Numerička analiza - kolokvij 1

1. Nabrojite vrste grešaka koje nastaju zbog polaznih aproksimacija.

To su: greške modela, greške metode i greške u polaznim podacima

2. Definirajte greške modela

Greške modela su greške koje nastaju zamjenom složenih sustava jednostavnijima koji se mogu opisat matematičkim modelima tj. zapisima (npr. zanemarivanje utjecaja otpora zraka na gibanje u zemaljskim uvjetima). Greške modela se mogu javiti prilikom rješavanja problema koji su granični slučajevi (npr. aproksimiranje vrijednosti $\sin x \, s \, x$). Ove greške su neuklonjive. Korisnik mora ocijeniti da li primjena daje zadovoljavajuće rezultate.

3. Definirajte greške metode

Nastaju kada se beskonačni procesi zamjenjuju s konačnima, te kod računanja veličina koje su definirane pomoću limesa (derivacije, integrali...). Ovakve greške se dijele u dvije kategorije: greške diskretizacije i greške odbacivanja.

4. Definiraj greške u polaznim podacima

Nastaju prilikom mjerenja fizičkih veličina, smještanja podataka u računalo i prethodnih računanja. Lakše je ocijeniti ovakve greške nego greške koje nastaju uslijed brojnih zaokruživanja tijekom računanja.

5. Čime se bavi teorija perturbacije?

Teorija perturbacije se bavi osjetljivošću rješenja problema kojeg rješavamo na pomake u polaznim podacima.

6. Definirajte što je to stabilan algoritam.

Stabilan algoritam je algoritam kod kojeg točnost izračunatih podataka ne odstupa znatno od točnosti ulaznih podataka.

7. Definirajte što je to strojni *u*.

Ako je x neki realan broj, tada njegovu *računalnu reprezentaciju* označavamo s: fl(x). Kod svake računske operacije u računalu javlja se greška. To se zapisuje na sljedeći način:

$$fl(x \circ y) = (x \circ y)(1 + \varepsilon), \quad |\varepsilon| \le u, \quad \circ \in \{+, -, *, /\}$$

pri čemu je u tzv. preciznost računanja ili strojni u. Greška ovisi o operandima x i y te operaciji \circ , dok **strojni** u **ovisi o računalu (IEEE standardu)**.

8. Definirajte što je apsolutna, a što relativna greška.

Neka je \hat{x} neka aproksimacija realnog broja x.

Apsolutna greška:

Relativna greška:

$$G_{aps}(x) = |x - \hat{x}|$$

$$G_{rel}(x) = \frac{|x - \hat{x}|}{|x|}$$

Relativna greška nije definirana za x = 0.

9. Definirajte što su značajne znamenke nekog broja.

Značajne znamenke su prva netrivijalna znamenka i one koje slijede iza nje u zapisu. Npr. u broju 6.9990 imamo 5 značajnih znamenaka, a u broju 0.0832 samo tri.

10. Definirajte što je točnost, a što preciznost.

Točnost se odnosi na apsolutnu i relativnu grešku kojom se aproksimira tražena veličina.

Preciznost je točnost kojom se izvršavaju osnovne računske operacije, a u aritmetici pomične točke mjerimo je pomoću *u*. Određena je brojem bitova u reprezentaciji mantise.

11. Opišite zapis cijelog broja u računalu.

Pozitivni cijeli brojevi reprezentiraju se u **32-bitnoj ćeliji** kao desno pozicionirani binarni brojevi. Npr. broj $(14)_{10}$ = $(1110)_2$ bit će smješten kao:

Na taj način možemo prikazati sve brojeve od nule (32 nule) do $2^{32} - 1$ (32 jedinice).

Negativni cijeli brojevi reprezentiraju se na dva načina. Prvi je da se **potroši jedan bit za predznak**, pa bi se onda omogućio prikaz brojeva od $-2^{31} + 1$ do $2^{31} - 1$.

