes
 - > Serial Communication Principles
 - > XMEGA SCI Serial I/O Hardware
 - > 68HC12: SCI Serial I/O Hardware
 - > TI F28335 (DSC) SCI Serial I/O Hardware
 - > SCI Programming Example

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

• Simplex Communication

• Duplex Communication

© Drs. Schwartz & Arroyo

ASCII Communication Codes

- ASCII (American Standard Committee for Information Interchange) codes (see asciitable.com)
- Error Detection

>Parity bits	[Example] A	C
>Parity algorithms	7-bit ASCII → 100 0001	100 0011
» Even parity ——	→ 0100 0001	1 100 0011
» Odd parity ——	1 100 0001	0 100 0011
» Mark parity ——	1 100 0001	1 100 0011
» Space parity ———	0 100 0001	0 100 0011

University of Florida, EEL 3744 – File 11
© Drs. Schwartz & Arroyo

EEL 3744ASCII Table (from Wikipedia)

b ₇				-	→	0 0	0 0	1	0 1	1 0	1 0	1 1	1 1
b ₅	_					0	1	0	1	0	1	0	1
Bits	b₄ ↓	b₃ ↓	b ₂ ↓	b ₁ ↓	Column Row ↓	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	,	р
	0	0	0	1	1	SOH	DC1	İ	1	Α	Q	а	q
	0	0	1	0	2	STX	DC2	"	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	s
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	V
	0	1	1	1	7	BEL	ETB	'	7	G	W	g	w
	1	0	0	0	8	BS	CAN	(8	Н	Х	h	х
	1	0	0	1	9	HT	EM)	9	- 1	Υ	į	У
	1	0	1	0	10	LF	SUB	*		J	Z	j	Z
	1	0	1	1	11	VT	ESC	+		K	[k	{
	1	1	0	0	12	FF	FC	,	<	L	\	I	
	1	1	0	1	13	CR	GS	-	=	М]	m	}
	1	1	1	0	14	SO	RS		>	N	Λ	n	~
	1	1	1	1	15	SI	US	/	?	0	_	0	DEL

Serial Communication Principles

Serial Signals

- >20mA current loop
 - Use solenoid. (Ex: Teletype machine)
 - It has greater immunity to interference from electrical noise than some voltage-level signal systems
 - Logical 1 (20mA of current)
 - Logical 0 (no current)
- >RS-232 (EIA-232)
 - Signal level: High (+3 \sim +25VDC) & Low (-3 \sim -25VDC)
 - Using large nonzero voltages for each level provides better immunity to electrical interference
 - Logical 0 (**positive** voltage); Logical 1 (**negative** voltage)

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

5

RS232C Interface

© Drs. Schwartz & Arroyo

7

• Serial Signal Format > Start bit: Space > 8 data bits, LSB first > Stop bit: Mark > Idle: Mark Player Piano Principles Principles Principles Principles Principles Principles Player Piano Player Piano

- UART (Universal Asynchronous Receiver Transmitter) hardware
 - > USART = Universal Synchronous/Asynchronous Receiver Transmitter
- Serial Errors
 - >Timing errors
 - >Framing errors
 - >Overrun errors

© Drs. Schwartz & Arroyo

Synchronous Data Underflow [Doty: 300]

University of Florida, EEL 3744 - File 11 © Drs. Schwartz & Arroyo

11

EEL 3744

Synchronous Data Overflow [Doty: 301]

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

EEL 3744 Serial Communication Principles

- Serial Transmission Rate
 - >Bit rate (or Baud rate) = rate in bits per second
 - >Waveform distortion
- Receiver Wake-up
 - >Messages
 - >Purpose of wake-up
 - >Wake-up triggering

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

13

EEL 3744SCI: (Asynchronous) Serial Communications Interface

- Most microprocessors have at least one SCI
 - >Full-duplex two-wire asynchronous serial port (UART)
 - > Receiver and transmitter are independent, i.e., can run simultaneously

© Drs. Schwartz & Arroyo

Your XMEGA UARTs (SCI)

