

COMPLETELY TUBING COMPRESSIBLE TANGLES AND
STANDARD GRAPHS IN GENUS ONE 3-MANIFOLDSYING-QING WU¹

ABSTRACT. We prove a conjecture of Menasco and Zhang that if a tangle is completely tubing compressible then it consists of at most two families of parallel strands. This is related to problems of graphs in 3-manifold. A 1-vertex graph Γ in a 3-manifold M with a genus 1 Heegaard splitting is standard if it consists of one or two parallel sets of core curves lying in the Heegaard splitting solid tori of M in the standard way. The above conjecture then follows from the theorem which says that a 1-vertex graph in M is standard if and only if the exteriors of all its nontrivial subgraphs are handlebodies.

In this paper, a tangle is a pair (W, t) , where W is a compact orientable 3-manifold with ∂W a sphere, and $t = \alpha_1 \cup \dots \cup \alpha_n$ a set of mutually disjoint properly embedded arcs in W , called the strands. We denote by $N(t)$ a regular neighborhood of t , and by $\eta(t)$ an open neighborhood of t , i.e. $\eta(t) = \text{Int}N(t)$. Denote by $X = X(t)$ the tangle space $W - \eta(t)$, and by P the planar surface $\partial W \cap X = \partial W - \eta(\partial t)$. Let A_i be the annulus $\partial N(\alpha_i) \cap X$. Thus $\partial X = P \cup (\cup A_i)$.

Following Gordon [G], we say that a set of curves $\{c_1, \dots, c_k\}$ on the boundary of a handlebody H is *primitive* if there exist disjoint disks D_1, \dots, D_k in H such that ∂D_i intersects $\cup c_j$ transversely at a single point lying on c_i . A set of annuli is primitive if their core curves form a primitive set.

Denote by $F_i = P \cup A_i$, call it the A_i -tubing surface of P . The surface P is A_i -tubing compressible if F_i is compressible, and it is completely A_i -tubing compressible if F_i can be compressed until it becomes a set of annuli parallel to $\cup_{j \neq i} A_j$. Equivalently, P is completely A_i -tubing compressible if X is a handlebody, and the set of annuli $\cup_{j \neq i} A_j$ is primitive on ∂X . The tangle (W, t) is *completely tubing compressible* if it is completely A_i -tubing compressible for all i . Such tangles arise naturally in the study of reducible surgery on knots. It has been shown in [CGLS] that if some surgery on a hyperbolic knot K produces a nonprime manifold M , then either the knot complement contains a closed essential surface, or there is a reducing sphere S cutting (M, K') into two non-split completely tubing compressible tangles, where K' is the core of the Dehn filling solid torus.

Define a *band* in W to be an embedded disk D in W such that $D \cap \partial W$ consists of two arcs on ∂D . A subcollection of strands $t' = \{\alpha_1, \dots, \alpha_k\}$ of t is *parallel* if there is a band D such that $D \cap t = t'$.

Define a *core arc* to be an arc α in W such that $W - \eta(\alpha)$ is a solid torus. Because of uniqueness of Heegaard splittings of S^3 , $S^2 \times S^1$ and lens spaces, it is

1991 *Mathematics Subject Classification.* Primary 57N10.

Key words and phrases. Tubing compressible tangles, graphs, handlebodies, lens spaces.

¹ Partially supported by NSF grant #DMS 9802558

easy to see that W has at most two core arcs up to isotopy, and one if W is a punctured S^3 , $S^2 \times I$ or $L(p, 1)$. However, a set of core arcs may contain arbitrarily many parallel families. This is the same phenomenon as links in S^3 : A link L of n components may have the property that all of its components are trivial knot (so the components are isotopic to each other in S^3), but the components of L are mutually non-parallel in the sense that they do not bound an annulus with interior disjoint from the link. The following theorem proves a conjecture of Menasco and Zhang [MZ, Conjecture 5], which shows that this phenomenon will not happen if (W, t) is a completely tubing compressible tangle. I would like to thank Menasco and Zhang for posting the conjecture.

Theorem 1. *If (W, t) is a completely tubing compressible tangle, then t consists of at most two families of parallel core arcs.*

The problem is related to graphs in 3-manifolds. Let $M = \hat{W}$ be the union of W and a 3-ball B , and let $G = \hat{t}$ be the union of t and the straight arcs in B connecting ∂t to the central point v of B . Thus we have a graph \hat{t} in the closed 3-manifold \hat{W} with one vertex v and n edges e_1, \dots, e_n corresponding to the arcs $\alpha_1, \dots, \alpha_n$ of t . A graph G is *nontrivial* if it contains at least one edge. The *exterior* of a graph G in a 3-manifold M is $E(G) = M - \eta(G)$. The following lemma translated the completely tubing compressible condition to a condition about \hat{t} in \hat{M} .