Drugi način se zove *drugi komplement* i koriste ga gotovo sva računala. U tom se sustavu nenegativni cijeli broj $0 \le x \le 2^{32} - 1$ smiješta kao binarna reprezentacija tog broja, dok se -x, $1 \le x \le 2^{32} - 1$ smiješta kao binarna reprezentacija broja $2^{32} - x$. Prvi komplement dobiva se jednostavnim komplementiranjem znamenaka, a drugi komplement dobijemo tako da prvom dodamo jedinicu.

12. Opišite zapis realnog broja u računalu s jednostrukom preciznošću.

U računalu se realni brojevi reprezentiraju **u znanstvenoj notaciji** koju onda nazivamo normalizirana reprezentacija nekog broja.

Primjer: $(1.1011111)_2 \times 2^6$, gdje je znamenka prije decimalne točke označena kao b_0 .

Tako zapisan broj zapisujemo u 32-bitnu ćeliju u računalu na sljedeći način: **23 bita za mantisu** (za razlomljeni dio, b_0 je tzv. skriveni bit), **8 bitova za eksponent** (od -128 do 127) i **1 bit za predznak** (0 za pozitivan, a 1 za negativan predznak).

13. Opišite zapis realnog broja u računalu s dvostrukom preciznošću.

Za razliku od jednostrukog formata dvostruki format koristi 64-bitnu riječ za zapis realnog broja.

$$\boxed{\pm \mid a_1 a_2 \dots a_{11} \mid b_1 b_2 \cdots b_{52}}$$

Jedan bit otpada na predznak dok se za mantisu koristi 11 bitova a za eksponent 52 bita čime je vrijednost najvećeg eksponenta 1023 a najmanjeg -1022.

$$N_{max} = (2 - 2^{-52}) \times 2^{1023}$$
, $N_{min} = 2^{-1022}$

14. Definirajte strojni ε i strojni ulp.

Strojni ε je razmak između najmanjeg normaliziranog broja, (u sustavu s preciznošću p) većeg od 1, i 1.

$$arepsilon_{\it M}=2^{-p+1}$$
 p je preciznost (duljina mantise)

Za normalizirani broj x definiramo **ulp** (unit in the last place) kao:

$$ulp = 2^{-p+1} \times 2^e = \varepsilon_M \times 2^e$$

Ako je x > 0 (x < 0), onda je ulp(x) razmak između x i sljedećeg većeg (manjeg) reprezentabilnog broja.

15. Definirajte subnormalni broj.

Subnormalni ili denormalizirani brojevi su brojevi kojima je, kao kod 0, skriveni bit jednak 0. Najmanji takav pozitivan broj je:

$$(0.00 \dots 1)_2 \times 2^{-126} = 2^{-149} < N_{min}$$

 N_{min} je najmanji normalizirani broj

Dok je najveći takav pozitivan broj:

$$(0.11...1)_2 \times 2^{-126} = N_{min} - 2^{149}$$

 N_{min} je najmanji normalizirani broj

Subnormalni brojevi su manje točni od normaliziranih.

16. Nabrojite vrste zaokruživanja brojeva u IEEE standardu.

$$Round(x) = x_{-} \qquad \text{(zaokruživanje prema dolje)}$$

$$Round(x) = x_{+} \qquad \text{(zaokruživanje prema gore)}$$

$$Round(x) = \begin{cases} x_{-}, x > 0 \\ x_{+}, & x < 0 \end{cases} \qquad \text{(zaokruživanje prema nuli)}$$

$$Round(x) \qquad \text{(zaokruživanje prema bližem)}$$

$$= \begin{cases} x_{-}, |x - x_{-}| < |x - x_{+}| \\ x_{+}, |x - x_{-}| > |x - x_{+}| \end{cases}$$

Ako je $|x-x_-|=|x-x_+|$, onda se uzme x_- ili x_+ već prema tome je li u x_- ili u x_+ najmanje značajan bit 0.

17. Strogo definirajte zaokruživanje broja prema najbližemu.

$$Round(x) = \begin{cases} x_{-}, & |x - x_{-}| < |x - x_{+}| \\ x_{+}, & |x - x_{-}| > |x - x_{+}| \end{cases}$$

Ako je $|x-x_-|=|x-x_+|$, onda se uzme x_- ili x_+ već prema tome je li u x_- ili u x_+ najmanje značajan bit 0.

Ako je x<0 i $|x|>N_{max}$ uzima se $Round(x)=-\infty$, a ako je $x>N_{max}$ uzima se $Round(x)=+\infty$

18. Definirajte korektno zaokruživanje prilikom izvođenja operacija u IEEE standardu.

Jedna od najvažnijih značajki IEEE standarda jest zahtjev da se prilikom izvođenja osnovnih računskih operacija rezultat dobiva kao da je izračunat točno i zatim zaokružen.

Označimo redom s \bigoplus , \bigcirc , \otimes i \oslash operacije +,-, \times i / kako su stvarno implementirane u računalu. Također označimo s • proizvoljni element skupa $\{+,-,\times,/\}$ a s \bigodot proizvoljni element skupa $\{\bigoplus,\bigcirc,\otimes,\oslash\}$. Za IEEE standard vrijedi:

$$(x \odot y) = fl(x \circ y) = round(x \circ y) = (x \circ y)(1 + \delta), |\delta| \le u$$

19. Kada se aktivira zalijepljeni bit?

Zalijepljeni bit se aktivira tek onda kada je potrebno pomaknuti mantisu za više od dva mjesta, a jednom kada se postavi više se ne mijenja.

20. Definirajte prekoračenje i potkoračenje.

O **prekoračenju** se govori kada je egzaktan rezultat neke operacije konačan broj, ali po modulu veći od N_{max} .

O **potkoračenju** se govori kada je egzaktan rezultat neke operacije broj različit od nule, ali po modulu manji od N_{min} .

Postupamo na sljedeći način:

- Ako je nastupilo prekoračenje zaokružimo dani broj na $\pm \infty$ ili $\pm N_{max}$ ovisno o tipu zaokruživanja
- Ako je nastupilo potkoračenje dani broj pravilno zaokružimo (rezultat je subnormalni broj, ± 0 ili $\pm N_{min}$).

21. Definirajte grešku unaprijed i grešku unatrag.

Neka je f realna funkcija jedne varijable i neka je izračunata njena vrijednost y=f(x) u nekoj točki x u računalu i iznosi \hat{y} . Ta izračunata vrijednost nije egzaktna već ime neku malu relativnu grešku. Možemo napisati da je:

$$\hat{\mathbf{y}} = f(\mathbf{x} + \Delta \mathbf{x})$$

Greška unatrag je određena sa najvećim (pošto može bit više takvih) Δx (tj max $|\Delta x|$) za kojeg vrijedni gornja relacija.

Greške unaprijed (ili jednostavno greške) su apsolutna i relativna greška po funkcijskoj vrijednosti (odnosno $|y - \hat{y}|$).

22. Kada kažemo da je neka metoda stabilna unazad?

Metoda za računanje vrijednost y=f(x) je stabilna unazad ako za svaki x producira izračunati \hat{y} s malom povratnom greškom, tj. ako vrijedi $\hat{y}=f(x+\Delta x)$ za neki mali Δx (pri tom značenje izraza "mali" ovisi o kontekstu).

23. Kada kažemo da je algoritam numerički stabilan?

Greška u rezultatu nekog algoritma može se napisati ovako:

$$\hat{y} + \Delta y = f(x + \Delta x), \qquad |\Delta x| \le \xi |x|, \qquad |\Delta y| \le \eta |y|$$

Algoritam je **numerički stabilan** ako je stabilan u smislu ove relacije sa malim ξ i η .

24. Uvjetovanost Funkcije

Odnos između greške unazad i greške unaprijed za neki dani problem u velikoj je mjeri određen uvjetovanošću problema, tj. osjetljivošću rješenja problema na ulazne podatke.

$$\kappa(f)(x) = \left| \frac{xf'(x)}{f(x)} \right|$$
 κ zovemo uvjetovanost funkcije f :

Ako je f funkcija više varijabla, onda se u izrazu umjesto apsolutne vrijednosti javlja norma. Uvjetovanost služi za mjerenje najveće relativne promjene koja se dostiže za neku vrijednost broja x ili vektora x.

25. Napišite relaciju odnosa između greške unatrag, uvjetovanosti i greške unaprijed.

Kada se greške unatrag i unaprijed, te uvjetovanost za neki problem definiraju na konzistentan način, vrijedi jednostavno pravilo:

greška unaprijed ≲ uvjetovanost × greška unazad.

Dakle, izračunato rješenje loše uvjetovanog problema može imati veliku grešku unaprijed. Zato se uvodi sljedeća **definicija**:

Ako metoda daje rješenja s greškama unaprijed koja su sličnog reda veličine kao ona koja se dobiju primjenom povratno stabilne metode, onda se za metodu kaže da je **stabilna unaprijed**.

26. Navedite nekoliko uvjeta koje treba ispuniti prilikom dizajniranja stabilnog algoritma.

- izbjegavati oduzimanje bliskih brojeva koji nose greške
- minimizirati veličinu međurezultata u odnosu na konačni rezultat
- iskušavati razne formulacije istog problema
- koristiti jednostavne formule za ažuriranje tipa
 nova vrijednost = stara vrijednost + mala korekcija
- koristiti samo dobro uvjetovane transformacije
- poduzimati mjere opreza protiv prekoračenja i potkoračenja
- koristiti što manje cijepanje formula u više programskih linija uvođenjem pomoćnih varijabla jer CPU često koristi precizniju aritmetiku za operande u registrima, dok zaokruživanje nastupa tek prilikom spremanja u memoriju.

27. Napišite teorem koji govori o egzistenciji LU faktorizacije

TEOREM. Neka je $A \in \mathbb{R}^{n \times n}$ i neka su determinante glavnih podmatrica A(1:k,1:k) različite od nule za $k=1,2,\ldots,n-1$. Tada postoji donjetrokutasta matrica L s jedinicama na dijagonali i gornjetrokutasta matrica U tako da vrijedi A=LU. Ako faktorizacija A=LU postoji i ako je matrica A regularna, onda je ova faktorizacija jedinstvena. Tada je i

$$\det A = \prod_{i=1}^{n} u_{ii}.$$

28. Napišite teorem o egzistenciji LU faktorizacije s pivotiranjem

TEOREM. Neka je $A \in \mathbb{R}^{n \times n}$ proizvoljna matrica. Tada postoj permutacija P takva da Gaussove eliminacije daju LU faktorizaciju PA = LU matrice PA. Matrica $L = [l_{ij}]$ je donjetrokutasta s jedinicama na dijagonali, a $U = [u_{ij}]$ je gornjetrokutasta matrica. Pri tome, ako je P umnožak od p inverzija, vrijedi

$$\det A = (-1)^p \prod_{i=1}^n u_{ii}.$$

Ako su matrice P(k) odabrane tako da vrijedi

$$\left|\left(P^{(k)}A^{(k-1)}\right)_{kk}\right| = \max_{1 \le j \le n} \left|\left(P^{(k)}A^{(k-1)}\right)_{jk}\right|$$

onda je

$$\max_{1 \le k \le n} \max_{1 \le i,j \le n} \left| \left(L^{(k)} \right)_{ij} \right| = \max_{1 \le i,j \le n} \left| l_{ij} \right| = 1.$$

U tom slučaju faktorizaciju PA = LU nazivamo LU faktorizacijom s pivotiranjem redaka.

29. Iskažite teorem koji daje ocjenu greške nastale rješavanjem linearnog sustava LU faktorizacijom s pivotiranjem

TEOREM. Neka je \tilde{x} rješenje regularnog $n \times n$ sustava Ax = b dobiveno Gaussovim eliminacijama s pivotiranjem redaka u aritmetici s preciznošću ε takvom da je $2n\varepsilon < 1$. Tada postoji perturbacija ΔA matrice A za koju vrijedi

$$(A + \Delta A)\widetilde{x} = b$$
.

pri čemu je

$$|\Delta A| \le \frac{5n\varepsilon}{1 - 2n\varepsilon} P^T |\widetilde{L}| |\widetilde{U}|.$$

6.1 Jacobijeva metoda

Jacobijeva metoda je jedna od najjednostavnijih klasičnih iterativnih metoda za rješavanje linearnih sustava. Ideju same metode ilustrirat ćemo na jednostavnom primjeru 2×2 sustava.

Neka je dan sustav

$$a_{11}x_1 + a_{12}x_2 = b_1$$

 $a_{21}x_1 + a_{22}x_2 = b_2$

pri čemu je $a_{11} \neq 0$ i $a_{22} \neq 0$. Uočimo da rješenje x zadovoljava uvjete

$$x_1 = \frac{1}{a_{11}}(b_1 - a_{12}x_2)$$

 $x_2 = \frac{1}{a_{22}}(b_2 - a_{21}x_1)$.

Te nas relacije motiviraju da neku približnu vrijednost rješenja $x^{(0)} = \begin{bmatrix} x_1^{(0)} & x_2^{(0)} \end{bmatrix}^T$ korigiramo pomoću formula

$$x_1^{(1)} = \frac{1}{a_{11}} \left(b_1 - a_{12} x_2^{(0)} \right)$$

 $x_2^{(1)} = \frac{1}{a_{22}} \left(b_2 - a_{21} x_1^{(0)} \right)$.

Naravno, nadamo se da je $x^{(1)}$ bolja aproksimacija egzaktnog rješenja x nego $x^{(0)}$. Postupak možemo nastaviti tako da pomoću $x^{(1)}$ izračunamo na isti način $x^{(2)}$ itd. Pitanje je pod kojim uvjetima tako dobivene iteracije teže prema rješenju x?

Uočimo da vrijedi

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} 1/a_{11} & 0 \\ 0 & 1/a_{22} \end{bmatrix} \left(\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} 0 & -a_{12} \\ -a_{21} & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} \right).$$

Dakle, ako stavimo

$$A=D-N, \quad D=\begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}, \quad N=\begin{bmatrix} 0 & -a_{12} \\ -a_{21} & 0 \end{bmatrix},$$

možemo jednostavno pisati

$$x^{(k+1)} = D^{-1}(b + Nx^{(k)}) = D^{-1}Nx^{(k)} + D^{-1}b.$$

Upravo ovom relacijom definirana je Jacobijeva iterativna metoda.

PROPOZICIJA. Ako je u rastavu A = D - N u nekoj matričnoj normi ispunjeno

$$||D^{-1}N|| < 1$$
,

onda za svaku početnu iteraciju $x^{(0)}$ niz

$$x^{(k+1)} = D^{-1}(b + Nx^{(k)}), k \in \mathbb{N}_0,$$

konvergira rješenju x sustava Ax = b.

6.2 Gauss-Seidelova metoda

Vidjeli smo da se u primjeru danom za Jacobijevu metodu $x_1^{(1)}$ i $x_2^{(1)}$ računaju neovisno pomoću $x_1^{(0)}$ i $x_2^{(0)}$. No imalo bi smisla u formuli za $x_2^{(1)}$ koristiti upravo izračunatu vrijednost $x_1^{(1)}$ jer je ona vjerojatno bolja od $x_1^{(0)}$. Općenito, Jacobijevu formulu za iteraciju modificiramo tako da prilikom računanja svake komponente vektora $\boldsymbol{x}^{(k+1)}$ koristimo najsvježije izračunate vrijednosti. Npr. u slučaju n=4 imali bismo

$$\begin{split} x_1^{(k+1)} &= \frac{1}{a_{11}} \left(b_1 - a_{12} x_2^{(k)} - a_{13} x_3^{(k)} - a_{14} x_4^{(k)} \right) \\ x_2^{(k+1)} &= \frac{1}{a_{22}} \left(b_2 - a_{21} x_1^{(k+1)} - a_{23} x_3^{(k)} - a_{24} x_4^{(k)} \right) \\ x_3^{(k+1)} &= \frac{1}{a_{33}} \left(b_3 - a_{31} x_1^{(k+1)} - a_{32} x_2^{(k+1)} - a_{34} x_4^{(k)} \right) \\ x_4^{(k+1)} &= \frac{1}{44} \left(b_4 - a_{41} x_1^{(k+1)} - a_{42} x_2^{(k+1)} - a_{43} x_3^{(k+1)} \right). \end{split}$$

U općenitom slučaju imali bismo

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right).$$

No vratimo se primjeru n = 4. Stavimo li

$$L = \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}, \qquad U = - \begin{bmatrix} 0 & a_{12} & a_{13} & a_{14} \\ 0 & 0 & a_{23} & a_{24} \\ 0 & 0 & 0 & a_{34} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

vrijedi A = L - U, pa uz uvjet regularnosti matrice L Gauss-Seidelovu metodu možemo zapisati kao

$$x^{(k+1)} = L^{-1}(b + Ux^{(k)}), k \in \mathbb{N}_0,$$

a kao i u analizi Jacobijeve metode imamo

$$e^{(k)} = (L^{-1}U)^k e^{(0)}, k \in \mathbb{N}.$$

32. Napišite teorem Borodina i Mura (Hornerova shema - 1. Dio)

TEOREM (Borodin, Muro) Za izvrednjavanje općeg polinoma n-tog stupnja potrebno je barem n aktivnih množenja (tj. množenja između a_i i x).

Napomenimo da se rezultat ovog teorema može poboljšati samo ako izvrednjavamo isti polinom u puno točaka. U tom se slučaju koeficijenti polinoma **adaptiraju** tako da bismo kasnije imali što manje operacija po svakoj pojedinoj točki. No u to nećemo ulaziti.

Zanimljivo je da je Hornerova shema optimalna za polinome stupnja ne većeg od tri čak i ako računamo vrijednost polinoma u više točaka. No pogledajmo jedan primjer adaptiranja koeficijenata za polinom stupnja 4.

33. Napišite teorem koji nam govori da je Hornerova shema optimalan algoritam za izvrednjavanje polinoma. (Teorem Motzkin Belaga)

TEOREM (Motzkin, Belaga) Slučajno odabrani polinom stupnja n ima vjerojatnost 0 da ga se može izvredniti za strogo manje od $\lceil (n+1)/2 \rceil$ množenja ili za strogo manje od n zbrajanja.

Posljedica ovog teorema je to da je Hornerova shema optimalna za izvrednjavanje gotovo svih polinoma.

34. Napišite teorem koji daje prikaz funkcije f u ortogonalnoj bazi polinoma

TEOREM. Neka je $\{p_n \mid n \geq 0\}$ familija ortogonalnih polinoma na intervalu [a, b] s nenegativnom težinskom funkcijom w. Ako je polinom f stupnja m, onda vrijedi

$$f = \sum_{n=0}^{m} \frac{\langle f, p_n \rangle}{\langle p_n, p_n \rangle} p_n.$$

35. Napišite teorem koji nam govori o nul-točkama ortogonalnih polinoma

TEOREM. Neka je $\{p_n \mid n \geq 0\}$ familija ortogonalnih polinoma na intervalu [a,b] s nenegativnom težinskom funkcijom w. Tada svaki polinom p_n ima točno n različitih (jednostrukih) realnih nultočaka na otvorenom intervalu (a,b).

36. Nabrojat klasične ortogonalne polinome

- Čebiševljevi polinomi prve vrste
- Čebiševljevi polinomi druge vrste
- Legendreovi polinomi
- 4. Leguerreovi polinomi
- 5. Hermiteovi polinomi

37. Napišite formulu za LaGrangeov interpolacijski polinom

$$p_n(x_i) = \sum_{k=0}^{n} f_k l_k(x_i) = f_i, \quad i = 0, 1, ..., n.$$

38. Napišite teorem koji daje grešku aproksimiranja funkcije polinomima

TEOREM. Pretpostavimo da funkcija f ima (n+1).-u derivaciju na intervalu [a,b] za neki $n \in \mathbb{N}_0$. Neka su x_0, x_1, \ldots, x_n međusobno različiti interpolacijski čvorovi i neka je p_n interpolacijski polinom za funkciju f u tim čvorovima. Za bilo koju točku $x \in [a,b]$ postoji točka $\xi \in (x_{\min}, x_{\max})$, gdje je $x_{\min} = \min\{x_0, x_1, \ldots, x_n\}$ i $x_{\max} = \max\{x_0, x_1, \ldots, x_n\}$, takva da za grešku e interpolacijskog polinoma p_n vrijedi

$$e(x) = f(x) - p_n(x) = \frac{\omega(x)}{(n+1)!} f^{(n+1)}(\xi),$$

gdje je

$$\omega\left(x\right) = \prod_{k=0}^{n} \left(x - x_{k}\right).$$

39. Napišite formulu za Newtonow interpolacijski polinom

$$p_n(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots + (x_n - x_0) \dots (x_n - x_{n-1}) f[x_0, x_1, \dots, x_n].$$

