

Lecture 8: SPICE Simulation

Outline

- Introduction to SPICE
- DC Analysis
- Transient Analysis
- Subcircuits
- Optimization
- Power Measurement
- Logical Effort Characterization

Introduction to SPICE

- □ Simulation Program with Integrated Circuit Emphasis
 - Developed in 1970's at Berkeley
 - Many commercial versions are available
 - HSPICE is a robust industry standard
 - Has many enhancements that we will use
- □ Written in FORTRAN for punch-card machines
 - Circuits elements are called cards
 - Complete description is called a SPICE deck

Writing Spice Decks

- ☐ Writing a SPICE deck is like writing a good program
 - Plan: sketch schematic on paper or in editor
 - Modify existing decks whenever possible
 - Code: strive for clarity
 - Start with name, email, date, purpose
 - Generously comment
 - Test:
 - Predict what results should be
 - Compare with actual
 - Garbage In, Garbage Out!

Example: RC Circuit

```
* rc.sp
* David Harris@hmc.edu 2/2/03
* Find the response of RC circuit to rising input
                                                   R1 = 2K\Omega
* Parameters and models
                                                       C1 = \bot Vout
                                             Vin
                                                       100fF
.option post
* Simulation netlist
Vin
       in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0
       in out
R1
                       2k
C1 out
           gnd
                       100f
* Stimulus
.tran 20ps 1ns
.plot v(in) v(out)
.end
```

Result (Graphical)

Sources

- □ DC Source
 - Vdd vdd gnd 2.5
- ☐ Piecewise Linear Source
 - Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0
- ☐ Pulsed Source

Vck clk gnd PULSE 0 1.0 0ps 100ps 100ps 300ps 800ps

PULSE v1 v2 td tr tf pw per

SPICE Elements

Letter	Element
R	Resistor
С	Capacitor
L	Inductor
K	Mutual Inductor
V	Independent voltage source
l	Independent current source
M	MOSFET
D	Diode
Q	Bipolar transistor
W	Lossy transmission line
X	Subcircuit
E	Voltage-controlled voltage source
G	Voltage-controlled current source
Н	Current-controlled voltage source
F	Current-controlled current source

Units

Letter	Unit	Magnitude
а	atto	10 ⁻¹⁸
f	fempto	10 ⁻¹⁵
р	pico	10 ⁻¹²
n	nano	10-9
u	micro	10-6
m	milli	10-3
k	kilo	10 ³
Х	mega	106
g	giga	10 ⁹

Ex: 100 femptofarad capacitor = 100fF, 100f, 100e-15

DC Analysis

```
* mosiv.sp
* Parameters and models
.include '../models/ibm065/models.sp'
.temp 70
                                                  4/2
.option post
* Simulation netlist
*nmos
Vgs g gnd
Vds d gnd 0
M1 d g gnd gnd NMOS W=100n L=50n
* Stimulus
.dc Vds 0 1.0 0.05 SWEEP Vgs 0 1.0 0.2
.end
```

I-V Characteristics

- □ nMOS I-V
 - V_{gs} dependence
 - Saturation

MOSFET Elements

M element for MOSFET

Mname drain gate source body type

- + W=<width> L=<length>
- + AS=<area source> AD = <area drain>
- + PS=<perimeter source> PD=<perimeter drain>

Transient Analysis

```
* inv.sp
* Parameters and models
.param SUPPLY=1.0
.option scale=25n
.include '../models/ibm065/models.sp'
.temp 70
.option post
* Simulation netlist
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE
                              0 'SUPPLY' 50ps 0ps 100ps 200ps
                                                     L=2
М1
                       gnd
                              gnd
                                      NMOS
                                              W=4
+ AS=20 PS=18 AD=20 PD=18
                       vdd
                              vdd PMOS
м2
                                              W=8 L=2
+ AS=40 PS=26 AD=40 PD=26
* Stimulus
.tran 0.1ps 80ps
.end
```

Transient Results

- Unloaded inverter
 - Overshoot
 - Very fastedges

Subcircuits

Declare common elements as subcircuits

```
.subckt inv a y N=4 P=8
M1 y a gnd gnd NMOS W='N' L=2
+ AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10'
M2 y a vdd vdd PMOS W='P' L=2
+ AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'
.ends
```

