الدورة العادية للعام 2011	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل: ست

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - عيمتطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I-(2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

			Réponses	
N°	Questions	a	b	c
1	$\int_{-a}^{a} \left(x^{5} - \sin x \right) dx =$	$\frac{a^6}{6}$	$\frac{a^6}{24}$	0
2	$\operatorname{arg}\left(\frac{e^{i\pi}}{i}\right) =$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π
3	Les racines de l'équation $z + z ^2 = 3 + i$ sont :	1 + i et i	1+i et $-2+i$	$ \begin{array}{c} -2 + i \\ et \\ -i \end{array} $
4	$Siu = z - 2\overline{z} + i$, alors $\overline{iu} =$	$i\overline{z} + 2iz + 1$	$i\overline{z} - 2iz + 1$	$i\overline{z}-2iz-1$
5	$\lim_{x \to -\infty} \left(x + e^{-x} \right) =$	+∞	0	8
6	Si $\alpha = \arcsin\left(\sin\frac{7\pi}{5}\right)$, alors $\alpha =$	$\frac{7\pi}{5}$	$-\frac{3\pi}{5}$	$-\frac{2\pi}{5}$

II-(2 points)

On considère un cube ABCDEFGH.

L'espace est rapporté au repère orthonormé direct (A ; \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE}) .

On désigne par I le milieu de [EF] et par K le centre du carré ADHE.

1) a-Calculer l'aire du triangle IGA.

b-Calculer le volume du tétraèdre ABIG.

c-Déduire que la distance du point B au plan (AIG) est égale à $\frac{\sqrt{6}}{3}$.

- 2) a- Ecrire une équation du plan (AFH).
 - b- La droite (CE) coupe le plan (AFH) en un point L. Calculer les coordonnées de L.
 - c-Montrer que L est un point de la droite (FK). Que représente le point L pour le triangle AFH ?

III-(3 points)

On dispose de deux urnes U_1 et U_2 .

 U_1 contient quatre boules rouges et trois boules vertes.

U₂ contient deux boules rouges et une boule verte.

A-

On tire au hasard une boule de U_1 et on la met dans U_2 , puis on tire au hasard une boule de U_2 .

On désigne par X la variable aléatoire égale au nombre de boules rouges de l'urne U_2 après les deux tirages précédents.

- 1) Démontrer que la probabilité P(X = 2) est égale à $\frac{9}{14}$.
- 2) Donner les trois valeurs de X et déterminer la loi de probabilité de X.

B-

Dans cette partie les boules rouges portent chacune le nombre 1 et les boules vertes portent chacune le nombre -1.

On choisit une urne au hasard puis on tire au hasard et simultanément deux boules de l'urne choisie.

On considère les événements suivants :

E: « L'urne choisie est l'urne U₁ »

F: « La somme des nombres portés par les deux boules tirées est égale à 0 ».

- 1) a- Calculer les probabilités P (F/E) et P (F/ \overline{E}).
 - b- Déduire que P(F) = $\frac{13}{21}$.
- 2) On désigne par G l'événement « La somme des nombres portés par les deux boules tirées est égale à -2». Calculer P (G).

IV-(3 points)

Dans le plan rapporté à un repère orthonormé (O; i, j), on considère la droite (d) d'équation x = -4 et la parabole (P) de foyer O et de directrice (d).

2

- 1) a- Montrer qu'une équation de (P) est $y^2 = 8x + 16$. Déterminer le sommet S de (P).
- b- Tracer (P).
- c- Soit D le domaine limité par (P) et l'axe des ordonnées. Calculer l'aire de D.
- d- Calculer le volume du solide engendré par la rotation de D autour de l'axe des abscisses.

- 2) Soit A (6; 8) un point de (P).
 - a- Ecrire une équation de la tangente (T_A) en A à (P).
 - b- La droite (OA) recoupe (P) au point B. Calculer les coordonnées de B et écrire une équation de la tangente (T_B) en B à (P).
 - c- Vérifier que (T_A) et (T_B) sont perpendiculaires et qu'elles se coupent sur la directrice de (P).
- 3) Soit $M(x_0; y_0)$ un point de (P) distinct de S.

N est le projeté orthogonal de M sur la tangente en S à (P).

La perpendiculaire menée de N à la droite (MS) coupe l'axe des abscisses en I.

Montrer que l'abscisse de I est indépendante de x_o et y_o.

V-(3 points)

Dans la figure ci-dessus, ABCD et AEFG sont deux rectangles directs où $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} \pmod{2\pi}$.

