CAPÍTULO 2. O SISTEMA DE NÚMEROS NATURAIS

Sumário

1.	Axiomas de Peano	1
2.	Adição e multiplicação	3
3.	Relação de ordem	5
4.	Boa ordenação e o segundo princípio de indução	6
5.	Conjuntos finitos e infinitos	8

Intuitivamente, os números naturais são: 0, o que vem a seguir de 0 chamado 1, depois de 1 a seguir é 2, ... e assim por diante ...

Formalmente, o conjunto de números naturais é definido pelos axiomas de Peano.

1. Axiomas de Peano

Um conjunto \mathbb{N} , junto com uma função $s \colon \mathbb{N} \to \mathbb{N}$ (chamada sucessor) representa um sistema de números naturais se as seguintes propriedades (axiomas) são satisfeitas:

P1. Existe um único elemento, denotado por 0, que não é o sucessor de nenhum outro elemento, ou seja,

$$s(n) \neq 0$$
 para todo $n \in \mathbb{N}$, e para todo $m \neq 0$ existe $n \in \mathbb{N}$ tal que $s(n) = m$.

- P2. s é injetiva, ou seja, se s(m) = s(n) então m = n. Em outras palavras, dois números que têm o mesmo sucessor são iguais.
- P3. (Princípio da indução) Se $X \subset \mathbb{N}$ é um subconjunto tal que:
 - \bullet $0 \in X$
 - \blacksquare se para todo $n \in X$ tem-se também que $s(n) \in X$ então $X = \mathbb{N}.$

Lema 1.1. Para todo $n \in \mathbb{N}$, $s(n) \neq n$, ou seja, todo número natural é diferente do seu sucessor.

Demonstração. Seja

$$X=\{n\in\mathbb{N}:s(n)\neq n\}.$$

- $0 \in X$ já que 0 não é o sucessor de nenhum número, e em particular, $s(0) \neq 0$.
- Suponha que $n \in X$, ou seja, $s(n) \neq n$.

Como S é injetiva, segue que

$$s(s(n)) \neq s(n),$$

portanto $s(n) \in X$.

Pelo princípio da indução, $X = \mathbb{N}$, ou seja, $s(n) \neq n$ para todo $n \in \mathbb{N}$.

Observação 1.1. O princípio da indução pode ser enunciado da seguinte maneira equivalente. Seja P(n) uma propriedade que se refere aos números naturais. Suponha que as seguintes afirmações sejam válidas:

■ Base de indução (ou 1º passo) P(0) é verdadeira

■ Passo indutivo

Suponha que P(n) seja verdadeira (hipótese de indução).

A partir dessa hipótese, prova-se que P(s(n)) seja verdadeira.

Então pelo princípio da indução, P(n) é verdadeira para todo $n \in \mathbb{N}$.

De fato, se definimos

$$X = \{n \in \mathbb{N} : P(n) \text{ \'e verdadeira}\},$$

tem-se:

- \bullet $0 \in X$
- Se $n \in X$ então $s(n) \in X$.

Logo, pelo princípio da indução, $X = \mathbb{N}$, ou seja, P(n) é verdadeira para todo $n \in \mathbb{N}$.

Exemplo 1.2. Prove que se $x \neq 1$,

$$1 + x + \dots + x^n = \frac{x^{n+1} - 1}{x - 1} \quad \forall n \in \mathbb{N}.$$

Ou seja, prove que a propriedade/fórmula P(n):

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$$

vale para todo $n \in \mathbb{N}$.

Demonstração. Usamos o princípio da indução.

■ 1° passo, ou seja, o caso n=0.

A propriedade P(0) significa $1 = \frac{x-1}{x-1}$, que é claramente válida se $x \neq 1$.

■ Passo indutivo.

Suponha que P(n) valha, ou seja

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}.$$

Vamos provar que P(n+1) vale também. Tem-se

$$\sum_{k=0}^{n+1} x^k = \sum_{k=0}^n x^k + x^{n+1}$$

$$= \frac{x^{n+1} - 1}{x - 1} + x^{n+1} \quad \text{(pela hipótese indutiva)}$$

$$= \frac{x^{n+1} - 1}{x - 1} + \frac{x^{n+1}(x - 1)}{x - 1}$$

$$= \frac{x^{n+1} - 1 + x^{n+2} - x^{n+1}}{x - 1}$$

$$= \frac{x^{n+2} - 1}{x - 1},$$

provando que P(n+1) é válida.

Pelo princípio da indução, a fórmula P(n) vale para todo $n \in \mathbb{N}$.

2. ADIÇÃO E MULTIPLICAÇÃO

Dado um número natural m, definimos a soma m+0 como sendo m, a soma m+1 como sendo o sucessor s(m) de m, a soma m+2 como sendo o sucessor de m+1 e assim por diante. Formalmente, a adição por n é definida por indução.

Definição 2.1. Seja $m \in \mathbb{N}$. Então

- m + 0 = m.
- Se m + n foi definido, então m + s(n) = s(m + n).

Observe que m+1=m+s(0)=s(m), isto é, m+1 é o sucessor de m. Então em argumentos por indução, em geral escreveremos m+1 em vez de s(m).

A adição de números naturais satisfaz as seguintes propriedades.

Proposição 2.1. Sejam $m, p, n \in \mathbb{N}$.

- (i) (associatividade) (m+p) + n = m + (p+n).
- (ii) (comutatividade) m + n = n + m.
- (iii) Se m + n = p + n então m = p.

Demonstração. Vamos provar (i) e (iii). O item (ii) é exercício.

(i) Fixemos $m, p \in \mathbb{N}$ e provemos a seguinte propriedade para todo $n \in \mathbb{N}$.

$$P(n)$$
: $(m+p) + n = m + (p+n)$.

Usamos indução matemática.

- Base da indução: seja n=0. Então (m+p)+0=m+p=m+(p+0), logo P(0) vale.
- \blacksquare Passo de indução: suponha que P(n) seja verdadeiro, isto é,

$$(m+p) + n = m + (p+n).$$

Vamos provar P(s(n)). De fato.

$$(m+p)+s(n)=s((m+p)+n)$$
 (pela definição da adição)
= $s(m+(p+n))$ (pela hipótese de indução)
= $m+s(p+n)$ (pela definição da adição)
= $m+(p+s(n))$ (de novo pela definição da adição)

o que estabelece P(s(n)).

Pelo princípio da indução, (m+p)+n=m+(p+n) vale para todo $n\in\mathbb{N}$.

(iii) Fixamos $m, p \in \mathbb{N}$ e vamos provar por indução em $n \in \mathbb{N}$ que

se
$$m + n = p + n$$
 então $m = p$.

■ Base de indução: n = 0.

Se m + 0 = p + 0 então claramente m = p.

■ Passo de indução: suponha a afirmação verdadeira para $n \in \mathbb{N}$, ou seja, se m+n=p+n então m=p.

Vamos provar a afirmação para s(n). De fato, se

$$m + s(n) = p + s(n),$$

então pela definição da adição tem-se s(m+n) = s(p+n).

Mas como a função sucessão é injetiva, segue que

m+n=p+n, e pela hipótese de indução concluímos que m=p.

Pelo princípio de indução, a conclusão segue.

Seja m um número natural. Definimos $m \cdot 0 = 0$, $m \cdot 1 = m$, $m \cdot 2 = m + m$, $m \cdot 3 = m + m + m$ e etc. Formalmente, a multiplicação de números naturais é definida por indução como seguinte.

Definição 2.2. Seja $m \in \mathbb{N}$. Então,

- $m \cdot 0 = 0$
- Se $m \cdot n$ já foi definido então definimos $m \cdot s(n) = m \cdot n + m$.

Como s(n) = n + 1, temos que $m \cdot (n + 1) = m \cdot n + m$.

Em particular, $m \cdot 1 = m \cdot 0 + m = 0 + m = m$, $m \cdot 2 = m \cdot 1 + m = m + m$ e etc., como intuitivamente esperado.

A multiplicação de números naturais satisfaz as seguintes propriedades.

Proposição 2.2. Sejam $m, p, n \in \mathbb{N}$.

- (i) (distributividade) $m \cdot (p+n) = m \cdot p + m \cdot n$
- (ii) (associatividade) $m \cdot (p \cdot n) = (m \cdot p) \cdot n$
- (iii) (comutatividade) $m \cdot n = n \cdot m$
- (iv) Se $m \cdot p = n \cdot p$ e $p \neq 0$ então m = n.

Demonstração. Vamos provar a distributividade e deixar as outras propriedades como exercícios.

