

Universidad Tecnológica de La Habana José Antonio Echeverría cujae

Facultad de Ingeniería Automática y Biomédica

Trabajo de Diploma para optar por el título académico de Ingeniero en Automática

Optimización en el sistema de tratamiento de agua de la planta de bulbos en Laboratorios AICA+ mediante electrodesionización

Autor

Armando Cesar Martin Calderón

Tutores

Ing. Amanda Martí Coll
Ing. Rosaine Ayala Gispert

La Habana, Cuba Junio, 2023

Declaración de autoría

Por este medio doy a conocer que soy el único autor de este trabajo y autorizo a la Facultad de Ingeniería Automática y Biomédica, a la Universidad Tecnológica de La Habana (CUJAE) y a los Laboratorios Farmacéuticos AICA a que hagan uso del mismo para futuras inversiones en nuestro país.

Como constancia firmo la presente a los 9 días del mes de junio del año 2023.

Armando Cesa	ar Martin Calderón
Tutora: Ing. Amanda Martí Coll	Tutora: Ing. Rosaine Ayala Gispert

Resumen

Este trabajo de diploma se centra en la optimización del sistema de tratamiento de agua de la planta de bulbos en Laboratorios AICA+, mediante la introducción de la tecnología de electro-desionización (EDI). Actualmente, el tratamiento de agua es crucial en la industria farmacéutica, sin embargo, los métodos convencionales presentan desafíos en cuanto a la eficiencia y la calidad del agua. La implementación de la EDI promete superar estos desafíos proporcionando agua de alta pureza de manera constante.

El objetivo principal de este estudio es proponer una solución de optimización del sistema existente a través de la implementación de EDI, la cual implica un análisis detallado de la instrumentación necesaria, desde los sensores hasta los sistemas de control y supervisión de datos (SCADA). Además, se propone un esquema general de configuración de EDI.

Los resultados obtenidos sugieren que la implementación de la EDI no solo mejorará la eficiencia del proceso de tratamiento de agua, sino que también reducirá los costos operativos y de mantenimiento, mientras cumple con los requisitos y regulaciones estrictas aplicables al agua en la industria farmacéutica. En conclusión, este estudio sienta las bases para la implementación de la EDI en la planta de bulbos, promoviendo una mejora significativa en el tratamiento de agua en la industria farmacéutica.

Palabras claves

Electrodesionización (EDI), Planta de tratamiento de agua, Industria farmacéutica, AICA, Agua purificada (PW), Agua para inyección (WFI), Conductividad del agua, Ósmosis inversa

Abstract

Esta tesis se centra en optimizar el sistema de tratamiento de agua de la planta de bulbos en AICA+ Laboratories, mediante la introducción de la tecnología de electrodeionización (EDI). Actualmente, el tratamiento de agua es crucial en la industria farmacéutica; sin embargo, los métodos convencionales presentan desafíos en términos de eficiencia y calidad del agua. La implementación de EDI promete superar estos desafíos al proporcionar agua de alta pureza de manera consistente.

El objetivo principal de este estudio es proponer una solución de optimización para el sistema existente mediante la implementación de EDI, lo cual implica un análisis detallado de la instrumentación necesaria, desde sensores hasta sistemas de control y adquisición de datos (SCADA). Además, se propone un esquema general para la configuración de EDI.

Los resultados obtenidos sugieren que la implementación de EDI no solo mejorará la eficiencia del proceso de tratamiento de agua, sino que también reducirá los costos operativos y de mantenimiento, al tiempo que cumplirá con los estrictos requisitos y regulaciones aplicables al agua en la industria farmacéutica. En conclusión, este estudio sienta las bases para la implementación de EDI en la planta de bulbos, promoviendo una mejora significativa en el tratamiento de agua en la industria farmacéutica.

keywords

Electrodesionization (EDI), Water treatment plant, Pharmaceutical industry, AICA, Purified water (PW), Water for injection (WFI), Water conductivity, Reverse osmosis

A mi querido despertador, por ser el compañero de batalla en las madrugadas de estudio. Tus estridentes alarmas y tus intentos incansables de sacarme de la cama han sido fundamentales para que aproveche al máximo cada minuto y adelante en mi tesis.

A mi fiel cafetera, por ser la fuente inagotable de energía en mis largas noches de investigación. Tus deliciosas dosis de cafeína han sido el combustible que me ha mantenido despierto y concentrado, incluso cuando la conexión a internet era un obstáculo.

A mi lista de reproducción "Modo Nocturno", por llenar mis horas de estudio con melodías motivadoras y canciones pegajosas. Tú has sido mi fiel acompañante, amenizando el ambiente y dándome ese impulso extra para seguir adelante.

A la luz tenue de mi lámpara, por ser mi aliada en las horas nocturnas de lectura y escritura. Tu suave brillo ha creado un ambiente acogedor y tranquilo, permitiéndome sumergirme en el mundo de la investigación y la escritura.

Y a la noche misma, por brindarme la tranquilidad y la calma necesarias para concentrarme en mi tesis. Aprovechando la conexión más estable en esas horas, pude avanzar significativamente en mi trabajo y superar los desafíos que la conexión diurna presentaba.

Esta dedicatoria es un homenaje a esos elementos que me han acompañado en las noches de estudio y han sido fundamentales para avanzar en mi tesis. Sin ustedes, mi experiencia de investigación y escritura no habría sido tan memorable ni efectiva.

Agradecimientos

Primero y ante todo, quiero expresar mi más profundo agradecimiento a mi familia, quienes siempre han sido mi faro en la vida. A mis padres, por su incondicional amor, apoyo y enseñanzas, que me han guiado hasta este punto en mi vida. A mis hermanas en especial a mi hermana mayor, que ha sido un pilar de apoyo, sabiduría y amor incondicional. Su presencia ha sido esencial en mi camino y me ha inspirado a ser una mejor persona cada día.

A mis amigos, que se convirtieron en hermanos, gracias por compartir conmigo momentos de risas y lágrimas, por estar a mi lado en los momentos de tensión y alivio, y por ser mi red de apoyo durante este arduo camino. No tengo palabras para expresar cuánto valoro cada uno de ustedes. Mención especial para los tanques de "Cuestionarios los viernes" y a los de siempre, a mis hermanos de la Lenin.

Quiero expresar mi más sincero agradecimiento a mis dos tutoras, Ing. Amanda Martí Coll e Ing. Rosaine Ayala Gispert, quienes han sido mis mentores y guías en este viaje académico. La dedicación y apoyo de la Ing. Rosaine Ayala Gispert durante el proceso en el centro de trabajo han sido invaluables, y la ayuda de la Ing. Amanda Martí Coll en la metodología ha sido crucial para el desarrollo y conclusión de esta investigación. Les estaré eternamente agradecido por su apoyo y confianza en mis habilidades.

Por último, pero no menos importante, deseo agradecer a todas las personas e instituciones que de alguna manera contribuyeron a la realización de esta investigación, aportando recursos, conocimientos o simplemente un espacio donde reflexionar y crecer.

Este logro no es solo mío, sino de todos los que me han acompañado en este viaje. Con profundo amor y gratitud, dedico esta tesis a cada uno de ustedes.

	ÍNDICE

1	Esta	Estado del arte y descripción del proceso		
1.1 Sistemas de tratamiento de agua en la industria farmacéutica			nas de tratamiento de agua en la industria farmacéutica	2
		1.1.1	Importancia del tratamiento de agua	2
		1.1.2	Tipos y clasificaciones del agua	4
		1.1.3	Requisitos y regulaciones aplicables al agua	5
		1.1.4	Impurezas presentes en el agua	6
		1.1.5	Variables críticas en la calidad del agua	7
		1.1.6	Evolución histórica de las tecnologías de tratamiento de agua	8
1.2 Descripción del proceso actual		10		
Re	efere	ncias b	pibliográficas	17

La purificación del agua es un aspecto crítico en la industria farmacéutica, ya que el agua es un componente fundamental en la producción de medicamentos y otros productos sanitarios. La calidad del agua utilizada en estos procesos puede afectar significativamente la eficacia y seguridad de los productos finales. Por lo tanto, es esencial contar con sistemas de tratamiento de agua que sean confiables, eficientes y cumplan con los estándares regulatorios establecidos [1].

En este capítulo, se revisará el estado del arte en lo que respecta a los sistemas de tratamiento de agua en la industria farmacéutica, con énfasis en las tecnologías de purificación más utilizadas, como la ósmosis inversa y la electrodesionización (EDI). Además, se describirá el sistema de tratamiento de agua de la planta de bulbos en Laboratorios AICA+ y se analizarán los aspectos relacionados con el control en estos sistemas.

1.1 Sistemas de tratamiento de agua en la industria farmacéutica

La industria farmacéutica es un sector crítico para la salud y el bienestar de la sociedad, y la calidad del agua utilizada en los procesos de producción desempeña un papel fundamental en la garantía de la seguridad y eficacia de los productos farmacéuticos. En este capítulo, se realizará una revisión exhaustiva de la literatura relacionada con los sistemas de tratamiento de agua en la industria farmacéutica, abordando temas como la importancia del tratamiento de agua, las clasificaciones y requisitos regulatorios, y las tecnologías de tratamiento empleadas.

Esta revisión tiene como objetivo proporcionar un panorama completo del estado actual del conocimiento en este campo, así como identificar las tendencias y enfoques de investigación que podrían dar lugar a mejoras en los sistemas de tratamiento de agua en el futuro. Al comprender en profundidad el contexto y las consideraciones clave en la purificación del agua farmacéutica, se sentarán las bases para una discusión informada sobre la propuesta de incorporar un electrodesionizador (EDI) en el sistema de ósmosis inversa de la planta de AICA, como se detallará en los capítulos posteriores.

1.1.1 Importancia del tratamiento de agua

El agua es un recurso indispensable en la industria farmacéutica debido a su amplia utilización en múltiples procesos, tales como la producción de medicamentos, la limpieza de equipos, la fabricación de soluciones y reactivos, y la generación de vapor, entre otros. Dada su relevancia, el tratamiento de agua en este sector es de suma importancia para garantizar la calidad, seguridad y eficacia de los productos farmacéuticos. A continuación, se detallan varias razones que explican la importancia del tratamiento de agua en la industria farmacéutica.

Calidad del producto: El agua utilizada en la producción de medicamentos debe cumplir con estándares estrictos de calidad y pureza, ya que su presencia en la composición de los productos puede afectar significativamente su estabilidad, potencia y seguridad. Por ejemplo, la presencia de impurezas en el agua, como iones metálicos, microorganismos o productos quí-

micos, puede reaccionar con los ingredientes activos y excipientes de los medicamentos, alterando sus propiedades y generando efectos adversos en los pacientes.

Regulaciones y normativas: Las agencias reguladoras de todo el mundo, como la FDA (Administración de Alimentos y Medicamentos de EE. UU.) y la EMA (Agencia Europea de Medicamentos), establecen requisitos rigurosos y específicos en cuanto a la calidad del agua empleada en la producción farmacéutica. Estas regulaciones tienen como objetivo garantizar que el agua utilizada cumpla con ciertos niveles de pureza y seguridad, y que los sistemas de tratamiento de agua sean adecuados y efectivos para garantizar la calidad del producto final.

Control de contaminación y biofilm: La proliferación de microorganismos y la formación de biofilm en los sistemas de tratamiento de agua pueden tener consecuencias negativas para la calidad de los productos farmacéuticos. Un tratamiento de agua eficiente debe eliminar o reducir al mínimo la presencia de microorganismos y prevenir la formación de biofilm en las superficies de los equipos y tuberías. De esta manera, se asegura un ambiente adecuado para la producción de medicamentos y se evita la contaminación cruzada.

Eficiencia en los procesos: Un sistema de tratamiento de agua eficiente y bien diseñado puede optimizar los procesos de producción y reducir los costos operativos. El uso de tecnologías avanzadas, como la ósmosis inversa y la electrodesionización (EDI), permite obtener agua de alta calidad y pureza, lo que a su vez disminuye la necesidad de tratamientos adicionales y reduce el consumo de reactivos y energía.

Responsabilidad medioambiental: La industria farmacéutica tiene una responsabilidad ética y legal de minimizar su impacto ambiental. El tratamiento adecuado del agua permite reducir la cantidad de contaminantes y sustancias químicas liberadas al medio ambiente y optimizar el uso de los recursos hídricos. Además, las tecnologías de tratamiento de agua más avanzadas pueden contribuir a la reducción del consumo energético y la generación de residuos.

En resumen, el tratamiento de agua en la industria farmacéutica es fundamental para garantizar la calidad, seguridad y eficacia de los productos, cumplir con las regulaciones y normativas vigentes, controlar la contaminación y la formación de biofilm, optimizar la eficiencia en los procesos y reducir el impacto medioambiental.

El tratamiento adecuado del agua en la industria farmacéutica no sólo garantiza que se cumplan los requisitos de calidad y pureza del agua, sino que también contribuye a la prevención de problemas asociados con la presencia de impurezas y contaminantes. Por lo tanto, es fundamental que las empresas farmacéuticas inviertan en tecnologías de tratamiento de agua apropiadas y en la implementación de sistemas de control y monitoreo efectivos.

1.1.2 Tipos y clasificaciones del agua

El agua es un componente fundamental en la industria farmacéutica, y su calidad y pureza son aspectos críticos para garantizar la seguridad y eficacia de los productos. Dependiendo de su uso y aplicación, existen diferentes tipos y clasificaciones de agua en la industria farmacéutica. A continuación, se presentan las categorías más comunes [2]:

Agua purificada (PW): Es el tipo básico de agua utilizada en la industria farmacéutica y se obtiene a través de procesos como ósmosis inversa, destilación, intercambio iónico o filtración. La calidad del agua purificada es menor que la del agua para inyección (WFI), pero es adecuada para la fabricación de productos no parenterales y para su uso en procesos de limpieza.

Agua para inyección (WFI): Es un tipo de agua de alta pureza que se utiliza en la fabricación de productos parenterales, es decir, aquellos que se administran por vías como intravenosa, intramuscular o subcutánea. La calidad del WFI es superior a la del agua purificada, y se obtiene mediante procesos de destilación, ósmosis inversa o por una combinación de ambos métodos.

Agua altamente purificada (HPW): Este tipo de agua tiene una calidad intermedia entre el agua purificada y el WFI. Se utiliza en ciertas aplicaciones farmacéuticas donde se requiere un nivel de pureza más elevado que el del agua purificada, pero no se necesita llegar al grado de pureza del WFI.

Agua estéril: Es agua que ha sido sometida a un proceso de esterilización, como la filtración estéril o la autoclave, para eliminar cualquier microorganismo presente. El agua estéril se utiliza

en aplicaciones específicas, como en la fabricación de productos estériles o en procesos de limpieza y desinfección que requieren la eliminación de microorganismos.

Cabe destacar que las regulaciones y normativas, como las establecidas por la Farmacopea de Estados Unidos (USP), la Farmacopea Europea (EP) y la Organización Mundial de la Salud (OMS), definen los requisitos de calidad y las especificaciones para cada tipo de agua en la industria farmacéutica. Estas especificaciones incluyen parámetros como la conductividad, el pH, la presencia de sustancias orgánicas, inorgánicas y microbiológicas, entre otros.

1.1.3 Requisitos y regulaciones aplicables al agua

La calidad del agua utilizada en la industria farmacéutica está sujeta a una serie de requisitos y regulaciones establecidos por diversas entidades y organismos a nivel nacional e internacional. Estas regulaciones aseguran que el agua cumpla con los estándares de calidad necesarios para garantizar la seguridad y eficacia de los productos farmacéuticos. Algunas de las principales regulaciones y requisitos aplicables al agua en la industria farmacéutica incluyen:

Farmacopeas: Las farmacopeas son documentos oficiales que contienen las especificaciones técnicas y requisitos de calidad para sustancias y productos farmacéuticos, incluidos los diferentes tipos de agua. Entre las farmacopeas más reconocidas a nivel mundial se encuentran la Farmacopea de Estados Unidos (USP), la Farmacopea Europea (EP) y la Farmacopea de Japón (JP). Cada farmacopea establece parámetros específicos de calidad, como la conductividad, el pH, la presencia de sustancias orgánicas, inorgánicas y microbiológicas, entre otros [3].

Buenas Prácticas de Fabricación (GMP): Las GMP son normas que establecen los requisitos mínimos que deben cumplir los procesos de fabricación, control de calidad y distribución de productos farmacéuticos, incluida la gestión del agua. Estas normas son aplicables a nivel mundial y son emitidas por organismos como la Food and Drug Administration (FDA) en Estados Unidos, la European Medicines Agency (EMA) en Europa y la Organización Mundial de la Salud (OMS) [4].

Directrices y guías técnicas: Además de las farmacopeas y las GMP, existen directrices y guías técnicas emitidas por organismos internacionales y nacionales que abordan aspectos específicos relacionados con el agua en la industria farmacéutica. Estas directrices pueden incluir recomendaciones sobre el diseño y validación de sistemas de tratamiento de agua, el monitoreo de la calidad del agua y la prevención de la contaminación.

Normativas nacionales y locales: Cada país puede tener sus propias normativas y requisitos legales aplicables al agua en la industria farmacéutica. Estas normativas pueden estar en línea con las farmacopeas y las GMP, pero también pueden incluir requisitos adicionales específicos para cada país o región.

El cumplimiento de estas regulaciones y requisitos garantiza la calidad y seguridad del agua utilizada en la fabricación de productos farmacéuticos y, en última instancia, protege la salud de los pacientes [1].

1.1.4 Impurezas presentes en el agua

El agua utilizada en la industria farmacéutica puede contener diversas impurezas, las cuales pueden afectar la calidad, seguridad y eficacia de los productos finales. Estas impurezas pueden clasificarse en tres categorías principales: impurezas inorgánicas, impurezas orgánicas y contaminantes microbiológicos [5].

Impurezas inorgánicas: Incluyen iones metálicos y no metálicos, como calcio, magnesio, sodio, cloruros, sulfatos y silicatos. Estas impurezas pueden afectar la calidad de los productos farmacéuticos al causar cambios en la solubilidad, la estabilidad y la eficacia de los ingredientes activos, así como en la formación de precipitados y la corrosión de equipos y recipientes. Además, algunos iones metálicos, como el hierro, el cobre y el cromo, pueden ser tóxicos y afectar la seguridad de los productos [6].

Impurezas orgánicas: Son compuestos de origen natural o sintético, como ácidos húmicos y fúlvicos, pesticidas, disolventes y productos químicos de desinfección. Las impurezas orgánicas pueden reaccionar con los ingredientes activos y otros excipientes, lo que puede alterar la

estabilidad, la eficacia y la liberación de los fármacos. Además, algunos compuestos orgánicos pueden ser tóxicos y afectar la seguridad de los productos farmacéuticos [7].

Contaminantes microbiológicos: Incluyen bacterias, hongos, levaduras, virus y protozoos. La presencia de microorganismos en el agua puede causar la contaminación de los productos farmacéuticos, lo que puede llevar a infecciones y reacciones adversas en los pacientes. Además, algunos microorganismos pueden producir sustancias tóxicas, como endotoxinas y micotoxinas, que pueden afectar la seguridad y eficacia de los productos [8].

El tratamiento adecuado del agua es esencial para eliminar o reducir estas impurezas a niveles aceptables, de acuerdo con las regulaciones y requisitos aplicables en la industria farmacéutica. Un control riguroso de la calidad del agua, así como el uso de tecnologías de purificación adecuadas, como la ósmosis inversa, la desionización y la electrodesionización (EDI), son fundamentales para garantizar la calidad y seguridad de los productos farmacéuticos .

1.1.5 Variables críticas en la calidad del agua

El tratamiento y monitoreo de la calidad del agua en la industria farmacéutica requieren un enfoque riguroso y sistemático para garantizar la eliminación efectiva de impurezas y el cumplimiento de los requisitos regulatorios. A continuación, se presentan algunas de las variables críticas que deben considerarse durante el tratamiento y monitoreo del agua:

Conductividad eléctrica: La conductividad eléctrica es una medida de la capacidad del agua para conducir la corriente eléctrica, y está directamente relacionada con la concentración de iones disueltos en el agua. Un mayor valor de conductividad indica una mayor concentración de impurezas inorgánicas. El monitoreo de la conductividad es fundamental para evaluar la efectividad de los procesos de purificación y para asegurar el cumplimiento de los límites establecidos por las regulaciones aplicables [9].

Contenido de carbono orgánico total (TOC): El TOC es una medida del contenido de carbono en compuestos orgánicos disueltos en el agua. Un alto nivel de TOC indica una mayor

concentración de impurezas orgánicas. El monitoreo regular del TOC es esencial para garantizar que el agua cumpla con los requisitos de calidad y para evaluar la eficacia de los procesos de purificación en la eliminación de compuestos orgánicos [9].

Conteo microbiano y endotoxinas: El monitoreo del recuento microbiano y las endotoxinas es fundamental para controlar la calidad microbiológica del agua y garantizar la seguridad de los productos farmacéuticos. Los métodos de análisis microbiológico incluyen el recuento en placa, el método de filtración por membrana y las técnicas de bioluminiscencia. Las endotoxinas, sustancias tóxicas liberadas por bacterias Gram-negativas, se miden mediante el ensayo de lisado de amebocitos de Limulus (LAL) [9].

pH: El pH es una medida de la acidez o alcalinidad del agua y puede afectar la solubilidad, la estabilidad y la reactividad de los ingredientes activos y excipientes en los productos farmacéuticos. El control del pH es esencial para mantener un ambiente adecuado en los sistemas de tratamiento de agua y garantizar la calidad del agua producida [9].

Turbidez: La turbidez es una medida de la cantidad de partículas en suspensión en el agua, incluidas partículas inorgánicas, orgánicas y microbiológicas. Un nivel elevado de turbidez puede afectar la efectividad de los procesos de purificación y el rendimiento de los equipos. La turbidez se mide utilizando un turbidímetro y se expresa en unidades de turbidez nefelométrica (NTU) [9].

El monitoreo y control de estas variables críticas durante el tratamiento y purificación del agua son fundamentales para garantizar la calidad, seguridad y eficacia de los productos farmacéuticos y cumplir con los requisitos regulatorios aplicables.

1.1.6 Evolución histórica de las tecnologías de tratamiento de agua

La historia del tratamiento de agua en la industria farmacéutica ha experimentado una evolución considerable a lo largo del tiempo. A medida que la industria ha crecido y los requisitos regulatorios han aumentado en complejidad, las tecnologías de tratamiento de agua han seguido mejorando para garantizar la calidad y la seguridad de los productos farmacéuticos.

Pre-Siglo XX: Antes del siglo XX, los métodos de purificación de agua eran bastante rudimentarios, enfocándose principalmente en la eliminación de sólidos y materia orgánica a través de procesos físicos como la sedimentación y la filtración a través de medios porosos como la arena. Estos procesos, aunque rudimentarios, establecieron la base para las técnicas modernas de tratamiento de agua [10].

Principios del Siglo XX: Con la introducción del uso del cloro como agente desinfectante en 1908 en Jersey City, Estados Unidos, las industrias empezaron a utilizar este método para garantizar la seguridad microbiológica de su agua. Por otro lado, la destilación, un proceso que se basa en la evaporación y condensación del agua para separarla de sus impurezas, también se empleaba aunque era energéticamente costoso [10].

Mediados del Siglo XX: A mediados del siglo XX, comenzó a ser común el uso de la filtración por membrana, específicamente la ósmosis inversa (RO), para la eliminación de partículas y solutos disueltos. Este proceso utiliza una membrana semipermeable para eliminar iones, moléculas y partículas más grandes del agua potable Además, la radiación ultravioleta (UV) empezó a ser utilizada como un método eficaz de esterilización del agua, matando o inactivando microorganismos al destruir su material genético [10].

Finales del Siglo XX y principios del Siglo XXI: Las técnicas de purificación de agua se volvieron más avanzadas y selectivas hacia finales del siglo XX y principios del XXI. La ósmosis inversa, la desionización y la electrodesionización (EDI) se volvieron estándares en la industria farmacéutica. La electrodesionización, en particular, es una tecnología que combina la desionización electroquímica y la desionización de lecho mixto para producir agua de alta pureza de manera eficiente y sin el uso de productos químicos peligrosos.

La evolución de las tecnologías de tratamiento de agua en la industria farmacéutica ha sido impulsada por la creciente demanda de productos de alta calidad y la necesidad de cumplir con requisitos regulatorios cada vez más rigurosos. A medida que la industria farmacéutica continúa avanzando, es probable que surjan nuevas tecnologías y enfoques para el tratamiento y monitoreo del agua en el futuro. Algunas áreas de investigación y desarrollo incluyen:

Nanotecnología: La aplicación de nanomateriales y nanopartículas en el tratamiento de agua ofrece oportunidades para mejorar la eficiencia de los procesos existentes y desarrollar nuevos enfoques para la eliminación de impurezas. Por ejemplo, las membranas nanocompuestas y las nanopartículas funcionales pueden mejorar la selectividad y la eficiencia de las membranas de ósmosis inversa y EDI [11].

