

pst-circ

A PSTricks package for drawing electric circuits; v.1.51

February 21, 2009

Documentation by **Herbert Voß**

Package author(s):
Christoph Jorssen
Herbert Voß

Contents 2

Contents

1	The basic system	4
	1.1 Parameters	4
	1.2 Macros	4
	1.3 Parameters	9
	1.4 Special objects	20
	1.5 Examples	21
2	Microwave symbols	30
	2.1 New monopole components	30
	2.2 New monopole macro-components	31
	2.3 New dipole macro-components	32
	2.4 New tripole macro-components	35
	2.5 New quadripole macro-components	36
	2.6 Examples	37
3	Flip Flops – logical elements	39
3	Flip Flops - logical elements 3.1 The Options	
3		39
3	3.1 The Options	39 39
3	3.1 The Options	39 39 44
3	3.1 The Options3.2 Basic Logical Circuits3.3 RS Flip Flop	39 39 44 45
3	3.1 The Options3.2 Basic Logical Circuits3.3 RS Flip Flop3.4 D Flip Flop	39 39 44 45 45
3	3.1 The Options	39 39 44 45 45 46
3	3.1 The Options 3.2 Basic Logical Circuits 3.3 RS Flip Flop 3.4 D Flip Flop 3.5 JK Flip Flop 3.6 Other Options	39 39 44 45 45 46 46
	3.1 The Options 3.2 Basic Logical Circuits 3.3 RS Flip Flop 3.4 D Flip Flop 3.5 JK Flip Flop 3.6 Other Options 3.7 The Node Names	39 39 44 45 45 46 46
4	3.1 The Options 3.2 Basic Logical Circuits 3.3 RS Flip Flop 3.4 D Flip Flop 3.5 JK Flip Flop 3.6 Other Options 3.7 The Node Names 3.8 Examples	39 44 45 45 46 46 47

The package pst-circ is a collection of graphical elements based on PStricks that can be used to facilitate display of electronic circuit elements. For example, an equivalent circuit of a voltage source, its source impedance, and a connected load can easily be constructed along with arrows indicating current flow and potential differences. The emphasis is upon the circuit elements and the details of the exact placement are hidden as much as possible so the author can focus on the circuitry without the distraction of sorting out the underlying vector graphics.

pst-circ loads by default the following packages: pst-node, multido, pst-xkey, and, of course pstricks. All should be already part of your local T_EX installation. If not, or in case of having older versions, go to http://www.CTAN.org/ and load the newest version.

Thanks to:

Rafal Bartczuk, François Boone, Jean-Côme Charpentier, Patrick Drechsler, Amit Finkler, Henning Heinze, Manuel Luque, Ted Pavlic, Alan Ristow, Douglas Waud, and Richard Weissnar.

1 The basic system 4

1 The basic system

1.1 Parameters

There are specific paramaters defined to change easily the behaviour of the pst-circ objects you are drawing. You'll find a list in Section 5 on p. 51.

1.2 Macros

Dipole macros


```
\begin{pspicture}[showgrid=true](3,2)

pnode(0,1){A}

pnode(3,1){B}

resistor(A)(B){$R$}

end{pspicture}
```



```
hegin{pspicture}[showgrid=true](3,2)
hpnode(0,1){A}
hpnode(3,1){B}
hRFLine(A)(B){R}
hend{pspicture}
```



```
\begin{pspicture}[showgrid=true](3,2)

pnode(0,1){A}

pnode(3,1){B}

capacitor(A)(B){$C$}

end{pspicture}
```



```
\begin{pspicture}(3,2)

pnode(0,1){A}

pnode(3,1){B}

battery(A)(B){$E$}

end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1){A}

\pnode(3,1){B}

\coil(A)(B){$L$}

\end{pspicture}
```



```
\begin{pspicture}(3,2)

\node(0,1){A}

\node(3,1){B}

\Ucc(A)(B){$E$}

\end{pspicture}
```

```
\begin{pspicture}(3,2)
                   \pnode(0,1){A}
                   \pnode(3,1){B}
                   \c (A)(B) { \pm a }
                 \end{pspicture}
                 \begin{pspicture}(3,2)
                   \pnode(0,1){A}
                   \pnode(3,1){B}
                   \sim (A)(B){$K$}
                  \end{pspicture}
                 \begin{pspicture}(3,2)
D
                   \pnode(0,1){A}
                   \pnode(3,1){B}
                   \diode(A)(B){$D$}
                  \end{pspicture}
                 \begin{pspicture}(3,2)
D
                   \pnode(0,1){A}
                   \pnode(3,1){B}
                   \Zener(A)(B){$D$}
                  \end{pspicture}
                 \begin{pspicture}(3,2)
                   \pnode(0,1){A}
                   \pnode(3,1){B}
                   \lambda(B){{\rm And} L$}
                  \end{pspicture}
                 \begin{pspicture}(3,2)
                   \position \{0,1\} \{A\}
                   \pnode(3,1){B}
                   \circledipole(A)(B){$\mathcal G$}
                 \end{pspicture}
                 \begin{pspicture}(3,2)
                   \pnode(0,1){A}
                   \pnode(3,1){B}
                   \circledipole[labeloffset=0](A)(B){\Large\textbf{A}}}
                 \end{pspicture}
                 \begin{pspicture}(3,2)
                   \position \{0,1\} \{A\}
                   \pnode(3,1){B}
                  \LED(A)(B){$\mathcal D$}
                 \end{pspicture}
                 \begin{pspicture}(3,2)
                   \position \{0,1\} \{A\}
                   \pnode(3,1){B}
                   \SQUID(A)(B){S}
                  \end{pspicture}
```

Tripole macros

Obviously, tripoles are not node connections. So pst-circ tries its best to adjust the position of the tripole regarding the three nodes. Internally, the connections are done by the \ncangle pst-node macro. However, the auto-positionning and the auto-connections are not always well chosen, so don't try to use tripole macros in strange situations!


```
\begin{pspicture}(5,3)

pnode(0,0){A}

pnode(0,3){B}

pnode(5,1.5){C}

\OA(B)(A)(C)

end{pspicture}
```

```
\begin{pspicture}(5,3)

pnode(0,0){A}

npode(0,3){B}

npode(5,1.5){C}

node(0,3){C}

node(0,3){C}

node(0,3){B}

node(0,3){
```



```
\begin{pspicture}(3,4)
2\pnode(0,2){A}\pnode(3,1){B}
3\pnode(3,3){C}
4\transistor(A)(B)(C)
5\end{pspicture}
```



```
\begin{pspicture}(3,4)
\pnode(0,2){A}\pnode(3,1){B}
\pnode(3,3){C}
\transistor[transistortype=PNP](A)(B)(C)
\end{pspicture}
```



```
\begin{pspicture}(5,3)

\pnode(0,1.5){A}

\pnode(5,0){B}

\pnode(5,3){C}

\transistor[basesep=2cm,arrows=o-o](A)(B)(C)

\end{pspicture}
```



```
t \begin{pspicture}(3,4)
c \pnode(0,2){A}\pnode(3,0.5){B}
s \pnode(3,3.5){C}
transistor[transistoriemitter=true,
basesep=lcm](A)(B)(C)
e \end{pspicture}
```



```
\begin{pspicture}(3,4)
\pnode(0,2){A}\pnode(3,1){B}
\pnode(3,3){C}
\transistor[transistorinvert,
basesep=1cm](A)(B)(C)
\end{pspicture}
```



```
begin{pspicture}(5,3)

ntilde production productio
```



```
\begin{pspicture}(5,2)

\pnode(0,2){A}

\pnode(5,2){B}

\pnode(0,0){C}

\Tswitch(A)(B)(C){$K$}

\end{pspicture}
```



```
\begin{pspicture}(3,3)
 \pnode(0,1){A}
 \pnode(3,1){B}
 \pnode(3,2.25){C}
 \potentiometer[labeloffset=0pt](A)(B)(C){$P$}
\end{pspicture}
```

Quadrupole macros

Multidipole

\multidipole is a macro that allows multiple dipoles to be drawn between two specified nodes. \multidipole takes as many arguments as you want. Note the dot that is after the last dipole.

Important: for the time being, \multidipole takes optional arguments but does not restore original values. We recommand not using it.

Wire

Potential

```
u
```

```
\begin{pspicture}(3,2)

\pnode(0,1){A}

\pnode(3,1){B}

\tension(A)(B){$u$}

\end{pspicture}
```

ground


```
\begin{pspicture}(3,2)

pnode(0.5,1){A}

pnode(1,1){B}

pnode(2.5,1){C}

ground(A)

yground{135}(B)

ground[linecolor=blue]{180}(C)

end{pspicture}
```

1.3 Parameters

Label parameters


```
\begin{pspicture}(3,1)

pnode(0,.5){A}

pnode(3,.5){B}

resistor[labeloffset=0](A)(B){$R$}

hend{pspicture}
```



```
\begin{pspicture}(3,2)

pnode(0,0){A}

pnode(3,2){B}

resistor[labelangle=:U](A)(B){$R$}

end{pspicture}
```


Current intensity and electrical potential parameters

If the intensity parameter is set to true, an arrow is drawn on the wire connecting one of the nodes to the dipole. If the tension parameter is set to true, an arrow is drawn parallel to the dipole.

