

Светодиоди

Полупроводникови елементи

Светодиод Light-emitting diode - LED

Светодиодите са ПП елементи, които преобразуват електрическата енергия в светлина. Те имат един *PN* преход.

Структура на светодиод

Принцип на действие

Принципът им на действие се основава на процесите на рекомбинация, протичащи в право включен *PN* преход. При право включване започва инжекция на токоносители.

Инжектираните електрони от n-областта рекомбинират с дупките от p-областта. Електроните имат повисоко енергийно ниво и при падането на нивата на дупките губят енергия.

Енергията се излъчва под формата на квантове светлина – фотони.

Явлението се нарича електролуминисценция.

Електролуминисценция

Дължина на вълната

$$hv = \frac{hc}{\lambda} = \Delta W \qquad \lambda = \frac{hc}{\Delta W} = \frac{1200}{\Delta W}$$

 $\lambda = 0.38 - 0.76 \ \mu m$ видима област

 $\Delta W = 1.6 - 3.1 \text{ eV (GaP, SiC, GaAlAs, GaAsP)}$

Колкото по-голяма е широчината на забранената зона, толкова по-голяма е енергията на излъчения фотон и толкова по-висока е честотата на излъчената светлина (респективно по-къса дължината на вълната й).

Violet ~ 3.17eV
Blue ~ 2.73eV
Green ~ 2.52eV
Yellow ~ 2.15eV
Orange ~ 2.08eV
Red ~ 1.62eV

Спектрална характеристика

Спектралната характеристика дава зависимостта на интензитета на излъчване на светодиода от дължината на вълната. Тя се определя от вида на полупроводниковия материал и легиращите примеси в него.

Конструкция на светодиод

Бял светодиод - RGB

Бял светодиод – син LED + "фосфор"

Бял светодиод – LED + "фосфор"

Син LED + жълт фосфор

UV-LED + RGB фосфор

Нобелова награда за физика - 2014

"for the invention of **efficient** blue light-emitting diodes which has enabled bright and energy-saving white light sources"

© Nobel Media AB. Photo: A. Mahmoud Isamu Akasaki

© Nobel Media AB. Photo: A. Mahmoud **Hiroshi Amano**

© Nobel Media AB. Photo: A. Mahmoud Shuji Nakamura

Ефективност на светлинните източници

Качество на бялата светлина

Spectra From Common Sources of Visible Light

color rendering index (CRI)

Color rendering index (CRI)

Light source	CCT (K)	CRI
Low-pressure sodium (LPS/SOX)	1800	-44
High-pressure sodium (HPS/SON)	2100	24
Halophosphate warm-white fluorescent	2940	51
Halophosphate cool-white fluorescent	4230	64
Halophosphate cool-daylight fluorescent	6430	76
Standard LED Lamp	2700– 5000	83
Standard LED Lamp High-CRI LED lamp (blue LED)		83 95
•	5000 2700–	
High-CRI <u>LED</u> lamp (blue LED)	5000 2700– 5000	95

Color Temperature Scale

Чувствителност на човешкото око към цвета на светлината

VA характеристика

Поради по-широката забранена зона на материалите, светодиодите имат значително по-голям пад в права посока от Ge и Si изправителни диоди.

$$I = I_S(e^{\frac{U}{m\phi_T}} - 1)$$

VA характеристика на червен и зелен светодиод

Светлинна характеристика

Представлява зависимостта на излъчения светлинен поток Φ от тока I_F , протичащ през диода.

Областта на насищане при големи стойности на тока се дължи на нарастване на относителния дял на безизлъчвателната рекомбинация при загряване на прехода.

Оразмеряване на схема със светодиод

Проектирайте схема на захранване на син (бял, червен,...) светодиод. Захранващото напрежение е 12V.

- Намерете каталожни данни и изберете конкретен модел светодиод.
- От каталожните данни изберете **подходящ ток през диода**. Той не трябва да надхвърля указаната максимална стойност, но и не трябва да е твърде малък защото излъчването ще е слабо.
- Скицирайте схема на свързване на светодиод.
- Оразмерете схемата

Намерете каталожни данни и изберете конкретен модел светодиод.

