Trig Final (TEST v699)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 4.8 radians. The arc length is 28 meters. How long is the radius in meters?

Question 2

Consider angles $\frac{-9\pi}{4}$ and $\frac{11\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-9\pi}{4}\right)$ and $\cos\left(\frac{11\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(-9\pi/4)$

Find $cos(11\pi/3)$

Question 3

If $\cos(\theta) = \frac{-11}{61}$, and θ is in quadrant III, determine an exact value for $\sin(\theta)$.

Question 4

A mass-spring system oscillates vertically with an amplitude of 5.25 meters, a frequency of 8.67 Hz, and a midline at y = -7.07 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).