Unit - I

- 1. a) What is Data Mining? Discuss goals of Data Mining.
- 2. Describe the database system evolutionary path.
 - b) Explain any two Data Mining Techniques.
- 2. a) Detail on the architecture of data mining system with a suitable diagram.
 - b) What are the difference between DBMS and Machine learning
- 3. a) Define each of the following data mining functionalities:
 - i) Data Cleaning ii) Data Discretization
 - ii) With the schematic diagram, describe the architecture of a data mining system.
- 4. Discuss the issues in data mining in detail.
- 5. Discuss in detail about the steps in knowledge discovery in data base.
- 6. Explain different techniques in data mining.

Unit - II

- 1. With a neat diagram explain the components of data warehouse.
- 2. Discuss the various OLAP operations in the Multidimensional Data Model.
- 3. Describe the different methods for data cleaning
- 4. Write short notes on: OLAP and Statistics
- 5. Explain Discretization and Concept Hierarchy Generation for Numeric Data
- 6. What are the various forms of visualizing the discovered patterns in data mining?
- 7. How does a data warehouse handle multi dimensional data? Explain the data structures and schema that support multi dimensional data with suitable illustration.

UNIT III

- 1. With examples, discuss the different attribute types and the transformations that attribute levels
- 2. Explain similarity and dissimilarity measures between simple attributes based on different types of attributes.
- 3. Explain FP tree algorithm with an example.
- 4. Explain Analytical Characterization?
- 5. Methods of Attribute Relevance Analysis?

6

ii) Consider the following database has twelve transactions, let min_sup = 25% and find all frequent item set using the above algorithm. (8)

> List of items_IDs TID 11, 12, 15 12, 14, 16 T2 12, 13 T3 11, 12, 14 11, 13 **T5** 12, 13 11, 13 11, 12, 13, 15 11, 12, 13 11, 12, 14, 16 T10 15, 16 13, 14, 15

5 a. What is a FP - growth algorithm? For the following transaction data set, explain and construct a FP - tree. If the ordering scheme is reversed, give the resulting FP - tree.

TID	Items			
1	{a, b}			
2	{b, c, d}			
3	{a, c, d, e}			
4	{a, d, e}			
5	{a, b, c}			
6	{a, b, c, d}			
7	{a}			
8	{a, b, c}			
9	{a, b, d}			
10	{b, c, e}			

- 8. Define classification. Explain general approach or solving a classification problem
- 9. Explain how the decision tree works, with an example.
- 10. Explain K-nearest neighbor classification algorithm.
- 11. What are Baysian classifiers? Explain Baye's theorem for classification.
- 12. Explain outlier evaluation criteria for classification method.
- 13. Explain the classification method for estimating predictive accuracy.
- 14. Differentiate classification and predication

1. Classify the tuple

X= (age=youth, income=medium, student=yes, credits-rating=fair)
Using naïve Bayesian classification on the following training data set

RID	Age	Income	Student	Credit-rating	Class:
					buys-computer
1	Youth	High	No	Fair	No
2	Middle-aged	High	No	Fair	Yes
3	Senior	Medium	No	Fair	Yes
4	Senior	Low	Yes	Excellent	Yes
5	Youth	High	No	Excellent	No
6	Youth	Medium	No	Fair	No
7	Middle-aged	Medium	No	Excellent	Yes
8	Senior	Medium	Yes	Fair	Yes
9	Youth	High	No	Fair	No
10	Middle-aged	Medium	No	Excellent	Yes

tree i	for the following for a data point	data set usi with values <	Female, 2, sta	ree. Construct a decision a gain. Predict the class andard, high>. (16)
Gender	Car ownership	Travel cost	Income level	Transport mode
Male	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	0	Cheap	Low	Bus
Male	1	Cheap	Medium	Bus
Female	1	Expensive	High	Car
Male	2	Expensive	Medium	Car
Female	2	Expensive	High	Car
Female	. 1	Cheap	Medium	Train
Male	0	Standard	Medium	Train
Female	1	Standard	Medium	Train

UNIT V

- 1. Explain different types data in cluster analysis.
- 2. Write K-means and K-medoids algorithms and explain with examples.
- 3. Discuss the following clustering algorithm using examples :
 - (i) K-means.
 - (ii) K-medoid.
- 4. Explain agglomerative hierarchical clustering.