

Übungsblatt LA 2

Computational and Data Science FS2024

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Gaußsche Zahlenebene, arithmetische und trigonometrische Form einer komplexen Zahl und Arg-Funktion und deren Eigenschaften.
- > Sie können komplexe Zahlen in der Gaußschen Zahlenebene darstellen.
- > Sie können komplexe Zahlen von der arithmetischen in die trigonometrische Form und umgekehrt umwandeln.
- Sie können einfache Brüche und Potenzen von komplexen Zahlen durch Anwenden der Rechenregeln vereinfachen.
- > Sie können quadratische Gleichungen mit reellen Koeffizienten lösen.

1. Aussagen über die Gaußsche Zahlenebene

Welche der folgenden Aussagen sind wahr und welche falsch?

Welche der leigenden Adssägen sind Wahr and Welche laiser:			
		wahr	falsch
a)	Die Gaußsche Zahlenebene wurde im 20. Jahrhundert		
	eingeführt.		
b)	Jede komplexe Zahl wird durch einen Punkt in der Gaußschen		
	Zahlenebene dargestellt.		
c)	Die x-Achse der Gaußschen Zahlenebene entspricht der Re-		
	Achse.		
d)	Die komplexe Zahl z = 2 + 3i entspricht dem Punkt (2;3i) in der		
	Gaußschen Zahlenebene.		
e)	Die komplexen Zahlen z, für welche gilt z^2 = -3, liegen auf der		
	Im-Achse.		
f)	Die komplexen Zahlen $z \in \mathbb{C}$ mit $ z = 1$ bilden den Einheitskreis in		
	der Gaußschen Zahlenebene.		

Zeichnen Sie die gegebenen Zahlen in der Gaußschen Zahleneb	ne ein

a) 2i

b) 3 + i

c) -2

d) -1 + 2i

e) -2 - 2i

f) 3 - 2i

3. Aussagen über die trigonometrischer Form komplexer Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Jede komplexe Zahl lässt sich in trigonometrischer Form		
darstellen.		
b) Jede komplexe Zahl lässt sich eindeutig in trigonometrischer		
Form darstellen.		
c) Der Term $2 \operatorname{cis}(\pi/2)$ ist eine trigonometrische Form von 2i.		
d) Der Term 2cis($-3\pi/2$) ist eine trigonometrische Form von 2i.		
e) Der Term $2 cis(5\pi/2)$ ist eine trigonometrische Form von 2i.		
f) Der Term -2cis($\pi/2$) ist eine trigonometrische Form von 2i.		

4. Darstellung der Arg-Funktion

- a) Prüfen Sie nach, dass die Funktion $f(z) = \arctan \frac{Im(z)}{Re(z)}$ keine vollständige Darstellung der Arg-Funktion ist.
- b) Finden Sie den Funktionsterm der Arg-Funktion in der Variante $arg: \mathbb{C} \to]-\pi;\pi[$.
- c) Finden Sie den Funktionsterm der Arg-Funktion in der Variante $arg: \mathbb{C} \to [0; 2\pi[$.

5. Konversion in die arithmetische Form

Geben Sie die jeweilige komplexe Zahl in arithmetischer Form an.

a) $4cis(\pi/2)$

- b) 2cis(-π/3)
- c) $cis(3\pi/4)$

d) $2cis(3\pi)$

- e) $\frac{1}{2}$ cis(75°)
- f) $\sqrt{2}$ cis(-105°)

6. Konversion in die trigonometrische Form

Geben Sie die jeweilige komplexe Zahl in trigonometrischer Form an.

a) 3

b) -5

c) 2i

d) -3i

e) 3 - 4i

f) -12 + 5i

7. Trigonometrische Zahlen mit Python/Numpy

Berechnen Sie die Konversion aus Aufgabe 5 und 6 mit Python/Numpy.

8. Aussagen über quadratische Gleichungen

Gegeben sei die allgemeine quadratische Gleichung

 $ax^2 + bx + c = 0$ mit $a, b, c \in \mathbb{R}$ und $a \neq 0$.

