titel

my name

2021-04-23

1 Introduction

Introduction of the research and introduction research questions

1.1 Goal

- Describe Goal (not the educational goal but the research goal)
- Describe how you reach the goal (e.g. make model and figures, use different setting)
- formulate hypothesis

1.2 Theory

- Describe biological model
- Picture of the biological model

Give an explanation of the model with citations of source [1] (replace this with actual source) and formula explanation

$$\frac{\delta R}{\delta t} = -r * R + m$$

Describe each element and the transformations

2 Methods

2.1 The software model

- Describe the software tools used, as well as the libraries
- Describe the software implementation (note: code below is an example)

library(deSolve)

code

2.2 Model configuration

Explain chosen initial state, parameter values and time sequence. Use tables with values as for example below

Table 1: Parameter Values

Parameter	Value	Unit
a	0.08	$hour^{-1}$
b	0.06	$hour^{-1}$
\overline{c}	0.06	$hour^{-1}$

3 Results

Introduction of results, how does it answer your research questions.

#plot(out)
#code to generate figures with title, subscripts, legenda etc

- Describe what can be seen in such way that it leads to an answer to your research questions
- Give your figures a number and a descriptive title.
- Provide correct axis labels (unit and quantity), legend and caption.
- Always refer to and discuss your figures and tables in the text they never stand alone.

4 Discussion and Conclusion

4.1 Discussion

- Compare your results with what is expecting from the literature and discuss differences with them.
- Discuss striking and surprising results.
- Discuss weaknesses in your research and how they could be addressed.

4.2 General conclusion and perspective

Discuss what your goal was, what the end result is and how you could continue working from here.

References

[1] Soetaert, K., Petzoldt, T., and Woodrow Setzer, R.: Solving differential equations in R: package deSolve, J. Stat. Softw., 33, 1-25, 2010.