Katedra technologie staveb ČVUT v Praze, Fakulta stavební

Prof. Ing. Jarský Čeněk, DrSc. Ing. Usmanov Vyacheslav Ing. Eva Hlavová Gazdová

MATEMATICKÉ MODELOVÁNÍ A OPTIMALIZACE STROJNÍCH STAVEBNÍCH SESTAV

Mathematical Modeling and Optimization of Mechanical Construction Formations

<u>www.celysvet.cz/model</u>: Matematické modelování a optimalizace strojních stavebních sestav

Číslo projektu: SGS11/099/OHK1/2T/11

Garant projektu: Ministerstvo školství, mládeže a tělovýchovy, projekt č. MSM 6840770006

Řešitel projektu: Ing. Usmanov Vyacheslav, <u>usmanov@seznam.cz</u> Člen týmu: Prof. Ing. Jarský Čeněk, DrSc., <u>jarsky@contec.cz</u> Člen týmu: Ing. Hlavová Gazdová Eva, <u>eva.gazdova@fsv.cvut.cz</u>

© Čeněk Jarský, Usmanov Vyacheslav, Hlavová Gazdová Eva 2011-2012

Název česky: Matematické modelování a optimalizace strojních stavebních sestav

<u>Název anglicky</u>: Mathematical Modeling and Optimization of Mechanical Construction Formations

Anotace česky: Grantová práce bude věnována matematickému modelování a optimalizaci strojních stavebních sestav nebo mechanizovaných prostředků s využitím teorie hromadné obsluhy (teorie front), popř. stochastického modelování pomocí metody Monte Carlo.

Výstupem projektu by měla být internetová aplikace pro modelování a optimalizaci strojních sestav včetně multimediálního katalogu mechanizovaných prostředků. Optimalizace se bude provádět z následujících hledisek: cena stavebního díla, vliv stavebního procesu na životní prostředí, náklady, zisk, spotřeba pohonných hmot, délka realizace výstavby.

Anotace anglicky: The grant work will be devoted to mathematical modeling and optimization of mechanical construction formation, using the theory of queuing and of stochastic mathematic modeling with application of Monte Carlo theory.

The output of the grant project should be internet aplication for modeling and optimization of mechanical construction formation including multimedia catalog of mechanized equipment. Optimization will be performed in terms of price, the impact of the construction process on the environment, costs, profits, fuel consumption, time of execution.

Obsah

Př	edml	uva	6
1	Úv	/od	7
2	Ma	atematická analýza problému	11
3	Ek	conomická analýza problému	19
4	Te	chnologická analýza problému	25
5	Sp	olečenská omezení chování výrobního systému	30
6	Siı	mulace a aplikace teorie hromadné obsluhy	31
7	Te	chnické požadavky systému	40
8	Po	dmínky pro sestavení modelů a spuštění systému	41
	8.1	Spuštění systému	41
	8.2	Technické parametry MySQL databází systému SEM	43
	8.3	Stručný popis jeho pracovních oblastí	46
9	Or	otimalizační algoritmus	59
10	;	Souhrn a závěry	69
Lit	terati	ura	70

Předmluva

Současná ekonomická situace nedovoluje stavebním firmám provádět při tvorbě nabídek podrobnější dlouhodobé optimalizační propočty. Nabídka se zpravidla soustředí na cenu zakázky, která musí odpovídat situaci na stavebním trhu. Optimalizační kroky se proto provádějí až po získání zakázky. Dnešní ekonomická situace vyžaduje nový originální přístup k jednotlivým zakázkám. Velká konkurence ve stavebnictví vede zhotovitele při výběrovém řízení ke snižování konečné ceny za dílo. Tato situace dále vede k nutnosti optimalizace stavebních procesů a k optimálnímu návrhu strojních sestav. Největší důraz se klade na konečnou cenu díla, ve které se odrážejí změny a stav stavebního trhu. Pro dosažení maximálního zisku musí zhotovitel stavby reagovat na současnou ekonomickou situaci a zabývat se postupně jednotlivými částmi realizace zakázky, jako jsou pracnost a s tím související optimální doba výstavby, náklady na pohonné hmoty, celková logistika a veškeré technologické postupy. Všechny tyto dílčí části mají jedno společné - teprve jejich optimalizací dojde k minimalizaci ceny díla a nákladů na výstavbu, popř. k maximalizaci zisku. Práce je zaměřená na vývoj informačního systému dostupného pomocí internetové aplikace pro všechny stavebníky. Práce má vysokou vědeckou úroveň a používá matematické metody pro modelování stavebních technologických procesů a nalezení optimálních parametrů při výběru strojních sestav (minimalizace pracnosti a nákladů, spotřeba PHM, doba výstavby, dopad na životní prostředí atd.). Výsledky práce jsou použitelné nejenom pro rozvoj teorie vědního oboru technologie staveb, ale i ve stavební praxi a ve výukovém procesu.

1 Úvod

Každá stavební výroba je těsně spojena s otázkou nákladů a časových lhůt. Také zadavatelé stavebních prací a následně stavební firmy musí vždy u každé plánované zakázky vyřešit termín dokončení stavby a předpokládané náklady se stavbou spojené. Jak se v praxi ukazuje, stanovení doby trvání stavby za minimálních nákladů není stále ještě svázáno s odpovědným propočtem a při stanovování nákladů se jen zřídka bere zřetel na spojitost časových potřeb a finančních nákladů.

V současnosti jsou k dispozici některé programy pro analýzu stavební výroby a pro časové plánování využívající síťových grafů, harmonogramů a jejich optimalizaci. Dalším podpůrným zařízením pro optimalizace ceny jsou tzv. interní firemní směrnice, které si stavební firmy vytvářejí v závislosti na vlastních zkušenostech a statistických hodnotách. Některé tyto dokumenty pak slouží k optimálnímu využití strojních sestav a vytváření plánů potřeb. Jiné podobné informační prostředky, zejména pro optimalizaci stavebních procesů, zatím neexistují resp. jsou vypracovány jen v malém a zřejmě nepostačujícím objemu. Zvláště oblast optimálního výběru strojních sestav zatím je na počátku svého vývoje a programové vybavení, které by umožňovalo snadný optimální výběr strojní sestavy z hlediska minimalizaci pracnosti a nákladů, spotřeby PHM, doby výstavby, dopadu na životní prostředí atd. včetně příslušných dat, na internetové bázi neexistuje.

Zaměření se na snížení nákladů stavby znamená zamezit zbytečným prodlevám na stavbě, zbytečným vícenákladům z důvodu zvolené špatné technologie či špatné mechanizace. Našim cílem je tyto problémy snížit na minimum, nebo je dokonce zcela eliminovat. Technologicko-matematický model stavební výroby a katalog strojních stavebních sestav budou původními částmi projektu. Některé jmenované části budou zpracovány do internetové aplikace a bude možné s nimi jednoduše pracovat.

Úspěšnost firmy je v dnešní době přímo určena efektivitou a flexibilitou procesů, kterými jsou nabízeny její služby, či produkty. V grantové práci se budeme převážně zabývat matematickým modelováním technologie výrobního stavebního systému. S využitím teorie hromadné obsluhy (teorie front) popř. stochastického modelování pomocí metody Monte Carlo byl nalezen model s takovým chováním, který vedl k nalezení optimální strojní sestavy (mechanizační prostředky). Model je postaven na internetové bází. Zajímají nás klíčové charakteristiky, kterými jsou minimální pracnost a náklady, optimální doba provádění stavby,

maximalizace zisku stavebního podniku, optimální spotřeba PHM a minimalizace dopadů stavební výroby na životní prostředí. Dále jsou uvedeny první výsledky práce autorů dosažené v této oblasti (viz obr. 1.1.):

- Technologicko-matematický model stavební výroby v simulačním SW Matlab Simulink.
- Internetová aplikace pro modelování a optimalizaci strojních sestav.
- Databáze katalogu strojních sestav.

Obr. 1.1 Internetová aplikace pro modelování a optimalizaci strojních sestav

V příručce je dále představen návrh internetové aplikace pro modelování a optimalizaci strojních sestav. Součástí internetové aplikace je databáze katalogu strojních sestav včetně parametrů nutných pro modelování zjišťovaných na základě dotazů větších stavebních firem a

databáze environmentálních aspektů včetně propojení se stavebními procesy a určení vlivů na životní prostředí.

Zformulujeme základní kroky řešení v dané grantové práci:

- výběr metody pro modelování stavebního procesu;
- určení technologických a ekonomických zákonitostí během stavební výroby;
- počítačová simulace mechanizačních stavebních procesů;
- vyhodnocení stavebních procesů z technologických, technických a ekonomických hledisek;
- výběr nejvhodnější varianty modelovaného procesu;
- zpracování katalogu mechanizačních prostředků a databáze environmentálních aspektů.

Hlavní cíl grantové práce je snaha o vytvoření technologicko-matematického modelu stavební výroby, který by co nejvíce odpovídal skutečnosti. Vytvořený matematický model včetně připojených databází mechanizovaných strojních sestav a environmentálních vlivů stavební výroby by měl umožnit optimalizaci strojních sestav (mechanizačních prostředků).

Optimalizace je řešena z následujících hledisek:

- a) cena stavebního díla,
- b) náklady stavebního díla,
- c) zisk,
- d) pracnost,
- e) spotřeba pohonných hmot,
- f) délka realizace,
- g) vliv stavebního procesu na životní prostředí.

Výstupem grantové práce je internetová aplikace pro modelování a optimalizaci strojních sestav. Stochastická simulace umožní zahrnout do modelování a výpočtu optimálních parametrů procesů nahodilé faktory, které jsou obecně dost neprůhledné a obtížně zahrnutelné do výpočtů.

Byli prozkoumané další nahodilé faktory:

- a) terénní podmínky,
- b) poruchovost strojů,
- c) havarijní stavy,

- d) vliv intenzity dopravy,
- e) lidský činitel,

atp.

Dílo vzniklo díky finanční podpoře výzkumného záměru Management udržitelného rozvoje životního cyklu staveb, stavebních podniků a území (MSM 6840770006) financovaného Ministerstvem školství mládeže a tělovýchovy na Českém vysokém učení technickém v Praze, na Fakultě stavební a grantu SGS11/099/OHK1/2T/11 (Studentská grantová soutěž ČVUT 2011).

2 Matematická analýza problému

Modelování strojních sestav používá následující matematické metody a teorie:

Teorie hromadné obsluhy

Teorie hromadné obsluhy nebo teorie front se zabývá zkoumáním systémů s kanály obsluhy, kde dochází k procesům tvorby front a následné obsluze zákazníky obsluhujícími centry. Hlavním cílem teorie hromadné obsluhy je určení zákonitostí, dle kterých systém funguje a následnou tvorbu co nejpřesnějšího matematického modelu, který zohledňuje různé pravděpodobnostní vlivy, působících na celý proces. Celý stavební proces můžeme zkoumat jak z pohledu zákazníka, který čeká ve frontě a zajímá se především o dobu čekání ve frontě, tak i z pohledu obsluhujících center. Čekající prvek se rozhoduje, do jaké fronty musí zařadit nebo zda vůbec musí odejit do jiného systému. Z hlediska centra obsluhy je prioritou určit vytíženost kanálů a pravděpodobnost poruchy včetně času opravy. Centrum obsluhy by měl spolehlivě určit také i čas obsluhy zákazníka vzhledem k současnému stavebnímu úkolu.

Ve výsledku aplikace teorie hromadné obsluhy, matematický model by měl poskytnout údaje ohledně optimálního návrhu jak center obsluhy, tak i určení počtu zákazníků z přehlednutím k optimalizačním parametrům. Parametry, dle kterých budeme optimalizovat stavební proces, mohou byt následující: čas, počet poruch, spotřeba pohonných hmot, finanční náklady, dopad na životní prostředí atd.

Dle D.G.Kendallu [19] jakékoliv systém teorie hromadné obsluhy se dá klasifikovat dle následující kombinací písmen a číslic:

kde A – popisuje vstupní tok prvků, B – popisuje rozdělení pravděpodobnosti pro dobu obsluhy, C – popisuje počet linek obsluhy, D – uvádí maximální počet prvků systému, E – popisuje disciplínu fronty (konečná, nekonečna, FIFO, LIFO atd.).

Parametry A a B: Na místě "A" a "B" se mohou vyskytovat symboly:

• M - pro exponenciální rozdělení

- D pro konstanty (jde o deterministické intervaly)
- K_K pro Erlangovo rozdělení k-tého typu
- G libovolné rozdělení

Základní struktura systému hromadné obsluhy je znázorněná na obr. 2.1.

Obr. 2.1 Základní struktura systému hromadné obsluhy

Pro optimalizaci stavebních procesů více vyhovuje uzavřený systém, kde zákazníky se po určité době po ukončení obsluhy vracejí zpět do systému a řadí se zase do fronty. Uzavřeným procesem rozumíme situaci, kdy zdroj požadavků je konečný. Délka fronty je omezená a zpracování požadavků zákazníků se provádí dle způsobu FIFO (first in - first out). Pro maximální délku fronty platí vztah:

Obr. 2.2 Uzavřený systém hromadné obsluhy

Příkladem použití aplikace může byt optimalizace stavebních strojů ve stavební etapě Zemní práce, kde v rolí obsluhujících center vystupují nakladače nebo rypadla (počet C) a

v roli zákazníku vstupují do systému nákladní auta nebo dempry (počet D). Nadále budeme uvažovat o systému, kde D je větší, než C. Uzavřený systém hromadné obsluhy je zobrazen na obr. 2.2.

Pro každý stavební proces můžeme určit časovou jednotku dle hloubky pohledu na optimalizační matematický model, např. minuta, hodina, směna, týden, měsíc. Pro správnou funkčnost matematického modelu aplikace teorie hromadné obsluhy musíme také splnit následující řadu podmínek [19]:

- a) vstup prvku do fronty může nastat v kterémkoliv časovém okamžiku;
- b) počet vstupů během časového intervalu závisí na délce intervalu a na druhu rozložení výkonu obsluhujícího centra (např. rovnoměrné, "želva", stupňové, klesající nebo stoupající) a schéma výkonu obsluhujícího stroje je dána parametry stavebního úkolu, určují se před matematickou simulaci a během matematického modelování se nemění;
- c) pravděpodobnost, že v intervalu délky δT nastane více než jeden vstup, konverguje k nule rychleji než délka intervalu δT ;
 - d) průměrný počet vstupů za časovou jednotku je roven λ.

Pro výpočet charakteristik systému je třeba použit následující vzorce. Intenzitu provozu určíme dle vzorce:

$$\rho = \frac{\lambda}{C \cdot \mu},$$

kde λ je parametr exponenciálního rozdělení, které charakterizuje dobu, strávenou prvkem mimo obsluhující systém, např. odvoz zeminy na skládku a návrat nákladního auta zpět k obsluhujícímu centru,

μ je parametr exponenciálního rozdělení, které charakterizuje dobu, strávenou prvkem během obsluhy, např. naložení zeminy nakladačem na nákladní auto.

Vyjádření pravděpodobností funkce P_k , že v časovém intervalu délky T vstoupí do systému k=1,...,C prvků:

$$P_k = \frac{1}{k!} \cdot \left(\frac{\lambda}{\mu}\right)^k \cdot P_0,$$

kde P_0 určíme dle vztahu:

$$P_0 = \frac{1}{\sum_{k=0}^{C} \frac{1}{k!} \cdot \left(\frac{\lambda}{\mu}\right)^k + \frac{1}{C!} \cdot \left(\frac{\lambda}{\mu}\right)^C \cdot \rho \cdot \frac{1 - \rho^{D-C}}{1 - \rho}},$$

Dále můžeme snadno vypočítat další vlastností systému:

Střední počet zákazníků v obsluze:

$$ES = \frac{\lambda}{u} \cdot (1 - P_D).$$

Střední počet zákazníků ve frontě:

$$EL = \sum_{l=1}^{D-C} l \cdot P_{C+l}$$

Střední počet zákazníku v systému:

$$EK = ES + EL$$

Snadno dokážeme odvodit a použit i vzorce pro výpočet dalších parametru systému: využití systému, průměrnou dobu čekání prvku ve frontě, uvnitř a mimo systém obsluhy. Můžeme zjišťovat i různé pravděpodobností poruch prvku a časy nečinnosti. Po zahrnutí do matematického modelu dalších parametru, můžeme vypočítat i jiné vlastností systému: nákladové charakteristiky, doby trvání stavebních procesu, dopad na životní prostředí, spotřebu pohonných hmot atd. Po zavedení do matematického modelu všech zákonitostí můžeme provádět různé optimalizační úlohy a navrhovat optimální výběr strojních sestav pro určitý stavební proces dle různých kritérií.

Metoda Monte Carlo

Monte Carlo je třída algoritmů pro simulaci systémů. Jde o stochastické metody používající pseudonáhodná čísla. Typicky využívány pro výpočet integrálů, zejména vícerozměrných, kde běžné metody nejsou efektivní. Metoda Monte Carlo má široké využití od simulaci experimentů přes počítání určitých integrálů až třeba řešení diferenciálních rovnic. Základní myšlenka této metody je velice jednoduchá, chceme určit střední hodnotu veličiny, která je výsledkem náhodného děje. Vytvoří se počítačový model toho děje a po proběhnutí dostatečného množství simulací se mohou data zpracovat klasickými statistickými metodami, třeba určit průměr a směrodatnou odchylku [23].

Metoda Monte Carlo byla formulována již ve 40. letech 20. století a svého využití se dočkala ještě v průběhu druhé světové války. Jejím zakladatelem byl Stanislaw Marcin Ulam a John von Neumann, kteří v té době pracovali v americké Národní laboratoři Los Alamos, kde zkoumali chování neutronů, především je zajímalo, jaké množství neutronů projde různými materiály (např. nádrží vody) [24].

Přesnost a efektivnost celého výpočtu metodou Monte Carlo pomocí výpočetní techniky je dána těmito faktory [24]:

- kvalitou generátoru náhodných čísel, resp. pseudonáhodných čísel
- výběrem racionálního algoritmu výpočtu
- kontrolou přesnosti získaného výsledku

Metoda MC zahrnuje:

- vytvoření modelu skutečného systému, se stejnými pravděpodobnostními charakteristikami jako má reálný systém (vliv náhody - náhodná čísla)
- model musí zahrnovat veškeré relevantní skutečnosti, podstatně ovlivňující reálný systém
- experimentování s modelem, mnohanásobné zkoumání chování modelu
 - s pevným časovým krokem sledujeme chování systému po určitých konstantních časových intervalech a zjišťujeme, zda došlo ke změnám)
 - s proměnným časovým krokem generujeme interval, po který v systému nedojde k žádným změnám

Obr.: 2.3 Schéma metody Monte Carlo Schéma postupu metody Monte Carlo

Řešení problému metodou Monte Carlo můžeme rozdělit do tří kroků [23]:

- Rozbor problému a návrh modelu z hlediska řešení problému se jedná o
 nejdůležitější krok. I když je MMC použitelná prakticky u všech problémů a její
 formulace není složitá, nalezení vhodného postupu může nezkušenému řešiteli dělat
 problémy.
- Generování náhodných veličin, jejich transformace na veličiny s daným pravděpodobnostním rozdělením. Rychlost konvergence chyby výsledku k nulové hodnotě je u MMC rovna přibližně převrácené hodnotě odmocniny z počtu realizovaných pokusů N, z čehož plyne, že nepatří mezi metody nejefektivnější.
- Statistické zpracování výsledků hledaná hodnota je zpravidla dána některým z momentů statistických veličin, nejčastěji střední hodnotou.

Nákladová funkce

Teď se zaměříme na popis nákladové funkce, kterou budeme optimalizovat. Funkce celkových nákladů [Kč]:

$$TC = FCL + FCK$$
 (1)

Náklady na výrobní faktor [Kč/stroj resp. četa]:

$$FCL = FC + VC \tag{2}$$

kde

FC - fixní náklady [Kč/výrobní faktor];

VC - variabilní náklady [Kč/ výrobní faktor/jednotka času]

Náklady na faktor kapitálu [Kč/jednotka času]:

$$FCK = KC + RC + RE \tag{3}$$

kde

KC - náklady na kapitál (úvěry) [Kč/jednotka času];

RC - Režie (účetnictví, pronájem st. buněk atd.) vztažené na celou stavbu [Kč/jednotka času];

RE - Režie (účetnictví, pronájem st. buněk atd.) vztažené na stavební etapu [Kč/jednotka času].

Náklady na výrobní faktor:

$$FCL[t] = \sum_{i=1}^{n} VC_i \times t_i \times N_i - \sum_{i=1}^{n} FC_i \times N_i$$
(4)

kde

t - časová jednotka (den; směna; hodina);

n - počet dílčích stavebních procesů na kritické cestě SE;

N - počet výrobních faktorů, obsazených v i-stavebním procesu.

Náklady na faktor kapitálu:

$$FCK[t] = KR \times t - RC \times t - RE \times t$$
(5)

Náš matematický problém má jedno určité omezení. Skutečné sestavy výrobních faktorů mohou být jenom celočíselné. Doba procesu také muže být jenom celočíselná (zaokrouhlena nahoru do nejmenší diskrétní časové jednotky, kterou používáme ve výpočtu). Nemůžeme nechat pracovat stroj 10,1 dnů. Budeme muset zaplatit strojní sestavu na 11 dnů, což nebude optimální řešení. Pokud uděláme jednoduché zaokrouhlení nahoru, ztratíme optimální řešení a dostaneme se mimo optimální křivku minimálních nákladů. Každopádně řešení i po zaokrouhlení bude lepší a určenější, než řešení založené na intuitivním odhadu.

Problém diskrétního řešení se dá vyřešit s určitou chybou, způsobem úpravy výsledků. Počet strojů/čet se zaokrouhlí na nejbližší celé číslo. Doba trvání procesů zůstane neceločíselná, ale provede se úprava počtu strojů/čet a pracovního režimu. Existuje možnost nechat pracovat jeden resp. více strojů/čet s přesčasem, což umožní zkrátit zbytek diskrétní časové jednotky (vyžaduje doplňkové náklady na přesčas a zkrácení výkonu).

3 Ekonomická analýza problému

Současný trh stavebních výrobních faktorů, (stroje, lidé) má převážně charakter zdrojů, které nelze akumulovat v průběhu času a využít v dalších obdobích, pokud tyto zdroje nebyly vyčerpány v současnosti. Vzhledem k omezenosti všech zdrojů a stálému růstu cen energií musí investor resp. stavebník věnovat zvětšenou pozornost optimálnímu rozvržení souboru stavebních sestav nejen z hlediska rychlosti provádění stavby, ale i z hlediska minimalizace nákladů a dalších parametrů.

Obecně řečeno závislost nákladů na čase má konkávní charakter. Rychlost provedení práce je přímo závislá na intenzitě spotřebovávání zdrojů. Pokud se pro splnění úkolu používá více výrobních stavebních faktorů, (například více pracovních čet, či stroje s větším výkonem), nebo dražší a efektivnější technologická varianta, trvání procesu může být zkráceno (za splnění omezujících podmínek). Zároveň nelineárně rostou náklady. Každé další zkrácení o plánovací časovou jednotku vyžaduje stále vyšší náklady: mezní náklady. Z druhé strany křivku nákladů "zvedá" postupný každodenní nárůst nákladů na provoz stavby (viz. Obr. 3.1).

Obr. 3.1: Závislost výše nákladů na době výstavby

Obecně se náklady dají rozdělit

Dle vztahu k objektu výroby na Přímé náklady (PC) a Nepřímé náklady (NC).

Dle vztahu k objemu výroby na Fixní náklady (FC) a Variabilní náklady (VC).

Dle vztahu k druhu zdrojů na *Náklady na výrobní faktor* (FCL) a *Náklady na faktor kapitálu* (FCK).

Pro úkoly dané DDP vystačíme s řadou zjednodušení:

- a) Přímé náklady spojíme s náklady na výrobní faktory.
- b) Nepřímé náklady spojíme dohromady s Náklady na faktor kapitálu.
- c) Fixní náklady a Variabilní náklady budeme vztahovat jenom k výrobním faktorům.
- d) Náklady na stavební materiály budeme započítávat do Nákladů na faktor kapitálu.

Zkusíme veškeré náklady na stavbu roztřídit do třech skupin:

Náklady na faktor kapitálu (vztažené na celou stavbu resp. na technologickou etapu za jednotku času):

- * Režijní náklady (spotřeba paliv, energie a materiálů souvisejících s řízením; náklady na opravu a údržbu hmotného majetku; odpisy investičního majetku; výkony spojů, cestovné, nájemné a ostatní služby; mzdové náklady související s řízením a odvody z nich; osobní náklady; náklady na záruční opravy; pojistné; poplatky; ostatní finanční náklady)
- * Stavební materiály zjednodušeně určí počáteční hodnotu nákladu na faktor kapitálu.

Variabilní náklady (vztažené na výrobní faktor za jednotku času):

* Náklady na stroje / lidi (hodinová mzda; spotřeba paliv, energie; ostatní přímé náklady/odvody)

Fixní náklady (vztažené na výrobní faktor).

* Jednorázové náklady na pořízení výrobního faktoru

(Pozn. Výrobním faktorem rozumíme pracovníky, stroje a nářadí pro daný proces)

Závislost nákladů na faktoru kapitálu na čase postupně lineárně rostou. Protože objem Q produkce je u stavby neměnný, jsou Variabilní náklady také neměnné (přímka rovnoběžná s osou) a Fixní náklady tvoří logaritmicky klesající křivka.

Zajímavou skutečnosti je, že závislost fixních a variabilních nákladů je u stavebního objektu, (na rozdíl od klasické ekonomické teorie), vykreslena v jiné "dimenzi". Fixní

náklady mají nelineární klesající charakter, variabilní náklady naopak mají přímkový (horizontální) charakter. Vyplývá to z faktu, že stavební dílo má konstantní objem práce (velikost výrobku se nemění za podmínky zachování technologie). Proto zavedeme nové značení nákladů: proměnlivé a konstantní. Pro snadnější pochopení a orientaci znázorníme naše úvahy na následujícím obrázku 5.2.

3.2. Závislost nákladů a zisku na době výstavby

Na obrázku navíc znázorníme závislost zisku na době výstavby. Při překročení smluvní doby začnou nabíhat penále, (cena za dílo se tím zmenšuje), naopak při rychlé výstavbě investor obvykle vyplácí prémie. Je dost zřejmé, že přípustná množina zisku je tvořena rozdílem Ceny díla a Celkových nákladů. Management stavební výroby může tedy vybírat navrhovanou (plánovanou) dobu výstavby pouze z množiny zisku.

Na příkladu se pokusím vzniklou situaci vyjasnit.

