Coronal Seismology ASTR 598

Laurel Farris

Spring 2016

Magnetohydrodynamics (MHD)

Theory

Model

- Straight cylindrical flux tube in uniform magnetic field.
- $\circ \xi(x) = \xi(r)e^{i(kz+m\phi)}$
- Characteristic wave speeds are determined by ρ , T, P, and \vec{B}

Sound speed

$$\circ C_s \propto \sqrt{\frac{P}{\rho}} \propto \sqrt{T}$$

Alfvén speed

$$\circ V_A \propto \frac{B}{\sqrt{
ho}}$$

MHD modes

Research Topics

- 1. Kink oscillations
- 2. Sausage oscillations
- 3. Acoustic oscillations
- 4. Propagating acoustic waves
- 5. Propagating fast waves
- 6. Torsional (Alfvén) modes
 - Magnetoacoustic
 - Fast
 - Slow
 - Alfvén

Dispersion diagram

$$C_k = \sqrt{\frac{2}{1 + \rho_e/\rho_o}}$$

Coronal seismology

Technique and motivation

Elusive coronal properties

- \circ magnetic field strength, \vec{B}
- \circ density, ρ
- \circ Alfvén velocity, V_A

Motivation

- Coronal heating
- Space weather prediction

Coronal seismology

- 1. Observe disturbances
- 2. Measure properties
- 3. Identify the wave or mode
- 4. Extract coronal parameters

Fast standing oscillations

Kinks vs. Sausages

Kink

- loop spatial displacement
- Asymmetric
- No intensity change
- \circ Period $P=rac{2\ell}{V_A}\sqrt{rac{1+
 ho_e/
 ho_o}{2}}$ where $\lambda=2\ell$

Sausage

- No loop spatial displacement
- Symmetric
- Intensity change
 - ightarrow density change
- o long-wavelength limit

"Observations of sausage modes in magnetic pores" Morton et al. 2011

- \circ Periods \sim 30–450 sec
- Possibly driven by 5-min acoustic oscillations.

Acoustic waves

A. K. Srivastava and B. N. Dwivedi

Observed

 Time series of a bright point (BP) in solar atmosphere

Measured Periods

- He II 256 $\frac{\text{Å}}{\text{A}}$; P \sim 263 s
- Fe XII 195 Å
- ∘ Fe XV 284 Å; P \sim 241 s

Identified

 Acoustic oscillations leaking into the inner corona

Alfvén waves

Verwichte et al.

- Determine Alfvén speed in two ways:
 - 1. Coronal seismology
 - 2. Magnetic extrapolation and spectral methods

Observed

- Two transversely oscillating flares triggered by flare
- Observed with AIA

Important Properties

	period	decay time	velocity
kink osc	2–20 m	quickly	value
sausage osc	value	value	value
acoustic osc	7–31 m	5-30 m (quickly)	$200 \; { m km \; s^{-1}}$
acoustic waves	value	value	$<\!150~{\rm km~s^{-1}}$
fast waves	value	value	$>\!150~{ m km~s^{-1}}$
torsional modes	10 m	long	$1000 \; { m km \; s^{-1}}$

Light curves

Cross-correlations

Cross-correlation

Timelag

Future work

Other questions:

- What is the excitation mechanism for the observed disturbances?
- How are they damped, and what determines the timescales?

My future work:

- \circ Download data in other wavelengths (i.e. coronal heights).
- Download data from other instruments, e.g. the Extreme Ultraviolet Variability Experiment (EVE) on SDO.
- Characterize other bright points in coronal hole, quiet sun, and active regions.

Acknowledgements

Advisor: James McAteer

Extra slides here