How can we know that a machine learning algorithm classifies and detects faults well?

Howard Cheung 2018/10/25

Agenda

Classification: what can we do with it?

- What is a good classification algorithm?
 - Confusion matrix and Accuracy score
 - True and False Positive Rate
 - Receiver Operating Characteristic Curve

Example on complex applications

Conclusions

Classification

 One major application of supervised learning methods in machine learning

- Work on categorized training data
 - Learn how categories vary with data
 - Categorize future data automatically

Classification

- Applications
 - Prediction of future event outcome

Exam 1 grade	Quiz 1 grade	Course grade
80	50	Yes
50	70	No

Exam 1 grade	Quiz 1 grade	Course grade
50	20	?
60	30	?

Fault detection and diagnostics

Normal? Stator fault? Rotor fault?

Image recognition

Classification

- Example algorithms
 - Logistic Regression Classification
 - Support Vector Classification
 - Naïve Bayes Classification

- Their end products are similar
 - Predicted categories
 - Hence similar evaluation method

Good classification algorithm

Predict the classes correctly

Consider the confusion matrix of the training data

	Class 1 data	Class 2 data	Class 3 data
Predicted to be class 1	50	30	10
Predicted to be class 2	10	60	5
Predicted to be class 3	20	10	80

 More counts on the diagonal, more accurate a classification is

But is that how it should be?

- There are quite a few problems in the previous analysis
 - Used all training data for evaluation
 - Not simulating what will happen to cases not used for training
 - Not application specific
 - Not all classes are equal
 - On a specific setup
 - What will happen if the user wants a set of stricter/ more relaxed rules?

How can we address the issues?

Cross-validation

True and false positive rates

Receiver-operating characteristic (ROC) curve

Cross-validation

 Separate training datasets into multiple subsets

 Get accuracy scores of all trials with their own validation sets

• Examine the performance of the algorithms in cases outside their training data

True and false positive rates

Not all classes are equal!

- Example: Fault Detection and Diagnostics
 - Sometimes classification algorithms are only used to evaluate if a minor issue occurs
 - Send someone to repair the issue if a fault happens
 - But sending someone to fix some non-existing issues are costly
 - Worse than sending no one at all!
 - You want to check the accuracy of the classes differently

True and false positive rates

Consider a confusion matrix

	Predicted to be class 1	Predicted to be other classes
Really belongs to class 1	True positive	False negative
It's not in class 1	False positive	True negative

• If a class 1 prediction requires costly actions, you will need a algorithm

• Very low false positive rate = $\frac{\text{Number of false positive cases}}{\text{Number of non-class 1 cases}}$

• Moderately high true positive rate = $\frac{\text{Number of true positive cases}}{\text{Number of actual class 1 cases}}$

Receiver operating characteristic curves

- There are thresholds to adjust the criteria between the boundaries of the classes
 - Regularization strength to avoid overfitting at the cost of accuracy
 - Confidence level
- Change of threshold changes the performance of the algorithm
- Range of performance metrics instead of just one metric

ROC curve

Frank et al. (2016)

Study of a problematic case

- There are some algorithms trying to claim very different classification rules to game the system
- Claim: "Our algorithm is not so good at the identification of Issues Y and Z. If Issue Y exists, it may raise either Issue Y or Z alarm. But not vice versa."

Will that work better?

Let's look at the original confusion matrices without the claim

• Since we have two diagnoses for two issues, we have two matrices

- Matrix for issue Y prediction
 - Where are the true positives for issue Y classification?
 - 4 True positives and 4 False positives

		Predicted to have both Y and Z	Predicted to have Y but not Z	Predicted to have Z but not Y	Predicted not to have Y and Z
With issue Y	With issue Z	True positive (TP)		False negative (FN)	
1550€ 1	Without issue Z				
Without issue Y	With issue Z	False positive (FP)		True negative (TN)	
1330€ 1	Without issue Z				

Let's look at the original confusion matrices without the claim

- Matrix for issue Z prediction
 - Where are the true positives for issue Z classification?
 - 4 TPs and 4FPs

		Predicted to have both Y and Z	Predicted to have Y but not Z	Predicted to have Z but not Y	Predicted not to have Y and Z
With issue Y	With issue Z	TP	FN	TP	FN
	Without issue Z	FP	TN	FP	TN
Without issue Y	With issue Z	TP	FN	TP	FN
	Without issue Z	FP	TN	FP	TN

Let's see what will happen with the claim to the issue Z classification

- Matrix for issue Z prediction
 - WP stands for weak positive which means that the classification is partially correct

		Predicted to have both Y and Z	Predicted to have Y but not Z	Predicted to have Z but not Y	Predicted not to have Y and Z
issueY	With issue Z	TP	FN	<u>WP</u>	FN
	Without issue Z	FP	TN	<u>WP</u>	FN
Without issue Y	With issue Z	TP	FN	TP	FN
	Without issue Z	FP	TN	FP	TN

Why?

- If there are two issues but the algorithm is giving me one alarm, I am going to check for one issue only
 - One partially correct answer (WP)
- If the algorithm tells me that an issue Z exists but not issue Y, I am going to check issue Z first. If it doesn't exist, I go to check issue Y. This is not automatic!
 - Another partially correct answer (WP)
- You should give an issue Z prediction even if only issue Y exists
 - One TN turns into a FN

So what happened?

- Convert
 - One True Positive scenario
 - One False Positive scenario
 - One True Negative scenario
- To
 - Two Weak Positive scenarios
 - One False Negative scenario
- Reduce
 - True Positive Rate, False Positive Rate and Accuracy Score
 - Only good if your false positive rate is too high

Summary

- Classification algorithm evaluation methods
 - General
 - Accuracy score and confusion matrix
 - Specific applications
 - True and false positive rates
 - Tuneable parameters
 - ROC curve
- Confusion matrix construction to evaluate special claims

References

- Cheung, H., Braun, J. E., & Langner, M. R. (2016). *Methodology to Assess No Touch Audit Software Using Simulated Building Utility Data* (No. NREL/SR-5500-66001). Golden, CO: National Renewable Energy Laboratory. Retrieved from http://www.nrel.gov/docs/fy170sti/66001.pdf
- Fawcett, T. (2006). An introduction to ROC analysis. *Pattern Recognition Letters*, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
- Frank, S., Heaney, M., Jin, X., Robertson, J., Cheung, H., Elmore, R., & Henze, G. (2016). Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings. In 2016 ACEEE Summer Study on Energy Efficiency in Buildings. Retrieved from http://www.nrel.gov/docs/fy16osti/65924.pdf
- Kaggle. Titanic: Machine Learning from Disaster. Retrieved October 23, 2018, from https://www.kaggle.com/c/titanic
- VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data (1 edition). Sebastopol, CA: O'Reilly Media. Retrieved from https://jakevdp.github.io/PythonDataScienceHandbook/index.html

https://bit.ly/2SbvtiX

Evaluation

