yash-dsbdl-a5

February 22, 2024

Implement logistic regression using Python/R to perform classification on Social Network Ads.csv dataset.

Import libraries and create alias for Pandas, Numpy

```
[]: import pandas as pd import numpy as np
```

Import the Social Media Adv Dataset

```
[]: from google.colab import files files.upload()
```

<IPython.core.display.HTML object>

Saving Social_Network_Ads.csv to Social_Network_Ads.csv

[]: {'Social_Network_Ads.csv': b'Age,EstimatedSalary,Purchased\r\n19,19000,0\r\n35,2 0000,0\r\n26,43000,0\r\n27,57000,0\r\n19,76000,0\r\n27,58000,0\r\n27,84000,0\r\n $32,150000,1\r\n25,33000,0\r\n35,65000,0\r\n26,80000,0\r\n26,52000,0\r\n20,86000,$ $0\r\n32,18000,0\r\n18,82000,0\r\n29,80000,0\r\n47,25000,1\r\n45,26000,1\r\n46,28$ $000,1\r\n48,29000,1\r\n45,22000,1\r\n47,49000,1\r\n48,41000,1\r\n45,22000,1\r\n48$ $6,23000,1\r\n47,20000,1\r\n49,28000,1\r\n47,30000,1\r\n29,43000,0\r\n31,18000,0\$ r\n31,74000,0\r\n27,137000,1\r\n21,16000,0\r\n28,44000,0\r\n27,90000,0\r\n35,270 $00,0\r\n33,28000,0\r\n30,49000,0\r\n26,72000,0\r\n27,31000,0\r\n27,17000,0\r\n33$ $,51000,0\r\n35,108000,0\r\n30,15000,0\r\n28,84000,0\r\n23,20000,0\r\n25,79000,0\$ r\n27,54000,0\r\n30,135000,1\r\n31,89000,0\r\n24,32000,0\r\n18,44000,0\r\n29,830 $00,0\r\n35,23000,0\r\n27,58000,0\r\n24,55000,0\r\n23,48000,0\r\n28,79000,0\r\n22$,18000,0\r\n32,117000,0\r\n27,20000,0\r\n25,87000,0\r\n23,66000,0\r\n32,120000,1 \r\n59,83000,0\r\n24,58000,0\r\n24,19000,0\r\n23,82000,0\r\n22,63000,0\r\n31,680 $00,0\r\n25,80000,0\r\n24,27000,0\r\n20,23000,0\r\n33,113000,0\r\n32,18000,0\r\n3$ 4,112000,1\r\n18,52000,0\r\n22,27000,0\r\n28,87000,0\r\n26,17000,0\r\n30,80000,0 \r\n39,42000,0\r\n20,49000,0\r\n35,88000,0\r\n30,62000,0\r\n31,118000,1\r\n24,55 000,0\r\n28,85000,0\r\n26,81000,0\r\n35,50000,0\r\n22,81000,0\r\n30,116000,0\r\n $26,15000,0\r\n29,28000,0\r\n29,83000,0\r\n35,44000,0\r\n35,25000,0\r\n28,123000,$ 1\r\n35,73000,0\r\n28,37000,0\r\n27,88000,0\r\n28,59000,0\r\n32,86000,0\r\n33,14 9000,1\r\n19,21000,0\r\n21,72000,0\r\n26,35000,0\r\n27,89000,0\r\n26,86000,0\r\n $38,80000,0\r\n39,71000,0\r\n37,71000,0\r\n38,61000,0\r\n37,55000,0\r\n42,80000,0$ \r\n40,57000,0\r\n35,75000,0\r\n36,52000,0\r\n40,59000,0\r\n41,59000,0\r\n36,750

