Variační princip

Oblast tělesa

Těleso reprezentujeme jako oblast Ω v euklidovském prostoru \mathbb{E}_3 s hranicí $\partial\Omega$:

$$\partial\Omega_{\sigma}\cup\partial\Omega_{u}=\partial\Omega$$
 $\partial\Omega_{\sigma}\cap\partial\Omega_{u}=\emptyset$

 $\partial\Omega_{\sigma}$ - část se silovou okrajovou podmínkou

 $\partial\Omega_u$ - část s kinematickou okrajovou podmínkou

Celková potenciální energie

$$\Pi = U - W = \frac{1}{2} \int_{\Omega} \sigma_{ij} \epsilon_{ij} \, dV - \left(\int_{\Omega} X_i u_i \, dV + \int_{\partial \Omega_{\sigma}} p_i u_i \, dS \right), \quad \epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

 ${\cal U}\,$ - deformační energie

 \boldsymbol{W} - potenciál vnějších sil

 $\vec{\vec{\sigma}}$ - tenzorové pole napjatostí

 $\vec{\epsilon}$ - Cauchyho tenzor deformací

 \vec{X} - pole vnějších objemových sil

 \vec{u} - pole posuvů

 \vec{p} - vektor vnějších povrchových sil

Staticky přípustné pole napětí

Staticky přípustné pole napětí je každé tensorové pole $\vec{\sigma}(x,y,z)$, které splňuje rovnice rovnováhy

$$\frac{\partial \sigma_{ij}}{\partial x_i} + X_i = 0 , \quad \sigma_{ij} \in \mathbb{C}^1_{\Omega}$$

a silové okrajové podmínky:

$$\sigma_{ij} n_j^0 = p_i , \quad \forall [x, y, z] \in \partial \Omega_\sigma$$

kde \vec{n}^0 je normála na hranici $\partial\Omega$

Kinematicky přípustné pole posuvů

Kinematicky přípustné pole posuvů je každé vektorové pole $\vec{u}(x,y,z)$, které je spojitě diferencovatelné a splňuje kinematické okrajové podmínky

$$\vec{u}(x, y, z) = \vec{u}_{\partial\Omega}(x, y, z), \quad \forall [x, y, z] \in \partial\Omega$$

kde $\vec{u}_{\partial\Omega}$ jsou vynucené posuvy.

Princip virtuálních prací

Platí identita

$$\int_{\Omega} \sigma_{ij} \epsilon_{ij} \, dV - \int_{\Omega} X_i u_i \, dV - \int_{\partial \Omega_{\sigma}} p_i u_i \, dS - \int_{\partial \Omega_u} \sigma_{ij} n_j^0 u_i \, dS = 0$$

pokud:

 $\vec{\vec{\sigma}}$ - staticky přípustné pole napjatosti

 \vec{u} - kinematicky přípustné pole posuvů

Princip virtuálních posuvů

Platí identita

$$\int\limits_{\Omega} \sigma_{ij}^{0} \delta \epsilon_{ij} \, dV - \int\limits_{\Omega} X_{i} \delta u_{i} \, dV - \int\limits_{\partial \Omega_{\sigma}} p_{i} \delta u_{i} \, dS = 0 \; , \quad \delta \epsilon_{ij} = \frac{1}{2} \left(\frac{\partial \delta u_{i}}{\partial x_{j}} + \frac{\partial \delta u_{j}}{\partial x_{i}} \right)$$

pokud $\vec{u}^0 + \delta \vec{u}$ je kinematicky přípustné pole posuvů

$$\vec{u}^0 + \delta \vec{u} = \vec{u}_{\partial\Omega}(x, y, z), \ \forall [x, y, z] \in \partial\Omega \quad \Rightarrow \quad \delta \vec{u} = \vec{0}, \ \forall [x, y, z] \in \partial\Omega_u$$

