final report

Charlotte Fowler 12/6/2019

```
library(tidyverse)
library(faraway)
#library(car)
library(base)
```

```
lawsuit_full_prof = read_csv("./Lawsuit.csv") %>%
  janitor::clean_names() %>%
  mutate(
   sal_avg = (sal94 + sal95)/2,
   ln_sal_avg = log(sal_avg),
   gender = recode(gender, "0" = "female", "1" = "male"),
   clin = recode(clin, "0" = "research", "1" = "clinical"),
   cert = recode(cert, "0" = "not certified", "1" = "certified"),
   rank = recode(rank, "1" = "assistant", "2" = "associate", "3" = "full professor"),
   dept = recode(dept, "1" = "biochemistry", "2" = "physiology", "3" = "genetics", "4" = "pediatrics",
  filter(rank == "full professor") %>%
  select(-c(sal94, sal95, rank, id, sal avg))
lawsuit_associate = read_csv("./Lawsuit.csv") %>%
  janitor::clean_names() %>%
  mutate(
   sal_avg = (sal94 + sal95)/2,
   ln_sal_avg = log(sal_avg),
   gender = recode(gender, "0" = "female", "1" = "male"),
   clin = recode(clin, "0" = "research", "1" = "clinical"),
   cert = recode(cert, "0" = "not certified", "1" = "certified"),
   rank = recode(rank, "1" = "assistant", "2" = "associate", "3" = "full professor"),
   dept = recode(dept, "1" = "biochemistry", "2" = "physiology", "3" = "genetics", "4" = "pediatrics",
  filter(rank == "associate") %>%
  select(-c(sal94, sal95, rank, id, sal_avg))
lawsuit_assistant = read_csv("./Lawsuit.csv") %>%
  janitor::clean_names() %>%
  mutate(
   sal_avg = (sal94 + sal95)/2,
   ln_sal_avg = log(sal_avg),
   gender = recode(gender, "0" = "female", "1" = "male"),
   clin = recode(clin, "0" = "research", "1" = "clinical"),
   cert = recode(cert, "0" = "not certified", "1" = "certified"),
   rank = recode(rank, "1" = "assistant", "2" = "associate", "3" = "full professor"),
   dept = recode(dept, "1" = "biochemistry", "2" = "physiology", "3" = "genetics", "4" = "pediatrics",
  filter(rank == "assistant") %>%
  select(-c(sal94, sal95, rank, id, sal_avg))
```

```
full_prof_mod = lm(ln_sal_avg ~ . - prate , lawsuit_full_prof)
summary(full_prof_mod)
##
## Call:
## lm(formula = ln_sal_avg ~ . - prate, data = lawsuit_full_prof)
##
## Residuals:
##
                        Median
        Min
                  1Q
                                     3Q
                                              Max
## -0.279999 -0.079443 -0.000564 0.075727 0.253899
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   0.055205
                                        4.507 2.38e-05 ***
## deptgenetics
                   0.248823
## deptmedicine
                    0.528191
                              0.039209 13.471 < 2e-16 ***
## deptpediatrics
                    0.166793
                              0.066371
                                        2.513 0.01412 *
## deptphysiology
                   -0.127860
                              0.038834 -3.292 0.00152 **
## deptsurgery
                    0.948635
                               0.050331 18.848 < 2e-16 ***
                              0.036217 -1.116 0.26805
## gendermale
                   -0.040413
## clinresearch
                   -0.179305
                               0.033412 -5.367 8.61e-07 ***
                               0.033989 -7.591 7.14e-11 ***
## certnot certified -0.258010
## exper
                    0.014871
                               0.002253
                                        6.601 5.15e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1165 on 75 degrees of freedom
## Multiple R-squared: 0.9511, Adjusted R-squared: 0.9452
## F-statistic: 161.9 on 9 and 75 DF, p-value: < 2.2e-16
## Model diagnosis
```

par(mfrow=c(2,2))
plot(full_prof_mod)

shapiro.test(residuals(full_prof_mod))

```
##
## Shapiro-Wilk normality test
##
## data: residuals(full_prof_mod)
## W = 0.99255, p-value = 0.9139
```

vif(full_prof_mod)

##	deptgenetics	deptmedicine	deptpediatrics	deptphysiology
##	1.443299	1.901519	1.237962	1.512136
##	deptsurgery	gendermale	clinresearch	certnot certified
##	1.924784	1.256037	1.708077	1.302690
##	exper			
##	1.114839			

rstandard(full_prof_mod)

```
2
                                          3
                                                                     5
##
   -0.326441209
                -0.343848228
                               0.727681978
                                            -2.495992867
                                                           1.545331869
##
   -1.296953419 -0.368238924
                               0.240611881
                                             0.240941956
                                                           0.214132121
##
##
                                                       14
    0.102465249
                 1.228071110
                               0.926552858
                                             1.087928475
                                                           0.564648247
##
   -1.083122030 -1.667872485 -0.507319057 -0.317117418
```

```
##
                                          23
                                                                      25
   -0.141285172
                 0.502710609 -0.206780106 -0.985986029 -0.005155537
##
##
              26
                            27
                                          28
                                                        29
   -0.971808651 -0.482727081 -1.839771755
                                              1.127958068
##
                                                            1.967112458
##
              31
                            32
                                          33
                                                        34
                                                                      35
                  1.086975572 -0.317402536
    1.279553349
                                             -0.407613846
                                                            0.317424600
##
##
              36
                            37
                                          38
                                                        39
##
    1.456713927 -0.914134797 -1.325780731
                                              0.178341677 -0.871546222
##
              41
                            42
                                          43
                                                        44
##
   -1.358305486
                  0.614845678
                                1.059823417
                                              0.556638842
                                                            0.851648495
##
              46
                            47
                                          48
                                                        49
                  1.099746252 -0.887636495
##
   -0.927243613
                                             -0.547133208
                                                            0.331397037
##
              51
                            52
                                          53
                                                        54
                                                                      55
   -2.064139560
                                                           -0.211373131
##
                  0.113454081 -0.906662801 -0.808717241
             56
                            57
##
                                          58
                                                        59
                                                                      60
   -0.004890097
                  1.237910900
                                1.915847019 -0.329878470
                                                            0.080598765
##
              61
                            62
                                                        64
                                          63
    0.668146708
                 -0.551759270
                               -0.345190791
                                             -0.576501131
##
##
              66
                            67
                                                        69
                                                                      70
                                          68
##
    0.771001637
                  0.494804526
                               -1.376239058
                                             -0.398698318
##
              71
                            72
                                          73
                                                        74
    1.780466163 -0.908972254
                               -1.323822777
                                             -1.147378871
##
##
              76
                            77
                                          78
                                                        79
                                                                      80
                                0.129764061
##
   -1.104558014
                  0.417139574
                                              0.119304036
                                                            2.117873129
##
              81
                            82
                                          83
                                                        84
                                                                      85
    1.133396899 -0.339623242 0.129856954 -0.052433531 -0.747168963
brand_hat =hatvalues(full_prof_mod)
brand_hat[brand_hat > 0.24]
##
          40
                                48
                                           49
                                                      50
## 0.2568140 0.2838955 0.2893311 0.2831800 0.2816270
# check influencial ponits
which(cooks.distance(full_prof_mod) > 0.5)
## named integer(0)
The residual has constant variance and the the residuals are normally distributed. Since the VIF is less than
```

5, we do not have issue with multi collinearity.

```
assistant_mod = lm(ln_sal_avg ~ . - prate , lawsuit_assistant)
summary(assistant_mod)
##
## Call:
```

