TASK5.3

Part1

1. How many states could has a process in Linux?

A process can have the following states: created, ready, waiting, running, completed

2. Examine the pstree command. Make output (highlight) the chain (ancestors) of the current process.

```
student@CsnKhai:~$ pstree -s
init—cron
—dbus-daemon
—dhclient
—5*[getty]
—login—bash—pstree
—rsyslogd—3*[{rsyslogd}]
—sshd
—systemd-logind
—systemd-udevd
—upstart-file-br
—upstart-socket-
—upstart-udev-br
student@CsnKhai:~$
```

3. What is a proc file system?

The proc file system - is as an interface to internal data structures in the kernel. It can be used to obtain information about the system and to change certain kernel parameters at runtime.

4. Print information about the processor (its type, supported technologies, etc.).

```
student@CsnKhai:~$ lscpu
Architecture:
CPU op-mode(s):
                         32-bit
Byte Order:
CPU(s):
                         Little Endian
On–line CPU(s) list:
Thread(s) per core:
                         1
Core(s) per socket:
Socket(s):
Vendor ID:
                         GenuineIntel
CPU family:
Model:
                         141
Stepping:
                         2688.027
CPU MHz:
                         5376.05
BogoMIPS:
                         48K
.1d cache:
 1i cache:
                         32K
  cache:
                         1280K
  cache:
                         12288K
```

5. Use the ps command to get information about the process. The information should be as follows: the owner of the process, the arguments with which the process was launched for execution, the group owner of this process, etc.

root	46	0.0	0.0	0	0	?	9	S	13:27	0:00	[kworker/u2:2]
root	67	0.0	0.0	0	0	?	9	S<	13:27	0:00	[deferwq]
root	68	0.0	0.0	0	0	?	9	S<	13:27	0:00	[charger_manage
root	114	0.0	0.0	0	0	?	9	S<	13:27	0:00	[kpsmoused]
root	115	0.0	0.0	0	0	?	9	S	13:27	0:00	[kworker/0:2]
root	116	0.0	0.0	0	0	?	9	S<	13:27	0:00	[kworker/u3:1]
root	117	0.0	0.0	0	0	?	9	S	13:27	0:00	[scsi_eh_2]
root	126	0.0	0.0	0	0	?	9	S	13:27	0:00	[jbd2/sda1–8]
root	127	0.0	0.0	0	0	?	9	S<	13:27	0:00	[ext4–rsv–conve
root	275	0.0	0.2	3008	616	?	9	S	13:27	0:00	upstart-udev-br
root	280	0.0	0.6	12096	1544	?	9	Ss	13:27	0:00	/lib/systemd/sy
message+	328	0.0	0.3	4236	984	?	9	Ss	13:27	0:00	dbus-daemons
root	359	0.0	0.6	4212	1724	?	9	Ss	13:27	0:00	/lib/systemd/sy
syslog	361	0.0	0.4	30476	1112	?	9	Ssl	13:27	0:00	rsyslogd
root	368	0.0	0.2	2880	596	?		S	13:27	0:00	upstart–file–br
root	462	0.0	0.2	2868	592	?	9	S	13:27		upstart-socket-
root	589	0.0	0.7	5512	1852	?	9	Ss	13:27	0:00	dhclient −1 −v
root	709	0.0	0.3	4644	824	tty4	9	Ss+	13:27	0:00	/sbin/getty –8
root	711	0.0	0.3	4644	824	tty5	9	Ss+	13:27	0:00	/sbin/getty -8
root	714	0.0	0.3	4644	836	tty2	9	Ss+	13:27	0:00	/sbin/getty –8
root	715	0.0	0.3	4644	832	tty3	9	Ss+	13:27	0:00	/sbin/getty –8
root	717	0.0	0.3	4644		tty6	9	Ss+	13:27	0:00	/sbin/getty -8 .
root	747	0.0	0.9	7796	2476	?	9	Ss	13:27	0:00	/usr/sbin/sshd
root	748	0.0	0.3	3052	792	?	9	Ss	13:27	0:00	cron
root	810	0.0	0.8	4400	2016	tty1	9	Ss	13:27	0:00	/bin/login
root	823	0.0	0.0	0	0	?		S	13:28	0:00	[kauditd]
student	840	0.0	1.2	6668	3008	tty1		S	13:28	0:00	-bash
root	855	0.0	0.0	0	0	?		S	13:33	0:00	[kworker/u2:1]
student	865	0.0	0.4	5216	1164	tty1	F	R+	13:44	0:00	ps aux

ps aux

6. How to define kernel processes and user processes?

If the process name in [], it means that it is a kernel process, otherwise it is a user process

7. Print the list of processes to the terminal. Briefly describe the statuses of the processes. What condition are they in, or can they be arriving in?

