Decision Analytic Support in Non-Cooperative Sequential Games

Roi Naveiro, Tahir Ekin, Aberto Torres, David Ríos roi.naveiro@icmat.es | Inst. of Mathematical Sciences (ICMAT-CSIC) Madrid | ADA 2022

Sequential Defense Attack Games

- Gaining Importance due to the raise of AML!
- Classical Decision Makers, Humans: discrete and low dimensional decision spaces.
- New Decision Makers, Algorithms: **continuous** and **high dimensional** decision spaces.

New Solution techniques

- Forget about (general) analytic solutions!
- Must work with uncertain outcomes
- Must acknowledge uncertainty about adversary
- We propose a **Simulation-based** solution approach:
 - Solves general security games, with uncertain outcomes, complete and incomplete information
 - Explain it for Sequential Defend-Attack games under incomplete information

Seq. Games with Uncertain Outcomes

Game theoretic approach

- **Common Knowledge Assumtion**: the Defender knows the Attacker's probabilities and utilities.
- Compute expected utilities.

$$\psi_A(a,d) = \int u_A(a, heta)\,p_A(heta|d,a)\;\mathrm{d} heta \quad ext{and} \quad \psi_D(d,a) = \int u_D(d, heta)\,p_D(heta|d,a)\,\mathrm{d} heta.$$

ullet Attacker's best response to defense d

$$a^*(d) = rg \max_{a \in \mathcal{A}} \ \psi_A(d,a)$$

Defender's optimal action

$$d^*_{\mathrm{GT}} = rg\max_{d \in \mathcal{D}} \ \psi_D(d, a^*(d)).$$

• $\left[d^*_{ ext{GT}},\,a^*(d^*_{ ext{GT}})
ight]$ is a Nash equilibrium and a sub-game perfect equilibrium.

ARA approach

- ullet Weaken Common Knowledge Assumption: the Defender **does not know** (u_A,p_A) .
- We need $p_D(a|d)!$
- ullet Then, $d_{ ext{ARA}}^* = rg \max_{d \in \mathcal{D}} \psi_D(d)$, where

$$\psi_D(d) = \int \psi_D(a,d) \, p_D(a|d) \, \mathrm{d}a = \int \left[\int u_D(d, heta) \, p_D(heta|d,a) \, \mathrm{d} heta
ight] \, p_D(a|d) \, \mathrm{d}a,$$

ARA approach

- To elicitate $p_D(a|d)$, Defender analyses Attacker's problem.
- Model uncertainty about (u_A,p_A) through distribution $F=(U_A,P_A)$.
- Induces distribution over attacker's expected utility $\Psi_A(a,d) = \int U_A(a,\theta) P_A(\theta|a,d) \,\mathrm{d} heta.$
- ullet And $A^*(d) = rg \max_{x \in \mathcal{A}} \Psi_A(x,d)$
- Then,

$$p_D(A \leq a|d) = \mathbb{P}_F\left[A^*(d) \leq a
ight],$$

ARA approach

- In practice, discretize decision set
- ullet Draw J samples $\left\{\left(P_A^i,U_A^i
 ight)
 ight\}_{i=1}^J$ from F and

$$\hat{p}_D(a|d) pprox rac{\#\{a = rg \max_{x \in \mathcal{A}} \, \Psi_A^i(x,d)\}}{J},$$

ARA solution is a Bayes-Nash Eq. (in sequential games)

MC solution method

```
\begin{aligned} & \textbf{for } d \in \mathcal{D} \textbf{ do} \\ & \textbf{for } i = 1 \textbf{ to } J \textbf{ do} \\ & & \begin{vmatrix} \text{Sample } u_A^i(a,\theta) \sim U_A(a,\theta) \\ \text{Sample } p_A^i(\theta \,|\, a,d) \sim P_A(\theta \,|\, d,a) \\ \text{Compute } a_i^*(d) \text{ as } \arg\max_a \int u_A^i(a,\theta) p_A^i(\theta \,|\, a,a) \, \mathrm{d}\theta \\ & & \hat{p}_D(A^* = a \,|\, d) = \frac{1}{J} \sum_{i=1}^J I[a_i^*(d) = a] \end{aligned} Solve \max_d \int u_D(d,\theta) p_D(\theta \,|\, a,d) \hat{p}_D(A^* = a \,|\, d) \, \mathrm{d}\theta \, \mathrm{d}a
```

• Requires generating $|\mathcal{D}| imes (|\mathcal{A}| imes Q imes J+P)$ samples.

APS - Idea 1

- ullet Assume we can sample from $p_D(d|a)$
- Max expected utility

$$d_{ ext{ARA}}^* = rg \max_d \int \int u_D(d, heta) \cdot p_D(heta|d,a) \cdot p_D(d|a) d heta da$$

• Define

$$\pi_D(d,a, heta) \propto u_D(d, heta) \cdot p_D(heta|d,a) \cdot p_D(d|a)$$

• Mode of marginal $\pi_D(d)$ is $d_{ ext{ARA}}^*$!

APS - Idea 2

- Flat expected utilities, complicates mode identification
- Define

$$\pi_D^H(d, heta_1,\ldots, heta_H,a_1,\ldots,a_H) \propto \prod_{i=1}^H u_D(d, heta_i) \cdot p_D(heta_i|d,a_i) \cdot p_D(a_i|d)$$

• Marginal more peaked around max!

$$\pi_D^H(d) \propto \left[\int \int u_D(d, heta) \cdot p_D(heta|d,a) \cdot p_D(d|a) d heta da
ight]^H$$

APS - Implementation

- Sample from $\pi(d, \theta_1, \theta_2, \dots, \theta_H, a_1, \dots, a_H)$ using MCMC.
- Find mode of *d* samples.
- 1. State of the Markov chain is $(d, \theta_1, \ldots, \theta_H, a_1, \ldots, a_H)$;
- 2. $ilde{d} \sim g(\cdot|d)$;
- З. $ilde{a}_i \sim p_D(a| ilde{d}\,)$ for $i=1,\ldots,H$;
- 4. $ilde{ heta}_i \sim p_D(heta| ilde{d}\,, ilde{a}_i)$ for $i=1,\ldots,H$;
- 5. Accept $ilde{x}, ilde{ heta}_1, \ldots, ilde{ heta}_H, ilde{a}_1, \ldots ilde{a}_H$ with probability

$$\min\left\{1,rac{g(d| ilde{d}\,)}{g(ilde{d}\,|d)}\cdot\prod_{i=1}^{H}rac{u_{D}(ilde{d}\,, ilde{ heta}_{i})}{u_{D}(d, heta_{i})}
ight\}$$

- 6. Repeat
- Embed this MCMC within an annealing schedule that increases H!

APS for ARA - $p_D(a|d)$

- For given d, random augmented distribution $\Pi_A(a,\theta|d) \propto U_A(a,\theta) P_A(\theta|d,a)$,
- Marginal $\Pi_A(a|d)=\int \Pi_A(a, heta|d)d heta$, proportional to A's random expected utility $\Psi_A(d,a)$.
- ullet Random optimal attack $A^*(d)$ coincides a.s. with mode of $\Pi_A(a|d)$.
- Then:
- 1. $u_A(a, heta) \sim U_A(a, heta)$ and $p_A(heta|d,a) \sim P_A(heta|d,a)$
- 2. Build $\pi_A(a, \theta|d) \propto u_A(a, \theta) p_A(\theta|d, a)$ which is a sample from $\Pi_A(a, \theta|d)$.
- 3. Find $\operatorname{mode}[\pi_A(a|d)]$ which is a sample of $A^*(d)$, whose distribution is $\mathbb{P}_F\left[A^*(d) \leq a\right] = p_D(a \leq d).$

APS vs MC

- ullet MC requires $|\mathcal{D}| imes (|\mathcal{A}| imes Q imes J+P)$ samples
- ullet APS requires at most N imes (2M+5)+2M+4 samples
- Simple game with continuos decision sets
- Several in parallel
- Compute min number of samples s.t. 90% solutions coincide with truth (to required precision)

		Samples		Power		
Precision	Algorithm	Outer	Inner	Outer	Inner	Time (s)
0.1	MC APS	1000 60	100 100	900	20	$0.007 \\ 0.240$
0.01	$rac{\mathrm{MC}}{\mathrm{APS}}$	$717000 \\ 300$	$\begin{array}{c} 100 \\ 100 \end{array}$	6000	100	$13.479 \\ 2.461$

Application

Application

• Elicited probability p(a|d) for some security controls.

Application

• Histogram of samples of security controls.

Conclusions

- APS for games, both standard and ARA.
- APS better when cardinality of decision spaces is big (or spaces are continuous).
- Suggested algorithmic approach
 - 1. Use MC for broad exploration of decision space.
 - 2. Use APS within regions of interest to get refined solutions.

Thank you!!

Website roinaveiro.github.io/

Email roi.naveiro@icmat.es

GitHub github.com/roinaveiro