Giao tác và Lịch giao tác

Nội dung chi tiết

Giới thiệu

* Giao tác

- Khái niệm
- Tính ACID của Giao tác
- Các thao tác của Giao tác
- Các trạng thái của Giao tác

* Lịch thao tác

- Giới thiệu
- · Khái niệm
- Lịch tuần tự
- Lịch khả tuần tự

- * Ví dụ mở đầu
 - ❖ Hệ thống giao dịch ngân hàng
 - ❖ Hệ thống đặt vé bay
- * Thực tế đòi hỏi phải cho phép nhiều người dùng đồng thời khai thác CSDL → Phải giải quyết ổn các tranh chấp
 - Vd: Hai hành khách cùng đặt một ghế trống
- * Thực tế phát sinh nhiều sự cố kỹ thuật → Phải bảo đảm nhất quán dữ liệu dù sự cố có sảy ra
 - Vd: Chuyển tiền từ tài khoản A sang tài khoản B

Nội dung chi tiết

- * Giới thiệu
- # Giao tác

& Khái niệm

- Tính ACID của Giao tác
- Các thao tác của Giao tác
- Các trạng thái của Giao tác

* Lịch thao tác

- Giới thiệu
- · Khái niệm
- Lịch tuần tự
- Lịch khả tuần tự

- * Giao tác là 1 đơn vị xử lý nguyên tố gồm 1 chuỗi các hành động thao tác trên CSDL
 - Nguyên tố: không thể phân chia được nữa. Các hành động trong 1 giao tác sẽ hoặc là được thực hiện hết, hoặc là không thực hiện bất cứ hành động nào

Giao tác (tt)

- * Giới thiệu
- * Giao tác
 - Khái niệm
 - Tính ACID của Giao tác
 - Các thao tác của Giao tác
 - Các trạng thái của Giao tác

* Lịch thao tác

- Giới thiệu
- Khái niệm
- Lịch tuần tự
- Lịch khả tuần tự

Tính chất ACID của giao tác

- Nguyên tố (Atomicity)
 - Hoặc là toàn bộ hoạt động của giao tác được phản ánh đúng đắn trong CSDL hoặc không có hoạt động nào cả
- * Nhất quán (Consistency)
 - Khi một giao tác kết thúc (thành công hay thất bại), CSDL phải ở trạng thái nhất quán (đảm bảo mọi RBTV)
- * Cô lập (<u>I</u>solation)
 - Một giao tác không quan tâm đến các giao tác khác xử lý đồng thời với nó
- * Bền vững (<u>D</u>urability)
 - Mọi thay đổi mà giao tác thực hiện trên CSDL phải được ghi nhận bền vững vào thiết bị lưu trữ

* Atomic

❖ Chuyển một khoản tiền từ tài khoản A sang tài khoản B

* Consistency

Đăng ký học phần : Số tín chỉ tối đa 32tc / SV / Học kỳ

* Durability

- Khi T kết thúc thành công
- Những cập nhật mà T thực hiện trên Dữ liệu sẽ không thể nào bị mất bất chấp có sự cố hệ thống xảy ra

* Isolation

❖ Đếm sĩ số lớp >< Thêm (bớt) sinh viên</p>

Nội dung chi tiết

- * Giới thiệu
- Giao tác
 - Khái niệm
 - Tính ACID của Giao tác
 - Các thao tác của Giao tác
 - Các trạng thái của Giao tác

* Lịch thao tác

- Giới thiệu
- · Khái niệm
- Lịch tuần tự
- Lịch khả tuần tự

- * Giả sử CSDL gồm nhiều đơn vị dữ liệu
- * Một đơn vị dữ liệu (element)
 - Có một giá trị
 - Được truy xuất và sửa đổi bởi các giao tác
 - ❖ Đơn vị dữ liệu có thể là các thành phần dữ liệu sau đây :
 - Quan hệ (relation) Lớp (class)
 - Khối dữ liệu trên đĩa (block) trang (page)
 - Bộ (tuple) Đối tượng (object)

Các thao tác của giao tác (tt)

- * Giả sử CSDL có 2 đơn vị dữ liệu A và B với ràng buộc A=B trong mọi trạng thái nhất quán
- * Giao tác T thực hiện 2 bước
- * Biểu diễn T
 - Read(A,t); t=t*2; Write(A,t);
 - Read(B,t); t=t*2; Write(B,t);

