PART 4 MICROPROCESSOR INSTRUCTION SET TABLES

	CATEGORY							
ro Mnemonic			Т	#	Addres Mode	s O	Boolean/Arith. Operation	Notes
		<u>CP</u>	U (Cont	rol Instr	<u>uctio</u>	<u>nş</u>	
NOP	No OPeration	xx-x-x						Can be used to create time
NOP	No OPeration	xx-x-xxx	4	1	Implied	00	nothing	delays or leave extra spaces for instructions to be inserted at a later time.
HLT	HALT	xx-x-x	5					(8080 = 7 states)
HALT	HALT	XX-X-XXX	4	1	Implied	76	stop processing	,
		Data	a Tı	ransf	er Instru	ıctioı	<u>15</u>	
MOV A,A	MOVe data to A from A	A xx-x-x-x		•				(8080 = 5 T states)
LD A,A	LoaD data into A from A	xx-x-xxx	4	1	Register	7 F	A + A	
MOV A,B	MOVe data to A from E	3 xx-x-x-x		· · · · ·				(8080 = 5 T states)
LD A,B	LoaD data into A from B	xx-x-xxx	4	1	Register	78	A ← B	(
MOV A,C	MOVe data to A from C		-					(8080 = 5 T states)
LD A,C	LoaD data into A from C	XX-x-xxx	4	1	Register	<i>7</i> 9	A ← C	,
MOV A,D	MOVe data to A from D	xx-x-x						(8080 = 5 T states)
LD A,D	LoaD data into A from D	xx-x-xxx	4	1	Register	7A	A + D	(States)
MOV A,E	MOVe data to A from E		······································		· · · · · · · · · · · · · · · · · · ·			(8080 = 5 T states)
LD A,E	LoaD data into A from E	XX-x-xxx	ŀ	1	Register	7B	A + E	,
	NOP NOP HLT HALT MOV A,A LD A,A LD A,B MOV A,C LD A,C MOV A,C LD A,C	NOP No OPeration NOP No OPeration HLT HALT HALT HALT HALT HALT MOV A,A MOVE data to A from A LD A,A LoaD data into A from A MOV A,B MOVE data to A from E LD A,B LoaD data into A from B MOV A,C MOVE data to A from C LD A,C LoaD data into A from C MOV A,D MOVE data to A from D LD A,D LoaD data into A from D MOV A,E MOVE data to A from E LD A,E LoaD data into A	NOP No OPeration XX-X-X-X NOP No OPeration XX-X-X-X HLT HALT XX-X-X-X HALT HALT XX-X-X-X MOV A,A MOVE data to A from A XX-X-X-X LD A,A LoaD data into A XX-X-X-X LD A,B LoaD data into A XX-X-XX from B MOV A,C MOVE data to A from C XX-X-X-X LD A,C LoaD data into A XX-X-X-X LD A,C LoaD data into A XX-X-X-X MOV A,D MOVE data to A from C XX-X-X-X LD A,C LoaD data into A XX-X-X-X from C MOV A,D MOVE data to A from D XX-X-X-X LD A,D LoaD data into A XX-X-X-X from D MOV A,E MOVE data to A from E XX-X-X-X LD A,E LoaD data into A XX-X-X-X MOV A,E MOVE data to A from E XX-X-X-X LD A,E LoaD data into A XX-X-X-XX	NOP No OPeration XX-X-X-X 4 NOP No OPeration XX-X-X-X 4 HLT HALT XX-X-X-X 5 HALT HALT XX-X-X-X 4 MOV A,A MOVe data to A from A XX-X-X-X LD A,A LoaD data into A XX-X-X-X LD A,B LoaD data into A XX-X-X-X from B MOV A,C MOVe data to A from C XX-X-X-X from C MOV A,D MOVe data to A from D XX-X-X-X LD A,C LoaD data into A XX-X-X-X from C MOV A,D MOVe data to A from D XX-X-X-X from C MOV A,D MOVe data to A from D XX-X-X-X LD A,D LoaD data into A XX-X-X-X from C	NOP No OPeration XX-X-X-X 4 1	NOP No OPeration XX-X-X-X 4 1 Implied NOP No OPeration XX-X-X-X 4 1 Implied HLT HALT XX-X-X-X 5 1 Implied MOV A,A MOVE data to A from A XX-X-X-X 4 1 Register LD A,A LoaD data into A XX-X-X-X 4 1 Register MOV A,B MOVE data to A from B XX-X-X-X 4 1 Register LD A,B LoaD data into A XX-X-X-X 4 1 Register MOV A,C MOVE data to A from C XX-X-X-X 4 1 Register MOV A,C MOVE data to A from C XX-X-X-X 4 1 Register MOV A,C MOVE data to A from C XX-X-X-X 4 1 Register MOV A,D MOVE data to A from D XX-X-X-X-X 4 1 Register MOV A,D MOVE data to A from D XX-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-	NOP No OPeration xx-x-x-x 4 1 Implied 00 NOP No OPeration xx-x-x-x 5 1 Implied 76 HLT HALT xx-x-xx 5 1 Implied 76 HALT HALT xx-x-xx 4 1 Implied 76 MOV A,A MOVE data to A from A xx-x-x-x 4 1 Register 7F LD A,A LoaD data into A xx-x-xx 4 1 Register 7F MOV A,B MOVE data to A from B xx-x-x-x 4 1 Register 78 LD A,B LoaD data into A xx-x-xx 4 1 Register 79 MOV A,C MOVE data to A from C xx-x-x-x 4 1 Register 79 MOV A,D MOVE data to A from D xx-x-x-x 4 1 Register 79 MOV A,D MOVE data to A from D xx-x-x-x 4 1 Register 79 MOV A,D MOVE data to A from D xx-x-x-x 4 1 Register 79 MOV A,D MOVE data to A from D xx-x-x-x 4 1 Register 79 MOV A,D MOVE data to A from D xx-x-x-x 4 1 Register 78 MOV A,D MOVE data to A from D xx-x-x-x 4 1 Register 78 MOV A,B MOVE data to A from E xx-x-xx 4 1 Register 78	NOP No OPeration

Micro	Mnemonic	Option	8085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085	MOV A,H	MOVe data to A from	Н хх-х-х	4	1	Register	7C	A ← H	(8080 = 5 T states)
Z80	LD A,H	LoaD data into A from H	xx-x-xxx						
8085	MOV A,L	MOVe data to A from	L xx-x-x	4	1	Register	7D	A + L	(8080 = 5 T states)
Z80	LD A,L	LoaD data into A from L	xx-x-xxx			v			
8085	MOV A,M	MOVe data to A from	n M xx-x-x-x	7	1	Reg Ind	7E	A ← M _{HL}	The data byte found at the memory location pointed to by
Z80	LD A,(HL)	LoaD data into A from (HL)	XX-X-XXX			J			the HL register pair is copied into the accumulator.
8085	MOV B,A	MOVe data to B from	n A xx-x-x-x	4	1	Register	47	B + A	(8080 = 5 T states)
Z 80	LD B,A	LoaD data into B from A	xx-x-xxx						
8085	MOV B,B	MOVe data to B from	m B xx-x-x-x	4	1	Register	40	B + B	(8080 = 5 T states)
Z 80	LD B,B	LoaD data into B from B	xx-x-xxx						
8085	MOV B,C	MOVe data to B from	m C xx-x-x-x	4	1	Register	41	B ← C	(8080 = 5 T states)
Z80	LD B,C	LoaD data into B from C	xx-x-xxx	·	_	g			
8085	MOV B,D	MOVe data to B fro	m D xx-x-x-x	4	1	Register	r 42	B ← D	(8080 = 5 T states)
Z80	LD B,D	LoaD data into B from D	xx-x-xxx	•	-	g.			
8085	MOV B,E	MOVe data to B fro	m E xx-x-x	4	1	Register	r 43	B ← E	(8080 = 5 T states)
Z 80	LD B,E	LoaD data into B from E	xx-x-xxx	•	•				
8085	MOV B,H	MOVe data to B fro	om H xx-x-x	4	1	Registe	r 44	B + H	(8080 = 5 T states)
Z 80	LD B,H	LoaD data into B from H	xx-x-xxx	•	•				

Micro	o Mnemonic		8085>sz.a.p.c Z80>sz.h.pnc	T	#	Address Mode	O _F	Boolean/Arith. Operation	Notes
8085 Z80	MOV B,L LD B,L	MOVe data to B from LoaD data into B from L	L xx-x-x-x	4	1	Register	45	B←L	(8080 = 5 T states)
8085 Z80	MOV B,M LD B,(HL)	MOVe data to B from M _{HL} LoaD data into B from (HL)	xx-x-x-x xx-x-xxx	7	1	Reg Ind	46	B ← M _{HL}	The data byte found at the memory location pointed to be the HL register pair is copied into register B.
8085 Z 80	MOV C,A LD C,A	MOVe data to C from LoaD data into C from A	A xx-x-x-x xx-x-xxx	4	1	Register	4F	C+A	(8080 = 5 T states)
8085 Z80	MOV C,B	MOVe data to C from LoaD data into C from B	B xx-x-x-x	4	1	Register	48	C + B	(8080 = 5 T states)
8085 Z80	MOV C,C LD C,C	MOVe data to C from C LoaD data into C from C	C xx-x-x-x xx-x-xxx	4	1	Register	49	C+C	(8080 = 5 T states)
3085 Z80	MOV C,D LD C,D	MOVe data to C from I LoaD data into C from D) xx-x-x xx-x-xxx	4	1	Register	4A	C+D	(8080 = 5 T states)
	MOV C,E LD C,E	MOVe data to C from E LoaD data into C from E		4	1	Register	4B	C+E	(8080 = 5 T states)
	MOV C,H LD C,H	MOVe data to C from H LoaD data into C from H		4	1	Register	4C	С + Н	(8080 = 5 T states)
	MOV C,L LD C,L	MOVe data to C from L LoaD data into C from L		4	1	Register	4D	C+L	(8080 = 5 T states)

Micro	Mnemonic	- P	3085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	MOV C,M LD C,(HL)	MOVe data to C from M _{HL} LoaD data into C from (HL)	xx-x-x-x xx-x-xxx	7	1	Reg Ind	4E	C ← M _{HL}	The data byte found at the memory location pointed to by the HL register pair is copied into register C.
8085 Z 80	MOV D,A LD D,A	MOVe data to D from LoaD data into D from A	n A xx-x-x xx-x-xxx	4	1	Register	57	D + A	(8080 = 5 T states)
8085 Z80	MOV D,B	MOVe data to D from LoaD data into D from B	n B xx-x-x-x	4	1	Register	50	D + B	(8080 = 5 T states)
8085 Z80	MOV D,C LD D,C	MOVe data to D from LoaD data into D from C	n C xx-x-x-x	4	1	Register	51	D + C	(8080 = 5 T states)
8085 Z80	MOV D,D LD D,D	MOVe data to D from	m D xx-x-x-x	4	1	Register	52	D + D	(8080 = 5 T states)
8085 Z80	MOV D,E LD D,E	MOVe data to D from LoaD data into D from E	n E xx-x-x xx-x-xxx	4	1	Register	53	D + E	(8080 = 5 T states)
8085 Z80	MOV D,H LD D,H	MOVe data to D from H	m H xx-x-x-x	4	1	Register	54	D ← H	(8080 = 5 T states)
8085 Z8 0	MOV D,L LD D,L	MOVe data to D from LoaD data into D from L	m L xx-x-x-x	4	1	Register	- 55	D + L	(8080 = 5 T states)
8085 Z80	MOV D,M LD D,(HL)	MOVe data to D fro M _{HL} LoaD data into D from (HL)	m xx-x-x-x	7	1	Reg Ind	56	D + M _{HL}	The data byte found at the memory location pointed to by the HL register pair is copied into register D.

Mici	ro Mnemonic	Operation	8085>sz.a.p.c Z80>sz.h.pnc	T	#	Address Mode	s O _I	Boolean/Arith. Operation	Notes
8085	MOV E,A	MOVe data to E from	A xx-x-x						(8080 = 5 T states)
Z 80	LD E,A	LoaD data into E from A	XX-x-xxx	4	1	Register	r 5F	E←A	
8085	MOV E,B	MOVe data to E from	В хх-х-х-х		-				(8080 = 5 T states)
Z 80	LD E,B	LoaD data into E from B	xx-x-xxx	4	1	Register	58	E ← B	
8085	MOV E,C	MOVe data to E from	C xx-x-x-x						(8080 = 5 T states)
Z 80	LD E,C	LoaD data into E from C	XX-x-xxx	4	1	Register	59	E ← C	, in the second
8085	MOV E,D	MOVe data to E from	D xx-x-x		-				(8080 = 5 T states)
Z 80	LD E,D	LoaD data into E from D	XX-X-XXX	4	1	Register	5A	E ← D	(
3085	MOV E,E	MOVe data to E from	Е хх-х-х-х						(8080 = 5 T states)
Z80	LD E,E	LoaD data into E from E	XX-X-XXX	4	1	Register	5B	E ← E	(
085	MOV E,H	MOVe data to E from 1	Н хх-х-х	·					(8080 = 5 T states)
Z 80	LD E,H	LoaD data into E from H	xx-x-xxx	4	1	Register	5C	E + H	(
085	MOV E,L	MOVe data to E from I							(8080 = 5 T states)
280	LD E,L	LoaD data into E from L	xx-x-xxx	4	1	Register	5D	E←L	,
)85	MOV E,M	MOVe data to E from	xx-x-x						The data byte found at the
80	LD E,(HL)	M _{HL} LoaD data into E from (HL)	XX-X-XXX	7	1	Reg Ind	5E	E ← M _{HL}	memory location pointed to by the HL register pair is copied into register E.
85	MOV H,A	MOVe data to H from A							(8080 = 5 T states)
30	LD H,A	LoaD data into H from A	XX-X-XXX	1	1	Register	67	H ← A	•

Micro	Mnemonic	Operation 8	8085>sz-a-p-c Z80>sz-h-pnc	T	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	MOV H,B LD H,B	MOVe data to H from LoaD data into H from B	n B xx-x-x-x	4	1	Register	60	H + B	(8080 = 5 T states)
8085 Z80	MOV H,C LD H,C	MOVe data to H from	n C xx-x-x-x	4	1	Register	61	н ← С	(8080 = 5 T states)
8085 Z80	MOV H,D LD H,D	MOVe data to H from LoaD data into H from D	n D xx-x-x-x	4	1	Register	62	H + D	(8080 = 5 T states)
8085 Z80	MOV H,E LD H,E	MOVe data to H from E	n E xx-x-x xx-x-xxx	4	1	Register	63	н←Е	(8080 = 5 T states)
8085 Z80	MOV H,H LD H,H	MOVe data to H fro LoaD data into H from H	m H xx-x-x-x	4	1	Register	64	H + H	(8080 = 5 T states)
8085 Z80	MOV H,L LD H,L	MOVe data to H fro LoaD data into H from L	m L xx-x-x-x	4	1	Register	65	H ← L	(8080 = 5 T states)
8085 Z80	MOV H,M LD H,(HL)	MOVe data to H from M _{HL} LoaD data into H from (HL)	m xx-x-x-x xx-x-xxx	7	1	Reg Ind	l 66	H ← M _{HL}	The data byte found at the memory location pointed to be the HL register pair is copie into register H.
8085 Z80	MOV L,A LD L,A	MOVe data to L fro LoaD data into L from A	m A xx-x-x-x	4	1	Register	r 6F	L ← A	(8080 = 5 T states)
8085 Z80	MOV L,B	MOVe data to L fro	m B xx-x-x-x	4	1	Registe	r 68	L + B	(8080 = 5 T states)

Micro	Mnemonic		085>sz.a.p.c Z80>sz.h.pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	MOV L,C LD L,C	MOVe data to L from LoaD data into L from C	C xx-x-x-x	4	1	Register	- 69	L + C	(8080 = 5 T states)
8085 Z80	MOV L,D LD L,D	MOVe data to L from LoaD data into L from D	D xx-x-x-x	4	1	Register	6A	L+D	(8080 = 5 T states)
8085 Z80	MOV L,E LD L,E	MOVe data to L from LoaD data into L from E	E xx-x-x-x	4	1	Register	6B	L + E	(8080 = 5 T states)
8085 Z80	MOV L,H LD L,H	MOVe data to L from I LoaD data into L from H	H xx-x-x-x	4	1	Register	6C	L+H	(8080 = 5 T states)
8085 Z80	MOV L,L LD L,L	MOVe data to L from I LoaD data into L from L	XX-x-x-x XX-x-xxx	4	1	Register	6D	L+L	(8080 = 5 T states)
8085 Z80	MOV L,M LD L,(HL)	MOVe data to L from M _{HL} LoaD data into L from (HL)	xx-x-x-x xx-x-xxx	7	1	Reg Ind	6E	L ← M _{HL}	The data byte found at the memory location pointed to by the HL register pair is copied into register L.
	MOV M,A LD (HL),A	MOVe data to M _{HL} from A LoaD data into (HL) from A	xx-x-x xx-x-xxx	7	1	Reg Ind	77	M _{HL} ← A	The data in the accumulator is copied into the memory location pointed to by the HL register pair.
	MOV M,B LD (HL),B	MOVe data to M _{HL} from B LoaD data into (HL) from B	xx-x-x xx-x-xxx	7	1	Reg Ind	70	M _{HL} ← B	The data in register B is copied into the memory location pointed to by the HL register pair.
_	MOV M,C LD (HL),C	MOVe data to M _{HL} from C LoaD data into (HL) from C	xx-x-x-x xx-x-xxx	7	1	Reg Ind	71	M _{HL} ← C	The data in register C is copied into the memory location pointed to by the HL register pair.

Micro	Mnemonic	Operation	8085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085	MOV M,D	MOVe data to M _{HL} from D	xx-x-x-x	7	1	Reg Ind	72	M _{HL} ← D	The data in register D is copied into the memory location
Z 80	LD (HL),D	LoaD data into (HL) from D	xx-x-xxx						pointed to by the HL register pair.
8085	MOV M,E	MOVe data to M _{HL}	xx-x-x	7	1	Reg Ind	73	M _{HL} ← E	The data in register E is copied into the memory location
Z 80	LD (HL),E	LoaD data into (HL) from E) xx-x-xxx			J		ne :	pointed to by the HL register pair.
8085	MOV M,H	MOVe data to M _{HL}	xx-x-x	7	1	Reg Ind	74	M _{HL} ← H	The data in register H is copied into the memory location
Z 80	LD (HL),H	LoaD data into (HL)) xx-x-xxx	,	•	Reg Ind	,,	····HL	pointed to by the HL register pair.
8085	MOV M,L	MOVe data to M _{HL}	xx-x-x	7	1	Reg Ind	75	M _{HL} ← L	The data in register L is copied into the memory location
Z 80	LD (HL),L	LoaD data into (HL from L) xx-x-xxx	,	•	nog mo	,5	···HL D	pointed to by the HL register pair.
8085	MVI A,dd	MoVe Immediate do	i xx-x-x	7	2	Immed	3E	A ← dd	The data byte immediately following the op code is copied
Z80	LD A,dd	LoaD dd into A	xx-x-xxx	•	-	•			into the accumulator.
8085	MVI B,dd	MoVe Immediate do	d xx-x-x	7	2	Immed	06	B ← dd	The data byte immediately following the op code is copied
Z80	LD B,dd	LoaD dd into B	xx-x-xxx						into register B.
8085	MVI C,dd	MoVe Immediate d	d xx-x-x-x	7	2	Immed	0E	C ← dd	The data byte immediately following the op code is copied
Z 80	LD C,dd	LoaD dd into C	xx-x-xxx						into register C.
8085	MVI D,dd	MoVe Immediate d	d xx-x-x-x	7	2	Immed	16	D ← dd	The data byte immediately following the op code is copied
Z 80	LD D,dd	LoaD dd into D	xx-x-xxx						into register D.
8085	MVI E,dd	MoVe Immediate d	d xx-x-x-x	7	2	Immed	1E	E ← dd	The data byte immediately following the op code is copied
Z80	LD E,dd	LoaD dd into E	xx-x-xxx						into register E.
8085	MVI H,dd	MoVe Immediate d	d xx-x-x	7		Immed	26	H ← dd	The data byte immediately following the op code is copied
Z 80	LD H,dd	LoaD dd into H	xx-x-xxx	•	_				into register H.

Micr	o Mnemonic	Operation	8085>sz.a.p.c Z80>sz.h.pnc	T	#	# Address Mode	s Op	Boolean/Arith. Operation	Notes
8085 Z80	MVI L,dd LD L,dd	MoVe Immediate dd to L LoaD dd into L	xx-x-x-x xx-x-xxx	7	2	Immed	2E	L ← dd	The data byte immediately following the op code is copied into register L.
8085 Z80	MVI M,dd LD (HL),dd	MoVe Immediate dd to M _{HL} LoaD dd into (HL)	XX-x-x-x XX-x-xxx	10	2	Immed/ Reg Ind		M _{HL} ← dd	The data byte immediately following the op code is copied into the memory location pointed to by the HL register pair.
8085 Z80	LXI B,dddd LD BC,dddd	Load eXtended Immediate dddd into register pair BC LoaD dddd into register pair BC	xx-x-x-x xx-x-xxx	10	3	Immed	01	BC ← dddd	Copy bytes 3 and 2 of the instruction into registers B and C respectively.
8085 Z80	LXI D,dddd LD DE,dddd	Load eXtended Immediate dddd into register pair DE LoaD dddd into register pair DE	xx-x-x-x xx-x-xxx	10	3	Immed	11	DE ← dddd	Copy bytes 3 and 2 of the instruction into registers D and E respectively.
8085 Z80	LXI H,dddd LD HL,dddd	Load eXtended Immediate dddd into register pair HL LoaD dddd into register pair HL	xx-x-x-x xx-x-xxx	10	3	Immed	21	HL ← dddd	Copy bytes 3 and 2 of the instruction into registers H and L respectively.
8085 Z 80	LDAX B	LoaD Accumulator eXtended with data from mem loc BC LoaD Accumulator with data from mem loc (BC	xx-x-x-x xx-x-xxx	7	1	Reg Ind	0A	A + M _{BC}	Copy the data byte found at the memory location pointed to by the BC register pair into the accumulator.
3085 Z80	LDAX D LD A,(DE)	LoaD Accumulator eXtended with data from mem loc DE LoaD Accumulator with data from mem loc (DE	xx-x-xxx	7	1	Reg Ind	1A	A ← M _{DE}	Copy the data byte found at the memory location pointed to by the DE register pair into the accumulator.
	LHLD aaaa LD HL,(aaaa)	Load HL Direct with data starting at aaaa LoaD HL with data starting at (aaaa)	xx-x-x-x xx-x-xxx	16	3	Direct	2A	L ← M _{assa} H ← M _{assa+1}	Copy the data byte found at memory location aaaa into the L register and the data byte found at the next memory location (aaaa+1) into the H register.

Micro	Mnemonic	- F	185 > sz-a-p-c 180 > sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	LDA aaaa LD A,(aaaa)	LoaD Accumulator with data from mem loc aaaa LoaD Accumulator with data from mem loc (aaaa)	a	13	3	Direct	3A	A ← M _{aaaa}	Copy the contents of memory location aaaa into the Accumulator.
8085 Z80	STA aaaa LD (aaaa),A	STore Accumulator in mem loc aaaa LoaD mem loc (aaaa) with the contents of the Accumulator	xx-x-x-x xx-x-xxx	13	3	Direct	32	M _{aaaa} ← A	Copy the contents of the accumulator into memory location aaaa.
8085 Z80	STAX B LD (BC),A	STore Accumulator eXtended at mem loc BC LoaD mem loc (BC) with the contents of the Accumulator	xx-x-x-x xx-x-xxx	7	1	Reg Ind	02	M _{BC} ← A	Copy the contents of the accumulator into the memory location pointed to by the BC register pair.
8085 Z80	STAX D LD (DE),A	STore Accumulator eXtended at mem loc DE LoaD mem loc (DE) with the contents of the Accumulator	xx-x-x-x xx-x-xxx	7	1	Reg Ind	12	M _{DE} ← A	Copy the contents of the accumulator into the memory location pointed to by the DE register pair.
8085 Z80	SHLD aaaa LD (aaaa),HL	Store HL Direct at mem loc aaaa LoaD mem loc starting at (aaaa) with con- tents of HL)	xx-x-x xx-x-xxx	16	3	Direct	22	M _{aaaa} ← L M _{aaaa+1} ← H	Copy the contents of register L into memory location aaaa and the contents of register H into the next (aaaa+1) memory location.
8085 Z80	XCHG EX DE,HL	eXCHanGe DE with H		4	1	Register	ЕВ	DE + HL	Exchange the contents of the DE and HL register pairs.
				Fla	ag I	nstruction	<u>1S</u>		
8085 Z 80	STC SCF	SeT Carry flag Set Carry Flag	xx-x-x-1 xx-x-xx1	4	1	Implied	37	C+1	The carry flag is normally designated as "CY" for the 8080/8085.

Micro	Mnemonic		8085>szapc Z80>szhpnc	Т	#	Address Mode	Ор	Boolean/Arith. Operation	Notes
8085 Z80	CMC CCF	CoMplement Carry fla		4	1	Implied	3F	c + c	The carry flag is normally designated as "CY" for the 8080/8085.
			<u>A</u> :	<u>rithr</u>	neti	c Instruc	<u>tions</u>		
8085 Z80	ADD A,A	ADD A to A	SZ-A-P-C SZ-H-P0C	4	1	Register	87	A + A + A	
8085 Z80	ADD B ADD A,B	ADD B to A	SZ-A-P-C SZ-H-P0C	4	1	Register	80	A + A + B	
8085 Z80	ADD C	ADD C to A ADD C to A	SZ-A-P-C SZ-H-P0C	4	1	Register	81	A + A + C	
8085 Z80	ADD D ADD A,D	ADD D to A	SZ-A-P-C SZ-H-P0C	4	1	Register	82	A + A + D	
	ADD E	ADD E to A	SZ-A-P-C SZ-H-P0C	4	1	Register	83	A + A + E	
	ADD H ADD A,H	ADD H to A	SZ-A-P-C SZ-H-P0C	4	1	Register	84	A ← A + H	
	ADD L	ADD L to A ADD L to A	SZ-A-P-C SZ-H-P0C	4	1	Register	85	A + A + L	
	ADD M ADD A,(HL)	ADD M _{HL} to A ADD (HL) to A	SZ-A-P-C SZ-H-P0C	7	1	Reg Ind	86	A ← A + M _{HL}	Add the data byte whose memory location is pointed to by the HL register pair to the accumulator and store the results in the accumulator.
	ADC A,A	AdD with Carry A to A AdD with Carry A to A	SZ-A-P-C SZ-H-P0C	4	1	Register	8F	A + A + A + C	The carry flag is usually designated by "CY" for the 8080/8085.

Micro	Mnemonic		85>sz-a-p-c 80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	ADC B	AdD with Carry B to A AdD with Carry B to A		4	1	Register	88	A + A + B + C	The carry flag is usually designated by "CY" for the 8080/8085.
8085 Z 80	ADC C ADC A,C	AdD with Carry C to A		4	1	Register	89	A + A + C + C	The carry flag is usually designated by "CY" for the 8080/8085.
8085 Z80	ADC D ADC A,D	AdD with Carry D to A		4	1	Register	8A	A + A + D + C	The carry flag is usually designated by "CY" for the 8080/8085.
8085 Z80	ADC E ADC A,E	AdD with Carry E to A		4	1	Register	8B	A + A + E + C	The carry flag is usually designated by "CY" for the 8080/8085.
8085 Z80	ADC H ADC A,H	AdD with Carry H to A		4	1	Register	8C	A + A + H + C	The carry flag is usually designated by "CY" for the 8080/8085.
8085 Z80	ADC L ADC A,L	AdD with Carry L to A		4	1	Register	8D	A + A + L + C	The carry flag is usually designated by "CY" for the 8080/8085.
8085 Z80	ADC M ADC A,(HL)	AdD with Carry M _{HL} to A AdD with Carry (HL) to A	SZ-A-P-C SZ-H-P0C	7	1	Reg Ind	8E	A ← A + M _{HL} + C	Add to the accumulator both the contents of the memory location pointed to by the HL register pair, and the carry flag, and then place this result in the accumulator.
8085 Z80	SUB A	SUBtract A from A SUBtract A from A	SZ-A-P-C SZ-H-P1C	4	1	Register	97	A + A - A	
8085 Z80	SUB B	SUBtract B from A SUBtract B from A	SZ-A-P-C SZ-H-P10	4	1	Register	90	A + A - B	
8085 Z80	SUB C	SUBtract C from A SUBtract C from A	SZ-A-P-C	4	1	Register	91	A + A - C	

Micr	o Mnemonic		8085 > sz-a-p-c Z80 > sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	SUB D	SUBtract D from A SUBtract D from A	SZ-A-P-C SZ-H-P1C	4	1	Register	92	A + A - D	
8085 Z80	SUB E	SUBtract E from A	SZ-A-P-C SZ-H-P1C	4	1	Register	93	A + A - E	
8085 Z80	SUB H	SUBtract H from A SUBtract H from A	SZ-A-P-C SZ-H-P1C	4	1	Register	94	A + A - H	
8085 Z80	SUB L	SUBtract L from A	SZ-A-P-C SZ-H-P1C	4	1	Register	95	A + A - L	
8085 Z80	SUB M SUB (HL)	SUBtract M _{HL} from A SUBtract (HL) from A		7	1	Reg Ind	96	A ← A - M _{HL}	Subtract the contents of the memory location pointed to by the HL register pair from the contents of the accumulator.
8085 Z80	SBB A SBC A,A	SuBtract with Borrow A from A SuBtract with Carry A from A	SZ-A-P-C SZ-H-P1C	4	1	Register	9F	A + A - A - C	
8085 Z80	SBB B SBC A,B	SuBtract with Borrow B from A SuBtract with Carry B from A	SZ-A-P-C SZ-H-P1C	4	1	Register	98	A + A - B - C	
8085 Z80	SBB C SBC A,C	SuBtract with Borrow C from A SuBtract with Carry C from A	SZ-A-P-C SZ-H-P1C	4	1	Register	99	A + A - C - C	
8085 Z80	SBB D SBC A,D	SuBtract with Borrow D from A SuBtract with Carry D from A	SZ-A-P-C SZ-H-P1C	4	1	Register	9A	A + A - D - C	
	SBB E SBC A,E	SuBtract with Borrow E from A SuBtract with Carry E from A	SZ-A-P-C SZ-H-P1C	,	1	Register	9B	A + A - E - C	

Micro	Mnemonic	- F	085>sz.a-p-c Z80>sz.h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085	SBB H	SuBtract with Borrow H from A	SZ-A-P-C	4	1	Register	9C	A + A - H - C	
Z80	SBC A,H	SuBtract with Carry H from A	SZ-H-P1C						
8085	SBB L	SuBtract with Borrow	SZ-A-P-C		1	Desistes	01)	A+A-L-C	
Z 80	SBC A,L	L from A SuBtract with Carry L from A	SZ-H-P1C	4	1	Register	90	A+A-L-C	
8085	SBB M	SuBtract with Borrow	SZ-A-P-C	7	1	Reg Ind	91F.	A + A - M _{HL} - C	Subtract from the contents of the accumulator both the carry
Z 80	SBC A,(HL)	M _{HL} from A SuBtract with Carry (HL) from A	SZ-H-P1C	,	•	reg me	72	THE STATE OF	flag and the contents of the memory location pointed to by the HL register pair.
8085	DAD B	Double AdD BC to HL	xx-x-c	10	1	Register	09	HL + HL + BC	
Z 80	ADD HL,BC	ADD BC to HL	хх-х-х0С	11					
8085	DAD D	Double AdD DE to HI	xx-x-x-C	10	1	Register	19	HL + HL + DE	
Z80	ADD HL,DE	ADD DE to HL	хх-х-х0С	11			-		
8085	DAD H	Double AdD HL to HI	L xx-x-x-C	10	1	Register	29	HL + HL + HL	
Z 80	ADD HL,HL	ADD HL to HL	хх-х-х0С	11					
8085	ADI dd	AdD Immediate dd to	A SZ-A-P-C	7	2	Immed	C6	A ← A + dd	
Z 80	ADD A,dd	ADD dd to A	SZ-H-P0C						
8085	ACI dd	AdD with Carry Im- mediate dd to A	SZ-A-P-C	7	2	Immed	CE	A + A + dd + C	
Z 80	ADC A,dd	AdD with Carry dd to A	SZ-H-P0C						
8085	SUI dd	SUbtract Immediate	SZ-A-P-C	7	2	Immed	D6	A ← A - dd	
Z80	SUB dd	SUBtract dd from A	SZ-H-P1C		-				

Micro	Mnemonic		8085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	SBI dd SBC A,dd	Subtract with Borrow Immediate dd from A SuBtract with Carry dd from A	SZ-A-P-C SZ-H-P1C	7	2	Immed	DE	A + A - dd - C	
8085 Z80	DAA DAA	Decimal Adjust A Decimal Adjust A	SZ-A-P-C SZ-H-PxC	4	1	Implied	27	A ← BCD (A)	The 8-bit contents of the accumulator are adjusted to form two 4-bit binary-coded-decimal (BCD) digits.
]	Logi	cal I	Instructio	<u>ns</u>		
8085 Z80	ANA A AND A	ANd A with A AND A with A	SZ-A-P-0 SZ-1-P00	4	1	Register	A7	A ← A AND A	(8085) A flag=1 (8080) A=ORING of bit 3 of the operands
8085 Z80	ANA B AND B	ANd A with B AND B with A	SZ-A-P-0 SZ-1-P00	4	1	Register	A 0	A ← A AND B	(8085) A flag=1 (8080) A flag=ORing of bit 3 of the operands
8085 Z80	ANA C	AND C with A	SZ-A-P-0 SZ-1-P00	4	1	Register	A1	A + A AND C	(8085) A flag=1 (8080) A flag=ORing of bit 3 of the operands
8085 Z80	ANA D AND D	AND D with A	SZ-A-P-0 SZ-1-P00	4	1	Register	A2	A ← A AND D	(8085) A flag=1 (8080) A flag=ORing of bit 3 of the operands
8085 Z80	ANA E AND E	AND E with A	SZ-A-P-0 SZ-1-P00	4	1	Register	A3	A + A AND E	(8085) A flag=1 (8080) A flag=ORing of bit 3 of the operands
8085 Z80	ANA H AND H	AND H with A	SZ-A-P-0 SZ-1-P00	4	1	Register	A4	A + A AND H	(8085) A flag=1 (8080) A flag=ORing of bit 3 of the operands
	ANA L AND L	ANd A with L AND L with A	SZ-A-P-0 SZ-1-P00	4	1	Register	A5	A + A AND L	(8085) A flag=1 (8080) A flag=ORing of bit 3 of the operands
	ANA M AND (HL)	ANd A with M _{HL} AND (HL) with A	SZ-A-P-0 SZ-1-P00	7	1	Reg Ind	A6	A + A AND M _{HL}	(8085) A flag=1 (8080) A flag=oRing of bit 3 of the operands

Micro	Mnemonic	Operation	8085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	XRA A XOR A	eXclusively OR A with A eXclusively OR A with A	SZ-0-P-0 SZ-0-P00	4	1	Register	AF	A + A XOR A	
8085 Z80	XRA B XOR B	eXclusively OR A with B eXclusively OR A with B	SZ-0-P-0 SZ-0-P00	4	1	Register	A8	A + A XOR B	
8085 Z80	XRA C XOR C	eXclusively OR A with C eXclusively OR A with C	SZ-0-P-0 SZ-0-P00	4	1	Register	A9	A + A XOR C	
8085 Z80	XRA D XOR D	eXclusively OR A with D eXclusively OR A with D	SZ-0-P-0 SZ-0-P00	4	1	Register	AA	A ← A XOR D	
8085 Z 80	XRA E XOR E	eXclusively OR A with E eXclusively OR A with E	SZ-0-P-0 SZ-0-P00	4	1	Register	AB	A ← A XOR E	
8085 Z80	XRA H XOR H	eXclusively OR A with H eXclusively OR A with H	SZ-0-P-0 SZ-0-P00	4	1	Register	AC	A ← A XOR H	
8085 Z80	XRA L XOR L	eXclusively OR A with L eXclusively OR A with L	SZ-0-P-0 SZ-0-P00	4	1	Register	AD	A ← A XOR L	
8085 Z80	XRA M XOR (HL)	eXclusively OR A with M _{HL} eXclusively OR A with (HL)	SZ-0-P-0 SZ-0-P00	7	1	Reg Ind	AE	A ← A XOR M _{HL}	Exclusively on the contents of the accumulator with the contents of the memory location pointed to by the HL register pair.
8085 Z8 0	ORA A	OR A with A	SZ-0-P-0 SZ-0-P00	4	1	Register	В7	A + A OR A	

Micro	Mnemonic	Operation	8085>sz.a.p.c Z80>sz.h.pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085	ORA B	OR A with B	SZ-0-P-0	_		_			
Z80	OR B	OR A with B	SZ-0-P00	4	1	Register	В0	A + A OR B	
8085	ORA C	OR A with C	SZ-0-P-0						
Z80	OR C	OR A with C	SZ-0-P00	4	1	Register	ы	A + A OR C	
8085	ORA D	OR A with D	SZ-0-P-0						
Z 80	OR D	OR A with D	SZ-0-P00	4	1	Register	B2	A + A OR D	
8085	ORA E	OR A with E	SZ-0-P-0						
Z80	OR E	OR A with E	SZ-0-P00	4	1	Register	В3	A + A OR E	
8085	ORA H	OR A with H	SZ-0-P-0	4		D	D.4		
Z 80	OR H	OR A with H	SZ-0-P00	4	1	Register	В4	A + A OR H	
8085	ORA L	OR A with L	SZ-0-P-0	_	•	Destate	D.C.		
Z 80	OR L	OR A with L	SZ-0-P00	4	1	Register	вз	A + A OR L	
8085	ORA M	OR A with M _{HL}	SZ-0-P-0	7	1	D I - 1	D/	A OD . V	OR the contents of the
Z 80	OR (HL)	OR A with (HL)	SZ-0-P00	7	1	Reg Ind	190	A ← A OR M _{HL}	accumulator with the contents of the memory location pointed to by the HL register pair.
8085	ANI dd	ANd Immediate dd with A	SZ-A-P-0	7	2	7	T74		(8085) A flag = 1
Z8 0	AND dd	AND dd with A	SZ-1-P00	7	2	Immed	E 6	A ← A AND dd	(8080) A flag = ORing of bit 3 of operands
8085	XRI dd	eXclusively OR Immediate dd with A	SZ-0-P-0	7	_	T	r.c	A . A WOD	
Z 80 .	XOR dd	eXclusively OR dd with A	SZ-0-P00	7	2	Immed	EE	A ← A XOR dd	
8085	ORI dd	OR Immediate dd with A	SZ-0-P-0	~		•			
Z 80	OR dd	OR dd with A	SZ-0-P00	7	2	Immed	F6	A ← A OR dd	
8085	CMA	CoMplement A	xx-x-x					_	Invert every bit in the
Z80 (CPL	ComPLement A	xx-1-x1x	4	1	Implied	2F	A ← A	accumulator. Form the 1's complement.

Micro	Mnemonic	Operation	8085 > sz-a-p-c Z80 > sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
			Rotat	e ar	ıd S	hift Instr	uction	<u>15</u>	
8085 Z80	RLC RLCA	Rotate Left with Carry Rotate Left with Carry A	xx-x-x-C xx-0-x0C	4	1	Implied	07	$C \leftarrow A_1 \dots A_0 \leftarrow$	
8085 Z8 0	RRC RRCA	Rotate Right with with Carry Rotate Right with Carry A	xx-x-x-C xx-0-x0C	4	1	Implied	0F	A ₇ A ₀ C	
8085 Z80	RAL RLA	Rotate A Left Rotate Left A	xx-x-x-C xx-0-x0C	4	1	Implied	17	_C ← A ₇ A ₀ ←	
8085 Z80	RAR RRA	Rotate A Right Rotate Right A	xx-x-x-C xx-0-x0C	4	1	Implied	1F	$A_7 \dots A_0 \longrightarrow C$	
			Increment	anc	l De	ecrement	Instr	<u>uctions</u>	
8085 Z80	INR A	INcRement A	SZ-A-P-x SZ-H-P0x	4	1	Register	3C	A + A + 1	(8080 = 5 states)
	INR B	INcRement B	SZ-A-P-x SZ-H-P0x	4	1	Register	04	B + B + 1	(8080 = 5 states)
	INR C	INcRement C	SZ-A-P-x SZ-H-P0x	4	1	Register	0C	C+C+1	(8080 = 5 states)
	INR D INC D	INcRement D	SZ-A-P-x SZ-H-P0x	4	1	Register	14	D + D + 1	(8080 = 5 states)
	INR E	INcRement E	SZ-A-P-x SZ-H-P0x	4	1	Register	1C	E + E + 1	(8080 = 5 states)

Micro	Mnemonic	=	085>sz-a-p-c 780>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	INR H	INcRement H INCrement H	SZ-A-P-x SZ-H-P0x	4	1	Register	24	H ← H + 1	(8080 = 5 states)
8085 Z80	INR L	INcRement L	SZ-A-P-x SZ-H-P0x	4	1	Register	2C	L+L+1	(8080 = 5 states)
8085 Z80	INR M INC (HL)	INcRement M _{HL} INCrement (HL)	SZ-A-P-x SZ-H-P0x		1	Reg Ind	34	M _{HL} ← M _{HL} + 1	
8085 Z80	INX B	INcrement eXtended B INCrement reg pair BC	xx-x-x xx-x-xxx	6	1	Register	03	BC + BC + 1	(8080 = 5 states)
8085 Z80	INX D INC DE	INcrement eXtended D INCrement reg pair DE	xx-x-x-x xx-x-xxx	6	1	Register	13	DE + DE + 1	(8080 = 5 states)
8085 Z80	INX H	INcrement eXtended H INCrement reg pair HL	xx-x-x xx-x-xxx	6	1	Rogister	23	HL + HL + 1	(8080 = 5 states)
8085 Z80	DCR A	DeCRement register A DECrement register A	SZ-A-P-x SZ-H-P1x	4	1	Register	3D	A ← A - 1	(8080 = 5 states)
	DCR B	DeCRement register B DECrement register B	SZ-A-P-x SZ-H-P1x	4	1	Register	05	B ← B - 1	(8080 = 5 states)
	DCR C	DeCRement register C DECrement register C	SZ-A-P-x SZ-H-P1x	4	1	Register	0D	C+C-1	(8080 = 5 states)
	DCR D	DeCRement register D DECrement register D	SZ-A-P-x SZ-H-P1x	4	1	Register	15	D + D - 1	(8080 = 5 states)
	DCR E	DeCRement register E DECrement register E	SZ-A-P-x SZ-H-P1x	4	1	Register	1D	E + E - 1	(8080 = 5 states)

Micro	Mnemonic	Operation	8085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes
8085 Z80	DCR H DEC H	DeCRement register I		4	1	Register	25	H + H - 1	(8080 = 5 states)
8085 Z80	DCR L	DeCRement register I		4	1	Register	2D	L+L-1	(8080 = 5 states)
8085 Z80	DCR M DEC (HL)	DeCRement M _{HL} DECrement (HL)	SZ-A-P-x SZ-H-P1x	10	1	Reg Ind	35	M _{HL} + M _{HL} - 1	
8085 Z 80	DCX B	DeCrement eXtended register pair BC DECrement register pair BC	xx-x-x xx-x-xxx	6	1	Register	0В	BC + BC - 1	(8080 = 5 states)
8085 Z80	DCX D DEC DE	DeCrement eXtended register pair DE DECrement register pair DE	xx-x-x xx-x-xxx	6	1	Register	1B	DE + DE - 1	(8080 = 5 states)
8085 Z80	DCX H	DeCrement eXtended register pair HL DECrement register pair HL	xx-x-xx xx-x-xxx	6	1	Register	2B	HL + HL - 1	(8080 = 5 states)
			<u>Uncon</u>	ditio	nal	Jump Ins	struct	ions	
8085 Z80	JMP aaaa JP aaaa	JumP to mem loc aaa		10	3	Direct	сз	PC ← aaaa	
8085 Z80	PCHL JP (HL)	transfer to the Program Counter HL JumP to (HL)	xx-x-x xx-x-xxx	6	1	Register	Е9	PC _H ← H PC _L ← L	(8080 = 5 states) Transfer the contents of register H to the high-order byte of the program counter and the contents of register L to the low-order byte of the program counter.

Micro Mnemonic	Operation	8085>sz-a-p-c T	#	Address	Op	Boolean/Arith.	Notes
		Z80>sz-h-pnc		Mode		Operation	

			Test (Co	ompa	are) Instr	uctio	<u>ns</u>	
8085 Z80	CMP A	ComPare A to A	SZ-A-P-C 4 SZ-H-P1C	1	Register	BF	A - A	If A = A then the Z flag = 1. If A < A then the C flag = 1.
8085 Z80	СМР В	ComPare B to A	SZ-A-P-C 4 SZ-H-P1C	1	Register	В8	A - B	If A = B then the Z flag = 1. If A < B then the C flag = 1.
8085 Z80	CMP C	ComPare C to A	SZ-A-P-C 4 SZ-H-P1C	1	Register	В9	A - C	If A = C then the Z flag = 1. If A < C then the C flag = 1.
8085 Z80	CMP D CP D	ComPare D to A	SZ-A-P-C 4 SZ-H-P1C	1	Register	ВА	A - D	If A = D then the Z flag = 1. If A < D then the C flag = 1.
8085 Z80	CMP E	ComPare E to A	SZ-A-P-C 4 SZ-H-P1C	1	Register	ВВ	A - E	If A = E then the Z flag = 1. If A < E then the C flag = 1.
8085 Z80	СМР Н СР Н	ComPare H to A	SZ-A-P-C 4 SZ-H-P1C	1	Register	ВС	A - H	If A = H then the Z flag = 1. If A < H then the C flag = 1.
8085 Z 80	CMP L	ComPare L to A	SZ-A-P-C 4 SZ-H-P1C	1	Register	BD	A - L	If A = L then the Z flag = 1. If A < L then the C flag = 1.
8085 Z80	CMP M CP (HL)	CoMPare M _{HL} to A ComPare (HL) to A	SZ-A-P-C 7 SZ-H-P1C	1	Reg Ind	ВЕ	A - M _{HL}	If $A = M_{HL}$ then the Z flag = 1. If $A < M_{HL}$ then the C flag = 1.
8085 Z80	CPI dd	ComPare Immediate dd to A ComPare dd to A	SZ-A-P-C 7 SZ-H-P1C	2	Immed	FE	A - dd	If A = dd then the Z flag = 1. If A < dd then the C flag = 1.

Micro	Mnemonic	Operation	8085 > sz-a-p-c Z80 > sz-h-pnc	T	#	Address Mode	Op	Boolean/Arith. Operation	Notes
			Conditiona	ıl Jur	np	(Branch)	Instr	uctions	
8085	JNZ aaaa	Jump if Not Zero to aaaa	xx-x-x-x	7/10	3	Direct	C2	PC ← aaaa	(8080 = 10 states) PC _L + byte 2
Z 80	JP NZ,aaaa	JumP if Not Zero to aaaa	xx-x-xxx	10				if $Z = 0$	PC _H ← byte 3
8085	JZ aaaa	Jump if Zero to aaaa	xx-x-x	7/10	3	Direct	CA	PC ← aaaa	(8080 = 10 states) PC _{1.} ← byte 2
Z 80	JP Z,аааа	JumP if Zero to aaaa	xx-x-xxx	10		2		if Z = 1	PC _H ← byte 3
8085	JNC aaaa	Jump if No Carry to aaaa	xx-x-x-x	7/10	3	Direct	D2	PC ← aaaa	(8080 = 10 states) PC _L ← byte 2
Z 80	JP NC,аааа	JumP if No Carry to aaaa	xx-x-xxx	10				if C = 0	PC _H + byte 3
8085	JC aaaa	Jump if Carry to aaaa	3 xx-x-x-x	7/10	3	Direct	DA	PC ← aaaa	(8080 = 10 states) PC _L ← byte 2
Z80	ЈР С,аааа	JumP if Carry to aaaa	a xx-x-xxx	10		2	~	if C = 1	PC _H ← byte 3
8085	ЈРО аааа	Jump if Parity Odd to aaaa	xx-x-x	7/10	3	Direct	E2	PC + aaaa	(8080 = 10 states) PC ₁ ← byte 2
Z 80	JP PO,aaaa	JumP if Parity Odd to aaaa	xx-x-xxx	10		Bilect		if P = 0	PC _H ← byte 3
8085	ЈРЕ аааа	Jump if Parity Even to aaaa	xx-x-x-x	7/10	3	Direct	EA	PC ← aaaa	(8080 = 10 states) PC ₁ + byte 2
Z80	JP PE,aaaa	JumP if Parity Even to aaaa	xx-x-xxx	10		2		if P = 1	PC _H + byte 3
8085	ЈР аааа	Jump if Plus to aaaa	xx-x-x	7/10	3	Direct	F2	PC ← aaaa	(8080 = 10 states) PC ₁ ← byte 2
Z 80	JP P,aaaa	JumP if Plus to aaaa	xx-x-xxx	10				if S = 0	PC _H ← byte 3
8085	JM aaaa	Jump if Minus to aaa	ia xx-x-x	7/10	3	Direct	FA	PC ← aaaa	(8080 = 10 states) PC _L + byte 2
Z 80	JP M,aaaa	JumP if Minus to aaa	12 xx-x-xxx	10		Direct	17	if S = 1	PC _H ← byte 3
			<u>s</u>	ubro	utin	e Instruc	<u>tions</u>		
8085	CALL aaaa	CALL subroutine at aaaa	xx-x-x	18	3	Direct /	CD	S ← PC _H	(8080 = 17 states)
Z80	CALL aaaa	CALL subroutine at aaaa	xx-x-xxx	17	J	Direct/ Reg Ind	CD	S ← PC _L PC ← aaaa	The stack pointer is decremented as each new byte is pushed onto the stack. $PC_{H} \leftarrow byte 3$ $PC_{L} \leftarrow byte 2$

Micro	Mnemonic	Operation	8085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Ор	Boolean/Arith. Operation	Notes
8085 Z80	CNZ aaaa CALL NZ,aaa	Call if Not Zero subroutine at aaaa a CALL if Not Zero subroutine at aaaa	xx-x-x-x xx-x-xxx	9/18 10/17	3	Direct/ Reg Ind	C4	if $Z = 0$ $S \leftarrow PC_H$ $S \leftarrow PC_L$ $PC \leftarrow aaaa$	(8080 = 11/17 states) The stack pointer is decremented as each new byte is pushed onto the stack. PC _H ← byte 3
8085 Z80	CZ aaaa CALL Z,aaaa	Call if Zero subroutine at aaaa CALL if Zero subroutine at aaaa	xx-x-x-x xx-x-xxx	9/18 10/17	3	Direct/ Reg Ind	cc	if Z = 1 S + PC _H S + PC _L PC + aaaa	PC _L + byte 2 (8080 = 11/17 states) The stack pointer is decremented as each new byte is pushed onto the stack. PC _H + byte 3 PC _L + byte 2
8085 Z80	CNC aaaa CALL NC,aaaa	Call if No Carry subroutine at aaaa CALL if No Carry subroutine at aaaa	xx-x-x-x xx-x-xxx	9/18 10/17	3	Direct/ Reg Ind	D4	if C = 0 S + PC _H S + PC _L PC + aaaa	(8080 = 11/17 states) The stack pointer is decremented as each new byte is pushed onto the stack. PC _H ← byte 3 PC _L ← byte 2
8085 Z80	CC aaaa CALL C,aaaa	Call if Carry subroutine at aaaa CALL if Carry subroutine at aaaa	XX-X-X-X XX-X-XXX	9/18 3 10/17	3	Direct/ Reg Ind	DC	if C = 1 S + PC _H S + PC _L PC + aaaa	(8080 = 11/17 states) The stack pointer is decremented as each new byte is pushed onto the stack. PC _H ← byte 3 PC _L ← byte 2
	CPO aaaa CALL PO,aaaa	Call if Parity Odd subroutine at aaaa CALL if Parity Odd subroutine at aaaa		9/18 3 10/17		Direct/ Reg Ind	E4	if P = 0 S + PC _H S + PC _L PC + aaaa	(8080 = 11/17 states) The stack pointer is decremented as each new byte is pushed onto the stack. PC _H + byte 3 PC _L + byte 2
	CPE aaaa CALL PE,aaaa	Call if Parity Even subroutine at aaaa CALL if Parity Even subroutine at aaaa		9/18 3 10/17		Direct/ Reg Ind	EC	if P = 1 S ← PC _H S ← PC _L PC ← aaaa	(8080 = 11/17 states) The stack pointer is decremented as each new byte is pushed onto the stack. PC _H + byte 3 PC _L + byte 2
		Call if Plus subroutine at aaaa CALL if Plus subroutine at aaaa		9/18 3 10/17		Direct/ Reg Ind	F4	if S = 0 S + PC _H S + PC _L PC + aaaa	(8080 = 11/17 states) The stack pointer is decremented as each new byte is pushed onto the stack. PC _H ← byte 3 PC _L ← byte 2

Micro	Mnemonic	Operation	8085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes	
8085	СМ аааа	Call if Minus subroutine at aaaa	xx-x-x-x	9/18	3	Direct/	FC	if S = 1 S + PC _H	(8080 = 11/17 states) The stack pointer is	
Z 80	CALL M,aaaa	CALL if Minus subroutine at aaaa	xx-x-xxx	хх-х-хох 10/17		Reg Ind		S ← PC _L PC ← aaaa	decremented as each new byte is pushed onto the stack. PC _H byte 3 PC _L byte 2	
8085	RET	RETurn	xx-x-x	10	1	Reg Ind	C9	PC _{1.} + S	The stack pointer is incremented as each byte is	
Z80	RET	RETurn	xx-x-xxx			g		PCH + S	popped from the stack.	
8085	RNZ	Return if Not Zero	xx-x-x	6/12				if Z = 0	(8080 = 5/11 states)	
Z80	RET NZ	RETurn if Not Zero	xx-x-xxx	5/10	1	Reg Ind	C0	PC _L + S PC _H + S	The stack pointer is incremented as each byte is popped from the stack.	
8085	RZ	Return if Zero	xx-x-x	6/12	2			if Z = 1	(8080 = 5/11 states)	
Z80	RET Z	RETurn if Zero	xx-x-xxx	5/10	1	Reg Ind	C8	PC _L ← S PC _H ← S	The stack pointer is incremented as each byte is popped from the stack.	
8085	RNC	Return if No Carry	xx-x-x-x	6/12				if C = 0	(8080 = 5/11 states)	
Z80	RET NC	RETurn if No Carry	xx-x-xxx	5/10	1	Reg Ind	D0	$PC_{L} \leftarrow S$ $PC_{H} \leftarrow S$	The stack pointer is incremented as each byte is popped from the stack.	
8085	RC	Return if Carry	xx-x-x-x	6/12				if C = 1	(8080 = 5/11 states)	
Z80	RET C	RETurn if Carry	xx-x-xxx	5/10	1	Reg Ind	D8	PC _L ← S PC _H ← S	The stack pointer is incremented as each byte is popped from the stack.	
8085	RPO	Return if Parity Odd	xx-x-x	6/1	2			if P = 0	(8080 = 5/11 states)	
Z 80	RET PO	RETurn if Parity Od	d xx-x-xxx	5/1	0	Reg Ind	E0	$PC_{L} \leftarrow S$ $PC_{H} \leftarrow S$	The stack pointer is incremented as each byte is popped from the stack.	
8085	RPE	Return if Parity Even	n xx-x-x	6/1		D. 7.1	720	if P = 1	(8080 = 5/11 states)	
Z 80	RET PE	RETurn if Parity Eve	en xx-x-xxx	5/1	0	Reg Ind	ES	PC _L + S PC _H + S	The stack pointer is incremented as each byte in popped from the stack.	

Micro	Mnemonic	Operation	8085>sz.a.p.c Z80>sz.h.pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes	
8085	RP	Return if Plus	xx-x-x	6/12		Dec Ind	m	if S = 0	(8080 = 5/11 states)	
Z 80	RET P	RETurn if Plus	XX-X-XXX	5/10	1	Reg Ind	F0	$PC_{L} + S$ $PC_{H} + S$	The stack pointer is incremented as each byte is popped from the stack.	
8085	RM	Return if Minus	xx-x-x	6/12		_		if S = 1	(8080 = 5/11 states)	
Z 80	RET M	RETurn if Minus	xx-x-xxx	5/10	1	Reg Ind	F8	$PC_{L} \leftarrow S$ $PC_{H} \leftarrow S$	The stack pointer is incremented as each byte is popped from the stack.	
8085	RST 0	ReStarT 0	xx-x-x-x	12				S ← PC _H	(8080 = 11 states)	
Z80	RST 00H	ReStarT 00H	xx-x-xxx	11	1	Reg Ind	C7	S ← PC _L PC ← 0000H	The stack pointer is decremented as each new byte is pushed onto the stack.	
8085	RST 1	ReStarT 1	xx-x-x	12	_			S + PC _H	(8080 = 11 states)	
Z 80	RST 08H	ReStarT 08H	xx-x-xxx	11	1	Reg Ind	CF	S ← PC _L PC ← 0008H	The stack pointer is decremented as each new byte is pushed onto the stack.	
8085	RST 2	ReStarT 2	xx-x-x	12	_			S ← PC _H	(8080 = 11 states)	
Z80	RST 10H	ReStarT 10H	xx-x-xxx	11	1	Reg Ind	D7	S ← PC _L PC ← 0010H	The stack pointer is decremented as each new byte is pushed onto the stack.	
8085	RST 3	ReStarT 3	xx-x-x-x	12	_			S + PC _H	(8080 = 11 states)	
Z 80	RST 18H	ReStarT 18H	xx-x-xxx	11	1	Reg Ind	DF	S + PC _L PC + 0018H	The stack pointer is decremented as each new byte is pushed onto the stack.	
8085	RST 4	ReStarT 4	xx-x-x	12				S ← PC _H	(8080 = 11 states)	
Z 80	RST 20H	ReStarT 20H	хх-х-ххх	11	1	Reg Ind	E7	$S \leftarrow PC_L$ $PC \leftarrow 0020H$	The stack pointer is decremented as each new byte is pushed onto the stack.	
8085	RST 5	ReStarT 5	xx-x-x	12				S ← PC _H	(8080 = 11 states)	
Z80	RST 28H	ReStarT 28H	xx-x-xxx	11	1	Reg Ind	EF	S + PC _L PC + 0028H	The stack pointer is decremented as each new byte is pushed onto the stack.	
8085	RST 6	ReStarT 6	xx-x-x	12				S ← PC _H	(8080 = 11 states)	
Z 80]	RST 30H	ReStarT 30H	xx-x-xxx	11	1	Reg Ind	F7	$S \leftarrow PC_L$ PC $\leftarrow 0030H$	The stack pointer is decremented as each new byte is pushed onto the stack.	

h. Notes
(8080 = 11 states) The stack pointer is
decremented as each new byte is pushed onto the stack.
Copy bytes 3 and 2 of the instruction into the stack pointer.
•
SP
(8080 = 5 states)
(8080 = 5 states)
(8080 = 11 states) The stack pointer is
decremented as each new byte is pushed onto the stack.
(8080 = 11 states) The stack pointer is
decremented as each new byte is pushed onto the stack.
(8080 = 11 states) The stack pointer is
decremented as each new byte is pushed onto the stack.

Micro	Mnemonic	Operation	8085>sz-a-p-c Z80>sz-h-pnc	T	#	Address Mode	Ор	Boolean/Arith. Operation	Notes
8085 Z80	PUSH PSW PUSH AF	PUSH Processor Status Word PUSH Accumulator and Flags	XX-X-X-X XX-X-XXX	12	1	Reg Ind	F5	S + A S + flags	(8080 = 11 states) The stack pointer is decremented as each new byte is pushed onto the stack. The "flags" byte is assembled in the normal order of the flags (8080/8085 = SZ-A-P-C and Z80 = SZ-H-PNC) for that microprocessor.
8085 Z80	POP BC	POP reg pair BC POP reg pair BC	xx-x-x-x xx-x-xxx	10	1	Reg Ind	C1	C + S B + S	The stack pointer is incremented as each byte is popped from the stack.
8085 Z80	POP D POP DE	POP reg pair DE	xx-x-x xx-x-xxx	10	1	Reg Ind	D1	E + S D + S	The stack pointer is incremented as each byte is popped from the stack.
8085 Z80	POP H	POP reg pair HL	xx-x-x-x xx-x-xxx	10	1	Reg Ind	E1	L ← S H ← S	The stack pointer is incremented as each byte is popped from the stack.
8085 Z80	POP PSW	POP Processor Status Word POP Accumulator and Flag	SZ-A-P-C SZ-H-PNC	10	1	Reg Ind	F1	flags + S A + S	The stack pointer is incremented as each byte is popped from the stack.
	XTHL EX (SP),HL	eXchange top of sTack with reg pair HL EXchange M _(SP) with reg pair HL		16 19	1	Reg Ind	E3	L + S H + S _(next)	(8080 = 18 states) Stack pointer does not change
	SPHL LD SP,HL	move into SP the con- tents of reg pair HL LoaD into SP the con- tents of reg pair HL	xx-x-x xx-x-xxx	6	1	Register	F9	SP + HL	(8080 = 5 states)
			<u>In</u>	terrı	ıpt	Instructio	ons		
	DI	Disable Interrupts Disable Interrupts	xx-x-x-x xx-x-xxx	4	1	Implied	F3	IFF ← 0	

Micro	Mnemonic	Operation	8085>sz-a-p-c Z80>sz-h-pnc	Т	#	Address Mode	Op	Boolean/Arith. Operation	Notes			
8085	EI	Enable Interrupts	xx-x-x	4	1	Implied	FB	IFF + 1				
Z 80	EI	Enable Interrupts	xx-x-xxx	•	•	ıp.i.ee	• •					
8085	RIM	(not covered here - se	ee note at end	of tab	le)							
8085	SIM	(not covered here - se	ee note at end	of tab	le)							
			<u>In</u>	out-C	Outp	ut Instru	ctions					
8085	OUT dd	OUTput to port dd contents of A	xx-x-x	10	2	Direct	D3	dd port ← A	The contents of the accumulator are sent to a			
Z 80	OUT dd,A	OUTput to port dd contents of A	XX-X-XXX	11					specified output port.			
8085	IN dd	INput into A one by	te xx-x-x	10					One byte from the specified			
Z 80	IN A,dd	from port dd INput into A one byt from port dd	e xx-x-xxx	11	2	Direct	DB	A + dd port (byte)	port is copied into the accumulator.			
Addı	ress Modes				_			(a single hex digit)				
Implie						aaaa	= add	ress (four hex digits	- 2 bytes)			
Regis	diate					Flag	gs					
Direct Register Indirect (Reg Ind) Abbreviations and Explanations						parti and o	If one of the flag letter designations is in the column for that particular flag it indicates that the flag is affected by this operation and could be set or cleared depending on the result of the operation. One of the following could also appear in a flag column:					
S = s	stack	itus word (flags)					 no flag is represented by this column, a blank bit in the status register flag not affected by this operation flag always set by this operation 					
	stack pointer program cour	nter										
IFF :	= interrupt ena							always cleared by t				
	accumulator D,E,H,L = regi	isters										
L = 1	low-order byte					8085	<u>i</u>					
H =	high-order byte	or hits A through 7				S =	sign fl	19				
A7A	₀ = accumulat	or bits 0 through 7				Z =	zero f	ag				
d =	data (a single l						A = auxiliary carry flag (usually labeled "AC")					
44	3 - 4 - C4 1	digite . 1 bute)				P =	parity	1120				

P = parity flag

C = carry flag (usually labeled "CY")

dd = data (two hex digits - 1 byte)

dddd = data (four hex digits - 2 bytes)

Z80

S = sign

Z = zero flag

H = half carry flag

P = parity/overflow flag (usually labeled "P/V")

N = negative flag

C = carry flag

Symbols in the Page Heading

T = T states

= number of bytes

Special Notes

States = When two numbers appear in the "States" column separated by a slash, the lower number indicates the number of states if the condition is false and the operation does not occur, and the larger number indicates the number of states if the condition is true and the operation does occur.

8080 = The 8080 behaves the same as the 8085 unless special information is provided in the "Notes" column for the 8080.

RIM & SIM = These two instructions related to interrupts are not covered in this table. They apply only to the 8085 (neither is available in either the 8080 or Z80).

Addressing Modes - A Summary

Implied: These instructions contain the source and destination of the data by implication.

Register: In this mode the operand and its source are specified and data is operated on in the registers only.

Immediate: The data to be operated on follows the instruction op code in memory; that is, it is the next byte in memory after the instruction.

Direct: The full address of the location of the operand in contained in bytes 2 and 3, that is, the next two bytes in memory after the instruction. The low-order byte comes first, and the high-order second.

Register Indirect (Reg Ind): In this addressing mode several steps are involved. Included in the instruction is a register pair; the contents of that register pair contains the <u>address</u> where that operand may be found, not the operand itself.

MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY

8085	Z 80	Op	Operation	8085	Z80	Op	Operation
	CPU Contr	ol Instru	ctions	MOV C,M	LD C,(HL)	4E	C ← M _{HL}
NOP	NOP	00	Nothing happens	MOV D,A	LD D,A	57	D ← A
HLT	HALT	76	Stop processing	MOV D,B	LD D,B	50	D & B
				MOV D,C	LD D,C	51	D ← C
	Data Transf	<u>er Instru</u>	ctions	MOV D,D	LD D,D	52	D ← D
MOV A,A	LD A,A	7 F	A + A	MOV D,E	LD D,E	53	D ← E
MOV A,B	LD A,B	78	A ← B	MOV D,H	LD D,H	54	D ← H
MOV A,C	LD A,C	79	A + C	MOV D,L	LD D,L	55	D ← L
MOV A,D	LD A,D	7A	A ← D	MOV D,M	LD D,(HL)	56	$D \leftarrow M_{HL}$
MOV A,E	LD A,E	7B	A ← E	MOV E,A	LD E,A	5F	E ← A
MOV A,H	LD A,H	7C	A ← H	MOV E,B	LD E,B	58	E ← B
MOV A,L	LD A,L	7D	A ← L	MOV E,C	LD E,C	59	E ← C
MOV A,M	LD A,(HL)	7E	A ← M _{HL}	MOV E,D	LD E,D	5A	E ← D
MOV B,A	LD B,A	47	B ← A	MOV E,E	LD E,E	5B	E ← E
MOV B,B	LD B,B	40	B ← B	MOV E,H	LD E,H	5C	E ← H
MOV B,C	LD B,C	41	B ← C	MOV E,L	LD E,L	5D	E ← L
MOV B,D	LD B,D	42	B ← D	MOV E,M	LD E,(HL)	5E	$E \leftarrow M_{HL}$
MOV B,E	LD B,E	43	B ← E	MOV H,A	LD H,A	67	H ← A
MOV B,H	LD B,H	44	B ← H	MOV H,B	LD H,B	60	H ← B
MOV B,L	LD B,L	45	B ← L	MOV H,C	LD H,C	61	H ← C
MOV B,M	LD B,(HL)	46	$B \leftarrow M_{HL}$	MOV H,D	LD H,D	62	H ← D
MOV C,A	LD C,A	4F	C + A	MOV H,E	LD H,E	63	H ← E
MOV C,B	LD C,B	48	C + B	MOV H,H	LD H,H	64	H ← H
MOV C,C	LD C,C	49	C + C	MOV H,L	LD H,L	65	H ← L
MOV C,D	LD C,D	4A	C + D	MOV H,M	ĻD H,(HL)	66	$H \leftarrow M_{HL}$
MOV C,E	LD C,E	4B	C ← E	MOV L,A	LD L,A	6F	L ← A
MOV C,H	LD C,H	4C	C + H	MOV L,B	LD L,B	68	L ← B
MOV C,L	LD C,L	4D	C + L	MOV L,C	LD L,C	69	L ← C

8085	Z80	Op	Operation	8085	Z 80	Op	Operation
MOV L,D	LD L,D	6A	L + D	STAX D	LD (DE),A	12	$M_{DE} \leftarrow A$
MOV L,E	LD L,E	6B	L ← E	SHLD aaaa	LD (aaaa),HL	22	M _{aaaa} ← L
MOV L,H	LD L,H	6C	L ← H				M _{aasa+1} ← H
MOV L,L	LD L,L	6D	L ← L	XCHG	EX DE,HL	EB	DE + HL
MOV L,M	LD L,(HL)	6E	$L \leftarrow M_{HL}$				
MOV M,A	LD (HL),A	<i>7</i> 7	$M_{HL} \leftarrow A$		Flag I	<u>nstructio</u>	<u>ons</u>
MOV M,B	LD (HL),B	70	M _{HL} ← B	STC	SCF	37	C + 1
MOV M,C	LD (HL),C	71	M _{HL} ← C	СМС	CCF	3F	C + C
MOV M,D	LD (HL),D	72	$M_{HL} \leftarrow D$				
MOV M,E	LD (HL),E	73	$M_{HL} \leftarrow E$		<u>Arithmet</u>	ic Instru	ctions
MOV M,H	LD (HL),H	74	$M_{HL} \leftarrow H$				
MOV M,L	LD (HL),L	75	M _{HL} ← L	ADD A	ADD A,A	87	$A \leftarrow A + A$
MVI A,dd	LD A,dd	3E	A ← dđ	ADD B	ADD A,B	80	$A \leftarrow A + B$
MVI B,dd	LD B,dd	06	B ← dd	ADD C	ADD A,C	81	A + A + C
MVI C,dd	LD C,dd	0E	C ← dd	ADD D	ADD A,D	82	A + A + D
MVI D,dd	LD D,dd	16	D ← dd	ADD E	ADD A,E	83	$A \leftarrow A + E$
MVI E,dd	LD E,dd	1E	E ← dd	ADD H	ADD A,H	84	A + A + H
MVI H,dd	LD H,dd	26	H ← dd	ADD L	ADD A,L	85	$A \leftarrow A + L$
MVI L,dd	LD L,dd	2E	L ← dđ	ADD M	ADD A,(HL)	86	$A \leftarrow A + M_{HL}$
MVI M,dd	LD (HL),dd	36		ADC A	ADC A,A	8F	$A \leftarrow A + A + C$
XI B,dddd	LD BC,dddd	01	M _{HL} ← dd	ADC B	ADC A,B	88	$A \leftarrow A + B + C$
XI D,dddd	LD DE,dddd	11	BC ← dddd	ADC C	ADC A,C	89	$A \leftarrow A + C + C$
XI H,dddd	LD HL,dddd		DE ← dddd	ADC D	ADC A,D	8A	A + A + D + C
DAX B	LD A,(BC)	21	HL ← dddd	ADC E	ADC A,E	8B	$A \leftarrow A + E + C$
DAX D		0 A	A ← M _{BC}	ADC H	ADC A,H	8C	A ← A + H + C
HLD aaaa	LD A,(DE)	1A	A ← M _{DE}	ADC L	ADC A,L	8D	A ← A + L + C
AILD dada	LD HL,(aaaa)	2A	$L \leftarrow M_{aaaa}$ $H \leftarrow M_{aaaa+1}$	ADC M	ADC A,(HL)	8E	A ← A + M _{HL} + C
DA aaaa	LD A,(aaaa)	3A	A ← M _{aaaa}	SUB A	SUB A	97	A ← A - A
TA aaaa	LD (aaaa),A	32	M _{sssa} ← A	SUB B	SUB B	90	A ← A - B
ГАХ В	LD (BC),A	02	M _{BC} ← A	SUB C	SUB C	91	A + A - C

MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY (Continued)

SUB E SUB E 93 A + A - E ANA L AND L A5 A SUB H SUB H 94 A + A - H ANA M AND (HL) A6 A SUB L SUB L 95 A + A - L XRA A XOR A AF A SUB M SUB (HL) 96 A + A - M _{HL} XRA B XOR B A8 A SBB A SBC A,A 9F A + A - B - C XRA C XOR C A9 SBB B SBC A,B 98 A + A - B - C XRA D XOR D AA SBB C SBC A,C 99 A + A - C - C XRA E XOR E AB SBB D SBC A,D 9A A + A - D - C XRA H XOR H AC SBB E SBC A,E 9B A + A - E - C XRA H XOR L AD SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B	A + A AND H A + A AND L A + A AND M _{HL} A + A XOR A A + A XOR B
SUB E SUB E 93 A + A - E ANA L AND L A5 A5 A6 A6 </td <td>A + A AND L A + A AND M_{HL} A + A XOR A A + A XOR B</td>	A + A AND L A + A AND M _{HL} A + A XOR A A + A XOR B
SUB H SUB H 94 A + A - H ANA M AND (HL) A6	A & A AND M _{HL} A & A XOR A A & A XOR B
SUB L SUB L 95 A + A - L XRA A XOR A AF SUB M SUB (HL) 96 A + A - M _{HL} XRA B XOR B A8 SBB A SBC A,A 9F A + A - A - C XRA C XOR C A9 SBB B SBC A,B 98 A + A - B - C XRA D XOR D AA SBB C SBC A,C 99 A + A - C - C XRA E XOR E AB SBB D SBC A,D 9A A + A - D - C XRA H XOR H AC SBB E SBC A,E 9B A + A - E - C XRA L XOR L AD SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB L SBC A,(HL) 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR D B2	A ← A XOR A
SUB M SUB (HL) 96 A + A - M _{HL} XRA B XOR B A8 SBB A SBC A,A 9F A + A - A - C XRA C XOR C A9 SBB B SBC A,B 98 A + A - B - C XRA D XOR D AA SBB C SBC A,C 99 A + A - C - C XRA E XOR E AB SBB D SBC A,D 9A A + A - D - C XRA H XOR H AC SBB E SBC A,E 9B A + A - E - C XRA L XOR L AD SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB L SBC A,L 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D DR D	A ← A XOR B
SOB M SOB (RL) 90 A + A - M - C XRA C XOR C A9 SBB A SBC A,B 98 A + A - B - C XRA D XOR D AA SBB C SBC A,C 99 A + A - C - C XRA E XOR E AB SBB D SBC A,C 99 A + A - D - C XRA H XOR H AC SBB D SBC A,D 9A A + A - D - C XRA H XOR H AC SBB E SBC A,E 9B A + A - E - C XRA L XOR L AD SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB L SBC A,L 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M_HL - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	
SBB B SBC A,B 98 A + A - B - C XRA D XOR D AA SBB C SBC A,C 99 A + A - C - C XRA E XOR E AB SBB D SBC A,D 9A A + A - D - C XRA H XOR H AC SBB E SBC A,E 9B A + A - E - C XRA L XOR L AD SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB L SBC A,L 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	
SBB C SBC A,C 99 A + A - C - C XRA E XOR E AB SBB D SBC A,D 9A A + A - D - C XRA H XOR H AC SBB E SBC A,E 9B A + A - E - C XRA L XOR L AD SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB L SBC A,L 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	A + A XOR C
SBB D SBC A,D 9A A + A - D - C XRA H XOR H AC SBB E SBC A,E 9B A + A - E - C XRA L XOR L AD SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB L SBC A,L 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	A + A XOR D
SBB D SBC A,D 9A A + A - E - C XRA L XOR L AD SBB E SBC A,E 9B A + A - E - C XRA L XOR L AD SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB L SBC A,L 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	A + A XOR E
SBB H SBC A,H 9C A + A - H - C XRA M XOR (HL) AE SBB L SBC A,L 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	A + A XOR H
SBB II SBC A,L 9D A + A - L - C ORA A OR A B7 SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	A + A XOR L
SBB M SBC A,(HL) 9E A + A - M _{HL} - C ORA B OR B B0 DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	A ← A XOR M _{HL}
DAD B ADD HL,BC 09 HL + HL + BC ORA C OR C B1 DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	A + A OR A
DAD D ADD HL,DE 19 HL + HL + DE ORA D OR D B2	A + A OR B
DAD D ADD HL, DE 19 HE \ HE \ HE \ DE 01000	A + A OR C
	A + A OR D
DAD H ADD HL,HL 29 HL + HL + HL ORA E OR E B3	A ← A OR E
ADI dd ADD A,dd C6 A + A + dd ORA H OR H B4	A ← A OR H
ACI dd ADC A,dd CE A + A + dd + C ORA L OR L B5	A + A OR L
SUI dd SUB dd D6 A + A - dd ORA M OR (HL) B6	A ← A OR M _{HL}
SBI dd SBC A,dd DE A + A - dd - C ANI dd AND dd E6	A ← A AND dd
DAA DAA 27 A + BCD (A) XRI dd XOR dd EE	A + A XOR dd
ORI dd OR dd F6	A ← A OR dd
Logical Instructions CMA CPL 2F	A ← A
ANA A AND B AND B Rotate and Shift Instru	nctions
ANA B AND B III	actions
ANA C AND C A1 A + A AND C RLC RLCA 07	$C \leftarrow A_7 \dots A_0 \leftarrow$
ANA D AND D A2 A ← A AND D	L
ANA E AND E A3 A + A AND E RRC RRCA 0F	$A_7 \dots A_0$

8085	Z80	Op	Operation	8085	Z80	Op	Operation
RAL	RLA	17	$C - A_7 \dots A_0$		Uncondition	al Jump I	nstructions
RAR	RRA	1F	$A_7 \dots A_0 \longrightarrow C$	JMP aaaa	ЈР аааа	С3	PC ← aaaa
				PCHL	JP (HL)	E9	PC _H ← H PC _L ← L
	Increment and	Decremer	nt Instructions				L -
INR A	INC A	3C	A + A + 1		Test (Com	pare) Ins	tructions
INR B	INC B	04	B ← B + 1	СМР А	СР А	BF	A - A
INR C	INC C	0C	C + C + 1	СМР В	СР В	В8	A - B
INR D	INC D	14	D + D + 1	CMP C	СР С	В9	A - C
INR E	INC E	1C	E ← E + 1	CMP D	CP D	ВА	A - D
INR H	INC H	24	H ← H + 1	CMP E	CP E	ВВ	A - E
INR L	INC L	2C	$L \leftarrow L + 1$	СМР Н	СР Н	ВС	A - H
INR M	INC (HL)	34	$M_{HL} \leftarrow M_{HL} + 1$	CMP L	CP L	BD	A - L
INX B	INC BC	03	BC ← BC + 1	CMP M	CP (HL)	BE	A - M _{HL}
INX D	INC DE	13	DE + DE + 1	CPI dd	CP dd	FE	A - dd
INX H	INC HL	23	HL ← HL + 1				
DCR A	DEC A	3D	A + A - 1	C	onditional Jump) (Branch) Instructions
DCR B	DEC B	05	B ← B - 1				/ xiigo derigiis
DCR C	DEC C	0D	C + C - 1	JNZ aaaa	JP NZ,aaaa	C2	PC ← aaaa If Z = 0
DCR D	DEC D	15	D + D - 1	JZ aaaa	JP Z,aaaa	CA	
DCR E	DEC E	1D	E ← E - 1	V 2 4444	Ji Z,aaaa	CA	PC ← aaaa If Z = 1
DCR H	DEC H	25	H ← H - 1	JNC aaaa	JP NC,aaaa	D2	PC ← aaaa
DCR L	DEC L	2D	L + L - 1	JC aaaa	JP C,aaaa	DA	If $C = 0$
DCR M	DEC (HL)	35	$M_{HL} \leftarrow M_{HL} - 1$	T S was	Ji C,aaaa	DA	PC ← aaaa If C = 1
OCX B	DEC BC	0B	BC ← BC - 1	ЈРО аааа	JP PO,aaaa	E2	PC ← aaaa
OCX D	DEC DE	1B	DE ← DE - 1	JPE aaaa	ЈР РЕ,аааа	ÐΑ	If $P = 0$
осх н	DEC HL	2B	HL ← HL - 1	<u></u>	Ji i L,aaaa	EA	PC ← aaaa If P = 1
				JP aaaa	JP P,aaaa	F2	PC ← aaaa If S = 0

MINI TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY (Continued)

8085	Z 80	Op	Operation	8085	Z80	Op	Operation
JM aaaa	JP M,aaaa	FA	PC ← aaaa	RNZ	RET NZ	C0	If $Z = 0$
51.1 4444	,		If $S = 1$				$PC_{L} \leftarrow S$
							$PC_{H} \leftarrow S$
				RZ	RET Z	C8	If $Z = 1$
	Subroutine	Instru	ctions				$PC_{L} \leftarrow S$
							PC _H ← S
CALL aaaa	CALL aaaa	CD	S ← PC _H	RNC	RET NC	D0	If $C = 0$
			$S \leftarrow PC_{L}^{T}$				PC _L + S
			PC ← aaaa				PC _H ← S
CNZ aaaa	CALL NZ,aaaa	C4	If $Z = 0$	RC	RET C	D8	If $C = 1$
			S ← PC _H				PC _L + S
			$S \leftarrow PC_L$				PC _H ← S
			PC ← aaaa	nno	RET PO	E0	If $P = 0$
				RPO	KEI FO	150	$PC_{L} \leftarrow S$
CZ aaaa	CALL Z,aaaa	CC	If $Z = 1$				PC _H ← S
			S + PC _H				н
			S ← PC _L PC ← aaaa	RPE	RET PE	E8	If $P = 1$
			1 C · aaaa				$PC_{L} \leftarrow S$
CNC aaaa	CALL NC,aaaa	D4	If $C = 0$				$PC_{H} \leftarrow S$
Cive aaaa	C 122 110,000	2.	S ← PC _H				
			$S \leftarrow PC_{T}^{T}$	RP	RET P	F0	If S = 0
			PC ← aaaa				PC _L + S
		20	10.0				PC _H ← S
CC aaaa	CALL C,aaaa	DC	If $C = 1$	RM	RET M	F8	If $S = 1$
			$S \leftarrow PC_H$ $S \leftarrow PC_{T_1}$				$PC_{L} \leftarrow S$
			PC ← aaaa				PC _H ← S
CPO aaaa	CALL PO,aaaa	E 4	If $P = 0$	RST 0	RST 00H	C7	$S \leftarrow PC_H$
			$S \leftarrow PC_{H}$				$S \leftarrow PC_L$
			$S \leftarrow PC_{L}$				PC ← 0000H
			PC ← aaaa	RST 1	RST 08H	CF	S + PC _H
				101 1	1631 0011	0.	$S \leftarrow PC_{L}$
CPE aaaa	CALL PE,aaaa	EC	If $P = 1$				PC ← 0008H
			S + PC _H S + PC _L				
			PC ← aaaa	RST 2	RST 10H	D7	$S \leftarrow PC_{H}$
			.0				S + PC _L
CP aaaa	CALL P,aaaa	F4	If $S = 0$				PC ← 0010H
			$S \leftarrow PC_{H}$	RST 3	RST 18H	DF	S + PC _H
			$S \leftarrow PC_L$	KS1 3	K31 1011	Di	S + PC _L
			PC ← aaaa				PC ← 0018H
CM aaaa	CALL M,aaaa	FC	If $S = 1$		m		G + PG
C.1.2 UUUU			S + PC _H	RST 4	RST 20H	E7	$S \leftarrow PC_H$
			S & PCL				S ← PC _L PC ← 0020H
			PC ← aaaa				FC ₹ 0020TI
				RST 5	RST 28H	EF	S + PC _H
RET	RET	C9	PC _L + S				$S \leftarrow PC_{L}^{H}$
			$PC_{H} \leftarrow S$				PC ← 0028H

8085	Z 80	Op	Operation	8085	Z80	Op	Operation
RST 6	RST 30H	F7	S ← PC _H S ← PC _L PC ← 0030H	POP D	POP DE	D1	E + S D + S
RST 7	RST 38H	FF	$S \leftarrow PC_{H}$ $S \leftarrow PC_{L}$	РОР Н	POP HL	E1	L ← S H ← S
			PC ← 0038H	POP PSW	POP AF	F1	flags + S A + S
	Stack]	Instructio	<u>ons</u>	XTHL	EX (SP),HL	E3	L + S H + S (next)
LXI SP,dddd	LD SP,dddd	31	SP ← dddd	SPHL	LD SP,HL	F9	SP ← HL
DAD SP	ADD HL,SP	39	HL + HL + SP				
INX SP	INC SP	33	SP + SP + 1				
DCX SP	DEC SP	3B	SP ← SP - 1		Interrup	Instruct	ions
PUSH B	PUSH BC	CS	S ← B S ← C	DI	DI	F3	IFF ← 0
PUSH D	PUSH DE	D5	S ← D S ← E	EI	EI	FB	IFF ← 1
PUSH H	PUSH HL	E5	S ← H S ← L				
PUSH PSW	PUSH AF	FS	S ← A S ← flags		Input-Outp	ut Instru	<u>ctions</u>
РОР В	POP BC	C1	C + S B + S	OUT dd IN dd	OUT dd,A IN A,dd	D3 DB	dd port ← A A ← dd port (byte)

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY

8085	Z80	Op	8085	Z 80	Op	8085	Z 80	Op
CPU NOP HLT	J Control Instructi NOP HALT	00 76	MOV A,H MOV A,L MOV A,M MOV B,A MOV B,B	LD A,H LD A,L LD A,(HL) LD B,A LD B,B	7C 7D 7E 47 40	MOV C,H MOV C,L MOV C,M MOV D,A MOV D,B	LD C,H LD C,L LD C,(HL) LD D,A LD D,B	4C 4D 4E 57 50
<u>Data</u>	Transfer Instruct	<u>ions</u>	MOV B,C MOV B,D MOV B,E MOV B,H MOV B,L	LD B,C LD B,D LD B,E LD B,H LD B,L	41 42 43 44 45	MOV D,C MOV D,D MOV D,E MOV D,H MOV D,L	LD D,C LD D,D LD D,E LD D,H LD D,L	51 52 53 54 55
MOV A,A MOV A,B MOV A,C MOV A,D MOV A,E	LD A,A LD A,B LD A,C LD A,D LD A,E	7F 78 79 7A 7B	MOV B,M MOV C,A MOV C,B MOV C,C MOV C,D MOV C,E	LD B,(HL) LD C,A LD C,B LD C,C LD C,D LD C,D	46 4F 48 49 4A 4B	MOV D,M MOV E,A MOV E,B MOV E,C MOV E,D MOV E,E	LD D,(HL) LD E,A LD E,B LD E,C LD E,D LD E,E	56 5F 58 59 5A 5B

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY CATEGORY (Continued)

8085	Z80	Op	8085	Z80	Op	8085	Z 80	Op
MOV E,H	LD E,H	5C	Ari	thmetic Instructions		ANA L	AND L	A5
MOV E,L	LD E,L	5D				ANA M	AND (HL)	A6 AF
MOV E,M	LD E,(HL)	5E	ADD A	4 DD 4 4	87	XRA A	XOR A XOR B	A8
MOV H,A	LD H,A	67	ADD A	ADD A,A ADD A,B	80	XRA B	XOR C	A9
MOV H,B	LD H,B	60	ADD B	•	81	XRA C	XOR D	AA
MOV H,C	LD H,C	61	ADD C	ADD A,C ADD A,D	82	XRA D	XOR E	AB
MOV H,D	LD H,D	62	ADD D	ADD A,B ADD A,E	83	XRA E XRA H	XOR H	AC
MOV H,E	LD H,E	63	ADD E	•	84		XOR L	AD
MOV H,H	LD H,H	64	ADD H	ADD A.H	85	XRA L		AE
MOV H,L	LD H,L	65	ADD L	ADD A (UI)	86	XRA M	XOR (HL)	B7
MOV H,M	LD H,(HL)	66 CF	ADD M	ADD A,(HL)	8F	ORA A	OR A	B0
MOV L,A	LD L,A	6F	ADC A	ADC A,A		ORA B	OR B	
MOV L,B	LD L,B	68	ADC B	ADC A,B	88	ORA C	OR C	B1
MOV L,C	LD L,C	69	ADC C	ADC A,C	89	ORA D	OR D	B2
MOV L,D	LD L,D	6A	ADC D	ADC A,D	8A	ORA E	OR E	B3
MOV L,E	LD L,E	6B	ADC E	ADC A,E	8B	ORA H	OR H	B4
MOV L,H	LD L,H	6C	ADC H	ADC A,H	8C	ORA L	OR L	B5
MOV L,L	LD L,L	6D	ADC L	ADC A,L	8D	ORA M	OR (HL)	B6
MOV L,M	LD L,(HL)	6 E	ADC M	ADC A,(HL)	8E	ANI dd	AND dd	E6
MOV M,A	LD (HL),A	77	SUB A	SUB A	97	XRI dd	XOR dd	EE
MOV M,B	LD (HL),B	70	SUB B	SUB B	90	ORI dd	OR dd	F6
MOV M,C	LD (HL),C	71	SUB C	SUB C	91	CMA	CPL	2F
MOV M,D	LD (HL),D	72	SUB D	SUB D	92			
MOV M,E	LD (HL),E	73	SUB E	SUB E	93			
MOV M,H	LD (HL),H	74	SUB H	SUB H	94			
MOV M,L	LD (HL),L	75	SUB L	SUB L	95	Rotate	e and Shift Instruct	<u>ions</u>
MVI A,dd	LD A,dd	3E	SUB M	SUB (HL)	96			
MVI B,dd	LD B,dd	06	SBB A	SBC A,A	9 F			
MVI C,dd	LD C,dd	0E	SBB B	SBC A,B	98	RLC	RLCA	07
MVI D,dd	LD D,dd	16	SBB C	SBC A,C	99	RRC	RRCA	0F
MVI E,dd	LD E,dd	1E	SBB D	SBC A,D	9A	RAL	RLA	17
MVI H,dd	LD H,dd	26	SBB E	SBC A,E	9B	RAR	RRA	1F
MVI L,dd	LD L,dd	2E	SBB H	SBC A,H	9C			
MVI M,dd	LD (HL),dd	36	SBB L	SBC A,L	9D			
LXI B,dddd	LD BC,dddd	01	SBB M	SBC A,(HL)	9E			
LXI D,dddd	LD DE,dddd	11	DAD B	ADD HL,BC	09	Increment	and Decrement Ins	structions
LXI H,dddd	LD HL,dddd	21	DAD D	ADD HL,DE	19			
LDAX B	LD A,(BC)	0A	DAD H	ADD HL,HL	29			
LDAX D	LD A,(DE)	1A	ADI dd	ADD A,dd	C6	INR A	INC A	3C
LHLD aaaa	LD HL,(aaaa)	2A	ACI dd	ADC A,dd	CE	INR B	INC B	04
LDA aaaa	LD A,(aaaa)	3A	SUI dd	SUB dd	D6	INR C	INC C	0C
STA aaaa	LD (aaaa),A	32	SBI dd	SBC A,dd	DE	INR D	INC D	14
STAX B	LD (BC),A	02	DAA	DAA	27	INR E	INC E	1C
STAX D	LD (DE),A	12				INR H	INC H	24
SHLD aaaa	LD (aaaa),HL	22				INR L	INC L	2C
XCHG	EX DE,HL	EB				INR M	INC (HL)	34
ACHO	LA DE,IIE	LU	1	Logical Instructions		INX B	INC BC	03
			3	Logical Instructions		INX D	INC DE	13
						INX H	INC HL	23
•	Mara Tarakara Maras		A NTA A	AND A	A7	DCR A	DEC A	3D
1	Flag Instructions		ANA A			DCR B	DEC B	05
			ANA B	AND B	A0	DCR C	DEC C	0D
	0.00	277	ANA C	AND C	A1			
STC	SCF	37 2F	ANA D	AND D	A2	DCR D	DEC D	15 1D
CMC	CCF	3F	ANA E	AND E	A3	DCR E	DEC E	1D 25
			ANA H	AND H	A4	DCR H	DEC H	ديد

8085	Z 80	Op	8085	Z 80	Op	8085	Z 80	Op
								Ор
DCR L	DEC L	2D	JC aaaa	ЈР С,аааа	DA	Ste	ack Instructions	
DCR M	DEC (HL)	35	ЈРО аааа	JP PO,aaaa	E2	<u>50</u>	ek Histructions	
DCX B	DEC BC	0B	JPE aaaa	ЈР РЕ,аааа	EA			
DCX D	DEC DE	1B	JP aaaa	JP P,aaaa	F2	LXI SP,dddd	LD SP,dddd	21
DCX H	DEC HL	2B	JM aaaa	JP M,aaaa	FA	DAD SP	•	31
				,	•••	INX SP	ADD HL,SP	39
						DCX SP	INC SP	33
						PUSH B	DEC SP	3B
Uncond	itional Jump Instr	uctions	Subr	outine Instructions		PUSH D	PUSH BC	C5
		•				PUSH H	PUSH DE PUSH HL	D5
						PUSH PSW	PUSH AF	E5
JMP aaaa	JP aaaa	C3	CALL aaaa	CALL aaaa	CD	POP B	POP BC	F5
PCHL	JP (HL)	E 9	CNZ aaaa	CALL NZ,aaaa	C4	POP D	POP DE	C1
	• •		CZ aaaa	CALL Z,aaaa	CC	POP H	POP HL	D1
			CNC aaaa	CALL NC,aaaa	D4	POP PSW	POP AF	E1 F1
			CC aaaa	CALL C,aaaa	DC	XTHL	EX (SP),HL	E3
	, a		CPO aaaa	CALL PO,aaaa	E4	SPHL	LD SP,HL	E3 F9
<u>l'est</u> ((Compare) Instruct	<u>ions</u>	CPE aaaa	CALL PE,aaaa	EC	Of 11L	LD SI,IIL	ГУ
			CP aaaa	CALL P,aaaa	F4			
CMP A	CD A		CM aaaa	CALL M,aaaa	FC			
CMP B	CP A CP B	BF	RET	RET	C9	Inter	rupt Instructions	
CMP C	CP C	B8	RNZ	RET NZ	C0	<u>Inter</u>	rope man octions	
CMP D	CP D	B9	RZ	RET Z	C8			
CMP E	CP E	BA	RNC	RET NC	D0	DI	DI	F3
CMP H	CP H	BB	RC	RET C	D8	EI	EI	FB
CMP L	CP L	BC	RPO	RET PO	E0		2.	1.0
CMP M	CP (HL)	BD	RPE	RET PE	E8			
CPI dd	CP dd	BE FE	RP	RET P	F0			
011 00	CI dd	LE	RM	RET M	F8	Input-C	Output Instruction	ıs
			RST 0	RST 00H	C7	 		
			RST 1	RST 08H	CF			
Conditional	T (7)		RST 2	RST 10H	D7	OUT dd	A,bb TUO	D3
Conditional	Jump (Branch) In	structions	RST 3	RST 18H	DF	IN dd	IN A,dd	DB
			RST 4	RST 20H	E7			DD
INTZ acce	TD MG		RST 5	RST 28H	EF			
JNZ aaaa JZ aaaa	JP NZ,aaaa	C2	RST 6	RST 30H	F7			
	JP Z,aaaa	CA	RST 7	RST 38H	FF			
JNC aaaa	JP NC,aaaa	D2						

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY OP CODE

Op	8080/8085	Z80	Op	8080/8085	Z 80	Ор	8080/8085	Z 80
00 01 02 03 04 05 06 07 09 0A 0B	NOP LXI B,dddd STAX B INX B INR B DCR B MVI B,dd RLC DAD B LDAX B DCX B	NOP LD BC,dddd LD (BC),A INC BC INC B DEC B LD B,dd RLCA ADD HL,BC LD A,(BC) DEC BC	0C 0D 0E 0F 11 12 13 14 15 16	INR C DCR C MVI C,dd RRC LXI D,dddd STAX D INX D INR D DCR D MVI D,dd RAL	INC C DEC C LD C,dd RRCA LD DE,dddd LD (DE),A INC DE INC D DEC D LD D,dd RLA	19 1A 1B 1C 1D 1E 1F 21 22 23 24	DAD D LDAX D DCX D INR E DCR E MVI E,dd RAR LXI H,dddd SHLD aaaa INX H INR H	ADD HL,DE LD A,(DE) DEC DE INC E DEC E LD E,dd RRA LD HL,dddd LD (aaaa),HL INC HL

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED BY OP CODE (Continued)

DCR DEC SF MOV EA LD EA 96 SUB M SUB (III)	Op	8080/8085	Z 80	Op	8080/8085	Z 80	Op	8080/8085	Z80
MOV H, B	<u> </u>								
25 MVI II,dd LD H,dd 60 MOV H,B LD H,B 97 SUB A SUB A	25	DCR H	DEC H	5F	MOV E.A	LD E.A	96	SUB M	SUB (HL)
27							97	SUB A	SUB A
DAD H		,					98		SBC A,B
Decoration Dec					•	•	99		SBC A,C
DEC HI DEC HI 64 MOV H.H LD H.H 98 SBB E SBC A.H							9A		
2C					•	·	9B		SBC A,E
DEC DEC DEC G6 MOV M						•	9C		SBC A,H
Dec									
CPL									SBC A,(HL)
31 LXI SP,dddd LD SP,dddd 69 MOV L,C LD L,C A0 ANA B AND B 32 STA aaaa LD (aaaa)A 6A MOV L,D LD LD,D A1 ANA C AND C 33 INX SP INC SP 6B MOV LE LD L,E A2 ANA D AND D 34 INR M INC (HL) 6C MOV L,H LD L,H A3 ANA E AND E 35 DCR M DEC (HL) 6D MOV L,L LD L,L A4 ANA H AND H 36 MVI M,dd LD (HL),dd 6E MOV L,M LD L,(HL) A5 ANA L AND H 37 STC SCF 6F MOV L,A LD L,A A6 ANA M AND (HL) 39 DAD SP ADD HL,SP 70 MOV M,B LD (HL),B A7 ANA A AND G 30 LDA aaaa LD A,(aaaa) 71 MOV M,C LD (HL),B A7 ANA A AND A 31 LNR A INC A 73 MOV M,E LD (HL),B A7 ANA A AND A AND G 32 INR A INC A 73 MOV M,H LD (HL),B A7 ANA A XRA D XOR D 33 DCX SP DEC SP 72 MOV M,H LD (HL),B A7 ANA C XOR C 34 MVI A,dd LD A,dd 75 MOV M,H LD (HL),B A7 ANA A XRA D XOR D 36 MVI A,dd LD B,B 77 MOV M,A LD (HL),B A7 ANA A XRA D XOR D 40 MOV B,B LD B,B 77 MOV M,A LD (HL),D A9 XRA C XOR C 41 MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A XOR A 42 MOV B,B LD B,B 77 MOV A,B LD A,B AF XRA A XOR A 43 MOV B,E LD B,B 77 MOV A,B LD A,B AF XRA A XOR A 44 MOV B,B LD B,B 77 MOV A,B LD A,B B AF XRA A XOR A 45 MOV B,B LD B,B 77 MOV A,B LD A,B B AF XRA A XOR A 46 MOV B,B LD B,B 77 MOV A,B LD A,B B AF XRA A XOR A 47 MOV B,B LD B,B 77 MOV A,B LD A,B B AF XRA A XOR A 48 MOV B,B LD B,B 77 MOV A,B LD A,B B AF XRA A XOR A 49 MOV B,B LD B,B 77 MOV A,B LD A,B B ORA B OR B 40 MOV B,B LD B,B 77 MOV A,B LD A,B B ORA B OR B 40 MOV B,B LD B,B 77 MOV A,B LD A,B B ORA B OR B 41 MOV B,C LD B,C 78 MOV A,B LD A,B B ORA B OR B 42 MOV C,C LD C,C 80 ADD B ADD A,B B1 ORA C OR C 44 MOV B,B LD B,B 77 MOV A,B LD A,B B7 ORA A OR A 48 MOV C,B LD C,B 77 MOV A,B LD A,B B7 ORA A OR A 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 40 MOV B,B LD B,B 77 MOV A,B LD A,B B7 ORA A OR A 41 MOV B,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 41 MOV B,B LD B,B 77 MOV A,B LD A,B B7 ORA A OR A 42 MOV C,B LD C,B 77 MOV A,B LD A,B B7 ORA A OR A 43 MOV B,B LD B,B 77 MOV A,B LD A,B B7 ORA B C P B 44 MOV C,B LD C,B 78 MOV A,B LD A,B B7 ORA A OR A 44 MOV B,B LD B,B 87 ADD A ADD A,B B7 ORA B C P B 45									
32 STA asaa									AND B
33 INX SP INC SP 6B MOV LE LD LE A2 ANA D AND D 34 INR M INC (HL) 6C MOV LH LD LH A3 ANA E AND E 35 DCR M DEC (HL) 6D MOV LL LD LL A4 ANA H AND H 36 MVI M.dd LD (HL),dd 6E MOV LM LD L(HL) A5 ANA L AND L 37 STC SCF 6F MOV LA LD LA 39 DAD SP ADD HL,SP 70 MOV MB LD (HL),B A7 ANA A AND A 30 LDA asaa LD A,(asaa) 71 MOV M.C LD (HL),B A7 ANA A AND A 31 BD CX SP DEC SP 72 MOV M,D LD (HL),D A9 XRA C XOR C 32 INR A INC A 73 MOV M,E LD (HL),E AA XRA D XOR D 33 DCR A DEC A 74 MOV M,H LD (HL),H A8 XRA E XOR B 40 MVI A,dd LD A,dd 75 MOV M,L LD (HL),L AC XRA H XOR H 41 MOV B,B LD B,B 77 MOV M,A LD (HL),A A6 XRA D XOR L 42 MOV B,B LD B,B 77 MOV M,A LD (HL),A A6 XRA A XOR M 42 MOV B,B LD B,B 77 MOV M,A LD (HL),A A6 XRA D XOR D 43 MOV B,E LD B,E 7A MOV A,D LD A,B AF XRA A XOR M 44 MOV B,H LD B,H 7B MOV A,C LD A,B AF XRA A XOR B 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E 46 MOV B,H LD B,H 7B MOV A,C LD A,B B6 ORA B OR B 47 MOV B,A LD B,B 7F MOV A,A LD A,B B7 CRA D 48 MOV C,B LD C,B 7F MOV A,A LD A,H B3 ORA E 49 MOV C,C LD C,C 80 ADD B B1 ORA C OR C 40 MOV B,A LD B,B 7F MOV A,A LD A,B B7 CRA D 41 MOV B,C LD B,C 78 MOV A,B LD A,B B1 ORA C OR C 41 MOV B,B LD B,B 77 MOV A,A LD A,B B1 ORA C OR C 42 MOV B,B LD B,B 77 MOV A,A LD A,B B1 ORA C OR C 43 MOV B,B LD B,B 77 MOV A,A LD A,B B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,C LD A,B B1 ORA C OR C 46 MOV B,M LD B,HL) 7D MOV A,A LD A,B B1 ORA C OR C 47 MOV B,A LD B,B 7F MOV A,A LD A,B B7 CRA A OR A 48 MOV C,B LD C,B 7F MOV A,A LD A,B B7 CRA A OR A 49 MOV C,C LD C,C 80 ADD B B9 CMP C C C C 40 MOV C,C LD C,C 80 ADD B B9 CMP C C C C 50 MOV D,B LD D,B 87 ADD A ADD A,B B7 CRA A OR A 51 MOV B,B LD D,B 87 ADD A ADD A,B B7 CRA A OR A 52 MOV D,B LD D,B 87 ADD A ADD A,B B7 CRA A OR A 53 MOV D,B LD D,B 87 ADD A ADD A,B B7 CRA A OR A 54 MOV C,C LD C,C 80 ADD B ADD A,B B7 CRA A OR A 55 MOV D,B LD D,B 87 ADD A ADD A,B B7 CRA A OR A 56 MOV D,B LD D,B 87 ADD A ADD A,B B7 CRA A OR A 57 MOV D,C LD C,C 88 ADD B ADD A,B B7 CRA A CP C 58 MOV D,B LD D,B 87 ADD A ADD A,B B7 CMP C CP C 59 MOV D,D LD D,D 88 ADC C									
1									
S									
36 MVI M,dd LD (HL),dd 6E MOV L,M LD L,(HL) AS ANA L AND L LA 37 STC SCF 6F MOV L,A LD L,A A6 ANA M AND (HL A LD LA A6 ANA M AND (HL A LD LA A6 ANA M AND CHL A6 AND									
37 STC SCF 6F MOV LA LD LA A6 ANA M AND (HL 39 DAD SP ADD HL,SP 70 MOV M,B LD (HL),B A7 ANA A AND A 3A LDA aaaa LD A,(aaaa) 71 MOV M,C LD (HL),C A8 XRA B XOR B 3B DCX SP DEC SP 72 MOV M,D LD (HL),D A9 XRA C XOR C 3C INR A INC A 73 MOV M,E LD (HL),E AA XRA D XOR D 3D DCR A DEC A 74 MOV M,H LD (HL),H AB XRA E XOR E 3E MVI A,dd LD A,dd 75 MOV M,L LD (HL),L AC XRA H XOR H 3F CMC CCF 76 HLT HALT AD XRA L XOR L 40 MOV B,B LD B,B 77 MOV M,A LD (HL),A AE XRA M XOR (HI 41 MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A 42 MOV B,D LD B,D 79 MOV A,C LD A,C B0 ORA B OR B 43 MOV B,E LD B,E 7A MOV A,D LD A,D B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,E LD A,H B3 ORA E OR E 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7F MOV A,A LD A,A B6 ORA H OR H 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 40 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 40 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 41 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 42 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 43 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 44 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 45 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 46 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 47 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 48 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 40 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 41 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 42 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 43 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 44 MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 45 MOV C,C LD C,C 80 ADD A,C B8 CMP B CP B 46 MOV C,C LD C,C 80 ADD A,C B8 CMP B CP B 47 MOV C,C LD C,C 80 ADD A,C B8 CMP B CP B 48 MOV C,C LD C,C 80 ADD A,C B8 CMP B CP B 49 MOV C,C LD C,C 80 ADD A,C B8 CMP B CMP C CP C 40 MOV C,C LD C,C 80 ADD A,C B8 CMP B CMP C CP C 40 MOV C,C LD C,C 80 ADD A,C B8 CMP B CMP C CP C 41 MOV B,C LD C,C 80 ADD									
39 DAD SP ADD HL,SP 70 MOV M,B LD (HL),B A7 ANA A AND A AND A ADD A asaa LDA A(asaa) 71 MOV M,C LD (HL),C A8 XRA B XOR B B DCX SP DEC SP 72 MOV M,D LD (HL),D A9 XRA C XOR C G INR A INC A 73 MOV M,E LD (HL),H A8 XRA E XOR D DCR A DEC A 74 MOV M,H LD (HL),H A8 XRA E XOR E SE MOV A,D LD (HL),H A8 XRA E XOR E G MOV B,B LD B,B 77 MOV M,A LD (HL),L AC XRA H XOR H H MOV B,C LD B,C 78 MOV A,D LD (HL),A A6 XRA A XOR A XOR A XOR C IND B,B 1 DB,B 77 MOV M,A LD (HL),A A6 XRA A XOR B,D LD B,D 79 MOV A,C LD A,C B0 GRA B GR			• •		•				
3A LDA aaaa LD A,(aaaa) 71 MOV M,C LD (HL),C A8 XRA B XOR B 3B DCX SP DEC SP 72 MOV M,D LD (HL),D A9 XRA C XOR C 3C INR A INC A 73 MOV M,E LD (HL),E AA XRA D XOR D 3D DCR A DEC A 74 MOV M,H LD (HL),H AB XRA E XOR E 3E MVI A,dd LD A,dd 75 MOV M,L LD (HL),L AC XRA H XOR H 3F CMC CCF 76 HLT HALT AD XRA L XOR L 40 MOV B,B LD B,B 77 MOV A,A LD (HL),A AE XRA A XOR A 42 MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A XOR A 43 MOV B,E LD B,B 79 MOV A,C LD A,C BO GRA B GR B 44 MOV B,H LD B,H 78 MOV A,B LD A,H B3 GRA E GR E 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 GRA E GR E 46 MOV B,M LD B,HL) 7D MOV A,L LD A,L B4 GRA H OR H 47 MOV B,A LD B,HL) 7D MOV A,L LD A,L B4 GRA H OR H 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 GRA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 40 MOV C,B LD C,B 81 ADD C ADD A,B B7 GRA A GR A 41 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 42 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 43 MOV C,B LD C,B 81 ADD C ADD A,B B7 GRA A GR A 44 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 45 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 46 MOV C,B LD C,B 81 ADD C ADD A,B B7 GRA A GR A 47 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 48 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 40 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 41 MOV C,C LD C,C 80 ADD B ADD A,C B8 CMP B CP B 42 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 43 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 44 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 45 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 46 MOV C,C LD C,C 80 ADD B ADD A,B B7 GRA A GR A 47 MOV C,C LD C,C 80 ADD B ADD A,C B8 CMP B CP B 48 MOV C,C LD C,C 80 ADD B ADD A,C B8 CMP B CP B 49 MOV C,C LD C,C 80 ADD B ADD A,C B8 CMP B CP B 40 MOV C,C LD C,C 80 ADD B ADD A,C B8 CMP B CP B 40 MOV C,C LD C,C 80 ADD B ADD A,C B8 CMP B CP B 41 MOV D,C LD C,C 80 ADD B ADD A,C B8 CMP B CP B 42 MOV C,C LD C,C 80 ADD B ADD A,C B8 CMP B CP B 43 ADD C ADD A,C B8 CMP C CP									
3B DCX SP DEC SP 72 MOV M,D LD (HL),D A9 XRA C XOR C C INR A INC A 73 MOV M,E LD (HL),E AA XRA D XOR D DCR A DEC A 74 MOV M,H LD (HL),H AB XRA E XOR E SE MVI A,dd LD A,dd 75 MOV M,L LD (HL),L AC XRA H XOR H LD (HL),L AC XRA H XOR H LD (HL),L AC XRA H XOR H LD MOV B,B LD B,B 77 MOV M,A LD (HL),A AE XRA M XOR (HL) MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A XOR A XOR B AD A,B B ORA B OR B ORA B OR B ORA B OR B ORA B OR B OR					•				
3C INR A INC A 73 MOV M,E LD (HL),E AA XRA D XOR D 3D DCR A DEC A 74 MOV M,H LD (HL),H AB XRA E XOR E 3E MYI A,dd LD A,dd 75 MOV M,L LD (HL),L AC XRA H XOR H 3F CMC CCF 76 HLT HALT AD XRA L XOR L 40 MOV B,B LD B,B 77 MOV M,A LD (HL),A AE XRA M XOR (HI 41 MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A XOR A 42 MOV B,D LD B,D 79 MOV A,C LD A,C BO ORA B OR B 43 MOV B,E LD B,E 7A MOV A,D LD A,D B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,E LD A,E B2 ORA D OR D 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,A B6 ORA M OR (HL) 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 40 MOV C,B LD C,B 81 ADD C ADD A,B B7 ORA A OR A 41 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 42 MOV C,B LD C,B 83 ADD L ADD A,B B9 CMP C CP C 44 MOV C,C LD C,C 80 ADD B B9 CMP C CP C 45 MOV C,B LD C,B 84 ADD H ADD A,H BB CMP E CP B 46 MOV C,C LD C,C 80 ADD B BP CMP C CP C 47 MOV C,C LD C,C 80 ADD B BP CMP C CP C 48 MOV C,B LD C,B 81 ADD C ADD A,B B7 ORA A OR A 49 MOV C,C LD C,C 80 ADD B BP CMP C CP C 40 MOV C,H LD C,H 83 ADD E ADD A,B B7 ORA A OR A 40 MOV C,C LD C,C 80 ADD B BP CMP C CP C 41 MOV C,M LD C,HL) 85 ADD L ADD A,H BB CMP E CP B 41 MOV C,C LD C,C 80 ADD B BP CMP C CP C 42 MOV C,M LD C,HL) 85 ADD L ADD A,H BB CMP E CP E 44 MOV C,B LD C,C 88 ADD M ADD A,H BB CMP E CP E 45 MOV D,C LD D,C 88 ADD A BP CMP C CP C 46 MOV C,M LD C,HL) 85 ADD L ADD A,A BE CMP M CP H 47 MOV C,A LD C,A 86 ADD M ADD A,H BB CMP E CP E 48 MOV C,B LD D,B 87 ADD A ADD A,A BE CMP M CP H 49 MOV C,C LD C,C 88 ADD M ADD A,H BB CMP E CP E 50 MOV D,B LD D,B 87 ADD C ADC A,B BF CMP A CP A 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,B C CJ JNZ aaaa JP NZaaa 54 MOV D,A LD D,H 88 ADC L ADC A,A C CO RNIZ AAAB 55 MOV D,A LD D,A 88 ADC B ADC A,A C CO ADI A,C C ADI A,C C CNIZ aaaa CALL N'C C C CNIZ AAAB CALL N'C C C CNIZ AAAB CALL NOV C,B LD D,A ADC A,A C CO AD									
3D DCR A DEC A THE MOV M,H LD (HL),H AB XRA E XOR E 3E MVI A,dd LD A,dd TS MOV M,L LD (HL),L AC XRA H XOR H XOR H 3F CMC CCF T6 HLT HALT AD XRA L XOR (HI MOV B,B LD B,B T7 MOV M,A LD (HL),A AE XRA M XOR (HI MOV B,C LD B,C T8 MOV A,B LD A,B AF XRA A XOR A 42 MOV B,D LD B,D T9 MOV A,C LD A,C B0 ORA B OR B OR B OR C OR C 44 MOV B,H LD B,H TB MOV A,D LD A,D B1 ORA C OR C OR C 45 MOV B,L LD B,L TC MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,(HL) TD MOV A,L LD A,L B4 ORA H OR H OR H AMOV C,B LD C,B TF MOV A,M LD A,(HL) B5 ORA L OR A OR A 48 MOV C,C LD C,C B0 ORA B OR B OR B OR C OR D									
3E MVI A,dd LD A,dd 75 MOV M,L LD (HL),L AC XRA H XOR H 3F CMC CCF 76 HLT HALT AD XRA L XOR L 40 MOV B,B LD B,B 77 MOV M,A LD (HL),A AE XRA M XOR (HL 41 MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A XOR A 42 MOV B,D LD B,D 79 MOV A,C LD A,C B0 ORA B OR B 43 MOV B,E LD B,E 7A MOV A,D LD A,D B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,E LD A,E B2 ORA D OR D 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,D B9 CMP C CP C 4C MOV C,H LD C,L 84 ADD H ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,L BC CMP C CP C 4C MOV C,M LD C,C 88 ADD M ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,L BC CMP H CP H 4F MOV C,C LD C,C 88 ADD M ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,A BE CMP B CP B 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RETNZ 53 MOV D,E LD D,E 8A ADC B ADC A,B BF CMP A CP A 55 MOV D,L LD D,L 86 ADC H ADC A,L C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 85 ADC L ADC A,L C4 CNZ aaaaa JP NZ,aa 56 MOV D,M LD D,(HL) 85 ADC L ADC A,L C4 CNZ aaaaa GALL NC 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV D,B LD D,B 87 ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV D,B LD D,B 87 ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV D,B LD D,B 87 ADC A ADC A,A C6 ADI dd ADD A,6 59 MOV D,B LD D,B 87 ADC A ADC A,A C6 ADI dd ADD A,6 59 MOV D,B LD D,B 88 ADC B ADC A,A C6 ADI dd ADD A,6 59 MOV D,B LD D,B 88 ADC B ADC A,A ADC A,						•			
3F CMC CCF 76 HLT HALT AD XRA L XOR L 40 MOV B,B LD B,B 77 MOV M,A LD (HL),A AE XRA M XOR (HI 41 MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A XOR A 42 MOV B,D LD B,D 79 MOV A,C LD A,C B0 ORA B OR B 43 MOV B,E LD B,E 7A MOV A,D LD A,D B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,E LD A,E B2 ORA D OR D 45 MOV B,L LD B,L 7C MOV A,H LD A,L B4 ORA E OR E 46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 4B MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,L BC CMP H CP H 4F MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP C CP C 51 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 53 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 54 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 55 MOV D,B LD D,B 87 ADD A ADD A,C CO RNZ RETNZ 56 MOV D,H LD D,H 88 ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 56 MOV D,M LD D,(HL) 80 ADC L ADC A,L C4 CNZ aaaa 56 MOV D,M LD D,HL) 80 ADC L ADC A,L C4 CNZ aaaa 57 MOV D,A LD D,A 88 ADC B ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 59 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 59 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 50 MOV D,A LD D,A 88 ADC B ADC A,A C6 ADI dd ADD A,6 50 MOV D,B LD D,A 88 ADC B ADC A,A C6 ADI dd ADD A,6 51 MOV D,A LD D,A 88 ADC M ADC A,A C6 ADI dd ADD A,6 52 MOV D,B LD D,B 87 ADC A ADC A,A C6 ADI dd ADD A,6 53 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 54 MOV D,B LD D,B 87 ADC A ADC A,A C6 ADI dd ADD A,6 55 MOV D,B LD E,B 8F ADC A ADC A,A					•				
40 MOV B,B LD B,B 77 MOV M,A LD (HL),A AE XRA M XOR (HL 41 MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A XOR A 42 MOV B,D LD B,D 79 MOV A,C LD A,C B0 ORA B OR B 43 MOV B,E LD B,E 7A MOV A,D LD A,D B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,E LD A,E B2 ORA D OR D 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,A BE CMP H CP H 4F MOV C,A LD C,C 88 ADC B ADC A,B BF CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP C CP C 52 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 53 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 54 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 55 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 56 MOV D,H LD D,H 88 ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 56 MOV D,M LD D,(HL) 85 ADC L ADC A,L C4 CNZ aaaa PALA B 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,A 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,A 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,A 58 MOV E,B LD E,B 8F ADC A ADC A,A									
41 MOV B,C LD B,C 78 MOV A,B LD A,B AF XRA A XOR A 42 MOV B,D LD B,D 79 MOV A,C LD A,C B0 ORA B OR B 43 MOV B,E LD B,E 7A MOV A,D LD A,D B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,E LD A,E B2 ORA D OR D 45 MOV B,H LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 40 MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 41 MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 41 MOV C,H LD C,H 83 ADD E ADD A,L BC CMP E CP E 42 MOV C,A LD C,A 86 ADD M ADD A,L BC CMP H CP H 44 MOV C,A LD C,A 86 ADD M ADD A,L BC CMP H CP H 45 MOV C,A LD C,A 86 ADD M ADD A,A BE CMP M CP (HL) 50 MOV D,B LD D,B 87 ADD A ADD A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,B BF CMP M CP (HL) 53 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 54 MOV D,D LD D,D 89 ADC C ADC A,B BF CMP A CP A 55 MOV D,D LD D,D 89 ADC C ADC A,B BF CMP A CP A 56 MOV D,H LD D,H 88 ADC E ADC A,B C INVZ RET NZ 57 MOV D,A LD D,A 88 ADC E ADC A,B C INVZ RET NZ 58 MOV D,B LD D,B 87 ADC A ADC A,B C INVZ RET NZ 58 MOV D,B LD D,B 87 ADC A ADC A,B C INVZ RET NZ 58 MOV D,A LD D,A 88 ADC B ADC A,B C INVZ RET NZ 58 MOV D,A LD D,A 88 ADC B ADC A,B C INVZ RET NZ 58 MOV D,B LD D,B 87 ADC A ADC A,C C INVZ RET NZ 58 MOV D,A LD D,A 88 ADC B ADC A,B C INVZ RET NZ 59 MOV D,B LD D,B 87 ADC A ADC A,E C INVZ RET NZ 59 MOV D,A LD D,A 88 ADC B ADC A,B C INVZ RET NZ 59 MOV D,A LD D,A 88 ADC B ADC A,B C INVZ RET NZ 59 MOV D,A LD D,A 88 ADC B ADC A,B C INVZ RET NZ 59 MOV D,A LD D,A 88 ADC B ADC A,E C INVZ RET NZ 59 MOV D,A LD D,A 88 ADC B ADC A,E C INVZ RET NZ 59 MOV D,A LD D,A 88 ADC B ADC A,E C INVZ RET NZ 59 MOV D,A LD D,A 88 ADC B ADC A,E C INVZ RET NZ 59 MOV D,B LD D,B 89 ADC C ADC A,E C INVZ RET NZ 59 MOV D,B LD D,B 89 ADC C ADC A,E C INVZ RET NZ 59 MOV D,B LD D,B 89 ADC C ADC A,E C INVZ RET NZ 59 MOV D,B LD D,B 89 ADC C ADC A,E C INVZ RET NZ 59 MOV D,B LD D,B 89 ADC C ADC A,E C INVZ RET NZ									
42 MOV B,D LD B,D 79 MOV A,C LD A,C B0 ORA B OR B 43 MOV B,E LD B,E 7A MOV A,D LD A,D B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,E LD A,E B2 ORA D OR D 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,D B9 CMP C CP B 4B MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,B BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,L BC CMP H CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 53 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 54 MOV D,H LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 55 MOV D,L LD D,L 80 ADC L ADC A,L C3 INZ aaaa IP NZ,aa 56 MOV D,M LD D,(HL) 85 ADC L ADC A,L C4 CNZ aaaa CALL N. 57 MOV D,A LD D,A 8E ADC M ADC A,L C5 PUSH B PUSH B 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,S 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,S 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,S		·			•				
43 MOV B,B LD B,E 7A MOV A,D LD A,D B1 ORA C OR C 44 MOV B,H LD B,H 7B MOV A,E LD A,E B2 ORA D OR D 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 4B MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,H BB CMP E CP E 4E MOV C,A LD C,A 86 ADD M ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,B C1 POP B POP BC 54 MOV D,H LD D,H 88 ADC E ADC A,E C2 JNZ aaaa PASAA 55 MOV D,L LD D,L 8C ADC H. ADC A,H C3 JMP aaaa PASAA 56 MOV D,M LD D,(HL) 8D ADC L ADC A,H C3 JMP aaaa PASAA 57 MOV D,A LD D,A 8E ADC M ADC A,H C3 JMP aaaa CALL NC 58 MOV D,B LD D,A 8E ADC M ADC A,H C3 JMP aaaa CALL NC 59 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV D,B LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV D,B LD D,A 8E ADC M ADC A,A									
44 MOV B,H LD B,H 7B MOV A,E LD A,E B2 ORA D OR D 45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 44 MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 46 MOV C,E LD C,E 82 ADD D ADD A,E BA CMP D CP D 47 MOV C,L LD C,L 84 ADD H ADD A,E BA CMP D CP D 48 MOV C,C LD C,L 84 ADD H ADD A,H BB CMP E CP E 49 MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 40 MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC B ADC A,B BF CMP A CP A 55 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,M LD D,(HL) 8D ACL C4 CNZ aaaa CALL NS 56 MOV D,M LD D,(HL) 8D ACL C4 CNZ aaaa CALL NS 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A									
45 MOV B,L LD B,L 7C MOV A,H LD A,H B3 ORA E OR E 46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 4B MOV C,E LD C,E 82 ADD D ADD A,E BA CMP D CP D 4C MOV C,H LD C,L 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,H BB CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,M LD D,(HL) 8D ADC A,L C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC A,C C5 ADI dd ADD A,6 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A		•							
46 MOV B,M LD B,(HL) 7D MOV A,L LD A,L B4 ORA H OR H 47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) B5 ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,D B9 CMP C CP C 4C MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,B C2 JNZ aaaa JP NZaaa 55 MOV D,L LD D,L 8C ADC H ADC A,L C3 JMP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL N 57 MOV D,A LD D,C 88 ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6									
47 MOV B,A LD B,A 7E MOV A,M LD A,(HL) BS ORA L OR L 48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 4B MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,M LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,L C3 JMP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 59 LD E,B ADC B, MOV A,A ADC A,A C6 ADI dd ADD A,6 59 LD E,B ADC B, MOV A,A ADC A,A C6 ADI dd ADD A,6 50 LD A,6 50 LD A,A 51 MOV D,A LD D,A 52 LD D,A 53 MOV E,B LD E,B 8F ADC A ADC A,A 54 ADC A,A 55 LD A,A 56 ADC A,A 57 MOV D,A LD D,A 58 MOV E,B LD E,B 58 MOV E,B LD E,B 59 ADC A,A 50 ADC A,A 51 ADC A,A 52 ADC A,A 53 ADC A,A 54 ADC A,A 55 ADC A,A 56 ADI dd ADD A,6 57 MOV D,A 58 ADC B,A 59 ADC C A,C 59 CH C,C 50 ADI dd ADD A,6 59 ADC A,A 50 ADC A,A 51 ADC A,A 52 ADC A,A 53 ADC A,A 54 ADC A,A 55 ADC A,A 56 ADI dd ADD A,6 57 ADC A,A 58 ADC A,A 59 CA ADC A,A 59 CA ADC A,A 50 ADC A,A 50 ADC A,A 51 ADC A,A 52 ADC A,A 53 ADC A,A 54 ADC A,A 55 ADC A,A 56 ADC A,A 57 ADC A,A 58 ADC A,A 58 ADC A,A 59 ADC A,A 59 ADC									
48 MOV C,B LD C,B 7F MOV A,A LD A,A B6 ORA M OR (HL) 49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 4B MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL N. 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,A 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,A					•				
49 MOV C,C LD C,C 80 ADD B ADD A,B B7 ORA A OR A 4A MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 4B MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ACC ADC A,C C5 PUSH B PUSH B6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,C									
4A MOV C,D LD C,D 81 ADD C ADD A,C B8 CMP B CP B 4B MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 59 PUSH B6 50 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 50 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 50 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 50 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 50 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 50 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 51 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 51 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 52 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6 53 MOV E,B LD E,B 8F ADC A ADC A,A									
4B MOV C,E LD C,E 82 ADD D ADD A,D B9 CMP C CP C 4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,G 88 ADC A,D C1 PUSH B PUSH BC 88 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,G									
4C MOV C,H LD C,H 83 ADD E ADD A,E BA CMP D CP D 4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C C0 RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,G 88 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,G		•							
4D MOV C,L LD C,L 84 ADD H ADD A,H BB CMP E CP E 4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,G 88 ADC ADC A,A C6 ADI dd ADD A,G 89 ADC A,A ADC A,A C6 ADI dd ADD A,G 80 ADD A,C			· ·						
4E MOV C,M LD C,(HL) 85 ADD L ADD A,L BC CMP H CP H 4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6	4C	MOV C,H							
4F MOV C,A LD C,A 86 ADD M ADD A,(HL) BD CMP L CP L 50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C CO RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,A C6 ADI dd ADD A,6 58 MOV E,B LD E,B 8F ADC A ADC A,A	4D	·							
50 MOV D,B LD D,B 87 ADD A ADD A,A BE CMP M CP (HL) 51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C C0 RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,HL) C5 PUSH B PUSH BG 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,G		•							
51 MOV D,C LD D,C 88 ADC B ADC A,B BF CMP A CP A 52 MOV D,D LD D,D 89 ADC C ADC A,C C0 RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,HL) C5 PUSH B PUSH BG 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,G									
52 MOV D,D LD D,D 89 ADC C ADC A,C C0 RNZ RET NZ 53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,(HL) C5 PUSH B PUSH B 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,G	50								, ,
53 MOV D,E LD D,E 8A ADC D ADC A,D C1 POP B POP BC 54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,(HL) C5 PUSH B PUSH B 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,G						•			
54 MOV D,H LD D,H 8B ADC E ADC A,E C2 JNZ aaaa JP NZ,aa 55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL NZ 57 MOV D,A LD D,A 8E ADC M ADC A,(HL) C5 PUSH B PUSH B 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,G									
55 MOV D,L LD D,L 8C ADC H ADC A,H C3 JMP aaaa JP aaaa 56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL N3 57 MOV D,A LD D,A 8E ADC M ADC A,(HL) C5 PUSH B PUSH B6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6	53								
56 MOV D,M LD D,(HL) 8D ADC L ADC A,L C4 CNZ aaaa CALL N. 57 MOV D,A LD D,A 8E ADC M ADC A,(HL) C5 PUSH B PUSH B6 8F ADC A ADC A,A C6 ADI dd ADD A,6	54	MOV D,H	LD D,H						•
57 MOV D,A LD D,A 8E ADC M ADC A,(HL) C5 PUSH B PUSH B6 58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,6	55	MOV D,L	LD D,L	80					
58 MOV E,B LD E,B 8F ADC A ADC A,A C6 ADI dd ADD A,G	56	MOV D,M							CALL NZ,aaaa
30 1110 t E,D ======== ,	57	MOV D,A	LD D,A						
	58	MOV E,B	LD E,B	81					ADD A,dd
57 MOVE,0 120 120 140 140 140 140 140 140 140 140 140 14	59	MOV E,C	LD E,C	90	SUB B	SUB B			RST 00H
5A MOV E,D LD E,D 91 SUB C SUB C C8 RZ RET Z		MOV E,D	LD E,D	91	SUB C	SUB C			
5B MOV E,E LD E,E 92 SUB D SUB D C9 RET RET				92	SUB D	SUB D			
5C MOV E,H LD E,H 93 SUB E SUB E CA JZ aaaa JP Z,aaaa				93	SUB E	SUB E			JP Z,aaaa
5D MOV E,L LD E,L 94 SUB H SUB H CC CZ aaaa CALL Z,				94	SUB H	SUB H			CALL Z,aaaa
5E MOV E,M LD E,(HL) 95 SUB L SUB L CD CALL aaaa CALL aa				95	SUB L	SUB L	Cl	CALL aaaa	CALL aaaa

