Add meg a kommunikáció vázlatos és részletes ábráját!

A kommunikáció vázlatos ábrája

Kodólás, dekódolás, zaj kerül még az ábrába!

Definiáld az információ fogalmát , hogyan mérjük ?!

Definíció

Az információ új ismeret. Shannon nyomán az általa megszüntetett bizonytalansággal mérjük.

Definiáld a gyakoriság / relatív gyakoriság fogalmát!

Ha az a_j üzenet m_j -szer fordul elő, akkor azt mondjuk, hogy a gyakorisága m_j , relatív gyakorisága pedig $p_j = \frac{m_j}{n} > 0$.

Definiáld az üzenetek eloszlásának fogalmát!

A
$$p_1, p_2, \ldots, p_k$$
 szám k -ast az üzenetek eloszlásának nevezzük $(\sum_{j=1}^k p_j = 1)$.

Definiáld egy üzenet egyedi információ tartalmát!

```
Az a_j üzenet egyedi információtartalma l_j = -\log_r p_j, ahol r egy nagyobb valós szám, ami az információ egységét határozza meg.
```

Definiáld üzenetek átlagos információ tartalmát!

Az üzenetforrás által kibocsátott üzenetek átlagos információtartalma, vagyis $H_r(p_1, p_2, \ldots, p_k) = -\sum_{j=1}^k p_j \log_r p_j$ a forrás entrópiája. Ez csak az üzenetek eloszlásától függ, a tartalmuktól nem.

Mit nevezünk eloszlásnak és definiáld entrópiáját?

```
Egy k tagú eloszlásnak olyan pozitív valós számokból álló p_1, p_2, \ldots, p_k sorozatot nevezünk, amelyre \sum_{j=1}^k p_j = 1. Ennek az eloszlásnak az entrópiája H_r(p_1, p_2, \ldots, p_k) = -\sum_{j=1}^k p_j \log_r p_j.
```

Definiáld a konvex és a szigorúan konvex függvény fogalmát!

Definíció

Legyen $I \subset \mathbb{R}$. Az $f: I \to \mathbb{R}$ függvényt konvexnek nevezzük, ha bármely $x_1, x_2 \in I$ és $0 \le t \le 1$ esetén

$$f(tx_1+(1-t)x_2) \leq tf(x_1)+(1-t)f(x_2).$$

f szigorúan konvex, ha egyenlőség csak t=0 vagy t=1 esetén lehetséges.

Hogyan szól a Jensen-egyenlőtlenség?

Lemma (Jensen-egyenlőtlenség, NB)

Legyen p_1, p_2, \ldots, p_k egy eloszlás, $f: I \to \mathbb{R}$ pedig egy szigorúan konvex függvény az $I \subset \mathbb{R}$ intervallumon. Ekkor $q_1, q_2, \ldots, q_k \in I$ esetén

$$f\left(\sum_{j=1}^k p_j q_j\right) \leq \sum_{j=1}^k p_j f(q_j),$$

és egyenlőség pontosan akkor áll fenn, ha $q_1 = q_2 = \ldots = q_k$.

Milyen felső korlát adható az entrópiára? Bizonyítás!

Tétel

Bármilyen eloszláshoz tartozó entrópiára

$$H_r(p_1, p_2, \ldots, p_k) \leq \log_r k,$$

és egyenlőség pontosan akkor teljesül, ha $p_1=p_2=\ldots=p_k=rac{1}{k}$.

Bizonyítás

r>1 esetén a $-\log_r(x)$ függvény szigorúan konvex, ezért használhatjuk a lemmát $q_j=rac{1}{
ho_j}$ választással:

$$-H_r(p_1, p_2, \dots, p_k) = \sum_{j=1}^k p_j \log_r p_j =$$

$$= \sum_{j=1}^k p_j \left(-\log_r \frac{1}{p_j} \right) \ge -\log_r \left(\sum_{j=1}^k p_j \frac{1}{p_j} \right) = -\log_r k.$$

Definiáld a kódolás fogalmát!

A kódolás alatt a legáltalánosabb értelemben az üzenetek halmazának egy másik halmazba való leképezését értjük.

Mit nevezünk kódnak?

Definíció

A betűnkénti kódolást egy $\varphi:A\to B^*$ leképezés határozza meg, amelyet természetes módon terjesztünk ki egy $\psi:A^*\to B^*$ leképezéssé: $a_1a_2\ldots a_n=\alpha\in A^*$ esetén $\psi(\alpha)=\varphi(a_1)\varphi(a_2)\ldots\varphi(a_n)$. rng (ψ) -t kódnak nevezzük, elemei a kódszavak.

Definiáld a felbontható /egyértelműen dekódolható/veszteségmentes kódolást!

Ha a leképezés injektív, akkor azt mondjuk, hogy a kódolás felbontható, egyértelműen dekódolható, vagy veszteségmentes, egyébként veszteségesnek nevezzük, mert információvesztéssel jár.

Definiáld az ábécé, betű, szó fogalmát!

ábécé : betükből all.

betű: karakterek

szó: betuk sorozata

Mást nem találtam hozzas!

Definiáld az A+ és az A* halmazokat!

Definíció

Az A ábécé betűivel felírható összes (legalább egy betűt tartalmazó) szó halmazát A^+ jelöli, míg az egyetlen betűt sem tartalmazó üres szóval (jele: \emptyset vagy λ) kibővített halmazt A^* .

Definiáld a betünkénti kódolást!

A betűnkénti kódolás során az üzenetet meghatározott módon egymáshoz átfedés nélkül csatlakozó részekre bontjuk, egy-egy ilyen részt egy szótár alapján kódolunk, és az így kapott kódokat az eredeti sorrendnek megfelelően egymáshoz láncoljuk.

Mit érdemes feltenni egy betünkénti kódolás alapjául szolgáló leképzésről?

Megjegyzés

Ha φ nem injektív, vagy az üres szó benne van az értékkészletében, akkor a kapott ψ kódolás nem injektív (Miért?), tehát nem felbontható, ezért betűnkénti kódolásnál feltesszük, hogy φ injektív, és \mathcal{B}^+ -ba képez.

Definiáld prefix, infix, szuffix fogalmát!

Definíció

Tekintsünk egy A ábécét, és legyen $\alpha, \beta, \gamma \in A^*$. Ekkor α prefixe (előtagja), míg γ szuffixe (utótagja) $\alpha\gamma$ -nak, β pedig infixe (belső tagja) $\alpha\beta\gamma$ -nak.

Definiáld a valódi prefix/infix/szufix fogalmát!

Definíció

 α egy prefixét, szuffixét, illetve infixét valódi prefixnek, valódi szuffixnek, illetve valódi infixnek nevezzük, ha nem egyezik meg α -val.

Definiáld a triviális prefix/infix/szufix fogalmát!

Definíció

Az üres szó és α prefixe, szuffixe és infixe is α -nak, ezeket α triviális prefixeinek, triviális szuffixeinek és triviális infixeinek nevezzük.

Definiáld a prefix kód fogalmát!

Tekintsük az injektív $\varphi:A\to B^+$ leképezést, illetve az általa meghatározott ψ betűnkénti kódolást.

Ha $rrg(\varphi)$ prefixmentes halmaz, akkor prefix kódról beszélünk.

Definiáld az egyenletes / fix hosszuságú / blokk kód fogalmát!

Ha $rrg(\varphi)$ elemei azonos hosszúságúak, akkor egyenletes kódról, fix hosszúságú kódról, esetleg blokk-kódról beszélünk.

Definiáld a vesszős kód fogalmát!

Vesszős kódról beszélünk, ha van egy olyan $\vartheta \in B^+$ szó (a vessző), amely minden kódszónak szuffixe, de egyetlen kódszó sem áll elő $\alpha\vartheta\beta$ alakban nem üres β szóval.

Milyen kapcsolat van a prefix , egyenletes ,vesszős és felbonthatatlan kódok között ? Bitonyitás!

Állítás

Prefix kód felbontható.

Bizonyítás

Konstruktív: nézzük az eddig beérkezett betűkből összeálló szót. Amint ez kiadja a kódolandó ábécé valamely betűjéhez tartozó kódszót, azonnal dekódolhatunk a megfelelő betűre, mert a folytatásával kapott jelsorozat egyetlen betűhöz rendelt kódszó sem lehet.

Állítás

Egyenletes kód prefix (így nyilván felbontható is).

Bizonyítás

Mivel a kódszavak hossza azonos, ezért csak úgy lehet egy kódszó prefixe egy másiknak, ha megegyeznek.

Allítás

Vesszős kód prefix (így nyilván felbontható is).

Bizonyítás

A vessző egyértelműen jelzi egy kódszó végét, hiszen ha folytatva kódszót kapnánk, abban a vessző tiltott módon szerepelne.

Adj példát nem prefix , de felbontható kódra!

01

011

11

Hogyan szól a McMillan egyenlőtlenség és a "megfordítása"?

