Comparison Tables: CEC BBOB 2015 Testbed in 10-D

The BBOBies

May 27, 2015

Abstract

This document provides tabular results of the special session on Black-Box Optimization Benchmarking at CEC 2015, see http://coco.gforge.inria.fr/doku.php?id=cec-bbob-2015. Overall, eight algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. A description of the used objective functions can be found in [6, 4]. The experimental set-up is described in [5].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [1]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT_{best} is noted as infinite). See [5] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at CEC 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

algorithm short	paper	reference
name		
MATSuMoTo	Comparison of the MATSuMoTo Library for Expensive Optimization on the Noiseless Black-Box Optimization Benchmarking Testbed	[2]
R-DE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-DE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
SOO	Simultaneous Optimistic Optimization on the Noiseless BBOB Testbed	[3]

Table 2: 10-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	22	23	23	23	23	23	23	15/15
MATSUMOTO	2.5 (0.9)	11 (9)	13 (5)	30 (32)	318(484)	∞	$\infty 500$	0/15
R-DE-10e2-	4.3(0.5)	11 (2)	18 (6)	25 (7)	32 (6)	126 (45)	∞ 1000	0/15
R-DE-10e5-	8.6(2)	18(1)	30(3)	43(6)	53(6)	76 (6)	100(5)	15/15
RL-SHADE-1	7.2(0.8)	14(6)	43(47)	115(49)	208(143)	∞	∞ 1000	0/15
RL-SHADE-1	44(21)	146(32)	257(22)	360(29)	460(12)	642(20)	803(26)	15/15
R-SHADE-10	6.1(1)	14(2)	22(8)	32(16)	46 (17)	652(348)	∞ 1000	0/15
R-SHADE-10	12(6)	29(7)	47(5)	69(5)	88(11)	126(5)	169 (10)	15/15
SOO-Derbel	3.9 (1)	16(5)	39(7)	67(11)	111(17)	226(12)	370(10)	15/15

Table 3: 10-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	187	190	191	191	193	194	195	15/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	4.5(0.6)	8.6(0.8)	15(15)	78(33)	∞	∞	∞ 1000	0/15
R-DE-10e5-	5.9(0.2)	7.1 (0.8)	8.3(0.7)	10 (0.9)	11(0.7)	14(1.0)	16 (1)	15/15
RL-SHADE-1	19(17)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	56(5)	67(3)	78(5)	88(2)	97(1)	115(2)	132(5)	15/15
R-SHADE-10	4.4 (1)	9.0(11)	26(7)	78(76)	∞	∞	∞ 1000	0/15
R-SHADE-10	11(2)	14(2)	16(1)	19 (3)	21 (2)	26 (3)	30(2)	15/15
SOO-Derbel	2702(6703)	3535(5260)	4625(5244)	4618(7838)	4600(7802)	5984(1e4)	6143(6410)	7/15

Table 4: 10-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	1739	3600	3609	3636	3642	3646	3651	15/15
MATSUMOTO-	- ∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	8.5(12)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	1.0(0.1)	5.7 (10)	35(31)	35(34)	35(40)	35(37)	35(46)	15/15
RL-SHADE-1	1.5(1)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	14(1)	12(0.9)	14(0.9)	14(0.8)	15(0.4)	16(0.4)	17(0.7)	15/15
R-SHADE-10	0.71(0.3) ∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	4.2(1)	4.0(0.5)	5.7(4)	5.9(4)	6.1(2)	6.4(5)	6.7(4)	15/15
SOO-Derbel	197(117)	3920(4237)	∞	∞	∞	∞	$\infty~1e6$	0/15

 \odot

Table 5: 10-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	2234	3626	3660	3695	3707	3744	28767	12/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	0.90(0.7)	35(41)	264(252)	261(437)	261(226)	258(205)	34(22)	10/15
RL-SHADE-1	3.2(3)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	12(2)	13(0.8)	15(0.9)	16(0.7)	16(0.5)	17(0.4)	2.3 (0.1)	15/15
R-SHADE-10	0.69(0.8)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	3.6(0.4)	5.5 (2)	7.6 (3)	7.8 (3)	8.0 (4)	8.3(4)	1.1(0.7)	15/15
SOO-Derbel	677(337)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15

