Efficiency and mean squared error

In the previous chapter we introduced the notion of unbiasedness as a desirable property of an estimator. If several unbiased estimators for the same parameter of interest exist, we need a criterion for comparison of these estimators. A natural criterion is some measure of spread of the estimators around the parameter of interest. For unbiased estimators we will use variance. For arbitrary estimators we introduce the notion of mean squared error (MSE), which combines variance and bias.

20.1 Estimating the number of German tanks

In this section we come back to the problem of estimating German war production as discussed in Section 1.5. We consider serial numbers on tanks, recoded to numbers running from 1 to some unknown largest number N. Given is a subset of n numbers of this set. The objective is to estimate the total number of tanks N on the basis of the observed serial numbers.

Denote the observed distinct serial numbers by $x_1, x_2, ..., x_n$. This dataset can be modeled as a realization of random variables $X_1, X_2, ..., X_n$ representing n draws without replacement from the numbers 1, 2, ..., N with equal probability. Note that in this example our dataset is not a realization of a random sample, because the random variables $X_1, X_2, ..., X_n$ are dependent. We propose two unbiased estimators. The first one is based on the sample mean

$$\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n},$$

and the second one is based on the sample maximum

$$M_n = \max\{X_1, X_2, \dots, X_n\}.$$

An estimator based on the sample mean

To construct an unbiased estimator for N based on the sample mean, we start by computing the expectation of \bar{X}_n . The linearity-of-expectations rule also applies to dependent random variables, so that

$$\mathrm{E}\left[\bar{X}_n\right] = \frac{\mathrm{E}[X_1] + \mathrm{E}[X_2] + \dots + \mathrm{E}[X_n]}{n}.$$

In Section 9.3 we saw that the marginal distribution of each X_i is the same:

$$P(X_i = k) = \frac{1}{N}$$
 for $k = 1, 2, ..., N$.

Therefore the expectation of each X_i is given by

$$E[X_i] = 1 \cdot \frac{1}{N} + 2 \cdot \frac{1}{N} + \dots + N \cdot \frac{1}{N} = \frac{1 + 2 + \dots + N}{N}$$
$$= \frac{\frac{1}{2}N(N+1)}{N} = \frac{N+1}{2}.$$

It follows that

$$\mathrm{E}\left[\bar{X}_n\right] = \frac{\mathrm{E}[X_1] + \mathrm{E}[X_2] + \dots + \mathrm{E}[X_n]}{n} = \frac{N+1}{2}.$$

This directly implies that

$$T_1 = 2\bar{X}_n - 1$$

is an unbiased estimator for N, since the change-of-units rule yields that

$$E[T_1] = E[2\bar{X}_n - 1] = 2E[\bar{X}_n] - 1 = 2 \cdot \frac{N+1}{2} - 1 = N.$$

QUICK EXERCISE 20.1 Suppose we have observed tanks with (recoded) serial numbers

Compute the value of the estimator T_1 for the total number of tanks.

An estimator based on the sample maximum

To construct an unbiased estimator for N based on the maximum, we first compute the expectation of M_n . We start by computing the probability that $M_n = k$, where k takes the values n, \ldots, N . Similar to the combinatorics used in Section 4.3 to derive the binomial distribution, the number of ways to draw n numbers without replacement from $1, 2, \ldots, N$ is $\binom{N}{n}$. Hence each combination has probability $1/\binom{N}{n}$. In order to have $M_n = k$, we must have one number equal to k and choose the other n-1 numbers out of the numbers $1, 2, \ldots, k-1$. There are $\binom{k-1}{n-1}$ ways to do this. Hence for the possible values $k = n, n+1, \ldots, N$,

$$P(M_n = k) = \frac{\binom{k-1}{n-1}}{\binom{N}{n}} = \frac{(k-1)!}{(k-n)!(n-1)!} \cdot \frac{(N-n)! \, n!}{N!}$$
$$= n \cdot \frac{(k-1)!}{(k-n)!} \cdot \frac{(N-n)!}{N!}.$$

Thus the expectation of M_n is given by

$$E[M_n] = \sum_{k=n}^{N} k P(M_n = k) = \sum_{k=n}^{N} k \cdot n \cdot \frac{(k-1)!}{(k-n)!} \frac{(N-n)!}{N!}$$
$$= \sum_{k=n}^{N} n \cdot \frac{k!}{(k-n)!} \frac{(N-n)!}{N!}$$
$$= n \cdot \frac{(N-n)!}{N!} \sum_{k=n}^{N} \frac{k!}{(k-n)!}.$$

How to continue the computation of $E[M_n]$? We use a trick: we start by rearranging

$$1 = \sum_{j=n}^{N} P(M_n = j) = \sum_{j=n}^{N} n \cdot \frac{(j-1)!}{(j-n)!} \frac{(N-n)!}{N!},$$

finding that

$$\sum_{j=n}^{N} \frac{(j-1)!}{(j-n)!} = \frac{N!}{n(N-n)!}.$$
 (20.1)

This holds for any N and any $n \leq N$. In particular we could replace N by N+1 and n by n+1:

$$\sum_{j=n+1}^{N+1} \frac{(j-1)!}{(j-n-1)!} = \frac{(N+1)!}{(n+1)(N-n)!}.$$

Changing the summation variable to k = j - 1, we obtain

$$\sum_{k=n}^{N} \frac{k!}{(k-n)!} = \frac{(N+1)!}{(n+1)(N-n)!}.$$
 (20.2)

This is exactly what we need to finish the computation of $E[M_n]$. Substituting (20.2) in what we obtained earlier, we find

$$E[M_n] = n \cdot \frac{(N-n)!}{N!} \sum_{k=n}^{N} \frac{k!}{(k-n)!}$$
$$= n \cdot \frac{(N-n)!}{N!} \cdot \frac{(N+1)!}{(n+1)(N-n)!} = n \cdot \frac{N+1}{n+1}.$$

QUICK EXERCISE 20.2 Choosing n = N in this formula yields $E[M_N] = N$. Can you argue that this is the right answer without doing any computations?

With the formula for $E[M_n]$ we can derive immediately that

$$T_2 = \frac{n+1}{n}M_n - 1$$

is an unbiased estimator for N, since by the change-of-units rule,

$$E[T_2] = E\left[\frac{n+1}{n}M_n - 1\right] = \frac{n+1}{n}E[M_n] - 1 = \frac{n+1}{n} \cdot \frac{n(N+1)}{n+1} - 1 = N.$$

QUICK EXERCISE 20.3 Compute the value of estimator T_2 for the total number of tanks on basis of the observed numbers from Quick exercise 20.1.

20.2 Variance of an estimator

In the previous section we saw that we can construct two completely different estimators for the total number of tanks N that are both unbiased. The obvious question is: which of the two is better? To answer this question, we investigate how both estimators vary around the parameter of interest N. Although we could in principle compute the distributions of T_1 and T_2 , we carry out a small simulation study instead. Take N=1000 and n=10 fixed. We draw 10 numbers, without replacement, from $1,2,\ldots,1000$ and compute the value of the estimators T_1 and T_2 . We repeat this two thousand times, so that we have 2000 values for both estimators. In Figure 20.1 we have displayed the histogram of the 2000 values for T_1 on the left and the histogram of the 2000 values for T_2 on the right. From the histograms, which reflect the probability

Fig. 20.1. Histograms of two thousand values for T_1 (left) and T_2 (right).

mass functions of both estimators, we see that the distributions of T_1 and T_2 are of completely different types. As can be expected from the fact that both estimators are unbiased, the values vary around the parameter of interest N=1000. The most important difference between the histograms is that the variation in the values of T_2 is less than the variation in the values of T_1 . This suggests that estimator T_2 estimates the total number of tanks more efficiently than estimator T_1 , in the sense that it produces estimates that are more concentrated around the parameter of interest N than estimates produced by T_1 . Recall that the variance measures the spread of a random variable. Hence the previous discussion motivates the use of the variance of an estimator to evaluate its performance.

EFFICIENCY. Let T_1 and T_2 be two unbiased estimators for the same parameter θ . Then estimator T_2 is called *more efficient* than estimator T_1 if $Var(T_2) < Var(T_1)$, irrespective of the value of θ .

