Clasa XI-XII Proba 2

Problema minerale

(autor lector dr. Radu- Eugen Boriga - Univ. "Titu Maiorescu" București)

Fie un mineral cu formula $s=s_1s_2s_3...s_n$ de lungime n și $s_{i,j}=s_is_{i+1}...s_j$, unde $s_1,s_2,...,s_n$ sunt toate substanțe instabile. Notăm cu $M_{i,j}$ mulțimea substanțelor instabile din care poate proveni $s_{i,j}$. Mai întâi, se observă că mulțimea $M_{i,i}$ se poate determina din reacțiile de forma A s_i , respectiv mulțimea $M_{i,i}$ este formată din substanțele instabile A din care poate proveni substanța stabilă s_i . În continuare, vom folosi metoda programării dinamice pentru a calcula $M_{i,j}$, astfel: pentru fiecare număr natural k cuprins între i și j-1, se consideră toate șirurile de substanțe instabile BC din produsul cartezian $M_{i,k} \times M_{k+1,j}$ și se determină mulțimea tuturor substanțelor instabile A din care poate proveni șirul BC.

În acest moment, natura mineralului cu formula $s=s_1s_2s_3...s_n$ se poate determina analizând mulţimea $M_{1,n}$, astfel:

- dacă M_{1,n} este mulțimea vidă, atunci se va afișa valoarea 0;
- altfel, dacă M_{1, n} conține substanța primordială S, atunci se va afișa valoarea 1;
- altfel, se va afișa valoarea 2.

În funcție de modul în care se determină elementele mulțimii $M_{i,j}$, se pot obține soluții de complexități diferite. Pentru a obține punctaj maxim, este necesară o implementare cu complexitatea $O(m^*k^2*n^3)$, unde k reprezintă numărul substanțelor instabile distincte din reacții.