

QCAT WCDMA Analysis Guide

80-V5400-3 A

June 6, 2014

Submit technical questions at:

https://support.cdmatech.com/

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm or its subsidiaries without the express approval of Qualcomm's Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Qualcomm reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed for any damages arising directly or indirectly by their use or application. The information provided in this document is provided on an "as is" basis.

This document contains confidential and proprietary information and must be shredded when discarded.

Qualcomm is a trademark of QUALCOMM Incorporated, registered in the United States and other countries. All QUALCOMM Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2014 Qualcomm Technologies, Inc. All rights reserved.

Contents

1 Introduction	7
1.1 Purpose	7
1.2 Scope	
1.3 Organization	
1.4 Conventions	
1.5 References	8
1.6 Technical assistance	
1.7 Acronyms	
2 ASCII Information Outputs	9
2.1 HSDPA Extended Decode Stats	9
2.2 WCDMA RLC Summary Statistics	
2.3 PN SRCH Eng Info Summary	
2.4 PN SRCH Eng Info All Carriers Summary	
3 Histiogram Outputs	17
3.1 WCDMA UE Power (Tx) Graph	17
3.2 WCDMA UE Power (Rx0) Graph	
•	
4 Time Outputs	
4.1 Time grids only	22
·	
4.1.1 WCDMA Search Power vs. Time	22
4.1.1 WCDMA Search Power vs. Time4.1.2 TA finger Info vs. Time	22
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	22 23 24 25 25 26 27 28 28
4.1.1 WCDMA Search Power vs. Time	22 23 24 25 26 27 28 28 29
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	
4.1.1 WCDMA Search Power vs. Time	22 23 24 24 25 26 27 28 28 29 30 31 31 32 33 35 37 38 d plot 39

Contents

4.2.12 EUL ETFCI SI vs. Time Primary grid and plot	41
4.2.13 EUL HICH CMD vs. Time Primary grid and plot	42
4.2.14 WCDMA RRC Messages Plot	
4.2.15 PN SRCH Eng Info vs. Time/Plot	
-	45

Figures

Figure 2-1 HSDPA Extended Decode Stats (MIMO)	10
Figure 2-2 HSDPA Extended Decode Stats (dual carrier)	11
Figure 2-3 WCDMA RLC Summary Statistics	14
Figure 2-4 PN SRCH Eng Info Summary	15
Figure 2-5 PN SRCH Eng Info All Carriers Summary	16
Figure 3-1 WCDMA UE Power (Tx) Graph	18
Figure 3-2 WCDMA UE Power (Rx0) Graph	20
Figure 4-1 List of time outputs as grids and plots	21
Figure 4-2 WCDMA Search Power vs. Time	22
Figure 4-3 TA finger Info vs Time	23
Figure 4-4 WCDMA BLER vs Time	24
Figure 4-5 WCDMA PC-AGC Power vs. Time	25
Figure 4-6 WCDMA RRC Messages vs Time	26
Figure 4-7 HSDPA HS-SCCH TB vs Time grid/plot	27
Figure 4-8 EUL Happy Bit vs. Time Primary plot	28
Figure 4-9 EUL Scheduling Info Plot Primary	29
Figure 4-10 EUL Serving Grant vs. Time Plot Primary	30
Figure 4-11 WCDMA AGC Power vs. Time	31
Figure 4-12 WCDMA AGC Power Plot	31
Figure 4-13 WCDMA PC-AGC Power Plot Primary	
Figure 4-14 WCDMA ASet Srch Pwr vs. Time	33
Figure 4-15 WCDMA Srch Pwr Plot	34
Figure 4-16 WCDMA ASet RSCP Pwr vs. Time	35
Figure 4-17 WCDMA RSCP Plot	36
Figure 4-18 WCDMA RLC DL TP Plot	37
Figure 4-19 WCDMA RLC UL TP Plot	38
Figure 4-20 EUL ETFCI 2ms TTI Plot Primary	39
Figure 4-21 EUL ETFCI 10ms TBS Plot Primary	40
Figure 4-22 EUL ETFCI 2ms SI Plot Primary	41
Figure 4-23 EUL HICH CMD Plot Primary	42
Figure 4-24 WCDMA RRC Messages Plot	43
Figure 4-25 PN SRCH Eng Info Plot	44
Figure 4-26 WCDMA AGC Power All Carriers vs. Time	45

I	a	b	ı	е	S

Revision history

Revision	Date	Description
Α	Jun 2014	Initial release

1 Introduction

1.1 Purpose

- This guide provides interpretation for the various WCDMA outputs produced by the QCAT software application.
 - Much of the general or common information is derived from or refers to [Q10].

1.2 Scope

10

11

12

13

14

15

17

18

19

20

21

25

29

30

31

32

Readers of this document are assumed to have moderate to high WCDMA experience and some data analysis expertise.

1.3 Organization

QCAT generates its outputs in the form of tab-delimited ASCII text files, many of which are subsequently exported into a Microsoft Excel workbook by the QCAT export engine. See [Q10] for a detailed description of the QCAT export engine and the Microsoft Excel workbook generated by the export engine. Typically, each output file corresponds to one worksheet in the QCAT workbook.

This document contains illustrations from the Microsoft Excel workbook corresponding to each QCAT output file and explains the output with an emphasis on the corresponding Microsoft Excel worksheet. However, the sections do mention the extension for the QCAT output file that generates the specific worksheet.

The QCAT outputs can be classified into the following broad categories:

- ASCII text information
- Debug information
- Diagnostics summary
- QCAT analyzer information
 - Histograms
 - GPS maps
 - Time plots

This document is divided into sections that describe each of the above categories. The individual outputs are explained in the subsections. Each subsection provides a description and sample of the output.

Note that this guide does not try to cover all possible scenarios encountered in mobile communications. Instead, it provides a set of examples and basic interpretations to assist in interpolating and extrapolating from the given information

1.4 Conventions

- Function declarations, function names, type declarations, and code samples appear in a different font, e.g., #include.
- Code variables appear in angle brackets, e.g., <number>.
 - Commands to be entered appear in a different font, e.g., copy a:*.* b:.

1.5 References

Reference documents are listed in Table 1-1. Reference documents that are no longer applicable are deleted from this table; therefore, reference numbers may not be sequential.

Table 1-1 Reference documents and standards

Ref.	Document						
Qualc	Qualcomm						
Q3	QCAT6 User Guide	80-V1233-6					
Q4	CDMA Dual-Mode Subscriber Station Serial Data Interface Control Document	80-V1294-1					
Q5	Serial Interface Control Document for UMTS	80-V4083-1					
Q6	Serial Interface Control Document for WCDMA	80-V2708-3					
Q7	QXDM Log File Format Specification	80-V1595-1					
Q9	Application Note: Software Glossary for Customers	CL93-V3077-1					
Q10	QCAT CDMA Analysis Guide	80-V1234-2					
Stand	Standards						
S1	Radio Link Control (RLC) Protocol Specification	3GPP TS 25.322 (R99)					
S2	Physical Layer Procedures (FDD)	3GPP TS 25.214 (Rel-5)					
S3	Physical Channels and Mapping of Transport Channels onto Physical Channels (FDD)	3GPP TS 25.211					

1.6 Technical assistance

For assistance or clarification on information in this document, submit a case to Qualcomm Technologies, Inc. (QTI) at https://support.cdmatech.com/.

If you do not have access to the CDMATech Support Service website, register for access or send email to support.cdmatech@qti.qualcomm.com.

1.7 Acronyms

For definitions of terms and abbreviations, see [Q1].

10

11

12

13

14

15

16

2 ASCII Information Outputs

2.1 HSDPA Extended Decode Stats

Data source

- 0x4205 HS Decode Status
- 0x4206 HS Decode Status With Data
- 0x420A UL HS DPCCH Information
 - 0x420B UL HS DPCCH Debug Information
 - 0x4213 MAC HS Reset
- 0x4214 HS Decode Status With Data Ver 2
- 0x421C UL HS DPCCH Information Log Packet Edition 2
- 0x4222 HS Decode Status Log Packet with Data Edition 3

Description

Figure 2-1 and Figure 2-2 display HSDPA Extended Decode Stats outputs.

HSDPA Extended Decode Stats Qualcomm Proprietary and Confidential. # of Transmissions for a Successful Decode # of HS-PDSCH Drop SB-HS-DSCH Modulation SBLER Block-Block+ SB-(s) SB+ 0 58 Dup. Dup. SB+ SB+ (s) SBLER% SBLER% SBLER SB+ 2 3 4 5 >=6 TBS Rate (Kbps) 68.5 (s) 0.000 1st% 0.000 1st% (s) 0.000 BLER% 137 QPSK 0 0.000 0000 0.000 0 0.000 0.000 0.000 0 0 0 0 0 OPSK 0 533 266.5 0 0.000 0.000 0.000 0.000 0 0.000 272.5 QPSK 0.000 0.000 0.000 0.000 0.000 581 290.5 **QPSK** 0 0 0 32 0 0.000 0.000 0.000 0.000 0 32 0.000 32 0 0 0 0 0 23792 11896 16QAM 0 485 175 606 0 44.455 100.000 95.021 100.000 53 606 8.042 25 572 9 0 0 24222 12111 16QAM 0 106 92.982 100.000 92.982 100.000 118 93.651 5884 Totals N/A N/A N/A N/A 1056 432 3353 2531 0 23.951 14.580 31.867 14.897 228 3.730 4743 1132 9 0 0 MIMO Stream % Time % of time 1 TB Requested 0.46 % of time 2 TB Requested % of time Single Stream Scheduled 99.54 34.50 % of time Dual Stream Scheduled 65.50 HS-SCCH Decoding Statistics Number of sub-frames 32706 HS-SCCH Attempts 32706 HS-SCCH Successes 4530 HS-SCCH Success Rate (%) 13.85 Antenna ACK->NACK/DTX Conversion Rate (%) Primary 0.18 0.00 TBS Changes During Retransmission Modulation Changes During Retransmission Hs-PDSCH Code Changes During Retx HS Rate Statistics (Kbps) 1736.85 Physical Layer Throughput HS MAC Statistics HS MAC Resets

Figure 2-1 HSDPA Extended Decode Stats (MIMO)

Figure 2-2 HSDPA Extended Decode Stats (dual carrier)

This output provides each TBS with a combination of the number of HS-PDSCH and the modulation in the table format with the following columns:

■ Column 1 – TBS

10

11

12

13

14

15

17

18

19

20

21

2.2

23

2.4

25

29

30

31

32

33

35

36

37

- Column 2 Corresponding data rate (TBS x 500)
 - Column 3 Modulation (QPSK or 16 QAM)
- Column 4 Number of HS-PDSCH
 - Column 5 Drop counter
 - Column 6 SB-; the total number of subblocks that failed CRC
 - Column 7 SB+; the total number of subblocks that decoded CRC successfully
 - Column 8 Dup. SB+; the number of duplicate subblocks, defined as a subblock that has been ACKed, but is still retransmitted in the next transmission
 - Column 9 SBLER = SB-/(SB-+SB+)
 - Column 10 SBLER on first transmission
 - Column 11 Block-; the total number of residual block errors
 - Column 12 Block+; the total number of blocks successfully decoded
 - Column 13 Res. BLER; residual BLER = Blocks-/(Block- + Block+)
 - Columns 14 to 19 Number of transmissions to successfully decode a block (1, 2, 3, 4, 5, 6, or more)
 - Only the received TBS with the combination of the modulation and number of HS-PDSCH received is displayed.
 - □ Table rows are sorted by the TBS, modulation, and number of HS-PDSCH.
 - □ This output assumes that the modulation and number of HS-PDSCH do not change in retransmission.
 - □ When the parser determines that the modulation or number of HS-PDSCH has changed in retransmission, that data should be dropped. In this case, the drop counter of the rows corresponding to each transmission is incremented. The following example shows two transmissions of the same transport block data:
 - First transmission (TBS, modulation, # of HS-PDSCH) = (3440, QPSK, 4)
 - Second transmission (3440, QPSK, 5)

The statistics of these two transmissions should not be included in the table, and the drop counter of (3440, QPSK, 4) and (3440, QPSK, 5) should increment.

The following additional statistics are provided in separate tables:

- Number of subframes
- HS-SCCH attempts
- HS-SCCH successes
- HS-SCCH success rate = (HS-SCCH successes/HS-SCCH attempts)*100
- Number of occurrences of TBS changes during retransmissions

- ACK to NACK or DTx conversion %
 - TBS changes during retransmission
 - Modulation changes during retransmission
 - Modulation changes during retransmission
 - HS-PDSCH code changes during retransmission
 - Physical layer throughput
 - HS MAC resets

10

11

12

13

14

15

17

18

21

22

23

2.4

25

26

27

28

29

30

31

32

33

34

35

36

2.2 WCDMA RLC Summary Statistics

As illustrated in Figure 2-3, this screen will give separate RLC statistics for both UL and DL. Note that the statistics based on 0x4149 and 0x414A are cumulative, which means they will be correct even when some of these log packets are missing:

- Total number of PDU bytes received (DL 0x414A, UL 0x4149/0x4149)
- Total number of SDU bytes to higher layer (DL 0x414A, UL 0x4149/0x4149)
- Total number of data PDUs received (DL 0x414A, UL 0x4149/0x4149)
- Total number of data PDUs NAKed (DL 0x414A, UL 0x4149/0x4149)
- Total number of control PDUs received (DL 0x414A, UL 0x4149/0x4149)
- RLC BLER (PDU error rate) = NAKed PDUs/(Data PDUs + NAKed PDUs)
- RLC PDU throughput = Total PDU bytes/total time
- RLC SDU throughput = Total SDU bytes/total time
- Window open/close (DL 0x4146/0x4144, UL 0x4145/0x414B) Based on RLC control PDUs in which the WINDOW SUFI indicates a window size of 1
- RLC resets (DL 0x4144, UL 0x4149) In the uplink direction, this is based on RLC statistics
 which counts the number of resets; in the downlink, this is determined by counting the
 number of RLC RESET PDUs received
- Discarded SDUs based on MRW (DL 0x4146/0x4144, UL 0x4145/0x414B) Counts the number of times MRW is received indicating a discarded SDU; multiple retransmissions of the same MRW are not counted

The log packet names for the log packet codes used in this screen are the following:

- 0x4134 WCDMA RLC DL AM PDU
- 0x4138 WCDMA RLC UL AM Statistics Ver 2
- 0x4139 WCDMA RLC UL AM Statistics
- 0x413B WCDMA RLC UL AM PDU
 - 0x4144 WCDMA RLC DL AM PDU
 - 0x4145 WCDMA RLC UL AM Control PDU LOG
- 0x4146 WCDMA RLC DL AM Control PDU LOG
 - 0x4149 WCDMA RLC UL AM Statistics

- 0x414A WCDMA RLC DL AM Statistics
- 0x414B WCDMA RLC UL AM PDU

NOTE: Log packets 0x4134 and 0x413B have partial information of the RLC control PDUs, which means that if 0x4145 and 0x4146 are not logged, then this partial information is used instead.

WCDMA RLC Summary Statistics

DL Logical Channels	Chan 11	Chan 12	Chan 13	Chan 14
Total # of PDU bytes received	1296	270	0	1783908
Total # of SDU bytes to higher layer	372	97	0	1603078
Total # of Data PDUs received	29	7	0	40520
Total # of Data PDUs NAKed	0	0	0	3116
Total # of Control PDUs received	30	6	0	771
RLC BLER [%]	0.00	0.00	N/A	7.14
RLC PDU Tput [Kbps]	0.08	0.02	0.00	109.78
RLC SDU Tput [Kbps]	0.02	0.01	0.00	98.65
Resets	0			0
Window open/close	0			0
Discarded SDUs	0			0

UL Logical Channels	Chan 11	Chan 12	Chan 13	Chan 14
Total # of PDU bytes received	1170	342	0	94038
Total # of SDU bytes to higher layer	228	173	0	54024
Total # of Data PDUs received	23	12	0	1731
Total # of Data PDUs NAKed	0	0	0	5
Total # of Control PDUs received	26	4	0	459
RLC BLER [%]	0.00	0.00	N/A	0.29
RLC PDU Tput [Kbps]	0.07	0.02	0.00	5.79
RLC SDU Tput [Kbps]	0.01	0.01	0.00	3.32
Resets	0	0	0	6
Window open/close				0
Discarded SDUs				0

Figure 2-3 WCDMA RLC Summary Statistics

2.3 PN SRCH Eng Info Summary

Data source

■ 0x4179 – WCDMA PN Search Edition2

Description

Sumamrize PN Search activity. Figure 2-4 displays PN SRCH Eng Info Summary output.

PN SRCH Eng Info Summary			
Qualcomm Proprietary and Confidential.			
PSC	Average Eng [dB] Ant 0	Average Eng [dB] Ant 1	Number of PN searches on this cell
1	-10.2845	-10.3252	12582
3	-25.7544	-25.7333	226
5	-25.7912	-25.7727	116
6	-25.7906	-25.7472	394
7	-25.7352	-25.6149	55
11	-26.4802	-26.4244	56
11	-20.4802	-20.4244	56

Figure 2-4 PN SRCH Eng Info Summary

- PSC Lists all cells PSCs that PN search happened on through out the log.
- Average Eng [dB] Ant 0 Calculates the average of the strongest paths on Antenna 0 for each searched cell. For example, PN search happened on PSC 10 in this PN search packet and showed the strongest path energy is -11 dB on Ant [0]. The next PN search packet shows PSC 10 with -13 dB on Ant0 being the strongest path energy. Then Average Eng [dB] on Ant 0 is -11.89dB (convert numbers to linear, calculate the average, then calculate back to dB using 10 log10(x))
- Average Eng [dB] Ant 1 Same as Ant 0 but for Ant 1 which is also shown in the PN packet.
- Number of PN searches on this cell Total number of PN searches happened on each cell. This can be getting by increasing the cell counter by 1 each time a search happen on a cell then showing the total for each cell.

NOTE: PN SRCH Eng Info Summary SECOND is the same definition but for the second carrier.

2.4 PN SRCH Eng Info All Carriers Summary

Data source

10

11

12

14

15

17

18

19

21

■ 0x4179 – WCDMA PN Search Edition 2

Description

Sumamrize PN Search activity. Figure 2-4 displays the PN SRCH Eng Info All Carriers Summary output.

PN SRCH Eng Info All Carriers Summary

Qualcomm Proprietary and Confidential.

Prima	Primary Carrier					
PSC	Average Eng [dB] Ant 0	Average Eng [dB] Ant 1	Number of PN searches on this cell			
1	-3.481	-4.478	1870			
259	-23.974	NaN	2			
315	-23.466	NaN	2			
439	-24.952	NaN	2			

PSC Statistics				
Carrier	PSC	% Time in ASET		
Primary	1	99.68		
	259	0.11		
	315	0.11		
	439	0.11		

Figure 2-5 PN SRCH Eng Info All Carriers Summary

- Primary carrier and secondary carrier first and second carrier summaries
- PSC Lists all cell's PSCs that PN search happened on throughout the log
- Average Eng [dB] Ant 0 Calculates the average of the strongest paths on Antenna 0 for each searched cell; computed by converting dB numbers to linear, calculating the average, then calculating back to dB using $10 \log 10(x)$
- Average Eng [dB] Ant 1 Same as Ant 0 but for Ant 1 which is also shown in the PN packet
- Number of PN searches on this cell Total number of PN searches happened on each cell; this can be gotten by increasing the cell counter by 1 each time a search happens on a cell and then showing the total for each cell
- % time in ASET Summarizes the percent of time PSC is in ASET

10

11

3 Histiogram Outputs

3.1 WCDMA UE Power (Tx) Graph

The graph in Figure 3-1 displays the data PDF and normalized PDF of the UE's Tx power. This packet can be used for capacity studies, where a lower transmit power indicates greater uplink capacity. For this analysis, use the linear average. The standard deviation is calculated in dB space, since the data arrives this way. The difference between the linear and log standard deviation is typically small.

NOTE: Two UEs at the same inband Tx power do not necessarily give the same results. Typically, the UE is not a power meter. Thus, most people should use neither the linear average nor the log average when comparing the performance of two phones.

Data source

8

10

11

12

13

14

15

- 0x4015 LOG_WCDMA_AGC_V3
- 0x4031 LOG_WCDMA_AGC_DB10
- 0x4105 LOG_WCDMA_AGC
- 0x4165 LOG_WCDMA_AGC_V2
- 0x4176 LOG_WCDMA_AGC_EDITION_2

Figure 3-1 WCDMA UE Power (Tx) Graph

3.2 WCDMA UE Power (Rx0) Graph

Data source

- 0x4015 LOG_WCDMA_AGC_V3
- 0x4031 LOG_WCDMA_AGC_DB10
 - 0x4105 LOG_WCDMA_AGC
 - 0x4165 LOG_WCDMA_AGC_V2
 - 0x4176 LOG_WCDMA_AGC_EDITION_2

Description

10

11

12

13 14

15

16

The WCDMA UE Power (Rx0) Graph displays PDF and norm data vs Rx0 (dB) bin values for carrier 0.

Similar support for:

- Rx1 carrier 0 (WCDMA UE Power (Rx1) Graph) Same for second Rx antenna
- Rx0 carrier 1 (UE Power (Rx0) SECOND Graph) Same for second carrier, first Rx antenna)
- Rx1 carrier 1 (UE Power (Rx1) SECOND Graph) Same for second carrier, second Rx antenna

Figure 3-2 WCDMA UE Power (Rx0) Graph

4 Time Outputs

- This chapter contains time outputs as grids and plots.
- Figure 4-1 displays the list of time outputs as grids and plots.