Příklad:

Úkol (task), který je zapotřebí podle plánu vykonat vyžaduje podle zvolené technologie

potřebu 8000 Nh. Uvažovaná mzda je 100 Kč/Nh. Maximální doba k provedení úkolu je

stanovena na 100 dnů. Na pracovišti je možno umístit maximálně 100 jednotek výrobních

faktorů (pracovních čet). Fixní (jednorázový náklad na získání a umístění výrobního faktoru

na pracoviště je 1000 Kč/výrobní faktor. Denní pracovní doba je 8 hodin. Náklady na výrobní

kapitál jsou 2000 Kč/den.

a) První (krajní levý bod) křivky celkových nákladů:

- odpovídá nasazení maximálního počtu čet na pracovišti:

Sto pracovních čet (maximální počet výrobních faktorů) splní úkol za 10 dnů

 $8000 \, Nh / 100 \, \text{čet x 8} \, h = 10 \, d$

Variabilní náklady při průměrné mzdě 100 Kč/Nh budou 800 000 Kč.

 $8000 Nh \times 100 Kč/Nh = 800 000 Kč$

Fixní náklady na 100 pracovních čet (jednorázové náklady na umístění výrobního faktoru)

budou 100 000 Kč.

100 čet x 1000 *Kč/četa*= 100 000 Kč

Náklady na výrobní kapitál za 10 dnů dosáhnou 20 000 Kč.

 $10 d \times 2000 K \check{c}/d = 20000 K \check{c}$.

Celkové náklady dosáhnou: 920 000 Kč.

b) Poslední (krajní pravý bod) křivky celkových nákladů:

- odpovídá nejdelší přípustné době provádění úkolu:

Při maximální přípustné době výstavby (100 dnů) bude možné umístit na pracoviště jenom 10

pracovních čet

 $8000 \, Nh / 100 \, d \times 8 \, h = 10 \, \text{čet}$

Variabilní náklady při průměrné mzdě 100 *Kč/Nh* budou opět 800 000 Kč.

 $8000 Nh \times 100 Kč/Nh = 800 000 Kč$

Fixní náklady na 10 pracovních čet (náklady na umístění faktoru) budou 10 000 Kč.

10 čet x 1000 *Kč/če t*= 10 000 Kč

Náklady na kapitál za 100 dnů dosáhnou 200 000 Kč.

 $100 d \times 2000 K \check{c}/d = 200000 K \check{c}$.

Celkové náklady dosahnou: 1 010 000 kč.

Z matematického hlediska lze snadno odvodit tvar křivky celkových nákladů a analytickou metodou s pomocí příslušného software [18] najít vzorec, který by velmi zjednodušeně popisoval každý bod křivky. Musím upřesnit, že výše popsaný model rozdělení nákladů je příliš zjednodušen a nebral by v úvahu spoustu reálných faktorů. Proto za nedílnou část DDP považuji zabudování do simulace stochastických nahodilých velečin (lidský činitel, poruchovost strojů, vliv počasí, havarijní stavy, dopravní situace) a za pomocí vhodné matematické metody by bylo možné dosáhnout dost dobrých výsledků při minimální relativní chybě.

Stavební výroba je proces složený z mnoha činností. Každá stavební činnost má své omezující hranice: prostor, čas, technologie. Management stavby by měl racionálně vybírat nutný výrobní faktor s přihlédnutím nejen k výše popsaným parametrům, ale i v návaznosti na ekonomickou stránku. Každý výrobní faktor má svůj vlastní výkon, své vlastní parametry (minimální pracovní plocha, dosah, spotřeba paliv, vody, oprava a údržba), pořizovací jednorázové náklady (doprava na a ze staveniště / přísun – odsun stroje, školení pracovníků, tzv. Počáteční vstup do pracovního úkolu). Mimo jiné každý výrobní faktor má svůj vlastní náběh / obyčejný režim / doběh. Viz. obr. 3.3.

Vzhledem k obsáhlému pracovnímu trhu nejen strojů, ale i lidí budou do 'hry' vtaženy stovky různých druhu strojů, nářadí, pracovníku různé odbornosti a zkušenosti a tisíce parametrů. Každý pracovní úkol navíc muže být splněn několika druhy technologických postupů. Není v silách člověka bez pomoci automatizovaných systémů vyřešit optimální počáteční výběr strojní sestavy.

K dispozici skoro vždycky máme na výběr několik druhu strojů, proto management stavby provádí výběr mezi pracovními sestavami a je dost obtížné bez speciální metody z ekonomického hlediska efektivně ocenit výběr.

Každý výrobní faktor si vyžaduje dva druhy nákladů: variabilní (obvykle hodinová sazba) a fixní (náklady na odsun/přísun, náběh/doběh, školení). Pro konstantní objem výroby budeme nadále používat pojmy: konstantní a proměnlivé náklady. Jelikož každý stroj má vlastní (konstantní výkon po náběhu) můžeme s jistotou říct, že splnění pracovního úkolu si bude vyžadovat určitý počet stavebních diskrétních jednotek času / normohodin. Podíl variabilních nákladů k fixním nákladům bude také rozdílný pro každý stroj. Navíc obvykle na trhu pronájmu stavebních strojů platí, že při delším pronájmu je sleva samozřejmostí.

Obr. 3.3: Závislost výkonu na splnění úkolu

Pokud do našeho výpočtu a úvah zahrneme možnost pronájmu několika stejných strojů nebo nějakou kombinaci strojů dostupných na trhu - situace bez analytického výpočtu se stává pro řešitele nepřehlednou a ten se spoléhá jenom na intuici a zkušenost, která může občas být špatná. Úkol sice bude splněn, ale nebude provedena analýza za jakých nákladů a zda poměr čas / cena byl optimální. Je hned vidět, že pokud zkoumaný proces leží na kritické cestě, do oceňování budou zahrnuty i denní náklady na faktor kapitálu. Pokud proces neleží na kritické cestě a má nějakou určitou časovou rezervu, je vhodné ho uměle prodloužit a použít levnější stroj s menším výkonem (nebo menší počet strojů). V případě, že náklady na faktor kapitálu převáží fixní náklady vztažené k času u splnění úkolu, je nutno použít více strojů resp. silnější stroj a naopak.

Optimální návrh výrobního faktoru je v podstatě, jako všechno v ekonomickém světě, rovnováha mezi cenou a časem. V globálním měřítku, pokud se zdaří spočítat efektivní poměr náklady / délka stavby, existuje možnost ušetření prostředků (pracovních sil, energií, zdrojů) dle mých skromných odhadů až do 10 %. Existuje určitá možnost optimálně vybrat výrobní faktor z nabízených sestav ještě před prováděním úkolu pomocí výpočtu, který stanoví optimální počet faktorů s určitým výkonem pro určitý objem plánovaného úkolu.

4 Technologická analýza problému

Každý výrobní faktor je schopný zajistit splnění stavebního úkolu jen při splnění určitých technologických omezení. Stavební výroba není standardizovaná, každý stavební objekt je svým způsobem unikátní. Staví se dle unikátního projektu a v různých geografických / klimatických/ situačních podmínkách. Technologická omezení jsou jednoznačně určena hranicemi technologických možností. Každá technologie vyžaduje důsledné respektování přesného technologického postupu, což následně určuje požadavky na druh výrobního faktoru, dobu trvání procesu, klimatické a vnější podmínky (resp. standardizované podmínky na pracovišti). Technologické hranice se mohou v určitých případech stát dominantními a rozhodujícími pro stanovení výrobního faktoru. Technologické možnosti je možné rozšířit obvykle jen za dodatečných nákladů (např. použití speciálních přísad do betonu pro práce za mrazu). Dodatečné náklady je možné také porovnávat z hlediska nákladů a považovat buď za zvláštní proces, zkracující technologickou přestávku, nebo za koeficient, který zvyšuje výkon výrobního faktoru při dodatečných nákladech. Je možné sem zahrnout i bezpečnostní důvody, které určují spodní a horní hranici počtu strojů / čet.

Stavební podnikatel má obvykle k dispozici omezenou plochu pracoviště - staveniště a musí se vypořádat s četnou technologickou stavební výrobou různého druhu v terénních podmínkách. Provozy se obvykle všelijak kříží a navzájem si překážejí. Každý výrobní faktor navíc vyžaduje minimální pracovní plochu pracoviště. Poměr minimální pracovní plochy k celkové pracovní ploše pro daný výrobní faktor určuje součinitel pracovní fronty - jeden se základních omezujících parametrů v prostorové struktuře stavby. Minimální pracovní fronta nám udává dolní hranici počtu strojů / čet, které může mít management stavby pro splnění úkolu.

Disponibilní fronta by měla popisovat počet výrobních faktorů, který můžeme ještě přidat na staveniště pro splnění stavebního úkolu (viz. Obr.4.1).

Obr. 4.1: Pracovní fronta a její členění

Klimatické podmínky také omezují a posouvají technologické hranice ke své mezi. Je dost zřejmá závislost výkonu práce na denním světle (z technologických a bezpečnostních důvodů jsou některé práce zakázány bez postačujícího osvětlení). Viz. Obr. 4.2 [12].

změny výkonnosti během dne

Obr. 4.2: Vliv času na výkonu práce

Venkovní teplota také přináší určitá technologická omezení (betonáž) a vliv na výkon pracovníků. Viz. Obr. 4.3. Management stavby může za pomoci dodatečných nákladů omezení obejít (ohřívání betonu, umělé osvětlení atp.), ale vždycky by se měla provést ekonomická analýza dodatečných nákladů.

Obr. 4.3: Vliv teploty na výkonu práce

Matematické vyjádření technologických hranic počtu výrobních faktorů udávají další vzorce:

$$N_{min} = max \left\{1; \frac{Pc_i}{P_i \times t_{max}}\right\} \tag{1}$$

$$N_{max} = min\left\{\frac{Pc_i}{P_i}; N_{max-dost}; \frac{Pc_i}{P_i \times t_{min}}\right\}$$
 (2)

kde

Pc - stavební úkol, který musí být splněn výrobním faktorem [MJ];

P - výkon měrných jednotek jednoho výrobního faktoru za jednotku času [MJ/faktor/jednotka času];

Nmax-dost - disponibilní pracovní fronta [počet výrobních faktorů]

tmin - minimální trvání procesu z technologických a bezpečnostních důvodu.

tmax - maximální trvání procesu z technologických a bezpečnostních důvodu.

Při zrychlování (zkracování doby výstavby) má manažer stavby na výběr několik možností:

- * zavedení vícesměnné práce. Výhoda: Jednoduché a efektivní zkrácení zpoždění. Nevýhody: Menší výkonnost čety ve večerních a nočních hodinách. Viz. obr. 2.5. Je zapotřebí zaměstnat další četu (rostou fixní náklady). Možnost porušení nočního klidu. Neochota lidí pracovat přes noc.
- * zavedení přesčasové práce. Výhoda: Není nutno zaměstnávat další lidí (nerostou fixní náklady). Nevýhody: Menší výkonnost čety v přesčasech. Délka přesčasu je omezena zákonem (počítá se sumární počet hodin / týden). Hodinová sazba přesčasu je zpravidla větší, než obyčejná (rostou variabilní náklady) Navíc s růstem přesčasů klesá produktivita práce. Viz obr.6.7.
- * použití jiné technologie / jiných výrobních faktorů (s větším výkonem). Zpravidla použití jiné technologie a zvětšení výkonu výrobního faktoru je vždycky spojeno se zvýšením nákladů. Obvykle při operativním plánování změna technologie už není možná a manažer musí hledat jiné cesty zrychlení výstavby.

Ztráta produktivity při přesčasových hodinách (USA)

Obr. 4.4: Ztráta výkonu při růstu přesčasových hodin

Musíme upozornit, že rovněž po naplnění pracovní fronty dochází k prudkému snížení produktivity práce pracovníků. Viz. obr. 4.5. Pokud není možné vyřešit optimalizaci jinak, můžeme doporučit přistoupit ke změně pracovního režimu nebo lépe ke změně technologie.

Ztráta produktivity při "přeplněné" pracovní frontě

Obr. 4.5: Vliv přeplněné pracovní fronty na výkon pracovníků

5 Společenská omezení chování výrobního systému

Pro náš úkol je třeba zavést nový omezující parametr, který se na skutečném pracovním trhu vyskytuje poměrně často: maximální dostupnost výrobních faktorů (vliv omezených zdrojů). Tržní ekonomika se snaží vyrovnat různé nesrovnalosti cen a nabídky strojů / pracovníků v podmínkách integrace do EU. Česko se v poslední době potýká s nedostatkem pracovní síly skoro ve všech oborech. Maximální dostupnost výrobních faktorů nám udává horní hranice počtu strojů / pracovních čet, který má management stavby pro splnění úkolu.

Na stavební výrobu, v podstatě stejně jako na každou výrobu mají vliv společenská omezení. Platí snad jen pravidlo, že ve stavebnictví jsou omezení několikrát přísnější z důvodu většího dopadu na společnost: větší hluk, proměnlivé pracoviště, zvýšené riziko úrazu, větší zátěž na prostředí (odpady), velký poměr ruční manuální práce, delší doba výroby stavebního díla. Z těchto důvodů společnost přísně reguluje stavební výrobu různými zákony a místními vyhláškami:

- zákon č. 183/2006 Sb., o územním plánování a stavebním řádu (stavební zákon)
- vyhláška č. 268/2009 Sb., o obecných technických požadavcích na výstavbu,
- zákon č. 262/2006 Sb. Zákoník práce
- zákon č. 251/2005 Sb., o inspekci práce
- nařízení vlády č. 362/2005 Sb., o bližších požadavcích na bezpečnost a ochranu zdraví
 při práci na pracovištích s nebezpečím pádu z výšky nebo do hloubky (+ přílohy)
- vyhláška č. 499/2006 o dokumentaci staveb (Příloha č. 4 Dokumentace bouracích prací)
- zákon č. 309/2006 Sb. o zajištění podmínek bezpečnosti a ochrany zdraví při práci
- nařízením vlády č. 591/2006 Sb., o bližších minimálních požadavcích na bezpečnost a ochranu zdraví při práci na staveništích
- místní vyhlášky magistrátu/stavebního úřadu (hluková zátěž, bezpečnostní pásma, noční klid, parkování a dopravní provoz)
- zákon o odpadech a atp.

6 Simulace a aplikace teorie hromadné obsluhy

Pro matematické modelování a simulaci bylo rozhodnuto použit speciální software [18]. Simulační software umožňuje snadné zavedení do modelu dalších upřesňujících parametrů a koeficientů.

Matematické modelování provedeme na příkladu stavební etapy zemní práce. Na základě výstupu simulace, optimálně navrhneme pro daný úkol strojní sestavu (rypadlo) ze třech možných variant a optimální počet nákladních aut pro odvoz zeminy. Rozhodujícím kritériem bude splnění úkolu za určitý čas a minimální finanční náklady. Objem úkolu je konstantní a nemění se. Ostatní stroje: druh nákladních aut (dempr) je předem určený. Počet kanálů vychází z geografických podmínek stavby a v našem příkladu je přesně zadaný a roven N = 1. Pro zjednodušenost vždycky budeme volit stejný druh rypadel pro každý kanál.

Celý matematický model můžeme rozdělit na tři častí: vstup, jádro modelu a výstup, viz obr. 6.1.

Obr. 6.1 Schéma matematického modelu v simulačním softwaru [18]

Matematický model obsahuje několik důležitých subsystému pro výpočet poruch strojů a pro zjištění ekonomických parametrů systému, viz obr. 6.2.

Dále popíšeme vstupní parametry matematického modelu.

- Stavební proces: Výkopové práce, Stavební jáma, figura 1;
- \bullet Objem úkolu: 6 000 m³, třída těžitelností: 3, koeficient nakypření K_n =1,25, celkový objem zeminy je roven:

$$Q_{\text{nak}} = 6\ 000\ \text{x}\ 1,25 = 7\ 500\ \text{m}^3;$$

• Parametry nákladního auta (dempru) jsou zobrazeny v tab. 6.1.: Dempr, objem korby: 15 m³, průměrný čas ze staveniště do skladky a zpět je 30 min, finanční náklady na provoz stroje: fixní náklady 3 000,-Kč, variabilní náklady 1 000, Kč/hodina, maximální počet demprů je 15. Pravděpodobnost poruchy je 2%/den, oprava v průměru trvá 2 hodin, čas přistavění k obsluhujícímu stroji je 2 minuty.

Obr. 6.2 Subsystémy matematického modelu v SW [18]

Tab. 6.1 Vstupní parametry nákladního auta [20]

Parametr	Hodnota
Objem korby, m ³	15
Průměrná doba jízdy, min	40
Průměrný doba manévrování a vykládání, min	2
Průměrný doba nakládání dle výkonu rypadla, min	15 x 60 / P
Fixní náklady, Kč	3 000
Variabilní náklady, Kč/hod	1 000
Průměrná pravděpodobnost poruchy, %/den	2
Průměrný čas opravy stroje, min	60
Maximální počet demprů	15

- Pracovní směna je $T_S = 8$ hodin denně, 40 hodin týdně.
- Stavební úkol má byt splněn maximálně za 2 týdny ($T_M = 80$ pracovních hodin resp. 4800 minut).
- Vstupní parametry vyhovujících rypadel popisuje tab. 6.2 [20]. Většina vstupních parametrů strojů zadává výrobce stroje nebo se počítají a průměrují na základě pozorování a monitorování. Vyhovující hodinový výkon rypadla, bez vlivu náhodných poruch dle [1] a [10], je větší, než:

$$P_{vyh} = \frac{Q_{nak}}{TM \times N} = 7 500 / 80 / 1 = 93.75 \text{ m}^3 / \text{hod}$$

Základní časová jednotka je minuta.

Tab. 6.2 Vstupní parametry rýpadel dle [20]

Parametr	Varianta 1	Varianta 2	Varianta 3
Objem lopaty, m ³	2	3	4
Průměrná délka pracovního cyklu, min	0,83	0,67	0,625
Průměrný hodinový výkon, m³/hod	100	120	150
Fixní náklad, Kč	5 000	7 500	15 000
Variabilní náklad, Kč/hod	2 000	3 000	4 000
Pravděpodobnost poruchy, % / den	2	4	3
Průměrný čas opravy stroje, min	60	80	90

Celková průměrná doba pracovního cyklu nákladního vozidla pro každou variantu je bez vlivu náhodných faktorů dle [1] je:

$$TC_1 = 40 + 2 + 15 \times 60 / 100 = 40 + 2 + 6 = 48 \text{ min}$$

$$TC_2 = 40 + 2 + 15 \times 60 / 120 = 40 + 2 + 5 = 47 \text{ min}$$

$$TC_3 = 40 + 2 + 15 \times 60 / 150 = 40 + 2 + 4 = 46 \text{ min}$$

Hodinový výkon nákladního vozidla pro každou variantu dle [1] je:

$$P_{\text{nákl 1}} = V_{\text{korby}} / TC_1 \times 60 = 15 / 48 \times 60 = 12,50 \text{ m}^3/\text{hod}$$

$$P_{\text{nákl 2}} = V_{\text{korby}} / TC_2 \times 60 = 15 / 47 \times 60 = 12,77 \text{ m}^3/\text{hod}$$

$$P_{\text{nákl 3}} = V_{\text{korby}} / TC_3 \times 60 = 15 / 46 \times 60 = 13,04 \text{ m}^3/\text{hod}$$

Minimální počet nákladních vozidel pro maximální vytížení rypadel pro každou variantu bez vlivu nahodilých faktorů dle [1] je:

$$PV_1 = N \times P_{ryp 1} / P_{nákl 1} = 100 / 12,5 = 8,0 => 8 demprů$$

$$PV_2 = N \times P_{rvp 2} / P_{n\acute{a}kl 2} = 120 / 12,77 = 9,4 => 10 demprů$$

$$PV_3 = N \times P_{ryp 3} / P_{n\acute{a}kl 3} = 150 / 13,04 = 11,5 => 12 demprů$$

Ostatní výpočty, pro určení nahodilých vlivů, budeme provádět v prostředí simulačního software [18].

Po zavedení do matematického modelu náhodných velečin (poruchy strojů), dochází dle simulace k prodloužení doby obsluhy strojů:

$$TN_1 = 6 + 0.058 = 6.058 \text{ min}$$

$$TN_2 = 5 + 0.084 = 5.084 \text{ min}$$

$$TN_3 = 4 + 0.059 = 4.059 \text{ min}$$

Stejným způsobem dojde k prodloužení intervalů mezi vstupy prvků do obsluhy:

$$TV = TV_1 = TV_2 = TV_3 = 42 + 0.052 = 42.052 \text{ min}$$

Celková průměrná doba pracovního cyklu nákladního vozidla pro každou variantu je s vlivem náhodných faktorů (poruch) je:

$$TC_1 = 42,052 + 6,058 = 48,11 \text{ min}$$

$$TC_2 = 42,052 + 5,084 = 47.14 \text{ min}$$

$$TC_3 = 42,052 + 4,059 = 46,11 \text{ min}$$

Popsaný výpočet je uspořádán v tabulce 6.3, 6.4, 6.5 pro každou variantu. Pracovní cykly rypadla a nákladních vozidel jsou na sobě závislé v místě obsluhy. Vlivem nahodilých intervalů mezi příjezdy vozidel se zde budou tvořit fronty na obsluhu. Proto je možné pro zkoumání závislostí mezi dopravním systémem a rypadlem použit teorie hromadných obsluh [9].

Při optimálním návrhu strojní sestavy, potřebujeme nejprve určit další parametry teorie front. Intenzita obsluhy je rovna:

$$\begin{split} &\mu_1 = 1 \ / \ TN_1 = 1 \ / \ 6,058 = 0,1650709 \ min^{-1} \\ &\mu_2 = 1 \ / \ TN_2 = 1 \ / \ 5,084 = 0,1966955 \ min^{-1} \\ &\mu_3 = 1 \ / \ TN_3 = 1 \ / \ 4,059 = 0,2463661 \ min^{-1} \end{split}$$

Intenzita vstupu jednotek do systému hromadné obsluhy:

$$\lambda = \lambda_1 = \lambda_2 = \lambda_3 = 1 / TV = 1 / 42,052 = 0,023780 \text{ min}^{-1}$$

Intenzita provozu systému:

$$\rho_1 = \lambda / \mu_1 = 0.023780 / 0.1650709 = 0.14405974$$

$$\rho_2 = \lambda \ / \ \mu_2 = 0.023780 \ / \ 0.1966955 = 0.12089794$$

$$\rho_3 = \lambda / \mu_3 = 0.023780 / 0.2463661 = 0.09652335$$

Teď provedeme výpočet základních charakteristik systému. Dle výpočtu, uspořádaného v tabulkách 3 až 5, je vidět, že ke zpracování výkopu Q = 7 500 m³ do 80 pracovních hodin (4 800 minut) pro první variantu bude potřeba 11 demprů, druhá vyžaduje 9 a třetí vyžaduje jen 8 demprů.

Původní doba pracovního cyklu bude větší vlivem čekání ve frontě na obsluhu a bude se neustálé prodlužovat a výkonnost celého dopravního systému s rostoucím počtem demprů neroste lineárně, viz. obr..6.5.

V posledním kroku výběru optimální soustavy se zaměříme na zhodnocení finančních nákladových parametrů pro každou variantu. Optimálním řešení bude varianta s co nejmenšími celkovými náklady.

Tab.6.3 Výpočet dle teorie hromadné obsluhy pro 1 variantu

n	nρ	$S (n \rho) = 1$ $+ n \rho S$ $(n_{.1} \rho)$	$V = S (n_{-1} \rho) / S(n \rho)$	$L = n \times V$	M = n (1 - V)	Ι = L ρ	N = M - I	TF = N (TJ+TV+T M) / L, [min]	TC, [min]	T = Q TC / O / n, [min]	$Q = O$ $T_c n /$ $TC,$ $[m^3]$
1	0,14406	1,144060	0,874080	0,874080	0,125920	0,125920	0,000000	0,000000	48,11	36 083	998
2	0,28811	1,329626	0,860437	1,720875	0,279125	0,247909	0,031217	0,762822	48,87	18 327	1 964
3	0,43217	1,574637	0,844402	2,533205	0,466795	0,364933	0,101862	1,690941	49,80	12 450	2 892
4	0,57623	1,907367	0,825555	3,302221	0,697779	0,475717	0,222062	2,827843	50,94	9 551	3 769
5	0,72029	2,373874	0,803483	4,017414	0,982586	0,578748	0,403838	4,227147	52,34	7 851	4 586
6	0,86435	3,051878	0,777840	4,667042	1,332958	0,672333	0,660625	5,952505	54,06	6 758	5 327
7	1,00841	4,077569	0,748455	5,239187	1,760813	0,754756	1,006058	8,075057	56,19	6 020	5 980
8	1,15247	5,699308	0,715450	5,723599	2,276401	0,824540	1,451861	10,667007	58,78	5 510	6 533

9	1,29653	8,389367	0,679349	6,114141	2,885859	0,880802	2,005058	13,790439	61,90	5 158	6 979
10	1,44059	13,085701	0,641110	6,411095	3,588905	0,923581	2,665324	17,482535	65,59	4 919	7 318
11	1,584657	21,736348	0,602019	6,622212	4,377788	0,953994	3,423794	21,741584	69,85	4 763	7 559
12	1,72871	38,575991	0,563468	6,761620	5,238380	0,974077	4,264303	26,520640	74,63	4 664	7 718
13	1,87277	73,244211	0,526676	6,846792	6,153208	0,986347	5,166861	31,734108	79,84	4 606	7 815
14	2,01683	148,72158	0,492492	6,894890	7,105110	0,993276	6,111834	37,276134	85,39	4 574	7 870
15	2,16089	322,37181	0,461335	6,920032	8,079968	0,996898	7,083070	43,042757	91,15	4 558	7 899

Tab.6.4 Výpočet dle teorie hromadné obsluhy pro 2 variantu

n	nρ	$S(n \rho) = 1$ + $n \rho S$ $(n_{-1} \rho)$	$V = S (n_{-1} \rho) / S (n \rho)$	$L = n \times V$	M = n (1 - V)	I=Lρ	N = M - I	TF = N (TJ+TV+ TM) / L, [min]	TC, [min]	T = Q TC/O/ n, [min]	$Q = O$ $T_c n /$ $TC,$ $[m^3]$
1	0,12089	1,120898	0,892142	0,892142	0,107858	0,107858	0,000000	0,000000	47,14	35352	1018
2	0,24179	1,271028	0,881883	1,763765	0,236235	0,213236	0,022999	0,548351	47,68	17882	2013
3	0,36269	1,460994	0,869975	2,609925	0,390075	0,315535	0,074540	1,201018	48,34	12084	2979
4	0,48359	1,706525	0,856122	3,424490	0,575510	0,414014	0,161496	1,983140	49,12	9210	3909
5	0,60449	2,031577	0,840000	4,200001	0,799999	0,507771	0,292228	2,925893	50,06	7509	4794
6	0,72538	2,473680	0,821277	4,927661	1,072339	0,595744	0,476595	4,067195	51,20	6400	5625
7	0,84628	3,093440	0,799654	5,597575	1,402425	0,676735	0,725689	5,451770	52,59	5634	6389
8	0,96718	3,991924	0,774925	6,199396	1,800604	0,749494	1,051109	7,129928	54,27	5087	7076
9	1,08808	5,343538	0,747056	6,723507	2,276493	0,812858	1,463635	9,154268	56,29	4691	7675
10	1,20897	7,460228	0,716270	7,162702	2,837298	0,865956	1,971343	11,573692	58,71	4403	8176
11	1,32987	10,921187	0,683097	7,514064	3,485936	0,908435	2,577501	14,424825	61,56	4197	8577
12	1,45077	16,844188	0,648365	7,780384	4,219616	0,940632	3,278984	17,722497	64,86	4054	8881
13	1,57167	27,473559	0,613105	7,970371	5,029629	0,963601	4,066028	21,452529	68,59	3957	9098
14	1,69257	47,500952	0,578379	8,097308	5,902692	0,978948	4,923744	25,570635	72,71	3895	9243
15	1,81346	87,141505	0,545101	8,176520	6,823480	0,988524	5,834955	30,009288	77,15	3857	9333

Tab.6.5 Výpočet dle teorie hromadné obsluhy pro 3 variantu

n	ı	nρ	` • ′	V = S (n. ₁ ρ) / S (n ρ)		M = n (1 - V)	Ι = L ρ	N = M - I	TF = N (TJ+TV+ TM) / L, [min]	TC, [min]	T = Q TC/O/ n, [min]	Q = O T _c n / TC, [m ³]
1		0,096523	1,096523	0,911973	0,911973	0,088027	0,088027	0,000000	0,000000	46,11	34583	1041

2	0,193047	1,211680	0,904961	1,809922	0,190078	0,174700	0,015378	0,357300	46,47	17426	2066
3	0,289570	1,350866	0,896965	2,690896	0,309104	0,259734	0,049370	0,771527	46,88	11721	3072
4	0,386093	1,521561	0,887816	3,551265	0,448735	0,342780	0,105955	1,254653	47,37	8881	4054
5	0,482617	1,734331	0,877319	4,386593	0,613407	0,423409	0,189998	1,821414	47,93	7190	5007
6	0,579140	2,004420	0,865253	5,191518	0,808482	0,501103	0,307380	2,489818	48,60	6075	5926
7	0,675663	2,354314	0,851382	5,959675	1,040325	0,575248	0,465078	3,281630	49,39	5292	6803
8	0,772187	2,817970	0,835464	6,683715	1,316285	0,645135	0,671150	4,222681	50,33	4719	7629
9	0,868710	3,447999	0,817277	7,355492	1,644508	0,709977	0,934531	5,342799	51,45	4288	8396
10	0,965234	4,328124	0,796650	7,966497	2,033503	0,768953	1,264550	6,675059	52,79	3959	9093
11	1,061757	5,595416	0,773513	8,508638	2,491362	0,821282	1,670080	8,253987	54,36	3707	9712
12	1,158280	7,481059	0,747944	8,975332	3,024668	0,866329	2,158339	10,112438	56,22	3514	10245
13	1,254804	10,387260	0,720215	9,362794	3,637206	0,903728	2,733478	12,277129	58,39	3369	10687
14	1,351327	15,036584	0,690799	9,671189	4,328811	0,933496	3,395316	14,763421	60,87	3261	11039
15	1,447850	22,770723	0,660347	9,905209	5,094791	0,956084	4,138707	17,570646	63,68	3184	11306

Obr. 6.3 Výpočet potřebného počtu nákladních aut metodou teorie hromadné obsluhy

Výpočet nákladových charakteristik systému je zobrazen v tab. 6.6 a 6.7 pro každou variantu. Na obr. 6.4 je zhodnocena optimální soustava strojů. Do vypočtu a výběru optimální soustavy byly zahrnuty náklady na provoz rypadla a nákladních aut. Celková pracovní doba nepřesahuje 80 pracovních hodin.

Z tab. 6.6 je vidět, že celkové náklady na nákladní auta pro třetí variantu je nejmenší ze všech variant a činí 664 000, -Kč resp. 89,- Kč/m³ výkopu. Z tab. 6.7 je vidět, že celkové

náklady na rypadlo pro první variantu je nejmenší ze všech variant a činí 165 000, -Kč. resp. 22,- Kč/m³ výkopu.

Na základě tab. 6.8 zvolíme druhou variantu. Ke splnění úkolu bude zvolená druha varianta: Rypadlo výkonem 120 m³/hod a 9 nákladních aut pro odvoz zeminy.

Tab. 6.6 Výpočet nákladových charakteristik systému nákladních aut

Parametr	Varianta 1	Varianta 2	Varianta 3
Počet nákladních aut	11	9	8
Fixní náklad, Kč	3 000	3 000	3 000
Celkové fixní náklady, Kč	33 000	27 000	24 000
Variabilní náklad, Kč/hod	1 000	1 000	1 000
Celkové variabilní náklady, Kč	880 000	720 000	640 000
Celkové náklady, Kč	913 000	747 000	664 000
Náklad na 1 m³ vykopu, Kč/m³	122	100	89

Tab. 6.7 Výpočet nákladových charakteristik systému rypadla

Parametr	Varianta 1	Varianta 2	Varianta 3
Počet rypadel	1	1	1
Celkové fixní náklady, Kč	5 000	7 500	15 000
Variabilní náklad, Kč/hod	2 000	3 000	4 000
Celkové variabilní náklady, Kč	160 000	240 000	320 000
Celkové náklady, Kč	165 000	247 500	335 000
Náklad na 1 m ³ vykopu, Kč/m ³	22	33	45

Tab. 6.8 Výpočet nákladových charakteristik systému rypadla + nákladní auta

Parametr	Varianta 1	Varianta 2	Varianta 3
Celkové náklady nákladních aut, Kč	913 000	747 000	664 000
Celkové náklady rypadla, Kč	165 000	247 500	335 000
Celkové náklady, Kč	1 078 000	994 500	999 000
Náklad na 1 m ³ vykopu, Kč/m ³	144	133	134

Obr. 6.4 Výpočet nákladových parametrů systému

7 Technické požadavky systému

Hned na začátku této výzkumné práce bylo rozhodnuto používat jenom volně šiřitelné softwary podle licencí GNU (Obecná veřejná licence). Internetová aplikace SEM běží na vzdáleném serveru pod systémem Linux CentOS 5.5. Základní programovací jazyk aplikace je velmi rozšířený rychlý jazyk PHP v. 5.3 [12]. Databáze je vedená v jazyce MySQL v. 5.0, což umožňuje rychlé zpracování a za správného indexování i velmi rychlé vyhledávaní za velkého objemu (miliony řádků) [11]. Také byly použity standardní webové programovací jazyky HTML, JavaScript a CSS.

Koncept internetové databáze je vidět na obr. 7.1. Základní modul internetové aplikace vyžaduje kolem 10 Mb volného prostoru na serveru připojeného k Internetu. Databáze vyžaduje prostor dle své velikosti.

Obr. 7.1 Koncepce struktury webové aplikace

Internetová databáze umožňuje editaci, vkládaní, mazání, kopírovaní, tisk, vyhledávaní záznamů z kteréhokoliv místa na zemí prostřednictvím síti internet. Také je umožněn import a export do jiných prostředí a systému. Část funkcí je přístupná jen po zadání hesla administrátora.

8 Podmínky pro sestavení modelů a spuštění systému

8.1 Spuštění systému

Systém spustíme v libovolném prohlížeči Internetu s plnou podporou standardu HTML 4.01, JavaScriptu a CSS na adrese: www.celysvet.cz/model bez speciálního software. Přístup k rozšířené neveřejné části projektu vyžaduje registraci a přihlášení: zadání jména uživatele a hesla, viz obr. 8.1. Jméno uživatele a profil včetně e-mailu, hesla, kontaktních údajů je možno změnit na stránce www.celysvet.cz/diskuzni-forum přímým zadáním, viz obr. 8.2.

Přihla	ásit se
Pro přihlášení musíte být registrován. Registrace trvá jen pár vteřin a dává vám mnohem větší možnosti. Administrátor fóra též může dávat rozšířené pravomoci registrovaným uživatelům. Před registrací se ujistěte, že jste se obeznámili s našimi podmínkami pro použití a s dalšími pravidly a ujednáními. Také se ujistěte, že si přečtete jakákoliv pravidla, která se na fóru objeví. Podmínky pro užívání Ochrana soukromí	Uživatelské jméno: Registrovat Heslo: Zapomněl(a) jsem heslo Znovu poslat aktivační e-mail Přihlásit mě automaticky při každé návštěvě Skrýt můj online stav pro toto přihlášení
Přihl	ásit se

Obr.8.1 Zadání jména a hesla uživatele

Možnosti		Podrobnosti
Přehled	Prosím vyplňte informace dostupné ostatním uži	vatelům. Políčka s * musí být vyplněna.
Profil » Podrobnosti	ICQ číslo:	
» Podpis	AOL Instant Messenger:	
» Avatar » Registrační údaje	Windows Live Messenger:	
Nastavení	Yahoo Messenger:	
Soukromé zprávy	Jabber adresa:	
Skupiny	www:	http://www.celysvet.cz
Přátelé a nepřátelé	Bydliště:	Praha
Přátelé Připojen Žádný přítel není připojen Nepřipojen	Povolání:	Stavební inženýr (ČVUT, stavební fakulta, pozemní stavby a konstrukce) + Programátor
Žádný přítel není nepřipojen	Zájmy:	Rodina, kočky, psi, box, portál CS, šachy
	Datum narození: Nastavte datum vašeho narození.	Den: ▼ Měsíc: ▼ Rok: ▼
		Odeslat Reset

Obr.8.2 Změna nastavení profilu

Dále následuje popis pracovních adresářů systému. Prvním adresářem je adresář [convert], ve kterém budou hledány skripty a zdrojové kódy nutné pro export a import údajů do a ven ze systému. Tento adresář obsahuje soubory s přeponou [.php]. Druhý adresář [db] obsahuje soubory nastavení systému, nutných pro připojení k databázím MySQL. Třetí adresář [convert] obsahuje další složky pro uložení exportních souborů údajů ve formátech: CONTEC, CSV, DOC, TXT, XLS, XML. Slouží k rychlému vyhledání příslušných dat při upřesňování dokumentů stavebně technologických projektů dle výstupů zpracovaných jinými výpočetními systémy. Složka [import] obsahuje datové soubory importu do jiných systému.

Další složky [**function**], [**images**], [**lang**], [**ridici**], [**skin**] a [**temp**] slouží pro vnitřní potřeby systému a obsahují zdrojové kódy, soubory jazykové podpory a elementy grafického prostředí, viz. obr. 8.3. Této adresáře se týkají datových základen systému.

A		
1 []	<dir></dir>	
iconvert]	<dir></dir>	27.11.2011 19:07
(db)	<dir></dir>	25.11.2011 09:22
iglication [including the control of	<dir></dir>	05.12.2011 20:28
[export]	<dir></dir>	25.11.2011 09:22
ifiles]	<dir></dir>	14.09.2012 12:42
[function]	<dir></dir>	25.11.2011 09:22
images]	<dir></dir>	27.11.2011 19:01
import]	<dir></dir>	27.11.2011 19:07
ighter [[katalog]	<dir></dir>	11.12.2011 22:00
(lang)	<dir></dir>	25.11.2011 09:23
[photo]	<dir></dir>	11.12.2011 21:07
[prirucka]	<dir></dir>	09.12.2012 14:15
[prirucka_soubory]	<dir></dir>	27.11.2011 19:07
iridici]	<dir></dir>	06.12.2012 12:02
[skin]	<dir></dir>	09.12.2012 11:39

Obr. 8.3 Pracovní adresáře systému

Přístup k pracovním adresářům systému je umožněn přes prostředí FTP serveru po příslušném zadání hesla a přihlašovacího jména a není veřejné přístupny. Tyto adresáře nedoporučujeme měnit.

8.2 Technické parametry MySQL databází systému SEM

Přístup k tabulkám systému je umožněn přes prostředí [phpMyAdmin v. 3.5.3] po příslušném zadání hesla a přihlašovacího jména a není veřejné přístupny. Tyto tabulky nedoporučujeme měnit.

První důležitá tabulka [model] obsahuje základní údaje matematického modelu, viz obr. 8.4. Indexování tabulky se provádí dle číselného kódu modelu [ID]. Pro větší počet záznamu je možné individuálně navrhnout i jiné indexy pro lepší výkon systému.

Obr. 8.4 Struktura tabulky MySQL: Model

Druhá důležitá tabulka [model_varianty] obsahuje přípustnou množinu variant pro každý model, viz obr. 8.5. Indexování tabulky se provádí dle číselného kódu [model]. Pro větší počet záznamu je možné individuálně navrhnout i jiné indexy pro lepší výkon systému.

Obr. 8.5 Struktura tabulky MySQL: Model_varianty

Třetí tabulka [optimalizace_katalog_stroju] obsahuje Databázi environmentálních aspektů, viz obr. 8.6. Indexování tabulky se provádí dle číselného kódu [skupina1]. Pro větší počet záznamu je možné individuálně navrhnout i jiné indexy pro lepší výkon systému.

Obr. 8.6 Struktura tabulky MySQL Optimalizace_katalog_stroju

Ostatní tabulky slouží pro vnitřní potřeby systému a pro matematické modelování a simulaci stavebních procesů.

8.3 Stručný popis jeho pracovních oblastí

Jednotlivé pracovní oblasti volíme poklepáním na příslušný název v menu, nebo klepnutím na příslušnou grafickou ikonku, viz obr. 8.7. Funkce těchto oblastí bude nyní stručně představena, v dalších kapitolách budou pak uvedeny nejvýznamnější podrobnosti.

Obr. 8.7 Hlavní menu pracovních oblastí systému

Nejdůležitější pracovní oblastí jsou oblastí 1 – Katalog strojů, 2 – Optimalizace sestav, které tvoří cca 90 % celého systému. Ostatní oblastí tvoří zbytek systému a mají pouze informativní charakter.

