

CLAIMS

What is claimed is:

1 1. A quantum well infrared photodetector (QWIP) device comprising:
2 an emitter contact layer;
3 a stack including a number of quantum wells, each well sandwiched between
4 barrier layers; and
5 an electron launcher configured with a plurality of steps to enable dark electrons to
6 move rapidly from the emitter contact layer into the stack, thereby reducing
7 dielectric relaxation effect.

1 2. The device of claim 1 wherein a first barrier in the stack is defined by a
2 particular semiconductor material make-up, and each step of the electron launcher adds
3 about 25% or less of that first barrier's make-up.

1 3. The device of claim 1 wherein the device is configured as an indirect-gap
2 type structure, and the quantum wells are GaAs and the barriers are AlGaAs.

1 4. The device of claim 1 wherein the device is configured as a strained type
2 structure, and the quantum wells are InGaAs, and the barriers are AlGaAs.

1 5. The device of claim 1 wherein the quantum wells have a width of about 40
2 Å to 80 Å, and the barriers have a thickness of about 500 Å or more.

1 6. The device of claim 1 wherein the device further includes a collector
2 contact layer that is proximate to a last barrier included in the stack.

1 7. The device of claim 6 wherein the device further includes a second electron
2 launcher configured with a plurality of steps to enable dark electrons to rapidly move from
3 the collector contact layer into the stack, thereby reducing dielectric relaxation effect
4 during reverse bias applications.

1 8. The device of claim 6 wherein the device further includes a blocking layer
2 between the stack and the collector contact layer for suppressing tunneling current from the
3 quantum wells.

1 9. A quantum well infrared photodetector (QWIP) device comprising:
2 an emitter contact layer;
3 a stack including a superlattice structure of quantum wells, each well sandwiched
4 between thin barrier layers that allow tunneling between the wells, thereby
5 enabling rapid refilling of depleted wells and neutralization of space charge
6 buildup; and
7 an electron launcher configured with a plurality of steps to enable dark electrons to
8 move rapidly from the emitter contact layer into the stack, thereby reducing
9 dielectric relaxation effect.

1 10. The device of claim 9 wherein a first barrier in the stack is defined by a
2 particular semiconductor material make-up, and each step of the electron launcher adds
3 about 25% or less of that first barrier's make-up.

1 11. The device of claim 9 wherein the device is configured as an indirect-gap
2 type structure, and the quantum wells are GaAs and the barriers are AlGaAs.

1 12. The device of claim 9 wherein the device is configured as a strained type
2 structure, and the quantum wells are InGaAs, and the barriers are AlGaAs.

1 13. The device of claim 9 wherein the quantum wells have a width of about 60
2 Å to 90 Å, and the barriers have a thickness of about 45 Å to 65 Å.

1 14. The device of claim 9 wherein the device further includes a collector
2 contact layer that is proximate to a last barrier included in the stack.

1 15. The device of claim 14 wherein the device further includes a blocking layer
2 between the stack and the collector contact layer for suppressing tunneling current from the
3 quantum wells.

1 16. A quantum well infrared photodetector (QWIP) device comprising:
2 a stack including a number of quantum wells, each well sandwiched between
3 barrier layers; and
4 an electron launcher configured with a plurality of steps to enable dark electrons to
5 move rapidly from a contact layer into the stack, thereby reducing dielectric
6 relaxation effect.

1 17. The device of claim 16 wherein a first barrier in the stack is defined by a
2 particular semiconductor material make-up, and each step of the electron launcher adds
3 about 25% or less of that first barrier's make-up.

1 18. The device of claim 16 wherein the device further includes a blocking layer
2 that is proximate to an end barrier of the stack for suppressing tunneling current from the
3 quantum wells.

1 19. The device of claim 16 wherein the stack is configured to detect multiple
2 wavelengths.

1 20. The device of claim 16 wherein the device further comprises:
2 an emitter contact layer that is proximate to a first end barrier of the stack; and
3 a collector contact layer that is proximate to a second end barrier of the stack.