

Multi-Channel PMIC for TFT-LCD TV Panels

General Description

The RT6971 is a programmable multi-functional power solution with integrated 19-CH of level shifter for TFT-LCD panel. It contains three Buck converters (VCC1, VCC2 & HAVDD), one Boost converter (VGH), one Buck-Boost converter (VGL2), Both of VCOM1, VGH and VGL2 have the temperature compensation function. A negative OP regulator (VGL1), 14-CH gamma buffers and 3-CH VCOM and 19-CH level shifter. All channel output level and sequence (Delay time) can be programmable by I2C interface.

With its high current capabilities, the device is ideal for large screen monitor panels and LCD TV applications with widely supply voltage range. The RT6971 is available in a VQFN-76L 8x8 package.

Ordering Information

Note:

Richtek products are:

DS6971-P00

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Features

- 8.6V to 15.9V Input Supply Voltage
- Async. Boost Controller by 0.3V Overcurrent Protection for AVDD with 13.8V to 20V Programmable Output
- 1.5/3.2A Async. Buck Converter for VCC1 with 0.8V to 2.36V Programmable Output
- 1.2A Async. Buck Converter for VCC2 with 2.2V to 3.7V Programmable Output
- 2A Sync. Buck Converter for HAVDD with Programmable Output
- 250mA Negative OP Regulator for VGL1 with -1.8V to -15V Programmable Output
- 1.6A Async. Buck-Boost Converter for VGL2 with
 -4.5 to -20V Programmable Output
- 2.0A Async. Boost Converter or Controller by 0.2V
 Overcurrent Protection for VGH with 20 to 45V
 Programmable Output
- 14-CH Gamma Buffers
- 3-CH VCOM with Temp. Compensation (VCOM1)
- 19-CH of Level Shifter Support 12 CLK's, STVOUT1, STVOUT2, STVOUT3, LCOUT1, LCOUT2, DISCH1, DISCH2
- Programmable Level Shifter OCP Level and Detection Time
- Suitable for 4/6/8/10/12-Phase Level Shifter Applications
- Over-Temperature Protection
- I²C Compatible Interface for Register Control

Applications

- TFT-LCD TV Panels
- TFT-LCD Monitor Panels

January 2023

Typical Application Circuit

VGH Async. Converter

VGH Async. Controller

RT6971

Pin Configuration

(TOP VIEW)

VQFN-76L 8x8

Timing Diagram

Power On/Off Timing Diagram

Case 1. EN_Type = 00

January 2023

Case 2. EN_Type = 01

Case 3. EN_Type = 10 or 11

January 2023

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	XAO	Source driver/panel discharge signal.
2	VCC1	Output sensing for VCC1 buck converter.
3	VCC1_SW	VCC1 buck converter switch pin.
4	VIN1/2	Input supply pin (8.6V to 15.9V) for VCC1/2 output.
5	VCC2	Output sensing for VCC2 buck converter.
6	VCC2_SW	VCC2 buck converter switch pin.
7	VL	Internal regulator output pin.
8	TCOMP	Temperature compensation input pin for VGH & VGL2 & VCOM1.
9	EN	Enable signal input.
10	SDA	I2C DATA pin.
11	SCL	I2C CLOCK pin.
12	CPV1	Level shifter input signal.
13	CPV2	Level shifter input signal.
14	STV1	Level shifter input signal.
15	STV2	Level shifter input signal.
16	LCIN1	Level shifter input signal.
17	LCIN2/CPV3	Level shifter input signal.
18	BLANK/CPV4	Level shifter input signal.
19	STV3	Level shifter input signal.
20	CLKOUT1	Level shifter CLKOUT1 output.
21	CLKOUT2	Level shifter CLKOUT2 output.
22	CLKOUT3	Level shifter CLKOUT3 output.
23	CLKOUT4	Level shifter CLKOUT4 output.
24	CLKOUT5	Level shifter CLKOUT5 output.
25	CLKOUT6	Level shifter CLKOUT6 output.
26	NC	No internal connection.
27	CLKOUT7	Level shifter CLKOUT7 output.
28	CLKOUT8	Level shifter CLKOUT8 output.
29	CLKOUT9	Level shifter CLKOUT9 output.
30	CLKOUT10	Level shifter CLKOUT10 output.
31	CLKOUT11	Level shifter CLKOUT11 output.
32	CLKOUT12	Level shifter CLKOUT12 output.
33	LCOUT1	Level shifter LCOUT1 output.
34	LCOUT2	Level shifter LCOUT2 output.
35	STVOUT1	Level shifter STVOUT1 output.
36	STVOUT2	Level shifter STVOUT2 output.
37	STVOUT3	Level shifter STVOUT3 output.

Pin No.	Pin Name	Pin Function
38	DISCH1	Power Off Discharge output following VGL1.
39	DISCH2	Power Off Discharge output following VGL2.
40	VGH2	Positive voltage input for level shifter output terminal.
41	VGH	Output sensing for VGH boost converter and level shifter supply.
42, 44, 77 (Exposed Pad)	GND	Power ground, the exposed pad must be soldered to a large PCB and connected to PGND for maximum power dissipation.
43	VGH_Gate	Gate driver output for VGH boost converter. This pin is the output pin to driver and external N-MOSFET of VGH Boost Converter in case of using external switch.
45	VGH_SW/CS	Switching node or switch current sensing input of VGH boost converter. The pin is the drain of internal N-MOSFET and P-MOSFET in case of using internal switch and input of current sensing block of VGH Boost Converter in case of using external switch.
46	AGND	Analog ground.
47	VGL1	VGL1 output pin.
48	VGL2	Output sensing for VGL2 buck-boost converter. Input for level shift.
49	VGL2_SW	VGL2 buck-boost switching pin.
50	VIN_VGL2	Input supply pin (8.6V to 15.9V) for VGL2 output.
51	GMA14	P-gamma out CH14.
52	GMA13	P-gamma out CH13.
53	GMA12	P-gamma out CH12.
54	GMA11	P-gamma out CH11.
55	GMA10	P-gamma out CH10.
56	GMA9	P-gamma out CH9.
57	GMA8	P-gamma out CH8.
58	GMA7	P-gamma out CH7.
59	GMA6	P-gamma out CH6.
60	GMA5	P-gamma out CH5.
61	GMA4	P-gamma out CH4.
62	GMA3	P-gamma out CH3.
63	GMA2	P-gamma out CH2.
64	GMA1	P-gamma out CH1.
65	VCOM3	Output of VCOM amplifier 3.
66	VCOM2	Output of VCOM amplifier 2.
67	VCOM1	Output of VCOM amplifier 1.
68	HAVDD_VIN	HAVDD input supply (VIN or AVDD).
69	HAVDD_SW	HAVDD buck converter switch pin.
70	HAVDD	Output sensing for HAVDD buck converter.
71	AVDD	Output sensing for AVDD boost converter.
72	SWG	Gate input of the external Isolation MOSFET.

Preliminary

Pin No.	Pin Name	Pin Function
73	SWI	Input of the Isolation MOSFET.
74	cs	AVDD boost converter current sense.
75	AVDD_Gate	AVDD boost converter external NMOS gate driver.
76	COMPA	AVDD boost compensation pin.

Functional Block Diagram

Absolute Maximum Ratings (Note1)

• VIN1/2 , VIN_VGL2, HAVDD to GND	0 3V to 21V
• HAVDD_IN, VCOM_IN, AVDD to GND	
• EN, VL, TCOMP, COMPA, SDA, SCL, AVDD_Gate, VGH_Gate, VCC1, VCC2, X	
CPV2, LCIN1, LCIN2/CPV3, BLANK/CPV4 to GND	
• VCC1 SW, VCC2 SW to GND	
HAVDD SW to GND	,
VGH, VGH_SW/CS to GND	` _ /
• VGL2 SW to VIN VGL2	
• GMA1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 to GND	
• VCOM1, VCOM2, VCOM3 to GND	
VGL1 to GND	,
VGL2 to GND	
VGH to VGL2	
VGH to VGL1	
(CLKOUT1 to CLK1OUT2), STVOUT1, STVOUT2, STVOUT3, DISCH2 to GND DISCULL. CAUD.	
• DISCH1 to GND	
• LCOUT1, LCOUT2 to GND	0.3V to (VGH + 0.3V)
 Power Dissipation, PD @ TA = 25°C 	
VQFN-76L 8x8	4W
Package Thermal Resistance (Note 2)	
VQFN-76L 8x8, θ JA	
VQFN-76L 8x8, θ JC	
• Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	−65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
Decree and decree the Control of the	
Recommended Operating Conditions (Note 4)	
Ambient Temperature Range	
Junction Temperature Range	
Case Temperature Range (Note 5)	40°C to 100°C

Electrical Characteristics

 $(V_{IN}=12.7V,\ V_{AVDD}=16V,\ V_{CC1}=\ 1.8V,\ V_{CC2}=\ 3.3V,\ V_{HAVDD}=\ 8V,\ V_{GH}=\ 28V,\ V_{GL1}=\ -5V,\ V_{GL2}=\ -15.1V,\ T_A=\ 25^{\circ}C,\ unless=\ 1.8V$ otherwise specified)

Para	meter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Cur	rent	•	•				
Input Voltag	e Range	VIN		8.6		15.9	V
VIN Quiesce	ent Current		All SW pins not switching		3.5	6.5	mA
VIN Underv	oltage	.,	Hysteresis		0.8		.,
Lockout Threshold		VIN_UVLO	VIN rising	8	8.3	8.6	V
VL Output V	/oltage	VL	No Load	4.8	5	5.2	V
VL Undervo Lockout Thr		VL_UVLO	V _{IN} falling		3		V
Fault Detec	tion	T	T	1		I	
Fault Trigge	r Duration			40	50	60	ms
Thermal Sh Threshold	utdown		Temperature rising	135	150	165	°C
Thermal Sh Hysteresis	utdown			13.5	15	16.5	°C
Logic Input	ts (EN, SDA,	SCL, STV1, STV2,	STV3, CPV1, CPV2, LCIN2/CPV	/3, BLAN	K/CPV4, I	CIN1)	
Input	Logic-High	VIH		1.3			.,
Voltage	Logic-Low	VIL				0.8	V
EN Pull Low	/ Resistance	REN			400		kΩ
SDA, SCL II Leakage Cu	ırrent	lih, lil	VIN = 0 or 3.3V	-1	0.01	1	μΑ
SDA, SCL II					5		pF
SDA Output Voltage	Low	VoL	ISINK = 6mA		0.3	0.45	V
I ² C Timing	Characterist	ics					
Serial-Clock	Frequency	fscL		1	1	400	kHz
Bus Free Till STOP and Stonditions	me Between START	tBUF		1.3	1		μs
Hold Time (I START Con		thd,sta		0.6			μS
SCL Pulse-\	Width Low	tLOW		1.3			μS
SCL Pulse-\	Width High	thigh		0.6			μS
Setup Time Repeated S Condition		tsu,sta		0.6	1		μS
Data Hold T	ïme	thd,dat		0		800	ns
Data Setup	Time	tsu,dat		100			ns
SDA and SO Rising Time	CL Receiving	tr		20 + 0.1C _B		300	ns

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SDA and SCL Receiving Falling Time	tF		20 + 0.1C _B	-	300	ns
SDA Transmitting Fall Time	tF		20 + 0.1C _B	1	250	ns
Setup Time for STOP Condition	tsu_stop		0.6			μS
Bus Capacitance	Св			-	400	pF
Pulse Width of Suppressed Spike	tsp			85		ns
FAULT Indicator						
FAULT Output Low Voltage	VOL_FAULT	IFAULT = 2mA		V _L x 0.12		V
Boost Controller (AVDD)					
Output Voltage Range	VAVDD	AVDD > VIN + 2V	13.8		20	٧
Maximum Duty Cycle	DMAX_AVDD			90		%
Output Voltage Accuracy	VAVDD_ACC	AVDD = 16V, no load	-1.5		1.5	%
On another Francisco	fsw_avdd	2Ah[4] = 1h	450 (-10%)	500	550 (+10%)	kHz
Operating Frequency		2Ah[4] = 0h	675 (-10%)	750	825 (+10%)	kHz
Load Regulation	ΔVAVDD_LOAD	AVDD = 16V, 0 < ILOAD < 1A		0.2		%/A
Line Regulation	ΔVAVDD_LINE	VIN = 8.6V to 15.9V (ILOAD = 1mA)		0.1		%/V
Output Resolution	Res	100mV/Step		0.1		V
A_CS Threshold Voltage	VCSA	CS Resistor = 0.05Ω		5		Α
				8		
AVDD_Gate Output Voltage	VGATE		0		VL	V
Soft-start Period	tss_avdd	Programmable Soft-Start Time, tss_AVDD 2Ah[6:5], 5m/10m/15m/20ms, Default = 00h	5		20	ms
Fault Trip Level		AVDD falling		AVDD x 80%		V
Short Circuit Level	Vsc_avdd	AVDD falling		4		V
OVP Level		AVDD rising	20	21	22	V
OVP Hysteresis				1.5		V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Off Discharge Resistance	RDISCHG_AVDD			0.8		kΩ
Isolation Switch (GD)		•				
GD Pull Down Voltage	VGD	Vswi - Vswg	5	6	7	V
SWG to SWI Pull Up Resistance	Rup_gd		8	12	16	kΩ
SWG Sink Current	ISNK_SWG		10	20	30	μΑ
Sync./Async. Buck Cor	nverter (VCC1)					
Output Voltage Range	Vcc1	Register address: "01h" 6bits, V _{CC1} = (0.8V to 2.36V) [00h to 4Eh], Resolution: 0.02V	0.8		2.36	V
Output Accuracy		No load, default output	-2		2	%
Operating Frequency	few year	27h[3] = 0h	675 (–10%)	750	825 (+10%)	kHz
Operating Frequency	fsw_vcc1	27h[3] = 1h	450 (–10%)	500	550 (+10%)	NI IZ
Maximum Duty Cycle	D _{MAX_VCC1}		-	90		%
VIN_VCC1 to VCC1_SW P-MOSFET On-Resistance	RDSON_HS_VCC1	Ivcc1_sw = 500mA		200		mΩ
VCC1_SW to GND N-MOSFET On- Resistance	RDSON_LS_VCC1	Ivcc1_sw = 500mA		200		mΩ
VCC1_SW Positive		0x40h[7] = 0	1.5			Α
Current Limit	ILIM_VCC1	0x40h[7] = 1	3.2			Α
VIN_VCC1 to VCC1_SW P-MOSFET Leakage Current	ILK_VCC1_SW	Vvcc1_sw = 0V		1	10	μΑ
Soft-Start Time		01h[7] = 0		1		ms
Soit-Start Time	tss_vcc1	01h[7] = 1	-	3		ms
Fault Trip Level		Vcc1 falling		VCC1 x 65%		V
Short Circuit Level	Vsc_vcc1	Vcc1 falling		VCC1 x 20%		V
OVP Level		V _{CC1} rising, hysteresis = 0.11V		VCC1 x 120%		V
Line Regulation		$8.6V \le VIN \le 15.9V$, $IOUT_VCC1$ = $1mA$		0.1		%/V
Load Regulation		50mA ≤ I _{OUT_VCC1} ≤ 500mA		0.2		%
Power Off Discharge Resistance	RDISCHG_VCC1			0.3		kΩ

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Sync./Async. Buck Cor	verter (VCC2)					
Output Voltage Range	VCC2	Register address: "02h" 5bits, VCC2 = (2.2V to 3.7V) [00h to 0Fh], Resolution: 0.1V	2.2		3.7	V
Output Accuracy		No load, default output	-2		2	%
Operating Frequency	fsw vcc2	27h[3] = 0h	675 (–10%)	750	825 (+10%)	kHz
operaning in equality	.0W_V002	27h[3] = 1h	450 (–10%)	500	550 (+10%)	
Maximum Duty Cycle	DMAX_VCC2			90		%
VIN_VCC2 to VCC2_SW P-MOSFET On-Resistance	RDSON_HS_VCC2	Ivcc2_sw = 200mA		300		mΩ
VCC2_SW to GND N-MOSFET On- Resistance	RDSON_LS_VCC2	Ivcc2_sw = 200mA		400		mΩ
VCC2_SW Positive Current Limit	ILIM_VCC2		1.2			Α
VIN_VCC2 to VCC2_SW P-MOSFET Leakage Current	ILK_VCC2_SW	Vvcc2_sw = 0V	-	1	10	μА
Soft-Start Time	too	02h[7] = 0		1		ms
Soit-Start Time	tss_vcc2	02h[7] = 1		3		ms
Fault Trip Level		Vcc2 falling		VCC2 x 65%		V
Short Circuit Level	Vsc_vcc2	Vcc2 falling		VCC2 x 20%		V
OVP Level		VCC2 rising, hysteresis = 0.11V		VCC2 x 120%		V
Line Regulation		$8.6V \le VIN \le 15.9V$, $IOUT_VCC2$ = 1mA		0.1		%/V
Load Regulation		$50mA \leq IOUT_VCC2 \leq 500mA$		0.2		%
Power Off Discharge Resistance	RDISCHG_VCC2			0.3		kΩ
Sync. Buck Converter ((HAVDD)					
Adjustable Output Voltage Range	VHAVDD		GLDO[4:0]* ((HAVDD[9:0]+1)/1024)			V
Output Accuracy		No load, default output, tracking with AVDD	-1.5%	1/2 x AVDD	1.5%	V
		0x2A[4] = 0h, 0x2A[3] = 0h	675 (–10%)	750	825 (+10%)	kHz
Operating Frequency	fsw havdd	0x2A[4] = 0h, 0x2A[3] = 1h	1350 (–10%)	1500	1650 (+10%)	kHz
Operating Frequency	I 20M_HANDD	0x2A[4] = 1h, 0x2A[3] = 0h	450 (-10%)	500	550 (+10%)	kHz
		0x2A[4] = 1h, 0x2A[3] = 1h	900 (-10%)	1000	1100 (+10%)	kHz

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
HAVDD_VIN to HAVDD_SW P- MOSFET On- Resistance	RDSON_HS_HAVDD	IHAVDD_SW = 100mA		270		mΩ
HAVDD_SW Positive Current Limit	ILIM_P_HAVDD		2		1	А
HVADD_VIN to HAVDD_SW P- MOSFET Switch Leakage Current	ILEAK_P_HAVDD_ SW	Vsw = 0V		1	-	μΑ
HAVDD_SW to HAVDD_PGND N- MOSFET On- Resistance	RDSON_LS_HAVDD			250	I	mΩ
SW Negative Current Limit	ILIM_N_HAVDD		2.0			Α
HAVDD_SW to HAVDD_PGND N- MOSFET Switch Leakage Current	ILEAK_N_HAVDD_ SW	Vsw = 0V		1		μА
Soft-Start Time	tss_havdd	Tracking with AVDD		1.5		ms
Fault Trip Level		HAVDD falling		VHAVDD x 65%		V
Short Circuit Level	Vsc1_Havdd	HAVDD_SW switching frequency reduced to fosc_HAVDD/2		4.8	-	V
	VSC2_HAVDD	HAVDD_SW stop switching		2.4		
Overvoltage Level		HAVDD rising		VHVDD x 120%		V
Power Off Discharge Resistance	RDISCHG_HVDD			0.5		kΩ
Line Regulation		8.6V ≤ VIN ≤ 15.9V, IOUT_HAVDD = 1mA		0.1		%/V
Load Regulation		1mA ≤ IOUT_HVDD ≤ 500mA		0.2		%
Power Off Discharge Resistance	RDISCHG_HAVDD			0.5	-	kΩ
Negative OP Regulator	(VGL1)					
Adjustable Room Temperature Output Voltage Range	VGL1	Register address = "05h", 7 bits/128 steps, V _{GL} = (-1.8V to -15.0V) [00h to 42h], Resolution = 0.2V	-15		-1.8	V
Output Accuracy		Default code	-3		3	%
Output short source current	lo_sc_hs		0.21	0.28	0.35	Α
Output short sink current	lo_sc_ls		0.21	0.28	0.35	Α
Soft-Start Time	tss_vgl1			1.5		ms
VGL1 Fault Trip Level		VGL1 rising		VGL1 + 1.8		V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VGL1 Short Circuit Level	Vsc_vgl1	V _{GL1} rising	1	-1.3		V
Power Off Discharge Resistance	Rdischg_vgl1			0.2		kΩ
Load Regulation		10mA < ILOAD < 30mA	I	0.2		%
Power Off Discharge Resistance	RDISCHG_VGL1			0.2		kΩ
Async. Buck-Boost Cor	verter (VGL2)					
Adjustable Room Temperature Output Voltage Range (VGL2_LT)	VGL2_LT	Register address = "06h", 7 bits/128 steps, [00h to 4Dh] Resolution = 0.2V [4Dh to 4Eh] Resolution = 0.1V	-20		-4.5	V
Adjustable High Temperature Output Voltage Range (VGL2_HT)	VGL2_HT	Register address = "07h", 7 bits/128 steps, [00h to 4Dh] Resolution = 0.2V [4Dh to 4Eh] Resolution = 0.1V	-20		-4.5	V
Output Accuracy		Default code	-2%		2%	V
On another Fundament	f	0x2A[1] = 0h	675 (–10%)	750	825 (+10%)	kHz
Operating Frequency	fsw_vgl2	0x2A[1] = 1h	450 (-10%)	500	550 (+10%)	kHz
High-side On- Resistance			1	500		mΩ
Maximum Duty Cycle			80	90		%
Minimum On-time				100		ns
VGL2_SW Positive Current Limit	ILIM_VGL2		1.6			Α
Switch Leakage Current	lleak_VGL2	VGL2_SW = VIN or VGL2		5		μΑ
Soft-start Time	tss_vgl2			3		ms
VGL2 Fault Trip Level		V _{GL2} rising		VGL2 x 75%		%
VGL2 Short Circuit Level	Vsc_vgl2	V _{GL2} rising		-2.5		V
VGL2 OVP level		V _{GL2} falling, hysteresis = 0.5V		-22.5		V
Line Regulation		8.6V ≤ V _{IN} ≤ 15.9V, I _{OUT_} V _{GL2} = 0.1A		0.1		%/V
Load Regulation		$0mA \le IOUT_VGL2 \le 150mA$		0.2		%
Power Off Discharge Resistance	R _{DISCHG_VGL2}			0.2		kΩ
Async. Boost Converte	r (VGH)					
Adjustable Low Temperature Output Voltage Range (VGH_LT)	VGH_LT	Register Address = "03h", 7 bits, V _{GH_LT} = (21V to 45V) [00h to 78h], Resolution = 0.2V	21		45	V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Adjustable Room Temperature Output Voltage Range (VGH_HT)	Vgн_нт	Register Address = "04h", 7bits, V _{GH_HT} = (20V to 44V) [00h to 78h], Resolution = 0.2V	20	1	44	٧
Output Accuracy			-3		3	%
		0x2A[4] = 0h, 0x2A[3] = 0h	675 (–10%)	750	825 (+10%)	kHz
Operating Frequency	fsw vgh	0x2A[4] = 0h, 0x2A[3] = 1h	1350 (–10%)	1500	1650 (+10%)	kHz
opolating i requestoy	1.0W_VGI1	0x2A[4] = 1h, 0x2A[3] = 0h	450 (–10%)	500	550 (+10%)	kHz
		0x2A[4] = 1h, 0x2A[3] = 1h	900 (–10%)	1000	1100 (+10%)	kHz
VGH_SW to GND N-MOSFET On- Resistance	RDSON_LS_VGH			350		mΩ
Soft-Start Time	tss_vgh	Programmable Soft-Start Time, tss_vgH 2Ah[7], 3m/6ms, Default = 0h	3		6	ms
VGH Fault Trip Level		VGH falling		VGH x 70%		V
VGH Short Circuit Level		VGH falling		VGH x 20%		V
VGH Overvoltage Level	VGH_OVP	VGH Rising, hysteresis = 1V		47.5		٧
VGH_SW Leakage Current		VGH_SW = 44V		1		μΑ
VGH_SW Current Limit	ILIM		1.6			Α
Power Off Discharge Resistance	Rdischg_vgh			1.5		kΩ
Line Regulation		VAVDD = 14V to 18V, (IOUT_VGH = 100mA)		0.1		%/V
Load Regulation		10mA < IOUT_VGH < 100mA		0.2		%
Power Off Discharge Resistance	RDISCHG_VGH			1.5		kΩ
External N-MOSFET Ga	te Driver (VGH_Ga	ite)				
Gate High Voltage	DGate_OH		4.5	5	5.5	>
Gate Low Voltage	DGate_OL				0.3	V
External NMOS Switch Current Limit	VGH_CS_OCP	Rcs = 100mΩ	0.2	0.25	0.3	V
GAMMA Outputs (GMA	1 to GMA14)					
Output Voltage Range	VGMA		GLDO[4:0]* ((GMA[9:0]+1)/1024)			V
VCOM Resolution	Res			10		bits
Soft-Start Time	tss_gma			3		ms
Integral Nonlinearity	INL_GMA		-1		1	LSB

