Ordre croissant : $\left(\frac{1}{7}\right)^2 < (-1)^2 < 3,14^2 < \pi^2 < (-5)^2$

46 p 133 Aidez vous du tableau de variation de la fonction carré, il y a des « pièges » à éviter...

1) Lorsque - 2 <
$$x \le 7$$
 on a $0 \le x^2 \le 49$

2) Lorsque
$$4 \le x < 7$$
 on a $16 \le x^2 < 49$

3) Lorsque
$$x > -3$$
 on a $x^2 \ge 0$

4) Lorsque
$$x < -2$$
 on a $x^2 > 4$

5) Lorsque -
$$6 \le x < 3$$
 on a $0 \le x^2 \le 36$

5) Lorsque -
$$6 \le x < 3$$
 on a $0 \le x^2 \le 36$
6) Lorsque - $11 < x \le -2$ on a $4 \le x^2 < 121$

50 p 133

Ordre croissant : $\sqrt{0,1287} < \sqrt{\frac{5}{3}} < \sqrt{3} < \sqrt{\pi} < \sqrt{3,8}$

51 p 133 Aidez vous du tableau de variation de la fonction racine carré

1) Lorsque 1 <
$$x$$
 < 2 on a 1 < \sqrt{x} < $\sqrt{2}$

2) Lorsque
$$4 \le x < 12$$
 on a $2 \le \sqrt{x} < \sqrt{12}$

3) Lorsque
$$5 \le 4x < 16$$
 on $\frac{5}{4} \le x < 4$ et donc $\sqrt{\frac{5}{4}} \le \sqrt{x} < 2$

4) On peut remarquer que $\pi^2 + 2\pi + 1 = (\pi + 1)^2$ (identité remarquable)

Lorsque 1,44 <
$$x \le \pi^2 + 2\pi + 1$$
 on a $\sqrt{1,44} < \sqrt{x} \le \sqrt{\pi^2 + 2\pi + 1}$ c'est-à-dire 1,2 < $\sqrt{x} \le \pi + 1$

62 p 134 Aidez vous du tableau de variation de la fonction inverse

a) Lorsque
$$\frac{2}{7} < x \le \frac{5}{8}$$
 on a $\frac{7}{2} > \frac{1}{x} \ge \frac{8}{5}$

b) Lorsque
$$-\frac{3}{2} > x \ge -\frac{5}{3}$$
 on a $-\frac{2}{3} < \frac{1}{x} \le -\frac{3}{5}$

c) Lorsque 7 <
$$x$$
 on a $\frac{1}{7} > \frac{1}{x}$

d) Lorsque
$$\frac{7}{2} \ge x > 0$$
 on a $\frac{2}{7} \le \frac{1}{x}$

e) Lorsque
$$-5 \leqslant x < 0$$
 on a $-\frac{1}{5} \geqslant \frac{1}{x}$
f) Lorsque $-\frac{1}{6} \leqslant x$ on a $-6 \geqslant \frac{1}{x}$

f) Lorsque -
$$\frac{1}{6} \le x$$
 on a - 6 $\ge \frac{1}{x}$

Aidez vous du tableau de variation de la fonction cube

1) Lorsque -
$$3 \le x < 2$$
 on a $-27 \le x^3 < 8$

2) Lorsque -
$$\sqrt{2} < 2x \le 1$$
 on a $\frac{-\sqrt{2}}{2} < x \le \frac{1}{2}$ et on a $\left(\frac{-\sqrt{2}}{2}\right)^3 < x^3 \le \left(\frac{1}{2}\right)^3$ c'est-à-dire $\frac{-\sqrt{2}}{4} < x^3 \le \frac{1}{8}$

3) Lorsque
$$x \ge \frac{5}{6}$$
 on a $x^3 \ge \frac{125}{216}$

4) Lorsque
$$x < \frac{\sqrt[3]{5}}{2}$$
 on a $x^3 < \frac{5}{8}$