אלגברה לינארית 1 - (20109) פתרון לממ"ן 15 – 2021ג

שאלה 1

A א. נחשב את הפולינום האופייני של

$$p_A(t) = \begin{vmatrix} t - 3 & 0 & 4 \\ -1 & t - 1 & 2 \\ -2 & 0 & t + 3 \end{vmatrix} = (t - 1) \begin{vmatrix} t - 3 & 4 \\ -2 & t + 3 \end{vmatrix} = (t - 1)(t^2 - 1) = (t - 1)^2(t + 1)$$

לכן יש למטריצה $\lambda_2=-1$ ו- ו- $\lambda_1=1$, עם ריבוב אלגברי 1 ו- ו- $\lambda_2=-1$ עם ריבוב אלגברי 1. המטריצה $\lambda_3=-1$ לכסינה אם ורק אם הפולינום האופייני מתפרק לגורמים לינאריים אלגברי 1. המטריצה $\lambda_3=-1$ עצמי שלה הריבוב האלגברי שווה לריבוב הגיאומטרי. תנאי זה מתקיים עבור $\lambda_3=-1$ מפני שהריבוב הגיאומטרי הוא תמיד גדול או שווה ל-1 וגם קטן או שווה לריבוב האלגברי. נחשב עתה את הריבוב הגיאומטרי של $\lambda_3=-1$ הוא שווה למימד המרחב העצמי $\lambda_3=-1$ ומרחב זה הוא מרחב הפתרונות של המערכת ההומוגנית

אם שורות שורות ווח שקולת
$$I-A=\begin{pmatrix} -2&0&4\\ -1&0&2\\ -2&0&4 \end{pmatrix}$$
 המטריצה . $(\lambda_{\mathrm{l}}I-A)\underline{x}=0$

ל- שווה ל- בוב הגיאומטרי של 1. מטריצה או מדרגה מדרגה בוב הגיאומטרי
$$C = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

, והוא שווה לריבוב האלגברי שלו. הוכחנו שתנאי הלכסינות מתקיימים, $2 = 3 - \rho(I - A)$

$$D = egin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 לכן A לכסינה ודומה למטריצה

נחשב עתה את המטריצה P ידוע שהמטריצה P היא מטריצת מעבר מהבסיס הסטנדרטי u_1,u_2 עם הפסיס החסטנדרטי אורכב P לבסיס מורכב מווקטורים עצמיים עצמיים P לערך עצמי P אם כן, נמצא בסיס לכל אחד מתאימים לערך עצמי P והווקטור P מתקבל מהמטריצה P (כי P הוא מרחב הפתרונות מהמרחבים העצמיים. בסיס ל- P מתקבל מהמטריצה P (כי P הוא מרחב הפתרונות של המערכת P וורח וור ל-P שקולת שורות ל-P יוצא כי P בסיס ל- P בסיס ל- P נמצא כעת את המרחב העצמי P השייך ל- P בסיס ל- P ב

איחוד הבסיסים אל \mathbf{R}^3 המורכב $B=B_1\cup B_2=((2,0,1),(0,1,0),(2,1,2))$ המורכב

.
$$P = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
 מווקטורים עצמיים וממנו מתקבלת המטריצה

 $(T^{2020})_E=[T]_E^{2020}=1$ מכאן: מכאן משפט 10.4.1 מתקיים T^{2020} מתקיים T^{2020} מתקיים T^{2020} מרקיים T^{2020} מחלן T^{2020} מרקיים הזהות של T^{2020} מרקיים הזהות של T^{2020}

שאלה 2

למציאת כל הערכים העצמיים, נחשב את המטריצה של T ביחס לבסיס שמתאים לנתונים. למציאת כל הערכים העצמיים, נחשב את המטריצה של v_1,v_2,v_3 ביחס הווקטורים v_1,v_2,v_3 בלתי תלויים לינארית (בדיקה סטנדרטית), לכן $T(v_3)$ הוא בסיס ל- \mathbf{R}^3 . נמצא את הקואורדינטות $T(v_3)$ של $T(v_3)$ ביחס לבסיס $T(v_3)$ הגדרתן הן מקיימות $T(v_3)$ ביחס לב $T(v_3)$ ולכן $T(v_3)$ הוא הפתרון של המערכת