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Integral Nonlinearity Margin	INL_margin_GMA		-4		4	LSB
Differential Nonlinearity	DNL_GMA		-1		1	LSB
Continuous Current	ICON_GMA	VOUT drop 0.5V		30		mA
Short-Circuit Current	ISC_GMA	Outputs to VAVDD or GND		±200		mA
Output Impedance	Zo_gma	Output resistance when output is disabled		300		kΩ
Program to Output Delay	tD_GMA	From ACK falling edge to start-up point of programming gamma voltage		0.5		μS
Load Regulation	LR_GMA	-12mA & 12mA, Code = 256		±0.5		mV/m A
VCOM (VCOM1, VCOM2	2 and VCOM3)					
VCOM Output Range	VCOM1~3			GLDO[4:0] [9:0]+1)/10		V
VCOM Resolution	Res			10		bits
Soft-Start Time	tss_vcom			3		ms
Integral Nonlinearity	INL_vcom		-1		1	LSB
Integral Nonlinearity Margin	INL_margin_VCOM		-4		4	LSB
Differential Nonlinearity	DNL_vcom		-1		1	LSB
Program to Output Delay	tD_VCOM	From ACK falling edge to start-up point of programming VCOM voltage		0.5		μs
Input Offset Voltage	Vos	OP-Amp Outx = VAVDD/2		2	25	mV
Input Bias Current	lB	OP-Amp Outx = VAVDD/2		2	100	nA
Load Domidation	AV/	Sink current, ILOAD = 0 to -80mA		0.1		mV/m A
Load Regulation	ΔVLOAD	Source current, I _{LOAD} = 0 to +80mA		0.1		mV/m A
Common Mode Input Range	CMIR	OP-Amp Outx = V _{AVDD} /2	0.5		VAVDD -0.5	V
Common Mode Rejection Ratio	CMRR	0.5V ≤ OP-Amp Outx ≤ VAVDD-0.5V		95		dB
Open Loop Gain	AVoL	0.5V ≤ OP-Amp Outx ≤ V _{AVDD} -0.5V		80		dB

Para	meter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Sup Ratio	ply Rejection	PSRR	OP-Amp Outx = V _{AVDD} /2		96		dB
Output Swi	ng Low	VoL	ILOAD = -50mA		0.6	1.5	٧
Output Swi	ng High	Vон	I _{LOAD} = +50mA	VAVDD -1.5	VAVDD -0.6		V
Short-Circu	it Current	Isc_vcom	Outputs to V _{AVDD} or PGND		±400		mA
Slew Rate		SR	OP-Amp Outx = 4V step, 20% to 80%, AV = 1, RL = 10kΩ, CL = 100pF		35		V/μs
Gain-Band	width Product	GBWP	$R_L = 10k\Omega$, $C_L = 10pF$		12		MHz
Phase Marg	gin	РМ	R _L = 10kΩ, C _L = 10pF		50		degree
Level Shift	er				1		
		VGH, GH2		20		45	
Power Sup	olios	VGL2		-20		-4.5	V
rower Sup	piles	VGL1		-15		-1.8	v
		VGH, GH2 - VGL				57	
Positive (Vo Supply Cur		lvgh			TBD		mA
Positive (Vo Supply Cur	GH2) Power rent	IVGH2			TBD		mA
Negative (\ Supply Cur	/GL1) Power rent	IVGL1			0.05		mA
Negative (\ Supply Cur	/GL2) Power rent	IVGL2			0.2		mA
\(\(\alpha\)\(\begin{array}{cccccccccccccccccccccccccccccccccccc	. T h	Maria	VGH rising		19		V
VGH UVLC	rnresnoia	Vuvlo_vgh	VGH falling		3.8] V
Input	Logic-High	VIH_LVSFT	Input rising for STV1, STV2, STV3, CPV1, CPV2, LCIN1, LCIN2/CPV3, BLANK/CPV4	1.3			
Voltage	Logic-Low	VIL_LVSFT	Input falling for STV1, STV2, STV3, CPV1, CPV2, LCIN1, LCIN2/CPV3, BLANK/CPV4			0.8	V
In much O		lu=	STV1, STV2, STV3, CPV1, CPV2, LCIN1, LCIN2/CPV3, BLANK/CPV4 = 0V	-100		100	nA
Input Curre	nτ	lin_lvsft	STV1, STV2, STV3, CPV1, CPV2, LCIN1, LCIN2/CPV3, BLANK/CPV4 = 3.3V	4		10	μА
CLKOUT1 CLKOUT12 P-MOSFET		R _{dson_P1}	IOUT = 10mA, sourcing		7		Ω

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
CLKOUT1 to CLKOUT12 N-MOSFET Resistance	R _{dson_N1}	IOUT = 10mA, sinking		5		Ω
High side resistance of STVOUT1, STVOUT2, STVOUT3 LCOUT1, LCOUT2 DISCH1, DISCH2	R _{dson_P3}	I _{OUT} = 10mA, sourcing	12	20	50	Ω
Low side resistance of STVOUT1, STVOUT2, STVOUT3 LCOUT1, LCOUT2 DISCH1, DISCH2	R _{dson_N3}	I _{OUT} = 10mA, sinking	7	10	30	Ω
				1000		
		VGH = 28V, VGL1 = _5V,		700		
	t _R	VGL2 = -15.1 V, R _L = 51Ω , C _L = 4.7 nF, 20% to 80%		400		
CLKOUT1 to CLKOUT12				100		
Rising/Falling Slew Rate (Note 6)				1000		V/μs
		VGH = 28V, VGL1 = -5V,		700		
	t _F	VGL2 = -15.1 V, R _L = 51Ω , C _L = 4.7 nF, 80% to 20%		400		
				100		
Rising Propagation Delay (Note 7)	tPHG1	No Load		50	70	ns
Falling Propagation Delay2 (Note 7)	tPHG2	No Load		50	70	ns
High Side Current Limit of CLKOUT1~CLKOUT12	IGOCP_P	Tolerance: ±10%	20		270	mA
Low Side Current Limit of CLKOUT1~CLKOUT12	IGOCP_N	Tolerance: ±10%	20		270	mA
High Side Current Limit of STVOUT1, STVOUT2, STVOUT3	ISOCP_P	Tolerance: 50mA@±10%, others ±30%	20		135	mA
Low Side Current Limit of STVOUT1, STVOUT2, STVOUT3	ISOCP_N	Tolerance: 50mA@±10%, others ±30%	20		135	mA
High Side Current Limit of LCOUT1, LCOUT2	IEOCP_P	Tolerance: 30mA@±10%, others ±30%	10		135	mA
Low Side Current Limit of LCOUT1, LCOUT2	IEOCP_N	Tolerance: 30mA@±10%, others ±30%	10		135	mA
Low Side Current Limit of DISCH1, DISCH2	IEOCP_N	Tolerance: 50mA@±10%, others ±30%	40		135	mA

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
High Side OCP Sensing Time of	GOCP_P	Tolerance: ±10%	1		8.5	μS
CLKOUT1~CLKOUT12 Low Side OCP Sensing Time of CLKOUT1~CLKOUT12	GOCP_N	Tolerance: ±10%	1		8.5	μs
High Side OCP Sensing Time of STVOUT1, STVOUT2, STVOUT3	GOCP_P	Tolerance: 2μs@±20%, others ±30%	1	1	8.5	μs
Low Side OCP Sensing Time of STVOUT1, STVOUT2, STVOUT3	GOCP_N	Tolerance: 2μs@±20%, others ±30%	1	1	8.5	μS
High Side OCP Sensing Time of LCOUT1, LCOUT2	EOCP_P	Tolerance: 80μs@±20%, others ±30%	10	I	160	μS
Low Side OCP Sensing Time of LCOUT1, LCOUT2, DISCH1, DISCH2	EOCP_N	Tolerance: 80µs@±20%, others ±30%	10		160	μs

- **Note 1.** Stresses beyond those listed under "Absolute Maximum Ratings" September cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions September affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at T_A = 25°C with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the case top of the package.
- Note 3. Devices are ESD sensitive. Handling precautions are recommended.
- **Note 4.** The device is not guaranteed to function outside its operating conditions.
- **Note 5.** Case temperature is measured on the high effective thermal conductivity four layers thermal test board of JEDEC 51-7 thermal measurement standard. The case temperature point is on the expose pad.
- Note 6. Rising/Falling time measure point is before RC.

Note 7. Pulse less than 10ns will be filter.

DS6971-P00 January 2023

RT6971 RICHTEK Preliminary

I²C Command

Slave Address

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 = LSB
0	1	0	0	0	0	1	R/W

Write Command

(a) Write single byte of data to Register

			SI	ave A	ddres	SS						Reg	gister	Addre	ess						Dat	ta Fro	m Ma	aster			
Start	0	1	0	0	0	0	1	0	Slave ACK	0	0	0	R4	R3	R2	R1	R0	Slave ACK	D7	D6	D5	D4	D3	D2	D1	D0	Slave ACK Stop

(b) Write multiple bytes of data to Registers

(c) Write All Registers into EEPROM

			SI	lave A	Addre	SS						Re	gister	Addr	ess						Da	ta Fro	om M	aster			
Start	0	1	0	0	0	0	1	0	Slave ACK	1	1	1	1	1	1	1	1	Slave ACK	0	0	0	0	0	0	0	0	Slave ACK Stop
			S	lave A	Addre	ss						Re	gister	Addı	ess						Da	ta Fr	om M	aster			

(d) Write VCOM data Registers into EEPROM

			SI	ave A	Addre	SS						Re	gister	Addr	ess						Da	ta Fro	om M	aster				
Start	0	1	0	0	0	0	1	0	Slave ACK	1	1	1	1	1	1	1	1	Slave ACK	0	0	0	0	0	0	0	0	Slave ACK St	Stop
			0	la /	ا ما ما ب							Do	-:-+	مامام							D-	to F=	- no 1 /	4				
			3	iave <i>F</i>	Addre	55						Re	gister	Addr	ess						Da	ila Fi	OTTI IVI	aster				

Read Command

(a) Read single byte of data from Register

			S	ave A	Addre	ss					С	ontrol	Reg	ister A	Addre	ss					Da	ta Fro	om M	aster				
Start	0	1	0	0	0	0	1	0	Slave ACK	1	1	1	1	1	1	1	1	Slave ACK	0	0	0	0	0	0	0	0	Slave ACK	Stop
			S	ave A	Addre	ss						Re	gister	Addr	ess	•										•		
Start	0	1	0	0	0	0	1	0	Slave ACK	0	0	0	R4	R3	R2	R1	R0	Slave ACK										
			S	lave A	Addre	ss						Data	a Fron	n RT	6971													
Re- start	0	1	0	0	0	0	1	1	Slave ACK	D7	D6	D5	D4	D3	D2	D1	D0	Master NACK	Stop									

(b) Read multiple bytes of data from Registers

			SI	ave A	Addre	ss					С	ontro	Reg	ister A	Addre	ss					Data	From	Mast	ter						
Start	0	1	0	0	0	0	1	0	Slave ACK	1	1	1	1	1	1	1	1	Slave ACK	0	0	0 ()) (0 () (O Sla	ove CK St	ор		
			SI	ave A	Addre	ss						Re	gister	Addı	ess															
Start	0	1	0	0	0	0	1	0	Slave ACK	0	0	0	R4	R3	R2	R1	R0	Slave ACK												
			SI	ave A	Addre	ss					ı	n _{th} Da	ıta Fr	om R	T697	1						L	ast D	ata F	rom F	RT697	'1			
Re- start	0	1	0	0	0	0	1	1	Slave ACK	D7	D6	D5	D4	D3	D2	D1	D0	Master ACK			D7	D6	D5	D4	D3	D2	D1	D0	Master NACK	Sto

(c) Read data from EEPROM

			S	lave A	Addre	SS					С	ontro	Reg	ister A	Addre	ss					Da	ata Fr	om M	aster				
Start	0	1	0	0	0	0	1	0	Slave ACK	1	1	1	1	1	1	1	1	Slave ACK	0	0	0	0	0	0	0	1	Slave ACK	Stop
			S	lave A	Addre	ss						Re	gister	Addı	ess													
Start	0	1	0	0	0	0	1	0	Slave ACK	0	0	0	R4	R3	R2	R1	R0	Slave ACK										
			S	lave A	Addre	ss						Data	a Fron	n RT	6971													
Re- start	0	1	0	0	0	0	1	1	Slave ACK	D7	D6	D5	D4	D3	D2	D1	D0	Master NACK	Stop									

(d) Read multiple bytes of data from EEPROM

			SI	ave A	Addre	SS					C	ontro	Regi	ster /	Addre	SS					Data	a Fron	n Mas	ter						
Start	0	1	0	0	0	0	1	0	Slave ACK	1	1	1	1	1	1	1	1	Slave ACK	0	0 (0	0	0	0	0	1 Sia	ave CK St	ор		
			SI	ave A	Addre	ss						Re	gister	Addı	ess															
Start	0	1	0	0	0	0	1	0	Slave ACK	0	0	0	R4	R3	R2	R1	R0	Slave ACK												
			SI	ave A	Addre	ss					ı	n _{th} Da	ıta Fr	om R	T697	1						į	_ast D	ata F	rom F	RT697	71			
Re- start	0	1	0	0	0	0	1	1	Slave ACK	D7	D6	D5	D4	D3	D2	D1	D0	Master ACK			D7	D6	D5	D4	D3	D2	D1	D0	Master NACK	Stop

Register	Map
----------	-----

Registe							1					
Block	ADDR	DEC		DEC	7	6	5	4	3	2	1	0
AVDD	0x00	0	0x08h						AVD	D<5:0>		
VCC1	0x01	1	0x05h		VCC1_SS		VCC			•		
VCC2	0x02	2	0x08h		VCC2_SS	VCC2<			VCC2<4:0)>		
VGH	0x03	3	0x2Dh						VGH_LT<6:0	>		
VGH	0x04	4	0x28h						VGH_HT<6:0	>		
VGL1	0x05	5	0x06h						VGL1<6:0>			
VGL2	0x06	6	0x35h						VGL2_LT<6:0	 >		
VGL2	0x07	7	0x1Ch					,	VGL2_HT<6:0)>		
DLY	0x08	8	0x15h		DL	/0<1:0>	DLY1	<1:0>	DLY2	<1:0>	DL	Y3<1:0>
OP	0x09	9	0xC8				GLDO<4:0>				HAVI	DD<9:8>
OP	0x0A	10	0x44					HAV	DD<7:0>			
OP	0x0B	11	0x03			GMA1<9:				\1<9:8>		
OP	0x0C	12	0x99			GMA1<7:0>						
OP	0x0D	13	0x03						GMA	\2<9:8>		
OP	0x0E	14	0x88			GMA2<7:0>						
OP	0x0F	15	0x03			GMA3<				\3<9:8>		
OP	0x10	16	0x0D		GMA3<7:0>							
OP	0x11	17	0x02		GMA4<9:83				\4<9:8>			
OP	0x12	18	0xCA		GMA4<7:0>							
OP	0x13	19	0x02		GMA5<9				\5<9:8>			
OP	0x14	20	0xA1					GMA	5<7:0>	•		
OP	0x15	21	0x02								GMA	\6<9:8>
OP	0x16	22	0x30					GMA	.6<7:0>	•		
OP	0x17	23	0x02								GMA	\7<9:8>
OP	0x18	24	0x17					GMA	7<7:0>	•		
OP	0x19	25	0x01								GMA	\8<9:8>
OP	0x1A	26	0xC3					GMA	.8<7:0>			
OP	0x1B	27	0x01								GMA	\9<9:8>
OP	0x1C	28	0xAA					GMA	.9<7:0>			
тсом	0x1D	29	0x10h		VGH_ TC_EN	VCOM_ TC_EN	VGH_TC_ Type					
MISC	0x1E	30	0x07h			1_TCOM 1:0>	VGX_ PRT _OFF			VCOM	_TC<3:0>	
LS	0x1F	31	0xFFh			EOCP_T	IME<3:0>			GOCP_	_TIME<3:0>	
LS	0x20	32	0x7Fh			EOG	CP_LEVEL<2:	:0>		GOCP_	LEVEL<3:0>	
LS	0x21	33	0xFFh			SOCP_T	IME<3:0>			SOCP_I	LEVEL<3:0>	
LS	0x22	34	0x24h				SCLK_ PSK_RST		1			

Block	ADDR	DEC	HEX	DEC	7	6	5	4	3	2	1	0
LS	0x23	35	0x29h				Dummy CLK		REVERSE	DOUBLE		
MISC	0x24	36	0xFF		AVDD_ DIS	HAVDD_ DIS	VGH_DIS	VGL1_DIS	VCC_DIS	VCOM3_ DIS	VCOM2_ DIS	VCOM1_DIS
MISC	0x25	37	0x07				VCC2_DIS	VGL2_DIS		_	EXT_DRV 1:0>	VGH_EXT_ INT
MISC	0x26	38	0xC0		VCOM1_ EN	VCOM2_EN	VCOM3_ EN					
OP	0x27	39	0x11			VCC1 Syn./Asyn.	VCC2 Syn./Asyn.	VCC2_EN	FRE_ VCC1/2	FT_VCC2		
MISC	0x29	41	0xFF		Protection _EN	VCC_EN	VGL1_EN	VGL2_EN	AVDD_EN	VGH_EN	HAVDD_ EN	GMA_EN
MISC	0x2A	42	0xFF		VGH_SS	AVDD	_SS	FRE_ AVDD	FRE_ HAVDD	FRE_ VGH	FRE_ VGL2	PMIC_EN
MISC	0x2B	43	0x2F		DIS	SCH1/2_OCP_L	evel			DIS	SCH1/2_OCF	_Time
MISC	0x2C	44	0x00				AVDD Protection	VCC1 Protection	HAVDD Protection	VGH Protection	VGL2 Protection	VGL1 Protection
ОР	0x2D	45	0x00		L/S 7 Protection	L/S 6 Protection	L/S 5 Protection	OTP Protection	L/S 4 Protection	L/S 3 Protection	L/S 2 Protection	L/S 1 Protection
MISC	0x2E	46	0x0B				ſ	Read Only (Chip ID: 0x0B)		
OP	0x2F	47	0x2F					GMA1	10<7:0>			
OP	0x30	48	0x41		GMA	10<9:8>					GMA ²	11<9:8>
OP	0x31	49	0x04					GMA11<7:0> GMA12<9:8>				
OP	0x32	50	0x00								GMA ²	12<9:8>
OP	0x33	51	0xB6					GMA1	12<7:0>	<u> </u>	CMA	10 40.05
OP OP	0x34 0x35	52 53	0x00 0x23					GMA1	13<7:0>	GMA13<9:8>		
OP	0x36	54	0x00					OWA	10 47.05	GMA14<9:8>		
OP	0x37	55	0x0C					GMA1	14<7:0>		OW, C	14 10.0
OP	0x38	56	0x01					0.00	11.11.0		VCON	11<9:8>
OP	0x39	57	0x8D					VCON	11<7:0>			
OP	0x3A	58	0x01								VCON	12<9:8>
OP	0x3B	59	0x8D					VCON	12<7:0>			
OP	0x3C	60	0x01								VCON	/I3<9:8>
OP	0x3D	61	0x8D					VCON	13<7:0>			
LS	0x40	64	0x80		LS_EN		HSR<2:0>		CLK Rising	Slew Rate	CLK Fallin	g Slew Rate
LS	0x41	65	0x00			DIS <1:0>	STV2_DI		STV3_DI	Į		DIS<1:0>
LS	0x42	66	0x06		CLK_I	OIS <1:0>	LC_DIS	l		nitial State<		Auto Pulse
MISC	0x43	67	0x00		V	COM_Delay<1:	:0>		on Delay I:0>		Off Delay 1:0>	
LS	0x44	68	0x03		ILMT_1		ILMT_A	VIN_U	JVLO_F		EN_	_Type
MISC	0x45	69	0x03		VGH1_UV LO_F_ State	STV1_Reset	CH_MODE Power			Power	Off Discharge Threshold <2:0>	
MISC	0xFF	255						CR (I	Note 8)			

RT6971 Preliminary

Note 8. CR DATA:

0xFF = 80h: Write all DAC register into EEPROM.

0xFF = 40h: "Write" only VCOM1/2/3 data to EEPROM.

0xFF = 01h: Read data from EEPROM.

0xFF = 00h: Read data from DAC register.

The Suggested writing all DAC register into EEPROM time is 300ms

The Suggested writing only VCOM data to EEPROM time is 100ms

Channels Output Table (Unit: V)

Register Code	AVDD	VCC1	VCC2	VGH_ LT	VGH_ HT	VGL1	VGL2_ LT	VGL2_ HT	GLDO
00h	NA	0.80	2.2	21	20	-1.8	-4.5	-4.5	13.0
01h	13.8	0.82	2.3	21.2	20.2	-2.0	-4.7	-4.7	13.2
02h	13.9	0.84	2.4	21.4	20.4	-2.2	-4.9	-4.9	13.4
03h	14.0	0.86	2.5	21.6	20.6	-2.4	-5.1	-5.1	13.6
04h	14.1	0.88	2.6	21.8	20.8	-2.6	-5.3	-5.3	13.8
05h	14.2	0.90	2.7	22	21	-2.8	-5.5	-5.5	14.0
06h	14.3	0.92	2.8	22.2	21.2	-3.0	-5.7	-5.7	14.2
07h	14.4	0.94	2.9	22.4	21.4	-3.2	-5.9	-5.9	14.4
08h	14.5	0.96	3.0	22.6	21.6	-3.4	-6.1	-6.1	14.6
09h	14.6	0.98	3.1	22.8	21.8	-3.6	-6.3	-6.3	14.8
0Ah	14.7	1.00	3.2	23	22	-3.8	-6.5	-6.5	15.0
0Bh	14.8	1.02	3.3	23.2	22.2	-4.0	-6.7	-6.7	15.2
0Ch	14.9	1.04	3.4	23.4	22.4	-4.2	-6.9	-6.9	15.4
0Dh	15.0	1.06	3.5	23.6	22.6	-4.4	-7.1	-7.1	15.6
0Eh	15.1	1.08	3.6	23.8	22.8	-4.6	-7.3	-7.3	15.8
0Fh	15.2	1.10	3.7	24	23	-4.8	-7.5	-7.5	16.0
10h	15.3	1.12		24.2	23.2	-5.0	-7.7	-7.7	16.2
11h	15.4	1.14		24.4	23.4	-5.2	-7.9	-7.9	16.4
12h	15.5	1.16		24.6	23.6	-5.4	-8.1	-8.1	16.6
13h	15.6	1.18		24.8	23.8	-5.6	-8.3	-8.3	16.8
14h	15.7	1.20		25	24	-5.8	-8.5	-8.5	17.0
15h	15.8	1.22		25.2	24.2	-6.0	-8.7	-8.7	17.2
16h	15.9	1.24		25.4	24.4	-6.2	-8.9	-8.9	17.4
17h	16.0	1.26		25.6	24.6	-6.4	-9.1	-9.1	17.6
18h	16.1	1.28		25.8	24.8	-6.6	-9.3	-9.3	17.8
19h	16.2	1.30		26	25	-6.8	-9.5	-9.5	18.0
1Ah	16.3	1.32		26.2	25.2	-7.0	-9.7	-9.7	18.0
1Bh	16.4	1.34		26.4	25.4	-7.2	-9.9	-9.9	18.0
1Ch	16.5	1.36		26.6	25.6	-7.4	-10.1	-10.1	18.0
1Dh	16.6	1.38		26.8	25.8	-7.6	-10.3	-10.3	18.0
1Eh	16.7	1.40		27	26	-7.8	-10.5	-10.5	18.0
1Fh	16.8	1.42		27.2	26.2	-8.0	-10.7	-10.7	18.0
20h	16.9	1.44		27.4	26.4	-8.2	-10.9	-10.9	
21h	17.0	1.46		27.6	26.6	-8.4	-11.1	-11.1	
22h	17.1	1.48		27.8	26.8	-8.6	-11.3	-11.3	
23h	17.2	1.50		28	27	-8.8	-11.5	-11.5	
24h	17.3	1.52		28.2	27.2	-9.0	-11.7	-11.7	
25h	17.4	1.54		28.4	27.4	-9.2	-11.9	-11.9	
26h	17.5	1.56		28.6	27.6	-9.4	-12.1	-12.1	
27h	17.6	1.58		28.8	27.8	-9.6	-12.3	-12.3	

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation

Register Code	AVDD	VCC1	VCC2	VGH_ LT	VGH_ HT	VGL1	VGL2_ LT	VGL2_ HT	GLDO
28h	17.7	1.60		29	28	-9.8	-12.5	-12.5	
29h	17.8	1.62		29.2	28.2	-10.0	-12.7	-12.7	
2Ah	17.9	1.64		29.4	28.4	-10.2	-12.9	-12.9	
2Bh	18.0	1.66		29.6	28.6	-10.4	-13.1	-13.1	
2Ch	18.1	1.68		29.8	28.8	-10.6	-13.3	-13.3	
2Dh	18.2	1.70		30	29	-10.8	-13.5	-13.5	
2Eh	18.3	1.72		30.2	29.2	-11.0	-13.7	-13.7	
2Fh	18.4	1.74		30.4	29.4	-11.2	-13.9	-13.9	
30h	18.5	1.76		30.6	29.6	-11.4	-14.1	-14.1	
31h	18.6	1.78		30.8	29.8	-11.6	-14.3	-14.3	
32h	18.7	1.80		31	30	-11.8	-14.5	-14.5	
33h	18.8	1.82		31.2	30.2	-12.0	-14.7	-14.7	
34h	18.9	1.84		31.4	30.4	-12.2	-14.9	-14.9	
35h	19.0	1.86		31.6	30.6	-12.4	-15.1	-15.1	
36h	19.1	1.88		31.8	30.8	-12.6	-15.3	-15.3	
37h	19.2	1.90		32	31	-12.8	-15.5	-15.5	
38h	19.3	1.92		32.2	31.2	-13.0	-15.7	-15.7	
39h	19.4	1.94		32.4	31.4	-13.2	-15.9	-15.9	
3Ah	19.5	1.96		32.6	31.6	-13.4	-16.1	-16.1	
3Bh	19.6	1.98		32.8	31.8	-13.6	-16.3	-16.3	
3Ch	19.7	2.00		33	32	-13.8	-16.5	-16.5	
3Dh	19.8	2.02		33.2	32.2	-14.0	-16.7	-16.7	
3Eh	19.9	2.04		33.4	32.4	-14.2	-16.9	-16.9	
3Fh	20.0	2.06		33.6	32.6	-14.4	-17.1	-17.1	
40h		2.08		33.8	32.8	-14.6	-17.3	-17.3	
41h		2.10		34	33	-14.8	-17.5	-17.5	
42h		2.12		34.2	33.2	-15.0	-17.7	-17.7	
43h		2.14		34.4	33.4		-17.9	-17.9	
44h		2.16		34.6	33.6		-18.1	-18.1	
45h		2.18		34.8	33.8		-18.3	-18.3	
46h		2.20		35	34		-18.5	-18.5	
47h		2.22		35.2	34.2		-18.7	-18.7	
48h		2.24		35.4	34.4		-18.9	-18.9	
49h		2.26		35.6	34.6		-19.1	-19.1	
4Ah		2.28		35.8	34.8		-19.3	-19.3	
4Bh		2.30		36	35		-19.5	-19.5	
4Ch		2.32		36.2	35.2		-19.7	-19.7	
4Dh		2.34		36.4	35.4		-19.9	-19.9	

Register Code AVD VCC1 VCC2 VGH LT LT VGH LT CATE VGL2 LT LT VGL2 LT LT VGL2 LT LT GLDO 4Eh 1 2.36 36.8 35.8 1 2.0 2.0 1 50h 1 1 36.8 35.8 1 2 2 1 51h 1 1 37.2 36.2 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th>,,,,,,</th> <th></th> <th></th> <th>-</th> <th></th>						,,,,,,			-	
4Fh 36.8 35.8 8 50h 37 36 8 51h 37.2 36.2 8 52h 37.4 36.4 8 53h 37.6 36.6 8 54h 37.8 36.8 8 55h 38.3 37 9 56h 38.4 37.4 9 57h 38.4 37.4 9 58h 38.6 37.6 9 59h 38.8 37.8 9 58h 39.2 38.2 9 5Ch 39.4 36.4 9 5Ch 39.4 36.6 9 5Dh 39.6 38.6 9 5Fh 40 39 9 60h 40.2 39.2 9 60h 40.2 39.2 9 61h 40.4 39.4 9 9 62h 40.6 39.6		AVDD	VCC1	VCC2			VGL1			GLDO
50h 37 36 36.2 36.2 37.4 36.4 37.4 36.4 36.4 37.4 36.4 36.4 37.8 36.6 36.6 37.8 36.6 37.8 36.6 37.8 36.8 37.8 36.8 37.8 36.8 37.2 38.8 37.2 37.2 37.2 37.2 37.6 38.8 37.6 37.6 37.6 37.6 38.8 37.8 37.6 38.8 37.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8	4Eh		2.36		36.6	35.6		-20	-20	
51h 37.2 36.2	4Fh				36.8	35.8				
52h 37.4 36.4 53h 37.6 36.6 54h 37.8 36.8 55h 38 37 56h 38.2 37.2 57h 38.4 37.4 58h 38.6 37.6 59h 38.8 37.8 5Ah 39 38 5Bh 39.2 38.2 5Ch 39.4 38.4 5Dh 39.6 38.6 5Eh 39.8 38.8 5Fh 40 39 60h 40.2 39.2 61h 40.4 39.4 62h 40.6 39.6 63h 40.8 39.8 64h 41.4 40.2 66h 41.1.4	50h				37	36				
53h 37.6 36.6	51h				37.2	36.2				
54h 37.8 36.8	52h				37.4	36.4				
55h 38 37	53h				37.6	36.6				
56h 38.2 37.2	54h				37.8	36.8				
57h 38.4 37.4	55h				38	37				
58h 38.6 37.6	56h				38.2	37.2				
59h 38.8 37.8 37.8 39.3 38.8 37.8 39.3 38.8 39.2 38.2 38.2 38.2 38.4 39.4 38.4 38.4 39.4 38.6 38.6 39.8 38.8 38.8 39.8 38.8 38.8 39.8 38.8 39.8 38.8 39.2	57h				38.4	37.4				
5Ah 39 38	58h				38.6	37.6				
5Bh 39.2 38.2 </td <td>59h</td> <td></td> <td></td> <td></td> <td>38.8</td> <td>37.8</td> <td></td> <td></td> <td></td> <td></td>	59h				38.8	37.8				
5Ch 39.4 38.4	5Ah				39	38				
5Dh 39.6 38.6 8 5Eh 39.8 38.8 8 5Fh 40 39 8 60h 40.2 39.2 8 61h 40.4 39.4 8 62h 40.6 39.6 8 63h 40.8 39.8 8 64h 41 40 40 65h 41.2 40.2 40.2 66h 41.4 40.4 40.4 67h 41.6 40.6 40.6 68h 41.8 40.8 40.8 69h 42 41 41 6Ah 42.2 41.2 41.2 6Bh 42.4 41.4 41.4 6Ch 42.6 41.6 41.6 6Dh 42.8 41.8 42.4 6Fh 43.2 42.2 42.2 70h 43.4 42.4 42.4 71h 43.6 42.	5Bh				39.2	38.2				
5Eh 39.8 38.8	5Ch				39.4	38.4				
5Fh 40 39 8 <td>5Dh</td> <td></td> <td></td> <td></td> <td>39.6</td> <td>38.6</td> <td></td> <td></td> <td></td> <td></td>	5Dh				39.6	38.6				
60h 40.2 39.2 61h 40.4 39.4 62h 40.6 39.6 63h 40.8 39.8 64h 41 40 65h 41.2 40.2 66h 41.4 40.4	5Eh				39.8	38.8				
61h 40.4 39.4 9.6 62h 40.6 39.6 9.8 63h 40.8 39.8 9.8 64h 41 40 40 65h 41.2 40.2 40.2 66h 41.4 40.4 40.4 67h 41.6 40.6 40.6 68h 41.8 40.8 41.8 69h 42 41 41.2 6Ah 42.2 41.2 41.2 6Bh 42.4 41.4 41.6 6Ch 42.6 41.6 41.6 6Dh 42.8 41.8 42.8 6Eh 43 42 42.2 70h 43.4 42.4 42.4 71h 43.6 42.6 42.6 72h 43.8 42.8 42.8	5Fh				40	39				
62h 40.6 39.6 9.8 <td< td=""><td>60h</td><td></td><td></td><td></td><td>40.2</td><td>39.2</td><td></td><td></td><td></td><td></td></td<>	60h				40.2	39.2				
63h 40.8 39.8 9.8 <td< td=""><td>61h</td><td></td><td></td><td></td><td>40.4</td><td>39.4</td><td></td><td></td><td></td><td></td></td<>	61h				40.4	39.4				
64h 41 40 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.3 40.4 40.4 40.4 40.4 40.4 40.4 40.6	62h				40.6	39.6				
65h 41.2 40.2 66h 41.4 40.4 67h 41.6 40.6 68h 41.8 40.8 69h 42 41 6Ah 42.2 41.2 6Bh 42.4 41.4 6Ch 42.6 41.6 6Dh 42.8 41.8 6Eh 43.2 42.2 70h 43.4 42.4 71h 43.6 42.6 72h 43.8 42.8	63h				40.8	39.8				
66h 41.4 40.4 40.6 67h 41.6 40.6 40.6 68h 41.8 40.8 40.8 69h 42 41 41.2 6Ah 42.2 41.2 41.2 6Bh 42.4 41.4 41.4 6Ch 42.6 41.6 41.6 6Dh 42.8 41.8 41.8 6Eh 43 42 42.2 70h 43.4 42.4 42.4 71h 43.6 42.6 42.8 72h 43.8 42.8 42.8	64h				41	40				
67h 41.6 40.6 68h 68h 41.8 40.8 68h 69h 42 41 68h 6Ah 42.2 41.2 68h 6Bh 42.4 41.4 68h 6Ch 42.6 41.6 68h 6Dh 42.8 41.8 68h 6Eh 43 42 68h 6Fh 43.2 42.2 68h 70h 43.4 42.4 68h 72h 43.8 42.8 68h	65h				41.2	40.2				
68h 41.8 40.8 69h 69h 42 41 41 41 42 41 42 41.2 42.2 41.2 42.2 41.2 42 42 41.4 42 42 42 42 42 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 42 43 43 42 43 43 42 43 <t< td=""><td>66h</td><td></td><td></td><td></td><td>41.4</td><td>40.4</td><td></td><td></td><td></td><td></td></t<>	66h				41.4	40.4				
69h 42 41 6Ah 42.2 41.2 6Bh 42.4 41.4 6Ch 42.6 41.6 6Dh 42.8 41.8 6Eh 43 42 6Fh 43.2 42.2 70h 43.4 42.4 71h 43.6 42.6 72h 43.8 42.8	67h				41.6	40.6				
6Ah 42.2 41.2 41.2 6Bh 42.4 41.4 41.4 6Ch 42.6 41.6 41.6 6Dh 42.8 41.8 41.8 6Eh 43 42 42.2 70h 43.4 42.4 42.4 71h 43.6 42.6 42.8 72h 43.8 42.8 42.8	68h				41.8	40.8				
6Bh 42.4 41.4 60 6Ch 42.6 41.6 60 6Dh 42.8 41.8 60 6Eh 43 42 60 6Fh 43.2 42.2 60 70h 43.4 42.4 60 71h 43.6 42.6 60 72h 43.8 42.8 60	69h				42	41				
6Ch 42.6 41.6 60 6Dh 42.8 41.8 60 6Eh 43 42 60 6Fh 43.2 42.2 60 70h 43.4 42.4 60 71h 43.6 42.6 60 72h 43.8 42.8 60	6Ah				42.2	41.2				
6Dh	6Bh				42.4	41.4				
6Eh 43 42 6Fh 43.2 42.2 70h 43.4 42.4 71h 43.6 42.6 72h 43.8 42.8	6Ch				42.6	41.6				
6Fh 43.2 42.2 70h 43.4 42.4 71h 43.6 42.6 72h 43.8 42.8	6Dh				42.8	41.8				
70h 43.4 42.4 71h 43.6 42.6 72h 43.8 42.8	6Eh				43	42				
71h 43.6 42.6 72h 43.8 42.8	6Fh				43.2	42.2				
72h 43.8 42.8	70h				43.4	42.4				
	71h				43.6	42.6				
73h 44 43	72h				43.8	42.8				
	73h				44	43				

