

Tema 1: Sistemas de Codificación y Numeración

Sistemas de Numeración

1. Convertir los siguientes números binarios puros a sus equivalentes en base 10

a) 100110: $2^5+2^2+2 = 38_{10}$

b) 110011: $2^5+2^4+2+1 = 51_{10}$

c) 010111: $2^4+2^2+2+1 = 23_{10}$

d) 101110: $2^5+2^3+2^2+2 = 46_{10}$

e) 110111: $2^5+2^4+2^2+2+1 = 55_{10}$

f) 01100110: $2^6+2^5+2^2+2 = 102_{10}$

g) 10110011: $2^7 + 2^5 + 2^4 + 2 + 1 = 179_{10}$

h) 0101,11: $2^2+1+2^{-1}+2^{-2} = 5,75_{10}$

i) 1001, 10: $2^3+1+2^{-1} = 9, 5_{10}$

j) 101010110,001: $2^8+2^6+2^4+2^2+2+2^{-3}$

 $= 342, 125_{10}$

2. Convertir los siguientes números decimales a sus equivalentes en binario

a) 9

b) 64

c) 31

d) 131

e) 258,75

f) 0,75

g) 1,625

h) 19,3125

ISAM

3. Convertir los siguientes números enteros hexadecimales a decimal

a) 13 : $1*16+3=19_{10}$

c) $3F0: 3*16^2+15*16^1 = 1008_{10}$

b) 65: 6*16+5= 101₁₀

d) DOCE: $13*16^3+12*16^1+14 = 53454_{10}$

4. Convertir los siguientes números reales hexadecimales a decimal

a) $0,2:2*16^{-1} = 0,125_{10}$

c) F1, A: $15*16+1+10*16^{-1} = 241,625_{10}$

b) 12, 9: $1*16+2+9*16^{-1} = 18,5625_{10}$

d) C8, D: $12*16+8+13*16^{-1} = 200,8125_{10}$

5. Convertir los siguientes números a binario, octal y decimal

a) $3, A2_{16}$

Hexadecimal a binario, sustituimos cada cifra por su valor binario

Binario a octal:

desde la coma agrupamos de 3 en 3 y sustituimos por su valor:

hexadecimal a decimal:

 $3+10*16^{-1}+2*16^{-2} = 3,6328125_{10}$

b) 1B1, 9₁₆

Hexadecimal a binario:

Binario a octal:

hexadecimal a decimal:

 $1*16^2+11*16^1+1+9*16^{-1} = 433,5625_{10}$

6. Convertir los siguientes números a binario (8 dígitos fraccionarios máx), octal y hexadecimal (2 dígitos fraccionarios)

a) $8, 9_{10}$

1000,1110 0110₂: 8,E6₁₆

1 000, 111 001 1002: 10,7148

b) 81, 1₁₀

 $101\ 0001,0001\ 1001_2$: $51,1\overline{9}_{16}$

1 010 001,000 110 01₂: 121,062₈

7. Convertir el siguiente número a binario, octal y decimal:

6416213A, 17B₁₆
0110 0100 0001 0110 0010 0001 0011 1010,0001 0111 1011₂ **Agrupamos de tres en tres para convertir e octal:**001 100 100 000 101 100 010 000 100 111 010,000 101 111 011₂
14405420472,0573₈ **6***16⁷+**4***16⁶+**1***16⁵+**6***16⁴+**2***16³+**1***16²+**3***16¹+**10**+**1***16⁻¹+**7***16⁻²+**11***16⁻³= 1679171898,09253₁₀

8. Convertir a base octal

a) 1101110: 156 ₈	c) 1011001100,11: 1314,6 ₈
b) 1001,011: 11,3 ₈	d) 101111000,1101: 570,64 ₈

9. Convertir el siguiente número a hexadecimal:

$$204231, 134_5 = 2*5^5 + 4*5^3 + 2*5^2 + 3*5 + 1 + 1*5^{-1} + 3*5^{-2} + 4*5^{-3} = 6816, 352_{10}$$

 $6816, 352_{10} = 1AA0, 5A1CA..._{16}$

10. Convertir a base hexadecimal y octal

CEA4) ₁₆	F23D) ₁₆	8978) ₁₆
a) 1100 1110 1010 0100	b) 1111 0010 0011 1101	c) 1000 1001 0111 1000
147244)8	171075) 8	104570) 8

Aritmética Binaria

11. Indicar el rango de un número de 8 bits según las codificaciones siguientes:

a) binario puro: [0,255]

c) Complemento a 1: [-127,127]

b) Signo-Magnitud: [-127,127]

d) Complemento a 2: [-128,127]

12. Indicar el resultado de las operaciones y si el resultado de sale de rango (operandos y resultado en Ca2 de 4 bits)

13. Hallar el valor en base 10 de los números A=01110011 y B=11000011 y la suma y la diferencia en su misma codificación y en decimal, suponiendo que están codificados en:

14. Utilizando aritmética binaria y habiendo convertido los operandos de base 10 a binario, realizar las siguientes operaciones

ISAM

Codificación

15. Obtener la representación decimal de los siguientes números codificados en BCD

```
a) 0110 1001 0111 1000

BCD a decimal, sustituimos cada cuarteto por su valor decimal

0110 1001 0111 1000<sub>BCD</sub>

6978<sub>10</sub>

6978<sub>10</sub>

b) 0000 0010 0101 0010 0110

0000 0010 0101 0010 0110<sub>BCD</sub>

02526<sub>10</sub>

02526<sub>10</sub>
```

16. Expresar los números decimales en BCD y en BCD-XS3

```
a) 88

Decimal a BCD: sustituimos cada cifra por su equivalente binario

88

1000 1000<sub>BCD</sub>

BCD a BCD-XS3: se suma 3 a cada cuarteto BCD:

1000 1000<sub>BCD</sub> : 1011 1011<sub>XS3</sub>

b) 312:

0011 0001 0010<sub>BCD</sub>

0110 0100 0101<sub>XS3</sub>

c) 0

0000<sub>BCD</sub>

0011<sub>XS3</sub>

d) 1974

0001 1001 0111 0100<sub>BCD</sub>

0100 1100 1010 0111<sub>XS3</sub>
```

17. Convertir los siguientes números binarios a código Gray

```
a) 0101
                                                                  b) 10110
  Binario a Gray Análisis de izquierda a derecha:
                                                                    1er bit distintos
                                                                                            distintos
                                                                  10110_2 10110_2 10110_2 10110_2 10110_2
   1er bit igual en Gray que en binario
     01012
                                                                   11101<sub>c</sub>
   En los siguientes bits vemos si el bit del número binario
   es igual al anterior (del mismo número binario).
   Si son iguales: 0, si no: 1
     son distintos
                     son distintos
                                       son distintos
    01012
                     01012
                                       0101
     01 G
                                       0111
                                                    0111_{G}
```

18. Convertir los siguientes números de código Gray a binario

