Policy Gradient for Contextual Bandits

David S. Rosenberg

NYU: CDS

March 26, 2021

Contents

- 1 Recap: policy gradient for contextual bandits
- Using a baseline
- ③ "Optimal" baseline
- Actor-Critic methods

Recap: policy gradient for contextual bandits

[Online] Stochastic k-armed contextual bandit

Stochastic k-armed contextual bandit

Environment samples context and rewards vector jointly, iid, for each round:

$$(X,R),(X_1,R_1),\ldots,(X_T,R_T)\in \mathfrak{X}\times\mathbb{R}^k$$
 i.i.d. from P ,

where
$$R_t = (R_t(1), ..., R_t(k)) \in \mathbb{R}^k$$
.

- ② For t = 1, ..., T,
 - **0** Our algorithm **selects action** $A_t \in \mathcal{A} = \{1, ..., k\}$ based on X_t and history

$$\mathcal{D}_t = \Big((X_1, A_1, R_1(A_1)), \dots, (X_{t-1}, A_{t-1}, R_{t-1}(A_{t-1})) \Big).$$

- ② Our algorithm receives reward $R_t(A_t)$.
- We never observe $R_t(a)$ for $a \neq A_t$.

Contextual bandit policies

- A contextual bandit policy at round t
 - gives a conditional distribution over the action A_t to be taken
 - conditioned on the history \mathcal{D}_t and the current context X_t .
- In this module, we consider policies parameterized by θ : $\pi_{\theta}(a \mid x)$, for $\theta \in \mathbb{R}^d$.
- We denote the θ used at round t by θ_t , which will depend on \mathcal{D}_t .
- At round t, action $A_t \in \mathcal{A} = \{1, ..., k\}$ is chosen according to

$$\mathbb{P}(A_t = a \mid X_t = x, \mathcal{D}_t) = \pi_{\theta_t}(a \mid x).$$

Example: multinomial logistic regression policy

• An example parameterized policy:

$$\pi_{\theta}(a \mid x) = \frac{\exp\left(\theta^{T} \phi(x, a)\right)}{\sum_{a'=1}^{k} \exp\left(\theta^{T} \phi(x, a')\right)},$$

where $\phi(x, a): \mathfrak{X} \times \mathcal{A} \to \mathbb{R}^d$ is a joint feature vector.

- And $\theta^T \phi(x, a)$ can be replaced by a more general $g_\theta : \mathfrak{X} \times \mathcal{A} \to \mathbb{R}$.
- The whole conditional distribution $\pi_{\theta}(a \mid x)$ can also be represented as a neural network with a softmax output.
- The differentiability w.r.t. θ is key to a policy gradient method.

How to update the policy?

• Objective function for policy gradient:

$$J(\theta) := \mathbb{E}_{\theta} [R(A)].$$

• Idealized policy gradient is to iteratively update θ as:

$$\theta_{t+1} \leftarrow \theta_t + \eta \nabla J(\theta_t)$$
.

• Policy gradient theorem from last module gives an unbiased estimate of $\nabla J(\theta_t)$.

Unbiased estimate for the gradient

- Consider round t of SGD for optimizing $J(\theta)$.
- We play A_t from $\pi_{\theta_t}(a \mid X_t)$ and record $(X_t, A_t, R_t(A_t))$.
- To update θ_t , we need an unbiased estimate of $\nabla J(\theta_t)$.
- Last time we showed that

$$\mathbb{E}_{\theta_t} \left[R_t(A_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t) \right] = \nabla_{\theta} J(\theta_t)$$

• Suggests the following iterative update:

$$\theta_{t+1} \leftarrow \theta_t + \eta R_t(A_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

• This is the basic policy gradient method.

Using a baseline

Subtracting a Baseline from Reward

Our objective function is

$$J(\theta) = \mathbb{E}_{\theta} [R(A)].$$

- Suppose we introduce a new reward vector $R_0 = R b$, for constant b.
- Then

$$J_b(\theta) = \mathbb{E}_{\theta}(R_0(A)) = \mathbb{E}_{\theta}(R(A)) - b.$$

- Obviously, $J(\theta)$ and $J_b(\theta)$ have the same maximizer θ^* .
- And $\nabla_{\theta} J(\theta) = \nabla_{\theta} J_b(\theta)$.

