Задачи к семинарам 09.12.2024

1 Пусть $\{\xi_n, n \in \mathbb{N}\}$, ξ — неотрицательные случайные величины. Известно, что $\xi_n \stackrel{\text{п.н.}}{\to} \xi$. Докажите, что $\mathsf{E}\xi_n \to \mathsf{E}\xi$ тогда и только тогда, когда последовательность $\{\xi_n, n \in \mathbb{N}\}$ равномерно интегрируема, т.е.

$$\lim_{c \to \infty} \sup_{n} \mathsf{E}\left(|\xi_n| \cdot \mathsf{I}\{|\xi_n| \ge c\}\right) = 0.$$

Приведите пример, показывающий, что для произвольных случайных величин эквивалентность может нарушаться.

2 Пусть $\{\xi_n, n \in \mathbb{N}\}$ — бесконечная схема Бернулли, $\xi_n \sim \text{Bin}(1, p)$. Случайная величина X равна моменту наступления k-го успеха в ней:

$$X = \min \left\{ n : \xi_1 + \ldots + \xi_n = k \right\}.$$

Найдите распределение случайной величины X, ее математическое ожидание и дисперсию.

3 Пусть $\xi_n \sim \text{Bin}(n,p), \, p \in (0,1)$ не зависит от n. Докажите, что

$$\lim_{n\to\infty}\mathsf{P}\left(\xi_n\text{ четно}\right)=\frac{1}{2},$$

$$\lim_{n\to\infty} \mathsf{P}\left(\xi_n \text{ кратно трем}\right) = \frac{1}{3}.$$

4 Случайный граф G(n,p) получается случайным и независимым удалением ребер из полного графа на n вершинах K_n : любое ребро остается в G(n,p) независимо от других с вероятностью p. Пусть $p \in (0,1)$ фиксировано. Обозначим через $\deg(v)$ степень вершины v. С помощью неравенства Чернова докажите, что для любого $\varepsilon > 0$

$$\mathsf{P}\left(\forall v: |\deg(v) - np| \leq \varepsilon np\right) \longrightarrow 1 \text{ при } n \to \infty.$$