Análisis II - Matemática 3 Análisis Matemático II

Leandro M. Del Pezzo Idpezzo@dm.uba.ar

Teóricas - Verano 2022

Repaso de Curvas

Un conjunto $\mathcal{C} \subset \mathbb{R}^N$ es una curva si existe una función continua $\sigma(t)$, denominada una "parametrización de \mathcal{C} ", definida en algún intervalo [a,b]

$$\sigma\colon [a,b]\to \mathcal{C},$$

tal que $P \in \mathcal{C}$ si y solo si existe $t \in [a, b]$ con $\sigma(t) = P$.

Una curva $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) se dice simple, abienta si no se corta a si misma. Más precisamente, si admite una parametrización $\sigma\colon [a,b]\to \mathcal{C}$ que es inyectiva en [a,b].

Definición

Una curva $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) se dice simple, cerrada si admite una parametrización $\sigma: [a,b] \to \mathcal{C}$ que es inyectiva en [a,b) y $\sigma(a) = \sigma(b)$.

Sean $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) una curva simple abierta o cerrada y $\sigma\colon [a,b] \to \mathbb{R}^N$ una paramatrización de \mathcal{C} tal que

 σ es inyectiva en [a,b] si $\mathcal C$ es simple abienta o

 σ es injectiva en [a,b) si \mathcal{C} es simple cerrada.

Sea $t_0 \in [a,b]$ tal que existe $\sigma'(t_0)$ y $\sigma'(t_0) \neq 0$.^a Entonces llamaremos recta tangente a \mathcal{C} en el punto $P_0 = \sigma(t_0)$ a la recta que pasa por P_0 con dirección dada por el vector $\sigma'(t_0)$, es decir

$$\mathbb{L}_{P_0}$$
: $\sigma(t_0) + \lambda \sigma'(t_0)$ $\lambda \in \mathbb{R}$.

 $[\]overline{{}^a \text{Cuando } t_0 = a \text{ o } b \text{ la derivada se interpreta lateral y en el caso que la curva sea cerrada } \sigma'(a) = \sigma'(b).$

Una parametrización $\sigma\colon [a,b]\to \mathcal{C}\subset\mathbb{R}^N$, (N=2,3) de clase $C^1([a,b])$ con $\sigma'(t)\neq 0$ para todo $t\in [a,b]$ y que cumple una de las siguientes condiciones

- σ es inyectiva en [a, b],
- σ es invectiva en [a,b), $\sigma(a)=\sigma(b)$ y $\sigma'(a)=\sigma'(b)$ (derivadas laterales).

se denomina parametrización regular de un curva simple abierta o cerrada respectivamente.

Una curva simple abierta o cerrada, que admite una parametrización regular se dice suave.

Repaso Curvas

Reparametrización. Sean $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) una curva simple abierta o cerrada que admite una parametrización regular $\sigma\colon [a,b] \to \mathbb{R}^N$ y

$$h: [a, b] \rightarrow [c, d]$$

una Biyección C^1 con $h'(t) \neq 0$ para todo $t \in [a,b]$. Entonces la parametrización $\tilde{\sigma} \colon [c,d] \to \mathbb{R}^N$ dada por

$$\tilde{\sigma}(\tau) = \sigma(h^{-1}(\tau)).$$

es una parametrización regular de $\mathcal C$. Decimos que $\tilde \sigma$ es una reparametrización regular de σ .

Sean $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) una curva simple abierta suave. Si existe una cota superior finita para las longitudes de todas las poligonales con vértices en la curva \mathcal{C} decimos que \mathcal{C} es rectificable y definimos la longitud de \mathcal{C} como la menor de esas cotas, es decir

$$\mathcal{L}(\mathcal{C}) := \sup \{ \mathcal{L}(\mathcal{P}) \colon \mathcal{P} \text{ es una partición de } \mathcal{C} \}.$$

Se tiene

$$\mathcal{L}(C) = \int_{a}^{b} \|\sigma'(t)\| dt.$$

Sea $\mathcal{C} \subset \mathbb{R}^N$ (N=2,3) una curva simple, abierta y suave. Sean $\sigma\colon [a,b] \to \mathbb{R}^3$ una parametrización regular de \mathcal{C} de clase C^1 y f un función continua definida sobre \mathcal{C} . Definimos la integral de f sobre la curva \mathcal{C} como

$$\int_{\mathcal{C}} f \, d\ell := \int_{a}^{b} f \left(\sigma(t) \right) \, \| \sigma'(t) \| \, dt.$$

Proposición.

