MA1508E Cheat Sheet

Equivalent Statements

- 1. A is non-singular.
- 2. A is invertible.
- 3. Ax = b has exactly one solution given by $x = A^{-1}b$ for every $n \times 1$ matrix b.
- 4. Ax = 0 has only the trivial solution.
- 5. The reduced row echelon form of A is I_n .
- 6. A can be expressed as a product of elementary matrices.
- 7. The determinant of *A* is not zero.
- 8. The columns of A span \mathbb{R}^n .
- 9. The rows of A span \mathbb{R}^n .
- 10. The columns of A are linearly independent.
- 11. The rows of A are linearly independent.
- 12. The columns of A form a basis for \mathbb{R}^n .
- 13. The rows of A form a basis for \mathbb{R}^n .
- 14. The column space of A is \mathbb{R}^n .
- 15. The row space of A is \mathbb{R}^n .
- 16. The null space of A is $\{o\}$.
- 17. *A* is of full rank; that is, rank(A) = n.
- 18. A has nullity 0.
- 19. $A^T A$ is invertible.
- 20. All the eigenvalues of A are non-zero.

Theorems from Lectures

Thm If augmented matrices of two linear systems are row-equivalent, then the two linear systems have the same solution set.

Prop Every system of linear equations has zero, one or infinitely many solutions. **Prop** All homogeneous linear systems are consistent.

Thm An invertible matrix has exactly one inverse.

Thm Every elementary matrix is invertible and its invserse is another elementary matrix.

Thm Let A be a square matrix. If the matrix B satisfies either AB = I or BA = I, then the other condition holds automatically.

Thm Let A and B be square matrices of the same order. If A is singular, then both AB and BA are singular.

 ${\bf Cor}$ Let A and B be square matrices. If AB is invertible, then A and B must be invertible as well.

Cramer's If A is a non-singular matrix of order n, then the linear system Ax=b has a unique solution for $x=(x_1,\cdots x_n)$ given by

$$x_i = \frac{\det A_i}{\det A}$$

where A_i is the matrix obtained by replacing the *i*-th column of A by b. **Cauchy-Schwarz** Let u, v be vectors in \mathbb{R}^n . Then

$$|u \cdot v| < ||u|| ||v||$$

where equality holds if and only if u and v are parallel.

Thm You need at least n vectors to span \mathbb{R}^n .

Thm Let S_1 and S_2 be subsets of \mathbb{R}^n . Then $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$ iff every vector in S_1 is a linear combination of the vectors of S_2 .

Thm If u_k is a linear combination of u_1, \dots, u_{k-1} , then $\operatorname{span}\{u_1, \dots, u_{k-1}\} = \operatorname{span}\{u_1, \dots, u_k\}$.

Thm In \mathbb{R}^n , a set with more than n vectors is always linearly dependent.

Thm If u_{k+1} is not a linear combination of u_1, \dots, u_k (linearly independent vectors), then $u_1, \dots u_k, u_{k+1}$ are linearly independent.

Thm Every vector in a subspace is a unique combination of the basis vectors of the subspace.

Def The dimension of a vector space is the number of vectors in its basis.

Thm Set of vectors that spans the solution space of a homogeneous system is always linearly independent.

 $\mathbf{Thm}\ \mathrm{Let}\ V$ be a vector space of dimension k and S a subset of V . These statements are equivalent:

- 1. S is a basis for V.
- 2. S is linearly independent and has k vectors.
- 3. S spans V and has k vectors.

Thm A vector is orthogonal to a vector space iff it is orthogonal to all its basis vectors

Thm Let V be a subspace of \mathbb{R}^n . Every vector u in \mathbb{R}^n can be uniquely written as u=n+p where n is orthogonal to V and p is in V. The vector p is also called the orthogonal projection.

Thm If u_1, \cdots, u_k for an orthogonal basis for V , then the projection of any vector w onto V is given by

$$\frac{w \cdot u_1}{\|u_1\|^2} u_1 + \dots + \frac{w \cdot u_k}{\|u_2\|^2} u_2$$

Results from Tutorials

Let A, B, C, D be block matrices.

