# ST2131 AY21/22 SEM 2

github/jovyntls

### 01. COMBINATORIAL ANALYSIS

tricky - E18, E20-22, E23, E26

# The Basic Principle of Counting

- combinatorial analysis → the mathematical theory of counting
- basic principle of counting  $\rightarrow$  Suppose that two experiments are performed. If exp1 can result in any one of m possible outcomes and if, for each outcome of exp1, there are n possible outcomes of exp2, then together there are mn possible outcomes of the two experiments.
- generalized basic principle of counting  $\rightarrow$  If r experiments are performed such that the first one may result in any of  $n_1$  possible outcomes and if for each of these  $n_1$  possible outcomes, and if ..., then there is a total of  $n_1 \cdot n_2 \cdot \cdots \cdot n_r$  possible outcomes of r experiments.

#### **Permutations**

factorials - 1! = 0! = 1

N1 - if we know how to count the number of different ways that an event can occur, we will know the probability of the event.

N2 - there are n! different arrangements for n objects.

**N3** - there are  $\frac{n!}{n_1! n_2! \dots n_r!}$  different arrangements of n objects, of which  $n_1$  are alike,  $n_2$  are alike, ...,  $n_r$  are alike.

#### Combinations

**N4** -  $\binom{n}{r} = \frac{n!}{(n-r)! \, r!}$  represents the number of different groups of size r that could be selected from a set of n objects when the order of selection is not considered

**N4b** - 
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}, \quad 1 \le r \le n$$

*Proof.* If object 1 is chosen  $\Rightarrow \binom{n-1}{r-1}$  ways of choosing the remaining objects. If object 1 is not chosen  $\Rightarrow \binom{n-1}{n}$  ways of choosing the remaining objects.

N5 - The Binomial Theorem - 
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

*Proof.* by mathematical induction: n=1 is true; expand; sub dummy variable; combine using N4b; combine back to final term

### **Multinomial Coefficients**

 $\mathbf{N6} \cdot {n \choose n_1,n_2,\dots,n_r} = \frac{n!}{n_1!\,n_2!\dots n_r!} \text{ represents the number of possible divisions of } n_1!$ n distrinct objects into r distinct groups of respective sizes  $n_1, n_2, \ldots, n_3$ , where  $n_1 + n_2 + \cdots + n_r = n$ 

$$\begin{array}{l} \textit{Proof.} \text{ using basic counting principle,} \\ &= \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n-n_1-n_2-n_{r-1}}{n_r} \\ &= \frac{n!}{(n-n_1)!} \sum_{\substack{n_1 \mid n_1 \mid n_$$

$$\begin{array}{l} \text{N7 - The Multinomial Theorem: } (x_1 + x_2 + \dots + x_r)^n \\ = \sum\limits_{(n_1,\dots,n_r): n_1 + n_2 + \dots + n_r = n} \frac{n!}{n_1! \, n_2! \, \dots n_r!} x_1^{n_1} \, x_2^{n_2} \, \dots x_r^{n_r} \end{array}$$

# Number of Integer Solutions of Equations

**N8** - there are  $\binom{n-1}{r-1}$  distinct *positive* integer-valued vectors  $(x_1, x_2, \dots, x_r)$ satisfying  $x_1 + x_2 + \cdots + x_r = n$ ,  $x_i > 0$ ,  $i = 1, 2, \ldots, r$ ! cannot be directly applied to N8 as 0 value is not included

**N9** - there are  $\binom{n+r-1}{r-1}$  distinct *non-negative* integer-valued vectors  $(x_1, x_2, \dots, x_r)$  satisfying  $x_1 + x_2 + \dots + x_r = n$ 

*Proof.* let  $y_k = x_k + 1 \Rightarrow y_1 + y_2 + \cdots + y_r = n + r$ 

### 02. AXIOMS OF PROBABILITY

# Sample Space and Events

- sample space → The set of all outcomes of an experiment (where outcomes are not predictable with certainty)
- event → Any subset of the sample space
- **union** of events E and  $F \to E \cup F$  is the event that contains all outcomes that are either in E or F (or both).
- intersection of events E and  $F \to E \cap F$  or EF is the event that contains all outcomes that are both in E and in F.
- **complement** of  $E \to E^c$  is the event that contains all outcomes that are *not* in E.
- **subset**  $\to E \subset F$  is all of the outcomes in E that are also in F.
  - $E \subset F \land F \subset E \Rightarrow E = F$

