

EXAMEN PARCIAL PYTHON

GBI6-2021II: BIOINFORMÁTICA

Apellidos, Nombres <--- CAMBIE POR LOS QUE CORRESPONDA A SUS DATOS Angiely Camacho. 03-08-2022

Color de texto

REQUERIMIENTOS PARA EL EXAMEN

Utilice de preferencia Jupyter de Anaconda, dado que tienen que hacer un control de cambios en cada pregunta.

Para este examen se requiere dos documentos:

- 1. Archivo miningscience.py donde tendrá dos funciones:
- 2. Archivo 2022I_GBI6_ExamenPython donde se llamará las funciones y se obtendrá resultados.

Ejercicio 0 [0.5 puntos]

Realice cambios al cuaderno de jupyter:

- Agregue el logo de la Universidad
- · Coloque sus datos personales
- · Escriba una tabla con las características de su computador

Ejercicio 1 [2 puntos]

Cree el archivo miningscience.py con las siguientes dos funciones:

- i. download_pubmed : para descargar la data de PubMed utilizando el ENTREZ de Biopython. El parámetro de entrada para la función es el keyword . > Guerrada
- ii. science plots : la función debe
 - utilizar como argumento de entrada la data descargada por download pubmed
 - ordenar los conteos de autores por país en orden ascedente y
 - seleccionar los cinco más abundantes. Con esta selección debe graficar un pie_plot . Como guía para el conteo por países puede usar el ejemplo de MapOfScience (https://github.com/CSBbook/CSB/blob/master/regex/solutions/MapOfScience_solution.jpynb).

iii Cree un docstring para cada función.

localhost:8888/notebooks/GDrive/IKIAM/CLASES/2022I/2022I_GBI6/2022I_GBI6_Examen_Python/2022I_GBI6G01_ExamenPython.ipynb

Luego de crear las funciones, cargue el módulo miningscience como msc e imprima docstring de función.

```
In [1]:
```

```
# Escriba aquí su código para el ejercicio 1
import miningocience

help (msc. download = pubmed)
help (msc. science - plots)
```

Ejercicio 2 [2 puntos]

Utilice dos veces la función download_pubmed para:

- Descargar la data, utilizando los keyword de su preferencia.
- Guardar el archivo descargado en la carpeta data.

Para cada corrida, imprima lo siguiente:

'El número artículos para KEYWORD es: XX' # Que se cargue con inserción de texto o valor que correspondea KEYWORD y XX

polablas

In [2]:

```
# Escriba aquí su código para el ejercicio 2

Import re

a= msc. doundoad - pubmed ("dogs")

b= len (a)

print ('El número artículo para Key WORD es:', b)

with open ("Dataldogs txt", "w") as txt:

txt. write (a).
```

Ejercicio 3 [1.5 puntos]

Utilice dos veces la función science_plots para:

- Visualizar un pie_plot para cada data descargada en el ejercicio 2.
- Guardar los pie_plot en la carpeta img

[4]:

Escriba aquí su código para el ejercicio 3 imports matplotlib. pyplot as plt cats = msc. science _ plots (a).
with open l"ing/gatos, png", "w") as png dogs = msc. science - ptots (v)
plt. savefig ('img/perros.png', dpi = 500) plt. show ()

Ejercicio 4 [1 punto]

Interprete los resultados de las figuras del ejercicio 3

Escriba la respuesta del ejercicio 5.

. Se realizo un arbol filogenético con los Accession list.

Ejercicio 5 [2 puntos]

Para algún gen de las enzimas que intervienen en la ruta metabolica de la gluconeogenesis (Lista de genes por tipología (https://www.genome.jp/pathway/map00010+C00068)), realice lo siguiente:

- 1. Una búsqueda en la página del NCBI nucleotide (https://www.ncbi.nlm.nih.gov/nucleotide/).
- 2. Descarque el Accession List de su búsqueda y guarde en la carpeta data.
- 3. Cargue el Accession List en este notebook y haga una descarga de las secuencias de los quince primeros IDs de la accesión.
- 4. Arme un árbol filogenético para los resultados del paso 3.
- 5. Guarde su arbol filogénetico en la carpeta img
- 6. Interprete el árbol del paso 4.

homero de accesión.

Usar

GBI6-BI

```
In [3]:
```

```
# Escriba aqui su código para el ejercicio 6

with open ('Data /sequence.seq') as file:

text = file.read ()

text = text.plit ('In')

text = '.'. join (text [:10])

handle = Entrez.efetch (db="nudeotide", rettype="gb", retmode = 'text", id = text)

iprint (handle wrl)

records = Seq 10. parse ("Data/sequence, gb", genback")

rount = Seq 10. write (records, "Data/sequence.fasta", "fasta")

clustal w = exe= r"(:\languam file (x 86) \ Chustal W2 \ clustal w2.exe".

clustal w = cline = clustal w Compand line (clustal w2 \ check infile: "Data/sequence fasta")

assext os. palh. is file (clustal w=exe), "(lustal w exe w table is missing or not found).
```

Escriba aquí la interpretación del árbol

Ejercicio 6 [1 punto]

1. Cree en GitHub un repositorio de nombre GBI6_ExamenPython .

2. Cree un archivo Readme.md que debe tener lo siguiente:

dowloa

scien plot

Datos personales

Características del computador

Versión de Python/Anaconda y de cada uno de los módulos/paquetes y utilizados

Explicación de la data utilizada

Un diagrama de procesos del módulo miningscience

3. Asegurarse que su repositorio tiene las carpetas data e imp con los archivos que ha ido guardando en las preguntas anteriores.

 Realice al menos 1 control de la versión (commits) por cada ejercicio (del 1 al 5), con un mensaje que inicie como:

Carlitos Alimaña ha realizado el ejercicio 1

Carlitos Alimaña ha realizado el ejercicio 2

. . .

In []:

_{6BI6} – BIOINFORMÁTICA [2022]] Examen Final [Python]

Nombre [Apellido, Nombre]:

```
Construya las funciones del módulo miningscience.py
```

def download_pubmed (key word.

"""

Este script permite boscar cartículos en pubmed por medio
de polabras daves. "

Entrez email = 'gualapuro, moises @gmail.com'
busq = Entrez. read (Entrez, esearch (db = "pudmed",

term = keyword,

"""
use history = 'y"])

weben v = busq ["web Env"]

query - Key = busq [averykay]

handle = Entrez. etectch (db="pub med",

ret type="med line"

ret mode="text",

rest tart=0,

ret max = sus, weben v=weben v, query-key = query-key)

data = hadle. read ()
data exp. re. sub (r'ln 15 {6}', ", data).
return data exp.

```
GBI6 – BIOINFORMÁTICA [2022I]
Examen Final [Python]
```


):

```
Nombre [Apellido, Nombre]:
def science plots (
           11 11 11
  \begin{aligned} & email = re.sub(r'\s[\w._\%+-]+@[\w.-]+\.[a-zA-Z]\{1,4\}',",file) \\ & puntos = re.sub(r'\..\d.',',',email) \\ & numb = re.sub(r'\..\d.',",puntos) \\ & x=numb[1:].split('PMID-') \end{aligned}
       Countries_A=[] for PMID in x:
            q=PMID.split('\n')
            for fila in q:
                w=fila.split(' ')
'if'w[0] == 'AD':
                     e=fila.split(',')
Countries_A.append(e[-1])
        a=0
       Countries_B =[0]*len(Countries_A) for lis in Countries_A:
            bytes(lis,encoding="utf8")
            if lis != ":
                 w=lis
                 if w[0] == ' ':
                w = re.sub (r'^\s',",w) if w[-1] == '.':
                w = re.sub (r'\.$',",w)
w = re.sub (r'\.$',",w)
w = re.sub (r'\s$',",w)
            Countries_B[a]=w
            a=a+1
   \begin{array}{l} Contries\_all=[...]\\ email=re.sub(r'\s[\w.\_\%+-]+@[\w.-]+\.[a-zA-Z]\{1,4\}',",file)\\ puntos=re.sub(r'\..\d.\,',',',email)\\ numb=re.sub(r'\..\d.',",puntos)\\ x=numb[1:].split('PMID-') \end{array} 
        Countries_A=[]
       for PMID in x:
            q=PMID.split('\n')
            for fila in q
                 w=fila.split(' ')
if w[0] == 'AD':
                     e=fila.split(',')
Countries_A.append(e[-1])
       Countries_B =[0]*len(Countries_A) for lis in Countries_A:
            bytes(lis,encoding="utf8") if lis != ":
                 w=lis
                w = re.sub (r'\.$',",w)
w = re.sub (r'\.$',",w)
w = re.sub (r'\s$',",w)
            Countries_B[a]=w
            a=a+1
```

INVESTIGACIÓN | Parroquia Muyuna, kilómetro 7 vía a Alto Tena INNOVACIÓN | Tena - Napo - Ecuador | Telf.: (06) 370 0040 - (06) 299 9160

www.ikiam.edu.ec