ISSN: 2016-8561

TOPIC THIS VOLUME

- Supply Chain-Bear Game
- Manufacturing Process
- Logistic Process
- Transportation
- Distribution
- Invantery.

ISSUES

- Supply Chain Management
- Operation Sys. 2
- Inventory
- Location Opti- 4 mizztition

Jurnal Logistik Bisnis

VOLUME I NO I

MEI 2010

Briefs Supply Chain and Logistic

MIT's Beer Production Distribution Game Will Become 50 Markus I. Hiller

Competition Analysis on Logistic Delivery Service With Logic Biner Methode Between PT Pos and Other Delivery Service Company (PT TIKI)

Pemetaan Rantai Pasok Dengan Pendekatan Cluster Industri di Wilayah Kota Bandung dan Sekitarnya (Study Kasus Pada Klaster Industri Logam)

Dodi Permadi, Hilman Setiadi

Perumusan Strategi dan Sistem Operasi Distribusi Air Mineral dalam Kemasan (AMDK) Dalam Melayani Pelanggan (Studi Kasus: PDAM Kota Bandung)

Erna Mulyati

EPQ Probabilistik Model P dengan Menggunakan Partial Back Ordering

Made Inna Dwiputranti

Integrasi Ukuran Lot Ekonomis Pada Demand Probabilistik untuk Sistem Persediaan Vendor dan Bayer Ketika Pemenuhan Vendor Besifat Random

Raden Adriyani Oktora

Penentuan Lokasi Optimal Posko Bencana Banjir Di Kota Bandung Dengan Metode P-Median Set Covering Problem

Liane Okdinawati, Eduard Sondakh

Optimasi Alokasi Distribusi Sampah Untuk Meminimasi Total Ongkos Distribusi Sampah Pad PD Kebersihan Kota Bandung

Syafrianita

Perencanaan Produksi dan Pengendalian Persediaan Bahan Baku Pada Pengrajin Tahu dan Tempe

"IM" Cibogo Bandung

Agus Purnama

Politeknik Pos Indonesia

Logistik Bisnis

Vol. I

No. 1 Hal. 1 - 117 Bandung, Mei 2010 ISSN: 2086-8561

ISSN: 2086-8561

JURNAL LOGISTIK BISNIS

Volume 1 Nomor 1 Mei 2010

Pelindung:

Direktur Politeknik Pos

Penasehat:

Para Pembantu Direktur

Pembina:

Ketua Jurusan Logistik Bisnis

Ketua Tim Redaksi:

Dodi Permadi., ST., MT

Penyunting Ahli:

Sutrisno., Ph.D DR. Bambang Jatmiko., SE., MSi Markus Josep Hiller., M.Log

Penyunting:

Suntoro, Ir., MT Liane Okdinawati., ST., MT Eduard Sondakh., S.Si., MT Dodi Permadi., ST., MT

Tata Usaha;

Tety Rohaeti., A.Md Emay Marsita., A.Md

Alamat Redaksi/Penerbit:

Jurusan Logistik Bisnis, Politeknik Pos Indonesia Jl. Sariasih No 54-Bandung 40151 Telp 022-2009570, Fax 022-2009568

Jurnal Logistik Bisnis diterbitkan oleh Jurusan Logistik Bisnis Politeknik Pos Indonesia. Redaksi Mengundang para professional di dunia industri, pendidikan dan peneliti untuk menuliskan hasil karya ilmiah dan pengalaman praktis dilapangan terkait implementasi logistic dan supply chain. Jurnal Logistik Bisnis diterbitkan 3 kali dalam satu tahun pada bulan Februari, Mei, dan November.

ISSN: 2086-8561

Jurnal Logistik Bisnis

Volume 1, Nomor 1-Mei 2010

- MIT's Beer Production Distribution Game Will Become 50
 Markus J. Hiller
- Competition Analysis on Logistic Delivery Service With Logic Biner Methode Between PT Pos and Other Delivery Service Company (PT TIKI) Suntoro
- Pemetaan Rantai Pasok Dengan Pendekatan Cluster Industri di Wilayah Kota Bandung dan Sekitarnya (Study Kasus Pada Klaster Industri Logam) Dodi Permadi, Hilman Setiadi
- Perumusan Strategi dan Sistem Operasi Distribusi Air Mineral dalam Kemasan (AMDK) Dalam Melayani Pelanggan (Studi Kasus: PDAM Kota Bandung)

Erna Mulyati

- EPQ Probabilistik Model P dengan Menggunakan Partial Back Ordering Made Irma Dwiputranti
- Integrasi Ukuran Lot Ekonomis Pada Demand Probabilistik untuk Sistem Persediaan Vendor dan Bayer Ketika Pemenuhan Vendor Besifat Random Raden Adriyani Oktora
- 7. Penentuan Lokasi Optimal Posko Bencana Banjir Di Kota Bandung Dengan Metode P-Median Set Covering Problem Liane Okdinawati, Eduard Sondakh
- 8. Optimasi Alokasi Distribusi Sampah Untuk Meminimasi Total Ongkos Distribusi Sampah Pad PD Kebersihan Kota Bandung Syafrianita
- 9. Perencanaan Produksi dan Pengendalian Persediaan Bahan Baku Pada
 Pengrajin Tahu dan Tempe "IM" Cibogo Bandung

 Agus Purnomo

PERENCANAAN PRODUKSI DAN PENGENDALIAN PERSEDIAAN BAHAN BAKU PADA PENGRAJIN TAHU DAN TEMPE "IM" CIBOGO BANDUNG

Agus Purnomo

Universitas Pasundan Bandung

JI. Setiabudhi No. 193 Bandung-40153 Telp. (022)2019433 Fax. (022)2019329

agsprnm@gmail.com

Jurusan Teknik Industri, Universitas Pasundan Bandung

ABSTRAK

Coordination between production planning and inventory control is very important to minimize total logistics costs and to improve service levels to end customers. This research aims to make production planning and the results are used for inventory control in the Company Craftsmen Tofu and Tempeh "IM" Cibogo. The results of the total cost of aggregate production with Integer Programming model is Rp. 40,304,950,-. While planning for raw material supplies soya bean with a total of 3660.938 Kg optimal ordering, with the frequency order of 2 times and total inventory cost is Rp. 15,811,168.740, -. For raw material salt with a total of 887.581 Kg optimal ordering, with the frequency of orders 1 time and total cost of inventory in the amount of Rp. 160,375.810, - and for raw materials turmeric with a total of 1451.551 Kg optimal ordering, with the frequency order of 2 times and total inventory cost is Rp. 1,534,031.018,-.