(i) Fixamos $m, p \in \mathbb{N}$ e vamos provar por indução que $\forall n \in \mathbb{N}$,

$$m \cdot (p+n) = m \cdot p + m \cdot n.$$

■ Base de indução: n = 0. Temos

$$m \cdot (p+0) = m \cdot p = m \cdot p + m \cdot 0.$$

■ Passo de indução: suponha que

$$m \cdot (p+n) = m \cdot p + m \cdot n.$$

Vamos provar a mesma propriedade para s(n). De fato,

$$m \cdot (p + s(n)) = m \cdot s(p + n)$$

$$= m \cdot (p + n) + m$$

$$= (m \cdot p + m \cdot n) + m$$

$$= m \cdot p + (m \cdot n + m)$$

$$= m \cdot p + m \cdot s(n).$$

Pelo princípio da indução, a distributividade vale para todo $n \in \mathbb{N}$.

Observação 2.1. Pelo princípio da indução, dada uma propriedade P(n) que se refere aos números naturais, para provar que ela seja verdadeira para todo $n \geq n_0$ basta provar as seguintes afirmações:

- 1) Base de indução. $P(n_0)$ é verdadeira.
- 2) Passo indutivo. Suponha que P(n) seja verdadeira para algum $n \ge n_0$. Então P(s(n)) é verdadeira.

De fato, podemos definir o conjunto

$$X = \{m \in \mathbb{N} : P(n_0 + m) \text{ \'e verdadeira}\}.$$

Temos que:

- $0 \in X$ já que $P(n_0)$ é verdadeira (pela base de indução).
- Se $m \in X$, então para $n := n_0 + m$ temos que $P(n) = P(n_0 + m)$ é verdadeira. Então, pelo passo indutivo, $P(n+1) = P(n_0 + m + 1)$ é verdadeira, ou seja, $m+1 \in X$.

Logo, $X = \mathbb{N}$, ou seja, P(n) é verdadeira para todo $n \geq n_0$.

Exemplo 2.1. Para todo $n \geq 1$,

$$1+2+...+n=\frac{n\cdot(n+1)}{2}$$
.

Na verdade deveríamos escrever a fórmula acima como

$$2 \cdot (1 + 2 + \dots + n) = n \cdot (n+1),$$

já que ainda não definimos frações.

Demonstração. Base de indução: começamos com n=1. A fórmula se torna $2\cdot 1=1\cdot 2$ que evidentemente vale.

Passo de indução: suponha que

$$2 \cdot (1 + 2 + \dots + n) = n \cdot (n+1)$$

e vamos provar o mesmo para n+1. De fato,

$$2 \cdot (1+2+...+n+(n+1)) = 2 \cdot (1+2+...+n) + 2 \cdot (n+1)$$

= $n \cdot (n+1) + 2 \cdot (n+1)$ (pela hipótese de indução)
= $(n+2) \cdot (n+1) = (n+1) \cdot (n+2)$.

Pelo princípio da indução, a fórmula vale para todo $n \ge 1$.

3. Relação de ordem

Intuitivamente, dados dois números naturais m e n, temos que $m \leq n$ se m vem antes de n na enumeração

$$0, 1, 2, \ldots, m, \ldots, n, \ldots$$

dos números naturais, ou seja, se n=m ou se n é o sucessor de m, ou se n é o sucessor do sucessor de m, ou ... Formalmente,

Definição 3.1. $m \leq n$ se existe $k \in \mathbb{N}$ tal que n = m + k.

Além disso, escrevemos m < n se $m \le n$ e $m \ne n$. Então m < n se e somente se existe $k \ne 0$ tal que n = m + k.

Ademais, $n \ge m$ significa $m \le n$ enquanto n > m significa m < n.

Proposição 3.1. A relação \leq é uma relação de ordem em \mathbb{N} .

Demonstração. Vamos verificar as três propriedades de uma relação de ordem.

- 1) Reflexividade: para todo $n \in \mathbb{N}$, tem-se $n \leq n$ já que n = n + 0.
- 2) Antissimetria: temos que provar que se $m \le n$ e $n \le m$ então m = n.

Como $m \leq n$, existe $k \in \mathbb{N}$ tal que n = m + k.

Como n < m, existe $l \in \mathbb{N}$ tal que m = n + l.

Portanto

$$n = m + k = (n + l) + k = n + (l + k),$$

e daí, k + l = 0.