Lemma 2. *The tangle (W, t) is completely tubing compressible if and only if the exterior of any nontrivial subgraph of \hat{t} in \hat{W} is a handlebody.*

Proof. Let A_i be the annulus $\partial N(\alpha_i) \cap \partial X$. The exterior of a subgraph G' of $G = \hat{t}$ in \hat{W} is the same as the exterior of the corresponding strands of t in W , which can be obtained from $X = W - \eta(t)$ by attaching 2-handles to those annuli A_i corresponding to the edges e_i in $G - G'$. Therefore the condition that the exterior of any nontrivial subgraph of \hat{t} in \hat{W} is a handlebody implies that attaching 2-handles to X along any proper subset of $\cup A_i$ yields a handlebody. By [G, Theorem 1] this implies that any proper subset of $\cup A_i$ is a primitive set on ∂X . Hence (W, t) is completely tubing compressible.

On the other hand, if (W, t) is completely tubing compressible, and G' is a proper subgraph of G which does not contain the edge e_i , say, then the set $\cup_{j \neq i} A_j$ is primitive on ∂X , and since the exterior $E(G')$ of G' can be obtained by attaching 2-handles to X along a subset of primitive set $\cup_{j \neq i} A_j$, it follows that $E(G')$ is a handlebody. \square

The classification problem for completely tubing compressible tangles now becomes a classification problem for 1-vertex graphs G in a 3-manifold M which have the property that the exteriors of all its nontrivial subgraphs are handlebodies. Since the exterior of a regular neighborhood of an edge of G is a solid torus, M has a Heegaard splitting of genus 1, hence it must be S^3 , $S^2 \times S^1$, or a lens space $L(p, q)$. Since $L(p, q) \cong L(p, -q) \cong L(p, p - q)$ up to (possibly orientation reversing) homeomorphism, we may always assume that $1 \leq q \leq p/2$. When M is S^3 , it follows from [G, Theorem 1] that the complement of any subgraph of G is a handlebody if and only if G is planar, i.e., it is contained in a disk in S^3 . Scharlemann and Thompson [ST] generalizes this to all abstractly planar graphs in S^3 . See also [Wu2] for an alternative proof. For the general case, we need the following definitions.

A *v-disk* D in M is the image of a map $f : D^2 \rightarrow M$ such that f is an embedding except that it identifies two boundary points of D^2 to a point v in M . The boundary

of D is $\partial D = f(\partial D^2)$. A v -disk D in a solid torus V is *standard* if (i) $D \cap \partial V = v$, and (ii) D is rel v isotopic to a v -disk D' on ∂V , which is longitudinal in the sense that there is a meridional disk Δ of V such that $D \cap \Delta$ is a nonseparating arc on D . We remark that it is important to require that the above isotopy be relative to v as that guarantees that the exterior of D is a handlebody.

A graph with a single vertex is called a *1-vertex graph*. Such a graph is connected, and all of its edges are loops. A 1-vertex graph $G = e_1 \cup \dots \cup e_k$ in V with vertex v is *in standard position* if it is contained in a standard v -disk D in V . In this case we also say that the edges of G are parallel.

Let $V_1 \cup V_2$ be a genus one Heegaard splitting of a closed 3-manifold M . Then a 1-vertex graph G in M is *in standard position* (relative to the Heegaard splitting) if either (i) M is homeomorphic to S^3 , $S^2 \times S^1$ or $L(p, 1)$, and G is contained in a single standard v -disk in V_1 or V_2 , or (ii) M is homeomorphic to $L(p, q)$ with $2 \leq q < p/2$, and G is contained in two standard v -disks, one in each V_i . A 1-vertex graph G in M is *standard* if it is isotopic to a graph in standard position. Since genus one Heegaard splittings of 3-manifolds are unique up to isotopy [W, BO, S], this is independent of the choice of (V_1, V_2) . The following theorem characterizes standard graphs in 3-manifolds.

