

# DEEP NEURAL NETWORK

# **Deep Learning for Computer Vision**

**Arthur Douillard** 



# Deep Neural Networks



#### A neural network approximates a function





## Linear regression



Useful to predict continuous variables

$$f(x) = wx$$



## Linear regression



The "connection" often depicted are only multiplications and additions

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2$$



# Linear regression



$$f(x) = wx$$



## Single Neuron



Non-linear activation to determine how much a neuron "fires"

$$f(x) = \sigma(wx)$$

# Separating Hyperplane



Optimize so that  $\boldsymbol{W}$  is orthogonal to the separating hyperplane



# Without bias



Need bias!





## Single Neuron



With a **bias** 

$$f(\mathbf{x}) = \boldsymbol{\sigma}(\mathbf{w}\mathbf{x} + b)$$





# Non-Linear Data



A linear model cannot discriminate blue and red classes!



# **Features Engineering**



#### Before, you would have use the **kernel trick**



Excellent blog post on that **Gundersen** 





Stack multiple linear transformations and non-linear activation

$$f(\mathbf{x}) = \sigma(\mathbf{w}^o \sigma(\mathbf{W}^h \mathbf{x} + \mathbf{b}^h) + \mathbf{b}^o)$$



 ${\it W}^h$  is a matrix because it has here 2 output dimensions



$$f(\mathbf{x}) = \sigma(\mathbf{w}^o \sigma(\mathbf{W}^h \mathbf{x} + \mathbf{b}^h) + \mathbf{b}^o)$$





$$\widetilde{\boldsymbol{h}} = \boldsymbol{W}^h \boldsymbol{x} + \boldsymbol{b}^h$$



### Embeddings/features



$$h = \sigma(\widetilde{h})$$



#### Logits!



$$\widetilde{\mathbf{y}} = \mathbf{w}^{o}\mathbf{h} + b^{o}$$





$$\widehat{\mathbf{y}} = \sigma(\widetilde{\mathbf{y}})$$

# Non-Linear Data









 $W^o$  is a matrix because it has here 2 predicted classes. Can be extended to 3, 4, ..., 1000 classes.



## Multi-Layer Perceptron



$$\widetilde{\mathbf{y}} = \mathbf{W}^{o}\mathbf{h} + \mathbf{b}^{o}$$
 $\widehat{\mathbf{y}} = \sigma(\widetilde{\mathbf{y}})$ 



### Multi-Layer Perceptron



$$\widetilde{m{h}} = m{W}^h m{x} + m{b}^h$$
 $m{h} = \sigma(\widetilde{m{h}})$ 
 $\widetilde{m{y}} = m{W}^o m{h} + m{b}^o$ 

$$\widehat{\mathbf{y}} = \sigma(\widetilde{\mathbf{y}})$$

→ features / embeddings

→ logits

→ Model predictions

#### **Hidden Activations**



#### Function and their derivative







#### **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

#### **Hyperbolic tangent**

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\frac{d}{dx}\tanh(x) = 1 - \tanh(x)^2$$

#### **Rectified Linear Unit**

$$ReLU(x) = \max(x, 0)$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x)) \qquad \frac{d}{dx}\tanh(x) = 1 - \tanh(x)^2 \qquad \frac{d}{dx}ReLU(x) = \begin{cases} 1 & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

#### **Hidden Activations**



#### Function and their derivative







#### **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

#### **Hyperbolic tangent**

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\frac{d}{dx}\tanh(x) = 1 - \tanh(x)^2$$

#### **Rectified Linear Unit**

$$ReLU(x) = \max(x, 0)$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x)) \qquad \frac{d}{dx}\tanh(x) = 1 - \tanh(x)^2 \qquad \frac{d}{dx}ReLU(x) = \begin{cases} 1 & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Without hidden activation, a MLP is equivalent to a single layer!

→ Composition of affine functions is an affine function

## **Output activations**



#### Binary classification: sigmoid

- → Applied element-wise
- → Range [0, 1]

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

Multi-Class classification: softmax

- → Applied over a vector
- → Range [0, 1] per element
- → Sum to 1 for the vector
  - → Probability distribution

$$softmax(\mathbf{x}) = \frac{1}{\sum_{j} e^{\mathbf{x}_{j}}} \begin{bmatrix} e^{x_{1}} \\ \dots \\ e^{x_{n}} \end{bmatrix}$$

$$softmax(\mathbf{x})_i = \frac{e^{\mathbf{x}_i}}{\sum_j e^{\mathbf{x}_j}}$$

$$\frac{d}{dx_{j}}softmax(\mathbf{x})_{i} = \begin{cases} softmax(\mathbf{x})_{i}(1 - softmax(\mathbf{x})_{i} if i = j \\ -softmax(\mathbf{x})_{i} softmax(\mathbf{x})_{j} if i \neq j \end{cases}$$



# To get an intuition of the effect of hidden dimensions, number of layers, and activations:



playground.tensorflow.org

# Learning DNNs





1 hidden layer, H hidden dimensions, C output dimensions with a softmax







For classification with softmax as final activation:

**Cross-entropy** (also known as negative log-likelihood):

$$\mathcal{L}_{CE}(\widehat{y}, y) = -\sum_{i} y_{i} \log \widehat{y}_{i}$$

One-hot target



### One-Hot



Avoid doing *if* in GPUs, use one-hot in cross-entropy.

Given 5 classes, if the ground-truth class is 3:

0 0 0 1 0

Zero-indexed!

#### **Loss Function**



Optimize the network to minimize the loss with respect to all neurons:

$$\mathcal{L}_{CE}(\widehat{y}, y) = -\sum_{i} y_{i} \log \widehat{y}_{i}$$



Optimize the network to minimize the loss with respect to all neurons:

$$\mathcal{L}_{CE}(\widehat{y}, y) = -\sum_{i} y_{i} \log \widehat{y}_{i}$$





Optimize the network to minimize the loss with respect to all neurons  $\theta$ :

$$\mathcal{L}_{CE}(\widehat{y}, y) \\
-\nabla_{\theta} \mathcal{L}_{CE}(\widehat{y}, y)$$





Optimize the network to minimize the loss with respect to all neurons  $\theta$ :

$$\mathcal{L}_{CE}(\widehat{y}, y) \\
-\nabla_{\theta} \mathcal{L}_{CE}(\widehat{y}, y)$$





Optimize the network to minimize the loss with respect to all neurons  $\theta$ :

$$\mathcal{L}_{CE}(\widehat{y}, y) \\ -\nabla_{\theta} \mathcal{L}_{CE}(\widehat{y}, y)$$



#### Minimization of a function



# Million of parameters to optimize together! Highly non-convex!



Multiple dimensional derivatives are called gradients

#### **Needed Gradients**



We need all parameters gradients in green



#### **Stochastic Gradient Descent**



- 1. Initialize randomly the parameters  $\theta$
- 2. For each epoch do
  - 1. Select a random sample of the data
  - 2. Forward
- 3. Compute gradients  $\nabla_{\theta} \mathcal{L}$  for each parameter  $\theta$
- 4. Update parameters  $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}$

 $\eta$  is the **learning rate**.



#### Chain Rule



$$f \circ g(a) = f(b) = c$$

$$\frac{\partial c}{\partial a} = \frac{\partial c}{\partial b} \frac{\partial b}{\partial a}$$

$$\frac{\partial c_i}{\partial a_k} = \sum_i \frac{\partial c_i}{\partial b_j} \frac{\partial b_j}{\partial a_k}$$

$$\nabla_a c = \nabla_b c \nabla_a b^T$$

In denominator layout ( $\neq$  numerator layout):

$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_{n_{\underline{a}}} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_{n_{\underline{b}}} \end{bmatrix} \quad \mathbf{c}$$

$$\boldsymbol{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_{n_a} \end{bmatrix} \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_{n_b} \end{bmatrix} \quad \boldsymbol{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_{n_c} \end{bmatrix} \qquad \boldsymbol{\nabla_b} \boldsymbol{c} = \begin{bmatrix} \frac{\partial c_1}{\partial b_1} & \dots & \frac{\partial c_{n_c}}{\partial b_1} \\ \vdots & & \vdots \\ \frac{\partial c_1}{\partial b_{n_b}} & \dots & \frac{\partial c_{n_c}}{\partial b_{n_b}} \end{bmatrix}$$



