Attorney Docket No.: 1463-CA

WHAT IS CLAIMED IS:

1	1. A delta-sigma modulation system comprising:					
2	an M-order filter to process input data, wherein M is greater than or equal to 3;					
3	an N-order filter that is stable during overload conditions; and					
4	a quantizer system coupled to the M-order and N-order filters to receive input					
5	data from the M-order and N-order filters, provide quantized feedback					
6	data, q _M , to the M-order filter, provide quantized feedback data, q _N , to					
7 .	the N-order filter, and provide two state quantization output data q,					
8	wherein $q = q_M + q_N$.					
1	2. The delta-sigma modulation system of claim 1 wherein a maximum					
2	value of feedback data q_M is greater than a maximum value of output data q , and a					
3	minimum value of feedback data q_M is less than a minimum value of output data q .					
1	3. The delta-sigma modulation system of claim 1 wherein q is an element					
2	of the logical value set $[+1, -1]$, a maximum value of feedback data q_M is greater than					
3	+1, and a minimum value of feedback data q_M is less than -1.					
1	4. The delta-sigma modulation system of claim 3 wherein feedback data					
2 .	q_M and q_N are integers.					
1	5 The delta signed and delta acceptance of alaine 2 subsection for dhealt date					
1	5. The delta-sigma modulation system of claim 3 wherein feedback data					
2	q_M and q_N are real numbers including non-integers.					
1	6. The delta-sigma modulation system of claim 1 wherein N equals 2.					
1 .	7. The delta-sigma modulation system of claim 1 further wherein the					
2	input signal is a decimated version of a digital audio signal.					
1 .	8. The delta-sigma modulation system of claim 1 wherein the input signa					
2	is a digital input signal.					

2	with stability protection during quantizer overload conditions, the system comprising:				
3	an M-order loop filter to process a sum of input data and feedback data, q _M ,				
4	wherein M is more than two;				
5	an N-order loop filter to process feedback data, q _N , wherein N is selected from				
6	the group consisting of one and two;				
7	a rules based 1-bit quantizer to process output data from the N-order loop filte				
8	and M-order filter and to provide q _M , q _N , and 1-bit quantized output				
9	data, q, wherein $q = q_M + q_N$, and q_{Mmax} is greater than the maximum				
10	value of q and q_{Mmin} is less than the minimum value of q to maintain				
11	stability of the M-order loop filter during overload conditions.				
1	10. The digital signal processing system of claim 9 wherein overload				
2	conditions include conditions wherein a significant probability exists that input data to				
3	the quantizer will cause the M-order filter to become unstable if q_{M} does not exceed				
4	the maximum range of q.				
1	11. A digital signal processing system comprising:				
2	an M-order filter to process input data, wherein M is greater than 2;				
. 3	an N-order filter that is stable during overload conditions; and				
4	a quantizer system coupled to the M-order and N-order filters to receive input				
5	data from the M-order and N-order filters, provide quantized feedback				
6	data to the M-order filter, provide quantized feedback data to the N-				
7	order filter, and provide two state quantization output data, wherein the				
8	quantization output data approximately equals the feedback data to the				
9	M-order filter plus the feedback data to the N-order filter.				
1	12. The digital signal processing system of claim 11 wherein a maximum				
2	value of feedback data is greater than a maximum value of output data, and a				
3	minimum value of feedback data is less than a minimum value of output data.				

A digital signal processing system having a delta-sigma modulator

9.

1

1		13.	A method of maintaining stability of a 1-bit delta-sigma modulation			
2	system under overload conditions, the method comprising:					
3	providing quantized output data using output data of an M-order filter and					
4			output data of an N-order filter, wherein M is greater than or equal to 3			
5			and the N-order filter is stable under overload conditions;			
6	,	provid	ing feedback data, q _M , to the N-order filter;			
7	•	providing feedback data q _N to the N-order filter; and				
8	- A	providing 1-bit quantization output data, q, wherein q equals $q_N + q_M$.				
1		14.	The method of claim 13 wherein a maximum value of feedback data			
2	q _M is g	q _M is greater than a maximum value of output data q, and a minimum value of				
3	feedback data q_M is less than a minimum value of output data q .					
1		15.	The method of claim 14 wherein feedback data q_{M} and q_{N} are integers.			
1	•	16.	The method of claim 14 wherein feedback data q_M and q_N are real			
2	numbers including non-integers.					
1		17.	The method of claim 13 wherein q is an element of the logical value			
2	set $[+1, -1]$, a maximum value of feedback data q_M is greater than $+1$, and a minimum					
3	value of feedback data q _M is less than -1.					
1	•	18.	The method of claim 13 wherein N equals 2.			
1		19.	The method of claim 13 further wherein the input signal is an			
2	oversa	mpled v	version of a digital audio signal.			
1	•	20.	The method of claim 13 further comprising:			
2	receiving a digital input signal;					
3	providing the digital input signal to the N-order filter; and					
4	converting the 1-bit quantization output data into encoded audio data.					

1 21. A method of maintaining stability of a 1-bit delta-sigma modulator 2 during overload conditions, wherein the 1-bit delta-sigma modulator comprises a 3 quantizer, an M-order loop filter, and an N-order loop filter, the method comprising: providing 1-bit output data, q, based on input data from an M-order loop filter 4 and an N-order loop filter, wherein M is greater than or equal to three 5 and N is selected to provide stability to the delta-sigma modulator 6 7 during overload conditions; detecting an overload condition of a quantizer; 8 providing appropriate feedback data, q_M, for the M-order loop filter to enable 9 10 the M-order loop filter to remain stable during the overload conditions, 11 wherein a maximum value of feedback data q_M is greater than the 12 maximum value of output data q; and providing compensating feedback data, q_N, for the N-order loop filter to 13 maintain an acceptable gain level of the quantizer. 14 22. 1 The method of claim 21 further comprising: 2 determining q_M and q_N using a predetermined set of rules. 1 23. The method of claim 21 wherein $q = q_M + q_N$.