6

Table 6: 10-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	20	20	20	20	20	20	20	15/15
MATSUMOTO-	1.7(0.2)*4 1.9 (0.1)*4 2.0 (0.1)*4 2.0 (0.2)*4 2.0 (0.2)	*4 2.0 (0.2)*4 2.0 (0.1)	*15/15
R-DE-10e2-	17(4)	29(6)	47(4)	70(66)	742(780)	∞	∞ 1000	0/15
R-DE-10e5-	24(2)	44(7)	65(5)	84(8)	103(10)	144(8)	183(8)	15/15
RL-SHADE-1	14(2)	20(5)	27(6)	34(11)	42(17)	77(51)	368(333)	2/15
RL-SHADE-1	130(6)	238(15)	333(13)	416(15)	497(12)	649(16)	791(19)	15/15
R-SHADE-10	12 (3)	19(4)	25 (5)	31 (5)	37(4)	56(14)	181 (203)	4/15
R-SHADE-10	46(10)	90(17)	132(17)	176(26)	221(23)	311(24)	399(34)	15/15
SOO-Derbel	36(0.0)	106(0.0)	216(0.0)	391(0.0)	616(0.0)	1163(0.0)	1866(0.0)	15/15

~1

Table 7: 10-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	412	623	826	1039	1292	1841	2370	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	3.0 (1)	12(7)	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	3.8(1)	6.5 (1)	10 (4)	19(5)	48(101)	269(371)	1232(1929)	4/15
RL-SHADE-1	11(15)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	16(2)	18(1)	17(1)	16(0.4)	15(0.4)	14(0.5)	13 (0.3)	15/15
R-SHADE-10	3.1(6)	12(7)	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	2.9 (0.6)	3.5 (0.2)	4.1 (0.4)	4.3(0.3)	4.2(0.4)	4.1(0.3)	4.1 (0.3)	15/15
SOO-Derbel	2254(1483)	2.3e4(803)	1)∞	∞	∞	∞	$\infty~1e6$	0/15

Table 8: 10-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	172	1611	4195	5099	5141	5141	5389	15/15
MATSUMOTO-	45(20)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	4.6(4)	9.2(17)	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	7.2(6)	7.5(8)	17(22)	242(461)	354(389)	354(945)	338(219)	6/15
RL-SHADE-1	3.7 (0.3)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	19(7)	5.0(0.6)	2.8 (0.3)	3.0(0.2)	3.0 (0.2)	3.0 (0.2)	3.0(0.1)	15/15
R-SHADE-10	3.9(3)	4.5(2)	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	3.9(1)	1.9(2)	1.6 (1)	1.7 (1)	1.7(0.9)	1.7(1)	1.7 (1)	15/15
SOO-Derbel	6.6(2)	14(4)	66(120)	496(444)	1376(1620)	1376(1717)	2676(3573)	1/15

Table 9: 10-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f8	326	921	1114	1217	1267	1315	1343	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	6.5(4)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	6.9(5)	749(1209)	3953(8331)	1.2e4(8625)	0)1.2e4(1e4)	∞	$\infty~1e6$	0/15
RL-SHADE-1	22(27)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	27(2)	21 (2)	21 (1)	21 (1.0)	21 (0.6)	24(0.9)	26(0.4)	15/15
R-SHADE-10	2.7 (1)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	4.5(0.9)	7.9 (2)	8.4(7)	8.5 (5)	8.7 (1)	9.3(2)	10 (2)	15/15
SOO-Derbel	33(52)	1853(1418)	1.3e4(2e4)	1.2e4(1e4)	1.1e4(1e4)	1.1e4(1e4)	1.1e4(1e4)	1/15

Table 10: 10-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f9	200	648	857	993	1065	1138	1185	15/15
1	MATSUMOTO-	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
	R-DE-10e2-	7.3 (11)	∞	∞	∞	∞	∞	∞ 1000	0/15
	R-DE-10e5-	10(7)	5122(8533)	∞	∞	∞	∞	$\infty~1e6$	0/15
	RL-SHADE-1	74(112)	∞	∞	∞	∞	∞	∞ 1000	0/15
	RL-SHADE-1	44(5)	51(0.8)	42 (2)	39 (2)	38 (95)	39 (1)	41 (1)	15/15
	R-SHADE-10	8.3(10)	∞	∞	∞	∞	∞	∞ 1000	0/15
	R-SHADE-10	7.1(0.6)	15 (6)	14(7)	13 (9)	13(0.8)	13 (4)	14(7)	15/15
	SOO-Derbel	9.2(6)	1657(1503)	1.7e4(2e4)	∞	∞	∞	$\infty~1e6$	0/15

