МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 2.2.1

Исследование взаимной диффузии газов

Автор: Чикин Андрей Павлович Б05-304

Содержание

1	Краткая Теория.			
	1.1	Методика измерений	4	
	1.2	Экспериментальная установка	4	
2	Ход	работы	4	
	2.1	Вывод	,	
	1	ок иллюстраций		
	1	Установка.		
C	пис	ок таблиц		
	1	Зависимость коэфф-ов взаимной лиффузии воздуха и гелия при давлении Р (2.1).		

Цель работы:

- 1. регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов
- 2. определение коэффициента диффузии по результатам измерений.

Приборы:

- 1. измерительная установка
- 2. форвакуумный насос
- 3. баллон с газом (гелием)
- 4. манометр
- 5. источник питания
- 6. магазин сопротивлений
- 7. гальванометр
- 8. секундомер

1 Краткая Теория.

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии. В системе, состоящей из двух компонентов а и b (бинарная смесь), плотности потоков частиц в результате взаимной диффузии определяются законом Фика:

$$j_a = -D\frac{\partial n_a}{\partial x}, \quad j_b = -D\frac{\partial n_b}{\partial x}$$
 (1.1)

D - коэффициент взаимной диффузии компонентов

 $j_{a,b}$ - плотности потока, частиц, соответствующего сорта

 $n_{a,b}$ - концентрации газов

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление и температура в системе предполагаются неизменными.

$$n_{He} \ll n_{air}$$

Поэтому изменение концентрации воздуха в результате взаимной диффузии будет незначительной. В дальнейшем мы будем описывать только диффузию примеси гелия на стационарном фоне воздуха и под n будем иметь в виду концентрацию n_{He} .

Рис. 1: Установка для исследования взаимной диффузии газов.

В работе используется установка, изображённая на рис. 1.

Два сосуда с объёмами V_1 и V_2 соединены трубкой длины l и сечения S.

Сосуды заполнены смесью двух газов при одинаковом давлении, но с различной концентрацией компонентов.

Вследствие взаимной диффузии концентрации в обоих сосудах с течением времени выравниваются

Рассмотрим процесс выравнивания концентрации. В трубке устанавливается стационарный поток частиц:

$$J = -DS\frac{\partial n}{\partial x} = -DS\frac{n_1 - n_2}{l} \tag{1.2}$$

Пусть Δn_1 и Δn_2 -изменения концентрации в V_1 и V_2 .

$$V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t = -DS \frac{n_1 - n_2}{l} \Delta t \quad \Longrightarrow \tag{1.3}$$

$$V_1 \frac{\mathrm{d}n_1}{\mathrm{d}t} = -V_2 \frac{\mathrm{d}n_2}{\mathrm{d}t} = -DS \frac{n_1 - n_2}{l} \quad \Longrightarrow \tag{1.4}$$

$$\frac{\mathrm{d}n_1}{\mathrm{d}t} - \frac{\mathrm{d}n_2}{\mathrm{d}t} = -DS\frac{n_1 - n_2}{l} \left(\frac{1}{V_1} + \frac{1}{V_1}\right) \quad \Longrightarrow \tag{1.5}$$

Пусть

$$\Delta n \triangleq n_1 - n_2$$

Тогда:

$$\Delta n = n_0 e^{-t/\tau} \tag{1.6}$$

 n_0 - разность концентраций примеси в начальный момент времени

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} \tag{1.7}$$

Для проверки применимости квазистационарного приближения необходимо убедиться, что время τ много больше характерного времени диффузии:

$$t_{
m диф }pprox rac{l^2}{D}\ll au$$

1.1 Методика измерений.

Для измерения концентраций в данной установке применяются датчики теплопроводности D_1 и D_2 (см. рис. 1).

Тонкая проволочка радиуса $r_{\rm np}$, протянутая вдоль оси стеклянного цилиндра радиуса $R_{\rm q}$, нагревается током.

$$Q = k \frac{2\pi L}{\ln R_{\rm H}/r_{\rm IID}} (T_1 - T_2)$$
 (1.8)

 ${f k}$ - теплопроводность

 $r_{\mathbf{np}}$ - радиус проволки

 $R_{\mathbf{u}}$ - радиус цилиндра

L - длина проволки

 T_1, T_2 - температура проволки и стенки сосуда

Для измерения разности концентраций газов используется мостовая схема (см. рис. ??). Мост балансируется при заполнении сосудов одной и той же смесью.

При малых изменениях концентрации можно считать, что

$$V \sim k \sim n$$

Тогда:

$$V = V_0 e^{-t/\tau} \tag{1.9}$$

1.2 Экспериментальная установка.

2 Ход работы

- 1. Ознакомимся с установкой.
- 2. Включим питание электрической схемы установки рубильником В. Откроем краны K_1, K_2, K_3 .
- 3. Очистим установку от газов.

Для этого:

- (а) Изолируем систему от атм. давления.
- (b) Откроем кран K_4 .
- (с) Включим насос.

- (d) Соединим насос с установкой краном K_5 .
- (e) Откачаем установку до минимального значения на гальванометре. (это занимает 1-5 мин.)
- (f) Отключим насос.
- (g) Перекроем K_4 .
- (h) Соединим насос с атмосферой краном K_5 .
- 4. Запустим в установку воздух до рабочего давления $P_{\rm pa6}$ (вначале $P_{\rm pa6} \approx 40$ торр).

Конкретный метод зависит от установки.

Сбалансируем мост. Для этого добьемся примерно нулевого значения на гальванометре, поворачивая ручки "грубо"и "точно". Диапазон измерений гальванометра переведем на 10 мкА.

- 5. Заполним установку рабочей смесью. В сосуде V_2 должен быть воздух, а в сосуде V_1 смесь воздуха с гелием. Для этого:
 - (а) Откачаем установку.
 - (b) Закроем K_2 и K_3 (Изолируем V_2).
 - (c) Убедимся: K_5 закрыт, K_1 и K_4 открыты.
 - (d) Заполним V_1 гелием до $P_{He} = x \cdot P_{pa6}$ (x зависит от установки). Для этого будем постепенно запускать гелий в промежуток между K_6 и K_7 и из него в установку.
 - (e) Закроем K_1 (Изолируем V_1).
 - (f) Прочистим трубы от гелия. Для этого откачаем его насосом.
 - (g) Откроем K_2 (Соединим V_2).
 - (h) Заполним V_2 воздухом до давления $P_{air} = y \cdot P_{pa6}$ (y зависит от установки).
 - (i) Закроем K_4 .
 - (j) Уравняем давление в объёмах V_1 и V_2 . Для этого откроем K_1 и подождем 30-60 с.
 - (k) Закроем K_1 и K_2 .
- 6. Приступим к измерениям зависимости n_{He} от времени. Для этого запустим утилиту на компьютере и откроем K_3 .
- 7. Проделаем пункты 3-6 при 5-6 значениях $P_{\rm pa6}$ в интервале 40-400 торр.
- 8. Убедимся, что процесс диффузии подчиняется закону (1.6). Для этого построим графики $(t, \ln{(n(t))})$ и по наплонам прямых расчитать коэффициенты взаимной диффузии.

Данные представлены в виде зависимости V(t), где V - показания гальвонометра. Справедлива формула 1.9, поэтому достаточно воспользоватся зависимостью V(t).

9. Построим график (D, $1/P_{\text{раб}}$). График должен иметь вид прямой линии. По формуле (1.9) Получим, что

$$slope = \frac{1}{\tau} \implies (1.7) \implies D = -slope \cdot \frac{V_1 V_2}{V_1 + V_2} \cdot \frac{L}{S}$$
 (2.1)

Р, Па	$D, cm^2/c$	$slope, \Pi a \cdot cm^2/c$
37	11.63 ± 0.15	$(-19377 \pm 13) \cdot 10^{-6}$
78	4.81 ± 0.06	$(-8017 \pm 9) \cdot 10^{-6}$
100	5.28 ± 0.07	$(-8799 \pm 8) \cdot 10^{-6}$
160	3.54 ± 0.05	$(-5893 \pm 9) \cdot 10^{-6}$
205	2.89 ± 0.04	$(-4816 \pm 11) \cdot 10^{-6}$

Таблица 1: Зависимость коэфф-ов взаимной диффузии воздуха и гелия при давлении Р (2.1).

Рассчитаем величину коэффициента диффузии при атмосферном давлении.

По мнк получим коэффициенты прямой $y = \alpha x + \beta$:

$$\alpha = (387 \pm 40) \; \Pi a \cdot \frac{cm^2}{c}$$

$$\beta = (0.9 \pm 0.6) \frac{\text{cm}^2}{\text{c}}$$

$$D(P_{\text{atm}}) \approx \beta$$

10. Оценим по полученным результатам длину свободного пробега и размер молекулы. По закону Менделеева-Клапейрона:

$$PV = \nu RT \implies n = \frac{PN_A}{RT}$$
 (2.2)

Найдем концентрацию воздуха:

$$n_{\rm B} = \frac{P_{\rm pa6}V_1}{RT} \approx P_{\rm pa6}. \tag{2.3}$$

2.1 Вывод.

В данной рабобте мы измерили зависимость изменения концентрации гелия в воздухе от времени при различных давлениях (рис. 8).

Определили коэффициенты взаимной диффузии (т. $\frac{1}{1}$) и построили график D(1/P) (см. рис. $\frac{9}{1}$).