Kryptografie und -analyse, Übung 8

HENRY HAUSTEIN

Betriebsarten

- (a) Die Blöcke c_1 bis c_{i-1} können ohne Probleme entschlüsselt werden. Der Block c_i kann nicht entschlüsselt werden, er wurde ja gelöscht. Für den Block c_{i+1} muss folgendes berechnet werden: $m_{i+1} = \operatorname{dec}(k, c_{i+1}) \oplus c_i$, was nicht geht. Ab Block c_{i+2} kann wieder alles entschlüsselt werden, $c_{i+2} = \operatorname{dec}(k, c_{i+2}) \oplus c_{i+1}$.
- (b) Ja, man kann unterschiedliche IVs auf Sender- und Empfängerseite verwenden. Auf Senderseite wird verschlüsselt:
 - $c_1 = \operatorname{enc}(k, m_1 \oplus IV_S)$
 - $c_2 = \operatorname{enc}(k, m_2 \oplus c_1)$

Auf Empfängerseite wird entschlüsselt:

- $m_1 = \operatorname{dec}(k, c_1) \oplus IV_E \Rightarrow \text{klappt nicht}$
- $m_2 = \operatorname{dec}(k, c_2) \oplus c_1 \Rightarrow \text{funktioniert}$

Bei CFB ist die Beeinflussung länger, nämlich $\lceil \frac{l}{r} \rceil$, bei OFB geht das gar nicht, weil nur der IV immer wieder verschlüsselt wird. Ist der IV anders, so werden eine völlig andere Pseudo-Schlüssel generiert mit denen die Nachricht \oplus wird.

- (c) m=128 Bit, Blocklänge 64 Bit, r=8 Bit. Bei CBC wird die Verschlüsselungfunktion zwei mal aufgerufen, weil es 2 Blöcke gibt. Bei CFB kommt es auf r an, hier wird die Verschlüsselungfunktion $\frac{128}{8}=16$ mal ausgeführt.
- (d) Es gilt:

	Direktzugriff	Parallelisierbarkeit	Vorausberechnung
ECB	ja	ja	nein
CBC	enc: nein, dec: ja	enc: nein, dec: ja	nein
CFB	ähnlich CBC	ähnlich CBC	nein (nur 1 Block)
OFB	wenn Schlüsselblöcke nicht gespeichert werden: nein	wenn Schlüsselblöcke nicht gespeichert werden: nein	ja
CTR	ja	ja	ja

(e) Direktzugriff: ob eine Abhängigkeit von vorherigen Cipherblöcken/Klartextblöcken vorliegt. Parallelisierbarkeit: wenn Direktzugriff vorliegt

Vorausberechnung: ob Verschlüsselung auf Klartextblöcke oder Schlüsselblöcke angewendet wird

Grundlagen

- (a) $\mathbb{Z}_{77}^* = \{a \in \mathbb{Z}_{77} \mid ggT(a,77) = 1\}$. Offensichtlich ggT(20,77) = 1 und ggT(14,77) = 7 und $20^{-1} = 27$ mit WolframAlpha (20^-1 mod 77)
- (b) Satz von Lagrange: Wenn H Untergruppe von G, dann $\operatorname{ord}(H) \mid \operatorname{ord}(G)$, damit haben die Untergruppen von \mathbb{Z}_{13}^* die Ordnungen 1, 2, 3, 4, 6 und 12 (die Ordnung von \mathbb{Z}_{13}^* ist $\Phi(13) = 12$).
- (c) Primfaktorzerlegung von Gruppenordnung: 12 = 2² · 3. Für $a_1 = 5$:
 - $b = a_1^{\frac{n}{p_1}} = 5^{\frac{12}{2}} = 5^6 \equiv 12 \mod 13$
 - $b = a_1^{\frac{n}{p_2}} = 5^{\frac{12}{3}} = 5^4 \equiv 1 \mod 13$

Für $a_2 = 6$:

- $b = a_2^{\frac{n}{p_1}} = 6^{\frac{12}{2}} = 6^6 \equiv 12 \mod 13$
- $b = a_2^{\frac{n}{p_2}} = 6^{\frac{12}{3}} = 6^4 \equiv 9 \mod 13$
- $\Rightarrow a_1 = 5$ ist kein Generator, $a_2 = 6$ ist ein Generator.

(d)