ЛАБОРАТОРНАЯ РАБОТА № 11

Исследование криптографических алгоритмов на основе эллиптических кривых

Цель: изучение и приобретение практических навыков разработки и использования приложений для реализации криптографических алгоритмов на основе эллиптических кривых (содержит 3 самостоятельных задания, каждое из которых рассчитано на 2 часа аудиторных занятий).

Задачи:

- 1. Закрепить теоретические знания по алгебраическому описанию и геометрическому представлению операций над эллиптическими кривыми (ЭК):
 - по алгоритмам согласования ключевой информации на основе ЭК,
- алгоритмам зашифрования/расшифрования информации на основе асимметричной криптонафии и ЭК,
- алгоритмам генерации и верификации электронной цифровой подписи на основе асимметричной криптографии и ЭК,
 - оценке криптостойкости систем на основе ЭК.
- 2. Разработать приложение для реализации указанных преподавателем методов криптопреобразования на основе ЭК.
- 3. Результаты выполнения лабораторной работы оформить в виде описания разработанного приложения, методики выполнения экспериментов с использованием приложения и результатов эксперимента.

11.1 Теоретические сведения

11.1.1 Эллиптические кривые над действительными числами и конечными полями

11.1.1.1. ЭК над действительными числами

Мы ранее отмечали, что криптография базируется на задачах факторизации, дискретного логарифмирования и операциях над точками эллиптичекой кривой (Elliptic Curve, EC; EC Cryptography, ECC). Последние являются предметом исследования в данной работе.

Перед выполнением лабораторной работы целесообразно ознакомиться с базовыми элементами теории эллиптических кривых (см., например, п.5.4.4 в [2]).

Здесь вспомним основные определения и кратко проанализируем основные операции над точками эллиптических кривых (ЭК).

<u>Определение</u> 1. Эллиптические кривые — математический объект, который может быть определен над любым полем.

<u>Определение</u> 2. Эллиптическая кривая над вещественными числами – это множество точек, описываемых уравнением

$$y^2 = x^3 + ax + b ag{11.1}$$

при этом константы (a и b — вещественные числа) должны удовлетворять условию:

$$4a^3 + 27b^2 \neq 0. ag{11.2}$$

Нетрудно понять, что вид ЭК (11.1) также задается парой чисел: *а* и *b*. Формула (11.1) называется *уравнением Вейерштрасса*, а условие (11.2) исключает из рассмотрения *кривые с особыми точками* или *особые кривые*.

В зависимости от значений a и b ЭК могут принимать на плоскости разные формы (см. также [2]).

<u>Определение</u> 3. Частью ЭК является *бесконечно удаленная точка* (также известная как *идеальная точка*), которую мы обозначим символом *O*.

<u>Определение</u> 4. Группа — непустое множество с определенной на нем бинарной операцией, называемой сложением и удовлетворяющей нескольким аксиомам.

На основе последнего определения мы можем определить группу для ЭК.

<u>Определение</u> 5. *Группа для ЭК* есть непустое множество, элементы которого являются точками ЭК, обладающими следующими свойствами:

- единичный элемент это бесконечно удалённая точка O;
- *обратная величина точки R* это точка, симметричная относительно оси X;
- *сложение* задается следующим правилом: сумма трех ненулевых точек P, Q и -R, лежащих на одной прямой, будет равна P + Q + (-R) = O.

В соответствии с этим можем сформулировать *законы сложения точек* эллиптической кривой:

- прямая, проходящая через точки R и -R, является вертикальной прямой, которая не пересекает ЭК ни в какой третьей точке; если R = (x, -y), то R + (x,y) = O. Точка (x,y) является отрицательным значением точки R и обозначается -R. Таким образом, по определению R + (-R) = O;
- P + Q = R: пусть P и Q две различные точки ЭК (рис. 11.1), и P не равно Q; если проведем через P и Q прямую, то она пересечет ЭК еще только в одной точке, называемой -R; точка -R отображается относительно оси X в точку R, равную сумме точек P и Q: P + Q = R;

Геометрическая интерпретация операции сложения двух точек показана на рис. 11.1.

Рисунок 11.1 Пояснение к операции сложения двух точек P и Q эллиптической кривой $y^2 = x^3 + 2x + 1$ (a = 2, b = 1)

Что будет, если P = Q? В этом случае мы можем говорить об операции удвоения точки: P + P = 2P. Обобщив (к точке 2P можно прибавить еще раз точку P: 2P + P), сформулируем принцип умножения точки P на целое положительное число n – определяется как сумма n точек P: $nP = P + P + P + \dots + P$.

Скалярное умножение осуществляется посредством нескольких комбинаций сложения и удвоения точек эллиптической кривой. Например, точка 25P может быть представлена, как 25P = 2(2(2(2P)) + 2(2(2P))) + P.

Понятно, что каждая точка на плоскости задается парой координат: x и y.

Числа x и y являются pациональными, а точки P, Q, R и -R (как и любые точки ЭК) — pациональными mочками

Если $P=(x_1,\ y_1)$ и $Q=(x_2,\ y_2)$, то $P+Q=(x_3,\ y_3)$ определяется в соответствии с правилами:

$$x_3 = \lambda^2 - x_1 - x_2; \tag{11.3}$$

$$y_3 = \lambda (x_1 - x_3) - y_1,$$
 (11.4)

где

$$\lambda = (y_2 - y_1)/(x_2 - x_1)$$
, если $P \neq Q$ и $\lambda = (3(x_1)^2 + a)/2$ y_1 , если $P = Q$. (11.5)

Из этого следует, что число λ — угловой коэффициент секущей, проведенной через точки $P=(x_1,y_1)$ и $Q=(x_2,y_2)$. При P=Q секущая превращается в касательную, чем и объясняется наличие двух формул для вычисления λ .

