1.9 Линейные обыкновенные дифференциальные уравнения и системы. Фундаментальная система решений. Метод вариации постоянных для решения неоднородных уравнений.

Линейные обыкновенные дифференциальные уравнения. Фундаментальная система решений.

Опр. Линейное обыкновенное ДУ:
$$x' = Ax + g$$
, где $x = \vec{x}(t)$, $g = \vec{g}$, $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$

матрица постоянных коэффициентов.

<u>Опр.</u> Матричный степенной ряд: $\sum_{k=0}^{\infty} q_k A^k$, $q_k \in C$, $A = (a_{ij})$ -матрица $n \times n$.

 $\underline{\text{Oпр}}.$ Частичная сумма степенного ряда $S_n = \sum_{k=0}^n q_k A^k$

<u>Опр.</u> Матричный степенной ряд $\sum_{k=0}^{\infty} q_k A^k$ сходится и его сумма равна матрице S, если последовательность частичных сумм $\{S_n\}$ сходится к S по норме: $\lim_{n\to\infty} \|S_n\| = \|S\|$.

<u>Утв.1</u> Пусть ρ - радиус сходимости степенного ряда $\sum_{i=0}^{\infty}q_it^i$ и $\|A\|<\rho/n$, где A - матрица $n\times n$. Тогда матричный ряд $\sum_{i=0}^{\infty}q_kA^k$ сходится.

lack extstyle extsty

Значит сходится и исходный матричный ряд.

<u>Опр</u>. Экспонента матрицы $A: \exp(A) \equiv e^A \equiv E + \sum_{i=0}^{\infty} \frac{A^k}{k!}$

Свойства экспоненты:

1. Пусть $A = SBS^{-1}$. Тогда $e^A = Se^BS^{-1}$.

2. Пусть
$$A = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{pmatrix}$$
. Тогда $e^A = \begin{pmatrix} e^{a_1 1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{a_{nn}} \end{pmatrix}$

3. Пусть AB = BA. Тогда $e^{A+B} = e^A e^B$.

<u>Теорема 1.</u> e^{At} - фундаментальная матрица (система решений) системы x' = Ax.

▶ Доказательство:

Докажем, что $\lim_{\Delta t \to 0} \frac{e^{A(t+\Delta t)} - e^{At}}{\Delta t}$ существует. Для этого рассмотрим разность $e^{A(t+\Delta t)} - e^{At} = (e^{A\Delta t} - E)e^{At}$. Рассмотрим правую часть этого равенства: $\frac{e^{A\Delta t} - E}{\Delta t} = A + \sum_{k=2}^{\infty} \frac{A^k}{k!} (\Delta t)^{k-1}$. Ряд в правой части сходится равномерно по Δt , поэтому возможен предельный переход и $\lim_{\Delta t \to 0} \frac{e^{A\Delta t} - E}{\Delta t} = A$. Следовательно

 $\lim_{\Delta t \to 0} \frac{(e^{A\Delta t} - E)e^{At}}{\Delta t} = \lim_{\Delta t \to 0} \frac{e^{A\Delta t} - E}{\Delta t}e^{At} = Ae^{At}$. Но при этом $\det(e^{At}\big|_{t=0}) = 1$, что доказывает, что матрица e^{At} как решение матричного уравнения x' = At, будет фундаментальной

матрицей. ◀

Метод вариации произвольных постоянных для решения неоднородных уравнений.

Выше мы говорили про однородные уравнения. Теперь перейдем к неоднородным, т.е. уравнениям вида:

$$x' = A(t)x + g(t)$$
,

где $x\in\Re^n$, $A=(a_{i,j})$, $g=(g_1,\dots g_n)^T$, $A,g\in C((\alpha,\beta))$, $\Phi(t)=(\vec{\varphi}_1...\vec{\varphi}_n)$ -фундаментальная матрица x'=Ax. При этом, если $x(t)=\varphi(t)+y(t)$, где $\varphi(t)$ -решение $x'=A(t)x+\varphi(t)$, а y(t)-решение x'=Ax, то x(t) так же решение системы x'=A(t)x+g(t) и наоборот, если x(t)-решение, то y(t)-решение однородной системы. Благодаря этому, множество решений нашей неоднородной системы $S=\{M+\varphi\}$, где M- множество решений однородной системы. Можно так же показать, что M- n-мерное ЛП, а S-n-мерное аффинное пространство. При этом важен следующий факт: если $\varphi_1...\varphi_n$ - базис M, а φ -решение неоднородной системы, то $S=\{C_1\varphi_1+\ldots+C_n\varphi_n+\varphi,C_i\in C\}$.