Tétel (McMillan-egyenlőtlenség, NB)

Legyen $A = \{a_1, a_2, \dots, a_n\}$ és B két ábécé, B elemeinek száma $r \ge 2$, és $\varphi : A \to B^+$ injektív leképezés.

Ha a φ által meghatározott betűnkénti kódolás felbontható, akkor $l_j = |\varphi(a_j)|$ jelöléssel

$$\sum_{j=1}^n r^{-l_j} \le 1.$$

Tétel (McMillan-egyenlőtlenség megfordítása, NB)

Az előző tétel jelöléseit használva, ha l_1, l_2, \ldots, l_n olyan pozitív egész számok, hogy $\sum_{j=1}^n r^{-l_j} \leq 1$, akkor van az A-nak a B elemeivel való olyan felbontható (sőt prefix) kódolása, hogy az a_j betűhöz rendelt kódszó hossza l_i .

Definiáld a kód átlagos szóhosszát!

Definíció

Legyen $A = \{a_1, a_2, \dots, a_n\}$ a kódolandó ábécé, p_1, p_2, \dots, p_n a betűk eloszlása, $\varphi : A \to B^+$ injektív leképezés, továbbá $I_j = |\varphi(a_j)|$. Ekkor $\overline{I} = \sum_{j=1}^n p_j I_j$ a kód átlagos szóhossza.

Definiáld az optimális kód fogalmát!

Ha adott elemszámú ábécével és eloszlással egy felbontható betűnkénti kód átlagos szóhosszúsága minimális, akkor optimális kódnak nevezzük.

Mit mondhatunk optimális kód létezésével kapcsolatosan? Bizonyítás!

Állítás

Adott ábécé és eloszlás esetén létezik optimális kód.

Bizonyítás

Válasszunk egy tetszőleges felbontható kódot (Miért van ilyen?), ennek átlagos szóhosszúsága legyen I. Mivel $p_j l_j > I$ esetén a kód nem lehet optimális (Miért?), ezért elég azokat a kódokat tekinteni, amelyekre $l_j \leq \frac{I}{p_j}$, ha $j=1,2,\ldots,n$. Ilyen kód csak véges sok van, így van köztük minimális átlagos hosszúságú.

Hogyan szól Shannon tétele zajmentes csatornára? Bizonyítás!

Tétel (Shannon tétele zajmentes csatornára)

Legyen $A = \{a_1, a_2, \dots, a_n\}$ a kódolandó ábécé, p_1, p_2, \dots, p_n a betűk eloszlása, $\varphi : A \to B^+$ injektív leképezés, B elemeinek a száma $r \ge 2$, továbbá $I_i = |\varphi(a_i)|$.

Ha a φ által meghatározott betűnkénti kódolás felbontható, akkor $H_r(p_1, p_2, \dots, p_n) \leq \overline{I}$.

Bizonyítás

$$\begin{split} \overline{l} - H_r(p_1, p_2, \dots, p_n) &= \sum_{j=1}^n p_j l_j + \sum_{j=1}^n p_j \log_r p_j = \\ &= -\sum_{j=1}^n p_j \log_r r^{-l_j} - \sum_{j=1}^n p_j \log_r \frac{1}{p_j} = -\sum_{j=1}^n p_j \log_r \frac{r^{-l_j}}{p_j} \ge \\ &\ge -\log_r \left(\sum_{j=1}^n r^{-l_j}\right) \ge -\log_r 1 = 0 \end{split}$$

Mit mondhatunk Shannon-kód átlagos szóhosszáról? Bizonyítás!

Tétel (Shannon kód létezése)

Az előző tétel jelöléseivel, ha n > 1, akkor van olyan prefix kód, amire $\overline{I} < H_r(p_1, p_2, \dots, p_n) + 1$.

Bizonyítás

Válasszunk olyan l_1, l_2, \ldots, l_n természetes számokat, amelyekre $r^{-l_j} \leq p_j < r^{-l_j+1}$, ha $j=1,2,\ldots,n$ (Miért tudunk ilyeneket választani?). Ekkor $\sum_{j=1}^n r^{-l_j} \leq \sum_{j=1}^n p_j = 1$, így a McMillan-egyenlőtlenség megfordítása miatt létezik prefix kód az adott l_j hosszakkal. Mivel $l_j < 1 - \log_r p_j$ (Miért?), ezért

$$\overline{l} = \sum_{j=1}^n \rho_j l_j < \sum_{j=1}^n \rho_j (1 - \log_r \rho_j) = 1 + H_r(\rho_1, \rho_2, \dots, \rho_n).$$

Hogyan konstruálunk Huffman-kódot?

