CS345 Theoretical Assignment 5 $\,$

Ayush Agarwal, 13180 M.Arunothia, 13378

Contents

1	Bin	ary search and predecessor/successor queries under deletions	2
	1.1	Data Structure Overview	2
2	Ext	ension of the problem of the mid-semester exam	3
	2.1	Pseudo Code	9
	2.2	Justifications	9
		2.2.1 Retaining just one edge with the cluster for any $v \notin cluster$ is sufficient	;
		2.2.2 Non-Tree edges need not be retained	9
	2.3	Proving $ E_s = O(n^{1+1/k})$:
	2.4	Time Complexity	9

- 1 Binary search and predecessor/successor queries under deletions
- 1.1 Data Structure Overview

2 Extension of the problem of the mid-semester exam

2.1 Pseudo Code

```
1: procedure findSubgraph(V,E)
       E_s \leftarrow \phi
       while V! = \phi \operatorname{do}
3:
           Pick any vertex v from G
 4:
           if degree(v) \le n^{1/k} then
5:
              Add all edges incident on v to E_s
6:
              Remove v and all edges incident on v from G
 7:
8:
           else
              Do a BFS from v in graph G till a depth of k-1.
9:
              Remove all the non-tree edges (in the formed k-1 levels) from G
10:
              Call this formed tree of depth k-1 as cluster.
11:
12:
              For all v \notin cluster retain just one edge with the cluster and remove all other edges from G
              Add all the tree(cluster) edges along with the edges incident on the cluster to E_s
13:
              Remove cluster and all edges incident on cluster from G
14:
           end if
15:
       end while
16:
17:
       return Es
18: end procedure
```

2.2 Justifications

2.2.1 Retaining just one edge with the cluster for any $v \notin cluster$ is sufficient

Let v be the root of the *cluster* being discussed. Let $u \notin cluster$ be the vertex outside cluster who has edges to both $x \in cluster$ and $y \in cluster$. Let us consider what happens when we remove say the edge (u, y). We know v being the root of the BFS tree, is connected to both x and y. As the depth of the BFS tree being considered is k-1, the maximum path length between v and x (or y) is k-1. This means there is a path between x and y via v that has a maximum length of 2(k-1). Though we have removed the edge (u, y), u and v are still connected by the path (u, x), then v to v via v. The maximum length of this path between v and v is hence, v is hence, v is unitarity in the requirement asked for in the question. This explains why retaining just one edge with the cluster for any $v \notin cluster$ is sufficient.

2.2.2 Non-Tree edges need not be retained

As within the tree any two vertices are always connected via a path whose length $\leq 2k-1$, there is no need to retain non-tree edges.

2.3 Proving $|E_s| = O(n^{1+1/k})$

- If $degree(v) \le n^{1/k}$ then, we add at most $n^{1/k}$ edges to E_s for the single vertex v.
- If $degree(v) > n^{1/k}$ then, we add at most $O(\ vertices\ being\ removed + vertices\ not\ being\ removed)$ edges to E_s for a cluster of at least $n^{1/k}$ vertices.
 - The number of edges that belong to the *cluster* is of O(vertices being removed) as it is a tree.
 - The number of edges that are incident on the cluster is O(vertices not being removed) as proved from justification (1).
 - Hence, the given order.
- Worst case $|E_s| = n * n^{1/k} + \sum_{i=0}^k n^{1-i/k} = O(n^{1+1/k})$

2.4 Time Complexity

The overall algorithm accesses an edge exactly for O(1) times, because in any iteration of the while-loop the edge getting accessed is being removed off from G and hence, it is guaranteed that no edge is being accessed in two different iterations. Hence, the time complexity is O(m+n).