Spectral Properties of Linear-Quadratic Regulators

Robert Stengel
Optimal Control and Estimation MAE 546
Princeton University, 2015

- Stability margins of single-input/singleoutput (SISO) systems
- Characterizations of frequency response
- Loop transfer function
- Return difference function
- Kalman inequality
- Stability margins of scalar linearquadratic regulators

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only.

http://www.princeton.edu/~stengel/MAE546.html
http://www.princeton.edu/~stengel/OptConEst.html

Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems

SISO Transfer Function and Return Difference Function

 Unit feedback control law

 Block diagram algebra

$$y(s) = A(s)[y_C(s) - y(s)]$$
$$[1 + A(s)]y(s) = A(s)y_C(s)$$

$$\frac{y(s)}{y_C(s)} = \frac{A(s)}{1 + A(s)}$$
: Closed - Loop Transfer Function

A(s): Open - Loop Transfer Function

[1+A(s)]: **Return Difference Function**

3

Return Difference Function and Root Locus

$$A(s) = \frac{kn(s)}{d(s)}$$

$$1 + A(s) = 1 + \frac{kn(s)}{d(s)} = 0$$
 defines locus of roots

d(s) + kn(s) = 0 defines locus of closed-loop roots

Return Difference Example

$$A(s) = \frac{kn(s)}{d(s)} = \frac{k(s-z)}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1.25(s+40)}{s^2 + 2(0.3)(7)s + (7)^2}$$

$$1 + A(s) = 1 + \frac{k(s-z)}{s^2 + 2\zeta\omega_n s + \omega_n^2} = 1 + \frac{1.25(s+40)}{s^2 + 2(0.3)(7)s + (7)^2} = 0$$

$$[s^{2} + 2(0.3)(7)s + (7)^{2}] + 1.25(s + 40) = 0$$

5

Closed-Loop Transfer Function Example

$$\frac{A(s)}{1+A(s)} = \frac{\left[\frac{1.25(s+40)}{s^2+2(0.3)(7)s+(7)^2}\right]}{1+\left[\frac{1.25(s+40)}{s^2+2(0.3)(7)s+(7)^2}\right]}$$

$$\frac{A(s)}{1+A(s)} = \frac{1.25(s+40)}{\left[s^2 + 2(0.3)(7)s + (7)^2\right] + 1.25(s+40)}$$

$$= \frac{1.25(s+40)}{s^2 + \left[2(0.3)(7) + 1.25\right]s + \left[(7)^2 + 1.25(40)\right]}$$

$$= \frac{kn(s)}{d(s) + kn(s)}$$

SISO Frequency-Response Plots

7

Open-Loop Frequency Response: Bode Plot

$$A(j\omega) = \frac{K(j\omega - z)}{(j\omega)^{2} + 2\zeta\omega_{n}j\omega + \omega_{n}^{2}} = \frac{1.25(j\omega + 40)}{(j\omega)^{2} + 2(0.3)(7)j\omega + (7)^{2}}$$

Two plots

- $20 \log |A(j\omega)| \text{ vs. } \log \omega$
- $\measuredangle[A(j\omega)]$ vs. $\log \omega$

· Gain Margin

- Referenced to 0 dB line
- Evaluated where phase angle = -180°

Phase Margin

- Referenced to –180°
- Evaluated where amplitude ratio= 0 dB

Open-Loop Frequency Response: Nyquist Plot

 $\operatorname{Re}(A(j\omega))$ vs. $\operatorname{Imag}(A(j\omega))$

- Single plot; input frequency not shown explicitly
- Gain and Phase Margins referenced to (-1) point
- GM and PM represented as length and angle

Only positive frequencies need be considered

Open-Loop Frequency Response: Nichols Chart

$$20\log_{10}[A(j\omega)]$$
 vs. $\angle[A(j\omega)]$

- Single plot
- Gain and Phase Margins shown directly

Algebraic Riccati Equation in the Frequency Domain

11

Linear-Quadratic Control

· Quadratic cost function for infinite final time

 Linear, time-invariant dynamic system

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$

Constant-gain optimal control law

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}\mathbf{G}^{T}\mathbf{P}\Delta\mathbf{x}(t)$$
$$= -\mathbf{C}\Delta\mathbf{x}(t)$$

Algebraic Riccati equation

$$\mathbf{0} = -\mathbf{Q} - \mathbf{F}^{T} \mathbf{P} - \mathbf{P} \mathbf{F} + \mathbf{P} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{P}$$

$$\mathbf{Q} = -\mathbf{F}^{T} \mathbf{P} - \mathbf{P} \mathbf{F} + \mathbf{C}^{T} \mathbf{R} \mathbf{C}$$

