Loi de Poisson bivariée Teicher

Jérémie Barde* sous la supervision de Prof. Hélène Cossette et de Prof. Etienne Marceau École d'actuariat, Université Laval, Québec, Canada

13 août 2024

Résumé

Ce document contient les preuves de la fonction de densité et de l'espérance conditionnelle de la loi Poisson Teicher et celle de l'espérance tronquée de la loi exponentielle EFGM.

 $^{{\}rm *Corresponding\ author,\ jeremie.barde.1@ulaval.ca}$

Table des matières

1	Poisson Teicher	1
	1.1 Définition	1
	1.2 Fonction de densité	
	1.3 Espérance conditionnelle	
2	Expo EFGM	٠

1 Poisson Teicher

1.1 Définition

On a

$$M_1 = K_1 + K_0, \qquad M_2 = K_2 + K_0$$

où $M_i \sim \text{Pois}(\lambda_i)$, i = 1, 2 et $K_i = \text{Pois}(\alpha_i)$, i = 0, 1, 2 avec $K_0 \perp \!\!\! \perp K_1 \perp \!\!\! \perp K_2$.

1.2 Fonction de densité

 $D\'{e}monstration.$

$$f_{M_1,M_2}(m_1, m_2) = \Pr(M_1 = m_1, M_2 = m_2)$$

$$= \sum_{j=0}^{\min(m_1, m_2)} \Pr(M_1 = m_1, M_2 = m_2 | J_0 = j) \times \Pr(J_0 = j)$$

$$= \sum_{j=0}^{\min(m_1, m_2)} \Pr(K_1 - j = m_1, K_2 - j = m_2) \times \Pr(J_0 = j)$$

$$= \sum_{j=0}^{\min(m_1, m_2)} \Pr(K_1 = m_1 - j) \times \Pr(K_2 = m_2 - j) \times \Pr(J_0 = j)$$

$$= \sum_{j=0}^{\min(m_1, m_2)} f_{K_1}(m_1 - j) f_{J_2}(m_2 - j) f_{J_0}(j)$$

1.3 Espérance conditionnelle

Démonstration.

$$E[M_1|M_2 = m_2] = E[K_1 + K_0 = m_1|K_2 + K_0 = m_2]$$

$$= \underbrace{E[K_1|K_2 + K_0 = m_2]}_{A} + \underbrace{E[K_0|K_2 + K_0 = m_2]}_{B}$$

On commence part la partie A:

$$E[K_1|K_2 + K_0 = m_2] \stackrel{\perp}{=} E[K_1] = \alpha_1 = \lambda_1 - \alpha_0$$

On passe à la partie B:

$$\begin{split} E[K_0|K_2+K_0 &= m_2] = \sum_{j=1}^{m_2} j \frac{\Pr(K_0 = j) \Pr(K_2 = m_2 - j)}{\Pr(K_2 + K_0 = m_2)} \\ &= \sum_{j=1}^{m_2} j \frac{\frac{\alpha_0^j e^{-\alpha_0}}{j!} \frac{\alpha_2^{m_2 - j} e^{-\alpha_2}}{(m_2 - j)!}}{\frac{(\alpha_0 + \alpha_2)^{m_2} e^{-(\alpha_0 + \alpha_2)}}{m_2!}} \\ &= \sum_{j=1}^{m_2} j \frac{m_2!}{j!(m_2 - j)!} \left(\frac{\alpha_0}{\alpha_2}\right)^j \left(\frac{\alpha_2}{\alpha_0 + \alpha_2}\right)^{m_2} \left(\frac{\alpha_2}{\alpha_0 + \alpha_2}\right)^{-j} \left(\frac{\alpha_2}{\alpha_0 + \alpha_2}\right)^j \\ &= \sum_{j=1}^{m_2} j \frac{m_2!}{j!(m_2 - j)!} \left(\frac{\alpha_0}{\alpha_0 + \alpha_2}\right)^j \left(\frac{\alpha_2}{\alpha_0 + \alpha_2}\right)^{m_2 - j} \\ &= \sum_{j=1}^{m_2} j \frac{m_2!}{j!(m_2 - j)!} \left(\frac{\alpha_0}{\alpha_0 + \alpha_2}\right)^j \left(1 - \frac{\alpha_0}{\alpha_0 + \alpha_2}\right)^{m_2 - j} \\ &= \sum_{j=1}^{m_2} j \left(\frac{m_2}{j}\right) \left(\frac{\alpha_0}{\alpha_0 + \alpha_2}\right)^j \left(1 - \frac{\alpha_0}{\alpha_0 + \alpha_2}\right)^{m_2 - j} \end{split}$$

On reconnais une loi binomial $n=m_2$ et $q=\frac{\alpha_0}{\alpha_0+\alpha_2}$. Donc,

$$E[K_0|K_2 + K_0 = m_2] = m_2 \frac{\alpha_0}{\alpha_0 + \alpha_2} = m_2 \frac{\alpha_0}{\lambda_2}$$

En recombinant A avec B on obtient

$$E[M_1|M_2 = m_2] = \lambda_1 - \alpha_0 + m_2 \frac{\alpha_0}{\lambda_2}$$

2 Expo EFGM

On a

$$\begin{split} f_{X_2|X_1=x_1}(x_2) &= \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_1}(x_1)} \\ &= (1+\theta)\beta_2 \mathrm{e}^{-\beta_2 x_2} + 4\theta \mathrm{e}^{-\beta_1 x_1}\beta_2 \mathrm{e}^{-2\beta_2 x_2} - 2\theta \mathrm{e}^{-\beta_1 x_1}\beta_2 \mathrm{e}^{-\beta_2 x_2} - 2\theta\beta_2 \mathrm{e}^{-\beta_2 x_2}. \end{split}$$

Alors,

$$\begin{split} \mathbf{E}[X_2|X_1 &= x_1] = \int_0^\infty x_2 f_{X_2|X_1 = x_1}(x_2) \, \mathrm{d}x_2 \\ &= \int_0^\infty x_2 ((1+\theta)\beta_2 \mathrm{e}^{-\beta_2 x_2} + 4\theta \mathrm{e}^{-\beta_1 x_1}\beta_2 \mathrm{e}^{-2\beta_2 x_2} - 2\theta \mathrm{e}^{-\beta_1 x_1}\beta_2 \mathrm{e}^{-\beta_2 x_2} - 2\theta \beta_2 \mathrm{e}^{-\beta_2 x_2}) \, \mathrm{d}x_2 \\ &= (1+\theta)\frac{1}{\beta_2} + 2\theta \mathrm{e}^{-\beta_1 x_1}\frac{1}{2\beta_2} - \frac{2\theta \mathrm{e}^{-\beta_1 x_1}}{\beta_2} - \frac{\theta}{2\beta_2} \\ &= \frac{1}{\beta_2} + \frac{\theta}{2\beta_2} - \frac{\theta \mathrm{e}^{-\beta_1 x_1}}{\beta_2} \\ &= \mathbf{E}[X_2] + \theta \frac{1}{\beta_2} \left(\frac{1}{2} - \mathrm{e}^{-\beta_1 x_1}\right). \end{split}$$