1. Solution

The sample size, *n*, is 15. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 15]	4	76.4
Q2	$\lceil 0.5 \times 15 \rceil$	8	77.99
Q3	$\lceil 0.75 imes 15 ceil$	12	79.05

We determine the IQR.

$$IQR = Q3 - Q1$$

= $79.05 - 76.4$
= 2.65

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $76.4 - 1.5 \times 2.65$
= 72.425
upper boundary = Q3 + $1.5 \times IQR$
= $79.05 + 1.5 \times 2.65$
= 83.025

We determine the outliers.

outliers =
$$\{\}$$

We identify the ends of the whiskers: 73.98 and 79.72. We plot the boxplot.

2. Solution

The sample size, *n*, is 32. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 32 \rceil$	8	51.24
Q2	$\lceil 0.5 \times 32 \rceil$	16	52.49
Q3	$\lceil 0.75 \times 32 \rceil$	24	53.77

We determine the IQR.

$$IQR = Q3 - Q1$$

= 53.77 - 51.24
= 2.53

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $51.24 - 1.5 \times 2.53$
= 47.445
upper boundary = Q3 + $1.5 \times IQR$
= $53.77 + 1.5 \times 2.53$
= 57.565

We determine the outliers.

outliers =
$$\{57.69\}$$

We identify the ends of the whiskers: 50.24 and 55.76. We plot the boxplot.