Figure 4-1 List of time outputs as grids and plots

4.1 Time grids only

4.1.1 WCDMA Search Power vs. Time

Data source

- 0x4170 WCDMA list search Ver 6
- 0x4179 WCDMA PN Search Edition 2

Description

11

12

13

- ASET/MSET/USET Active set, monitor set, unmonitored set
- PSC Primary scrambling code
- Ant Rx antenna index for search
- Agc (dBm) AGC power
- Pos (Cx8) Search position in 1/8 cx1 units
- Inst EcIo (dB) Instantaneous search power
- Filt EcIo (dB) Filtered search power; filtered and quantized to 0.5 dB steps

Figure 4-2 WCDMA Search Power vs. Time

NOTE: WCDMA Search Power SECOND vs. Time – Same for second DL carrier

14

4.1.2 TA finger Info vs. Time

Data source

■ 0x4186 – WCDMA temporal analysis Ver 2

Description

Lock state

10

11

12

13

14

15

- \Box 0x0 Finger out of lock and does not contribute to data or control demod
- \Box 0xF Finger in lock
 - □ Other Invalid
 - PSC Primary scrambling code
 - POS (Cx8) Finger position in 1/8 cx1 units
 - Ant Id Rx antenna index assignment
 - TPC Idx Valid for ASET cells only, internal power control group index
 - ROT (Hz) Computed frequency error in Hz
 - Ec/Io (dB) CPICH Ec/Io

Figure 4-3 TA finger Info vs Time

4.1.3 WCDMA BLER vs. Time

Data source

■ 0x4116 – WCDMA BLER

Description

The WCDMA BLER vs. Time output gives a time-ordered list of BLER data, including the number of transport channels in a particular time entry, the window size (in frames), and the calculated error percentage (if available in this entry) for each transport channel. The transport channels are listed as Ch#0 through Ch#32.

WCDMA BLER vs. Time Qualcomm Proprietary and Confidential. Num Transport Chans Window Size (frames) TrCh#0 Err(%) TrCh#1 Err(%) TrCh#2 Err(%) TrCh#31 Err(%) Time 04:44:08.308 0.000 0.000 04:44:10.308 2 200 0.000 0.000 04:44:12.308 2 200 0.000 0.000 04:44:14.308 200 1.111 0.000 04:44:16.308 200 0.000 0.000 04:44:16.496 200 0.000 0.000 04:44:18.496 2 200 0.000 0.000 04:44:20.496 2 200 1.000 0.000 04:44:22.496 2 200 1.000 0.000 04:44:24.496 200 0.000 0.000 04:44:26.496 2 200 0.000 0.000 04:44:28.496 2 0.000 0.000 200 0.000 0.000 04:44:30.496 200 04:44:32,497 200 0.000 0.000 04:44:34.497 200 1.000 0.000 04:44:36.497 200 1.000 0.000 2 200 0.000 0.000 04:44:38.497 200 0.000 0.000 04:44:40.497 2 04:44:42.498 2 200 0.000 0.000 04:44:44.498 2 200 0.000 0.000 04:44:46.498 0.000 0.000

Figure 4-4 WCDMA BLER vs Time

10

11

12

4.1.4 WCDMA PC-AGC Power vs. Time

Data source

Description

- SIR Est (dB) SIR estimate averaged over previous 10 ms period
- PA On/Off Tx on/off
- TX Pwr Tx power level at end of each 10 ms period

Figure 4-5 WCDMA PC-AGC Power vs. Time

NOTE: WCDMA PC-AGC Power vs. Time SECOND - Same for second UL/DL carrier

4.1.5 WCDMA RRC Messages vs. Time

Data source

Description

Figure 4-6 displays WCDMA RRC Messages vs. Time.

Figure 4-6 WCDMA RRC Messages vs Time

4.1.6 HSDPA HS-SCCH TB vs. Time

Data source

■ 0x4222 – HS Decode Status Log Packet with Data Edition 3

Description

- Subframe Total cumulative subframes from the start of the log packet in 100 subframe increments
- Avg Sched Duty Cycle, % HS-SCCH CRC pass % within this 100 subframe interval

HSDPA HS-SCCH TB vs. Time		
Qualcomm Proprietary and Confidential.		
Time	Subframe	Avg Sched Duty Cycle, %
13:21:11.297	4500	0
13:21:11.497	4600	0
13:21:11.697	4700	0
13:21:39.710	4800	0
13:21:39.910	4900	2
13:21:40.110	5000	2
13:21:40.310	5100	10
13:21:40.510	5200	2
13:21:40.710	5300	0
13:21:40.910	5400	0
13:21:41.110	5500	0
13:21:41.310	5600	0
13:21:41.510	5700	0
13:21:41.710	5800	0
13:21:41.910	5900	0

Figure 4-7 HSDPA HS-SCCH TB vs Time grid/plot

NOTE: HSDPA HS-SCCH TB SECOND vs. Time – Second DL carrier information

10

4.2 Time grids and plots

All plots in this chapter have an associated time grid.

4.2.1 EUL Happy Bit vs. Time Primary

Data source

■ 0x4344 – WCDMA Multi Carrier EUL Combined L1 MAC

Description

The EUL Happy Bit UE is transmitting over time. The plot can be either 1 or 0.

