# Integrated nested Laplace approximations for extended latent Gaussian models with application to the Naomi HIV model

Waterloo SAS Student Seminar Series

Adam Howes

Imperial College London

November 2022

#### Motivation

- Surveillance of the HIV epidemic in sub-Saharan Africa
- Want to estimate indicators used for monitoring and response, including:
  - Prevalence  $\rho$ : the proportion of people who are HIV positive
  - Treatment coverage  $\alpha$ : the proportion of PLHIV on treatment
  - Incidence  $\lambda$ : the proportion of people newly infected
- Aim to provide estimates at a district-level to enable precision public health

This is a challenging task! Data is noisy, sparse and biased  $\implies$  compelling case for thoughtful Bayesian modelling

# A simple small-area model for prevalence

- Consider "small-areas" i = 1, ..., n (e.g. districts of a country)
- Simple random sample household-survey<sup>1</sup> of size  $m_i^{\text{HS}}$  where  $y_i^{\text{HS}}$  people testing positive for HIV
- Could calculate direct estimates of prevalence by  $y_i^{HS}/m_i^{HS}$

Because the survey is powered at a national-level, the  $m_i^{\rm HS}$  are small and direct estimates would be noisy  $\implies$  use a model to smooth estimates

<sup>&</sup>lt;sup>1</sup>In reality a complex survey design is used, often with urban rural stratification.

# A simple small-area model for prevalence

• We can use a binomial logistic regression of the form:

$$egin{aligned} y_i^{ ext{HS}} &\sim ext{Bin}(m_i^{ ext{HS}}, 
ho_i^{ ext{HS}}), \ ext{logit}(
ho_i^{ ext{HS}}) &\sim g(artheta^{ ext{HS}}), \quad i=1,\ldots,n, \end{aligned}$$

- We usually set up g as a Gaussian spatial smoother
- This allows for pooling of information between districts







Figure 1: The Besag model,  $\phi_i \mid \phi_{-i} \sim \mathcal{N}\left(\frac{1}{n_{\delta i}} \sum_{j:j \sim i} \phi_j, \frac{1}{n_{\delta i} \tau_{\phi}}\right)$ .

#### Latent Gaussian models

• Three-stage Bayesian hierarchical model

where 
$$\mathbf{y}=(y_1,\ldots,y_n)$$
,  $\mathbf{x}=(x_1,\ldots,x_N)$ ,  $\boldsymbol{\theta}=(\theta_1,\ldots,\theta_m)$ 

- Interested in learning both  $(\theta, x)$  from data y
- If the middle layer is Gaussian, then it's a latent Gaussian model

(Latent field) 
$$p(\mathbf{x} \mid \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}(\boldsymbol{\theta}), \boldsymbol{Q}(\boldsymbol{\theta})^{-1}).$$

 Latent field is typically indexed by spatiotemporal location, such that N > m

# Limitations of household surveys

- Household surveys cost millions to run so they don't happen very often
- e.g. DHS include 5k-30k households, and occurs around every 5 years

The snapshot they provide can be quite out of date, and difficult to base effective policy on  $\implies$  need to use routinely collected data to help here

#### Adding ANC surveillance

- Pregnant women attending antenatal care clinics are routinely tested for HIV, to avoid mother-to-child transmission. This data source is:
- 1. More real-time than household surveys can be collected e.g. monthly
- 2. More biased than household surveys attendees are not representative
- If the this bias is consistent, we can still ANC data to supplement our model

 $\implies$  model the level using the household survey data, and the trend using the ANC data

# Adding ANC surveillance

• Suppose of  $m_i^{ANC}$  ANC attendees,  $y_i^{ANC}$  are HIV positive, and model

$$egin{aligned} y_i^{\mathsf{ANC}} &\sim \mathsf{Bin}(m_i^{\mathsf{ANC}}, 
ho_i^{\mathsf{ANC}}), \ \mathsf{logit}(
ho_i^{\mathsf{ANC}}) &= \mathsf{logit}(
ho_i^{\mathsf{HS}}) + b_i, \ b_i &\sim \mathcal{N}(eta_b, \sigma_b^2), \end{aligned}$$

• This is similar to using  $\rho_i^{\text{ANC}}$  as a covariate in the model for household survey prevalence, but this way takes into account sampling variation

#### Adding ART coverage

- Also interested in what proportion  $\alpha_i$  of people living with HIV are receiving treatment, which may also be informative about prevalence
- If we record  $A_i$  attendees from a known population of  $N_i$  in each district, then this can be modelled by

$$A_i \sim \mathsf{Bin}(N_i, 
ho_i^{\mathsf{HS}} lpha_i), \ \mathsf{logit}(lpha_i) \sim \mathcal{N}(eta_lpha, \sigma_lpha^2).$$

• To be more sophisticated, you can also model the movement of people to receive treatment in districts other than the one they live in

#### Naomi evidence synthesis model

- Combining these three modules is the basis of the Naomi evidence synthesis model
- Used by countries to produce HIV estimates in a yearly process supported by UNAIDS
- Can't run long MCMC in this setting, so we require fast, accurate, approximations
- It's a complicated model, and requires something more flexible than R-INLA
- Currently using a package called Template Model Builder TMB



Figure 2: A supermodel



Figure 3: Example of the user interface from https://naomi.unaids.org/

# Template Model Builder

- TMB (Kristensen et al. 2015) is an R package which implements the Laplace approximation for latent variable models
- I use "Laplace approximation" to mean approximating the normalising constant with Laplace's method<sup>2</sup>
- To get started with TMB, write your  $f(\mathbf{x}, \theta)$  in TMB's C++ syntax
- As pseudo-Bayesians, we choose (something proportional to) the log-posterior

$$f(\mathbf{x}, \boldsymbol{\theta}) = -\log p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}) p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$$

• For example, for the model  $\mathbf{y} \sim \mathcal{N}(\mu, 1)$  with  $p(\mu) \propto 1$  then the TMB user template looks as follows

<sup>&</sup>lt;sup>2</sup>Rather than approximating the posterior with a Gaussian, which I call a Gaussian approximation.

```
#include <TMB.hpp>
template < class Type>
Type objective_function<Type>::operator()() {
 // Define data e.g.
 DATA_VECTOR(y);
 // Define parameters e.g.
 PARAMETER(mu);
 // Calculate negative log-likelihood e.g.
 nll = Type(0.0);
 nll -= dnorm(y, mu, 1, true).sum()
 return(nll);
```

#### Template Model Builder

We can use TMB to obtain the Laplace approximation

$$\left. \widetilde{p}_{\mathsf{LA}}(oldsymbol{ heta} \, | \, \mathbf{y}) \propto rac{p(\mathbf{y}, \mathbf{x}, oldsymbol{ heta})}{\widetilde{p}_{\mathsf{G}}(\mathbf{x} \, | \, oldsymbol{ heta}, \mathbf{y})} 
ight|_{\mathbf{x} = oldsymbol{\mu}(oldsymbol{ heta})}$$

- Integrate out a Gaussian approximation  $\tilde{p}_{G}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})$  to the latent field
- TMB uses automatic differentiation (Griewank and Walther 2008) via CppAD to do this, as well as help with numerical optimisation routines
- ullet We then optimise this to obtain a mode  $\hat{oldsymbol{ heta}}$ , and a Hessian  $oldsymbol{H}$  at the mode

# Integrated Nested Laplace Approximation

- Integrated nested Laplace approximation (INLA) (Rue, Martino, and Chopin 2009; Blangiardo and Cameletti 2015) is an approach to approximate inference which builds on the Laplace approximation
- Goal is to approximate posterior marginals  $\{\tilde{p}(x_i \mid \mathbf{y})\}_{i=1}^n$  and  $\{\tilde{p}(\theta_j \mid \mathbf{y})\}_{j=1}^m$

$$p(x_i | \mathbf{y}) = \int p(x_i, \boldsymbol{\theta} | \mathbf{y}) d\boldsymbol{\theta} = \int p(x_i | \boldsymbol{\theta}, \mathbf{y}) p(\boldsymbol{\theta} | \mathbf{y}) d\boldsymbol{\theta}, \quad i = 1, \dots, N,$$
(1)

$$p(\theta_j \mid \mathbf{y}) = \int p(\boldsymbol{\theta} \mid \mathbf{y}) d\theta_{-j} \quad j = 1, \dots, m.$$
 (2)

- To do so, we require the approximations  $\tilde{p}(\theta \mid \mathbf{y})$  and  $\tilde{p}(x_i \mid \theta, \mathbf{y})$
- There are four steps as to how the method works (bare with me!)

