Mimic_Proj_PnuemoniaInfluenza

kd91

5/15/2020

Importing Data into R

```
library(caret)
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.6.2
## Loading required package: ggplot2
library(ggplot2)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(corrplot)
## corrplot 0.84 loaded
library(imputeMissings)
library(forcats)
library(glmnet)
## Loading required package: Matrix
```

```
## Loaded glmnet 3.0-2
library(kernlab)
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
##
       alpha
library(rpart.plot)
## Loading required package: rpart
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
setwd(getwd())
df0 <- read.csv(file="data_pneumoniacohort.csv", header=TRUE)</pre>
```

```
# copying df for modifying and analyzing
df1 = df0[2:34]
# change below variables to appropriate type
df1$dischtime <- as.POSIXct(df1$dischtime)</pre>
df1$diagnosis <- as.character(df1$diagnosis)</pre>
df1$first admittime <- as.POSIXct(df1$first admittime)</pre>
# df1$expire flag <- factor(df1$expire flag)</pre>
df1$albumin <- as.numeric(df1$albumin)</pre>
df1$platelet_count <- as.numeric(df1$platelet_count)</pre>
# adding los to df1 from admittime & dischtime
df1$los <- difftime(df1$dischtime, df1$first admittime, units = c("days"))</pre>
df1$los <- round(df1$los, digits = 0)
df1$los <- as.numeric(df1$los)</pre>
```

Correlation

```
# correlation withouly numeric variables:
df1 num <- dplyr::select if(df1, is.numeric)</pre>
cor <- cor(df1_num,use = "pairwise.complete.obs", method = "pearson")</pre>
corrplot(cor)
```



```
# highly positive correlations are seen are between:
# platelet count & los
# age and expire flag
# max bp & los
```

Cleaning impossible values

```
# age cannot be more than 110, making these age values to 99
df1$age <- ifelse(df1$age > 110, 99,df1$age)
```

Vizualizations

hist(df1\$age, col="grey", main="Distribution of patient's age", xlab="Patient's ag e", ylab="Count")

Distribution of patient's age

hist(df1\$expire_flag)

Histogram of df1\$expire_flag


```
# there is a larger populatio of patients that are dead than in the dataset than b
eing alive
# plot indicates no class imbalancein the dataset
g1 = ggplot(df1, aes(x=age,y=hb,col=factor(expire_flag)))
g1 + geom_point()+ ggtitle("Distribution of patient's age and haemoglobin colored
by mortality") +
  xlab("Distribution of patient's age") + ylab("Patient's haemoglobin")
```

Warning: Removed 4406 rows containing missing values (geom point).

Distribution of patient's age and haemoglobin colored by mortality

Older patients with less haemoglobin(hb) have higher chance of mortality than yo unger patients with normal hb levels g2 = ggplot(df1, aes(x=factor(expire_flag), y=age))

g2 + geom_boxplot()+ ggtitle("Distribution of patient's age colored by mortality")

xlab("Patient Mortality(0=Alive, 1=Dead)") + ylab("Patient's age")

Distribution of patient's age colored by mortality


```
# For patients that are dead, the median age is higher than patients that are aliv
е
g3 = ggplot(df1, aes(x=factor(expire_flag), y=platelet_count))
g3 + geom_boxplot()+ ggtitle("Distribution of patient's platelet count colored by
mortality") +
  xlab("Patient Mortality(0=Alive, 1=Dead)") + ylab("Patient's platelet count leve
ls")
```

Warning: Removed 40 rows containing non-finite values (stat_boxplot).

Distribution of patient's platelet count colored by mortality


```
# Platelet count of patients did not have much impact on patient's mortality
g4 = ggplot(df1, aes(x=albumin, col=factor(expire_flag)))
g4 + geom histogram(bins=40)+ ggtitle("Distribution of patient's albumin levels co
lored by mortality") +
 xlab("Patient Mortality(0=Alive, 1=Dead)") + ylab("Patient's albumin levels")
```

Warning: Removed 1704 rows containing non-finite values (stat_bin).

Distribution of patient's albumin levels colored by mortality

For patients that didn't survive, the albumin levels observed are higher than ot her patients

plot(table(df1\$gender,df1\$expire_flag), main="Distribution of martality by gender" , xlab="Patient's gender",

ylab="Patient Mortality(0=Alive, 1=Dead)")

Distribution of martality by gender

Patient's gender

Plot indicates that there is not much difference between mortality of patients b eing either male or female

Data Cleaning

```
# remove redundant variables
# hadm id, icustayid removed since subject id suffices
# discahrge location gives same info as expire flag
# first admittime, dischtime accounted into los variable
# diagnosis, short_title, long_title accounted for in icd9_list
# firstcareunits removed, since all patients have ICU admissions
df2 <- subset(df1, select = -c(subject id, hadm id, discharge location, first admitti
me, dischtime, icustayid,
                                diagnosis, short title, long title, religion, firstca
reunits))
summary(df2)
```

```
##
                      ethnicity
                                        insurance
                                                      gender
                                                                  admission_type
##
   WHITE
                           :5393
                                   Government: 145
                                                      F:3301
                                                               ELECTIVE: 399
##
    BLACK/AFRICAN AMERICAN: 667
                                   Medicaid : 632
                                                      M:4139
                                                               EMERGENCY: 6856
##
    UNKNOWN/NOT SPECIFIED: 534
                                   Medicare :4724
                                                               URGENT
                                                                         : 185
   HISPANIC OR LATINO
##
                           : 176
                                   Private
                                              :1891
##
   OTHER
                           : 148
                                   Self Pay : 48
##
   ASIAN
                           : 119
##
   (Other)
                           : 403
##
    expire_flag
                           age
                                        icd9_list
                                                          max_bp
                                                                      o2_saturation
##
   Min.
           :0.0000
                     Min.
                             :18.06
                                      486
                                              :4761
                                                      Min.
                                                              :29.0
                                                                      95%:
   1st Qu.:0.0000
##
                      1st Ou.:55.38
                                      48241
                                              : 634
                                                      1st Ou.:90.0
                                                                      NA's:7439
                                                      Median :96.0
##
   Median :1.0000
                     Median :68.53
                                      4821
                                              : 312
##
   Mean
           :0.6185
                     Mean
                             :67.04
                                      4829
                                              : 208
                                                      Mean
                                                             :93.1
                     3rd Qu.:79.63
##
    3rd Qu.:1.0000
                                      48283
                                             : 202
                                                      3rd Ou.:99.0
                                                             :99.0
##
   Max.
           :1.0000
                     Max.
                             :99.00
                                      481
                                              : 166
                                                      Max.
##
                                       (Other):1157
                                                      NA's
                                                              :4235
##
      peak flow
                   total protein
                                           hb
                                                                     crp
##
    60
           : 114
                   Min.
                           : 2.700
                                     Min.
                                             : 3.40
                                                      GREATER THAN 300:
                                                                          33
##
    70
           :
              99
                   1st Qu.: 5.000
                                     1st Qu.: 9.20
                                                      GREATER THAN 30:
                                                                          12
                   Median : 5.600
                                     Median : 9.80
##
    80
              69
                                                      58.8
                                                                           4
##
    50
           :
              60
                   Mean
                         : 5.707
                                     Mean
                                             :10.43
                                                      20.0
                                                                       :
                                                                           3
##
    65
              58
                   3rd Qu.: 6.300
                                     3rd Qu.:11.70
                                                      256.3
                                                                           3
           :
                                                                       :
##
    (Other): 146
                   Max.
                           :13.200
                                     Max.
                                             :20.50
                                                      (Other)
                                                                       : 503
##
   NA's
           :6894
                   NA's
                           :6475
                                     NA's
                                             :4406
                                                      NA's
                                                                       :6882
##
       albumin
                    albumin urine platelet count creatinine urine urea nitrogen
##
   Min.
           : 1.00
                    <0.3
                                3
                                    Min.
                                            : 1.0
                                                     67
                                                            :
                                                               43
                                                                       415
                                                                                  8
##
   1st Qu.:17.00
                    0.3
                                3
                                    1st Qu.:191.0
                                                     75
                                                                42
                                                                       608
                                                                                  8
                                                            :
                                                                              :
##
   Median :21.00
                    2.4
                           :
                                3
                                    Median :332.0
                                                     85
                                                            :
                                                               41
                                                                       761
                                                                              :
                                                                                  8
##
   Mean
           :20.82
                    4.6
                                3
                                    Mean
                                            :413.5
                                                     69
                                                                40
                                                                       300
                                                                                  7
                                                            :
                                                                              :
##
   3rd Qu.:25.00
                    1.1
                         :
                                2
                                    3rd Qu.:669.0
                                                     84
                                                                40
                                                                       485
                                                                                  7
                                                            :
                                                                              :
##
   Max.
           :47.00
                     (Other): 76
                                    Max.
                                            :887.0
                                                     (Other):3137
                                                                       (Other):2193
##
   NA's
           :1704
                    NA's
                           :7350
                                    NA's
                                            :40
                                                     NA's
                                                            :4097
                                                                       NA's
                                                                              :5209
##
        weight
                          height
##
   Min.
           : 1.00
                     Min.
                           : 0.0
##
    1st Qu.: 64.72
                     1st Qu.:160.0
##
   Median : 76.30
                     Median :170.0
##
   Mean
           : 81.61
                     Mean
                           :168.2
##
    3rd Qu.: 92.00
                      3rd Qu.:178.0
##
   Max.
          :965.50
                     Max.
                             :249.0
##
   NA's
           :4222
                     NA's
                             :5497
##
                                                             comorbidities
##
   PNEUMONIA; CONGESTIVE HEART FAILURE
                                                                        11
##
   CONGESTIVE HEART FAILURE; PNEUMONIA
                                                                     :
                                                                         9
##
   CONGESTIVE HEART FAILURE-PNEUMONIA
                                                                         2
##
   RULE-OUT MYOCARDIAL INFARCTION; TELEMETRY; PNEUMONIA
                                                                         2
##
   ACUTE MYOCARDIAL INFARCTION; PNEUMONIA; CONGESTIVE HEART FAILURE:
                                                                         1
##
    (Other)
                                                                        28
                                                                     :
##
   NA's
                                                                     :7387
```

```
##
smoking history
## Former user - stopped more than 1 year ago, Former user - stopped more than 1 y
                                                  : 171
## Never used, Never used
: 151
##
   Former user - stopped more than 1 year ago
: 133
## Never used
: 125
## Former user - stopped more than 1 year ago, Former user - stopped more than 1 y
ear ago, Former user - stopped more than 1 year ago: 110
##
   (Other)
: 885
## NA's
:5865
##
         los
   Min.
         : 0.00
##
   1st Qu.: 6.00
##
##
   Median : 11.00
##
   Mean : 15.42
##
   3rd Qu.: 20.00
   Max. :295.00
##
##
```

```
# variables to drop: with more than 50% NA's(=3270)
# o2 saturation: NA's : 7439
# peak flow: NA's : 6894
# total protein: NA's :6475
## hb: NA's
            :4406
# crp: NA's :6882
# albumin urine: NA's :7350
# urea nitrogen: NA's :5209
## creatinine urine: NA's
                          :4097
# urea nitrogen: NA's
# weight: NA's
               :4222
# height: NA's :5497
# comorbidities: NA's:7387
# smoking history: NA's: :5865
## max bp : NAs : 4235
# df3 = df2
# df3 <- na.omit(df3[, c(8,12,17)])
# results in only complete cases with 500 rows if non-NA values of hb,creatinine_u
rine and max bp are included
df2 <- subset(df2, select = -c(o2_saturation,peak_flow,total_protein,hb,crp,albumi
n urine,
                               urea_nitrogen,creatinine_urine,urea_nitrogen,max_b
p, weight,
                               height, comorbidities, smoking history))
#combining similar levels into one
levels(df2$ethnicity)
```

```
##
   [1] "AMERICAN INDIAN/ALASKA NATIVE"
