简单估计的三角代换法

Question(2025·10·7)

证明级数

$$\sum_{n=1}^{\infty} rac{\sqrt{X_{n+1}} - \sqrt{X_n}}{\sqrt{(1+X_{n+1})(1+X_n)}}$$

收敛, 其中 $X_n \uparrow 且 X_n > 0$.

除了常规的放缩方法,遇到这种奇怪的问题,我们考虑一种常用方法,即分组拆分法·Splitting_the_Summation·

很遗憾,似乎会有不等号方向的问题,笔者并没有过多尝试。

这里给出一个有趣的三角代换方法,如有不妥之处,请及时指出, 谢谢~

记 $y_n = \sqrt{X_n}$. 由于 X_n 单调递增且 $X_n > 0$,因此 y_n 单调递增且 $y_n > 0$. 令 $y_n = \tan \theta_n$. 由于 y_n 递增且 $y_n > 0$,我们选取 $\theta_n \in (0, \frac{\pi}{2})$ 且 θ_n 递增. 原级数的第 n 项 a_n 为:

$$a_n = rac{y_{n+1} - y_n}{\sqrt{(1 + y_{n+1}^2)(1 + y_n^2)}},$$

利用三角恒等式 $\sqrt{1+\tan^2\theta}=\sec\theta=\frac{1}{\cos\theta}$ (注意到 θ 的范围保

证了此处符号不变)进行代换,我们得到

$$egin{aligned} a_n &= rac{ an heta_{n+1} - an heta_n}{\sec heta_{n+1} \sec heta_n} \ &= rac{rac{\sin heta_{n+1}}{\cos heta_{n+1}} - rac{\sin heta_n}{\cos heta_n}}{rac{1}{\cos heta_{n+1}\cos heta_n}} \ &= \sin heta_{n+1}\cos heta_n - \cos heta_{n+1}\sin heta_n. \end{aligned}$$

根据三角函数的差角公式,我们得到:

$$a_n = \sin(\theta_{n+1} - \theta_n),$$

考虑级数的部分和 S_N :

$$S_N = \sum_{n=1}^N a_n = \sum_{n=1}^N \sin(heta_{n+1} - heta_n)$$

由于 $\theta_{n+1} - \theta_n > 0$,且对一切 x > 0 有 $\sin x < x$,故:

$$S_N < \sum_{n=1}^N (heta_{n+1} - heta_n)$$

求和结果为:

$$S_N < (heta_2 - heta_1) + (heta_3 - heta_2) + \dots + (heta_{N+1} - heta_N) = heta_{N+1} - heta_1$$

由于 $heta_{N+1}=\arctan y_{N+1}$ 且 $heta_n\in(0,\frac{\pi}{2})$,故 $heta_{N+1}<\frac{\pi}{2}$ 。 因此,部分和 S_N 有上界:

$$S_N < rac{\pi}{2} - heta_1$$

由于 $a_n > 0$,数列 $\{S_N\}$ 是一个单调递增数列·根据单调收敛定理:有界单调递增的数列收敛,故原级数收敛·

西元二零二五年十月

提笔于中国南京江宁区东南大学九龙湖校区 斋内