Systèmes dynamiques Corrigé 1

Exercice 1. Points prépériodiques

- 1. Soit $X = \{0, 1\}$ et $f: X \to X$ définie par f(0) = f(1) = 1. Alors 0 est prépériodique pour f. Si $g: Y \to Y$ est bijective, et $g^m(y) = g^n(y)$ où $m \ge n \ge 0$, alors $g^{m-n}(y) = y$ donc y est périodique.
- 2. Soit $x \in X$. Alors le cardinal de l'orbite de x est fini puisque X est fini. Donc il existe $m, n \ge 0$ tels que $f^m(x) = f^n(x)$. Donc x est prépériodique ou périodique.

Exercice 2. Lemme de prolongation

On fixe $c \in (a, b)$ et on écrit

$$x(t) = x(c) + \int_{c}^{t} \dot{x}(s) ds = x(c) + \int_{c}^{t} V(x(s)) ds.$$

On a $x(s) \in K$ pour tout $s \in (a, b)$. En particulier $s \mapsto V(x(s))$ est bornée sur [c, b) et donc intégrable. Ainsi $\lim_b x = x(c) + \int_c^b V(x(s)) ds$.

Exercice 3. Automorphismes linéaires du tore de dimension 2

1. Une condition nécessaire et suffisante est $|\det(A)| = 1$. En effet si $\det(A) = \pm 1$ on a que A^{-1} est à coefficients entiers par la formule de la comatrice. Donc $f_A \circ f_{A^{-1}} = \mathrm{id}_{\mathbf{T}^2}$. La réciproque découle directement du fait suivant.

Fait. Pour tout $A \in \operatorname{Mat}_{n \times n}(\mathbb{Z})$ et tout $p \in \mathbf{T}^n$ on a $\#f_A^{-1}(\{p\}) = |\det(A)|$.

Démonstration. On note $C = [0, 1]^n$. Alors le nombre de préimages de tout point de \mathbf{T}^n par f_A est le nombre de points à coordonnées entières de l'image de C par A. Puisque A est à coefficients entiers, on peut découper A(C) en un nombre fini de polytopes, puis appliquer des translations entières à ces morceaux pour obtenir $[0, \det(A)] \times [0, 1]^{n-1}$. Le nombre de points entiers est préservé au cours des transformations et vaut donc $|\det(A)|$.

2. Cas tr(A) = 0. Alors les racines du polynôme caractéristique de A satisfont $\lambda \mu = 1$ et $\lambda = -\mu$, soit $\lambda = \pm i$. En particulier les valeurs propres de A sont $\pm i$ est $A^4 = I_2$. En particulier $(f_A)^4 = id_{\mathbf{T}^2}$.

Cas $\operatorname{tr}(A) = 1$. Alors les racines du polynôme caractéristique de A satisfont $\lambda \mu = 1$ et $\lambda = -\mu + 1$, soit $\mu^2 - \mu + 1 = 0$. On obtient $\mu = \pm (1/2 + i\sqrt{3}/2)$ et donc $A^6 = I_2$, soit $(f_A)^6 = \operatorname{id}_{\mathbf{T}^2}$.

3. On suppose $\operatorname{tr}(A)=2$. Le polynôme caractéristique de A est alors donné par X^2-2X+1 , donc A admet un vecteur propre u tel que Au=u, qu'on peut supposer (quitte à appliquer la transformation $(x,y)\mapsto (y,x)$) de la forme $\begin{pmatrix} 1\\ \alpha \end{pmatrix}$ avec $\alpha\in\mathbb{Q}$ (car A est à coefficients entiers). Soit $y\in[0,1[$ et $t\in\mathbf{R}$. Notons $A=\begin{pmatrix} a&b\\c&d \end{pmatrix}$ et calculons

$$A\left[\begin{pmatrix} 0 \\ x \end{pmatrix} + tu \right] = y \begin{pmatrix} b \\ d \end{pmatrix} + t \begin{pmatrix} 1 \\ \alpha \end{pmatrix}.$$