### DeMorgan's Laws

$$(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c$$

*Proof.* to show LHS  $\subset$  RHS: let  $x \in (\bigcup_{i=1}^n E_i)^c$  $\begin{array}{l} \Rightarrow x\notin \bigcup_{i=1}^n E_i \Rightarrow x\notin E_1 \text{ and } x\notin E_2\dots \text{ and } x\notin E_n\\ \Rightarrow x\in E_1^c \text{ and } x\in E_2^c\dots \text{ and } x\in E_n^c \end{array}$  $\begin{array}{c} \Rightarrow x \in \bigcap_{i=1}^n E_i^c \\ \text{to show RHS} \subset \text{LHS: let } x \in \bigcap_{i=1}^n E_i^c \end{array}$ 

$$(\bigcap_{i=1}^{n} \mathbf{E}_{i})^{\mathbf{c}} = \bigcup_{i=1}^{n} \mathbf{E}_{i}^{\mathbf{c}}$$

Proof. using the first law of DeMorgan, negate LHS to get RHS

# **Axioms of Probability**

definition 1: relative frequency

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

problems with this definition:

- 1.  $\frac{n(E)}{n}$  may not converge when  $n \to \infty$
- 2.  $\frac{n(E)}{n}$  may not converge to the same value if the experiment is repeated

#### definition 2: Axioms

Consider an experiment with sample space S. For each event E of the sample space S, we assume that a number P(E) is definned and satisfies the following 3 axioms:

- 1. 0 < P(E) < 1
- 2. P(S) = 1
- 3. For any sequence of mutually exclusive events  $E_1, E_2, \ldots$ (i.e., events for which  $E_i E_i = \emptyset$  when  $i \neq j$ ),

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

P(E) is the probability of event E

# Simple Propositions

$$\mathbf{N1} \cdot P(\emptyset) = 0$$

**N2** - 
$$P(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} P(E_i)$$
 (aka axiom 3 for a finite  $n$ )

N3 - strong law of large numbers - if an experiment is repeated over and over again, then with probability 1, the proportion of time during which any specific event E occurs will be equal to P(E).

N6 - the definitions of probability are mathematical definitions. They tell us which se functions can be called **probability functions**. They do not tell us what value a probability function  $P(\cdot)$  assigns to a given event E.

probability function  $\iff$  it satisfies the 3 axioms.

N7 -  $P(E_c) = 1 - P(E)$ 

**N8** - if  $E \subset F$ , then P(E) < P(F)

**N9** -  $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ **N10** - Inclusion-Exclusion identity where n=3

 $P(E \cup F \cup G) = P(E) + P(F) + P(G)$ -P(EF) - P(EG) - P(FG)

N11 - Inclusion-Exclusion identity -

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{i=1}^n P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \dots$$

$$+ (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} E_{i_2} \dots E_{i_r}) + \dots$$

$$+ (-1)^{n+1} P(E_1 E_2 \dots E_n)$$

+P(EFG)

*Proof.* Suppose an outcome with probability  $\omega$  is in exactly m of the events  $E_i$ , where m > 0. Then

**LHS**: the outcome is in  $E_1 \cup E_2 \cup \cdots \cup E_n$  and  $\omega$  will be counted once in  $P(E_1 \cup E_2 \cup \cdots \cup E_n)$ 

- the outcome is in exactly m of the events  $E_i$  and  $\omega$  will be counted exactly  $\binom{m}{1}$  times in  $\sum_{i=1}^{n} P(E_i)$
- the outcome is contained in  ${m \choose 2}$  subsets of the type  $E_{i_1}E_{i_2}$  and  $\omega$  will be counted  ${m \choose 2}$  times in  $\sum_{i_1 < i_2} \overset{\frown}{P}(E_{i_1}E_{i_2})$
- ... and so on

hence RHS = 
$$\binom{m}{1}\omega - \binom{m}{2}\omega + \binom{m}{3}\omega - \cdots \pm \binom{m}{m}\omega$$

$$= \omega \sum_{i=0}^m \binom{m}{i}(-1)^i = \text{binomial theorem where } x=-1, y=1$$

$$= 0 = \text{LHS}$$

e.g. For an outcome with probability  $\omega$  and n=3

• Case 1.  $w = P(E_1 E_2)$ LHS =  $\omega$ RHS =  $(\omega + \omega + 0) - (\omega + 0 + 0) + 0 = \omega$ 

• Case 2.  $\omega = P(E_1 \cap E_2 \cap E_3)$ RHS =  $(\omega + \omega + \omega) - (\omega + \omega + \omega) + \omega = \omega$ 

N12 -

(i)  $P(\bigcup_{i=1}^n E_i) \le \sum_{i=1}^n P(E_i)$ 

(ii) 
$$P(\bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j)$$

(iii) 
$$P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j) + \sum_{k < j < i} P(E_i E_j E_k)$$

$$\begin{split} \textit{Proof.} \quad & \bigcup_{i=1}^{n} E_{i} = E_{1} \cup E_{1}^{c} E_{2} \cup E_{1}^{c} E_{2}^{c} E_{3} \cup \dots \cup E_{1}^{c} E_{2}^{c} \dots E_{n-1}^{c} E_{n} \\ & P(\bigcup_{i=1}^{n} E_{i}) = P(E_{1}) + P(E_{1}^{c} E_{2}) + P(E_{1}^{c} E_{2}^{c} E_{3}) + \dots + P(E_{1}^{c} E_{2}^{c} \dots E_{n-1}^{c} E_{n}) \end{split}$$

