

## Curso de Engenharia de Computação Linguagens Formais, Autômatos e Compiladores

#### Relações e Funções



## Agenda



- Relações
- Funções

## Agenda



- Relações
- Funções



Relação ou

correspondência

#### Relações binárias

- Considere A e B conjuntos não vazios:
  - Uma relação R de A para B é um subconjunto de  $A \times B$ ;
  - O domínio da relação é o conjunto definido por:

$$\{x|x\in A \land (\exists y\in B)((x,y)\in R)\}$$

O contradomínio da relação é o conjunto definido por:

$$\{y|y\in B \land (\exists x\in A)((x,y)\in R)\}$$

- Exemplo:

## Notações comuns para $(x,y) \in R$

- $\blacksquare xRy$
- ullet R(x,y)

# $A = \{a, b\}, B = \{c, d\}$ $A \times B = \{(a, c), (a, d), (b, c), (b, d)\}$ $R = \{(a, d), (b, d)\}$ Domínio de $R : \{a, b\}$

Contradomínio de  $R:\{d\}$ 



- Relações binárias
  - Relação inversa de R
    - É o conjunto de pares definido por:

$$R^{-1} = \{(y, x) | (x, y) \in R\}$$



- Relação sobre A
  - Se A=B então a relação é denominada relação sobre A;
- Relação identidade  $I_A$  sobre A (ou apenas identidade)
  - É o conjunto:  $I_A = \{(x, x) | x \in A\}$
- Número de relações binárias sobre A
  - Se |A|=n, então  $|A\times A=A^2|=n^2$ . Assim, o número máximo de relações distintas que se pode obter de  $A^2$  é igual à cardinalidade do conjunto potência de  $A^2$ :

$$|\wp(A^2)| = 2^{n^2}$$





- Relações binárias
  - Número de relações binárias sobre A
    - Exemplo:

$$A = \{a, b\}$$

```
R_1:\emptyset
                         R_9:\{(a,b),(b,a)\}
R_2:\{(a,a)\}
                        R_{10}:\{(a,b),(b,b)\}
R_3:\{(a,b)\}
                       R_{11}:\{(b,a),(b,b)\}
R_A: \{(b, a)\}
                       R_{12}:\{(a,a),(a,b),(b,a)\}
R_5:\{(b,b)\}
                       R_{13}:\{(a,a),(a,b),(b,b)\}
R_6:\{(a,a),(a,b)\} R_{14}:\{(a,a),(b,a),(b,b)\}
R_7: \{(a, a), (b, a)\}  R_{15}: \{(a, b), (b, a), (b, b)\}
R_8:\{(a,a),(b,b)\}\ R_{16}:\{(a,a),(a,b),(b,a),(b,b)\}\
```



#### Teste seus conhecimentos

1) Seja:  $X = \{2, 4, 6, 8\}$ 

Escrever as relações:

- (a)  $\{(x, y) | x, y \in X \land x < y\}$
- (b)  $\{(x, y) | x, y \in X \land x | y\}$
- (c)  $\{(x, y) | x \in X \land y \in \wp(X)\}$



2) Descrever a relação resultante da união das relações binárias "menor que" e "igual à" aplicada aos números naturais.



- Relações binárias
  - Representações de relações binárias
    - Representação matricial
      - As **linhas** são indexadas pelos elementos do **domínio**;
      - As colunas são indexadas pelos elementos do contradomínio;
      - Na matriz, o valor 1 (ou verdadeiro) indica que há uma relação entre os elementos, caso contrário o valor é 0;
      - Exemplo:

$$A = \{1, 2, 3, 4\}$$
  
 $B = \{a, b, c\}$   
 $R = \{(1, a), (3, a), (3, b), (4, a), (4, b)\}$ 

Também vale para relações sobre o mesmo conjunto!



- Relações binárias
  - Representações de relações binárias
    - Representação por dígrafos
      - Relações sobre um mesmo conjunto
        - Os vértices representam os elementos de A;
        - Desenha-se um arco orientado de  $a_i$  para  $a_j$  (onde  $a_i$ ,  $a_j$ ∈ A) se o par  $(a_i,a_j)$  ∈ R.
      - Exemplo:

$$A = \{1, 2, 3, 4\}$$

$$R = \{(1,2), (2,1), (2,3), (3,4), (4,2)\}$$





- Relações binárias
  - Representações de relações binárias
    - Representação por dígrafos
      - Relações entre dois conjuntos distintos
        - Os vértices do digrafo representam os elementos de  $A \cup B$ ;
        - Desenha-se um arco orientado de  $a_i$  para  $b_j$  (onde  $a_i \in A$  e  $b_j \in B$ ) se o par  $(a_i, b_i) \in R$ .
      - Exemplo:

$$A = \{1, 2, 3, 4\}$$

$$B = \{a, b, c\}$$

$$R = \{(1, a), (3, a), (3, b), (4, a), (4, b)\}$$





#### Relações em geral

- Além de relações binárias, pode-se definir relações com diferentes "aridades":
  - Relações unárias: representam alguma propriedade que pode ser verdadeira ou falsa para cada elemento de um conjunto;

- **Exemplo**: no **conjunto**  $\mathbb{Z}$ , a relação primo(x) que é verdadeira para números que são primos e falsa, caso contrário.

**elações n-árias**: inclui binárias, ternárias etc. Podem relacionar elementos de iversos conjuntos ou de um mesmo.

 Exemplo: em bancos de dados relacionais, pode-se definir relações de diferentes aridades. Por exemplo, a relação aluno(cpf,ra,nota) representa fatos sobre alunos de uma escola.

A forma de especificar uma relação como R(a,b,c) etc) é denominada de prefixada.



#### Teste seus conhecimentos

- 1) Considere a relação binária "menor ou igual à" sobre o conjunto {1,2,3}. Elaborar:
  - a) Representação matricial equivalente;
  - b) Representação por digrafo equivalente.



- Propriedades das relações
  - Relação reflexiva
    - Uma relação R sobre um conjunto S é reflexiva se e somente se:

$$(\forall x \in S)((x, x) \in R)$$

- Exemplos
  - A relação de "igual à" nos números inteiros é uma relação reflexiva;
  - A relação "divisível por" nos números inteiros é uma relação reflexiva;
  - A relação "menor que" nos números inteiros não é uma relação reflexiva.



- Propriedades das relações
  - Relação antirreflexiva
    - Uma relação R sobre um conjunto S é antirreflexiva se e somente se:

$$(\forall x \in S)((x, x) \not\in R)$$

- Exemplos
  - A relação de "maior que" nos números inteiros é uma relação antirreflexiva;
  - A relação "divisível por" nos números inteiros não é uma relação antirreflexiva.



- Propriedades das relações
  - Relação simétrica
    - Uma relação R sobre um conjunto S é simétrica se e somente se:

$$(\forall (x, y) \in R)((y, x) \in R)$$

- Exemplos
  - A relação "igual à" nos números inteiros é uma relação simétrica;
  - A relação "casado com" sobre um conjunto de pessoas é uma relação simétrica;
  - A relação "maior que" nos números inteiros <u>não é</u> uma relação simétrica.





- Propriedades das relações
  - Relação antissimétrica
    - Uma relação R sobre um conjunto S é antissimétrica se e somente se:

$$(\forall x \forall y)(R(x, y) \land x \neq y \rightarrow \neg R(y, x))$$

ou ainda

$$(\forall x \forall y)(R(x,y) \land R(y,x) \rightarrow x = y)$$

- Exemplos
  - A relação "chefe de" sobre um conjunto de funcionários <u>é</u> uma relação antissimétrica;
  - A relação "maior que" nos números inteiros é uma relação antissimétrica.
  - A relação "igual à" nos números inteiros <u>não é</u> uma relação antissimétrica.



- Propriedades das relações
  - Relação transitiva
    - Uma relação R sobre um conjunto S é transitiva se e somente se:

$$(\forall (x, y), (y, z) \in R)((x, z) \in R)$$

- Exemplos
  - A relação "chefe de" sobre um conjunto de funcionários é uma relação transitiva;
  - A relação "maior que" nos números inteiros é uma relação transitiva.
  - A relação "perpendicular à" sobre o conjunto de retas não é uma relação transitiva.



#### Teste seus conhecimentos

1) Classificar as relações a seguir, definidas sobre  $S = \{0,1,2,4,6\}$ , em reflexiva (**R**), simétrica (**S**), transitiva (**T**), ou antissimétrica (**AS**):

```
(a) R = \{(0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6)\}
```

- (b)  $R = \{(0,1), (1,0), (2,4), (4,2), (4,6), (6,4)\}$
- (c)  $R = \{(0,0), (1,1), (2,2), (4,4), (6,6), (4,6), (6,4)\}$



- Composição de relações
  - Sejam A, B, C três **conjuntos** e R e S as **relações**:

$$R \subseteq A \times B$$
  $S \subseteq B \times C$ 

• A composição das relações  $R \in S$ ,  $R \circ S \subseteq A \times C$ , é assim definida:

$$R \circ S = \{(a,c) | a \in A \land c \in C \land (\exists b \in B) (R(a,b) \land S(b,c))\}$$

Então:

Tem sentido?  $R^{-1} \circ R^{-1} = R^{-2}$ 

$$R^0 = I_A$$
 $R^1 = R$ 
 $R^2 = R \circ R$ 
...
 $n \text{ vezes}$ 
 $R^n = R \circ R \circ ... \circ R$ 

Para relações
binárias Em geral:  $R^{-1} \circ R \neq I_A$ Confira com R={(1,2),
(2,3), (1,3), (3,1)}



- Fecho transitivo
  - Fecho transitivo
    - É o conjunto definido por:

$$R^+ = \bigcup_{n=1}^{\infty} R^n$$

- Fecho transitivo reflexivo
  - É o conjunto definido por:

$$R^* = \bigcup_{n=0}^{\infty} R^n$$



- Fecho transitivo
  - Exemplo
    - Considere a seguinte **relação** sobre  $A = \{a,b,c\}$ :

$$R = \{(a, b), (b, a), (b, c)\}$$

Calculando:

$$R^0 = I_A = \{(a,a),(b,b),(c,c)\}$$
 $R^1 = R^0 \circ R = \{(a,b),(b,a),(b,c)\}$ 
 $R^2 = R \circ R = \{(a,a),(a,c),(b,b)\}$ 
 $R^3 = R^2 \circ R = \{(a,b),(b,a),(b,c)\}$ 
 $R^4 = R^3 \circ R = \{(a,a),(a,c),(b,b)\}$ 
... e?

não acrescenta mais nada

$$R^* = \bigcup_{n=0}^{\infty} R^n = \{R_0 \cup R_1 \cup R_2 \cup R_3 \cup R_4 \cup \ldots\}$$

$$= \{R_0 \cup R_1 \cup R_2\}$$

$$= \bigcup_{n=0}^{2} R^n = \bigcup_{n=0}^{|A|-1} R^n$$

$$= \{(a,a), (b,b), (c,c), (a,b), (b,a), (b,c), (a,c)\}$$





#### Fecho transitivo

- Explicação
  - As relações  $R^0$ ,  $R^1$ , ...,  $R^k$ , ... representam formas de como elementos de A podem respectivamente se interligar com elementos de A, passando por 0, 1, ... k, ... ligações;
  - Cada relação  $R^0$ ,  $R^1$ , ...,  $R^k$ , por exemplo, **representa** os **possíveis caminhos** para **sair** de um **elemento**  $a_i$  e chegar a um **elemento**  $a_j$  qualquer por um **encadeamento** de **tamanho** 0 <= r <= k;
  - Mas, se o conjunto A em que a relação R foi definida possui n=|A| elementos e se existe algum caminho entre um elemento a<sub>i</sub> e um elemento a<sub>j</sub>, por meio de R<sup>r</sup> este caminho possui um comprimento r que é certamente menor que n pois, no máximo, são necessários r<n ligações para sair de qualquer elemento a<sub>i</sub> e chegar em qualquer elemento a<sub>j</sub>.



- Fecho transitivo
  - Explicação
    - Assim, basta fazer a união de  $R^0$ ,  $R^1$ , ...,  $R^k$ , ...,  $R^{|A|-1}$  para se calcular o fecho transitivo a união de relações de potências superiores a |A|-1 não acrescentam mais nenhuma "novidade" neste resultado são redundantes;
    - Explicação similar vale para o fecho transitivo comum;
    - Isto é valido apenas para relações finitas!



