Trasport phenomena

UNITÀ 1. INTRODUZIONE AI TRASPORTIFENOMENI NEI SISTEMI BIOLOGICI

Gli organismi controllano la concentrazione delle molecole attraverso meccanismi specializzati: fenomeni di trasporto. I fenomeni di trasporto implicano lo studio integrato di quantità di moto, massa e trasferimento di energia.

Le leggi della Termodinamica trattano solo i sistemi che sono in equilibrio. Possono prevedere la quantità di energia necessaria per passare da uno stato di equilibrio a un altro, ma non possono prevedere la velocità con cui si verificheranno questi cambiamenti nel tempo e nello spazio.

$$Q - W = \Delta E = \Delta E_K + \Delta E_P + \Delta U$$

$$\dot{Q} - \dot{W} = \Delta \dot{E} = \Delta \dot{E}_K + \Delta \dot{E}_P + \Delta \dot{H}$$

Fenomeni fisici coinvolti nel trasporto delle molecole:

- Diffusione: movimento casuale di molecole che nasce dall'energia termica trasferita collisioni molecolari.
- Convezione: meccanismo di trasporto derivante dal movimento in massa dei fluidi forzato da una "driving force".

DIFFUSIONE

Dynamic Equilibrium of Diffusion

Flusso: movimento netto di molecole attraverso un'area unitaria in una data direzione per unità tempo.

Equazione costitutiva: relazione tra un flusso e un gradiente.

CONVEZIONE

È un meccanismo di trasporto derivante dal movimento di massa di fluidi. Flusso di fluidi con applicazione di forze. Le forze applicate alle superfici sono tensioni: di taglio e normali.

$$Re = \frac{inertial\ forces}{viscous\ forces} = \frac{\rho v^2/L}{\mu v/L^2} = \frac{\rho L v}{\mu}$$

viscous forces $\mu v/L^2$ μ II numero di Reynolds Re può anche essere visto come il rapporto tra il trasporto della quantità di moto per convezione e trasporto della quantità di moto per diffusione. Se Re < Re*crit*: flusso laminare, se Re > Re*crit*: flusso turbolento, il flusso all'interno del corpo è laminare. Recrit è 2300 (fino a 4000).

Importanza relativa di convezione e diffusione

A brevi distanze la diffusione può essere rapida. All'aumentare della distanza, diventa inefficiente. L'ossigeno nel sangue viene trasportato per convezione, ma viene trasportato a tessuto locale per diffusione. Numero di peclet,

Mass transport by convection (12) viene vi. Pe:

 $\text{Pe} = \frac{\text{Mass transport by convection}}{\text{Mass transport by diffusion}} = \left(\frac{L^2}{D_{ij}}\right) \left(\frac{\textbf{v}}{L}\right) = \frac{\textbf{v}L}{D_{ii}}$

Se Pe>1 la convenzione domina, se Pe<1 la diffusione domina.

Diffusion time vs. time for convection

-
$$t_d = L^2/D_{ij}$$
 and $t_c = L/v$

Cardiovascular system

- CO (I/min). Gittata cardiaca: la quantità di sangue che scorre dal cuore. Individui a riposo: 5 L/min.
- SV (L/battuta). Volume sistolico: la quantità di sangue espulsa durante ogni battito cardiaco.
- FC (battiti/min). Frequenza cardiaca: il numero di battiti al minuto. Per un cuore che riposa: 60–72. Durante esercizio fisico intenso: 150.

Sistema arterioso: trasporta il sangue dal cuore ai tessuti. Sistema venoso: trasporta il sangue dai tessuti al cuore. Microcircolazione: scambia soluti e solventi con i tessuti.

Resistenza vascolare (mmHg·s/mL): $Pa = CO \cdot R$

- Pa: pressione arteriosa media (mmHg)
- CO: gittata cardiaca (mL/min)
- R: resistenza vascolare

UNITÀ 2. MECCANICA DEI FLUIDI IN BIOLOGIA SISTEMI

Fluido: un materiale che si deforma continuamente quando soggetto ad una forza applicata tangenzialmente ad a superficie.

Meccanica dei fluidi: lo studio del moto dei fluidi risposta all'applicazione delle sollecitazioni.

- Analisi sperimentali (in vivo, in vitro, ex vivo, ecc.)
- Analisi analitica
- Analisi computazionale/numerica (in silico)

Cinematica: lo studio del movimento senza considerare le forze che lo producono movimento. Moto dei fluidi nel tempo (t) e nello spazio (x, y, z).

Volume di controllo (CV): una regione di spazio utilizzata esaminare il flusso di massa, quantità di moto ed energia:

- Vista euleriana: esamina il CV da uno stato di riferimento fisso
- Vista lagrangiana: associa la CV ad una massa specifica di fluido e segue la massa mentre si muove attraverso il campo di flusso.

Campo di velocità: velocità del flusso di un fluido nel tempo e spazio.

- Descrizione lagrangiana: esamina il moto di un volume differenziale del fluido utilizzando un frame di riferimento fisso.
- Descrizione euleriana: è associata una velocità ogni posizione nel fluido.

Portata: velocità del flusso di un fluido nel tempo e nello spazio.

- Velocità media o flusso volumetrico del fluido, <v> (m/s).

$$\langle \mathbf{v} \rangle = \frac{1}{A} \int_{A} \mathbf{v} \cdot \mathbf{n} dA$$

$$Q = \langle \mathbf{v} \rangle A = \int_{A} \mathbf{v} \cdot \mathbf{n} dA$$

- Portata volumetrica, Q (m3/s).

– Portata massica, M (kg/s)
$$M = \int_A \rho \mathbf{v} \cdot \mathbf{n} dA$$

Accelerazione: il tasso di variazione della velocità $\mathbf{a} = \mathbf{a}(x, y, z, t)$

$$\mathbf{a} = \frac{\partial \mathbf{v}}{\partial t} + \frac{\mathrm{d}x}{\mathrm{d}t} \frac{\partial \mathbf{v}}{\partial x} + \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\partial \mathbf{v}}{\partial y} + \frac{\mathrm{d}z}{\mathrm{d}t} \frac{\partial \mathbf{v}}{\partial z} = \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v}_x \frac{\partial \mathbf{v}}{\partial x} + \mathbf{v}_y \frac{\partial \mathbf{v}}{\partial y} + \mathbf{v}_z \frac{\partial \mathbf{v}}{\partial z}$$

$$\mathbf{a} = \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}$$
Accelerazione locale e convettiva

Semplificazione del fluido: Modi di presentare il campo di velocità:

- Vettori velocità: dimensione proporzionale alla grandezza
- Semplifica: una curva che è ovunque tangente ai vettori velocità istantanei.
- Percorsi: traccia il movimento dell'individuo particelle.

CONSERVATION RELATIONS AND BOUNDARY CONDITIONS

Abbiamo bisogno di relazioni di conservazione, equazioni costitutive e condizioni al contorno.

CONSERVATION OF MASS

 $- \quad \text{Control volume of constant size and fixed in space, and a nonreacting system} \\ \begin{bmatrix} \text{Rate of accumulation of} \\ \text{mass in control volume} \end{bmatrix} = \begin{bmatrix} \text{Flow of mass into} \\ \text{control volume} \end{bmatrix} - \begin{bmatrix} \text{Flow of mass out} \\ \text{of control volume} \end{bmatrix}$

MOMENTUM BALANCES

 $\begin{bmatrix} \text{Rate of momentum} \\ \text{accumulation} \end{bmatrix} = \begin{bmatrix} \text{Rate of momentum flow} \\ \text{to control volume} \end{bmatrix} - \begin{bmatrix} \text{Rate of momentum flow} \\ \text{from control volume} \end{bmatrix} + \begin{bmatrix} \text{Sum of forces acting} \\ \text{on control volume} \end{bmatrix}$

FORZE

Forze corporee: agiscono sull'intera massa fluida lungo tutto il CV.

