

# UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alexandra, Virginia 22313-1450 www.unpto.gov

| APPLICATION NO.                    | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. |
|------------------------------------|-------------|----------------------|---------------------|------------------|
| 10/620,747                         | 07/16/2003  | Mark S. Moir         | 6000-33600          | 8970             |
| 58467 7590 07/18/2008<br>MHKKG/SUN |             | EXAMINER             |                     |                  |
| P.O. BOX 398                       |             |                      | TECKLU, ISAAC TUKU  |                  |
| AUSTIN, TX                         | 78767       |                      | ART UNIT            | PAPER NUMBER     |
|                                    |             |                      | 2192                |                  |
|                                    |             |                      |                     |                  |
|                                    |             |                      | MAIL DATE           | DELIVERY MODE    |
|                                    |             |                      | 07/18/2008          | PAPER            |

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

# Application No. Applicant(s) 10/620,747 MOIR ET AL. Office Action Summary Examiner Art Unit ISAAC T. TECKLU 2192 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 10 April 0208. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-43 and 46-59 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) \_\_\_\_\_ is/are allowed. 6) Claim(s) 1-43 and 46-59 is/are rejected. 7) Claim(s) \_\_\_\_\_ is/are objected to. 8) Claim(s) \_\_\_\_\_ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some \* c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). \* See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Imformation Disclosure Statement(s) (PTC/G5/08)
 Paper No(s)/Mail Date \_\_\_\_\_\_.

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Application/Control Number: 10/620,747 Page 2

Art Unit: 2192

### DETAILED ACTION

Claims 44 and 45 have been cancelled.

Claims 1-59 have been reexamined.

# Claim Rejections - 35 USC § 102

 The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.

 Claims 1-15, 17-32, 34-43, 46-49 and 51-59 rejected under 35 U.S.C. 102(a) as being anticipated by Daynes (US 6,182,186 B2).

Per claim 1, Daynes discloses a method of providing non-blocking multi-target transactions in a computer system (e.g. FIG. 13, col.15:64-67 and col.16:1-10 "... locking operation may make use of two techniques....dispatching specialized code according to lock state type, and non-blocking synchronizations, emphasis added and e.g. FIG. 7 and related text), the method comprising:

defining plural transactionable locations, wherein individual ones of the transactionable locations encode respective values and are owned by no more than one transaction at any given

Art Unit: 2192

point in a multithreaded computation (col.2:15-25 and col. 18: 15-25 "... transaction owns an exclusive type of lock ..." and e.g. FIG. 4 and FIG. 11, 1148 and related text);

for a particular multi-target transaction of the multithreaded computation, attempting to acquire ownership of each of the transactionable locations targeted thereby (col. 17: 65-67 and col. 18:1-10 "... if the ownership test fails ..."), wherein the ownership acquiring wrests ownership from another transaction, if any, that owns the targeted transactionable location (col. 18:45-50 "... single-owner lock states of each locking context..." and e.g. FIG. 9 and col.13:40-60 "... for each lock state found, the transaction is removed from all owner sets where it appears); and

once ownership of each of the targeted transactionable locations has been acquired, attempting to commit the particular multi-target transaction using a single-target synchronization primitive to ensure that, at the commit (col. 19:1-15 "... a locking context is active ... bit numbers that appear in its owner ..."), the particular multi-target transaction continues to own each of the targeted transactionable locations, wherein individual ones of the multi-target transactions do not contribute to progress of another (col. 20:5-15 "... swo are single owner lock states ...single owner lock states corresponding to the transaction this cache belongs to...").

Per claim 2, Daynes discloses the method of claim 1, wherein the ownership wresting employs a single-target synchronization primitive to change status of the wrested from transaction to be incompatible with a commit thereof (col. 12:30-40 "... lock on the same resource are incompatible with each other ...").

Art Unit: 2192

Per claim 3, Daynes discloses the method of claim 2, wherein, as a result of the status change, the wrested from transaction fails and retries (col. 17: 65-67 and col. 18:1-10 "... if the ownership test fails ...").

