Teoria della dualità

Tuesday, 24 October 2023

09:34

- Serve per comprendere come il metodo del simplesso risolve
- Ogni problema di programmazione lineare ne esiste uno corrispondente chiamato duale
 - La correlazione tra problema duale e problema primale sono utili
 - Es. Concetto prezzi ombra
 - Analisi sensitività = Fa riferimento alle 4 assunzioni della programmazione lineare

Es.

$$\max Z = 3x_1 + 5x_2$$

$$x_1 \le 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

$$x_1 \ge 0, x_2 \ge 0$$

Notiamo che i parametri sono ipotesi del futuro

Quindi ciò che succederà nel futuro potrà essere diverso dal teorizzato Ed i valori di alcuni parametri dipendono dalle decisioni manageriali

- Comprendiamo cos'è il problema duale

$$primale: \max Z = \sum c_j * x_j$$

$$duale: \min W = \sum b_i * y_i$$

$$primale: \sum a_{ij} * x_j \leq b_i$$

$$duale: \sum a_{ij} * y_i \geq c_j$$

 $primale: x_i \ge 0$

 $duale : y_j \geq$

Quindi:

- Da massimo a minimo
- o Coefficenti del primale diventano temini noti del duale
- o Coefficenti del duale diventano temini noti del primale
- Coefficenti do ogni variabile nei vincoli dei primale diventano i

corrispondenti del duale

Quindi:

C = Output

Y = Variabili per ottenere gli output

- Dimenticato qualcosa
- Un altra rappresentazione: forma algebrica
 - o Primale:

$$\max Z = 3x_1 + 5x_2$$

$$1 * x_1 \le 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

o Duale:

$$\min W = 4y_1 + 12y_2 + 18y_3$$

$$1y_1 + 3y_3 \ge 3$$

$$2y_2 + 2y_3 \ge 5$$

o Primale

$$\max Z = \begin{bmatrix} 3, 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

o Duale

$$\min Z = [y_1, y_2, y_3] \begin{bmatrix} 4\\12\\18 \end{bmatrix}$$
$$[y_1, y_2, y_3] \begin{bmatrix} 1&0\\0&2\\3&2 \end{bmatrix} \ge \begin{bmatrix} 3\\5 \end{bmatrix}$$

- E' possibile passare da una forma in maniera tabellare:

	лоне раз					a Prima		
			C	coefficie	ente	termine		
			x_1	x_2		x_n	noto	
Duale	coefficiente di	<i>y</i> ₁ <i>y</i> ₂	$a_{11} \\ a_{21}$	$a_{12} \\ a_{22}$		$a_{1n} \\ a_{2n}$	$\leq b_1 \\ \leq b_2 \\ \leq \cdots$	ienti della e obiettivo zzazione)
Problema Duale	coeff	y_m	a_{m1}	a_{m2}		a_{mn}	$\leq \cdots \leq b_m$	coefficienti funzione ob (minimizza:
Prob	termi noto		c_1	c_2	VI 	C_n		
coefficienti della funzione obiettivo (massimizzazione)								

Leggere righe/colonne

	X1	X2	
Y1	1	0	<=4
Y2	0	2	<=12
Y3	3	2	<=18
	VI 3	VI 5	

Notiamo che

I vincoli i sono fortemente correlati ai vincoli j

E che la funzione obiettivo ai termini noti

- Origine del duale
 - o I valori delle variabili slack diventeranno la nostra y

*	VARIABILE					c	OEFFICIENT	ſΕ				
ITERAZIONE	DI BASE	EQ	Z	<i>x</i> ₁	X ₂		X _n	x_{n+1}	x_{n+2}		\mathbf{x}_{n+m}	TERMINE NOTO
OGNI	Z	(0)	1	$z_1 - c_1$	$z_2 - c_2$	•••	$z_n - c_n$	<i>y</i> ₁	У2	•••	Уm	W

Trasformaimo il nostro solito

Formukla:

$$\max Z = 3x_1 + 5x_2$$

$$x_1 \le 4$$

$$2x_2 \le 12$$

$$3x_1 + 2x_2 \le 18$$

Ora facciamo l'latro:

$$\min W = 4y_1 + 12y_2 + 18y_3$$

Notiamo che abbiamo preso tutti i valori dopo <=

Ora facciamo le equazioni

$$z_1 = y_1 + 3y_3$$

$$z_2 = 2y_2 + 2y_3$$

Questo lo possiamo notare guardiando le colonne delle nostre equazioni

- Il problema duale è una diversa formulazione
 - Il risultato sarà lo stesso tra i due
 - o I valori delle variabili stack forniscono i prezzi ombra
- Esempio

	Problema Primale (coefficiente)							Problema Duale					
iterazione	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	Z	<i>y</i> ₁	y ₂	<i>y</i> ₃	$z_1 - c_1$	$z_2 - c_2$	W	
0	[-3,	-5	0,	0,	0	0]	0	0	0	-3	-5	0	
1	[-3,	0	0,	5 2'	0	30]	0	5 2	0	-3	0	30	
2	[0,	0	0,	3 2'	1	36]	0	3 2	1	0	0	36	

$$z_1 - c_1 = y_1 + 3y_3 - 3$$

Aka ho preso

$$y + 3y_3 \ge 3$$

Ci ho fatto questo $y + 3y_3 - (z_1 - c_1) = 3$ E poi ho portato a destra $z_1 - c_1 = y_1 + 3y_3 - 3$

Iterazioni:

- 0) Abbiao la soluzione $(y_1, y_2, y_3) = (0, 0, 0)$ Non è accettabile, e le variabili suprlus (-3, -5) sono negative $(z_1 - c_1), (z_2 - c_2)$
- 1) Rimuovo $z_2 c_2$ dalle due ragioni di inabmissiblità y_1, y_2, y_3
- 2) $(z_1 c_1)$
- Relazione primale duale
 - cx ≤ yb
 Aka la funzione obbiettivo primale è minore uguale della duale (Dualità debole)
 - $\begin{array}{ll}
 \circ & \text{Dualità forte} \\
 cx = yb
 \end{array}$

Questo vale solo quando entrambe sono soluzioni ottimali amissibili Durante il metodo del simplesso se la soluzione del primale è amissibile quella del duale non è amissibile fino all'ultima iterazione

- Quindi ci muoviamo su soluzioni inamissibile fino a trovare l'amissibile, che sarà l'ottimo
- O Troviamo cotntemporaneamente un vertice x amissibile del problema primale ed una soluzione complementare y duale dove cx = yb

Dove x è amissibile ed y no

- o Le sole relazioni possibili sono riassumibili:
 - Se il problema ha soluzioni amissibili e funzione obiettiva limitata, allora la stessa cosa identica vale per l'altro problema, e quindi proprietà debole e forte applicabili
 - Se un problema ha soluzioni amissibili e funzione obiettivo illimitato allora l'altro problema non ha soluzioni amissibili
 - Se un problema non ha soluzioni possibili, o l'altra non ha soluzioni amissibili oppure è illimitata
- I prezzi ombra rappresentano