ASSIGNMENT 2

B.VANDANA

1. Importing Required Package

import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as pt

In [2]:

In [1]:

%matplotlib inline

2. Loading the Dataset

df = pd.read_csv('C:\\Users\\Sandhya Jayaraman\\Downloads\\Churn_Modelling.csv')
df

RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimate
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	

RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estimate
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

10000 rows × 14 columns

3. Visualizations

3.1 Univariate Analysis

sns.displot(df.Tenure)

<seaborn.axisgrid.FacetGrid at 0x1f11cee0b48>

In [8]:

Out[8]:

3.2 Bi-Variate Analysis

df.plot.line()

ar • proc • rriic ()

<AxesSubplot:>

In [9]:

Out[9]:

3.3 Multi - Variate Analysis

In [10]:

sns.lmplot("Age", "NumOfProducts", df, hue="NumOfProducts", fit_reg=False);

c:\users\sandhya jayaraman\appdata\local\programs\python\python37\lib\site-packages\seaborn_decorato rs.py:43: FutureWarning: Pass the following variables as keyword args: x, y, data. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit ke yword will result in an error or misinterpretation.

RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
			0.70.00000		10.000000			4.000.00	4.00000	40000	4.00000

250898.090000

4.000000

1.000000

1.000000

199992.480000

1.000000

5. Handle the Missing values

92.0000000

max 10000.00000 1.581569e+07 850.000000

```
data = pd.read_csv('C:\\Users\\Sandhya Jayaraman\\Downloads\\Churn_Modelling.csv')
pd.isnull(data["Gender"])
0     False
1     False
2     False
3     False
4     False
...
9995     False
```

10.0000000

```
9996    False
9997    False
9998    False
9999    False
```

2 15647311

6. Find the outliers and replace the outliers

7. Check for Categorical columns and perform encoding

pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"]).head()

Spain

RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	•••	Gender_78	Gender_79	Gender_80	Gender_81
0	1	15634602	Hargrave	619	France	2	0.00	1	1	1		0	0	0

83807.86

RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	•••	Gender_78	Gender_79	Gender_80	Gender_81
2	3	15619304	Onio	502	France	8	159660.80	3	1	0		0	0	0
3	4	15701354	Boni	699	France	1	0.00	2	0	0		0	0	0
4	5	15737888	Mitchell	850	Spain	2	125510.82	1	1	1		0	0	0

Gender_82	Gender_83	Gender_84	Gender_85	Gender_88 G	ender_92
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

8. Split the data into dependent and independent variables

8.1 Split the data into Independent variables

X = df.iloc[:, :-2].values
print(X)
[[1 15634602 'Hargrave' ... 1 1 1]
 [2 15647311 'Hill' ... 1 0 1]
 [3 15619304 'Onio' ... 3 1 0]
 ...
 [9998 15584532 'Liu' ... 1 0 1]
 [9999 15682355 'Sabbatini' ... 2 1 0]
 [10000 15628319 'Walker' ... 1 1 0]]

8.2 Split the data into Dependent variables

```
import pandas as pd

df = pd.read_csv('C:\\Users\\Sandhya Jayaraman\\Downloads\\Churn_Modelling.csv')

Y = df.iloc[:, -1].values
print(Y)
[1 0 1 ... 1 1 0]
```

9. Scale the independent variables

scaler=MinMaxScaler()

from sklearn.preprocessing import MinMaxScaler

df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
print(df)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age \
0	0.0000	15634602	Hargrave	e 61	l9 Franc	e Female	42
1	0.0001	1 15647311	Hill	L 60)8 Spai	n Female	41
2	0.0002	2 15619304	Onio	5 ()2 Franc	e Female	42
3	0.0003	3 15701354	Bon	Ĺ 69	99 Franc	e Female	39
4	0.0004	15737888	Mitchell	L 8:	50 Spai	n Female	43
999	5 0.9996	6 15606229	Obijiakı	ı 7	71 Franc	e Male	39
999	6 0.999	7 15569892	Johnstone	e 51	l6 Franc	e Male	35
999	7 0.9998	8 15584532	Liı	ı 70)9 Franc	e Female	36
999	0.9999	9 15682355	Sabbatin	L 7	72 German	y Male	42
999	9 1.0000	15628319	Walker	79	92 Franc	e Female	28

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	
9995	5	0.00	2	1	0	
9996	10	57369.61	1	1	1	
9997	7	0.00	1	0	1	
9998	3	75075.31	2	1	0	
9999	4	130142.79	1	1	0	

EstimatedSalary Exited

0 101348.88 1

1 112542.58 0

2 113931.57 1

3 93826.63 0

4 79084.10 0

...

9995 96270.64 0

9996 101699.77 0

9997 42085.58 1

9998 92888.52 1

9999 38190.78 0

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
train size=0.8
X = df.drop(columns = ['Tenure']).copy()
y = df['Tenure']
X train, X rem, y train, y rem = train test split(X,y, train size=0.8)
test size = 0.5
X valid, X test, y valid, y test = train test split(X rem, y rem, test size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
(None, None)
```

Out[20]: