久凌电子 UWB-S1

使用说明书 V1.0.1

技术热线:13291782913

QQ:583030023

淘宝店: https://shop514880376.taobao.com/

目录

1. UWB 升发套件及配件介绍	3
1.1 UWB-S1 开发板介绍	3
1.2 UWB-S1 开发板硬件参数	4
1.3 UWB-S1 开发板套件	5
1.4 公司产品系列说明	6
2. 定位搭建及通讯方式	7
2.1 一维定位搭建	7
2.1.1 <1 基站 3 标签>	7
2.2 二维定位搭建	8
2.2.1 <3 基站 1 标签>	8
2.2.2 <4 基站 4 标签>	8
2.2 硬件接口详细说明	9
2.3.1 固件升级/在线调试 连接方法	10
2.3.2 TTL 串口 连接方法	11
2.3.3 Micro USB 连接方法	12
2.4 AT 命令配置接口	12
2.5 定位数据帧命令	13
3. 上位机说明	14
3.1 菜单栏	15
3.2 基站板块	16
3.3 标签板块	16
3.4 展示板块	16
3.5 设置板块	17
4. UWB 测距/定位分析	18
4.1 UWB 测距的原理	19
4.1.1 UWB 单边测距	19
4.1.2 UWB 双边测距	20
4.2 UWB 定位原理	21
4.3 基站流程图	22
4.4 标签流程图	22
5. 常见问题	23
5.1 学习 UWB 需要哪些知识储备	23
5.2 学习 UWB 需要哪些开发工具	23
5.3 UWB 数据精度如何	23
5.4 UWB 模块测量时数据抖动	24
5.5 UWB 模块测量值与实际值误差很大原因	24

1. UWB 开发套件及配件介绍

1.1 UWB-S1 开发板介绍

UWB-S1 开发板采用 STM32F103C8T6 单片机作为主控芯片。外围电路包括 DW1000 芯片、电源模块、LED 指示模块、USB 通讯、USART 通讯等。该开发板既可作为基站,也可以作为标签,通过 USB/USART 指令进行切换。

图 1 UWB-S1 开发板

- 1、 DW1000 芯片
- 2、 DW1000-RX LED 指示灯(蓝灯)
- 3、 DW1000-TX LED 指示灯(蓝灯)
- 4、 单片机状态指示灯(黄色)
- 5、 电源指示灯(红色)
- 6、 电源模块 TPS73601DBVR 超低纹波
- 7、 USB 通讯接口
- 8、 Stlink 下载接口
- 9、 Usart 串口通讯
- 10、STM32F103C8T6 MCU 系统

久凌电子 UWB高精度定位系统

型号: UWB-S1 DWM1000开发套件

- TWR定位高速算法
- 小于10厘米测距误差
- 支持多基站多标签
- USB通讯+TTL串口
- 提供远程协助技术支持
- 全开源KEIL源码+上位机源码

1.2 UWB-S1 开发板硬件参数

内容	参数规格
工作电压	Micro USB(5V)
工作频率	3. 5GHz-6. 5GHz
工作温度	-20° ~ 80°
通讯距离	一般距离 30m (空旷 50m)
天线设计	PCB 天线
通讯接口	Micro USB / 串口(3.3V TTL)
串口功能	TTL 串口波特率:115200,停止位:1 奇偶校验:无
通讯速率	110Kbit/s 6.8Mbit/s
单次定位	28ms (110kb) /10ms (6. 8M)
基站尺寸	32*26mm
主控制器	STM32F103C8T6