Tratamiento biológico: Los enfoques biológicos, como la utilización de microorganismos para la degradación de contaminantes orgánicos, pueden proporcionar alternativas sostenibles y de bajo costo a las tecnologías convencionales de tratamiento de agua [?].

Sistemas avanzados de monitoreo y control: Los avances en sensores, analítica en línea y tecnologías de control permiten una mejor comprensión y control del proceso de tratamiento de agua en tiempo real. Esto puede llevar a una mayor eficiencia y garantizar una calidad de agua más consistente [12].

1.2 Descripción del proceso actual

La planta de AICA cuenta con un proceso integral de tratamiento y purificación de agua para abastecer a sus instalaciones con agua de alta calidad y pureza. Este proceso es esencial para garantizar el cumplimiento de las normativas y estándares aplicables en la industria farmacéutica y biotecnológica. A continuación, se proporcionará una descripción detallada de las distintas etapas y componentes del proceso actual en la planta de AICA, desde la captación del agua hasta su el punto antes de la distribución y uso en las distintas áreas de producción.

Sistema Tecnológico y sus plantas de tratamiento

El Sistema Tecnológico es el área de interés para esta investigación y se compone de dos plantas de tratamiento de agua. La primera planta se dedica a la producción de ampolletas, mientras que la segunda planta se encarga de la producción de bulbos, esta última es en la que centra el estudio.

Almacenamiento y bombeo del agua potable

El Sistema de Tratamiento de Agua de Bulbos en Laboratorios AICA⁺ se encarga de garantizar la eficiencia y calidad de los diferentes tipos de aguas farmacéuticas, como el agua purificada y destilada, que se utilizan en la planta de producción de inyectables. El proceso comienza con el almacenamiento del agua potable procedente del acueducto en dos cisternas con capacidades de 900 y 700 m³. Posteriormente, el agua cruda es bombeada a través de las bombas de la estación de hidroneumáticos hacia las líneas de Servicios Generales y al Sistema de Tratamiento de Agua, que se divide en dos partes: el Sistema No Tecnológico y el Sistema Tecnológico.

Dosificación de hipoclorito de sodio y filtración

El agua proveniente de la cisterna llega al sistema de pretratamiento de aguas de Bulbo a una presión entre 4 - 5 bar. En la línea de entrada, se dosifica hipoclorito de sodio al 3 % para desinfectar el agua y reducir la concentración de bacterias y microorganismos. El sistema de dosificación consta de un tanque de solución de 50 L y una bomba con capacidad de 1.58 l/h, permitiendo una concentración de cloro residual cercana al 1 %. Un contador de impulsos acoplado a la línea gobierna esta dosificación, enviando una señal a la bomba cada 100 L de agua, equivalente a 1 impulso. Posteriormente, el agua pasa por un filtro CF-60 de 50 micras, fabricado de acero inoxidable AISI 304, que cumple la función de filtración y actúa como elemento mezclador después de la dosificación de cloro.

Almacenamiento y monitoreo de parámetros del agua

Una vez filtrada, el agua sale del filtro CF-60 con un flujo que oscila entre 7-8 m³/h y se almacena en el tanque de almacenamiento de agua potable, TK-60, con capacidad de 3,000 L. Este tanque sirve como depósito de alimentación para los suavizadores. Se han instalado tomas de muestra antes y después del filtro para monitorear el pH y el cloro residual del agua. Este monitoreo permite verificar la calidad del agua en esta etapa del proceso y asegurar que los

parámetros se encuentren dentro de los límites aceptables antes de continuar con el proceso de purificación.

Suavización del agua

Los suavizadores de intercambio iónico son una parte fundamental en la planta de tratamiento de agua, ya que se encargan de eliminar la dureza del agua causada por los cationes de calcio y magnesio. Este proceso es esencial para evitar incrustaciones en las membranas de ósmosis inversa y garantizar una calidad óptima del agua tratada.

Proceso de suavización y disposición de los suavizadores:

El proceso de suavización comienza cuando el agua es trasegada desde el tanque TK-60 hasta el módulo de suavizadores de intercambio iónico utilizando la bomba P-60. Antes de llegar a los suavizadores, el agua pasa a través del intercambiador de placas E60-1, que disminuye la temperatura del agua hasta valores entre 18 y 20°C, mejorando así la eficiencia del proceso de purificación.

En la línea de entrada y salida del intercambiador, se miden la presión y la temperatura, respectivamente. Además, se cuenta con una válvula reguladora que ajusta el flujo de agua de enfriamiento que entra al intercambiador. Luego, el agua sale del intercambiador y entra a los suavizadores a una presión aproximada de 4 bar a través de los cabezales de distribución.

En este proceso, los suavizadores A64-A y A64-B están dispuestos en serie. El agua que sale del suavizador A64-A entra al suavizador A64-B, que se encarga de rectificar finalmente la calidad del agua suavizada. Ambos suavizadores tienen como objetivo eliminar la dureza del agua, intercambiando los iones de calcio y magnesio por iones de sodio de la resina catiónica fuerte.

Operaciones de producción y regeneración de los suavizadores:

Los suavizadores de intercambio iónico funcionan mediante dos operaciones principales: producción y regeneración. Estas operaciones son controladas por el Aquatimer instalado en cada suavizador.

Durante la producción, se lleva a cabo la reacción de intercambio iónico en la resina. Con el tiempo, la capacidad de intercambio iónico de la resina disminuye gradualmente y los sólidos disueltos en el agua se acumulan en ella. Cuando la resina se agota, es necesario regenerarla con una solución de cloruro de sodio al 14% en peso. **Proceso de regeneración de los suavizadores:**

La regeneración de los suavizadores consta de cuatro etapas:

- Contralavado: El lavado a contraflujo tiene como objetivo remover los sólidos depositados en la resina, incluyendo las partículas de resina más pequeñas, levantando y expandiendo ligeramente la cama de resina.
- 2. Regeneración: Durante esta etapa, se pasa salmuera a través de la resina a una velocidad de flujo lenta, lo que aumenta el contacto entre la salmuera y la resina, favoreciendo la regeneración de la misma. La reacción de regeneración implica la liberación de los iones de calcio y magnesio, que son reemplazados por iones de sodio.
- 3. **Enjuague lento:** En este paso, se dispersa la solución de regenerante a través de todo el volumen de resina a una velocidad de flujo requerida, garantizando un contacto adecuado de la salmuera con el fondo de la cama de resina.
- 4. **Enjuague rápido:** Después de completar el desplazamiento de la salmuera a través de toda la cama de resina, este último enjuague remueve la salmuera que ha quedado remanente o en exceso en la misma.

Una vez finalizado el proceso de regeneración, los suavizadores están listos para volver a funcionar en la operación de producción, garantizando la eliminación efectiva de la dureza del agua.

Monitoreo de la calidad del agua suavizada:

El monitoreo de la calidad del agua suavizada es esencial para garantizar la eficiencia del proceso y la protección de las membranas de ósmosis inversa. A la salida de cada suavizador, hay un punto de toma de muestra y en la línea general de salida del agua suave, se encuentra instalado un medidor de dureza en línea (DOROMAT PROFESIONAL). Este medidor permite

asegurar que la dureza del agua no supere el límite máximo establecido de 5 mg/l, evitando así la formación de incrustaciones en las membranas de ósmosis inversa.

Purificación mediante ósmosis inversa

La purificación del agua en una planta de tratamiento es un proceso crucial para garantizar la calidad del agua que será suministrada a los usuarios finales. Uno de los métodos más eficientes y ampliamente utilizados para la purificación del agua es la ósmosis inversa (OI), que se basa en la aplicación de presión para forzar el paso del agua a través de una membrana semipermeable, reteniendo así las impurezas y contaminantes disueltos en el agua.

Descripción general de las etapas de ósmosis inversa:

El proceso de ósmosis inversa en la planta de tratamiento de agua en estudio se compone de dos etapas o pasos de flujo. La primera etapa consta de tres porta-membranas, cada una con tres tubos colectores de 8 pulgadas de diámetro y 40 pulgadas de longitud, y membranas dispuestas en espiral en su interior. La segunda etapa, por otro lado, tiene dos porta-membranas, uno de los cuales contiene solo dos tubos colectores con membrana, mientras que el tercer tubo colector tiene una simulación de membrana. Esta configuración se estableció para lograr los parámetros de producción de agua purificada de diseño en la ósmosis inversa.

Adición de metabisulfito de sodio:

Antes de ingresar al proceso de ósmosis inversa, el agua suavizada, con un pH entre 5 y 7 y una presión entre 2 y 4 bar, debe someterse a un pretratamiento. Este pretratamiento incluye la dosificación de metabisulfito de sodio ($Na_2S_2O_5$) mediante un conjunto de bomba dosificadora y tanque de solución. La adición de metabisulfito de sodio es esencial para eliminar el cloro libre residual presente en el agua, ya que este puede dañar químicamente las membranas de la ósmosis inversa.

Filtración y control de calidad antes de la ósmosis inversa:

Después de la adición de metabisulfito de sodio, el agua pasa por un filtro de cartuchos de 10 micrómetros. En la entrada y salida del filtro, se instalan manómetros para monitorear la diferencia de presión y, por lo tanto, determinar el grado de ensuciamiento de los cartuchos del

filtro.

A continuación, se toma una muestra del agua filtrada en el punto de muestreo del analizador de REDOX en línea, que proporciona una medida de la concentración de cloro en el agua, con un límite máximo de 400 mV. El agua filtrada y tratada se dirige al tanque de alimentación de la ósmosis inversa (TK 50-A) con una capacidad de 500 litros.

En esta etapa, es fundamental garantizar la calidad del agua antes de que ingrese al proceso de ósmosis inversa para evitar problemas en las membranas y garantizar una purificación eficiente.

Ajuste del pH y eliminación del CO₂ disuelto:

Una vez almacenada en el tanque de alimentación de la ósmosis inversa (TK 50-A), el agua suavizada es succionada por la bomba P50-2A para aumentar su presión hasta valores cercanos a 5 bar. Durante este proceso, se dosifica hidróxido de sodio (NaOH) utilizando un conjunto de tanque y bomba dosificadora. La adición de NaOH tiene como objetivo eliminar el CO₂ disuelto en el agua, ya que aporta conductividad, y ajustar el pH del agua de alimentación a la ósmosis inversa en un rango entre 8 y 10.

