## Monades, Comonades et Automates cellulaires

Jérémy S. Cochoy

INRIA Paris-Saclay

Octobre 2015

- Monades
  - Types
  - Fonctions
  - Foncteurs
  - Monades
- 2 Automates Cellulaires
- 3 Comonades
- 4 Évaluer un automate est comonadique
  - Un univers
  - Un foncteur
  - Une comonade
  - Evaluation



#### Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

#### Examples

- $Int = \{-2147483648, \dots, 2147483647\}$
- $Bool = \{True, False\}$
- Char =  $\{'a', b', c', \ldots\}$
- $\bullet \ [\textit{Bool}] = \{[], [\textit{True}], [\textit{False}], [\textit{True}, \textit{False}], [\textit{False}, \textit{True}], \ldots\}$
- [a]

#### Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

#### Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- Bool = { True, False}
- Char =  $\{'a', b', c', \ldots\}$
- $\bullet \ [\textit{Bool}] = \{[], [\textit{True}], [\textit{False}], [\textit{True}, \textit{False}], [\textit{False}, \textit{True}], \ldots\}$
- [a]

### Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

#### Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- *Bool* = {*True*, *False*}
- Char =  $\{'a', b', c', \ldots\}$
- $\bullet \ [\textit{Bool}] = \{[], [\textit{True}], [\textit{False}], [\textit{True}, \textit{False}], [\textit{False}, \textit{True}], \ldots\}$
- [a]

#### Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

#### Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- *Bool* = {*True*, *False*}
- Char =  $\{'a', b', c', \ldots\}$
- $[Bool] = \{[], [True], [False], [True, False], [False, True], \ldots \}$
- [a]

#### Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

#### Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

#### Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

#### Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

#### Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

Ce sont les traitements que l'on peut implémenter.







Ce sont les traitements que l'on peut implémenter.











Une fonction ne lance pas de missile.

### Une fonction a aussi un type : $a \rightarrow b$

- floor : : Float -> Int
- (+2):: Int -> Int
- id::a->a
- map : : (a -> b) -> [a] -> [b]

#### Une fonction a aussi un type : $a \rightarrow b$

- floor : : Float -> Int
- (+2) :: Int -> Int
- id : : a -> a
- map : : (a -> b) -> [a] -> [b]



#### Ça se compose

- f1 : : a -> b
- f2::b->c
- f2 . f1 : : a -> c
- .:: (a -> b) -> (b -> c) -> (a -> c)

La collection de tous les types forme une catégorie. Les flèches sont les fonctions implémentables. On l'appelle la catégorie des types.



#### Ça se compose

- f1 : : a -> b
- f2::b->c
- f2 . f1 : : a -> c
- .:: (a -> b) -> (b -> c) -> (a -> c)

La collection de tous les types forme une catégorie. Les flèches sont les fonctions implémentables. On l'appelle la catégorie des types.



#### Ça se compose

- f1::a->b
- f2::b->c
- f2 . f1 : : a -> c
- .:: (a -> b) -> (b -> c) -> (a -> c)

La collection de tous les types forme une catégorie. Les flèches sont les fonctions implémentables. On l'appelle la catégorie des types.



## Les foncteurs

## Un foncteur F agit sur les types ...

- a => F a
- a => Maybe a
- a => [a]

#### ... et sur les fonctions

- a -> b => F a -> F b
- fmap (+2) :: F Int -> F Int
- fmap id : : Fa -> Fa



## Les foncteurs

## Un foncteur F agit sur les types ...

- a => F a
- a => Maybe a
- a => [a]

#### ... et sur les fonctions

- a -> b => F a -> F b
- fmap (+2) : : F Int -> F Int
- fmap id : : F a -> F a



## Donnée dans un contexte



Un foncteur permet de passer d'un monde (les types a) vers un autre (les types F a).



# Functorial mapping

On ne peut plus appliquer la fonction telle quelle les diagrammes suivant commutent :



# Functorial mapping

Mais le foncteur nous donne une nouvelle flèche.



## Dura lex sed lex

#### Un foncteur doit respecter des lois

- fmap id = id
- fmap (p . q) = (fmap p) . (fmap q)

Un foncteur est un endofoncteur de la catégorie des types.



## Dura lex sed lex

#### Un foncteur doit respecter des lois

- fmap id = id
- fmap (p . q) = (fmap p) . (fmap q)

Un foncteur est un endofoncteur de la catégorie des types.



#### Monades



## Donnée dans un contexte

Une monade place une valeur dans un contexte.







L'exemple de Maybe : Just 3

## Donnée dans un contexte

Un contexte peut aussi ne pas contenir de valeur.



L'exemple de Maybe : Nothing

16 / 54

## Placer une donnée dans un contexte

#### L'opérateur pure

pure :: a -> F a

#### Quelques cas particuliers

- Just
- (:[])
- Right

# Un traitement qui peut échouer



Une fonction de type Int -> Maybe Int.



# Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f:: a \rightarrow M b avec f map g:: M b \rightarrow M (M c).
```

Que faire d'un M (M c)?

# Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f: a \rightarrow M b avec fmap g: M b \rightarrow M (M c).
```

Que faire d'un M (M c)?

# Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f:: a \rightarrow M b avec fmap g:: M b \rightarrow M (M c).
```

```
Que faire d'un M (M c)?
```



# L'opérateur join

join :: M (M a) -> M a





join \$ Just (Just 3)

# L'opérateur join

join :: M (M a) -> M a





join \$ Just (Just 3).

# L'opérateur join

join :: M (M a) -> M a







join \$ Just (Nothing).

# L'opérateur join

join :: M (M a) -> M a







join \$ Just (Nothing).

# L'opérateur bind

## On cherche à définir la composition.

$$(>=>)$$
 ::  $(a -> M b) -> (b -> M c) -> (a -> M c)$ 

#### Nous avons:

- (fmap g) . f :: a -> M (M c)
- join :: M (M a) -> M a

### On peut maintenant composer f et g.

$$f >=> g \equiv join . (fmap g) . f.$$



# L'opérateur bind

### On cherche à définir la composition.

$$(>=>)$$
 ::  $(a -> M b) -> (b -> M c) -> (a -> M c)$ 

#### Nous avons:

- (fmap g) . f :: a -> M (M c)
- join :: M (M a) -> M a

### On peut maintenant composer f et g.

$$f >=> g \equiv join . (fmap g) . f.$$



# L'opérateur bind

### On cherche à définir la composition.

$$(>=>)$$
 ::  $(a -> M b) -> (b -> M c) -> (a -> M c)$ 

#### Nous avons:

- (fmap g) . f :: a -> M (M c)
- join :: M (M a) -> M a

### On peut maintenant composer f et g.

$$f >=> g \equiv join . (fmap g) . f.$$



## Récapitulatif

### Une monade, c'est

- fmap : : (a -> b) -> (M a -> M b)
- pure : : a -> M a
- join : : M (M a) -> M a

## Dura lex sed lex

### Une monade doit respecter des lois

- $\bullet$  pure . f  $\equiv$  (fmap f) . pure
- ullet join . fmap (fmap f)  $\equiv$  (fmap f) . join
- ullet join . fmap join  $\equiv$  join . join
- join . fmap pure ≡ join . pure = id

# Monades - Catégories

Une monade  $(T, \mu, \eta)$  est la donné d'un endofoncteur  $T: C \to C$  et de deux transformations naturelles  $\mu: T \circ T \to T$  et  $\eta: 1_C \to T$  telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X)) \qquad T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow \qquad \qquad \downarrow^{\mu_X} \qquad T(\eta_X) \downarrow \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X) \qquad T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire  $\mu \circ T\mu = \mu \circ \mu_T$  et  $\mu \circ T\eta = \mu \circ \eta_T = id_T$ .

Dans notre cas, C est la catégorie des types



# Monades - Catégories

Une monade  $(T, \mu, \eta)$  est la donné d'un endofoncteur  $T: C \to C$  et de deux transformations naturelles  $\mu: T \circ T \to T$  et  $\eta: 1_C \to T$  telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X)) \qquad T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow \qquad \downarrow^{\mu_X} \qquad T(\eta_X) \downarrow \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X) \qquad T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire  $\mu \circ T\mu = \mu \circ \mu_T$  et  $\mu \circ T\eta = \mu \circ \eta_T = id_T$ . Dans notre cas, C est la catégorie des types.



### pure est une T.N.

pure .  $f \equiv (fmap \ f)$  . pure

$$X \xrightarrow{f} Y$$

$$\uparrow_{\eta_X} \downarrow \qquad \qquad \downarrow_{\eta_Y}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

#### join est une T.N.

join . fmap 
$$(fmap f) \equiv (fmap f)$$
 . join

$$T(T(X)) \xrightarrow{T(T(f))} T(T(Y))$$

$$\downarrow^{\mu_X} \qquad \qquad \downarrow^{\mu_Y}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

#### Associativité

join . fmap join  $\equiv$  join . join

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

$$\mu \circ T\mu = \mu \circ \mu_T$$



#### Existence d'un neutre

join . fmap pure  $\equiv$  join . pure = id

$$T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$T(\eta_{X}) \downarrow \qquad \qquad \downarrow^{\mu_{X}}$$

$$T(T(X)) \xrightarrow{\mu_{X}} T(X)$$

$$\mu \circ T\eta = \mu \circ \eta_T = id_T$$



#### **Automates cellulaires**

TODO: COMMIT TEXTILE CONE

Toison d'or

# Qu'est-ce qu'un automate cellulaire?

### Un automate cellulaire, c'est :

- Un nombre fini d'états S,
- Une grille de cellules,
- La notion de voisinage d'une cellule  $V_c$ ,
- D'une fonction de transition qui à une cellule associe sont nouvelle état.

## Combien d'automates cellulaires différents?

#### On a le choix:

- De la dimension de la grille,
- Des lois,
- Du nombres d'états (couleurs),
- De la forme du voisinages (boules de rayon r, etc.),
- De ne pas être déterministe.

## The "Game of Life"

## Jeu de la vie (J. H. Conway)



## Étude d'un cas : Rule 30



## La grille

### La grille de l'automate



- Une grille 1D
- Deux états (Blanc / Noir)

## Un voisinage de 3 cellules.

#### Les règles



#### On peux aussi écrire :

| Ancien état | 111 | 110 | 101 | 100 | 011 | 010 | 001 |  |
|-------------|-----|-----|-----|-----|-----|-----|-----|--|
| Nouvel état |     |     |     | 1   | 1   | 1   | 1   |  |

## Un voisinage de 3 cellules.

## Les règles



#### On peux aussi écrire :

| Ancien état | 111 | 110 | 101 | 100 | 011 | 010 | 001 |  |
|-------------|-----|-----|-----|-----|-----|-----|-----|--|
| Nouvel état |     |     |     | 1   | 1   | 1   | 1   |  |

Un voisinage de 3 cellules.

## Les règles



## On peux aussi écrire :

| Ancien état | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Nouvel état | 0   | 0   | 0   | 1   | 1   | 1   | 1   | 0   |

#### Comonades



## C'est le dual d'une monade

- extract (copure) (co uinit) : : M a -> a
- duplicate (cojoin) (co product  $\delta$ ) : : M a -> M (M a)



### Dura lex sed lex

#### Une comonade doit respecter des lois

- ullet (fmap (fmap f)) . duplicate  $\equiv$  duplicate . fmap f
- duplicate . duplicate = fmap duplicate . duplicate
- ullet duplicate  $\equiv$  fmap duplicate . duplicate (commut)
- ullet fmap extract . duplicate  $\equiv$  extract . duplicate  $\equiv$  id (counit)

# Comonades - Catégories

Une comonade  $(T, \delta, \epsilon)$  est la donné d'un endofoncteur  $T: C \to C$  et de deux transformations naturelles  $\Delta: T \to T \circ T$  et  $\epsilon: T \to 1_C$  telles que :

$$T(X) \xrightarrow{\Delta_X} T(T(X)) \qquad T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\Delta_X \downarrow \qquad \qquad \downarrow^{\Delta_{T(X)}} \qquad \Delta_X \downarrow \qquad \qquad \downarrow^{\epsilon_{T(X)}}$$

$$T(T(X)) \xrightarrow{T(\Delta_X)} T(T(T(X))) \qquad T(T(X)) \xrightarrow{T(\epsilon_X)} T(X)$$

c'est à dire  $\Delta_T \circ \Delta = T\Delta \circ \Delta$  et  $T\epsilon \circ \Delta = \epsilon_T \circ \Delta = id$ .



#### extract est une T.N.

f . extract  $\equiv$  extract . (fmap f)

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\uparrow \epsilon_X & & \epsilon_Y \\
\hline
T(X) & \xrightarrow{T(f)} & T(Y)
\end{array}$$



### duplicate est une T.N.

(fmap (fmap f)) .  $duplicate \equiv duplicate$  . fmap f

$$T(X) \xrightarrow{T(f)} T(Y)$$

$$\Delta_X \downarrow \qquad \qquad \downarrow \Delta_Y$$

$$T(T(X)) \xrightarrow{T(T(f))} T(T(Y))$$



#### Coassociativité

duplicate . duplicate = fmap duplicate . duplicate

$$T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\Delta_X \downarrow \qquad \qquad \downarrow^{\Delta_{T(X)}}$$

$$T(T(X)) \xrightarrow{T(\Delta_X)} T(T(T(X)))$$

$$\Delta_{\tau} \circ \Delta = T\Delta \circ \Delta$$



#### Existence d'une counité

extract . duplicate = fmap extract . duplicate = id

$$T(X) \xrightarrow{\Delta_X} T(T(X))$$

$$\downarrow^{\epsilon_{T(X)}}$$

$$T(T(X)) \xrightarrow{T(\epsilon_X)} T(X)$$

$$\epsilon \tau \circ \Delta = T \epsilon \circ \Delta = i d \tau$$



TODO : Une image pour la section evaluation comonadic des automates. automata flip.png ?

### L'univers



#### Un ruban

On représente l'univers dans lequel vie notre automate par un ruban, que l'on voie comme trois parties :

- La partie infinie à gauche
- La case observée
- La partie infinie à droite

data Universe a = Universe [a] a [a]



## Quelques opérations sur notre univers



### Voyageons

On s'autorise à effectuer quelques opérations raisonnables sur notre univers :

- Regarder à gauche (left shift)
- Regarder à droite (right shift)

Moralement, on *translate* notre ruban.

left, right : : Universe a -> Universe a

## Quelques opérations sur notre univers



### Voyageons

On s'autorise à effectuer quelques opérations raisonnables sur notre univers :

- Regarder à gauche (left shift)
- Regarder à droite (right shift)

Moralement, on translate notre ruban.

left, right : : Universe a -> Universe a

## Quelques opérations sur notre univers



### Voyageons

On s'autorise à effectuer quelques opérations raisonnables sur notre univers :

- Regarder à gauche (left shift)
- Regarder à droite (right shift)

Moralement, on translate notre ruban.

left, right : : Universe a -> Universe a

## Univers est fonctoriel

#### Un foncteur

Notre ruban est naturellement un foncteur : Il suffit d'appliquer à notre universea une fonction a->b sur chacune des cellules pour obtenir un Universeb.



## Comonades, nous voilà : extract



#### Extraire une information

Depuis notre univers, on peut extraire une valeur : celle de la case que l'on est en train d'observer!

extract : : Universe a -> a

## Comonades, nous voilà : duplicate



### L'opération duplicate

On veut construire un univers où chaque case du ruban contient elle même... un univers. Il s'agit de contenir tous les shift possible de notre univers de départ.

duplicate : : Universe a -> Universe (Universe a)

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ ト 9 Q (

## Loi de convolution



#### La loi de notre automate

Notre automate est décris par une fonction qui, à un univers, associe l'état de la cellule observé à la prochaine itération. On a donc accès à tout l'univers.

#### Rule 30

Pour Rule 30, on a besoin de la cellule couramment observé, et de ses voisines de droite et de gauche.

rule · · Universe a -> a

## Loi de convolution



#### La loi de notre automate

Notre automate est décris par une fonction qui, à un univers, associe l'état de la cellule observé à la prochaine itération. On a donc accès à tout l'univers.

#### Rule 30

Pour Rule 30, on a besoin de la cellule couramment observé, et de ses voisines de droite et de gauche.

rule : : Universe a -> a

### Loi de convolution



#### La loi de notre automate

Notre automate est décris par une fonction qui, à un univers, associe l'état de la cellule observé à la prochaine itération. On a donc accès à tout l'univers.

#### Rule 30

Pour Rule 30, on a besoin de la cellule couramment observé, et de ses voisines de droite et de gauche.

rule:: Universe a -> a

## L'évaluation est comonadique

### Comment obtenir l'itération n+1 depuis l'itération n?

Nous disposons maintenant de tous les outils pour, en une ligne, décrire l'itération au rang n+1 depuis l'univers au rang n.

### La pipeline :

- On duplique notre univers :
  - duplicate : : Universe a -> Universe (Universe a)
- On map notre règle sur chaque case :
  - fmap rule : : Universe (Universe a) -> Universe a

fmap rule . duplicate : : Universe a -> Universe a



## L'évaluation est comonadique

### Comment obtenir l'itération n+1 depuis l'itération n?

Nous disposons maintenant de tous les outils pour, en une ligne, décrire l'itération au rang n+1 depuis l'univers au rang n.

### La pipeline :

- On duplique notre univers :
  - duplicate : : Universe a -> Universe (Universe a)
- On map notre règle sur chaque case :
  - fmap rule : : Universe (Universe a) -> Universe a

fmap rule . duplicate : : Universe a -> Universe a



## L'évaluation est comonadique

### Comment obtenir l'itération n+1 depuis l'itération n?

Nous disposons maintenant de tous les outils pour, en une ligne, décrire l'itération au rang n+1 depuis l'univers au rang n.

### La pipeline :

- On duplique notre univers :
  - duplicate : : Universe a -> Universe (Universe a)
- On map notre règle sur chaque case :
  - fmap rule : : Universe (Universe a) -> Universe a

fmap rule . duplicate : : Universe a -> Universe a



### Live démo





Merci pour votre attention!