## [2] "AMERICAN INDIAN/ALASKA NATIVE FEDERALLY RECOGNIZED TRIBE"
## [3] "ASIAN"
## [4] "ASIAN - ASIAN INDIAN"
## [5] "ASIAN - CAMBODIAN"
## [6] "ASIAN - CHINESE"
## [7] "ASIAN - FILIPINO"
## [8] "ASIAN - OTHER"
## [9] "ASIAN - VIETNAMESE"
## [10] "BLACK/AFRICAN"
## [11] "BLACK/AFRICAN AMERICAN"
## [12] "BLACK/CAPE VERDEAN"
## [13] "BLACK/HAITIAN"
## [14] "HISPANIC OR LATINO"
## [15] "HISPANIC/LATINO - CENTRAL AMERICAN (OTHER)"
## [16] "HISPANIC/LATINO - COLOMBIAN"
## [17] "HISPANIC/LATINO - CUBAN"
## [18] "HISPANIC/LATINO - DOMINICAN"
## [19] "HISPANIC/LATINO - GUATEMALAN"
## [20] "HISPANIC/LATINO - MEXICAN"
## [21] "HISPANIC/LATINO - PUERTO RICAN"
## [22] "HISPANIC/LATINO - SALVADORAN"
## [23] "MIDDLE EASTERN"
## [24] "MULTI RACE ETHNICITY"
## [25] "NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER"
## [26] "OTHER"
## [27] "PATIENT DECLINED TO ANSWER"
## [28] "PORTUGUESE"
## [29] "UNABLE TO OBTAIN"
## [30] "UNKNOWN/NOT SPECIFIED"
## [31] "WHITE"
## [32] "WHITE - BRAZILIAN"
## [33] "WHITE - EASTERN EUROPEAN"
## [34] "WHITE - OTHER EUROPEAN"
## [35] "WHITE - RUSSIAN"
```

```
levels(df2$ethnicity)[c(1:2,23:30)] <- "OTHER"</pre>
levels(df2$ethnicity)[2:8] <- "ASIAN"</pre>
levels(df2$ethnicity)[3:6] <- "BLACK/AFRICAN AMERICAN"</pre>
levels(df2$ethnicity)[4:12] <- "HISPANIC/LATINO"</pre>
levels(df2$ethnicity)[5:9] <- "WHITE"</pre>
# icd9 codes details:
# http://www.icd9data.com/2015/Volume1/460-519/480-488/default.htm
levels(df2$icd9 list)
```

```
##
     [1] "4801"
                                 "4801,48241"
                                                         "4801,4829"
##
     [4] "4802"
                                 "4808"
                                                         "4808,48283,486,48241"
                                 "4809,4830"
##
    [7] "4809"
                                                         "4809,4870"
##
    [10] "481"
                                 "481,4821"
                                                         "481,4822"
   [13] "481,48241"
##
                                 "481,48242"
                                                         "481,48242,486,4822"
##
   [16] "481,48283"
                                 "4820"
                                                         "4820,481"
##
   [19] "4820,4821"
                                 "4820,48240"
                                                         "4820,48241"
##
   [22] "4820,48242"
                                 "4820,48282"
                                                         "4820,48283"
##
   [25] "4820,48283,4809"
                                 "4820,486"
                                                         "4821"
##
   [28] "4821,481"
                                 "4821,4820"
                                                         "4821,4820,486"
   [31] "4821,48240,48283"
                                 "4821,48241"
                                                         "4821,48241,48282"
##
##
   [34] "4821,48242"
                                 "4821,48242,486"
                                                         "4821,48282"
##
   [37] "4821,48283"
                                 "4821,4838"
                                                         "4821,4841"
   [40] "4821,4846"
                                 "4821,4847"
                                                         "4821,486"
##
## [43] "4821,4870"
                                 "4822"
                                                         "4822,481"
## [46] "4822,4820"
                                 "4822,4821"
                                                         "4822,48241"
##
   [49] "4822,48242"
                                 "4822,486"
                                                         "48230"
##
   [52] "48230,4821"
                                 "48230,4822"
                                                         "48230,48241"
##
   [55] "48231"
                                 "48231,481"
                                                         "48232"
                                 "48239"
##
   [58] "48232,486"
                                                         "48239,4820"
                                                         "48240,4821"
##
   [61] "48239,48283"
                                 "48240"
##
   [64] "48240,48283"
                                 "48241"
                                                         "48241,481"
##
    [67] "48241,4820"
                                 "48241,4821"
                                                         "48241,4821,4820"
##
   [70] "48241,4821,4870"
                                 "48241,4822"
                                                         "48241,48230"
   [73] "48241,48232"
                                 "48241,48249"
                                                         "48241,48282"
##
##
   [76] "48241,48283"
                                 "48241,4838,4846"
                                                         "48241,4841"
##
   [79] "48241,4846"
                                 "48241,486"
                                                         "48241,4870"
## [82] "48241,4870,4821"
                                 "48242"
                                                         "48242,481"
## [85] "48242,4820"
                                 "48242,4821"
                                                         "48242,48241"
## [88] "48242,48282"
                                 "48242,48282,4846"
                                                         "48242,48283"
## [91] "48242,4829"
                                 "48242,4878"
                                                         "48249"
## [94] "48249,48283,48282"
                                 "48281"
                                                         "48282"
## [97] "48282,4820"
                                 "48282,4821"
                                                         "48282,4822"
## [100] "48282,48241"
                                 "48282,48283"
                                                         "48283"
## [103] "48283,481"
                                 "48283,4820"
                                                         "48283,4821"
## [106] "48283,48240"
                                 "48283,48241"
                                                         "48283,48242"
## [109] "48283,48282"
                                 "48283,4846"
                                                         "48283,4871"
## [112] "48284"
                                 "48289"
                                                         "48289,4820"
## [115] "4829"
                                 "4829,4801"
                                                         "4829,4809"
## [118] "4829,48282,481"
                                                        "4829,4848"
                                 "4829,4846,4801,4847"
## [121] "4829,4870"
                                 "4829,4871"
                                                         "4829,4881"
## [124] "4830"
                                 "4830,48242"
                                                         "4830,486"
## [127] "4838"
                                 "4838,4820"
                                                         "4838,4821"
## [130] "4838,48241"
                                 "4838,48282"
                                                         "4841"
## [133] "4841,4829"
                                 "4841,4846,4821"
                                                         "4841,486"
## [136] "4843"
                                 "4846"
                                                         "4846,4802"
## [139] "4846,4821"
                                 "4846,48241"
                                                         "4846,48281"
## [142] "4846,4829"
                                 "4846,486"
                                                         "4846,4870"
```

```
"4847,4821"
## [145] "4847"
                                                         "4847,48241"
## [148] "4847,48242"
                                 "4848"
                                                         "4848,4846,4821"
                                                         "486,481"
## [151] "485"
                                 "486"
## [154] "486,4820"
                                 "486,4821"
                                                         "486,4822"
                                 "486,48283,48241"
## [157] "486,48241"
                                                         "486,48284"
## [160] "486,4829"
                                 "486,4846"
                                                         "486,4847"
## [163] "486,486"
                                 "486,4870"
                                                         "486,4871"
## [166] "486,4881"
                                 "4870"
                                                         "4870,4802"
## [169] "4870,4808"
                                 "4870,4809"
                                                         "4870,481"
## [172] "4870,4820,48241"
                                 "4870,4821,48282"
                                                         "4870,4822,481"
## [175] "4870,48241"
                                 "4870,48283"
                                                         "4870,4829"
## [178] "4871"
                                 "4871,48249"
                                                         "4871,4829"
## [181] "4871,486"
                                 "48801"
                                                         "4881"
                                                         "4881,48282,4821"
## [184] "4881,4808"
                                 "4881,48242"
## [187] "4881,486"
                                 "4881,4870"
```

```
df2$icd9 list <- fct_collapse(df2$icd9_list, Viral_pneumonia="486",Methicillin_sus
p_pneumonia_Staph="48241",
                              Pneumonia Pseudomonas="4821", Bacterial pneumonia="48
29",
                              Pneumonia other gram neg bacteria = "48283", Pneumococ
cal_pneumonia = "481",
                              other level = "Others")
summary(df2)
```

```
##
                    ethnicity
                                      insurance
                                                  gender
                                                             admission_type
##
   OTHER
                         : 889
                                 Government: 145
                                                  F:3301
                                                           ELECTIVE: 399
##
   ASIAN
                         : 182
                                 Medicaid : 632
                                                  M:4139
                                                           EMERGENCY: 6856
##
   BLACK/AFRICAN AMERICAN: 704
                                 Medicare :4724
                                                           URGENT
                                                                    : 185
   HISPANIC/LATINO
##
                         : 238
                                 Private :1891
##
   WHITE
                         :5427
                                 Self Pay : 48
##
##
##
   expire_flag
                         age
                                                               icd9_list
                                                                    : 166
## Min.
          :0.0000
                    Min.
                           :18.06
                                    Pneumococcal pneumonia
##
   1st Qu.:0.0000
                    1st Qu.:55.38
                                    Pneumonia Pseudomonas
                                                                    : 312
   Median :1.0000
                    Median :68.53
##
                                    Methicillin susp pneumonia Staph: 634
##
   Mean
          :0.6185
                    Mean :67.04
                                    Pneumonia_other_gram_neg_bacteria: 202
##
   3rd Qu.:1.0000
                    3rd Qu.:79.63
                                    Bacterial pneumonia
                                                                    : 208
##
   Max.
          :1.0000
                    Max.
                           :99.00
                                    Viral pneumonia
                                                                    :4761
##
                                                                    :1157
                                    Others
##
      albumin
                   platelet_count
                                       los
## Min.
          : 1.00
                   Min.
                         : 1.0
                                   Min. : 0.00
##
   1st Qu.:17.00
                   1st Qu.:191.0
                                   1st Qu.: 6.00
##
   Median :21.00
                   Median :332.0
                                   Median : 11.00
   Mean :20.82
##
                   Mean
                         :413.5
                                   Mean : 15.42
##
   3rd Qu.:25.00
                   3rd Qu.:669.0
                                   3rd Qu.: 20.00
##
   Max.
          :47.00
                   Max.
                          :887.0
                                   Max. :295.00
##
   NA's :1704
                   NA's
                          :40
```

```
#correlation for variables within cleaned dataset
cor2 <- cor(df2[c(5:6,8:10)], use = "pairwise.complete.obs", method = "pearson")</pre>
corrplot(cor2)
```



```
# highly positive correlations that are seen are between:
# platelet count & los
# age and expire flag
df2$expire_flag <- factor(df2$expire_flag)</pre>
```

Modeling

Splitting train-test data and imputation of NA's

```
set.seed(1000)
intrain <- createDataPartition(y = df2$expire flag, p= 0.7, list = FALSE)
training <- df2[intrain,]</pre>
testing <- df2[-intrain,]</pre>
dim(intrain); dim(training); dim(testing)
## [1] 5209
## [1] 5209
               10
```

```
## [1] 2231
               10
```

```
# impute with median/mode on train data
values <- compute(training)</pre>
training imp <- impute(training,object=values)</pre>
#impute on test data
testing_imp <- impute(testing,object=values)</pre>
levels(training imp$expire flag) <- c("N", "Y")</pre>
levels(testing imp$expire flag) <- c("N", "Y")</pre>
```

Elastic net Regression

```
set.seed(1001)
trctrl_net <- trainControl(summaryFunction=twoClassSummary,classProbs = TRUE, # Use</pre>
AUC to pick the best model
                           method = "repeatedcv", number = 5, repeats = 3)
# grid net <- expand.grid(alpha = 0:1, lambda = seq(0.0001, 1, length = 20))
# model net grid <- train(expire flag ~., data = training imp, method = "glmnet",
                     trControl=trctrl net, preProcess = c("center", "scale"),
                    tuneGrid = grid net,tuneLength = 10)
# better results are obtained without gridsearch
model net <- train(expire flag ~., data = training imp, method = "glmnet",</pre>
                   trControl=trctrl net, preProcess = c("center", "scale"),
                   metric="ROC",tuneLength = 10)
model net
```

```
## glmnet
##
## 5209 samples
##
      9 predictor
##
      2 classes: 'N', 'Y'
##
## Pre-processing: centered (21), scaled (21)
  Resampling: Cross-Validated (5 fold, repeated 3 times)
##
  Summary of sample sizes: 4166, 4168, 4167, 4168, 4167, 4168, ...
##
  Resampling results across tuning parameters:
##
##
     alpha
            lambda
                          ROC
                                      Sens
                                                  Spec
##
     0.1
            7.404184e-05
                          0.7214980
                                      0.45228282
                                                  0.8387103
##
     0.1
            1.710463e-04
                          0.7214980
                                      0.45228282
                                                  0.8387103
##
     0.1
            3.951390e-04
                          0.7214980
                                      0.45228282
                                                  0.8387103
##
     0.1
            9.128224e-04
                           0.7214767
                                      0.45228367
                                                  0.8390207
##
     0.1
            2.108738e-03
                          0.7214114
                                      0.45211701
                                                  0.8402622
##
     0.1
            4.871459e-03
                          0.7210951
                                      0.45211912
                                                  0.8419178
                          0.7204589
##
     0.1
            1.125370e-02
                                      0.44641596
                                                  0.8441947
##
     0.1
            2.599751e-02
                          0.7189420
                                      0.43500711
                                                  0.8488499
##
     0.1
            6.005763e-02
                          0.7168971
                                      0.41269066
                                                  0.8603337
##
     0.1
            1.387409e-01
                          0.7104860
                                      0.33988372
                                                  0.8909567
##
     0.2
            7.404184e-05
                           0.7214806
                                      0.45228325
                                                  0.8387103
##
     0.2
            1.710463e-04
                          0.7214806
                                      0.45228325
                                                  0.8387103
##
     0.2
            3.951390e-04
                          0.7214806
                                      0.45228325
                                                  0.8387103
##
     0.2
            9.128224e-04
                          0.7214643
                                      0.45245159
                                                  0.8398483
##
     0.2
            2.108738e-03
                          0.7212980
                                     0.45295622
                                                  0.8401591
##
     0.2
            4.871459e-03
                          0.7208941
                                      0.45228789
                                                  0.8415038
##
     0.2
            1.125370e-02
                          0.7197776
                                      0.44473754
                                                  0.8451253
##
     0.2
            2.599751e-02
                          0.7176558
                                      0.43215279
                                                  0.8513332
##
     0.2
            6.005763e-02
                          0.7129213
                                     0.39793046
                                                  0.8652997
##
     0.2
            1.387409e-01
                          0.7047258
                                      0.29073242
                                                  0.9117518
##
     0.3
            7.404184e-05
                          0.7214665
                                      0.45245117
                                                  0.8389171
##
     0.3
            1.710463e-04
                          0.7214665
                                      0.45245117
                                                  0.8389171
##
     0.3
            3.951390e-04
                          0.7214665
                                      0.45245117
                                                  0.8389171
     0.3
##
            9.128224e-04
                          0.7214321
                                      0.45245202
                                                  0.8397447
##
     0.3
            2.108738e-03
                          0.7212060
                                      0.45362834
                                                  0.8407794
##
     0.3
            4.871459e-03
                          0.7206393
                                     0.45144784
                                                  0.8412974
##
     0.3
            1.125370e-02
                          0.7187957
                                      0.44222034
                                                  0.8449190
##
     0.3
            2.599751e-02
                          0.7164382
                                      0.42678801
                                                  0.8521616
##
     0.3
            6.005763e-02
                          0.7100264
                                      0.37780042
                                                  0.8716111
##
     0.3
            1.387409e-01
                           0.7018576
                                      0.23301816
                                                  0.9358581
##
     0.4
            7.404184e-05
                          0.7214702
                                      0.45261868
                                                  0.8388136
##
     0.4
            1.710463e-04
                          0.7214702
                                      0.45261868
                                                  0.8388136
##
     0.4
            3.951390e-04
                          0.7214691
                                      0.45261868
                                                  0.8388136
##
     0.4
            9.128224e-04
                          0.7214186
                                      0.45228409
                                                  0.8397447
##
     0.4
                          0.7210618
            2.108738e-03
                                      0.45329333
                                                  0.8406760
##
     0.4
            4.871459e-03
                          0.7203378
                                      0.45060778
                                                  0.8415045
```

```
##
     0.4
            1.125370e-02
                            0.7180797
                                       0.44138113
                                                    0.8453331
##
     0.4
            2.599751e-02
                            0.7145560
                                       0.42225907
                                                    0.8526790
##
     0.4
            6.005763e-02
                            0.7073441
                                       0.35716365
                                                    0.8777152
##
     0.4
            1.387409e-01
                            0.6994957
                                       0.18453814
                                                    0.9566519
##
     0.5
            7.404184e-05
                           0.7214590
                                       0.45278618
                                                    0.8389171
##
     0.5
            1.710463e-04
                            0.7214590
                                       0.45278618
                                                    0.8389171
##
     0.5
            3.951390e-04
                            0.7214608
                                       0.45261868
                                                    0.8390207
##
     0.5
            9.128224e-04
                            0.7213325
                                       0.45261994
                                                    0.8397451
##
     0.5
            2.108738e-03
                           0.7210148
                                       0.45262247
                                                    0.8406760
##
     0.5
            4.871459e-03
                            0.7199059
                                       0.45010316
                                                    0.8427462
##
     0.5
            1.125370e-02
                            0.7175862
                                       0.43886603
                                                    0.8461606
##
     0.5
            2.599751e-02
                            0.7130839
                                       0.41672426
                                                    0.8532991
##
     0.5
            6.005763e-02
                            0.7048735
                                       0.34357683
                                                    0.8858884