Очень хорошее представление об операциях над точками различных ЭК можно получить, воспользовавшись онлайн-приложением, доступном по ссылке: https://cdn.rawgit.com/andreacorbellini/ecc/920b29a/interactive/reals-add.html.

Для примера на рис. 11.2 приведено окно приложения.

Источник: https://cdn.rawgit.com/andreacorbellini/ecc/920b29a/interactive/reals-add.html

Рисунок 11.2 Окно приложения Elliptic Curve Points Addition

На приведенном рисунке как раз представлен пример над точками (координаты – правой части экрана) упоминавшейся выше (см. рис. 11.1) ЭК. Отметим также, что при этом выбраны опции **R** и **Addition** (вторая строка), соответствующие операции сложения над рациональными числами.

Рассмотрим пример.

<u>Пример</u> 1. Пусть ЭК задается уравнением с параметрами a = -7, b = 10. Точки P(1, 2) и Q(3, 4). Нужно вычислить сумму точек: P + Q = R.

Воспользуемся (11.3) – (11.5):

$$\lambda = (2-4)/(1-3) = 1,$$

 $x_R = x_3 = 1^2 - 1 - 3 = -3,$
 $y_R = y_3 = 2 + 1 (-3 - 1) = -2.$

Тот же результат получаем и при использовании указанного выше приложения.

<u>Пример</u> 2. Для той же ЭК при $P\left(1,2\right)=Q\left(1,2\right)$ получим для P+Q=R=2P:

$$\lambda = 3(1^2 - 7)/(2 * 2) = -1,$$

 $x_R = x_3 = (-1)^2 - 1 - 1 = -1,$
 $y_R = y_3 = 2 + (-1)(-1 - 1) = 4.$

Таким образом, получили точку 2P(-1, 4).

С помощью упомянутого выше приложения (опции **R** и **Multiplication**) можно вычислить любые операции *скалярного умножения точки*.

<u>Для заданных n и P существуют алгоритмы вычисления Q = n P. Если же известны Q и P, а нам нужно определить n, то такая задача нам известна как</u>

11.1.1.2 ЭК над конечными полями

Именно этот тип ЭК будет нас интересовать в плане практического применения.

<u>Определение</u> 6. Конечное поле — это множество конечного числа элементов. Примером конечного поля является множество <u>целых чисел по модулю</u> \underline{p} , где \underline{p} — простое число.

Поле обозначается как GF(p) или F_p . Здесь операции сложения и умножения работают как в модулярной арифметике.

Например, поле F_{13} (p=13) состоит из чисел: 0, 1, ..., 12.

<u>Определение 7</u>. Эллиптическая кривая над полем F_p задается теми же уравнениями, что и ЭК над действительными числами, только все вычисления производятся по модулю $p \pmod{p}$, нп.:

$$y^2 \equiv x^3 + ax + b \pmod{p},\tag{11.6}$$

далее для упрощения знак «≡» будем заменять простым неравенством:

$$4a^3 + 27b^2 \neq 0 \pmod{p} \tag{11.7}$$

и т.д.

Формально ЭК над полем задается так: $E_{\rm p}(a,b)$.

Важно отметить, что, как и ранее, существует точка (бесконечно удаленная) O; a и b – вещественные числа.

Прежде, чем приступить к алгебраическим операциям над точками кривой, такими как суммирование двух разных точек на ЭК и удвоение точек, кратко проанализируем операции для расчета точек, принадлежащих ЭК. Должны быть приняты некоторые предположения, такие как площадь, на которой будут рассчитываться точки кривой, и функция кривой.

Рассмотрим конкретный пример.

<u>Пример</u> 4. Пусть ЭК формально задается в записью $E_{13}(6, -9)$. Проверяем выполнение условия (11.7). Исходя из этого, координаты расположения точек должны быть ограничены квадратом некоторых чисел по модулю 13 (левая часть основного уравнения — y^2). Здесь стоит отметить известную нам цикличность в вычислениях на основе модулярной арифметики. Это видно для нашего случая из табл. 11.1.

Таблица 11.1 Цикличность квадратов целых чисел над полем F_{13}

$0^2 mod 13 = 0$	$13^2 \ mod \ 13 = 0$
$1^2 mod 13 = 1$	$14^2 \ mod \ 13 = 1$
$2^2 mod 13 = 4$	$15^2 \ mod \ 13 = 4$
$3^2 mod 13 = 9$	$16^2 \ mod \ 13 = 9$
$4^2 mod 13 = 3$	$17^2 \ mod \ 13 = 3$
$5^2 mod 13 = 12$	$18^2 \ mod \ 13 = 12$
$6^2 mod 13 = 10$	$19^2 \ mod \ 13 = 10$
$7^2 \ mod \ 13 = 10$	$20^2 mod 13 = 10$
$8^2 \ mod \ 13 = 12$	$21^2 \ mod \ 13 = 12$
$9^2 mod 13 = 3$	$22^2 \ mod \ 13 = 3$
$10^2 \ mod \ 13 = 9$	$23^2 \ mod \ 13 = 9$
$11^2 \ mod \ 13 = 4$	$24^2 \ mod \ 13 = 4$
$12^2 \ mod \ 13 = 1$	$25^2 \ mod \ 13 = 1$

Числа, приведенные после знаков равенства, являются *квадратичными* вычетами по модулю 13. В данном примере это числа из множества: $\{1, 3, 4, 9, 10, 12\}$ (обычно число 0 не включают в такие множества).

