

CICLO DIAGNÓSTICO - QUÍMICA

TURMA IME-ITA

2022

DADOS

Constantes

 \bullet Constante dos Gases $R=8.3\,\mathrm{J\,K^{-1}\,mol^{-1}}$

Elementos

Elemento Químico	Número Atômico	Massa Molar $(g \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	Ar	18	39,95
He	2	4,00	K	19	39,10
С	6	12,01	Ca	20	40,08
N	7	14,01	Cr	24	52,00
0	8	16,00	Fe	26	$55,\!84$
F	9	19,00	Cu	29	$63,\!55$
Ne	10	20,18	Zn	30	$65,\!38$
Na	11	22,99	Br	35	79,90
Mg	12	24,31	Nb	41	$92,\!91$
S	16	32,06	Sb	51	121,76
CI	17	$35,\!45$	I	53	126,90

1ª QUESTÃO Valor: 2,00

O nióbio-92 e o bromo-80 são, respectivamente, isóbaro e isótono de um nuclídeo X.

- a) Determine o período e o grupo de X na tabela periódica.
- b) **Determine** configuração eletrônica de **X** em seu estado fundamental.
- c) Determine os números quânticos do elétron mais energético de X em seu estado fundamental.

2ª QUESTÃO Valor: 2,00

Um hidrocarboneto acíclico ${\bf X}$ possui densidade relativa ao ar menor que 4. Uma mistura de hexano contendo $10.15\,\%$ em massa de ${\bf X}$ foi queimada com oxigênio em um recipiente selado. Após o resfriamento dos produtos verificou-se que havia $9.54\,\mathrm{g}$ de água e $5\,\mathrm{L}$ de uma mistura composta de $20\,\%$ CO e $80\,\%$ de CO_2 , em volume, a $300\,\mathrm{K}$ e $234.4\,\mathrm{kPa}$.

- a) Determine a fórmula empírica do hidrocarboneto desconhecido.
- b) Apresente todas as fórmulas estruturais possíveis para X.
- c) Determine o volume de oxigênio utilizado no experimento.

3ª QUESTÃO Valor: 2,00

Quando HCl(g) e $I_2(s)$ reagem o equilíbrio a seguir é estabelecido.

$$2 \operatorname{HCl}(g) + I_2(s) \rightleftharpoons 2 \operatorname{HI}(g) + \operatorname{Cl}_2(g)$$
 $K_c = 1.6 \times 10^{-34}$

Em um primeiro experimento, 4L de HCl(g) a 1 atm e 273 K e 26,0 g de $I_2(s)$ são adicionados a um recipiente de 12 L com pistão e aquecidos a 25 $^{\circ}C$. Em um segundo experimento, 6 L uma mistura equimolar de HI(g) e $Cl_2(g)$ a 1 atm e 273 K são adicionados ao mesmo recipiente e aquecidos a 25 $^{\circ}C$.

- a) **Determine** as quantidades de todas as espécies no equilíbro no primeiro experimento.
- b) **Determine** as quantidades de todas as espécies no equilíbro no segundo experimento.
- c) **Explique** o efeito da redução do volume na composição do equilíbrio.
- d) **Explique** o valor da constante de equilíbrio com base na reatividade das substâncias.

Superácidos são definidos como ácidos mais fortes que o ácido sulfúrico $100\,\%$. Alguns superácidos possuem sínteses relativamente simples, como o $[{\rm H_2F}^+][{\rm SbF_6}^-]$, preparado pela reação entre o HF e o ${\rm SbF_5}$. Em um experimento, $3\,{\rm mL}$ de ácido fluorídrico anidro foram postos para reagir com $10\,{\rm mL}$ de ${\rm SbF_5}$.

- a) Apresente as estruturas moleculares para todas as espécies envolvidas na reação.
- b) Determine a geometria molecular para todas as espécies envolvidas na reação.
- c) **Determine** a massa de superácido preparada no experimento.

Dados

- ullet Densidade do pentafluoreto de antimônio $ho_{\mathrm{SbF}_5}=3.1\,\mathrm{g\,cm^{-3}}$
- Densidade do ácido fluorídrico $\rho_{\rm HF}=0.97\,{\rm g\,cm^{-3}}$

5ª QUESTÃO Valor: 2,00

A morfina e a codeína são compostos orgânicos da classe conhecida como opióides. Eles são fármacos amplamente utilizados no tratamento da dor.

- a) Identifique as funções orgânicas presentes nesses compostos.
- b) Identifique qual desses compostos é mais solúvel em água.
- c) **Determine** o número de estereoisômeros para esses compostos.
- d) Apresente um procedimento de separação desses compostos utilizando acetato de etila, solução de ácido clorídrico $1 \ \mathrm{mol} \ L^{-1}$ e solução de hidróxido de sódio $1 \ \mathrm{mol} \ L^{-1}$.