Transfer Learning

Overview

Applying deep learning to real-world problems

딥러닝은 아주 강력한 모델이지만.

1) 충분한 양의 데이터, 2) 고성능 하드웨어, 3) 딥러닝 구현 및 튜닝 노하우가 없으면 사용하기가 매우 어렵다

Transfer Learning?

우리가 만일 세상의 모든 이미지를 갖고 있다면

이 데이터로 누군가가 딥러닝 모델을 만들어주면 별도의 학습 과정 없이 이를 그대로 사용할 수 있을 것이다

세상에 존재하는 이미지를 모두 다운받아서


```
model = load_resnet()

y_predict = model.predict(X_test)
y_predict = y_predict.argmax(axis=1)

accuracy = (y_predict == y_test).mean()

print("Score = {0:.5f}".format(accuracy))
```

우리는 이 모델을 다운받아서 쓰면 되는거 아닐까?

(누군가가) 이 데이터로 딥러닝 모델을 만들어주면

Transfer Learning

현실은 그렇지 않기 때문에 다음과 같은 방법을 활용한다

1) 인터넷에 공개되어있는 방대한 이미지 데이터를 받아서 2) 누군가 딥러닝 모델을 만들어주면 3) 일반인은 이를 고쳐쓴다

이미지넷 데이터를 다운받는다

큰 회사에서 이를 학습한

딥러닝 모델을 공개한다

그대로는 쓰시 못 하고, 약간 고쳐서 사용한다.

model.load_weights("models/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5")

그대로는 쓰지 못 하고,

model.add(Dense(units=128, activation='relu'))

model.add(Dense(units=1, activation='sigmoid'))

model.add(Flatten())

model.summary()

이미 학습이 끝난 모델(ex: VGGNet)을 다운 받는다

이미 학습이 끝난 모델(ex: VGGNet)을 다운 받는다

(데이터가 적으면) 마지막 레이어만 없앤 뒤 새로 만든다

이미 학습이 끝난 모델(ex: VGGNet)을 다운 받는다

(데이터가 적으면) 마지막 레이어만 없앤 뒤 새로 만든다

보유한 데이터로 학습을 하되 새로 만든 레이어만 학습한다

이미 학습이 끝난 모델(ex: VGGNet)을 다운 받는다

(데이터가 많으면) 조금 더 위의 레이어도 학습할 수 있도록 한다

마지막 부분에 해당하는 레이어도 학습한다

Transfer Learning & Fine-Tuning - Result

Transfer Learning을 적용한 딥러닝 모델이 그렇지 않은 모델보다 언제나 더 좋은 성능을 보장한다

TL; DR

- 딥러닝은 굉장히 강력한 모델이지만
 - 충분한 양의 데이터
 - 고성능 하드웨어
 - 딥러닝 알고리즘을 구현 및 튜닝할 수 있는 노하우
- 가 필요하다. 그러므로 일반적으로는 충분한 돈과 인력을 보유한 회사에서만 딥러닝 모델을 사용할 수 있었다.
- 위 세 가지를 보유하지 않은 일반 개인이나 중소기업은 Transfer Learning을 사용할 수 있다. 이를 활용하면
 - 상대적으로 부족한 데이터
 - 좋지 않은 성능의 하드웨어(심지어 노트북에서도!)
 - 딥러닝 알고리즘에 대한 기본적인 이해 및 튜닝 노하우
- 만 있으면 누구든지 딥러닝 모델을 구현할 수 있다.

실습