Mathe C2

Felix Leitl

9. August 2023

Inhaltsverzeichnis

Stetige Funktionen	3
$\mathbb Q$ ist dicht in $\mathbb R$	3
Eigenschaften stetiger Funktionen	3
Komposition stetiger Funktionen	4
Zwischenwertsatz	4
Satz über Nullstellen	4
Satz von Minimum und Maximum	4
Metrik in normierten Räumen	5
ϵ -Umgebung	5
Umgebungen	5
Innere Punkte	5
Randpunkte	6
Offene und abgeschlossene Mengen	6
Konvergenz in \mathbb{R}	6
Konvergenzkriterien	6
Äquivalente Normen	7
Äquivalente Normen und ihre Umgebungen	7
Konvergenz und äquivalente Normen	7
Konvergenz in \mathbb{R}^n	7
Abgeschlossene Mengen und Konvergenz	8
Grenzwertsätze in normierten Räumen	8
Cauchey-Folgen	8
Konvergenz von Chauchey-Folgen	9
Konvergenz und Teilfolgen	9
Stetigkeit in normierten Räumen	9
Stetigkeit auf Unterräumen	9
ϵ - δ -Kriterium	10
Gleichmäßig stetig	10
Lipschitz-Stetigkeit	10
	10
Steigung von Funktionen	10
	11
Differenzierbarkeit	11
Stetigkeit und Differenzierbarkeit	11
Differenzierbare Funktionen 1	12

Integration	12
Folgen und Reihen	12

Stetige Funktionen

Definition 1: Stetig

Def:

Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion

- f heißt stetig im Punkt $x \in I$, wenn gilt: Für jede Folge (X_n) in I mit $x_n \to x$ gilt auch $f(x_n) \to f(x)$
- f heißt stetig, wenn f in jedem Punkt $x \in I$ stetig ist

Anschaulich:

- " f stetig in x " bedeutet, dass f in x nicht springt
- " f stetig " bedeutet, dass f nirgendwo springt

$\mathbb O$ ist dicht in $\mathbb R$

Lemma 1:

Zu jeder reellen Zahl $r\in\mathbb{R}$ und jedem $\epsilon>0$ existiert eine rationale Zahl $q\in\mathbb{Q}$ mit $|r-q|<\epsilon$

Lemma 2:

Zu jeder reellen Zahl $r\in\mathbb{R}$ und jedem $\epsilon>0$ existiert eine rationale Zahl $r\in\mathbb{R}\setminus\mathbb{Q}$ mit $|r-q|<\epsilon$

Lemma 3:

Zu jeder reellen Zahl $x \in \mathbb{R}$ existiert eine Folge (x_n) in \mathbb{Q} mit $x_n \to x$ Zu jeder rationalen Zahl $x \in \mathbb{Q}$ existiert eine Folge (x_n) in $\mathbb{R} \setminus \mathbb{Q}$ mit $x_n \to x$

Eigenschaften stetiger Funktionen

Satz 1:

Sei I ein Intervall, $x \in I$ und $f,g:I \to \mathbb{R}$ Funktionen, die stetig in x sind. Dann gilt:

- f + g ist stetig in x
- f g ist stetig in x
- $f \cdot g$ ist stetig in x
- Falls $g(y) \neq 0, \forall y \in I$, so ist $\frac{f}{g}$ stetig in x

Komposition stetiger Funktionen

Satz 2:

Seien I,J Intervalle, $f:I\to\mathbb{R}$ und $g:J\to\mathbb{R}$ und $f(I)\subset J$ Ferner sei f stetig in $x\in I$ und g stetig in y=f(x) Dann ist $g\circ f:I\to\mathbb{R}$ stetig in x

Zwischenwertsatz

Satz 3: Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in (a,b) jeden beliebigen Wert y zwischen f(a) und f(b) an

Satz 4: Variante des Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in [a,b] jeden beliebigen Wert

$$y \in [\min_{x \in [a,b]} f(x), \max_{x \in [a,b]} f(x)]$$

an

Satz über Nullstellen

Satz 5: Nullstellen

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b] und es gelte f(a)<0< f(b) oder f(a)>0>f(b). Dann hat f in (a,b) mindestens eine Nullstelle, d.h. es existiert ein $x\in(a,b)$ mit f(x)=0