kde

 $\vec{u}^0, \vec{\vec{\sigma}}^0$ - řešení úlohy pružnosti

 $\delta \vec{\vec{\epsilon}}$ - Cauchyho tenzor virtuálních deformací

 $\delta \vec{u}$ - pole virtuálních posuvů

MKP

1D element

Obecný posuv $u(\xi)$ a deformace $\epsilon(\xi)$ elementu

$$\begin{split} u(\xi) &= \underline{N}^e\!(\xi)\,\underline{\delta}^e \;, \quad \underline{N}^e = \begin{bmatrix} 1 - \frac{\xi}{l} \\ \frac{\xi}{l} \end{bmatrix} - \text{matice tvarových funkcí} \\ \epsilon(\xi) &= \underline{B}^e\!(\xi)\,\underline{\delta}^e \;, \quad \underline{B}^e = \frac{\partial\underline{N}^e}{\partial\xi} = \begin{bmatrix} -\frac{1}{l} \\ \frac{1}{l} \end{bmatrix} - \text{operátor z uzlových posuvů na deformace} \end{split}$$

kde

 $\underline{\delta}^e = [\,u_1^e\,u_2^e\,]^T$ - vektor posuvů uzlových bodů

Deformační energie elementu U^e

$$U^e = \frac{1}{2} \int_0^l E\epsilon^2(\xi) A d\xi = \frac{1}{2} \underbrace{\underline{\delta}^{e^T}}_{K^e} \underbrace{\int_0^l \underline{\underline{B}^{e^T}} E A \, \underline{\underline{B}^e} d\xi}_{K^e} \underbrace{\underline{\delta}^e}_{L^e} = \frac{1}{2} \underbrace{\underline{\delta}^{e^T} \underline{\underline{K}^e}}_{K^e} \underbrace{\underline{\delta}^e}_{L^e}, \quad \underline{\underline{K}^e}_{L^e} - \text{matice tuhosti elementu}$$

Objemová síla $X(\xi)$ v místě ξ

$$X(\xi) = \underline{N}^e(\xi)\underline{X}^e\,,\quad \underline{X}^e$$
 – pole uzlových objemových sil

Potenciál vnější objemové síly W^e

$$W^e = \int\limits_0^l u(\xi) X(\xi) A d\xi = \underline{\delta}^{e^T} \underbrace{\int\limits_0^l \underline{N}^{e^T} \underline{N}^e A \, d\xi \,\, \underline{X}^e}_{F^e} = \underline{\delta}^{e^T} \underline{F}^e \,, \quad \underline{F}^e - \text{vektor ekvivalentních uzlových sil}$$

Celková potenciální energie elementu

$$\Pi^e = U^e - W^e = \frac{1}{2} \ \underline{\underline{\delta}}^{e^T} \underbrace{\int\limits_0^l \underline{\underline{B}}^{e^T} E A \, \underline{\underline{B}}^e d\xi}_{K^e} \ \underline{\underline{\delta}}^e - \underline{\underline{\delta}}^{e^T} \underbrace{\int\limits_0^l \underline{\underline{N}}^{e^T} \underline{\underline{N}}^e A \, d\xi}_{F^e} \ \underline{\underline{\Delta}}^e = \frac{1}{2} \ \underline{\underline{\delta}}^{e^T} \underline{\underline{K}}^e \ \underline{\underline{\delta}}^e - \underline{\underline{\delta}}^{e^T} \underline{\underline{F}}^e$$

Celková potenciální energie modelu

$$\Pi = \sum_{e=1}^{N_e} \Pi^e = \sum_{e=1}^{N_e} \left(\frac{1}{2} \ \underline{\underline{\Delta}}^{e^T} \underline{\underline{K}}^e \ \underline{\underline{\Delta}}^e - \underline{\underline{\Delta}}^{e^T} \underline{\underline{F}}^e \right) = \sum_{e=1}^{N_e} \left(\frac{1}{2} \underline{\underline{\Delta}}^T \underline{\underline{\tilde{K}}}^e \ \underline{\underline{\Delta}} - \underline{\underline{\Delta}}^T \underline{\underline{\tilde{F}}}^e \right) = \frac{1}{2} \underline{\underline{\Delta}}^T \underline{\underline{K}} \ \underline{\underline{\Delta}} - \underline{\underline{\Delta}}^T \underline{\underline{F}}$$

kde

 Δ - vektor globálních uzlových posuvů

 $\underline{K}\,$ - globální matice tuhosti

 $\underline{\underline{\tilde{K}}}^e$ - matice tuhosti elementu o rozměru $\underline{\underline{K}}$

