Naturality for Free

The category interpretation of directed type theory

Thorsten Altenkirch, Filippo Sestini

Functional Programming Laboratory School of Computer Science University of Nottingham

Homotopy Type Theory 2019

Types are abstract

This has powerful consequences:

Parametricity

Polymorphic functions preserve all logical relations.

Univalence

Isomorphic types are equal.

How are these related?

List reversal is natural

$$\mathsf{List} : \mathsf{Set} \to \mathsf{Set}$$

$$\mathsf{rev} : \prod_{A:\mathsf{Set}} \mathsf{List} \, A \to \mathsf{List} \, A$$

$$f : A \to B$$

$$\begin{array}{ccc} \operatorname{List} A & \xrightarrow{\operatorname{rev}_A} & \operatorname{List} A \\ \operatorname{List} f & & & \downarrow \operatorname{List} f \\ \operatorname{List} B & \xrightarrow{\operatorname{rev}_B} & \operatorname{List} B \end{array}$$

List $f \circ rev_A = rev_B \circ List f$

Proof by induction

List
$$f[a_0, a_1, \dots, a_{n-1}] = [f a_0, f a_1, \dots, f a_{n-1}]$$

$$rev_A[a_0, a_1, \dots, a_{n-1}] = [a_{n-1}, \dots, a_1, a_0]$$

$$(\operatorname{rev}_B \circ \operatorname{List} f) [a_0, a_1, \dots, a_{n-1}] = \operatorname{rev}_B (\operatorname{List} f [a_0, a_1, \dots, a_{n-1}])$$

$$= \operatorname{rev}_B [f a_0, f a_1, \dots, f a_{n-1}])$$

$$= [f a_{n-1}, \dots, f a_1, f a_0])$$

$$= \operatorname{List} f [a_{n-1}, \dots, a_1, a_0]$$

$$= \operatorname{List} f (\operatorname{rev}_A [a_0, a_1, \dots, a_{n-1}])$$

$$= (\operatorname{List} f \circ \operatorname{rev}_A) [a_0, a_1, \dots, a_{n-1}]$$

Everything is natural . . .

$$F, G : \mathsf{Set} \to \mathsf{Set}$$

$$\alpha : \prod_{A:\mathsf{Set}} FA \to GA$$

$$f : A \to B$$

$$\begin{array}{ccc}
FA & \xrightarrow{\alpha_A} & GA \\
Ff \downarrow & & \downarrow Gf \\
FB & \xrightarrow{\alpha_B} & GB
\end{array}$$

... but we can't prove it.

- Naturality (parametricity) is a metatheorem, but we cannot prove it internally
- Solution: extend MLTT with constructs to internalise free theorems (Nuyts et al., Bernardy et al., ...)
- Can we link this to Univalence/HoTT?

The hint (HoTT)

$$F, G : \mathsf{Set} \to \mathsf{Set}$$

$$\alpha : \prod_{A:\mathsf{Set}} FA \simeq GA$$

$$f : A \simeq B$$

$$FA \xrightarrow{\alpha_A} GA$$

$$Ff \downarrow \qquad \qquad \downarrow Gf$$

 $FB \xrightarrow{\alpha_B} GB$

- $A \simeq B$ means isomorphism (we work in a set-level setting);
- This is provable in HoTT, from Univalence + J.

4 D > 4 D > 4 E > 4 E > 9 Q P

- Set-level univalent type theory can be interpreted into the groupoid model (Hofmann & Streicher).
- The model validates a univalent universe of sets;
- Idea: replace groupoids with categories;
- This gives a semantics for a directed type theory with
 - an internal Hom type;
 - directed Univalence;

The category with families of categories

Contexts	Con : Set	Γ : Con	[[Г]] : Cat
Types	$Ty : Con \to Set$	<i>A</i> : Ту Г	$\llbracket A rbracket : \llbracket \Gamma rbracket o Cat$
Terms	$Tm: (\Gamma : Con) o Ty \Gamma o Set$	a : Tm Γ A	$\llbracket a \rrbracket$: Sect $\widehat{\llbracket A \rrbracket}$
Substitutions	$Tms : Con \to Con \to Set$	γ : Tms Γ Δ	$\boxed{\llbracket\gamma\rrbracket:\llbracket\Gamma\rrbracket\to\llbracket\Delta\rrbracket}$