The way those arrows are drawn is set by dipoleconvention and direct convention parameters. dipoleconvention can take two values: generator or receptor. direct convention is a boolean.

```
| begin{pspicture}(3,2)
| pnode(0,.5){A}
| pnode(3,.5){B}
| resistor[intensity,tension](A)(B){}
| lend{pspicture}

| begin{pspicture}(3,2)
| pnode(0,.5){A}
| pnode(3,.5){B}
| resistor[intensity,tension,
| dipoleconvention=generator](A)(B){}
| lend{pspicture}
| lend{pspicture}
```

If intensitylabel is set to an non empty argument, then intensity is automatically set to true. If tensionlabel is set to an non empty argument, then tension is automatically set to true.

```
\begin{pspicture}(3,2)
u
                                                                                \pnode(0,.5){A}
                                                                               \polenoin{1}{c} \polenoin{1}
                                                                               \resistor[intensitylabel=$i$, tensionlabel=$u$](A)(B){}
                                                                             \end{pspicture}
                                                                          \begin{pspicture}(3,2)
                                                                                \pnode(0,1.5){A}
                                                                               \position{A long (3,1.5){B}}
                                                                               \resistor[intensitylabel=$i$,intensitylabeloffset=-0.5,
                                                                                      tensionlabel=$u$, tensionlabeloffset=-1.2,
                                                                                      tensionoffset=-1](A)(B){}
u
                                                                             dend{pspicture}
                                                                          \begin{pspicture}(3,2)
                                                                               \position{Proof (0, .5){A}}
                                                                               \pnode(3,.5){B}
                                                                               \resistor[intensitylabel=$i$,intensitywidth=3\pslinewidth,
                                                                                      intensitycolor=red,intensitylabelcolor=yellow,
                                                                                      tensionlabel=$u$,tensionwidth=2\pslinewidth,
                                                                                      tensioncolor=green,tensionlabelcolor=blue](A)(B){}
                                                                          \end{pspicture}
```

Some specific intensity parameters are available for tripoles and quadrupoles.


```
begin{pspicture}(5,3)
pnode(0,0){A}
pnode(0,3){B}
pnode(5,1.5){C}
NOA[OAipluslabel=$i_+$,
OAiminuslabel=$i_-$,
OAioutlabel=$i_o$](B)(A)(C)
end{pspicture}
```



```
begin{pspicture}(5,3)

pnode(0,1.5){A}

pnode(5,0){B}

pnode(5,3){C}

transistor[basesep=2cm,transistoribaselabel=$i_
B$,

transistoricollectorlabel=$i_C$,

transistoriemitterlabel=$i_E$](A)(B)(C)

end{pspicture}
```



```
begin{pspicture}(5,5)

pnode(0,5){A}

pnode(0,0){B}

pnode(5,5){C}

pnode(5,0){D}

transformer[transformeriprimarylabel=$i_1$,
 transformerisecondarylabel=$i_2$]%

(A)(B)(C)(D){$\mathcal T$}

end{pspicture}
```

Parallel parameters

If the parallel parameter is set to true, the dipole is drawn parallel to the line connecting the nodes.


```
\begin{pspicture}(3,3)

\pnode(0,.5){A}

\pnode(3,.5){B}

\resistor(A)(B){}

\resistor[parallel](A)(B){}

\end{pspicture}
```



```
\begin{pspicture}(3,3)

\pnode(0,.5){A}

\pnode(3,.5){B}

\resistor(A)(B){}

\resistor[parallel,parallelsep=.5](A)(B){}

\end{pspicture}
```



```
\begin{pspicture}(3,3)

\pnode(0,.5){A}

\pnode(3,.5){B}

\resistor(A)(B){}

\resistor[parallel,parallelsep=.3,

parallelarm=2](A)(B){}

\end{pspicture}
```

```
\begin{pspicture}(3,3)
 \position{ \node(0,.5){A}}
 \pnode(3,.5){B}
 \resistor(A)(B){}
 \resistor[parallel,parallelsep=.3,
  parallelarm=2,parallelnode](A)(B){}
 end{pspicture}
           D
                                 \begin{pspicture}(8,8)
                                  \pnode(0,0){A}
                                  \pnode(8,8){B}
                                  \multidipole(A)(B)\resistor{$R
                                    $}%
                                    \capacitor[linecolor=red]{$C
                                      $}%
                                    \coil[parallel,parallelsep
                                      =.1]{$L$}%
                                    \displaystyle \diode{D}.
                                 \<mark>end</mark>{pspicture}
```

Note: When used with \multidipole, the parallel parameter must not be set for the first dipole.

Wire intersections

Wire intersect parameters work also with $\mbox{\mbox{multidipole}}.$


```
\begin{pspicture}(7,7)

\nonde(0,0){A}

\nonde(6,6){B}

\nonde(0,6){C}

\nonde(6,0){D}

\wire(A)(B)

\multidipole(C)(D)\resistor{$R$}%

\wire[intersect,intersectA=A,intersectB=B]%

\capacitor{$C$}.

\end{pspicture}
```

Dipole style parameters

```
\begin{pspicture}(3,2)

\pnode(0,1){A}

\pnode(3,1){B}

\Icc[dipolestyle=twoCircles](A)(B){$I$}

\end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1){A}
\pnode(3,1){B}
\resistor[dipolestyle=zigzag](A)(B){$R$}
\end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1){A}

\pnode(3,1){B}

\resistor[dipolestyle=varistor](A)(B){U}

\end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1){A}

\pnode(3,1){B}

\capacitor[dipolestyle=chemical](A)(B){$C$}

\end{pspicture}
```



```
\begin{pspicture}(3,2)

\node(0,1){A}

\node(3,1){B}

\capacitor[dipolestyle=elektor](A)(B){$C$}

\end{pspicture}
```

```
\begin{pspicture}(3,2)
  C
                     \pnode(0,1){A}
                     \pnode(3,1){B}
                     \capacitor[dipolestyle=elektorchemical](A)(B){$C$}
                    \end{pspicture}
                    \begin{pspicture}(3,2)
                     \pnode(0,1){A}
                     \pnode(3,1){B}
                     \capacitor[dipolestyle=crystal](A)(B){$Q$}
                    \end{pspicture}
                    \begin{pspicture}(3,2)
   L
                     \pnode(0,1){A}
                     \pnode(3,1){B}
                     \coil[dipolestyle=rectangle](A)(B){$L$}
                    \end{pspicture}
                    \begin{pspicture}(3,2)
  L
                     \pnode(0,1){A}
                     \pnode(3,1){B}
                     \coil[dipolestyle=curved](A)(B){$L$}
                    end{pspicture}
                    \begin{pspicture}(3,2)
  L
                     \pnode(0,1){A}
                     \pnode(3,1){B}
                     \coil[dipolestyle=elektor](A)(B){$L$}
                    \end{pspicture}
                    \begin{pspicture}(3,2)
  L
                     \pnode(0,1){A}
\mathcal{M}
                     \pnode(3,1){B}
                     \coil[dipolestyle=elektorcurved](A)(B){$L$}
                    \end{pspicture}
                    \begin{pspicture}(3,2)
  T
                     \position \{0,1\} \{A\}
                     \pnode(3,1){B}
                     \diode[dipolestyle=thyristor](A)(B){$T$}
                    \end{pspicture}
                    \begin{pspicture}(3,2)
  T
                     \pnode(0,1){A}
                     \pnode(3,1){B}
                     \delta [dipolestyle=GT0](A)(B){$T$}
                    \end{pspicture}
```

```
\begin{pspicture}(3,2)

pnode(0,1){A}

pnode(3,1){B}

diode[dipolestyle=triac](A)(B){$T$}

end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1){A}
\pnode(3,1){B}
\resistor[variable](A)(B){$R$}
\end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1){A}
\pnode(3,1){B}
\capacitor[variable](A)(B){$C$}
\end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1){A}
\pnode(3,1){B}
\coil[variable](A)(B){$L$}
\end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1){A}

\pnode(3,1){B}

\battery[variable](A)(B){$U$}

\end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1){A}

\pnode(3,1){B}

\coil[dipolestyle=elektor,variable](A)(B){$L$}

\end{pspicture}
```

In the following example the parameter dipolestyle is used for a tripole and quadrupole, because the coils are drawn as rectangles and the resistor as a zigzag.


```
begin{pspicture}(3,3)
pnode(0,0){A}
pnode(3,3){B}
pnode(3,1.5){C}
potentiometer[dipolestyle=zigzag,%
labelangle=:U](A)(B)(C){$P$}
vend{pspicture}
```


