(molads

Généralités sur les graphes - Concepts Fondamentaux

1. Introduction

Un graphe est défini par deux ensembles : Un ensemble de sommets noté X et un ensemble de relations entre les sommets noté U ou E. Selon le type de cette relation. On distingue deux grandes classes de graphes : les graphes orientés si la relation est orientée et les graphes non orientés dans le cas contraire.

Graphe orienté

VE ares 3 E { arrites 3 (G(x, u) est graph oriente Un graphe orienté G=(X, U) est défini par les deux ensembles :

- $X = \{x_1, x_2, ..., x_n\}$ avec n entier fini et $n \ge 1$, où chaque $x_i \in X$ est un **sommet** du graphe.
- $U = \{u_1, u_2, ..., u_m\}$ avec m entier positif ou nul et fini, est appelé ensemble des <u>arcs</u>. Chaque $u_i \in U$ est une paire ordonnée de sommets, $u_i = (x, y)$. x est appelé extrémité initiale de u_i et y est appelé extrémité terminale de u_i . U peut être vide.

1.2 Graphe non orienté

Un graphe non orienté G=(X, E) est défini par les deux ensembles :

- $X = \{x_1, x_2, ..., x_n\}$ avec n entier fini et $n \ge 1$, où chaque $x_i \in X$ est un **sommet** du graphe.
- $E = \{e_1, e_2, ..., e_m\}$ avec m entier positif ou nul et fini, est appelé ensemble des <u>arêtes</u>. Chaque $e_i \in E$ est une paire non ordonnée de sommets, $e_i = \{x, y\} = \{y, x\}$. x et y sont appelés extrémités de e_i . E peut être vide.

Représentation 1.3

On représente généralement un sommet par un point ou un cercle. Un arc est représenté par une flèche et une arête par un trait qui peuvent être courbés.

Définitions

- Le nombre de sommets dans un graphe est appelé l'ordre du graphe. Le nombre d'arcs (resp. arêtes) dans un graphe est appelé taille du graphe.
- Si les deux extrémités d'un arc (resp. une arête) sont confondus alors cet arc (resp. cette arête) est appelé(e) boucle.
- Si deux arcs (resp. deux arêtes) possèdent les mêmes extrémités, on dit alors qu'ils sont parallèles.
- Un graphe est dit simple s'il ne contient ni boucles ni arêtes parallèles.
 - Soit un arc u=(x, y) (resp. une arête $e=\{x, y\}$):
 - x et y sont dits deux sommets adjacents.
 - Pour le cas de l'arc u: x est dit <u>prédécesseur</u> de y. y est dit <u>successeur</u> de x
 - x et y sont <u>incidents</u> à l'arc u (resp. à l'arête e).
 - L'arc u (resp. à l'arête e) est incident aux sommets x et y.
 - u est <u>incident</u> vers <u>l'extérieur</u> de x et u est <u>incident</u> vers <u>intérieur</u> de y.
 - Soit $x \in X$, un sommet du graphe orienté G=(X, U). On définit :
 - $\Gamma^+(x) = \operatorname{Succ}(x) = \{ y \in X / (x, y) \in U \}$ appelé <u>ensemble des successeurs</u> du sommet x.
 - $\Gamma(x) = \operatorname{Pred}(x) = \{ y \in X / (y, x) \in U \}$ appelé ensemble des prédécesseurs du sommet x.

Soit $x \in X$, un sommet du graphe G, on appelle voisin de x tout sommet $y \in X$ différent de x et qui est adjacent à x. Ainsi, on définit l'ensemble V comme suit :

- $V(x) = \{y \in X \{x\} \mid \{x, y\} \in E\}$ pour les graphes non orientés.
- $V(x) = V^+(x) \cup V^-(x)$ où $V^+(x) = \{y \in X \{x\} \mid (x, y) \in U\}$ et $V^-(x) = \{y \in X \{x\} \mid (y, x) \in U\}$.
- $V^+(x)$ (resp. $V^-(x)$) est appelé ensemble des voisins externes (resp. internes) de x.
- Deux arcs (resp. arêtes) sont dits adjacents s'ils ont une extrémité en commun.
- Pour tout graphe orienté, on définit deux applications donnant l'extrémité initiale et terminale d'un arc donné:

- On appelle multiplicité d'un arc (x_i, x_j) , la valeur m_{ij} correspondant au nombre d'arcs qui relient x_i à x_i . La multiplicité d'un graphe G est le nombre m(G) correspondant au maximum des m_{ii} .
- Un graphe orienté est dit p-graphe si m(G) = p.

