Universidade Federal do Rio de Janeiro

Caderno de Laboratório Controle de um pêndulo não linear

Aluno Endryws Medeiros Costa de Moura endmoura@poli.ufrj.br

Professor Marcelo Amorim Savi

 ${\bf savi@mecanica.coppe.ufrj.br}$

Caderno iniciado em 19 de setembro de 2017

Conteúdo

0.1	Análise numérica do problema	3
Espaço	o de estado para o pêndulo não-linear	4
1	Resposta periódica	4
2	Resposta caótica	5
Seção	de Poincaré	6
ldentif	icação das órbitas periódicas instáveis imersas no atrator apresentado	7
1	OPIs identificadas	7
2	Espaços de estado das órbitas identificadas	8

0.1 Análise numérica do problema

Espaço de estado para o pêndulo não-linear

1 Resposta periódica

Abaixo são apresentadas as figuras dos espaços de estado para frequências de forçamento que resultam em respostas periódicas.

Figura 1: Espaço de estado para um forçamento de 3.59 rad/s

Figura 2: Espaço de estado para um forçamento de $5.1~\mathrm{rad/s}$

2 Resposta caótica

Abaixo é apresentada a figura do espaço de estado para a frequência de 5.61 $\frac{rad}{s},$ que resulta em uma resposta caótica.

Figura 3: Espaço de estado para um forçamento de $5.1~\mathrm{rad/s}$

Seção de Poincaré

Abaixo é apresentada a seção de Poincaré para uma frequência de forçamento de 5.61 $\frac{rad}{}$.

Figura 1: Atrator estranho para w = 5.61 $\frac{rad}{s}$

Identificação das órbitas periódicas instáveis imersas no atrator apresentado

1 OPIs identificadas

Utilizando r
1 = 0.3 e r² = 0.6 foram identificadas as seguintes OPIs.

x(rad)	y(rad/s)	n
4.1	-0.74	1
2.1	-2.04	1
2.65	-10.62	2
6.5	-6.0	2
4.17264849349	8.0428748441	3
5.94706541985	-0.6067772472	3
2.27480878676	2.3392263042	3
2.45846211242	-8.0518576316	4
0.25182552135	10.0102125165	5
5.46130245257	-13.9295391669	5
0.40502528744	-14.1037540837	5
0.54618738231	-3.09172989752	5
5.58822458831	11.3129421811	5
5.54611674952	2.71994232771	6
0.94182908055	6.91173601164	6
5.28879201165	7.61171362826	6
0.67314851499	-10.5069349506	6
3.20607450608	-2.38651681226	6
4.21389240354	1.63170963314	6
5.48445583246	-5.08170099625	6
3.16436778537	1.90374698997	6
2.20701614324	-4.34496029587	6
5.26738222216	0.779490648627	6
1.10509496686	5.52462297441	6
1.28271281324	-14.2296486224	7
5.08748787592	12.0889148879	7

2 Espaços de estado das órbitas identificadas

Abaixo são apresentados os espaços de estado para cada uma das órbitas identificadas Órbitas de período 1:

Figura 1: Espaço de estado para um forçamento de 3.41011183943 rad/s

Figura 2: Espaço de estado para um forçamento de $2.1~\mathrm{rad/s}$

Órbitas de período 2:

Figura 3: Espaço de estado para um forçamento de 2,65 rad/s

Figura 4: Espaço de estado para um forçamento de 2,65 rad/s