Workshop3-4new2 26ページ

IPADREデータベースでの一回繁殖型植物

Takada & Kawai (2020)

Alliaria petiolata (ニンニクガラシ**14**個体群)

この14個の個体群は どうやって得られてい るのか?場所の違い? 調査年の違い?

個体群成長率が1を 超えるものは左上

COMPADREデータベースでの一回繁殖型植物

Takada & Kawai (2020)

Evans et al. (2012) Ecol. Appl. DOI: 10.1890/11-1291.1

Alliaria petiolata (ニンニクガラシ**14**個体群)

四年間のセンサス(2005-2008) 13集団の3推移の時間平均+全集団の平均

緯度、経度、高度+気候帯

3行3列の個体群行列全部で14個

詳しい情報は次頁 (COMPADREデータベースからの抜粋)

個体群成長率が1を 超えるものは左上

COMPADREデータベースからの抜粋

緯度経度が違う

SpeciesAuth Speci Comr Famil Organ Author	ors Journal	YearPublicat	DOI.ISBN	StudyDuratio	StudyStart	StudyEnd	Lat	Lon	Altitude	Country	Ecoregion	MatrixCompo
Alliaria_petio Alliari Garlic Brass Herba Evan	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	NA	NA	NA	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	40.7166667	-88.5	205	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	41.9666667	-84.016667	286	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	40.6833333	-88.516667	219	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	42.1	-87.8	248	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	42.7666667	-85.8	199	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	40.05	-86.033333	201	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	40.0666667	-87.8	223	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evan	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	41.9666667	-82.083333	250	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	42.9166667	-84.233333	179	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	42.8	-83.6	253	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	42	-84.033333	262	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	42.8833333	-83.966667	250	USA	TBM	Mean
Alliaria_petio Alliari Garlic Brass Herba Evans	s; Davis; Ecol Appl	2012	10.1890/11-	4	2005	2008	42.8833333	-83.966667	250	USA	TBM	Mean

Workshop4-2new2 4ページ

◆ 推移行列(U)の求め方

			今年		
推移頻度表	翌年	1	2	3	
	1	0	0	0	
	2	12	6	0	m.
	3	0	4	9	```jj
	死亡	18	10	1	''
	合計	30	20	10	
		I			

最尤推定法はどうするんだっけ?

推移行列	翌年	1	2	3	
	1	0	0	0	И
	2	0.4	0.3	0	- ÎÎ
	3	0	0.2	0.9	• ,
	死亡	0.6	0.5	0.1	

$$u_{ij}$$
(推移確率) $=\frac{m_{ij}}{\sum_i m_{ij}} = \frac{j$ から i への推移頻度 j 列の総和

(最尤推定法で尤度最大になることが証明されている)

2生育段階モデルの最尤推定(1)

滞留 権率 p_{11} で起こることが m_{11} 回起こった: その確率は p_{11} の m_{11} 乗

確率 p_{21} で起こることが m_{21} 回起こった: その確率は p_{21} の m_{21} 乗

死亡 確率 $(1-p_{11}-p_{21})$ で起こることが $(n_1-m_{11}-m_{21})$ 回起こった : その確率は $(1-p_{11}-p_{21})^{n_1-m_{11}-m_{21}}$

Stage 2 も同様 .

成長

<データが得られる確率(尤度)> 多項分布の尤度関数

$$\begin{aligned} &p_{11}{}^{m_{11}}p_{21}{}^{m_{21}}(1-p_{11}-p_{21})^{(n_1-m_{11}-m_{21})}\\ &\times p_{12}{}^{m_{12}}p_{22}{}^{m_{22}}(1-p_{12}-p_{22})^{(n_2-m_{12}-m_{22})}\end{aligned}$$

2 生育段階モデルの最尤推定 (2)

<対数をとると(対数尤度関数)>

$$\begin{split} &l(p_{11}, p_{21}, p_{12}, p_{22}) \\ &= m_{11} \ln(p_{11}) + m_{21} \ln(p_{21}) + (n_1 - m_{11} - m_{21}) \ln\left((1 - p_{11} - p_{21})\right) \\ &+ m_{12} \ln(p_{12}) + m_{22} \ln(p_{22}) + (n_2 - m_{12} - m_{22}) \ln\left((1 - p_{12} - p_{22})\right) \end{split}$$

<対数尤度が最大(尤度が最大と等価)になる p_{11}^* , p_{12}^* ,…を求めると>

$$\frac{\partial l}{\partial p_{11}} = \frac{m_{11}}{p_{11}^*} - \frac{n_1 - m_{11} - m_{21}}{1 - p_{11}^* - p_{21}^*} = 0 \qquad \qquad \frac{\partial l}{\partial p_{21}} = \frac{m_{21}}{p_{21}^*} - \frac{n_1 - m_{11} - m_{21}}{1 - p_{11}^* - p_{21}^*} = 0$$

.

