Appendix

On the Computation of Large Spatial Datasets With the M function

- Eric Marcon
- ♣ Florence Puech
- iii 2025 May 23

The code used in the article "On the Computation of Large Spatial Datasets With M" is detailed here.

1 Data simulation

1.1 Drawing the points

A set of points is drawn at random with the following parameters:

- the number of points,
- the proportion of controls,
- the shape and scale of the gamma distribution.

```
library("tidyverse")
library("spatstat")
library("dbmss")

par_points_nb <- 5000
par_case_ratio <- 1/20
par_size_gamma_shape <- 0.95
par_size_gamma_scale <- 10</pre>
```

The X_csr() function is used to draw a series of points according to certain parameters. The points_nb argument, which sets the number of points, can be modified; the other parameters have their values set above.

```
X csr <- function(</pre>
    points nb,
    case_ratio = par_case_ratio,
    size gamma shape = par size gamma shape,
    size_gamma_scale = par_size_gamma_scale) {
  points_nb %>%
    runifpoint() %>%
    as.wmppp() ->
    Χ
  cases_nb <- round(points_nb * case_ratio)</pre>
  controls nb <- points nb - cases nb
  c(rep("Control", controls_nb), rep("Case", cases_nb)) %>%
    as.factor() ->
    X$marks$PointType
  rgamma(
    X$n,
    shape = size gamma shape,
    scale = size gamma scale
  ) %>%
    ceiling() ->
    X$marks$PointWeight
 Χ
}
# Example
X <- X csr(par points nb)</pre>
# Map the cases
autoplot(X[X$marks$PointType == "Case"])
```


The size distribution is shown in the histogram below:

```
# Point size distribution
hist(
   X$marks$PointWeight,
   breaks = unique(X$marks$PointWeight),
   main = "",
   xlab = "Point size"
)
```


The X_matern() function is used to draw a semiset of points whose Cases are concentrated by a Matérn (1960) process. The parameters are

- ullet κ : the expected number of clusters,
- scale: their radius.

```
# Expected number of clusters
par_kappa <- 20
# Cluster radius
par_scale <- 0.1</pre>
```

The function code is as follows:

```
X matern <- function(</pre>
    points nb,
    case ratio = par case ratio,
    kappa = par_kappa,
    scale = par_scale,
    size_gamma_shape = par_size_gamma_shape,
    size gamma scale = par size gamma scale) {
  cases nb <- round(points nb * case ratio)</pre>
  controls nb <- points nb - cases nb
  # CSR controls
  controls nb %>%
    runifpoint() %>%
    superimpose(
      # Matern cases
      rMatClust(
        kappa = kappa,
        scale = scale,
        mu = cases nb / kappa
      )
    ) %>%
    as.wmppp() ->
    Χ
  # Update the number of cases
  cases_nb <- X$n - controls nb</pre>
  c(rep("Control", controls nb), rep("Case", cases nb)) %>%
    as.factor() ->
    X$marks$PointType
  rgamma(
    X$n,
    shape = size gamma shape,
    scale = size gamma scale
  ) %>%
    ceiling() ->
    X$marks$PointWeight
  Χ
}
# Example
X <- X matern(par points nb)</pre>
# Map the cases
```


1.1.1 Space grid

The number of rows and columns is set:

```
# Number of rows and columns
par_partitions <- 20</pre>
```

