MATH 738 HW 2 Due 11/29

(1) Let \mathcal{C} be an additive category. An ideal of \mathcal{C} is a collection of subspaces

$$I(X,Y) \subseteq \text{Hom}(X,Y)$$

for each pair of objects X, Y such that for any $f: X \to X'$ and $g: Y \to Y'$ we have

$$g \circ I(X,Y) \circ f \subseteq I(X',Y').$$

Show that $\overline{\mathcal{C}}$ with the same objects as \mathcal{C} and with

$$\operatorname{Hom}_{\overline{\mathcal{C}}}(X,Y) := \operatorname{Hom}_{\mathcal{C}}(X,Y)/I(X,Y)$$

has the structure of an additive category such that

$$X \mapsto X$$
$$f \mapsto \overline{f}$$

is a essentially surjective and full additive functor.

(2) Let P,Q be a bounded above complexes of projectives. Directly show that any quasi-isomorphism

$$Q \rightarrow P$$

has an inverse up to homotopy.

(3) Assume we have a commutative diagram

in an abelian category \mathcal{A} with exact rows. Show that if any two of f^{\bullet} , g^{\bullet} , h^{\bullet} are all isomorphisms, then so is the third.

- (4) Let \mathcal{T} a compactly generated triangulated category and let $\mathcal{P}(X)$ be a predicate depending on objects of \mathcal{T} . Assume that
 - if X and Y are isomorphic and $\mathcal{P}(X)$ is true, then $\mathcal{P}(Y)$ is true for Y
 - ullet P is true for a set of compact generators,
 - if $X \to Y \to Z \to X[1]$ is a triangle and \mathcal{P} is true for two of the three X, Y, and Z, then \mathcal{P} is true for the third.
 - if \mathcal{P} is true for X_a for $a \in A$, then \mathcal{P} is true for $\bigoplus_a X_a$.

Show that \mathcal{P} is true for all objects of \mathcal{T} .

(5) An cohomological functor $H: \mathcal{T}^{op} \to Ab$ is a functor that takes triangles to long exact sequences and for which the natural map

$$H\left(\bigoplus_{a\in A}X_a\right)\to\prod_{a\in A}H(X_a)$$

is an isomorphism. Show that if \mathcal{T} is compactly generated, then any cohomological functor is representable. (Hint: use the resolution constructed in the notes replacing $\operatorname{Hom}(-,X)$ with H.)