

UNIVERSITY MASTER'S DEGREE

PHYSICAL TECHNOLOGY: RESEARCH AND APPLICATIONS

MASTER'S THESIS

Exploring the relationship between Hawkes processes and self-organized criticality in living systems

Antonio Rivas Blanco

Tutor(s): Jorge Hidalgo Aguilera and Serena di Santo

Line of research: Modelling of complex systems and their interdisciplinary applications

Córdoba, 07/2024

Autorización de defensa del Trabajo Fin de Máster

Tutor 1: Jorge Hidalgo Aguilera

Tutor 2: Serena di Santo

INFORMAN: Que el presente trabajo titulado Exploring the relationship between Hawkes processes and self-organized criticality in living systems que constituye la memoria del Trabajo Fin de Máster ha sido realizado por Antonio Rivas Blanco y AUTORIZA/N su presentación para que pueda ser defendido en la convocatoria 1ª con fecha 23/07/2024.

Firmado en Córdoba a X de julio de 2024

Tutor 1: Jorge Hidalgo Aguilera

Tutor 2: Serena di Santo

Declaración de autoría

Nombre y apellidos: Antonio Rivas Blanco

DNI: 49832223D

DECLARA

- 1. Que el trabajo que presenta es totalmente original y que se hace responsable de todo su contenido.
- 2. Que no ha sido publicado no total ni parcialmente.
- 3. Que todos los aportes de otros autores/as han sido debidamente referenciados.
- 4. Que no ha incurrido en fraude científico, plagio o vicios de autoría.
- 5. Que, en caso de no cumplir los requerimientos anteriores, aceptará las medidas disciplinarias sancionadoras que correspondan.

Firmado en Córdoba a, X de julio de 2024

"Va por los días en los que quiero un abrazo y acabo encerrado solo en en cuarto". —Piezas Cambiar encabezado y pie de página en .sty

Contents

C	ontents	3
Li	st of Figures	4
Li	st of Tables	5
A	bstract. Keywords	6
1	Introduction	7
2	Objectives	8
3	Methodology	9
4	Results 4.1 Results from the original paper	10 10
5	Conclusions	11

List of Figures

4.1	Percolation phase diagrams for different event number K taking average values of $R =$	
	1000 realizations.	10

List of Tables

 $5 \hspace{1.5cm} \text{pág. 5}$

Abstract

Introduction

Objectives

Methodology

Results

This section provides the main results of the investigation. First, the results reproduced from the original paper [1] are presented. Then, the results of the analysis with n=2 are shown. Finally, we have studied the behaviour of an inhibitory and excitatory neuron coupled.

4.1 Results from the original paper

The first result is the percolation phase diagram is shown in Figure 4.1. It displays the percolation strength P_{∞} versus the resolution parameter Δ .

Figure 4.1. Percolation phase diagrams for different event number K taking average values of R = 1000 realizations.

The first plot configuration is a Markovian (n=0) Poisson process with rate μ . This is the simplest case, where the inter-event time $x=t_i-t_{i-1}$ follows an exponential distribution $P(x_i)=\mu e^{\mu x_i}$. The other two plots are non-Markovian Hawkes processes for $\mu \ll 1$ and $\mu \gg 1$. In one hand, a double transition is observed when $\mu=10^{-4}$, in the other hand, a single transition occurs when $\mu=10^2$.

Conclusions

Bibliography

[1] Daniele Notarmuzi et al. "Percolation theory of self-exciting temporal processes". In: *Physical Review E* 103.2 (2021), p. L020302.

