Hamilton Jacobi

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

27 de mayo de 2025

Agenda

- **1** Las transformaciones canónicas $\{p_i, q_i\} o \{P_i, Q_i\} = \{\alpha_i, \beta_i\}$
- El Principio de Mínima Acción
- 4 Sección
- Sección
- 6 Ejemplo: Una vez mas el Oscilador Armónico

• Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t)$, $P_i = P_i(q_j, p_j, t)$, permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.
- Esas 2s constantes Q_i y P_i pueden expresarse en función de las 2s condiciones iniciales: $Q_i = q(q_i(0), p_i(0)), P_i = p(q_i(0), p_i(0)).$

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t)$, $P_i = P_i(q_j, p_j, t)$, permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.
- Esas 2s constantes Q_i y P_i pueden expresarse en función de las 2s condiciones iniciales: $Q_i = q(q_j(0), p_j(0)), P_i = p(q_j(0), p_j(0)).$
- La transformación canónica que relacionan las nuevas y viejas variables proporcionan directamente la solución del problema del movimiento, $q_i = q(q_j(0), p_j(0), t)$, $p_i = p(q_j(0), p_j(0), t)$.

- Una transformación canónica $Q_i = Q_i(q_j, p_j, t), P_i = P_i(q_j, p_j, t),$ permite encontrar las soluciones de las ecuaciones de Hamilton.
- Esa transformación $Q_i = Q_i\left(q_j, p_j, t\right), P_i = P_i\left(q_j, p_j, t\right)$ lleva $\mathcal{H}\left(q_j, p_j, t\right) \to \mathcal{H}'\left(Q_i, P_i, t\right)$ un hamiltoniano en el cual una (o varias) coordenada Q_i o/y P_i son cíclicas
- Supongamos una transformación canónica $\{q_i, p_i, t\} \rightarrow \{P_i, Q_i, t\}$ tal que, (P_i, Q_i) , las 2s nuevas coordenadas y momentos son constantes.
- Esas 2s constantes Q_i y P_i pueden expresarse en función de las 2s condiciones iniciales: $Q_i = q(q_j(0), p_j(0)), P_i = p(q_j(0), p_j(0)).$
- La transformación canónica que relacionan las nuevas y viejas variables proporcionan directamente la solución del problema del movimiento, $q_i = q(q_j(0), p_j(0), t)$, $p_i = p(q_j(0), p_j(0), t)$.
- Si la transformación canónica conduce a nuevos momentos y coordenadas constantes, $P_i \equiv \alpha_i = \text{cte}$, $Q_i \equiv \beta_i = \text{cte}$, tal que $\mathcal{H}'(Q_i, P_i) = 0$, entonces existe una función generadora \mathcal{F} tal que $\frac{\partial \mathcal{F}}{\partial t} + \mathcal{H} = 0$

ullet Consideremos la acción $S=\int_{t_1}^{t_2}\mathcal{L}\left(q_i,\dot{q}_i,t
ight)dt$

- Consideremos la acción $S = \int_{t_1}^{t_2} \mathcal{L}(q_i, \dot{q}_i, t) dt$
- El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$

- Consideremos la acción $S = \int_{t_1}^{t_2} \mathcal{L}\left(q_i, \dot{q}_i, t\right) dt$
- El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$
- Las trayectorias que satisfacen la ecuaciones de Lagrange corresponden al valor mínimo (extremo) de S.

- Consideremos la acción $S = \int_{t_1}^{t_2} \mathcal{L}\left(q_i, \dot{q}_i, t\right) dt$
- El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$
- Las trayectorias que satisfacen la ecuaciones de Lagrange corresponden al valor mínimo (extremo) de S.
- Supongamos que el tiempo t_2 es variable, i.e, $t_2 = t$.

- Consideremos la acción $S = \int_{t_1}^{t_2} \mathcal{L}\left(q_i, \dot{q}_i, t\right) dt$
- ullet El valor de la acción S (como integral definida) depende del conjunto de trayectorias $\{q_i(t)\}$
- Las trayectorias que satisfacen la ecuaciones de Lagrange corresponden al valor mínimo (extremo) de S.
- Supongamos que el tiempo t_2 es variable, i.e, $t_2 = t$.
- ullet La acción dependerá de las trayectorias y del tiempo, $S=S\left(q_{i},t
 ight)$.

• La derivada temporal de la acción es $\frac{dS}{dt} = \sum_{i=1}^{s} \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}$.

- La derivada temporal de la acción es $\frac{dS}{dt} = \sum_{i=1}^{s} \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}$.
- Por otro lado, si $t_2 = t$ (variable), la definición de la acción implica que $\frac{dS}{dt} = \mathcal{L} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{H}(p_i, q_i, t)$.

- La derivada temporal de la acción es $\frac{dS}{dt} = \sum_{i=1}^{s} \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}$.
- Por otro lado, si $t_2 = t$ (variable), la definición de la acción implica que $\frac{dS}{dt} = \mathcal{L} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{H}(p_i, q_i, t)$.
- Comparando obtenemos $p_i = \frac{\partial S}{\partial q_i}\left(q_i,t\right)$ y $\frac{\partial S}{\partial t}\left(q_i,t\right) + \mathcal{H}\left(p_i,q_i,t\right) = 0$,

- La derivada temporal de la acción es $\frac{dS}{dt} = \sum_{i=1}^{s} \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}$.
- Por otro lado, si $t_2 = t$ (variable), la definición de la acción implica que $\frac{dS}{dt} = \mathcal{L} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{H}(p_i, q_i, t)$.
- Comparando obtenemos $p_i = \frac{\partial S}{\partial q_i}(q_i, t)$ y $\frac{\partial S}{\partial t}(q_i, t) + \mathcal{H}(p_i, q_i, t) = 0$,
- Las cuales se pueden expresar como $\frac{\partial S}{\partial t}(q_i, t) + \mathcal{H}\left(\frac{\partial S}{\partial q_i}, q_i, t\right) = 0$. Que es la Ecuación de Hamilton Jacobi.

- La derivada temporal de la acción es $\frac{dS}{dt} = \sum_{i=1}^{s} \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}$.
- Por otro lado, si $t_2 = t$ (variable), la definición de la acción implica que $\frac{dS}{dt} = \mathcal{L} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{H}(p_i, q_i, t)$.
- Comparando obtenemos $p_i = \frac{\partial S}{\partial q_i}\left(q_i,t\right)$ y $\frac{\partial S}{\partial t}\left(q_i,t\right) + \mathcal{H}\left(p_i,q_i,t\right) = 0$,
- Las cuales se pueden expresar como $\frac{\partial S}{\partial t}(q_i, t) + \mathcal{H}\left(\frac{\partial S}{\partial q_i}, q_i, t\right) = 0$. Que es la Ecuación de Hamilton Jacobi.
- La acción S puede interpretarse como una función generadora capaz de producir la transformación canónica.

- La derivada temporal de la acción es $\frac{dS}{dt} = \sum_{i=1}^{s} \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}$.
- Por otro lado, si $t_2 = t$ (variable), la definición de la acción implica que $\frac{dS}{dt} = \mathcal{L} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{H}(p_i, q_i, t)$.
- Comparando obtenemos $p_i = \frac{\partial S}{\partial q_i}\left(q_i,t\right)$ y $\frac{\partial S}{\partial t}\left(q_i,t\right) + \mathcal{H}\left(p_i,q_i,t\right) = 0$,
- Las cuales se pueden expresar como $\frac{\partial S}{\partial t}(q_i, t) + \mathcal{H}\left(\frac{\partial S}{\partial q_i}, q_i, t\right) = 0$. Que es la Ecuación de Hamilton Jacobi.
- La acción S puede interpretarse como una función generadora capaz de producir la transformación canónica.
- Más aún, la acción S puede interpretarse como una función generadora tipo $\mathcal{F}_2(q_i, P_i, t)$, tal que $P_i = \alpha_i = \text{cte}$, $Q_i = \beta_i = \text{cte}$.