# Sample Space having Equally Likely Outcomes

tricky - 14, 15, 16, 18, 19, 20

Consider an experiment with sample space  $S = \{e_1, e_2, \dots, e_n\}$ . Then

 $P(\{e_1\}) = P(\{e_2\}) = \cdots = P(\{e_n\}) = \frac{1}{n} \quad \text{or} \quad P(\{e_i\}) = \frac{1}{n}.$  N1 - for any event E,  $P(E) = \frac{\# \text{ of outcomes in } E}{\# \text{ of outcomes in } S} = \frac{\# \text{ of outcomes in } E}{n}$ 

increasing sequence of events  $\{E_n, n \geq 1\} \rightarrow$ 

 $E_1 \subset E_2 \subset \cdots \subset E_n \subset E_{n+1} \subset \cdots$ 

$$\begin{split} &\lim_{n\to\infty}E_n=\bigcup_{i=1}^\infty E_i\\ &\text{decreasing sequence}\\ &E_1\supset E_2\supset\cdots\supset E_n\supset E_{n+1}\supset\ldots\\ &\lim_{n\to\infty}E_n=\bigcap^\infty E_i \end{split}$$

# 03. CONDITIONAL PROBABILITY AND INDEPENDENCE

tricky - E6, urns (p.37)

# Conditional Probability

**N1** - if 
$$P(F)>0$$
. then  $P(E|F)=\frac{P(E\cap F)}{P(F)}$ 

N2 - multiplication rule - 
$$P(E_1E_2 \dots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\dots P(E_n|E_1E_2\dots E_{n-1})$$

N3 - axioms of probability apply to conditional probability

- 1. 0 < P(E|F) < 1
- 2. P(S|F) = 1 where S is the sample space
- 3. If  $E_i$  ( $i \in \mathbb{Z}_{\geq 1}$ ) are mutually exclusive events, then

$$P(\bigcup_{1}^{\infty} E_i|F) = \sum_{1}^{\infty} P(E_i|F)$$

**N4** - If we define Q(E) = P(E|F), then Q(E) can be regarded as a probability function on the events of S, hence all results previously proved for probabilities apply.

- $Q(E_1 \cup E_2) = Q(E_1) + Q(E_2) Q(E_1 E_2)$
- $P(E_1 \cup E_2|F) = P(E_1|F) + P(E_2|F) P(E_1E_2|F)$
- · theorem of total probability:
  - $Q(E_1) = Q(E_1|E_2)Q(E_2) + Q(E_1|E_2)Q(E_2)$
  - $P(H|F_n) = \sum_{i=0}^k P(H|F_nc_i)P(c_i|F_n)$

# Total Probability & Bayes' Theorem

conditioning formula -  $P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$ 

$$P(F) \rightarrow F \xrightarrow{P(E|F)} E \qquad P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(F) \cdot P(E|F)}{P(E)}$$

$$F^{c} \rightarrow E \qquad P(F^{c}|E) = \frac{P(EF^{c})}{P(E)} = \frac{P(F^{c}) \cdot P(E|F)}{P(E)}$$

$$E^{c} \rightarrow E^{c} \qquad P(F^{c}|E) = \frac{P(EF^{c})}{P(E)} = \frac{P(F^{c}) \cdot P(E|F^{c})}{P(E)}$$

# **Total Probability**

theorem of total probability - Suppose  $F_1, F_2, \dots, F_n$  are mutually exclusive events such that  $\bigcup_{i=1}^n F_i = S$ , then  $P(E) = \sum_{i=1}^n P(EF_i) = \sum_{i=1}^n P(F_i) P(E|F_i)$ 

#### **Bayes Theorem**

$$P(F_j|E) = \frac{P(EF_j)}{P(E)} = \frac{P(F_j)P(E|F_j)}{\sum_{i=1}^{n} P(F_i)P(E|F_i)}$$

application of bayes' theorem

$$P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$$

Let A be the event that the person test positive for a disease.

 $B_1$ : the person has the disease.  $B_2$ : the person does not have the disease.

false negatives:  $P(\bar{A} \mid B_1)$ true positives:  $P(B_1 \mid A)$ false positives:  $P(A \mid B_2)$ true negatives:  $P(\bar{A} \mid B_2)$ 

### **Independent Events**

**N1** - E and F are independent  $\iff P(EF) = P(E) \cdot P(F)$ 

**N2** - E and F are independent  $\iff P(E|F) = P(E)$ 

**N3** - if E and F are independent, then E and  $F^c$  are independent.

**N4** - if E, F, G are independent, then E will be independent of any event formed from F and G. (e.g.  $F \cup G$ )

**N5** - if E, F, G are independent, then P(EFG) = P(E)P(F)P(G)

**N6** - if E and F are independent and E and G are independent,  $\Rightarrow E$  and FG are independent

N7 - For independent trials with probability p of success, probability of m successes before n failures, for m, n > 1,

 $\overbrace{ P_{n-1,m} \atop B \text{ win} \atop B \text{ win} }^{p \rightarrow S} \underbrace{ P_{n-1,m} \atop B \text{ win} \atop A \text{ win} \atop P_{n,m} = \sum_{k=n}^{m+n-1} \binom{m+n-1}{k} p^k (1-p)^{m+n-1-k}$ = P(exactly k successes in m+n-1 trials)

recursive approach to solving probabilities: see page 85 alternative approach

### 04. RANDOM VARIABLES

random variable 
→ a real-valued function defined on the sample space

### Types of Random Variables

• X is a **Bernoulli r.v.** with parameter p if  $\rightarrow$ 

$$p(x) = \begin{cases} p, & x = 1, \text{ ('success')} \\ 1 - p, & x = 0 \text{ ('failure')} \end{cases}$$

• Y is a **Binomial r.v.** with parameters n and  $p \to Y = X_1 + X_2 + \cdots + X_n$ where  $X_1, X_2, \ldots, X_n$  are independent Bernoulli r.v.'s with parameter p.

•  $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ 

• P(k successes from n independent trials each with probability p of success)

 $\bullet$  e.g. number of red balls out of n balls drawn with replacement

• Negative Binomial  $\to X =$  number of trials until k successes are obtained

• e.g. number of balls drawn (with replacement) until k red balls are obtained

• **Geometric**  $\rightarrow X =$  number of trials until a success is obtained

•  $P(X = k) = (1 - p)^{k-1} \cdot p$  where k is the number of trials needed • e.g. number of balls drawn (with replacement) until 1 red ball is obtained

• **Hypergeometric**  $\to X =$  number of trials until success, without replacement

• e.g. number of red balls out of n balls drawn without replacement

#### Summary

| binomial          | X= number of successes in $n$ trials with replacement    |
|-------------------|----------------------------------------------------------|
| negative binomial | X= number of trials until $k$ successes                  |
| geometric         | X= number of trials until a success                      |
| hypergeometric    | X= number of successes in $n$ trials without replacement |

### **Properties**

$$\begin{array}{ll} \mathbf{N1} \text{ - if } X \sim \operatorname{Binomial}(n,p), \text{ and } Y \sim \operatorname{Binomial}(n-1,p), \\ \text{then} \qquad E(X^k) = np \cdot E[(Y+1)^{k-1}] \\ \mathbf{N2} \text{ - if } X \sim \operatorname{Binomial}(n,p), \text{ then for } k \in \mathbb{Z}^+, \\ P(X=k) = \frac{(n-k+1)p}{k(1-p)} \cdot P(X=k-1) \end{array}$$

# **Coupon Collector Problem**

Q. Suppose there are N distinct types of coupons. If T denotes the number of coupons needed to be collected for a complete set, what is P(T = n)?

A. 
$$P(T>n-1)=P(T\geq n)=P(T=n)+P(T>n)$$
  $\Rightarrow P(T=n)=P(T>n-1)-P(T>n)$  Let  $A_j=\{\text{no type } j \text{ coupon is contained among the first } n\}$   $P(T>n)=P(\bigcup_{i=1}^{N}A_i)$ 

Using the inclusion-exclusion identity,

Using the inclusion-exclusion identity, 
$$P(T>n) = \sum_{j} P(A_{j}) \quad \text{- coupon } j \text{ is not among the first } n \text{ collected}$$
 
$$-\sum_{j_1} \sum_{j_2} P(A_{j_1} A_{j_2}) \quad \text{- coupon } j_1 \text{ and } j_2 \text{ are not the first } n$$
 
$$+ \dots + (-1)^{k+1} \sum_{j_1} \sum_{j_2} \dots \sum_{j_k} P(A_{j_1} A_{j_2} \dots A_{j_n}) + \dots$$
 
$$+ (-1)^{N+1} P(A_1 A_2 \dots A_N)$$
 
$$+ (A_{j_1} A_{j_2} \dots A_{j_n}) = (\frac{N-k}{N})^n$$
 Hence 
$$P(T>n) = \sum_{j_1}^{N-1} {N \choose j} {N-1 \choose N}^n (-1)^{i+1}$$

# **Probability Mass Function**

- for a discrete r.v., we define the **probability mass function** (pmf) of X by p(a) = P(X = a)
  - cdf,  $F(a) = \sum p(x)$  for all  $x \le a$
  - if X assumes one of the values  $x_1, x_2, \ldots$  , then  $\sum\limits_{i=1}^{\infty} p(x_i) = 1$
  - the pmf p(a) is positive for at most a countable number of values of a
- discrete variable → a random variable that can take on at most a countable number of possible values

