Generated on 2023-12-01 17:42:34 by gEcon version 1.2.1 (2023-01-18)

Model name: RSW_RP_ONEOBJ

1 OPTIMALMP

1.1 Optimisation problem

$$\max_{\textit{piH}_t, \textit{yH}_t, i_t, \textit{piL}_t, \textit{yL}_t} U_t = -0.25 \left(\textit{pitH} - \textit{pitCB} + \textit{piH}_t \right)^2 - 0.25 \left(-\textit{pitCB} + \textit{pitL} + \textit{piL}_t \right)^2 + \beta \mathbf{E}_t \left[U_{t+1} \right] - 0.25 \kappa \theta^{-1} \textit{yH}_t^2 - 0.25 \kappa \theta^{-1} \textit{yL}_t^2 \tag{1.1}$$

 $\mathrm{s.t.}$

$$yH_{t-1} = yH_t - \sigma(i_{t-1} - piH_t) + (1 - pH)(-yH_t + yL_t) + \sigma(1 - pH)(-piH_t + piL_t) \quad \left(\lambda_t^{\text{OPTIMALMP}^2}\right)$$
(1.3)

$$piL_{t-1} = \log etapi_{t-1} + \kappa yL_{t-1} + \beta pLpiL_t + \beta (1 - pL) (piH_t - piL_t) \quad \left(\lambda_t^{\text{OPTIMALMP}^3}\right)$$

$$\tag{1.4}$$

$$yL_{t-1} = yL_t - \sigma (i_{t-1} - pL_t) + (1 - pL) (yH_t - yL_t) + \sigma (1 - pL) (piH_t - pL_t) \quad \left(\lambda_t^{\text{OPTIMALMP}^4}\right)$$
(1.5)

1.2 First order conditions

$$-0.5 \textit{pitH} + 0.5 \textit{pitCB} - 0.5 \textit{piH}_t - \beta \mathbf{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^1} \right] + \lambda_t^{\text{OPTIMALMP}^1} \left(\beta - \beta \left(1 - \textit{pH} \right) \right) + \lambda_t^{\text{OPTIMALMP}^2} \left(\sigma - \sigma \left(1 - \textit{pH} \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^3} \left(1 - \textit{pL} \right) + \sigma \lambda_t^{\text{OPTIMALMP}^4} \left(1 - \textit{pL} \right) = 0 \quad \left(\textit{piH}_t \right) + \lambda_t^{\text{OPTIMALMP}^4} \left(1 - \textit{pL} \right)$$

$$\beta \left(\kappa \mathcal{E}_{t} \left[\lambda_{t+1}^{\text{OPTIMALMP}^{1}} \right] - \mathcal{E}_{t} \left[\lambda_{t+1}^{\text{OPTIMALMP}^{2}} \right] \right) + pH \lambda_{t}^{\text{OPTIMALMP}^{2}} + \lambda_{t}^{\text{OPTIMALMP}^{4}} \left(1 - pL \right) - 0.5\kappa \theta^{-1} yH_{t} = 0 \quad (yH_{t})$$

$$\tag{1.7}$$

$$\beta \left(-\sigma \mathbf{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^2} \right] - \sigma \mathbf{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^4} \right] \right) = 0 \quad (i_t)$$
 (1.8)

$$0.5 \textit{pitCB} - 0.5 \textit{pitL} - 0.5 \textit{pitL} - 0.5 \textit{pitL}_t - \beta \mathbf{E}_t \left[\lambda_{t+1}^{\text{OPTIMALMP}^3} \right] + \lambda_t^{\text{OPTIMALMP}^3} \left(\beta \textit{pL} - \beta \left(1 - \textit{pL} \right) \right) + \lambda_t^{\text{OPTIMALMP}^4} \left(\sigma - \sigma \left(1 - \textit{pL} \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^1} \left(1 - \textit{pH} \right) + \sigma \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pH} \right) = 0 \quad \left(\textit{piL}_t \right) + \lambda_t^{\text{OPTIMALMP}^2} \left(1 - \textit{pH} \right) + \lambda_t^{\text{OPTIMALMP$$

$$\beta \left(\kappa \mathcal{E}_{t} \left[\lambda_{t+1}^{\text{OPTIMALMP}^{3}} \right] - \mathcal{E}_{t} \left[\lambda_{t+1}^{\text{OPTIMALMP}^{4}} \right] \right) + p \mathcal{L} \lambda_{t}^{\text{OPTIMALMP}^{4}} + \lambda_{t}^{\text{OPTIMALMP}^{2}} \left(1 - p \mathcal{H} \right) - 0.5 \kappa \theta^{-1} y \mathcal{L}_{t} = 0 \quad (y \mathcal{L}_{t})$$

$$(1.10)$$

2 EXOG

2.1 Identities

$$dapi_t = e^{\epsilon_t^{\pi} + \phi \log dapi_{t-1}} \tag{2.1}$$

3 Equilibrium relationships (after reduction)

$$-\epsilon t p i_t + e^{\epsilon_t^2 + \phi \log \epsilon t p i_{t-1}} = 0 \tag{3.1}$$

$$\beta \left(\kappa \mathbf{E}_t \left[\lambda_{t+1}^{\mathrm{OPTIMALMP}^1}\right] - \mathbf{E}_t \left[\lambda_{t+1}^{\mathrm{OPTIMALMP}^2}\right]\right) + p H \lambda_t^{\mathrm{OPTIMALMP}^2} + \lambda_t^{\mathrm{OPTIMALMP}^4} (1 - p L) - 0.5 \kappa \theta^{-1} y H_t = 0 \tag{3.2}$$

$$\beta \left(\kappa \mathbf{E}_t \left[\lambda_{t+1}^{\mathrm{OPTIMALMP}^3}\right] - \mathbf{E}_t \left[\lambda_{t+1}^{\mathrm{OPTIMALMP}^4}\right]\right) + p L \lambda_t^{\mathrm{OPTIMALMP}^4} + \lambda_t^{\mathrm{OPTIMALMP}^2} (1 - p H) - 0.5 \kappa \theta^{-1} y L_t = 0 \tag{3.3}$$

$$-p H_{t-1} + \log \epsilon t p i_{t-1} + \beta p H_t + \kappa y H_{t-1} + \beta (1 - p H) \left(-p H_t + p L_t\right) = 0 \tag{3.4}$$

$$-p L_{t-1} + \log \epsilon t p i_{t-1} + \kappa y L_{t-1} + \beta p L p L_t + \beta (1 - p H) \left(-p H_t + p L_t\right) = 0 \tag{3.5}$$

$$-y H_{t-1} + y H_t - \sigma \left(i_{t-1} - p H_t\right) + \left(1 - p H\right) \left(-y H_t + y L_t\right) + \sigma \left(1 - p H\right) \left(-p H_t + p L_t\right) = 0 \tag{3.6}$$

$$-y L_{t-1} + y L_t - \sigma \left(i_{t-1} - p H_t\right) + \left(1 - p H\right) \left(y H_t + y L_t\right) + \sigma \left(1 - p H\right) \left(-p H_t + p L_t\right) = 0 \tag{3.7}$$

$$U_t + 0.25 \left(p H - p H c H h_t\right)^2 + 0.25 \left(-p C H p H L + p L_t\right)^2 - \beta E_t \left[U_{t+1}\right] + 0.25 \kappa \theta^{-1} y H_t^2 + 0.25 \kappa \theta^{-1} y L_t^2 = 0 \tag{3.8}$$

$$-0.5 p H - 0.5 p H - 0.5 p H - \beta E_t \left[\lambda_{t+1}^{\mathrm{OPTIMALMP}^1}\right] + \lambda_t^{\mathrm{OPTIMALMP}^1} \left(\beta - \beta \left(1 - p H\right)\right) + \lambda_t^{\mathrm{OPTIMALMP}^2} \left(\sigma - \sigma \left(1 - p H\right)\right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^3} \left(1 - p L\right) + \sigma \lambda_t^{\mathrm{OPTIMALMP}^4} \left(1 - p L\right) = 0$$

$$0.5 p H - 0.5 p H - 0.5 p H - \beta E_t \left[\lambda_{t+1}^{\mathrm{OPTIMALMP}^3}\right] + \lambda_t^{\mathrm{OPTIMALMP}^3} \left(\beta p L - \beta \left(1 - p L\right)\right) + \lambda_t^{\mathrm{OPTIMALMP}^4} \left(\sigma - \sigma \left(1 - p L\right)\right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^3} \left(1 - p H\right) + \sigma \lambda_t^{\mathrm{OPTIMALMP}^2} \left(1 - p H\right) = 0$$