Важным элементом рассматриваемой технологии является определение точек кривой с целочисленными координатами. Эти задачи в общем случае решаются на основе известных алгоритмов, которые мы здесь опустим. Имея приведенные в табл. 11.1 вычисления квадратов чисел по модулю 13, рассмотрим ситуацию для x = 0. Подставим это значение в правую часть уравнения (11.6), имея в виду ЭК $E_{13}(6, -9)$:

$$y^2 = 0^3 + 6*0 - 9 \pmod{13}$$
,

откуда получим $y^2 = -9 \pmod{13}$, $y^2 = 4$ и $y = \pm 2$. Таким образом, пользуясь данными из табл. 11 (смотрим строки с числами 4 справа от знака равенства), определяем, что точками нашей ЭК будут: (0, 2) и (0, 11); здесь мы приняли во внимание то, что значение некоторого целого отрицательного числа (-k) по модулю (p) вычисляется следующим образом:

$$(-k) \bmod p = -(k \bmod p) + p.$$

Следуя приведенной логике рассуждений, определим, например, точки при x = 3: $y^2 = 3^3 + 6*3 - 9 \pmod{13} = 36 \pmod{13} = 10$. Обращаем внимание на 7 и 8 строки левого столбца табл. 11.1 и устанавливаем координаты еще 2-х точек ЭК: (3, 6), (3, 7).

Теперь вернемся к x = 1: $y^2 = 1^3 + 6*1 - 9 \pmod{13} = -2 \pmod{13} = 11$. В табл. 11.1 не найдено ни одного соответствия. Это означает, что на рассматриваемой ЭК нет ни одной точки, координата x которой равна 3.

На рис. 11.3 представлены все точки для ЭК $E_{13}(6, -9)$.

Рисунок 11.3 Точки ЭК *E*₁₃(6, -9)

На рис. 11.4 показаны точки эллиптической кривой (7, 10) из примера 1 для p = 19 (а) и для p = 487 (б).

Из приведенных примеров можно заметить, что для каждого x существует максимум две точки. Отметим также симметрию в расположении точек относительно y = p/2.

Рисунок 11.4 Отображение точек ЭК $y^2 = x^3 - 7x + 10 \pmod{p}$

То, что раньше было непрерывной кривой, теперь стало множеством отдельных точек на плоскости XY, координаты которых $(x \ u \ y)$ являются целы-

ми числами.

Можно также сказать, что три точки находятся на одной прямой, если существует прямая, соединяющая их. Рисунки 11.3 и 11.4 дают более полное представление о числовом пространстве точек ЭК над конечным полем.

На рис. 11.5 показано геометрическое отображение операции суммирования двух точек с параметрами, примерно соответствующими рисунку 11.2 (не для любых параметров выполняется операция).

Рисунок 11.5 Геометрическое отображение операции суммирования двух точек ЭК с параметрами, расположенными в правой части экрана

Рассмотрим пример.

<u>Пример</u> 5. Пусть p = 23. Рассмотрим ЭК $y^2 = x^3 + x + 1 \pmod{23}$: $E_{23}(1, 1)$.

Кривая состоит из следующих точек: (0, 1); (0,22); (1, 7); (1,16); (3, 10); (3,13); (4,0); (5,4); (5,19); (6,4); (6,19); (7,11); (7,12); (9, 7); (9,16); (11,3); (11,20); (12,4); (12,19); (13,7); (13,16); (17,3); (17,20); (18,3); (18,20); (19,5); (19,18), т.е всего 27 точек.

<u>Не забываем, что во всех случаях эллиптической кривой принадлежит также точка О.</u>

Пусть
$$P = (3,10)$$
 и $Q = (9,7)$. Найдем $P + Q$ и $2P$. Пусть $P + Q = (x_3, y_3)$, тогда при

$$\lambda = (7-9)/(9-3) \pmod{23} = 11 \pmod{23}$$

имеем:

$$x_3 = 121-3-9 \pmod{23} = 109 \pmod{23} = 17,$$

 $y_3 = 11(3+6)-10 \pmod{23} = 89 \pmod{23} = 20.$
Таким образом, $P+Q=(17,20)$.

Такой же результат получен и с использованием упомянутого он-лайн-ресурса (рис. 11.6).

Curve:	а	1	\$	b	1	\$
Field:	p	23	\$			
P:	х	3	\$	у	10	\$
Q:	х	9	\$	у	7	\$
R = P + Q:	Х	17		у	20	

Point addition over the elliptic curve $y^2 = x^3 + 1x + 1$ in \mathbb{F}_{23} . The curve has 28 points (including the point at infinity).

Рисунок 11.6 Окно приложения с результатами выполнения операции сложения двух точек из примера 2

Найдем теперь точку $2P = P + P = (x_3, y_3) - c$ формальной точки зрения это также будет третья точка.

Для этого случая

$$\lambda = (3*9+1) \pmod{23} = 6 \pmod{23}$$

и с учетом последнего для вычисления координаты y_3 :

$$x_3 = 36 - 6 \pmod{23} = 30 \pmod{23} = 7 \pmod{23}$$
;

$$y_3 = 6*(3-7)-10 \pmod{23} = -34 \pmod{23} = 12 \pmod{23}$$
.

Таким образом, 2P = (7,12).

При последовательном выполнении сложения $nP = P + P + P + \dots + P$ на каждом шаге будет получаться точка, которая также должна принадлежать $E_p(a, b)$. В силу того, что эллиптическая группа содержит конечное множество точек, и наступит такой момент, что для некоторых результатов вычислений будет выполняться равенство qP = O (см. пример 5.12 из [2], где 5A = O, т.е. здесь q = 5).

<u>Пример</u> 6. Для точки P = (4, 2) ЭК вида $E_7 (4, 1)$, например, справедливы следующие соотношения:

$$2P = (4, 2) + (4, 2) = (0, 1),$$

$$3P = (0, 1) + (4, 2) = (0, 6),$$

$$4P = 2(0, 1) = (4, 5),$$

$$5P = (0, 1) + (0, 6) = O$$
.

Для данного случая также q = 5.

Если взять разные точки на одной и той же ЭК, получим разные q.

В табл. 11.2 показаны умножения точки для ЭК $E_5(0,1)$.

Таблица 11.2 Результаты выполнения операции $P+ \dots + P$ для кривой $E_5(0,1)$

+	(0,1)	(0,4)	(2,2)	(2,3)	(4,0)
P	(0,1)	(0,4)	(2,2)	(2,3)	(4,0)
2P	(0,4)	(0,1)	(0,4)	(0.1)	O
3P	0	O	(4.0)	(4.0)	(4,0)
4P	(0,1)	(0,4)	(0.1)	(0,4)	O
5P	(0,4)	(0,1)	(2.3)	(2.2)	(0.4)
6P	0	0	0	0	O

Данные приведенной таблицы подтверждают наши выводы.

Если требует, например, точку P сложить саму с собой z раз, то это означает, что нужно выполнить вычисление zP. Для реализации этой операции существует простой метод на основе операции сложения точек. Число z представляется в двоичном виде. И далее вычисляются необходимые составляющие общей суммы на основе весовых (единичных) разрядов двоичного числа z. Рассмотрим это на примере.

<u>Пример</u> 7. Пусть z=171. Это число в двоичном виде выглядит так: 10101011. В соответствии с весом «1» мы должны сложить следующие составляющие (слагаемые) общей суммы: 171P = P + 2P + 8P + 32P + 128P.

Первое из приведенных слагаемых известно. Второе слагаемое: 2P = P + P, промежуточное вычисление: 4P = 2P + 2P, третье слагаемое: 8P = 4P + 4P, промежуточное вычисление: 16P = 8P + 8P, промежуточное вычисление: 16P = 8P + 8P, четвертое слагаемое: 32P = 16P + 16P, промежуточное вычисление: 64P = 32P + 32P, последнее слагаемое: 128P = 64P + 64P.

<u>Определение 8.</u> Если мы складываем два значения, кратных P, то получаем значение, кратное P (т.е. значения, кратные P, замкнуты относительно операции сложения). Это означает, что *множество кратных* P значений – это циклическая подгруппа группы, образованной эллиптической кривой.

<u>Определение</u> 9. Наименьшее значение числа q, для которого выполняется равенство qP = O, называется порядком точки P.

<u>Определение 10</u>. Порядок группы точек эллиптической кривой равен числу различных точек ЭК, включая точку O.

<u>Определение 11</u>. Точка P называется *генератором* или *базовой точкой* циклической подгруппы (такую точку во многих документах обозначают символом G).

Порядок точки P связан с порядком m ЭК mеоремой Лагранжа, согласно которой nорядок nодгруппы — это делитель nорядка uсходной rруппы. Иными словами, если ЭК содержит m точек, а одна из подгрупп содержит q, то q является делителем m.

Для ЭК $E_p(a, b)$ порядок m группы точек должен удовлетворять неравенству:

$$p+1-2(p)^{1/2} \le m \le p+1+2(p)^{1/2}$$
.

Как и в случае с непрерывными ЭК, теперь важным является вычисление некоторого числа d, если мы знаем P и Q для Q = dP. Это и есть задача дискретного логарифмирования для эллиптических кривых.

Эта задача аналогична задаче дискретного логарифмирования, используемой в других криптосистемах, таких как алгоритм DSA, протокол Диффи-Хеллмана и схема Эль-Гамаля.

В криптографии на основе ЭК тайный ключ — это случайное целое d, выбранное из множества $\{1, 2, ..., q-1\}$, где q — порядок подгруппы; *открытый ключ* — это точка Q, такая, что Q = dG, где G — базовая точка подгруппы.

Криптостойкость алгоритмов на основе ЭК определяется, например, для алгоритма ЭЦП в стандарте РБ [50] параметром l, называемым уровнем стандарте и принимающим значения (рекомендуется) из {128, 192, 256}. При этом для взлома ключа злоумышленнику нужно выполнить 2^l операций.