 $00,0\r\n37,72000,0\r\n40,75000,0\r\n35,53000,0\r\n41,51000,0\r\n39,61000,0\r\n42$ $,65000,0\r\n26,32000,0\r\n30,17000,0\r\n26,84000,0\r\n31,58000,0\r\n33,31000,0\r\n30,17000,0\r\n30,17000,0\r\n31,58000,0\r\n31$ \n30,87000,0\r\n21,68000,0\r\n28,55000,0\r\n23,63000,0\r\n20,82000,0\r\n30,10700 $0,1\rn28,59000,0\rn19,25000,0\rn19,85000,0\rn18,68000,0\rn35,59000,0\rn30,$ $n20,74000,0\r\n26,15000,0\r\n41,45000,0\r\n31,76000,0\r\n36,50000,0\r\n40,47000,$ $0\r\n31,15000,0\r\n46,59000,0\r\n29,75000,0\r\n26,30000,0\r\n32,135000,1\r\n32,1$ $00000,1\r\n25,90000,0\r\n37,33000,0\r\n35,38000,0\r\n33,69000,0\r\n18,86000,0\r\$ n22,55000,0\r\n35,71000,0\r\n29,148000,1\r\n29,47000,0\r\n21,88000,0\r\n34,11500 $0,0\r\n26,118000,0\r\n34,43000,0\r\n34,72000,0\r\n23,28000,0\r\n35,47000,0\r\n25$ $,22000,0\r\n24,23000,0\r\n31,34000,0\r\n26,16000,0\r\n31,71000,0\r\n32,117000,1\$ r\n33,43000,0\r\n33,60000,0\r\n31,66000,0\r\n20,82000,0\r\n33,41000,0\r\n35,7200 $0,0\r\n28,32000,0\r\n24,84000,0\r\n19,26000,0\r\n29,43000,0\r\n19,70000,0\r\n28,$ $89000,0\r\n34,43000,0\r\n30,79000,0\r\n20,36000,0\r\n26,80000,0\r\n35,22000,0\r\$ $n35,39000,0\r\n49,74000,0\r\n39,134000,1\r\n41,71000,0\r\n58,101000,1\r\n47,4700$ $0,0\r\n55,130000,1\r\n52,114000,0\r\n40,142000,1\r\n46,22000,0\r\n48,96000,1\r\n$ $52,150000,1\r\n59,42000,0\r\n35,58000,0\r\n47,43000,0\r\n60,108000,1\r\n49,65000$ $144000,1\r\\n60,102000,1\r\\n35,60000,0\r\\n37,53000,0\r\\n36,126000,1\r\\n56,133000,$ $1\r\n40,72000,0\r\n42,80000,1\r\n35,147000,1\r\n39,42000,0\r\n40,107000,1\r\n49,$ $86000,1\\r\\n38,112000,0\\r\\n46,79000,1\\r\\n40,57000,0\\r\\n37,80000,0\\r\\n46,82000,0\\r\\n46$ $000,0\r\n51,146000,1\r\n35,50000,0\r\n57,122000,1\r\n41,52000,0\r\n35,97000,1\r\$ $n44,39000,0\r\n37,52000,0\r\n48,134000,1\r\n37,146000,1\r\n50,44000,0\r\n52,9000$ $0,1\r\\1,72000,0\r\\1,57000,0\r\\1,58,95000,1\r\\1,45,131000,1\r\\1,577000,0\r\\1,56$ $,144000,1\r\n55,125000,1\r\n35,72000,0\r\n48,90000,1\r\n42,108000,1\r\n40,75000,$ $0\r\n37,74000,0\r\n47,144000,1\r\n40,61000,0\r\n43,133000,0\r\n59,76000,1\r\n60,$ $42000,1\r\n39,106000,1\r\n57,26000,1\r\n57,74000,1\r\n38,71000,0\r\n49,88000,1\r$ \n52,38000,1\r\n50,36000,1\r\n59,88000,1\r\n35,61000,0\r\n37,70000,1\r\n52,21000 $1\rho 48,141000,0\rho 37,93000,1\rho 37,62000,0\rho 48,138000,1\rho 41,79000,0\rho 37$ $,78000,1\r\n39,134000,1\r\n49,89000,1\r\n55,39000,1\r\n37,77000,0\r\n35,57000,0\$ $r\36,63000,0\r\42,73000,1\r\43,112000,1\r\45,79000,0\r\46,117000,1\r\58,38$ $000,1\r\n48,74000,1\r\n37,137000,1\r\n37,79000,1\r\n40,60000,0\r\n42,54000,0\r\n$ $51,134000,0\r\n47,113000,1\r\n36,125000,1\r\n38,50000,0\r\n42,70000,0\r\n39,9600$ $0,1\r\n38,50000,0\r\n49,141000,1\r\n39,79000,0\r\n39,75000,1\r\n54,104000,1\r\n3$ $5,55000,0\r\n45,32000,1\r\n36,60000,0\r\n52,138000,1\r\n53,82000,1\r\n41,52000,0$ $\r \n48,30000,1\r \n48,131000,1\r \n41,60000,0\r \n41,72000,0\r \n42,75000,0\r \n36,11$ 8000,1\r\n47,107000,1\r\n38,51000,0\r\n48,119000,1\r\n42,65000,0\r\n40,65000,0\r \n57,60000,1\r\n36,54000,0\r\n58,144000,1\r\n35,79000,0\r\n38,55000,0\r\n39,1220 $00,1\r\n53,104000,1\r\n35,75000,0\r\n38,65000,0\r\n47,51000,1\r\n47,105000,1\r\n$ 41,63000,0\r\n53,72000,1\r\n54,108000,1\r\n39,77000,0\r\n38,61000,0\r\n38,113000 $1\rn37,75000,0\rn42,90000,1\rn37,57000,0\rn36,99000,1\rn60,34000,1\rn54,7$ $0000,1\r\n41,72000,0\r\n40,71000,1\r\n42,54000,0\r\n43,129000,1\r\n53,34000,1\r\n53,$ $n47,50000,1\\r\\n42,79000,0\\r\\n42,104000,1\\r\\n59,29000,1\\r\\n58,47000,1\\r\\n46,88000$ $1\r\n38,71000,0\r\n54,26000,1\r\n60,46000,1\r\n60,83000,1\r\n39,73000,0\r\n59,1$ $30000,1\r\n37,80000,0\r\n46,32000,1\r\n46,74000,0\r\n42,53000,0\r\n41,87000,1\r\$ n58,23000,1\r\n42,64000,0\r\n48,33000,1\r\n44,139000,1\r\n49,28000,1\r\n57,33000