Let us compare T_1 and T_2 using this criterion. For T_1 we have

$$\operatorname{Var}(T_1) = \operatorname{Var}(2\bar{X}_n - 1) = 4\operatorname{Var}(\bar{X}_n).$$

Although the X_i are not independent, it is true that all pairs (X_i, X_j) with $i \neq j$ have the *same* distribution (this follows in the same way in which we showed on page 122 that all X_i have the same distribution). With the variance-of-the-sum rule for n random variables (see Exercise 10.17), we find that

$$Var(X_1 + \dots + X_n) = nVar(X_1) + n(n-1)Cov(X_1, X_2).$$

In Exercises 9.18 and 10.18, we computed that

$$Var(X_1) = \frac{1}{12}(N-1)(N+1), \quad Cov(X_1, X_2) = -\frac{1}{12}(N+1).$$

We find therefore that

$$Var(T_1) = 4Var(\bar{X}_n) = \frac{4}{n^2} Var(X_1 + \dots + X_n)$$

$$= \frac{4}{n^2} \left[n \cdot \frac{1}{12} (N-1)(N+1) - n(n-1) \cdot \frac{1}{12} (N+1) \right]$$

$$= \frac{1}{3n} (N+1)[N-1 - (n-1)]$$

$$= \frac{(N+1)(N-n)}{3n}.$$

Obtaining the variance of T_2 is a little more work. One can compute the variance of M_n in a way that is very similar to the way we obtained $E[M_n]$. The result is (see Remark 20.1 for details)

$$Var(M_n) = \frac{n(N+1)(N-n)}{(n+2)(n+1)^2}.$$

Remark 20.1 (How to compute this variance). The trick is to compute not $E[M_n^2]$ but $E[M_n(M_n+1)]$. First we derive an identity from Equation (20.1) as before, this time replacing N by N+2 and n by n+2:

$$\sum_{j=n+2}^{N+2} \frac{(j-1)!}{(j-n-2)!} = \frac{(N+2)!}{(n+2)(N-n)!}.$$

Changing the summation variable to k = j - 2 yields

$$\sum_{k=n}^{N} \frac{(k+1)!}{(k-n)!} = \frac{(N+2)!}{(n+2)(N-n)!}.$$

With this formula one can obtain:

$$E[M_n(M_n+1)] = \sum_{k=n}^{N} k(k+1) \cdot n \frac{(k-1)!}{(k-n)!} \frac{(N-n)!}{N!} = \frac{n(N+1)(N+2)}{n+2}.$$

Since we know $E[M_n]$, we can determine $E[M_n^2]$ from this, and subsequently the variance of M_n .

With the expression for the variance of M_n , we derive

$$Var(T_2) = Var\left(\frac{n+1}{n}M_n - 1\right) = \frac{(n+1)^2}{n^2}Var(M_n) = \frac{(N+1)(N-n)}{n(n+2)}.$$

We see that $Var(T_2) < Var(T_1)$ for all N and $n \ge 2$. Hence T_2 is always more efficient than T_1 , except when n = 1. In this case the variances are equal, simply because the estimators are the same—they both equal X_1 .

The quotient $Var(T_1)/Var(T_2)$, is called the *relative efficiency* of T_2 with respect to T_1 . In our case the relative efficiency of T_2 with respect to T_1 equals

$$\frac{\operatorname{Var}(T_1)}{\operatorname{Var}(T_2)} = \frac{(N+1)(N-n)}{3n} \cdot \frac{n(n+2)}{(N+1)(N-n)} = \frac{n+2}{3}.$$

Surprisingly, this quotient does not depend on N, and we see clearly the advantage of T_2 over T_1 as the sample size n gets larger.

QUICK EXERCISE 20.4 Let n = 5, and let the sample be

Compute the value of the estimator T_1 for N. Do you notice anything strange?

The self-contradictory behavior of T_1 in Quick exercise 20.4 is not rare: this phenomenon will occur for up to 50% of the samples if n and N are large. This gives another reason to prefer T_2 over T_1 .

Remark 20.2 (The Cramér-Rao inequality). Suppose we have a random sample from a continuous distribution with probability density function f_{θ} , where θ is the parameter of interest. Under certain smoothness conditions on the density f_{θ} , the variance of an unbiased estimator T for θ always has to be larger than or equal to a certain positive number, the so-called Cramér-Rao lower bound:

$$\operatorname{Var}(T) \ge \frac{1}{n \operatorname{E}\left[\left(\frac{\partial}{\partial \theta} \ln f_{\theta}(X)\right)^{2}\right]}$$
 for all θ .

