Return on Ad Spent analysis

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
df = pd.read csv('marketing dummy datasets/revenue spend summary.csv')
df.head()
     Month
               Channel
                           Spend
                                   Revenue
  2025-01
              Facebook 27253.45
                                  85322.04
                       16491.11
1
  2025-01 Google Ads
                                  52596.80
  2025-01
                 Email 20465.26
                                 59786.81
  2025-01
              LinkedIn
                       6479.43
                                  19969.65
4 2025-01
               Twitter 24223.00 96533.60
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29
Data columns (total 4 columns):
             Non-Null Count Dtype
#
     Column
              30 non-null
 0
     Month
                              object
1
     Channel 30 non-null
                              object
 2
              30 non-null
                              float64
     Spend
 3
     Revenue 30 non-null
                              float64
dtypes: float64(2), object(2)
memory usage: 1.1+ KB
df.describe()
              Spend
                          Revenue
count
          30.000000
                        30.000000
       15467.592667
                     39665.172333
mean
                     21521.076380
std
        6966.237614
min
        5276.960000
                     13874.120000
25%
        8982.815000
                     24375.850000
50%
       14675.630000
                     32263.030000
75%
       20280.320000 48892.762500
       27798.990000 96533.600000
max
## Calculate ROAS
df['ROAS'] = df['Revenue'] / df['Spend']
## Average ROAS by Channel
roas_by_channel = df.groupby('Channel')
```

```
['ROAS'].mean().sort_values(ascending = False)
## Monthly Trends
roas_trend = df.pivot(index='Month', columns='Channel', values='ROAS')
```

Average Return on Ad Spent by Marketing Channel

```
plt.figure(figsize=(8, 5))
sns.barplot(x=roas_by_channel.values, y=roas_by_channel.index,
palette='viridis')
plt.title('Average ROAS by Marketing Channel')
plt.xlabel('ROAS')
plt.ylabel('Channel')
plt.tight_layout()
plt.show()

/tmp/ipykernel_58219/1661247184.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=roas_by_channel.values, y=roas_by_channel.index, palette='viridis')
```


• Facebook delivers the highest ROAS (~2.95), indicating highly efficient ad spend.

- Twitter also performs strongly with a ROAS just under 2.8, making it a reliable channel for returns.
- **Google Ads**, **Email**, and **LinkedIn** fall in the 2.4–2.6 range still above break-even, but slightly less efficient.

ROAS values above 1.0 indicate positive returns. All channels are technically profitable, but some offer much better return invested.

Monthly ROAS Trend by Channel

```
plt.figure(figsize=(10, 6))
roas_trend.plot(marker='o', linewidth=2)
plt.title('Monthly ROAS Trend by Channel')
plt.xlabel('Month')
plt.ylabel('ROAS')
plt.grid(True)
plt.legend(title='Channel')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

Figure size 1000x600 with 0 Axes>
```

Monthly ROAS Trend by Channel

This line chart reveals how each channel's ROAS (Return on Ad Spend) fluctuated month over month from January to June 2025:

- **Facebook** peaked in **March** with the highest ROAS (~3.9), but declined steadily after, indicating possible campaign fatigue or rising costs.
- Twitter started extremely strong in January (~4.0) but experienced a gradual drop, stabilizing at moderate levels by June.
- LinkedIn displayed volatility with a low point in April (~1.8) and recovery in June (~3.3), suggesting inconsistent performance.
- Google Ads and Email showed relatively stable yet modest ROAS, with noticeable dips in May–June, hinting at reduced efficiency or lead quality.

Overall, ROAS trends emphasize the need to monitor **campaign timing, seasonality**, and **channel saturation**, and to act quickly when efficiency drops.

Conclusion

- **Facebook and Twitter** consistently delivered the highest average ROAS across the sixmonth period, with peak performance in March and January, respectively.
- **Email and Google Ads** showed moderate efficiency but trended downward in later months likely due to audience fatigue or reduced campaign effectiveness.
- **LinkedIn** had the **lowest and most volatile ROAS**, dipping below 2.0 in multiple months, but rebounded slightly in June.

All channels generated positive ROAS (>1.0), meaning they were not loss-making. However, the gap in efficiency across channels highlights optimization opportunities.

Recommendations

1. Scale High-Performing Channels

 Allocate more budget to Facebook and Twitter, especially around highperforming periods like March and Q1 overall.

2. Optimize or Pause LinkedIn Campaigns

 Audit creative, audience targeting, and bidding strategies for LinkedIn. If improvements don't raise ROAS consistently above 2.5, consider shifting spend elsewhere.

3. Refresh Email and Google Ads Campaigns

- Since ROAS declined in May–June, refresh ad creatives, subject lines, or offers.
- Run A/B tests or adjust timing/frequency to boost efficiency.

4. Incorporate ROAS into Monthly Budget Planning

- Use ROAS thresholds (e.g., pause if <1.8, scale if >3.0) in your marketing dashboard.
- Track monthly ROAS trends by channel to detect issues early.

5. Combine ROAS with Lead Quality and Retention

Pair ROAS with data from Lead Conversion and Churn analysis to build a true customer value lens — not just upfront revenue.

Aligning spend with proven return drivers will allow the team to maximize impact while reducing wasted investment.