```
print('Norm of a2 :', (sum(a2**2))**0.5)
       print('Norm of a3 :', (sum(a3**2))**0.5)
       Norm of a1 : 1.0
        In [ ]: print(a1 @ a2, a1 @ a3, a2 @ a3)
        0.0, 0.0, 0.0
In []: x = np.array([1,2,3])
        \#Get\ coefficients\ of\ x\ in\ orthonormal\ basis
       beta1 = a1 @ x
       beta2 = a2 @ x
       beta3 = a3 @ x
        \#Expansion \ of \ x \ in \ basis
        x_{expansion} = beta1*a1 + beta2*a2 + beta3*a3
        print(x_expansion)
        [1. 2. 3.]
```

5.4. Gram-Schmidt algorithm

The following is a Python implementation of the Gram-Schmidt algorithm. It takes as input an array a which expands into $[a[0], a[1], \ldots, a[k]]$, containing k vectors a_1, \ldots, a_k . If the vectors are linearly independent, it returns an array q with orthonormal set of vectors computed by the Gram-Schmidt algorithm. If the vectors are linearly dependent and the Gram-Schmidt algorithm terminates early in the i+1th iteration, it returns the array $q[0], \ldots, q[i-1]$ of length i.

5. Linear independence

```
if np.sqrt(sum(q_tilde**2)) <= 1e-10:
    print('Vectors are linearly dependent.')
    print('GS algorithm terminates at iteration ', i+1)
    return q
#Normalization
else:
    q_tilde = q_tilde / np.sqrt(sum(q_tilde**2))
    q.append(q_tilde)
print('Vectors are linearly independent.')
return q</pre>
```

Here we initialize the output array as an empty array. In each iteration, we add the next vector to the array using the append() method.

Example. We apply the function to the example on page 100 of VMLS.

```
In []: a = np.array([[-1, 1, -1, 1], [-1, 3, -1, 3], [1, 3, 5, 7]])
        q = gram_schmidt(a)
        print(q)
         #Test orthonormality
        print('Norm of q[0] :', (sum(q[0]**2))**0.5)
        print('Inner product of q[0] and q[1] :', q[0] @ q[1])
        print('Inner product of q[0] and q[2] :', q[0] @ q[2])
        print('Norm of q[1] :', (sum(q[1]**2))**0.5)
        print('Inner product of q[1] and q[2] :', q[1] @ q[2])
        print('Norm of q[2] :', (sum(q[2]**2))**0.5)
        Vectors are linearly independent.
         [array([-0.5, 0.5, -0.5, 0.5]), array([0.5, 0.5, 0.5, 0.5]),
         \rightarrow array([-0.5, -0.5, 0.5, 0.5])]
        Norm of q[0] : 1.0
        Inner product of q[0] and q[1]: 0.0
        Inner product of q[0] and q[2]: 0.0
        Norm of q[1]:1.0
        Inner product of q[1] and q[2]: 0.0
        Norm of q[2]:1.0
```

Example of early termination. If we replace a_3 with a linear combination of a_1 and a_2 , the set becomes linearly dependent.

```
In []: b = np.array([a[0],a[1], 1.3*a[0] + 0.5*a[1]])
    q = gram_schmidt(b)
    print(q)

Vectors are linearly dependent.
    GS algorithm terminates at iteration 3
    [array([-0.5, 0.5, -0.5, 0.5]), array([0.5, 0.5, 0.5, 0.5])]
```

Here the algorithm terminated at iteration 3. That means, the third iteration is not completed and thus two orthonormal vectors are returned.

Example of independence-dimension inequality. We know that any three 2-vectors must be dependent. Let's use the Gram-Schmidt algorithm to verify this for three specific vectors.