Legyen $\{a_1, a_2, \ldots, a_n\}$ az üzenetek halmaza, a hozzájuk tartozó eloszlás pedig p_1, p_2, \ldots, p_n , a kódábécé elemszáma r.

Rendezzük relatív gyakoriság szerint csökkenő sorrendbe a betűket.

Osszuk el maradékosan n-2-t r-1-gyel:

```
n-2 = q(r-1) + m  0 < m < r-1, és legyen t = m+2.
```

Helyettesítsük az utolsó t betűt egy új betűvel, amihez az elhagyott betűk relatív gyakoriságainak összegét rendeljük, és az így kapott gyakoriságoknak megfelelően helyezzük el az új betűt a sorozatban. Ezek után ismételjük meg az előző redukciót, de most már minden lépésben r betűvel csökkentve a kódolandó halmazt, mígnem már csak r betű marad.

Most a redukált ábécé legfeljebb r betűt tartalmaz, és ha volt redukció, akkor pontosan *r*-et.

Ezeket a kódoló ábécé elemeivel kódoljuk, majd a redukciónak megfelelően visszafelé haladva, az összevont betűk kódját az összevonásként kapott betű már meglévő kódjának a kódoló ábécé különböző betűivel való kiegészítésével kapjuk.

Hogyan konstruálunk Shannon-kódot?

```
Példa Shannon-kódra
Az előző példában használt ábécét és eloszlást fogjuk használni.
Rendezzük sorba az ábécét relatív gyakoriságok szerinti csökkenő
sorrendben:
   0,17
   0,17
    0.13
    0.09
    0,06
 b
    0,02
 d
    0,02
 g
    0.02
    0.01
```

```
Határozzuk meg a szükséges szóhosszúságokat:
```

```
\frac{1}{6} \le 0,31;0,17;0,13 < \frac{1}{3}, ezért f, a, h és c kódhossza 2.
```

$$\frac{81}{81} \leq 0.02 < \frac{27}{27}$$
, ezert b, d es g kodnossza 4

Áz f kódja 00, az a kódja 01, a h kódja 02, és ez utóbbihoz 1-et adva hármas alapú számrendszerben kapjuk c kódját, ami 10. Ehhez 1-et adva 11-et kapunk, de j kódjának hossza 3, ezért ezt még ki kell egészíteni jobbról egy 0-val, tehát j kódja 110. Hasonlóan folytatva megkapjuk a teljes kódot:

```
01
h
    02
    10
```

111

1120 d 1121

12000

Atlagos szóhossz: 2, 3 < 1, 73 + 1.

 $[\]frac{1}{27} \le 0,09; 0,06 < \frac{1}{9}$, ezért j és i kódhossza 3. $\frac{1}{8\frac{1}{1}} \leq 0,02 < \frac{1}{27}$, ezért b, d és g kódhossza 4. $\frac{1}{243} \leq 0,01 < \frac{1}{81}$, ezért e kódhossza 5.

Definiáld a kódfa fogalmát!

Kódfa

A betűnkénti kódolás szemléltethető egy címkézett irányított fával. Legyen $\varphi:A\to B^*$ egy betűnkénti kódolás, és tekintsük $\mathrm{rng}(\varphi)$ prefixeinek halmazát. Ez a halmaz részbenrendezett a "prefixe" relációra. (Miért?) Vegyük ennek a Hasse-diagramját. Így egy irányított fát kapunk, aminek a gyökere az üres szó, és minden szó a hosszának megfelelő szinten van. A fa éleit címkézzük úgy B elemeivel, hogy ha $\beta=\alpha b$ valamely $b\in B$ -re, akkor az α -ból β -ba vezető él címkéje legyen b.

A kódfa csúcsait is megcímkézhetjük: az $a \in A$ kódjának megfelelő csúcs címkéje legyen $a \in A$; azon csúcs címkéje, amely nincsen $\mathrm{rng}(\varphi)$ -ben, legyen "üres".

Hogyan működik az ISBN kódolása ? Bizonyítás ! (Milyen hibákat jelez !)

Példa (ISBN (International Standard Book Number) kódolása)

Legyen d_1, d_2, \ldots, d_n decimális számjegyek egy sorozata ($n \le 10$). Egészítsük ki a sorozatot egy n+1-edik számjeggyel, amelynek értéke

$$d_{n+1} = \sum_{j=1}^n j \cdot d_j \mod 11,$$

ha az nem 10, különben d_{n+1} legyen X.

