特許協力条約

PCT

特許性に関する国際予備報告(特許協力条約第二章)

(法第 12 条、法施行規則第 56 条) [PCT36 条及びPCT規則 70]

出願人又は代理人 の書類記号 KG240PCT	今後の手続きについては、様式PCT/IPEA/416を参照すること。					
国際出願番号 PCT/JP2004/016981	国際出願日 (日. 月. 年) 16. 11. 2004	優先日 (日.月.年) 17.11.2003				
国際特許分類(I P C)Int.Cl. ⁷ C03C10/00, B82B1/00, C03B8/02, H01M4/02, 4/48, 10/40						
出願人 (氏名又は名称) 独立行政法人産業技術総合研究所						

成五门攻伍八庄朱人市4000 77007						
l. この報告書は、PCT35条に基づきこの国際予備審査機関で作成された国際予備審査報告である。 法施行規則第57条(PCT36条)の規定に従い送付する。						
2.この国際予備審査報告は、この表紙を含めて全部で 3 ページからなる。						
3. この報告には次の附属物件も添付されている。 a. ☑ 附属審類は全部で5 ページである。						
▼ 補正されて、この報告の基礎とされた及び/又はこの国際予備審査機関が認めた訂正を含む明細書、請求の範囲及び/又は図面の用紙(PCT規則70.16及び実施細則第607号参照)						
「 第 I 欄 4 . 及び補充欄に示したように、出願時における国際出願の開示の範囲を超えた補正を含むものとこの 国際予備審査機関が認定した差替え用紙						
b. 🔲 電子媒体は全部で 配列表に関する補充欄に示すように、電子形式による配列表又は配列表に関連するテーブルを含む。 (実施細則第 802 号参照)						
4. この国際予備審査報告は、次の内容を含む。						
 ▼ 第 I 欄 国際予備審査報告の基礎 第 I 欄 優先権 第 II 欄 優先権 第 II 欄 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成 第 IV欄 発明の単一性の欠如 第 V 欄 P C T 35条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明 第 VI 欄 ある種の引用文献 第 VI 欄 国際出願の不備 第 VII 欄 国際出願に対する意見 						

国際予備審査の請求書を受理した日 22.04.2005	国際予備審査報告を作成した日 28.10.2005
名称及びめて元 日本国特許庁(IPEA/JP) 知何来号100~8915	特許庁審査官(権限のある職員) 永田 史泰
	電話番号 03-3581-1101 内線 3465

第I欄	報告の基礎							
1 ===	野に関し、この予備審査報告は以下のものを基礎とした。							
	WERT のできたと J 国際単節							
Γ	出願時の言語による国際出願 出願時の言語から次の目的のための言語である 語に翻訳された、この国際出願の翻訳文							
• ,	国際調査 (PCT規則12.3(a)及び23.1(b))							
	□ 国際公開 (PCT規則12.4(a)) □ 国際予備審査 (PCT規則55.2(a)又は55.3(a))							
2. こ	2. この報告は下記の出願書類を基礎とした。 (法第6条 (PCT14条) の規定に基づく命令に応答するために提出され た差替え用紙は、この報告において「出願時」とし、この報告に添付していない。)							
r.	出願時の国際出願書類							
□	明細書							
	第 1,2,4-15 ページ、出願時に提出されたもの							
ļ	第 1,2,4-16 第 3 今ージ*、22.04,2005 付けで国際予備審査機関が受理したもの付けで国際予備審査機関が受理したもの							
	第 付けで国際予備審査機関が受理したもの 第 付けで国際予備審査機関が受理したもの							
[う 請求の範囲							
`								
]	第 項*、PCT19条の規定に基づき補正されたもの 第 1,2,5-8,19 項*、22.04.2005 付けで国際予備審査機関が受理したもの 付けで国際予備審査機関が受理したもの							
1	第 <u>1,2,5-8,19</u>							
18	図面 第 1-13 ページ ✓図 、出願時に提出されたもの							
}	第 <u>1-13</u>							
1	第							
1 [配列表又は関連するテーブル							
	配列表に関する補充欄を参照すること。							
	丞 補正により、下記の書類が削除された。							
3.	a >2							
1	□ 明細書 第							
1	☑ 請求の範囲 第 25 項☑ 図面 第 25 ページ/図							
	□ 配列表 (具体的に記載すること)							
1	配列表に関連するテーブル(具体的に記載すること)							
4.	「この報告は、補充欄に示したように、この報告に添付されかつ以下に示した補正が出願時における開示の範囲を超えてされたものと認められるので、その補正がされなかったものとして作成した。 (PCT規則 70.2(c))							
1	□ 明細書 第							
1	「「 : : : : : : : : : : : : : : : : : :							
	「 図面							
	□ 配列表(具体的に記載すること)□ 配列表に関連するテーブル(具体的に記載すること)							
1								
* 4	l. に該当する場合、その用紙に "superseded" と記入されることがある。							

ATT 3.7		の利用可能性に	こついての法第 12 条 (PCT35 条(2)) に定める見解、	
毋 V	それを裏付ける文献及び説	明		
1.	見解			
-	75 ///			- 1
	新規性(N)	請求の範囲 _	1-24	- ^有 - 無
		請求の範囲 _		- ***
				有
	進歩性(IS)	請求の範囲	1-24	_ 無
		請求の範囲		_
	産業上の利用可能性 (IA)	請求の簡用	1-24	_ 有
	産業上の利用可能性 (147)			_ 無
	→献1:W0 1996/039357	A1 (MICHIGA	N STATE UNIVERSITY) 1996. 12. 12	
	0000 040000	1 14-47 1 1	70年式 全計 1 7007. V2. V0	
	☆☆ A L TD 2003-077541	A(一卷車上	法人產業技術総合研究所) 2004. 07. 29 法人產業技術総合研究所) 2004. 07. 29	
1	文献 5: IP 2003-077466	A(三菱重工	業株式会社) 2003. 03. 14	
1	請求の範囲1-10 新規性・進歩性あり		コールンとは、の大井にも関ラされ	ておら
	請求の範囲 1-10に	係る発明は、	国際調査報告で引用された何れの文献にも開示され、 ナノサイズ微結晶酸化物ーガラス複合メソポーラス (1) の立数にも関示されていない、そして、本願発明	材料の
	ファトル 3一6ヵmオー	・ターの羽一を	なサイスの城和田でフレーニン ハーロノー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ス微結
	品酸化物ーガラス複合メ	ソポーラス	材料が得られる。	
	請求の範囲11-24			
1				れてお
l	請求の範囲11-24	!に係る発明	は、国際調査報告で引用された何れの文献にも開示さに、ナノサイズ微結晶酸化物ーガラス複合メソポーラ	ス材料
				それに
١	なお、文献1には、共	見則的に配列	スの向力の機能を行うることである。 したメソ細孔を有する部分結晶質のメソポーラス材料 ことが記載されている(第1頁24行〜第2頁6行)。	
	女献りには、酸化スス	ズのメソボー	・フス材料を負極材料に用いたファブニース・ニー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	が記載
	されている(特に、特別	午請求の範囲)。 移金属からなるメソポーラス材料を電極に用いた二巻 	て電池が
	→齢4にけ 非晶質(の酸化物のメ	ソホープス材料を正極材料に用いたファブー・バー	_次電池
	が記載されている(特別	こ、特許請求	での範囲」。 v.ヘ枷ゃ今toメソポーラス材料を電極に用いたリチウ♪	ムイオン
	又献りには、非印賞 ^い 一次雷池マけりチウム	ハマンハンハイオンキャバ	ペシタが記載されている(特に、特許請求の範囲)。	
I	一仏电池スペップノー	1 24 2 1 1		

ガラス相(SiO_2 或いは P_2O_5 , B_2O_3)によって構築されていること、(3)僅かなガラス相(SiO_2 或いは P_2O_5 , B_2O_3)によって金属酸化物の結晶成長が制御されること、(4)その製造プロセスが簡単化されること、(5)これらの材料を、リチウムインタカレーション電気デバイス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイスの製造に使用できることである。

[0008] さらに、二次電池用として、(6) ナノポーラス構造のフレームワークの中に活物質金属酸化物のナノ微結晶を有する三次元構造を持つメソポーラス金属酸化物を製造すること、(7) ナノポーラス構造のフレームワークの中に電子電導パスとイオン電導パスを有すること、(8) 10A/gハイ充・放電レートでも、容量には、数百サイクル後にも高い可逆容量(例えば:Li_xTiO₂: x=0.5~0.8)を維持させること、(9) 充・放電レートが0.1A/gから0.5A/g、2.0A/g、10A/g まで上げても、高い可逆充・放電容量(例えば:Li_xTiO₂: x=0.5~0.8)を維持することができる金属酸化物系電極材料を備えた二次電池の開発である。