##
     0.5
            1.387409e-01
                            0.6994069
                                       0.13420714
                                                    0.9691701
##
     0.6
            7.404184e-05
                            0.7214631
                                       0.45278618
                                                    0.8387104
##
     0.6
            1.710463e-04
                            0.7214631
                                       0.45278618
                                                    0.8387104
##
     0.6
            3.951390e-04
                            0.7214377
                                       0.45261910
                                                    0.8392275
##
     0.6
            9.128224e-04
                            0.7213123
                                       0.45312330
                                                    0.8395383
##
     0.6
            2.108738e-03
                            0.7209128
                                       0.45329418
                                                    0.8403656
##
     0.6
            4.871459e-03
                            0.7194332
                                       0.45010358
                                                    0.8424360
##
     0.6
            1.125370e-02
                           0.7171451
                                       0.43701800
                                                    0.8468845
##
     0.6
            2.599751e-02
                            0.7119491
                                       0.40749676
                                                    0.8558849
##
     0.6
            6.005763e-02
                            0.7033952
                                       0.32445435
                                                    0.8984076
##
     0.6
            1.387409e-01
                            0.6986981
                                       0.09763680
                                                    0.9821022
##
     0.7
            7.404184e-05
                            0.7214577
                                       0.45245117
                                                    0.8388138
##
     0.7
            1.710463e-04
                            0.7214577
                                       0.45245117
                                                    0.8388138
##
     0.7
            3.951390e-04
                            0.7214341
                                       0.45261910
                                                    0.8393309
##
     0.7
            9.128224e-04
                           0.7212569
                                       0.45396293
                                                    0.8395386
##
     0.7
            2.108738e-03
                            0.7208137
                                       0.45346084
                                                    0.8403663
##
     0.7
            4.871459e-03
                           0.7189720
                                       0.44742056
                                                    0.8423326
##
     0.7
            1.125370e-02
                           0.7165621
                                       0.43349577
                                                    0.8474022
##
     0.7
            2.599751e-02
                            0.7106611
                                       0.40011476
                                                    0.8585746
##
     0.7
            6.005763e-02
                           0.7013625
                                       0.30230498
                                                    0.9063736
##
     0.7
            1.387409e-01
                            0.6963022
                                       0.05854799
                                                    0.9902748
##
     0.8
            7.404184e-05
                           0.7214507
                                       0.45278618
                                                    0.8387104
##
     0.8
            1.710463e-04
                            0.7214507
                                       0.45278618
                                                    0.8387104
##
     0.8
            3.951390e-04
                            0.7214284
                                       0.45278745
                                                    0.8396413
##
     0.8
            9.128224e-04
                            0.7212387
                                       0.45429836
                                                    0.8399522
##
     0.8
            2.108738e-03
                            0.7206806
                                       0.45278956
                                                    0.8404698
##
     0.8
            4.871459e-03
                           0.7184773
                                       0.44658178
                                                    0.8423325
##
     0.8
            1.125370e-02
                            0.7158998
                                       0.43114650
                                                    0.8467817
##
     0.8
            2.599751e-02
                            0.7094154
                                       0.39256568
                                                    0.8614709
##
     0.8
            6.005763e-02
                           0.6997020
                                       0.28049483
                                                    0.9135123
##
     0.8
            1.387409e-01
                            0.6947727
                                       0.01408385
                                                    0.9980342
##
     0.9
            7.404184e-05
                            0.7214540
                                       0.45261868
                                                    0.8388139
##
     0.9
            1.710463e-04
                            0.7214540
                                       0.45261868
                                                    0.8388139
##
     0.9
            3.951390e-04
                           0.7214165
                                       0.45278745
                                                    0.8397447
##
     0.9
            9.128224e-04
                            0.7211815
                                       0.45413254
                                                    0.8399520
##
     0.9
            2.108738e-03
                           0.7205485
                                       0.45278998
                                                    0.8407800
```

```
##
     0.9
            4.871459e-03
                            0.7181502
                                       0.44440000
                                                    0.8426430
##
     0.9
            1.125370e-02
                            0.7150516
                                       0.43031066
                                                    0.8479198
##
     0.9
            2.599751e-02
                            0.7082297
                                       0.38451240
                                                    0.8640580
##
     0.9
            6.005763e-02
                            0.6991637
                                       0.26019392
                                                    0.9210647
##
            1.387409e-01
                            0.6947636
                                       0.0000000
                                                    1.000000
     0.9
##
     1.0
            7.404184e-05
                            0.7214535
                                       0.45278618
                                                    0.8388139
            1.710463e-04
                            0.7214535
                                       0.45278618
##
     1.0
                                                    0.8388139
     1.0
            3.951390e-04
                            0.7213943
                                       0.45245159
##
                                                    0.8397447
##
            9.128224e-04
                            0.7211121
                                       0.45413212
     1.0
                                                    0.8399515
            2.108738e-03
                            0.7203724
                                       0.45295706
##
     1.0
                                                    0.8407805
##
     1.0
            4.871459e-03
                           0.7179556
                                       0.44456835
                                                    0.8425398
            1.125370e-02
##
     1.0
                            0.7142697
                                       0.42762638
                                                    0.8476096
     1.0
            2.599751e-02
##
                            0.7069165
                                       0.37645786
                                                    0.8670591
##
            6.005763e-02
                            0.6986027
                                       0.24241569
     1.0
                                                    0.9286168
##
     1.0
            1.387409e-01
                            0.6947636
                                       0.0000000
                                                    1.000000
##
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were alpha = 0.1 and lambda = 0.000395139.
```

```
plot(model_net) # regularization parameter plot
```



```
# standardizes test data the same way as the training data
test_pred_net <- predict(model_net, newdata = testing_imp)</pre>
confusionMatrix(test pred net, testing imp$expire flag, positive="Y")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 N
                      Y
##
            N 363 245
##
            Y 488 1135
##
                  Accuracy : 0.6714
##
##
                    95% CI: (0.6515, 0.6909)
##
       No Information Rate: 0.6186
       P-Value [Acc > NIR] : 1.165e-07
##
##
##
                     Kappa : 0.2634
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
##
               Sensitivity: 0.8225
##
               Specificity: 0.4266
           Pos Pred Value: 0.6993
##
##
           Neg Pred Value: 0.5970
                Prevalence: 0.6186
##
            Detection Rate: 0.5087
##
##
     Detection Prevalence: 0.7275
##
         Balanced Accuracy: 0.6245
##
          'Positive' Class : Y
##
##
```

```
rfProbs net <- predict(model net, testing imp, type = "prob")
rfROC net <- roc(testing imp$expire flag, rfProbs net[, "Y"])
```

```
## Setting levels: control = N, case = Y
## Setting direction: controls < cases
```

```
plot.roc(rfROC net, print.auc=TRUE, legacy.axes=TRUE)
```