Register Code	AVDD	VCC1	VCC2	VGH_ LT	VGH_ HT	VGL1	VGL2_ LT	VGL2_ HT	GLDO
74h				44.2	43.2				
75h				44.4	43.4				
76h				44.6	43.6				
77h				44.8	43.8				
78h				45	44				

GAMMA Output Table, RES = GLDO/1024 (unit: V)

OAMMA Output Tubic, INL						
Register Code	Gamma 1~14					
0000h	RES					
0001h	RES+RES*1					
0002h	RES+RES*2					
0003h	RES+RES*3					
0004h	RES+RES*4					
0005h	RES+RES*5					
0006h	RES+RES*6					
0007h	RES+RES*7					
0008h	RES+RES*8					
0009h	RES+RES*9					
000Ah	RES+RES*10					
000Bh	RES+RES*11					
000Ch	RES+RES*12					
000Dh	RES+RES*13					
000Eh	RES+RES*14					
000Fh	RES+RES*15					

•		•	

0037h	RES+RES*55
0038h	RES+RES*56
0039h	RES+RES*57
003Ah	RES+RES*58
003Bh	RES+RES*59
003Ch	RES+RES*60
003Dh	RES+RES*61
003Eh	RES+RES*62
003Fh	RES+RES*63
0040h	RES+RES*64
0041h	RES+RES*65
0042h	RES+RES*66

.....

0109h	RES+RES*265
010Ah	RES+RES*266
010Bh	RES+RES*267
010Ch	RES+RES*268
010Dh	RES+RES*269
010Eh	RES+RES*270
010Fh	RES+RES*271
0110h	RES+RES*272
0111h	RES+RES*273
0112h	RES+RES*274
0113h	RES+RES*275
0114h	RES+RES*276

01F1h	RES+RES*497
01F2h	RES+RES*498
01F3h	RES+RES*499
01F4h	RES+RES*500
01F5h	RES+RES*501
01F6h	RES+RES*502
01F7h	RES+RES*503
01F8h	RES+RES*504
01F9h	RES+RES*505
01FAh	RES+RES*506
01FBh	RES+RES*507
01FCh	RES+RES*508
01FDh	RES+RES*509
01FEh	RES+RES*510
01FFh	RES+RES*511

0258h	RES+RES*600
0259h	RES+RES*601
025Ah	RES+RES*602
025Bh	RES+RES*603
025Ch	RES+RES*604
025Dh	RES+RES*605
025Eh	RES+RES*606
025Fh	RES+RES*607
0260h	RES+RES*608
0261h	RES+RES*609
0262h	RES+RES*610
0263h	RES+RES*611
0264h	RES+RES*612

0265h	RES+RES*613
0266h	RES+RES*614

RES+RES*1009
112011120 1000
RES+RES*1010
RES+RES*1011
RES+RES*1012
RES+RES*1013
RES+RES*1014
RES+RES*1015
RES+RES*1016
RES+RES*1017
RES+RES*1018
RES+RES*1019
RES+RES*1020
RES+RES*1021
RES+RES*1022
RES+RES*1023

VCOM, HAVDD Output Table, RES = GLDO/1024 (unit: V)

Register Code	HAVDD/VCOM1/2
0000h	RES
0001h	RES+RES*1
0002h	RES+RES*2
0003h	RES+RES*3
0004h	RES+RES*4
0005h	RES+RES*5
0006h	RES+RES*6
0007h	RES+RES*7
0008h	RES+RES*8
0009h	RES+RES*9
000Ah	RES+RES*10
000Bh	RES+RES*11
000Ch	RES+RES*12
000Dh	RES+RES*13
000Eh	RES+RES*14
000Fh	RES+RES*15

0037h	RES+RES*55
0038h	RES+RES*56
0039h	RES+RES*57
003Ah	RES+RES*58
003Bh	RES+RES*59
003Ch	RES+RES*60
003Dh	RES+RES*61
003Eh	RES+RES*62
003Fh	RES+RES*63
0040h	RES+RES*64
0041h	RES+RES*65
0042h	RES+RES*66

0109h	RES+RES*265
010Ah	RES+RES*266
010Bh	RES+RES*267
010Ch	RES+RES*268
010Dh	RES+RES*269
010Eh	RES+RES*270
010Fh	RES+RES*271
0110h	RES+RES*272
0111h	RES+RES*273
0112h	RES+RES*274
0113h	RES+RES*275
0114h	RES+RES*276
•	•

www.richtek.com

0180h	RFS+RFS*384

0181h	RES+RES*385
0182h	RES+RES*386
0183h	RES+RES*387
0184h	RES+RES*388
0185h	RES+RES*389
0186h	RES+RES*390
0187h	RES+RES*391
0188h	RES+RES*392
0189h	RES+RES*393
018Ah	RES+RES*394
018Bh	RES+RES*395

01F1h	RES+RES*497
01F2h	RES+RES*498
01F3h	RES+RES*499
01F4h	RES+RES*500
01F5h	RES+RES*501
01F6h	RES+RES*502
01F7h	RES+RES*503
01F8h	RES+RES*504
01F9h	RES+RES*505
01FAh	RES+RES*506
01FBh	RES+RES*507
01FCh	RES+RES*508
01FDh	RES+RES*509
01FEh	RES+RES*510
01FFh	RES+RES*511

0258h	RES+RES*600
0259h	RES+RES*601
025Ah	RES+RES*602
025Bh	RES+RES*603
025Ch	RES+RES*604
025Dh	RES+RES*605
025Eh	RES+RES*606
025Fh	RES+RES*607
0260h	RES+RES*608
0261h	RES+RES*609
0262h	RES+RES*610
0263h	RES+RES*611
0264h	RES+RES*612
0265h	RES+RES*613
0266h	RES+RES*614

03F1h	RES+RES*1009
03F2h	RES+RES*1010

03F3h	RES+RES*1011
03F4h	RES+RES*1012
03F5h	RES+RES*1013
03F6h	RES+RES*1014
03F7h	RES+RES*1015
03F8h	RES+RES*1016
03F9h	RES+RES*1017
03FAh	RES+RES*1018
03FBh	RES+RES*1019
03FCh	RES+RES*1020
03FDh	RES+RES*1021
03FEh	RES+RES*1022
03FFh	RES+RES*1023

Register Detail Description

Address: 0x01h/0x02h

Step[0]	VCC1/2 SS
0	1ms
1	3ms

Address: 0x03h/0x04h

Name	Function	Address	Bits	Factor (Power-Up Default)	MSB			LSB				
VGH_LT	VGH Boost (Low Temp)	0x03h	7bit	2Dh	X	0	1	0	1	1	0	1
VGH_HT	VGH Boost (Room Temp)	0x04h	7bit	28h	X	0	1	0	1	0	0	0

Address: 0x06h/0x07h

Name	Function	Address	Bits	Factor (Power-Up Default)	MSB			LSB				
VGL2_LT	VGL2 (Low Temp)	0x06h	7bit	35h	Х	0	1	1	0	1	0	1
VGL2_HT	VGL2 (High Temp)	0x07h	7bit	1Ch	Χ	0	0	1	1	1	0	0

Address: 0x08h

DS6971-P00

Name	Function	Address	Bits	Factor (Power-Up Default)	MSB							LSB
DLY0	Delay 0		2bit	15h	0	0	Χ	Х	Χ	Χ	Х	X
DLY1	Delay 1	0x08h	2bit		Χ	Χ	0	1	Χ	Χ	Χ	X
DLY2	Delay 2	UXUOII	2bit		Х	Х	Χ	Х	0	1	Χ	Χ
DLY3	Delay 3		2bit		Х	Χ	Χ	Х	Χ	Χ	0	1

RICHTEK

January 2023

35

	Start to Finish
DLY0	VIN_UVLO & EN to VCC1
DLY1	VIN_UVLO & EN to VCC2
DLY2	VCC1/2 to VGL2
DLY3	VGL2 to AVDD

	DLY0	DLY1	DLY2	DLY3
00	3ms	3ms	0ms	0ms
01	8ms	8ms	5ms	10ms
10	16ms	16ms	10ms	20ms
11	0ms	0ms	15ms	30ms

Address: 0x1Dh

	VGH_TC_EN/VCOM_TC_EN
0	Disable
1	Enable

	VGH_TC_Type
0	Two stage
1	Three stage

Address: 0x1Eh

Name	Function	Address	Bits	Factor (Power-Up Default)	MSB							LSB
VGH_TC_MODE	VGH Temp. Compensation		2bit		0	0	Х	Х	Х	Х	X	X
	Range Selection		ZDIL	07h		U	^	^	^	^	^	^
VGx_PRT_Enable	VGH/VGL Protection Enable	0x1Eh	1bit		Х	X	0	X	Х	X	X	Х
VCOM Compensation	VCOM Compensation		4bit		X	X	X	X	0	1	1	1

Step[7:6] VGH_TC_MODE and VGH_TC_Type = 0												
Item	Item 00h 01h 02h 03h											
TCOMP_L	2.94 V	3.35 V	2.94 V	2.94 V								
TCOMP_H	2.09 V	2.95 V	2.44 V	2.64 V								
Temp	0°C~25°C	-20°C~0°C	0°C~15°C	0°C~10°C								
Panel	LGD/HKC	INX	SDP	SDP								

	Step[7:6] VGH	_TC_MODE and VGH_	TC_Type = 1	
Item	00h	01h	02h	03h
TCOMP_L1	3.79 V	3.75 V	3.44 V	3.24 V
TCOMP_L	2.94 V	3.35 V	2.94 V	2.94 V
TCOMP_H	2.09 V	2.09 V 2.95 V		2.64 V
TCOMP_H1	1.24 V	2.55 V	1.94 V	2.34 V
Temp	0°C~25°C	-20°C~0°C	0°C~15°C	0°C~10°C
Panel	LGD/HKC	INX	SDP	SDP

Step[5]	VGx_PRT_Enable
0	VGH, VGL1, VGL2 Protection Enable
1	VGH, VGL1, VGL2 Protection Disable

Step[3:0]	VCOM Compensation
0000	VCOM-GLDO/1024*14
0001	VCOM-GLDO1024*12
0010	VCOM-GLDO/1024*10
0011	VCOM-GLDO/1024*8
0100	VCOM- GLDO /1024*6
0101	VCOM- GLDO /1024*4
0110	VCOM- GLDO /1024*2
0111	VCOM
1000	VCOM+ GLDO /1024*2
1001	VCOM+ GLDO /1024*4
1010	VCOM+ GLDO /1024*6
1011	VCOM+ GLDO /1024*8
1100	VCOM+ GLDO /1024*10
1101	VCOM+ GLDO /1024*12
1110	VCOM+ GLDO /1024*14
1111	VCOM+ GLDO /1024*16

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation

			LS_EG_	OCP_TIME	Register			
0x1Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register		EOCP	_TIME	•		GOCP_	TIME	•
Initial(HEX)	1	1	1	1	1	1	1	1
Register	1 GOCF 0x1 00 00 00 00 10 11 11 11 11	EOCP 1 P_TIME F[3:0] 000 001 010 011 100 101 110 011 110 111 P_TIME F[7:4] 000 001 010 011 110 111 110 111 110 111 110 111 110 111 110 111	_TIME 1 CLKOU	us JT1 ~ CLKO 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 US DUT1/LCOU 10 20 30 40 50 60 70 80	1 UT12	GOCP_	TIME	1
	1000 1001 1010			90 100 110				
		010 011		110 120				
		100		130				
	1	101	140					
	1	110		150				
	1 [,]	111		160				

			LS_EG_O	CP_LEVEL	Register			
0x20h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	Reserved		EOCP_LEVE	_		GOCP_L	EVEL	
Initial(HEX)	0	1	1	1	1	1	1	1
Description	GOCF 0x2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	P_LEVEL 20[3:0] 0000 0011 010 011 100 101 111 000 001 010 011 100 101 111 110 111 2_LEVEL 20[6:4] 000 001 011 110 111	CLKO	mA JT1 ~ CLKO 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 270 mA DUT1/LCOU 10 20 30 40 50 60 70 135	UT12			

Description Bit 7			L	.s_stv_oc	P_TIME_LE\	/EL Registe	er		
Initial(HEX)	0x21h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SOCP_LEVEL mA STVOUT1/2/3 0000 20 0001 30 0010 40 00011 50 0100 60 0101 70 0110 80 0111 90 1000 1001 110 1000 1001 110 1000 1001 135 1100 1111 135 1000 1 15 0000 1 15 0000 1 15 0000 1 15 0010 2 0011 2.5 0010 3 0101 3.5 0101 3.5 0110 4 0111 4.5 1000 5 1000 5 1001 5.5 1010 6 1011 6.5 1100 7 1100 1001 7 1100 1001 7 1100 1001 7 1100 1001 7 1100 1001 7 11001 1001 7 11001 1001	Register		SOCP	_TIME			SOCP_	LEVEL	
Ox21[3:0] STVOUT1/2/3	Initial(HEX)	1	1	1	1	1	1	1	1
Ox21[3:0] STVOUT1/2/3							•		
Description Continue Contin		SOCI	P_LEVEL						
Description SOCP_TIME				;	STVOUT1/2/	3			
Description SOCP_TIME									
Description SOCP_TIME									
0100 60									
Description O101									
Description O110									
0111 90 1000 1000 1000 1001 110 120 1011 130 130 1100 to 1111 135 135 Description SOCP_TIME 0x21[7:4] STVOUT1/2/3 STVOUT1/2/3 0000 1 0001 1.5 0010 2 0011 2.5 0100 3 0101 3.5 0101 4 0111 4.5 1000 5 1000 5 1001 6 1011 6.5 11100 7 11101 7.5									
1000									
1001									
1010									
1011				+					
Description SOCP_TIME									
SOCP_TIME US Ox21[7:4] STVOUT1/2/3 O000									
0x21[7:4] STVOUT1/2/3 0000 1 0001 1.5 0010 2 0100 3 0101 3.5 0110 4 0111 4.5 1000 5 1010 6 1011 6.5 1100 7 1101 7.5		1100	, 10 1111		100				
0x21[7:4] STVOUT1/2/3 0000 1 0001 1.5 0010 2 0100 3 0101 3.5 0110 4 0111 4.5 1000 5 1010 6 1011 6.5 1100 7 1101 7.5	Description	SOCP TIME			us				
0001 1.5 0010 2 0011 2.5 0100 3 0101 3.5 0110 4 0111 4.5 1000 5 1010 6 1011 6.5 1100 7 1101 7.5	Bescription				STVOUT1/2/3				
0010 2 0011 2.5 0100 3 0101 3.5 0110 4 0111 4.5 1000 5 1001 5.5 1010 6 1011 6.5 1100 7 1101 7.5				1					
0011 2.5 0100 3 0101 3.5 0110 4 0111 4.5 1000 5 1001 5.5 1010 6 1011 6.5 1100 7 1101 7.5									
0100 3 0101 3.5 0110 4 0111 4.5 1000 5 1001 5.5 1010 6 1011 6.5 1100 7 1101 7.5									
0101 3.5 0110 4 0111 4.5 1000 5 1001 5.5 1010 6 1011 6.5 1100 7 1101 7.5									
0110 4 0111 4.5 1000 5 1001 5.5 1010 6 1011 6.5 1100 7 1101 7.5					3				
0111 4.5 1000 5 1001 5.5 1010 6 1011 6.5 1100 7 1101 7.5									
1000 5 1001 5.5 1010 6 1011 6.5 1100 7 1101 7.5									
1001 5.5 1010 6 1011 6.5 1100 7 1101 7.5									
1010 6 1011 6.5 1100 7 1101 7.5									
1011 6.5 1100 7 1101 7.5									
1100 7 1101 7.5				+					
1101 7.5									
1110 8			1110		8				
1111 8.5									
J				1	2.0				

			Timing se	tting of L	S			
0x22h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register			SCLK_PSK _RST					
Initial(HEX)			1					
Description	CPV2 - - - - - - - - - - - - - - - - - - -	Duration between Dead Time	een falling edge OCP detecting(Sensing Time een falling edge d time during lo	of OFF_C	CLK to rising CP detecting	edge of OF (LGD, BOE d Time →	F_CLK or risir	

				, , ,					
		7	Timing se	etting of LS					
0x23h	Bit 7	Bit 6	Bit 5	Bit 4	ı	Bit 3	Bit 2	Bit 1	Bit
Register	1		DUM_C	LK		REVERSE	DOUBLE		
Initial(HEX)			1			1	0		
		T		Single 0x23[2]=0					
	4 011 01 101 17	0x23[3] =0, 0x23[23[3] =1, 0x23[5]=0		0x23[3] =1, 0x23[5]=1	
	4-CH CLKOUT	CLK1-2-3-4-1		CLK4-3-2-1-4			CLK2-1-4-3-2 CLK3-2-1-6-5-4		\dashv
	6-CH CLKOUT CLK1-2-3-4-5-6-1			(4-5-6-1-2-3-4		(6-5-4-3-2-1-6			
	8-CH CLKOUT	CLK1-2-3-4-5-6-7-8-	-1 CLF	(4-5-6-7-8-1-2-3-4	CLK	(8-7-6-5-4-3-2-1-8	CLK4-3-2-1-	CLK4-3-2-1-8-7-6-5-4	
	10-CH CLKOUT	CLK1-2-3-4-5-6-7-8-	9-10-1 CLK6-7-8-9-10-1-2-3-4-5		CLK	(10-9-8-7-6-5-4-3-2-1	- CLK5-4-3-2-	CLK5-4-3-2-1-10-9-8-7-6	
	12-CH CLKOUT	CLK1-2-3-4-5-6-7-8-	-9-10- CLF	(6-7-8-9-10-11-12-1-2-		<12-11-10-9-8-7-6-5-4	- CLK6-5-4-3-	CLK6-5-4-3-2-1-12-11-10	
D min ti		11-12-1	3-4-5			-1-12	9-8-7-6		
Description									
				Double 0x23[2]=1					
		0x23[3] =0, 0x23[[5]=0 0x2	23[3] =0, 0x23[5]=1	0x2	23[3] =1, 0x23[5]=0	0x23[3] =1	, 0x23[5]=	1
	4-CH CLKOUT	CLK1/2-3/4/-1/2	CLF	(3/4/-1/2-3/4	CLK	(4/3-2/1-4/3	CLK2/1-4/3-	2/1	
	6-CH CLKOUT	CLK1/2-3/4/-5/6-1/2	CLF	(3/4-5/6-1/2-3/4	CLK	(6/5-4/3-2/1-6/5	CLK4/3-2/1-	6/5	
	8-CH CLKOUT CLK1/2-3/4		-1/2 CLF	<5/6-7/8-1/2-3/4	CLK	<8/7-6/5-4/3-2/1-8/7	CLK4/3-2/1-	8/7-6/5-4/3	
	10-CH CLKOUT	CLK1/2-3/4/-5/6-7/8-	-9/10- CLF	(5/6-7/8-9/10-1/2-3/4-	CLK	K10/9-8/7-6/5-4/3-2/1-	CLK4/3-2/1-	10/9-8/7-6/5	-
		1/2	5/6		10/9	9	4/3		
	12-CH CLKOUT	CLK1/2-3/4/-5/6-7/8-	-9/10- CLł	(5/6-7/8-9/10-11/12-1/2	2- CLK	K12/11-10/9-8/7-6/5-4	/3- CLK6/5-4/3-	2/1-12/11-10)/9-

0x24h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	AVDD_DIS	HAVDD_DIS	VGH_DIS	VGL1_ DIS	VCC1_ DIS	VCOM3_ DIS	VCOM2_ DIS	VCOM1_ DIS
Initial(HEX)	0	0	0	0	0	0	0	0
			Discharging					
	0	Discha	arge Operation	Disable				
	1	Discha						
		Discharging Resistor						
Description	AVDD		800 Ω					
	HAVDD		500 Ω					
	VCC		300 Ω					
	VGH		1500 Ω					
	VGL1		200 Ω					
	VCOM1/2/3							

0x25h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register			VCC2_DIS	VGL2_ DIS		AVDD_EXT_DRV		VGH_ EXT_INT
Initial(HEX)			0	0		0	0	1
		VGH_	EXT_INT					
	0		Internal					
	1		External					
			AVDD_EXT_D					
	00	EXT_DRV1_FF: 2Ω						
	01	E						
	10	EXT_DRV3_S: 50Ω						
Description	11	11 EXT_DRV4_SS: 200Ω						
			Discharging					
	0	Discha	arge Operation	Disable				
	1	Disch	arge Operation	Enable				
		Dis	scharging Res	sistor				
	VCC2		300Ω					
	VGL2		200Ω					

0x26h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	VCOM1_EN	VCOM2_EN	VCOM3_EN					
Initial(HEX)	1	1	1					
Description	0 1		VCOM1/2/3_E Disable Enable	N				

Preliminary

0x27h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register		VCC1 Syn./Asyn.	VCC2 Syn./Asyn	VCC2_ EN	FRE_ VCC 1/2	FT_VCC2		
Initial(HEX)		1	0			0		

0x27[2]: FT_VCC2: the UVP, SCP flag of VCC2

	FRE_VCC1/2
0	750kHz
1	500kHz

Description

VCC2_EN				
0	Disable			
1	Enable			

	VCC1/2 Sync./Async.
0	Sync.
1	Async.

Address: 0x29h

	Enable
0	Disable
1	Enable

	CH_Enable
0	Disable
1	Enable

	Protection_EN
0	Disable all protection
1	Enable all protection

0x2Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	VGH_SS	AVDI	o_ss	FRE_ AVDD	FRE_ HAVDD	FRE_ VGH	FRE_ VGL2	PMIC_EN
Initial(HEX)	0	0	0	0	0	0	0	0
			PMIC_EN					
	0		Disable					
	1		Enable					
			FRE_VGL2					
	0		750kHz					
	1		500kHz					
	•		00011112					
			FRE_VGH					
	0		AVDD x 1					
	1							
		FRE_HAVDD						
	0	AVDD x 1						
Description	1							
			FRE_AVDD					
	0							
	1	500kHz						
			AVDD_SS					
	00		5ms					
	01		10ms					
	10		15ms					
	11		20ms					
			VGH_SS					
	0		3ms					
	1		6ms					
	<u> </u>							

0x2Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit	3	Bit 2	Bit 1	Bit 0
Register	DISCH1/2_OCP_Level						DISC	H1/2_OCP_	_Time
Initial(HEX)		000						000	
	DSICH1/2_0		u	s					
	0x2B	[2.0]	DISC	H1/2					
	00	0	1	0					
	00	1	2	0					
	01	0	3	0					
	01	1	5	0					
	10	0	8						
	10	1	10	00					
	11	0	12	20					
	11	1	16	30					
Description									
		DISCH1/2_OCP_Time mA							
	0x2B	[7:5]	DISC	H1/2					
	00	0	4						
	00		50						
	010 60 011 70 100 80								
			7	0					
			0						
	10	1	12	20					
	11	0	13	35					
	11	1	Disa	able					

0x2Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register			FT_AVDD	FT_ VCC1	FT_ HAVDD	FT_VGH	FT_VGL2	FT_VGL1
Initial(HEX) (Read Only)			0	0	0	0	0	0
Description	0x2C[1]: FT_VGL2: the 0x2C[2]: FT_VGH: the 0x2C[3]: FT_HAVDD: t 0x2C[4]: FT_VCC: the 0x2C[5]:	e UVP, SCP flag UVP, SCP flag UVP, SCP flag the UVP, SCP f UVP, SCP flag	of VGL2 of VGH lag of HAVDD of VCC1					

0x2Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	FT _L/S 7	FT _L/S 6	FT_L/S 5	FT_OTP	FT_ L/S 4	FT_ L/S 3	FT_ L/S 2	FT_ L/S 1
Initial(HEX) (Read Only)	0	0	0	0	0	0	0	0
	0x2D[0:3]: FT_L/S 1 ~ 3: 0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100 1101 ~ 1111 0x2D[4]: FT_OTP: the 0x2D[5]:	the OCP flag o	f CLKOUT1 ~ CLKOUT2 CLKOUT3 CLKOUT4 CLKOUT5 CLKOUT6 CLKOUT7 CLKOUT7 CLKOUT9 CLKOUT10 CLKOUT11 CLKOUT112 NC	CLKOUT1:		0	0	0
	0x2D[7]:	OCP flag of LO			OUT3			

0x40h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	LS_EN	HSD				Rising v Rate		-alling Rate
Initial(HEX)	1		000			00	0	0
			LS_EN					
	0	A	II L/S outputs I	Hi-Z				
	1	All L/S o	outputs normal	ly operate				
			HSR					
	000	Normal	Mode – LC 1	-In, 2-Out				
	001	Normal	Mode – LC 2					
	010 to 111	Only enable a	at forward, wo Otherwise = 0	gnal.				
December		CLK1 t	o 12 Rising S	lew Rate				
Description	00	1000V/μs						
	01		700V/μs					
	10		400V/μs					
	11		100V/μs					
		CLK1 t	o 12 Falling S	lew Rate				
	00		1000V/μs					
	01		700V/μs					
	10		400V/μs					
	11		100V/μs					

0x41h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	STV	STV1_DIS		STV2_DIS		STV3_DIS		1/2_DIS
Initial(HEX)	00		00 00			00	C	0
Description	00 01 10 11	STVOL	JT1,2,3/DISCH Pull to VGH Pull to VGL2 Hi-Z Hi-Z					

0x42h	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3		Bit 3	Bit 2	Bit 1	Bit 0
Register	CL	LK_DIS LC_DIS				.C_Initial Sta	Auto Pulse	
Initial(HEX)		00	00			011		0
			Auto Pulse					
	0		Disable					
	1		Enable					
			LC_Initial Sta	te				
	000	Follow VC	GH until LC_IN	rising edg	е			
	001	Follow \	/GH until VGH	_UVLO_R				
	010	Follow VG	L2 until LC_IN	I rising edg	е			
	011	Follow V	GL2 until VGH	I_UVLO_R				
Description	100		GL2 and LC2 f .C_IN rising ed		until			
	101		GH and LC2 fo .C_IN rising ed		until			
	110, 111	LC1 follow V	GH and LC2 fo VGH_UVLO_		until			
			CLK/LC_DIS					
	00		Pull to VGH					
	01		Pull to VGL2					
	10		Hi-Z					
	11		Hi-Z					

0x43h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register		VCOM_Delay				XON Off	Delay	
Initial(HEX)		000		0	0	00		
			XON Off Dela	ıy				
	00		0ms					
	01		5ms					
	10		10ms					
	11		20ms					
	00		0ms					
	01		5ms					
	10		10ms					
Description	11		20ms					
			VCOM_Delay	y				
	000		0ms					
	001		30ms					
	010		60ms					
	011	90ms						
	100							
	101		150ms					
	110		180ms					
	111		210ms					

0x44h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	ILMT_1		ILM_A	VIN_U	VLO_F	EN_		Туре
Initial(HEX)	0		1	1	0		0	0
Description	00 01 10 11 00 01 10 11 0 1	EN do r	EN_Type	GH, VCOM nnels channels channels				

0x45h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Register	VGH1_ UVLO_State	STV1_ Reset	С	H_MODE		Power Off Discharge Threshold			
Initial(HEX)	0	0		011		000			
		Power C	off Discharge						

	Power Off Discharge Threshold
000	VIN_UVLO_F
001	7.0V
010	7.5V
011	8.0V
100	8.5V
101	9.0V
110	9.5V
111	10.0V

Description

CH MODE:

0x41[2:0] = 000: 4 phase of L/S operation

0x41[2:0] = 001: 6 phase of L/S operation

0x41[2:0] = 010: 8 phase of L/S operation

0x41[2:0] = 011: 10 phase of L/S operation

0x41[2:0] = 100: 12 phase of L/S operation

0x41[2:0] = 101: 12 phase of L/S operation

0x41[2:0] = 110: 12 phase of L/S operation

0x41[2:0] = 111: 12 phase of L/S operation

	STV1_Reset
0	Do not reset anything
1	STV1 rising reset all CLKx to VGL2

	VGH1_UVLO_State
0	Disable
1	Enable

Outline Dimension

Pin #1 ID and Tie Bar Mark Options

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Counch of	Dimensions	n Millimeters	Dimension	s In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	0.800	1.000	0.031	0.039	
A1	0.000	0.050	0.000	0.002	
А3	0.175	0.250	0.007	0.010	
b	0.150	0.250	0.006	0.010	
D	7.900	8.100	0.311	0.319	
D2	6.650	6.750	0.262	0.266	
Е	7.900	8.100	0.311	0.319	
E2	6.650	6.750	0.262	0.266	
е	0.4	100	0.0)16	
L	0.350	0.450	0.014	0.018	
L1	0.250	0.350	0.010	0.014	
K	0.1	00	0.004		

V-Type 76L QFN 8x8 Package

Footprint Information

Dookogo	Number of		Footprint Dimension (mm)										Toloropoo	
Fackage	Package Pin		Ax	Ау	Вх	Bx1	Ву	By1	C*68	C1*8	D	Sx	Sy	Tolerance
V/W/U/XQFN8*8-76	76	0.40	8.80	8.80	7.20	7.40	7.20	7.40	0.80	0.70	0.20	6.70	6.70	±0.050

Packing Information

Tape and Reel Data

D. J. T.	Tape Size	Pocket Pitch	Reel Size (A)		Units	Trailer	Leader	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)	
QFN/DFN 8x8	16	12	330	13	2,500	160	600	16.4/18.4	

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 16mm carrier tape: 1.0mm max.

Tape Size	W1	F	0	E	3	F		Ø	IJ	Н
1470 0120	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
16mm	16.3mm	11.9mm	12.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

RICHTEK

January 2023

Preliminary

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 13"	4	1 reel per inner box Box G
2	HIC & Desiccant (2 Unit) inside	5	6 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	Reel		Box				Carton		
Package	Size	Units	Item	Weight(kg)	Reels	Units	Item	Boxes	Units
QFN and DFN 8x8	13"	2,500	Box G	1.11	1	2,500	Carton A	6	15,000

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm 2	10 ⁴ ~ 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

DS6971-P00 January 2023 www.richtek.com

RT6971 Preliminary

Datasheet Revision History

Version	Date	Description	Item
P00	2023/1/17	First Edition	