

Determining the Hubble Constant from Observations of Distance Modulus and Redshift for Type Ia Supernovae

Henry Shi, Will Farr Ph.D.

Department of Physics and Astronomy, Stony Brook University Cosmology Group

Background & Purpose

• Universe is expanding, modeled by equation

$$\mathbf{v} = \mathbf{H}_0 \mathbf{d}$$

where v = recessional velocity of galaxy

 H_0 = Hubble's constant

d = distance of galaxy

Plot of recessional velocity v vs distance d for several galaxies. The slope of the best-fit line is the Hubble constant H_0 .

- Disagreement on H_0 : current accepted value is $H_0 = 72 \pm 2 \text{ km s}^{-1} \text{ Mpc}^{-1}$.
- Prior research: Scolnic 2018¹ Pantheon Dataset
 - Observed distance modulus and redshift for 1048 Type Ia supernovae
 - \circ distance modulus \sim distance d, redshift \sim velocity v.

<u>Purpose of experiment:</u> To determine a precise value of H_0 by fitting a model to the Pantheon dataset and using the model parameters to calculate H_0 .

Procedure

- Definitions of parameters:
 - \circ $\Omega_{\rm m}$ = mass density of universe
 - \circ w = p/ ρ = pressure / energy density = equation of state of universe
 - \circ Δ dm = distance modulus offset between the model and data
- 1. Plot distance modulus vs redshift values for Pantheon dataset of 1048 points.
- 2. Initialize Markov Chain with $(\Omega_{m0}, w_0, \Delta dm_0) = (0.0, -1.0, 0.0)$.
- 3. Iterate through Markov Chain. Each Markov-Chain Monte Carlo (MCMC) iteration:
 - a. Draw the latest value of chain θ , as original parameters. Draw proposal θ' from normal distribution centered on θ .
 - b. Calculate log likelihood function of original parameters $lnf(\Omega_m, w, \Delta dm)$ and proposed parameters $lnf(\Omega_m', w', \Delta dm')$.

$$\ln f(\Omega_m, w, \Delta_{dm}) = \sum_{i=1}^{N} \left[\ln \left(\frac{1}{\sigma_{dm_i} \sqrt{2\pi}} \right) - \frac{1}{2} \frac{(dm_{obs} - dm_{predicted}(\Omega_m, w, \Delta_{dm}))^2}{(\sigma_{dm_i})^2} \right]$$

- c. Calculate ln(r) where 0 < r < 1.
- d. If $\frac{\ln f(\Omega_m', w', \Delta dm') \ln f(\Omega_m, w, \Delta dm)}{\ln (r)} > \ln (r),$ then add proposed parameters $\theta' = (\Omega_m', w', \Delta dm')$ to chain. Otherwise add current parameters $\theta = (\Omega_m, w, \Delta dm)$ again.
- 4. After desired number of iterations, for each parameter:
 - \circ mean \rightarrow experimental value
 - \circ standard deviation \rightarrow uncertainty in experimental value

Results

• Experimental values: $\Omega_m = 0.337 \pm 0.066$, $w = -1.182 \pm 0.521$, $\Delta dm = 10.634 \pm 0.261$

Discussion & Conclusion

	Scolnic (2018)	Shi and Farr	z-score	p-value	Significant? (α=0.05)
Ω_{m}	0.307 ± 0.012	0.337 ± 0.066	0.447	0.655	no
W	-1.026 ± 0.041	-1.182 ± 0.521	-0.299	0.765	no

- Our Ω_m and w values are not significantly different from Scolnic (2018)
- Adding Δ dm decreased quality of fit \rightarrow sampling process may be faulty!
- Unable to calculate H_0 from parameters \rightarrow results are inconclusive

Future goals:

- Minimize systematic error in model fit \rightarrow improve precision and accuracy for $\Omega_{\rm m}$, w, $\Delta_{\rm dm}$
- Determine the value of the Hubble constant H_0 based on Ω_m , w, Δ_{dm}

References & Acknowledgments

- Papers consulted
 - Scolnic, D.M. The Astrophysical Journal, 859:101 (2018).
 - Kirshner, Robert. PNAS, 101:8-13 (2004).
 - Hogg, David W. "Data Analysis Recipes: Using Markov Chain Monte Carlo," (2017).
 - Hogg, David W. "Distance Measures in Cosmology," (2000).
 - Hogg, David W. "Fitting a Model to Data," (2010).
- MCMC program written in Python and its libraries SciPy, NumPy, Matplotlib, and Jupyter Notebook, courtesy of Python Software Foundation www.python.org
- Log likelihood function uses cosmological distance functions from Hogg (2000)
- Supported with a grant from the PSEG Explorations in STEM 2020 program