Chapter 2: End-to-End Machine Learning Project

- Look at the big picture
 - Frame the problem: supervised or not, classification or regression (estimates off by more than 20%)
 - Select a performance measure:
 - RMSE, L2, Euclidean norm
 - MAE, *L1*, Manhattan norm
 - Norm index: higher focuses more on large values
 - RMSE more sensitive to outliers than MAE
 - Check the assumptions
- Get the data
 - Create the workspace
 - Download the data
 - Automating this can be helpful if need to re-run or run on multiple machines
 - Take a quick look at the structure
 - Missing data?
 - Data type?
 - df['col_x'].value_counts(), df.describe()
 - Create a test set: prevent data snooping
 - Stratified sampling: same proportions in sample as in population
- Discover and visualize data to gain insights
 - Visualize labels
 - o Look for correlations: useful correlation examples
 - o Experiment with attribute combinations
- Prepare the data for machine learning algorithms
 - o General
 - Will want to write functions for data transformations so that you will build up a library of functions to deploy on new data
 - Data cleaning
 - Deal with missing features
 - Handling text and categorical attributes
 - One-hot encoding
 - Problems when attribute has many possible categories
 - Custom transformers
 - Feature scaling
 - Min-max scaling (aka normalization): bounded [0,1]
 - Standardization: unbounded → issue for some neural networks
 - Transformation pipelines
 - Pipeline: syntax
 - Column transformer
- Select and train model
 - Training and evaluating Training set
 - Better evaluation using cross-validation

- Cross validation can help tell whether model is over/underfitting data before look at test set
- Fixes to poor fit
 - Underfitting
 - More powerful model
 - Better features
 - Reduce constraints (only possible if already regularized)
 - Overfitting
 - Simplify model
 - Add constraints (e.g., regularization)
 - More data
- Fine-tune your model
 - o General: efficient ways to play with hyperparameters
 - Grid search
 - o Randomized search
 - o Ensemble methods
 - o Analyze best models and errors
 - o Evaluate your system on test set
- Present your solution
 - What you learned, what worked, what didn't, assumptions, limitations
 - Even model doesn't perform much better, may be better to deploy to free up traditional forecasters' time
- Launch, monitor, and maintain your system
 - Ways to deploy
 - Save with joblib
 - Dedicated web service
 - Deploy on Google Cloud AI platform
 - Monitor for decay
 - Data and information change over time
 - Cats and dogs don't change, but images of them do!
 - Ways to automate monitoring
 - Collect fresh data regularly and label
 - Write script to train model and fine-tune hyperparameters at a regular frequency
 - Write script to evaluate new and old model on updated test set
 - May need to monitor new input data for quality6