

Learning to Rank 2

Владимир Гулин

21 марта 2018 г.

План лекции

Напоминание

YetiRank

Listwise approach

Learning to rank using clickthrough data

Задача ранжирования

Множество запросов $Q = \{q_1, q_2, \dots, q_n\}$

Множество документов соответствующих каждому запросу $q \in \mathcal{Q}$

$$q \rightarrow d_1, d_2, \dots$$

Для каждой пары (q,d) сопоставляется оценка релевантности y(q,d), чем выше оценка, тем релевантнее документ d по запросу q.

Оценки релевантности сравнимы, только в рамках одного запроса:

$$(q, d_1) \prec (q, d_2) \iff y(q, d_1) < y(q, d_2)$$

Алгоритмы ранжирования

Discounted Cumulative Gain

$$DCG = \sum_{i=1}^{N_q} \frac{2^{rel_i} - 1}{\log_2 i + 1}$$

- ▶ pointwise (другая целевая функция)
 - Обучение на отдельных примерах запрос-документ
- pairwise (другая целевая функция)
 - Обучение на парах документах в рамках запроса
- listwise
 - Обучение на отранжированных списках

Вопрос:

Какие есть достоинства и недостатки у pointwise и pairwise подходов?

Yetirank

Дано:

- Pairwise алгоритм
- Хотим оптимизировать

$$L(f(x)) = -\sum_{(i,j)} w_{ij} log \frac{e^{f(x_i)}}{e^{f(x_i)} + e^{f(x_j)}}$$

- (i,j) пары документов по определенному запросу
- $ightharpoonup w_{ij}$ вес пары (i,j)

Матан

$$L(f(x)) = -\sum_{(i,j)} w_{ij} \log \frac{e^{f(x_i)}}{e^{f(x_i)} + e^{f(x_j)}}$$
$$dL(f(x)) = \sum_{(i,j)} w_{ij} \left((df(x_i) - df(x_j)) \frac{e^{f(x_j)}}{e^{f(x_i)} + e^{f(x_j)}} \right)$$

Обозначим

$$y_t = \sqrt{w_{ij}}(df(x_i) - df(x_j)), \quad a_t = \sqrt{w_{ij}} \frac{e^{f(x_j)}}{e^{f(x_i)} + e^{f(x_j)}}$$

Будем искать у фиксированной длины

$$\operatorname*{arg\,min}_{y,|y|=const} \sum_t y_t a_t = \operatorname*{arg\,min}_{y,|y|=const} \left(1 + 2 \sum_t \frac{y_t a_t}{|a||y|} + 1\right) = \\ = \operatorname*{arg\,min}_{y,|y|=const} \left(y_t + \frac{|y|}{|a|} a_t\right)^2$$

Матан

Подставим теперь выражения для y_t и a_t и определим $\lambda = |y|/|a|$

$$\underset{\lambda,df}{\operatorname{arg\,min}} \sum_{(i,j)} w_{ij} \left((df(x_i) - df(x_j)) + \lambda \frac{e^{f(x_j)}}{e^{f(x_i)} + e^{f(x_j)}} \right)^2$$

Выберем, к примеру, $\lambda=1$

$$\arg\min_{df} \sum_{(i,j)} w_{ij} \left((df(x_i) - df(x_j)) + \frac{e^{f(x_j)}}{e^{f(x_i)} + e^{f(x_j)}} \right)^2$$

Связь с LambdaRank

B LambdaRank решение задачи упрощается

$$\arg\min_{df} \sum_{(i,j)} w_{ij} \left[\left(df(x_i) + \frac{1}{2} \frac{e^{f(x_j)}}{e^{f(x_i)} + e^{f(x_j)}} \right)^2 + \left(df(x_j) - \frac{1}{2} \frac{e^{f(x_j)}}{e^{f(x_i)} + e^{f(x_j)}} \right)^2 \right]$$

