Zeju Li

Post-Doctoral Researcher at University of Oxford

- ☆ John Radcliffe Hospital, Oxford OX3 9DU
- ♦ https://zerojumpline.github.io/
 ♥ @li_zeju

Research Interests

Medical Image Computing, Neuroimaging and Machine Learning

Primary area Semantic Segmentation, Brain MRI, Class Imbalance.

Secondary area Restoration, Federated Learning, 3D Vision, Image Restoration.

Research Experience

Jan. 23 - · · · Post-Doctoral Researcher. Nuffield Department of Clinical Neurosciences,

University of Oxford, Oxford, United Kingdom. Supervisor: Prof. Saad Jbabdi

He worked on advancing neuroimaging with machine learning algorithms.

Oct. 18 - Dec. 22 Research Student. Department of Computing, Imperial College London,

London, United Kingdom.

Supervisor: Prof. Ben Glocker and Prof. Daniel Rueckert He worked on improving the generalization capability of neural networks for

medical imaging, especially under class imbalance.

Jul. 19 – Mar. 20 Research Intern. Noah's Ark Lab, Huawei, London, United Kingdom.

Supervisor: Prof. Greg Slabaugh and Dr. Liang Chen

He worked on exploring AutoML for computational photography.

Jul. 18 – Sep. 18 Research Intern. Institute of Computing Technology, Chinese Academy of

Sciences, Beijing, China. Supervisor: Prof. Shaohua Kevin Zhou and Prof. Hu Han

He worked on embedding CT prior knowledge in chest X-ray diagnosis.

Jun. 14 – Jun. 18 Research Student. Department of Electronic Engineering, Fudan University,

Shanghai, China.

Supervisor: Prof. Yuanyuan Wang and Prof. Jinhua Yu

He worked on brain MR image analysis including tumor segmentation, image

reconstruction and disease classification.

He also worked on compressing ultrasound signal.

Education

Thesis title: Learning strategies for improving neural networks for image segmentation under class imbalance.

2015 − 2018 MSc in Biomedical Engineering, Fudan University, China.

Thesis title: Deep learning based MR images analysis of glioma and its clinical applications.

2011 − 2015 RSc in Electronic Engineering, Fudan University, China.

Thesis title: Fourier domain ultrasound beamforming.

Research Publications

Refereed Journal Articles

- **Li, Z.**, Kamnitsas, K., Dou, Q., Qin, C., & Glocker, B. (2023). Joint optimization of class-specific training- and test-time data augmentation in segmentation. *IEEE Transactions on Medical Imaging*.
- **Li**, **Z.**, Kamnitsas, K., Ouyang, C., Chen, C., & Glocker, B. (2023). Context label learning: improving background class representations in semantic segmentation. *IEEE Transactions on Medical Imaging*.
- **Li**, **Z.**, Kamnitsas, K., & Glocker, B. (2020). Analyzing overfitting under class imbalance in neural networks for image segmentation. *IEEE Transactions on medical imaging*.
- 4 Li, Z., Yu, J., Wang, Y., Zhou, H., Yang, H., & Qiao, Z. (2019). Deepvolume: brain structure and spatial connection-aware network for brain mri super-resolution. *IEEE Transactions on Cybernetics*.
- **Li**, **Z.**, Wang, Y., Yu, J., Guo, Y., & Cao, W. (2017). Deep learning based radiomics (dlr) and its usage in noninvasive idh1 prediction for low grade glioma. *Scientific Reports*.
- 6 Li, Z., Wang, Y., Yu, J., Shi, Z., Guo, Y., Chen, L., & Mao, Y. (2017). Low-grade glioma segmentation based on cnn with fully connected crf. *Journal of Healthcare Engineering*.
- **Li**, **Z.**, Wang, Y., Yu, J., Guo, Y., & Zhang, Q. (2017). Age groups related glioblastoma study based on radiomics approach. *Computer Assisted Surgery*.
- 8 Chen, C., Ouyang, C., **Li**, **Z.**, Wang, S., Qiu, H., Chen, L., ... Rueckert, D. (2022). Enhancing mr image segmentation with realistic adversarial data augmentation. *Medical Image Analysis*.
- 9 Ouyang, C., Chen, C., Li, S., Li, Z., Qin, C., Bai, W., & Rueckert, D. (2022). Causality-inspired single-source domain generalization for medical image segmentation. *IEEE Transactions on Medical Imaging*.
- Qiao, M., Liu, C., Li, Z., Zhou, J., Xiao, Q., Zhou, S., ... Wang, Y. (2022). Breast tumor classification based on mri-us images by disentangling modality features. *IEEE Journal of Biomedical and Health Informatics*.
- Luo, H., Zhuang, Q., Wang, Y., Abudumijiti, A., Shi, K., Rominger, A., ... Wu, G. et al. (2021). A novel image signature-based radiomics method to achieve precise diagnosis and prognostic stratification of gliomas. *Laboratory investigation*, 101(4), 450–462.
- Dou, Q., So, T. Y., Jiang, M., Liu, Q., Vardhanabhuti, V., Kaissis, G., ... Yu, K. et al. (2021). Federated deep learning for detecting covid-19 lung abnormalities in ct: a privacy-preserving multinational validation study. *NPJ digital medicine*, 4(1), 1–11.
- Li, H., Han, H., Li, Z., Wang, L., Wu, Z., Lu, J., & Zhou, S. K. (2020). High-resolution chest x-ray bone suppression using unpaired ct structural priors. *IEEE Transactions on Medical Imaging*.
- Wu, G., Lin, J., Chen, X., Li, Z., Wang, Y., Zhao, J., & Yu, J. (2019). Early identification of ischemic stroke in noncontrast computed tomography. *Biomedical Signal Processing and Control*.
- Zhou, Z., Wang, Y., Yu, J., Guo, W., & Li, Z. (2019). Super-resolution reconstruction of plane-wave ultrasound image based on a multi-angle parallel u-net with maxout unit and novel loss function. *Journal of Medical Imaging and Health Informatics*.
- Gu, J., Li, Z., Wang, Y., Yang, H., Qiao, Z., & Yu, J. (2019). Deep generative adversarial networks for thinsection infant mr image reconstruction. *IEEE Access*.
- 17 Chen, Y., Li, Z., Wu, G., Yu, J., Wang, Y., Lv, X., ... Chen, Z. (2018). Primary central nervous system lymphoma and glioblastoma differentiation based on conventional magnetic resonance imaging by high-throughput sift features. *International Journal of Neuroscience*.
- Yu, J., Shi, Z., Lian, Y., Li, Z., Liu, T., Gao, Y., ... Mao, Y. (2017). Noninvasive idh1 mutation estimation based on a quantitative radiomics approach for grade ii glioma. *European Radiology*.

Wu, G., Li, Z., Wang, Y., Yu, J., Chen, Y., & Chen, Z. (2018). Primary central nervous system lymphoma and glioblastoma image differentiation based on sparse representation system. *Journal of Biomedical Engineering*.

Refereed Conference Proceedings

- 1 Li, Z., Kamnitsas, K., Islam, M., Chen, C., & Glocker, B. (2022). Estimating model performance under domain shifts with class-specific confidence scores. In *International conference on medical image computing and computer-assisted intervention (miccai 2022)*.
- **Li**, **Z**., Kamnitsas, K., & Glocker, B. (2019). Overfitting of neural nets under class imbalance: analysis and improvements for segmentation. In *International conference on medical image computing and computer-assisted intervention (miccai 2019).*
- 3 Li, Z., Li, H., Han, H., Shi, G., Wang, J., & Zhou, S. K. (2019). Encoding ct anatomy knowledge for unpaired chest x-ray image decomposition. In *International conference on medical image computing and computer-assisted intervention (miccai 2019)*.
- 4 Li, Z., Wang, Y., & Yu, J. (2017a). Brain tumor segmentation using an adversarial network. In International miccai brainlesion workshop (miccai-brainlesion 2017).
- 5 Li, Z., Wang, Y., & Yu, J. (2017b). Reconstruction of thin-slice medical images using generative adversarial network. In *International workshop on machine learning in medical imaging (miccai-mlmi 2017)*.
- Wagner, F., Li, Z., Saha, P., & Kamnitsas, K. (2023). Post-deployment adaptation with access to source data via federated learning and source-target remote gradient alignment. In *International workshop on machine learning in medical imaging (miccai-mlmi 2023)*.
- Islam, M., Li, Z., & Glocker, B. (2023). Robustness stress testing in medical image classification. In Uncertainty for safe utilization of machine learning in medical imaging (miccai-unsure 2023).
- B Li, L., Ma, Q., Ouyang, C., Li, Z., Meng, Q., Zhang, W., ... Kainz, B. (2023). Robust segmentation via topology violation detection and feature synthesis. In *International conference on medical image computing and computer-assisted intervention (miccai 2023)*.
- 9 Chen, C., Li, Z., Ouyang, C., Sinclair, M., Bai, W., & Rueckert, D. (2022). Maxstyle: adversarial style composition for robust medical image segmentation. In *International conference on medical image computing and computer-assisted intervention (miccai 2022)*.
- Gu, X., Guo, Y., Li, Z., Jianning, Q., Dou, Q., Liu, Y., ... Yang, G.-Z. (2022). Tackling long-tailed category distribution under domain shifts. In *European conference on computer vision (eccv 2022)*.
- Li, L., Ma, Q., Li, Z., Ouyang, C., Zhang, W., Price, A., ... Alansary, A. (2022). Fetal cortex segmentation with topology and thickness loss constraints. In *Topological data analysis and its applications for medical data (miccai-tda 2022)*.
- Ouyang, C., Wang, S., Chen, C., Li, Z., Bai, W., Kainz, B., & Rueckert, D. (2022). Improved post-hoc probability calibration for artifact-corrupted mri segmentation. In *Uncertainty for safe utilization of machine learning in medical imaging (miccai-unsure 2022)*.
- Yan, W., Wang, Y., Li, Z., van der Geest, R. J., & Tao, Q. (2018). Left ventricle segmentation via optical-flow-net from short-axis cine mri: preserving the temporal coherence of cardiac motion. In *International conference on medical image computing and computer-assisted intervention (miccai 2018)*.
- Li, X., Wang, Y., Yan, W., Van der Geest, R. J., Li, Z., & Tao, Q. (2018). A multi-scope convolutional neural network for automatic left ventricle segmentation from magnetic resonance

