ECE 590.03 Fundamentals of Computer Systems and Engineering

IO Devices

ECE 590.03 IO

Communication with IO devices

- Processor needs to get info to/from IO device
 - Two ways:
 - In/out instructions
 - Read/write value to "io port"
 - Devices have specific port numbers
 - · Memory mapped
 - $\bullet\,$ Regions of physical addresses not actually in DRAM
 - But mapped to IO device
 - Stores to mapped addresses send info to device
 - Reads from mapped addresses get info from device

ECE 590.03 IO 3

Speaking of VGA video

- You all wrote a VGA controller early (hwk2)
 - Read a ROM with an image
 - · Real ones: read a RAM

ECE 590.03 IO

- How to draw? CPU writes to physical memory mapped to video
- · Video card sees write and updates its internal RAM
- The rest: FSM just like you did
- (Except 3D accelerators)

ECE 590.03 IO

Exploring Memory Mappings on Linux

• You can see what devices have what memory ranges on linux with 1spci -v (at least those on the PCI bus)

00:02.0 VGA compatible controller: Intel Corporation Core Processor Integrated

Graphics Controller (rev 02) Subsystem: Lenovo Device 215a

Flags: bus master, fast devsel, latency 0, IRQ 30

Memory at f2000000 (64-bit, non-prefetchable) [size=4M]

Memory at d0000000 (64-bit, prefetchable) [size=256M]

I/O ports at 1800 [size=8]
Capabilities: [90] Message Signalled Interrupts: Mask- 64bit- Queue=0/0

Capabilities: [d0] Power Management version 2 Capabilities: [a4] PCIe advanced features <?> Kernel driver in use: i915

Kernel modules: i915

ECE 590.03 IO 10

A simple "IO device" example

- Read (physical) address 0xFFFF1000 for "ready"
- If ready, read address 0xFFFF1004 for data value
 - IO device will go to next value automatically on read
- Write a value to 0xFFFF1008 to output it

read dev: la \$t0, 0xFFFF1000 loop: lw \$t1, 0(\$t0) beqz \$t1, loop lw \$v0, 4(\$t0) jr \$ra

Who can remind us what this is called (last lecture)?

ECE 590.03 IO

A handful of questions...

- · How do we use physical addresses?
 - Programs only know about virtual addresses right?
- · What about caches?
 - Won't the first lw bring the current value of 0xFFFF1000 into the
 - And then subsequent requests just hit the cache?

ECE 590.03 IO

11

A handful of questions...

- · How do we use physical addresses?
 - Programs only know about virtual addresses right?
 - Only OS accesses IO devices:
 - OS knows about physical addresses, and can use them
- · What about caches?
 - Won't the first lw bring the current value of 0xFFFF1000 into the cache?

13

15

• And then subsequent requests just hit the cache?

ECE 590.03 IO

A handful of questions...

- · How do we use physical addresses?
 - Programs only know about virtual addresses right?
 - · Only OS accesses IO devices:
 - OS knows about physical addresses, and can use them
- · What about caches?
 - Won't the first lw bring the current value of 0xFFFF1000 into the cache?
 - And then subsequent requests just hit the cache?
 - · Pages have attributes, including cacheability
 - IO mapped pages marked non-cacheable
 - Also, prevent speculative loads (e.g., out-of-order)
 - Remember: speculative only fine as long as nobody knows

ECE 590.03 IO 14

Hard disks

- · Viewed from above:
 - Disks are circular platters of spinning metal
 - Multiple tracks (concentric rings)
 - Each track divided into sectors
 - Modern disks: addressed by "logical block"

(Real disks are actually circular...)

