HHL - Algorithmus

Alfred Nguyen

Fakultät der Informatik Technische Universität München 85758 Garching, Bavaria

June 2023

Gliederung

HHL Algorithmus Übersicht

Der Algorithmus

Gliederung

HHL Algorithmus Übersicht

Der Algorithmus

Vergleich klassische zur quanten Version

Klassisch	Quanten Version
$A\vec{x} = \vec{b}$	$A\ket{x}=\ket{b}$
$\vec{x} = A^{-1}\vec{b}$	$ x\rangle = A^{-1} b\rangle$

A kann man auch in der Spektralzerlegung darstellen

$$A = \sum_{i=0}^{2^{n_b}-1} \lambda_i |u_i\rangle \langle u_i|$$

$$A^{-1} = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} |u_i\rangle \langle u_i|$$

- $\triangleright \lambda_i$ sind Eigenwerte von A
- $ightharpoonup |u_i\rangle$ sind Eigenvektoren von A

 \vec{b} kann in der Eigenbasis von A dargestellt werden

$$|b\rangle = \sum_{j=0}^{2^{n_b}-1} b_j |u_j\rangle$$

- $ightharpoonup b_i$ sind die koeffizienten von \vec{b}
- $ightharpoonup |u_i
 angle$ sind Eigenvektoren von A

Setzen wir nun alles ein:

$$|x\rangle = A^{-1} |b\rangle = \left(\sum_{i=0}^{2^{n_b} - 1} \lambda_i^{-1} |u_i\rangle \langle u_i|\right) \left(\sum_{j=0}^{2^{n_b} - 1} b_j |u_j\rangle\right)$$

$$|x\rangle = \sum_{i=0}^{2^{n_b} - 1} \sum_{j=0}^{2^{n_b} - 1} \lambda_i^{-1} |u_i\rangle \langle u_i| b_j |u_j\rangle$$

$$|x\rangle = \sum_{i=0}^{2^{n_b} - 1} \sum_{j=0}^{2^{n_b} - 1} \lambda_i^{-1} b_j |u_i\rangle \langle u_i| u_j\rangle$$

$$|x\rangle = \sum_{i=0}^{2^{n_b} - 1} \sum_{j=0}^{2^{n_b} - 1} \lambda_i^{-1} b_j |u_i\rangle \delta_{ij}$$

Setzen wir nun alles ein (Fort.):

$$|x\rangle = \sum_{i=0}^{2^{n_b}-1} \sum_{j=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_i\rangle \,\delta_{ij}$$
$$|x\rangle = A^{-1} |b\rangle = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_j\rangle$$
$$|x\rangle = A^{-1} |b\rangle = \sum_{i=0}^{2^{n_b}-1} \lambda_i^{-1} b_j |u_j\rangle$$

- 1. Ermittle die Eigenwerte und Eigenvektoren von A
- 2. bilde $|b\rangle$ in Eigenbasis A ab
- 3. Invertiert Eigenwerte
- 4. lies das Ergebnis $|x\rangle$ aus

Der Algorithmus

Ablauf

- 1. State Preparation
 - Enkodiere Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittle Eigenwerte und Eigenvektoren
 - ightharpoonup bilde $|b\rangle$ in Eigenbasis A ab
- 3. Ancilla Bit Rotation
 - Invertiert Eigenwerte
- 4. Inverse Quantum Phase Estimation
 - löst verschränkte Qubits auf
- 5. Messung
 - liest das Ergebnis $|x\rangle$ aus

Quantum Circuit

- 1. Ancilla (Helfer): a-register
 - Indikator qubit zeigt an ob Zustände verschränkt sind
- 2. Register: c-register
 - beinhaltet später die eigenwerte
- 3. Input: b-register
 - ightharpoonup beinhaltet den Vektor \vec{b}

Quantum Circuit

Wo befindet sich die Matrix A?

Wir als Unitary (Einheitsmatrix) in die Phase Estimation enkodiert.

$$U = e^{iAt}$$

State

Wo befindet sich die Matrix A?

Wir als Unitary (Einheitsmatrix) in die Phase Estimation enkodiert.

$$U=e^{iAt}$$

Was das

Ablauf

- 1. State Preparation
 - Enkodiere Vektor und Matrix in Quanten Computer
- 2. Quantum Phase Estimation
 - ermittle Eigenwerte und Eigenvektoren
 - \blacktriangleright bilde $|b\rangle$ in Eigenbasis A ab
- 3. Ancilla Bit Rotation Invertieren der Eigenwerte
- 4. Inverse Quantum Phase Estimation
- Messung