Approximate Minimum-Weight Partial Matching under Translation

Pankaj Agarwal 1 Haim Kaplan 2 Geva Kipper 2 Wolfgang Mulzer 3 Günter Rote 3 Micha Sharir 2 Allen Xiao 1

¹Duke University

²Tel Aviv University

³Freie Universität Berlin

December 2018

Cost function

▶ For k-matching M and translation t, define the L_p -cost:

$$cost(M,t) := \left[\frac{1}{k} \sum_{(a,b) \in M} ||a+t-b||^p\right]^{1/p}$$

- p = 2: root-mean-squared cost
- For fixed t, minimum M computable in poly(k, m, n) time, e.g. by Hungarian algorithm.

Cost function

▶ For k-matching M and translation t, define the L_p -cost:

$$cost(M,t) := \left[\frac{1}{k} \sum_{(a,b) \in M} ||a+t-b||^p\right]^{1/p}$$

- ightharpoonup p = 2: root-mean-squared cost
- For fixed t, minimum M computable in poly(k, m, n) time, e.g. by Hungarian algorithm.

Cost function

▶ For k-matching M and translation t, define the L_p -cost:

$$cost(M, t) := \left[\frac{1}{k} \sum_{(a,b) \in M} ||a + t - b||^p\right]^{1/p}$$

- ightharpoonup p = 2: root-mean-squared cost
- For fixed t, minimum M computable in poly(k, m, n) time, e.g. by Hungarian algorithm.

$$\operatorname{cost}^*(t) \coloneqq \min_{k\text{-matching }M} \operatorname{cost}(M,t)$$

Questions and prior results

- 1. What is the *combinatorial complexity of* \mathfrak{M} ? Is it polynomial?
 - Rote 10]: for p=2 and k=m, a line crosses at most m(n-m)+1 cells
 - ▶ [Ben-Avraham et al. 14]: for p = 2 and k = m, $O(n^2m^{3.5}(e \ln m + e)^m)$
- 2. How quickly can we *compute* t^* , a global minimum of $cost^*(t)$?
 - ightharpoonup Explore \mathfrak{M} , use static algorithm within cells.

Approximating $\mathcal M$

Approximating $\mathcal M$

Our results (approximation helps)

1. What is the *combinatorial complexity of* \mathfrak{M} ? Is it polynomial?

Theorem

In $\operatorname{poly}(k,m,n,\varepsilon^{-1})$ time, can construct a $(1+\varepsilon)$ approximate diagram $\widetilde{\mathbb{M}}$ of complexity $O((mn/k)\varepsilon^{-2}\log\varepsilon^{-1})$.

2. How quickly can we *compute* t^* , a global minimum of $cost^*(t)$?

Theorem

In $\operatorname{poly}(k,m,n,\varepsilon^{-1})$ time, can compute a $(1+\varepsilon)$ approximation to $\operatorname{cost}^*(t^*)$ by exploring the cells of $\widetilde{\mathbb{M}}$.

▶ Point-to-point translations: $T := \{t_{ba} = (b-a) \mid a \in A, b \in B\}$

▶ Point-to-point translations: $T := \{t_{ba} = (b-a) \mid a \in A, b \in B\}$

▶ Point-to-point translations: $T := \{t_{ba} = (b-a) \mid a \in A, b \in B\}$

▶ Point-to-point translations: $T := \{t_{ba} = (b-a) \mid a \in A, b \in B\}$

▶ Point-to-point translations: $T := \{t_{ba} = (b-a) \mid a \in A, b \in B\}$

Point-to-point translations: $T := \{t_{ba} = (b-a) \mid a \in A, b \in B\}$

 \triangleright Claim: Let \mathcal{M} be Vor(T), with each $VorRegion(t_{ba})$ assigned the optimal k-matching at t_{ba} . Then, \mathfrak{M} is a O(1)-approximate diagram.

Lipschitz continuity for L_p -cost

$$cost(M, t) := \left[\frac{1}{k} \sum_{(a,b) \in M} ||a + t - b||^p \right]^{1/p}$$

Lemma (Lipschitz condition)

Given $t, \Delta \in \mathbb{R}^2$, let M_t be the optimal k-matching at t.

Then $cost(M_t, t + \Delta) \leq cost^*(t) + ||\Delta||$.

Proof of approximation for T

- ightharpoonup Claim: $\widetilde{\mathfrak{M}}$ is an O(1)-approximate diagram.
- ▶ Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T, and M_{t_0} the optimal matching at t_0 .

$$cost^*(t) = \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|a + t - b\|^p \right]^{1/p} \\
= \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|t - t_{ba}\|^p \right]^{1/p} \\
\ge \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|t - t_0\|^p \right]^{1/p} \\
= \|t - t_0\|$$

Proof of approximation for T

- ▶ Claim: \mathfrak{M} is an O(1)-approximate diagram.
- Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T. and M_{t_0} the optimal matching at t_0 .

$$cost^*(t) = \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|a+t-b\|^p \right]^{1/p} \\
= \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|t-t_{ba}\|^p \right]^{1/p} \\
\ge \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|t-t_0\|^p \right]^{1/p} \\
= \|t-t_0\|$$

December 2018

Proof of approximation for T

- ▶ Claim: M is an O(1)-approximate diagram.
- ▶ Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T. and M_{t_0} the optimal matching at t_0 .

$$cost^*(t) = \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|a + t - b\|^p \right]^{1/p} \\
= \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|t - t_{ba}\|^p \right]^{1/p} \\
\ge \min_{k-\text{matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \|t - t_0\|^p \right]^{1/p} \\
= \|t - t_0\|$$

Proof of approximation for T

- ▶ Claim: \mathfrak{M} is an O(1)-approximate diagram.
- Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T. and M_{t_0} the optimal matching at t_0 .

$$\begin{aligned} \cos^*(t) &= \min_{k\text{-matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \lVert a + t - b \rVert^p \right]^{1/p} \\ &= \min_{k\text{-matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \lVert t - t_{ba} \rVert^p \right]^{1/p} \\ &\geq \min_{k\text{-matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \lVert t - t_0 \rVert^p \right]^{1/p} \\ &= \lVert t - t_0 \rVert \end{aligned}$$

December 2018

- $lackbox{Claim: }\widetilde{\mathfrak{M}}$ is an O(1)-approximate diagram.
- ▶ Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T, and M_{t_0} the optimal matching at t_0 .
- $||t t_0|| \le \cos^*(t)$

```
cost(M_{t_0}, t) \leq cost^*(t_0) + ||t - t_0|| \quad \text{(Lipschitz cond.)}

\leq cost^*(t) + 2||t - t_0|| \quad \text{(Lipschitz cond.)}

\leq cost^*(t) + 2 cost^*(t)

= 3 cost^*(t)
```

- \triangleright Claim: \mathcal{M} is an O(1)-approximate diagram.
- Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T, and M_{t_0} the optimal matching at t_0 .
- $||t-t_0|| < \cos t^*(t)$ $cost(M_{t_0}, t) < cost^*(t_0) + ||t - t_0||$ (Lipschitz cond.)

December 2018

- \triangleright Claim: \mathcal{M} is an O(1)-approximate diagram.
- Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T, and M_{t_0} the optimal matching at t_0 .
- $||t-t_0|| < \cos t^*(t)$ $cost(M_{t_0}, t) < cost^*(t_0) + ||t - t_0||$ (Lipschitz cond.) $< \cos t^*(t) + 2||t - t_0||$ (Lipschitz cond.)

December 2018

- $lackbox{Claim: }\widetilde{\mathfrak{M}}$ is an O(1)-approximate diagram.
- ▶ Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T, and M_{t_0} the optimal matching at t_0 .

- $lackbox{Claim: }\widetilde{\mathfrak{M}}$ is an O(1)-approximate diagram.
- ▶ Given $t \in \mathbb{R}^2$, let t_0 be its nearest neighbor in T, and M_{t_0} the optimal matching at t_0 .

$O(1) \rightarrow (1+\varepsilon)$ approximation

 $\begin{array}{c} \bullet & (1+\varepsilon) \text{ approximate diagram of size} \\ O(|T|\varepsilon^{-2}\log\varepsilon^{-1}) = O((mn)\varepsilon^{-2}\log\varepsilon^{-1}) \end{array}$

Theorem

In $\operatorname{poly}(k, m, n, \varepsilon^{-1})$ time, can construct a $(1 + \varepsilon)$ approximate diagram $\widetilde{\mathbb{M}}$ of complexity $O((mn/k)\varepsilon^{-2}\log\varepsilon^{-1})$.

$O(1) \rightarrow (1+\varepsilon)$ approximation

 $\begin{array}{c} \bullet & (1+\varepsilon) \text{ approximate diagram of size} \\ O(|T|\varepsilon^{-2}\log\varepsilon^{-1}) = O((mn)\varepsilon^{-2}\log\varepsilon^{-1}) \end{array}$

Theorem

In $\operatorname{poly}(k,m,n,\varepsilon^{-1})$ time, can construct a $(1+\varepsilon)$ approximate diagram $\widetilde{\mathbb{M}}$ of complexity $O((mn/k)\varepsilon^{-2}\log\varepsilon^{-1})$.

