Generative Models

2025.07.10.

Copyrightⓒ2025 by 고재균

Generative Models [1]

UNIDIA.

Generative Models

- Generative model aims to capture probability distribution of data, $P_{data}(x)$
- We assume that data comes from $P_{data}(x)$

Generative Models [2]

UNIDIA UNIDIA

- Generative Models
 - Probability distribution of images?
 - Very complex!

Generative Models [3]

Generative Models

- What about making a simple distribution, and then projecting to a real-world complex distribution?
 - ▶ Making a simple distribution (e.g., standard normal) is easy!
 - ▶ Sample a **latent variable** *z* and then transform it to an image!

Generative Models [4]

- Generative Models
 - Observed data x is originated from latent variables z

Myth of Cave

Generative Models [5]

- Variational Autoencoder (VAE)
 - Assuming that training data x is originated from underlying (unobserved) latent variables z
 - It defines intractable density function with latent z:

$$P_{\theta}(x) = \int P_{\theta}(x|z) P_{\theta}(z) dz$$

- We cannot optimize it directly because it is **intractable**!
- Instead, we will derive and maximize a lower bound on the likelihood

$$= \mathbb{E}_{\mathbf{z}}[\log P_{\theta}(x)] - D_{KL}\left(q_{\phi}(z|x)||P_{\theta}(z)\right) + D_{KL}\left(q_{\phi}(z|x)||P_{\theta}(z|x)\right)$$
Tractable lower bound Interactable (KL-Divergence >= 0)
$$\geq \mathbf{E}_{\mathbf{z}}[\log P_{\theta}(x)] - D_{KL}\left(q_{\phi}(z|x)||P_{\theta}(z)\right)$$

Generative Models [6]

- Variational Autoencoder (VAE)
 - Revisiting Autoencoder (AE)
 - ▶ Unsupervised approach for learning a **lower-dimensional feature** representation from training data (without explicit labels)
 - ► Train such that latent features can be used to **reconstruct** the original data ("Autoencoding" encoding itself)
 - \blacktriangleright Goal is to learn the latent features z that capture (or encode) as much information about the data x as possible

Generative Models [7]

- Variational Autoencoder (VAE)
 - Assume training data x is generated from underlying (unobserved) latent variables z
 - Encoder network models $q_{\phi}(z|x)$ and decoder network models $P_{\theta}(x|z)$

Sample z from $z|x \sim \mathcal{N}(\mu_{z|x}, \Sigma_{z|x})$

Generative Models [8]

- Variational Autoencoder (VAE)
 - Maximizing **log-likelihood** of training data $x: log P_{\theta}(x)$

$$\begin{split} \log P_{\theta}(x) &= \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log P_{\theta}(x)] \qquad \qquad \text{(Taking expectation with regards to z)} \\ &= \mathbb{E}_{z} \left[\log \frac{P_{\theta}(x|z)P_{\theta}(z)}{P_{\theta}(z|x)} \right] \qquad \qquad \text{(Bayes' rule } : \frac{P(B|A)P(A)}{P(B)}) \\ &= \mathbb{E}_{z} \left[\log \frac{P_{\theta}(x|z)P_{\theta}(z)}{P_{\theta}(z|x)} \frac{q_{\phi}(z|x)}{q_{\phi}(z|x)} \right] \qquad \text{(Multiply & divide with the same term)} \\ &= \mathbb{E}_{z} [\log P_{\theta}(x|z)] - \mathbb{E}_{z} \left[\log \frac{q_{\phi}(z|x)}{P_{\theta}(z)} \right] + \mathbb{E}_{z} \left[\log \frac{q_{\phi}(z|x)}{P_{\theta}(z|x)} \right] \\ &= \mathbb{E}_{z} [\log P_{\theta}(x|z)] - D_{KL} \left(q_{\phi}(z|x) || P_{\theta}(z) \right) + D_{KL} \left(q_{\phi}(z|x) || P_{\theta}(z|x) \right) \\ &= \mathbb{E}_{z} [\log P_{\theta}(x|z)] - D_{KL} \left(q_{\phi}(z|x) || P_{\theta}(z) \right) \\ &\geq \mathbb{E}_{z} [\log P_{\theta}(x|z)] - D_{KL} \left(q_{\phi}(z|x) || P_{\theta}(z) \right) \end{split}$$

Generative Models [9]

Variational Autoencoder (VAE)

- Generates samples with regarding to z
- Only decoder is used here, and **z** is produced and varied manually
- Slowly increase or decrease a single latent variable while keeping all other variables fixed
- Each number is smoothly transitioning to another number

Generative Models [10]

UNIDIA.

Variational Autoencoder (VAE)

Generative Models [11]

UNIDIA.

• Variational Autoencoder (VAE) 실습

Variational Autoencoder를 활용한 MNIST 데이터셋 생성

(Google Colab. 환경)

Generative Models [12]

- Variational Autoencoder (VAE)
 - Defines an intractable density function
 - ▶ It derives and optimizes a lower bound on likelihood of training data instead

Generative Adversarial Network (GAN)

• Gives up on explicitly modeling density function, but just wants ability to generate data

Generative Models [13]

- Generative Adversarial Network (GAN)
 - Gives up explicitly defining and estimating a probability
 - Just wants ability to generate data from training distribution $P_{data}(x)$
 - Approach
 - ▶ Sample latent variable z from just **a simple distribution**, e.g., normal Gaussian $\mathcal{N}(0, 1)$ (a.k.a. random noise)
 - ▶ Then, learn a mapping function (**generator**) from z to training distribution $P_{data}(x)$
 - Training Strategy
 - ▶ 2-player game strategy (경찰과 도둑)
 - \blacktriangleright Employ another model, named **discriminator** guiding **generator** to training distribution $P_{data}(x)$
 - ▶ Make the generator and the discriminator compete with each other
 - > Generator tries to **fool** the **discriminator** by generating **real-looking data**
 - Discriminator tries to **distinguish** between **real** and **fake data**

Generative Models [14]

- Generative Adversarial Network (GAN)
 - To succeed in this game, the generator must learn to generate data that is indistinguishable from real-world data
 - Hence, needs to generate data that looks drawn from the same distribution as the training data

Generative Models [15]

- Generative Adversarial Network (GAN)
 - Notations
 - \blacktriangleright $D_{\theta_d}(x) \rightarrow$ Discriminator's output : likelihood that x is a real data, range of [0, 1]
 - ▶ $G_{\theta_a}(z)$ → Generated fake data
 - ▶ $D_{\theta_d}(G_{\theta_g}(z))$ → Likelihood that $G_{\theta_g}(z)$ is a real data, range of [0, 1]

Generative Models [16]

Generative Adversarial Network (GAN)

- Notations
 - \blacktriangleright $D_{\theta_d}(x) \rightarrow$ Discriminator's output : likelihood that x is a real data, range of [0, 1]
 - ▶ $G_{\theta_a}(z)$ → Generated fake data
 - ▶ $D_{\theta_d}(G_{\theta_g}(z))$ → Likelihood that $G_{\theta_g}(z)$ is a real data, range of [0, 1]
- Objective Function

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Discriminator output for for real data x
$$Discriminator output for generated fake data G(z)$$

- ▶ Discriminator wants to maximize objective such that $D_{\theta_d}(x)$ is close to 1 (real) and $D_{\theta_d}(G_{\theta_g}(z))$ is close to 0 (fake)
- ▶ Generator wants to minimize objective such that $D_{\theta_d}(G_{\theta_g}(z))$ is close to 1 (discriminator is fooled into thinking generated $G_{\theta_g}(z)$ is real)

Generative Models [17]

- Generative Adversarial Network (GAN)
 - Alternate between:
 - ▶ Gradient ascent on discriminator, generator is fixed (not updated) in this step

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

▶ Gradient **descent** on generator, discriminator is fixed in this step

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

- ▶ In practice, however, optimizing this generator objective does **not** work well!
- ▶ Hence, bottom objective function is widely-used!

