Latihan Ulangan Gerak Harmonik

1. Sebuah benda bergetar dengan persamaan $y=2\sin(50\pi t)$ cm, maka amplitudo dan frekuensi benda tersebut adalah .

. .

- A. 2 cm dan 50 π Hz
- D. 2 cm dan 25 Hz
- B. 2 cm dan 25 π Hz
- E. 1 cm dan 50 Hz
- C. 4 cm dan 25 Hz

5. Balok dengan massa 4 kg digantung pada dua pegas yang disusun paralel dengan konstanta masing-masing 200 N/m. frekuensi dan energi potensial saat menyimpang 1 cm adalah

. .

- A. $\frac{5}{\pi}$ Hz dan 0,02 J
- D. 5π Hz dan 0,2 J E. $5\pi^2$ Hz dan 0,02 J
- B. $\frac{5}{\pi}$ Hz dan 0,04 J C. $\frac{5}{\pi}$ Hz dan 0,2 J
- 2. Persamaan kecepatan yang benar untuk persamaan $y=0.04\sin(20\pi t)$ adalah . . .

A.
$$v = 0.04 \cos(20\pi t)$$

D.
$$v = 80\cos(20\pi t)$$

B.
$$v = 0.8\cos(20\pi t)$$

- E. $v = 0.04 \sin(20\pi t)$
- C. $v = 8\sin(20\pi t)$

- 6. Sebuah bandul dengan massa 200 gram digantung pada tali 160 cm. Jika percepatan gravitasi di tempat itu adalah 10 m/s 2 maka frekuensi dan periode bandul adalah . . .
- 3. Suatu sistem bergerak secara harmonis dengan persamaan $y=0,2\sin(10\pi t)$, percepatan maksimal dan percepatan saat t=10,225 s adalah . . .
 - A. $a_{\text{max}} = 20\pi^2 \text{ m/s}^2 \text{ dan } a = 10\sqrt{2}\pi^2 \text{ m/s}^2$
 - B. $a_{\text{max}} = 10\pi^2 \text{ m/s}^2 \text{ dan } a = 10\pi^2 \text{ m/s}^2$
 - C. $a_{\text{max}} = 2\pi^2 \text{ m/s}^2 \text{ dan } a = 10\sqrt{3}\pi^2 \text{ m/s}^2$
 - D. $a_{\text{max}} = 2\pi^2 \text{ m/s}^2 \text{ dan } a = 10\sqrt{2}\pi^2 \text{ m/s}^2$
 - E. $a_{\text{max}} = 20\pi^2 \text{ m/s}^2 \text{ dan } a = 10\pi^2 \text{ m/s}^2$

7. Persamaan kecepatan merambat suatu gelombang, adalah $v=\lambda.f$. Tali dengan panjang 9 meter diikat pada kedua ujungnya. Pada tali tersebut terbentuk 4 lembah dan 5 puncak. Tali naik turun sebanyak 5 kali dalam satu detik. Maka jarak simpul ke dua dari sisi kiri tali, dan kecepatan rambat gelombang adalah

- 4. Suatu sistem bergerak harmonis dengan frekuensi 5 Hz, dengan amplitudo 5 cm. Pada suatu saat sistem menyimpang sejauh 4 cm. Pada saat tersebut kecepatan harmonis adalah . . .
 - A. 30 cm
- D. 40 cm
- B. $30\sqrt{2}$ cm
- E. $40\sqrt{3}$ cm
- C. $30\sqrt{3}$ cm

- Sebuah partikel melakukan ayunan harmonis sederhana. Tenaga kinetik partikel adalah Ek dan tenaga potensialnya. Ep, tenaga totalnya adalah ET. Ketika partikel berada di sepertiga posisi amplitudo, perbandingan EK/ET dan Ep/ET berturut-turut adalah . .
 - A. 1: 3 dan 2: 3 D. 1: 9 dan 8: 9 B. 2: 3 dan 1: 3 E. 1: 2 dan 1: 1
 - C. 8:9 dan 1:9