Properties of Expected Values (Expectations), III

3.
$$E(b_1 + X_1) = b_1 + E(X_1)$$
.

4.
$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$$
, *n* is finite.

$$\frac{\mathbf{5.} \ \mathbf{E}\left(\sum_{i=1}^{n} b_{i} X_{i}\right) = \sum_{i=1}^{n} b_{i} \mathbf{E}\left(X_{i}\right).}{\mathbf{E}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \frac{1}{n} \mathbf{E}\left(X_{i}\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left(X_{i}\right).}$$

Covariance

Assume that $\mathrm{E}(|X_1|)$, $\mathrm{E}(|X_2|)$ and $\mathrm{E}(|X_1X_2|)$ are all finite. Then the <u>covariance</u> between X_1 and X_2 is defined as

$$Cov(X_1, X_2) = E(X_1 - E(X_1))(X_2 - E(X_2)).$$

An alternative equivalent definition is (ly (inerity of expectations).

$$Cov(X_1, X_2) = E(X_1X_2) - E(X_1) E(X_2).$$

bilinearity of covariances: let a, and az be const's $Cov(a_1X_1, a_2X_2) = a_1 \cdot a_2 \cdot Cov(X_1, X_2)$

Symmetry: notice $Cov(X_1, X_2) = Cov(X_2, X_1)$.

Main property: bilinearity of covariances

<u>Proposition</u>: Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be rvs with well-defined covariances $Cov(X_i, Y_j)$ for every i and j. Let a_1, \ldots, a_n and b_1, \ldots, b_m be any constants. Then

$$Cov(\sum_{i=1}^{n} a_{i}X_{i}, \sum_{j=1}^{m} b_{j}Y_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i}b_{j}Cov(X_{i}, Y_{j}).$$

Let C be an matrix such that $C_{ij} = Cov(X_{i}, X_{j})$.

Let $a = \begin{pmatrix} a_{i} \\ \vdots \\ a_{n} \end{pmatrix}$; $b = \begin{pmatrix} b_{j} \\ \vdots \\ b_{m} \end{pmatrix}$.

Then $A = \begin{pmatrix} a_{i} \\ \vdots \\ a_{m} \end{pmatrix} = a^{T} \cdot C \cdot b$ is $A = \begin{pmatrix} a_{i} \\ \vdots \\ a_{m} \end{pmatrix} = a^{T} \cdot C \cdot b$ is $A = \begin{pmatrix} a_{i} \\ \vdots \\ a_{m} \end{pmatrix} = a^{T} \cdot C \cdot b$.

Variance is a special case of covariance

Variance of a rv. If $X_1 = X_2$, then

$$Cov(X_1, X_2) = Cov(X_1, X_1) = \operatorname{E}(X_1^2) - (\operatorname{E}(X_1))^2 = Var(X).$$

$$= \operatorname{E}([\chi_{\iota} - \operatorname{E}(\chi_{\iota})]^2) \geq O$$

Q: Is there a difference between $\mathrm{E}\left(X^{2}\right)$ and $(\mathrm{E}\left(X\right))^{2}$?

A: yes. Since
$$Var(X_I) > 0$$
, $E(X^2) > (E(X_I))^2$

Variance of a linear combination of rvs

Random variables X_1 and X_2 are said to be <u>uncorrelated</u> if $Cov(X_1, X_2) = 0$.

Correlation

<u>Correlation coefficient</u> (loosely, <u>correlation</u>) between rvs X_1 and X_2 that have a finite second moment is defined as

$$Corr(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1) \cdot Var(X_2)}}.$$

Let $\rho = Corr(X_1, X_2)$. If $\rho = 0$, the rvs are <u>uncorrelated</u>.

Q: Why is $|\rho| \leq 1$?

Independence and correlation

Let X_1 and X_2 be rv's with the joint cdf $F_{1,2}$, joint pdf/pmf $f_{1,2}$, marginal cdf's F_1 and F_2 and marginal pdf's/pmf f_1 , f_2 . Recall that X_1 and X_2 are independent if and only if $F_{1,2}(x_1,x_2)=F_1(x_1)\cdot F_2(x_2)$ if and only if $f_{1,2}(x_1,x_2)=f_1(x_1)\cdot f_2(x_2)$ for every x_1,x_2 .

Independence of X_1 and X_2 does not guarantee existence of moments. However if $\mathrm{E}\left(X_1^2\right)<\infty$ and $\mathrm{E}\left(X_2^2\right)<\infty$ and X_1 and X_2 are independent, we have

$$E(X_{1} \cdot X_{2}) = E(X_{1}) E(X_{2}) \Rightarrow Cov(X_{1}, X_{2}) = 0,$$

$$= E(X_{1}) \cdot E(X_{2})$$
i.e., X_{1} and X_{2} are uncorrelated.
$$E(X_{1} \cdot X_{2}) = \int \int \alpha_{1} \cdot \alpha_{2} \cdot \int_{\mathbb{R}^{2}} (\alpha_{1}, \alpha_{2}) d\alpha_{1} d\alpha_{2} = \left(\int \alpha_{1} \int_{\mathbb{R}^{2}} (\alpha_{1}) d\alpha_{1}\right),$$

$$E(X_{1} \cdot X_{2}) = \int \int \alpha_{1} \cdot \alpha_{2} \cdot \int_{\mathbb{R}^{2}} (\alpha_{2}) d\alpha_{1} d\alpha_{2} = \left(\int \alpha_{1} \int_{\mathbb{R}^{2}} (\alpha_{2}) d\alpha_{1}\right),$$

$$Cov(X_{1}, X_{2}) = 0 \text{ does not imply that } X_{1} \text{ and } X_{2} \text{ are independent.}$$

