## MFS2613AMDA6AD – NXP Standard

## Configuration report for FS26-D OTP program ID: A6 rev A

### Rev. 1.0 - 29/09/2022

Report

### 1 General description

The FS26 is a power system basis chip (Power SBC) designed for low and mid-end micro controllers units. It features advance power managment conversion to support battery voltage from 3.2 V up to 40 V.

System level power is provided with a high efficiency buck controller, two programable LDOs, a high precision voltage reference and two voltage tracker with high voltage protection to support loads off-module.

The FS26 features fully indepenent and configurable functional safety state machine with up to two fail-safe outputs and system level monitoring mechanism to reach a high integrity safety level targeting system up to ASIL-D. Electrical characteristics are maintained in the FS26 data sheet

### 2 Features and benefits

- High voltage boost converted supporting front-end or independent operation
- One high voltage buck pre-regulator with low power mode support
- One high efficency buck regulator for MCU core voltage support
- Two linear regulators with low power mode support
- High precission 1% accurate voltage reference
- Two Voltage tracking regulator with high voltage protection for off-module load support
- Fully independent safety state machine with monitoring mechanism targeting ASIL-B applications
- Long duration timer, counting up to 6 months with 1.0 s resolution
- Selectable wake-up sources to bring the system back from low power modes
- Two configurable GPIO pins
- 10 MHz SPI communication interface

## 3 Applications

- Automotive motor control / gate driver systems
- 48 V battery systems
- · Hybrid battery systems
- Electric vehicle battery systems
- Body controller systems



R\_MFS2613AMDA6AD

## 4 Ordering information

**Table 1. Ordering information** 

| Type number <sup>[1]</sup> Name Description |           |                                                                                                                           |           |  |
|---------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|-----------|--|
|                                             |           | Description                                                                                                               | Version   |  |
| MFS2613AMDA6AD                              | LQFP48 AE | HLQFP48-EP plastic thermally enhanced low profile quad flat package. 48 terminals; 0.5mm pitch; 7 mm x 7 mm x 1.4 mm body | SOT1571-1 |  |

<sup>[1]</sup> To order parts in tape and reel, add the R2 suffix to the part number.

## **5 Power-up sequence summary**



The signals depicted above are enable signals for each regulator. They don't represent the actual ramp voltage.

R\_MFS2613AMDA6AD

## 6 Hardware configuration diagram



# **7 OTP configuration**

See FS26 datasheet for parametric details. The OTP configuration summary for A6 sequence ID is provided in Tables below.

**Table 2. Device OTP configuration** 

| Functional block     | Feature                      | OTP selection                   |
|----------------------|------------------------------|---------------------------------|
|                      | VSUP UV Threshold            | 4.8 V/4.3 V                     |
|                      | Exit DFS On WAKE1 Event      | DFS Exit on Wake1 Event Enabled |
|                      | Auto-retry Power Up From DFS | Auto-retry Enabled              |
| System configuration | Auto-retry Mode              | Limited retry                   |
|                      | Auto-retry Timer Limit       | 800 ms                          |
|                      | Clock Frequency Selection    | 18 MHz                          |
|                      | VBOS Input Selection         | Auto Transition on VPRE_UVH     |
|                      | Power-up Slot Time           | 250 us                          |
|                      | Power-up Slot Bypass         | Bypass Disabled                 |
|                      | VCORE Power-up Slot          | Slot 0                          |
|                      | LDO1 Power-up Slot           | Slot 0                          |
| Power-up Sequence    | LDO2 Power-up Slot           | Slot 0                          |
| i ower-up dequence   | TRK1 Power-up Slot           | Slot 0                          |
|                      | TRK2 Power-up Slot           | Slot 0                          |
|                      | VREF Power-up Slot           | Slot 0                          |
|                      | GPIO1 Power-up Slot          | OFF                             |
|                      | GPIO2 Power-up Slot          | OFF                             |
|                      | GPIO1 Configuration          | GPIO1 configured as an Input    |
| I/O Configuration    | GPIO1 Low Side Polarity      | GPIO1 LS active high            |
|                      | GPIO1 Pull-up                | Pull-Up Disabled                |

