a.) In the metric space (\mathbb{R}^2, d_{std}) , Ball(0, 1) looks like

b.) In the metric space $(\mathbb{R}^2, d_{l^{\infty}})$, Ball(0, 1) looks like

c.) In the metric space (\mathbb{R}^2, d_{taxi}) , Ball(0,1) looks like

Let d_{std} , $d_{l\infty}$, and d_{taxi} be shorthand for their respective metric spaces.

It is clear that each set is open in its respective metric space. Now consider the openness of each set in d_{std} . Since the open balls in $d_{l\infty}$ and d_{taxi} resemble open sets in standard Euclidian space, we know that they can be represented as a union of open balls, and thus are open in d_{std} .

Next, consider the openness of each set in $d_{l\infty}$. We know that the open ball in $d_{l\infty}$ is open in d_{std} , thus it can be represented by a union of open balls, thus any union of open balls in $d_{l\infty}$ is also a union of open balls in d_{std} . Finally, since we know that the open balls in d_{std} and d_{taxi} are open in d_{std} , they can also be represented as a union of open balls in d_{std} , and thus as a union of open balls in $d_{l\infty}$, thus each set is open in $d_{l\infty}$.

A an argument similar to the above one shows that each set is also open in d_{taxi} .