課題を解決するための手段

- [009] 本発明は、1) 規則的に配列したメソ細孔を有する三次元構造を備えていることを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜、2) 六方(ヘキサゴナル)又は立方(キュービック)型の三次元構造を備えていることを特徴とするナノサイズ微結晶酸化物・ガラス複合メソポーラス粉末又は薄膜、3) ポーラス構造のフレームワークの中に、均一なナノサイズ微結晶酸化物を備えていることを特徴とする1又は2記載のナノサイズ微結晶酸化物・ガラス複合メソポーラス粉末又は薄膜、4) 50 から 400m²/g範囲の高い比表面積を備えていることを特徴とする1~3のいずれかに記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜を提供する。
- [0010] 本発明は、また5) ブロック高分子又は界面活性化剤を鋳型とし、金属アルコキシド又は金属の塩化物、PO(OC,H,)。又は Si(OC,H,)。(TEOS) の水溶液又はこれらをエターノール等のアルコールに溶かした溶液に、塩酸 (HC1) を加える工程、ゾルーゲル法によってガラス相の金属酸化物-無機酸化物複合メソストラクチャ構造を有する粉末を製造する工程、室温~90°C で熟成させゲル化させる工程、これを空気中

請求の範囲

- [1] (補正後)規則的に配列したメソ細孔を有する三次元構造を備えており、ガラス相が P₂O₅を含有することを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜。
- [2] (補正後) 六方 (ヘキサゴナル) 又は立方 (キュービック) 型の三次元構造を備えており、ガラス相が P₂O₅ を含有することを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜。
- [3] ポーラス構造のフレームワークの中に、均一なナノサイズ微結晶酸化物を備えていることを特 徴とする請求項1又は2記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は 薄膜。
- [4] 50 から 400m²/g範囲の高い比表面積を備えていることを特徴とする請求項1~3のいずれかに記載のナノサイズ微結晶酸化物-ガラス複合メソポーラス粉末又は薄膜。
- [5] (補正後)プロック高分子又は界面活性化剤を鋳型とし、金属アルコキシド又は金属の塩化物、PO(OC,He)3の水溶液又はこれらをエターノール等のアルコールに溶かした溶液に、塩酸(HCI)を加える工程、ゾルーゲル法によってガラス相の金属酸化物ー無機酸化物複合メソストラクチャ構造を有する粉末を製造する工程、室温~90°Cで熟成させゲル化させる工程、これを空気中350-400°Cで加熱処理することによってブロック高分子又は界面活性化剤を除去しガラス相の金属酸化物ーガラス相複合メソポーラス粉末を製造する工程、更にこれを400-700°Cで熱処理することによってガラス相の金属酸化物を微結晶に相転移させる工程からなることを特徴とするナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末の製造方法。
- [6] (補正後)プロック高分子又は界面活性化剤を鋳型とし、金属アルコキシド又は金属の塩化物、PO(OC₂H₂)₃の水溶液又はこれらをエターノール等のアルコールに溶かした溶液に、塩酸(HCI)を加え、H を調整しながら加水分解を行ってゾル溶液とする工程、基板に該ゾル溶液を滴下し、基板を高速回転させ、溶剤を蒸発させ、ゲル化させることにより基板上に、ガラス相の金属酸化物ー無機酸化物ープロック高分子(又は界面活性化剤)複合メソストラクチャ構造を有する薄膜を形成する工程、室温~90°Cで熟成させゲル化させる工程、これを空気中350-400°Cで加熱処理することによってプロック高分子又は界面活性化剤を除去しガラス相の金属酸化物ーガラス相複合メソポーラス薄膜を形成する工程、更にこれを400-700°Cで熱