Keywords: Aggregate Production Planning, Inventory Planning, Total Production Cost, Total Cost Inventory, Coordination.

PENDAHULUAN

Perencanaan produksi merupakan penentuan tingkat atau kecepatan produksi pabrik yang dinyatakan secara agregat. Agregat adalah perencanaan yang dibuat untuk seluruh produk yang menggunakan sumber yang sama, tanpa dirinci kedalam masing-masing produk yang berbeda (end item). Perencanaan produksi merupakan bagian dari rencana strategi perusahaan dan dibuat secara harmonis dengan rencana bisnis (Business Planning) dan rencana pemasaran (Marketing Planning). Perencanaan produksi bisa diartikan juga sebagai proses untuk menentukan jumlah produksi, persediaan, dan workforce level untuk memenuhi permintaan yang berfluktuasi (Smith, 1989).

Sedangkan Persediaan adalah material yang disediakan pada saat idle atau keadaan menunggu penjualan di masa yang akan datang, penggunaan atau transformasi (Tersine, 1994). Persediaaan merupakan salah satu asset yang paling mahal di banyak perusahaan, mencerminkan sebanyak 40 persen dari modal yang diinvestasikan. Perusahaan dapat mengurangi biaya persediaan dengan cara menurunkan tingkat persediaan yang dimiliki (on hand inventory), namun pelanggan merasa tidak puas bila suatu produk stoknya habis. Oleh karena itu,

perusahaan harus mencapai keseimbangan (optimasi) antara investasi persediaan dengan tingkat pelayanan konsumen (Render et al. 2001). Persediaan merupakan salah satu keputusan yang paling riskan dalam manajemen logistik. Tanpa penangan yang tepat dalam persediaan maka akan menimbulkan, permasalahan pemasaran yang serius dalam meningkatkan penghasilan dan memelihara hubungan dengan pelanggan (Waters-Fuller, 1995). Perencanaan persediaan juga sangat menentukan bagi operasi manufaktur. Kekurangan bahan mentah dapat menghentikan produksi atau merubah jadwal produksi, yang pada gilirannya akan meningkatkan ongkos dan kemungkinan akan menyebabkan kekurangan produk jadi. Menurut Giménez et al. (2005), kelebihan persediaanpun akan menimbulkan masalah seperti akan meningkatkan biaya dan menurunkan laba (profitability) karena meningkatnya biaya pergudangan, keterkaitan modal, kerusakan (deterioration), premi asuransi yang berlebihan, meningkatkan pajak, dan bahkan kekunoan (obsolescence).

Sox et al. (1997) melakukan penelitian tentang koordinasi antara produksi dan persediaan untuk meningkatkan pelayanan dengan mempertimbangkan strategi persediaan hanya dilakukan pada item yang permintaannya tinggi. Koordinasi antara perencanaan produksi dan pengendalian persediaan bahan baku akan meminimasi total biaya logistik perusahaan dan dapat meningkatkan service level kepada pelanggan akhir (Ciarallo e al., 1994; DeCroix et al., 1998; Federgruen et al., 1986; Glasserman et al., 1994).

Penelitian ini bertujuan untuk membuat perencanaan produksi agregat yang optimal dengan ongkos produksi yang paling murah, dan membuat perencanaan produksi disagregasi yang dapat menentukan berapa jumlah yang harus diproduksi untuk setiap end item atau produk, serta membuat perencanaan pengadaan bahan baku untuk menentukan berapa banyak jumlah pesanan bahan baku yang diperlukan untuk menjaga agar bahan baku yang tersedia sesuai dengan kebutuhan perencanaan produksi disagregasi.

PENDEKATAN PENELITIAN

Permasalahan yang dihadapi oleh Perusahaan Pengrajin Tahu dan Tempe "IM" adalah mahalnya biaya produksi dan biaya persediaan bahan baku untuk membuat tahu dan tempe. Sehingga identifikasi masalah penclitian adalah:

- Bagaimana membuat perencanaan produksi yang optimal sehingga perusahaan dapat melakukan kegiatan produksi dengan tepat dan dapat memenuhi jumlah permintaan dari konsumen atau pasar.
- Bagaimana membuat perencanaan pengendalian persediaan yang baik sehingga dapat menentukan jumlah pesanan bahan baku yang diperlukan.

Sedangkan tujuan penelitian ini adalah sebagai berikut :

- Menentukan permintaan (demand) setiap item yang akan diproduksi dengan menggunakan metode peramalan yang tepat.
- 2. Membuat perencanaan produksi agregat yang optimal dengan ongkos produksi minimal.
- Membuat perencanaan produksi disagregasi yang dapat menentukan berapa jumlah yang harus diproduksi untuk setiap end item atau produk.
- 4. Membuat perencanaan pengadaan bahan baku untuk menentukan kapan dan berapa banyak jumlah pesanan bahan baku yang diperlukan untuk menjaga agar bahan baku yang tersedia sesuai dengan kebutuhan perusahaan pada tingkat harga yang minimal.

Sedangkan data yang dikumpulkan untuk penelitian adalah sebagai berikut :

- 1. Penjualan produk Tahu Januari Februari 2010
- 2. Ongkos produksi.
- Jumlah tenaga kerja langsung.
- Jumlah hari kerja dan jam kerja.
- 5. Harga pokok penjualan produk.
- 6. Lead time pemasok.
- Harga bahan baku.
- 8. Biaya pesan.
- Biaya simpan.
- 10. Status persediaan bahan baku.

