1 Tetrahedron

type	description	example	#
(4, 0, 0, 0)	id	(A)(C)(F)(H)	1
(1, 0, 1, 0)	rotation $2\pi/3$ around the axis between a point and	(A)(CFH)	4
	the altitude to the opposing triangle		
(1, 0, 1, 0)	rotation $-2\pi/3$ around the axis between a point and	(A)(CHF)	4
	the altitude to the opposing triangle		
(0, 2, 0, 0)	rotation around the axis between the centre of a line	(AC)(HF)	3
	and the centre of the opposing segment		

Total: 12.

2 Even permutations

Note

Composition is performed from the right.

Lemma 1

Any 3-cycle can be composed from 3-cycles of the form (1, i, j).

Proof

For 3-cycles without 1: (a, b, c), this is trivially (1, a, b)(1, b, c). For 3-cycles with 1: (a, b, 1) we already have a solution.

Lemma 2

Any 3-cycle can be composed from 3-cycles of the form (1,2,j).

Proof

If the 3-cycle contains consecutively 1 and 2, then we are done. If it contains consecutively 2 and 1: (a, 2, 1), then we apply the 3-cycle twice: (a, 2, 1) = (1, 2, a)(1, 2, a).

If the 3-cycle contains 2, but not 1, then we simply apply Lemma 1. If the resulting 3-cycles contain 1, 2 consecutively, then ok. If not, we can break them down again using applying the 3-cycle twice as previously. If the 3-cycle contains 1 and not 2, then (1,a,b)=(1,2,b)(1,2,b)(1,2,a)(1,2,b) and from Lemma 1 we can construct any 3-cycle of this form.

Lemma 3

 A_n is generated by 3-cycles of the form (i, i + 1, i + 2).

Proof

From Lemma 2 we known, that any 3-cycle can be composed of more elementary cycles of the form (1,2,k). For $A_3 = \{(1), (1,2,3), (1,3,2)\}$ we need only the generator (1,2,3). For A_4 this is also true (checked programmatically by exhaustive state search). For $n \geq 5$: (1,2,i) it is obvious for i=3 and for i=4 it is also true, because (1,2,4) = (1,2,3)(1,2,3)(2,3,4)(1,2,3).

For $i \ge 5$: (1,2,i) = (1,2,i-2)(1,2,i-1)(i-2,i-1,i)(1,2,i-2)(1,2,i-1). From Lemma 2 we know, that any 3-cycle can be create by the product of 3-cycles of the form (1,2,j) and from the lecture we know, that any A_k is generated by 3-cycles.

Theorem

Since we can use $\sigma = (1, 2, 3, ..., n)$, we can also use $\sigma^{-1} = \sigma^{n-1}$. Since we have $\alpha = (1, n-1, n)$, we can also use $(1, 2, 3) = {}^{\sigma_{\alpha}^2}$. This was we can create arbitrary cycle of the form $(i, i+1, i+2) = {}^{\sigma^{1+i}}\alpha$. From Lemma 3 we know, that 3-cycles of the form (i, i+1, i+2) generate A_n , so it can be also generated from α, σ .