# Le théorème de Pythagore

#### 1) Introduction

Dans un triangle rectangle, le côté le plus long est appelé hypoténuse, les deux autres sont appelés cathètes (ou côtés de l'angle droit). L'hypoténuse est le côté opposé à l'angle droit.



### 2) Théorème de Pythagore

#### Théorème:

Si un triangle est rectangle

alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

Exemple: Le triangle ci-dessous est rectangle donc  $a^2 = b^2 + c^2$ .



## Exemple 1: Calcul de la longueur d'un côté de l'angle droit

Soit RAS un triangle rectangle en A tel que RS = 13 cm et RA = 5 cm. Calcule AS.

Figure à main levée :

Le triangle RAS est rectangle en A, son hypoténuse est le côté [RS]. Donc, d'après <u>le théorème de Pythagore</u>, on a :





La longueur AS est positive donc AS =  $\sqrt{144}$  cm.

Donc AS = 12 cm (144 est le carré parfait de 12).

<u>Remarque 1 :</u> Pour utiliser le théorème de Pythagore, il faut bien vérifier que le triangle est un triangle rectangle.

Remarque 2 : On utilise le théorème de Pythagore pour calculer une longueur manquante du côté d'un triangle rectangle.

## 3) Réciproque du théorème de Pythagore

Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés

alors ce triangle est rectangle et admet ce plus grand côté pour hypoténuse.

Exemple 2: ZEN est un triangle tel que NE = 75 cm, EZ = 45 cm et NZ = 60 cm. Démontre que ce triangle est rectangle.

Figure à main levée :

Dans le triangle ZEN, le plus long côté est [NE] (75 cm).

Donc on calcule séparément  $NE^2$  et  $EZ^2 + NZ^2$ :

D'une part,  $NE^2 = 75^2$   $NE^2 = 5625$ D'autre part,  $EZ^2 + NZ^2 = 45^2 + 60^2$   $EZ^2 + NZ^2 = 2025 + 3600$  $EZ^2 + NZ^2 = 5625$ 

On constate que  $NE^2 = EZ^2 + NZ^2$ .

Donc, d'après <u>la réciproque du théorème de Pythagore</u>, le triangle ZEN est rectangle en Z.