الهندسة الفضائية التمرين 1

<u>تمرين</u>

الفضاء منسوب إلى معلم متعامد ممنظم مباشر
$$O,i,j,k$$
 و $O,-1,0$ و

(ABC) و المستوى (S) و المستوى ب. حدد مثلوث إحداثيات نقطة تماس الفلكة

...

$$\overrightarrow{AC}\left(-2,2,2\right)$$
 و $\overrightarrow{AB}\left(0,2,2\right)$: لدينا (1 $\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{vmatrix} 2 & 0 \\ 2 & 2 \end{vmatrix} \vec{i} - \begin{vmatrix} 0 & -2 \\ 2 & 2 \end{vmatrix} \vec{j} + \begin{vmatrix} 0 & -2 \\ 2 & 0 \end{vmatrix} \vec{k}$ الدين $\overrightarrow{AB} \wedge \overrightarrow{AC} = 4\vec{i} + 4\vec{j} + 4\vec{k}$ ومنه

(ABC) دينا $\overrightarrow{AB} \wedge \overrightarrow{AC}$ متجهة منظمية للمستوى (ABC) الدينا AZ الدينا AZ متجهة منظمية للمستوى (ABC) اتكتب على شكل AZ باذن معادلة ديكارتية للمستوى (ABC) اتكتب على شكل $A(2,0,0) \in (ABC)$ و منه $A(2,0,0) \in (ABC)$ و منه نستنج المستوى (ABC) تكتب على شكل AZ المستوى (ABC) و منه نستنج الن AZ معادلة ديكارتية للمستوى (ABC) معادلة ديكارتية للمستوى (ABC)

1/3 Math.ma – 3/2017

$$(ABC)$$
 دينا \overrightarrow{AB} (4,4,4) و لدينا (IJ) و لدينا (IJ) متجهة منظمية للمستوى (3) دينا \overrightarrow{AB} دينا \overrightarrow{IJ} ($-2,-2,-2$) دينا \overrightarrow{IJ} د \overrightarrow{IJ} د \overrightarrow{IJ} و \overrightarrow{IJ} د خط أن \overrightarrow{IJ} د \overrightarrow{IJ} د خط أن \overrightarrow{IJ} د خط أن \overrightarrow{IJ} د خط أن \overrightarrow{IJ} د خط أن \overrightarrow{IJ} د خط أن خطمية للمستوى (ABC) د منه \overrightarrow{IJ} هي أيضا متجهة منظمية للمستوى (ABC)

(ABC) و المماسة للمستوى $I\left(2,1,2\right)$ و المماسة المستوى (4 $d\left(I,(ABC)\right)$ و المماسة المستوى (S) بيساوي الذن r النحسب الفلكة ($d\left(I,(ABC)\right)$

$$d(I,(ABC)) = \frac{|(2)+(1)+(2)-2|}{\sqrt{1^2+1^2+1^2}} = \frac{3}{\sqrt{3}} = \sqrt{3}$$

 $r=\sqrt{3}$ و منه $I\left(2,1,2
ight)$ و شعاعها الفلكة التي مركزها

$$(x-2)^2 + (y-1)^2 + (z-2)^2 = (\sqrt{3})^2$$
 : يكارتية للفلكة (S) تكتب على شكل :

(ABC) ب المستقيم المار من النقطة I(2,1,2) و العمودي على المستقيم المار من النقطة

و بما أن $(ABC) \wedge \overrightarrow{AC} \wedge \overrightarrow{AC} \wedge \overrightarrow{AC} \wedge \overrightarrow{AC}$ متجهة منظمية للمستوى و بما أن $(ABC) \wedge \overrightarrow{AC} \wedge \overrightarrow{AC} \wedge \overrightarrow{AC} \wedge \overrightarrow{AC}$ هي أيضا متجهة موجهة للمستقيم (Δ) .

$$\begin{cases} x=2+4t \ y=1+4t \ (t\in\mathbb{R}):$$
 الذن تمثيل بارامتري للمستقيم (Δ) يكتب على شكل $z=2+4t$

$$\left(ABC\,
ight)$$
 نقطة تماس الفلكة $\left(S\,
ight)$ و المستوى $H\left(x_{_H},y_{_H},z_{_H}
ight)$ لتكن

$$\begin{cases} x_H = 2 + 4t \\ y_H = 1 + 4t \\ z_H = 2 + 4t \\ x_H + y_H + z_H - 2 = 0 \end{cases} \Leftrightarrow H(x_H, y_H, z_H) \in (\Delta) \cap (S)$$

2/3 Math.ma – 3/2017

$$\begin{cases} x_H = 2 + 4t \\ y_H = 1 + 4t \\ z_H = 2 + 4t \\ (2 + 4t) + (1 + 4t) + (2 + 4t) - 2 = 0 \end{cases} \Leftrightarrow$$

$$\begin{cases} x_H = 2 + 4t \\ y_H = 1 + 4t \\ z_H = 2 + 4t \end{cases} \Leftrightarrow$$

$$t = \frac{-1}{4}$$

$$\begin{cases} x_H = 1 \\ y_H = 0 \iff \\ z_H = 1 \end{cases}$$

 $\left(ABC\right)$ و بالتالي النقطة $H\left(1,0,1
ight)$ هي نقطة تماس الفلكة و بالتالي النقطة

3/3 Math.ma – 3/2017