Second degré

1 Résoudre $ax^2 + bx + c = 0$

Ī	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
	L'équation admet deux solutions	L'équation admet une seule solution	L'équation n'admet pas de solution.
	$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$	$x = -\frac{b}{2a}$	

Exemples

Résoudre $x^2 - 7x + 12 = 0$	Résoudre $-x^2 + 4x - 4 = 0$	Résoudre $x^2 + 4x + 10 = 0$		
$a=1 \qquad b=-7 \qquad c=12$	a=-1 $b=4$ $c=-4$	a=1 $b=4$ $c=10$		
$\Delta = (-7)^2 - 4 \times 1 \times 12 = 49 - 48$	$\Delta = (4)^2 - 4 \times (-1) \times (-4) = 16 - 16$	$\Delta = 4^2 - 4 \times 1 \times 10$		
$\Delta = 1$	$\Delta = 0$	$\Delta = -26$		
$x_1 = \frac{7 - \sqrt{1}}{2} = 3$ $x_2 = \frac{7 + \sqrt{1}}{2} = 4$	$x_1 = \frac{4}{2 \times 1} \qquad x_1 = 2$			
C (2.4)	C (a)	C C		
$S = \{3; 4\}$	$S = \{2\}$	$S = \varnothing$		

2 Étudier le signe de $ax^2 + bx + c$ en fonction de x réel

Établir le tableau de signes de $x^2 - 7x + 12$

x	$-\infty$	$\frac{3}{1}$	4	$+\infty$
$x^2 - 7x + 12$		0	0	

Établir le tableau de signes de $-x^2 + 7x - 12$

x	$-\infty$	3	4	$+\infty$
$-x^2 + 7x - 12$		0	0	

Étudier le signe de x^2-4x+4 pour $x\in\mathbb{R}$

Réponse : $\Delta = 16 - 16 = 0$ et a = 1 > 0 donc $x^2 - 4x + 4 \ge 0$ pour tout $x \in \mathbb{R}$

Étudier le signe de $x^2 + 4x + 10$ pour $x \in \mathbb{R}$

Réponse : $\Delta = 16 - 40 < 0$ et a = 1 > 0 donc $x^2 + 4x + 10 > 0$ pour tout $x \in \mathbb{R}$

1