15 Introduction to Polymer Chemistry

Elastomers Elastic in character like rubber due to van der Waals forces and few crosslinks. e.g. Vulcanized rubber, buna-S, neoprene, etc.

Fibres Have strong intermolecular forces (hydrogen bonds or dipole-dipole interactions) between the chains resulting in high tensile strength. e.g. terylene, nylon 6,6, etc.

Homopolymers Polymers containing only one type of repeating unit.

Based on type of different monomers

Thermoplastic polymers

Softened easily on repeated heating and hardened

when cooled with little change in their properties.

e.g. Polystyrene, PVC, etc.

Copolymers

Thermosetting polymers

Infusible solids with highly cross-linked or

heavily branched structure due to strong

covalent bonds and undergo permanent change

on heating. e.g. melamine, bakelite, etc.

Polymers containing two or more types of repeating unit.
e.g. Buna-S, Buna-N, etc.

Biodegradable polymers

Polymers affected by microbes. e.g. PHBV, Nylon 2-nylon 6, etc.

e.g. Nylon 6, PAN, etc.

Based on biodegradability

Non-biodegradable polymers

Polymers not affected by microbes. e.g. Nylon 6,6, Terylene, etc.

Teflon

Monomer:

Tetrafluoroethylene Structure of polymer:

$$-CF_2-CF_2$$

Polyacrylonitrile

Monomer: Acrylonitrile

Structure of polymer:

$$\begin{array}{c}
-\left\{ CH_{2}-CH\right\} _{n}\\
CN
\end{array}$$

Melamine-formaldehyde polymer (Melamine)

Monomers: Melamine and formaldehyde

Structure of polymer:

$$\begin{bmatrix} H & H \\ H_2C & N & N & -CH_2 \\ N & N & N \\ +H_2C & N & H \end{bmatrix}_n$$

Phenol-formaldehyde polymer (Bakelite)

Monomers: Phenol and formaldehyde

Structure of polymer:

$$H_2C$$
 OH OH CH_2 CH_2

Biodegradable polymers:

Biodegradable polymers

PHBV

Monomers:

β-Hydroxybutyric acid (3-hydroxybutanoic acid) and

 β -Hydroxyvaleric acid (3-hydroxypentanoic acid).

Structure of polymer:

Nylon 2-nylon 6

Monomers:

Glycine and ε-amino caproic acid

Structure of polymer:

Some commercially important polymers:

Trade name	Monomer	Polymer structure	Applications
Perspex/acrylic glass	Methyl methacrylate COOMe	CH ₃	lenses, paint, security barrier, LCD screen, shatter resistant glass
Buna-N	Butadiene and acrylonitrile CN		adhesives, rubber belts, shoe soles, O-rings, gaskets
PVC (polyvinyl chloride)	vinyl chloride Cl	C1 - [CH ₂ - CH] n	water pipes, rain coats, flooring
Polyacrylamide	acrylamide = CONH ₂		Polyacrylamide gel used in electrophoresis
Urea-formaldehyde resin	a. urea b. formaldehyde	- [NH-CO-NH-CH ₂] n	unbreakable dinner ware, decorative laminates
Glyptal	a. ethylene glycol b. phthalic acid	- + O-CH ₂ -CH ₂ -OOC CO] n	paints and lacquers
Polycarbonate	a. bisphenol b. phosgene	$ \begin{bmatrix} O & CH_3 \\ C - O & CH_3 \end{bmatrix} $ $ CH_3 & O & O \\ CH_3 & O & O \end{bmatrix} $ $ CH_3 & O & O & O \\ CH_3 & O & O & O $	electrical and telecommunication hardware, food grade plastic containers
Thermocol (made from air-filled thir walled beads o polystyrene)		+CH₂-CH →	non-biodegradable, styrene can leach when heated. Therefore, it is banned.