#### **Cumulative Distribution Function**

- for a r.v. X, the function F defined by  $F(x) = P(X \le x), -\infty < x < \infty$ , is called the **cumulative distribution function (cdf)** of X.
  - · aka distribution function
- F(x) is defined on the entire real line

$$\bullet \text{ e.g. } F(a) = \begin{cases} 0, & a < 1 \\ \frac{1}{2}, & 1 \leq a < 2 \\ \frac{3}{4}, & 2 \leq a < 4 \\ 1, & a \leq 4 \end{cases}$$

# **Expected Value**

- aka population mean/sample mean,  $\mu$
- if X is a discrete random variable having pmf p(x), the **expectation** or the **expected value** of X is defined as  $E(X) = \sum x \cdot p(x)$

N1 - if a and b are constants, then E(aX+b)=aE(X)+b N2 - the  $n^{th}$  moment of of X is given as  $E(X^n)=\sum_x x^n\cdot p(x)$ 

 $\bullet \ I \ \text{is an indicator variable for event} \ A \ \text{if} \ I = \begin{cases} 1, \text{if} \ A \ \text{occurs} \\ 0, \text{if} \ A^c \ \text{occurs} \end{cases} \quad \text{. then} \ E(I) = P(A).$ 

Proof of N1. 
$$E(aX + b) = \sum_{x} (aX + b)p(x)$$
  
=  $a \cdot \sum_{x} xp(x) + b \cdot \sum_{x} p(x) = a \cdot E(X) + b$ 

# finding expectation of f(x)

- method 1, using pmf of Y: let Y = f(X). Find corresponding X for each Y.
- method 2, using pmf of X:  $E[g(x)] = \sum_i g(x_i)p(x_i)$ 
  - where X is a discrete r.v. that takes on one of the values of  $x_i$  with the respective probabilities of  $p(x_i)$ , and q is any real-valued function q

#### Variance

If X is a r.v. with mean  $\mu=E[X]$ , then the variance of X is defined by  $Var(X) = E[(X - \mu)^2]$ 

$$= \sum x_i (x_i - \mu)^2 \cdot p(x_i) \qquad \text{(deviation $\cdot$ weight)}$$
 
$$= E(x^2) - [E(x)]^2$$

•  $Var(aX + b) = a^2Var(x)$ 

#### **Poisson Random Variable**

a r.v. X is said to be a **Poisson r.v.** with parameter  $\lambda$  if for some  $\lambda > 0$ ,

$$P(X=i) = e^{-\lambda} \cdot \frac{\lambda^i}{i!}$$

- notation:  $X \sim \mathsf{Poisson}(\lambda)$
- $\sum_{i=0}^{\infty} P(X=i) = 1$
- Poisson Approximation of Binomial if  $X \sim \text{Binomial}(n, p), n$  is large and p is small, then  $X \sim Poisson(\lambda)$  where  $\lambda = np$ .
  - For n independent trials with probability p of success, the number of successes is approximately a *Poisson r.v.* with parameter  $\lambda = np$  if n is large & p is small.
  - Poisson approximation remains even when the trials are not independent. provided that their dependence is weak.
- 2 ways to look at the Poisson distribution
  - 1. an approximation to the binomial distribution with large n and small p
  - 2. counting the number of events that occur at random at certain points in time

#### Mean and Variance

if 
$$X \sim \text{Poisson}(\lambda)$$
, then  $E(X) = \lambda$ ,  $Var(X) = \lambda$ 

#### Poisson distribution as random events

Let N(t) be the number of events that occur in time interval [0, t].

**N1** - If the 3 assumptions are true, then  $N(t) \sim \text{Poisson}(\lambda t)$ .

**N2** - If  $\lambda$  is the rate of occurrences of events per unit time, then the number of occurrences in an interval of length t has a Poisson distribution with mean  $\lambda t$ .

$$P(N(t)=k)=rac{e^{-\lambda t}(\lambda t)^k}{k!}$$
 , for  $k\in\mathbb{Z}_{\geq 0}$ 

### o(h) notation

$$o(h)$$
 stands for any function  $f(h)$  such that  $\lim_{h \to 0} \frac{f(h)}{h} = 0$ 

- o(h) + o(h) = o(h)
- $\frac{\lambda t}{t} + o(\frac{t}{n}) = \frac{\lambda t}{n}$  for large n

# Expected Value of sum of r.v.

For a r.v. X, let X(s) denote the value of X when  $s \in \mathcal{S}$ 

N1 - 
$$E(x) = \sum_i x_i P(X=x_i) = \sum_{s \in \mathcal{S}} X(s) p(s)$$
 where  $\mathcal{S}_i = \{s: X(s)=x_i\}$ 

**N2** - 
$$E(\sum_{i=1}^{n}) = \sum_{i=1}^{n} E(X_i)$$
 for r.v.  $X_1, X_2, \dots, X_n$ 

#### examples

### Selecting hats problem

Let n be the number of men who select their own hats. Let  $I_E$  be an indicator r.v. for E. E<sub>i</sub> is the event that the i-th man selects his own hat. Let X be the number of men that select their own hats.

- $X = I_{E_1} + I_{E_2} + \cdots + I_{E_n}$
- $P(E_i) = \frac{1}{n}$
- $P(E_i|E_j) = \frac{1}{n-1} \neq P(E_j)$  for j < i (hence  $E_i$  and  $E_j$  are not independent)
  - but dependence is weak for large *n*
- X satisfies the other conditions for binomial r.v., besides independence (n trials with equal probability of success)
- Poisson approximation of  $X: X \sim \mathsf{Poisson}(\lambda)$ 
  - $\lambda = n \cdot P(E_i) = n \cdot \frac{1}{n} = 1$
  - $P(X = i) = \frac{e^{-1}1^i}{i!} = \frac{e^{-1}}{i!}$   $P(X = 0) = e^{-1} \approx 0.37$

# No 2 people have the same birthday

For  $\binom{n}{2}$  pairs of individuals i and j,  $i \neq j$ , let  $E_{ij}$  be the event where they have the same birthday. Let X be the number of pairs with the same birthday.

- $X = I_{E_1} + I_{E_2} + \cdots + I_{E_n}$
- Each  $E_{ij}$  is only pairwise independent.  $P(E_{ij}) = \frac{1}{365}$ • i.e.  $E_{ij}$  and  $E_{mn}$  are independent

- but  $E_{12}$  and  $(E_{13} \cap E_{23})$  are not independent  $\Rightarrow P(E_{12}|E_{13} \cap E_{23}) = 1$
- $\bullet \ X \dot{\sim} \mathrm{Poisson}(\lambda), \ \lambda = \frac{\binom{n}{2}}{365} = \frac{n(n-1)}{730} \qquad \Rightarrow P(X=0) = e^{-\frac{n(n-1)}{730}}$ • for  $P(X=0) \le \frac{1}{2}, n \ge 23$

#### distribution of time to next event

Q. suppose an accident happens at a rate of 5 per day. Find the distribution of time starting from now, until the next accident.

A. Let X = time (in days) until the next accident.

Let V = be the number of accidents during time period [0, t].

$$V \sim \mathsf{Poisson}(5t) \qquad \Rightarrow P(V=k) = \frac{e^{-5t} \cdot (5t)^k}{k!}$$

 $P(X > t) = P(\text{no accidents happen during } [0, t]) = P(V = 0) = e^{-5t}$  $P(X \le t) - 1 - e^{-5t}$ 

# 05. CONTINUOUS RANDOM VARIABLES

X is a **continuous r.v.**  $\rightarrow$  if there exists a nonnegative function f defined for all real  $x \in (-\infty, \infty)$ , such that  $P(X \in B) = \int_{B} f(x) dx$ 

N1 -  $P(X \in (-\infty, \infty)) = \int_{-\infty}^{\infty} f(x) dx = 1$ 

**N2** -  $P(a \le X \le b) = \int_a^b f(x) dx$ 

**N3** -  $P(X = a) = \int_a^a f(x) dx = 0$ 

**N4** -  $P(X < a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$ 

N5 - interpretation of probability density function



$$\begin{split} P(x < X < x + dx) &= \int_{x}^{x + dx} f(y) \, dy \\ &\approx f(x) \cdot dx \\ \text{pdf at } x, f(x) &\approx \frac{P(x < X < x + dx)}{dx} \end{split}$$

**N6** - if X is a continuous r.v. with pdf f(x) and cdf F(x), then  $f(x) = \frac{d}{dx}F(x)$ . (Fundamental Theorem of Calculus)

**N7** - median of X, x occurs where  $F(x) = \frac{1}{2}$ 

# Generating a Uniform r.v.

if X is a continuous r.v. with cdf F(x), then

• N8 -  $F(X) = U \sim uniform(0, 1)$ .

Proof. let 
$$Y=F(X)$$
. then cdf of  $Y$ ,  $F_Y(y)=P(Y\leq y)=P(F(X)\leq y)=P(X\leq F^{-1}(y))=F(F^{-1}(y))=y$ . hence  $Y$  is a uniform r.v.

• N9 -  $X = F^{-1}(U) \sim \text{cdf } F(x)$ .

• generating a r.v. from a uniform(0, 1) r.v. and a r.v. with cdf F(x).

# **Expectation & Variance**

#### expectation

N1 - expectation of X,  $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$ 

**N2** - for a non-negative r.v.  $Y, E(Y) = \int_0^\infty P(Y > y) dy$ 

**N3** - if X is a continuous r.v. with pdf f(x), then for any real-valued function g,  $E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x) dx$ 

• e.g.  $E[aX + b] = \int_{-\infty}^{\infty} (aX + b) \cdot f(x) dx = a \cdot E(X) + b$ 

#### variance

**N1** - variance of X,  $Var(X) = E[(X - \mu)^2] = E(X^2) - [E(X)]^2$ 

 ${\it Q}$  - Find the pdf of (b-a)X+a where a,b are constants, b>a. The pdf of X is given by  $f(x) = \begin{cases} 1, & 0 \le X \le 1 \\ 0, & \text{otherwise} \end{cases}$ 

A. Let Y = (b-a)X + a.

$$\operatorname{cdf}, F_Y(y) = P(Y \le y) = P((b-a)X + a \le y) = P(X \le \frac{y-a}{b-a})$$

$$F_Y(y) = \int_0^{\frac{y-a}{b-a}} 1 \, dx = \frac{y-a}{b-a}, \quad a < y < b$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \begin{cases} \frac{1}{b-a}, & a < y < b \\ 0, & \text{otherwise} \end{cases}$$

### **Uniform Random Variable**

X is a **uniform r.v.** on the interval  $(\alpha, \beta)$ ,  $X \sim Uniform(\alpha, \beta)$ if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta \\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{\alpha + \beta}{2}, \quad Var(X) = \frac{(\beta - \alpha)^2}{12}$$



### **Normal Random Variable**

X is a **normal r.v.** with parameters  $\mu$  and  $\sigma^2$ ,  $X \sim N(\mu, \sigma^2)$ if the pdf of X is given by

$$f(x) \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x}{\mu}\sigma)^2}, \quad -\infty < x < \infty$$

$$E(x) = \mu, \quad Var(X) = \sigma^2$$



if 
$$X\sim N(\mu,\sigma^2)$$
, then  $\frac{X-\mu}{\sigma}\sim N(0,1)$  if  $Y\sim N(\mu,\sigma^2)$  and  $a$  is a constant,  $F_y(a)=\Phi(\frac{a-\mu}{\sigma})$ 

standard normal distribution  $\to X \sim N(0,1)$ 

• 
$$F(x) = P(X \le x) = \frac{1}{\sqrt{r\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy = \Phi(x)$$

# **Normal Approximation to the Binomial Distribution**

if 
$$S_n \sim Binomial(n,p)$$
, then  $\frac{S_n-np}{\sqrt{np(1-p)}} \sim N(0,1)$  for large  $n$ . 
$$\mu=np, \quad \sigma^2=np(1-p)$$

# **Exponential Random Variable**

a continuous r.v. X is a exponential r.v.,  $X \sim Exponential(\lambda)$  or  $Exp(\lambda)$ if for some  $\lambda > 0$ , its pdf is given by

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$
 
$$E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$



- an exponential r.v. is memoryless.
- a non-negative r.v. is memoryless → if
- $P(X > s + t \mid X > t) = P(X > s)$  for all s, t > 0.

# **Gamma Distribution**

a r.v. X has a **gamma distribution**,  $X \sim Gamma(\alpha, \lambda)$  with parameters  $(\alpha, \gamma)$ ,  $\lambda > 0$  and  $\alpha > 0$  if its pdf is given by

$$f(x) \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(d)}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
$$E(X) = \frac{\alpha}{\lambda} \quad Var(X) = \frac{\alpha}{\lambda^2}$$

where the gamma function  $\Gamma(\alpha)$  is defined as  $\Gamma(\alpha)=\int_0^\infty e^{-y}y^{\alpha-1}\,dy.$ 



N1 - 
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

*Proof.* using integration by parts of LHS to RHS

**N2** - if 
$$\alpha$$
 is an integer  $n$ , then  $\Gamma(n)=(n-1)!$ 

N3 - if 
$$X \sim Gamma(\alpha, \lambda)$$
 and  $\alpha = 1$ , then  $X \sim Exp(\lambda)$ .

Gamma densities ( $\lambda = 1$ ).

 ${
m N4}$  - for events occurring randomly in time following the 3 assumptions of poisson distribution, the amount of time elapsed until a total of n events has occurred is a gamma r.v. with parameters  $(n,\lambda)$ .

- time at which event n occurs,  $T_n \sim Gamma(n, \lambda)$
- number of events in time period [0,t],  $N(t) \sim Poisson(\lambda t)$

**N5** -  $Gamma(\alpha=\frac{n}{2},\lambda=\frac{1}{2})=\chi_n^2$  (chi-square distribution to n degrees of freedom)

#### **Beta Distribution**

a r.v. X is said to have a **beta distribution**,  $X \sim Beta(a,b)$  if its density is given by

$$f(x) = \begin{cases} \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1}, & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{a}{a+b} \quad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$



N1 - 
$$\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

**N2** - 
$$\beta(a = 1, b = 1) = Uniform(0, 1)$$

N3 - 
$$\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

# **Cauchy Distribution**

a r.v. X has a cauchy distribution,  $X \sim Cauchy(\theta)$  with parameter  $\theta, \infty < \theta < \infty$  if its density is given by

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty$$

*Proof.*  $E(X^n)$  does not exist for  $n \in \mathbb{Z}^+$ 

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \infty - \infty$$
 (undefined)

# **06. JOINTLY DISTRIBUTED RANDOM VARIABLES**

### **Joint Distribution Function**

the joint cumulative distribution function of the pair of r.v. X and Y is  $\rightarrow$   $F(x,y)=P(X\leq x,Y\leq y),$   $-\infty< x<\infty,$   $-\infty< y<\infty$ 

N1 - 
$$\mathop{\rm marginal}\nolimits \mathop{\rm cdf}\nolimits \mathop{\rm of}\nolimits X, F_X(x) = \lim_{y \to \infty} F(x,y).$$

N2 - marginal cdf of 
$$Y$$
,  $F_Y(y) = \lim_{x \to \infty} F(x, y)$ .



# **Joint Probability Mass Function**

if X and Y are both discrete r.v., then their **joint pmf** is defined by p(i,j) = P(X=i,Y=j)

N1 - marginal pmf of 
$$X$$
,  $P(X = i) = \sum_{i} P(X = i, Y = j)$ 

N2 - marginal pmf of Y, 
$$P(Y = i) = \sum_{i}^{3} P(X = i, Y = j)$$

# **Joint Probability Density Function**

the r.v. X and Y are said to be *jointly continuous* if there is a function f(x,y) called the **joint pdf**, such that for any two-dimensional set C,

$$P[(X,Y) \in C] = \iint_C f(x,y) dx dy$$

= volume under the surface over the region C.



N1 - if 
$$C=\{(x,y):x\in A,y\in B\}$$
, then  $P(X\in A,Y\in B)=\int\limits_{B}\int\limits_{A}f(x,y)\,dx\,dy$ 

N2 - 
$$F(a,b) = P(X \in (-\infty,a], Y \in (-\infty,b]) = \int_{-\infty}^{b} \int_{-\infty}^{a} f(x,y) dx dy$$

for double integral: when integrating dx, take y as a constant

N3 - 
$$f(a,b) = \frac{\delta^2}{\delta a \delta b} F(a,b)$$

#### interpretation of pdf



$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) \, dy$$

$$\approx f(x) \, dx$$

$$f(x) \approx f(x) \approx P(x < X < x + dx)$$

N4 - pdf of 
$$X$$
,  $f_X(x) = \int_0^\infty f(x,y) \, dy$ 

**N5** - pdf of 
$$Y$$
,  $f_Y(y) = \int_0^\infty f(x,y) dx$ 

# interpretation of joint pdf



# how to do a double integral

e.g. find P(X < Y) where the joint pdf of X and Y are given by

$$f(x,y) = \begin{cases} 2e^{-x}e^{-y}, & 0 < x < \infty, 0 < y < \infty \\ 0, & \text{otherwise} \end{cases}$$



- 1. to get the bounds for dx and dy, plot X < Y
- 1.1. draw horizontal lines to determine the bounds for x, from x=a to x=b 1.2. draw vertical lines to determine the bounds for y, from y=c to y=d
- 2. integrate  $\int_{c}^{d} \int_{a}^{b} f(x) dx dy$

**example** - given the joint pdf of X and Y, find the pdf of r.v. X/Y.





### **Independent Random Variables**

**N1** - X and Y are independent  $\rightarrow$ 

$$P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$$

**N2** - X and Y are **independent**  $\rightarrow \forall a, b,$  $P(X \le a, Y \le b) = P(X \le a) \cdot P(Y \le b)$ 

or 
$$F(a,b) = F_X(a) \cdot F_Y(b)$$
  
N3 - when  $X$  and  $Y$  are **discrete r.v.**, the *condition of independence* is equivalent to

 $P(X=x,Y=y)=P(X=x)\cdot P(Y=y)$  for all x,y.

**N4** - in the **jointly continuous** case, the *condition of independence* is equivalent to  $f(x,y) = f_X(x) \cdot f_Y(y)$  for all x,y.

 $\begin{array}{lll} \textbf{commutative} & E \cup F = F \cup E & E \cap F = F \cap E \\ \textbf{associative} & (E \cup F) \cup G = E \cup (F \cup G) & (E \cap F) \cap G = E \cap (F \cap G) \\ \textbf{distributive} & (E \cup F) \cap G = (E \cap F) \cup (F \cap G) & (E \cap F) \cup G = (E \cup F) \cap (F \cup G) \\ \textbf{DeMorgan's} & (\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c & (\bigcap_{i=1}^n E_i)^c = \bigcup_{i=1}^n E_i^c \\ \end{array}$