1. Introduction

The Anderson model is given by a class of discrete analogs of Schrödinger operators H_{ω} with real i.i.d potentials $\{V_{\omega}(n)\}$:

(1.1)
$$(H_{\omega}\Psi)(n) = \Psi(n+1) + \Psi(n-1) + V_{\omega}(n)\Psi(n),$$

where $\omega = \{\omega_n\}_{n \in \mathbb{Z}} \in \Omega = S^{\mathbb{Z}}, S \subset \mathbb{R}$ is the topological support of μ , so compact, and contains at least two points, μ is a Borel probability on \mathbb{R} . *i.e.* for each $n \in \mathbb{Z}$, $V_{\omega}(n)$ is *i.i.d.* random variables depending on ω_n in (S, μ) . We will consider V_{ω} in the product probability space $(S^{\mathbb{Z}}, \mu^{\mathbb{Z}})$ as a whole instead. Denote $\mu^{\mathbb{Z}}$ as \mathbb{P} , and let $\mathbb{P}_{[a,b]}$ be $\mu^{[a,b]^c \cap \mathbb{Z}}$ on $S^{[a,b]^c \cap \mathbb{Z}}$. Also denote Lebesgue measure as m.

We say that H_{ω} exhibits the spectral localization property in I if for $a.e.\omega$, H_{ω} has only pure point spectrum in I and its eigenfunction $\Psi(n)$ decays exponentially in n. We are going to give a new proof for Anderson model based on the large deviation estimates and subharmonicity of Lyapunov exponents.

2. General setup

Definition 1. We call E a generalized eigenvalue (denote as g.e.), if there exists a nonzero polynomially bounded function $\Psi(n)$ such that $H_{\omega}\Psi = E\Psi$. We call $\Psi(n)$ a generalized eigenfunction.

Since the set of g.e. supports the spectral measure of H_{ω} , we only need to show:

Theorem 2.1. For a.e. ω , for every g.e. E, the corresponding generalized eigenfunction $\Psi_{\omega,E}(n)$ decays exponentially in n.

For [a,b] an interval, $a,b\in\mathbb{Z}$, define $H_{[a,b],\omega}$ to be operator H_{ω} resticted to [a,b] with zero boundary condition outside [a,b]. Note that it can be expressed as a "b-a+1"-dimensional matrix. The Green's function defined on [a,b] for H_{ω} with energy $E\notin\sigma_{[a,b],\omega}$ is

$$G_{[a,b],E,\omega} = (H_{[a,b],\omega} - E)^{-1}$$

Note that this can also be expressed as a "b-a+1"-dimensional matrix. Denote its (x,y) entry as $G_{[a,b],E,\omega}(x,y)$.

It is well known that

 $(2.1) \qquad \Psi(x) = -G_{[a,b],E,\omega}(x,a)\Psi(a-1) - G_{[a,b],E,\omega}(x,b)\Psi(b+1), \quad x \in [a,b]$ and we know that,

(2.2)
$$\sigma := \sigma(H_{\omega}) = [-2, 2] + S \quad a.e.\omega$$

Definition 2. For $c > 0, n \in \mathbb{Z}$, we say $x \in \mathbb{Z}$ is (c, n, E, ω) -regular, if

$$G_{[x-n,x+n],E,\omega}(x,x-n) \leqslant e^{-cn}$$

$$G_{[x-n,x+n],E,\omega}(x,x+n) \leqslant e^{-cn}$$

Otherwise, we call it (c, n, E, ω) -singular.

By (2.1) and definition 2, Theorem 2.1 follows from

Theorem 2.2. There exists Ω_0 with $\mathbb{P}(\Omega_0) = 1$, such that for every $\tilde{\omega} \in \Omega_0$, for any $g.e.\tilde{E}$ of $H_{\tilde{\omega}}$, there exist $N = N(\tilde{E}, \tilde{\omega}), C = C(\tilde{E})$, for every n > N, 2n, 2n + 1 are $(C, n, \tilde{E}, \tilde{\omega})$ regular.