- Each of 4 ports (C-F) has two UARTs for a total of
 8 asynchronous serial ports
 - >Search for **USART** in the include file
 - Synchronous serial communication (the "S" in USART) in most microcontrollers (including the XMEGA) is called SPI (synchronous peripheral interface)
 - *We will talk about SPI later in the semester
 - *Our XMEGA has 4 SPI ports, one on each of Ports C-F

University of Florida, EEL 3744 – File 11

© Drs. Schwartz & Arroyo

17

XMEGA Baud Rate Generation

- The clock generator includes a **fractional** baud rate generator that is able to generate a wide range of USART baud rates from any system clock frequencies
- Can use baud rate generator **OR** an external transfer clock pin
 - >External transfer clock is **ONLY** used in synchronous mode

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

19

EEL 3744 XMEGA Baud Rate Generation

- Notice that the receiver clock is 16 times faster than the transmitter clock
- Baud rate is transfer rate in bits per second (bps)

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

XMEGA Baud Rate Generation

- f_{BAUD} is determined by the period setting (BSEL), a scale setting (BSCALE), and the peripheral clock frequency (f_{PER})
 - > By default, $f_{PER} = 2$ MHz for the uPAD
 - > BSEL set between 0 and 4095

$$f_{PER} = 2MHz$$

- > BSCALE (optional scaling) set between -7 & +7
 - BSCALE ↑ or ↓ baud rate slightly for fractional baud rate scaling
- > Asynchronous normal speed mode (CLK2X = 0) below

$$BSCALE \geq 0 \qquad f_{BAUD} \leq \frac{f_{PER}}{16} \qquad BSCALE < 0$$

$$BSCALE \geq 0 \qquad BSCALE < 0$$

$$f_{BAUD} = \frac{f_{PER}}{2^{BSCALE} \bullet 16 \bullet (BSEL + 1)} \qquad f_{BAUD} = \frac{f_{PER}}{16 \bullet \left[\left(2^{BSCALE} \bullet BSEL \right) + 1 \right]}$$

$$BSEL = \frac{f_{PER}}{2^{BSCALE} \bullet 16 \bullet f_{BAUD}} - 1 \qquad BSEL = \frac{1}{2^{BSCALE}} \left(\frac{f_{PER}}{16 \bullet f_{BAUD}} - 1 \right)$$
University of the properties of the prope

EEL 374

XMEGA Baud Rate Calculations

Operating mode	Conditions	Baud rate ⁽¹⁾ calculation	BSEL value calculation
Asynchronous normal speed mode (CLK2X = 0)	BSCALE ≥ 0 $f_{BAUD} \leq \frac{f_{PER}}{16}$	$f_{BAUD} = \frac{f_{PER}}{2^{BSCALE} \cdot 16(BSEL + 1)}$	$BSEL = \frac{f_{PER}}{2^{BSCALE} \cdot 16 f_{BAUD}} - 1$
Speed mode (OLNZX = 0)	BSCALE < 0 $f_{BAUD} \le \frac{f_{PER}}{16}$	$f_{BAUD} = \frac{f_{PER}}{16((2^{BSCALE} \cdot BSEL) + 1)}$	$BSEL = \frac{1}{2^{BSCALE}} \left(\frac{f_{PER}}{16f_{BAUD}} - 1 \right)$
Asynchronous double speed mode (CLK2X = 1)	BSCALE ≥ 0 $f_{BAUD} \leq \frac{f_{PER}}{8}$	$f_{BAUD} = \frac{f_{PER}}{2^{BSCALE} \cdot 8 \cdot (BSEL + 1)}$	$BSEL = \frac{f_{PER}}{2^{BSCALE} \cdot 8f_{BAUD}} - 1$
speed mode (CLN2X = 1)	BSCALE < 0 $f_{BAUD} \le \frac{f_{PER}}{8}$	$f_{BAUD} = \frac{f_{PER}}{8((2^{BSCALE} \cdot BSEL) + 1)}$	$BSEL = \frac{1}{2^{BSCALE}} \left(\frac{f_{PER}}{8f_{BAUD}} - 1 \right)$
Synchronous and master SPI mode	$f_{BAUD} < \frac{f_{PER}}{2}$	$f_{BAUD} = \frac{f_{PER}}{2 \cdot (BSEL + 1)}$	$BSEL = \frac{f_{PER}}{2f_{BAUD}} - 1$
© Drs. Schwartz & Arroyo			22

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

EEL 3744 XMEGA Baud Rate Notes

is 0 BSCALE must also be 0 See doc8331 Section 23.3.