ההומוגנית שמטריצת המקדמים שלה היא
$$\begin{pmatrix} 1 & 1 & 1 & a-4 \\ 1 & 1 & -1 & a+6 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 מהחישוב יוצא כי

והפולינום האופייני של
$$T$$
 הוא $[T]_B = \begin{pmatrix} -5 & 0 & a+1 \\ 0 & 2 & 0 \\ 0 & 0 & -5 \end{pmatrix}$ ולכן $[T(v_3)]_B = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} a+1 \\ 0 \\ -5 \end{pmatrix}$

הה לזה לזה לה - -5 ו- 2 הם T הם עמיים העצמיים מכך נובע כי הערכים . $p_T(t)=(t+5)^2(t-2)$ בשאלה 1, מתקבל שהריבוב הגיאומטרי של 2 שווה לריבוב האלגברי שלו. נבדוק מהו הריבוב הגיאומטרי של -5 יזהו המימד של מרחב הפתרונות של $-5I-[T]_B)x=0$. נדרג את מטריצת המקדמים :

$$.(-5I - [T]_B) = \begin{pmatrix} 0 & 0 & -a - 1 \\ 0 & -7 & 0 \\ 0 & 0 & 0 \end{pmatrix} \longrightarrow \cdots \longrightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -a - 1 \\ 0 & 0 & 0 \end{pmatrix}$$

אם T -1 והריבוב הגיאומטרי של -5 שווה ל-2 ו- T לכסינה. $\rho(-5I-[T]_B)=1$ אם -5 אז $\rho(-5I-[T]_B)=2$ והריבוב הגיאומטרי של -5 שווה ל-1 ו- T אינה לכסינה. a=-1 לסיכום, T לכסינה אם ורק אם -1

שאלה 3

שאלה 4

השאלה, ההעתקה T-2I היא איזומורפיזם.

 $\rho(A)=1$ ומהנתון (11.3.1 מכיוון ש- A אינה הפיכה ($\rho(A)<5$), ס הוא ערך עצמי של A (שאלה (11.3.1 ומהנתון $\lambda=0$ שונה ב- $\lambda=0$ שונה בהגיאומטרי של $\lambda=0$ שונה ל- $\lambda=0$ שונה ל- $\lambda=0$ שונה בהגיאומטרי של (11.5.3 מכיוון שהפולינום האופייני של A הוא פולינום מתוקן ממעלה הוא לפחות A (משפט 11.5.3), ומכיוון שהפולינום האופייני של $\lambda=0$ הוא פולינום מתוקן ממעלה הוא לפחות $\rho_A(t)=t^4(t-2)$ ש- $\mu_A(t)=t^4(t-2)$ הוא מהצורה (11.4.5 ש- $\mu_A(t)=t^4(t-2)$ הוא מהצורה (11.4.5 שלגברי $\lambda=0$ עם ריבוי אלגברי $\lambda=0$ ערכים עצמיים, $\lambda=0$ עם ריבוי אלגברי (1.5 עם ריבוי אלגברי $\lambda=0$ שווה לריבוי הגיאומטרי של ערך עצמי הוא גדול או שווה ל- וגם שהוא קטן או שווה לריבוי הגיאומטרי שלו. לכן, הריבוי הגיאומטרי של 2 הוא גם 1. לסיכום, הוכחנו שעבור כל ערך עצמי הריבויים שווים וגם שהפולינום האופייני מתפרק לגורמים לינאריים. לכן, לפי משפט 11.5.4 המטריצה $\lambda=0$

שאלה 5

אם ורק אם אם ורק אם אם אייך למשלים האורתוגונלי אם W ב- v=(x,y,z,t) א. וקטור v=(x,y,z,t) א. ואת אומרת אומרת v=(1,-1,-1,1)=0

$$.W^{\perp} = Sp\{(1,0,0,-1),(0,1,0,1),(0,0,1,1)\}$$

נבנה בסיס אורתונורמלי ל- W^{\perp} בעזרת התהליך של גרם-שמידט מופעל על הבסיס

$$W^{\perp}$$
 של $\{u_1 = (1,0,0,-1), u_2 = (0,1,0,1), u_3 = (0,0,1,1)\}$

לפי הנוסחה שמופיעה בעמוד 267 בכרך בי, נגדיר:

$$u_2^* = (0,1,0,1) + \frac{1}{2}(1,0,0,-1) = (\frac{1}{2},1,0,\frac{1}{2}), u_1^* = (1,0,0,-1)$$

$$u_3^* = (0,0,1,1) + \frac{1}{2}(1,0,0,-1) - \frac{1}{3}(\frac{1}{2},1,0,\frac{1}{2}) = (\frac{1}{3},-\frac{1}{3},1,\frac{1}{3})$$

: אותם אותם ומנרמלים זה לזה אכן אורתוגונליים אכן u_3^*, u_2^*, u_1^* מוודאים שהוקטורים

נגדיר
$$\left\|u_{3}^{*}\right\| = \frac{2}{\sqrt{3}}$$
, $\left\|u_{2}^{*}\right\| = \frac{\sqrt{3}}{\sqrt{2}}$, $\left\|u_{1}^{*}\right\| = \sqrt{2}$ יוצא כי $i = 1, 2, 3$ עבור $u_{i}^{'} = \frac{u_{i}^{*}}{\left\|u_{i}^{*}\right\|}$

$$u_{3} = (\frac{1}{\sqrt{12}}, -\frac{1}{\sqrt{12}}, \frac{3}{\sqrt{12}}, \frac{1}{\sqrt{12}}), u_{2} = (\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0, \frac{1}{\sqrt{6}}), u_{1} = (\frac{1}{\sqrt{2}}, 0, 0, -\frac{1}{\sqrt{2}})$$

 $.W^{\perp}$ של אורתונורמלי היא בסיס היא $\{u_1^{'},u_2^{'},u_3^{'}\}$ הקבוצה

ב. יהי $u \in W$ -ש על $u \in W$ על u = (1,0,1,1) על החוקטור על האורתוגונלי של הוקטור u = v על u = (a,-a,-a,a) על u = (a,-a,-a,a) על על u = (a,-a,-a,a) על על על u = (a,-a,-a,a) על על על u = (a,-a,-a,a) על על על u = (a,-a,-a,a) אורתוגונלי של על על u = (a,-a,-a,a)

$$u = (\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{4})$$
 הוא

שאלה 6

 $\{u,v\}$ ונוכיח שהקבוצה $\{u,v\}^\perp=\{u\}^\perp$ יהיו המקיימים , $u\neq v$, $\mathbf{0}$ -שונים $u,v\in\mathbf{R}^n$ יהיו יהיו - שונים מיד ש $\{u,v\}^\perp=\{u\}^\perp=\{u\}^\perp$, ומהערה בי עמי 248 מתקבל ש

$$v,u
eq \mathbf{0}$$
 -ו מאחר ו- $Sp\{u,v\} = Sp\{u\}$ עייפ משפט ($(Sp\{u,v\})^{\perp}$) ולכן ולכן $\left((Sp\{u,v\})^{\perp}\right)^{\perp}$

וגם $\dim Sp\{u\}=1$ ו- אבסיס ל- $Sp\{u\}=1$ ור בסיס לינארית, לכן לינארית, ללויה לינארית בלויה בלתי

. נובע מכך שהקבוצה $\{u,v\}$ תלויה לינארית כי מכילה יותר מוקטור אחד. $\dim Sp\{u,v\}=1$