Ha valamelyik számjegyet elírjuk, akkor az összefüggés nem teljesülhet: d_{n+1} elírása esetén ez nyilvánvaló, $j \leq n$ -re d_j helyett d'_j -t írva pedig az összeg $j(d'_i - d_j)$ -vel nőtt, ami nem lehet 11-gyel osztható (Miért?).

Azt is észrevesszük, ha j < n esetén d_j -t és d_{j+1} -et felcseréljük: az összeg $jd_{j+1} + (j+1)d_j - jd_j - (j+1)d_{j+1} = d_j - d_{j+1}$ -gyel nő, ami csak akkor lehet 11-gyel osztható, ha $d_j = d_{j+1}$.

Mi a paritásbites kód?

Példa (Paritásbites kód)

Egy n hosszú 0-1 sorozatot egészítsünk ki egy n+1-edik bittel, ami legyen 1, ha a sorozatban páratlan sok 1-es van, különben pedig legyen 0. Ha egy bit megváltozik, akkor észleljük a hibát.

Mi az a kétdimenziós paritásellenőrzés?

Példa (Kétdimenziós paritásellenőrzés)

Oszlopok és sorok végén paritásbit. Ha megváltozik egy bit, akkor a sor és az oszlop végén jelez az ellenőrző bit, ez alapján tudjuk javítani a hibát. Ha két bit változik meg, akkor észleljük a hibát, de nem tudjuk javítani.

Definiáld a t-hibajelző és pontosan t-hibajelző kód fogalmát!

Definíció

Egy kód t-hibajelző, ha minden olyan esetben jelez, ha az elküldött és megkapott szó legfeljebb t helyen tér el.

Egy kód pontosan t-hibajelző, ha t-hibajelző, de van olyan t+1-hiba, amit nem jelez.

Definiáld a Hamming-távolságot!

Definíció

Legyen A véges ábécé, továbbá $u, v \in A^n$. Ekkor u és v Hamming-távolsága alatt az azonos pozícióban lévő különböző betűk számát értjük:

$$d(u,v) = |\{i : 1 \le i \le n \land u_i \ne v_i\}|.$$

Milyen tulajdonságokkal rendelkezik a Hamming-távolság?

Állítás

A Hamming-távolság rendelkezik a távolság szokásos tulajdonságaival, vagyis tetszőleges u, v, w-re

- 1) $d(u, v) \ge 0$;
- 2) $d(u, v) = 0 \iff u = v$;
- 3) d(u, v) = d(v, u) (szimmetria);
- 4) $d(u, v) \le d(u, w) + d(w, v)$ (háromszög-egyenlőtlenség).

Definiáld a kód távolságot!

Definíció

A K kód távolsága (d(K)) a különböző kódszópárok távolságainak a minimuma.

Mit jelent a minimális távolságú dekódolás?

Definíció

Minimális távolságú dekódolás esetén egy adott szóhoz azt a kódszót rendeljük, amelyik hozzá a legközelebb van. Több ilyen szó esetén kiválasztunk ezek közül egyet, és az adott szóhoz mindig azt rendeljük.

Definiáld a t-hibajavító és a pontosan t-hibajavító kód fogalmát!

Definíció

Egy kód t-hibajavító, ha minden olyan esetben helyesen javít, amikor egy elküldött szó legfeljebb t helyen változik meg.

Egy kód pontosan t-hibajavító, ha t-hibajavító, de van olyan t+1 hibával érkező szó, amit helytelenül javít, vagy nem javít.

Mi az az ismétléses kód?

Példa (ismétléses kód)

```
a\mapsto(a,a,a) d=3 1-hibajavító,
a\mapsto(a,a,a,a,a) d=5 2-hibajavító.
```

Fogalmazd meg a Singleton-korlátra vonatkozó állítást! Bizonyítás!

Tétel (Singleton-korlát)

Ha
$$K \subset A^n$$
, $|A| = q$ és $d(K) = d$, akkor $|K| \le q^{n-d+1}$.

Bizonyítás

Ha minden kódszóból elhagyunk d-1 betűt (ugyanazokból a pozíciókból), akkor az így kapott szavak még mindig különbözőek, és n-d+1 hosszúak. Az ilyen hosszú szavak száma szerepel az egyenlőtlenség jobb oldalán.

Definiáld az MDS-kód fogalmát!

Definíció

Ha egy kódra a Singleton-korlát egyenlőséggel teljesül, akkor azt maximális távolságú szeparábilis kódnak (MDS-kód) nevezzük.

Fogalmazd meg a Hamming-korlátra vonatkozó állítást! Bizonyítás!

Tétel (Hamming-korlát)

Ha $K \subset A^n$, |A| = q és K t-hibajavító, akkor

$$|K|\sum_{j=0}^t \binom{n}{j}(q-1)^j \leq q^n.$$

Bizonyítás

Mivel a kód t-hibajavító, ezért bármely két kódszóra a tőlük legfeljebb t távolságra lévő szavak halmazai diszjunktak (Miért?). Egy kódszótól pontosan j távolságra lévő szavak száma $\binom{n}{j}(q-1)^j$ (Miért?), így egy kódszótól legfeljebb t távolságra lévő szavak száma $\sum_{j=0}^t \binom{n}{j}(q-1)^j$. A jobb oldalon az n hosszú szavak száma szerepel (Miért?).

Definiáld a perfekt kód fogalmát!

Definíció

Ha egy kódra a Hamming-korlát egyenlőséggel teljesül, akkor azt perfekt kódnak nevezzük.

Mi a kapcsolat kód távolsága és hibajelző képessége között? Bizonyítás!

Tekintsünk egy kódot, aminek a távolsága d.

Ha egy elküldött kódszó legalább 1, de d-nél kevesebb helyen sérül, akkor az így kapott szó biztosan nem kódszó, mivel két különböző kódszó legalább d helyen különbözik. Tehát legfeljebb d-1 hiba esetén a kód jelez.

A kódban van két olyan kódszó, amelyek távolsága d, és ha az egyiket küldik, és ez úgy változik meg, hogy éppen a másik érkezik meg, akkor d hiba történt, de nem vesszük észre. Tehát van olyan d hiba, amit a kód nem tud jelezni.

Ezáltal a kód pontosan d-1-hibajelző.

Mi a kapcsolat kód távolsága és hibajavító képessége között? Bizonyítás !

Legyen a kód távolsága továbbra is d, és tegyük fel, hogy minimális távolságú dekódolást használunk.

 $t<\frac{d}{2}$ hiba esetén biztosan jól javítunk, hiszen a háromszög-egyenlőtlenség miatt az eredetileg elküldött kódszótól különböző bármely kódszó biztosan $\frac{d}{2}$ -nél több helyen tér el a vett szótól (Miért?).

Másrészt legyenek u és w olyan kódszavak, amelyek távolsága d, és legyen v az a szó, amit úgy kapunk u-ból, hogy a d pozícióból $t \geq \frac{d}{2}$ helyre a w megfelelő pozíciójában lévő betűt írjuk.

Ekkor v az u-tól t helyen, míg w-től $d-t \leq \frac{d}{2} \leq t$ helyen különbözik. Ha a kód t-hibajavító lenne, akkor v-t egyrészt u-ra, másrészt w-re kellene javítania.

Ezáltal a kód pontosan $\lfloor \frac{d-1}{2} \rfloor$ -hibajavító.

Definiáld a lineáris tér és kód fogalmát és milyen műveletekkel alkot lineáris teret Fⁿ!

Definíció

Legyen \mathbb{F} véges test. Ekkor az \mathbb{F} elemeiből képzett rendezett n-esek a komponensenkénti összeadással, valamint az n-es minden elemének ugyanazzal az \mathbb{F} -beli elemmel való szorzásával egy \mathbb{F} feletti n-dimenziós \mathbb{F}^n lineáris teret alkotnak. Ennek a térnek egy tetszőleges altere egy lineáris kód.

Milyen paraméterekkel jellemezzük a lineáris kódokat?

Jelölés

Ha az altér k-dimenziós, a kód távolsága d, a test elemeinek a száma pedig q, akkor $[n, k, d]_q$ kódról beszélünk.

Ha nem lényeges d és q értéke, akkor elhagyjuk őket a jelölésből, és [n, k]-t írunk.

Milyen alakot ölt a Singleton-korlát lineáris kód esetén?

Megjegyzés

Egy $[n, k, d]_a$ kód esetén a Singleton-korlát alakja egyszerűsödik:

$$q^k \le q^{n-d+1} \iff k \le n-d+1.$$

Adj példát lineáris kódra!

Példa

1) A (*) kód egy [5, 2, 3]₂ kód:

 $(0,0)\mapsto (0,0,0,0,0)$

 $(0,1) \mapsto (0,1,1,1,0)$

 $(1,0) \mapsto (1,0,1,0,1)$

 $(1,1) \mapsto (1,1,0,1,1)$

Definiáld a kódszó és kód súlyát!

