Task to complete

Given is a square ABCD. We label the sides of the square as a and the diagonal as d. We know the measure of d-a. Create the steps of such a construction.

Steps of construction.

Suppose a plane α . We have a line segment \overline{AX} , such that $\overline{AX} \subset \alpha$. Furthermore, $\overline{AX} = d - a$. Then, we create a ray \overline{AX} .

Suppose we create line segments from X to any of the 4 vertices. We then observe such 4 triangles:

1.
$$\Delta_{ABX}$$
, where $\overline{AB}=a$, $\overline{BX}=b$, $\overline{AX}=d-a$

2.
$$\Delta_{BCX}$$
, where $\overline{BC} = a$, $\overline{BX} = b$, $\overline{CX} = a$

3.
$$\Delta_{CDX_I}$$
 where $\overline{CD} = a_I \, \overline{CX} = a_I \, \overline{DX} = b$

4.
$$\Delta_{ADX}$$
, where $\overline{AD}=a$, $\overline{AX}=d-a$, $\overline{DX}=b$

 \ldots we observe $\Delta_{ABX}\cong\Delta_{ADX}\wedge\Delta_{BCX}\cong\Delta_{CDX}.$

*We don't need to specify the size b as it's not for this particular example. Moreover, the triangle Δ_{ABX} (likewise Δ_{ADX}) are of no significance for this particular exercise. Since, $\Delta_{BCX} \cong \Delta_{CDX}$, we will use Δ_{BCX} for brevity.

We see that Δ_{BCX} is an isosceles triangle with an angle $\angle BCX = 45^\circ$. Therefore, $\angle CBX = \angle CXB = (180-45) \div 2 = 67.5^\circ$. We continue with the next step, namely, we create \overrightarrow{p} , such that $X \in \overrightarrow{p} \land \angle \overrightarrow{AX}, \overrightarrow{p} = 67.5^\circ$ (in the upper half-plane). Additionally, we have \overrightarrow{q} , such that $A \in \overrightarrow{q} \land \angle \overrightarrow{AX}, \overrightarrow{q} = 45^\circ$. Consequently, we get the vertex B, where $\overrightarrow{p} \cap \overrightarrow{q} = \{B\}$. In order to obtain the vertex C, we create a line \overrightarrow{r} , such that $B \in \overrightarrow{r} \land \overrightarrow{q} \perp \overrightarrow{r}$. So, we have C, where $\overrightarrow{AX} \cap \overrightarrow{r} = \{C\}$. Lastly, we create a line segment \overrightarrow{CD} , where $\overrightarrow{CD} \parallel \overrightarrow{q} \land \overrightarrow{CD} = \overrightarrow{AB}$. Finally, we observe the square ABCD in the plane α .