Mas neste caso l=0. De fato, se $l\neq 0$ então l é o predecessor de algum número natural p, isto é, l=s(p), então

$$0 = k + l = k + s(p) = s(k + p),$$

contradição com o primeiro axioma de Peano.

Portanto l = 0 e daí m = n + 0 = n.

3) Transitividade: Sejam $m, n, p \in \mathbb{N}$ e suponha que $m \leq n$ e $n \leq p$. Então existem $k, l \in \mathbb{N}$ tais que n = m + k e p = n + l. Portanto

$$p = n + l = (m + k) + l = m + (k + l),$$

mostrando que $m \leq p$.

A relação de ordem é compatível com as operações algébricas, no sentido que

se
$$m \le n$$
 então $m + p \le n + p$ e $m \cdot p \le n \cdot p$.

De fato, $m \leq n$ implica a existência de $k \in \mathbb{N}$ tal que n = m + k. Logo

$$n + p = (m + k) + p = (m + p) + k$$

mostrando que $m + p \le n + p$.

Deixamos a outra relação como exercício.

A relação de ordem em \mathbb{N} é total, no sentido que quaisquer dois números naturais são comparáveis (um é menor do que ou igual ao outro). Isto não é verdadeiro para qualquer relação de ordem (por exemplo a inclusão de conjuntos não é uma ordem total: dados dois conjuntos $A \in B$, é possível que $A \not\subset B \in \mathcal{B} \not\subset A$).

Lema 3.1. Sejam $m, n \in \mathbb{N}$. Então $m \leq n$ ou $n \leq m$.

Demonstração. Fixemos $m \in \mathbb{N}$ e provemos por indução que todo número natural n é comparável com m.

- 1º passo: n = 0. Claramente $0 \le m$ porque m = 0 + m.
- Passo indutivo: suponha que para um número natural n, temos $m \le n$ ou $n \le m$. Vamos provar o mesmo para s(n) = n + 1.

Se $m \le n$, como n < n + 1, por transitividade temos $m \le n + 1$.

Se $n \leq m$, podemos supor que $n \neq m$ (o caso n = m já foi tratado acima).

Logo existe $k \neq 0$ tal que m = n + k.

Como $k \neq 0$, existe $l \in \mathbb{N}$ tal que k = s(l) = l + 1.

Então

$$m = n + (l + 1) = (n + 1) + l,$$

mostrando que $n+1 \leq m$.

Pelo princípio de indução, $m \leq n$ ou $n \leq m$ para todo $n \in \mathbb{N}$.

4. Boa ordenação e o segundo princípio de indução

Seja $X \subset \mathbb{N}$ um subconjunto de números naturais.

Definição 4.1. Um número natural p é um mínimo de X se $p \in X$ e $p \le n$ para todo $n \in \mathbb{N}$.

Observe que se X admite um mínimo, ele é único. De fato, se p,q são mínimos de X, então $p \leq q$ (porque o número $q \in \mathbb{N}$) e $q \leq p$ (porque $p \in \mathbb{N}$), logo p = q.

Exemplo 4.1. 0 é claramente o mínimo de \mathbb{N} .

7 é claramente o mínimo de $\{7, 10, 13\}$.

Similarmente, p é um máximo de X se $p \in X$ e $p \ge n$ para todo $n \in \mathbb{N}$. O máximo de um conjunto, se existir, deve ser único.

Exemplo 4.2. Claramente $13 \notin o \text{ máximo de } \{7, 10, 13\}.$

O conjunto de todos os números naturais N não admite um máximo.

De fato, suponha por contradição que $n \in \mathbb{N}$ seja o máximo de \mathbb{N} . Mas $n+1 \in \mathbb{N}$ e n+1 > n (claramente $n+1 \geq n$ e como foi provado no início do capítulo, $n+1 = s(n) \neq n$). Chegamos a uma contradição com o fato do número n ser o máximo de \mathbb{N} . Logo \mathbb{N} não tem máximo.

Enquanto subconjuntos de números naturais podem não admitir um máximo, o mínimo sempre existe, e esse resultado se chama o "Princípio da Boa Ordenação" dos números naturais.

Teorema 4.3 (O princípio da boa ordenação). *Todo subconjunto não vazio* $A \subset \mathbb{N}$ *possui um mínimo*.

Ideia da prova: vamos pensar num algoritmo para encontrar o mínimo de A.

- Se $0 \in A$, então 0 deve ser o mínimo de A.
- Se $0 \notin A$, o algoritmo verifique se $1 \in A$ ou $1 \notin A$. No primeiro caso, 1 deve ser o mínimo de A.
- Se 1 $\notin A$ mas 2 $\in A$ então 2 é o mínimo de A (já que 0 $\notin A$ e 1 $\notin A$).
- Se $0 \notin A, 1 \notin A, \ldots, n \notin A$, verificamos se $n+1 \in A$ ou $n+1 \notin A$ e assim por diante.

O algoritmo tem que parar; se não, esgotamos todos os números naturais. Este procedimento leva à seguinte prova formal.

Demonstração. Suponha por contradição que A não possui mínimo. Vamos provar por indução que para todo $n \in \mathbb{N}$,

```
P(n): 0 \notin A, 1 \notin A, ..., n \notin A.
```

1° passo: n = 0. $0 \notin A$ porque se $0 \in A$ então 0 seria o mínimo de A.

Passo indutivo: Suponha que P(n) valha, i.e.,

$$0 \notin A, 1 \notin A, ..., n \notin A.$$

Neste caso, se $n+1 \in A$ então n+1 seria o mínimo de A, já que todos os números menores do que n+1 não são elementos de A. Mas supomos que A não tenha mínimo, então $n+1 \notin A$. Logo $0 \notin A, 1 \notin A, ..., n \notin A$ e $n+1 \notin A$, ou seja, P(n+1) vale.

Pelo princípio de indução, P(n) vale para todo $n \in \mathbb{N}$. Em particular, $n \notin A \ \forall n \in \mathbb{N}$, isto é, $A = \emptyset$, uma contradição.

Logo, A possui um mínimo.

Usando o princípio da boa ordenação derivaremos um princípio de indução mais forte.

Teorema 4.4 (O segundo princípio de indução). Seja $X \subset \mathbb{N}$ e suponha que

- $0 \in X$.
- $se\ 0 \in X, \ldots, n \in X \ ent \tilde{ao}\ n+1 \in X.$

Nestas condições, $X = \mathbb{N}$.

Em outras palavras, o segundo princípio de indução nos permite trabalhar com uma hipótese de indução mais forte, a saber, em vez de apenas supor que $n \in X$, supomos que todos os números naturais menores do que ou iguais a n pertençam a \mathbb{N} .

Demonstração. Claramente $X = \mathbb{N}$ sse $X^c = \mathbb{N} \setminus X = \emptyset$.

Suponha por contradição que $X^c \neq \emptyset$. Então, pelo princípio da boa ordenação, existe um mínimo m de X^c .

Como $0 \in X$, tem-se $0 \notin X^c$ então $m \neq 0$.

Logo m = n + 1 para algum $n \in \mathbb{N}$.

Como n+1 é o mínimo de X^c , então necessariamente $0 \notin X^c, 1 \notin X^c, \ldots, n \notin X^c$, ou seja, $0 \in X, \ldots, n \in X$.

Mas neste caso, pela hipótese de indução, $n+1 \in X$, em contradição com o fato de que $n+1 \in X^c$.

Portanto
$$X^c = \emptyset$$
 e daí $X = \mathbb{N}$.

O segundo princípio de indução nos permite definir objetos por recorrência que depende de mais de um termo.

Exemplo 4.5 (A sequência de Fibonacci). Definimos $F_0=0,\ F_1=1$ e para todo $n\geq 1,\ F_{n+1}=F_n+F_{n-1}.$

Em outras palavras, $\{F_n\}_{n\geq 0}$ é definida por uma recorrência de ordem 2. Similarmente podemos definir recorrências de qualquer ordem.

Definição 4.2. Um número natural p é primo se $p \neq 1$ e p não se pode escrever como $p = m \cdot n$ com $m, n \in \mathbb{N}$, e m < p, n < p.

Por exemplo 2, 3, 5, 7, 11, 13 e etc. são números primos, mas $4=2\cdot 2$, $6=2\cdot 3$, $8=2\cdot 4$, $12=3\cdot 4$ e etc. não são primos.

Teorema 4.6. Todo número natural $n \ge 2$ ou é primo ou pode ser escrito como um produto de números primos.

Demonstração. Seja

 $X = \{n \geq 2 : n \text{ \'e primo ou pode ser decomposto como produto de primos } \}.$

Vamos provar por indução que X é o conjunto de todos os números naturais $n \geq 2$.

