GENERALIZED LINEAR MODELS

IN

COLLABORATIVE FILTERING

HAO WU

STANFORD UNIVERSITY

Generalized Linear Models

Generalization of linear regression from normal distribution to exponential family

Model components

- distribution from the exponential family
- linear parameter
- link function

$$g(y) = \eta = x^T \beta$$

sufficient statistic

$$(y_1, y_2, ... y_n | x) \equiv (t, n | x)$$

Example: linear regression, logistic regression

COLLABORATIVE FILTERING

	Alt. Linear Regression	Alt. Logistic Regression
distribution	normal	binomial
link function	$oldsymbol{\mu} = \mathbf{U}\mathbf{M}^T$	$\log (\mathbf{P}/(1-\mathbf{P})) = \mathbf{U}\mathbf{M}^T$
loss function	square error	logistic loss
sufficient stat.	sum	# of 1s
application	direct feedbacks (rating)	indirect feedbacks (click)

$$\min_{\mathbf{U}, \mathbf{M}} \sum_{i=0}^{N} L(y_i, \mathbf{u}_{u_i}^T \mathbf{m}_{m_i})$$

$$+ \lambda \left[\alpha \left(\sum_{i=0}^{n_U} \|\mathbf{u}_i\|_1 + \sum_{i=0}^{n_M} \|\mathbf{u}_i\|_1 \right) + (1 - \alpha) (\|\mathbf{U}\|_F + \|\mathbf{M}\|_F) \right]$$
s.t.
$$\mathbf{U} \in \mathbb{R}^{n_U \times k}, \ \mathbf{M} \in \mathbb{R}^{n_M \times k}$$

DISTRIBUTED ALG.

(assuming $n_m \times k$ fits in a single machine)

for each iteration:

- Join U with T to from D (co-partitioned join)
- Update M
- Broadcast M (communication: log(p)(n_Mk))
- Update U

Update M

for each movie:

- prepare dataframe by filter() and map()
- distributed logistic regression
 - LogisticRegression()
 - all-to-one and one-to-all of size k

Update U

Map local logistic regression to users

- added local training method to LogisticRegression()
- no communication of data

Summary

- Sparsity is preserved
- Scales in n_{II}, but not n_M or k
- Communication cost: log(p)(n_Mk)
- Computational depth: log(n_U)(n_Mk)

