Martin Skilleter

Email: martin.skilleter@anu.edu.au

Mobile: +61 457 579 229

Focussed college student seeking to gain work experience in **mathematical tutoring**. Prior work experience and leadership roles demonstrate the ability to work co-operatively with and constructively guide a team.

PERSONAL ATTRIBUTES

- **Proficient academic** demonstrated excellence in university academic curricula and techniques required to learn
- **Effective teacher** articulate communicator aware of the different styles required to work with others. Practised in conveying difficult mathematical concepts in a variety of settings
- **Reliable and organised** approaches responsibilities guided by strong ethics, with effective prioritisation and time management

KEY SKILLS and COMPETENCIES

- Ability to learn new content independently and convey ideas to others
- Experience with adapting to different teaching styles to best assist students
- Familiarity with problems faced by students when learning content

EDUCATION

Bachelor of Philosophy – Science (Honours)
 Australian National University

From 2018

 Queensland Certificate of Education Brisbane Grammar School

2017

AWARDS and COMMENDATIONS

- Scholarships (i) National University Scholarship; (ii) College of Engineering & Computer Science Research &
 Development Excellence Scholarship; (iii) Bachelor of Mathematical Sciences Relocation Grant
- Summer Research Scholar
 Summer of 2019 / 2020
- Dean's Science Education Commendation Award
 2019
- Year 12 Overall Position 1 / Australian Tertiary Admission Rank of 99.90 2017
- Cockle Prize for Dux of Mathematics
- General Merit Award for Outstanding Academic Achievement
- QCAA Distinguished Academic Achiever Award
- Working with Vulnerable People General Registration

2018

PREVIOUS EXPERIENCE and LEADERSHIP ROLES

•	Internship – Junior Quality Assurance Officer at Fugro Roames Pty Ltd	Summer of 2015 / 2016
•	Internship – Data Analyst at LGIAsuper	Summer of 2018 / 2019

Course Representative – MATH1116, MATH2322, MATH4204
 2018 / 2019

Peer-Assisted Learning Mentor for MATH1005, MATH1116
 2019

- First-year Drop-In Mentor
- Sponsorship Officer for ANU Mathematics Society
- President of ANU Mathematics Society 2020
- **Demonstrator** for MATH1005 at the Australian National University

PREVIOUS RESEARCH and SPECIAL TOPICS

Project Title	Description	Supervisor
The Implementation of	I investigated the mathematical theory of inner product	Prof. Scott Morrison
Inner Product Spaces in	spaces and Hilbert spaces in the context of	
Lean	implementing this theory in the interactive theorem	
	proving language Lean. I developed the rudimentary	
	theory, including implementing the axioms of an inner	
	product space, and proceeded to prove results such as	
	the Jordan von Neumann Theorem, the Orthogonal	
	Decomposition Theorem and the Riesz-Representation	
	Theorem.	
Differential Geometry and	I followed the text Calculus on Manifolds by Michael	Dr. Ben Andrews
de Rham Cohomology	Spivak to learn the elementary theory of differential	
	geometry. Ben Andrews provided resources to extend	
	the project into the topics of Riemannian metrics and	
	de Rham Cohomology.	
Applications of Persistent	I used techniques from the field of persistent homology	Dr. Katharine Turner
Homology to Identifying	to develop an algorithm to identify bridges in graphs.	
Bridges in Graphs	This algorithm has applications in identifying diffusers	
	of malicious information through social media.	
Perverse Sheaves &	This formal lecture course was divided into two	Dr. Asilata Bapat & Dr.
Deligne-Lusztig Theory	sections. In the perverse sheaves component, we	Uri Onn
	developed the theory of derived categories and t -	
	structures on a triangulated category. We used this to	
	study perverse sheaves and the perverse <i>t</i> -structure	
	induced by a perversity function.	
	The Deligne-Lusztig component was devoted to various	
	classifications for characters on finite reductive groups,	
	including parabolic induction and Deligne-Lusztig	
	induction.	
	The two components were brought together to define	
	character sheaves on a finite reductive group.	
Computational Algebraic	This course gave a computational approach to modern	Dr. Martin Helmer
Geometry	algebraic geometry, developing algorithms and showing	
	their applications using the language Macaulay2.	
	As a personal project, I studied the invariant theory of	
	finite matrix groups, culminating with the Chevalley-	
	Todd-Shephard Theorem. This theory has direct	
	applications to the representation theory of finite	
_	groups of Lie type.	

Vector Bundles and K-	This course developed the theory of vector bundles on	Dr. Vigleik Angeltveit
Theory	a topological space, defining topological K -theory and	
	showing its applications.	
	As a personal project, I gave an alternate K -theory for	
	analytic objects called C^* -algebras. I also proved the	
	Serre-Swan theorem, which shows that topological K-	
	theory is a special case of operator K -theory of \mathcal{C}^* -	
	algebras.	