Introduction: Fibonacci Numbers I

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures

Learning Objectives

- Understand the definition of the Fibonacci numbers.
- Show that Fibonacci numbers become very large.

Definition

$$F_n = egin{cases} 0, & n=0 \ 1, & n=1 \ F_{n-1} + F_{n-2}, & n>1 \ . \end{cases}$$

Definition

$$F_n = egin{cases} 0, & n=0\,, \ 1, & n=1\,, \ F_{n-1} + F_{n-2}, & n>1\,. \end{cases}$$

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

Developed to Study Rabbit Populations

Lemma

 $F_n \ge 2^{n/2}$ for $n \ge 6$.

Lemma

$$F_n \ge 2^{n/2}$$
 for $n \ge 6$.

Proof

By induction

Lemma

$$F_n \geq 2^{n/2}$$
 for $n \geq 6$.

Proof

By induction

Base case: n = 6,7 (by direct computation).

Lemma

$$F_n > 2^{n/2}$$
 for $n > 6$.

Proof

By induction

Base case: n = 6, 7 (by direct computation). Inductive step:

$$F_n = F_{n-1} + F_{n-2} \ge 2^{(n-1)/2} + 2^{(n-2)/2} \ge 2 \cdot 2^{(n-2)/2} = 2^{n/2}.$$

Formula

Theorem

$$F_n = rac{1}{\sqrt{5}} \left(\left(rac{1+\sqrt{5}}{2}
ight)^n - \left(rac{1-\sqrt{5}}{2}
ight)^n
ight).$$

$$F_{20} = 6765$$

$$F_{20} = 6765$$

 $F_{50} = 12586269025$

$$F_{20} = 6765$$
 $F_{50} = 12586269025$
 $F_{100} = 354224848179261915075$

```
F_{20} = 6765
F_{50} = 12586269025
F_{100} = 354224848179261915075
F_{500} = 1394232245616978801397243828
        7040728395007025658769730726
        4108962948325571622863290691
        557658876222521294125
```

Computing Fibonacci numbers

Compute F_n

Input: An integer $n \ge 0$.

Output: F_n .