

Europe 2023

Power-aware Scheduling in Kubernetes

Yuan Chen, Apple

- Kubernetes scheduling is primarily focused on the allocation of compute resources.
- Server power consumption can exceed the power envelope and lead to outage and costly downtime!
 - Increasing cluster & server utilization.
 - Over-subscribing power infrastructure.
 - Miscorrelation between workload resource requests and actual power consumptions.

Source: https://www.velir.com/-/media/files/pdfs/uptime-annualoutageanalysis2021.pdf

What?

Incorporate power-awareness into Kubernetes scheduling to protect power supply infrastructure in Kubernetes clusters.

- Power capping: enforce power budget for individual servers and racks
- Power-aware load balancing: distribute power consumption across servers and racks

- Power infrastructure topology definition and data
- Power metrics and monitoring
- Power model
- Power-aware scheduling algorithms
 - Power capping: reject nodes that may exceed server or rack power budget
 - Load balancing: preferentially choose nodes & racks with lower power consumption

Summary

- Define and standardize power data in Kubernetes: power topology, monitoring and metrics
- Develop new scheduling algorithms and implement as scheduler plugins
- Leverage the existing work in power management

Collaborations power Kubernetes!

North America 2021

Please scan the QR Code above to leave feedback on this session