BIOM_Example

BIOM Example with Phyloseq Graphics

This notebook shows how to import the BIOM tables in your code and use them within the phyloseq package for taxonomical analysis and visualization.

```
#After cloning the github repo with 'git clone https://github.com/LivGen/LMAT.git'
rm(list=ls())
#setwd("LMAT/Supplementary_Tools")
load("BIOM_concatenated.file.RData")
```

Lets check that all the tables got loaded with the right dimensions

```
ls()
```

```
## [1] "OTU_RA" "OTU_Reads" "Specie" "Tax_Full"
print(dim(OTU_Reads))
```

```
## [1] 13 25
```

print(dim(OTU_RA))

```
## [1] 13 25
```

```
print(dim(Specie))
```

[1] 13 2

Now lets look at the headers of a couple of the data frames to get a sense of what information it has.

head(OTU_Reads)

##		${\tt sntc1_S47}$	sntc2_S58	sntc3_S68	sntc4_S78	sntc5_S48	sntc6_S5	9
##	9606	309	1120	310	321	537	41	3
##	11269	1565	1883	2125	1691	1269	120	1
##	186540	838	881	1992	1142	1514	94	3
##	186538	266	344	442	297	269	27	0
##	565995	361	408	340	357	195	23	2
##	186541	35	104	63	78	67	3	6
##		sntc7_S69	sntc8_S79	zptc1_S10	zptc2_S20	zs2-1_S41	zs2-2_S4	2
##	9606	592	355	1993	2261	610	45	3
##	11269	1131	1443	649	965	1019	142	7
##	186540	1044	753	627	800	556	67	1
##	186538	288	255	14698	24825	227	30	7
##	565995	266	367	229	422	181	28	0
##	186541	44	63	110	106	72	8	0
##		zs2-3_S43	zs3-1_S31	zs3-2_S32	zs3-3_S33	zs4-1_S21	zs4-2_S2	2
##	9606	486	784	1220	766	658	104	0
##	11269	1238	1258	1555	1210	827	167	3
##	186540	499	756	1227	868	465	124	1
##	186538	282	213	193	259	176	27	2
##	565995	177	202	347	201	253	31	6
##	186541	52	27	83	27	67	6	5
##		zs4-3_S23	zs5-1_S11	zs5-2_S12	zs5-3_S13	zs6-1_S1	zs6-2_S2	zs6-3_S3
##	9606	1509	1615	995	466	3453	9468	1581

```
## 11269
                 1462
                            1503
                                       2048
                                                  1532
                                                            1859
                                                                       1099
                                                                                 1314
## 186540
                1800
                             718
                                        782
                                                   763
                                                            1232
                                                                        679
                                                                                  714
## 186538
                  292
                            4328
                                       8584
                                                  2098
                                                           24057
                                                                     16481
                                                                               19106
## 565995
                             295
                                                   308
                                                              278
                                                                        296
                                                                                  380
                  382
                                        411
## 186541
                   45
                              40
                                        103
                                                    26
                                                               48
                                                                         67
                                                                                   66
head(Tax Full)
```

##		superkingdom	kingdom	phylum	class	order	family
##	9606	Eukaryota	Metazoa	Chordata	Mammalia	Primates	Hominidae
##	11269	Viruses				Mononegavirales	Filoviridae
##	186540	Viruses				Mononegavirales	Filoviridae
##	186538	Viruses				Mononegavirales	Filoviridae
##	565995	Viruses				Mononegavirales	Filoviridae
##	186541	Viruses				${\tt Mononegavirales}$	${\tt Filoviridae}$
##		genus		S	pecie		
##	9606	Homo		Homo sa	piens		
##	11269	${\tt Marburg virus}$	Marburg	g marburg	virus		
##	186540	Ebolavirus	Suc	lan ebola	virus		
##	186538	Ebolavirus	Zai	re ebola	virus		
##	565995	Ebolavirus	Bundibug	gyo ebola	virus		
##	186541	Ebolavirus	Tai Fore	est ebola	virus		

Awesome! It seems like we successfully retrieve the sample information for each taxonomical identification. Of course there are other interesting information in the other fastsummaries such as counts per genus and counts unlabelled. But we will focus on reads at specie level.

In this sample test, we have 13 taxonomical identifications at the specie level among all the 25 samples. Now lets explore this data with some of the features in phyloseq. If you encounter installation errors please see this page: https://joey711.github.io/phyloseq/install.html

Some Vizualizations

Multiple merging, analysis and vizualizations of the data can be seen in the Tutorials section of the above mentioned page. Lets see the abundance representation per genus in each of the samples, in the $plot_bar()$ method the parameter "fill=" helps to make that subsetting of the data.

```
#We have to create a phyloseq object
otu=otu_table(as.matrix(OTU_Reads),taxa_are_rows=T)
taxa=tax_table(as.matrix(Tax_Full))
physeq=phyloseq(otu,taxa)

#Lets see the abundance representation per genus in each of the samples per
plot_bar(physeq,fill="genus")
```


Above we can see that majority of the composition of our dataset is based on Human and Ebolavirus reads, this can give us the insight that these samples are of human individuals infected with some type of virus.

Heatmap

Now lets look at intensities of abundance of reads using a heatmap using a plot_heatmap()

```
plot_heatmap(physeq,taxa.label = "specie")
```

Warning: Transformation introduced infinite values in discrete y-axis

Non ebolavirus species have a low abundance in these samples [DARK color]. We can prune these reads out using subset_taxa() to only have "Ebolavirus reads" or prune_samples() if we want our sample at least certain amount of reads.

```
physeq1=subset_taxa(physeq,genus=="Ebolavirus")
plot_heatmap(physeq1,taxa.label = "specie")
```


Much better, here we can see that samples"zptc and zs6" have the highest abundance of Zaire ebolavirus.

Hierarchical Clustering

Although I have not provided any type of information about this dataset or the relationships of each of the samples, we can start by applying a Hierarchical Clustering algorithm to get an insight on how these samples may be related to one another, perhaps they are cases/control as we may asume by the above heatmap.

I have chosen to implement complete linkage, to account for distances in between clusters by looking at the furthest member of the cluster.

```
#Lets call the HC package
#library(hclust)

#Lets use the above OTU_Reads matrx

data<-scale(t(as.matrix(OTU_Reads)))
d<-dist(data,method="euclidean")
hc=hclust(d,method="complete")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

Above we can see some relationships between samples, one relationship that comes out is of sample zs6-3 and zptc2, which had an abundance of zaire ebolavirus.

Shannon Entropy

There are many more vizualizations that can be done with phyloseq, you can add sample information, to denote if your samples come from a different origin. Lets calculate the Shannon Entropy as diversity measure, for the sample type. The more diverse the more entropy.

```
#Lets create some origins/sample type for our 13 samples.
types=c("SOIL", "SPACE", "SEA")
sample_type=sample(types,length(sample_names(physeq1)),replace=T)

#Lets create a data frame to store this information
source_sample=data.frame(Location=sample_type,row.names=sample_names(physeq1))

#Add this extra information to the phyloseq object
sample_data(physeq1)=source_sample
plot_richness(physeq1,x="Location",measures = "Shannon")

## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


This concludes the example.