Regularization

Lecture series "Machine Learning"

Niels Landwehr

Research Group "Data Science" Institute of Computer Science University of Hildesheim

Agenda For Lecture

- Training and test error
- Model complexity and overfitting
- Model selection and regularization

Agenda For Lecture

- Training and test error
- Model complexity and overfitting
- Model selection and regularization

Review: Supervised Learning

Review: in supervised learning, the goal is to make predictions about objects

• To obtain predictions, we are looking for a **model** f that produces a prediction $f(\mathbf{x}) \in \mathcal{Y}$ for an input instance \mathbf{x}

$$f: \mathcal{X} \to \mathcal{Y}$$
 Input: instance $\mathbf{x} \mapsto f(\mathbf{x})$ Output: prediction $f(\mathbf{x})$

Model will be inferred from training data: a set of instances with observed targets

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$$
Training instances $\mathbf{x}_n \in \mathcal{X}$: observed objects in training data, for example flowers, images of digits, or emails

Observed labels or targets $y \in \mathcal{Y}$ in training data, for example classes of flowers, digits 0...9, or spam/legitimate classifications

Review: Assumptions About Data

- For learning to work, we have to assume that there is some reasonably stable relationship between inputs and outputs that can be captured by a model
- Assumption: training example are independently drawn from (constant) joint distribution over inputs and outputs:

$$(\mathbf{x}_n, y_n) \sim p(\mathbf{x}, y)$$

- Because $p(\mathbf{x}, y) = p(\mathbf{x})p(y | \mathbf{x})$, the assumption can be reformulated as
 - The instances \mathbf{x}_n are sampled from a probability distribution over instances.
 - p(x) describes distribution over population of objects
 - For example, certain flowers, digits, or email texts are encountered with a certain probability

$$\mathbf{x}_n \sim p(\mathbf{x})$$
$$\mathbf{y}_n \sim p(\mathbf{y} \,|\, \mathbf{x}_n)$$

- Given an instance \mathbf{x}_n , its label is drawn from a distribution $p(y | \mathbf{x}_n)$ that represents the relationship between input and output.
- The relationship could be deterministic (probabilities 0 or 1) but this formulation also allows for randomness or noise in data

Goal: Low Error at Application Time

• Model f is often a parameterized function f_{θ} , and its parameters are learned by minimizing a loss function on the training data:

$$\mathbf{\theta}^* = \arg\min_{\mathbf{\theta}} L(\mathbf{\theta})$$

$$L(\mathbf{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\mathbf{\theta}}(\mathbf{x}_n), y_n)$$

- Alternatively, can maximize a "gain function" such as likelihood on training data
- However, the eventual goal of learning is not to perform well on training data
 - After training, the model will be deployed in an application domain
 - After deployment, the model has to make predictions for novel instances which have not been part of the training set
 - These are assumed to be drawn from the same distribution as the training data
 - The goal of learning is to obtain a model that performs well on these novel instances, not the training instances

Test Error

- The predictive performance on novel instances at application time can be defined by the expected loss or error of the model on a new, randomly drawn instance
 - Assume we are drawing a novel instance (not part of training data) with corresponding label

$$\mathbf{x}_{new} \sim p(\mathbf{x})$$
$$y_{new} \sim p(y \mid \mathbf{x}_{new})$$

– Given a function ℓ_{eval} that measures the loss or error between the true label y_{new} and prediction $f_{\theta}(\mathbf{x}_{new})$, we can measure

$$\ell_{eval}(y_{new}, f_{\theta}(\mathbf{x}_{new})) \in \mathbb{R}$$

- The expectation of this quantity is obtained by integrating over \mathbf{x} and y:

$$R(f_{\theta}) = \mathbb{E}[\ell_{eval}(y, f_{\theta}(\mathbf{x}))] = \iint \ell_{eval}(y, f_{\theta}(\mathbf{x})) p(\mathbf{x}, y) d\mathbf{x} dy$$

- The quantity $R(f_{\theta})$ is also called the expected risk or expected test error of the model
- Goal is to find a model with low $R(f_{\theta})$

Loss or Error Function On Test Data

- How do we choose the evaluation loss ℓ_{eval} ?
- For regression:
 - often squared loss $\ell_{eval}(y, f_{\theta}(\mathbf{x})) = (y f_{\theta}(\mathbf{x}))^2$
 - or absolute loss $\ell_{eval}(y, f_{\theta}(\mathbf{x})) = |y f_{\theta}(\mathbf{x})|$
- For classification:
 - most widely used is classification error:

$$\ell_{eval}(y, f_{\theta}(\mathbf{x})) = \begin{cases} 0 : y = f_{\theta}(\mathbf{x}) \\ 1 : y \neq f_{\theta}(\mathbf{x}) \end{cases}$$
 Expectation over this function: fraction of cases in which the model makes an error

 other options include likelihood as in training (higher is better) or applicationspecific losses

Training Versus Test Error

• To estimate the expected risk of a model on novel instances, we can use a **test set** of instances also drawn from the joint distribution $p(\mathbf{x}, y)$:

$$\mathcal{D}_{test} = \{ (\overline{\mathbf{x}}_1, \overline{y}_1), ..., (\overline{\mathbf{x}}_{\overline{N}}, \overline{y}_{\overline{N}}) \qquad (\overline{\mathbf{x}}, \overline{y}) \sim p(\mathbf{x}, y) \}$$

The expected risk can then be approximated by

$$\hat{R}_{test}(f_{\theta}) = \frac{1}{\overline{N}} \sum_{n=1}^{\overline{N}} \ell_{eval}(\overline{y}_n, f_{\theta}(\overline{\mathbf{X}}_n))$$
 Unbiased estimator: will approximate
$$R(f_{\theta}) \text{ well given large enough } \overline{N}$$
 (more details in next lecture)

We can also measure the average risk of the model on the training data:

$$\hat{R}_{train}(f_{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \ell_{eval}(y_n, f_{\theta}(\mathbf{x}_n))$$

• Depending on the choice of ℓ_{eval} , $\hat{R}_{train}(f_{\theta})$ is similar (or identical) to the loss function used for training,

$$L(\mathbf{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \ell(f_{\mathbf{\theta}}(\mathbf{x}_n), y_n)$$

Agenda For Lecture

- Training and test error
- Model complexity and overfitting
- Model selection and regularization

Training Versus Test Error

- During learning, we choose the model only based on the training data
- The chosen model $f_{\mathbf{\theta}^*}$ will typically have a low $\hat{R}_{train}(f_{\mathbf{\theta}^*})$
- If everything goes well,
 - The trained model f_{θ^*} has picked up the (\mathbf{x},y) -relationship that stems from the joint distribution $p(\mathbf{x},y)$
 - This (\mathbf{x},y) -relationship then also holds on new data, therefore the model $f_{\mathbf{\theta}^*}$ will also perform well on new data ($R(f_{\mathbf{\theta}^*})$ and $\hat{R}_{test}(f_{\mathbf{\theta}^*})$ will also be low)
- However, a low training error $\hat{R}_{train}(f_{\mathbf{e}^*})$ does not guarantee a low test error $\hat{R}_{test}(f_{\mathbf{e}^*})$
- If things go not so well,
 - The trained model f_{θ^*} will perform well on the training data not because it has picked up an (\mathbf{x}, y) -relationship that will transfer to new data, but because it has picked up spurious, random patterns that are specific to the particular training set
 - In this case, $\hat{R}_{train}(f_{\mathbf{e}^*})$ will be low, but $\hat{R}_{test}(f_{\mathbf{e}^*})$ will be high
 - Fundamental problem in machine learning known as overfitting

Example: Toy Sine Data Set

- As an example, let us look at a simple toy data set $\mathcal{D} = \{(x_1, y_1), ..., (x_N, y_N)\}$
 - inputs $x_n \in \mathbb{R}$, randomly drawn from a uniform distribution over interval [0,1]:

$$x_n \sim p(x) = \mathcal{U}_{[0,1]}$$

-(x,y) -relationship is given by a sine curve plus normally distributed noise:

$$y_n = \sin(2\pi x_n) + \epsilon_n$$
 $\epsilon_n \sim \mathcal{N}(\epsilon \mid 0, \sigma^2)$

- That is, $p(y|x_n) = \mathcal{N}(y|\sin(2\pi x_n), \sigma^2)$

Example: Polynomial Regression

- What would be a good model for the toy sine data set?
- Clearly, the (x,y)-relationship in the data is not linear:

• Idea: we could estimate a model f_{θ} for the toy data set using a polynomial regression of the form

$$f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_M x^M$$

- Here, M is a parameter of the model class under consideration
 - We need to pick a value for the parameter M a priori, before learning
 - M can be called a **hyperparameter** to distinguish from parameters $\theta_0,...,\theta_M$

Example: Polynomial Feature Map

• We can estimate a model f_{θ} for the toy data set using a polynomial regression model:

$$f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + ... + \theta_M x^M$$

where M determines the degree of the polynomial

- How do we implement such a non-linear polynomial model?
- The simplest way to implement a polynomial model is to transform the original data using a **polynomial feature map**

New, transformed input:

Old input:
$$x \in \mathbb{R} \qquad \mathbf{x} = \begin{pmatrix} 1 \\ x \\ x^2 \\ \dots \\ x^M \end{pmatrix} \in \mathbb{R}^{M+1}$$

Example: Polynomial Feature Map

- The original training data $\mathcal{D} = \{(x_1, y_1), ..., (x_N, y_N)\}$ is replaced with new training data $\mathcal{D}' = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$, where $\mathbf{x}_n = (1, x_n, x_n^2, ..., x_n^M)^T$
- A linear model $f_{\theta}: \mathbb{R}^{M+1} \to \mathbb{R}$ on the transformed feature representation than has the form $f_{\theta}(\mathbf{x}) = \theta_0 \cdot 1 + \theta_1 x + \theta_2 x^2 + ... + \theta_M x^M$
- The linear model on the transformed feature representation is thus exactly identical to the polynomial model shown above
- Implementation is easy: Transform the old, one-dimensional input data \mathcal{D} into new data \mathcal{D} ', then learn a linear regression models as discussed in earlier lecture
- For example, can fit a polynomial of degree *M*=3 to toy sine data set:

Polynomial model captures non-linear (*x*,*y*)-relationship in data quite well

Figure: C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

Nonlinear Feature Maps in General

- Nonlinear feature maps are a general and powerful tool in machine learning: Capture non-linear dependency in data without moving away from linear models
- Nonlinear feature maps are not only applicable to one-dimensional data:
 - If the original data is of the form $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$ with $\mathbf{x}_n \in \mathbb{R}^M$, can define a non-linear feature map

$$\Phi: \mathbb{R}^M \to \mathbb{R}^{M'}$$

- With the nonlinear feature map, can transform the original data to $\mathcal{D}' = \{(\Phi(\mathbf{x}_1), y_1), ..., (\Phi(\mathbf{x}_N), y_N)\}$
- Can then learn a linear model $f_{\theta}(\Phi(\mathbf{x})) = \Phi(\mathbf{x})^{\mathrm{T}} \theta$ on the transformed data

Example: General Polynomial Feature Map

• For example, as a feature map $\Phi: \mathbb{R}^M \to \mathbb{R}^{M'}$ can use a general polynomial feature map of degree d,

$$\Phi(\mathbf{x}) = \begin{pmatrix} \Phi_1(\mathbf{x}) \\ \dots \\ \Phi_{M'}(\mathbf{x}) \end{pmatrix}$$

where the $\Phi_m(\mathbf{x})$ contain all multivariate polynomials of degree $\leq d$

The linear model is then given by

$$f_{\theta}(\Phi(\mathbf{x})) = \theta_0 + \sum_{m=1}^{M} \theta_m x_m$$
 (degree $d = 1$)
All polynomials of degree 1 (=original input features)

$$f_{\theta}(\Phi(\mathbf{x})) = \theta_0 + \sum_{m=1}^{M} \theta_m x_m + \sum_{m=1}^{M} \sum_{l=1}^{M} \theta_{m,l} x_m \underline{x_l} \qquad (\text{degree } d = 2)$$

All polynomials of degree 2 in original input features

$$f_{\theta}(\Phi(\mathbf{x})) = \theta_0 + \sum_{m=1}^{M} \theta_m x_m + \sum_{m=1}^{M} \sum_{l=1}^{M} \theta_{m,l} x_m x_l + \sum_{m=1}^{M} \sum_{l=1}^{M} \sum_{k=1}^{M} \theta_{m,l,k} x_m x_l x_k \quad \text{(degree } d = 3)$$

All polynomials of degree 3 in original input features

Example: Overfitting on Toy Data

- Back to the problem of overfitting: learning spurious, random patterns that are specific to the particular training set rather than an (x,y)-relationship that transfers well to new data
- Learned models for different polynomial degrees on the toy sine data set (squared error as loss function):

Example: Overfitting on Toy Data

• For the polynomial models on the toy sine data set, we can also plot training and test error as a function of the polynomial degree:

Overfitting Versus Number of Examples

- The problem of overfitting can decrease if more training examples are available:
 - A polynomial model of degree d=9 overfits on the (small) toy data set with N=10 training examples
 - If we create a larger toy data set with N=100 training examples, a polynomial model of the same degree will not overfit

degree *D=9*, *N=10* examples

degree *D=9*, *N=100* examples

Summary: Overfitting on Toy Data

- Summary overfitting on the toy sine data set:
 - Polynomial models for the toy sine data set can be learned by transforming the original one-dimensional data using a polynomial feature map
 - The higher the degree of the polynomial, the more flexible/complex the resulting model
 - Equivalently, we can say that model flexibility/complexity increases by adding more features to the data (e.g. $\mathbf{x} = (1, x)^{\mathrm{T}}$ versus $\mathbf{x} = (1, x, x^{2}, ..., x^{9})^{\mathrm{T}}$)
 - Training error decreases with model complexity, test error first decreases then increases
 - More training instances reduce overfitting

Agenda For Lecture

- Training and test error
- Model complexity and overfitting
- Model selection and regularization

Model Selection: Empirical

- Given a family of models whose complexity is controlled by a hyperparameter, how do we pick the best value?
- For example, polynomial degree d:

$$f_{d,\mathbf{\theta}}(x) = \sum_{m=1}^{d} \theta_m x^m$$

 One approach: choose the hyperparameter empirically, by comparing model performance on a separate test data set

Empirical approaches to model selection are widely used in practice

More details in evaluation lecture

Model Selection Measures

- Can we measure which model fits the data best without looking at a separate test set?
 - If we just look at the error, loss or likelihood on the training set, a more complex model will always outperform a simpler model
 - For example, any low-degree polynomial can be represented by a high-degree polynomial by setting some coefficients to zero
 - Therefore minimizing the loss for the high-degree model will lead to a lower or equal loss compared to the low-degree model
- A model selection measure tries to trade off training loss or likelihood against model complexity:

Minimize: low loss is good, but low complexity is also good model selection measure = training loss + complexity

Maximize: high likelihood is good, but low complexity is also good model selection measure = training likelihood - complexity

 More complex models are penalized compared to simpler models: try to strike a balance between training data fit and complexity

Model Selection Measures: AIC and BIC

Akaike information criterion (AIC):

 Trade off model complexity, as measured by number of model parameters, against the likelihood obtained on the training data for the learned parameters

Maximize $AIC := \log L - p$ (equivalent formulation: minimize $-2 \log L + 2p$)

L is the likelihood on training data of the learned model

p is the number of parameters in the model

Bayes information criterion (BIC):

- Trade off model complexity, as measured by number of model parameters, against the likelihood obtained on the training data for the learned parameters
- Also takes into account number of training examples: to avoid that the log likelihood term dominates for large N, increase penalty with increasing N

Maximize
$$BIC := \log L - \frac{p}{2} \log N$$

L is the likelihood on training data of the learned model

p is the number of parameters in the model

Model Selection

- If we have a family of models whose complexity is controlled by a hyperparameter, we can learn one model for each hyperparameter and then select a model afterwards by AIC or BIC
- For example, learn polynomial models of different degrees d:

$$f_{d,\theta}(x) = \sum_{m=1}^{d} \theta_m x^m$$

- Models with higher degree d will have a lower error on the training data, and (under a probabilistic model see lecture on Bayesian learning) higher likelihood. However, because they have more parameters, their AIC or BIC is not necessarily better
- From all models, can pick the best one by maximizing AIC or BIC

Variable Selection: Projection

- The number of parameters a model has is one measure of its complexity
 - Models with more parameters tend to be more susceptible to overfitting
 - This idea is used in model selection measures such as AIC and BIC
- For linear models, the number of parameters is determined by the number of input variables
- **Idea of variable selection**: to prevent or reduce overfitting, try to select a subset of all available input variables to be included in the model
- We can project instances in a data set onto a subset of input variables $\it V$ as follows:
 - Let $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$ denote a data set with $\mathbf{x}_n \in \mathbb{R}^M$
 - Let $\pi_V : \mathbb{R}^M \to \mathbb{R}^{\tilde{M}}$ denote a projection operator that projects an instance $\mathbf{x} = (x_1, ..., x_M)^T \in \mathbb{R}^M$ onto a subset of its attributes,

$$\pi_V((x_1,...,x_M)) = (x_{m_1},...,x_{m_{\tilde{M}}})$$

where $V = \{x_{m_1}, ..., x_{m_{\tilde{M}}}\} \subseteq \{x_1, ..., x_M\}$ is the subset of attributes

We can apply the projection operator to a complete data set by

$$\pi_{V}(\mathcal{D}) = \{(\pi_{V}(\mathbf{x}_{1}), y_{1}), ..., (\pi_{V}(\mathbf{x}_{N}), y_{N})\}$$

Variable Selection: Problem Setting

• We can formalize the problem of variable selection as follows:

Given

- A data set $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$ with $\mathbf{x}_n \in \mathbb{R}^M$
- A learning algorithm $\mathcal A$ that produces a model f_{θ^*} from a data set $\mathcal D$, $f_{\theta^*} = \mathcal A(\mathcal D)$
- A scoring function $\mathcal{S}(f_{\theta^*})$ that returns a score for a model f_{θ^*} . The scoring function could be a model selection measure such as AIC or BIC, or the accuracy of the model on a separate test data set

Find

– A subset of variables $V = \{x_{m_1},...,x_{m_{\tilde{M}}}\} \subseteq \{x_1,...,x_M\}$ that maximizes model score:

$$V^* = \arg\max_{V \subseteq \{x_1, \dots, x_M\}} \mathcal{S}(\mathcal{A}(\pi_V(\mathcal{D})))$$
 data set reduced to subset of variables model learned on reduced data set score of model learned on reduced data set

Variable Selection as Search

How do we solve the optimization problem?

$$V^* = \arg\max_{V \subseteq \{x_1, \dots, x_M\}} \mathcal{S}(\mathcal{A}(\pi_V(\mathcal{D})))$$

- In principle, can go through all 2^M subsets $V \subseteq \{x_1,...,x_M\}$, build the reduced data set $\pi_V(\mathcal{D})$, learn a model $f_{\theta^*} = \mathcal{A}(\pi_V(\mathcal{D}))$, compute the score $\mathcal{S}(\mathcal{A}(\pi_V(\mathcal{D})))$, and select the best subset V
- However, this will be computationally infeasible unless M is very small
- Instead, usually use greedy heuristic approaches
 - in **forward search**, start with $V=\emptyset$ and successively add variables to the set, choosing at each step the variable to add that improves the score $\mathcal{S}(\mathcal{A}(\pi_V(\mathcal{D})))$ the most
 - in **backward search**, start with $V = \{x_1, ..., x_M\}$, and successively delete variables from the set, choosing at each step the variable to remove that improves the score $\mathcal{S}(\mathcal{A}(\pi_V(\mathcal{D})))$ the most
- Both forward and backward search are not optimal, that is, they will generally not solve the optimization problem above

Variable Selection: Forward Search

Greedy forward search in pseudocode:

Algorithm variable-selection-forward-search

Input: training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$, learning algorithm \mathcal{A} , scoring function \mathcal{S}

Output: set of parameters V

1.
$$V_{used} := \emptyset$$

Initially, no input variables used in model 2. $V_{left} := V$

- 3. improvement = True
- 4. while (*improvement*):

5.
$$gain_{best} = 0$$

Try adding any of the input variables not currently used in model

6. for
$$v \in V_{left}$$
.

7.
$$gain := \mathcal{S}(\mathcal{A}(\pi_{V_{used} \cup \{v\}}(\mathcal{D}))) - \mathcal{S}(\mathcal{A}(\pi_{V_{used}}(\mathcal{D}))) < 0$$

Gain in score when adding that variable (positive or negative)

8. if
$$gain > gain_{best}$$
:

9.
$$gain_{best} = gain$$

10.
$$v_{best} := v$$

- 11. $improvement := (gain_{best} > 0)$
- 12. if *improvement*:

13.
$$V_{used} := V_{used} \cup \{v_{best}\}$$

 $V_{left} := V_{left} \setminus \{v_{hest}\}$ 14.

15. return V_{used}

If a variable was found that improved score when

added to model, add it to set of variables and remove it from candidate set

Variable Selection: Backward Search

Greedy backward search in pseudocode:

```
Algorithm variable-selection-backward-search
Input: training data \mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}, learning algorithm \mathcal{A}, scoring function \mathcal{S}
Output: set of parameters V
                                            Initially, all input variables are used
1. V_{usad} := V
2. improvement = True
3. while (improvement):
4.
         gain_{hest} = 0
                                           Try removing any of the input variables currently in model
        for v \in V_{used}:
5.
               gain := \mathcal{S}(\mathcal{A}(\pi_{V_{used} \setminus \{v\}}(\mathcal{D}))) - \mathcal{S}(\mathcal{A}(\pi_{V_{used}}(\mathcal{D}))) < \mathcal{S}(\mathcal{A}(\pi_{V_{used}}(\mathcal{D})))
6.
                                                                                  Gain in score when removing
                                                                                  that variable (positive or negative)
7.
               if gain > gain_{hest}:
8.
                      gain_{best} := gain
9.
                      V_{host} := V
10.
        improvement := (gain_{best} > 0)
11.
        if improvement:
                                                If a variable was found that improved score when
            V_{used} := V_{used} \setminus \{v_{hest}\}
12.
                                                removed from model, remove it from set of variables
13. return V_{used}
```

Motivation: Shrinkage

• For linear models such as linear regression or logistic regression, which have the form

$$f_{\theta}(\mathbf{x}) = g(\sum_{m=1}^{M} \theta_m x_m)$$
 g is identity function (for linear regression) or sigmoid/softmax (for logistic regression)

removing a variable $x_{\scriptscriptstyle m}$ from the model is equivalent to forcing its model parameter $\theta_{\scriptscriptstyle m}$ to zero

- Idea: rather than forcing a parameter to zero, can make it small
 - smaller parameters can be interpreted as a simpler/less complex model
 - limiting the parameters to small values can therefore reduce overfitting
- This idea can be implemented by adding a term to the objective function during learning (loss or likelihood) that penalizes large parameter values
 - During learning, we trade off training loss or likelihood versus small parameters
 - Called shrinkage, because the term "shrinks" parameters towards zero

L2 and **L1** Regularization

- There are various types of shrinkage techniques for different problem settings
- Techniques such as shrinkage that add a term to control model complexity to the optimization objective during learning are also called **regularization** techniques
- Most widely used are so-called **L2 regularization** and **L1 regularization**:

L2 ("Tikhonov") regularization: added term is
$$\lambda \sum_{m=1}^{M} \theta_m^2 = \lambda \|\mathbf{\theta}\|_2^2$$

L1 ("Lasso") regularization: added term is
$$\lambda \sum_{m=1}^{M} |\theta_m| = \lambda \|\mathbf{\theta}\|_1$$

L1 and L2 regularization can also be combined:

"Elastic Net" regularization: added term is
$$\lambda_1 \|\mathbf{\theta}\|_1 + \lambda_2 \|\mathbf{\theta}\|_2^2$$

Ridge Regression

Review: learning a linear regression model with quadratic loss function

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \qquad L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} (f_{\boldsymbol{\theta}}(\mathbf{x}_n) - y_n)^2$$

Adding an L2 regularization term results in

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \qquad L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} (f_{\boldsymbol{\theta}}(\mathbf{x}_n) - y_n)^2 + \lambda \|\boldsymbol{\theta}\|_2^2$$

- Linear regression with L2 regularization is also called ridge regression
- The optimization problem of ridge regression has a closed-form solution:

$$\mathbf{\theta}^* = (\mathbf{X}^T \mathbf{X} + N\lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y} \qquad \mathbf{I} = \begin{pmatrix} 1 & \dots & 0 \\ \dots & \ddots & \dots \\ 0 & \dots & 1 \end{pmatrix} \in \mathbb{R}^M, \text{ "identity matrix"}$$

- The value λ is is a hyperparameter that trades off model complexity and fit to data
 - low λ : do not control model complexity much ($\lambda = 0$: normal regression)
 - high λ : emphasize low model complexity, avoid overfitting

Review: Gradient Descent for Linear Regression

- Can also learn ridge regression via gradient descent
- Review: gradient descent for standard (non-regularized) linear regression
 - gradient of loss function, as derived in lecture on linear regression:

$$L(\mathbf{\theta}) = \frac{1}{N} \sum_{n=1}^{N} (f_{\mathbf{\theta}}(\mathbf{x}_n) - y_n)^2$$

$$\nabla L(\mathbf{\theta}) = \frac{1}{N} (-\mathbf{X})^{\mathrm{T}} 2(\mathbf{y} - \mathbf{X}\mathbf{\theta})$$

Optimize model by gradient descent:

- 1. θ_0 = randomInitialization()
- 2. for $i = 0,...,i_{max}$:
- 3. $\mathbf{\theta}_{i+1} = \mathbf{\theta}_i \eta \nabla L(\mathbf{\theta}_i)$
- 4. if $L(\mathbf{\theta}_i) L(\mathbf{\theta}_{i+1}) < \epsilon$:
- 5. return θ_{i+1}
- 6. raise Exception("Not converged in i_{max} iterations")

Gradient Descent for Ridge Regression

• Gradient for the objective function of ridge regression can be derived as

$$L(\mathbf{\theta}) = \frac{1}{N} \sum_{n=1}^{N} (f_{\mathbf{\theta}}(\mathbf{x}_n) - y_n)^2 + \lambda \|\mathbf{\theta}\|_2^2$$

$$\nabla L(\mathbf{\theta}) = \frac{\partial}{\partial \mathbf{\theta}} \frac{1}{N} \sum_{n=1}^{N} (f_{\mathbf{\theta}}(\mathbf{x}_n) - y_n)^2 + \frac{\partial}{\partial \mathbf{\theta}} \lambda \|\mathbf{\theta}\|_2^2 = \frac{1}{N} (-\mathbf{X})^{\mathrm{T}} 2(\mathbf{y} - \mathbf{X}\mathbf{\theta}) + 2\lambda \mathbf{\theta}$$

Optimize model by gradient descent:

Derivative of regularization term:

$$\frac{\partial}{\partial \boldsymbol{\theta}} \|\boldsymbol{\theta}\|_{2}^{2} = \frac{\partial}{\partial \boldsymbol{\theta}} \langle \boldsymbol{\theta}, \boldsymbol{\theta} \rangle = 2\boldsymbol{\theta}$$

Gradient descent algorithm

1.
$$\theta_0$$
 = randomInitialization()

2. for
$$i = 0,...,i_{max}$$
:

3.
$$\mathbf{\theta}_{i+1} = \mathbf{\theta}_i - \eta \nabla L(\mathbf{\theta}_i)$$

4. if
$$L(\mathbf{\theta}_i) - L(\mathbf{\theta}_{i+1}) < \epsilon$$
:

5. return
$$\theta_{i+1}$$

6. raise Exception("Not converged in i_{max} iterations")

Review: Logistic Regression

- Similarly as for linear regression, can also add a regularization term to logistic regression
- Review (see lecture "Linear Classification"): learning logistic regression
 - Objective function is log-likelihood of training data (maximize):

$$\mathbf{\theta}^* = \arg\max_{\mathbf{\theta}} L_{cll}(\mathbf{\theta}) \qquad L_{cll}(\mathbf{\theta}) = \log p(y_1, ..., y_N \mid \mathbf{x}_1, ..., \mathbf{x}_N, \mathbf{\theta})$$

- We have derived the gradient $\nabla L_{cll}(\mathbf{\theta}) = \sum_{n=1}^{N} \mathbf{x}_n (y_n f(\mathbf{x}_n))$
- Learn model using gradient ascent in likelihood

Gradient ascent algorithm

- 1. θ_0 = randomInitialization()
- 2. for $i = 0,...,i_{max}$:
- 3. $\mathbf{\theta}_{i+1} = \mathbf{\theta}_i + \eta \nabla L_{cll}(\mathbf{\theta}_i)$
- 4. if $L_{cll}(\boldsymbol{\theta}_{i+1}) L_{cll}(\boldsymbol{\theta}_{i}) < \epsilon$:
- 5. return θ_{i+1}
- 6. raise Exception("Not converged in i_{max} iterations")

L2-Regularized Logistic Regression

 Add L2 regularization to logistic regression: because we are maximizing objective function, need to substract the penalty term

$$L_{cll}(\mathbf{\theta}) = \log p(y_1, ..., y_N \mid \mathbf{x}_1, ..., \mathbf{x}_N, \mathbf{\theta}) - \lambda \|\mathbf{\theta}\|_2^2$$

The gradient then becomes

$$\nabla L_{cll}(\mathbf{\theta}) = \sum_{n=1}^{N} \mathbf{x}_{n} (y_{n} - f(\mathbf{x}_{n})) - 2\lambda \mathbf{\theta}$$

Learn parameters by gradient ascent as before

Gradient ascent algorithm

- 1. θ_0 = randomInitialization()
- 2. for $i = 0,...,i_{max}$:
- 3. $\mathbf{\theta}_{i+1} = \mathbf{\theta}_i + \eta \nabla L_{cll}(\mathbf{\theta}_i)$
- 4. if $L_{cll}(\boldsymbol{\theta}_{i+1}) L_{cll}(\boldsymbol{\theta}_{i}) < \epsilon$:
- 5. return θ_{i+1}
- 6. raise Exception("Not converged in i_{max} iterations")

L2 Versus L1 Regularization

 L2 regularization is most widely used, but L1 regularization has the advantage that it can lead to sparse solutions, where some parameters are zero

Example: two-dimensional parameter space, $\theta = (\theta_1, \theta_2)$. If we minimze the loss under a constraint for the parameter norm, L1 can lead to sparse solutions

Toy Example: Regularization and Overfitting

- Regularization can control model complexity and thereby prevent overfitting
- For example, in the toy sine data set, training a ploynomial model of degree d=9,

$$f_{\theta}(x) = \sum_{m=1}^{9} \theta_m x^m$$

but with a L2-regularization term in the objective,

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \qquad L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} (f_{\boldsymbol{\theta}}(\mathbf{x}_n) - y_n)^2 + \lambda \|\boldsymbol{\theta}\|_2^2$$

does not result in overfitting for N=10 training data points:

without regularization, model overfits

with regularization, no overfitting

Regularization weight is set to $\log \lambda = -18$. The hyperparameter λ typically moves on a logarithmic scale.

Regularization and Overfitting

- The regularization weight λ now controls model complexity, in a similar way as the polynomial degree d before
- Learning polynomial models of degree d=9, with different regularization weights:

- The regularization weight also has a corresponding effect on training and test error:
 - Regularization too low: low training error, but high test error
 - Regularization correct: ok training error, lowest test error
 - Regularization too high: high training error, high test error

Summary

- When learning a model from data, the complexity/flexibility of the model needs to be matched to the data set
 - If the model is too complex, it might pick up spurious, random patterns that are specific to the particular training set, called **overfitting** the training data
 - If the model is not complex enough, it might not be able to fully pick up the true (x,y)-relationship represented in the data, called underfitting the training data
- Regularization controls model complexity and thereby reduces overfitting
 - An additional term is added to the objective function during learning that penalizes complex models
 - During learning, there is thus a trade-off between fitting the training data well while not making the model too complex
- The most widely used regularization technique is parameter shrinkage, where the regularization term penalizes large values of model parameters