Forze superficiali: forze per unità di area, tensioni, agenti sulla superficie CV.

$$\mathbf{F} = \int_{S} \mathbf{n} \cdot \mathbf{\sigma} dS$$

$$\uparrow$$
stress vector acting on S

FLUID STATICS

• Cubic control volume:

$$-x: (p|_{x} - p|_{x+\Delta x}) \Delta y \Delta z = 0$$

$$-y: -\rho g \Delta x \Delta y \Delta z + (p|_{y} - p|_{y+\Delta y}) \Delta x \Delta z = 0$$

$$-z: (p|_{z} - p|_{z+\Delta z}) \Delta x \Delta y = 0$$

$$\frac{(p|_{x} - p|_{x+\Delta x})}{\Delta x} = 0$$

$$\rho g + \frac{(p|_{y} - p|_{y+\Delta y})}{\Delta y} = 0$$

$$\frac{(p|_{x} - p|_{y+\Delta y})}{\Delta y} = 0$$

$$-\rho g - \frac{\partial p}{\partial y} = 0$$

$$-\rho g - \frac{\partial p}{\partial z} = 0$$

$$-\frac{\partial p}{\partial z} = 0$$

$$-\frac{\partial p}{\partial z} = 0$$

LEGGE DELLA VISCOSITÀ DI NEWTON

Relazioni necessarie tra lo sforzo di taglio e la velocità del fluido. Le relazioni di conservazione sono universali, ma le relazioni costitutive sono specifiche del fluido. Lo sforzo di taglio è proporzionale alla velocità di deformazione. La velocità di deformazione di un elemento fluido è uguale a gradiente di velocità.

I fluidi newtoniani obbediscono alla legge della viscosità di Newton:

$$\tau_{yx} = \mu \dot{\gamma}_x = \mu \frac{\mathrm{d} v_x}{\mathrm{d} y}$$

Il gradiente di velocità è quindi la forza guida per il trasporto della quantità di moto.

REOLOGIA NON NEWTONIANA

La reologia è la branca della meccanica che studia la deformazione dei fluidi. Viscosità apparente, determinata da sollecitazioni e velocità di taglio misurate.

$$\eta_{\rm app}(T, p, \dot{\gamma}_x) = \frac{\tau_{yx}}{\dot{\gamma}_x}$$

- Fluidi newtoniani: la viscosità apparente è pari a vera viscosità dinamica (η app = μ).
- Plastica Bingham: materiale con aspetto solido e fluido proprietà. Scorre quando lo stress applicato supera a stress da rendimento, $\tau 0$. $\left| \tau_{yx} \right| < \tau_0$, $\dot{\gamma}_x = 0$ $\left| \tau_{yx} \right| > \tau_0$, $\tau_{yx} = \pm \tau_0 + \mu_0 \dot{\gamma}_x$
- Fluidi legge di potenza $\eta_{app} = m|\dot{\gamma}_x|^{n-1}$

Se n=1 è un fluido Newtoniano, se n<1 fluido che si assottiglia o pseudoplastico, se n>1 fluido ispessente al taglio o dilatante

$$\tau_{yx} = m|\dot{\gamma}_x|^n$$

FLUSSO LAMINARE AND TURBULENTO

$$Re = \frac{\rho VD}{\mu}$$

Regime laminare:

- Schema di flusso regolare.
- Numero di Reynolds basso. Dominano le forze viscose.
- In condizioni stazionarie, il flusso sarà generalmente costante.
- I flussi in regime laminare non sono molto comuni in natura e in ingegneria, ma sono molto comuni nei flussi di liquidi fisiologici (flussi con velocità molto bassa, flussi con elevata viscosità, flussi di piccole dimensioni)

Regime turbolento:

- Schemi di flusso complessi e caotici.
- Numeri di Reynolds elevati. Dominano le forze inerziali.
- Il flusso è sempre tridimensionale, tridirezionale e instabile.

APPLICATION OF MOMENTUM BALANCES

Il numero di flussi che possono essere risolti analiticamente è limitato. Semplificare le ipotesi sul carattere del flusso o sulle condizioni al contorno. I flussi semplici possono fornire alcune informazioni su flussi più complessi.

 $\begin{bmatrix} \text{Sum of external} \\ \text{forces} \end{bmatrix} = \begin{bmatrix} \text{Rate of momentum} \\ \text{flow } out \text{ the CV} \end{bmatrix} - \begin{bmatrix} \text{Rate of momentum} \\ \text{flow } in \text{ the CV} \end{bmatrix}$

FLUSSO INDOTTO DA PIASTRA SCORREVOLE

Flusso tra due piastre parallele; la piastra inferiore è fissa e la piastra superiore si muove in V. Semplificazione del movimento dei globuli rossi vicino a una parete capillare o movimento relativo di due articolazioni separate dal liquido sinoviale.