$$0.5 p H - 0.5 p H - 0.5 p H - \beta E_t \left[\lambda_{t+1}^{\mathrm{OPTIMALMP}^3}\right] + \lambda_t^{\mathrm{OPTIMALMP}^3} \left(\beta p L - \beta \left(1 - p L\right)\right) + \lambda_t^{\mathrm{OPTIMALMP}^4} \left(\sigma - \sigma \left(1 - p L\right)\right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^3} \left(1 - p H\right) + \sigma \lambda_t^{\mathrm{OPTIMALMP}^2} \left(1 - p H\right) = 0$$

$$0.5 p H - 0.5 p H - 0.5$$

4 Steady state relationships (after reduction)

 \sim

$$-dtpi_{ss} + e^{\phi \log ctpi_{ss}} = 0 \tag{4.1}$$

$$\beta \left(-\lambda_{ss}^{\text{OPTIMALMP}^2} + \kappa \lambda_{ss}^{\text{OPTIMALMP}^2} \right) + pH\lambda_{ss}^{\text{OPTIMALMP}^2} + \lambda_{ss}^{\text{OPTIMALMP}^4} (1 - pL) - 0.5\kappa\theta^{-1}yH_{ss} = 0 \tag{4.2}$$

$$\beta \left(-\lambda_{ss}^{\text{OPTIMALMP}^4} + \kappa \lambda_{ss}^{\text{OPTIMALMP}^3} \right) + pL\lambda_{ss}^{\text{OPTIMALMP}^4} + \lambda_{ss}^{\text{OPTIMALMP}^2} (1 - pH) - 0.5\kappa\theta^{-1}yL_{ss} = 0 \tag{4.3}$$

$$-pH_{ss} + \log ctpi_{ss} + \beta pH_{ss} + \kappa yH_{ss} + \beta (1 - pH) \left(-pH_{ss} + pL_{ss} \right) = 0 \tag{4.4}$$

$$-pL_{ss} + \log ctpi_{ss} + \kappa yL_{ss} + \beta pLpiL_{ss} + \beta (1 - pH) \left(-pH_{ss} + pL_{ss} \right) = 0 \tag{4.5}$$

$$(1 - pH) \left(-yH_{ss} + yL_{ss} \right) - \sigma \left(is_{ss} - pH_{ss} \right) + \sigma \left(1 - pH \right) \left(-pH_{ss} + pL_{ss} \right) = 0 \tag{4.6}$$

$$(1 - pL) \left(yH_{ss} - yL_{ss} \right) - \sigma \left(is_{ss} - pH_{ss} \right) + \sigma \left(1 - pL \right) \left(pH_{ss} - pL_{ss} \right) = 0 \tag{4.6}$$

$$(1 - pL) \left(yH_{ss} - yL_{ss} \right) - \sigma \left(is_{ss} - pL_{ss} \right) + \sigma \left(1 - pL \right) \left(pH_{ss} - pL_{ss} \right) = 0 \tag{4.6}$$

$$(1 - pL) \left(yH_{ss} - yL_{ss} \right) - \sigma \left(is_{ss} - pL_{ss} \right) + \sigma \left(1 - pL \right) \left(pH_{ss} - pL_{ss} \right) = 0 \tag{4.7}$$

$$U_{ss} + 0.25 \left(pHH - pitCB + pH_{ss}^{2} \right)^{2} + 0.25 \left(-pitCB + pitL + pL_{ss}^{2} \right)^{2} - \beta U_{ss} + 0.25\kappa\theta^{-1}yH_{ss}^{2} + 0.25\kappa\theta^{-1}yL_{ss}^{2} = 0 \tag{4.8}$$

$$-0.5pitH + 0.5pitCB - 0.5piH_{ss} - \beta \lambda_{ss}^{\text{OPTIMALMP}^{1}} + \lambda_{ss}^{\text{OPTIMALMP}^{1}} \left(\beta - \beta \left(1 - pH \right) \right) + \lambda_{ss}^{\text{OPTIMALMP}^{2}} \left(\sigma - \sigma \left(1 - pH \right) \right) + \beta \lambda_{ss}^{\text{OPTIMALMP}^{3}} \left(1 - pL \right) + \sigma \lambda_{ss}^{\text{OPTIMALMP}^{4}} \left(1 - pL \right) = 0 \tag{4.9}$$

