Sample Pre-Lab Quiz Questions for Expt 1

Duration: 10 min, Max marks: 5 marks

- 1. Out of the following statements regarding Digital Multimeter (DMM), mark all the correct options.
 - A) The input resistance of a DMM for voltage measurements is typically 10 k Ω .
 - B) For measuring the voltage at node A with respect to node B in a circuit, the $\mathbf{V}\mathbf{\Omega}\mathbf{m}\mathbf{A}$ input terminal of the DMM should be connected to node A and the $\mathbf{C}\mathbf{O}\mathbf{M}$ terminal to node B.
 - C) For measuring the voltage at node A with respect to node B in a circuit, the $\mathbf{V}\mathbf{\Omega}\mathbf{m}\mathbf{A}$ input terminal of the DMM should be connected to node B and the \mathbf{COM} terminal to node A.
 - D) The DMM display showing '1' during a resistance measurement is an indication that the resistance connected between the $\mathbf{V}\mathbf{\Omega}\mathbf{m}\mathbf{A}$ and $\mathbf{C}\mathbf{O}\mathbf{M}$ terminals is much smaller than the chosen resistance range.
 - E) The DMM display showing '1' during a resistance measurement is an indication that the resistance connected between the $\mathbf{V}\mathbf{\Omega}\mathbf{m}\mathbf{A}$ and $\mathbf{C}\mathbf{O}\mathbf{M}$ terminals is higher than the chosen resistance range.
- 2. In the following circuit what is the total resistance in ohms across the terminals A and B?

- 3. With regard to the Digital Storage Oscilloscope (DSO), mark all the correct options.
 - A) DSOs are versatile electronic instruments used for displaying and measuring time varying current signals.
 - B) DSOs are versatile electronic instruments used for displaying and measuring time varying voltage signals.
 - C) The input resistance of the DSO channel (without using the DSO probe) is 1 M Ω .
 - D) The input resistance of the DSO channel (without using the DSO probe) is 1 k Ω .
 - E) In order to display a test signal 4 sin ωt V of frequency 500 Hz on the DSO, the proper scale for the vertical channel is 1 ms/div and horizontal scale 1 V/div.
 - F) In order to display a test signal 4 sin ωt V of frequency 500 Hz on the DSO, an appropriate scale for the vertical channel is 1 V/div and for the horizontal scale is 1 ms/div.
- 4. The circuit diagram of an RC filter is shown below. Its cut-off frequency was found to be $(1000/\pi)$ Hz. $C = 0.1 \mu F$. What is the value of R in ohms?

5. Circuit diagram of the RC filter circuit of Expt 1 is shown below. Its cut-off frequency is given as f_c Hz. For this circuit mark **all the correct options** from the following.

- A) This circuit is that of a high-pass filter as it attenuates frequencies much higher than its cut-off frequency f_c .
- B) This circuit is that of a high-pass filter as it attenuates frequencies much lower than its cut-off frequency f_c .
- C) At very low frequencies (i.e. frequencies $\ll f_c$) the gain (ratio of output voltage to input voltage) will be close to unity.
- D) At very high frequencies (i.e. frequencies $>> f_c$) the gain (ratio of output voltage to input voltage) will be close to unity.

