

Unit 1: Python for Data Mining

Numpy ecosystem

PySAL OpenCV numexpr astropy statsmodels **PyTables** Biopython scikit-learn Numba scikit-image **Pandas** Matplotlib Scipy NumPy

Python packages

- Numpy and Scipy: Fundamental scientific computing
- > Pandas: Data manipulation and analysis
- Matplotlib: Plotting and visualization
 - Seabovn: Higher level library
- Scikit-learn: Machine learning and data mining
- StatsModels: Statistical modeling, testing and analysing

Unit 1

Section 1: Numpy

What is Numpy?

- Python is a fabulous language
 - Easy to extend
 - Great syntax which encourages easy to write and maintain code
 - Incredibly large standard-library and third-party tools
- No built-in multi-dimensional array (but it supports the needed syntax for extracting elements from one)
- NumPy provides a fast built-in object (ndarray) which is a multidimensional array of a homogeneous data-type.

NumPy

- Website -- http://numpy.scipy.org/
- Offers Matlab-ish capabilities within Python
- NumPy replaces Numeric and Numarray
- Initially developed by Travis Oliphant (building on the work of dozens of others)
- Over 30 svn "committers" to the project
- NumPy 1.0 released October, 2006
- ~20K downloads/month from Sourceforge.
 - This does not count:
 - Linux distributions that include NumPy
 - Enthought distributions that include NumPy
 - Mac OS X distributions that include NumPy
 - Sage distributes that include NumPy

Overview of Numpy

N-D ARRAY (NDARRAY)

- N-dimensional array of rectangular data
- Element of the array can be C-structure or simple data-type.
- Fast algorithms on machine data-types (int, float, etc.)

UNIVERSAL FUNCTIONS (UFUNC)

- functions that operate element-by-element and return result
- fast-loops registered for each fundamental data-type

$$sin(x) = [sin(x_i) i=0..N]$$

$$x+y = [x_i + y_i i = 0..N]$$

Numpy Array

A NumPy array is an N-dimensional homogeneous collection of "items" of the same "kind". The kind can be any arbitrary structure and is specified using the data-type.

Numpy Array

A NumPy array is a homogeneous collection of "items" of the same "data-type" (dtype)

```
>>> import numpy as N
>>> a = N.array([[1,2,3],[4,5,6]],float)
>>> print a
[[1. 2. 3.]
[4. 5. 6.]]
>>> print a.shape, "\n", a.itemsize
(2, 3)
>>> print a.dtype, a.dtype.type
'<f8' <type 'float64scalar'>
>>> type(a[0,0])
<type 'float64scalar'>
>>> type(a[0,0]) is type(a[1,2])
True
```


Introducing Numpy Arrays

SIMPLE ARRAY CREATION

```
>>> a = array([O,1,2,3])
>>> a
array([O, 1, 2, 3])
```

CHECKING THE TYPE

```
>>> type(a)
<type 'array'>
```

NUMERIC 'TYPE' OF ELEMENTS

>>> a.dtype dtype('int32')

BYTES PER ELEMENT

>>> a.itemsize # per element

ARRAY SHAPE

```
# shape returns a tuple
# listing the length of the
# array along each dimension.
>>> a.shape
(4,)
>>> shape(a)
(4,)
```

ARRAY SIZE

```
# size reports the entire
# number of elements in an
# array.
>>> a.size
4
>>> size(a)
4
```


Introducing Numpy Arrays

BYTES OF MEMORY USED

```
# returns the number of bytes
# used by the data portion of
# the array.
>>> a.nbytes
12
```

NUMBER OF DIMENSIONS

```
>>> a.ndim
```

ARRAY COPY

```
# create a copy of the array
>>> b = a.copy()
>>> b
array([0, 1, 2, 3])
```

CONVERSION TO LIST

```
# convert a numpy array to a
# python list.
>>> a.tolist()
[0, 1, 2, 3]
# For 1D arrays, list also
```

```
# For 1D arrays, list also
# works equivalently, but
# is slower.
>>> list(a)
[0, 1, 2, 3]
```


Setting Array Elements

ARRAY INDEXING

```
>>> a[0]
0
>>> a[0] = 10
>>> a
[10, 1, 2, 3]
```

FILL

```
# set all values in an array.
>>> a.fill(0)
>>> a
[0, 0, 0, 0]

# This also works, but may
# be slower.
>>> a[:] = 1
>>> a
[1, 1, 1, 1]
```


BEWARE OF TYPE COERSION

```
>>> a.dtype
dtype('int32')
```

assigning a float to an int32 array
will
truncate decimal part.
>>> a[O] = 10.6
>>> a
[10, 1, 2, 3]

fill has the same behavior >>> a.fill(-4.8) >>> a [-4, -4, -4, -4]

Multi-Dimensional Arrays

MULTI-DIMENSIONAL ARRAYS

(ROWS, COLUMNS)

```
>>> a.shape
(2, 4)
>>> shape(a)
(2, 4)
```

ELEMENT COUNT

```
>>> a.size
8
>>> size(a)
8
```

NUMBER OF DIMENSIONS

>>> a.ndims

GET/SET ELEMENTS

ADDRESS FIRST ROW USING SINGLE INDEX

Array Slicing

SLICING WORKS MUCH LIKE STANDARD PYTHON SLICING

STRIDES ARE ALSO POSSIBLE

>>> a[2::2	,::2]	
array ([[20	, 22,	24],
	[40	, 42,	44]])

0	1	2	3	4	5	
10	11	12	13	14	15	
20	21	22	23	24	25	
30	31	32	33	34	35	
40	41	42	43	44	45	
50	51	52	53	54	55	

Memory Model

```
>>> print a.strides
(24, 8)
>>> print a.flags.fortran, a.flags.contiguous
False True
>>> print a.T.strides
(8, 24)
>>> print a.T.flags.fortran, a.T.flags.contiguous
True False
```

- Every dimension of an ndarray is accessed by stepping (striding) a fixed number of bytes through memory.
- If memory is contiguous, then the strides are "pre-computed" indexing-formulas for either Fortran-order (first-dimension varies the fastest), or C-order (last-dimension varies the fastest) arrays.

