A Bunch of Random Proofs

Hashem A. Damrah March 20, 2023

CONTENTS

1	Cal	culus		5
	1.1	Limit	Laws/Rules	5
		1.1.1	Limit Law R1	5
		1.1.2	Limit Law R2	5
		1.1.3	Limit Law R3	5
		1.1.4	Limit Law A1	5
		1.1.5	Limit Law A2	5
		1.1.6	Limit Law A3	5
		1.1.7	Limit Law A4	5
		1.1.8	Limit Law A5	5
		1.1.9	Limit Law A6	5
		1.1.10	Limit Law A7	5
	1.2	Deriva	tive Laws/Rules	6
		1.2.1	Product Rule	6
		1.2.2	Quotient Rule	6
		1.2.3	Chain Rule	6
		1.2.4	Constant Rule	6
		1.2.5	Power Rule	6
		1.2.6	Square Root Rule	7
		1.2.7	Sine Rule	7
		1.2.8	Cosine Rule	7
		1.2.9	Tangent Rule	7
		1.2.10	Cotangent Rule	7
		1.2.11	Secant Rule	7
		1.2.12	Cosecant Rule	7
		1.2.13	Sine Inverse Rule	7
		1.2.14	Cosine Inverse Rule	7
		1.2.15	Tangent Inverse Rule	7

	1.	2.16	Cotangent Inverse Rule	7							
	1.	2.17	Secant Inverse Rule	7							
	1.	2.18	Cosecant Inverse Rule	7							
	1.	2.19	Factoring a Constant	7							
	1.	2.20	Variable Power Rule	8							
	1.	2.21	e to the x Rule	8							
	1.	2.22	Logarithm Rule	8							
	1.	2.23	Absolute Value Rule	8							
2	Real A	Anal	ysis	9							
	2.1 Ca										
	2.	1.1	Bijection Between Two Sets	9							
	2.	1.2	· ·	9							
3	Set Th	neor	v 1	1							
	3.1 O	Operations on sets									
			Distributing the union over the intersection								

CHAPTER 1

CALCULUS

- 1.1 Limit Laws/Rules
- 1.1.1 Limit Law R1
- 1.1.2 Limit Law R2
- 1.1.3 Limit Law R3
- 1.1.4 Limit Law A1
- 1.1.5 Limit Law A2
- 1.1.6 Limit Law A3
- 1.1.7 Limit Law A4
- 1.1.8 Limit Law A5
- 1.1.9 Limit Law A6
- 1.1.10 Limit Law A7

1.2 Derivative Laws/Rules

- 1.2.1 Product Rule
- 1.2.2 Quotient Rule
- 1.2.3 Chain Rule
- 1.2.4 Constant Rule
- 1.2.5 Power Rule

Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{n}\right) = nx^{n-1}.$$

Proof. In order to prove our desired claim, we let $f(x) = x^n$, where f(x) is a differentiable function.

1.2.6 Square Root Rule

Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sqrt{x}\right) = \frac{1}{s\sqrt{x}}.$$

Proof.

- 1.2.7 Sine Rule
- 1.2.8 Cosine Rule
- 1.2.9 Tangent Rule
- 1.2.10 Cotangent Rule
- 1.2.11 Secant Rule
- 1.2.12 Cosecant Rule
- 1.2.13 Sine Inverse Rule
- 1.2.14 Cosine Inverse Rule
- 1.2.15 Tangent Inverse Rule
- 1.2.16 Cotangent Inverse Rule
- 1.2.17 Secant Inverse Rule
- 1.2.18 Cosecant Inverse Rule
- 1.2.19 Factoring a Constant

Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(cf(x)\right) = c\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\right).$$

Proof. In order to prove our desired claim, we let g(x) = cf(x), where g(x) and f(x) are differentiable functions and $c \in \mathbb{R}$.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(g(x)\right) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}$$

$$= \lim_{h \to 0} \frac{cf(a+h) - c(f(a))}{h}$$

$$= \lim_{h \to 0} \frac{c[f(a+h) - f(a)]}{h}$$

$$= c \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

$$\therefore \frac{\mathrm{d}}{\mathrm{d}x}\left(cf(x)\right) = c\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\right).$$

- 1.2.20 Variable Power Rule
- 1.2.21 e to the x Rule
- 1.2.22 Logarithm Rule
- 1.2.23 Absolute Value Rule

CHAPTER 2

REAL ANALYSIS

2.1 Cardinality

2.1.1 Bijection Between Two Sets

Theorem. Let A and B be sets. If |A| = |B|, then |B| = |A|.

Proof. Suppose |A| = |B|. Then, \exists bijective function $f: A \to B$. Then $f^{-1}: B \to A$ is a bijection. So, |B| = |A|.

2.1.2 Bijection Between Three Sets

Theorem. Let A, B, and C be sets. If |A| = |B| and |B| = |C|, then |A| = |C|.

Proof. Since |A| = |B| and |B| = |C|, then \exists bijection from $A \to B$ and bijection from $B \to C$.

CHAPTER 3

SET THEORY

3.1 Operations on sets

3.1.1 Distributing the union over the intersection

Theorem. Let A, B, and C be sets. Then, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof. Let's make a couple of definitions before we prove anything:

$$\textbf{\textit{def:}} \ X \cap Y = \{a | a \in X \land a \in Y\}$$

$$\textbf{\textit{def:}} \ X \cup Y = \{a | a \in X \lor a \in Y\}$$

Let $D = B \cap C$. We can re-write the statement on the left using the definitions from above as follows:

$$\begin{split} A \cup D &= \{x | x \in A \lor x \in D\} \\ &= \{x | x \in A \lor (x \in B \land x \in C)\} \\ &= \{x | (x \in A \land x \in B) \lor (x \in A \land x \in C)\}. \end{split}$$

Using the definitions from above

$$\{x | (x \in A \land x \in B) \lor (x \in A \land x \in C)\} = (A \cap B) \cup (A \cap C).$$