Homework 4

Jim Zieleman

September 21, 2020

1. For each of the following sets, determine the interior, closure, whether it is open, and whether it is closed. Prove two of your answers (your choice; you dont need to prove your answers to the other ones).

```
(a) A = (a, b)
     Interior: (a, b)
     Closure: [a, b]
     Open: Yes
     Closed: No
     Proof for interior:
     Given A = (a, b) WTS A^{\circ} = (a, b).
     Let x \in A^{\circ}.
     Then there exists \epsilon > 0 such that (x - \epsilon, x + \epsilon) \subseteq A.
     Then x - \epsilon < x < x + \epsilon.
     So x \in (x - \epsilon, x + \epsilon).
     Thus x \in A = (a, b).
     For the other inclusion.
     Let x \in (a, b).
     Let \epsilon = min(b-x, x-a).
     Claim 1: \epsilon > 0.
     Since x \in (a, b) then a < x < b.
     So it follows that x - a > 0 and b - x > 0.
     So \epsilon > 0.
     Claim 2: (x - \epsilon, x + \epsilon) \subseteq (a, b).
     Let y \in (x - \epsilon, x + \epsilon).
     Then it follows a = x - x + a \le x - \epsilon < y < x + \epsilon \le x + b - x = b.
     So a < y < b.
     Then y \in (a, b).
```

By the claims it follows that x is an interior point so $x \in A^{\circ} = (a, b)$. Since $A = A^{\circ}$ it is open.

Proof for closure:

```
Given A = (a, b) WTS \bar{A} = [a, b].
```

$$A - \{a\} = (a, b).$$

Let $0 < \epsilon$ and $(a - \epsilon, a + \epsilon)$ be the neighborhood around a.

If $x \in A - \{a\} = (a, b)$ then a < x < b. Also observe $a < a + \epsilon$.

If $a + \epsilon < b$ then $a < a + \epsilon < b$.

So an intersection with (a, b) would be $(a, a + \epsilon)$.

If $a + \epsilon \ge b$ then $a < b \le a + \epsilon$.

So an intersection with (a, b) would be (a, b).

Thus $(a - \epsilon, a + \epsilon) \cap A - \{a\} = \emptyset$.

So a is a limit point.

$$A - \{b\} = (a, b).$$

Let $0 < \epsilon$ and $(b - \epsilon, b + \epsilon)$ be the neighborhood around b.

If $x \in A - \{b\} = (a, b)$ then a < x < b. Also observe $b - \epsilon < b$.

If $b - \epsilon > a$ then $a < b - \epsilon < b$.

So an intersection with (a, b) would be $(b - \epsilon, b)$.

If $b - \epsilon \le a$ then $b - \epsilon \le a < b$.

So an intersection with (a, b) would be (a, b).

Thus $(b - \epsilon, b + \epsilon) \cap A - \{b\} = \emptyset$.

So b is a limit point.

Given A = (a, b) and our limit points $A' = \{a, b\}, A \cap A' = \bar{A} = [a, b].$

Thus [a, b] is the closure of A.

Since $\bar{A} \neq A$, A is not closed.

(b) B = [a, b]

Interior: (a, b)

Closure: [a, b]

Open: No

Closed: Yes

Proof for interior:

Given B = (a, b) WTS $B^{\circ} = (a, b)$.

Let $x \in B^{\circ}$.

Then there exists $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subseteq B$.

Then $x - \epsilon < x < x + \epsilon$.

So $x \in (x - \epsilon, x + \epsilon)$.

Thus $x \in B = (a, b)$.

For the other inclusion.

Let $x \in (a, b)$.

Let $\epsilon = min(b-x, x-a)$.

Claim 1: $\epsilon > 0$.

Since $x \in (a, b)$ then a < x < b.

So it follows that x - a > 0 and b - x > 0.

So $\epsilon > 0$.

Claim 2: $(x - \epsilon, x + \epsilon) \subseteq (a, b)$. Let $y \in (x - \epsilon, x + \epsilon)$. Then it follows $a = x - x + a \le x - \epsilon < y < x + \epsilon \le x + b - x = b$. So a < y < b. Then $y \in (a, b)$.