The <code>group_points()</code> function gathers all the points it contains at the centre of each grid cell. This simulates the usual approximation of the position of the points in an administrative unit to the position of its centre. The position of the points is slightly noisy to enable <code>M</code> to be calculated. The <code>group_points_to_plot()</code> function merges the points to produce a map.

```
# Group points into cells
group points <- function(X, partitions = par partitions) {</pre>
 X %>%
    with(tibble(
      Χ,
      у,
      PointType = marks$PointType,
      PointWeight = marks$PointWeight)
    ) %>%
    mutate(
      x cell = ceiling(x * partitions) / partitions - 1 / 2 / partition
      y cell = ceiling(y * partitions) / partitions - 1 / 2 / partition
      .keep = "unused"
    ) %>%
    rename(x = x_cell, y = y_cell) %>%
    as.wmppp(window = X$window, unitname = X$window$units) %>%
    rjitter()
}
# Group points and merge them
group points to plot <- function(X, partitions = par partitions) {</pre>
 X %>%
    with(tibble(
      Χ,
      у,
      PointType = marks$PointType,
      PointWeight = marks$PointWeight)
    ) %>%
    mutate(
      x_cell = ceiling(x * partitions) / partitions - 1 / 2 / partition
      y_cell = ceiling(y * partitions) / partitions - 1 / 2 / partition
    ) %>%
    group by(PointType, x cell, y cell) %>%
    summarise(n = n(), PointWeight = sum(PointWeight)) %>%
    rename(x = x cell, y = y cell) \%
    as.wmppp(window = X$window, unitname = X$window$units)
}
```

The figure is obtained using the following code:

2 Calculation of M

The distances at which the M function is calculated are chosen from r.

$$r \leftarrow c((0:9) / 100, (2:10) / 20)$$

2.1 Necessary data

In the *dbmss* package (Marcon et al., 2015), the function applies to a set of points, object of class wmppp, or to a matrix of distances, object of class <code>Dtable</code>.

We start with an array (data.frame) containing the columns $\, x \, , \, y \, , \, PointType \,$ and $\, PointWeight \, . \,$

The spatial co-ordinates of the points are given by the $\, x \,$ and $\, y \,$ columns.

```
# Extract a dataframe from the point set
points_df <- with(X, data.frame(x, y, marks))
head(points_df)</pre>
```

##		X	У	PointWeight	PointType
##	1	0.4550716	0.31775637	4	Control
##	2	0.6463730	0.04396279	2	Control
##	3	0.9156488	0.23361975	2	Control
##	4	0.9724551	0.87464816	1	Control
##	5	0.8907927	0.26205266	4	Control
##	6	0.9561687	0.96813173	7	Control

2.2 Set of points

The Mhat() function is used to estimate the value of the M function.

```
X %>%
  Mhat(r = r, ReferenceType = "Case") %>%
  autoplot()
```


The Menvelope() function is used to calculate the confidence interval of the function value under the null hypothesis of random location of the points. The global confidence interval (Duranton & Overman, 2005) is calculated by specifying the argument Global = TRUE.

2.3 Distance matrix

The as.Dtable() function is used to create a Dtable object.

It can also be created from a distance matrix obtained in another way, containing non-Euclidean distances for example (transport time, road distance, etc.).

```
# A Dtable containing two points
  Dmatrix \leftarrow matrix(c(0, 1, 1, 0), nrow = 2)
  PointType <- c("Type1", "Type2")</pre>
  PointWeight <- c(2, 3)
  Dtable(Dmatrix, PointType, PointWeight)
  ## $Dmatrix
  ##
          [,1] [,2]
  ## [1,]
             0
  ## [2,] 1
                   0
  ##
  ## $n
  ## [1] 2
  ##
  ## $marks
  ## $marks$PointType
  ## [1] Type1 Type2
  ## Levels: Type1 Type2
  ##
  ## $marks$PointWeight
  ## [1] 2 3
  ##
  ##
  ## attr(,"class")
  ## [1] "Dtable"
The Mhat() and MEnvelope() functions are the same as for point sets.
  identical(
    Mhat(X, r = r, ReferenceType = "Case", NeighborType = "Control"),
    Mhat(d_matrix, r = r, ReferenceType = "Case", NeighborType = "Control
  )
  ## [1] TRUE
```

```
d_matrix %>%
  MEnvelope(r = r, ReferenceType = "Case", Global = TRUE) %>%
  autoplot()
```


3 Performance of M

The x_{to_M} function calculates the M function and returns the vector of its values for each distance. It is useful for measuring execution times.

```
# Compute M
X_to_M <- function(X) {
   X %>%
        Mhat(r = r, ReferenceType = "Case") %>%
        pull("M")
}
```

