MATH 142: Mathematical Modeling, Quiz 2

Darren Tsang 405433124

Produced on Tuesday, May. 05 2020 @ 10:18:31 AM

Question 1

Part A

$$\frac{de}{dt} = -\alpha e \sigma_1 + \beta_1 p_1 - \gamma e \sigma_2 + \delta p_2$$

$$\frac{dp_1}{dt} = \alpha e \sigma_1 - \beta p_1$$

$$\frac{dp_2}{dt} = \gamma e \sigma_2 - \delta p_2$$

Part B

We notice that $\frac{de}{dt} + \frac{dp_1}{dt} + \frac{dp_2}{dt} = 0$, which means $e + p_1 + p_2 = P_0$, where P_0 is a constant. We rearrange the equation to get $e = P_0 - p_1 - p_2$. With that, we can reduce the system to two differential equations:

$$\frac{dp_1}{dt} = \alpha \sigma_1 (P_0 - p_1 - p_2) - \beta p_1$$

$$\frac{dp_1}{dt} = \gamma \sigma_2 (P_0 - p_1 - p_2) - \delta p_2$$

Part C

The dimensions of the variables and parameters are shown below.

Let $\rho_1 = \frac{p_1}{P_0}$ and $\rho_2 = \frac{p_2}{P_0}$. Rearranging, we get $p_1 = P_0 \rho_1$ and $p_2 = P_0 \rho_2$.

Also, let $\tau = \alpha \sigma_1 t$. Differentiate to get $\frac{d\tau}{dt} = \alpha \sigma_1$

Plugging $p_1 = P_0 \rho_1$ and $p_2 = P_0 \rho_2$ in to $\frac{dp_1}{dt}$:

$$P_0 \frac{d\rho_1}{dt} = \alpha \sigma_1 (P_0 - P_0 \rho_1 - P_0 \rho_2) - \beta P_0 \rho_1$$

Dividing both sides by P_0 :

$$\frac{d\rho_1}{dt} = \alpha\sigma_1(1 - \rho_1 - \rho_2) - \beta\rho_1$$

Using chaing rule:

$$\frac{d\rho_1}{dt} = \frac{d\rho_1}{d\tau} \frac{d\tau}{dt} = \alpha \sigma_1 \frac{d\rho_1}{d\tau} = \alpha \sigma_1 (1 - \rho_1 - \rho_2) - \beta \rho_1$$

Dividing both sides by $\alpha \sigma_1$:

$$\frac{d\rho_1}{d\tau} = (1 - \rho_1 - \rho_2) - \frac{\beta}{\alpha \sigma_1} \rho_1 \tag{1}$$

Plugging $p_1 = P_0 \rho_1$ and $p_2 = P_0 \rho_2$ in to $\frac{dp_2}{dt}$:

$$P_0 \frac{d\rho_2}{dt} = \gamma \sigma_2 (P_0 - P_0 \rho_1 - P_0 \rho_2) - \delta P_0 \rho_2$$

Dividing both sides by P_0 :

$$\frac{d\rho_2}{dt} = \gamma \sigma_2 (1 - \rho_1 - \rho_2) - \delta \rho_2$$

Using chain rule:

$$\frac{d\rho_2}{dt} = \frac{d\rho_2}{d\tau} \frac{d\tau}{dt} = \alpha \sigma_1 \frac{d\rho_2}{d\tau} = \gamma \sigma_2 (1 - \rho_1 - \rho_2) - \delta \rho_2$$

Dividing both sides by $\alpha \sigma_1$:

$$\frac{d\rho_2}{d\tau} = \frac{\gamma \sigma_2}{\alpha \sigma_1} (1 - \rho_1 - \rho_2) - \frac{\delta}{\alpha \sigma_1} \rho_2 \tag{2}$$

From (1) and (2), the nondimensionalized system is

$$\frac{d\rho_1}{d\tau} = (1 - \rho_1 - \rho_2) - \kappa \rho_1,$$

$$\frac{d\rho_2}{d\tau} = \lambda(1 - \rho_1 - \rho_2) - \mu\rho_2,$$

where $\rho_1 = \frac{p_1}{P_0}$, $\rho_2 = \frac{p_2}{P_0}$, $\tau = \alpha \sigma_1 t$, $\kappa = \frac{\beta}{\alpha \sigma_1}$, $\lambda = \frac{\gamma \sigma_2}{\alpha \sigma_1}$, and $\mu = \frac{\delta}{\alpha \sigma_1}$

Question 2

Part A

When developing the differential equations, we are interested in the different ways the population can change.

For rodents: They have a birth rate b_{ρ} , which means the population will increase by $b_{\rho}\rho$ rodents/year just from births. The rodents can die from natural causes at rate m_{ρ} , which means the population will decrease by $m_{\rho}\rho$ rodents/year from natural causes. Additionally, the rodents interact with cats at rate β , which means the population will decrease by $\beta\rho c$ rodents/year from their interactions with cats. Finally, α_{ρ} rodents enter per year, which means the population will increase by α_{ρ} rodents/year by them being added.

For cats: They have a birth rate of b_c , which means the population will increase by $b_c c$ cats/year just from births. Their death rate is m_c , which means the population will decrease by $m_c c$ cats/year from deaths. Lastly, α_c are added, which means the population will be increasing by α_c cats/year from being added.

From above, the system of differential equations are:

$$\frac{d\rho}{dt} = b_{\rho}\rho - m_{\rho}\rho - \beta\rho c + \alpha_{\rho},$$
$$\frac{dc}{dt} = b_{c}c - m_{c}c + \alpha_{c}$$

Part B

(i)

Setting the differential equation to 0:

$$rn(1-n) - \frac{nh_{max}}{1+n} = 0$$

Multiplying both sides by (1+n):

$$rn(1-n)(1+n) - nh_{max} = 0$$

Doing some factoring:

$$n(r(1 - n^2) - h_{max}) = 0$$

Simplifying:

$$n(r - rn^2 - h_{max}) = 0$$

We can see that the fixed points are:

$$n^* = 0, \pm \sqrt{\frac{r - h_{max}}{r}}$$

(ii)

(iii)

When $h_{max} > r$, $\frac{dn}{dt} < 0$, which means the proportion of the carrying capacity of the hare population will be decreasing until the proportion reaches 0. Since $n = \frac{N}{K} = 0$, we can see that N = 0, meaning the hares have gone extinct.