MATH 3B

Improper Integration:

- Recall, we say an integral converges if $\int_a^b f(x) dx =$
- We say an integral diverges otherwise.

Examples:

$$-\int_{1}^{\infty} \frac{1}{x} dx =$$

$$-\int_{1}^{\infty} \frac{1}{x^{2}} dx =$$

$$-\int_{1}^{\infty} \frac{1}{x^{3}} dx =$$

FACTS and TESTS:

- p-Test: If a > 0, then $\int_a^\infty \frac{1}{x^p}$ is convergent for
- Divergence Test: If $f(x) \to 0$ as $x \to \infty$, then $\int_a^\infty f(x) dx$
- Comparison Test: If $f(x) \ge g(x) \ge 0$ on $[a, \infty)$, then:

$$- \text{ if } \int_{a}^{\infty} f(x) \, dx \qquad , \text{ then } \int_{a}^{\infty} g(x) \, dx$$
$$- \text{ if } \int_{a}^{\infty} g(x) \, dx \qquad , \text{ then } \int_{a}^{\infty} f(x) \, dx$$

Arc Length:

• If f' is continuous on [a, b], then the length of the curve

$$y = f(x), a \le x \le b$$
 is given by $L =$

- Strategies:
- Example: Find the length of the curve $y = \ln(\cos(x))$ where $0 \le x \le pi/3$

Surface Area:

- The surface area obtained by rotating the curve y = f(x), $a \le x \le b$ about the x-axis is given by
- Where does this formula come from?

- If you're rotating about the y-axis, the curve is given as x = g(y) from $c \le y \le d$ then the formula for surface area becomes
- Example: Write the formula that represents the area of the surface obtained by rotating the curve $y = e^x$, $1 \le y \le 2$ about the y-axis.