第7章 b: 一阶微分方程

数学系 梁卓滨

2019-2020 学年 II

假设 y = y(x) 为未知函数,本节探讨如何求解以下四种一阶微分方程:

● 变量分离的一阶微分方程

• 可分离变量的一阶微分方程

● 齐次微分方程

假设 y = y(x) 为未知函数,本节探讨如何求解以下四种一阶微分方程:

● 变量分离的一阶微分方程

$$g(y)dy = f(x)dx$$

• 可分离变量的一阶微分方程

• 齐次微分方程

假设 y = y(x) 为未知函数,本节探讨如何求解以下四种一阶微分方程:

● 变量分离的一阶微分方程

$$g(y)dy = f(x)dx$$

● 可分离变量的一阶微分方程

$$y' = f(x) \cdot g(y)$$

● 齐次微分方程

假设 y = y(x) 为未知函数,本节探讨如何求解以下四种一阶微分方程:

● 变量分离的一阶微分方程

$$g(y)dy = f(x)dx$$

• 可分离变量的一阶微分方程

$$y' = f(x) \cdot g(y)$$

● 齐次微分方程

$$y' = \varphi\left(\frac{y}{x}\right)$$

假设 y = y(x) 为未知函数,本节探讨如何求解以下四种一阶微分方程:

● 变量分离的一阶微分方程

$$g(y)dy = f(x)dx$$

● 可分离变量的一阶微分方程

$$y' = f(x) \cdot g(y)$$

● 齐次微分方程

$$y' = \varphi\left(\frac{y}{x}\right)$$

$$y' + p(x)y = q(x)$$

Outline

◆ 变量分离的一阶微分方程

♣ 可分离变量的一阶微分方程

♥ 齐次微分方程

◆ 一阶线性微分方程

We are here now...

◆ 变量分离的一阶微分方程

- ♣ 可分离变量的一阶微分方程
- ♥ 齐次微分方程

◆ 一阶线性微分方程

计算通解的方法:

$$g(y)dy = f(x)dx \implies$$

计算通解的方法:

$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$

计算通解的方法:

$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$

其中F(x), G(y) 分别是f(x), g(y) 的一个原函数,

计算通解的方法:

$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$

$$\implies G(y) + C_1 = F(x) + C_2$$

$$\implies$$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数,

计算通解的方法:

$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$

$$\implies G(y) + C_1 = F(x) + C_2$$

$$\implies G(y) = F(x) + C$$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C$ (不必写成 $y = y(x)$)

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C$ (不必写成 $y = y(x)$)

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C$ (不必写成 $y = y(x)$)

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y) = F(x) + C$$

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

两边求 x 关于的导数:

G'(y).

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

两边求 x 关于的导数:

 $G'(y) \cdot y'$

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x)$$

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x) \implies g(y)y'$$

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C \quad (不必写成 y = y(x))$

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x) \implies g(y)y' = f(x)$$

计算通解的方法:

$$g(y)dy = f(x)dx$$
 $\Longrightarrow \int g(y)dy = \int f(x)dx$
 $\Longrightarrow G(y) + C_1 = F(x) + C_2$
 $\Longrightarrow G(y) = F(x) + C$ (不必写成 $y = y(x)$)

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证:对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x) \implies g(y)y' = f(x) \implies y' = \frac{f(x)}{g(y)}$$

计算通解的方法:

$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$

$$\implies G(y) + C_1 = F(x) + C_2$$

$$\implies$$
 $G(y) = F(x) + C$ (不必写成 $y = y(x)$)

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

验证: 对关系式

$$G(y(x)) = F(x) + C$$

$$G'(y) \cdot y' = F'(x) \implies g(y)y' = f(x) \implies y' = \frac{f(x)}{g(y)}$$

$$\implies dy = \frac{f(x)}{g(y)}dx$$

计算通解的方法:

$$g(y)dy = f(x)dx \implies \int g(y)dy = \int f(x)dx$$

$$\implies G(y) + C_1 = F(x) + C_2$$

 \implies G(y) = F(x) + C (不必写成 y = y(x))

其中 F(x), G(y) 分别是 f(x), g(y) 的一个原函数, $C = C_2 - C_1$

G(y(x)) = F(x) + C

两边求 x 关于的导数:

验证: 对关系式

$$G'(y) \cdot y' = F'(x) \implies g(y)y' = f(x) \implies y' = \frac{f(x)}{g(y)}$$

$$\implies dy = \frac{f(x)}{g(y)}dx \implies g(y)dy = f(x)dx$$

例1 求 $(y + 1)dy = e^{x}dx$ 的通解.

解

例 1 求 $(y + 1)dy = e^{x}dx$ 的通解.

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad$$

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad \frac{1}{2}y^2 + \frac{$$

$$\int (y+1)dy = \int e^x dx \implies \frac{1}{2}y^2 + y + y$$

 $\mathbf{M} \mathbf{1}$ 求 $(y+1)dy = e^x dx$ 的通解.

$$\int (y+1)dy = \int e^x dx \implies \frac{1}{2}y^2 + y + C_1 =$$

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

 $\mathbf{M} \mathbf{1}$ 求 $(y+1)dy = e^x dx$ 的通解.

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad \frac{1}{2}y^2 + y + C_1 = e^x + C_2$$

例 1 求 $(y + 1)dy = e^{x}dx$ 的通解.

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad \frac{1}{2}y^2 + y + C_1 = e^x + C_2$$

$$\Longrightarrow \qquad \frac{1}{2}y^2 + y = e^x + C_2 - C_1$$

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\Longrightarrow \qquad \frac{1}{2}y^{2} + y = e^{x} + C_{2} - C_{1}$$

$$\Longrightarrow \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

解两边积分

$$\int (y+1)dy = \int e^{x}dx \quad \Longrightarrow \quad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\Longrightarrow \quad \frac{1}{2}y^{2} + y = e^{x} + C_{2} - C_{1}$$

$$\Longrightarrow \quad \frac{1}{2}y^{2} + y = e^{x} + C$$

解

例 1 求 $(y + 1)dy = e^{x}dx$ 的通解.

解两边积分

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\Longrightarrow \qquad \frac{1}{2}y^{2} + y = e^{x} + C_{2} - C_{1}$$

$$\Longrightarrow \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

$$\int y dy = \int x dx \implies$$

例1 求 $(y+1)dy = e^{x}dx$ 的通解.

解两边积分

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad \frac{1}{2}y^2 + y + C_1 = e^x + C_2$$

$$\Longrightarrow \qquad \frac{1}{2}y^2 + y = e^x + C_2 - C_1$$

$$\Longrightarrow \qquad \frac{1}{2}y^2 + y = e^x + C$$

解 两边积分

$$\int y dy = \int x dx \implies \frac{1}{2}y^2 + C_1 =$$

$$\int (y+1)dy = \int e^{x}dx \qquad \Longrightarrow \qquad \frac{1}{2}y^{2} + y + C_{1} = e^{x} + C_{2}$$

$$\Longrightarrow \qquad \frac{1}{2}y^{2} + y = e^{x} + C_{2} - C_{1}$$

$$\Longrightarrow \qquad \frac{1}{2}y^{2} + y = e^{x} + C$$

 $\mathbf{9}$ **2** 求 $\mathbf{y}d\mathbf{y} = \mathbf{x}d\mathbf{x}$ 的通解.

例 1 求 $(y + 1)dy = e^{x}dx$ 的通解.

解 两边积分
$$\int y dy = \int x dx \implies \frac{1}{2}y^2 + C_1 = \frac{1}{2}x^2 + C_2$$
 \Longrightarrow

解 两边积分

 $\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad \frac{1}{2}y^2 + y + C_1 = e^x + C_2$

例 1 求 $(y + 1)dy = e^{x}dx$ 的通解.

 $\mathbf{9}$ **2** 求 $\mathbf{y}d\mathbf{y} = \mathbf{x}d\mathbf{x}$ 的通解.

解两边积分

 $\int y dy = \int x dx \implies \frac{1}{2}y^2 + C_1 = \frac{1}{2}x^2 + C_2$

 $\implies v^2 = x^2 + 2(C_2 - C_1)$

 $\implies \frac{1}{2}y^2 + y = e^x + C$

 $\implies \frac{1}{2}y^2 + y = e^x + C_2 - C_1$

解 两边积分

$$\int (y+1)dy = \int e^x dx \qquad \Longrightarrow \qquad \frac{1}{2}y^2 + y + C_1 = e^x + C_2$$
$$\Longrightarrow \qquad \frac{1}{2}y^2 + y = e^x + C_2 - C_1$$

例 1 求 $(y + 1)dy = e^{x}dx$ 的通解.

例2 求
$$ydy = xdx$$
 的通解.

解两边积分

 $\int y dy = \int x dx \implies \frac{1}{2}y^2 + C_1 = \frac{1}{2}x^2 + C_2$

 \implies $y^2 = x^2 + C$

 $\implies y^2 = x^2 + 2(C_2 - C_1)$

$$\Rightarrow \frac{1}{2}y^2 + y = e^x + C$$

$$\Rightarrow \frac{1}{2}y^2 + y = e^x + C_2 - C_1$$

7b 一阶微分方程

We are here now...

◆ 变量分离的一阶微分方程

♣ 可分离变量的一阶微分方程

♥ 齐次微分方程

◆ 一阶线性微分方程

$$y' = f(x) \cdot g(y) \implies$$

$$y' = f(x) \cdot g(y) \implies \frac{dy}{dx} = f(x) \cdot g(y)$$
 \implies

$$y' = f(x) \cdot g(y) \implies \frac{dy}{dx} = f(x) \cdot g(y)$$

 $\implies dy = f(x) \cdot g(y)dx$
 \implies

$$y' = f(x) \cdot g(y) \implies \frac{dy}{dx} = f(x) \cdot g(y)$$

$$\implies dy = f(x) \cdot g(y) dx$$

$$\implies \frac{1}{g(y)} dy = f(x) dx$$

$$\implies$$

$$y' = f(x) \cdot g(y) \implies \frac{dy}{dx} = f(x) \cdot g(y)$$

$$\implies dy = f(x) \cdot g(y) dx$$

$$\implies \frac{1}{g(y)} dy = f(x) dx$$

$$\implies \left[\frac{1}{g(y)} dy = \int f(x) dx \right]$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

解

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies \frac{1}{f} df = \gamma dt \implies$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies \frac{1}{f} df = \gamma dt \implies \int \frac{1}{f} df = \gamma \int dt$$

$$\implies$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies \frac{1}{f} df = \gamma dt \implies \int \frac{1}{f} df = \gamma \int dt$$

$$\implies \ln|f| =$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies \frac{1}{f} df = \gamma dt \implies \int \frac{1}{f} df = \gamma \int dt$$

$$\implies \ln|f| = \gamma t +$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies \frac{1}{f} df = \gamma dt \implies \int \frac{1}{f} df = \gamma \int dt$$

$$\implies \ln|f| = \gamma t + C_1$$

$$\implies$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies \frac{1}{f} df = \gamma dt \implies \int \frac{1}{f} df = \gamma \int dt$$

$$\implies \ln|f| = \gamma t + C_1$$

$$\implies |f| = e^{\gamma t + C_1}$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies \frac{1}{f} df = \gamma dt \implies \int \frac{1}{f} df = \gamma \int dt$$

$$\implies \ln|f| = \gamma t + C_1$$

$$\implies |f| = e^{\gamma t + C_1}$$

$$\implies f = \pm e^{C_1} \cdot e^{\gamma t}$$

$$f'(t) = \gamma f(t)$$
, γ 是常数

的通解是

$$f(t) = Ce^{\gamma t}$$

请问如何求出此通解?

$$\frac{df}{dt} = \gamma f \implies \frac{1}{f} df = \gamma dt \implies \int \frac{1}{f} df = \gamma \int dt$$

$$\implies \ln|f| = \gamma t + C_1$$

$$\implies |f| = e^{\gamma t + C_1}$$

$$\implies f = \pm e^{C_1} \cdot e^{\gamma t} = Ce^{\gamma t}$$

例1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

解

例 1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

$$\frac{dy}{dx} = -\frac{x}{y} \implies$$

例 1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies$$

例1 求 $\frac{dy}{dx} = -\frac{x}{v}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

例1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 =$$

例1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$
$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + \frac{1}{2}y^2 = -\frac{1}{2}x^2 + \frac{1}{2}y^2 = -\frac{1}{2}x^2 + \frac{1}{2}y^2 = -\frac{1}{2}x^2 + \frac{1}{2}y^2 = -\frac{1}{2}y^2 = -\frac{1}{2$$

例 1 求 $\frac{dy}{dx} = -\frac{x}{v}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies$$

例1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1$$

例1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

例 1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

所以

● 通解为 $x^2 + y^2 = C$ (C 为任意常数)

例 1 求 $\frac{dy}{dx} = -\frac{x}{y}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

- 通解为 x² + y² = C (C 为任意常数)
- 当 x = 1 时 y = 3,则

例 1 求 $\frac{dy}{dx} = -\frac{x}{v}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

- 通解为 $x^2 + y^2 = C$ (C 为任意常数)

例1 求 $\frac{dy}{dx} = -\frac{x}{v}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

- 通解为 $x^2 + y^2 = C$ (C 为任意常数)
- $\exists x = 1 \exists y = 3$, $\bigcup 1^2 + 3^2 = C$ \Rightarrow C = 10

例1 求 $\frac{dy}{dx} = -\frac{x}{v}$ 的通解,以及在初始条件 $y|_{x=1} = 3$ 下的特解.

解这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{x}{y} \implies ydy = -xdx \implies \int ydy = \int -xdx$$

$$\implies \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

$$\implies x^2 + y^2 = 2C_1 = C$$

- 通解为 x² + y² = C (C 为任意常数)
- 当 x = 1 时 y = 3,则 $1^2 + 3^2 = C$ \Rightarrow C = 10 所以特解是 $x^2 + y^2 = 10$

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解.

解

例 2 求 $y' = e^{2x-y}$ 的通解及在初始条件 $y|_{x=0} = 0$ 下的特解.

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies$$

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies$$

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} =$$

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x}$$

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

解这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

• 通解为
$$e^y = \frac{1}{2}e^{2x} + C$$
(C 为任意常数)

解 这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

• 通解为
$$e^y = \frac{1}{2}e^{2x} + C$$
(C 为任意常数)

• 当
$$x = 0$$
 时 $y = 0$,则

解 这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

• 通解为
$$e^y = \frac{1}{2}e^{2x} + C$$
(C 为任意常数)

•
$$\exists x = 0$$
 $\forall y = 0$, $y = 0$, $y = 0$

解 这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

• 通解为
$$e^y = \frac{1}{2}e^{2x} + C$$
 (C 为任意常数)

•
$$\exists x = 0 \text{ bf } y = 0, \text{ } \emptyset \text{ } 1 = \frac{1}{2} + C \Rightarrow C = \frac{1}{2}$$

解这是可分离变量微分方程

$$\frac{dy}{dx} = e^{2x} \cdot e^{-y} \implies e^{y} dy = e^{2x} dx$$

$$\implies \int e^{y} dy = \int e^{2x} dx$$

$$\implies e^{y} = \frac{1}{2} e^{2x} + C$$

• 通解为
$$e^y = \frac{1}{2}e^{2x} + C$$
(C 为任意常数)

• 当
$$x = 0$$
 时 $y = 0$,则 $1 = \frac{1}{2} + C$ \Rightarrow $C = \frac{1}{2}$ 所以特解是 $e^y = \frac{1}{2}e^{2x} + \frac{1}{2}$

解

$$\frac{dy}{dx} = -\frac{y}{x} \implies$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| =$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x|$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\implies |xy| = e^{C_1}$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\implies |xy| = e^{C_1}$$

$$\implies xy = \pm e^{C_1} =$$

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\implies |xy| = e^{C_1}$$

$$\implies xy = \pm e^{C_1} = C$$

例3 求
$$y' = -\frac{y}{y}$$
 的通解.

解 这是可分离变量微分方程

$$\frac{dy}{dx} = -\frac{y}{x} \implies \frac{1}{y}dy = -\frac{1}{x}dx \implies \int \frac{1}{y}dy = \int -\frac{1}{x}dx$$

$$\implies \ln|y| = -\ln|x| + C_1$$

$$\implies \ln|xy| = C_1$$

$$\implies |xy| = e^{C_1}$$

$$\implies xy = \pm e^{C_1} = C$$

$$xy = C$$

所以通解就是

解

$$\frac{dy}{dx} = 2x(y-3) \implies$$

$$\frac{dy}{dx} = 2x(y-3) \implies \frac{1}{y-3}dy = 2xdx$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| =$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} =$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies y-3 = \pm e^{C_1} \cdot e^{x^2} =$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies y-3 = \pm e^{C_1} \cdot e^{x^2} = Ce^{x^2}$$

$$\implies \Rightarrow$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies y-3 = \pm e^{C_1} \cdot e^{x^2} = Ce^{x^2}$$

$$\implies y = C \cdot e^{x^2} + 3$$

$$\frac{dy}{dx} = 2x(y-3) \implies \int \frac{1}{y-3} dy = \int 2x dx$$

$$\implies \ln|y-3| = x^2 + C_1$$

$$\implies |y-3| = e^{x^2 + C_1} = e^{C_1} \cdot e^{x^2}$$

$$\implies y-3 = \pm e^{C_1} \cdot e^{x^2} = Ce^{x^2}$$

$$\implies y = C \cdot e^{x^2} + 3$$
所以通解就是
$$y = C \cdot e^{x^2} + 3$$

例 5 求 $\frac{dy}{dx} + p(x)y = 0$ 的通解,其中 p(x) 是已知函数.

解

例 5 求 $\frac{dy}{dx} + p(x)y = 0$ 的通解,其中 p(x) 是已知函数.

$$\frac{dy}{dx} + p(x)y = 0 \implies$$

解这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \frac{1}{y}dy = -p(x)dx$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| =$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} =$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies$$

解这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} =$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

其中 P(x) 是 p(x) 的一个原函数. 所以通解就是

$$y = Ce^{-P(x)}$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

其中 P(x) 是 p(x) 的一个原函数. 所以通解就是

$$y = Ce^{-P(x)}$$

注 上述的通解也写作

$$y = Ce^{-\int p(x)dx}$$

解 这是可分离变量微分方程

$$\frac{dy}{dx} + p(x)y = 0 \implies \int \frac{1}{y} dy = \int -p(x) dx$$

$$\implies \ln|y| = -P(x) + C_1$$

$$\implies |y| = e^{-P(x) + C_1} = e^{C_1} \cdot e^{-P(x)}$$

$$\implies y = \pm e^{C_1} \cdot e^{-P(x)} = Ce^{-P(x)}$$

其中 P(x) 是 p(x) 的一个原函数. 所以通解就是

$$y = Ce^{-P(x)}$$

注 上述的通解也写作

$$y = Ce^{-\int p(x)dx}$$

这里 $\int p(x)dx$ 仅表示 p(x) 的一个原函数,不含积分常数.

We are here now...

- ◆ 变量分离的一阶微分方程
- ♣ 可分离变量的一阶微分方程
- ♥ 齐次微分方程

◆ 一阶线性微分方程

计算通解步骤:

1. 作变量代换

计算通解步骤:

1. 作变量代换 $u = \frac{y}{x}$,

计算通解步骤:

1. 作变量代换 $u = \frac{y}{x}$, y = xu,

计算通解步骤:

1. 作变量代换 $u = \frac{y}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = \varphi(u)$$

计算通解步骤:

1. 作变量代换 $u = \frac{y}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = \varphi(u) \implies u + x\frac{du}{dx} =$$

计算通解步骤:

1. 作变量代换 $u = \frac{y}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = \varphi(u) \implies u + x\frac{du}{dx} = \varphi(u)$$

计算通解步骤:

1. 作变量代换 $u = \frac{y}{v}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = \varphi(u) \implies u + x \frac{du}{dx} = \varphi(u) \implies x \frac{du}{dx} = \varphi(u) - u$$

计算通解步骤:

1. 作变量代换 $u = \frac{y}{y}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = \varphi(u) \quad \Longrightarrow \quad u + x \frac{du}{dx} = \varphi(u) \quad \Longrightarrow \quad x \frac{du}{dx} = \varphi(u) - u$$

计算通解步骤:

1. 作变量代换 $u = \frac{y}{y}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = \varphi(u) \implies u + x\frac{du}{dx} = \varphi(u) \implies x\frac{du}{dx} = \varphi(u) - u$$

$$\frac{du}{\varphi(u)-u}=\frac{dx}{x}$$

计算通解步骤:

1. 作变量代换 $u = \frac{y}{x}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = \varphi(u) \implies u + x\frac{du}{dx} = \varphi(u) \implies x\frac{du}{dx} = \varphi(u) - u$$

$$\frac{du}{\varphi(u)-u} = \frac{dx}{x} \implies \int \frac{du}{\varphi(u)-u} = \int \frac{dx}{x}$$

计算通解步骤:

1. 作变量代换 $u = \frac{y}{v}$, y = xu, 并代入原方程:

$$\frac{d}{dx}(xu) = \varphi(u) \implies u + x\frac{du}{dx} = \varphi(u) \implies x\frac{du}{dx} = \varphi(u) - u$$

2. 分离变量:

$$\frac{du}{\varphi(u)-u} = \frac{dx}{x} \implies \int \frac{du}{\varphi(u)-u} = \int \frac{dx}{x}$$

3. 还原变量: 求出积分后,将 $\frac{y}{y}$ 代替 u

解 1. 化为齐次方程:

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} =$$

解 1. 化为齐次方程:

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$

例 1 求微分方程
$$\frac{dy}{dx} = \frac{y^2}{xy - x^2}$$
 的通解.

解 1. 化为齐次方程:

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$

$$\frac{d}{dx}(\quad) = \frac{u^2}{u-1}$$

2. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$\frac{d}{dx}(\quad) = \frac{u^2}{u-1}$$

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$ (y = ux)

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1}$$

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1}$$

解 1. 化为齐次方程:

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$ (y = ux)

例1 求微分方程 $\frac{dy}{dx} = \frac{y^2}{xy-x^2}$ 的通解.

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

解 1. 化为齐次方程:

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$ (y = ux)

例1 求微分方程 $\frac{dy}{dx} = \frac{y^2}{xy-x^2}$ 的通解.

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

dx u − 1 3. 分离变量:

例1 求微分方程
$$\frac{dy}{dx} = \frac{y^2}{xy - x^2}$$
 的通解.

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$ (y = ux)

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

$$\frac{u-1}{u}du = \frac{1}{x}dx$$

例1 求微分方程
$$\frac{dy}{dx} = \frac{y^2}{xy-x^2}$$
 的通解.

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$ (y = ux)

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

$$\frac{u-1}{u}du = \frac{1}{x}dx \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right)du = \int \frac{1}{x}dx$$

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$ (y = ux)

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

$$\frac{u-1}{u}du = \frac{1}{x}dx \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right)du = \int \frac{1}{x}dx$$

$$\Rightarrow \quad u - \ln|u| = \frac{1}{u}dx$$

例1 求微分方程 $\frac{dy}{dx} = \frac{y^2}{xy-x^2}$ 的通解.

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$ (y = ux)

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

3. 分离变量:

$$\frac{u-1}{u}du = \frac{1}{x}dx \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right)du = \int \frac{1}{x}dx$$

$$\Rightarrow \quad u - \ln|u| = \ln|x|$$

● 暨南大学

例1 求微分方程 $\frac{dy}{dx} = \frac{y^2}{xy-x^2}$ 的通解.

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{y}$ (y = ux)

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

$$\frac{u-1}{u}du = \frac{1}{x}dx \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right)du = \int \frac{1}{x}dx$$

$$\Rightarrow \quad u = \ln|u| = \ln|x| + C_{2}$$

$$\frac{-u}{u}au = \frac{-ax}{x} \implies \int \left(1 - \frac{-u}{u}\right)au = \int \frac{-a}{x}au$$

$$\Rightarrow u - \ln|u| = \ln|x| + C_1$$

例 1 求微分方程 $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$ 的通解.

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{x}$ (y = ux)

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

3. 万禹支重.
$$\frac{u-1}{u}du = \frac{1}{x}dx \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right)du = \int \frac{1}{x}dx$$

$$\Rightarrow \quad u - \ln|u| = \ln|x| + C_1$$

$$\Rightarrow \quad e^u = Cux$$

解 1. 化为齐次方程:

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

2. 变量代换: $u = \frac{y}{y}$ (y = ux)

例1 求微分方程 $\frac{dy}{dx} = \frac{y^2}{xy-x^2}$ 的通解.

$$\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$$

3. 分离变量:

3. 分离变量:
$$\frac{u-1}{u}du = \frac{1}{x}dx \quad \Rightarrow \quad \int \left(1 - \frac{1}{u}\right)du = \int \frac{1}{x}dx$$

 $\Rightarrow u - \ln |u| = \ln |x| + C_1$ $\Rightarrow e^{u} = Cux$

4. 还原变量(代回 u = y/x):

4. 还原变量(代回 u = y/x):

7b 一阶微分方程

解 1. 化为齐次方程: $\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$

2. 变量代换: $u = \frac{y}{y}$ (y = ux)

 $\frac{d}{dx}(ux) = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x + u = \frac{u^2}{u-1} \quad \Rightarrow \quad u'x = \frac{u}{u-1}$

例1 求微分方程 $\frac{dy}{dx} = \frac{y^2}{xy-x^2}$ 的通解.

 $\frac{u-1}{u}du = \frac{1}{x}dx \implies \left(1 - \frac{1}{u}\right)du = \left(\frac{1}{x}dx\right)$

 $e^{y/x} = Cy$

 $\Rightarrow e^u = Cux$

暨南大學

13/22 < ▷ △ ▽

 $\Rightarrow u - \ln |u| = \ln |x| + C_1$

 \mathbf{H} 1. 变量代换: $u = \frac{y}{x}$

解 1. 变量代换:
$$u = \frac{y}{x}$$

$$()' = \frac{1}{u} + u$$

$$\mathbf{m}$$
 1. 变量代换: $u = \frac{y}{x}$ $(y = ux)$

$$()' = \frac{1}{u} + u$$

$$\mathbf{m}$$
 1. 变量代换: $u = \frac{y}{x}$ $(y = ux)$

$$(ux)' = \frac{1}{u} + u$$

$$\mathbf{H}$$
 1. 变量代换: $u = \frac{y}{x}$ $(y = ux)$

$$(ux)' = \frac{1}{u} + u \quad \Rightarrow \quad u'x + u = \frac{1}{u} + u$$

解 1. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$(ux)' = \frac{1}{u} + u \quad \Rightarrow \quad u'x + u = \frac{1}{u} + u \quad \Rightarrow \quad u'x = \frac{1}{u}$$

$$\mathbf{H}$$
 1. 变量代换: $u = \frac{y}{x}$ $(y = ux)$

$$(ux)' = \frac{1}{u} + u \quad \Rightarrow \quad u'x + u = \frac{1}{u} + u \quad \Rightarrow \quad u'x = \frac{1}{u}$$

$$\mathbf{H}$$
 1. 变量代换: $u = \frac{y}{x}$ $(y = ux)$

$$(ux)' = \frac{1}{u} + u \quad \Rightarrow \quad u'x + u = \frac{1}{u} + u \quad \Rightarrow \quad u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx$$

$$\mathbf{H}$$
 1. 变量代换: $u = \frac{y}{x}$ $(y = ux)$

$$(ux)' = \frac{1}{u} + u \quad \Rightarrow \quad u'x + u = \frac{1}{u} + u \quad \Rightarrow \quad u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \implies \int udu = \int \frac{1}{x}dx$$

例 2 求微分方程
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

解 1. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$(ux)' = \frac{1}{u} + u \implies u'x + u = \frac{1}{u} + u \implies u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \implies \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \frac{1}{2}u^2 =$$

例 2 求微分方程
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

$$\mathbf{H}$$
 1. 变量代换: $u = \frac{y}{x}$ $(y = ux)$

$$(ux)' = \frac{1}{u} + u \implies u'x + u = \frac{1}{u} + u \implies u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \implies \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \frac{1}{2}u^2 = \ln|x|$$

例 2 求微分方程
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

解 1. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$(ux)' = \frac{1}{u} + u \implies u'x + u = \frac{1}{u} + u \implies u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \implies \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \frac{1}{2}u^2 = \ln|x| + C_1$$

例 2 求微分方程
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

解 1. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$(ux)' = \frac{1}{u} + u \implies u'x + u = \frac{1}{u} + u \implies u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \quad \Rightarrow \quad \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \quad \frac{1}{2}u^2 = \ln|x| + C_1 \quad \Rightarrow \quad e^{\frac{1}{2}u^2} = Cx$$

例 2 求微分方程
$$y' = \frac{x}{v} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

解 1. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$(ux)' = \frac{1}{u} + u \implies u'x + u = \frac{1}{u} + u \implies u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \quad \Rightarrow \quad \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \quad \frac{1}{2}u^2 = \ln|x| + C_1 \quad \Rightarrow \quad e^{\frac{1}{2}u^2} = Cx$$

3. 还原变量(代回 u = y/x):

例 2 求微分方程
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

解 1. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$(ux)' = \frac{1}{u} + u \implies u'x + u = \frac{1}{u} + u \implies u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \quad \Rightarrow \quad \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \quad \frac{1}{2}u^2 = \ln|x| + C_1 \quad \Rightarrow \quad e^{\frac{1}{2}u^2} = Cx$$

3. 还原变量(代回 u = y/x):

例 2 求微分方程
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

$$\mathbf{H}$$
 1. 变量代换: $u = \frac{y}{x}$ $(y = ux)$

$$(ux)' = \frac{1}{u} + u \quad \Rightarrow \quad u'x + u = \frac{1}{u} + u \quad \Rightarrow \quad u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \quad \Rightarrow \quad \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \quad \frac{1}{2}u^2 = \ln|x| + C_1 \quad \Rightarrow \quad e^{\frac{1}{2}u^2} = Cx$$

3. 还原变量(代回 u = y/x):

$$e^{\frac{y^2}{2x^2}} = Cx$$

4. 代入初始值:

例 2 求微分方程
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

解 1. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$(ux)' = \frac{1}{u} + u \quad \Rightarrow \quad u'x + u = \frac{1}{u} + u \quad \Rightarrow \quad u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \quad \Rightarrow \quad \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \quad \frac{1}{2}u^2 = \ln|x| + C_1 \quad \Rightarrow \quad e^{\frac{1}{2}u^2} = Cx$$

3. 还原变量(代回
$$u = y/x$$
):

 $e^{\frac{y^2}{2x^2}} = Cx$

4. 代入初始值:
$$e^2 = C$$

例 2 求微分方程
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 的解.

解 1. 变量代换:
$$u = \frac{y}{x}$$
 $(y = ux)$

$$(ux)' = \frac{1}{u} + u \quad \Rightarrow \quad u'x + u = \frac{1}{u} + u \quad \Rightarrow \quad u'x = \frac{1}{u}$$

$$udu = \frac{1}{x}dx \quad \Rightarrow \quad \int udu = \int \frac{1}{x}dx$$
$$\Rightarrow \quad \frac{1}{2}u^2 = \ln|x| + C_1 \quad \Rightarrow \quad e^{\frac{1}{2}u^2} = Cx$$

3. 还原变量(代回
$$u = y/x$$
):

 $\Delta^{\frac{y^2}{2x^2}} = Cx$

4. 代入初始值:
$$e^2 = C \implies e^{\frac{y^2}{2x^2}} = e^2x$$

We are here now...

◆ 变量分离的一阶微分方程

♣ 可分离变量的一阶微分方程

♥ 齐次微分方程

◆ 一阶线性微分方程

$$\frac{dy}{dx} + p(x)y = q(x)$$

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$			
$y' = y \sin x + e^x$			
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$			
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓		
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	– sin <i>x</i>	
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y\sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$			

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	✓		

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	✓	$-\frac{2}{x+1}$	

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数, y = y(x) 是未知函数.

	是否一阶线性?	<i>p</i> (<i>x</i>)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	√	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	√	$-\frac{2}{x+1}$	0

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数,y = y(x) 是未知函数.

	是否一阶线性?	p(x)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	✓	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	✓	$-\frac{2}{x+1}$	0

• 当
$$q(x) \equiv 0$$
 时,

$$\frac{dy}{dx} + p(x)y = 0$$

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数,y = y(x) 是未知函数.

例

	是否一阶线性?	<i>p</i> (<i>x</i>)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y \sin x + e^x$	√	— sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	√	$-\frac{2}{x+1}$	0

• 当 $q(x) \equiv 0$ 时,

$$\frac{dy}{dx} + p(x)y = 0$$

称为一阶 齐次 线性微分方程

• 一阶线性微分方程形的标准形式:

$$\frac{dy}{dx} + p(x)y = q(x)$$

其中 p(x), q(x) 是已知函数,y = y(x) 是未知函数.

例

	是否一阶线性?	<i>p</i> (<i>x</i>)	q(x)
$y' = y^2 + \sin x$	×		
$y' = y\sin x + e^x$	\checkmark	– sin <i>x</i>	e ^x
$y' = \frac{2y}{x+1}$	√ (齐次)	$-\frac{2}{x+1}$	0

• 当
$$q(x) \equiv 0$$
 时,

$$\frac{dy}{dx} + p(x)y = 0$$

称为一阶 齐次 线性微分方程

利用常数变易法求解,步骤:

利用常数变易法求解,步骤:

1. 求解齐次部分:

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \qquad \frac{dy}{y} = -p(x)dx$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易:假设 $y = u(x)e^{\int -p(x)dx}$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易:假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{v} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' +$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{v} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx}$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

 $_{,2}$. 常数变易: 假设 $y=u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x)$$
 ⇒ $\left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{v} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设
$$y = u(x)e^{\int -p(x)dx}$$
,代入原方程:
$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$

利用常数变易法 求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设
$$y = u(x)e^{\int -p(x)dx}$$
,代入原方程:
$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设
$$y = u(x)e^{\int -p(x)dx}$$
,代入原方程:
$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$

$$= u'(x)e^{\int -p(x)dx} + u(x)\left(e^{\int -p(x)dx}\right)'$$

= $u'(x)e^{\int -p(x)dx} + u(x)e^{\int -p(x)dx}\left(\int -p(x)dx\right)'$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易:假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程: $\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$

$$= u'(x)e^{\int -p(x)dx} + u(x)\left(e^{\int -p(x)dx}\right)'$$

$$= u'(x)e^{\int -p(x)dx} + u(x)e^{\int -p(x)dx}\left(\int -p(x)dx\right)'$$

$$= u'(x)e^{\int -p(x)dx} + u(x)e^{\int -p(x)dx}\left(-p(x)\right)$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$

$$\Rightarrow u'(x)e^{-\int p(x)dx} = q(x)$$

$$= u'(x)e^{\int -p(x)dx} + u(x)\left(e^{\int -p(x)dx}\right)'$$

$$= u'(x)e^{\int -p(x)dx} + u(x)e^{\int -p(x)dx}\left(\int -p(x)dx\right)'$$

$$= u'(x)e^{\int -p(x)dx} + u(x)e^{\int -p(x)dx}\left(-p(x)\right)$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易:假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

2. 常数变易:假设
$$y = u(x)e^{\int -p(x)dx}$$
,代人原方程:
$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$
$$\Rightarrow u'(x)e^{-\int p(x)dx} = q(x)$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易:假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

2. 常数变易: 假设
$$y = u(x)e^{\int -p(x)dx}$$
,代入原方程:
$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$
$$\Rightarrow u'(x) = q(x)e^{\int p(x)dx}$$

利用常数变易法求解,步骤:

1. 求解齐次部分:

$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

2. 常数变易: 假设
$$y = u(x)e^{\int -p(x)dx}$$
,代入原方程:
$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$
$$\Rightarrow u'(x) = q(x)e^{\int p(x)dx}$$

$$\Rightarrow u(x) = \int \left[q(x)e^{\int p(x)dx} \right] dx + C$$

利用常数变易法求解,步骤:

1. 求解齐次部分:
$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

2. 常数变易: 假设 $y = u(x)e^{\int -p(x)dx}$,代入原方程:

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$
$$\Rightarrow u'(x) = q(x)e^{\int p(x)dx}$$

$$\Rightarrow u(x) = \int \left[q(x)e^{\int p(x)dx} \right] dx + C$$

$$\therefore \quad y = u(x)e^{\int -p(x)dx} =$$

利用常数变易法求解,步骤:

1. 求解齐次部分:
$$\frac{dy}{dx} + p(x)y = 0 \quad \Rightarrow \quad \int \frac{dy}{y} = \int -p(x)dx \quad \Rightarrow \quad y = Ce^{\int -p(x)dx}$$

 $\int_{a}^{b}y=\int_{a}^{b$

$$\frac{dy}{dx} + p(x)y = q(x) \Rightarrow \left(u(x)e^{\int -p(x)dx}\right)' + p(x)u(x)e^{\int -p(x)dx} = q(x)$$
$$\Rightarrow u'(x) = q(x)e^{\int p(x)dx}$$

$$\Rightarrow u(x) = \int \left[q(x) e^{\int p(x) dx} \right] dx + C$$

$$y = u(x)e^{\int -p(x)dx} = \left(\int \left[q(x)e^{\int p(x)dx}\right]dx + C\right)e^{\int -p(x)dx}$$

解 1. 先求解齐次部分

$$\frac{\mathbf{g}}{\frac{dy}{dx}} - \frac{2y}{x+1} = 0$$

$$\frac{\mathbf{k}}{\mathbf{k}} = 1$$
. 先求解齐次部分
$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \Rightarrow \frac{1}{y} = \frac{2}{x+1} dx$$

解 1. 先求解齐次部分
$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \Rightarrow \int \frac{1}{y} dy = \int \frac{2}{x+1} dx$$

$$\frac{1}{dx} - \frac{1}{x}$$

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 0$$

2. 常数变易:

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2\ln|x+1| + C_1$$

2. 常数变易:

例 1 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解.