ECE 590.03 IO

Hard disks

- Read/written by "head"
 - Moves across tracks ("seek")
 - After seek completes, wait for proper sector to rotate under head.
 - Reads or writes magnetic medium by sensing/changing magnetic state (this takes time as the desired data 'spins under' the head)

ECE 590.03 IO 16

Hard disks

• Want to read data on blue curve (imagine circular arc)

ECE 590.03 IO 17

Hard disks

- Want to read data on blue curve (imagine circular arc)
 - First step: seek—move head over right track
 - Takes time (Tseek), disk keeps spinning

ECE 590.03 IO

Hard disks

- Want to read data on blue curve (imagine circular arc)
 - First step: seek—move head over right track
 - Takes time (Tseek), disk keeps spinning
 - \bullet Now head over right track... but data needs to move under
 - Second step: wait (Trotate)

ECE 590.03 IO

Hard disks

- Want to read data on blue curve (imagine circular arc)
- First step: seek—move head over right track
 - Takes time (Tseek), disk keeps spinning
 - Now head over right track... but data needs to move under
 - Second step: wait (Trotate)
 - Third: as data comes under head, start reading

ECE 590.03 IO

Hard disks

- Want to read data on blue curve (imagine circular arc)
 - First step: seek—move head over right track
 - Takes time (Tseek), disk keeps spinning
 - Now head over right track... but data needs to move under head
 - Second step: wait (Trotate)
 - · Third: as data comes under head, start reading
 - Takes time for data to pass under read head (Tread)

ECE 590.03 IO

21

19

Hard Disks: from the side

- · Multiple platters, each with a head above and below
 - Two sided surface
 - Heads all stay together ("cylinder")
 - Heads not actually touching platters: just very close

ECE 590.03 IO

22

20

A few things about HDD performance

- Tseek:
 - Depends on how fast heads can move
 - And how far they have to go
 - OS may try to schedule IO requests to minimize Tseek
- · Trotate:
 - Depends largely on how fast disk spins (RPM)
 - Also, how far around the data must spin, but usually assume avg
 - OS cannot keep track of position, nor schedule for better
- - Depends on RPM + how much data to read

ECE 590.03 IO

23

Disk Drive Performance

- · Suppose on average
 - Tseek = 10 ms
 - Trotate = 3.0 ms • Tread = 5 usec/ 512-byte sector
- What is the average time to read one 512-byte sector?
 - 10 ms + 3 ms + 0.05 ms = 13.05 ms
 - Reading 1 sector a a time: 512 byte/ 13.05 ms => ~40KB/sec

ECE 590.03 IO

Disk Drive Performance

- · Suppose on average
 - Tseek = 10 ms
 - Trotate = 3.0 ms
 - Tread = 5 usec/ 512-byte sector
- What is the average time to read one 512-byte sector?
 - 10 ms + 3 ms + 0.005 ms = 13.005 ms
 - Reading 1 sector a a time: 512 byte/ 13.005 ms => ~40KB/sec
- · What is the avg time to read 1MB of (contiguous) data?
 - 1MB = 2048 sectors
 - 10 + 3 + 0.005 * 2048 =23.24 ms => ~43MB/sec

ECE 590.03 IO

25

Disk Drive Performance

- · Suppose on average
 - Tseek = 10 ms
 - Trotate = 3.0 ms
 - Tread = 5 usec/ 512-byte sector
- What is the average time to read one 512-byte sector?
 - 10 ms + 3 ms + 0.005 ms = 13.005 ms
 - Reading 1 sector a a time: 512 byte/ 13.005 ms => ~40KB/sec
- What is the avg time to read 1MB of (contiguous) data?
 - 1MB = 2048 sectors
 - 10 + 3 + 0.005 * 2048 =23.24 ms => ~43MB/sec
- Larger contiguous reads: approach 100MB/sec
 - Amortize Tseek + Trotate (key to good disk performance)

ECE 590.03 IO

30

Disk Performance

- Hard disks have caches (spatial locality)
- · OS will also buffer disk in memory
 - Ask to read 16 bytes from a file?
 - · OS reads multiple KB, buffers in memory

ECE 590.03 IO

27

Disk Performance

- Hard disks have caches (spatial locality)
- · OS will also buffer disk in memory
 - Ask to read 16 bytes from a file?
 - OS reads multiple KB, buffers in memory
- "Defragmenting" (Windows):
 - Improve locality by putting blocks for same files near each other

ECE 590.03 IO 28

Transferring the data to memory

- · OS asks disk to read data
 - Disk read takes a long time (15 ms => millions of cycles)
 - Does OS poll disk for 15M cycles looking for data?

ECE 590.03 IO

29

Transferring the data to memory

- · OS asks disk to read data
 - Disk read takes a long time (15 ms => millions of cycles)
 - Does OS poll disk for 15M cycles looking for data?
 - No—disk interrupts OS when data is ready.

ECE 590.03 IO

Transferring the data to memory

- · OS asks disk to read data
 - Disk read takes a long time (15 ms => millions of cycles)
 - Does OS poll disk for 15M cycles looking for data?
 - No—disk interrupts OS when data is ready.
- Ready: version 1
 - · Disk has data, needs it transferred to memory
 - OS does "memcpy" like routine:
 - Read hdd memory mapped IO
 - Write appropriate location in main memory
 - Repeat
 - For many KB to a few MB

ECE 590.03 IO

31

DMA: Direct Memory Access

- · Alternative: DMA
 - · When OS requests disk read, sets up DMA
 - "Read this data from the disk, and put it in memory for me"
 - DMA controller handles "memcpy"
 - Ready (version 2.0): data is in memory
 - Frees up CPU to do useful things

ECE 590.03 IO 32

Hard disk: reliability

- · Hard disks fail relatively easily
 - Spinning piece of metal
 - With head hovering <1mm from platter
- Hard drive failures: major pain..
 - Anyone ever have one?

.

ECE 590.03 IO

33

35

Reliability

- Solution to functionality problem?
 - · Level of indirection
- · Solution to performance problem?
 - Add a cache
- Solution to a reliability problem?
 - ...

ECE 590.03 IO 34

Reliability

- Solution to functionality problem?
 - · Level of indirection
- · Solution to performance problem?
 - Add a cache
- Solution to a reliability problem?
 - Add error checking and correction
 - For HDD's checking is easy: "wont read data"
 - Simplest correction: keep 2 copies

ECE 590.03 IO

RAID: Reliability

- Redundant Array of In-expensive Disks (RAID)
 - Keep 2 hard-drives with identical copies of the data
 - One fails? Replace it, copy the other drive to it, resume
 Can work from other drive while waiting for replacement
 - Performance?

ECE 590.03 IO

RAID: Reliability

- Redundant Array of In-expensive Disks (RAID)
 - Keep 2 hard-drives with identical copies of the data
 - One fails? Replace it, copy the other drive to it, resume
 Can work from other drive while waiting for replacement
 - Performance?
 - Writes to both drives in parallel (no cost)
 - · Reads from either drive
 - Improve performance: twice the bandwidth

ECE 590.03 IO

37

RAID: Reliability

- Redundant Array of In-expensive Disks (RAID)
 - · Keep 2 hard-drives with identical copies of the data
 - One fails? Replace it, copy the other drive to it, resume
 Can work from other drive while waiting for replacement
 - Performance?
 - Writes to both drives in parallel (no cost)
 - Reads from either drive
 - · Improve performance: twice the bandwidth
 - Downside?
 - Cost: need to buy 2x as many disks for 1x the space
 - Still: pretty popular (I have it on my home linux box)
 - · Also very easy

ECE 590.03 IO 38

RAID: All sorts of things

- Mirroring data (prev slides): "RAID 1"
- Tons of other RAID configurations:
 - RAID 0: striping—performance, not reliability
 - Parity schemes: reduce overhead for num disks > 2
 - Still give reliability and good performance
- Many covered in detail in your book
 - Good to know they exist, may be good solution to a problem one day
 - Don't fret the obscure ones too much

ECE 590.03 IO 39

Other devices

- · Wide variety of IO devices
 - Most basically work the same way from high-level
 - Read/write proper physical memory location(s)
 - · Reality: each device has its own protocol
 - Requires device driver: Software module that handles protocol details of specific device
 - Which memory locations to read/write etc
 - Example of?

ECE 590.03 IO 40

Other devices

- · Wide variety of IO devices
 - Most basically work the same way from high-level
 - Read/write proper physical memory location(s)
 - Reality: each device has its own protocol
 - Requires device driver: Software module that handles protocol details of specific device
 - Which memory locations to read/write etc
 - Example of
 - Abstraction!

ECE 590.03 IO 41

Next Up: OSes

- · Working our way up the system
 - Just talked about how data is stored on disks...
 - Next time: how do we make a coherent filesystem?
- Followed up by various other bits of OS knowledge
 - How does the system boot?
 - How are programs scheduled?
 - For that mater where do they come from?

ECE 590.03 IO 42