Per claim 4, Daynes discloses the method of claim 2, wherein the wrested from transaction is itself a multi-target transaction (col. 2:15-25 "... lock permits multiple transactions to read ...").

Per claim 5, Daynes discloses the method of claim 1, further comprising: on failure of the commit attempt, reacquiring ownership of each targeted transactionable location and retrying (col. 17: 65-67 and col. 18:1-10 "... if the ownership test fails ...").

Per claim 6, Daynes discloses the method of claim 1, wherein no transaction may prevent another from wresting therefrom ownership of transactionable locations targeted by the active transaction (col. 20:5-15 "... swo are single owner lock states ...single owner lock states corresponding to the transaction this cache belongs to...").

Per claim 7, Daynes discloses the method of claim 1, wherein the ownership acquiring employs a single-target synchronization primitive to update the ownership of the targeted transactionable location (col. 3:10-25 "... lock data structure is updated ..." and e.g. FIG. 7, step 714 and related text).

Art Unit: 2192

Per claim 8, Daynes discloses the method of claim 1, wherein each encoding of a transactionable location is atomically updateable using a single-target synchronization primitive (col. 10:55-65 "... maintain atomicity ...").

Per claim 9, Daynes discloses the method of claim 1, wherein the individual transactionable location encodings further include an identification of the owning transaction's corresponding value for the transactionable location (e.g. FIG. 7, step 708 and related text).

Per claim 10, Daynes discloses the method of claim 1, further comprising: accessing values corresponding to individual ones of the transactionable locations using a wait-free load operation (e.g. FIG. 7, step 714 and related text).

Per claim 11, Daynes discloses the method of claim 1, wherein the transactionable locations directly encode the respective values (e.g. FIG. 7, step 708 and related text).

Per claim 12, Daynes discloses the method of claim 1, wherein the transactionable locations are indirectly referenced (e.g. FIG. 9, step 902 and related text).

Per claim 13, Daynes discloses the method of claim 1, wherein the transactionable locations are encoded in storage managed using a nonblocking memory management technique (e.g. GIG. 13 shows non-blocking synchronization ...").

Application/Control Number: 10/620,747
Art Unit: 2192

Per claim 14, Daynes discloses the method of claim 1, wherein the transactionable locations, if unowned, directly encode the respective values and otherwise encode a reference to the owning transaction (e.g. FIG. 7, step 708 and related text).

Per claim 15, Daynes discloses the method of claim 1, wherein the single-target synchronization primitive employs a Compare-And-Swap (CAS) operation (col. 17:35-55 "... compare-and swap ...").

Per claim 17, Daynes discloses the method of claim 1, wherein the single-target of the single-target synchronization primitive includes at least a value and a transaction identifier encoded integrally therewith (col. 16: 55-67 "... information can include register values ...").

Per claim 18, Daynes discloses the method of claim 1, wherein the multi-target transaction has semantics of a multi-target compare and swap (NCAS) operation (col. 17:35-55 "... compare-and swap ...").

Per claim 19, Daynes discloses the method of claim 1, embodied in operation of an application programming interface (API) that includes a load operation and an multi-target compare and swap (NCAS) operation (col. 17:35-55 "... compare-and swap ...").

Per claim 20, Daynes discloses the method of claim 19, wherein the load operation is wait-free (e.g. FIG. 7, step 714 and related text).

Art Unit: 2192

Per claim 21, Daynes discloses the method of claim 1, embodied in operation of an application programming interface (API) that provides transactional memory (e.g. FIG. 1 and related text).

Per claim 22 (Currently amended), Daynes discloses an implementation of <u>A computer-readable storage medium program instructions computer-executable to implement:</u>

a plurality of non-blocking, multi-target transactions (e.g. FIG. 13, col.15:64-67 and col.16:1-10 "... locking operation may make use of two techniques....dispatching specialized code according to lock state type, and <u>non-blocking synchronizations</u>, emphasis added);

### wherein the program instructions comprise:

instances of one or more single-target synchronization primitives <u>executable</u> to acquire, for a particular multi-target transaction, ownership of targeted transactionable locations (col.17:35-65 and e.g. FIG. 9 and col.13:40-60 "... for each lock state found, the <u>transaction is removed</u> from all owner sets where it appears) and

a particular single-target synchronization primitive executable to ensure that, at commit, the particular multi-target transaction continues to own each of the targeted transactionable locations, wherein individual ones of the multi-target transactions do not contribute to progress of another (col. 17: 65-67 and col. 18:1-10 "... if the ownership test fails ...")

Per claim 23 (Currently amended), Daynes discloses the implementation of storage medium claim 22, wherein the program instructions are further executable to implement embodied as software encoded in one or more computer readable media and that, on execution

Application/Control Number: 10/620,747
Art Unit: 2192

as part of a concurrent computation, and wherein execution of the concurrent computation invokes the multi-target transactions (col. 2:15-25 "... lock permits multiple transactions to read ...")

Per claim 24 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein to acquire ownership, when performed by a first one of the multitarget transactions, wrests ownership from respective other ones of the multi-target transactions, if any, that own respective ones of the targeted transactionable locations (col. 19:1-15 "... a locking context is active ... bit numbers that appear in its owner ...").

Per claim 25 (Currently amended), Daynes discloses the the implementation of storage medium of claim 24, wherein to wrest ownership, the program instructions are further executable to implement an instance of a single-target synchronization primitive to change status of a wrested-from transaction to be incompatible with a commit thereof (col. 12:30-40 "... lock on the same resource are incompatible with each other ...").

Per claim 26 (Currently amended), Daynes discloses the the implementation of storage medium of claim 25, wherein, as a result of the status change, the program instructions are further executable to omplement the wrested-from transaction eventually fails and retries (col. 17: 65-67 and col. 18:1-10 "... if the ownership test fails ...").

Art Unit: 2192

Per claim 27 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein no transaction may prevent another from wresting therefrom ownership of transactionable locations targeted by the active transaction (e.g. FIG. 7, step 708 and related text).

Per claim 28 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein the transactionable locations directly encode the respective values (e.g. FIG. 7, step 708 and related text)..

Per claim 29 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein the transactionable locations are indirectly referenced (e.g. FIG. 7, step 708 and related text)..

Per claim 30 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein the transactionable locations are encoded in storage managed using a nonblocking memory management technique (e.g. FIG. 7, step 714 and related text).

Per claim 31 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein the transactionable locations, if unowned, directly encode the respective values and otherwise encode a reference to the owning transaction (e.g. FIG. 7, step 708 and related text).

Art Unit: 2192

Per claim 32 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein at least some instances of one or more the single-target synchronization primitive employ a Compare-And-Swap (CAS) operation (col. 17:35-55 "... compare-and swap ...").

Per claim 34 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein at least some of the multi-target transaction have semantics of a multitarget compare and swap (NCAS) operation (col. 17:35-55 "... compare-and swap ...").

Per claim 35 (Currently amended), Daynes discloses the the <u>implementation of storage</u> <u>medium</u> of claim 22, embodied as software that includes a functional encoding of operations concurrently executable by one or more processors to operate on state of the transactionable locations (e.g. FIG. 7, step 708 and related text).

Per claim 36 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein at least some of the multi-target transactions are defined by an application programming interface (API) that includes a load operation and a multi-target compare and swap (NCAS) operation (col. 17:35-55 "... compare-and swap ...").

Per claim 37 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein at least some of the multi-target transactions are defined by an

Art Unit: 2192

application programming interface (API) that provides transactional memory (e.g. FIG. 1 and related text).

Per claim 38 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein the multi-target transactions are obstruction-free, though not wait-free or lock-free (e.g. FIG. 7, step 714 and related text).

Per claim 39 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein the implementation does not itself guarantee that at least one interfering concurrently executed multi-target transactions makes progress (e.g. FIG. 7, step 708 and related text).

