

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 38/00, 39/385, 45/00, 45/05, C07K 7/00, 14/00, 14/82		A1	(11) International Publication Number: WO 96/10413 (43) International Publication Date: 11 April 1996 (11.04.96)
(21) International Application Number: PCT/US95/12463 (22) International Filing Date: 27 September 1995 (27.09.95)		(81) Designated States: AU, CA, CN, FI, JP, NO, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 08/315,961 30 September 1994 (30.09.94) US		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(71) Applicant: LUDWIG INSTITUTE FOR CANCER RESEARCH [CH/US]; 1345 Avenue of the Americas, New York, NY 10105 (US).			
(72) Inventors: VAN DER BRUGGEN, Pierre; UCL 7459, Avenue Hippocrate 74, B-1200 Brussels (BE). BOON-FALLEUR, Thierry; UCL 7459, Avenue Hippocrate 74, B-1200 Brussels (BE). VAN DEN EYNDE, Benoit; UCL 7459, Avenue Hippocrate 74, B-1200 Brussels (BE).			
(74) Agent: HANSON, Norman, D.; Felfe & Lynch, 805 Third Avenue, New York, NY 10022 (US).			
(54) Title: COMPOSITIONS CONTAINING TUMOR REJECTION ANTIGEN PRECURSORS OR TUMOR REJECTION ANTIGENS, AND AN ADJUVANT AND/OR GROWTH FACTOR			
(57) Abstract			
<p>Compositions with improved immunogenic effect are disclosed. The compositions contain one or more peptides which, when complexed with a cell surface molecule, such as an MHC, HLA or B cell receptor, provoke an immune response. The compositions contain adjuvants such as saponins, which potentiate the immune response. Especially preferred are compositions which stimulate cytolytic T cell responses, such as peptides which satisfy criteria for MHC binding, such as peptides derived from tumor rejection antigen precursors, including MAGE, BAGE, and GAGE derived peptides.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

COMPOSITIONS CONTAINING TUMOR REJECTION ANTIGEN
PRECURSORS OR TUMOR REJECTION ANTIGENS,
AND AN ADJUVANT AND/OR GROWTH FACTOR

10

RELATED APPLICATIONS

This application is a continuation in part of all of the following applications, each of which discuss the provocation of cytolytic T cells in the presence of complexing tumor rejection antigens and MHC/HLA molecules: PCT application PCT/US92/04354 (designating the United States); Serial No. 938,334, filed August 31, 1992; Serial No. 008,446, filed January 22, 1993; Serial No. 54,714, filed April 28, 1993; Serial No. 203,054, filed February 28, 1994; Serial No. 233,305, filed April 26, 1994; Serial No. 195,186, filed February 14, 1994; Serial No. 196,630, filed February 15, 1994; Serial No. 32,978, filed March 18, 1993; Serial Nos. 217,186; 217,187; and 217,188, all of which were filed on March 24, 1994; Serial No. 190,411, filed on April 1, 1994 and Serial No. 253,503, filed June 3, 1994.

FIELD OF THE INVENTION

This invention relates to compositions useful in the generation of an immune response against the classes of molecules referred to as tumor rejection antigen precursors ("TRAPs") and tumor rejection antigens ("TRAs"). The immune response includes, inter alia, the production of antibodies against the TRAPs and TRAs, as well as T cells specific for complexes of TRA and major histocompatibility molecules ("MHCs"). Such T cells and antibodies may be generated, e.g., in a mouse, rat, rabbit, sheep, goat or other non-human animal, and then used in diagnostic methods to identify tumor presence. The compositions may also be used, therapeutically, via administration to a subject afflicted with a cancerous condition or one where cell transformation has taken place, such as melanoma or dysplastic nevi, to provoke an

5 immune response against tumors, cancer cells, and transformed
cells.

BACKGROUND AND PRIOR ART

10 The study of the recognition or lack of recognition of
cancer cells by a host organism has proceeded in many
different directions. Understanding of the field presumes
some understanding of both basic immunology and oncology.

15 Early research on mouse tumors revealed that these
displayed molecules which led to rejection of tumor cells when
transplanted into syngeneic animals. These molecules are
"recognized" by T-cells in the recipient animal, and provoke
a cytolytic T-cell response with lysis of the transplanted
cells. This evidence was first obtained with tumors induced
in vitro by chemical carcinogens, such as methylcholanthrene.
20 The antigens expressed by the tumors and which elicited the T-
cell response were found to be different for each tumor. See
Prehn, et al., J. Natl. Canc. Inst. 18: 769-778 (1957); Klein
et al., Cancer Res. 20: 1561-1572 (1960); Gross, Cancer Res.
3: 326-333 (1943), Basombrio, Cancer Res. 30: 2458-2462 (1970)
25 for general teachings on inducing tumors with chemical
carcinogens and differences in cell surface antigens. This
class of antigens has come to be known as "tumor specific
transplantation antigens" or "TSTAs". Following the
observation of the presentation of such antigens when induced
30 by chemical carcinogens, similar results were obtained when
tumors were induced in vitro via ultraviolet radiation. See
Kripke, J. Natl. Canc. Inst. 53: 333-1336 (1974).

35 While T-cell mediated immune responses were observed for
the types of tumor described supra, spontaneous tumors were
thought to be generally non-immunogenic. These were therefore
believed not to present antigens which provoked a response to
the tumor in the tumor carrying subject. See Hewitt, et al.,
Brit. J. Cancer 33: 241-259 (1976).

40 The family of tumor antigen presenting cell lines are
immunogenic variants obtained by mutagenesis of mouse tumor
cells or cell lines, as described by Boon et al., J. Exp. Med.

5 152: 1184-1193 (1980), the disclosure of which is incorporated by reference. To elaborate, tum⁺ antigens are obtained by mutating tumor cells which do not generate an immune response in syngeneic mice and will form tumors (i.e., "tum⁺" cells). When these tum⁺ cells are mutagenized, they are rejected by
10 syngeneic mice, and fail to form tumors (thus "tum⁻"). See Boon et al., Proc. Natl. Acad. Sci. USA 74: 272 (1977), the disclosure of which is incorporated by reference. Many tumor types have been shown to exhibit this phenomenon. See, e.g., Frost et al., Cancer Res. 43: 125 (1983).

15 It appears that tum⁻ variants fail to form progressive tumors because they elicit an immune rejection process. The evidence in favor of this hypothesis includes the ability of "tum⁻" variants of tumors, i.e., those which do not normally form tumors, to do so in mice with immune systems suppressed by sublethal irradiation, Van Pel et al., Proc. Natl. Acad. Sci. USA 76: 5282-5285 (1979); and the observation that
20 intraperitoneally injected tum⁻ cells of mastocytoma P815 multiply exponentially for 12-15 days, and then are eliminated in only a few days in the midst of an influx of lymphocytes and macrophages (Uyttenhove et al., J. Exp. Med. 152: 1175-
25 1183 (1980)). Further evidence includes the observation that mice acquire an immune memory which permits them to resist subsequent challenge to the same tum⁻ variant, even when immunosuppressive amounts of radiation are administered with
30 the following challenge of cells (Boon et al., Proc. Natl. Acad. Sci. USA 74: 272-275 (1977); Van Pel et al., supra; Uyttenhove et al., supra). Later research found that when spontaneous tumors were subjected to mutagenesis, immunogenic variants were produced which did generate a response. Indeed,
35 these variants were able to elicit an immune protective response against the original tumor. See Van Pel et al., J. Exp. Med. 157: 1992-2001 (1983). Thus, it has been shown that it is possible to elicit presentation of a so-called "tumor rejection antigen" in a tumor which is a target for a
40 syngeneic rejection response. Similar results have been obtained when foreign genes have been transfected into

5 spontaneous tumors. See Fearson et al., Cancer Res. 48: 2975-1980 (1988) in this regard.

A class of antigens has been recognized which are presented on the surface of tumor cells and are recognized by cytotoxic T cells, leading to lysis. This class of antigens 10 will be referred to as "tumor rejection antigens" or "TRAs" hereafter. TRAs may or may not elicit antibody responses. The extent to which these antigens have been studied, has been via cytolytic T cell characterization studies in vitro i.e., the study of the identification of the antigen by a particular 15 cytolytic T cell ("CTL" hereafter) subset. The subset proliferates upon recognition of the presented tumor rejection antigen, and the cells presenting the antigen are lysed. Characterization studies have identified CTL clones which specifically lyse cells expressing the antigens. Examples of 20 this work may be found in Levy et al., Adv. Cancer Res. 24: 1-59 (1977); Boon et al., J. Exp. Med. 152: 1184-1193 (1980); Brunner et al., J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982); Palladino et al., 25 Canc. Res. 47: 5074-5079 (1987). This type of analysis is required for other types of antigens recognized by CTLs, including major histocompatibility antigens, the male specific H-Y antigens, and a class of antigens, referred to as "tum-" antigens, and discussed herein.

30 A tumor exemplary of the subject matter described supra is known as P815. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988); Szikora et al., EMBO J 9: 1041-1050 (1990), and Sibille et al., J. Exp. Med. 172: 35-45 (1990), the disclosures of which are incorporated by reference. The 35 P815 tumor is a mastocytoma, induced in a DBA/2 mouse with methylcholanthrene and cultured as both an *in vitro* tumor and a cell line. The P815 line has generated many tum⁻ variants following mutagenesis, including variants referred to as P91A (DePlaen, supra), 35B (Szikora, supra), and P198 (Sibille, 40 supra). In contrast to tumor rejection antigens - and this is a key distinction - the tum⁻ antigens are only present after

5 the tumor cells are mutagenized. Tumor rejection antigens are present on cells of a given tumor without mutagenesis. Hence, with reference to the literature, a cell line can be tum⁺, such as the line referred to as "P1", and can be provoked to produce tum⁻ variants. Since the tum⁻ phenotype differs from
10 that of the parent cell line, one expects a difference in the DNA of tum⁻ cell lines as compared to their tum⁺ parental lines, and this difference can be exploited to locate the gene of interest in tum⁻ cells. As a result, it was found that genes of tum⁻ variants such as P91A, 35B and P198 differ from
15 their normal alleles by point mutations in the coding regions of the gene. See Szikora and Sibille, supra, and Lurquin et al., Cell 58: 293-303 (1989). This has proved not to be the case with the TRAs of this invention. These papers also demonstrated that peptides derived from the tum⁻ antigen are
20 presented by the L^d molecule for recognition by CTLs. P91A is presented by L^d, P35 by D^d and P198 by K^d.

Prior patent applications PCT/US92/04354, U.S. Serial No. 807,043; 764,364; 728,838 and 705,702, all of which are incorporated by reference and U.S. Patent No. 5,342,774, describe inventions involving, inter alia, genes and other nucleic acid molecules which code for various TRAPs, which are in turn processed to tumor rejection antigen, or "TRAs". SEQ ID NOS: 1-26 which are a part of the subject application present sequences of genes coding for various TRAPs, and the TRA referred to hereafter as MZ2E, which is derived from MAGE-1 TRAP (SEQ ID NO: 26).

The genes are useful as a source for the isolated and purified tumor rejection antigen precursor and the TRA themselves, either of which can be used as an agent for treating the cancer for which the antigen is a "marker", as well as in various diagnostic and surveillance approaches to oncology, discussed infra. It is known, for example, that tum⁻ cells can be used to generate CTLs which lyse cells presenting different tum⁻ antigens as well as tum⁺ cells. See, e.g., Maryanski et al., Eur. J. Immunol 12: 401 (1982); and Van den Eynde et al., Modern Trends in Leukemia IX (June

5 1990), the disclosures of which are incorporated by reference. The tumor rejection antigen precursor may be expressed in cells transfected by the gene, and then used to generate an immune response against a tumor of interest.

10 In the parallel case of human neoplasms, it has been observed that autologous mixed lymphocyte-tumor cell cultures ("MLTC" hereafter) frequently generate responder lymphocytes which lyse autologous tumor cells and do not lyse natural killer targets, autologous EBV-transformed B cells, or autologous fibroblasts (see Anichini et al., Immunol. Today 8: 15 385-389 (1987)). This response has been particularly well studied for melanomas, and MLTC have been carried out either with peripheral blood cells or with tumor infiltrating lymphocytes. Examples of the literature in this area including Knuth et al., Proc. Natl. Acad. Sci. USA 81: 2804-20 2802 (1984); Mukherji et al., J. Exp. Med. 158: 240 (1983); Hérin et all, Int. J. Canc. 39: 390-396 (1987); Topalian et al, J. Clin. Oncol. 6: 839-853 (1988). Stable cytolytic T cell clones have been derived from MLTC responder cells, and these clones are specific for the tumor cells. See Mukherji et al., 25 supra, Hérin et all, supra, Knuth et al., supra. The antigens recognized on tumor cells by these autologous CTLs do not appear to represent a cultural artifact, since they are found on tumor cells in vivo. Topalian et al., supra; Degiovanni et al., Eur. J. Immunol. 20: 1865-1868 (1990). These 30 observations, coupled with the techniques used herein to isolate the genes for specific murine tumor rejection antigen precursors, have led to the isolation of nucleic acid sequences coding for tumor rejection antigen precursors of TRAs presented on human tumors. It is now possible to isolate 35 the nucleic acid sequences which code for tumor rejection antigen precursors, including, but not being limited to those most characteristic of a particular tumor, with ramifications that are described infra.

40 Additional work has focused upon the presentation of TRAs by the class of molecules known as major histocompatibility complexes, or "MHCs". Human forms of these molecules are

5 "human leukocyte antigens" or "HLAs". This work has resulted
in several unexpected discoveries regarding the field.
Specifically in U.S. patent application Serial Number 938,334,
now U.S. Patent No. _____ the disclosure of which is
10 incorporated by reference, nonapeptides are taught which are
presented by the HLA-A1 molecule. The reference teaches that
given the known specificity of particular peptides for
particular HLA molecules, one should expect particular
peptides to bind one HLA molecule. These peptides, presented
15 herein as SEQ ID NOS: 27-34 are also presented in Traversari
et al., J. Exp. Med. 176: 1453-1457 (1992). This is
important, because different individuals possess different HLA
phenotypes. As a result, while identification of particular
peptides or of particular motifs, and the peptides which are
20 members thereof, as being partners for a specific HLA molecule
has diagnostic and therapeutic ramifications, these are only
relevant for individuals with that particular HLA phenotype.
There is a need for further work in the area, because cellular
abnormalities are not restricted to one particular HLA
25 phenotype, and targeted therapy requires some knowledge of the
phenotype of the abnormal cells at issue.

In U.S. Patent Application Serial Number 008,446, filed
January 22, 1993 and incorporated by reference, the fact that
the MAGE-1 expression product is processed to a second TRA is
disclosed. This second TRA is presented by HLA-Cw* 1601
30 molecules. The disclosure shows that a given TRAP can yield
a plurality of TRAs.

In U.S. Patent Application Serial Number 994,928, filed
December 22, 1992, and incorporated by reference herein,
tyrosinase is described as a tumor rejection antigen
35 precursor. This is a well known molecule as per Kwon, U.S.
Patent No. 4,898,814. This reference discloses that a
molecule which is produced by some normal cells (e.g.,
melanocytes), is processed in tumor cells to yield a tumor
rejection antigen that is presented by HLA-A2 molecules. The
40 peptide presented thereby is described in U.S. Application
Serial No. 54,714, filed April 28, 1993. SEQ ID NO: 35 sets

5 forth this peptide. Additional tyrosinase derived peptides presented by HLA molecules are set forth in Serial Nos. 203,054, and 233,305 filed February 28, 1994 and April 26, 1994 and incorporated by reference (SEQ ID NOS: 36-41).

10 Other peptides which are TRAs are described in additional patent applications. U.S. Patent Application Serial No. 195,186, filed February 14, 1994, and incorporated by reference herein, sets forth three peptides (SEQ ID NOS: 42-44 herein), which are derived from MAGE-1 and which complex with HLA-Cw^{*} 1601. Serial No. 196,630, filed February 15, 1994, 15 discloses an unrelated tumor rejection antigen precursor, the so-called "BAGE" gene, and peptides derived therefrom, which are processed and then presented by HLA-Cw^{*} 1601. These are set forth as SEQ ID NOS: 45-48, and this application is incorporated by reference. SEQ ID NO: 48 is the tumor 20 rejection antigen. Additional coding sequences for a tumor rejection antigen precursor are set forth in Serial No. 32,978, filed March 18, 1993 and incorporated by reference. These are included herein as SEQ ID NOS: 49 and 50. A more extended sequence for this gene is set forth in Serial No. 25 272,351, filed July 8, 1994 incorporated by reference, and is SEQ ID NO: 51. In Serial No. 96,039, filed July 22, 1993, the sequence of tumor rejection antigen precursor GAGE is set forth. See SEQ ID NO: 52 for this information.

30 A series of peptides which provoke lysis by cytolytic T cells when presented by MHC molecules are set forth in Serial No. 217,186, Serial No. 08/217,188, and Serial No. 217,187, all filed on March 24, 1994, and all of which are incorporated by reference herein. The first of these applications discloses MAGE-3 derived peptides presented by HLA-A2. Five 35 peptides are of interest. These are repeated here as SEQ ID NOS: 53-57. The second application presents 11 sequences derived from MAGE-2, believed to complex with HLA-A2.1 molecules (SEQ ID NOS: 58-68). The last of these applications discloses two additional peptides (SEQ ID NOS: 69 and 70) 40 derived from MAGE-3 which complex to HLA-A2. Serial No. 190,411, filed April 1, 1994 and incorporated by reference,

5 sets forth three peptides (SEQ ID NO: 71-73), derived from
MAGE-1, which are immunogenic in that they provoke production
of antibodies in a host animal to which they have been
administered. Serial No. 253,503, filed June 3, 1994 and
incorporated by reference, teaches a further tumor rejection
10 antigen precursor gene (SEQ ID NO:74), and a peptide, derived
therefrom (SEQ ID NO:75), which is presented by HLA-B44
molecules. Further in the application of Coulie, Ikeda and
Boon-Falleur, filed concurrently, a sequence coding for a
15 tumor rejection antigen precursor known as DAGE (SEQ ID NO:76)
is set forth. DAGE is found almost universally on tumor
cells, and only on testis cells with respect to normal cell
expression. This makes it especially useful for cancer
diagnosis and in the applications disclosed herein. The above
20 listing should not be presumed to be exhaustive of the TRAP
and TRA literature, but is presented to show its diversity and
the fact that these materials not only provoke T cell
proliferation, but also stimulate production of antibodies.
25 It is well known that antibody producing cells can be used as
a source to produce hybridomas, which in turn produce
monoclonal antibodies. Thus, when the term "antibodies" is
used herein, it encompasses both polyclonal and monoclonal
antibodies.

The parent applications to the present case, including
30 Serial No. 142,368 and Serial No. 190,411, both discuss the
usefulness of combining TRAPs or TRAs with various materials
as adjuvants, to produce vaccines, immunogenic compositions,
etc. Adjuvants, broadly defined, are substances which promote
35 immune responses. Frequently, the adjuvant of choice is
Freund's complete adjuvant, or killed *B. pertussis* organisms,
used in combination with alum precipitated antigen. A general
discussion of adjuvants is provided in Goding, *Monoclonal
Antibodies: Principles & Practice* (Second edition, 1986), at
40 pages 61-63, which are incorporated by reference herein.
Goding notes, however, that when the antigen of interest is of
low molecular weight, or is poorly immunogenic, coupling to an
immunogenic carrier is recommended. Such molecules, according

5 to Goding, generally have molecular weights below about 1000. Among the carriers suggested by Goding, at page 283, are keyhole limpet hemocyanin, bovine serum albumin, ovalbumin, and fowl immunoglobulin.

10 What is problematic about such carriers, however, is that frequently they are also immunogenic themselves. Thus, the immune response may be a general one, with part, most, or all of it being directed against the carrier molecule rather than the immunogen itself.

15 Exemplary of developments in the art as they relate to adjuvants is U.S. Patent No. 5,057,540 to Kensil, et al, the disclosure of which is incorporated by reference herein. Kensil et al disclose the preparation of various saponin extracts, which are useful as adjuvants in immunogenic compositions. As natural products, the extracts are not 20 completely defined. Kensil, et al do provide a complete and enabling disclosure for how various extracts, including QA-7, QA-19, and QA-21 (also referred to as QS-21) are prepared. Experiments are set forth in which bovine serum albumin ("BSA") was combined with various extracts (examples 8 and 9), and where feline leukemia virus recombinant glycoprotein 25 "gp70 Δ " was tested, following absorption to aluminum hydroxide ("alum"). The two immunogens tested, however, are expected to be immunogenic in their own right (gp70 Δ has a molecular weight of 70 kd, and serum albumin has about the same 30 molecular weight). No experiments were carried out at all on molecules which should, *per se*, be considered to be poorly or even non-immunogenic, and thus would be expected to require the use of alum absorption or the use of haptenic carriers for provocation of a response.

35 In PCT Application WO9219758, which corresponds to defensive publication 7697275, which is incorporated by reference herein, an adjuvant referred to as "MTP-MF59" is disclosed. This adjuvant is used in connection with a Plasmodium falciparum protein, "Pfs-25-B". This combination 40 is described as a transmission blocking vaccine. The P. falciparum protein is itself large enough to be immunogenic.

5 Thus, none of the art shows that the improved adjuvants can be used in combination with presumptively non-immunogenic proteins and peptides to yield immunologically effective compositions. This is especially true for TRAP and TRA molecules, as outlined supra.

10 It has now been found, surprisingly, that compositions comprising tumor rejection antigen precursors or tumor rejection antigens can be made which, when administered to a subject animal, provoke an immunogenic response. In especially preferred embodiments the immunogenic portion of the composition consists of TRAP or, more preferably TRA molecules, of one or more types, and an adjuvant. Especially preferred are compositions where the adjuvant is QS21, as is disclosed in the Kensil, et al patent, incorporated by reference supra.

15 20 The immunogens of this invention consist of TRAPs or TRAs, meaning that they do not include haptens, carriers, precipitated alum, or any of the materials normally associated with materials which are or are expected to be poorly immunogenic. In especially preferred embodiments, the compositions consist essentially of the immunogen and the adjuvant.

25 The invention is described in greater detail in the disclosure which follows.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Example

30 The following example demonstrates the use of peptide MZ2E (SEQ ID NO: 26) in connection with adjuvant QS-21. It is to be understood, however, that one may routinely substitute proteins or peptides (the first component of the composition) and adjuvants (the second component of the composition). The unexpected effect of the combination of MZ2E and QS21 should occur in the alternate combinations, i.e., when other peptides are used.

35 40 Subjects tested are patients with stage IV melanoma or high risk stage III malignant melanoma. Stage IV patients have a median survival time of one year following diagnosis,

5 and only a 15% chance of long-term survival (Balch, et al,
Cutaneous Melanoma, J.b. Lippincott, Philadelphia, 1992). The
standard therapy for these patients includes treatment with
decarbazine or drug combinations with decarbazine; however,
response rates only range from 8-25%, and there is no evidence
10 of the treatment extending survival. Balch et al, supra.
Patients with high risk Stage III melanoma (pT4 thick truncal
primary tumors or extremity melanomas, with five or more
positive regional lymph nodes) have a median survival of 1-2
years following onset, and a 19% chance of long term survival.
15 Balch, et al, supra.

Twelve patients are used in the study, all of whom have either Stage IV or high risk Stage III malignant melanoma in accordance with the criteria provided supra, confirmed by review of histology.

20 The patients fulfil the following additional criteria:

25 (i) complete recovery from surgery;

(ii) no chemotherapy or immunotherapy, within the four weeks preceding immunization;

(iii) expected survival of at least three months;

(iv) Karnofsky Performance Status of 60 or more;

30 (v) Laboratory results as follows:

granulocytes \geq 2,500/min³

lymphocytes \geq 700/min³

platelets \geq 100,000/min³

35 (vi) for MZ2E immunization, patients are positive for HLA-A1;

(vii) for MZ2E immunization, the patients' tumors express MAGE-1;

35 (viii) they be over 19 years old and be capable of giving informed consent in writing.

40 Any potential subjects who satisfy any of the following
criteria are excluded:

(i) clinically significant heart disease;

5 (ii) other serious illness, such as active infection
requiring antibiotics, or bleeding disorders;

10 (iii) treatment with antihistamines, N-SAIDS, or corti-
costeroids;

(iv) immunodeficiency, splenectomy, or radiation therapy
to the spleen;

(v) pregnancy or lactation;

(vi) women of childbearing age who do not use effective
methods of contraception.

15 All subjects are treated as outpatients. They are immunized, subcutaneously, with MZ2E (30 ug or 300 ug) and QS21 (100 ug), in 0.3 ml phosphate buffered saline, pH 7.4. Six patients receive 30 ug of peptide, and six receive 300 ug. The first injection is into the deltoid region of the anterior aspect of
20 the thigh, and the site of injection is changed with follow up injections. No injections are given into limbs where draining lymph nodes have been surgically removed or irradiated.