Langkah-langkah dalam pemecahan masalah penelitian ini disajikan pada gambar 1 berikut.

Pengolahan data yang dilakukan adalah sebagai berikut:

1. Perhitungan Peramalan Permintaan, dengan langkah-langkah sebagai berikut :

- Setelah melakukan proses Agregasi Demand, kemudian dilakukan proses peramalan permintaan untuk periode yang akan datang. Di mana data yang digunakan adalah data demand agregat periode sebelumnya yang diperoleh dari proses agregasi.
- 2) Kemudian data permintaan (demand) agregat periode sebelumnya yang dihasilkan tersebut diplot dalam suatu grafik peramalan. Dan dari plot data yang dihasilkan ini akan diperoleh suatu bentuk pola data yang nantinya akan digunakan untuk menentukan metode peramalan yang akan digunakan.
- 3) Metode peramalan yang akan digunakan adalah :
 - a. Metode Double Eksponential Smoothing dengan Satu Parameter dari Brown. Untuk proses perhitungan peramalan dengan menggunakan metode Double Eksponential Smoothing dengan Satu Parameter dari Brown.
- b. Metode Double Eksponential Smoothing dengan Dua Parameter dari Holt. Untuk proses perhitungan peramalan dengan menggunakan metode Double Eksponential Smoothing dengan Dua Parameter dari Holt.
- 4) Dari beberapa metode peramalan diatas tersebut, dipilih metode peramalan yang memiliki nilai Mean of Square Error (MSE) yang paling kecil dan mempunyai kemampuan untuk memenuhi permintaan (demand) dari konsumen atau pasar.
- 2. Perhitungan Agregasi. Sesuai dengan prosedur perencanaan produksi agregat, maka terlebih dahulu dilakukan proses agregasi permintaan setiap end item pada setiap periodenya. Dari data permintaan produk untuk periode yang akan datang, untuk mempermudah perhitungan dalam perencanaan produksi maka dari satuan produk end item (cetakan) dikonversikan pada satuan agregat. Untuk mendapatkan satuan produk pengganti (agregat). Satuan produk pengganti yang diperlukan akan diperoleh dengan terlebih dulu menghitung besarnya konversi untuk masing-masing jenis produk tersebut dan untuk satuan produk pengganti yang dipilih, di mana faktor konversi didapat dengan membagi besarnya satuan standar produk yang akan menjadi produk pengganti dengan besarnya satuan standar produk yang akan ditentukan.

Perhitungan faktor konversi dilakukan dengan menggunakan data harga pokok penjualan produk dari tiap-tiap produk yang dipilih. Harga pokok penjualan produk yang dipilih adalah harga pokok penjualan produk Tahu untuk ukuran kecil dan ukuran besar. Sedangkan sebagai standar produk pengganti adalah harga pokok penjualan produk Tahu ukuran kecil. Hal ini

disebabkan produk Tahu ukuran kecil memiliki jumlah permintaan yang paling banyak atau lebih dominan karakteristiknya.

3. Memformulasikan Perencanaan Produksi Aggregate dengan Model Programa Integer. Adapun bentuk modelnya adalah model dengan jumlah tenaga kerja tetap yang artinya selama horizon perencanaan tidak terjadi penambahan atau pengurangan tenaga kerja. Sehingga jumlah produksi hanya dapat diubah-ubah dengan melakukan kerja lembur (overtime).

Adapun model Programa Integer dengan jumlah tenaga kerja tetap yaitu sebagai berikut :

- · Menentukan variabel keputusan :
 - X_{ii} =Jumlah produk i pada periode i
 - Iu = Jumlah persediaan produk i pada akhir periode t
 - W, = Jam kerja reguler yang terpakai pada periode t
 - O, = Jam kerja lembur (overtime) yang terpakai pada periode t
 - 7C =Ongkos total (Rp)
- Menentukan fungsi tujuan :

Fungsi tujuan yang ditetapkan adalah meminimasi total ongkos produksi, di mana untuk model perhitungan tersebut dapat dilihat pada persamaan berikut :

Menentukan fungsi pembatas :

2)
$$\sum_{i=1}^{N} k_i X_{ii} - W_i - O_i = 0 \qquad t = 1, 2, ...T \dots (3)$$

$$i = 1, 2, ...N$$

4)
$$O_t \le (om)_t$$
 $t = 1, 2, ... T$ (5)

5)
$$X_N, I_N \ge 0$$
 dan int eger $t = 1, 2, ...T$ $i = 1, 2, ...N$ (6)

6)
$$W_t, O_t \ge 0$$
 $t = 1, 2, ...$ (7)

- 4. Perhitungan Perencanaan Produksi Disagregasi. Perencanaan produksi disagregasi adalah proses mengubah hasil rencana agregat menjadi jumlah yang harus diproduksi untuk setiap tipe produk (end item). Output dari perencanaan produksi disagregasi ini merupakan input bagi Jadwal Induk Produksi (MPS). Perencanaan produksi disagregasi ini dilakukan dengan menggunakan metode Family Set-Up.
- 5. Penentuan Jadwal Induk Produksi (MPS). Setelah dilakukan perencanaan produksi disagregasi, maka selanjutnya dari hasil perhitungan perencanaan produksi disagregasi ini merupakan input bagi Jadwal Induk Produksi (MPS). Di mana Jadwal Induk Produksi (MPS) ini merupakan acuan di mana berapa banyak unit per item yang harus diproduksi dalam setiap periodenya.
- 6. Perhitungan Perencanaan Pengadaan Bahan Baku dengan Metode Economic Order Quantity (EOQ). Untuk mengetahui jumlah kebutuhan bahan baku yang diperlukan untuk merealisasikan Jadwal Induk Produksi (MPS), maka dibutuhkan perhitungan perencanaan pengadaan bahan baku. Dari hasil perhitungan perencanaan pengadaan bahan baku ini dapat kita ketahui berapa banyak bahan baku yang dibutuhkan untuk membuat (merealisasikan) produk sesuai Jadwal Induk Produksi (MPS) dari setiap periodenya. Adapun langkah-langkah perhitungannya adalah sebagai berikut:
 - 1) Menentukan jumlah pemesanan optimal

$$EOQ = Q = \sqrt{\frac{2 \cdot R \cdot Cs}{Cc}}$$
(8)

Perhitungan total ongkos persediaan

Adapun langkah-langkah perhitungannya adalah sebagai berikut :

- 1. Perhitungan total ongkos pembelian bahan baku :
 - = (P) Harga bahan baku / Kg x (R) Total kebutuhan bahan baku(9)
- 2. Perhitungan total ongkos pesan :

Ongkos Pesan =
$$\frac{R}{Q}$$
. Cs(10)

3. Perhitungan total ongkos simpan:

Ongkos Simpan =
$$\frac{Q}{2}$$
. Co(11)

4. Perhitungan total ongkos persediaan (TC):

$$TC = PR + Cs \cdot \frac{R}{Q} + Cc \cdot \frac{Q}{2}$$
(12)

HASIL PENELITIAN

1. Unit Agregat

Berikut adalah hasil agregasi data penjualan produk Tahu pada periode minggu pertama sampai dengan minggu keempat selama bulan Januari – Februari 2010. Contoh perhitungan agregasi penjualan produk Tahu untuk ukuran kecil pada periode minggu pertama pada bulan Januari 2010:

Unit Agregat = Σ data penjualan produk masa lalu x faktor konversi = 310 x 1,00 = 310 unit agregat

Hasil agregate penjualan tahu disajikan pada tabel 1.

Tabel 1. Data Penjualan Unit Agregat Produk Tahu Januari - Februari 2010

	Dules	Takan	Data Penjuala	Jumlah (Agregat	
Periode (Minggu)	Bulan	Tahun	Kecil (Agregat)	Besar (Agregat)	Junuan (Agregat)
1			310	262,132	572
2	Janu-	2010	200	350,740	551
3	ari	2010	445	88,608	534
4			153	175,370	328
5			291	249,210	540
6	Febru-	2010	234	387,660	622
7	ari	2010	467	166,140	633
8			175	119,990	295
Tot	Total			1799,850	4075

2. Hasil Peramalan Demand

Perbandingan nilai MSE hasil peramalan dari kedua metode peramalan yang digunakan disajikan pada tabel 2.

Tabel 2. Nilai Mean of Square Error (MSE) Tiap Metode Peramalan

Metode Peramalan	α	γ	Mean of Square Error (MSE)	Metode Peramalan yang Terpilih
Brown	0,10		23896.24	Brown
Holt	0,36	0,45	39084.19	Brown

Dari tabel di atas, dapat disimpulkan bahwa metode peramalan yang terpilih untuk meramalkan permintaan pada bulan Maret-April 2010 adalah metode *Double Eksponential Smoothing* dengan Satu Parameter dari *Brown*, karena memiliki nilai *Mean of Square Error* (MSE) yang paling kecil. Tabel 3 menyajikan hasil peramalan untuk bulan April 2010 dengan menggunakan metode *Double Eksponential Smoothing* dengan Satu Parameter dari *Brown*.

(Minggu)	Bulan	Tahun	Permintana Permintana
1		Maret 2010	501
2			498
3	Ivi aret		495
4			492
5	5	489	
6		April 2010	485
7	April		482
8			479
	Total		3921

Tabel 3. Hasil Peramalan Permintaan Produk Tahu untuk bulan Maret-April 2010

3. Formulasi Perencanaan Aggregate dengan Model Programa Integer dan Solusinya

Fungsi tujuan yang ditetapkan adalah meminimasi total ongkos produksi, di mana untuk model perhitungan tersebut dapat dilihat pada persamaan berikut:

$$Min\ TC = \sum_{t=1}^{T} \left(v_t X_t + c_t I_t + r_t W_t + o_t O_t \right)$$

Xu = Jumlah produk i pada periode i

I_u = Jumlah persediaan produk i pada akhir periode t

W, = Jam kerja reguler yang terpakai pada periode t

o, = Jam kerja lembur (overtime) yang terpakai pada periode t

TC = Ongkos total (Rp)

v_{ii} = Ongkos produksi per unit untuk produk i pada periode t (Rp./ unit agregat) = Rp. 5.750 ,-/ unit agregat

c_{ii} = Ongkos persediaan per unit produk i pada periode i (Rp./ unit agregat/ minggu) = Rp. 206,295,-/ unit agregat/ minggu

r_i = Ongkos per jam-orang untuk kerja reguler pada periode t (Rp./ jam orang/ unit agregat) = Rp. 4.121,25,-/ jam orang/ unit agregat

 o, = Ongkos per jam-orang untuk kerja lembur (overtime) pada periode 1 (Rp./ jam orang/ unit agregat) = Rp. 5.495,-/ jam orang/ unit agregat

Fungsi Tujuan:

$$Min TC = \sum_{t=1}^{T} (v_t X_t + c_t I_t + r_t W_t + o_t O_t)$$

$$= 5750 (X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8) + 206,295 (I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8) +$$

$$4121,25 (W_1 + W_2 + W_3 + W_4 + W_5 + W_6 + W_7 + W_8) + 5495 (O_1 + O_2 + O_3 + O_4 + O_5 + O_6 +$$

$$O_7 + O_8)$$

Fungsi Pembatas:

1) Pembatas Pertama

Jumlah produk yang akan diproduksi setiap periode ditambah dengan persediaan awal dikurangi dengan persediaan akhir, maka harus sama dengan jumlah permintaan pada periode tersebut.

