

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2014-II

[Cod: CM 131 Curso: Cálculo Diferencial]

[Temas: Lógica proposicional y métodos de demostración.] [Profesor: L. La Rosa, G. Marca, J. Sotelo, A. Ramirez]

Primera práctica calificada

- 1. Sean A, B y C conjuntos. Demuestre que:
 - a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$(2.5ptos)
 - b) Si $A \times C = B \times C$ y $C \neq \emptyset \Rightarrow A = B$(2.5ptos)
- 2. Sean los conjuntos $A = \{1, 2, 3, ..., 9\}$ y $B = \{x \in A : x < 2 \leftrightarrow x \ge 5\}$. Determine el valor de verdad de las siguientes proposiciones, justifique su respuesta.

a). El conjunto B denotado por extensión está dado por $\{3,4\}$ (2ptos)

h) $\forall x \in A, \exists y \in B \text{ tal que } x + y \le 6.$ (1pto)

 $\forall x \in A, \exists y \in B \text{ de modo que } (x+y) \in B. \dots (1pto)$

d) $\exists x \in A, \forall y \in B, (x+y) \in (A-B).$ (1pto)

3. Demostrar que:

Si n es un número impar, entonces n^2 es de la forma 8k+1 para algún entero $k \geq 0$(2ptos)

Si P es el producto de los m primeros números primos, entonces $32\mid (P^2-4)$, $\forall m\in\mathbb{N}....(3 ext{ptos})$

4. Usando las reglas de inferencia.

Demostrar (método directo) que se cumple $s \rightarrow \sim h$ utilizando las premisas siguientes:

 $(\sim p \land q)$ $h \rightarrow \sim t$ $(q \lor r) \rightarrow (p \rightarrow t)$ $s \rightarrow p$

...(2.5ptos)

Demostrar (método indirecto) que se cumple $\sim N$, utilizando las premisas siguientes.

 $(s \rightarrow \sim r)$

r

 $\sim s \rightarrow q$

 $q \rightarrow \sim N$

...(2.5ptos)

Uni, 08 de Septiembre del 2014