Figure 4-8 EUL Happy Bit vs. Time Primary plot

NOTE: EUL Happy Bit vs. Time Secondary – Second UL carrier information

4.2.2 EUL Scheduling Info Plot Primary

Data source

2

10

11

12

13

14

■ 0x430E – EUL MAC-i\is log packet

Description

The EUL Scheduling Info Plot Primary plots the SI fields, i.e., HLBS, TEBS, and UPH, for the highest priority logical channel (HLID). The following are plotted for every TTI:

- HLID Highest priority Logical channel ID
- TEBS Total E-DCH Buffer Status
- HLBS Highest priority Logical channel Buffer Status
- UPH Based on UE Power Headroom value

Figure 4-9 EUL Scheduling Info Plot Primary

NOTE: EUL Scheduling Info Plot Secondary – Second UL carrier information; EUL SCH Info vs. Time Primary and Secondary are corresponding time grids.

4.2.3 EUL Serving Grant vs. Time Plot Primary

Data source

2

10

11

12

13

14

15

■ 0x4344 – WCDMA Multi Carrier EUL Combined L1 MAC

Description

EUL Serving Grant vs. Time Plot Primary plots the average serving grant based on E-RGCH and E-AGCH.

- Primary AG Based on Primary AGCH value received in given TTI
 - □ Value of AG_VALUE if AGCH_FLAG is true and P_OR_S is P
- Secondary AG Based on Secondary AGCH value received in given TTI
 - □ Value of AG_VALUE if AGCH_FLAG is true and P_OR_S is S
- SG Based on Serving Grant
 - □ Value of SG_INDEX

Figure 4-10 EUL Serving Grant vs. Time Plot Primary

NOTE: EUL Serving Grant vs. Time Plot Secondary – Second UL carrier information

4.2.4 WCDMA AGC Power vs. Time

Data source

2

10

11

12

13

14

15

16

17

18

19

■ 0x4176 – WCDMA AGC Edition 2

Description

The WCDMA AGC Power vs. Time output gives the Rx and Tx power vs time info. Each data point is at a 20 ms interval. Discontinuities in the Tx data (TxAGC) signify periods where the Tx was off; this is recorded in the same AGC packet.

- CFN Frame count
- Rx0 AGC [dBm] Rx AGC dBm level for antenna 0
- Rx1 AGC [dBm] Rx AGC dBm level for antenna 1
- Tx AGC [dBm] Tx AGC dBm level
- Tx On Flag indicating whether Tx is enabled or disabled (Y/N)

Figure 4-11 WCDMA AGC Power vs. Time

Figure 4-12 WCDMA AGC Power Plot

NOTE: WCDMA AGC Power SECOND vs. Time – Same definition for the second carrier; WCDMA AGC Power TERTIARY vs. Time – Same definition for the third carrier, WCDMA AGC Power QUATERNARY vs. Time – Same definition for the fourth carrier.

4.2.5 WCDMA PC-AGC Power Plot Primary

Data source

Description

The Power Control-AGC vs. Time output gives the SIR estimate whether the AGC Tx PA is on or off.

Figure 4-13 WCDMA PC-AGC Power Plot Primary

NOTE: WCDMA PC-AGC Power Plot SECOND – Same definition for the second carrier.

4.2.6 WCDMA Srch Pwr vs. Time

Data source

2

10

11

12

13

14

17

19

20

23

- 0x4017 WCDMA List Search Ver 3
- 0x401C WCDMA List Search Ver 5
 - 0x413F WCMDA List Search
 - 0x414F WCDMA List Search
 - 0x4170 WCDMA List Search Ver 6
 - 0x4179 WCDMA PN Search Edition 2
 - 0x4185 WCMDA PN Search

Description

The Search Power vs. Time output gives the list of search power vs time for each PSC. The range of PSC is 0 to 511. The instantaneous energy of PSC is the filtered energy in the list search packet. PSC = Floor (SC/16). This conversion needs to be done, because the UE reports scrambling codes (SCs) in the range of 0 to 8191, not PSCs. The relation between PSC and SC is PSC * 16 = SC.

Separate time grids and plots are available for:

- ASET WCDMA Aset Srch Pwr vs. Time
- MSET WCMDA MSet Srch Pwr vs. Time
- USET WCDMA USet Srch Pwr vs. Time
- ASET combined (ASET with rx0 and rx1 power combined) WCDMA ASet Comb Pwr vs.
 Time
- MSET combined WCDMA MSet Comb Pwr vs. Time
- USET combined WCDMA USet Comb Pwr vs. Time

WCDMA ASet Srch Pwr vs. Time			
Qualcomm Proprietary and Confidential.			
Time	Num Tasks	PSC328[0]	PSC328[1]
13:20:47.089	1		-4.999
13:20:47.109	1		-4.999
13:20:47.130	1		-4.999
13:20:47.151	1		-4.999
13:20:47.157	1		-4.999
13:20:47.177	1		-4.999
13:20:47.197	1		-4.999
13:20:47.217	1		-4.999
13:20:47.237	1		-4.999
13:20:47.269	1		-4.999
13:20:47.289	1		-4.999
13:20:47.310	1		-4.999
13:20:47.331	1		-4.999
13:20:47.337	1		-5.499
13:20:47.357	1		-5.499
13:20:47.377	1		-5.499
13:20:47.397	1		-5.499
13:20:47.417	1		-5.499

Figure 4-14 WCDMA ASet Srch Pwr vs. Time

Figure 4-15 WCDMA Srch Pwr Plot

4.2.7 WCDMA RSCP Pwr vs. Time

Data source

- 0x4017 WCDMA List Search Ver 3
- 0x401C WCDMA List Search Ver 5
 - 0x413F WCMDA List Search
 - 0x414F WCDMA List Search
 - 0x4170 WCDMA List Search Ver 6
 - 0x4179 WCDMA PN Search Edition 2
 - 0x4185 WCMDA PN Search

Description

10

11

12

13

14

15

16

17

18

19

20

21

23

The RSCP power vs time output gives the received signal code power vs time for each PSC. The range of PSC is 0 to 511. The sum of filtered energy and Rx AGC value gives the RSCP value, i.e., RSCP = RxPower + E_c/I_0 . The units of RSCP are in dBm.

Note that the UE reports the cell's SC, not its PSC, in the list search packet. See Section 4.2.6 for the conversion between SC and PSC.

Separate time grids and plots are available for:

- ASET WCDMA ASet RSCP Pwr vs. Time
- MSET WCDMA MSet RSCP Pwr vs. Time
- USET WCDMA USet RSCP Pwr vs. Time
- ASET combined (ASET with rx0 and rx1 power combined) ASet Comb RSCP Pwr vs. Time

WCDMA ASet RSCP Pwr vs. Time Qualcomm Proprietary and Confidential.			
Time	Num Tasks	PSC328[0]	PSC328[1]
13:20:47.089	1		-84.199
13:20:47.109	1		-83.199
13:20:47.130	1		-81.599
13:20:47.151	1		-80.899
13:20:47.157	1		-81.199
13:20:47.177	1		-81.899
13:20:47.197	1		-82.399
13:20:47.217	1		-80.999
13:20:47.237	1		-81.199
13:20:47.269	1		-81.199
13:20:47.289	1		-80.899
13:20:47.310	1		-80.499
13:20:47.331	1		-78.499
13:20:47.337	1		-79.299
13:20:47.357	1		-82.099
13:20:47.377	1		-81.999

Figure 4-16 WCDMA ASet RSCP Pwr vs. Time

Figure 4-17 WCDMA RSCP Plot

4.2.8 WCDMA RLC DL TP vs. Time

The DL RLC throughput (TP) vs time output gives the RLC AM data throughput vs time. TOT_NUM_PDU_BYTE_RXD contains the accumulated number of PDU bytes received. To calculate the throughput, a delta is used (current minus previous) divided by the time (current minus previous).

PDU throughput = (current data - previous data)/(current timestamp - previous timestamp)

A similar calculation is made for the SDU throughput using the TOT_NUM_SDU_BYTE_RXD field.

If there is an accumulator reset in the log file, which can be signaled by the TOT_NUM_PDU_BYTE_RXD being less than the previous value, the throughput calculation is restarted, with this new value being the first value. Thus, the next throughput value will be calculated using the next packet (current minus previous).

The log packet used is WCDMA RLC DL AM statistics (0x414A).

Figure 4-18 displays WCDMA RLC DL TP Plot.

Figure 4-18 WCDMA RLC DL TP Plot

16

10

12

4.2.9 WCDMA RLC UL TP vs. Time

This procedure is identical to WCDMA RLC DL TP vs. Time. The log packet used is WCDMA RLC UL AM statistics (0x4138, 0x4139, 0x4149).

Figure 4-19 displays the WCDMA RLC UL TP Plot.

Figure 4-19 WCDMA RLC UL TP Plot

4.2.10 EUL ETFCI TTI vs. Time Primary grid and plot

Data source

■ 0x4344 – WCDMA Multi Carrier EUL Combined L1 MAC

Description

The EUL ETFCI TTI vs. Time Primary grid contains the columns for both EUL ETFCI 2 ms TTI vs time plot and EUL ETFCI 10 ms TTI vs time plot.

NOTE: EUL ETFCI TTI vs. Time Secondary grid and plot – Same definition for the second UL carrier information

The plots will have the x-axis expressed in terms of timestamps beginning at the log packet time and increasing for each 2 ms CFN or subfn, where TTI = 2 ms.

For 10 ms TTI, the description is the same except the x-axis is expressed in terms of timestamps beginning at the log packet time and increasing for each 10 ms CFN or subfn where TTI = 10 ms.

Y-axis plots

10

11

12

13

16

17

18

19

20

21

22

2.3

Whenever the dtx_flag field is 0, the following fields are plotted:

- ETFCI value ETFCI value is plotted into a column based on the retx_ctr value. The column ETFC CTR0 stores the ETFCI with retx_ctr =0, ETFC CTR1 with retx_ctr =1, and so on. ETFC CTR2+ stores the ETFCI with retx_ctr >2.
- cm_gap
- The value of etfci_table is indicated in the legend area. This is a hack due to the fact that the free text legend is not supported in plotting. etfci_table is plotted as a clear dot or not visible.

Whenever the dtx_flag field is 1, dtx_flag is plotted on -1.

Figure 4-20 EUL ETFCI 2ms TTI Plot Primary

4.2.11 EUL ETFCI TBS vs. Time Primary grid and plot

Data source

■ 0x4344 – WCDMA Multi Carrier EUL Combined L1 MAC

Description

The EUL ETFCI TBS vs. Time Primary grid contains the columns for both EUL ETFCI 2 ms TBS vs time plot and EUL ETFCI 10 ms TBS vs time plot.

NOTE: EUL ETFCI TBS vs. Time Secondary grid and plot – Same definition for the second UL carrier information.

The plots will have the x-axis expressed in terms of timestamps beginning at the log packet time and increasing for each 2 ms CFN or subfn, where TTI = 2 ms.

Y-axis plots

Whenever the dtx_flag field is 0, the following fields are plotted:

- The number of transmitted bits, ranging from 0 to 20,000 TBS CTR0 for retx_ctr = 0; TBS CTR1 for retx_ctr = 1; TBS CTR2 for retx_ctr = 2; and TBS CTR2+ for retx_ctr > 2. Note that the 0x4309 packet contains the formula for calculating the number of transmitted bits. It is indicated in the TBS column of 0x4309
- CM is plotted on 20005 when cm_gap is 1
- The value of etfci_table is indicated in the legend area. This is a hack due to the fact that the free text legend is not supported in plotting. etfci_table is plotted as a clear dot or not visible.

Whenever the dtx_flag field is 1, dtx_flag is scaled on -1. For 10 ms TTI, the description is the same except the x-axis is expressed in terms of timestamps beginning at the log packet time and increasing for each 10 ms CFN or subfn where TTI = 10 ms.

Figure 4-21 EUL ETFCI 10ms TBS Plot Primary

10

11

12

13

14

15

16

17

18

20

4.2.12 EUL ETFCI SI vs. Time Primary grid and plot

Data source

■ 0x4344 – WCDMA Multi Carrier EUL Combined L1 MAC

Description

EUL ETFCI SI vs. Time grid contains the columns for both EUL ETFCI 2 ms SI vs time plot and EUL ETFCI 10 ms SI vs time plot.

The plots will have the x-axis expressed in terms of timestamps beginning at the log packet time and increasing for each 2 ms CFN or subfn, where TTI = 2 ms.

For 10 ms TTI, the description is the same except the x-axis is expressed in terms of timestamps beginning at the log packet time and increasing for each 10 ms CFN or subfn where TTI = 10 ms.

Y-axis plots

10

11

12

13

14

15

17

18

19

20

Whenever the dtx_flag field is 0, the following fields are plotted:

- The SI when SI is present, triggered by the event/timer, EV CTR0 for retx_ctr = 0; EV CTR1 for retx_ctr = 1; EV CTR2 for retx_ctr = 2; and EV CTR2+ for retx_ctr > 2
- The SI when SI is present, triggered by the padding, PD CTR0 for retx_ctr = 0; PD CTR1 for retx_ctr = 1; PD CTR2 for retx_ctr = 2; and PD CTR2+ for retx_ctr > 2

Figure 4-22 EUL ETFCI 2ms SI Plot Primary

NOTE: EUL ETFCI SI vs. Time Secondary grid and plot – Same definition for the second UL carrier information.

4.2.13 EUL HICH CMD vs. Time Primary grid and plot

Data source

■ 0x4344 – WCDMA Multi Carrier EUL Combined L1 MAC

Description

The EUL HICH CMD vs. Time Primary grid contains the columns of received HICH values vs time for all the cells and also the combined HICH decision. Each cell is uniquely identified by the value of the PSC field. At a timestamp, a cell can be either a normal cell, indicated by column PSCn, or a serving cell, indicated by column PSCn(SV).

The number of PCSn and PSCn(SV) columns is decided by the total number of active cells seen from the log file(s). In each log item, current active cells are known from the PSC field. The change of PSC from one log item to another accumulates the total number of PSCn and PSCn(SV) in the final output.

The plots will have the x-axis expressed in terms of timestamps beginning at the log packet time and increasing by either 2 ms when TTI = 2 ms or 10 ms when TTI = 10 ms.

Y-axis plots

10

11

12

13

14

15

16

17

18

20

21

22

23

When $dtx_flag = 0$:

- The HICH value is plotted for PSCn. The HICH value is plotted on the same scale for PSCn and PSCn(SV) with different colors.
- COMB_HICH is plotted. The value of ACK_NS in combined HICH is treated as ACK.

Figure 4-23 EUL HICH CMD Plot Primary

NOTE: EUL HICH CMD vs. Time Secondary grid and plot – Same definition for the second UL carrier information.

4.2.14 WCDMA RRC Messages Plot

Data source

Description

Figure 4-25 displays the WCDMA RRC Messages Plot.

Figure 4-24 WCDMA RRC Messages Plot

4.2.15 PN SRCH Eng Info vs. Time/Plot

Data source

2

■ 0x4179 – WCDMA PN Search Edition 2

Description

This plot shows PN search results (the strongest path in each search) for each cell over the time.

PN SRCH Eng Info vs. Time Qualcomm Proprietary and Confidential.		
Time	PSC1 dB0	PSC1 dB1
00:06:55.275	-6.499	-7.465
00:06:55.316	-9.910	-11.975
00:06:55.336	-11.386	-12.150

Figure 4-25 PN SRCH Eng Info Plot

NOTE: PN SRCH Eng Info SECOND vs. Time/Plot – Same definition for the second DL carrier; PN SRCH Eng Info TERTIARY vs. Time/Plot – Same definition for the third DL carrier, PN SRCH Eng Info QUATERNARY vs. Time/Plot – Same definition for the fourth DL carrier.

10

11

4.2.16 WCDMA AGC Power All Carriers vs. Time

Data source

10

11

12

13

■ 0x4176 – WCDMA AGC Edition 2 (Ver 2)

Description

The WCDMA AGC Power All Carriers vs. Time output displays the Rx and Tx power vs time info for all carriers on DL and UL. Each data point is at a 20 ms interval. Discontinuities in the Tx data (TxAGC) signify periods where the Tx was off; this is recorded in the same AGC packet.

- CFN Frame count
- RxAGC (CxChy) (dBm) Rx AGC power level for carrier x, Rx antenna y
- Cx Tx AGC (dBm) Tx AGC power level for carrier x
- TX ON Overall Tx on/off

Figure 4-26 WCDMA AGC Power All Carriers vs. Time