Thời gian làm bài	150 phút (không kể thời gian phát đề)		
Ngày thi	15/02/2024 – Ngày thi thử thứ tư		
Đề thi gồm	04 câu, 04 trang		

Tổng quan đề thi

	Tiêu đề	Mã nguồn	Dữ liệu vào	Dữ liệu ra
Câu 1	Biến đổi	TRANSFORM.*	TRANSFORM.INP	TRANSFORM.OUT
Câu 2	Tập hợp điểm	PTSET.*	PTSET.INP	PTSET.OUT
Câu 3	Công sai	CMDIF.*	CMDIF.INP	CMDIF.OUT
Câu 4	Bộ bốn Min Max	MMB.*	MMB.INP	MMB.OUT

Dấu * được thay thế bởi PAS, CPP hoặc PY tương ứng với ngôn ngữ lập trình Pascal, C++ hoặc Python.

Lập trình giải các bài toán sau.

Câu 1. Biến đổi (6 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
TRANSFORM.*	TRANSFORM.INP	TRANSFORM.OUT	1 giây	1024 MB

Vũ có 2 số nguyên dương a, b và cậu ấy có thể thực hiện 2 thao tác sau trên chúng.

- Nhân a với n, tức là $a = a \times n$.
- Cộng a với n, tức là a = a + n.

Vũ muốn biến đổi sao cho a=b. Bạn hãy kiểm tra có cách biển đổi nào không nhé.

Dữ liệu vào: Nhập từ file TRANSFORM. INP:

- Số nguyên dương t ($1 \le t \le 5$).
- t dòng tiếp theo, mỗi dòng gồm ba số nguyên dương a,b,n ($1 \le a,b,n \le 10^{18}$).

Dữ liệu ra: Ghi ra file TRANSFORM.OUT:

- Với mỗi dòng, in ra Yes nếu có và No nếu không.

TRANSFORM.INP	TRANSFORM.OUT	Giải thích
3	Yes	- Ở test 1, ta có thể nhân a cho 2 và cộng a
3 8 2	Yes	cho 2.
3 4 1	No	- Ở test 3, dễ dàng thấy không có cách biến
2 9 4		đổi thỏa mãn.

Câu 2. Tập hợp điểm (5 điểm)

	Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
Ī	PTSET.*	PTSET.INP	PTSET.OUT	1 giây	1024 MB

Cho n điểm phân biệt trên mặt phẳng tọa độ Descartes, điểm thứ i có tọa độ là (x_i, y_i) . Hãy tìm một tập hợp các điểm P thỏa mãn:

- Số lượng điểm của P là nhiều nhất.
- Các điểm của P nằm trên một đường thẳng.

Đề bài chỉ ngắn gọn và đơn giản thế thôi. Chúc bạn may mắn nhé.

Dữ liệu vào: Nhập từ file PTSET. INP:

- Số nguyên dương n ($1 \le n \le 10^3$).
- n dòng tiếp theo, dòng thứ i chứa tọa độ điểm thứ i có tọa độ là (x_i, y_i) $(|x_i|, |y_i| \le 10^9)$.

Dữ liệu ra: Ghi ra file PTSET.OUT:

- In ra số lượng điểm và các điểm của P theo thứ tự tăng dần.
- Nếu có nhiều tập hợp P có cùng số lượng điểm nhiều nhất, hãy in ra 1 cái bất kỳ.

Ràng buộc bổ sung:

- 30% số điểm có $1 \le n \le 20$.
- 30% số điểm có $\min(|x_i|, |y_i|) = 0 \ (1 \le i \le n).$
- 20% số điểm có $1 \le n \le 10^2$.
- 20% số điểm còn lại không có giới hạn gì thêm.

PTSET.INP	PTSET.OUT	Giải thích
7	4	- 4 điểm của tập hợp P trên đều năm trên
3 5	0 -1	đường thẳng $y = 2x - 1$.
1 1	1 1	
2 0	2 3	
0 -1	3 5	
4 1		
-1 3		
2 3		

Câu 3. Công sai (5 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
CMDIF.*	CMDIF.INP	CMDIF.OUT	1 giây	1024 MB

Trong lúc đọc sách, Vũ vô tình đọc được 1 kiến thức khá thú vị là cấp số cộng. Như cậu được biết, một dãy số được gọi là cấp số cộng khi và chỉ khi $a_n = a_1 + (n-1) \times k$ với k là một hằng số cố định gọi là công sai. Bỗng Vũ nghĩ ra được một bài toán khá hay như sau.