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Die Koeffizienten a,b,c können so gewählt werden, dass es		
	keine Lösung in ℝ gibt.		
b)	Die Koeffizienten a,b,c können so gewählt werden, dass es		
	keine Lösung in ℂ gibt.		
c)	Für jede Wahl der Koeffizienten a,b,c liegen zwei verschieden		
	Lösungen in ℂ vor.		
d)	Die Koeffizienten a,b,c können so gewählt werden, dass x ₁ = 1		
	und x_2 = i die beiden Lösungen sind.		
e)	Gibt es 2 Lösungen x_1 und x_2 , dann gilt entweder $x_2 = x_1^*$ oder		
	$x_1, x_2 \in \mathbb{R}$.		
f)	Die Anzahl der Lösungen kann anhand der Diskriminante		
	beurteilt werden.		

9. Quadratische Gleichungen

Bestimmen Sie die Lösungen der quadratischen Gleichung in C mit Hilfe der Mitternachtsformel. a) $x^2 + 1 = 0$ d) $3t^2 = -30t - 507$

a)
$$x^2 + 1 = 0$$

$$d) 3t^2 = -30t - 507$$

b)
$$x^2 - 10x + 74 = 0$$

b)
$$x^2 - 10x + 74 = 0$$
 c) $2x^2 + 4 = 0$
e) $x^2 - 10x + 74 = 0$ f) $x^2 - 10x + 74 = 0$

c)
$$2x^2 + 4 = x$$

f) $s(s + 1) = 2s^2 + 1$

Übungsblatt LA 2

Computational and Data Science BSc FS 2023

Analysis und Lineare Algebra 2

Lernziele/Kompetenzen

- Sie kennen die Begriffe Gauss-Ebene, arithmetische Form, trigonometrische Form, Arg-Funktion, Konversion, quadratische Gleichung mit reellen Koeffizienten, Diskriminante und Mitternachtsformel sowie ihre wichtigsten Eigenschaften.
- Sie kennen die verschiedenen Varianten der Arg-Funktion und die dazu passenden Funktionsterme.
- Sie können komplexe Zahlen in der Gauss-Ebene darstellen.
- Sie können komplexe Zahlen von der arithmetischen Form in die trigonometrische Form konvertieren und umgekehrt.
- Sie können die Lösungsmenge einer quadratischen Gleichung mit reellen Koeffizienten mit Hilfe der Diskriminante beurteilen und durch die Mitternachtsformel berechnen.

1. Aussagen über die Gauss-Ebene

Welche der folgenden Aussagen sind wahr und welche falsch?		falsch
a) Die Gauss- <i>Ebene</i> wurde im 20. Jh. eingeführt.	0	×
b) Jede komplexe Zahl entspricht einem Punkt in der GAUSS-Ebene.	Ø	0
c) Die reelle Zahlengerade entspricht der Re-Achse.	X	0
d) Die komplexe Zahl $z = 2 + 3i$ entspricht dem Punkt $(2; 3i)$.	0	Ø
e) Die komplexen Zahlen z, für welche gilt $z^2 = -3$ liegen auf der Im-Achse.	X	0
f) Die komplexen Zahlen $z \in \mathbb{C}$ mit $ z = 1$ bilden den Einheitskreis in der GAUSS-Ebene.	X	0
$(-3)^2 = (-7.3)^2 =$	1.3	(

2. Komplexe Werte in der Gauss-Ebene

Zeichnen Sie jeweils die gegebene komplexe Zahl in der GAUSS-Ebene ein.

a) 2i

c) -2

e) -2 - 2i

b) 3 + i

d) -1 + 2i

f) 3 - 2i

3. Aussagen über die trigonometrische Form komplexer Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Jede komplexe Zahl lässt sich in trigonometrischer Form darstellen.	8	0
b) Jede <i>komplexe Zahl</i> lässt sich eindeutig in <i>trigonometrischer Form</i> darstellen.	0	8
c) Der Term $2\operatorname{cis}(\pi/2)$ ist eine trigonometrische Form von 2i.	\boxtimes	0
d) Der Term $2\operatorname{cis}(-3\pi/2)$ ist eine <i>trigonometrische Form</i> von 2i.	Ø	0
e) Der Term $2 \operatorname{cis}(5\pi/2)$ ist eine <i>trigonometrische Form</i> von 2i.	Ø	0
f) Der Term $\bigcirc 2$ cis $(\pi/2)$ ist eine trigonometrische Form von -2 i.	0	8

MUSS WINER POSITIV SECU

4. Darstellung der Arg-Funktion

In dieser Lernaufgabe lernen Sie zwei Varianten der Arg-Funktion kennen.

a) Prüfen Sie nach, dass die Funktion

$$f(z) = \arctan\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) \tag{1}$$

keine vollständige Darstellung der Arg-Funktion ist.

b) Finden Sie den Funktionsterm der Arg-Funktion in der Zürcher-Variante

$$\arg: \mathbb{C} \to]-\pi,\pi]. \tag{2}$$

c) Finden Sie den Funktionsterm der Arg-Funktion in der Basler-Variante

$$\arg: \mathbb{C} \to [0, 2\pi [.$$

5. Konversion in die arithmetische Form

Geben Sie jeweils die gegebene komplexe Zahl in arithmetischer Form an.

a)
$$4 \operatorname{cis}(\pi/2)$$

c)
$$cis(3\pi/4)$$

e)
$$\frac{1}{2}$$
 cis(75°)

b)
$$2 \operatorname{cis}(-\pi/3)$$

d)
$$2 cis(3\pi)$$

f)
$$\sqrt{2} \ cis(-105^{\circ})$$

6. Konversion in die arithmetische Form mit Python/Numpy

Berechnen Sie die Konversionen aus Aufgabe 5 mit Python/Numpy.

7. Konversion in die trigonometrische Form

Geben Sie jeweils die gegebene komplexe Zahl in trigonometrischer Form an.

e)
$$3 - 4i$$

b)
$$-5$$

d)
$$-3i$$

f)
$$-12 + 5i$$

8. Konversion in die trigonometrische mit Python/Numpy

Berechnen Sie die Konversionen aus Aufgabe 7 mit Python/Numpy.

9. Aussagen über Quadratische Gleichungen mit reellen Koeffizienten

Es seien $a, b, c \in \mathbb{R}$ mit $a \neq 0$. Betrachten Sie die allgemeine quadratische Gleichung

 $ax^2 + bx + c = 0. \qquad -b + \sqrt{b^2 - 4\alpha c} \tag{4}$

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Die Koeffizienten a, b und c können so gewählt werden, dass (4) in \mathbb{R} keine Lösung hat.	8	0
b) Die Koeffizienten a, b und c können so gewählt werden, dass (4) in $\mathbb C$ keine Lösung hat.	0	Ø
c) Für jede Wahl der <i>Koeffizienten a</i> , b und c hat (4) in $\mathbb C$ zwei verschiedene <i>Lösungen</i> .	0	\boxtimes
d) Die Koeffizienten a , b und c können so gewählt werden, dass $x_1 = 1$ und $x_2 = i$ die Lösungen von (4) sind.	0	X
e) Hat (4) die zwei <i>Lösungen</i> x_1 und x_2 , dann gilt entweder $x_2 = x_1^*$ oder $x_1, x_2 \in \mathbb{R}$.	×	0
f) Die Anzahl <i>Lösungen</i> von (4) kann anhand der <i>Diskriminante</i> von (4) beurteilt werden.	X	0

10. Quadratische Gleichungen mit komplexen Lösungen

Finden Sie jeweils sämtliche Lösungen der quadratischen Gleichung in $\mathbb C$ mit Hilfe der Mitternachtsformel.

a)
$$x^2 + 1 = 0$$

c)
$$2x^2 + 4 = x$$

b)
$$x^2 - 10x + 74 = 0$$
 d) $3t^2 = -$

e)
$$w = 2 + w^2$$

d)
$$3t^2 = -30t - 507$$

3

f)
$$s(s+1) = 2s^2 + 1$$