Theorem 3. *A nontrivial 1-vertex graph G in a closed orientable 3-manifold M is standard if and only if the exterior of any nontrivial subgraph of G is a handlebody.*

It should be noticed that the 3-manifold M in the theorem must be S^3 , $S^2 \times S^1$, or a lens space. For if G is standard then by definition M has a genus one Heegaard splitting. On the other hand, if the exterior of any nontrivial subgraph of G is a handlebody, then in particular the exterior of an edge of G is a solid torus, so again M has a genus one Heegaard splitting. Therefore M must be one of the above manifolds.

The following lemma proves the easy direction of the theorem.

Lemma 4. *If a 1-vertex graph G in a 3-manifold M is standard, then the exterior of any nontrivial subgraph G' of G is a handlebody.*

Proof. Clearly a subgraph of G is still standard, hence we need only prove the lemma for $G' = G$. Let (V_1, V_2) be a genus one Heegaard splitting of M , and assume that G is contained in the union of $D_1 \cup D_2$, where D_i is a standard v -disk in V_i . (The case that G is contained in a single standard v -disk is similar and simpler.) Put $G_1 = G \cap D_1 = e_1 \cup \dots \cup e_{r-1}$ and $G_2 = G \cap D_2 = e_r \cup \dots \cup e_n$.

From definition one can see that the manifold $V_i - \eta(D_i)$ is a product $F_i \times I$, where F_i is a once punctured torus. Therefore $X = M - \eta(D_1 \cup D_2)$ is still a product of I and a once punctured torus, which is a handlebody. One can choose a regular neighborhood $N(G)$ of G in M so that it is contained in $N(D_1 \cup D_2)$, and the closure of each component of $N(D_1 \cup D_2) - N(G)$ is a 3-ball H_i intersecting $\partial N(D_1 \cup D_2)$ at two disks. Now $M - \eta(G)$ is the union of X and the H_i . Since each H_i can be considered as a 1-handle attached to X , it follows that $M - \eta(G)$ is a handlebody. \square

The following lemma proves the other direction of Theorem 3 under an extra assumption, which by [MZ, Lemma 1] implies that $M = S^3$ or $S^2 \times S^1$.

Lemma 5. *Let G be a 1-vertex graph in a closed orientable 3-manifold such that the exterior of any nontrivial subgraph of G is a handlebody. Let $W = M - \eta(v)$, and $X = M - \eta(G)$. If $P = \partial W \cap X$ is compressible, then G is standard.*

Proof. Let D be a compressing disk of P . First assume that D is separating in W , cutting W into W_1 and W_2 . Let G_i be the subgraph of G consisting of edges whose intersection with W is contained in W_i . Each G_i is nontrivial as otherwise ∂D would be trivial on P , contradicting the fact that it is a compressing disk. Now W_i is contained in the exterior of G_j ($j \neq i$), which by assumption is a handlebody. Since $\partial W_i = S^2$ and handlebodies are irreducible, it follows that W_i are 3-balls, hence W is also a 3-ball, so $M = S^3$. In this case by [G, Theorem 1] or [ST], the graph G is planar in S^3 , which is easily seen to be equivalent to the condition that it is standard.

Now assume the D is non-separating in W . In this case W cannot be a 3-ball or punctured lens space, so it must be a punctured $S^2 \times S^1$, and D cuts W into $W' = S^2 \times I$. The manifold $X' = W' - \eta(t)$ is obtained from X by cutting along a nonseparating disk D , so it is a handlebody of genus $n - 1$, and attaching 2-handles to any proper subset of $\cup A_i$ yields a handlebody. By [G, Theorem 2], the set $\cup A_i$ is standard on $\partial X'$, which implies that there is a band $D' = C \times I$ in $W' = S^2 \times I$ containing $t = G \cap W$. It is clear that such a band D extends to a standard v -disk D'' in $M = S^2 \times S^1$ containing G . \square

A trivial arc in a solid torus V is one which is rel ∂ isotopic to an arc on ∂V . Given a (p, q) curve γ on ∂V (running p times along the longitude) and a trivial arc α in V disjoint from γ , the *jumping number* of α relative to γ , denoted by $j(\alpha, \gamma)$, is defined as the minimal intersection number between γ and all arcs on ∂V which is rel ∂ isotopic to α . Clearly we have $0 \leq j(\alpha, \gamma) \leq p/2$, and the arc on ∂V which is isotopic to α and intersects γ at $j(\alpha, \gamma)$ points must intersect γ always in the same direction. The following lemma is essentially [MZ, Proposition 3]. The proof here is more straight forward.

