EEM 323

ELECTROMAGNETIC WAVE THEORY II

PLANE WAVE INCIDENCE

ON PLANAR BOUNDARY

2013 – 2014 FALL SEMESTER

Prof. S. Gökhun Tanyer

DEPARTMENT OF ELECTRICAL-ELECTRONICS ENGINEERING

FACULTY OF ENGINEERING, BASKENT UNIVERSITY

Önemli not: Ders notlarındaki şekillerin hazırlanmasında internet ortamından faydalanılmıştır. Özellikle belirtilmeyen tüm şekil, tablo, eşitlik ve denklemler vb. "D. K, Fundamentals of Engineering Electromagnetics, Addison-Wesley Inc." ile "D. K, Field and Wave Electromagnetics, Mc-Graw Hill Inc." kitabından taranarak elde edilmiştir. Alıntıların kaynağına kolay ulaşılabilmesi maksadıyla numarası ve altyazıları da gösterilmektedir.

DERS KİTABI

[1] David Keun Cheng, Fundamentals of Engineering Electromagnetics, Addison-Wesley Publishing, Inc., 1993. veya David Keun Cheng, Çeviri: Adnan Köksal, Birsen Saka, Mühendislik Elektromanyetiğinin Temelleri – Fundamentals of Engineering Electromagnetics, Palme Yayınları.

KAYNAK / YARDIMCI KİTAPLAR:

- [2] David Keun Cheng, *Field and Wave Electromagnetics*, Addison-Wesley Publishing, Inc. *veya* David Keun Cheng, Çeviri: Mithat İdemen, *Elektromanyetik Alan Teorisinin Temelleri Field and Wave Electromagnetics*, Literatür Yayıncılık.
- [3] Stanley V. Marshall, Richard E. DuBroff, Gabriel G. Skitek, *Electromagnetic Concepts and Applications*, Dördüncü Basım, Prentice Hall International, Inc., 1996.
- [4] Joseph A. Edminister, Elektromanyetik, 2. Baskıdan çeviri, Çevirenler: M. Timur Aydemir, E. Afacan, K. C. Nakipoğlu, Schaum's Outlines, McGraw Hill Inc., Nobel Yayın Dağıtım, Ankara, 2000.

PLANE WAVE INCIDENCE AT PLANAR BOUNDARY BASIC PROBLEMS

NORMAL INCIDENCE AT PLANAR BOUNDARY OF:

Dielectric – Perfect conductor boundary:

Problem:

Given the incident E field, calculate all the other fields

Dielectric – Dielectric boundary:

Problem:

Given the incident E field, calculate all the other fields

OBLIQUE INCIDENCE AT PLANAR BOUNDARY OF:

Dielectric - Conductor:

- Paralel polarization
- Perpendicular polarization

Dielectric - Dielectric:

- o Paralel polarization
- Perpendicular polarization

OTHER PROBLEMS/CONCEPTS:

Definitions of;

Parallel and perpendicular polarization

Huygen's/Snell's law of reflection

Snell's law of refraction

Brewster angle of no reflection

NEXT TOPIC (If time is left): Transmission lines