Satz von Minimum und Maximum

Satz 6: Minimum und Maximum

Sei $f:[a,b]\to\mathbb{R}$ stetig auf dem abgeschlossenen Intervall [a,b]. Dann nimmt f in [a,b] Maximum und Minimum an, d.h. es existieren $x_{\min},x_{\max}\in[a,b]$ mit

$$f(x_{\min}) \le f(x) \le f(x_{\max}, \forall x \in [a, b]$$

Insbesondere gilt für x_{\min} und x_{\max}

$$f(x_{\min}) = \inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$$

$$f(x_{\text{max}}) = \sup_{x \in [a,b]} f(x) = \max_{x \in [a,b]} f(x)$$

Definition 2: Schreibweisen

Sei (x_n) eine reelle Folge. Wir schreiben $x_n \to \infty$, wenn gilt

$$\forall C \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \geq n_0 : x_n \geq C$$

Analog schreiben wir $x_n \to -\infty$, wenn gilt

$$\forall C \in \mathbb{R} \exists n_0 \in \mathbb{N} \forall n \ge n_0 : x_n \le C$$

Metrik in normierten Räumen

Definition 3: Metrik

Ist $(V, ||\cdot||)$ ein normierter Raum. Dann heißt die Abbildung

$$d: V \times V \to \mathbb{R}, \quad d(x,y) := ||x - y||$$

die zur Norm $||\cdot||$ gehörige Metrik

ϵ -Umgebung

Definition 4: ϵ -Umgebung

Sei $(V, ||\cdot||)$ ein normierter Raum. Für einen Punt $x \in V$ und $\epsilon > 0$ heißt die Menge

$$B_{\epsilon}(x) := \{d(x, y) < \epsilon\} = \{y \in V : ||x - y|| < \epsilon\}$$

eine $\epsilon\textsc{-}\mbox{Umgebung}$ von x. Man spricht von der offenen Kugel mit Radius ϵ um x

Umgebungen

Definition 5: Umgebung

Sei $(V, ||\cdot||)$ ein normierter Raum und $x \in V$ ein Punkt in V. Dann heißt eine Teilmenge $U \subset V$ eine Umgebung von x, wenn sie eine ϵ -Umgebung von x enthält, d.h. wenn $\epsilon > 0$ existiert mit $B_{\epsilon}(x) \subset U$

Innere Punkte

Definition 6: Innerer Punkt

Sei $M \subset V$. Ein Punkt $x \in M$ heißt innerer Punkt von M, falls ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subset M$ existiert.

Die Menge aller inneren Punkte von Mheißt das Innere von Mund wird mit \mathring{M} bezeichnet

Randpunkte

Definition 7: Randpunkt

Sei $M \subset V$. Ein Punkt $x \in V$ heißt Randpunkt von M, falls in jeder Umgebung $B_{\epsilon}(x)$ ein Punkt aus M und aus $V \setminus M$ ist.

Die Menge aller Randpunkte von M heißt der Rand von M und wird mit ∂M bezeichnet.

Die Menge $\overline{M}:=M\cup\partial M$ heißt der Abschluss von M

Offene und abgeschlossene Mengen

Definition 8: Offene Menge

Eine Teilmenge $O \subset V$ heißt offen, wenn zu jedem $x \in O$ ein $\epsilon > 0$ mit $B_{\epsilon}(x) \subset O$ existiert, d.h., wenn O Umgebung aller ihrer Punkte $x \in O$ ist.

Definition 9: Abgeschlossene Menge

Eine Teilmenge $A \subset V$ heißt abgeschlossen, wenn $V \setminus A$ offen ist

Konvergenz in \mathbb{R}

Definition 10: Konvergenz

Eine reelle Folge (x_n) konvergiert gegen $x \in \mathbb{R}$, wenn gilt:

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 : |x_n - x| < \epsilon$$

Mit Hilfe der Metrik d(x,y) = |x-y| können wir dies auch formulieren als

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 : d(x_n, x) < \epsilon$$

und mit ϵ -Umgebung als

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : \quad x_n \in B_{\epsilon}(x)$$

Konvergenzkriterien

Lemma 4:

Sei $(V, ||\cdot||)$ ein normierter Raum (x_n) eine Folge in V und $x \in V$. Dann sind äquivalent:

- 1. (x_n) konvergiert gegen x, d.h. $x_n \to x$
- 2. $||x_n x||$ ist Nullfolge, d.h. $||x_n x|| \to 0$
- 3. Es gilt $||x_n x|| \ge y_n$ für eine reelle Nullfolge (y_n)

4. Für jede Umgebung U von x:

$$\exists n_0 \in \mathbb{N} \forall n \ge n_0 : \quad x_n \in U$$

Äquivalente Normen

Definition 11: Äquivalente Normen

Sei V ein \mathbb{K} -Vektorraum und $||\cdot||_{\alpha}$ und $||\cdot||_{\beta}$ zwei Normen auf V. Dann heißen $||\cdot||_{\alpha}$ und $||\cdot||_{\beta}$ äquivalent, wenn Konstanten $\alpha, \beta > 0$ existieren mit

$$\alpha ||x||_{\alpha} \le ||x||_{\beta} \le \beta ||x||_{\alpha} \quad \forall x \in V$$

Satz 7:

 $||\cdot||_1, ||\cdot||_2, ||\cdot||_{\infty}$ sind äquivalent auf \mathbb{R}^n

Satz 8:

Sei V ein endlichdimensionaler Vektorraum. Dann sind alle Normen auf V äquivalent

Äquivalente Normen und ihre Umgebungen

Satz 9:

Sei $V, ||\cdot||_{\alpha}$ ein normierter Raum und $U \subset V$ eine Umgebung von x bezüglich $||\cdot||_{\alpha}$. Dann ist U auch Umgebung bezüglich jeder zu $||\cdot||_{\alpha}$ äquivalenten Norm $||\cdot||_{\beta}$

Konvergenz und äquivalente Normen

Satz 10:

Sei V ein \mathbb{K} -Vektorraum, $||\cdot||_{\alpha}$ und $||\cdot||_{b}$ eta zwei äquivalente Normen. Dann sind für eine Folge (x_n) in V und $x\in V$ äquivalent:

- (x_n) konvergiert gegen x bezüglich $||\cdot||_{\alpha}$
- (x_n) konvergiert gegen x bezüglich $||\cdot||_{\beta}$

Konvergenz in \mathbb{R}^n

Satz 11:

Sei $||\cdot||$ eine Norm auf \mathbb{R}^n , $(x^{(n)})_{n\in\mathbb{N}}$ eine Folge in \mathbb{R}^m und $x\in\mathbb{R}^m$. Dann

konvergiert (x(n)) genau dann gegen x, wenn gilt

$$x_k^{(n)} \xrightarrow[n \to \infty]{} x_k \quad k = 1, ..., m$$

Abgeschlossene Mengen und Konvergenz

Satz 12:

Sei $A \subset V$ eine Teilmenge eines normierten Raums, dann sind äquivalent:

- 1. A ist abgeschlossen
- 2. Für jede konvergente Folge (x_n) mit $x_n \in A$ für alle n gilt auch $\lim_{n \to \infty} x_n \in A$

Grenzwertsätze in normierten Räumen

Satz 13:

Der Grenzwert einer in V konvergenten Folge ist eindeutig bestimmt

Satz 14:

Konvergente Folgen sind beschränkt

Satz 15:

Sei V ein normierter Raum, (a_n) und (b_n) Folgen in V und (λ_n) eine Folge in $\mathbb K$ mit

$$a_n \to a \in V, \quad b_n \to b \in V, \quad \lambda_n \to \lambda \in \mathbb{K}$$

Dann gilt:

- $a_n + b_n \to a + b$
- $a_n b_n \rightarrow a b$
- $\lambda_n a_n \to \lambda a$

Cauchey-Folgen

Definition 12: Cauchey-Folge

Eine Folge (a_n) in V heißt Cauchey-Folge, wenn gilt:

$$\forall \epsilon \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 : ||a_n - a_m|| < \epsilon$$

Satz 16:

Jede Cauchey-Folge in V ist beschränkt

Satz 17:

Jede konvergente Folge in V ist eine Cauchey-Folge

Konvergenz von Chauchey-Folgen

Definition 13:Vollständig

Ein normierter Raum heißt vollständig, wenn jede Chauchey-Folge in V konvergiert

Satz 18:

 \mathbb{R} ist vollständig

Satz 19:

Sei V endlichdimensional. Dann ist V vollständig

Konvergenz und Teilfolgen

Satz 20:

Eine Folge $(a_n)_{n\in\mathbb{N}}$ in V konvergiert genau dann gegen a, wenn jede Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ gegen a konvergiert

Satz 21: Bolzano-Weierstrass

Sei V endlichdimensional. Dann besitzt jede beschränkte Folge in V eine konvergente Teilfolge

Stetigkeit in normierten Räumen

Satz 22:

Sind $f,g:D\to Y$ sowie $h:D\to\mathbb{R}$ für $D\subset Y$ stetig, dann sind auch $f+g:D\to Y, f-g:D\to Y$ und $hf:D\to Y$ stetig

Stetigkeit auf Unterräumen

Satz 23:

Sei $f:X\to Y$ stetig und $D\subset X$ eine Teilmenge von X. Dann sind auch die Einschränkungen $f|_D:D\to Y$ stetig

ϵ - δ -Kriterium

Satz 24:

Eine Funktion $f:D\to Y$ ist genau dann steig im Punkt x/inD, wenn gilt:

$$\forall \epsilon > 0 \exists \delta > 0: \quad ||x - y||_X < \delta \Rightarrow ||f(x) - f(y)||_Y < \epsilon \quad \forall y \in D$$

Gleichmäßig stetig

Definition 14: Gleichmäßigkeit

Eine Funktion $f: D \to Y$ heißt gleichmäßig stetig, wenn gilt:

$$\forall \epsilon > 0 \exists \delta > 0 \forall x, y \in D: \quad ||x - y||_X < \delta \Rightarrow ||f(x) - f(y)||_Y < \epsilon \quad \forall y \in D$$

Lipschitz-Stetigkeit

Definition 15: Lipschitz-stetig

Eine Abbildung $f:D\to Y$ auf $D\subset X$ heißt Lipschitz-stetig, wenn ein $L\geq 0$ existiert mit

$$||f(x) - f(y)||_Y \le L||x - y||_X \quad \forall x, y \in X$$

Satz 25:

Jede Lipschitz-stetige Abbildung ist gleichmäßig stetig

Stetigkeit linearer Abbildungen

Satz 26:

Sei $A \in \mathbb{R}^{m \times n}$ und $f : \mathbb{R}^n \to \mathbb{R}^m$ mit f(x) = Ax. Dann ist f Lipschitzstetig und somit insbesondere gleichmäßig stetig und stetig

Steigung von Funktionen

Es scheint zu gelten, dass eine Funktion mit Lipschitz-Konstante L maximal die Steigung L haben kann

Funktionsgrenzwerte

Definition 16:

Sei $f: D \to Y$ eine Funktion und $x \in D$. Wir schreiben

$$f(y) \xrightarrow[y \to x]{} C,$$

wenn für jede Folge (x_n) in D mit $x_n \neq x$ gilt:

$$x_n \xrightarrow[n \to \infty]{} x \quad \Rightarrow \quad f(x_n) \xrightarrow[n \to \infty]{} C$$

Differenzierbarkeit

Definition 17: Differenzierbar im Punkt

Eine Funktion $f:(a,b)\to\mathbb{R}$ heißt differenzierbar im Punkt $x\in(a,b),$ wenn der Grenzwert

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

existiert. In diesem Fall nennen wir den Grenzwert die Ableitung von f im Punkt x und schreiben dafür f'(x)

Definition 18: Differenzierbar

Eine Funktion $f:(a,b)\to\mathbb{R}$ heißt differenzierbar, wenn sie in allen Punkten $x\in(a,b)$ differenzierbar ist. In diesem Fall heißt die Funktion $f':(a,b)\to\mathbb{R}$ mit $x\mapsto f'(x)$ die Ableitung von f

Definition 19: Stetig differenzierbar

Eine Funktion $f:(a,b)\to\mathbb{R}$ heißt stetig differenzierbar, wenn sie differenzierbar und die Ableitung $f':(a,b)\to\mathbb{R}$ stetig ist

Stetigkeit und Differenzierbarkeit

Satz 27:

Seien $f:U\to\mathbb{R}$ differenzierbar in $x\in U.$ Dann ist f auch stetig in x

Satz 28: Rechenregeln

Seien $f:U\to\mathbb{R}$ und $g:U\to\mathbb{R}$ in $x\in U$ differenzierbar und $\lambda\in\mathbb{R}$. Dann gilt:

1. $\lambda f: U \to \mathbb{R}$ ist in x differenzierbar mit $(\lambda f)'(x) = \lambda f'(x)$

2. $f+g:U\to\mathbb{R}$ ist in x differenzier
bar mit (f+g)'(x)=f'(x)+g'(x)

Satz 29: Produktregel

Seien $f:U\to\mathbb{R}$ und $g:U\to\mathbb{R}$ in $x\in U$ differenzierbar. Dann ist auch $fg:U\to\mathbb{R}$ in x differenzierbar mit (fg)'(x)=f'(x)g'(x)

Differenzierbare Funktionen

Integration

Folgen und Reihen