R\_MFS2613AMDA6AD

| GPIO1 Pull-down           | Pull-Down Enabled                  |
|---------------------------|------------------------------------|
| GPIO1 Detection Threshold | Low voltage threshold              |
| GPIO1 TSD Pull-down       | Pull-down enabled in TSD           |
| GPIO2 Configuration       | GPIO2 configured as an Input       |
| GPIO2 Low Side Polarity   | GPIO2 LS active high               |
| GPIO2 VCORE PGOOD         | GPIO2 is not driven by VCORE PGOOD |
| GPIO2 Pull-up             | Pull-Up Disabled                   |
| GPIO2 Pull-down           | Pull-Down Enabled                  |
| GPIO2 Detection Threshold | Low voltage threshold              |
| WAKE1 Detection Threshold | Low voltage threshold              |
| WAKE2 Detection Threshold | Low voltage threshold              |
| WAKE1 Pull-down           | Pull-Down Enabled                  |
| WAKE2 Pull-down           | Pull-Down Enabled                  |
| WAKE1 Pull-down Selection | 10 kOhm                            |
| WAKE2 Pull-down Selection | 200 kOhm                           |

#### **Table 3. Switching Regulators**

| Functional block   | Feature                | OTP selection |
|--------------------|------------------------|---------------|
|                    | VPRE In Normal Mode    | 6.00 ∨        |
|                    | VPRE In Standby Mode   | 5.35 ∨        |
| VPRE Configuration | DVS Ramp Rate          | 22 mV/us      |
|                    | VPRE Over Current Flag | 1.54 A        |
|                    | Over Current Deglitch  | 250 us        |
|                    | Soft-start Ramp        | 269 us        |
|                    | VPRE Power Down Delay  | 100 us        |

R\_MFS2613AMDA6AD

|                    | VPRE Transition Voltage | 5.35 V                    |
|--------------------|-------------------------|---------------------------|
|                    | VPRE Phase Delay        | No delay                  |
|                    | VPRE LX Slew Rate       | Fast mode                 |
|                    | Transconductance Amp    | 15 uS                     |
|                    | Comp Capacitance        | 12.0 pF                   |
|                    | Comp Resistance         | 1300 kOhm                 |
|                    | Slope Compensation      | 266 mV/us                 |
|                    | Minimum On Time In PFM  | 1100 ns                   |
|                    | Minimum Off Time In PFM | 720 ns                    |
|                    | VPRE Clock Selection    | FSW/40                    |
|                    | TSD Behavior            | VPRE disabled only        |
|                    | TSD Pull-down           | Pull-down enabled in TSD  |
|                    | VBST Voltage            | 8.00 V                    |
|                    | VBST Configuration      | Front-end boost           |
|                    | VBSTFB OV Monitor Mode  | Auto-enable mode          |
|                    | Phase Delay             | 1 Clock Cycle             |
|                    | Low-side Slew Rate      | PU = 2 Ohm / PD = 1.7 Ohm |
| VBST Configuration | Minimum TON             | 200 ns                    |
| VBS1 Configuration | VBST Soft Start         | 425 us                    |
|                    | Max Duty-cycle          | 87.50 %                   |
|                    | Comp Capacitance        | 200 pF                    |
|                    | Comp Transconductance   | 3.9 uS                    |
|                    | Comp Resistance         | 740 kOhm                  |
|                    | Current Limit           | 120 mV/RSNS               |

R\_MFS2613AMDA6AD

|                      | Slope Compensation   | 155 mV/us                        |
|----------------------|----------------------|----------------------------------|
|                      | VCORE Voltage        | 1.50 V                           |
|                      | Control Type         | Valley mode control              |
|                      | Soft Start           | 5 mV/us                          |
|                      | VCORE Current Limit  | 1.7 A                            |
|                      | Phase Delay          | 2 Clock Cycles                   |
| VCORE Configuration  | High-side Slew Rate  | Rise = 4.5 V/ns; Fall = 1.2 V/ns |
| Voorte ooringaration | Transconductance Amp | 26 uS                            |
|                      | Comp Capacitance     | 50 pF                            |
|                      | Comp Resistance      | 200 kOhm                         |
|                      | VCORE Inductor       | 1 uH                             |
|                      | TSD Behavior         | Go to DFS                        |
|                      | TSD Pull-down        | Pull-down enabled in TSD         |