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$ $\Rightarrow v = C(x+1)^2$

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$

例 1 求微分方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解. **解 1**. 先求解齐次部分

$$\Rightarrow y = C(x+1)^2$$
2. 常数变易: 假设 $y = u(x) \cdot (x+1)^2$

$$\frac{\mathbf{f}\mathbf{f}}{dx} = 1$$
. 先求解齐次部分
$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \Rightarrow \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \Rightarrow \ln|y| = 2\ln|x+1| + C_1$$

$$\Rightarrow y = C(x+1)^2$$

2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$,代入原方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

$$\frac{dy}{dx} - \frac{1}{x}$$

解 1. 先求解齐次部分 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$ $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设
$$y = u(x) \cdot (x+1)^2$$
,代入原方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow \left[u\cdot(x+1)^2\right]'-$$

$$\frac{1}{dx} - \frac{1}{x}$$

解 1. 先求解齐次部分 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$

2. 常数变易: 假设
$$y = u(x) \cdot (x+1)^2$$
,代入原方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2$$

 $\Rightarrow v = C(x+1)^2$

$$\frac{dy}{dx} - \frac{dy}{dx}$$

解 1. 先求解齐次部分

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$ $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设
$$y = u(x) \cdot (x+1)^2$$
,代入原方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$$

$$\frac{1}{dx} - \frac{1}{x}$$

解 1. 先求解齐次部分 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$ $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设
$$y = u(x) \cdot (x+1)^2$$
,代入原方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$$

$$(x+1)^{\frac{5}{2}}$$

例 1 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解.

解 1. 先求解齐次部分

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$ $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设
$$y = u(x) \cdot (x+1)^2$$
,代入原方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$$

$$\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$$

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$

解 1. 先求解齐次部分

$$\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx =$

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

例 1 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解.

 $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$,代入原方程

例 1 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解.

 $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$,代入原方程

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx = (x+1)^{\frac{3}{2}}$

解 1. 先求解齐次部分

7b 一阶微分方程

例 1 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解.

 $\Rightarrow v = C(x+1)^2$

2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$,代入原方程

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

 $\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx = \frac{2}{3}(x+1)^{\frac{3}{2}}$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2 \ln|x+1| + C_1$$

7b 一阶微分方程

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

解 1. 先求解齐次部分

例 1 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解.

 $\Rightarrow v = C(x+1)^2$

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$

$$\frac{dy}{dx} - \frac{2y}{x+1} = 0 \implies \int \frac{1}{y} dy = \int \frac{2}{x+1} dx \implies \ln|y| = 2\ln|x+1| + C_1$$

$$\implies y = C(x+1)^2$$

 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$

解 1. 先求解齐次部分

$$u \cdot (x+1)$$

例 1 求微分方程 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解.

2. 常数变易: 假设 $y = u(x) \cdot (x + 1)^2$,代入原方程

 $\Rightarrow u' \cdot (x+1)^2 = (x+1)^{\frac{5}{2}} \Rightarrow u' = (x+1)^{\frac{1}{2}}$

 $\Rightarrow \left[u \cdot (x+1)^2 \right]' - \frac{2}{x+1} \cdot u \cdot (x+1)^2 = (x+1)^{\frac{5}{2}}$

 $\Rightarrow u(x) = \int (x+1)^{\frac{1}{2}} dx = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$

因此 $y = u(x) \cdot (x+1)^2 = \left[\frac{2}{3}(x+1)^{\frac{3}{2}} + C\right](x+1)^2$

17/22 < ▶ △ ▽

解

解 1. 先求解齐次部分

$$\frac{\mathbf{M}}{\frac{dy}{dx}} - \frac{1}{x} y = 0$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \frac{1}{y}dy = \frac{1}{x}dx$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \Rightarrow \ln|y| =$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \Rightarrow \ln|y| = \ln|x| + C_1$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$
$$\implies y = Cx$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$
$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$
$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程 dy = 1

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$
$$\implies y = Cx$$

2. 常数变易: 假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' -$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$
$$\implies y = Cx$$

2. 常数变易: 假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$
$$\implies y = Cx$$

2. 常数变易: 假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

$$\Rightarrow u(x) = \int_{-x}^{1} \ln x dx =$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

$$\Rightarrow u(x) = \int \frac{1}{x} \ln x dx = \int \ln x d \ln x =$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \Rightarrow \int \frac{1}{y}dy = \int \frac{1}{x}dx \Rightarrow \ln|y| = \ln|x| + C_1$$
$$\Rightarrow y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程 $\frac{dy}{dx} = \frac{1}{x}$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \times - \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

$$\Rightarrow u(x) = \int \frac{1}{x} \ln x dx = \int \ln x d \ln x = \frac{1}{2} (\ln x)^2 + C$$

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程 $\frac{dy}{dx} - \frac{1}{x}y = \ln x$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow (u \cdot x)^{x} - \frac{1}{x} \cdot u \cdot x = \ln x$$

$$\Rightarrow u' \cdot x = \ln x$$

 $\Rightarrow u(x) = \int_{-x}^{1} \ln x dx = \int_{-x}^{1} \ln x d \ln x = \frac{1}{2} (\ln x)^{2} + C$

因此 $y = u(x) \cdot x =$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - \frac{1}{x}y = 0 \implies \int \frac{1}{y}dy = \int \frac{1}{x}dx \implies \ln|y| = \ln|x| + C_1$$

$$\implies y = Cx$$

2. 常数变易:假设 $y = u(x) \cdot x$,代入原方程

$$\frac{dy}{dx} - \frac{1}{x}y = \ln x$$

$$\Rightarrow (u \cdot x)' - \frac{1}{x} \cdot u \cdot x = \ln x$$

例 2 求微分方程 $\frac{dy}{dx} - \frac{1}{x}y = \ln x$ 的通解.