Array slicing (Views)

Memory model allows "simple indexing" (integers and slices) into the array to be a **view** of the same data.

Other uses of view

```
>>> b = a.view('i8')
>>> [hex(val.item()) for
val in b.flat]
['0x3FF0000000000000L',
   '0x40000000000000L',
   '0x405900000000000L',
   '0x40100000000000L',
   '0x40180000000000L',
```


Slices Are References

Slices are references to memory in original array. Changing values in a slice also changes the original array.

>>>
$$a = array((0,1,2,3,4))$$

create a slice containing only the
last element of a

>>>
$$b = a[2:4]$$

$$>>> b[0] = 10$$

changing b changed a!

INDEXING BY POSITION

$$>>> a = arange(0.80.10)$$

```
# fancy indexing
>>> y = a[[1, 2, -3]]
>>> print y
[10 20 50]
```

INDEXING WITH BOOLEANS

Fancy Indexing in 2D

						/
0	1	2	3	4	5	
10	11	12	13	14	15	
20	21	22	23	24	25	
30	31	32	33	34	35	
40	41	42	43	44	45	
50	51	52	53	54	55	

Unlike slicing, fancy indexing creates copies instead of views into original arrays.

Data-types

- There are two related concepts of "type"
 - The data-type object (dtype)
 - The Python "type" of the object created from a single array item (hierarchy of scalar types)
- The dtype object provides the details of how to interpret the memory for an item. It's an instance of a single dtype class.
- The "type" of the extracted elements are true Python classes that exist in a hierarchy of Python classes
- Every dtype object has a type attribute which provides the Python object returned when an element is selected from the array

NumPy dtypes

BASIC TYPE	AVAILABLE NUMPY TYPES	Comments
Boolean	BOOL	Elements are 1 byte in size
Integer	INT8, INT16, INT32, INT64, INT128, INT	INT DEFAULTS TO THE SIZE OF INT IN C FOR THE PLATFORM
Unsigned Integer	UINT8, UINT16, UINT32, UINT64, UINT128, UINT	UINT DEFAULTS TO THE SIZE OF UNSIGNED INT IN C FOR THE PLATFORM
Float	FLOAT32, FLOAT64, FLOAT, LONGFLOAT,	FLOAT IS ALWAYS A DOUBLE PRECISION FLOATING POINT VALUE (64 BITS). LONGFLOAT REPRESENTS LARGE PRECISION FLOATS. ITS SIZE IS PLATFORM DEPENDENT.
Complex	COMPLEX64, COMPLEX128, COMPLEX	THE REAL AND COMPLEX ELEMENTS OF A COMPLEX64 ARE EACH REPRESENTED BY A SINGLE PRECISION (32 BIT) VALUE FOR A TOTAL SIZE OF 64 BITS.
Strings	STR, UNICODE	Unicode is always UTF32 (UCS4)
Овјест	OBJECT	Represent items in array as Python objects.
Records	VOID	Used for arbitrary data structures in record arrays.

Built-in "scalar" types

Data-type object (dtype)

- There are 21 "built-in" (static) data-type objects
- New (dynamic) data-type objects are created to handle
 - Alteration of the byteorder
 - Change in the element size (for string, unicode, and void built-ins)
 - Addition of fields
 - Change of the type object (C-structure arrays)
- Creation of data-types is quite flexible.
- New user-defined "built-in" data-types can also be added (but must be done in C and involves filling a function-pointer table)

Data-type fields

- An item can include fields of different data-types.
- A field is described by a data-type object and a byte offset ---this definition allows nested records.
- The array construction command interprets tuple elements as field entries.

```
>>> dt = N.dtype("i4,f8,a5")
>>> print dt.fields
{'f1': (dtype('<i4'), 0), 'f2': (dtype('<f8'), 4),
'f3': (dtype('|S5'), 12)}
>>> a = N.array([(1,2.0,"Hello"), (2,3.0,"World")],
dtype=dt)
>>> print a['f3']
[Hello World]
```


Array Calculation Methods

SUM FUNCTION

```
>>> \alpha = array([[1,2,3],
          [4,5,6]], float)
# Sum defaults to summing all
# *all* array values.
>>> sum(a)
21.
# supply the keyword axis to
# sum along the Oth axis.
>>> sum(a, axis=0)
array([5., 7., 9.])
# supply the keyword axis to
# sum along the last axis.
>>> sum(a, axis=-1)
array([6., 15.])
```

SUM ARRAY METHOD

The a.sum() defaults to

```
# summing *all* array values

>>> a.sum()

21.

# Supply an axis argument to

# sum along a specific axis.

>>> a.sum(axis=0)

array([5., 7., 9.])
```

PRODUCT

```
# product along columns.
>>> a.prod(axis=0)
array([ 4., 10., 18.])
# functional form.
```

>>> prod(a, axis=0) array([4., 10., 18.])

Axis

- Array method reductions take an optional axis parameter that specifies over which axes to reduce
- axis=None reduces into a single scalar

Axis = 0

axis=0 reduces into the zeroth dimension

```
In [8]: a.sum(axis=0)
Out[8]: array([15, 18, 21, 24,
27])
```


Axis = 1

axis=1 reduces into the first dimension

```
In [9]: a.sum(axis=1)
Out[9]: array([10, 35, 60])
```


Min/Max

MIN

```
>>> a = array([2.,3.,0.,1.]) >>>
a.min(axis=0)

.

# use Numpy's amin() instead
# of Python's builtin min()
# for speed operations on
# multi-dimensional arrays.
>>> amin(a, axis=0)

.
```

ARGMIN

```
# Find index of minimum value.
>>> a.argmin(axis=0)
2
# functional form
>>> argmin(a, axis=0)
0
```

MAX

```
>>> a = array([2.,1.,0.,3.]) >>> a.max(axis=0)
3.
```

```
# functional form
>>> amax(a, axis=0)
```

ARGMAX

```
# Find index of maximum value.
>>> a.argmax(axis=0)

!
# functional form
>>> argmax(a, axis=0)
!
```


Statistics Array Methods

MEAN

```
>>> a = array([[1,2,3],
[4,5,6]], float)
```

```
# mean value of each column
>>> a.mean(axis=0)
array([ 2.5, 3.5, 4.5])
>>> mean(a, axis=0)
array([ 2.5, 3.5, 4.5])
>>> average(a, axis=0)
array([ 2.5, 3.5, 4.5])
```

```
# average can also calculate
# a weighted average
>>> average(a, weights=[1,2],
... axis=0)
array([ 3., 4., 5.])
```

STANDARD DEV./VARIANCE

```
# Standard Deviation
>>> a.std(axis=0)
array([ 1.5, 1.5, 1.5])
```


Other Array Methods

CLIP

ZERO ARRAY

ROUND

```
# Round values in an array.

# Numpy rounds to even, so

# 1.5 and 2.5 both round to 2.

>>> a = array([1.35, 2.5, 1.5])

>>> a.round()

array([1., 2., 2.])

# Round to first decimal place.

>>> a.round(decimals=1)

array([1.4, 2.5, 1.5])
```

POINT TO POINT

```
# Calculate max - min for

# array along columns

>>> a.ptp(axis=0)

array([ 3.0, 3.0, 3.0])

# max - min for entire array.

>>> a.ptp(axis=None)

5.0
```


BASIC ATTRIBUTES

```
a.dtype - Numerical type of array elements. float32, uint8, etc.

a.shape - Shape of the array. (m,n,o,...)

a.size - Number of elements in entire array.

a.itemsize - Number of bytes used by a single element in the array.

a.nbytes - Number of bytes used by entire array (data only).

a.ndim - Number of dimensions in the array.
```

SHAPE OPERATIONS

```
a.flat - An iterator to step through array as if it is 1D.
a.flatten() - Returns a 1D copy of a multi-dimensional array.
a.ravel() - Same as flatten(), but returns a 'view' if possible.
a.resize(new_size) - Change the size/shape of an array in-place.
a.swapaxes(axisl, axis2) - Swap the order of two axes in an array. a.transpose(*axes) - Swap the order of any number of array axes. a.T - Shorthand for a.transpose()
a.squeeze() - Remove any length=1 dimensions from an array.
```


FILL AND COPY

a.copy() - Return a copy of the array.
a.fill(value) - Fill array with a scalar value.

CONVERSION / COERSION

a.tolist() - Convert array into nested lists of values.

a.tostring() - raw copy of array memory into a python string.

a.astype(dtype) - Return array coerced to given dtype.

a.byteswap(False) - Convert byte order (big <-> little endian).

COMPLEX NUMBERS

a.real - Return the real part of the array.

a.imag - Return the imaginary part of the array.

a.conjugate() - Return the complex conjugate of the array.

a.conj()- Return the complex conjugate of an array.(same as conjugate)

SAVING

a.dump(file) - Store a binary array data out to the given file.
a.dumps() - returns the binary pickle of the array as a string.
a.tofile(fid, sep="", format="%s") Formatted ascii output to file.

SEARCH / SORT

a.nonzero() - Return indices for all non-zero elements in a.

a.sort(axis=-l) - Inplace sort of array elements along axis.

a.argsort(axis=-l) - Return indices for element sort order along axis. a.searchsorted(b) - Return index where elements from b would go in a.

ELEMENT MATH OPERATIONS

a.clip(low, high) - Limit values in array to the specified range.
a.round(decimals=0) - Round to the specified number of digits.
a.cumsum(axis=None) - Cumulative sum of elements along axis.
a.cumprod(axis=None) - Cumulative product of elements along axis.

