

Incrementally Updating the Bayes Tree

Robot Localization and Mapping 16-833

Michael Kaess

November 13+18, 2024

iSAM2: Bayes Tree Example

How to update with new measurements / add variables?

From Bayes Net to Bayes Tree

Fixed-lag Smoothing (Linear)

Fully eliminated Bayes net. Dropping x_1 is equivalent to marginalization.

Next time step with new measurements added:

After elimination:

Kalman Filter: Fixed-lag smoother with lag of 1.

Kalman Filter Algorithm

```
1: Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, \mathbf{u}_t, \mathbf{z}_t):

2: \bar{\mu}_t = A_t \ \mu_{t-1} + B_t \ \mathbf{u}_t
3: \bar{\Sigma}_t = A_t \ \Sigma_{t-1} \ A_t^\top + R_t

4: K_t = \bar{\Sigma}_t \ C_t^\top (C_t \ \bar{\Sigma}_t \ C_t^\top + Q_t)^{-1}
5: \mu_t = \bar{\mu}_t + K_t (\mathbf{z}_t - C_t \ \bar{\mu}_t)
6: \Sigma_t = (I - K_t \ C_t) \ \bar{\Sigma}_t
7: return \mu_t, \Sigma_t
```

The elimination algorithm implements the square root form, also known as square root information filter (SRIF) and smoother (SRIS)

Add new factor between x_1 and x_3 x_2, x_3 x_3 x_2, x_3

Add new factor between x_1 and x_3 x_2, x_3 x_3 x_2, x_3 x_3 x_2 x_3

Add new factor between x₁ and x₃ X_2, X_3 $I_1, x_1 : x_2$ On the board

Add new factor between x_1 and x_3 X_2, X_3 $I_1, x_1 : x_2$

Add new factor between x₁ and x₃ X_2, X_3 $I_1, x_1 : x_2$ x_1 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ $l_1: x_1, x_2$

Incremental Variable Reordering

For a small loop, what constitutes a "good" ordering?

Include loop closing into cut

Loop closing not part of cut

Incremental Variable Reordering

Most recent variable at the end

expected to make future updates cheaper

- Force most recent variables to the end
- Find best ordering for remaining variables

Using constrained version of COLAMD algorithm (CCOLAMD)

Variable Reordering – Constrained COLAMD

Greedy approach

Arbitrary placement of newest variable

Number of affected variables:

Constrained Ordering

Newest variables forced to the end

Much cheaper!

iSAM2: Incremental Update + Variable Ordering

Variable ordering changes incrementally during update

- Not understood in matrix version
- Sparse matrix data structure not suitable

Large savings in computation

Variable Reordering – Fill-in

Incremental ordering still yields good overall ordering

- Only slightly more fill-in than batch COLAMD ordering
- Constrained ordering is worse than naïve/greedy:
 - Suboptimal ordering because of partial constraint, but cheaper to update!

iSAM2: Nonlinear Updates

- The Bayes tree contains linearized information
- We have to re-linearize the original nonlinear factors!

iSAM2: Updating the Bayes Tree (Linear)

Add new factor between x₁ and x₃ X_2, X_3 $I_1, x_1 : x_2$ x_1 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ $l_1: x_1, x_2$

iSAM2: Updating the Bayes Tree (Nonlinear)

iSAM2: Fluid Relinearization

Relinearize select variables only

- Changes in map estimates are often local
- Most variables do not need to be updated
- Can be combined with updates

City 10000 dataset

iSAM1: Kaess et al., TRO 08

iSAM2: Kaess et al., IJRR 12

SPA: Konolige et al., IROS 2010

HOG-Man: Grisetti et al., ICRA 2010

Running Intersection Property

If variable x is part of two cliques C_1 and C_2 , then x is part of every clique on the unique path between C_1 and C_2

We can efficiently find any occurrence of a variable x in the tree by starting at the clique where it is eliminated and recursively traversing each subtree until the variable disappears

Backsubstitution in the Graph

- Inference is a two-step process:
 - Elimination starts at leaves and proceeds to the root

Solving starts at root and proceeds to the leaves

Selective Variable Recovery

Again good quality and low cost are achievable:

iSAM2: Bayes Tree for Manhattan Sequence

Custom Variable Ordering for Parallelization

- Combining filtering (constant time updates) and smoothing (loop closure capabilities)
- Concurrent updates to single Bayes tree formulation

Open-Source Libraries

• iSAM1

- Matrix-based
- LGPL licensed C++ library with minimal dependencies
- http://people.csail.mit.edu/kaess/isam/

GTSAM

- Graph-based
- BSD-licensed C++ library
- Implements iSAM2
- https://github.com/borglab/gtsam
- OpenSAM Foundation announced November 2019
 - GTSAM compatible
 - For embedded systems
 - Strict coding standards for industry distribution
- Related libraries
 - g2o: https://openslam-org.github.io/g2o
 - Ceres Solver: https://github.com/ceres-solver/ceres-solver
 - SLAM++: https://sourceforge.net/projects/slam-plus-plus/

Application: Visual-Inertial Odometry (VIO)

Application: Visual-Inertial Odometry (VIO)

- Fundamental algorithm for state estimation of mobile devices, robots, VR, AR,...
- Track pose (position+orientation) of rigidly mounted camera+IMU
- Combines complementary advantages of two sensors:

Camera

Inertial Measurement Unit (IMU)

Measures linear (up to scale) and angular velocity

Measures linear acceleration and angular velocity

Allows continuous calibration of IMU

Works even when vision fails (motion blur, lack of texture)

Fixed-Lag Smoothing for Real-time VIO

Full (batch) smoothing

Fixed-Lag Smoothing

Marginalization 2D Example

$$\mu_{\alpha,\beta} = \begin{bmatrix} \mu_{\alpha} \\ \mu_{\beta} \end{bmatrix}, \quad \Sigma_{\alpha,\beta} = \begin{bmatrix} \Sigma_{\alpha\alpha} & \Sigma_{\alpha\beta} \\ \Sigma_{\beta\alpha} & \Sigma_{\beta\beta} \end{bmatrix}$$
 $\alpha, \beta \sim \mathcal{N}(\mu_{\alpha,\beta}, \Sigma_{\alpha,\beta})$

Covariance Information
$$\Sigma_{\alpha,\beta} = \begin{bmatrix} \Sigma_{\alpha\alpha} & \Sigma_{\alpha\beta} \\ \Sigma_{\beta\alpha} & \Sigma_{\beta\beta} \end{bmatrix} = \begin{bmatrix} \Lambda_{\alpha\alpha} & \Lambda_{\alpha\beta} \\ \Lambda_{\beta\alpha} & \Lambda_{\beta\beta} \end{bmatrix}^{-1}$$

$$\Sigma_{\beta\beta} = \Lambda_{\beta\beta}'^{-1} = (\Lambda_{\beta\beta} - \Lambda_{\beta\alpha}\Lambda_{\alpha\alpha}^{-1}\Lambda_{\alpha\beta})^{-1} \quad \text{"Schur complement"}$$

Marginalization 3D Example

Marginalization is Problematic

The information matrix is no longer sparse!

Too expensive for onboard state estimation

Existing Methods are not Optimal

Existing methods discard measurements or marginalize more variables

VIO Marginalization

Information Sparsification

Research Question:

Can we use a sparse graph to approximate the dense one?

Information Sparsification

Minimizing Kullback-Leibler Divergence (KLD)

$$D_{KL}(p(\mathcal{X}_t) \| p_s(\mathcal{X}_t)) = \frac{1}{2} \Big(\langle \Lambda_s, \Sigma_t \rangle - \log \det(\Lambda_s) + \| \Lambda_s^{\frac{1}{2}} (\mu_s - \mu_t) \|_2^2 - d \Big)$$

The Proposed VIO Sparsification Framework

Jerry Hsiung, Ming Hsiao, Eric Westman, Rafael Valencia, Michael Kaess "Information Sparsification in Visual-Inertial Odometry", IROS 2018

Sparsification in Visual Inertial Odometry

Fixed-Lag Smoothing

Sparsified Fixed-Lag Smoothing

Comparing to a regular Fixed-Lag Smoother:

+ Preserve sparsity.

Comparing to OKVIS [1], VINS-MONO [2]:

- + Preserve all measurements.
- + Variables remain optimizable.

[1] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, "Keyframe-based visual-inertial odometry using nonlinear optimization", IJRR 2015

[2] T. Qin, P. Li, and S. Shen, "VINS-Mono: A robust and versatile monocular visual-inertial state estimator", TRO 2018

Experiments – Flight Tests

Jerry Hsiung, Ming Hsiao, Eric Westman, Rafael Valencia, Michael Kaess "Information Sparsification in Visual-Inertial Odometry", IROS 2018

Experiments – Flight Tests

Indoor

Outdoor

Experiments – Benchmark

EuRoC Dataset:

