Лабораторная работа № 7 **Решение задач алгебры логики**

Задачи

- 1. Ознакомиться с логическая функция и формами ее представления.
- 2. Ознакомиться с технологией упрощения логических функций.
- 3. Получить практические навыки работы с логическими функциями в среде Excel.

Справочные материалы

- 1. https://support.office.com/ru-ru/excel
- 2. Встроенная справка MS Excel

Программное обеспечение

- 1. MS Excel или другой редактор электронных таблиц (не Google).
- 2. Интернет браузер.

Задание на лабораторную работу

- 1. Согласовать с преподавателем вариант задания Приложение № 1.
- 2. Для логических функций заданных алгебраически:
 - Построить таблицу истинности.
 - Получит СКНФ и упростить алгебраическим способом полученное логическое выражение (необходимо получить исходный вид функции).
 - Получит СДНФ и упростить алгебраическим способом полученное логическое выражение (необходимо получить исходный вид функции).
- 3. Для логических функций заданных таблично:
 - Получить алгебраический вид функции через СКНФ (упрощенный вид).
 - Получить алгебраический вид функции через СДНФ (упрощенный вид).
- 4. Упростить логические функции с помощью карт Карно.
- 5. Упростить логические функции по методу Вейча.
- 6. Упростить логические функции по методу Квайна Мак-Класки.
- 7. Реализовать в Ексель таблицу истинности полученную в п.п. 2 и 3 используя встроенные логические функции базиса не и или.

Примечание: пункты 4-6 делать используя в качестве исходных данных табличное представление функций.

Отчет

1. Файл «Работа_7_*вар№_ФИО*.xls», возможен формат *.xlsx, содержащий результаты выполнения пунктов 2-7 задания на лабораторную работу.

Отчет предоставляется в электронном виде одним документом.

ПРИЛОЖЕНИЕ № 1

вариант	Y	Z	вариант
1	$y = x_1 x_2 \vee \bar{x_1} \vee x_3$	$z = (x_1 \vee \bar{x}_3)(\bar{x}_2 \vee \bar{x}_4)$	1
2	$y = (x_1 \lor x_2) x_3$	$z = \bar{x_1} \bar{x_2} \vee x_3 \bar{x_4}$	2
3	$y = x_1 \bar{x_3} \vee x_2 x_3$	$z = (\bar{x_2} \vee \bar{x_3})(x_1 \vee \bar{x_4})$	3
4	$y = (x_1 \lor x_3)(x_2 \lor \bar{x_3})$	$z = \bar{x_1} x_4 \vee \bar{x_2} \bar{x_3}$	4
5	$y = \bar{x_2} x_3 \vee x_1 x_2$	$z = (\bar{x_1} \vee x_3)(x_2 \vee \bar{x_4})$	5
6	$y = (x_1 \lor x_2 \lor x_3)(\bar{x_2} \lor \bar{x_3})$	$z = x_1 \bar{x_4} \vee x_2 x_3$	6
7	$y = x_1 x_2 \bar{x_3} \vee \bar{x_1} \bar{x_2}$	$z = (x_2 \vee \bar{x_4})(x_1 \vee \bar{x_3})$	7
8	$y = (x_1 \vee \bar{x_3})(x_2 \vee x_3)$	$z = \bar{x_2} x_3 \vee \bar{x_1} x_4$	8
9	$y = x_2 \lor \bar{x_2} x_3 \lor x_1 \bar{x_2} \bar{x_3}$	$z = (x_1 \vee \overline{x_2})(x_4 \vee x_3)$	9
10	$y = (\bar{x}_1 \lor x_2)(\bar{x}_2 \lor x_3)$	$z = x_1 x_3 \vee \bar{x_2} \bar{x_4}$	10
11	$y = x_1 \bar{x_2} \vee x_1 \bar{x_3}$	$z = (\bar{x_1} \vee x_3)(\bar{x_2} \vee x_4)$	11
12	$y = (x_1 \lor x_2)(\bar{x_1} \lor x_3)$	$z = \bar{x_1} x_2 \vee \bar{x_3} x_4$	12
13	$y = x_1 x_3 \vee \bar{x}_2 \bar{x}_3$	$z = (x_2 \vee \bar{x}_3)(\bar{x}_1 \vee x_4)$	13
14	$y = (\bar{x_1} \vee \bar{x_3})(x_2 \vee x_3)$	$z = \bar{x_1} \bar{x_4} \vee x_2 x_3$	14
15	$y = x_2 \bar{x_3} \vee x_1 \bar{x_2}$	$z = (\bar{x_2} \vee \bar{x_3})(\bar{x_1} \vee x_4)$	15
16	$y = (\bar{x_2} \vee x_3)(x_1 \vee \bar{x_3})$	$z = x_1 x_4 \vee \bar{x_2} \bar{x_3}$	16
17	$y = x_1 \bar{x_2} x_3 \lor x_2 \bar{x_3}$	$z = (\bar{x_2} \vee \bar{x_4})(x_1 \vee x_3)$	17
18	$y = (\bar{x_1} \vee x_3)(x_2 \vee \bar{x_3})$	$z = x_2 \bar{x_3} \vee \bar{x_1} x_4$	18
19	$y = \bar{x_1} \vee x_2 x_3 \vee x_1 \bar{x_3}$	$z = (x_1 \lor x_2)(\bar{x_3} \lor \bar{x_4})$	19
20	$y = (x_1 \vee \bar{x}_2)(x_2 \vee x_3)$	$z = x_1 \bar{x_3} \vee x_2 \bar{x_4}$	20
21	$y = x_1 x_2 \vee \bar{x_2} x_3$	$z = (x_1 \vee \bar{x}_3)(x_2 \vee \bar{x}_4)$	21
22	$y = (\bar{x_1} \vee x_2)(x_1 \vee \bar{x_3})$	$z = \bar{x_1} \bar{x_2} \vee x_3 x_4$	22
23	$y = \bar{x_1} \bar{x_3} \vee x_2 x_3$	$z = (\bar{x_2} \vee x_3)(x_1 \vee \bar{x_4})$	23
24	$y = (\bar{x}_1 \vee x_3)(\bar{x}_2 \vee \bar{x}_3)$	$z = x_1 x_4 \vee \bar{x_2} \bar{x_3}$	24

