5 A potentiometer circuit that is used as a means of comparing potential differences is shown in Fig. 5.1.

Fig. 5.1

A cell of e.m.f. E_1 and internal resistance r_1 is connected in series with a resistor of resistance R_1 and a uniform metal wire of total resistance R_2 .

A second cell of e.m.f. E_2 and internal resistance r_2 is connected in series with a sensitive ammeter and is then connected across the wire at BJ. The connection at J is halfway along the wire. The current directions are shown on Fig. 5.1.

(a)		Kirchhoff's laws to obtain the relation
	(i)	between the currents \boldsymbol{I}_{1} , \boldsymbol{I}_{2} and \boldsymbol{I}_{3} ,
		[1]
	(ii)	between E_1 , R_1 , R_2 , r_1 , I_1 and I_2 in loop HBJFGH,
		[1]
((iii)	between E_1 , E_2 , r_1 , r_2 , R_1 , R_2 , I_1 and I_3 in the loop HBCDJFGH.
		[2]
(b)		connection at J is moved along the wire. Explain why the reading on the ammeter nges.
		[2]