

Virtual Private Networks

Principe du VPN

- Réseau privé virtuel (VPN) permet de
 - Simuler un réseau privé sur une infrastructure à accès partagé (Internet)
 - Interconnecter de réseaux répartis sur de grandes distances géographiques
 - Fournir un accès sécurisé au réseau de l'entreprise
- Repose sur un protocole appelé
 « protocole de tunneling »
 - Consiste à construire un chemin virtuel entre l'émetteur et le destinataire
 - Permet de faire circuler les informations de façon sécurisée d'un bout à l'autre du tunnel

Internet VPN

Remote / roaming users

Exemple d'un tunnel

- Encapsulation d'un protocole dans un autre protocole de même niveau (IP dans IP)
- Le tunnel est établi entre deux routeurs
- Première couche IP circule normalement sur l'internet et transporte une seconde couche IP
- Sur la première couche tout se passe comme si les deux routeurs communiquent directement
- Grâce à ce tunnel, tout nœud du réseau A peut communiquer avec tout nœud du réseau B, les deux réseaux étant construits avec des adresses IP privées

Pourquoi faire du VPN?

- Interconnection des réseaux distants
- Connection sécurisé au réseau de l'entreprise
- Communications sécurisés
- Faire du L2 au dessus de L3
- Changer d'IP pour être identifié dans un autre pays
- Forcer le passage dans un équipement de sécurité
- ...

GRE (Generic Routing Encapsulation)

- Protocole générique de tunneling
- Dévélopé par Cisco
- Conçu pour encapsuler
 - IP (gretun)
 - Ethernet (*gretap*)
- N'implémente pas de chiffrement ou d'authentification
 - doit être utilisé avec IPsec
- Est sans etat

IPsec

- Framework ouvert pour assurer des communications privées sécurisées
- Assure la confidentialité, l'intégrité et
 l'authenticité des données sur un réseau public
- Norme prévue pour IPv6 mais adaptée pour IPv4
- Vise à sécuriser l'échange de données au niveau de la couche **Réseau** (niveau 3)
- Permet de créer des VPN sécurisés et sécuriser les accès distants
- Généralement implémenté dans le noyau

IPsec - Modes de fonctionnement

- Mode transport

Connection hôte à hôte

- Mode tunnel

- Tunnel réseau
- Utilisé pour
 - Communication de réseau à réseau (création des VPNs)
 - Communication d'hôte à réseau (accès à distance d'un utilisateur)
 - Communication hôte à hôte (messagerie privée)

IPsec - Modes de fonctionnement

Mode transport

 Uniquement les données transférées sont chiffrées et/ou authentifiées (la partie payload du paquet IP)

Mode tunnel

- La totalité du paquet IP qui est chiffré et/ou authentifié
- Paquet est encapsulé dans un nouveau paquet IP avec un nouvel en-tête IP

IPsec - Composants

Mécanismes de sécurité

- Authentication Header (AH)
- Encapsulation Security Payload (ESP)

- Bases de données internes

- Security Association Database (SAD)
- Security Policy Database (SPD)

- Protocole d'échange de clés

- Internet Key Exchange (IKE)

IPsec - Mécanismes de sécurité

- AH (Authentication Header)

- <u>Intégrité des données</u> à l'aide d'un hash de message
- <u>Authenticité des données</u> à l'aide d'une clé secrète partagée
- <u>Unicité des données</u> en utilisant un champ de numéro de séquence dans l'en-tête
- Pas de confidentialité!
- Algorithmes d'authentification: *HMAC_MD5*, *HMAC_SHA1/2*, *AES128 XCBC*, *AES GMAC*...

	AH	ESP (encryption only)	ESP (encryption plu authentication)
Access control	~	V	~
Connectionless integrity	~		~
Data origin authentication	~		~
Rejection of replayed packets	~	~	~
Confidentiality		V	~
Limited traffic flow confidentiality		~	~

ESP (Encapsulating Security Payload)

- Confidentialité (Chiffrement des données)
- <u>Intégrité</u>, <u>authenticité</u> et <u>unicité des données</u>
- Algorithmes de chiffrement: DES, 3DES, AES_CBC, AES_GCM...