Enseignant: H. BENKAOUHA (haroun.benkaouha@usthb.edu.dz)

3. Notion de degré

3.1 Définition 1

Soit G = (X, E) un graphe non orienté (resp. G = (X, U) un graphe orienté). A tout sommet $x \in X$, on peut associer une valeur entière positive ou nulle, notée $d_G(x)$, qu'on appelle degré du sommet x. Cette valeur est définie comme suit :

 $d_G(x)$ = nombre de fois où x est extrémité d'un arc (resp. d'une arête).

3.2 Définition 2

Soit G = (X, U) un graphe orienté.

On appelle <u>demi-degré extérieur</u> d'un sommet $x \in X$, la valeur suivante : $d_G^+(x) = |\{u \in U \mid I(u) = x\}|$. On appelle <u>demi-degré intérieur</u> d'un sommet $x \in X$, la valeur suivante : $d_G^-(x) = |\{u \in U \mid T(u) = x\}|$.

3.3 Remarques

- Pour tout graphe orienté, nous avons : $d_G(x) = d_G^+(x) + d_G^-(x)$
- Pour tout graphe, nous avons : $d_G(x) \ge |V(x)|$. Si G est simple Alors On a $d_G(x) = |V(x)|$.
- Pour tout graphe orienté, nous avons : $d_G^+(x) \ge |V^+(x)|$ et $d_G^-(x) \ge |V^+(x)|$. Si G est 1-graphe sans boucles Alors On a $d_G^+(x) = |V^+(x)|$ et $d_G^-(x) = |V^-(x)|$.
- On appelle degré minimal d'un graphe G qu'on note par $\mathcal{O}(G)$, le plus petit degré dans le graphe G. $\mathcal{O}(G) = Min \{d_G(x)\}$
- On appelle degré maximal d'un graphe G qu'on note par $\Delta(G)$, le plus grand degré dans le graphe G. $\Delta(G) = Max \{d_G(x)\}$
- Si $d_G(x) = 0$ Alors x est dit sommet isolé.
- Si $d_G(x) = 1$ Alors x est dit sommet pendant.

Pour tout graphe : G = (X, E), On a :

• Un arc (resp. Une arête) incident(e) à un sommet pendant est appelé(e) pendant(e)

3.4 Formule des degrés

Cas non orienté:

Preuve :

Chaque arête a exactement deux extrémité ⇒ Elle est comptée deux fois dans le degré de chaque sommet ⇒ La somme totale des degrés est égale à deux fois le nombre total d'arêtes.

Cas orienté:

Preuve :

Chaque arc a exactement une extrémité initiale et une extrémité terminale \Rightarrow Chaque arc est comptabilisé une fois dans d^+ pour son extrémité initiale et une autre fois dans d^- pour son extrémité finale. Le nombre total d'arcs ayant une extrémité initiale (resp. terminale) est exactement la somme des demi-degrés extérieurs (resp. intérieurs).

Conséquence : De là, on peut déduire que le nombre de sommets de degrés impairs dans un graphe est toujours pair.

Pour tout graphe: G = (X, U), On a: $\sum_{G \in V} d_G(x) = 2|U|$ et $\sum_{G \in V} d_G^+(x) = \sum_{G \in V} d_G^-(x) = |U|$.

4. Représentation machine

4.1 Matrice d'adjacence

A tout graphe d'ordre n on associe une matrice M de n lignes et n colonnes dont les éléments sont notés M_{ij} . Pour un graphe non orienté G=(X, E), $M_{ij}=M_{ji}$ représente le nombre d'arêtes ayant les sommets i et j comme extrémités. Ainsi, la matrice d'adjacence M d'un graphe non orienté est toujours symétrique. Pour la boucle, on la compte deux fois.

