Agenda

1. Painter Partitions Problem 2. Aggressive Cows Problem

Revision Quiz 2

* x x = H

N = 36 ans = $\sqrt{38} = 6$

Revision Quiz 3: TC: Ollog 2N)

Revision Quiz 4: Se of recursive Binary
seach: O(log 2 N)

q. Given an array representing board length (N boards). Paint all boards if T time is available with you. Find min no. of painters required to get job done. · 1 unit of length takes I unit of time to paint · 1 board can't be divided in painters. · Painters will paint consecutive boards only. P, ->9 P 5 -> 6 P2 -> 7 P3 ->6 P4 -> 9 int min MoOfPainters (ass, T) < int cnt=1 int work = 0 for (i=0; i < N) ; i++) < if (work + Acia >T) < work = Acid clse <

q. Given an array representing board length		
(N boards). Paint all boards if T time and		
P painters are available with you.		
can these painters do the job within T time?		
Ex: < 3 5 1 7 6 9 1 57 T=9, P=4		
Ex: < 3 5 1 7 6 9 1 5 7 T=9, P=4 P, P, P, P2 P3 P4 P5 P5		
Min of 5 painters > P => False		
Ex: < 3 5 1 7 6 9 1 5 7 7=9, P=6		
Min of 5 painters & P =>> True		
Alle of a facilities -		
booken is Possible To Paint Board (arr, T, P)		
int cnt=1		
int wook = 0		
for (i=0; i < N) ; i++) <		
if (mosk + Acia > T) <		
1 654 4 4		
work = ACi3		
clsc <		
Work = work + ACi]		
TC:000)		
SC:0(1)		
if (cnt & P)		
Actein fine		
dse return balse		

2. Given an array representing board length (N boards). Paint all boards if P painters are available with you. Find min. time required to get job done by the painters. · 1 unit of length takes I unit of time to paint · 1 board can't be divided in painters. · Painters will paint consecutive boards only. Ex: < 3 5 1 7 6 9 1 57 P=1 ans = 3 + 5 + 1 + 7 + 6 + 9 + 1 + 5 Ex: <3 5 1 7 6 9 1 57 P=2 < 3 5 1 7 6 9 1 5 7 34 P2 < 3 5 1 7 6 9 1 5 7 29
8 29
P₁
P₂

4351769157 15 22 P 2 Greedy Approach: X Divide total work by total no. of painters ans=60 A = [10, 20, 30, 40] P= 2 Painters = 100 = 50 A = [10, 20, 30, 40] P=2 30 70 70 P. P2 A = [10, 20, 30, 40] 60 40 60 9, 62 P3

A = C1, 2, 3, 4, 1003	P = 2 ans 2100
10 100	
P, P2	100
Approach 2: Binary	Scarch on Time
Scarch space: L= max (arr())	x = sum(as x [])
Loux limit	Upper Limit
time	Moree CORE
BUX COR time	time to
to paint all	paint all
boards	boards
P = 12	<i>P=1</i>
Target: Min time to	complete the job
Conclition	
erid	
Te ma	nid the areas?
	Site Stiffeld !
Can we paint all bo	ards in
& mid time (given	k painters)
	•

mid

٢

*

012345678 910 11 12 13 14

```
int min Time To Paint Carr [], N, P) <
  L= man carrell
                      7 Eterate arres
  x = sum (axx (1) /
  int ans Time
   while (& <= x) <
     mid = 1 (x-1)/2
     1/ Is mid answer? can we paint
     all boards & mid time?
    book is Possible To Paint Board (arr, mid, P)
can Paint
     if (canpaint = = true) <
        x=mid-1 // 14t
        1 = mid +1 // xizht
    return ans Time
```

Formula for TC:

log (range) x TC of feasibility

check

log (sum (arres) - mad (arres) x N

O (log (sum (assC3) - 1774 (988C3) x N)

27:01