40. Definiraj linearni splajn

Najjednostavniji interpolacijski splajn, linearni splajn S_1 , određen je uvjetom interpolacije u čvorovima $\{x_0, \ldots, x_n\}$ i globalnom neprekidnošću na [a, b]. Lako se dobije da vrijedi

$$S_{1}\left(x\right) = f_{i}\frac{x_{i+1} - x_{i}}{h_{i}} + f_{i+1}\frac{x - x_{i}}{h_{i}} = f_{i} + \frac{x - x_{i}}{h_{i}}\left(f_{i+1} - f_{i}\right), \quad x \in \left[x_{i}, x_{i+1}\right]$$

za sve i = 0, 1, ..., n - 1, pri čemu je $h_i = x_{i+1} - x_i$.

Kako je nalaženje samog splajna jednostavno odmah ćemo ispitati pogrešku.

LEMA. Ako je f neprekidna na [a,b] i $\alpha,\beta\in\mathbb{R}$ istog predznaka, onda postoji $\xi\in[a,b]$ takav da vrijedi

$$\alpha f(\alpha) + \beta f(b) = (\alpha + \beta) f(\xi)$$
.

41. Definiraj kubični splajn

Hermiteov kubični splajn se razmatra na sličan način kao i Hermiteov interpolacijski polinom. Prvi je netrivijalni slučaj po djelovima kubični splajn s globalno neprekidnom derivacijom.

DEFINICIJA. Neka su u čvorovima $a=x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ zadane vrijednosti f_i, f_i' za $i=0,1,\ldots,n$. Hermiteov kubični splajn je funkcija $H \in C^1[a,b]$ koja zadovoljava uvjete

1. Za svaki $i \in \{0, 1, \dots, n-1\}$ vrijedi

$$H(x) = a_{i0} + a_{i1}(x - x_i) + a_{i2}(x - x_i)^2 + a_{i3}(x - x_i)^3, x \in [x_i, x_{i+1}].$$

2. Za svaki $i \in \{0, 1, ..., n\}$ vrijedi

$$H\left(x_{i}\right)=f_{i},\quad DH\left(x_{i}\right)=f'_{i}.$$

42. Definiraj potpuni kubični splajn

DEFINICIJA. Neka su u čvorovima $a=x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ zadane vrijednosti f_i za $i=0,1,\ldots,n$. Potpuni kubični splajn je funkcija $S_3 \in C^2[a,b]$ koja zadovoljava uvjete

1. Za svaki $i \in \{0, 1, ..., n-1\}$ vrijedi

$$S_3(x) = a_{i0} + a_{i1}(x - x_i) + a_{i2}(x - x_i)^2 + a_{i3}(x - x_i)^3, x \in [x_i, x_{i+1}].$$

2. Za svaki $i \in \{0, 1, \dots, n\}$ vrijedi $S_3(x_i) = f_i$.

43. Definiraj diskretnu metodu najmanjih kvadrata

Neka je funkcija f zadana na diskretnom skupu točaka $\{x_0, x_1, \ldots, x_n\}$ kojih je mnogo više nego nepoznatih parametara aproksimacijske funkcije $\varphi\left(x, a_0, \ldots, a_m\right)$. Pokušajmo funkciju φ odrediti iz uvjeta da euklidska norma (norma 2) vektora pogreške u čvorovima aproksimacije bude najmanja moguća, tj. da minimiziramo funkciju S definiranu s

$$S = \sum_{k=0}^{n} (f(x_k) - \varphi(x_k))^2.$$

Ovu funkciju (koja je u stvari definirana kao kvadrat euklidske norme) interpretiramo kao funkciju nepoznatih parametara a_0, \ldots, a_m , tj.

$$S = S(a_0, ..., a_m)$$
.

Ako je S dovoljno glatka funkcija, nužni uvjeti ekstrema su

$$\frac{\partial S}{\partial a_k} = 0, \quad k = 0, \dots, m.$$

44. Definiraj metodu najmanjih kvadrata u matričnom obliku

Da bismo formirali matrični zapis linearnog problema najmanjih kvadrata moramo preimenovati nepoznanice da nam zapis ne bi previše odstupao od standardne forme. Ako je dana mreža $\{(t_1, y_1), \ldots, (t_n, y_n)\}$ i ako želimo model aproksimirati funkcijom

$$\varphi(t) = x_1 \varphi_1(t) + \cdots + x_m \varphi_m(t),$$

onda trebamo odrediti nepoznate parametre x_1, \dots, x_m tako da vrijedi

$$\sum_{k=1}^{n} \left[y_k - \left(x_1 \varphi_1 \left(t \right) + \dots + x_m \varphi_m \left(t \right) \right) \right]^2 \to \min.$$

Uvedemo li oznake

$$a_{kj} = \varphi_j(t_k), \quad k = 1, ..., n, \quad j = 1, ..., m,$$

 $b_k = y_k, \quad k = 1, ..., n,$
 $A = [a_{kj}] \in \mathbb{R}^{n \times m}, \quad b = [b_k] \in \mathbb{R}^n, \quad x = [x_j] \in \mathbb{R}^m,$

onda nam se prethodni uvjet minimizacije svodi na traženje minimuma (po x) euklidske norme

$$||Ax - b||_2$$
.

TEOREM. Neka je

$$S = \{x \in \mathbb{R}^m \mid ||Ax - b||_2 = \min\}.$$

Vrijedi: $x \in S$ ako i samo ako je ispunjena sljedeća relacija ortogonalnosti (ovdje koristimo oznaku $\mathbf{0}$ za nul-vektor)

$$A^{T}(b - Ax) = \mathbf{0}.$$

PROPOZICIJA. Matrica A^TA je pozitivno definitna ako i samo ako su stupci matrice A linearno neovisni, tj. ako je rang matrice A jednak m.

45. Definiraj minimax aproksimaciju

Neka je f neprekidna funkcija na intervalu $[a,b]\subseteq\mathbb{R}$. Pokušajmo usporediti polinomne aproksimacije funkcije f dobivene različitim metodama i ustanoviti koja od njih daje najmanju maksimalnu pogrešku. Označimo s $\rho_n(f)$ najmanju maksimalnu pogrešku aproksimacije po svim takvim polinomima stupnja ne većeg od n, tj.

$$\rho_n(f) = \inf_{\partial p \le n} \|f - p\|_{\infty}.$$

To bi značilo da ne postoji polinom stupnja ne većeg od n koji bi s manjom greškom od $\rho_n(f)$ aproksimirao funkciju f na danom intervalu. Nas, naravno, interesira za koji se polinom dostiže ta greška. Pa neka je p_n^* upravo taj polinom, tj. neka je

$$\rho_n(f) = ||f - p_n^*||_{\infty}$$
.

Nadalje, ako je polinom p_n^* jedinstven zanima nas kako ga možemo konstruirati. Polinom p_n^* nazivamo **minimaks aproksimacijom** funkcije f na intervalu [a,b].

46. Čebiševljev teorem o oscilacijama

TEOREM. (Čebiševljev teorem o oscilacijama grešaka) Za danu funkciju f koja je neprekidna na [a,b] i za dani $n \in \mathbb{N}_0$ postoji jedinstveni polinom p_n^* stupnja ne većeg od n za kojeg vrijedi

$$\rho_n(f) = ||f - p_n^*||_{\infty}$$
.

Taj polinom je karakteriziran sljedećim svojstvom: postoje barem n+2 točke

$$a \le x_0 < x_1 < \cdots < x_n < x_{n+1} \le b$$

za koje je

$$f(x_j) - p_n^*(x_j) = \sigma(-1)^j \rho_n(f), \quad j = 0, 1, ..., n + 1,$$

pri čemu je $\sigma = \pm 1$ i ovisi samo o f i n.