25 Injections are given at day 1, and then at days 8, 15,
22, and 57. Patients are monitored over a course of 12 weeks,
unless intervention is required (as determined by the
investigator). Any patients who show stabilization or tumor
response remain in the study until disease progression is
evidenced. Patients may also be removed from the study or
receive different doses of the peptide, if toxicity reactions
30 are observed.

The patients show response as follows. In a complete response, all signs, symptoms, biochemical and imaging evidence of tumor disappear for a period of at least 30 days. In a partial response, there is a decrease in size of all measurable tumors of at least 50% of the sum of products of the greatest and perpendicular diameters for at least 30 days, without the appearance of new lesions or progression of any new lesions. In a minor response, there is a decrease in size of all measurable tumors of at least 25% of the sum of products of greatest and perpendicular diameters, for at least 30 days, without appearance of new lesions or progression of

5 any lesion. In stable disease, there is a change of less than 25% of the sum of products of greatest and perpendicular diameters, for at least 30 days, without the appearance of new lesions or progression of lesions. In progression of the disease, there is appearance of new tumors, or an increase in 10 the size of measurable tumors of at least 50% of the sum of the product of greatest and perpendicular diameter.

15 The foregoing example demonstrates a composition comprising an amount of a tumor rejection antigen, i.e., MZ2E, and an adjuvant, i.e., QS21, and the use of the composition in the in vivo treatment of cancer (i.e., melanoma). The tumor rejection antigen is used in an amount sufficient to provoke an immune response against tumor cells which present it on their surface.

20 The compositions of the invention comprise any tumor rejection antigen precursor ("TRAP") or tumor rejection antigen ("TRA"), in combination with a pharmaceutically acceptable adjuvant. Preferred embodiments of the invention utilize the TRAPs and TRAs discussed supra and set forth in SEQ ID NO: 65, as well as the adjuvants described in the 25 Background section.

30 As will be seen from the foregoing discussion, an important aspect of the invention is stimulation of proliferation of T cells. This can be an initial stimulation or an augmentation of a prior stimulation. In particular, it is desirable to stimulate cytolytic T cells which present peptides, such as the TRAs described herein, on their surfaces. The cytolytic T cells recognize these complexes of MHC and peptide, bind thereto via their receptor, and proliferate. They also lyse the recognized cells. This 35 response can be used not only in vivo, but in vitro, as it is well established that cytolytic T cells specific for particular complexes of MHC and peptide are present in the blood of subjects who have experienced cell transformation. By contacting a blood sample of individuals in vitro with the 40 peptide of interest and cells which present the MHC molecule of interest, any cytolytic T cells in the blood sample will

5 expand, i.e., proliferate. This proliferation can be measured via any of the well known assays designed therefor. Especially preferred are the radioactive chromium (⁵¹Cr) release assay, and the measurement of release of tumor necrosis factor (TNF).

10 The compositions are also useful as stimulators of B cell proliferation, or antibody production. Again, it is well known that B cells produce antibodies, and the size of their targets are well within the sizes of the tumor rejection antigens, and certainly the tumor rejection antigen precursors. As with T cells, the stimulation may be "ab initio", or an augmentation of a prior response, in vitro or in vivo.

15 The amount of TRAP or TRA used will vary, depending upon the purpose of the immunization and the subject to which it is administered. For example, in the case of generating murine antibodies which can then be used, e.g., to diagnose for the presence of cancer cells presenting a TRA, the amount of protein or peptide may be less than that used in a course of in vivo therapy, such as that described in the example, supra. 20 In general, a preferred dose can range from about 1 ug to about 750 ug of protein or peptide per dose. In a preferred embodiment, the range is from about 10 ug to about 500 ug. Most preferably, anywhere from about 30 ug to about 300 ug per dose may be used. Of course, in the context of the 25 therapeutic aspect of the invention, the investigator will modify the dose, as a six month old infant will require dosing different from a full grown man, e.g. The mode of administration may vary, with preferred forms being oral, subcutaneous, intramuscular, intravenous and intraperitoneal 30 administration.

35 The choice of TRAP or TRA protein or peptide in the composition will depend upon parameters determinable by the artisan. It is art recognized, for example, that different TRAs are presented by the various MHC molecules. As such, if 40 a subject is typed, using well known techniques, as presenting HLA-A2 molecules on the surface of tumor cells, one will use

5 a TRA presented by HLA-A2 molecules rather than one presented by, e.g., HLA-Cw' 1601. Similarly, using techniques such as polymerase chain reaction ("PCR"), lysis studies, and other assay methodologies which are well known in the art, one can determine which tumor rejection antigen precursor gene or
10 genes are being expressed by a subject patient. This will lead to the decision as to what protein or peptide to use. Again, by way of example, if a subject's tumor cells are expressing MAGE-3 but not MAGE-1, the peptide used in immunization should be derived from MAGE-3, and not MAGE-1.

15 While the molecules discussed herein are referred to as "tumor" rejection antigens and "tumor" rejection antigen precursors, it is intended that their use, in a therapeutic and also a diagnostic context, extends beyond cancer *per se*. The art is familiar with pathological conditions, such as
20 displastic nevis, which are not cancer *per se*, but where the cells of the afflicted individuals are in fact characterized by transformation. Any and all such conditions are within the intended ambit of the invention.

25 Other aspects of the invention will be clear to the skilled artisan and need not be reiterated here.

30 The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

5

(1) GENERAL INFORMATION:

(i) APPLICANTS: Boon-Falleur, Thierry; van den Eynde, Benôit; van der Bruggen, Pierre

10 (ii) TITLE OF INVENTION: COMPOSITIONS CONTAINING TUMOR REJECTION ANTIGEN PRECURSORS OR TUMOR REJECTION ANTIGENS, AND AN ADJUVANT AND/OR GROWTH FACTOR

(iii) NUMBER OF SEQUENCES: 76

15 (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Felfe & Lynch
(B) STREET: 805 Third Avenue
(C) CITY: New York City
(D) STATE: New York
(E) COUNTRY: USA
20 (F) ZIP: 10022

(v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
(B) COMPUTER: IBM PS/2
(C) OPERATING SYSTEM: PC-DOS
25 (D) SOFTWARE: Wordperfect

(vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER: 08/315,961
(B) FILING DATE: 30-SEPTEMBER-1994
(C) CLASSIFICATION: 435

30 (vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: PCT/US92/04354
(B) FILING DATE: 22-MAY-1992

(viii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 07/938,334
35 (B) FILING DATE: 31-AUGUST-1992

(ix) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/008,446
(B) FILING DATE: 22-JANUARY-1993

(x) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/054,714
40 (B) FILING DATE: 28-APRIL-1993

5 (vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/203,054
(B) FILING DATE: 28-FEBRUARY-1994

(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/233,305
10 (B) FILING DATE: 26-APRIL-1994

(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/195,186
(B) FILING DATE: 14-FEBRUARY-1994

(vii) PRIOR APPLICATION DATA:
15 (A) APPLICATION NUMBER: 08/196,630
(B) FILING DATE: 15-FEBRUARY-1994

(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/032,978
(B) FILING DATE: 18-MARCH-1993

20 (vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/217,186
(B) FILING DATE: 24-MARCH-1994

(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/217,187
25 (B) FILING DATE: 24-MARCH-1994

(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/217,188
(B) FILING DATE: 24-MARCH-1994

(vii) PRIOR APPLICATION DATA:
30 (A) APPLICATION NUMBER: 08/190,411
(B) FILING DATE: 1-APRIL-1994

(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: 08/253,503
35 (B) FILING DATE: 3-JUNE-1994

(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Hanson, Norman D.
(B) REGISTRATION NUMBER: 30,946
(C) REFERENCE/DOCKET NUMBER: LUD 5370

(ix) TELECOMMUNICATION INFORMATION:
40 (A) TELEPHONE: (212) 688-9200
(B) TELEFAX: (212) 838-3884

5 (2) INFORMATION FOR SEQUENCE ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 462 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: genomic DNA
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

15 ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT GAAGATCCTG 60
 ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCACTCCCT CAGCCAATGA GCTTACTGTT 120
 CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG AAGTTTGCA AGTTCCGCCT ACAGCTCTAG 180
 CTTGTGAATT TGTACCCCTT CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC 240
 CCCCCCTCCCA CCTCGTGCTG TGCTGAGTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT 300
 AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCCTTT GCTCTCCAG CATGCATTGT 360
 20 GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG CTAGCTTGCG ACTCTACTCT 420
 TATCTTAACT TAGCTCGGCT TCCTGCTGGT ACCCTTTGTG CC 462

(2) INFORMATION FOR SEQUENCE ID NO: 2:

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 675 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: genomic DNA
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

35 ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA GGT GGT 48
 Met Ser Asp Asn Lys Lys Pro Asp Lys Ala His Ser Gly Ser Gly Glu
 5 10 15
 GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG TAC TCC CTG GAA 96
 Asp Gly Asp Gly Asn Arg Cys Asn Leu Leu His Arg Tyr Ser Leu Glu
 20 25 30
 40 GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC TTC GCT GTT GTC ACA ACA 144
 Glu Ile Leu Pro Tyr Leu Gly Trp Leu Val Phe Ala Val Val Thr Thr

20

	35	40	45	
5				
	AGT TTT CTG GCG CTC CAG ATG TTC ATA GAC GCC CTT TAT GAG GAG CAG			192
	Ser Phe Leu Ala Leu Gln Met Phe Ile Asp Ala Leu Tyr Glu Glu Gln			
	50	55	60	
10	TAT GAA AGG GAT GTG GCC TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC			240
	Tyr Glu Arg Asp Val Ala Trp Ile Ala Arg Gln Ser Lys Arg Met Ser			
	65	70	75	80
	TCT GTC GAT GAG GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC TAC			288
	Ser Val Asp Glu Asp Glu Asp Asp Glu Asp Asp Glu Asp Asp Tyr Tyr			
	85		90	95
15	GAC GAC GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT			336
	Asp Asp Glu Asp Asp Asp Asp Ala Phe Tyr Asp Asp Glu Asp Asp			
	100	105		110
	GAG GAA GAA GAA TTG GAG AAC CTG ATG GAT GAT GAA TCA GAA GAT GAG			384
	Glu Glu Glu Leu Glu Asn Leu Met Asp Asp Glu Ser Glu Asp Glu			
20	115	120		125
	GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA GCT GAG GAA ATG			432
	Ala Glu Glu Glu Met Ser Val Glu Met Gly Ala Gly Ala Glu Glu Met			
	130	135		140
25	GGT GCT GGC GCT AAC TGT GCC TGT GTT CCT GGC CAT CAT TTA AGG AAG			480
	Gly Ala Gly Ala Asn Cys Ala Cys Val Pro Gly His His Leu Arg Lys			
	145	150	155	160
	AAT GAA GTG AAG TGT AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC			528
	Asn Glu Val Lys Cys Arg Met Ile Tyr Phe Phe His Asp Pro Asn Phe			
	165	170		175
30	CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT			576
	Leu Val Ser Ile Pro Val Asn Pro Lys Glu Gln Met Glu Cys Arg Cys			
	180	185		190
	GAA AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG			624
	Glu Asn Ala Asp Glu Glu Val Ala Met Glu Glu Glu Glu Glu Glu			
35	195	200	210	
	GAG GAG GAG GAG GAA GAG ATG GGA AAC CCG GAT GGC TTC TCA CCT			672
	Glu Glu Glu Glu Glu Glu Met Gly Asn Pro Asp Gly Phe Ser Pro			
	220	225	230	235
40	TAG			675

5

(2) INFORMATION FOR SEQUENCE ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 228 base pairs
- (B) TYPE: nucleic acid
- 10 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

15

GCATGCAGTT GCAAAGCCCA	GAAGAAAGAA ATGGACAGCG	GAAGAAGTGG TTGTTTTTT	60
TTCCCTTCA TTAATTTCT	AGTTTTAGT AATCCAGAAA	ATTTGATTT GTTCTAAAGT	120
TCATTATGCA AAGATGTCAC	CAACAGACTT CTGACTGCAT	GGTGAACTTT CATATGATAC	180
ATAGGATTAC ACTTGTACCT	GTAAAATA AAAGTTTGAC	TTGCATAC	228

20

(2) INFORMATION FOR SEQUENCE ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1365 base pairs
- (B) TYPE: nucleic acid
- 25 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

30

ACCACAGGAG AATGAAAAGA	ACCCGGGACT CCCAAAGACG	CTAGATGTGT	50
GAAGATCCTG ATCACTCATT	GGGTGCTGA GTTCTGCAT	ATTCATCCCT	100
CAGCCAATGA GCTTACTGTT	CTCGTGGGGG GTTTGTGAGC	CTTGGGTAGG	150
AAGTTTGCA AGTTCCGCCT	ACAGCTCTAG CTTGTGAATT	TGTACCCCTT	200
35 CACGTAAAAA AGTAGTCCAG	AGTTTACTAC ACCCTCCCTC	CCCCCTCCCA	250
CCTCGTGCTG TGCTGAGTTT	AGAAGTCTTC CTTATAGAAG	TCTTCCGTAT	300
AGAACTCTTC CGGAGGAAGG	AGGGAGGACC CCCCCCCTTT	GCTCTCCAG	350
CATGCATTGT GTCAACGCCA	TTGCACTGAG CTGGTGAAG	AAGTAAGCCG	400
CTAGCTTGCCT ACTCTACTCT	TATCTTAACT TAGCTCGGCT	TCCTGCTGGT	450
40 ACCCTTGTG CC			462
ATG TCT GAT AAC AAG AAA	CCA GAC AAA GCC CAC AGT GGC TCA		504

5	GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG	546
	TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC	588
	TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC	630
	ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC	672
	TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAG	714
10	GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC TAC GAC GAC	756
	GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT	798
	GAG GAA GAA GAA TTG GAG AAC CTG ATG GAT GAT GAA TCA GAA	840
	GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA	882
	GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC TGT GTT CCT	924
15	GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG ATT	966
	TAT TTC TTG CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG	1008
	AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT	1050
	GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA GAG GAG GAG	1092
	GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC TTC TCA CCT	1134
20	TAG	1137
	GCATGCAGTT GCAAAGCCCA GAAGAAAAGAA ATGGACAGCG GAAGAAGTGG	1187
	TTGTTTTTTT TTCCCCTTCA TTAATTTCT AGTTTTAGT AATCCAGAAA	1237
	ATTTGATTTT GTTCTAAAGT TCATTATGCA AAGATGTCAC CAACAGACTT	1287
	CTGACTGCAT GGTGAACTTT CATAATGATAC ATAGGATTAC ACTTGTACCT	1337
25	GTTAAAAATA AAAGTTTGAC TTGCATAC	1365

(2) INFORMATION FOR SEQUENCE ID NO: 5:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4698 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

	ACACACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT	50
	GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCACTCCCT	100
40	CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG	150
	AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCCTT	200

5	CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCCCTCCCA CCTCGTGTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT AGAAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCCTTT GCTCTCCCAG CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG CTAGCTTGCCTG ACTCTACTCT TATCTTAACT TAGCTCGGCT TCCCTGCTGGT ACCCCTTGTG CC	250 300 350 400 450 462 504 546 588 630 672 714 756 798 840 882 916 966 1016 1066 1116 1166 1216 1266 1316 1366 1416 1466 1516 1566 1616 1666 1716 1766 1816 1866 1916
10		
15		
20		
25		
30		
35		
40		

5	GCCCCGTTCC CCTTTTTGT GCCTTCCCTC CTGGCTCCCC TCCACCTTCC	1966
	AGCTCACCTT TTTGTTTGTG TGTTGTTGGT TTGCTTTTTT	2016
	TTTTTTTTT GCACCTTGTT TTCCAAGATC CCCCTCCCCC TCCGGCTTCC	2066
	CCTCTGTGTG CCTTTCCCTGT TCCCTCCCCC TCGCTGGCTC CCCCTCCCTT	2116
	TCTGCCTTTC CTGTCCTGC TCCCTCTCT GCTAACCTTT TAATGCCTTT	2166
10	CTTTCTAGA CTCCCCCTC CAGGCTTGCT GTTTGCTTCT GTGCACTTTT	2216
	CCTGACCCCTG CTCCCCCTCC CCTCCAGCT CCCCTCTCTT TTCCCACCTC	2266
	CCTTCTCCA GCCTGTCACC CCTCCTCTC TCCTCTCTGT TTCTCCCACCT	2316
	TCCTGCTTCC TTTACCCCTT CCCTCTCCCT ACTCTCTCC CTGCCTGCTG	2366
	GACTTCTCT CCAGCCGCC AGTTCCCTGC AGTCTGGAG TCTTCTGC	2416
15	CTCTCTGTCC ATCACCTCCC CCTAGTTCA CTTCCCTTTC ACTCTCCCCT	2466
	ATGTGTCTCT CTTCTATCT ATCCCTTCCCT TTCTGCTCCCC TCTCTCTGT	2516
	CCATCACCTC TCTCTCCCT TCCCTTCTC CTCTCTCCA TTTTCTTCCA	2566
	CCTGCTTCTT TACCCCTGCCT CTCCCATTGC CCTCTTACCT TTATGCCAT	2616
	TCCATGTCCC CTCTCAATT CCTGTCCCCAT TGTGCTCCCT CACATCTTCC	2666
20	ATTTCCCTCT TTCTCCCTTA GCCTCTTCTT CCTCTCTCT TGTATCTCCC	2716
	TTCCCTTTC TTCTCCCTCC TCCCTTCCCC TTCCCTATG CCCTCTACTC	2766
	TACTTGATCT TCTCTCTCT CCACATACCC TTTTCTTCTT CCACCTGCC	2816
	CTTTGTCCCC AGACCCCTACA GTATCCTGTG CACAGGAAGT GGGAGGTGCC	2866
	ATCAACAAACA AGGAGGCAAG AAACAGAGCA AAATCCAAA ATCAGCAGGA	2916
25	AAGGCTGGAT GAAAATAAGG CCAGGTTCTG AGGACAGCTG GAATCTAGCC	2966
	AAGTGGCTCC TATAACCCTA AGTACCAAGG GAGAAAGTGA TGGTGAAGTT	3016
	CTTGATCCTT GCTGCTTCTT TTACATATGT TGGCACATCT TTCTCAAATG	3066
	CAGGCCATGC TCCATGCTTG GCGCTTGCTC AGCGTGGTTA AGTAATGGGA	3116
	GAATCTGAAA ACTAGGGGCC AGTGGTTGT TTTGGGGACA AATTAGCACG	3166
30	TAGTGATATT TCCCCCTAAA AATTATAACA AACAGATTCA TGATTTGAGA	3216
	TCCTTCTACA GGTGAGAAGT GGAAAAATTG TCACTATGAA GTTCTTTTTA	3266
	GGCTAAAGAT ACTTGGAACC ATAGAAGCGT TGTAAAATA CTGCTTTCTT	3316
	TTGCTAAAAT ATTCTTCTC ACATATTCA ATTCTCCAG	3355
	GT GTT CCT GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT	3396
35	AGG ATG ATT TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT	3438
	ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA	3480
	AAT GCT GAT GAA GAG GTT GCA ATG GAA GAG GAA GAA GAA	3522
	GAG GAG GAG GAG GAA GAG ATG GGA AAC CCG GAT GGC	3564
	TTC TCA CCT TAG	3576
40	GCATGCAGGT ACTGGCTTCA CTAACCAACC ATTCTAAACA TATGCCTGTA	3626
	GCTAAGAGCA TCTTTTAAA AAATATTATT GGTAAACTAA ACAATTGTTA	3676

5	TCTTTTACA TTAATAAGTA TTAAATTAAAT CCAGTATAACA GTTTAAGAA CCCTAAGTTA AACAGAAGTC AATGATGTCT AGATGCCTGT TCTTTAGATT GTAGTGAGAC TACTTACTAC AGATGAGAAG TTGTTAGACT CGGGAGTAGA GACCAGTAAA AGATCATGCA GTGAAATGTG GCCATGGAAA TCGCATATTG	3726 3776 3826 3876
10	TTCTTATAGT ACCTTTGAGA CAGCTGATAA CAGCTGACAA AAATAAGTGT TTCAAGAAAG ATCACACGCC ATGGTTACA TGCAAATTAT TATTTGTCG TTCTGATTTT TTTCATTCT AGACCTGTGG TTTAAAGAG ATGAAAATCT	3926 3976 4026
15	CTTAAAATTT CCTTCATCTT TAATTTCTT TAACTTAGT TTTTTCACT TAGAATTCAA TTCAAATTCT TAATTCAATC TTAATTTTA GATTTCTAA AATGTTTTT AAAAAAAATG CAAATCTCAT TTTTAAGAGA TGAAAGCAGA	4076 4126 4176
20	GTAACCTGGGG GGCTTAGGGA ATCTGTAGGG TTGCGGTATA GCAATAGGGA GTTCTGGTCT CTGAGAAGCA GTCAGAGAGA ATGAAAACC AGGCCCTTGC CAGTAGGTTA GTGAGGTTGA TATGATCAGA TTATGGACAC TCTCAAATC ATAAATACTC TAACAGCTAA GGATCTCTGA GGGAAACACA ACAGGGAAAT	4226 4276 4326 4376
25	ATTTAGTTT CTCCCTTGAGA AACAAATGACA AGACATAAAA TTGGCAAGAA AGTCAGGAGT GTATTCTAAT AAGTGTGCT TATCTCTTAT TTTCTTCTAC AGTTGCAAAG CCCAGAAGAA AGAAATGGAC AGCGGAAGAA GTGGTTGTTT TTTTTCCCC TTCATTAATT TTCTAGTTT TAGTAATCCA GAAAATTGAA TTTGTTCTA AAGTTCTTA TGCAAAGATG TCACCAACAG ACTTCTGACT GCATGGTGAA CTTTCATATG ATACATAGGA TTACACTTGT ACCTGTTAAA AATAAAAGTT TGACTTGCAT AC	4426 4476 4526 4576 4626 4676 4698

(2) INFORMATION FOR SEQUENCE ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Leu Pro Tyr Leu Gly Trp Leu Val Phe

5 (2) INFORMATION FOR SEQUENCE ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2419 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

10 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

15	GGATCCAGGC CCTGCCAGGA AAAATATAAG GGCCCTGCGT GAGAACAGAG	50
	GGGGTCATCC ACTGCATGAG AGTGGGGATG TCACAGAGTC CAGCCCACCC	100
	TCTGGTAGC ACTGAGAAGC CAGGGCTGTG CTTGCGGTCT GCACCCCTGAG	150
	GGCCCGTGGG TTCCCTTCC TGGAGCTCCA GGAACCAGGC AGTGAGGCCT	200
	TGGTCTGAGA CAGTATCCTC AGGTACACAGA GCAGAGGATG CACAGGGTGT	250
20	GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA	300
	CAGGACACAT AGGACTCCAC AGAGTCTGGC CTCACCTCCC TACTGTCACT	350
	CCTGTAGAAT CGACCTCTGC TGGCCGGCTG TACCCCTGAGT ACCCTCTCAC	400
	TTCCCTCCCTC AGGTTTCAG GGGACAGGCC AACCCAGAGG ACAGGATTCC	450
	CTGGAGGCCA CAGAGGAGCA CCAAGGAGAA GATCTGTAAG TAGGCCTTTG	500
25	TTAGAGTCTC CAAGGTTCAAG TTCTCAGCTG AGGCCTCTCA CACACTCCCT	550
	CTCTCCCCAG GCCTGTGGGT CTTCATTGCC CAGCTCCTGC CCACACTCCT	600
	GCCTGCTGCC CTGACGAGAG TCATCATGTC TCTTGAGCAG AGGAGTCTGC	650
	ACTGCAAGCC TGAGGAAGCC CTTGAGGCC AACAAAGAGGC CCTGGGCCTG	700
	GTGTGTGTGC AGGCTGCCAC CTCCCTCTCC TCTCCTCTGG TCCTGGGCAC	750
30	CCTGGAGGAG GTGCCCACTG CTGGGTCAAC AGATCCTCCC CAGAGTCCTC	800
	AGGGAGCCTC CGCCTTCCC ACTACCATCA ACTTCACTCG ACAGAGGCCA	850
	CCCAGTGAGG GTTCCAGCAG CGTGAAGAG GAGGGGCCAA GCACCTCTTG	900
	TATCCTGGAG TCCTTGTTC GAGCAGTAAT CACTAAGAAG GTGGCTGATT	950
	TGGTTGGTT TCTGCTCTC AAATATCGAG CCAGGGAGCC AGTCACAAAG	1000
35	GCAGAAATGC TGGAGAGTGT CATAAAAAT TACAAGCACT GTTTCTGA	1050
	GATCTTCGGC AAAGCCTCTG AGTCCTTGCA GCTGGTCTTT GGCATTGACG	1100
	TGAAGGAAGC AGACCCACC GCCACTCCT ATGTCCTTGT CACCTGCCTA	1150
	GGTCTCTCCT ATGATGGCCT GCTGGGTGAT AACAGATCA TGCCCAAGAC	1200
	AGGCTTCTG ATAATTGTCC TGGTCATGAT TGCAATGGAG GGCGGCCATG	1250
40	CTCCTGAGGA GGAAATCTGG GAGGAGCTGA GTGTGATGGA GGTGTATGAT	1300
	GGGAGGGAGC ACAGTGCCTA TGGGGAGCCC AGGAAGCTGC TCACCCAAGA	1350

5	TTTGGTGCAG GAAAAGTACC TGGAGTACGG CAGGTGCCGG ACAGTGATCC	1400
	CGCACGCTAT GAGTTCTGT GGGGTCCAAG GGCCCTCGCT GAAACCAGCT	1450
	ATGTGAAAGT CCTTGAGTAT GTGATCAAGG TCAGTGCAAG AGTTCGCTT	1500
	TTCTTCCCAT CCCTGCCTGA AGCAGCTTG AGAGAGGAGG AAGAGGGAGT	1550
	CTGAGCATGA GTTGCAGCCA AGGCCAGTGG GAGGGGGACT GGGCCAGTGC	1600
10	ACCTTCAGG GCCCGCTCCA GCAGCTCCC CTGCCTCGTG TGACATGAGG	1650
	CCCATTCTTC ACTCTGAAGA GAGCGGTCAAG TGTTCAGT AGTAGGTTTC	1700
	TGTTCTATTG GGTGACTTGG AGATTTATCT TTGTTCTCTT TTGGAATTGT	1750
	TCAAATGTTT TTTTTAAGG GATGGTTGAA TGAACCTCAG CATCCAAGTT	1800
	TATGAATGAC AGCAGTCACA CAGTTCTGTG TATATAGTTT AAGGGTAAGA	1850
15	GTCTTGTGTT TTATTCAGAT TGGGAAATCC ATTCTATTTT GTGAATTGGG	1900
	ATAATAACAG CAGTGGAAATA AGTACTTAGA AATGTGAAAA ATGAGCAGTA	1950
	AAATAGATGA GATAAAGAAC TAAAGAAATT AAGAGATAGT CAATTCTTGC	2000
	CTTATACCTC AGTCTTATTCT GTAAAATTTT TAAAGATATA TGCATACCTG	2050
	GATTTCTTG GCTTCTTTGA GAATGTAAGA GAAATTAAAT CTGAATAAAG	2100
20	AATTCTTCCT GTTCACTGGC TCTTTCTTC TCCATGCACT GAGCATCTGC	2150
	TTTTTGGAAAG GCCCTGGGTT AGTAGTGGAG ATGCTAAGGT AAGCCAGACT	2200
	CATACCCACC CATAGGGTCG TAGAGTCTAG GAGCTGCAGT CACGTAATCG	2250
	AGGTGGCAAG ATGTCCTCTA AAGATGTAGG GAAAAGTGAG AGAGGGGTGA	2300
	GGGTGTGGGG CTCCGGGTGA GAGTGGTGA GTGTCAATGC CCTGAGCTGG	2350
25	GGCATTTGG GCTTTGGAA ACTGCAGTTC CTTCTGGGGG AGCTGATTGT	2400
	AATGATCTTG GGTGGATCC	2419

30 (2) INFORMATION FOR SEQUENCE ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5674 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-1 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

5	CCGGGGCAC CACTGGCATC CCTCCCCTA CCACCCCCAA TCCCTCCCTT	50
	TACGCCACCC ATCCAAACAT CTTCACGCTC ACCCCCCAGCC CAAGCCAGGC	100
	AGAATCCGGT TCCACCCCTG CTCTCAACCC AGGGAAGCCC AGGTGCCAG	150
	ATGTGACGCC ACTGACTTGA GCATTAGTGG TTAGAGAGAA GCGAGGTTTT	200
	CGGTCTGAGG GGC GGCTTGA GATCGGTGGA GGGAAAGCGGG CCCAGCTCTG	250
10	TAAGGAGGCA AGGTGACATG CTGAGGGAGG ACTGAGGACC CACTTACCCC	300
	AGATAGAGGA CCCCAAATAA TCCCTTCATG CCAGTCCTGG ACCATCTGGT	350
	GGTGGACTTC TCAGGCTGGG CCACCCCCAG CCCCCCTTGCT GCTTAAACCA	400
	CTGGGGACTC GAAGTCAGAG CTCCGTGTGA TCAGGGAAGG GCTGCTTAGG	450
	AGAGGGCAGC GTCCAGGCTC TGCCAGACAT CATGCTCAGG ATTCTCAAGG	500
15	AGGGCTGAGG GTCCCTAAGA CCCCACTCCC GTGACCCAAC CCCCCACTCCA	550
	ATGCTCACTC CCGTGACCCA ACCCCCCCTT CATTGTCATT CCAACCCCCA	600
	CCCCACATCC CCCACCCAT CCCTCAACCC TGATGCCAT CCGCCCGAGCC	650
	ATTCCACCCCT CACCCCCACC CCCACCCCCA CGCCCACCTCC CACCCCCACC	700
	CAGGCAGGAT CCGGTTCCCG CCAGGAAACA TCCGGGTGCC CGGATGTGAC	750
20	GCCACTGACT TGCGCATTGT GGGGCAGAGA GAAGCGAGGT TTCCATTCTG	800
	AGGGACGGCG TAGAGTTCGG CCGAAGGAAC CTGACCCAGG CTCTGTGAGG	850
	AGGCAAGGTG AGAGGCTGAG GGAGGACTGA GGACCCCCGCC ACTCCAAATA	900
	GAGAGCCCCA AATATTCCAG CCCCCGCCCTT GCTGCCAGCC CTGGCCCCACC	950
	CGCGGGAAAGA CGTCTCAGCC TGGGCTGCC CCAGACCCCT GCTCCAAAAG	1000
25	CCTTGAGAGA CACCAGGTT TCCTCCCCAA GCTCTGGAAT CAGAGGTTGC	1050
	TGTGACCAGG GCAGGACTGG TTAGGAGAGG GCAGGGCACA GGCTCTGCCA	1100
	GGCATCAAGA TCAGCACCCA AGAGGGAGGG CTGTGGGCC CCAAGACTGC	1150
	ACTCCAATCC CCACTCCCAC CCCATTGCA TTCCCATTCC CCACCCAACC	1200
	CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACTCC TACTCCGTCA	1250
30	CCTGACCACC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC	1300
	TCACCCCTCAC TGCCCCAAC CCCACCCCTCA TCTCTCTCAT GTGCCCAACT	1350
	CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGGCCC TGCTCTCAAC	1400
	CCAGGGAAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC	1450
	AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG	1500
35	ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGGAGGA AGGTGAGATG	1550
	CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCCAAATG	1600
	ATCCAGTACC ACCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT	1650
	GTCTCAGCTG GACCACCCCC CGTCCCCTGC CACTGCCACT TAACCCACAG	1700
	GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA	1750
40	GGCAGGGCCC AGGCATCAAG GTCCAGCATT CGCCCGGCAT TAGGGTCAGG	1800
	ACCCCTGGGAG GGAAGTGGAG GTTCCCCACC CACACCTGTC TCCTCATCTC	1850

5	CACCGCCACC CCACTCACAT TCCCATACTT ACCCCCTACC CCCAACCTCA TCTTGTAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAAGGG GCTTGAACAG GGCCTCAGGG GAGCAGAGGG AGGGCCCTAC TGCGAGATGA GGGAGGCCTC AGAGGACCCA GCACCCCTAGG ACACCGCACC CCTGTCTGAG	1900 1950 2000 2050 2100
10	ACTGAGGCTG CCACTTCTGG CCTCAAGAACAG CAGAACGATG GGGACTCAGA TTGCATGGGG GTGGGACCCA GGCCCTGCAAG GCTTACGCGG AGGAAGAGGA GGGAGGACTC AGGGGACCTT GGAATCCAGA TCAGTGTGGA CCTCGGCCCT GAGAGGTCCA GGGCACGGTG GCCACATATG GCCCATATTT CCTGCATCTT	2150 2200 2250 2300
15	TGAGGTGACA GGACAGAGCT GTGGTCTGAG AAGTGGGGCC TCAGGTCAAC AGAGGGAGGA GTTCCAGGAT CCATATGCC CAAGATGTGC CCCCTTCATG AGGACTGGGG ATATCCCCGG CTCAGAAAGA AGGGACTCCA CACAGTCTGG CTGTCCCCCTT TTAGTAGCTC TAGGGGGACC AGATCAGGGA TGGCGGTATG	2350 2400 2450 2500
20	TTCCATTCTC ACTTGTACCA CAGGCAGGAA GTTGGGGGGC CCTCAGGGAG ATGGGGTCTT GGGGTAAAGG GGGGATGTCT ACTCATGTCA GGGATTGGG GGTTGAGGAA GCACAGGCAGC TGGCAGGAAT AAAGATGAGT GAGACAGAC AGGCTATTGG AATCCACACC CCAGAACAA AGGGGTCAAC CCTGGACACC	2550 2600 2650 2700
25	TCACCCAGGA TGTGGCTTCT TTTTCACTCC TGTTCAGA TCTGGGGCAG GTGAGGACCT CATTCTCAGA GGGTGACTCA GGTCAACGTA GGGACCCCCA TCTGGTCTAA AGACAGAGCG GTCCCAGGAT CTGCCATGCG TTGGGGTGA GAACATGAGG GAGGACTGAG GGTACCCAG GACCAGAAC ACGAGGGAGA	2750 2800 2850 2900
30	CTGCACAGAA ATCAGCCCTG CCCCTGCTGT CACCCAGAG AGCATGGGCT GGGCCGTCTG CCGAGGTCTT TCCGTTATCC TGGGATCATT GATGTCAGGG ACGGGGAGGC CTTGGTCTGA GAAGGCTGCG CTCAGGTCAAG TAGAGGGAGC GTCCCAGGCC CTGCCAGGAG TCAAGGTGAG GACCAAGCGG GCACCTCAC	2950 3000 3050 3100
35	CAGGACACAT TAATTCCAAT GAATTTGAT ATCTCTTGCT GCCCTTCCCC AAGGACCTAG GCACGTGTGG CCAGATGTTT GTCCCTCCT GTCCCTCCAT TCCTTATCAT GGATGTGAAC TCTTGATTTG GATTCTCAG ACCAGCAAA GGGCAGGATC CAGGCCCTGC CAGGAAAAAT ATAAGGGCCC TGCGTGAGAA CAGAGGGGGT CATCCACTGC ATGAGAGTGG GGATGTCAAC GAGTCCAGCC	3150 3200 3250 3300 3350
40	CACCCCTCTG GTAGCACTGA GAAGCCAGGG CTGTGCTTGC GGTCTGCACC CTGAGGGCCC GTGGATTCTT CTTCTGGAG CTCCAGGAAC CAGGCAGTGA GGCCTTGGTC TGAGACAGTA TCCTCAGGTC ACAGAGCAGA GGATGCACAG GGTGTGCCAG CAGTGAATGT TTGCCCTGAA TGACACCAA GGGCCCCACC TGCCACAGGA CACATAGGAC TCCACAGAGT CTGGCCTCAC CTCCCTACTG TCAGTCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCC CTCACTTCCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG	3400 3450 3500 3550 3600 3650 3700

5	ATTCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTGTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCAGCT CCTGCCACAC CTCCTGCCTG CTGCCCTGAC GAGAGTCATC	3750 3800 3850 3880
10	ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCC TCT CCT CTG GTC CTG GGC ACC	3922 3964 4006
	CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA	4048 4090 4132
15	GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GGT TTT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA	4174 4216 4258
	GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CAG CTG GTC	4300 4342
20	TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCC TAT GTC CTT GTC ACC TGC CTA GGT CTC TCC TAT GAT GGC CTG CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATA	4384 4426 4468
	ATT GTC CTG GTC ATG ATT GCA ATG GAG GGC GGC CAT GCT CCT GAG GAG GAA ATC TGG GAG GAG CTG AGT GTG ATG GAG GTG TAT	4510 4552
25	GAT GGG AGG GAG CAC AGT GCC TAT GGG GAG CCC AGG AAG CTG CTC ACC CAA GAT TTG GTG CAG GAA AAG TAC CTG GAG TAC GGC AGG TGC CGG ACA GTG ATC CCG CAC GCT ATG AGT TCC TGT GGG	4594 4636 4678
	GTC CAA GGG CCC TCG CTG AAA CCA GCT ATG TGA AAGTCCTTGA GTATGTGATC AAGGTCAGTG CAAGAGTTC	4711 4750
30	GCTTTCTT CCCATCCCTG CGTGAAGCAG CTTTGAGAGA GGAGGAAGAG GGAGTCTGAG CATGAGTTGC AGCCAAGGCC AGTGGGAGGG GGACTGGGCC	4800 4850
	AGTGCACCTT CCAGGGCCGC GTCCAGCAGC TTCCCTGCC TCGTGTGACA TGAGGCCCAT TCTTCACTCT GAAGAGAGCG GTCAGTGTTC TCAGTAGTAG	4900 4950
	GTTCCTGTT TATTGGGTGA CTTGGAGATT TATCTTGTT CTCTTTGGA	5000
35	ATTGTTCAA TGTGTTTTT TAAGGGATGG TTGAATGAAC TTCAGCATCC AAGTTATGA ATGACAGCAG TCACACAGTT CTGTGTATAT AGTTTAAGGG	5050 5100
	TAAGAGTCTT GTGTTTATT CAGATTGGGA AATCCATTCT ATTTTGTGAA	5150
	TTGGGATAAT AACAGCAGTG GAATAAGTAC TTAGAAATGT GAAAAATGAG	5200
	CAGTAAAATA GATGAGATAA AGAACTAAAG AAATTAAGAG ATAGTCATT	5250
40	CTTGCCTTAT ACCTCAGTCT ATTCTGTAAA ATTTTAAAG ATATATGCAT ACCTGGATT CTTGGCTTC TTTGAGAATG TAAGAGAAAT TAAATCTGAA	5300 5350

5	TAAAGAATTCTCCTGTTCA CTGGCTCTT TCTTCTCCAT GCACTGAGCA	5400
	TCTGCTTTT GGAAGGCCCT GGGTTAGTAG TGGAGATGCT AAGGTAAGCC	5450
	AGACTCATAC CCACCCATAG GGTCGTAGAG TCTAGGAGCT GCAGTCACGT	5500
	AATCGAGGTG GCAAGATGTC CTCTAAAGAT GTAGGGAAAA GTGAGAGAGG	5550
	GGTGAGGGTG TGGGGCTCCG GGTGAGAGTG GTGGAGTGTC AATGCCCTGA	5600
10	GCTGGGGCAT TTTGGGCTTT GGGAAACTGC AGTTCCCTCT GGGGGAGCTG	5650
	ATTGTAATGA TCTTGGGTGG ATCC	5674

(2) INFORMATION FOR SEQUENCE ID NO: 9:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4157 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

- (A) NAME/KEY: MAGE-2 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

25	CCCATCCAGA TCCCCATCCG GGCAGAAATCC GGTTCCACCC TTGCCGTGAA	50
	CCCAGGGAAG TCACGGGCCC GGATGTGACG CCACTGACTT GCACATTGGA	100
	GGTCAGAGGA CAGCGAGATT CTCGCCCTGA GCAACGGCCT GACGTCGGCG	150
	GAGGGAAAGCA GGCAGCAGGCT CCGTGAGGAG GCAAGGTAAG ACGCCGAGGG	200
30	AGGACTGAGG CGGGCCTCAC CCCAGACAGA GGGCCCCCAA TTAATCCAGC	250
	GCTGCCCTTG CTGCCGGGCC TGGACCACCC TGCAAGGGAA GACTTCTCAG	300
	GCTCAGTCGC CACCAACCTCA CCCCAGCCACC CCCCAGCCGCT TTAACCGCAG	350
	GGAACTCTGG CGTAAGAGCT TTGTGTGACC AGGGCAGGGC TGGTTAGAAG	400
	TGCTCAGGGC CCAGACTCA AGGAAATCA AGGTCAGGAC CCCAAGAGGG	450
35	GACTGAGGGC AACCCACCCC CTACCCCTCAC TACCAATCCC ATCCCCAAC	500
	ACCAACCCCCA CCCCCATCCC TCAAACACCA ACCCCACCCC CAAACCCCCAT	550
	TCCCCATCTCC TCCCCCACCA CCATCCTGGC AGAATCCGGC TTTGCCCTG	600
	CAATCAACCC ACAGGAAGCTC CGGGAAATGGC GGCAAGCAC GCAGGATCCTG	650
	ACGTTACAT GTACGGCTAA GGGAGGGAAAG GGGTTGGGTC TCGTGAGTAT	700
40	GGCCTTGGG ATGCAGAGGA AGGGCCAGG CCTCCTGGAA GACAGTGGAG	750
	TCCTTAGGGG ACCCAGCATG CCAGGACAGG GGGCCCACTG TACCCCTGTC	800

5	TCAAACTGAG CCACCTTTTC ATTCAAGCCGA GGGAAATCCTA GGGATGCAGA CCCACCTCAG GGGGTTGGGG CCCAGCCTGC GAGGAGTCAA GGGGGAGGAAG AAGAGGGAGG ACTGAGGGGA CCTTGGAGTC CAGATCAGTG GCAACCTTGG GCTGGGGGAT CCTGGGCACA GTGGCCGAAT GTGCCCGTG CTCATTGCAC	850 900 950 1000
10	CTTCAGGGTG ACAGAGAGTT GAGGGCTGTG GTCTGAGGGC TGGGACTTCA GGTCAGCAGA GGGAGGAATC CCAGGATCTG CCGGACCCAA GGTGTGCC CTTCATGAGG ACTCCCCATA CCCCCGGCCC AGAAAGAAGG GATGCCACAG AGTCTGGAAG TAAATTGTTT TTAGCTCTGG GGGAACCTGA TCAGGGATGG	1050 1100 1150 1200
15	CCCTAAGTGA CAATCTCATT TGTACCACAG GCAGGAGGTT GGGGAACCC CAGGGAGATA AGGTGTTGGT GTAAAGAGGA GCTGTCTGCT CATTTCAGGG GGTCCCCCT TGAGAAAGGG CAGTCCTGG CAGGAGTAAA GATGAGTAAC CCACAGGAGG CCATCATAAC GTTCACCCCTA GAACCAAAGG GTCAGCCCT	1250 1300 1350 1400
20	GGACAAACGCA CGTGGGGTAA CAGGATGTGG CCCCTCTCA CTTGTCTTC CAGATCTCAG GGAGTTGATG ACCTTGTTT CAGAAGGTGA CTCAGTCAAC ACAGGGGCCCT CTCTGGTCGA CAGATGCAGT GGTTCTAGGA TCTGCCAAGC ATCCAGGTGG AGAGCCTGAG GTAGGATTGA GGGTACCCCT GGGCCAGAA	1450 1500 1550 1600
25	GCAGCAAGGG GGCCCCATAG AAATCTGCC TGCCCCCTGCG GTTACTTCAG AGACCCCTGGG CAGGGCTGTC AGCTGAAGTC CCTCCATTAT CTGGGATCTT TGATGTCAGG GAAGGGGAGG CCTTGGTCTG AAGGGGCTGG AGTCAGGTCA GTAGAGGGAG GGTCTCAGGC CCTGCCAGGA GTGGACGTGA GGACCAAGCG	1650 1700 1750 1800
30	GACTCGTCAC CCAGGACACC TGGACTCCAA TGAATTGAC ATCTCTCGTT GTCCCTCGCG GAGGACCTGG TCACGTATGG CCAGATGTGG GTCCCCCTCTA TCTCCTCTG TACCATATCA GGGATGTGAG TTCTTGACAT GAGAGATTCT CAAGCCAGCA AAAGGGTGGG ATTAGGCCCT ACAAGGAGAA AGGTGAGGGC CCTGAGTGTGAG CACAGAGGGG ACCCTCCACC CAAGTAGAGT GGGGACCTCA	1850 1900 1950 2000 2050
35	CGGAGTCTGG CCAACCCCTGC TGAGACTTCT GGGAAATCCGT GGCTGTGCTT GCAGTCTGCA CACTGAAGGC CCGTGCATTC CTCTCCCAAGG AATCAGGAGC TCCAGGAACC AGGCAGTGAG GCCTTGGTCT GAGTCAGTGC CTCAGGTAC AGAGCAGAGG GGACGCAGAC AGTGCCAACA CTGAAGGTTT GCCTGGAATG CACACCAAGG GCCCCACCCG CCCAGAACAA ATGGGACTCC AGAGGGCCTG	2100 2150 2200 2250 2300
40	GCCTCACCCCT CCCTATTCTC AGTCCTGCAG CCTGAGCATG TGCTGGCCGG CTGTACCCCTG AGGTGCCCTC CCACTTCTC CTTCAAGGTTG TGAGGGGGAC AGGCTGACAA GTAGGACCCG AGGCACTGGA GGAGCATTGA AGGAGAAGAT CTGTAAGTAA GCCTTGTCA GAGCCTCCAA GGTTCAAGTTC AGTTCTCACC TAAGGCCTCA CACACGCTCC TTCTCTCCCC AGGCCTGTGG GTCTTCATTG CCCAGCTCCT GCCCGCACTC CTGCCTGCTG CCCTGACCAG AGTCATC ATG CCT CTT GAG CAG AGT CAG CAC TGC AAG CCT GAA GAA	2350 2400 2450 2500 2550 2597 2639

5	GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GTG GGT GCG CAG GCT CCT GCT ACT GAG GAG CAG CAG ACC GCT TCT TCC TCT TCT ACT CTA GTG GAA GTT ACC CTG GGG GAG GTG CCT GCT GCC GAC TCA CCG AGT CCT CCC CAC AGT CCT CAG GGA GCC TCC AGC TTC TCG ACT ACC ATC AAC TAC ACT CTT TGG AGA CAA TCC GAT GAG GGC TCC AGC AAC CAA GAA GAG GAG GGG CCA AGA ATG TTT CCC GAC CTG GAG TCC GAG TTC CAA GCA GCA ATC AGT AGG AAG ATG GTT GAG TTG GTT CAT TTT CTG CTC CTC AAG TAT CGA GCC AGG GAG CCG GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC CTC AGA AAT TGC CAG GAC TTC TTT CCC GTG ATC TTC AGC AAA GCC TCC GAG TAC TTG CAG CTG GTC TTT GGC ATC GAG GTG GTG GAA GTG GTC CCC ATC AGC CAC TTG TAC ATC CTT GTC ACC TGC CTG GGC CTC TCC TAC GAT GGC CTG CTG GGC GAC AAT CAG GTC ATG CCC AAG ACA GGC CTC CTG ATA ATC GTC CTG GCC ATA ATC GCA ATA GAG GGC GAC TGT GCC CCT GAG GAG AAA ATC TGG GAG GAG CTG AGT ATG TTG GAG GTG TTT GAG GGG AGG GAG GAC AGT GTC TTC GCA CAT CCC AGG AAG CTG CTC ATG CAA GAT CTG GTG CAG GAA AAC TAC CTG GAG TAC CGG CAG GTG CCC GGC AGT GAT CCT GCA TGC TAC GAG TTC CTG TGG GGT CCA AGG GCC CTC ATT GAA ACC AGC TAT GTG AAA GTC CTG CAC CAT ACA CTA AAG ATC GGT GGA GAA CCT CAC ATT TCC TAC CCA CCC CTG CAT GAA CGG GCT TTG AGA GAG GGA GAA GAG TGA GTCTCAGCAC ATGTTGCAGC CAGGGCCAGT GGGAGGGGT CTGGGCCAGT GCACCTTCCA GGGCCCCATC CATTAGCTTC CACTGCCTCG TGTGATATGA GGCCCATTCC TGCCCTTTG AAGAGAGCAG TCAGCATTCT TAGCAGTGAG 30 TTTCTGTTCT GTTGGATGAC TTTGAGATT ATCTTTCTTT CCTGTTGGAA TTGTTCAAAT GTTCTTTA ACAAAATGGTT GGATGAACTT CAGCATCCAA GTTTATGAAT GACAGTAGTC ACACATAGT CTGTTTATAT AGTTTAGGG TAAGAGTCCT GTTTTTATT CAGATTGGGA AATCCATTCC ATTTGTGAG TTGTCACATA ATAACAGCAG TGGAAATATGT ATTTGCCTAT ATTGTGAACG 35 AATTAGCAGT AAAATACATG ATACAAGGAA CTCAAAAGAT AGTTAATTCT TGCCTTATAC CTCAGTCTAT TATGAAAAT TAAAAATATG TGTATGTTT TGCTTCTTG AGAATGCAAA AGAAATTAAA TCTGAATAAA TTCTTCCTGT TCACTGGCTC ATTTCTTAC CATTCACTCA GCATCTGCTC TGTGGAAGGC CCTGGTAGTA GTGGG	2681 2723 2765 2807 2849 2891 2933 2975 3017 3059 3101 3143 3185 3227 3269 3311 3353 3395 3437 3479 3521 3542 3592 3642 3692 3742 3792 3842 3892 3942 3992 4042 4092 4142 4157
---	---	--

5 (2) INFORMATION FOR SEQUENCE ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 662 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

10 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-21 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

15

GGATCCCCAT	GGATCCAGGA	AGAATCCAGT	TCCACCCCTG	CTGTGAACCC	50
AGGGAAAGTCA	CGGGGCCGGA	TGTGACGCCA	CTGACTTGCG	CGTTGGAGGT	100
CAGAGAACAG	CGAGATTCTC	GCCCTGAGCA	ACGGCCTGAC	GTCGGCGGAG	150
20 GGAAGCAGGC	GCAGGCCTCG	TGAGGAGGCA	AGGTAAGATG	CCGAGGGAGG	200
ACTGAGGCGG	GCCTCACCCC	AGACAGAGGG	CCCCCAATAA	TCCAGCGCTG	250
CCTCTGCTGC	CAGGCCTGGA	CCACCCCTGCA	GGGGAAGACT	TCTCAGGCTC	300
AGTCGCCACC	ACCTCACCCC	GCCACCCCCC	GCCGCTTTAA	CCGCAGGGAA	350
CTCTGGTGT	AGAGCTTTGT	GTGACCAGGG	CAGGGCTGGT	TAGAAGTGCT	400
25 CAGGGCCCAG	ACTCAGCCAG	GAATCAAGGT	CAGGACCCCA	AGAGGGGACT	450
GAGGGTAACC	CCCCCGCACC	CCCACCCACCA	TTCCCATCCC	CCAACACCAA	500
CCCCACCCCC	ATCCCCAAC	ACCAAACCCA	CCACCATCGC	TCAAACATCA	550
ACGGCACCCC	CAAACCCCGA	TTCCCATCCC	CACCCATCCT	GGCAGAATCG	600
GAGCTTTGCC	CCTGCAATCA	ACCCACGGAA	GCTCCGGGAA	TGGCGGCCAA	650
30 GCACGCGGAT	CC				662

(2) INFORMATION FOR SEQUENCE ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

35 (A) LENGTH: 1640 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

40 (ix) FEATURE:

(A) NAME/KEY: cDNA MAGE-3

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

	GCCGCGAGGG AAGCCGGCCC AGGCTCGGTG AGGAGGAAG GTTCTGAGGG	50
	GACAGGCTGA CCTGGAGGAC CAGAGGCCCC CGGAGGAGCA CTGAAGGAGA	100
10	AGATCTGCCA GTGGGTCTCC ATTGCCAGC TCCTGCCAC ACTCCCGCCT	150
	GTTGCCCTGA CCAAGAGTCAT C	171
	ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	213
	GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GTG GGT GCG	255
	CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCC TCT	297
15	TCT ACT CTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCT GCC	339
	GAG TCA CCA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC AGC	381
	CTC CCC ACT ACC ATG AAC TAC CCT CTC TGG AGC CAA TCC TAT	423
	GAG GAC TCC AGC AAC CAA GAA GAG GAG GGG CCA AGC ACC TTC	465
	CCT GAC CTG GAG TCC GAG TTC CAA GCA GCA CTC AGT AGG AAG	507
20	GTG GCC GAG TTG GTT CAT TTT CTG CTC CTC AAG TAT CGA GCC	549
	AGG GAG CCG GTC ACA AAG GCA GAA ATG CTG GGG AGT GTC GTC	591
	GGA AAT TGG CAG TAT TTC TTT CCT GTG ATC TTC AGC AAA GCT	633
	TCC AGT TCC TTG CAG CTG GTC TTT GGC ATC GAG CTG ATG GAA	675
	GTG GAC CCC ATC GGC CAC TTG TAC ATC TTT GCC ACC TGC CTG	717
25	GGC CTC TCC TAC GAT GGC CTG CTG GGT GAC AAT CAG ATC ATG	759
	CCC AAG GCA GGC CTC CTG ATA ATC GTC CTG GCC ATA ATC GCA	801
	AGA GAG GGC GAC TGT GCC CCT GAG GAG AAA ATC TGG GAG GAG	843
	CTG AGT GTG TTA GAG GTG TTT GAG GGG AGG GAA GAC AGT ATG	885
	TTG GGG GAT CCC AAG AAG CTG CTC ACC CAA CAT TTC GTG CAG	927
30	GAA AAC TAC CTG GAG TAC CGG CAG GTC CCC GGC AGT GAT CCT	969
	GCA TGT TAT GAA TTC CTG TGG GGT CCA AGG GCC CTC GTT GAA	1011
	ACC AGC TAT GTG AAA GTC CTG CAC CAT ATG GTA AAG ATC AGT	1053
	GGA GGA CCT CAC ATT TCC TAC CCA CCC CTG CAT GAG TGG GTT	1095
	TTG AGA GAG GGG GAA GAG TGA	1116
35	GTCTGAGCAC GAGTTGCAGC CAGGGCCAGT GGGAGGGGGT CTGGGCCAGT	1166
	GCACCTTCCG GGGCCGCATC CCTTAGTTTC CACTGCCCTCC TGTGACGTGA	1216
	GGCCCATTCCT CACTCTTTG AAGCGAGCAG TCAGCATTCT TAGTAGTGGG	1266
	TTTCTGTTCT GTTGGATGAC TTTGAGATTA TTCTTTGTT CCTGTTGGAG	1316
	TTGTTCAAAT GTTCCCTTTA ACGGATGGTT GAATGAGCGT CAGCATCCAG	1366
40	GTTTATGAAT GACAGTAGTC ACACATAGTG CTGTTATAT AGTTAGGAG	1416
	TAAGAGTCTT GttTTTACT CAAATT ₉ GGA AATCCATTCC ATTTGTGAA	1466

5	TTGTGACATA ATAATAGCAG TGGTAAAAGT ATTTGCTTAA AATTGTGAGC	1516
	GAATTAGCAA TAACATACAT GAGATAACTC AAGAAATCAA AAGATAGTTG	1566
	ATTCTTGCTT TGTACCTCAA TCTATTCTGT AAAATTAAAC AAATATGCAA	1616
	ACCAAGGAGTTT CCTTGACTTC TTTG	1640

10

(2) INFORMATION FOR SEQUENCE ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 943 base pairs

(B) TYPE: nucleic acid

15 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-31 gene

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

	GGATCCTCCA CCCCAGTAGA GTGGGGACCT CACAGAGTCT GGCCAACCT	50
	CCTGACAGTT CTGGGAATCC GTGGCTGCGT TTGCTGTCTG CACATTGGGG	100
25	GCCCCGTGGAT TCCTCTCCCA GGAATCAGGA GCTCCAGGAA CAAGGCAGTG	150
	AGGACTTGGT CTGAGGCAGT GTCCTCAGGT CACAGAGTAG AGGGGGgCTCA	200
	GATAGTGCCA ACGGTGAAGG TTTGCCTTGG ATTCAAACCA AGGGCCCCAC	250
	CTGCCCCAGA ACACATGGAC TCCAGAGCGC CTGGCCTCAC CCTCAATACT	300
	TTCAAGTCCTG CAGCCTCAGC ATGCGCTGGC CGGATGTACC CTGAGGTGCC	350
30	CTCTCACTTC CTCCTTCAGG TTCTGAGGGG ACAGGCTGAC CTGGAGGACC	400
	AGAGGCCCCC GGAGGGAGCAC TGAAGGAGAA GATCTGTAAG TAAGCCTTTG	450
	TTAGAGCCTC CAAGGTTCCA TTCAGTACTC AGCTGAGGTC TCTCACATGC	500
	TCCCTCTCTC CCCAGGCCAG TGGGTCTCCA TTGCCAGCT CCTGCCACAC	550
	CTCCCGCCTG TTGCCCTGAC CAGAGTCATC	580
35	ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	622
	GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GTG GGT GCG	664
	CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCC TCT	706
	TCT AGT GTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCT GCC	748
	GAG TCA CCA GAT CCT CCC CAG AGT CCT CAG GGA GGC TCC AGC	790
40	CTC CCC ACT ACC ATG AAC TAC CCT CTC TGG AGC CAA TCC TAT	832
	GAG GAC TCC AGC AAC CAA GAA GAG GAG GGG CCA AGC ACC TTC	874

5	CCT GAC CTG GAG TCT GAG TTC CAA GCA GCA CTC AGT AGG AAG	916
	GTC GCC AAG TTG GTT CAT TTT CTG CTC	943

10 2) INFORMATION FOR SEQUENCE ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2531 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15	(ii) MOLECULE TYPE: genomic DNA
----	---------------------------------

(ix) FEATURE:

- (A) NAME/KEY: MAGE-4 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

20

GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAGT GAACACAGTG	50
GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC CAGCCTACCC	100
TCTTGTAGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT GCACCCCTAAG	150
25 GGCCCATGGA TTCCCTCTCCT AGGAGCTCCA GGAACAAGGC AGTGAGGCCT	200
TGGTCTGAGA CAGTGTCTCTC AGGTTACAGA GCAGAGGATG CACAGGCTGT	250
GCCAGCAGTG AATGTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA	300
CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC TACCATCAAT	350
CCTGCGAAAT CGACCTCTGC TGGCCGGCTA TACCCCTGAGG TGCTCTCTCA	400
30 CTTCCTCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA CAGGATTCCC	450
TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT AAGCCTTTGT	500
TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC ATGCTCCCTC	550
TCTCCGTAGG CCTGTGGGTC CCCATTGCC AGCTTTGCC TGCACTCTTG	600
CCTGCTGCC CGACAGAGT CATC	624
35 ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	666
GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG GTG GGT GCA	708
CAG GCT CCT ACT ACT GAG GAG CAG GAG GCT GCT GTC TCC TCC	750
TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA GTG CCT GCT	792
GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG GGA GCC TCT	834
40 GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG AGG CAA CCC	876
AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG CCA AGC ACC	918

5	TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GCA CTC AGT AAC	960
	AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGC AAG TAT CGA	1002
	GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG GAG AGA GTC	1044
	ATC AAA AAT TAC AAG CGC TGC TTT CCT GTG ATC TTC GGC AAA	1086
	GCC TCC GAG TCC CTG AAG ATG ATC TTT GGC ATT GAC GTG AAG	1128
10	GAA GTG GAC CCC GCC AGC AAC ACC TAC ACC CTT GTC ACC TGC	1170
	CTG GGC CTT TCC TAT GAT GGC CTG CTG GGT AAT AAT CAG ATC	1212
	TTT CCC AAG ACA GGC CTT CTG ATA ATC GTC CTG GGC ACA ATT	1254
	GCA ATG GAG GGC GAC AGC GCC TCT GAG GAG GAA ATC TGG GAG	1296
	GAG CTG GGT GTG ATG GGG GTG TAT GAT GGG AGG GAG CAC ACT	1338
15	GTC TAT GGG GAG CCC AGG AAA CTG CTC ACC CAA GAT TGG GTG	1380
	CAG GAA AAC TAC CTG GAG TAC CGG CAG GTA CCC GGC AGT AAT	1422
	CCT GCG CGC TAT GAG TTC CTG TGG GGT CCA AGG GCT CTG GCT	1464
	GAA ACC AGC TAT GTG AAA GTC CTG GAG CAT GTG GTC AGG GTC	1506
	AAT GCA AGA GTT CGC ATT GCC TAC CCA TCC CTG CGT GAA GCA	1548
20	GCT TTG TTA GAG GAG GAA GAG GGA GTC TGA	1578
	GCATGAGTTG CAGCCAGGGC TGTGGGAAAG GGGCAGGGCT GGGCCAGTGC	1628
	ATCTAACAGC CCTGTGCAGC AGCTTCCCTT GCCTCGTGT A CATGAGGCC	1678
	CATTCTTCAC TCTGTTGAA GAAAATAGTC AGTGTCTTA GTAGTGGGTT	1728
	TCTATTTGT TGGATGACTT GGAGATTTAT CTCTGTTCC TTTTACAATT	1778
25	GTTGAAATGT TCCTTTAAT GGATGGTTGA ATTAACCTCA GCATCCAAGT	1828
	TTATGAATCG TAGTTAACGT ATATTGCTGT TAATATAGTT TAGGAGTAAG	1878
	AGTCTTGTGTT TTTATTCAGA TTGGGAAATC CGTTCTATT TGTGAATTG	1928
	GGACATAATA ACAGCAGTGG AGTAAGTATT TAGAAGTGTG AATTCAACCGT	1978
	GAAAATAGGTG AGATAAAATTA AAAGATACTT AATTCCCGCC TTATGCCTCA	2028
30	GTCTATTCTG TAAAATTAA AAATATATAT GCATACCTGG ATTCCTTGG	2078
	CTTCGTGAAT GTAAGAGAAA TAAAATCTGA ATAAATAATT CTTCTGTTA	2128
	ACTGGCTCAT TTCTTCTCA TGCACTGAGC ATCTGCTCTG TGGAAAGGCC	2178
	AGGATTAGTA GTGGAGATAC TAGGGTAAGC CAGACACACA CCTACCGATA	2228
	GGGTATTAAG AGTCTAGGAG CGCGGTCATA TAATTAAGGT GACAAGATGT	2278
35	CCTCTAACAT GTAGGGAAA AGTAACGAGT GTGGGTATGG GGCTCCAGGT	2328
	GAGAGTGGTC GGGGTGAAAT TCCCTGTGTG GGGCCTTTG GGCTTTGGGA	2378
	AACTGCATTT TCTTCTGAGG GATCTGATTC TAATGAAGCT TGGTGGGTCC	2428
	AGGGCCAGAT TCTCAGAGGG AGAGGGAAAA GCCCAGATTG GAAAAGTTGC	2478
	TCTGAGCAGT TCCTTGTGA CAATGGATGA ACAGAGAGGA GCCTCTACCT	2528
40	GGG	2531

(2) INFORMATION FOR SEQUENCE ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2531 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-41 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

20	GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCTGAGT GAACACAGTG	50
	GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC CAGCCTACCC	100
	TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT GCACCCCTAAG	150
	GGCCCATGGA TTCCCTCTCCT AGGAGCTCCA GGAACAAGGC AGTGAGGCCT	200
	TGGTCTGAGA CAGTGTCTC AGGTTACAGA GCAGAGGATG CACAGGCTGT	250
	GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA	300
25	CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC TACCATCAAT	350
	CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCCTGAGG TGCTCTCTCA	400
	CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA CAGGATTCCC	450
	TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT AAGCCTTTGT	500
	TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC ATGCTCCCTC	550
30	TCTCCGTAGG CCTGTGGGTC CCCATTGCC AGCTTTGCC TGCACCTTG	600
	CCTGCTGCC CGAGCAGAGT CATC	624
	ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	666
	GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG GTG GGT GCG	708
	CAG GCT CCT ACT ACT GAG GAG CAG GAG GCT GCT GTC TCC TCC	750
35	TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA GTG CCT GCT	792
	GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG GGA GCC TCT	834
	GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG AGG CAA CCC	876
	AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG CCA AGC ACC	918
	TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GCA CTC AGT AAC	960
40	AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGC AAG TAT CGA	1002
	GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG GAG AGA GTC	1044

5	ATC AAA AAT TAC AAG CGC TGC TTT CCT GTG ATC TTC GGC AAA GCC TCC GAG TCC CTG AAG ATG ATC TTT GGC ATT GAC GTG AAG GAA GTG GAC CCC ACC AGC AAC ACC TAC ACC CTT GTC ACC TGC CTG GGC CTT TCC TAT GAT GGC CTG CTG GGT AAT AAT CAG ATC TTT CCC AAG ACA GGC CTT CTG ATA ATC GTC CTG GGC ACA ATT	1086 1128 1170 1212 1254
10	GCA ATG GAG GGC GAC AGC GCC TCT GAG GAG GAA ATC TGG GAG GAG CTG GGT GTG ATG GGG GTG TAT GAT GGG AGG GAG CAC ACT GTC TAT GGG GAG CCC AGG AAA CTG CTC ACC CAA GAT TGG GTG CAG GAA AAC TAC CTG GAG TAC CGG CAG GTA CCC GGC AGT AAT CCT GCG CGC TAT GAG TTC CTG TGG GGT CCA AGG GCT CTG GCT	1296 1338 1380 1422 1464
15	GAA ACC AGC TAT GTG AAA GTC CTG GAG CAT GTG GTC AGG GTC AAT GCA AGA GTT CGC ATT GCC TAC CCA TCC CTG CGT GAA GCA GCT TTG TTA GAG GAG GAA GAG GGA GTC TGA GCATGAGTTG CAGCCAGGGC TGTGGGAAAG GGGCAGGGCT GGGCCAGTGC	1506 1548 1578 1628
	ATCTAACAGC CCTGTGCAGC AGCTTCCCTT GCCTCGTGT A CATGAGGCC	1678
20	CATTCTTCAC TCTGTTGAA GAAAATAGTC AGTGTCTTA GTAGTGGTT TCTATTTGT TGGATGACTT GGAGATTTAT CTCTGTTCC TTTTACAATT GTTGAAATGT TCCTTTAA GGATGGTTGA ATAAACTTCA GCATCCAAGT	1728 1778 1828
	TTATGAATCG TAGTTAACGT ATATTGCTGT TAATATAGTT TAGGAGTAAG	1878
	AGTCTGTTT TTATTCAGA TTGGGAAATC CGTTCTATTT TGTGAATTTG	1928
25	GGACATAATA ACAGCAGTGG AGTAAGTATT TAGAAGTGTG AATTACCGT GAAATAGGTG AGATAAATTA AAAGATACTT AATTCCGCC TTATGCCCTCA	1978 2028
	GTCTATTCTG TAAAATTAA AAATATATAT GCATAACCTGG ATTTCCTGG	2078
	CTTCGTGAAT GTAAGAGAAA TTAAATCTGA ATAAAATAATT CTTCTGTAA	2128
	ACTGGCTCAT TTCTCTCTA TGCACTGAGC ATCTGCTCTG TGGAGGCC	2178
30	AGGATTAGTA GTGGAGATAAC TAGGGTAAGC CAGACACACA CCTACCGATA GGGTATTAAG AGTCTAGGAG CGCGGTCTATA TAATTAAGGT GACAAGATGT	2228 2278
	CCTCTAACAGAT GTAGGGAAA AGTAACGAGT GTGGGTATGG GGCTCCAGGT	2328
	GAGAGTGGTC GGGTGTAAAT TCCCTGTGTG GGGCCTTTG GGCTTTGGGA	2378
	AACTCCATT TCTTCTGAGG GATCTGATTG TAATGAAGCT TGGTGGGTCC	2428
35	AGGGCCAGAT TCTCAGAGGG AGAGGGAAAA GCCCAGATTG GAAAAGTTGC TCTGAGCGGT TCCTTGTGA CAATGGATGA ACAGAGAGGA GCCTCTACCT	2478 2528
	GGG	2531

5 (2) INFORMATION FOR SEQUENCE ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1068 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

10 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(ix) FEATURE:

- (A) NAME/KEY: cDNA MAGE-4

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

15

	G GGG CCA AGC ACC TCG CCT GAC GCA GAG TCC TTG TTC CGA	40
	GAA GCA CTC AGT AAC AAG GTG GAT GAG TTG GCT CAT TTT CTG	82
	CTC CGC AAG TAT CGA GCC AAG GAG CTG GTC ACA AAG GCA GAA	124
20	ATG CTG GAG AGA GTC ATC AAA AAT TAC AAG CGC TGC TTT CCT	166
	GTG ATC TTC GGC AAA GCC TCC GAG TCC CTG AAG ATG ATC TTT	208
	GGC ATT GAC GTG AAG GAA GTG GAC CCC GCC AGC AAC ACC TAC	250
	ACC CTT GTC ACC TGC CTG GGC CTT TCC TAT GAT GGC CTG CTG	292
	GGT AAT AAT CAG ATC TTT CCC AAG ACA GGC CTT CTG ATA ATC	334
25	GTC CTG GGC ACA ATT GCA ATG GAG GGC GAC AGC GCC TCT GAG	376
	GAG GAA ATC TGG GAG GAG CTG GGT GTG ATG GGG GTG TAT GAT	418
	GGG AGG GAG CAC ACT GTC TAT GGG GAG CCC AGG AAA CTG CTC	460
	ACC CAA GAT TGG GTG CAG GAA AAC TAC CTG GAG TAC CGG CAG	502
	GTA CCC GGC AGT AAT CCT GCG CGC TAT GAG TTC CTG TGG GGT	544
30	CCA AGG GCT CTG GCT GAA ACC AGC TAT GTG AAA GTC CTG GAG	586
	CAT GTG GTC AGG GTC AAT GCA AGA GTT CGC ATT GCC TAC CCA	628
	TCC CTG CGT GAA GCA GCT TTG TTA GAG GAG GAA GAG GGA GTC	670
	TGAGCATGAG TTGCAGCCAG GGCTGTGGGG AAGGGGCAGG GCTGGGCCAG	720
	TGCATCTAAC AGCCCCTGTGC AGCAGCTTCC CTTGCCTCGT GTAACATGAG	770
35	GCCCCATTCTT CACTCTGTTT GAAGAAAATA GTCAGTGTTC TTAGTAGTGG	820
	GTTTCTATTT TGTGGATGA CTTGGAGATT TATCTCTGTT TCCTTTTACA	870
	ATTGTTGAAA TGTTCCTTTT AATGGATGGT TGAATTAAC TCAAGCATCCA	920
	AGTTTATGAA TCGTAGTTAA CGTATATTGC TGTAAATATA GTTTAGGAGT	970
	AAGAGTCTTG TTTTTTATTG AGATTGGAA ATCCGTTCTA TTTTGTGAAT	1020
40	TTGGGACATA ATAACAGCAG TGGAGTAAGT ATTTAGAAGT GTGAATTC	1068

5 (2) INFORMATION FOR SEQUENCE ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2226 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 10 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

- (A) NAME/KEY: MAGE-5 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

15

GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT GAGCACAGAG	50
GGGACCATTG ACCCCAAAGAG GGTGGAGACC TCACAGATTG CAGCCTACCC	100
TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT GCACCCCTGAG	150
GGCCCATGCA TTCCCTTTCC AGGAGCTCCA GGAAACAGAC ACTGAGGCCT	200
20 TGGTCTGAGG CCGTGCCCTC AGGTACAGA GCAGAGGAGA TGCAGACGTC	250
TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT GGCCCCCATC	300
GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACCC CTCTCTACTG	350
TCAGTCCTGC AGAACATGCC TCTGCTTGCT TGTGTACCCCT GAGGTGCCCT	400
CTCACTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA GGATCACCAAG	450
25 GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC AAAGGAGAAG	500
ATCTGTAAGT AAGCCTTGT TAGAGCCTCC AAGGTTCACT TTTAGCTGA	550
GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC TCCATTGCC	600
AGCTCCTGCC CACACTCCTG CCTGTTGCCG TGACCAGAGT CGTC	644
ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	686
30 CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC CTG CTG CTG	728
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG CCT CCG CCA	770
TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC AAT CCA TTA	812
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA GCA CCT CCC	854
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA GTA AGA AGG	896
35 TGG CTG ACT TGA	908
TTCATTTCT GCTCCTCAAG TATTAAGTCA AGGAGCTGGT CACAAAGGCA	958
GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT TTCTGAGAT	1008
CTTCGGCAAA GCCTCCGAGT CCTTGAGCT GGTCTTTGGC ATTGACGTGA	1058
AGGAAGCGGA CCCCACCGAC AACACCTACA CCCTTGTAC CTGCCTGGGA	1108
40 CTCCTATGAT GGCTGCTGG TTGATAATAA TCAGATCATG CCCAAGACGG	1158
GCCTCCTGAT AATCGTCTTG GGCATGATTG CAATGGAGGG CAAATGCGTC	1208

43

5	CCTGAGGAGA AAATCTGGGA GGAGCTGAGT GTGATGAAGG TGTATGTTGG GAGGGAGCAC AGTGTCTGTG GGGAGCCCAG GAAGCTGCTC ACCCAAGATT TGGTGCAGGA AACTACCTG GAGTACCGGC AGGTGCCAG CAGTGATCCC ATATGCTATG AGTTACTGTG GGGTCCAAGG GCACTCGCTG CTTGAAAGTA CTGGAGCACG TGGTCAGGGT CAATGCAAGA GTTCTCATTT CCTACCCATC	1258 1308 1358 1408 1458
10	CCTGCGTGA GCAAGCTTTGA GAGAGGAGGA AGAGGGAGTC TGAGCATGAG CTGCAGCCAG GGCCACTGCG AGGGGGGCTG GGCCAGTGCA CCTTCCAGGG CTCCGTCCAG TAGTTTCCCC TGCCCTTAATG TGACATGAGG CCCATTCTTC TCTCTTGAA GAGAGCAGTC AACATTCTTA GTAGTGGGTT TCTGTTCTAT TGGATGACTT TGAGAGTTGT CTTTGTTC TTTTGGATT GTTCAAATGT	1508 1558 1608 1658 1708
15	TTCTTTAAT GGGTGGTTGA ATGAACCTCA GCATTCAAAT TTATGAATGA CAGTAGTCAC ACATAGTGCT GTTTATATAG TTTAGGAGTA AGAGTCTTGT TTTTTATTCA GATTGGAAA TCCATTCCAT TTTGTGAATT GGGACATAGT TACAGCAGTG GAATAAGTAT TCATTTAGAA ATGTGAATGA GCAGTAAAC TGATGACATA AAGAAATTAA AAGATATTAA ATTCTTGCTT ATACTCAGTC	1758 1808 1858 1908 1958
20	TATTCGGTAA AATTTTTTTT AAAAAATGTG CATACTGGGA TTTCCTTGGC TTCTTGAGA ATGTAAGACA AATTAAATCT GAATAATCA TTCTCCCTGT TCACTGGCTC ATTTATTCTC TATGCACTGA GCATTTGCTC TGTGGAAAGGC CCTGGGTTAA TAGTGGAGAT GCTAAGGTAA GCCAGACTCA CCCCTACCCA CAGGGTAGTA AAGTCTAGGA GCAGCAGTCA TATAATTAAG GTGGAGAGAT	2008 2058 2108 2158 2208
25	GCCCTCTAAG ATGTAGAG	2226

(2) INFORMATION FOR SEQUENCE ID NO: 17:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2305 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

- (A) NAME/KEY: MAGE-51 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

40 GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT GAGCACAGAG 50

5	GGGACCATTG ACCCCAAGAG GGTGGAGACC TCACAGATTG CAGCCTACCC	100
	TCCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT GCACCCCTGAG	150
	GGCCCATGCA TTCCCTTCC AGGAGCTCCA GGAAACAGAC ACTGAGGCCT	200
	TGGTCTGAGG CCGTGCCCTC AGGTACAGA GCAGAGGAGA TGCAAGACGTC	250
	TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT GGCCCCCATC	300
10	GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACCC CTCTCTACTG	350
	TCAGTCCTGC AGAACATGCC TCTGCTTGCT TGTGTACCCCT GAGGTGCCCT	400
	CTCACTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA GGATCACCAAG	450
	GAAGCTCCAG AGGATCCCCA GGAGGGCCCTA GAGGAGCACC AAAGGAGAAG	500
	ATCTGTAAGT AAGCCTTGT TAGAGCCTCC AAGGTTCACT TTTAGCTGA	550
15	GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC TCCATTGCC	600
	AGCTCCTGCC CACACTCCTG CCTGTTGCCG TGACCAGAGT CGTC	644
	ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	686
	GGC CTT GAC ACC CAA GAA GAG CCC TGG GCC TGG TGG GTG TGC	728
	AGG CTG CCA CTA CTG AGG AGC AGG AGG CTG TGT CCT CCT CCT	770
20	CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC CTG CTG CTG	812
	GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG CCT CCG CCA	854
	TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC AAT CCA TTA	896
	AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA GCA CCT CCC	938
	CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA GTA AGA AGG	980
25	TGG CTG ACT TGA	992
	TTCATTTCT GCTCCTCAAG TATTAAGTCA AGGAGCCGGT CACAAAGGCA	1042
	GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT TTCCCTGAGAT	1092
	CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTGCG ATTGACGTGA	1142
	AGGAAGCGGA CCCCACCAAGC AACACCTACA CCCTTGTAC CTGCCTGGGA	1192
30	CTCCTATGAT GGCCTGGTGG TTTAATCAGA TCATGCCAA GACGGGCCTC	1242
	CTGATAATCG TCTTGGGCAT GATTGCAATG GAGGGCAAAT GCGTCCCTGA	1292
	GGAGAAAATC TGGGAGGGAGC TGGGTGTGAT GAAGGGTGTAT GTTGGGAGGG	1342
	AGCACAGTGT CTGTGGGGAG CCCAGGAAGC TGCTCACCCCA AGATTTGGTG	1392
	CAGGAAAATC ACCTGGAGTA CCGCAGGTGC CCAGCAGTGA TCCCATATGC	1442
35	TATGAGTTAC TGTGGGGTCC AAGGGCACTC GCTGCTTGAA AGTACTGGAG	1492
	CACGTGGTCA GGGTCAATGC AAGAGTTCTC ATTTCTTACCC CATCCCTGCA	1542
	TGAAGCAGCT TTGAGAGAGG AGGAAGAGGG AGTCTGAGCA TGAGCTGCAG	1592
	CCAGGGCCAC TGCGAGGGGG GCTGGGCCAG TGCACTTCC AGGGCTCCGT	1642
	CCAGTAGTTT CCCCTGCCTT AATGTGACAT GAGGCCATT CTTCTCTTT	1692
40	TGAAGAGAGC AGTCAACATT CTTAGTAGTG GGTTTCTGTT CTATTGGATG	1742
	ACTTTGAGAT TTGTCTTGT TTCCCTTTGG AATTGTTCAA ATGTTCCCTT	1792

5	TAATGGGTGG TTGAATGAAC TTCAGCATT CAAATTTATGA ATGACAGTAG	1842
	TCACACATAG TGCTGTTAT ATAGTTAGG AGTAAGAGTC TTGTTTTTA	1892
	TTCAGATTGG GAAATCCATT CCATTTGTG AATTGGGACA TAGTTACAGC	1942
	AGTGGAAATAA GTATTCACTT AGAAAATGTGA ATGAGCAGTA AAACTGATGA	1992
	GATAAAGAAA TTTAAAGATA TTTAATTCTT GCCTTATACT CAGTCTATT	2042
10	GGTAAAATTT TTTTTAAAAA ATGTGCATAC CTGGATTCC TTGGCTTCTT	2092
	TGAGAAATGTA AGACAAATTA AATCTGAATA AATCATTCTC CCTGTTCACT	2142
	GGCTCATTTA TTCTCTATGC ACTGAGCATT TGCTCTGTGG AAGGCCCTGG	2192
	GTAAATAGTG GAGATGCTAA GGTAAGCCAG ACTCACCCCT ACCCACAGGG	2242
	TAGTAAAGTC TAGGAGCAGC AGTCATATAA TTAAGGTGGA GAGATGCCCT	2292
15	CTAAGATGTA GAG	2305

(2) INFORMATION FOR SEQUENCE ID NO: 18:

20	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 225 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
25	(ii) MOLECULE TYPE: cDNA
	(ix) FEATURE:
	(A) NAME/KEY: MAGE-6 gene
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

30	TAT TTC TTT CCT GTG ATC TTC AGC AAA GCT TCC GAT TCC TTG	42
	CAG CTG GTC TTT GGC ATC GAG CTG ATG GAA GTG GAC CCC ATC	84
	GGC CAC GTG TAC ATC TTT GCC ACC TGC CTG GGC CTC TCC TAC	126
	GAT GGC CTG CTG GGT GAC AAT CAG ATC ATG CCC AGG ACA GGC	168
35	TTC CTG ATA ATC ATC CTG GCC ATA ATC GCA AGA GAG GGC GAC	210
	TGT GCC CCT GAG GAG	225

40 (2) INFORMATION FOR SEQUENCE ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 1947 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 10 (ix) FEATURE:
 (A) NAME/KEY: MAGE-7 gene
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

15	TGAATGGACA ACAAGGGCCC CACACTCCCC AGAACACAAG GGACTCCAGA	50
	GAGCCCAGCC TCACCTTCCC TACTGTCAGT CCTGCAGCCT CAGCCTCTGC	100
	TGGCCGGCTG TACCCCTGAGG TGCCCTCTCA CTTCCCTCTT CAGGTTCTCA	150
	GCGGACAGGC CGGCCAGGAG GTCAGAAGCC CCAGGAGGCC CCAGAGGGAGC	200
	ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGGCC TCCAGGGCGT	250
20	GGTTCACAAA TGAGGCCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG	300
	GTTCCCTCCCC ATCGCCCAGC TGCTGCCCGC ACTCCAGCCT GCTGCCCTGA	350
	CCAGAGTCAT CATGTCCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG	400
	GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG	450
	GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCCTCA CTCTGATTGA	500
25	AGGCACCCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCTGA	550
	GTCTCAGGGT TCCTCCTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA	600
	GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCAAC	650
	TAGACACACC CCGCTCACCT GGCCTCCTTG TTCCA	685
	ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT	727
30	ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA	769
	GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT	811
	GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC	853
	ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA	895
	CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC	937
35	AGA GCA TGC CCG AGA CCG GCC TTC TGA	964
	TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG	1014
	GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT	1064
	TCTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC	1114
	TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAAGTT	1164
40	CCTGTGGGAGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCTGG	1214
	AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCTA CCCATCCCTG	1264

5	CATGAAGAGG CTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGCA GTGCACGTT CACACATCCA CCACCTTCCC TGTCTGTTA CATGAGGCC ATTCTTCACT CTGTGTTGA AGAGAGCAGT CAATGTTCTC AGTAGCAGGG AGTGTGTTGG GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCTGT TCTCTTGGC	1314 1364 1414 1464 1514
10	GATTTGGAGG TTTATCTTTG TTTCTTTG CAGTCGTTCA AATGTTCC TTAATGGATG GTGTAATGAA CTTAACATT CATTTCATGT ATGACAGTAG GCAGACTTAC TGTTTTTAT ATAGTTAAAA GTAAGTGCAT TGTTTTTAT TTATGTAAGA AAATCTATGT TATTCTTGA ATTGGGACAA CATAACATAG	1564 1614 1664 1714
15	CAGAGGATTA AGTACCTTT ATAATGTGAA AGAACAAAGC GGTAAAATGG GTGAGATAAA GAAATAAAAGA AATTAAATTG GCTGGGCACG GTGGCTCACG CCTGTAATCC CAGCACTTCA GGAGGCAGAG GCACGGGGAT CACGAGGTCA GGAGATCGAG ACCATTCTGG CTAACACAGT GAAACACCAT CTCTATTAAA AATACAAAAC TTAGCCGGGC GTGGTGGCGG GTG	1764 1814 1864 1914 1947

20

(2) INFORMATION FOR SEQUENCE ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1810 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-8 gene

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

	GAGCTCCAGG AACCAAGGCTG TGAGGTCTTG GTCTGAGGCA GTATCTCAA TCACAGAGCA TAAGAGGCC AGGCAGTAGT AGCAGTCAAG CTGAGGTGGT	50 100
	GTTCCTCTG TATGTATACC AGAGGCCCT CTGGCATCAG AACAGCAGGA	150
35	ACCCACAGT TCCTGGCCCT ACCAGCCCTT TTGTCACTCC TGGAGCCTTG GCCTTGCCA GGAGGCTGCA CCCTGAGATG CCCTCTCAAT TTCTCTTCA	200 250
	GGTCGCAGA GAAACAGGCCA GCCAGGAGGT CAGGAGGCC CAGAGAAGCA	300
	CTGAAGAAGA CCTGTAAGTA GACCTTGTT AGGGCATCCA GGGTGTAGTA	350
	CCCAGCTGAG GCCTCTACA CGCTTCTCT CTCCCCAGGC CTGTGGGTCT	400
40	CAATTGCCCA GCTCCGGCCC ACACCTCTCCT GCTGCCCTGA CCTGAGTCAT C	450 451

5	ATG CTT CTT GGG CAG AAG AGT CAG CGC TAC AAG GCT GAG GAA	493
	GGC CTT CAG GCC CAA GGA GAG GCA CCA GGG CTT ATG GAT GTG	535
	CAG ATT CCC ACA GCT GAG GAG CAG AAG GCT GCA TCC TCC TCC	577
	TCT ACT CTG ATC ATG GGA ACC CTT GAG GAG GTG ACT GAT TCT	619
	GGG TCA CCA AGT CCT CCC CAG AGT CCT GAG GGT GCC TCC TCT	661
10	TCC CTG ACT GTC ACC GAC AGC ACT CTG TGG AGC CAA TCC GAT	703
	GAG GGT TCC AGC AGC AAT GAA GAG GAG GGG CCA AGC ACC TCC	745
	CCG GAC CCA GCT CAC CTG GAG TCC CTG TTC CGG GAA GCA CTT	787
	GAT GAG AAA GTG GCT GAG TTA GTT CGT TTC CTG CTC CGC AAA	829
	TAT CAA ATT AAG GAG CCG GTC ACA AAG GCA GAA ATG CTT GAG	871
15	AGT GTC ATC AAA AAT TAC AAG AAC CAC TTT CCT GAT ATC TTC	913
	AGC AAA GCC TCT GAG TGC ATG CAG GTG ATC TTT GGC ATT GAT	955
	GTG AAG GAA GTG GAC CCT GCC GGC CAC TCC TAC ATC CTT GTC	997
	ACC TGC CTG GGC CTC TCC TAT GAT GGC CTG CTG GGT GAT GAT	1039
	CAG AGT ACG CCC AAG ACC GGC CTC CTG ATA ATC GTC CTG GGC	1081
20	ATG ATC TTA ATG GAG GGC AGC CGC GCC CCG GAG GAG GCA ATC	1123
	TGG GAA GCA TTG AGT GTG ATG GGG GCT GTA TGA	1156
	TGGGAGGGAG CACAGTGTCT ATTGGAGCT CAGGAAGCTG CTCACCCAAG	1206
	AGTGGGTGCA GGAGAACTAC CTGGAGTACC GCCAGGCGCC CGGCAGTGAT	1256
	CCTGTGCCCT ACGAGTTCT GTGGGGTCCA AGGGCCCTTG CTGAAACCAG	1306
25	CTATGTGAAA GTCCTGGAGC ATGTGGTCAG GGTCAATGCA AGAGTTCGCA	1356
	TTTCCTACCC ATCCCTGCAT GAAGAGGCTT TGGGAGAGGA GAAAGGAGTT	1406
	TGAGCAGGAG TTGCAGCTAG GGCCAGTGGG GCAGGTTGTG GGAGGGCTG	1456
	GGCCAGTGCA CGTTCCAGGG CCACATCCAC CACTTCCCT GCTCTGTTAC	1506
	ATGAGGCCCA TTCTTCACTC TGTGTTGAA GAGAGCAGTC ACAGTTCTCA	1556
30	GTAGTGGGGA GCATGTTGGG TGTGAGGGAA CACAGTGTGG ACCATCTCTC	1606
	AGTTCTGTT CTATTGGCG ATTGGAGGT TTATCTTGT TTCTTTGG	1656
	AATTGTTCCA ATGTTCCCTC TAATGGATGG TGTAAATGAAC TTCAACATT	1706
	ATTTTATGTA TGACAGTAGA CAGACTTACT GCTTTTATA TAGTTAGGA	1756
	GTAAGAGTCT TGCTTTCAT TTATACTGGG AAACCCATGT TATTTCTTGA	1806
35	ATTC	1810

(2) INFORMATION FOR SEQUENCE ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

40 (A) LENGTH: 1412 base pairs
 (B) TYPE: nucleic acid

5 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (ix) FEATURE:
 (A) NAME/KEY: MAGE-9 gene
 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TCTGAGACAG	TGTCCTCAGG	TCGCAGAGCA	GAGGAGACCC	AGGCAGTGTC	50
AGCAGTGAAG	GTGAAGTGTT	CACCCCTGAAT	GTGCACCAAG	GGCCCCACCT	100
GCCCCAGCAC	ACATGGGACC	CCATAGCACC	TGGCCCCATT	CCCCCTACTG	150
15 TCACTCATAG	AGCCTTGATC	TCTGCAGGCT	AGCTGCACGC	TGAGTAGCCC	200
TCTCACTTCC	TCCCTCAGGT	TCTCGGGACA	GGCTAACCAAG	GAGGACAGGA	250
GCCCCAAGAG	GCCCCAGAGC	AGCACTGACG	AAGACCTGTA	AGTCAGCCTT	300
TGTTAGAACCC	TCCAAGGTTTC	GGTTCTCAGC	TGAAGTCTCT	CACACACTCC	350
CTCTCTCCCC	AGGCCCTGTGG	GTCTCCATCG	CCCAGCTCCT	GCCCCACGCTC	400
20 CTGACTGCTG	CCCTGACCAAG	AGTCATC			427
ATG TCT CTC GAG CAG AGG AGT CCG CAC TGC AAG CCT GAT GAA					469
GAC CTT GAA GCC CAA GGA GAG GAC TTG GGC CTG ATG GGT GCA					511
CAG GAA CCC ACA GGC GAG GAG GAG ACT ACC TCC TCC TCT					553
GAC AGC AAG GAG GAG GAG GTG TCT GCT GCT GGG TCA TCA AGT					595
25 CCT CCC CAG AGT CCT CAG GGA GGC GCT TCC TCC ATT TCC					637
GTC TAC TAC ACT TTA TGG AGC CAA TTC GAT GAG GGC TCC AGC					679
AGT CAA GAA GAG GAA GAG CCA AGC TCC TCG GTC GAC CCA GCT					721
CAG CTG GAG TTC ATG TTC CAA GAA GCA CTG AAA TTG AAG GTG					763
GCT GAG TTG GTT CAT TTC CTG CTC CAC AAA TAT CGA GTC AAG					805
30 GAG CCG GTC ACA AAG GCA GAA ATG CTG GAG AGC GTC ATC AAA					847
AAT TAC AAG CGC TAC TTT CCT GTG ATC TTC GGC AAA GCC TCC					889
GAG TTC ATG CAG GTG ATC TTT GGC ACT GAT GTG AAG GAG GTG					931
GAC CCC GCC GGC CAC TCC TAC ATC CTT GTC ACT GCT CTT GGC					973
CTC TCG TGC GAT AGC ATG CTG GGT GAT GGT CAT AGC ATG CCC					1015
35 AAG GCC GCC CTC CTG ATC ATT GTC CTG GGT GTG ATC CTA ACC					1057
AAA GAC AAC TGC GCC CCT GAA GAG GTT ATC TGG GAA GCG TTG					1099
AGT GTG ATG GGG GTG TAT GTT GGG AAG GAG CAC ATG TTC TAC					1141
GGG GAG CCC AGG AAG CTG CTC ACC CAA GAT TGG GTG CAG GAA					1183
AAC TAC CTG GAG TAC CGG CAG GTG CCC GGC AGT GAT CCT GCG					1225
40 CAC TAC GAG TTC CTG TGG GGT TCC AAG GCC CAC GCT GAA ACC					1267
AGC TAT GAG AAG GTC ATA AAT TAT TTG GTC ATG CTC AAT GCA					1309

50

5	AGA GAG CCC ATC TGC TAC CCA TCC CTT TAT GAA GAG GTT TTG	1351
	GGA GAG GAG CAA GAG GGA GTC TGA	1375
	GCACCAGCCG CAGCCGGGGC CAAAGTTGT GGGGTCA	1412

10 (2) INFORMATION FOR SEQUENCE ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 920 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

15 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-10 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

20

	ACCTGCTCCA GGACAAAGTG GACCCCCTG CATCAGCTCC ACCTACCCCTA	50
	CTGTCAGTCC TGGAGCCTTG GCCTCTGCCG GCTGCATCCT GAGGAGCCAT	100
	CTCTCACTTC CTTCTTCAGG TTCTCAGGGG ACAGGGAGAG CAAGAGGTCA	150
25	AGAGCTGTGG GACACCACAG AGCAGCACTG AAGGAGAAGA CCTGTAAGTT	200
	GGCCTTTGTT AGAACCTCCA GGGTGTGGTT CTCAGCTGTG GCCACTTACA	250
	CCCTCCCTCT CTCCCCAGGC CTGTGGGTCC CCATCGCCCA AGTCCTGCC	300
	ACACTCCCAC CTGCTACCCCT GATCAGAGTC ATC	333
	ATG CCT CGA GCT CCA AAG CGT CAG CGC TGC ATG CCT GAA GAA	375
30	GAT CTT CAA TCC CAA AGT GAG ACA CAG GGC CTC GAG GGT GCA	417
	CAG GCT CCC CTG GCT GTG GAG GAT GCT TCA TCA TCC ACT	459
	TCC ACC AGC TCC TCT TTT CCA TCC TCT TTT CCC TCC TCC TCC	501
	TCT TCC TCC TCC TCC TCC TGC TAT CCT CTA ATA CCA AGC ACC	543
	CCA GAG GAG GTT TCT GCT GAT GAT GAG ACA CCA AAT CCT CCC	585
35	CAG AGT GCT CAG ATA GCC TGC TCC TCC CCC TCG GTC GTT GCT	627
	TCC CTT CCA TTA GAT CAA TCT GAT GAG GGC TCC AGC AGC CAA	669
	AAG GAG GAG AGT CCA AGC ACC CTA CAG GTC CTG CCA GAC AGT	711
	GAG TCT TTA CCC AGA AGT GAG ATA GAT GAA AAG GTG ACT GAT	753
	TTG GTG CAG TTT CTG CTC TTC AAG TAT CAA ATG AAG GAG CCG	795
40	ATC ACA AAG GCA GAA ATA CTG GAG AGT GTC ATA AAA AAT TAT	837
	GAA GAC CAC TTC CCT TTG TTG TTT AGT GAA GCA GCC TCC GAG TGC	879

5 ATG CTG CTG GTC TTT GGC ATT GAT GTA AAG GAA GTG GAT CC 920

10 (2) INFORMATION FOR SEQUENCE ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1107 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

- (A) NAME/KEY: MAGE-11 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

20

AGAGAACAGG CCAACCTGGA GGACAGGAGT CCCAGGAGAA CCCAGAGGAT	50
CACTGGAGGA GAACAAGTGT AAGTAGGCCT TTGTTAGATT CTCCATGGTT	100
CATATCTCAT CTGAGTCTGT TCTCACGCTC CCTCTCTCCC CAGGCTGTGG	150
GGCCCCATCA CCCAGATATT TCCCACAGTT CGGCCTGCTG ACCTAACAG	200
25 AGTCATCATG CCTCTTGAGC AAAGAACGTCA GCACTGCAAG CCTGAGGAAG	250
CCTTCAGGCC CAAGAACAGG ACCTGGGCCT GGTGGGTGCA CAGGCTCTCC	300
AAGCTGAGGA GCAGGAGGCT GCCTTCTTCT CCTCTACTCT GAATGTGGC	350
ACTCTAGAGG AGTTGCCCTGC TGCTGAGTCA CCAAGTCCTC CCCAGAGTCC	400
TCAGGAAGAG TCCTTCTCTC CCACTGCCAT GGATGCCATC TTTGGGAGCC	450
30 TATCTGATGA GGGCTCTGGC AGCCAAGAAA AGGAGGGGCC AAGTACCTCG	500
CCTGACCTGA TAGACCCCTGA GTCCCTTTC CAAGATATAC TACATGACAA	550
GATAATTGAT TTGGTTCAATT TATTCTCCGC AAGTATCGAG TCAAGGGGCT	600
GATCACAAAG GCAGAA	616
ATG CTG GGG AGT GTC ATC AAA AAT TAT GAG GAC TAC TTT CCT	658
35 GAG ATA TTT AGG GAA GCC TCT GTA TGC ATG CAA CTG CTC TTT	700
GGC ATT GAT GTG AAG GAA GTG GAC CCC ACT AGC CAC TCC TAT	742
GTC CTT GTC ACC TCC CTC AAC CTC TCT TAT GAT GGC ATA CAG	784
TGT AAT GAG CAG AGC ATG CCC AAG TCT GGC CTC CTG ATA ATA	826
GTC CTG GGT GTA ATC TTC ATG GAG GGG AAC TGC ATC CCT GAA	868
40 GAG GTT ATG TGG GAA GTC CTG AGC ATT ATG GGG GTG TAT GCT	910
GGA AGG GAG CAC TTC CTC TTT GGG GAG CCC AAG AGG CTC CTT	952

5	ACC CAA AAT TGG GTG CAG GAA AAG TAC CTG GTG TAC CGG CAG	994
	GTG CCC GGC ACT GAT CCT GCA TGC TAT GAG TTC CTG TGG GGT	1036
	CCA AGG GCC CAC GCT GAG ACC AGC AAG ATG AAA GTT CTT GAG	1078
	TAC ATA GCC AAT GCC AAT GGG AGG GAT CC	1107

10

(2) INFORMATION FOR SEQUENCE ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2150 base pairs

(B) TYPE: nucleic acid

15 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: smage-I

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

	TCTGTCTGCA TATGCCTCCA CTTGTGTGTA GCAGTCTCAA ATGGATCTCT	50
	CTCTACAGAC CTCTGTCTGT GTCTGGCACC CTAAGTGGCT TTGCATGGGC	100
25	ACAGGTTTCT GCCCCTGCAT GGAGCTTAAA TAGATCTTC TCCACAGGCC	150
	TATACCCCTG CATTGTAAGT TTAAGTGGCT TTATGTGGAT ACAGGTCTCT	200
	GCCCTTGTAT GCAGGCCTAA GTTTTCTGT CTGCTTAACC CCTCCAAGTG	250
	AAGCTAGTGA AAGATCTAAC CCACTTTGG AAGTCTGAAA CTAGACTTTT	300
	ATGCAGTGGC CTAACAAGTT TTAATTCTT CCACAGGGTT TGCAGAAAAG	350
30	AGCTTGATCC ACGAGTTCAAG AAGTCCTGGT ATGTTCTTAG AAAG	394
	ATG TTC TCC TGG AAA GCT TCA AAA GCC AGG TCT CCA TTA AGT	436
	CCA AGG TAT TCT CTA CCT GGT AGT ACA GAG GTA CTT ACA GGT	478
	TGT CAT TCT TAT CCT TCC AGA TTC CTG TCT GCC AGC TCT TTT	520
	ACT TCA GCC CTG AGC ACA GTC AAC ATG CCT AGG GGT CAA AAG	562
35	AGT AAG ACC CGC TCC CGT GCA AAA CGA CAG CAG TCA CGC AGG	604
	GAG GTT CCA GTA GTT CAG CCC ACT GCA GAG GAA GCA GGG TCT	646
	TCT CCT GTT GAC CAG AGT GCT GGG TCC AGC TTC CCT GGT GGT	688
	TCT GCT CCT CAG GGT GTG AAA ACC CCT GGA TCT TTT GGT GCA	730
	GGT GTA TCC TGC ACA GGC TCT GGT ATA GGT GGT AGA AAT GCT	772
40	GCT GTC CTG CCT GAT ACA AAA AGT TCA GAT GGC ACC CAG GCA	814
	GGG ACT TCC ATT CAG CAC ACA CTG AAA GAT CCT ATC ATG AGG	856

5	AAG GCT AGT GTG CTG ATA GAA TTC CTG CTA GAT AAA TTT AAG	898
	ATG AAA GAA GCA GTT ACA AGG AGT GAA ATG CTG GCA GTA GTT	940
	AAC AAG AAG TAT AAG GAG CAA TTC CCT GAG ATC CTC AGG AGA	982
	ACT TCT GCA CGC CTA GAA TTA GTC TTT GGT CTT GAG TTG AAG	1024
	GAA ATT GAT CCC AGC ACT CAT TCC TAT TTG CTG GTA GGC AAA	1066
10	CTG GGT CTT TCC ACT GAG GGA AGT TTG AGT AGT AAC TGG GGG	1108
	TTG CCT AGG ACA GGT CTC CTA ATG TCT GTC CTA GGT GTG ATC	1150
	TTC ATG AAG GGT AAC CGT GCC ACT GAG CAA GAG GTC TGG CAA	1192
	TTT CTG CAT GGA GTG GGG GTA TAT GCT GGG AAG AAG CAC TTG	1234
	ATC TTT GGC GAG CCT GAG GAG TTT ATA AGA GAT GTA GTG CGG	1276
15	GAA AAT TAC CTG GAG TAC CGC CAG GTA CCT GGC AGT GAT CCC	1318
	CCA AGC TAT GAG TTC CTG TGG GGA CCC AGA GCC CAT GCT GAA	1360
	ACA ACC AAG ATG AAA GTC CTG GAA GTT TTA GCT AAA GTC AAT	1402
	GGC ACA GTC CCT AGT GCC TTC CCT AAT CTC TAC CAG TTG GCT	1444
	CTT AGA GAT CAG GCA GGA GGG GTG CCA AGA AGG AGA GTT CAA	1486
20	GGC AAG GGT GTT CAT TCC AAG GCC CCA TCC CAA AAG TCC TCT	1528
	AAC ATG TAG	1537
	TTGAGTCTGT TCTGTTGTGT TTGAAAAACA GTCAAGGCTCC TAATCAGTAG	1587
	AGAGTTCATATA GCCTTACCAAGA ACCAACATGC ATCCATTCTT GGCCTTTAT	1637
	ACATTAGTAG AATGGAGGCT ATTTTTGTTA CTTTCAAAT GTTTGTAA	1687
25	CTAAACAGTG CTTTTGCCA TGCTTCTTGT TAACTGCATA AAGAGGTAAC	1737
	TGTCACTTGT CAGATTAGGA CTTGTTTGT TATTGCAAC AAACCTGGAAA	1787
	ACATTATTT GTTTTTACTA AAACATTGTG TAACATTGCA TTGGAGAAGG	1837
	GATTGTCATG GCAATGTGAT ATCATACTG GGTGAAACAA CAGTGAAGTG	1887
	GGAAAGTTA TATTGTTAAT TTTGAAAATT TTATGAGTGT GATTGCTGTA	1937
30	TACTTTTTTC TTTTTTGAT AATGCTAAGT GAAATAAAGT TGGATTTGAT	1987
	GACTTTACTC AAATTCTATTA GAAAGTAAAT CGTAAAACTC TATTACTTTA	2037
	TTATTTCTT CAATTATGAA TTAAGCATTG GTTATCTGGA AGTTTCTCCA	2087
	GTAGCACAGG ATCTAGTATG AAATGTATCT AGTATAGGCA CTGACAGTGA	2137
	GTTATCAGAG TCT	2150

35

(2) INFORMATION FOR SEQUENCE ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2099 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

5 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (ix) FEATURE:
 (A) NAME/KEY: smage-II
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

10

	ACCTTATTGG GTCTGCTGC ATATGCCTCC ACTTGTGTGT AGCAGTCTCA	50
	AATGGATCTC TCTCTACAGA CCTCTGTCTG TGTCTGGCAC CCTAAGTGGC	100
	TTTGCATGGG CACAGGTTTC TGCCCCCTGCA TGGAGCTTAA ATAGATCTT	150
15	CTCCACAGGC CTATAACCCCT GCATTGTAAG TTTAAGTGGC TTTATGTGGA	200
	TACAGGTCTC TGCCCTTGTGTA TGCAGGCCTA AGTTTTCTG TCTGCTTAGC	250
	CCCTCCAAGT GAAGCTAGTG AAAGATCTAA CCCACTTTG GAAGTCTGAA	300
	ACTAGACTTT TATGCAGTGG CCTAACAAAGT TTTAATTCT TCCACAGGGT	350
	TTGCAGAAAA GAGCTTGATC CACGAGTTCG GAAGTCTGG TATGTTCTA	400
20	GAAAGATGTT CTCCTGGAAA GCTTCAAAAG CCAGGTCTCC ATTAAGTCCA	450
	AGGTATTCTC TACCTGGTAG TACAGAGGT A CTTACAGGTT GTCATTCTA	500
	TCTTTCCAGA TTCTGTCTG CCAGCTCTT TACTTCAGCC CTGAGCACAG	550
	TCAACATGCC TAGGGGTCAA AAGAGTAAGA CCCGCTCCCG TGCAAAACGA	600
	CAGCAGTCAC GCAGGGAGGT TCCAGTAGTT CAGCCCAC TG CAGAGGAAGC	650
25	AGGGTCTTCT CCTGTTGACC AGAGTGTGG GTCCAGCTTC CCTGGTGGTT	700
	CTGCTCCTCA GGGGTGTGAAA ACCCCCTGGAT CTTTTGGTGC AGGTGTATCC	750
	TGCACAGGCT CTGGTATAAGG TGGTAGAAAT GCTGCTGTCC TGCCTGATAC	800
	AAAAAGTTCA GATGGCACCC AGGCAGGGAC TTCCATTCA G CACACACTGA	850
	AAGATCCTAT CATGAGGAAG GCTAGTGTGC TGATAGAATT CCTGCTAGAT	900
30	AAGTTTAAGA TGAAAGAACG AGTTACAAGG AGTGAATGC TGGCAGTAGT	950
	TAACAAGAACG TATAAGGAGC AATTCCCTGA GATCCTCAGG AGAACTTCTG	1000
	CACGCCCTAGA ATTAGCTTT GGTCTTGAGT TGAAGGAAAT TGATCCCAGC	1050
	ACTCATTCCCT ATTTGCTGGT AGGCACAACTG GGTCTTCCA CTGAGGGAAAG	1100
	TTTGAGTAGT AACTGGGGGT TGCCTAGGAC AGGTCTCCTA ATGTCTGTCC	1150
35	TAGGTGTGAT CTTCATGAAG GGTAAACCGTG CCACTGAGCA AGAGGTCTGG	1200
	CAATTCTGC ATGGAGTGGG GGTATATGCT GGGAAAGAACG ACTTGATCTT	1250
	TGGCGAGCCT GAGGAGTTA TAAGAGATGT AGTGCAGGGAA AATTACCTGG	1300
	AGTACCGCCA GGTACCTGGC AGTGATCCCC CAAGCTATGA GTTCCGTGG	1350
	GGACCCAGAG CCCATGCTGA AACAAACCAAG ATGAAAGTCC TGGAAAGTTT	1400
40	AGCTAAAGTC AATGGCACAG TCCCTAGTGC CTTCCCTAAT CTCTACCAGT	1450
	TGGCTCTTAG AGATCAGGCA GGAGGGGTGC CAAGAAGGAG AGTTCAAGGC	1500

5	AAGGGTGTTC ATTCCAAGGC CCCATCCAA AAGTCCTCTA ACATGTAGTT	1550
	GAGTCTGTTC TGTTGTGTTT GAAAAACAGT CAGGCTCCTA ATCAGTAGAG	1600
	AGTTCATAGC CTACCAAGAAC CAACATGCAT CCATTCTTGG CCTGTTATAC	1650
	ATTAGTAGAA TGGAGGCTAT TTTTGTACT TTTCAAATGT TTGTTTAACT	1700
	AAACAGTGCT TTTGCCATG CTTCTTGTAA ACTGCATAAA GAGGTAAC TG	1750
10	TCACTTGTCA GATTAGGACT TGTTTGTAA TTTGCAACAA ACTGGAAA AC	1800
	ATTATTTGT TTTTACTAAA ACATTGTGTA ACATTGCATT GGAGAAGGGA	1850
	TTGTCATGGC AATGTGATAT CATACTGG TGAAACAACA GTGAAGTGGG	1900
	AAAGTTTATA TTGTTAGTTT TGAAAATTTT ATGAGTGTGA TTGCTGTATA	1950
	CTTTTTCTT TTTGTATAA TGCTAAGTGA AATAAAAGTTG GATTTGATGA	2000
15	CTTTACTCAA ATTCAATTAGA AAGTAAATCA TAAAACCTCTA TTACTTTATT	2050
	ATTTTCTTCA ATTATTAATT AAGCATTGGT TATCTGGAAG TTTCTCCAG	2099

(2) INFORMATION FOR SEQUENCE ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Glu Ala Asp Pro Thr Gly His Ser Tyr

5

30

(2) INFORMATION FOR SEQUENCE ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

40 Glu Val Val Pro Ile Ser His Leu Tyr

5

5

(2) INFORMATION FOR SEQUENCE ID NO: 28:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

10

Glu Val Val Arg Ile Gly His Leu Tyr

15

5

(2) INFORMATION FOR SEQUENCE ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

20

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

25

Glu Val Asp Pro Ile Gly His Leu Tyr

5

30

(2) INFORMATION FOR SEQUENCE ID NO: 30:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

35

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

Gly Val Asp Pro Ala Ser Asn Thr Tyr

5

40

57

5 (2) INFORMATION FOR SEQUENCE ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

Glu Val Asp Pro Thr Ser Asn Thr Tyr

5

15

(2) INFORMATION FOR SEQUENCE ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

25 Glu Ala Asp Pro Thr Ser Asn Thr Tyr

5

30 (2) INFORMATION FOR SEQUENCE ID NO: 33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

Glu Ala Asp Pro Thr Ser Asn Thr Tyr

5

40

58

5 (2) INFORMATION FOR SEQUENCE ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acids
- (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

Glu Val Asp Pro Ile Gly His Val Tyr

5

15

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acid residues
- (B) TYPE: amino acid
- (D) TOPOLOGY: single

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

Tyr Met Asn Gly Thr Met Ser Gln Val

25

5

(2) INFORMATION FOR SEQ ID NO: 36:

(i) SEQUENCE CHARACTERISTICS:

30

- (A) LENGTH: 10 amino acid residues
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

35

Met Leu Leu Ala Val Leu Tyr Cys Leu Leu

5

10

40

59

5 (2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

Met Leu Leu Ala Val Leu Tyr Cys Leu

5

15

(2) INFORMATION FOR SEQ ID NO: 38:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

20 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

Leu Leu Ala Val Leu Tyr Cys Leu Leu

25 5

(2) INFORMATION FOR SEQ ID NO: 39:

30 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

35

Ser Glu Ile Trp Arg Asp Ile Asp Phe Ala His Glu Ala

5

10

40

60

5 (2) INFORMATION FOR SEQ ID NO: 40:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

Ser Glu Ile Trp Arg Asp Ile Asp Phe Ala

5

10

15

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

20 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

Ser Glu Ile Trp Arg Asp Ile Asp Phe

25

5

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 16 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

35

Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu Thr Gln Asp Leu

5

10

15

40

5 (2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu

5

10

15

(2) INFORMATION FOR SEQ ID NO: 44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

20 (B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

Ser Ala Tyr Gly Glu Pro Arg Lys Leu

25

5

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 1032 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

35

CGCCAATTAA GGGTCTCCGG TATCTCCCGC TGAGCTGCTC TGTTCCCGGC TTAGAGGACC 60

AGGAGAAGGG GGAGCTGGAG GCTGGAGCCT GTAACACCGT GGCTCGTCTC ACTCTGGATG 120

GTGGTGGCAA CAGAGATGGC AGCGCAGCTG GAGTGTAGG AGGGCGGCCT GAGCGGTAGG 180

40 AGTGGGGCTG GAGCAGTAAG ATGGCGGCCA GAGCGGTTTT TCTGGCATTG TCTGCCAGC 240

TGCTCCAAGC CAGGCTGATG AAGGAGGAGT CCCCTGTGGT GAGCTGGAGG TTGGAGCCTG 300

62

5	AAGACGGCAC AGCTCTGTGC TTCATCTTCT GAGGTTGTGG CAGCCACGGT GATGGAGACG 360 GCAGCTAAC AGGAGCAATA GGAGGAGATG GAGTTTCACT GTGTCAGCCA GGATGGTCTC 420 GATCTCCTGA CCTCGTGATC CGCCCCCCTT GGCTTCCAA AGTGCCGAGA TTACAGCGAT 480 GTGCATTTG TAAGCACTT GGAGCCACTA TCAAATGCTG TGAAGAGAAA TGTACCCAGA 540 TGTATCATT A TCCCTGTGCT GCAGGAGCCG GCTCCTTCA GGATTTAGT CACATCTTCC 600 TGCTTGTCC AGAACACATT GACCAAGCTC CTGAAAGATG TAAGTTACT ACGCATAGAC 660 TTTAAACTT CAACCAATGT ATTTACTGAA AATAACAAAT GTTGTAAATT CCCTGAGTGT 720 TATTCTACTT GTATTAAAAG GTAATAATAC ATAATCATT AAATCTGAGG GATCATTGCC 780 AGAGATTGTT GGGGAGGGAA ATGTTATCAA CGGTTTCATT GAAATTAAAT GTTATCAACG 840 GTTTCATTGA AATTAAATCC AAAAAGTTAT TTCTCAGAA AAATCAAATA AAGTTGCAT 900 GTTTTTATT CTTAAAACAT TTTAAAAACC ACTGTAGAAT GATGTAATAA GGGACTGTGC 960 AGTATTCTG ACATATACTA TAAAATTATT AAAAAGTCAA TCAGTATTCA ACATCTTTA 1020 CACTAAAAAG CC 1032
10	
15	

(2) INFORMATION FOR SEQ ID NO: 46:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 amino acid residues
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

25 Met Ala Ala Arg Ala Val Phe Leu Ala Leu Ser Ala Gln Leu Leu Gln
5 10 15
Ala Arg Leu Met Lys Glu
20

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 16 amino acid residues
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

Met Ala Ala Arg Ala Val Phe Leu Ala Leu Ser Ala Gln Leu Leu Gln
40 5 10 15

5 (2) INFORMATION FOR SEQ ID NO: 48:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

Ala Ala Arg Ala Val Phe Leu Ala Leu

5

15

(2) INFORMATION FOR SEQ ID NO: 49:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 354 base pairs

(B) TYPE: nucleic acid

20 (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

25	ATG CGA AGA GAA GAT GCT CAC TTC ATC TAT GGT TAC CCC AAG AAG GGG	48
	Met Pro Arg Glu Asp Ala His Phe Ile Tyr Gly Tyr Pro Lys Lys Gly	
	5 10 15	
30	GAC GGC CAC TCT TAC ACC ACG GCT GAA GAG GCC GCT GGG ATC GGC ATC	96
	His Gly His Ser Tyr Thr Thr Ala Glu Glu Ala Ala Gly Ile Gly Ile	
	20 25 30	
35	CTG ACA GTG ATC CTG GGA GTC TTA CTG CTC ATC GGC TGT TGG TAT TGT	144
	Leu Thr Val Ile Leu Gly Val Leu Leu Ile Gly Cys Trp Tyr Cys	
	35 40 45	
40	AGA AGA CGA AAT GGA TAC AGA GCC TTG ATG GAT AAA AGT CTT CAT GTT	192
	Arg Arg Arg Asn Gly Tyr Arg Ala Leu Met Asp Lys Ser Leu His Val	
	50 55 60	
	GGC ACT CAA TGT GCC TTA ACA AGA AGA TGC CCA CAA GAA GGG TTT GAT	240

64

5 Gly Thr Gln Cys Ala Leu Thr Arg Arg Cys Pro Gln Glu Gly Phe Asp
 65 70 75 80

CAT CGG GAC AGC AAA GTG TCT CTT CAA GAG AAA AAC TGT GAA CCT GTG 288
 His Arg Asp Ser Lys Val Ser Leu Gln Glu Lys Asn Cys Glu Pro Val
 10 85 90 95

GTT CCC AAT GCT CCA CCT GCT TAT GAG AAA CTC TCT GCA GAA CAG TCA 336
 Val Pro Asn Ala Pro Pro Ala Tyr Glu Lys Leu Ser Ala Glu Gln Ser
 100 105 110

15 CCA CCA CCT TAT TCA CCT 354
 Pro Pro Pro Tyr Ser Pro
 115

20

(2) INFORMATION FOR SEQ ID NO: 50:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 676 base pairs
 (B) TYPE: nucleic acid
 25 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

30 TCTTCATACA CGCGGCCAGC CAGCAGACAG AGGACTCTCA TTAAGGAAGG TGTCTGTGC 60
 CCTGACCCCTA CAAGATGCCA AGAGAAGATG CTCACTTCAT CTATGGTTAC CCCAAGAAGG 120
 GGCACGGCCA CTCTTACACC ACGGCTGAAC AGGCCGCTGG GATCGGCATC CTGACAGTGA 180
 TCCTGGGAGT CTTACTGCTC ATCGGCTGTT GGTATTGTAG AAGACGAAAT GGATACAGAG 240
 CCTTGATGGA TAAAAGTCTT CATGTTGGCA CTCATGTGC CTTAACAAAGA AGATGCCAC 300
 AAGAAGGGTT TGATCATCGG GACAGCAAAG TGTCTTTCA AGAGAAAAAC TGTGAACCTG 360
 35 TGGTTCCCAA TGCTGCAGGT GCTTATGAGA AACTCTCTGC AGAACAGTCA GGACCACCTT 420
 ATTCACTTA AGAGCCAGCG AGACACCTGA GACATGGCTG AAATTATTTC TCTCACACTT 480
 TTGCTTGAAT TTAATACAGA CATCTAATGT TCTCCTTGG AATCCTGTAG GAAAAATGCA 540
 AGCCATCTCT AATAATAAGT CAGTGTAAA ATTTTAGTAG GTCCGCTAGC AGTACTAATC 600
 ATGTGAGGAA ATGATGAGAA ATATTAATT GGGAAAACTC CATCAATAAA TGTTGCAAAT 660
 40 GCATAGTAAA AAAAAA 66

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13585 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ix) FEATURE:

(D) OTHER INFORMATION: at positions 9421-9456, the "Ns" refer to an unsequenced portion of from 4.7 to 5.3 kilobases

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

20	CCGTCAGAAA TCTAAACCCG TGACTATCAT GGGACTCAAA ACCAGCCAA AAAATAAGTC	60
	AAAACGATTA AGAGCCAGAG AAGCAGTCTT CATAACGCG GCCAGCCAGC AGACAGAGGA	120
	CTCTCATTAA GGAAGGTAAG AGCGTTGCCT TCTGCCATA ATCATAGTCC TCTTCTCCA	180
	GAATAGGATT TGGGAAATTG TGGCTAAGTC CTCTGCCTAC CCTCATTGCC CCGCTGATGT	240
25	GTGACATCAA CAGAATTCTT CCGCAACGTT TGTCAGTCTC CAACCTCAGA GGGCTCACAA	300
	AGCCTCCTCC TGAATCCTCT CTCAGTCCTC CAACACTACC AAGAAGAAAA GCAATTATTC	360
	AGGATGGCAT CTTGCTGGGG AGAAGCAGCC TCCCTGAGGT AGATGTGTT TCCTGTCACT	420
	TAAAGAACCA CTTCTCCTGG TCTGAGTAGT AAGAGGGCGCA TTTGCTGTTG CTGCACCATT	480
	TGCCAAGGCT CTGAGTTTGA GGTATGGGAT GTATTAAAAC AATTAAATGA AGAATTAAGA	540
	TTCCATTCTG TCATTTGAA CACAGGGTTC AGTCCTATAT TATTCACTTG AGAGGACTGG	600
30	TGAGTTGAC TTTCATTCTT TTTTACAAC TGGGAAGGGC AAATTACACA TAAAATGTCC	660
	CAGTGGAAAG GGGTCATGTG TCGAAATCCC CACTCTTCTG TCTCACCTCT CCCTGTTGTT	720
	TTAAACTGGG GCTCATTAAAT ATAATTCTAT GGGGATCACA CCTTTGAAAT TCATGAGGAC	780
	AGTAAGAGAG CAGAAAAATA CACAATAATA AGGAAAGGAG CTTCCATTAT TGGTTTTAA	840
	TGAGCGTACT TGAATTACGG CCACTGCaGT TTATGGATAT TTTTGTTGT TCATTTGTAT	900
35	GTGTTATAGT TAGAAAAAAA AAGAATCTA GCCAAGGGAC TTGAACCAGA GAGAAGCAGA	960
	AATTGACTTA AGTAGGAAGG GAAACACATT ATTAGATAAA GTCAGGTCTT GGGCTTCCTC	1020
	GGCTTGTGTTT GGGTGGAGTG CCTGGGGACA GGCTGAAGCC CCTGTGTGGG GTGGTTTCCT	1080
	TTGCTGAAAAA GCTGGGCTGG AAGATGTTGT GCTCAGTGCT CAACCTCATG CACCCCTCGCG	1140
	AGGCACAGGC AACGGGTGCT CTGGGAAACA CACGTTATGT ATCATAGCCT CTGTTTGCT	1200
40	GTGGGATTGA TATCCAATAA TAACTTGGG GAAAAATAAC TCCTCTTATT TTGTTAGCCA	1260
	CAGCCCTGGG CCAGGGAAGG TGGAGAATCA GTGAAAATGC ATTTGTTTG TTTCTCTAGA	1320

5	AGTTTATGGT GCAGAGTCAA ATTGAAGGCA AATGAGGAAT ATTTTTCAT TAAATAATAA	1380
	CTCAACTTGC AAGTCTTTT TGCTTTGTT TGTAGTTCT TCTTGAAC TAAATTCAG	1440
	TTAGTAGGAG GGGTAGAAA CCTGAGCTAT TGCTAAAGCC CTTGATATGA ATGAAAGAAG	1500
	CAGGTGCAAA TCCCCTACA GAGAGAAACC AAAGGGTCCT GGCTATGGAT ATTGGTCACC	1560
	TAGTCAGGAT GCTGTTGTGG GTCTTTATGA GATGATGAAT AGGGTGGCTT TGGATGCATT	1620
10	AATGATATTT ACATGCTCCT TCTGTTAGTG TCCTGTGCC TGACCCCTACA AGATGCCAAG	1680
	AGAAGATGCT CACTTCATCT ATGGTTACCC CAAGAAGGGG CACGGCCACT CTTACACCAC	1740
	GGCTGAAGAG TAAGTTCAA ACCAGACCCA GCAGGGCTTC CAGTTGCCG TTTGCTGACA	1800
	CAGCCTGCTG ACTTCCACCA GTACATGCCT GCTCGTAAAT CTCCCTAGTG TTTATCTCCC	1860
	CAGACAGTAA CATCCCTGGC AACAAAGGGGA GGAGATTCTG TGCTTCTATA AGGGGCTCAG	1920
15	TCAAGCTTCT CTGAGGCCAA ACAGGCAGGA AGATGGGAAT GGTATAAGGT TGGATCTTGC	1980
	CATTTTGAGG TGCACTTTG ACTATTGGGT CTTATCTGTA GGTTCCCAAG TGGAAAACA	2040
	TCTGTTCAAGG ATCACAATGC CTCTCTCCTC AATCCTTGTG CTGTCTCCTC CACTCAAATT	2100
	CCTGAAGGTG GTTGCAGAC AGAATAAAAG TGAGTTGCCA AGGAGCCAGT AAGGATGACG	2160
	GGCAGGTGTG TGTGACTCAG CCCACAGCCA GACTCGAGAG GAAGATGGAG GTCACAGCCT	2220
20	TTGCACTATA ACTTTATCCT AAGGAAAGAC ATTGGGTTTT ATGAGTGAAT TAAAATAAG	2280
	TATTTATATG ATTAAGCATT TCTAAATGCT AAGCATTGTA TACTGGCGTG AGACACTGTT	2340
	TTTATCTTGT AAAAAGCTCA CAACTTAGTG GGAGAGTTAG GCATGAGATT AATTCAGCA	2400
	AATGTAAGTG CGGTAATGAA AACCCAGAGG CTGCAGGGAC ATACTCTGTA TGTGCTGGGA	2460
	GTGGGAAAGG GACATACTCT GTACGTGCTG GGTGGCAGGG GCAGGGGAGG CCCCACCCCTC	2520
25	TGCGTGGGAC TGTAACAGGA CAACACCCCTC TTATGTGGTC TGTCCAGAAC TCCCTGTGAA	2580
	CCTGCTCTT CTTGGAAAG AGCTGTTGAA CAATCTTGT TAACAGTCAA CCGCAGGACC	2640
	AGCAAGATGT AAAGCCCAAC AAAGGCCTG AGGAAGAGTT CAGGAAGACA GCATTTCTC	2700
	AGAAGACCCCT GGTATAGGAT CCTCTAAAT CCCTGGCCAA TTGGAGATGA GGGCGGGCGGT	2760
	ATCCTCTCAG AAAATGTCTC GACAGCAAA ACATACTCTT TGAGGGAGGG GAGCCCATTG	2820
30	CCCGTGCTAT TAGTTAGGGT ATCGTTCTAG CTTGTTGATA ATCACTCAAC AGACTCTTA	2880
	AAATATACTT TTATGTCTCG TGTAAGGAAATT CAAGAGTAA GAGTTCAAGG CCTGTTCGTT	2940
	TTCTTCTTGC TGTTACTCC CTTGGGATCG TCACTTTGT CCCCATGGCT GAAGATGTTG	3000
	TGCCATCACC TCCACATCTT GCCAACAGAA AGCAGGAGGT GAAGGAGAGG CTAGGACCAT	3060
	TCCCTTCAAG GGGCACACGT CACTCTGCT TATTGCTCCA CCCCCGGCCCC CCGCCCCGTG	3120
35	GCACCCACCC TGGTGGTATC ATTCTGCTG TGTGTTAAAT GAAGAAAGGT TTAGAGAAAT	3180
	TAGGAAATGT GTGGCCAGAC ATGGTGGCGC TGGGATTAA ATCCAGGTCT GTTGCCTCC	3240
	AGAGTCCATG CTCTTAAGTG TTATGCTGCA GGCCAGCAGA GGCAGGAAATT TGCAAAATCC	3300
	CATCCGACGA GAGGCTAGGG CAGAGGTCAG TATCTCTCAG TGTGAAGCTG GAGGCTGATG	3360
	CTAGTCAGCT CAGTAGGCCG AAAGTGGAGT TGTCTTTGC CATGTAGGGC CATCATGCC	3420
40	AGCTGGGAA CCTCATAGCC AGGTGTACCC ACAACCTGAA CAAGGTAAC TTCAGGGTCT	3480
	AGTCAGGAAG AAACCAACTA GATGGTTCAA CATAGAGACT TTAATATAAG AAGCTGGTTA	3540

5	AACAGGCATG GGACTGAGAC TGAGGAGGCA AAGAAGGCAT CGGGGCAACC AAGGCTGTAC CCACAGAATG CTGCTTCTAC CCCC GTGTCT GGGGTAACAA ACGGAAGGGT GAGGCCATCA GGACCTAGAG TTGGGAGGAG GGACGCCACA GAAATGGGAC CCAGATCTCT AAGGAGAGAT TTTGTTGG CTGGTTCTGG TGTCTCAAGA GCTTAGAAGT GAGGGGCATG AATCAAATAC TCAGGCCTCT GAGGTCAAGCC AGTGTCTGC TGAGGGAGGGG CATAATGAAG CTGGCTCTGA	3600 3660 3720 3780 3840
10	CAATGCCGGA AAACGAGCTG GTGCTGGCA TATACAGACA ATGTGAGCAT TGCTGGGTG ATCCTGACAG GAGCCAGAAG CACACTGGAA GGAGCTGCTC CTTCTTGATG CCCCAGGTTT GTTAGGCACCC TCTAGAGTAC TCTAATGGGA GCCAGTGGGC AAAGGAGAAG TGGCATTG AGAGTCCAGT CCCAGCATCA CAGAGCAGAG CATAGAAAGG TAGGTTGGA GAAGAGGGAC AATGGCTAA TAAAGGGCAA AGGGGGTTAT GACCACTATC ATGTGAAGGA ACCCCCTTGAC	3900 3960 4020 4080 4140
15	TGAAGGCACA AGCTTCTGT GTCTTGCAAC CTGAATGACG TGCTAGCA GGGTCAGGTG GGTTATCTGA CATTTCCTT GAGAACAAAGA GGGAGCCTCT GGATTCCAGC ACAAAAGAAA AATACCCACT CAACCCGTAT GCGTGGGAGC TATCCTTAA AGAGAAAGTA ATTCTTTG ACATTTGCT GTCTGTAGAA GGGTCAGATG GCCAAAGCTT CCAGCACAAT GAAACACTTA ACTTCAGTCT GTGAGTGTAG GAACCCCTGA ATACATGGAA CATCATCATC TTGTGCAGGT	4200 4260 4320 4380 4440
20	ACTGAAGGAG ATCGGTCCAG AAAATAAGTA ACTGCACATG GCCACCAATG TCAAAAGTCA TTCCCTCAT GAAAAGTCCC TGCCCCCATT GCTGTTTGT TAAATAGGTG GGATGGAGGT AGGGGAATGG GCCCATCTTC TTTTTTTTT TTAAATTTTT TTGCATAAAA TCCAGATCCT GCACAATGGG GCAATCTTCAT TTAAAACAAT GCATCCCTAA GATCTGAGAA TATTTATCCT TCTCACAATT GTGCCAGCAG GTGGAATGAA GAAGAATGAT GCAAAATAAG TTCCCACATC	4500 4560 4620 4680 4740
25	CAGCCAAGAA GGACTACATA CCTGCTTGG GTATTATGTA TCCCTTGAA ACCTCAGTGG AGAGCAGTTC TCACAGTGG GTGGACACAA GTCATCCATG GAACTTGTAA ATATGCAGAT TTCTAGGTGC TGCCACCTAA GAGGCTGATT GGGTAGGCCA GGGGTGGAGT CCTATGATCT GCACCTTAAC GTGCATCTCA GGTGATTCTG CTGCAGGTGG TATTTGGAAAG ACACCTGAG GCGCCCTGCC AAGCTGGCA GTGGTTCTT CCAATGTGTC AGGCATAACCC TGGTGCTTT	4800 4860 4920 4980 5040
30	CGCTCTCAGT CACTGGGCA TGTTGTGAGT ACCACGTGAC CATGCATAAA GTGCTGTAAC AGAGCTCTGT CTGTGTCAAG ATATTCAAGT GGACGCCACA GGGTAAAATG AGAGCACAGG CATGTTGGGA GTTGAATCAG CTGCCCTCAG TCACGAGAAC ACACGTGACA CTCCCTGTGA CAGCTTCAGT TCAGGAAAGA GTGACTCTGC AGGAAAAGCA CTGGCCTGGG AGACCTGGAT CTGGCCAAA TTCTGGTGCT CACTTGCTTGT GTCTCCGTT CCAGTTGCTG TGAATGTGG	5100 5160 5220 5280 5340
35	TTCTGCCACT TGCTGGTTGT GCAGCCCTGG GCACTTGACC AGCATAATGT CAGCTGTAAA ATGAACATCA TTCTTAACTC CGAGGACTGT GGTTAGGATG AAATAAAAGC ATATATGTGG GGGTGCCTAG CCCAGTGCCT GGCACAAATT GGTGCTCAAT GAATGGTAGT CACTATGGTT ATGGTAATGT TGATGAATCT TCATAGGTCT CAGCTTCTG ATCTATAAG CGGGTGGACT GACCTACATA AGTCAGAGTT TCCATCTAGC ACTGTGATCC CATGGTTCGC TCTATCCTGT	5400 5460 5520 5580 5640
40	TTGGAGACGG ACAGGATAAG CTTGATGTCT CCTCAGCCTT GAGACAGAAG TTGTCCAGTA	5700

5	GATGGTACTG AGCAAAAGTC TCTCCAGCAG AAGCCTAGT TAAACCTTGC TTCTCCTGTA	5760
	GCTGCTCAGT CTCTTGTAAAG TCACTCAGCT CTGCAGAAC TTTCTTAGCG AGTTGACAAC	5820
	CACAGATAAC AGAGTCAGTT CTGTCGATTT TGATCATGCT GTGATCAGGC AGATGTTAGC	5880
	TAATTGATGA TGCTTGCCCCG GAGTGAACAG CTCCAGGCC TGTTTCCAGG GTCTTGTGG	5940
	TAACCTTGTG GTAACTGTAA TGCTTCCCAG GGGTCACTGA ACACAGGGCC CAAGAGGCTG	6000
10	GTGTAGACCC CCAGATTGGC ACCCTGCTGC TTAGACAAGA TCCTTCTCAA TAAGTAATGC	6060
	CATAGCTTTG CTGTAGGTTTC AGCCCAGACA CTTCTCCCTA GGGCTGCAAG GAGCAAAGCG	6120
	GGGAGTTTAG GGAAGGGAGG GCACGAACAT AATTGAGACG GATTCAAGTT CAAATCCAGC	6180
	CTCTGTTTG TGCTAGCTCT GTATGATCAC CAGCGAGTCA TGTATCCTCT GCCTTTATT	6240
	TCCTCTTCTG TGAAAATAGG GGATGATAAA TTGTGTCTAC CCTCCAGTGT TGATGTGAGA	6300
15	ATTGAATAAG CTAATGAATG TTAGCACAG CACCTGGCTT TTAGTAGATG AGTCAGTGT	6360
	AATTCTATT TTCTCTTGT GGGCTGAGTT GGAGAAAATG TTTAAAACA GCCTGATGAG	6420
	AAGAAAAGAT AATTAGCCC CAATAAATAC ATTGTCCACA TAAAGACAGT TACTATGGCA	6480
	CTTCTCATAAC CTGGAACCTG GGTGCCTGGG CCATGCAATT AGCAGAGTTC CTGTGGGCAC	6540
	ACACCTTGAGA GGCTCCTAAA GACCTGGTT AGATCCAGGT GCTGGAGGCC TGGTGGGTG	6600
20	CCAGTGTGGG AGGTGGAAA CTACTTGGAC ACTGGGAGAT GCTGCTCTGG GTCGTCAAAG	6660
	TCCATATGAA GAGGAAGACT GATTTATGCT TCATCATAAT GTAGAACAAAT GTTCAATGA	6720
	CAAAGTGGAT TTGTCTATCT CTTGGCCAG GCGCCTGGG TCGGCATCCT GACAGTGATC	6780
	CTGGGAGTCT TACTGCTCAT CGGCTGTTGG TATTGTAGAA GACGAAATGG ATACAGAGCC	6840
	TTGATGGTTG GTAAAGTTCC CACTGCTGAA ATCCCTCCAA GTCCAGGGCC CTCTTCCAG	6900
25	TTCTTCCCTC TGAATCTCTG GAGAGTCAGA TAATTGCTCT ATTATAACCT TCAGCTCTGA	6960
	TTCCGGCTTC TGATGCCTCT TTTGCTACAT TGTACTTTGG CAACTCTACC TTTGCCTCTG	7020
	CTCAGGCATG AACCTCAACC AGGAACCTGC CCTGTGTCTT AGCTGTGAT TATAACATAA	7080
	TACGAGAGAC TGTAATTAT AAATAAAATGA AATTCAATTG GTTACAGTT GGGAGGCTGG	7140
	GAACCTCAAG ATCTAGGGC CACACCTGGT GAGGACTTCT TGCTGTGTCA TATCATAGT	7200
30	GAAGGCATCA CATGGGCAAG GGAGTGAGAG AGCAAGAGGG AGCTGAACTC ATTTTTTTT	7260
	TTCTTGAAA CAGGAAATCC TGGGATGGAG CGCAGTGGTG ATCATGAGTC ACTGTAGCCT	7320
	TGACCTCCTG GGCTCAAGCC ATCCTCCTGT CTCAGCCTCC AGAGTAGCTG GGACCACAGG	7380
	CACGTGCCAC CACACCGGCT AATTAAAAAA AAACTTTTT TTGTAGAGAC GAGGTCCAC	7440
	TATGTTGCCCT TAGGCTGGTC TCAAAACTCCT GGGCTAAAGT GATCCTGCCT CGGCCTCCCA	7500
35	AAAGTGTGGG ACTACAAGTG TGAAACACTC CACATATGGC CCAAACACTC TTTTATAACC	7560
	AACCTACTTT TGCAATAACA AACACACTCC TGCAATAACA CAATTAATCC ATTGATGAG	7620
	GACAGAGCCC TTGTAACCTA ATCGACCTCT TAAAAGTCTT GCCTGTTACC ATTGTTGCAT	7680
	TGGGGATTAG GTTCCAATA CACGAATTTC GGGGGACACA TTCAAACAT AGCACCTGTC	7740
	TCTTTGGTTC TACTCATAGC AGACTTGGGT ACCTGGATGT TGTGTGTAGC TAAGCACTGA	7800
40	CGGTTTATAG GGCACAGGGG AAGGGGTTG AGGTTCCCTT ATAGCAAACA GGAGTATATT	7860
	AGACACCTCA GGTTTACCA CTTCTGGAA TTCTGCTGG TTCTGTTACT CCACTTGTG	7920

ACCTGCTCTT CCTACTTTTC TTCTTCACCC CTTTCCTCAC TGTTTACCTG TGAATTCAA	7980
GTTCCTCTGA CTCTACACTA AGCATCCCAG GATATCATCA GTGCGATGAG GAAACCATCC	8040
TTCCCTGCATC AGCACAAAGG GTCACTTGTG TGTTTTTAA CAGGCTGCAT CCTTCTTAGA	8100
TGGCCAAAGG TTAAATAGT ATTTTTTCT TCTTACCCA AATATGCAGG AAGCTAACAC	8160
AATTACACAA TCCAATCTTC TGGTACCAAGT ATCCTCCATG AATGGGAAAC ATCAACTGAG	8220
TTTATAAGCT ATAAAAATTAA CAGGTTTCAG CAATCTTGCT TAAAGCCAGG TAGCACTTCA	8280
GCACCTTCAGC ACCCGAAGCA TTCTCCATAG ATCTCGCTGT CTCTCTTCT TGTTATTACA	8340
GATCTGAAAG CTTTCAGGT TGATGCATAA TGGAAAAAAA GTATCTTCC AAAAGATGTT	8400
GGAAAGTCCC ATTCTCATTTC AGCAAGCACT TCATTTAGAG GAAAAGGTCC TGTGAAAGAG	8460
AGGAGGGTTG GTGTGGGTG GGGATTGAAG CTTGGCAAGC TGATAAGGAG AAGGTGAGAG	8520
5 ATACAACCTCT GGATTCTTTC CCTCTTGCC AAGAAACTTG GGCAGTCTCA TGTCTCATGT	8580
CTCCCTGTTCC CCAATGTCTT TCCAGAGCAT AAATACAAAT ACAAAACCATC AAAGGCAAGT	8640
CAAGTCTGGG GGCTGACACA CCCACCGAGC ATAGCCCTCT AGTGTGCTGA CATCTAGTGG	8700
GAAGGAGGAG GAGTTGATGA ATCTGAACAA GACTCCAATA TTGGAGGAAA TACTTGAGGA	8760
AAGCCTTGGG TTAGAAAGTT AGGGATAGAA TTCCCTGCTCA TACGGCTGTC CACAACAGGT	8820
0 TAGTAGGGGA GGACTTTAAT CTCTGCCATA GAACTCCATT TGTAACCTCA GCATGGGGTT	8880
ATGACATTGC CTTGTAATTG GCTATTACT TTTTGCCCTCT TCGACCCCTC CGCTTCCCC	8940
TATGTATGAA CCACAAACAGA GAATTTTCT AACTCATCTT CATATCTCCA GTGCCTAGCA	9000
CAGTGCCTGG TACATGGTAG TCACTCAATT GTGTTGCATT AGGACTTGGT CCCATTGTCT	9060
GCCATTGAGT TGCTTGGAGA CTAGAATTCA ACTTCTCCAA GATTCACTAG CTCTATTTA	9120
5 CACCCAGACA TGTTGGAAAT CTGTGATGTA ACACAATGTA TATCCATTAA TATTTAATAC	9180
ATATTTCTT CTATATTTG ATTCATTAT ATATTTGTAT ATCAAAAACA AAATGTTAG	9240
TCTTTCAAGA AGTAAAGCTA TACAAACTCA ATATGTTGGT ACTCATTTCC TAACTATAAT	9300
TATTAGTTG ATCCTATTGA ACACAAATGC AGTAATTTT CTTTCTGCT TCAATGCTCT	9360
CATCTTAAAT TCATTTAATT GAAAATAAC AGAGAGTCTT AATGTCTATGT GCTCAGACAC	9420
10 TNNNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNGAGT GCAGTGGTAT GATCTGGCT	9480
CACTGCAAGC TCTGCCTCCT GGGTTCATGC CATTCTCCTG ACTCAGCCTC CCAAGTAGCT	9540
GGGACTACAG GTGCCCGCTA CCATGCCCTGG CTAATTTTT GTATTTATAG TAGAGATGTC	9600
ATTTCACTGT GTTAGCCAGG ATGGTCTCAA TCTCTGACC TCGTGATCCA CACGCCCTGA	9660
CCTCCCAAAG TGCTGCGATT ACAGGTGTGA GCCACCGTGC CCGGCCTTAT ACTTCTTTT	9720
35 TACTTTTTT CAGTGGTTTC CCTAGAGTTT GCAACATACA TTTACAACTA ATTCAAATCC	9780
ACTTTCAAAT AACACTATAC CATTCTCATAG GCATTATGAG TATCTAAAA TAATCCTAAT	9840
TCCTTCCTCC TGAAACTAA AAACAAAATC CTAATCCTC CAAACAACTG AATGGACCCC	9900
CTCTTCACCA AGGGGACCCC AGGGAAACCT GAAAAACTGA GTGTTGGCCA TGACGGGAAG	9960
GGAGGTGAGA GATGCTCATT ATACTCCCTC CCTTTAGAG TTTAGGTAC AACTGACCAG	10020

5	CATTAATTT AAAATAGAGA TTACAGGACT GACAGAATGA ACTCTTGTC GCAATATCAA	10080
	ATTAGGAACA AGACAATGCA AGGAAAGGGT TAAATCATGC CCTTCAAACC ATAAAAAAAT	10140
	TTTTTTAA TAAACCCAT ATAATGTGGT ATACTTTCCA AACTGACTCT GGTATAGCAT	10200
	CACATGACAG ATTGCAGACT CCCTTACCTT AAGCATTCCCT TTATACTGAC TTCAAGTCTT	10260
	AAGACAGAGC TGAACCTTTT CAACCAGCTG CTAACCAAAG AATACCTAAA ACCCACCTGT	10320
10	GACTTGTAAAG TCTCTGCTTT GCCATGTCCGC GCCTTTCAAG GCTGACCCAA TGTATAACCTT	10380
	CCGTGTATTG ATTTATGATT TTTACCTACA ATTCCGTCTC TCCTGAAACA TATAAAACCA	10440
	AATCATAACC CAACCACCTC AGGCACACTT TCTCAGGACC TCTTGAGACT ATTCTCCGG	10500
	CCATGGTCAT TCATATCGGC ACAGAATGAA ACCTCTTAA AATATTTGC AGTTTTTTC	10560
	TTTCTGTTAA CATTCTTTT CCTTGTATCA TTGCTGTTAT TAATTCAAG TATATATAAG	10620
15	CATACCTAAT TAAATACATT GTTGTATTAA TTCATTTTG AACAAACTAT TATCTGTTAA	10680
	ATCAACTAAG AATAAGACAA ATATGTTGGG TGCACTGGTG CATGCCTATA GTCTCAGCTA	10740
	CTCAGAGGCT GAGGCAGGAG GATTGCTGA GCTCAGGAGT TTAAGACCAAG CCTAGGCAAC	10800
	TTAGCAAGAT CATGTCCTT AAAAAAAA AAAGAAAGAA AGAAAAACAA AGTTTTAGGA	10860
	GGCTGAGGCA GGAGTATCAC TTGAACCCAG GACGCAGAGG TTGCACTGGAG CCGAGATCGT	10920
20	GCCATTATAC TCCAGCCTGG GCAACAGAGT GAGACTCTGT CTAAAAAAA AAAAGAAAA	10980
	GAAAAGAAAA GAAAAAAA GTTTTATTT TACCTTCACT TATTCTTCT TGGATGTTCT	11040
	TCCTTATGT AGGTACAAGG TTCTGACCTA TGTTATTTTC TTTTCTCTA AAGAACCTCA	11100
	AAAGTTTCTT GCAAGGCAGG TCTACTGGCA ATGAATTCCC TCAATTTTG CTTGACAAAG	11160
	TCTTATTTTC TGCTTCACTA TTGATGGATA ATTCACAAG AGTGTCTT TTGAGATT	11220
25	ACTCTTCTTA TCCTTCCCTT CAGAAATATT CTGGACCAA CTATTGGTC CCAGGTACTG	11280
	CACTAGAGCT TTACTTCTAG TTAATTCCCA CAGCAATTCT GAGAGGTTAGG TAGGTATTAT	11340
	ATTCCTAGAT GCAAACCTAG AATTCAAGAAG GTAAAGTGTAT GAGACTGAAG GCACACAGCA	11400
	AGTAAGTGGC AGAACCTAGA TTTAAACTCA TTCTTAAAC TTTGGCTTCC TTCTCTTTC	11460
	TTAATGGAT TCAGTTACTT CTTCTCACCC ACTCACCTT ATCAATTAC ATTCAGATA	11520
30	AAAGTCTTCA TGTTGGCANC TCAATGTGCC TTAACAAGAA GATGCCACA AGAAGGGTT	11580
	GATCATCGGG ACAGCAAAGT GTCTCTTCAA GAGAAAAACT GTGAACCTGT GGTAGGTTAA	11640
	GATCCTTCA AAGGGTATTTCATGAATGG CTGTTTTAA CTCAAGTGAA TACAATTATT	11700
	TCCATTAAA AAGCAAGGAC AATGTGAATG TACTCATTGC CACTGAACTA TATACACCTA	11760
	AAAATGGTTA AAATGGCAAC TTTTATGTGT ATTTATGAG AATAAAAAT AAATAATAAT	11820
35	AAAAAACAAAG GGAAGTACAG ATATTTCTT AATTGTGTTG TCACATACCC AGTGTCTTCA	11880
	GGGTCAATAA TGAGAGCCCT ACATGTAAGA TTCAAAGGAA GAATTTAGTC CTGGATACAA	11940
	TATTCTTTA TGTTTTAGT TATATTGCC TTTTAATGG ATGCAGATAT ATACAGAGGG	12000
	AAGGGATAAA GTACCTATTA TTTATTGTAT AGAGCTGTGC TGTCTGATGG CTTAGCCACT	12060
	AGTCACATGG TGCTATTGAA CACTTAAAC ACAGGAGTTT GAAATAAGCA TGTATTATAA	12120
40	TACATATCAT ATTCAAAAA TATTAGTATG TAGAAAAGAA GATAATGGT TCATTAATGA	12180
	TTTTTATATT GATTACCTT GAAATAATAA TTCTGAAAAT ATTAGGTTAA ACAAAATATT	12240

5	TTAAGATTAA TTTTACATGT TTCTTCTTT AAATGTAGCT ACTAGAAATT TAAAGGATTAC	12300
	ATATGGCTGG GCATGGTGGC TCACACCTGT AATCCCAGCA CTTCGGGAGG CCGAGGTGGG	12360
	TGGATCACCT GATCTCAGGA GCTCGAGACC AGCCTGGCAA ACATGGTGAATCCTATCTT	12420
	TACTAAAAAT ACAAAAATTA GCCAAGCGTG GTGGTGCATG CCTGTAATCC CAGCTACTTG	12480
	GGACGCTGAG GCAGGAGAAT CACTTGAACC CGGGAGGTGG AGGTTGCAGT GAGCCGAGAT	12540
10	AGTGCCACTG CACTCCAGCC TGGGAGACAA GAGCAAAACT CCATCTCAA AATAAATAAA	12600
	TAAAATAAAA TTACATAAGT GGCTTGTACC ATATTCTAT TGGACAGCAC TAGTACATAT	12660
	ACAACACAGC ATAATGGTT AGAGCACTGA CTCTGGAGCC AAATTACTGT GTTGTGATTCT	12720
	TAGCTCCACA ACTTACTAGT TGTGTGACCA TGGGCAAGCG AGTTAACCTC TCTGTGCC	12780
	AGTTTCCCAT TCTGTAACAT GAAAATAATA AAAACACTCC CCAGAATTGT TGTGAGCATT	12840
15	AAATGAAGCC CTGACACATT TGTTCTGGAT ACAATATCCT CTTGTTTAT ATTTGGTAGT	12900
	ATCAATGTGC CTTTAGACAC AATTACAACG ATCTCTGTGG TAAAGATGCA ATGTATATGG	12960
	TGTCTATAAA TAGCATTCAA TGATTGTTA GTTAGGGCTT GAGACTTTA CTGTCATGGA	13020
	AAATCTAGGT ATAGCTAACG TTTGAGATT TTGGGAACCTC CTTAACCCCTA TTTTCTCTA	13080
	CTCTTGCCCC CAACAATCAG CCTATATACT TGTGAAATTAA ACAATTACT TCACTGGGCA	13140
20	GAAATTATAT GGGAACACTT AGAAATTCA GTCCACAGGG AAAGTATAAA TATGTTAACT	13200
	ATTTTAACCTT AATCCCTTCC TAGAAACACA TACACTGTTG CCAAGCCCAT ATTCTCCCTT	13260
	TCTTGTTCACCA ACAGTTCCACC ATGCTCCACC TGCTTATGAG AAACCTCTG CAGAACAGTC	13320
	ACCACCACT TATTCACTT AAGAGCCAGC GAGACACCTG AGACATGCTG AAATTATTC	13380
	TCTCACACTT TTGCTTGAAT TTAATACAGA CATCTAATGT TCTCCTTGG AATGGTGTAG	13440
25	GAAAAATGCA AGCCATCTCT AATAATAAGT CAGTGTAAA ATTTAGTAG GTCCGCTAGC	13500
	AGTACTAACAT ATGTGAGGAA ATGATGAGAA ATATTAAATT GGGAAAACCTC CATCAATAAA	13560
	TGTTGCAATG CATGATAAAA AAAAA	13585