IPsec - Mécanismes de sécurité

AH (Authentication Header)

ESP (Encapsulating Security Payload)

IPsec - Security Association (SA)

- IPsec utilise le concept de **Security Association (SA)** pour gérer les paramètres et les clés des mécanismes de sécurité
- Security Association (SA)
 - Structure de données servant à stocker l'ensemble des paramètres associés à une communication donnée
 - Est unidirectionnelle (deux SA pour protéger deux sens de communications)
 - Une SA par protocole de sécurité (AH ou ESP)
 - Identifiée de manière unique à l'aide d'un triplet
 - Adresse de destination des paquets
 - Identifiant du protocole de sécurité utilisé (AH ou ESP)
 - Index des paramètres de sécurité (Security Parameter Index, SPI)
 - Bloc de 32 bits inscrit en clair dans l'entête de chaque paquet échangé
 - Permet d'identifier quel SA utiliser pour une communication donnée
- SA actives sont stockés dans « base de données des associations de sécurité » (Security Association Database, SAD)
 - Consultée pour savoir comment traiter chaque paquet reçu ou à émettre

Security Associations

Direction	Outbound	Inbound	
SPI	1000	1001	
Destination Address	POP Server B	Node A	
IPsec Protocol	ESP	ESP	
Algorithm	3DES-CBC	3DES-CBC	
Key	The secret key from A to B	The secret key from B to A	
Mode	Transport	Transport	

IPsec - Security Policy Database (SPD)

- Base de données indiquant le niveau de protection à appliquer à un paquet
 - Permet de décider, pour chaque paquet, s'il doit être sécurisé avec IPsec, autorisé à passer sans être sécurisé ou rejeté
- Contient un ensemble de règles (Security Policies) qui détermine si un paquet est soumis au traitement IPsec et gère les détails du traitement
 - Si le trafic doit être protégé par IPsec, il détermine également quelle SA spécifique le trafic doit utiliser
- Pour les paquets entrants, permet de déterminer l'acceptabilité du niveau de protection
- Est établie et maintenue par un utilisateur, un administrateur système ou une application

Règles SPD

Direction	Outbound	Inbound
Source Address	Node A	POP Server B
Destination Address	POP server B	Node A
Upper Layer Protocol	TCP	TCP
Upper Layer Source Port	Any	POP3
Upper Layer Destination Port	POP3	Any
IPsec Protocol	ESP	ESP
Mode	Transport	Transport

IPsec - Gestion des clés

- Protocoles sécurisés ont recours à des algorithmes cryptographiques et ont donc besoin de clés
- **Problématique:** se mettre d'accord sur les algorithmes, les paramètres et clés à utiliser
- Solutions
 - Gestion des paramètres et des clés manuelle
 - Gestion dynamique à l'aide d'un protocole sécurisé (comme IKE)

IPsec - IKE (Internet Key Exchange)

- Protocole permettant de négocier un accord sur les protocoles, les algorithmes et les clés à utiliser
- Gère et échange des clés en toute sécurité
- Permet un établissement de SA à travers un réseau non sécurisé
- Basé sur l'amélioration des protocoles *ISAKMP/Oakley*
- Permet d'échanger les clés via
 - Clés pré-partagées (PSK)
 - Certificats (X.509)

IPsec - IKE - Fonctionnement

Phase 1

- Négociation ISAKMP
- Attributs suivants sont négociés
 - Algorithme de chiffrement, fonction de hachage, méthode d'authentification et groupe pour Diffie-Hellman
- Trois clés sont générées
 - Une pour le chiffrement
 - Une pour l'authentification
 - Une pour la dérivation d'autres clés

- Phase 2

- Négociation de SA pour des protocoles de sécurité (AH et ESP)
 - Chaque négociation aboutit à deux SA
 - Une dans chaque sens de la communication

IPsec - Fonctionnement

- Traffic sortant

- IPsec reçoit des données à envoyer
- Consulte la base de données des politiques de sécurité (SPD) pour savoir comment traiter ces données
- Si il faut appliquer des mécanismes de sécurité, récupère les caractéristiques requises pour la SA correspondante et va consulter la base des SA (SAD)
- Si la SA nécessaire existe déjà, elle est utilisée pour traiter le trafic en question
- Sinon, IPsec fait appel à IKE pour établir une nouvelle SA avec les caractéristiques requises

IPsec - Fonctionnement

- Traffic entrant

- IPsec reçoit un paquet en provenance du réseau
- Examine l'en tête pour savoir si ce paquet s'est vu appliquer un ou plusieurs mécanismes de sécurité IPsec
- Si oui, quelles sont les références de la SA
- Consulte la SAD pour connaître les paramètres à utiliser pour la vérification et/ou le déchiffrement du paquet
- Une fois le paquet vérifié et/ou déchiffré, la SPD est consultée pour savoir si l'association de sécurité appliquée au paquet correspondait bien à celle requise par les politiques de sécurité