AUC = 0.702

SVM - Linear

```
set.seed(2001)
trctrl_svm <- trainControl(summaryFunction=twoClassSummary,classProbs = TRUE,# Use</pre>
AUC to pick the best model
                       method = "repeatedcv", number = 5, repeats = 3)
grid svm <- expand.grid(C = c(0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5)
, 1.75, 2,5))
# grid gave slightly better predictions than the default C values. C=1 when run wi
th defaults
svm Linear Grid <- train(expire flag ~., data = training imp, method = "svmLinear"</pre>
                         trControl=trctrl svm,
                         preProcess = c("center", "scale"),
                         metric = "ROC",tuneLength = 10) # removed tuneGrid = grid
svm
svm Linear Grid
```

```
## Support Vector Machines with Linear Kernel
##
## 5209 samples
      9 predictor
##
##
      2 classes: 'N', 'Y'
##
## Pre-processing: centered (21), scaled (21)
## Resampling: Cross-Validated (5 fold, repeated 3 times)
## Summary of sample sizes: 4166, 4167, 4168, 4167, 4168, 4166, ...
## Resampling results:
##
##
     ROC
                Sens
                           Spec
##
     0.7123672 0.4757499 0.7888494
##
## Tuning parameter 'C' was held constant at a value of 1
```

svm Linear Grid\$bestTune # C = 1

```
C
                                                                                                      <dbl>
1
                                                                                                          1
1 row
```

```
test pred symlinear <- predict(sym Linear Grid, newdata = testing imp)</pre>
confusionMatrix(testing imp$expire flag, test pred symlinear, positive="Y")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                Ν
                    Y
            N 420 431
##
##
            Y 407 973
##
##
                  Accuracy: 0.6244
                    95% CI: (0.6039, 0.6445)
##
##
       No Information Rate: 0.6293
       P-Value [Acc > NIR] : 0.6934
##
##
##
                     Kappa : 0.1997
##
    Mcnemar's Test P-Value: 0.4269
##
##
##
               Sensitivity: 0.6930
               Specificity: 0.5079
##
            Pos Pred Value: 0.7051
##
            Neg Pred Value: 0.4935
##
##
                Prevalence: 0.6293
            Detection Rate: 0.4361
##
      Detection Prevalence: 0.6186
##
##
         Balanced Accuracy: 0.6004
##
##
          'Positive' Class : Y
##
rfProbs_svmlinear <- predict(svm_Linear_Grid, testing_imp, type = "prob")</pre>
rfROC symlinear <- roc(testing imp$expire flag, rfProbs symlinear[, "Y"])
## Setting levels: control = N, case = Y
```

```
## Setting direction: controls < cases
```

```
plot.roc(rfROC symlinear, print.auc=TRUE, legacy.axes=TRUE)
```


AUC = 0.686

SVM - Poly

```
set.seed(2002)
trctrl_svmPoly <- trainControl(summaryFunction=twoClassSummary,classProbs = TRUE,#</pre>
Use AUC to pick the best model
                                  method = "cv", number = 3)
# grid search taking too long for svmPoly, runnign model on defaults
svm_Poly <- train(expire_flag ~., data = training_imp, method = "svmPoly",</pre>
                          trControl=trctrl svmPoly,
                          preProcess = c("center", "scale"),
                          metric="ROC",
                          tuneLength = 3)
svm Poly
```

```
## Support Vector Machines with Polynomial Kernel
##
## 5209 samples
      9 predictor
##
##
      2 classes: 'N', 'Y'
##
## Pre-processing: centered (21), scaled (21)
## Resampling: Cross-Validated (3 fold)
##
  Summary of sample sizes: 3472, 3473, 3473
##
  Resampling results across tuning parameters:
##
##
    degree
            scale C
                         ROC
                                    Sens
                                               Spec
##
    1
            0.001
                   0.25
                         0.7104228
                                    0.5525952
                                               0.7324643
##
    1
            0.001 0.50
                         0.7104368
                                    0.5525959
                                               0.7324643
##
    1
            0.001
                   1.00
                         0.7107782
                                    0.5385025 0.7439479
##
    1
            0.010
                   0.25
                         0.7117363 0.5022594
                                               0.7672253
##
     1
            0.010
                   0.50
                         0.7130175 0.4982312
                                              0.7752948
##
    1
            0.010
                   1.00
                         0.7137614 0.5032619 0.7709497
##
    1
            0.100
                   0.25
                         0.7150513 0.4952055 0.7815022
##
    1
            0.100
                   0.50
                         0.7143333
                                    0.4947020 0.7811918
##
     1
            0.100
                   1.00
                         0.7151857 0.4866456
                                               0.7892613
##
     2
            0.001
                   0.25
                         0.7105437
                                    0.5520924 0.7327747
##
    2
            0.001
                   0.50
                         0.7108758 0.5339693
                                               0.7454997
##
    2
            0.001
                   1.00
                         0.7114610 0.5047770 0.7631906
##
    2
            0.010
                   0.25
                         0.7137859 0.4846414 0.7883302
##
    2
            0.010 0.50
                         0.7144462 0.4730679 0.8035382
##
    2
            0.010
                   1.00
                         0.7143755
                                    0.4464092 0.8324022
##
    2
            0.100 0.25
                         0.6997386 0.3593518 0.8857852
##
     2
            0.100 0.50
                         0.6974256 0.3412310 0.8960273
##
    2
            0.100
                   1.00
                         0.6961066 0.3326703 0.8985102
##
    3
            0.001 0.25
                         0.7107430 0.5475614 0.7349472
##
    3
            0.001 0.50
                         0.7109687
                                    0.5138397 0.7591558
##
     3
            0.001
                   1.00
                         0.7124258 0.4977277
                                               0.7728119
##
    3
            0.010 0.25
                         0.7137051 0.4514330 0.8243327
##
    3
            0.010 0.50
                         0.7122493 0.4106772 0.8488516
##
    3
            0.010
                         0.7096128 0.3900463 0.8625078
                   1.00
##
    3
            0.100
                   0.25
                         0.6876786
                                    0.3150432 0.8966480
##
    3
            0.100
                   0.50
                         0.6804090 0.2903894 0.9044072
##
    3
            0.100
                   1.00
                         0.6727104 0.2451018 0.9264432
##
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were degree = 1, scale = 0.1 and C = 1.
```

```
\# degree = 1, scale = 0.1 and C = 1.
plot(svm Poly)
```



```
# standardizes test data the same way as the training data
test_pred_svmPoly <- predict(svm_Poly, newdata = testing_imp)</pre>
# test_pred_svmPoly
# API: confusionMatrix(actual, predicted, cutoff = 0.5)
confusionMatrix(testing_imp$expire_flag, test_pred_svmPoly, positive="Y")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
            N 414 437
##
##
            Y 389 991
##
##
                  Accuracy : 0.6298
                    95% CI: (0.6093, 0.6498)
##
##
       No Information Rate: 0.6401
       P-Value [Acc > NIR] : 0.850
##
##
##
                     Kappa : 0.2068
##
    Mcnemar's Test P-Value: 0.102
##
##
##
               Sensitivity: 0.6940
               Specificity: 0.5156
##
            Pos Pred Value: 0.7181
##
            Neg Pred Value: 0.4865
##
##
                Prevalence: 0.6401
            Detection Rate: 0.4442
##
##
      Detection Prevalence: 0.6186
##
         Balanced Accuracy: 0.6048
##
##
          'Positive' Class : Y
##
rfProbs_svmPoly <- predict(svm_Poly, testing_imp, type = "prob")</pre>
rfROC svmPoly <- roc(testing imp$expire flag, rfProbs svmPoly[, "Y"])
```

```
## Setting levels: control = N, case = Y
## Setting direction: controls < cases
```

```
plot.roc(rfROC svmPoly, print.auc=TRUE, legacy.axes=TRUE)
```


AUC = 0.686

SVM - RBF/Radial

```
set.seed(2033)
trctrl_svmRadial <- trainControl(summaryFunction=twoClassSummary,classProbs = TRUE</pre>
,# Use AUC to pick the best model
                                   savePredictions = T, method = "repeatedcv", numbe
r = 5)
svmRadialGrid \leftarrow expand.grid(sigma = 2^c(-15,-10, -5, 0), C = 2^c(0:5))
svm_Radial_Grid <- train(expire_flag ~., data = training_imp, method = "svmRadial"</pre>
                          trControl=trctrl svmRadial,
                          preProcess = c("center", "scale"),
                          metric="ROC",
                          tuneGrid = svmRadialGrid,
                          tuneLength = 10)
```

```
## line search fails -1.018311 -0.07027583 1.078093e-05 9.788953e-06 -2.661898e-08
-3.087078e-10 -2.899992e-13
```

```
## Warning in method$predict(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class prediction calculations failed; returning NAs
```

```
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
```

```
## Warning in data.frame(..., check.names = FALSE): row names were found from a
## short variable and have been discarded
```

```
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
```

There were missing values in resampled performance measures.

svm Radial Grid

```
## Support Vector Machines with Radial Basis Function Kernel
##
## 5209 samples
##
     9 predictor
##
     2 classes: 'N', 'Y'
##
## Pre-processing: centered (21), scaled (21)
## Resampling: Cross-Validated (5 fold, repeated 1 times)
  Summary of sample sizes: 4168, 4167, 4167, 4167, 4167
  Resampling results across tuning parameters:
##
##
    sigma
                  С
                      ROC
                                 Sens
                                             Spec
##
    3.051758e-05
                   1
                     0.7107460
                                 0.55563586
                                            0.7334036
##
    3.051758e-05
                   2 0.7107233
                                 0.55362201
                                             0.7330945
##
    3.051758e-05
                   4 0.7107858
                                 0.55513588 0.7340252
                                            0.7334046
##
    3.051758e-05
                   8 0.7107577
                                 0.55463084
##
     3.051758e-05 16 0.7105775 0.52846094
                                             0.7483008
##
    3.051758e-05
                  32 0.7120266
                                 0.50429984
                                             0.7653734
##
    9.765625e-04
                  1 0.7118877
                                 0.50329608 0.7659940
##
    9.765625e-04
                   2 0.7139204
                                 0.49473564
                                             0.7715807
##
    9.765625e-04
                   4 0.7153100
                                 0.49775325
                                             0.7709591
##
    9.765625e-04
                   8
                     0.7158736
                                 0.49875701
                                             0.7737508
##
    9.765625e-04 16
                      0.7162704
                                 0.47760591
                                             0.7908176
##
    9.765625e-04 32 0.7160119 0.45799147
                                             0.8144066
##
    3.125000e-02
                 1 0.7122875
                                 0.39809121
                                             0.8668525
##
    3.125000e-02
                   2 0.7104010
                                0.39406985 0.8718200
##
    3.125000e-02
                   4 0.7090807
                                 0.38399175 0.8715080
                                 0.37946027
##
    3.125000e-02
                   8 0.7029796
                                             0.8752323
##
    3.125000e-02 16 0.6966019
                                 0.38147918 0.8684015
##
    3.125000e-02
                  32 0.6911225
                                 0.35832184 0.8749208
##
    1.000000e+00
                  1 0.6547808 0.25174044 0.8921728
##
    1.000000e+00
                   2 0.6452753 0.24108072 0.8870321
##
    1.000000e+00
                 4 0.6360104 0.20633900 0.8985069
##
    1.000000e+00
                   8 0.6242675 0.17363518 0.9071968
##
    1.000000e+00 16 0.6141206
                                 0.10923256 0.9326491
##
    1.000000e+00
                  32 0.6074829
                                 0.07952863 0.9453705
##
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.0009765625 and C = 16.
```

```
\#sigma = 0.0009765625 and C = 16
plot(svm Radial Grid)
```


standardizes test data the same way as the training data test_pred_svmRadial <- predict(svm_Radial_Grid, newdata = testing_imp)</pre> confusionMatrix(testing_imp\$expire_flag, test_pred_svmRadial, positive="Y")

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Ν
                      Y
##
            N 398 453
##
            Y 352 1028
##
##
                  Accuracy : 0.6392
                    95% CI: (0.6189, 0.6591)
##
##
       No Information Rate: 0.6638
       P-Value [Acc > NIR] : 0.9933441
##
##
##
                     Kappa : 0.2176
##
    Mcnemar's Test P-Value: 0.0004242
##
##
               Sensitivity : 0.6941
##
               Specificity: 0.5307
##
            Pos Pred Value: 0.7449
##
            Neg Pred Value: 0.4677
##
##
                Prevalence: 0.6638
            Detection Rate: 0.4608
##
     Detection Prevalence: 0.6186
##
##
         Balanced Accuracy: 0.6124
##
##
          'Positive' Class : Y
##
rfProbs_svmRadial <- predict(svm_Radial_Grid, testing_imp, type = "prob")</pre>
rfROC svmRadial <- roc(testing imp$expire flag, rfProbs svmRadial[, "Y"])
## Setting levels: control = N, case = Y
```

```
## Setting direction: controls < cases
```

```
plot.roc(rfROC svmRadial, print.auc=TRUE, legacy.axes=TRUE)
```


AUC = 0.688

Random Forest

```
set.seed(3011)
trctrl_rf <- trainControl(summaryFunction=twoClassSummary,classProbs = TRUE,# Use</pre>
 AUC to pick the best model
                           savePredictions = T,method = "repeatedcv", number = 5, r
epeats = 3)
model_rf <- train(expire_flag ~., data = training_imp, method = "rf",</pre>
                   trControl=trctrl rf,
                   metric="ROC",
                   tuneLength = 10)
model rf
```

