Lenna: R是一个任意的环,则有: id_R: R—>R 是环同构

Proof: 显然 ide: R-R是双射.

zHx,y∈R,有:

 $id_R(x+y) = x+y = id_R(x) + id_R(y)$

 $id_{R}(x\cdot y) = x\cdot y = id_{R}(x) \cdot id_{R}(y)$

 $id_R(l_R) = l_R$

: id_R: R→R是环顾

· id_R:R—R是环同构。

定理(任意环尺上的一元多项式环的泛性质) R是一个任意的非零环.

B是一个环, $f: R \rightarrow B$ 是一个环同态, $b \in B$,满证: $\forall \forall \forall A$, $\forall \forall A$, $\forall \forall A$, $\forall A$ $\Rightarrow A$ \Rightarrow

且有0(b)= a.

B'是另一个环, $f':R\longrightarrow B'$ 是另一个环同态, $b'\in B'$,满处: 对 V 环 同态 $\varphi:R\longrightarrow A$, V $\alpha\in A$, \exists 唯一的环同态 $D':B'\longrightarrow A$, S:t . F 图交换 :

且有日(6)=~

则存在唯一的映射 $\Theta: B \longrightarrow B'$, s.t. 下图交换:

且田(b)=b',田:B→B'是环同构。

 $Prof: 对于环 B', 环 成 f': R \longrightarrow B', b' \in B', ∃唯一的环 成$ $<math>T: B \longrightarrow B', s.t. F 图$ 及换:

且有: 亚(b)=b'

且有亞(b')=b

: 里:B→B'和里:B'→B 都是环顾

.. 重·里·B→B 和 里·里·B′→B′都是环同态。

对于环B,环同态 $f: R \rightarrow B$, $b \in B$,存在唯一的环同态 $Q: B \rightarrow B$,s.t. 下图交换:

且有以(b)=b

:: B是环 :: id_B: B → B 是环同构, 也是环同态. $x \mapsto x$

$$: id_{B} \circ f = f :: 下图交换: f$$

$$B = id_{B} \circ F$$

$$: id_{B}(b) = b \qquad : id_{B} = \propto$$

$$..$$
 更。 $f = f'$ 且有 更。 $f' = f$

$$\#(\Phi \circ \Psi) \circ f = \Phi \circ (\Psi \circ f) = \Phi \circ f' = f$$

$$\cdot \cdot (\underline{\Phi} \cdot \underline{\Psi})(b) = \underline{\Psi}(\underline{\Psi}(b)) = \underline{\Phi}(b') = b$$

又打环B',环廊 $f': R \longrightarrow B'$, $b' \in B'$,且唯一的环同态 $\beta: B' \longrightarrow B'$,s.t. 下图交换:

且有β(b')=b'

$$: B'$$
是环 $: id_{B'}: B' \longrightarrow B'$ 是环同构, 也是环同态 $\times \longrightarrow \times$

$$: id_{B'} \circ f' = f' :: 下图交换: f' \xrightarrow{R} f'$$

$$B' \xrightarrow{id_{B'}} B'$$

$$\therefore \mathrm{id}_{\mathsf{B}'}(b') = b' \qquad :: \mathrm{id}_{\mathsf{B}'} = \beta$$

$$-: (\underline{\Psi} \circ \underline{\Psi}) \circ f' = \underline{\Psi} \circ (\underline{\Phi} \circ f') = \underline{\Psi} \circ f = f'$$

$$\Psi(\Phi \cdot \Psi)(b') = \Psi(\Phi(b')) = \Psi(b) = b'$$

$$: \underline{\Psi} \circ \underline{\Psi} = \beta = id_{B'}$$

$$::$$
 $\underline{\mathbf{v}}: \mathbf{B} \longrightarrow \mathbf{B}'$ 是环同态 $::$ $\underline{\mathbf{v}}: \mathbf{B} \longrightarrow \mathbf{B}'$ 是环同构

$$\underline{\mathbf{T}}(b) = b'$$
, $\underline{\mathbf{T}} : B \longrightarrow B'$ 是环同构 "存在性得证.

假设存在映射
$$B, B \rightarrow B', s.t.$$
 阳交换: $f \not b \rightarrow B'$

且
$$\Theta_{l}(b) = b'$$
, $\Theta_{l}: B \longrightarrow B'$ 是环同构。

存在另一个映射见:
$$B \longrightarrow B'$$
, s.t. 下图交换: $f \nearrow f'$

且 $\Theta_2(b) = b'$, $\Theta_2: B \longrightarrow B'$ 是环同构

:: 对于环B',环同态 $f': R \longrightarrow B'$, $b' \in B'$, ∃唯一的环同态

 $\Psi: B \rightarrow B'$, s.t. 下图交换:

且有亚(b)=b1

$$: \ \theta_1 = \underline{\Psi} = \theta_2$$

: 唯一性得证.