- La derivada temporal de la acción es $\frac{dS}{dt} = \sum_{i=1}^{s} \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}$.
- Por otro lado, si $t_2 = t$ (variable), la definición de la acción implica que $\frac{dS}{dt} = \mathcal{L} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{H}(p_i, q_i, t)$.
- Comparando obtenemos $p_i = \frac{\partial S}{\partial q_i}(q_i,t)$ y $\frac{\partial S}{\partial t}(q_i,t) + \mathcal{H}(p_i,q_i,t) = 0$,
- Las cuales se pueden expresar como $\frac{\partial S}{\partial t}(q_i, t) + \mathcal{H}\left(\frac{\partial S}{\partial q_i}, q_i, t\right) = 0$. Que es la Ecuación de Hamilton Jacobi.
- La acción S puede interpretarse como una función generadora capaz de producir la transformación canónica.
- Más aún, la acción S puede interpretarse como una función generadora tipo $\mathcal{F}_2(q_i, P_i, t)$, tal que $P_i = \alpha_i = \text{cte}$, $Q_i = \beta_i = \text{cte}$.
- La derivada total $\frac{d\mathcal{F}_2}{dt} = \sum_{i=1}^{s} \left(\frac{\partial \mathcal{F}_2}{\partial q_i} \dot{q}_i + \frac{\partial \mathcal{F}_2}{\partial P_i} \dot{P}_i \right) + \frac{\partial \mathcal{F}_2}{\partial t}$ $\Rightarrow \frac{d\mathcal{F}_2}{dt} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{H}$
- Donde hemos usado: $p_i = \frac{\partial \mathcal{F}_2}{\partial q_i}$ y $\dot{P}_i = 0$.

• Comparando las relaciones de $\mathcal{F}_2\left(q_i,P_i,t\right)$ y $S\left(q_i,P_i,t\right)$, tenemos $p_i = \frac{\partial \mathcal{F}_2}{\partial q_i}\left(q_i,P_i,t\right) \left| \begin{array}{c} p_i = \frac{\partial S}{\partial q_i}\left(q_i,P_i,t\right) = p_i\left(q_i,P_i,t\right) \\ Q_i = \frac{\partial \mathcal{F}_2}{\partial P_i}\left(q_i,P_i,t\right) \left| \begin{array}{c} Q_i = \frac{\partial S}{\partial P_i}\left(q_i,P_i,t\right) = Q_i\left(q_i,P_i,t\right) \\ \mathcal{H} + \frac{\partial \mathcal{F}_2}{\partial t} = \mathcal{H}' \left| \begin{array}{c} \mathcal{H} + \frac{\partial S}{\partial t} = 0 \\ \text{donde } P_i = \text{cte} = \alpha_i \text{ y } Q_i = \text{cte} = \beta_i. \end{array} \right.$

- Comparando las relaciones de $\mathcal{F}_2\left(q_i,P_i,t\right)$ y $S\left(q_i,P_i,t\right)$, tenemos $p_i = \frac{\partial \mathcal{F}_2}{\partial q_i}\left(q_i,P_i,t\right) \ | \ p_i = \frac{\partial S}{\partial q_i}\left(q_i,P_i,t\right) = p_i\left(q_i,P_i,t\right)$ $Q_i = \frac{\partial \mathcal{F}_2}{\partial t}\left(q_i,P_i,t\right) \ | \ Q_i = \frac{\partial S}{\partial t}\left(q_i,P_i,t\right) = Q_i\left(q_i,P_i,t\right)$ $\mathcal{H} + \frac{\partial \mathcal{F}_2}{\partial t} = \mathcal{H}' \ | \ \mathcal{H} + \frac{\partial S}{\partial t} = 0$ donde $P_i = \text{cte} = \alpha_i$ y $Q_i = \text{cte} = \beta_i$.
- Si $\mathcal{H}'(P_i,Q_i)=$ cte y existe una transformación canónica $\{p_i,q_i\} \to \{P_i,Q_i\}=\{\alpha_i,\beta_i\}$, generada por $\mathcal{F}_2=S$, tal que $\mathcal{H}'(P_i,Q_i)\equiv\mathcal{H}'(\alpha_i,\beta_i)=0$, entonces se satisface ecuación de Hamilton-Jacobi, $\frac{\partial S}{\partial t}+\mathcal{H}=0$

- Comparando las relaciones de $\mathcal{F}_2\left(q_i,P_i,t\right)$ y $S\left(q_i,P_i,t\right)$, tenemos $p_i = \frac{\partial \mathcal{F}_2}{\partial q_i}\left(q_i,P_i,t\right) \ | \ p_i = \frac{\partial S}{\partial q_i}\left(q_i,P_i,t\right) = p_i\left(q_i,P_i,t\right) \ | \ Q_i = \frac{\partial S}{\partial P_i}\left(q_i,P_i,t\right) = Q_i\left(q_i,P_i,t\right) \ | \ \mathcal{H} + \frac{\partial \mathcal{F}_2}{\partial t} = \mathcal{H}' \ | \ \mathcal{H} + \frac{\partial S}{\partial t} = 0 \ | \ \text{donde } P_i = \text{cte} = \alpha_i \text{ y } Q_i = \text{cte} = \beta_i.$
- Si $\mathcal{H}'\left(P_i,Q_i\right)=$ cte y existe una transformación canónica $\{p_i,q_i\} o \{P_i,Q_i\}=\{\alpha_i,\beta_i\}$, generada por $\mathcal{F}_2=\mathcal{S}$, tal que $\mathcal{H}'\left(P_i,Q_i\right)\equiv \mathcal{H}'\left(\alpha_i,\beta_i\right)=0$, entonces se satisface ecuación de Hamilton-Jacobi, $\frac{\partial \mathcal{S}}{\partial t}+\mathcal{H}=0$
- La solución $S(q_i, P_i, t)$ de la ecuación de Hamilton-Jacobi genera la transformación $\{p_i, q_i, t\} \rightarrow \{P_i, Q_i, t\}$.