Anexo

REVISAR LOS CÓDIGOS PARA QUE ESTÉN ACTUALIZADOS

Script 5.1. Script Python con todas las funciones.

```
1 import numpy as np
  import matplotlib.pyplot as plt
  def algorithm (rate, mu, n):
       Algorithm that computes interevent times and Hawkes intensity
6
      #Output: rate x_k, x_k
8
9
      # Paso 1
       u1 = np.random.uniform()
11
       if mu == 0:
12
           F1 = np.inf
13
       else:
           F1 = -np \cdot log(u1) / mu
      # Paso 2
17
       u2 = np.random.uniform()
18
       if (rate - mu) = 0:
19
           G2 = 0
20
       else:
21
           G2 = 1 + np.log(u2) / (rate - mu)
22
23
24
      # Paso 3
       if G2 \ll 0:
          F2 = np.inf
27
       else:
28
           F2 = -np.log(G2)
29
30
      # Paso 4
31
      xk = \min(F1, F2)
32
33
      # Paso 5
34
       rate_tk = (rate - mu) * np.exp(-xk) + n + mu
       return rate_tk, xk
  def generate_series(K, n, mu):
38
39
       Generates temporal series for K Hawkes processes
40
41
      ##Inputs:
42
```

```
K: Number of events
43
       n: Strength of the Hawkes process
44
       mu: Background intensity
45
46
       ##Output:
47
        times: time series the events
48
        rate: time series for the intensity
49
50
       times\_between\_events = [0]
51
        rate = [mu]
        for \underline{\phantom{}} in range (K):
53
54
            rate_tk, xk = algorithm(rate[-1], mu, n)
55
            rate.append(rate_tk)
56
            times_between_events.append(xk)
        times = np.cumsum(times_between_events)
57
58
        return times, rate
59
   def identify_clusters(times, delta):
60
61
        Identifies clusters in a temporal series given a resolution parameter delta
62
63
       ## Inputs:
64
       times: temporal series
65
        delta: resolution parameter
66
67
       ## Output:
68
69
        clusters: list of clusters
70
        clusters = []
71
        current_cluster = []
72
        for i in range (len(times) - 1):
73
            if times[i + 1] - times[i] \le delta:
74
                if not current_cluster:
75
                     current_cluster.append(times[i])
76
                current_cluster.append(times[i + 1])
77
            else:
78
                if current_cluster:
79
                     clusters.append(current_cluster)
80
                     current_cluster = []
81
        return clusters
82
83
   def generate_series_perc(K, n, mu):
84
85
        Generates temporal series for K Hawkes processes
86
87
       ##Inputs:
       K: Number of events
89
       n: Strength of the Hawkes process
90
       mu: Background intensity
91
92
       ##Output:
93
       times_between_events: time series the interevent times
94
        times: time series the events
95
        rate: time series for the intensity
96
97
        times\_between\_events = [0]
98
        rate = [mu]
        for _ in range(K):
100
            rate_tk, xk = algorithm(rate[-1], mu, n)
101
            rate.append(rate_tk)
102
            times\_between\_events.append(xk)
103
        times = np.cumsum(times_between_events)
104
```

```
return times_between_events, times, rate
106
   def calculate_percolation_strength(times_between_events, deltas):
107
       percolation\_strengths = []
       for delta in deltas:
           cluster_sizes = []
111
           # Initialize the size of the current cluster
           current\_cluster\_size = 1 \# The first event is always a cluster
113
114
            for i in range(len(times_between_events)):
                if times_between_events[i] <= delta:</pre>
116
117
                    current_cluster_size += 1
                else:
118
                    if current_cluster_size > 1: # Only consider clusters with more than one
       event
                        cluster_sizes.append(current_cluster_size)
                    # Reset the size of the current cluster
121
                    current_cluster_size = 1 # The next event is always a cluster
123
           # Add the size of the last cluster
           if current_cluster_size > 1: # Only consider clusters with more than one event
                cluster_sizes.append(current_cluster_size)
126
127
           max_cluster_size = max(cluster_sizes)
           percolation_strengths.append(max_cluster_size / len(times_between_events))
130
131
       return percolation_strengths
       model(n_max, mu_E, mu_I, tau, n_EE, n_IE, n_EI, n_II, dt):
133
134
       Solve the equations of the mena field model for a given number of iterations n_max
136
       Inputs:
137
       n_max: number of iterations
138
       mu_E: Poisson rate of excitatory neurons
       mu_I: Poisson rate of inhibitory neurons
140
       tau: characteristic time of the system
141
       n_EE: influence of excitatory neurons on excitatory neurons
142
       n_IE: influence of excitatory neurons on inhibitory neurons
143
       n_EI: influence of inhibitory neurons on excitatory neurons
144
       n_II: influence of inhibitory neurons on inhibitory neurons
145
       dt: time step
146
147
       Outputs:
148
       time: time series
       t_events_E: times of events of excitatory neurons
       t_events_I: times of events of inhibitory neurons
151
       rates_E: rates of excitatory neurons
152
       rates_I: rates of inhibitory neurons
153
154
       n_E = n_I = n = 0
155
       t_{events} = [0]
       t_{events}I = [0]
157
       rates_E = [mu_E]
158
       rates_I = [mu_I]
       time = [0]
       while n \le n_max:
161
           # Excitation neurons
           l\_Enew = rates\_E[-1] + dt * (mu\_E- rates\_E[-1])/tau
163
           if np.random.uniform() < rates_E[-1]*dt:
164
                l_Enew += n_EE
165
```

```
t\_events\_E.append(time[-1]+dt*np.random.uniform())
166
                  n_E += 1
167
             if \ np.random.uniform() < rates\_I[-1]*dt:
168
                  l\_Enew \mathrel{-\!\!\!-\!\!\!-} = n\_IE
                  t_{events} . append (time[-1]+dt*np.random.uniform())
170
                  n\_E \ +\!= \ 1
171
172
             # Inhibition neurons
173
             l\_Inew \, = \, rates\_I \, [-1] \, + \, dt \, * \, (mu\_I \!\! - \, rates\_I \, [-1]) / tau
174
             if np.random.uniform() < rates_E[-1]*dt:
175
                  l\_Inew += n\_EI
176
177
                  t_{events}I.append(time[-1]+dt*np.random.uniform())
                  n_I += 1
178
179
             if np.random.uniform() < rates_I[-1]*dt:
                  l\_Inew -= n\_II
                  t\_events\_I.append(time[-1]+dt*np.random.uniform())
                  n\_I \ +\!= \ 1
             rates\_E.append(l\_Enew)
183
             {\tt rates\_I.append(l\_Inew)}
184
             time.append(time[-1]+dt)
185
186
             n = n\_E + n\_I
187
        return time, t_events_E, t_events_I, rates_E, rates_I
188
```