cours 1 Introduction raisonnable

Aix*Marseille Master SID — Raisonnement dans l'incertain

Généralités sur le module

Objectif principal

Proposer quelques clefs pour raisonner dans l'incertain.

Compétences attendues

- Savoir manipuler les modèles vus en cours
- Connaître les limites de ces modèles

Déroulement du module

- 8 mini cours théoriques
- ▶ 7 TD
- ▶ 3 TP (en python/pyAgrum)
- ➤ Site du module: https://pageperso.lis-lab.fr/ christophe.gonzales/teaching/incertain

Évaluation

- ▶ Contrôle continu :
 - > 7 mini-interros dont seules les 6 meilleures comptent
 - ▶ 1 TP noté
- Note finale = 60% examen + 20% mini-interros + 20% TP
- Seul document autorisé à l'examen : une feuille A4 recto-verso

Pourquoi raisonner dans l'incertain?

Prise de décision

Savage (1954)

```
Décisions : seule
Décisions : s<u>eule</u>
Décisions : seule
Décisions : seule
Décisions : seule
```

Représentation de décisions

Représentation selon Savage :

Décision ←⇒ acte

[Savage (1954)]

- ightharpoonup Acte : fonction $\mathcal{S}\mapsto\mathcal{X}$
- $ightharpoonup \mathcal{X}$: ensemble des conséquences possibles
- S : ensemble des états de la nature (événements élémentaires)
- $\blacktriangleright d_1 \succsim_{\mathcal{D}} d_2 \Longleftrightarrow \textit{acte}(d_1) \succsim_{\mathcal{A}} \textit{acte}(d_2)$

von Neumann-Morgenstern (1944)

Décision : ce qui importe, c'e telle ou telle conséquence.
Décision : ce qui importe, c'e telle ou telle conséquence.
Décision : ce qui importe, c'e telle ou telle conséquence. Décision : ce qui importe, c'e telle ou telle conséquence. Décision : ce qui importe, c'e telle ou telle conséquence. Décision : ce qui importe, c'e telle ou telle conséquence.

Loteries : des actes simplifiés

von Neumann-Morgenstern (1944)

Ce qui importe, c'est uniquement la chance (probabilité) d'obtenir telle ou telle conséquence.

Loterie

- ▶ Loterie : $\langle (x_1, p_1), \dots, (x_n, p_n) \rangle$ ensemble de couples (conséquence, proba de la conséquence)
- $\triangleright \mathcal{L}$: ensemble des loteries
- ▶ $d_1 \succsim_{\mathcal{D}} d_2 \iff loterie(d_1) \succsim_{\mathcal{L}} loterie(d_2)$

Exemple de prise de décision

Mixture de loteries

Mixture de loteries

▶ loterie(Dec) = Mixture de L_1 et $L_2 = \lambda L_1 + (1 - \lambda)L_2$

1er modèle décisionnel : von Neumann-Morgenstern

Axiome 1 : préordre large total

 $\succsim_{\mathcal{L}}$: est un préordre large total non-trivial sur les loteries \mathcal{L}

Axiome 2 : continuité

$$\forall P, Q, R \in \mathcal{L} \text{ t.q. } P \succ_{\mathcal{L}} Q \succ_{\mathcal{L}} R, \text{ il existe } \alpha, \beta \in]0,1[\text{ t.q. :} \\ \alpha P + (1-\alpha)R \succ_{\mathcal{L}} Q \succ_{\mathcal{L}} \beta P + (1-\beta)R.$$

Axiome 3 : indépendance

 $\forall P, Q, R \in \mathcal{L}, \forall \alpha \in]0,1]$:

$$P \succsim_{\mathcal{L}} Q \Longleftrightarrow \alpha P + (1 - \alpha)R \succsim_{\mathcal{L}} \alpha Q + (1 - \alpha)R.$$

Théorème

[von Neumann-Morgenstern (1944)]

Les deux assertions suivantes sont équivalentes :

- $\bigcirc \succeq_{\mathcal{L}}$ vérifie les axiomes 1,2,3.
- ② $\succsim_{\mathcal{L}}$ est représentable par une fonction U t.q. $U(P) = \sum_{i=1} p_i u(x_i)$ où $u : \mathcal{X} \mapsto \mathbb{R}$ t.q. $u(x_i) = U(\langle x_i, 1 \rangle)$.

Du loto à la loterie

▶ 1 ticket de loto coûte 2 €

Question: doit-on acheter un ticket (décision D_1) ou non (D_2) ?

►
$$U(D_1) = P(A) \times u((10-2) \in) + P(B) \times u((10^6-2) \in) + P(C) \times u(-2 \in)$$

►
$$U(D_2) = u(0 \in)$$

Réponse:

- ▶ Si u(x) = x: $U(d_1) = -1,3$ et $U(D_2) = 0$ \Longrightarrow ne pas acheter le ticket
- ► Si $u(x) = x^2$: $U(d_1) = 500003, 2$ et $U(D_2) = 0$ \Longrightarrow acheter le ticket

$\overline{u(x)}$: utilité de Von Neumann-Morgenstern

 $u(x_i)$: satisfaction d'obtenir la conséquence x_i

⇒ représente les préférences de l'agent

De vNM à la conduite sportive

2ème modèle décisionnel : Savage

Axiomatique de Savage (1954)

- 7 propriétés sur les actes P1–P7
- ► P1-P7 ⇒ agent « rationnel »
- ► Si P1 à P7 vérifiées :
 - l'agent modélise les incertitudes par des probabilités.
 - ▶ l'agent a des préférences \(\sum_{A} \) sur les actes représentables par un modèle d'espérance d'utilité (EU) :

$$f \succsim_{\mathcal{A}} g \iff U(f) \ge U(g)$$

$$U(f) = \sum_{s \in \mathcal{S}} p(s)u(f(s))$$

▶ Probabilités ⇒ subjectives!

Rappel : pas de notion de probabilité dans les actes

Limites de EU

► Kahneman & Tversky:

> Violation de l'axiome d'indépendance

Peut-on aller au delà de EU?

L'urne d'Ellsberg (1961)

- ⇒ Violation du Sure thing principle / axiome d'indépendance
- ⇒ pas représentable par des probabilités

représentable par des fonctions de croyance!

 \Longrightarrow II existe différentes rationalités

Dépendent des informations disponibles (imprécises, floues, incomplètes, etc.)

Des loteries aux arbres de décision

Décisions optimales dans un arbre de décision

Décisions optimales dans un arbre de décision

Résolution efficace : l'axiome d'indépendance

Résumé sur les modèles décisionnels

 \Longrightarrow Modèle décisionnel \equiv préférences + incertitudes

3 préoccupations principales :

- Choix du modèle décisionnel (justifications, axiomatiques)
- Paramétrage (apprentissage / élicitation)

⇒ Modèles graphiques décisionnels

Bibliographie

- Cox, R.T. (1946)

 Probability, frequency, and reasonable expectation

 American Journal of Physics, 14(1):1–13
- De Finetti, B. (1972) Theory of Probability, Wiley
- Dempster A.P. (1967) « Upper and lower probabilities induced by a multivalued mapping ». Annals of Mathematical Statistics, 38:325–339
- Dubois, D. et Prade, H. (1985) Théorie des possibilités : Applications à la représentation des connaissances en informatique. Masson
- ► Ellsberg D. (1961) « Risk, ambiguity, and the Savage axioms », Quaterly Journal of Economics, 75:643-669
- ► Halpern, J. (1999) « Cox's Theorem Revisited », Journal of Artificial Intelligence Research, 11 :429–435
- Savage, L.J. (1954) The foundations of statistics. Dover
- ► Shafer, G. (1976) A Mathematical Theory of Evidence. Princeton University Press