Parametric family of distributions

Notation: $\mathcal{F} = \{F_{\theta} : \theta \in \Theta\}$ is the parametric family of distributions indexed by θ .

<u>Parameterization</u> is the correspondence between θ and F_{θ} .

Common setup:
$$X_1, X_2, \dots, X_n \stackrel{\mathsf{iid}}{\sim} F_{\theta}$$
.

WMS: X_1, X_2, \ldots, X_n is a "random sample" from F_{θ} .

Warning: in general, "random" does not mean "independent".

Goals of probability and statistics

Goal of probability: determine $Pr(T(X_1, ..., X_n) \in A)$, where T is some function.

To motivate goals of statistics, consider a game:

- 1. Mother Nature chooses $\theta \in \Theta$ and generates $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$.
- 2. Goal of statistics/statistician: use info in the sample X_1, \ldots, X_n to make <u>inference</u>/learn/guess the value of θ that the nature has chosen.

What is meant by statistical inference?

Inference = estimation + hypothesis testing

Estimation:

- 1. Point estimation: use of data X_1, X_2, \ldots, X_n to "guess" θ using a rv $T(X_1, \ldots, X_n)$ that is close to θ in some prob. sense.
- 2. Set/interval estimation: find a random set/interval $S(X_1, ..., X_n)$ such that $Pr(\theta \in S(X_1, ..., X_n))$ is high.

<u>Hypothesis testing</u>: use the sample to determine if a hypothesis $\theta = \theta_0$ is likely to be true. "Do the data support the hypothesis that $\theta = \theta_0$?"

Other goals of statistics (besides inference): modeling, prediction.

Check out the video about Ritz Casino scam for an amazing illustration of how modeling and prediction are useful in real life https://www.youtube.com/watch?v=GnaOM4W-hDE

Identifiability of a parameterization

Recall the goal of statistics and the game:

- 1. Mother Nature chooses $\theta \in \Theta$ and generates $X_1,\ldots,X_n \stackrel{\mathsf{iid}}{\sim} F_{\mathsf{A}}.$
- 2. Goal of statistics/statistician: use info in the sample X_1, \ldots, X_n to make <u>inference</u>/learn/guess the value of θ that the nature has chosen, or the distribution F_{θ} .

A parameterization $\theta \mapsto F_{\theta}$ is called <u>identifiable</u> if $\theta \neq \theta'$ implies $F_{\theta} \neq F_{\theta'}$.

E. Non-identifiable parameterization

For = Normal (M, +Mz, T²);
$$\theta = (M_1, M_2, T²)$$
.

Weight of weight of $\theta = (M_1 + C, M_2 - C, T²)$

weight of weight of worresponds to the owner a pet Jame distribution

Timear repression, this is known as multicollinearity.

Estimators and estimates

Def. An estimator of $g(\theta)$ is a statistic $T(X_1, X_2, \dots, X_n)$ that is used to "guess" the value of $g(\theta)$.

Def. An *estimate* of $g(\theta)$ is the value of the estimator $T(X_1, \ldots, X_n)$ when $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$.

Notice: $T(X_1, \ldots, X_n)$ is a rv (an estimator), while $T(x_1, \ldots, x_n)$ is a fixed number (an estimate).

Our interest is in finding good estimators.

Two principal methods are the method of moments and the maximum likelihood estimation (discussed later).

To compare the "goodness" estimators, it is necessary to define several criteria, below. It is assumed here that θ is a scalar; this can be generalized to the case when θ is a vector.

Bias

Def. Bias of an estimator $\widehat{\theta}$ of θ is

$$Bias(\theta|\widehat{\theta}) = E(\widehat{\theta}) - \theta.$$

Notice that, typically, the bias is a function of θ (and, possibly, of other parameters).

If $Bias(\theta|\widehat{\theta}) = 0$ for every value of θ , the estimator $\widehat{\theta}$ is called unbiased.

Examples:

MSE and its bias-variance decomposition Def. Mean squared error of an estimator $\widehat{\theta}$ is

$$MSE(\theta|\widehat{\theta}) = E\{(\theta - \widehat{\theta})^2\}.$$

Bias-variance decomposition of the MSE:

$$MSE(\theta|\widehat{\theta}) = \{Bias(\theta|\widehat{\theta})\}^2 + Var(\widehat{\theta}).$$

Consequence: bias-variance tradeoff.