- Comparando las relaciones de $\mathcal{F}_2\left(q_i,P_i,t\right)$ y $S\left(q_i,P_i,t\right)$, tenemos $p_i = \frac{\partial \mathcal{F}_2}{\partial q_i}\left(q_i,P_i,t\right) \left| \begin{array}{c} p_i = \frac{\partial S}{\partial q_i}\left(q_i,P_i,t\right) = p_i\left(q_i,P_i,t\right) \\ Q_i = \frac{\partial \mathcal{F}_2}{\partial p_i}\left(q_i,P_i,t\right) \left| \begin{array}{c} Q_i = \frac{\partial S}{\partial P_i}\left(q_i,P_i,t\right) = Q_i\left(q_i,P_i,t\right) \\ \mathcal{H} + \frac{\partial \mathcal{F}_2}{\partial t} = \mathcal{H}' & \mathcal{H} + \frac{\partial S}{\partial t} = 0 \\ \text{donde } P_i = \text{cte} = \alpha_i \text{ y } Q_i = \text{cte} = \beta_i. \end{array} \right.$
- Si $\mathcal{H}'\left(P_i,Q_i\right)=$ cte y existe una transformación canónica $\{p_i,q_i\} o \{P_i,Q_i\}=\{\alpha_i,\beta_i\}$, generada por $\mathcal{F}_2=\mathcal{S}$, tal que $\mathcal{H}'\left(P_i,Q_i\right)\equiv \mathcal{H}'\left(\alpha_i,\beta_i\right)=0$, entonces se satisface ecuación de Hamilton-Jacobi, $\frac{\partial \mathcal{S}}{\partial t}+\mathcal{H}=0$
- La solución $S(q_i, P_i, t)$ de la ecuación de Hamilton-Jacobi genera la transformación $\{p_i, q_i, t\} \rightarrow \{P_i, Q_i, t\}$.
- Las constantes P_i , $Q_i \leftrightarrow \alpha_i$, β_i se expresan en términos de las 2s condiciones iniciales $(q_i(0), p_i(0))$.

- Comparando las relaciones de $\mathcal{F}_2\left(q_i,P_i,t\right)$ y $S\left(q_i,P_i,t\right)$, tenemos $p_i = \frac{\partial \mathcal{F}_2}{\partial q_i}\left(q_i,P_i,t\right) \ | \ p_i = \frac{\partial S}{\partial q_i}\left(q_i,P_i,t\right) = p_i\left(q_i,P_i,t\right) \ | \ Q_i = \frac{\partial \mathcal{F}_2}{\partial P_i}\left(q_i,P_i,t\right) = Q_i\left(q_i,P_i,t\right) \ | \ \mathcal{H} + \frac{\partial \mathcal{F}_2}{\partial t} = \mathcal{H}' \ | \ \mathcal{H} + \frac{\partial S}{\partial t} = 0 \ | \ donde \ P_i = \operatorname{cte} = \alpha_i \ y \ Q_i = \operatorname{cte} = \beta_i.$
- Si $\mathcal{H}'\left(P_i,Q_i\right)=$ cte y existe una transformación canónica $\{p_i,q_i\} o \{P_i,Q_i\}=\{\alpha_i,\beta_i\}$, generada por $\mathcal{F}_2=\mathcal{S}$, tal que $\mathcal{H}'\left(P_i,Q_i\right)\equiv \mathcal{H}'\left(\alpha_i,\beta_i\right)=0$, entonces se satisface ecuación de Hamilton-Jacobi, $\frac{\partial \mathcal{S}}{\partial t}+\mathcal{H}=0$
- La solución $S(q_i, P_i, t)$ de la ecuación de Hamilton-Jacobi genera la transformación $\{p_i, q_i, t\} \rightarrow \{P_i, Q_i, t\}$.
- Las constantes P_i , $Q_i \leftrightarrow \alpha_i$, β_i se expresan en términos de las 2s condiciones iniciales $(q_i(0), p_i(0))$.
- La solución de la ecuación de Hamilton-Jacobi para un sistema provee la trayectoria $q_i(t) = q_i(q_i(0), p_i(0), t)$ y $p_i(t) = p_i(q_i(0), p_i(0), t)$.

• Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$

- Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$
- La función S no es incógnita, sólo aparecen sus derivadas.

- Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$
- ullet La función S no es incógnita, sólo aparecen sus derivadas.
- Si S es solución, entonces $\tilde{S} = S + C_1$ también lo es.

- Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$
- La función S no es incógnita, sólo aparecen sus derivadas.
- Si S es solución, entonces $\tilde{S} = S + C_1$ también lo es.
- Una de las (s+1) constantes de integración es irrelevante.

- Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$
- La función S no es incógnita, sólo aparecen sus derivadas.
- Si S es solución, entonces $\tilde{S} = S + C_1$ también lo es.
- ullet Una de las (s+1) constantes de integración es irrelevante.
- Para que la acción tenga la forma $S(q_i, P_i, t)$, tomamos las s constantes $P_i = \alpha_i$.

- Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$
- La función S no es incógnita, sólo aparecen sus derivadas.
- Si S es solución, entonces $\tilde{S} = S + C_1$ también lo es.
- ullet Una de las (s+1) constantes de integración es irrelevante.
- Para que la acción tenga la forma $S(q_i, P_i, t)$, tomamos las s constantes $P_i = \alpha_i$.
- La solución $S = S(q_1, \ldots, q_s, P_1, \ldots, P_s, t) = S(q_i, \alpha_i, t)$.

- Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$
- La función S no es incógnita, sólo aparecen sus derivadas.
- Si S es solución, entonces $\tilde{S} = S + C_1$ también lo es.
- Una de las (s+1) constantes de integración es irrelevante.
- Para que la acción tenga la forma $S(q_i, P_i, t)$, tomamos las s constantes $P_i = \alpha_i$.
- La solución $S = S(q_1, \ldots, q_s, P_1, \ldots, P_s, t) = S(q_i, \alpha_i, t)$.
- Si el Hamiltoniano \mathcal{H} es independiente del tiempo, entonces es una constante, igual a la energía total del sistema, $\mathcal{H}(q_i, p_i) = cte = \mathcal{E}$.

- Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$
- La función S no es incógnita, sólo aparecen sus derivadas.
- Si S es solución, entonces $\tilde{S} = S + C_1$ también lo es.
- Una de las (s+1) constantes de integración es irrelevante.
- Para que la acción tenga la forma $S(q_i, P_i, t)$, tomamos las s constantes $P_i = \alpha_i$.
- La solución $S = S(q_1, \ldots, q_s, P_1, \ldots, P_s, t) = S(q_i, \alpha_i, t)$.
- Si el Hamiltoniano \mathcal{H} es independiente del tiempo, entonces es una constante, igual a la energía total del sistema, $\mathcal{H}(q_i, p_i) = cte = \mathcal{E}$.
- Suponemos que la solución S tiene la forma $S\left(q_i,P_i,t\right)=S\left(q_i,\alpha_i,t\right)=\mathcal{W}\left(q_i,P_i\right)-\mathcal{E}t=\mathcal{W}\left(q_i,\alpha_i\right)-\mathcal{E}t.$ Una de las s constantes α_i es \mathcal{E}

- Matemáticamente, la ecuación de Hamilton-Jabobi es una ecuación en derivadas parciales de primer orden para $S\left(q_i,t\right)$ con s+1 variables, $\frac{\partial S}{\partial t}\left(q_1,\ldots,q_s,t\right)+H\left(q_1,\ldots,q_s,\frac{\partial S}{\partial q_1},\frac{\partial S}{\partial q_2}\ldots,\frac{\partial S}{\partial q_s},t\right)=0$
- La función S no es incógnita, sólo aparecen sus derivadas.
- Si S es solución, entonces $\tilde{S} = S + C_1$ también lo es.
- Una de las (s+1) constantes de integración es irrelevante.
- Para que la acción tenga la forma $S(q_i, P_i, t)$, tomamos las s constantes $P_i = \alpha_i$.
- La solución $S = S(q_1, \ldots, q_s, P_1, \ldots, P_s, t) = S(q_i, \alpha_i, t)$.
- Si el Hamiltoniano \mathcal{H} es independiente del tiempo, entonces es una constante, igual a la energía total del sistema, $\mathcal{H}(q_i, p_i) = cte = \mathcal{E}$.
- Suponemos que la solución S tiene la forma $S\left(q_i,P_i,t\right)=S\left(q_i,\alpha_i,t\right)=\mathcal{W}\left(q_i,P_i\right)-\mathcal{E}t=\mathcal{W}\left(q_i,\alpha_i\right)-\mathcal{E}t.$ Una de las s constantes α_i es \mathcal{E}
- La función $W(q_i, P_i) = W(q_i, \alpha_i)$ se llama función característica o principal de Hamilton.

Ejemplo: Una vez mas el Oscilador Armónico

Ecuación de Hamilton-Jacobi para un oscilador armónico simple y la acción asociada a este sistema.

• El Hamiltoniano es $\mathcal{H}(q,p) = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right)$

Ejemplo: Una vez mas el Oscilador Armónico

Ecuación de Hamilton-Jacobi para un oscilador armónico simple y la acción asociada a este sistema.

- El Hamiltoniano es $\mathcal{H}(q,p)=rac{1}{2m}\left(p^2+m^2\omega^2q^2
 ight)$
- ullet La ecuación de Hamilton-Jacobi es $rac{\partial S}{\partial t}(q,t)+\mathcal{H}(p,q)=0$

- El Hamiltoniano es $\mathcal{H}(q,p)=rac{1}{2m}\left(p^2+m^2\omega^2q^2
 ight)$
- ullet La ecuación de Hamilton-Jacobi es $rac{\partial S}{\partial t}(q,t)+\mathcal{H}(p,q)=0$
- Como $p = \frac{\partial S}{\partial q}(q, t)$, obtenemos $\frac{\partial S}{\partial t} + \frac{1}{2m} \left[\left(\frac{\partial S}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = 0$. Una ecuacion diferencial parcial de primer orden

- El Hamiltoniano es $\mathcal{H}(q,p)=rac{1}{2m}\left(p^2+m^2\omega^2q^2
 ight)$
- ullet La ecuación de Hamilton-Jacobi es $rac{\partial S}{\partial t}(q,t)+\mathcal{H}(p,q)=0$
- Como $p = \frac{\partial S}{\partial q}(q, t)$, obtenemos $\frac{\partial S}{\partial t} + \frac{1}{2m} \left[\left(\frac{\partial S}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = 0$. Una ecuacion diferencial parcial de primer orden

- El Hamiltoniano es $\mathcal{H}(q,p)=rac{1}{2m}\left(p^2+m^2\omega^2q^2
 ight)$
- ullet La ecuación de Hamilton-Jacobi es $rac{\partial S}{\partial t}(q,t)+\mathcal{H}(p,q)=0$
- Como $p = \frac{\partial S}{\partial q}(q, t)$, obtenemos $\frac{\partial S}{\partial t} + \frac{1}{2m} \left[\left(\frac{\partial S}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = 0$. Una ecuacion diferencial parcial de primer orden
- Puesto que $\frac{\partial \mathcal{H}}{\partial t}=0$, el Hamitoniano es constante e igual a la energía total del sistema, $\mathcal{H}=\mathcal{E}$

- El Hamiltoniano es $\mathcal{H}(q,p)=rac{1}{2m}\left(p^2+m^2\omega^2q^2
 ight)$
- ullet La ecuación de Hamilton-Jacobi es $rac{\partial S}{\partial t}(q,t)+\mathcal{H}(p,q)=0$
- Como $p = \frac{\partial S}{\partial q}(q, t)$, obtenemos $\frac{\partial S}{\partial t} + \frac{1}{2m} \left[\left(\frac{\partial S}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = 0$. Una ecuacion diferencial parcial de primer orden
- Puesto que $\frac{\partial \mathcal{H}}{\partial t}=0$, el Hamitoniano es constante e igual a la energía total del sistema, $\mathcal{H}=\mathcal{E}$
- Buscamos una solución por separación de variables, $S(q, \mathcal{E}, t) = W(q, \mathcal{E}) \mathcal{E}Et$, con $P = E = \alpha$ constante de integración

