IN THE CLAIMS

Please amend the claims as follows:

1 (Currently Amended): A process for dyeing leather, comprising contacting said leather with a float that comprises at least one dye F which has at least one group represented by formula A:

$$\begin{bmatrix} (X)_k \\ \\ \end{bmatrix}_n$$

$$B = S$$

$$O$$

$$O$$

where

denotes the bond to the dye molecule;

X is an electron-attracting radical;

k is 1, 2 or 3;

n is 0 or 1; and

B is a CH=CH₂ group or a CH₂-CH₂-Q group, where Q is an alkalinedetachable group, wherein said float exhibits a pH of from 8.5 to 11, and wherein said at least one dye is selected from the group consisting of

$$Dk^{1}-N=N-[P-N=N-]_{p}Kk^{1}[-N=N-Dk^{2}]_{m};$$
 (I)

$$Dk^{+}N-N-Napht^{+}[-N-N-Tk^{+}]_{r}[-N-N-Kk^{+}]_{k}[-N-N-Dk^{2}]_{n};$$
 (II)

$$Dk^{1}-N=N-Napht^{1}[-N=N-Tk^{1}]_{r}[-N=N-Kk^{1}]_{k}[-N=N-Dk^{2}]_{n};$$
 (II)

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-Tk^{2}-N=N-Napht^{2}-N=N-Dk^{2};$$
 (III)

$$Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-N=N-Kk^{2}-N=N-Dk^{2};$$
 (IV)

$$Dk^{1}-N=N-[P-N=N-]_{p}Napht^{1}[-N=N-R]_{r}-NH-Tr^{1}-NH-Dk^{2};$$
 (V)

$$Dk^{1}-N=N-P-NH-Tr^{1}-NH-R-N=N-Dk^{2};$$
 (VI)

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-P-NH-Tr^{1}-NH-Dk^{2};$$
 (VII)

$$Dk^{1}-N=N-Napht^{1}-NH-Tr^{1}-NH-P-NH-Tr^{2}-NH-Napht^{2}-N=N-Dk^{2}; (VIII)$$

$$Dk^{1}-N=N-Napht^{1}-NH-Tr^{1}-NH-Tk^{1}-NH-Tr^{2}-NH-Napht^{2}-N=N-Dk^{2}; (IX)$$

$$Dk^{+}[-N-N-L]_{k}-NH-Tr^{+}-NH-M-N-N-Napht^{+}-N-N-P-NH-Tr^{2}-NH-[R-N-N-]_{n}Dk^{2};$$
 (X)

$$\underline{Dk^{1}[-N=N-L]_{k}-NH-Tr^{1}-NH-M-N=N-Napht^{1}-N=N-P-NH-Tr^{2}-NH-[R-N=N-]_{n'}Dk^{2}; \ (X)}$$

$$Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-NH-Tr^{1}-NH-Dk^{2};$$
 (XI)

$$Dk^{1}-N-N-[P-N-N-]_{p}R-N-N-Kk^{1}[-N-N-Dk^{2}]_{n};$$
 (XII)

$$Dk^{1}-N=N-[P-N=N-]_{p}R-N=N-Kk^{1}[-N=N-Dk^{2}]_{n'};$$
(XII)

$$Dk^{1}-N=N-Pyr-A;$$
 (XIII)

$$Kk^{3}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-A;$$
 (XIV)

$$Dk^{1}-N=N-P-N=N-Kk^{1}-N=N-R-N=N-Dk^{2};$$
 (XV), and

a metal complex thereof,

where

k, \underline{n} \underline{n} , p and r are independently 0 or 1, and for formula II, $\underline{k+n+r}$ $\underline{k+n'+r}$ is 1, 2 or 3; m is 0, 1 or 2;

- each of Dk^1 and Dk^2 independently represents an aromatic amine radical or represents a group of formula A where, in each of the formulae I XII and XV, at least one of Dk^1 and Dk^2 represents a radical of formula A;
- each of Kk¹ and Kk² independently represents a monovalent, a divalent or a trivalent aromatic radical selected from the group consisting of benzene; naphthalene; pyrazole; quinoline; diphenylamine; diphenylmethane; pyrimidine; pyridine; and diphenyl ether, where each optionally has at least one substituent selected from the group consisting

SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy-C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkylaminocarbonyl

alkylcarbonylamino, N-(C₁-C₄-alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl)amino, C₁-C₄-alkylaminocarbonyloxy, C₁-C₄-dialkylaminocarbonyloxy, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-dialkylaminocarbonylamino, phenylaminocarbonyloxy, phenylaminocarbonylamino, C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino, phenylcarbonylamino, C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino, phenylcarbonylamino, C₁-C₄-alkylsulfonyl, hydroxy-C₁-C₄-alkylsulfonyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylsulfonylamino, phenylsulfonyl, phenylsulfonylamino, formamide, and a radical represented by formula SO₂NR⁵⁶R⁵⁷,

where each of R⁵⁶ and R⁵⁷ independently represent hydrogen; C₁-C₄-alkyl; formyl; C₁-C₄-alkylcarbonyl; C₁-C₄-alkyloxycarbonyl; NH₂-CO-alkylaminocarbonyl; C₁-C₄-alkylaminocarbonyl; C₁-C₄-alkylaminosulfonylamino; di-C₁-C₄-alkylaminosulfonylamino; phenylsulfonylamino which may be substituted on the phenyl ring by 1 or 2 substituents selected from the group consisting of C₁-C₄-alkyl, C₁-C₄-alkoxy and halogen; or a 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 radicals selected from the group consisting of OH, halogen, C₁-C₄-alkyl, C₁-C₄-phenyl, and a 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which can optionally have 1 or 2 radicals selected from the group consisting of OH, SO₃H, C₁-C₄-alkyl, and C₁-C₄-alkoxy;

Kk³ is a monovalent radical selected from the group consisting of benzene, pyrimidine, pyridine, and naphthalene, which optionally has

1 or 2 hydroxysulfonyl groups as substituents,

and optionally 1, 2 or 3 further substituents selected from the group consisting of SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy-C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl)amino, C₁-C₄-alkylaminocarbonyloxy, C₁-C₄-dialkylaminocarbonyloxy, C₁-C₄-dialkylaminocarbonyloxy, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-dialkylaminocarbonylamino, phenylaminocarbonylamino, C₁-C₄-alkoxycarbonylamino, C₁-C₄-hydroxy-C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino, phenylcarbonylamino, C₁-C₄-alkylaminosulfonyl, C₁-C₄-alkylsulfonyl, hydroxy-C₁-C₄-alkylsulfonyl, C₁-C₄-alkylaminosulfonyl, C₁-C₄-alkylsulfonylamino, phenylsulfonylamino, formamide, and a radical of the formula SO₂NR⁵⁶R⁵⁷,

where R⁵⁶ and R⁵⁷ independently represent hydrogen; C₁-C₄-alkyl; formyl; C₁-C₄-alkylcarbonyl; C₁-C₄-alkoxycarbonyl; NH₂-CO-alkylaminocarbonyl; C₁-C₄-alkylaminocarbonyl; C₁-C₄-alkylaminosulfonylamino; di-C₁-C₄-alkylaminosulfonylamino; phenylsulfonylamino which may be substituted on the phenyl ring by 1 or 2 substituents selected from the group consisting of C₁-C₄-alkyl, C₁-C₄-alkoxy and halogen; or a 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 radicals selected from the group consisting of OH, halogen, C₁-C₄-alkyl, C₁-C₄-phenyl, and a 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which can optionally comprise 1 or 2 radicals selected from the group consisting of OH, SO₃H, C₁-C₄-alkyl, and C₁-C₄-alkoxy;

- each of Tk¹ and Tk² independently represents a divalent aromatic radical selected from theg

 the group consisting of benzene, diphenylamine, biphenyl, diphenylmethane,

 2-phenylbenzimidazole, phenylsulfonylbenzene, phenylaminosulfonylbenzene,

 stilbene and phenylaminocarbonylbenzene, where each optionally has at least one
 substituent selected from the group consisting of SO₃H, COOH, OH, NH₂, NO₂,

 halogen, and C₁-C₄-alkyl;
- each of L, M, P and R independently represents a divalent aromatic radical selected from the group consisting of benzene and naphthalene, where each optionally has at least one substituent selected from the group consisting of SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy-C₁-C₄-alkyl, C₁-C₄-alkylamino, C₁-C₄-alkylamino, C₁-C₄-alkylamino, C₁-C₄-alkylamino, C₁-C₄-alkylamino, N-(C₁-C₄-alkylcarbonyl)-N-(C₁-C₄-alkylcarbonyl)amino, C₁-C₄-alkylaminocarbonyloxy, C₁-C₄-dialkylaminocarbonyloxy, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylaminocarbonylamino, C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino, phenylcarbonylamino, C₁-C₄-alkylsulfonyl, hydroxy-C₁-C₄-alkylsulfonyl, C₁-C₄-alkylaminosulfonyl, C₁-C₄-alkylsulfonylamino, phenylsulfonyl, phenylsulfonylamino, formamide, and a radical of the formula SO₂NR⁵⁶R⁵⁷,

where R^{56} and R^{57} independently represent hydrogen; C_1 - C_4 -alkyl; formyl; C_1 - C_4 -alkylcarbonyl; C_1 - C_4 -alkoxycarbonyl; NH_2 -CO-alkylaminocarbonyl; C_1 - C_4 -alkylaminosulfonylamino; di- C_1 - C_4 -alkylaminosulfonylamino; phenylsulfonylamino which may be substituted on the phenyl ring by 1 or 2 substituents selected from the group consisting of C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and halogen; or 5- or 6-membered heterocyclyl,

which is optionally substituted by 1, 2 or 3 radicals selected from the group consisting of OH, halogen, C₁-C₄-alkyl, phenyl, and a 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which can optionally have 1 or 2 of radicals selected from the group consisting of OH, SO₃H, C₁-C₄-alkyl, and C₁-C₄-alkoxy;

