МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский физико-технический институт (национальный исследовательский университет) Кафедра вычислительной математики

Метод Рунге-Кутты решения задачи Коши для обыкновенных дифференциальных уравнений первого порядка

Лабораторная работа по курсу вычислительная математика Задание 5

Выполнил: студент группы Б04-856: Крылов Александр

Содержание

1.	Задача Коши	2
2.	Метод Эйлера с пересчетом	2
3.	Достижение заданной точности	2
4.	Реализация и результаты	3
5.	Вывод	3
6.	Приложения 6.1. Код программы	3 3

1. Задача Коши

Рассмотрим задачу Коши на двумерном пространстве на открытом множестве G:

$$\begin{cases} \frac{dy}{dx} = f(x,y) \\ y(x_0) = y_0 \\ x \in [x_0, x_1] \end{cases}$$
 (1)

Согласно теореме существования и единственности для любой точки $(x_0, y_0) \in G$ найдется решение y = y(x) задачи, притом единственное. Нахождение общего решения дифферекнциального уравнения задачи (1) аналитически возможно лишь для некоторых частных случаев. Для нахождения чиленных решений используются методы Рунге-Кутты. В этой работе импользуется один из этих метода второго порядка: метод Эйлера с пересчетом.

2. Метод Эйлера с пересчетом

Простейшим неявным методом Рунге — Кутты является модифицированный метод Эйлера «с пересчётом». Он задаётся формулой:

$$y_{n+1} = y_n + h \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1})}{2},$$
(2)

где $y_{n+1} = y_n + hf(x_n, y_n)$

Для его реализации на каждом шаге необходимы как минимум две итерации (и два вычисления функции).

Модифицированный метод Эйлера «с пересчётом» имеет второй порядок точности.

3. Достижение заданной точности

Получить приближенное представление о допущеннрй погрешности можно, если известен порядок точности используемого метода. Для этого решают задачу на сетке с шагом 2h и h, тогда:

$$y^{2h} = y_0 + C(2h)^k, y^h = y_0 + C(h)^k,$$
(3)

где k - порядок точности метода. Вычитая второе уравнение из первого, получим:

$$y^{2h} - y^h = ch^k(2^k - 1) (4)$$

Тогда имеем оценку точности:

$$|y^{h} - y_{0}| = \frac{|y^{2h} - y^{h}|}{(2^{k} - 1)} \le \epsilon$$
 (5)

Из оценки (номер уравнения точности) получим алгоритм достижения заданной точности. Если не выполняется условие (номер уравнения точности), то необходимо увеличить число шагов в 2 раза и снова проверить (номер уравнения точности). Так поступаем до тех пор, пока заданная точность не будет достигнута.

4. Реализация и результаты

Реализация метода Эйлера с пересчетом для решения задачи

$$\begin{cases} x(2x^2y\ln(y) + 1)\frac{dy}{dx} = 2y\\ y(1) = 1\\ x \in [1, 1.2] \end{cases}$$
(6)

была приведена реализация на языке программирования C++, код приведен в приложении. В ней сначала производится поиск такого количества шагов, которое будет удовлетворять заданной точности $\epsilon=10^{-4}$. Затем производится расчет таблицы (x,y) на всех шагах выбранной сетки. Таблица сохраняется в отдельный файл. В конце происходит вывод значений функции на равномерной сетке с шагом h и 2h, с разностью между ними. Вывод также указан в приложении. Данная программа позволяет при соответствующих изменениях в коде может быть использавана для решения любой задачи Коши (1), и для любого другого метода Рунге-Кутты второго порядка.