Frequency Characteristics of the Algebraic Riccati Equation

Add and subtract sP such that

$$\mathbf{P}(-\mathbf{F}) + (-\mathbf{F}^T)\mathbf{P} + \mathbf{C}^T\mathbf{R}\mathbf{C} = \mathbf{Q}$$

$$\mathbf{P}(\mathbf{sI}_{n} - \mathbf{F}) + (-\mathbf{sI}_{n} - \mathbf{F}^{T})\mathbf{P} + \mathbf{C}^{T}\mathbf{R}\mathbf{C} = \mathbf{Q}$$

State Characteristic Matrix Adjoint Characteristic Matrix

13

Frequency Characteristics of the Algebraic Riccati Equation

$$\mathbf{P}(s\mathbf{I}_n - \mathbf{F}) + (-s\mathbf{I}_n - \mathbf{F}^T)\mathbf{P} + \mathbf{C}^T\mathbf{R}\mathbf{C} = \mathbf{Q}$$

Pre-multiply each term by

$$\boxed{\mathbf{G}^T \left(-s \mathbf{I}_n - \mathbf{F}^T \right)^{-1}}$$

Post-multiply each term by

$$(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G}$$

$$\mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{P}\mathbf{G} + \mathbf{G}^{T} \mathbf{P} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G} + \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{C}^{T} \mathbf{R} \mathbf{C} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G}$$

$$= \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{Q} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G}$$

Frequency Characteristics of the Algebraic Riccati Equation

Substitute with the control gain matrix $C = R^{-1}G^{T}P$ $G^{T}P = RC$

$$\mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{C}^{T} \mathbf{R} + \mathbf{R} \mathbf{C} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G} + \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{C}^{T} \mathbf{R} \mathbf{C} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G}$$

$$= \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{Q} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G}$$

Add R to both sides

$$\mathbf{R} + \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{C}^{T} \mathbf{R} + \mathbf{R} \mathbf{C} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G} + \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{C}^{T} \mathbf{R} \mathbf{C} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G}$$

$$= \mathbf{R} + \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{Q} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G}$$

15

Frequency Characteristics of the Algebraic Riccati Equation

$$\mathbf{R} + \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{C}^{T} \mathbf{R} + \mathbf{R} \mathbf{C} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G} + \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{C}^{T} \mathbf{R} \mathbf{C} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G}$$

$$= \mathbf{R} + \mathbf{G}^{T} \left(-s\mathbf{I}_{n} - \mathbf{F}^{T} \right)^{-1} \mathbf{Q} \left(s\mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G}$$

The left side can be factored as*

$$\begin{bmatrix} \mathbf{I}_m + \mathbf{G}^T \left(-s\mathbf{I}_n - \mathbf{F}^T \right)^{-1} \mathbf{C}^T \end{bmatrix} \mathbf{R} \begin{bmatrix} \mathbf{I}_m + \mathbf{C} \left(s\mathbf{I}_n - \mathbf{F} \right)^{-1} \mathbf{G} \end{bmatrix}$$
$$= \mathbf{R} + \mathbf{G}^T \left(-s\mathbf{I}_n - \mathbf{F}^T \right)^{-1} \mathbf{Q} \left(s\mathbf{I}_n - \mathbf{F} \right)^{-1} \mathbf{G}$$

* Verify by multiplying the factored form

Modal Expression of Algebraic Riccati Equation

Define the loop transfer function matrix

$$\mathbf{A}(s) = \mathbf{C}(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G}$$

17

Modal Expression of Algebraic Riccati Equation

Recall the cost function transfer matrix

$$\mathbf{Y}(s) = \mathbf{H}(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G}$$
, where $\mathbf{Q} = \mathbf{H}^T\mathbf{H}$

Laplace transform of algebraic Riccati equation becomes

$$\left[\mathbf{I}_{m} + \mathbf{A}(-s)\right]^{T} \mathbf{R} \left[\mathbf{I}_{m} + \mathbf{A}(s)\right] = \mathbf{R} + \mathbf{Y}^{T}(-s)\mathbf{Y}(s)$$

Algebraic Riccati Equation

$$\left[\mathbf{I}_{m} + \mathbf{A}(-s)\right]^{T} \mathbf{R} \left[\mathbf{I}_{m} + \mathbf{A}(s)\right] = \mathbf{R} + \mathbf{Y}^{T}(-s)\mathbf{Y}(s)$$