• La somme d'une ligne k = 1a somme d'une colonne $k = d_G(k)$

Pour un graphe orienté G=(X, U), M_{ij} représente le nombre d'arcs ayant i comme extrémité initiale et j comme extrémité terminale.

- Les coefficients de *M* pour un graphe simple est binaire avec la diagonale complètement à 0.
- La somme d'une ligne $i = d_G^+(i)$. La somme d'une colonne $j = d_G^-(j)$.

4.2 Matrice d'incidence

A tout graphe non orienté G=(X, E), on peut associer une matrice M de n lignes et m colonnes. Où n est le nombre de sommets dans G et m est le nombre d'arêtes dans G.

 M_{ij} représente le nombre de fois où le sommet i est incident à l'arête j. Les éléments de M sont dans $\{0, 1, 2\}$

- Si deux colonnes j_1 et j_2 sont identiques alors les arêtes j_1 et j_2 sont parallèles.
- Si un élément $M_{ii} = 2$ alors l'arête j est une boucle.

A tout graphe orienté G=(X, U), on peut associer une matrice M de n lignes et m colonnes. Où n est le nombre de sommets dans G et m est le nombre d'arcs dans G.

$$M_{ij} = \begin{cases} 1 & \text{si } I(j) = i \\ -1 & \text{si } I(j) = i \end{cases}$$
0 si j est une boucle ou autre

- Une colonne nulle représente une boucle.
- Dans ce cas, toute boucle dans le graphe est détectée mais son emplacement ne peut pas être précisé à partir de cette matrice.

4.3 Listes

https://www.youtube.com/watch?v=Z8TOI7dkfww

A tout graphe orienté G=(X, U) avec |X|=n et |U|=m, on peut associer deux tableaux (vecteurs) PS et LS:

PS: tableau de pointeurs à n+1 éléments, où :

- PS[i]: pointe sur la case contenant le premier successeur du sommet i dans LS.
- On pose PS[1] = 1.
- On pose pour tout $n \ge i \ge 2$: PS[i] = k, où k = PS[i-1] + nombre de successeurs de i-1
- On pose PS[n+1] = m+1
- Si un sommet i n'a pas de successeur, on aura PS[i]=PS[i+1]

LS: tableau de *m* éléments, où :

Les successeurs d'un sommet i se trouvent entre la case numéro PS[i] et la case PS[i+1]-1 du tableau LS.

5. Graphes particuliers

Soit G = (X, U) un graphe orienté (resp. G = (X, E) un graphe non orienté). Soit $A \subset X$ un sous ensemble de sommets et $V \subset U$ (resp. $V \subset E$).

5.1 Sous graphe

Un sous graphe de G engendré par l'ensemble de sommets A est le graphe :

 $G_A = (A, U_A)$ où $U_A = \{u \in U \mid I(u) \in A \text{ et } T(u) \in A\}$ dans le cas orienté.

 $G_A = (A, E_A)$ où $E_A = \{e = \{x, y\} \in E \mid x \in A \text{ et } y \in A\}$ dans le cas non orienté.

5.2 Graphe partiel

Un graphe partiel de G engendré par l'ensemble d'arcs (resp. d'arêtes) V est le graphe $G_V = (X, V)$.

5.3 Sous graphe partiel

Un sous graphe partiel de G engendré par l'ensemble de sommets A et l'ensemble d'arcs (resp. d'arêtes) V est le graphe $G_{A,V} = (A, V_A)$.

 V_A est l'ensemble d'arcs (resp. arêtes) qui ont leurs deux extrémités dans le sous ensemble V.

5.4 Complément d'un graphe

Le graphe complémentaire de G est noté $\overline{G} = (X, \overline{U})$ (resp. $\overline{G} = (X, \overline{E})$) où : $\overline{U} = \{(x, y) \in X^2 \mid x \neq y \text{ et } (x, y) \notin U\} \text{ (resp. } \overline{E} = \{ \{x, y\} \in X^2 \mid x \neq y \text{ et } \{x, y\} \notin E\} \}$

5.5 Line-graph

On appelle graphe représentatif des arêtes d'un graphe non orienté G (ou Line-graph), le graphe L(G)dont les sommets représentent les arêtes de G et deux sommets sont adjacents dans L(G) si et seulement si les arêtes correspondantes de G sont incidentes à un même sommet de G.

6. Propriétés des graphes

6.1 Graphe Simple

Un graphe est dit simple s'il ne contient ni boucles ni arcs parallèles. Si G est simple, on a $d_G(x) = |V(x)|$.

6.2 Graphe Complet

Dans le cas orienté : G est complet ssi $\forall x \neq y \in X, (x, y) \notin U \Rightarrow (y, x) \in U$

Dans le cas non orienté : G est complet ssi $\forall x \neq y \in X$, $\{x, y\} \in E$.

Un graphe simple complet d'ordre n est noté K_n .

6.3 Graphe Régulier

Un graphe G est dit k-régulier si $\forall x$ sommet de G, on a $d_G(x) = k$. En d'autres termes, $\delta(G) = \Delta(G) = k$. Si k = 0, G est un graphe sans arêtes (sans arcs) appelé <u>stable</u>. G est constitué seulement de sommets isolés. Si k = 1, G est constitué d'arcs (arêtes) dispersé(e)s dans l'espace.

6.4 Graphe Symétrique

Cette notion est spécifique aux graphes orientés.

G est symétrique ssi $\forall x \neq y \in X, (x, y) \in U \Rightarrow (y, x) \in U$

6.5 Graphe Antisymétrique

Cette notion est spécifique aux graphes orientés.

G est antisymétrique ssi $\forall x \neq y \in X, (x, y) \in U \Rightarrow (y, x) \notin U$

6.6 Graphe Transitif

Cette notion est spécifique aux graphes orientés.

G est transitif **ssi** $\forall x, y, z \in X, (x, y) \in U$ et $(y, z) \in U \Rightarrow (x, z) \in U$

6.7 Graphe Biparti

G est dit <u>biparti</u> ssi l'ensemble de ses sommets *X* admet une partition en 2 sous ensembles X_1 et X_2 avec $X_1 \cap X_2 = \emptyset$ et $X_1 \cup X_2 = X$.

Dans le cas orienté : $\forall (x, y) \in U \Rightarrow x \in X_1$ et $y \in X_2$

Dans le cas non orienté : $\forall \{x, y\} \in E \ (x \in X_1 \text{ et } y \in X_2) \text{ ou } (x \in X_2 \text{ et } y \in X_1)$

G est dit biparti complet ssi G est dit biparti et $\forall x \in X_1$ et $\forall y \in X_2 \Rightarrow (x, y) \in U$.

Un graphe biparti complet et simple $G=(X_1\cup X_2,U)$ (resp. $G=(X_1\cup X_2,E)$)avec $|X_1|=p$ et $|X_2|=q$ est noté $K_{p,q}$.

6.8 Graphe Multiparti

G est dit <u>multiparti</u> ssi l'ensemble de ses sommets *X* admet une partition en *p* sous ensembles $X_1 \dots X_p$ ($p \ge 3$). Avec $X_i \cap X_j = \emptyset$ ($i \ne j$) et $X_1 \cup \dots \cup X_p = X$.

Dans le cas orienté : $\forall (x, y) \in U \Rightarrow x \in X_k \text{ et } y \in X_{k+1} \text{ (avec } 1 \le k \le p-1)$

Dans le cas non orienté : $\forall \{x, y\} \in E \ (x \in X_k \text{ et } y \in X_{k+1}) \text{ ou } (y \in X_k \text{ et } x \in X_{k+1}) \text{ avec } 1 \le k \le p-1$

7. Stable / Clique

On appelle <u>stable</u> dans un graphe G un sous-ensemble de sommets $S \subseteq X$ et le sous graphe engendré par S est formé de sommets isolés (ne contient aucun arc ou arête).

Chaque partition d'un graphe biparti forme un stable.

On appelle <u>clique</u> dans un graphe G un sous-ensemble de sommets $C \subseteq X$ où le sous graphe engendré par C est un graphe complet.

8. Coloration des sommets d'un graphe

8.1 Définition 1

On appelle <u>k-coloration</u> d'un graphe non orienté G=(X, E), une application φ qui associe à chaque sommet $x \in X$ de G une couleur représentée par un entier entre 1 et k de telle façon que les sommets ont des couleurs distinctes, comme suit :

$$\phi: X \longrightarrow \{1, 2, ..., k\}$$

$$x \longrightarrow \varphi(x) \qquad \text{tel que } \forall y \neq x \in X \text{ si } \{x, y\} \in E \text{ Alors } \varphi(x) \neq \varphi(y).$$

En d'autres termes, deux sommets adjacents ne peuvent pas être coloriés de la même couleur et tous les sommets doivent être coloriés. De ce fait, une *k*-coloration partitionne l'ensemble des sommets *X* en *k* stables où tous les sommets du même stable ont la même couleur.

8.2 Nombre chromatique

On appelle <u>nombre chromatique</u> d'un graphe G=(X, E), le nombre minimal de couleurs nécessaires pour colorier les sommets de ce graphe. Ce nombre est noté $\chi(G)$.

Ainsi, le nombre chromatique est toujours compris entre 1 et le nombre de sommets n=|X|.

8.3 Problème de coloration

Il s'agit de réaliser une k-coloration d'un graphe G. k doit être le plus proche possible du nombre chromatique $\chi(G)$. L'algorithme de <u>Welsh & Powell</u> est l'un des plus connus pour résoudre ce problème :

Ordonner les sommets par de degrés (ordre décroissant : du plus grand au plus petit). $X = \{x_1, x_2, ..., x_n\}$ tel que $d_G(x_i) \ge d_G(x_{i+1})$

Pour i de 1 à n: Affecter à x_i la plus petite couleur possible distincte des couleurs de $V(x_i)$ colorés.

8.4 Proposition 1

Pour tout graphe G=(X, E) tel que $\Delta(G)$ est le degré maximal dans G et $\chi(G)$ est le nombre chromatique de G, nous avons : $\chi(G) \le \Delta(G) + 1$.

8.5 Proposition 2

Pour tout graphe G=(X, E) complet K_n où $n \ge 2$ est l'ordre de G et $\chi(G)$ est le nombre chromatique de G, nous avons : $\chi(G) = \Delta(G) + 1$.

8.6 Proposition 3

Pour tout graphe G=(X, E) où $\chi(G)$ est le nombre chromatique de G et $C\subseteq X$ est la plus grande clique dans G, nous avons : $\chi(G) \ge |C|$.

9. Isomorphisme

9.1 Définition 1

Soient deux graphes orientés $G_1 = (X_1, U_1)$ et $G_2 = (X_2, U_2)$. On dit que G_1 et G_2 sont <u>isomorphes</u> (on note $G_1 = G_2$) ssi $\exists f : X_1 \to X_2$ et $\exists g : U_1 \to U_2$ deux bijections avec $\forall u \in U_1, u = (x, y) \Leftrightarrow g(u) = (f(x), f(y))$.

9.2 Définition 2

Soient deux graphes non orientés $G_1 = (X_1, E_1)$ et $G_2 = (X_2, E_2)$. On dit que G_1 et G_2 sont isomorphes (on note $G_1 = G_2$) ssi $\exists \varphi : X_1 \to X_2$ une bijection avec $\forall x, y \in X_1, e = \{x, y\} \in E_1 \Rightarrow \{\varphi(x), \varphi(y)\} \in E_2$.

9.3 Proposition

Soient deux graphes isomorphes $G_1 = (X_1, U_1) \equiv G_2 = (X_2, U_2)$ (resp. non $G_1 = (X_1, E_1) \equiv G_2 = (X_2, E_2)$) alors $|X_1| = |X_2|$ et $|U_1| = |U_2|$ (resp. $|E_1| = |E_2|$) et $\forall x \in X_1$ de degré $d_G(x)$, $\exists y \in X_2$ de degré $d_G(y) = d_G(x)$.

Remarque : La réciproque n'est pas toujours vraie. On peut trouver deux graphes non isomorphes ayant le même nombre de sommets et le même nombre d'arc (ou arêtes).