附件1: ID对齐方式

使用说明书

说明书版本: V2.03

更新日期: 2017.06.30

一、对齐方式

标准帧有效 ID 为 11 位,扩展帧 29 位。当用一个 32 位无符号整形来存储 ID 时,就会出现两种存储方式: 右对齐方式(直接 ID 方式)与左对齐方式 (SJA1000/寄存器方式)。*本 USBCAN 设备接口函数库所涉及的对齐方式都与 ZLG 的 USBCAN 系列设备接口函数库兼容*!

1.1 右对齐方式

右对齐方式,即ID的最低有效位ID.0与Bit.0位对齐。如下表所示:

													uns	igned	lint	(bit3	31∼k	oitO)													
高																低	位														
31	30	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															0	Bit													
																				10	9	8	7	6	5	4	3	2	1	0	标准帧
		28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1														0	扩展帧														

珠海创芯科技有限公司 技术支持邮箱: zhcxgd@163.com

1.2 左对齐方式

左对齐方式,即 ID 的最高有效位 ID.10 (标准帧)、ID.28 (扩展帧)与 Bit.31 位对齐。如下表所示:

													un	signe	d int	(bit3	$1\sim$ bi	itO)													
高																低	位														
31	30	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															0	Bit													
10	9	8	7	6	5	4	3	2	1	0																					标准帧
28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			扩展帧

二、ID 右对齐方式(直接 ID 方式)

CAN 消息 ID 在接口函数库中用无符号整形数据表示,共 32 位,其中标准帧有效 ID 为 11 位,扩展帧 29 位,采用右对齐方式(直接 ID 方式),即 ID 的最低有效位 ID.0 与 Bit.0 位对齐。如下表所示:

														ID	(bit31	L \sim bi	t0)															
高																低	位															
31	30	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															0	Bit														
																					10	9	8	7	6	5	4	3	2	1	0	标准帧
			28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	扩展帧

注:上表中,深色背景的单元格对应位表示ID的有效位,ID的最低有效位ID.0与Bit.0位对齐示例:

1.标准帧 ID: 如标准帧 ID 为 00 00 01 23(HEX),标准帧 ID 为 11 位有效,所以实际的 ID 值为 00 00 01 23H。

2.扩展帧 ID: 如扩展帧 ID 为 1F 01 02 03(HEX),扩展帧 ID 为 29 位有效,所以实际的 ID 值为 1F 01 02 03H。

三、AccCode/AccMask 左对齐方式(寄存器方式)

AccCode (滤波验收码) /AccMask (滤波屏蔽码) 在接口函数库中用无符号整形数据表示,共 32 位,其中标准帧有效 ID 为 11 位,扩展帧 29 位,采用左对齐方式(寄存器方式),即 ID 的最高有效位 ID.10 (标准帧)、ID.28 (扩展帧)与 Bit.31 位对齐。如下表所示:

												Α	AccCc	de/A	ссМа	sk (b	it31	~bit0)												
高																低	位														
31	30	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															0	Bit													
10	9	8	7	6	5	4	3	2	1	0																					标准帧
28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			扩展帧

注:上表中,深色背景的单元格对应位表示ID 的有效位,ID 的最高位与Bit31 位对齐。

示例:

1.标准帧 ID: 如标准帧 ID 为 00 00 01 23(HEX),标准帧 ID 为 11 位有效,所以应把实际 ID 值左移 21 位,得到 AccCode/AccMask 值 24 60 00 00H。

2.扩展帧 ID: 如扩展帧 ID 为 1F 01 02 03(HEX),扩展帧 ID 为 29 位有效,所以应把实际 ID 值左移 3 位,得到 AccCode/AccMask 值 F8 08 10 18H。