Pencemaran Udara

PENCEMARAN UDARA

Masuknya atau dimasukkannya mahluk hidup, zat,energi,dan atau komponen lain ke udara dan atau berubahnya tatanan udara oleh kegiatan manusia atau oleh proses alam, sehingga kualitas udara turun sampai ketingkat tertentu yang menyebabkan udara menjadi kurang atau tidak dapat berfungsi lagi sesuai dengan peruntukannya.

KOMPOSISI UDARA

- 1. Nitrogen $(N_2) = 78,09\%$
- 2. Oksigen (O2) = 20,94%
- 3. Argon (Ar) = 0.93%
- 4. Karbon dioksida = 0,032%

PENYEBAB PENCEMARAN UDARA

- 1. Alam
 - a. Debu letusan gunung berapi
 - b. Pembusukan sampah organik
 - c. Debu terbangan angin
- 2. Kegiatan manusia
 - a. Debu dari industri
 - b. Zat kimia yg disemprot ke udara
 - c. Pembakaran bahan bakar

SUMBER POLUTAN UDARA

- 1. Transportasi
- 2. Pembakaran Bahan Bakar Proses Industri
- 3. Sampah Padat dan Incenerator
- 4. Dll.

POPULASI RENTAN

- 1. Anak-anak
- 2. Lanjut usia (lansia)
- 3. Individu dengan riwayat penyakit pernapasan atau kardiovaskular
- 4. Perokok aktif
- 5. Orang yang melakukan aktivitas fisik intens di luar ruangan
- 6. Pekerja yang terpapar langsung polutan di lingkungan kerja

Anak-anak lebih rentan terhadap dampak polusi udara dibanding orang dewasa karena frekuensi pernapasan mereka lebih tinggi, sehingga mereka menghirup lebih banyak udara (dan polutan) per menit.

DAMPAK KESEHATAN POLUSI UDARA

- 1. Lebih dari 4000 kematian prematur dan 1,5 juta serangan asthma pertahun di Jakarta
- 2. Rata-rata 3 6 poin IQ berkurang pada anak-anak kota Bangkok, Cairo, Manila.
- 3. Rata-rata umur harapan hidup berkurang 8,6 bulan di Uni Eropa akibat PM
- 4. PM meningkatkan kematian kardiovaskuler dan respiratory diseases
- 5. ISPA selalu pada peringkat 1 dari 10 penyakit terbanyak di Indonesia

GANGGUAN KESEHATAN

1. INDONESIA

a.ISPA selalu menduduki urutan pertama 10 penyakit terbanyak lebih dari 30 tahun (rata-rata 42%) (Profil Kesehatan '04)

2. JAKARTA

- a. Hampir 1/3 kematian kemungkinan berhubungan dengan pencemaran udara (jantung 28,3% dan pneumonia 3,7%)
- b. Hampir 1/2 penyakit terbanyak kemungkinan berhubungan dengan pencemaran udara (47% ISPA, asma, dan penyakit mata) (Profil Kesehatan DKI Jakarta '04)

INDIKATOR KUALITAS UDARA

Indikator kualitas udara yang paling sering digunakan adalah PM2,5, yaitu partikel udara halus berukuran lebih kecil dari 2,5 mikrometer yang dapat masuk hingga ke paru-paru dan menyebabkan gangguan kesehatan.

Untuk memantau kualitas udara secara langsung, digunakan alat seperti airsensor, yang mampu mendeteksi berbagai parameter pencemar udara secara real-time, termasuk konsentrasi PM2,5 dan gas-gas berbahaya lainnya.

Kondisi cuaca juga berperan penting dalam penyebaran polusi udara, salah satunya melalui angin yang dapat membawa dan menyebarkan polutan ke wilayah lain, sehingga memengaruhi kualitas udara di tempat yang jauh dari sumber pencemaran.