$$X_{it} + I_{i,t-1} - I_{it} = d_{it}$$
 $t = 1,2,...T$
 $i = 1,2,...N$

Untuk periode 1

$$X_I + 0 - I_I = 501$$
 atau $X_I - I_I = 501$

Selengkapnya:

$$X_I - I_I = 501$$

$$X_2 - I_2 + I_1 = 498$$

$$X_3 - I_3 + I_2 = 495$$

$$X_4 - I_4 + I_3 = 492$$

$$X_5 - I_5 + I_4 = 489$$

$$X_6 - I_6 + I_5 = 485$$

$$X_7 - I_7 + I_6 = 482$$

$$X_8 - I_8 + I_7 = 479$$

2) Pembatas Kedua

Waktu yang dibutuhkan untuk membuat produk yang telah direncanakan harus sama atau lebih kecil dari jumlah jam kerja reguler dan jam kerja lembur (overtime) pada periode tersebut.

$$\sum_{i=1}^{N} k_i X_{it} - W_t - O_t = 0 t = 1, 2, ... T$$

$$i = 1, 2, ... N$$

Selengkapnya:

$$1,099 X_I - W_I - O_I = 0$$

$$1.099 X_2 - W_2 - O_2 = 0$$

$$1.099 X_1 - W_3 - O_3 = 0$$

$$1,099 X_4 - W_4 - O_4 = 0$$

$$1,099 X_5 - W_5 - O_5 = 0$$

$$1.099 X_6 - W_6 - O_6 = 0$$

$$1.099 X_7 - W_7 - O_7 = 0$$

$$1,099 X_8 - W_8 - O_8 = 0$$

3) Pembatas Ketiga

Jam kerja reguler yang dibutuhkan harus sama dengan atau lebih kecil dari total jam kerja reguler yang tersedia.

$$W_i \leq (rm)$$

$$t = 1, 2, ...T$$

Selengkapnya:

$$W_1 \le 560$$

$$W_2 \leq 560$$

$$W_3 \le 560$$

$$W_4 \le 560$$

$$W_5 \le 560$$

$$W_6 \leq 560$$

$$W_7 \le 560$$

$$W_8 \leq 560$$

4) Pembatas Keempat

Jam kerja lembur (overtime) yang dibutuhkan harus sama dengan atau lebih kecil dari total jam kerja lembur (overtime) yang tersedia.

$$O_i \leq (om)_i$$

$$t = 1, 2, ...T$$

Selengkapnya:

$$O_1 \le 280$$

 $O_2 \le 280$

 $O_3 \le 280$

 $O_4 \le 280$

 $O_5 \le 280$

 $O_6 \le 280$

 $O_7 \le 280$

 $O_8 \le 280$

5) Pembatas Kelima

Jumlah produk i pada periode i dan jumlah persediaan produk i pada akhir periode i harus sama dengan atau lebih besar dari nol dan integer.

 X_{ii} , $I_{ii} \ge 0$ dan int eger

$$t = 1, 2, ... T$$

$$i = 1, 2, ...N$$

Selengkapnya:

 $X_{I}, I_{I} \geq 0$ dan integer

 $X_2, I_2 \geq 0$ dan integer

 X_3 , $I_3 \ge 0$ dan integer

 X_4 , $I_4 \ge 0$ dan integer

 $X_5, I_5 \ge 0$ dan integer

 X_6 , $I_6 \ge 0$ dan integer

 $X_7, I_7 \ge 0$ dan integer

 X_8 , $I_8 \ge 0$ dan integer

6) Pembatas Keenam

Jam kerja reguler yang terpakai pada periode t dan jam kerja lembur (overtime) yang terpakai pada periode t harus sama dengan atau lebih besar dari nol.

$$W_{\epsilon}, O_{\epsilon} \geq 0$$

$$t = 1, 2, ..., T$$

Selengkapnya:

$$W_I, O_I \geq 0$$

$$W_2$$
, $O_2 \geq 0$

$$W_3$$
, $O_3 \ge 0$

$$W_4, O_4 \geq 0$$

$$W_5$$
, $O_5 \geq 0$

 $W_6, O_6 \geq 0$

 $W_7, O_7 \geq 0$

 $W_8, O_8 \geq 0$

d, = Permintaan produk i selama periode t

k, = Jam kerja yang dibutuhkan untuk membuat satu unit produk i

(rm), = Jam kerja reguler total yang tersedia selama periode t

(om), = Jam kerja lembur (overtime) total yang tersedia selama periode t

T = Periode perencanaan

N = Jumlah jenis produk

Dari hasil perhitungan perencanaan produksi agregat dengan menggunakan metode *Programa*Integer solusinya disajikan pada tabel 4 dan tabel 5.

Tabel 4. Solusi Perencanaan Produksi Agregat

Periode (Minggu)	Bulan	Tahun	Jumlah Produksi (Agregat)	Jam Kerja Reguler	Jam Kerja Overtime	Persediaan (Agregat)
1		A STANSON A	501	550,559	0	0
2	Maret	2010	498	547,302	0	0
3		2010	495	544,005	0	0
4			492	540,708	0	0
5	April		489	537,411	0	0
6		2010	485	533,015	0	0
7		2010	482	529,718	0	0
8			479	526,421	0	0

Tabel 5. Solusi Total Ongkos Perencanaan Produksi Agregat

Periode (Minggu)	Bulan	Tahun	Ongkos Produksi (Agregat)	Ongkos Jam Kerja Reguler	Ongkos Jam Kerja Overtime	Ongkos Persediaan (Agregat)		
1			2.880.750	2.269.156	0	0		
2	Maret	2010	2.863.500	2.255.569	0	0		
3		2010	2.846.250	2.241.981	0	0		
4			2.829.000	2.228.393	0	0		
5		DEE-100.	2.811.750	2.214.805	0	0		
6	April	A3	A	2010	2.788.750	2.196.688	0	0
7		2010	2.771.500	2.183.101	0	0		
8		Service of	2.754.250	2.169.513	0	0		

Total Ongkos Produksi: Rp. 40.304.950,-

4. Perencanaan Disagregasi dan Jadwal Induk Produksi (MPS)

Perencanaan produksi disagregasi merupakan perencanaan yang dibuat untuk seluruh produk yang menggunakan unsur yang sama dan dirinci kedalam masing-masing produk yang berbeda. Adapun proses ini dilakukan dengan metode Family Set-Up.

$$Paktor Pr oporsi = \left(\frac{Pr \text{ oduksi Agregat Item} - i Periode t}{Total Pr oduksi Agregat Periode t}\right) \times 100\%$$

Contoh perhitungan faktor proporsi untuk periode minggu pertama pada bulan Januari 2010

- Produk Tahu ukuran kecil = 310/572 x 100% = 54%
- Produk Tahu ukuran Besar $=\frac{262,132}{572} \times 100\% = 46\%$

Untuk mengetahui jumlah yang harus diproduksi setiap end item atau produk maka dapat dilihat pada hasil (output) perhitungan perencanaan produksi disagregasi yang dapat dilihat pada kolom Qij (Adj) setiap periodenya. Berikut ini adalah data jumlah yang harus diproduksi dari produk Tahu ukuran kecil dan produk Tahu ukuran besar:

			Produl	Produk Tahu		
Periode (Minggu)	Bulan	Tahun	Kecil (cetakan)	Besar (cetakan)	Total (cetakan)	
1	Maret	100 RESIDENCE	271	124	396	
2		ret 2010	181	172	353	
3			413	45	457	
4			229	142	372	
5			263	122	386	
6	A	2010	183	164	346	
7	April	2010	356	69	424	
8			284	106	390	
	Total		2180	944	3124	

Tabel 6. Jadwal Induk Produksi (MPS)

5. Perencanaan Pengadaan Bahan Baku

Untuk menentukan jumlah kebutuhan bahan baku yang diperlukan untuk pembuatan produk Tahu ukuran kecil dan ukuran besar didapat pada perhitungan sebagai berikut:

 Total produk Tahu yang akan diproduksi tiap periode x Banyaknya kebutuhan bahan baku produk Tahu per Cetakan Contoh perhitungan perencanaan pengadaan bahan baku yang diperlukan untuk pembuatan produk Tahu ukuran kecil dan ukuran besar, dalam hal ini berdasarkan periode (minggu) yaitu sebagai berikut :

Periode (minggu) 1 bulan Maret 2010

- Safety stock : 10% dari total produk Tahu yang akan diproduksi tiap periode
 = 10% x 396 Cetakan = 39,6 ≈ 40 Cetakan
- Total produk Tahu yang akan diproduksi pada periode (minggu) 1 bulan Maret 2010 adalah:
 - = Total produk Tahu yang akan diproduksi pada periode (minggu) 1 bulan Maret 2010 + Safety Stock
 - =396 Cetakan + 40 Cetakan = 436 Cetakan

Jumlah kebutuhan untuk masing-masing bahan baku yaitu :

Bahan Baku Kacang Kedelai

Jumlah kebutuhan bahan baku kacang kedelai adalah :

- =Total produk Tahu yang akan diproduksi pada periode (minggu) 1 bulan Maret 2010 x Banyaknya kebutuhan bahan baku kacang kedelai per Cetakan produk Tahu
- =436 Cetakan x 2 Kg Kacang Kedelai per Cetakan = 872 Kg Kacang Kedelai
- Bahan Baku Garam

Jumlah kebutuhan bahan baku garam adalah:

- =Total produk Tahu yang akan diproduksi pada periode (minggu) 1 bulan Maret 2010 x Banyaknya kebutuhan bahan baku garam per Cetakan produk Tahu
- =436 Cetakan x 0,1 Kg Garam per Cetakan =43,6 Kg Garam
- Bahan Baku Kunyit

Jumlah kebutuhan bahan baku kunyit adalah:

- Total produk Tahu yang akan diproduksi pada periode (minggu) 1 bulan Maret 2010 x
 Banyaknya kebutuhan bahan baku kunyit per Cetakan produk Tahu
- = 436 Cetakan x 0,5 Kg Garam per Cetakan = 218 Kg Kunyit

Hasil perhitungan perencanaan pengadaan bahan baku untuk pembuatan produk Tahu ukuran kecil dan ukuran besar pada tiap periodenya disjaikan pada tabel 7.

Tabel 7. Perencanaan Pengadaan Bahan Baku Pembuatan Produk Tahu Ukuran Kecil dan Produk Tahu Ukuran Besar

No	Periode (Minggu)					Total				
	Bahan Baku	1	2	3	4	5	6	7	8	(kg)
1	Kacang Kedelai	778	1006	820	850	762	934	858	0	6008
2	Garam	39	51	41	43	39	47	43	0	303
3	Kunyit	195	252	205	213	191	234	215	0	1505

6. Perhitungan Total Ongkos Persediaan dengan Metode Economic Order Quantity (EOQ)

Data ongkos pesan (Cs) dalam satu kali pemesanan dan ongkos simpan (Cc) per Kg selama 8 periode (minggu) atau 2 bulan untuk masing-masing jenis bahan baku yaitu sebagai berikut :

Tabel 8. Ongkos Pesan (Cs) dan Ongkos Simpan (Cc)

No	Bahan Baku	Ongkos Pesan (Cs)	Ongkos Simpan (Cc)
1	Kacang Kedelai	Rp. 58.000 ,-	Rp. 52 ,-
2	Garam	Rp. 13.000,-	Rp. 10,-
3	Kunyit	Rp. 14.000 ,-	Rp. 20,-

Selanjutnya adalah melakukan perhitungan total ongkos persediaan dengan menggunakan metode *Economic Order Quantity* (EOQ). Adapun langkah-langkah perhitungan dan contoh perhitungannya adalah sebagai berikut:

Menentukan Jumlah Pemesanan Optimal

Perhitungan ukuran jumlah pemesanan optimal atau Economic Order Quantity (EOQ):

$$EOQ = Q = \sqrt{\frac{2 \cdot R \cdot Cs}{Cc}}$$

a. Bahan Baku Kacang Kedelai

EOQ = Q =
$$\sqrt{\frac{2 \cdot R \cdot Cs}{Cc}}$$

= $\sqrt{\frac{2 \cdot (6008) \cdot (58000)}{52}}$
= 3660,938 Kg

Dari hasil jumlah pemesanan optimal ini, maka pemesanan jenis bahan baku kacang kedelai untuk setiap satu kali pesan yaitu sebesar 3660,938 Kg. Sehingga dari hasil perhitungan jumlah pemesanan optimal tersebut dapat diketahui jumlah frekuensi pemesanan selama 8 periode (minggu) atau selama 2 bulan yaitu sebagai berikut:

$$F = \sqrt{\frac{\text{Cc. R}}{2.\text{Cs}}} = \frac{R}{Q}$$
$$= \frac{6008}{3660.938} = 1,641 \approx 2 \text{ kali}$$

Jadi frekuensi pemesanan selama 8 periode (minggu) atau selama 2 bulan untuk bahan baku kacang kedelai yaitu sebanyak 2 kali.

b. Bahan Baku Garam

EOQ = Q =
$$\sqrt{\frac{2 \cdot R \cdot Cs}{Cc}}$$

= $\sqrt{\frac{2 \cdot (303) \cdot (13000)}{10}}$
= 887.581 Kg

Dari hasil jumlah pemesanan optimal ini, maka pemesanan jenis bahan baku garam untuk setiap satu kali pesan yaitu sebesar 887,581 Kg.

Sehingga dari hasil perhitungan jumlah pemesanan optimal tersebut dapat diketahui jumlah frekuensi pemesanan selama 8 periode (minggu) atau selama 2 bulan yaitu sebagai berikut:

$$F = \sqrt{\frac{Cc \cdot R}{2 \cdot Cs}} = \frac{R}{Q}$$

$$= \frac{303}{887,581} = 0,341 \approx 1 \text{ kali}$$

Jadi frekuensi pemesanan selama 8 periode (minggu) atau selama 2 bulan untuk bahan baku garam yaitu sebanyak 1 kali.

c. Bahan Baku Kunyit

EOQ = Q =
$$\sqrt{\frac{2 \cdot R \cdot Cs}{Cc}}$$

= $\sqrt{\frac{2 \cdot (1505) \cdot (14000)}{20}}$
= 1451,551 Kg

Dari hasil jumlah pemesanan optimal ini, maka pemesanan jenis bahan baku kunyit untuk setiap satu kali pesan yaitu sebesar 1451,551 Kg.

Sehingga dari hasil perhitungan jumlah pemesanan optimal tersebut dapat diketahui jumlah frekuensi pemesanan selama 8 periode (minggu) atau selama 2 bulan yaitu sebagai berikut:

$$F = \sqrt{\frac{\text{Cc} \cdot R}{2 \cdot \text{Cs}}} = \frac{R}{Q}$$
$$= \frac{1505}{1451.551} = 1,037 \approx 2 \text{ kali}$$

Jadi frekuensi pemesanan selama 8 periode (minggu) atau selama 2 bulan untuk bahan baku kunyit yaitu sebanyak 2 kali.

Ringkasan hasil perhitungan di atas disajikan pada tabel 9.

Tabel 9. Hasil Perhitungan Jumlah Pemesanan Optimal Masing-masing Jenis Bahan Baku

No	Bahan Baku	Jumlah Pemesanan Optimal (Kg)
1	Kacang Kedelai	3660,938
2	Garam	887,581
3	Kunyit	1451,551

2. Perhitungan Total Ongkos Persediaan

Sebelum menghitung total ongkos persediaan, maka total harga pembelian, total ongkos pesan, dan total ongkos simpan harus dihitung terlebih dahulu yaitu sebagai berikut :

Perhitungan Total Ongkos Pembelian Bahan Baku

Total ongkos pembelian untuk masing-masing jenis bahan baku didapat dari jumlah perhitungan harga untuk masing-masing jenis bahan baku per Kg dikalikan dengan total kebutuhan untuk masing-masing jenis bahan baku selama 8 periode (minggu) atau selama 2 bulan (Maret-April 2010).

- Total Ongkos Pembelian Bahan Baku Kacang Kedelai
 - = Rp. 2.600 ,- x 6008 Kg = Rp. 15.620.800 ,-
- Total Ongkos Pembelian Bahan Baku Garam
 - = Rp. 500 ,- x 303 Kg = Rp. 151.500 ,-
- c. Total Ongkos Pembelian Bahan Baku Kacang Kedelai
 - = Rp. 1.000 ,- x 1505 Kg = Rp. 1.505.000 ,-

Perhitungan Total Ongkos Pesan

Ongkos Pesan =
$$\frac{R}{Q}$$
. Cs

Sehingga diperoleh ongkos pesan untuk masing-masing jenis bahan baku yaitu sebagai berikut:

a. Total Ongkos Pesan Bahan Baku Kacang Kedelai

$$=\frac{R}{Q}$$
. Cs $=\frac{6008}{3660,938}$. Rp. 58.000, $-=$ Rp. 95.184,369,

b. Total Ongkos Pesan Bahan Baku Garam

$$=\frac{R}{Q}$$
, Cs $=\frac{303}{887,581}$, Rp.13.000, $-=$ Rp. 4.437,905,

c. Total Ongkos Pesan Bahan Baku Kacang Kedelai

$$=\frac{R}{Q}$$
. Cs $=\frac{1505}{1451,551}$. Rp. 14.000, $-=$ Rp. 14.515,509, $-$

3) Perhitungan Total Ongkos Simpan

Ongkos Simpan =
$$\frac{Q}{2}$$
. Ce

Sehingga diperoleh ongkos simpan untuk masing-masing jenis bahan baku yaitu sebagai berikut:

a. Total Ongkos Simpan Bahan Baku Kacang Kedelai

$$=\frac{Q}{2}$$
, Cc $=\frac{3660,938}{2}$, Rp. 52, $-=$ Rp. 95.184,369,

Total Ongkos Simpan Bahan Baku Garam

$$=\frac{Q}{2}$$
. Cc $=\frac{887,581}{2}$. Rp. 10, $-=$ Rp. 4.437,905,

c. Total Ongkos Simpan Bahan Baku Kacang Kedelai

$$=\frac{Q}{2}$$
. Cc $=\frac{1451,551}{2}$. Rp. 20, $-=$ Rp. 14.515,509,

Total ongkos persediaan dapat dihitung sebagai berikut:

$$TC = PR + Cs \cdot \frac{R}{Q} + Cc \cdot \frac{Q}{2}$$

Berikut perhitungan total ongkos persediaan untuk masing-masing jenis bahan baku :

a. Total Ongkos Persediaan Bahan Baku Kacang Kedelai

$$TC = PR + Cs \cdot \frac{R}{Q} + Cc \cdot \frac{Q}{2}$$

Total Ongkos Persediaan Bahan Baku Garam

$$TC = PR + Cs \cdot \frac{R}{Q} + Cc \cdot \frac{Q}{2}$$

TC = Total harga pembelian + Total ongkos pesan + Total ongkos simpan = Rp. 151.500, - + Rp. 4.437,905, - + Rp. 4.437,905, - = Rp. 160.375,810, -

c. Total Ongkos Persediaan Bahan Baku Kunyit

$$TC = PR + Cs \cdot \frac{R}{Q} + Cc \cdot \frac{Q}{2}$$

TC = Total harga pembelian + Total ongkos pesan + Total ongkos simpan = Rp. 1.505.000, - + Rp. 14.515,509, - + Rp. 14.515,509, - = Rp. 1.534.031,018

Dari total ongkos pesan dan total ongkos simpan selama 8 periode (minggu) atau selama 2 bulan yang tertera pada pengolahan data, kedua total ongkos tersebut menunjukkan nilai yang sama. Untuk lebih jelasnya dapat dilihat pada tabel berikut ini:

No	Bahan Baku	Total Ongkos Pembelian	Total Ongkos Pesan	Total Ongkos Simpan
1	Kacang Kedelai	Rp. 15.620.800 ,-	Rp. 95.184,369 ,-	Rp. 95.184,369 ,-
2	Garam	Rp. 151.500 ,-	Rp. 4.437,905 ,-	Rp. 4.437,905,-
3	Kunyit	Rp. 1.505,000 ,-	Rp. 14.515,509 ,-	Rp. 14.515,509 ,-
Kum	latif Total Onekos	Rp. 17.277.300 -	Rp. 114.137.783 -	Rp. 114.137.783

Tabel 10. Hasil Perhitungan Total Ongkos Persediaaan Maret-April 2010

KESIMPULAN

Kesimpulan penelitian ini adalah sebagai berikut:

- Hasil Perencanaan Produksi Aggregat dengan model Integer Programming diperoleh Total ongkos produksi yang minimum adalah sebesar Rp. 40.304.950,-.
- 2. Untuk mendapatkan Jadwal Induk Produksi (MPS) terlebih dahulu harus melakukan perencanaan produksi disagregasi. Pada perencanaan produksi agregat terlihat bahwa keputusan tentang jumlah produksi tidak bersifat operasional. Hal tersebut disebabkan jumlah produksi yang dihasilkan masih dalam unit agregat. Oleh karena itu, perencanaan produksi disagregasi bermaksud untuk mengubah satuan agregat kedalam satuan end item.

Metode yang dipakai dalam perencanaan produksi disagregasi ini adalah dengan menggunakan metode Family Set-Up, di mana ongkos set-up sangat penting dalam setiap periode untuk famili produksi.

- 3. Berdasarkan hasil perhitungan total ongkos persediaan dengan metode Economic Order Quantity (EOQ) diperoleh jumlah pemesanan optimal, frekuensi pemesanan dan total ongkos persediaan untuk masing-masing jenis bahan baku selama 8 periode (minggu) atau selama 2 bulan yaitu:
 - a. Bahan baku kacang kedelai dengan jumlah pemesanan optimal sebesar 3660,938 Kg, dengan frekuensi pemesanan sebanyak 2 kali dan total ongkos persediaan yaitu sebesar Rp. 15.811.168,740 ,-.
 - b. Bahan baku garam dengan jumlah pemesanan optimal sebesar 887,581 Kg, dengan frekuensi pemesanan sebanyak 1 kali dan total ongkos persediaan yaitu sebesar Rp. 160.375,810,-.
 - c. Bahan baku kunyit dengan jumlah pemesanan optimal sebesar 1451,551 Kg, dengan frekuensi pemesanan sebanyak 2 kali dan total ongkos persediaan yaitu sebesar Rp. 1.534.031,018,-.

DAFTAR PUSTAKA

- Ciarallo, F., Akella, R., and Morton, T.E. (1994). A Periodic Review, Production-Planning Model with Uncertain Capacity, Management Science, 40(3), 320-332.
- DeCroix, G.A. and A. Arreola-Risa. (1998). Optimal Production and Inventory Policy for MultipleProducts Under Resource Constraints, Management Science, 44(7), 950-961, 1998.
- Federgruen, A. and Zipkin, P. (1986). An Inventory Model with Limited Production Capacity and Uncertain Demands I: The Average Cost Criterion, Mathematics of Operations Research, 11(2), 193-207.
- Giménez, C. & Ventura, E. (2005). Logistics-production, logistics-marketing and external integration: Their impact on performance. International Journal of Operations & Production Management, vol. 25, no. 1, pp. 20-38.
- Glasserman, P. and S. Tayur, (1994). The stability of a capacitated, multi-echelon production-inventory system under a base-stock policy, Operations Research, 42(5), 913-925.
- Render, B. and Heizer J. (2001). "Prinsip-prinsip Manajemen Operasi", Terjemahan Kresnohadi Ariyoto. Jakarta: Salemba Empat.
- Smith, Spencer B. (1989). "Computer-Based Production and Inventory Control", Prentice-Hall Inc., New Jersey.
- Tersine, R. J. (1994). "Principles of Inventory and Materials Management", Prentice-Hall Inc., New Jersey.
- Waters-Fuller, N., (1995). JIT Purchasing and Supply: A Review of the Literature. International Journal of Operations and Production Management, Vol. 15 No. 9, pp. 220-236.