MATH 142A: Introduction to Analysis

www.math.ucsd.edu/~ynemish/teaching/142a

Today: Mean Value Theorem > Q&A: March 1

Next: Ross § 30

Week 8:

Homework 8 (due Sunday, March 7)

Fermat's Theorem

Thm 29.1 (i) f: (a, b) → R 10 € (a, b) (ii) f assumes its max or min at x. >> (iii) f'(xo) exists

Proof Suppose that fassumes its max at xo (otherwise take -f)

50 Y χε (x, x, +δ)

Therefore,

then

. Similar argument shows that

Rolle's Theorem Notation: If SCIR then · f E D (S) means that f is differentiable on S

Proof. By the maximum-value theorem (Thm 18.1)

Thm 29.2

(i)
$$f \in C([a,b])$$

(ii) $f \in D((a,b)) \Rightarrow$

(iii) $f(a) = f(b)$

If yoe (a,b), then by Thm 29.1 If xoe(a,b), then by Thm 29.1

Mean-value Theorem (Lagrange's Theorem)	
Thm 29.3	
$\begin{array}{ccc} (i) & f \in C([a,b]) & \Rightarrow \\ (ii) & f \in D((a,b)) & \Rightarrow \end{array}$	
Proof. Denote $F:[a,b] \to \mathbb{R}$, $F(x) =$	
Then	

, we get

Since F'(c)=

Corollaries

Cor. 29.4 (i)
$$f \in D((a,b))$$
 \Rightarrow (ii) $f' = 0$ on (a,b)

3 x, y e (a, b) s.t. f(x) # f(y),

Cor 29.5 (i)
$$f,g \in D((a,b))$$
 \Rightarrow (ii) $f=g'$ on (a,b)

Application of Thms 29.1-29.3 1) $\forall x, y \in \mathbb{R}$ Fix $x, y \in \mathbb{R}$, x < y. $\sin \in C([x,y])$, $\sin \in D((x,y))$, so by Lagrange's thm

Fix $x, y \in [1, +\infty)$, x < y. Let $f : [0, +\infty) \to [0, +\infty)$, $f(u) = \overline{u}$. Then $f \in C([x, y]), f \in D((x, y)), so by Lagrange's Thm, and thus$

Application of Thms 29.1-29.3 3) YXEIR

Let x>0, $f(u)=e^{x}$. $f\in C([0,x])$, $f\in D((0,x))$, $f'(u)=e^{x}$, so

by Lagrange's thm

If x <0, apply Lagrange's thm to fec([x,0]), feD((x,0)).

Then

Therefore,

Monotonic functions and the mean-value theorem Def 29.6 Let ICIR be an interval, f: I - IR. We say that f is strictly increasing on I if ∀ x, y ∈ I (x < y ⇒ f(x) < f(y)) f is strictly decreasing on I if ∀ x, y ∈ I (x < y ⇒ f(x) > f(y)) f is increasing on I if ∀ x, y ∈ I (x < y ⇒ f(x) ≤ f(y)) f is decreasing on I if ∀ x, y ∈ I (x < y ⇒ f(x) ≥ f(y)) Cor 29.7. f & D((a1b)). Then for all xe (a, b) (i) f is strictly increasing on (a, b) if (ii) f is strictly decreasing on (a, b) if for all x e (a, b) (iii) f is increasing on (a, b) if for all x (a, b) (iv) fis decreasing on (a, b) if for all x (a, b) Proof (ii) Take x, y \((a, b) , x \(\azy \). By Lagrange's thm

Intermediate-value theorem for derivatives (Darboux's Thm)
Thm 29.8 fe D((a,b)), x, x, t (a,b), x, x, z.
(i) $f(x_1) \land f(x_2) \Rightarrow \forall c \in (f(x_1), f(x_2)) \exists x \in (x_1, x_2) \text{ s.t. } f'(x) = c$
(ii) $f(x_1) > f(x_2) \Rightarrow \forall c \in (f(x_1), f(x_1)) \exists x \in (x_1, x_2) \text{ s.t. } f'(x) = c$
Proof: (i) Fix $c \in (f'(x_1), f'(x_2))$.
Consider g(x) = Then
D by Thm 18.1 (max-value)
2
$\lim_{x \to x_1} \frac{g(x) - g(x_1)}{x - x_1} < 0$
Similarly, Fermatis Thm
③ ⇒