GRE avec IPsec

GRE IPsec Tunnel Mode

- Ensemble du paquet GRE (qui comprend le paquet d'en-tête IP d'origine) est encapsulé, chiffré et protégé dans un paquet IPsec
- Surcharge importante ajoutée au paquet (76 octets)

- GRE IPsec Transport Mode

- Paquet GRE est encapsulé et chiffré à l'intérieur du paquet IPsec, cependant, l'en-tête IP GRE est placé à l'avant
- Moins de surcharge

OpenVPN

- Système VPN open source
 - Permettant de créer des connexions point-à-point ou siteà-site sécurisées
- Authentification et chiffrement avec OpenSSL SSL/TLS
 - Moins efficace que IPsec, mais plus facile à mettre en oeuvre
- Architecture client/serveur
- VPN espace utilisateur
 - Crée une interface réseau virtuelle dans l'espace utilisateur à chaque extrémité du réseau
- Supporte TCP et UDP pour transmettre les données
- Méthodes d'authentification
 - Clés secrètes pré-partagées (PSK)
 - Certificats (PKI)
 - Nom d'utilisateur/mot de passe (nécessite un module externe)

OpenVPN: Modes

Mode TAP

Traffic Ethernet

Mode TUN

- Traffic IP
- Topologies réseau disponibles
 - Net30 (obsolète) chaque client se voit attribuer un /30 virtuel, a été utilisé lorsqu'il était impossible de définir IP + netmask sur l'adaptateur <u>tun</u>
 - **P2P** pas utilisable avec Windows, tous les nœuds sont configurés comme de vrais liens point à point, un /30 entre le client et le serveur
 - Subnet topologie actuelle recommandée, comme dans un réseau classique, l'interface <u>tun</u> est configuré avec une adresse IP et un netmask, un réseau /24 dans lequel se trouvent les clients

OpenVPN: Plusieurs LANS derrière le VPN

- Comment un serveur peut annoncer un LAN derrière lui?
 - Configurer le serveur pour annoncer le réseau derrière lui aux clients
 - **push "route..."** dans la configuration du serveur
- Comment un client peut annoncer un LAN derrière lui?
 - Client doit avoir le routage IP activé
 - Configurer le serveur pour router le LAN du client sur le VPN
 - **route** et **push "route ..."** dans la configuration du serveur
 - Indiquer au serveur quel client est responsable du réseau avec **iroute**
- **iroute** est une route interne à OpenVPN qui indique au serveur quel client est responsable de quel réseau
 - Ajoutée à une entrée **CCD** (Configuration du serveur pour un client spécifique)

WireGuard

- Solution VPN sécurisée, la plus facile à utiliser et la plus simple de l'industrie
 - Plus performante que OpenVPN
 - Plus simple que IPsec
- Implémenté dans le noyau Linux
 - Intégré dans le noyau Linux officiel à partir de la version 5.6
- Encapsulé en toute sécurité les paquets IP via UDP (pas de TCP)
- Authentification avec une paire des clés privées/publiques (x25519)
 - Ne dispose pas de mécanismes de distribution ou de configuration de clés
- Fonctionne en ajoutant une interface réseau virtuel (ou plusieurs), appelée wgX

WireGuard - Interface réseau

- Chaque interface réseau possède une clé privée, un port d'écoute et une liste de pairs
- Chaque pair est configuré avec
 - Une clé publique
 - Une liste des adresses autorisés
 - Un Endpoint (*optionnel*)

Configuration de l'interface Wireguard

[Interface]

PrivateKey = gl6EdUSYvn8ugXOt8QQD6Yc+JyiZxlhp3GlnSWRfWGE= ListenPort = 51820

[Peer]

 $PublicKey = HIgo9xNzJMWLKASShiTqIybxZ0U3wGLiUeJ1PKf8ykw= \\ AllowedIPs = 10.192.122.4/32, 192.168.0.0/16$

Endpoint = 192.95.5.69:51820

WireGuard - Cryptokey Routing

- Utilise le concept appelé Cryptokey Routing qui simplifie la gestion du réseau et le contrôle d'accès
 - Associe des clés publiques à une liste d'adresses IP autorisées à l'intérieur du tunnel

Lors de l'envoi de paquets

- Liste des IP autorisées se comporte comme une sorte de table de routage
- Clé publique est utilisée pour chiffrer le paquet