Here n is the size of the sample and X a random variable whose density function is f_{θ} . In some cases we can find unbiased estimators attaining this bound. These are called *minimum variance unbiased estimators*. An example is the sample mean for the expectation of an exponential distribution. (We will consider this case in Exercise 20.3.)

20.3 Mean squared error

In the last section we compared two unbiased estimators by considering their spread around the value to be estimated, where the spread was measured by the variance. Although unbiasedness is a desirable property, the performance of an estimator should mainly be judged by the way it spreads around the parameter θ to be estimated. This leads to the following definition.

DEFINITION. Let
$$T$$
 be an estimator for a parameter θ . The mean squared error of T is the number $\mathrm{MSE}(T) = \mathrm{E}\left[(T-\theta)^2\right]$.

According to this criterion, an estimator T_1 performs better than an estimator T_2 if $MSE(T_1) < MSE(T_2)$. Note that

$$\begin{aligned} \text{MSE}(T) &= \text{E}\left[(T - \theta)^2 \right] \\ &= \text{E}\left[(T - \text{E}[T] + \text{E}[T] - \theta)^2 \right] \\ &= \text{E}\left[(T - \text{E}[T])^2 \right] + 2\text{E}\left[T - \text{E}[T] \right] (\text{E}[T] - \theta) + (\text{E}[T] - \theta)^2 \\ &= \text{Var}(T) + (\text{E}[T] - \theta)^2. \end{aligned}$$

So the MSE of T turns out to be the variance of T plus the square of the bias of T. In particular, when T is unbiased, the MSE of T is just the variance of T. This means that we already used mean squared errors to compare the estimators T_1 and T_2 in the previous section. We extend the notion of efficiency by saying that estimator T_2 is more efficient than estimator T_1 (for the same parameter of interest), if the MSE of T_2 is smaller than the MSE of T_1 .

Unbiasedness and efficiency

A biased estimator with a small variance may be more useful than an unbiased estimator with a large variance. We illustrate this with the network server

Fig. 20.2. Histograms of a thousand values for S (left) and T (right).

example from Section 19.2. Recall that our goal was to estimate the probability $p_0 = e^{-\mu}$ of zero arrivals (of packages) in a minute. We did have two promising candidates as estimators:

$$S = \frac{\text{number of } X_i \text{ equal to zero}}{n} \quad \text{and} \quad T = e^{-\bar{X}_n}.$$

In Figure 20.2 we depict histograms of one thousand simulations of the values of S and T computed for random samples of size n=25 from a $Pois(\mu)$ distribution, where $\mu=2$. Considering the way the values of the (biased!) estimator T are more concentrated around the true value $e^{-\mu}=e^{-2}=0.1353$, we would be inclined to prefer T over S. This choice is strongly supported by the fact that T is more efficient than S: MSE(T) is always smaller than MSE(S), as illustrated in Figure 20.3.

Fig. 20.3. MSEs of S and T as a function of μ .

20.4 Solutions to the quick exercises

- **20.1** We have $\bar{x}_5 = (61 + 19 + 56 + 24 + 16)/5 = 176/5 = 35.2$. Therefore $t_1 = 2 \cdot 35.2 1 = 69.4$.
- **20.2** When n = N, we have drawn *all* the numbers. But then the largest number M_N is N, and so $E[M_N] = N$.
- **20.3** We have $t_2 = (6/5) \cdot 61 1 = 72.2$.
- **20.4** Since 45 is in the sample, N has to be at least 45. Adding the numbers yields 7+3+10+15+45=80. So $t_1=2\bar{x}_n-1=2\cdot 16-1=31$. What is strange about this is that the estimate for N is far smaller than the number 45 in the sample!

20.5 Exercises

- **20.1** Given is a random sample X_1, X_2, \ldots, X_n from a distribution with finite variance σ^2 . We estimate the expectation of the distribution with the sample mean \bar{X}_n . Argue that the larger our sample, the more efficient our estimator. What is the relative efficiency $\operatorname{Var}(\bar{X}_n)/\operatorname{Var}(\bar{X}_{2n})$ of \bar{X}_{2n} with respect to \bar{X}_n ?
- **20.2** \boxplus Given are two estimators S and T for a parameter θ . Furthermore it is known that Var(S) = 40 and Var(T) = 4.
- **a.** Suppose that we know that $E[S] = \theta$ and $E[T] = \theta + 3$. Which estimator would you prefer, and why?
- **b.** Suppose that we know that $E[S] = \theta$ and $E[T] = \theta + a$ for some positive number a. For each a, which estimator would you prefer, and why?
- **20.3** \boxplus Suppose we have a random sample X_1, \ldots, X_n from an $Exp(\lambda)$ distribution. Suppose we want to estimate the mean $1/\lambda$. According to Section 19.4 the estimator

$$T_1 = \bar{X}_n = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$

is an unbiased estimator of $1/\lambda$. Let M_n be the minimum of X_1, X_2, \ldots, X_n . Recall from Exercise 8.18 that M_n has an $Exp(n\lambda)$ distribution. In Exercise 19.5 you have determined that

$$T_2 = nM_n$$

is another unbiased estimator for $1/\lambda$. Which of the estimators T_1 and T_2 would you choose for estimating the mean $1/\lambda$? Substantiate your answer.

308

- **20.4** \square Consider the situation of this chapter, where we have to estimate the parameter N from a sample x_1, \ldots, x_n drawn without replacement from the numbers $\{1, \ldots, N\}$. To keep it simple, we consider n=2. Let $M=M_2$ be the maximum of X_1 and X_2 . We have found that $T_2=3M/2-1$ is a good unbiased estimator for N. We want to construct a new unbiased estimator T_3 based on the minimum L of X_1 and X_2 . In the following you may use that the random variable L has the same distribution as the random variable N+1-M (this follows from symmetry considerations).
- **a.** Show that $T_3 = 3L 1$ is an unbiased estimator for N.
- **b.** Compute $Var(T_3)$ using that Var(M) = (N+1)(N-2)/18. (The latter has been computed in Remark 20.1.)
- **c.** What is the relative efficiency of T_2 with respect to T_3 ?
- **20.5** Someone is proposing two unbiased estimators U and V, with the *same* variance $\mathrm{Var}(U) = \mathrm{Var}(V)$. It therefore appears that we would not prefer one estimator over the other. However, we could go for a third estimator, namely W = (U+V)/2. Note that W is unbiased. To judge the quality of W we want to compute its variance. Lacking information on the joint probability distribution of U and V, this is impossible. However, we should prefer W in any case! To see this, show by means of the variance-of-the-sum rule that the relative efficiency of U with respect to W is equal to

$$\frac{\operatorname{Var}((U+V)/2)}{\operatorname{Var}(U)} = \frac{1}{2} + \frac{1}{2}\rho(U,V).$$

Here $\rho(U, V)$ is the correlation coefficient. Why does this result imply that we should use W instead of U (or V)?

20.6 A geodesic engineer measures the three unknown angles α_1, α_2 , and α_3 of a triangle. He models the uncertainty in the measurements by considering them as realizations of three independent random variables T_1, T_2 , and T_3 with expectations

$$E[T_1] = \alpha_1, \quad E[T_2] = \alpha_2, \quad E[T_3] = \alpha_3,$$

and all three with the same variance σ^2 . In order to make use of the fact that the three angles must add to π , he also considers new estimators U_1, U_2 , and U_3 defined by

$$U_1 = T_1 + \frac{1}{3}(\pi - T_1 - T_2 - T_3),$$

$$U_2 = T_2 + \frac{1}{3}(\pi - T_1 - T_2 - T_3),$$

$$U_3 = T_3 + \frac{1}{2}(\pi - T_1 - T_2 - T_3).$$

(Note that the "deviation" $\pi - T_1 - T_2 - T_3$ is evenly divided over the three measurements and that $U_1 + U_2 + U_3 = \pi$.)

- **a.** Compute $E[U_1]$ and $Var(U_1)$.
- **b.** What does he gain in efficiency when he uses U_1 instead of T_1 to estimate the angle α_1 ?
- **c.** What kind of estimator would you choose for α_1 if it is known that the triangle is isosceles (i.e., $\alpha_1 = \alpha_2$)?
- **20.7** \boxdot (Exercise 19.7 continued.) Leaves are divided into four different types: starchy-green, sugary-white, starchy-white, and sugary-green. According to genetic theory, the types occur with probabilities $\frac{1}{4}(\theta+2)$, $\frac{1}{4}\theta$, $\frac{1}{4}(1-\theta)$, and $\frac{1}{4}(1-\theta)$, respectively, where $0 < \theta < 1$. Suppose one has n leaves. Then the number of starchy-green leaves is modeled by a random variable N_1 with a $Bin(n, p_1)$ distribution, where $p_1 = \frac{1}{4}(\theta+2)$, and the number of sugary-white leaves is modeled by a random variable N_2 with a $Bin(n, p_2)$ distribution, where $p_2 = \frac{1}{4}\theta$. Consider the following two estimators for θ :

$$T_1 = \frac{4}{n}N_1 - 2$$
 and $T_2 = \frac{4}{n}N_2$.