その結果、

$$p_{11}^* = \frac{m_{11}}{n_1}$$
 $p_{21}^* = \frac{m_{21}}{n_1}$ $p_{12}^* = \frac{m_{12}}{n_2}$ $p_{22}^* = \frac{m_{22}}{n_2}$

Workshop4-2new2 12, 16ページ

> 定理 $(\mathbf{E} + \mathbf{A})^{n-1}$ が正行列ならその非負行列は既約行列。 がゼロの要素を持てば、可約行列

> > n:行列サイズ(行列次元)

定理 \mathbf{A}^{n^2-2n+2} が正行列ならその既約行列は原始行列。 そうでなければ、非原始行列 by Wielandt n: 行列サイズ(行列次元)

この定理に名前はあるのか?

Horn and Johnson (1985,pp. 533, 543) Matrix Analysis

- 二つの定理が載っている。特に、名前は付けられていない。
- 一番目の定理には引用文献がある。これがオリジナルかは不明。

Herstein, I. (1954). A Note on Primitive Matrices. The American Mathematical Monthly, 61(1), 18-20. doi:10.2307/2306888

Gantmacher, F. R. 1959. The Theory of Matrices. 2 vols. Chelsea, New York.

二番目の定理には、 Wielandtの名前が括弧書きされている。

Wielandt, H. Unzerlegbare, nicht negative Matrizen. Math Z 52, 642–648 (1950).

https://doi.org/10.1007/BF02230720

Workshop4-2new2 17ページ

まとめ

u>0すべての要素が正 $u\geq0$ ゼロの要素を含む

非負行列

周期行列(Periodic matrix)と 非原始行列(imprimitive matrix)の違いは?

 $\lambda_1 \ge 0$ $\lambda_1 \ge |\lambda_j|$ $u \ge 0$

えよう

安定生育段階構成、感度

、弾性度の意味をよく考

最大固有值

右固有ベクトル

非原始行列

 $\lambda_1 > 0$ $\lambda_1 = |\lambda_j|, \lambda_1 > |\lambda_k|$

u > 0

安定生育段階構成、感度、弾性度は使えない。

原始行列

 $\lambda_1 > 0$ $\lambda_1 > |\lambda_j|$ u > 0

原始行列・非原始行列の背景

- *原始行列(primitive)は、既約行列を何回かべき乗した時に正行列になる行列。
- *何回かべき乗しても正行列にならない時がある~~~>非原始行列(imprimitive)

有向グラフの理論の文脈では、

閉路の長さ:ある段階から始まって元に戻ってくるまでの経路の長さ(タイムステップ数)

閉路の長さの最大公約数≠1 原始行列

閉路の長さの最大公約数=1 非原始行列

二つの赤字は同値であることが証明されている Horn & Johnson (1985) pp. 541-543

閉路の長さ: 1,3

最大公約数: 1

閉路の長さ: 3

最大公約数: 3

レズリー行列での周期

Bulmer "Theoretical Evolutionary Ecology" p. 62

Periodic matrices (周期行列):レズリー行列での周期を考えている

周期の定義:繁殖が可能である年齢

周期の最大公約数≠1 周期行列

周期の最大公約数=1 非周期行列

周期4

最大公約数 4 (周期行列)

周期 3, 4

最大公約数 1(非周期行列)

: 繁殖齢

周期 2,4

最大公約数 2(周期行列)

レズリー行列ではないが、 非原始行列

周期(period), サイクル(cycle), 閉路の長さ(length of closed path) 言葉の違い

Periodic matrices (周期行列):レズリー行列での周期を考えている 周期の定義:繁殖が可能である年齢 = 閉路の長さ = サイクル(cyclic)

Periodic matrices (周期的行列): in Caswell(2001)

$$\mathbf{x}(t+m) = (\mathbf{B}_m \cdots \mathbf{B}_2 \mathbf{B}_1) \mathbf{x}(t)$$
 周期 m 年の環境変動

混乱を避けるため に原始行列・非原 始行列とその定義 を使いたい

Cyclic matrices(巡回行列):また別の行列
$$C = \begin{bmatrix} c_0 & c_{n-1} & \dots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & & c_2 \\ \vdots & c_1 & c_0 & \ddots & \vdots \\ c_{n-2} & & \ddots & \ddots & c_{n-1} \\ c_{n-1} & c_{n-2} & \dots & c_1 & c_0 \end{bmatrix}$$