Complessità

I. Studio della Complessità

Lo **studio della complessità** risulta utile per stabilire quali problemi ammettono una soluzione algoritmica e quali invece no.

Per quei problemi che ammettono soluzione, cioè quelli computabili, è utile conoscere anche la complessità.

Usando queste informazioni si possono comparare gli algoritmi e definire quali sono i problemi effettivamente computabili.

1.1 - Complessità, Efficienza e Risorse

La complessità di un algoritmo è una misura della quantità di risorse utilizzate durante la computazione.

L'efficienza di un algoritmo è inversamente proporzionale alla complessità: un programma è più efficiente di un altro se utilizza meno risorse di calcolo.

Le risorse di calcolo che si considerano sono:

- tempo di elaborazione (complessità in tempo);
- quantità di memoria necessaria (complessità in spazio).

1.2 - Valutare l'Efficienza

Il tempo di calcolo **non può essere valutato in secondi** perché bisogna considerare le condizioni nelle quali si svolgono le prove: elaboratore utilizzato, compilatore etc. sono fattori che influenzano pesantemente il risultato.

Attraverso la **teoria della complessità** si studia in modo oggettivo l'uso delle risorse necessarie alla computazione dell'algoritmo, dal momento che la complessità è legata all'algoritmo stesso.

Si sceglie poi l'algoritmo che si comporta meglio al crescere della complessità del problema.

Bisogna quindi definire un **modello di costo** che dipende dal particolare modello di macchina astratta a cui si fa riferimento.

In queste macchine, ad ogni operazione è associato un costo (indipendente dal sistema, visto che la macchina è astratta).

Ci si limita a contare solo alcune operazioni chiave.

II. Analisi della Complessità

2.1 - Analisi della Complessità: Dimensione dell'Input

La dimensione dell'input influenza il costo di esecuzione: allora la dimensione dell'input rappresenta l'argomento della funzione che esprime il costo di esecuzione del programma.

Questo intero *n*, che rappresenta la dimensione dell'input, su una **macchina di Turing** equivale al numero di celle occupate sul nastro di input, mentre su un **elaboratore moderno** sarà lo spazio occupato nella memoria (o un numero che lo rappresenta).

Infatti, nel caso dell'elaboratore moderno, se operiamo con matrici, **n** sarà il numero di elementi della matrice, su un grafo sarà il numero di nodi/archi e così via.

2.2 - Analisi della Complessità: Complessità in Spazio

La **complessità in spazio** è il massimo spazio nella memoria usato durante l'esecuzione (sia da dati iniziali/finali che dati di lavoro).

Dal momento che le abbiamo memorie enormi e poco costose, ci si limita allo studio della complessità in tempo.

Per i **dati semplici** il costo sarà unario, mentre per array, record etc. avremo che il costo sarà n per ogni elemento in essi (es. array di 5 elementi = 5n).

2.3 - Analisi della Complessità: Complessità in Tempo

Fissata la dimensione n, l'obiettivo sarà ora esprimere la complessità in tempo come funzione di n, e spesso ci si limita a studiare il comportamento di questa funzione al crescere di n (detta anche complessità asintotica).

In questo processo si tralasciano, ad esempio, le costanti moltiplicative, in quanto poco rilevanti.

2.4 - Analisi della Complessità: Modello di Costo

Come modello di costo si usa quello di un linguaggio di programmazione lineare.

Complessità 1

Le operazioni che hanno costo unitario sono:

- assegnazione
- confronto (>, <, =, etc.)
- aritmetica (+, -, *, /)

lettura/scrittura

• logica (AND, NOT, OR)

Il costo di **operazioni composte** sarà pari alla somma delle operazioni che le compongono.

2.5 - Esempi di Calcolo della Complessità Temporale "O Grande"

Espressione

•
$$T(n) = 2n^2 + 3n + 1$$

Rimuovere i termini di ordine inferiore: $T(n)=2n^2\pm 3n\pm 1$ Rimuovere la costante moltiplicativa: $T(n)=2n^2$

Risultato: $T(n) = O(n^2)$

Loop

```
• for(i=1; i \le n; i++) \{ x = y + z \}
```

L'espressione x = y + z impiega tempo costante c.

Essendo ripetuta n volte impiegherà tempo pari $c \cdot n$.

Escludendo la costante additiva, la complessità temporale sarà T(n)=O(n)

Nested Loop

```
• for(i=1; i \le n; i++) \{ for(j=1; j \le n; j++) \{ x = y+z \} \}
```

In questo caso vale quanto detto nell'esempio precedente. Ci sono però due loop, quindi avremo $T(n)=O(n^2)$

Espressioni in Sequenza

1. a = a + b

- $_{
 ightarrow}$ impiega tempo costante c_1
- 1. for(i=1; i \leq n; i++) { x=y+z
- $_{ o}$ impiega tempo $c_2 \cdot n$
- 1. for(j=1; j \leq n; j++) { c = d + e}
- $_{ o}$ impiega tempo $c_3 \cdot n$

Avremo quindi che:

$$T(n) = c_1 + c_2 n + c_3 n$$

$$T(n) = n + n = 2n$$

$$T(n) = O(n)$$

III. Configurazioni

Dal momento che fattori come la dimensione dei dati o l'ordine delle istruzioni (dove sono presenti degli if/else) influisce pesantemente sulla complessità, non si usa un'unica funzione, ma bensì tre:

• Caso Medio

Legata alla complessità media.

Calcolare la complessità media è difficile (si considera la complessità dei tre casi e si usa la probabilità).

Caso Ottimo

Configurazione che dà luogo al minimo tempo di esecuzione.

Semplice da determinare, ma di interesse secondario.

Caso Pessimo

Configurazione che dà luogo al massimo tempo di esecuzione; sarà un limite superiore per la complessità.

IV. Notazioni

4.1 -
$$O(n)$$

La notazione O grande, applicata alla funzione di complessità, delimita superiormente la crescita della funzione e fornisce un indicatore di bontà dell'algoritmo.

4.2 -
$$Of((n))$$

..

V. Istruzione Dominante

Il concetto di istruzione dominante permette spesso di semplificare la valutazione della complessità di un programma.

Un'istruzione dominante è un istruzione che viene eseguita un numero di volte proporzionale al costo di esecuzione di tutto l'algoritmo.

Per individuare un'istruzione dominante è sufficiente esaminare le operazioni che sono contenute nei cicli più interni del programma.

VI. Classi di Complessità

In ordine crescente abbiamo:

Costante O(1)

 $Logaritmica \qquad \qquad O(log(n)) \\$

Lineare O(n)

n $\log O(n(log(n)))$

Quadratica $O(n^2)$ Cubica $O(n^3)$

Esponenziale $O(a^n)$ a>1

Gli algoritmi con complessità costante sono più efficienti di quelli con complessità logaritmica che a loro volta sono più efficienti di quelli con complessità lineare e così via.

Complessità 3