ML Basics

Machine Learning for Social Science

ML process

Unsupervised Learning

 \bullet Finding patterns in data using a set of input variables X

- Predicting an output variable Y based on a set of input variables Y
 - \blacksquare Learn the relationship between input and output using training data (with X and Y

$$Y = f(X) + \varepsilon$$

- ② Predict the output based on the prediction model (of step 1) for **new test data** (\sim only X available)
- continuous Y: regression, categorical Y: classification
- Focus on prediction

Unsupervised Learning

 \bullet Finding patterns in data using a set of input variables X

- ullet Predicting an output variable Y based on a set of input variables X
 - \bigcirc Learn the relationship between input and output using **training data** (with X and Y)

$$Y = f(X) + \varepsilon$$

- 2 Predict the output based on the prediction model (of step 1) for **new test data** (\sim only X available)
- continuous Y: regression, categorical Y: classification
- Focus on prediction

Unsupervised Learning

 \bullet Finding patterns in data using a set of input variables X

- \bullet Predicting an output variable Y based on a set of input variables X
 - 1 Learn the relationship between input and output using **training data** (with X and Y)

$$Y = f(X) + \varepsilon$$

- ② Predict the output based on the prediction model (of step 1) for **new test data** (\sim only X available)
- continuous Y: regression, categorical Y: classification
- Focus on prediction

Unsupervised Learning

 \bullet Finding patterns in data using a set of input variables X

- ullet Predicting an output variable Y based on a set of input variables X
 - 1 Learn the relationship between input and output using **training data** (with X and Y)

$$Y = f(X) + \varepsilon$$

- ② Predict the output based on the prediction model (of step 1) for **new test data** (\sim only X available)
- continuous Y: regression, categorical Y: classification
- Focus on prediction

Supervised Learning: Find function f(x) that makes optimal predictions in a **new data set**

Prerequisites

- Representation: What is the hypothesis space, the family of functions to search over?
 - Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - Measures predictive performance
 - Examples: Mean Squared Error, Logistic Loss
- Computation: How is f actually calculated?
 - Speed and memory space may be limiting factors

Supervised Learning: Find function f(x) that makes optimal predictions in a **new data set**

Prerequisites:

- Representation: What is the hypothesis space, the family of functions to search over?
 - \bullet Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- **Evaluation**: What is the criterion to choose between different functions?
 - Measures predictive performance
 - Examples: Mean Squared Error, Logistic Loss
- **Computation**: How is *f* actually calculated?
 - Speed and memory space may be limiting factors

Supervised Learning: Find function f(x) that makes optimal predictions in a **new data set**

Prerequisites:

- Representation: What is the *hypothesis space*, the family of functions to search over?
 - \bullet Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - Measures predictive performance
 - Examples: Mean Squared Error, Logistic Loss
- **Computation**: How is *f* actually calculated?
 - Speed and memory space may be limiting factors

Supervised Learning: Find function f(x) that makes optimal predictions in a **new data set**

Prerequisites:

- Representation: What is the *hypothesis space*, the family of functions to search over?
 - \bullet Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - Measures predictive performance
 - Examples: Mean Squared Error, Logistic Loss
- **Computation**: How is *f* actually calculated?
 - Speed and memory space may be limiting factors

Table: Estimating f(x)

Regression methods	(tree-based) ML methods	
parametric	non-parametric	
linearity, additivity	flexible functional form	
prior model specification	"built-in" feature selection	
theory-driven	data-driven	
ightarrow Inference	ightarrow Prediction	

Figure: Flexibility-Interpretability Trade-Off

←ロト ←団ト ← 重ト ← 重 ・ 夕へ○

Estimation requires (at least implicitly):

- ullet a target distribution $\mathbb{P}_{Y|X}$, or
- a loss function

Table: Possible choices

Setting	Loss	Target $f(x)$
Regression	$(y-f(x))^2$	mean(y x)
Regression	y-f(x)	median(y x)
Regression	$\rho_{\tau}(y-f(x))$	$F_{y x}^{-1}(au)$
Classification	Deviance	$\pi_{y x}$

Prediction perspective:

• Machine Learning mindset is more focused on evaluation criteria - and therefore - on loss functions

References

- Buskirk, T. D., Kirchner, A., Eck, A., Signorino, C. S. (2018). An Introduction to Machine Learning Methods for Survey Researchers. *Survey Practice* 11(1).
- Domingos, P. (2012). A few useful things to know about machine learning. *Communications of the ACM* 55(10), 78–87.
- Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer.
- James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). *An Introduction to Statistical Learning*. New York, NY: Springer.