PRML Chapter 2. Probability Distribution

Joohyung Lee

Introduction

- 1) Chapter Scope
 - A. Examples of probability distributions
 - B. Their properties
- 2) Purpose of Introducing Distributions
 - A. a building blocks for more complex models
 - B. a recipe to discuss some essential statistical concept, e.g., Bayesian inference
 - C. to model the probability distribution $p(\mathbf{x})$, i.e., density estimation
 - * Model Selection becomes an issue since density estimation is fundamentally ill-posed problem in that infinitely many distributions can fit the observed data set.
- 3) Parametric distribution vs. Non-Parametric distribution
 - A. Parametric distribution
 - i. binomial distribution, multinomial distribution, Gaussian distribution (continuous R.V.)
 - ii. For density estimation, the parameters shall be determined with an observed data set.
 - Frequentist: specific values for parameters (earned by optimizing some criterion, e.g., likelihood function)
 - 2. Bayesian: estimate posterior distribution with introduced prior distributions over the parameters as well as the observed data
 - iii. Conjugate Priors: To simplify the Bayesian analysis, use conjugate prior which let posterior distribution be in the same form of prior distribution.
 - 1. Exponential family of distributions is presented as it possesses a number of important properties.

B. Non-Parametric distribution

- i. Distribution form is not forced by a user but typically depends on the size of the data set
- ii. Still has the parameters but they do not determine the distribution form but the complexity
- iii. Histogram, nearest-neighbors, kernels

Table. 1 Conjugate prior with posterior distribution in exponential family

Conjugate Prior	Posterior Distribution
Dirichlet distribution	Multinomial distribution
Gaussian distribution	Gaussian distribution

1. Binary Variables

1) Bernoulli distribution

A. Definition

Bern
$$(x|\mu) = \mu^x (1-\mu)^{1-x}$$
, where $0 \le \mu < 1$ and $x \in \{0,1\}$

B. Properties

$$E[x] = \mu$$

$$var[x] = \mu(1 - \mu)$$

C. Density estimation

$$\mathcal{D} = \{x_1, \dots, x_N\}$$

- i. Frequentist
 - 1. Estimate $\,\mu\,$ by maximizing the likelihood function, i.e., maximize the log of likelihood

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1-\mu) \ln(1-\mu)\}$$

- 2. The above log likelihood function depends on the N observations only through their sum, i.e., *sufficient statistics*: $\sum_{n} x_{n}$.
- 3. $\mu_{ML} = \frac{m}{N}$ = sample mean
- ii. Bayesian
 - Flip a coin 3 times resulting all heads → what is the reasonable prediction? (overfitting)
- 2) Binomial distribution
 - A. Definition

$$Bin(m|N,\mu) = {N \choose m} \mu^{x} (1-\mu)^{1-x}$$

B. Properties

For independent events, 1) the means of the sum is the sum of the mean and 2) the variance of the sum is the sum of the variance

$$E[m] = N\mu$$

$$var[m] = N\mu(1 - \mu)$$

1.1 The beta distribution (conjugate prior for the binomial distribution)

1) Motivation for the conjugate prior distribution

- A. Prior distribution is required in order to develop a Bayesian treatment.
- B. Make posterior distribution have the same functional form as the prior (conjugacy).

2) Definition

 $\mathrm{Beta}(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}, \text{gamma coefficient for the normalization purpose}$

gamma function:
$$\Gamma(x) \equiv \int_0^\infty u^{x-1} e^{-u} du$$

$$\Gamma(x+1) = x\Gamma(x), \Gamma(1) = 1, \Gamma(x+1) = x!$$

a and b controls the distribution of the parameter μ , and thus called the *hyperparameters*

3) Posterior distribution

$$p(\mu|m, l, a, b) = Beta(\mu|a, b) \times Bin(m|N, \mu) = \frac{\Gamma(m + a + l + b)}{\Gamma(m + a)\Gamma(l + b)} \mu^{m + a - 1} (1 - \mu)^{l + b - 1}$$

$$l = N - m = \# \ of \ tails$$

$$m = \#$$
 of heads