AIR POLLUTION AND MORBIDITY

ollutant	Effects related to short-term exposure	Effects related to long-term exposure
Particulate matter	 Lung inflammatory reactions Respiratory symptoms Adverse effects on the cardiovascular system Increase in medication usage Increase in hospital admissions Increase in mortality 	 Increase in lower respiratory symptoms Reduction in lung function in children Increase in chronic obstructive pulmonary disease Reduction in lung function in adults Reduction in life expectancy, owing mainly to cardiopulmonary mortality and probably to lung cancer
Ozone	 Adverse effects on pulmonary function Lung inflammatory reactions Adverse effects on respiratory symptoms Increase in medication usage Increase in hospital admissions Increase in mortality 	• Reduction in lung function development
Nitrogen dioxideª	 Effects on pulmonary function, particularly in asthmatics Increase in airway allergic inflammatory reactions Increase in hospital admissions Increase in mortality 	 Reduction in lung function Increased probability of respiratory symptoms

BAKU MUTU UDARA AMBIEN NASIONAL

No	Parameter	Waktu Pengukuran	Baku Mutu	Metode Analisis	Peralatan
1	SO ₂ (Sulfur Dioksida)	1 Jam 24 Jam 1 Thn	900 μg / Nm ³ 365 μg / Nm ³ 60 μg / Nm ³	Pararosanalin	Spektrofotometer
2	(Karbon Monoksida)	1 Jam 24 Jam 1 Thn	30.000 μg / Nm ³ 10.000 μg / Nm ³	NDIR	NDIR Analyzer
3	NO ₂ (Nitrogen Dioksida)	1 Jam 24 Jam 1 Thn	400 μg / Nm ³ 150 μg / Nm ³ 100 μg / Nm ³	Saltzman	Spektrofotometer
4	O ₃ (Oksida)	1 Jam 1 Thn	235 μg / Nm ³ 50 μg / Nm ³	Chemiluminescent	Spektrofotometer
5	HC (Hidro Karbon)	3 Jam	160 μg / Nm ³	Flamed Ionization	Gas Chromatografi
6	PM ₁₀ (Partikel < 10 mm)	24 Jam	150 μg / Nm ³	Gravimetric	Hi – Vol
	PM _{2,5} (*) (Partikel < 2.5 mm)	24 Jam 1 Thn	65 μg / Nm ³ 15 μg / Nm ³	Gravimetric Gravimetric	Hi – Vol Hi – Vol
7	TSP (Debu)	24 Jam 1 Thn	230 μg / Nm ³ 90 μg / Nm ³	Gravimetric	Hi – Vol
8	Pb (Timah Hitam)	24 Jam 1 Thn	2 μg / Nm ³ 1 μg / Nm ³	Gravimetric Ekstraktif Pengabuan	Hi – Vol AAS
9	Dustfall (Debu Jatuh)	30 hari	10 Ton/km ² /Bulan (Pemukiman) 10 Ton/km ² /Bulan (Industri)	Gravimetric	Cannister
10	Total Fluorides (as F)	24 Jam 90 hari	3 μg / Nm ³ 0,5 μg / Nm ³	Spesific Ion Electrode	Impinger atau Countinous Analyzer
11	Flour Indeks	30 hari	40 μg / 100 cm ² dari kertas limed filter	Colourimetric	Limed Filter Paper
12	Khlorine & Khlorine Dioksida	24 Jam	150 μg / Nm ³	Spesific Ion Electrode	Imping atau Countinous Analyzer
13	Sulphat Indeks	30 hari	1 mg SO ₃ / 100 cm ³ Dari Lead Peroksida	Colourimetric	Lead Peroxida Candle

PARU-PARU TIKUS SETELAH TERPAJAN EMISI KENDARAAN

Exposed to Diesel Exhaust

Expose to Clean Air

Compared to the normal pink lung, it has been blackened by soot

National Institute for Environmental Studies, Japan

TERIMA KASIH