Lemma 6. *Let γ be a (p, q) curve on the boundary T of a solid torus V_1 with $1 \leq q \leq p/2$. Let α be a trivial arc in V_1 with boundary disjoint from γ , and let β be an arc on T disjoint from γ , connecting the two endpoints of α . Let $L(p, q)$ be the lens space obtained by gluing a solid torus V_2 to V_1 such that γ bounds a meridional disk in V_2 . If the exterior of $\alpha \cup \beta$ in $L(p, q)$ is a solid torus, then the jumping number $j(\alpha, \gamma)$ of α relative to γ is either 1 or q .*

Proof. Since $\pi_1 L(p, q) = \mathbb{Z}_p$, by choosing an orientation properly every curve δ in $L(p, q)$ represents a unique element $[\delta]$ between 0 and $p/2$. By definition α is isotopic rel ∂ to an arc α' on T intersecting γ transversely at $j(\alpha, \gamma)$ points in the same direction. Thus if we choose the core curve of V_2 as a generator of $\pi_1 L(p, q) = \mathbb{Z}_p$, then the curve $\delta = \alpha \cup \beta$ represents the number $j(\alpha, \gamma)$ in \mathbb{Z}_p . On the other hand, since the exterior of δ is a solid torus, by uniqueness of Heegaard splittings of lens spaces [BO], the curve δ is isotopic to the core of either V_1 or V_2 , which represents the elements 1 and q in \mathbb{Z}_p , respectively, hence the result follows. \square

Lemma 7. *Theorem 3 is true if $M = L(p, q)$ and G has at most two edges.*

Proof. If G has only one edge e_1 , then $V_1 = N(e_1)$ and $V_2 = M - \text{Int}V_1$ form a genus one Heegaard splitting of $L(p, q)$. By an isotopy we may deform e_1 to standard position in V_1 , and the result follows.

We now assume that $G = e_1 \cup e_2$. Let $V_1 = N(e_1)$, and $V_2 = M - \text{Int}V_1$, which by assumption is a solid torus. Since e_2 intersects e_1 at the vertex v of G , we may assume that $e_2 \cap V_1$ is an unknotted arc lying on a meridional disk D' of V_1 . Let

D be another meridional disk of V_1 disjoint from D' , and let γ be the curve ∂D on $T = \partial V_i$. Since M is a lens space $L(p, q)$, γ is a (p, q) curve on T with respect to some longitude-meridian pair of V_2 . Let α be the embedded arc $e_2 \cap V_2$ in V_2 . The boundary of α lies on the curve $\gamma' = \partial D'$, which is a parallel copy of γ .

Note that $V_2 - \eta(\alpha) = M - \eta(G)$, so by assumption it is a handlebody, denoted by H . The frontier of $N(\alpha)$ is an annulus A which must be primitive on H because when attaching the 2-handle $N(\alpha)$ to H along A we obtain the solid torus V_2 . It follows that the core curve α of the attached 2-handle $N(\alpha)$ is a trivial arc in V_2 .

Let β be an arc on $\partial\gamma'$ connecting the two endpoints of α . Then β is isotopic to the arc $e_2 \cap V_1$ on the disk D' , hence the curve $\alpha \cup \beta$ is isotopic to e_2 , which by assumption has exterior a solid torus in $L(p, q)$. Therefore by Lemma 6 the jumping number $j(\alpha, \gamma)$ is either 1 or q . By definition α is isotopic rel ∂ to an arc α' on T intersecting γ transversely at $j(\alpha, \gamma)$ points in the same direction.

First assume that $j(\alpha, \gamma) = 1$. Then $e'_2 = \alpha' \cup \beta$ is a simple closed curve on T intersecting the meridian curve γ of V_1 transversely at a single point, hence it is a longitude of V_1 . Since β lies on $\partial D'$ and $e_2 \cap V_1$ is an arc on D' , there is an isotopy of $G \cap V_1$ in V_1 such that $e_2 \cap V_1$ is deformed to the arc β , and e_1 to a loop e'_1 in standard position in V_1 . The isotopy deforms G to the graph $G' = e'_1 \cup e'_2$, with a single vertex v' on T . Since e'_2 is a longitude on ∂V_1 and e'_1 is in standard position, $e'_1 \cup e'_2$ bounds a v' -disk Δ in V_1 . Pushing $\Delta - v'$ to the interior of V_1 deforms G' to a graph in standard position, hence the result follows.