Operations on contexts

$$\frac{A : \text{Ty } \Gamma}{\bullet : \text{Con}} \qquad \frac{A : \text{Ty } \Gamma}{\Gamma.A : \text{Con}}$$

$$[\![\bullet]\!]:=1$$

$$\begin{split} | [\![\Gamma.A]\!] | := (\gamma : | [\![\Gamma]\!] |) \times | [\![A]\!] \gamma | \\ [\![\Gamma.A]\!] ((\gamma, a), (\gamma', a')) := (f : [\![\Gamma]\!] (\gamma, \gamma')) \times ([\![A]\!] \gamma') ([\![A]\!] f \ a, a') \end{split}$$

Grothendieck construction

Opposites

$$\frac{\Gamma : \mathsf{Con}}{\Gamma^- : \mathsf{Con}} \qquad \frac{A : \mathsf{Ty}\,\Gamma}{A^- : \mathsf{Ty}\,\Gamma}$$

$$\llbracket \Gamma^- \rrbracket := \llbracket \Gamma \rrbracket^{op}$$
$$\llbracket A^- \rrbracket := \mathsf{op} \circ \llbracket A \rrbracket$$

where op : Cat \longrightarrow Cat takes $\mathcal C$ into $\mathcal C^{op}$.

Opposites

$$\frac{\Gamma : \mathsf{Con}}{\Gamma^- : \mathsf{Con}} \qquad \frac{A : \mathsf{Ty}\,\Gamma}{A^- : \mathsf{Ty}\,\Gamma}$$

$$\llbracket \Gamma^- \rrbracket := \llbracket \Gamma \rrbracket^{op}$$
$$\llbracket A^- \rrbracket := \mathsf{op} \circ \llbracket A \rrbracket$$

where op : Cat \longrightarrow Cat takes $\mathcal C$ into $\mathcal C^{op}$.

- But what is $(\Gamma.A)^-$?
- $\Gamma^-.A^-$ doesn't typecheck.

Contravariant context extension

$$\frac{A : \text{Ty } \Gamma^-}{\Gamma.^- A : \text{Con}}$$

$$\begin{split} | [\![\Gamma.^- A]\!] | &:= (\gamma : | [\![\Gamma]\!] |) \times | [\![A]\!] \gamma | \\ [\![\Gamma.^- A]\!] ((\gamma, a), (\gamma', a')) &:= (f : [\![\Gamma]\!] (\gamma, \gamma')) \times ([\![A]\!] \gamma) (a, [\![A]\!] f a') \\ (\Gamma.A)^- &= \Gamma^-.^- A^- \end{split}$$

Σ-types

$$\frac{A: \mathsf{Ty}\,\Gamma \quad B: \mathsf{Ty}\,\Gamma.A}{\Sigma\,A\,B: \mathsf{Ty}\,\Gamma}$$

On objects:

$$\llbracket \Sigma AB \rrbracket \gamma := (\llbracket A \rrbracket \gamma).(\llbracket B \rrbracket \gamma)$$

Σ-types

$$\frac{A: \mathsf{Ty}\,\Gamma \quad B: \mathsf{Ty}\,\Gamma.A}{\Sigma\,A\,B: \mathsf{Ty}\,\Gamma}$$

On objects:

$$\llbracket \Sigma A B \rrbracket \gamma := (\llbracket A \rrbracket \gamma).(\llbracket B \rrbracket \gamma)$$

What about $(\Sigma A B)^{-}$?

Σ^- -types

$$\frac{A: \mathsf{Ty}\,\Gamma \quad B: \mathsf{Ty}\,(\Gamma.A^-)}{\Sigma^-\,A\,B: \mathsf{Ty}\,\Gamma}$$

On objects:

$$\llbracket \Sigma^- A B \rrbracket \gamma := (\llbracket A \rrbracket \gamma).^-(\llbracket B \rrbracket \gamma)$$

$$(\Sigma AB)^- = \Sigma^- A^- B^-$$

Σ -types with polarities

$$\frac{A: \mathsf{Ty}\;\Gamma \quad B: \mathsf{Ty}\;(\Gamma.A^s)}{\Sigma^s\,A\,B: \mathsf{Ty}\;\Gamma} \qquad \frac{M: \mathsf{Tm}^s\;\Gamma\,A \quad N: \mathsf{Tm}^s\;\Gamma\,B[M]}{\langle M,N\rangle^s: \mathsf{Tm}^s\;\Gamma\;(\Sigma^s\,A\,B)}$$

$$\frac{M: \mathsf{Tm}^s\;\Gamma\;(\Sigma^s\,A\,B)}{\pi_1^s\,M: \mathsf{Tm}^s\;\Gamma\,A} \qquad \frac{M: \mathsf{Tm}^s\;\Gamma\;(\Sigma^s\,A\,B)}{\pi_2^s\,M: \mathsf{Tm}^s\;\Gamma\;(B[\pi_1^s\,M])}$$

where $s = \{+, -\}$ and $Tm^- \Gamma A \equiv Tm \Gamma^- A^-$.

Π-types

- ullet Groupoid construction of Π generalises to categories...
- ... but we need to be careful with polarities.

$$\frac{A: \mathsf{Ty}\,\mathsf{\Gamma}^{-} \quad B: \mathsf{Ty}\,(\mathsf{\Gamma}^{-}A)}{\mathsf{\Pi}\,A\,B: \mathsf{Ty}\,\mathsf{\Gamma}}$$

Π-types with polarities

$$\frac{A : \text{Ty } \Gamma^{-} \qquad B : \text{Ty } (\Gamma.^{-}A^{s})}{\Pi^{s} A B : \text{Ty } \Gamma}$$

$$\frac{t : \text{Tm}^{s} (\Gamma.^{-s}A) B}{\lambda^{s} t : \text{Tm}^{s} \Gamma (\Pi^{s} A B)} \qquad \frac{t : \text{Tm}^{s} \Gamma (\Pi^{s} A B)}{\text{app}^{s} t : \text{Tm}^{s} (\Gamma.^{-s}A) B}$$

$$(\Pi^{s} A B)^{-} = \Pi^{-s} A^{-} B^{-}$$

Universe of sets

$$\frac{A : \mathsf{Tm} \; \Gamma \; \mathsf{U}^s}{\mathsf{El} \; A : \mathsf{Ty} \; \Gamma^s}$$

closed under $\Pi, \Sigma, ...$

$$|\llbracket \mathsf{U} \rrbracket \, \gamma| := \mathsf{Set}$$

$$(\llbracket \mathsf{U} \rrbracket \, \gamma)(A,B) := A \to B$$

$$|\llbracket \text{El } a \rrbracket \, \gamma| := \llbracket a \rrbracket \, \gamma$$

$$(\llbracket \text{El } a \rrbracket \, \gamma)(y,z) := (y=z)$$

$$(\mathsf{El}\,A)^-=\mathsf{El}\,A$$

The Hom type

$$\frac{a:\,Tm\,\Gamma\,A^-\quad b:\,Tm\,\Gamma\,A}{\operatorname{Hom}_A\,a\,b:\,\mathsf{Ty}\,\Gamma}$$

we also write $a \sqsubseteq_A b$ for $Hom_A a b$.

On objects:

$$\llbracket \mathsf{Hom}_{\mathcal{A}} \, \mathsf{a} \, \mathsf{b} \rrbracket \, \gamma := \mathsf{A} \, \gamma (\mathsf{a} \, \gamma, \mathsf{b} \, \gamma)$$

The Hom type

$$\frac{a: Tm \Gamma A^{-} \quad b: Tm \Gamma A}{\text{Hom}_{A} \ a \ b: Ty \Gamma}$$

we also write $a \sqsubseteq_A b$ for $Hom_A a b$.

