Tutorial 10

Exercise 6

For each matrix A in Question 6.1, (i) determine whether A is diagonalizable; and (ii) if A is diagonalizable, find a matrix P that diagonalizes A and determine P⁻¹AP.

(a)
$$A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$,
(c) $A = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix}$, (d) $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$,
(e) $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$, (f) $A = \begin{pmatrix} 0 & 1 & 0 \\ 9 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,
(g) $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, (h) $A = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 2 & 1 \\ 2 & -1 & 0 \end{pmatrix}$,
(i) $A = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 \\ 2 & 2 & 2 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, (j) $A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

- 16. A square matrix $(a_{ij})_{n\times n}$ is called a *stochastic matrix* if all the entries are non-negative and the sum of entries of each column is 1, i.e. $a_{1i}+a_{2i}+\cdots+a_{ni}=1$ for $i=1,2,\ldots,n$.
 - (a) Let A be a stochastic matrix.
 - Show that 1 is an eigenvalue of A.
 - (ii) If λ is an eigenvalue of A, then $|\lambda| \leq 1$.

(b) Let
$$B = \begin{pmatrix} 0.95 & 0 & 0 \\ 0.05 & 0.95 & 0.05 \\ 0 & 0.05 & 0.95 \end{pmatrix}$$
.

- (i) Is B a stochastic matrix?
- (ii) Find a 3×3 invertible matrix P that diagonalizes B.
- 20. Following the procedure discussed in Example 6.2.11.2, solve the following recurrence relations.
 - (a) $a_n = 3a_{n-1} 2a_{n-2}$ with $a_0 = 0$ and $a_1 = 1$.
 - (b) $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 1$ and $a_1 = 0$.
- 24. For each of the following, find a matrix P that orthogonally diagonalizes A and determine $P^{T}AP$.

(e)
$$A = \begin{pmatrix} 0 & -2 & 1 \\ -2 & 3 & -2 \\ 1 & -2 & 0 \end{pmatrix}$$
,

(g)
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
,

Tutorial 10 (Cont.)

- (a) Show that u is an eigenvector of A.
- (b) Let $v=(a,b,c,d)^{\scriptscriptstyle T}$ be a nonzero vector. Show that if $v\cdot u=0$, then v is an eigenvector of A.

(c) Suppose
$$P = \begin{pmatrix} \frac{1}{2} & a_1 & a_2 & a_3 \\ \frac{1}{2} & b_1 & b_2 & b_3 \\ \frac{1}{2} & c_1 & c_2 & c_3 \\ \frac{1}{2} & d_1 & d_2 & d_3 \end{pmatrix}$$
 is an orthogonal matrix. Find $P^{\mathsf{T}}AP$.