- Lors de la réception de paquets

- Clé publique est utilisée pour déchiffrer et authentifier le paquet
- Liste des IP autorisées se comporte comme une sorte de liste de contrôle d'accès

Configuration de l'interface Wireguard

[Interface]

PrivateKey = yAnz5TF+|XXJte14tji3zlMNq+hd2rYUlgJBgB3fBmk= ListenPort = 51820

[Peer]

PublicKey = TrMvSoP4jYQIY6RIzBgbssQqY3vxI2Pi+y71IOWWXX0= AllowedIPs = 10.192.122.4/32, 192.168.0.0/16

[Peer]

PublicKey = gN65BklKy1eCE9pP1wdc8ROUtkHLF2PfAqYdyYBz6EA= AllowedIPs = 10.10.10.230/32

WireGuard - Fonctionnement

Sur le serveur

- Lorsque l'interface réseau veut envoyer un paquet à un pair (un client)
 - Voir si IP de destination est dans la liste des IP autorisées pour voir à quel pair l'envoyer
 - Chiffrer le paquet à l'aide de la clé publique du pair
 - Envoyer au Endpoint le plus récent de ce pair
- Lorsqu'un paquet est reçu par le serveur du pair
 - Le paquet est déchiffré et authentifié avec la clé publique du pair
 - Si son IP source est dans la liste des IP autorisées pour ce pair, alors le paquet est autorisé sur l'interface
 - Sinon le paquet est rejeté

Configuration Serveur

[Interface]

PrivateKey = yAnz5TF+lXXJte14tji3zlMNq+hd2rYUlgJBgB3fBmk= ListenPort = 51820

[Peer]

PublicKey = TrMvSoP4jYQIY6RIzBgbssQqY3vxI2Pi+y71IOWWXX0= AllowedIPs = 10.192.122.4/32, 192.168.0.0/16

[Peer]

PublicKey = gN65BklKy1eCE9pP1wdc8ROUtkHLF2PfAqYdyYBz6EA= AllowedIPs = 10.10.10.230/32

Configuration Client

[Interface]

PrivateKey = gl6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp3GInSWRfWGE= ListenPort = 51820

[Peer]

PublicKey = Hlgo9xNzJMWLKASShiTqlybxZ0U3wGLiUeJ1PKf8ykw=

Endpoint = 192.95.5.69:51820

AllowedIPs = 0.0.0.0/0

WireGuard - Fonctionnement

- Sur le client

- Lorsque l'interface réseau veut envoyer un paquet à son seul pair (le serveur) avec n'importe quelle adresse IP de destination
 - Chiffrer le paquet à l'aide de la clé publique du son seul pair (le serveur)
 - Envoyer au Endpoint le plus récent de ce pair
- Lorsqu'un paquet est reçu du serveur avec n'importe quelle adresse IP source
 - Le paquet est déchiffré et authentifié avec la clé publique du serveur
 - Si le paquet est correctement déchiffré et authentifié, il est autorisé sur l'interface car les adresses IP autorisées du pair sont 0.0.0.0/0

Configuration Serveur

[Interface]

PrivateKey = yAnz5TF+lXXJte14tji3zlMNq+hd2rYUlgJBgB3fBmk= ListenPort = 51820

[Peer]

PublicKey = TrMvSoP4jYQIY6RIzBgbssQqY3vxl2Pi+y71IOWWXX0= AllowedIPs = 10.192.122.4/32, 192.168.0.0/16

[Peer]

PublicKey = gN65BklKy1eCE9pP1wdc8ROUtkHLF2PfAqYdyYBz6EA= AllowedIPs = 10.10.10.230/32

Configuration Client

[Interface]

PrivateKey = gl6EdUSYvn8ugXOt8QQD6Yc+JyiZxlhp3GInSWRfWGE= ListenPort = 51820

[Peer]

PublicKey = HIgo9xNzJMWLKASShiTqlybxZ0U3wGLiUeJ1PKf8ykw= Endpoint = 192.95.5.69:51820

AllowedIPs = 0.0.0.0/0

Merci pour votre attention!

Références

- https://irp.nain-t.net/doku.php/280vpn:start
- https://www.frameip.com/vpn/
- https://www.frameip.com/ipsec/
- https://www.sans.org/white-papers/1459/
- https://community.openvpn.net/openvpn/wiki/Ge ttingStartedwithOVPN
- https://www.wireguard.com/