R – runnin, s – sleeping, z – zombie, s – stopped, d – uninterruptable sleep

8. Display only the processes of a specific user.

```
student@CsnKhai:~$ ps –u student
PID TTY TIME CMD
840 tty1 00:00:00 bash
867 tty1 00:00:00 ps
```

9. What utilities can be used to analyze existing running tasks (by analyzing the help for the ps command)?

Pc, top, proc

10. What information does top command display?

top – 10:12	:21 un 4	1 min	1 user	lnad	avera	10'F	: n n	n n r	n n nn
	total,		unning,					pped,	
	.0 us,	0.0 8		ni,100.				a, 0.0	
KiB Mem:	247792			92 used				ee,	11704 buffers
KiB Swap:		tota.		0 used				ee.	64724 cached Mem
			-,		,				
PID USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+ COMMAND
1 root	20	0	4196	2176	1392	S	0.0	0.9	0:00.56 init
2 root	20	0	0	0	0	S	0.0	0.0	0:00.00 kthreadd
3 root	20	0	0	0	0	S	0.0	0.0	0:00.00 ksoftirqd/0
4 root	20	0	0	0	0	S	0.0	0.0	0:00.00 kworker/0:0
5 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 kworker/0:0H
6 root	20	0	0	0	0	S	0.0	0.0	0:00.10 kworker/u2:0
7 root	20	0	0	0	0	S	0.0	0.0	0:00.36 rcu_sched
8 root	20	0	0	0	0	S	0.0	0.0	0:00.00 rcu_bh
9 root	rt	0	0	0	0	S	0.0	0.0	0:00.00 migration/0
10 root	rt	0	0	0	0	S	0.0	0.0	0:00.00 watchdog/0
11 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 khelper
12 root	20	0	0	0	0	S	0.0	0.0	0:00.00 kdevtmpfs
13 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 netns
14 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 writeback
15 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 kintegrityd
16 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 bioset
17 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 kworker/u3:0
18 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 kblockd
19 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 ata_sff
20 root	20	0	0	0	0	S	0.0	0.0	0:00.00 Khubd
21 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 md
22 root	0	-20	0	0	0	S	0.0	0.0	0:00.00 devfreq_wq
23 root	20	0	0	0	0	S	0.0	0.0	0:00.11 kworker/0:1

It displays PID, User, Load Averages, CPU and memory usage, commands...

11. Display the processes of the specific user using the top command.

	al, us, 7792	1 runı 0.3 sy total,	ning, , 0.0 100	59 sleep ni, 99.5 076 used,	ing, id, 147	ີ 3 sto 0.1 ພະ 7716 fr	opped, a, 0.0 ree,	
PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
848 student	20	0	6668	3016	1652 8	0.0	1.2	0:00.03 bash
862 student	20	0	4560	960	832 1	0.0	0.4	0:00.14 info
864 student	20	0	0	0	0 2	0.0	0.0	0:00.00 man
866 student	20	0	4560	960	832 1	0.0	0.4	0:00.01 info
868 student	20	0	0	0	0 2	0.0	0.0	0:00.00 man
872 student	20	0	5420	1308	988 1	0.0	0.5	0:00.12 top
877 student	20	0	5416	1280	968 F	0.0	0.5	0:00.00 top

12. What interactive commands can be used to control the top command? Give a couple of examples.

 \mathbf{q} – quit

k – kill process

r – renice

o − add filter

13. Sort the contents of the processes window using various parameters (for example, the amount of processor time taken up, etc.)

Shift + m - CPU

Shift + t - time

Shift + n - PID

14. Concept of priority, what commands are used to set priority?

nice -n value command

15. Can I change the priority of a process using the top command? If so, how?

By using the key r

16. Examine the kill command. How to send with the kill command process control signal? Give an example of commonly used signals.

kill [options] <pid>

SIGTERM (15) – is used to ask a process to stop

SIGKILL (9) - is used to force a process to stop

SIGHUP (1) - is used to hang up a process

17. Commands jobs, fg, bg, nohup. What are they for? Use the sleep, yes command to demonstrate the process control mechanism with fg, bg.

jobs — display status of jobs in the current session

fg — run jobs in the foreground

bg — run jobs in the background

nohup - run a command immune to hangups, with output to a non-tty

Part2

- 1. Check the implementability of the most frequently used OPENSSH commands in the MS Windows operating system. (Description of the expected result of the commands + screenshots: command result should be presented)
- 2. Implement basic SSH settings to increase the security of the client-server connection (at least

PermitRootLogin no

PasswordAuthentication no

3. List the options for choosing keys for encryption in SSH. Implement 3 of them.

```
# HostKeys for protocol version 2
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
HostKey /etc/ssh/ssh_host_ed25519_key
HostKey /etc/ssh/ssh_host_ed25519_key
```

4. Implement port forwarding for the SSH client from the host machine to the guest Linux virtual machine behind NAT.

5*. Intercept (capture) traffic (tcpdump, wireshark) while authorizing the remote client on the server using ssh, telnet, rlogin. Analyze the result.