CE ACI dd ADC A,dd E0 RPO RET PO FC CF RST 1 RST 08H E1 POP H POP HL FI	RP	
DO RNC RET NC E2 JPO aaaa JP PO,aaaa F2 D1 POP D POP DE E3 XTHL EX (SP),HL F3 D2 JNC aaaa JP NC,aaaa E4 CPO aaaa CALL PO,aaaa F4 D3 OUT dd OUT dd,A E5 PUSH H PUSH HL F5 D4 CNC aaaa CALL NC,aaaa E6 ANI dd AND dd F6 D5 PUSH D PUSH DE E7 RST 4 RST 20H F7 D6 SUI dd SUB dd E8 RPE RET PE F8 D7 RST 2 RST 10H E9 PCHL JP (HL) F9 D8 RC RET C EA JPE aaaa JP PE,aaaa FA DA JC aaaa JP C,aaaa EB XCHG EX DE,HL FE DB IN dd IN A,dd EC CPE aaaa CALL PE,aaaa FC DC CC aaaa CALL C,aaaa EE XRI dd XOR dd FE DF RST 3 RST 18H	POP PSW JP aaaa DI CP aaaa PUSH PSW ORI dd RST 6 RM SPHL JM aaaa B EI CM aaaa	RET P POP AF JP P,aaaa DI CALL P,aaaa PUSH AF OR dd RST 30H RET M LD SP,HL JP M,aaaa EI CALL M,aaaa CP dd RST 38H

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY BY 8085/8080 MNEMONIC

8085	Z80	Op	8085	Z 80	Op	8085	Z 80	Op
		-						
ACI dd	ADC A,dd	CE	CMP C	CP C	В9	INR A	INC A	3C
ADC A	ADC A,A	8F	CMP D	CP D	BA	INR B	INC B	04
ADC B	ADC A,B	88	CMP E	CP E	BB	INR C	INC C	0C
ADC C	ADC A,C	89	CMP H	CP H	BC	INR D	INC D	14
ADC D	ADC A,D	8A	CMP L	CP L	BD	INR E	INC E	14 1C
ADC E	ADC A,E	8B	CMP M	CP (HL)	BE	INR H	INC H	24
ADC H	ADC A,H	8C	CNC aaaa	CALL NC,aaaa	D4	INR L	INC II	24 2C
ADC L	ADC A,L	8D	CNZ aaaa	CALL NZ,aaaa	C4	INR M	INC (HL)	
ADC M	ADC A,(HL)	8E	CP aaaa	CALL P,aaaa	F4	INX B	INC (HL)	34
ADD A	ADD A,A	87	CPE aaaa	CALL PE,aaaa	EC	INX D	INC DE	03
ADD B	ADD A,B	80	CPI dd	CP dd	FE	INX H	INC DE INC HL	13
ADD C	ADD A,C	81	CPO aaaa	CALL PO,aaaa	E4	INX SP	INC IIL	23
ADD D	ADD A,D	82	CZ aaaa	CALL Z,aaaa	CC	JC aaaa		33
ADD E	ADD A,E	83	DAA	DAA	27	JM aaaa	JP C,aaaa	DA
ADD H	ADD A,H	84	DAD B	ADD HLBC	09	JMP aaaa	ЈР М,аааа	FA
ADD L	ADD A,L	85	DAD D	ADD HL,DE	19	JNC aaaa	JP aaaa	C3
ADD M	ADD A,(HL)	86	DAD H	ADD HL,HL	29	JNC aaaa JNZ aaaa	JP NC,aaaa	D2
ADI dd	ADD A,dd	C6	DAD SP	ADD HL,SP	39	JP aaaa	JP NZ,aaaa	C2
ANA A	AND A	A7	DCR A	DEC A	3D	лг аааа ЛРЕ аааа	JP Р,аааа	F2
ANA B	AND B	A0	DCR B	DEC B	05	JPO aaaa	JP PE,aaaa	EA
ANA C	AND C	A1	DCR C	DEC C	0D	JPO aaaa JZ aaaa	JP PO,aaaa	E2
ANA D	AND D	A2	DCR D	DEC D	15		JP Z,aaaa	CA
ANA E	AND E	A3	DCR E	DEC E	1D	LDA aaaa	LD A,(aaaa)	3A
ANA H	AND H	A4	DCR H	DEC H	25	LDAX B	LD A,(BC)	0A
ANA L	AND L	A5	DCR L	DEC L	2D	LDAX D	LD A,(DE)	1A
ANA M	AND (HL)	A6	DCR M	DEC (HL)	35	LHLD aaaa	LD HL,(aaaa)	2A
ANI dd	AND dd	E6	DCX B	DEC BC	0B	LXI B,dddd	LD BC,dddd	01
CALL aaaa	CALL aaaa	CD	DCX D	DEC DE		LXI D,dddd	LD DE,dddd	11
CC aaaa	CALL C,aaaa	DC	DCX H	DEC DE DEC HL	1B 2B	LXI H,dddd	LD HL,dddd	21
CM aaaa	CALL M,aaaa	FC	DCX SP	DEC HL	2B 3B	LXI SP,dddd	LD SP,dddd	31
CMA	CPL	2F	DI DE	DIC SF		MOV A,A	LD A,A	7F
CMC	CCF	3F	EI	EI	F3	MOV A,B	LD A,B	78
CMP A	CP A	BF	HLT	EI HALT	FB	MOV A,C	LD A,C	79
CMP B	CP B	B8	IN dd	IN A,dd	76 DD	MOV A,D	LD A,D	7A
	~	20	II du	IIV A,uu	DB	MOV A,E	LD A,E	7B

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY BY 8085/8080 MNEMONIC (Continued)

8085	Z80	Op	8085	Z80	Op	8085	Z 80	Op
MOV A,H	LD A,H	7C	MOV L,H	LD L,H	6C	RPE	RET PE	E8
MOV A,L	LD A,L	7D	MOV L,L	LD L,L	6D	RPO	RET PO	E0
MOV A,M	LD A,(HL)	7E	MOV L,M	LD L,(HL)	6E	RRC	RRCA	0F
MOV B,A	LD B,A	47	MOV M,A	LD (HL),A	<i>7</i> 7	RST 0	RST 00H	C7
MOV B,B	LD B,B	40	MOV M,B	LD (HL),B	70	RST 1	RST 08H	CF
MOV B,C	LD B,C	41	MOV M,C	LD (HL),C	71	RST 2	RST 10H	D7
MOV B,D	LD B,D	42	MOV M,D	LD (HL),D	72	RST 3	RST 18H	DF
MOV B,E	LD B,E	43	MOV M,E	LD (HL),E	73	RST 4	RST 20H	E7
MOV B,H	LD B,H	44	MOV M,H	LD (HL),H	74	RST 5	RST 28H	EF
MOV B,L	LD B,L	45	MOV M,L	LD (HL),L	75	RST 6	RST 30H	F7
MOV B,M	LD B,(HL)	46	MVI A,dd	LD A,dd	3E	RST 7	RST 38H	FF
MOV CA	LD C,A	4F	MVI B,dd	LD B,dd	06	RZ	RET Z	C8
MOV C,B	LD C,B	48	MVI C,dd	LD C,dd	0E	SBB A	SBC A,A	9 F
MOV C,C	LD C,C	49	MVI D,dd	LD D,dd	16	SBB B	SBC A,B	98
MOV C,D	LD C,D	4A	MVI E,dd	LD E,dd	1E	SBB C	SBC A,C	99
MOV C,E	LD C,E	4B	MVI H,dd	LD H,dd	26	SBB D	SBC A,D	9 A
MOV C,H	LD C,H	4C	MVI L,dd	LD L,dd	2E	SBB E	SBC A,E	9B
MOV C,L	LD C,L	4D	MVI M,dd	LD (HL),dd	36	SBB H	SBC A,H	9C
MOV C,M	LD C,(HL)	4E	NOP	NOP	00	SBB L	SBC A,L	9D
MOV D,A	LD D,A	57	ORA A	OR A	B7	SBB M	SBC A,(HL)	9E
MOV D,B	LD D,B	50	ORA B	OR B	B 0	SBI dd	SBC A,dd	DE
MOV D,C	LD D,C	51	ORA C	OR C	B1	SHLD aaaa	LD (aaaa),HL	22
MOV D,D	LD D,D	52	ORA D	OR D	B2	SPHL	LD SP,HL	F9
MOV D,E	LD D,E	53	ORA E	OR E	B3	STA aaaa	LD (aaaa),A	32
MOV D,H	LD D,H	54	ORA H	OR H	B4	STAX B	LD (BC),A	02
MOV D,L	LD D,L	55	ORA L	OR L	B5	STAX D	LD (DE),A	12
MOV D,M	LD D,(HL)	56	ORA M	OR (HL)	В6	STC	SCF	37
MOV E,A	LD E,A	5F	ORI dd	OR dd	F6	SUB A	SUB A	97
MOV E,B	LD E,B	58	OUT dd	A,bb TUO	D3	SUB B	SUB B	90
MOV E,C	LD E,C	59	PCHL	JP (HL)	E9	SUB C	SUB C	91
MOV E,D	LD E,D	5A	POP B	POP BC	C 1	SUB D	SUB D	92
MOV E,E	LD E,E	5B	POP D	POP DE	D1	SUB E	SUB E	93
MOV E,H	LD E,H	5C	POP H	POP HL	E1	SUB H	SUB H	94
MOV E,L	LD E,L	5D	POP PSW	POP AF	F1	SUB L	SUB L	95
MOV E,M	LD E,(HL)	5E	PUSH B	PUSH BC	C5	SUB M	SUB (HL)	96
MOV H,A	LD H,A	67	PUSH D	PUSH DE	D5	SUI dd	SUB dd	D6
MOV H,B	LD H,B	60	PUSH H	PUSH HL	E5	XCHG	EX DE,HL	EB
MOV H,C	LD H,C	61	PUSH PSW	PUSH AF	F5	XRA A	XOR A	AF
MOV H,D	LD H,D	62	RAL	RLA	17	XRA B	XOR B	A8
MOV H,E	LD H,E	63	RAR	RRA	1F	XRA C	XOR C	A9
MOV H,H	LD H,H	64	RC	RET C	D8	XRA D	XOR D	AA
MOV H,L	LD H,L	65	RET	RET	C9	XRA E	XOR E	AB
MOV H,M	LD H,(HL)	66	RLC	RLCA	07	XRA H	XOR H	AC
MOV L,A	LD L,A	6F	RM	RET M	F8	XRA L	XOR L	AD
MOV L,B	LD L,B	68	RNC	RET NC	D0	XRA M	XOR (HL)	AE
MOV L,C	LD L,C	69	RNZ	RET NZ	C0	XRI dd	XOR dd	EE
MOV L,D	LD L,D	6A	RP	RET P	F0	XTHL	EX (SP),HL	E3
MOV L,E	LD L,E	6B						

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY BY Z80 MNEMONIC

Z 80	8080/8085	Op	Z 80	8080/8085	Ор	Z 80	8080/8085	Op
				·				
ADC A,(HL)	ADC M	8E	DEC BC	Down				
ADC A,A	ADC A	8F	DEC BC	DCX B	0B	LD A,C	MOV A,C	7 9
ADC A,B	ADC B	88	DEC D	DCR C	0D	LD A,D	MOV A,D	7A
ADC A,C	ADC C	89	DEC DE	DCR D	15	LD A,dd	MVI A,dd	3E
ADC A,D	ADC D	8A		DCX D	1B	LD A,E	MOV A,E	7B
ADC A,dd	ACI dd	CE	DEC E	DCR E	1D	LD A,H	MOV A,H	7C
ADC A,E	ADC E	8B	DEC H	DCR H	25	LD A,L	MOV A,L	7D
ADC A,H	ADC H	8C	DEC HL DEC L	DCX H	2B	LD B,(HL)	MOV B,M	46
ADC A,L	ADC L	8D	DEC E	DCR L	2D	LD B,A	MOV B,A	47
ADD A,(HL)	ADD M	86		DCX SP	3B	LD B,B	MOV B,B	40
ADD A,A	ADD A	87	DI EI	DI	F3	LD B,C	MOV B,C	41
ADD A,B	ADD B	80		EI	FB	LD BC,dddd	LXI B,dddd	01
ADD A,C	ADD C	81	EX (SP),HL	XTHL	E3	LD B,D	MOV B,D	42
ADD A,D	ADD D	82	EX DE,HL HALT	XCHG	EB	LD B,dd	MVI B,dd	06
ADD A,dd	ADI dd	C6		HLT	76 DD	LD B,E	MOV B,E	43
ADD A,E	ADD E	83	IN A,dd	IN dd	DB	LD B,H	MOV B,H	44
ADD A,H	ADD H	84	INC (HL) INC A	INR M	34	LD B,L	MOV B,L	45
ADD A,L	ADD L	85	INC B	INR A	3C	LD C,(HL)	MOV C,M	4E
ADD HL,BC	DAD B	09	INC BC	INR B	04	LD C,A	MOV C,A	4F
ADD HL,DE	DAD D	19	INC C	INX B	03	LD C,B	MOV C,B	48
ADD HL,HL	DAD H	29	INC D	INR C	0C	LD C,C	MOV C,C	49
ADD HL,SP	DAD SP	39		INR D	14	LD C,D	MOV C,D	4A
AND (HL)	ANA M	A6	INC DE INC E	INX D	13	LD C,dd	MVI C,dd	0E
AND A	ANA A	A7		INR E	1C	LD C,E	MOV C,E	4B
AND B	ANA B	A0	INC H	INR H	24	LD C,H	MOV C,H	4C
AND C	ANA C	A1	INC HL	INX H	23	LD C,L	MOV C,L	4D
AND D	ANA D	A2	INC L INC SP	INR L	2C	LD D,(HL)	MOV D,M	56
AND dd	ANI dd	E6		INX SP	33	LD D,A	MOV D,A	57
AND E	ANA E	A3	JP (HL)	PCHL	E9	LD D,B	MOV D,B	50
AND H	ANA H	A4	JP aaaa	JMP aaaa	C3	LD D,C	MOV D,C	51
AND L	ANA L	A5	JP C,aaaa	JC aaaa	DA	LD D,D	MOV D,D	52
CALL aaaa	CALL aaaa	CD	JP М,аааа	JM aaaa	FA	LD D,dd	MVI D,dd	16
CALL C,aaaa	CC aaaa	DC	JP NC,aaaa	JNC aaaa	D2	LD D,E	MOV D,E	53
CALL M,aaaa	CM aaaa	FC	JP NZ,aaaa	JNZ aaaa	C2	LD DE,dddd	LXI D,dddd	11
CALL NC,aaaa	CNC aaaa	D4	JP P,aaaa	JP aaaa	F2	LD D,H	MOV D,H	54
CALL NZ,aaaa	CNZ aaaa		JP PE,aaaa	JPE aaaa	EA	LD D,L	MOV D,L	55
CALL P,aaaa	CP aaaa	C4 F4	JP PO,aaaa	ЈРО аааа	E2	LD E,(HL)	MOV E,M	5E
CALL PE,aaaa	CPE aaaa	EC	JP Z,aaaa	JZ aaaa	CA	LD E,A	MOV E,A	5F
CALL PO,aaaa	CPO aaaa	EC E4	LD (aaaa),A	STA aaaa	32	LD E,B	MOV E,B	58
CALL Z,aaaa	CZ aaaa	CC	LD (aaaa),HL	SHLD aaaa	22	LD E,C	MOV E,C	59
CCF	CMC	3F	LD (BC),A	STAX B	02	LD E,D	MOV E,D	5A
CP (HL)	CMP M	BE	LD (DE),A	STAX D	12	LD E,dd	MVI E,dd	1E
CP A	CMP A	BF	LD (HL),A	MOV M,A	77	LD E,E	MOV E,E	5B
CP B	CMP B	B8	LD (HL),B	MOV M,B	70	LD E,H	MOV E,H	5C
CP C	CMP C	B9	LD (HL),C	MOV M,C	71	LD E,L	MOV E,L	5D
CP D	CMP D		LD (HL),D	MOV M,D	72	LD H,(HL)	MOV H,M	66
CP dd	CPI dd	BA	LD (HL),dd	MVI M,dd	36	LD H,A	MOV H,A	67
CP E	CMP E	FE	LD (HL),E	MOV M,E	73	LD H,B	MOV H,B	60
CP H	CMP H	BB	LD (HL),H	MOV M,H	74	LD H,C	MOV H,C	61
CP L	CMP L	BC	LD (HL),L	MOV M,L	75	LD H,D	MOV H,D	62
CPL	CMA CMA	BD 2F	LD A,(aaaa)	LDA aaaa	3A	LD H,dd	MVI H,dd	26
DAA	DAA	2F	LD A,(BC)	LDAX B	0 A	LD H,E	MOV H,E	63
DEC (HL)		27 25	LD A,(DE)	LDAX D	1A	LD H,H	MOV H,H	64
DEC A	DCR M	35 3D	LD A,(HL)	MOV A,M	7E	LD H,L	MOV H,L	65
DEC B	DCR A DCR B	3D	LD A,A	MOV A,A	7 F	LD HL,(aaaa)	LHLD aaaa	2A
200	DCR B	05	LD A,B	MOV A,B	78	LD HL,dddd	LXI H,dddd	21

CONDENSED TABLE OF 8085/8080 AND Z80 (8080 SUBSET) INSTRUCTIONS LISTED ALPHABETICALLY BY Z80 MNEMONIC (Continued)

Z80	8080/8085	Op	Z80	8080/8085	Op	Z80	8080/8085	Op
LD L,(HL)	MOV L,M	6E	PUSH BC	PUSH B	CS	SBC A,B	SBB B	98
LD LA	MOV L,A	6F	PUSH DE	PUSH D	D5	SBC A,C	SBB C	99
LD L,B	MOV L,B	68	PUSH HL	PUSH H	E5	SBC A,D	SBB D	9A
LD L,C	MOV L.C	69	RET	RET	C9	SBC A,dd	SBI dd	DE
LD L,D	MOV L,D	6A	RET C	RC	D8	SBC A,E	SBB E	9B
LD L,dd	MVI L.dd	2E	RET M	RM	F8	SBC A,H	SBB H	9C
LD LE	MOV LE	6B	RET NC	RNC	D0	SBC A,L	SBB L	9D
LD L,H	MOV L,H	6C	RET NZ	RNZ	C 0	SCF	STC	37
LD L,L	MOV L,L	6D	RET P	RP	F0	SUB (HL)	SUB M	96
LD SP.dddd	LXI SP,dddd	31	RET PE	RPE	E8	SUB A	SUB A	97
LD SP,HL	SPHL	F9	RET PO	RPO	E0	SUB dd	SUI dd	D6
NOP	NOP	00	RET Z	RZ	C8	SUB B	SUB B	90
OR (HL)	ORA M	B6	RLA	RAL	17	SUB C	SUB C	91
OR A	ORA A	B7	RLCA	RLC	07	SUB D	SUB D	92
OR B	ORA B	B 0	RRA	RAR	1F	SUB E	SUB E	93
OR C	ORA C	B1	RRCA	RRC	0F	SUB H	SUB H	94
OR D	ORA D	B2	RST 00H	RST 0	C7	SUB L	SUB L	95
OR dd	ORI dd	F6	RST 08H	RST 1	CF	XOR (HL)	XRA M	ΑE
OR E	ORA E	B3	RST 10H	RST 2	D7	XOR A	XRA A	AF
OR H	ORA H	B4	RST 18H	RST 3	DF	XOR B	XRA B	A8
OR L	ORA L	B5	RST 20H	RST 4	E7	XOR C	XRA C	A9
OUT dd,A	OUT dd	D3	RST 28H	RST 5	EF	XOR D	XRA D	AA
POP AF	POP PSW	F1	RST 30H	RST 6	F7	XOR dd	XRI dd	EE
POP BC	POP B	C1	RST 38H	RST 7	FF	XOR E	XRA E	AB
POP DE	POP D	D1	SBC A,(HL)	SBB M	9E	XOR H	XRA H	AC
POP HL	POP H	E1	SBC A.A	SBB A	9 F	XOR L	XRA L	AD
PUSH AF	PUSH PSW	F5	,					

EXPANDED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVC	Address Mode	Assembler Notation	Op	~ ;	#	Notes
			<u>CPU</u>	Control I	nstructions				
NOP	No OPeration	Nothing	XXXXXXX	Implied	NOP	01	2	1	Only the program counter is incremented. No operation occurs.
WAI	WAIt for interrupt	PC + 1 \rightarrow PC PC _L \rightarrow S PC _H \rightarrow S $X_L \rightarrow$ S $X_H \rightarrow$ S A \rightarrow S B \rightarrow S CCR \rightarrow S	xIxxx	Implied	WAI	3E	9	1	After those actions shown in the "Boolean/Arithmetic Operation" column take place, the current program is suspended. If I=0 and the Interrupt Request line is taken low then I=1 and the microprocessor will begin to execute a program whose address is found in memory locations FFF8 and FFF9.

