

UiO Department of Technology Systems University of Oslo

Control theory
Kim Mathiassen

UiO: Department of Technology Systems University of Oslo

Lecture overview

- 1. Laplace transform
 - 1.1 Transfer functions and block diagrams
 - 1.2 Roots and zeros
 - 1.3 Root locus plots
- 2. Frequency analysis
 - Bode plots

- 3. State space systems
- 4. Feedback systems
- 5. Stability
 - 5.1 Frequency domain
 - 5.2 State space systems
 - 5.3 Non-linear systems

UiO: Department of Technology Systems University of Oslo

Additional litterature

- Reguleringsteknikk Balchen et. al.
- Wikibook on Control Systems wikibooks.org/wiki/ Control_Systems

1. Laplace transform

- A tool to solve linear higher order differential equations
- Example:

Mass-spring-damper system

$$m\ddot{x} + f\dot{x} + kx = u$$

Transforms to

$$mxs^2 + fxs + kx = u$$

This system is now a linear equation

Common Laplace functions

UiO : Department of Technology Systems

UiO: Department of Technology Systems

University of Oslo

$$f(t) = \begin{cases} 1 - e^{-\alpha t} & , t \ge 0 \\ 0 & , t < 0 \end{cases}$$

$$\frac{\alpha}{s(s+\alpha)} = \frac{1}{s(1+Ts)}$$

$$f(t) = \begin{cases} \sin \beta t &, t \ge 0 \\ 0 &, t < 0 \end{cases}$$

$$\frac{\beta}{s^2 + \beta^2} = \frac{\beta}{(s + j\beta)(s - j\beta)}$$

1.2 Transfer functions

 When all initial conditions of a Laplace transform are zero, the response of a linear system, Y(s), is given by its input, X(s), and its transfer function, H(s).

$$Y(s) = H(s) X(s)$$

$$\frac{Y(s)}{X(s)} = H(s)$$

Transfer functions

• For the mass-spring damper system the transfer function is

$$\frac{x}{u} = \frac{1}{ms^2 + fs + kx}$$

Block diagrams

Manipulation of block diagrams

UiO Department of Technology Systems University of Oslo

UiO Department of Technology Systems University of Oslo

UiO Department of Technology Systems
University of Oslo

Drawing a block diagram of mass-spring-damper system

•
$$xs^2 = \frac{1}{m}(u - fxs - kx)$$

1.2 Zeros and poles of the transfer functions

- For rational transferfunctions we denote the roots of the nominator zeros and roots of the denominator poles
- The poles gives important characteristics about the transfer function

$$h(s) = \frac{\rho_p s^p + \dots + \rho_1 s^1 + \rho_0}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_1 s + \alpha_0}$$
$$h(s) = \frac{\rho_p (s - v_1) \dots (s - v_n)}{(s - \lambda_1) \dots (s - \lambda_n)}$$

UiO Department of Technology Systems
University of Oslo

Examples

- Example 1: Given transfer function
- Example 2: Mass-spring-damper system

UiO: Department of Technology Systems University of Oslo

Example 2

- Three cases depending on the poles
- Case I: Poles are real and distinct
 - Over-damped system
- Case II: Poles are real and equal
 - Critically damped system
- Case III: Poles are complex conjugates
 - Under-damped system

$$\zeta < 1$$

 $\zeta > 1$

 $\zeta = 1$

$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = u(t)$$
 Damping ratio Natural frequency

Example 2: Time response

Example 2: Effect of changes in poles

Common transfer functions and their poles and step respones

Nullpunkter og poler	Sprangrepons
Im Re	K
$-\frac{1}{T}$	2K K T t
$-\frac{\star}{-\frac{1}{T}}$	
$-\frac{\mathbf{x}}{-\frac{1}{T}}$	T t
	Im

UiO:

Transfer- funksjon $h(s)$	Nullpunkter og poler	Sprangrepons
$K \frac{1 + T_2 s}{1 + T_1 s} \\ T_2 > T_1$	$-\frac{1}{T_1} - \frac{1}{T_2}$	KT_2/T_1 K T_1 T_1
$K \frac{1 + T_2 s}{1 + T_1 s} \\ T_2 < T_1$	$\begin{array}{c c} -\frac{1}{T_2} & -\frac{1}{T_1} \end{array}$	KT_2/T_1 T_1 t
$\frac{K}{1 + \left(\frac{s}{\omega_0}\right)^2}$	$j\omega_0 *$ $-j\omega_0 *$	2K
$\frac{K}{1 + 2\zeta \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$	× ×	
$\frac{Ks}{1+2\zeta\frac{s}{\omega_0}+\left(\frac{s}{\omega_0}\right)^2}$	×	
$\frac{K(1+Ts)}{1+2\zeta\frac{s}{\omega_0}+\left(\frac{s}{\omega_0}\right)^2}$	× -\frac{1}{T}	

