Chapter 2 Subgroups

Contents

1	Definition and Examples	2
2	Centralizers and Normalizers, Stabilizers and Kernels	2

1 Definition and Examples

Definition. (Subgroup)

- 1. (subgroup) Let G be a group. The subset H of G is a subgroup of G, denoted as $H \leq G$ if
 - (a) H is nonempty
 - (b) H is closed under products and inverses, i.e. $x, y \in G$ implies $x^{-1}, xy \in H$

If $H \leq G$ and $H \neq G$, then H < G. $H \leq G$ implies operation on H is the operation on G restricted to H. So any equation in H can also be viewed as equation in G

- 2. (The Subgroup Criterion) $H \subset G$ is a subgroup if and only if
 - (a) $H \neq \emptyset$
 - (b) for all $x, y \in H$, $xy^{-1} \in H$

Furthermore, if H is finite, then suffice to check H is nonempty and closed under multiplication

- (examples)
 - $-G \leq G$ and $\{1\} \leq G$ (latter is called the trivial subgroup)
 - $-\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R}$ under operation of addition
 - $-\left\{1, r, r^2, \cdots, r^{n-1}\right\} \le D_{2n}$
 - $-2\mathbb{Z} \leq \mathbb{Z}$
 - $(\mathbb{Q}^{\times}, \times) \not\leq (\mathbb{R}, +)$ (operation are different)
 - $-\mathbb{Z}^+ \leq \mathbb{Z}$ and $(\mathbb{Z}^+)^{\times} \nleq \mathbb{Q}^{\times}$ (not closed under inverses and does not contain identity)
 - $-D_6 \not\leq D_8 \ (D_6 \not\subset D_8)$
- (theorem) subgroup is a transitive relation, i.e. $K \leq H, H \leq G$, then $K \leq G$
- 2 Centralizers and Normalizers, Stabilizers and Kernels