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZV(Address Mode	Assembler Notation	Op	•	- #	Notes
			<u>Data</u>	Transfer I	nstructions				
LDAA	LoaD Accumulator A	M → A	xxNZ0x	Immediate	LDAA #\$dd	86	2	2	
				Direct	LDAA \$aa	96		2	
				Indexed	LDAA \$ff,X	A6		2	
				Extended	LDAA \$aaaa	B6		3	
LDAB	LoaD Accumulator B	MaD	NEZO						
	Doub Recumulator D	M · D	xxNZ0x	Immediate	LDAB #\$dd	C6		2	
				Direct Indexed	LDAB \$aa	D6		2	
				Extended	LDAB \$ff,X	E6		2	
				Latended	LDAB \$aaaa	F6	4	3	
STAA	STore Accumulator A	. A → M	xxNZ0x	Direct	STAA \$aa	97	4	2	
				Indexed	STAA \$ff,X	A7		2	
				Extended	STAA \$aaaa	В7		3	
STAB	STore Accumulator B	B → M	xxNZ0x	Direct	STAB \$aa	D7		•	
				Indexed	STAB \$ff,X	E7		2	
				Extended	STAB \$aaaa	F7		2	
					Jan 12 Yuuuu	• ,	3	3	
TAB	Transfer A to B	A → B	xxNZ0x	Implied	TAB	16	2	1	
ТВА	Transfer B to A	.							
IBA	Transfer B to A	B → A	xxNZ0x	Implied	TBA	17	2	1	
LDX	LoaD X register	$M \rightarrow X_H$	xxNZ0x	Immediate	LDX #\$dddd	CE	3	3	
		$(M + 1) \rightarrow X_L$		Direct	LDX \$aa	DE	4		
				Indexed	LDX \$ff,X	EE	6		
				Extended	LDX \$aaaa	FE	5		
STX	STore X register	$X_H \rightarrow M$	xxNZ0x	Direct	STY too	DE	_	•	
	·	$X_L \rightarrow (M+1)$	JULY VENT	Indexed	STX \$aa STX \$ff,X	DF EF	5 7		
		~ ,		Extended	STX \$aaaa	FF	6		
					,		Ĭ	_	
CLR	CLeaR memory	00 → M	xx0100	Indexed	CLR \$ff,X	6F	7	2	
	location			Extended	CLR \$aaaa	7F	7 6		
CLRA	CL coP account to	00							
CLICA	CLeaR accumulator A	00 → A	xx0100	Implied	CLRA	4F	2	1	
CLRB	CLeaR accumulator B	00 → B	xx0100	Implied	CLRB	5F	2	1	
						J1 [,]	2	1	
			gerad.	.					
CI C	0.		<u>Fl</u>	ag Instruct	ions				
CLC	CLear Carry flag	0 → C	ххххххх	Implied	CLC	0C	2	1	

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVC	Address Mode	Assembler Notation	Op	~	#	Notes
CLI	CLear Interrupt flag	0 → I	х0хххх	Implied	CLI	0E	2	1	
CLV	CLear oVerflow flag	0 → V	xxxxVx	Implied	CLV	0A	2	1	
SEC	SEt Carry flag	1 → C	xxxxx1	Implied	SEC	0D	2	1	
SEI	SEt Interrupt flag	1 → I	x1xxxx	Implied	SEI	0F	2	1	
SEV	SEt oVerflow flag	1 → V	xxxx1x	Implied	SEV	0В	2	1	
TAP	Transfer Accumulator A to Processor condition code register	A → CCR	HINZVC	Implied	TAP	06	2	1	
ТРА	Transfer Processor condition code reg- ister to accumulator A	CCR → A	XXXXXXX	Implied	ТРА	07	2	1	
			<u>Arit</u>	hmetic Inst	ructions				
ADDA	ADD accumulator A to memory location	A + M → A	HxNZVC	Immediate Direct Indexed Extended	ADDA #\$dd ADDA \$aa ADDA \$ff,X ADDA \$aaaa	8B 9B AB BB	3 5	2 2 2 3	
ADDB	ADD accumulator B to memory location	$B + M \rightarrow B$	HxNZVC	Immediate Direct Indexed Extended	ADDB #\$dd ADDB \$aa ADDB \$ff,X ADDB \$aaaa	CB DB EB FB	3 5		
ABA	Add accumulator B to accumulator A	$A + B \rightarrow A$	HxNZVC	Implied	ABA	1B	2	1	
ADCA	AdD with Carry accumulator A to memory location	A + M + C → A	HxNZV	C Immediate Direct Indexed Extended	ADCA #\$dd ADCA \$aa ADCA \$ff,X ADCA \$aaaa	89 99 A9 B9	3	2 2 3 2 5 2 3 3	
ADCB	AdD with Carry accumulator B to memory location	$B + M + C \rightarrow B$	HxNZV	C Immediate Direct Indexed Extended	ADCB #\$dd ADCB \$aa ADCB \$ff,X ADCB \$aaaa	C9 D9 E9 F9		2 2 3 2 5 2	

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZV(Address Mode	Assembler Notation	Op		#	Notes
SUBA	SUBtract memory location from accumulator A	A - M → A	xxNZVC	Immediate Direct Indexed Extended	SUBA #\$dd SUBA \$aa SUBA \$ff,X SUBA \$aaaa	80 90 A0 B0	3 5	2 2 2 3	
SUBB	SUBtract memory location from accumulator B	B - M → B	xxNZVC	Immediate Direct Indexed Extended	SUBB #\$dd SUBB \$aa SUBB \$ff,X SUBB \$aaaa	C0 D0 E0 F0	3 5	2 2 2 3	
SBA	Subtract accumulator B from accumulator A		xxNZVC	Implied	SBA	10	2	1	
SBCA	SuBtract with Carry memory location from	A - M - C → A	xxNZVC	Immediate Direct Indexed	SBCA #\$dd SBCA \$aa SBCA \$ff,X	82 92 A2		2 2 2	
	accumulator A			Extended	SBCA \$aaaa	B2		3	
SBCB	SuBtract with Carry memory location from accumulator B	$B - M - C \rightarrow B$	xxNZVC	Immediate Direct Indexed Extended	SBCB #\$dd SBCB \$aa SBCB \$ff,X SBCB \$aaaa	C2 D2 E2 F2	2 3 5 4	2 2 2 3	
DAA	Decimal Adjust accumulator A	(converts bin- ary number into BCD number)	xxNZVC	Implied	DAA	19	2	1	Converts the number in A to the BCD number it would be if the last two operands had been BCD numbers.
			Log	gical Instru	<u>ictions</u>				
ANDA	AND accumulator A with memory location	A AND M → A		Immediate Direct Indexed Extended	ANDA #\$dd ANDA \$aa ANDA \$ff,X ANDA \$aaaa	84 94 A4 B4	2 3 5 4	2 2	
ANDB	AND accumulator B with memory location	B AND M → B		Immediate Direct Indexed Extended	ANDB #\$dd ANDB \$aa ANDB \$ff,X ANDB \$aaaa	C4 D4 E4 F4	2 3 5 4	2	
ORAA	OR Accumulator A with memory location	A OR M → A	xxNZ0x	Immediate Direct Indexed Extended	ORAA #\$dd ORAA \$aa ORAA \$ff,X ORAA \$aaaa	8A 9A AA BA	2 3 5 4	2 2	
ORAB	OR Accumulator B with memory location	B OR M → B		Immediate Direct Indexed Extended	ORAB #\$dd ORAB \$aa ORAB \$ff,X ORAB \$aaaa	CA DA EA FA	2 3 5 4	2	

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVC	Address Mode	Assembler Notation	Op	~	#	Notes
EORA	Exclusively OR accumulator A with memory location	A EOR M → A	xxNZ0x	Immediate Direct Indexed Extended	EORA #\$dd EORA \$aa EORA \$ff,X EORA \$aaaa	88 98 A8 B8	2 3 5 4	2 2	
EORB	Exclusively OR accumulator A with memory location	B EOR M → B	xxNZ0x	Immediate Direct Indexed Extended	EORB #\$dd EORB \$aa EORB \$ff,X EORB \$aaaa	C8 D8 E8 F8	2 3 5 4	2 2	
ВІТА	BIT test accumulator A	A AND M	xxNZ0x	Immediate Direct Indexed Extended	BITA #\$dd BITA \$aa BITA \$ff,X BITA \$aaaa	85 95 A5 B5	3	2 2 2 3	Accumulator A and a memory location are ANDed but neither is changed. However, flags N and Z are affected accordingly.
впв	BIT test accumulator B	B AND M	xxNZ0x	Immediate Direct Indexed Extended	BITB #\$dd BITB \$aa BITB \$ff,X BITB \$aaaa	CS DS ES FS			Accumulator B and a memory location are ANDed but neither is changed. However, flags N and Z are affected accordingly.
COM	COMplement memory location (1's complement)	′_ M → M	xxNZ01	Indexed Extended	COM \$ff,X COM \$aaaa	63 73	7 6		
COMA	COMplement accumulator A (1's complement)	Ā → A	xxNZ01	Implied	СОМА	43	2	1	
СОМВ	COMplement accumulator B (1's complement)	_B → B	xxNZ01	Implied	СОМВ	53	2	1	
NEG	NEGate memory location (2's complement)	00 - M → M	xxNZVC	Indexed Extended	NEG \$ff,X NEG \$aaaa	60 70		2 3	Affects the carry flag as if the memory location had been subtracted from zero.
NEGA	NEGate accumu- lator A (2's com- plement)	00 - A → A	xxNZVC	Implied	NEGA	40	2	1	Affects the carry flag as if accumulator A had been subtracted from zero.
NEGB	NEGate accumulator B (2's complement)	00 - B → B	xxNZVC	Implied	NEGB	50	2	1	Affects the carry flag as if accumulator B had been subtracted from zero.
			Rotate	and Shift	Instructions				
ROL	ROtate memory location Left	$M_7 \dots M_0$	xxNZVC	Indexed Extended	ROL \$ff,X ROL \$aaaa	69 79		2	

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVC	Address Mode	Assembler Notation	Op	~	#	Notes
ROLA	ROtate to the Left accumulator A	$\begin{array}{c} A_7 \dots A_0 \\ \hline \end{array}$	xxNZVC	Implied	ROLA	49	2	1	
ROLB	ROtate to the Left accumulator B	$\begin{array}{c} B_7 \dots B_0 \\ \hline \end{array}$	xxNZVC	Implied	ROLB	59	2	1	
ROR	ROtate memory location Right		xxNZVC	Indexed Extended	ROR \$ff,X ROR \$aaaa	66 76		2 3	
RORA	ROtate to the Right accumulator A	C ← A ₇ A ₀ −	xxNZVC	Implied	RORA	46	2	1	
RORB	ROtate to the Right accumulator B	$\begin{bmatrix} B_7 \dots B_0 \\ C \end{bmatrix}$	xxNZVC	Implied	RORB	56	2	1	
ASL	Arithmetic Shift Left memory location	$C - M_7 \dots M_0 - 0$	xxNZVC	Indexed Extended	ASL \$ff,X ASL \$aaaa	68 78		2 3	
ASLA	Arithmetic Shift Left accumulator A	$C - A_7 \dots A_0 - 0$	xxNZVC	Implied	ASLA	48	2	1	
ASLB	Arithmetic Shift Left accumulator B	$C \leftarrow B_7 \dots B_0 \leftarrow 0$	xxNZVC	Implied	ASLB	58	2	1	
ASR	Arithmetic Shift Right memory loc- ation	$M_7 \dots M_0 \rightarrow C$	xxNZVC	Indexed Extended	ASR \$ff,X ASR \$aaaa	67 77	7 6		
ASRA	Arithmetic Shift Right accumulator A		xxNZVC	Implied	ASRA	47	2	1	
ASRB	Arithmetic Shift Right accumulator B	$B_7 \dots B_0 \longrightarrow C$	xxNZVC	Implied	ASRB	57	2	1	
LSR	Logical Shift Right memory location	$0 \longrightarrow M_7 \dots M_0 \longrightarrow C$	xx0ZVC	Indexed Extended	LSR \$ff,X LSR \$aaaa	64 74	7 6	2 3	
LSRA	Logical Shift Right accumulator A	0→ A ₇ A ₀ → C	xx0ZVC	Implied	LSRA	44	2	1	
LSRB	Logical Shift Right accumulator B	0→ B ₇ B ₀ → C	xx0ZVC	Implied	LSRB	54	2	1	

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVC	Address Mode	Assembler Notation	Op	~	#	Notes	
		<u>Ir</u>	crement a	nd Decrem	ent Instruction	<u>15</u>				
INC	INCrement memory location	M + 1 → M	xxNZVx	Indexed Extended	INC \$ff,X INC \$aaaa	6C 7C		2		
INCA	INCrement accumulator A	A + 1 → A	xxNZVx	Implied	INCA	4C	2	1		
INCB	INCrement accumulator B	B + 1 → B	xxNZVx	Implied	INCB	5C	2	1		
DEC	DECrement memory location	M - 1 → M	xxNZVx	Indexed Extended	DEC \$ff,X DEC \$aaaa	6A 7A		2 3		
DECA	DECrement accumulator A	A - 1 → A	xxNZVx	Implied	DECA	4A	2	1		
DECB	DECrement accumulator B	B - 1 → B	xxNZVx	Implied	DECB	5A	2	1		
INX	INcrement X (index) register	$X + 1 \rightarrow X$	xxxZxx	Implied	INX	08	4	1		
DEX	DEcrement X (index) register	X - 1 → X	XXXzXX	Implied	DEX	09	4	1		
			Uncondit	ional Jump	Instructions					
JMP	JuMP to memory location	X + ff → PC (indexed) aaaa → PC (extended)	xxxxxx	Indexed Extended	JMP \$ff,X JMP \$aaaa	6E 7E		2 3		
BRA	BRanch Always to memory loc- ation	PC + 2 + rr → PC	XXXXXX	Relative	BRA \$ rr	20	4	2		
Test (Compare) Instructions										
CMPA	CoMPare memory location to accumulator A	A - M	xxNZVC	Immediate Direct Indexed Extended	CMPA #\$dd CMPA \$aa CMPA \$ff,X CMPA \$aaaa	81 91 A1 B1	3 5	2 2 2 3		
СМРВ	CoMPare memory location to accumulator B	B - M	xxNZVC	Immediate Direct Indexed Extended	CMPB #\$dd CMPB \$aa CMPB \$ff,X CMPB \$aaaa	C1 D1 E1 F1	3 5	2 2 2 3		

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVC	Address Mode	Assembler Notation	Op	~	#	Notes
СВА	Compare accumulator B to accumulator A	A - B	xxNZVC	Implied	СВА	11	2	1	
CPX	ComPare memory location to X (index) register	$X_{H} - M$ $X_{L} - (M+1)$	xxNZVx	Immediate Direct Indexed Extended	CPX #\$dddd CPX \$aa CPX \$ff,X CPX \$aaaa	8C 9C AC BC	3 4 6 5	3 2 2 3	
TST	TEsT memory loc- ation for zero or minus	M - 00	xxNZ00	Indexed Extended	TST \$ff,X TST \$aaaa	6D 7D		2 3	
TSTA	TEsT accumulator A for zero or minus	A - 00	xxNZ00	Implied	TSTA	4D	2	1	
TSTB	TEsT accumulator B for zero or minus	B - 00	xxNZ00	Implied	TSTB	5D	2	1	
		<u>Co</u>	nditional J	lump (Brai	ıch) Instructio	<u>ns</u>			
BCC	Branch if Carry Clear	PC + 2 + rr → PC if C=0	xxxxxx	Relative	BCC \$rr	24	4	2	
BCS	Branch if Carry Set	PC + 2 + rr → PC if C=1	xxxxxx	Relative	BCS \$rr	25	4	2	
BEQ	Branch if result of last operation was EQual to zero	$PC + 2 + rr$ $\rightarrow PC$ if Z=1	XXXXXXX	Relative	BEQ \$rr	27	4	2	
BGE	Branch if Greater than or Equal to zero	PC + 2 + rr $\rightarrow PC$ if N EOR V = 0	XXXXX	Relative	BGE \$rr	2C	4	2	This branch occurs after the instructions CBA, CMP, SBA, or SUB if the 2's-complement minuend is greater than or equal to the 2's-complement subtrahend creating an answer which is greater than or equal to zero.
BGT	Branch if Greater Than zero	PC + 2 + rr \rightarrow PC if Z AND (N EOR V) = 0	XXXXXXXX	Relative	BGT \$ rr	2E	4	2	This branch occurs after the instructions CBA, CMP, SBA, or SUB if the 2's-complement minuend is greater than the 2's-complement subtrahend, creating an answer which is greater than zero.

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVC	Address Mode	Assembler Notation	Op	~	#	Notes
вні	Branch if HIgher	$PC + 2 + rr$ $\rightarrow PC$ if C AND Z = 0	xxxxxxx	Relative	вні \$п	22	4	2	This branch occurs after the instructions CBA, CMP, SBA, or SUB if the unsigned binary minuend is greater than the unsigned binary subtrahend.
BLE	Branch if Less than or Equal to zero	PC + 2 + rr → PC if Z AND (N EOR V) = 1	xxxxxx	Relative	BLE \$rr	2F	4	2	This branch occurs after the instructions CBA, CMP, SBA, or SUB if the 2's-complement minuend is less than or equal to the 2's-complement subtrahend, creating an answer which is less than or equal to zero.
BLS	Branch if Lower or the Same	$PC + 2 + rr$ $\rightarrow PC$ if $C OR Z = 1$	xxxxxx	Relative	BLS \$rr	23	4	2	This branch occurs after the instructions CBA, CMP, SBA, or SUB if the unsigned binary minuend is less than or equal to the unsigned binary subtrahend.
BLT	Branch if Less Than zero	PC + 2 + rr $\rightarrow PC$ if N EOR V = 1	хохох	Relative	BLT \$rr	2D	4	2	This branch occurs after the instructions CBA, CMP, SBA, or SUB if the 2's-complement minuend is less than the 2's-complement subtrahend, creating an answer which is less than zero.
ВМІ	Branch is MInus	$PC + 2 + rr$ $\rightarrow PC$ if N=1	XXXXXXX	Relative	ВМІ \$п	2B	4	2	
BNE	Branch if Not Equal to zero	$PC + 2 + rr$ $\rightarrow PC$ if Z=1	XXXXXXX	Relative	BNE \$rr	26	4	2	
BVC	Branch if oVerflow Clear	$PC + 2 + rr$ $\rightarrow PC$ if V=0	xxxxxx	Relative	BVC \$rr	28	4	2	
BVS	Branch if oVerflow Set	PC + 2 + rr → PC if V=1	XXXXXX	Relative	BVS \$rr	29	4	2	
BPL	Branch if PLus	$PC + 2 + rr$ $\rightarrow PC$ if N=0	XXXXXX	Relative	BPL \$rr	2A	4	2	

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVO	Address Mode	Assembler Notation	Op		- #	Notes
			Sub	routine In	structions				
JSR	Jump SubRoutine	PC + 2 \rightarrow PC PC _L \rightarrow S PC _H \rightarrow S SP - 2 \rightarrow SP (ff + X) \rightarrow PC	XXXXXXX	Indexed	JSR \$ff,X	AD	8	2	The program counter is incremented by 2 (Indexed) or 3 (Extended) and the program counter is pushed onto the stack 1 byte at a time. At the
		PC + 3 \rightarrow PC PC _L \rightarrow S PC _H \rightarrow S SP - 2 \rightarrow SP (aaaa) \rightarrow PC		Extended	JSR \$aaaa	BD	9	3	memory location indicated by the addressing mode will be found the address of the first instruction of the subroutine. This address is placed in the program counter.
RTS	ReTurn from Subroutine	$S \rightarrow PC_H$ $S \rightarrow PC_L$ $SP + 2 \rightarrow SP$	xoooxx	Implied	RTS	39	5	1	The address of the next instruction in the main program after the last JSR is loaded from the stack into the program counter 1 byte at a time.
BSR	Branch to SubRoutine	PC + 2 + PC PC _L + S PC _H + S SP - 2 + SP PC + π + PC	XXXXXXX	Relative	BSR \$rr	8D	8	2	The program counter is incremented by 2 and pushed onto the stack 1 byte at a time. The memory location of the next instruction is then calculate by adding the 2's-complement binary number rr to the program counter. This instruction differs from JSR in the form of addressing it uses.
			<u>s</u>	tack Instru	ctions				
LDS	LoaD Stack pointer	$M \rightarrow SP_H$ $(M + 1) \rightarrow SP_L$	xxNZ0x	Immediate Direct Indexed Extended	LDS #\$dddd LDS \$aa LDS \$ff,X LDS \$aaaa	8E 9E AE BE	4 6	3 2 2 3	
STS	STore Stack pointer	$SP_H \rightarrow M$ $SP_L \rightarrow (M + 1)$	xxNZ0x	Direct Indexed Extended	STS \$aa STS \$ff,X STS \$aaaa	9F AF BF	7	2 2 3	
PSHA	PuSH accumulator A onto the stack	$A \rightarrow S$ SP - 1 \rightarrow SP	xxxxxx	Implied	PSHA	36	4	1	Whenever A or B is pushed onto the stack the stack pointer
PSHB	PuSH accumulator B onto the stack	$B \rightarrow S$ SP - 1 \rightarrow SP	XXXXXXX	Implied	PSHB	37	4	1	is decremented by 1. When the contents of the stack are placed in A or B the stack pointer is
PULA	PUIL accumulator A from the stack	$S \rightarrow A$ $SP + 1 \rightarrow SP$	xxxxxx	Implied	PULA	32	4	1	incremented by 1.
PULB	PUIL accumulator B from the stack	$S \rightarrow B$ $SP + 1 \rightarrow SP$	xxxxxx	Implied	PULB	33	4	1	

Mne- monic	Operation	Boolean/Arith. Operation	Flags HINZVC	Address Mode	Assembler Notation	Op	~ #	Notes
DES	DEcrement Stack pointer	SP - 1 → SP	xxxxxx	Implied	DES	34	4 1	
INS	INcrement Stack pointer	SP + 1 → SP	xxxxxx	Implied	INS	31	4 1	
TXS	Transfer X (index) register to Stack pointer	X - 1 → SP	xxxxxx	Implied	TXS	35	4 1	
TSX	Transfer Stack pointer to the X (index) register	SP + 1 → X	xxxxxx	Implied	TSX	30	4 1	
			Inte	errupt Inst	ructions			
RTI	ReTurn from Interrupt	$S \rightarrow CCR$ $S \rightarrow B$ $S \rightarrow A$ $S \rightarrow X_H$ $S \rightarrow X_L$ $S \rightarrow PC_H$ $S \rightarrow PC_L$	HINZVC	Implied	RTI	3B	10 1	
SWI	SoftWare Interrupt	PC + 1 \rightarrow PC PC _L \rightarrow S PC _H \rightarrow S $X_L \rightarrow$ S $X_H \rightarrow$ S A \rightarrow S B \rightarrow S CCR \rightarrow S	χ1χοοχ	Implied	SWI	3F	12 1	After the actions shown in the "Boolean/Arithmetic Operation" column take place, the microprocessor will begin to execute a program whose address is found in memory locations FFFA and FFFB.
			Input	-Output I	nstructions			
none								The 6800/6808 has no special input and output instructions but rather memory-maps these operations.

Notes

Addressing Modes	Assembler Notation
Immediate	Mnemonic #\$dd
Direct	Mnemonic \$aa
Indexed	Mnemonic \$ff,X
Extended	Mnemonic \$aaaa
Implied	Mnemonic
Relative	Mnemonic \$rr

Abbreviations and Explanations

a = address (one hex digit)

d = data (one hex digit)

f = offset (one hex digit) to be added to the X register (ff is positive - \$00-\$ff which is decimal 0-255)

r = relative displacement (one hex digit) to be added to the program counter (rr is 2's-complement number and thus can be positive or negative, -128 to +127)

\$ = indicates a hexadecimal number

= indicates the data follows immediately after the instruction

L = low byte (lower byte of a two byte number)

H = high byte (upper byte of a two byte number)

Flags

H = instruction affects the half carry-flag

I = instruction affects the interrupt flag

N = instruction affects the negative flag

Z = instruction affects the zero flag

V = instruction affects the overflow flag

C = instruction affects the carry flag

0 = instruction always clears affected flag

1 = instruction always sets affected flag

x = flag not affected by instruction

CCR = condition code register (flags)

S = stack

SP = stack pointer

PC = program counter

() = contents of the memory location in the parenthesis

 $M_7...M_0$ = memory bits 0-7 of a particular memory location $A_7...A_0$ = bits 0-7 of accumulator a

 $B_7...B_0$ = bits 0-7 of accumulator b

X = Index register

0 = One zero bit.

00 = One zero byte.

Symbols in the Page Heading

~ = clock cycles

= # of bytes used by instruction (and following address or data
if used)

Addressing Modes - Summary

Immediate (Mnemonic #\$dd): In this addressing mode, the operand (data or number that something is being done to) is contained in the memory location(s) immediately following the instruction.

Direct (Mnemonic \$aa): Direct addressing places the <u>address</u> of the operand in the byte following the instruction.

Indexed (Mnemonic \$ff,X): This mode involves a couple of steps. First, the number ff (which is the byte after the instruction) is added to the value in the X register. The number ff is an 8-bit number which can only be positive (0-255 decimal). Then the operand is fetched from this newly formed address.

Extended (Mnemonic \$aaaa): Extended addressing is the same as Direct except that a wider range is possible. The first byte is the instruction as in Direct addressing. The second and third bytes then form a 16-bit address where the operand can be found.

Implied (Mnemonic): When the operand is within the microprocessor itself implied addressing is used. In these cases the location of the operand is contained within the instruction itself. CLRA (CLeaR accumulator A) is an example of implied addressing.

Relative (Mnemonic \$rr): Relative addressing is used exclusively with the branch and jump instructions. The byte following the instruction is an 8-bit 2's-complement number (+127 to -128) which is added to the contents of the program counter. This then is the address of the next instruction. The location of the next instruction is being indicated relative to the current location in memory (the current contents of the program counter).

SHORT TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY

Mne- monic	Operation	Assembler Notation	Op	Mne- monic	Operation	Assembler Notation	Op
ABA	Add accumulator B to accumulator A	ABA	1B	BCS	Branch if Carry Set	BCS \$rr	25
ADCA	AdD with Carry accumulator A to memory location	ADCA #\$dd ADCA \$aa ADCA \$ff,X	89 99 A9	BEQ	Branch if result of last operation was EQual to zero	BEQ \$rr	27
	,	ADCA \$aaaa	B9	BGE	Branch if Greater	BGE \$rr	2C
ADCB	AdD with Carry	ADCB #\$dd	C9	DOL	than or Equal to	DOD 4.1	
	accumulator B to	ADCB \$aa	D9		zero		
	memory location	ADCB \$ff,X	E9	D C111	D 1 17 C 1 1 1 1 1	DCT f	2E
		ADCB \$aaaa	F9	BGT	Branch if Greater Than zero	BGT \$rr	20
ADDA	ADD accumulator A	ADDA #\$dd	8B		D (10 TTT)	DITI 6	22
	to memory location	ADDA \$aa ADDA \$ff,X	9B AB	BHI	Branch if HIgher	BHI \$rr	22
		ADDA \$11,X	BB	ВГТА	BIT test	BITA #\$dd	85
		112211 4444		2	accumulator A	BITA \$aa	95
ADDB	ADD accumulator B	ADDB #\$dd	CB			BITA \$ff,X	A5
	to memory location	ADDB \$aa	DB			BITA \$aaaa	B5
		ADDB \$ff,X	EB				
		ADDB \$aaaa	FB	BITB	BIT test	BITB #\$dd	C5
					accumulator B	BITB \$aa	D5 E5
ANDA	AND accumulator A	ANDA #\$dd	84 94			BITB \$ff,X BITB \$aaaa	F5
	with memory loc- ation	ANDA \$aa ANDA \$ff,X	94 A4			DIID Jaaaa	
	ation	ANDA \$aaaa	B4	BLE	Branch if Less then or Equal to	BLE \$rr	2F
ANDB	AND accumulator B	ANDB #\$dd	C4		zero		
	with memory loc-	ANDB \$aa	D4				
	ation	ANDB \$ff,X	E4	BLS	Branch if Lower	BLS \$rr	23
		ANDB \$aaaa	F4		or the Same		
ASL	Arithmetic Shift	ASL \$ff,X	68	BLT	Branch if Less	BLT \$rr	2D
	Left memory location	ASL \$aaaa	7 8		Than zero		
	location			BMI	Branch is MInus	BMI \$rr	2B
ASLA	Arithmetic Shift	ASLA	48				
	Left accumulator A			BNE	Branch if Not Equal to zero	BNE \$rr	26
ASLB	Arithmetic Shift	ASLB	58				
	Left accumulator B			BPL	Branch if PLus	BPL \$rr	2A
ASR	Arithmetic Shift	ASR \$ff,X	67	BRA	BRanch Always	BRA \$rr	20
	Right memory loc- ation	ASR \$aaaa	77		to memory loc- ation		
ASRA	Arithmetic Shift Right accumulator A	ASRA	47	BSR	Branch to SubRoutine	BSR \$rr	8D
ASRB	Arithmetic Shift Right accumulator B	ASRB	57	BVC	Branch if oVerflow Clear	BVC \$rr	28
BCC	Branch if Carry Clear	BCC \$rr	24	BVS	Branch if oVerflow Set	BVS \$rr	29

Mne- monic	Operation	Assembler Notation	Op	Mne- monic	Operation	Assembler Notation	Ор
СВА	Compare accum- ulator B to accumulator A	СВА	11	DEX	DEcrement X (index) register	DEX	09
CLC	CLear Carry flag	CLC	0C	EORA	Exclusively OR accumulator A	EORA #\$dd EORA \$aa	88 98
CLI	CLear Interrupt flag	CLI	0E		with memory location	EORA \$ff,X EORA \$aaaa	A8 B8
CLR	CLeaR memory	CLR \$ff,X	6F	EORB	Exclusively OR	EORB #\$dd	C8
	location	CLR \$aaaa	7F		accumulator A	EORB \$aa	D8
CLRA	CLeaR accumulator A	CLRA	4F		with memory location	EORB \$ff,X EORB \$aaaa	E8 F8
CLRB	CLeaR accumulator B	CLRB	5F	INC	INCrement memory	INC \$ff,X	6C
CLV	CLear oVerflow flag	CLV	0A		location	INC \$aaaa	7C
C) (D A	G MD			INCA	INCrement accum-	INCA	4C
CMPA	CoMPare memory location to	CMPA #\$dd	81		ulator A		
	accumulator A	CMPA \$aa CMPA \$ff,X	91 A1	n ion	****		
		CMPA \$aaaa	B1	INCB	INCrement accum- ulator B	INCB	5C
CMPB	CoMPare memory	CMPB #\$dd	C1	INS	INcrement Stack	INS	31
	location to	CMPB \$aa	D1		pointer	1110	31
	accumulator B	CMPB \$ff,X	E1		•		
		CMPB \$aaaa	F1	INX	INcrement X (index) register	INX	08
COM	COMplement memory	COM \$ff,X	63				
	location (1's com- plement)	COM \$aaaa	73	JMP	JuMP to memory location	JMP \$ff,X JMP \$aaaa	6E 7E
COMA	COMplement accumulator A	COMA	43	JSR	Jump SubRoutine	JSR \$ff,X JSR \$aaaa	AD BD
	(1's complement)					,	22
COMB	COMplement on	COMP		LDAA	LoaD Accumulator A	LDAA #\$dd	86
COMB	COMplement ac- cumulator B	COMB	53			LDAA \$aa	96
	(1's complement)					LDAA \$ff,X LDAA \$aaaa	A6 B6
CPX	ComPare memory	CPX #\$dd	8C	LDAB	LoaD Accumulator B	LDAB #\$dd	C6
	location to X	CPX \$aa	9C			LDAB \$aa	D6
	(index) register	CPX \$ff,X	AC			LDAB \$ff,X	E6
		CPX \$aaaa	BC			LDAB \$aaaa	F6
DAA	Decimal Adjust accumulator A	DAA	19	LDS	LoaD Stack pointer	LDS #\$dddd LDS \$aa	8E 9E
DEC	NEG .					LDS \$ff,X	AE
DEC	DECrement memory location	DEC \$ff,X	6A			LDS \$aaaa	BE
	iocation	DEC \$aaaa	7A	LDX	LooD V modeles	IDV "***	-
DECA	DECrement accum-	DECA	4A	LDX	LoaD X register	LDX #\$dd	CE
	ulator A	DDG1	7/1			LDX \$aa	DE
						LDX \$ff,X LDX \$aaaa	EE FE
DECB	DECrement accum-	DECB	5A			LIJA Qaadd	I.E
	ulator B			LSR	Logical Shift Right	LSR \$ff,X	64
DEC	DD -				memory location	LSR \$aaaa	74
DES	DEcrement Stack pointer	DES	34				

SHORT TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY (Continued)

Mne- monic	Operation	Assembler Notation	Op	Mne- monic	Operation	Assembler Notation	Op
LSRA	Logical Shift Right accumulator A	LSRA	44	RORB	ROtate to the Right accumulator B	RORB	56
LSRB	Logical Shift Right accumulator B	LSRB	54	RTI	ReTurn from Interrupt	RTI	3B
NEG	NEGate memory loc- ation (2's comple- ment)	NEG \$ff,X NEG \$aaaa	60 70	RTS	ReTurn from Subroutine	RTS	39
NEGA	NEGate accumu- lator A (2's com-	NEGA	40	SBA	Subtract accumulator B from accumulator A	SBA	10
	plement)			SBCA	SuBtract with Carry memory	SBCA #\$dd SBCA \$aa	82 92
NEGB	NEGate accumu- lator B (2's com- plement)	NEGB	50		location from accumulator A	SBCA \$ff,X SBCA \$aaaa	A2 B2
NOP	No OPeration	NOP	01	SBCB	SuBtract with Carry memory location from	SBCB #\$dd SBCB \$aa SBCB \$ff,X	C2 D2 E2
ORAA	OR Accumulator A with memory loc-	ORAA #\$dd ORAA \$ aa	8A 9A		accumulator B	SBCB \$aaaa	F2
	ation	ORAA \$ff,X ORAA \$aaaa	AA BA	SEC	SEt Carry flag	SEC	0D
ORAB	OR Accumulator B	ORAB #\$dd	CA	SEI	SEt Interrupt flag	SEI	0F
	with memory loc- ation	ORAB \$aa ORAB \$ff,X	DA EA	SEV	SEt oVerflow flag	SEV	0B
		ORAB \$aaaa	FA	STAA	STore Accumulator A	STAA \$aa STAA \$ff,X	97 A7
PSHA	PuSH accumulator A onto the stack	PSHA	36	STAB	STore Accumulator B	STAA \$aaaa STAB \$aa	B7 D7
PSHB	PuSH accumulator B onto the stack	PSHB	37	SIAB	STOLE Accumulator B	STAB \$ff,X STAB \$aaaa	E7 F7
PULA	PUIL accumulator A from the stack	PULA	32	STS	STore Stack pointer	STS \$aa STS \$ff,X STS \$aaaa	9F AF BF
PULB	PUIL accumulator B from the stack	PULB	33	STX	STore X register	STX \$aa	DF
ROL	ROtate memory loc- ation Left	ROL \$ff,X ROL \$aaaa	69 79			STX \$ff,X STX \$aaaa	EF FF
ROLA	ROtate to the Left accumulator A	ROLA	49	SUBA	SUBtract memory location from accumulator A	SUBA #\$dd SUBA \$aa SUBA \$ff,X	80 90 A0
ROLB	ROtate to the Left accumulator B	ROLB	59	SUBB	SUBtract memory	SUBA \$aaaa SUBB #\$dd	B0 C0
ROR	ROtate memory loc- ation Right	ROR \$ff,X ROR \$aaaa	66 76		location from accumulator B	SUBB \$aa SUBB \$ff,X SUBB \$aaaa	D0 E0 F0
RORA	ROtate to the Right accumulator A	RORA	46	SWI	SoftWare Interrupt	SWI	3F

Mne- monic	Operation	<u></u>	Assembler Notation	Ор	Mne- monic	Operation		Assembler Notation	Op
TAB	Transfer A to	В	TAB	16	TSTA	TEsT accum		TSTA	4D
TAP	Transfer Acc	umulator	TAP	06		for zero or r	ninus		
	A to Processo dition code re				TSTB	TEsT accumi		TSTB	5D
TBA	Transfer B to	A	TBA	17	TSX	Transfer Star		TSX	30
TPA	Transfer Proceedings of the Condition cool	le reg-	TPA	07		(index) regis			
	ister to accur	nulator			TXS	Transfer X (in register to Stepointer	-	TXS	35
TST	TEsT memor	y loc-	TST \$ff,X	6D		pointer			
	ation for zero	or	TST \$aaaa	7D	WAI	WAit for Interrupt		WAI	3E
Assembler Notation	Op		n/Arith	Flags HINZVC	Assembler Notation	Op	Boolean Operatio	/Arith	Flags HINZV
	CPU C	ontrol In	structions		TAB	16	A → B		xxNZ0x
NOP	01	nothing	;	XXXXXXX	TBA	17	B → A		xxNZ0x
WAI	3E	$PC + 1$ $PC_{L} \rightarrow S$ $PC_{H} \rightarrow X_{L} \rightarrow S$ $X_{H} \rightarrow S$	s s	xIxxxx	LDX #\$dddd LDX \$aa LDX \$ff,X LDX \$aaaa	CE DE EE FE	$M \rightarrow X_H$ $(M + 1)$	→ X _L	xxNZ0x
		A → S B → S CCR →	s		STX \$aa STX \$ff,X STX \$aaaa	DF EF FF	$X_H \to M$ $X_L \to (M$	+ 1)	xxNZ0x
	<u>Data Tr</u>	ansfer In	structions		CLR \$ff,X CLR \$aaaa	6F 7F	00 → M		xx0100
DAA #\$dd	1 86 96	M → A		xxNZ0x	CLRA	4F	00 → A		xx0100
DAA \$ff,X DAA \$aaaa					CLRB	5F	00 → B		хх0100
DAB #\$dd DAB \$aa	C6 D6	M → B		xxNZ0x		<u>Flag</u>	<u>Instructi</u>	<u>ons</u>	
DAB \$ff,X					CLC	0C	0 → C		
DAB \$aaaa	F6					oc.	0 7 C		xxxxxxx0
ΓΑΑ S aa	97	ΔaM		w.N/70	LI	0E	0 → I		x0xxxx
TAA \$aa TAA \$ff,X	97 A 7	A → M		xxNZ0x					
		A → M		xxNZ0x	CLV	0A	0 → V		xxxxVx
ΓΑΑ \$ff,X	A 7	A → M B → M		xxNZ0x xxNZ0x					

F7

SHORT TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Assembler Notation	Op	Boolean/Arith Operation	Flags HINZVC	Assembler Notation	Op	Boolean/Arith Operation	Flags HINZVC
ODY.	op.	1 . 37	xxxx1x	DAA	19	(converts bin-	xxNZVC
SEV	0B 06	1 → V A → CCR	HINZVC	DAA	17	ary add. of BCD characters into	
TAP	00	A · CCR	max			BCD format)	
TPA	07	CCR → A	XXXXXXX				
					Logi	cal Instructions	
	<u>Arithr</u>	netic Instructions		ANITA ##44	94	A AND M → A	xxNZ0x
ADDA #\$11	o D	A + M → A	HxNZVC	ANDA #\$dd ANDA \$aa	84 94	A AND M * A	AAI 120X
ADDA #\$dd ADDA \$aa	8B 9B	ATMTA	TIMINZVC	ANDA \$ff,X	A4		
ADDA \$ff,X	AB			ANDA \$aaaa	B4		
ADDA \$11,X ADDA \$2222	BB			• • • • • • • • • • • • • • • • • • • •	_		
ADDA \$6666	DD			ANDB #\$dd	C4	B AND M → B	xxNZ0x
ADDB #\$dd	СВ	$B + M \rightarrow B$	HxNZVC	ANDB \$aa	D4		
ADDB \$aa	DB			ANDB \$ff,X	E4		
ADDB \$ff,X	EB			ANDB \$aaaa	F4		
ADDB \$aaaa	FB						
				ORAA #\$dd	8A	$A OR M \rightarrow A$	xxNZ0x
ABA	1B	$A + B \rightarrow A$	HxNZVC	ORAA \$aa	9A		
				ORAA \$ff,X	AA		
ADCA #\$dd	89	$A + M + C \rightarrow A$	HxNZVC	ORAA \$aaaa	BA		
ADCA \$aa	99						
ADCA \$ff,X	A 9			ORAB #\$dd	CA	B OR M → B	xxNZ0x
ADCA \$aaaa	B9			ORAB \$aa	DA		
				ORAB \$ff,X	EA		
ADCB #\$dd	C9	$B + M + C \rightarrow B$	HxNZVC	ORAB \$aaaa	FA		
ADCB \$aa	D9					. 505.14	1/70
ADCB \$ff,X	E9			EORA #\$dd	88	A EOR M → A	xxNZ0x
ADCB \$aaaa	F9			EORA \$aa	98		
				EORA \$ff,X	A8		
SUBA #\$dd	80	$A - M \rightarrow A$	xxNZVC	EORA \$aaaa	B 8		
SUBA \$aa	90			EORB #\$dd	C8	B EOR M → B	xxNZ0x
SUBA \$ff,X	A0				D8	D LOK M ' D	XXIVZXX
SUBA \$aaaa	B 0			EORB \$aa EORB \$ff,X	E8		
				EORB \$11,A	F8		
SUBB #\$dd	C0	$B - M \rightarrow B$	xxNZVC	EUND Jaada	1.0		
SUBB \$aa	D0			BITA #\$dd	85	A AND M	xxNZ0x
SUBB \$ff,X	E0			BITA \$aa	95	MANUEL IN	,uu 12011
SUBB \$aaaa	F0			BITA \$ff,X	A5		
			NETT	BITA Saaaa	B5		
SBA	10	A - B → A	xxNZVC				
CDCA #\$11	02	A M C \ A	NOVIC	BITB #\$dd	C5	B AND M	xxNZ0x
SBCA #\$dd	82	$A - M - C \rightarrow A$	xxNZVC	ВГТВ \$аа	D5		
SBCA \$aa	92			BITB \$ff,X	E5		
SBCA \$ff,X	A2			BITB \$aaaa	F5		
SBCA \$aaaa	B2					_	
SBCB #¢aa	C2	B - M - C → B	xxNZVC	COM \$ff,X	63	$M \to M$	xxNZ01
SBCB #\$dd SBCB \$aa	D2	D - M - C - D	MIL VC	COM \$aaaa	73		
SBCB \$aa SBCB \$ff,X	E2					_	
SBCB \$11,X SBCB \$aaaa	F2			COMA	43	_ A → A	xxNZ01
ODCD Gadad	12					_	
				COMB	53	$B \rightarrow B$	xxNZ01

Assembler Notation	Ор	Boolean/Arith Operation	Flags HINZVC	Assembler Notation	Op	Boolean/Arith Operation	Flags HINZVC
NIEC ACCU							
NEG \$ff,X NEG \$aaaa	60 70	00 - M → M	xxNZVC	INCA	4C	$A + 1 \rightarrow A$	xxNZVx
NEGA	40	00 - A → A	xxNZVC	INCB	5C	$B + 1 \rightarrow B$	xxNZVx
NEGB	50	00 D . D	Water	DEC \$ff,X	6A	$M - 1 \rightarrow M$	xxNZVx
NEOB	30	00 - B → B	xxNZVC	DEC \$aaaa	7A		
	Rotate ai	nd Shift Instruction	9	DECA	4A	A - 1 → A	xxNZVx
			<u>~</u>	DECB	5A	B - 1 → B	xxNZVx
ROL \$ff,X ROL \$aaaa	69 7 9	$M_7 \dots M_0 \blacktriangleleft$	xxNZVC	TAIN		••	
NOL Jadaa	19	C		INX	08	$X + 1 \rightarrow X$	xxxZxx
ROLA	49	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	xxNZVC	DEX	09	$X - 1 \rightarrow X$	xxxZxx
ROLB	59		xxNZVC	<u>U</u>	<u>rconditio</u>	nal Jump Instructi	<u>ons</u>
DOD eccay				JMP \$ff,X	6E	$X + ff \rightarrow PC$	XXXXXXX
ROR \$ff,X ROR \$aaaa	66 76	$M_7 \dots M_0$	xxNZVC	JMP \$aaaa	7E	(indexed) aaaa → PC	
RORA	46	.				(extended)	
RORA	46	$A_7 \dots A_0$	xxNZVC	BRA \$ rr	20	PC + 2	XXXXXXX
RORB	50					+ rr → PC	*****
KOKD	56	$B_7 \dots B_0$	xxNZVC				
ASL \$ff,X	68	$C \leftarrow M_7 \dots M_0 \leftarrow 0$	NETTE	, -	Test (Co	mpare) Instruction	<u>s</u>
ASL Saaaa	78	C - 1917 1910 - U	xxNZVC	CMPA #\$dd	01		
A CT. A	40			CMPA \$aa	81 91	A - M	xxNZVC
ASLA	48	$C - A_7 \dots A_0 - 0$	xxNZVC	CMPA \$ff,X	A1		
ASLB	58	$C - B_7 \dots B_0 - 0$	xxNZVC	CMPA \$aaaa	B1		
ASR \$ff,X	(7	→M M → C		CMPB #\$dd	C1	B - M	xxNZVC
ISR \$11,X	67 77	$M_7 \dots M_0 \rightarrow C$	xxNZVC	CMPB \$aa	D1		
	• •			CMPB \$ff,X CMPB \$aaaa	E1		
ASRA	47		xxNZVC	СМГВ заааа	F1		
				CBA	11	A - B	xxNZVC
ASRB	57	$B_7 \dots B_0 \rightarrow C$	xxNZVC	CPX #\$dddd	8C	X _H - M	xxNZVx
				CPX \$aa	9C	$X_L - (M+1)$	A. 125 Y.
SR \$ff,X	64	0→ M ₇ M ₀ → C	xx0ZVC	CPX \$ff,X	AC	_	
SR \$aaaa	74	· · · · · · · · · · · · · · · · · · ·	XXUZ V C	CPX \$aaaa	BC		
SRA	44	0→ A ₇ A ₀ → C	xx0ZVC	TST \$ff,X	6D	M - 00	xxNZ00
CDD	54	-		TST \$aaaa	7D		
SRB	54	0→ B ₇ B ₀ → C	xx0ZVC	TSTA	4D	A - 00	xxNZ00
Incre	nent and	Decrement Instruct	tions	TSTB	5D	B - 00	xxNZ00
NC \$ff,X	6C	$M + 1 \rightarrow M$	xxNZVx				
VC \$aaaa	7C	474	MINE V X				

SHORT TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Assembler Notation	Op	Boolean/Arith Operation	Flags HINZVC	Assembler Notation	Op	Boolean/Arith Operation	Flags HINZVC
<u>Cond</u>	litional Ju	mp (Branch) Instruc	<u>ctions</u>	BPL \$rr	2A	PC + 2 + rr → PC	xxxxxx
BCC \$rr	24	PC + 2 + rr → PC	XXXXXX			If N=0	
		If C=0			Subro	utine Instructions	
BCS \$rr	25	PC + 2 + rr + PC	xxxxxxx	JSR \$ff,X	AD	$PC + 2 \rightarrow PC$ $PC_{L} \rightarrow S$	XXXXXXX
		If C=1				$PC_{H} \rightarrow S$ SP - 2 \rightarrow SP	
BEQ \$rr	27	PC + 2 + rr → PC	XXXXXXX			(ff+X) → PC	
		If Z=1		JSR \$aaaa	BD	$PC + 3 \rightarrow PC$ $PC_{L} \rightarrow S$	
BGE \$rr	2C	PC + 2 + rr → PC	XXXXXX			$PC_{H} \rightarrow S$ $SP - 2 \rightarrow SP$	
		If N EOR $V = 0$				(aaaa) → PC	
BGT \$rr	2E	PC + 2 + rr → PC If Z AND (N	xxxxxx	RTS	39	$S \rightarrow PC_H$ $S \rightarrow PC_L$ $SP + 2 \rightarrow SP$	XXXXXX
		EOR V) = 0					verana.
BHI \$rr	22	PC + 2 + rr → PC	xxxxxx	BSR \$rr	8D	$PC + 2 \rightarrow PC$ $PC_{L} \rightarrow S$ $PC_{H} \rightarrow S$	XXXXXXX
		If $C \text{ AND } Z = 0$				$SP - 2 \rightarrow SP$ PC + rr \rightarrow PC	
BLE \$rr	2F	PC + 2 + rr → PC	xxxxxx				
		If Z AND (N EOR V) = 1			Sta	ack Instructions	
		•		LDS #\$dddd	8E	$M \rightarrow SP_H$	xxNZ0x
BLS \$rr	23	PC + 2 + rr → PC	XXXXXXX	LDS \$ aa LDS \$ ff,X	9E AE	$(M + 1) \rightarrow SP_L$	
		If $C OR Z = 1$		LDS \$aaaa	BE		
BLT \$rr	2D	PC + 2 + rr	XXXXXXX	STS \$aa	9F	$SP_H \rightarrow M$	xxNZ0x
				STS \$ff,X STS \$aaaa	AF BF	$SP_L \rightarrow (M + 1)$	
BMI \$rr	2B	PC + 2 + rr → PC	XXXXXX	PSHA	36	$A \rightarrow S$ SP - 1 \rightarrow SP	xxxxxx
		If N=1		PSHB	37	B → S	xxxxxx
BNE \$rr	26	PC + 2 + rr → PC	XXXXXXX			SP - 1 → SP	
		If Z=1		PULA	32	$S \rightarrow A$ $SP + 1 \rightarrow SP$	XXXXXX
BVC \$rr	28	$PC + 2 + rr$ $\rightarrow PC$ If V=0	xxxxxx	PULB	33	$S \rightarrow B$ $SP + 1 \rightarrow SP$	xxxxxx
BVS \$rr	29	PC + 2 + rr	xxxxxx	DES	34	SP - 1 → SP	xxxxxx
		→ PC If V=1		INS	31	SP + 1 → SP	xxxxxx

Assembler Notation	Op	Boolean/Arith Operation	Flags HINZVC	Assembler Notation	Op	Boolean/Arith Operation	Flags HINZVC
TXS	35	$X - 1 \rightarrow SP$	xxxxxx	SWI	3F	PC + 1 → PC	x1xxxx
TSX	30	$SP + 1 \rightarrow X$	XXXXXX			$PC_{L} \rightarrow S$ $PC_{H} \rightarrow S$ $X_{L} \rightarrow S$	
	Intern	rupt Instructions				$X_H \rightarrow S$ $A \rightarrow S$	
RTI	3B	S → CCR S → B S → A	HINZVC			B → S CCR → S	
		$S \rightarrow X_H$ $S \rightarrow X_L$			Input-O	utput Instructions	
		$S \rightarrow PC_H$ $S \rightarrow PC_L$		none			

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED BY CATEGORY

Assembler	Op	Assembler	Op	Assembler	Op	Assembler	Op
CPU Control		STX \$aa	DF	ADCA #\$dd	89	<u>Log</u> ical	
<u>Instructions</u>		STX \$ff,X	EF	ADCA \$aa	99	Instructions	
		STX \$aaaa	FF	ADCA \$ff,X	A9	Anstructions	
NOP	01			ADCA \$aaaa	B9	ANDA #\$dd	84
WAI	3E	CLR \$ff,X	6F		D)	ANDA \$aa	94
		CLR \$aaaa	7 F	ADCB #\$dd	C9	ANDA \$ff,X	94 A4
Data Transfer				ADCB \$aa	D9	ANDA Saaaa	B4
Instructions		CLRA	4F	ADCB \$ff,X	E9	II (D) I quudu	D4
T.D. 4		CLRB	5F	ADCB \$aaaa	F9	ANDB #\$dd	C4
LDAA #\$dd	86					ANDB \$aa	D4
LDAA \$aa	96	Flag Instructions		SUBA #\$dd	80	ANDB \$ff,X	E4
LDAA \$ff,X	A6	CLC	0C	SUBA \$aa	90	ANDB \$aaaa	F4
LDAA \$aaaa	B6	LI	0E	SUBA \$ff,X	A 0		
IDAD ##		CLV	0A	SUBA \$aaaa	В0	ORAA #\$dd	8A
LDAB #\$dd	C6	SEC	0A 0D			ORAA \$aa	9A
LDAB \$aa	D6	SEI	OF	SUBB #\$dd	C0	ORAA \$ff,X	AA
LDAB \$ff,X	E6	SEV	OF OB	SUBB \$aa	D0	ORAA \$aaaa	BA
LDAB \$aaaa	F6	TAP	06	SUBB \$ff,X	E0	 	52.1
CTAA ¢		TPA	07	SUBB \$aaaa	F0	ORAB #\$dd	CA
STAA \$aa	97		07			ORAB \$aa	DA
STAA \$ff,X	A7	Arithmetic		SBA	10	ORAB \$ff,X	EA
STAA \$aaaa	B7	Instructions				ORAB \$aaaa	FA
CTAD C.	5.5			SBCA #\$dd	82		
STAB \$aa	D7	ADDA #\$dd	8B	SBCA \$aa	92	EORA #\$dd	88
STAB \$ff,X STAB \$aaaa	E7	ADDA \$aa	9B	SBCA \$ff,X	A2	EORA Saa	98
STAB \$aaaa	F7	ADDA \$ff,X	AB	SBCA \$aaaa	B2	EORA \$ff,X	A8
TAB	16	ADDA \$aaaa	BB			EORA \$aaaa	B8
TBA	16			SBCB #\$dd	C2		
IDA	17	ADDB #\$dd	CB	SBCB \$aa	D2	EORB #\$dd	C8
IDV ##4441	~	ADDB \$aa	DB	SBCB \$ff,X	E2	EORB \$aa	D8
LDX #\$dddd	CE	ADDB \$ff,X	EB	SBCB \$aaaa	F2	EORB \$ff,X	E8
LDX \$aa	DE	ADDB \$aaaa	FB			EORB \$aaaa	F8
LDX \$ff,X	EE			DAA	19	* *************************************	
LDX \$aaaa	FE	ABA	1B				

Assembler	Op	Assembler	Op	Assembler	Op	Assembler	Op
							20
BITA #\$dd	85	ASRA	47	CMPB #\$dd	C1	RTS	39
BITA \$ aa	95	ASRB	57	CMPB \$aa	D1	BSR \$rr	8D
BITA \$ff,X	A5			CMPB \$ff,X	E1	a. 1	
BITA S aaaa	B5	LSR \$ff,X	64	CMPB \$aaaa	F1	Stack_	
		LSR \$aaaa	74	CBA	11	<u>Instructions</u>	
BITB #\$dd	C5					1700 #61111	8E
ВГТВ \$аа	D5	LSRA	44	CPX #\$dddd	8C	LDS #\$dddd	
BITB \$ff,X	E5	LSRB	54	CPX \$aa	9C	LDS \$aa	9E
BITB \$aaaa	F5			CPX \$ff,X	AC	LDS \$ff,X	AE
		Increment and		CPX \$aaaa	BC	LDS \$aaaa	BE
COM \$ff,X	63	<u>Decrement</u>					0.23
COM \$aaaa	73	<u>Instructions</u>		TST \$ff,X	6D	STS Saa	9F
				TST \$aaaa	7D	STS \$ff,X	AF
COMA	43	INC \$ff,X	6C			STS \$aaaa	BF
COMB	53	INC \$aaaa	7C	TSTA	4D		
				TSTB	5D	PSHA	36
NEG \$ff,X	60	INCA	4C			PSHB	37
NEG \$aaaa	7 0	INCB	5C	Conditional Jump	-		
NEGA	40			(Branch)		PULA	32
NEGB	50	DEC \$ff,X	6 A	Instructions		PULB	33
		DEC \$aaaa	7A				
Rotate and Shift				BCC \$rr	24	DES	34
Instructions		DECA	4A	BCS \$rr	25	INS	31
Instructions		DECB	5A	BEQ \$rr	27		
ROL \$ff,X	69			BGE \$rr	2C	TXS	35
ROL \$aaaa	79	INX	08	BGT \$rr	2E	TSX	30
ROD Jadaa	• •	DEX	09	BHI \$rr	22		
ROLA	49			BLE \$rr	2F	Interrupt	
ROLB	59	<u>Unconditional</u>		BLS \$rr	23	<u>Instructions</u>	
KOLD	37	Jump Instructions		BLT \$rr	2D		
ROR \$ff,X	66			BMI \$rr	2B	RTI	3B
ROR \$11,A	76	JMP \$ff,X	6E	BNE \$rr	26	SWI	3F
KOK Jaaaa	70	JMP \$aaaa	7E	BVC \$rr	28		
DODA	46			BVS \$rr	29	Input-Output	
RORA RORB	56	BRA \$rr	20	BPL \$rr	2A	<u>Instructions</u>	
ASL \$ff,X	68	Test (Compare)		Subroutine		none	
•	78	Instructions		Instructions			
ASL \$aaaa	/0						
ASLA	48	CMPA #\$dd	81	JSR \$ff,X	AD		
ASLA	58	CMPA \$aa	91	JSR \$aaaa	BD		
ഹഥ	20	CMPA \$ff,X	A1				
ASR \$ff,X	67	CMPA \$aaaa	B1				
	77						
ASR \$aaaa	11						

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED ALPHABETICALLY

Assembler	Ор	Assembler	Op	Assembler	Op	Assembler	^
						Assembler	Op
ABA	1B	DMI ¢	•				
ADCA \$aa	99	BMI \$rr	2B	INS	31	RORB	56
ADCA \$aaaa	B9	BNE \$rr	26	INX	08	RTI	3B
ADCA \$ff,X	A9	BPL \$rr	2A	JMP \$aaaa	7E	RTS	39
ADCA #\$dd	89	BRA \$rr	20	JMP \$ff,X	6E	SBA	10
ADCB \$aa	D9	BSR \$rr	8D	JSR \$aaaa	BD	SBCA \$aa	92
ADCB \$aaaa	F9	BVC \$rr	28	JSR \$ff,X	AD	SBCA \$aaaa	B2
ADCB \$ff,X	E9	BVS \$rr	29	LDAA \$aa	96	SBCA \$ff,X	A2
ADCB #\$dd	C9	CBA	11	LDAA \$aaaa	B6	SBCA #\$dd	82
ADDA \$aa	9B	CLC	0C	LDAA \$ ff,X	A6	SBCB \$aa	D2
ADDA \$aaaa	BB	CLI CLP frage	0E	LDAA #\$dd	86	SBCB \$aaaa	F2
ADDA \$ff,X	AB	CLR \$aaaa	7F	LDAB \$aa	D6	SBCB \$ff,X	E2
ADDA #\$dd	8B	CLR \$ff,X CLRA	6F	LDAB \$aaaa	F6	SBCB #\$dd	C2
ADDB \$aa	DB		4F	LDAB \$ff,X	E6	SEC	0D
ADDB \$aaaa	FB	CLRB	5F	LDAB #\$dd	C 6	SEI	0F
ADDB \$ff,X	EB	CLV	0A	LDS \$aa	9E	SEV	0B
ADDB #\$dd	CB	CMPA \$aa	91	LDS \$aaaa	BE	STAA \$aa	97
ANDA \$aa	94	CMPA \$aaaa	B 1	LDS \$ff,X	AE	STAA \$aaaa	B7
ANDA \$aaaa		CMPA \$ff,X	A1	LDS #\$dddd	8E	STAA \$ff,X	A7
ANDA \$ff,X	B4	CMPA #\$dd	81	LDX \$aa	DE	STAB \$aa	D7
ANDA #\$dd	A4 84	CMPB \$aa	D1	LDX \$aaaa	FE	STAB \$aaaa	F7
ANDB \$aa		CMPB \$aaaa	F1	LDX \$ff,X	EE	STAB \$ff,X	E7
ANDB Saaaa	D4 F4	CMPB \$ff,X	E1	LDX #\$dd	CE	STS \$aa	9F
ANDB \$ff,X	Г4 Е4	CMPB #\$dd	C1	LSR \$aaaa	74	STS \$aaaa	BF
ANDB #\$dd	C4	COM \$aaaa	73	LSR \$ff,X	64	STS \$ff,X	AF
ASL \$aaaa		COM \$ff,X	63	LSRA	44	STX \$aa	DF
ASL \$ff,X	78 68	COMA	43	LSRB	54	STX \$aaaa	FF
ASLA	68 48	COMB	53	NEG \$aaaa	70	STX \$ff,X	EF
ASLB		CPX \$aa	9C	NEG \$ff,X	60	SUBA \$aa	90
ASR \$aaaa	58 77	CPX \$aaaa	BC	NEGA	40	SUBA \$aaaa	B0
ASR \$ff,X		CPX \$ff,X	AC	NEGB	50	SUBA \$ff,X	A0
ASRA	67 47	CPX #\$dd	8C	NOP	01	SUBA #\$dd	80
ASRB	47	DAA	19	ORAA \$aa	9A	SUBB \$aa	D0
BCC \$rr	57	DEC \$aaaa	7A	ORAA \$aaaa	BA	SUBB \$aaaa	F0
BCS \$rr	24	DEC \$ff,X	6A	ORAA \$ff,X	AA	SUBB \$ff,X	E0
BEQ \$rr	25	DECA	4A	ORAA #\$dd	8A	SUBB #\$dd	C0
BGE \$rr	27	DECB	5A	ORAB \$aa	DA	SWI	3F
BGT \$rr	2C	DES	34	ORAB \$aaaa	FA	TAB	16
BHI \$rr	2E	DEX	09	ORAB \$ff,X	EA	TAP	
ВГГА \$аа	22	EORA \$aa	98	ORAB #\$dd	CA	TBA	06 17
BITA \$aaaa	95 De	EORA \$aaaa	B8	PSHA	36	TPA	07
BITA \$ff,X	B5	EORA \$ff,X	A 8	PSHB	37	TST \$aaaa	7D
BITA #\$dd	A5	EORA #\$dd	88	PULA	32	TST \$ff,X	6D
BITB \$aa	85	EORB \$aa	D8	PULB	33	TSTA	4D
BITB \$aaaa	D5	EORB \$aaaa	F8	ROL \$aaaa	<i>7</i> 9	TSTB	5D
	F5	EORB \$ff,X	E8	ROL Sff,X	69	TSX	30
BITB \$ff,X BITB #\$dd	E5	EORB #\$dd	C8	ROLA	49	TXS	35
BLE \$rr	CS 2F	INC \$aaaa	7C	ROLB	59	WAI	3E
	2F	INC \$ff,X	6C	ROR \$aaaa	76	···•	JE
BLS \$rr	23	INCA	4C	ROR \$ff,X	66		
BLT \$rr	2D	INCB	5C	RORA	46		

CONDENSED TABLE OF 6800 INSTRUCTIONS LISTED BY OP CODE

Ор	Assembler	Op	Assembler	Op	Assembler	Op	Assembler
						04	ANTOD #\$44
01	NOP	49	ROLA	8C	CPX #\$dd	C4	ANDB #\$dd BITB #\$dd
06	TAP	4A	DECA	8D	BSR \$rr	CS CC	LDAB #\$dd
07	TPA	4C	INCA	8E	LDS #\$dddd	C6	EORB #\$dd
08	INX	4D	TSTA	90	SUBA \$aa	C8	ADCB #\$dd
09	DEX	4 F	CLRA	91	CMPA \$aa	C9	ORAB #\$dd
0 A	CLV	50	NEGB	92	SBCA \$aa	CA	ADDB #\$dd
0B	SEV	53	COMB	94	ANDA \$aa	CB	LDX #\$dd
0C	CLC	54	LSRB	95	BITA \$aa	CE	SUBB \$aa
0D	SEC	56	RORB	96	LDAA \$aa	D0	
0E	CLI	57	ASRB	97	STAA \$aa	D1	CMPB \$aa
0F	SEI	58	ASLB	98	EORA \$aa	D2	SBCB \$aa
10	SBA	59	ROLB	99	ADCA \$aa	D4	ANDB \$aa
11	CBA	5A	DECB	9 A	ORAA \$aa	D5	BITB \$aa
16	TAB	5C	INCB	9B	ADDA \$aa	D6	LDAB \$aa
17	TBA	5D	TSTB	9C	CPX \$aa	D7	STAB \$aa
19	DAA	5F	CLRB	9E	LDS \$aa	D8	EORB \$aa
1B	ABA	60	NEG \$ff,X	9 F	STS \$aa	D9	ADCB \$aa
20	BRA \$rr	63	COM \$ff,X	A 0	SUBA \$ff,X	DA	ORAB \$aa
22	BHI \$rr	64	LSR \$ff,X	A1	CMPA \$ff,X	DB	ADDB \$aa
23	BLS \$rr	66	ROR \$ff,X	A2	SBCA \$ff,X	DE	LDX \$aa
24	BCC \$rr	67	ASR \$ff,X	A4	ANDA \$ ff,X	DF	STX \$aa
25	BCS \$rr	68	ASL \$ff,X	A5	BITA \$ff,X	E0	SUBB \$ff,X
26	BNE \$rr	69	ROL \$ff,X	A6	LDAA \$ff,X	E1	CMPB \$ff,X
27	BEQ \$rr	6A	DEC \$ff,X	A7	STAA \$ff,X	E2	SBCB \$ff,X
28	BVC \$rr	6C	INC \$ff,X	A8	EORA \$ff,X	E4	ANDB \$ff,X
29	BVS \$rr	6D	TST \$ff,X	A9	ADCA \$ff,X	E5	BITB \$ff,X
2A	BPL \$rr	6E	JMP \$ff,X	AA	ORAA \$ff,X	E6	LDAB \$ff,X
2B	BMI \$rr	6F	CLR \$ff,X	AB	ADDA \$ff,X	E7	STAB \$ff,X
2C	BGE \$rr	70	NEG \$aaaa	AC	CPX \$ff,X	E8	EORB \$ff,X
2D	BLT \$rr	73	COM \$aaaa	AD	JSR \$ff,X	E9	ADCB \$ff,X
2E	BGT \$rr	74	LSR \$aaaa	ΑE	LDS \$ff,X	EA	ORAB \$ff,X
2F	BLE \$rr	76	ROR \$aaaa	AF	STS \$ff,X	EB	ADDB \$ff,X
30	TSX	77	ASR \$aaaa	В0	SUBA \$aaaa	EE	LDX \$ff,X
31	INS	78	ASL \$aaaa	B1	CMPA \$aaaa	EF	STX \$ff,X
32	PULA	79	ROL \$aaaa	B2	SBCA \$aaaa	F0	SUBB \$aaaa
33	PULB	7A	DEC \$aaaa	В4	ANDA \$aaaa	F1	CMPB \$aaaa
34	DES	7C	INC \$aaaa	B5	BITA \$aaaa	F2	SBCB \$aaaa
35	TXS	7D	TST \$aaaa	В6	LDAA \$aaaa	F4	ANDB \$aaaa
36	PSHA	7E	JMP \$aaaa	B7	STAA \$aaaa	F5	ВІТВ \$аааа
37	PSHB	7F	CLR \$aaaa	B8	EORA \$aaaa	F6	LDAB \$aaaa
	RTS	80	SUBA #\$dd	B9	ADCA \$aaaa	F7	STAB \$aaaa
39			CMPA #\$dd	BA	ORAA \$aaaa	F8	EORB \$aaaa
3B	RTI	81	SBCA #\$dd	BB	ADDA \$aaaa	F9	ADCB \$aaaa
3E	WAI	82	ANDA #\$dd	BC	CPX \$aaaa	FA	ORAB \$aaaa
3F	SWI	84 os		BD	JSR \$aaaa	FB	ADDB \$aaaa
40	NEGA	85	BITA #\$dd	BE	LDS \$aaaa	FE	LDX \$aaaa
43	COMA	86	LDAA #\$dd	BF	STS \$aaaa	FF	STX \$aaaa
44	LSRA	88	EORA #\$dd		SUBB #\$dd	••	Jara quada
46	RORA	89	ADCA #\$dd	C1			
47	ASRA	8A	ORAA #\$dd	C1	CMPB #\$dd SBCB #\$dd		
48	ASLA	8B	ADDA #\$dd	C2	SDCD #Juu		

EXPANDED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY

CPU Control Instructions

ESC

ESCape

The ESC instruction allows the 8086/8088 to pass instructions to the 8087 math coprocessor. The instructions for the coprocessor appear as a 6-bit code embedded in the escape instruction. The 8086/8088 performs a NOP while the 8087 executes the instruction. [Flags affected - none]

HLT

HaLT

The HLT instruction causes the 8086/8088 to stop fetching and executing instructions and enter a halt state. To exit from the halt state the microprocessor must receive a hardware reset or interrupt signal. [Flags affected - none]

LOCK

LOCK

LOCK is a prefix which can be used in front of 8086/8088 instructions. It prevents any other processors from gaining access to the systems buses during the following instruction. [Flags affected - none]

NOP

No OPeration

The NOP instruction simply uses up three clock cycles during which nothing is done and no flags are affected. It is useful 1) in programs requiring time delays, and 2) as a means to hold space open in programs so instructions can be added at a later date. [Flags affected - none]

WAIT

WAIT

The WAIT instruction causes the 8086/8088 to enter a wait state or idle condition during which no further processing occurs (except valid interrupts) until a signal is received on the TEST pin. [Flags affected - none]

Data Transfer Instructions

LAHF

Load AH from Flag

The LAHF instruction copies the low-order byte of the flag (status) register to AH. The flags themselves are not affected. The low order byte of the 8086/8088 status register is the same as that of the 8085. This instruction is used primarily to translate 8085 software into 8086/8088 software. [Flags affected - none]

LDS

Load Data Segment

The LDS instruction performs two distinct operations. First it loads two consecutive bytes of memory into one of the 16-bit general, index, or pointer registers. Then it loads the next two consecutive bytes of memory into the 16-bit DS register.

For example, if DI = 1000 then:

LDS BX,[DI]

copies the contents of memory locations 1000 and 1001 of the data segment into register BX and the contents of memory locations 1002 and 1003 of the data segment into register DS.

[Flags affected - none]

LEA

Load Effective Address

The LEA instruction loads one of the 16-bit general, index, or pointer registers from another register or memory.

Example:

LEA CX,[SI]

copies the number (address) in the SI register to the CX register.

[Flags affected - none]

LES

Load Extra Segment

The LES instruction performs two distinct operations. First it loads two consecutive bytes of memory into one of the 16-bit general, index, or pointer registers. Then it loads the next two consecutive bytes of memory into the 16-bit ES register.

For example, if DI=1000 then:

LES BX,[DI]

copies the contents of memory locations 1000 and 1001 of the data segment into register BX and the contents of memory locations 1002 and 1003 of the data segment into register ES. [Flags affected - none]

MOV

MOVe

The MOV instruction copies the contents of a register, memory location, or immediate number to a register or memory location. The source and destination must both be of the same length and both cannot be memory locations. [Flags affected - none]

SAHF

Store AH in Flags

The SAHF instruction copies AH to the low-order byte of the flag (status) register. The low-order byte of the 8086/8088 status register is the same as that of the 8085. This instruction is used primarily to translate 8085 software into 8086/8088 software. After this instruction is executed SF, ZF, AF, PF, and CF will correspond to bits 7, 6, 4, 2, and 1 of AH respectively. [Flags affected - SF, ZF, AF, PF, CF]

XCHG

eXCHanGe

The XCHG instruction exchanges the contents of two registers or a register and a memory location. Segment registers cannot be used nor can two memory locations. The source and destination must be of the same length. [Flags affected - none]

XLAT

trans(X)LATe

The XLAT instruction is used to look up values in a table. First the location of the beginning of the table must be loaded into the BX register. Then the relative location within the table of the desired value must be placed in the AL register. When the XLAT instruction is executed the value of BX is added to AL to form an address. The contents of that address then replaces the former value in AL. This instruction can be used to translate ASCII values into EBCDIC values for example. [Flags affected - none]

Flag Instructions

CLC

CLear Carry flag

The CLC instruction places a zero (0) in the carry flag bit of the status register. [Flags affected - CF = 0]

CLD

CLear Direction flag (auto-increment)

The CLD instruction places a zero (0) in the direction flag bit of the status register. When this flag is cleared (0), SI and DI will automatically increment when certain string instructions are executed. [Flags affected - DF=0]

CLI

CLear Interrupt-enable flag

The CLI instruction places a zero (0) in the interrupt-enable flag bit of the status register. When this flag is cleared (0) the 8086/8088 will not respond to interrupt signals on the INTR pin. Signals on the NMI pin are not affected however. [Flags affected - IF=0]

CMC

CoMplement Carry flag

The CMC instruction inverts the carry flag bit of the status register. If the CF is 0, it will be changed to a 1. If it is a 1, it will be changed to 0. [Flags affected - CF]

STC

SeT Carry flag

The STC instruction places a one (1) in the carry flag bit of the status register. [Flags affected - CF = 1]

STD

SeT Direction flag (auto-decrement)

The STD instruction places a one (1) in the direction flag bit of the status register. When this flag is set (1), SI and DI will automatically decrement when certain string instructions are executed. [Flags affected - DF=1]

STI

SeT Interrupt enable flag

The STI instruction places a one (1) in the interrupt-enable flag bit of the status register. When this flag is set (1) the 8086/8088 will respond to interrupt signals on the INTR pin. [Flags affected - IF=1]

Arithmetic Instructions

AAA

ASCII Adjust for Addition

The AAA instruction can be used after addition to adjust or alter the number in AL to what it would be if the last two operands were ASCII numbers. AH will be cleared. [Flags affected - AF, CF, OF (undefined), SF (undefined), ZF (undefined)]

AAD

ASCII Adjust for Division

The AAD instruction is used before division by a single-digit, unpacked, BCD number. First you must have an unpacked, two-digit, BCD number in AX. The AAD instruction can then be used to adjust that number. This adjustment must occur before any division can take place. The adjustment changes the two-digit, unpacked, BCD number in AX into its equivalent binary number in AL. AH is changed to 00h. Next, AX can be divided by an 8-bit, single-digit, unpacked, BCD number. The binary quotient will be in AL with the binary remainder in AH. Note: To use this instruction with ASCII numbers the "3" in the upper nibble must be masked out of the numbers first. [Flags affected - SF, ZF, PF, OF (undefined), AF (undefined)]

AAM

ASCII Adjust for Multiplication

The AAM instruction adjusts the product after multiplication of two, unpacked, single-digit, BCD numbers. To use this instruction you must have two single-digit, unpacked, BCD numbers. One must be in AL and the other in a register or memory location. After you multiply the two single-digit, unpacked, BCD numbers the binary answer will be in AL. The AAM instruction will convert it to its unpacked BCD equivalent. Note: To use this instruction with ASCII numbers you must first mask the "3" in the upper nibble. [Flags affected - SF, ZF, PF, AF (undefined), OF (undefined), CF (undefined)]

AAS

ASCII Adjust for Subtraction

The AAS instruction can be used after subtraction to adjust or alter the number in AL to what it would be if the last two operands were ASCII numbers. AH will be [Flags affected - AF, CF, OF (undefined), SF (undefined), ZF (undefined), PF (undefined)]

ADC

AdD with Carry

The ADC instruction works the same as the ADD instruction except that it adds the value in the carry flag (CF) to the sum of the two operands. [Flags affected -CF, PF, AF, ZF, SF, OF

ADD

ADD

The ADD instruction adds a binary number in a source register, memory location, or immediate number to a destination binary number in a register or memory The result is placed in the destination location. The source and destination are assumed to be binary, both must be of the same size (byte or word), and both cannot be memory locations. [Flags affected - CF, PF, AF, ZF, SF, OF]

CBW

Convert Byte to Word

The CBW instruction takes bit 7 (the highest-order bit) of AL and duplicates it in every bit of AH. This converts an 8-bit signed-binary number in AL into a 16-bit signed-binary number in AX. This must be done before division (IDIV) involving two 8-bit signed-binary numbers to convert the dividend (in AL) into its 16-bit form (in AX). (For unsigned-binary numbers place 00H in AH.) It can also be used before integer multiplication (IMUL) involving an 8-bit operand and a 16-bit operand. The 8-bit operand can be converted to a 16-bit operand before the IMUL instruction is executed. [Flags affected - none]

CWD

Convert Word to Double word

The CWD instruction is similar to the CBW instruction except that it converts 16bit values into 32-bit values instead of 8-bit to 16-bit. It takes bit 15 (the highestorder bit) of AX and duplicates it in every bit of DX. This converts a 16-bit signed-binary number in AX into a 32-bit signed-binary number in DX:AX (high 16 bits in DX, low 16 bits in AX). This must be done before division involving two 16-bit numbers to convert the dividend (in AX) into its 32-bit form (in DX:AX). [Flags affected - none]

DAA

Decimal Adjust for Addition

The DAA instruction adjusts the contents of AL from a binary number to a packed BCD (binary coded decimal) number when used after addition. When addition is performed the operands are assumed to be binary numbers. If they were in fact packed BCD numbers then the DAA instruction would have to be used after the addition to correct the result. Note that DAA only works on AL so each byte of a multi-byte packed BCD number must be moved into AL, added, adjusted, and then the result moved back out to make room for the next byte. [Flags affected -SF, ZF, AF, PF, CF, OF (undefined)]

DAS

Decimal Adjust for Subtraction

The DAS instruction adjusts the contents of AL from a binary number to a packed BCD (binary-coded-decimal) number when used after subtraction. subtraction is performed the operands are assumed to be binary numbers. If they were in fact packed BCD numbers then the DAS instruction would have to be used after the subtraction to correct the result. Note that DAS only works on AL so each byte of a multi-byte packed BCD number must be moved into AL, subtracted, adjusted, and then the result moved back out to make room for the next byte. [Flags affected - SF, ZF, AF, PF, CF, OF (undefined)]

DIV

DIVide (unsigned)

The DIV instruction can divide a 16-bit unsigned-binary number in AX by an 8-bit unsigned-binary number in a register or memory location. If you want to divide one 8-bit number by another you must first change the dividend in AL into a 16-bit number by placing 00H in AH. After execution the result (quotient) will be in AL and the remainder in AH.

DIV can also divide a 32-bit unsigned-binary number in DX:AX (high-order word in DX, low-order word in AX) by a 16-bit unsigned-binary number in a register or memory location. If you wish to divide one 16-bit number by another you must first convert the dividend in AX into a 32-bit number in DX:AX by placing 0000H in DX. The result (quotient) will be in AX and the remainder in DX. [Flags affected - OF (undefined), SF (undefined), ZF (undefined), AF (undefined), PF (undefined), CF (undefined)]

IDIV

Integer DIVision (signed)

The IDIV instruction can divide a 16-bit signed-binary number in AX by an 8-bit signed-binary number in a register or memory location. The result (quotient) will be in AL and the remainder in AH. It can also divide a 32-bit signed-binary number in DX:AX (high-order word in DX, low-order word in AX) by a 16-bit signed-binary number in a register or memory location. The result (quotient) will be in AX and the remainder in DX. Important! - See CBW and CWD. [Flags affected - OF (undefined), SF (undefined), ZF (undefined), AF (undefined), PF (undefined), CF (undefined)]

IMUL

Integer MULtiplication (signed)

The IMUL instruction multiplies a signed binary number in a register or memory location times a signed number in AL if 8-bit or AX if 16-bit. If two 8-bit numbers are multiplied then a 16-bit answer will be found in AX. If two 16-bit numbers are multiplied then a 32-bit answer will be found in DX:AX (high byte in DX, low byte in AX). To multiply an 8-bit signed binary number by a 16-bit signed-binary number see the CBW instruction. [Flags affected - OF, CF, SF (undefined), ZF (undefined), AF (undefined), PF (undefined)]

MUL

MULtiply (unsigned)

The MUL instruction multiplies an unsigned binary number in a register or memory location times an unsigned number in AL if 8-bit or AX if 16-bit. If two 8-bit numbers are multiplied then a 16-bit answer will be found in AX. If two 16-bit numbers are multiplied then a 32-bit answer will be found in DX:AX (high byte in DX, low byte in AX). [Flags affected - OF, CF, SF (undefined), ZF (undefined), AF (undefined), PF (undefined)]

SBB

SuBtract with Borrow

The SBB instruction is the same as the SUB instruction except that the value in the carry flag (CF) is also subtracted. That is, the source (second operand) and CF are both subtracted from the destination (first operand). The source and destination must both be either 8-bit or 16-bit. All values are assumed to be binary. [Flags affected - OF, SF, ZF, AF, PF, CF]

SUB

SUBtract

The SUB instruction subtracts the contents of a source (the second operand in 8086/8088 assembly language) register, memory location, or an immediate number from the contents of a destination (the first operand in 8086/8088 assembly language) register or memory location. The result is placed in the destination location. The source and destination must both be of the same size (byte or word) and both cannot be memory locations. [Flags affected - CF, PF, AF, ZF, SF, OF]

Logical Instructions

AND

logical AND

The AND instruction performs a logical AND of each bit of the source and destination operands. The source (second operand in 8086/8088 assembly language) can be an immediate number, register, or memory location. The destination can be a register or memory location. Both source and destination cannot be memory locations. Both operands can be 8-bit or both can be 16-bit. Neither can be a segment register. After execution the source is unchanged but the destination will contain the result of the ANDing operation. [Flags affected - OF=0, SF, ZF, PF, CF=0, AF (undefined)]

NEG

NEGate (2's complement)

The NEG instruction produces the 2's complement of a binary number. This can be done manually by inverting each bit then adding one (1). This instruction is also essentially the same as subtracting the number from zero. [Flags affected - OF, SF, ZF, AF, PF, CF

NOT

NOT

The NOT instruction inverts every bit of the operand. The operand can be in a register or memory location. [Flags affected - none]

OR

OR

The OR instruction performs a logical OR of each bit of the source and destination operands. The source (second operand in 8086/8088 assembly language) can be an immediate number, register, or memory location. The destination can be a register or memory location. Both source and destination cannot be memory locations. Both operands can be 8-bit or both can be 16-bit. Neither can be a segment register. After execution the source is unchanged but the destination will contain the result of the ORing operation. [Flags affected - OF=0, SF, ZF, PF, CF=0, AF (undefined)]

XOR

eXclusive OR

The XOR instruction performs a logical XOR of each bit of the source and destination operands. The source (second operand in 8086/8088 assembly language) can be an immediate number, register, or memory location. The destination can be a register or memory location. Both source and destination cannot be memory locations. Both operands can be 8-bit or both can be 16-bit. Neither can be a segment register. After execution the source is unchanged but the destination will contain the result of the XORing operation. [Flags affected - OF=0, SF, ZF, PF, CF=0, AF (undefined)]

Rotate and Shift Instructions

RCL

Rotate through Carry to the Left

The RCL instruction rotates the bits of the destination as shown above. After an RCL instruction the destination will have rotated toward the left, the carry flag will hold the bit most recently rotated out of the MSB, and the LSB will hold the bit most recently rotated from the carry flag. The destination can be a register or memory location. If you want to rotate one bit position you specify a "1" in the instruction. If you want to rotate more than one bit position place the number of bits in the CL register and include that register in the instruction.