(2) INFORMATION FOR SEQUENCE ID NO: 52:

(i) SEQUENCE CHARACTERISTICS:

30	(A) LENGTH: 648 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

35

	AGCTGCCGTC CGGACTCTTT TTCTCTACT GAGATTCACT TGTGTGAAAT ATGAGTTGGC	60
	GAGGAAGATC GACCTATCGG CCTAGACCAA GACGCTACGT AGAGCCTCCT GAAATGATTG	120
	GGCCTATGCG GCCCGAGCAG TTCAGTGATG AAGTGGAACCC AGCAACACCT GAAGAAGGGG	180
40	AACCAGCAAC TCAACGTCAG GATCCTGCAG CTGCTCAGGA GGGAGAGGAT GAGGGAGCAT	240
	CTGCAGGTCA AGGGCCGAAG CCTGAAGCTG ATAGCCAGGA ACAGGGTCAC CCACAGACTG	300

5	CTGCAGGTCA AGGGCCGAAG CCTGAAGCTG ATAGCCAGGA ACAGGGTCAC CCACAGACTG	300
	GGTGTGAGTG TGAAGATGGT CCTGATGGC AGGAGATGGA CCCGCCAAAT CCAGAGGAGG	360
	TGAAAACGCC TGAAGAAGAG ATGAGGTCTC ACTATGTTGC CCAGACTGGG ATTCTCTGGC	420
	TTTAATGAA CAATTGCTTC TAAATCTT CCCCACGGAA ACCTTGAGTG ACTGAAATAT	480
	CAAATGGCGA GAGACCGTTT AGTTCTATC ATCTGTGGCA TGTGAAGGGC AATCACAGTG	540
10	TTAAAAGAAG ACATGCTGAA ATGTTGCAGG CTGCTCTAT GTTGGAAAT TCTTCATTGA	600
	AGTTCTCCCA ATAAAGCTTT ACAGCCTTCT GCAAAGAAAA AAAAAAAA	648

(2) INFORMATION FOR SEQUENCE ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acid residues
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

Ala Leu Ser Arg Lys Val Ala Glu Leu

5

25 (2) INFORMATION FOR SEQUENCE ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acid residues
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

Phe Leu Trp Gly Pro Arg Ala Leu Val

5

35 (2) INFORMATION FOR SEQUENCE ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10 amino acid residues
- (B) TYPE: amino acid

5 (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

Thr Leu Val Glu Val Thr Leu Gly Glu Val

10 5 10

(2) INFORMATION FOR SEQUENCE ID NO: 56:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 10 amino acid residues
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

20 Ala Leu Ser Arg Lys Val Ala Glu Leu Val
5 10

25 (2) INFORMATION FOR SEQUENCE ID NO: 57:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 10 amino acid residues
(B) TYPE: amino acid
30 (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57

35 Ala Leu Val Glu Thr Ser Tyr Val Lys Val
5 10

40 (2) INFORMATION FOR SEQUENCE ID NO: 58:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 11 amino acid residues

5 (B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID N^O: 58:

10 Ser Thr Leu Val Glu Val Thr Leu Gly Glu Val
1 5 10

15 (2) INFORMATION FOR SEQUENCE ID NO: 59:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:

Leu Val Glu Val Thr Leu Gly Glu Val

30 (2) INFORMATION FOR SEQUENCE ID NO: 60:
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9 amino acid residues
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

35 Lys Met Val Glu Leu Val His Phe Leu
1 5

40 (2) INFORMATION FOR SEQUENCE ID NO: 61:

75

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 10 amino acid residues
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:

Val Ile Phe Ser Lys Ala Ser Glu Tyr Leu

1 5 10

15

(2) INFORMATION FOR SEQUENCE ID NO: 62:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 10 amino acid residues
20 (B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

25 Tyr Leu Gln Leu Val Phe Gly Ile Glu Val

1 5 10

30 (2) INFORMATION FOR SEQUENCE ID NO: 63:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9 amino acid residues
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

Gln Leu Val Phe Gly Ile Glu Val Val

1 5

40 (2) INFORMATION FOR SEQUENCE ID NO: 64:
(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 11 amino acid residues
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

10

Gln Leu Val Phe Gly Ile Glu Val Val Glu Val

15

(2) INFORMATION FOR SEQUENCE ID NO: 65:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:

Ile Ile Val Leu Ala Ile Ile Ala Ile

30 (2) INFORMATION FOR SEQUENCE ID NO: 66:

35 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 11 amino acid residues
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:

Lys Ile Trp Glu Glu Leu Ser Met Leu Glu Val
1 5

5 (2) INFORMATION FOR SEQUENCE ID NO: 67:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 10 amino acid residues
(B) TYPE: amino acid
(D) TOPOLOGY: linear
10 (ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

Ala Leu Ile Glu Thr Ser Tyr Val Lys Val

1 5 10

15

(2) INFORMATION FOR SEQUENCE ID NO: 68:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 10 amino acid residues
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

25

Leu Ile Glu Thr Ser Tyr Val Lys Val Leu

1 5 10

30

(2) INFORMATION FOR SEQUENCE ID NO: 69:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 9 amino acids
(B) TYPE: amino acids
(D) TOPOLOGY linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: M3-195.203 OR SEQ ID NO: 69:

Ile Met Pro Lys Ala Gly Leu Leu Ile

40

5

5

(2) INFORMATION FOR SEQUENCE ID NO: 70:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acids

(D) TOPOLOGY linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: M3-220.228 OR SEQ ID NO: 70:

10

Lys Ile Trp Glu Glu Leu Ser Val Leu

15

5

(2) INFORMATION FOR SEQUENCE ID NO: 71:

(i) SEQUENCE CHARACTERISTICS:

20

(A) LENGTH: 14 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

25

Ile Asn Phe Thr Arg Gln Arg Gln Pro Ser Glu Gly Ser Ser

5

10

30

(2) INFORMATION FOR SEQUENCE ID NO: 72:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

35

Leu Phe Arg Ala Val Ile Thr Lys Lys Val Ala Asp

40

5

10

5 (2) INFORMATION FOR SEQUENCE ID NO: 73:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 amino acid residues

(B) TYPE: amino acid

(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

Asp Val Lys Glu Ala Asp Pro Thr Gly His Ser Tyr

15 5 10

(2) INFORMATION FOR SEQ ID NO: 74

(i) SEQUENCE CHARACTERISTICS:

20 (A) LENGTH: 1896 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74

GC	GGCGGTGG	CGGAGGCGGA	CACATTGGCG	TGAGACCTGG	GAGTACGTTG	TGCCAAATCA	60
TT	GCCACTTG	CCACATGAGT	GTAAATGATG	GCGGATGCAA	GTATGTCCTC	TGCCGATGGG	120
AA	AAAGCGATT	ATGGCCTGCG	AAGGTGACAG	CCATTATTCT	GTAACTTCAG	GACTTAGAAA	180
30	TGACTTTCGG	GTGACAAGTA	AAATCTTGAT	CAGGAGATAC	CTAGGATTTG	CTTCAGTGAA	240
AT	ATAATTGAGC	CAGAACACGG	TTGGCACTGA	TTCTCGTTCC	CCATTTAATG	GGGTTTTGGT	300
CT	CTAGTGCTTC	CAAGGTTACA	CTTCCAGAAA	TGCTTTTTT	TTTCACACT	AAAAAAAAAA	360
AA	AAAAGAATCA	GCTGTAAAAA	GGCATGTAAG	GCTGTAACTC	AAGGAAAGAT	CTGGCAAGCA	420
GC	CCCTGTGAT	AGTAAATTAT	GGTCGTGTT	AGGGAATGCT	TTCCAGCAAT	TCAGTAGACA	480
35	GTGCTCAGCT	GCAATGCAAA	AGCCCAGGTC	CTTGTCTTTG	TCTGCCACTG	GCCTCTCATG	540
CC	CCTCAGTTTC	CCCACATGTG	AAACAATGGG	GATTGGACCA	AATATCTGAA	ATCCCATGGT	600
TA	TATAGGCCTT	CAGGATTACC	TGCTGCATT	GTGCTAAAGT	TTGCCACTGT	TTCTCACTGT	660
CA	CAGCTGTTGT	AATAACAAGG	ATTTCTTTT	GTTTAAATG	TAGGTTTGG	CCCGAACCGC	720
GA	GA	AAAAATAAGA	GAAGAAAGGA	ATATTTCTA	GCTGTGCAA	TCCTCTCCCT	780
40	AGAGGAAAAG	TTAATTGTTG	TGTTGTTTA	ATACTGTTT	TTCCCGTGT	GATTTCTGAT	840
AC	ACTTCATCC	CCTACTCCCC	CAAAACAGTT	GAAGCCCAGC	CCACTCTTAA	TGGGCTTATT	900

80

5	CAACATTGT GTAATT CATT AATGCT CATA ATAACCT CAT GAGAAAGCAA CTAGTTGAT	960
	TTTATGTCAG TTTGGAAGCT GAAGATCCAA ACGAGGCATT CTGTGAGATC TATGGAGAGA	1020
	TTGGTACAAA CACTGAATAC ATGTAAATT AACTCAGGGT AGACCC TATT TGTGGTTAAA	1080
	ATAGGGATAT TTCCCTTTTT TTTTTTTTT TTTTGACTGT TTCTTAATCA GTGCCATGCC	1140
	AGGAAAATAG GGATGTTTCC TTCCCAGAGA TCTGTGTGTC TTTTTTCAGA AACGTCTGTG	1200
10	ACAGGCCAT CAATTTGAA ATATTTGGTT TTTGAGCCTG TCAC TCTAAA CCAGCGTTA	1260
	ACGTTCAAAA GGCAAATAAC TGATGACCAG GCGGCACATT GTTCTGCTCC GTGAGTGTCT	1320
	GGCACTGGGA AAGGTGAGA TTGTCAGAA TGACAGCAAT TCCGACGCC CAGTCAGTCC	1380
	TGCGTGATTG TGGCGAGGGC GCGTCTGGCA CCGGGAAAGGT GTAGATCATC TAGAATGACG	1440
	GCGATTCCGA CGCCCCGGTC AGTCCTGCCT GATTGGCGAG GGTGCATCTG TCGTGAGAAT	1500
15	TCCCAGTTCT GAAGAGAGCA AGGAGACTGA TCCCAGCTAG TCCAAGGCAT TGGCTCCCT	1560
	GTTGCTCTTC CTTGTGGAGC TCCCCCTGCC CCACTCCCTC CTGCCTGCAT CTTCAGAGCT	1620
	GCCTCTGAAG CTCGCTTGGT CCCTAGCTCA CACTTCCCT GCGGCTGGGA AGGTAATTGA	1680
	ATACTCGAGT TTAAAAGGAA AGCACATCCT TTTAAACCAA AACACACCTG CTGGGCTGTA	1740
	AACAGTTTT AGTGACATTA CCATCTACTC TGAAAATCTA ACAAAGGAGT GATTGTGCA	1800
20	GTTGAAAGTA GGATTTGCTT CATAAAAGTC ACAATTGAA TTCATTTTG CTTTAAATC	1860
	CAGCCAACCT TTTCTGTCTT AAAAGGAAAA AAAAAA	1896

25 (2) INFORMATION FOR SEQUENCE ID NO: 75:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acid residues
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

Glu Glu Lys Leu Ile Val Val Leu Phe

5

35

(2) INFORMATION FOR SEQUENCE ID NO: 76:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1554 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

5 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: nucleic acid
 (ix) FEATURE:
 (A) NAME/KEY: DAGE
 (D) OTHER INFORMATION: Xaa is Arg when V is C or A or Gly
 10 when V is G
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:

	VGA CTG AGA CCT AGA AAT CCA AGC GTT GGA GGT CCT GAG GCC AGC CTA	48
15	Xaa Leu Arg Pro Arg Asn Pro Ser Val Gly Gly Pro Glu Ala Ser Leu	
	1 5 10 15	
	AGT TTC CGC AAA ATG GAA CGA AGG CGT TTG CGG GGT TCC ATT CAG AGC	96
	Ser Arg Phe Lys Met Glu Arg Arg Leu Arg Gly Ser Ile Gln Ser	
20	20 25 30	
	CGA TAC ATC AGC ATG AGT GTG TGG ACA AGC CCA CGG AGA CTT GTG GAG	144
	Arg Tyr Ile Ser Met Ser Val Trp Thr Ser Pro Arg Arg Leu Val Glu	
	35 40 45	
25	CTG GCA GGG CAG AGC CTG CTG AAG GAT GAG GCC CTG GCC ATT GCC GCC	192
	Leu Ala Gly Gln Ser Leu Leu Lys Asp Glu Ala Leu Ala Ile Ala Ala	
	50 55 60	
30	CTG GAG TTG CTG CCC AGG GAG CTC TTC CCG CCA CTC TTC ATG GCA GCC	240
	Leu Glu Leu Leu Pro Arg Glu Leu Phe Pro Pro Leu Phe Met Ala Ala	
	65 70 75 80	
35	TTT GAC GGG AGA CAC AGC CAG ACC CTG AAG GCA ATG GTG CAG GCC TGG	288
	Phe Asp Gly Arg His Ser Gln Thr Leu Lys Ala Met Val Gln Ala Trp	
	85 90 95	
40	CCC TTC ACC TGC CTC CCT CTG GGA GTG CTG ATG AAG GGA CAA CAT CTT	336
	Pro Phe Thr Cys Leu Pro Leu Gly Val Leu Met Lys Gly Gln His Leu	
	100 105 110	

82

5	CAC CTG GAG ACC TTC AAA GCT GTG CTT GAT GGA CTT GAT GTG CTC CTT	384		
	His Leu Glu Thr Phe Lys Ala Val Leu Asp Gly Leu Asp Val Leu Leu			
	115	120	125	
10	GCC CAG GAG GTT CGC CCC AGG AGG TGG AAA CTT CAA GTG CTG GAT TTA	432		
	Ala Gln Glu Val Arg Pro Arg Arg Trp Lys Leu Gln Val Leu Asp Leu			
	130	135	140	
15	CGG AAG AAC TCT CAT CAG GAC TTC TGG ACT GTA TGG TCT GGA AAC AGG	480		
	Arg Lys Asn Ser His Gln Asp Phe Trp Thr Val Trp Ser Gly Asn Arg			
	145	150	155	160
20	GCC AGT CTG TAC TCA TTT CCA GAG CCA GAA GCA GCT CAG CCC ATG ACA	528		
	Ala Ser Leu Tyr Ser Phe Pro Glu Pro Ala Ala Gln Pro Met Thr			
	165	170	175	
25	AAG AAG CGA AAA GTA GAT GGT TTG AGC ACA GAG GCA GAG CAG CCC TTC	576		
	Lys Lys Arg Lys Val Asp Gly Leu Ser Thr Glu Ala Glu Gln Pro Phe			
	180	185	190	
30	ATT CCA GTA GAG GTG CTC GTA GAC CTG TTC CTC AAG GAA GGT GCC TGT	624		
	Ile Pro Val Glu Val Leu Val Asp Leu Phe Leu Lys Glu Gly Ala Cys			
	195	200	205	
35	GAT GAA TTG TTC TCC TAC CTC ATT GAG AGA GTG AAG CGA AAG AAA AAT	672		
	Asp Glu Leu Phe Ser Tyr Leu Ile Glu Arg Val Lys Arg Lys Lys Asn			
	210	215	220	
40	GTA CTA CGG CTG TGC TGT AAG AAG CTG AAG ATT TTT GCA ATG CCC ATG	720		
	Val Leu Arg Leu Cys Cys Lys Lys Ile Phe Ala Met Pro Met			
	225	230	235	240
	CAG GAT ATC AAG ATG ATC CTG AAA ATG GTG CAG CTG GAC TCT ATT GAA	768		
	Gln Asp Ile Lys Met Ile Leu Lys Met Val Gln Leu Asp Ser Ile Glu			
	245	250	255	
	GAT TTG GAA GTG ACT TGT ACC TGG AAG CTA CCC ACC TTG GCG AAA TTT	816		

83

5	Asp Leu Glu Val Thr Cys Thr Trp Lys Leu Pro Thr Leu Ala Lys Phe			
	260	265	270	
	TCT CCT TAC CTG GGC CAG ATG ATT AAT CTG CGT AGA CTC CTC CTC TCC			864
	Ser Pro Tyr Leu Gly Gln Met Ile Asn Leu Arg Arg Leu Leu Ser			
10	275	280	285	
	CAC ATC CAT GCA TCT TCC TAC ATT TCC CCG GAG AAG GAA GAG AGT ATA			912
	His Ile His Ala Ser Ser Tyr Ile Ser Pro Glu Lys Glu Glu Ser Ile			
	290	295	300	
15	TCG CCC AGT TCA CCT CTC AGT TCC TCA GTC TGC AGT GCC TGC AGG CTC			960
	Ser Pro Ser Ser Pro Leu Ser Ser Ser Val Cys Ser Ala Cys Arg Leu			
	305	310	315	320
20	TCT ATG TGG ACT CTT TAT TTT TCC TTA GAG GCC GCC TGG ACT CAG TTG			1008
	Ser Met Trp Thr Leu Tyr Phe Ser Leu Glu Ala Ala Trp Thr Gln Leu			
	325	330	335	
25	CTC AGG CAC GTG ATG AAC CCC TTG GAA ACC CTC TCA ATA ACT AAC TGC			1056
	Leu Arg His Val Met Asn Phe Leu Glu Thr Leu Ser Ile Thr Asn Cys			
	340	345	350	
30	CGG CTT TCG GAA GGG GAT GTG ATG CAT CTG TCC CAG AGT CCC AGC GTC			1104
	Arg Leu Ser Glu Gly Asp Val Met His Leu Ser Gln Ser Pro Ser Val			
	355	360	365	
35	AGT CAG CTA AGT GTC CTG AGT CTA AGT GGG GTC ATG CTG ACC GAT GTA			1152
	Ser Gln Leu Ser Val Leu Ser Leu Ser Gly Val Met Leu Thr Asp Val			
	370	375	380	
40	AGT CCC GAG CCC CTC CAA GCT CTG CTG GAG AGA GCA GCC TCT GCC ACC CTC			1200
	Ser Pro Glu Pro Leu Gln Ala Leu Leu Glu Arg Ala Ser Ala Thr Leu			
	385	390	395	400
	CAG GAC CTG GTC TTT GAT GAG TGT GGG ATC ACG GAT GAT CAG CTC CTT			1248
	Gln Asp Leu Val Phe Asp Glu Cys Gly Ile Thr Asp Asp Gln Leu Leu			

		84	
5	405	410	415
	GCC CTC CTG CCT TCC CTG AGC CAC TGC TCC CAG CTT ACA ACC TTA AGC		1296
	Ala Leu Leu Pro Ser Leu Ser His Cys Ser Gln Leu Thr Thr Leu Ser		
	420	425	430
10			
	TTC TAC GGG AAT TCC ATC TCC ATA TCT GCC TTG CAG AGT CTC CTG CAG		1344
	Phe Tyr Gly Asn Ser Ile Ser Ile Ser Ala Leu Gln Ser Leu Leu Gln		
	435	440	445
15			
	CAC CTC ATC GGG CTG AGC AAT CTG ACC CAC GTG CTG TAT CCT GTC CCC		1392
	His Leu Ile Gly Leu Ser Asn Leu Thr His Val Leu Tyr Pro Val Pro		
	450	455	460
20			
	CTG GAG AGT TAT GAG GAC ATC CAT GGT ACC CTC CAC CTG GAG AGG CTT		1440
	Leu Glu Ser Tyr Glu Asp Ile His Gly Thr Leu His Leu Glu Arg Leu		
	465	470	475
			480
25			
	GCC TAT CTG CAT GCC AGG CTC AGG GAG TTG CTG TGT GAG TTG GGG CGG		1488
	Ala Tyr Leu His Ala Arg Leu Arg Glu Leu Leu Cys Glu Leu Gly Arg		
	485	490	495
30			
	CCC AGC ATG GTC TGG CTT AGT GCA ACC CCT GTC CTC ACT GTG GGG ACA		1536
	Pro Ser Met Val Trp Leu Ser Ala Thr Pro Val Leu Thr Val Gly Thr		
	500	505	510
	GAA CCT TCT ATG ACC CGG		1554
	Glu Pro Ser Met Thr Arg		
	515		

We claim:

1. Composition of matter comprising:
 - (i) a tumor rejection antigen precursor or a tumor rejection antigen, and at least one of:
 - (ii) a pharmaceutically acceptable adjuvant, and a T or B cell growth factor.
2. The composition of matter of claim 1, wherein said tumor rejection antigen precursor is a MAGE protein.
3. The composition of matter of claim 1, wherein said tumor rejection antigen precursor is a BAGE protein.
4. The composition of matter of claim 1, wherein said tumor rejection antigen precursor is a GAGE protein.
5. The composition of claim 1, wherein said tumor rejection antigen is derived from a MAGE protein.
6. The composition of matter of claim 5, wherein said MAGE protein is MAGE-1, MAGE-2, or MAGE-3.
7. The composition of matter of claim 6, wherein said tumor rejection antigen consists of one of SEQ ID NO: 1 through SEQ ID NO: 5.
8. The composition of matter of claim 1, wherein said pharmaceutically acceptable adjuvant is a substantially pure saponin derived from Quillaja saponaria.
9. The composition of matter of claim 8, wherein said substantially pure saponin is selected from the group consisting of QA-7, QA-21, QA-17, and QA-18.
10. The composition of matter of claim 1, wherein said pharmaceutically acceptable adjuvant is MTP-MF59.

11. Method for stimulating an immune response in a subject comprising administering the composition of matter of claim 1 to said subject in an amount sufficient to provoke an immune response to said tumor rejection antigen precursor or tumor rejection antigen.

12. The method of claim 11, wherein said immune response comprises proliferation of T cells specific for complexes of said tumor rejection antigen and a major histocompatibility complex molecule to which said tumor rejection antigen binds.

13. The method of claim 11, wherein said T cells are cytolytic T cells.

14. The method of claim 11, wherein said immune response comprises production of antibodies against said tumor rejection antigen precursor or tumor rejection antigen.

15. The composition of claim 1, in intravenous form.

16. The composition of claim 1, in the form of a liposome.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/12463

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :A61K 38/00, 39/385, 45/00, 45/05; C07K 7/00, 14/00, 14/82
 US CL :424/185.1, 193.1, 277.1; 530/300, 350, 395, 868

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/185.1, 193.1, 277.1; 530/300, 350, 395, 868

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Examiner's tumor rejection file references

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Automated Patent System and DIALOG (file =BIOCHEM). Key words: MAGE, tumor rejection antigen?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US, A, 5,342,774 (BOON ET AL) 30 August 1994.	1-16
A, P	US, A, 5,405,940 (BOON ET AL.) 11 April 1995.	1-16
A, E	US, A, 5,462,871 (BOON-FALLEUR ET AL) 31 October 1995.	1-16
Y	R. W. Ellis (ed.) "Vaccines: New Approaches To Immunological Problems", published 1992 by Butterworth-Heinemann (Stoneham, MA), pages 431-449, see entire document.	1-16
Y	Vaccine, Volume 11, Issue 3, issued 1993, Gupta et al., "Adjuvants - a balance between toxicity and adjuvanticity", pages 293-306, see entire document.	1-16

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	*T	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be part of particular relevance	*X*	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	*Y*	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	&	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

03 JANUARY 1996

Date of mailing of the international search report

09 FEB 1996

Name and mailing address of the ISA/US
 Commissioner of Patents and Trademarks
 Box PCT
 Washington, D.C. 20231

Authorized officer
 THOMAS CUNNINGHAM

Facsimile No. (703) 305-3230

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US95/12463

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Immunology Today, Volume 14, No. 6, issued 1993, Hadden, "Immunostimulants", pages 275-280, see entire document.	1-16