

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Ayudantía 8 Álgebra Lineal

12 de mayo de 2022

Problema 1. Sea V un espacio vectorial de dimensión finita sobre $K y T : V \to V$ lineal.

1. Si $S: \mathbf{V} \to \mathbf{V}$ es una aplicación lineal que conmuta con T, esto es, ST = TS, entonces $\ker(S)$ es un subespacio invariante bajo T.

Para un polinomio $P = a_0 + a_1 X + \ldots + a_n X^n \in K[X]$ defina la aplicación lineal

$$P(T) := a_0 \operatorname{id}_V + a_1 T + a_2 T^2 + \ldots + a_n T^n$$

donde $T^k := \underbrace{T \circ \ldots \circ T}_{\text{k veces}}.$ Esto nos permite definir una función

$$\varphi_T: K[X] \to \mathcal{L}(\mathbf{V}), \qquad P \mapsto P(T)$$

- 2. Verifique que la función φ_T está bien definida y muestre que es lineal
- 3. Muestre que para todo $P \in K[X]$, $\ker(P(T))$ es invariante bajo T.
- 4. Pruebe que si $\mathbf{W} \leq \mathbf{V}$ es un subespacio invariante bajo T y $P \in K[X]$, entonces \mathbf{W} es invariante bajo P(T).

Problema 2. Sea V espacio vectorial y $T: \mathbf{V} \to \mathbf{V}$ aplicación lineal. Se definen los siguientes subespacios vectoriales.

$$V_{+} = \{ v \in V : Tv = v \}$$
 $V_{-} = \{ v \in V : Tv = -v \}$

Pruebe que, en efecto, los conjuntos anteriores son subespacios. Demuestre que si $T^2 = \mathrm{id}$, donde id denota la aplicación identidad en V, entonces $V = V_+ \oplus V_-$.

Problema 3. Sean \mathbf{U}, \mathbf{V} espacios vectoriales sobre un cuerpo K con $\dim(\mathbf{U}) = m$ y $\dim(\mathbf{V}) = n$. Sobre el producto cartesiano de conjuntos $\mathbf{U} \times \mathbf{V}$ se definen las siguientes operaciones:

$$(\mathbf{u}_1,\mathbf{v}_1)+(\mathbf{u}_2,\mathbf{v}_2)=(\mathbf{u}_1+\mathbf{u}_2,\mathbf{v}_1+\mathbf{v}_2),\quad \alpha(u,v)=(\alpha u,\alpha v),\quad \forall \mathbf{u}_1,\mathbf{u}_2\in \mathbf{U},\mathbf{v}_1,\mathbf{v}_2\in \mathbf{V},\alpha\in K$$

en donde las sumas y productos correspondientes a las de los espacios respectivos. El producto $\mathbf{U} \times \mathbf{V}$ junto con las operaciones definidas posee entonces estructura de espacio vectorial sobre K. Con respecto a este espacio pruebe lo siguiente:

- 1. Verifique que $\{\mathbf{0}_U\} \times \mathbf{V}$ es subespacio vectorial de $\mathbf{U} \times \mathbf{V}$.
- 2. Demuestre que $\dim(\mathbf{U} \times \mathbf{V}) = \dim(\mathbf{U}) + \dim(\mathbf{V})$.
- 3. Considere $T: \mathbf{U} \to \mathbf{V}$ función. Se define el **grafo** de T como el conjunto

$$G = \{(\mathbf{u}, \mathbf{v}) \in \mathbf{U} \times \mathbf{V} : T(\mathbf{u}) = \mathbf{v}\} \subseteq \mathbf{U} \times \mathbf{V}$$

Demuestre que T es una aplicación lineal si y solo si G es subespacio vectorial de $\mathbf{U} \times \mathbf{V}$.

4. Sea $T: \mathbf{U} \to \mathbf{V}$ aplicación lineal. Demuestre que $\mathbf{U} \times \mathbf{V} = G \oplus (\{0\} \times \mathbf{V})$.