Problem Set 6

1. Prove Theorem 4.4.3: For any subset A of a topological space X_{τ} , $\operatorname{Cl}(A) = \operatorname{Int}(A) \cup \operatorname{Bdy}(A)$.

Let A be a subset of a topological space X_{τ} and consider the case where $A = \emptyset$. Then $Cl(A) = \emptyset$ since \emptyset is both open and closed in τ . And since $Int(A) \subseteq A \subseteq Cl(A)$, we have that $Int(A) = \emptyset$. Additionally, since $A = \emptyset$, we have that there are no points $x \in A$ such that a neighborhood V_x of x does not satisfy the conditions for $x \in Bd(A)$. That is, $Bd(A) = \emptyset$.

In this case, $Cl(A) = Int(A) \cup Bd(A)$

Now consider the case where $A \neq \emptyset$ and let $x \in Cl(A)$. By definition, for some neighborhood V_x in x, $V_x \cap A \neq \emptyset$. If $V_x \subseteq A$, then $x \in Int(A)$. If V_x is not a subset of A, then $V_x \cap A \neq \emptyset$ and $V_x \cap (X \setminus A) \neq \emptyset$, and so $x \in Bd(A)$. Thus,

$$Cl(A) \subseteq Int(A) \cup Bd(A)$$

Now let $x \in \text{Int}(A) \cup \text{Bd}(A)$. If $x \in \text{Int}(A)$, then $x \in \text{Cl}(A)$ since $\text{Int}(A) \subseteq A \subseteq \text{Bd}(A)$. If $x \in \text{Bd}(A)$, then any neighborhood V_x of x contains points in A and $X \setminus A$. That is, $V_x \cap A \neq \emptyset$ and $V_x \cap (X \setminus A) \neq \emptyset$. That is, x is a limit point of A, and thus $x \in \text{Cl}(A)$. So we have

$$\operatorname{Int}(A) \cup \operatorname{Bd}(A) \subseteq \operatorname{Cl}(A)$$

By double inclusion, we have

$$Cl(A) = Int(A) \cup Bd(A)$$

2. (#4 in 4.5) Let $A \subseteq X_{\tau}$ and let $f: X_{\tau} \to Y_{\nu}$ be continuous. If x is a limit point of A, must f(x) be a limit point of $f(A) \subseteq Y$? Explain.

No. Consider the function $f: \mathbb{R}_{\mathcal{U}} \to \mathbb{R}_{\mathcal{U}}$ defined by

$$f(x) = 4$$

and let A = [0, 1]. Notice that A' = [0, 1] and that $f(A) = \{4\}$. Also notice that $f(A)' = \emptyset$.

Notice that $\frac{1}{2}$ is a limit point of A, and that $f(\frac{1}{2}) = 4 \notin f(A)'$. But f is continuous because it is a constant function. More specifically, if $U \subset \mathbb{R}$ and $\{4\} \in U$, $f^{-1}(U) = \mathbb{R}$ which is open, and if $\{4\} \notin U$, $f^{-1}(U) = \emptyset$ which is open.

So a limit point of A is not a limit point of f(A).

3. (#2 in 5.2) Consider the product space $\mathbb{R}_{\mathcal{L}} \times \mathbb{R}_{\mathcal{L}}$.

- (a) Sketch a typical basis set in $\mathbb{R}_{\mathcal{L}} \times \mathbb{R}_{\mathcal{L}}$.
- (b) Sketch several open sets in $\mathbb{R}_{\mathcal{L}} \times \mathbb{R}_{\mathcal{L}}$.
- (c) Sketch several sets which are not open in $\mathbb{R}_{\mathcal{L}} \times \mathbb{R}_{\mathcal{L}}$.

See attached sketches.

4. (#5 in 5.2) Prove Theorem 5.2.3: If X_{τ} and Y_{σ} are any topological spaces, with base-points $x_0 \in X$ and $y_0 \in Y$, then the inclusion maps

$$i_X: X_\tau \hookrightarrow X_\tau \times Y_\sigma$$

and

$$i_Y: Y_\sigma \hookrightarrow X_\tau \times Y_\sigma$$

are both continuous, where $X_{\tau} \times Y_{\sigma}$ denotes the Cartesian product endowed with the product topology.

(Hint: these are maps into a product space).

Let $i_X: X_\tau \hookrightarrow X_\tau \times Y_\sigma$ and $i_Y: Y_\sigma \hookrightarrow X_\tau \times Y_\sigma$ where $X_\tau \times Y_\sigma$ is the Cartesian product with the product topology.

Let U be τ -open and consider $(P_X \circ i_X)^{-1}(U)$:

$$(P_X \circ i_X)^{-1}(U)$$

$$= (i_X^{-1} \circ P_X^{-1})(U)$$

$$= i_X^{-1}(U \times Y)$$

$$= U$$

which is open by assumption, so $P_X \circ i_X$ is continuous. Now we wish to show that $P_Y \circ i_X$ is continuous. Let V be σ -open and consider

$$(P_Y \circ i_X)^{-1}(V)$$

$$= (i_X^{-1} \circ P_Y^{-1})(V)$$

$$= i_X^{-1}(X \times V)$$

$$= X$$

which is open by definition. So i_X is continuous.

Now we wish to show that i_Y is continuous. Following the same logic above, let U be τ -open and consider

$$(P_X \circ i_Y)^{-1}(U)$$

$$= (i_Y^{-1} \circ P_X^{-1})(U)$$

$$= i_Y^{-1}(U \times Y)$$

$$= Y$$

which is open by definition. Now let V be σ -open and consider

$$(P_Y \circ i_Y)^{-1}(V)$$

$$= (i_Y^{-1} \circ P_Y^{-1})(V)$$

$$= i_Y^{-1}(X \times V)$$

$$= V$$

which is open by assumption. So i_Y is continuous.

5. Let $f:A\to B$ and $g:C\to D$ be continuous functions. Define a map $f\times g:A\times C\to B\times D$ by the equation

$$(f \times g)(a, c) = (f(a), g(c)).$$

Show that $f \times g$ is continuous.

Proof: Let $f:A\to B$ and $g:C\to D$ be continuous functions and let β be open in the product topology on $B\times D$. Also consider the projection maps

$$P_B: B \times D \to B$$

$$P_D: B \times D \to D$$

To show $f \times g$ is continuous, it suffices to show that $P_B \circ (f \times g)$ and $P_D \circ (f \times g)$ are continuous.

To begin, we will show that

$$(f \times g)^{-1} = f^{-1} \times g^{-1}$$

where

$$f^{-1}\times g^{-1}$$
 :

Let $V_1 \subseteq B$ and $V_2 \subseteq D$. Since $V_1 \subseteq B$, for some $U_1 \subseteq A$, we have that $f^{-1}(V_1) = U_1$, and similarly for $V_2 \subseteq D$, for some $U_2 \subseteq C$, $g^{-1}(V_2) = U_2$.

Let $\beta = V_1 \times V_2$ and $\alpha = U_1 \times U_2$.

We wish to show that $((f \times g) \circ (f^{-1} \times g^{-1}))(\beta) = \beta$ and $((f^{-1} \times g^{-1}) \circ (f \times g))(\alpha) = \alpha$.

Notice that

$$((f \times g) \circ (f^{-1} \times g^{-1}))(\beta)$$

$$= (f \times g) \circ (f^{-1}(V_1) \times g^{-1}(V_2))$$

$$= (f \times g)(U_1 \times U_2)$$

$$= (f(U_1) \times g(U_2)) = V_1 \times V_2 = \beta$$

Also notice that

$$((f^{-1} \times g^{-1}) \circ (f \times g))(\alpha)$$

= $(f^{-1} \times g^{-1}) \circ (f(U_1) \times g(U_2))$

$$= (f^{-1} \times g^{-1})(V_1 \times V_2)$$
$$= (f^{-1}(V_1) \times g^{-1}(V_2)) = U_1 \times U_2 = \alpha$$

So $(f \times g)^{-1} = (f^{-1} \times g^{-1})$. Now we wish to show that $P_B \circ (f \times g)$ is continuous. Let $U_3 \subseteq B$ and consider

$$(P_B \circ (f \times g))^{-1}(U_3)$$
= $((f \times g)^{-1} \circ P_B^{-1})(U_3)$
= $(f^{-1} \times g^{-1})(U_3 \times D)$
= $(f^{-1}(U_3) \times g^{-1}(D))$
= $V_3 \times C \subseteq A \times C$

for some $V_3 \subseteq A$. So $P_B \circ (f \times g)$ is continuous.

Now let $V_4 \subseteq D$ and consider

$$(P_D \circ (f \times g))^{-1}(V_4)$$

$$= ((f \times g)^{-1} \circ P_D^{-1})(V_4)$$

$$= (f^{-1} \times g^{-1})(B \times V_4)$$

$$= (f^{-1}(B) \times g^{-1}(V_4)) = A \times U_4 \subseteq A \times C$$

for some $U_4 \subseteq C$. So $P_D \circ (f \times g)$ is continuous, and so $f \times g$ is continuous.

Bonus (#1 in 5.3) Prove that the basis for the box topology on $\prod X_{\alpha}$, $\mathcal{B} = \prod \tau_{\alpha}$, is in fact a basis. That is, show that it satisfies the two conditions of Definition 4.2.1.