******** 双面 **A4** 纸打印并作答 ********

题目1:将如下布尔表达式转换为3CNF形式,使转换前后的表达 式在是否可满足上保持一致。

- (1) $(x \lor y) \land z \land (\overline{x} \lor \overline{y} \lor z \lor a \lor b \lor \overline{c})$
- (2) $x \wedge y \vee \overline{x} \wedge z$

题目 2: 4TA-SAT 问题定义如下: 给定布尔表达式 φ , φ 是否至少 有 4 个不同的可满足赋值。证明该问题是 NP-完全问题。

计	算	理	论	作	业-	-肆
VΙ	开	丠	W.	ľ	1L-	一五丰

姓名:

学号:

题目3: 布尔表达式 φ_n 是 3CNF, 包含 n 个布尔变量 x_1, x_2, \dots, x_n , 对每一组 1 到 n 之间的三个不同整数 i, j, k,均有 $x_i \vee x_j \vee x_k$ 和 $\overline{x_i} \vee \overline{x_j} \vee \overline{x_k}$ 属于 φ_n 。回答下列问题。

 $(1)\varphi_4$ 是否可满足,说明理由;

 $(2)\varphi_5$ 是否可满足,说明理由。

题目 4: 子图同构问题: 给定图 G 和 H, G 是否是 H 的一个子图?证明子图同构问题是 NP 完全问题。

计算理论作业–肆 姓名: 学号:	算理论作业-肆	姓名:	学号:	
-------------------------	---------	-----	-----	--

题目5: 反馈边问题: 给定有向图 G 和整数 k, 是否可以删除 k 条 边使得图 G 无环? 证明反馈边问题是 NP 完全问题。

计算理论作业-肆	姓名:	学号:

题目 6: 半团问题: 图 G 是否有一个由 G 中恰好一半顶点组成的团?证明半团问题是 NP 完全问题。

题目 7: 证明 NAE-3SAT 问题是 NP 完全问题。[问题定义参见课 件,提示: (1) 可以将 $x \vee y \vee z$ 变换为 $(x \vee y \vee h)$ 以及 $(\overline{h} \vee z \vee b)$, 其中 b 是所有子句共享的, h 是该子句独有的, (2) 假设存在赋值 τ 满足 NAE-3SAT 的要求,将 τ 所有变量赋值翻转获得的新赋值 函数仍然满足要求。]

计算理论作业-肆	姓名:	学号:	
----------	-----	-----	--

题目8: 3-可着色问题:图G是否存在一个着色方案,将每个顶点染色为红,黄,蓝其中一种颜色,并且同一条边的两个顶点颜色不同?证明3-可着色问题是NP-完全问题。