

Engenharia De Computação

FUCO5A - Análise de Circuitos Elétricos 1

EXPERIMENTO 04: TRANSITÓRIOS EM CIRCUITOS DE CC DE 2ª ORDEM.

ARTHUR HENRIQUE DE OLIVEIRA PETROLI DEIVID DA SILVA GALVÃO JOÃO VITOR LEVORATO DE SOUZA

ARTHUR HENRIQUE DE OLIVEIRA PETROLI DEIVID DA SILVA GALVÃO JOÃO VITOR LEVORATO DE SOUZA

Relatório

Relatório do Trabalho Prático Disciplinar apresentado como requisito parcial à obtenção de nota na disciplina de Análise de Circuitos Elétricos 1 do Curso Superior de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Orientador: Prof. Leonardo Bruno Garcia Campanhol

SUMÁRIO

I.MATERIAIS E MÉTODOS	4
2. RESULTADOS E DISCUSSÕES	5
3. CONCLUSÃO	8

1. MATERIAIS E MÉTODOS

- Materiais utilizados

- Gerador de funções;
- Osciloscópio digital;
- Multímetro;
- Matriz de contato (protoboard);
- Capacitores;
- Indutores;
- Potenciômetro de 1 k Ω ;
- Resistores.

- Objetivos

 Verificar experimentalmente a resposta transitória de circuitos de corrente contínua de segunda ordem.

- Descrição do experimento:

O experimento foi realizado via simulação utilizando o software LTSpice, onde por meio dele foi montado o circuito da figura 1.

Figura 1 – Circuito 1: análise de transitórios em circuito de 2º ordem.

Para o circuito, escolhemos um capacitor de 0.5F e um indutor de 2H. O valor de R foi ajustado com base na fórmula de amortecimento. Foram realizadas três análises: amortecimento crítico, supercrítico e subamortecimento. Em seguida, foi aplicada uma função transitória para obter dados numéricos e gráficos das correntes no capacitor ao longo do tempo.

2. RESULTADOS E DISCUSSÕES

Por meio de fórmulas abaixo foi definido as resistências para que o circuito resulte em cada um dos casos de amortecimento.

Amortecimento Crítico Subamortecido Crítico $\frac{R}{2.L} = \frac{1}{\sqrt{L.C}} \qquad \qquad \frac{R}{2.L} < \frac{1}{\sqrt{L.C}} \qquad \qquad \frac{R}{2.L} > \frac{1}{\sqrt{L.C}}$

Utilizando o software LTSpice, foi montado os circuitos referentes à Figura 1 para os casos de amortecimento crítico e supercrítico e subamortecimento, conforme mostrado na Figura 2, 3 e 4.

Figura 2: Circuito supercrítico no LTSpice.

Fonte: Autoria Própria (2024).

Figura 3: Circuito crítico no LTSpice.

Fonte: Autoria Própria (2024).

Figura 4: Circuito subamortecido no LTSpice.

Fonte: Autoria Própria (2024).

Após a montagem dos circuitos, procedemos à criação dos gráficos de tensão e corrente, resultando nas figuras 5 e 6, onde a linha vermelha simboliza o circuito subamortecido enquanto que a azul e verde são os circuitos crítico e supercrítico.

Figura 5: Gráfico de tensão

Fonte: Autoria Própria (2024).

Figura 6: Gráfico de corrente.

Fonte: Autoria Própria (2024).

Após a análise comparativa entre os resultados experimentais obtidos por meio do LTSpice e os valores teóricos, podemos concluir que há uma notável concordância entre ambos. Os gráficos gerados pelo software coincidem de forma precisa com o comportamento previsto pela teoria. Isso valida as premissas teóricas e reforça a confiabilidade do modelo utilizado.

3. CONCLUSÃO

Neste experimento, realizamos simulações de circuitos usando o software LTSpice para analisar a resposta transitória de circuitos de segunda ordem em corrente contínua. Comparamos os sinais gerados pelo software com os sinais teóricos, variando o valor do resistor para abranger casos de sub amortecimento, amortecimento crítico e amortecimento supercrítico. A comparação com os equivalentes teóricos confirmou que os gráficos gerados estão em conformidade com a teoria. Portanto, os resultados foram satisfatórios na análise da resposta transitória para circuitos de segunda ordem em corrente contínua.