11.1.1.3 Основные этапы генерации ключевой информации на основе ЭК

<u>Первый</u> этап. *Выбор (генерация)* ЭК. Обычно он основан на выполнении следующих условий и операций.

- 1.1. Входными параметрами являются: число l, число p, удовлетворяющее условию $2^{2l-1} , <math>p = 3 \mod 4$, 0 < a < p. Можно использовать некоторое простое число $p = 2^{2l} c$, где с небольшое натуральное число.
 - 1.2. Выбирается число b, такое, что 0 < b < p.

Таким образом, задана ЭК: $E_p(a, b)$.

1.3. Выбираются порядок q (простое число) и генерирующая точка G, которая задается двумя координатами, например, $G = (0, y_G)$.

Дополнительно к рассмотренным действиям стандарт [50] предусматривает использование вспомогательного параметра (s, seed) — произвольное 64-битное число.

Для примера в нижеследующей иллюстрации (рис. 11.7) [50] приведены параметры ЭК для двух значений l.(на иллюстрации это — Таблица Б.1 и Таблица Б.2). Здесь нижние индексе в левом столбце обозначают битовую длину чмсла.

Второй этап. Генерация ключевой информации.

- 2.1. Входными параметрами являются: p, a, b, q и G.
- 2.2. Генерируется тайный ключ число d, выбранное из множества $\{1, 2, ..., q-1\}$.
 - 2.3. Вычисляется открытый ключ точка Q:

$$Q = dG, (11.8)$$

к открытому ключу также относятся p, a, b, q.

Отметим также, что сгенерировать ключевую информацию на основе ЭК

можно воспользовавшись известной нам библиотекой *OpenSSL*. Например, если воспользоваться версией *OpenSSL* 1.1.1*L* в системе *Debian* 9 (с помощью команды с двумя разными псевдонимами (выделены жирным): openssl ecparam—name secp192k1—genkey—out secp192k1, openssl ecparam—name secp521r1—genkey—out secp521r1, то получим тайные ключи соответственно следующего содержания:

MFwCAQEEGLDsGwgZq/Kq4suR74ftkipbKMRmoWDtlqAHBgUrgQQAH6E0AzIABPfKAz FU+QKsh+I7a6K5taNUe3TZAdLMp92RpYoT0PIrmGD3QVRcqAmqZSba6kanKg==

 $MIHcAgEBBEIAvv7P//lWx3QQis5Hb25eN/UY5isVJk+s56ZDSTleUcrqj2mNH4Y3\\ xWLXGMtpmDJRiHalCv3MDt/T5h67daHaViagBwYFK4EEACOhgYkDgYYABABgOPla\\ 5ygHB/j79g0R2N12/tv4YlIj6ZA+t2FhtvEMPvj9QHMg5sN45yjGKmLlIwEMP2YW\\ xjPj3YL0Z0uLO9BBYwBUGVCPEWKylC8x5qGL1ypG6shCPTUcXQxLuFMmKv+AaDH2\\ 4TCdBvl9nYANhlxZKv96Pb/lari3OKZkmO5zgVWKCw==$

Таблица Б.1 — Стандартные параметры (l = 128)

p	$2^{256} - 189$
$\langle p \rangle_{256}$	43FFFFFF FFFFFFFF FFFFFFFFFFFFFFFFFFFFF
a	$2^{256} - 192$
$\langle a \rangle_{256}$	40ffffff fffffff ffffffff fffffff fffffff
$\langle b \rangle_{256}$	F1039CD6 6B7D2EB2 53928B97 6950F54C BEFBD8E4 AB3AC1D2 EDA8F315 156CCE77 ₁₆
seed	5E380100 00000000 ₁₆
q	$2^{256} - 51\ 359303463\ 308904523\ 350978545\ 619999225$
$\langle q \rangle_{256}$	07663D26 99BF5A7E FC4DFB0D D68E5CD9 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF
$\langle y_G \rangle_{256}$	936A5104 18CF291E 52F608C4 66399178 5D83D651 A3C9E45C 9FD616FB 3CFCF76B ₁₆

Таблица Б.2 — Стандартные параметры (l = 192)

384 - 317							
BFEFFFF	FFFFFFFF	FFFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF
FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFFF	16			
384 - 320							
FEFFFF	FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF
FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFFF	16			
1BF7368	23FCA7BC	7CBDCEF3	F0E2BD14	3A2E71E9	F96A21A6	96B1FB0F	BB482771
2345D65	AB5A0733	20EF9C95	E1DF753C	16			
3 AF 0000	000000001	6					
384 - 9886	6 43852065	9 9585224	37 7880069	80 6609650	037 549058	207 958390	0857
7A70CF3	3FDCB73D	OAFFA4A6	E7DA4680	BB7BAF73	03C4CC6C	FEFFFFF	FFFFFFF
FFFFFFF	FFFFFFF	FFFFFFF	FFFFFFF	16			
1C433F7	31CB5EEA	F9422A6B	273E4084	55D3B166	9EE74905	AOFF86DC	119A723A
9BF2D43	7E113063	9E9E2EA8	2482435D	16			
3 7 7	FFFFFF 84 - 320 FFFFFF FFFFFF BF7368 2345D65 2470000 84 - 9886 7470CF3 FFFFFF C433F7	## 1000 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	## 7320 ## 732	## - 320 ### - 3	FFFFFF FFFFFFF FFFFFFFF FFFFFFF $_{84}$ - 320 FFFFFF FFFFFFF FFFFFFF FFFFFFFF FFFFFFF	FFFFFF FFFFFFF FFFFFFFF FFFFFFFFFFFFF	84 — 320 DEFFFF FFFFFFF FFFFFFFF FFFFFFFFFFFFFF

Рисунок 11.7 Стандартные параметры ЭК

Полезные рекомендации по выбору параметров ЭК можно найти, например, в [51].

