- 1. [punti 4.5] Si presentino e si dimostrino le formule di inversione per la sintesi in frequenza delle reti correttrici. Si esponga inoltre come utilizzare tali formule per la sintesi della rete **anticipatrice** con imposizione del **margine di ampiezza**  $M_A$ .
- **2.** [punti 4.5] La rete elettrica di figura definisce un sistema dinamico orientato da u (tensione all'ingresso) ad y (tensione all'uscita).



Di questo sistema si determini:

- 1. la funzione di trasferimento;
- 2. l'equazione differenziale;
- 3. gli zeri, i poli, i modi ed il guadagno statico.
- **3.** [punti 4.5] Di un sistema dinamico è nota la risposta all'impulso  $g(t) = 15e^{-2t} 10te^{-2t} 15e^{-4t}$ . Determinare la risposta al gradino unitario  $g_s(t)$  di tale sistema.
- **4.** [punti 4.5] Siano x(k), y(k) due segnali a tempo discreto per i quali x(k) = 0, y(k) = 0 per k < 0. Si dimostri che la trasformata zeta della loro convoluzione eguaglia il prodotto delle loro trasformate:  $\mathcal{Z}[x(k) * y(k)] = \mathcal{Z}[x(k)]\mathcal{Z}[y(k)]$ .

## 5. [punti 4.5] Sia dato il sistema retroazionato di figura



dove 
$$P(s) = \frac{s^2}{(s^3 - 8)(s - 1)}$$
.

- 1. Posto K = 10 tracciare il diagramma di Nyquist del guadagno di anello L(s) del sistema determinando in particolare le intersezioni con l'asse reale.
- 2. Nelle condizioni di cui al punto 1) studiare la stabilità del sistema retroazionato utilizzando il criterio di Nyquist.

## **6.** [punti **4.5**] Sia dato il sistema retroazionato di figura:



dove  $K_1$  è un parametro reale e  $P(s) = \frac{s+1}{s^2(s+4)(s+8)}$ .

- 1. Determinare l'insieme dei valori di  $K_1$  per i quali il sistema retroazionato è asintoticamente stabile.
- 2. Tracciare il luogo delle radici dell'equazione caratteristica associata al sistema retroazionato per  $K_1 \in (0, +\infty)$ . Determinare in particolare gli asintoti del luogo e le intersezioni del luogo con l'asse immaginario del piano complesso.
- 7. [punti 4.5] Sia dato il seguente sistema



con  $P(s) = \frac{1}{1+s}$ . Determinare un controllore proprio di ordine minimo C(s) che soddisfi alle seguenti specifiche: 1) reiezione infinita asintotica al disturbo sinusoidale  $d(t) = 4\sin 2t$ ; 2) sistema retroazionato asintoticamente stabile con poli dominanti in  $-1 \pm j$ ; 3) costante di posizione  $K_p = 4$ .

**8.** [punti 4.5] Un sistema a tempo discreto, lineare e tempo invariante, con funzione di trasferimento  $P(z) = \frac{z}{(z-1)^2}$ , manifesta sull'uscita una risposta forzata  $y(k) = 0.5^k \cdot 1(k-1)$ . Determinare il segnale di ingresso del sistema.