												ŀ	Bapı	ант	Γ											
X1	X2	2 X3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	1	0	0	0	1	0	1	0	1	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0	0	1	0	1	1	0	1	0	0	1	1	1	0	0	0	1
0	1	0	1	1	1	1	0	1	0	0	0	1	1	0	0	0	0	1	1	0	1	1	1	0	0	0
0	1	1	0	0	0	1	0	0	0	1	1	0	1	1	0	0	1	0	0	0	0	1	0	0	1	0
1	0	0	1	0	1	1	1	0	0	1	1	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0
1	0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0	1	0	0	1	0	0	1	0	1
1	1	0	0	0	1	0	1	1	1	0	0	0	0	0	0	0	1	0	1	0	0	0	1	1	1	0
1	1	1	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	1	0	1	0	0	0	1	1	1

				Вариант																							
X1	X	(2	X3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0	(0	0	0	1	1	1	1	1	1	1	0	1	1	1	1	0	1	1	0	1	1	1	1	0	0	1
0	(0	1	1	0	1	0	0	1	1	1	1	0	1	0	1	1	1	0	1	0	0	1	1	0	1	1
0		1	0	1	0	0	1	1	1	0	1	0	0	0	1	0	1	0	1	0	1	0	1	0	1	1	1
0		1	1	1	1	0	0	1	0	0	1	0	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1
1	(0	0	0	1	1	1	0	1	1	0	1	1	1	0	0	1	0	0	1	0	1	0	0	1	1	0
1	(0	1	0	1	1	1	1	0	1	0	1	1	0	1	1	0	1	1	1	1	1	0	1	0	1	0
1	-	1	0	1	0	1	1	0	1	0	1	1	1	0	1	0	1	0	1	1	1	1	1	0	1	0	1
1	-	1	1	1	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0	0	1	1	1	0	0

											Baj	риа	нт											
X1 X2 X3 X4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
0 0 0 0	0	1	0	1	1	1	0	1	0	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1
0 0 0 1	1	1	0	1	0	1	0	0	0	1	0	1	1	1	0	1	0	0	0	1	0	1	1	1
0 0 1 0	0	1	0	0	1	1	0	1	0	1	0	1	1	1	0	1	0	1	0	1	0	1	0	1
0 0 1 1	1	1	0	1	0	1	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	1	1	1
0 1 0 0	0	1	1	1	1	1	1	1	0	1	0	1	0	1	0	0	1	1	0	1	0	1	0	1
0 1 0 1	0	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1	0	1	0	1	0	0	0	1
0 1 1 0	0	0	0	0	0	0	0	1	0	1	1	1	0	1	1	1	0	1	0	1	0	1	0	1
0 1 1 1	0	0	0	1	0	1	1	1	0	1	0	0	0	0	0	1	0	1	1	1	1	0	0	1
1 0 0 0	0	1	0	1	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	1	0	1	0	1
1 0 0 1	0	1	0	1	0	1	0	1	1	1	0	1	0	0	0	1	1	1	0	1	1	1	0	1
1 0 1 0	1	1	0	1	0	1	1	1	0	1	1	0	0	1	0	1	0	1	1	0	0	1	1	1
1 0 1 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	1	1	0	1	0	1	0	1	0	1
1 1 0 0	0	1	1	0	0	0	0	1	1	0	0	0	0	1	0	1	1	1	0	0	0	1	0	0
1 1 0 1	0	1	0	1	0	1	0	1	0	1	0	1	1	1	0	0	0	1	0	1	0	0	0	0
1 1 1 0	0	0	1	1	0	1	0	1	0	1	0	1	0	1	1	1	0	1	0	0	0	1	0	0
1 1 1 1	0	1	0	1	0	1	0	1	1	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1