

Aufgaben zu Riemannschen Flächen

14. Blatt – Übung am Montag, 06.02.2017

Auf dem Blatt sei immer X eine kompakte zusammenhängende Riemannsche Fläche.

Aufgabe 47: Für $P \in X$ sei \mathbb{C}_P die Wolkenkratzergarbe wie in der Vorlesung betrachtet. Zeigen Sie, dass

$$\check{H}^1(X,\mathbb{C}_P)=0$$

gilt.

Aufgabe 48:

Sei D ein Divisor auf X. Zeigen Sie:

- i) Die Garbe \mathcal{O}_D ist ein holomorphes Geradenbündel (vgl. Blatt 12).
- ii) ¹ Genau dann ist $\mathcal{O}_D \cong \mathcal{O}$ (als \mathcal{O} -Modulgarben), wenn $D \sim 0$.

Aufgabe 49: Sei nun speziell $X = \mathbb{CP}^1$. Zeigen Sie:

- i) Die Garben $\mathcal{O}_{\mathbb{CP}^1}(n)$ aus Blatt 3 sind holomorphe Geradenbündel.
- ii) Für je zwei Punkte P,Q gilt $P \sim Q$ als Divisoren.
- iii) Jeder Divisor ist bis auf Äquivalenz von der Form $m \cdot \infty$ für ein $m \in \mathbb{Z}$.
- iv) Ist D ein beliebiger Divisor, dann existiert ein $m \in \mathbb{Z}$, so dass $\mathcal{O}_D \cong \mathcal{O}_{\mathbb{CP}^1}(m)$.

Aufgabe 50: Eine kompakte Riemannsche Fläche heißt *rational*, wenn es zwei verschiedene Punkte $P \neq Q$ gibt, so dass $P \sim Q$ als Divisoren. Zeigen Sie, dass X genau dann rational ist, wenn $X \cong \mathbb{CP}^1$.

¹Expertenaufgabe: man muss sich vorher überlegen, was es für zwei \mathcal{O} -Modulgarben bedeutet, isomorph zu sein! Insbesondere hat man einen Isomorphismus $\mathcal{O}_D(X) \cong \mathcal{O}(X)$ und damit ein $f := \psi^{-1}(1) \in \mathcal{O}_D(X)$, man hat aber auch die Restriktionen auf beliebige offene $U \subset X$.