3EJ4 LAB FIVE

McMaster University

Yichen Lu

400247938

luy191

November 25th, 2021

Questions for Part 1:

Q1.

(1)

(2)

Figure 1(Transfer Function of the First orderrr low pass filter)

			-				-
3	1	1.500000172	-0.036069274	3	1	0.150733	-0.04738
4	1.02305973	1.500000158	-0.036901021	4	1.023293	0.150697	-0.03871
5	1.046651211	1.500000143	-0.037751948	5	1.047129	0.150725	-0.05035
6	1.070786705	1.500000128	-0.038622498	6	1.071519	0.150721	-0.05976
7	1.095478757	1.500000112	-0.039513122	7	1.096478	0.15074	-0.04839
8	1.120740201	1.500000095	-0.040424284	8	1.122018	0.150721	-0.05523
9	1.146584168	1.500000078	-0.041356456	9	1.148154	0.150721	-0.05791
10	1.173024089	1.50000006	-0.042310125	10	1.174898	0.150733	-0.05753
11	1.200073707	1.500000041	-0.043285784	11	1.202264	0.150766	-0.0554
12	1.227747083	1.50000002	-0.044283942	12	1.230269	0.150736	-0.08636
13	1.256058599	1.5	-0.045305118	13	1.258925	0.150673	-0.05251

(Data for Av in Step 1.3)

(Data for Av in Step 1.8)

321	1407.715367	1.121597902	-41.50095622	307	1096.478	0.11406	-40.4487		
322	1440.176903	1.110238218	-42.14788529	308	1122.018	0.112948	-41.064		
323	1473.386993	1.098710673	-42.79617597	309	1148.154	0.111945	-41.7639		
324	1507.362899	1.087021837	-43.44549366	310	1174.898	0.11062	-42.4198		
325	1542.122281	1.075178653	-44.09550093	311	1202.264	0.109444	-43.0177		
326	1577.683204	1.06318842	-44.74585836	312	1230.269	0.108339	-43.7244		
327	1614.064152	1.051058766	-45.39622546	313	1258.925	0.107066	-44.4059		
328	1651.284035	1.038797632	-46.04626151	314	1288.25	0.105939	-44.9776		
329	1689.362199	1.02641324	-46.69562647	315	1318.257	0.104512	-45.7147		
330	1728.318435	1.013914073	-47.34398184	316	1348.963	0.103408	-46.2817		
331	1768.172991	1.001308839	-47.99099149	317	1380.384	0.102189	-47.025		
332	1808.946583	0.988606451	-48.63632259	318	1412.538	0.100867	-47.5719		
333	1850.660402	0.975815989	-49.27964637	319	1445.44	0.099675	-48.2746		
334	1893.336131	0.962946674	-49.92063896	320	1479.108	0.098333	-48.9631		
335	1936.995951	0.950007836	-50.55898215	321	1513.561	0.097076	-49.5829		

(Data for fc in Step 1.3)

(Data for fc in Step 1.8)

For the low-frequency gain, we can observe that Vout is 1.500000172V with Vin = 1V, computing, the low-frequency gain $Av=1.5/1=1.5\ V/V$ from its simulated data Step1.3. In terms of the measurement data, we can observe that Vout is 0.150733V with Vin = 100mV, computing, the low-frequency gain $Av=0.150733V\ /100mV=1.5\ V/V$ from its measured data Step1.8. These two A values are identical to the ones we estimated in Part 1 calculation.

For the -3dB frquency fc, we can see that in Steps 1.3 and 1.8 that the simulated and measured values of fc are 1614Hz and 1288.25Hz respectively given the data above,. The simulated value is a better match. This measurement mistake could be attributable to the amplifier's physical qualities.

Questions for Part 2:

Q2.

۷	114	UD V	uey	3	1	6.045335537	-0.11051686	
3	1	6.020577025	-0.122644031	4	1.023292992	6.045384875	-0.11227988	
4	1.02305973	6.020576448	-0.125472165	5	1.047128548	6.045768201	-0.10623526	
5	1.046651211	6.020575844	-0.128365515	6	1.071519305	6.045115884	-0.1097998	
6	1.070786705	6.020575212	-0.131325585	7		6.045379051		
7	1.095478757	6.020574551	-0.134353913	8		6.044316838	-0.11553917	
8	1.120740201	6.020573859	-0.137452073				0.12200011	
9	1.146584168	6.020573134	-0.140621675	9		6.044502496	-0.11861858	
10	1.173024089	6.020572376	-0.143864367	10		6.044317209	-0.11439544	
11	1.200073707	6.020571583	-0.147181834	11	1.202264435	6.044304848	-0.11798997	

(Data for Av in Step 2.2)

(Data for Av in Step 2.6)

The low frequency gain should be around 2 V/V, or roughly 6.02dB, according to the calculation in (1). With Vin = 1V = 0 dB, the output for simulation in step 2.2 is 6.020577025 dB. As a result, the low frequency gain is 6.020577025 dB, which is nearly identical to our calculation. The gain is 6.045335537 dB for step 2.6, which is fairly close to the value we intended (6.02 dB).

Q3.

(1) fo =1.073kHz

(2)
$$fc = 396.1Hz$$

$$(3) Q = 0.33$$

(4)
$$|T(s)|max = 2V/V = 6.02dB$$

$$(5) \text{ fmax} = 0\text{Hz}$$

DATA for q3	Calculated	Simulated	Measured
fo	1.073kHz	1070.78670498641Hz	954.992586021435Hz
fc	396.1Hz	401.754172617276Hz	436.515832240166Hz
Q	0.33	/	/
T(s) max	6.02dB	6.020577025 dB	6.045335537 dB
fmax	0Hz	1	1

In conclusion, the calculated data is almost the same with the data from the simulated and measured data.

Questions for Part 3:

Q4.

The center frequency gain is -6.02dB. From the calculation, we know that $\omega 0 = 41667$ rad/s, then we can get $f0 = \omega 0 / 2\pi = 663.15$ Hz.

We can observe that the center frequency gain is 6.02058966 dB with frequency of 663.4102514 H from its simulated data Step3.2. In terms of the measurement data, we can observe that the center frequency gain is -5.56073747 dB with frequency of 501.1872336 Hz from its measured data Step3.6 These two values are identical to the ones we estimated in calculation.

As. Yichen Lu [49/9]
$$400^{24}7938$$

Then Q_{4} we know

$$\begin{array}{l}
-1 \\
7 \\
-20 \\
\hline
\end{array}$$
Then Q_{4} we know

$$\begin{array}{l}
-1 \\
7 \\
-20 \\
\hline
\end{array}$$
Then Q_{4} we know

$$\begin{array}{l}
-1 \\
7 \\
-20 \\
\hline
\end{array}$$
Then Q_{5} then Q_{5}

- (1) center frequency $\omega 0 = 4166.7 \text{ rad/s}$
- (2)pole frequency factor Q = 0.5
- $(3)\omega p1 = \omega p2 = 4166.7 \text{ rad/s}$
- (4)3-dB bandwidth BW = 0

Data for Q5	Calculated	Simulated	Measured
ω0	4166.7rad/s	663.4102514*2π=4168.3 rad/s	501.1872336*2π=3149.1 rad/s
Q	0.5	/	/

ωp1	4166.7 rad/s	663.4102514*2π=4168.3 rad/s	501.1872336*2π=3149.1 rad/s
ωρ2	4166.7 rad/s	663.4102514*2π=4168.3 rad/s	501.1872336*2π=3149.1 rad/s
BW	0	0	0

In conclusion, the calculated data is almost the same with the data from the simulated and measured data.