SecureIoT-Core: A Programmable Data Plane Framework for Protecting Critical Infrastructures

Introduction

The rapid expansion of **IoT** deployments in finance, telecommunications, and the power grid has created new opportunities for automation, monitoring, and digital service delivery. At the same time, it has introduced severe **cybersecurity risks**. Devices such as **smart meters**, **POS terminals**, **and CCTVs** are often deployed at massive scale, run on resource-constrained hardware, and lack robust built-in defenses. Once compromised, they can be weaponized to:

- Form **botnets** that launch DDoS attacks against financial services and citizen platforms.
- Conduct data exfiltration or false data injection into energy control systems.
- Serve as **stealthy entry points** for deeper penetration into critical infrastructures.

These threats are especially acute in the Indian context, where **digital payments**, **e-governance services**, **and the energy grid** underpin daily operations and national resilience.

Why Existing Approaches Fall Short

Traditional defenses such as firewalls, ACLs, and intrusion detection systems are ill-suited to this environment:

- Too late in the path: centralized cloud/firewall solutions detect anomalies only after malicious traffic has already entered the network.
- **Not scalable**: ACLs and flow rules in TCAM consume large memory and power, and cannot handle tens of thousands of IoT devices at line rate.

- **Weak at device-level identity**: they authenticate flows, not devices, making it easy for adversaries to spoof or compromise authorized devices.
- **Reactive rather than proactive**: anomaly detection often occurs after service disruption.

Why Programmable Data Planes Help — and Their Limitations

P4-enabled programmable switches offer a path forward by allowing custom packet parsing, stateful counters, and match-action rules inside the data plane. They can, in principle, enforce **per-device admission policies** and perform **in-network anomaly detection at line rate**.

However, if used as is, programmable data planes face important challenges:

- Memory constraints: per-device ACLs stored in TCAM do not scale to 10k–100k IoT devices.
- **State limitations**: switches cannot hold detailed per-device profiles without exhausting SRAM/register space.
- **Crypto limitations**: P4 cannot generate strong cryptographic tokens, leaving identity proofs weak.
- Policy churn: frequent device joins/leaves make maintaining flow rules unstable at scale.

Proposed Two-Phase Mechanism

To address these challenges, we propose a **two-layered security framework** based on lightweight, cryptographically assured trust enforcement:

1. Phase 1: Device Admission (DAT at ingress)

- At bootstrap, the controller generates a cryptographic token bound to {device_id, service_profile}.
- The ingress P4 switch maintains a **Device Admission Table (DAT)** mapping device IDs to tokens and profiles.
- On valid admission, the ingress switch attaches the token to the packet and enforces service-profile checks with anomaly detection counters.
- Unauthorized or unregistered devices are dropped immediately.

2. Phase 2: Token Validation (TVT in core/egress)

- Downstream switches maintain only a Token Validation Table (TVT) for fast exact-match checks on tokens.
- If a token is missing, invalid, or revoked, packets are dropped/quarantined.
- At the network egress, the token is stripped before the packet leaves the domain, preserving transparency and interoperability.

Objectives

This project aims to design, prototype, and evaluate an indigenous security framework for IoT-driven critical infrastructures with the following objectives:

- 1. Develop P4-based Device Admission (DAT) and Token Validation (TVT) mechanisms to enforce device-level trust at line rate.
- 2. Integrate controller-driven cryptographic token generation, distribution, and revocation for scalable and secure identity management.
- 3. **Implement lightweight anomaly detection in the data plane** using per-device registers and profile-based thresholds.
- 4. **Demonstrate scalability and efficiency** by comparing SRAM-based token validation against TCAM-based flow rules, highlighting memory and speed benefits.

5. **Validate the framework in finance and energy IoT testbeds**, targeting TRL 5–6, to show its applicability to India's critical infrastructure needs.

Expected Benefit

By combining programmable data planes with controller-orchestrated cryptographic tokens, our approach offers:

- Scalable trust enforcement: one device → one profile → one token; validated via compact SRAM tables.
- Line-rate anomaly detection: real-time counters and profile validation at ingress.
- **Defense-in-depth**: unauthorized devices blocked at admission; compromised insiders contained mid-operation.
- **Practical deployment**: no changes to existing IoT devices; tokens are injected in-network and stripped at egress.
- **Indigenous innovation**: leverages P4 programmability for India-specific finance and energy infrastructure security.