35

You are an exceptionally intelligent assistant that detects anomalies in time series data by listing all the anomalies.

Task Description

For Univariable Tasks: Your task is to determine whether any time steps in the satellite telemetry sequence are anomalous.

For Multivariable Tasks: Your task is to determine whether any time steps in the multivariate satellite telemetry time series are anomalous. The data is represented as an array where each element is an array, corresponding to a variable sequence, with a total of 27 variable sequences collected synchronously over the same time period, reflecting interdependent measurements from multiple sensors.

Requirements

Requirements:

- 1. Provide the analysis process, starting with "Analysis Process:".
- 2. Provide the final answer, starting with "Final Answer:", returning the indices of anomalies in the sequence (0-{WINDOW_SIZE_MAX_INDEX}). Do not say anything like "the anomalous indices in the sequence are", just return the numbers. If you think there are no anomalies in the sequence, please return None.
- 3. If reference data or examples are provided, they are intended solely to illustrate normal data patterns and potential anomaly types. Do not directly replicate the answers or anomaly indices from the examples, as they represent specific cases and are not universally applicable. For instance, if an example identifies the latter half of a sequence as anomaly indices, this is merely one scenario, as anomalies may occur anywhere within the entire sequence range. The entire sequence may be entirely anomalous data.

Answer

Input: {test_sequence}

Output:

Fig. A1: The zero-shot prompt template used for the DIRECT paradigm.

You are an exceptionally intelligent assistant that detects anomalies in time series data by listing all the anomalies.

Task Description

For Univariable Tasks: Your task is to determine whether any time steps in the satellite telemetry sequence are anomalous.

For Multivariable Tasks: Your task is to determine whether any time steps in the multivariate satellite telemetry time series are anomalous. The data is represented as an array where each element is an array, corresponding to a variable sequence, with a total of 27 variable sequences collected synchronously over the same time period, reflecting interdependent measurements from multiple sensors.

Requirements

Requirements:

- 1. Provide the analysis process, starting with "Analysis Process:".
- 2. Provide the final answer, starting with "Final Answer:", returning the indices of anomalies in the sequence (0-{WINDOW_SIZE MAX_INDEX}). Do not say anything like "the anomalous indices in the sequence are", just return the numbers. If you think there are no anomalies in the sequence, please return None.
- 3. If reference data or examples are provided, they are intended solely to illustrate normal data patterns and potential anomaly types. Do not directly replicate the answers or anomaly indices from the examples, as they represent specific cases and are not universally applicable. For instance, if an example identifies the latter half of a sequence as anomaly indices, this is merely one scenario, as anomalies may occur anywhere within the entire sequence range. The entire sequence may be entirely anomalous data.

Examples

```
Example 1:
Input: {positive_samples_str}
Output: Analysis Process: {positive_analysis_process} Final Answer: {positive_final_answer}
Example 2:
Input: {negative_samples_str1}
Output: Analysis Process: {negative_analysis_process1}Final Answer: {negative_final_answer1}
Example 3:
Input: {negative_samples_str2}
Output: Analysis Process: {negative_analysis_process2}Final Answer: {negative_final_answer2}
Example 4:
Input:{negative_samples_str3}
Output:Analysis Process: {negative_analysis_process3} Final Answer: {negative_final_answer3}
## Answer
Input: {test_sequence}
Output:
```

Fig. A2: The few-shot prompt template for the DIRECT paradigm, which augments the instructions with in-context examples.

You are an exceptionally intelligent assistant that detects anomalies in time series data by listing all the anomalies.

Task Description

For Univariable Tasks: Your task is to determine whether any time steps in the satellite telemetry sequence are anomalous.

For Multivariable Tasks: Your task is to determine whether any time steps in the multivariate satellite telemetry time series are anomalous. The data is represented as an array where each element is an array, corresponding to a variable sequence, with a total of 27 variable sequences collected synchronously over the same time period, reflecting interdependent measurements from multiple sensors.