Tripole style parameters

Potentiometer tripole

Other Parameters

```
\begin{pspicture}(5,3)
 \pnode(0,0){A}
 \pnode(0,3){B}
 \pnode(5,1.5){C}
 \OA[OAinvert=false](B)(A)(C)
\end{pspicture}
\begin{pspicture}(5,3)
 \pnode(0,0){A}
 \pnode(0,3){B}
 \position{1.5}{C}
 \OA[OAperfect=false](B)(A)(C)
\<mark>end</mark>{pspicture}
\begin{pspicture}(5,3)
 \position{ \node(0,1.5){A} }
 \pnode(5,0){B}
 \pnode(5,3){C}
 \transistor[basesep=2cm,%
   transistorinvert,transistorcircle=false](A)(B)(
     C)
\end{pspicture}
\begin{pspicture}(5,3)
 \pnode(0,1.5){A}\psset{linewidth=1pt}
 \transistor[basesep=2cm,arrows=o-o,
   transistortype=FET](A){Emitter}{Collector}
 \psline{o-}(5,3)(3,3)(3,3|Collector)(Collector)
 psline{o-}(5,0)(3,0)(3,3|Emitter)(Emitter)
 \psline{o-}(A)([nodesep=2]A)
\<mark>end</mark>{pspicture}
```



```
\begin{pspicture}(5,3)

\pnode(0,1.5){A}\psset{linewidth=1pt}

\transistor[basesep=2cm,arrows=0-0,
    transistortype=FET,

FETchanneltype=P](A){Emitter}{Collector}

\psline{o-}(5,3)(3,3)(3,3|Collector)(Collector)
 \psline{o-}(5,0)(3,0)(3,3|Emitter)(Emitter)

\psline{o-}(A)([nodesep=2]A)

\end{pspicture}
```

```
\begin{pspicture}(5,3)
\transistor[basesep=2cm,transistortype=FET,
FETmemory=true](0,1.5)(5,0)(5,3)
\end{pspicture}
```

1.4 Special objects 20

1.4 Special objects

\dashpot

Viscoelasticity


```
\newcommand*\pswall[3]{% ll ur lr
 \psframe[linecolor=white,fillstyle=hlines,hatchcolor=black](#1)(#2)% (ll)(ur)
 \psline[linecolor=black](#1)(#3)}
\begin{pspicture}(0.5,1)(8,10)
 \rput(3,9.5){\sffamily \textbf{Viscoelasticity}}
 % Kelvin-Voigt model (spring and dashpot parallel): ======
 \proonup \{1,8\}{2.5,8.5}{2.5,8}\% \proonup top
 \psline(1.75,8)(1.75,7)% top vertical line
 % node definitions:
 \pnode(1,7) \{ul1\} \\pnode(2.5,7) \{ur1\} \\pnode(1,3) \{ll1\} \\pnode(2.5,3) \{lr1\} \\
 \psline(ul1)(ur1)% top line
 \psline(ll1)(lr1)% bottom line
 \resistor[dipolestyle=zigzag,linewidth=0.5pt](ul1)(ll1){}% spring
 \dashpot[linewidth=0.5pt](ur1)(lr1){}% dashpot
 psline[arrowscale=3]{->}(1.75,3)(1.75,2)% force
 % Maxwell model (spring and dashpot serial): ===
 \pswall{4,8}{5,8.5}{5,8}% top
 \poonup (4.5,8){t}\poonup (4.5,4){b}% node definitions
 \resistor[dipolestyle=zigzag,linewidth=0.5pt,labeloffset=1.8](t)(b)% spring
 {\sffamily\small\begin{tabular}{c}\textbf{elasticity}\(\Hookean\ solid)\end{tabular}
   }}% end spring
 \dashpot[linewidth=0.5pt,labeloffset=1.8](4.5,5)(4.5,3)% dashpot
 }% end dashpot
 psline[arrowscale=3]{->}(4.5,3)(4.5,2)% force
\end{pspicture}
```



```
\begin{pspicture}(-1.5,-1)(6,5)
% [subgriddiv=1,griddots=10]
% Node definitions
\pnode(0,0){A}
 \pnode(0,3){B}
 \pnode(4.5,3){C}
 \pnode(4.5,0){D}
% Dipole node connection
\Ucc[tension,dipoleconvention=generator](A)(B){$E$}
\multidipole(B)(C)%
  \switch[intensitylabel=$i$]{$K$}%
  \label{labeloffset=0,tensionlabel=$u_R$]{$R$}.
\capacitor[tensionlabel={$u_C$},
  tensionlabeloffset=-1.2, tensionoffset=-1,
  directconvention=false](D)(C){$C$}
% Wire to complete circuit
\wire(A)(D)
% Ground
\ground(D)
\end{pspicture}
```



```
\begin{pspicture}(-0.5,0)(7,8)
[subgriddiv=1,griddots=10]
% Node definitions
\pnode(0.5,1){A}
\pnode(3.5,1){B}
\pnode(6.5,1){C}
\pnode(0.5,4){D}
\position{1}{\mathsf{pnode}(3.5,4){Minus}}
\pnode(3.5,3){Plus}
\pnode(6.5,5){S}
\pnode(3.5,5){E}
% Dipole node connections
\resistor(D)(Minus){$R_2$}
\capacitor(E)(S){$C$}
\OA[intensity](Minus)(Plus)(S)
% Wires
\wire(Minus)(E)
\wire(Plus)(B)
% Tensions
\tension(A)(D){$u_E$}
\makeatletter % (special tricks see below)
\tension(C)(S@@){$u_S$}
\tension[linecolor=blue](Plus@@)(Minus@@){$\epsilon$}
\makeatother
% Grounds
\ground(A)
\ground(B)
\ground(C)
\end{pspicture}
```



```
begin{pspicture}(-1,0)(7,8)

% [subgriddiv=1,griddots=10]
% Node definitions
  \pnode(1,1){A}
  \pnode(1,7){B}
  \pnode(3,1){C}
  \pnode(3,7){D}

% Dipole node connections
  \Ucc[tensionlabel=$E$](A)(B){}
  \resistor(B)(D){$R$}
  \coil(D)(C){$L$}
  \capacitor[parallel,parallelarm=2.5](D)(C){$C$}

% Wire
  \wire(A)(C)
  \end{pspicture}
```



```
\begin{pspicture}(-0.25,-0.25)
  (6,6)
[subgriddiv=1,griddots=10]
% Node definitions
\position{1}{pnode(0,3){A}}
\pnode(3,3){B}
\pnode(6,3){C}
% Dipole node connections
\coil[intensitylabel=$i$](A)(B)
  {$L$}
\coil[intensitylabel=$i'$,
  intensitycolor=green,%
 parallel, parallelarm=2](B)(C)
   {$L'$}
\capacitor[parallel,parallelarm
  =-2](B)(C){$C$}
\end{pspicture}
```

