EE 330 Homework 7 Spring 2018 Due Friday Feb 23

Unless specified to the contrary, assume all n-channel MOS transistors have model parameters $\mu_n C_{OX} = 350 \mu A/V^2$ and $V_{Tn} = 0.5 V$, all p-channel transistors have model parameters $\mu_p C_{OX} = 70 \mu A/V^2$ and $V_{Tp} = -0.5 V$. Correspondingly, assume all npn BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 100$ and all pnp BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 25$. If the emitter area of a transistor is not given, assume it is $100\mu^2$. If parameters are needed for process characterization beyond what is given, use the measured parameters from the TSMC 0.18μ process given below as model parameters.

Problem 1 Determine the currents indicated with a ? in the following circuits. Assume the diodes are ideal.

Problem 2 Consider the following inverter. Determine the switch-level model for this inverter that includes the input capacitance and the pull-up and pull-down resistors.

Problem 3 Design a circuit using only MOS transistors (no resistors or other components) that has an output voltage of 1Vwhen biased with a single dc power supply of 2.5V.

Problem 4 Sketch a cross-sectional view along the BB' cross-section for the CMOS layout shown below. Assume a basic CMOS process in which the n-select mask is generated from the compliment of the p-select mask.

Problem 5 Sketch a cross-sectional view for the DD' cross-section for the CMOS layout given in the previous problem. Assume a basic CMOS process in which the n-select mask is generated from the compliment of the p-select mask.

Problem 6 Sketch a cross-sectional view for the DD' cross-section for the CMOS layout given in the previous problem. Assume a basic CMOS process in which the n-select mask is generated from the compliment of the p-select mask.

Problem 7 The following circuit was constructed for measuring the β of the bipolar transistor. To obtain the β , the resistor R_B was adjusted so that the current I_c was precisely 1.000mA. The current I_c was then measured to be 1.0250mA. From these measurements the parameter α of the transistor was obtained and then β was calculated using the well-known relationship between α and β .

- a) What is the value of β for the transistor?
- b) What would be the worst-case error (in percent) in measuring the β of the transistor using this approach if the current measurements were only accurate to $\pm 0.5\%$?

Problem 8 As an alternative to measuring β in the circuit for the previous problem (assuming β is the value determine in part a) of the previous problem), the currents I_b and I_c were measured. What would be the worst-case error (in percent) in measuring the β of the transistor using this alternative approach if the current measurements of I_b and I_c were only accurate to $\pm 0.5\%$?

Problem 9 Assume the transistor in the following circuit is operating at T=300K and the β of the transistor is 200. The parameter J_S for the process was given at the top of this HW assignment.

- a) Precisely determine the value of V_X required to force the collector voltage, V_C , to be 5V.
- b) If the value of Vx is decreased by 10uV from the value determined by Vx in part a), how much change will occur in the voltage V_C?
- c) If the temperature is increased by 1°C, how much will the voltage obtained in part a) change?
- d) Comment on how sensitive this circuit is to change in V_X and to changes in T.

Problem 10 and 11 Use Modelsim to create a 4-bit up/down counter. Include a select bit to choose between the two different modes of operation. Include screenshots of your Verilog code, and simulation waveforms.

MOSIS WAFER ACCEPTANCE TESTS

RUN: T68B (MM NON-EPI) VENDOR:

TSMC

TECHNOLOGY: SCN018 FEATURE SIZE: 0.18

microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: DSCN6M018 TSMC

TRANSISTOR PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM	0.27/0.18		0 51	1
Vth		0.50	-0.51	volts
SHORT	20.0/0.18			
Idss		547	-250	uA/um
Vth		0.51	-0.51	volts
Vpt		4.8	-5.6	volts
WIDE	20.0/0.18			
Ids0		14.4	-4.7	pA/um
LARGE	50/50			
Vth		0.43	-0.42	volts
Vjbkd		3.1	-4.3	volts
Ijlk		<50.0	<50.0	pА
K' (Uo*Cox/2)		175.4	4 -35.6	uA/V^2
Low-field Mobility		416.5	52 84.54	$cm^2/V*s$

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameters XL and XW in your SPICE model card.

in your SPICE model card.							
_	Design Tec	hnology	XL (um) X	XW um)			
	SCN6M_DEEP	(lambda=0.09 thick oxide	,	0.01 0.01			
	SCN6M_SUBM	(lambda=0.10 thick oxide	•	0.00			
FOX TRANSISTORS Vth	GATE Poly	_	P+ACTIVE UNITS <-6.6 volts				
PROCESS PARAMETERS Sheet Resistance 6			PLY+BLK M1 M2 313.6 0.08 0.08 0	UNITS ohms/sq			

Contact Resistance 10.6 11.0 10.0 Gate Oxide Thickness 41

 PROCESS PARAMETERS
 M3
 POLY_HRI
 M4
 M5
 M6
 N_W
 UNITS

 Sheet Resistance
 0.08
 0.08
 0.08
 0.03
 930
 ohms/sq

 Contact Resistance
 9.24
 14.05
 18.39
 20.69
 ohms

angstrom

4.79 ohms

COMMENTS: BLK is silicide block.

CAPACITANCE PARAMETERS	8 N+	P+	POLY	M	1	М2	МЗ	M4	М5	М6	R_W	D_N_W M5P N_V	UNITS
Area (substrate)	942	116	53 10	6 3	4	14	9	6	5	3	_	123 125	aF/um^2
Area (N+active)			848	4 5	5	20	13	11	9	8			aF/um^2
Area (P+active)			823	2									aF/um^2
Area (poly)				6	6	17	10	7	5	4			aF/um^2
Area (metal1)						37	14	9	6	5			aF/um^2
Area (metal2)							35	14	9	6			aF/um^2
Area (metal3)								37	14	9			aF/um^2
Area (metal4)									36	14			aF/um^2
Area (metal5)										34		984	aF/um^2
Area (r well)	920)											aF/um^2
Area (d well)											582		aF/um^2
Area (no well)	13	7											aF/um^2
Fringe (substrate)	212	2 2	235	4	1	35	29	21	14				aF/um
Fringe (poly)				7	0	39	29	23	20	17			aF/um
Fringe (metal1)						52	34		22	19			aF/um
Fringe (metal2)							48	35	27	22			aF/um
Fringe (metal3)								53	34	27			aF/um
Fringe (metal4)									58	35			aF/um
Fringe (metal5)										55			aF/um
Overlap (N+active)			8	95									aF/um
Overlap (P+active)			7	37									aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	0.74	volts
Vinv	1.5	0.78	volts
Vol (100 uA)	2.0	0.08	volts
Voh (100 uA)	2.0	1.63	volts
Vinv	2.0	0.82	volts
Gain	2.0	-23.72	
Ring Oscillator Freq.			
D1024 THK (31-stg,3.3V)		300.36	MHz
$DIV10\overline{24}$ (31-stg,1.8V)		363.77	MHz
Ring Oscillator Power			
D1024 THK (31-stg,3.3V)		0.07	uW/MHz/gate
$\overline{01}$ DIV1024 (31-stg,1.8V)		0.02	uW/MHz/gate