Policy gradient with a baseline

• If we just plug in the shift to our gradient estimators, we get:

$$J(\theta): \quad \theta_{t+1} \leftarrow \quad \theta_t + \eta R_t(A_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$$

$$J_b(\theta): \quad \theta_{t+1} \leftarrow \quad \theta_t + \eta \left(R_t(A_t) - b \right) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$$

where b is called the **baseline**.

- The updates are different, so we'll get different optimization paths.
- Is $(R_t(A_t) b) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$ still unbiased for $\nabla J(\theta)$?
- Doesn't really look like it.
- But we'll show that it is.
- Then we'll discuss choices for b.

The score has zero expectation

- The **score** is the gradient of the likelihood w.r.t. the parameter.
- Let $p_{\theta}(a)$ be a parametric distribution on finite set A.
- Then $\mathbb{E}_{A \sim p_{\theta}(a)} \left[\nabla_{\theta} \log p_{\theta}(A) \right] = 0.$
- Proof: (assuming differentiability as needed)

$$\begin{split} &\mathbb{E}_{A \sim p_{\theta}(a)} \left[\nabla_{\theta} \log p_{\theta}(A) \right] \\ &= &\mathbb{E}_{A \sim p_{\theta}(a)} \left[\frac{\nabla_{\theta} p_{\theta}(A)}{p_{\theta}(A)} \right] \\ &= &\sum_{a \in \mathcal{A}} p_{\theta}(a) \left[\frac{\nabla_{\theta} p_{\theta}(a)}{p_{\theta}(a)} \right] = \sum_{a \in \mathcal{A}} \nabla_{\theta} p_{\theta}(a) \\ &= &\nabla_{\theta} \left[\sum_{a \in \mathcal{A}} p_{\theta}(a) \right] = \nabla_{\theta} \left[1 \right] = 0 \end{split}$$

Estimate with baseline is unbiased

Since the score has expectation 0,

$$\mathbb{E}\left[\nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)\right] = \mathbb{E}_{X_t}\left[\mathbb{E}_{A_t \mid X_t}\left[\nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t) \mid X_t\right]\right] \\
= \mathbb{E}_{X_t}\left[0\right] = 0.$$

So

$$\mathbb{E}\left[\left(R_t(A_t) - b\right) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)\right] = \mathbb{E}\left[R_t(A_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)\right].$$

- Therefore, $(R_t(A_t) b) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$ is an unbiased estimate of $\nabla J(\theta)$.
- We can also think of this as a control variate estimator what's the control variate? [Homework]

What to use for the baseline?

• In round t, our unbiased estimate of $\nabla_{\theta} J(\theta_t)$ is

$$(R_t(A_t) - b) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

- We're trying to "reduce the variance" of this estimate.
- But what is the "variance"?
- This expression is generally a vector.
- There is no scalar "variance" we can just try to minimize.
- So think very carefully if you see somebody claim that a particular *b* gives "minimal variance."

Basic approach to the baseline

• The easiest thing to use for a baseline is

$$b_t = \frac{1}{t-1} \sum_{i=1}^{t-1} R_i(A_i).$$

- Think of this as an estimate of the value function: $b_t \approx \mathbb{E}_{\theta_t}[R_t(A_t)]$.
- So b_t is a value estimate for policy $\pi_{\theta_t}(a \mid x)$.
- This choice seems reasonable.
- It should make some rewards positive and some rewards negative.
- I don't know a great mathematical justification for this choice
- In practice, it's usually much better than $b_t = 0$.

Input-dependent baseline

- What if we generally get lower rewards R_i for some inputs X_i than others?
- Can we have the baseline b_i depend on the input X_i ?
- Yes!
- But how to choose $b_t(X_t)$?
- We can think of having $b_t(x) \approx \mathbb{E}_{\theta_t}[R(A_t) \mid X = x]$.

Learning the baseline

- Learn function $\hat{r}_t(x)$ to predict the reward for a given input x.
- That is, find $\hat{r}_t(x) \approx \mathbb{E}_{\theta_t}[R_t(A_t) \mid X_t = x]$.
- So $\hat{r}_t(x)$ is a context-conditional value estimate for policy $\pi_{\theta_t}(a \mid x)$.
- Use $\hat{r}_t(X_t)$ as the baseline for round t.
- We can learn $\hat{r}_t(x)$ in an online manner, at the same time as we learn our policy.
 - e.g. in t'th round take a gradient step to reduce $(R_t(A_t) \hat{r}_t(X_t))^2$.
- This is an approach suggested in Sutton's book.[SB18, Sec 13.4].