表 1 UWB-S1 硬件参数

1.3 UWB-S1 开发板套件

项目	套件	简介	提供的资料内容
UWB-S1开 发板		模块采用 STM32F103C8T6 单片机为主 控芯片。通过 SPI,读写 UWBDWM1000 模块。 该模块基站标签一体,通过拨码开关进行切 换。此外,该模块体积如一元硬币,是开发小 型标签的理想之鉴。	・UWB-S1 硬件 PDF 原理图 ・提供官方数据手册
EVK1000 测距 套件精简版: 1 基站+1 标签		EVK1000 开发套件由 2 个 UWB-S1 开 发板组成,其功能在于基于 TOF,实现两个模 块之间的测距(Two-WayRanging)功能。	・EVK1000 全开源测距软件代码(2016.4.28 更新) ・UWB-S1 硬件 PDF 原理图 ・支持串口调试助手观察测距数据 ・提供官方数据手册
EVK1000 测距 套件科研版: 1 基站+1 标签		EVK1000 开发套件由 2 个 UWB-S1 开发板组成,其功能在于基于 TOF,实现两个模块之间的测距(Two-WayRanging)功能。科研版较精简版增加了可视化上位机与卖家技术支持。	・EVK1000 全开源測距软件代码 (2016.6.28 更新) ・UWB-S1 硬件 PDF 原理图 ・支持上位机显示測距数据与图形界面 ・提供官方数据手册 ・卖家技术支持
TREK1000 定位 套件标准版: 3 基站+1 标签		TREK1000 开发套件由 4 个 UWB-S1开发板组成, 其基本结构为 3 基站 1 标签。其功能在于基于 TOF, 实现标签的2D 定位。	
TREK1000 定位 套件高: 4 基站+1 标签		TREK1000 开发套件由 5 个 UWB-S1开发板组成,其基本结构为 4 基站 1 标签(或 3 基站 2 标签) 其功能在于基于TOF,实现标签的 3D定位。	・UWB-S1 硬件 PDF 原理图
TREK1000 定位 套件企业版: 4 基站+4 标签	6000	TREK1000 开发套件由 8 个 UWB-S1开发板组成,其基本结构为 4 基站 4 标签(或 3 基站 2 标签)其功能在于基于TOF,实现标签的 3D 定位。	
TREK1000 定 位 套件企业版: 4 基站+8 标签		TREK1000 开发套件由 12 个 UWB-S1 开发 板组成, 其基本结构为 4 基站 8 标签。其 功能在于基于 TOF, 实现标签的3D 定位。	・UWB-S1 STM32 全开源软件代码 (2017.1.6 更新) ・软件最大支持 4 基站+8 标签 ・UWB-S1 硬件 PDF 原理图 ・支持 USB 虚拟串口,提供上位机演示(含源码) ・提供官方数据手册,卖家技术支持 ・赠送锂电池 8 个
UWB 外置天线 +IPEX 接口 +转接 PCB 板		替换陶瓷天线,通过转接 PCB 板,将DWM1000 模块扩展成外置天线,提高稳定性与通讯距 离。	・转接板 PCB 图 ・UWB 天线 1 条,増益 3dbm

表 2 UWB-S1 开发板套件

1.4 公司产品系列说明

产品系列说明 (更新于 2019.9.29 日)

序		,		
序	系列	名称	型号	说明
号	3874	1 1707	三 主 ブ	<u>66.91</u>
1	X 系列	无功放射频模组	UWB-X1 (DWM1000)	空旷大于 30 米
2	へ ポタリ (针对模组使用)	加功放射频模组	UWB-X1-Pro	空旷大于 300 米
3	(計列後組使用)	跟随模块	UWB-X2-AOA	PDOA 算法
4			UWB-S1-CA	空旷大于 30 米
5	S系列	学习套件	UWB-S1-SMA	空旷大于80米
6	(针对开发板使用)		UWB-S1-Pro	空旷大于 300 米
7		S系列手持器	UWB-S1-HH	标签输出坐标
8		安全帽、物资型标签	UWB-T-CAP01	搭载 X1-Pro 模组
9		手环型标签	UWB-T-WB01	搭载 X1-Pro 模组
10	T 系列	胸卡型标签	UWB-T-CC01	搭载 X1-Pro 模组
11	(针对产品使用)	成品手持器标签	UWB-T-HH	直接显示当前坐标
12		室内成品基站	UWB-T-GW01	带以太网 wifi 通信
13		室外成品基站	UWB-T-GW02	带以太网 wifi 通信

表 3 产品系列说明表

2. 定位搭建及通讯方式

2.1 一维定位搭建

2.1.1 <1 基站 3 标签>

图 2 一维定位 1A3T

步骤一: A0 通过 USB 方式连接 PC 电脑(前提: 完成 USB 驱动安装)

步骤二: 打开 UWB 上位机软件 DecaRangeRTLS. exe

步骤三:如下图 3 所示,勾选 Geo-Fencing Mod 模式即可。

图 3 一维定位上位机截图

2.2 二维定位搭建

2.2.1 <3 基站 1 标签>

图 4 二维定位 3A1T

步骤 1: A0 通过 USB 方式连接 PC 电脑(前提: 完成 USB 驱动安装)

步骤 2: 打开 UWB 上位机软件 DecaRangeRTLS. exe

步骤 3: 如下图 5 所示, 勾选 Tracking/Navigation 模式即可。

图 5 二维定位 3A1T 上位机截图

2.2.2 <4 基站 4 标签>

步骤 1.2.3 与二维定位 3 基站 1 标签完全一致

图 6 二维定位 4A4T

2.2 硬件接口详细说明

2.3.1 固件升级/在线调试 连接方法

图 7 固件下载 ST-link 接法

UWB-S1 开发板	ST-LINK
GND	GND
SDIO	SWDIO
SCLK	SWCLK
5V	5V

表 4 固件下载 ST-link 接法表

2.3.2 TTL 串口 连接方法

图 8 TTL 串口接法

UWB-S1 开发板	USB TO TTL (CH340)
GND	GND
PA9TX	RXD
PA10RX	TXD
5V	5V

表 5 TTL 串口接法表

2.3.3 Micro USB 连接方法

图 9 Micro USB 接法

2.4 AT 命令配置接口

UWB-S1 开发板出厂已经设置完成,如无特殊情况,无需变更。可直接跳过此步骤,如用户想自行进行设置,可通过如下 AT 命令集进行配置。

AT 命令集如下

AI 中文朱如下								
AT 命令集	 含义 	示例	ij					
AT+VER?	查版本号	AT+VER? 0K+VER=soft:v02_00_001, hard:v01_00_001						
AT+RSET	模块复位	AT+RSET OK+RSET						
AT+RTOKEN	模块恢复出厂模式	AT+RTOKEN OK+RTOKEN						
AT+SW=1XXXXXXXO		AT+SW=10(OK+SW=10(1	000000 //标签 000000 x 0:110K 速率 1:6.8M 速率	x 0:信道 2 1:信道 5	x 0.标签 1:基站	x 000:工作 ID0 001:工作 ID1 010:工作 ID2 011:工作 ID3 100:工作 ID4	8默认	

						101:工作 ID5 110:工作 ID6 111:工作 ID7		
AT+SW_R?	读取模块基本参数	AT+SW_R? OK+SW_R=						
AT+DMC=a:X.XXXX,b:XXX.XX	,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	AT+DMC=[a:+0.9972, b:+613.42] (注释:a, b 系数必须 6 个字节, 含小数点,首位必须为+/-) OK+DMC=[a:+0.9972, b:+613.42]						首位必须为+/-)
AT+DMC_R?	读取模块校正参数	AT+DMC_R? AT+DMC_R=[a:+0.9972, b:+613.42]						

表 6 AT 命令集

TTL 串口配置:连接方法如 2.3.2 节所示,其波特率、停止位、数据位、奇偶校验如图 10 显示。

图 10 UART XCOM 配置截图

Micro USB 配置:连接方法如 2.3.3 所示,其波特率、停止位、数据位、奇偶校验无需更改自适应。

2.5 定位数据帧命令

- 1. mr 0f 000005a4 000004c8 00000436 000003f9 0958 c0 40424042 a0:0
- 2. ma 07 00000000 0000085c 00000659 000006b7 095b 26 00024bed a0:0
- 3. mc 0f 00000663 000005a3 00000512 000004cb 095f c1 00024c24 a0:0

字段	含义
	信息 ID: mr, mc, ma
MID	mr:基站与标签距离值(原始数据), T-A0, T-A1, T-A2, T-A3
MID	mc:基站与标签距离值(校正过数据),T-A0,T-A1,T-A2,T-A3
	ma:基站之间的距离值,A0-A1 A1-A2 A0-A2

MASK	距离 RAGNEO, RANGE1, RANGE2, RANGE3, 数据有效位
	0x0f(0x00001111)表示 RAGNEO, RANGE1, RANGE2, RANGE3 有效
RANGEO	标签到基站 0 的距离值,单位: mm
RANGE1	标签到基站 1 的距离值,单位:mm
RANGE2	标签到基站 2 的距离值,单位:mm
RANGE3	标签到基站 3 的距离值,单位:mm
NRANGES	计数值(不断累加)
RSEQ	UWB 无线通信序列号计数值(不断累加)
DEBUG	如果 MID=ma,代表 TX/RX 天线延迟
	T: 标签的 ID,
aT:A	A: 基站的 ID,
	通过 AT 命令进行设置 ID,并非芯片的 64Bit 的 ID

表 7 定位数据含义

3. 上位机说明

本章节介绍一下 PC 上位机的使用。本上位机软件使用 QT 5.7.0 MinGM 开发,编写语言为 C++。Qt 是一个 1991 年由奇趣科技开发的跨平台 C++图形用户界面应用程序开发框架。它既可以开发 GUI 程序,也可用于开发非 GUI 程序,比如控制台工具和服务器。Qt 是面向对象的框架,使用特殊的代码生成扩展(称为元对象编译器)以及一些宏,易于扩展,允许组件编程。2014 年 4 月,跨平台集成开发环境 Qt Creator 3.1.0 正式发布,实现了对于 iOS 的完全支持,新增 WinRT、Beautifier 等插件,废弃了无 Python 接口的 GDB 调试支持,集成了基于 Clang 的 C/C++代码模块,并对 Android 支持做出了调整,至此实现了全面支持 iOS、Android、WP。

该上位机支持功能概述如下

- 1、USB 通讯
- 2、USART 通讯(CH340)
- 3、TCP 通讯(默认 Port: 9999)
- 4、导入图片
- 5、标签/基站图标动态显示

图 11 上位机截图

- QT 上位机界面介绍(如图 11)
- 1)菜单栏
- 2)基站板块
- 3)标签板块
- 4)展示板块
- 5)设置板块

3.1 菜单栏

- 1) 观察菜单
 - 1、设置 显示或隐藏窗口之间切换
 - 2、小地图 显示或隐藏小地图窗口切换

图 12 上位机截图

2) 帮助菜单

3.2 基站板块

该窗口列出了锚点及其所在位置的坐标,如开启自动定位(use Auto-Positioning)功能可以自动更改其坐标,否则用户可人工输入坐标。

Ar	nchor ID	(m)	(m)	(m)
V	0	0.00	0.00	3.00
1	1	6.00	0.00	3.00
V	2	0.00	4.00	3.00
	3	5.00	5.00	3.00

图 13 上位机截图

3.3 标签板块

该窗口列出了标签的 ID、对应 X 轴、Y 轴、Z 轴的数据、R95 统计学变量,及该标签 对应 A0,A1,A2,A3 的距离值(m)。

图 14 上位机截图

3.4 展示板块

该窗口展示了基站与标签的动态坐标,同时支持用户导入背景图。

图 15 上位机截图

3.5 设置板块

该窗口选择上位机应用场景。

1、Configuration: 配置工作模式 2、Floor Plan: 加载地图等功能

3、Grid: 网络格显示功能

4、Server: QT 上位机服务器功能

图 16 上位机截图

4. UWB 测距/定位分析

DW1000 的测距原理在 $dw1000_user_manual$ 文档中有介绍,我们这将详细介绍测距原理且定位原理。

4.1 UWB 测距的原理

DW1000 有两种测距的方式,一种是 SS 测距(Single-sided Two-way Ranging),另外一种 是 DS 测距(Double-sided Two-wayRanging)。

4.1.1 UWB 单边测距

<单边测距>具体流程:设备 A 首先向设备 B 发出一个数据包,并记录下发包时刻 Ta1,设备 B 收到数据包后,记下收包时刻 Tb1。之后设备 B 等待 Treply 时刻,在 Tb2(Tb2 = Tb1 + Treply)时刻,向设备 A 发送一个数据包,设备 A 收到数据包后记下 Ta2.然后可以算出电磁波在空中的飞行时间 Tprop,飞行时间乘以光速即为两个设备间的距离。

