Arbres

- Un **arbre** est une structure de données organisée de façon hiérarchique, à partir d'un nœud distingué appelé racine.
- Très importante en informatique!
- Arbre de jeux (i.e., Echecs), système de fichiers UNIX/Windows, Arbres Syntaxiques, Expressions Arithmétiques, etc.
- Nous étudierons principalement deux types d'arbres :
 Arbres Binaires de Recherche (ABR) et Arbres
 Equilibrés (AVL, 234)

Arbres: définitions

• Un arbre est un ensemble de **Nœuds**, reliés par des **Arêtes**. Entre deux nœuds, il n'existe toujours qu'un seul chemin.

Arbres: définitions

- Les arbres sont enracinés. Une fois la **racine** définie, tous les nœuds admettent un **niveau**.
- Les arbres ont des noeuds internes et des feuilles (nœuds externes). Chaque noeud (à l'exception de la racine) a un parent et admet zéro ou plusieurs fils.

Arbres binaires

• Un **Arbre Binaire** est un arbre où chaque nœud admet au plus 2 fils.

Arbres Binaires: définitions

- Nœuds d'un arbre contiennent des clés (mots, nombres, etc)
- **Arbre Binaire parfait** : les feuilles sont toutes situées dans les deux derniers niveaux. Les feuilles du dernier niveau sont toutes à gauche.

Arbres Binaires: représentation par tableaux

- Un arbre binaire complet peut être représenté par un tableau A avec un accès en O(1) à chaque noeud:
 - Mémoriser les noeuds séquentiellement de la racine aux feuilles et de gauche vers la droite.
 - Fils gauche de A[i] est en A[2i]
 - Fils droit de A[i] est en A[2i + 1]
 - Parent de A[i] est en A[i/2]

Arbres Binaires: représentation par tableau

Arbres Binaires: représentation par pointeurs

```
typedef struct n{
  int clé;
  struct n *fGauche, *fDroit;
}nœud_t, *pnoeud_t;

typedef pnoeud_t Arbre_t;
```

Parcours infixé, inOrder

infixé est décrit réursivement :

- Visiter le sous-arbre gauche en **infixé**
- Traiter la racine (printf,...)
- Visiter le sous-arbre droit en **infixé**

Parcours préfixé, PreOrder

préfixé est décrit réursivement :

- Visiter la racine
- Visiter le sous-arbre gauche en préfixé

• Visiter le sous-arbre droit en préfixé

Parcours: non-récursif

PréOrdre itératif en utilisant une Pile.

```
Pile S
empiler racine dans S
répéter jusqu'à S=φ
  v = dépiler S
  si v <> nil
    visiter v
  empiler le fils droit de v dans S
  empiler le fils gauche de v dans S
```

Parcours postfixé, postOrder

postfixé est décrit réursivement :

- Visiter le sous-arbre gauche en **postfixé**
- Visiter le sous-arbre droit en **postfixé**
- Visiter la racine

Parcours par niveau: levelOrdre

LevelOrdre visite les noeuds niveau par niveau depuis la racine:

• Peut être décrit facilement en utilisant une File (Comment??)

• Parcours appelé "Breadth First Search" (parcours en largeur) dans les graphes

Arbre Binaire de Recherche

• Un **Arbre Binaire de Recherche (ABR)** est un arbre binaire avec les propriétés suivantes :

 La clé associée à un noeud est supérieur aux clés des nœuds de son sous-arbre gauche

 La clé associée à un noeud est inférieur aux clés des nœuds de son sous-arbre droit

Arbre Binaire de Recherche: Exemples

Arbre Binaire de Recherche

• ABR est un arbre avec la **propriété** suivante :

Clé.fGauche < Clé.parent < Clé.fDroit

NOTER! Le parcours InOrdre visite les clés dans l'ordre croissant.

```
void inOrdre(Arbre racine) {
   inOrdre(racine->fGauche)
   print(racine->key)
   inOrdre(racine->fDroit)
}
```

ABR: InOrdre

Exemple:

InOrdre visites:

(8)

(10)

(11)

(14)

(15)

(16)

(18)

ABR: Rechercher un élément

Soit un ABR:

Problème: rechercher un noeud avec une clé x?

ABR: Rechercher un élément

rechercher(racine, x)

comparer x à la clé de racine:

- si x = clé return
- si x < clé => chercher dans G
- si x > clé => chercher dans D

chercher de la même manière dans G ou D

Exemple:

$$x=8$$
 (oui) $x=17$ (non)

ABR: Rechercher un élément

```
bool searchABR(Arbre racine; typeCle clé){
   if (racine==NULL) return false
   if (racine->clé==clé)
      return true;
   else if (key < racine->clé)
      return searchABR(racine->fGauche, clé);
   else
      return searchABR(racine->fDroit, clé)
}
```

Donner une version itérative ?

