Chapter 8

System of Linear Differential Equations

Example 8.1 Find a general solution of the following system:

$$\frac{dx}{dt} = 2x - 2y(1)$$

$$\frac{dy}{dt} = 2x + 2y(2)$$

Solution: Using differential operator $D = \frac{d}{dt}$, we can write

$$Dx = 2x - 2y$$
$$Dy = 2x + 2y$$

This system can be written as:

$$(D-2)x + 2y = 0$$
(3)
 $2x - (D-2)y = 0$ (4)

Multiplying eqn. (3) by 2 and operating on (4) with (D-2) we get,

$$2(D-2)x + 4y = 0(5)$$

$$2(D-2)x - (D^2 - 4D + 4)y = 0(6)$$

Subtracting (6) from (5), we have
$$(D^2-4D+8)y=0$$
 Auxiliary eqn. is $m^2-4m+8=0$ and its solutions are $m=2\pm 2i$ Thus $y(t)=e^{2t}(A\cos 2t+B\sin 2t)$ Substituting y in (2), we get
$$\frac{d}{dt}e^{2t}(A\cos 2t+B\sin 2t)=2x+2e^{2t}(A\cos 2t+B\sin 2t)$$

$$\Rightarrow e^{2t}(-2A\sin 2t+2B\cos 2t)+2e^{2t}(A\cos 2t+B\sin 2t)$$

$$=2x+2e^{2t}(A\cos 2t+B\sin 2t)$$

$$\Rightarrow 2e^{2t}(B\cos 2t-A\sin 2t)=2x$$

$$\Rightarrow x(t)=e^{2t}(B\cos 2t-A\sin 2t)$$
 The required solutions are: $x(t)=e^{2t}(B\cos 2t-A\sin 2t)$ and $y(t)=e^{2t}(A\cos 2t+B\sin 2t)$.

Class Practice

Solve the following system of linear differential equations.

1.
$$\frac{dx}{dt} = 2x + 2y$$
$$\frac{dy}{dt} = x + 3y$$

2.
$$\frac{dx}{dt} = 2x + 3y$$
$$\frac{dy}{dt} = -4y$$

3.
$$\frac{dx}{dt} = -x + y$$
$$\frac{dy}{dt} = -3x - 5y$$