Linear Algebra-2

Agenda ö-

- Vectors

- Nooms

- Matrix moltiplication

- Dot Product - Angle b/w 2 Vectors

Recap

line
$$y = m_1 \propto + C$$

$$w_1 \propto 1 + w_2 \propto 2 + w_0 = 0$$

$$m_1 \cdot m_2 = -1$$

Which of the following statements is true about perpendicular lines in a Cartesian coordinate system?

34 users have participated

A	Perpendicular lines have the same slope.	12%
В	Perpendicular lines intersect at a 45-degree angle.	18%
/c	Perpendicular lines have slopes that are negative reciprocals of each other.	62%
D	Perpendicular lines never intersect.	9%

End Quiz Now

$$l_1: 3x - 2y + 6 = 0$$

$$l_2: 9x - 6y - 18 = 0$$
 $m = -\frac{v_1}{w_2}$

$$3x - 2y + 6 = 0$$

 $-2y = -3x - 6$

 $y = \left(\frac{3}{2}\right)x + 3$

= filding Best line

2 features

WIX1 + W2 X2 + W0 = 0

$$\omega_{1} \times (10) \times 100 \times 3 + \omega_{2} = 0$$

$$\omega_{0} = 0 \quad \rightarrow \text{ Line}$$

$$(30) \ \omega_{1} x_{1} + \omega_{2} x_{2} + \omega_{0} = 0 - \frac{1}{2}$$

$$(30) \ \omega_{1} x_{1} + \omega_{2} x_{2} + \omega_{3} x_{3} + \omega_{0} = \frac{1}{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

(aD) w1x1 + w2x2 + w3x3 + ... + wdxa+

Physics -> dir" + magnitude

Maths (C.S -> Storing data

C. s -> Store info,

Collection of Numbers

income age Loan Tonge Credit Swri

$$\frac{1}{2} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\frac{1}{3c} = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_d \end{bmatrix}$$
Row Vector

$$x \in \mathbb{R}^d$$
 \rightarrow # elements in Uctor
$$= d$$

$$4.5 \in \mathbb{R}^1$$

$$= d$$

C=[2,-3]

$$B = \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \lambda \operatorname{en}(B) = \sqrt{4^2 + 1^2}$$

$$\Rightarrow \sqrt{17}$$

$$\operatorname{leng m of Vector}$$

 $\|\vec{x}\|_{2} = \int x_{1}^{2} + x_{2}^{2} + \dots + x_{d}^{2}$

L1 Noom (311) = |X1| + |X2| + |X3| + ... + |X4|

length of vector

Norm of a vector =

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} = ||x|| = \int x_1^2 + x_2^2 + \dots + x_d^2$$

$$\begin{bmatrix} S-1 \\ S-1 \end{bmatrix} = \begin{bmatrix} 4 \\ S \end{bmatrix}$$

 $A = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $B = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$

$$L_{2} Dist(A,0) \begin{bmatrix} S-1 \\ 3-1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$L_{1} Dist(A,B) = \begin{bmatrix} S-1 \\ 3-1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

(5,0)

x = [143]

$$\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} \qquad \chi = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}$$

$$\omega^{\mathsf{T}} = \left[\omega_1 \ \omega_2 \ \omega_3 \right]$$

w.x

 $= \mathcal{I}\left(\mathcal{W}_{1} \ \mathcal{W}_{2} \ \mathcal{G}_{3}\right) \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$

= WIXI + WZXZ + WZXZ

$$dot(\omega,x) \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}$$

$$dot(\omega^{T},x) \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$(2 \times 3)$$

$$A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
 (3,2)

A. B = (
$$m_1 n$$
) (m, c) = (m, c)

ω in T^{4} = # rows in T^{nd}

Image Similarity illo image 50 dim Dog Cat phae I maps -> [-] Dot Product) dot (Vog, Voot) = T Volug= [22] Similarity x 24 dot (1800 (1

Angle blu 2 Vectors
$$\vec{a} \cdot \vec{b} = a^T b$$

$$||\alpha|| ||b||$$

$$||\alpha|| ||b||$$

$$||\alpha|| ||b||$$

Coordivate Gern & Linear Algebra

Unit Vector

$$\begin{vmatrix}
1 & 3 \\
3
\end{vmatrix} = \begin{vmatrix} 4 \\
3 \end{vmatrix}$$

$$||\hat{\omega}|| = 1$$

$$||\hat{\omega}|| = \sqrt{4^{2}+3^{2}}$$

$$||\hat{\omega}|| = \frac{3}{11||||||}$$

$$||\hat{\omega}|| = \sqrt{\frac{4}{5}} \cdot \frac{3}{5} \cdot \frac{16+9}{15} = 1$$

$$||\hat{\omega}|| = \sqrt{\frac{4}{5}} \cdot \frac{3}{5} \cdot \frac{16+9}{15} = 1$$

Respondicular

(opp.)

10

Base

(A-djacout)

Projection of
$$\frac{1}{2}$$
 onto $\frac{1}{2}$ (shadow)

Projection of $\frac{1}{2}$ onto $\frac{1}{2}$ (shadow)

Proj $\frac{1}{2}$ \frac

 $\vec{x} \cdot \vec{y} = x^T y$

11 x 11

Pajection of a Vector -> [PCA]

$$\int_{y^{2}} \frac{x}{|y|} = \frac{11}{|x|} \frac{|x|}{|x|} = \frac{11}{|x|} \frac{|x|}{|x|} = \frac{11}{|x|} \frac{|x|}{|x|} = \frac{11}{|x|} = \frac{11}{|x|}$$