#### **Table 4. Regulators**

| Functional block    | Feature                 | OTP selection            |
|---------------------|-------------------------|--------------------------|
|                     | LDO1 Voltage In Normal  | 5.0 V                    |
|                     | LDO1 Voltage In Standby | 5.0 V                    |
| LDO1 configurations | LDO1 In Standby Mode    | LDO1 Enabled             |
|                     | TSD Behavior            | LDO1 disabled only       |
|                     | TSD Pull-down           | Pull-down enabled in TSD |
|                     | LDO2 Voltage In Normal  | 3.3 V                    |
| LDO2 configurations | LDO2 Voltage In Standby | 3.3 V                    |
|                     | LDO2 In Standby Mode    | LDO2 Enabled             |

R\_MFS2613AMDA6AD

|                     | TSD Behavior           | LDO2 disabled only       |
|---------------------|------------------------|--------------------------|
|                     | TSD Pull-down          | Pull-down enabled in TSD |
| VREF configurations | VREF Voltage           | 5.0 V                    |
|                     | Internal LDO Reference | 3.3 V                    |
|                     | TRK1 Input Selection   | VREF                     |
| TRK1 configurations | TSD Behavior           | TRK1 disabled only       |
|                     | TSD Pull-down          | Pull-down enabled in TSD |
|                     | TRK2 Input Selection   | LDO2                     |
| TRK2 configurations | TSD Behavior           | TRK2 disabled only       |
|                     | TSD Pull-down          | Pull-down enabled in TSD |

#### **Table 5. Voltage Monitoring**

| Functional block       | Feature                     | OTP selection |
|------------------------|-----------------------------|---------------|
|                        | VPRE Monitoring Voltage     | 6.00 V        |
|                        | VPRE OV Threshold           | 110.0 %       |
| VMONPRE Configuration  | VPRE UV Threshold           | 90.0 %        |
|                        | VMONPRE OV Deglitch         | 45 us         |
|                        | VMONPRE UV Deglitch         | 25 us         |
|                        | LDO1 Monitoring Voltage     | 5.0 V         |
|                        | LDO1 OV Threshold           | 107.5 %       |
| VMONLDO1 Configuration | LDO1 UV Threshold           | 93.0 %        |
| VINONEDOT COmiguration | LDO1 Degraded UV Monitoring | Normal UV     |
|                        | VMONLDO1 OV Deglitch        | 45 us         |
|                        | VMONLDO1 UV Deglitch        | 25 us         |

R\_MFS2613AMDA6AD

# MFS2613AMDA6AD - NXP Standard

## Configuration report for FS26-D OTP program ID: A6 rev A

|                        | LDO1 Pin Lift Detection     | LDO1 pin lift detection enabled |
|------------------------|-----------------------------|---------------------------------|
|                        | TRK1 Monitoring Voltage     | 5.0 V                           |
|                        | TRK1 OV Threshold           | 107.5 %                         |
| VMONTRK1 Configuration | TRK1 UV Threshold           | 93.0 %                          |
|                        | VMONTRK1 OV Deglitch        | 45 us                           |
|                        | VMONTRK1 UV Deglitch        | 25 us                           |
|                        | VCORE Monitoring Voltage    | 1.50 V                          |
|                        | CORE OV Threshold           | 106.0 %                         |
| VMONCORE Configuration | CORE UV Threshold           | 94.0 %                          |
|                        | VMONCORE OV Deglitch        | 45 us                           |
|                        | VMONCORE UV Deglitch        | 25 us                           |
|                        | LDO2 Monitoring Voltage     | 3.3 V                           |
|                        | LDO2 OV Threshold           | 106.0 %                         |
|                        | LDO2 UV Threshold           | 94.0 %                          |
| VMONLDO2 Configuration | LDO2 Degraded UV Monitoring | Normal UV                       |
|                        | VMONLDO2 OV Deglitch        | 45 us                           |
|                        | VMONLDO2 UV Deglitch        | 25 us                           |
|                        | LDO2 Pin Lift Detection     | LDO2 pin lift detection enabled |

R\_MFS2613AMDA6AD

## MFS2613AMDA6AD - NXP Standard

## Configuration report for FS26-D OTP program ID: A6 rev A

| VMONTRK2 Configuration | TRK2 Monitoring Voltage    | 3.3 V                           |
|------------------------|----------------------------|---------------------------------|
|                        | TRK2 OV Threshold          | 106.0 %                         |
|                        | TRK2 UV Threshold          | 94.0 %                          |
|                        | VMONTRK2 OV Deglitch       | 45 us                           |
|                        | VMONTRK2 UV Deglitch       | 25 us                           |
|                        | External VMON OV Threshold | 105.0 %                         |
| VMONEYT Configuration  | External VMON UV Threshold | 95.0 %                          |
| VMONEXT Configuration  | VMONEXT OV Deglitch        | 45 us                           |
|                        | VMONEXT UV Deglitch        | 25 us                           |
|                        | VREF Monitoring Voltage    | 5.0 V                           |
| VMONREF Configuration  | VREF OV Threshold          | 105.0 %                         |
|                        | VREF UV Threshold          | 95.0 %                          |
|                        | VMONREF OV Deglitch        | 45 us                           |
|                        | VMONREF UV Deglitch        | 25 us                           |
|                        | VREF Pin Lift Detection    | VREF pin lift detection enabled |

**Table 6. System Safety Configuration** 

| Functional block            | Feature                   | OTP selection                    |
|-----------------------------|---------------------------|----------------------------------|
|                             | ABIST1 On VMONPRE         | ABIST1 Enabled                   |
|                             | ABIST1 On VMONCORE        | ABIST1 Enabled                   |
|                             | ABIST1 On VMONLDO1        | ABIST1 Enabled                   |
| ABIST1 Configuration        | ABIST1 On VMONLDO2        | ABIST1 Enabled                   |
| , is is in a solution       | ABIST1 On VMONTRK1        | ABIST1 Enabled                   |
|                             | ABIST1 On VMONTRK2        | ABIST1 Enabled                   |
|                             | ABIST1 On VMONREF         | ABIST1 Enabled                   |
|                             | ABIST1 On VMONEXT         | ABIST1 Enabled                   |
|                             | DFS Entry Mode            | Go to DFS when FLT_ERR_CNT = max |
|                             | FS1B Assertion Mode       | Delayed Assertion Enabled        |
|                             | RSTB Delay From FS0B      | 100 us                           |
| System Safety Configuration | RSTB Low Detection Timer  | 8 Second Timer Enabled           |
|                             | Watchdog Timer            | WD Timer Enable                  |
|                             | Bypass LBIST From Standby | Always perform LBIST             |
|                             | Main DFS Availability     | Deep Fail Safe Available         |

#### Table 7. OTP ID

| Functional block   | Feature          | OTP selection    |
|--------------------|------------------|------------------|
| OTP Program ID     | Program ID High  | А                |
|                    | Program ID Low   | 6                |
| FS Versioning Bits | External Monitor | VMON Enabled     |
|                    | FCCU Function    | FCCU available   |
|                    | ERRMON Function  | ERRMON available |

R\_MFS2613AMDA6AD

### 8 Legal information

#### 8.1 Definitions

**Draft** - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem

which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms,unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors here by expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications - This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Export control** - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Translations** - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 8.2 Trademarks

**Notice:** All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP - is a trademark of NXP B.V.

R\_MFS2613AMDA6AD

#### **Contents**

| 1 | General description            | 1   |
|---|--------------------------------|-----|
| 2 | Features and benefits          | 1   |
| 3 | Applications                   | 1   |
| 4 | Ordering information           | 2   |
| 5 | Power up sequence summary      | . 2 |
| 6 | Hardware configuration diagram | 3   |
| 7 | OTP configuration              | 4   |
| 8 | Legal information              | 12  |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2022 .

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29/09/2022 Document identifier: R\_MFS2613AMDA6AD