Requirements

Requirements:

- 1. Provide the analysis process, starting with "Analysis Process:".
- 2. Provide the final answer, starting with "Final Answer:", returning the indices of anomalies in the sequence (0-{WINDOW SIZE MAX INDEX}). Do not say anything like "the anomalous indices in the sequence are", just return the numbers. If you think there are no anomalies in the sequence, please return None.
- 3. If reference data or examples are provided, they are intended solely to illustrate normal data patterns and potential anomaly types. Do not directly replicate the answers or anomaly indices from the examples, as they represent specific cases and are not universally applicable. For instance, if an example identifies the latter half of a sequence as anomaly indices, this is merely one scenario, as anomalies may occur anywhere within the entire sequence range. The entire sequence may be entirely anomalous data.

Reference

The following data, retrieved from the satellite telemetry database, is the most similar to the input. Please use it as a reference: {rag_str} ## Answer

```
Input: {test_sequence}
Output:
```

Fig. A3: The RAG prompt template for the DIRECT paradigm, which provides a retrieved normal sample as context.

You are an exceptionally intelligent assistant that performs time series forecasting on satellite telemetry data by generating accurate predictions for future values.

Task Description

For Univariable Tasks: Your task is to predict the next {HORIZON} time steps of the satellite telemetry time series data.

For Multivariable Tasks: Your task is to predict the next {HORIZON} time steps of the multivariate satellite telemetry time series data. The data is represented as a list where each sublist corresponds to a variable sequence, with a total of 27 variable sequences collected synchronously over the same time period, reflecting interdependent measurements from multiple sensors.

Requirements

Requirements:

1. Provide the analysis process, starting with "Analysis Process:".

For Univariable Tasks: 2. Provide the final answer, starting with "Final Answer:", returning the predicted values for the next HORIZON time steps as a list of numbers. Do not include additional explanations in this section, just the predicted values.

For Multivariable Tasks: 2. Provide the final answer, starting with "Final Answer:". Predicted values for the 27 variable sequences must be returned as a list of 27 sublists, each sublist containing {HORIZON} predicted values for one sequence. No additional explanations should be included in this section, only the predicted values.

3. If reference data or examples are provided, they are intended to illustrate normal data patterns. You may use them as a reference for normal patterns during prediction, but you must not directly replicate them.

Answer

Input: {test_sequence}
Output:

Fig. B1: The zero-shot prompt template used for the PREDICTION-BASED paradigm.

You are an exceptionally intelligent assistant that performs time series forecasting on satellite telemetry data by generating accurate predictions for future values.

Task Description

For Univariable Tasks: Your task is to predict the next {HORIZON} time steps of the satellite telemetry time series data.

For Multivariable Tasks: Your task is to predict the next {HORIZON} time steps of the multivariate satellite telemetry time series data. The data is represented as a list where each sublist corresponds to a variable sequence, with a total of 27 variable sequences collected synchronously over the same time period, reflecting interdependent measurements from multiple sensors.

Requirements

Requirements:

1. Provide the analysis process, starting with "Analysis Process:".

For Univariable Tasks: 2. Provide the final answer, starting with "Final Answer:", returning the predicted values for the next HORIZON time steps as a list of numbers. Do not include additional explanations in this section, just the predicted values.

For Multivariable Tasks: 2. Provide the final answer, starting with "Final Answer:". Predicted values for the 27 variable sequences must be returned as a list of 27 sublists, each sublist containing {HORIZON} predicted values for one sequence. No additional explanations should be included in this section, only the predicted values.

3. If reference data or examples are provided, they are intended to illustrate normal data patterns. You may use them as a reference for normal patterns during prediction, but you must not directly replicate them.

Example

Example:

Input:{positive_samples_str}

 $Output: Analysis\ Process: \{\texttt{positive_analysis_process}\} Final\ Answer: \{\texttt{positive_final_answer_str}\}$

Answer

Input: {test_sequence}

Output:

Fig. B2: The few-shot prompt template for the PREDICTION-BASED paradigm, which augments the instructions with in-context examples.

You are an exceptionally intelligent assistant that performs time series forecasting on satellite telemetry data by generating accurate predictions for future values.

Task Description

For Univariable Tasks: Your task is to predict the next {HORIZON} time steps of the satellite telemetry time series data.

For Multivariable Tasks: Your task is to predict the next {HORIZON} time steps of the multivariate satellite telemetry time series data. The data is represented as a list where each sublist corresponds to a variable sequence, with a total of 27 variable sequences collected synchronously over the same time period, reflecting interdependent measurements from multiple sensors.

Requirements

Requirements:

1. Provide the analysis process, starting with "Analysis Process:".

For Univariable Tasks: 2. Provide the final answer, starting with "Final Answer:", returning the predicted values for the next HORIZON time steps as a list of numbers. Do not include additional explanations in this section, just the predicted values.

For Multivariable Tasks: 2. Provide the final answer, starting with "Final Answer:". Predicted values for the 27 variable sequences must be returned as a list of 27 sublists, each sublist containing {HORIZON} predicted values for one sequence. No additional explanations should be included in this section, only the predicted values.

3. If reference data or examples are provided, they are intended to illustrate normal data patterns. You may use them as a reference for normal patterns during prediction, but you must not directly replicate them.

Reference

The following data, retrieved from the satellite telemetry database, is the most similar to the input. Please use it as a reference: {rag_str} ## Answer

Input: {test_sequence}

Output:

Fig. B3: The RAG prompt template for the PREDICTION-BASED paradigm, which provides a retrieved normal sample as context.

37 C. Details of ATSADBENCH

Fig. C1: Visualization of the nine distinct anomaly detection tasks for evaluation.

D. Hyperparameter Tuning for LLM-based Approaches

38

TABLE D1: Hyperparameter tuning results for DeepSeek-V3 under the DIRECT paradigm. **Bolded values** indicate the best results for each metric within each task. The highlighted row indicates the hyperparameter configuration ultimately selected.

Task Category	Window Size	Step Size	Precision	Recall	F1 Score	AA	AL	AC
		Multi	variate Task	s				
	6	6	0.5829	0.4780	0.5253	0.4790	1.0	0.0569
M-IL-FVA	10	10	0.5081	0.4060	0.4514	0.5175	1.5	0.0900
	20	20	0.5095	0.3495	0.4146	0.5200	1.0	0.1000
	6	6	0.5650	0.4175	0.4802	0.4865	2.0	0.0539
M-IL-CDA	10	10	0.5031	0.4015	0.4466	0.4800	1.0	0.0850
	20	20	0.4174	0.2780	0.3337	0.4550	3.5	0.1000
	6	6	0.4993	0.3475	0.4098	0.4865	1.0	0.0419
M-IL-TVDA	10	10	0.5337	0.4550	0.4912	0.4725	1.0	0.0550
	20	20	0.5195	0.3260	0.4006	0.4900	1.5	0.1300
	6	6	0.5590	0.4240	0.4822	0.4234	1.5	0.0569
M-OL-FVA	10	10	0.5363	0.4695	0.5007	0.4575	2.5	0.0650
	20	20	0.5261	0.3780	0.4399	0.5250	1.5	0.1400
	6	6	0.5414	0.4250	0.4762	0.4895	3.0	0.0509
M-OL-CDA	10	10	0.4788	0.3735	0.4197	0.5175	1.0	0.0900
	20	20	0.4723	0.3030	0.3692	0.4450	1.5	0.1100
	6	6	0.5137	0.3655	0.4271	0.4414	1.0	0.0569
M-OL-TVDA	10	10	0.4997	0.3860	0.4355	0.4825	2.0	0.0500
	20	20	0.4704	0.3015	0.3675	0.4350	1.0	0.1700
	6	6	0.5435	0.4096	0.4668	0.4677	1.5833	0.0529
M-Avg.	10	10	0.5100	0.4153	0.4575	0.4879	1.5000	0.0725
	20	20	0.4859	0.3227	0.3876	0.4783	1.6667	0.1250
		Univ	variate Tasks					
	100	20	0.1111	0.0700	0.0859	0.1615	4.0	0.1000
U-FVA	150	30	0.0893	0.0650	0.0752	0.7581	1.0	0.3939
U-1 VA	200	40	0.2232	0.1600	0.1864	0.1739	2.0	0.1200
	500	100	0.5081	0.3750	0.4315	0.5000	6.5	0.3500
	100	20	0.5585	0.6130	0.5845	0.4948	6.0	0.1400
U-CDA	150	30	0.5136	0.6050	0.5556	0.5161	3.5	0.1818
U-CDA	200	40	0.5534	0.5230	0.5378	0.4457	5.0	0.3400
	500	100	0.3707	0.5055	0.4278	0.6250	3.0	0.4000
	100	20	0.4989	0.5465	0.5216	0.4688	1.0	0.1100
II TVDA	150	30	0.5268	0.5350	0.5309	0.5403	2.0	0.1667
U-TVDA	200	40	0.4675	0.4705	0.4690	0.3370	1.5	0.1200
	500	100	0.6125	0.6275	0.6199	0.4688	3.0	0.3500
	100	20	0.3895	0.4098	0.3973	0.3750	3.6667	0.1167
II Ava	150	30	0.3766	0.4017	0.3872	0.6048	2.1667	0.2475
U-Avg.	200	40	0.4147	0.3845	0.3977	0.3188	2.8333	0.1933
	500	100	0.4971	0.5027	0.4931	0.5313	4.1667	0.3667

TABLE D2: Hyperparameter tuning results for DeepSeek-V3 under the PREDICTION-BASED paradigm. **Bolded values** indicate the best results for each metric within each task. The highlighted row indicates the hyperparameter configuration ultimately selected.

Task	Window Size	Step Size	Prediction Horizon	ROC	PRC	Precision	Recall	F1	AA	AL	AC		
Multivariate Tasks													
	10	5	5	0.4577	0.4891	0.4572	0.4570	0.4571	0.4572	2.0	0.0300		
M-IL-FVA	20	5	5	0.5348	0.5146	0.5043	0.5040	0.5041	0.5038	2.5	0.0425		
	30	5	5	0.4482	0.4572	0.4042	0.4040	0.4041	0.4025	1.5	0.0325		
	10	5	5	0.6444	0.6553	0.6123	0.6120	0.6122	0.6125	2.5	0.0550		
M-IL-CDA	20	5	5	0.6716	0.6238	0.6513	0.6510	0.6512	0.6513	2.0	0.0650		
	30	5	5	0.6581	0.6484	0.5978	0.5975	0.5976	0.5975	2.0	0.0550		
	10	5	5	0.6023	0.5739	0.5613	0.5610	0.5611	0.5625	1.0	0.0525		
M-IL-TVDA	20	5	5	0.6177	0.5821	0.5493	0.5490	0.5491	0.5550	1.0	0.0525		
	30	5	5	0.6226	0.5663	0.6273	0.6270	0.6272	0.6275	1.0	0.0475		
	10	5	5	0.6100	0.5963	0.6023	0.6020	0.6022	0.6013	2.0	0.0700		
M-OL-FVA	20	5	5	0.5112	0.5166	0.4942	0.4940	0.4941	0.4950	3.0	0.0425		
	30	5	5	0.4649	0.4861	0.4332	0.4330	0.4331	0.4325	5.0	0.0325		
	10	5	5	0.5599	0.5445	0.5318	0.5315	0.5316	0.5325	1.5	0.0525		
M-OL-CDA	20	5	5	0.6156	0.5848	0.5848	0.5845	0.5846	0.5850	1.0	0.0575		
	30	5	5	0.5803	0.5528	0.5008	0.5005	0.5006	0.5000	1.0	0.0325		
	10	5	5	0.5826	0.5604	0.5323	0.5320	0.5321	0.5325	1.5	0.0550		
M-OL-TVDA	20	5	5	0.6003	0.5668	0.5958	0.5955	0.5956	0.5975	3.5	0.0600		
	30	5	5	0.5971	0.5556	0.6103	0.6100	0.6102	0.6100	2.5	0.0450		
	10	5	5	0.5762	0.5699	0.5495	0.5493	0.5494	0.5498	1.7500	0.0525		
M-Avg.	20	5	5	0.5918	0.5648	0.5633	0.5630	0.5631	0.5646	2.1667	0.0533		
	30	5	5	0.5619	0.5444	0.5289	0.5287	0.5288	0.5283	2.1667	0.0408		
				Ui	nivariate T								
	100	20	20	0.0723	0.3068	0.0828	0.0825	0.0827	0.0650	1.0	0.0700		
	250	20	20	0.1365	0.3333	0.1617	0.1615	0.1616	0.1250	1.5	0.1300		
U-FVA	500	20	20	0.2624	0.3704	0.3022	0.3020	0.3021	0.2950	1.0	0.2600		
	750	20	20	0.4940	0.5262	0.5158	0.5155	0.5156	0.5050	3.0	0.4900		
	1000	20	20	0.5514	0.5471	0.5368	0.5365	0.5366	0.5200	1.0	0.5100		
	100	20	20	0.5620	0.6390	0.5193	0.5180	0.5186	0.4850	1.0	0.1300		
	250	20	20	0.5588	0.5883	0.5213	0.5200	0.5207	0.5100	1.0	0.2100		
U-CDA	500	20	20	0.6242	0.6258	0.5821	0.5815	0.5818	0.5800	1.0	0.3000		
	750	20	20	0.6681	0.6406	0.7159	0.7145	0.7152	0.7150	1.0	0.4700		
	1000	20	20	0.7215	0.6456	0.7799	0.7795	0.7797	0.7800	1.0	0.5500		
	100	20	20	0.8024	0.7495	0.7804	0.7800	0.7802	0.7900	1.0	0.5600		
	250	20	20	0.8132	0.7497	0.7949	0.7945	0.7947	0.8000	1.0	0.6400		
U-TVDA	500	20	20	0.7515	0.6316	0.7979	0.7975	0.7977	0.8100	1.0	0.7500		
	750	20	20	0.8736	0.7541	0.8354	0.8350	0.8352	0.8550	1.5	0.5100		
	1000	20	20	0.8123	0.6694	0.8194	0.8190	0.8192	0.8300	1.5	0.5800		
	100	20	20	0.4789	0.5651	0.4608	0.4602	0.4605	0.4467	1.0000	0.2533		
	250	20	20	0.5028	0.5571	0.4926	0.4920	0.4923	0.4783	1.1667	0.3267		
U-Avg.	500	20	20	0.5460	0.5426	0.5607	0.5603	0.5605	0.5617	1.0000	0.4367		
	750	20	20	0.6786	0.6403	0.6890	0.6883	0.6887	0.6917	1.8333	0.4900		
	1000	20	20	0.6951	0.6207	0.7120	0.7117	0.7118	0.7100	1.1667	0.5467		