3.1 Calculation time

The time required for an exact calculation is evaluated for a range of numbers of points specified in X_{sizes} .

```
X_sizes <- c(1000, 5000, 10000, 50000, 100000)</pre>
```

The ${\tt test_time()}$ function is used to measure the execution time of an evaluation of the M function.

```
library("microbenchmark")
test time <- function(points nb) {</pre>
  X <- X csr(points nb)</pre>
  microbenchmark(X_to_M(X), times = 4L) %>%
    pull("time")
}
X sizes %>%
  sapply(FUN = test time) %>%
  as tibble() %>%
  pivot_longer(cols = everything()) %>%
  rename(Size = name) %>%
  group_by(Size) %>%
  summarise(Time = mean(value) / 1E9, sd = sd(value) / 1E9) %>%
  mutate(
    Size = as.double(
      plyr::mapvalues(
        .$Size,
        from = paste0("V", seq_along(X_sizes)),
        to = X sizes
      )
    )
  ) -> M_time
M_time %>%
  ggplot(aes(x = Size, y = Time)) +
    geom point() +
    geom errorbar(aes(ymin = Time - sd, ymax = Time + sd)) +
    scale x log10() +
    scale_y_log10()
```


The calculation time is related to the size of the set of points by a power law.

```
# Model
M_time %>%
  mutate(logTime = log(Time), logSize = log(Size)) ->
    M_time_log
M_time_lm <- lm(logTime ~ logSize, data = M_time_log)
summary(M_time_lm)</pre>
```

```
##
## Call:
## lm(formula = logTime ~ logSize, data = M time log)
##
## Residuals:
                            3
                                              5
##
          1
                   2
                                     4
##
    0.58068 -0.59486 -0.41390 0.08794 0.34015
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -17.460
                             1.487 -11.74 0.00133
## logSize
                  1.628
                             0.156
                                     10.44
                                            0.00188
##
## (Intercept) **
## logSize
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5732 on 3 degrees of freedom
## Multiple R-squared: 0.9732, Adjusted R-squared: 0.9643
                  109 on 1 and 3 DF, p-value: 0.001876
## F-statistic:
```

The *microbenchmark* package proposed by Mersmann (2023) is used to compare the computation time of the function between a set of points and a matrix of distances.

The calculation of distances is extremely fast in the Mhat() function: the matrix saves time, but the complete processing from a matrix is ultimately longer.

```
library("microbenchmark")
mb <- microbenchmark(
   Mhat(X, r = r, ReferenceType = "Case", NeighborType = "Control"),
   Mhat(d_matrix, r = r, ReferenceType = "Case", NeighborType = "Control times = 4L
)</pre>
```

3.2 Memory

The memory used is evaluated with the *profmem* package (Bengtsson, 2021).

```
# RAM
library("profmem")
test_ram <- function(points_nb) {
    X <- X_csr(points_nb)
    profmem(X_to_M(X)) %>%
        pull("bytes") %>%
        sum(na.rm = TRUE)
}
sapply(X_sizes, FUN = test_ram) %>%
    tibble(Size = X_sizes, RAM = . / 2^20) ->
    M_ram
M_ram %>%
    ggplot(aes(x = Size, y = RAM)) +
        geom_point() +
        geom_line()
```


The memory required (in MB) increases linearly with the number of points.

```
# Model
lm(RAM ~ Size, data = M_ram) %>% summary()
```

```
##
## Call:
## lm(formula = RAM ~ Size, data = M ram)
##
## Residuals:
                       2
                                  3
##
            1
##
    0.0032318 -0.0021685 -0.0011180 -0.0002664
            5
##
    0.0003211
##
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.431e-02 1.400e-03
                                      10.22
                                               0.002
## Size
               2.544e-04 2.786e-08 9131.23 2.9e-12
##
## (Intercept) **
## Size
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.00235 on 3 degrees of freedom
## Multiple R-squared:
                            1, Adjusted R-squared:
## F-statistic: 8.338e+07 on 1 and 3 DF, p-value: 2.897e-12
```

4 Effects of approximating the position of the points

The number of test repetitions is set by **simulations_n**.

```
simulations n <- 100
```

4.1 Case of an aggregated distribution (Matérn)

X_matern_list contains simulations_n drawn from the set of points.X_matern_grouped_list contains the same simulations, whose points have been grouped in the grid cells.

```
# Simulate X
X_matern_list <- replicate(
    simulations_n,
    expr = X_matern(par_points_nb),
    simplify = FALSE
)
# Group points and compute M
X_matern_grouped_list <- lapply(
    X_matern_list,
    FUN = group_points,
    partitions = par_partitions
)</pre>
```

To assess the effect of the position approximation, the exact calculation and the calculation on the grid points are performed on each set of points.

```
library("pbapply")
# Compute M
M_matern_original <- pbsapply(X_matern_list, FUN = X_to_M)
M_matern_grouped <- pbsapply(X_matern_grouped_list, FUN = X_to_M)</pre>
```

The approximate calculation is very fast because it reduces the number of points to the number of cells, provided you take advantage of this in the code used for the calculation. This is not the case here: the *dbmss* package does not provide for this approximation. The M_hat() function is therefore applied to the grouped set of points, but calculated in the same way as with the original set of points.

The mean values of the *M* estimates are shown below.

```
tibble(
    r,
    Exact = rowMeans(M_matern_original),
    Grouped = rowMeans(M_matern_grouped)
) %>%
    pivot_longer(
        cols = !r,
        names_to = "M",
        values_to = "value"
) %>%
    ggplot(aes(x = r, y = value, color = M)) +
    geom_line() +
    geom_point()
```


The correlation between the M values estimated by each method is calculated at each distance r.

```
# Correlation
M_cor <- function(r_value, M_original, M_grouped) {</pre>
  r_index <- which(r == r_value)</pre>
  # Return
  c (
    # Distance
    r value,
    # Correlation
    cor(M_original[r_index, ], M_grouped[r_index, ])
  )
}
sapply(
  r,
  FUN = M_{cor}
  M_original = M_matern_original,
  M grouped = M matern grouped
) %>%
  t() %>%
  as tibble() %>%
  rename(r = V1, correlation = V2) %>%
  ggplot(aes(x = r, y = correlation)) +
    geom_point() +
    geom_line()
```


The correlation is very high as soon as the distance taken into account exceeds the grid cell. The values are then compared.

```
# Compare values
M bias <- function(r value, M original, M grouped) {</pre>
  r index <- which(r == r value)</pre>
  # Return
  c (
    # Distance
    r value,
    # Relative error
    mean((M grouped[r index, ] - M original[r index, ]) / M original[r
    # Standardised error sd
    sd(M grouped[r index, ] - M original[r index, ]) / mean(M grouped[r
    # Coefficient of variation
    sd(M original[r index, ] / mean(M original[r index, ]))
  )
}
sapply(
  r,
  FUN = M bias,
 M original = M matern original,
 M grouped = M matern grouped
) %>%
 t() %>%
  as tibble() %>%
  rename(r = V1, `Relative error` = V2, `Error CV` = V3, `M CV` = V4) %
  ggplot() +
    geom_point(aes(x = r, y = `Relative error`)) +
    geom errorbar(
      aes(
        x = r,
        ymin = `Relative error` - `Error CV`,
        ymax = `Relative error` + `Error CV`
      )
    ) +
    geom errorbar(aes(x = r, ymin = -`M CV`, ymax = `M CV`), col = "red
```


The figure above shows, in red, the variability of the value of M (its coefficient of variation) over the course of the simulations. By definition, the mean value is error-free. At short distances, the values of M vary greatly for the same point process, depending on the stochasticity of its runs. As M is a cumulative function, it stabilises as distance increases.

The average relative error (to the exact value of M), due to the approximation of the position of the points, is shown in black, with its standard deviation normalised by the exact value of M. It is small, less than 10%, even at short distances.