Если ввести обозначения

$$Val_{i} = \sum_{j} w_{ji} \frac{1}{2} \frac{e^{f(x_{j})}}{e^{f(x_{i})} + e^{f(x_{j})}} - \sum_{j} w_{ij} \frac{1}{2} \frac{e^{f(x_{j})}}{e^{f(x_{i})} + e^{f(x_{j})}}$$
$$W_{i} = \sum_{j} w_{ij} + \sum_{j} w_{ji}$$

Тогда

$$\arg\min_{df} \sum_{i} W_{i} (df(x_{i}) - \frac{Val_{i}}{W_{i}})^{2}$$

Снова матан

Если так не делать и вспомнить что у нас специальные деревья, то можно решать задачу оптимизации сразу для пар

$$\arg \min_{df} \sum_{(i,j)} w_{ij} \left((c_{leaf}(x_i) - c_{leaf}(x_j)) + \frac{e^{f(x_j)}}{e^{f(x_i)} + e^{f(x_j)}} \right)^2$$

$$A = \begin{pmatrix} \vdots \\ 0 & 1 & -1 & 0 & \dots \\ 1 & 0 & -1 & 0 & \dots \\ \vdots & \vdots & \vdots \\ 0 & \frac{e^{x_3}}{e^{x_2} + e^{x_3}} - \frac{e^{x_3}}{e^{x_1} + e^{x_3}} - \frac{e^{x_3}}{e^{x_1} + e^{x_3}} \\ \vdots & \vdots & \vdots \end{pmatrix}$$

Отсюда методом наименьших квадратов можно найти выражение сразу для листьев

$$c = (A^T w A)^{-1} A^T w b$$

YetiRank

Добавим информацию об ошибках ассесоров в модель

Оценка	Нерелев.	Малополез.	Полез.	Точ. ответ	Обяз. страница
Нерелевантна	0.75	0.22	0.02	0	0
Малополезная	0.34	0.54	0.11	0.01	0
Полезная	0.07	0.13	0.73	0.06	0.01
Точный ответ	0.04	0.04	0.52	0.32	0.08
Обяз. страница	0.03	0.02	0.05	0.08	0.83

$$w_{ij} = c(l_i, l_j), \quad c(l_i, l_j) = \sum_{u} \sum_{v} I[u > v] p(u|l_i) p(v|l_j),$$

 $u, v \in 1, 2, 3, 4, 5$

YetiRank

Listwise approach

Что все таки мешает оптимизировать NDCG напрямую?

$$NDCG = \frac{1}{NDCG_{max}} \sum_{q \in Q} \sum_{i=1}^{N_q} \frac{2^{rel_i}}{log_2(i+1)}$$

Listwise approach

Цель:

Оптимизация целевого функционала качества ранжирования

- ► SoftRank сглаживание функции метрики
- AdaRank методы бустинга
- ListNet оптимизация гладкой функции, похожей на целевую

Идея:

Рассматриваем ранк каждого документа как случайную величину, распределенную по нормальному закону

$$p(s_{j}) = \mathcal{N}(s_{j}|\bar{s}_{j}, \sigma_{s}^{2}) = \mathcal{N}(s_{j}|f(\mathbf{w}, \mathbf{x}_{j}), \sigma_{s}^{2})$$

$$s_{j} = \mathcal{N}(s_{j}$$

Вероятностное распределение на позициях документа

Вероятность того, что i-ый документ окажется выше, чем документ j:

$$\pi_{ij} \equiv Pr(s_i - s_j > 0) = \int\limits_0^\infty \mathcal{N}(s|\bar{s}_j - \bar{s}_j, 2\sigma_s^2)ds$$

Цель:

Хочется получить вероятность того, что конкретный документ находится на позиции \emph{r}