Figure 36: Single-sided Two-way ranging

Tround =
$$Ta2 - Ta1$$

Treply = $Tb2 - Tb1$

$$\hat{T}_{prop} = \frac{1}{2} (T_{round} - T_{reply})$$

因为设备 A 和设备 B 使用各自独立的时钟源,时钟都会有一定的偏差,假设设备 A 和设备 B 时钟的实际频率是预期频率的 eA 和 eB 倍,那么因为时钟偏差引入的误差 error 为:

$$error = \hat{T}_{prop} - T_{prop} \approx \frac{1}{2}(e_B - e_A) \times T_{reply}$$

设备 A 和 B 的时钟偏差都会对 Tprop 值造成影响,并且直接影响我们的测量精度,因为光速是 30cm/ns,所以很小的时钟偏差也会对测量结果造成很大影响,而且这种影响是 SS 测距方式无法避免的。也因此 SS 测距很少被采用,大部分情况下我们都使用 DS 测距的方式。

clock error	2 ppm	5 ppm	10 ppm	20 ppm	40 ppm
211 μs total 6.81 Mbps 64 Symbol Preamble 96 μs response delay	0.2 ns	0.5 ns	1.1 ns	2.1 ns	4.2 ns
275 μs total 6.81 Mbps 128 Symbol Preamble 96 μs response delay	0.3 ns	0.7 ns	1.4 ns	2.8 ns	5.5 ns
403 μs total 6.81 Mbps 256 Symbol Preamble 96 μs response delay	0.4 ns	1 ns	2 ns	4 ns	8 ns

4.1.2 UWB 双边测距

<双边测距>具体流程:DS 测距在 SS 测距的基础上增加一次通讯,两次通讯的时间可以互相弥补(因为时间偏移引入的误差)。

Figure 38: Double-sided Two-way ranging with three messages

$$\hat{T}_{prop} = \frac{(T_{round1} \times T_{round2} - T_{reply1} \times T_{reply2})}{(T_{round1} + T_{round2} + T_{reply1} + T_{reply2})}$$

使用 DS 测距方式时钟引入的误差为

$$error = T_{prop} \times \left(1 - \frac{k_a + k_b}{2}\right)$$

假设设备 A 和设备 B 的时钟精度是 20ppm(很差), 1ppm 为百万分之一, 那么 Ka 和 Kb 分别是 0.99998 或者 1.00002, ka 和 kb 分别是设备 A、B 时钟的实际频率和预期频率的比值。设备 A、B 相距 100m, 电磁波的飞行时间是 333ns。则因为时钟引入的误差为 20*333*10-9 秒, 导致测距误差为 2.2mm, 可以忽略不计了。因此双边测距是最常采用的测距方式。

4.2 UWB 定位原理

通过使用时分多址的管理, 使每一个标签与基站进行通讯, 从而获得标签与基站的距离值。(管理时间片任务由基站 A0 负责)

距离 d= 光速*时间差

三边测距定位算法原理已知 A0(x1, y1), A1(x2, y2), A2(x3, y3)。且已知未知点标签 Tn 到 3 个坐标的距离值为 d1, d2, d3。以 d1, d2, d3 为半径做三个圆,根据毕达哥拉斯定理,得出焦点及未知点的位置计算公式:

$$(x1 - x0)^2 + (y1 - y0)^2 = d1^2$$

 $(x2 - x0)^2 + (y2 - y0)^2 = d2^2$
 $(x3 - x0)^2 + (y3 - y0)^2 = d3^2$

解法推导

设未知点位置为 (x, y), 令其中的第一个球形 P1 的球心坐标为 (0, 0), P2 处于相同 纵坐标,球心坐标为 (d, 0), P3 球心坐标为 (i, j), 三个球形半径分别为 r1, r2, r3, z 为三 球形相交点与水平面高度。则有:

$$r1^2 = x^2 + y^2 + z^2$$

$$r2^2 = (x - d)^2 + y^2 + z^2$$

$$r3^2 = (x - i)^2 + (y - j)^2 + z^2$$

当 z=0 时, 即为三个圆在水平面上相交为一点,首先解出 x:

$$x = (r1^2 - r2^2 + d^2) / 2d$$

将公式二变形,将公式一的 z2 代入公式二,再代入公式三得到 y 的计算公式:

$$y = (r1^2 - r3^2 - x^2 + (x - i)^2 + j^2) / 2j$$

从而解算出标签的坐标位置。

4.3 基站流程图

图 17 基站的流程图及文字介绍

4.4 标签流程图

图 18 标签的流程图及文字介绍

5. 常见问题

5.1 学习 UWB 需要哪些知识储备

序号	硬件方面	软件方面
1	学习使用 C 语言开发	学习 C++语言
2	学习使用 STM32(SPI USART USB) 开发	学习 QT 上位机开发应用
3	学习使用 Keil 开发平台/调试	

表 8 UWB 学习知识储备

5.2 学习 UWB 需要哪些开发工具

序号	软件	作用
1	Keil	开发 STM32
2	XCOM 串口调试助手	调试串口
3	ST-LINK Utility	下载固件
4	QT	上位机开发(可选)

表 9 UWB 开发工具

5.3 UWB 数据精度如何

使用波形检测上位机采集得到如下图 20 结果:

红色波形: UWB 原始数据其上下波动 152mm

白色波形: UWB 经算法滤波数据其上下波动 81mm

图 19 UWB 波形显示

波形检测上位机在文档<4. UWB 测距波形分析>目录下。

5.4 UWB 模块测量时数据抖动

- 1、检查安装环境,导电物体与物体阻挡会影响测距定位误差。
- 2、保证基站 30cm 内无遮挡。
- 3、选择空旷环境搭建测试。

5.5 UWB 模块测量值与实际值误差很大原因

这是由于,我们使用的现场,环境都是不同的,受经纬度、空气质量、环境障碍物、海拔等等因素干扰,所以在产品化的进程中,必须要对模块进行校准,一般情况下仅需对输出 距离值基站/标签进行校准。

利用 Microsoft 2016 Excel 软件,进行数据拟合,并生成拟合公式。拟合公式有很多,最简单的是线性方程。

图 20 标定 excel

测 距 值 存 instancegetidist_mm(0), instancegetidist_mm(1), instancegetidist_mm(2), instancegetidist_mm(3)

将图 21 的一元二次方程带入源码

仅需将源码红方框内容修改成如下内容编译固件再次烧入即可:

```
para_coefficient_a = 0.9972;

para_coefficient_b = 613.42;

para_coefficient_a_symbol = Cfg_Number_of_Positive;

para_coefficient_b_symbol = Cfg_Number_of_Minus;
```

久凌电子UWB

专为品质研磨而生

Made for quality grinding

30mm

26mm

长度

宽度

超带宽 (UWB)