$$0.5pitCB - 0.5piL_{ss} - \beta \lambda_{ss}^{\text{OPTIMALMP}^{3}} + \lambda_{ss}^{\text{OPTIMALMP}^{3}} \left(\beta pL - \beta \left(1 - pL \right) \right) + \lambda_{ss}^{\text{OPTIMALMP}^{4}} \left(\sigma - \sigma \left(1 - pL \right) \right) + \beta \lambda_{ss}^{\text{OPTIMALMP}^{1}} \left(1 - pH \right) + \sigma \lambda_{ss}^{\text{OPTIMALMP}^{2}} \left(1 - pH \right) = 0 \tag{4.10}$$

5 Parameter settings

$\phi = 0.95$ (5.5) $pitH = 2$ (5.4) $pitCB = 2$ (5.5) $pitL = 4$ (5.6) $pH = 0.99$ (5.7) $pL = 0.99$ (5.8) $\sigma = 1$ (5.9)	$\beta = 0.99$	(5.1)
$pitH = 2$ (5.4) $pitCB = 2$ (5.5) $pitL = 4$ (5.6) $pH = 0.99$ (5.7) $pL = 0.99$ (5.8) $\sigma = 1$ (5.6)	$\kappa = 0.2465$	(5.2)
pitCB = 2 (5.5) pitL = 4 (5.6) pH = 0.99 (5.7) pL = 0.99 (5.8) $\sigma = 1$ (5.9)	$\phi = 0.95$	(5.3)
piL = 4 (5.6) pH = 0.99 (5.7) pL = 0.99 (5.8) $\sigma = 1$ (5.9)	pitH=2	(5.4)
pH = 0.99 (5.5) pL = 0.99 (5.6) $\sigma = 1$ (5.6)	pitCB=2	(5.5)
$pL = 0.99$ $\sigma = 1$ (5.8)	$p\!i\!L=4$	(5.6)
$\sigma = 1 \tag{5.9}$	pH = 0.99	(5.7)
	pL = 0.99	(5.8)
$\theta = 6 \tag{5.10}$	$\sigma = 1$	(5.9)
	$\theta = 6$	(5.10)

6 Steady-state values

	Steady-state value
etapi	1
i	-1.0001
$\lambda^{ ext{OPTIMALMP}^1}$	-0.0243
$\lambda^{ m OPTIMALMP^2}$	-0.5105
$\lambda^{ m OPTIMALMP^3}$	0.0141
$\lambda^{ m OPTIMALMP^4}$	0.5105
$pi\!H$	-0.9997
$p\!i\!L$	-1.0006
$y\!H$	-0.0405
yL	-0.0808
$_$	-49.9673

7 The solution of the 1st order perturbation

Matrix P

Matrix Q

$$\begin{array}{c} \epsilon^{\pi} \\ \epsilon tapi \\ i \\ piH \\ piL \\ yH \\ yL \end{array} \begin{pmatrix} 1 \\ -12.1391 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

Matrix R

Matrix S

$$\begin{array}{c} \epsilon^{\pi} \\ \lambda^{\text{OPTIMALMP}^1} \\ \lambda^{\text{OPTIMALMP}^2} \\ \lambda^{\text{OPTIMALMP}^3} \\ \lambda^{\text{OPTIMALMP}^4} \\ U \end{array} \begin{pmatrix} 22259.7763 \\ -405.5204 \\ -39307.9945 \\ 408.4928 \\ -0.0034 \\ \end{pmatrix}$$

8 Model statistics

8.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
i	-1.0001	1.4658	2.1487	Y
$\lambda^{ ext{OPTIMALMP}^1}$	-0.0243	2399.9295	5759661.7798	Y
$\lambda^{ m OPTIMALMP^2}$	-0.5105	43.7148	1910.9849	Y
$\lambda^{ m OPTIMALMP^3}$	0.0141	4228.1871	17877566.0584	Y
$\lambda^{ m OPTIMALMP^4}$	0.5105	43.9456	1931.2164	Y
$pi\!H$	-0.9997	0.1683	0.0283	Y
$p\!i\!L$	-1.0006	0.1688	0.0285	Y
$y\!H$	-0.0405	25.2506	637.5929	Y
yL	-0.0808	12.6478	159.9677	Y
$\underline{\hspace{1cm}}$	-49.9673	0	0	Y

