Appendices

A Notation

Symbol	Description	Value
M	Number of individuals in the sample, we use subscript j to refer to an individual.	200
T	Time over which the study is run.	120 days

Table 1: Table of parameters associated with the simulated data and their values

Symbol	Description
State variables	
$egin{aligned} Z_{j,t} \in \mathbf{Z} \ Z_j^0 \ X_{j,t} \in \mathbf{X} \end{aligned}$	Data on the antibody titre at time t for individual j .
Z_i^0	Initial titre (titre at first value of t for individual j).
$X_{i,t} \in \mathbf{X}$	Model estimated antibody titre at time t for individual j .
$\mathbf{E} = \{E_1, \dots, E_j, \dots, E_M\}$	Vector of exposure statuses (binary vector) for each individual j . A super-
	script (i) specifies a specific value in the Markov chain.
n_{E}	Total number of individuals exposed A superscript (i) specifies a specific
	value in the Markov chain.
$\mathbf{E_1} = \{j_1, \dots, j_{j^*} \dots, j_{n_{E}}\}$	Vector of individuals j^* who are exposed. A superscript (i) specifies a spe-
	cific value in the Markov chain.
$\mathbf{E_0} = \{j_1, \dots, j_{j^*} \dots, j_{M-n_{\mathbf{E}}}\}$	Vector of individuals j^* who are not exposed. A superscript (i) specifies a
	specific value in the Markov chain.
$\mathbf{E}^{\tau} = \{E_{j_1}^{\tau}, \dots, E_{j_{j*}}^{\tau}, \dots, E_{j_{n_e}}^{\tau}\}$	Vector of exposure times for each individual j . A superscript (i) specifies a
,	specific value in the Markov chain.
$\mathbf{I} = \{I_1, \dots, I_{j^*}, \dots, I_{n_{\mathbf{E}}}\}$	Vector of infection statuses (binary vector) for each individual j . A super-
	script (i) specifies a specific value in the Markov chain.
n_{I}	Total number of individuals infected A superscript (i) specifies a specific
	value in the Markov chain.
$\theta_{cop} = \{\beta_0, \beta_1\}$	Fitted parameters for the correlate of protection model
$\theta_{ab} = \{a, b, c, \alpha\}$	Fitted parameters for the antibody kinetics model
$\theta = \{\theta_{cop}, \theta_{ab}, \sigma\}$	All fitted parameters in the model. A superscript (i) specifies a specific
	value in the Markov chain.
Functions	
$P(\theta, \mathbf{E}, \mathbf{E}^{\tau}, \mathbf{I} \mathbf{Z})$	Posterior distribution function given inputs θ , E , E ^{τ} , I and data Z
$\mathcal{L}(\mathbf{Z} \theta,\mathbf{E},\mathbf{E}^{ au},\mathbf{I})$	Likelihood function given inputs θ , E , \mathbf{E}^{τ} , I and data Z .
$\mathcal{L}_{E_j=0}(Z_j, I_j, E_j^{\tau}, E_j, \theta)$	Likelihood function for individual j who is not exposed
$\mathcal{L}_{E_j=1}(Z_j, I_j, E_j^{\tau}, E_j, \theta)$	Likelihood function for individual j who is exposed
$P_t(E_j^{\tau} E_j)$	Likelihood of an exposure at time $E_j^{ au}$ given individual j is exposed
$X_{j,t} = F_{ab}(t, I_i, E_j^{\tau}, \theta_{ab}, Z_j^0)$	Deterministic function for the estimated antibody titre at time t for individ-
	ual j and starting titre values from the data, Z_j^0 for an exposure at time $E_j^{ au}$
	and infection status I_j .
$f_{ab}^1(s,a,b,c)$	The function which determines the antibody titres at time s after $E_j^{ au}$
$f_{ab}^2(Z_j^0, \alpha)$	The function which scales the trajectory given pre-titre Z_j^0 .
$P_{cop}(I_j X_{j,E_j^{\tau}},\theta_{cop})$	Likelihood for the correlate of protection for an individual j with an expo-
	sure at time $E_j^ au$, and estimated titre value $X_{j,E_j^ au}$ and infection status I_j .
$f_{cop}(X_{j,t},\beta_0,\beta_1)$	Function describing the correlate of protection for infection at time t . (lo-
	gistic).
$P_{obs}(Z_{j,t} X_{j,t},\sigma)$	Likelihood of the observation model for the data $Z_{j,t}$ given model-
	estimated titre values $X_{j,t}$ for individual j at time t .
$\pi(\theta) = \pi(a)\pi(b)\dots\pi(\sigma)$	Prior distributions for all fitted parameters in the model.

Table 2: Symbols used in calculating the posterior distribution

Symbol	Description
N	Length of chain in metropolois hasting algorihtm
$q_{\theta}\left(\cdot \theta^{(i)}\right)$	Proposal distribution for the values of θ at given state i .
$q_I\left(\cdot I_j^{(i)}\right)$	Proposal distribution for the values of I_j for individual j at given state i (See XX).
$q_k\left(\cdot k\right)$	Proposal distribution for a new model given model is at \mathcal{M}_k (See XX).
$q_{\tau}\left(\cdot E_{j}^{\tau,(i)}\right)$	Proposal distribution for a new time of exposure for individual j for a given state i .(See XX).

Table 3: Symbols used in the mcmc algorithms