ic555b.sqproj

Description

Figure 1: Astable operation of the 555 timer.

The purpose of the astable circuit shown in Fig. 1 is to produce oscillations whose frequency can be controlled by R_a , R_b , and C. The trigger and threshold inputs are tied together in this circuit, and we have $V_{\text{trigger}} = V_{\text{threshold}} = V_c$. The circuit operation can be understood by realizing that the following conditions hold:

$$\begin{split} V_{CC}/3 &< V_c(t) < 2\,V_{CC}/3 & R = 0, S = 0 & \text{flip-flop holds its state.} \\ V_c(t) &< V_{CC}/3 & R = 0, S = 1 & \text{flip-flop is set } (Q = 1). \\ V_c(t) &> 2\,V_{CC}/3 & R = 1, S = 0 & \text{flip-flop is reset } (Q = 0). \end{split}$$

Figure 2: Waveforms for a stable operation of the 555 timer.

Consider the interval marked T_1 in Fig. 2. During this time, Q = 1, the switch T1 is open, and the capacitor charges toward V_{CC} through $(R_a + R_b)$. However, as soon as V_c reaches $2 V_{CC}/3$, R becomes 1 (S is still 0), and the flip-flop gets reset to Q = 0.

When Q becomes 0, \overline{Q} becomes 1, and the switch T1 closes. The capacitor now starts discharging toward 0 V through R_b . However, when V_c crosses $V_{CC}/3$, S becomes 1 (R is still 0), and the flip-flop gets set to Q = 1, bringing us back to the T_1 phase. The output keeps oscillating between 0 and 1, as shown in Fig. 2.

The intervals T_1 and T_2 can be computed using the limits $V_{CC}/3$, S, $2V_{CC}/3$, S on $V_c(t)$ and the appropriate time constants ($\tau_1 = (R_a + R_b) C$ during the charging phase, and $\tau_2 = R_b C$ during the discharging phase). The result is,

$$T_1 = (R_a + R_b) C \ln 2, (1)$$

$$T_2 = R_b C \ln 2. (2)$$

Exercise Set

- 1. For $R_a=0.5\,\mathrm{k}\Omega,\ R_b=0.5\,\mathrm{k}\Omega,$ and $C=0.5\,\mu F,$ calculate T_1 and T_2 . Verify by simulation.
- 2. By simulation, obtain waveforms for V_c and Q. Compare with the expected waveforms shown in Fig. 2.
- 3. How will you make the output waveform nearly symmetric (i.e., $T_1 \approx T_2$)? Verify by simulation.