Dropping Data

FEATURE ENGINEERING WITH PYSPARK

John Hogue Lead Data Scientist, General Mills

Where can data go bad?

- Recorded wrong
- Unique events
- Formatted incorrectly
- Duplications
- Missing
- Not relevant

Dropping Columns

```
df.select(['NO', 'UNITNUMBER', 'CLASS']).show()
```

Multiple fields are not needed for our analysis

- 'NO' auto-generated record number
- 'UNITNUMBER' irrelevant data
- 'CLASS' all constant

Dropping Columns

drop(*cols)

- *cols a column name to drop or a list of column names to drop.
- Returns a new DataFrame that drops the specified

```
# List of columns to drop
cols_to_drop = ['NO', 'UNITNUMBER', 'CLASS']
# Drop the columns
df = df.drop(*cols_to_drop)
```

Text Filtering

- where(condition)
 - o condition a Column of types.BooleanType or a string of SQL expression.
 - Filters dataframe where the condition is true
- like(other)
 - other a SQL LIKE pattern
 - Returns a boolean Column
- ~
 - The NOT condition

```
df = df.where(~df['POTENTIALSHORTSALE'].like('Not Disclosed'))
```

Outlier Filtering

Filter data to within three standard deviations (3?) of the mean (?)

Value Filtering Example

```
# Calculate values used for filtering
std_val = df.agg({'SALESCLOSEPRICE': 'stddev'}).collect()[0][0]
mean_val = df.agg({'SALESCLOSEPRICE': 'mean'}).collect()[0][0]
# Create three standard deviation (? ± 3?) upper and lower bounds for data
hi_bound = mean_val + (3 * std_val)
low_bound = mean_val - (3 * std_val)
# Use where() to filter the DataFrame between values
df = df.where((df['LISTPRICE'] < hi_bound) & (df['LISTPRICE'] > low_bound))
```

Dropping NA's or NULLs

DataFrame.dropna()

- how: 'any' or 'all'. If 'any', drop a record if it contains any nulls. If 'all', drop a record only if
 all its values are null.
- thresh: int, default None If specified, drop records that have less than thresh non-null values. This overwrites the how parameter.
- subset : optional list of column names to consider.

Dropping NA's or NULLs

```
# Drop any records with NULL values

df = df.dropna()

# drop records if both LISTPRICE and SALESCLOSEPRICE are NULL

df = df.dropna(how='all', subset['LISTPRICE', 'SALESCLOSEPRICE '])

# Drop records where at least two columns have NULL values

df = df.dropna(thresh=2)
```

Dropping Duplicates

What is a duplicate?

- Two or more records contains all the same information
- After dropping columns or joining datasets, check for duplicates

dropDuplicates()

- Can be run across entire DataFrame or a list of columns
- In PySpark there is no order for which record is removed

```
# Entire DataFrame
df.dropDuplicates()
# Check only a column list
df.dropDuplicates(['streetaddress'])
```

Let's practice!

FEATURE ENGINEERING WITH PYSPARK

Adjusting Data

FEATURE ENGINEERING WITH PYSPARK

John Hogue Lead Data Scientist, General Mills

Why Transform Data?

What is MinMax Scaling

$$x_{i,j}^* = \frac{x_{i,j} - x_j^{min}}{x_j^{max} - x_j^{min}}$$

Minmax Scaling

What is Standardization?

Transform data to standard normal distribution

- z = (x ?)/?
- Mean, ? of O
- Standard Deviation, ? of 1

Standardization

```
[Row(avg(ztrans_days)=-3.6568525985103407e-16)]
```

```
df.agg({'ztrans_days': 'stddev'}).collect()
```

```
[Row(stddev(ztrans_days)=1.0000000000000000)]
```


What is Log Scaling

Unscaled distribution

Log-scaled distribution

Log Scaling

```
# import the log function
from pyspark.sql.functions import log

# Recalculate log of SALESCLOSEPRICE
df = df.withColumn('log_SalesClosePrice', log(df['SALESCLOSEPRICE']))
```


Let's practice!

FEATURE ENGINEERING WITH PYSPARK

Working with Missing Data

FEATURE ENGINEERING WITH PYSPARK

John Hogue
Lead Data Scientist, General Mills

How does data go missing in the digital age?

Data Collection

Broken Sensors

Data Storage Rules

• 2017-01-01 vs January 1st, 2017

Joining Disparate Data

Monthly to Weekly

Intentionally Missing

Privacy Concerns

Types of Missing

Missing completely at random

Missing Data is just a completely random subset

Missing at random

Missing conditionally at random based on another observation

Missing not at random

Data is missing because of how it is collected

Assessing Missing Values

When to drop rows with missing data?

- Missing values are rare
- Missing Completely at Random

```
isNull()
```

• True if the current expression is null.

```
df.where(df['ROOF'].isNull()).count()
```

765

Plotting Missing Values

```
# Import library
import seaborn as sns
# subset the dataframe
sub_df = df.select(['ROOMAREA1'])
# sample the dataframe
sample_df = sub_df.sample(False, .5, 4)
# Convert to Pandas DataFrame
pandas_df = sample_df.toPandas()
# Plot it
sns.heatmap(data=pandas_df.isnull())
```

Missing Values Heatmap

Imputation of Missing Values

Process of replacing missing values

Rule Based

Value based on business logic

Statistics Based

• Using mean, median, etc

Model Based

Use model to predict value

Imputation of Missing Values

```
** fillna(value, subset=None)
```

- value the value to replace missings with
- subset the list of column names to replace missings

```
# Replacing missing values with zero
df.fillna(0, subset=['DAYSONMARKET'])
```

```
# Replacing with the mean value for that column
col_mean = df.agg({'DAYSONMARKET': 'mean'}).collect()[0][0]
df.fillna(col_mean, subset=['DAYSONMARKET'])
```

Let's practice!

FEATURE ENGINEERING WITH PYSPARK

Getting More Data

FEATURE ENGINEERING WITH PYSPARK

John Hogue Lead Data Scientist, General Mills

Thoughts on External Data Sets

PROS

- Add important predictors
- Supplement/replace values
- Cheap or easy to obtain

CONS

- May 'bog' analysis down
- Easy to induce data leakage
- Become data set subject matter expert

About Joins

Orienting our data directions

- Left; our starting data set
- Right; new data set to incorporate

table

table

PySpark DataFrame Joins

PySpark Join Example

```
# Inspect dataframe head
hdf.show(2)
```

```
+-----+
| dt| nm|
+------+
|2012-01-02| New Year Day|
|2012-01-16|Martin Luther Kin...|
+------+
only showing top 2 rows
```

```
# Specify join conditon
cond = [df['OFFMARKETDATE'] == hdf['dt']]
# Join two hdf onto df
df = df.join(hdf, on=cond, 'left')
# How many sales occurred on bank holidays?
df.where(~df['nm'].isNull()).count()
```

0

SparkSQL Join

Apply SQL to your dataframe

```
# Register the dataframe as a temp table
df.createOrReplaceTempView("df")
hdf.createOrReplaceTempView("hdf")
# Write a SQL Statement
sql_df = spark.sql("""
                      SELECT
                      FROM df
                      LEFT JOIN hdf
                      ON df.OFFMARKETDATE = hdf.dt
                   """)
```

Let's Join Some Data!

FEATURE ENGINEERING WITH PYSPARK

