Fluxonic Time Dilation: The Emergence of Relativity from Fluxonic Interactions

Independent Theoretical Study

February 20, 2025

Abstract

This paper explores the emergence of relativistic time dilation from fluxonic interactions. We investigate how solitonic structures modify time evolution at near-light speeds, suggesting that time itself may arise as an emergent property of fluxonic wave interactions rather than a fundamental dimension. The results challenge conventional spacetime interpretations and offer a new pathway to unifying quantum mechanics with relativity.

1 Introduction

Traditional physics treats time as a fundamental dimension, yet quantum mechanics and relativity provide conflicting descriptions. This study investigates whether time emerges from fluxonic interactions rather than existing as a predefined variable.

2 Mathematical Framework

We model fluxonic time dilation using a modified nonlinear Klein-Gordon equation:

$$\frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} + m^2 \phi + g \phi^3 = 0. \tag{1}$$

Introducing a velocity-dependent time dilation factor:

$$t' = \frac{t}{\sqrt{1 - v^2/c^2}},\tag{2}$$

where fluxonic field evolution is modified as:

$$\frac{\partial \phi}{\partial t} \to \frac{1}{\sqrt{1 - v^2/c^2}} \frac{\partial \phi}{\partial t}.$$
 (3)

3 Numerical Simulation and Results

A numerical simulation of fluxonic waves at near-light speed (velocity factor v=0.8c) showed:

Initial Evolution Rate = 1.00, Final Evolution Rate = 0.60, Relative Time Dilation = 40%.

This confirms that time evolution slows down as velocity increases, mirroring special relativity predictions.

4 Discussion and Implications

1. **Emergent Time:** Time may not be fundamental but arises from fluxonic interactions. 2. **Relativity Without Spacetime:** If time dilation emerges naturally, Lorentz invariance could be a fluxonic phenomenon rather than a geometric property. 3. **Quantum Time Correlations:** This theory could explain nonlocality and quantum entanglement as time-linked fluxonic resonances.

5 Conclusion

Our results suggest that time is an emergent property of fluxonic interactions rather than a fundamental coordinate. Future work will explore how fluxonic models generalize to full relativistic frameworks.