Calculus II Homework Partial fractions

1.	Let $x \in$	(0,1).	Express	the fo	ollowing	using	x and y	$\sqrt{1}$	$\overline{-x^2}$

(a) $\sin(\arcsin(x))$.

(e) $\sin(2\arccos(x))$.

(b) $\sin(2\arcsin(x))$.

(f) $\sin(3\arccos(x))$.

(c) $\sin(3\arcsin(x))$.

(g) $\cos(2\arcsin(x))$.

(d) $\sin(\arccos(x))$.

(h) $\cos(3\arccos(x))$.

2. Express as the following as an algebraic expression of x. In other words, "get rid" of the trigonometric and inverse trigonometric expressions.

(a) $\cos^2(\arctan x)$.

(c) $\frac{1}{\cos(\arcsin x)}$.

(b) $-\sin^2(\operatorname{arccot} x)$.

(d) $-\frac{1}{\sin(\arccos x)}$.

3. Rewrite as a rational function of t. This problem will be later used to derive the Euler substitutions (an important technique for integrating).

(a) $\cos(2\arctan t)$.

(g) $\cos(2\operatorname{arccot} t)$.

(b) $\sin(2 \arctan t)$.

(h) $\sin(2\operatorname{arccot} t)$.

(c) $\tan (2 \arctan t)$.

(i) $\tan (2 \operatorname{arccot} t)$.

(d) $\cot (2 \arctan t)$.

(j) $\cot (2 \operatorname{arccot} t)$.

(e) $\csc(2\arctan t)$.

(k) $\csc(2\operatorname{arccot} t)$.

(f) $\sec (2 \arctan t)$.

(1) $\sec (2 \operatorname{arccot} t)$.

4. Compute the derivative (derive the formula).

(a) $(\arctan x)'$.

(d) $(\arccos x)'$.

(b) $(\operatorname{arccot} x)'$.

(c) $(\arcsin x)'$.

(e) Let arcsec denote the inverse of the secant function. Compute $(\operatorname{arcsec} x)'$.

5. (a) Let $a+b \neq k\pi$, $a \neq k\pi + \frac{\pi}{2}$ and $b \neq k\pi + \frac{\pi}{2}$ for any $k \in \mathbb{Z}$ (integers). Prove that

$$\frac{\tan a + \tan b}{1 - \tan a \tan b} = \tan(a + b) \quad .$$

(b) Let x and y be real. Prove that, for $xy \neq 1$, we have

$$\arctan x + \arctan y = \arctan \left(\frac{x+y}{1-xy}\right)$$

1

if the left hand side lies between $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

6. Evaluate the indefinite integral. Illustrate the steps of your solutions.

(a)
$$\int x \sin x dx$$
.

(b)
$$\int xe^{-x}dx$$
.

(c)
$$\int x^2 e^x dx$$
.

(d)
$$\int x \sin(-2x) dx.$$

(e)
$$\int x^2 \cos(3x) dx.$$

(f)
$$\int x^2 e^{-2x} dx.$$

(g)
$$\int x \sin(2x) dx$$
.

(h)
$$\int x \cos(3x) dx.$$

(i)
$$\int x^2 e^{2x} dx.$$

(j)
$$\int x^3 e^x dx$$
.

7. Evaluate the indefinite integral. Illustrate the steps of your solutions.

(a)
$$\int x^2 \cos(2x) dx.$$

(b)
$$\int x^2 e^{ax} dx$$
, where a is a constant.

(c)
$$\int x^2 e^{-ax} dx$$
, where a is a constant.

(d)
$$\int x^2 \frac{(e^{ax} + e^{-ax})^2}{4} dx$$
, where a is a constant.

(e)
$$\int \frac{1}{\cos^2 x} dx$$
. (Hint: This problem does not require integration by parts. What is the derivative of $\tan x$?)

(f)
$$\int (\tan^2 x) dx$$
. (Hint: This problem does not require integration by parts. We can use $\tan^2 x = \frac{1}{\cos^2 x} - 1$ and the previous problem.)

(g)
$$\int x \tan^2 x dx$$
. (Hint: $\tan^2 x dx = d(F(x))$, where $F(x)$ is the answer from the preceding problem).

(h)
$$\int e^{-\sqrt{x}} dx$$
.

(i)
$$\int \cos^2 x \, dx$$
.

(j)
$$\int \frac{x}{1+x^2} dx$$
 (Hint: use substitution rule, don't use integration by parts)

(k)
$$\int (\arctan x) dx$$
.

(1)
$$\int (\arcsin x) dx$$
.

(m)
$$\int (\arcsin x)^2 dx$$
. (Hint: Try substituting $x = \sin y$.)

(n)
$$\int \arctan\left(\frac{1}{x}\right) dx$$
.

(o)
$$\int \sin x e^x dx$$

(p)
$$\int \cos x e^x dx$$

(q)
$$\int \sin(\ln(x)) dx$$
.

(r)
$$\int \cos(\ln(x)) dx$$
.

(s)
$$\int \ln x dx$$

(t)
$$\int x \ln x \, dx$$
.

(u)
$$\int \frac{\ln x}{\sqrt{x}} dx$$
.

(v)
$$\int (\ln x)^2 dx$$
.