REDUCTION METHODS

All the following methods "reduce" the size of the array by I dimension by carrying out an operation along the specified axis. If axis is None, the operation is carried out across the entire array.

```
a.sum(axis=None) - Sum up values along axis.
a.prod(axis=None) - Find the product of all values along axis.
a.min(axis=None) - Find the minimum value along axis.
a.max(axis=None) - Find the maximum value along axis.
a.argmin(axis=None) - Find the index of the minimum value along axis.
a.argmax(axis=None) - Find the index of the maximum value along axis.
a.ptp(axis=None) - Calculate a.max(axis) - a.min(axis)
a.mean(axis=None) - Find the mean (average) value along axis.
a.std(axis=None) - Find the standard deviation along axis.
a.var(axis=None) - Find the variance along axis.
a.any(axis=None) - True if any value along axis is non-zero. (or)
a.all(axis=None) - True if all values along axis are non-zero. (and)
```


Array Operations

SIMPLE ARRAY MATH

Numpy defines the following constants:

pi = 3.14159265359 e = 2.71828182846

MATH FUNCTIONS

>>>
$$\alpha = (2*pi)/10.$$

0.62831853071795862

array([0.,0.628,...,6.283])

$$>>> y = \sin(x)$$

Universal Functions

- ufuncs are objects that rapidly evaluate a function element-byelement over an array.
- Core piece is a 1-d loop written in C that performs the operation over the largest dimension of the array
- For 1-d arrays it is equivalent to but much faster than list comprehension

```
>>> type(N.exp)
<type 'numpy.ufunc'>
>>> x = array([1,2,3,4,5])
>>> print N.exp(x)
[  2.71828183   7.3890561   20.08553692
54.59815003  148.4131591 ]
>>> print [math.exp(val) for val in x]
[2.7182818284590451,
7.3890560989306504,20.085536923187668,
54.598150033144236,148.4131591025766]
```


Mathematic Binary Operators

MULTIPLY BY A SCALAR

ELEMENT BY ELEMENT ADDITION

ADDITION USING AN OPERATOR FUNCTION

! IN PLACE OPERATION

```
# Overwrite contents of a.

# Saves array creation

# overhead

>>> add(a,b,a) # a += b

array([4, 6])

>>> a

array([4, 6])
```


Comparison and Logical Operators

```
(!=)
                  (==)
                                not_equal
                                                             greater
equal
                                                                             (>)
                                               (<)
                                                             less_equal
                                                                             (<=)
greater_equal
                  (>=)
                                less
                                logical_or
                                                             logical_xor
logical_and
logical_not
```

2D EXAMPLE

Bitwise Operators

```
bitwise_and (&) invert (~) right_shift(a,shifts) bitwise_or (|) bitwise_xor left_shift (a,shifts)
```

BITWISE EXAMPLES

```
>>> a = array((1,2,4,8))
>> b = array((16,32,64,128))
>>> bitwise_or(a,b)
array([ 17, 34, 68, 136])
# bit inversion
>>> a = array((1,2,3,4), uint8)
>>> invert(a)
array([254, 253, 252, 251], dtype=uint8)
# left shift operation
>>> left\_shift(a,3)
array([ 8, 16, 24, 32], dtype=uint8)
```


Trig and Other Functions

TRIGONOMETRIC

sin(x) sinh(x) cos(x) cosh(x) arccos(x) arccosh(x) arctan(x) arctanh(x) arcsin(x) arcsinh(x)arctan2(x,y)

OTHERS

hypot(x,y)

Element by element distance calculation using $\sqrt{x^2 + y^2}$

Broadcasting

- When there are multiple inputs, then they all must be "broadcastable" to the same shape.
 - All avvays are promoted to the same number of dimensions (by pre-prending I's to the shape)
 - All dimensions of length I are expanded as determined by other inputs with non-unit lengths in that dimension.

```
>>> x = [1,2,3,4];
>>> y = [[10],[20],
[30]]
>>> print N.add(x,y)
[[11 12 13 14]
     [21 22 23 24]
     [31 32 33 34]]
>>> x = array(x)
>>> y = array(y)
>>> print x+y
[[11 12 13 14]
     [21 22 23 24]
     [31 32 33 34]]
```

X HAS SHAPE (4,) THE UFUNC SEES IT AS HAVING SHAPE (1,4)

Y HAS SHAPE (3,1)

THE UFUNC RESULT HAS SHAPE (3,4)

CIB | Constitution |

Array Broadcasting

Broadcasting Rules

*THE TRAILING AXES OF BOTH ARRAYS MUST EITHER BE 1 OR HAVE THE SAME SIZE FOR BROADCASTING TO OCCUR. OTHERWISE, A "VALUEERROR: FRAMES ARE NOT ALIGNED" EXCEPTION IS THROWN.

Broadcasting in Action

Universal Function Methods

The mathematic, comparative, logical, and bitwise operators that take two arguments (binary operators) have special methods that operate on arrays:

```
op.reduce(a,axis=0)
op.accumulate(a,axis=0)
op.outer(a,b)
op.reduceat(a,indices)
```


Vectorizing Functions

VECTORIZING FUNCTIONS

Example

```
# special.sinc already available
# This is just for show.
def sinc(x):
    if x == 0.0:
        return 1.0
    else:
        w = pi*x
        return sin(w) / w
```

SOLUTION

```
>>> from numpy import vectorize
>>> vsinc = vectorize(sinc)
>>> vsinc([1.3,1.5])
array([-0.1981, -0.2122])
```

```
# attempt
>>> sinc([1.3,1.5])
TypeError: can't multiply sequence to non-
int
>>> x = r_[-5:5:100j]
>>> y = vsinc(x)
>>> plot(x, y)
```


Interface with C/C++/Fortan

- Python excels at interfacing with other languages
 - weave (C/C++)
 - f2py (Fortran)
 - pyvex
 - ctypes (C)
 - SWIG (C/C++)
 - Boost.Python (C++)
 - RPy/RSPython (R)

Matplotlib

- Requires NumPy extension. Provides powerful plotting commands.
- http://matplotlib.sourceforge.net

Recommendations

- Matplotlib for day-to-day data exploration.
 - Matplotlib has a large community, tons of plot types, and is well integrated into ipython.
 It is the de-facto standard for 'command line' plotting from ipython.
- Chaco for building interactive plotting applications
 - Chaco is avchitected for building highly interactive and configurable plots in python. It
 is move useful as plotting toolk it than for making one-off plots.

