[CS 2336]Discrete Mathematics: Autumn 2009

 2^{rd} exam (close book)

Examination Date: Nov. 30, 2009

Time: 13:10-15:00

- 1. Let $A = \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}$, and define \mathcal{R} on A by $(x_1, y_1)\mathcal{R}(x_2, y_2)$ if $x_1 + y_1 = x_2 + y_2$.
 - a) Verify that R is an equivalence relation on A. (5%) reflexive. Symmuting that
 - b) Determine the equivalence classes [(1,3)], [(2,4)],and [(1,1)]. (3%)
 - c) Determine the partition of A induced by \mathcal{R} . (2%)
- 2. The poset (A, \mathcal{R}) is called a *lattice* if for all $x, y \in A$ the elements $lub\{x, y\}$ and $glb\{x, y\}$ both exist in A. Which of the following posets is a lattice? Please explain your reasons.
 - a) Let $u = \{1, 2, 3\}$ and A be a power set of u. \mathcal{R} is the subset relation on A. (3%)
 - b) \mathcal{R} is the "(exactly) divides" relation applied to $\{2,3,5,6,7,11,12,35,385\}$. (3%)
 - (c) \mathcal{R} is the "less than or equal to" relation on Z, the set of integer. (3%)
- 3. Please answer the following questions:
 - a) How many spanning subgraphs are there for the graph G in Fig. 1? (3%)
 - b) How many connected spanning subgraphs are there in part (a)? (3%)
 - c) How many of the spanning subgraphs in part (a) have vertex f as an isolated vertex? (3%)

Fig. 1

4. Fill in the blanks of the following table. (12%) Repeated Edges | Repeated Virtices Name Open/Close Trail Circuit Path Cycle

- 5. Let $R = \{a, b, c, d, e\}$, determine the number of relations on R that are
 - a) reflexive and symmetric. (2%)
 - b) symmetric and contain (b, d). (2%)
 - c) antisymmetric and contain (b, d). (2%)
 - d) symmetric and antisymmetric. (2%)
 - e) reflexive, symmetric, and antisymmetric. (2%)
 - f) equivalence relations. (2%) reflexive symmerity
 - (g) equivalence relations satisfy $a, b \in [d]$. (2%)
- 6. If G is an undirected graph with n vertices and e edges, let $\delta = \min_{v \in V} \{\deg(v)\}$ and let $\Delta =$ $\max_{v \in V} \{\deg(v)\}$. Prove that $\delta \leq 2(e/n) \leq \Delta$. (10%)
- 7. For $A = \{a, b, c, d, e\}$, let $\mathcal{R} = \{(a, a), (a, c), (b, c), (c, d), (c, e), (d, d), (d, e)\}$ be a relation on A. Draw the directed graph G on A that is associated with \mathbb{R}^{11} . (10%)
- 8. Let $A = \{1, 3, 4, 8, 19\}$, and define on A by xRy if x y is a nonnegative even integer. Draw the Hasse diagram for the poset (A, \mathcal{R}) . (10%)
- 9. Let \mathcal{R} be an equivalence relation on a set A, and $x, y \in A$. reflexive symmetric transitive
 - a) Prove that $x \in [x]$. (4%)
 - b) Prove that xRy if [x] = [y]. (4%)
 - c) Prove that $x\mathcal{R}y$ only if [x] = [y]. (4%)
 - d) Prove that [x] = [y] or $[x] \cap [y] = \emptyset$. (4%)

KE X 4 = [4] AG(N), AEY

FXRW

ARX

ARX

PXRA