#### Step 1

1) First Laplace approximate hyperparameter posterior

$$\left. \widetilde{p}_{\mathsf{LA}}(\theta \,|\, \mathbf{y}) \propto \frac{p(\mathbf{y}, \mathbf{x}, \theta)}{\widetilde{p}_{\mathsf{G}}(\mathbf{x} \,|\, \theta, \mathbf{y})} \right|_{\mathbf{x} = \mu(\theta)}$$
 (3)

which can be marginalised to get  $\tilde{p}(\theta_i | \mathbf{y})$ 

- Notice that this is the same object we had been working with in TMB
- We will use this approximation nested within integrals like this one

$$\int p(x_i, \boldsymbol{\theta} \mid \mathbf{y}) d\boldsymbol{\theta} = \int p(x_i \mid \boldsymbol{\theta}, \mathbf{y}) \tilde{p}_{\mathsf{LA}}(\boldsymbol{\theta} \mid \mathbf{y}) d\boldsymbol{\theta}$$

hence the name INLA

# Step 2

- 2) In both Equations (1) and (2) we want to integrate w.r.t.  $\theta$ , so choose integration nodes and weights  $\{\theta(\mathbf{z}), \omega(\mathbf{z})\}_{\mathbf{z}\in\mathcal{Z}}$
- For low m R-INLA uses a grid-strategy
- ullet For larger m this becomes too expensive and R-INLA uses a CCD design
- We plan to use adaptive Gaussian Hermite quadrature (AGHQ), which has recently been shown to have theoretical guarantees (Bilodeau, Stringer, and Tang 2021) and is implemented in the aghq R package (Stringer 2021)



Figure 4: An illustration of the R-INLA grid method for selecting integration nodes using a toy bivariate Gaussian distribution for  $\theta$ . Start at the mode and work outwards along the eigenvectors until the density drops sufficiently low.

#### Adaptive Gaussian Hermite Quadrature

- Gauss-Hermite quadrature is one way to pick nodes  $\mathbf{z} \in \mathcal{Q}(m,k)$  and weights  $\omega(\mathbf{z}) : \mathcal{Q}(m,k) \to \mathbb{R}$ , based on the theory of polynomial interpolation
- The adaptive part means that it uses the location (mode) and curvature (Hessian) of the target (posterior) so that  $\theta(\mathbf{z}) = \hat{\theta} + \mathbf{L}\mathbf{z}$
- Works particularly well when the integrand is pretty Gaussian
- Use k quadrature nodes per dimension, e.g. if k = 3 then  $3^m$  total nodes

Key benefits: no manual tuning, works well (and starting to get some theory) in statistical contexts



Figure 5: One dimensional example of AGHQ with  $3^1 = 3$  nodes. If k is odd then the mode is always included.



Figure 6: Two dimensional example of AGHQ with  $3^2=9$  nodes. Here we use the product rule so that the points in 2D are just 1D  $\times$  1D.

#### Step 3

- 3) Choose approximation for  $\tilde{p}(x_i | \boldsymbol{\theta}, \mathbf{y})$
- Simplest version (Rue and Martino 2007) is to marginalise  $\tilde{p}_{\mathsf{G}}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})$

$$\tilde{p}_{\mathsf{G}}(x_i \mid \boldsymbol{\theta}, \mathbf{y}) = \mathcal{N}(x_i \mid \mu_i(\boldsymbol{\theta}), 1/q_i(\boldsymbol{\theta}))$$
 (4)

- In R-INLA, the above is referred to as method = "gaussian"
- This is also what is currently used in aghq

There are more accurate (and complicated) versions which I will talk briefly about in a minute!

# Step 4

- 4) Finally, use quadrature to combine
  - our approximation  $\tilde{p}_{LA}(\theta \mid \mathbf{y})$  from Step 1,
  - some choice of integration nodes and weights  $\{\theta(\mathbf{z}), \omega(\mathbf{z})\}$  Step 2,
  - some choice of approximation  $\tilde{p}(x_i | \boldsymbol{\theta}, \mathbf{y})$  from Step 3 to give

$$\tilde{p}(x_i \mid \mathbf{y}) = \sum_{\mathbf{z} \in \mathcal{Z}} \tilde{p}(x_i \mid \boldsymbol{\theta}(\mathbf{z}), \mathbf{y}) \times \tilde{p}_{LA}(\boldsymbol{\theta}(\mathbf{z}) \mid \mathbf{y}) \times \omega(\mathbf{z})$$
 (5)

# Using a Laplace approximation for Step 3

- ullet Previously had been taking the marginals of  $ilde{p}_{\mathsf{G}}(\mathbf{x} \mid oldsymbol{ heta}, \mathbf{y})$
- Alternative: calculate a new Laplace approximation for each  $x_i$

$$ilde{p}_{\mathsf{LA}}(x_i,oldsymbol{ heta},\mathbf{y}) = rac{p(x_i,\mathbf{x}_{-i},oldsymbol{ heta},\mathbf{y})}{ ilde{p}_{\mathsf{G}}(\mathbf{x}_{-i}\,|\,x_i,oldsymbol{ heta},\mathbf{y})}\Big|_{\mathbf{x}_{-i}=\mu_{-i}(x_i,oldsymbol{ heta})}$$

where 
$$\tilde{p}_{\mathsf{G}}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{-i}(x_i, \boldsymbol{\theta}), \boldsymbol{Q}_{-i}(x_i, \boldsymbol{\theta})^{-1})$$

- ullet Problem: N can be big, and we will need to recalculate this for each  $(x_i, oldsymbol{ heta})$
- ullet Ideas like using  $\mu( heta)_{-i}$  to initialise Newton optimisation to find  $\mu_{-i}(x_i, heta)$  could help

# Cheaper approximate approximations

- Rue, Martino, and Chopin (2009) found a way to do this in a cheaper and more approximate way based on assuming a sparse precision for x
  - ullet a.k.a. that  ${f x}$  is a Gaussian Markov random field (GMRF)
- Wood (2020) extended their approximation to work for the case when x does not have a sparse precision

Plan: see how long a naive version without these modifications takes, then use this work to get speed-ups as required

#### Epilepsy example

- Replication of example from Section 5.2. of Rue, Martino, and Chopin (2009), and previously from BUGS manual
- Patients i = 1, ..., 59 each either assigned treatment  $Trt_i = 1$  or placebo  $Trt_i = 0$  to help with seizures
- Visits to clinics j = 1, ..., 4 times with  $y_{ij}$  the number of seizures of the *i*th person in the two weeks proceeding their *j*th visit to the clinic
- Covariates age Age<sub>i</sub>, baseline seizure counts Base<sub>i</sub> and an indicator for the final clinic visit V<sub>4</sub>

Notebook for this example at athowes.github.io/elgm-inf/epil

# Epilepsy example

The model is a Poisson GLMM:

```
v_{ii} \sim \mathsf{Poisson}(\lambda_{ii}).
\lambda_{ii}=e^{\eta_{ij}}
\eta_{ii} = \beta_0 + \beta_{\text{Base}} \log(\text{Baseline}_i/4) + \beta_{\text{Trt}} \text{Trt}_i + \beta_{\text{Trt} \times \text{Base}} \text{Trt}_i \times \log(\text{Baseline}_i/4)
      + \beta_{Age} \log(Age_i) + \beta_{V_4} V_{4i} + \epsilon_i + \nu_{ii}, \quad i = 1:59, \quad j = 1:4,
  \beta \sim \mathcal{N}(0.100^2). \forall \beta.
 \epsilon_i \sim \mathcal{N}(0, 1/\tau_{\epsilon}).
\nu_{ii} \sim \mathcal{N}(0, 1/\tau_{\nu})
 \tau_{\epsilon} \sim \Gamma(0.001, 0.001),
\tau_{\nu} \sim \Gamma(0.001, 0.001).
```