1

Some other basic settings are below. Denote

$$P_{[a,b],E,\omega} = det(H_{[a,b],E,\omega} - E)$$

If a = b, let $P_{[a,b],E,\omega} = 1$, then

(2.3)
$$|G_{[a,b],E,\omega}(x,y)| = \frac{|P_{[a,x-1],E,\omega}P_{[y+1,b],E,\omega}|}{|P_{[a,b],E,\omega}|}, \quad x \leq y$$

If we denote the transfer matrix $T_{[a,b],E,\omega}$ as the matrix such that

$$\left(\begin{array}{c} \Psi(b) \\ \Psi(b-1) \end{array}\right) = T_{[a,b],E,\omega} \left(\begin{array}{c} \Psi(a) \\ \Psi(a-1) \end{array}\right)$$

then

$$T_{[a,b],E,\omega} = \begin{pmatrix} P_{[a,b],E,\omega} & -P_{[a+1,b],E,\omega} \\ P_{[a,b-1],E,\omega} & -P_{[a+1,b-1],E,\omega} \end{pmatrix}$$

The Lyapunov exponent is given by

$$\gamma(E) = \lim_{n \to \infty} \frac{1}{n} \int_0^1 \log \|T_{[0,n],E,\omega}\| d\mathbb{P}(\omega) = \lim_{n \to \infty} \frac{1}{n} \log \|T_{[0,n],E,\omega}\|, \quad a.e.\omega.$$

Let $\nu = \inf_{E \in \sigma} \gamma(E) > 0$.

We introduce the large deviation theorem here without proof. [1]

Lemma 2.3 (Large deviation estimates). For any $\epsilon > 0$, there exists $\eta = \eta(\epsilon) > 0$ such that, there exists $N_0 = N_0(\epsilon)$, for every $b - a > N_0$

$$\mu\left\{\omega: \left|\frac{1}{b-a+1}\log\|P_{[a,b],E,\omega}\| - \gamma(E)\right| \geqslant \epsilon\right\} \leqslant e^{-\eta(b-a+1)}$$

3. Main Lemmas

Denote

$$(3.1) B^+_{[a,b],\epsilon} = \left\{ (E,\omega) : |P_{[a,b],E,\omega}| \geqslant e^{(\gamma(E)+\epsilon)(b-a+1)} \right\}$$

(3.2)
$$B_{[a,b],\epsilon}^{-} = \left\{ (E,\omega) : |P_{[a,b],E,\omega}| \le e^{(\gamma(E)-\epsilon)(b-a+1)} \right\}$$

and denote $B_{[a,b],\epsilon,E}^{\pm}=\{\omega:(E,\omega)\in B_{[a,b],\epsilon}^{\pm}\},\ B_{[a,b],\epsilon,\omega}^{\pm}=\{E:(E,\omega)\in B_{[a,b],\epsilon}^{\pm}\},$ $B_{[a,b],*} = B_{[a,b],*}^+ \cup B_{[a,b],*}^-.$

Let $E_{j,(\omega_a,\cdots,\omega_b)}$ be the eigenvalue of $H_{[a,b],\omega}$ with $\omega|_{[a,b]}=(\omega_a,\cdots,\omega_b)$. Large deviation theorem gives us the estimate that for all E,a,b,ϵ

(3.3)
$$P(B_{[a,b],\epsilon,E}^{\pm}) \leq e^{-\eta(b-a+1)}$$

Assume $\epsilon=\epsilon_0<\frac{1}{8}\nu$ is fixed for now, so we omit it from the notations until Lemma 3.4. $\eta_0=\eta(\epsilon_0)$ is the corresponding parameter from Lemma 2.3

Lemma 3.1. For $n \ge 2$, if x is $(\gamma(E) - 8\epsilon_0, n, E, \omega)$ -singular, then

$$(E,\omega) \in B^-_{[x-n,x+n]} \cup B^+_{[x-n,x]} \cup B^+_{[x,x+n]}$$

Remark 1. Note that from (3.3), for all $E, x, n \ge 2$,

$$P(B_{[x-n,x+n],E}^- \cup B_{[x-n,x],E}^+ \cup B_{[x,x+n],E}^+) \le 3e^{-\eta_0(n+1)}$$

Proof. Follows imediately from the definition of singularity and (2.3). Now we will use the following three lemmas to find the proper Ω_0 for Theorem 2.2.

