Gandhi Clothing Company (GCC)

GCC manufactures 3 types of clothing: **shirts**, **shorts**, and **pants**; and each requires certain machinery.

The machinery must be rented at the following rates:

- shirt machinery, \$200 per week
- shorts machinery, \$150 per week
- pants machinery, \$100 per week

Each type of clothing requires specific amounts of cloth and labor, and have different sales price and variable costs:

Rent

Clothing	Labor (hours)	Cloth (sq. yd.)	Sales Price	Variable Cost
Shirt	3	4	\$12	\$6
Shorts	2	3	\$8	\$4
Pants	6	4	\$15	\$8

Each week 150 hours of labor and 160 sq. yd. of cloth are available.

Formulate an IP to maximize Gandhi's weekly profits.

Shift \$700
$$\frac{1}{3}$$
 $\frac{1}{4}$ \$12 $\frac{1}{4}$ \$17 $\frac{1}{4}$ \$18 $\frac{1}{4}$ \$18 $\frac{1}{4}$ \$19 $\frac{1}{4}$ \$100 $\frac{1}{4}$ \$

Objective max: $6x_1 + 4x_2 + 7x_3 - 200y_1$ - 150 yz - 100 yz $3x_1 + 2x_2 + 6x_3 \leq 150$ 4x, + 3x2+ 4x3 = 160 X1, X2, X3 20; integer 9,, 72, 43 & [0,1]

Must define M's, which will not constrain the model, INF?, this is the BIG M method