Sean N=2 o 3, $\sigma\colon [a,b]\to\mathbb{R}^N$ y $\gamma\colon [c,d]\to\mathbb{R}^N$ dos parametrizaciones regulares de una curva simple abierta y suave $\mathcal{C}.$ Si f es una función continua definida sobre $\mathcal{C},$ entonces

$$\int_{\mathcal{C}} f \, d\ell = \int_{a}^{b} f\left(\sigma(t)\right) \, \|\sigma'(t)\| \, dt = \int_{c}^{d} f\left(\gamma(r)\right) \, \|\gamma'(r)\| \, dr$$

Sea $\mathcal C$ una curva abierta, simple, suave. Sea τ un campo de vectores unitarios tangentes a $\mathcal C$ continuo. Este campo determina un sentido de recorrido sobre la curva $\mathcal C$. Decimos que $\mathcal C$ está orientada por el campo τ .

Sea $\mathcal C$ una curva abierta, simple, suave que admite una parametrización regular $\sigma:[a,b]\to\mathbb R^N$ que la orienta. Sea F un campo vectorial continuo definido sobre $\mathcal C$. Llamamos integral curvilínea del campo F sobre la curva orientada $\mathcal C$ a

$$\int_{\sigma} \mathbf{F} \cdot d\mathbf{s} := \int_{0}^{b} \langle \mathbf{F}(\sigma(t)), \sigma'(t) \rangle dt.$$

Proposición.

Sean N=2 0 3, $\sigma\colon [a,b]\to\mathbb{R}^N$, $\gamma\colon [c,d]\to\mathbb{R}^N$ parametrizaciones regular de una curva simple abierta y suave $\mathcal C$. Sean $\mathbf F$ un campo continuo sobre $\mathcal C$ y $\alpha:[c,d]\to\mathcal C$ es una reparametrización regular de σ . Si α preserva la orientación de $\mathcal C$ definida por σ , entonces

$$\int_{a}^{b} \langle \mathbf{F}(\sigma(t)), \sigma'(t) \rangle dt = \int_{a}^{d} \langle \mathbf{F}(\alpha(t)), \alpha'(t) \rangle dt.$$

Si no la preserva, entonces

$$\int_{a}^{b} \langle \mathbf{F}(\sigma(t)), \sigma'(t) \rangle dt = - \int_{c}^{d} \langle \mathbf{F}(\alpha(t)), \alpha'(t) \rangle dt.$$

Teorema de Green Motivación

Recordemos que el teorema fundamental del calculo, nos dice que

$$\int_a^b f'(s)ds = f(b) - f(a).$$

"La integral de derivadas de f en el interior de [a,b] es igual a algo de f sobre el Borde, $\{a,b\}$ ".

¿Podemos extender esta idea a dimensión 2?

Regiones

Definición.

Una región D de \mathbb{R}^2 se dice de tipo I si

$$D = \{(x, y) \in \mathbb{R}^2 : a_1 < x < a_2, \ \varphi_1(x) < y < \varphi_2(x)\}$$

es decir, si D se puede describir como el conjunto encerrado entre los gráficos de dos funciones de x, φ_1 y φ_2 en el intervalo (a_1,a_2) .

Regiones

Definición.

Una región D de \mathbb{R}^2 se dice de tipo \mathbb{I} si

$$D = \{(x, y) \in \mathbb{R}^2 : b_1 < y < b_2, \ \phi_1(y) < x < \phi_2(y)\}$$

es decir, si D se puede describir como el conjunto encerrado entre los gráficos de dos funciones de y, ϕ_1 y ϕ_2 en el intervalo (b_1,b_2) .

Teorema de Green Regiones

Definición.

Finalmente, una región D es de tipo III si es de tipo I y de tipo II simultaneamente.

Orientación de curvas cerradas

Definición.

Una curva cerrada simple $\mathcal C$ que es la frontera de una región de tipo I, II o III tiene dos <u>orientaciones</u>: una recorriendo la curva en sentido contrario a las agujas del reloj y otra recorriendo la curva en el sentido de las agujas del reloj.

A la primera la llamaremos orientación positiva y escribiremos C^+ .

A la segunda, la llamaremos orientación negativa y escribiremos C^- .

Observación: Notemos que la orientación positiva también puede reconocerse de la siguiente forma: si se recorre la curva $\mathcal C$ caminando en sentido positivo, se de la región D que encierra $\mathcal C$ a la izquierda.

Teorema de Green Orientación de curvas cerradas

Supongamos ahora que la curva \mathcal{C}^+ encierra una región de tipo l (con orientación positiva), D. Entonces, podemos escribirla como la unión de cuatro curvas.

$$\mathcal{C}^+ = \mathcal{C}_1^+ \cup \mathcal{C}_2^- \cup \mathcal{B}_1^- \cup \mathcal{B}_2^+.$$

Orientación de curvas cerradas

Más precisamente, si

$$D = \{(x, y) \in \mathbb{R}^2 \colon a_1 < x < a_2, \ \varphi_1(x) < y < \varphi_2(x)\},\,$$

entonces \mathcal{C}_1^+ es la parte de abajo

$$C_1^+ = \{(x, y) \in \mathbb{R}^2 \colon a_1 < x < a_2, y = \varphi_1(x)\}$$

recorrida de izquierda a derecha y \mathcal{C}_2^- es

$$C_2^- = \{(x,y) \in \mathbb{R}^2 \colon a_1 < x < a_2, y = \varphi_2(x)\}$$

recorrida de derecha a izquierda.

Teorema de Green Orientación de curvas cerradas

Finalmente, \mathcal{B}_1^- es la parte de la izquierda

$$\mathcal{B}_1^- = \{(x,y) \in \mathbb{R}^2 \colon x = a_1, \varphi_1(a_1) < y < \varphi_2(a_1)\}$$

recorrida de arriba hacia abajo y \mathcal{B}_2^+ es la parte de la derecha

$$\mathcal{B}_2^+ = \{(x, y) \in \mathbb{R}^2 \colon x = a_2, \varphi_1(a_2) < y < \varphi_2(a_2)\}$$

recorrida de abajo hacia arriba.

Observación: \mathcal{B}_1^- o \mathcal{B}_2^+ pueden no aparecer. Por ejemplo, se $\varphi_1(a_1)=\varphi_2(a_1)$ entonces \mathcal{B}_1^- no aparece.

Teorema (Teorema de Green).

Sea $\mathcal{F}=(P,Q)$ un campo vectorial de clase C^1 definido en un abierto Ω de \mathbb{R}^2 y sea \mathcal{C} una curva en el plano, cerrada, simple, orientada positivamente y suave por trozos, que encierra una región del tipo III $D\subset\Omega$. Entonces.

$$\int_{\mathcal{C}^{+}} (P, Q) \cdot dl = \int_{\mathcal{C}^{+}} (P \, dx + Q \, dy)$$
$$= \int_{D} \left(\frac{\partial Q}{\partial x} (x, y) - \frac{\partial P}{\partial y} (x, y) \right) \, dx \, dy.$$

Teorema de Green Demostración

Lema (Lema N.

Sea D una región de tipo l en el plano y sea \mathcal{C}^+ la curva suave por trozos que recorre su frontera orientada positivamente. Entonces, si $P \colon \mathbb{R}^2 \to \mathbb{R}$ es de clase C^1 se tiene

$$\int_{C_+} (P,0) \cdot dl = \int_{C_+} P \, dx = - \iint_{D} \frac{\partial P}{\partial y}(x,y) \, dx \, dy.$$

Teorema de Green Demostración

Lema (Lema 2).

Sea D una región de tipo \mathbb{I} en el plano y sea \mathcal{C}^+ la curva suave por trozos que recorre su frontera orientada positivamente. Entonces, si $Q \colon \mathbb{R}^2 \to \mathbb{R}$ es de clase \mathcal{C}^1 se tiene

$$\int_{C^+} (0, Q) \cdot dl = \int_{C^+} Q \, dy = \iint_D \frac{\partial Q}{\partial x} (x, y) \, dx \, dy.$$

Teorema de Green Ejemplo

Ejemplo

Verificar el Teorema de Green para $D = \{(x, y) : 1 \le x^2 + y^2 \le 4\}, P(x, y) = 2x^3 - y^3 y$ $Q(x, y) = x^3 + y^3$.

El Teorema de Green se puede aplicar a regiónes más generales que las de tipo III. Por ejemplo, si una región D se puede descomponer en una unión disjunta y finita de regiónes de tipo III, entonces se puede usar el teorema.

Teorema (Calculo de Área).

Sea D una región donde vale el teorema de Green, entonces

Area(D) =
$$\iint_D 1 \ dx \ dy = \frac{1}{2} \int_{\partial D^+} -y dx + x dy.$$

Ejemplo

Ejemplo

Calcule el área de la región encerrada por el hipocicloide definido por

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$$

usando la parametrización

$$x = \cos^3(\theta), \quad y = \sin^3(\theta), \quad \theta \in [0, 2\pi]$$