- El Hamiltoniano es $\mathcal{H}(q,p) = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right)$
- ullet La ecuación de Hamilton-Jacobi es $rac{\partial S}{\partial t}(q,t)+\mathcal{H}(p,q)=0$
- Como $p = \frac{\partial S}{\partial q}(q, t)$, obtenemos $\frac{\partial S}{\partial t} + \frac{1}{2m} \left[\left(\frac{\partial S}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = 0$. Una ecuacion diferencial parcial de primer orden
- Puesto que $\frac{\partial \mathcal{H}}{\partial t}=0$, el Hamitoniano es constante e igual a la energía total del sistema, $\mathcal{H}=\mathcal{E}$
- Buscamos una solución por separación de variables, $S(q,\mathcal{E},t)=W(q,\mathcal{E})-\mathcal{E}Et$, con $P=E=\alpha$ constante de integración
- Entonces, $\frac{1}{2m} \left[\left(\frac{\partial W}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = E \Rightarrow \frac{\partial W}{\partial q} = \left(2m\mathcal{E} m^2 \omega^2 q^2 \right)^{1/2} \Rightarrow,$

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2mE - m^2\omega^2q^2} \text{ y}$$

$$Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial E} = \sqrt{\frac{m}{2E}} \int \frac{dq}{\sqrt{1 - \frac{m\omega^2q^2}{2E}}} - t = \beta = \text{cte.}$$

• La función S(q, E, t) permite encontrar transformación canónica generada por S a partir de sus derivadas parciales,

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2mE - m^2\omega^2q^2} \text{ y}$$

$$Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial E} = \sqrt{\frac{m}{2E}} \int \frac{dq}{\sqrt{1 - \frac{m\omega^2q^2}{2E}}} - t = \beta = \text{cte.}$$

• Integrando obtenemos $Q+t=rac{1}{\omega}\,{
m sen}^{-1}\left(\omega q\sqrt{rac{m}{2E}}
ight)$

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2mE - m^2\omega^2q^2} \text{ y}$$

$$Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial E} = \sqrt{\frac{m}{2E}} \int \frac{dq}{\sqrt{1 - \frac{m\omega^2q^2}{2E}}} - t = \beta = \text{cte.}$$

- Integrando obtenemos $Q+t=\frac{1}{\omega} \operatorname{sen}^{-1}\left(\omega q \sqrt{\frac{m}{2E}}\right)$
- Con cual, $q(Q,E,t)=\sqrt{\frac{2\overline{E}}{m\omega^2}} \operatorname{sen}\left(\omega t + \beta'\right)$, con $\beta'=Q\omega=\operatorname{cte}$.

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2mE - m^2\omega^2q^2} \text{ y}$$

$$Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial E} = \sqrt{\frac{m}{2E}} \int \frac{dq}{\sqrt{1 - \frac{m\omega^2q^2}{2E}}} - t = \beta = \text{cte.}$$

- Integrando obtenemos $Q + t = \frac{1}{\omega} \operatorname{sen}^{-1} \left(\omega q \sqrt{\frac{m}{2E}} \right)$
- Con cual, $q(Q, E, t) = \sqrt{\frac{2E}{m\omega^2}} \operatorname{sen}(\omega t + \beta')$, con $\beta' = Q\omega = \operatorname{cte}$.
- Entonces $p=rac{\partial W}{\partial q}=\sqrt{2mE-m^2\omega^2q^2}\equiv\sqrt{2mE}\cos\left(\omega t+\beta'
 ight)$

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2mE - m^2\omega^2q^2} \text{ y}$$

$$Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial E} = \sqrt{\frac{m}{2E}} \int \frac{dq}{\sqrt{1 - \frac{m\omega^2q^2}{2E}}} - t = \beta = \text{cte.}$$

- Integrando obtenemos $Q+t=rac{1}{\omega}\,{
 m sen}^{-1}\left(\omega q\sqrt{rac{m}{2E}}
 ight)$
- Con cual, $q(Q, E, t) = \sqrt{\frac{2E}{m\omega^2}} \operatorname{sen}(\omega t + \beta')$, con $\beta' = Q\omega = \operatorname{cte}$.
- Entonces $p = \frac{\partial W}{\partial q} = \sqrt{2mE m^2\omega^2q^2} \equiv \sqrt{2mE}\cos(\omega t + \beta')$
- Evaluando para t=0, tendremos $q_0=\sqrt{\frac{2E}{m\omega^2}}\operatorname{sen}(\omega Q)$ y $p_0=\sqrt{2mE}\cos(\omega Q)$

