

Applications of Fuzzy Systems

Andrea Bonarini andrea.bonarini@polimi.it

Artificial Intelligence and Robotics Lab
Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

Examples of applications of fuzzy models

Fuzzy control

Interfaces

- user modeling
- information retrieval
- database queries

• "AI" Systems

- Expert Systems
- Scheduling
- Decision Support Systems (DSS)

The role of these slides

- Show some applications of fuzzy systems
- Show why and when a fuzzy system could be adopted
- Show some possible ways to design a fuzzy system

What is a control system?

A system able to control the behavior of another system (a device, a biological body, a plant, a community, the society, ...)

In most cases it is a PID controller, where the output \mathbf{u} depends on the difference \mathbf{e} between the desired, and the observed behavior, its derivative (how fast \mathbf{e} changes) and its integral (how large \mathbf{e} has been in the past):

$$u = K_P e + K_D \frac{de}{dt} + K_I \frac{1}{T} \int_{0}^{t} e dt$$

What is a fuzzy control system?

Why fuzzy control is so successful?

Interesting features:

- Robustness w.r.t. noise
- Control rules defined over a wide range of applicability
- Possibility to model heuristics from experts
- Smoothness of action
- Non linearity

Example FLC - 1: Wide range of variable values

1985: Sendai (Japan) metro

Goal: Control train stop

Why fuzzy?

Different load conditions in the different stations

Results

- Energy saving
- Precision
- Higher comfort

Example FLC - 2: wide range of variable values

1996: oven for alluminum bars aging

Goal: reach the aging temperature according to technological constraints, in the shortest time

Why fuzzy?

- Need to adapt to different load conditions (10,000 different profiles)
- Low quality of sensor data (air temperature at the end of the bars)

Results

- Energy saving
- Higher speed
- No need to continuously tune the system

Example FLC - 3: noisy systems

1990: mini-helicopter in windy days (Japan)

Goal: Control the stability and movement of the helicopter

Why fuzzy?

No forecast about the situation

Results

It flies...

Example FLC - 4: Low cost control

1990: fuzzy video cameras, fuzzy vacuum cleaners, fuzzy washing machines, fuzzy refrigerators, fuzzy rice cookers, fuzzy taps...

Why fuzzy?

- •Simplify the interaction with the user
- •Nice performance at a low cost (low cost sensors, low cost processors, ...)

Results

Reliable and simple mass products at a cost compatible with the market

FLC-4 – An example: fuzzy washing machine

Goals:

- recognize the kind of fabric and adapt washing
- rinse till needed
- 3. adapt to the water hardness

How:

- 1. Measure the charging time of a condenser and the number of pressostate activations
- measure the dielectric coefficient of the water at the beginning and rinse till it become the same at the end

Example FLC - 5: control of complex systems

1986: cement kiln, chemical plants

Goal: control the plant

Why fuzzy?

- hard to define and parametrize a mathematical model
- experts available (operators)

Results

effective and robust control

Example FLC - 6: hybrid control

1990: temperature sensor, robot arm, ...

Why fuzzy + PID?

Extend the range of applicability of a PID

Results

Fast control without overshooting

Example FLC - 7: high-level control

1998: autonomous robot

Goal: implement behaviors for the robot

Why fuzzy?

- Clear representation of control rules
- High level tasks

Results

Good control developed in a short time

Example FLC - 8: Noisy sensors

2012: Jedi trainer

Why fuzzy?

Very noisy interpretation of sensor data

Results: Smooth adaptation and believable behavior

Flexible queries with human-like sensibility

E.g.:

"Give me the names of all the people that have recently invested a lot"

SELECT Name, MatchingRate

FROM Investments

WHERE ((InvestmentDate is Recent) 0.8) AND ((InvestedAmount is Large) 0.5)

Name	InvestmentDate	InvestedAmount
PAOLO BIANCHI	28	310
MARTA ROSSI	10	170
•••		

Flexible queries with human-like sensibility

E.g.:

"Give me the names of all the people that have recently invested a lot"

SELECT Name, MatchingRate

FROM Investments

WHERE ((InvestmentDate is Recent) 0.8) AND ((InvestedAmount is Large) 0.5)

Flexible queries with human-like sensibility

E.g.:

"Give me the names of all the people that have recently invested a lot"

SELECT Name, MatchingRate

FROM Investments

WHERE ((InvestmentDate is Recent) 0.8) AND ((InvestedAmount is Large) 0.9)

PAOLO BIANCHI 0.6 MARTA ROSSI 0.8

"Give me the names of all the people that have **recently** invested **a lot"**(A much better alternative)

SELECT Name, MatchingRate
FROM Investments
WHERE ((InvestmentDate is Recent) 0.8) AND ((InvestedAmount is Large) 0.9)

"Give me the names of all the people that have **recently** invested **a lot"**(An even better alternative)

SELECT Name, MatchingRate
FROM Investments
WHERE ((InvestmentDate is Recent) 0.9) AND ((InvestedAmount is Large) 1)
0.6

PAOLO BIANCHI 0.56
MARTA ROSSI 0.9

Example AIFS - 1: Quality control

Goal:

Control the quality of a product (car, beer,...) in a qualitative way, and relate the results to the part of the production process responsible for eventual problems

Why fuzzy?

Qualitative data from operators

Results

Quality control at low cost: the operator provides data, he/she should not interpret them

Example AIFS - 2: diagnosis

Goal:

Diagnosis of industrial plants in the commissioning phase

Why fuzzy?

- approximate, uncertain data
- approximate diagnostic knowledge, low reliability

Results

- fast diagnosis at low cost
- it's easy to understand the diagnostic process

Example AIFS - 3: scheduling

Goal:

production scheduling in a job-shop production plant

Why fuzzy?

fuzzy definition of constraints

M1	
M2	
M3	

Results:

fast and effective scheduling systems

Example AIFS - 4: advice-giving

Goal:

decision support (e.g.: when to buy bonds, who is the right person for a job,...)

Why fuzzy?

- uncertain and approximate data
- approximate decision process
- shared formal model

Results

suggestions about decisions to be taken, weighted by criteria that can be easily defined by the management

Example AIFS - 5: User-modeling

Goal:

model how a driver changes gears in different road situations to implement a robotic gear shift (CRF)

Why fuzzy?

- uncertain and approximate data
- approximate decision process
- high level features synthesized from objective data

adaptive robotic gear shift

What to remember from these slides?

- General design principles
- Potential application fields
- How to decide to adopt a fuzzy system to solve a problem