,1\r\n56,60000,1\r\n49,39000,1\r\n39,71000,0\r\n47,34000,1\r\n48,35000,1\r\n48,35000,1\r\n47,23000,1\r\n45,45000,1\r\n60,42000,1\r\n39,59000,0\r\n46,41000,1\r\n51,23000,1\r\n50,20000,1\r\n36,33000,0\r\n49,36000,1'}

Initialize the data frame

[]: df=pd.read_csv("/content/Social_Network_Ads.csv")

Perform Data Preprocessing

[]: df.head()

[]:		Age	EstimatedSalary	Purchased
	0	19	19000	0
	1	35	20000	0
	2	26	43000	0
	3	27	57000	0
	4	19	76000	0

[]: df.describe()

[]:		Age	${ t EstimatedSalary}$	Purchased
	count	400.000000	400.000000	400.000000
	mean	37.655000	69742.500000	0.357500
	std	10.482877	34096.960282	0.479864
	min	18.000000	15000.000000	0.000000
	25%	29.750000	43000.000000	0.000000
	50%	37.000000	70000.000000	0.000000
	75%	46.000000	88000.000000	1.000000
	max	60.000000	150000.000000	1.000000

[]: df.isnull().sum()

[]: Age 0
EstimatedSalary 0
Purchased 0
dtype: int64

[]: df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 400 entries, 0 to 399

Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	Age	400 non-null	int64
1	EstimatedSalary	400 non-null	int64
2	Purchased	400 non-null	int64

dtypes: int64(3) memory usage: 9.5 KB

Import Seaborn and Matplotlib

```
[]: import seaborn as sns import matplotlib.pyplot as plt
```

[]: df.boxplot()

[]: <Axes: >


```
[]: X = df.drop(['Purchased'], axis = 1)
Y = df['Purchased']
```

Use Logistic regression (Train the Machine) to Create Model

```
[]: from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, ytest = train_test_split(X, Y, test_size =0.

-2,random_state = 0)
```

[]: from sklearn.linear_model import LogisticRegression

```
[]: logreg = LogisticRegression()
```

[]: logreg.fit(xtrain,ytrain)

[]: LogisticRegression()

Predict the y_pred for all values of and test_x

```
[]: y_pred=logreg.predict(xtest)
[]: print(xtrain)
```

```
J: print(xtrain)
    print("-----\n")
    print(xtest)
    print(ytrain)
    print("-----\n")
    print(ytest)
    print("----\n")
    print(y_pred)
```

	Age	EstimatedSalary
336	58	144000
64	59	83000
55	24	55000
106	26	35000
300	58	38000
	•••	***
323	48	30000
192	29	43000
117	36	52000
47	27	54000
172	26	118000

[320 rows x 2 columns]

	Age	EstimatedSalary		
132	30	87000		
309	38	50000		
341	35	75000		
196	30	79000		
246	35	50000		
	•••	•••		
14	18	82000		
363	42	79000		
304	40	60000		
361	53	34000		
329	47	107000		

[80 rows x 2 columns]

```
336
         1
   64
         0
   55
         0
   106
         0
   300
         1
   323
         1
   192
   117
         0
   47
         0
   172
   Name: Purchased, Length: 320, dtype: int64
   132
         0
   309
         0
   341
         0
   196
         0
   246
         0
   14
         0
   363
   304
         0
   361
         1
   329
   Name: Purchased, Length: 80, dtype: int64
   0 0 0 0 0 0]
   Find the Following Parameters for Logistic Regression on Social_Networking_Ads
   dataset: 1. Classification Report 2. Accuracy Score 3. Confusion Matrix 4. Error
   Rate 5. Precision 6. Recall
[]: from sklearn.metrics import
     ⇔precision_score,confusion_matrix,accuracy_score,recall_score,⊔
     ⇔classification_report
   Confusion Matrix
[]: cm= confusion_matrix(ytest, y_pred)
[]: array([[58, 0],
         [22, 0]])
   accuracy_score
```

```
[]: print ("Accuracy : ", accuracy_score(ytest, y_pred))
    Accuracy: 0.725
    Precision
[]: ps = precision_score(ytest, y_pred)
    /usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344:
    UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no
    predicted samples. Use `zero_division` parameter to control this behavior.
      _warn_prf(average, modifier, msg_start, len(result))
[]: ps
[]: 0.0
    Recall score
[]: rs = recall_score(ytest, y_pred)
[]: rs
[]: 0.0
    *Error Rate**
[]: error_rate = 1- accuracy_score(ytest, y_pred)
[]: error_rate
[]: 0.275
    Classification Report
```

[]: print("classification report: ",classification_report(ytest, y_pred))

classification report:				precision	recall	f1-score	support	
	0	0.72	1.00	0.84	58			
	1	0.00	0.00	0.00	22			
accu	racy			0.73	80			
macro	avg	0.36	0.50	0.42	80			
weighted	avg	0.53	0.72	0.61	80			

/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to

control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.9/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

[]: