חלוקה הוגנת של חפצים בדידים Fair Indivisible Item Allocation

אראל סגל-הלוי

חלוקת חפצים בדידים

כשהחפצים לא ניתנים לחלוקה, בדרך-כלל אי אפשר למצוא חלוקה פרופורציונלית וללא קנאה (דוגמה: שני שחקנים, מס' איזוגי שם חפצים).

פתרונות מקובלים:

1)תשלומים. דוגמה: חלוקת חדרים ושכר-דירה.

2) **קירובים.** דוגמה: חלוקת ממתקים, חלוקת מקומות בקורסים.

3)שיתופים. חלוקת מספר מינימלי של חפצים. *דוגמה: חלוקת ירושות.*

חלוקה הוגנת בקירוב

- מקרה פשוט:
- 99 חפצים זהים.
- 2 שחקנים עם זכויות שוות.
- מה הן החלוקות שאפשר לקרוא להן "הוגנות בקירוב"?
 - .49:50 או 50:49 •
- בכל חלוקה אחרת, יש חוסר-הגינות
 שאי-אפשר להצדיק בכך שהחפצים בדידים.

חלוקה הוגנת בקירוב

מקרה פשוט:

- m חפצים זהים.
- n שחקנים עם זכויות שוות.

מה הן החלוקות שאפשר לקרוא להן "הוגנות בקירוב"?

- מעוגל למטה או למעלה. m/n כל אחד מקבל
 - בכל חלוקה אחרת, יש חוסר-הגינות
 שאי-אפשר להצדיק בכך שהחפצים בדידים.

חלוקה הוגנת בקירוב - הכללות

א. חפצים זהים – זכויות שונות.

ב. חפצים שונים – זכויות שוות.

ג. חפצים שונים – זכויות שונות.

חפצים זהים – זכויות שונות

:(apportionment) בעיית חלוקת המושבים

איך לחלק את 120 המושבים בכנסת בין
 המפלגות, באופן יחסי למספר קולותיהן?

בעיית חלוקת המושבים - דוגמה

- שתי מפלגות.
- מפלגה א: 68.7/120 מכלל הקולות;
- מפלגה ב: 51.3/120 מכלל הקולות.
- מהי חלוקה הוגנת של 120 המושבים?
 - 51:69 •
 - מעגלים לשלם הקרוב ביותר. •

בעיית חלוקת המושבים - הכללה

- שלוש מפלגות.
- 20.25 :ג, 30.35 :ב ,69.4 : א: 4.90.
- מהי חלוקה הוגנת של 120 המושבים?
- עיגול לשלם הקרוב ביותר יוצא רק 119!
- איך נכליל את העקרון "עיגול לשלם הקרוב
 ביותר" למספר כלשהו של מפלגות?

Hamilton - אלגוריתם המילטון

- נותנים לכל מפלגה את מספר-המושבים המדוייק שלה מעוגל כלפי מטה.
- מחלקים את המושבים
 העודפים לפי סדר יורד של
 השארית.

20.25 :ג, 30.35 :ב ,69.4

20 :א 30 :ב, 69 :א

20 :א 30, ג: 20 א:

Hamilton - אלגוריתם המילטון

- היה בשימוש בישראל
 מהבחירות השניות עד
 הבחירות השביעיות.
- היה בשימוש בארה"ב בין 1852 ל 1900.
- עדיין בשימוש ברוסיה, אוקראינה, ליטא, תוניס, נמיביה, טייוואן, הונג-קונג.
 - ?מה הבעיה איתו

אלגוריתם המילטון - חוסר-עקביות

למפלגה א מגיע 0 למפלגה ב מגיע 2!

