12.5 Inductance And Magnetic Materials

12.5.1 Inductance

For two loops C_1 , C_2 , we define their **mutual Inductance** M_{12} by

$$M_{12} \equiv \frac{\Phi_{B_2}(S_1)}{I_2},\tag{12.87}$$

where B_2 is the magnetic field created by the current I_2 on C_2 , and S_1 is any surface whose boundary is C_1 . Since B_2 is proportional to I_2 , we expect that the value of M_{12} is independent of I_2 , but it depends only on the geometric setting.

that $M_{12}=M_{21}.$

It can be proven

Self Inductance L can be similarly defined when C_1 and C_2 are the same loop. That is, L characterizes how many of the field lines it generates pass through itself.

When the current I_2 changes over time, the magnetic flux $\Phi_{B_2}(S_1)$ changes over time, so that there is an induced emf on C_1 by I_2

The minus sign is put there to remind us Lenz's law.

$$\mathcal{E}_1 = -M_{12} \frac{dI_2}{dt}. (12.88)$$

Lenz's Law

The induced emf is in the direction that, if C_1 is a conducting wire, it creates a current (to generate an additional magnetic field) to reduce the change in the total magnetic flux passing through C_1 .

Nature abhors changes.

Example: Transformers.

Ex 12.69: What is the self-inductance L for a long straight solenoid of height h, cross-sectional area A and N turns of wire?

The long straight solenoid is the analogue of the parallel plate capacitor.

Solution:

 $L = \mu N^2 A/h.$

Inductors

Inductors are circuit elements used for their inductances. The relation between V and I on an inductor is

Recall that $I = C \frac{dV}{dt} \ \mbox{on a}$ capacitor.

$$V = L \frac{dI}{dt}. (12.89)$$

While a capacitor "dislikes" changes in V, inductors "dislike" changes in I.

 ${\cal V}$ on a capacitor is always continuous in time and ${\cal I}$ is always continuous on inductors.

The potential difference V across an inductor (e.g. a solenoid) is not exactly the same as the electric potential.

Due to Lenz's law, we need to work against the induced emf to increase the current on a solenoid.

Make the analogy with capacitors.

Q 12.82: Where does the energy of the work used to increase the current on an inductor from 0 to I go?

Ex 12.70: For an inductor with inductance L, how much more energy does it have when it has a current I compared with its energy when there is no current? Solution:

$$U = \frac{L}{2}I^2 = \frac{\Phi^2}{2L} = \frac{1}{2}\Phi I. \tag{12.90}$$

Ex 12.71: For a long straight solenoid, what is the energy density in the magnetic field, if we attribute the energy stored in it to the magnetic field?

Solution:

$$u = \frac{B^2}{2\mu_0}. (12.91)$$

12.5.2 LR Circuits

Ex 12.72: The switch is turned on at t = 0. What is V(t) and I(t) on the inductor?

Ex 12.73: The switch is turned on at t = 0. (Before that the circuit is in a steady state.) What is V(t) and I(t) on either of the inductor?

12.6 Exercises

HW: (3-3) For the given current density

$$\mathbf{J} = \hat{\mathbf{z}} \frac{A}{r + c^2} \tag{12.92}$$

(for constants A and c), what is the magnetic field \mathbf{B} in space?

HW: (3-4) What is the effective inductance of the circuit below?

Ex 12.74: For the RC circuit (see the figure on the right), check the conservation of energy after the circuit is closed at t = 0. (What are the powers of each element in the circuit?)

12.7 AC Circuits

Here we shall discuss mostly sinusoidal AC currents at a single frequency at a time.

12.7.1 LC Oscillators

Ex 12.75: What is the general solution to I(t) on the LC circuit?

Q 12.83: What is the oscillation frequency of the LC circuit for given capacitance C and inductance L?

high pass T filter

Q 12.84: Why does the high pass T filter work as a high pass filter?

low pass T filter

Q 12.85: Why does the low pass T filter work as a low pass filter?

Damped LC oscillation (RLC circuit)

Ex 12.76: What is the general solution to the current I(t) for the RLC circuit?

Recall damped simple harmonic oscillators.

12.7.2 Phasor

For AC circuits composed of linear circuit elements (i.e. the voltage and current on an element satisfy a linear relation, as resistors, capacitors and inductors do), often the voltages and currents on a circuit is better described via its Fourier modes, i.e. as a superposition of waves of different frequencies.

It is thus a good idea to understand a circuit through its behavior at a given frequency. At a given angular frequency ω , the voltage on an element is of the form

$$V(t) = V_0 \cos(\omega t + \phi) = \Re\left(V_0 e^{i(\omega t + \phi)}\right) = \Re\left(\tilde{V}e^{i\omega t}\right), \tag{12.93}$$

where $\tilde{V} \equiv V_0 e^{i\phi}$. For a given frequency ω , we only need a complex number \tilde{V} to keep track of the time-dependence of a voltage.

Similarly, all currents can be represented by a complex number.

The choice of taking the real part (as opposed to the imaginary part) of the complex number is clearly merely a convention. The choice of the factor i (as opposed to (-i) in the exponent $e^{i\omega t}$ is also a convention. In engineering, often people use the symbol j instead of i, and their convention often allows us to identify j with -i.

Using this convention of bookkeeping, the relations between voltages and currents for the resistors, capacitors and inductors are, respectively,

R:
$$\tilde{V} = R\tilde{I}$$
, (12.94)

C:
$$\tilde{I} = i\omega C\tilde{V}$$
, (12.95)

L:
$$\tilde{V} = i\omega L\tilde{I}$$
. (12.96)

In terms of the phasor notation, the description of the properties of R, C, and L are formally the same: the ratio V/I is a constant, like a resistor, although the ratio could be imaginary. We call this generalized notion of resistance **impedance**:

$$Z_R = R, \qquad Z_C = \frac{1}{i\omega C}, \qquad Z_L = i\omega L.$$
 (12.97)

Analysis of a circuit involving R, C, and L becomes as simple as analyzing a circuit involving resistors only.

The differences among R, C, and L rely on how the impedance Z is related to the frequency ω , and whether it implies a relative phase between the current I and the voltage V.

Ex 12.77: What is the effective impedance of a capacitor C and an inductor L in series or in parallel? How does the effective impedance change with the angular frequency ω ?

This description

– using complex
numbers to
represent waves

– will also be
useful in our
discussion on
electromagnetic
waves, or any
kind of waves.

The modulus V_0 of the complex number \tilde{V} gives the amplitude of the oscillation, and the phase ϕ of the complex number \tilde{V} gives the phase of the oscillation.

It is now much easier to understand the high-pass or low-pass filters. **Ex 12.78:** For a given \tilde{V}_{in} at a certain angular frequency ω , what is \tilde{V}_{out} for the high-pass filter mentioned above?

Ex 12.79: The power P on a circuit element is P(t) = V(t)I(t). In terms of the complex numbers \tilde{V} and \tilde{I} representing V(t) and I(t), what is the time-averaged power \bar{P} at a given angular frequency ω ?

Solution:

$$\bar{P} = \frac{1}{2} \Re \left(\tilde{V}^* \tilde{I} \right). \tag{12.98}$$

Ex 12.80: Find the time-averaged power consumed by a circuit element with voltage $V(t) = V_0 \cos(\omega t + \phi)$ if the circuit element is (a) a resistor R, (b) a capacitor C or (c) an inductor L. Express your result in terms of the complex number \tilde{V} representing the oscillatory voltage V(t). How do you interpret your result?

The complex conjugate is defined by $(a+bi)^* = a-bi$ for real numbers a, b.