- When BSEL is 0, BSCALE must also be 0
- The value 2^{ABS(BSCALE)} must at most be one half of the minimum number of clock cycles a frame (7 to 13 bits)
- For BSEL=0, all baud rates must be achieved by changing BSEL instead of setting BSCALE:

> BSEL = $(2^{\text{desired BSCALE}} - 1)$

For double speed operation, see section 23.3.3 and Table 23-1

BSCALE	BSEL		BSCALE	BSEL
1	0	\rightarrow	0	1
2	0	\rightarrow	0	3
3	0	\rightarrow	0	7
4	0	\rightarrow	0	15
5	0	\rightarrow	0	31
6	0	\rightarrow	0	63
7	0	\rightarrow	0	127

University of Florida, EEL 3744 – File 11
© Drs. Schwartz & Arroyo

22

EEL 3744 XMEGA Frame Formats

- A serial frame consists of one character of data bits with synchronization bits (start and stop bits) and an optional parity bit for error checking
 - >1 start bit

> 6, 7, 8, or 9 data bits

>None, even, or odd parity bit > 1 or 2 stop bits

St : Start bit, always low.
(n) : Data bits (0 to 8).

See doc8331, Figure 23-5

P : Parity bit, may be odd or even.

Sp : Stop bit, always high.

IDLE : No transfers on the communication line (RxD or TxD). The IDLE state is always high.

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

25

XMEGA USART Initialization

- For UART (SCI) initialization, you must do the following:
 - 1. Set the TxD pin high (and optionally set the XCK pin low)
 - 2. Set the TxD pin (and optionally the XCK pin) as output Set the appropriate port's data direction register
 - 3. Set the baud rate (BAUDCTRA & BAUDCTRB)
 - 4. Set the frame format and mode of operation (CTRLC) © Enables XCK pin output in synchronous mode
 - 5. Enable the transmitter or the receiver, depending on the usage (CTRLB)
 - 6. For interrupt-driven USART operation, enable the appropriate local interrupt bits (CTRLA)
 - 7. For interrupt-driven USART operation, global interrupts should be disabled during the initialization and then enabled prior to use

University of Florida, EEL 3744 – File 11
© Drs. Schwartz & Arroyo

- The USART transmit data buffer register (**TXB**) and USART receive data buffer register (**RXB**) share the same I/O address and is referred to as USART data register (**DATA**)
- The TXB register is the destination for data written to the DATA register location
- Reading the DATA register location returns the contents of the RXB register

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

EEL 3744 XMEGA SCI Doublebuffering

• SCI Data Register, USARTp#_DATA (p=C-F, #=0-1) > Double buffered SCI receiver and transmitter hardware

- The transmit buffer can be written only when **DREIF** (Data Register Empty Flag) in the STATUS register is set
- Always read STATUS before DATA in order to get the correct status of the receive buffer

See doc8331, Section 23.15.2

USARTp#_STATUS register (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0
+0x01	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8
Read/Write	R	R/W	R	R	R	R	R	R/W
Initial Value	0	0	1	0	0	0	0	0

© Drs. Schwartz & Arroyo

EEL 3744XMEGA DATA – Status

See doc8331, Section 23.15.2

Register - RXCIF

- Bit 7 RXCIF: Receive Complete Interrupt Flag
 - > Set when there are unread data in the receive buffer
 - > Cleared when the receive buffer is empty
 - > When the receiver is disabled, the receive buffer will be flushed, and consequently RXCIF will become zero
 - > When receiver interrupts are used, the receive complete interrupt service routine must read the received data from **DATA** in order to clear **RXCIF**
 - If not, a new interrupt will occur directly after the return from the current interrupt

- This flag can also be cleared by writing one to it

USARTp#_STATUS register (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0
+0x01	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8
Read/Write	R	R/W	R	R	R	R	R	R/W
Initial Value	0	0	1	0	0	0	0	0
© Drs. Schwar	tz & Arrovo							

29

EEL 3744XMEGA DATA – Status See doc8331, Section 23.15.2 Register - TXCIF

• Bit 6 – TXCIF: Transmit Complete Interrupt Flag

- > This flag is set when the entire frame in the transmit shift register has been shifted out and there are no new data in the transmit buffer (DATA)
- > TXCIF is automatically cleared when the transmit complete interrupt vector is executed
 - This flag can also be cleared by writing one to it

USARTp#_STATUS register (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x01	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8]
Read/Write	R	R/W	R	R	R	R	R	R/W	_
Initial Value	0	0	1	0	0	0	0	0	
© Drs. Schwa	rtz & Аггоуо								30

EEL 3744XMEGA DATA – Status See doc8331, Section 23.15.2 Register - DREIF

• Bit 5 – DREIF: Data Register Empty Flag

- > Indicates whether the transmit buffer (DATA) is ready to receive new data
 - 1 when the transmit buffer is empty
 - 0 when the transmit buffer contains data to be transmitted that has not yet been moved into the shift register
 - **DREIF** is set after a reset to indicate that the transmitter is ready
- > **DREIF** is cleared by writing to **DATA**
- > Always write a zero to this bit location when writing to the STATUS register
- > When transmit interrupts are used, the data register empty interrupt service routine must either write new data to **DATA** to clear **DREIF** or disable the data register empty interrupt
 - If not, a new interrupt will occur directly after the return from the current interrupt

USARTp#_STATUS register (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	
+0x01	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8]
Read/Write	R	R/W	R	R	R	R	R	R/W	_
Initial Value	0	0	1	0	0	0	0	0	
* P13. 5511TH									J1

EEL 3744XMEGA DATA – Status See doc8331, Section 23.15.2 Register - FERR

• Bit 4 – FERR: Frame Error

- > The **FERR** flag indicates the state of the first stop bit of the next readable frame stored in the receive buffer
- > Bit is set if the received character had a frame error, i.e., the first stop bit was zero
- > Bit is cleared when the stop bit of the received data is one
- > FERR is not affected by setting the number of stop bits used, as it always uses only the first stop bit
- > This bit is valid until the receive buffer (**DATA**) is read
- > Always write this bit location to zero when writing the **STATUS**

UŠARTp#_STATUS register (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x01	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8	
Read/Write	R	R/W	R	R	R	R	R	R/W	
Initial Value	0	0	1	0	0	0	0	0	
© Drs. Schwar	tz & Arroyo								32

• Bit 3 – BUFOVF: Buffer Overflow

- > Indicates data loss due to a receiver buffer full condition
- > Set if a buffer overflow condition is detected
- > A buffer overflow occurs when the receive buffer is full (two characters) with a new character waiting in the receive shift register and a new start bit is detected
- > Flag is valid until the receive buffer (**DATA**) is read
- > Always write this bit location to zero when writing the **STATUS** register

USARTp#_STATUS register (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x01	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8]
Read/Write	R	R/W	R	R	R	R	R	R/W	_
Initial Value	0	0	1	0	0	0	0	0	
© Drs. Schwar	rtz & Arroyo								33

EEL 3744 XMEGA DATA – Status
See doc8331,
Section 23.15.2 Register – PERR & RXB8

• Bit 2 – PERR: Parity Error

- > If parity checking is enabled and the next character in the receive buffer has a parity error, this flag is set
- > If parity check is not enabled, this flag will always be read as zero
- > This bit is valid until the receive buffer (**DATA**) is read
- > Always write this bit location to zero when writing the **STATUS** register

• Bit 0 – RXB8: Receive Bit 8

- > RXB8 is the ninth data bit when operating with serial frames with nine data bits
- > When used, this bit must be read before reading the low bits from **DATA**

USARTp#_STATUS register (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x01	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8	
Read/Write	R	R/W	R	R	R	R	R	R/W	•
Initial Value	0	0	1	0	0	0	0	0	
© Drs. Schwar	rtz & Arroyo								34

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

XMEGA CTRLA -Control Register A

• RXCINTLVL[1:0]: Receive Complete Interrupt Level

- > Enable the receive complete interrupt and select the interrupt level
 - The enabled interrupt will be triggered when the RXCIF flag in the STATUS register is set

Interrupt Level Configuration	Group Configuration	Description
00	Off	Interrupt disabled
01	Lo	Low-level interrupt
10	Med	Mid-level interrupt
11	Hi	High-level interrupt

USARTp#_ CTRLA (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x03	-	-	RXCINT	LVL[1:0]	TXCINTI	LVL[1:0]	DREINT	LVL[1:0]	
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	
University of Florida, i © Drs. Schwar									35

35

XMEGA CTRLA -Control Register A

• TXCINTLVL[1:0]: Transmit Complete Interrupt Level

- > Enable the transmit complete interrupt and select the interrupt level
 - The enabled interrupt will be triggered when the TXCIF flag in the STATUS register is set

Interrupt Level Configuration	Group Configuration	Description
00	Off	Interrupt disabled
01	Lo	Low-level interrupt
10	Med	Mid-level interrupt
11	Hi	High-level interrupt

USARTp# CTRLA (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x03	-	-	RXCINT	LVL[1:0]	TXCINTI	LVL[1:0]	DREINT	LVL[1:0]	
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	
University of Florida, EEL © Drs. Schwartz &									36

XMEGA CTRLA -Control Register A

• DREINTLVL[1:0]: Data Register Empty Interrupt Level

- > Enable the data register empty interrupt and select the interrupt level
 - The enabled interrupt will be triggered when the DREIF flag in the STATUS register is set

Interrupt Level Configuration	Group Configuration	Description
00	Off	Interrupt disabled
01	Lo	Low-level interrupt
10	Med	Mid-level interrupt
11	Hi	High-level interrupt

USARTp#_ CTRLA (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0
+0x03	-	-	RXCINT	LVL[1:0]	TXCINT	LVL[1:0]	DREINT	LVL[1:0]
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0
University of Florida, El								

37

XMEGA CTRLB -Control Register B

• RXEN: Receiver Enable

- > Setting this bit enables the USART receiver
 - When enabled, the receiver will override normal port operation for the RxD
- > Disabling the receiver will flush the receive buffer, invalidating the FERR, BUFOVF, and PERR flags

USARTp# CTRLB (p=C-F, #=0-1)

XMEGA CTRLB - Control Register B

• TXEN: Transmitter Enable

- >Setting this bit enables the USART transmitter
 - The transmitter will override normal port operation for the TxD pin, when enabled
 - Disabling the transmitter (TXEN=0) will not become effective until ongoing and pending transmissions are completed, i.e., when the transmit shift register and transmit buffer register do not contain data to be transmitted
 - When disabled, the transmitter will no longer override the TxD port

USARTp# CTRLB (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	
+0x04	-	-	-	RXEN	TXEN	CLK2X	MPCM	TXB8]
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	
© Drs. Schwa									39

XMEGA CTRLB - Control Register B

• CLK2X: Double Transmission Speed

- >Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate for asynchronous communication modes
 - For synchronous operation, this bit has no effect and should always be written to zero
 - This bit must be zero when the USART communication mode is configured to IRCOM

USARTp#_ CTRLB (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x04	-	-	-	RXEN	TXEN	CLK2X	MPCM	TXB8]
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	
© Drs. Schwa									40

XMEGA CTRLB -Control Register B

MPCM: Multiprocessor Communication Mode

- >This bit enables the multiprocessor communication mode
 - When the MPCM bit is written to one, the USART receiver ignores all the incoming frames that do not contain address information
 - The transmitter is unaffected by the MPCM setting

USARTp# CTRLB (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x04	-	-	-	RXEN	TXEN	CLK2X	MPCM	TXB8	
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	
© Drs. Schwart									41

41

XMEGA CTRLB -Control Register B

• TXB8: Transmit Bit 8

- >TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames with nine data bits
- >When used, this bit must be written before writing the low bits to DATA

USARTp#_ CTRLB (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	
+0x04	-	-	-	RXEN	TXEN	CLK2X	MPCM	TXB8]
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
© Drs. Schwa									42

XMEGA CTRLC - Control Register C

• CMODE[1:0]: Communication Mode

>These bits select the mode of operation of the USART

CMODE[1:0]	Group Configuration	Mode
00	Asynchronous	Asynchronous USART
01	Synchronous	Synchronous USART
10	IRCOM	IRCOM
11	MSPI	Master SPI

USARTp#_ CTRLC (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x05	СМОЕ	E[1:0]	PMOD	E[1:0]	SBMODE		CHSIZE[2:0]		7
+0x05 ⁽¹⁾	СМОЕ	E[1:0]	-	-	-	UDORD	UCPHA	-	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	1	1	
miliai value	0	0	0	0	0	1	1	0	
University of Fiorida, E. © Drs. Schwartz									43

EEL 3744

See doc8331,

XMEGA CTRLC - Control Register C

• PMODE[1:0]: Parity Mode

- >These bits enable and set the type of parity generation
- >When enabled, the transmitter will automatically generate and send the parity of the transmitted data bits
- >The receiver will generate a parity value for the incoming data and compare it to the PMODE setting,
 - If a mismatch is detected, the PERR flag in STATUS will be set

USARTp#_ CTRLC (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0
+0x05	CMOD	E[1:0]	PMODE	E[1:0]	SBMODE			
+0x05 ⁽¹⁾	CMOD	E[1:0]	-	-	-	UDORD	UCPHA	-
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	1	1
initial value	0	0	0	0	0	1	1	0
© Drs. Schwartz &								

XMEGA CTRLC - Control Register C

• PMODE[1:0]: Parity Mode

PMODE[1:0]	Group Configuration	Mode
00	Disabled	Disabled
01		
10	Even	Enabled, even parity
11	Odd	Enabled, odd parity

USARTp# CTRLC (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0
+0x05	CMOD	E[1:0]	PMOD	E[1:0]	SBMODE		CHSIZE[2:0]	
+0x05 ⁽¹⁾	CMOD	E[1:0]	-	-	-	UDORD	UCPHA	-
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	1	1
miliai value	0	0	0	0	0	1	1	0
Umversity of Florida, EEL 3								

EEL 3744 See doc8331,

XMEGA CTRLC - Control Register C

• SBMODE: Stop Bit Mode

- >This bit selects the number of stop bits to be inserted by the transmitter
- >The receiver ignores this setting

SBODE[1:0]	Stop Bit(s)
0	1
1	2

USARTp#_ CTRLC (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0
+0x05	CMOD	E[1:0]	PMOD	E[1:0]	SBMODE		CHSIZE[2:0]	
+0x05 ⁽¹⁾	CMOD	E[1:0]	-	-	-	UDORD	UCPHA	-
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	1	1
miliai value	0	0	0	0	0	1	1	0
University of Florida, E.E. © Drs. Schwartz	ьэ/чч−гис 11 & Аптоуо							

XMEGA CTRLC - Control Register C

• CHSIZE[2:0]: Character Size

- > The CHSIZE[2:0] bits set the number of data bits in a frame
- > The receiver and transmitter use the same setting

CHSIZE[2:0]	Group Configuration	Character size
000	5BIT	5-bit
001	6BIT	6-bit
010	7BIT	7-bit
011	8BIT	8-bit
100-110		
111	9BIT	9-bit

USARTp# CTRLC (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0
+0x05	CMOD	E[1:0]	PMODE	E[1:0]	SBMODE		CHSIZE[2:0]	
+0x05 ⁽¹⁾	CMOD	E[1:0]	-	-	-	UDORD	UCPHA	-
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	1	1
initiai value	0	0	0	0	0	1	1	0
University of Florida, E.E. © Drs. Schwartz	ь э/44 – гис 11 & Аптоуо							

EEL 3744XMEGA BAUDCTRLA

See doc8331, Section 23.15.6

- Baud Rate register A

• BSEL[7:0]: Baud Rate bits

- >These are the lower 8 bits of the 12-bit BSEL value used for USART baud rate setting
 - BAUDCTRLB contains the four most-significant bits
- >Ongoing transmissions by the transmitter and receiver will be corrupted if the baud rate is changed
- >Writing BSEL will trigger an immediate update of the baud rate prescaler

USARTp#_ BAUDCTRLA (p=C-F, #=0-1)

EEL 3744XMEGA BAUDCTRLB

See doc8331, Section 23.15.6

- Baud Rate register B

- BSCALE[3:0]: Baud Rate Scale factor
 - > These bits select the baud rate generator scale factor
 - > The scale factor is in two's complement form -7 to +7
- BSEL[11:8]: Baud Rate bits
 - > These are the upper 4 bits of the 12-bit value used for baud rate BAUDCTRLA contains the eight least-significant bits
 - > Ongoing transmissions by the transmitter and receiver will be corrupted if the baud rate is changed
 - > Writing BAUDCTRLA will trigger an immediate update of the baud rate prescaler

USARTp# BAUDCTRLB (p=C-F, #=0-1)

Bit	7	6	5	4	3	2	1	0	_
+0x07		BSCAI	LE[3:0]		BSEL[11:8]				
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	
© Drs. Schwartz									1a

EEL 3744 XMEGA USART Register
See doc8331, Section
Summary & Interrupt Vectors

_								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DATA				DAT	A[7:0]			
STATUS	RXCIF	TXCIF	DREIF	FERR	BUFOVF	PERR	-	RXB8
Reserved	-	-	-	-	-	-	-	-
CTRLA	-	-	RXCINT	TLVL[1:0]	TXCINTLVL[1:0]		DREINTLVL[1:0]	
CTRLB	-	-	-	RXEN	TXEN	CLK2X	MPCM	TXB8
CTRLC	CMO	DE[1:0] PMODE[1:0]			SBMODE CHSIZE[2:0]			
BAUDCTRLA	BSEL[7:0]							
BAUDCTRLB		BSCA	LE[3:0]			BSE	L[11:8]	

Offset	Source	Interrupt description
0x00	RXC_vect	USART receive complete interrupt vector
0x02	DRE_vect	USART data register empty interrupt vector
0x04	TXC_vect	USART transmit complete interrupt vector

© Drs. Schwartz & Arroyo

EEL 3744 XMEGA: SCI (USART) Interrupt Vectors (Ports C-F)

; USARTC0 interrupt vectors

.equ USARTC0_RXC_vect = 50; Reception Complete Interrupt

.equ USARTC0_DRE_vect = 52; Data Register Empty Interrupt

.equ USARTC0_TXC_vect = 54; Transmission Complete Interrupt

Our XMEGA

Similar for ports D & E

; USARTC1 interrupt vectors

Register Descriptions .equ USARTC1_RXC_vect = 56; Reception Complete Interrupt

.equ USARTC1 DRE vect = 58; Data Register Empty Interrupt

.equ USARTC1 TXC vect = 60; Transmission Complete Interrupt

; USARTF0 interrupt vectors

.equ USARTF0 RXC vect = 238; Reception Complete Interrupt

.equ USARTF0 DRE vect = 240; Data Register Empty Interrupt

.equ USARTF0 TXC vect = 242; Transmission Complete Interrupt

; USARTF1 interrupt vectors

.equ USARTF1 RXC vect = 244; Reception Complete Interrupt

.equ USARTF1 DRE vect = 246; Data Register Empty Interrupt

.equ USARTF1_TXC_vect = 248; Transmission Complete Interrupt

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo

51

EEL 3744 XMEGA SCI Tx/Rx Pins

Table 33-3. Port C - alternate functions.

PORT C	PIN#	INTERRUPT	TCC0 ⁽¹⁾⁽²⁾	AWEXC	TCC1	USARTC0(3)	USARTC1
GND	13						
vcc	14						
PC0	15	SYNC	OC0A	OC0ALS			
PC1	16	SYNC	OC0B	OC0AHS		XCK0	
PC2	17	SYNC/ASYNC	OC0C	OC0BLS		RXD0	
PC3	18	SYNC	OC0D	OC0BHS		TXD0	
PC4	19	SYNC		OC0CLS	OC1A		
PC5	20	SYNC		OC0CHS	OC1B		XCK1
PC6	21	SYNC		OC0DLS			RXD1
PC7	22	SYNC		OC0DHS			TXD1

68HC12 SCI Example

• See examples web page

University of Florida, EEL 3744 - File 11 © Drs. Schwartz & Arroyo

53

- See examples web page
 - >Run it!
 - Download it and then remove the ICE cable for no transmit errors

© Drs. Schwartz & Arroyo

EEL 3744 Universal Serial Bus (USB)

USB Logo

bus standard —

• USB is a serial bus standard to interface devices.

USB Series A plug

Mini-A plug (left), Mini-B plug (right)

Pin	Function
1	V_{BUS} (4.75-5.25V)
2	D-
3	D+
4	GND
Shell	Shield

Type A plug and receptacle

Micro-B plug

niversity of Florida, EEL 3744 – File 11

© Drs. Schwartz & Arroyo

EEL 3744 USB Info

- USB signals are transmitted on a twisted pair of data cables, labeled D+ and D-.
 - >These collectively use half-duplex differential signaling to combat the effects of electromagnetic noise on longer lines.
 - >D+ and D- usually operate together; they are not separate simplex connections.
 - >Transmitted signal levels are 0 to 0.3V for low and 2.8V to 3.6V for high.
 - >USB 1.0 speed is 12 Mb/s
 - >USB 2.0 speed is 480 Mb/s
 - >USB 3.0 speed is up to 4800 Mb/s

Type A Type B

54321

Mini-A Mini-B

654321

Micro-A Micro-B

University of Florida, EEL 3744 - File

EEL 3744 XMEGA USB to UART Bridge: FTDI

- The FT232RL is a USB 2.0 to UART Bridge from FTDI (http://www.ftdichip.com/). This chip is capable of taking full-speed data (12Mbps) from a USB cable and converting it into serial format using its internal UART.
 - >The UART has an internal clock and can provide baud rates up to 1 Mbit/s.
 - >The FTDI part's data sheet can be found at http://mil.ufl.edu/3744/docs/DS FT232R.pdf
- The uPAD schematics have more information (Versity of Florida, EEL 3744 File 11 © Drs. Schwartz & Arrayo

uPAD Schematics

EIA-485 (RS-485)

- 2-wire serial connection (for half-duplex)
 - >Can use 4-wire serial for full-duplex
 - >Uses a differential balanced line over a twisted pair (like EIA-422)
 - >It can span 4000 feet @ 100 kbit/s; 30ft @ 5Mbit/s
 - >Two pins
 - -A = '-' = TxD-/RxD- = inverting pin which is negative (compared to B) when the line is idle (i.e., data is 1).
 - $-\mathbf{B} = '+' = \mathrm{TxD} + /\mathrm{RxD} + = \mathbf{non\text{-}inverting}$ pin which is **positive** (compared to A) when the line is idle (i.e., data is 1).

University of Florida, EEL 3744 – File 1:

EEL 3744 Ethernet (IEEE 802.3)

• 10BASE-T: 10 Mbit/s

8P8C plug used with 10BASE-T

- >Uses RJ-45 connectors with twisted-pair cables
- >Maximum length 100m
- 100 BASE-T: 100 Mbit/s (IEEE 802.3u)
 - >100-BASE-TX: two pairs of CAT-5 twisted-pair wires
 - >100-BASE-T4: four pairs of normal twisted-pair wires (CAT-5)

- >100-BASE-FX: fiber optic cables
- 100BASE-T (Gigabit Ethernet): 1Gbit/s
- 10GigE: 10Gbit/s (Cat 7); 100 GigaBit: 100Gbit/s

University of Florida, EEL 3744 - File 11 © Drs. Schwartz & Arroyo

61

EEL 3744

Wi-Fi (IEEE 802.11)

- Wireless serial communication
- Uses in the 2.4GHz band (which is also used in cordless telephones) or 5GHz band
- 802.11b (2.4GHz) [11 Mbit/s max data rate] >120 ft indoors 300 ft outdoors (with normal antenna)
- 802.11g (2.4GHz) [54 Mbit/s max] >120 ft indoors, 300 ft outdoors (with normal antenna)
- 802.11n (2.4GH, 5GHz band) [248 Mbit/s max] >230 ft indoors 820 ft outdoors (with normal antenna)
- 802.11ac (2.4GH, 5GHz band) [depends on # antennas] > Up to 6.77 Gbit/s; the **effective** range is best by far

University of Florida, EEL 3744 – File 11

The End!

University of Florida, EEL 3744 – File 11 © Drs. Schwartz & Arroyo