NAME

CUTEST_csgrshp - CUTEst tool to evaluate the sparsity patterns of the constraints gradients and gradient of objective/Lagrangian function, and the Hessian of the Lagrangian.

SYNOPSIS

```
CALL CUTEST csgrshp( status, n, nnzj, lj, J var, J fun, nnzh, lh, H row, H col )
```

For real rather than double precision arguments, instead

```
CALL CUTEST_csgrshp_s( ... )
```

and for quadruple precision arguments, when available,

```
CALL CUTEST_csgrshp_q( ... )
```

DESCRIPTION

The CUTEST_csgrshp subroutine evaluates sparsity pattern used when storing the gradients of the general constraints and of either the objective function or the Lagrangian function $l(x, y) = f(x) + y^T c(x)$, as well as the Hessian of the Lagrangian function, corresponding to the problem decoded from a SIF file by the script *sifdecoder*.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in R^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l \le c_i(x) \le c_i^u$. $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST csgrshp are as follows

```
status [out] - integer
```

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

nnzj [out] - integer

the number of nonzeros in J_var and J_fun,

lj [in] - integer

the actual declared dimensions of J_var and J_fun,

J_var [out] - integer

an array whose i-th component is the index of the variable with respect to which the derivative is taken,

J fun [out] - integer

an array whose i-th component is the index of the problem function whose derivative is taken. $J_{\text{fun}(i)} = 0$ indicates the objective or Lagrangian function, while $J_{\text{fun}(i)} = j > 0$ indicates the j-th general constraint function.

nnzh [out] - integer

the number of nonzeros in the Hessian matrix,

lh [in] - integer

the actual declared dimensions of H_row and H_col,

H_row [out] - integer

an array which gives the row indices of the nonzeros of the Hessian matrix of the Lagrangian function; only the upper triangular part of the Hessian is stored, and

H_col [out] - integer

an array which gives the column indices of the nonzeros of the Hessian matrix of the Lagrangian function corresponding to the row indices in H_row.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads,

N.I.M. Gould, D. Orban and Ph.L. Toint,

Computational Optimization and Applications 60:3, pp.545-557, 2014.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,

ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment,

I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint,

ACM TOMS, 21:1, pp.123-160, 1995.

cutest_csgrsh(3M), sifdecoder(1).