1.5 Examples D' 24


```
\begin{pspicture}(6,6)
% [subgriddiv=1,griddots=10]
% Node definitions
 \position{A} \position{A} \position{B}
 \poonup (0.3,4) {Cprime} \\pnode (5.7,4) {Dprime}
 \label{local_prode} $$ \pnode(2.5,4) {Gprime} \\ pnode(2.5,0) {Hprime} $$
 \poline{C} \pmod{(6,4) \{C\} \pmod{(6,4) \{D\}}}
 \poline{(0.3,6) {E} \\pnode(5.7,6) {F}}
 \poline{(4,6){G}\poline{(4,0){H}}}
 \multidipole(G)(H)%
  \wire[intersect,
    intersectA=C,intersectB=D]
  \resiston{$R'_3$}.
 \resistor(E)(G){$R'_1$}
 \resistor(G)(F){$R'_2$}
 \multidipole(C)(D)\resistor{$R_1$}%
  \wire\resiston{$R_2$}.
 \wire(A)(B)\wire(Cprime)(E)
 \wire(Dprime)(F)
 \resistor(Hprime)(Gprime){$R_3$}
 \end{pspicture}
```



```
\begin{pspicture}(0,-0.25)(9,11)
% Node definitions
(4.5,10.5){F}
\switch(A)(C){$K$}
\wire(B)(D)
\multidipole(C)(D)\diode{$D$}\wire.
\resistor[tensionlabel=$U_1$](C)(F){$R_1$} \resistor(C)(E){$R_4$}
\cond {\tt Capacitor[parallel,parallelarm=1.2,parallelsep=1.5](C)(E){$C_2$}
\coil(E)(D){$L$}
\cond {\tt Capacitor[parallel,parallelarm=1.2,parallelsep=1.5](E)(D){$C_3$}
\color{blue} $$ \capacitor[tensionlabel=$U_2$](F)(D){$C_1$}
\circledipole[labeloffset=-0.7]{$E$}%
 \resistor[parallel, parallelsep=.6, parallelarm=.8]{$R$}.
\end{pspicture}
```



```
\begin{array}{l} \begin{array}{l} \text{begin} \{ pspicture \} (0, -0.2) (13, 8) \end{array} \end{array}
 \psset{intensitycolor=red,intensitylabelcolor=red,tensioncolor=green,
   tensionlabelcolor=green, intensitywidth=3pt}
 \circledipole[tension,tensionlabel=$U_0$,
   tension of fset = 0.75, label of fset = 0] (0,0) (0,6) \{ LARGE \setminus textbf \{ = \} \}
 \wire[intensity,intensitylabel=$i_0$](0,6)(2.5,6)
 \diode[dipolestyle=thyristor](2.5,6)(4.5,6){$T_1$}
 \wire[intensity,intensitylabel=$i_1$](4.5,6)(6.5,6)
 \multidipole(6.5,7.5)(2.5,7.5)%
      \coil[dipolestyle=rectangle,labeloffset=-0.75]{$L_5$}%
      \diode[labeloffset=-0.75]{$D_5$}.
 \wire[intensity,intensity] = \frac{1}{5}[(6.5,6)(6.5,7.5)
 \wire(2.5,7.5)(2.5,3)
 \wire[intensity,intensity] = i_c [(2.5,4.5)(2.5,6)]
 \q isk(2.5,6) {2pt} \qquad (6.5,6) {2pt}
 \diode[dipolestyle=thyristor](2.5,4.5)(4.5,4.5){$T_2$}
 \wire[intensity,intensitylabel=$i_2$](4.5,4.5)(6.5,4.5)
 \capacitor[tension,tensionlabel=$u_c$,tensionoffset=-0.75,
   tensionlabeloffset=-1] (6.5,4.5) (6.5,6) {\$C_k\$}
 \qdisk(2.5,4.5) \{2pt\} \qdisk(6.5,4.5) \{2pt\}
 \wire[intensity,intensity] = i_3, (6.5,4.5) (6.5,3)
 \multidipole(6.5,3)(2.5,3)%
   \coil[dipolestyle=rectangle,labeloffset=-0.75]{$L_3$}%
   \diode[labeloffset=-0.75]{$D_3$}.
 \text{wire}(6.5,6)(9,6) \text{qdisk}(9,6) \{2pt\}
 \diode(9,0)(9,6){$D_4$}
 \wire[intensity, intensitylabel=$i_4$](9,3.25)(9,6)
 \wire[intensity,intensity] abel=$i_a$](9,6)(11,6)
 \multidipole(11,6)(11,0)%
   \resistor{$R_L$}
   \coil[dipolestyle=rectangle]{$L_L$}
   \circledipole[labeloffset=0,tension,tensionoffset=0.7,tensionlabel=$U_B$]{\LARGE\
     textbf{=}}.
 \text{wire}(0,0)(11,0) \text{qdisk}(9,0) \{2pt\}
 \pnode(12.5,5.5){A}\pnode(12.5,0.5){B}
 \tension(A)(B){$u_a$}
\end{pspicture}
```

The following example was written by Manuel Luque.


```
\begin{pspicture}(0,-0.5)(14,4)
[subgriddiv=1,griddots=10]
\poline{(0,0){B}\\pnode(0,3){A}}
\prode(2.5,3.5) \{C\} \\prode(2.5,-0.5) \{D\} \\prode(5,3) \{E\} \\prode(6.5,1.5) \{F\}
\poode(5,0){G}\poode(3.5,1.5){H} \poode(8,2.5){I}\poode(8,1){J}
\poode(10,2.5){K}\poode(10,1){L} \poode(14,2.5){M}\poode(12,1){N}
\poode(3,1){H'}\poode(14,2.5){0} \poode(14,1){P}\poode(13.5,1){0}
\verb|\transformer| [transformer] primary label = \$i\_1\$, transformer] secondary label = \$i\_2\$, transformer] secondary label = \$i\_3\$, transformer] se
    primarylabel=$n_1$, secondarylabel=$n_2$](A)(B)(C)(D){$T_1$}
{\psset{fillstyle=solid,fillcolor=black}
\diode(H)(E){}\diode(H)(G){}\diode(E)(F){}\diode(G)(F){}}
\capacitor[dipolestyle=chemical](I)(J){} \capacitor(K)(L){}
\REG(K)(M)(N)%
    {\shortstack{\textsf{%}
    \textbf{\large LM7805}}\\\textbf{+5V}}}
\c \{I\}{F}\psline(I)(K) \ncangle{E}{C}\ncangle{G}{D}
\ncangle[arm=0]{P}{Q} \ncangle[arm=0]{H}{H'}
\ground(H')\ground(J)\ground(L)\ground(N)
\qcund(Q)\qdisk(I){1.5pt}\qdisk(K){1.5pt}\qdisk(E){1.5pt}
\qdisk(G){1.5pt}\qdisk(H){1.5pt}\qdisk(F){1.5pt}
\pscircle[fillstyle=solid](A){0.075} \pscircle[fillstyle=solid](B){0.075}
\pscircle[fillstyle=solid](P){0.075} \pscircle[fillstyle=solid](0){0.075}
\end{pspicture}
```

The following example was written by Lionel Cordesses.


```
\begin{pspicture}(11,3)
   \psset{dipolestyle=elektor}
   \poonup (1,2) {Vin} \\poole (0.5,2) {S} \\poole (0.5,0) {Sm}
   \poonumber \{0.5,2\} \{A\} \pmod{(4.5,2) \{B} \pmod{(6.5,2) \{C\}}
   \poonumber \ \po
   \poonup (2.5,0) {Am} \\pnode (4.5,0) {Bm} \\pnode (6.5,0) {Cm}
   \poonup (8.5,0) {Dm} \\poode (9.5,0) {Em}
 \label{locality} $$\Ucc[labeloffset=0.9](Sm)(S)_{$V_{in}}}\resistor(Vin)(A)_{$R$}$
 \capacitor(A)(Am){C_1} \capacitor(B)(Bm){C_3}
\cond {\tt Capacitor[labeloffset=-0.7](D)(Dm){$C_n$}\resistor(E)(Em){$R$}}
\operatorname{coil}(A)(B) \{ L_2 \} \operatorname{coil}(B)(C) \{ L_4 \} 
\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}\widetilde{(Dm)}
 \wire(Cd)(D)\psline[linestyle=dashed](C)(Cd)
 \wire(S)(Vin)\wire(Sm)(Am)
 \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
 \protect\ \pscircle*(A){2\pslinewidth} \pscircle*(Am){2\pslinewidth}
 \protect\ \pscircle*(B){2\pslinewidth} \pscircle*(Bm){2\pslinewidth}
   \end{pspicture}
```

The following example was written by Christian Hoffmann.


```
\SpecialCoor
     \begin{pspicture}(0,-1)(7,6.5)%
    \pnode(0,6){plus}
    \pnode(3,3){basis}
    \pnode([nodesep=-2] basis){schalter}
   \position{ \norm{1.5ex} \pos
    \wire[arrows=o-*](plus)(basis|plus)
    \displaystyle \left\{ \begin{array}{l} \left( plus \right) \left\{ \begin{array}{l} \left( U_{0} \right) \end{array} \right\} \end{array} \right.
   \resistor[labeloffset=.8](basis|plus)(basis){$R_1$}
   \transistor[basesep=2cm](basis){emitter}{kollektor}
   \wire[arrows=-*](schalter)(basis)
% \wire(basis)([nodesep=2] basis)
   \wire(TBaseNode)(basis)
   \switch(schalter|masse)(schalter){S}
   \lamp(kollektor|plus)(kollektor){L}
    \resistor(kollektor|plus)(basis|plus){$R_2$}
    \wire(emitter)(emitter|masse)
    \wire(emitter|masse)(basis|masse)
    \color{basis}(basis|masse){$C_1$}
   \wire[arrows=*-](basis|masse)(schalter|masse)
   \wire[arrows=*-o](schalter|masse)(masse)
    \end{pspicture}
```

2 Microwave symbols

Since for microwave signal, the direction in which the signal spreads is very important, There are dipoleinput or tripoleinput or quadripoleinput and arrowinput parameters. The value of theses parameters are left or right for the first one and true or false for second one.

```
\ifPst@inputarrow

ifx\psk@Dinput\pst@Dinput@right

   \pcline[arrows=-C](#2)(dipole@1)

   \pcline[arrows=->,arrowinset=0](#3)(dipole@2)

   \else
   \pcline[arrows=->,arrowinset=0](#2)(dipole@1)
   \pcline[arrows=C-](dipole@2)(#3)

   \fi
   \else
   \pcline[arrows=-C](#2)(dipole@1)
   \pcline[arrows=-C](dipole@2)(#3)

   \fi
   \pcline[arrows=-C](dipole@2)(#3)

   \pcline[arrows=C-](dipole@2)(#3)

   \pcline[fillstyle=none,linestyle=none](#2)(#3)
```

The last line is to correct some problems when I use colors (see example2) To add color in components (Monopole, tripole and Quadripole), there is a new argument. \multidipole also works:

```
BPF R \ \pnode(0.5,1){A} \pnode(3.5,1){B} \multidipole(A)(B)\filter{BPF}% \resistor{$R$}. \end{pspicture}
```

