POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH INSTYTUT AUTOMATYKI I INFORMATYKI STOSOWANEJ

PRACOWNIA DYPLOMOWA 1 SPRAWOZDANIE

Maciej Lotz

Robot IRp-6 w zadaniu śledzenia konturu

	Opiekun pracy: dr inż. Tomasz Winiarski
Ocena pracy:	
Data i podpis Promotora	

Spis treści

1	$\mathbf{W}\mathbf{y}$	magania stawiane pracy	5
	1.1	Cel pracy dyplomowej	5
	1.2	Wizja rozwiązania	5
		1.2.1 Siłowe śledzenie konturu	5
		1.2.2 Wspomaganie wizyjne	5
2	Ws	tęp teoretyczny	7
	2.1	Manipulator IRp-6	7
	2.2	Czujnik siły	7
	2.3	ROS	7
	2.4	IRPOS	7
3	Opi	s tego co zrobiono dotychczas	9
	3.1	Konfiguracja środowiska	9
	3.2	Opanowanie podstaw języka Python	9
	3.3	Wykonanie specjalistycznego narzędzia do śledzenia krawędzi .	9
	3.4	Wykonanie ćwiczeń pobocznych	10
		3.4.1 Rysowanie kwadratu w powietrzu	10
		3.4.2 Znajdowanie środka okręgu na podstawie trzech punktów	10
	3.5	Zrealizowanie śledzenia konturu prostego	11
4	Pla	ny na kolejny semestr	13
		Zrealizowanie śledzenia konturu	13
	12	Opanowania OpanCV i DisCODa	13

4 SPIS TREŚCI

Wymagania stawiane pracy

1.1 Cel pracy dyplomowej

Celem pracy dyplomowej jest stworzenie i przetestowanie algorytmu realizującego śledzenie konturu obiektu z wykorzystaniem czujników siły oraz wspomaganie procesu za pomocą odczytów z kamery.

1.2 Wizja rozwiązania

Zadanie składa się z dwóch zagadnień:

1.2.1 Siłowe śledzenie konturu

Polega na wykryciu wektora siły działającego na końcówkę narzędzia. Na podstawie tego wektora można analitycznie wyznaczyć wektor prędkości, który ma być styczny do krawędzi i prostopadły do wektora siły. Teoretycznie umożliwi to poruszanie się po krawędzi z zachowaniem przyłożenia do niej zadanej siły.

1.2.2 Wspomaganie wizyjne

Powyższa metoda może być zawodna w przypadku gwałtownych zmian wektora siły, tzn. ostrych krawędzi konturu. W celu wyeliminowania zagrożenia wprowadzono wspomaganie wizyjne, które na podstawie odczytów z kamery, będzie w stanie wykryć takie gwałtowne zmiany i odpowiednio zareagować. Widzę dwie możliwe realizację:

Wspomaganie globalne

Robot sporządza mapę konturu i posiłkuje się nią w trakcie śledzenia krawędzi.

Wspomaganie lokalne

Robot śledzi kontur z kamerą skierowaną w kierunku wektora prędkości. W czasie rzeczywistym rozpoznaje załamania obiektu i jest w stanie odpowiednio szybko zareagować.

Nie wykluczam zastosowania hybrydy obu powyższych rozwiązań.

Wstęp teoretyczny

2.1 Manipulator IRp-6

Manipulator IRp-6 to robot przemysłowy wykorzystywany w fabrykach do wykonywania czynności żmudnych lub niebezpiecznych. Na potrzeby laboratorium wzbogacony on został o końcówkę chwytną, kamerę oraz, w przypadku Tracka, mobilną platformę.

2.2 Czujnik siły

W ostatnim przegubie robot IRp-6 ma zainstalowane czujniki siły, które są w stanie wykryć siły działające na końcówkę chwytną. Mechanizm ten pozwoli śledzić krawędź przy zachowaniu odpowiedniego nacisku.

2.3 ROS

ROS(Robot Operating System) to zespół bibliotek i narzędzi, które pozwalają na budowę oprogramowania dla robotów. Zawiera sterowniki realizujące operacje niskopoziomowe. Umożliwia również komunikację między wątkami i wizualizację robota w trójwymiarze.

2.4 IRPOS

Stworzony przez Zespół Programowania Robotów i Systemów Rozpoznających IRPOS to biblioteka wysokopoziomowych funkcji służących do sterowania robotem. Wykorzystanie i wprowadzanie modyfikacji jest względnie łatwe.

Opis tego co zrobiono dotychczas

3.1 Konfiguracja środowiska

W celu przygotowania się do pracy w laboratorium wykonano następujące czynności:

- Zainstalowano ROS na stacji roboczej.
- Zainstalowano i skonfigurowano Eclipse.
- Założono nowe repozytorium na Githubie.

3.2 Opanowanie podstaw języka Python

Skrypty IRPOSa są napisane w języku Python, dlatego konieczne było opanowanie tego języka. Ponadto Zapoznałem się z pakietem naukowym NumPy. Pakiet NumPy umożliwia między innymi prowadzenie obliczeń na macierzach, co będzie potrzebne do wykonania głównego zadania.

3.3 Wykonanie specjalistycznego narzędzia do śledzenia krawędzi

W celu realizacji zadania śledzenia konturu konieczne było wykorzystanie specjalnego narzędzia. Zostało ono zaprojektowane tak, aby robot mógł je

chwycić i utrzymać pewny chwyt podczas śledzenia krawędzi pomimo dużych sił występujących w miejscu kontaktu z obiektem. Na końcu narzędzia zamontowano łożysko w celu wyeliminowania tarcia ze śledzonym konturem.

Rys. 1 Narzędzie do śledzenia krawędzi

3.4 Wykonanie ćwiczeń pobocznych

3.4.1 Rysowanie kwadratu w powietrzu

Ćwiczenie umożliwiło dobre zapoznanie się z systemem IRPOS oraz oswojenie z robotem.

3.4.2 Znajdowanie środka okręgu na podstawie trzech punktów

Przebieg algorytmu:

- 1. Ustawić ramię w pozycji roboczej.
- 2. Obniżać końcówkę do kontaktu z podłożem.

- 3. Przesuwać narzędzie w osi X do kontaktu z obręczą. Zapisać pozycję bezwzględną końcówki.
- 4. Przesuwać narzędzie w osi X w przeciwnym kierunku do znalezienia drugiego kontaktu. Zapisać pozycję bezwzględną końcówki.
- 5. Przesuwać w osi Y do znalezienia trzeciego kontaktu. Zapisać pozycję bezwzględną końcówki.
- 6. Na podstawie trzech punktów wyliczyć analitycznie środek obręczy.
- 7. Przesunąć końcówkę do środka obręczy.

Celem ćwiczenia była nauka obsługi czujnika siły oraz korzystania z pakietu NumPy dla macierzy.

3.5 Zrealizowanie śledzenia konturu prostego

Ćwiczenie polegało na śledzeniu konturu będącego prostą. Stanowiło ono pierwsze przymiarki do realizacji głównego zadania.

Plany na kolejny semestr

4.1 Zrealizowanie śledzenia konturu

Pierwszym zadaniem na przyszły semestr będzie stworzenie algorytmu śledzenia skomplikowanych krawędzi.

4.2 Opanowanie OpenCV i DisCODe

Konieczne będzie opanowanie bibliotek przetwarzania obrazu. Zamierzam wykorzystać odczyty z kamery do wspomagania śledzenia konturu.