Number representation: binary arithmetic; overflow

COSC 208, Introduction to Computer Systems, 2021-09-13

Announcements

- Project 1 Part 1 due Thursday (two days mercy Saturday night)
- Exam 1 this Friday

Warm-up
Express these decimal numbers using 8-bit two's complement:
Q1: -49
Q2: -11
STOP HERE after completing the warm-up; if you have extra time please skip ahead to the extra practice.
Binary arithmetic
Binary arithmetic Use 8-bit signed integers
Use 8-bit signed integers
Use 8-bit signed integers Q3: 10 + 5
Use 8-bit signed integers Q3: 10 + 5

Q5: -10 + 5
Q6: 10 - 5
Q7: 64 + 64
STOP HERE after completing the above questions; if you have extra time please skip ahead to the extra practice.
Overflow
For each of the following computations, determine whether the computation overflows, underflows, or neither. Assume we are using 8-bit signed integers.
Q8: 0b10000000 + 0b01111111
Q9: 0b10000001 + 0b01111111

Q10: 0b10000000 + 0b10000001
Q11: 0b11000000 + 0b11000000
Q12: 0b01111111 + 0b00000001
Extra practice
Q13: Convert 512 to unsigned binary.
Q14: Convert –42 to 8-bit signed binary.
Q14: Convert –42 to 8-bit signed binary.
Q14: Convert –42 to 8-bit signed binary.
Q14: Convert –42 to 8-bit signed binary. Q15: Convert 0xFAB to unsigned binary.

Turn page

Q16: Write a function called Valid_hex that takes a string and returns 1 if it is a valid hexadecimal number; otherwise return 0. A valid hexadecimal number must start with 0x and only contain the digits 0-9 and letters A-F (in upper or lower case).							

Worksheet created by Professor Aaron Gember-Jacobson