Primera etapa de ósmosis inversa:

El agua tratada pasa por un filtro de cartucho de 5 micrómetros (CF50A) y luego es impulsada por la bomba P50-A hacia la primera etapa de ósmosis inversa a una presión entre 9 y 13 bar y una temperatura entre 15 y 25°C. En esta etapa, las membranas retienen sales, sustancias orgánicas y microorganismos presentes en el agua suavizada. El flujo de agua producto de la primera etapa es aproximadamente 4000 l/h, con una conductividad menor a 10 μS/cm.

Segunda etapa de ósmosis inversa:

El agua purificada de la primera etapa se bombea hacia la segunda etapa mediante la bomba P50-B, a una presión de 12 bar. El objetivo de la segunda etapa es realizar un pulido extra del agua, tanto en términos físico-químicos como microbiológicos. El producto de la segunda etapa, con un flujo de 3000 l/h, se almacena en el tanque TK-70, con capacidad para 6000 litros de agua purificada. Se toman muestras de agua pura para analizar la conductividad, que debe ser menor a 1.3 μS/cm, así como otros parámetros físico-químicos y microbiológicos, como el

carbono orgánico total y la presencia de microorganismos patógenos y bacterias.

Manejo del flujo de rechazo y recirculación:

Durante el proceso de ósmosis inversa, se generan flujos de rechazo que contienen las sales, sustancias orgánicas y microorganismos que han sido retenidos por las membranas. En la primera etapa de ósmosis inversa, el flujo de rechazo varía entre 3000 y 1000 l/h, mientras que en la segunda etapa, el flujo de rechazo es de aproximadamente 1000 l/h.

Actualmente, el rechazo proveniente de la segunda etapa se recircula al tanque de agua suave TK 50, permitiendo que el agua sea tratada nuevamente en el proceso de ósmosis inversa. A pesar de que esto aprovecha una parte del agua y reduce el volumen de agua desechada, se ha identificado que puede haber una pérdida de agua de calidad en este proceso.

Por otro lado, el rechazo de la primera etapa se envía al drenaje debido a su alta concentración de sales y sustancias indeseables. Este flujo de rechazo no se recircula, ya que podría afectar negativamente la calidad del agua suave y la eficiencia del proceso de ósmosis inversa.

REFERENCIAS BIBLIOGRÁFICAS

- [1] Juan Antonio de la Cuerda. La Importancia Del Agua En La Industria Farmacéutica; 2021. Available from: https://revistas.eleconomista.es/agua/2021/diciembre/la-importancia-del-agua-en-la-industria-farmaceutica-YA9763706.
- [2] Setapht. Tratamientos de Agua Para Usos Farmacéuticos;. Available from: https://www.se tapht.com/blog/tratamientos-de-agua-para-usos-farmaceuticos/.
- [3] Farm Verónica Martinez. FARMACOPEAS; 2005.
- [4] ISPE. Good Manufacturing Practice (GMP) Resources | ISPE | International Society for Pharmaceutical Engineering;. Available from: https://ispe.org/initiatives/regulatory-resources/gmp.
- [5] Luis Carrasco. Que Tipo de Impurezas Podemos Encontrar En El Agua? Breve Con Sejo; 2021. Available from: https://breveconsejo.com.mx/que-tipo-de-impurezas-podem os-encontrar-en-el-agua/.
- [6] ELGA LabWater. Impacto de Los Compuestos Inorgánicos | Impurezas En El Agua; 2018.
 Available from: https://es.elgalabwater.com/inorganic-compounds.
- [7] ELGA LabWater. Impacto de Los Compuestos Orgánicos | Impurezas En El Agua; 2018. Available from: https://es.elgalabwater.com/organic-compounds.
- [8] Mireya del Pilar Arcos Pulido, Sara Lilia Ávila de Navia, Sandra Mónica Estupiñán Torres, Aura Cristina Gómez Prieto. Indicadores Microbiológicos de Contaminación de Las Fuen-

- tes de Agua; 2015. Available from: https://www.researchgate.net/publication/316949337_I ndicadores_microbiologicos_de_contaminacion_de_las_fuentes_de_agua.
- [9] Océane Bidault. ¿Qué factores determinan la calidad del agua?;. Available from: https://www.waterlogic.es/blog/que-factores-determinan-la-calidad-del-agua/.
- [10] Higieneambiental. La Historia Del Tratamiento Del Agua Potable: Un Camino Hacia La Mejora Radical de La Salud Pública | Higiene Ambiental; 2018. Available from: https://higieneambiental.com/aire-agua-y-legionella/la-historia-del-tratamiento-del-agua-potab le-un-camino-hacia-la-mejora-radical-de-la-salud-publica.
- [11] Qu, X, Alvarez, P, Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Research. Water Research. 2013;47(12):3931-46.
- [12] Kaya, Y, Akça, L. Advances in Real-Time Monitoring of Water and Wastewater Treatment Processes: A Review. Journal of Water Process Engineering. 2020;38:2545-602.