11

Table 11: 10-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f10	1835	2172	2455	2728	2802	4543	4739	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	∞	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	8.0 (0.6)	7.9 (0.3)	8.0(0.5)	7.9 (0.6)	8.6(0.5)	6.3 (0.3)	7.0 (0.3)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	2.9 (2)	4.0(2)	4.7 (3)	5.0 (3)	5.5 (3)	4.1(2)	4.7 (2)	15/15
SOO-Derbel	∞	∞	∞	∞	∞	∞	$\infty~1e6$	0/15

Table 12: 10-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	266	1041	2602	2954	3338	4092	4843	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	3890(3569)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
RL-SHADE-1	55(79)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	40(24)	13 (1.0)	6.2(0.9)	6.3 (3)	6.3 (0.3)	6.2 (1)	6.2 (1)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	5.7 (3)	3.2 (0.6)	2.2 (1)	2.7 (3)	3.3 (3)	4.1(2)	4.9(2)	15/15
SOO-Derbel	1.2e4(1e4)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15

Table 13: 10-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	515	896	1240	1390	1569	3660	5154	15/15
MATSUMOTO-	- ∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	7.0(5)	8.3(8)	∞	∞	∞	∞	$\infty 1000$	0/15
R-DE-10e5-	25(34)	172(202)	251(321)	1378(2523)	9233(8127)	∞	$\infty~1e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	32(2)	22(2)	21 (5)	22 (5)	23 (6)	12 (2)	10 (2)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
R-SHADE-10	10 (0.5)	14 (10)	18 (17)	20 (7)	21 (11)	12 (8)	10 (6)	15/15
SOO-Derbel	12(4)	26(40)	101(251)	210(508)	662(722)	4066(7651)	$\infty~1e6$	0/15

Table 14: 10-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
387	596	797	1014	4587	6208	7779	15/15
3.4 (5)*2	∞	∞	∞	∞	∞	$\infty 500$	0/15
9.0(11)	25(21)	∞	∞	∞	∞	∞ 1000	0/15
17(38)	80(115)	2398(2881)	∞	∞	∞	$\infty~1e6$	0/15
39(40)	∞	∞	∞	∞	∞	∞ 1000	0/15
27(2)	25 (1)	24 (1)	23 (1)	6.0 (0.2)	5.7(0.2)	5.6(0.1)	15/15
9.2(8)	∞	∞	∞	∞	∞	∞ 1000	0/15
5.2 (1)	6.2 (2)	7.0 (1)	7.5 (2)	2.4 (0.9)	3.1 (1)	5.8 (3)	15/15
17(16)	195(45)	609(935)	1475(3129)	1004(818)	∞	$\infty~1e6$	0/15
	387 - 3.4(5)*2 9.0(11) 17(38) 39(40) 27(2) 9.2(8) 5.2(1)	$\begin{array}{cccc} 387 & 596 \\ \textbf{-3.4(5)}^{\star 2} & \infty \\ 9.0(11) & 25(21) \\ 17(38) & 80(115) \\ 39(40) & \infty \\ 27(2) & \textbf{25}(1) \\ 9.2(8) & \infty \\ \textbf{5.2}(1) & \textbf{6.2}(2) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 15: 10-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

	II CIIID COICE	0 41,140	G. 0., GIII	TOTIOTOTI.					
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f14	37	98	133	205	392	687	4305	15/15
M	ATSUMOTO-	1.8(2)	4.3(3)	13(22)	∞	∞	∞	$\infty 500$	0/15
F	R-DE-10e2-	1.8(1)	3.6 (2)	5.1 (2)	17(11)	∞	∞	∞ 1000	0/15
F	R-DE-10e5-	3.2(2)	4.9(1.0)	6.5(0.7)	10(1)	36(21)	∞	$\infty~1e6$	0/15
R	L-SHADE-1	3.5(2)	4.5(2)	11(11)	35(34)	38(43)	∞	∞ 1000	0/15
R	L-SHADE-1	10(8)	31(5)	50(3)	48(2)	33(2)	27(0.7)	5.8(0.2)	15/15
R	-SHADE-10	2.8(2)	3.7(0.7)	4.3(0.6)	7.3 (6)	19 (15)	∞	∞ 1000	0/15
R	-SHADE-10	2.9 (2)	6.2(2)	8.2(1)	8.3(2)	6.4(0.7)	8.7 (3)	3.8 (3)	15/15
S	OO-Derbel	1.3 (0.7)	5.3(2)	77(167)	119(25)	510(142)	∞	$\infty~1e6$	0/15