Ipotesi: - Movimento costante della piastra superiore - Solo le forze dovute allo sforzo di taglio esercitato dal fluido (nessun gradiente di pressione) - Spazio sottile (h) e piastre grandi

Lo sforzo di taglio agisce nella direzione x positiva. La piastra crea uno stress di taglio che fa muovere il fluido.

FLUSSO GUIDATO DA PRESSIONE ATTRAVERSO UNO STRETTO CANALE RETTANGOLARE

Flusso in un canale rettangolare indotto da un gradiente di pressione.

Ipotesi: - La pressione varia solo nella direzione del flusso - Fluido incomprimibile (densità costante) - Flusso costante. Nessuna dipendenza dal tempo - Fluido newtoniano - Gli effetti dei bordi vengono trascurati (h/w << 1, h/L << 1) - Il flusso è laminare.

Boundary conditions: "no-slip" conditions.

- @y = h/2: $v_y(h/2) = 0$.
- @y = -h/2: $v_x(-h/2) = 0$.

$$\left(p \big|_{x} - p \big|_{x + \Delta x} \right) \Delta y \Delta z + \left(\tau_{yx} \big|_{y + \Delta y} - \tau_{yx} \big|_{y} \right) \Delta x \Delta z = \left(\rho v_{x} v_{x} \big|_{x + \Delta x} - \rho v_{x} v_{x} \big|_{x} \right) \Delta y \Delta z$$

$$0 = \left(v_{x} \big|_{x + \Delta x} = v_{x} \big|_{x} \right)$$

$$P \big|_{x} \longrightarrow \Delta y$$

$$\Delta y \longrightarrow T_{yx} \big|_{y} + \Delta y$$

$$\left(p\Big|_{x}-p\Big|_{x+\Delta x}\right)\Delta y\Delta z+\left(\tau_{yx}\Big|_{y+\Delta y}-\tau_{yx}\Big|_{y}\right)\Delta x\Delta z=0 \rightarrow -\frac{p\Big|_{x+\Delta x}-p\Big|_{x}}{\Delta x}+\frac{\tau_{yx}\Big|_{y+\Delta y}-\tau_{yx}\Big|_{y}}{\Delta y}=0$$

$$\frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}\tau_{yx}}{\mathrm{d}y} \rightarrow \frac{\mathrm{d}p}{\mathrm{d}x} = \frac{\mathrm{d}\tau_{yx}}{\mathrm{d}y} = C_1$$

$$\frac{\mathrm{d}p}{\mathrm{d}x} = C_1 \rightarrow p = C_1x + C_2$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_1 = \frac{-(p_0 - p_L)}{x_L - x_0} = -\frac{\Delta p}{L}$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

$$p_0 = C_1x_0 + C_2 \rightarrow C_2 = p_0 - \frac{\Delta p}{L}x_0$$

 $\frac{1}{\mathrm{d}y} = c_1 = -\frac{1}{L} \Rightarrow c_{yx} = -\frac{1}{L} y + c_3 \Rightarrow \mu \frac{1}{\mathrm{d}y} = -\frac{1}{L} y + c_3 \Rightarrow u v_x = \left(-\frac{1}{\mu L} y + \frac{1}{\mu}\right) u y$ Newtonian fluid

$$v_{x} = -\frac{\Delta p}{2\mu L}y^{2} + \frac{C_{3}}{\mu}y + C_{4}$$

$$0 = -\frac{\Delta p}{2\mu L}\frac{h^{2}}{4} + \frac{C_{3}}{\mu}\frac{h}{2} + C_{4} \rightarrow C_{3} = 0$$

$$0 = -\frac{\Delta p}{2\mu L}\frac{h^{2}}{4} - \frac{C_{3}}{\mu}\frac{h}{2} + C_{4} \rightarrow C_{4} = \frac{\Delta ph^{2}}{8\mu L}$$