Now assume that $j(\alpha, \gamma) = q > 1$. Choose a meridional disk D_2 of V_2 containing α' , intersecting γ at p points. Since γ' is a (p, q) curve, and the jumping number of α is q , we can choose the arc β on γ' with $\partial\beta = \partial\alpha$ so that the interior of β is disjoint from ∂D_2 , hence $e''_2 = \alpha' \cup \beta$ is a longitude of V_2 . By an isotopy of $G \cap V_1$ we can deform $e_2 \cap V_1$ to β , and e_1 to a loop e'_1 in standard position in V_1 . Let $v' = e'_1 \cap e''_2$. By an isotopy rel v' we can deform e''_2 to an edge e'_2 in V_2 , which by definition is in standard position in V_2 because e''_2 is a longitude of V_2 . It follows that G is isotopic to the graph $G' = e'_1 \cup e'_2$ in standard position, hence G is standard. \square

Suppose F is a surface on the boundary of a 3-manifold X , and c a simple closed curve in F . Denote by X_c the manifold obtained from X by attaching a 2-handle to X along c , and by F_c the corresponding surface in X_c . More explicitly, $X_c = X \cup_{\varphi} (D^2 \times I)$, where φ identifies $\partial D^2 \times I$ to a regular neighborhood A of c in F , and $F_c = (F - A) \cup (D^2 \times \partial I)$. We need the following version of handle addition lemma.

Lemma 8. *Let F be a surface on the boundary of a 3-manifold X , and K a 1-manifold in F with $F - K$ compressible in X . Let c be a simple loop in $F - K$. If F_c has a compressing disk Δ in X_c , then $F - c$ has a compressing disk Δ' in X such that $\partial\Delta' \cap K \subset \partial\Delta \cap K$.*

Proof. This was proved in [Wu1]. Theorem 1 of [Wu1] says that under the assumption of the lemma we have $|\partial\Delta' \cap K| \leq |\partial\Delta \cap K|$, but that was proved by showing that $\partial\Delta' \cap K \subset \partial\Delta \cap K$. Note that when $K = \emptyset$, it reduces to Jaco's Handle Addition Lemma [J, Lemma 1]. \square

Proof of Theorem 3. By Lemma 4 we need only show that if the exterior of any nontrivial subgraph of G is a handlebody then G is standard. Put $W = M - \eta(v)$,

$t = W \cap G$, $X = M - \eta(G) = W - \eta(t)$, and $P = \partial W \cap X$. By Lemma 5 we may assume that P is incompressible, so by Lemma 2 and [MZ, Lemma 1], the manifold M is a lens space $L(p, q)$. Up to homeomorphism we may assume $1 \leq q \leq p/2$.

By Lemma 7 we may assume that $n \geq 3$, and by induction we may assume that any nontrivial proper subgraph of G is standard. In particular, each e_i is standard in M , so it is isotopic to a core of either V_1 or V_2 . Since $n \geq 3$, at least two of the e_i are cores of the same V_j , hence up to relabeling we may assume without loss of generality that e_1 and e_2 are both isotopic to a core of V_2 .

Consider the graph $G' = e_1 \cup \dots \cup e_{n-1}$. By induction G' is standard, so the edges are contained in two v -disks if $M = L(p, q)$ with $2 \leq q < p/2$, and one v -disk otherwise. Notice that in the first case the core of V_1 is homotopic to q times the core of V_2 , so they represent different elements in $\pi_1 M$. Since by assumption e_1 and e_2 are isotopic to the core of V_2 , it follows that they are on the same v -disk. In either case there is a v -disk D_1 containing both e_1 and e_2 . Taking a subdisk bounded by $e_1 \cup e_2$ and pushing its interior off D_1 , we get a v -disk D_2 bounded by $e_1 \cup e_2$ with interior disjoint from G' . Note that D_2 may intersect e_n . However, the following sublemma says that D_2 can be rechosen to have interior disjoint from e_n as well.

Sublemma. *There is a v -disk D_3 bounded by $e_1 \cup e_2$ with interior disjoint from G .*

Proof. Consider the handlebody $X = M - \eta(G)$. Let c_i be the meridian curve of e_i on $F = \partial X$, and put $C = \{c_1, \dots, c_n\}$. Let $K = c_1 \cup \dots \cup c_{n-1}$. By Lemma 2, the tangle (W, t) is completely tubing compressible, so K is a primitive set on ∂X , hence $F - K$ is compressible. We now apply Lemma 8 to (X, F, K, c) with $c = c_n$. Note that after attaching a 2-handle to c_n , the manifold $X' = X_{c_n}$ is the same as the exterior of the graph $G' = e_1 \cup \dots \cup e_{n-1}$, and the surface $F_{c_n} = \partial X'$.

