Fourier Analysis Stein: Chapter 8. Problems.

Kelvin Hong kh.boon2@gmail.com

Xiamen University Malaysia, Asia Pacific University Malaysia — August 17, 2024

1 Problems

1. Prove that there are infinitely many primes by observing that if there were only finitely many, p_1, \ldots, p_N , then

$$\prod_{j=1}^{N} \frac{1}{1 - 1/p_j} \ge \sum_{n=1}^{\infty} \frac{1}{n}.$$

Solution: Assumes there are only finitely many primes p_1, \ldots, p_N . Given a positive integer M, each positive integer $n \leq M$ can be expressed as a product of primes $p_1^{k_1} \cdots p_N^{k_N}$ for some integers k_1, \ldots, k_N . We let K_1, \ldots, K_N be the maximum values of k_1, \ldots, k_N across all $n \leq M$. Thus, we have

$$\prod_{j=1}^{N} \frac{1}{1 - 1/p_j} \ge \prod_{j=1}^{N} \left(\sum_{k=0}^{K_j} \frac{1}{p_j^k} \right) \ge \sum_{n=1}^{M} \frac{1}{n}.$$

Taking the limit as $M \to \infty$, we see that the RHS diverges, which is a contradiction to our assumption.

2. In the text we showed that there are infinitely many primes of the form 4k + 3 by a modification of Euclid's original argument. Adapt this technique to prove the similar result for primes of the form 3k + 2, and for those of the form 6k + 5.

Solution: Assume there are only finitely many primes of the form 3k + 2, and let p_1, \ldots, p_N be all of them in increasing order and $p_1 = 5$. Consider the number $n = 3p_1 \cdots p_N + 2$. This is a number of the form 3k + 2 and $n > p_N$, so it must be composite by our assumption. Since it is not divisible by 3, it must have prime factors of the form 3k + 1 and 3k + 2. If it only has prime factors of the form 3k + 1, the product of these primes would be still of the form 3k + 1, so it will at least has a prime factor of the form 3k + 2. But this is a contradiction since n is not divisible by any of the primes p_1, \ldots, p_N .

For another solution, we assume there are only finitely many primes of the form 6k+5, q_1,\ldots,q_M , in increasing order, where $q_1=11$. We can let $m=6q_1\cdots q_M+5$, we can argue similarly by noting that if m is composite, it must have prime factors of the form 6k+1 and 6k+5, and also it must have at least one prime factor of the form 6k+5, which create a contradiction.

3. Prove that if p and q are relatively prime, then $\mathbb{Z}^*(p) \times \mathbb{Z}^*(q)$ is isomorphic to $\mathbb{Z}^*(pq)$.

Solution: Let $\phi: \mathbb{Z}^*(p) \times \mathbb{Z}^*(q) \to \mathbb{Z}^*(pq)$ be defined by $\phi(a,b) = aq + bp \mod pq$. Obviously both sets are groups, so we only need to show the mapping is one-to-one and surjective.

To show ϕ is one-to-one, suppose $\phi(a,b)=\phi(c,d)$, then $aq+bp\equiv cq+dp\mod pq$. There is an integer k such that (a-c)q+(b-d)p=kpq. Rearrange to get (a-c)q=p(kq-b+d). Since p and q are relatively prime, p divides a-c, hence $a\equiv c\pmod p$. Similarly $b\equiv d\pmod q$.

To show ϕ is surjective, we first let x,y be integers such that $py+qx\equiv 1\pmod p$ q with $x\in\mathbb{Z}^*(p)$ and $y\in\mathbb{Z}^*(q)$. For any $z\in\mathbb{Z}^*(pq)$, we can write $z=z\cdot 1=z(py+qx)=zpy+zqx$. We find that $\phi(zx,zy)=z$ just because z is both relatively prime to p and q.

- 4. (Skipped)
- 5. If n is a positive integer, show that

$$n = \sum_{d|n} \varphi(d),$$

where φ is the Euler phi-function.

Solution: For any $1 \le d \le n$, if d is a divisor of n, then $\varphi(n/d)$ is the number of integers $1 \le k \le n/d$ such that $\gcd(k, n/d) = 1$. Let m = kd, then we have $\gcd(m, n) = d$. We see there are exactly $\varphi(n/d)$ integers m satisfying $\gcd(m, n) = d$.

Obviously for each $1 \le m \le n$, gcd(m, n) is a divisor of d, so we actually have

$$n = \sum_{d|n} \varphi(n/d) = \sum_{d|n} \varphi(d).$$

6. (Skipped)

7. Recall that for |z| < 1,

$$\log_1\left(\frac{1}{1-z}\right) = \sum_{k>1} \frac{z^k}{k}.$$

We have seen that

$$e^{\log_1\left(\frac{1}{1-z}\right)} = \frac{1}{1-z}.$$

(a) Show that if w = 1/(1-z), then |z| < 1 if and only if $\Re(w) > 1/2$.

Solution: We rearrange to see z=1-1/w, so |z|<1 iff $1-\frac{1}{w}-\frac{1}{\bar{w}}+\frac{1}{|w|^2}<1$, we then have

$$\frac{1}{|w|^2} < \frac{1}{w} + \frac{1}{\bar{w}} = \frac{w + \bar{w}}{|w|^2} = \frac{2\Re(w)}{|w|^2}.$$

Since the above derivation are all equivalent, we have |z| < 1 iff $\Re(w) > 1/2$.

(b) Show that if $\Re(w) > 1/2$ and $w = \rho e^{i\varphi}$ with $\rho > 0, |\varphi| < \pi$, then

$$\log_1 w = \log \rho + i\varphi.$$

Solution: We have $e^{\log_1 w} = w$, so there is an integer k such that $\log_1 w = \log \rho + i(2\pi + \varphi)$. Now view $\log_1 w$ as a function of φ , when $\varphi = 0$ we have that $\log_1 w$ is real, and is exactly $\log \rho$, since k is an integer, it must be zero.

- 8. Let ζ denote the zeta function defined for s > 1.
 - (a) Compare $\zeta(s)$ with $\int_1^\infty x^{-s} dx$ to show that

$$\zeta(s) = \frac{1}{s-1} + O(1)$$
 as $s \to 1^+$.

Solution: For each integer $N \geq 2$ we let $\zeta_N(s) = \sum_{n=1}^N n^{-s}$, we have

$$\zeta_N(s) \le 1 + \sum_{n=2}^N \int_{n-1}^n x^{-s} dx$$

$$= 1 + \int_1^N x^{-s} dx$$

$$= 1 + \frac{1}{s-1} - \frac{1}{(s-1)N^{s-1}}$$

$$< 1 + \frac{1}{s-1}.$$

By letting $N \to \infty$, we see $\zeta(s) \le \frac{1}{s-1} + 1$ for every s > 1. Similarly, if we fixed s > 1, we have

$$\zeta_N(s) \ge \int_1^{N+1} x^{-s} dx = \frac{1}{s-1} - \frac{1}{(s-1)(N+1)^{s-1}} \implies \zeta(s) \ge \frac{1}{s-1}.$$

Hence this also hold for every s > 1. Note that we actually proved something stronger:

$$\frac{1}{s-1} \le \zeta(s) \le \frac{1}{s-1} + 1.$$

(b) Prove as a consequence that

$$\sum_{p} \frac{1}{p^s} = \log\left(\frac{1}{s-1}\right) + O(1) \quad \text{as } s \to 1^+.$$

Solution: Note that $\zeta(s) = \prod_p \frac{1}{1-p^{-s}}$, taking logarithm both sides give us

$$\log \zeta(s) = -\sum_{p} \log \left(1 - \frac{1}{p^s} \right)$$
$$= \sum_{p} \left(\frac{1}{p^s} + \sum_{k \ge 2} \frac{1}{kp^{ks}} \right)$$

The second term can be bounded as below:

$$0 \le \sum_{k \ge 2} \frac{1}{kp^{ks}} \le \frac{1}{2} \sum_{k \ge 2} \frac{1}{p^{ks}} = \frac{1}{2} \cdot \frac{p^{-2s}}{1 - p^{-s}} \le p^{-2s}$$

which gives us

$$\log \zeta(s) = \sum_{p} \frac{1}{p^{s}} + \sum_{p} O\left(\frac{1}{p^{2s}}\right) = \sum_{p} \frac{1}{p^{s}} + O(1).$$

When taking $s \to 1^+$, we have proved the result.