Домашня робота з курсу "Теорія Ймовірності"

Студента 3 курсу групи МП-31 Захарова Дмитра

30 жовтня 2023 р.

Вправа 1.

Теорема. Нехай на дискретному ймовірністному просторі (Ω, p) задано випадковий вектор $\boldsymbol{\xi}:\Omega\to\mathbb{R}^n$. Нехай $f:\boldsymbol{\xi}(\Omega)\to\mathbb{R}$. Якщо $|\boldsymbol{\xi}(\Omega)|\in\mathbb{N}$, то завжди існує математичне сподівання:

$$\mathbb{E}[f(\boldsymbol{\xi})] = \sum_{\boldsymbol{x} \in \boldsymbol{\xi}(\Omega)} f(\boldsymbol{x}) p(\boldsymbol{\xi} = \boldsymbol{x})$$

Якщо ж $\boldsymbol{\xi}(\Omega)$ зліченна, то це математичне очікування існує, якщо ряд $\sum_{\boldsymbol{x} \in \boldsymbol{\xi}(\Omega)} f(\boldsymbol{x}) p(\boldsymbol{\xi} = \boldsymbol{x})$ збігається абсолютно.

Доведення. Розглянемо випадок, коли множина $\boldsymbol{\xi}(\Omega)$ скінченна. Нехай $f(\boldsymbol{\xi}(\Omega)) = \{y_1, \dots, y_m\}$ і позначимо $\mathcal{X}_i := \{\boldsymbol{x} \in \boldsymbol{\xi}(\Omega) : f(\boldsymbol{x}) = y_i\}$. Тоді, за означенням,

$$\mathbb{E}[f(\boldsymbol{\xi})] \triangleq \sum_{i=1}^{m} y_i p(f(\boldsymbol{\xi}) = y_i)$$

Проте, цей вираз можна записати так:

$$\mathbb{E}[f(\boldsymbol{\xi})] = \sum_{i=1}^{m} y_i p(\boldsymbol{\xi} \in \mathcal{X}_i) = \sum_{i=1}^{m} y_i \sum_{\boldsymbol{x} \in \mathcal{X}_i} p(\boldsymbol{\xi} = \boldsymbol{x}) = \sum_{i=1}^{m} \sum_{\boldsymbol{x} \in \mathcal{X}_i} y_i p(\boldsymbol{\xi} = \boldsymbol{x})$$

Оскільки $\forall \boldsymbol{x} \in \mathcal{X}_i : f(\boldsymbol{x}) = y_i$, то

$$\mathbb{E}[f(oldsymbol{\xi})] = \sum_{i=1}^m \sum_{oldsymbol{x} \in \mathcal{X}_i} f(oldsymbol{x}) p(oldsymbol{\xi} = oldsymbol{x})$$

Нарешті помічаємо, що $\sum_{i=1}^m \sum_{\boldsymbol{x} \in \mathcal{X}_i} = \sum_{\boldsymbol{x} \in \boldsymbol{\xi}(\Omega)}$ (оскільки $\bigcap_{i=1}^m \mathcal{X}_i = \emptyset$ і при цьому $\bigcup_{i=1}^m \mathcal{X}_i = \boldsymbol{\xi}(\Omega)$), тому остаточно

$$\mathbb{E}[f(\boldsymbol{\xi})] = \sum_{\boldsymbol{x} \in \boldsymbol{\xi}(\Omega)} f(\boldsymbol{x}) p(\boldsymbol{\xi} = \boldsymbol{x})$$

Як бачимо, у разі скінченності $\boldsymbol{\xi}(\Omega)$ усі переходи справедливі. Якщо ж $\boldsymbol{\xi}(\Omega)$ зліченна, то для останнього переходу має виконуватись абсолютна збіжність $\sum_{\boldsymbol{x} \in \boldsymbol{\xi}(\Omega)} f(\boldsymbol{x}) p(\boldsymbol{\xi} = \boldsymbol{x})$.

Вправа 2.

Умова. Нехай на дискретному ймовірнісному просторі (Ω, p) задано дискретні випадкові величини ξ , η , причому існують $\mathbb{E}[\xi], \mathbb{E}[\eta]$. Тоді для будь-яких $a, b \in \mathbb{R}$ існує

$$\mathbb{E}[a\xi + b\eta] = a\mathbb{E}[\xi] + b\mathbb{E}[\eta]$$

Розв'язок. Якщо існують $\mathbb{E}[\xi], \mathbb{E}[\eta],$ то існують і $\mathbb{E}[a\xi]$ та $\mathbb{E}[b\eta].$ Таким чином, якщо розглянути випадкові величини $\widetilde{\xi} = a\xi, \widetilde{\eta} = b\eta,$ то маємо:

$$\mathbb{E}[a\xi + b\eta] = \mathbb{E}[\widetilde{\xi} + \widetilde{\eta}]$$

Використаємо лінійність математичного очікування $(\mathbb{E}[\widetilde{\xi}]$ та $\mathbb{E}[\widetilde{\eta}]$ існують, як показано вище):

$$\mathbb{E}[\widetilde{\xi} + \widetilde{\eta}] = \mathbb{E}[\widetilde{\xi}] + \mathbb{E}[\widetilde{\eta}]$$

Таким чином,

$$\mathbb{E}[a\xi + b\eta] = \mathbb{E}[a\xi] + \mathbb{E}[b\eta] = a\mathbb{E}[\xi] + b\mathbb{E}[\eta]$$

В останьому переході ми використали $\mathbb{E}[a\xi]=a\mathbb{E}[\xi]$ та $\mathbb{E}[b\eta]=b\mathbb{E}[\eta]$ оскільки за умовою $\mathbb{E}[\xi]$ та $\mathbb{E}[\eta]$ існують.

Вправа 3.

Довести, що

$$m_n \triangleq \mathbb{E}[\xi^n]$$
 ichye $\iff \mu_n \triangleq \mathbb{E}[(\xi - \mathbb{E}[\xi])^n]$ ichye

Розв'язок. Доведемо теорему у бік \rightarrow . Оскільки існує m_n , то існує і m_{n-1}, \ldots, m_0 (це було доведено в лекції). Таким чином:

$$\mu_n \triangleq \mathbb{E}[(\xi - \mathbb{E}[\xi])^n] = \mathbb{E}\left[\sum_{k=0}^n (-1)^k C_n^k \cdot \mathbb{E}[\xi]^{n-k} \xi^k\right]$$
$$= \sum_{k=0}^n (-1)^k C_n^k \cdot \mathbb{E}[\xi^k] \mathbb{E}[\xi]^{n-k} = \sum_{k=0}^n (-1)^k C_n^k \cdot m_k m_1^{n-k}$$

Оскільки всі $m_j, j \in \{0, ..., n\}$ існують, то існує і вираз $\sum_{k=0}^{n} (-1)^k C_n^k m_{n-k} m_1^k$, отже існує і μ_n .

Доводимо у бік ← за індукцією. Нехай виконується

$$\mu_n$$
 ichye $\Longrightarrow m_n$ ichye

Доведемо, що це справедливо і для n+1. Отже:

$$\mu_{n+1} = \mathbb{E}[(\xi - \mathbb{E}[\xi])^{n+1}] = \mathbb{E}\left[\sum_{k=0}^{n+1} (-1)^k C_{n+1}^k \cdot \mathbb{E}[\xi]^{n+1-k} \xi^k\right]$$

$$= \sum_{k=0}^{n+1} (-1)^k C_{n+1}^k \cdot m_k m_1^{n+1-k} = \sum_{k=0}^{n} (-1)^k C_{n+1}^k \cdot m_k m_1^{n+1-k} + (-1)^{n+1} \cdot m_{n+1}$$

$$= R_n + (-1)^{n+1} m_{n+1}$$

Звідси, можемо виразити m_{n+1} :

$$m_{n+1} = (-1)^{n+1} (\mu_{n+1} - R_n)$$

Ми знаємо, що $R_n:=\sum_{k=0}^n (-1)^k C_{n+1}^k \cdot m_k m_1^{n+1-k}$ існує, оскільки воно містить лише m_0,m_1,\ldots,m_n , а вони існують, оскільки m_n існує. Також, за припущенням індукції, існує μ_{n+1} , тому і $\mu_{n+1}-R_n$ існує, звідки випливає існування m_{n+1} . Твердження доведено.

Вправа 4.

Умова. Довести наступні властивості середнього квадратичного відхилення:

- 1. $\sigma(\xi) \ge 0$
- 2. $\sigma(\xi) = 0 \iff \exists c \in \mathbb{R} : p(\xi = c) = 1$
- 3. $\sigma(\xi + c) = \sigma(\xi)$
- 4. $\sigma(c\xi) = |c|\sigma(\xi)$
- 5. $\sigma(\xi) = \sqrt{\mathbb{E}[\xi^2] \mathbb{E}^2[\xi]}$

Розв'язок.

Властивість 1. За означенням $\sigma(\xi) \triangleq \sqrt{\mathrm{Var}[\xi]}$. За властивістю дисперсії, $\mathrm{Var}[\xi] \geq 0$, тому і $\sqrt{\mathrm{Var}[\xi]}$ визначено і більше за 0.

Bластивість 2. Оскільки $\sigma(\xi) \triangleq \sqrt{\mathrm{Var}[\xi]} = 0$, то

$$\sigma(\xi) = 0 \iff \operatorname{Var}[\xi] = 0$$

Тоді з першої властивості дисперсії, а саме

$$Var[\xi] = 0 \iff \exists c \in \mathbb{R} : p(\xi = c) = 1$$

випливає така сама еквівалентність для $\sigma(\xi)$.

Пункт 3. Маємо:

$$\sigma(\xi + c) \triangleq \sqrt{\operatorname{Var}[\xi + c]} = \sqrt{\operatorname{Var}[\xi]} = \sigma(\xi)$$

Пункт 4. Маємо:

$$\sigma(c\xi) \triangleq \sqrt{\mathrm{Var}[c\xi]} = \sqrt{c^2 \mathrm{Var}[\xi]} = |c| \sqrt{\mathrm{Var}[\xi]} = |c| \sigma(\xi)$$

Пункт 5. Оскільки $\mathrm{Var}[\xi] = \mathbb{E}[\xi^2] - \mathbb{E}^2[\xi]$, а $\sigma(\xi) \triangleq \sqrt{\mathrm{Var}[\xi]}$, маємо $\sigma(\xi) = \sqrt{\mathbb{E}[\xi^2] - \mathbb{E}^2[\xi]}$.