Per claim 40 (Currently amended), Daynes discloses the the implementation of storage medium of claim 22, wherein the program instructions are further executable to implement a contention management facility configured to facilitate progress in a concurrent computation (e.g. FIG. 4 and related text).

Per claim 41 (Currently amended), Daynes discloses the the implementation of storage medium of claim 40, wherein operation of the contention management facility ensures progress of the concurrent computation (e.g. FIG. 7 and related text).

Art Unit: 2192

Per claim 42 (Currently amended), Daynes discloses the the implementation of storage medium of claim 40, wherein the contention management facility is modular such that alternative contention management strategies may be employed without affecting correctness of the implementation (e.g. FIG. 7, step 716 and related text).

Per claim 43 (Currently amended), Daynes discloses the the implementation of storage medium of claim 40, wherein the contention management facility allows changes in contention management strategy during a course of the concurrent computation (e.g. FIG. 7, step 708 and related text).

Per claim 47, this is the computer readable medium version of the claimed method discussed above (Claim 7), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 48, this is the computer readable medium version of the claimed method discussed above (Claim 4), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 49, this is the computer readable medium version of the claimed method discussed above (Claim 15), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Art Unit: 2192

Per claim 51, this is the computer readable medium version of the claimed method discussed above (Claim 17), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 52 (Currently amended), this is the computer readable medium version of the claimed method discussed above (Claim 1), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 53, this is the computer readable medium version of the claimed method discussed above (Claim 18), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 54, this is the computer readable medium version of the claimed method discussed above (Claim 5), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 55, Daynes discloses a encoding of claim 46, wherein the computer readable medium includes at least one medium selected from the set of a disk, tape or other magnetic, optical, or electronic storage medium and a network, wireline, wireless or other communications medium (e.g. FIG. 1 and related text).

Art Unit: 2192

Per claim 56 (Currently amended), this is the apparatus version of the claimed method discussed above (Claim 1), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 57, this is the computer readable medium version of the claimed method discussed above (Claim 7), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 58, this is the computer readable medium version of the claimed method discussed above (Claim 2), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

Per claim 59, this is the computer readable medium version of the claimed method discussed above (Claim 4), wherein all claim limitations have been addressed and/or covered in cited areas as set forth above. Thus, accordingly, these claims are also anticipated by Daynes.

## Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
  obviousness rejections set forth in this Office action:
  - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person

Art Unit: 2192

having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 16, 33 and 50 rejected under 35 U.S.C. 103(a) as being unpatentable over Daynes
in view of Maged et al ("Non-Blocking Algorithms and Preemption-Safe Locking on
Multiprogrammed Shared Memory Multiprocessors", March 1997).

Per claims 16, 33 and 50 Daynes do not explicitly disclose wherein the single-target synchronization primitive employs Load-Linked (LL) and Store-Conditional (SC) operation pair. However, Maged et al. discloses non blocking algorithms (See Section 3, page 5). Figure 2, page 7 shows a non-blocking counter implementation using load-linked/store –conditional. In addition, Maged et al. discloses emulation using load-linked and store – conditional instruction (page 13). Therefore it would have been obvious to employ Load-linked and Store-Conditional operation to read, modify and write a shared location as once suggested by Maged et al. (page 3).

#### Response to Arguments

- Applicant's arguments filed 04/10/2008 have been fully considered but they are not persuasive.
- a) The Applicant asserted that "Daynes does not disclose a method of providing nonblocking multi-target transactions in a computer system" (Page 13).

Art Unit: 2192

Regarding the above assertion (a), contrary to Applicant's assertion, prior art Daynes discloses a method of providing non-blocking multi-target transactions in a computer system (e.g. FIG. 13, col.15:64-67 and col.16:1-10 "... locking operation may make use of two techniques....dispatching specialized code according to lock state type, and non-blocking synchronizations, emphasis added). Examiner would like to reiterate that Dynes clearly provide a non-blocking multi-target transaction (see col.17:25-40 "... Non-blocking synchronizations... non-blocking synchronization requires an implementation using an atomic compare and swap operation). During garbage collection, the garbage collector checks if any owner sets of the lock state (to be copied to another location) contains inactive bit numbers (e.g., bits that mapped to locking contexts of terminated transactions (as described above) that did not delete their bits from the lock states representing the locks these transactions owned upon their completion). If no inactive bit numbers are found, garbage collection proceeds as usual. (col.19:15-25, emphasis added). Therefore Dynes teaches non-blocking mechanism used to access multiple transactions. Thus, it is respectfully submitted that the above argument is not persuasive.