On a Au = u donc $a + b\alpha = 1$ et tr(A) = 2 donc a = 2 - d. Par suite $d = 1 + b\alpha$ et donc si $v = \begin{pmatrix} 0 \\ x \end{pmatrix}$,

$$A(v+tu) = x \binom{b}{1+b\alpha} + tu = v + (t+by)u. \tag{1}$$

Pour $x \in [0,1[$ on note $C_y \subset \mathbf{T}^2$ l'image l'image de

$$\left\{ \begin{pmatrix} t \\ y + t\alpha \end{pmatrix}, \ t \in \mathbf{R} \right\}$$

par la projection $\mathbf{R}^2 \to \mathbf{T}^2$. Si $\alpha = p/q$ avec $p \in \mathbf{Z}$ et q > 0 premiers entre eux, on a $C_y \simeq \mathbf{R}/q\mathbf{Z}$ et sous cette identification, (??) montre que $f_A|_{C_x}$ est la rotation $[\theta] \mapsto [\theta + by]$. De plus on a la partition

$$\mathbf{T}^2 = \bigsqcup_{[y]} C_y$$

où l'union porte sur les classes d'équivalences $[y] \in [0,1]/\sim$ où $y \sim y'$ si $C_y = C_{y'}$ Si $\operatorname{tr}(A) = -2$, on applique le raisonnement précédent à A^2 .

- 4. On suppose que $|\operatorname{tr} A| > 2$.
 - (a) Le polynôme caractéristique $X^2 \operatorname{tr}(A)X + 1$ a deux racines réelles puisque $\operatorname{tr}(A)^2 4 > 0$. De plus $\operatorname{tr}(A)^2 - 4$ n'est pas un carré parfait car $\operatorname{tr}(A) \in \mathbf{Z}$ avec $|\operatorname{tr}(A)| > 2$ (en effet l'équation $p^2 - 4 = q^2$ avec $p, q \in \mathbf{Z}$ n'admet que les solutions $p = \pm 2$ et q = 0). Les valeurs propres de A sont donc irrationnelles, et les vecteurs propres associés ont une pente irrationnelle.
 - (b) On note u et v les vecteurs propres associés à λ et λ^{-1} avec $|\lambda| > 1$. Pour tout $y \in [0, 1[$ on note $z_y = \begin{pmatrix} 0 \\ y \end{pmatrix}$. Alors les images F_y^u et F_y^s des droites affines

$$\{z_y + tu, t \in \mathbf{R}\}$$
 et $\{z_y + tv, t \in \mathbf{R}\}$

par la projection naturelle ${f R}^2 o {f T}^2$ forment des partitions

$$\mathbf{T}^2 = \bigsqcup_{[y]} F_y^u = \bigsqcup_{[y]} F_y^s,$$

où l'union porte sur les classe d'équivalences $[y] \in [0,1]/\sim$, où $y \sim y'$ si $F^u_y = F^u_{y'}$ (pour la première) ou $F^s_y = F^s_{y'}$ (pour la deuxième). Les propriétés de contraction et de dilatation sont claires.

Exercice 4. Persistance des orbites périodiques non dégénérées pour les flots

1. Soit Σ un hyperplan affine avec $x_0 \in \Sigma$ et tel que $x_0 + V(x_0) \notin \Sigma$. Soit $\sigma \in \mathbf{R}^n$ un vecteur normal à Σ . Soit $\psi : \mathbf{R} \times \mathbf{R}^n \to \mathbf{R}$ définie par

$$\psi(t,x) = \langle \varphi(t,x) - x_0, \sigma \rangle.$$

Alors $\psi(\tau_0, x_0) = 0$. De plus, puisque $V(x_0)$ est transverse à Σ ,

$$\partial_t \psi(t,x) = \langle V(\varphi(t,x)), \sigma \rangle \neq 0;$$

le théorème des fonctions implicites permet alors de conclure, puisque pour tout $z \in \mathbf{R}^n$ on a

$$z \in \Sigma \iff \langle z - x_0, \sigma \rangle = 0.$$

2. En appliquant la même construction qu'à la question précédente en remplaçant τ_0 par 0, on obtient (quitte à réduire U) une application lisse $\tilde{\tau}: U \to \mathbf{R}$, avec $\tilde{\tau}(x_0) = 0$ et telle que

$$\varphi(\tilde{\tau}(x), x) \in \Sigma, \quad x \in U.$$

Soit Σ' une autre hypersurface affine passant par x_0 et transverse à $V(x_0)$. On obtient de même que précédemment deux applications $\tau', \tilde{\tau}' : U \to \mathbf{R}$ telles que $\tau'(x_0) = \tau_0, \tilde{\tau}'(x_0) = 0$ et

$$\varphi(\tau'(x), x) \in \Sigma', \quad \varphi(\tilde{\tau}'(x), x) \in \Sigma', \quad x \in U.$$

Soit $P_{\Sigma,\Sigma'}: U \cap \Sigma \to U \cap \Sigma'$ donnée par $P_{\Sigma,\Sigma'}(x) = \varphi(\tilde{\tau}'(x),x)$. Alors $P_{\Sigma,\Sigma'}$ est inversible d'inverse $x \mapsto P_{\Sigma',\Sigma}(x) = \varphi(\tilde{\tau}(x),x)$. On vérifie alors que pour tout x assez proche de x_0 ,

$$P_{\Sigma}(x) = \left(P_{\Sigma,\Sigma'} \circ P_{\Sigma'} \circ (P_{\Sigma,\Sigma'})^{-1}\right)(x),$$

et donc $(dP_{\Sigma})_{x_0}$ est conjuguée à $(dP'_{\Sigma})_{x_0}$, ce qui conclut.

3. On considère $\Psi: \mathbf{R} \times \mathbf{R} \times \mathbf{R}^n \to \mathbf{R}^n$ définie par

$$\Psi(s,t,x) = \langle \varphi_s(t,x) - x_0, \sigma \rangle.$$

Alors

$$\partial_t \Psi(s,t,x) = \langle V(\varphi_s(t,x)), \sigma \rangle,$$

et donc $\partial_t \Psi(0, \tau_0, x_0) \neq 0$. Par le théorème des fonctions implicites, il existe une application lisse $T: (-\varepsilon, \varepsilon) \times U \to \mathbf{R}$ avec $T(0, x_0) = \tau_0$ et

$$\varphi_s(T(s,x),x) \in \Sigma, \quad s \in (-\varepsilon,\varepsilon), \quad x \in U.$$

On définit alors $\Phi: (-\varepsilon, \varepsilon) \times (U \cap \Sigma) \to \Sigma$ par

$$\Phi(s,x) = \varphi_s(T(s,x),x) - x.$$

On a $\Phi(0, x_0) = 0$ et

$$\partial_x \Phi(0, x_0) = \mathrm{d}(P_\Sigma)_{x_0} - \mathrm{Id}_{T_{x_0}\Sigma}$$

puisque $T(0,x) = \tau(x)$ pour tout $x \in U \cap \Sigma$. Ainsi $\partial_x \Phi(0,x_0) : T_{x_0}\Sigma \to T_{x_0}\Sigma$ est inversible et le théorème des fonctions implicites donne une application lisse $s \mapsto x_s$ définie près de s = 0 telle que $\Phi(s,x_s) = 0$, ce qui équivaut à

$$\varphi_s(T(x_s,s),x_s)=x_s.$$

On pose alors $\tau_s = T(s, x_s)$. Les applications $s \mapsto x_s$ et $s \mapsto \tau_s$ vérifient les conditions demandées.

Exercice 5. Classes de conjugaison des applications expansives du cercle

1. On choisit $y_0 \in \mathbf{R}$ tel que [y] = f([0]). On pose alors $F(0) = y_0$. La fonction f étant continue $\mathbf{T} \to \mathbf{T}$, elle l'est uniformément, et il existe $1/2 > \varepsilon > 0$ tel que

$$\operatorname{dist}([y'], [y]) < \varepsilon \implies \operatorname{dist}(f([y']), f([y])) < 1/4. \tag{2}$$