Справедливо следующее утверждение: $\exists a_i(t) \in C((\alpha,\beta)): \varphi = \sum_{i=1}^n a_i \varphi_i$, где φ -решение неоднородной системы, а $\{\varphi_i\}_{i=1}^n$ -ФСР однородного уравнения. Причем в качестве $a = (a_1...a_n)^T$ можно брать любую первообразную $\Phi^{-1}(t)g(t), \Phi(t) = (\vec{\varphi}_1...\vec{\varphi}_n)$. Это утверждение называется методом Лагранжа решения неоднородных ОДУ.

Формула вариации произвольных постоянных базируется на этом подходе и выглядит следующим образом:

- 1. $x(t) = \Phi(t)(x(t_0) + \int_{t_0}^t \Phi^{-1}(\tau)g(\tau)d\tau)$ общий случай.
- 2. $x(t) = e^{A(t-t_0)}(x(t_0) + \int_{t_0}^t e^{A(t-\tau)}g(\tau)d\tau)$ -случай матрицы A с постоянными коэффициентами.
- 3. $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}g(\tau)d\tau$ -для постоянной матрицы A, $x(t_0) = x_0$, $t_0 = 0$

При этом матрица $\Phi(t)$ нормированна в точке t_0 , а именно $\Phi(t_0) = E$. Нормировка производится путем домножения произвольной фундаментальной матрицы справа на $\Phi^{-1}(t_0)$.

Алгоритм такой (типа того, что нам читали):

- 1. Находим ФСР для однородной системы.
- 2. Выбираем функции $a = (a_1...a_n)^T$.
- 3. Подставляем их в наше уравнение.
- 4. Методом неопределенных коэффициентов находим константы (произвольные постоянные).

Или, по Чернышеву:

- 1. Находим ФСР однородной системы.
- 2. Нормализуем $\Phi(t)$ в точке t_0 .
- 3. Используем предложенную выше формулу.

Дополнительный полезный материал:

- **Про вычисление** e^{At} . Эту процедуру описывает и обосновывает т.н. теорема Жордана: Любая матрица A подобна матрице $J = diag(J_1...J_m)$, где $J_m = \lambda_k E_{r_k} + Z_k$. λ_k собственное число матрицы A, E_{r_k} единичная матрица размера $r_k \times r_k$, а Z_k матрица, все диагонали которой кроме одной состоят из 0, а одна диагональ, расположенная выше главной, состоит из единиц. Проще говоря, $A = SJS^{-1}$. Благодаря этой теореме, e^{At} можно представить в виде: $e^{At} = e^{SJS^{-1}} = Sdiag(e^{J_1t},...e^{Jmt})S^{-1}$, причем $e^{J_kt} = e^{\lambda_k E_{r_k} + Z_k} = e^{\lambda_k t} E_{r_k} e^{Z_k t}$.
- Матричный метод интегрирования системы $x' = Ax \otimes \exists$ йлер. Идея: предположить, что решение этой системы записывается в виде $e^{\lambda_i t} P_i(t)$, где $P_i(t)$ -полином с векторными коэффициентами по t. Благодаря этому предположению можно использовать метод неопределенных коэффициентов (векторных), а именно $P_i(t) = \sum_k \vec{c}_{ik} t^k$ и подставить все это хозяйство в наше уравнение x' = Ax.

Линейное дифференциальное уравнение *n***-го порядка:** $y^{(n)}+p_1(x)y^{(n-1)}+p_2(x)y^{(n-2)}+\dots+p_n(x)y=f(x),$ где $p_i(x)$ — произвольные функции. Оно эквивалентно записи:

$$\begin{cases} y_{1} = y_{2} \\ \dots \\ y_{n-1} = y_{n} \\ y_{n} = f - a_{n} y_{n} - \dots - a_{1} y_{1n} \end{cases}$$

то есть системе из n линейных дифуров первого порядка.