By the claims it follows that x is an interior point so $x \in B^{\circ} = (a,b)$. Since $B = B^{\circ}$ it is open.

Proof for closure:

Given B = [a, b] WTS $\bar{B} = [a, b]$.

 $B - \{a\} = (a, b].$

Let $0 < \epsilon$ and $(a - \epsilon, a + \epsilon)$ be the neighborhood around a.

If $x \in B - \{a\} = (a, b]$ then $a < x \le b$. Also observe $a < a + \epsilon$.

If $a + \epsilon < b$ then $a < a + \epsilon < b$.

So an intersection with (a, b] would be $(a, a + \epsilon)$.

If $a + \epsilon \ge b$ then $a < b \le a + \epsilon$.

So an intersection with (a, b] would be (a, b].

Thus $(a - \epsilon, a + \epsilon) \cap B - \{a\} = \emptyset$.

So a is a limit point.

 $B - \{b\} = [a, b).$

Let $0 < \epsilon$ and $(b - \epsilon, b + \epsilon)$ be the neighborhood around b.

If $x \in B - \{b\} = [a, b)$ then $a \le x < b$. Also observe $b - \epsilon < b$.

If $b - \epsilon > a$ then $a \le b - \epsilon < b$.

So an intersection with [a, b) would be $(b - \epsilon, b)$.

If $b - \epsilon \le a$ then $b - \epsilon \le a < b$.

So an intersection with [a, b) would be (a, b).

Thus $(b - \epsilon, b + \epsilon) \cap B - \{b\} = \emptyset$.

So b is a limit point.

Given B = [a, b] and our limit points $B' = \{a, b\}, B \cap B' = \bar{B} = [a, b].$

Thus [a, b] is the closure of B.

Since $\bar{B} = B$, B is closed.

(c) C = (a, b]

Interior: (a, b)

Closure: [a, b]

Open: No

Closed: No

(d) $D = \emptyset$

Interior: \emptyset

Closure: \emptyset

Open: Yes

Closed: Yes

(e) E = N

Interior: N Closure: N Open: Yes Closed: Yes

2. (a) A = Z

Interior: \emptyset Closure: Z Open: No Closed: Yes

(b) $B = \{1/n \mid n \in N\}$

Interior: \emptyset Closure: $B \cup \{0\}$

Open: No Closed: No

Proof:

Let $\epsilon = 1/n - 1/(n+1)$

Then $(1/n - \epsilon, 1/n + \epsilon) \cap B = \{1/n\}$

So 1/n is not a limit point so each point of B is isolated.

However every neighborhood centered around 0 will contain points in B. 1/n as n gets arbitrarily large approaches 0. But $0 \notin B$ so the closure of B is $B \cup \{0\}$. Since $B \neq B \cup \{0\}$ it is not closed.

Since 1/n is isolated there are no open sets contained in B so the interior is empty.

(c) $C = Q \cap (0, 1)$

Interior: N
Closure: N
Open: Yes
Closed: Yes

- 3. Let $A \subseteq R$.
 - (a) Show the interior A° is an open set.

Proof:

Suppose $x \in A^{\circ}$ then there exists an $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subseteq A$. $(x - \epsilon, x + \epsilon)$ is open. So for all $y \in (x - \epsilon, x + \epsilon)$ there exists $\epsilon' > 0$ such that $(y - \epsilon', y + \epsilon') \subseteq (x - \epsilon, x + \epsilon) \subseteq A$.

This means that every point in $(x - \epsilon, x + \epsilon)$ is an interior point of A. Thus $(x - \epsilon, x + \epsilon) \subseteq A^{\circ}$ implies A° is open.

(b) Show the closure \bar{A} is a closed set.

A set A is closed if and only if every limit point of A is also a point in A.

The closure of A is the set $A \cup A'$.

A' is the set of limit points of A.