TABLE E1: F1 improvement of Few-Shot and RAG over Zero-Shot setting. Green: positive/zero; Red: negative.

				1	1								1
method	U-FVA	U-CDA	U-TVDA	U	MO-FVA	MO-FVA	MO-TVDA	M-OL	MI-FVA	MI-CDA	MI-TVDA	M-IL	Overall
	DeepSeek-V3 with DIRECT pardiagm												
Zero-Shot	0.4315	0.4278	0.6199	0.4931	0.5007	0.4197	0.4355	0.4520	0.4514	0.4466	0.4912	0.4631	0.4694
Few-Shot	+23.36%	+9.58%	-6.45%	+8.83%	+19.19%	+2.36%	+16.46%	+12.67%	+35.96%	-13.83%	+14.66%	+12.26%	+11.25%
RAG	+40.81%	+11.21%	+4.75%	+18.92%	-9.86%	-11.71%	-15.12%	-12.23%	+0.47%	-12.66%	-22.73%	-11.64%	-1.65%
Qwen3 with DIRECT pardiagm													
Zero-Shot	0.7760	0.3341	0.3450	0.4850	0.2507	0.2010	0.2847	0.2455	0.2982	0.2583	0.2597	0.2721	0.3342
Few-Shot	-1.00%	+31.38%	+36.55%	+22.31%	+51.28%	+19.91%	+26.61%	+30.60%	+62.18%	-6.01%	+33.16%	+29.78%	+28.23%
RAG	-3.22%	+6.55%	+37.97%	+13.76%	+18.60%	+14.91%	+9.26%	+14.25%	+32.92%	+11.31%	+11.36%	+18.53%	+15.52%
				L	DeepSeek-V3	with PREI	DICTION-BA	SED pardia	gm				
Zero-Shot	0.5366	0.7797	0.8192	0.7118	0.4941	0.5846	0.5956	0.5581	0.5041	0.6512	0.5491	0.5681	0.6127
Few-Shot	+2.35%	-2.09%	-4.95%	-1.56%	-5.15%	-16.75%	-22.86%	-14.92%	-17.20%	-3.95%	-14.00%	-11.72%	-9.40%
RAG	-1.65%	+0.97%	-1.45%	-0.71%	-9.45%	-0.95%	-13.55%	-7.99%	-12.05%	-10.30%	+5.20%	-5.72%	-4.80%
	Owen3 with Prediction-Based pardiagm												
Zero-Shot	0.5066	0.6517	0.9722	0.7102	0.3931	0.4436	0.4226	0.4198	0.4471	0.4386	0.5246	0.4701	0.5333
Few-Shot	+1.35%	+18.85%	-3.05%	+5.72%	-1.80%	-3.30%	+16.40%	+3.77%	+3.60%	-0.75%	+2.05%	+1.63%	+3.71%
RAG	-0.59%	+28.86%	-3.25%	+8.34%	-6.45%	-3.20%	+3.25%	-2.13%	-2.30%	-2.65%	+6.80%	+0.62%	+2.27%

