

第7讲 空间深度感觉和双眼立体视觉

一、单眼深度感觉

单眼判断远近的依据:

- 1、物高已知时,根据视角判断;
- 2、根据物体之间的遮蔽关系和日光阴影等;
- 3、根据对物体细节的分辨程度、空气透明度;
- 4、根据眼睛调节的紧张程度。

二、双眼深度感觉

1、转动视轴, 注视目标时肌肉紧张程度

视 轴 眼睛像方节点与黄斑中心连线

视差角 两只眼睛视轴夹角

2、立体视觉——体视

◆ 体视的产生(视差角)

若A、B离眼睛距离相同,此时:

$$a_A = a_B$$
 $b_1 \cdot b_2$ 都在 $a_1 \cdot a_2$ 的同侧;
 $a_1b_1=a_2b_2$

若A、B离眼睛距离不等, 有两种情况

b₁、b₂位在a₁、a₂两侧

$$a_A \neq a_B$$

 b_1 、 b_2 位在 a_1 、 a_2 同侧,但 $a_1b_1 \neq a_2b_2$

◆ 表示体视的几个概念

体视锐度

视差角之差的大小 $\Delta \alpha$ 标志着物体远近差别的大小

 $\Delta \alpha \leq 10$ "时,人眼就分不清 A、B的远近区别了,这一极 限值 $\Delta \alpha_{\min}$ 称为体视锐度。

体视半径 人眼有体视的最大距离。

设A在无穷远,人眼刚好能区分B点不在无穷远处,

$$\alpha_B - \alpha_A = \alpha_B = \Delta \alpha_{\min}$$

$$l_{\text{max}} = \frac{b}{\Delta \alpha_{\text{min}}} = \frac{0.062}{10''} 206000'' = 1200m$$

体视误差

在体视范围内,对两物体是否处在同一空间深度的判断是有误差的

,称为体视误差

$$\alpha = \frac{b}{l}$$

$$\Delta \alpha = \frac{b}{l^2} \Delta l$$
 $\Delta l = \Delta \alpha \frac{l^2}{b}$

$$b = 0.062m$$
 $\Delta \alpha = 0.00005(10")$

$$\Delta l = 8 \times 10^{-4} l^2(m)$$

体视误差 $\Delta l = 8 \times 10^{-4} l^2$

<i>l (m)</i>	5	10	50	100	500	1000
<i>l (m)</i>	0.02	0.08	2.02	8	201.61	800

公式仅适用于

$$l < \frac{1}{10} l_{\text{max}}$$