

Aerospace Vehicle Design And System Integration 3 AENG30013 (AVDASI3)

2019-2020

Aerodynamic Wing Design

Dr. Daniel Poole

d.j.poole@bristol.ac.uk

Content

- review of basic wing sizing
 - wing area, aspect ratio and sweep
 - taper ratio and twist
 - wing height
- aerofoil choice and design
- optimisation

The Wing

- review basic wing sizing constraints
 - wing area
 - aspect ratio
 - sweep angle

Wing Area

- three classes of constraint/requirement :
- 1. 'wetted area'
 - cruise drag
- 2. 'available lift'
 - landing (and take-off)
 - manoeuvre
 - transonic cruise buffet
 - gust response
 - ceiling
- 3. 'physical size'
 - fuel volume
 - wing weight
 - span (in relation to AR)

Aspect Ratio

- three classes of constraint/requirement :
- 1. induced drag
 - Important at high lift

$$C_{Di} = KC_L^2 = \frac{k}{\pi AR}C_L^2$$

- T-O, climb where thrust limited
- 2. lift curve slope (a \rightarrow a₀ as AR \rightarrow ∞) $a = \frac{a_0}{1 + a_0/\pi AR}$
 - but wide variation in fuselage incidence between cruise and

landing

3. 'physical size'

- fuel volume
- wing weight
- span limits
- flutter

Wing Sweep

most effective way of increasing critical Mach Number

- sweep reduces Mach Number perpendicular to LE
- \blacksquare also increases C_i and t/c
 - reduced Mach Number outweighs above two effects
- use to increase cruise speed
 - or to increase wing thickness for a given cruise speed

Wing Sweep

- generally an adverse effect ...
- outboard shift in loading
 - increased induced drag
 - reduced maximum lift
- reduced lift curve slope
 - poor visibility on approach
 - but improved gust response

- sweep increases 'structural span'
 - increased wing weight
- increased torsion at wing root
 - plus bending due to lift distribution
 - increased wing weight

Taper Ratio

- chosen (together with twist) to :
- 1. maximise aerodynamic efficiency
 - adjust spanwise lift distribution to near-elliptical
- 2. minimise structural weight
 - drives to small taper ratio with inboard load

Wing Twist

- chosen to :
- 1. maximise aerodynamic efficiency at cruise
 - compensate for effects of sweep and taper ratio on lift distribution
 - only effective at one (design) incidence, because increment in lift due to twist is fixed
 - shape of final lift distribution will therefore depend on magnitude of initial distribution and hence on geometric incidence
- 2. improve stall characteristics
 - washout (tips twisted nose-down) prevents tip-stall
- 3. reduce wing weight
 - centre of pressure shifted inboard → trade-off against increased drag due to triangular lift distribution

Twist vs Camber?

- for a given planform:
- 1. **twist** sets basic spanwise *load* distribution
 - governs overall wing aerodynamic efficiency
- 2. camber modifies local *pressure* distribution
 - adjusts isobar pattern to avoid (for example) shock formation or flow separation

rather simplistic statement - effects are coupled ...

Wing Height

- wing can be positioned high mid or low relative to fuselage
- choice is mostly based on configuration requirements (e.g. props, gravel runways, ease of inspection etc.) and not aerodynamic reasons

AEROFOILS

4-Digit Aerofoils – NACA CXTT

- eg NACA 2412 has 2% camber at 0.4c and is 12% thick
 - still found on many light aircraft eg Cessna 152

- high drag, but relatively little variation with lift
 - insensitive to surface condition
 - popular for light training aircraft with wide operating range
- cambered sections have relatively high maximum lift and docile stalling characteristics
 - eg 2412 and 4412

5-Digit Aerofoils – NACA LXXTT

■ eg NACA 23012 has a design C_L of 0.3, maximum camber at 0.15c and is 12% thick

- minimise profile drag at operating conditions
- increased maximum lift
- reduced pitching moment
- poorer stall behaviour

6-Digit Aerofoils – NACA LXXTT

Try to promote laminar flow – drag bucket!

Modern Supercritical Sections

- developed by Whitcomb in the US
 - also responsible for area rule and winglets ..!
- designed to have substantial regions of supersonic flow
 - smaller initial peak followed by longer compression

- relatively large leading-edge radius
- very small curvature over much of upper surface
 - reduce drag penalty of suction at rear
- aft portion cambered
 - aft loading reducing peak velocity for given lift

Supercritical Design Features

significant lower surface curvature

- rather similar to modern laminar flow sections
 - good structural shape!

OPTIMISATION

Optimisation

- Traditionally, experienced designers use combination of intuition, numerical analysis (CFD), and experimental data to design wings
- Decisions coupled between different disciplines

- Couple numerical analysis to "clever" optimiser
 - Helps designer make more informed decisions

Optimisation: Aerofoils

- Use nature-inspired optimiser with mathematicallyderived design deformation
- RANS equations compressible, viscous
- 35% drag reduction eliminate wave drag

D Poole "Efficient Optimisation Methods for Generic Aerodynamic Shape Optimisation," PhD thesis, University of Bristol, 2017.

Optimisation: Aerofoils

- Can also optimise vortex generators
- Work done in collaboration with Leonardo for AW609
- Optimise VG shape and location to minimise buffet

R Bevan, D Poole, C Allen & T Rendall, "Adaptive Surrogate-Based Optimization of Vortex Generators for Tiltrotor Geometry," Journal of Aircraft, 2017.

Optimisation: Multi-disciplinary

- Optimise drag subject to fixed lift & volume
- Aero-structure coupled high fidelity solver

	Initial	Optimized
C_L	0.4	0.4
C_D	0.0179	0.0126
$C_{M_{x}}$	0.144	0.174
C_{M_y}	-0.386	-0.429
$\Delta z_{\sf tip}$	6.16m	8.44m
ΔC_D	-	-29.7%

D Poole, C Allen & T Rendall, "Efficient Aero-Structural Wing Optimization Using Compact Aerofoil Decomposition," AIAA Scitech Forum 2019, San Diego, CA, Jan 2019.

Conclusions

- Wing parameters chosen based on number of tradeoffs
 - Cruise performance/aerodynamic efficiency
 - Stability
 - Edge-of-envelope
 - Structural
- Aerofoil design for specific conditions
 - Supercritcal typical of modern transonic passenger aircraft
- Optimisation can be used to help inform design