

(ICIIS 2014)

Dec 15-17, 2014 | Gwalior, India.

Motor Imagery EEG signal Classification

Nischal K. Verma, Senior Member, IEEE, L.S. Vishnu Sai Rao and Suresh K. Sharma

Indian Institute of Technology Kanpur India

MI EEG signal

Motor imagery is a mental process by which an individual rehearses or simulates a given action. An EEG signal is produced in this action.

Task Overview

- Efficiently classify a two class motor imagery based EEG data
- Different Classification procedures were studied, implemented and compared in order to find a procedure to suite the particular data
- The algorithms were tested
- On a standard dataset (BCI competition III)
- On experimental data collected using "emotiv".

Outline

- Overview of classification procedure
- Data format and Processing
- Feature extraction techniques
- Cross-Correlation
- Discrete Wavelet Transform
- Classification Algorithms
- Experiment using "emotiv"

Overview of a classification procedure

Data format and Processing City

- The data is a Matrix of 118 columns where each column represents a signal obtained from a particular channel
- Each of the 118 columns has data from both the classes. The matrix was divided into two matrices of 118 columns where each matrix would represent a single class.
- In machine learning terms there are 118 training examples or samples for each class.

Data format and Processing City

Evaluation

- 10-fold cross-validation method has been used for assessing the performance of classifier.
- This procedure divides the feature vector sets into ten approximately equal-sized distinct partitions.
- One partition is then used for testing, while other partitions are used for training the model.

Evaluation

- To further improve the estimate, the procedure is repeated ten times and all accuracies over these ten runs are averaged.
- The average accuracy over the ten runs obtained from the test data is taken as the performance evaluation criteria in this study

Techniques used for feature extraction

• Cross-Correlation

• Discrete Wavelet Transform

• Cross-Correlation + Discrete Wavelet Transform

Cross-correlation

One reference signal

EEG signals of two classes

Cross correlation

Statistical feature extraction

All the nonreference signals

Cross-correlation

Discrete Wavelet Transform

2014 2014

- Daubechies-4

 (db4)
 decomposition
 filter
- Nine features are to be extracted from these coefficients.

Discrete Wavelet Transform

- The first three are variances of the detail coefficients at level 1, 2 and 3. Detail coefficients at level 4, 5 and 6 have been auto correlated. Variance of them was then calculated to give the next three features.
- The last three features were found by taking the absolute mean of smoothened versions of detail coefficients at level 1, 2 and 3

Techniques used for classification

- Least Square support Vector Machine (LSSVM)
- Logistic Regression
- Kernel Logistic Regression
- Multilayer Perceptron
- Probabilistic Neural Network

Experiments

Case	Feature extraction Technique	Reference Signal	Feature vector size
1	Cross correlation	Fp1	6
2	Cross correlation	C3	6
3	Cross correlation	Fp1	9
4	Cross correlation	C3	9

Experiments

Case	Feature extraction Technique	Reference Signal	Feature vector size
5	Discrete Wavelet Transform	-	9
6	CC+DWT	Fp1	9
7	CC+DWT	C3	9

Observations

Feature extraction technique
 Discrete Wavelet transform

 Classification technique LSSVM

Slight improvement in accuracy upon increasing the feature vectors

Observations

Feature extraction technique
 Discrete Wavelet transform

 Classification technique LSSVM

Slight improvement in accuracy upon increasing the feature vectors

Data Acquisition Using Emotiv

 An experimental cue was set up in which for first 20 secs the person had to imagine a particular task say right hand movement.

 This was followed by a 5 sec delay and then for next 20 secs subject had to imagine another task say right leg movement.

Data Acquisition Using Emotiv

Conclusion

- A comparative study of five classification methods and three feature extraction
- Evaluation using 10-fold cross validation technique under common ground conditions.
- feature extraction techniques => DWT and classification algorithms => LSSVM
- Overall, a combination of DWT and LSSVM seems to be a good procedure for classifying two class MI based EEG signals