Feedback — Chapter 2 Quiz : Differentiation

You submitted this exam on **Sat 2 Feb 2013 2:35 PM EST**. You got a score of **9.00** out of **10.00**.

The following is an *exam* and counts toward your final evaluation for this class. Please answer the ten (10) problems below. You may *not* use a calculator, or any other assistance, including software, textbooks, or notes. You may *not* collaborate with others or post your solutions on a discussion board. Use your head, some paper, and a writing utensil. Good luck!

Question 1

If
$$f(x)=x^{2x}$$
, compute $\dfrac{df}{dx}$.

Your Answer		Score	Explanation
$_{ extstyle \odot} 2x^{2x}(1+\ln x)$	✓	1.00	
Total		1.00 / 1.00	

Question 2

Consider the function $f(x) = \sqrt{8} \, x^2 \, e^{1-x}$. Use the formula for curvature,

$$\kappa = rac{\left|f^{\,\prime\prime}
ight|}{\left(1+\left|f^{\,\prime}
ight|^2
ight)^{3/2}}$$

to compute the curvature of the graph of f at the point $(1,\sqrt{8})$.

Your Answer		Score	Explanation
\bigcirc $\frac{\sqrt{8}}{27}$	✓	1.00	
Total		1.00 / 1.00	

Question 3

Assume that x and y are related by the equation $x\cos y = \cos x - y^3$.

Compute $\frac{dy}{dx}$ evaluated at x=0.

Your Answer		Score	Explanation
$ = -rac{\cos(1)}{3} $	✓	1.00	
Total		1.00 / 1.00	

Question 4

Use the linear approximation of the function $f(x)=\arctan\left(e^{3x}\right)$ at x=0 to estimate the value of f(-0.01).

Hint: remember that $\dfrac{d}{dx}\arctan(x)=\dfrac{1}{1+x^2}$.

Your Answer		Score	Explanation
$ \frac{\pi}{4} - \frac{3}{200} $	✓	1.00	
Total		1.00 / 1.00	

Question 5

A rectangular picture frame with total area $50000~\rm cm^2$ includes a border which is $1~\rm cm$ thick at the top and the bottom and $5~\rm cm$ thick at the left and right side. What is the largest possible area of a picture that can be displayed in this frame?

Your Answer		Score	Explanation
$_{\odot}$ 98 cm $ imes$ 490 cm	✓	1.00	
Total		1.00 / 1.00	

Question 6

Which of the following statements are true for the function $f(x)=-\frac{4}{x}-x^4$? In order to receive full credit for this problem, you must select **all** the true statements (there may be many) and **none** of the false statements.

Your Answer		Score	Explanation
	✓	0.00	
The global maximum of f for $\dfrac{1}{2} \leq x \leq 2$ is at $x=1.$	✓	0.33	
$_{\square}$ The only critical points of f for $-2 \leq x \leq 2$ are at $x=-1$ and $x=1.$	✓	0.00	
	✓	0.33	
$_{\square}$ The global maximum of f for $-1 \leq x \leq 2$ is at $x=1.$	✓	0.00	
	1	0.33	

The global minimum of f for $-1 \leq x \leq -rac{1}{2}$

is at x = -1.

 $_{\text{\fontfamily}}$ The global maximum of f for $-2 \leq x \leq 2$ is at $\quad {\it \checkmark} \quad$ 0.00 x=1.

The global minimum of f for $-rac{3}{2} \leq x \leq 2$ is $extcolor{0.00}$

at x=-1.

Total 1.00 / 1.00

Question 7

To approximate $\sqrt[3]{15}$ (the cube root of 15) using Newton's method, what is the appropriate update rule for the sequence x_n ?

Your Answer		Score	Explanation
$_{igotimes }x_{n+1}=x_{n}-rac{3x_{n}^{2}}{x_{n}^{3}-15}$	X	0.00	
Total		0.00 / 1.00	

Question 8

Fill in the blank:

$$\ln^2(x+h) = \ln^2 x + \underline{\hspace{1cm}} \cdot h + O(h^2)$$

(Here, $\ln^2 x$ means $(\ln x)^2$.)

Your Answer Score Explanation

\bigcirc 2 $\frac{\ln x}{x}$	✓	1.00
Total		1.00 / 1.00

Question 9

Recall that the kinetic energy of a body is

$$K=rac{1}{2}\,mv^2$$

where m is mass and v is velocity. Compute the relative rate of change of kinetic energy, $\frac{dK}{K}$, given that the relative rate of change of mass is -7 and the relative rate of change of velocity is +5.

Your Answer		Score	Explanation
	✓	1.00	
Total		1.00 / 1.00	

Question 10

Compute the eighth derivative of $\left(z-5\right)^9$ with respect to z.

Your Answer		Score	Explanation
9!(z-5)	✓	1.00	
Total		1.00 / 1.00	