8.2 Correlation matrix

	etapi	i	$\lambda^{ ext{OPTIMALMP}^1}$	$\lambda^{ m OPTIMALMP^2}$	$\lambda^{ m OPTIMALMP^3}$	$\lambda^{ m OPTIMALMP^4}$	piH	piL	$y\!H$
etapi	1	-0.099	0.753	-0.753	-0.751	0.751	0.156	0.153	-0.559
i		1	-0.398	0.398	0.402	-0.402	-0.206	-0.209	-0.656
$\lambda^{ ext{OPTIMALMP}^1}$			1	-1	-1	1	-0.179	-0.182	-0.385
$\lambda^{ m OPTIMALMP^2}$				1	1	-1	0.18	0.183	0.386
$\lambda^{ m OPTIMALMP^3}$					1	-1	0.182	0.185	0.382
$\lambda^{ m OPTIMALMP^4}$						1	-0.18	-0.183	-0.382
piH							1	1	0.443
piL								1	0.447
$y\!H$									1
yL									

8.3 Cross correlations with the reference variable (i)

						` ,						
	$\sigma[\cdot]$ rel. to $\sigma[i]$	i_{t-5}	i_{t-4}	i_{t-3}	i_{t-2}	i_{t-1}	$ i_t $	i_{t+1}	i_{t+2}	i_{t+3}	$ i_{t+4} $	
$etapi_t$	0.089	-0.021	-0.008	0.033	0.16	0.562	-0.099	-0.09	-0.08	-0.07	-0.06	-
i_t	1	-0.004	-0.012	-0.035	-0.109	-0.343	1	-0.343	-0.109	-0.035	-0.012	-(
$\lambda_t^{ ext{OPTIMALMP}^1}$	1637.229	0	0.015	0.058	0.191	0.61	-0.398	-0.234	-0.135	-0.074	-0.036	-(
$\lambda_t^{ ext{OPTIMALMP}^2}$	29.822	0	-0.015	-0.058	-0.191	-0.61	0.398	0.235	0.135	0.073	0.036	(
$\lambda_t^{ ext{OPTIMALMP}^3}$	2884.463	0	-0.015	-0.058	-0.191	-0.611	0.402	0.236	0.134	0.072	0.035	(
$\lambda_t^{ ext{OPTIMALMP}^4}$	29.98	0	0.015	0.058	0.191	0.611	-0.402	-0.234	-0.134	-0.073	-0.036	-(
$p\!i\!H_t$	0.115	-0.007	-0.008	-0.011	-0.024	-0.067	-0.206	0.863	-0.019	-0.179	-0.157	-(
$p\!i\!L_t$	0.115	-0.007	-0.008	-0.011	-0.025	-0.068	-0.209	0.863	-0.016	-0.177	-0.156	-(
$y\!H_t$	17.226	0.012	0.007	-0.008	-0.055	-0.199	-0.656	0.635	0.147	0.021	-0.004	-(
yL_t	8.628	0.012	0.007	-0.008	-0.055	-0.199	-0.656	0.636	0.147	0.02	-0.004	-(

8.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
i	-0.343	-0.109	-0.035	-0.012	-0.004
$\lambda^{ ext{OPTIMALMP}^1}$	0.467	0.156	-0.021	-0.115	-0.159
$\lambda^{ m OPTIMALMP^2}$	0.467	0.154	-0.022	-0.116	-0.159
$\lambda^{ m OPTIMALMP^3}$	0.463	0.151	-0.023	-0.116	-0.158
$\lambda^{ m OPTIMALMP^4}$	0.464	0.153	-0.022	-0.115	-0.158
piH	0.218	-0.026	-0.098	-0.113	-0.109
$p\!i\!L$	0.217	-0.027	-0.098	-0.113	-0.109
$y\!H$	0.163	-0.029	-0.055	-0.05	-0.045
yL_	0.162	-0.03	-0.056	-0.05	-0.045

9 Impulse response functions

Figure 1: Impulse responses $(i, \not\! p\! H, \not\! p\! L, y\! H, y\! L)$ to ϵ^π shock