Statistics Ph.D. Qualifying Exam: Part I

October 27, 2001

Student Name:	
Diddelli Name.	

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

1	2	3	4	5	6	7	8	9	10	11	12

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

- 1. Suppose that X has a uniform distribution on the unit interval (0,1). Given X, the random variable Y is uniform on the interval (0,X).
 - (a) Find E(X), Var(X), E(Y), and Var(Y).
 - (b) Find E(X|Y) and E(Y|X).
 - (c) Find Var(X|Y) and Var(Y|X).

2. Suppose that X_1, X_2 and X_3 have a trinomial distribution with index n and probability parameters p_1, p_2 and p_3 , where $\sum p_j = 1$. The log likelihood function is

$$l(p_1, p_2, p_3) = \sum X_j \log p_j,$$

and the observed values of the X_j 's are 32,46 and 22.

- (a) Find the maximum likelihood estimates of p_j 's.
- (b) Find the maximum likelihood estimates of p_j 's, when the p_j 's satisfy the hypothesis

$$p_1 = \theta^2$$
, $p_2 = 2\theta(1 - \theta)$, $p_3 = (1 - \theta)^2$.

- 3. Suppose that the joint p.d.f. of two random variables X and Y is $f(x,y)=x+y, \quad 0 \leq x,y \leq 1.$
 - (a) Find $P(2X + Y \le 1)$.
 - (b) Find the p.d.f. of Z = XY.

4. Let X,Y,U be independent random variables with $X \sim \text{Poisson}(\lambda), \ Y \sim \text{Poisson}(\mu),$ and $U \sim \text{Uniform}(0,1)$. Let

$$V = \left\{ \begin{array}{ll} X & , & \text{if} \quad U > a, \\ Y & , & \text{if} \quad U \leq a, \end{array} \right.$$

where a is a constant in (0,1). Find

$$P(X + Y = n \mid V = k).$$

5. Let X_1, \ldots, X_n be a random sample of size n from the p.d.f.

$$f(x;\theta) = \theta x^{-2}, \quad 0 < \theta \le x < \infty.$$

- (a) Find the MLE of θ .
- (b) Find the method of moment estimator of θ based on $E(X^{1/2})$.
- (c) Find the method of moment estimator of θ based on $E(X^{-1})$.

6. Imagine a population of N+1 boxes. Box number k contains k red and N-k green balls $(k=0,1,\ldots,N)$. A box is chosen at random and n random drawings are made from it, the ball drawn being replaced each time by a ball with the opposite color. Define

Event A: All n balls turn out to be red,

Event B: The (n+1)st draw yields a red ball.

- (a) Find P(A|Box k is chosen) (k = 0, 1, ..., N).
- (b) Find P(A).
- (c) Find $P(A \cap B)$.
- (d) Find P(B|A).
- (e) Find an approximation to P(B|A), using the fact that if N is large,

$$\frac{1}{N} \sum_{k=1}^{N} (\frac{k}{N})^n \sim \int_0^1 x^n dx = \frac{1}{n+1}.$$

- 7. Let X_1, \ldots, X_n be i.i.d. from the uniform distribution on the interval $(\theta, \theta + 1)$.
 - (a) Find the joint distribution of $X_{(1)}$ and $X_{(n)}$, where $X_{(1)} = \min(X_1, \dots, X_n)$, and $X_{(n)} = \max(X_1, \dots, X_n)$.
 - (b) Find a UMP test of size α for testing $H_0: \theta \leq 0$ versus $H_1: \theta > 0$.

8. Let A,B,C be a random sample of size 3 from U(0,1) distribution. Find the probability that

$$Ax^2 + Bx + C = 0$$

has real roots.

- 9. Let X_1, \ldots, X_n be i.i.d. from the density $f(x; \theta) = 3x^2/\theta^3$ if $0 < x < \theta$ and $f(x; \theta) = 0$ otherwise.
 - (a) Show that $X_{(n)} = \max(X_1, \dots, X_n)$ is a sufficient and complete statistic for θ .
 - (b) Find the UMVUE for θ .

- 10. Let $\{X_1, \ldots, X_n\}$ be a random sample from the population with density $f(x, \theta) = \theta \ x^{\theta-1}, 0 < x < 1, \theta > 0.$
 - (a) Derive the UMP (Uniformly Most Powerful) size α test for testing $H_0: \theta = 1$ versus $H_1: \theta > 1$.
 - (b) What is the power function of your test?
 - (c) Show that UMP size- α test for testing $H_0: \theta = 1$ versus $H_2: \theta \neq 1$ does not exist.

- 11. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent samples from Poisson $(\lambda \mu)$ and Poisson (μ) populations respectively.
 - (a) Find the MLE's $(\hat{\lambda}, \hat{\mu})$ for (λ, μ) .
 - (b) Find jointly minimal sufficient statistics S for (λ, μ) .
 - (c) Is $(\hat{\lambda}, \hat{\mu})$ a function of S?
 - (d) Is $(\hat{\lambda}, \hat{\mu})$ jointly sufficient for (λ, μ) ?

12. The normally distributed random variables X_1, \ldots, X_n are said to be serially correlated or to follow an autoregressive model if we can write

$$X_i = \theta X_{i-1} + \epsilon_i, \quad i = 1, \dots, n,$$

where $X_0 = 0$ and $\epsilon_1, \ldots, \epsilon_n$ are independent $N(0, \sigma^2)$ random variables.

(a) Show that the density of $\mathbf{X} = (X_1, \dots, X_n)'$ is

$$p(\mathbf{x}, \theta) = (2\pi\sigma^2)^{-n/2} \exp\{-(1/2\sigma^2) \sum_{i=1}^{n} (x_i - \theta x_{i-1})^2\},$$

for
$$-\infty < x_i < \infty$$
, $i = 1, \ldots, n$ and $x_0 = 0$.

(b) Show that the likelihood ratio statistic of $H_0: \theta = 0$ (independence) vs $H_1: \theta \neq 0$ (serial correlation) is equivalent to

$$-\left(\sum_{i=2}^{n} X_i X_{i-1}\right)^2 / \sum_{i=1}^{n-1} X_i^2.$$