VE320 Homework 8

Due: 10/07/2019 10:00 am

For problem 4-9, assume $A^* = 120 \text{ A/K}^2\text{-cm}^2$ for silicon and $A^* = 1.12 \text{ A/K}^2\text{-cm}^2$ for gallium arsenide Schottky diodes unless otherwise stated.

1.

An npn bipolar transistor is biased in the forward-active mode. (a) The collector current is $I_C = 1.2$ mA when biased at $V_{CE} = 2$ V. The Early voltage is $V_A = 120$ V. Determine (i) the output resistance $V_C = 1.2$ v. (ii) the output conductance $V_C = 1.2$ v. (b) Repeat part (a) if the collector current is $V_C = 1.2$ v. (b) Repeat part (a) if the collector current is $V_C = 1.2$ v. (b) Repeat part (a) if the collector current is $V_C = 1.2$ v. (a) when biased at $V_C = 1.2$ v. and the Early voltage is $V_C = 1.2$ v.

2.

A uniformly doped silicon npn bipolar transistor at T=300 K has parameters $N_E=2\times 10^{18}$ cm⁻³, $N_B=2\times 10^{16}$ cm⁻³, $N_C=2\times 10^{15}$ cm⁻³, $x_{BO}=0.85~\mu$ m, and $D_B=25$ cm²/s. Assume $x_{BO}\ll L_B$ and let $V_{BE}=0.650$ V. (a) Determine the electron diffusion current density in the base for (i) $V_{CB}=4$ V, (ii) $V_{CB}=8$ V, and (iii) $V_{CB}=12$ V. (b) Estimate the Early voltage.

3.

A uniformly doped pnp silicon bipolar transistor has a base doping of $N_B = 10^{16}$ cm⁻³, a collector doping of $N_C = 10^{15}$ cm⁻³, a metallurgical base width of $x_{B0} = 0.70~\mu$ m, a base minority carrier diffusion coefficient of $D_B = 10~\text{cm}^2/\text{s}$, and a B–E cross-sectional area of $A_{BE} = 10^{-4}~\text{cm}^2$. The transistor is biased in the forward-active mode with $V_{EB} = 0.625~\text{V}$. Neglecting the B–E space charge width and assuming $x_B \ll L_B$, (a) determine the change in neutral base width as V_{BC} changes from 1 to 5 V, (b) find the corresponding change in collector current, (c) estimate the Early voltage, and (d) find the output resistance.

4.

(a) A Schottky barrier diode formed on n-type silicon has a doping concentration of $N_d = 5 \times 10^{15}$ cm⁻³ and a barrier height of $\phi_{B0} = 0.65$ V. Determine the built-in potential barrier V_{bi} . (b) If the doping concentration changes to $N_d = 10^{16}$ cm⁻³, determine the values of ϕ_{B0} and V_{bi} . Do these values increase, decrease, or remain the same? (c) Repeat part (b) if the doping concentration is $N_d = 10^{15}$ cm⁻³.

5.

(a) Consider a Schottky diode at T=300 K that is formed with tungsten on n-type silicon. Use Figure 9.5 to determine the barrier height. Assume a doping concentration of $N_d=10^{16}$ cm⁻³ and assume a cross-sectional area $A=10^{-4}$ cm². Determine the forward-bias voltage required to induce a current of (i) 10 μ A, (ii) 100 μ A, and (iii) 1 mA. (b) Repeat part (a) for a temperature of T=350 K. (Neglect the barrier lowering effect.)

A pn junction diode and a Schottky diode each have cross-sectional areas of $A = 8 \times 10^{-4}$ cm². The reverse saturation current densities at T = 300 K for the pn junction diode and Schottky diode are 8×10^{-13} A/cm² and 6×10^{-9} A/cm², respectively. Determine the required forward-bias voltage in each diode to yields currents of $(a)150 \mu A$, $(b)700 \mu A$, and (c)1.2 mA.

7.

(a) The contact resistance of an ohmic contact is $R_c = 5 \times 10^{-5} \,\Omega$ -cm². The cross-sectional area of the junction is $10^{-5} \,\mathrm{cm}^2$. Determine the voltage across the junction if the current is (i) $I = 1 \,\mathrm{mA}$ and (ii) $I = 100 \,\mu\mathrm{A}$. (b) Repeat part (a) if the cross-sectional area is $10^{-6} \,\mathrm{cm}^2$.

8.

A metal, with a work function $\phi_m = 4.2$ V, is deposited on an n-type silicon semiconductor with $\chi_s = 4.0$ V and $E_g = 1.12$ eV. Assume no interface states exist at the junction. Let T = 300 K. (a) Sketch the energy-band diagram for zero bias for the case when no space charge region exists at the junction. (b) Determine N_d so that the condition in part (a) is satisfied. (c) What is the potential barrier height seen by electrons in the metal moving into the semiconductor?

9.

A metal–semiconductor junction is formed between a metal with a work function of 4.3 eV and p-type silicon with an electron affinity of 4.0 eV. The acceptor doping concentration in the silicon is $N_a = 5 \times 10^{16}$ cm⁻³. Assume T = 300 K. (a) Sketch the thermal equilibrium energy-band diagram. (b) Determine the height of the Schottky barrier. (c) Sketch the energy-band diagram with an applied reverse-biased voltage of $V_R = 3$ V. (d) Sketch the energy-band diagram with an applied forward-bias voltage of $V_a = 0.25$ V.