1.
$$A \begin{bmatrix} B_1 & B_2 \end{bmatrix} = \begin{bmatrix} AB_1 & AB_2 \end{bmatrix}$$

2.
$$\begin{bmatrix} D_1 \\ D_2 \end{bmatrix} A = \begin{bmatrix} D_1 A \\ D_2 A \end{bmatrix}$$

3.
$$\begin{vmatrix} A & 0 \\ 0 & I \end{vmatrix} = |A|$$

4.
$$\begin{vmatrix} I & 0 \\ C & D \end{vmatrix} = |D|$$

5.
$$\begin{vmatrix} A & 0 \\ C & D \end{vmatrix} = \begin{vmatrix} A & C \\ 0 & D \end{vmatrix} = |A||D|$$

QR Factorization

- 1. Run Gram-Schmidt to obtain orthogonal basis for the column space of A.
- 2. Make orthogonal basis orthonormal.
- 3. Express the columns of A as linear combination of the orthonormal vectors.
- 4. Now, A=QR where the columns of Q are the orthonormal vectors and R is an upper-triangular matrix where the columns are the coordinate vectors calculated in the previous step.
- 5. Now, the least square solution to an inconsistent system Ax = b is simply $x' = R^{-1}Q^Tb$.

Matrix Multiplication

Note that $(AB)^2 \neq A^2B^2$ in general. Let x_i be column vectors.

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = ax_1 + bx_2 + cx_3$$

In words, the result is a linear combination of the column vectors. Let A be a matrix and x_i be column vectors.

$$A\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \begin{bmatrix} Ax_1 & Ax_2 & Ax_3 \end{bmatrix}$$

Let y_i be row vectors.

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} A = \begin{bmatrix} y_1 A \\ y_2 A \\ y_3 A \end{bmatrix}$$

In words, the rows of A are weighted by the vector y_i and this weighted row forms the i-th row in the result matrix.

Also, if A is a $m \times n$ matrix and B is a $n \times p$ matrix,

$$AB_{ij} = \sum_{r=1}^{n} A_{ir} B_{rj}$$

Matrix Inverses and Transposes

A is said to be invertible if there exists a matrix B such that AB = BA = I.

1.
$$(A^T)^T = A$$

2.
$$(A+B)^T = A^T + B^T$$

3.
$$(\alpha A)^T = \alpha A^T$$

4.
$$(AB)^T = B^T A^T$$

5.
$$(cA)^{-1} = \frac{1}{c}A^{-1}$$

6.
$$(A^T)^{-1} = (A^{-1})^T$$

7.
$$(A^{-1})^{-1} = A$$

8.
$$(AB)^{-1} = B^{-1}A^{-1}$$

9. If
$$E_k \cdots E_2 E_1 A = I$$
,
then $A^{-1} = E_k \cdots E_2 E_1$
and $A = E_1^{-1} E_2^{-1} \cdots E_k^{-1}$.

- 10. Symmetric: $A = A^T$
- 11. Anti-symmetric: $A = -A^T$
- 12. $A^2 = 0 \rightarrow (I A)/(I + A)$ is invertible.

Determinants

- 1. $det(A) = det(A^T)$
- 2. The determinant of a square matrix with two identical rows or columns is zero
- 3. Row swapping multiplies determinant by -1.
- 4. Row scaling scales determinant by the scaling factor.
- 5. Row linear combination (ERO) doesn't change determinant.
- 6. det(AB) = det(A)det(B)
- 7. $det(cA) = c^n det(A)$
- 8. $det(A^{-1}) = \frac{1}{det(A)}$

Euclidean Vectors

- 1. $||u|| = \sqrt{u_1^2 + \dots + u_n^2}$
- 2. $d(u,v) = ||u-v|| = \sqrt{(u_1-v_1)^2 + \dots + (u_n-v_n)^2}$
- 3. $||u-v||^2 = ||u||^2 + ||v||^2 2||u|| ||v|| \cos \theta$
- 4. $u \cdot v = ||u|| ||v|| \cos \theta$

Solving Ax = b

- 1. Create an augmented matrix $(A \mid b)$ and reduce it to REF or RREF.
- 2. If the augmented column has a pivot entry, the system is inconsistent and therefore not solvable.
- 3. If all columns but the last have pivot entries, there exists a unique solution.

 Back-substitute to determine the solution.
- 4. Else, let variables corresponding to non-pivot columns be free variables. Back-substitute to find the solution of other variables in terms of the free variables.

Determining Number of Solutions

- 1. Reduce the augmented matrix to REF or RREF.
- 2. Systematically set each pivot (including augmented column if necessary) to zero and non-zero values.
- 3. Check if any row can be a multiple of another for particular pivot values.

LU Factorization

- 1. Let E_1, \dots, E_k be elementary matrices such that $E_k \dots E_1 A = U$.
- 2. Then, $L = E_1^{-1} \cdots E_k^{-1}$ such that A = LU.
- 3. Note that Ax=(LU)x=L(Ux)=b. Therefore, let Ux=y and solve Ly=b using forward substitution.
- 4. Now, solve Ux = y using back substitution.

Applying Cramer's Rule

- 1. Check if determinant is non-zero.
- 2. Apply Cramer's rule.