Ví dụ (tt)

Hành động	t	Mem A	Mem B	Disk A	Disk B
Input(A)		8		8	8
Read(A,t)	8	8		8	8
t:=t*2	16	8		8	8
Write(A,t)	16	16		8	8
Input(B)	16	16	8	8	8
Read(B,t)	8	16	8	8	8
t:=t*2	16	16	8	8	8
Write(B,t)	16	16	16	8	8
Output(A)	16	16	16	16	8
Output(B)	16	16	16	16	16

- * Giới thiệu
- # Giao tác
 - Khái niệm
 - Tính ACID của Giao tác
 - Các thao tác của Giao tác

Các trạng thái của Giao tác

* Lịch thao tác

- Giới thiệu
- Khái niệm
- Lịch tuần tự
- Lịch khả tuần tự

Trạng thái của giao tác

* Active

Ngay khi bắt đầu thực hiện thao tác đọc/ghi

* Partially committed

Sau khi lệnh thi hành cuối cùng thực hiện

Failed

 Sau khi nhận ra không thể thực hiện các hành động được nữa

* Aborted

 Sau khi giao tác được quay lui và CSDL được phục hồi về trạng thái trước trạng thái bắt đầu giao tác

* Committed

· Sau khi mọi hành động hoàn tất thành công

Nội dung chi tiết

- * Giới thiệu
- * Giao tác
 - Khái niệm
 - * Tính ACID của Giao tác
 - Các thao tác của Giao tác
 - Các trạng thái của Giao tác
- * Lịch thao tác

Giới thiệu

- · Khái niệm
- Lịch tuần tự
- Lịch khả tuần tự

* Thực hiện tuần tự

- Các thao tác được gọi là thực hiện tuần tự khi chúng không giao nhau về mặt thời gian
 - Ưu : Nếu thao tác đúng đắn thì luôn bảo đảm nhất quán dữ liệu
 - c Khuyết: Không tối ưu về sử dụng tài nguyên và tốc độ

* Thực hiện đồng thời

- Các lệnh của các giao tác khác nhau xen kẽ vào nhau trên trục thời gian
 - Khuyết: Gây ra nhiều phức tạp về nhất quán dữ liệu
 - O Ưu:
 - Tận dụng tài nguyên và thông lượng (throughput). Ví dụ : Trong khi 1 giao tác đang thực hiện đọc/ghi trên đĩa, 1 giao tác khác đang xử lý tính toán trên CPU
 - Giảm thời gian chờ. Ví dụ: Chía sẻ chu kỳ CPU và truy cập đĩa để làm giảm sự trì hoãn trong khi các giao tác thực thi

Nội dung chi tiết

- # Giới thiệu
- * Giao tác
 - Khái niệm
 - Tính ACID của Giao tác
 - Các thao tác của Giao tác
 - Các trạng thái của Giao tác
- * Lịch thao tác
 - Giới thiêu
 - & Khái niệm
 - Lịch tuần tự
 - Lịch khả tuần tự

- Một lịch thao tác S được lập từ n giao tác T1, T2, ..., Tn được xử lý đồng thời là 1 thứ tự thực hiện xen kẽ các hành động của n giao tác này
- * Thứ tự xuất hiện của các thao tác trong lịch phải giống với thứ tự xuất hiện trong giao tác
- * Bộ lập lịch (Scheduler) : Là một thành phần của DBMS có nhiệm vụ lập 1 lịch để thực hiện n giao tác xử lý đồng thời
- * Các loại lịch thao tác :
 - Lịch tuần tự (Serial)
 - Lịch khả tuần tự (Serializable)
 - Confict-Serializability
 - View-Scrializability

Nội dung chi tiết

- * Giới thiệu
- Giao tác
 - Khái niệm
 - Tính ACID của Giao tác
 - Các thao tác của Giao tác
 - Các trạng thái của Giao tác
- * Lịch thao tác
 - Giới thiệu
 - Khái niệm
 - ¿ Lịch tuần tư
 - Lịch khả tuần tự

* Một lịch S được gọi là tuần tự nếu các hành động của các giao tác Ti (i=1..n) được thực hiện liên tiếp nhau, không có sự giao nhau về mặt thời gian

Lịch tuần tự (tt)

	Τ,	T ₂	Α	В		T ₁	T_2	Α	В
(\mathbf{S}_1)			25	25	(\mathbf{S}_2)			25	25
	Read(A,t)						Read(A,s)		
	t:=t+100						s:=s*2		
	Write(A,t)		125				Write(A,s)	50	
	$Read(B_{i}t)$						Read(B,s)		
	t:=t+100						s:=s*2		
	Write(B,t)			125			Write(B,s)		50
		Read(A,s)				Read(A,t)			
		s:=s*2				t:=t+100			
		Write(A,s)	250			Write(A,t)		150	
		Read(B,s)				Read(B,t)			
		s:=s*2				t:=t+100			
		Write(B,s)		250		Write(B,t)			150

- * Giới thiệu
- # Giao tác
 - Khái niệm
 - Tính ACID của Giao tác
 - Các thao tác của Giao tác
 - Các trạng thái của Giao tác
- * Lịch thao tác
 - Giới thiệu
 - Khái niệm
 - Lịch tuần tự
 - ¿ Lịch khả tuần tư

Lịch khả tuần tự (Serializable)

- * Lịch xử lý đồng thời là lịch mà các giao tác trong đó có giao nhau về mặt thời gian
- Một lịch S được lập từ n giao tác T1, T2, ..., Tn xử lý đồng thời được gọi là khả tuần tự nếu nó cho cùng kết quả với 1 lịch tuần tự nào đó được lập từ n giao tác này

* Trước S3 khi thực hiện	_	l _	l .	
	T ₁	T ₂	A	B
❖ với c là hằng số	Read(A,t)		25	25
* Sau khi S3 kết thúc	t:=t+100 Write(A,t)		125	
❖ A=2*(c+100)		Read(A,s)		
→ B=2*(c+100)		s:=s*2		
* Trạng thái CSDL nhất quán	Read(B,t)	Write(A,s)	250	
* S3 là khả tuần tự	t:=t+100			
•	Write(B,t)			125
		Read(B,s)		
		s:=s*2		
		Write(Bis)		250

Lịch khả tuần tự (tt)

尜	Trước	S4	khi	thực	hiện
---	-------	-----------	-----	------	------

1		ı	
S I ₁	$T_{\scriptscriptstyle\mathcal{D}}$	Α	В
94		25	25
Read(A,t)			
t:=t+100			
Write(A,t)		125	
	Read(A,s)		
	s:=s*2		
hất auán	Write(A,s)	250	
7	Read(B,s)		
	\$: = \$*2		
	Write(B,s)		50
Read(B,t)			
t:=t+ 100			
Write(B,t)			150
	Read(A,t) t:=t+100 Write(A,t) hất quán Read(B,t) t:=t+100	Read(A,t) t:=t+100 Write(A,t) Read(A,s) s:=s*2 Write(A,s) Read(B,s) s:=s*2 Write(B,s) Read(B,t) t:=t+100	Read(A,t) t:=t+100 Write(A,t) hất quán Read(B,s) s:=s*2 Write(A,s) Read(B,s) s:=s*2 Write(B,s) Read(B,s)

* Ý tưởng

- Xét 2 hành động liên tiếp nhau của 2 giao tác khác nhau trong 1 lịch thao tác, khi 2 hành động ấy được đảo thứ tự sẽ có thể dẫn đến 1 trong 2 hệ quả :
 - Hoạt động của cả hai giao tác chứa hai hành động ấy không bị ảnh hưởng gì
 - Hoạt động của cả ít nhất một trong hai giao tác chứa hai hành động ấy bị ảnh hưởng

T	ľ
Hành động 1	
Hành động 2	Hành động 1'
Hành động 3	Hành động 2'
	Hành động 4'

Conflict-Serializability (tt)

* Cho lịch S có 2 giao tác T_i và T_p , xét các trường hợp

- $r_i(X)$; $r_i(Y)$
 - Không bao giờ có xung đột, ngay cả khi X=Y
 - Cả 2 thao tác không làm thay đổi giá trị của X và Y
- $+ r_i(X)$; $w_j(Y)$
 - - T_i không thay đổi gì dữ liệu đọc của T_i
 - T_i không sử dụng gì đến dữ liệu ghi của T_i
 - **⋄** Xung đột khi X=Y
- $\cdot w_i(X)$; $r_j(Y)$
 - o Không xung đột khi X≠Y, xung đột khi X=Y
- w_i(X); w_i(Y)

