

ulm university universität **UUI**

Programmierung von Systemen Blatt 11

Marco Deuscher
marco.deuscher@uni-ulm.de
Benedikt Jutz
benedikt.jutz@uni-ulm.de

Juni 2018

1 Aufgabe 2: Erreichbarkeitsanalyse

Markierung	S_1	S_2	S_3	S_4	Transition
M_0	1	0	1	1	$T_1 o M_1$
M_1	0	1	0	1	$T_2 \rightarrow M_2 \text{ or } T_4 \rightarrow M_8$
M_2	1	0	0	1	$T_3 \rightarrow M_3$
M_3	0	0	1	1	$T_4 o M_4$
M_4	1	0	1	0	$T_1 \rightarrow M_5$
M_5	0	1	0	0	$T_2 \rightarrow M_6$
M_6	1	0	0	0	$T_3 \rightarrow M_7$
M_7	0	0	1	0	_
M_8	1	1	0	0	$T_3 \rightarrow M_9$
M_9	0	1	1	0	$T_2 \to M_4$

Tabelle 1: Erreichbarkeitsanalys für gegebenes Petri-Netz

Die Erreichbarkeitsanalyse zeigt, dass es wenn Zustand ${\cal M}_7$ erreicht wird zu einem Deadlock kommt.

2 Aufgabe 3

Abbildung 1: Petri-Netz