Linux

Programmation système et réseau

Joëlle Delacroix

Maître de conférences en informatique, Chef de département pour le DUT informatique, Cnam de Paris

4e édition

DUNOD

Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs.

Cet ouvrage est une nouvelle présentation de la quatrième édition parue initialement dans la collection Sciences Sup en 2012.

Illustration de couverture : *Fun penguins* © ArchMen - Fotolia.com

DANGER

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que représente pour l'avenir de l'écrit,

particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

taire, le developpement massir du photocopilloge.
Le Code de la propriété intellectuelle du 1°f juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autorisation des ayants droit. Or, cette praique

s'est généralisée dans les établissements

d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues au point que la possibilité même pour

revues, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du

Centre français d'exploitation du droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

© Dunod, 2003, 2007, 2009, 2012, 2016 pour la nouvelle présentation

5 rue Laromiguière, 75005 Paris www.dunod.com

ISBN 978-2-10-074855-6

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les «copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

TABLE DES MATIÈRES

Avant-propos	IX
Chapitre 1 · Introduction au système Linux	1
1.1 Le système d'exploitation : présentation générale	1
1.1.1 Définition	1
1.1.2 Structure générale	3
1.1.3 Types de systèmes d'exploitation	5
1.2 Le système Linux	8
1.2.1 Présentation générale	8
1.2.2 Structure	8
1.3 Notions fondamentales	10
1.3.1 Modes d'exécutions et commutations de contexte	10
1.3.2 Gestion des interruptions matérielles et logicielles	14
Exercices	23
Solutions	26
Chapitre 2 · Processus, threads et ordonnancement	27
2.1 Processus Linux	27
2.1.1 Rappels sur la notion de processus	27
2.1.2 Processus Linux	31
2.2 Processus léger (thread)	41
2.2.1 Notion de processus léger	41
2.2.2 Primitives de gestion des threads	43
2.2.3 Implémentation sous Linux	47
2.3 Démarrage du système Linux	47
2.4 Ordonnancement	49
2.4.1 Le rôle de l'ordonnancement	49
2.4.2 Les principaux algorithmes d'ordonnancement	51
2.4.3 La fonction d'ordonnancement sous Linux	53
Exercices	61
Solutions	69

Linux

Chapitre 3 · Système de gestion de fichiers	75
3.1 Notions générales	75
3.1.1 Le fichier logique	76
3.1.2 Le fichier physique	77
3.1.3 Correspondance fichier logique – fichier physique	86
3.2 Le système de gestion de fichiers de Linux	88
3.2.1 Structure d'un fichier dans Ext2	89
3.2.2 Structure d'un répertoire	94
3.2.3 Structure d'une partition	95
3.3 VFS : le système de gestion de fichiers virtuel	97
3.3.1 Présentation	97
3.3.2 Structure et fonctionnement du VFS	98
3.4 Primitives du VFS	105 105
3.4.1 Opérations sur les fichiers 3.4.2 Opérations sur les répertoires	103
3.4.3 Operations sur les liens symboliques	115
3.4.4 Opérations sur les partitions	116
3.5 Le système de fichiers /proc	116
Exercices	118
Solutions	121
Chapitre 4 • Gestion des entrées-sorties	127
4.1 Principes généraux	127
4.1.1 L'unité d'échange	127
4.1.2 Le pilote et les modes d'entrées-sorties	129
4.2 Entrées-sorties Linux	134
4.2.1 Fichiers spéciaux	134
4.2.2 Appels systèmes	135
4.2.3 Exemples	138
Exercices	139
Solutions	140
Chapitre 5 · Gestion de la mémoire centrale	141
5.1 Les mécanismes de pagination et de mémoire virtuelle	141
5.1.1 Rappels sur la mémoire physique	141
5.1.2 Espace d'adressage d'un processus	143
5.1.3 Pagination de la mémoire centrale	144
5.1.4 Principe de la mémoire virtuelle	152
5.2 La gestion de la mémoire centrale sous Linux	159
5.2.1 Espace d'adressage d'un processus Linux	159
5.2.2 Mise en œuvre de la pagination 5.2.3 Mise en œuvre de la mémoire virtuelle	166 168
Exercices	173
Solutions	173

Table des matières

Cha	pitre 6 · Gestion des signaux	185
6.1	Présentation générale	185
	6.1.1 Définition	185
	6.1.2 Listes des signaux	186
	6.1.3 Champs du PCB associés aux signaux	186
6.2	Aspects du traitement des signaux par le noyau	186
	6.2.1 Envoi d'un signal	186
	6.2.2 Prise en compte d'un signal	188
	6.2.3 Signaux et appels systèmes	191
	6.2.4 Signaux et héritage	191
6.3	Programmation des signaux	191
	6.3.1 Envoyer un signal	191
	6.3.2 Bloquer les signaux	192
	6.3.3 Attacher un handler à un signal	194
	6.3.4 Traiter les appels systèmes interrompus	197
	6.3.5 Attendre un signal	198
	6.3.6 Armer une temporisation	199
6.4	Signaux temps réel	200
	6.4.1 Présentation générale	200
	6.4.2 Envoyer un signal temps réel	201
	6.4.3 Attacher un gestionnaire à un signal temps réel	201
	6.4.4 Exécution du gestionnaire de signal	203
Exe	rcices	205
Solu	tions	208
Cha	pitre 7 · Communication entre processus	211
7.1	La communication par tubes	211
	7.1.1 Les tubes anonymes	212
	7.1.2 Les tubes nommés	219
7.2	Les IPC : files de messages, mémoire partagée	223
	7.2.1 Caractéristiques générales	223
	7.2.2 Les files de messages	224
	7.2.3 Les régions de mémoire partagée	231
Exe	rcices	235
Solu	tions	239
Cha	pitre 8 · Synchronisation entre processus - Interblocage	249
8.1	Les grands schémas de synchronisation	249
	8.1.1 L'exclusion mutuelle	250
	3.1.2 Le schéma de l'allocation de ressources	256
	8.1.3 Le schéma lecteurs-rédacteurs	258
	8.1.4 Le schéma producteurs-consommateurs	261

Linux

8.2 Utilisation des sémaphores sous Linux	263
8.2.1 Création et recherche d'un ensemble de sémaphores	264
8.2.2 Opérations sur les sémaphores	264
8.2.3 Un exemple	266
8.3 Mutex et variables conditions	268
8.3.1 Mutex	268
8.3.2 Variables conditions	270
8.4 Interblocage	272
8.4.1 Les conditions nécessaires à l'obtention d'un interblocage	272
8.4.2 Les différentes méthodes de traitement des interblocages	273
8.5 Synchronisation dans le noyau Linux	278
8.5.1 Le noyau est non préemptible	278
8.5.2 Masquage des interruptions	278
8.5.3 Sémaphores	279
8.5.4 Interblocage	279
Exercices	279
Solutions	284
Chapitre 9 · Programmation réseau	295
9.1 L'interconnexion de réseaux	295
9.1.1 Le modèle client-serveur	295
9.1.2 Les architectures clients-serveurs	297
9.1.3 L'interconnexion de réseaux	297
9.2 Programmation réseau	303
9.2.1 Les utilitaires pour la programmation socket	304
9.2.2 L'interface socket	306
9.3 Appel de procédure à distance	326
9.3.1 Mise en œuvre de l'appel de procédure à distance	326
9.3.2 Les difficultés	327
Exercices	331
Solutions	335
Chapitre 10 · Systèmes Linux avancés	343
10.1 Systèmes Linux temps réel	343
10.1.1 Applications temps réel	343
10.1.2 Exécutifs temps réel	345
10.1.3 Le service d'ordonnancement temps réel	347
10.1.4 Les systèmes Linux temps réel	352
10.2 Systèmes Linux pour les architectures multiprocesseurs	355
10.2.1 Classification des architectures multiprocesseurs	355
10.2.2 Architectures SMP Linux	358
Exercices	362
Solutions	364
Index	369

© Dunod = La photocopie non autorisée est un délit.

AVANT-PROPOS

Cet ouvrage présente les principes fondamentaux des systèmes d'exploitation, illustrés sous le système Linux. Chaque chapitre est ainsi composé d'une partie théorique qui présente les concepts importants liés à la fonction du système d'exploitation étudiée, puis d'une partie applicative basée sur Linux et qui décrit de manière simplifiée l'implémentation faite de ces concepts au sein du noyau Linux, ainsi que les primitives systèmes qui leur sont attachés. Des exemples de programmation illustrent l'emploi de ces primitives. Des exercices corrigés clôturent chaque chapitre et des énoncés de programmation sont suggérés.

Cet ouvrage s'articule autour de 9 chapitres qui décrivent l'ensemble des fonctions d'un système d'exploitation multiprogrammé tel que Linux :

- le chapitre 1 introduit les notions de base sur le fonctionnement d'un noyau tel que Linux ;
- le chapitre 2 traite des notions de processus et d'ordonnancement ;
- les chapitres 3 et 4 présentent le système de gestion de fichiers et le mécanisme des entrées-sorties;
- le chapitre 5 a trait à la gestion de la mémoire centrale, notamment à la pagination et à la mémoire virtuelle ;
- les chapitres 6 à 9 présentent divers outils de communication et de synchronisation tels que les sockets, les tubes, les files de messages, les signaux, les régions de mémoires partagées et les sémaphores ;
- le chapitre 10 présente des notions relatives aux systèmes temps réel et multiprocesseurs et notamment aux systèmes de type Linux.

^{1.} Bien que le code du noyau Linux soit disponible, nous avons choisi de ne pas décrire trop en détails les choix d'implémentation du noyau Linux. Les lecteurs désireux de pénétrer avec précision les arcanes du code du noyau peuvent se reporter à l'ouvrage suivant : Daniel P. Bovet, Marco Cesati, le noyau Linux, O'Reilly.