Universidad de Granada	Fundamentos Físicos y Tecnológicos G.I.I.	Examen de Teoría 9 de Septiembre de 2013	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Responde a cada pregunta en hojas separadas.
- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- Una esfera aislada, sólida y de 10cm de radio (R=10cm) tiene una densidad de carga eléctrica volumétrica positiva y uniforme de carga total Q=10C.
 - a) Calcula el potencial eléctrico en un punto situado a r=1m del centro de la esfera. Haga que el potencial en r=∞ sea cero.(0.5 puntos)
 - b) Calcula el potencial eléctrico en un punto situado a r=5cm del centro de la esfera.(**0.5 puntos**) Datos: $\varepsilon_0 = 8.85 \ 10^{-12} \frac{C^2}{Nm^2}$, $S_{esfera} = 4\pi R^2$, $V_{esfera} = \frac{4}{3}\pi R^3$.
- 2. En el circuito de la figura 1:
 - a) Calcula los equivalentes Thevenin y Norton del circuito visto desde los puntos A y B si R=1k Ω , I₁=1mA, I₂=2mA, V₁=2V, V₂=4V. (1.75 puntos)
 - b) Calcula la potencia en cada una de las fuentes de corriente del circuito justificando si es consumida o suministrada. (1 punto)

Figura 1: Circuito para el problema 2

3. Calcula en el circuito de la figura 2 el punto de polarización del transistor (I_D , V_{DS} y V_{GS}). Datos: V_T =2V (tensión umbral del transistor), $k = 2 \, 10^{-3} A/V^2$, R=1k Ω , V_{DD} =10V. Teniendo en cuenta los resultados anteriores, ¿cuánto vale la intensidad que atraviesa la resistencia 2R? ¿Cuánto vale la potencia disipada por el transistor?(1.75 puntos)

Figura 2: Circuito para el problema 3

- 4. En el circuito de la figura 3, $R=1k\Omega$ y L=1mH.
 - a) Calcula la función de transferencia, su módulo y su argumento. (0.75 puntos)
 - b) Dibujar el diagrama de Bode en amplitud y en fase y explica su significado. (1 punto)
 - c) Escribe la forma de la salida $(v_o(t))$ que se obtendría con una entrada $v_i(t) = 10 \sin(200t + 0.12)V$. (0.5 puntos)

Figura 3: Circuito para el problema 4

- 5. Dibuja un circuito con transistores MOSFETs que realice la función lógica de inversor cumpliendo que la potencia consumida sea la mínima posible. Pinta su característica de transferencia y explica brevemente su funcionamiento. (1 punto)
- 6. Calcula la expresión de la salida V_o así como la de la intensidad que pasa por la resistencia 2R en función de V_1 , V_2 y R para el circuito de la figura 4. (1.25 puntos)

Figura 4: Circuito para el problema 6