Classifying Battery Health Stages

João Pedro Chaves

EDIT - Data Science & Business Analytics Machine Learning Models - Prof. Thiago Turini

July 28, 2025

Contents

1. Context

2. Dataset

3. Methods

4. Results

Context

- Lithium ion batteries degrade over time some internal parameters can led us to verify the safety operation.
- Instead of predicting SOH State of Health, I tried to classify batteries into categories: Critical, Warning, and Healthy.
- Orange allows building this workflow visually using unsupervised learning (K-means).

Main Objective

Classify battery units into health stages by clustering based on *Remaining Useful Life* and degradation features.

Dataset

NASA: Li-ion Battery Aging

filename	ambient_temp	battery_id	Capacity	Re	Rct
00001.csv	4	47	0.983689	0.054543	0.18313
00002.csv	24	47	0.983689	0.054543	0.18313
00003.csv	4	47	0.983689	0.054543	0.18313
00004.csv	24	47	0.983689	0.0518254	0.152493

Table: Battery dataset sample with electrical characteristics.

Feature Engineering

R_e R_{ct1} R_{ct2} W W

Figure: Complete *Eletrical Circuit Model* (ECM) of battery cell.

Figure: *Electrochemical Impedance Spectroscopy* (EIS) characterization.

Feature Engineering

RUL calculation:

$$RUL = \frac{1000}{1 + R_e * R_{ct}} \tag{1}$$

Where:

- 1000 = rated average total cycles;
- $R_e =$ Electrolyte resistance (internal ohmic);
- $R_{ct} =$ Charge transfer resistance (dynamic).

Orange Workflow

Figure: Project workflow.

Clustering identification

Figure: Normalized R_e boxplot.

Figure: Normalized R_{ct} boxplot.

Clustering identification

Figure: Normalized capacity boxplot.

Figure: Normalized RUL boxplot.

Clustering identification

Figure: K-means analysis.