Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3201</u>	К работе допущен	
Студенты <u>Ткачук С.А. и Чуб Д.О.</u>	_Работа выполнена	21023 50/20
Преподаватель Шоев В.И.	_Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 1.04

Маятник Обербека. Исследование равноускоренного вращательного движения

1. Цель работы

- 1. Проверка основного закона динамики вращения.
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Задачи, решаемые при выполнении работы

- 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
- 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

3. Объект исследования

Вращательное движение маятника Обербека с привязанным к нему грузом в зависимости от массы груза и момента инерции маятника (расстоянию от центра до утяжелителей).

4. Метод экспериментального исследования

Лабораторный

5. Рабочие формулы и исходные данные

Формулы:

Ускорение груза a, падающего с высоты h за время t:

$$a = \frac{2h}{t^2} \quad (1)$$

Угловое ускорение ε крестовины (a - линейное ускорение груза, d - диаметр ступицы):

$$\varepsilon = \frac{2a}{d}$$
 (2)

Момент силы натяжения нити M (m - масса груза, d - диаметр ступицы, a - линейное ускорение груза, g - ускорение свободного падения):

$$M = \frac{md}{2}(g - a)$$
 (3)

Основной закон динамики вращения для крестовины (I - момент инерции крестовины, ε - угловое ускорение крестовины, M - момент силы натяжения нити, $M_{\rm TP}$ - момент силы трения):

$$I\varepsilon = M - M_{\rm TD}$$
 (4)

Момент инерции крестовины (I_0 - сумма моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей, R - расстояние от центра крестовины до центра утяжелителя, $m_{\rm vr}$ - масса грузов на крестовине):

$$I = I_0 + 4m_{\rm VT}R^2$$
 (5)

Теоретическая связь между моментом силы натяжения нити и угловым ускорением крестовины:

$$M = M_{\rm TD} + I\varepsilon$$
 (6)

Расстояние от центра крестовины до центра утяжелителя (l_1 — расстояние до первой риски от центра, n — номер риски, l_0 — расстояние между соседними рисками, b — размер утяжелителя вдоль спицы):

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b \quad (7)$$

Абсолютная погрешность прямого измерения ($t_{\alpha,N}$ - коэффициент Стьюдента для доверительной вероятности α , N - общее количество измерений, x_i - значение случайной величины, $\langle x \rangle_N$ - выборочное значение среднего):

$$\Delta x = t_{\alpha,N} \cdot \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \langle x \rangle_N)^2}$$
 (8)

Угловой коэффициент линейной зависимости y(x) = a + bx (\bar{x} - среднее значение величины x, \bar{y} - среднее значение величины y):

$$b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 (9)

Свободный член линейной зависимости y(x) = a + bx:

$$a = \bar{y} - b\bar{x} \quad (10)$$

Погрешность углового коэффициента:

$$d_{i} = y_{i} - (a + bx_{i})$$

$$D = \sum (x_{i} - \bar{x})^{2}$$

$$\Delta b = t_{\alpha,N} \cdot \sqrt{\frac{\sum d_{i}^{2}}{D(n-2)}}$$
 (11)

Погрешность свободного члена:

$$\Delta a = t_{\alpha,N} \cdot \sqrt{\left(\frac{1}{n} + \frac{\bar{x}^2}{D}\right) \cdot \frac{\sum d_i^2}{n-2}}$$
 (12)

6. Измерительные приборы

	Наименование	тип прирора	_	Погрешность прибора
1	Электронный секундомер	Электронный	0 - 15 с	0.01 c

7. Схема установки

Рис. 1: схема установки: 1 - основание, 2 - рукоятка сцепления крестовин, 3 - устройства принудительного трения, 4 - поперечина, 5 - груз крестовины, 6 - трубчатая направляющая, 7 - передняя крестовина, 8 - задняя крестовина, 9 - шайбы каретки, 10 - каретка, 11 - система передних стоек

8. Результаты прямых измерений и их обработки

Мы провели N=72 измерения времени падения груза при разной массе груза и разном положении утяжелителей на крестовине. Результаты занесли в **Таблицу 1**. Для каждой ситуации также было подсчитано среднее значение и занесено в 4 строку для каждой массы груза и положения утяжелителей.

Таблица 1: Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

Macca			Положение у	тяжелителей		
груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	5,22	6,17	7,10	8,62	10,00	10,74
267	5,11	7,02	6,88	8,48	10,39	9,93
207	4,90	6,50	6,97	8,73	10,12	10,80
	5,08	6,56	6,98	8,61	10,17	10,49
	3,59	4,50	5,30	5,58	6,85	7,09
487	3,45	4,90	4,98	5,69	6,30	7,09
407	3,65	4,38	5,13	5,61	6,11	7,09
	3,56	4,59	5,14	5,63	6,42	7,09
	2,98	3,52	3,65	4,58	4,97	6,11
707	2,93	3,38	4,05	4,44	5,10	5,77
/0/	2,65	3,52	3,97	4,66	5,28	5,93
	2,85	3,47	3,89	4,56	5,12	5,94
	2,39	2,67	3,72	3,85	4,38	5,37
927	2,59	3,25	3,45	3,92	4,58	5,23
321	2,46	2,99	3,45	3,78	4,25	5,44
	2,48	2,97	3,54	3,85	4,40	5,35

9. Расчет результатов косвенных измерений

Используя найденные значения $t_{\rm cp}$, рассчитаем ускорение a груза, угловое ускорение ϵ крестовины и момент a силы натяжения нити, результаты внесем в **Таблицу 2**:

Таблица 2: Вычисленные значения ускорения a груза, углового ускорения ε крестовины и момента M силы натяжения нити для значения t_{cp} по формулам (1), (2) и (3)

Macca		Положение утяжелителей								
груза, кг		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска			
	а, м/c²	0,05	0,03	0,03	0,02	0,01	0,01			
0,267	ε, рад/c²	2,36	1,41	1,25	0,82	0,59	0,55			
	М, Н∙м	0,06	0,06	0,06	0,06	0,06	0,06			
	а, м/c²	0,11	0,07	0,05	0,04	0,03	0,03			
0,487	ε, рад/c²	4,79	2,88	2,31	1,92	1,48	1,21			
	М, Н∙м	0,11	0,11	0,11	0,11	0,11	0,11			
	а, м/c²	0,17	0,12	0,09	0,07	0,05	0,04			
0,707	ε, рад/c²	7,48	5,05	4,02	2,93	2,33	1,73			
	М, Н∙м	0,16	0,16	0,16	0,16	0,16	0,16			
	а, м/c²	0,23	0,16	0,11	0,09	0,07	0,05			
0,927	ε, рад/c²	9,90	6,90	4,86	4,11	3,14	2,13			
	М, Н∙м	0,20	0,21	0,21	0,21	0,21	0,21			

Для каждого положения утяжелителей на основе **Таблицы 2** по методу наименьших квадратов (МНК) рассчитаем момент I инерции крестовины с утяжелителями и момент силы трения $M_{\rm Tp}$. Из формулы (4) следует, что теоретическая связь между моментом силы натяжения нити и угловым ускорением крестовины описывается уравнением $M = M_{\rm Tp} + I\varepsilon$ (формула 6), т.е. зависимость $M(\varepsilon)$ является линейной, а величины I и $M_{\rm Tp}$ - коэффициенты этой зависимости.

Найдем эти коэффициенты для каждого положения утяжелителей, используя формулы (9) и (10).

1 риска:

ε, рад/c ²	2,36	4,79	7,48	9,90
М,Н/м	0,06	0,11	0,16	0,20

$$\bar{\varepsilon} = \frac{1}{n} \sum \varepsilon_i = 6,13$$

$$\bar{M} = \frac{1}{n} \sum M_i = 0,13$$

$$I = \frac{\sum (\varepsilon_i - \bar{\varepsilon})(M_i - \bar{M})}{\sum (\varepsilon_i - \bar{\varepsilon})^2} \approx 0,019$$

$$M_{\text{Tp}} = \bar{M} - b\bar{\varepsilon} = 0,019$$

Уравнение: $M = M_{\rm Tp} + I\varepsilon = 0.019 + 0.019\varepsilon$

2 риска:

ε, рад/c ²	1,41	2,88	5,05	6,90
М, Н/м	0,06	0,11	0,16	0,21

$$\bar{\varepsilon} = \frac{1}{n} \sum \varepsilon_i = 4,06$$

$$\bar{M} = \frac{1}{n} \sum M_i = 0,14$$

$$I = \frac{\sum (\varepsilon_i - \bar{\varepsilon})(M_i - \bar{M})}{\sum (\varepsilon_i - \bar{\varepsilon})^2} \approx 0,027$$

$$M_{\text{Tp}} = \bar{M} - b\bar{\varepsilon} = 0,027$$

Уравнение: $M = M_{\rm TP} + I\varepsilon = 0.027 + 0.027\varepsilon$

3 риска:

ε , рад/ c^2	1,25	2,31	4,02	4,86
М, Н/м	0,06	0,11	0,16	0,21

$$\bar{\varepsilon} = \frac{1}{n} \sum \varepsilon_i = 3,11$$

$$\bar{M} = \frac{1}{n} \sum M_i = 0,14$$

$$I = \frac{\sum (\varepsilon_i - \bar{\varepsilon})(M_i - \bar{M})}{\sum (\varepsilon_i - \bar{\varepsilon})^2} \approx 0,039$$

$$M_{\text{Tp}} = \bar{M} - b\bar{\varepsilon} = 0,013$$

Уравнение: $M=M_{\rm Tp}+I\varepsilon=0.013+0.039\varepsilon$

4 риска:

ε , рад/ c^2	0,82	1,92	2,93	4,11
М,Н/м	0,06	0,11	0,16	0,21

$$\bar{\varepsilon} = \frac{1}{n} \sum \varepsilon_i = 2,45$$

$$\bar{M} = \frac{1}{n} \sum M_i = 0,14$$

$$I = \frac{\sum (\varepsilon_i - \bar{\varepsilon})(M_i - \bar{M})}{\sum (\varepsilon_i - \bar{\varepsilon})^2} \approx 0,046$$

$$M_{\text{TP}} = \bar{M} - b\bar{\varepsilon} = 0,023$$

Уравнение: $M = M_{\rm Tp} + I\varepsilon = 0.023 + 0.046\varepsilon$

5 риска:

ε, рад/c ²	0,59	1,48	2,33	3,14
<i>М</i> , Н/м	0,06	0,11	0,16	0,21

$$\bar{\varepsilon} = \frac{1}{n} \sum \varepsilon_i = 1,89$$

$$\bar{M} = \frac{1}{n} \sum M_i = 0,14$$

$$I = \frac{\sum (\varepsilon_i - \bar{\varepsilon})(M_i - \bar{M})}{\sum (\varepsilon_i - \bar{\varepsilon})^2} \approx 0,059$$

$$M_{\text{Tp}} = \bar{M} - b\bar{\varepsilon} = 0,024$$

Уравнение: $M = M_{\rm Tp} + I\varepsilon = 0.024 + 0.059\varepsilon$

6 риска:

ε , рад/ c^2	0,55	1,21	1,73	2,13						
М, Н/м	0,06	0,11	0,16	0,21						
$ar{arepsilon} = rac{1}{n} \sum arepsilon_i = 1{,}41$										
$\overline{M} = \frac{n}{n} \sum M_i = 0.14$										
	$\sum_{i} (\varepsilon_{i} - \bar{\varepsilon})(M_{i} - \bar{M})$									
	$I = \frac{\sum (\varepsilon_i - \bar{\varepsilon})(M_i - \bar{M})}{\sum (\varepsilon_{\underline{i}} - \bar{\varepsilon})^2} \approx 0,094$									
		$M_{\rm TD} = \overline{M} - \overline{M}$	$b\bar{\varepsilon} = 0.003$							

Уравнение: $M = M_{\rm Tp} + I\varepsilon = 0.003 + 0.094\varepsilon$

Используя вычисленные значения I и $M_{\rm Tp}$, построим на **Рис. 2** графики зависимости $M(\varepsilon)$ для всех положений утяжелителей.

Рис. 2: График зависимости $M(\varepsilon)$

Для каждого положения утяжелителей найдем расстояние между осью O вращения и центром C утяжелителя по формуле (7). Здесь $l_1=0.057$ м - расстояние от оси вращения до первой риски; n - номер риски, на которой установлены утяжелители; $l_0=0.025$ м - расстояние между соседними рисками; b=0.04 м - размер утяжелителя вдоль спицы. Вычислим R^2 .

Найденные значения I, R, R^2 занесем в **Таблицу 3**:

Таблица 3: Найденные значения момента I инерции крестовины с утяжелителями груза, расстояния R между осью O вращения и центром C утяжелителя и квадрата R^2 расстояния

		Положение утяжелителей						
	1 риска 2 риска 3 риска 4 риска 5 риска 6 риска							
<i>I</i> , кг 'м ²	0,019	0,027	0,039	0,046	0,059	0,094		
<i>R</i> , м	0,077	0,10	0,13	0,15	0,18	0,20		
R^2 , M^2	0,0059	0,010	0,016	0,023	0,031	0,041		

На основе **Таблицы 3** в координатах I (ордината) - R^2 (абсцисса) отметим экспериментальные точки зависимости $I(R^2)$ (**Рис. 3**)

Рис. 3: График зависимости $I(R^2)$

На основе найденных значений I и \mathbb{R}^2 с помощью МНК определим значения I_0 и $m_{\rm yr}$. Теоретическая связь между моментом силы натяжения нити и угловым ускорением крестовины описывается формулой (5), т. е. зависимость $I(\mathbb{R}^2)$ является линейной, а величины I_0 и $m_{\rm yr}$ - коэффициенты этой зависимости.

Найдем эти коэффициенты, используя формулы (9) и (10):

R^2 , M^2	0,0059	0,0104	0,016	0,023	0,031	0,0408
<i>I</i> , кг 'м ²	0,019	0,027	0,039	0,046	0,059	0,094

$$\bar{R}^2 = \frac{1}{n} \sum R_i^2 = 0.02$$

$$\bar{I} = \frac{1}{n} \sum I_i = 0.047$$

$$4m_{yT} = \frac{\sum (R_i^2 - \bar{R}^2)(I_i - \bar{I})}{\sum (R_i^2 - \bar{R}^2)^2} = 1.98$$

$$m_{yT} = 0.495$$

$$I_0 = \bar{I} - b\bar{R}^2 = 0.0074$$

Уравнение: $I = 0.0074 + 1.98R^2$

Используя вычисленные значения I_0 и $m_{
m yr}$, построим на **Рис. 3** график зависимости $I(R^2)$.

10. Расчет погрешностей измерений

По данным **таблицы 1** рассчитаем погрешность для первого t_{cp} по формуле (8):

$$\Delta t = t_{\alpha,N} \cdot \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - t_{cp})^2} = 0.95 \cdot \sqrt{\frac{1}{3(3-1)} \sum_{i=1}^{3} (t_i - 5.08)^2} \approx 0.09 c$$

Рассчитаем погрешность для первых значений a, ε и M по формуле (8):

$$a_1=0,051$$

$$a_2=0,054$$

$$a_3=0,058$$

$$a_{\rm cp}=0,054$$

$$\Delta a=t_{\alpha,N}\cdot\sqrt{\frac{1}{N(N-1)}\sum_{i=1}^N(a_i-a)^2}=0,95\cdot\sqrt{\frac{1}{3(3-1)}\sum_{i=1}^3(a_i-0,054)^2}\approx 0,0019$$
 Доверительный интервал $[\langle a\rangle-\Delta a,\ \langle a\rangle+\Delta a]$: $[0,0521;0,0559]$

$$\begin{split} \epsilon_1 &= 2{,}33\\ \epsilon_2 &= 2{,}33\\ \epsilon_3 &= 2{,}54\\ \epsilon_{\rm cp} &= 2{,}37 \end{split}$$
 $\Delta \epsilon = t_{\alpha,N} \cdot \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (\epsilon_i - \epsilon)^2} = 0{,}95 \cdot \sqrt{\frac{1}{3(3-1)} \sum_{i=1}^3 (\epsilon_i - 2{,}37)^2} \approx 0{,}069$ Доверительный интервал $[\langle \epsilon \rangle - \Delta \epsilon, \ \langle \epsilon \rangle + \Delta \epsilon]$: $[2{,}301; 2{,}439]$

$$M_1=0,05987$$

$$M_2=0,05985$$

$$M_3=0,05982$$

$$M_{\rm cp}=0,05985$$

$$M_{\rm cp}=0,05985$$

$$\Delta M=t_{\alpha,N}\cdot\sqrt{\frac{1}{N(N-1)}\sum_{i=1}^N(M_i-M)^2}=0,95\cdot\sqrt{\frac{1}{3(3-1)}\sum_{i=1}^3(M_i-0,05985)^2}\approx 0,0001$$
 Доверительный интервал $[\langle \epsilon \rangle - \Delta \epsilon, \ \langle \epsilon \rangle + \Delta \epsilon]$: $[0,05973;0,05997]$

Рассчитаем погрешности ΔI_0 и $\Delta m_{\scriptscriptstyle
m VT}$ по формулам (11) и (12):

$$D = \sum (R_i^2 - \bar{R}^2)^2 \approx 0,00087$$

$$d_i = I_i - (I_0 + 4m_{yT}R_i^2)$$

d_i	-0,00008	-0,00099	-0,00008	-0,0069	-0,0098	0,0058	
$\Sigma d^2 \sim 0.004$							

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2} \approx 0,051$$

$$S_a^2 = \left(\frac{1}{n} + \frac{\bar{x}^2}{D}\right) \frac{\sum d_i^2}{n-2} \approx 0,00003$$

$$\Delta m_{\rm yT} = \frac{0,051}{4} = 0,013$$

$$\varepsilon_{m_{\rm yT}} = \frac{\Delta m_{\rm yT}}{m_{\rm yT}} \cdot 100\% \approx 2,6\%$$

$$\Delta I_0 = 0,00003$$

$$\varepsilon_{I_0} = \frac{\Delta I_0}{I_0} \cdot 100\% \approx 4\%$$

11. Окончательные результаты

Конечный вид основного закона термодинамики для каждого положения утяжелителей:

```
\begin{array}{l} {\rm M_1} = 0.019 + 0.019 \epsilon \; {\rm H/m} \\ {\rm M_2} = 0.027 + 0.027 \epsilon \; {\rm H/m} \\ {\rm M_3} = 0.013 + 0.039 \epsilon \; {\rm H/m} \\ {\rm M_4} = 0.023 + 0.046 \epsilon \; {\rm H/m} \\ {\rm M_5} = 0.024 + 0.059 \epsilon \; {\rm H/m} \\ {\rm M_6} = 0.003 + 0.094 \epsilon \; {\rm H/m} \end{array}
```

Конечный результат момента I инерции с учетом погрешности имеет вид:

```
I = (0.00740 \pm 0.00003) + 4 \cdot (0.495 \pm 0.013) R^2 \text{ kg s}^2

m_{\text{yT}} = (0.495 \pm 0.013) \text{ kg}; \varepsilon_{m_{\text{yT}}} = 2.6\%; I_0 = (0.00740 \pm 0.00003) \text{ m}; \varepsilon_{I_0} = 4\%;
```

12. Выводы и анализ результатов работы

Были экспериментально проверены и доказаны основной закон динамики вращения и зависимость момента инерции от положения масс относительно оси вращения. Рассчитаны все коэффициенты для полученных линейных уравнений и сделаны графики зависимости.