Nombres complexes et trigonométrie

Une transformation

QCOP TRGCPLX.1

 $\operatorname{\mathscr{F}}$ Soient $z,z'\in\mathbb{C}$. Montrer que

$$\begin{cases} \mathfrak{Re}(zz') = \mathfrak{Re}(z)\mathfrak{Re}(z') - \mathfrak{Im}(z)\mathfrak{Im}(z') \\ \mathfrak{Im}(zz') = \mathfrak{Re}(z)\mathfrak{Im}(z') + \mathfrak{Im}(z)\mathfrak{Re}(z'). \end{cases}$$

- X Soit $x \in \mathbb{R}$.
 - (a) Calculer

$$\Re \mathfrak{e}\Big((1-\mathsf{i})\Big(\cos(x)+\mathsf{i}\sin(x)\Big)\Big).$$

(b) En déduire que

$$\cos(x) + \sin(x) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right).$$

Factorisation par l'angle moitié

QCOP TRGCPLX.2

- Définir l'ensemble U.
- Montrer les formules d'Euler exprimant cos(t) et sin(t) pour $t \in \mathbb{R}$.
- **%** Soient $t, a, b \in \mathbb{R}$. Factoriser

$$1 + e^{it}$$
, $1 - e^{it}$, $e^{ia} + e^{ib}$, $e^{ia} - e^{ib}$.

QCOP TRGCPLX.3

- \blacksquare Définir, pour $t \in \mathbb{R}$, le nombre e^{it} .
- **?** Soit $t \in \mathbb{R}$ tel que $e^{it} \neq 1$. Soit $n \in \mathbb{N}$.
 - (a) Factoriser $1 e^{it}$.
 - **(b)** Factoriser $1 e^{i(n+1)t}$
 - (c) Calculer la somme $\sum_{k=0}^{n} e^{ikt}$.
- **%** En déduire, pour $t \in \mathbb{R}$ et $n \in \mathbb{N}$, les valeurs des sommes

$$\sum_{k=0}^{n} \cos(kt) \quad \text{et} \quad \sum_{k=0}^{n} \sin(kt).$$

Délinéarisation

QCOP TRGCPLX.4

- Énoncer et démontrer la formule de Moivre.
- % Soit $t \in \mathbb{R}$.
 - (a) Soit $n \in \mathbb{N}$. Montrer que

$$\begin{cases} \cos(nt) = \sum_{p=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{2p} (-1)^p \sin^{2p}(t) \cos^{n-2p}(t) \\ \sin(nt) = \sum_{p=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \binom{n}{2p+1} \sin^{2p+1}(t) \cos^{n-1-2p}(t). \end{cases}$$

(b) Calculer cos(5t) et sin(4t).

On n'appliquera pas directement les formules précédentes mais on s'inspirera de la méthode de leur démonstration.