Examples:

RCL AX,1

rotates AX one bit position

RCL AX,CL

rotates AX the number of bit positions indicated by the number held in the CL register.

[Flags affected - OF, CF]

RCR

Rotate through Carry to the Right

The RCR instruction rotates the bits of the destination as shown above. After an RCR instruction the destination will have rotated toward the right, the carry flag will hold the bit most recently rotated from the LSB, and the MSB will hold the bit most recently rotated from the carry flag. The destination can be a register or memory location. If you want to rotate one bit position you specify a "1" in the instruction. If you want to rotate more than one bit position place the number of bits in the CL register and include that register in the instruction.

Examples:

RCR AX,1

rotates AX one bit position

RCR AX,CL

rotates AX the number of bit positions indicated by the number held in the CL register.

[Flags affected - OF, CF]

ROL

ROtate Left

The ROL instruction rotates the bits of the destination as shown above. After an ROL instruction the destination will have rotated toward the left, and the carry flag and the LSB will both contain the same bit which was most recently rotated into them from the MSB. The destination can be a register or memory location. If you want to rotate one bit position you specify a "1" in the instruction. If you want to rotate more than one bit position place the number of bits in the CL register and include that register in the instruction.

Examples:

ROL AX,1

rotates AX one bit position

ROL AX,CL

rotates AX the number of bit positions indicated by the number held in the CL register.

[Flags affected - OF, CF]

ROR

ROtate Right

The ROR instruction rotates the bits of the destination as shown above. After an ROR instruction the destination will have rotated toward the right, and the carry flag and the MSB will both contain the same bit which was most recently rotated into them from the LSB. The destination can be a register or memory location. If you want to rotate one bit position you specify a "1" in the instruction. If you want to rotate more than one bit position place the number of bits in the CL register and include that register in the instruction.

Examples:

ROR AX,1

rotates AX one bit position

ROR AX,CL

rotates AX the number of bit positions indicated by the number held in the CL register.

[Flags affected - OF, CF]

SAL/SHL

Shift Arithmetic Left/SHift logical Left

$$CF \longleftarrow MSB \longleftarrow LSB \longleftarrow 0$$

The SAL or SHL instruction shifts the bits of the destination as shown above. After an SAL/SHL instruction the destination will have shifted toward the left, the carry flag will contain the bit most recently shifted out of the MSB, and the LSB will contain a 0. The destination can be a register or memory location. If you want to rotate one bit position you specify a "1" in the instruction. If you want to rotate more than one bit position place the number of bits in the CL register and include that register in the instruction.

Examples:

SHL AX,1

rotates AX one bit position

SHL AX,CL

rotates AX the number of bit positions indicated by the number held in the CL register.

(DEBUG Note: DEBUG only allows the SHL mnemonic.)

[Flags affected - OF, SF, ZF, PF, CF, AF (undefined)]

SAR

Shift Arithmetic Right

The SAR instruction shifts the bits of the destination as shown above. After an SAR instruction the destination will have shifted to the right, the MSB will contain what it did before the instruction (i.e., it duplicates itself and shifts a copy of itself to the right), and the carry flag will hold the bit most recently shifted out of the LSB. The destination can be a register or memory location. If you want to rotate one bit position you specify a "1" in the instruction. If you want to rotate more than one bit position place the number of bits in the CL register and include that register in the instruction.

Examples:

SAR AX,1

rotates AX one bit position

SAR AX,CL

rotates AX the number of bit positions indicated by the number held in the CL register.

[Flags affected - OF, SF, ZF, PF, CF, AF (undefined)]

SHR

SHift logical Right

$$0 \longrightarrow MSB \longrightarrow LSB \longrightarrow CF$$

The SHR instruction shifts the bits of the destination as shown above. After an SHR instruction the destination will have shifted toward the right, the MSB will contain a 0, and the carry flag will hold the bit most recently shifted in from the LSB. The destination can be a register or memory location. If you want to rotate one bit position you specify a "1" in the instruction. If you want to rotate more than one bit position place the number of bits in the CL register and include that register in the instruction.

Examples:

SHR AX,1

rotates AX one bit position

SHR AX,CL

rotates AX the number of bit positions indicated by the number held in the CL register.

[Flags affected - OF, SF, ZF, PF, CF, AF (undefined)]

Increment and Decrement Instructions

DEC

DECrement

The DEC instruction decreases the value in the destination by 1. The destination is assumed to be a binary number and can be a register (except a segment register) or memory location. It is worthwhile to note that the CF is not affected by this instruction. [Flags affected - OF, SF, ZF, AF, PF]

INC

INCrement

The INC instruction increases the value in the destination by 1. The destination is assumed to be a binary number and can be a register (except a segment register) or memory location. It is worthwhile to note that the CF is not affected by this instruction. [Flags affected - OF, SF, ZF, AF, PF]

Unconditional Jump Instructions

JMP

JuMP

JMP is an unconditional jump instruction which causes the 8086/8088 to continue executing instructions at some other place in the program. The jump can be classified as short, near, or far. The short and near instructions are relative to the current instruction pointer (IP) location. Since the IP always points to the next instruction to be executed you start counting forward or backward from the next instruction after the JMP instruction. A short jump can be up to a maximum of 127 memory bytes forward from the current IP position (7E₁₆ or +127₁₀) or up to 128 memory bytes backward from the current IP position (80₁₆ or -128₁₀). A near jump can be anywhere within the current 64K code segment. The assembler will calculate this as being up to 32,767 bytes forward (7FFF $_{16}$ or $+32,767_{10}$) or 32,768 bytes backward (8000₁₆ or -32,768₁₀) from the current IP position. A far jump can be anywhere in the 1-Mbyte addressing range of the 8086/8088. The far jump specifies both the desired code segment (CS) and the desired instruction pointer (IP). DEBUG Note: When you want to JMP you do not need to be concerned about calculating the distance forward or backward from the current instruction pointer (IP) position. Simply specify the location you want to go to in the form

JMP XXXX

where XXXX is the memory location (and therefore the desired instruction pointer value) for the short and near jumps and DEBUG will determine whether this is a forward or backward jump and will calculate the exact distance for you. Likewise if you want to use the value in a register as your destination simply specify that register and DEBUG will calculate the relative jump distance for you. In the case of the far jump specify the location you want to jump to in the form

JMP YYYY:XXXX

where YYYY is the code segment (CS) and XXXX is the instruction pointer (IP). [Flags affected - none]

Test (Compare) Instructions

CMP

CoMPare

The CMP instruction is used to compare two operands for the purpose of affecting flags according to the outcome. That is, the compare instruction subtracts the source operand (the second operand) from the destination (the first operand). Neither operand is changed; only the flags are affected. The source can be an immediate number, a register, or a memory location. The destination can be a register or memory location. Both operands cannot be memory locations. [Flags affected - OF, SF, ZF, AF, PF, CF]

TEST

TEST

The TEST instruction ANDs the source and destination operands but neither stores a result nor changes either operand. Rather, the flags are affected by the ANDing. This is useful before a conditional jump instruction. The source can be an immediate number, register, or memory location. The destination can be a register or memory location. Both operands cannot be memory locations. [Flags affected -OF=0, CF=0, SF, ZF, AF (undefined), PF (only lower 8 bits of destination)]

Conditional Jump (Branch) Instructions

JA/JNBE

Jump if Above/Jump if Not Below nor Equal

The JA/JNBE conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if CF=0 and if ZF=0 (both must be 0). If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the unsigned values of the operands used by the CMP instruction. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JA. [Flags affected - none]

JAE/JNB/JNC

Jump if Above or Equal/Jump if Not Below/Jump if No Carry

The JAE/JNB/JNC conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if CF=0. If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the unsigned values of the operands used by the CMP instruction. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JNB. [Flags affected - none]

JB/JNAE/JC

Jump if Below/Jump if Not Above nor Equal/Jump if Carry

The JB/JNAE/JC conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if CF=1. If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the unsigned values of the operands used by the CMP instruction. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JB. [Flags affected - none]

JBE/JNA

Jump if Below or Equal/Jump if Not Above

The JBE/JNA conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if CF=0 or ZF=1. If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the unsigned values of the operands used by the CMP instruction. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JBE. [Flags affected - none]

JCXZ

Jump if CX register is Zero

The JCXZ conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if the CX register is 0. If this condition is not true no jump occurs. [Flags affected - none]

JE/JZ

Jump if Equal to/Jump if Zero

The JE/JZ conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if ZF=1. If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the values of the operands used by the CMP instruction. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JZ. [Flags affected - none]

JG/JNLE

Jump if Greater/Jump if Not Less than nor Equal

The JG/JNLE conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if (SF XOR OF) OR ZF = 0. To say it another way, the jump occurs if the sign flag and the overflow flag are equal (both 0 or both 1) at the same time that the zero flag is 0. Only two combinations are possible. If SF=0, OF=0, and ZF=0 the jump occurs; or if SF=1, OF=1, and ZF=0 the jump also occurs. If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the signed values of the operands used by the CMP instruction. Debug Note: Regardless of which mnemonic is used during assembly, Debug always disassembles this op code as JG. [Flags affected - none]

JGE/JNL

Jump if Greater than or Equal/Jump if Not Less

The JGE/JNL conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if SF=OF. If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the signed values of the operands used by the CMP instruction. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JGE. [Flags affected - none]

JL/JNGE

Jump if Less/Jump if Not Greater than nor Equal

The JGE/JNL conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if the SF does not equal the OF. If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the signed values of the operands used by the CMP instruction. Debug Note: Regardless of which mnemonic is used during assembly, Debug always disassembles this op code as JL. [Flags affected - none]

JLE/JNG

Jump if Less than or Equal/Jump if Not Greater

The JLE/JNG conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if (SF XOR OF) OR ZF = 1. To say it another way, the jump occurs if the sign flag and the overflow flag are not equal, or if the zero flag is 0. Only two combinations do not produce the jump. If SF=0, OF=0, and ZF=0 then no jump occurs; or if SF=1, OF=1, and ZF=0 then no jump occurs. When used after CMP, this instruction is referring to the signed values of the operands used by the CMP instruction. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JLE. [Flags affected - none]

JNE/JNZ

Jump if Not Equal to/Jump if Not Zero

The JNE/JNZ conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if ZF=0. If this condition is not true no jump occurs. When used after CMP, this instruction is referring to the values of the operands used by the CMP instruction. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JNZ. [Flags affected - none]

JNO

Jump if Not Overflow

An overflow occurs when the result of a signed arithmetic operation is too large to fit in the register or memory location. The JNO conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if OF=0, that is, if an overflow has not occurred. If this condition is not true no jump occurs. [Flags affected - none]

JNP/JPO

Jump if Not Parity/Jump if Parity Odd

When the result of an operation which affects the parity flag has a result which has an odd number of 1s in it then the PF=0. The JNP/JPO conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if PF=0. If this condition is not true no jump occurs. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JPO. [Flags affected - none]

JNS

Jump if Not Sign

The JNS conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if SF=0. If this condition is not true no jump occurs. Since a "0" in the sign flag occurs when the result of the last operation was a positive signed number, this instruction is essentially saying to jump if the last operation produced a positive signed result. [Flags affected - none]

JO

Jump if Overflow

An overflow occurs when the result of a signed arithmetic operation is too large to fit in the register or memory location. The JO conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if OF=1, that is, if an overflow has occurred. If this condition is not true no jump occurs. [Flags affected - none]

JP/JPE

Jump if Parity/Jump if Parity Even

When the result of an operation which affects the parity flag has a result which has an even number of 1s in it then the PF=1. The JP/JPE conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if PF=1. If this condition is not true no jump occurs. DEBUG Note: Regardless of which mnemonic is used during assembly, DEBUG always disassembles this op code as JPE. [Flags affected - none]

JS

Jump if Sign

The JS conditional jump instruction will cause program execution to transfer to another location in a range from +127 bytes to -128 bytes from the instruction following the jump instruction if SF=1. If this condition is not true no jump occurs. Since a "1" in the sign flag occurs when the result of the last operation was a negative signed number, this instruction is essentially saying to jump if the last operation produced a negative signed result. [Flags affected - none]

Subroutine Instructions

CALL

CALL procedure

The CALL instruction causes the 8086/8088 to leave its current location in the program and to begin executing a procedure (a small special purpose program or subroutine located in a different place in memory) and then automatically return after that procedure is finished. The call can be classified as <u>near</u> or <u>far</u>. The near instruction is relative to the current instruction pointer (IP) location. Since the IP always points to the <u>next</u> instruction to be executed you start counting forward or backward from the next instruction after the CALL instruction. A <u>near</u> call can be anywhere within the current 64K code segment. The assembler will calculate this as being up to 32,767 bytes forward (7FFF₁₆ or +32,767₁₀) or 32,768 bytes backward (8000₁₆ or -32,768₁₀) from the current IP position. When a near call is executed the contents of the instruction pointer (IP) are pushed onto the stack so that the 8086/8088 will know where to return after the procedure has been finished. A <u>far</u> call can be anywhere in the 1-Mbyte addressing range of the 8086/8088. The far call specifies both the desired code segment (CS) and the desired instruction pointer

(IP). When a far call is executed the contents of both the instruction pointer (IP) and the code segment (CS) are pushed onto the stack so that the 8086/8088 will know where to return after the procedure has been finished. DEBUG Note: When you want to CALL a procedure you do not need to be concerned about calculating the distance forward or backward from the current instruction pointer (IP) position. Simply specify the location of the procedure in the form

CALL XXXX

where XXXX is the memory location (and therefore the desired instruction pointer value) for the near call and DEBUG will determine whether that location is forward or backward and will calculate the exact distance for you. Likewise if you want to use the value in a register as your destination simply specify that register and DEBUG will calculate the relative distance for you. In the case of a far call specify the location of the procedure in the form

CALL YYYY:XXXX

where YYYY is the code segment (CS) and XXXX is the instruction pointer (IP). (See also RETurn.) [Flags affected - none]

RET

RETurn from subroutine

The RET instruction is placed at the end of a procedure or subroutine. It marks the end of that procedure and causes the 8086/8088 to return to the instruction immediately following the CALL instruction which began this particular procedure. The 8086/8088 knows where to return because the CALL instruction pushed the contents of the instruction pointer (IP) onto the stack. The RET instruction pops the value of the IP from the stack and places it in the IP. In the case of a far call the return instruction pops both the IP value and the code segment (CS) value from the stack. DEBUG Note: DEBUG accepts both RET and RETN as the mnemonics for a return from a near call. When disassembled both will appear as RET. To specify a return from a far call the mnemonic RETF must be used and it will be disassembled as RETF. [Flags affected - none]

Stack Instructions

POP

POP from stack

The POP instruction copies the word at the top of the stack to the destination operand. The destination can be a general-purpose register, segment register, or two consecutive memory locations. (The CS register is illegal.) After the POP, the stack pointer (SP) is incremented by 2 to point to the new top-of-stack. [Flags affected - none]

POPF

POP Flags from stack

The POPF instruction copies the word at the top of the stack into the flag register, replacing the values of <u>all</u> flags. The stack pointer (SP) is then incremented by 2. (Using POPF and PUSHF provides a way to change the TF. There is no instruction for directly altering this flag.) [Flags affected - OF, DF, IF, TF, SF, ZF, AF, PF, CF]

PUSH

PUSH onto stack

The PUSH instruction decrements the stack pointer (SP) by 2 and then copies the source operand (word) to the new top-of-stack. The source can be a general-purpose register, segment register, or two consecutive memory locations. [Flags affected - none]

PUSHF

PUSH Flags onto stack

The PUSHF instruction decrements the stack pointer (SP) by 2 and then copies the flag register to the new top-of-stack. [Flags affected - none]

Interrupt Instructions

INT

INTerrupt

The INT instruction causes program execution to be transferred to a special type of routine whose address is pointed to by an interrupt vector. There are 256 interrupt vectors in memory locations 00000h to 003FFh. Each vector is 4 bytes in length and contains the address (CS:IP) of the routine which handles this particular type of interrupt. The INT operand is a decimal number from 0 through 255 which identifies which interrupt vector is to be used. The actual memory location of the interrupt is calculated by multiplying the operand by 4. That answer forms the decimal equivalent of the beginning of the four memory locations which hold the interrupt vector. When the INT instruction is executed the following occur:

- 1. The stack pointer is decremented by 2 and the flags are pushed onto the stack.
- 2. IF and TF are cleared.
- 3. The stack pointer is decremented by 2 and CS is pushed onto the stack.
- 4. The new CS is fetched from the interrupt vector and the interrupt vector + 1.
- 5. The stack pointer is decremented by 2 and IP is pushed onto the stack.
- 6. The new IP is fetched from the interrupt vector + 2 and the interrupt vector + 3.
- 7. Begin execution of the interrupt routine located at memory location CS:IP.

The routine will continue until a IRET instruction is encountered, at which point program execution will pick up where it left off immediately after the INT instruction. [Flags affected - IF and TF]

INTO

INTerrupt on Overflow

The INTO instruction initiates a software interrupt which is, in all respects, the same as that produced by the INT instruction except that the INTO instruction is conditional, and the operand cannot be specified but is automatically type 4. That is, the INTO instruction will branch to the interrupt routine only if OF=1 and there is no choice as to where the interrupt vector will come from. It will always be a

type 4 interrupt which is held in the 4 bytes starting at memory location 10h. This instruction is most often used after arithmetic operations to handle any overflow conditions. See the discussion for the INT instruction for more details. [Flags affected - IF and TF]

IRET

Interrupt RETurn

The IRET instruction is used to return from an interrupt routine (whether a hardware or software interrupt). The IP, CS, and flags are all popped from the stack and program execution continues from the instruction immediately following the INT instruction. The IRET instruction has no operand. [Flags affected - OF, DF, IF, TF, SF, ZF, AF, PF, CF]

Input-Output Instructions

IN

INput

The IN instruction allows a byte or word to be acquired from an I/O device [source] and placed in AL (byte) or AX (word) [destination]. An I/O address [source operand] from 00h through FFh can be specified directly in the instruction. If an address larger than FFh is desired a 16-bit address can be placed in DX used as the source operand in the IN instruction. Only AX and AL can be used as destinations [destination operand] by the IN instruction.

Example:

copy a byte from I/O address 45h into AL IN AL,45

IN AX,78 copy a word from I/O address 78h into AX

copy a byte from the I/O address pointed to by the contents IN AL,DX

of DX and place in AL

I/O port addresses F8h through FFh are reserved by Intel for future hardware and software products and should not be used for any other purpose. [Flags affected nonel

OUT

OUTput

The OUT instruction allows a byte or word to be sent from AL (byte) or AX (word) [source] to an I/O device [destination]. An I/O address [destination operand] from 00h through FFh can be specified directly in the instruction. If an address larger than FFh is desired a 16-bit address can be placed in DX used as the destination operand in the OUT instruction. Only AX and AL can be used as sources [source operand] by the OUT instruction.

Example:

OUT 45,AL copy a byte from AL to I/O address 45h

OUT 78,AX copy a word from AX to I/O address 78h

OUT DX,AL copy a byte from AL to the I/O address pointed to by the contents of DX

I/O port addresses F8h through FFh are reserved by Intel for future hardware and software products and should not be used for any other purpose. [Flags affected none]

String Instructions

CMPS/CMPSB/CMPSW

CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word

The CMPS/CMPSB/CMPSW instruction is used to compare the contents of two memory bytes, two words, or two entire sections of memory. The SI (source index) is used to point to the source in the DS (data segment). The DI (destination index) is used to point to the destination in the ES (extra segment). The 8086/8088 makes the comparison by subtracting the destination from the source. Neither operand is changed by the comparison; only flags are affected. After the comparison DI and SI are automatically incremented (if DF=0) or decremented (if DF=1). The increment/decrement is 1 if the CMPB mnemonic is used or 2 if CMPW is used. The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used with this instruction to compare an entire section of memory. DEBUG Note: Only the CMPSB and CMPSW mnemonics are accepted by DEBUG. [Flags affected - OF, SF, ZF, AF, PF, CF]

LODS/LODSB/LODSW

LOaD String/LOaD String Byte/LOaD String Word

The LODS/LODSB/LODSW instruction loads (copies) either a byte (LODSB) from the memory location pointed to by SI into AL, or a word (LODSW) from the memory location pointed to by SI into AX. SI is either automatically incremented by 1 (LODSB) or by 2 (LODSW) if DF=0, or SI is automatically decremented by 1 (LODSB) or by 2 (LODSW) if DF=1. The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used with this instruction. DEBUG Note: DEBUG only accepts the LODSB and LODSW mnemonics. [Flags affected - none].

MOVS/MOVSB/MOVSW MOVe String/MOVe String Byte/MOVe String Word

The MOVS/MOVSB/MOVSW instruction is used to transfer the contents of a block of memory to another area in memory. The SI (source index) is used to point to the source in the DS (data segment). The DI (destination index) is used to point to the destination in the ES (extra segment). After the move DI and SI are automatically incremented (if DF=0) or decremented (if DF=1). The increment/decrement is 1 if the MOVSB mnemonic is used or 2 if MOVSW is used. The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used with this instruction to move an entire section of memory. DEBUG Note: Only the MOVSB and MOVSW mnemonics are accepted by DEBUG. [Flags affected - none]

REP/REPE/REPZ

REPeat/REPeat if Equal/REPeat if Zero

REP/REPE/REPZ is a prefix which causes string instructions to be repeated the number of times indicated by the value in CX. Each time the string instruction is repeated CX is decremented by one. This continues 1) in the case of MOVS and STOS, until CX=0, or 2) in the case of CMPS and SCAS, until either CX=0 or the compared bytes or words are not equal (ie. ZF=0). DEBUG Note: REP, REPE, and REPZ are all mnemonics for the same op code and DEBUG disassembles all of them as REPZ. [Flags affected - none]

REPNE/REPNZ

REPeat if Not Equal/REPeat if Not Zero

REPNE/REPNZ is a prefix which causes string instructions to be repeated the number of times indicated by the value in CX. Each time the string instruction is repeated CX is decremented by 1. This continues 1) in the case of MOVS and STOS, until CX=0, or 2) in the case of CMPS and SCAS, until either CX=0 or the compared bytes or words are equal (ie. ZF=1). DEBUG Note: REPNE and REPNZ are mnemonics for the same op code and DEBUG disassembles all of them as REPNZ. [Flags affected - none]

SCAS/SCASB/SCASW

SCAn String/SCAn String Byte/SCAn String Word

The SCAS/SCASB/SCASW instruction is used to check a string for the occurrence or non-occurrence of a particular byte or word. The instruction accomplishes this by subtracting the byte or word in the extra segment (ES) which is pointed to by DI from AL (if a byte) or AX (if a word). Neither the contents of the string nor those of AX/AL are changed; however the flags are affected by the operation. After the operation, DI is automatically incremented (if DF=0) or decremented (if DF=1). DI will be incremented or decremented by 1 for byte scans or by 2 for word scans. The REP/REPE/REPZ prefix can be used to scan for the non-occurrence of a byte or word. The REPNE/REPNZ prefix can be used to scan for the occurrence of a byte or word. DEBUG Note: DEBUG only recognizes the SCASB and SCASW mnemonics. [Flags affected - OF, SF, ZF, AF, PF, CF]

STOS/STOSB/STOSW

STOre String/STOre String Byte/STOre String Word

The STOS/STOSB/STOSW instruction copies a byte from AL or a word from AX to a memory location in the extra segment (ES) pointed to by DI. After the operation, DI is automatically incremented (if DF=0) or decremented (if DF=1). DI will be incremented or decremented by 1 for a byte store or by 2 for a word store. The REP/REPE/REPZ and REPNE/REPNZ repeat prefixes can be used with this instruction to store a certain value in a range of memory locations. DEBUG Note: Only the STOSB and STOSW mnemonics are accepted by DEBUG. [Flags affected - none]

Loop Instructions

LOOP

LOOP

The LOOP instruction provides a way to repeat a group of instructions the number of times indicated by the value in the CX register. The LOOP instruction unconditionally transfers program execution to a memory location in the range of 128 to +127 bytes from the address of the instruction immediately following the

LOOP instruction if CX > 0. Each time the LOOP instruction is executed CX is decremented by 1; then the value of CX is checked. If CX > 0, program execution will branch to the location indicated by the operand of the LOOP instruction. If CX = 0, the program does not branch and the instruction immediately following the LOOP instruction is executed next. As CX is decremented wraparound occurs from 0000h to FFFFh. [Flags affected - none]

LOOPE/LOOPZ

LOOP while Equal/LOOP while Zero

The LOOPE/LOOPZ instruction provides a way to repeat a group of instructions the number of times indicated by the value in the CX register. The LOOPE/LOOPZ instruction transfers program execution to a memory location in the range of -128 to +127 bytes from the address of the instruction immediately following the LOOP instruction if CX > 0 and ZF = 1. Each time the LOOP instruction is executed CX is decremented by 1; then the values of CX and ZF are checked. If CX > 0, program execution will branch to the location indicated by the operand of the LOOP instruction if ZF = 1 also. If either CX = 0 or ZF = 0, the program does not branch, and the instruction immediately following the LOOP instruction is executed next. As CX is decremented wraparound occurs from 0000h to FFFFh. [Flags affected - none]

LOOPNE/LOOPNZ

LOOP while Not Equal/LOOP while Not Zero

The LOOPNE/LOOPNZ instruction provides a way to repeat a group of instructions the number of times indicated by the value in the CX register. The LOOPNE/LOOPNZ instruction transfers program execution to a memory location in the range of -128 to +127 bytes from the address of the instruction immediately following the LOOP instruction if CX > 0 and ZF = 0. Each time the LOOP instruction is executed CX is decremented by 1; then the values of CX and ZF are checked. If CX > 0, program execution will branch to the location indicated by the operand of the LOOP instruction if ZF = 0 also. If either CX = 0 or ZF = 1, the program does not branch, and the instruction immediately following the LOOP instruction is executed next. As CX is decremented wraparound occurs from 0000h to FFFFh. [Flags affected - none]

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED BY CATEGORY

CPU Control Instructions

ESC	ESC ape
HLT	HaLT
LOCK	LOCK
NOP	No OPeration
WAIT	WAIT

Data Transfer Instructions

Load AH from Flag **LAHF** Load Data Segment LDS Load Effective Address **LEA** Load Extra Segment LES

MOVe MOV

Store AH in Flags **SAHF XCHG** eXCHanGe trans(X)LATe **XLAT**

Flag Instructions

CLear Carry flag **CLC**

CLear Direction flag (auto-increment) **CLD**

CLear Interrupt-enable flag CLI CoMplement Carry flag **CMC**

SeT Carry flag **STC**

SeT Direction flag (auto-decrement) **STD**

SeT Interrupt enable flag STI

Arithmetic Instructions

ASCII Adjust for Addition AAA ASCII Adjust for Division AAD ASCII Adjust for Multiplication **AAM** ASCII Adjust for Subtraction AAS

AdD with Carry **ADC**

ADD ADD

Convert Byte to Word **CBW**

Convert Word to Double word **CWD** Decimal Adjust for Addition DAA Decimal Adjust for Subtraction DAS

DIV DIVide (unsigned)

Integer DIVision (signed) **IDIV** Integer MULtiplication (signed) **IMUL**

MULtiply (unsigned) MUL SuBtract with Borrow SBB

SUBtract SUB

Logical Instructions

AND logical AND

NEGate (2's complement) **NEG**

NOT NOT OR OR

eXclusive OR **XOR**

Rotate and Shift Instructions

RCL Rotate through Carry to the Left **RCR** Rotate through Carry to the Right

ROL **RO**tate Left ROR ROtate Right

SAL/SHL Shift Arithmetic Left/SHift logical LefT

SAR Shift Arithmetic Right SHR SHift logical Right

Increment and Decrement Instructions

DEC DECrement INC INCrement

Unconditional Jump Instructions

JMP JuMP

Test (Compare) Instructions

CMP CoMPare TEST **TEST**

Conditional Jump (Branch) Instructions

JA/JNBE Jump if Above/Jump if Not Below nor Equal

JAE/JNB/JNC Jump if Above or Equal/Jump if Not Below/Jump if No Carry JB/JNAE/JC Jump if Below/Jump if Not Above nor Equal/Jump if Carry

JBE/JNA Jump if Below or Equal/Jump if Not Above

JCXZ Jump if CX register is Zero JE/JZ Jump if Equal to/Jump if Zero

JG/JNLE Jump if Greater/Jump if Not Less than nor Equal JGE/JNL Jump if Greater than or Equal/Jump if Not Less JL/JNGE Jump if Less/Jump if Not Greater than nor Equal JLE/JNG Jump if Less than or Equal/Jump if Not Greater

JNE/JNZ Jump if Not Equal to/Jump if Not Zero

JNO Jump if Not Overflow

JNP/JPO Jump if Not Parity/Jump if Parity Odd

JNS Jump if Not Sign JO Jump if Overflow

JP/JPE Jump if Parity/Jump if Parity Even

JS Jump if Sign

Subroutine Instructions

CALL

CALL procedure

RET

RETurn from subroutine

Stack Instructions

POP

POP from stack

POPF PUSH POP Flags from stack PUSH onto stack

PUSHF

PUSH Flags onto stack

Interrupt Instructions

INT

INTerrupt

INTO IRET

INTerrupt on Overflow

Interrupt RETurn

Input-Output Instructions

IN

INput

OUT

OUTput

String Instructions

CMPS/CMPSB/CMPSW

LODS/LODSB/LODSW

MOVS/MOVSB/MOVSW

REP/REPE/REPZ REPNE/REPNZ

SCAS/SCASB/SCASW STOS/STOSB/STOSW CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word

LOaD String/LOaD String Byte/LOaD String Word MOVe String/MOVe String Byte/MOVe String Word

REPeat/REPeat if Equal/REPeat if Zero

REPeat if Not Equal/REPeat if Not Zero

SCAn String/SCAn String Byte/SCAn String Word STOre String/STOre String Byte/STOre String Word

Loop Instructions

LOOP

LOOP

LOOPE/LOOPZ

LOOP while Equal/LOOP while Zero

LOOPNE/LOOPNZ

LOOP while Not Equal/LOOP while Not Zero

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED ALPHABETICALLY

AAA ASCII Adjust for Addition AAD ASCII Adjust for Division **AAM** ASCII Adjust for Multiplication AAS ASCII Adjust for Subtraction

ADC AdD with Carry

ADD ADD AND logical AND **CALL** CALL procedure **CBW** Convert Byte to Word CLC CLear Carry flag

CLD CLear Direction flag (auto-increment)

CLI CLear Interrupt-enable flag **CMC** CoMplement Carry flag

CMP CoMPare

CMPS/CMPSB/CMPSW CoMpare Strings/CoMPare Strings Byte/CoMPare Strings Word

CWD Convert Word to Double word DAA Decimal Adjust for Addition Decimal Adjust for Subtraction DAS

DEC **DECrement** DIV DIVide (unsigned)

ESC ESCape HLT **HaLT**

IDIV Integer DIVision (signed) **IMUL** Integer MULtiplication (signed)

IN **INput** INC **INCrement INT INTerrupt**

INTO INTerrupt on Overflow **IRET** Interrupt RETurn

JA/JNBE Jump if Above/Jump if Not Below nor Equal

JAE/JNB/JNC Jump if Above or Equal/Jump if Not Below/Jump if No Carry JB/JNAE/JC Jump if Below/Jump if Not Above nor Equal/Jump if Carry

JBE/JNA Jump if Below or Equal/Jump if Not Above

JCXZ Jump if CX register is Zero JE/JZ Jump if Equal to/Jump if Zero

JG/JNLE Jump if Greater/Jump if Not Less than nor Equal JGE/JNL Jump if Greater than or Equal/Jump if Not Less JL/JNGE Jump if Less/Jump if Not Greater than nor Equal JLE/JNG Jump if Less than or Equal/Jump if Not Greater

JMP JuMP unconditional

JNE/JNZ Jump if Not Equal to/Jump if Not Zero

JNO Jump if Not Overflow

JNP/JPO Jump if Not Parity/Jump if Parity Odd

JNS Jump if Not Sign JO Jump if Overflow

JP/JPE Jump if Parity/Jump if Parity Even

JS Jump if Sign LAHF Load AH from Flag LDS Load Data Segment

CONDENSED TABLE OF 8086/8088 INSTRUCTIONS LISTED ALPHABETICALLY (Continued)

LEA Load Effective Address
LES Load Extra Segment

LOCK LOCK

LODS/LODSB/LODSW LOaD String/LOaD String Byte/LOaD String Word

LOOP LOOP

LOOPE/LOOPZ LOOP while Equal/LOOP while Zero

LOOPNE/LOOPNZ LOOP while Not Equal/LOOP while Not Zero

MOV MOVe

MOVS/MOVSB/MOVSW MOVe String/MOVe String Byte/MOVe String Word

MUL MULtiply (unsigned)
NEG NEGate (2's complement)

NOP No OPeration

NOT NOT OR OR OUT OUTput

POP POP from stack
POPF POP Flags from stack
PUSH PUSH onto stack
PUSHF PUSH Flags onto stack

RCL Rotate through Carry to the Left
RCR Rotate through Carry to the Right
REP (REPS | REPS | Report |

REP/REPE/REPZ
REPeat if Equal/REPeat if Zero
REPNE/REPNZ
REPeat if Not Equal/REPeat if Not Zero

RETurn from subroutine

ROL ROtate Left
ROR ROtate Right
SAHF Store AH in Flags

SAL/SHL Shift Arithmetic Left/SHift logical Left

SAR Shift Arithmetic Right
SBB SuBtract with Borrow

SCAS/SCASB/SCASW SCAn String Byte/SCAn String Word

SHR SHift logical Right STC SeT Carry flag

STD SeT Direction flag (auto-decrement)

STI SeT Interrupt enable flag

STOS/STOSB/STOSW STOre String/STOre String Byte/STOre String Word

SUB SUBtract
TEST TEST
WAIT WAIT

XCHG eXCHanGe (source with destination)

XLAT trans(X)LATe
XOR eXclusive OR

EXPANDED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY

Mne- monic	Operation	Boolean/Arith Operation	Flags NV-BDIZC	Address Mode	Assembler Notation	Op	~	#	Notes
			СЫТ	Control Instr	uations				
NOD	No Observior	N. a.							
NOP	No OPeration	Nothing	XX-XXXXX	Implied	NOP	EA	2	1	
BRK	BReaK (forced interrupt)	PC + 2 \rightarrow S SP - 2 \rightarrow SP PSR \rightarrow S SP - 1 \rightarrow S \$FFFE \rightarrow PC	xx-1x1xx	Implied	BRK	00	7	1	
			Data 7	Cransfer Instr	uctions				
LDA	LoaD Accumulator	M → A	Nx-xxxZx	Immediate	LDA #\$dd	A9	2	2	
				Absolute	LDA \$aaaa	AD			
				Zero Page	LDA \$aa		3		
				Indxd Indct	LDA (\$ff,X)		6		
				Indct Indxd	LDA (\$aa),Y	B1	5*		
				Zero page,X	LDA \$ff,X	B5	4		
				Absolute,X	LDA \$ffff,X	BD			
				Absolute,Y	LDA \$ffff,Y	B9			
LDX	LoaD X register	M → X	Nw7	T 41 4	IDII #444		_		
	Doub A legister	IVI 7 X	Nx-xxxZx	Immediate	LDX #\$dd	A2	2	2	
				Absolute	LDX \$aaaa	AE			
				Zero page	LDX \$aa		3		
				Absolute,Y Zero page,Y	LDX \$ffff,Y LDX \$ff,Y	BE B6	4* 4		
				zoro page, r	LDA GII, I	ь	7	2	
LDY	LoaD Y register	M → Y	Nx-xxxZx	Immediate	LDY #\$dd	A 0	2	2	
				Absolute	LDY \$aaaa	AC	4	3	
				Zero page	LDY \$aa	A4	3	2	
				Zero page,X	LDY \$ff,X	B4	4		
				Absolute,X	LDY \$ffff,X	BC	4*	3	
TA :	STore Accumulator	A → M	xx-xxxxx	Absolute	STA \$aaaa	8D	4	3	
				Zero page	STA \$aa	85	3		
				Indxd Indet	STA (\$ff,X)	81	6		
				Indet Indxd	STA (\$aa),Y	91	6		
				Zero page,X	STA \$ff,X	95	4		
				Absolute,X	STA \$ffff,X		5		
				Absolute,Y	STA \$ffff,Y		5		
TX s	STore X register	X → M	VV Janes	Absolute	CVDV #	0.77		_	
'		/ h · 141	XX-XXXXX	Absolute	STX \$aaaa		4		
				Zero page	STX \$aa		3		
				Zero page,Y	STX \$ff,Y	96	4	2	
TY S	STore Y register	$Y \rightarrow M$	xx-xxxxx	Absolute	STY \$aaaa	8C	4	3	
				Zero page	STY \$aa	84	3	2	
				Zero page,X	STY \$ff,X	94	4	2	
	Fransfer Accumulator to X register	A → X	Nx-xxxZx	Implied	TAX	AA	2	1	
	Fransfer X register o Accumulator	X + A	Nx-xxxZx	Implied	TXA	8A	2	1	

Mne- monic	Operation	Boolean/Arith Operation	Flags NV-BDIZC	Address Mode	Assembler Notation	Op	~	#	Notes
TAY	Transfer Accumulator to Y register	A → Y	Nx-xxxZx	Implied	TAY	A 8	2	1	
TYA	Transfer Y register to Accumulator	Y → A	Nx-xxxZx	Implied	TYA	98	2	1	
			F	lag Instruction	<u>1S</u>				
CLC	CLear Carry flag	0 → C	xx-xxxx0	Implied	CLC	18	2	1	
CLD	CLear Decimal flag	0 → D	xx-x0xxx	Implied	CLD	D8	2	1	
			xx-xx0xx	Implied	CLI	58		1	
CLI	CLear Interrupt flag								
CLV	CLear oVerflow flag	0 → V	x0-xxxxx	Implied	CLV	B8	2	1	
SEC	SEt Carry flag	1 → C	xx-xxxx1	Implied	SEC	38	2	1	
SED	SEt Decimal flag	1 → D	xx-x1xxx	Implied	SED	F8	2	1	
SEI	SEt Interrupt flag	1 → I	xx-xx1xx	Implied	SEI	78	2	1	
			<u>Aritl</u>	nmetic Instruc	etions				
ADC	AdD with Carry	A + M + C → A	NV-xxxZC	Immediate Absolute Zero page Indxd Indct Indct Indxd Zero page,X Absolute,X Absolute,Y	ADC #\$dd ADC \$aaaa ADC \$aa ADC (\$ff,X) ADC (\$aa),Y ADC \$fff,X ADC \$ffff,X ADC \$ffff,Y	69 6D 65 61 71 75 7D 79	4 3 6 5 4 4	2 3 2 * 2 * 2 * 3 * 3	The carry flag must be cleared before single-precision addition or before the first byte of multiple-precision addition.
SBC	SuBtract with Carry	A - M - (1-C) → A Note: (1-C) = Borrow	NV-xxxZC	Immediate Absolute Zero page Indxd Indct Indct Indxd Zero page,X Absolute,X Absolute,Y	SBC #\$dd SBC \$aaaa SBC \$aa SBC (\$ff,X) SBC (\$aa),Y SBC \$ff,X SBC \$ffff,X SBC \$ffff,Y	E9 ED E5 E1 F1 F5 FD F9	3 6 5 4 4	3 2 2 * 2 2	•
			<u>Lo</u>	gical Instructi	ions				
AND	logical AND	A AND M → A	Nx-xxxZx	Immediate Absolute Zero page Indxd Indct Indct Indxd Zero page,X Absolute,X Absolute,Y	AND #\$dd AND \$aaaa AND \$aa AND (\$ff,X) AND (\$aa),Y AND \$ff,X AND \$ffff,X AND \$ffff,Y	29 2D 25 21 31 35 3D 39	4 3 6 5 4 4	2 3 2 2 2 2 * 3 * 3	

Mne	Operation	Boolean/Arith Operation	Flags NV-BDIZC	Address Mode	Assembler Notation	Op	~	#	Notes
EOR	Exclusive OR	A EOR M → A	Nx-xxxZx	Immediate Absolute Zero page Indxd Indct Indct Indxd Zero page,X Absolute,X	EOR #\$dd EOR \$aaaa EOR \$aa EOR (\$ff,X) EOR (\$aa),Y EOR \$ff,X EOR \$ffff,X	49 4D 45 41 51 55 5D	2 4 3 6 5* 4 4*	3 2 2 2 2	
ORA	OR Accumulator	A OR M → A	Nx-xxxZx	Absolute,Y Immediate Absolute Zero page Indxd Indct Indct Indxd Zero page,X Absolute,X	EOR \$ffff,Y ORA #\$dd ORA \$aaaa ORA \$aa ORA (\$ff,X) ORA (\$aa),Y ORA \$ff,X ORA \$ffff,X	59 09 0D 05 01 11 15	4*	3 2 3 2 2 2 2	
BIT	test memory BITs	A AND M $M_7 \to N$ $M_6 \to V$	76-xxxZx	Absolute,Y Absolute Zero page	ORA \$ffff,Y BIT \$aaaa BIT \$aa	19 2C 24	4* 4 3	3	Memory bits 7 and 6 are transferred into the N and V flags respectively.
			Rotate a	and Shift Inst	ructions				
ASL	Arithmetic Shift Left	C ← 70 ← 0	Nx-xxxZC	Absolute Zero page Accumulator Zero page,X Absolute,X	ASL \$aaaa ASL \$aa ASL A ASL \$fff,X ASL \$ffff,X	0E 06 0A 16 1E	6 5 2 6 7	2 1 2	
LSR	Logical Shift Right	0 → 70 → C	0x-xxxZC	Absolute Zero page Accumulator Zero page,X Absolute,X	LSR \$aaaa LSR \$aa LSR A LSR \$ff,X LSR \$ffff,X	4A 56	6 5 2 6 7	2 1 2	
ROL	ROtate Left	70 C	Nx-xxxZC	Absolute Zero page Accumulator Zero page,X Absolute,X	ROL \$aaaa ROL \$aa ROL A ROL \$ff,X ROL \$ffff,X	2A	5 2 6	2 1 2	
ROR	ROtate Right	70 — C	Nx-xxxZC	Absolute Zero page Accumulator Zero page,X Absolute,X	ROR \$aaaa ROR \$aa ROR A ROR \$fff,X ROR \$ffff,X	66 6A	6	2 1 2	
			Increment and	d Decrement	Instructions				
INC	INCrement memory	M + 1 → M	Nx-xxxZx	Absolute Zero page Zero page,X Absolute,X	INC \$aaaa INC \$aa INC \$ff,X INC \$ffff,X	EE E6 F6 FE	5 : 6 :	2 2	

Mne- monic	Operation	Boolean/Arith Operation	Flags NV-BDIZC	Address Mode	Assembler Notation	Op	~	#	Notes
INX	INcrement X register	$X + 1 \rightarrow X$	Nx-xxxZx	Implied	INX	E8	2	1	
INY	INcrement Y register	$Y + 1 \rightarrow Y$	Nx-xxxZx	Implied	INY	C8	2	1	
DEC	DECrement memory	M - 1 → M	Nx-xxxZx	Absolute Zero page Zero page,X Absolute,X	DEC \$aaaa DEC \$aa DEC \$ff,X DEC \$ffff,X	CE C6 D6 DE	5 6	2 2	
DEX	DEcrement X register	$X - 1 \rightarrow X$	Nx-xxxZx	Implied	DEX	CA	2	1	
DEY	DEcrement Y register	Y - 1 → Y	Nx-xxxZx	Implied	DEY	88	2	1	
			Uncondit	ional Jump Ir	structions				
JMP	JuMP to new memory location	aaaa → PC {abs addressing} (aaaa) → PC _L (aaaa + 1) → PC _H {indirect addressing}	xx-xxxxx ;}	Absolute Indirect	JMP \$aaaa JMP (\$aaaa)	4C 6C		3 3	In the indirect addressing mode, aaaa is not transferred into the PC but rather the contents of memory location aaaa and aaaa+1 are placed in the PC. Special Note: Care should be used with this mode because of a bug in the 6502 chip family. It the indirect address is located at a page boundary {example JMP (\$5FFF)} an incorrect address will be generated.
			Test (C	Compare) Ins	ructions				
CMP	CoMPare memory location to accumulator	A - M	Nx-xxxZC	Immediate Absolute Zero page Indxd Indct Indct Indxd Zero page,X Absolute,X Absolute,Y	CMP #\$dd CMP \$aaaa CMP \$aa CMP (\$ff,X) CMP (\$aa),Y CMP \$fff,X CMP \$ffff,X	C9 CD CS C1 D1 D5 DD	4 3 6 5 4	3 2 2 * 2 2 * 3	
CPX	ComPare memory location to X register	X - M	Nx-xxxZC	Immediate Absolute Zero page	CPX #\$dd CPX \$aaaa CPX \$aa	E0 EC E4	4		
CPY	ComPare memory location to Y register	Y - M	Nx-xxxZC	Immediate Absolute Zero page	CPY #\$dd CPY \$aaaa CPY \$aa		4	2 3 2	

Mne	- Operation ic	Boolean/Arith Operation	Flags NV-BDIZC	Address Mode	Assembler Notation	Op	~ #	Notes				
	Conditional Jump (Branch) Instructions											
ВСС	Branch if Carry Clear	$PC + rr \rightarrow PC$ if $C=0$	xx-xxxxx	Relative	BCC \$rr	90	2+2					
BCS	Branch if Carry Set	$PC + rr \rightarrow PC$ if $C=1$	XX-XXXXX	Relative	BCS \$rr	В0	2+2					
BEQ	Branch if last result EQual to zero	$PC + rr \rightarrow PC$ if $Z=1$	XX-XXXXX	Relative	BEQ \$rr	F0	2+2					
BNE	Branch if last result Not Equal to zero	$PC + rr \rightarrow PC$ if $Z=0$	xx-xxxxx	Relative	BNE \$rr	D0	2+2					
BMI	Branch if last result a MInus (neg) number	$PC + rr \rightarrow PC$ if $N=1$	XX-XXXXX	Relative	BMI \$rr	30	2+2					
BPL	Branch is last result a PLus (pos) number	$PC + rr \rightarrow PC$ if $N=0$	xx-xxxxx	Relative	BPL \$rr	10	2+2					
BVC	Branch if oVerflow flag Clear	$PC + rr \rightarrow PC$ if $V = 0$	XX-XXXXX	Relative	BVC \$rr	50	2+2					
BVS	Branch if oVerflow flag Set	$PC + rr \rightarrow PC$ if $V=1$	xx-xxxxx	Relative	BVS \$rr	70	2+2					
			<u>Subro</u>	utine Instru	actions							
JSR	Jump to SubRoutine	$PC + 2 \rightarrow S$ $aaaa \rightarrow PC$ $SP - 2 \rightarrow SP$	xx-xxxxx	Absolute	JSR \$aaaa	20	6 3					
RTS	ReTurn from Subroutine	S (2 bytes) → PC PC + 1 → PC SP + 2 → SP	XX-XXXXX	Implied	RTS	60	6 1					
			Stac	ck Instructi	<u>ons</u>							
	PusH Accumulator onto stack	$A \rightarrow S$ SP - 1 \rightarrow SP	xx-xxxxx	Implied	РНА	48 :	3 1					
	PulL Accumulator from stack	$S \rightarrow A$ $SP + 1 \rightarrow SP$	Nx-xxxZx	Implied	PLA	68 4	4 1					
	PusH Processor status register onto stack	$PSR \rightarrow S$ $SP - 1 \rightarrow SP$	XX-XXXXX	Implied	РНР	08 3	3 1					

Mne- monic	Operation	Boolean/Arith Operation	Flags NV-BDIZC	Address Mode	Assembler Notation	Op	~	#	Notes
PLP	PulL Processor status register from stack	$S \rightarrow PSR$ $SP + 1 \rightarrow SP$	NV-BDIZC	Implied	PLP	28	4	1	
TXS	Transfer X register into Stack pointer	X → SP	xx-xxxxx	Implied	TXS	9A	2	1	
TSX	Transfer Stack pointer into X register	SP → X	Nx-xxxZx	Implied	TSX	ВА	. 2	1	
			<u>Inte</u>	rrupt Instr	uctions				
RTI	ReTurn from Interrupt	$S \rightarrow PSR$ $SP + 1 \rightarrow SP$ S (2 bytes) $\rightarrow PC$ $SP + 2 \rightarrow SP$	NV-BDIZC	Implied	RTI	40	6	1	

Input-Output Instructions

none

The 6502 memory-maps all input and output rather than using special instructions.

Notes

Address Modes	Assembler Notation
Immediate Absolute Zero page Accumulator Implied Indxd Indct Indct Indxd Zero page,X Absolute,X Absolute,Y Relative Indirect Zero page,Y	Mnemonic #\$dd Mnemonic \$aaaa Mnemonic \$aa Mnemonic A Mnemonic Mnemonic (\$ff,X) Mnemonic (\$aa),Y Mnemonic \$fff,X Mnemonic \$fff,X Mnemonic \$ffff,Y Mnemonic \$ffff,Y Mnemonic \$fff,Y Mnemonic \$fff,Y Mnemonic \$fff,Y Mnemonic \$fff,Y

Abbreviations and Explanations

Indxd Indct = Indexed Indirect Indct Indxd = Indirect Indexed a = address (one hex digit) d = data (one hex digit)

- f = address offset (one hex digit) (\$ff is an unsigned binary number and is therefore positive)
- r = relative address (one hex digit) (\$rr is a 2's-complement signed binary number and can therefore be positive or negative)
- * = add 1 cycle if page boundary crossed
- + = add 1 cycle if branch occurs; add 1 more cycle if branch crosses page
- () = the contents of the address within parentheses form the actual address
- 7...0 = bits 0 through 7 of memory or the accumulator
- M_7 , M_6 , etc. = Bits 7, 6, etc. of a memory location
- = low-order byte
- H = high-order byte
- PC = program counter
- S = stack (contents of the top byte of the stack)
- SP = stack pointer
- PSR = processor status register (flags)
- * = Add 1 cycle if crossing page boundary

Flags

- 0 = flag always cleared
- 1 = flag always set

x = flag not affected

N = negative flag

V = overflow flag

B = break flag

D = decimal flag

I = interrupt flag

Z = zero flag

C = carry flag

Symbols in the Page Heading

~ = clock cycles

= # of bytes used by instruction (and following address or data
if used)

Addressing Modes - Summary

Immediate (Mnemonic #\$dd): The data to be operated on (#\$dd) is in the next byte of memory after the instruction itself. Therefore no address is needed.

Absolute (Mnemonic \$aaaa): The data to be operated on is found in the memory location indicated (\$aaaa). This is a 2-byte address and can point to any place in the 6502's 64K (65,536 byte) addressing range.

Zero page (Mnemonic \$aa): The data to be operated on is found in the memory location indicated (\$aa). This is a 1-byte address and can point only to a place in page zero of memory. Page zero is address \$00-\$FF (decimal 0-255).

Accumulator (Mnemonic A): These are instructions which use implied addressing, where the data is already in the accumulator.

Implied (Mnemonic): These instructions indicate where the data is or will be within the instruction itself.

Indxd Indct (Mnemonic (\$ff,X)): In this form of addressing, the operand (the number which is going to have something done to it) is found through a multistep process. First, the offset (\$ff) is added to the X register to form an address (this address must be in page

zero since both of these are 8-bit numbers). The microprocessor then gets the contents of this memory location and the following location to form <u>another</u> address where it will <u>then</u> find the data (operand).

Indct Indxd (Mnemonic (\$aa),Y): This addressing mode is sometimes confused with the one above though it does work differently. First, the microprocessor goes to address \$aa and the address immediately following \$aa. It uses the contents of these two locations to form a 16-bit address to which the Y register is added. This then forms the actual address where the operand is located.

Zero page,X (Mnemonic \$ff,X): In this form of addressing the number \$ff is added to the X register to form a second address where the operand is located. Because both \$ff and X are 8-bit binary numbers, the actual address must be in page zero. If the sum of these two numbers exceeds \$FF (the end of page zero), any carry will be ignored and the address will "wrap around" to the beginning of page zero.

Absolute,X (Mnemonic \$ffff,X): In this case, the 16-bit number \$ffff is added to the X register to form the actual address. If this number exceeds hexadecimal \$FFFF, the carry is ignored and the address "wraps around" to \$0000 and continues from there.

Absolute,Y (Mnemonic \$ffff,Y): This address mode works the same as Absolute,X except that the Y register is used instead.

Relative (Mnemonic \$rr): \$rr is a 2's-complement signed binary number; that is, it can be positive or negative. This number is added to the current contents of the program counter to determine the actual address. \$rr is different from an offset (\$ffff or \$fff) because it is not added to another register but directly to the program counter itself. It directs the microprocessor relative to its current place in memory.

Indirect (Mnemonic (\$aaaa)): In this mode, the contents of address \$aaaa and the contents of the address immediately following it are used to form the actual address where the operand is to be found. (Only the JMP instruction uses this addressing mode.)

Zero page,Y (Mnemonic \$ff,Y): This addressing mode is exactly like the "Zero page,X" mode except that register Y is used instead.

SHORT TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY

Assembler Notation	Op	Boolean/Arith Operation	Flags NV-BDIZC	Assembler Notation	Op	Boolean/Arith Operation	Flags NV-BDIZC
	CPU	Control Instructions		TAY	A8	A → Y	Nx-xxxZx
				TYA	98	Y → A	Nx-xxxZx
NOP	EA	Nothing	xx-xxxxx				
BRK	00	$PC + 2 \rightarrow S$ $SP - 2 \rightarrow SP$	xx-1x1xx]	Flag Instructions	
		PSR → S SP - 1 → S \$FFFE → PC		CLC	18	0 → C	хх-ххххх0
		4 2		CLD	D8	0 → D	xx-x0xxx
	<u>Data</u>	Transfer Instructions		CLI	58	0 → I	хх-хх0хх
				CLV	B8	0 → V	х0-ххххх
LDA #\$dd LDA \$aaaa	A9 AD	M → A	Nx-xxxZx	SEC	38	1 → C	xx-xxxx1
LDA \$aa LDA (\$ff,X)	A5 A1			SED	F8	1 → D	xx-x1xxx
LDA (\$aa),Y	B1			SEI	78	1 → I	xx-xx1xx
LDA \$ff,X LDA \$ffff,X	B5 BD			SLI	,0		
LDA \$ffff,Y	B 9				Δ =	ithmetic Instructions	
LDX #\$dd	A2	$M \rightarrow X$	Nx-xxxZx		ΔΠ	timiene manuenous	
LDX \$aaaa	AE						
LDX \$aa	A6			ADC #\$dd	69	$A + M + C \rightarrow A$	NV-xxxZC
LDX \$ffff,Y	BE			ADC \$aaaa	6D		
LDX \$ff,Y	B 6			ADC \$aa	65		
1757 #611	4.0	MAV	Nx-xxxZx	ADC (\$ff,X)	61 71		
LDY #\$dd LDY \$aaaa	A0 AC	M → Y	IVX-XXXZX	ADC (\$aa),Y ADC \$ ff,X	71 75		
LDY \$aaaa LDY \$aa	AC A4			ADC \$ffff,X	7D		
LDY \$ff,X	B4			ADC \$ffff,Y	79		
LDY \$ffff,X	BC			SBC #\$dd	E9	A - M -	NV-xxxZC
2				SBC \$aaaa	ED		
STA \$aaaa	8D	A → M	xx-xxxxx	SBC \$aa	E5	,	
STA \$aa	85			SBC (\$ff,X)	E1	Note: $(1-C) =$	
STA (\$ff,X)	81			SBC (\$aa),Y	F1	Borrow	
STA (\$aa),Y	91			SBC \$ff,X	F5		
STA \$ff,X	95			SBC \$ffff,X	FD		
STA \$ffff,X STA \$ffff,Y	9D 99			SBC \$ffff,Y	F9		
		W . M					
STX \$aaaa	8E	X → M	xx-xxxxx		I	Logical Instructions	
STX \$aa	86						
STX \$ff,Y STY \$aaaa	96 8C	Y → M	xx-xxxxx			A ANTO SE . A	N 7
STY \$aaaa	84	1 111		AND #\$dd	29	A AND M → A	Nx-xxxZx
STY \$ff,X	94			AND \$aaaa AND \$aa	2D 25		
				AND (\$ff,X)	21		
TAX	AA	A → X	Nx-xxxZx	AND (\$aa),Y	31		
TXA	8A	X → A	Nx-xxxZx	AND \$ff,X AND \$ffff,X	35 3D)	
				AND \$ffff,Y	39		

Assembler Notation	Op	Boolean/Arith Operation	Flags NV-BDIZC	Assembler Notation	Ор	Boolean/Arith Operation	Flags NV-BDIZC
EOR #\$dd	49	A EOR M → A	N. G				
EOR \$aaaa	4D	TI BOK M - A	Nx-xxxZx	INX	E8	$X + 1 \rightarrow X$	Nx-xxxZx
EOR \$aa	45						
EOR (\$ff,X)	41			INY	C8	$Y + 1 \rightarrow Y$	Nx-xxxZx
EOR (\$aa),Y	51						
EOR \$ff,X	55			DEC \$aaaa	CE	$M - 1 \rightarrow M$	Nx-xxxZx
EOR \$ffff,X	5D			DEC \$aa	C6		
EOR \$ffff,Y	59			DEC \$ff,X	D6		
Zorc Gilli, I	39			DEC \$ffff,X	DE		
ORA #\$dd	09	A OR M → A	Nx-xxxZx	DEX		**	
ORA \$aaaa	0D			DEA	CA	$X - 1 \rightarrow X$	Nx-xxxZx
ORA \$aa	05			DEY	00	**	
ORA (ff,X)	01			DEI	88	Y - 1 → Y	Nx-xxxZx
ORA (\$aa),Y	11						
ORA \$ff,X	15						
ORA \$ffff,X	1D			<u> </u>	<u>Jncond</u>	itional Jump Instru	ctions
ORA \$ffff,Y	19						
BIT \$aaaa	2C	A ANTO M		JMP \$aaaa	4C	aaaa → PC	VV Manar
BIT \$aa	24	A AND M M ₇ → N	76 -xxx $\mathbb{Z}x$			{abs addressing}	XX-XXXXX
	27	$M_6 \rightarrow V$				(are areasoning)	
		6		JMP (\$aaaa)	6C	(aaaa) → PC _L	
						(aaaa + 1) → PC _H	
	Rotate	and Shift Instruct	•_			{indirect addressing}	
	ivotate	and Shift Instruct	ions			- 6,	
A CY O					Test (Compare) Instruction	ne.
ASL \$aaaa	0E	C ← 70 ← 0	Nx-xxxZC			compare) manucin	2118
ASL \$aa	06						
ASL A	0A			CMP #\$dd	C9	A - M	N 70
ASL \$ff,X	16			CMP \$aaaa	CD	A - M	Nx-xxxZC
ASL \$ffff,X	1E			CMP \$aa	CS		
LSR \$aaaa	470	0.50		CMP (\$ff,X)	C1		
LSR \$aaa	4E	0 → 70 → C	0x-xxxZC	CMP (\$aa),Y	D1		
LSR A	46			CMP \$ff,X	D5		
	4A			CMP \$ffff,X	DD		
LSR \$ff,X	56			CMP \$ffff,Y	DD D9		
LSR \$ffff,X	5E			Olive Willi, I	D)		
ROL \$aaaa	2E	r= 70 ←	Nx-xxxZC	CPX #\$dd	E0	X - M	Nx-xxxZC
ROL \$aa	26	_	TVA-AAAZC	CPX \$aaaa	EC		
ROL A	2A	—→C——		CPX \$aa	E4		
ROL \$ff,X	36						
ROL \$ffff,X	3E			CPY #\$dd	C0	Y - M	Nx-xxxZC
				CPY \$aaaa	CC		
ROR \$aaaa	6E	70	Nx-xxxZC	CPY \$aa	C4		
ROR \$aa	66	,	T TA TOUR ZO				
ROR A	6A	——C 					
ROR \$ff,X	76			<u>Condi</u>	tional J	lump (Branch) Inst	ructions
ROR \$ffff,X	7E						- 40(-011)
				BCC \$rr	00	ng	
Inova	ment	d Dagge	.•	DCC 411	90	$PC + rr \rightarrow PC$ if $C=0$	XX-XXXXX
increi	nent an	d Decrement Inst	ructions			n C=0	
				BCS \$rr	В0	PC + rr → PC	xx-xxxxx
INC \$aaaa	EE	$M + 1 \rightarrow M$	N 7			if C=1	200 2002
INC \$aaa	E6	171 T 1 7 [V]	Nx-xxxZx				
INC \$ff,X	F6			BEQ \$rr	F0	PC + rr → PC	xx-xxxxx
INC \$ffff,X	ro FE					if Z=1	**-****
· wiiiijak	4.45						

SHORT TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (Continued)

Assembler Notation	Op	Boolean/Arith Operation	Flags NV-BDIZC	Assembler Notation	Op	Boolean/Arith Operation	Flags NV-BDIZC
BNE \$rr	D0	$PC + rr \rightarrow PC$ if $Z = 0$	xx-xxxxx	PLA	68	$S \rightarrow A$ $SP + 1 \rightarrow SP$	Nx-xxxZx
BMI \$rr	30	$PC + rr \rightarrow PC$ if $N=1$	xx-xxxxx	РНР	08	$PSR \rightarrow S$ $SP - 1 \rightarrow SP$	xx-xxxxx
BPL \$rr	10	$PC + rr \rightarrow PC$ if $N=0$	xx-xxxxx	PLP	28	$S \rightarrow PSR$ $SP + 1 \rightarrow SP$	NV-BDIZC
BVC \$rr	50	$PC + rr \rightarrow PC$	xx-xxxxx	TXS	9A	X → SP	xx-xxxxx
BVS \$rr	70	if $V=0$ PC + rr \rightarrow PC if $V=1$	xx-xxxxx	TSX	BA In	SP → X terrupt Instructions	Nx-xxxZx
	Sul	oroutine Instructions					
JSR \$aaaa	20	PC + 2 → S aaaa → PC SP - 2 → SP	xx-xxxxx	RTI	40	$S \rightarrow PSR$ $SP + 1 \rightarrow SP$ S (2 bytes) $\rightarrow PC$ $SP + 2 \rightarrow SP$	NV-BDIZC
RTS	60	S (2 bytes) → PC PC + 1 → PC SP + 2 → SP	xx-xxxxx		Inpu	ut-Output Instructions	
		Stack Instructions		None			
РНА	48	$A \rightarrow S$ SP - 1 \rightarrow SP	xx-xxxxx				

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY

CPU Control		LDX #\$dd	A2	STA \$ffff,X	9D	Flag Instruction	<u>ıs</u>
Instructions		LDX \$aaaa	AE	STA \$ffff,Y	99		
		LDX \$aa	A6			CLC	18
NOP	EA	LDX \$ffff,Y	BE	STX \$aaaa	8E	CLD	D8
BRK	00	LDX \$ff,Y	B6	STX \$aa	86	CLI	58
Didi		22.1.4,		STX \$ff,Y	96	CLV	B8
Data Transfer		LDY #\$dd	A0	. ,		SEC	38
Instructions		LDY \$aaaa	AC	STY \$aaaa	8C	SED	F8
Instructions		LDY \$aaa	A4	STY \$aa	84	SEI	<i>7</i> 8
LDA #\$dd	A 9	LDY \$ff,X	B4	STY \$ff,X	94		
LDA \$aaaa	AD	LDY \$ffff,X	BC			<u>Arithmetic</u>	
LDA \$aa	A5	 , , , , , ,		TAX	AA	Instructions	
LDA (\$ff,X)	A1	STA \$aaaa	8D	TXA	8A		
LDA (\$aa),Y	B1	STA \$aa	85			ADC #\$dd	69
LDA \$ff,X	B5	STA (\$ff,X)	81	TAY	A8	ADC \$aaaa	6D
LDA \$ffff,X	BD	STA (\$aa),Y	91	TYA	98	ADC \$aa	65
LDA \$ffff,Y	B9	STA \$ff,X	95			ADC (ff,X)	61

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY CATEGORY (Continued)

				TOTAL EIGHED I	CALEGO	oki (Commuea)	
ADC (\$aa),Y	71	ORA \$ffff,X	1D	INX	E8	DEO \$	EO
ADC \$ff,X	75	ORA \$ffff,Y	19	INY	C8	BEQ \$rr	F0
ADC \$ffff,X	7D				Co	BNE \$rr	D0
ADC \$ffff,Y	7 9	BIT \$aaaa	2C	DEC \$aaaa	CE	BMI \$rr	30
		BIT \$aa	24	DEC \$aa	C6	BPL \$rr	10
SBC #\$dd	E9			DEC \$ff,X	D6	BVC \$rr	50
SBC \$aaaa	ED	Rotate and Shi	<u>ft</u>	DEC \$ffff,X	DE	BVS \$rr	70
SBC \$aa	E5	Instructions		DEX	CA	0.1	
SBC (\$ff,X)	E1			DEY	88	<u>Subroutine</u>	
SBC (\$aa),Y	F1	ASL \$aaaa	0E			<u>Instructions</u>	
SBC \$ff,X	F5	ASL Saa	06	<u>Unconditional</u>			
SBC \$ffff,X	FD	ASL A	0A	Jump Instructi	Ons	JSR \$aaaa	20
SBC \$ffff,Y	F9	ASL \$ff,X	16			RTS	60
		ASL \$ffff,X	1E	JMP \$aaaa	4C		
Logical				JMP (\$aaaa)	6C	<u>Stack</u>	
Instructions		LSR \$aaaa	4E	Jiii (Juuu)	UC	<u>Instructions</u>	
		LSR \$aa	46	Test (Compare)_		
AND #\$dd	29	LSR A	4A	Instructions	_	PHA	48
AND \$aaaa	2D	LSR \$ff,X	56	· -		PLA	68
AND \$aa	25	LSR \$ffff,X	5E	CMP #\$dd	C9	PHP	80
AND (\$ff,X)	21			CMP \$aaaa	CD	PLP	28
AND (\$aa),Y	31	ROL \$aaaa	2E	CMP \$aa	C5	TXS	9A
AND \$ff,X	35	ROL \$aa	26	CMP (\$ff,X)	C1	TSX	BA
AND \$ffff,X	3D	ROL A	2A	CMP (\$aa),Y	D1		
AND \$ffff,Y	39	ROL \$ff,X	36	CMP \$ff,X	D5	<u>Interrupt</u>	
, , , , , , , , , , , , , , , , , , ,		ROL \$ffff,X	3E	CMP \$ffff,X	DD	<u>Instructions</u>	
EOR #\$dd	49	,		CMP \$ffff,Y	D9		
EOR \$aaaa	4D	ROR \$aaaa	6E			RTI	40
EOR \$aa	45	ROR \$aa	66	CPX #\$dd	E0		
EOR (\$ff,X)	41	ROR A	6A	CPX \$aaaa	EC	Input-Output	
EOR (\$aa),Y	51	ROR \$ff,X	76	CPX \$aa	E4	<u>Instructions</u>	
EOR \$ff,X	55	ROR \$ffff,X	7E				
EOR \$ffff,X	5D			CPY #\$dd	C0	None	
EOR \$ffff,Y	59	Increment and		CPY \$aaaa	CC		
2011 41111, 1	<i>5</i> ,	Decrement		CPY \$aa	C4		
ORA #\$dd	09	Instructions					
ORA Saaaa	0D			Conditional Jur	np		
ORA \$aa	05	INC \$aaaa	EE	(Branch)			
ORA (\$ff,X)	03	INC \$aa	E6	Instructions			
ORA (\$11,X)	11	INC \$ff,X	F6				
ORA \$ff,X	15	INC Sffff,X	FE	BCC \$rr	90		
O-101 \$11,71	13		- 2	BCS \$rr	В0		
					-		

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED ALPHABETICALLY

ADC (\$aa),Y	71	AND \$ffff,Y	39	BMI \$rr	30	CMP Saaaa	CD
ADC (\$ff,X)	61	AND \$ff,X	35	BNE \$rr	D0	CMP \$ffff,X	DD
ADC \$aa	65	AND #\$dd	29	BPL Srr	10	CMP \$ffff,Y	DD D9
ADC \$aaaa	6D	ASL \$aa	06	BRK	00	CMP \$ff,X	D5
ADC \$ffff,X	7D	ASL \$aaaa	0E	BVC \$rr	50	CMP #\$dd	C9
ADC \$ffff,Y	79	ASL \$ffff,X	1E	BVS \$rr	70	CPX Saa	E4
ADC \$ff,X	75	ASL \$ff,X	16	CLC	18	CPX \$aaaa	EC EC
ADC #\$dd	69	ASL A	0A	CLD	D8	CPX #\$dd	E0
AND (\$aa),Y	31	BCC \$rr	90	CLI	58	CPY \$aa	C4
AND (ff,X)	21	BCS \$rr	B0	CLV	B8	CPY Saaaa	CC
AND \$aa	25	BEQ \$rr	F0	CMP (\$aa),Y	D1	CPY #\$dd	00
AND Saaaa	2D	BIT \$aa	24	CMP (\$ff,X)	C1	DEC Saa	C6
AND Sffff,X	3D	BIT \$aaaa	2C	CMP \$aa	CS	DEC Saaaa	CF

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED ALPHABETICALLY (Continued)

DEC \$ffff,X	DE	LDA \$ffff,X	BD	ORA \$ffff,Y	19	SBC \$ff,X	F5
DEC \$ff,X	D6	LDA \$ffff,Y	B9	ORA \$ff,X	15	SBC #\$dd	E9
DEC \$11,X	CA	LDA \$ff,X	B5	ORA #\$dd	09	SEC	38
DEX	88	LDA #\$dd	A9	PHA	48	SED	F8
EOR (\$aa),Y	51	LDX \$aa	A6	PHP	08	SEI	7 8
EOR (\$ff,X)	41	LDX Saaaa	AE	PLA	68	STA (\$aa),Y	91
EOR \$aa	45	LDX \$ffff,Y	BE	PLP	28	STA (\$ff,X)	81
EOR \$aaaa	4D	LDX \$ff,Y	B6	ROL \$aa	26	STA \$aa	85
EOR \$ffff,X	5D	LDX #\$dd	A2	ROL \$aaaa	2E	STA Saaaa	8D
EOR \$ffff,Y	59	LDY Saa	A4	ROL Sffff,X	3E	STA \$ffff,X	9D
EOR \$ff,X	55	LDY Saaaa	AC	ROL Sff,X	36	STA \$ffff,Y	99
EOR #\$dd	49	LDY Sffff,X	BC	ROL A	2A	STA \$ff,X	95
INC \$aa	E6	LDY \$ff,X	B4	ROR \$aa	66	STX \$aa	86
INC \$aaaa	EE	LDY #\$dd	A0	ROR \$aaaa	6E	STX \$aaaa	8E
INC \$ffff,X	FE	LSR \$aa	46	ROR \$ffff,X	7E	STX \$ff,Y	96
INC \$ff,X	F6	LSR \$aaaa	4E	ROR \$ff,X	76	STY \$aa	84
INX	E8	LSR \$ffff,X	5E	ROR A	6A	STY \$aaaa	8C
INY	C8	LSR \$ff,X	56	RTI	40	STY \$ff,X	94
JMP (\$aaaa)	6C	LSR A	4A	RTS	60	TAX	AA
JMP \$aaaa	4C	NOP	EA	SBC (\$aa),Y	F1	TAY	A8
JSR \$aaaa	20	ORA (\$aa),Y	11	SBC (\$ff,X)	E1	TSX	BA
LDA (\$aa),Y	B1	ORA (\$ff,X)	01	SBC \$aa	E5	TXA	8A
LDA (\$ff,X)	A1	ORA \$aa	05	SBC \$aaaa	ED	TXS	9A
LDA \$aa	A5	ORA Saaaa	0D	SBC \$ffff,X	FD	TYA	98
LDA Saaaa	AD	ORA \$ffff,X	1D	SBC \$ffff,Y	F9		

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY OP CODE

00	BRK	31	AND (\$aa),Y	68	PLA	99	STA \$ffff,Y
01	ORA (\$ff,X)	35	AND \$ff,X	69	ADC #\$dd	9A	TXS
05	ORA \$aa	36	ROL \$ff,X	6A	ROR A	9D	STA \$ffff,X
06	ASL \$aa	38	SEC	6C	ЈМР (\$аааа)	A0	LDY #\$dd
08	PHP	39	AND \$ffff,Y	6D	ADC \$aaaa	A1	LDA (\$ff,X)
09	ORA #\$dd	3D	AND \$ffff,X	6E	ROR \$aaaa	A2	LDX #\$dd
0A	ASL A	3E	ROL \$ffff,X	70	BVS \$rr	A4	LDY \$aa
0D	ORA \$aaaa	40	RTI	71	ADC (\$aa),Y	A5	LDA \$aa
0E	ASL \$aaaa	41	EOR (\$ff,X)	75	ADC \$ff,X	A6	LDX \$aa
10	BPL \$rr	45	EOR \$aa	76	ROR \$ff,X	A8	TAY
11	ORA (\$aa),Y	46	LSR \$aa	78	SEI	A9	LDA #\$dd
15	ORA \$ff,X	48	РНА	79	ADC \$ffff,Y	AA	TAX
16	ASL \$ff,X	49	EOR #\$dd	7D	ADC \$ffff,X	AC	LDY \$aaaa
18	CLC	4A	LSR A	7E	ROR \$ffff,X	AD	LDA \$aaaa
19	ORA \$ffff,Y	4C	JMP \$aaaa	81	STA (\$ff,X)	ΑE	LDX \$aaaa
1D	ORA \$ffff,X	4D	EOR \$aaaa	84	STY \$aa	B 0	BCS \$rr
1E	ASL \$ffff,X	4E	LSR \$aaaa	85	STA \$aa	B1	LDA (\$aa),Y
20	JSR \$aaaa	50	BVC \$rr	86	STX \$aa	B 4	LDY \$ff,X
21	AND (\$ff,X)	51	EOR (\$aa),Y	88	DEY	B5	LDA \$ff,X
24	BIT \$aa	55	EOR \$ff,X	8A	TXA	B6	LDX \$ff,Y
25	AND \$aa	56	LSR \$ff,X	8C	STY \$aaaa	B8	CLV
26	ROL \$aa	58	CLI	8D	STA \$aaaa	B9	LDA \$ffff,Y
28	PLP	59	EOR \$ffff,Y	8E	STX \$aaaa	BA	TSX
29	AND #\$dd	5D	EOR \$ffff,X	90	BCC \$rr	BC	LDY \$ffff,X
2A	ROL A	5E	LSR \$ffff,X	91	STA (\$aa),Y	BD	LDA \$ffff,X
2C	BIT \$aaaa	60	RTS	94	STY \$ff,X	BE	LDX \$ffff,Y
2D	AND \$aaaa	61	ADC (\$ff,X)	95	STA \$ff,X	C0	CPY #\$dd
2E	ROL \$aaaa	65	ADC \$aa	96	STX \$ff,Y	C1	CMP (\$ff,X)
30	BMI \$rr	66	ROR \$aa	98	TYA	C4	CPY \$aa

CONDENSED TABLE OF 6502 INSTRUCTIONS LISTED BY OP CODE (Continued)

CS C6 C8 C9 CA CC CD CE D0	CMP \$aa DEC \$aa INY CMP #\$dd DEX CPY \$aaaa CMP \$aaaa DEC \$aaaa BNE \$rr		CMP (\$aa),Y CMP \$ff,X DEC \$ff,X CLD CMP \$ffff,Y CMP \$ffff,Y CMP \$ffff,X DEC \$ffff,X CPX #\$dd SBC (\$ff,X)		CPX \$aa SBC \$aa INC \$aa INX SBC #\$dd NOP CPX \$aaaa SBC \$aaaa INC \$aaaa	F0 F1 F5 F6 F8 F9 FD FE	BEQ \$rr SBC (\$aa),Y SBC \$ff,X INC \$ff,X SED SBC \$ffff,Y SBC \$ffff,X INC \$ffff,X
--	---	--	---	--	---	--	---