2010, Volume 114A

Richard D. Harcourt*: Correction to "Valence Bond Structures for Three-Electron Three-Center and Four-Electron Three-Center Bonding Units: Some Further Examples"

doi: 10.1021/jp911294x. (a) The entries for Table 4 of the subject paper were calculated using carbon $2\text{p}\pi$ AOs. With hydrogen 1s AOs, as described in the paper, the entries are the following.

TABLE 4: Cyclic H₆

	W(Kekulé)	W(Dewar)	energy (au)	l in r + l y or y + l r
1 ↔ 2	0.446	0.036	-3.1773	
$3 \leftrightarrow 4$	0.004	0.163	-3.2246	0.8
3	1/6		-3.2026	1.2
4		1/6	-3.2240	0.8

(b) In ref 1, VB studies have been reported for two exit channels for dissociation of X_3^- (X = halogen or hydrogen). With $\mathbf{X} \equiv \mathbf{R} \equiv \mathbf{Y}$, the $X_3^- \to X_2 + X^-$ exit channel occurs¹ for X = Cl, Br, I, and H. It is accommodated by

$$[X \quad X \quad X \longrightarrow X \quad X \quad X] \xrightarrow{(\cdot)} X \stackrel{\circ}{\times} X + \stackrel{\circ}{X} \stackrel{\circ}{(\cdot)}$$

from the ground-state generalized Reactant-like Complex \leftrightarrow Product-like Complex (or RC \leftrightarrow PC) resonance in the subject paper's Scheme 5

The F_3^- exit channel is primarily $^1\ F_3^-\to F_2^-+F$. It is accommodated by

$$[\overrightarrow{F} \quad \overrightarrow{F} \quad \overrightarrow{F} \quad \overrightarrow{F} \quad \overrightarrow{F}]^{(\cdot)} \rightarrow (\widecheck{F} \circ \widecheck{F})^{(\cdot)} + \stackrel{\circ}{F}$$

from the excited-state (*) PC \leftrightarrow RC resonance in the subject paper's Scheme 5. (Note: RC \equiv (PC)*; PC \equiv (RC)*.)

In ref 2, VB studies of ${\rm H_3}^-$ with ${\rm F_3}^-$ are also reported, and their electronic structures are contrasted.

(c) In ref 2, a preference is made for use of

$$X \stackrel{\times}{(\cdot)} + R \stackrel{\times}{\times} Y \rightarrow X \stackrel{\circ}{\times} R \stackrel{\circ}{\times} Y \rightarrow X \stackrel{\circ}{\times} R \stackrel{\circ}{\times} Y \stackrel{(\cdot)}{\to} X \stackrel{\circ}{\times} R + \stackrel{\times}{Y} \stackrel{(\cdot)}{\to} X \stackrel{\circ}{\to} R \stackrel{\circ}{\to} X \stackrel{\circ}{\to} X$$

rather than

$$\stackrel{\stackrel{\textstyle \times}{\scriptstyle (\cdot)}}{\scriptstyle X}$$
 $\stackrel{\textstyle +}{\scriptstyle +}$ $\stackrel{\textstyle \times}{\scriptstyle R}$ $\stackrel{\textstyle \times}{\scriptstyle \times}$ $\stackrel{\textstyle \times}{\scriptstyle Y}$ $\stackrel{\textstyle \times}{\scriptstyle -}$ $\stackrel{\textstyle \times}{\scriptstyle \times}$ $\stackrel{\textstyle \times}{\scriptstyle (\cdot)}$ $\stackrel{\textstyle \times}{\scriptstyle -}$ $\stackrel{\textstyle \times}{\scriptstyle \times}$ $\stackrel{\textstyle \times}{\scriptstyle (\cdot)}$ $\stackrel{\textstyle \times}{\scriptstyle -}$ $\stackrel{\textstyle \times}{\scriptstyle \times}$ $\stackrel{\textstyle \times}{\scriptstyle (\cdot)}$ $\stackrel{\textstyle \times}{\scriptstyle -}$ $\stackrel{\textstyle \times}{\scriptstyle (\cdot)}$ $\stackrel{\textstyle \times}{\scriptstyle ($

as a VB formulation for the generalized $\mathbf{X}^{:(-)} + \mathbf{R}:\mathbf{Y} \to \mathbf{X}:\mathbf{R} + \mathbf{Y}^{:(-)}$ reaction. These formulations involve one-electron and concerted electron pair delocalizations for Reactants \to RC and PC \to Products, respectively.

References and Notes

- (1) (a) Braida, B.; Hiberty, P. C. J. Phys. Chem. A **2008**, 112, 13045. (b) Braida, B.; Hiberty, P. C. J. Am. Chem. Soc. **2004**, 126, 14890.
- (2) Harcourt, R. D. *Int. J. Quantum Chem.* **1996**, *60*, 553. See ref 20d of subject paper for increased-valence revision.

10.1021/jp1039145

Published on Web 06/15/2010

[†] Part of the "Klaus Ruedenberg Festschrift".