Partial derivative of the cross-entropy loss with respect to (w.r.t.) the probabilities:

$$\frac{\partial \mathcal{L}(f(x),y)}{\partial f(x)_i} = \frac{\partial -\log f(x)_y}{\partial f(x)_i} = \frac{-1_{y=i}}{f(x)_y}, \text{ for simplicity } \frac{\partial \mathcal{L}}{\partial f(x)_i}$$





$$\frac{\partial \mathcal{L}}{\partial \tilde{y}_{i}} = \sum_{j} \frac{\partial \mathcal{L}}{\partial f(x)_{j}} \frac{\partial f(x)_{j}}{\partial \tilde{y}_{i}}$$

$$= \sum_{j} \frac{-1_{y=j}}{\partial f(x)_{y}} \frac{\partial softmax(\tilde{y})_{j}}{\partial \tilde{y}_{i}}$$

$$= \begin{cases}
\frac{-1}{f(x)_{y}} softmax(\tilde{y})_{y} (1 - softmax(\tilde{y})_{y}) & \text{if } i = y \\
\frac{1}{f(x)_{y}} softmax(\tilde{y})_{y} softmax(\tilde{y})_{i} & \text{if } i \neq y
\end{cases}$$

$$= \begin{cases}
-1 + f(x)_{y} & \text{if } i = y \\
f(x)_{i} & \text{if } i \neq y
\end{cases}$$

$$\nabla_{\tilde{y}} \mathcal{L} = f(x) - e(y) \text{ with one-hot encoding of the target}$$





$$\frac{\partial \mathcal{L}}{\partial \tilde{y}_i} = \sum_{j} \frac{\partial \mathcal{L}}{\partial f(x)_j} \frac{\partial f(x)_j}{\partial \tilde{y}_i}$$





$$\frac{\partial \mathcal{L}}{\partial \tilde{y}_{i}} = \sum_{j} \frac{\partial \mathcal{L}}{\partial f(x)_{j}} \frac{\partial f(x)_{j}}{\partial \tilde{y}_{i}}$$

$$= \sum_{j} \frac{-1_{y=j}}{\partial f(x)_{y}} \frac{\partial softmax(\tilde{y})_{j}}{\partial \tilde{y}_{i}}$$





$$\frac{\partial \mathcal{L}}{\partial \tilde{y}_{i}} = \sum_{j} \frac{\partial \mathcal{L}}{\partial f(x)_{j}} \frac{\partial f(x)_{j}}{\partial \tilde{y}_{i}}$$

$$= \sum_{j} \frac{-1_{y=j}}{\partial f(x)_{y}} \frac{\partial softmax(\tilde{y})_{j}}{\partial \tilde{y}_{i}}$$

$$= \begin{cases}
\frac{-1}{f(x)_{y}} softmax(\tilde{y})_{y} (1 - softmax(\tilde{y})_{y}) & \text{if } i = y \\
\frac{1}{f(x)_{y}} softmax(\tilde{y})_{y} softmax(\tilde{y})_{i} & \text{if } i \neq y
\end{cases}$$





$$\frac{\partial \mathcal{L}}{\partial \tilde{y}_{i}} = \sum_{j} \frac{\partial \mathcal{L}}{\partial f(x)_{j}} \frac{\partial f(x)_{j}}{\partial \tilde{y}_{i}}$$

$$= \sum_{j} \frac{-1_{y=j}}{\partial f(x)_{y}} \frac{\partial softmax(\tilde{y})_{j}}{\partial \tilde{y}_{i}}$$

$$= \begin{cases}
\frac{-1}{f(x)_{y}} softmax(\tilde{y})_{y} (1 - softmax(\tilde{y})_{y}) & \text{if } i = y \\
\frac{1}{f(x)_{y}} softmax(\tilde{y})_{y} softmax(\tilde{y})_{i} & \text{if } i \neq y
\end{cases}$$

$$= \begin{cases}
-1 + f(x)_{y} & \text{if } i = y \\
f(x)_{i} & \text{if } i \neq y
\end{cases}$$





$$\frac{\partial \mathcal{L}}{\partial \tilde{y}_{i}} = \sum_{j} \frac{\partial \mathcal{L}}{\partial f(x)_{j}} \frac{\partial f(x)_{j}}{\partial \tilde{y}_{i}}$$

$$= \sum_{j} \frac{-1_{y=j}}{\partial f(x)_{y}} \frac{\partial softmax(\tilde{y})_{j}}{\partial \tilde{y}_{i}}$$

$$= \begin{cases}
\frac{-1}{f(x)_{y}} softmax(\tilde{y})_{y} (1 - softmax(\tilde{y})_{y}) & \text{if } i = y \\
\frac{1}{f(x)_{y}} softmax(\tilde{y})_{y} softmax(\tilde{y})_{i} & \text{if } i \neq y
\end{cases}$$

