# Interferometro di Michelson

#### Margherita Bini, Francesco Sacco

Maggio 2020

#### 1 Introduzione

Lo scopo dell'esperienza è quello di utilizzare l'interferometro di Michelson per misurare, sempre tramite il conteggio di frange di interferenza, grandezze diverse: la lunghezza d'onda di tre sorgenti laser (Sez. 3), l'allungamento di un materiale piezoelettrico (Sez. 4) e l'indice di rifrazione dell'aria (Sez. 5).



Figura 1: Schemma dell'interferometro di Michelson.

L'apparrato strumentale (Fig. 1) è costituito da una sorgente laser He-Ne con una  $\lambda$ =632.8 nm. Il fascio passa attraverso una lente (non rappresentata in figura), che permette di poter visualizzare le frange di interferenza al finito, e viene quindi suddiviso in ampiezza in due fasci a 90 gradi tramite un BS, che riflette il 50 % della radiazione incidente. I due fasci vengono riflessi dagli specchi  $M_1$ , fisso, e da quello  $M_2$ , che può muoversi nella direzione del fascio incidente allontanandosi o avvicinandosi al BS, essendo collegato ad un motorino elettrico. I fasci ritornando quindi sul BS, sono ricombinati, e arrivano ad un rivelatore al Silicio. Questo misura l'intensità e produce un segnale in tensione in uscita che viene mandato ad un computer in cui è possibile visualizzare le frange di interferenza.

#### 2 Condizione di interferenza costruttiva

Spostando lo specchio  $M_2$  è possbile ottenere una variazione della lunghezza dei due bracci dell'interferometro,  $L_1$  e  $L_2$ , e quindi una differenza di cammino  $\Delta S = L_1$  -  $L_2$  non nulla. La differenza di cammino ottico corrispondente è  $\Delta S_{ottico} = (L_1 - L_2) \cdot n$ , dove n è l'indice di rifrazione dell'aria. La differenza di fase è quindi  $\delta = \frac{2\pi}{\lambda} \cdot n \cdot \Delta S$ , dove  $\lambda$  è la lunghezza d'onda del laser. L'intensità massima sul rivelatore si ottiene per  $|\delta| = 0, 2\pi, 4\pi$ ... La condizione di interferenza costruttiva risulta quindi, sostituendo nell'espressione della differenza di fase:

$$\Delta S \cdot n = \lambda \cdot m \tag{1}$$

dove m è un numero intero.

Chiamando  $\Delta l$  lo spostamento dello specchio  $M_2$  è possibile scrivere  $\Delta S = 2 \cdot \Delta l$ , dato che il fascio arriva sullo specchio  $M_2$  e torna indietro. La condizione (1) si traduce quindi in:

$$2 \cdot \Delta l \cdot n = \lambda \cdot m \tag{2}$$

### 3 Misura della lunghezza d'onda di varie sorgenti laser

Il fine di questa sezione è quello di misurare la lunghezza d'onda di vari laser:

- $\lambda_1$ =632.8 nm (laser He-Ne, laser a gas);
- $\lambda_2 = 532$  nm (laser con cristallo a base di Neomidio);
- $\lambda_3$ =650 nm (diodo laser).

Variando  $\Delta$ l attraverso un motorino collegato allo specchio  $M_2$  le frange scorrono sul rivelatore. Quest'ultimo acquisisce una curva di intensità di fotoni catturati in funzione del tempo. È possibile contare il numero di frange m, che corrisponde al numero di picchi di tensione (e quindi di intensità) visualizzati su labview al computer, ed è possibile tramite l'Eq. 2 determinare la lunghezza d'onda.

La variazione di  $\Delta l$  viene fornita da un lettore micrometrico con un'incertezza associata di  $\pm 1~\mu m$ . Assumo in questa sezione che l'indice di rifrazione dell'aria sia 1.

Per contare i picchi è stata utilizzata la funzione findpeaks di SciPy. Abbiamo fissato la soglia minima sopra alla quale i picchi vengono contati alla media delle intensità misurate e abbiamo verificato l'accuratezza del conteggio visualizzando l'immagine dei picchi al variare di due parametri (Fig. 2): distance e prominance. Il primo parametro indica la distanza minima che due picchi devono avere per essere conteggiati e impedisce quindi che un picco venga contato due volte mentre il secondo indica quanto il picco emerge rispetto al segnale circostante. Il parametro prominance è quello che stabilisce, di volta in volta, la soglia dell'intensità oltre alla quale il picco viene conteggiato ed è quindi il più significativo: abbiamo utilizzato il valore in Fig. 2 - (b).



Figura 2: Conteggio dei picchi al variare del parametro prominance.

In Fig. 3 riportiamo un grafico in cui viene rappresentata l'intensità in funzione del tempo e dove sono stati individuati i picchi con dei punti arancioni (è possibile ingrandire l'immagine per verificare il conteggio).

Questo procedimento è stato eseguito per i dati acquisiti per ogni lunghezza d'onda. Inoltre, per ciascuna lunghezza è stata acquisita più volte l'intensità in funzione del tempo variando  $\Delta l$  (Tab. 1).

Avendo ottimizzato i parametri della funzione findpeaks e controllato che tutti i picchi venissero conteggiati correttamente la maggiore fonte di errore si trova nell'accendimento e nello spegnimento del motorino, quindi nel primo e nell'ultimo picco. L'errore è stato stimato a  $\pm$  3 frange per questi motivi.

È possibile ottenere il valor medio e la deviazione standard delle  $\lambda_{misurata}$  facendo un fit con una funzione costante (Fig. 4 e Tab. 2). La linea tratteggiata indica la deviazione standard dalla media (linea arancione).



Figura 3: Intensità in funzione del tempo per il laser con  $\lambda_1$  e  $\Delta l = (179 \pm 1) \mu \mathrm{m}$ 

| $\lambda_{nominale}$ [nm] | $\Delta l[\mu \mathrm{m}]$ | Numero picchi m | $\lambda_{misurata}[nm]$ |
|---------------------------|----------------------------|-----------------|--------------------------|
| 633                       | 179                        | 578             | $620 \pm 7$              |
| 633                       | 179                        | 555             | $646 \pm 7$              |
| 633                       | 180                        | 570             | $632 \pm 7$              |
| 633                       | 257                        | 805             | $638 \pm 5$              |
| 633                       | 256                        | 811             | $632 \pm 5$              |
| 650                       | 171                        | 523             | $654 \pm 8$              |
| 650                       | 160                        | 494             | $646 \pm 8$              |
| 650                       | 233                        | 713             | $654 \pm 6$              |
| 650                       | 257                        | 788             | $652 \pm 5$              |
| 532                       | 181                        | 665             | $544 \pm 5$              |
| 532                       | 186                        | 669             | $556 \pm 5$              |
| 532                       | 186                        | 713             | $520 \pm 5$              |
| 532                       | 244                        | 911             | $534 \pm 4$              |
| 532                       | 256                        | 964             | $532 \pm 4$              |

Tabella 1: Misure del numero di picchi al variare di  $\Delta$ l e confronto tra la  $\lambda$  misurata e nominale.



(a) Fit delle lunghezze d'onda a  $\lambda_{nom} = 532 \mathrm{nm}.$ 



(b) Fit delle lunghezze d'onda a  $\lambda_{nom} = 633 \mathrm{nm}$ 



(c) Fit delle lunghezze d'onda a  $\lambda_{nom} = 650 \mathrm{nm}$ 

Figura 4: Media e deviazione standard di  $\lambda_{misurata}$ . La linea tratteggiata indica la deviazione standard dalla media (linea arancione).

| $\lambda_{nom}$ [nm] | $\lambda_{mis} [nm]$ |
|----------------------|----------------------|
| 532                  | $538 \pm 5$          |
| 633                  | $633 \pm 5$          |
| 650                  | $652 \pm 6$          |

Tabella 2: Media e deviazione standard di  $\lambda_{misurata}$ 

Ingrandendo i grafici dell'intensità in funzione del tempo è stato notato come la distanza tra le frange non sia costante. Questo può essere dovuto al motorino che non si muove a velocità v costante. Dato che  $\Delta l = v \cdot t$ ,  $\Delta l$  può variare in intervalli di tempi uguali a causa di un cambiamento della velocità, provocando quindi dall'Eq. 2 un cambiamento del numero di frange.

