WYIBOOO

Solutions

Solving linear inequalities – Practice exercises 3.2

1. A truck hauling bags of grass seed weighs 3,900 pounds when it's empty. Each bag of seed it carries weighs 4.2 pounds. The equation for the gross weight W pounds is

$$W = 3,900 + 4.2B$$

for B bags of grass seed.

Story also appears in 2.1 #1 and 3.1 #1

(a) The state highways have (18,000) bound gross weight limit. How many bags of grass seed can the truck can haul? Set up and solve an inequality.

$$3,900 + 4.2B \le 10,000$$

 $-3,900$ $-3,900$
 $42B \le 14,100$
 42

3,357 bags

Tround down to stay
under 18,000th.

B < 14,100+4,2=3,357.14...

(b) Record your answer to part (a) in the table and graph the function. $\frac{2,000}{12,300}$ $\frac{(18,000)}{12,300}$ $\frac{48,000}{12,300}$ $\frac{3}{12,300}$ 1,000 0 3,900 8,100 W Weight (pounds) 20 14 12 10 e 6 0 4000 5000 2000 1000 (c) We used our answer to part (a) to draw our graph, so how can we check that

answer to make sense? Hint: what shape should the graph be?

should be a line / Yes "

2. The altitude, A feet above ground, of an airplane M minutes after it begins its descent is given by the equation

$$A = 32,000 - 1,200M$$

Answer each question by evaluating; setting up and solving an equation; or setting up and solving an inequality, whichever is most appropriate.

(a) At what altitude does the plane begin its descent?

At what altitude does the plane begin its descent?
Start
$$\Rightarrow$$
 M=0 minutes A=32000-1200 x 0=32000
of count! That's the Intercept \Box A=32,000 feet]

(b) How fast is the airplane descending?

(c) What is the airplane's altitude 3 minutes into its descent 8 minutes? 20 minutes? Display your answers in a table.

(d) Draw a graph illustrating the function.

	CHAPTER 3.	SOLVING EQUATIONS	~
		(smallest allow	Q
The problem continues		K \ \≥20 000	
(e) For how many minutes of its descent is the	e airplane above	20,000 feet?	/
32000-1200M ≥ 20,00	00		
-32,00 -32,00			
$-1200M \ge -1200$ -1200 -1200 $M \le 10 \text{ minutes}$) 2 Si	- negative witales ≥ to ≤	
C	check gra	pu v	
(f) The airplane might be asked to go into a in a circle instead of landing) when it's be will the plane be in that altitude range?	between 6,000 and	trn (that means flying 14,000 feet up. When Ween: 6000 A 4 1400	6
6000 £ 32000-1200M £11	4000		
-32000 -32000 -3	2000		
$\frac{-26,000}{-25,000} \le -1200 M \le -18$ $\frac{-1200}{-1200} \le -1200 M \le -18$ $\frac{-1200}{-1200} \ge 1.67$ $21 \approx 2.00333 \ge M \ge 15$	3000	- negative switches = to > cheekings	'n \
212200000	100 Cild	by begin descent	Γ,
between 15 and 22 m	inutes at		

(g) How long does it take the airplane to land, assuming it's not asked to go into holding pattern?

Weaks on ground

$$32000 - 1200 M = 0$$

$$-32000$$

$$-32000$$

$$-1200 M = -32,000$$

$$-1200 M = -1200$$

$$M = 26.67...$$
 ≈ 27 minutes to land

Make sure upu set-up and solved (see instructions on previous page)

3. Anthony and Christina are trying to decide where to hold their wedding reception. For each possible site, write an equation using T for the total cost of their wedding reception (in dollars) and G for the number of guests. Then set up and solve an inequality to calculate the number of guests Tony and Tina can afford on their \$8,000 \times budget.

largest allowed (T4 8000)

(a) The Metropolitan Club costs \$1,300 for the space and \$92 per person.

Story also appears in 1.2 #3 and 1.3 #2

equation: T = 1300 + 92 G

number of guests:
$$|360+926\leq8000$$
 $\Rightarrow 6\leq72.82...$
 -1360 $\Rightarrow 6\leq72.82...$
 $\Rightarrow 1360+926\leq8000$ $\Rightarrow 6\leq72.82...$
 $\Rightarrow 1360+926\leq6.700$ $\Rightarrow 6\leq72.82...$
 $\Rightarrow 1360+926\leq6.700$ $\Rightarrow 6\leq72.82...$
 $\Rightarrow 1360+926\leq6.700$ $\Rightarrow 1360+1360$
 $\Rightarrow 13$

(b) Black Elk Park charges \$500 to rent the pavilion and the family can bring in picnic food for \$65 per person.

equation:
$$T = 500 + 656$$

number of guests: $500 + 656 \le 8000$
 -500
 $656 \le 7500$
 $656 \le 7500$
 115900000
 11590000000

(c) The Dabbling Duck Inn charges \$1,400 for the space and \$80 per person for their local specialties.

equation:
$$T = 1400 + 80 G$$

number of guests: $1400 + 80 G \leq 8000$
 -1400
 82 guests
 $86 G \leq 6600$
 $80 G \leq 600$

(d) Pranzo Ristorante has only a \$300 room rental fee but averages \$145 per person, including wine.

4. One variety of blueberry plant yields an average of 130 blueberries per season but there's quite a bit of variability from plant to plant. One measure of this variability is the standard deviation, which is approximated at 16.4 berries. Given a plant yielding B blueberries, we can calculate how usual or unusual that is by computing its (standard) z-score using the equation

$$Z = \frac{B-130}{16.4}$$

For example, a plant yielding B = 130 blueberries has z-score of 0. A plant yielding B = 173 blueberries has z-score of

$$Z = \frac{173 - 130}{16.4} = (\underline{173} - 130) \div 16.4 = .671875 \approx .67$$

Answer each question by evaluating; setting up and solving an equation; or setting up and solving an inequality, whichever is appropriate.

(a) Calculate the z-score of a plant yielding 40 blueberries.

$$Z = \frac{140-130}{16.4} = (140-130) \div 16.4 = .0656...$$

(b) If the z-score for a plant is -.7, what is the corresponding yield? 7 = -7.

Hint: the negative z-score tells us the answer is below average.

Hint: the negative z-score tells us the answer is below average.

$$B = 130 = (-.7) \times 16.4$$

$$B = 118.52$$

$$\approx 119 \text{ blue berner}$$
(c) A plant with z-score above 1.96 is considered extraordinarily plentiful. What yields of blueberries would be considered extraordinarily plentiful?

B-136 > 1.96 x 16.4 \Rightarrow B > 162.144 \Rightarrow up to the series of white \Rightarrow blueberries are considered ordinary?

(d) A plant with z-scord between -1 and +1 are considered ordinary. What yields of blueberries are considered ordinary?

(B-130)

$$-1 \le \left(\frac{B-130}{164}\right) \le 1$$

 $\times 16.4$
 $\times 16.4$
 $\times 16.4$

between 114 and 146