Google search: blue led datasheet (white led datasheet, ...)

https://cree-led.com/media/documents/C503B-BCS-BCN-GCS-GCN-1094.pdf

https://www.vishay.com/docs/81159/vlhw5100.pdf

От каталожните данни изберете подходящ ток през диода. Той не трябва да надхвърля указаната максимална стойност, но и не трябва да е твърде малък защото излъчването ще е слабо.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

Items	Symbol	Absolute Maximum Rating	Unit			
	Blue/Green					
Forward Current	l _F	30	mA			
Peak Forward Current Note2	l _{ep}	100	mA			
Reverse Voltage	V_R	5	V			
Power Dissipation	P_{D}	120	mW			
Operation Temperature	T _{opr}	-40 ~ +95	°C			
Storage Temperature	ge Temperature T _{stg}		°C			
Lead Soldering Temperature	T _{sol}	Max. 260°C for 3 sec. max. (3 mm from the base of the epoxy bulb)				

IF < 30mA!

(RELATIVE LUMINOUS INTENSITY)

FIG.2 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

Избирам IF = 20mA

FIG.1 FORWARD CURRENT VS. FORWARD VOLTAGE.

При IF = 20mA, UF=3.2V

- Скицирайте схема на свързване на светодиод.
- Оразмерете схемата

означения

$$I_{D1} => I_{D1}$$

 $U_{D1} => U_{D1}$

$$I = U1 / R1 - \Gamma PE W KA!$$

 $I = U_R1 / R1 - O K!$

$$P_{R1} = U_{R1} * I_{R1} = 8.8V * 0.02A = 0.176W$$

Бонус – избор на стандартна стойност на резистора

R=442 Ohm, 2%

E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)	E12 (10%)	E24 (5%)	E48 (2%)	E96 (1%)		
				(continued)			(continued)						
100 100	100	100	220	220	215	215	470	470	464	464			
			102				221				475		
		105	105			226	226			487	487		
			107				232				499		
	110	110 110	110		240	240 237	237		510	511	511		
				113			243				523		
		115	115		249	249			536	536			
			118				255				549		
120	120	121	121	270	270	261	261	560	560	562	562		
			124				267				576		
		127	127			274	274			590	590		
			130				280				604		
	130	133	133		300	287	287		620	619	619		
			137				294				634		
		140	140 140			301	301			649	649		
			143				309				665		
150	150	147	147	330	330	316	316	680	680	681	681		
					150				324				698
			154			332	332			715	715		
			158				340				732		
		160 162 169	162	162	162		360	348	348		750	750	750
					165				357				768
			169			365	365			787	787		
			174				374				806		
180	180 180	180 178	178 178	390 390	383	383	820	820	825	825			
			182		392				845				
			187 187 40	402	402		866	866					
			191				412				887		
	200	196	196		430	422	422		910	909	909		
			200				432				931		
		205	205			442	442			953	953		
			210				453				976		

$$P_R = U_R * I_R = 8.8V * 0.02A = 0.176W$$

Избираме 1/4W резистор

Code	le Length (l) Width (w) I		Heigh	t (h)	Power			
Imperial	Metric	inch	mm	inch	mm	inch	mm	Watt
0201	0603	0.024	0.6	0.012	0.3	0.01	0.25	1/20 (0.05)
0402	1005	0.04	1.0	0.02	0.5	0.014	0.35	1/16 (0.062)
0603	1608	0.06	1.55	0.03	0.85	0.018	0.45	1/10 (0.10)
0805	2012	0.08	2.0	0.05	1.2	0.018	0.45	1/8 (0.125)
1206	3216	0.12	3.2	0.06	1.6	0.022	0.55	1/4 (0.25)
1210	3225	0.12	3.2	0.10	2.5	0.022	0.55	1/2 (0.50)
1812	3246	0.12	3.2	0.18	4.6	0.022	0.55	1
2010	5025	0.20	5.0	0.10	2.5	0.024	0.6	3/4 (0.75)
2512	6332	0.25	6.3	0.12	3.2	0.024	0.6	1

Да се оразмери схемата, така че през диодите да тече ток 20mA.

От графиката: If=20mA -> Uf=3.5V

$$U_R1 = U1 - 3 . Uf = 12 - 10.5 = 1.5V$$

(a)
$$U_1 = 12V$$
, $R_1 = ?$

(б) Волт-амперна характеристика на светодиод

[Figure 3-1] LED energy levels with forward voltage applied

