

Pollution Smollution...

Partner Mission:

What's hurting us? How? What do we do?

Confidence with Causation

Geographic Data

Causal Health
Outcomes

PM_{2.5} Predictions

Sensor Network

Goal is to produce accurate PM_{2.5}
 values for the entire US

PM_{2.5} Sensors

- Daily PM_{2.5} outputs from 2,156 monitors over the course of 16 years (2000 - 2016)
- Sensors tend to be located along the coasts and in more heavily populated areas

Model Inputs - Geographic Data

Weather, topography, and satellite information

for areas across the US

○ ~18 GB

- Examples include precipitation rate, air temperature, soil moisture content, and UV index
- Significant proportion of missing data all variables have at least some missing values

Things to consider

- The data has spatial and temporal components that we need to consider when determining the structure of our model
 - RNNs, CNNs?

 The areas without sensors may be quite different than the areas with sensors, so need to concern ourselves with degree of extrapolation of PM_{2.5} predictions

Promising Leads

- Properties of locale of interest
 - Elevation, road density, vegetation, natural features
 - Satellite measurements of atmospheric properties
- Spatial and temporal nearby terms

Promising Leads - Aerosol Depth

Promising Leads - Nearby Terms

Promising Leads - Seasonal Variations

Extensions

Incorporating External Data

Prediction Margin of Error

