SVMs, ensembles e otimização de modelos

Support Vector Machines

Conjuntos de modelos; random forests

Otimização de hiperparâmetros

Implementação em python com scikit-learn

Support Vector Machines

Máquinas de vetor de suporte

As Máquinas de Vector de Suporte/ Support Vector Machines (SVM) foram desenvolvidas por Vapnik no início da década de 90

Têm vindo a ganhar popularidade como ferramentas de classificação e regressão, devido a uma série de vantagens teóricas e resultados empíricos

Baseiam-se em 2 ideias:

- 1 utilizar somente alguns exemplos de cada classe (vetores de suporte) definindo planos de corte entre classes com margem máxima
- 2 utilizar uma transformação (pode ser não linear) às entradas para um espaço de características lineares, via uma função de Kernel

Classificador com margem máxima

Visão alternativa da regressão logística

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

 $\begin{array}{lll} y = 1 & \text{queremos} & h_{\theta}(x) \approx 1 & \theta^T x \gg 0 \\ y = 0 & \text{queremos} & h_{\theta}(x) \approx 0 & \theta^T x \ll 0 \end{array}$

Visão alternativa da regressão logística

$$-(y \log h_{\theta}(x) + (1 - y) \log(1 - h_{\theta}(x)))$$

$$= -y \log \frac{1}{1 + e^{-\theta^{T}x}} - (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^{T}x}})$$

SE y=1 (queremos $\theta^Tx\gg 0$): SE y=0 (queremos $\theta^Tx\ll 0$):

Função de custo SVMs

Soft margin SVM: usado nos casos reais onde a separação perfeita não é possível

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1-y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$
 âmetro C:

Parâmetro C: Controlo trade-off entre erro e complexidade

Erro

Regularização

Se y = 1 queremos: $\theta^T x \geq 1$ não apenas >= 0

Se y = 0 queremos: $\theta^T x \leq -1$ não apenas < 0

Kernels

Definem mapeamentos, possivelmente não lineares, para as variáveis (atributos) originais criando "novos" atributos

Dadas variáveis originais, calcular novos atributos usando funções de similaridade com pontos pré-definidos

Em SVMs, estes pontos pré-definidos são os próprios exemplos

Exemplo: kernel gaussiano

$$f_i = \text{similarity}(x, l^{(i)})$$

$$= \exp\left(-\frac{||x - l^{(i)}||^2}{2\sigma^2}\right)$$

SVMs em classificação

O algoritmo de treino SMO garante que é atingido sempre o hiperplano óptimo de separação entre classes.

Existem diversos tipos de kernels (linear, polinomial, gaussiano, splines), sendo o gaussiano (RBF) o mais popular;

Dois parâmetros de configuração: C > 0 (complexidade vs erro) e gamma > 0 (o parâmetro do kernel gaussiano)

- C grande e gamma pequeno favorecem overfitting
- C pequeno e gamma grande podem conduzir a underfitting

Conjuntos de modelos

Conjuntos de modelos

Ideia: resposta a novas situações obtida a partir da combinação das respostas de vários modelos distintos

Componentes:

Conjunto de *L* **modelos** distintos (de classificação ou regressão) **Função de combinação** *c* que, dadas as saídas dos modelos, retorna um valor único de saída

Tarefas:

Como construir o conjunto de modelos ? Que função de combinação usar ?

Conjuntos de modelos: motivação

Estatística:

normalmente nº de exemplos de treino não é suficiente; várias alternativas possíveis para os explicar

Computacional:

métodos de construção dos modelos – optimização local; vários modelos possíveis como resultado

Representação:

espaço de representação pode não corresponder ao espaço "real" dos dados; ao considerar vários modelos "expande-se" o espaço de representação

Requisitos para bons resultados:

- Modelos individuais precisos
- Modelos diversos/ heterogéneos

Funções de combinação

Classificação:

Votação: saída é a classe que reúne mais "votos"

Confiança: saída é decidida pelo modelo que apresente maior confiança associada à classe que propõe

Estes dois métodos poderão ser combinados numa votação pesada por confiança.

Regressão:

Média simples: saída é a média das saídas dos modelos

Média pesada: pesos de cada modelo poderão ser calculados com base num processo de estimação de erro prévio, e.g. com exemplos de validação

Construção dos conjuntos de modelos

Abordagem 1: manipular os **exemplos de treino** de formas distintas para criar modelos diferentes:

Bagging: baseado no bootstrap; cada amostra criada por um processo de bootstrap distinto

Validação cruzada: cada modelo cria-se ignorando uma das k partições (tal como no processo anterior)

Boosting:

- cada exemplo terá uma probabilidade de ser escolhido;
- é realizada a escolha com substituição (tipo boostrap) mas considerando as probabilidades;
- ao fim de criar cada conjunto de exemplos, probabilidades são actualizadas diminuindo-se as probabilidades dos exemplos correctamente classificados e aumentando as restantes.

Construção dos conjuntos de modelos

Abordagem 2: injectar aleatoriedade no algoritmo

Mudar decisões determinísticas para estocásticas

Escolha atributo a testar na raíz de uma árvore ou na globalidade dos atributos a testar em toda a árvore

Nº de neurónios intermédios de uma RNA

...

Exemplo: Random forests

- Ensemble de árvores de decisão
- Escolha aleatória do conjunto de atributos a testar
- Utilização do bagging como forma de escolher os exemplos
- Algoritmo de indução de árvores: CART
- Usa o erro out-of-bag (nos exemplos não escolhidos pelo bagging) em cada iteração

Construção dos conjuntos de modelos

Gradient boosting

- Ensemble de modelos simples
- Em cada iteração tenta criar um modelo F_{m+1} que é treinado a partir dos resíduos de F_m i.e. treinado para aprender os erros : $y F_m(x)$
- Valores de previsão são dados pela soma das previsões dos vários modelos
- Pode ser aplicado a vários tipos de modelos, sendo bastante popular com árvores de decisão
- Normalmente usado com "shrinkage", i.e. um factor multiplicativo que reduz as contribuições de cada modelo para evitar sobre-ajustamento

Seleção de atributos	

Seleção de atributos

Em muitos casos práticos há necessidade/ diversas vantagens em reduzir o nº de atributos de entrada de um modelo:

- complexidade dos modelos aumenta com o nº atributos de entrada o que pode provocar sobre-ajustamento;
- dados e modelos podem ser mais facilmente analisados e compreendidos;
- eliminação de atributos redundantes ou contraditórios pode melhorar o próprio processo de aprendizagem reduzindo o ruído

Processo de escolha do melhor sub-conjunto de atributos de um dado conjunto é um **problema de optimização** que pode tornar-se complexo, dado o espaço alargado de procura

Seleção de atributos: estratégia

Algoritmos de **filtragem**:

Seleção de atributos realizada antes do processo de aprendizagem, de forma independente dos classificadores

Avaliação dos subconjuntos de atributos realizada com medidas estatísticas (e.g. Entropia/ganho, etc)

Algoritmos envolventes (wrappers):

Seleção dos atributos realizada em paralelo com a construção do modelo Avaliação dos subconjuntos de atributos realizada treinando um modelo e estimando o seu erro (usando os métodos estudados)

Algoritmos embebidos (embedded):

Seleção dos atributos realizada junto com o processo de aprendizagem (e.g. regressão linear com regularização)

Seleção de atributos: algoritmos de optimização

Heurísticas:

Forward selection: inicia com poucos atributos (e.g. 1) e vai adicionando atributos até atingir um comportamento satisfatório

Backward selection: inicia com todos os atributos e vai removendo

Meta-heurísticas:

Algoritmos Evolucionários Simulated Annealing

Optimização de modelos/ hiperparâmetros

Otimização de modelos

De forma a optimizar o processo de construção, em muitos casos, é realizado um processo de otimização de modelos, realizado pela otimização de hiper-parâmetros — parâmetros não otimizados no processo de treino do modelo

- Processo de optimização minimizando-se uma medida de erro sobre um conjunto de exemplos de validação (não usados para o processo de treino) podendo usar-se processos de validação cruzada
- Um dos objetivos é procurar modelos que minimizem função de erro
- Podem ser usadas técnicas semelhantes à seleção de atributos (heurísticas e meta-heurísticas), sendo as mais usadas a procura exaustiva de todas as combinações (grid-search) ou uma procura aleatória (se o espaço de combinações a testar for muito grande)

Otimização de modelos - exemplos

Pruning de árvores de decisão – parâmetros usados

Parametrização de um SVM (C, gamma)

Otimização do parâmetro de regularização em regressão linear

Otimizar parâmetros numa random forest – nº árvores, nº atributos a usar, profundidade da árvore, etc.

Procura da melhor topologia para uma rede neuronal (e.g. nº nós intermédios)

Procura do melhor conjunto e ordem de regras numa lista de decisão

Exemplos com scikit-learn

Modelos de classificação: árvores

IMPLEMENTAÇÃO EM PYTHON

O modelo de árvores de decisão pode ser construído a partir da classe DecisionTreeClassifier

from sklearn import tree

tree_model = tree.DecisionTreeClassifier() tree_model = tree_model.fit(train_in, train_out) print(tree model) print(tree_model.predict(test_in))

print("Valores previstos: ", tree model.predict(test in)) print("Valores reais: ", test_out) from sklearn import datasets import numpy as np

iris = datasets.load_iris() indices = np.random.permutation(len(iris.data)) train_in = iris.data[indices[:-10]] train out = iris.target[indices[:-10]] test in = iris.data[indices[-10:]] test_out = iris.target[indices[-10:]]