- * Hai hành động xung đột nếu chúng
 - Thuộc 2 giao tác khác nhau
 - ❖ Truy xuất đến cùng 1 đơn vị dữ liệu
 - Trong chúng có ít nhất một hành động là ghi (write)
- * Hai hành động xung đột thì không thể đảo thứ tự chúng trong lịch thao tác

Conflict-Serializability (tt)

₩ Ví dụ

(s)	T ₁	T ₂	(s')	T ₁	T ₂
	Read(A)			Read(A)	
	Write(A)			Write(A)	
		Read(A)	_	Read(B)	
		Write(A)	=	Write(B)	
	Read(B)				Read(A)
	Write(B)				Write(A)
		Read(B)			Read(B)
		Write(B)			Write(B)

* Định nghĩa

- ❖ S, S' là những lịch thao tác conflict-equivalent
 - Nếu S có thể được chuyển thành S' bằng một chuỗi những hoán vị các thao tác không xung đột
- Môt lịch thao tác S là conflict-serializable
 - Nếu S là conflict-equivalent với một lịch thao tác tuần tự nào đó
- S conflict-serializable thì S khả tuần tự
- S khả tuần tự thì không chắc S conflict-serializable

Kiễm tra Conflict-Serializability

- * Cho lịch S
 - S có conflict-serializable không?
- * Ý tưởng
 - Các hành động xung đột trong lịch S được thực hiện theo thứ tự nào thì các giao tác thực hiện chúng trong S' (kết quả sau hoán vị) sẽ cũng ở thứ tự đó

(S)	T ₁	Т,	(S') T ₁	Τ ₂
	Read(A)		Read(A)	
	Write(A)		Write(A)	
		Read(A)	Read(B)	
		Write(A)	Write(B)	
	Read(B)		` '	Read(A)
	Write(B)	Decal(D)		Write(A)
		Read(B)		Read(B)
		Write(B)		14.4.40

- * Cho lịch S có 2 giao tác T1, T2
 - T1 thực hiện hành động A1
 - T2 thực hiện hành động A2
 - ❖ Ta nói T1 thực hiện trước T2 trong S, ký kiệu T1 <_S T2, khi
 - A1 được thực hiện trước A2 trong S
 - A1 không nhất thiết phải liên tiếp A2
 - A1 và A2 cùng thao tác lên 1 đơn vị dữ liệu và có ít nhất 1 hành động ghi trong A1 và A2 (nghĩa là A1 và A2 là hai hành động xung đột)

Precedence graph

- * Cho lịch S gồm các giao tác T1, T2, ..., Tn
- * Đồ thị trình tự (Precedence graph) của S, ký hiệu P(S), có
 - Đỉnh là các giao tác Ti
 - Ta có thể đặt nhãn cho đỉnh là i
 - ❖ Cung đi từ Ti đến Tj nếu Ti <_S Tj
- * Nếu P(S) không có chu trình khi và chỉ khi S conflictserializable
- * Thứ tự hình học (topological order) của các đỉnh là thứ tự của các giao tác trong lịch tuần tự tương đương với S
- * S và S' gọi là conflict equivalent khi và chỉ khi P(S) = P(S')

(s)	T ₁	T ₂	T ₃		
0	Read(B)	Read(A)		(2)	3
	Read(b)	Write(A)			
	Write(B)		Read(A)		
		Read(B)	Write(A)	(1)-	(2)
		Write(B)			

* P(S) không có chu trình

P(S) có chu trình

S không conflict-serializable

* S conflict-serializable theo this ty T_1 , T_2 , T_3

Ví dụ (tt)

₩ Vẽ P(S)

* S có conflict-serializable không?

(s)-	T ₁	T_2	Τ ₂	T ₄
	Write(A)			
		Read(A)		
			Read(A)	
				Write(A)

Bài tập (tt)

- ***** *V*ẽ *P*(*S*)
- * S có conflict-serializable không?

s	T ₁	Т,	T ₃	T ₄
	Read(A)	Write(C)	Write(A)	
	Write(B)			
	Read(C)			
		Write(A)		
				Read(A)
				Write(D)

* Xét lịch S

- * P(S) có chu trình
- * S không conflict-serializable

View-Serializability (tt)

- So sánh lịch S và 1 lịch tuần tự S'
 - Trong S và S' đều có T1 thực hiện read(A)
 - T2 và T3 không đọc A
 - ❖ Kết quả của S và S' giống nhau → S vẫn serializable

(s)	T ₁	T ₂	T ₃	(s') T ₁	T_2	T_3
O	Read(A)			Read(A)		
		Write(A)		Write(A)		
	Write(A)				Write(A)	
			Write(A)			Write(A)

Không conflict-serializable

Serial

* Định nghĩa

- ❖ S, S' là những lịch thao tác view-equivalent nếu
 - 1- Thành phần và thứ tự thao tác của T_i bất kỳ là như nhau trong S và S'
 - 2- Nếu trong S có T_i đọc giá trị ban đầu của A thì trong S' cũng chính T_i đọc giá trị ban đầu của A
 - 3- Nếu trong S có T_j ghi giá trị sau cùng lên A thì trong S' cũng chính T_i ghi giá trị sau cùng lên A
- Một lịch thao tác S là view-serializable
 - Nếu S là view-equivalent với một lịch thao tác tuần tự nào đó
- S conflict-serializable thì S view-serializable (chiều ngược lại không chắc đúng)

Kiểm tra View-Serializability (tt)

- * Cho 1 lịch thao tác S
- * Thêm 1 giao tác cuối Tf vào trong S sao cho Tf thực hiện việc đọc hết tất cả đơn vị dữ liệu ở trong S
 - S = ... w1(A).....w2(A) rf(A)
 - (bỏ qua điều kiện thứ 3 của định nghĩa view-equivalent)
- * Thêm 1 giao tác đầu tiên Tb vào trong S sao cho Tb thực hiện việc ghi các giá trị ban đầu cho các đơn vị dữ liệu
 - ❖ S = wb(A)... w1(A).....w2(A)...
 - (bỏ qua điều kiện thứ 2 của định nghĩa view-equivalent)

* Vẽ đồ thị phức (PolyGraph) cho S, ký hiệu G(S) với

- ❖ Đỉnh là các giao tác Ti (bao gồm cả Tb và Tf)
- Cung
 - (1) Nếu giá trị mà ri(X) đọc được là do Tj ghi (ri(X) có gốc là Tj) thì vẽ cung đi từ Tj đến Ti

• (2) Với mỗi wj(X) ... ri(X), xét wk(X) khác Tb sao cho Tk không chèn vào giữa Tj và Ti

Kiểm tra View-Serializability (tt)

 \circ (2a) Nếu Tj ≠ Tb và Ti ≠ Tf thì vẽ cung Tk \rightarrow Tj và Ti \rightarrow Tk

T_k	T_{j}	T _i	
Write(X)			
	Write(X)		
		Read(X)	

T_j	T _i	T_{k}
Write(X)		
	Read(X)	
	, ,	Write(X)

 \circ (2b) Nếu Tj = Tb thì vẽ cung Ti \rightarrow Tk

 \circ (2c) Nếu Ti = Tf thì vẽ cung Tk \rightarrow Tj

$T_j = T_b$	T _i	T _k	T_k	Тj	$T_i = T_f$
			Write(X)		
Write(X)				Write(X)	
	Read(X)				Read(X)
		Write(X)			
O ×		×	x		×
(j)	→ ()	→(k)	(k)	$\rightarrow \bigcirc$	\rightarrow

Ví dụ

Ví dụ

- * G(S) không có chu trình
- * S view-serializable theo thát tự T_b , T_l , T_2 , T_3 , T_f

Ví dụ (tt)

Ví dụ (tt)

 S
 T₁
 T₂
 T₃

 Read(B)
 Write(A)
 * Vẽ G(S)

 Read(A)
 Read(A)
 * S có view-serializable?

 Write(B)
 Write(B)

Bài tập (tt)

(s) I ₁	I ₂	13	۱ ₄		
0	Read(A)				
Read(A)				米	Vē G(S)
Write(C)				姿	S có view-serializable?
		Read(C)			o co recri screeniquotes
Write(B)					
			Read(B)		
		Write(A)			
			Read(C)		
	Write(D)				
	Read(B)				
			Write(A)		
			Write(B)		