The closure of A is denoted $\bar{A} = A \cup A'$. Since it contains A and its limit points the set \bar{A} is closed.

4. Let $A \subseteq R$. Prove that A is open if and only if the complement A^c is closed.

Proof:

Suppose A is open. Since A is open every point in A is an interior point. Let x be a limit point of A^c . Then every neighborhood around x contains a point in A^c so x is not an interior point of A.

Then $x \in A^c$ and every limit point of A^c is a point in A^c . Hence if A is open, A^c is closed.

Conversely suppose A^c is closed.

Let $x \in A$, then $x \notin A^c$. We know x is not a limit point of A^c since it is closed and by definition contains all of its limit points. Thus for some $\epsilon > 0$ there exists some $(x - \epsilon, x + \epsilon)$ where $A^c \cap (x - \epsilon, x + \epsilon) = \emptyset$. That neighborhood around x will be a subset of A. Thus it is an interior point of A. So every point in A is an interior point of A. Then by definition S is open.

Hence if A^c is closed, A is open.

- 5. Let $\{A_1, ..., A_n\}$ be a finite family of sets.
 - (a) Prove that if A_k is open for each $1 \le k \le n$, then the intersection $A := \bigcap_{k=1}^{n} A_k$ is open.

Proof:

Let $\{A_1, ..., A_n\}$ be a finite collection of open sets.

If $a \in \bigcap_{k=1}^{n} A_k$, then a is an element of each of the open sets.

By the definition of an open set we know for all $1 \le k \le n$ there exists some $(a - \epsilon_k, a + \epsilon_k) \subseteq A_k$ for some $\epsilon_k > 0$.

Let $\epsilon = min\{\epsilon_1, \epsilon_n\}$ such that $(a - \epsilon, a + \epsilon) \subseteq (a - \epsilon_k, a + \epsilon_k) \subseteq A_k$ for all k. Hence $(a - \epsilon, a + \epsilon) \subseteq A_k$, thus it is open.

(b) Prove that if A_k is closed for each $1 \leq k \leq n$, then the union $A := \bigcup_{k=1}^{n} A_k$ is closed.

Proof:

We showed in part (a) if A_k is open for all $1 \le k \le n$, $A := \bigcap_{k=1}^n A_k$ is open.

 $(\cap_{k=1}^{n} A_k)^c$ is closed since we showed the complement of the open set is closed.

And by De Morgans Law

 $(\cap_{\mathbf{k}=1}^{\mathbf{n}}A_k)^c=\cup_{\mathbf{k}=1}^{\mathbf{n}}A_k^c$ is closed.

 A_k^c is closed since A_k is open as show in number 4. So we have shown the finite union of closed sets A_k^c is closed.

6. Let $\{A_i\}_{i\in I}$ be a family of sets indexed by an indexing set I.

(a) Prove that if A_i is open for each $i \in I$, then the union $A =: \bigcup_{i \in I} A_i$ is open.

Proof:

Let $x \in A$. Then for some $i \in I$, $x \in A_i$. This means $\exists \epsilon > 0$ s.t. $(x - \epsilon, x + \epsilon) \subset A_i$.

So $(x - \epsilon, x + \epsilon) \subset \bigcup_{i \in I} A_i$, which we'll restate as $(x - \epsilon, x + \epsilon) \subset A$. Each set is open, so each set A_i contains the interior points of A_i . So by definition of union and open, A is open.

(b) Prove that is A_i is closed for each $i \in I$, then the intersection $B: \cap_{i \in I} A_i$ is closed.

Proof:

We know from Problem 4 that A is closed iff A^c is open. Then by De Morgan's laws $(\bigcap_{i\in I}A_i)^c=\bigcup_{i\in I}A_i^c$. From part (a) above, we proved $\bigcup_{i\in I}A_i$ is open when A_i for each $i\in I$ is open. This means $\bigcup_{i\in I}A_i^c$ is open, so $(\bigcap_{i\in I}A_i)^c$ is open. Then $\bigcap_{i\in I}A_i$ is closed.