Benchmarking of quasi-Newton methods

Igor Sokolov

Optimization Class Project. MIPT

Introduction

The most well-known minimization technique for unconstrained problems is Newtons Method. In each iteration, the step update is $x_{k+1} = x_k - (\nabla^2 f_k) \, \nabla^2 f_k$. wever, the inverse of the Hessian has to be calculated in every iteration so it takes $O\left(n^3\right)$. Moreover, in some applications, the second derivatives may be unavailable. One fix to the problem is to use a finite difference approximation to the Hessian.

We consider solving the nonlinear unconstrained minimization problem

$$\min f(x), x \in \mathbb{R}$$

Lets consider the following quadratic model of the objective function

 $m_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} B_k p$, where $B_k = B_k^T, B_k \succ 0$ is an $n \times n$

The minimizer p_k of this convex quadratic model $p_k=-B_k^{-1}\nabla f_k$ is used as the search direction, and the new iterate is

$$x_{k+1} = xk + \alpha p_k$$
, let $s_k = \alpha p_k$

The general structure of quasi-Newton method can be summarized as follows

- Given x0, B_0 (or H_0), $k \to 0$;
- For $k = 0, 1, 2, \dots$

Evaluate gradient g_k .

Calculate s_k by line search or trust region methods.

$$x_{k+1} \leftarrow x_k + s_k$$

 $y_k \leftarrow g_{k+1} - g_k$

Update B_{k+1} or H_{k+1} according to the quasi-Newton formulas. **End(for)**

Basic requirement in each iteration, i.e., $B_k s_k = y_k$ (or $H_k y_k = s_k$)

Quasi-Newton Formulas for Optimization

BFGS

$$\begin{aligned} \min ||H-H_k||, & H_{k+1} &= (I-\rho s_k y_k^T) H_k (I-\rho y_k s_k^T) + \rho s_k s_k^T \\ \text{s.t } H &= H^T, \ H y_k = s_k \end{aligned} \qquad \begin{aligned} H_{k+1} &= (I-\rho s_k y_k^T) H_k (I-\rho y_k s_k^T) + \rho s_k s_k^T \\ \text{where } \rho &= \frac{1}{y_k^T s_k} \\ B_{k+1} &= B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k} \end{aligned}$$

DFP

$$\begin{aligned} &\min ||B - B_k||, \\ &\text{s.t } B = B^T, B s_k = y_k \end{aligned} \qquad \begin{aligned} &B_{k+1} = (I - \gamma y_k s_k^T) H_k (I - \gamma s_k y_k^T) + \gamma y_k y_k^T \\ &\text{where } \gamma = \frac{1}{y_k^T s_k} \end{aligned} \\ &H_{k+1} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{s_k s_k^T}{y_k^T s_k} \end{aligned}$$

PSB

$$\begin{aligned} \min ||B - B_k||, & B_{k+1} &= B_k - \frac{(y_k - B_k s_k) s_k^T + s_k (y_k - B_k s_k)^T}{s_k^T s_k} + \\ \text{s.t } (B - B_k) &= (B - B_k)^T, & \frac{s_k (y_k - B_k s_k) s_k s_k^T}{(s_k^T s_k)^2} \\ Bs_k &= y_k & \frac{s_k (y_k - B_k s_k) s_k s_k^T}{(s_k^T s_k)^2} \\ & H_{k+1} &= H_k - \frac{(s_k - H_k y_k) y_k^T + y_k (s_k - H_k y_k)^T}{y_k^T y_k} + \\ & \frac{s_k (s_k - H_k y_k) y_k y_k^T}{(y_k^T y_k)^2} \end{aligned}$$

SR1

$$B_{k+1} = B_k + \sigma \nu \nu^T, \qquad B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$
 s.t $B_{k+1} s_k = y_k$
$$H_{k+1} = H_k + \frac{(s_k - H_k y_k)(s_k - H_k y_k)^T}{(s_k - H_k y_k)^T y_k}$$

Method	Advantages	Disadvantages
BFGS	 H₀ ≻ 0 hence if H₀ ≻ 0 self correcting property if Wolfe chosen superlinear convergence 	 y_k^Ts_k ≈ 0 formula produce bad results sensitive to round-off error sensitive bad line search can get stuck in saddle point
DFP	 can be highly inefficient at cor- recting large eigenvalues of ma- trices 	 sensitive to round-off error sensitive bad line search can get stuck in saddle point
PSB	superlinear convergence	sensitive to round-off errorcan get stuck in saddle point
SR1	 garantees to be B_{k+1} ≻ 0 even if s_ky_k > 0 doesn't satisfied very good approximations to the Hessian matrices, often better than BFGS 	 sensitive to round-off error can get stuck in saddle point

Line Search Vs. Trust Region

• Line search

$$f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla_k^T p_k$$
$$|f(x_k + \alpha_k p_k)^T p_k| \le c_2 |\nabla f_k^T p_k|$$

Trust region

Both direction and step size find from solving $\min_{p\in\mathbb{R}^n} m_k(p) = f_k + \nabla f_k^T p + \tfrac{1}{2} B_k p \quad ||p|| \leq \Delta_k$

Numerical Results

- All quasi-newton methods with two strategies (8 algorithms) were implemented in Python
- 165 various $N d(N \ge 2)$ strong benchmark problems
- For each algorithm all problems were launched from random point of domain
 50 times and results were averaged

Performance evaluation: n_s - number of solvers, n_p - number of problems, $t_{s,p}$ - time, $r_{s,p} = \frac{t_{s,p}}{\min\{t_{s,p}:s\in S\}}$ - performance profile function $\rho_s(\tau) = \frac{1}{n_p} size\{p: 1 \leq p \leq n_p, \log(r_{s,p} \leq \tau)\} \text{ - defines the probability for } r_s(\tau)$

Conclusions and Further Work

Acknowledgements