#### Inference

#### Implement the following inference procedures:

- 1. HMC NUTS via tmbstan and TMB
- 2. Grid with Gaussian marginals via R-INLA
- 3. Grid with simplified Laplace marginals via R-INLA
- 4. Grid with Laplace marginals via R-INLA
- 5. EB with Gaussian marginals via TMB
- 6. AGHQ with Gaussian marginals via aghq and TMB
- 7. EB with Laplace marginals via aghq and TMB<sup>3</sup>

 $<sup>^3</sup>$ l'm working on AGHQ with Gaussian marginals via aghq and TMB. I am using the aghq package, just with k=1 corresponding to EB

#### Results

#### Comparison approach

- You could look at the summaries like the mean and standard deviation of each of the posterior marginals but it's better to compare the whole posterior distributions
- One way to do this is via Kolmogorov-Smirnov statistics, which give the maximum difference between two empirical CDFs

#### Prevalence, ANC, ART example

- Notebook for this example at athowes.github.io/elgm-inf/prev-anc-art
- Simulate data from model with all three components and particular (known) parameter values

#### Inference

#### Implement the following inference procedures:

- 1. HMC NUTS via tmbstan and TMB
- 2. EB with Gaussian marginals via TMB
- 3. AGHQ with Gaussian marginals via aghq and TMB
- All of these approaches share the same C++ template, so the models are identical! This is often very difficult to ensure, so we're very fortunate here<sup>4</sup>

 $<sup>^4</sup>$ i.e. thanks to Kasper and Alex for making tmbstan and 'aghq respectively!

#### Results

#### **Conclusions**

My main comment is that several aspects of the computational machineery that is presented by Rue and his colleagues **could benefit** from the use of a numerical technique known as automatic differentiation (AD) ... By the use of AD one could obtain a system that is automatic from a user's perspective... the benefit would be a fast, flexible and easy-to-use system for doing Bayesian analysis in models with Gaussian latent variables

– Hans J. Skaug (coauthor of TMB), RSS discussion of Rue, Martino, and Chopin (2009)

#### **Conclusions**

- Hopeful that we'll give fast, accurate inferences for Naomi!
- Implementation as a part of aghq combining simplified INLA and AGHQ, enabled by automatic differentiation, will provide flexible use of the method
  - Will be of interest to advanced users of R-INLA who would like specify models outside a formula interface (similar to users of brms v.s. Stan)
  - ullet This describes many in the HIV inference group hiv-inference.org<sup>5</sup>

 $<sup>^5\</sup>mbox{See}$  athowes.github.io/inla-sandbox/ for some examples of understanding R-INLA internals.

#### Thanks for listening!

- Joint work with Alex Stringer (Waterloo) and my supervisors Seth Flaxman (Oxford) and Jeff Eaton (Imperial)
- The code for this project is at github.com/athowes/elgm-inf
- You can find me online at athowes.github.io

#### References I

- Bilodeau, Blair, Alex Stringer, and Yanbo Tang. 2021. "Stochastic Convergence Rates and Applications of Adaptive Quadrature in Bayesian Inference." https://arxiv.org/abs/2102.06801.
- Blangiardo, Marta, and Michela Cameletti. 2015. Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons.
- Griewank, Andreas, and Andrea Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. Siam.
- Kristensen, Kasper, Anders Nielsen, Casper W Berg, Hans Skaug, and Brad Bell. 2015. "TMB: automatic differentiation and Laplace approximation." arXiv Preprint arXiv:1509.00660.
- Rue, Håvard, and Sara Martino. 2007. "Approximate Bayesian inference for hierarchical Gaussian Markov random field models." *Journal of Statistical Planning and Inference* 137 (10): 3177–92.

#### References II

- Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations." *Journal of the Royal Statistical Society: Series b* (Statistical Methodology) 71 (2): 319–92.
- Stringer, Alex. 2021. "Implementing Approximate Bayesian Inference Using Adaptive Quadrature: The Aghq Package." https://arxiv.org/abs/2101.04468.
- Wood, Simon N. 2020. "Simplified Integrated Nested Laplace Approximation." *Biometrika* 107 (1): 223–30.