UiO: Department of Technology Systems
University of Oslo

1.3 Root locus plots

- The paths of zeros and poles in the complex plane as a function of changed controller parameters are called root locus plots
- Example on blackboard

UiO: Department of Technology Systems
University of Oslo

2. Frequency analysis

- Analysis of the frequency response of a system
- The frequency response is a mapping of the change of a sine signal from the input to the output of a system
- The frequency response if found using the transfer function
- Frequency response is only valid for linear system

Example of amplitude and phase change

UiO Department of Technology Systems Plot
University of Oslo

Example Bode plot

Frequency - ω, rad-sec⁻¹

3. State space systems

- Using matrix calculus to create a set of first order differential equations
- One benefit is a simple notation for complex systems
- General equation is

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

UiO: Department of Technology Systems
University of Oslo

Transforming the mass-spring-damper system to state space representation

Blackboard

4. Feedback systems

Feedback systems

$$Y(s) = W(s)R(s) + W_D(s)D(s),$$

$$W(s) = \frac{C(s)G(s)}{1 + C(s)G(s)H(s)}$$

$$W_D(s) = \frac{G(s)}{1 + C(s)G(s)H(s)}$$

Feedforward

Feedforward

$$Y(s) = \left(\frac{C(s)G(s)}{1 + C(s)G(s)H(s)} + \frac{F(s)G(s)}{1 + C(s)G(s)H(s)}\right)R(s)$$

$$+ \frac{G(s)}{1 + C(s)G(s)H(s)} \left(D(s) - D_c(s)\right).$$
(C.8)

Inverse model

$$Y(s) = Y_d(s) + \frac{G(s)}{1 + C(s)G(s)H_0} (D(s) - D_c(s)).$$
 (C.10)

UiO Department of Technology Systems
University of Oslo

5. Stability

- 5.1 Frequency domain
- 5.2 State space systems
- 5.3 Non-linear systems

5.1 Definition input/output stability

- Asymptotically stable if:
 - $y \rightarrow 0$ when $t \rightarrow \infty$ and u has a finite duration and amplitude
- Marginally stable if:
 - $-|y| < \infty$ for all $t \ge 0$ and u has a finite duration and amplitude
- Unstable otherwise

5.1 Stability – Frequency domain

- Find the poles (λ_i) of the transfer function
- If $Re(\lambda_i) < 0$ for all λ_i in H(s) the system is asymptotically stable
- If one or more poles has $Re(\lambda_i) = 0$, but they are not in the same point the system is *marginally stable*
- If one or more poles has $Re(\lambda_i) > 0$ the system is *unstable*

5.2 Definition stability of state space systems

- Asymptotically stable if:
 - $x \rightarrow 0$ when $t \rightarrow \infty$ and u has a finite duration and amplitude
- Marginally stable if:
 - $-|x|<\infty$ for all $t\geq 0$ and u has a finite duration and amplitude
- Unstable otherwise

5.2 Stability state space systems

- Solve the systems characteristic equation $|A \lambda I|$ the get the eigenvalues λ_i
- If $Re(\lambda_i) < 0$ for all λ_i the system is asymptotically stable
- If one or more eigenvalues has $Re(\lambda_i) = 0$, but they are not in the same point the system is *marginally stable*
- If one or more poles has $Re(\lambda_i) > 0$ the system is *unstable*

5.3 Lyapunov direct method

- Used to test stability of non-linear systems
- Use an energy description of the system states
- If we can show that the energy of the system decreases along any system trajectory until the equilibrium is reached, the system is stable

$$V(e) > 0 \qquad \forall e \neq 0$$
 $V(e) = 0 \qquad e = 0$
 $\dot{x} = f(x, u) \qquad \dot{V}(e) < 0 \qquad \forall e \neq 0$
 $V(e) \to \infty \qquad ||e|| \to \infty.$

UiO Department of Technology Systems
University of Oslo

5.3 Lyapunov example

Dynamic equation

$$m\ddot{x} + b\dot{x}^3 + kx = u$$

• b is the drag coefficient