NEGAC	IÓN DE UNA	A IMPLICA	CIÓN								
	~	(P ⇒ 9) =	(P ~~	9)						
Eiempla	. Escriba					icación					
7-11-1		9	CION			COCTOT					
1. 5	i estudio	entono	765 Q	ruem							
	ea ρ:		25 01	71.0 (00							
	9:										
neogció	li camente	. 9 -	~9								
la acció	n: e común:	- ct.	4.0	200	امساما						
Lengua	e comon.	E \$ 10	aro y	7	Aproet	30.					
2.	To con-			1 200 0		0 0 0 0 0	mies	l aveno			
	Te acomp				ayuc	ius con	11112	iaicas.			
Ο (1,	Reescribien					4 -	+			aina	
	Si me	ayuaas c	on mis	5 Tarea	is, en	llonces	(6	compa	no a	cine.	
1	0.				1						
wego ,	P:	to on	0005 (on mi	5 TOXE	as					
5. 1.1		te ac		od co	١٠٠.						
	icamente:										
o egacio	n :	P ^	~4		1		1			1 .	
Leng.	Común:	Me ayı	das con	n mis	Tare	eas y	no t	e acom	pano (al cine.	
	C I c O I			1	. 1	11					
3.	Estaré fel	iz siem	bie d	ve de	Je cle	Hove					
Sol.	\ 1 .			C 1	. 1	11	1			0 1.	
(Keescr)	ibiendo la	proposi	cion:	Si de	ja de	Hover	, ento	n(es e	staré	feliz	
_	1 .	l h									
Sean	1 1		r								
C. 1	7	é feliz									
	licamente										
N egació	Común:	lo lo	~ 4		1						
Leng	Común:	Deja (le llove	ryn	o esto	y teli-	2.				
5.	ALGEBRA D	E PROPOS	SICIONE	S							
Son or	peraciones lóg	ricas qua	e reelise	ın an ır	a fámo	ula =====	ogiaional	oml:ac	do		
_	damente cierta										
	básica donde										
	ambién existe			-			-	•			

5.1. LEYES LÓGICAS

Son fórmulas proposicionales lógicamente equivalentes, estas son:

1) Leyes de idempotencia:
$$p \land p \equiv p$$
; $p \lor p \equiv p$

2) Leyes conmutativas:
$$p \land q \equiv q \land p$$
; $p \lor q \equiv q \lor p$

3) Leyes asociativas:
$$(p \land q) \land r \equiv p \land (q \land r)$$

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

4) Leyes de negación:
$$\sim (\sim p) \equiv p$$

$$p \wedge \sim p \equiv F$$
 ; $p \vee \sim p \equiv V$

5) Leyes de identidad:
$$p \wedge V \equiv p$$
 ; $p \vee F \equiv p$

6) Leyes de De Morgan:
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

$$\sim (p \lor q) \equiv \sim p \land \sim q$$

7) Definición de implicación:
$$p \rightarrow q \equiv \sim p \vee q$$

8) Leyes distributivas:
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Leyes de absorción:
$$p \land (p \lor q) \equiv p$$
; $p \lor (p \land q) \equiv p$
 $p \land F \equiv F$; $p \lor V \equiv V$

10) Definición de doble implicación:
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

5.2. SIMP	PLIFICACIÓN DE FÓRMULAS PROPOSICIONALES								
Se trata de trasformar una fórmula proposicional en otra equivalente a ella pero lo más									
reducida posible. Para lo cual se debe usar oportuna y correctamente las leyes lógicas.									
Asi mismo, d	eben especificarse en cada paso la ley o leyes que fueron utilizados.								
Fiamplas	En codo uno do los circulantes incises circuliface la conscisión de de								
Ejemplos:	En cada uno de los siguientes incisos, simplificar la proposición dada:								
a)	Simplificar: $p \wedge (q \vee \sim q)$								
	como $q \lor \sim q \equiv V$ por la ley de negación (L. neg.)								
	luego se tiene:								
	$p \wedge (q \vee \sim q) \equiv p \wedge V$								
	$\equiv P$, según la ley de identidad (L. ident.)								
b)	Simplificar: $\sim q \vee (\sim p \wedge p)$								
	como $\sim p \wedge p \equiv F$, según la ley de negación (L. neg.)								
	luego se tiene:								
	$\sim q \vee (\sim p \wedge p) \equiv \sim q \vee F$								
	≡~q, según la ley de identidad (L.ident.)								
c)	Simplificar: $\sim (p \land \sim q) \lor q$								
2	Por la ley de De Morgan (L. D M), \sim ($p \land \sim q$) $\equiv \sim p \lor q$								
	luego se tiene:								
	$\sim (p \land \sim q) \lor q \equiv (\sim p \lor q) \lor q$								
	$\equiv \sim p \lor (q \lor q)$, según la ley asociativa (L.asoc.)								
	$\equiv \sim p \vee q$, según la ley de idempotencia (L. Idem.)								
d)	Simplificar: $\sim (p \rightarrow \sim q) \wedge p$								
	Por la definición de implicación (d.imp.), $p \rightarrow \sim q \equiv \sim p \lor \sim q$								
	luego se tiene:								
	$\sim (p \rightarrow \sim q) \land p \equiv \sim (\sim p \lor \sim q) \land p$								
	Según la Ley de De Morgan (L.D.M.), $\sim (\sim p \lor \sim q) \equiv p \land q$.								
	Por tanto,								
	$\sim (p \to \sim q) \land p \equiv (p \land q) \land p$								
	\equiv $(p \land p) \land q$, según la Ley asociativa (L.asoc.)								
	$\equiv p \land q$, según la ley idempotencia (L.Idem)								

Simplificar: $q \wedge (\sim p \rightarrow \sim q)$ e) Por definición de implicación (D.Imp.), $\sim p \rightarrow \sim q \equiv p \lor \sim q$ luego se tiene: $q \land (\sim p \rightarrow \sim q) \equiv q \land (p \lor \sim q)$ $\equiv (q \land p) \lor (q \land \sim q)$, según la Ley distributiva (L.dist) $\equiv (q \land p) \lor F$, según la ley de negación (L. Neg.) $\equiv q \wedge p$, según la ley de identidad (L. ident) Simplificar: $(\sim p \rightarrow q) \land (p \lor \sim q)$ f) por la definición de implicación (D. Imp), $\sim p \rightarrow q \equiv p \vee q$ luego se tiene: $(\sim p \rightarrow q) \land (p \lor \sim q) \equiv (p \lor q) \land (p \lor \sim q)$ $\equiv p \vee (q \wedge \sim q)$, según la Ley distributiva (L. dist.) = p \vee F, según la ley de negación (L. neg.) ≡ p, según la ley de idempotencia (L. Idem) Simplificar: $p \lor \sim (p \to r)$ g) como $p \rightarrow r \equiv -p \lor r$, según definición de implicación (D.Imp.) luego $p \lor \sim (p \rightarrow r) \equiv p \lor \sim (\sim p \lor r)$ $\equiv p \land (p \land \neg r)$, según la L. de De Morgan (L.D.M) ≡ p , según la Ley de absorción (L. Abs) Ejercicios. del libro: Algebra Moderna Sebastian Lazo Página 36 Ej. 40 4 45 30, 35