- Ex: Fanout-of-4 Inverter Delay
 - Reuse inv
 - Shaping
 - Loading

FO4 Inverter Delay

```
* fo4.sp
* Parameters and models
.param SUPPLY=1.0
.param H=4
.option scale=25n
.include '../models/ibm065/models.sp'
.temp 70
.option post
* Subcircuits
.global vdd gnd
.include '../lib/inv.sp'
* Simulation netlist
       vdd
Vdd
           gnd
                       'SUPPLY'
Vin a
           gnd
                      PULSE 0 'SUPPLY' Ops 20ps 20ps 120ps 280ps
       a b
                      inv
                                      * shape input waveform
X1
X2 b
                                      * reshape input waveform
                       inv
                             M='H'
```

FO4 Inverter Delay Cont.

```
M='H**2' * device under test
x_3
                         inv
                         inv
                                M='H**3' * load
X4
        d
                                 M='H**4' * load on load
                f
                         inv
x5
* Stimulus
.tran 0.1ps 280ps
                                          * rising prop delay
.measure tpdr
     TRIG v(c) VAL='SUPPLY/2' FALL=1
     TARG v(d) VAL='SUPPLY/2' RISE=1
.measure tpdf
                                          * falling prop delay
     TRIG v(c) VAL='SUPPLY/2' RISE=1
     TARG v(d) VAL='SUPPLY/2' FALL=1
.measure tpd param='(tpdr+tpdf)/2'
                                         * average prop delay
                                                  * rise time
.measure trise
        TRIG v(d) VAL='0.2*SUPPLY' RISE=1
        TARG v(d)
                       VAL='0.8*SUPPLY' RISE=1
.measure tfall
                                                  * fall time
                      VAL='0.8*SUPPLY' FALL=1
        TRIG v(d)
        TARG v(d)
                       VAL='0.2*SUPPLY' FALL=1
.end
```


Optimization

- ☐ HSPICE can automatically adjust parameters
 - Seek value that optimizes some measurement
- Example: Best P/N ratio
 - We've assumed 2:1 gives equal rise/fall delays
 - But we see rise is actually slower than fall
 - What P/N ratio gives equal delays?
- Strategies
 - (1) run a bunch of sims with different P size
 - (2) let HSPICE optimizer do it for us

P/N Optimization

```
* fo4opt.sp
* Parameters and models
.param SUPPLY=1.0
.option scale=25n
.include '../models/ibm065/models.sp'
.temp 70
.option post
* Subcircuits
.global vdd gnd
.include '../lib/inv.sp'
* Simulation netlist
       vdd
              gnd
Vdd
                        'SUPPLY'
Vin
                               0 'SUPPLY' 0ps 20ps 20ps 120ps 280ps
             gnd
                        PULSE
                               P='P1'
               b
                                                * shape input waveform
x1
                        inv
        a
                               P='P1' M=4
                                                * reshape input
X2
                        inv
                                                * device under test
X3
                        inv
                               P='P1' M=16
```

P/N Optimization

```
P='P1' M=64 * load
X4
                        inv
                       inv
                               P='P1' M=256
                                                * load on load
X5
               £
* Optimization setup
                                     * search from 4 to 16, guess 8
.param P1=optrange(8,4,16)
                                     * maximum of 30 iterations
.model optmod opt itropt=30
.measure bestratio param='P1/4'
                                        * compute best P/N ratio
* Stimulus
.tran 0.1ps 280ps SWEEP OPTIMIZE=optrange RESULTS=diff MODEL=optmod
.measure tpdr
                                        * rising propagation delay
      TRIG v(c) VAL='SUPPLY/2' FALL=1
      TARG v(d) VAL='SUPPLY/2' RISE=1
.measure tpdf
                                        * falling propagation delay
      TRIG v(c) VAL='SUPPLY/2' RISE=1
      TARG v(d)
                      VAL='SUPPLY/2' FALL=1
.measure tpd param='(tpdr+tpdf)/2' goal=0 * average prop delay
.measure diff param='tpdr-tpdf' goal = 0 * diff between delays
.end
```

P/N Results

- □ P/N ratio for equal delay is 2.9:1
 - $-t_{pd} = t_{pdr} = t_{pdf} = 17.9 \text{ ps (slower than 2:1 ratio)}$
 - Big pMOS transistors waste power too
 - Seldom design for exactly equal delays
- What ratio gives lowest average delay?

.tran 1ps 1000ps SWEEP OPTIMIZE=optrange RESULTS=tpd MODEL=optmod

- P/N ratio of 1.8:1
- $-t_{pdr} = 18.8 \text{ ps}, t_{pdf} = 15.2 \text{ ps}, t_{pd} = 17.0 \text{ ps}$
- \Box P/N ratios of 1.5:1 2.2:1 gives t_{pd} < 17.2 ps

Power Measurement

- ☐ HSPICE can measure power
 - Instantaneous P(t)
 - Or average P over some interval
 - .print P(vdd)
 - .measure pwr AVG P(vdd) FROM=0ns TO=10ns
- □ Power in single gate
 - Connect to separate V_{DD} supply
 - Be careful about input power

Logical Effort

- ☐ Logical effort can be measured from simulation
 - As with FO4 inverter, shape input, load output

Logical Effort Plots

- \Box Plot t_{pd} vs. h
 - Normalize by τ
 - y-intercept is parasitic delay
 - Slope is logical effort
- □ Delay fits straight line very well in any process as long as input slope is consistent

Logical Effort Data

☐ For NAND gates in IBM 65 nm process:

# of inputs	Input	Rising Logical Effort g _u	Falling Logical Effort g _u	Average Logical Effort g	Rising Parasitic Delay p _u	Falling Parasitic Delay p _d	Average Parasitic Delay p
2	А	1.40	1.12	1.26	2.46	2.48	2.47
	В	1.31	1.16	1.24	1.97	1.82	1.89
3	A	1.76	1.27	1.51	4.77	4.10	4.44
	B	1.73	1.32	1.52	3.93	3.60	3.77
	C	1.59	1.38	1.48	3.05	2.43	2.74
4	A	2.15	1.42	1.78	7.63	5.94	6.79
	B	2.09	1.48	1.78	6.67	5.37	6.02
	C	2.08	1.53	1.80	5.32	4.51	4.91
	D	1.90	1.59	1.75	4.04	2.93	3.49

- Notes:
 - Parasitic delay is greater for outer input
 - Average logical effort is better than estimated

Comparison

Vendor		Orbit	HP	AMI	AMI	TSMC	TSMC	TSMC	IBM	IBM	IBM
Model		MOSIS	MOSIS	MOSIS	MOSIS	MOSIS	MOSIS	TSMC	IBM	IBM	IBM
Feature Size f	nm	2000	800	600	600	350	250	180	130	90	65
V_{DD}	V	5	5	5	3.3	3.3	2.5	1.8	1.2	1.0	1.0
FO4 Delay	ps	856	297	230	312	210	153	75.6	46.0	37.3	17.2
τ	ps	170	59	45	60	40	30	15	9.0	7.4	3.3
Logical Effort											
Inverter		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
NAND2		1.13	1.07	1.05	1.08	1.12	1.12	1.14	1.16	1.20	1.26
NAND3		1.32	1.21	1.19	1.24	1.29	1.29	1.31	1.35	1.41	1.51
NAND4		1.53	1.37	1.36	1.42	1.47	1.47	1.50	1.55	1.62	1.78
NOR2		1.57	1.59	1.58	1.60	1.52	1.50	1.50	1.57	1.56	1.50
NOR3		2.16	2.23	2.23	2.30	2.07	2.02	2.00	2.12	2.08	1.96
NOR4		2.76	2.92	2.96	3.09	2.62	2.52	2.53	2.70	2.60	2.43
	Parasitic Delay										
Inverter		1.08	1.05	1.18	1.25	1.33	1.18	1.03	1.16	1.07	1.20
NAND2		1.87	1.85	1.92	2.10	2.28	2.07	1.90	2.29	2.25	2.47
NAND3		3.34	3.30	3.40	3.79	4.15	3.65	3.51	4.14	4.10	4.44
NAND4		4.98	5.12	5.22	5.78	6.30	5.47	5.52	6.39	6.39	6.79
NOR2		2.86	2.91	3.29	3.56	3.52	2.95	2.85	3.35	3.01	3.29
NOR3		5.65	6.05	7.02	7.70	6.89	5.61	5.57	6.59	5.76	6.35
NOR4		9.11	10.3	12.4	13.9	11.0	8.76	8.95	10.54	9.11	10.16