Agenda

- 1. Interacting variables in regression
- 2. Causal analysis in regression
- 3. Mediation, moderation, confounding, and collision
- 4. Building indicator (dummy) variables in R

$$\log(\operatorname{Inc}_i) \sim \operatorname{Norm}(\mu_i, \sigma)$$
 $\mu_i = \alpha + \beta_1 W_i + \beta_2 A_i$
 $\alpha, \beta_1, \beta_2 \sim \operatorname{Norm}(0, 30)$
 $\sigma \sim \operatorname{Unif}(0, 50)$

*W_i*Indicator variable for women

A_i
Indicator variable for respondents over 35 years old

		Std.		
	Mean	Dev.	5%	95%
а	9.87	0.04	9.81	9.94
β_1	-0.48	0.04	-0.55	-0.42
$oldsymbol{eta}_2$	0.70	0.04	0.62	0.77
σ	1.16	0.01	1.14	1.18

 β_1 : exp(-0.48) \approx 0.62

(women make about 62% as much as men, on average)

 β_2 : exp(0.70) \approx 2.01

(people over 35 years old make about twice as much as people 35 and under)

$$\log(\operatorname{Inc}_i) \sim \operatorname{Norm}(\mu_i, \sigma)$$
 $\mu_i = a + \beta_1 W_i + \beta_2 A_i + \beta_3 W_i A_i$
 $a, \beta_1, \beta_2, \beta_3 \sim \operatorname{Norm}(0, 30)$
 $\sigma \sim \operatorname{Unif}(0, 50)$
 $W_i A_i$
 $\sigma \sim \operatorname{Unif}(0, 50)$

W_iA_i Interaction between both indicators

	Std.		
Mean	Dev.	5%	95%
9.82	0.05	9.74	9.91
-0.38	0.07	-0.50	-0.26
0.77	0.06	0.67	0.87
-0.15	0.09	-1.29	-0.01
1.16	0.01	1.14	1.18
	9.82 -0.38 0.77 -0.15	Mean Dev. 9.82 0.05 -0.38 0.07 0.77 0.06 -0.15 0.09	Mean Dev. 5% 9.82 0.05 9.74 -0.38 0.07 -0.50 0.77 0.06 0.67 -0.15 0.09 -1.29

$$\mu_{i} = \alpha + \beta_{1}W_{i} + \beta_{2}A_{i} + \beta_{3}W_{i}A_{i}$$

$$\mu(\leq 35, man) = \alpha$$

$$\mu(\leq 35, woman) = \alpha + \beta_{1}$$

$$\mu(>35, man) = \alpha + \beta_{2}$$

 $\mu_{(>35, woman)} = \alpha + \beta_1 + \beta_2 + \beta_3$

	Mean	exp(Mean)
а	9.82	18398.051
β_1	-0.38	0.684
$oldsymbol{eta}_2$	0.77	2.16
β_3	-0.15	0.861

Interpreting the interaction coefficient β₃

The pay benefit of being over 35 (β_2) is diminished by about 14% for women (β_3).

OR

The pay gap for women (β_1) is exacerbated by about 14% for those over 35 (β_3).

Interacting continuous variables

$$\log(\mathrm{Inc}_i) \sim \mathrm{Norm}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta_1 \mathrm{Occ}_i + \beta_2 \mathrm{Age}_i + \beta_3 \mathrm{Occ}_i \mathrm{Age}_i$$

$$\uparrow \qquad \qquad \uparrow$$
 Occupational income index (standardized)
$$\mathsf{Age} \text{ (standardized)}$$

Standardization: Transforming a variable X to so that mean(X)=0 and sd(X)=1

Interacting continuous variables

$$\mu_i = \alpha + \beta_1 \text{Occ}_i +$$

$$\beta_2 \text{Age}_i + \beta_3 \text{Occ}_i \text{Age}_i$$

	Mean	exp(Mean)
а	10.25	28282.542
β_1	0.48	1.616
β_2	0.35	1.419
β_3	-0.05	0.951

Interpreting the interaction coefficient β₃

The pay benefit of being in a high-prestige job (β_1) is diminished by about 5% for each one standard deviation increase in age (β_3).

OR

The pay benefit of being older (β_2) is diminished by about 5% for each one standard deviation increase in occupational prestige (β_3).

Causal analysis

Causal question: Does a change in one variable (X) cause a change in another (Y)?

Regression only identifies statistical relationships, not causal relationships

To draw a "causal arrow" you need theory

Causal analysis

To establish a causal relationship you (usually) need

1. Causal precedence

A theoretical reason to believe changes in X could affect Y (e.g. X precedes Y in time)

2. Statistical association

An established statistical association between *X* and *Y* (e.g. a convincing coefficient estimate)

3. No unaccounted-for confoundersNo other variables, observed or otherwise, that *confound* the association between *X* and *Y*

Confounding variables

A variable *Z* is a **confounder** of the relationship between *X* and *Y* if *Z* is a causal influence on both *X* and *Y*

Confounding variables

A variable *Z* is a **confounder** of the relationship between *X* and *Y* if *Z* is a causal influence on both *X* and *Y*

For example:

To establish a causal relationship between education and income, you need to account for race, which could affect both education and income

Types of covariates

Confounder

Mediator

Moderator

Collider

Z is a causal factor on both X and Y.

Z is influenced by Xand influences Y.

Z alters the relationship between X and Y. Z causally influenced by both X and Y.

Must be "controlled for" to establish non-spurious relationship between X and Y.

Including as covariate elaborates on relationship between X and Y.

Can be included as interaction variable to better describe the relationship between X and Y.

Must not be "controlled for" when establishing relationship between X and Y.

E.g.: Race confounds the relationship between education and income.

E.g.: Occupation mediates the relationship between gender and income.

E.g.: Marital status moderates the relationship between gender and income.

E.g.: Income is a collider for the relationship between gender and occupation.