- Fecho transitivo conclusão
  - Para relações finitas
    - Fecho transitivo

$$R^{+} = \bigcup_{n=1}^{|A|-1} R^{n}$$

Fecho transitivo reflexivo

$$R^* = \bigcup_{n=0}^{|A|-1} R^n$$



#### Teste seus conhecimentos

- 1) Seja  $V = \{1,2,3,4,5,6\}$  e R a relação binária sobre V que representa como um elemento  $v_i \in V$  pode "alcançar" um elemento  $v_j \in V$ :  $R = \{(1,2),(1,3),(2,4),(2,5),(3,5),(4,6),(5,4),(5,6)\}$ .
  - (a) Elabore a representação matricial de *R*;
  - (b) Elabore a representação matricial de R\*;



#### Ordem parcial

Uma relação binária sobre um conjunto S que é reflexiva, antissimétrica e transitiva é denominada ordem parcial sobre S;

Exemplos de ordem parcial:

$$R = \{(x, y) \in \mathbb{N}^2 | x \le y\}$$

$$R = \{(x, y) | x, y \in \wp(\mathbb{N}) \land x \subseteq y\}$$

$$R = \{(x, y) \in \mathbb{Z}^+ | x \text{ divide } y\}$$

- Ordem parcial fraca: a relação é reflexiva, antissimétrica e transitiva;
- Ordem parcial
   estrita: a relação é
   antirreflexiva,
   antissimétrica e
   transitiva;



#### Ordem parcial

- Um conjunto S parcialmente ordenado por uma relação  $\rho$  é denominado de conjunto parcialmente ordenado ou cpo e é indicado pelo par  $(S,\rho)$  ou, de modo genérico,  $(S,\leqslant)$  ( $\leqslant$  pode ser "menor ou igual à", "é subconjunto de", "divide por" etc);
- Se A é um subconjunto de S, ele forma uma restrição de ≤ para A e é uma ordem parcial sobre A;
- Se  $(S, \leq)$  é um **cpo** e se  $x \leq y$  (para  $(x,y) \in S^2$ ), então ou x=y ou  $x \neq y$ . Agora, se  $x \leq y$  mas  $x \neq y$ , então escreve-se x < y e:
  - x é predecessor de y;
  - y é sucessor de x.
  - E se não existe z tal que x < z < y, então x é **predecessor imediato** de y.



- Ordem parcial
  - Diagrama de Hasse
    - É uma representação gráfica de um cpo (S,≤);
    - Cada elemento de S é escrito como um vértice e para dois elementos x < y, y é escrito acima de x e eles são ligados por uma linha;
    - Exemplo:
      - Se  $S = \{1,2\}$  e se  $\rho$  ou  $(\leq)$  é a relação  $\subseteq$  definida sobre  $\wp(S)$ , então:

$$\rho = \{(\emptyset, \emptyset), (\{1\}, \{1\}), (\{2\}, \{2\}), (\{1, 2\}, \{1, 2\}), (\emptyset, \{1\}), (\emptyset, \{2\}), (\emptyset, \{1, 2\}), (\{1\}, \{1, 2\}), (\{2\}, \{1, 2\})\}$$





- Ordem parcial
  - Elementos mínimo e minimal de um cpo
    - Seja  $(S, \leq)$ , um **cpo**. Se existe um  $y \in S$  com  $y \leq x$  para todo  $x \in S$  então y é o **elemento mínimo** do cpo. **Se** ele **existir**, é **único**;
    - Um elemento  $y \in S$  é **minimal** se não existe  $x \in S$  com x < y.
    - Um elemento mínimo de um cpo é sempre minimal.
  - Elementos máximo e maximal de um cpo
    - São definidos de modo similar.

2 maximals, nenhum máximo
3 minimals, nenhum mínimo
1 máximo, nenhum minimal
1 mínimo, nenhum minimal



#### Ordem total

- Uma ordem total é aquela tal que todo elemento de um conjunto S está relacionado a todo outro elemento de S;
- Por exemplo, a relação binária ≤ em N é uma ordem total pois todo par (x,y)
   € N² está relacionado segundo ≤;
- Uma ordem total é também denominada de cadeia pois seu diagrama de Hasse possui a forma:





- Relação de equivalência
  - Relação de equivalência é uma relação binária que é:
    - Simétrica;
    - Reflexiva;
    - Transitiva.
  - São importantes, pois, entre outras aplicações:
    - Permitem categorizar elementos que seguem algum tipo de "padrão" conceito empregado em compiladores e interpretadores para se determinar o que é palavra reservada, operador ou identificador;
    - Conceito empregado na inferência do tipo de expressões em interpretadores e compiladores.



