D9943123 D10202

Comparison of MetAP2 Homologues (mouse = SEQ ID NO:13; rat = SEQ ID NO:17; human = SEQ ID NO:12; yeast = SEQ ID NO:14)

0008	180 180 180 116	263 263 263 206	353 353 353 296	4 4 4 4 3 8 4 4 4 8 3 8 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
90 LEEKERDDDDEDGDG LEEKEKDDDDEDGDG LEDKERDEDDEDGDG	166 WNDFREAAEAHRQVR WNDFREAAEAHRQVR WNDFREAAEAHRQVR WNDVRKGAEIHRRVR	256 KIDFGTHISGRIIDC KIDFGTHISGRIIDC KIDFGTHISGRIIDC KVDYGVQVNGNIIDS	346 HAGKTVPIVKGGEAT HAGKTVPIVKGGEAT HAGKTVPIVKGGEAT HGGKSVPIVKNGDTT	436 LMALKNLCDLGIVDP LMALKNLCDLGIVDP LMALKNLCDLGIVDP LMALKNLCDLGIVDP LFALNNLVRHGLVQD	
61 GALVDEVAKQLESQA GTSVDEVAKQLERQA GASVDEVARQLERSA SPASDLKELNLENEG	151 TSEEKKALDQASEEI TSEEKKALDQASEEI TSEEKKALDQASEEI SRYLKRDLERAEH	241 PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC	331 PIRNINGHSIGPYRI PIRNINGHSIGPYRI PIRNINGHSIGQYRI PCRNICGHSIAPYRI	421 AFCRWLDRLGESKY AFCRWLDRLGESKY AFCRWLDRLGESKY AFCRRWLDRLGESKY	
46 KGAVSAVQQELDKES KGAVSAGQQELDKES KGPSAAGEQEPDKES	136 EYPPTQDGRTAAWRT EYPPTQDGRTAAWRT EYPPTQDGRTAAWRT DYHQDFNLQRTTDEE	226 FPTGCSLNNCAAHYT FPTGCSLNNCAAHYT FPTGCSLNNCAAHYT FPTGLSLNHCAAHYT	316 ESYEVEIDGKTYQVK ESYEVEIDGKTYQVK ESYEVEIDGKTYQVK ESYEVEINGETYQVK	406 TKHLLNVINENFGTL TKHLLNVINENFGTL TKHLLNVINENFGTL AKHLLNVINENFGTL	
31 AEEAAKKKRRKKKG AEEAAKKKRRKKKG AEEAAKKKRRKKKKG AEEAAKKKRRKKKKS	121 CDLYPNGVFPKGQEC CDLYPNGVFPKGQEC CDLYPNGVFPKGQEC ELLFPDGKYPEGAWM	211 NGLNAGLA NGLNAGLA NGLNAGLA STANAGLA	301 DVRLCDVGEAIQEVM DVRLCDVGEAIQEVM DVRLCDVGEAIQEVM	405 MKNFDVGHVPIRLPR MKNFDVGHVPIRLPR MKNFDVGHVPIRLPR ARSAEDHQVMPILDS	RGDDY 478 EEMTIKT 480 RGDDY 478 KGDDY 421
30 GDLDPDDREEGTSST RDLDPDDREEGTSST GDLDPDDREEGAAST	106 KRGPKVQTDPPSVPI KRGPRVQTDPPSVPI KRGPKVQTDPPSVPI NVKKI	210 ICEKLEDCSRKLIKE ICEKLEDCSRKLIKE ICEKLEDCSRKLIKE IADMIENTTRKYTGA	300 AVKDATNTGIKCAGI AVKDATNTGIKCAGI AVKDATNTGIKCAGI AVKDATNTGIKCAGI	390 TGKGVVHDDMECSHY TGKGVVHDDMECSHY TGKGVVHDDMECSHY TGRGYVTAGGEVSHY	480 ILLRPTCKEVVS ILCAQPVKKLSA ILLRPTCKEVVS
mouse MAGVEQAASFGGHLN rat MAGVEEASSFGGHLN human MAGVEEVAASGSHLN yeast	105 DADGATGKKKKKKK DGDGAAGKKKKKKK DGDGATGKKKKKKK ESKKKNKKKKKK	181 KYVMSWIKPGMTMIE KYVMSWIKPGMTMIE KYVMSWIKPGMTMIE RAIKDRIVPGMKLMD	271 AFTVTENPKYDILLT AFTVTENPKYDILLK AFTVTENPKYDTLLK AFTVSFDPQYDNLLA	361 RMEEGEVYAIETEGS RMEEGEVYAIETEGS RMEEGEVYAIETEGS KMEEGEHFAIETEGS	451 YPPLCDIKGSYTAQF EHT YPPLCDIKGSYTAQF EHT YPPLCDIKGSYTAQF EHT
mouse rat human	mouse rat human yeast	mouse rat human	mouse rat human yeast	mouse rat human yeast	mouse rat human yeast

Figure 2

A. Glucose

B. Galactose

Figure 3

Figure 4

A. Glucose

B. Galactose

H174A-MetAP2 requires N-terminal residues 2-57 for inhibition of map1 Δ growth under the GAL1 promoter.

Figure 5

The steady state levels of each MetAP2 construct are comparable. Immunoblot comparison of HA-MetAP2 wt, HA-MetAP2 H174A, and MetAP2 Δ 2-57 H174A steady state levels in map1 Δ .

Figure 6

Overexpression of H174A-MetAP2 under the GPD promoter does not inhibit the growth of map 2Δ

Figure 7

FIGURE 8

Figure 11