Recall that $e_1 \cup e_2$ bounds a v -disk D_2 in M with interior disjoint from G' , so its restriction to $X' = X_{c_n}$ is a compressing disk Δ of $\partial X' = F_{c_n}$ intersecting each of c_1 and c_2 at a single point, and is disjoint from c_3, \dots, c_{n-1} . Therefore, by Lemma 8, there is a compressing disk Δ' of $F - c_n$ in X , such that $\partial \Delta'$ intersects each of c_1 and c_2 at most once, and is disjoint from c_3, \dots, c_{n-1} . Since it is a compressing disk of $F - c_n$, it is also disjoint from c_n .

Now $\partial \Delta'$ cannot be disjoint from C , because we have assumed that the surface P homotopic to $F - C$ is incompressible. Also, $\partial \Delta' \cap C$ cannot be a single point in c_1 , say, because then the frontier of a regular neighborhood of $\Delta' \cup c_1$ would be a compressing disk of $F - C$, which is again a contradiction. It follows that $\partial \Delta'$ intersects each of c_1 and c_2 at exactly one point, and is disjoint from the other c_j 's. Since G is a spine of $N(G)$, by shrinking $N(G)$ to G , the disk Δ' becomes a v -disk D_3 in M bounded by $e_1 \cup e_2$, with interior disjoint from G . This completes the proof of the sublemma. \square

We now continue to show that G is standard in M . By induction we may assume that $G'' = e_2 \cup \dots \cup e_n$ is in standard position in $M = V_1 \cup V_2$, with e_2 on a v -disk D' in V_2 , say, which contains all the edges of G'' in V_2 . Consider the disk D_3 bounded by $e_1 \cup e_2$ as given by the sublemma. It has interior disjoint from G , so by considering $D_3 \cap D'$ and using an innermost circle outermost arc argument one can show that D_3 can be modified so that it intersects D' only along the edge e_2 . Pushing the part of D_3 near e_2 slightly off e_2 , we get a v -disk D_4 with boundary

the union of e_1 and a loop e'_1 on D' , which is a parallel copy of e_2 intersecting G only at v . One can then isotope e_1 via the disk D_4 to the edge e'_1 , which lies on the v -disk D' . Thus after this isotopy all edges of G are now contained in the v -disks which contain G'' . Therefore G is also standard by definition. \square

Proof of Theorem 1. Suppose (W, t) is completely tubing compressible. Then by Lemma 2 the corresponding graph \hat{t} in $\hat{W} = W \cup B$ has the property that the exterior of any proper subgraph of \hat{t} is a handlebody. By Theorem 3, \hat{t} is contained in the union of at most two v -disks D_1 and D_2 , with D_i in V_i . By an isotopy rel \hat{t} we may assume that $D_i \cap \partial W$ consists of two arcs, hence $D_1 \cap W$ and $D_2 \cap W$ are two disjoint bands in W containing t , and the result follows. \square

REFERENCES

- [BO] F. Bonahon and J. Otal, *Scindements de Heegaard des espaces lenticulaires*, C. R. Acad. Sci. Paris Ser. I Math. **294** (1982), 585–587.
- [CGLS] M. Culler, C. Gordon, J. Luecke and P. Shalen, *Dehn surgery on knots*, Annals Math. **125** (1987), 237–300.
- [G] C. Gordon, *On the primitive sets of loops in the boundary of a handlebody*, Topology Appl. **27** (1987), 285–299.
- [J] W. Jaco, *Adding a 2-handle to 3-manifolds: An application to Property R*, Proc. Amer. Math. Soc. **92** (1984), 288–292.
- [MZ] W. Menasco and X. Zhang, *Notes on tangles, 2-handle additions and exceptional Dehn fillings*, preprint.
- [ST] M. Scharlemann and A. Thompson, *Detecting unknotted graphs in 3-space*, J. Diff. Geom. **34** (1991), 539–560.
- [S] J. Schultens, *The classification of Heegaard splittings for (compact orientable surface) $\times S^1$* , Proc. London Math. Soc. **67** (1993), 425–448.
- [W] F. Waldhausen, *Heegaard-Zerlegungen der 3-sphäre*, Topology **7** (1968), 195–203.
- [W1] Y-Q. Wu, *A generalization of the handle addition theorem*, Proc. Amer. Math. Soc. **114** (1992), 237–242.
- [W2] —————, *On planarity of graphs in 3-manifolds*, Comment. Math. Helv. **67** (1992), 635–647.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IA 52242

E-mail address: wu@math.uiowa.edu