"Optimal" baseline

"Optimal" baseline

- Notice that we're estimating a gradient, which is a vector.
- Let's allow a different baseline $b(\alpha)$ for the estimate of each entry of the gradient.
 - (We did this for the multiarmed bandit as well in the previous module.)
- Could use the general result from our covariate module, but seems easier to repeat the analysis.
- Define

$$g(a,x) = \nabla_{\theta} \log \pi_{\theta_t}(a \mid x).$$

And define

$$G_t^j = [g(A_t, X_t)]_j.$$

• That is, G_t^j is the j'th entry of the score at round t.

"Optimal" baselines

• Let's consider the variance of the jth entry of our estimator:

$$\begin{split} V_j &:= \operatorname{Var} \left(\left[\left(R_t(A_t) - b \right) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t) \right]_j \right) \\ &= \operatorname{Var} \left(\left(R_t(A_t) - b \right) G_t^j \right) \\ &= \mathbb{E} \left[\left(R_t(A_t) - b \right)^2 \left(G_t^j \right)^2 \right] - \left[\mathbb{E} \left(R_t(A_t) - b \right) G_t^j \right]^2 \\ &= \mathbb{E} \left(R_t(A_t) - b \right)^2 \left(G_t^j \right)^2 - \left[\mathbb{E} \left[R_t(A_t) G_t^j \right] \right]^2 \end{split}$$

And

$$\frac{dV_j}{db} = \frac{d}{db} \left(\mathbb{E} \left[R_t(A_t)^2 \left(G_t^j \right)^2 \right] + b^2 \mathbb{E} \left(G_t^j \right)^2 - 2b \mathbb{E} R_t(A_t) \left(G_t^j \right)^2 \right) \\
= 2b \mathbb{E} \left(G_t^j \right)^2 - 2\mathbb{E} R_t(A_t) \left(G_t^j \right)^2$$

"Optimal baselines"

• Solving for *b* in $\frac{dV_j}{db} = 0$:

$$b_t^j := rac{\mathbb{E}\left[R_t(A_t) \left(G_t^j
ight)^2
ight]}{\mathbb{E}\left[\left(G_t^j
ight)^2
ight]}$$

- So estimate for the j'th entry should use baseline b_t^j .
- We can try to estimate the expectations from the logs:

$$\mathbb{E}\left[R_t(A_t)\left(G_t^j\right)^2\right] \approx \frac{1}{t}\sum_{i=1}^t R_i(A_i)\left(G_i^j\right)^2$$

$$\mathbb{E}\left[\left(G_t^j\right)^2\right] \approx \frac{1}{t}\sum_{i=1}^t \left(G_i^j\right)^2.$$

- Warning: I haven't seen this derivation in the literature. It's based on Berkeley's CS 285:
 Lecture 5, Slide 19, but their slide is quite vague on specifics. They don't seem to acknowledge
 that the gradient is a vector or that they'll need a different baseline for each entry. They also
 don't indicate how to estimate the expectations.
- The interpretation of the resulting b_t^j in that slide is that it's "just expected reward, but weighted by gradient magnitudes!".

"Optimal baselines" putting it together

- Let θ_t^j denote the j'th entry of θ_t .
- Update step at round t with these baselines is

$$\theta_{t+1}^{j} \leftarrow \theta_{t}^{j} + \eta \left(R_{t}(A_{t}) - b_{t}^{j} \right) \left[\nabla_{\theta} \log \pi_{\theta_{t}}(A_{t} \mid X_{t}) \right]_{j},$$

where

$$b_t^j = \left[\frac{1}{t}\sum_{i=1}^t R_i(A_i) \left(G_i^j\right)^2\right] / \frac{1}{t}\sum_{i=1}^t \left(G_i^j\right)^2$$

$$G_i^j = \left[\nabla_{\theta} \log \pi_{\theta_t}(A_i \mid X_i)\right]_j$$

Actor-Critic methods

Recall the policy gradient derivation

• Recall the following formulation of the value function:

$$\mathbb{E}_{\theta} [R(A)] = \mathbb{E}_{X} \left[\mathbb{E}_{A|X \sim \theta} \left[\mathbb{E}_{R|X} [R(A) \mid A, X] \mid X \right] \right]$$
$$= \mathbb{E}_{X} \left[\sum_{a=1}^{k} \pi_{\theta} (a \mid X) \mathbb{E}_{R|X} [R(A) \mid A = a, X] \right]$$

So

$$\nabla_{\theta} \mathbb{E}_{\theta} [R(A)] = \mathbb{E}_{X} \left[\sum_{a=1}^{k} \nabla_{\theta} [\pi_{\theta} (a \mid X)] \mathbb{E}_{R \mid X} [R(A) \mid A = a, X] \right]$$

- In PG, we use a "clever trick"
 - to get an unbiased estimate of $\nabla \mathbb{E}_{\theta} [R(A)]$ from $(X_t, A_t, R_t(A_t))$.

Plug-in a value estimate

We have

$$\nabla_{\theta} \mathbb{E}_{\theta} [R(A)] = \mathbb{E}_{X} \left[\sum_{a=1}^{k} \nabla_{\theta} [\pi_{\theta} (a \mid X)] \mathbb{E}_{R \mid X} [R(A) \mid A = a, X] \right]$$

- Suppose we had $\hat{r}(x, a) \approx \mathbb{E}[R(A) \mid A = a, X = x]$.
- Then we get

$$\nabla_{\theta} \mathbb{E}_{\theta} [R(A)] \approx \mathbb{E}_{X} \left[\sum_{a=1}^{k} \nabla_{\theta} [\pi_{\theta} (a \mid X)] \hat{r}(X, a) \right]$$
$$\approx \sum_{a=1}^{k} \nabla_{\theta} [\pi_{\theta} (a \mid X_{t})] \hat{r}(X_{t}, a)$$

Online update of value estimator

- Parametrize value estimator: $\hat{r}_w(x, a)$.
- We'll fit w by SGD on square loss:

$$\nabla_w (\hat{r}_w(X, A) - R(A))^2 = 2(\hat{r}_w(X, A) - R(A)) \nabla_w \hat{r}_w(X, A).$$

- This is the step direction, and we can absorb the 2 into the step size multiplier.
- So value estimator update is

$$w_{t+1} \leftarrow w_t - \eta_w \left(\hat{r}_w(X, A) - R(A) \right) \nabla_w \hat{r}_w(X, A)$$

• Setting the step size can be done with the usual approaches.

Actor-critic method

Definition (Actor-critic method, [SB18, p. 321])

Methods that learn approximations to both policy and value functions are often called **actor-critic** methods, where **actor** is a reference to the learned policy, and **critic** is a reference to the learned value function.

- Initialize θ_1 and w_1 (learning rates η_{θ} and η_w .
- For each round t:
 - Observe X_t , choose action $A_t \sim \pi_{\theta_t}(a \mid X_t)$, receive $R_t(A_t)$.
 - [Update actor] $\theta_{t+1} \leftarrow \theta_t + \eta_{\theta} \left[\sum_{a=1}^{k} \nabla_{\theta} \left[\pi_{\theta} \left(a \mid X_t \right) \right] \hat{r}_{w_t}(X_t, a) \right]$
 - [Update critic] $w_{t+1} \leftarrow w_t \eta_w [\hat{r}_w(X, A) R(A)] \nabla_w \hat{r}_w(X, A)$

This is like a slow direct method: we're slowly adjusting our policy towards larger [estimated] value.

Compare to policy gradient

• The estimate of $\nabla_{\theta}\mathbb{E}[R(A)]$ in policy gradient is

$$(R_t(A_t) - b) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

- It's unbiased, but it has variance coming from R_t , A_t , and X_t .
- The actor-critic estimate of $\nabla_{\theta}\mathbb{E}[R(A)]$ is

$$\sum_{a=1}^{k} \nabla_{\theta} \left[\pi_{\theta} \left(a \mid X_{t} \right) \right] \hat{r}(X_{t}, a).$$

- This has variance coming from X_t and from \hat{r} , but the variance of \hat{r} decreases as we fit it on more data.
- The new estimate is biased, but expect it to have less variance.

References

Resources

 In this module and the previous module, we present approaches to the online contextual bandit problem. The policy gradient and actor-critic methods are usually presented in more general setting of reinforcement learning. The standard textbook reference is [SB18, Ch 13] and [Wil92] is the original paper for "REINFORCE", which is policy gradient in the reinforcement learning setting.

References I

- [SB18] Richard S. Sutton and Andrew G. Barto, *Reinforcement learning: An introduction*, A Bradford Book, Cambridge, MA, USA, 2018.
- [Wil92] Ronald J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Machine Learning 8 (1992), no. 3-4, 229–256.