Compressing $\widetilde{\mathcal{M}}$

- ▶ Reduce size from $O(mn) \rightarrow O(mn/k)$.
- Any O(1) approx. diagram is enough for the $(1+\varepsilon)$ diagram.
- ▶ Cluster the points of T... while keeping cluster radius small w.r.t. $cost^*(t)$.

Averaging argument

$$\operatorname{cost}^*(t) \coloneqq \min_{k \text{-matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \lVert a + t - b \rVert^p \right]^{1/p}$$

- At most k/2 pairs $(a,b) \in M_t$ have $||a+t-b|| \ge 2^{1/p} \cos^*(t)$.
- At most k/2 pairs $(a,b) \in M_t$ have $||t-t_{ab}|| > 2^{1/p} \cos^*(t)$.
- At least k/2 pairs $(a,b) \in M_t$ have $||t-t_{ab}|| \le 2^{1/p} \cos^*(t)$.

December 2018

Averaging argument

$$\operatorname{cost}^*(t) \coloneqq \min_{k \text{-matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \lVert a + t - b \rVert^p \right]^{1/p}$$

- At most k/2 pairs $(a,b) \in M_t$ have $||a+t-b|| \ge 2^{1/p} \operatorname{cost}^*(t)$.
- At most k/2 pairs $(a,b) \in M_t$ have $||t t_{ab}|| \ge 2^{1/p} \operatorname{cost}^*(t)$.
- At least k/2 pairs $(a,b) \in M_t$ have $||t-t_{ab}|| \le 2^{1/p} \cos^*(t)$.

Averaging argument

$$\operatorname{cost}^*(t) \coloneqq \min_{k\text{-matching } M} \left[\frac{1}{k} \sum_{(a,b) \in M} \lVert a + t - b \rVert^p \right]^{1/p}$$

- At most k/2 pairs $(a,b) \in M_t$ have $||a+t-b|| \ge 2^{1/p} \operatorname{cost}^*(t)$.
- At most k/2 pairs $(a,b) \in M_t$ have $||t t_{ab}|| \ge 2^{1/p} \operatorname{cost}^*(t)$.
- At least k/2 pairs $(a,b) \in M_t$ have $||t t_{ab}|| \le 2^{1/p} \operatorname{cost}^*(t)$.

Averaging argument (cont.)

At least k/2 pairs $(a,b) \in M_t$ have $||t-t_{ab}|| \le 2^{1/p} \operatorname{cost}^*(t)$.

Averaging argument (cont.)

At least k/2 pairs $(a,b) \in M_t$ have $||t - t_{ab}|| \le 2^{1/p} \operatorname{cost}^*(t)$.

Averaging argument (cont.)

At least k/2 pairs $(a,b) \in M_t$ have $||t - t_{ab}|| \le 2^{1/p} \operatorname{cost}^*(t)$.

Clustering T greedily

- 1. Let $D_i = B(x_i, r_i)$ be the smallest disk containing at least k/2 remaining points of T.
- 2. Remove from T the points covered by D_i .
- 3. Repeat.
- ▶ Quorum clustering 2-approx. algorithm in $O(|T| \operatorname{polylog} n)$ time [Carmi et al. 05]
- ightharpoonup O(|T|/k) = O(mn/k) clusters.

Clustering T greedily

- 1. Let $D_i = B(x_i, r_i)$ be the smallest disk containing at least k/2 remaining points of T.
- 2. Remove from T the points covered by D_i .
- 3. Repeat.
- ▶ Quorum clustering 2-approx. algorithm in $O(|T| \operatorname{polylog} n)$ time [Carmi et al. 05]
- ightharpoonup O(|T|/k) = O(mn/k) clusters.

Clustering T greedily

- 1. Let $D_i = B(x_i, r_i)$ be the smallest disk containing at least k/2 remaining points of T.
- 2. Remove from T the points covered by D_i .
- 3. Repeat.
- ▶ Quorum clustering 2-approx. algorithm in $O(|T| \operatorname{polylog} n)$ time [Carmi et al. 05]
- ightharpoonup O(|T|/k) = O(mn/k) clusters.

- $ightharpoonup \cos t(M_{x_i}, t) \le (1 + 6 \cdot 2^{1/p}) \cos t^*(t)$
- ▶ Using grids, $(1+\varepsilon)$ approx. diagram of size $O((mn/k)\varepsilon^{-2}\log\varepsilon^{-1})$.

Open questions

- 1. Is the complexity of M polynomial, for any p?
- 2. Approximate diagrams for rotations? Rigid transforms?

The End

Thank you.