Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Moderna I

Tarea 7

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

20 de Marzo 2020

Ejercicio 1. (50 puntos)

Si $n \neq 4$, demuestre que A_n es el único subgrupo normal propio no trivial de S_n .

Demostración. El grupo A_3 puede verse fácilmente que es simple. Cuando n=4 tenemos el subgrupo normal $\{1,(12)(34),(13)(24),(14)(23)\}$ en A_4 , teniendo así que A_4 no es simple.

Asumamos que $n \geq 5$.

Paso 1 A_n es generado por 3-ciclos.

De hecho cualquier elemento de A_n es un producto de transposiciones de la forma (ab)(cd) o (ab)(ac). Como (ab)(cd) = (acb)(acd) y (ab)(ac) = (acb) concluimos que A_n es generado por los 3-ciclos. Ademas $(1a2) = (12a)^{-1}$, $(1ab) = (12b)(12a)^{-1}$, $(2ab) = (12b)^{-1}(12a)$, y $(abc) = (12a)^{-1}(12c)(12b)^{-1}(12a)$, los que muestra que cada 3-ciclo es generado por un ciclo de la forma (12k).

Paso 2 Si H es un subgrupo normal de A_n . H contiene un 3-ciclo, entonces $H = A_n$.

Sin pérdida de generalidad (123) $\in H$, Entonces $(12k) = ((12)(3k))(123)^{-1}((12)(3k))^{-1} = ((123)^{-1})^{(12)(3k)} \in H$ por normalidad. Así $A_n = \langle (12k) : k \geq 3 \rangle \leq H$, y $H = A_n$.

Supongamos que $H \neq 1$ es normal en A_n , entonces debemos exhibir que H necesariamente contiene un 3-ciclo. Luego usamos el paso 2 para concluir la demostración. Por casos:

- 1. Sin perdida de generalidad suponer que H contiene a $\sigma = (12 \cdots r)\tau$, donde $r \ge 4$, y τ es disjunto de $\{1, 2, \dots, r\}$. Entonces por normalidad de H, H contiene $\sigma^{-1}\sigma^{(123)} = (12r)$. Y acabamos con el paso 2.
- 2. Supongamos sin perdida de generalidad $\sigma = (123)(456)\tau \in H$, donde τ es el producto de transposiciones disjuntas. Entonces H contiene $\sigma^{-1}\sigma^{(124)} = (14263) = (12r)$ y acabamos con el paso 1.
- 3. Supongamos sin perdida de generalidad que $(123)\tau \in H$, con τ un producto de transposiciones disjuntas, entonces H contiene a $(123)\tau(123)\tau = (132)$, y acabamos con el paso 2.
- 4. Supongamos que H contiene elementos que son productos de transposiciones disjuntas. Sin pérdida de generalidad sea $(12)(34)\tau$ sea un elemento de H. Entonces $(12)(34)\tau((12)(34)\tau)^{(123)}=(13)(24)\in H$. Como $n\geq 5$, consideremos $(123)\in A_n$. Por normalidad H contiene a $(13)(24)((13)(24))^{(135)}=(135)$ y acabamos con el paso 2.

Ejercicio 2. (50 puntos)

Demuestre que si $G \leq S_n$ contiene una permutación impar, entonces |G| es par y exactamente la mitad de los elementos de G son permutaciones impares.

Demostración. Supongamos que G es un subgrupo de S_n . Notemos que G contiene a la permutación identidad, la cual es par, así G no consiste de entéramente de permutaciones impares. Si pasara que todos los elementos de G son pares, entonces ya acabaríamos.

En consecuenciua supongamos algunos elementos de G son par y otros impar. Sea E el conjunto de permutaciones pares en G, y sea O el conjunto de permutaciones impares. Ahora queremos demostrar que E y O tienen la misma cardinalidad, lo que significa que queremos exhibir una bivección $\varphi : E \to O$.

Escojamos una permutación impar $\sigma \in O$, y definamos φ por la regla $\varphi(x) = \sigma x$. Notemos que esta función tiene sentido. Si $x \in E$, entonces x es par, y como σ es impar, $\varphi(x) = \sigma x$ es impar. Además, como x y σ están en G, entonces $\varphi(x) = \sigma x$ están en G también porque G es cerrado. Por consiguiente, φ manda permutaciones pares en G a permutaciones impares en G.

Para ver que φ es uno a uno, supongamos $\varphi(\tau) = \varphi(\mu)$. Que significa $\sigma \tau = \sigma \mu$, entonces $\tau = \mu$ por cancelación en S_n . Por tanto φ es uno a uno.

Para ver que es suprayectiva, sea μ una permutación arbitraria en O. Entonces $\sigma^{-1}\mu$ es una permutación par, y está en G porque ambas σ y μ están en G. Por consiguiente $\sigma^{-1}\mu \in E$. Observemos que $\varphi(\sigma^{-1}\mu) = \sigma\sigma^{-1}\mu = \mu$ y se sigue que φ es suprayectiva.

Esto completa la demostración de que hay una función biyectiva $\varphi: E \to O$, así |E| = |O|. Por tanto la mitad de las permutaciones de G son pares y la otra mitad son impares.