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Generative Models [18]

- Generative Adversarial Network (GAN)
 - Training GAN

- ▶ Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong
- ▶ Same objective of fooling discriminator, but now higher gradient signal for initial training stage
- ▶ It works much better! Standard in practice!

Generative Models [19]

- Generative Adversarial Network (GAN)
 - Training GAN
 - ► Learning algorithm

for number of training iterations do for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Generative Models [20]

Generative Adversarial Network (GAN)

Generative Models [21]

Generative Adversarial Network (GAN)

Generative Models [22]

UNIDIA.

Generative Adversarial Network (GAN)

Generator Network

Generative Models [23]

- Generative Adversarial Network (GAN)
 - Conditional GAN

Class	0	1	2	 9
One-hot vector	(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0	 0 0 0 0 0 0 0 0 0 0

Generative Models [24]

- Generative Adversarial Network (GAN)
 - Conditional GAN
 - ► Training objective

$$\min_{G} \max_{D} \left(\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p_{\text{data}}(\mathbf{x}, \mathbf{y})} \left[\log D(\mathbf{x}, \mathbf{y}) \right] + \mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y}}, \mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})} \left[\log (1 - D(G(\mathbf{z}, \mathbf{y}), \mathbf{y})) \right] \right)$$

- ► Implementation

Generative Models [25]

Generative Adversarial Network (GAN)

- More GANs
 - ► Pix2Pix

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

$$\mathcal{L}_{GAN}(G, D) = \mathbb{E}_y[\log D(y)] +$$

$$\mathbb{E}_{x,z}[\log(1 - D(G(x, z))].$$

$$\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[\|y - G(x,z)\|_1].$$

Positive examples

G tries to synthesize fake images that fool **D**

D tries to identify the fakes

Negative examples

Generative Models [26]

UNIDIA.

- Generative Adversarial Network (GAN)
 - More GANs
 - ► Pix2Pix

Generative Models [27]

- Generative Adversarial Network (GAN)
 - More GANs
 - ► DiscoGAN & CycleGAN

cycle-consistency

$$G^*, F^* = \arg\min_{G, F} \max_{D_X, D_Y} \mathcal{L}(G, F, D_X, D_Y)$$

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cvc}(G, F),$$

Paired

 x_i

Generative Models [28]

UNIDIA.

- Generative Adversarial Network (GAN)
 - More GANs
 - ► DiscoGAN & CycleGAN

Generative Models [29]

UVIDIA.

- Generative Adversarial Network (GAN)
 - More GANs
 - ► DiscoGAN & CycleGAN

orange → apple

Generative Models [30]

UVIDIA.

- Generative Adversarial Network (GAN)
 - More GANs
 - ► StarGAN

Generative Models [31]

UNIDIA.

- Generative Adversarial Network (GAN)
 - More GANs
 - ► StarGAN

Generative Models [32]

UNIDIA.

- Generative Adversarial Network (GAN)
 - More GANs
 - ► Image Inpainting

Generative Models [33]

UNIDIA UNIDIA

- Generative Adversarial Network (GAN)
 - More GANs
 - ► Category-to-Image

Generative Models [34]

UVIDIA.

35

- Generative Adversarial Network (GAN)
 - More GANs
 - ► Category-to-Image

(a) Snail

(b) Studio couch

Generative Models [35]

- Generative Adversarial Network (GAN)
 - More GANs
 - ► Caption-to-Image (Text-to-Image)

a pile of oranges sitting in a wooden crate

Generative Models [36]

• Generative Adversarial Network (GAN) 실습

Generative Adversarial Network를 활용한 Fashion MNIST데이터셋 생성

(Google Colab. 환경)