images: deep-learning at multiple scopes. In *International congress on image and signal processing, biomedical engineering and informatics (cisp-bmei 2018)*.

Under Review Articles

Li, Z., Zheng, Y.-Q., & Jbabdi, S. (2023). Learning label refinement and thresholds for imbalanced semi-supervised learning.

Skills

Languages

■ English, Mandarin Chinese.

Coding

Python, Java, Matlab, R, C.

Machine Learning

■ Pytorch, Tensorflow, MatConvNet.

Miscellaneous Experiences

Awards and Achievements

2022 | 1st place of Fetal Tissue Annotation Challenge.

2021 2nd place of Learn2Reg-Challenge Task2.

2019 MICCAI 2019 Graduate Student Travel Award.

2018 Winner of Huawei UK AI chanllege.

■ Outstanding Graduate of Shanghai.

National Scholarship.

2016 | Intel Fellowship.

Patents

- Apparatus and method for image processing, CN114846506A, 2021.
- Thin layer magnetic resonance image reconstruction method based on deep learning, CN108629816A, 2018.
- Method and system for lossless prediction of low-grade intracranial gliomas isocitrate dehydrogenase based on deep learning, CN108109140A, 2018.
- Identification method of primary central nervous system lymphoma and glioblastoma based on sparse representation system, CN107016395A, 2017.
- Brain glioma molecular marker nondestructive prediction method and prediction system based on radiomics, CN106683081A, 2017.

Journal Reviewer

- IEEE Transactions on Medical Imaging;
- Medical Image Analysis;
- Journal of Biomedical and Health Informatics;
- Neurocomputing;
- Computer Vision and Image Understanding;
- IEEE Access;
- Pattern Recognition;
- Neural Networks;
- Knowledge-Based Systems;

Miscellaneous Experiences (continued)

- Computer Methods and Programs in Biomedicine;
- Biomedical Signal Processing and Control;
- Academic Radiology;
- Biocybernetics and Biomedical Engineering;
- Frontiers in Medicine;
- Scientific Reports;
- Computers in Biology and Medicine;
- Artificial Intelligence In Medicine;
- Frontiers in Oncology;
- IEEE Transactions on Neural Networks and Learning Systems.

Conference Reviewer

- International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI);
- The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR);
- The IEEE / CVF International Conference on Computer Vision (ICCV);
- The AAAI Conference on Artificial Intelligence (AAAI);
- European Conference on Computer Vision (ECCV);
- Domain Adaptation and Representation Transfer (MICCAI-DART).
- Data Augmentation, Labeling, and Imperfections (MICCAI-DALI).
- Advances in Simplifying Medical UltraSound (MICCAI-ASMUS).
- Computational Mathematics Modeling in Cancer Analysis (MICCAI-CMMCA).

Volunteer

■ International Conference on Medical Imaging with Deep Learning (MIDL) 2019.

Teaching

Imperial

- 70014 Machine Learning for Imaging [Spring 2021];
- 70028 Reinforcement Learning [Autumn 2020];
- CS 496 Mathematics for Machine Learning [Autumn 2019];
- CS 316 Computer Vision [Autumn 2018, Spring 2020];
- CS 317 Graphics [Spring 2019].

Fudan

- Circuit Laboratory [Spring 2016];
- Signal Processing [Spring 2017].

References

Ben Glocker (PhD Supervisor)

Professor Imperial College London, 180 Queen's Ğate, London SW7 2AZ, United Kingdom.

b.glocker@imperial.ac.uk

Konstantinos Kamnitsas

Associate Professor University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.

Yuanyuan Wang

Professor Fudan University, yywang@fudan.edu.cn

220 Handan Road, Shanghai 200433, China.

Saad Jbabdi

Professor

University of Oxford,

John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.

saad@fmrib.ox.ac.uk

S. Kevin Zhou

Professor

Institute Of Computing Technology, Chinese Academy of Sciences,

6 Kexueyuan South Road, Beijing 100190, China.

☑ zhoushaohua@ict.ac.cn

Greg Slabaugh

Professor

Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

☑ g.slabaugh@qmul.ac.uk

Updated date: Oct. 2023