- Napht¹, Napht² independently represent a naphthalene radical having 1 or 2 hydroxysulfonyl groups and may optionally have 1, 2 or 3 further substituents selected from the group consisting of OH, NH₂, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, C₁-C₄-alkylsulfonylamino, phenylsulfonylamino, 4-methylphenylsulfonylamino, C₁-C₄-alkylaminosulfonyl, phenylaminosulfonyl, 4-methylphenylaminosulfonyl, and a NHC(O)R^x radical, where R^x hydrogen, C₁-C₄-alkyl, maleyl or phenyl;
- Pyr represents pyrazole-1,4-diyl which attaches through the nitrogen atom to the A group and optionally has 1 or 2 substituents selected from the group consisting of halogen, C₁-C₄-alkyl, hydroxyl and C₁-C₄-alkoxy; and
- Tr¹, Tr² independently represent a 1,3,5-triazine-2,4-diyl radical which optionally has at least one substituent selected from the group consisting of a halogen atom, a methyl group and a methoxy group.
- 2 (Previously Presented): The process according to claim 1, wherein at least one radical X in the formula A is an SO₃H group.
- 3 (Previously Presented): The process according to claim 1, wherein B in the formula A is CH=CH₂, a CH₂-CH₂-O-SO₃H group or a CH₂-CH₂-O-C(O)CH₃ group.

4 (Previously Presented): The process according to claim 1, wherein the group represented by formula A is attached to the dye molecule via an -NH- or -N=N- group.

5 (Previously Presented): The process according to claim 4, wherein the <u>at least one</u> dye F is selected from the group consisting of a phthalocyanine dye, an anthraquinone dye, an azo dye, a formazan dye, a dioxazine dye, an actidine dye, a xanthene dye, a polymethine dye, a stilbene dye, a sulfur dye and a triarylmethane dye.

6 (Previously Presented): The process according to claim 1, wherein n is 0.

7 (Previously Presented): The process according to claim 6, wherein the at least one group represented by formula A is selected from the group consisting of:

$$HO_3S$$
 $SO_2\text{-}CH_2\text{-}CH_2\text{-}O\text{-}SO_3\text{H}$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH_2\text{-}CH_2\text{-}O\text{-}SO_3\text{H}$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH=CH_2$
 $SO_2\text{-}CH_2\text{-}CH_2\text{-}O\text{-}SO_3\text{H}$
 $SO_2\text{-}CH_2\text{-}CH_2\text{-}O\text{-}SO_3\text{H}$

$$HO_3S$$
 SO_2 -CH=CH₂
 SO_2 -CH₂-CH₂-O-SO₃H
 SO_2 -CH₂-CH₂-O-COCH₃
 SO_2 -CH₂-CH₂-O-COCH₃

8 (Cancelled)

9 (Currently Amended): The process according to claim 1, which further comprises initially treating the leather with the <u>an</u> aqueous float comprising at least one dye F at a pH in the range from 3 to 6.5 prior to said treating contacting.

10 (Cancelled)

11 (Previously Presented): The process according to claim 1, wherein the dyeing occurs before retanning.

12 (Previously Presented): The process according to claim 1, wherein the dyeing occurs at temperatures in the range from 10 to 60°C.

Application No. 10/577,776 Reply to January 6, 2010 Office Action

13-18 (Cancelled)

19 (Previously Presented): A dyed leather obtainable by a dyeing process according to claim 1.

20 (Previously Presented): The dyed leather according to Claim 19 for handwear, footwear, automobiles, apparel or furniture.

21-23 (Cancelled)

24 (Previously Presented): The process according to claim 1, wherein said float exhibits a pH of from 8.5 to 10.5.

25 (Previously Presented): The process according to claim 1, wherein said float exhibits a pH of from 8.5 to 10.

26 (Previously Presented): The process according to claim 1, wherein said float exhibits a pH of from 9.5 to 11.

27 (Previously Presented): The process according to claim 26, occurring for a time of from 0.5 to 2 hours.

28 (Previously Presented): The process according to claim 1, wherein when said contacting is carried out for four hours, said at least one dye exhibits a fixation to said leather of at least 85%, as determined by UV/VIS spectroscopy and HPLC.