Katalog strojů

Katalog strojů

Rýpadla pásová a kolová (1)

Minirýpadla do 3 t (1) Rýpadla s kompaktním rádiusem (0) Pásová rýpadla od 8 do 40 t (0) Kolová rýpadla (0) Pásová rýpadla od 40 do 90 t (0) Rýpadla s nakládací lopatou (0) Hydraulická rýpadla (0) Rýpadla s prodlouženým dosahem (0)

Nakladače (0)

Smykem řízené nakladače (0) Kompaktní pásové nakladače (0) Kolové nakladače do 7 t (0) Kolové nakladače od 7 do 15 t (0) Kolové nakladače od 15 do 30 t (0) Kolové nakladače nad 30 t (0) Pásové nakladače (0) Rýpadlo-nakladače (0)

Přeprava (2)

Kloubové dampry (0) Pevné dampry (1) Sklápěče jednostranné (0) Sklápěče dvoustranné (0) Sklápěče třístranné (1) Nosiče kontejnerů (0) Nákladní automobil valník (0)

Skrejpry (0)

Elvátorové skrejpry (0) Skrejpry se šnekovým dopravníkem (0)

Dozery, buldozery (0)

Pásové dozery od 7 do 15 t (0) Pásové dozery od 15 do 100 t (0) Kolové dozery (0) Kompaktory (0)

Traktory (0)

Pásové traktory (0) Kolové traktory (0)

Demoliční a recyklační technika (0)

Recyklační technika (0) Demoliční technika (0) Úpravárenská technika (0) Třídicí technika (0)

Manipulační technika (0)

Skladová technika (0) Vysokozdvižné vozíky (0) Kontejnerové manipulátory (0) Teleskopické manipulátory (0) Retraky (0) Ručně vedené vozíky (0)

Betonářská technika (0)

Mobilní míchače (0)
Míchací zařízení (0)
Dopravní pásy (0)
Autočerpadla (0)
Autodomíchávače (0)
Betonárny (0)
Čerpadla s domíchávačem (0)
Staveništní čerpadla (0)

Jeřáby, zdvihací plošiny, výtahy (0)

Pracovní plošiny (0)
Autojeřáby (0)
Pásové jeřáby (0)
Věžové jeřáby s horní otočí (0)
Věžové jeřáby se spodní otočí (0)
Stavební výtahy (0)
Kolejový jeřáb (0)

Obr. 8.8 Základní pohled pracovní oblastí Katalog strojů

V první oblasti se provádí: 1 – Přidání nového stroje, 2 – Tisk kompletního seznamu, 3 – Export katalogu do jiných systémů, 4 – Import katalogu z jiných formátů, 5 – Vyhledávaní katalogu dle parametrů, 6 - Řazení katalogu, 7 – Zamykaní a otevření katalogu, viz obr. 3.13.

Obr. 8.9 Hlavní menu pracovní oblastí Katalog strojů

Pro jednotlivý záznam je umožněno: 1 – Zobrazit kartu, 2 – Vytisknout kartu, 3 – Editovat, 4 – Kopírovat, 5 – Vymazat, viz obr. 8.10.

Obr. 8.10 Hlavní menu pracovní oblastí karty katalogu

Přidání nového stroje viz obr. 8.11

Tisk kompletního sezynamu viz obr. 8.12

Export katalogu do jiných systémů viz obr. 8.13

Katalogový list stroje viz obr. 8.14

Vyhledávaní katalogu dle parametrů viz obr. 8.15

Vložení nového kata	ologového listu stroje:	
TO TOTAL MARKET		pozn.: včetně názvu, typu a označení,
Název stroje:		např.: Nakladač řízený smykem CAT 226B/B2
První skupina stroje:	V	pozn.: viz. tabulka databáze: optimalizace_skupiny_stroju_1
Druhá skupina stroje:	V	pozn.: viz. tabulka databáze: optimalizace_skupiny_stroju_2
Typ stroje:		pozn.: označení dle výrobce, např. CAT 226B/B2
Druh prvku:	Samostatný prvek v	pozn.: označení dle teorie front: obsluhující prvek, zákazník, samostatný prvek atd.
Výkon motoru, [kW]:		pozn.: výkon motoru dle výrobce [kW] resp. [k]
Provozní hmotnost, [kg]:		pozn.: provozní hmotnost dle výrobce [kg]
Délka, [cm]:		pozn.: délka stroje dle výrobce [cm]
Šírka, [cm]:		pozn.: šířka stroje dle výrobce [cm]
Výška, [cm]:		pozn.: výška stroje dle výrobce [cm]
Maximální rychlost, [km/h]:		pozn.: maximální rychlost pohybu stroje dle výrobce [km/h]
Provozní rychlost, [km/h]:		pozn.: průměrná rychlost pohybu stroje dle výrobce [km/h]
Stoupavost, [grad]:		pozn.: maximální stoupavost stroje dle výrobce [grad]
Tlak na zeminu, [kPa]:		pozn.: tlak na zeminu [kPa]
Přídavné zařízeni 1:	vložit přídavné zařízeni:	pozn.: viz. tabulka databáze: optimalizace_pridavna_zarizeni
Přídavné zařízení 2:	vložit přídavné zařízeni:	pozn.: viz. tabulka databáze: optimalizace_pridavna_zarizeni
Přídavné zařízení 3:	vložit přídavné zařízeni:	pozn.: viz. tabulka databáze: optimalizace_pridavna_zarizeni
Přídavné zařízení 4:	vložit přídavné zařízeni:	pozn.: viz. tabulka databáze: optimalizace_pridavna_zarizeni
Přídavné zařízení 5:	vložit přídavné zařízeni:	pozn.: viz. tabulka databáze: optimalizace_pridavna_zarizeni
Dosah hloubka, [cm]:		pozn.: hloubkový dosah stroje dle výrobce, [cm]
Dosah výška, [cm]:		pozn.: výškový dosah stroje dle výrobce, [cm]
Dosah délka, [cm]:		pozn.: dosah stroje na délku dle výrobce, [cm]
Poloměr otáčení, [cm]:		pozn.: hloubkový dosah stroje dle výrobce, [cm]
Poznámka:		pozn.: vlastní poznámka
Spotřeba paliva hi, [ml/hod]:		pozn.: odhad spotřeby paliva dle výrobce pro maximální vytížení stroje (80-100%)
Spotřeba paliva medium, [ml/hod]:		pozn.: odhad spotřeby paliva dle výrobce pro průměrné vytížení stroje (60-80%)
Spotřeba paliva low, [ml/hod]:		pozn.: odhad spotřeby paliva dle výrobce pro minimální vytížení stroje (40-60%)
CO2 hi, [g/hod]:		pozn.: odhad velikosti CO2 dle výrobce pro maximální vytížení stroje (80-100%)

Obr. 8.11 Přidání nového stroje

Ceikem było naieżeno 3 stroju										
Čís.klíč	Тур	Název stroje	Výkon, [kW]	Hmotnost, [t]	Sekce	Výrobce	Cena stroje, [tis.Kč]	Pronájem stroje, [Kč/hod]	Pracovní výkon, [jedn/hod]	Pracovní cyklus, [sek]
1	Caterpillar 300.9D	Rýpadlo pásové mini Caterpillar 300.9D	13.7	0,94	Rýpadla pásová a kolová Minirýpadla do 3 t	Caterpillar	20 000,000	1 200	1200 m2/hod	2
3	TATRA T815-221S45/370 4x4	Sklápěč třístranný TATRA T815-221S45/370 4x4	280		Přeprava Sklápěče třístranné	Tatra	0,000	0	0 m3/hod	0
4	Tatra 163 Jamal	Pevný dampr Tatra 163 Jamal	325	38,00	Přeprava Pevné dampry	Tatra	0,000	0	0 m3/hod	0

Vytisknout

Obr. 8.12 Tisk kompletního katalogu

Obr. 8.13 Export katalogu

Katalog strojů: Rýpadla pásová a kolová: Minirýpadla do 3 t Katalogový list stroje: Caterpillar 300.9D (ID: 1) Katalogový list výrobce: Dosah hloubka: 173 cm Dosah výška: 286 cm Dosah délka: 307 cm Poloměr otáčení: 75 cm Poznámka: Spotřeba paliva hi: 150 ml/hod Spotřeba paliva medium: 120 ml/hod 100 ml/hod Rýpadlo pásové mini Caterpillar Spotřeba paliva low: Název stroje: 300.9D CO2 hi: 8 g/hod Rýpadla pásová a kolová První skupina: CO2 medium: 7 g/hod Druhá skupina: Minirýpadla do 3 t CO2 low: 6 g/hod Typ stroje: Caterpillar 300.9D Hluk v interiéru: 93 dB Druh prvku: Obsluhující prvek Hluk v exteriéru: 93 dB Výkon motoru: 13.7 kW Náklady, standardní sazba: 1200 Kč/hod Provozní Náklady, přesčasová sazba: 1500 Kč/hod 935 t hmotnost: Náklady na použití: 3000 Kč 275 cm Délka: 20000000 Kč Cena stroje: Šírka: 73 cm 1 počet poruch/1000 hod Pravděpodobnost poruchy: Výška: 151 cm Průměrná doba opravy: 120 min Maximální Průměrná cena opravy: 2500 Kč 1.8 km/h rychlost: Průměrná doba služby: 20 let Provozní rychlost: 1 km/h Minimální pracovní plocha: 50 m2 Stoupavost: 30 grad Počet jednotek: 0.27 m2 Tlak na zeminu: 11.852 kPa Pracovní cyklus: 2 sek Přídavné zařízeni Radlice malá CAT300.9D / 1260 m2/hod 960 m2/hod Pracovní výkon: Výrobce: Caterpillar Přídavné zařízení Přídavné zařízení Přídavné zařízení Přídavné zařízení

Obr. 8.14 Katalogový list stroje

Obr. 8.15 Vyhledávaní katalogu

Optimalizace strojiních sestav

Vstupní parametry modelu

- 1. Parametry úkolu (dle smlouvy o dílo)
 - Q [m.j.] objem úkolu (pozn.: skutečný konečný objem práce včetně koeficientu nakypření, ztrát atd.)
 - M.J. měrná jednotka práce
 - D_{start} [-] datum zahájení úkolu dle smlouvy
 - D_{end} [-] datum ukončení úkolu dle smlouvy
 - S_{max} [m2] maximální možná pracovní plocha
 - T_s [hod] délka směny za den dle časového planu
 - N_t [dnů] počet pracovních dnů za týden dle časového planu
 - T_p [hod] délka přesčasu za den dle časového planu
 - K_p [-] koeficient zvýšení nákladu za přesčasy
 - V_t [Kč/den] variabilní náklady (všechny náklady bez zkoumané strojní sestavy)
 - P [Kč/den] penále na den (za nesplnění úkolu včas)
 - B [Kč/den] bonus na den (za dřívější splnění úkolu)
 - K_p [-] obecný koeficient produktivity strojů dle náročností projektu (pozn.: od 0 do 2; výsledný výkon strojní sestavy se vynásobí Kp)
- 2. Parametry obsluhujícího stroje (dle katalogu strojů) (pozn.: každá zkoumána varianta (maximálně do 5-ti variant) bude obsahovat vlastní parametry)
 - P [m.j./hod] průměrný pracovní výkon stroje
 - T_c [sek] průměrná délka pracovního cyklu
 - N_{max} [-] maximální disponibilní počet jednotek
 - S_{min} [m2] minimální pracovní plocha
 - VC [Kč/hod] variabilní náklad (odvozený z průměru standardní a přesčasové sazby za den)
 - FC [Kč] fixní náklad (náklad na použití)
 - L [počet poruch/1000 hod] pravděpodobnost poruchy
 - T_L [min] průměrná doba opravy
 - C₁ [Kč] průměrný náklad na odstranění poruchy
 - Sp [ml/hod] spotřeba energie (nafta)
 - CO₂ [g/hod] produkce CO₂
- 3. Parametry obsluhovaného stroje (dle katalogu strojů) (pozn.: každá zkoumána varianta (maximálně do 5-ti variant) bude obsahovat vlastní parametry)
 - P [m.j./hod] průměrný pracovní výkon stroje
 - T_c [sek] průměrná délka pracovního cyklu
 - N_{max} [-] maximální disponibilní počet jednotek
 - S_{min} [m2] minimální pracovní plocha
 - VC [Kč/hod] variabilní náklad (odvozený z průměru standardní a přesčasové sazby za den)
 - FC [Kč] fixní náklad (náklad na použití)
 - L [počet poruch/1000 hod] pravděpodobnost poruchy
 - T₁ [min] průměrná doba opravy

- C_L [Kč] průměrný náklad na odstranění poruchy
- Sp [ml/hod] spotřeba energie (nafta)
- CO₂ [g/hod] produkce CO₂
- 4.1 Kendallova klasifikace systému hromadné obsluhy (X/Y/c)
 - X (typ náhodného procesu popisujícího příchod zákazníků k obsluze):
 - M Poissonův proces příchodů (exponenciální rozdělení doby mezi příchody)
 - E Erlangovo rozdělení doby mezi příchody
 - D Konstatntní doba mezi příchody
 - G Obecný proces příchodů (obecné rozdělení doby mezi příchody)
 - Y (typ rozdělení doby obsluhy):
 - M Exponenciální rozdělení doby obsluhy
 - E Erlangovo rozdělení doby obsluhy
 - D Konstatntní doba obsluhy
 - G Obecný rozdělení doby obsluhy
 - J (počet iterací metody Monte-Carlo)
- 4.2 Optimalizační koefficienty
 - K₁ [-] váha ekonomického hlediska (náklady)
 - K₂ [-] váha environmentálního hlediska (produkce CO₂)
 - K₃ [-] váha hlediska rychlosti splnění úkolu (doba splnění)
 - K₄ [-] váha hlediska spolehlivosti sestav (počet poruch, náklady na opravu)
 - K₅ [-] váha hlediska spotřeby energie

Pozn.: Součet všech koeficientů je roven 1,0. Čím je větší koeficient, tím je větší význam hlediska.

- 5. Nahodilé parametry
 - R₁ [-] nahodilost poruch
 - R₂ [-] nahodilost počasí
 - R₃ [-] nahodilost dopravních komplikací
 - R₄ [-] nahodilost havarijních stavů
 - R₅ [-] nahodilost lidského faktorů

Pozn.: Velikost koeficientu ovlivňuje produktivitu resp. výkon pracovní sestavy.

Vložit nový model

Modelování stavebního procesu

Krok 1: Obecné údaje

Název objektu:	Národní technická knihovna
Adresa objektu:	Technická 6 / 2710, 160 80 Praha 6 - Dejvice
Developerská firma:	Sekyra Group Real Estate; Metrostav, a.s
Zodpovědná osoba:	Ing. Vyacheslav Usmanov
Poznámka:	Stavba byla zahajena 01.09.2012 Stavebni povoleni c. 154/456

Krok 2: Parametry úkolu (dle smlouvy o dílo)

- ,	- ,
Datum zahájení práce:	01.09.2012
Datum ukončení práce:	31.12.2012
Objem úkolu, [m.j.]:	200000
Měrná jednotka:	m3
Pracovní plocha, [m2]:	10000
Standardní směna za den, [hod]:	8
Přesčasy za den, [hod]:	0
Koeficient zvýšení VC za přesčasy, [-]:	1
Počet pracovních dní v tydnu, [dnů]:	5
Koeficient produktivity, [-]:	1
VC (bez zkoumané soustavy), [Kč/den]:	5000
Penále za zpoždění, [Kč/den]:	6000
Bonus za dřívější ukončení, [Kč/den]:	2000
Míra rozptylů výsledků, [%]:	10

Krok 3: Varianty obsluhujících strojů (linka obsluhy) + Přidat obsluhující variantu

	N / ID	Název	Výkon / Cyklus	Max. počet	Min. plocha	VC / FC	L/ TL/ CL	SP / CO2	
1/	1/	Rýpadlo pásové mini Caterpillar 300.9D	225 [m.j./hod] / 16 [sek]	4	55 [m2]	1000 [Kč/hod]/ 4000 [Kč]	2 [-/1000hod]/ 100 [min]/ 2000 [Kč]	110 [ml/hod]/ 8 [g/hod]	% % 💸
	2 / 3	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D	252 [m.j./hod] / 20 [sek]	3	50 [m2]	1200 [Kč/hod]/ 3000 [Kč]	1 [-/1000hod]/ 120 [min]/ 2500 [Kč]	120 [ml/hod]/ 7 [g/hod]	% 🏈 ♦

Krok 4: Varianty obsluhovaných strojů (zákazník)

+ Přidat obsluhovanou variantu

N / IC	Název	Výkon / Cyklus	Max. počet	Min. plocha	VC / FC	L/ TL/ CL	SP / CO2	
1/2	Pevný dampr Tatra 163 Jamal	21 [m.j./hod] / 2400 [sek]	20	25 [m2]	1500 [Kč/hod]/ 1200 [Kč]	1 [-/1000hod]/ 15 [min]/ 1000 [Kč]	250 [ml/hod]/ 10 [g/hod]	⊗ 🍫 💠
2/	Sklápěč třístranný TATRA T815-221545/370 4x4	13.7 [m.j./hod] / 2100 [sek]	40	16 [m2]	1000 [Kč/hod]/ 750 [Kč]	0.5 [-/1000hod]/ 20 [min]/ 2000 [Kč]	100 [ml/hod]/ 5 [g/hod]	⊗ ♦ ♦

Krok 5: Optimalizační a matematické parametry

Kendallova klasifikace systému hromadné obsluhy (X/Y/c)

X (typ náhodného proce Poissonův proces přích		d zákazníků k obsluze):	
Y (typ rozdělení doby ol	bsluhy): Exponenciáln	í rozdělení doby obsluhy	
		Metoda Monte-Carlo:	
	Počet iterací:	J (od 1 000 do 100 000): 1000	
	C	Optimalizační koefficienty	
K1 (váha	ekonomického hlediska	a (náklady)), [-]:	0.16666
K2 (váha	environmentálního hle	diska (produkce CO2)), [-]:	0.25
K3 (váha	hlediska rychlosti splni	ění úkolu (doba splnění)), [-]:	0.41666
K4 (váha	hlediska spolehlivosti s	sestav (počet poruch, náklady na opravu)), [-]:	0.08333
K5 (váha	hlediska spotřeby ene	rgie), [-]:	0.08333
	Krok 6: N	lahodilé parametry	
R1 (nahodilost poru	ıch):	Vliv nahodilosti poruch	
R2 (nahodilost poča	así):	Malý vliv nahodilosti počasí	
R3 (nahodilost dopr	ravních komplikací):	Malý vliv nahodilosti dopravních komplikac	cí 🗸

Velký vliv nahodilosti havarijních stavů

Velký vliv nahodilosti lidského faktorů

<u>Prohlednout modely + Editace modelů:</u>

R4 (nahodilost havarijních stavů):

R5 (nahodilost lidského faktorů):

Je umožněno prohlédnout podrobnosti matematického modelu resp. Změnit všichni parametry modelu.

Modelování stavebního procesu

+ Vložit nový model

10) Název / Adresa	Osoba / Developer	Vložení / Zahájení	Objem, [m.j]	Počet linek obsluhy	Počet zákazníků	
1	Národní technická knihovna/ Technická 6 / 2710, 160 80 Praha 6 - Dejvice	Ing. Vyacheslav Usmanov/ Sekyra Group Real Estate; Metrostav, a.s	30.08.2012/ 01.09.2012	200 000 m3	2	2	♦

Nastavení parametrů

Modelování stavebního procesu: Nastavení parametrů

ID 1: Vliv dopravy	99; malý vliv 97,5; střední vliv 95; velký vliv	Editovat parametr :
ID 2: Vliv havárie	1; 1000; 60; malý vliv 2; 1000; 120; střední vliv 3; 1000; 300; velký vliv	Editovat parametr :
ID 3: Vliv člověka	5; 1000; 10; malý vliv 10; 1000; 20; střední vliv 15; 1000; 30; velký vliv	Editovat parametr :
ID 4: Vliv počasí	97; 97; 98; 99; 100; 99; 91; 93; 98; 100; 97; 95; malý vliv 96; 96; 97; 98; 99; 98; 90; 92; 97; 99; 96; 94; střední vliv 95; 95; 96; 97; 98; 97; 89; 91; 96; 98; 95; 92; velký vliv	Editovat parametr :
ID 5: Vlastní rozdělení 1	1 0; 0 0,2; 0 0,3; 0,5 0,5; 0,75 0,7; 1 1; 1 2; 1 5; 1	Editovat parametr :
ID 6: Vlastní rozdělení 2	2 0; 0 2; 1 5; 1	Editovat parametr :
ID 7: Vlastní rozdělení 3	3 0; 0 1; 0 1; 1 2; 1	Editovat parametr :
ID 8: Vlastní rozdělení 4	4 0; 0 0,5; 0,1 1; 0,25 2; 0,75 3; 0,9 4; 1 5; 1	Editovat parametr :
ID 9: Vlastní rozdělení 5	5 0; 0 0,2; 0,4 0,3; 0,4 0,4; 0,5 0,5; 0,7 0,7; 1	Editovat parametr :

Modelování stavebního procesu: Nastavení parametrů

Editace parametru: Vlastní rozdělení 1

Hodnota:

0; 0	
0,2; 0	
0,3; 0,5	
0,5; 0,75	
0,7; 1	
1; 1	
2; 1 5; 1	
5; 1	
	.::

Poznámka:

Graf distribuční funkce: Vlastní rozdělení 1

9 Optimalizační algoritmus

Modelování stavebního procesu: Výpočet

Název projektu: Národní technická knihovna

Krok 1: Výpočet časového fondu

Zahájení práce:	01.09.2012
Ukončení práce:	31.12.2012
Délka směny, [hod]:	8
Délka pracovního tydnu, [dnů]:	5
Přesčasy za den, [hod]:	0
Požadovaná délka trvání prácí, [tydnů]:	18
Požadovaná délka prací, [hod]:	720
Požadovaná délka prací, [min]:	43200

Chyba výsledku získaného pomocí 1000 historií je úměrná 1/(1000)^1/2 = 3.16 %

Krok 2: Kontrola maximálního počtu obsluhovaných strojů (minimální pracovní plocha)

Maximální disponibilní plocha staveniště: 10 000 m2

Obsluhované varianty:

Va	rianta	Název stroje	Minimální pracovní plocha		Maximální možný počet	Status
	1	Rýpadlo pásové mini Caterpillar 300.9D	55 m2	4	181	V pořádku!!!
		Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D	50 m2	3	200	V pořádku!!!

Obsluhující varianty:

Varianta	Název stroje	Minimální pracovní plocha		Maximální možný počet	Status
1	Pevný dampr Tatra 163 Jamal	25 m2	20	400	V pořádku!!!
2	Sklápěč třístranný TATRA T815-221S45/370 4x4	16 m2	40	625	V pořádku!!!

Krok 3: Kontrola možnosti splnění úkolu

Objem úkolu: 200 000 m3 Časový fond: 720 hod

Obsluhované varianty:

Varianta	n Název stroje	Výkon stroje	Disponibilní počet	Maximální objem sestavy	Minimální nutný počet	Status
1	Rýpadlo pásové mini Caterpillar 300.9D	225 m3/hod	4	648 000 m3	2	V pořádku!!!
2	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D	252 m3/hod	3	544 320 m3	2	V pořádku!!!

Obsluhující varianty:

Varian	a Název stroje	Výkon stroje	Disponibilní počet	Maximální objem sestavy	Minimální nutný počet	Status
1	Pevný dampr Tatra 163 Jamal	21 m3/hod	20	302 400 m3	14	V pořádku!!!
2	Sklápěč třístranný TATRA T815-221S45/370 4x4	13.7 m3/hod	40	394 560 m3	21	V pořádku!!!

Krok 4: Parametry systému hromadné obsluhy

λ (Lambda) - Intenzita příchodu zákazníků, [průměrný počet příchodů/hodina]

 $\mu\left(Mi\right)$ - Intenzita obsluhy, [Obslouží se v průměru počet zákazníků/hodina]

ρ (Ró) - Intenzita provozu, [-]

Podmínka existence stacionárního režímu: $\rho < 1$

Počet zkoušených kombinací: 420

Kombinace číslo: 1

Obsluha: Rýpadlo pásové mini Caterpillar 300.9D

Zákazník: Pevný dampr Tatra 163 Jamal

- unu		ounipi .	tada 105 5						
Varianta	Počet obsluhy	р	Počet zákazníků	λ	ρ	Stacionární	Přípustná	Klasifikace	Rozdělení
1	1	16,07	1	1,50	0,09	Ano	Ne	M/M/1	Graf rozdělení :
2	2	16,07	1	1,50	0,05	Ano	Ne	M/M/2	Graf rozdělení :
3	3	16,07	1	1,50	0,03	Ano	Ne	M/M/3	Graf rozdělení :
4	4	16,07	1	1,50	0,02	Ano	Ne	M/M/4	Graf rozdělení :
5	1	16,07	2	3,00	0,19	Ano	Ne	M/M/1	Graf rozdělení :
6	2	16,07	2	3,00	0,09	Ano	Ne	M/M/2	Graf rozdělení :
7	3	16,07	2	3,00	0,06	Ano	Ne	M/M/3	Graf rozdělení :
8	4	16,07	2	3,00	0,05	Ano	Ne	M/M/4	Graf rozdělení :
9	1	16,07	3	4,50	0,28	Ano	Ne	M/M/1	Graf rozdělení :
10	2	16,07	3	4,50	0,14	Ano	Ne	M/M/2	Graf rozdělení :
11	3	16,07	3	4,50	0,09	Ano	Ne	M/M/3	Graf rozdělení :
12	4	16,07	3	4,50	0,07	Ano	Ne	M/M/4	Graf rozdělení :
13	1	16,07	4	6,00	0,37	Ano	Ne	M/M/1	Graf rozdělení :
14	2	16,07	4	6,00	0,19	Ano	Ne	M/M/2	Graf rozdělení :
15	3	16,07	4	6,00	0,12	Ano	Ne	M/M/3	Graf rozdělení :
16	4	16,07	4	6,00	0,09	Ano	Ne	M/M/4	Graf rozdělení :
17	1	16,07	5	7,50	0,47	Ano	Ne	M/M/1	Graf rozdělení :
18	2	16,07	5	7,50	0,23	Ano	Ne	M/M/2	Graf rozdělení :
19	3	16,07	5	7,50	0,16	Ano	Ne	M/M/3	Graf rozdělení :
20	4	16,07	5	7,50	0,12	Ano	Ne	M/M/4	Graf rozdělení :
21	1	16,07	6	9,00	0,56	Ano	Ne	M/M/1	Graf rozdělení :
22	2	16,07	6	9,00	0,28	Ano	Ne	M/M/2	Graf rozdělení :
23	3	16,07	6	9,00	0,19	Ano	Ne	M/M/3	Graf rozdělení :
24	4	10.07	-	0.00	0.14	A	M-	M/M/A	C

Graf rozdělení systému hromadné obsluhy M/M/3 (Kendallova klasifikace)

Krok 5: Simulace a výpočet (Teorie hromadné obsluhy + Metoda Monte Carlo)

Časový fond: 43200 min Objem úkolu: 200000 m.j.

			Pr. čas	D. Y	Pr. čas			Čas		
v.	Obsluha Zákazník	Počet vstupu, [-]	vstupů, [min]	Pr. čas obsluhy, [min]	čekání, [min]	Pr. délka fronty	Max. délka fronty	cas celkový, [min]	Splnění úkolu	Simulace
1	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221S45/370 4×4 (počet: 40)	25 001	1,462	2,446	0,067	0,046	2	38 288	Ano	Simulace :
2	Rýpadlo pásové mini Caterpillar 300.90 (počet: 2) Sklápěč třístranný TATRA T815-221S45/370 4×4 (počet: 27)	25 001	1,885	2,570	0,723	0,383	5	65 238	Ne	-
3	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 39)	25 001	1,503	2,444	0,075	0,050	2	39 487	Ano	Simulace :
4	Rýpadlo pásové mini Caterpillar 300.9D (počet: 4) Sklápěč třístranný TATRA T815-221S45/370 4×4 (počet: 26)	25 001	1,867	2,638	0,004	0,002	1	46 780	Ano	Simulace:
5	Rýpadlo pásové mini Caterpillar 300.9D (počet: 3) Sklápěč třístranný TATRA T815-221S45/370 4×4 (počet: 26)	25 001	1,917	2,719	0,048	0,025	3	49 128	Ne	-
6	Rýpadlo pásové mini Caterpillar 300.9D (počet: 2) Sklápěč třístranný TATRA T815-221S45/370 4×4 (počet: 26)	25 001	1,958	2,673	1,211	0,618	12	79 224	Ne	-
7	Rýpadlo pásové mini Caterpillar 300.9D / Radlice	25 001	1,516	2,499	0,069	0,045	2	39 687	Ano	Simulace :

Počet přípustných variant: 58

Krok 5: Simulace a výpočet (Teorie hromadné obsluhy + Metoda Monte Carlo)

Časový fond: 43200 min Objem úkolu: 200000 m.j. Varianta ID 16326

Obsluha: Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3)

Zákazník: Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 40)

Čas, [min]	Vstup, [min]	Počet vstupu, [-]	Obsluha 1	Obsluha 2	Obsluha 3	Fronta 1	Fronta 2	Čekání na obsluhu, [min]	Práce, [m.j.]	Splnění, [%]
1	1/3	1	3	0	0			0	16	0,01%
2	1/2	2	2	2	0			0	24	0,01%
3	2/1	3	1	1	1			0	32	0,02%
4	2/1	3	0	0	0			0	32	0,02%
5	1/5	4	5	0	0			0	40	0,02%
6	1/3	5	4	3	0			0	48	0,02%
7	1/2	6	3	2	2			0	56	0,03%
8	3/2	7	2	1	1	2		0	64	0,03%
9	3/2	7	1	0	0	2		0	64	0,03%
10	3/2	7	2	0	0			0	64	0,03%
11	2/1	8	1	1	0			0	72	0,04%
12	2/1	8	0	0	0			0	72	0,04%
13	1/2	9	2	0	0			0	80	0,04%
14	1/1	10	1	1	0			0	88	0,04%
15	1/3	11	3	0	0			0	96	0,05%
16	1/5	12	2	5	0			0	104	0,05%
17	1/3	13	1	4	3			0	112	0,06%
18	2/2	14	2	3	2			0	120	0,06%
19	2/2	14	1	2	1			0	120	0,06%
20	1/1	15	1	1	0			0	128	0,06%
21	1/1	16	1	0	0			0	136	0,07%
22	1/1	17	1	0	0			0	144	0,07%
22	1/1	1.9	1	n	n			n	157	0.08%

Průměrné časy simulace

Krok 6: Nahodilé vlivy (ovlivnění výkonu)

Celkem 58 pracovních sestav

Prodloužení doby splnění úkolu a nárůst nákladů

	Obsluha Vliv poruch Vliv počasí Vliv dopravy Vliv havárie Vliv člověka Celkový vliv Změna							_	
ID	Zákazník	Vliv poruch	Vliv počasí	Vliv dopravy	Vliv havárie	Vliv člověka	Celkový vliv	Změna	Graf
	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet: 40)	486 min	942 min	383 min	300 min	270 min	2381 min	6,22 %	Graf :
	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet: 39)	495 min	971 min	395 min	300 min	270 min	2431 min	6,16 %	Graf :
	Rýpadlo pásové mini Caterpillar 300.9D (počet: 4) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet: 26)	827 min	1151 min	468 min	600 min	330 min	3376 min	7,21 %	Graf :
	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet: 38)	490 min	976 min	397 min	300 min	270 min	2433 min	6,13 %	Graf :
	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet: 37)	483 min	975 min	397 min	300 min	270 min	2425 min	6,12 %	Graf :
16322	Rýpadlo pásové mini Caternillar 300 9D /	488 min	998 min	406 min	600 min	300 min	2792 min	6,88 %	Graf:

Varianta ID 16326

Obsluha: Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3)

Zákazník: Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 40)

Krok 7: Výpočet optimalizačních parametrů

Celkem 58 pracovních sestav

ID	Obsluha Zákazník	Náklady, [Kč]	Doba splnění, [hod]	Produkce CO2, [kg]	Spotřeba energie, [l]	Počet poruch, [-]	Graf
16326	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 40)	28 458 120	639	141,2	2 786	15	Graf:
16325	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 39)	28 696 147	659	142,3	2 807	15	Graf:
16256	Rýpadlo pásové mini Caterpillar 300.9D (počet: 4) Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 26)	24 210 469	780	126,4	2 37 1	17	Graf:
16324	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 38)	28 163 590	662	139,7	2 754	15	Graf:
16323	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 37)	27 458 805	661	136,2	2 684	15	Graf:
16322	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3)	27 450 165	677	136,1	2 681	15	Graf :

Varianta ID 16326

Obsluha: Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3)

Zákazník: Sklápěč třístranný TATRA T815-221S45/370 4x4 (počet: 40)

Graf rozdělení nákladů dle položek

Závislost nákladů na čase

Závislost produkce CO2 na čase

Krok 8: Výber optimální sestavy

Celkem 58 pracovních sestav

Cařadit :	sestavy dle Výsledného hodno	ocopí v	Cařadit anatavy				
ociauli	Výsledného hodno		Seřadit sestavy				
ID	Nákladů Doby splnění	у	K3 Doba splnění	K2 Produkce CO2	K5 Spotřeba energie	K4 Počet poruch	Výsledné hodnocení
16224	Rýpadlo pás 300.9D (pod Pevný damp (počet: 20) Počtu poruch	5	100,00 %	34,48 %	20,69 %	17,24 %	70,69 %
16280	Rýpadlo pásové mini Caterpillar 300.9D (počet: 4) Sklápěč třístranný TATRA T815-221545/37 0 4x4 (počet: 35)	46,55 %	86,21 %	63,79 %	70,69 %	46,55 %	70,69 %
16278	Rýpadlo pásové mini Caterpillar 300.9D (počet: 4) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet: 34)	48,28 %	75,86 %	65,52 %	72,41 %	51,72 %	67,24 %
16318	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet: 34)	37,93 %	63,79 %	79,31 %	65,52 %	87,93 %	67,24 %
16323	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet: 37)	24,14 %	82,76 %	60,34 %	55,17 %	74,14 %	65,52 %
16221	Rýpadlo pásové mini Caterpillar 300.9D (počet: 4) Pevný dampr Tatra 163 Jamal (počet: 19)	93,10 %	93,10 %	29,31 %	18,97 %	13,79 %	65,52 %
16312	Rýpadlo pásové mini Caterpillar 300.9D / Radlice malá CAT300.9D (počet: 3) Sklápěč třístranný TATRA T815-221545/370 4x4 (počet:	56,90 %	41,38 %	93,10 %	84,48 %	93,10 %	65,52 %

10 Souhrn a závěry

V předloženém projektu je uvedena část práci, která by měla ukázat, že technicky a matematicky, s řadou zjednodušení, se dá namodelovat celý komplexní stavební proces obsahující stovky dílčích stavebních procesů, a následně provádět různé druhy výpočtů a změn pro efektivní operativní i dlouhodobé plánování stavby. Samozřejmě, že nemůžeme předpokládat, že náš model bude bezchybný a naprosto přesný. Je proto důležité ověřit výsledky práce ve skutečném světě.

Matematické modelování ve speciálním simulačním softwaru a za použití počítačů ukázalo použitelnost teorie hromadné obsluhy a metody Monte Carlo pro stavební procesy. V případě zavedení do systému dalších parametrů, matematický model se bude přibližovat průběhu skutečného stavebního procesu na stavbě. Do modelu se dá zahrnout různé náhodné vlivy včetně klimatických a geografických podmínek.

Na základě výsledku simulace a vyvinuté webové aplikace, manažer stavby resp. zhotovitel může zdůvodnit rozhodnutí výběru optimální strojní sestavy dle různých kritérií. Matematická simulace by měla ukázat, že některé varianty strojních sestav nedokážou splnit úkol za daných podmínek, některé nebudou optimální z hlediska nákladu nebo jiných parametrů, třetí budou optimální z hlediska nákladů na splnění stavebního úkolu.

Simulační software a webová aplikace by měla umožnit náhled výsledku v grafickém formátu nebo dovolit exportovat údaje do dalších programů.

Použití teorie front umožňuje zavést do systému dobu čekání obsluhujících prvků a přiblížit matematický model ke skutečnému pracovnímu úkolu v terénu. Metoda Monte Carlo umožní místo náročných a nákladných na čas a prostředky stavebních procesu, provést matematickou simulaci opakujících jevu.

Během zpracování bude třeba vyřešit několik problémů:

- Je třeba nalézt způsob usnadnění výpočtu a obsáhlého sběru potřebných informací pro sestavování databází procesů a rozdělení pravděpodobnosti jejich chování;
- matematický model by měl být velmi podrobně popsaný různými zákonitostí (technologickými, technickými i ekonomickými) a měl by co nejvíce odpovídat skutečnému výrobnímu stavebnímu procesu;
- výsledky projektu by měly být použitelné nejenom teoreticky, ale i ve stavební praxi a ve výukovém procesu.

Literatura

- [1] Jarský Č.: Příspěvek k matematickému modelování stavebních procesů. Dis. práce, FSv ČVUT, Praha 1981
- [2] Beran V.: Dynamický harmonogram, Academia, Praha 2002, ISBN 80-200-1007-6
- [3] Frank R.: Mikroekonomie a chování, Svoboda-Libertas, Praha 1999, ISBN 80-205-0438-9
- [4] Liška V. a kol.: Makroekonomie, 2.vyd., Professional Publishing, Praha 2004, ISBN 80-86419-51-1
- [5] Jarský Č.:, Musil F., Svoboda P.: Příprava a realizace staveb (Technologie staveb II), CERM, Brno 2003, ISBN 80-7204-282-3
- [6] Rektorys K.: Přehled užité matematiky, Prometheus, Praha 2000, ISBN 9531107
- [7] Přikryl P.: Numerické metody matematické analýzy, SNTL, Praha 1985
- [8] Puchov G., Chatiashvili C.: Modeli technologičeskich processov, Technika, Moskva
- [9] Pontrjagin L.: Matematickaja teorija optimalnich process, Nauka, Moskva 1983
- [10] Jarský Č.: Průzkum matematických metod a modelů v oblasti technologie staveb, ČVUT, Praha 1979
- [11] Luenberger D.: Linear and Nonlinear Programming, Addison-Wesley, Massachusetts 1984, ISBN: 978-0201157949
- [12] Pospíchal V.: K vlivu technologie a lhůty výstavby na náklady a cenu stavební produkce, Disertační práce ČVUT, Praha 2006
- [13] Randolph T., Zavrski I.: Theoretical model for international benchmarking of labor produktivity, University of Zagreb 1999
- [14] Ackoff R., Sasieni M.: Fundamentals of operations research, John Wiley & Sons, New York 1968, ISBN: 978-0471003335
- [15] Jarský Č.: On mathematical stochastic modelling and optimization of construction processes, Acta Technica Academiae Scientiarum Hungaricae, 97, 1984
- [16] Zavadskas E.: Komplexe Bewertung und Auswahl ressourcensparender Entscheidungen im Bauwesen, Mokslas, Vilnus 1987
- [17] Zapletal I.: Optimalizácia komplexního procesu pre výrobu a zabudovanie zmesí do líniových inžinierských stavieb, Inženýrské stavby 2, 1976
- [18] Simulační SW Matlab Simulink v. R2010b.

- [19] Kendall, D. G. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. In The Annals of Mathematical Statistics Vol.24, 1953, s. 338–354.
- [20] www.kuhn-mt.cz Stavební stroje KOMATSU.
- [21] Klvaňa, J.: Modelování 10 Operační výzkum 1, FSv ČVUT, Praha 2005
- [22] Jarský, Č.: Automatizovaná příprava a řízení realizace staveb, CONTEC Kralupy n.Vlt, 2000
- [23] Tesař, J., Bartoš, P.: Metoda Monte-Carlo, Pedagogická fakulta Jihočeské univerzity v Č. Budějovicích, Katedra fyziky, 2010
- [24] Fabian, F; Kluiber, Z.: Metoda Monte Carlo, Praha: PROSPEKTRUM s.r.o., ISBN 80-7175-058-1, 1998
- [25] Usmanov, V.: Minimalizace nákladů při dané době výstavby, Diplomová práce ČVUT, Praha 2008