Threshold Cherenkov aerogel detector prototype tests with pair spectrometer in HallD

V. Berdnikov, T. Horn, A. Somov, A. Mkrtchyan, P. Stepanov

Aerogel based Cherenkov detector in SHMS stack

- The HallC SHMS is a highly-focusing magnetic spectrometer with large momentum reach up to 11 GeV/c
- It is optimal for certain classes of deep exclusive and semi-inclusive measurements, and in particular those requiring high quality Rosenbluth (longitudinal-transverse – L/T) cross section separation.

- To cleanly select kaons in a variety of experiments the SHMS threshold aerogel Cherenkov detector was constructed and included in the PID system consist of time-of-flight, Cherenkov detectors, shower and preshower calorimeter when needed by experiments.
- To cover the full SHMS momentum range, four aerogel trays with different refractive indexes (1.03;1.02;1.015;1.01) were built.

Aerogel trays mechanical considerations

Problem:

Aerogel tiles with different refractive indexes are used to detect particle of different momenta.

Therefore the experiment requires swapping the aerogel trays.

Low aerogel indexes (0.11-0.15) are **extremely fragile**. This makes the installation of the detector assembly very challenging and time consuming (involves operating the crane).

Solution:

- 1. Add fiber-glass mesh layers between the aerogel tiles.
- 2. Try new type of silica Aerogel with better mechanical properties.

Light yield tests are required to determine the difference in the amount of collected light compared to the standard tile stack. Tests were carried out with cosmic muons and beam.

PMT calibrations for cosmic test

Integration window PMT signal Trigger LED pulse 10.0m/v2 1.00 V 0 1.00 V 0 100 V 0

Explain why PMT calibration is required?

- Calibration in single photoelectron mode
- 5in diameter PMT XP-4572 U_{PMT}=1500V
- Light source LED+optical fiber
- Pulse from generator to LED ~40ns with 2V amplitude
- 250 MHz fADC digitizer
- JLAB CODA based DAQ
- Trigger from LED

baseline

Cosmic tests with SP-30 index (fiberglass vs no fiberglass)

- Measurements with cosmic muons enters aerogel stack perpendicularly to the surface
- 6 SP-30 tiles vs 6 SP-30 tiles alternating with glass-fiber mesh layers

RMS

- GORE reflector covered inner surface of the diffuser
- Trigger performed by coincidence in time between pulses from two plastic scintillator pads

6 tiles SP-30

- 250 MHz fADC digitizer
- JLAB CODA based DAQ
- 100 ns integration time
- One photoelectron difference in LY

Cosmic tests with SP-15 index (current vs new tiles)

- Comparison between two Aerogel vendors
- Japan SP-15 (6 tiles) vs Aspen SP-15 (6 tiles)
- Same trigger and detector configuration as for SP-30 measurements
- Peak not clearly observed, Npe ~ 4.8
- No visible difference between two vendors

Therefore, beam tests needed with bigger aerogel stack, minimum 8 tiles (better statistics and trust in community).

Manufacturing the T-shape Aerogel prototype for the beam

- Two 5in diameter PMT's XP-4572
- Diffuser and aerogel holder is 3D printed ABS plastic (B. Bunton, J. Crafts)
- Geometry similar as SHMS Aerogel. Light tight construction
- GORE reflector covered inner surface of diffuser and aerogel holder
- 4 combinations of SP-15, 8tiles/8 fiber-glass layers
 Aspen, Japan, Aspen+mesh, Japan+mesh
- Sp-30 8 tiles

PMTs Calibration Measurements with LED

- Calibration in single photoelectron mode
- Light tightness tests
- No Aerogel installed in holder
- Light source LED+optical fiber
- Pulse from generator to LED ~40ns with 2V amplitude
- 250 MHz fADC digitizer
- JLAB CODA based DAQ
- Trigger from LED
- Calibration done for several HV settings for each PMT

PMT's gain curve

- Fit function: Gain=p0*(Voltage)^p1
- PMT`s gain values/behavior is good
- Optimal PMT operation regions: (1.65-1.80)kV for PMT1 (1.75-1.90)kV for PMT2

Cosmic tests of T-shape prototype

- Final tests before hall installation
- Tests performed in Aerogel cleanroom(EEL)
- Measurements with cosmic muons enters aerogel holder perpendicularly to the surface
- 8 SP-30 tiles and 8 SP-15 tiles
- Trigger performed by coincidence in time between pulses from two plastic scintillator pads
- CAEN(?) QDC digitizer
- JLAB CODA based DAQ
- 100 ns integration time

Cosmic tests results of T-shape prototype

T-shape prototype behind pair spectrometer in HallD

- Flash ADC 250 used for signal digitizing, which was installed in the existing start counter VXS crate
- Readout of the prototype will be integrated to the global GlueX DAQ system
- Operated in the stand alone mode (parallel to GlueX), using pair spectrometer trigger and not affect the GlueX performance.

T-shape Aerogel prototype beam test data

sp-30 J no mesh

- Some visible effects of mesh/no mesh
- Small difference between Japan and Aspen
- Visible difference between two different indexes

Conclusion: computer fit needed for precise data treatment

KaonLT-Fit program

- Imports data from the ROOT trees
- Constructs one dimensional histograms with data for each PMT.
- Fits the PMT spectra and determines the number of the photoelectrons.

https://github.com/petrstepanov/kaonlt-fit

> kaonlt-fit <file1.root> <file2.root> ... --tree-name=tree1;3 --plot-tree=kFALSE --tile-profile=55

Why standalone C++ executable?

- · Easy debugging.
- Modular OO code.
- Scalable and maintainable.
- Control of the program flow with command-line parameters.

Experimental data from the beam

Experimental data from various Aerogel SP-15 samples is stored in ROOT Trees. Single tree contains data from both photomultipliers.

*****	* * 7	*****	****	* * *	*****	* * :	*****	* * :	*****	* *	* * * * * * * * * * *	* *	******	k
11011			tilel		tiler				. —				_	
*****	* * 7	*****	****	* * 7	*****	* * :	*****	* * :	*****	* *	*****	* * :	******	*
*	0	*	77	*	93	*	Θ	*	Θ	*	0	*	0 ,	k
*	1	*	75	*	29	*	0	*	0	*	Θ	*	0 *	k
*	2	*	126	*	87	*	0	*	0	*	0	*	0 '	k
*		*		*		*		*		*		*	, , ,	k

Constructing the PMT profile histograms at a certain energy of the incident electron.

Criteria for selection of the experimental data:

Event(tilel); tilel $\neq 0$, tiler $\neq 0$

Event(tiler); tiler $\neq 0$, tilel $\neq 0$

Should provide clean experimental spectra.

Obtained PMT spectra

One-dimensional spectra for the Aerogel SP-15 samples (Japan, no mesh) are successfully obtained from the raw ROOT file.

Fitting Equations

E.H. Bellamy et al. "Absolute calibration and monitoring of a spectrometric channel using a photomultiplier"

Theoretical shape of the spectrum:

$$S_{\text{ideal}}(x) = \sum_{n=0}^{\infty} \frac{\mu^n e^{-\mu}}{n!} \frac{1}{\sigma_1 \sqrt{2\pi n}} \exp\left(-\frac{(x - nQ_1)^2}{2n\sigma_1^2}\right)$$

Background contribution:

$$B(x) = \frac{1 - w}{\sigma_0 \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma_0^2}\right) + w\theta(a)\alpha \exp(\alpha x)$$

Real spectrum:

$$S_{\text{real}}(x) = S_{\text{ideal}}(x) * B(x)$$

Fig. 2. Typical deconvoluted LED spectrum (EMI-9814B photomultiplier).

 Q_0 – pedestal position.

 σ_0 – standard deviation of the type I background process (pedestal).

Q₁ – average charge at the PM output.

 σ_1 – corresponding standard deviation of the charge distribution.

w - probability that signal is accompanied by type II background process.

 α – coefficient of the exponential decrease of the type II background.

 μ – number of photo-electrons. \leftarrow we are interested in this parameter

Preliminary fitting results

Fitting equations implemented into the KaonLT Fit program.

Problem: fit is bad; provides negative number of the photoelectrons μ.

Issues with the prototype spectra

PMT1 profile at tilel=55

Counts pmt1Hist 1) 29.48 10⁵ Std Dev 145.5 10⁴ 10^{3} 10^{2} 10 1000 5000 0 2000 3000 4000 Channel (ch_1)

Fig. 2. Typical deconvoluted LED spectrum (EMI-9814B photomultiplier).

- 1. Pedestal width is one bin; expected to be a gaussian shape.
- 2. Exponential background part is missing.

Done so far

KaonLt-Fit development started

Program imports the prototype ROOT files. Plots the tree and obtains PMT profile spectra. Fitting capabilities are implemented. Access the code on GitHub: https://github.com/petrstepanov/kaonlt-fit

What is next?

Validate the KaonLT-Fit fitting equations

Digitize the spectra from the E.H. Bellamy paper and fit. Compare values of fitting parameters.

Figure out the problem with the prototype spectra.

Could the pedestal be noise? Is the background missing due to some threshold set on the ADC?

Obtain and analyze the data from real KaonLT experiment (not prototype)?

Ensure that real KaonLT data has reasonable shape of the pedestal and the exponential background.