 \underline{F} - globální vektor ekvivalentních uzlových sil
 $\underline{\tilde{F}}^e$ - vektor ekvivalentních uzlových sil elementu o rozměru
 \underline{F}

Princip minima celkové potenciální energie

$$\begin{split} \frac{\partial \Pi}{\partial \Delta_m} &= 0 \, ; \quad m = 1, \dots, N_{DOF} \, ; \quad N_{DOF} - \text{počet stupňů volnosti úlohy} \\ &= \frac{\frac{1}{2} K_{ij} \Delta_i \Delta_j - \Delta_i F_i}{\partial \Delta_m} = \frac{1}{2} K_{mj} \Delta_j + \frac{1}{2} K_{im} \Delta_i - F_m = K_{mj} \Delta_j - F_m = 0 \\ &\underline{\underline{K}} \, \underline{\Delta} = \underline{F} \quad \Rightarrow \quad \frac{\partial \Pi}{\partial \Delta_m} = 0 \end{split}$$

2D element

x, y - souřadnice v prostoru

 $\underline{\delta}^e$ - pole posuvů elementu

 $\underline{u}\,$ - pole posuvů elementu

 $\underline{\epsilon}\,$ - pole deformací elementu

 $\underline{\alpha}\,$ - Parametry pole posuvů

<u>A</u> -

<u>S</u> -

 $\equiv \\ \underline{\underline{D}}$ - Diferenciální operátor mezi posuvy a deformacemi

 \underline{N}^e - Matice tvarových funkcí

 \underline{B}^e - Operátor uzlových posunů na deformace

 $\underline{\epsilon}_0$ - pole deformací elementu vlivem teploty

 $\underline{\epsilon}_{\sigma}$ - pole deformací elementu vlivem napětí

 ${\cal U}\,$ - Deformační energie

 \underline{E}^e - matice bůhví čeho

 \underline{K}^e - matice tuhosti elementu

 Π - Celková potenciální energie

p - pole vnějších povrchových sil ???

 \underline{X} - pole vnějších objemových sil ???

 $\underline{\tilde{F}}^{eE}$ - objemová síla (konstantní)

 \underline{F}^l - liniová vnější síla (abstrakce tlaku)

Pole posuvů u(x,y) a deformací $\epsilon(x,y)$ elementu

$$\underline{u}(x,y) = \underline{\underline{A}}(x,y) \,\underline{\alpha} = \underline{\underline{A}}(x,y) \,\underline{\underline{S}}^{-1} \underline{\delta}^e = \underline{\underline{N}}^e(x,y) \,\underline{\delta}^e$$

$$\underline{\epsilon}(x,y) = \underline{\underline{D}} \,\underline{N}^e(x,y) \,\underline{\delta}^e = \underline{\underline{B}}^e(x,y) \,\underline{\delta}^e$$

Změna pole deformací $\underline{\epsilon}$ vlivem teploty

$$\underline{\epsilon} = \underline{\epsilon}_{\sigma} + \underline{\epsilon}_{0} , \quad \underline{\epsilon}_{0} = \alpha \Delta T \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Hustota deformační energie Λ

$$\Lambda = \frac{1}{2} \underline{\epsilon}^T \underline{\sigma} = \frac{1}{2} \underline{\epsilon}^T \underline{\underline{E}} \underline{\epsilon}_{\sigma} = \frac{1}{2} \underline{\epsilon}^T \underline{\underline{E}} (\underline{\epsilon} - \underline{\epsilon}_0) = \frac{1}{2} \underline{\epsilon}^T \underline{\underline{E}} \underline{\epsilon} - \frac{1}{2} \underline{\epsilon}^T \underline{\underline{E}} \underline{\epsilon}_0$$

Deformační energie U

$$U = \int\limits_{\Omega} \Lambda \ dV = \frac{1}{2} \int\limits_{\Omega} \underline{\epsilon}^T \underline{\underline{E}} \, \underline{\epsilon} \ dV + \frac{1}{2} \int\limits_{\Omega} \underline{\epsilon}^T \underline{\underline{E}} \, \underline{\epsilon}_0 \ dV = \frac{1}{2} \, \underline{\underline{\delta}}^{e^T} \underbrace{\underline{\underline{E}}} \, \underline{\underline{E}}^{e^T} \underline{\underline{E}} \, \underline{\underline{E}}^{e^T} \underline{\underline{L}} \, \underline{\underline{L}}^{e^T} \underline{\underline{L}}^{e^T}$$

Celková potenciální energie

$$\Pi = \frac{1}{2} \underbrace{\underline{\delta}^{e^T}}_{\underbrace{\underline{\underline{M}}}} \underbrace{\underline{\underline{B}}^{e^T}}_{\underbrace{\underline{\underline{E}}}} \underbrace{\underline{\underline{B}}^{e}}_{\underbrace{dV}} \underbrace{\underline{\underline{\delta}}^{e}}_{\underbrace{\underline{1}}} - \frac{1}{2} \underbrace{\underline{\underline{\delta}}^{e^T}}_{\underbrace{\underline{\underline{M}}}} \underbrace{\underline{\underline{B}}^{e^T}}_{\underbrace{\underline{\underline{E}}}} \underbrace{\underline{\underline{\epsilon}}_{0}}_{\underbrace{dV}} - \frac{1}{2} \underbrace{\underline{\underline{\delta}}^{e^T}}_{\underbrace{\underline{\underline{M}}}} \underbrace{\underline{\underline{M}}^{e^T}}_{\underbrace{\underline{\underline{D}}}} \underbrace{\underline{\underline{M}}^{e^T}}_{\underbrace{\underline{\underline{M}}}} \underbrace{\underline{\underline{M}}}_{\underbrace{\underline{\underline{M}}}} \underbrace{\underline{\underline{M}}}_{\underbrace{\underline{\underline{M}}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{\underline{M}}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}}_{\underline{\underline{M}}} \underbrace{\underline{\underline{M}}$$

Desky a skořepiny

Kružnice s největším R_{max} a nejmenším R_{min} poloměrem křivosti leží v navzájem kolmých hlavních rovinách křivosti

Reissner-Mindlinova teorie skořepin

Předpoklad: Hmotná normála ke střednici v nedeformovaném stavu zůstává po deformaci přímá

Kirchhofova teorie skořepin

Předpoklad: Hmotná normála ke střednici v nedeformovaném stavu přejde po deformaci v normálu k deformované střednici

Typy deformací tenkostěnných těles

Membránová deformace

- Řez střednicí se prodlouží, ale nezmění se křivost
- Hmotné normály zůstavají kolmé na deformovanou střednici
- Konstantní po tloušťce

Ohybová deformace

- Řez střednicí se neprodlouží, ale změní se křivost
- Hmotné normály zůstavají kolmé na deformovanou střednici
- Lineární po tloušťce

Smyková příčná deformace

- Řez střednicí se neprodlouží, nezmění se křivost
- Hmotné normály zůstávají přímé, ale ne obecně kolmé na deformovanou střednici
- Konstantní po tloušťce

Klasifikace skořepinových prvků

- Membrány "nemají ohybová ani příčná smyková napětí"
- Desky nemají membránová napětí
- Skořepiny "mají ohybová napětí"
 - tenké (thin) obvykle se míní Kirchhoffovské
 - tlusté (thick) obvykle mindlinovské
 - obecné (general/universal) obvykle mindlinovské se smykovou závorou