11.1.2 Использование ЭК в криптографии

Отметим еще раз, что ЭК в криптографических приложениях обычно используется на этапе генерации либо согласования ключевой информации. Таким образом, можно отметить 3 направления использования ЭК в криптографии:

- в алгоритмах согласования (передача) ключевой информации (на основе идеи Диффи-Хеллмана),
- в алгоритмах асимметричного шифрования/дешифрования сообщений,
- в алгоритмах генерации/верификации ЭЦП.

11.1.2.1 Реализация алгоритма Диффи-Хеллмана на основе ЭК

Рассмотрим наиболее общий случай. Предположим, что $E_{\rm p}$ – это ЭК над $F_{\rm p}$, а Q – заранее определенная и согласованная сторонами **A** и **B** точка на E.

Отправитель **A** выбирает тайное случайное число k_A , вычисляет точку $P_A = k_A * Q$ и отправляет ее получателю **B**. **B** действует аналогично: он случайным образом выбирает число k_B , вычисляет случайное число k_A , вычисляет точку $P_B = k_B * Q$ и отправляет результат стороне **A**.

Общий ключ $P = k_A * k_B * Q$. Отправитель **A** вычисляет P путем умножения числа P_B , полученного от получателя **B**, на его секретное число k_A . Похожим образом действует другая строна.

11.1.2.2 Реализация алгоритма зашифрования/расшифрования на основе ЭК

Вспомним, что процедура предусматривает использование ключей получателя (стороны ${\bf B}$). Рассмотрим это на примере алгоритма Эль-Гамаля.

Вспомним, что зашифрованное сообщение M или каждый зашифрованный блок (m_i) этого сообщения состоят из двух чисел. Вспомним лабораторную работу $N \ge 8$, где блок шифртекста (c_i) в соответствии с (8.9) и (8.10) мы обозначали двумя символами a_i и b_i и вычисляли как

$$a_i = g^k \mod p$$
, $b_i = (y^k \cdot m_i) \mod p$.

Поскольку символы a и b мы зарезервировали в текущей работе для обозначения параметров ЭК, то блок шифртекста сейчас будем обозначать соответственно символами C_{i1} и C_{i2} .

При использовании ЭК зашифрование предполагает представление сообщения в виде точки P (или представления каждого блока сообщения в виде разных точек P_i) ЭК с известной точкой G и известным Q. Соответственно шифртекст – это две точки на той же ЭК: C_1 и C_2 или C_{i1} и C_{i2} .

Предположим, что шифруемое сообщение M – это точка P на ЭК.

Сторона **A** выбирает некоторое случайное число k и далее выполняет вычисления с использованием открытого ключа стороны **B**:

$$C_1 = kG, \ C_2 = P + kQ.$$
 (11.9)

Получатель для расшифрования сообщения вычисляет:

$$P = C_2 - dC_1. (11.10)$$

Знак «—» в (11.10) означает сложение с инверсией: инверсией по отношению к точке (x, y) является точка (x, -y) на ЭК.

Рассмотрим пример.

<u>Пример</u> 8. Пусть сторона **B** использует ЭК вида $E_{67}(2, 3)$, G = (2, 22) и d = 4. Тогда Q = dG = 4G = (13, 45); здесь расчеты, которые проводились на основе (11.3)–(11.5), опускаются.

Полагаем далее, что шифруемое сообщение M соответствует точке P = (24, 26), а k = 2. Тогда в соответствии с (11.9) получен шифртекст:

$$C_1 = 2G = 2*(2, 22) = (35, 1), C_2 = P + kQ = (24, 26) + 2*(13, 45) = (21, 44).$$

Таким образом, сообщению соответствует шифртекст из двух точек: C_1 = (35, 1), C_2 = (21,44).

Для расшифрования сторона В вычисляет последовательно:

$$dC_1 = 4*(35, 1) = (23, 25),$$

далее инвертирует точку (23, 25): (23, 42), поскольку $-25 \mod 67 = 42$, и, наконец, выполняется сложение в соответствии с (11.10): $C_2 + (23, 42) = (24, 26)$, что соответствует исходной точке P, т.е. сообщению M.

Сравнительная оценка влияния размера ключа (в битах) для классической асимметричной системы шифрования (RSA) и асимметричной системы на основе ЭК дана американским институтом стандартов NIST, которую мы приводим ниже в виде табл. 11.3.

Таблица 11.3 Размер ключей, обеспечивающих примерно одинаковый уровень криптостойкости

Классический RSA	На основе ЭК
102	160
2048	224
3072	256
3680	384

11.1.2.3 Реализация ЭЦП на основе ЭК

Краткая характеристика алгоритма генерации и верификации ЭЦП. По-

лагаем, что отправитель подписывает хеш H(M) сообщения M.

Генерация ЭЦП.

- 1. Выбрать число k (1 < k < q), q порядок точки G.
- 2. Вычислить точку kG = (x, y), вычислить $r = x \mod q$; при r = 0 изменить k и повторить шаг 2.
- 3. Вычислить $t = k^{-1} \mod q$ (например, на основе расширенного алгоритма Евклида).
- 4. Вычислить $s = (t (H(M) + dr)) \mod q$; при s = 0 изменить k и повторить алгоритм.

Стороне **B** отсылаются сообщение M и ЭЦП (числа r и s).

Верификация ЭЦП.

Получатель знает алгоритм хеширования, который использовался отправителем, открытый ключ отправителя, с помощью чего выполняет следующие операции над M и полученной ЭЦП (обозначения чисел оставим без изменений).

- 1. Проверить выполнение условия: 1 < r, s < q; если условие не выполняется, то легитимность подписи не подтверждается, в противном случае выполняются дальнейшие шаги.
 - 2. Вычисляются H(M) и $w = s^{-1} \mod q$.
 - 3. Вычисляются $u_1 = w H(M) \pmod{q}$, $u_2 = wr \pmod{q}$.
 - 4. Вычисляются $Gu_1 + Qu_2 = (x', y'), v = x' \mod q$.
- 5. Сравниваются v и r; если равенство выполняется, подтверждается легитимность подписи и целостность полученного сообщения.

<u>Пример</u> 9. Полагаем, что H(M) = 12. Используется ЭК $E_{751}(-1, 1)$ с генерирующей точкой G = (384, 475), q = 13 и тайным ключом d = 12; Q = dG = 12 (384, 475) = (384, 276).

Генерация ЭЦП.

- 1. Выбирается число k = 3, (1 < 3 < 13), q порядок точки G.
- 2. Вычисляется точка kG = 3 (384, 475) = (596, 318), т. е. x = 596, вычисляется $r = x \mod q = 596 \mod 13 = 11$.
 - 3. Вычисляется $t = k^{-1} \mod q = 3^{-1} \mod 13 = 9$, ((9*3) mod 13 = 1).
 - 4. Вычисляется $s = (t (H(M) + dr)) \mod q = (9 * (12 + 12*11) \mod 13 = 9.$

Стороне **B** отсылаются сообщение M и ЭЦП (числа r = 11 и s = 9).

Верификация ЭЦП.

Получатель знает алгоритм хеширования, который использовался отправителем, открытый ключ отправителя, с помощью чего выполняет следующие операции над M и полученной ЭЦП (числа r = 11 и s = 9).

- 1. Подтверждается выполнение условия 1 < r, s < q.
- 2. Вычисляется H(M) положим, что в результате хеширования полученного сообщения M его хеш не изменился: H(M) = 12; далее вычисляется $w = s^{-1} \mod q = 9^{-1} \mod 13 = 3$.
- 3. Вычисляются $u_1 = w H(M) \pmod{q} = 3*12 \pmod{13} = 10$ и $u_2 = wr \pmod{q} = 3*11 \pmod{13} = 7$.
- 4. Вычисляются $Gu_1 + Qu_2 = 10(384, 475) + 7(384, 276) = (596, 318) = (x', y'); v = x' mod q = 596 mod 13 = 11.$

5. Сравниваются v = 11 и r = 11: равенство выполняется — подтверждается легитимность подписи и целостность полученного сообщения M.

11.2 Практическое задание

В основе задания — ЭК вида $y^2 = x^3 - x + 1 \pmod{751}$: a = -1, b = 1, p = 751, т. е. $E_{751}(-1, 1)$.

Задание I (рассчитано на 2 часа аудиторных занятий).

1.1 Найти точки ЭК для значений x, указанных в табл. 11.4

Таблица 11.4 Диапазоны изменения координаты х для поиска точек ЭК

Вар-т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Парам.															
$\mathcal{X}_{ ext{MUH}}$	0	36	71	106	141	176	201	481	516	551	586	621	656	691	716
$\mathcal{X}_{ ext{Makc}}$	35	70	105	140	175	200	235	515	550	585	620	655	690	715	750

1.2. Разработать приложение для выполнения операций над точками кривой:

a)
$$kP$$
, 6) $P + Q$, *B*) $kP + lQ - R$, Γ) $P - Q + R$.

Варианты коэффициентов приведены в табл. 11.5.

В табл. 11.6 указаны координаты точек, над которыми выполняются операции.

Результаты выполнения операций представить в табличной форме.

Таблица 11.5 Числовые значения коэффициентов для операций над точками

Вар-т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Парам.															
k	8	6	7	9	11	9	11	12	8	11	7	6	9	10	11
l	11	10	8	7	5	7	4	5	5	3	7	7	5	3	5

Задание **II** (рассчитано на 2 часа аудиторных занятий).

- 2.1. Создать оконное приложение для зашифрования/расшифрования собственной фамилии (или имени по выбору) на основе ЭК, указанной в задании \mathbf{I} , для генерирующей точки G=(0,1). Тайный ключ в соответствии с вариантом из табл. 11.7.
- 2.2. Вычислить самостоятельно значение открытого ключа, Q. При этом следует воспользоваться основной формулой (11.8), а также соотношениями (11.3)-(11.5) для случая P = Q; не следует также забывать, что все вычисления производятся по mod 751; см. также пример 5 (вычисление 2P) и пример 7.

Принять, что шифруемым блоком является один символ сообщения, координаты которого на ЭК соответствуют табл. 11.8 (может быть принята за основу и иная таблица).