- 1º passo: n=2 já é primo, então $2 \in X$.
- Passo indutivo: suponha que $2, \ldots, n \in X$, ou seja, para todo $k \leq n, k \in X$. Vamos provar que $n+1 \in X$.

Se n+1 é primo, automaticamente $n+1 \in X$.

Se n+1 não é primo, então existem $k, l \in \mathbb{N}, k < n+1, l < n+1$ tais que $n+1=k \cdot l$.

Logo $k \le n$, $l \le n$, e pela hipótese indutiva, k e l são produtos de primos. Logo $n+1=k\cdot l$ também é um produto de primos.

Pelo 2° princípio de indução, todo número $n \geq 2$ é primo ou produto de primos.

5. Conjuntos finitos e infinitos

Intuitivamente, um conjunto X é finito se existe uma contagem x_1, x_2, \ldots, x_n dos seus elementos. Dado $n \in \mathbb{N}, n \geq 1$, denotemos por

$$I_n := \{1, 2, \dots, n\}$$

o conjunto dos primeiros n números naturais sem zero.

Definição 5.1. Um conjunto X é finito se ele é vazio ou existem $n \ge 1$ e uma função bijetiva $\varphi: I_n \to X$.

Neste caso, denotando, para todo $k \in I_n$, $\varphi(k) = x_k$, os elementos $x_1, x_2, ..., x_n$ são diferentes entre si (porque φ é injetiva) e para todo $x \in X$ existe $k \in I_n$ tal que $\varphi(k) = x$ (porque φ é sobrejetiva). Portanto

$$X = \{x_1, x_2, \dots, x_n\},\$$

mostrando que a definição formal corresponde à definição intuitiva do conceito de conjunto finito.

Vamos mostrar que se $\varphi: I_n \to X$ e $\psi: I_m \to X$ são funções bijetivas para alguns $n, m \ge 1$ então n = m. Esta afirmação vai ser uma consequência simples do seguinte teorema.

Teorema 5.1. Sejam $n \ge 1$ e $A \subset I_n$. Se existe $\varphi : I_n \to A$ bijetiva então $A = I_n$.

Demonstração. Vamos provar por indução em $n \geq 1$ a seguinte afirmação.

P(n): se $A \subset I_n$ e $\varphi: I_n \to A$ é bijetiva então $A = I_n$.

- 1° passo: n = 1. Se $A \subset I_1 = \{1\}$ então $A = \emptyset$ (impossível, neste caso não existe nenhuma função $\varphi : I_1 \to \emptyset$) ou $A = \{1\} = I_1$, o que queríamos mostrar.
 - Passo indutivo. Suponha P(n) verdadeira.

Sejam $A \subset I_{n+1}, \varphi : I_{n+1} \to A$ bijetiva e $a := \varphi(n+1) \in A$.

Analisemos dois casos.

1) Se $A \setminus \{a\} \subset I_n$, a restrição $\tilde{\varphi}: I_n \to A \setminus \{a\}, \ \tilde{\varphi}(k) = \varphi(k)$ para todo $k \in I_n$, claramente é bijetiva, e como $A \setminus \{a\} \subset I_n$, a hipótese de indução é aplicável e temos que

$$A \setminus \{a\} = I_n$$
.

Mas $A \subset I_{n+1}$, então necessariamente a = n + 1 e daí $A = I_{n+1}$.

2) $A \setminus \{a\} \not\subset I_n$.

Como $A \subset I_{n+1}$, segue que $n+1 \in A \setminus \{a\}$.

A função φ sendo sobrejetiva, existe $p \in I_n$ tal que $\varphi(p) = n + 1$.

Definimos a função $\tilde{\varphi}: I_n \to A \setminus \{a\}$ por

 $\tilde{\varphi}(p) = a$

e $\tilde{\varphi}(j) = \varphi(j)$ para todo $j \neq p$.

É fácil verificar que $\tilde{\varphi}$ é bijetiva (usando a bijetividade de φ).

A hipótese indutiva é aplicável, já que $A \setminus \{a\} \subset I_n$.

Logo $A \setminus \{a\} = I_n$, e daí $A = I_{n+1}$.

Pelo princípio da indução concluímos a prova do teorema.

Corolário 5.2. Se $\varphi: I_n \to X$ e $\psi: I_m \to X$ são funções bijetivas para alguns $n, m \ge 1$ então n = m.

Demonstração. Para fixar ideias suponha que $m \leq n$. Então $I_m \subset I_n$. Temos:

$$I_n \xrightarrow{\varphi} X \xrightarrow{\psi^{-1}} I_m$$

então a função $\varphi:I_n\to I_m$

 $f = \psi^{-1} \circ \varphi$ é bijetiva, com $I_m \subset I_n$. Pelo teorema anterior, $I_m = I_n$, logo m = n.

Corolário 5.3. Não pode existir uma bijeção $\varphi: X \to Y$ de um conjunto finito X para um subconjunto próprio $Y \subsetneq X$.

Demonstração. De fato, se $\varphi:I_n\to X$ é uma bijeção e $Y\subsetneq X$ então a pré-imagem

$$A := \varphi^{-1}(Y) \subset I_n$$

é um subconjunto próprio de I_n .

Definimos

$$g = \varphi^{-1} \circ f \circ \varphi.$$

Então a restrição $\tilde{\varphi}: A \to Y, \ \tilde{\varphi}(x) = \varphi(x)$ para todo $x \in A$ é uma bijeção.

Portanto $g: I_n \to A$ é uma bijeção. Como $A \subset I_n$, pelo teorema anterior $A = I_n$, contradição com o fato de A ser um subconjunto próprio de I_n .

Definição 5.2. Seja X um conjunto finito.

Se existem $n \ge 1$ e $f: I_n \to X$ bijetiva, então n é o número de elementos, ou a cardinalidade de X e escrevemos card X = n.

Se $X = \emptyset$ definimos sua cardinalidade card X como 0.

Observação 5.1. Se $f: X \to Y$ é uma bijeção e X é finito, então Y é finito também e card Y = card X.

De fato, existem $n \geq 1$ e $\phi: I_n \to X$ é uma bijeção, então

$$I_n \xrightarrow{\phi} X \xrightarrow{f} Y,$$

logo $f \circ \phi: I_n \to Y$ é bijetiva, mostrando que Y é finito e

$$\operatorname{card} Y = n = \operatorname{card} X.$$

Teorema 5.4. Todo subconjunto de um conjunto finito é finito também, ou seja, se X é finito e $Y \subset X$ então Y é finito.

Além disso,

$$card Y < card X$$
.

Demonstração. Basta provar o teorema para $X = I_n$, onde $n \ge 1$. Usamos indução.

n=1. Se $Y\subset I_1=\{1\}$ então $Y=\emptyset$ ou $Y=I_1$, logo Y é finito.

- $n \to n+1$. Seja $Y \subset I_{n+1}$. Analisamos dois casos.
 - 1) $n+1 \notin Y$. Então $Y \subset I_n$. Pela hipótese indutiva, card $Y \leq n < n+1$.
 - 2) $n+1 \in Y$. Então

$$Y' = Y \setminus \{n+1\} \subset I_n.$$

Pela hipótese indutiva, Y' é finito, e card $Y' \leq n$.

Seja $p=\operatorname{card} Y'$. Então existe $\varphi:I_p\to Y'$ bijetiva. Considere a extensão $\tilde{\varphi}:I_{p+1}\to Y,$ $\tilde{\varphi}(k)=\varphi(k)$ se $k\in I_p$ e $\tilde{\varphi}(p+1)=n+1.$

Então claramente $\tilde{\varphi}$ é bijetiva, logo Y é finito e

card
$$Y = p + 1 \le n + 1$$
.

Teorema 5.5. Se X, Y são conjuntos finitos disjuntos, então $X \cup Y$ é finito e card $(X \cup Y) = card \ X + card \ Y$.

Demonstração. Se $X = \emptyset$ ou $Y = \emptyset$ a afirmação é evidente. Então vamos supor que $X \neq \emptyset$ e $Y \neq \emptyset$ e sejam $n = \operatorname{card} X$, $m = \operatorname{card} Y$.

Existem $\varphi: I_n \to X \in \psi: I_m \to Y$ bijetivas. Definimos $f: I_{n+m} \to X \cup Y$ por

$$f(k) = \begin{cases} \varphi(k) & \text{se } k \in \{1, ..., n\} \\ \psi(k-n) & \text{se } k \in \{n+1, ..., n+m\} \end{cases}$$

Claramente f é bijetiva, logo $X \cup Y$ é finito e card $(X \cup Y) = n + m$.