Residuals: ## Min 1Q 3Q Median Max

##

lm(formula = ln_sal_avg ~ . - prate, data = lawsuit_assistant)

```
## -0.30995 -0.09230 -0.01370 0.07692 0.78854
##
  Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
##
##
   (Intercept)
                       11.257647
                                     0.075964 148.198 < 2e-16 ***
## deptgenetics
                        0.143432
                                     0.069186
                                                 2.073 0.040681 *
## deptmedicine
                        0.600806
                                     0.061033
                                                 9.844
                                                        < 2e-16 ***
## deptpediatrics
                        0.255421
                                     0.066715
                                                 3.829 0.000223 ***
   deptphysiology
                       -0.201314
                                     0.063379
                                                -3.176 0.001973 **
   deptsurgery
                                     0.070044
                                                13.464
                        0.943082
                                                        < 2e-16 ***
   gendermale
##
                        0.082656
                                     0.035347
                                                 2.338 0.021316 *
  clinresearch
                       -0.179071
                                     0.042166
                                                -4.247 4.80e-05 ***
                                     0.040890
                                                -2.931 0.004176 **
   certnot certified -0.119828
                        0.024735
                                     0.005354
                                                 4.620 1.12e-05 ***
   exper
##
                     0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1541 on 102 degrees of freedom
## Multiple R-squared: 0.9126, Adjusted R-squared: 0.9049
## F-statistic: 118.3 on 9 and 102 DF, p-value: < 2.2e-16
## Model diagnosis
par(mfrow=c(2,2))
plot(assistant_mod)
                                                   Standardized residuals
                Residuals vs Fitted
                                                                      Normal Q-Q
                                                        9
                        680
                                                                                           680
Residuals
     0.4
                                                        \alpha
     -0.4
                                                        7
                                                                -2
                                                                             0
                                                                                   1
                                                                                         2
             11.0
                     11.5
                              12.0
                                       12.5
                     Fitted values
                                                                    Theoretical Quantiles
Standardized residuals
                                                  Standardized residuals
                   Scale-Location
                                                                 Residuals vs Leverage
                                                        9
                                                                                    680
                                                                                                0.5
     1.5
                                                        \alpha
     0.0
             11.0
                     11.5
                              12.0
                                       12.5
                                                            0.00
                                                                    0.05
                                                                           0.10
                                                                                   0.15
                                                                                           0.20
                     Fitted values
                                                                         Leverage
```

##

shapiro.test(residuals(assistant_mod))

```
## Shapiro-Wilk normality test
##
## data: residuals(assistant_mod)
## W = 0.92399, p-value = 8.107e-06
```

vif(assistant mod)

##	deptgenetics	deptmedicine	deptpediatrics	deptphysiology
##	1.667507	4.031506	2.701288	1.942748
##	deptsurgery	gendermale	clinresearch	${\tt certnot}\ {\tt certified}$
##	3.257863	1.393034	1.828098	1.512339
##	exper			
##	1 259207			

rstandard(assistant_mod)

```
5
                               2
                                             3
                                                             4
##
                1
   -0.7167198938 -0.5306082101
                                  0.0004811647 -1.3088313320 -0.2497300745
               6
                               7
                                                             9
##
                                             8
##
   -0.2033206579
                   1.0060978799
                                  1.7248150375
                                                 0.1701821442 -0.3281385341
##
                             12
                                             13
                                                            14
##
    1.1114622631
                   0.1331774002
                                 -0.4839636265 -0.3488720622
                                                                0.8723584032
##
                             17
                                             18
                                                            19
##
   -0.0890942144
                   0.2479894645
                                  1.0801696414
                                                 0.1769404683
                                                               -0.3705594172
##
                             22
##
    0.7659030041 -2.0543568029 -0.6195788138
                                                 0.3822828224
                                                                0.1020856892
##
               26
                              27
                                             28
    0.3899605908 -0.8485645108
                                  1.0440544823
                                                 0.9379447511
##
                                                                0.4779199665
##
                             32
                                             33
                                                            34
   -1.1590651223 -0.4799528367 -0.1019878246 -0.0664968952
                                                               -0.2675650572
##
                                             38
                                                           39
##
              36
                             37
                                  0.1208715019 -0.4405917685
##
   -0.3349679068 -0.5812431624
                                                               -2.0852449469
##
    1.3805772710 -0.1794008503
                                  1.3194404376
                                                 0.4602074836
##
                                                                0.3636722546
##
               46
                             47
                                             48
   -1.6571225473
                   1.0597658315 -1.5212124775
                                                 0.7669420050 -0.1064126999
##
##
              51
                             52
                                             53
                                                           54
   -0.3707496996
                   0.4469504358
                                  0.9821612399 -0.3635371353
                                                               -1.1906003870
##
##
                             57
                                             58
              56
                                                           59
##
    0.2028331666
                  -0.6933293440
                                 -0.4278309923 -0.6834605170
                                                                0.8610567986
##
               61
                              62
                                             63
                                                            64
                                                                           65
   -1.6462776000 -0.3902000903
                                  0.3432389370 -0.4965573806
                                                               -0.9271389767
##
##
                                             68
               66
                             67
                                                            69
                                                                           70
   -0.7865320891
                   0.3353708537
                                  5.5817508977 -0.2134677714
                                                                0.6467763558
              71
                             72
                                            73
##
                                                           74
                                                                           75
##
    0.4410714940
                   0.9458962135
                                 -0.8005866525 -1.2054496302
                                                                0.0659797879
##
              76
                             77
                                            78
                                                           79
   -0.3335332584
                   0.3974453292
                                  0.1763679480 -0.5076687923
                                                                1.2124538288
##
              81
                             82
                                            83
                                                           84
    1.8426409586
                   0.1568456606
                                  0.7353218320
                                                 0.3796609289
                                                                1.9768091891
##
##
              86
                             87
                                             88
                                                           89
   -0.4239957550 -1.2827617388
                                  0.5070862573
                                                0.5722422435 -1.1616269854
##
##
                             92
                                            93
                                                           94
                                                                           95
              91
```

```
## -1.0190112855 -1.7067054146 -0.8751908272 -0.7132566375 1.9046185316
##
              96
                            97
                                          98
                                                        99
                                                                     100
                                                            0.9988652929
##
   -0.9086263222
                 0.4249646461 -0.7229009804 -0.2631723234
                                                       104
                           102
                                                                     105
##
             101
                                         103
##
   0.9175454338 -0.7386834222 0.5493145778
                                              1.0737354006
                                                            0.2363760922
##
             106
                           107
                                         108
                                                       109
                                                                     110
##
  -1.2040136663 -1.4685938459 -0.7157251586 -0.2411194106 -0.4658657092
##
             111
                           112
   0.4280285854 0.8508846576
brand_hat =hatvalues(assistant_mod)
brand_hat[brand_hat > 0.18]
                              30
##
           9
                    28
## 0.2042631 0.1867842 0.1819880
# check influencial ponits
which(cooks.distance(assistant_mod) > 0.5)
## 68
## 68
lawsuit_assistant1 = lawsuit_assistant [-c(68),]
assistant_mod1 = lm(ln_sal_avg ~ . - prate , lawsuit_assistant1)
summary(assistant_mod1)
##
## Call:
## lm(formula = ln_sal_avg ~ . - prate, data = lawsuit_assistant1)
## Residuals:
                  1Q
                      Median
##
## -0.33395 -0.07720 -0.01032 0.08965 0.29485
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                 0.064490 175.654 < 2e-16 ***
                     11.328007
## deptgenetics
                      0.143838
                                 0.057944
                                           2.482 0.014700 *
## deptmedicine
                      0.529024
                                 0.052238 10.127 < 2e-16 ***
## deptpediatrics
                      0.199035
                                 0.056512
                                           3.522 0.000645 ***
## deptphysiology
                     -0.215107
                                 0.053121 -4.049 0.000101 ***
## deptsurgery
                                 0.059135 15.107 < 2e-16 ***
                      0.893373
## gendermale
                      0.039030
                                 0.030318
                                           1.287 0.200920
                                 0.036737 -6.711 1.14e-09 ***
## clinresearch
                     -0.246526
## certnot certified -0.162553
                                 0.034840
                                           -4.666 9.46e-06 ***
                                 0.004499
                                           6.054 2.42e-08 ***
## exper
                      0.027242
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1291 on 101 degrees of freedom
## Multiple R-squared: 0.9381, Adjusted R-squared: 0.9326
                170 on 9 and 101 DF, p-value: < 2.2e-16
## F-statistic:
```

The residual has constant variance and the the residuals are normally distributed. Since the VIF is less than 5, we do not have issue with multi collinearity.