- Cost function transfer matrix, Y(s)
 - Reflects control-induced state variations in the cost function
 - Governs closed-loop modal properties as R becomes small
 - Does not depend on R or P
- Loop transfer function matrix, A(s)
 - Defines the modal control vector when $s = s_i$

$$\mathbf{Y}(s) = \mathbf{H}(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G}$$

$$\Delta \mathbf{u}_{i} = -\mathbf{C} (s_{i} \mathbf{I}_{n} - \mathbf{F})^{-1} \mathbf{G} \Delta \mathbf{u}_{i}$$
$$= -\mathbf{A} (s_{i}) \Delta \mathbf{u}_{i}, \quad i = 1, n$$

19

LQ Regulator Portrayed as a Unit-Feedback System

$$\mathbf{A}(s) = \mathbf{C}(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G}$$

$$\mathbf{I}_m + \mathbf{A}(s) = \mathbf{I}_m + \mathbf{C}(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G} : \mathbf{Return Difference Matrix}$$

Determinant of Return Difference Matrix Defines Closed-Loop Eigenvalues

$$\begin{vmatrix} \mathbf{I}_{m} + \mathbf{A}(s) | = |\mathbf{I}_{m} + \mathbf{C}(s\mathbf{I}_{n} - \mathbf{F})^{-1}\mathbf{G}| \\ = |\mathbf{I}_{m} + \frac{\mathbf{C}Adj(s\mathbf{I}_{n} - \mathbf{F})\mathbf{G}}{|s\mathbf{I}_{n} - \mathbf{F}|}| = |\mathbf{I}_{m} + \frac{\mathbf{C}Adj(s\mathbf{I}_{n} - \mathbf{F})\mathbf{G}}{\Delta_{\mathbf{OL}}(s)}|$$

Characteristic Equation

$$\begin{vmatrix} \Delta_{\mathbf{OL}}(s) | \mathbf{I}_m + \mathbf{A}(s) | = \Delta_{\mathbf{OL}}(s) | \mathbf{I}_m + \frac{\mathbf{C}Adj(s\mathbf{I}_n - \mathbf{F})\mathbf{G}}{\Delta_{\mathbf{OL}}(s)} | \\ = |\Delta_{\mathbf{OL}}(s)\mathbf{I}_m + \mathbf{C}Adj(s\mathbf{I}_n - \mathbf{F})\mathbf{G}| = \Delta_{\mathbf{CL}}(s) = 0 \end{vmatrix}$$

2

Stability Margins and Robustness of Scalar LQ Regulators

Scalar Case

Multivariable algebraic Riccati equation

$$\left[\mathbf{I}_{m} + \mathbf{A}(-s)\right]^{T} \mathbf{R} \left[\mathbf{I}_{m} + \mathbf{A}(s)\right] = \mathbf{R} + \mathbf{Y}^{T}(-s)\mathbf{Y}(s)$$

Algebraic Riccati equation with scalar control

$$[1+A(-s)]r[1+A(s)] = r + Y^{T}(-s)Y(s)$$

where

$$A(s) = \mathbf{C}(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G} \quad (1 \times 1)$$
$$\dim(\mathbf{C}) = (1 \times n)$$
$$\dim(\mathbf{F}) = (n \times n)$$
$$\dim(\mathbf{G}) = (n \times 1)$$

$$Y(s) = \mathbf{H}(s\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G}$$
$$\dim[Y(s)] = (p \times 1)$$
$$\dim(\mathbf{H}) = (p \times n)$$

23

Scalar Case

Let $s = j\omega$

$$[1 + A(-j\omega)]r[1 + A(j\omega)] = r + Y^{T}(-j\omega)Y(j\omega)$$

or

$$[1 + A(-j\omega)][1 + A(j\omega)] = 1 + \frac{Y^{T}(-j\omega)Y(j\omega)}{r}$$

 $A(j\omega)$ is a complex variable

$$[1 + A(-j\omega)][1 + A(j\omega)] = \{[1 + c(\omega)] - jd(\omega)\}\{[1 + c(\omega)] + jd(\omega)\}$$
$$= \{[1 + c(\omega)]^2 + d^2(\omega)\} = |1 + A(j\omega)|^2 \quad \text{(absolute value)}$$

Kalman Inequality

In frequency domain, cost transfer function becomes

$$Y_i(j\omega) = [l_i(\omega) + jm_i(\omega)], \quad i = 1, p$$

$$1 + \frac{Y^{T}(-j\omega)Y(j\omega)}{r} = 1 + \sum_{i=1}^{p} \frac{\left[l_{i}^{2}(\omega) + m_{i}^{2}(\omega)\right]}{r}$$

Consequently, the return difference function magnitude is greater than one

$$|1 + A(j\omega)| \ge 1$$
 Kalman Inequality

25

Nyquist Plot Showing Consequences of Kalman Inequality

Uncertain Gain and Phase Modifications to the LQ Feedback Loop

How large an uncertainty in loop gain or phase angle can be tolerated by the LQ regulator?