5. Вывод

6. Приложения

6.1. Код программы

//Soft works for 2nd order Runge-Kutta methods

```
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <stdbool.h>
#define FTYPE long double
//Settings
//y, = DYX function
#define FUNC (2 * y / (x * ((2 * pow(x, 2) * y * log(y)) - 1)))
//y(X0) = Y0
#define XO_VALUE 1.0
#define YO_VALUE 1
// BORDER_LEFT < X < BORDER_RIGHT
#define BORDER_LEFT 1.0
#define BORDER_RIGHT 1.2
#define EPSILON 1E-4
FTYPE func(FTYPE x, FTYPE y) {
return FUNC;
}
//Get f_1 and f_2
FTYPE* evaluateFunc(int funcNum, FTYPE xn, FTYPE yn, FTYPE MethodMatrix[3][3], FTYPE h)
FTYPE* f = (FTYPE*)malloc(sizeof(FTYPE) * 2);
for (int i = 0; i < 2; i++) {
```

```
f[i] = 0;
f[0] = func(xn, yn);
for (int i = 1; i < funcNum - 1; i++) {
FTYPE x = xn + MethodMatrix[i][0] * h;
FTYPE y = yn;
for (int j = 1; j < i + 2; j++) {
y += MethodMatrix[i][j] * f[j - 1] * h;
f[i] = func(x, y);
}
return f;
}
//Get y_n+1 from y_n
FTYPE evaluateY(FTYPE yn, FTYPE methodMatrix[3][3], FTYPE* functions, int length,
FTYPE h) {
FTYPE ynp1 = yn;
for (int i = 1; i < length; i++) {
FTYPE a = methodMatrix[length - 1][i];
ynp1 += functions[i - 1] * methodMatrix[length - 1][i] * h;
return ynp1;
}
//Reassign XO, YO, borders and epsilon
FTYPE XO = XO_VALUE;
FTYPE YO = YO_VALUE;
FTYPE borders[2] = { BORDER_LEFT, BORDER_RIGHT };
FTYPE epsilon = EPSILON;
//Get h value
FTYPE evalGridStepH(int steps) {
return (borders[1] - borders[0]) / steps;
}
//check if our error is less than epsilon
bool checkIfErrorAcceptable(FTYPE delta, int method) {
FTYPE val = (fabsl(delta)) / (powl(2.0, method) - 1);
return val <= epsilon ? false : true;</pre>
}
int main(int argc, const char* argv[]) {
//function on h grid
FTYPE* f = NULL;
//function on 2h grid
FTYPE* fProxy = NULL;
//Butcher tableau
FTYPE methodMatrix[3][3] = {
\{0, 0, 0\},\
```

```
\{1, 1, 0\},\
\{0.5, 0.5, 0\}
};
//points in uniform grid
FTYPE calcPoints[11];
//y in uniform grid with h step
FTYPE valuesInPoints[11];
//y in uniform grid with 2h step
FTYPE valuesInPointsProxy[11];
//y(2h) - y(h)
FTYPE deltas[11];
//initial setup
for (int i = 0; i < 11; i++) {
calcPoints[i] = borders[0] + ((borders[1] - borders[0]) / 10) * i;
}
valuesInPoints[0] = Y0;
valuesInPointsProxy[0] = Y0;
int stepM = 3;
//counting appropriate number of steps
int steps = 5;
FTYPE maxDelta;
FTYPE h = 0.0;
FTYPE x = X0;
FTYPE xProxy = X0;
FTYPE value = Y0;
FTYPE valueProxy = Y0;
//finding approproate step
do {
x = X0;
xProxy = X0;
value = Y0;
valueProxy = Y0;
for (int i = 0; i <= steps; i++) {
h = evalGridStepH(steps);
x = h * i + X0;
xProxy = 2 * h * i + X0;
for (int j = 0; j < 11; j++) {
if (x == calcPoints[j]) {
valuesInPoints[j] = value;
}
if (xProxy == calcPoints[j]) {
valuesInPointsProxy[j] = valueProxy;
break;
}
}
//count values for output, will be changed if step is too small
f = evaluateFunc(stepM, x, value, methodMatrix, h);
fProxy = evaluateFunc(stepM, xProxy, valueProxy, methodMatrix, 2 * h);
value = evaluateY(value, methodMatrix, f, stepM, h);
valueProxy = evaluateY(valueProxy, methodMatrix, fProxy, stepM, 2 * h);
```

```
}
free(f);
free(fProxy);
for (int i = 0; i < 11; i++) {
deltas[i] = fabsl(valuesInPointsProxy[i] - valuesInPoints[i]);
maxDelta = deltas[0];
for (int i = 1; i < 11; i++) {
if (maxDelta < deltas[i]) {</pre>
maxDelta = deltas[i];
}
}
steps = steps * 2;
} while (checkIfErrorAcceptable(maxDelta, stepM));
FTYPE step = evalGridStepH(steps/2);
FILE* results = fopen( "results.txt", "w+");
FTYPE finalValue = Y0;
fprintf(results, "x = Lf\t y = Lf\n", X0, finalValue);
for (int i = 1; i \le steps/2; i++) {
f = evaluateFunc(stepM, step * i + X0, Y0, methodMatrix, step);
finalValue = evaluateY(finalValue, methodMatrix, f, stepM, step);
fprintf(results, "x = Lf\t y = Lf\n", X0 + i * step, finalValue);
free(f);
}
fclose(results);
printf("Calculated with %d steps\nAccuracy: %Lf\nh=%Lf\nDiff=%Le\n\n", steps / 2,
epsilon, h, maxDelta);
for (int i = 0; i < 11; i++) {
printf("%d) x=%Lf\n\ty(h)=%Lf\n\ty(2h)=%Lf\n\t------\n\ty(2h)-y(h)=%Lf\n\n",
i + 1, calcPoints[i], valuesInPoints[i], valuesInPointsProxy[i],
valuesInPointsProxy[i] - valuesInPoints[i]);
}
system("pause");
return 0;
}
6.2. Вывод консоли
    Calculated with 80 steps
Accuracy: 0.000100
h=0.002500
Diff=4.925484e-04
1) x=1.000000
        y(h)=1.000000
        y(2h)=1.000000
        y(2h)-y(h)=0.000000
2) x=1.020000
```

```
y(h)=0.980675
y(2h)=0.980582
-----y(2h)-y(h)=-0.000093
```

3) x=1.040000

4) x=1.060000

5) x=1.080000

6) x=1.100000

7) x=1.120000

8) x=1.140000

9) x=1.160000

10) x=1.180000 y(h)=0.866620 y(2h)=0.866151 -----

y(2h)-y(h)=-0.000470

11) x=1.200000

y(h)=0.855972

y(2h)=0.855479

y(2h)-y(h)=-0.000493