$$= \begin{cases}
-1 + f(x)_{y} & \text{if } i = y \\
f(x)_{i} & \text{if } i \neq y
\end{cases}$$

$$\nabla_{\tilde{y}} \mathcal{L} = f(x) - e(y) \text{ with one-hot encoding of the target}$$





$$abla_{\widetilde{y}}\mathcal{L} = f(x) - e(y)$$

$$abla_{b^o}\mathcal{L} = \nabla_{\widetilde{y}}\mathcal{L}$$

$$abla_{w^o}\mathcal{L} = \nabla_{\widetilde{y}}\mathcal{L} \cdot h^T$$

$$\widetilde{\boldsymbol{y}} = \boldsymbol{W}^o \boldsymbol{h} + \boldsymbol{b}^o$$





$$\nabla_{\tilde{y}} \mathcal{L} = \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{e}(\boldsymbol{y})$$

$$\nabla_{\boldsymbol{b}} \circ \mathcal{L} = \nabla_{\widetilde{\mathcal{V}}} \mathcal{L}$$

$$\nabla_{\boldsymbol{w}^o} \mathcal{L} = \nabla_{\widetilde{\mathcal{Y}}} \mathcal{L} \cdot \boldsymbol{h}^T$$

$$\nabla_{\boldsymbol{h}} \mathcal{L} = \boldsymbol{W}^{oT} \cdot \boldsymbol{\nabla}_{\widetilde{\boldsymbol{\gamma}}} \mathcal{L}$$

$$\nabla_{\tilde{h}} \mathcal{L} = \nabla_{h} \mathcal{L} \odot \sigma'(\tilde{h})$$

⊙ is the element-wise multiplication (Hadamard product).

Sigmoid is applied element-wise, thus the gradient also.





$$\nabla_{\tilde{y}}\mathcal{L} = f(x) - e(y)$$

$$\nabla_{b^{o}}\mathcal{L} = \nabla_{\tilde{y}}\mathcal{L}$$

$$\nabla_{w^{o}}\mathcal{L} = \nabla_{\tilde{y}}\mathcal{L} \cdot h^{T}$$

$$\nabla_{h}\mathcal{L} = W^{o^{T}} \cdot \nabla_{\tilde{y}}\mathcal{L}$$

$$\nabla_{\tilde{h}}\mathcal{L} = \nabla_{h}\mathcal{L} \odot \sigma'(\tilde{h})$$

$$\nabla_{b^{h}}\mathcal{L} = ?$$

$$\nabla_{W^{h}}\mathcal{L} = ?$$





$$\nabla_{\tilde{y}}\mathcal{L} = f(x) - e(y)$$

$$\nabla_{b^{o}}\mathcal{L} = \nabla_{\tilde{y}}\mathcal{L}$$

$$\nabla_{w^{o}}\mathcal{L} = \nabla_{\tilde{y}}\mathcal{L} \cdot h^{T}$$

$$\nabla_{h}\mathcal{L} = W^{o^{T}} \cdot \nabla_{\tilde{y}}\mathcal{L}$$

$$\nabla_{\tilde{h}}\mathcal{L} = \nabla_{h}\mathcal{L} \odot \sigma'(\tilde{h})$$

$$\nabla_{b^{h}}\mathcal{L} = \nabla_{\tilde{h}}\mathcal{L}$$

$$\nabla_{w^{h}}\mathcal{L} = \nabla_{\tilde{h}}\mathcal{L} \cdot x^{T}$$





$$\nabla_{\tilde{y}} \mathcal{L} = \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{e}(\boldsymbol{y})$$

$$\nabla_{\boldsymbol{b}} \circ \mathcal{L} = \nabla_{\widetilde{\mathcal{V}}} \mathcal{L}$$

$$\nabla_{\boldsymbol{w}^o} \mathcal{L} = \nabla_{\widetilde{\boldsymbol{\mathcal{V}}}} \mathcal{L} \cdot \boldsymbol{h}^T$$

$$\nabla_{\boldsymbol{h}} \mathcal{L} = \boldsymbol{W}^{oT} \cdot \boldsymbol{\nabla}_{\widetilde{y}} \mathcal{L}$$

$$\nabla_{\tilde{h}} \mathcal{L} = \nabla_{h} \mathcal{L} \odot \sigma'(\tilde{h})$$

$$\nabla_{\boldsymbol{b}^h} \mathcal{L} = \nabla_{\tilde{h}} \mathcal{L}$$

$$\nabla_{\mathbf{W}^h} \mathcal{L} = \nabla_{\tilde{h}} \mathcal{L} \cdot \mathbf{x}^T$$

When in doubt, look at the shape.