Line Plots

PLOT AGAINST INDICES

>>>
$$x = arange(50)*2*pi/50.$$

$$>>> y = \sin(x)$$

- >>> plot(y)
- >>> xlabel('index')

MULTIPLE DATA SETS

>>> plot(x,y,x2,y2)

>>> xlabel('radians')

LINE FORMATTING

red, dot-dash, triangles
>>> plot(x,sin(x),'r-^')

MULTIPLE PLOT GROUPS

>>> plot(x,yl,'b-o', x,y2), r-^')
>>> axis([0,7,-2,2])

Scatter Plots

SIMPLE SCATTER PLOT

>>>
$$x = arange(50)*2*pi/50$$
.

$$>>> y = \sin(x)$$

>>> scatter(x,y)

COLORMAPPED SCATTER

marker size/color set with data

>>>
$$x = rand(200)$$

$$>>> y = rand(200)$$

>>> size =
$$rand(200)*30$$

$$>>> color = rand(200)$$

BAR PLOT

>>> bar(x,sin(x), ... width=x[l]-x[O])

HORIZONTAL BAR PLOT

>>> hbar(x,sin(x),

... height=x[1]-x[0],

... orientation='horizontal')

Bar Plots

DEMO/MATPLOTLIB_PLOTTING/BARCHART_DEMO.PY

HISTOGRAM

plot histogram

default to 10 bins

>>> hist(randn(1000))

HISTOGRAM 2

change the number of bins

>>> hist(randn(1000), 30)

Multiple Plots using Subplot

DEMO/MATPLOTLIB_PLOTTING/EXAMPLES/SUBPLOT_DEMO.PY

```
def f(t):
   sl = cos(2*pi*t)
   el = exp(-t)
   return multiply(sl,el)
tl = arange(0.0, 5.0, 0.1)
t2 = arange(0.0, 5.0, 0.02)
t3 = arange(0.0, 2.0, 0.01)
subplot(211)
l = plot(t1, f(t1), 'bo', t2, f(t2),
setp(l, 'markerfacecolor', 'g')
grid (True)
title('A tale of 2 subplots')
ylabel ('Damped oscillation')
subplot(212)
plot(t3, cos(2*pi*t3), 'r.')
grid(True)
xlabel('time (s)')
ylabel ('Undamped')
show()
```


Image Display

```
# Create 2d array where values
# are radial distance from
# the center of array.

>>> from numpy import mgrid
>>> from scipy import special
>>> x,y = mgrid[-25:25:100j,
... -25:25:100j]
>>> r = sqrt(x**2+y**2)
# Calculate bessel function of
# each point in array and scale
>>> s = special.jO(r)*25
```


Surface plots with mlab

```
# Create 2d array where values
# are radial distance from
# the center of array.
>>> from numpy import mgrid
>>> from scipy import special
>>> x,y = mgrid[-25:25:100j,
          -25:25:100j]
>>> r = sqrt(x^{**}2+y^{**}2)
# Calculate bessel function of
# each point in array and scale
>>> s = special.jO(r)*25
# Display surface plot.
>>> from enthought.mayavi \
     import mlab
>>>  mlab.surf(x,y,s)
```

>>> mlab.scalarbar()

>>> mlab.axes()

SciPy Overview

- Available at www.scipy.org
- Open Source BSD Style License
- Over 30 svn "committers" to the project

CURRENT PACKAGES

Special Functions (scipy.special)

Signal Processing (scipy.signal)

Image Processing (scipy.ndimage)

Fourier Transforms (scipy.fftpack)

Optimization (scipy.optimize)

Numerical Integration (scipy.integrate)

Linear Algebra (scipy.linalg)

Input/Output (scipy.io)

Statistics (scipy.stats)

Fast Execution (scipy.weave)

Clustering Algorithms (scipy.cluster)

Sparse Matrices (scipy.sparse)

Interpolation (scipy.interpolate)

More (e.g. scipy.odr, scipy.maxentropy)

1D Spline Interpolation

demo/interpolate/spline.py

from scipy.interpolate import interpld from pylab import plot, axis, legend from numpy import linspace

```
# sample values
x = linspace(0,2*pi,6)
y = sin(x)

# Create a spline class for interpolation.
# kind=5 sets to 5th degree spline.
# kind=0 -> zeroth order hold
# kind=1 or 'linear' -> linear interpolation
# kind=2 or
spline_fit = interpld(x,y,kind=5)
xx = linspace(0,2*pi, 50)
yy = spline_fit(xx)

# display the results.
```

axis('tight')

plot(xx, sin(xx), 'r-', x,y,'ro',xx,yy, 'b--', linewidth=2)

legend(['actual sin', 'original samples', 'interpolated curve'])

FFT

scipy.fft --- FFT and related functions

```
>>> n = fftfreq(128)*128
>>> f = fftfreq(128)
>>> ome = 2*pi*f
>>> x = (0.9)**abs(n)
>>> X = fft(x)
>>> z = exp(lj*ome)
>>> Xexact = (0.9**2 - 1)/0.9*z / \
... (z-0.9) / (z-1/0.9)
>>> f = fftshift(f)
>>> plot(f, fftshift(X.real),'r-',
... f, fftshift(Xexact.real),'bo')
>>> title('Fourier Transform Example')
>>> xlabel('Frequency (cycles/s)')
>>> axis(-0.6,0.6, 0, 20)
```


