DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA QUINTA PRÁCTICA (Modelo A)

1	Determina	ചി -	valor	del	signiente	límite	
1.	Doorning.	$^{\circ}$	vaioi	ucı	Signicities	milition.	

$$\lim_{n} \left(\frac{2n+1}{2n-\sqrt{n}} \right)^{\sqrt{n+2}} = \boxed{$$

2. Compara los órdenes de magnitud de las sucesiones

$$a_n = \sqrt{n^5} - \sqrt{n^3 + 1} \qquad \text{y} \qquad b_n = \log(n)$$

Tendrás que calcular

$$\lim_{n} \frac{a_n}{b_n} = \boxed{}$$

de donde puedes concluir

$$a_n \quad \boxed{} \quad b_n$$

3. Considera la sucesión recurrente:

$$\begin{cases} a_1 & = 2 \\ a_{n+1} & = 1 + \frac{1}{3a_n} \end{cases}$$

Construye una lista con los 20 primeros términos de la recurrencia. Aproxímalos con 10 dígitos significativos. Representa gráficamente la sucesión. A la vista de los resultados anteriores, podríamos intuir que el límite aproximado de la sucesión será

4. Define, usando \mathbf{If} , la sucesión recurrente

$$\begin{cases} a_1 &= 3\\ a_{n+1} &= \sqrt{5+4a_n} \end{cases}$$

El término a_{15} de la sucesión, con veinte dígitos significativos, es

5. Resuelve la ecuación en diferencias que proporciona la forma explícita de la sucesión que define el problema de las torres de Hanoi:

$$\begin{cases} a_1 = 1 \\ a_{n+1} = 2a_n + 1 \end{cases}$$

La expresión explícita para a_n , tras simplificar la función correspondiente, quedará

6. Considera $\{a_n\}$ la sucesión recurrente, definida mediante

$$2a_{n+2} = 3a_n + a_{n+1} \quad , \quad a_1 = a_2 = 1$$

La expresión explícita para a_n , tras simplificar la función correspondiente (puedes ayudarte también calculando previamente la solución general de la recurrencia sin condiciones iniciales), quedará

$$a_n =$$

Determina una sucesión exponencial b_n del mismo orden de magnitud que a_n

$$b_n =$$

DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf) CUESTIONARIO DE LA QUINTA PRÁCTICA (Modelo B)

1. Determina el valor del siguiente límite:

$$\lim_{n} \left(\frac{n+1}{n-\sqrt{n}} \right)^{\sqrt{n+2}-\sqrt{n}} = \boxed{$$

2. Usa el cálculo de límites para comparar las sucesiones $a_n = \log(n^5)$ y $b_n = \sqrt{n}$

$$\lim_{n} \left(\frac{\log(n^5)}{\sqrt{n}} \right) = \boxed{} \Rightarrow \log(n^5) \boxed{} \sqrt{n}$$

3. Considera la sucesión recurrente

$$\begin{cases} a_1 = 5 \\ a_{n+1} = 2 + \frac{1}{a_n} \end{cases}$$

Construye una lista con los 25 primeros términos de la recurrencia. Aproxímalos con 15 dígitos significativos. Representa gráficamente la sucesión. A la vista de los resultados anteriores, podríamos intuir que el límite aproximado de la sucesión será:

4. Define, usando la cláusula If, la sucesión recurrente

$$\begin{cases} a_1 = 2\\ a_{n+1} = \sqrt{1+3a_n} \end{cases}$$

El término a_{20} de la sucesión, con diez dígitos significativos, es

5. Resuelve la ecuación en diferencias (lineal de primer orden) dada por:

$$\begin{cases} a_1 = 0 \\ a_n = 3a_{n-1} + n \end{cases}$$

La expresión explícita para a_n queda

$$a_n = \boxed{}$$

Comprueba que $a_n \approx 3^n$. Para ello, calcula

$$\lim_{n} \left(\frac{a_n}{3^n} \right) = \boxed{} \in \mathbb{R}^+.$$

6. Sea a_n el número de cadenas de bits de longitud n que pueden generarse de forma que nunca haya dos ceros consecutivos. Observa (y calcula para n = 5) que las cadenas posibles para los primeros valores serán

Si
$$n = 1 \implies 0$$
 1
Si $n = 2 \implies 01$ 11 10
Si $n = 3 \implies 010$ 011 101 110 111
Si $n = 4 \implies 0101$ 0110 0111 1010 1110 1101 1011 1111

de donde se deduce que $a_1=2$, $a_2=3$, $a_3=5$, $a_4=8$, $a_5=$, ...

Define a_n como sucesión recurrente:

$$a_1 = 2$$
 , $a_2 = 3$,

Observa que se trata de la recurrencia que define la sucesión de Fibonacci empezando a partir del tercer término. Usa el resultado que devuelve Mathematica, tras simplificar la función correspondiente, para calcular el número de cadenas que podrías generar por este procedimiento si n = 100:

APELLIDOS: NOMBRE: GRUPO: