

Course Instructors:

Manav Bhatnagar, Subashish Dutta, Debanjan Bhaumik, Harshan

Jagadeesh

Department of Electrical Engineering, IITD

1

MESH ANALYSIS

Introduction

- Popularly known as Mesh Current Analysis
- It is a technique used to find the currents circulating around a loop or mesh with in any closed path of a circuit
- It is based upon KVL
- It results in system of linear equations that can be solved for unknown currents
- Number of mesh currents = Number of Branches Number of nodes + 1

Example: Apply the Mesh Analysis to get the values of current for

the given circuit

• Step 1: Identify the number of meshes in the circuit

3

Mesh Analyis

• Step 2: Assign the current value to each mesh

• Step 3: Apply the KVL to form the linear equations

Applying KVL at both the loops we get

Mesh 1: $4I_1 + 2(I_1 + I_2) = 28$

Mesh 2: $2(I_1+I_2) + I_2 = 7$

• Step 4: Solving the equation to get the values of current

Mesh 1: $6I_1 + 2I_2 = 28$

Mesh 2: $2I_1 + 3I_2 = 7$

Answer: $I_1 = 5A$; $I_2 = -1A$

5

Mesh Analyis

Various Cases in Mesh Analysis

Case 1: When current source exist in one mesh only

Example: Find the current for the given circuit

Mesh 1: $4i_1 + 6 (i_1 - i_2) = 10$

Mesh 2: i_2 = -5A

Using the above equations we get the value of i_1 as: $i_1 = -2A$

Case 2: Supermesh

Example: Find the currents for the given circuit

7

Mesh Analyis

Solution:

Step 1: Apply the supermesh

Step2: Apply KVL in supermesh to form the linear equation

Supermesh: $6l_1 + 12 l_2 = 27$

Equation at Current source: I_1 - I_2 = 5

Solving both the equation we get the values as: I_1 = 29/6, I_2 = -1/6

8

Case 3: When Dependent source is there in the mesh

Example: Find the currents in the given circuit

9

Mesh Analysis

Solution: Apply Ohm' law to find the value of $V_{\rm x}$ in terms of $I_{\rm 2}$

$$V_x = -56 I_2 \tag{1}$$

Apply KVL in both the mesh to form the equation

$$I_1 = V_x/2 \tag{2}$$

$$56 I_2 + 28(I_2 - I_1) = 200$$
 (3)

Solving these equations we get the value of I_1 and I_2 as: I_1 = -200/31, I_2 = 50/217

Problem: Find the value of i_0 in the given circuit

11

Mesh Analysis

Solution: Apply the supermesh method to reduce the circuit as

12

Applying KVL in mesh 2:

$$-10i_1 + 20i_2 + 4i_0 = 0 (1)$$

At point A using KCL we get:

$$i_0 = i_1 - i_2$$
 (2)

Using (1) and (2) we get:

$$i_1 = (16/6) i_2$$
 (3)

13

Mesh Analysis

In Supermesh

$$i_1 = (16/6) i_2$$

(4)

$$50 i_1 + 10(i_1 - i_2) - 4i_0 + 40i_3 = 100$$

Using $i_0 = i_1 - i_2$ (4) can be simplified to

$$28 i_1 - 3i_2 + 20i_3 = 50 (5)$$

Also, $i_3 - i_4 = 2$ and $-i_4 + i_1 = 0.2 v_0$

But, $v_0 = 10i_2$ which gives us

$$i_3 = 2 + (2/3) i_2$$
 (6)

Solving, (1) - (6) we get i_2 = 0.11764 A

We get, $i_0 = 0.196 \text{ A}$

14

Matrix Analysis

Apply KVL:

Mesh 1:
$$R_1I_1 + R_{12}(I_1 - I_2) = V_1 - V_{12}$$

Mesh 2:
$$R_{12}(I_2-I_1) + R_2 I_2 + R_{23}(I_2-I_3) = V_{12} + V_{23}$$

Mesh 3: $R_{23}(I_3-I_2) + R'_3 I_3 + R''_3 I_3 = V_3 - V_{23}$

15

Simplifying

Mesh 1: $(R_1 + R_{12})I_1 - R_{12}I_2 + 0I_3 =$ $V_1 - V_{12}$

Mesh 2:
$$-R_{12}I_1 + (R_{12} + R_2 + R_{23})I_2 - R_{23} I_3 = V_{12} + V_{23}$$

Mesh 3:
$$0I_1 - R_{23}I_2 + (R_3' + R_3'' + R_{23})I_3 = V_3 - V_{23}$$

Matrix Form:

$$\begin{bmatrix} (R_1 + R_{12}) & -R_{12} & 0 \\ -R_{12} & (R_{12} + R_2 + R_{23}) & -R_{23} \\ 0 & -R_{23} & (R_3' + R_3'' + R_{23}) \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} V_1 - V_{12} \\ V_{12} + V_{23} \\ V_3 - V_{23} \end{bmatrix}$$

Loop Analysis

Find currents in all resistances

Apply KVL:

Loop 1: $R_1(I_1 + I_2) + R_2I_1 = B_1$ Loop 2: $R_1(I_1 + I_2) + R_3I_2 = B_1 - B_2$

Simplifying:

Loop 1: $(R_1+R_2)I_1 + R_1I_2 = B_1$ Loop 2: $R_1I_1 + (R_1+R_3)I_2 = B_1 - B_2$

$$I_1 = \frac{R_3 B_1 + R_1 B_2}{(R_1 + R_2)(R_1 + R_3) - R_1^2}$$

$$I_2 = \frac{(R_1 + R_2)B_2 - R_2 B_1}{R_1^2 - (R_1 + R_2)(R_1 + R_3)}$$

Solution: $I_1 = 4A$

 $I_2 = 1A$

Currents: $R_1 \rightarrow I_1 + I_2 = 5 A$ $R_2 \to I_1 = 4 A$ $R_3 \rightarrow I_2 = 1 A$

Applicability

Applying KVL:

Loop 1: $R_1(I_1 + I_2 + I_3) + R_2I_1 = V_1$

Loop 2: $R_1(I_1 + I_2 + I_3) + R_3(I_2 + I_3) = V_1 - \rho V_{\chi}$ Loop 3: $R_1(I_1 + I_2 + I_3) + R_3(I_2 + I_3) + (R_4 + R_5)I_3 = V_1 + V_2$

Note that $V_x = R_1 I_1$