Lemma 3.2. Let $0 < \delta_0 < \eta_0$. For a.e. ω (we denote this set as Ω_1), there exists $N_1 = N_1(\omega)$, such that for every $n > N_1$,

$$\max\{m(B^-_{[n+1,3n+1],\omega}),m(B^-_{[-n,n],\omega})\}\leqslant e^{-(\eta_0-\delta_0)(2n+1)}$$

Proof. By (3.3),

$$\begin{split} m \times \mathbb{P}(B^{-}_{[n+1,3n+1]}) \leqslant m(\sigma) e^{-\eta_{0}(2n+1)} \\ m \times \mathbb{P}(B^{-}_{[-n,n]}) \leqslant m(\sigma) e^{-\eta_{0}(2n+1)} \end{split}$$

If we denote

$$\Omega_{\delta_0,n,+} = \left\{ \omega : m(B^-_{[n+1,3n+1],\omega}) \leqslant e^{-(\eta_0 - \delta_0)(2n+1)} \right\}$$

$$\Omega_{\delta_0,n,-} = \left\{ \omega : m(B^-_{[-n,n],\omega}) \leqslant e^{-(\eta_0 - \delta_0)(2n+1)} \right\},$$

We have Tchebyshev,

$$\mathbb{P}(\Omega_{\delta_0,n,\pm}^c) \leqslant m(\sigma)e^{-\delta_0(2n+1)}.$$

By Borel-Cantelli lemma, we get for a.e. ω ,

$$\max\{m(B_{[n+1,3n+1],\omega}^-),m(B_{[-n,n],\omega}^-)\}\leqslant e^{-(\eta_0-\delta_0)(2n+1)},$$
 for $n>N_1(\omega).$

Remark 2. Note that we can actually shift the operator and use center point l instead of 0. Then we will get $\Omega_1(l)$ instead of Ω_1 , $N_1(l,\omega)$ instead of $N_1(\omega)$. And if we pick $N_1(l,\omega)$ in the theorem as the smallest interger satisfying the conclusion, we can estimate when will $N_1(l,\omega) \leq \ln^2 |l|$, which is very useful in the proof for dynamical localization in section 6. In fact, $\mathbb{P}\{\omega: N_1(l,\omega) > \ln^2 |l|\} \leq C' e^{-\delta_0(2|\ln^2|l|+1)}$, By Borel-Cantelli, for $a.e.\omega$, (We denote this set as Ω_{N_1} ,) there exists $L_1(\omega)$, such that for any $|l| > L_1(\omega)$, $N_1(l,\omega) \leq \ln^2 |l|$.

The next results follows from [2]:

Theorem 3.3 (Craig-Simon). For a.e. ω (denote as Ω_2), for all E, we have

$$(3.4) \qquad \max\left\{\overline{\lim_{n\to\infty}}\,\frac{\log\|T_{[-n,0],E,\omega}\|}{n+1},\overline{\lim_{n\to\infty}}\,\frac{\log\|T_{[0,n],E,\omega}\|}{n+1}\right\}\leqslant\gamma(E)$$

$$(3.5) \qquad \max\left\{\overline{\lim_{n\to\infty}} \frac{\log \|T_{[n+1,2n+1],E,\omega}\|}{n+1}, \overline{\lim_{n\to\infty}} \frac{\log \|T_{[2n+1,3n+1],E,\omega}\|}{n+1}\right\} \leqslant \gamma(E)$$

Remark 3. (3.4) is a direct reformulation of Craig-Simon, while (3.5) follows by exactly the same proof.

Corollary 1. for every $\omega \in \Omega_2$, for every E, there exists $N_2 = N_2(\omega, E)$, such that for every $n > N_2$,

$$\begin{split} \max\{\|T_{[-n,0],E,\omega}\|,\|T_{[0,n],E,\omega}\|\} &< e^{(\gamma(E)+\epsilon)(n+1)} \\ \max\{T_{[n+1,2n+1],E,\omega}\|,\|T_{[2n+1,3n+1],E,\omega}\|\} &< e^{(\gamma(E)+\epsilon)(n+1)} \end{split}$$

Lemma 3.4. Let $\epsilon > 0, K > 1$, For a.e. ω (We denote this set as $\Omega_3 = \Omega_3(\epsilon, K)$), there exists $N_3 = N_3(\omega)$, so that for every $n > N_3$, for every $E_{j,(\omega_{n+1},\cdots,\omega_{3n+1})}$, for every y_1, y_2 satisfying $-n \leq y_1 \leq y_2 \leq n$, $|-n - y_1| \geq \frac{n}{K}$, and $|n - y_2| \geq \frac{n}{K}$, we have $E_{j,(\omega_{n+1},\cdots,\omega_{3n+1})} \notin B_{[-n,y_1],\epsilon,\omega} \cup B_{[y_2,n],\epsilon,\omega}$.

Remark 4. Note that ϵ and K > 0 are not fixed yet, we're going to determine them later in section 4.

Proof. Let \bar{P} be the probability that there are some y_1, y_2, j with

$$E_{j,(\omega_{n+1},\cdots,\omega_{3n+1})} \in B_{[-n,y_1],\epsilon,\omega} \cup B_{[y_2,n],\epsilon,\omega}.$$

Note that for any fixed $\omega_c, \dots, \omega_d$, with $[c,d] \cap [a,b] = \emptyset$, by independence,

$$\mathbb{P}(B_{[a,b],\epsilon,E_{j,(\omega_c,\cdots,\omega_d)}}) = \mathbb{P}_{[a,b]}(B_{[a,b],\epsilon,E_{j,(\omega_c,\cdots,\omega_d)}}) \leqslant e^{-\eta_0(b-a+1)}$$

Applying to $[a, b] = [-n, y_1]$ or $[y_2, n]$, [c, d] = [n + 1, 3n + 1] and integrating over $\omega_{-n}, \dots, \omega_{y_1}$ or $\omega_{y_2}, \dots, \omega_n$, we get

$$\mathbb{P}(B_{[-n,y_1],\epsilon,E_{j,(\omega_{n+1},\cdots,\omega_{3n+1})}} \cup B_{[y_2,n],\epsilon,E_{j,(\omega_{n+1},\cdots,\omega_{3n+1})}}) \leqslant 2e^{-\eta_0(\frac{n}{K}+1)},$$

so

$$\bar{\mathbb{P}} \leqslant (2n+1)^3 2e^{-\eta_0(\frac{n}{K}+1)}$$

Thus by Borel-Cantelli, we can get the result.

Remark 5. Similar to remark 2, we can get $\Omega_3(l)$, $N_3(l,\omega)$ instead, and get that for $a.e.\omega$, (We denote this set as Ω_{N_3} ,) there exists $L_3(\omega)$, such that for any $|l| > L_3$, $N_3(l,\omega) \leq \ln^2 |l|$.

4. Proof of Theorem 2.2

We will only provide a proof that 2n+1 is (c, n, E, ω) -regular, the argument for 2n being similar.

Proof. Let ϵ be small enough such that

$$(4.1) \epsilon < \min\{(\eta_0 - \delta_0)/3, \nu\}.$$

Now let

$$L := e^{(\eta_0 - \delta_0 - \epsilon)} > 1,$$

and note that since V is bounded, by (2.2) we have there exists M > 0, such that

$$|P_{[a,b],E,\omega}| < M^{(b-a+1)}, \quad \forall E \in \sigma, \omega$$

Pick K big enough such that

$$M^{\frac{1}{K}} < L$$

 $Let \sigma > 0$ be such that

$$(4.2) M^{\frac{1}{K}} \leqslant L - \sigma < L$$

Let $\Omega_0 = \Omega_1 \cap \Omega_2 \cap \Omega_3(\epsilon, K)$. Pick $\tilde{\omega} \in \Omega_0$, and take \tilde{E} a g.e. for $H_{\tilde{\omega}}$. Without loss of generality assume $\Psi(0) \neq 0$. Then there exists N_4 , such that for every $n > N_4$, 0 is $(\gamma(\tilde{E}) - 8\epsilon_0, n, \tilde{E}, \tilde{\omega})$ -singular.

For $n > N_0 = \max\{N_1(\tilde{\omega}), N_2(\tilde{\omega}, \tilde{E}), N_3(\tilde{\omega}), N_4(\tilde{\omega}, \tilde{E})\}$, assume 2n + 1 is $(\gamma(\tilde{E}) - 8\epsilon_0, n, \tilde{E}, \tilde{\omega})$ -singular. Then both 0 and 2n + 1 is $(\gamma(\tilde{E}) - 8\epsilon_0, n, \tilde{E}, \tilde{\omega})$ -singular. So by Lemma 3.1, $\tilde{E} \in B_{[n+1,3n+1],\epsilon_0,\tilde{\omega}}^- \cup B_{[n+1,2n+1],\epsilon_0,\tilde{\omega}}^+ \cup B_{[2n+1,3n+1],\epsilon_0,\tilde{\omega}}^+$. By

Corollary 1 and (3.1), $\tilde{E} \notin B_{[n+1,2n+1],\epsilon_0,\tilde{\omega}}^+ \cup B_{[2n+1,3n+1],\epsilon_0,\tilde{\omega}}^+$, so it can only lie in $B^-_{[n+1,3n+1],\epsilon_0,\tilde{\omega}}$.

Note that in (3.2), $P_{[n+1,3n+1],\epsilon,\epsilon_0,E,\tilde{\omega}}$ is a polynomial in E that has 2n+1 real zeros (eigenvalues of $H_{[n+1,3n+1],\tilde{\omega}}$), which are all in $B=B_{[n+1,3n+1],\epsilon,\tilde{\omega}}$. Thus Bcontains less than 2n+1 intervals near the eigenvalues. \tilde{E} should lie in one of them. By Theorem 3.2, $m(B) \leq Ce^{-(\eta_0 - \delta_0)(2n+1)}$. So there is some e.v. $E_{j,[n+1,3n+1],\tilde{\omega}}$ of $H_{[n+1,3n+1],\omega}$ such that

$$|\tilde{E} - E_{j,[n+1,3n+1],\tilde{\omega}}| \le e^{-(\eta_0 - \delta_0)(2n+1)}$$

By the same argument, there exists $E_{i,[-n,n],\tilde{\omega}}$, such that

$$|\tilde{E} - E_{i,[-n,n],\tilde{\omega}}| \leq e^{-(\eta_0 - \delta_0)(2n+1)}$$

Thus $|E_{i,[-n,n],\tilde{\omega}}-E_{j,[n+1,3n+1],\tilde{\omega}}| \leq 2e^{-(\eta_0-\delta_0)(2n+1)}$. However, by Theorem 3.4, one has $E_{j,[n+1,3n+1],\tilde{\omega}} \notin B_{[-n,n],\epsilon,\tilde{\omega}}$, while $E_{i,[-n,n],\tilde{\omega}} \in B_{[-n,n],\epsilon,\tilde{\omega}}$ This will give us a contradiction below.

Since $|E_{i,[-n,n],\tilde{\omega}} - E_{j,[n+1,3n+1],\tilde{\omega}}| \leq 2e^{-(\eta_0 - \delta_0)(2n+1)}$ and $E_{i,[-n,n],\tilde{\omega}}$ is the e.v. of $H_{[-n,n],\tilde{\omega}},$

$$\left\|G_{[-n,n],E_{j,[n+1,3n+1],\tilde{\omega}},\tilde{\omega}}\right\|\geqslant\frac{1}{2}e^{(\eta_0-\delta_0)(2n+1)}$$
 Thus there exist $y_1,y_2\in[-n,n]$ and such that

$$\left| G_{[-n,n],E_{j,[n+1,3n+1],\tilde{\omega}},\tilde{\omega}}(y_1,y_2) \right| \geqslant \frac{1}{2n} e^{(\eta_0 - \delta_0)(2n+1)}$$

Let $E_j = E_{j,[n+1,3n+1],\tilde{\omega}}$. We have $E_j \notin B_{[-n,n],\epsilon,\tilde{\omega}}$, thus

$$|P_{[-n,n],\epsilon,E_j,\tilde{\omega}}| \geqslant e^{(\gamma(E_j)-\epsilon)(2n+1)}$$

so by (2.3),

Then for the left hand side of (4.3), there are three cases:

- (1) both $|-n-y_1|>\frac{n}{K}$ and $|n-y_2|>\frac{n}{K}$ (2) one of them is large, say $|-n-y_1|>\frac{n}{K}$ while $|n-y_2|\leqslant\frac{n}{K}$
- (3) both small.

For (1),

$$\frac{1}{2n}e^{(\eta_0-\delta_0+\gamma(E_j)-\epsilon)(2n+1)} \leqslant e^{2n(\gamma(E_j)+\epsilon)}$$

Since by our choice (4.1), $\eta_0 - \delta_0 + \gamma(E_j) - \epsilon > \gamma(E_j) + \epsilon$, for n large enough, we get a contradiction.

For (2),

$$\frac{1}{2n}e^{(\eta_0-\delta_0+\gamma(E_j)-\epsilon)(2n+1)} \leqslant e^{(\gamma(E_j)+\epsilon)(2n+1)}(M)^{\frac{n}{K}}$$

is in contradiction with (4.1) and (4.2)

For (3), with (4.1) and (4.2)

$$\frac{1}{2n} e^{(\eta_0 - \delta_0 + \gamma(E_j) - \epsilon)(2n + 1)} \leqslant M^{\frac{2n}{K}} \leqslant (L - \sigma)^{2n} \leqslant (e^{(\eta_0 - \delta_0 + \gamma(E_j) - \epsilon)} - \sigma)^{2n}$$

Thus our assumption that 2n + 1 is not $(\gamma(\tilde{E}) - 8\epsilon_0, n, \tilde{E}, \tilde{\omega})$ -regular is false. Theorem 2.2 follows.

5. Quantative Craig-Simon

We improve the results of Craig-Simon as following:

Theorem 5.1. For fixed $\epsilon_0 > 0$, for a.e. ω , (We denote this set as Ω_2), there exists $N_2(\omega)$, such that for any $n > N_2(\omega)$, $E \in \sigma$,

$$\max\left\{|P_{[0,n],E,\omega}|,|P_{[-n,0],E,\omega}|,|P_{[n+1,2n+1],E,\omega}|,|P_{[2n+1,3n+1],E,\omega}|\right\}\leqslant e^{(\gamma(E)+3\epsilon_0)(n+1)}$$

We begin with an elementary Lemma:

Lemma 5.2. If Q(x) is a polynomial of order n on and x_1, \dots, x_n are distributed like: $x_i = \cos$

Lemma 5.3. If Q(x) is a polynomial of order n, and x_1, \dots, x_n are n uniformly distributed points in $[x_1, x_n]$. If $Q(x_i) \leq a$ for any $i = 1, \dots, n$, then $Q(x) \leq an^c$ for some c > 0 and any $x \in [x_1, x_n]$.

Now we prove the Theorem 5.1.

Proof. We know that $\sigma = [-2, 2] + S$, with $S \subset \mathbb{R}$, so σ is a finite union of closed intervals. Assume we are dealing with one of them, [0, A]. By continuity of $\gamma(E)$ on compact set σ , for ϵ_0 , there exists δ_0 such that

$$(5.1) |\gamma(E_x) - \gamma(E_y)| \le \epsilon_0, \quad \forall |E_x - E_y| \le \delta_0.$$

Devide the interval [0, A] into length δ_0 sub-intervals. There are $K = [A/\delta_0] + 1$ of them. (The last one may be shorter.) Denote them as I_k , for $k = 1, \dots, K$. For I_k , devide it into n-1 equal sub-subintervals with end points $E_{k1,n}, \dots, E_{kn,n}$. Then with any E_x , $E_y \in [E_{k1,n}, E_{kn,n}]$, $|\gamma(E_x) - \gamma(E_y)| \leq \epsilon_0$.

Since

$$\mathbb{P}\left(\left\{\omega: \exists i = 1, \cdots, n, \ s.t. \ |P_{[0,n], E_{ki,n}, \omega}| \geqslant e^{(\gamma(E_{ki,n}) + \epsilon_0)(n+1)}\right\}\right) \leqslant ne^{-\eta_0(n+1)},$$

by Borel-Cantelli, for $a.e.\omega$, (We denote this set as Ω_k ,) there exists $N(k,\omega)$ for I_k , such that for all $n > N(k,\omega)$,

$$|P_{[0,n],E_{ki,n},\omega}| \leqslant e^{(\gamma(E_{ki,n})+\epsilon_0)(n+1)}, \quad \forall i=1,\cdots,n.$$

If we denote $\gamma_{k,n} = \inf_{E \in [E_{k1,n}, E_{kn,n}]} \gamma(E)$, then by (5.1)

$$|P_{[0,n],E_{ki,n},\omega}| \leqslant e^{(\gamma(E_{ki,n})+\epsilon_0)(n+1)} \leqslant e^{(\gamma_{k,n}+2\epsilon_0)(n+1)}, \quad \forall i=1,\cdots,n.$$

Let M big enough such that, for any n > M, $n^c \leq e^{\epsilon_0(n+1)}$. Thus by Lemma 5.2, for $E \in [E_{k1,n}, E_{kn,n}]$, $n > \max\{N(k, \omega), M\}$,

$$|P_{[0,n],E,\omega}| \leqslant n^c e^{(\gamma_{k,n} + 2\epsilon_0)(n+1)} \leqslant n^c e^{(\gamma(E) + 2\epsilon_0)(n+1)} \leqslant e^{(\gamma(E) + 3\epsilon_0)(n+1)}$$

Let $\Omega_2 = \bigcap_k \Omega(k)$, $\tilde{N}(\omega) = \max_k \{N(k, \omega), M\}$, then for any $n > \tilde{N}(\omega)$,

$$|P_{[0,n],E,\omega}|\leqslant e^{(\gamma(E)+3\epsilon_0)(n+1)}, \quad \forall E\in [0,A]$$

Use the same methods for $P_{[-n,0],E,\omega}$, $P_{[n+1,2n+1],E,\omega}$, and $P_{[2n+1,3n+1],E,\omega}$. $N_2(\omega)$ being the maximum of $\tilde{N}(\omega)$ for each of them would work for our theorem.

Remark 6. Similar as remark 2 and 5, we can get $\Omega_2(l)$, $N_2(l,\omega)$ instead. Note M is independent of l, and we can then estimate in the same way that, for $a.e.\omega$, (We denote this set as Ω_{N_2}), there exists $L_2 = L_2(\omega)$, such that for any $|l| > L_2$, $N_2(l,\omega) \leq \ln^2 |l|$

Remark 7. For LD implies continuity of γ .

6. Dynamical Localization

Now we have established the spectral localization for 1-d Anderson Model. With some more effort, we can get the Dynamical localization. We say that H_{ω} exhibits dynamical localization property if for $a.e.\omega$, for any $\epsilon>0$, there exists a $\alpha=\alpha(\omega)>0$, a $C=C(\epsilon,\omega)$, such that for all $x,y\in\mathbb{Z}$:

$$\sup_{t} |\langle \delta_x, e^{-itH_{\omega}} \delta_y \rangle| \leqslant C_{\epsilon} e^{\epsilon|y|} e^{-\alpha|x-y|}$$

According to [3], we only need to prove that for $a.e.\omega$, H_{ω} has SULE (Semi-Uniformly Localized Eigenfunction). We say H has SULE if H has a complete set $\{\varphi_E\}$ of orthonormal eigenfunctions, there is $\alpha > 0$, $l = l_E \in \mathbb{Z}$, and for each $\epsilon > 0$, a C_{ϵ} such that for any eigenvalue E,

$$|\varphi_E(x)| \leqslant C_{\epsilon} e^{\epsilon|l_E|} e^{-\alpha|x-l_E|}$$

For any central point $l \in \mathbb{Z}$, by remark 2, 6, (We use Quantitative Craig-Simon instead of the original one for estimating N_2 , Ω_2) remark 5 for l and l+2n+1, and their natural extension to l-2n-1 and l, (But we keep the original notations, even if now it satisfies both properties.) and the same analysis in section 4, if we let $\Omega(l) = \bigcap_{i=1,2,3} \Omega_i(l)$, then for each $\omega \in \Omega(l)$, there exists $N(l,\omega) = \max\{N_1(l,\omega), N_2(l,\omega), N_3(l,\omega)\}$, such that for any $n > N(l,\omega)$, either l or l+2n+1, either l or l-2n-1 are $(\mu-8\epsilon_0, n, E, \omega)$ -regular for all $E \in \sigma$.