数据传输率高,带宽大

正负5厘米定位精准

多元数据融合算法

基站标签硬件一体

通过AT命令轻松切换功能

简易系统

无需布线自行安装快速上手

32个标签+容量

系统内可容纳标签数量无限可扩展

自主开发

支持二次定制开发

超带宽 (UWB) 技术展示

红色波形:UWB原始数据其.上下波动152mm 白色波形:UWB经算法滤波数据其.上下波动81mm

UWB原始数据

UWB原始数据最小值2871UWB原始数据最大值3023UWB原始数据误差152

滤波数据

滤波数据最大值 2910.008057 滤波数据最小值 2991.87915 滤波数据误差 81.87109375

RFID

- 只能进行进出识别无法实现二维定位稳定性差,漏卡率高,容量小

WI-FI、蓝牙、ZIGBEE

- 定位误差 5~30米只能定位约几十米的区域稳定性差,错漏率高

久凌电子定位套件

- 根据场最定位误差为 2~30厘米可精确定位人员位置稳定性高,无错漏

久凌电子套件 问题解决

Solve the problem with Jiuling electronic kit

高: 多元数据融合, 定位精度空旷可达正负5厘米

快: 一次处理数据110k/28ms, 6.8M/10ms

简: 2维定位3个基站即可实现

易:全开源套件,提供多对一针对性技术支持

! 久凌电子定位框架

。))) 高品质工业级元器件 -SUPERIOR QUALITY

搭载高品质元器件,保证每一一件产品发挥更卓越稳定性能。

原厂射频芯片方案

原装MCU主控方案

超低纹波电源芯片

优质电容电感器件

o))) 配套上位机软件,快速使用,验证功能 -RAPID USE

上位机软件使用 QT 5.7.0 MINGM 开发,编写 语言为 C++ 上位机支持功能概述如下

→ 支持USB 通讯 、USART 通讯(CH340) 、TCP 通讯(默认 A: PORT: 9999) 多种通讯方式

可根据用户实际使用场景导入图片格式地图

使用3基站定位时,可自动获取当前坐标

标签/基站图标动态显示,可实时查看 移动轨迹

o))) 严格质检,可靠包装 -STRICT QUALITY

48小时老化测试、震动测试、高低温等多项测试,保证质量。

潮湿空间

粉尘仓库

工业环境

化学工厂

久凌电子公司 其他型号选型

产品系列

系列型号

型号说明

UWB X 系列 (针对模组使用)

UWB-X1(DWM1000)	无功放空旷大于30米
UWB-X1-Pro	有功放空旷距离大于300米
UWB-X2-A0A	跟随模块PD0A算法

UWB S 系列 (针对开发板使用)

UWB-S1-CA	学习套件空旷距离大于30米
UWB-S1-SMA	学习套件空旷距离大于80米
UWB-S1-Pro	学习套件空旷距离大于300米
UWB-S1-HH	手持器标签输出坐标

UWB T 系列 (针对产品使用)

UWB-T-CAP01	安全帽物资型标签
UWB-T-WB01	手环型标签成品
UWB-T-CC01	胸卡型标签成品
UWB-T-HH	成品手持器标签
UWB-T-GW01	室内成品基站
UWB-T-GW02	室外三防成品基站

点击购买相关产

久凌电子 合作公司

Jiuling Electronic Co., Ltd.

使用久凌电子UWB 套件的国内高校

在使用久凌电子 UWB 套件的企业

浙江###电气有限公司	天津###科电子科技有限公司	京###技集团股份有限公司
北京软件工程技术有限公司	深圳声###科技有限公司	广州伟###电子有限公司
浙江铭###钢有限公司	山东经###科技有限公司	上海###技有限公司
南京市雨###科技有限公司	腾### (北京) 有限公司	深圳市振###科技有限公司
乐清市###气有限公司	天津圣###科技有限公司	上海###信技术有限公司
天津富###科技有限公司	阳###(北京)科技有限公司	深圳市杰###电子科技有限公司
北京中###科技有限公司	北京###技术有限公司	北京###光电技术有限公司
###(江苏)新材料有限公司	北京###域网络科技有限公司	深圳市泰科###技术有限公司
江苏辉###机械有限公司	山东###设备有限公司	北京浩###信息咨询有限公司
北京###有限公司	以###科技(北京)有限公司	上海###机器人
苏州高###科技有限公司	达### (北京) 有限公司	上海###口设备有限公司
天津亿付###科技有限公司	智### (北京) 科技有限公司	上海###密机械加工有限公司
无锡神###科技有限公司	深圳市雅###机电有限公司	上海###能科技有限公司
北京智###车科技有限公司	中###据存储科技(北京)有限公司	上海###联网科技有限公司
天津晟###技有限公司	苏州高###科技有限公司	###息科技(上海)有限公司
北京###系科技股份有限公司	金### (中国) 有限公司	### (上海) 机器人科技有限公司
常州金###电子有限公司	北京###物联网技术有限公司	上海###业有限公司
德州机###科技有限公司	深圳市中###创新科技有限公司	千###置网络有限公司
上海###信科技发展有限公司	华###(北京)信息技术有限公司	上海###化传播有限公司
上海###流有限公司	东莞市###智能科技有限公司	

合作供应商

Jiuling Electronic Co., Ltd.

