Building Economic Models of Human-Computer Interaction Part IV

by @leifos and @guidozuc

BUILDING A MODEL

- In economic models, there is an (economic) agent, who makes choices to advances their objectives.
- They make choices under constraints.
- So, who are these people, and
 - what are they tying to achieve (maximize/minimize)?
- What constraints are they under?
 - Time, money, knowledge, skills?
- What interactions are available?
 - And how do they interact with the system?
- What assumptions are being made?

- 1. Get a precise definition of the problem, and all relevant data about it
 - Identify the factors and variable that may affect the system
 - Uncontrollable factors these are environmental and not under direct control
 - Controllable factors these can be controlled by the system and/or user
 - What factors are stochastic i.e. probabilistic?

- Assume there is some agent, who makes choices to advance their objectives.
 - They make choices under constraints.
- So, who are these agents/people, and
 - what are they trying to achieve (maximize/minimize)?
- What constraints are they under?
 - Time, money, knowledge, skills?
- What interactions are available?
 - And how can they interact with the system?

- What benefit do they receive from the choices/interactions they make?
- What costs do they incur from the choices/interaction they make?
- Draw/sketch out what the process is that the person/agent undertakes.
- Consider how the variables/actions relate together.

- 2. Construct a mathematical model of the problem
 - i.e. define the objective function that needs to be minimized or maximized
 - Usually real world problems are very complicated
 - so make a simplified version by
 - Making assumptions
 - Using heuristics
 - And taking approximations.

3. Solve the model

- This could be done:
 - analytically i.e. mathematically
 - graphically i.e. plotting out the functions
 - via simulation especially if there are stochastic variables

4. Implement the model

- Put it into practice
- Draw hypotheses from the model

COMPUTATIONAL EXAMPLE

Computational Approach

- Fix a number of parameters, and then varying one parameter over a range of values
- Plot how the search behavior (outputs) changes in response to the changes in the parameter.
- If some variables are stochastic, then a simulation can be performed, where the computations repeated for different roles of the dice.

- Under IFT, the forager wants to maximize the amount of gain per unit of time.
 - i.e.

$$\max \frac{\Delta g}{\Delta t}$$

- Let's assume that we know:
 - The time a forager spends per query (say t_q)
 - The time a forager spends time per document (say t_d)

- We know that the total time spent after examining i documents is:
 - the query time (t_q) plus the number of documents examined (i) multiplied by the document time (t_d)

$$t_i = t_q + i.t_d$$

- Next we need to work out the gain received from each document assessed.
- Each document examined yields a certain amount of gain
 - Hmm... how much?

- No idea, so lets play and make something up!
 - Lets say that the 1st document gives 4 pieces of information, the 2nd document gives 3 pieces, then 2, 3, 1, 1, 0, 0 for the subsequent documents.
 - So the gain of document k is:

k	1	2	3	4	5	6	7	8
g(d _k)	4	3	2	3	1	1	0	0

 Note that we could of ran a query and got the gain values, or used a function to model the gain.

- The slope of the line can be calculated using the formula above
- When the slope of the line is the greatest, then the gain per unit of time is maximized.

• The time at i is the query time (t_q) plus the number of documents examined (i) times the average time to examine a document (t_d)

$$t_i = t_q + i.t_d$$

• The total gain at *i* is the sum of the gain of all the docs:

$$g_i = \sum_{k=1}^i g(d_k)$$

• Let $t_q = 3$ and $t_d = 1$

k	1	2	3	4	5	6	7	8
g(d _k)	4	3	2	3	1	1	0	0
g@i	4	7	9	12	13	15	15	15
t@i	4	5	6	7	8	9	10	11
g/t	1	1.4	1.5	1.7	1.6	1.5	1.4	1.3

- The optimal stopping point is at *i*=4
 - Recall that this assumes that all the patches have a similar distribution of gain.

ANALYTICAL EXAMPLE

An Example Gain Function

$$g = k.(t - c)^{\beta}$$

$$0 \le \beta \le 1$$

- t time spent looking at results.
- g gain received from the results.
- c cost of the query, cost per document is 1.
- beta and k— free parameters controlling the how much and how fast gain is encountered.
- The graphs in the previous slides used k=1,c=2,b=0.5

- To compute the stopping point, we need to construct a tangent line from the origin to the gain curve.
 - Take the first derivative of g(t) to get the slope of the line, and let that equal g over t.

$$\frac{dg}{dt} = k \cdot \beta \cdot (t - c)^{(b-1)} = \frac{g}{t}$$

- Recall that the slope of a line is $m = (y_1-y_0)/(x_1-x_0)$, where m is the gradient, $y_0=0$ and $x_0=0$

- This results in the following criteria:
 - The optimal time per patch is:

$$t = \frac{-c}{\beta - 1}$$

– And the gain received is:

$$g = k. \left(\frac{-\beta.c}{\beta - 1}\right)^{\beta}$$

Static Comparatives

- Fix all variables but one, and see how the outcome is affected.
- What happens to the time in patch:
 - if the cost c of querying goes up/down?
 - If the performance beta goes up/down?

$$t = \frac{-c}{\beta - 1}$$

Insights from IFT's Patch Model

- If the query cost *c* increases, then users will spend more time in the patch (i.e. examine more documents).
- If the rate of gain **beta** increases, then users will spend less time in the patch (i.e. examine less documents).
- If the magnitude of gain k increases, then user behavior does not change, but they receive more gain.

Summary

- What benefit do they receive from the choices/interactions they make?
- What costs do they incur from the choices the choices/interaction they make?
- Now, work through a simple (the simplest)
 example possible, so you can see what is going
 on.
 - i.e. One user, one query...
 - How does it generalize to one user, n queries.
- Always remember to make it as simple as possible (KISS)

SCENARIOS

Result Page Exercise

- How many result snippets should we show the user per page?
 - Assume the user wants to examine *m* snippets, where *m* is likely to be a number greater than 10
 - i.e. we want to set the number of results per page such that the user's costs are minimized.

Hints:

- Draw up a screen to represent the problem
- What are the variables of interest/importance?

More Hints:

- What are the constraints? What are the main interactions and interaction costs?
- What if we only showed 1 results per page? Compare that to 2 results per page? Which one is better?

App Search

- On a mobile phone, what is better: to search for the app or to browse through the apps?
- Goal: Find app x on a phone in the minimum amount of time.
- What is the optimal number of apps to show per screen?
 - Consider what interactions are associated with searching and browsing.
 - Consider how the time to locate an app on a screen changes with the number and size of app icons.

Extensions to App Search

- Let's say we swap to a tablet, where the screen size is larger.
 - What is the optimal number of apps to show per screen, now?
- Let's say that that we wanted to evaluate a hierarchy based menu approach for app search?
 - Would this be more efficient?

Collaborative Search

- A student and a supervisor are working on a particular research topic and they need to find around 30-40 references.
 - How should they divide their effort?
- Assume that the student's time is cheap, and the supervisor's time is expensive.
- However, the supervisor's search prowess is better than the student's.
- Who should spend more time searching
 - And under what conditions?

Mobile Search

- You need to search for some information while walking around the mean streets of Melbourne.
 - Should you type your query?
 - Or use voice and tell your mobile what you want?
 - Consider how long it takes to type/talk, and how easily one can type/talk, and whether the input is correct or not.