Observation 68 is an influencial point, after removing this point adj r2 increase from 90% to 93%. The coefficients of department of medicine, pediatrics, gender male and clinical research change more than 10%.

```
associate_mod = lm(ln_sal_avg ~ . - prate , lawsuit_associate)
summary(associate_mod)
```

```
##
## Call:
## lm(formula = ln_sal_avg ~ . - prate, data = lawsuit_associate)
##
## Residuals:
##
        Min
                    1Q
                          Median
                                        30
                                                 Max
## -0.268895 -0.061719 0.008443
                                 0.069568
                                           0.186993
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                 0.057135 201.518 < 2e-16 ***
                     11.513803
## deptgenetics
                      0.170588
                                 0.055740
                                            3.060 0.003439 **
## deptmedicine
                     0.507098
                                 0.050051 10.132 4.30e-14 ***
## deptpediatrics
                     0.210069
                                 0.055921
                                           3.757 0.000424 ***
## deptphysiology
                     -0.189342
                                 0.043481
                                           -4.355 5.99e-05 ***
## deptsurgery
                     0.931900
                                 0.057099 16.321 < 2e-16 ***
## gendermale
                     -0.013277
                                 0.031011
                                          -0.428 0.670252
## clinresearch
                                           -5.841 3.06e-07 ***
                     -0.220247
                                 0.037705
## certnot certified -0.200488
                                 0.031803
                                           -6.304 5.53e-08 ***
## exper
                      0.021512
                                 0.002619
                                            8.214 4.45e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1033 on 54 degrees of freedom
## Multiple R-squared: 0.9621, Adjusted R-squared: 0.9558
## F-statistic: 152.2 on 9 and 54 DF, p-value: < 2.2e-16
## Model diagnosis
par(mfrow=c(2,2))
plot(associate_mod)
```


shapiro.test(residuals(associate_mod))

```
##
## Shapiro-Wilk normality test
##
## data: residuals(associate_mod)
## W = 0.97494, p-value = 0.2174
```

vif(associate_mod)

##	deptgenetics	deptmedicine	deptpediatrics	deptphysiology
##	1.342806	2.932484	2.267822	1.495755
##	deptsurgery	gendermale	clinresearch	certnot certified
##	2.364445	1.272280	2.114114	1.422567
##	exper			
##	1 167069			

rstandard(associate_mod)

```
##
                           2
                                       3
                                                                 5
                                                                              6
##
   -0.81167841 -0.14321846
                              1.04585576
                                          0.06007298
                                                        1.98549440 -0.97954641
##
                           8
                                                                11
                                         -0.95872228
                                                        0.28789106 -0.72366525
    1.58129451 -2.18145793 -0.39788057
##
##
                          14
                                       15
                                                   16
                                                                17
    0.92292654 -0.08851320 -2.78039978
##
                                          1.55702444
                                                        0.93912909 -0.74035021
##
                                       21
                                                   22
                                                                23
    0.48255785 - 0.21674354 - 0.63935514 \ 0.94617968 - 0.97109320
```

```
26
                                       27
                                                                 29
##
             25
                                                    28
                                                                              30
##
   -0.71532110 -0.38535690 -0.67175672
                                           0.09802496
                                                        1.65887191
                                                                     0.18980407
##
             31
                          32
                                       33
                                                    34
                                                                 35
                                                                              36
    0.18799276
                 0.69877412 -0.96301942
                                           0.69538373
                                                       -0.56559420
                                                                     0.17335605
##
##
             37
                          38
                                       39
                                                    40
                                                                 41
                                                                              42
##
    1.28039901
                -1.72977869
                             -0.28509314
                                           0.79920173
                                                        0.08320143
                                                                     0.77717182
##
             43
                          44
                                       45
                                                    46
                                                                 47
                                                                              48
   -0.59248122
                              1.67268186
                                          -1.04635134 -2.70645136
                                                                     0.18256564
##
                 0.10439777
##
             49
                          50
                                       51
                                                    52
                                                                 53
                                                                              54
    1.27399378 -0.32748867
                              0.30317644
                                           0.45449841
                                                       -0.62664958
                                                                     0.38436222
##
##
             55
                          56
                                       57
                                                    58
                                                                 59
                                                                              60
   -0.45683103 -1.10540146
                             -0.71571356
                                           0.09857326
##
                                                       -0.99494646
                                                                     1.07847098
                          62
##
             61
                                       63
                                                    64
## -0.35921612
                0.98679092
                              0.71794415
                                           0.29790460
```

```
brand_hat =hatvalues(associate_mod)
brand_hat[brand_hat > 0.3125]
```

```
## 8 16
## 0.4379014 0.3659291
```

```
# check influencial ponits
which(cooks.distance(associate_mod) > 0.5)
```

named integer(0)

The residual has constant variance and the the residuals are normally distributed. Since the VIF is less than 5, we do not have issue with multi collinearity.