Find Closest Values Along Grids

Fan Wang

2021-01-10

Contents

1	Find Closest Neighbor on Grid	1
	1.1 Closest Neighbor on Grid	1

1 Find Closest Neighbor on Grid

Go to the **RMD**, **R**, **PDF**, or **HTML** version of this file. Go back to fan's REconTools Package, R Code Examples Repository (bookdown site), or Intro Stats with R Repository (bookdown site).

Using the pivot wider function in tidyr to reshape panel or other data structures

1.1 Closest Neighbor on Grid

There is a dataframe that provides V(coh, a, cev) levels. There is another dataframe with $\hat{V}(coh, a)$, for each coh, a, find the cev that such that the difference between $\hat{V}(coh, a)$ and V(coh, a, cev) is minimized.

V and \hat{V} information are stored in a data frame in the csv folder in the current directory. In fact, we have one V surface, but multiple \hat{V} files, so we want to do the find closest neighbor exercise for each one of the several \hat{V} files.

The structure is as follows: (1) Load in the V file, where coh, a, cev are all variable attributes. (2) Merge with one \hat{V} file. (3) Take the difference between the V and \hat{V} columns, and take the absolute value of the difference. (4) Group by coh, a, and sort to get the smallest absolute difference among the cev possibilities, and slice out the row for the smallest. (5) Now We have $V(coh, a, cev^*(coh, a))$. (6) Do this for each of the several \hat{V} files. (7) Stack the results from 1 through 6 together, generate a column that identifies which simulation/exercise/counterfactual each of the \hat{V} file comes from. (8) Visualize by plotting as subplot different a, coh is x-axis, different \hat{V} outcome are different lines, and $cev^*\left(coh, a, \hat{V}\right)$ is the y-axis outcome.

First, load the CEV file.

```
# folder
spt_root <- c('C:/Users/fan/R4Econ/panel/join/_file/csv')
# cev surface file, the V file
snm_cev_surface <- 'e_19E1NEp99r99_ITG_PE_cev_subsettest.csv'
mt_cev_surface <- read.csv(file = file.path(spt_root, snm_cev_surface))
tb_cev_surface <- as_tibble(mt_cev_surface) %>%
    rename(EjVcev = EjV)
```

Second, loop over the V hat files, join V with V hat:

```
ls_tb_cev_surfhat = vector(mode = "list", length = 4)
for (it_simu_counter in c(1,2,3,4)) {
```

```
# conditionally change file names
    if (it_simu_counter == 1) {
        st_counter <- '19E1NEp99r99'
    } else if (it_simu_counter == 2) {
        st_counter <- '19E1NEp02r99'
    } else if (it_simu_counter == 3) {
        st_counter <- '19E1NEp02per02ger99'</pre>
    } else if (it_simu_counter == 4) {
        st counter <- '19E1NEp02r02'
    snm_v_hat <- paste0('e_', st_counter, '_ITG_PE_subsettest.csv')</pre>
    # Overall path to files
    mt_v_hat <- read.csv(file = file.path(spt_root, snm_v_hat))</pre>
    tb_v_hat <- as_tibble(mt_v_hat) %>%
      select(prod_type_lvl, statesid, EjV)
    # Merge file using key
    tb_cev_surfhat <- tb_cev_surface %>%
      left_join(tb_v_hat, by=(c('prod_type_lvl'='prod_type_lvl',
                                 'statesid'='statesid'))) %>%
      arrange(statesid, prod_type_lvl, cev_lvl) %>%
      mutate(counter_policy = st_counter)
    # Store to list
    ls_tb_cev_surfhat[[it_simu_counter]] <- tb_cev_surfhat</pre>
# Display
kable(ls_tb_cev_surfhat[[1]][seq(1, 40, 5),]) %>% kable_styling_fc_wide()
```

X	cev_st	cev_lvl	prod_type_st	prod_type_lvl	statesid	cash_tt	EjVcev	EjV	counter_policy
1	cev-2000	-0.2000	A0	0	526	32.84747	-1.0479929	-0.7957419	19E1NEp99r99
1501	cev-947	-0.0947	A0	0	526	32.84747	-0.9079859	-0.7957419	19E1NEp99r99
3001	cev105	0.0105	A0	0	526	32.84747	-0.7880156	-0.7957419	19E1NEp99r99
4501	cev1157	0.1157	A0	0	526	32.84747	-0.6803586	-0.7957419	19E1NEp99r99
51	cev-2000	-0.2000	A2504	2504	526	32.90371	-1.0002921	-0.7504785	19E1NEp99r99
1551	cev-947	-0.0947	A2504	2504	526	32.90371	-0.8613743	-0.7504785	19E1NEp99r99
3051	cev105	0.0105	A2504	2504	526	32.90371	-0.7423281	-0.7504785	19E1NEp99r99
4551	cev1157	0.1157	A2504	2504	526	32.90371	-0.6354620	-0.7504785	19E1NEp99r99

Third, sort each file, and keep only the best match rows that minimize the absolute distance between EjV and EjVcev.

```
ls_tb_cev_matched = vector(mode = "list", length = 4)
for (it_simu_counter in c(1,2,3,4)) {

    # Load merged file
    tb_cev_surfhat <- ls_tb_cev_surfhat[[it_simu_counter]]

# Difference Column
    tb_cev_surfhat <- tb_cev_surfhat %>%
        mutate(EjVcev_gap = abs(EjVcev - EjV))

# Group by, Arrange and Slice, get lowest gap
```

```
tb_cev_matched <- tb_cev_surfhat %>%
    arrange(statesid, prod_type_lvl, EjVcev_gap) %>%
    group_by(statesid, prod_type_lvl) %>%
    slice_head(n=1)

# Store to list
    ls_tb_cev_matched[[it_simu_counter]] <- tb_cev_matched
}

# Display
kable(ls_tb_cev_matched[[2]][seq(1, 30, 1),]) %>% kable_styling_fc_wide()
```

X		11			statesid	1- 44	F:V	E:V		F:V
3001	cev_st	cev_lvl 0.0105	prod_type_st A0	prod_type_lvl	statesia 526	cash_tt 32.847471	-0.7880156	EjV -0.7928034	counter_policy 19E1NEp02r99	EjVcev_gap
	cev105		-	0						0.0047878
3051	cev105	0.0105	A2504	2504	526	32.903714	-0.7423281	-0.7480617	19E1NEp02r99	0.0057336
3101	cev105	0.0105	A4145	4145	526	32.948970	-0.7082006	-0.7145418	19E1NEp02r99	0.0063412
3151	cev105	0.0105	A5633	5633	526	32.996952	-0.6753576	-0.6818996	19E1NEp02r99	0.0065420
3201	cev105	0.0105	A7274	7274	526	33.058832	-0.6368297	-0.6431710	19E1NEp02r99	0.0063413
3251	cev105	0.0105	A9779	9779	526	33.175241	-0.5711706	-0.5774648	19E1NEp02r99	0.0062942
3002	cev105	0.0105	A0	0	555	53.346587	-0.2985944	-0.3041922	19E1NEp02r99	0.0055978
3052	cev105	0.0105	A2504	2504	555	53.815772	-0.2617572	-0.2680026	19E1NEp02r99	0.0062454
3102	cev105	0.0105	A4145	4145	555	54.193302	-0.2340822	-0.2406142	19E1NEp02r99	0.0065320
3152	cev105	0.0105	A5633	5633	555	54.593579	-0.2067964	-0.2134634	19E1NEp02r99	0.0066670
3202	cev105	0.0105	A7274	7274	555	55.109790	-0.1740126	-0.1806320	19E1NEp02r99	0.0066194
3252	cev105	0.0105	A9779	9779	555	56.080888	-0.1169470	-0.1236111	19E1NEp02r99	0.0066641
3603	cev526	0.0526	A0	0	905	1.533025	-5.2530406	-5.2486887	19E1NEp02r99	0.0043519
3353	cev315	0.0315	A2504	2504	905	1.714498	-4.5517474	-4.5408560	19E1NEp02r99	0.0108913
3403	cev315	0.0315	A4145	4145	905	1.860521	-4.1039608	-4.1072736	19E1NEp02r99	0.0033128
3453	cev315	0.0315	A5633	5633	905	2.015341	-3.7465733	-3.7611842	19E1NEp02r99	0.0146109
3503	cev315	0.0315	A7274	7274	905	2.215003	-3.4101025	-3.4235413	19E1NEp02r99	0.0134388
3553	cev315	0.0315	A9779	9779	905	2.590608	-2.9413469	-2.9535570	19E1NEp02r99	0.0122101
3004	cev105	0.0105	A0	0	953	20.125381	-1.3249909	-1.3290865	19E1NEp02r99	0.0040957
3054	cev105	0.0105	A2504	2504	953	20.306854	-1.2476021	-1.2531860	19E1NEp02r99	0.0055839
3104	cev105	0.0105	A4145	4145	953	20.452876	-1.1916003	-1.1975215	19E1NEp02r99	0.0059211
3154	cev105	0.0105	A5633	5633	953	20.607697	-1.1383665	-1.1444048	19E1NEp02r99	0.0060383
3204	cev105	0.0105	A7274	7274	953	20.807359	-1.0766095	-1.0823344	19E1NEp02r99	0.0057250
3254	cev105	0.0105	A9779	9779	953	21.182964	-0.9729832	-0.9781408	19E1NEp02r99	0.0051576
3005	cev105	0.0105	A0	0	1017	63.774766	-0.1284542	-0.1342653	19E1NEp02r99	0.0058110
3055	cev105	0.0105	A2504	2504	1017	64.298911	-0.0967695	-0.1031112	19E1NEp02r99	0.0063417
3105	cev105	0.0105	A4145	4145	1017	64.720664	-0.0728485	-0.0793940	19E1NEp02r99	0.0065454
3155	cev105	0.0105	A5633	5633	1017	65.167829	-0.0490898	-0.0557238	19E1NEp02r99	0.0066341
3205	cev105	0.0105	A7274	7274	1017	65.744507	-0.0203378	-0.0269149	19E1NEp02r99	0.0065772
3255	cev105	0.0105	A9779	9779	1017	66.829359	0.0299397	0.0233507	19E1NEp02r99	0.0065890
5200	001100	0.0100	210110	3113	1011	00.02000	0.020001	0.020001	10E111Ep02100	0.0000000

ggplot(aes(x=cash_tt, y=cev_lvl,

Visualizing the positions of matched values

 $https://fanwangecon.github.io/R4Econ/panel/join/htmlpdfr/fs_join_compare.html$