

Report

Assignment 1

Author: LOIC GALLAND

Email: lg222sv@student.lnu.se

Semester: Spring 2020 Area: Computer Science Course code: 1DV701

Contents

1	Problem 1 1.1 Discussion	1
2	Problem 2 2.1 Discussion	1 2
3	Problem 3 3.1 Discussion	3
4	Problem 4 4.1 Discussion	3
5	Problem 5 5.1 Discussion	5

1 Problem 1

1.1 Discussion

The screenshot above shows what happens when we are pinging the server with the CMD. The server was ping five times and was succeful five times. The command used varies a little bit "ping -n 5 <IP>" instead of "ping -c 5 <IP>".

2 Problem 2

This picture above shows the UDP echo server and client talking to each other. It also shows the that 5 messages are being sent every second.

2.1 Discussion

In the picture above, when the transfer rate is set to 0 then only one message is going to the server and comes back to the client and shutdown. To check the validity of the IP address:

- 1. Looks if each part between the "." of the IP address are numbers
- 2. Check if those numbers are between 0 and 255

To check the validity of the Port:

- 1. Check if argument is a number
- 2. Check if number is between 0 and 65535

To check the validity of the Buffer Rate:

- 1. Check if argument is a number
- 2. Check if number is between 1 and 2048

To check the validity of the Transfer Rate:

- 1. Check if argument is a number
- 2. Check if number is more than/equal to 0

This check should cover enough exception that might occur with a wrong input.

3 Problem 3

3.1 Discussion

The picture above shows the VM running the EchoServer with TCP on the top left corner and 3 CMD running the Echo Client for TCP. It shows that multiple client are handled by the server. The server is run infinitely manual termination

4 Problem 4

4.1 Discussion

The first picture represent the connections between the server and client using TCP and the second one is with using UDP instead. Starting with TCP, the first column shows the

Vo.	Time	Source	Info	Destination	Protocol Length
	35 6.999635	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	36 7.001621	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	37 7.998563	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	38 7.999388	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	39 7.999838	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	40 8.001432	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	41 8.997930	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	42 8.998406	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	43 8.998856	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	44 8.999557	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	45 9.997919	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	46 9.998414	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	47 9.998968	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	48 9.999487	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	49 10.998656	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	50 10.999076	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	51 10.999482	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	52 11.000393	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	53 11.998684	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	54 11.999191	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	55 11.999652	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	56 12.001115	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	57 12.997793	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	58 12.998355	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	59 12.998944	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	60 13.000020	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	61 13.998114	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	62 13.998713	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	63 13.999284	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	64 14.001704	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	65 14.998598	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	66 14.999154	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	67 14.999669	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	68 15.000751	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP
	69 15.998695	192.168.56.1	54659 → 4950 Len=16	192.168.56.102	UDP
	70 15.999155	192.168.56.102	4950 → 54659 Len=16	192.168.56.1	UDP

number of the connection registered. The second is the time at which the connection happenned. Then it is the source IP adress, Port of the machine that made the request and port of the destination port, some info that explain what type of connection it is, destination IP address, type of protocol (TCP, UDP). In the screenshot there are two different type of connection: ACK, PSH. ACK indicates that the Acknowlegment filed is significant. PSH is a push function that asks to push all the buffered data to the receiving application. The main difference between UDP and TCP is that TCP is a reliable bidirectional stream of bytes where UDP is just a simple but unreliable message delivery.

When looking at connection number 11 of the picture, we can see that the type is [PSH, ACK] because the Client send the packet and acknowledge it and then waits for the server ACK. On the ligne under it, it is the response from the server with ACK that shows that the server has received the packets and has sent it back. This cycle will continue until some errors appears or when the server is terminated manually.

On the second picture, we can see the different connections made between the VM and Client using UDP. On the first ligne we can see the connection from the client to the server and then the ligne under it is the response from the server to say that it received the packet. And the cycle continues until the manual termination of the server.

5 Problem 5

```
File Edit View Search Terminal Help

root@VirtualBox:/media/sf_ShareFolder# java -cp . UDPEchoServer 1024
Starting server ....
UDP echo request from 192.168.56.1 using port 64472
UDP echo request from 192.168.56.1 using port 6
```

```
root@VirtualBox:/media/sf_sharePolder

File Edit View Search Terminal Help

SiuDP echo request fron 192.168.56.1 using port 49385

UDP echo request fron 192.168.56.1 using port 49385

SiuDP echo request fron 192.168.56.1 using port 49385
```

5.1 Discussion

The first picture represents UDP connection with a buffer size of 100 and the second picture represents TCP connections with buffer size of 100. Wireshark did not show any changes from normal. Just that it is possible to have a buffer of 1 byte for TCP because it is stream but for UDP if the buffer size is bigger than the message then the client will not be able to receive the whole message.