I tre laser utilizzati hanno caratteristiche diverse tra di loro. Il laser He-Ne è collimato e ha una lunghezza di coerenza maggiore (10 cm) e questo determina una maggiore visibilità dell'interferenza, dato che la differenza dei cammini ottici è dell'ordine del cm, e quindi molto minore; il laser con  $\lambda_2$  ha basse proprietà di coerenza ma essendo nel verde la risposta dell'occhio umano è migliore, nonostante il pattern risulti essere addensificato perchè la lunghezza d'onda è minore; il laser con  $\lambda_3$  risulta essere al bordo del visibile (rosso scuro, 700 nm) e si tratta di un laser poco coerente (un ordine di grandezza inferiore rispetto al laser He-Ne) ed è quindi quello più problematico per lo svolgimento dell'esperienza.

## 4 Allungamento di un piezoelettrico al variare della tensione applicata

La piezoelettricità è la proprietà di alcuni materiali cristallini di deformarsi in maniera elastica quando sono sottoposti ad una tensione elettrica.

Posizionando un materiale piezoelettrico accanto allo specchio  $M_2$  e applicando una tensione  $\Delta V$ , mentre il piezoelettrico si allunga o si accorcia, si ha uno spostamento  $\Delta l$  dello specchio e quindi uno scorrimento delle frange di interferenza. È possibile determinare l'allungamento o l'accorciamento del piezoelettrico a partire dall'Eq. (2), con n=1, conoscendo la lunghezza d'onda del laser (in questa Sezione viene utilizzato il laser He-Ne con  $\lambda = 632$  nm) e misurando m con la stessa procedura della Sezione 3.

Il piezoelettrico si allunga o si accorcia nel passaggio da un certo voltaggio ad un voltaggio successivo, e quindi si ha uno scorrimento di frange in questo intervallo.

In Tab. 3 viene riportata la misura, eseguita con un tester, della tensione applicata V con l'errore associato, il numero di picchi misurato, e il corrispondente allungamento/accorciamento del piezoelettrico calcolato.

Dato che il numero di picchi è sufficientemente basso, è stato attribuito un errore di  $\pm 1$ , che si traduce in un errore costante sul  $\Delta l$ .

| V [V] | dV [V] | Numero picchi m | $\Delta l \ [\mu \mathrm{m}]$ |
|-------|--------|-----------------|-------------------------------|
| 0.005 | 0.002  | 0               | 0                             |
| 10.03 | 0.08   | 3               | $0.9 \pm 0.3$                 |
| 23.1  | 0.2    | 8               | $2.5 \pm 0.3$                 |
| 32.4  | 0.3    | 12              | $3.8 \pm 0.3$                 |
| 42.7  | 0.3    | 17              | $5.4 \pm 0.3$                 |
| 51.2  | 0.4    | 21              | $6.6 \pm 0.3$                 |
| 60.3  | 0.5    | 25              | $7.9 \pm 0.3$                 |
| 70.7  | 0.6    | 30              | $9.5 \pm 0.3$                 |
| 80.8  | 0.6    | 35              | $11.1 \pm 0.3$                |
| 89.7  | 0.7    | 39              | $12.3 \pm 0.3$                |
| 100.5 | 0.8    | 45              | $14.2 \pm 0.3$                |
| 91.8  | 0.7    | 44              | $13.9 \pm 0.3$                |
| 81.8  | 0.7    | 41              | $13.0 \pm 0.3$                |
| 72.0  | 0.6    | 36              | $11.4 \pm 0.3$                |
| 62.0  | 0.5    | 34              | $10.8 \pm 0.3$                |
| 52.3  | 0.4    | 29              | $9.2 \pm 0.3$                 |
| 41.5  | 0.3    | 24              | $7.6 \pm 0.3$                 |
| 29.8  | 0.2    | 19              | $6.0 \pm 0.3$                 |
| 16.5  | 0.1    | 10              | $3.2 \pm 0.3$                 |
| 0.002 | 0.002  | 0               | 0                             |

Tabella 3: Misura della tensione applicata e del numero di picchi e calcolo del  $\Delta$ l.

In Fig. 5 viene rappresentata l'allungamento  $\Delta l$  del materiale in funzione della tensione applicata  $\Delta V$ . Sono state rappresentate delle spezzate in arancione se uniscono i punti della rampa di salita e in blu per quella di discesa. Da 0 a 100 V si osserva un ciclo di isteresi.



Figura 5: Ciclo di isteresi per il piezoelettrico

È possibile notare come nell'intervallo da 30-60 V si abbia un comportamento lineare. È stato quindi eseguito un fit con la funzione  $\Delta l = mV + q$  in quell'intervallo per ottenere la pendenza della curva (Fig. 6).

Il parametro di best fit per la pendenza risulta essere m = (0.148  $\pm$  0.001)  $\mu$ m/V nella fase di allungamento del piezoelettrico e m = (0.149  $\pm$  0.004)  $\mu$ m/V in quella di contrazione.



Figura 6: Fit nella zona lineare

#### 5 Misura dell'indice di rifrazione dell'aria

Al fine di misurare l'indice di rifrazione dell'aria l'apparato sperimentale viene modificato inserendo nel braccio dello specchio  $M_1$  dell'interferometro una camera da vuoto che ha una lunghezza, corrispondente allo "spostamento" dello specchio in Eq. 2, di  $\Delta l=5$  cm, misurata con un calibro ventesimale (con un errore di 1/20 mm), e che può essere attraversata dalla luce. La camera comunica tramite una valvola a spillo Vs con una pompa, che a sua volta ha una valvola Vp che permette la comunicazione tra la pompa e l'ambiente.

Dopo aver fatto il vuoto nella camera tramite la pompa (Vs aperta e Vp chiusa), la pompa viene messa in comunicazione con l'ambiente esterno in modo che l'aria arrivi al suo interno (Vs chiusa e Vp aperta), viene quindi acceso il rivelatore delle frange di interferenza e viene fatta rientrare l'aria lentamente nella camera aprendo Vs.

Dall'Eq. 2 utilizzando come  $\lambda$  la lunghezza d'onda nominale del laser, conoscendo  $\Delta$ l e misurando le frange che scorrono mentre la camera viene riempita d'aria, è possibile esprimere la variazione dell'indice di rifrazione come:

$$n_{aria} - n_{vuoto} = \frac{m\lambda}{2\Delta l}$$

dove  $n_{aria}$  e  $n_{vuoto}$  sono l'indice di rifrazione iniziale e finale, rispettivamente.

Per il conteggio dei picchi abbiamo utilizzato lo stesso metodo della Sez. 3. Tuttavia, in questo caso il numero di frange è molto ridotto e si possono contare anche ad occhio. In Fig. 7 è raffigurata l'intensità in funzione del tempo, mentre viene riempita la camera, utilizzando il laser He-Ne. Il numero di picchi m, contati ad occhio o con la funzione findpeaks, risulta essere m=41. Nel grafico si distingue chiaramente che nel primo e nell'ultimo intervallo di tempo l'intensità è costante probabilmente perchè è stato acceso il rilevatore delle frange, a t=0 s, prima di far entrare l'aria nella camera e a t=95 s non si ha più una variazione di indice di rifrazione. L'incertezza sulla misura è principalmente attribuita al primo e all'ultimo picco. L'errore che abbiamo stimato, considerando la maggiore facilità di conteggio rispetto alla Sez. 3, è di  $\pm 2$ , ottenendo quindi:

 $n_{aria} = 1.00026 \pm 0.00001$ 



Figura 7: Intensità in funzione del tempo per il laser He-Ne.

Il conteggio dei picchi è stato ripetuto più volte per il laser a He-Ne con  $\lambda_1=632.8$  nm e per quello con  $\lambda_2=532$  nm. Le misure sono riportate in Tab. 4.

| $\ensuremath{m}$ per laser He-Ne a 632.8 nm | m per laser a 532 nm |
|---------------------------------------------|----------------------|
| 43                                          | 51                   |
| 41                                          | 50                   |
| 44                                          | 51                   |
| 43                                          | 50                   |
| 41                                          | 49                   |
| 42                                          | 51                   |

Tabella 4: Conteggio dei picchi per il laser con  $\lambda_{1,2}$ .

Prendendo come valore centrale per il numero di frange la media delle misure per ciascun laser e come errore la deviazione standard, utilizzando il valore nominale per la lunghezza d'onda dei due laser e conoscendo  $\Delta$ l è stato determinato l'indice di rifrazione dell'aria.

Per il laser a 532 nm :  $n_{aria} = 1.000271 \pm 0.000005;$ 

Per il laser a 633 nm :  $n_{aria} = 1.000268 \pm 0.000007$ .

I risultati sono compatibili con l'indice di rifrazione dell'aria contenuto nel database The Refractive Index:  $n_{aria}=1.00027717$ , considerando che le condizioni in cui è stata fatta la misura possono differire da quelle riportate sul database, "per aria secca a 15 C, 101.325 kPa e con 450 ppm CO2 contenuto".