ABR : Ajout d'un élément

Comment ajouter une clé?

La même procédure que searchABR s'applique:
Déterminer la position d'insertion par searchABR.
Ajouter la nouvelle clé si la recherche échoue.

Exemple:

Construction d'un ABR

Exemple: ajouter C A B L M (dans l'ordre!)

1) Ajouter C

2) ajouter A

3) ajouter B

 \mathbb{C}

5) Ajouter M

Construction d'un ABR

L'ABR est-il unique pour une séquence de lettres A B C L M ?

NON! différentes séquences donnent différents ABR

Ajout de : A B C L M

B

C

L

M

Ajout de : C A B L M

Trier avec un ABR

Soit un ABR, peut-on afficher les clés dans l'ordre?

Visiter l'ABR avec un parcours InOrdre:

- visiter le sous-arbre gauche
- afficher racine
- visiter le sous-arbre droit

Comment trouver le minimum?

Comment trouver le maximum?

Example:

InOrdre affichage:

ABCLM

Pour supprimer un nœud contenant x, rechercher x, une fois trouvé appliquer l'un des trois cas suivants:

On obtient un ABR

Cas B: x est un nœud interne avec un seul sous-arbre

Cas C: x est un nœud interne avec 2 sous-arbres

propriété ABR est conservée 27

Cas C suite: ... ou encore comme suit

q < x < u

- ⇒ q est inférieur au plus petit élément de Z
- ⇒ r est supérieur au plus grand élément de W

D'autres façons ?

- Quelle est la compléxité de **searchABR** ?
- Dépend de :
 - la clé x
 - des autres données
 - De la forme de l'arbre

Analyse de la compléxité: On est intéréssé par la compléxité dans le meilleur cas, pire cas et en moyenne

- hauteur d'un ABR = niveau max
- hauteur d'un noeud

h(x) = 0 si x est la racine

$$h(x) = 1 + h(y), y = pere(x)$$

• hauteur d'un ABR B : $h(B) = max\{h(x), x nœud de B\}$

Si tout les nœuds de l'arbre existent : **ABR plein**

Si tout les nœuds existent sauf ceux du dernier niveau :

niveau-min ABR

Théorème:

Un ABR plein (complet) de hauteur h a 2 - 1 noeuds

Preuve: Par induction

Cas de base: un arbre de hauteur 0 a 1 nœud (racine)

Hypothèse inductive: Supposant qu'un ABR de hauteur h a 2^{h+1} noeuds

Etape d'induction: Connecter 2 ABR de hauteur h pour construire un ABR de hauteur h+1. On a besoin d'ajouter un noeud supplémentaire

Par hypothèse inductive le nouveau nombre de noeuds est

$$(2^{h+1} - 1) + (2^{h+1} - 1) + 1 = 2^{h+2} - 1$$
CQFD!
Ou encore : $n = 1+2+...+2^h = 2^{h+1}$

Ou encore :
$$n = 1+2+...+2 = 2 - 1$$

Lemme 1: pour un ABR ayant n nœud et de hauteur h :

$$\lfloor \log_2 \underline{\mathbf{n}} \rfloor <= \mathbf{h} <= \mathbf{n} - 1$$

Remarque: Un ABR *parfait* avec n noeuds a pour hauteur

$$h = \lfloor \log_2 \underline{n} \rfloor$$

$$2^{h} \le n \le 2^{h+1}$$

car

Conséquence : pour un ABR plein avec N noeuds la compléxité de **searchABR**:

⇒ complexité en moyenne pour une recherche dans un ABR plein est une fonction logarithmique du nombre de nœuds de l'arbre

Complexité en moyenne pour des ABR quelconque est approximativement 39% plus chère que la recherche dans un ABR plein pour le même nombres de nœuds :

$$T_{avg}(N) \approx 1.386 \log_2 N - 3$$

 Maintenant que nous connaissons la compléxité de searchABR que peut-on dire des autres opérations?

Insertion	O(log N)
Suppression	O(log N)
Trouver le Min	O(log N)
Trouver le Max	O(log N)

• En résumé, il est nécessaire d'avoir un ABR plein ou niveau-min ABR

sarder un arbre le plus équilibré possible

à tout moment (Arbre AVL)