$$v_{x} = \frac{\Delta ph^{2}}{8\mu L}\left(1 - \frac{4y^{2}}{h^{2}}\right)$$

$$\tau_{yx} = -\frac{\Delta p}{L}y$$

Portata volumetrica

$$Q = \int_{-h/2}^{h/2} \int_{0}^{w} v_x dz dy = v_{\text{max}} w \int_{-h/2}^{h/2} \left(1 - \frac{4y^2}{h^2} \right) dy = v_{\text{max}} w \left(y - \frac{4y^3}{3h^2} \right) \Big|_{-h/2}^{h/2} = \frac{2}{3} v_{\text{max}} w h$$

$$\langle \mathbf{v} \rangle = \frac{1}{wh} \int_{-h/2}^{h/2} \int_{0}^{w} \mathbf{v}_{x} dz dy = \frac{\mathbf{v}_{\text{max}} w}{wh} \int_{-h/2}^{h/2} \left(1 - \frac{4y^{2}}{h^{2}} \right) dy = \frac{\mathbf{v}_{\text{max}} w}{wh} \left(y - \frac{4y^{3}}{3h^{2}} \right) \Big|_{-h/2}^{h/2} = \frac{2}{3} \mathbf{v}_{\text{max}}$$

FLUSSO A PRESSIONE ATTRAVERSO UN TUBO CILINDRICO

Flusso in un tubo cilindrico indotto da un gradiente di pressione.

Ipotesi: La pressione varia solo nella direzione del flusso - Fluido incomprimibile (densità costante) - Flusso costante. Nessuna dipendenza dal tempo - Fluido newtoniano - Il flusso è laminare.

Boundary condition: "no-slip" conditions.

• $@r = R: v_r(R) = 0.$

$$\left(p \Big|_{z} - p \Big|_{z + \Delta z} \right) r \Delta \theta \Delta r + \left((r + \Delta r) \tau_{rz} \Big|_{r + \Delta r} - r \tau_{rz} \Big|_{r} \right) \Delta \theta \Delta z = \underbrace{\left(\rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r }_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r }_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \Big|_{z + \Delta z} - \rho \mathbf{v}_{z} \, \mathbf{v}_{z} \Big|_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf{v}_{z} \right) r \Delta \theta \Delta r}_{0 = \underbrace{\left(\mathbf{v}_{z} \, \mathbf{v}_{z} \, \mathbf$$

$$\left(p\Big|_z - p\Big|_{z + \Delta z}\right) r \Delta \theta \Delta r + \left(\left(r + \Delta r\right) \tau_{rz}\Big|_{r + \Delta r} - r \tau_{rz}\Big|_r\right) \Delta \theta \Delta z = 0 \\ \rightarrow -\frac{p\Big|_{z + \Delta z} - p\Big|_z}{\Delta z} + \frac{\left(r + \Delta r\right) \tau_{rz}\Big|_{r + \Delta r} - r \tau_{rz}\Big|_r}{r \Delta r} = 0 \\ \rightarrow \frac{\frac{\mathrm{d}p}{\mathrm{d}z}}{\frac{\mathrm{d}z}} = \frac{1}{r} \frac{\mathrm{d}(r \tau_{rz})}{\mathrm{d}r} + \frac{1}{r} \frac{\mathrm{d}z}{\mathrm{d}z} = 0$$

$$\frac{\mathrm{d}p}{\mathrm{d}z} = \frac{1}{r} \frac{\mathrm{d}(r\tau_{rz})}{\mathrm{d}r} = C_1 \\ p_0 = C_1 z_0 + C_2 \to C_1 = \frac{-(p_0 - p_L)}{z_L - z_0} = -\frac{\Delta p}{L} \\ \frac{\mathrm{d}p}{\mathrm{d}z} = C_1 \to p = C_1 z + C_2 \\ p_L = C_1 z_L + C_2 \to C_2 = p_0 - \frac{\Delta p}{L} z_0$$

$$p_L = C_1 z_L + C_2 \to C_2 = p_0 - \frac{\Delta p}{L} z_0$$

$$p = p_0 + \frac{\Delta p}{L}(z_0 - z)$$

$$\frac{1}{r}\frac{\mathrm{d}(r\tau_{rz})}{\mathrm{d}r} = C_1 = -\frac{\Delta p}{L} \rightarrow \tau_{rz} = -\frac{\Delta p}{2L}r + \frac{C_3}{r} = -\frac{\Delta p}{2L}r \rightarrow \mu \frac{\mathrm{d}v_z}{\mathrm{d}r} = -\frac{\Delta p}{2L}r \rightarrow \mathrm{d}v_z = -\frac{\Delta p}{2\mu L}r\mathrm{d}r$$

$$C_3 \text{ is 0 because the shear}$$
Newtonian fluid

$$v_z = -\frac{\Delta p}{4\mu L}r^2 + C_4$$

$$\mathbf{v}_z = -\frac{\Delta p}{4\mu L} r^2 + C_4 \qquad \qquad \mathbf{0} = -\frac{\Delta p}{4\mu L} R^2 + C_4 \rightarrow C_4 = \frac{\Delta p}{4\mu L} R^2$$

$$\mathbf{v}_z = \frac{\Delta p R^2}{4\mu L} \left(1 - \frac{r^2}{R^2} \right)$$

$$au_{rz} = -rac{\Delta p}{2L}r$$

Portata volumetrica

$$Q = \int\limits_{0}^{R} \int\limits_{0}^{2\pi} \mathbf{v}_{z} r \mathrm{d}\theta \, \mathrm{d}r = \mathbf{v}_{\max} 2\pi \int\limits_{0}^{R} \left(r - \frac{r^{3}}{R^{2}} \right) \mathrm{d}r = \mathbf{v}_{\max} 2\pi \left(\frac{r^{2}}{2} - \frac{r^{4}}{4R^{2}} \right) \bigg|_{0}^{R} = \frac{1}{2} \mathbf{v}_{\max} \pi R^{2}$$

$$Q = \frac{1}{2} v_{\text{max}} \pi R^2$$

$$\langle \mathbf{v} \rangle = \frac{1}{\pi R^2} \int\limits_{0}^{R} \int\limits_{0}^{2\pi} \mathbf{v}_z r \mathrm{d}\theta \ \mathrm{d}r = \frac{\mathbf{v}_{\mathrm{max}} 2\pi}{\pi R^2} \int\limits_{0}^{R} \left(r - \frac{r^3}{R^2} \right) \mathrm{d}r = \frac{2\mathbf{v}_{\mathrm{max}}}{R^2} \left(\frac{r^2}{2} - \frac{r^4}{4R^2} \right) \bigg| \ _{0}^{R} = \frac{1}{2} \mathbf{v}_{\mathrm{max}}$$

$$\left\langle \mathbf{v} \right\rangle = \frac{1}{2} \mathbf{v}_{\mathrm{max}}$$

Poiseuille's law:
$$Q = \frac{\Delta p \pi R^4}{8\mu L}$$

REOLOGIA E FLUSSO DEL SANGUE

Viscosità del sangue

- I viscosimetri misurano la forza applicata (o forza per unità di area) e la portata per una condizione di flusso. $\eta_{\rm app}= au/\dot{\gamma}$
- I reometri misurano le proprietà dinamiche di fluidi e solidi.
- Viscosimetro Couette e viscosimetro cono-piastra: una superficie ruota a velocità costante e alla coppia necessaria per mantenere una velocità costante viene misurata.
- Viscosimetro a tubo capillare: uno o più tubi capillari, spesso con raggio maggiore di 300 micrometri, che collegano due serbatoi sotto diverse pressioni idrostatiche.

$$\dot{\gamma}_w = \frac{\mathrm{d} v_z}{\mathrm{d} r} \Big|_{vv} \propto \frac{\langle v \rangle}{2R} = \frac{Q}{2\pi R^3} = \overline{U},$$

SANGUE

- Fase acquosa (55% volume): Plasma (acqua) con sali, zuccheri e proteine (fibrinogeno, globulina e albumina).
- Fase cellulare (45% del volume): globuli rossi (95%), globuli bianchi (0,1%) e piastrine (4,9%).

L'emoglobina circondata da una membrana di globuli rossi.

Globulo rosso: altamente deformabile, potere passare attraverso capillari di 5 mm diametro!

Plasma è un fluido newtoniano con una viscosità tra 1,16 e 1,36 mPa x s che dipende dal contenuto di acqua, componente macromolecolare.

Il sangue intero è un fluido non newtoniano, dovuto ai globuli rossi, il limite di rendimento è dipendente dall'ematocrito.

- $\dot{\gamma}$ < 100 s⁻¹ (and au greater than au_0): **Power Law Fluid**
- $\dot{\gamma}$ > 100 s⁻¹ (and τ greater than τ_0): Newtonian Fluid

RHEOLOGY OF BLOOD IN LARGE VESSELS

- CASSON EQUATION

$$\begin{split} \tau_{rz}^{-1/2} &= \tau_0^{-1/2} + (\eta_N)^{1/2} (-\dot{\gamma}_z)^{1/2} & |\tau_{rz}| > \tau_0 \\ \dot{\gamma}_z &= 0 & |\tau_{rz}| < \tau_0 \end{split}$$

$$\eta_N = \eta_p (1 + 2.5 \text{Hct} + 7.35 \text{Hct}^2)$$

• Where η_N is the blood viscosity at high shear rates and η_p is the viscosity of plasma.

- QUEMADA MODEL

$$\eta_{
m app} = \eta_p (1 - 0.5 k {
m Hct})^{-2} \ k = rac{k_0 + k_\infty \dot{\gamma}_r^{-1/2}}{1 + \dot{\gamma}_r^{-1/2}}$$

- Where $\dot{\gamma}_r$ is a reduced shear rate $(\lambda \dot{\gamma}_z)$, with λ a time constant. Parameters λ , k_0 and k_m are haematocrit-dependent.
- Does not include a yield stress.

$$\begin{cases} \tau_{rz}^{1/2} = \tau_0^{1/2} + (\eta_N)^{1/2} (-\dot{\gamma}_z)^{1/2} & |\tau_{rz}| > \tau_0 \\ \dot{\gamma}_z = 0 & |\tau_{rz}| < \tau_0 \end{cases}$$

$$\eta_N = \eta_p (1 + 2.5 \text{Hct} + 7.35 \text{Hct}^2)$$

· Blood flow in a cylindrical vessel

$$au_{rz} = -rac{\Delta p}{2L}r$$

$$@ r = r_c \rightarrow |\tau_{rz}| = \tau_0 = \frac{\Delta p}{2L} r_c \rightarrow r_c = \frac{2L}{\Delta p} \tau_c$$

$$\begin{bmatrix} \tau_{rz} = -\frac{\Delta p}{2L}r \end{bmatrix} \quad @r = r_c \rightarrow |\tau_{rz}| = \tau_0 = \frac{\Delta p}{2L}r_c \rightarrow r_c = \frac{2L}{\Delta p}\tau_0$$

$$@r = R \rightarrow |\tau_{rz}| = \tau_w = \frac{\Delta p}{2L}R \rightarrow \tau_{rz} = -\tau_w \frac{r}{R}$$

$$-\dot{\gamma_z}^{1/2} = \frac{|\tau_{rz}|^{1/2} - {\tau_0}^{1/2}}{{\eta_N}^{1/2}} \rightarrow -\dot{\gamma_z} = \frac{\left(|\tau_{rz}|^{1/2} - {\tau_0}^{1/2}\right)^2}{\eta_N} = -\frac{\mathrm{d} v_z}{\mathrm{d} r}$$

RHEOLOGY OF BLOOD IN LARGE VESSELS

- CASSON EQUATION
 - Blood flow in a cylindrical vessel

$$@ r = R \rightarrow \mathbf{v}_z = 0$$

$$\begin{vmatrix} \mathbf{v}_{z}(r) = \frac{\tau_{w}R}{2\eta_{N}} \left[1 - \left(\frac{r}{R}\right)^{2} + 2\frac{\tau_{0}}{\tau_{w}} \left(1 - \frac{r}{R}\right) - \frac{8}{3} \left(\frac{\tau_{0}}{\tau_{w}}\right)^{1/2} \left(1 - \left(\frac{r}{R}\right)^{3/2}\right) \right] & r > r_{c} \\ \mathbf{v}_{z}(r) = \frac{\tau_{w}R}{2\eta_{N}} \left[1 - \left(\frac{r_{c}}{R}\right)^{2} + 2\frac{\tau_{0}}{\tau_{w}} \left(1 - \frac{r_{c}}{R}\right) - \frac{8}{3} \left(\frac{\tau_{0}}{\tau_{w}}\right)^{1/2} \left(1 - \left(\frac{r_{c}}{R}\right)^{3/2}\right) \right] & r \leq r_{c} \end{vmatrix}$$

