

Estratégias de paralelização do AG para VRP

Estudo de caso - mineração

Felipe Nathan Welter PPA – CCT Udesc Professor Maurício A. Pillon 07/11/2019

VRP - Roteamento de Veículos

Problema da classe NP-Hard, que consiste em encontrar o melhor conjunto de rotas a serem percorridas por uma frota de veículos, atendendo condições específicas.

Por demandar muito tempo de processamento, sua solução normalmente ocorre por meio de um algoritmo probabilístico.

Algoritmo Genético

Meta-heurística de busca e otimização que se inspira na Seleção Natural de Darwin.

"Cria-se uma população de indivíduos que vão reproduzir e competir pela sobrevivência. Os melhores sobrevivem e transferem suas características a novas gerações."

(POZO et. al, 2003)

A condição de parada é definida como um número limite de gerações ou até que se encontre uma solução próxima ao resultado ótimo.

Algoritmo Genético

Estudo de Caso

Sistema embarcado

Ciclo de transporte

Cerca eletrônica

Master-slave

- No modelo master-slave em arquitetura multi-core do parallel GA, as threads slave realizam a operação fitness, enquanto o processo de reprodução fica com a thread master.
- Interessante quando a função fitness realiza operações complexas para atender regras de negócio, por exemplo.

Ilha - síncrono

- No modelo ilha síncrono em arquitetura multi-core cada thread evolui uma subpopulação de forma independente.
- Uma etapa de migração é adicionada para compartilhar os melhores indivíduos.
- É o modelo adotado no estudo de caso. A barreira para migração pode ocasionar perda de desempenho.

Ilha – assíncrono

- A diferença do modelo ilha assíncrono em arquitetura multi-core é a ausência da barreira para migração.
- Na prática, não há perda na qualidade dos resultados, mas ganho na performance.

Modelo hierárquico

- O modelo de células para arquitetura multicomputador executa as gerações em dispositivos separados e compartilha resultados com nós próximos.
- Pode ser combinado com o modelo de ilhas, aplicando internamente processamento das subpopulações em threads.
- A topologia da rede de conexões é fator chave.

Hardware

 Hardwares de maior potencial e de gerações mais atuais podem trazer ganho de performance sem inviabilizar o custo do projeto.

Nas minas de grande porte:

- RaspberryPI 3: speedup de 1.15
- BananaPI M3: speedup de 1.29 (em relação a execução sequencial)
- Customização do hardware overclock do CPU.
- Adoção de compilações especiais para os sistemas operacionais, que foram mantidos originais para o estudo de caso.

Algoritmo Genético

- A configuração dos parâmetros de execução do A.G. é um ponto crítico:
 - Condição de parada
 - Número de gerações
 - Regras de seleção
 - Regras de crossover
 - Regras da avaliação fitness
 - Taxa de mutação
 - Taxa de migração
- A melhor configuração depende do cenário de aplicação (tamanho da mina, número de veículos e pontos de cruzamento).

Conclusão

- A otimização das rotas de transporte permite a redução de custos operacionais e custos de manutenção, aumenta a produtividade e a eficiência do processo.
- Pequeno custo de aquisição dos equipamentos, quando comparado às soluções robustas de mercado.
- O paralelismo viabiliza o atendimento de restrições específicas como o tempo para tomada de decisão de troca de rota, aproveitando o potencial do hardware embarcado.

Referências

- NETO, Geraldo Dutra. Paralelismo De Um Algoritmo Genético, Aplicado a Otimização de Rotas em Mineração De Modo Escalável. Orientador: Dr. Fábio Vincenzi Romualdo da Silva. 2018. 77 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Uberlândia, Uberlândia, 2018. Disponível em: https://repositorio.ufu.br/bitstream/123456789/25374/3/Paralelis moAlgoritmoGenetico.pdf. Acesso em: 16 out. 2019.
- POZO, A. et al. (2003). **Computação Evolutiva**. Disponível em: http://www.inf.ufpr.br/aurora/tutoriais/Ceapostila.pdf. Acesso em: 22 de outubro de 2019.
- REZA, Roshani; KARIM SOHRABI, Mohammad. Parallel Genetic Algorithm for Shortest Path Routing Problem with Collaborative Neighbors. Ciência e Natura, Santa Maria, ano 2015, v. 37, n. 6-2, p. 328-333, 2015. Disponível em: https://www.redalyc.org/articulo.oa?id=467547683042. Acesso em: 20 out. 2019.
- ZHENG, Long; LU, Yanchao; GUO, Minyi; GUO, Song; XU, Cheng-Zhong. Architecture-based design and optimization of genetic algorithms on multi- and many-core systems. Future Generation Computer Systems, and 2014, v. 38, p. 75-91, 2014. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167739X1300 2082. Acesso em: 20 out. 2019.

Obrigado

UDESC – Universidade do Estado de Santa Catarina

Felipe Nathan Welter felipenwelter@gmail.com