ASSIGNMENT 4: VECTOR SPACES

MA 106 : LINEAR ALGEBRA

SPRING 2023

1. Tutorial Problems

(1) Obtain the REF of the following matrices. Use them to find the rank and the nullity of the matrix. Also write down a basis for the range. Finally obtain the RCF and use it to write down a basis for the null space.

(i)
$$\begin{bmatrix} 1 & -2 & 1 \\ 3 & 5 & 1 \\ 4 & 3 & 2 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 1 & -1 \\ 3 & 4 & 0 \\ 2 & -3 & 1 \\ 5 & 1 & 1 \end{bmatrix}$$
.

- (2) Show that the only possible subspaces of \mathbb{R}^3 are the zero space $\{0\}$, lines passing through the origin, planes passing through the origin and the whole space.
- (3) A **hyperplane** in \mathbb{R}^n is defined to be the set u+W where $u \in \mathbb{R}^n$ and W is a subspace of \mathbb{R}^n having dimension n-1. Prove that a hyperplane in \mathbb{R}^n is the set of solutions of a single linear equation $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ where $a_1, \ldots, a_n, b \in \mathbb{R}$.
- (4) Consider the following subsets of the space $M_n(\mathbb{C})$ of $n \times n$ complex matrices:
 - (a) $Sym_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : A = A^T\}$ of symmetric matrices.
 - (b) $Herm_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : A = A^*\}$ of **Hermitian matrices**.
 - (c) $Skew_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : A = -A^*\}$ of skew-Hermitian Matrices.

Show that each of them is an \mathbb{R} -vector subspace of $M_n(\mathbb{C})$ and compute their dimension by explicitly writing down a basis for each of them.

- (5) Let $P_n[x]$ denote the vector space consisting of the zero polynomial and all real polynomials of degree $\leq n$, where n is fixed. Let S be a subset of all polynomials p(x) in $P_n[x]$ satisfying the following conditions. Check whether S is a subspace; if so, find the dimension of S. (i) p(0) = 0; (ii) p is an odd function; (iii) p(0) = p''(0) = 0.
- (6) Examine whether the following sets are linearly independent.
 - (a) $\{(a,b),(c,d)\}\subset \mathbb{R}^2$, with $ad-bc\neq 0$.
 - (b) For $\alpha_1, \ldots, \alpha_k$ distinct real numbers, the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ where $\mathbf{v}_i = (1, \alpha_i, \alpha_i^2, \ldots, \alpha_i^{k-1})$.
 - (c) $\{1, \cos x, \cos 2x, \dots, \cos nx\}.$
 - (d) $\{1, \sin x, \sin 2x, \dots, \sin nx\}.$
 - (e) $\{e^x, xe^x, \dots, x^n e^x\}.$
- (7) Find a basis for the subspace $W = \{(x, y, z) \in \mathbb{R}^3 \mid x 2y + 3z = 0\}$. Let P be the xy-plane. Find a basis of $W \cap P$. Find a basis of the subspace of all vectors in \mathbb{R}^3 which are perpendicular to the plane W.

1

2. Practice Problems

- (8) Let $M_n(\mathbb{C})$ be the set of all $n \times n$ matrices with entries in \mathbb{C} . Show that $M_n(\mathbb{C})$ is a vector space over \mathbb{C} and $\{E_{(i,j)}, 1 \leq i, j \leq n\}$, where $E_{(i,j)}$ denote $n \times n$ matrix with 1 at $(i,j)^{\text{th}}$ place and 0 elsewhere is a basis of it.
- (9) Examine whether the following subsets of the set of real valued functions on \mathbb{R} are linearly dependent or independent. Compute the dimension of the subspace spanned by each set (a) $\{1+t,(1+t)^2\}$; (b) $\{x,|x|\}$.
- (10) Examine whether the following sets of vectors constitute a vector space. If so, find the dimension and a basis of that vector space.
 - (a) The set of all (x_1, x_2, x_3, x_4) in \mathbb{R}^4 such that (i) $x_4 = 0$; (ii) $x_1 \le x_2$; (iii) $x_1^2 x_2^2 = 0$;
 - (iv) $x_1 = x_2 = x_3 = x_4$; (v) $x_1 x_2 = 0$.
 - (b) The set of all real functions of the form $a \cos x + b \sin x + c$, where $a, b, c \in \mathbb{R}$. (c) Cubic homogeneous polynomials together with the zero polynomial.
 - (d) The set of all $n \times n$ real matrices $((a_{ij}))$ which are:
 - (i) diagonal; (ii) upper triangular; (iii) having zero trace; (iv) symmetric; (v) anti-symmetric (i.e., those satisfying $A^t = -A$;) (vi) invertible.
 - (e) The set of all real polynomials of degree 5 together with the zero polynomial.
 - (f) The set of all complex polynomials of degree ≤ 5 with p(0) = p(1) together with the zero polynomial.
 - (g) The real functions of the form $(ax + b)e^x$, $a, b \in \mathbb{R}$.
- (11) Let $\alpha_1, \alpha_2, \alpha_3$ be fixed real numbers. Show that the vectors $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ such that $x_4 = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3$ forms a subspace, which is spanned by $(1, 0, 0, \alpha_1)$, $(0, 1, 0, \alpha_2)$ and $(0, 0, 1, \alpha_3)$. Find the dimension of this subspace.
- (12) Let A be a 10×10 matrix with $A^2 = 0$. Show that rank $A \le 5$.
- (13) Let A be a 5×4 matrix having rank 4. Show that Ax = b has no solution when the augmented matrix [A|b] is invertible. Show that Ax = b is solvable then [A|b] is singular.