- 処理することによってガラス相の金属酸化物を微結晶に相転移させる工程からなることを特 徴とするナノサイズ微結晶酸化物 - ガラス複合メソポーラス薄膜の製造方法。
- [7] (補正後)安定なガラス相の無機酸化物がP₂O₅であることを特徴とする請求項5又は6記載の ナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜の製造方法。
- [8] (補正後)合成段階で MnO_2 , NiO, Fe_2O_3 , CuO, Li_2O , WO_3 , SnO_2 の異種金属酸化物を微量添加し、 多元ガラス相を有するナノサイズ微結晶酸化物-無機酸化物のガラス相-異種金属酸化物 $(-MnO_2, -NiO, -Fe_2O_3, -CuO, -Li_2O, -WO_3, -SnO_2)$ からなることを特徴とする請求項 $5\sim7$ のいずれかに記載のメソポーラス粉末又は薄膜の製造方法。
- [9] 金属アルコキシド又は金属の塩化物が、Ti (OC₃H₂)₃, Zr (OC₄H₂)₄, NbCl₅, LiCl, NiCl₂, FeCl₃, CuCl₂, MnCl₂, SnCl₄又は WCl₅であることを特徴とする請求項5~8のいずれかに記載のナノサイズ微結晶酸化物ーガラス複合メソポーラス粉末又は薄膜の製造方法。
- [10] 請求項5~9によって製造されたナノサイズ微結晶酸化物-ガラス複合メソポーラス粉末又 は薄膜を用いることを特徴とするリチウム電池又はリチウムインタカレーション電気デバイ ス、光触媒デバイス、太陽電池、エネルギー貯蔵デバイス。
- [11] 規則的に配列したメソ細孔を有する三次元構造を備えているナノサイズ微結晶酸化物-ガラス複合メソポーラスからなる電極で構成されていることを特徴とする二次電池。
- [12] 細孔の平均直径が2 nm~1 0 nmであることを特徴とする請求項11記載の二次電池。
- [13] 六方体又は立方体構造を持つナノサイズ微結晶酸化物ーガラス複合メソポーラスのフレーム ワークの中に、数ナノオーダーの均一な微結晶酸化物を備えていることを特徴とする請求項 11又は12記載の二次電池。
- [14] フレームワークの壁の厚さが2~9 nmであることを特徴とする請求項11~13のいずれかに記載の二次電池。
- [15] ナノサイズ微結晶酸化物が、TiO₂、NiO、MnO₂, FeO, Fe₂O₃, Fe₃O₄, CoO, CoO₂, CrO₂, Co₃O₄, WO₃, SnO, SnO₂から選択した1種以上の金属酸化物であることを特徴とする請求項11~14のいずれかに記載の二次電池。
- [16] ガラス相が、 P_2O_5 、 SiO_2 又は B_2O_3 から選択した1種以上の無機酸化物であることを特徴とする 請求項11~15のいずれかに記載の二次電池。

- [17] ガラス相は、 MnO_2 , NiO, Fe_2O_3 , CuO, Li_2O , WO_3 , SnO_2 から選択した 1 種以上の異種金属酸化物を、前記ガラス相に対してモル比で $2\% \sim 60\%$ を含む多元系ガラス相であることを特徴とする請求項 $11 \sim 16$ のいずれかに記載の二次電池。
- [18] ネットワーク状ガラス相の中に、イオン導電性或いは電子導電性の異種金属酸化物を、ガラス相に対してモル比で2%~60%を添加することにより、フレームワークの中にイオン電導パスと電子電導パスの両方を有することを特徴とする請求項11~16のいずれかに記載の二次電池。
- [19] (補正後) ナノサイズ微結晶酸化物-ガラス複合メソポーラスを二次電池の電極として利用し、充電(或いは放電)レートを0.1A/gより10倍(1.0A/g)、さらには100倍(10A/g)まで高くしても、充電(或いは放電)のエネルギー密度はレートが0.1A/g時の6割以上を保つことを特徴とする請求項11~18のいずれかに記載の二次電池。
- [20] ナノサイズ微結晶酸化物ーガラス複合メソポーラスを二次電池の電極として利用し、表面積の増加により、活物質の酸化物に対して、充電・放電容量が最大理論容量の1.0倍から5.0倍の大容量を有することを特徴とする請求項11~19のいずれかに記載の二次電池。
- [21] ナノサイズ微結晶酸化物ーガラス複合メソポーラスを二次電池の電極として利用し、充電・放電レートを 0. 1 A/gより 1 0 倍 (1. 0 A/g)、さらには 1 0 0 倍 (1 0 A/g) まで高くしても、高可逆率が 9 5 %以上を有していることを特徴とする請求項 1 1 ~ 2 0 のいずれかに記載の二次電池。
- [22] ナノサイズ微結晶酸化物ーガラス複合メソポーラスをリチウムの電極として利用し、充電・ 放電レートを 0. 1 A/gより 1 0 倍 (1. 0 A/g)、さらには 1 0 0 倍 (1 0 A/g) まで高くしても、数百サイクルの充・放電サイクル後に、初期容量の 6 から 7 割以上の高可逆容量を有していることを特徴とする請求項 1 1~2 1 のいずれかに記載の二次電池。
- [23] 異種金属酸化物を微量添加したナノサイズ微結晶金属酸化物-無機酸化物のガラス相-異種金属酸化物は、充電・放電レートを0.1A/gより100倍、500倍、1000倍のレートにした場合においても、レートが0.1A/g時の4割から7割以上の高可逆容量を有していることを特徴とする請求項11~21のいずれかに記載の二次電池。

- [24] 高可逆率 (r>95%)を有していることを特徴とする請求項11~23のいずれかに記載の二次電池。
- [25] (削除)