PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY ARKUSZ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1 3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

STYCZEŃ 2011

WYBRANE:
(środowisko)
(kompilator)
(program użytkowy)

Czas pracy: 90 minut Liczba punktów do uzyskania: 20

PESEL										

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

Zadanie 1. Test (5 pkt)

W następujących pytaniach zaznacz znakiem X właściwą odpowiedź, poprawna jest tylko jedna.

a)	Ile numerów IP można wykorzystać do podłączenia urządzeń sieciowych wiedząc, że maska sieci wynosi 255.255.255.0:						
	\square 256						
	□ 255						
	□ 254						
	□ 253						
b)	Symetryczne algorytmy szyfrujące charakteryzują się tym, że:						
	☐ jeden klucz jest wykorzystywany do szyfrowania i deszyfrowania						
	☐ stosowane są dwa różne klucze, jeden do szyfrowania, a drugi do deszyfrowania						
	☐ do szyfrowania i deszyfrowania nie wykorzystuje się kluczy						
	🗆 zaszyfrowana wiadomość jest ciągiem znaków symetrycznym względem środka ciągu						
c)	Jaką wartość ma zmienna s po wykonaniu ciągu następujących instrukcji:						
	$s \leftarrow 0$; dla wszystkich wartości i od 1 do 10 wykonaj $s \leftarrow i - s$; $s \leftarrow -s$;						
	\square 10						
d)	□ 10□ 5						
d)	 □ 10 □ 5 □ -5 □ 0 Jaka jest najmniejsza liczba porównań elementów, potrzebnych do znalezienia elementu 						
d)	 □ 10 □ 5 □ -5 □ 0 Jaka jest najmniejsza liczba porównań elementów, potrzebnych do znalezienia elementu najmniejszego i największego wśród n elementów, jeśli n jest liczbą parzystą? 						
d)	 □ 10 □ 5 □ -5 □ 0 Jaka jest najmniejsza liczba porównań elementów, potrzebnych do znalezienia elementu najmniejszego i największego wśród n elementów, jeśli n jest liczbą parzystą? □ 2(n-1) 						

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

e)	Jesli program ma licencję Creative Commons, to oznacza ze:
	□ autorzy oprogramowania zrzekają się w całości praw autorskich na rzecz ogółu użytkowników;
	program jest rozpowszechniany za darmo (bez kodu źródłowego), ale zawiera funkcję wyświetlającą reklamy, zwykle w postaci banerów reklamowych;
	☐ dopuszczone jest rozpowszechnianie programu bez opłat, ale z pewnymi ograniczeniami lub z niewielkimi opłatami, do wypróbowania przez użytkowników;
	☐ licencja umożliwia twórcom programów zachowanie własnych praw i jednocześnie dzielenie się swoimi programami z innymi.

Punktacja:

	Podpunkt:	a)	b)	c)	d)	e)	Razem
Wypełnia egzaminator	Maksymalna liczba punktów:	1	1	1	1	1	5
·Szammatoi	Uzyskana liczba punktów:						

Zadanie 2. Piramida (8 pkt)

Na poniższym rysunku przedstawiono piramidę, która ma 4 poziomy. Pola piramidy są wypełnione liczbami. Ciemniejsze pola na rysunku oznaczają drogę w takiej piramidzie – **droga** zaczyna się w polu na najwyższym poziomie piramidy i biegnie do jej podstawy po polach na kolejnych poziomach, które stykają się swoimi podstawami. **Długością** takiej drogi jest suma liczb znajdujących się w polach drogi. Droga zaciemniona na rysunku ma długość: 7 + 6 + 3 + 5 = 21.

Problem: oblicz długość najdłuższej drogi w piramidzie.

W realizacji poleceń opisanych poniżej w punktach a) - d) przyjmij, że piramida jest reprezentowana w tablicy kwadratowej Pir, w której są wypełnione liczbami tylko pola w dolnej części trójkątnej i na przekątnej. Przykładowa piramida pokazana powyżej ma więc następującą reprezentację:

7			
5	6		
6	4	3	
4	6	5	6

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

a) Napisz specyfikację opisanego wyżej problemu dla piramidy, która ma n poziomów, gdzie n jest dodatnią liczbą całkowitą spełniającą $n \ge 2$.

b) Zapisz słownie algorytmu, służący do znajdowania długości najdłuższej drogi w piramidzie, który bazuje na następującej idei. Zaczynamy obliczenia od poziomu nad podstawą i liczymy długości najdłuższych dróg z pól na tym poziomie do podstawy. W następnych krokach iteracji, z pół znajdujących się na kolejnych poziomach aż do najwyższego, znajdujemy długości najdłuższych dróg do podstawy korzystając jedynie z wcześniej obliczonych wartości, znajdujących się w polach na poziomie o jeden niżej.

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

c) Przedstaw obliczenia opisanym w punkcie b) algorytmem dla znalezienia najdłuższej drogi w przykładowej piramidzie podanej na początku tego zadania.

d) Zapisz podany w punkcie b) algorytm w wybranej przez siebie postaci (listy kroków, schematu blokowego lub w języku programowania).

Punktacja:

	Podpunkt:	a)	b)	c)	d)	Razem
Wypełnia egzaminator	Maksymalna liczba punktów:	1	3	1	3	8
- Seminary	Uzyskana liczba punktów:					

Zadanie 3. Ciąg (7 pkt)

Ciąg liczb naturalnych, dla n = 1, 2, ..., jest zdefiniowany następującym wzorem:

$$\begin{cases} a_1 = 1 \\ a_2 = 3 \\ a_n = a_{n-2} \cdot 2 \\ a_n = 3 \cdot a_{n-1} - a_{n-2} + 1 \end{cases} dla \ nieparzystego \ n > 2$$

a) Korzystając z powyższej definicji ciągu podaj wartości jego pierwszych ośmiu elementów.

b) Podaj specyfikację problemu polegającego na obliczeniu n-tego wyrazu ciągu zdefiniowanego powyżej.

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

c) Napisz w wybranym przez siebie języku programowania funkcję rekurencyjną, służącą do obliczania wartości *n*-tego elementu tego ciągu.

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

d) Zapisz **nierekurencyjny algorytm**, służący do obliczania wartości *n*-tego elementu tego ciągu w wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania).

Punktacja:

	Podpunkt:	a)	b)	c)	d)	Razem
Wypełnia egzaminator	Maksymalna liczba punktów:	1	1	2	3	7
- G2ummutor	Uzyskana liczba punktów:					