2.1 New monopole components

New ground

groundstyle: ads | old | triangle


```
begin{pspicture}(3,2)
  \pnode(0.5,1){A}
  \pnode(1,1){B}
  \pnode(2.5,1){C}
  \newground(A)
  \newground[groundstyle=old]{135}(B)
  \newground[linecolor=blue,groundstyle=triangle]{180}(C)
  \end{pspicture}
```

Antenna

antennastyle: two | three | triangle

```
\begin{pspicture}(3,2)
 \pnode(1,0.5){A}
 \antenna[antennastyle=three](A)
\end{pspicture}
```

```
\begin{pspicture}(3,2)
 \pnode(1,0.5){A}
 \antenna(A)
\end{pspicture}
```

```
\begin{pspicture}(3,2)
 \poline{1,0.5}{A}
 \antenna[antennastyle=triangle](A)
\end{pspicture}
```

2.2 New monopole macro-components

Oscillator

output: top | right | bottom | left

inputarrow: false| true LOstyle: - | crystal


```
\begin{pspicture}(3,2)
 \pnode(1,1){A}
 \oscillator[output=left,inputarrow=false](A)%
   \{f_{L0}\}\}
\end{pspicture}
```

```
\begin{pspicture}(3,2)
\position{ \node(1,1){A}} \
{f$_{\textrm{L0}}$}{}
\end{pspicture}
```

```
\begin{pspicture}(3,2)
 \pnode(1,1){A}
 \oscillator[output=right,inputarrow=false](A)%
   {$f_{LO}$}{fillstyle=solid,fillcolor=blue}
\end{pspicture}
```

```
\begin{pspicture}(3,2)
 \position{A}{pnode(1,1){A}}
 \oscillator[output=bottom,inputarrow=false](A)%
   \{f_{L0}\}\}
\end{pspicture}
```

2.3 New dipole macro-components

Filters

dipolestyle: bandpass | lowpass | highpass

inputarrow: false| true
dipoleinput: left | right


```
\begin{pspicture}(3,2)

  \pnode(0,1){A} \pnode(3,1){B}

  \filter(A)(B){BPF}
  \end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1){A} \pnode(3,1){B}
\filter[dipolestyle=lowpass,fillstyle=solid,%
fillcolor=red](A)(B){LPF}
\end{pspicture}
```



```
\begin{pspicture}(3,2)
  \pnode(0,1){A} \pnode(3,1){B}
  \filter[dipolestyle=highpass,dipoleinput=right,
    inputarrow=true](A)(B){HPF}
  \end{pspicture}
```



```
\begin{pspicture}(3,2)
  \pnode(0,1){A} \pnode(3,1){B}
  \filter[dipolestyle=highpass,inputarrow=true](A)(B){BPF}
  \end{pspicture}
```

Isolator

inputarrow: false| true
dipoleinput: left | right


```
\begin{pspicture}(3,2)
\pnode(0,1){A} \pnode(3,1){B}
\isolator[inputarrow=true](A)(B){}
\end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1){A} \pnode(3,1){B}

\isolator[dipoleinput=right,inputarrow=true,
   fillstyle=solid,fillcolor=yellow](A)(B){Isolator}

\end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1){A}\pnode(3,1){B}
\isolator[dipoleinput=left](A)(B){}
\end{pspicture}
```

Frequency multiplier/divider

dipolestyle: multiplier | divider

value: $N \mid n \in N$

programmable: false| true inputarrow: false| true dipoleinput: left | right


```
\begin{pspicture}(3,2)
\pnode(0,1){A}\pnode(3,1){B}
\freqmult[dipolestyle=divider,inputarrow=true](A)(B){}
\end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1){A}\pnode(3,1){B}

\freqmult[dipolestyle=multiplier,value=10](A)(B){}
\end{pspicture}
```



```
\begin{pspicture}(3,3)
\pnode(0,1.5){A}\pnode(3,1.5){B}
\freqmult[dipolestyle=multiplier,programmable=true,
    labeloffset=-1,dipoleinput=right,inputarrow=true,
    fillstyle=solid,fillcolor=green](A)(B){10<N<35}
    \end{pspicture}</pre>
```

Phase shifter

inputarrow: false| true
dipoleinput: left | right


```
\begin{pspicture}(3,2)
  \pnode(0,1){A1} \pnode(3,1){A2}
  \phaseshifter(A1)(A2){}
  \end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1){B1} \pnode(3,1){B2}
\phaseshifter[inputarrow=true,dipoleinput=right,
fillstyle=solid,fillcolor=red](B1)(B2){90$^\circ$}
\end{pspicture}
```

VCO

inputarrow: false| true
dipoleinput: left | right


```
\begin{pspicture}(3,2)
\pnode(0,1){A1} \pnode(3,1){A2}
\vco[fillstyle=solid,fillcolor=yellow](A1)(A2){}
\end{pspicture}
```



```
\begin{pspicture}(3,2)
  \pnode(0,1){B1} \pnode(3,1){B2}
  \vco[dipoleinput=right,inputarrow=true](B1)(B2){VCO}
  \end{pspicture}
```

Amplifier

inputarrow: false| true
dipoleinput: left | right


```
\begin{pspicture}(3,2)
\pnode(0,1){A} \pnode(3,1){B}
\amplifier[inputarrow=true](A)(B){}
\end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1){A} \pnode(3,1){B}
\amplifier[dipoleinput=right,inputarrow=true](A)(B){PA}
\end{pspicture}
```



```
\begin{pspicture}(3,2)

  \pnode(0,1){A} \pnode(3,1){B}

  \amplifier[dipoleinput=left](A)(B){LNA}
  \end{pspicture}
```

Detector

inputarrow: false| true
dipoleinput: left | right


```
\begin{pspicture}(3,2)
  \pnode(0,1){A} \pnode(3,1){B}
  \detector[inputarrow=true](A)(B){}
  \end{pspicture}
```



```
\begin{pspicture}(3,2)

  \pnode(0,1){A} \pnode(3,1){B}

  \detector[dipoleinput=right,inputarrow=true](A)(B){}
  \end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1){A} \pnode(3,1){B}

\detector[dipoleinput=left](A)(B){}

\end{pspicture}
```

2.4 New tripole macro-components

Mixer

tripolestyle: bottom | top
tripoleconfig: left | right
inputarrow: false| true


```
\begin{pspicture}(3,2)

\pnode(0.5,1){A}\pnode(2.5,1){B}\pnode(1.5,2){C}

\mixer[tripolestyle=top,inputarrow=true](A)(B)(C)%

{Mixer}{}

\end{pspicture}
```



```
\begin{pspicture}(3,2)
  \pnode(0.5,1){A}\pnode(2.5,1){B}\pnode(1.5,0){C}
  \mixer[inputarrow=true,tripoleinput=right](A)(B)(C)
  {Mixer}{fillstyle=solid,fillcolor=yellow}
  \end{pspicture}
```

Circulator

tripolestyle: circulator | isolator

inputarrow: false| true
tripoleinput: left | right

Circulator


```
\begin{pspicture}(3,2)
  \pnode(0.5,1){A}\pnode(2.5,1){B}\pnode(1.5,0){C}
  \circulator{0}(A)(B)(C){Circulator}{}
  \end{pspicture}
```



```
\begin{pspicture}(3,3)

\pnode(1.5,0.5){A}\pnode(1.5,2.5){B}\pnode(0.5,1.5){C}

\circulator[tripolestyle=isolator,inputarrow=true]{90}%

(A)(B)(C){Isolator}{}

\end{pspicture}
```

Isolator


```
\begin{pspicture}(3,2)
\pnode(0.5,1){A}\pnode(2.5,1){B}\pnode(1.5,0){C}
\circulator[tripoleconfig=right,tripolestyle=isolator,
    inputarrow=true,tripoleinput=right]{0}%
    (B)(A)(C){Isolator}{}
\end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0.5,1){A}\pnode(2.5,1){B}\pnode(1.5,2){C}
\circulator[tripoleconfig=right,
   inputarrow=true]{180}(A)(B)(C){Isolator}%
   {fillstyle=solid,fillcolor=red}
\end{pspicture}
```

Agc

inputarrow: false| true
tripoleinput: left | right


```
\begin{pspicture}(3,2)
\pnode(0.5,1){A}\pnode(2.5,1){B}\pnode(1.5,0){C}
\agc(A)(B)(C){AGC}{fillstyle=solid,fillcolor=yellow}
\end{pspicture}
```



```
\begin{pspicture}(3,2)
 \pnode(0.5,1){A}\pnode(2.5,1){B}\pnode(1.5,0){C}
 \agc[tripoleinput=right,inputarrow=true](A)(B)(C)%
 {AGC}{fillstyle=solid,fillcolor=blue}
\end{pspicture}
```