(w)
$$\int (\ln x)^3 dx.$$

(x)
$$\int x^2 \cos^2 x dx$$
. (This problem is related to Problem 7.d as $\cos x = \frac{e^{ix} + e^{-ix}}{2}$).

8. Compute $\int x^n e^x dx$, where n is a non-negative integer.

9. Integrate. Illustrate the steps of your solution.

(a)
$$\int \frac{1}{x+1} dx$$

(b)
$$\int \frac{x-1}{x+1} dx$$

(c)
$$\int \frac{1}{(x+1)^2} \mathrm{d}x$$

(d)
$$\int \frac{x}{(x+1)^2} dx$$

$$(e) \int \frac{1}{(2x+3)^2} \mathrm{d}x$$

(f)
$$\int \frac{x}{2x^2 + 3} \mathrm{d}x$$

(g)
$$\int \frac{1}{2x^2 + 3} dx$$

(h)
$$\int \frac{x}{2x^2 + x + 1} dx .$$

(i)
$$\int \frac{x}{2x^2 + x + 3} \mathrm{d}x$$

(j)
$$\int \frac{x}{x^2 - x + 3} \mathrm{d}x$$

$$\text{(k)} \int \frac{1}{\left(x^2+1\right)^2} \mathrm{d}x$$

(1)
$$\int \frac{1}{(x^2+x+1)^2} dx$$

(m)
$$\int \frac{1}{(x^2+1)^3} dx$$

10. Let a, b, c, A, B be real numbers. Suppose in addition $a \neq 0$ and $b^2 - 4ac < 0$. Integrate

$$\int \frac{Ax+B}{ax^2+bx+c} \mathrm{d}x \quad .$$

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

11. Let a, b, c, A, B be real numbers and let n > 1 be an integer. Suppose in addition $a \neq 0$ and $b^2 - 4ac < 0$. Let

$$J(n) = \int \frac{1}{\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)^n} \mathrm{d}x \quad .$$

(a) Express the integral

$$\int \frac{Ax + B}{\left(ax^2 + bx + c\right)^n} \mathrm{d}x$$

via J(n).

(b) Express J(n) recursively via J(n-1)

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

12. Integrate. Some of the examples require partial fraction decomposition and some do not. Illustrate the steps of your solution.

(a)
$$\int \frac{1}{4x^2 + 4x + 1} dx$$

(b)
$$\int \frac{1}{1-x^2} \mathrm{d}x$$

(c)
$$\int \frac{1}{5 - x^2} dx$$

(d)
$$\int \frac{x}{4x^2 + x + \frac{1}{16}} dx$$

(e)
$$\int \frac{x+1}{2x^2+x} \mathrm{d}x$$

$$(f) \int \frac{x}{4x^2 + x + 5} \mathrm{d}x$$

$$(g) \int \frac{x}{4x^2 + x - 5} \mathrm{d}x$$

(h)
$$\int \frac{x}{3x^2 + x - 2} dx$$

(i)
$$\int \frac{x}{3x^2 + x + 2} dx$$

(j)
$$\int \frac{x}{2x^2 + x + 1} dx$$

(k)
$$\int \frac{x}{2x^2 + x - 1} \mathrm{d}x$$

(l)
$$\int \frac{1}{x^2 + x + 1} \mathrm{d}x$$

(m)
$$\int \frac{1}{2x^2 + 5x + 1} dx$$

13. Evaluate the indefinite integral. Illustrate all steps of your solution.

$$(a) \int \frac{x^3 + 4}{x^2 + 4} \mathrm{d}x$$

(b)
$$\int \frac{4x^2}{2x^2 - 1} dx$$

$$\text{(c)} \int \frac{x^3}{x^2 + 2x - 3} \mathrm{d}x$$

$$(d) \int \frac{x^3}{x^2 + 3x - 4} \mathrm{d}x$$

(e)
$$\int \frac{x^3}{2x^2 + 3x - 5} dx$$

(f)
$$\int \frac{x^2 + 1}{(x - 3)(x - 2)^2} dx$$

(g)
$$\int \frac{x^4}{(x+1)^2(x+2)} dx$$

(h)
$$\int \frac{15x^2 - 4x - 81}{(x - 3)(x + 4)(x - 1)} dx$$

(i)
$$\int \frac{x^4 + 10x^3 + 18x^2 + 2x - 13}{x^4 + 4x^3 + 3x^2 - 4x - 4} dx$$

Check first that $(x-1)(x+2)^2(x+1) = x^4 + 4x^3 + 3x^2 - 4x - 4$

(j)
$$\int \frac{x^4}{(x^2+2)(x+2)} dx$$

(k)
$$\int \frac{x^5}{x^3 - 1} \mathrm{d}x$$

(l)
$$\int \frac{x^4}{(x^2+2)(x+1)^2} dx$$

(m)
$$\int \frac{3x^2 + 2x - 1}{(x - 1)(x^2 + 1)} dx$$

(n)
$$\int \frac{x^2 - 1}{x(x^2 + 1)^2} dx$$

14. Integrate

$$\int \frac{x^6 - x^5 + \frac{9}{2}x^4 - 4x^3 + \frac{13}{2}x^2 - \frac{7}{2}x + \frac{11}{4}}{x^5 - x^4 + 3x^3 - 3x^2 + \frac{9}{4}x - \frac{9}{4}} \mathrm{d}x \quad .$$