FT

EXAMPLE --- Short-Time Windowed Fourier Transform

```
rate, data = read(scale.wav')
dT, T_{window} = 1.0/rate, 50e-3
N_{\text{window}} = \text{int}(T_{\text{window}} * \text{rate})
N_{data} = len(data)
window = get_window('hamming', N_window)
result, start = [], O
# compute short-time FFT for each block
while (start < N_data - N_window):
       end = start + N_window
   val = fftshift(fft(window*data[start:end]))
   result.append(val)
   start = end
lastval = fft(window*data[-N_window:])
result.append(fftshift(lastval))
result = array(result,result[0].dtype)
```


Signal Processing

scipy.signal --- Signal and Image Processing

What's Available?

- Filtering
- General 2-D Convolution (more boundary conditions)
- N-D convolution
- B-spline filtering
- N-D Order filter, N-D median filter, faster 2d version,
- IIR and FIR filtering and filter design
- LTI systems
- System simulation
- Impulse and step responses
- Partial fraction expansion

Image Processing

- # The famous lena image is packaged with scipy
- >>> from scipy import lena, signal
- >>> lena = lena().astype(float32)
- >>> imshow(lena, cmap=cm.gray)
- # Blurring using a median filter
- >>> fl = signal.medfilt2d(lena, [15,15])
- >>> imshow(fl, cmap=cm.gray)

LENA IMAGE

MEDIAN FILTERED IMAGE

Image Processing

- # Noise removal using wiener filter
- >>> from scipy.stats import norm
- >>> ln = lena + norm(0,32).rvs(lena.shape)
- >>> imshow(ln)
- >>> cleaned = signal.wiener(ln)
- >>> imshow(cleaned)

NOISY IMAGE

FILTERED IMAGE

Image Processing

- # Edge detection using Sobel filter
- >>> from scipy.ndimage.filters import sobel
- >>> imshow(lena)
- >>> edges = sobel(lena)
- >>> imshow(edges)

NOISY IMAGE

FILTERED IMAGE

LTI Systems

```
>>> b,a = [1],[1,6,25]
>>> ltisys = signal.lti(b,a)
>>> t,h = ltisys.impulse()
>>> ts,s = ltisys.step()
>>> plot(t,h,ts,s)
>>> legend(['Impulse response','Step response'])
```

$$H(s) = \frac{1}{s^2 + 6s + 25}$$

VIOLOGIA COLOGIA COLOG

Optimization

scipy.optimize --- unconstrained minimization and root finding

Unconstrained Optimization

fmin (Nelder-Mead simplex), fmin_powell (Powell's method), fmin_bfgs (BFGS quasi-Newton method), fmin_ncg (Newton conjugate gradient), leastsq (Levenberg-Marquardt), anneal (simulated annealing global minimizer), brute (brute force global minimizer), brent (excellent 1-D minimizer), golden, bracket

Constrained Optimization

fmin_l_bfgs_b, fmin_tnc (truncated newton code), fmin_cobyla (constrained optimization by linear approximation), fminbound (interval constrained 1-d minimizer)

Root finding

fsolve (using MINPACK), brentq, brenth, ridder, newton, bisect, fixed_point (fixed point equation solver)

Optimization

EXAMPLE: MINIMIZE BESSEL FUNCTION

```
# minimize lst order bessel
```

- # function between 4 and 7
- >>> from scipy.special import jl
- >>> from scipy.optimize import \
 fminbound

$$>>> x = r_{2.7.1.1}$$

- >>> jlx = jl(x)
- >>> plot(x,jlx,'-')
- >>> hold(True)
- $>>> x_min = fminbound(jl,4,7)$
- $>>> jl_min = jl(x_min)$
- >>> plot([x_min],[jl_min],'ro')

Optimi2ation

EXAMPLE: SOLVING NONLINEAR EQUATIONS

Solve the non-linear equations

$$3x_0 - \cos(x_1 x_2) + a = 0$$

$$x_0^2 - 81(x_1 + 0.1)^2 + \sin(x_2) + b = 0$$

$$e^{-x_0 x_1} + 20x_2 + c = 0$$

starting location for search

```
>>> def nonlin(x,a,b,c):
>>> xO,xl,x2 = x
>>> return [3*xO-cos(xl*x2)+ a,
>>> xO*xO-8l*(xl+0.1)**2
sin(x2)+b,
>>> exp(-xO*xl)+2O*x2+c]
>>> a,b,c = -0.5,1.06,(10*pi-3.0)/3
>>> root = optimize.fsolve(nonlin, [0.1,0.1,-0.1],args=(a,b,c))
>>> print root
[0.5 0. -0.5236]
>>> print nonlin(root,a,b,c)
[0.0, -2.231104190e-12, 7.46069872e-14]
```


Optimization

EXAMPLE: MINIMIZING ROSENBROCK FUNCTION

Rosenbrock function

$$f(\mathbf{x}) = \sum_{i=1}^{N-1} 100 \left(x_i - x_{i-1}^2 \right)^2 + (1 - x_{i-1})^2.$$

WITHOUT DERIVATIVE

```
>>> rosen = optimize.rosen
```

>>> import time

>>> xO = [1.3, 0.7, 0.8, 1.9, 1.2]

>>> start = time.time()

>>> xopt = optimize.fmin(rosen,

xO, avegtol=le-7)

>>> stop = time.time()

>>> print_stats(start, stop, xopt)

Optimization terminated successfull

Current function value: 0.000000

Iterations: 316

Function evaluations: 533

Found in 0.0805299282074 seconds

Solution: [1. 1. 1. 1. 1.

Function value: 2.67775760157e-15

Avg. Error: 1.5323906899e-08

USING DERIVATIVE

>>> rosen_der = optimize.rosen_der

>>> xO = [1.3, 0.7, 0.8, 1.9, 1.2]

>>> start = time.time()

>>> xopt = optimize.fmin_bfgs(rosen,

xO, fprime=rosen_der, avegtol=le-7)

>>> stop = time.time()

>>> print_stats(start, stop, xopt)

Optimization terminated successfull

Current function value: 0.000000

Iterations: 11

Function evaluations 266

Gradient evaluations: III

Found in 0.0521121025085 seconds

Solution: [1. 1. 1. 1. 1. 1.

Function value: 1.3739103475e-18

Avg. Error: 1.13246034772e-10

Optimization

EXAMPLE: Non-linear least-squares data fitting

```
# fit data-points to a curve
# demo/data_fitting/datafit.py
>>> from numpy.random import randn
>>> from numpy import exp, sin, pi
>>> from numpy import linspace
>>> from scipy.optimize import leastsq
>>> def func(x,A,a,f,phi):
    return A^* \exp(-\alpha^* \sin(f^* x + pi/4))
>>> def errfunc(params, x, data):
    return func(x, *params) - data
>>> ptrue = [3,2,l,pi/4]
>>> x = linspace(0,2*pi,25)
>>> true = func(x, *ptrue)
>>> noisy = true + 0.3*randn(len(x))
>>> pO = [1,1,1,1]
>>> pmin, ier = leastsq(errfunc, p0,
                args=(x, noisy))
>>> pmin
```

array([3.1705, 1.9501, 1.0206, 0.7034])

scipy.stats --- CONTINUOUS DISTRIBUTIONS

over 80 continuous distributions!

METHODS

pdf

cdf

rvs

ppf

stats

scipy.stats --- Discrete Distributions

10 standard discrete distributions (plus any arbitrary finite RV)

METHODS

pdf cdf rvs

ppf

stats

Using stats objects

DISTRIBUTIONS

```
# Sample normal dist. 100 times.
>>> samp = stats.norm.rvs(size=100)
```

```
>>> x = r_{-}[-5:5:100j]
```

Calculate probability dist.

>>> pdf = stats.norm.pdf(x)

Calculate cummulative Dist.

>>> cdf = stats.norm.cdf(x)

Calculate Percent Point Function

>>> ppf = stats.norm.ppf(x)

scipy.stats --- Basic Statistical Calculations on Data

numpy.mean, numpy.std, numpy.var, numpy.cov stats.skew, stats.kurtosis, stats.moment

scipy.stats.bayes_mvs --- Bayesian mean, variance, and std.

```
# Create "frozen" Gamma distribution with a=2.5
>>> grv = stats.gamma(2.5)
>>> grv.stats() # Theoretical mean and variance
(array(2.5), array(2.5))
# Estimate mean, variance, and std with 95% confidence
>>> vals = grv.rvs(size=100)
>>> stats.bayes_mvs(vals, alpha=0.95)
((2.52887906081, (2.19560839724, 2.86214972438)),
(2.87924964268, (2.17476164549, 3.8070215789)),
(1.69246760584, (1.47470730841, 1.95115903475)))
# (expected value and confidence interval for each of
# mean, variance, and standard-deviation)
```


Using stats objects

CREATING NEW DISCRETE DISTRIBUTIONS

```
# Create a loaded dice.
>>> from scipy.stats import rv_discrete
>>> xk = [1,2,3,4,5,6]
>>> pk = [0.3, 0.35, 0.25, 0.05,
          0.025,0.025]
>>> new = rv_discrete(name='loaded',
                   values=(xk,pk))
# Calculate histogram
>>> samples = new.rvs(size=1000)
>>> bins=linspace(0.5,5.5,6)
>>> subplot(211)
>>> hist(samples,bins=bins,normed=True)
# Calculate pmf
>>> x = range(0.8)
>>> subplot(212)
>>> stem(x,new.pmf(x))
```


Continuous PDF Estimation using Gaussian Kernel Density Estimation

>>> hist(x, bins=25, normed=True)

Histogram

Linear Algebra

scipy.linalg --- FAST LINEAR ALGEBRA

- Uses ATLAS if available --- very fast
- Low-level access to BLAS and LAPACK routines in modules linalg.fblas, and linalg.flapack (FORTRAN order)
- High level matrix routines
 - Linear Algebra Basics: inv, solve, det, norm, Istsq, pinv
 - Decompositions: eig, lu, svd, ovth, cholesky, qv, schuv
 - Matrix Functions: expm, logm, sqrtm, cosm, coshm, funm (general matrix functions)

Linear Algebra

LU FACTORIZATION

EIGEN VALUES AND VECTORS

```
>>> from scipy import linalq
>>> a = array([[1,3,5],
         [2,5,1],
         [2,3,6]]
# compute eigen values/vectors
>>> vals, vecs = linalg.eig(a)
# print eigen values
>>> vals
array([ 9.39895873+0.j,
     -0.73379338+0.i,
     3.33483465+O.il)
# eigen vectors are in columns
# print first eigen vector
>>> vecs[:,0]
array([-0.57028326,
     -0.41979215,
     -0.70608183])
# norm of vector should be 1.0
>>> linalg.norm(vecs[:,O])
1.0
```


Matrix Objects

STRING CONSTRUCTION

```
>>> from numpy import mat

>>> a = mat('[1,3,5;2,5,1;2,3,6]')

>>> a

matrix([[1, 3, 5],

[2, 5, 1],

[2, 3, 6]])
```

TRANSPOSE ATTRIBUTE

```
>>> a.T
matrix([[1, 2, 2],
[3, 5, 3],
[5, 1, 6]])
```

INVERTED ATTRIBUTE

DIAGONAL

```
>>> a.diagonal()
matrix([[1, 5, 6]])
>>> a.diagonal(-1)
matrix([[3, 1]])
```

SOLVE

```
>>> b = mat('10;8;3')
>>> a.I*b
matrix([[-7.82608696],
[ 4.56521739],
[ 0.82608696]])
```

```
>>> from scipy import linalg

>>> linalg.solve(a,b)

matrix([[-7.82608696],

[ 4.56521739],

[ 0.82608696]])
```


Integration

scipy.integrate --- General purpose Integration

Ordinary Differential Equations (ODE)

integrate.odeint, integrate.ode

Samples of a 1-d function

integrate.trapz (trapezoidal Method), integrate.simps (Simpson Method), integrate.romb (Romberg Method)

Arbitrary callable function

integrate.quad (general purpose), integrate.dblquad (double integration), integrate.tplquad (triple integration), integrate.fixed_quad (fixed order Gaussian integration), integrate.quadrature (Gaussian quadrature to tolerance), integrate.romberg (Romberg)

Integration

scipy.integrate --- Example

```
# Compare sin to integral(cos)
```


Special Functions

scipy.special

Includes over 200 functions:

Airy, Elliptic, Bessel, Gamma, HyperGeometric, Struve, Error, Orthogonal Polynomials, Parabolic Cylinder, Mathieu, Spheroidal Wave, Kelvin

FIRST ORDER BESSEL EXAMPLE

```
>>> from scipy import special
```

$$>>> x = r_[O:100:0.1]$$

$$>>> jOx = special.jO(x)$$

Special Functions

scipy.special

AIRY FUNCTIONS EXAMPLE

```
>>> z = r_[-5:1.5:100j]
>>> vals = special.airy(z)
>>> plot(z,array(vals).T)
>>> legend(['Ai', 'Aip', 'Bi','Bip'])
>>> xlabel('z')
>>> title('Airy Functions and Derivatives')
```


Helpfyl Sites

SCIPY DOCUMENTATION PAGE

http://www.scipy.org/Documentation

Wiki

SciPv

Documentation

Mailing Lists Download

Installing SciPv

Topical Software

Cookbook

Developer Zone

RecentChanges

FindPage

Page

Immutable Page

Attachments

More Actions

Documentation

Note also the Installing SciPy and Cookbook areas of this web sit

Getting Started and Tutorial

• FAQ. Answers to the most frequently-asked questions.

Numpy

Numpy provides array manipulation tools for python.

- . Guide to NumPy (fee-based until 2010), by Travis Oliphant.
- Numpy Glossary: Basic definitions of terms. This is perhaps
- Tentative NumPy Tutorial: Beta version of the (still empty)
- Numpy Example List: large database demonstrating most of
- The example list can be conveniently accessed from Pythor
- Numpy Example List With Doc: database derived from the (
- Extensive Numpy & Scipy Summary: External page with det
- NumPy for MATLAB® Users: An overview the basics of Num
- · RecordArrays: A Tutorial on using Record Arrays in NumPy.
- Porting to NumPy: Provides stories and examples of porting

Scipy

SciPv is a collection of mathematical tools for scientific comp

- SciPy Tutorial: Still a work in progress, See also the (older)
- · A course on NumPv/SciPv by Dave Kuhlman
- A tutorial focused on interactive data analysis for astronom
- History of SciPy: A summary of the events that led to SciPy
- SciPy Tutorials at MIT including DTMF and echo cancellation
- Scientific Computing with Python (registration required) A o
- scipy Example List: make a list like "Numpy Example List"

NUMPY EXAMPLES

http://www.scipy.org/Numpy Example List With Doc

Wiki

SciPv

Documentation

Mailing Lists

Download

Installing SciPy

Topical Software

Cookbook

Developer Zone

RecentChanges

FindPage

Numpy Example List Wi

This is an auto-generated version of Numpy Examp Contents

- 2. []
- 4. abs()
- 5. absolute()
- 6. accumulate
- 7. add()

apply along axis()

numpy.apply_along_axis(func1d, axis, arr, *args)

Execute func1d(arr[i], *args) where func1d takes 1-D arrays and arr is an N-d array. i varies so as to apply the function along the given axis for each 1-d subarray in arr.

Example:

```
>>> from numpy import *
>>> def myfunc(a):
                                                     # function
      return (a[0]+a[-1])/2
\Rightarrow > b = array([[1,2,3],[4,5,6],[7,8,9]])
>>> apply_along_axis(myfunc,0,b)
                                                    # apply myfu
array([4, 5, 6])
>>> apply_along_axis(myfunc,1,b)
                                                    # applv mvfur
arrav([2, 5, 81)
```


Sometimes the union of the 5 packages is called pylab: ipython -pylab. Literally 1000's more modules/packages for Python

88/88