29 (Previously Presented): The process according to claim 1, wherein when said contacting is carried out for four hours, said at least one dye exhibits a fixation to said leather of at least 90%, as determined by UV/VIS spectroscopy and HPLC.

30 (Previously Presented): The process according to claim 1, wherein Q is selected from the group consisting of chlorine; bromine; iodine; $-O-SO_3H$; $-S-SO_3H$; tri- C_1-C_4 -alkylammonium; benzyldi- C_1-C_4 -alkylammonium; N-attached pyridinium; $R^3S(O)_2-$; $R^4S(O)_2-O-$; and $R^5C(O)-O-$, where

each of R³ and R⁴ is independently an alkyl group, a haloalkyl group, a phenyl group, or a substituted phenyl group, and

R⁵ is a hydrogen, an alkyl group, a haloalkyl group, a phenyl group, or a substituted phenyl group.

31 (New): The process according to claim 1, wherein n in the group represented by formula A is 1.

32 (New): The process according to claim 31, wherein B in the formula A is CH=CH₂, a CH₂-CH₂-O-SO₃H group or a CH₂-CH₂-O-C(O)CH₃ group.

33 (New): The process according to claim 1, wherein Dk¹ and Dk² are independently of each other selected from the group consisting of benzene-, naphthalene- and quinoline-derived radicals and 1-phenylpyrazol-4-yl which are unsubstituted or comprise 1, 2 or 3, substituents selected from the group consisting of SO₃H, COOH, OH, NH₂, NO₂, CN, CONH₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy-C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, C₁-C₄-alkylaminocarbonyl,

 C_1 - C_4 -dialkylaminocarbonyl, C_1 - C_4 -alkylaminocarbonyloxy, C_1 - C_4 -dialkylaminocarbonyloxy, C_1 - C_4 -alkylaminocarbonylamino, C_1 - C_4 -dialkylaminocarbonylamino, phenylaminocarbonyloxy, phenylaminocarbonylamino, C_1 - C_4 -alkoxycarbonylamino, C_1 - C_4 -alkylcarbonylamino, C_1 - C_4 -alkylcarbonyl)-N-(C_1 - C_4 -alkylcarbonyl)amino, C_1 - C_4 -hydroxy- C_1 - C_4 -alkylamino, phenylcarbonylamino, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -hydroxyalkylsulfonyl, C_1 - C_4 -alkylaminosulfonyl, C_1 - C_4 -alkylsulfonylamino, phenylsulfonyl, phenylsulfonylamino, formamide, and $SO_2NR^{56}R^{57}$, where

R⁵⁶ and R⁵⁷ independently represent hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, NH₂-CO, C₁-C₄-alkylaminocarbonyl or 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 of OH, halogen, C₁-C₄-alkyl or phenyl radicals,

5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which phenyl or naphthyl group are unsubstituted or which comprise one or two of the following radicals: OH, SO₃H, C₁-C₄-alkyl, and/or C₁-C₄-alkoxy.

34 (New): The process according to claim 1, wherein said at least one dye is selected from the group consisting of

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-Tk^{2}-N=N-Napht^{2}-N=N-Dk^{2};$$
 (III)

$$Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-N=N-Kk^{2}-N=N-Dk^{2};$$
 (IV)

$$Dk^{1}-N=N-[P-N=N-]_{p}Napht^{1}[-N=N-R]_{r}-NH-Tr^{1}-NH-Dk^{2};$$
 (V)

$$Dk^{1}-N=N-P-NH-Tr^{1}-NH-R-N=N-Dk^{2};$$
 (VI)

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-P-NH-Tr^{1}-NH-Dk^{2};$$
(VII)

$$Dk^{1}-N=N-Napht^{1}-NH-Tr^{1}-NH-P-NH-Tr^{2}-NH-Napht^{2}-N=N-Dk^{2};$$
 (VIII)

$$Dk^{1}-N=N-Napht^{1}-NH-Tr^{1}-NH-Tk^{1}-NH-Tr^{2}-NH-Napht^{2}-N=N-Dk^{2};$$
 (IX)

Application No. 10/577,776 Reply to January 6, 2010 Office Action

$$Dk^{1}[-N=N-L]_{k}-NH-Tr^{1}-NH-M-N=N-Napht^{1}-N=N-P-NH-Tr^{2}-NH-[R-N=N-]_{n}Dk^{2};$$
 (X)

$$Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-NH-Tr^{1}-NH-Dk^{2};$$
 (XI)

$$Dk^{1}-N=N-Pyr-A;$$
 (XIII)

$$Kk^{3}-N=N-Tk^{1}-N=N-Kk^{1}-N=N-A;$$
 (XIV)

$$Dk^{1}-N=N-P-N=N-Kk^{1}-N=N-R-N=N-Dk^{2};$$
 (XV), and

a metal complex thereof,

where k, n', p and r are independently 0 or 1, and m is 0, 1 or 2.