S est la similitude plane directe qui transforme B en E et C en F;

T est la translation de vecteur \overrightarrow{EF} ;

f est la similitude définie par T o S.

- 1) a-Déterminer le rapport k et un angle α de $S. \,$
 - b-Déterminer l'image par S de D.
 - c-Démontrer que A est le centre de S.
- 2) a- Déterminer f(B) et f(A).
 - b- Préciser le rapport et un angle de la similitude f.
 - c- Construire le centre W de f.
- 3) Le plan complexe est muni d'un repère orthonormé direct (A; $\frac{1}{6}\overline{AB}$, $\frac{1}{4}\overline{AE}$).
 - a- Ecrire la forme complexe de f.
 - b- En déduire l'affixe du point W.
- 4) Soit F_1 l'image de F par S et pour tout entier naturel n non nul on désigne par F_{n+1} l'image de F_n par S. Déterminer les valeurs de n pour lesquelles les points A, F_1 et F_n sont alignés.

3

VI- (7 points)

Soit f la fonction définie sur $]-\infty$; 5[par $f(x) = \ln (5-x)$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j}).

- 1) a- Calculer $\lim_{x\to 5} f(x)$, $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement les résultats obtenus.
 - b- Dresser le tableau de variations de f sur $]-\infty$; 5[.
- 2) a- Ecrire une équation de la tangente (T) à (C) au point d'abscisse 4.
 - b- Tracer (T) et (C).
 - c- (C) coupe la droite d'équation y = x en un point d'abscisse α . Vérifier que $1 < \alpha < 2$.
- 3) f admet une fonction réciproque f^{-1} . On désigne par (C') la courbe représentative de f^{-1} dans le même repère que (C).
 - a- Montrer que la tangente (T) à (C) est aussi tangente à (C').
 - b-Tracer (C').
- 4) Soit h la fonction définie sur $]-\infty$; 5[par $h(x) = (5-x) \ln(5-x)$.
 - a- Vérifier que h'(x) + f(x) = -1 et déduire une primitive de la fonction f.
 - b- On désigne par $A(\alpha)$ l'aire du domaine limité par (C), l'axe des abscisses et les deux droites d'équations $x = \alpha$ et x = 4. Prouver que $A(\alpha) = -\alpha^2 + 6\alpha 4$.
- 5) Soit l'intervalle I = [0; 3].
 - a- Montrer que f(I) est inclus dans I.
 - b- Montrer que, pour tout x de I, on $a|f'(x)| \le \frac{1}{2}$.
 - c- En déduire que, pour tout x de I, $|f(x) \alpha| \le \frac{1}{2} |x \alpha|$.
- 6) On considère la suite (U_n) définie par $U_0 = 1$ et, pour tout $n \ge 0$, $U_{n+1} = f(U_n)$.
 - a- Démontrer par récurrence sur n que, pour tout $\,n\geq 0\,,\,U_n$ appartient à $\,$ I.
 - b- Etablir que, pour tout $n \ge 0$, $\left| U_{n+1} \alpha \right| \le \frac{1}{2} \left| U_n \alpha \right|$.
 - c- Démontrer que, pour tout $n \ge 0$, $\left| U_n \alpha \right| \le \frac{1}{2^n}$ et déduire que la suite (U_n) est convergente.

4

Q1	Corrigé		N
1	Intégrale d'une fonction impaire $sur[-a,a]$ est nulle.	c	1
2	$\operatorname{arg}\left(\frac{e^{i \pi}}{i}\right) = \operatorname{arg}\left(\frac{-1}{i}\right) = \operatorname{arg}\left(i\right) = \frac{\pi}{2}$.	b	0,5
3	$x + iy + x^2 + y^2 = 3 + i$, d'où $y = 1$ et $x^2 + y^2 + x = 3$; $x^2 + x - 2 = 0$. Donc $x = 1$ ou $x = -2$ d'où $z = 1 + i$ ou $z = -2 + i$.	b	1
4	$\overline{\mathbf{u}} = (\overline{\mathbf{z} - 2\overline{\mathbf{z}} + \mathbf{i}}) = \overline{\mathbf{z}} - 2\mathbf{z} - \mathbf{i} \; ; \; i\overline{\mathbf{u}} = i\overline{\mathbf{z}} - 2i\mathbf{z} + 1.$	b	0,5
5	$\lim_{x \to -\infty} \left(x + e^{-x} \right) = \lim_{t \to +\infty} \left(-t + e^{t} \right) = -\lim_{t \to +\infty} e^{t} \left(\frac{t}{e^{t}} - 1 \right) = +\infty.$	a	0,5
6	$\alpha = \arcsin\left(\sin\frac{7\pi}{5}\right) = -\frac{2\pi}{5} \operatorname{car} - \frac{2\pi}{5} \in \left[-\frac{\pi}{2} ; \frac{\pi}{2}\right] \operatorname{et} \sin\left(-\frac{2\pi}{5}\right) = \sin\frac{7\pi}{5}.$	c	0,5

Q2	Corrigé	N
1a	$I(\frac{1}{2};0;1) , G(1;1;1) ; \overrightarrow{IG}(\frac{1}{2};1;0) \text{ et } \overrightarrow{IA}(-1/2;0;-1).$ $\overrightarrow{IG} \wedge \overrightarrow{IA} = -\overrightarrow{i} + \frac{1}{2}\overrightarrow{j} + \frac{1}{2}\overrightarrow{k} . \text{ Aire}(IGA) = \frac{1}{2}\sqrt{1+1/4+1/4} = \frac{\sqrt{6}}{4}.$	0,5
1b	$\overrightarrow{AB}(1; 0; 0)$; $\overrightarrow{AB}.(\overrightarrow{IG} \wedge \overrightarrow{IA}) = -1$. Le volume du tétraèdre ABIG est $V = \frac{1}{6} \overrightarrow{AB}.(\overrightarrow{IG} \wedge \overrightarrow{IA}) = \frac{1}{6}$. Soit d la distance de B au plan (AIG).	0,5
1c	On a aussi $V = \frac{1}{3} \text{Aire}(IGA) \times d = \frac{1}{3} \cdot \frac{\sqrt{6}}{4} \cdot d$. D'où $d = \frac{\sqrt{6}}{3}$.	0,5
2a	$\overrightarrow{AF} \wedge \overrightarrow{AH} = -\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$. (AFH): $x + y - z = 0$.	0,5
2b	(CE): $x = t; y = t; z = -t + 1$. (CE) \cap (AFH): $t + t + t - 1 = 0$. D'où $t = \frac{1}{3}$ et $L(\frac{1}{3}; \frac{1}{3}; \frac{2}{3})$.	1
2c	$\overrightarrow{FL}\left(-\frac{2}{3};\frac{1}{3};-\frac{1}{3}\right)$ et $\overrightarrow{FK}\left(-1;\frac{1}{2};-\frac{1}{2}\right)$, d'où $\overrightarrow{FL}=\frac{2}{3}\overrightarrow{FK}$. Donc L est un point de [FK] médiane dans le triangle AFH, alors L est le centre de gravité du triangle AFH.	1

Q3	Corrigé	N	
	$X = 2$ est réalisé lorsque on tire une boule rouge de U_1 puis une rouge de U_2 ou une verte de		
A 1	U ₁ puis une verte de U ₂ . P(X = 2) = $\frac{4}{7} \times \frac{3}{4} + \frac{3}{7} \times \frac{2}{4} = \frac{9}{14}$.	1,5	
	Les valeurs possibles de X sont 1, 2 et 3.		
1 , 2	$X = 1$ est réalisé à condition qu'on ne mette pas dans U_2 une boule rouge. Il faut donc tirer	1.5	
A 2	une verte de U_1 puis tirer une rouge de U_2 . $P(X=1) = \frac{3}{7} \times \frac{2}{4} = \frac{3}{14}$.	1,5	

	$X = 3$ est réalisé lorsqu'on tire une boule rouge de U_1 et une boule verte de U_2 .	
	$P(X = 3) = \frac{4}{7} \times \frac{1}{4} = \frac{1}{7}$. Ou: $P(X = 3) = 1 - \left(\frac{9}{14} + \frac{3}{14}\right) = \frac{1}{7}$.	
	Pour avoir une somme nulle il faut tirer une boule rouge et une verte.	
B 1	$P(F/E) = \frac{4 \times 3}{C_7^2} = \frac{12}{21} = \frac{4}{7} ; P(F/\overline{E}) = \frac{2 \times 1}{C_3^2} = \frac{2}{3}.$	1
В 2	$P(F) = P(F \cap E) + P(F \cap \overline{E}) = P(E) \times P(F/E) + P(\overline{E}) \times P(F/\overline{E}) = \frac{1}{2} \times \frac{4}{7} + \frac{1}{2} \times \frac{2}{3} = \frac{13}{21}.$	1
	G est réalisé lorsqu'on tire deux boules vertes ce qui n'est possible que dans un tirage de	
В3	l'urne U_1 , $P(G) = \frac{1}{2} \times \frac{C_3^2}{C_7^2} = \frac{1}{14}$.	1

Q4				Corrigé	N
1a	MO = d(M \rightarrow (d)); MO ² = d ² (M - y ² = 8x + 16; (y - 0) ² = 8(x + 2)				1
	4		1c	$A = 2 \int_{-2}^{0} \sqrt{8x + 16} dx = \frac{1}{6} \left[\sqrt{(8x + 16)^{3}} \right]_{-2}^{0} = \frac{32}{6} u^{2}.$	1
	2-		1d	$V = \pi \int_{-2}^{0} y^{2} dx = \pi \int_{-2}^{0} (8x + 16) dx = 16\pi u^{3}.$	0,5
	-2-		2a	$2yy' = 8 ; y' = \frac{4}{y}; y'_{A} = \frac{1}{2}.L'\text{équation de } (T_{A})$ est $y = \frac{1}{2}x + 5$.	0,5
1b	-4	0.5	2b	(OA): $y = \frac{4}{3}x$. Les abscisses des points d'intersection de (OA) et (P) vérifient: $\frac{16}{9}x^2 = 8x + 16$, $2x^2 - 9x - 18 = 0$; $x' = 6$ et $x'' = -\frac{3}{2} = x_B$. $B(-\frac{3}{2}; -2)$. L'équation de (T_B) est $y + 2 = y'_B(x + \frac{3}{2})$; $y = -2x - 5$.	1
20	Le produit des pentes de (T_A) et (T_B) est égal à -1 donc (T_A) et (T_B) sont perpendiculaires. de plus $\frac{1}{2}x+5=-2x-5$; $x=-4$ et $y=3$, donc (T_A) et (T_B) se coupent sur la directrice (d).		0,5		
3	Soit I(a; 0) . On a N(-2; y_{\circ}); \overrightarrow{MS} $\overrightarrow{MS} \cdot \overrightarrow{mI} = 0$; $(-2-x_{\circ})(a+2)+y_{\circ}^{2} = a = 6$ ($x_{\circ} \neq -2$). Donc I(6; 0).			$-y_{\circ}$); $\overrightarrow{m}I(a+2;-y_{\circ})$ $-x_{\circ})(a+2)+8(x_{\circ}+2)=0$; $(x_{0}+2)(6-a)=0$;	1

Q5	Corrigé	N
1a	S = sim(k; α); B \xrightarrow{s} E; C \xrightarrow{s} F EF = k BC; k = $\frac{3}{4,5}$ = $\frac{2}{3}$; α = (BC, EF) = (BC, AD) + (AD, EF) = $\frac{\pi}{2}$ (2 π).	1
1b	EFG est directement semblable à BCD. Donc S(D)= G.	0,5
1c	S(BCDA) est le rectangle direct EFGA, $S(A) = A$, donc A est le centre de S.	0,5
2a	f(B) = T(S(B)) = T(E) = F; $f(A) = T(S(A)) = T(A) = G$.	0,5
2b	$f = sim \left(\frac{2}{3}; \frac{\pi}{2}\right).$	0,5
2c	$(\overrightarrow{WB}, \overrightarrow{WF}) = \frac{\pi}{2} \text{ et } (\overrightarrow{WA}, \overrightarrow{WG}) = \frac{\pi}{2} ;$ W est le point d'intersection des deux cercles de diamètres [BF] et [AG] autre que G.	1
3a	f: M(z) \to M'(z'); z' = $\frac{2}{3}$ iz + b; z _G = = $\frac{2}{3}$ iz _A + b; b = -3. La forme complexe de f est z' = $\frac{2}{3}$ iz - 3.	0,5
3b	$z_W = \frac{2}{3}iz_W - 3$; $3z_W - 2iz_W = -9$; $z_W = \frac{-9}{3 - 2i} = -\frac{27}{13} - \frac{18}{13}i$.	0,5
4	La forme complexe de f est z' = $\frac{2}{3}$ iz - 3. $z_W = \frac{2}{3}$ iz _W - 3; $3z_W - 2$ iz _W = -9 ; $z_W = \frac{-9}{3-2}$ i = $-\frac{27}{13} - \frac{18}{13}$ i. $\left(\vec{AF_1}, \vec{AF_n}\right) = \left(\vec{AF_1}, \vec{AF_2}\right) + \left(\vec{AF_2}, \vec{AF_3}\right) + \dots + \left(\vec{AF_{n-1}}, \vec{AF_n}\right) = (n-1)\frac{\pi}{2}.$ A, F_1 et F_n sont colinéaires pour $(n-1)\frac{\pi}{2} = k\pi$; donc $n = 2k+1$ où k est un entier. (n est impair).	1

Q6	Corrigé	
1a	$\lim_{x \to -\infty} f(x) = +\infty, \lim_{x \to 5} f(x) = -\infty \text{ et } \lim_{x \to \infty} \frac{f(x)}{x} = 0.$ La droite d'équation $x = 5$ est asymptote à (C) et la courbe (C) admet en $-\infty$ une direction asymptotique horizontale.	1,5
1b	$f'(x) = \frac{1}{x - 5} \text{ avec } x - 5 < 0 \text{ sur }] - \infty ; 5[. $	1
2a	A(4; 0) et f'(4) = -1. (T) est la tangente en A à(C); (T) : $y = -x + 4$.	0,5

2b	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,5		
3a	 (C') est symétrique de (C) par rapport à la droite (D) d'équation y = x. (C) coupe x'x en A(4; 0) et admet la droite (T) comme tangente en A. Par symétrie par rapport à (D), (C') coupe y'y au point A'(0; 4) et admet la symétrique de (T) par rapport à (D), comme tangente en A'. Or (T) \(\pexists(D)\), donc (T) est son propre symétrique par rapport à (D). Enfin, (T) est la tangente en A' à (C'). Voir la figure dans la partie 2b. 	1		
3b	(C) et (C') sont symétrique par rapport à la droite $y = x$.	1		
4a	$h'(x) = -1 - \ln(5 - x)$; D'où $h'(x) + f(x) = -1$, d'où $F(x) = -h(x) - x$.	1		
4b	$A(\alpha) = \int_{\alpha}^{4} f(x) dx = \alpha - 4 - (5 - \alpha) \ln(5 - \alpha).$ Or $\ln(5 - \alpha) = \alpha$; d'où $A(\alpha) = -4 + \alpha + 5\alpha - \alpha^2 = -\alpha^2 + 6\alpha - 4$ u ² .			
5a	f est continue et strictement décroissante ; $f(I)=[f(3), f(0)]=[\ln 2, \ln 5] \subset I$.	0,5		
5b	$f'(x) = \frac{1}{x-5} \text{ avec } x-5<0 \text{ ; donc } f'(x) = \frac{1}{5-x} .$ $Or \ 0 \le x \le 3 \text{ , donc } 2 \le 5-x \le 5 \text{ et } \frac{1}{5} \le \frac{1}{5-x} \le \frac{1}{2} . \text{ Par suite } f'(x) \le \frac{1}{2} .$			
5c	D'après l'inégalité des accroissements finis on peut écrire $\left f(x) - f(\alpha) \right \leq \frac{1}{2} \left x - \alpha \right $ avec $f(\alpha) = \alpha$. D'où $\left f(x) - \alpha \right \leq \frac{1}{2} \left x - \alpha \right $.			
6a	$\begin{aligned} &U_{_0}=1 \text{ ; donc } U_{_0} \in I \text{ .} \\ &\text{Si } U_{_n} \in I \text{ , alors } f(U_{_n}) \in f(I) \text{ . D'où } U_{_{n+1}} \in I \text{ .} \end{aligned}$			
6b	$U_{n} \in I$, donc $ f(U_{n}) - \alpha \le \frac{1}{2} U_{n} - \alpha $. Par suite $ U_{n+1} - \alpha \le \frac{1}{2} U_{n} - \alpha $			
6с	$\begin{split} &U_{_{0}}=1 \text{ et } 1<\alpha<2 \text{ ; donc } -1< U_{_{0}}-\alpha<0 \text{ et } \left U_{_{0}}-\alpha\right \leq \frac{1}{2^{^{n}}}.\\ &\text{Si } \left U_{_{n}}-\alpha\right \leq \frac{1}{2^{^{n}}} \text{ , alors } \left U_{_{n+1}}-\alpha\right \leq \frac{1}{2} \left U_{_{n}}-\alpha\right \leq \frac{1}{2^{^{n+1}}} \text{ .} \end{split}$ $&(\textbf{Ou bien par multiplication et simplification - cascade-)}\\ &\lim_{x\to +\infty} \left(\frac{1}{2}\right)^{n} = 0 \text{ ; donc } \lim_{x\to +\infty} \left U_{_{n}}-\alpha\right = 0 \text{ et } \lim_{x\to +\infty} U_{_{n}} = \alpha \end{split}$	1,5		