Podem ser usadas para regressão User guide - Section 1.10

Modelos de regressão linear

from sklearn import linear_model ridge = linear_model.Ridge(alpha=.1) ridge = ridge.fit(X_train, y_train) print("Valores previstos: " , ridge.predict(X_test))

> lasso = linear model.Lasso() lasso = lasso.fit(X_train, y_train) print("Valores previstos: " , lasso.predict(X_test))

Regularização: Lasso e Ridge X train = diabetes.data[:-20]

X test = diabetes.data[-20:] y_train = diabetes.target[:-20] y test = diabetes.target[-20:]

from sklearn import datasets diabetes = datasets.load diabetes()

IMPLEMENTAÇÃO EM PYTHON

User guide Section 1.1

Ensembles

IMPLEMENTAÇÃO EM PYTHON

Exemplos de bagging

```
from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn import datasets
from sklearn.model_selection import cross_val_score

bagged_model = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)
scores_bag = cross_val_score(bagged_model, iris.data, iris.target, cv = 5)
print (scores_bag)
```

from sklearn import tree

bagged_model2 = BaggingClassifier(tree.DecisionTreeClassifier(), max_samples=0.5, max_features=0.5) scores_bag2 = cross_val_score(bagged_model2, iris.data, iris.target, cv = 5)

print(scores_bag2)

Ensembles

IMPLEMENTAÇÃO EM PYTHON

Exemplo de random forest

Ensembles

IMPLEMENTAÇÃO EM PYTHON

Exemplo de boosting

```
from sklearn.ensemble import AdaBoostClassifier

ada_tree = AdaBoostClassifier(n_estimators=100)

scores_ada = cross_val_score(ada_tree, iris.data, iris.target, cv = 5)

print (scores_ada)
print (scores_ada.mean())
```

AdaBoostRegressor – permite usar em regressão Parâmetro base_estimator = permite definir outros modelos

Ensembles

IMPLEMENTAÇÃO EM PYTHON

Exemplo de gradient boosting

Seleção de atributos

IMPLEMENTAÇÃO EM PYTHON

Filtros por variabilidade – remover atributos que variam "pouco" (abaixo de um threshold definido)

```
from sklearn import datasets, svm
from sklearn.feature_selection import VarianceThreshold
from sklearn.model_selection import cross_val_score

digits = datasets.load_digits()
print (digits.data.shape)
sel = VarianceThreshold(threshold=20)
filt = sel.fit_transform(digits.data)
print (filt.shape)
svm_mod = svm.SVC(gamma=0.001, C=100.)
scores= cross_val_score(svm_mod, digits.data, digits.target, cv= 10)
print (scores_vt= cross_val_score(svm_mod, filt, digits.target, cv= 10)
print (scores_vt= cross_vt= cr
```

Experimente variar o threshold!

Ver secção 1.13.1 do *User Guide*

Seleção de atributos

IMPLEMENTAÇÃO EM PYTHON

Filtros por análise univariada (testes estatísticos) – manter atributos com valores melhores de p-value

```
from\ sklearn.feature\_selection\ import\ SelectKBest,\ chi2,\ f\_class if
```

```
filt_kb = SelectKBest(chi2, k=32).fit_transform(digits.data, digits.target)
print (filt_kb.shape)
scores_kb = cross_val_score(svm_model, filt_kb, digits.target, cv = 10)
print (scores_kb.mean())
```

```
filt_kb2 = SelectKBest(f_classif, k=32).fit_transform(digits.data, digits.target)
scores_kb2 = cross_val_score(svm_model, filt_kb2, digits.target, cv = 10)
print (scores_kb2.mean())
```

Ver secção 1.13.2 do *User Guide*

Seleção de atributos

IMPLEMENTAÇÃO EM PYTHON

Wrapper: recursive feature elimination (RFE)

```
from sklearn.feature_selection import RFE

svm_model = svm.SVC(kernel = "linear", C=100.)

rfe = RFE(estimator=svm_model, n_features_to_select=32, step=1)

scores_rfe = cross_val_score(rfe, digits.data, digits.target, cv = 10)

print (scores_rfe.mean())
```

Ver secção 1.13.3 do User Guide

Seleção de modelos

IMPLEMENTAÇÃO EM PYTHON

Procura em grelha de parâmetros de SVMs (com validação cruzada na estimação do erro)

Ver secção 3.2 do *User Guide*

Seleção de modelos

IMPLEMENTAÇÃO EM PYTHON

Procura aleatória (com validação cruzada na estimação do erro)

Ver secção 3.2.2 do User Guide

Seleção de modelos

IMPLEMENTAÇÃO EM PYTHON

Procura aleatória (com validação cruzada na estimação do erro)