Definíció

Az \mathbb{F} véges test mint ábécé feletti n hosszú $u \in \mathbb{F}^n$ szó súlya alatt a nem-nulla koordinátáinak a számát értjük, és w(u)-val jelöljük. Egy K kód súlya a nem-nulla kódszavak súlyainak a minimuma:

$$w(K) = \min_{u \neq 0} w(u).$$

Milyen összefüggés van lineáris kód súlya és távolsága között? Bizonyítás!

Megjegyzés

Egy szó súlya megegyezik a 0-tól vett távolságával: w(u) = d(u, (0, 0, ..., 0)).

Állítás

Ha K lineáris kód, akkor d(K) = w(K).

Bizonyítás

d(u, v) = w(u - v), és mivel K linearitása miatt $u, v \in K$ esetén $u - v \in K$, ezért a minimumok is megegyeznek (Miért?).

Definiáld lineáris kód generátormátrixát!

Definíció

Legyen $G: \mathbb{F}_q^k \to \mathbb{F}_q^n$ egy teljes rangú lineáris leképzés, illetve $\mathbf{G} \in \mathbb{F}_q^{n \times k}$ a hozzá tartozó mátrix. $K = \mathrm{Im}(G)$ esetén \mathbf{G} -t a K kód generátormátrixának nevezzük.

Definiáld lineáris kód ellenörző mátrixát!

Definíció

Egy $[n, k, d]_q$ kódnak $H \in \mathbb{F}_q^{(n-k)\times n}$ mátrix az ellenőrző mátrixa, ha $Hv = 0 \iff v$ kódszó.

Mi a kapcsolat a generátormátrix és ellenörző mátrix között?

Megjegyzés

A G mátrixhoz tartozó kódolásnak H pontosan akkor ellenőrző mátrixa, ha $\mathrm{Ker}(\mathsf{H}) = \mathrm{Im}(\mathsf{G})$

Definiáld a szisztematikus , üzenetszegmens , a paritásszegmens kódolás fogalmát!

Definíció

Ha a kódszavak első *k* betűje megfelel az eredeti kódolandó szónak, akkor szisztematikus kódolásról beszélünk.

Ekkor az első k karakter az üzenetszegmens, az utolsó n-k pedig a paritásszegmens.

Mi a kapcsolat szisztematikus kód generátormátrixa és ellenörző mátrixa között ? Bizonyítás !

Állítás

Legyen $\mathbf{G} \in \mathbb{F}_a^{n imes k}$ egy szisztematikus kód generátormátrixa:

$$\mathbf{G} = \begin{pmatrix} \mathbf{I}_k \\ \mathbf{P} \end{pmatrix}$$
. Ekkor $\mathbf{H} = \begin{pmatrix} -\mathbf{P} & \mathbf{I}_{n-k} \end{pmatrix}$ ellenőrző mátrixa a kódnak.

Bizonyítás

$$\begin{aligned} \mathbf{H} \cdot \mathbf{G} &= \left(\begin{array}{c} -\mathbf{P} & \mathbf{I}_{n-k} \end{array} \right) \cdot \left(\begin{array}{c} \mathbf{I}_k \\ \mathbf{P} \end{array} \right) = -\mathbf{P} + \mathbf{P} = \mathbf{0} \in \mathbb{F}_q^{(n-k) \times k} \\ (\mathbf{H} \cdot \mathbf{G})_{ij} &= \sum_{l=1}^k (-\mathbf{P})_{il} \cdot (\mathbf{I}_k)_{lj} + \sum_{l=1}^{n-k} (\mathbf{I}_{n-k})_{il} \cdot (\mathbf{P})_{lj} = -p_{ij} + p_{ij} = 0. \\ \text{Tehát bármely } u \text{ kódolandó szóra } \mathbf{H}(\mathbf{G}u) = (\mathbf{H}\mathbf{G})u = \mathbf{0}u = \underline{\mathbf{0}}, \\ \text{vagyis } \mathrm{Im}(\mathbf{G}) \subset \mathrm{Ker}(\mathbf{H}), \text{ amiből } \mathrm{dim}(\mathrm{Im}(\mathbf{G})) \leq \mathrm{dim}(\mathrm{Ker}(\mathbf{H})). \\ \mathrm{dim}(\mathrm{Im}(\mathbf{G})) = k \text{ \'es } \mathrm{dim}(\mathrm{Ker}(\mathbf{H})) \leq k \text{ miatt viszont} \\ \mathrm{dim}(\mathrm{Im}(\mathbf{G})) \geq \mathrm{dim}(\mathrm{Ker}(\mathbf{H})) \text{ is teljesül, \'igy } \mathrm{Im}(\mathbf{G}) = \mathrm{Ker}(\mathbf{H}). \end{aligned}$$

Hogyan dekódolunk szisztematikus kódolás esetén?