Параметры k — по собственному усмотрению.

Таблица 11.6 Координаты точек ЭК

Nº	Ко	ординаты точек	
варианта	P	Q	R
1	(58, 139)	(67, 667)	(82, 481)
2	(61, 129)	(59, 365)	(105, 369)
3	(62, 372)	(70, 195)	(67, 84)
4	(56, 332)	(69, 241)	(83, 373)
5	(59, 386)	(70, 195)	(72, 254)
6	(72, 497)	(61, 622)	(70, 556)
7	(74, 170)	(53, 277)	(86, 25)
8	(48, 702)	(69, 241)	(98, 338)
9	(59, 386)	(61, 129)	(100, 364)
10	(72, 497)	(53, 474)	(90, 730)
11	(59, 365)	(59, 386)	(105, 382)
12	(61, 622)	(61, 622)	(90, 730)
13	(61, 129)	(69, 510)	(72, 497)
14	(70, 556)	(56, 419)	(86, 726)
15	(67, 84)	(69, 241)	(66, 199)

Таблица 11.7 Варианты численных значений тайного ключа

Вар-т Парам.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	41	27	25	12	29	44	32	34	16	18	19	51	20	43	50

Задание III (рассчитано на 2 часа аудиторных занятий).

- 3.1. Создать оконное приложение для генерации/верификации ЭЦП на основе алгоритма ECDSA: ЭК $E_{751}(-1, 1)$ с генерирующей точкой G=(416, 55); порядок точки q=13. Тайный ключ в соответствии с вариантом из табл. 11.7. Тайный ключ в соответствии с табл. 11.9.
- 3.2. Вычислить самостоятельно значение открытого ключа, Q. При этом следует воспользоваться основной формулой (11.8), а также соотношениями (11.3)-(11.5) для случая P=Q; не следует также забывать, что все вычисления производятся по mod 751; см. также пример 5 (вычисление 2P) и пример 7.

Параметры k — по собственному усмотрению.

3.3. Хешем подписываемого сообщения, (H(M)), является модуль по основанию 13 координаты x точки ЭК, соответствующей первому символу собственной фамилии, из табл. 11.8. Например, фамилия начинается на букву «Я»: x = 227, тогда 227 mod 13 = 6, значит в данном конкретном случае H(M) = 6.

Таблица 11.8 Координаты точек ЭК, соответствующие символам алфавита

A	(189, 297)	P	(206, 106)
Б	(189, 454)	C	(206, 645)
В	(192, 32)	T	(209, 82)
Γ	(192, 719)	У	(209, 669)
Д	(194, 205)	Φ	(210, 31)
Е	(194, 546)	X	(210, 720)
Ж	(197, 145)	Ц	(215, 247)
3	(197, 606)	Ч	(215, 504)
И	(198, 224)	Ш	(218, 150)
Й	(198, 527)	Щ	(218, 601)
К	(200, 30)	١	,
Л	(200, 721)	Ъ	(221, 138)
M	(203, 324)	Ы	(221, 613)
Н	(203, 427)	Ь	(226, 9)
О	(205, 372)	Э	(226, 742)
Π	(205, 379)	Ю	(227, 299)
		R	(227, 452)

Таблица 11.9 Варианты численных значений тайного ключа

Вар-т Парам.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\overline{d}	3	12	7	4	10	5	6	9	4	10	12	11	5	9	7

Отчет по каждой части задания выполняется отдельно по установленной форме.

Отчет содержит краткие теоретические сведения, описание разработанного приложения, результаты использования приложения в соответствии с целью работы, анализ результатов.

Вопросы для контроля и самоконтроля знаний

- 1. Дать определение эллиптической кривой.
- 2. Записать уравнение ЭК над вещественными числами (ЭК в криптографии, ЕСС).
- 3. Объяснить и показать на примере правила выполнения основных операций над точками ЭК.
 - 4. Что такое «рациональная точка»?
 - 5. Как производится умножение точки ЭК?
- 6. Как производится умножение точки P на число k, если k принимает значение: 2, 5, 11, 20, 32, 100, 256, 751, 1024?
 - 7. Составить алгоритм многократного сложения точки ЭК (умножения

точки на число) на основе примера 7.

- 8. Привести расчеты для точки Q при известных d и G из примера 7.
- 9. Есть ли отличия в применении операций над точками ЭК над конечными полями и над действительными числами?
- 10. Записать уравнение ЭК при формальном ее представлении в следующем виде: Ep(a, b).
 - 11. Из какого числа точек состоит ЭК $E_{11}(6, -9)$? Дать их координаты.
 - 12. Найти все точки ЭК Е₁₁ (1, 2).
- 13. На чем основа криптостойкость систем на основе ЭК? Области применения ЭК в криптографии.
- 14. Что такое «порядок точки» ЭК? Показать на примере. Какую роль этот параметр играет в криптографии на основе ЭК?
- 15. Что такое «базовая точка» ЭК? Какую роль этот параметр играет в криптографии на основе ЭК?
- 16. Объяснить порядок формирования ключевой информации на основе ЭК.
 - 17. Сгенерировать ключевую информацию на основе кривой E_{11} (1, 2).

К списку литературы

51. Standards for Efficient Cryptography. SEC 2: Recommended Elliptic Curve Domain Parameters [Электронный ресурс] https://www.secg.org/SEC2-Ver-1.0.pdf