4.2 Case of a completely random distribution (CSR)

 X_{csr_list} contains $simulations_n$ draws from the set of points.

```
# Simulate X
X_csr_list <- replicate(
    simulations_n,
    expr = X_csr(par_points_nb),
    simplify = FALSE
)
# Group points and compute M
X_csr_grouped_list <- lapply(
    X_csr_list,
    FUN = group_points,
    partitions = par_partitions
)</pre>
```

The exact calculation and the calculation on the points of the grid are carried out on each set of points.

```
# Compute M
system.time(M_csr_original <- pbsapply(X_csr_list, FUN = X_to_M))</pre>
## utilisateur
                    système
                                 écoulé
                       0.11
                                   4.05
##
          1.22
system.time(M_csr_grouped <- sapply(X_csr_grouped_list, FUN = X_to_M))</pre>
## utilisateur
                    système
                                 écoulé
          1.12
                       0.08
                                   3.95
##
```

The average values are shown below.

```
tibble(
    r,
    Exact = rowMeans(M_csr_original),
    Grouped = rowMeans(M_csr_grouped)
) %>%
    pivot_longer(
        cols = !r,
        names_to = "M",
        values_to = "value"
) %>%
    ggplot(aes(x = r, y = value, color = M)) +
    geom_line() +
    geom_point()
```


The correlation between the M values calculated by each method is calculated at each distance r.

```
# Correlation
sapply(
    r,
    FUN = M_cor,
    M_original = M_csr_original,
    M_grouped = M_csr_grouped
) %>%
    t() %>%
    as_tibble() %>%
    rename(r = V1, correlation = V2) %>%
    ggplot(aes(x = r, y = correlation)) +
        geom_point() +
        geom_line()
```


In the absence of spatial structure, correlations are much weaker.

The values are compared.

```
# Compare values
sapply(
  r, FUN = M bias,
 M_original = M_csr_original,
 M_grouped = M_csr_grouped
) %>%
 t() %>%
  as tibble() %>%
  rename(r = V1, `Relative error` = V2, `Error CV` = V3, `M CV` = V4) %
  ggplot() +
    geom_point(aes(x = r, y = `Relative error`)) +
    geom_errorbar(
      aes(
        x = r,
        ymin = `Relative error` - `Error CV`,
        ymax = `Relative error` + `Error CV`
      )
    ) +
    geom_errorbar(aes(x = r, ymin = -`M CV`, ymax = `M CV`), col = "red
```


The figure above is constructed in the same way as for aggregated point sets. In the absence of spatial structure, the value of M varies much less.

In the presence of a spatial structure, the estimation error is large at short distances. It becomes negligible beyond the grid cell.

References

Bengtsson, H. (2021). A Unifying Framework for Parallel and Distributed Processing in R using Futures. *The R Journal*, *13*(2), 208. https://doi.org/10.32614/RJ-2021-048 (https://doi.org/10.32614/RJ-2021-048)

Duranton, G., & Overman, H. G. (2005). Testing for localisation using micro-geographic data. *Review of Economic Studies*, *72*(4), 1077–1106. https://doi.org/10.1111/0034-6527.00362 (https://doi.org/10.1111/0034-6527.00362)

Marcon, E., & Puech, F. (2010). Measures of the geographic concentration of industries: Improving distance-based methods. *Journal of Economic Geography*, *10*(5), 745–762. https://doi.org/10.1093/jeg/lbp056 (https://doi.org/10.1093/jeg/lbp056)

Marcon, E., Traissac, S., Puech, F., & Lang, G. (2015). Tools to characterize point patterns: dbmss for R. *Journal of Statistical Software*, *67*(3), 1–15.

https://doi.org/10.18637/jss.v067.c03 (https://doi.org/10.18637/jss.v067.c03)

Matérn, B. (1960). Spatial variation. *Meddelanden Från Statens Skogsforskningsinstitut*, 49(5), 1–144.

Mersmann, O. (2023). Microbenchmark: Accurate timing functions [Manual].

Tidu, A., Guy, F., & Usai, S. (2024). Measuring Spatial Dispersion: An Experimental Test on the *M*-Index. *Geographical Analysis*, *56*, 384–403. https://doi.org/10.1111/gean.12381 (https://doi.org/10.1111/gean.12381)