In Exercise 19.7 you showed that both T_1 and T_2 are unbiased estimators for θ . Which estimator would you prefer? Motivate your answer.

20.8 \boxplus Let \bar{X}_n and \bar{Y}_m be the sample means of two independent random samples of size n (resp. m) from the same distribution with mean μ . We combine these two estimators to a new estimator T by putting

$$T = r\bar{X}_n + (1 - r)\bar{Y}_m,$$

where r is some number between 0 and 1.

- **a.** Show that T is an unbiased estimator for the mean μ .
- **b.** Show that T is most efficient when r = n/(n+m).
- **20.9** Given is a random sample X_1, X_2, \ldots, X_n from a Ber(p) distribution. One considers the estimators

$$T_1 = \frac{1}{n}(X_1 + \dots + X_n)$$
 and $T_2 = \min\{X_1, \dots, X_n\}.$

- **a.** Are T_1 and T_2 unbiased estimators for p?
- **b.** Show that

$$MSE(T_1) = \frac{1}{n}p(1-p), MSE(T_2) = p^n - 2p^{n+1} + p^2.$$

- **c.** Which estimator is more efficient when n = 2?
- **20.10** Suppose we have a random sample X_1, \ldots, X_n from an $Exp(\lambda)$ distribution. We want to estimate the expectation $1/\lambda$. According to Section 19.4,

$$\bar{X}_n = \frac{1}{n} \left(X_1 + X_2 + \dots + X_n \right)$$

is an unbiased estimator of $1/\lambda$. Let us consider more generally estimators T of the form

$$T = c \cdot (X_1 + X_2 + \dots + X_n),$$

where c is a real number. We are interested in the MSE of these estimators and would like to know whether there are choices for c that yield a smaller MSE than the choice c = 1/n.

- **a.** Compute MSE(T) for each c.
- **b.** For which c does the estimator perform best in the MSE sense? Compare this to the unbiased estimator \bar{X}_n that one obtains for c = 1/n.
- **20.11** ⊡ In Exercise 17.9 we modeled diameters of black cherry trees with the linear regression model (without intercept)

$$Y_i = \beta x_i + U_i$$

for i = 1, 2, ..., n. As usual, the U_i here are independent random variables with $E[U_i]=0$, and $Var(U_i)=\sigma^2$.

We considered three estimators for the slope β of the line $y = \beta x$: the socalled least squares estimator T_1 (which will be considered in Chapter 22), the average slope estimator T_2 , and the slope of the averages estimator T_3 . These estimators are defined by:

$$T_1 = \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2}, \qquad T_2 = \frac{1}{n} \sum_{i=1}^n \frac{Y_i}{x_i}, \qquad T_3 = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n x_i}.$$

In Exercise 19.8 it was shown that all three estimators are unbiased. Compute the MSE of all three estimators.

Remark: it can be shown that T_1 is always more efficient than T_3 , which in turn is more efficient than T_2 . To prove the first inequality one uses a famous inequality called the Cauchy Schwartz inequality; for the second inequality one uses Jensen's inequality (can you see how?).

- **20.12** Let X_1, X_2, \ldots, X_n represent n draws without replacement from the numbers $1, 2, \ldots, N$ with equal probability. The goal of this exercise is to compute the distribution of M_n in a way other than by the combinatorial analysis we did in this chapter.
- **a.** Compute $P(M_n \le k)$, by using, as in Section 8.4, that:

$$P(M_n \le k) = P(X_1 \le k, X_2 \le k, ..., X_n \le k).$$

b. Derive that

$$P(M_n = n) = \frac{n!(N-n)!}{N!}.$$

c. Show that for $k = n + 1, \dots, N$

$$P(M_n = k) = n \cdot \frac{(k-1)!}{(k-n)!} \frac{(N-n)!}{N!}.$$