- 5 מושבים, 500 בוחרים
- 325 : ג ,135 : ב ,40 : א
 - המילטון:
 - 3 : ג , 1 : ב . א : 3 •
- מפלגות א, ב קיבלו ביחד175 קולות ו-2 מושבים.
 - מהי חלוקה הוגנת של 2 המושבים ביניהן?
 - 0.457 = 40/175*2 : *\Displaystyle \text{...}
 - 1.543 = 135/175*2 :ב•

אלגוריתם המילטון - אסטרטגיה

- 5 מושבים, 500 בוחרים
- 335 : ג ,140 : ב ,25 : א
 - :המילטון
 - 3 :א ,2 :ב ,0 :א •
 - אם מפלגה א פורשת,
 - ותומכיה נשארים בבית -
- \bullet 140*5/475 = 1.47
- -335*5/475 = 3.53

•א: 0, ב: 1, ג: 4 מפלגה א **בלי מושבים** השפיעה על חלוקת המושרים!

עקביות

הגדרה. אלגוריתם לחלוקת-מושבים נקרא עקבי אם עבור כל תת-קבוצה X של מפלגות, שקיבלו ביחד n מושבים בחלוקה הכללית – n אם נשתמש באותו אלגוריתם כדי לחלק את המושבים בין המפלגות בקבוצה X בלבד, נקבל אותה חלוקה בדיוק כמו בחלוקה הכללית

> אלגוריתם המילטון אינו עקבי. האם קיים אלגוריתם עקבי?

Jefferson - אלגוריתם ג'פרסון

- •אתחול: כל מפלגה מקבלת 0
 - :כל עוד יש מושבים•
 - •מחשבים, לכל מפלגה: (מספר קולות)

(מספר מושבים נוכחי + 1)

•נותנים את המושב הבא למפלגה שהמנה שלה גדולה ביותר.

אלגוריתם ג'פרסון - דוגמה

.325 מושבים, 500 בוחרים. א: 40, ב: 135, ג: 325.

•חלוקה: 0 0 0 •מנות: 40, 135, 325 •חלוקה: 0 0

•מנות: 40, 135, 135, 162.5

•חלוקה: 0 0

•מנות: 40, 135, 138.33

•חלוקה: 0 1 2

•מנות: 40, 67.5, 108.33

•חלוקה: 0 1

•מנות: 40, 67.5, 80.25

•חלוקה: 0 1

אלגוריתם ג'פרסון = חוק בדר-עופר

- בשימוש בישראל החל מהכנסת השמינית
 חוק בדר-עופר
 ועד היום
 - בשימוש בעוד עשרות מדינות בעולם.

אלגוריתם ג'פרסון - עקביות

גגאבגבבאאגבאא

אב בבאא באא

• **משפט**. אלגוריתם ג'פרסון עקבי. • הוכחה. נסתכל על סדרת המפלגות המקבלות מושבים. נניח שמוחקים מהסדרה חלק מהמפלגות, עם המושבים שקיבלו. סדר חלוקת המושבים למפלגות הנותרות נשאר זהה – עדיין, המפלגה המקבלת את המושב הבא היא המפלגה שהמנה (מספר קולות) / (מספר מושבים נוכחי + 1) שלה היא הגדולה ביותר. ***

אלגוריתם ג'פרסון - הגינות

.340 בוחרים. א: 160, ב: 500

•חלוקה: 0 0

340 ,160 :**סנות**:

1 0 :חלוקה: 0

•מנות: 160, 170

•חלוקה: 0

•מנות: 160, 113

•חלוקה: 1

•מנות: 80, 113

3 1 יחלוקה: 1

•מנות: 80, 85

4 חלוקה: 1

• המספר המדוייק: 1.6 •

• עיגלנו *הפוך* מהכיוון הנכון!

נראה לא הוגן.

עקביות והגינות

האם קיים אלגוריתם שהוא גם **עקבי,** וגם **הוגן** (= מעגל לכיוון הנכון) עבור לכל זוג של מפלגות?

divisor methods – שיטות מחלק נכליל את שיטת ג'פרסון באופן הבא:

נבחר פונקציה כלשהי f, המייחסת לכל מספר שלם s, מספר ממשי כלשהו בתחום .[s, s+1]

- אתחול: כל מפלגה מקבלת 0כל עוד יש מושבים:
 - •מחשבים, לכל מפלגה: (מספר קולות)

f(מספר מושבים נוכחי)

•נותנים את המושב הבא למפלגה שהמנה שלה גדולה ביותר.

.f(s)=s+1 שיטת ג'פרסון = שיטת-מחלק עם

שיטות מחלק - עקביות

• משפט. לכל פונקציה f, שיטת-המחלק עם פונקציה f היא עקבית.

• הוכחה (בדיוק כמו שיטת ג'פרסון). נסתכל על סדרת המפלגות המקבלות מושבים. נניח שמוחקים מהסדרה חלק מהמפלגות, עם המושבים שקיבלו. סדר חלוקת המושבים למפלגות הנותרות נשאר זהה. ***

שיטות-מחלק - דוגמאות

- שיטת אדאמס f(s)=s שיטת דין • שיטת דין – f(s)=sqrt(s*(s+1)) – • שיטת הנטינגטון-היל • שיטת וובסטר – f(s)=s+0.5 • שיטת ג'פרסון - f(s)=s+1
 - •במה לבחור?!
- לצורך הדיון נתמקד בשיטות הפשוטות יותר: אדאמס, וובסטר, ג'פרסון. -->

```
3 מושבים, 300 בוחרים. א: 210, ב: 50, ג: 40
```

- שיטת אדאמס: 1 1 **1** •
- שיטת וובסטר: 2 1 0
 - שיטת ג'פרסון: 3 0 0

<-->זה לא במקרה

משפט. לכל y, בשיטת-מחלק עם פונקציה f(s)=s+y, אם מספר המושבים המדויק המגיע למפלגה א הוא a + שארית, ולמפלגה ב הוא b + שארית, ולמפלגה ב הוא b + שארית, אז מפלגה א תקבל את המושב הנוסף (ה-שארית, אז מפלגה א תקבל את המושב הנוסף (a+1) (a+b) + (a-b)*(y-0.5)/(a+b+2y)

מסקנות.

- •אם y<0.5, הסף < 0.5 עבור המפלגה *הקטנה*.
- אם y>0.5, הסף y>0.5 עבור המפלגה *הגדולה*.
- •אם y=0.5, הסף הוא תמיד 0.5 תמיד מעגלים לשלם הקרוב ביותר!

הוכחת המשפט. נסמן:

- מפלגה א במדויק: a+x מושבים (a שלם, x שבר).
 - מפלגה ב במדויק: b+1-x מושבים.

כיוון א: נניח ש:

- •אם y<0.5, יש הטיה לטובת המפלגה *הקטנה*.
- •אם y>0.5, יש הטיה לטובת המפלגה *הגדולה*.
 - אט y=0.5, אין הטיה לאף צד. y−•

מכאן קל להבין מדוע ברוב המדינות משתמשים בשיטת ג'פרסון..

שיטת וובסטר

מסקנה. בשיטת וובסטר (= שיטת המחלק עם s+0.5), בחלוקת-המושבים בין *כל* שתי מפלגות, כל מפלגה מקבלת את החלק היחסי שלה מעוגל לשלם הקרוב ביותר – ללא כל הטיה לטובת מפלגות גדולות או קטנות.

שיטת וובסטר

• משפט. שיטת וובסטר היא השיטה *היחידה* לחלוקת מושבים, שהיא גם עקבית וגם הוגנת (= מעגלת לכיוון הנכון) עבור כל זוג מפלגות.

• שיטת וובסטר בשימוש כיום ב: שוודיה, נורווגיה, ניו-זילנד, בוסניה והרצגובינה, קוסובו, לטביה, עיראק.

• בקרוב אצלנו?

חלוקת מושבים - טרילמה

נשאר בגבולות	עקבי	הוגן לזוגות (=מעגל לכיוון הנכון)	
רק תחתון	J	לא	ג'פרסון
לא (*אבל בפועל כן)	J	J	וובסטר
רק עליון	J	לא	אדאמס
J	לא	J	המילטון