Soit $\pi: \mathbf{R} \to \mathbf{T}$ la projection naturelle. Alors $\pi|_{]y_0-1/4,y_0+1/4[}$ réalise un homémorphisme sur son image et on pose

$$F(y') = (\pi|_{[y_0 - 1/4, y_0 + 1/4[})^{-1}(f([y'])), \quad y' \in [y_0 - \varepsilon, y_0 + \varepsilon].$$

On a donc construit F sur $]y_0 - \varepsilon, y_0 + \varepsilon[$ telle que [F(y')] = f([y']) pour tous $y' \in]y_0 - \varepsilon, y_0 + \varepsilon[$. On itère alors cette construction en remplaçant y_0 par $y_0 \pm \varepsilon/2$ pour étendre F à $]y_0 - 3\varepsilon/2, y_0 + 3\varepsilon/2[$. En itérant ce processus, on obtient bien $F: \mathbf{R} \to \mathbf{R}$ telle que $\pi \circ F = f \circ \pi$. De plus F est continue car π est un homéomorphisme local.

Si F' est un autre relevé de f, on a [F(y)] = [F'(y)] pour tout $y \in \mathbf{R}$, et donc F - F' prends ses valeurs dans \mathbf{Z} . Comme elle est continue, elle est constante et F' = F + k pour un $k \in \mathbf{Z}$.

2. Si F est un relevé de f, alors $x \mapsto F(x+1)$ est aussi un relevé de f. Par la question précédente, il existe p tel que F(x+1) = F(x) + p pour tout $x \in \mathbf{R}$. Soit F' est un autre relevé et $k \in \mathbf{Z}$ tel que F' = F + k. Alors pour tout $x \in \mathbf{R}$,

$$F'(x+1) = F(x+1) + k = F(x) + p + k = F'(x) + p,$$

ce qui conclut.

3. Supposons $p \ge 1$. Soit F un relevé de f et $G: x \mapsto F(x) - x$. On a que G(1) = F(1) - 1 = F(0) + p - 1 = G(0) + p - 1. Ainsi $[G(0), G(0) + p - 1] \subset G([0, 1])$ par le théorème des valeurs intermédiaires, et donc

$$\#(\mathbf{Z} \cap G([0,1])) = p - 1.$$

Ainsi on peut trouver $0 \le x_1 < \cdots < x_{p-1} < 1$ tels que $G(x_j) \in \mathbf{Z}$ pour tout j. Ceci implique $f([x_j]) = [x_j]$ pour tout j, et donc $\# \mathrm{Fix}(f) \ge p-1$.

4. On a que $\deg(f^n)=p^n$. En effet, si F est un relevé de f alors F^n est un relevé de f^n , puisque

$$[F^n(x)] = [F(F^{n-1})(x)] = f([F^{n-1}(x)]) = \dots = f^n([x]).$$

De plus, pour $n \geq 2$,

$$F^{n}(x+1) = F^{n-1}(F(x+1))$$

$$= F^{n-1}(F(x) + p)$$

$$= F^{n-1}(F(x) + p - 1) + \deg(f^{n-1})$$

$$= \cdots$$

$$= F^{n}(x) + p \deg f^{n-1}.$$

Par suite $\deg(f^n) = p \deg(f^{n-1})$ et donc $\deg(f^n) = p^n$. Ainsi $\#\text{Fix}(f^n) \ge \deg(f^n) - 1 = p^n - 1$ par la question précédente. Par suite,

$$\liminf_{n} \frac{\log \# \operatorname{Fix}(f^{n})}{n} \ge \liminf_{n} \frac{\log(p^{n} - 1)}{n} = \log p.$$

5. Soit F un relevé de f. On a F' > 1 et donc l'application $G : x \mapsto F(x) - x$ est strictement croissante. Ainsi (voir question $\ref{eq:condition}$), on a que $G|_{[0,1[}$ réalise un homéomorphisme de [0,1[sur [G(0),G(0)+p-1[. Pour tout $x \in [0,1[$ on a

$$f([x]) = [x] \iff G(x) \in \mathbf{Z}.$$

Puisque $\#([G(0), G(0) + p - 1[\cap \mathbf{Z}) = p - 1, \text{ on a que } \#\text{Fix}(f) = p - 1.$ Enfin, puisque $\deg(f^n) = \deg(f)^n$, on a $\#\text{Fix}(f^n) = p^n - 1.$

6. Pour tout $H \in \mathcal{E}$, on a que $\Phi(H)$ est continue et pour tout $x \in \mathbf{R}$, $\Phi(H)(x+1) = \frac{1}{p}H(F(x+1)) = \frac{1}{p}H(F(x)+p) = \frac{1}{p}(H(F(x))+p) = \Phi(H)(x)+1$. Donc Φ préserve \mathcal{E} . On a que \mathcal{E} est un sous-ensemble fermé de l'espace $C(\mathbf{R},\mathbf{R})$ des fonctions continues $\mathbf{R} \to \mathbf{R}$ muni de la norme infinie. Ainsi \mathcal{E} est complet pour d. On a de plus

$$d(\Phi(G), \Phi(H)) = \frac{1}{p} \sup_{\mathbf{R}} |G \circ F - H \circ F| = \frac{1}{p} d(G, H).$$

Puisque f' > 1, on a F' > 1 et donc p > 1. Ainsi Φ est strictement contractante sur (\mathcal{E}, d) . Le théorème du point fixe affirme alors qu'il existe un unique point fixe H_0 , qui vérifie

$$H_0(x) = \frac{1}{p}H_0(F(x)), \quad x \in \mathbf{R}.$$

- 7. On pose $h_0([x]) = [H_0(x)]$ pour tout $x \in \mathbf{R}$ (c'est bien défini puisque $H_0(x+p) = H_0(x) + p$), et on a que H_0 relève h_0 . De plus $H_0(x+1) = H_0(x) + 1$ pour tout x implique que $\deg(h_0) = 1$. De plus, on a que $E_p(h_0([x])) = [pH_0(x)] = [H_0(F(x))] = h_0([F(x)]) = h_0(f([x]))$.
- 8. On peut déjà remarquer que

$$F^{-1}(y+p) = F^{-1}(y) + 1, \quad y \in \mathbf{R}.$$

Ceci implique

$$F^{-1}(H(p(x+1))) = F^{-1}(H(px) + p) = F^{-1}(H(px)) + 1, \quad x \in \mathbf{R}.$$

Ainsi Ψ préserve \mathcal{E} . De plus puisque F'>1 et F(x+1)=F(x)+p on a $(F^{-1})'(y)\leq \nu$ pour tout $y\in\mathbf{R}$, avec $0<\nu<1$. Par suite, pour tout $x\in\mathbf{R}$ et tous $H,G\in\mathcal{E}$,

$$|F^{-1}(H(px)) - F^{-1}(G(px))| \le \nu |H(px) - G(px)| \le \nu |H - G||_{\infty}.$$

Par suite Ψ est strictement contractante sur (\mathcal{E}, d) et donc elle admet un unique point fixe H_1 , qui vérifie

$$H_1(y) = F^{-1}(H_1(py)), \quad x \in \mathbf{R}.$$

Soit $G = H_0 \circ H_1$. Alors

$$G(px) = H_0(F(H_1(x))) = pG(x).$$

Ceci implique que G(0) = 0; de plus pour tout $k \in \mathbf{Z}$, G(k) = k. Pour tout $m \in \mathbf{N}$, il s'en suit que

$$G(k/p^m) = \frac{p^m}{p^m}G(k/p^m) = \frac{1}{p^m}G(k) = k/p^m.$$

Puisque $\{k/p^m, k \in \mathbf{Z}, m \in \mathbf{N}\}$ est dense dans \mathbf{R} , il vient que $G = \mathrm{Id}_{\mathbf{R}}$ par continuité. Par suite H_1 est bijective (car surjective, car $H(\cdot + 1) = H(\cdot) + 1$), et d'inverse $H_1^{-1} = H_0$ continu. Soit $h_1 : \mathbf{T}^2 \to \mathbf{T}^2$ l'application induite par H_1 . Alors h_1 est bijective, d'inverse h_0 , ce qui conclut.