Checking for linear combination

- 1. To check if a vector x is a linear combination of u, v and w, reduce $\begin{pmatrix} u & v & w \mid x \end{pmatrix}$.
- 2. If the system is consistent, x is indeed a linear combination.

Checking for linear independence

To check if a set of vectors is linearly independent,

- 1. Solve $c_1u_1 + \cdots + c_2u_k = 0$ where c_i are constants.
- 2. That is, reduce $\begin{pmatrix} u_1 & \cdots & u_k & \mid & 0 \end{pmatrix}$ and ensure that there are no non-pivot columns.

Coordinate Vectors

To find $(v)_S$ where S is a basis for the vector space,

1. Solve $\begin{bmatrix} u_1 & \cdots & u_k \end{bmatrix} x = v$ for x where u_i are the basis vectors.

Finding basis for row and column spaces

- 1. Reduce the matrix A to R and the non-zero rows form the basis for the row space.
- 2. The columns in the original matrix A corresponding to the pivot columns in R form the basis for the column space.
- 3. ERO preserves row space but no column space.

Gram-Schmidt Process

Let u_1, \dots, u_k be a basis for V.

- 1. Let $v_1 = u_1$.
- 2. Let $v_2 = u_2 \frac{u_2 \cdot v_1}{\|v_1\|^2} v_1$.
- 3. Let $v_3 = u_3 \frac{u_3 \cdot v_1}{\|v_1\|^2} v_1 \frac{u_3 \cdot v_2}{\|v_2\|^2} v_2$.

Least Squares Solution

- 1. If Ax = b is inconsistent, then x is a least squares solution if it is a solution to $A^TAx = A^Tb$.
- 2. This is the same as Ax = p where p is the projection of b onto V.
- 3. This is the same as Ax is a projection of b onto V.
- 4. The error is ||b Ax||.

Diagonalizing

- 1. Derive the characteristic polynomial from $\det(\lambda I A)$. Set it to zero and determine all eigenvalues.
- 2. For each eigenvalue, solve for $(\lambda I-A)x=0$. That is, find a basis for the eigenspace E_{λ} . Ensure that there are n independent eigenvectors. When $\lambda=$, this is the same as finding the nullspace.
- 3. Let P be the matrix where the columns are the derived eigenvectors. Then, $P^{-1}AP=D$ or $A=PDP^{-1}$. D is a diagonal matrix whose entries are eigenvalues in the order the eigenvectors appear in P.

Differential Equations

To solve Y' = AY,

- 1. Find all eigenvalues and eigenvectors of A.
- 2. The general solution is of the form

$$Y = k_1 e^{\lambda_1 t} x_1 + k_2 e^{\lambda_2 t} x_2 + \cdots$$

3. If λ is a complex number, then $Y_1 = Re(e^{\lambda t}x)$ and $Y_2 = Im(e^{\lambda t}x)$

Properties of Complex Vectors

- 1. $\overline{ku} = \overline{k}\overline{u}$
- 2. $\overline{u \pm v} = \overline{u} \pm \overline{v}$
- 3. $u \cdot v = u_1 \overline{v_1} + u_2 \overline{v_2} + \cdots$
- 4. $||v|| = \sqrt{|v_1|^2 + |v_2|^2 + \cdots}$
- 5. $u \cdot v = \overline{v \cdot u}$
- 6. $u \cdot kv = \overline{k}(u \cdot v)$

Complex eigenvalues and eigenvectors always appear in pairs.

Properties of A^TA

- 1. $null(A) = null(A^T A)$
- 2. $nullity(A) = nullity(A^T A)$
- 3. $rank(A) = rank(A^T A)$

Discrete Systems

$$x(t+1) = Ax(t)$$

where
$$x_n = \begin{bmatrix} x_n \\ x_{n+1} \end{bmatrix}$$

Diagonalize A. Then,

$$x(t) = PD^t P^{-1} x_0$$

Alternatively,

$$x(t) = c_1 \lambda_1^t v_1 + c_2 \lambda_2^t v_2 + \cdots$$

Continuous Systems

$$X' = AX$$

Find eigenvalues and eigenvectors of A. If eigenvalues are not complex,

$$X = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \cdots$$

Generalized Eigenvectors

If there is just a single eigenvalue whose eigenspace has a dimension of 1 for a 2 by 2 matrix,

- 1. Solve $(A-\lambda I)u=v$ for u where v is the eigenvector. Just choose a non-zero u.
- 2. Now, $y = c_1 e^{\lambda t} v + c_2 e^{\lambda t} (tv + u)$

Compiled by **Mohideen Imran Khan** and vetted by **Pei Yan Bo**. Template from http://wch.github.io/latexsheet/