Week 9: Worksheet CSC 343 Winter 2021 University of Toronto Mississauga

March 25/26, 2021

Recall

DB Design

- 1. Functional Dependencies
 - How do you identify FDs?
 - Domain knowledge! Note: PBMSs can't identify (nor optimize) FDs for you!

 Trivial FDs Spiriting/Combining
 - Armstrong's Axioms (Reflexivity, Augmentation, Transitivity, Union, Decomposition)
 - Closure, Milintal Basis://powcoder.com
- 2. Schema Decomposition
 - Avoiding Anamalies We Chat powcoder
 Lossless Join Decomposition

 - Dependency Preservation
- 3. Normalization
 - 1NF, 2NF, 3NF, BCNF, ... and many more :)
 - 1NF no multi-valued attributes.
 - 2NF in 1NF and non-prime attributes depend the proper subset of any candidate key.
 - Consider a non-prime attribute A, then there exists a FD X s.t. $X \to A$, and X is a candidate key.
 - 3NF in 2NF and non-prime attributes depend **only** on candidate keys.
 - Consider a FD $X \to A$, either X is a superkey or A is prime (part of a key).
 - Lossless Join and Dependency Preserving.
 - BCNF in 3NF and for every FD $X \to A$, X is a superkey.
 - Stricter version of 3NF, also know as 3.5NF.
 - If $X \to A$ is a non-trivial FD that holds in a relation and X is a superkey.
 - Lossless Join and Anomaly Free.

Task I

Consider a relation R with a set of attributes $\alpha = \{A, B, C, D, E, F\}$ and the set of Functional Dependencies $\mathcal{F} = \{A \to BC, B \to E, C \to BD, D \to A, E \to F, F \to BE\}$

- (a) Compute the closure of each attribute.
- (b) Find all candidate keys (i.e., minimal keys) of relation R.

Solution:

(a)
$$A^+ \to BCEDFA$$

 $B^+ \to EFB$
 $C^+ \to BDEAFC$
 $D^+ \to AD \dots you \ have \ A \ so \ it's \ closed$
 $E^+ \to FBE$
 $F^+ \to BEF$

(b) A, C, and D.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Task II

Consider a relation R with a set of attributes $\alpha = \{A, B, C, D, E\}$ and the set of Functional Dependencies $\mathcal{F} = \{A \rightarrow B, BC \rightarrow E, ED \rightarrow A\}$

- (a) Is \mathbb{R} in 3NF?
- (b) Is R in BCNF?

HINT 1: Compute the keys first, then solve (a) and (b).

HINT 2: Define 3NF and BCNF after **HINT 1**.

Solution:

(hint 1) The candidate keys are: CDE, ACD, and BCD.

- (a) R is in 3NF because A, B, and E are all 'part of' keys.
- (b) R is not in BCNF because none of $\{A, B, C, D, E\}$ contain a key.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder