Rk j:Ri j;

Ejercico 2 de la sección 3.2.11 Andres Vargas - 2218420 Andres Rubio - 2218426 Carlos Laguado - 2047095 gij:g_ij:matrix([1,0,0],[0,-1,0],[0,0,1]); Ri_j:matrix([1/2,1,3/2],[2,5/2,3],[7/2,4,9/2]); Ti:Tj:matrix([1/3],[2/3],[1]); Punto A Cálculo de la matriz R_ij g_ik:g_ij;

$$\begin{bmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 2 & \frac{5}{2} & 3 \\ \frac{7}{2} & 4 & \frac{9}{2} \end{bmatrix}$$
R ji:g jk.Rk j:

R_ij:g_ik.Rk_j;
$$\begin{bmatrix}
\frac{1}{2} & 1 & \frac{3}{2} \\
-2 & -\frac{5}{2} & -3 \\
\frac{7}{2} & 4 & \frac{9}{2}
\end{bmatrix}$$

Cálculo de la matriz simétrica (S_kj)

 $S_{ij}:(1/2)\cdot(R_{ij}+transpose(R_{ij}));$

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ -\frac{1}{2} & -\frac{5}{2} & \frac{1}{2} \\ \frac{5}{2} & \frac{1}{2} & \frac{9}{2} \end{bmatrix}$$

Cálculo de la matriz Si_j = gik . S_kj

gik:gij;

$$\begin{cases} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{cases}$$

$$S_kj:S_ij;$$

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\ -\frac{1}{2} & -\frac{5}{2} & \frac{1}{2} \\ \frac{5}{2} & \frac{1}{2} & \frac{9}{2} \end{bmatrix}$$

Si_j:gik.S_kj;

$$\begin{bmatrix}
 \frac{1}{2} & -\frac{1}{2} & \frac{5}{2} \\
 \frac{1}{2} & \frac{5}{2} & -\frac{1}{2} \\
 \frac{5}{2} & \frac{1}{2} & \frac{9}{2}
 \end{bmatrix}$$

Se realiza el mismo procedimiento para la matriz antisimétrica (Ai_j)

 $A_{ij}:(1/2)\cdot(R_{ij}-transpose(R_{ij}));$

$$\begin{bmatrix} 0 & \frac{3}{2} & -1 \\ -\frac{3}{2} & 0 & -\frac{7}{2} \\ 1 & \frac{7}{2} & 0 \end{bmatrix}$$

A_kj:A_ij;

$$\begin{bmatrix}
0 & \frac{3}{2} & -1 \\
-\frac{3}{2} & 0 & -\frac{7}{2} \\
1 & \frac{7}{2} & 0
\end{bmatrix}$$

Ai_j:gik.A_kj;

$$\begin{bmatrix}
0 & \frac{3}{2} & -1 \\
\frac{3}{2} & 0 & \frac{7}{2} \\
1 & \frac{7}{2} & 0
\end{bmatrix}$$

Parte B

Cáclulo de la matriz (R_kj - Rki - T_j)

g_ik:g_ij;

$$\begin{pmatrix}
 1 & 0 & 0 \\
 0 & -1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}$$

 $R_kj:g_ik.Ri_j;$

$$\begin{bmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ -2 & -\frac{5}{2} & -3 \\ \frac{7}{2} & 4 & \frac{9}{2} \end{bmatrix}$$

gjk:gij;

$$\begin{bmatrix}
 1 & 0 & 0 \\
 0 & -1 & 0 \\
 0 & 0 & 1
 \end{bmatrix}$$

Rki:gjk.Ri_j;

T_j:gij.Ti;
$$\begin{bmatrix}
\frac{1}{3} \\
-\frac{2}{3} \\
1
\end{bmatrix}$$

Las matrices Rki y R_kj son iguales, esto se debe a que $g_i = g^i$.

Parte C

Ri_jT_i

$$\begin{bmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ 1 \end{bmatrix}$$

Ri_jT_i:Ri_j.T_i;

1 2 3

Ri_jTj

Ri_jTj:Ri_j.Ti;

**************** Ri_jT_iTj ************** Ri JT iTj:T i.Ri j.Tj; Parte D Ri_jSj_i Sj_i:transpose(Si_j); $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\ -\frac{1}{2} & \frac{5}{2} & \frac{1}{2} \\ \frac{5}{2} & -\frac{1}{2} & \frac{9}{2} \end{bmatrix}$ Ri_jSj_i:Ri_j.Sj_i; $\begin{bmatrix}
\frac{7}{2} & 2 & \frac{17}{2} \\
\frac{29}{4} & \frac{23}{4} & \frac{79}{4} \\
11 & \frac{19}{2} & 31
\end{bmatrix}$ Ri_jAj_i

Aj_i:transpose(Ai_j);

$$\begin{bmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ -2 & -\frac{5}{2} & -3 \\ \frac{7}{2} & 4 & \frac{9}{2} \end{bmatrix}$$

 $\delta i_j:matrix([1,0,0],[0,1,0],[0,0,1]);$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$RI_I:Ri_j;$$

$$\begin{bmatrix} \frac{1}{2} & 1 & \frac{3}{2} \\ 2 & \frac{5}{2} & 3 \\ \frac{7}{2} & 4 & \frac{9}{2} \end{bmatrix}$$

E1:Ri_j -
$$\frac{2}{\delta}$$
 (δ i_j).Rl_l;

$$\begin{bmatrix} -\frac{1}{2} & -1 & -\frac{3}{2} \\ -2 & -\frac{5}{2} & -3 \\ -\frac{7}{2} & -4 & -\frac{9}{2} \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$

$$E3:T_i.E1.Tj;$$