Phys 2120-4 12/03/12

Note Title 12/3/2012

Chap 32

Interference $\text{Max} \quad d \text{SMO} = m \\
 \text{M} = 0, 1, 2 - 1 \\
 \text{Min} \quad d \text{SINO} = (m+1) \\
 \text{Min} \quad d \text{SINO} = (n+1) \\
 \text{Min} \quad d \text{SINO} = (n+1) \\
 \text{Min} \quad d \text{SINO} = (m+1) \\
 \text{Min} \quad d \text{Min} \quad d \text{Min} \quad d \text{Min} \quad d \text{Min}$

Diffraction

Minima: $a \sin \theta = m \lambda$ m = 1, 2, 3, 4 sngle - slit diffrant

Resolving powers

Slit

Omin = 1/2

Omin = 1.22

Omin = 1.22

Arelmited in resolution. Te e supes What Imits resolution of telecope Size of telescope (D) not

problem on ground, atmosphae m= 1.72 D main culprit.

One = 1 arcsec

= 1 x x l degree.

Solution Put telescope in space Mubble telescope 32.27 Light with wavelength 633 nm incident on 2.5 mm - uide slit. Find angular width of central peak of 219f pattern. (Ang sep of 1st two minima)

$$a \sin \theta = m$$
 $m = 1, 2, 3, 4$
 $m = 1$
 $a = 2.5 \mu m \text{ ot} c$
 $a = 14.7^{\circ}$
 $a = 29.3^{\circ}$

32.27 Bean parallel vay, radio CD 29-PINZ Encounter buildings 45 m apart. What's the Seam's angular $\lambda = \frac{10.34}{110.34}$ I min for diffraction $a \sin \theta = m > m = 1$ etc. $\theta = 13.3$

32.29 Find the Intensity as a function of central peale intensity for the second secondary maximum in singlet - slit diffraction, assume peah lag between $\frac{1}{5} = \frac{1}{5} \left[\frac{\sin(4/4)}{\sqrt{1 + \frac{1}{2}}} \right]^{2} + \frac{1}{2} \frac{1}{5} \frac{1}$