INTEGRATION FURTHER MATHS PURE SET 1

1. It is given that $I_n = \int \sec^n x \, dx$.

By writing $\sec^n x$ as $\sec^{n-2} x \sec^2 x$, prove that

$$(n-1) I_n = \sec^{n-2} x \tan x + (n-2) I_{n-2}.$$
 [6]

Hence, find
$$\int \sec^4 x \, dx$$
. [2]

2. The integral I_n is defined by $I_n = \int_0^{\frac{1}{4}\pi} \sec^n x \, dx$.

By considering $\frac{d}{dx}(\tan x \sec^n x)$, or otherwise, show that

$$(n+1)I_{n+2} = 2^{\frac{1}{2}n} + nI_n. ag{4}$$

[4]

Find the value of I_6 .

3. Given that $I_n = \int_0^{\frac{n}{3}} \sec^n x \, dx$, show that for $n \ge 2$, $I_n = \frac{2^{n-2}}{n-1} \sqrt{3} + \frac{n-2}{n-1} I_{n-2}$.

Hence, evaluate I₇, giving your answer in exact form. [4]

4. (i) Show that

$$\frac{d}{dx}\left[x(1-x^2)^n\right] = (2n+1)(1-x^2)^n - 2n(1-x^2)^{n-1}$$
 [3]

(ii) It is given that

$$I_n = \int_0^1 (1-x^2)^n \ dx \qquad (n \ge 0)$$

Use the result in part (i) to show that

$$I_n = \frac{2n}{2n+1} I_{n-1} \qquad (n \ge 1)$$
 [2]

Hence evaluate I_5 , leaving your answer as a fraction in its lowest terms. [2]

5. If I_n denotes $\int_0^2 x^n \cos x dx$, prove that

i)
$$I_n = (\frac{\pi}{2})^n - n(n-1)I_{n-2}$$
 , $n \ge 2$ [7]

ii)
$$I_3 = \frac{\pi^3}{8} - \frac{3\pi}{2} + 6 p$$
. $I_3 = \frac{II^3}{p} - 3\pi + 6$ [5]

6. The integral I_n , where n is a non-negative integer, is defined by

$$I_n = \int_0^1 x^n \sqrt{1-x^2} \, \mathrm{d}x.$$

Show that
$$(n+2) I_n = (n-1) I_{n-2}$$
 [5]
Find I_5 [2]

7. (i) Given that

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx \,,$$

where *n* is a non-negative integer. By considering $\frac{d}{dx}(\sin^{n-1} x \cos x)$ show that for $n \ge 2$,

$$I_n = \frac{n-1}{n} I_{n-2} \,. \tag{5}$$

Given that

$$I_n = \int \operatorname{cosec}^n x \, dx \,,$$

where n is a non-negative integer. Show that for $n \ge 2$,

$$(n-1)I_n = (n-2)I_{n-2} - \cot x \csc^{n-2} x.$$
 [4]

(i) Find
$$I_1, I_2, I_3$$
 and I_4 . [4]

9. If $I_n = \int \sec^2 y \sec^n (\tan y) \csc^n (\tan y) dy$, by using the substitution $x = \tan y$, show that $I_n = \int \sec^n x \csc^n x dx$ and find a reduction formula for I_n , in terms of x. [7]

Hence find I_2 , I_3 , and I_4 . [5]

10. If
$$I_n = \int_0^{\frac{\pi}{2}} e^x \cos^n x \, dx$$
, show that $(n^2 + 1)I_n = n(n-1)I_{n-2} - 1$. [6] Find also I_1 , I_2 and I_3 .

11. Let
$$I_n = \int (\ln x)^n dx$$
. Show that $I_n = x(\ln x)^n - nI_{n-1}$. [3]

Hence, find I_2 . [4]