Vũ cho bạn dãy a gồm n phần tử, cậu định nghĩa 1 bộ m chỉ số $i_1, i_2, ..., i_m$ có công sai là k khi:

$$-1 \le i_1 < i_2 < \dots < i_m \le n.$$

$$-a_{i_2}-a_{i_1}=a_{i_3}-a_{i_2}=\ldots=a_{i_m}-a_{i_{m-1}}=k.$$

Với dãy a trên, Vũ muốn biết số lượng bộ m chỉ số có công sai là k. Tuy suy nghĩ rất nhiều nhưng dường như Vũ vẫn không thể giải được bài toán. Là một ngài cực kì orz, bạn hãy giúp Vũ giải bài toán trên nhé.

Dữ liệu vào: Nhập từ file CMDIF. INP:

- Ba số nguyên dương n, m, k $(1 \le m \le 10^2; m \le n \le 10^5; 1 \le k \le 10^{18}).$
- Dãy agồm n phần tử a_1,a_2,\ldots,a_n (1 $\leq a_i \leq 10^{18}).$

Dữ liệu ra: Ghi ra file CMDIF.OUT:

- In ra kết quả sau khi chia lấy dư cho 1234567891.

Ràng buộc bổ sung:

- 20% số điểm có $1 \le n \le 10^3$; m = 2.
- 20% số điểm có m=2.
- 20% số điểm khác có $1 \le n \le 20$.
- 20% số điểm khác có $1 \le a_i$, $k \le 10^5$.
- 20% số điểm còn lại không có giới hạn gì thêm.

CMDIF.INP	CMDIF.OUT	Giải thích
5 3 2	3	- Có tất cả là 3 bộ 3 chỉ số có công sai 2 gồm
2 4 2 4 6		(1, 2, 5), (1, 4, 5) và $(3, 4, 5)$.

Câu 4. Bộ bốn Min Max (4 điểm)

Mã nguồn	Dữ liệu vào	Dữ liệu ra	Thời gian	Bộ nhớ
MMB.*	MMB.INP	MMB.OUT	2.5 giây	1024 MB

Cho dãy a và b gồm n phần tử, 1 bộ bốn (l_1, r_1, l_2, r_2) được gọi là bộ bốn Min Max nếu nó thỏa mãn:

- $1 \le l_1 \le r_1 \le n$ và $1 \le l_2 \le r_2 \le n$.
- $-\max\bigl(a_{l_1},a_{l_1+1},\dots,a_{r_1}\bigr)=\min\bigl(b_{l_2},b_{l_2+1},\dots,b_{r_2}\bigr).$

Với dãy a và b trên, nhiệm vụ của bạn là đếm số lượng bộ bốn Min Max.

Dữ liệu vào: Nhập từ file MMB. INP:

- Số nguyên dương $n \ (1 \le n \le 10^6)$.
- Dãy a gồm n phần tử a_1, a_2, \dots, a_n $(1 \le a_i \le 10^{18})$.
- Dãy bgồm n phần tử b_1, b_2, \ldots, b_n $(1 \leq b_i \leq 10^{18}).$

Dữ liệu ra: Ghi ra file MMB.OUT:

- In ra kết quả sau khi chia lấy dư cho 1234567891.

Ràng buộc bổ sung:

- 20% số điểm có $1 \le n \le 20$.
- 20% số điểm khác có $1 \le n \le 10^3$.
- 30% số điểm khác có $1 \le n \le 10^5$.
- 30% số điểm còn lại không có giới hạn gì thêm.

MMB.INP	MMB.OUT	Giải thích
3	10	Có tất cả 10 bộ bốn Min Max là (1, 1, 2, 2),
3 1 2		(1, 2, 2, 2), (1, 3, 2, 2), (2, 2, 1, 3), (2, 2, 2, 3),
2 3 1		(2, 2, 3, 3), (2, 3, 1, 1), (2, 3, 1, 2), (3, 3, 1, 1)
		và (3, 3, 1, 2).