27

LQ Gain Margin Revealed by Kalman Inequality

- Stability is preserved if
 - No encirclements of the -1 point, or
 - Number of counterclockwise encirclements of the -1 point equals the number of unstable open-loop roots
- Loop gain change expands or shrinks entire Nyquist plot

Gain Change Expands or Shrinks Entire Plot

$$k_{U} \triangleq \text{Uncertain gain}$$

$$A_{optimal}(j\omega) = \mathbf{C}_{LQ}(j\omega\mathbf{I}_{n} - \mathbf{F})^{-1}\mathbf{G}$$

$$A_{non-optimal}(j\omega) = k_{U}A_{optimal}(j\omega)$$

$$= k_{U}\mathbf{C}_{LQ}(j\omega\mathbf{I}_{n} - \mathbf{F})^{-1}\mathbf{G}$$

$$|A_{non-optimal}(j\omega)| = k_{U}|A_{optimal}(j\omega)|$$

 Closed-Loop LQ system is stable until –1 point is reached, and # of encirclements changes

29

Scalar LQ Regulator Gain Margin

Increased gain margin = Infinity
Decreased gain margin = 50%

LQ Phase Margin Revealed by Kalman Inequality

- Stability is preserved if
 - No encirclements of the -1 point
 - Number of counterclockwise encirclements of the -1 point equals the number of unstable open-loop roots

Return Difference Function, $1 + A(j\omega)$, is excluded from a unit circle centered at (-1,0)

 $||\mathbf{A}(j\boldsymbol{\omega})|| = 1$ intersects a unit circle centered at the origin

Intersection of the unit circles occurs where the phase angle of $A(j\omega) = (-180^{\circ} \pm 60^{\circ})$

Therefore, Phase Margin of LQ regulator ≥ 60°

31

LQ Regulator Preserves Stability with Phase Uncertainties of At Least –60°

 $\varphi_U \triangleq \text{Uncertain phase angle, deg}$

$$A_{optimal}(j\omega) = \mathbf{C}_{LQ}(j\omega\mathbf{I}_n - \mathbf{F})^{-1}\mathbf{G}$$

$$A_{non-optimal}(j\omega) = e^{j\varphi_U} A_{optimal}(j\omega)$$
$$= e^{j\varphi_U} \mathbf{C}_{IO}(j\omega \mathbf{I}_n - \mathbf{F})^{-1} \mathbf{G}$$

 $\varphi_{non-optimal} = \varphi_{optimal} + \varphi_{U}$

 Closed-Loop LQ system is stable until –1 point is reached

Reduced-Gain-/Phase-Margin Tradeoff

Reduced loop gain decreases allowable phase lag while retaining closed-loop stability

33

Next Time: Singular Value Analysis of LQ Systems

Supplemental Material

35

Effect of Time Delay

Time Delay Example: DC Motor Control

37

Effect of Time Delay on Step Response

With no delay

Phase lag due to time delay reduces closed-loop stability

Bode Plot of Pure Time Delay

$$AR(e^{-j\tau\omega}) = 1$$
$$\phi(e^{-j\tau\omega}) = -\tau\omega$$

As input frequency increases, phase angle eventually exceeds –180°

39

Effect of Pure Time Delay on LQ Regulator Loop Transfer Function

Laplace transform of time-delayed signal:

$$L[u(t-\tau)] = e^{-\tau s} L[u(t)] = e^{-\tau s} u(s)$$

 $\tau_U \triangleq \text{Uncertain time delay, sec}$

$$A_{optimal}(j\omega) = \mathbf{C}_{LQ}(j\omega\mathbf{I}_{n} - \mathbf{F})^{-1}\mathbf{G}$$

$$A_{non-optimal}(j\omega) = e^{-\tau_{U}j\omega}A_{optimal}(j\omega)$$

$$= e^{-\tau_{U}j\omega}\mathbf{C}_{LQ}(j\omega\mathbf{I}_{n} - \mathbf{F})^{-1}\mathbf{G}$$

Effect of Pure Time Delay on LQ Regulator Loop Transfer Function

Crossover frequency, ω_{cross} , is frequency for which

$$\left| A_{optimal} \left(j \boldsymbol{\omega}_{cross} \right) \right| = \left| \mathbf{C}_{LQ} \left(j \boldsymbol{\omega}_{cross} \mathbf{I}_{n} - \mathbf{F} \right)^{-1} \mathbf{G} \right| = 1$$

Time delay that produces 60° phase lag

$$\tau_U = \frac{60^{\circ}}{\omega_{cross}} \left(\frac{\pi}{180^{\circ}} \right) = \frac{\pi}{3\omega_{cross}}, \text{sec}$$