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2mE - m^2\omega^2q^2} \text{ y}$$

$$Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial E} = \sqrt{\frac{m}{2E}} \int \frac{dq}{\sqrt{1 - \frac{m\omega^2q^2}{2E}}} - t = \beta = \text{cte.}$$

- Integrando obtenemos $Q+t=rac{1}{\omega}\,{
 m sen}^{-1}\left(\omega q\sqrt{rac{m}{2E}}
 ight)$
- Con cual, $q(Q, E, t) = \sqrt{\frac{2E}{m\omega^2}} \operatorname{sen}(\omega t + \beta')$, con $\beta' = Q\omega = \operatorname{cte}$.
- Entonces $p = \frac{\partial W}{\partial q} = \sqrt{2mE m^2\omega^2q^2} \equiv \sqrt{2mE}\cos(\omega t + \beta')$
- Evaluando para t=0, tendremos $q_0=\sqrt{\frac{2E}{m\omega^2}}\operatorname{sen}(\omega Q)$ y $p_0=\sqrt{2mE}\cos(\omega Q)$
- Con lo cual $\tan(\omega Q) = m\omega \frac{q_0}{p_0} \quad \Rightarrow \quad Q = \frac{1}{\omega} \tan^{-1} \left(m\omega \frac{q_0}{p_0} \right).$

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2mE - m^2\omega^2q^2} \text{ y}$$

$$Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial E} = \sqrt{\frac{m}{2E}} \int \frac{dq}{\sqrt{1 - \frac{m\omega^2q^2}{2E}}} - t = \beta = \text{cte.}$$

- Integrando obtenemos $Q + t = \frac{1}{\omega} \operatorname{sen}^{-1} \left(\omega q \sqrt{\frac{m}{2E}} \right)$
- Con cual, $q(Q, E, t) = \sqrt{\frac{2E}{m\omega^2}} \operatorname{sen}(\omega t + \beta')$, con $\beta' = Q\omega = \operatorname{cte}$.
- Entonces $p = \frac{\partial W}{\partial q} = \sqrt{2mE m^2\omega^2q^2} \equiv \sqrt{2mE}\cos(\omega t + \beta')$
- Evaluando para t=0, tendremos $q_0=\sqrt{\frac{2E}{m\omega^2}}\operatorname{sen}(\omega Q)$ y $p_0=\sqrt{2mE}\cos(\omega Q)$
- Con lo cual $\tan(\omega Q) = m\omega \frac{q_0}{p_0} \quad \Rightarrow \quad Q = \frac{1}{\omega} \tan^{-1} \left(m\omega \frac{q_0}{p_0} \right).$
- Mientras que $E = \frac{1}{2m} (p_0^2 + m^2 \omega^2 q_0^2) = P$

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2mE - m^2\omega^2q^2} \text{ y}$$

$$Q = \frac{\partial S}{\partial P} = \frac{\partial S}{\partial E} = \sqrt{\frac{m}{2E}} \int \frac{dq}{\sqrt{1 - \frac{m\omega^2q^2}{2E}}} - t = \beta = \text{cte.}$$

- Integrando obtenemos $Q+t=rac{1}{\omega}\,{
 m sen}^{-1}\left(\omega q\sqrt{rac{m}{2E}}
 ight)$
- Con cual, $q(Q,E,t)=\sqrt{\frac{2E}{m\omega^2}} \operatorname{sen}\left(\omega t + \beta'\right)$, con $\beta'=Q\omega=\operatorname{cte}$.
- Entonces $p = \frac{\partial W}{\partial q} = \sqrt{2mE m^2\omega^2q^2} \equiv \sqrt{2mE}\cos(\omega t + \beta')$
- Evaluando para t=0, tendremos $q_0=\sqrt{\frac{2E}{m\omega^2}}\operatorname{sen}(\omega Q)$ y $p_0=\sqrt{2mE}\cos(\omega Q)$
- Con lo cual $\tan(\omega Q) = m\omega \frac{q_0}{\rho_0} \quad \Rightarrow \quad Q = \frac{1}{\omega} \tan^{-1} \left(m\omega \frac{q_0}{\rho_0} \right).$
- Mientras que $E = \frac{1}{2m} (p_0^2 + m^2 \omega^2 q_0^2) = P$
- Las ecuaciones $p = p(q_0, p_0, t)$ y $q = q(q_0, p_0, t)$ expresan la solución de las ecuaciones de Hamilton para el oscilador armónico en términos de las condiciones iniciales.