TABLE E2: AA improvement of Few-Shot and RAG over Zero-Shot setting. Green: positive/zero; Red: negative.

method	U-FVA	U-CDA	U-TVDA	U	MO-FVA	MO-FVA	MO-TVDA	M-OL	MI-FVA	MI-CDA	MI-TVDA	M-IL	Overall
	DeepSeek-V3 with DIRECT pardiagm												
Zero-Shot	0.5000	0.6250	0.4688	0.5313	0.4575	0.5175	0.4825	0.4858	0.5175	0.4800	0.4725	0.4900	0.5024
Few-Shot	+ 0.00%	-12.50%	+15.63%	+1.04%	+4.25%	-1.75%	+2.25%	+1.58%	-18.75%	+2.00%	-4.50%	-7.08%	-1.49%
RAG	-18.75%	+0.00%	-3.13%	-7.29%	-4.50%	+2.75%	+10.00%	+2.75%	-1.50%	+12.50%	+8.00%	+6.33%	+0.60%
Qwen3 with DIRECT pardiagm													
Zero-Shot	0.4375	0.5313	0.3750	0.4479	0.5300	0.5100	0.4975	0.5125	0.4900	0.4650	0.4875	0.4808	0.4804
Few-Shot	+3.13%	+9.38%	+6.25%	+6.25%	-3.00%	-1.00%	+0.25%	-1.25%	-21.25%	+3.50%	+1.25%	-5.50%	-0.17%
RAG	+12.50%	-15.63%	+6.25%	+1.04%	-4.00%	+3.00%	-3.00%	-1.33%	-11.00%	+1.50%	+5.00%	-1.50%	-0.60%
				Dee	pSeek-V3	with PRED	ICTION-BAS	ED <i>pardio</i>	agm				
Zero-Shot	0.5200	0.7800	0.8300	0.7100	0.4950	0.5850	0.5975	0.5592	0.5038	0.6513	0.5550	0.5700	0.6131
Few-Shot	+4.00%	-2.00%	-2.50%	-0.17%	-5.25%	-16.75%	-22.75%	-14.92%	-17.13%	-3.88%	-14.13%	-11.71%	-8.93%
RAG	+0.00%	+2.00%	+0.00%	+0.67%	-9.50%	-1.00%	-13.75%	-8.08%	-12.13%	-10.75%	+4.62%	-6.08%	-4.50%
	Qwen3 with Prediction-Based pardiagm												
Zero-Shot	0.5000	0.6100	0.9900	0.7000	0.3725	0.4425	0.4150	0.4100	0.4338	0.4238	0.5413	0.4663	0.5254
Few-Shot	+2.00%	+22.00%	-4.00%	+6.67%	-4.13%	-5.13%	+18.75%	+3.17%	+5.63%	-3.88%	+3.00%	+1.58%	+3.81%
RAG	-1.00%	+33.00%	-5.00%	+9.00%	-10.75%	-5.13%	+1.13%	-4.92%	-2.38%	-4.63%	-1.00%	-2.67%	+0.47%

TABLE E3: AL improvement of Few-Shot and RAG over Zero-Shot setting. Green: positive/zero; Red: negative.

method	U-FVA	U-CDA	U-TVDA	U	MO-FVA	MO-FVA	MO-TVDA	M-OL	MI-FVA	MI-CDA	MI-TVDA	M-IL	overall
ZeroShot	6.50	3.00	3.00	4.17	2.50	1.00	2.00	1.83	1.50	1.00	1.00	1.17	2.39
FewShot	-0.38	+1.00	-0.67	-0.50	-1.50	0.00	-1.00	-0.83	-0.50	0.00	0.00	-0.17	-0.50
RAG	-0.85	0.00	-0.33	-2.17	+2.00	+1.50	0.00	+1.17	-0.50	+0.50	+1.00	+0.33	-0.22
Zero-Shot	1.50	1.50	4.00	2.33	3.00	1.00	1.50	1.83	1.50	1.50	1.00	1.33	1.83
FewShot	0.00	-0.33	+0.50	+0.50	-2.00	0.00	-0.50	-0.83	-0.50	-0.50	0.00	-0.33	-0.22
RAG	-0.33	+1.67	-0.75	-0.33	-2.00	+1.00	0.00	-0.33	-0.50	+1.00	+1.50	+0.67	0.00
Zero-Shot	1.00	1.00	1.50	1.17	3.00	1.00	3.50	2.50	2.50	2.00	1.00	1.83	1.83
FewShot	+4.50	0.00	0.00	+1.50	+1.50	+1.00	-2.00	+0.17	-1.00	-0.50	0.00	-0.50	+0.39
RAG	+1.50	0.00	-0.33	+0.33	+2.50	+1.50	-1.50	+0.83	-1.50	0.00	+2.00	+0.17	+0.44
ZeroShot	1.50	1.00	1.00	1.17	1.00	1.00	1.50	1.17	2.00	1.00	1.00	1.33	1.22
FewShot	+0.67	0.00	0.00	+0.33	+7.00	0.00	-0.50	+2.17	-1.00	0.00	0.00	-0.33	+0.72
RAG	-0.33	0.00	0.00	-0.17	+1.50	0.00	+0.50	+0.67	-0.50	0.00	0.00	-0.17	+0.11

TABLE E4: AC improvement of Few-Shot and RAG over Zero-Shot setting. Green: positive/zero; Red: negative.

method	U-FVA	U-CDA	U-TVDA	U	MO-FVA	MO-FVA	MO-TVDA	M-OL	MI-FVA	MI-CDA	MI-TVDA	M-IL	Overall
	DeepSeek-V3 with DIRECT paradigm												
Zero-Shot	0.35	0.40	0.35	0.37	0.07	0.09	0.05	0.07	0.09	0.09	0.06	0.08	0.17
Few-Shot	-5.00%	-10.00%	+65.00%	+16.67%	+93.50%	+91.00%	+15.50%	+66.67%	+0.00%	+91.50%	+20.00%	+37.17%	+40.17%
RAG	-15.00%	-10.00%	-15.00%	-13.33%	+1.00%	+3.00%	+6.50%	+3.50%	+2.50%	+3.00%	+6.00%	+3.83%	-2.00%
	Qwen3 with DIRECT paradigm												
Zero-Shot	0.10	0.25	0.30	0.22	0.09	0.09	0.10	0.09	0.06	0.06	0.08	0.07	0.12
Few-Shot	+15.00%	+75.00%	-10.00%	+26.67%	+91.50%	+91.00%	+90.00%	+90.83%	+3.00%	+94.50%	+92.00%	+63.17%	+60.22%
RAG	+10.00%	-10.00%	-10.00%	-3.33%	-2.00%	-1.50%	-1.50%	-1.67%	-0.50%	-1.50%	-2.50%	-1.50%	-2.17%
				D	eepSeek-V3	with PRED	ICTION-BAS	ED paradi	gm				
Zero-Shot	0.51	0.55	0.58	0.55	0.04	0.06	0.06	0.05	0.04	0.07	0.05	0.05	0.22
Few-Shot	+1.00%	+0.00%	-2.00%	-0.33%	-1.75%	-1.50%	-4.00%	-2.42%	-1.75%	-1.00%	-2.25%	-1.67%	-1.47%
RAG	+0.00%	+1.00%	-2.00%	-0.33%	-0.75%	-1.75%	-3.50%	-2.00%	+0.75%	-2.75%	-0.75%	-0.92%	-1.08%
	Owen3 with Prediction-Based paradigm												
Zero-Shot	0.51	0.53	1.00	0.68	0.04	0.05	0.03	0.04	0.10	0.04	0.07	0.07	0.26
Few-Shot	+0.00%	+18.00%	-24.00%	-2.00%	-0.25%	-2.25%	+18.75%	+5.42%	-1.75%	+0.75%	+2.25%	+0.42%	+1.28%
RAG	+0.00%	+28.00%	-34.00%	-2.00%	-1.75%	-2.00%	+0.50%	-1.08%	-5.25%	-0.50%	+45.25%	+13.17%	+3.36%