Flusso del sabgue in vasi piccoli

Fahraeus-lindqvist effetto

Mentre il sangue scorre, i globuli rossi tendono a ruotare e a spostarsi verso il centro del vaso. Quindi, uno strato privo di globuli rossi, denominato schiumatura al plasm esiste a vicino al muro. Nei vasi di piccolo diametro (< 500 mm), la sezione trasversale della zona esente da globuli rossi è paragonabile al nucleo centrale. Pertanto, l'effetto netto della zona priva di cellule con una viscosità inferiore (quello del solo plasma) è quello di ridurre la viscosità apparente del fluire attraverso il tubo. Man mano che la zona priva di cellule si riduce, la viscosità apparente aumenta

BLOOD FLOW IN SMALL TUBES

- MARGINAL ZONE THEORY
 - Region 1 (core, c): RBCs. ($0 < r < R \delta$)
 - Region 2 (periphery, p): A plasma layer of thickness δ. (R – δ < r < R)
 - · Newtonian-fluid approach in both regions.

$$\begin{aligned} \mathbf{v}_{z}^{c}(r) &= \frac{\Delta p R^{2}}{4 \mu_{p} L} \left[1 - \left(\frac{R - \delta}{R} \right)^{2} + \frac{\mu_{p}}{\mu_{c}} \left(\frac{R - \delta}{R} \right)^{2} - \frac{\mu_{p}}{\mu_{c}} \left(\frac{r}{R} \right)^{2} \right] \\ &\tau_{rz}^{c}(r) &= -\frac{\Delta p}{2 L} r \\ &\mathbf{v}_{z}^{p}(r) &= \frac{\Delta p R^{2}}{4 \mu_{p} L} \left[1 - \left(\frac{r}{R} \right)^{2} \right] \\ &\tau_{rz}^{p}(r) &= -\frac{\Delta p}{2 L} r \end{aligned}$$

$$R - \delta < r \le R$$

• BLOOD FLOW IN SMALL TUBES

- MARGINAL ZONE THEORY
 - Apparent viscosity. Comparison with the homogeneous Poiseuille flow.

$$\begin{split} Q_p &= \int_{R-\delta}^R 2\pi r v_x^p(r) \mathrm{d}r = \frac{\pi \Delta p R^4}{8\mu_p L} \Bigg[1 - \bigg(\frac{R-\delta}{R}\bigg)^2 \bigg]^2 \\ Q_c &= \int_0^{R-\delta} 2\pi r v_x^c(r) \mathrm{d}r = \frac{\pi \Delta p R^2 (R-\delta)^2}{8\mu_p L} \Bigg[2 - 2\bigg(\frac{R-\delta}{R}\bigg)^2 - \frac{\mu_p}{\mu_c}\bigg(\frac{R-\delta}{R}\bigg)^2 \bigg] \end{split}$$

$$\begin{aligned} Q_p + Q_c &= \frac{\pi \Delta p R^4}{8 \mu_p L} \Bigg[1 - \bigg(1 - \frac{\mu_p}{\mu_c} \bigg) \bigg(1 - \frac{\delta}{R} \bigg)^4 \Bigg] \\ Q_{\text{Poiseuille}} &= \frac{\pi \Delta p R^4}{8 \mu_{\text{app}} L} \end{aligned} \qquad \qquad \\ \mu_{\text{app}} &= \frac{\mu_p}{1 - \bigg(1 - \frac{\mu_p}{\mu_c} \bigg) \bigg(1 - \frac{\delta}{R} \bigg)^4 \bigg]} \end{aligned}$$

CONSERVAZIONE DELLA MASSA

Un volume di controllo con p canali di ingresso e q canali di uscita

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \sum_{i=1}^{p} \dot{m}_i - \sum_{j=1}^{q} \dot{m}_j$$

$$\dot{m} = \rho \cdot \langle \mathbf{v} \rangle \cdot A$$

Un CV con p canali di ingresso e q canali di uscita e fluido incomprimibile

$$\sum_{i=1}^{p} Q_i = \sum_{j=1}^{q} Q_j$$

EQUAZIONE DI BERNOULLI

Caso particolare della conservazione della quantità di moto lineare.

$$\frac{1}{2}\rho \mathbf{v}^2 + p + \rho gz = \text{constant}$$