CASE STUDY: PROGETTAZIONE DI VITI METALLICHE ENDOSSEE

scopo della ricerca messa a punto di una metodologia per la progettazione di impianti endossei che permettano: una migliore integrazione tra impianto e tessuto ospite una migliore e più rapida guarigione base di partenza comprovata biocompatibilità del titanio importanza della morfologia superficiale nel permettere l'adesione degli osteoblasti capacità di alcune sequenze peptidiche di favorire i processi fisiologici coinvolti nell'osteointegrazione

procedura sperimentale □ applicazione di trattamenti meccanici e chimici di modifica superficiale □ caratterizzazione delle superfici ottenute (SEM, AFM e profilometro) □ progettazione e sintesi del peptide di adesione □ individuazione di un carrier riassorbibile per veicolare il peptide di adesione □ determinazione della cinetica di rilascio □ test in vitro (colture cellulari) □ test in vivo (modello animale)

rivestimento

sol-gel

realizzazione di network inorganici usando come monomeri alcossidi di silicio

- · idrolisi dell'alcossido
- formazione sospensione colloidale
- condensazione di una fase gel

dip-coating

IMMERSIONE

DIPPING CONTINUO

vantaggi

- ☐ basse temperature di processo
- ☐ comportamento bioattivo del film di silice
- esatta quantificazione del peptide di adesione nello strato depositato

Biomateriali – Laurea Triennale in Ingegneria Biomedica

7

Progettazione di viti metallich

analisi superficiale: SEM

SUPERFICIE SL

- la superficie sabbiata presenta:
- ☐ profili irregolari e distinguibili
- rugosità grossolana
- imperfezioni di diverse dimensioni

SUPERFICIE SLA

l'attacco acido produce:

- $\hfill \square$ appiattimento della topografia
- ☐ doppio livello di rugosità
- ☐ tessitura compatta e uniforme
- $\hfill \square$ struttura alveolare microporosa

Biomateriali – Laurea Triennale in Ingegneria Biomedica

parametri di rugosità

Parametro	Descrizione	Unità di misura
S _a	rugosità media	[nm]
$S_{ m q}$	rugosità media quadratica	[nm]
S_z	rugosità media in cinque punti	[nm]
S_{sk}	asimmetria del profilo	[]
S_{ku}	curtosi del profilo (descrive la distribuzione del profilo)	[]
S_{ds}	densità degli altipiani di profilo	[1/µm²]
S_{sc}	raggio di curvatura medio dei picchi	[1/nm]
$S_{ m dq}$	media quadratica della pendenza del profilo	[1/nm]
$S_{ m dr}$	rapporto tra l'area della superficie e l'area della superficie proiettata	[%]

Biomateriali – Laurea Triennale in Ingegneria Biomedica

rugosità: parametri di ampiezza

misure di caratteristiche verticali delle deviazioni della

superficie

- □ l₁ − l₅ sono **lunghezze di campionamento** uguali e consecutive (il profilo viene suddiviso in lunghezze di campionamento l che sono lunghe a sufficienza per includere un numero statisticamente significativo di dati)
- ☐ la **lunghezza di valutazione** è definita come la lunghezza del profilo utilizzato per la misura dei parametri di rugosità o finitura superficiale <u>5 lunghezze di campionamento sono prese come standard</u>

Biomateriali – Laurea Triennale in Ingegneria Biomedica

11

Progettazione di viti metalliche

rugosità: parametri di ampiezza

- \square $\mathbf{R}_{\mathbf{a}}(S_a \text{ nel caso 3D})$ media aritmetica delle distanze assolute del profilo di rugosità rispetto alla linea media
 - Ra = $\frac{1}{l} \int_0^l |z(x)| dx$
- \square $\mathbf{R_q}$ ($\mathbf{S_q}$ nel caso 3D) scarto quadratico medio del profilo reale rispetto al valore medio

$$Rq = \sqrt{\frac{1}{l} \int_0^l z^2(x) dx}$$

dà informazioni simili a R_a , ponendo una maggiore attenzione sugli elementi più alti e su quelli più bassi

Biomateriali – Laurea Triennale in Ingegneria Biomedica

rugosità: parametri di ampiezza

 \square $\mathbf{R}_{\mathbf{z}}$ ($\mathbf{S}_{\mathbf{z}}$ nel caso 3D)

media aritmetica dei cinque picchi più alti e delle cinque valli più basse copre in tutto dieci elementi morfologici in un dato intervallo è definito anche parametro verticale e può fornire informazioni sulla tipologia delle irregolarità

 \square \mathbf{R}_{t} (\mathbf{S}_{t} nel caso3D)

distanza massima tra il picco più alto e la valle più bassa nel profilo o sulla superficie

Biomateriali – Laurea Triennale in Ingegneria Biomedica

13

Progettazione di viti metallich

rugosità: parametri spaziali

misure di caratteristiche orizzontali delle deviazioni della superficie

 \square \mathbf{R}_{sk} (\mathbf{S}_{sk} nel caso 3D) – asimmetria

misura della simmetria del profilo rispetto alla linea media questo parametro identifica le differenze di simmetria su profili aventi il medesimo valore di R_a o R_q

□ **R**_{ku} (**S**_{ku} nel caso 3D) – **curtosi** misura dell'acutezza del profilo

Biomateriali – Laurea Triennale in Ingegneria Biomedica

rugosità: parametri spaziali

- □ **S**_{ds}
 densità di picchi per unità di superficie
- □ S_{sc}
 raggio di curvatura medio dei picchi
- □ S_{dr} [%]
 rapporto tra l'area della superficie e l'area della superficie proiettata
 fornisce l'incremento dell'area superficiale (grazie a trattamento che
 aumenti la rugosità) rispetto a quella di partenza

 $\mathbf{S_{dr}}$ = 100% \Rightarrow l'area della superficie doppia rispetto all'area della superficie proiettata

15

Biomateriali – Laurea Triennale in Ingegneria Biomedica

rugosità: parametri ibridi

 \square $\mathbf{R_{dq}}$ ($\mathbf{S_{dq}}$ nel caso 3D) valore quadratico medio dell'inclinazione θ del profilo nella lunghezza di campionamento

16

Biomateriali – Laurea Triennale in Ingegneria Biomedica

rugosità

□ superfici lisce: $S_a < 0.5 \mu m$ □ superfici leggermente ruvide: $0.5 \mu m < S_a < 1 \mu m$ □ superfici moderatamente ruvide: $1 \mu m < S_a < 2 \mu m$ □ superfici ruvide: $S_a > 2 \mu m$ → migliore osteointegrazione

analisi superficiale: confronto

□ l'attacco acido produce un secondo livello di microrugosità che si sovrappone alla precedente tessitura
□ il rivestimento con film di SiO₂ pur non alterando la morfologia, determina una topografia più frastagliata e disomogenea

analisi superficiale: profilometro

superficie SLA super

principali parametri di rugosità misurati al profilometro

CAMPIONE	S _a [μm]	S _q [Å]	S _z [Å]	S _{sk} []	S _{ku} []	S _{∆q} [°]	$egin{array}{c} \mathbf{S_{ds}} \ [1/ ext{Å}^2] \end{array}$
SLA	3.120	41079	196779	-1.00	4.55	5.01	5.30E-11
SLA + film di SiO ₂	3.197	40770	196745	-0.667	4.08	4.92	5.30E-11

Biomateriali – Laurea Triennale in Ingegneria Biomedica

2

Progettazione di viti metalliche

rilascio da carrier

la tendenza all'adsorbimento del peptide è stata preliminarmente valutata impiegando diverse combinazioni di materiali:

- ☐ il *polietilene* non è adatto per effettuare saggi di rilascio
- ☐ il <u>teflon</u> risulta inerte al peptide
- □ la sequenza mostra elevata affinità per il vetro e per il ricoprimento in SiO₂

il network di silice non rilascia il peptide nel tempo sperimentale → si può ipotizzare che

- il peptide d'adesione resti disponibile all'interfaccia impianto-tessuto osseo
- · non si generino fenomeni d'inibizione

Biomateriali – Laurea Triennale in Ingegneria Biomedica

saggi in vivo: risultati a due settimane

senza peptide d'adesione con peptide d'adesione

→ il marcatore osseo rileva una attività osteogenica più diffusa nei campioni arricchiti col peptide d'adesione

Biomateriali – Laurea Triennale in Ingegneria Biomedica

27

Progettazione di viti metalliche

saggi in vivo: risultati a quattro settimane

senza peptide d'adesione con peptide d'adesione

la differenza in termini di attività osteogenica tra campioni arricchiti e non arricchiti risulta meno marcata

Biomateriali – Laurea Triennale in Ingegneria Biomedica

conclusioni

□ il rivestimento in film di SiO₂ non altera la morfologia superficiale
□ il peptide d'adesione, intrappolato nel network di silice, resta disponibile all'interfaccia impianto-tessuto
□ il peptide d'adesione favorisce l'adesione cellulare in vitro
□ il peptide d'adesione promuove l'osteogenesi in vivo

I risultati ottenuti consentono di

• validare l'approccio progettuale alla fabbricazioni di viti metalliche bioattive

• estendere l'attività sperimentale a modelli animali più complessi

Biomateriali – Laurea Triennale in Ingegneria Biomedica