Table 16: 10-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	# succ
f15	4774	39246	73643	74669	75790	77814	79834	12/15
MATSUMOTO-	1.6 (3)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	48(55)	∞	∞	∞	∞	∞	∞ 1e6	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	9.1(2)	33 (50)	200 (129)	198(208)	195(244)	∞	$\infty~1e6$	0/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	4.1(2)	175 (153)	192 (248)	∞	∞	∞	∞ 1e6	0/15
SOO-Derbel	2.8 (3)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15

Table 17: 10-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f16	425	7029	15779	45669	51151	65798	71570	15/15
MATSUMOTO-	4.3(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	11(6)	∞	∞	∞	∞	∞	$\infty 1000$	0/15
R-DE-10e5-	7.9(4)	199(360)	∞	∞	∞	∞	$\infty~1e6$	0/15
RL-SHADE-1	1.9(1)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	26(12)	28(31)	205(165)	321(334)	∞	∞	$\infty~1e6$	0/15
R-SHADE-10	2.5 ₍₁₎	∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	7.5(5)	8.7 ₍₉₎	12 (14)	19 (19)	39 (18)	32 (13)	64 (53)	3/15
SOO-Derbel	1.1(0.4)	0.44(0.2)	0.94(0.7)	4.6 (3)	15 (26)	71 (34)	204(224)	1/15

Table 18: 10-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	26	429	2203	6329	9851	20190	26503	15/15
MATSUMOTO	-1.5 (1.0)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	1.5 (0.9)	11(8)	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	2.4(2)	5.0(2)	13(21)	35(31)	∞	∞	$\infty~1e6$	0/15
RL-SHADE-1	2.5 (2)	11(11)	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	3.3(4)	16(4)	6.9(0.6)	3.5(0.2)	2.9 (0.2)	2.9 (0.0)	3.1(0.0)	15/15
R-SHADE-10	2.9 (2)	35(20)	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	2.0 ₍₁₎	2.3 (0.6)	1.2(0.3)	1.2(0.3)	2.8(2)	7.9 (3)	19 (21)	12/15
SOO-Derbel	0.69(1)	3.4(2)	5.3 (3)	9.2(5)	63(50)	356(359)	$\infty~1e6$	0/15

Table 19: 10-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f18	238	836	7012	15928	27536	37234	42708	15/15
MATSUMOTO-	3.8(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	2.9 (2)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	2.8(2)	24(10)	1016(680)	∞	∞	∞	$\infty~1e6$	0/15
RL-SHADE-1	3.5(4)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	11(2)	14(2)	2.7 (0.2)	1.7(0.1)	1.3(0.0)	1.7 (1)	2.4 (2)	15/15
R-SHADE-10	3.5(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	1.9(0.7)	2.2 (0.3)	0.68(0.2)	3.6 (6)	13 (16)	401 (510)	$\infty~1e6$	0/15
SOO-Derbel	1.8(0.8)	4.5(1)	4.6(4)	22(12)	114(141)	∞	$\infty~1e6$	0/15

Table 20: 10-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

		.,						
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f19	1	1	10609	9.8e5	1.4e6	1.4e6	1.4e6	15/15
MATSUMOTO-	53 (21)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	81(18)	∞	∞	∞	∞	∞	$\infty 1000$	0/15
R-DE-10e5-	123(64)	4.8e6(6e6)	∞	∞	∞	∞	$\infty~1e6$	0/15
RL-SHADE-1	139(58)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	404(286)	7.3e4(2e4)	188(156)	∞	∞	∞	$\infty~1e6$	0/15
R-SHADE-10	133(163)	∞	∞	∞	∞	∞	$\infty 1000$	0/15
R-SHADE-10	108(24)	3.8e4(6e4)	115 (112)	∞	∞	∞	$\infty~1e6$	0/15
SOO-Derbel	1(0)*4	$1_{(0)}^{\star 4}$	0.30 (0.1)	∞	∞	∞	$\propto 1e6$	0/15

Table 21: 10-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
32	15426	5.5e5	5.7e5	5.7e5	5.8e5	5.9e5	15/15
3.8(1)	∞	∞	∞	∞	∞	$\infty 500$	0/15
5.0 (4)	0.96(2)	∞	∞	∞	∞	∞ 1000	0/15
8.8(3)	0.21 (0.0)	0.46(0.5)	0.45 (0.5)	0.44 (0.4)	0.44 (0.5)	0.43 (0.4)	15/15
7.3(2)	0.22 (0.2)	∞	∞	∞	∞	∞ 1000	0/15
44(16)	2.0(0.4)	0.37 (0.4)	0.38(0.2)	0.38(0.2)	0.38 (0.2)	0.38(0.5)	15/15
6.3(2)	0.96 (0.5)	∞	∞	∞	∞	∞ 1000	0/15
8.0(2)	0.71(0.3)	3.4(4)	3.3(4)	3.3(2)	4.0(8)	4.0(5)	5/15
76(0.0)	2.3 (3e-5)	∞	∞	∞	∞	$\infty~1e6$	0/15
	32 3.8(1) 5.0(4) 8.8(3) 7.3(2) 44(16) 6.3(2) 8.0(2)	$\begin{array}{cccc} 32 & 15426 \\ \textbf{3.8}(1) & \infty \\ \textbf{5.0}(4) & \textbf{0.96}(2) \\ 8.8(3) & \textbf{0.21}(0.0) \\ 7.3(2) & \textbf{0.22}(0.2) \\ 44(16) & \textbf{2.0}(0.4) \\ 6.3(2) & \textbf{0.96}(0.5) \\ 8.0(2) & \textbf{0.71}(0.3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 22: 10-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	130	2236	4392	4487	4618	5074	11329	8/15
MATSUMOTO-	2.5 (4)	3.3(5)	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	3.6(6)	1.2(1)	3.3 (5)	3.3 (2)	∞	∞	$\infty 1000$	0/15
R-DE-10e5-	5.1(4)	61(147)	34(24)	35(127)	38(16)	56(23)	28 (44)	13/15
RL-SHADE-1	2.8(1)	1.2(0.1)	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	22(8)	57(89)	72(103)	71(189)	69(141)	64(227)	29(40)	13/15
R-SHADE-10	3.3(2)	6.5(7)	3.3 (4)	3.3 (4)	∞	∞	$\infty 1000$	0/15
R-SHADE-10	4.6(3)	10(25)	10(12)	10(16)	10 (4)	9.1(1)	4.1(4)	15/15
SOO-Derbel	1.9(2)	6.7(7)	8.5(25)	22(50)	24(22)	47 (23)	52(103)	11/15

Table 23: 10-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	98	2839	6353	6620	6798	8296	10351	6/15
MATSUMOTO-	2.4 (2)	1.3(0.3)	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	5.3(3)	1.6 (3)	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	19(6)	19(17)	40(25)	79 (98)	83(171)	239(212)	421(413)	3/15
RL-SHADE-1	5.8(6)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	28(25)	85(37)	205(220)	197(310)	192(427)	158 (319)	127(169)	7/15
R-SHADE-10	4.4(3)	0.95 (0.8) ∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	5.7(2)	10(18)	36 (54)	35 (51)	34 (26)	28 (43)	22 (33)	14/15
SOO-Derbel	3.2 (3)	11(17)	33 (19)	85(117)	150(119)	508(362)	650(708)	2/15

Table 24: 10-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	2.8	915	16425	1.8e5	2.0e5	2.1e5	2.1e5	15/15
MATSUMOTO-	1.6 (0.9)	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	1.7 (3)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e5-	2.2 (3)	204(189)	∞	∞	∞	∞	$\infty~1e6$	0/15
RL-SHADE-1	1.4(2)	∞	∞	∞	∞	∞	∞ 1000	0/15
RL-SHADE-1	1.6(2)	68(30)	27(37)	24(20)	22 (21)	21 (29)	21 (19)	3/15
R-SHADE-10	1.5(0.5)	∞	∞	∞	∞	∞	∞ 1000	0/15
R-SHADE-10	3.0(2)	21 (7)	8.8(8)	18 (36)	34 (33)	33 (58)	33 (8)	2/15
SOO-Derbel	1.8(0.9)	2.3(2)	2.0(2)	14 (6)	72(81)	∞	∞ 1e6	0/15

Table 25: 10-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	98761	1.0e6	7.5e7	7.5e7	7.5e7	7.5e7	7.5e7	1/15
MATSUMOTO-	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
R-DE-10e5-	∞	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
RL-SHADE-1	24(21)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	$\infty 1000$	0/15
R-SHADE-10	4.6(4)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
SOO-Derbel	3.1(4)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15

References

- Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [2] Dimo Brockhoff. Comparison of the matsumoto library for expensive optimization on the noiseless black-box optimization benchmarking testbed. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC* 2015, 25-28 May, Sendai, Japan, 2015.
- [3] Bilel Derbel and Philippe Preux. Simultaneous optimistic optimization on the noiseless bbob testbed. In *Proceedings of the IEEE Congress on Evolu*tionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.
- [4] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010
- [5] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [7] Ryoji Tanabe and Alex Fukunaga. Parameter tuning for differential evolution for cheap, medium, and expensive computational budgets. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.*