Рекурсивное вычисление вероятностей

► NDCG:

$$G = G_{\mathsf{max}}^{-1} \sum_{j=1}^{N} g(\mathit{l}_{j}) D(\mathit{r}_{j})$$

► SoftNDCG:

$$\mathcal{G} \equiv G_{max}^{-1} \sum_{j=1}^{N} g(l_j) E[D(r_j)]$$

$$\mathcal{G} \equiv G_{max}^{-1} \sum_{j=1}^{N} g(I_j) \sum_{r=0}^{N-1} D(r_j) p_j(r)$$

Градиент:

$$\frac{\partial \mathcal{G}}{\partial \mathbf{w}} = \frac{\partial \mathcal{G}}{\partial \overline{\mathbf{s}}} \frac{\partial \overline{\mathbf{s}}}{\partial \mathbf{w}}$$

$$\frac{\partial \mathcal{G}}{\partial \bar{s}_{m}} = G_{max}^{-1} \sum_{i=1}^{N} g(l_{i}) \sum_{r=0}^{N-1} D(r_{i}) \frac{\partial p_{i}(r)}{\partial \bar{s}_{m}}$$

 $rac{\partial p_j(r)}{\partial ar{s}_m}$ вычисляем через $rac{\partial \pi_{ij}}{\partial ar{s}_m}$

$$\frac{\partial \pi_{ij}}{\partial \bar{s}_m} = \begin{cases} \mathcal{N}(0|\bar{s}_m - \bar{s}_j, 2\sigma_s^2) & m = i, m \neq j \\ -\mathcal{N}(0|\bar{s}_i - \bar{s}_m, 2\sigma_s^2) & m \neq i, m = j \\ 0 & m \neq i, m \neq j \end{cases}$$

Ключевые идеи:

- Аналог AdaBoost для задачи ранжирования
- Минимизирует экспоненциальную аппроксимацию функции потерь
- В качестве базовых ранкеров использует упорядочивание по значениям одного признака

Обозначения

Table 1: Notations and explanations.

Notations	Explanations
$q_i \in Q$	<i>i</i> th query
$\mathbf{d}_i = \{d_{i1}, d_{i2}, \cdots, d_{i, n(q_i)}\}$	List of documents for q_i
$y_{ij} \in \{r_1, r_2, \cdots, r_\ell\}$	Rank of d_{ij} w.r.t. q_i
$\mathbf{y}_i = \{y_{i1}, y_{i2}, \cdots, y_{i,n(q_i)}\}\$	List of ranks for q_i
$S = \{(q_i, \mathbf{d}_i, \mathbf{y}_i)\}_{i=1}^m$	Training set
$\vec{x}_{ij} = \Psi(q_i, d_{ij}) \in X$	Feature vector for (q_i, d_{ij})
$f(\vec{x}_{ij}) \in \mathfrak{R}$	Ranking model
$\pi(q_i, \mathbf{d}_i, f)$	Permutation for q_i , \mathbf{d}_i , and f
$h_t(\vec{x}_{ij}) \in \mathfrak{R}$	<i>t</i> th weak ranker
$E(\pi(q_i, \mathbf{d}_i, f), \mathbf{y}_i) \in [-1, +1]$	Performance measure function

Input: $S = \{(q_i, \mathbf{d}_i, \mathbf{y}_i)_{i=1}^m$, and parameters E and T Initialize $P_1(i) = 1/m$. For $t = 1, \dots, T$

- Create weak ranker h_t with weighted distribution P_t on training data S.
- Choose α_t

$$\alpha_t = \frac{1}{2} \cdot \ln \frac{\sum_{i=1}^m P_t(i)\{1 + E(\pi(q_i, \mathbf{d}_i, h_t), \mathbf{y}_i)\}}{\sum_{i=1}^m P_t(i)\{1 - E(\pi(q_i, \mathbf{d}_i, h_t), \mathbf{y}_i)\}}.$$

• Create f_t

$$f_t(\vec{x}) = \sum_{k=1}^t \alpha_k h_k(\vec{x}).$$

• Update P_{t+1}

$$P_{t+1}(i) = \frac{\exp\{-E(\pi(q_i, \mathbf{d}_i, f_t), \mathbf{y}_i)\}}{\sum_{j=1}^m \exp\{-E(\pi(q_j, \mathbf{d}_j, f_t), \mathbf{y}_j)\}}.$$

End For

Output ranking model: $f(\vec{x}) = f_T(\vec{x})$.

- Вместо максимазации NDCG, будем минимизировать "расстояние" между истинным ранжированием и ранжированием, порождаемым ранжирующей функцией
- Метки релевантности или значения ранжирующей функции на документах порождают вероятностное распределение на множестве перестановок этих документов (модель Luce-Plackett)
- Максимизируем близость распределения, порождаемого значениями ранжирующей функции к распределению порождаемому истинными метками релевантности

• Probability of permutation π is defined as

$$P_s(\pi) = \prod_{j=1}^n \frac{\varphi(s_{\pi(j)})}{\sum_{k=j}^n \varphi(s_{\pi(k)})}$$

Example:

P(C ranked No.3 | A ranked No.1, B ranked No.2)

- Модель нейронная сеть
- Обучается градиентным спуском
- Функция потерь KL дивергенция между распределениями, порожденными истинными метками релевантности и значениями функции ранжирования $(\phi = exp)$

$$L(h) = -\sum_{q \in Q} \sum_{G(j_1, \dots, j_n)} \left(\prod_{t=1}^n \frac{e^{rel_{j_t}}}{\sum_{u=t}^n e^{rel_{j_u}}} \right) log \left(\prod_{t=1}^n \frac{e^{h(x_{j_t})}}{\sum_{u=t}^n e^{h(x_{j_u})}} \right)$$

Вопрос:

▶ Какая есть проблема с обучением такой модели?

- Модель нейронная сеть
- Обучается градиентным спуском
- Функция потерь KL дивергенция между распределениями, порожденными истинными метками релевантности и значениями функции ранжирования $(\phi = exp)$

$$L(h) = -\sum_{q \in Q} \sum_{G(j_1, \dots, j_n)} \left(\prod_{t=1}^n \frac{e^{rel_{j_t}}}{\sum_{u=t}^n e^{rel_{j_u}}} \right) log \left(\prod_{t=1}^n \frac{e^{h(x_{j_t})}}{\sum_{u=t}^n e^{h(x_{j_u})}} \right)$$

ightharpoonup Сумма по всем перестановкам O(n!) в асимптотике

Top-k Probability

- ▶ При подходе "в лоб" на практике использование listnet невозможно
- ▶ Top-k Probability
 - Определим Тор-k подгруппу $G(j_1, \ldots, j_k)$, содержащую все перестановки, у которых top-k документов j_1, \ldots, j_k

$$P_s(G(j_1,\ldots,j_k)) = \prod_{t=1}^k \frac{e^{h(x_{j_t})}}{\sum_{u=t}^n e^{h(x_{j_u})}}$$

- Модель нейронная сеть
- Обучается градиентным спуском
- Функция потерь KL дивергенция между Top-k распределениями, порожденными истинными метками релевантности и значениями функции ранжирования $(\phi = exp)$

$$L(h) = -\sum_{q \in Q} \sum_{G(j_1, \dots, j_k)} \left(\prod_{t=1}^k \frac{e^{rel_{j_t}}}{\sum_{u=t}^n e^{rel_{j_u}}} \right) log \left(\prod_{t=1}^k \frac{e^{h(x_{j_t})}}{\sum_{u=t}^n e^{h(x_{j_u})}} \right)$$

▶ Таким образом снижаем сложность с O(n!) до O(n!/(n-k)!)

Training Performance on TREC Dataset

А какой подход лучше?

- Pointwise
- Pairwise
- Listwise

А какой подход лучше?

- ► Pairwise (информация пропорциональна количеству пар)
- ▶ Pointwise (информация поточечная)
- ► Listwise (информация позапросная)

Вопросы

