2022年数学全国乙卷(理科)

一、单选题(本大题共12小题,共60分)

1. 设全集 $U = \{1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$.5},集合 <i>M</i> 满足 C _U <i>M</i>	= {1,3},则	
A. $2 \in M$	B. $3 \in M$	C. $4 \notin M$	D. $5 \notin M$
2. 已知 $z = 1 - 2i$,且 z	$+a\bar{z}+b=0$,其中 a ,	b为实数,则	
A. $a = 1$, $b = -2$ C. $a = 1$, $b = 2$		B. $a = -1$, $b = 2$ D. $a = -1$, $b = -2$	
3. 已知向量 a , b 满足 $ \vec{a}$	$ \vec{b} = 1, \vec{b} = \sqrt{3}, \vec{a} = \sqrt{3}$	$2\overrightarrow{b} =3, \mathbb{M}\overrightarrow{a}\cdot\overrightarrow{b}=$	
A2	B1	C. 1	D. 2
4. 嫦娥二号卫星在完成 造行星.为研究嫦娥二 $1 + \frac{1}{\alpha_1 + \frac{1}{\alpha_2}}, \ b_3 = 1 + \frac{1}{\alpha_1 + \frac{1}{\alpha_2}}$	二号绕日周期与地球绕日	厅深空探测,成为我国第 \exists 周期的比值,用到数 $oldsymbol{\sigma}$ 类推,其中 $lpha_k$ \in N^* (k $=$	$\{b_n\}: b_1 = 1 + \frac{1}{n}, b_2 = 1$
A. $b_1 < b_5$	B. $b_3 < b_s$	C. $b_6 < b_2$	D. $b_4 < b_7$
5. 设 F 为抛物线 C : y^2 =	-4 <i>x</i> 的焦点,点 <i>A</i> 在 <i>C</i> 」	上, 点B(3,0), 若 AF	$= BF , \;\; \mathbb{M} AB =$
A. 2	B. $2\sqrt{2}$	C. 3	D. $3\sqrt{2}$
6. 执行右边的程序框图	,输出的 $n=$		
無数 $a=1,b=1,n=1$ (編入 $a=1,b=1,n=1$) (a $b=b+2a$) (a $a=b-a,n=n+1$) (本) (本) (本) (本) (本) (表) (表)			
A. 3	B. 4	C. 5	D. 6
7. 在正方体 <i>ABCD</i>	$A_1B_1C_1D_1$ 中, E , F 2	分别为 AB , BC 的中点	,则
A. 平面 B_1EF 上平同C. 平面 B_1EF /平	_	B. 平面 <i>B</i> ₁ <i>EF</i> ⊥平面 D. 平面 <i>B</i> ₁ <i>EF</i> / /平面	_
8. 已知等比数列 $\{a_n\}$ 的	前3项和为168, $a_2 - a_3$	$a_5 = 42$,则 $a_6 =$	
A. 14	B. 12	C. 6	D. 3
9. 已知球 <i>O</i> 的半径为1, 锥的体积最大时,其		底面的四个顶点均在球 <i>C</i>)的球面上,则当该四核
A. $\frac{1}{3}$	B. $\frac{1}{2}$	C. $\frac{\sqrt{3}}{3}$	D. $\frac{\sqrt{2}}{2}$

10.	某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立. 已知该棋手与甲、乙、丙比赛获胜的概率分别为 $p_1,\ p_2,\ p_3,\ $ 且 $p_3>p_2>p_1>0$.记该棋手连胜两盘的概率为 $p_1,\ $ 则
	A. p 与该棋手和甲、乙、丙的比赛次序无关
	B. 该棋手在第二盘与甲比赛, p最大
	C. 该棋手在第二盘与乙比赛, p 最大
	D. 该棋手在第二盘与丙比赛,p最大
11.	对曲线 C 的两个焦点为 F_1 , F_2 , 以 C 的实轴为直径的圆记为 D , 过 F_1 作 D 的切线与 C 交于

11. 对曲线C的两个焦点为 F_1 , F_2 ,以C的实轴为直径的圆记为D,过 F_1 作D的切线与C交于M,N两点,且 $\cos \angle F_1$ N $F_2 = \frac{3}{5}$,则C的离心率为

A. $\frac{\sqrt{5}}{2}$ B. $\frac{3}{2}$ C. $\frac{\sqrt{13}}{2}$ D. $\frac{\sqrt{17}}{2}$

12. 已知函数 f(x), g(x)的定义域均为 R, 且 f(x)+g(2-x)=5, g(x)-f(x-4)=7, 若 y=g(x)的图像关于直线 x=2对称, g(2)=4,则 $\sum_{k=1}^{22}f(k)=$

A. -21 B. -22 C. -23 D. -24

二、填空题(本大题共4小题,共20.0分)

13. 从甲、 乙等5名同学中随机选3名参加社区服务工作, 则甲、 乙都入选的概率为

14. 过四点(0,0), (4,0), (-1,1), (4,2)中的三点的一个圆的方程为_____.

15. 记函数 $f(x)=\cos(\omega\,x+\varphi)$ $(\omega>0,0<\varphi<\pi)$ 的最小正周期为T, 若 $f(T)=\frac{\sqrt{3}}{2}$, $x=\frac{\pi}{9}$ 为 f(x)的零点,则 ω 的最小值为______.

16. 已知 $x = x_1$ 和 $x = x_2$ 分别是函数 $f(x) = 2 a^x - e x^2 (a > 0$ 且 $a \neq 1$)的极小值点和极大值点,若 $x_1 < x_2$,则a的取值范围是______.

三、解答题(本大题共7小题,共80分)

(一) 必考题: 共 60 分.

17. 记 $\triangle ABC$ 的内角A、B、C的对边分别为a、b、c, 已知 $\sin C\sin(A-B) = \sin B\sin(C-A)$.

(1)证明: $2a^2 = b^2 + c^2$;

(2)若a=5, $\cos A=\frac{25}{31}$, 求 ΔABC 的周长.

18. 如图,四面体ABCD中 $AD\perp CD$,AD=CD, $\angle ADB=\angle BDC$,E为AC中点.

(1)证明:平面BED 上平面ACD;

(2)设AB=BD=2, $\angle ACB=60^{\circ}$,点F在BD上,当 $\triangle AFC$ 的面积最小时,求CF与平面ABD所成角的正弦值.

19. 某地经过多年的环填治理,已将就山改造成了绿水青山. 为估计一林区某种树木的总材积量,随机选取了10棵这种村木,测量每棵村的根部横截而积(心位: m^2)和材积量(m^3),得到如下数据:

样本号i	1	2	3	4	5	6	7	8	9	10	总和
根部横截面积xi	0.04	0.06	0.04	0.08	0.08	0.05	0.05	0.07	0.07	0.06	0.6
材积量 y_i	0.25	0.40	0.22	0.54	0.51	0.34	0.36	0.46	0.42	0.40	3.9

并计算得 $\sum_{i=1}^{10} x_i^2 = 0.038$, $\sum_{i=1}^{10} y_i^2 = 1.6158$, $\sum_{i=1}^{10} x_i y_i = 0.2474$.

(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量:

(2) 求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);

(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为 $186m^2$.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.

附:相关系数 $r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}, \sqrt{1.896} \approx 1.377.$

20. 已知椭圆E的中心为坐标原点,对称轴为x轴,y轴,且过A(0,-2), $B(\frac{3}{2},-1)$ 两点.

(1)求E的方程;

(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x的直线与线段A B交于点T,点H满足 $\overrightarrow{MT}=\overrightarrow{TH}$,证明:直线H N过定点.

- 21. 已知函数 $f(x) = \ln(1+x) + axe^{-x}$.
 - (1)当a=1时,求曲线f(x)在点(0, f(0))处的切线方程:
 - (2)若f(x)在区间(-1,0), $(0,+\infty)$ 各恰有一个零点,求a的取值范围.

(二) 选考题: 共 10 分

- 22. 在直角坐标系x O y中,曲线C的方程为 $\begin{cases} x = \sqrt{3}\cos 2t \\ y = 2\sin t \end{cases}$ (t为参数). 以坐标原点为极点,x轴 正半轴为极轴建立极坐标系,已知直线l的极坐标方程为 $\rho\sin(\theta + \frac{\pi}{3}) + m = 0$.
 - (1)写出 l 的直角坐标方程:
 - (2)若l与C有公共点,求m的取值范围.

- 23. 已知a.b.c为正数,且 $a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}}=1$,证明:
 - (1) $a b c \leq \frac{1}{9}$;

$$(2)\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \le \frac{1}{2\sqrt{abc}}.$$