Take $\Omega' = \bigcap_{l} \Omega_{l} \cap \bigcap_{i=1,2,3} \Omega_{N_{i}}$ and fix $\omega \in \Omega'$. (We omit ω from notations from now on.)

By remark 2, remark 5, there exists L_1 , L_3 such that for all $|l| > \max\{L_1, L_2, L_3\}$,

$$N_i(l) \leqslant \ln^2 |l|, \quad \forall i = 1, 2, 3$$

for all E

Let l_E be the maximum point of φ_E . For any $n \ge N_4 := \frac{\ln 2}{\mu - 8\epsilon_0}$, l_E is naturally $(\mu - 8\epsilon_0, n, E)$ -singular by (2.1). So there exists L_4 , for any $|l| > L_4$,

$$N_4 < \ln^2 |l|$$

for all E.

Let $L = \max\{L_1, L_2, L_3, L_4\}$, $N(l) := \max\{N_1(l), N_2(l), N_3(l), N_4\}$, then for any |l| > L,

$$(6.1) N(l) \leqslant \ln^2 |l|$$

If $|l_E| > L$, then for any $|x - l_E| \ge N(l_E)$, l_E is $(\mu - 8\epsilon_0, n, E)$ -singular, so x is $(\mu - 8\epsilon_0, n, E)$ -regular. By (2.1), for any $|x - l_E| \ge N(l_E)$

$$|\varphi_E(x)| \le 2e^{-(\mu - 8\epsilon_0)|x - l_E|}$$

Since φ_E is normalized, in fact for all x,

$$|\varphi_E(x)| \leqslant e^{(\mu - 8\epsilon_0)N(l_E)}e^{-(\mu - 8\epsilon_0)|x - l_E|}$$

By (6.1), for any ϵ , there exists $C_{1\epsilon}$ such that

$$|\varphi_E(x)| \le e^{(\mu - 8\epsilon_0) \ln^2 |l_E|} e^{-(\mu - 8\epsilon_0) |x - l_E|} \le C_{1\epsilon} e^{\epsilon |l_E|} e^{-(\mu - 8\epsilon_0) |x - l_E|}$$

If $|l_E| \leq L$, consider all $i \in [-L, L]$, all |x - i| < N(i). For any ϵ , take $M_2 = \max_i \{e^{\epsilon i} e^{-(\mu - 8\epsilon_0)|x - i|}\}$, $C_{2\epsilon} = M^{-1}$, then for all $|x - l_E| < N(l_E)$,

$$|\varphi_E(x)| \le 1 \le C_2 \epsilon e^{\epsilon |l_E|} e^{-(\mu - 8\epsilon_0)|x - l_E|}$$

As for $|x - l_E| \ge N(l_E)$,

$$|\varphi_E(x)| \leqslant e^{-(\mu - 8\epsilon_0)|x - l_E|} \leqslant e^{\epsilon|l_E|} e^{-(\mu - 8\epsilon_0)|x - l_E|}$$

So $C_{\epsilon} = \max\{C_{1\epsilon}, C_{2\epsilon}, 1\}$ would work.

References

- [1] Jhishen Tsay and . Some uniform estimates in products of random matrices. *Taiwanese Journal of Mathematics*, pages 291–302, 1999.
- [2] Walter Craig, Barry Simon, et al. Subharmonicity of the lyaponov index. Duke Mathematical Journal, 50(2):551-560, 1983.
- [3] Rafael del Rio, Svetlana Jitomirskaya, Yoram Last, and Barry Simon. Operators with singular continuous spectrum, iv. hausdorff dimensions, rank one perturbations, and localization. Journal d'Analyse Mathématique, 69(1):153–200, 1996.