NoSQL and transactions:

getting the numbers out

Konstantin Osipov

Director, Software Engineering, ScyllaDB

- + LWT/Paxos/Raft at ScyllaDB
- co-founder picodata.io
- + ex-CTO Tarantool

TRANSACTIONAL NOSQL MARKET

Goals of the test

- ACID properties
- scalability
- price/performance: is it better than RDBMS?
- http://github.com/picodata/stroppy

www.stroppy.io

Test subjects

- PostgreSQL
- FoundationDB
- CockroachDB
- MongoDB
- YDB?

Applying the banking test one more time

- load account data
- run money transfers
 - o nemesis,
 - transaction distribution: Uniform, Zipfian
- check total balance, check no transaction is lost

PostgreSQL illustration: accounts and transfers

```
CREATE TABLE IF NOT EXISTS account (
  bic TEXT, -- bank identifier code
  ban TEXT, -- bank account number within the bank
  balance DECIMAL, -- account balance
  PRIMARY KEY(bic, ban)
CREATE TABLE IF NOT EXISTS checksum (
  name TEXT PRIMARY KEY,
  amount DECIMAL
```

PostgreSQL illustration - accounts and transfers

```
UPDATE account SET balance = balance - $1
WHERE bic = $2 and ban = $3
UPDATE account SET balance = balance + $1
WHERE bic = $2 and ban = $3
COMMIT
```

Transfer account number distribution

Hardware

Oracle Cloud:

Yandex Cloud:

1Gb of disk/network bandwidth per core

Intel Xeon® Processor E5-2660 v4, 4 Gb RAM, Network-SSD 15 Gb

PostgreSQL results

VCPU/ node	RAM/ node, GB	HDD/ Node, GB	Clients	Accounts, millions	Transfers, millions	TPS
3	30	100	128	10	100	2059
10	160	1000	256	100	100	5915

PostgreSQL 13.2. Zalando PostgreSQL operator

PostgreSQL limits

FoundationDB architecture

FoundationDB results

Nodes	VCPU/ node	RAM/ node, GB	HDD/ Node, GB	Clients	Account s, millions	Transfer s, millions	TPS
3	1	8	100	16	10	100	2263
3	2	8	100	16	10	100	2189

FoundationDB results

TPS относительно CPU

FoundationDB vs PostgreSQL

FoundationDB bottlenecks

MongoDB architecture

MongoDB - vertical scalability

VCPU/ node	RAM/ node, GB	HDD/ Node, GB	Clients	Accounts, millions	Transfers, millions	TPS
2	8	100	16	10	10	720
4	8	100	128	10	10	1843
6	16	100	128	100	100	2761
12	40	1000	128	1000	100	3272

MongoDB - horrorzontal scalability

VCPU/ node	Shards	RAM/ node, GB	HDD/ Node, GB	Clients	Account s, millions	Transfer s, millions	TPS
2	2	8	100	32	10	10	427
4	8	8	100	128	100	10	1171
4	8	8	100	128	1000	100	947

FoundationDB vs PostgreSQL vs MongoDB

CockroachDB results

VCPU/ node	Shards	RAM/ node, GB	HDD/ Node, GB	Clients	Account s, millions	Transfer s, millions	TPS
2	3	8	100	32	10	10	2198
1	5	16	100	128	100	10	437
1	20	16	100	128	1000	10	814

YDB results

VCPU/ node	Shards	RAM/ node, GB	HDD/ Node, GB	Clients	Account s, millions	Transfer s, millions	TPS
16	3	24	100	4000	1	10	15367

Latency min/99%/max/med: 0.390s/1.129s/3.936s/0.998s

YDB - load charts - CPU

YDB - load charts - disk

YDB - load charts - disk

YDB - load charts - network

Chaos mesh tests

PostgreSQL -

FoundationDB - V

CockroachDB - ?

MongoDB - X

Summary

- Scaling transactional workloads horizontally is hard
- FoundationDB has been designed from scratch to support it
- MongoDB is performing the worst
- CockroachDB loses to PostgreSQL on the same hardware
- the Go tool and the results are public at stroppy.io

Thank you!