Megjegyzés

Szisztematikus kódolás esetén könnyen tudunk dekódolni: a paritásszegmens elhagyásával megkapjuk a kódolandó szót.

Mi a kapcsolat az ellenörző mátrix és a kód távolsága között? Bizonyítás !

A kód távolsága leolvasható az ellenőrző mátrixból.

Állítás

Legyen H egy [n, k] kód ellenőrző mátrixa. A H-nak pontosan akkor van l darab lineárisan összefüggő oszlopa, ha van olyan kódszó, aminek a súlya legfeljebb l.

Bizonyítás

Legyen $H = (\underline{h_1} \ \underline{h_2} \ \cdots \ \underline{h_n}).$

 \Rightarrow

Ekkor $\sum_{j=1}^{l} u_j \cdot \underline{h_{l_j}} = \underline{0}$. Tekintsük azt a vektort, aminek az l_j -edik koordinátája u_j , a többi pedig 0. Ez egyrészt kódszó lesz (Miért?), másrészt a súlya legfeljebb l.

 \leftarrow

Legyen $\underline{u} = (u_1, u_2, \dots, u_n)^T$ az a kódszó, aminek a súlya I. Ekkor H-nak az \underline{u} nem-nulla koordinátáinak megfelelő oszlopai lineárisan összefüggőek.

Definiáld a szindróma fogalmát!

Definíció

Adott $\underline{v} \in \mathbb{F}_q^n$ esetén az $\underline{s} = \mathsf{H}\underline{v} \in \mathbb{F}_q^{n-k}$ vektort szindrómának nevezzük.

Definiáld a hibavektor fogalmát!

Definíció

Legyen \underline{c} a kódszó, \underline{v} a vett szó. Az $\underline{e} = \underline{v} - \underline{c}$ a hibavektor.

Definiáld egy adott hibavektorhoz tartozó mellékosztályt!

Definíció

Valamely \underline{e} hibavektorhoz tartozó mellékosztály az $\{\underline{e} + \underline{c} : c \text{ kódszó}\}$ halmaz.

Hogyan jellemezhetőek az azonos mellékosztályban lévő szavak a szindrómájuk segítségével?

Állítás

Az azonos mellékosztályban lévő szavak szindrómája megegyezik.

Definiáld a mellékosztálytvezető fogalmát!

Definíció

Minden \underline{s} szindróma esetén legyen $\underline{e_s}$ az a minimális súlyú szó, melynek \underline{s} a szindrómája. Ez az \underline{s} szindrómához tartozó mellékosztály-vezető, a mellékosztály elemei $e_s + \underline{c}$ alakúak, ahol $\underline{c} \in K$ kódszó.

Írd le a szindrómadekódolást!

Szindrómadekódolás

Adott \underline{v} esetén tekintsük az $\underline{s} = H\underline{v}$ szindrómát, és az $\underline{e_s}$ mellékosztály-vezetőt. Dekódoljuk \underline{v} -t $\underline{c} = \underline{v} - e_s$ -nek.

Mi a kapcsolat a szindrómadekódolás és a minimális távolságú dekódolás között? Bizonyítás !

Állítás

Legyen \underline{c} a kódszó, $\underline{v} = \underline{c} + \underline{e}$ a vett szó, ahol \underline{e} a hiba, és $w(\underline{e}) < d/2$, ahol d a kód távolsága. Ekkor a szindrómadekódolás a minimális távolságú dekódolásnak felel meg.

Bizonyítás

Egyrészt a korábbi állítás alapján $\underline{s} = H\underline{v} = H\underline{e}$, másrészt \underline{e}_s definíciója miatt $\underline{s} = H\underline{e}_s$. Ezért \underline{e} és \underline{e}_s ugyanabban a mellékosztályban van, továbbá $w(\underline{e}_s) \leq w(\underline{e})$.

 $\begin{array}{l} w(\underline{e}-\underline{e_s}) = d(\underline{e},\underline{e_s}) \leq d(\underline{e},\underline{0}) + d(\underline{0},\underline{e_s}) = w(\underline{e}) + w(\underline{e_s}) < d. \\ \text{De H}(\underline{e}-\underline{e_s}) = \underline{0} \text{ miatt } \underline{e}-\underline{e_s} \text{ k\'odsz\'o (Mi\'ert?), \'igy } \underline{e} = \underline{e_s}. \end{array}$