On objects:

$$\llbracket \mathsf{Hom}_{A} \, \mathsf{a} \, \mathsf{b} \rrbracket \, \gamma := A \, \gamma (\mathsf{a} \, \gamma, \mathsf{b} \, \gamma)$$

- But what about id (aka refl)?
- We would like to say

 $\underline{a: \operatorname{Tm} \Gamma A}$ $\operatorname{id}_a: \operatorname{Hom}_A a a$

The Hom type

$$\frac{a: Tm \Gamma A^{-} \quad b: Tm \Gamma A}{\text{Hom}_{A} \ a \ b: Ty \Gamma}$$

we also write $a \sqsubseteq_A b$ for $Hom_A a b$.

On objects:

$$\llbracket \mathsf{Hom}_{\mathcal{A}} \, \mathsf{a} \, \mathsf{b} \rrbracket \, \gamma := \mathsf{A} \, \gamma (\mathsf{a} \, \gamma, \mathsf{b} \, \gamma)$$

- But what about id (aka refl)?
- We would like to say

$$\underline{a: \operatorname{Tm} \Gamma A}$$
 $\operatorname{id}_a: \operatorname{Hom}_A a a$

but this doesn't type check!

Core types

$$\frac{A: \mathsf{Ty}\,\Gamma}{\overline{A}: \mathsf{Ty}\,\Gamma} \qquad \frac{a: \mathsf{Tm}\,\Gamma\,\overline{A}}{a^s: \mathsf{Tm}\,\Gamma\,A^s}$$

$$\llbracket \overline{A} \rrbracket := \mathsf{core} \circ \llbracket A \rrbracket$$

$$a, b: \mathsf{Tm}\,\Gamma\,\overline{A}$$

$$f: \mathsf{Tm}\,\Gamma\,(a^- \sqsubseteq_A b^+) \qquad g: \mathsf{Tm}\,\Gamma\,(b^- \sqsubseteq_A a^+)$$

$$I: \mathsf{Tm}\,\Gamma\,(f \circ g \sqsubseteq \mathsf{id}_b) \qquad r: \mathsf{Tm}\,\Gamma\,(g \circ f \sqsubseteq \mathsf{id}_a)$$

$$\overline{f, g, l, r}: \mathsf{Tm}\,\Gamma \;\mathsf{Hom}_{\overline{A}}\,a\,b$$

• Introduction rule? $A \not\longrightarrow \overline{A}$

$$\frac{a: \operatorname{Tm} \overline{\Gamma} A}{\overline{a}: \operatorname{Tm} \overline{\Gamma} \overline{A}}$$

• Introduction rule? $A \not\longrightarrow \overline{A}$

$$\frac{a: \operatorname{Tm} \overline{\Gamma} A}{\overline{a}: \operatorname{Tm} \overline{\Gamma} \overline{A}}$$

• Rules for core contexts? $\overline{\Gamma.A} \simeq \overline{\Gamma}.\overline{A}[...]$

• Introduction rule? $A
ightharpoonup \overline{A}$

$$\frac{a: \operatorname{Tm} \overline{\Gamma} A}{\overline{a}: \operatorname{Tm} \overline{\Gamma} \overline{A}}$$

- Rules for core contexts? $\overline{\Gamma.A} \simeq \overline{\Gamma}.\overline{A}[...]$
- $\overline{\overline{A}} \cong \overline{A}$

Identity morphisms

$$\frac{a:\operatorname{Tm}\Gamma\,\overline{A}}{\operatorname{id}_a:\operatorname{Hom}_Aa^-a^+}$$

Morphism induction (J^s)

```
a: \operatorname{Tm} \Gamma \overline{A}
b: \operatorname{Tm} \Gamma A
M: \operatorname{Ty} \Gamma, x: A, z: \operatorname{Hom}_{A^s} a^{-s} x
m: \operatorname{Tm} \Gamma M[x:=a^+, z:=\operatorname{id}_a]
p: \operatorname{Tm} \Gamma \operatorname{Hom}_{A^s} a^{-s} b
\operatorname{J}^s M m p: M[x:=b, z:=p]
```

Morphism induction II (\overline{J})

```
a: \operatorname{Tm} \Gamma \overline{A}
b: \operatorname{Tm} \Gamma \overline{A}
M: \operatorname{Ty} (\Gamma, x : \overline{A}, z : \operatorname{Hom}_A a^- x^+)
m: \operatorname{Tm} \Gamma M[x := a, z := \operatorname{id}_a]
p: \operatorname{Tm} \Gamma (\operatorname{Hom}_A a^- b^+)
\overline{J} M m p: M[x := b, z := p]
```

Directed Univalence

$$\frac{A:\operatorname{Tm}\,\Gamma\,\operatorname{U}^{-}\qquad B:\operatorname{Tm}\,\Gamma\,\operatorname{U}}{\operatorname{Hom}_{\operatorname{U}}AB=\operatorname{El}\left(A\to B\right)}$$

Directed Univalence

$$\frac{A: \mathsf{Tm}\;\Gamma\;\mathsf{U}^{-} \qquad B: \mathsf{Tm}\;\Gamma\;\mathsf{U}}{\mathsf{Hom}_{\mathsf{U}}\;A\;B = \mathsf{El}\;(A\to B)}$$

"Undirected" Univalence follows from the directed one.

$$\operatorname{\mathsf{Hom}}_{\overline{\mathsf{U}}} AB = f: A^- \to B^+, g: B^- \to A^+, +\mathsf{proofs}$$

Every type family is functorial

$$X: \overline{\mathbb{U}} \vdash F: \overline{\mathbb{U}}$$

For any

$$A, B : \overline{\mathsf{U}}, f : A^- \to B^+$$

We can construct

$$\operatorname{\mathsf{ap}} F f : F[A]^- \to F[B]^+$$

from directed UA $+ \bar{J}$

Every polymorphic function is natural

$$X: \overline{\mathbb{U}} \vdash F, G: \overline{\mathbb{U}}$$
$$\alpha: \prod_{A:\overline{\mathbb{U}}} F[A]^- \to G[A]^+$$

For any

$$A, B : \overline{\mathsf{U}} \qquad f : A^- \to B^+$$

$$F[A] \xrightarrow{\alpha_A} G[A]$$

$$ap F f \downarrow \qquad \qquad \downarrow ap G f$$

$$F[B] \xrightarrow{\alpha_B} G[B]$$

$$\mathsf{nat}\, f : \mathsf{Hom}_{F[A]^- \to G[B]^+}(\mathsf{ap}\, G\, g \circ \alpha_A) \, (\alpha_B \circ \mathsf{ap}\, F\, f)$$

from directed UA $+ \bar{J}$

Every polymorphic function is natural

$$X: \overline{\mathbb{U}} \vdash F, G: \overline{\mathbb{U}}$$
$$\alpha: \prod_{A: \overline{\mathbb{U}}} F[A]^- \to G[A]^+$$

For any

$$A, B : \overline{\mathsf{U}} \qquad f : A^- \to B^+$$

$$F[A] \xrightarrow{\alpha_A} G[A]$$

$$p F f \downarrow \qquad \qquad \downarrow p G f$$

$$F[B] \xrightarrow{\alpha_B} G[B]$$

nat
$$f: \operatorname{Hom}_{F[A]^- \to G[B]^+}(\operatorname{ap} G g \circ \alpha_A) (\alpha_B \circ \operatorname{ap} F f)$$

from directed $UA + \overline{J}$ (assuming symmetric/core context)

Related work

- R. Harper & D. Licata, 2-dimensional Directed Type Theory;
- P. North, Towards a directed Homotopy Type Theory;
- A. Nuyts, MSc thesis
- E. Riehl & M. Shulman, A type theory for synthetic ∞-categories (see also Jonathan Weinberger's talk);

Future work

- Formalisation of the calculus and its semantics in Agda (ongoing);
- Researching appropriate way to represent symmetric/groupoidal/core contexts; split-context modal type theory seems relevant (see also Dan Licata's talk);
- What is the relation to logical relations?
- Can we do higher categories (full directed HoTT)?