Rapport nº 1 MT12

Alexandre BALLET et Simon LAURENT

Printemps 2016

Table des matières

1	Série de Fourier	2
2	Etude de fonctions	12
3	Phénomène de Gibbs3.1 Démonstration3.2 Approximations de Fourier3.3 Explication du phénomène	19
4	Application des série de Fourier 4.1 La corde pincée	
5	Equation de la chaleur	21
	Compléments 6.1 Finance	22 22 22

Série de Fourier

- 1. f est 2π périodique, impaire et vaut $f(x)=1, x\in [0,\pi]$
 - (a) Coefficients de Fourier

Les a(i) étant nuls. On obtient ainsi les coefficients suivants pour les b(i) :

b(1) = 1.273240	b(6) = -0.000000
b(2) = 0.000000	b(7) = 0.181891
b(3) = 0.424413	b(8) = 0.000000
b(4) = 0.000000	b(9) = 0.141471
b(5) = 0.254648	b(10) = 0.000000

(b) Série de Fourier

(c) Graphe original et ses dix premières approximations

Figure 1.1 – Courbe de la fonction f.

FIGURE 1.2 – Richesse du signal f.

- 2. f est 2π périodique, impaire et vaut $f(x) = x, x \in [0, \pi]$
 - (a) Coefficients de Fourier

Les a(i) étant nuls. On obtient ainsi les coefficients suivants pour les b(i):

 $\begin{array}{lll} b(1) = 2.000000 & b(6) = -0.333333 \\ b(2) = -1.000000 & b(7) = 0.285714 \\ b(3) = 0.666667 & b(8) = -0.250000 \\ b(4) = -0.500000 & b(9) = 0.222222 \\ b(5) = 0.400000 & b(10) = -0.200000 \end{array}$

(b) Série de Fourier

(c) Graphe original et ses dix premières approximations

FIGURE 1.3 – Courbe de la fonction f.

FIGURE 1.4 – Richesse du signal f.

- 3. f est 2π périodique, paire et vaut $f(x) = x, x \in [0, \pi]$
 - (a) Coefficients de Fourier

Les b(i) étant nuls. On obtient ainsi les coefficients suivants pour les a(i):

a(1) = 1.273240 a(6) = -0.000000 a(2) = 0.000000 a(7) = 0.025984 a(3) = 0.141471 a(8) = 0.000000 a(4) = 0.000000 a(9) = 0.015719 a(5) = 0.050930 a(10) = 0.000000avec a(0) = 3.141593

(b) Série de Fourier

(c) Graphe original et ses dix premières approximations

FIGURE 1.5 – Courbe de la fonction f.

FIGURE 1.6 – Richesse du signal f.

4. f est 2π périodique, paire et vaut $f(x) = x^2, x \in [0, \pi]$

(a) Coefficients de Fourier

Les b(i) étant nuls. On obtient ainsi les coefficients suivants pour les a(i):

$$a(1) = -4.000000$$

a(6) = 0.111111

$$a(2) = 1.000000$$

a(7) = -0.081633

$$a(3) = -0.444444$$

a(8) = 0.062500

$$a(4) = 0.250000$$

a(9) = -0.049383

$$a(5) = -0.160000$$

a(10) = 0.040000

avec
$$a(0) = 6.579736$$

(b) Série de Fourier

(c) Graphe original et ses dix premières approximations

FIGURE 1.7 – Courbe de la fonction f.

FIGURE 1.8 – Richesse du signal f.

5. f est 2π périodique, impaire et vaut $f(x) = x(\pi + |x|), x \in [-\pi, \pi]$

(a) Coefficients de Fourier

Les a(i) étant nuls. On obtient ainsi les coefficients suivants pour les b(i):

b(1) = 2.546479b(2) = 0.000000 b(6) = 0.000000b(7) = 0.007424

b(3) = 0.000000b(3) = 0.094314 b(7) = 0.007424b(8) = -0.000000

b(4) = -0.000000

b(9) = 0.003493

b(5) = 0.020372

b(10) = -0.000000

(b) Série de Fourier

(c) Graphe original et ses dix premières approximations

FIGURE 1.9 – Courbe de la fonction f.

FIGURE 1.10 – Richesse du signal f.

Etude de fonctions

1.

$$f(x) = (\sin x)^{1/3}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle est composée d'une fonction sinus, ce qui la rend impaire. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = \sqrt{0} = 0$. Elle est donc continue.

FIGURE 2.1 – Courbe de la fonction f.

Sa dérivée est

$$f'(x) = \frac{1}{3} cosx(sin x)^{-2/3}$$

Elle admet une asymptote verticale en 0 et n'est donc pas continue. La fonction f est continue mais non dérivable sur $(-\pi;\pi)$.

$$f(x) = (\sin x)^{4/3}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = \sqrt[3]{0} = 0$. Elle est donc continue.

FIGURE 2.2 – Courbe de la fonction f.

Sa dérivée est

$$f'(x) = \frac{4}{3}\cos x(\sin x)^{1/3}$$

Elle n'admet pas d'asymptote et est donc continue. La fonction f est continue et dérivable, donc régulière.

$$f(x) = \begin{cases} \cos x & , si \quad x > 0 \\ -\cos x & , si \quad x \le 0 \end{cases}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+)=1$ et $f(0^-)=-1$. Elle n'est donc pas continue en 0.

FIGURE 2.3 – Courbe de la fonction f.

Elle est dérivable par morceaux et sa dérivée est

$$f'(x) = \begin{cases} -\sin x & , si & x > 0 \\ \sin x & , si & x \le 0 \end{cases}$$

La fonction f est continue par morceaux et dérivable par morceaux, donc régulière par morceaux.

$$f(x) = \begin{cases} \sin x & , si & x > 0 \\ -\sin 2x & , si & x \le 0 \end{cases}$$

La fonction f est définie sur l'intervalle $(-\pi; \pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+) = f(0^-) = 0$. Elle est donc continue.

FIGURE 2.4 – Courbe de la fonction f.

Elle est dérivable par morceaux et sa dérivée est

$$f'(x) = \begin{cases} \cos x & , si \quad x > 0 \\ -2\cos 2x & , si \quad x \le 0 \end{cases}$$

La fonction f est continue et dérivable par morceaux, donc régulière par morceaux.

$$f(x) = \begin{cases} (\sin x)^{1/5} & , si \quad x < \pi/2 \\ -\cos x & , si \quad x \ge \pi/2 \end{cases}$$

La fonction f est définie sur l'intervalle $(-\pi;\pi)$. Elle n'admet aucune valeur interdite et on a $f(0^+)=f(0^-)=\sqrt{0}=0$ et $f(\pi/2)=0$ et $\lim_{\substack{x\to\pi/2\\x>\pi/2}}f(x)$. Elle est continue en 0 mais

pas en $\pi/2$, elle est donc continue par morceaux.

FIGURE 2.5 – Courbe de la fonction f.

Elle est dérivable par morceaux et sa dérivée est

$$f'(x) = \begin{cases} \frac{1}{5}\cos x \left(\sin x\right)^{1/5} &, si \quad x < \pi/2\\ \sin x &, si \quad x \ge \pi/2 \end{cases}$$

La fonction f est continue par morceaux et dérivable par morceaux, donc régulière par morceaux.

Phénomène de Gibbs

3.1 Démonstration

Soit f la fonction 2π -périodique et impaire telle que f(x) = 1 sur $[0; \pi]$.

Nous allons montrer que

$$S_{f(x)} = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\sin(2k-1)}{2k-1}$$

Nous savons que $S_{f(x)} = \sum_{n=0}^{\infty} b_n sinnx$, car f est impaire.

Or,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) sinnx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} f(x) sinnx + \frac{1}{\pi} \int_{0}^{\pi} f(x) sinnx$$

$$= -\frac{1}{\pi} \int_{-\pi}^{0} sinnx + \frac{1}{\pi} \int_{0}^{\pi} sinnx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} sinnx + \frac{1}{\pi} \int_{0}^{\pi} sinnx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} sinnx$$

$$= \frac{2}{\pi} \left[\frac{-cosnx}{k} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left(-\frac{cosn\pi}{n} + \frac{1}{n} \right)$$

$$= \frac{2}{\pi} \left(-\frac{cosn\pi}{n} + \frac{1}{n} \right)$$

D'où

$$S_{f(x)} = \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1 - \cos nx}{n} \sin nx$$

$$= \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1 - (-1)^n}{n} \sin nx$$

$$= \frac{2}{\pi} \sum_{n pair}^{\infty} \frac{1 - (-1)^n}{n} \sin nx + \frac{2}{\pi} \sum_{n impair}^{\infty} \frac{1 - (-1)^n}{n} \sin nx$$

$$= \frac{4}{\pi} \sum_{n impair}^{\infty} \frac{\sin nx}{n}$$

$$= \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2k-1)x}{2k-1} \quad , \text{ où } n = 2k-1 \; , \; k \in \mathbb{R}$$

3.2 Approximations de Fourier

3.3 Explication du phénomène

Application des série de Fourier

- 4.1 La corde pincée
- 4.2 La corde frappée

Chapitre 5
Equation de la chaleur

Compléments

6.1 Finance

6.2 Informatique

Comme le disait Jean de la Fontaine dans sa fable : Rien de sert de courir, il faut partir à point.