2.5 New quadripole macro-components

Coupler

couplerstyle: hybrid | directional

inputarrow: false| true

quadripoleinput: left | right


```
\begin{pspicture}(3,2)
\pnode(0,1.4){A} \pnode(0,0.6){B}
\pnode(3,1.4){C} \pnode(3,0.6){D}
\coupler[couplerstyle=hybrid,inputarrow=true](A)(B)(C)(D)%
{Hyb. $180$\ensuremath{^\circ}}%
{fillstyle=solid,fillcolor=yellow}
\end{pspicture}
```



```
\begin{pspicture}(3,2)

\pnode(0,1.4){A} \pnode(0,0.6){B}

\pnode(3,1.4){C} \pnode(3,0.6){D}

\coupler[couplerstyle=directional](A)(B)(C)(D){10~dB}{}

\end{pspicture}
```



```
begin{pspicture}(3,2)
  \pnode(0,1.4){A} \pnode(0,0.6){B}
  \pnode(3,1.4){C} \pnode(3,0.6){D}
  \coupler[couplerstyle=hybrid,inputarrow=true,%
   quadripoleinput=right](A)(B)(C)(D)%
  {Hyb. $180$\ensuremath{^\circ}}{}
  \end{pspicture}
```



```
\begin{pspicture}(3,2)
\pnode(0,1.4){A} \pnode(0,0.6){B}
\pnode(3,1.4){C} \pnode(3,0.6){D}
\coupler[couplerstyle=directional,quadripoleinput=right,%
inputarrow=true](A)(B)(C)(D){10~dB}{}
\end{pspicture}
```

2.6 Examples 37

2.6 Examples

Radiometer block diagram example

loads for calibration

From Chang, K., RF and Microwave Wireless Systems, Wiley InterScience, page 319, ISBN 0-471-35199-7

2.6 Examples 38

3 Flip Flops - logical elements

The syntax for all logical base circuits is

```
\verb|\logic [Options]| (x_0, y_0) | \{label\}|
```

where the options and the origin are optional. If they are missing, then the default options, described in the next section and the default origin (0,0) is used. The origin specifies the lower left corner of the logical circuit.

xLkeywordlogicType

```
\logic{Demo}
2 \logic[logicType=and]{Demo}
3 \logic(0,0){Demo}
4 \logic[logicType=and](0,0){Demo}
```

The above four "different" calls of the \logic macro give the same output, because they are equivalent.

3.1 The Options

name	type	default
logicShowNode	boolean	false
logicShowDot	boolean	false
logicNodestyle	command	\footnotesize
logicSymbolstyle	command	\ <i>large</i>
logicSymbolpos	value	0.5
logicLabelstyle	command	\slash small
logicType	string	and
logicChangeLR	boolean	false
logicWidth	length	1.5
logicHeight	length	2.5
logicWireLength	length	0.5
logicNInput	number	2
logicJInput	number	2
logicKInput	number	2

3.2 Basic Logical Circuits

At least the basic objects require a unique label name, otherwise it is not sure, that all nodes will work well. The label may contain any alphanumerical character and most of all symbols. But it is save using only combinations of letters and digits. For example:

And0 a0 a123 12 NOT123a A_1 is not a good choice, the underscore may cause some problems.

And

NotAnd

Or

Not Or

Not

Exclusive OR

```
\begin{pspicture}(-0.5,0)(3,3)
                           \logic[logicType=exor,
                             logicShowNode]{ExOR1}
     Q
                           \end{pspicture}
ExOR1
                           \begin{pspicture}(-0.5,0)(3,3)
 =1
                           \logic[logicType=exor,
                             logicChangeLR]{Ex0R2}
                           \end{pspicture}
ExOR2
    =1
          6
          5
                           \begin{pspicture}(4,5)
                           \logic[logicType=exor,
          4
                             logicShowNode,
 Q
                             logicNInput=6,
          3
                             logicWidth=2,
                             logicHeight=4,
          2
                             logicChangeLR](1,1){Ex0R3}
   ExOR3<sup>1</sup>
                           \end{pspicture}
```

3.3 RS Flip Flop

Exclusive NOR

3.3 RS Flip Flop

```
- R Q -- | \text{begin{pspicture}(-1,-1)(3,3)} \\ \logic[logicShowNode, \\ \logicType=RS]{RS1} \\ \text{end{pspicture}} \\ \text{end{pspicture}} \]
```

3.4 D Flip Flop


```
\begin{pspicture}(-1,-1)(3,3)
\logic[logicShowNode,
logicType=RS,
logicChangeLR]{RS2}
\end{pspicture}
```

3.4 D Flip Flop


```
\begin{pspicture}(-1,-1)(3,3)
\logic[logicShowNode,
   logicType=D]{D1}
\end{pspicture}
```



```
\begin{pspicture}(-1,-1)(3,3)
\logic[logicShowNode=true,
    logicType=D,
    logicChangeLR]{D2}
\end{pspicture}
```

3.5 JK Flip Flop

3.6 Other Options 46


```
\begin{pspicture}(-1,-1)(3,3)
\logic[logicShowNode,logicType=JK,
    logicKInput=2, logicJInput=4,
    logicChangeLR]{JK2}
\end{pspicture}
```

3.6 Other Options

The unit of logicWireLength is the same than the actual one for pstricks, set by the unit option.

3.7 The Node Names

Every logic circuit is defined with its name, which should be a unique one. If we have the following NAND circuit, then pst-circ defines the nodes

```
NAND11, NAND12, NAND13, NAND14, NAND1Q
```

If there exists an inverted output, like for alle Flip Flops, then the negated one gets the appendix neg to the node name. For example:

NAND1Q, NAND1Qneg

```
begin{pspicture}(-0.5,0)(2.5,3)

logic[logicShowNode=true,%

logicLabelstyle=\footnotesize,%

logicType=nand,%

logicNInput=4]{NAND1}

multido{\n=1+1}{4}{%

\pscircle*[linecolor=red](NAND1\n){2pt}%

hAND1

logicNInput=4]{NAND1}

wed{pspicture}
```

3.8 Examples 47

Now it is possible to draw a line from the output to the input

```
\ncbar[angleA=0,angleB=180]{<Node A>}{<Node B>}
```

It may be easier to print a grid since the drawing phase and then comment it out if all is finished.

```
\begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{begin} & \textbf{pspicture} & \textbf{(-1,-1)} & \textbf{(2.5,3)} \end{array} \end{array}
                             \logic[logicShowNode=true,%
4
   &
                                 logicLabelstyle=\footnotesize,%
                                 logicType=nand,%
3
                                 logicWireLength=1,%
       Q
2
                                 logicNInput=4]{NAND1}
                                 \protect\ \pnode(-0.5,0|NAND11){tempA}
NAND1
                                 \pnode(2,0|NAND1Q){tempB}
                             \end{pspicture}
                             \ncbar[angleA=-90,angleB=0,arm=0.75,%
                                 arrows=*-*, dotsize=0.15]{tempA}{tempB}
```

3.8 Examples


```
\begin{array}{c} \begin{array}{c} \mathbf{begin} \{ pspicture \} (-1,0) (5,5) \end{array} \end{array}
             \psset{logicType=nor, logicLabelstyle=\normalsize,%
                                            logicWidth=1, logicHeight=1.5, dotsize=0.15}
             \lceil (1.5,0) \rceil
             \logic(1.5,3){nor2}
             \protect\operatorname{psline}(\operatorname{nor2Q})(4,0|\operatorname{nor2Q})
             \uput[0](4,0|nor2Q){$Q$}
             \psline(nor1Q)(4,0|nor1Q)
             \uput[0](4,0|nor1Q){$\overline{Q}$}
             psline{*-}(3.50,0|nor20)(3.5,2.5)(1.5,2.5)
                                        (0.5,1.75)(0.5,0|nor12)(nor12)
             \psline{*-}(3.50,0|nor10)(3.5,2)(1.5,2)
                                        (0.5,2.5) (0.5,0|nor21) (nor21)
             \protect{\protect} \protect{\p
             \protect{\protect} \protect{\p
 \end{pspicture}
```



```
\begin{array}{c} \mathbf{begin} \{ pspicture \} (-4,0) (5,7) \end{array}
               \psset{logicWidth=1, logicHeight=2, dotsize=0.15}
               \logic[logicWireLength=0](-2,0){A0}
               \logic[logicWireLength=0](-2,5){A1}
               \ncbar[angleA=-180,angleB=-180,arm=0.5]{A11}{A02}
               psline[dotsize=0.15]{-*}(-3.5,3.5)(-2.5,3.5)
               \uput[180](-3.5,3.5){$T$}
               \psline(-3.5,0.5)(A01)\uput[180](-3.5,0.5){$S$}
               psline(-3.5,6.5)(A12) \downarrow [180](-3.5,6.5) 
               \psset{logicType=nor, logicLabelstyle=\normalsize}
               \lceil (1,0.5) \rceil
               \logic(1,4.5){nor2}
               \protect\operatorname{\begin{tabular}{l} \protect\begin{tabular}{l} \protect\operatorname{\begin{tabular}{l} \protect\begin{tabular}{l} \protect\begin
               \uput[0](4,0|nor2Q){$Q$}
               \protect\operatorname{\begin{tabular}{l} \protect\begin{tabular}{l} \protect\operatorname{\begin{tabular}{l} \protect\begin{tabular}{l} \protect\begin
               \uput[0](4,0|nor1Q){$\overline{Q}$}
               \psline{*-}(3,0|nor2Q)(3,4)(1,4)(0,3)(0,0|nor12)(nor12)
               psline{*-}(3,0|nor10)(3,3)(1,3)(0,4)(0,0|nor21)(nor21)
               \psline(A0Q)(nor11)
               \psline(A1Q)(nor22)
\end{pspicture}
```

4 Adding new components

Adding new components is not simple. As a matter of fact, because of the complex mechanism of \multidipole, there are multiple steps. Nevertheless, it can take some time...

If you want to modify the code, you need to know the following things. For a dipole, you first need to define the following items:

```
\def\component_name{\@ifnextchar[{\pst@component_name}{\pst@component_name[]}}

\def\pst@component/_name[#1](#2)(#3)#4{{%}

\pst@draw@dipole{#1}{#2}{#3}{#4}\pst@draw@component_name

}\ignorespaces}

%
```

```
\def\pst@multidipole@component_name{\@ifnextchar[{\pst@multidipole@component_name@}
     {\pst@multidipole@component_name@[]}}
   \def\pst@multidipole@component_name@[#1]#2{%
10
    \expandafter\def\csname pst@circ@tmp@\number\pst@circ@count@iii\endcsname{#2}%
12
     {\psset{#1}%
    \ifPst@circ@parallel\aftergroup\advance\aftergroup\pst@circ@count@i\aftergroup\
       m@ne\fi}%
    \pst@circ@count@ii=\pst@circ@count@i%
    \advance\pst@circ@count@ii\@ne%
    \toks0\expandafter{\pst@multidipole@output}%
    \edef\pst@multidipole@output {%
      \the\toks0%
      \pst@multidipole@def@coor%
      \noexpand\component_name[#1]%
     (! X@\the\pst@circ@count@i\space Y@\the\pst@circ@count@i)%
     (! X@\the\pst@circ@count@ii\space Y@\the\pst@circ@count@ii)%
        {\noexpand\csname pst@circ@tmp@\number\pst@circ@count@iii\endcsname}%
23
24
     \pst@multidipole@
25
26
   }
27
28
   \def\pst@draw@component_name{%
29
    % The PSTricks code for your component
    % The center of the component is at (0,0)
30
     \pnode(component_left_end,0){dipole@1}
    \pnode(component_right_end,0){dipole@2}}
```

Then, you have to make some changes in the \multidipole core code...In the definition of \pst@multidipole, look for the last \ifx test

and add (marked with %%)

```
% ...
% Extract from \pst@multidipole
  \else\ifx\circledipole #4\let\next\pst@multidipole@circledipole
  \else\ifx\LED #4\let\next\pst@multidipole@LED
  \else\ifx\component_name#4\let\next\pst@multidipole@component_name%%
  \else\let\next\ignorespaces
  \fi\fi\fi\fi
  % Extract form \pst@multidipole
  % ...
```

Do the same in \pst@multidipole@

```
% ...
2 % Extract from \pst@multidipole@
```

```
\else\ifx\circledipole#1\let\next\pst@multidipole@circledipole
\else\ifx\LED #1\let\next\pst@multidipole@LED
\else\ifx\component_name#1\let\next\pst@multidipole@component_name%%
\else\let\next\ignorespaces\pst@multidipole@output
\fi\fi\fi\fi
\fi\fi\fi
\fixract form \pst@multidipole@
\fixract form \pst@multidipole@
\fixract form \pst@multidipole@
\fixract form \pst@multidipole@
```

and that's it! All you have to do then is send your modified pst-circ.tex to me and it will become part of the official release of pst-circ.

5 List of all optional arguments for pst-circ

Note: the default for booleans is always false.

Key	Type	Default
intensity	boolean	true
intensitylabel	ordinary	
intensitylabelcolor	ordinary	black
intensitylabeloffset	ordinary	0.5
intensitycolor	ordinary	black
intensitywidth	ordinary	\pslinewidth
tension	boolean	true
tensionlabel	ordinary	
tensionlabelcolor	ordinary	black
tensionoffset	ordinary	1
tensionlabeloffset	ordinary	1.2
tensioncolor	ordinary	black
tensionwidth	ordinary	\pslinewidth
labeloffset	ordinary	0.7
labelangle	ordinary	0
labelInside	ordinary	0
dipoleconvention	ordinary	receptor
directconvention	boolean	true
dipolestyle	ordinary	normal
parallel	ordinary	true
parallelarm	ordinary	1.5
parallelsep	ordinary	0
parallelnode	ordinary	true
intersect	boolean	true
intersectA	ordinary	[none]
intersectB	ordinary	[none]
0Aperfect	boolean	true
0Apower	boolean	true
0Ainvert	boolean	true
0Aiplus	boolean	true
OAiminus	boolean	true
0Aiout	boolean	true
0Aipluslabel	ordinary	
OAiminuslabel	ordinary	
0Aioutlabel	ordinary	
transistorcircle	boolean	true
transistorinvert	boolean	true
transistoribase	boolean	true
transistoricollector	boolean	true
transistoriemitter	boolean	true
transistoribaselabel	ordinary	

Continued on next page

Continued from previous page

Continued from previous page		
Key	Type	Default
transistoricollectorlabel	ordinary	
transistoriemitterlabel	ordinary	
FETchanneltype	ordinary	[none]
FETmemory	boolean	true
transistortype	ordinary	NPN
basesep	ordinary	0
TRot	ordinary	0
circedge	ordinary	\pcangle
primarylabel	ordinary	
secondarylabel	ordinary	
transformeriprimary	ordinary	true
transformerisecondary	ordinary	true
transformeriprimarylabel	ordinary	
transformerisecondarylabel	ordinary	
tripolestyle	ordinary	normal
variable	boolean	true
logicChangeLR	boolean	true
logicShowDot	boolean	true
logicShowNode	boolean	true
logicWidth	ordinary	1.5
logicHeight	ordinary	2.5
logicType	ordinary	and
logicNInput	ordinary	2
logicJInput	ordinary	2
logicKInput	ordinary	2
logicWireLength	ordinary	0.5
logicLabelstyle	ordinary	\small
logicSymbolstyle	ordinary	\large
logicSymbolpos	ordinary	0.5
logicNodestyle	ordinary	\footnotesize
inputarrow	boolean	true
programmable	boolean	true
connectingdot	boolean	true
groundstyle	ordinary	ads
antennastyle	ordinary	two
output	ordinary	top
L0style	ordinary	•
dipoleinput	ordinary	left
value	ordinary	0
tripoleinput	ordinary	left
tripoleconfig	ordinary	left
couplerstyle	ordinary	hxbrid
quadripoleinput	ordinary	left

References 53

References

[1] Michel Goosens, Frank Mittelbach, Serbastian Rahtz, Denis Roegel, and Herbert Voß. *The LaTeX Graphics Companion*. Addison-Wesley Publishing Company, Reading, Mass., 2nd edition, 2007.

- [2] Laura E. Jackson and Herbert Voß. Die Plot-Funktionen von pst-plot. *Die TeXnische Komödie*, 2/02:27–34, June 2002.
- [3] Nikolai G. Kollock. *PostScript richtig eingesetzt: vom Konzept zum praktischen Einsatz.* IWT, Vaterstetten, 1989.
- [4] Herbert Voß. Die mathematischen Funktionen von Postscript. *Die TeXnische Komödie*, 1/02:40–47, March 2002.
- [5] Herbert Voss. PSTricks Support for pdf. http://PSTricks.de/pdf/pdfoutput. phtml, 2002.
- [6] Herbert Voß. *PSTricks Grafik für T_EX und L^AT_EX*. DANTE/Lehmanns Media, Heidelberg/Berlin, 5. edition, 2008.
- [7] Herbert Voß. *Mathematik mit LATEX*. DANTE/Lehmanns Media, Heidelberg/Berlin, 2009.
- [8] Michael Wiedmann and Peter Karp. References for T_EX and Friends. http://www.miwie.org/tex-refs/, 2003.
- [9] Timothy Van Zandt. PSTricks PostScript macros for Generic TeX. http://www.tug.org/application/PSTricks, 1993.

:U, 9, 16, 17	french, 17
ads, 30 and, 39, 40 antennastyle, 31 arrows, 10	generator, 10, 11 \ground, 9 groundstyle, 30 GTO, 15
bandpass, 32	highpass, 32 hybrid, 36
basesep, 6, 7, 11 \battery, 4, 16	\ICC, 14
bottom, 31, 35 \caoacitor, 8 \capacitor, 4, 14-16 chemical, 14 \circledipole, 5 circulator, 35 \coil, 4, 15, 16 Collector, 7 couplerstyle, 36 crystal, 15, 31	\lambda(c), 4 \ifx, 49 inputarrow, 31–36 intensity, 10, 11 intensitycolor, 11 intensitylabel, 11 intensitylabelcolor, 11 intensitylabeloffset, 11 intensitywidth, 11 isolator, 35
curved, 15	JK, 45
curved, 15 D, 45 \diode, 5, 8, 15 dipoleconvention, 10, 11 dipoleinput, 32-34 dipolestyle, 14-16, 32, 33 directconvention, 10, 11 directional, 36 divider, 33	JK, 45 Keyvalue ads, 30 and, 39 bandpass, 32 bottom, 31, 35 circulator, 35 crystal, 31 directional, 36 divider, 33
curved, 15 D, 45 \diode, 5, 8, 15 dipoleconvention, 10, 11 dipoleinput, 32-34 dipolestyle, 14-16, 32, 33 directconvention, 10, 11 directional, 36	Keyvalue ads, 30 and, 39 bandpass, 32 bottom, 31, 35 circulator, 35 crystal, 31 directional, 36

top, <mark>31, 35</mark>	output, <mark>31</mark>
triangle, <mark>30</mark> , <mark>31</mark>	parallel, <mark>12, 13</mark>
two, <mark>31</mark>	primarylabel, <mark>10</mark>
Keyword	programmable, <mark>33</mark>
antennastyle, <mark>31</mark>	quadripoleinput, <mark>36</mark>
arrows, 6	secondarylabel, <mark>10</mark>
basesep, <mark>6</mark> , 7, <u>11</u>	tension, 10, 11
couplerstyle, <mark>36</mark>	tensioncolor, 11
dipoleconvention, 10, 11	tensionlabel, 11
dipoleinput, <mark>32–34</mark>	tensionlabelcolor, 11
dipolestyle, <mark>14–16, 32, 33</mark>	tensionlabeloffset, 11
directconvention, 10, 11	tensionoffset, 11
FETchannel, 19	tensionwidth, <mark>11</mark>
FETmemory, 19	transformeriprimarylabel, <mark>12</mark>
groundstyle, <mark>30</mark>	transformerisecondarylabel, 12
inputarrow, <mark>31–36</mark>	transistoribaselabel, <mark>11</mark>
intensity, <mark>10</mark> , <mark>11</mark>	transistoricollectorlabel, 11
intensitycolor, <mark>11</mark>	transistoriemitter, 7
intensitylabel, <mark>11</mark>	transistoriemitterlabel, <mark>11</mark>
intensitylabelcolor, 11	transistorinvert, 7
intensitylabeloffset, 11	transistortype, <mark>6, 7, 18, 19</mark>
intensitywidth, <mark>11</mark>	tripoleconfig, <mark>35</mark>
labelangle, <mark>9</mark> , <mark>16</mark> , <mark>17</mark>	tripoleinput, <mark>35</mark> , <mark>36</mark>
labelInside, <mark>10</mark>	tripolestyle, <mark>17, 35</mark>
labeloffset, <mark>5</mark> , 9, 17, 18	unit, <mark>46</mark>
logicChangeLR, <mark>39–45</mark>	value, <mark>33</mark>
logicHeight, <mark>39–44</mark>	variable, <mark>16</mark>
logicJInput, <mark>39</mark> , <mark>45</mark>	zigzag, <mark>16</mark>
logicKInput, <mark>39</mark> , <mark>45</mark>	labelangle 0 16 17
logicLabelstyle, <mark>39</mark>	labelIncide 10
logicNInput, <mark>39–44</mark>	labelInside, 10
logicNodestyle, <mark>39</mark>	labeloffset, 5, 9, 17, 18
logicShowDot, <mark>39, 46</mark>	\lamp, 5
logicShowNode, 39-45	\LED, 5 left, 17, 31–36
logicSymbolpos, 39	\logic, 39
logicSymbolstyle, 39	logicChangeLR, 39-45
logicType, 39-45	logicHeight, 39–44
logicWidth, 39-44	logicJInput, 39, 45
logicWireLength, 39, 46	logicKInput, 39, 45
L0style, 31	logicLabelstyle, 39
nodesep, 7	logicNInput, 39-44
OAiminuslabel, 11	logicNodestyle, 39
OAinvert, 18	logicShowDot, 39, 46
OAioutlabel, 11	logicShowNode, 39-45
OAipluslabel, 11	logicSymbolpos, 39
OAperfect, 18	logicSymbolstyle, 39
OApower, 6	togicsymbotstyte, 39

logicType, <mark>39-45</mark>	not, <mark>42</mark>
logicWidth, <mark>39-44</mark>	
logicWireLength, 39, 46	\0A, 6, 17, 18
LOstyle, 31	OAiminuslabel, 11
lowpass, 32	OAinvert, <mark>18</mark>
·	OAioutlabel, <mark>11</mark>
Macro	OAipluslabel, <mark>11</mark>
\battery, 4, 16	OAperfect, 18
\caoacitor,8	OApower, 6
\capacitor, 4, 14–16	old, <mark>30</mark>
\circledipole, 5	\optoCoupler,8
\coil, <mark>4</mark> , <u>15</u> , <u>16</u>	or, <mark>41</mark>
\diode, <mark>5, 8, 15</mark>	output, <mark>31</mark>
\filter, 32	
\ground, 9	P, 19
\ICC, 14	Package
\Icc, 4	multido, <mark>3</mark>
\ifx, 49	pst-circ, 3, 6, 46, 50
\lamp, 5	pst-node, 3
\LED, 5	pst-xkey, <mark>3</mark>
\logic, 39	pstricks, <mark>3</mark>
\multidipole, 8, 13, 30, 48, 49	parallel, <mark>12, 13</mark>
\ncangle, 6	\pcline, <mark>30</mark>
\0A, 6, 17, 18	PNP, 6, 7
\optoCoupler, 8	\potentiometer, 7, 16-18
\pcline, 30	primarylabel, <mark>10</mark>
\potentiometer, 7, 16-18	programmable, <mark>33</mark>
\resistor, 4, 8, 14, 16	pst-circ, <mark>3, 6, 46, 50</mark>
\resitor, 9	pst-circ.tex, <mark>50</mark>
\RFLine, 4	pst-node, 3
\switch, 5	pst-xkey, <mark>3</mark>
\tension, 9	pstricks, <mark>3</mark>
\transformer, 8, 10, 16	•
\transistor, 6, 18, 19	quadripoleinput, <mark>36</mark>
\Tswitch, 7, 17	quadrupole, 11
\Ucc, 4	1.0
	receptor, 10
\wire, 9	rectangle, 15, 16
\Zener, 5	\resistor, 4, 8, 14, 16
\multidipole, 8, 13, 30, 48, 49	\resitor, 9
multido, 3	\RFLine, 4
multiplier, <mark>33</mark>	right, <mark>17, 31–36</mark>
N, 33	RS, 44
nand, 41	d-w.1
\ncangle, 6	secondarylabel, 10
_	\switch, 5
nodesep, 7	Syntax
nor, <mark>42</mark>	Collector, 7

Emitter, 7	FET, 18, 19 french, 17
\tension, 9	generator, 10, 11
tension, 10, 11	GT0, 15
tensioncolor, 11	highpass, 32
tensionlabel, 11	JK, 45
tensionlabelcolor, 11	left, <mark>17</mark>
tensionlabeloffset, 11	nand, <mark>41</mark>
tensionoffset, 11	nor, <mark>42</mark>
tensionwidth, 11	not, <mark>42</mark>
three, 31	or, <u>41</u>
thyristor, 15	P, 19
top, 31, 35	PNP, 6, 7
\transformer, 8, 10, 16	rectangle, 15, 16
transformeriprimarylabel, 12	right, 17
transformerisecondarylabel, 12	RS, 44
\transistor, 6, 18, 19	thyristor, 15
transistoribaselabel, 11	triac, 15
transistoricollectorlabel, 11	twoCircles, 14
transistoriemitter, 7	varistor, 14
transistoriemitterlabel, 11	
transistorinvert, 7	zigzag, 14, 16
transistortype, 6, 7, 18, 19	value, 33
triac, 15	variable, 16
triangle, 30, 31	varistor, 14
tripole, 6, 11	\wire, 9
tripoleconfig, 35	(=: 0) 0
tripoleinput, 35, 36	\Zener, 5
tripolestyle, 17, 35	zigzag, <mark>14</mark> , <u>16</u>
\Tswitch, 7, 17	
two, 31	
twoCircles, 14	
(1001) 0103, 11	
\Ucc, 4	
unit, 46	
Value	
:U, <mark>9</mark> , 16, 17	
and, <mark>40</mark>	
chemical, <mark>14</mark>	
crystal, <mark>15</mark>	
curved, <mark>15</mark>	
D, <mark>45</mark>	
elektor, <mark>14-16</mark>	
elektorchemical, <mark>15</mark>	
elektorcurved, <mark>15</mark>	
exnor, 44	
exor, 43, 44	