```
## Random Forest
##
## 5209 samples
##
      9 predictor
      2 classes: 'N', 'Y'
##
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 3 times)
## Summary of sample sizes: 4168, 4167, 4167, 4167, 4167, 4167, ...
## Resampling results across tuning parameters:
##
##
    mtry
          ROC
                      Sens
                                 Spec
##
      2
           0.7060803 0.4356628 0.8436749
##
      4
           0.7229908 0.4608289 0.8404686
##
      6
           0.7237583 0.4775941 0.8280545
##
     8
           0.7192861 0.4799396 0.8208116
##
     10
           0.7173831 0.4801041 0.8152253
##
    12
           0.7149305 0.4784295 0.8121208
##
    14
           0.7129718 0.4792670 0.8081883
##
    16
           0.7125582 0.4846407 0.8091208
##
     18
           0.7112530 0.4784371 0.8087069
##
     21
           0.7094536 0.4821222 0.8051890
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 6.
```

```
# mtry = 6.
# standardizes test data the same way as the training data
test pred rf <- predict(model rf, newdata = testing imp)</pre>
# test pred
confusionMatrix(testing imp$expire flag, test pred rf, positive="Y")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                      Y
           N 396 455
##
##
            Y 262 1118
##
##
                  Accuracy : 0.6786
                    95% CI: (0.6588, 0.698)
##
##
       No Information Rate: 0.7051
##
      P-Value [Acc > NIR] : 0.997
##
##
                     Kappa : 0.288
##
   Mcnemar's Test P-Value: 7.479e-13
##
##
##
               Sensitivity: 0.7107
##
               Specificity: 0.6018
           Pos Pred Value: 0.8101
##
            Neg Pred Value: 0.4653
##
##
                Prevalence: 0.7051
##
            Detection Rate: 0.5011
##
     Detection Prevalence: 0.6186
##
         Balanced Accuracy: 0.6563
##
##
          'Positive' Class: Y
##
# ROC curve
rfProbs rf <- predict(model rf, testing imp, type = "prob")
# If NAs, can set na.rm=TRUE:
rfROC rf <- roc(testing imp$expire flag, rfProbs rf[, "Y"])
## Setting levels: control = N, case = Y
```

```
## Setting direction: controls < cases
```

```
plot.roc(rfROC rf, print.auc=TRUE, legacy.axes=TRUE)
```

#AUC = 0.705


```
# ALT: Tune mtry ### better model bestMtry than model rf
bestMtry <- tuneRF(training_imp[,c(1:4,6:10)], training_imp[,5], stepFactor = 1.5,</pre>
improve = 1e-5, ntree = 500, doBest=TRUE)
## mtry = 3 OOB error = 30.75%
## Searching left ...
## mtry = 2
                OOB error = 30.26%
## 0.01622971 1e-05
## Searching right ...
## mtry = 4
               OOB error = 31%
## -0.02474619 1e-05
```


bestMtry

```
##
## Call:
##
    randomForest(x = x, y = y, mtry = res[which.min(res[, 2]), 1])
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 2
##
##
           OOB estimate of error rate: 29.97%
## Confusion matrix:
            Y class.error
       Ν
## N 944 1043
                0.5249119
## Y 518 2704
                0.1607697
```

```
\# mtry = 2
#importance plot for best rf model
varImpPlot(bestMtry)
```

bestMtry


```
# Predict test data after tuning, for confusion matrix:
test_pred_rfbest <- predict(bestMtry, newdata = testing_imp)</pre>
#test_pred_rfbest
confusionMatrix(testing_imp$expire_flag, test_pred_rfbest, positive="Y")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 N
                      Y
##
            N 380 471
##
            Y 238 1142
##
##
                  Accuracy : 0.6822
                    95% CI: (0.6624, 0.7015)
##
##
       No Information Rate: 0.723
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa : 0.2892
##
    Mcnemar's Test P-Value : <2e-16
##
##
##
               Sensitivity: 0.7080
               Specificity: 0.6149
##
            Pos Pred Value: 0.8275
##
            Neg Pred Value: 0.4465
##
##
                Prevalence: 0.7230
##
            Detection Rate: 0.5119
##
     Detection Prevalence: 0.6186
##
         Balanced Accuracy: 0.6614
##
##
          'Positive' Class : Y
##
```

```
# ROC curve
rfProbs rf <- predict(bestMtry, testing imp, type = "prob")
# If NAs, can set na.rm=TRUE:
rfROC rf <- roc(testing imp$expire flag, rfProbs rf[, "Y"])
```

```
## Setting levels: control = N, case = Y
## Setting direction: controls < cases
```

```
plot.roc(rfROC rf, print.auc=TRUE, legacy.axes=TRUE)
```


#AUC = 0.710

Conclusions

```
rfROC_net
```

```
##
## Call:
## roc.default(response = testing imp$expire flag, predictor = rfProbs net[,
"Y"])
##
## Data: rfProbs_net[, "Y"] in 851 controls (testing_imp$expire_flag N) < 1380 cas</pre>
es (testing_imp$expire_flag Y).
## Area under the curve: 0.7021
```

rfROC_svmlinear

```
##
## Call:
## roc.default(response = testing_imp$expire_flag, predictor = rfProbs_svmlinear[,
    "Y"])
##
## Data: rfProbs_svmlinear[, "Y"] in 851 controls (testing_imp$expire_flag N) < 13
80 cases (testing_imp$expire_flag Y).
## Area under the curve: 0.6862</pre>
```

rfROC svmPoly

```
##
## Call:
## roc.default(response = testing_imp$expire_flag, predictor = rfProbs_svmPoly[,
"Y"])
##
## Data: rfProbs_svmPoly[, "Y"] in 851 controls (testing_imp$expire_flag N) < 1380
cases (testing_imp$expire_flag Y).
## Area under the curve: 0.6862</pre>
```

rfROC svmRadial

```
##
## Call:
## roc.default(response = testing_imp$expire_flag, predictor = rfProbs_svmRadial[,
"Y"])
##
## Data: rfProbs_svmRadial[, "Y"] in 851 controls (testing_imp$expire_flag N) < 13
80 cases (testing_imp$expire_flag Y).
## Area under the curve: 0.6876</pre>
```

rfROC rf

```
##
## Call:
## roc.default(response = testing_imp$expire_flag, predictor = rfProbs_rf[,
    "Y"])
##
## Data: rfProbs_rf[, "Y"] in 851 controls (testing_imp$expire_flag N) < 1380 case
s (testing_imp$expire_flag Y).
## Area under the curve: 0.7103</pre>
```

```
# The highest to lowest AUC is shown below for all models used above along with ot
her model evaluation metrics:
# 1) Random Forest: AUC = 0.710
                  # Accuracy : 0.6773
                  # Sensitivity : 0.7075
                  # Specificity : 0.6022
# 2) Elastic net: AUC = 0.7021
            # Accuracy : 0.6714
            # Sensitivity : 0.8225
            # Specificity : 0.4266
# 3) SVM - Radial: AUC = 0.6876
                # Accuracy : 0.6392
                # Sensitivity : 0.6941
                # Specificity: 0.5307
# 4) SVM - Poly: AUC = 0.6862
            # Accuracy : 0.6298
            # Sensitivity : 0.6940
            # Specificity: 0.5156
# 5) SVM - Linear: AUC = 0.6862
              # Accuracy : 0.6244
              # Sensitivity : 0.6930
              # Specificity : 0.5079
# The best model is ranfom forest for this dataset, it has better AUC, accuracy an
d good predictions compared to all other models
# Elastic net is second best, however it has very less specificity, which could le
ad to more false positive predictions.
```