 $\nabla_W \mathcal{L}$  must have the shape of W because of the update rule  $W \leftarrow W - \nabla_W \mathcal{L}$ 





$$\nabla_{\tilde{y}} \mathcal{L} = \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{e}(\boldsymbol{y})$$

$$\nabla_{\boldsymbol{b}} \circ \mathcal{L} = \nabla_{\widetilde{\mathcal{V}}} \mathcal{L}$$

$$\nabla_{\boldsymbol{w}} \circ \mathcal{L} = \nabla_{\widetilde{\mathcal{V}}} \mathcal{L} \cdot \boldsymbol{h}^T$$

$$\nabla_{\boldsymbol{h}} \mathcal{L} = \boldsymbol{W}^{oT} \cdot \boldsymbol{\nabla}_{\widetilde{y}} \mathcal{L}$$

$$\nabla_{\widetilde{h}} \mathcal{L} = \nabla_{h} \mathcal{L} \odot \sigma'(\widetilde{h})$$

$$\nabla_{\boldsymbol{h}^h} \mathcal{L} = \nabla_{\tilde{h}} \mathcal{L}$$

$$\nabla_{\mathbf{W}^h} \mathcal{L} = \nabla_{\tilde{h}} \mathcal{L} \cdot \mathbf{x}^T$$

To have huge speed-up:

- 1. Re-use previous gradients
- 2. Save tensors during forward



Tips & Tricks

# When to Stop?



Split data in train / val / test

Stop when a criterion (loss, accuracy, f1, etc.) stop improving on validation set



## (Mini-)Batch Size



#### **Batch Gradient Descent**: one forward & backward on the whole dataset

- → Better gradient estimation
- → GPU parallelism
- → Impracticable to fit large dataset in VRAM

#### Stochastic Gradient Descent: one forward & backward per sample

- → Easy to fit in VRAM
- → Add noise that may improve generalization
- → Add too much noise
- → Slow

#### Mini-Batch Gradient Descent: one forward & backward per group of samples

- → Trade-off between both
- → Learning rate should be proportional to batch size, e.g. batch size 32->64, lr 0.1->0.2

#### Learning Rate



$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}$$

Controls the rate of change.

#### Too high:

→ Cannot converge, but diverge, reduce overfitting

#### Too low:

→ Super slow, stuck in bad local minima

Start with high learning rate, and decreases it through time

#### SGD with Momentum

Step-size a = 0.02





Momentum  $\beta = 0.0$ 





We often think of Momentum as a means of dampening oscillations

and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes

has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

Why Momentum Really works, on distill.pub



#### **Optimizers**



Modern optimizers have an adaptive learning rate per parameter based on gradient statistics.

- → Especially useful on saddle point
- → The most famous is Adam

But a well-tuned SGD with momentum can sometimes be the best.



Great overview of gradient-descent based optimizers by Ruder.

#### Pitfalls of hidden activations



#### Function and their derivative



Sigmoid and tanh saturates at small and large values.

- → Gradient is zero, no learning
- → Avoid these old-school activations

ReLU is zero if  $x \le 0$ :

→ **Dying neurons** with zero-output and thus zero-gradient

$$\rightarrow$$
 If it happens, use a **Leaky ReLU**  $LReLU(x) = \begin{cases} x & if \ x > 0 \\ \epsilon \ x & otherwise \end{cases}$ 

#### Initialization



Initializing the biases  $\boldsymbol{b}^h$  and  $\boldsymbol{b}^o$  to very small values.

→ Helpful to avoid dying neurons with ReLU

Initializing the weights  $W^h$  and  $W^o$  to:

- Zero-weights
  - → No learning because gradient w.r.t input is also zero
- Constant weights
  - → Symmetry where two hidden neurons are connected to the same inputs, they learn the same pattern!
- Large values
  - → Risk gradient explosion
- He / Glorot initialization
  - → Normalize weights to avoid explosion with large number of outgoing connections

# Small break, then coding session!