b) The Applicant asserted that "Daynes does not disclose defining plural transactionable locations, wherein individual ones of the transactionable locations encode respective values and are owned by no more than one transaction at any given point in a unthreaded computation." (Page 14).

Regarding to the above assertion (b), examiner respectfully disagrees with the above assertion. Contrary to the above argument, Daynes clearly discloses defining plural transactionable locations, wherein individual ones of the transactionable locations encode

Art Unit: 2192

respective values and are owned by no more than one transaction at any given point in a unthreaded computation (col.2:15-25). Even though Daynes describes one type of lock to be "shared lock which permits multiple transactions to read/view an item simultaneously without any modification", Daynes also describes another type of lock referred to as "exclusive lock which permits one transaction to read and write to an item while excluding all other transactions from reading or writing to the item" (col.2:15-25). Thus, it is respectfully submitted that the above argument is not persuasive.

c) The Applicant asserted that "Daynes also fails to disclose wherein the ownership acquiring wrests ownership from another transaction, if any, that owns the targeted transactionable location." (page 14).

Regarding to the above assertion (d), examiner respectfully disagrees. Daynes describes ownership acquiring wrests ownership from another transaction, if any, that owns the targeted transactionable location (e.g. FIG. 9 and col.13:40-60 "... for each lock state found, the transaction is removed from all owner sets where it appears"). By removing the transaction from the owner sets, the value of the lock state is modified."). By removing the transaction from the owner, the ownership acquiring wrests ownership from another transaction. Thus, it is respectfully submitted that the above argument is not persuasive.

Application/Control Number: 10/620,747
Art Unit: 2192

d) The Applicant asserted that "Daynes fails to disclose attempting to commit the particular multi-target transactions using a single-target transaction continues to own each of the targeted transactionable locations." (Page 15).

Regarding to the above assertion (d), the examiner respectfully disagrees. The claim limitation recites "attempting ..." interpreted as "testing, trying etc". Daynes describes attempting to commit the particular multi-target transactions using a single-target transaction continues to own each of the targeted transactionable locations (e.g. FIG. 7). "If the transaction does not own the requested lock, the lock manager checks for any conflicts with the existing locks and for the absence of any pending lock requests (by other transactions) at step 702. If there is a conflict but no pending lock request (determined at step 704), a new lock state with a queue is created and entered in the TILS at step 704.a" (col.11:10-30, emphasis added). Furthermore, Daynes describes that "if the compare-and swap fails (given by a test at line 9), it means that at least one other transaction has managed to set its own lock while the transaction was executing instructions at lines 3 to 8. The lock manager must then retry the lock acquisition with the new lock state (lines 13 and 14 initiate the retry and jump to line 4 to redispatch to specialized code best suited to handle the type of the new lock state returned by the compare-and swap instructions). Otherwise, if the compare-and swap succeeds, the lock manager completes the lock acquisition by recording the locked resource in its lock set" (col.17:35-65, emphasis added). Thus, it is respectfully submitted that the above argument is not persuasive. Accordingly, examiner respectfully maintains the previous rejection.

Art Unit: 2192

### Conclusion

 THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to ISAAC T. TECKLU whose telephone number is (571)272-7957. The examiner can normally be reached on M-TH 9:300A - 8:00P.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tuan Q. Dam can be reached on (571) 272-3695. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Page 20

Application/Control Number: 10/620,747

Art Unit: 2192

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Isaac T Tecklu/ Examiner, Art Unit 2192

/Tuan Q. Dam/ Supervisory Patent Examiner, Art Unit 2192