1. (8 pts) You do not need to explain your answers for this problem.

(a) Choose the plot that corresponds to the vector field $f(x,y) = \langle x^2, 3y \rangle$.

(b) Mark the following sentence as **true** or **false**. Let c be the unit circle in \mathbb{R}^2 parametrized counterclockwise, so that -c is the unit circle parametrized clockwise. Then for every scalar valued continuous function f(x,y) we have

$$\int_{-c} f(x,y) ds = -\int_{c} f(x,y) ds.$$
 True False

THIS PROBLEM IS CONTINUED IN THE NEXT PAGE

(c) Mark the correct answer: Let $\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ be a vector field in \mathbb{R}^3 , where P, Q, R have continuous second partial derivatives. Then

$$(\operatorname{div}(\operatorname{curl} \vec{F}))\vec{F}$$

is

- **b.** A scalar field
- c. Undefined (nonsense)
- (d) Mark the correct answer: Let $\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ be a vector field in \mathbb{R}^3 , where P,Q,R have continuous third partial derivatives. Then

$$\vec{F} \cdot \operatorname{curl}(\nabla(\operatorname{div} \vec{F}))$$

is

- c. Undefined (nonsense)
- 2. (6 pts) The mass of a wire lying on a curve c on the xy-plane and having density function $\rho(x,y)$ is given by

$$m = \int_{c} \rho(x, y) ds.$$

If c is the part of the ellipse $9x^2 + 4y^2 = 36$ between the points $(\sqrt{2}, \frac{3\sqrt{2}}{2})$ and (-2, 0) satisfying $y \ge 0$, as in the picture, and $\rho(x,y) = y$, set up but do not evaluate an integral calculating the mass of the wire.

$$\frac{x^2}{4}$$
, $\frac{y^2}{9}$ = 1 = $5 \times (4) = 2\cos t$, $5 \times (4) = 2\sin t$
 $5 \times (4) = 3\sin t$ $5 \times (4) = 3\cos t$

$$\begin{cases} x(t) = \sqrt{2} \\ y(t) = \frac{3}{2}\sqrt{2} \end{cases}$$

$$\begin{cases} x(t) = -2 \\ y(t) = 0 \end{cases}$$
 $t = 7$

Therefore
$$3y(t) = 0$$
 of t
m= $3 \sin t \sqrt{4 \sin^2 4 + 9 \cos^2 4} dt$

3. (10 pts) You are given the vector field

$$\vec{F}(x,y) = \langle 6\cos(y) + 2xy^3, -6x\sin(y) + 3x^2y^2 + 1 \rangle$$

in \mathbb{R}^2 and the curve c paramatrized by $\vec{r}(t) = \langle \cos(t), t \sin^2(3t) \rangle$, $t \in [0, \frac{\pi}{2}]$ as in the picture.

a) Show that \vec{F} is conservative.

$$\frac{\partial P}{\partial y} = -6siny + 6xy^2 \left| \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \right| so$$

$$\frac{\partial Q}{\partial x} = -6siny + 6xy^2 \left| \frac{\partial P}{\partial x} = \frac{\partial Q}{\partial x} \right| so$$
convenience

b) Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ (show your work clearly).

- 4. (9 pts) Let c be the curve of the picture, consisting of the following pieces:
 - A line segment from (0,0) to (1,1)
 - An arc of the circle $(x-1)^2 + y^2 = 1$ from (1,1) to (2,0) (the one that satisfies $y \ge 0$).
 - A line segment from (2,0) to (0,0).

Evaluate $\int_c f(x,y)dx$, where $f(x,y) = xy^2$.

Use Green's thin

Orientation is negative:
$$\int_{C} f(x,y)dx = -\iint_{C} -\frac{\partial P}{\partial y}dA$$

Polar coords:
$$(x-1)^2+y^2-1=x^2-2x+1+y^2=1$$

=1 $r^2=2r\cos\theta$ =) $r=2\cos\theta$

$$= \int_{0}^{\frac{\pi}{4}} \frac{2\cos\theta}{4} \cos\theta \sin\theta d\theta =$$

$$= 8 \int_{0}^{\frac{\pi}{4}} \cos^{5}\theta \sin^{3}\theta d\theta = \frac{-8}{6} \cos^{6}\theta \Big|_{0}^{\frac{\pi}{4}}$$

$$4 = \frac{-P}{6}\left(\left(\frac{\sqrt{2}}{2}\right)^6 - 1\right) = \frac{7}{6}$$

5. (8 pts) The temperature at a point (x, y) of the plane is given in degrees Celcius by

$$T(x,y) = x^2 y^3 + 2\cos(3x\pi + y\pi),$$

where x and y are in meters. You are standing at the point (1,2) and you want to move towards the direction in which the temperature **drops** most rapidly (that is, the direction in which you have the minimum net rate of change of temperature).

(a) Find a vector that gives this direction.

$$\sqrt{7}(x_1y) = (2 \times y^3 - 2s_1 m(3x_1t + y_1t) 3x_1t, 3x_2y^2 - 2s_1 in(3x_1t + y_1t)$$

 $\sqrt{-7}(1,2) = (16, 12)$

(b) Find the directional derivative of T in the direction determined by this vector. Make sure to include units in your answer.

$$|-\nabla T(1,2)| = \int |6^2 + |2^2| = |900| = 20$$

6. (9 pts) Let z = z(x, y) be a twice differentiable function with continuous second partial derivatives and x = x(t), y = y(t) be differentiable with continuous first partial derivatives. You are given the following table with data. Use the chain rule to evaluate $\frac{d^2z}{dt^2}(0)$.

x(0) = 1	y(0) = -1	z(1,-1) = -1
$\frac{\partial z}{\partial x}(1, -1) = -2$	$\frac{\partial z}{\partial y}(1, -1) = 3$	$\frac{dx}{dt}(0) = 1$
$\frac{dy}{dt}(0) = 0$	$\frac{d^2x}{dt^2}(0) = 0$	$\frac{d^2y}{dt^2}(0) = 2$
$\frac{\partial^2 z}{\partial x^2}(1, -1) = -2$	$\frac{\partial^2 z}{\partial y^2}(1, -1) = -6$	$\frac{\partial^2 z}{\partial x \partial y}(1, -1) = 6$

Hint: Note that some of the partial derivatives given are 0; this may simplify your calculation.

$$\frac{d^{2}}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$\frac{d^{2}z}{dt^{2}} = \frac{d(\partial z)}{d(\partial x)} \frac{dx}{dt} + \frac{\partial z}{\partial x} \frac{dx}{dt^{2}} + \frac{d(\partial z)}{dt} \frac{dy}{dx} + \frac{d^{2}z}{dt} \frac{d^{2}y}{dx} \frac{dy}{dx} + \frac{d^{2}z}{dt} \frac{d^{2}y}{dx} \frac{d^{2}y}{dx} \frac{d^{2}z}{dt}$$

$$At = 0, \frac{dy}{dt} = 0 \text{ and } \frac{d^{2}x}{dt^{2}} = 0$$

$$Find \frac{d}{dt} \frac{\partial z}{\partial x} = 0$$

$$\frac{d}{dt} \frac{\partial z}{\partial x} = 0$$

$$\frac{\partial z}{\partial x} = 0$$