- Relação de equivalência
  - Exemplos

$$R = \{(x,y) \in S^2 | x = y\}$$

$$R = \{(x,y) \in \mathbb{N}^2 | x+y \text{ \'e par} \}$$

 $R = \{(x, y) | x \text{ e y são linhas em um plano}$ e x é paralela ou coincide com y}

 $R = \{(x, y) | x \text{ e y são alunos sentados na mesma}$ fila de uma sala de aula}



- Partições de um conjunto
  - Definição
    - Seja A um conjunto finito e e  $A_1, \dots A_m$  subconjuntos de A tal que  $A_i \neq \emptyset$  para todo i e  $A_i \cap A_i = \emptyset$  para  $i \neq j$  e que

$$A = \bigcup_{i=1}^{m} A_i = A_1 \cup A_2 \cup \ldots \cup A_m$$

- Neste caso, os conjuntos A<sub>i</sub> particionam o conjunto A e esses conjuntos são denominados de blocos ou classes da partição apresentada.
- Em geral, pode-se utilizar como **indice elementos** de um **conjunto** I, **possivelmente infinito**:  $A = \bigcup A_i$
- A partição consiste, portanto, de subconjuntos mutualmente disjuntos e cuja união é igual a A.



- Classe de equivalência
  - Definição
    - Seja  $\rho$  uma **relação** de **equivalência** sobre um **conjunto** S e que  $x \in S$ ;
    - Considerando [x] a **notação** para o **conjunto** de **todos** os **membros** de S que estão **relacionados** a x por  $\rho$ , [x] é denominado classe de equivalência de x:

$$[x] = \{y | y \in S \land x \rho y\}$$

Teorema

"Se  $\rho$  é uma relação de equivalência sobre um conjunto S, então o **conjunto** de **todas** as **classes** de **equivalência** de S,  $[S] = \{[s] \mid s \in S\}$ , **forma uma partição** sobre S."



#### Classe de equivalência

- Exemplo
  - Se  $S = \{1,2,3,4,5\}$  e  $\rho$  representa a **relação** de **equivalência** x+y é **par**, sendo  $x,y \in S$ , então:

```
- [1]={1,3,5}

- [2]={2,4}

- [3]={1,3,5}

- [4]={2,4}

- [5]={1,3,5}
```



$$-[S] = \{\{1,3,5\},\{2,4\}\}$$



## Agenda



- Relações
- Funções



- Definição
  - Sejam A e B dois conjuntos não vazios;
  - Uma função f de A para B é uma relação de A para B possuindo as seguintes propriedades:
    - O domínio de f, Dom(f), é A;
    - Se (x,z) e  $(x,w) \in f$ , então z=w.
  - Uma função é uma regra:
    - "Se x pertence ao domínio de f, existe um único y tal que  $(x,y) \in f$ ". Esta frase é resumida como: f(x);
    - O elemento x na função é denominado argumento;
    - O elemento y é denominado **imagem** de x na função.



- Notação
  - Para funções, não se costuma utilizar a notação de relação, x f y ou f(x,y);
  - Em seu lugar, utiliza-se a notação consagrada por Euler em 1734, y=f(x), onde y é o valor produzido pela aplicação da função f sobre x (argumento).
     Esta notação pode ser ampliada para mais argumentos;



Uma **função** também é **conhecida como mapa** e pode ser **lida assim**: **f** mapeia **A** para **B**. Assim, também é comum a notação:



• E, para qualquer  $x \in A$ :  $x \mapsto f(x)$ 



- Teste seus conhecimentos
  - 1) Para cada uma das relações a seguir, responder qual(ais) é (são) também função(ões):

```
A = \{1, 2, 3, 4\}
B = \{a, b, c\}
R_1 = \{(1, a), (2, b), (2, c), (3, c), (4, b)\}
R_2 = \{(1, a), (2, b), (4, b)\}
R_3 = \{(1, a), (2, a), (2, c), (3, c), (4, c)\}
```





- Teste seus conhecimentos
  - 1) Das relações a seguir, quais são funções e quais não são funções?





- Classificação das funções
  - Função injetora

Considere uma função f de A para B. A função f é injetora ou ("um para um") se e somente se:

$$f(x) = f(y) \to x = y$$

Exemplo





- Classificação das funções
  - Função sobrejetora
    - Considere uma função f de A para B. A função f é sobrejetora se e somente se a imagem de f for igual ao contradomínio da função:

$$Im(f) = B$$

Exemplo





- Classificação das funções
  - Função bijetora
    - Uma função f de A para B é bijetora se ela é simultaneamente injetora e sobrejetora;
    - Isto equivale a dizer que, para cada  $b \in B$ , existe um único  $a \in A$  com b = f(A).
    - Exemplo





- Número de funções sobre A
  - Relações binárias que são funções
    - Exemplo:

$$A = \{a, b\}$$

| $R_1: \emptyset$              | $R_9:\{(a,b),(b,a)\}$                    |
|-------------------------------|------------------------------------------|
| $R_2:\{(a,a)\}$               | $R_{10}:\{(a,b),(b,b)\}$                 |
| $R_3:\{(a,b)\}$               | $R_{\text{N}}: [[b,a),(b,b)]$            |
| $R_4: \{(b, a)\}$             | $B_{12}: \{(a,a), (a,b), (b,a)\}$        |
| $R_5: \{(b, b)\}$             | $B_{13}: \{(a,a), (a,b), (b,b)\}$        |
| $\mathcal{R}_6: [a,a), (a,b)$ | $B_{14}: \{(a,a),(b,a),(b,b)\}$          |
| $R_7:\{(a,a),(b,a)\}$         | $R_{15}: \{(a,b), (b,a), (b,b)\}$        |
| $R_8:\{(a,a),(b,b)\}$         | $R_{16}: \{(a,b), (a,b), (b,a), (b,b)\}$ |





- Quantas funções?
  - Considere dois conjuntos S e T com |S| = m e |T| = n.
    - (a) Assumir que as funções não possuam nenhuma propriedade especial. Neste caso, cada elemento de S (tem m elementos) tem que ser ser mapeado a algum elemento de T (tem n possibilidades). Então:

$$\underbrace{n \times n \times \dots \times n}_{m \text{ fatores}} = n^m$$





- Quantas funções?
  - Considere dois conjuntos  $S \in T \text{ com } |S| = m \in |T| = n$ .
    - (b) Assumir que as **funções** sejam **injetoras**. Neste caso, é obrigatório que  $m \le n$  e que **não hajam dois valores** do **conjunto domínio mapeados** para um **mesmo valor** de **imagem**. Repetindo o raciocínio anterior:

$$\underbrace{n \times (n-1) \times (n-2) \times \ldots \times (n-m+1)}_{m \text{ fatores}} = \frac{n!}{(n-m)!}$$





- Quantas funções?
  - Considere dois conjuntos  $S \in T \text{ com } |S| = m \in |T| = n$ .
    - (c) Assumir que as funções sejam sobrejetoras. Neste caso, deve-se ter m ≥ n (deve haver valores suficientes na pré-imagem para serem associados com valores da imagem);
    - Neste caso, deve-se apelar para o princípio da inclusão e exclusão e utilizar análise combinatória. O resultado (a prova está na bibliografia) é:

$$n^m - C(n,1)(n-1)^m + C(n,2)(n-2)^m - C(n,3)(n-3)^m + \dots + (-1)^{n-1}C(n,n-1)(1)^m$$



#### Composição de funções

- Suponha que f e g sejam **funções** com  $f: S \rightarrow T$  e  $g: T \rightarrow U$ . Então, para **qualquer**  $s \in S$ , f(s) é um **membro** de T, que também é **domínio** de g;
- Portanto a função g pode ser aplicada à f(s) e seu resultado é g(f(s)), um membro de U;



Com isso, criou-se a função S→U, denominada composição de f e g e escrita como g ∘ f.

# MAUÁ

- Inversa de uma função
  - A função f:A→B é inversível se existir uma função g:B→A tal que g∘f = I<sub>A</sub> e f∘g = I<sub>B</sub>;
  - A notação para a função inversa de uma função f é f-1;
  - Teorema
    - "A função  $f:A \rightarrow B$  é inversível se e somente se f é bijetora".
- Igualdade de funções
  - Duas funções são iguais se elas possuem o mesmo domínio, o mesmo contradomínio e a mesma associação de valores do contradomínio com valores do domínio.



#### Referências Bibliográficas

GERSTING, J.L. Fundamentos matemáticos para a ciência da computação. 4.
 ed. Rio de Janeiro, RJ: LTC, 2001. 538 p. ISBN 85-216-1263-X.