 $\Rightarrow u' \cdot x = \ln x$

$$\Rightarrow u(x) = \int \frac{1}{x} \ln x dx = \int \ln x d \ln x = \frac{1}{2} (\ln x)^2 + C$$

因此 $y = u(x) \cdot x = \left[\frac{1}{2} (\ln x)^2 + C \middle| x\right]$

解

解 1. 先求解齐次部分

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0$$

$$\Rightarrow y = Ce^x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \frac{1}{y} dy = dx$$
$$\Rightarrow y = Ce^{x}$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx$$
$$\Rightarrow y = Ce^{x}$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = 0$$
$$\Rightarrow y = Ce^{x}$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易:假设 $y = u(x) \cdot e^x$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易:假设 $y = u(x) \cdot e^x$,代入原方程

$$\frac{dy}{dx} - y = e^x \sin x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易:假设 $y = u(x) \cdot e^x$,代入原方程

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' -$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^x \sin x$$

$$\Rightarrow (u(x) \cdot e^x)' - u(x) \cdot e^x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^x \sin x$$

$$\Rightarrow (u(x) \cdot e^x)' - u(x) \cdot e^x = e^x \sin x$$

$$\Rightarrow$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易:假设 $y = u(x) \cdot e^x$,代入原方程

 \Rightarrow

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' - u(x) \cdot e^{x} = e^{x} \sin x$$

$$\Rightarrow u' = \sin x$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^{x} \sin x$$

$$\Rightarrow (u(x) \cdot e^{x})' - u(x) \cdot e^{x} = e^{x} \sin x$$

$$\Rightarrow u' = \sin x$$

$$\Rightarrow u(x) = \int \sin x dx = \int \int \int \int \cos x dx = \int \int \int \partial x dx = \int$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^x \sin x$$

$$\Rightarrow (u(x) \cdot e^x)' - u(x) \cdot e^x = e^x \sin x$$

$$\Rightarrow u' = \sin x$$

$$\Rightarrow u(x) = \int \sin x dx = -\cos x + C$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

$$\frac{dy}{dx} - y = e^x \sin x$$

$$\Rightarrow (u(x) \cdot e^x)' - u(x) \cdot e^x = e^x \sin x$$

$$\Rightarrow u' = \sin x$$

$$\Rightarrow u(x) = \int \sin x dx = -\cos x + C$$

解 1. 先求解齐次部分

$$\frac{dy}{dx} - y = 0 \implies \int \frac{1}{y} dy = \int dx \implies \ln|y| = x + C_1$$
$$\implies y = Ce^x$$

2. 常数变易:假设 $y = u(x) \cdot e^x$,代入原方程

$$\frac{dy}{dx} - y = e^x \sin x$$

$$\Rightarrow (u(x) \cdot e^x)' - u(x) \cdot e^x = e^x \sin x$$

$$\Rightarrow u' = \sin x$$

$$\Rightarrow u(x) = \int \sin x dx = -\cos x + C$$

因此 $y = u(x) \cdot e^x = (-\cos x + C)e^x$

解 1. 化为标准形式

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

 $\frac{dy}{dx} + \frac{y}{x} = 0 \implies$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$
2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \frac{1}{y}dy = -\frac{1}{x}dx$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \Rightarrow \int \frac{1}{y} dy = \int -\frac{1}{x} dx \Rightarrow \ln|y| =$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{x}$$

3. 常数变易:假设
$$y = \frac{u(x)}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{y}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{y}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{y}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' +$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \implies \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{x}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{y}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \implies \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \implies \frac{u'}{x} = -\frac{1}{x^2}$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{y}$$

3. 常数变易:假设
$$y = \frac{u(x)}{x}$$
,代入原方程

3. 常数变易:假设
$$y = \frac{C}{x}$$
,代入原方程
$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow \frac{u'}{x} = -\frac{1}{x^2}$$

$$\Rightarrow u(x) = \int -\frac{1}{x} dx =$$

$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$$

2. 先求解齐次部分

$$\frac{dy}{dx} + \frac{y}{x} = 0 \implies \int \frac{1}{y} dy = \int -\frac{1}{x} dx \implies \ln|y| = -\ln|x| + C_1$$

$$\implies y = \frac{C}{y}$$

3. 常数变易:假设
$$y = \frac{\alpha v}{x}$$
,代入原方程
$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow \frac{u'}{x} = -\frac{1}{x^2}$$

$$\Rightarrow u(x) = \int -\frac{1}{x} dx = -\ln|x| + C$$

例 4 求 $x^2y' + xy + 1 = 0$ 的满足初始条件 y(2) = 1 的特解. 解 1. 化为标准形式 $\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2}$

2. 先求解齐次部分
$$\frac{dy}{dx} + \frac{y}{x} = 0 \Rightarrow \int \frac{1}{y} dy = \int -\frac{1}{x} dx \Rightarrow \ln|y| = -\ln|x| + C_1$$

$$C$$

 $\Rightarrow y = \frac{C}{y}$ 3. 常数变易:假设 $y = \frac{u(x)}{y}$,代入原方程

3. 常数变易: 假设
$$y = \frac{u(x)}{x}$$
,代入原方程
$$\frac{dy}{dx} + \frac{y}{x} = -\frac{1}{x^2} \Rightarrow \left(\frac{u}{x}\right)' + \frac{1}{x} \cdot \frac{u}{x} = -\frac{1}{x^2} \Rightarrow \frac{u'}{x} = -\frac{1}{x^2}$$

$$\Rightarrow u(x) = \int -\frac{1}{x} dx = -\ln|x| + C$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

$$4. y(2) = 1 \Rightarrow$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1 \Rightarrow 1 =$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1 \implies 1 = \frac{1}{2}(-\ln 2 + C)$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1 \implies 1 = \frac{1}{2}(-\ln 2 + C) \implies C = 2 + \ln 2$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1$$
 \Rightarrow $1 = \frac{1}{2}(-\ln 2 + C)$ \Rightarrow $C = 2 + \ln 2$. 所以

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1$$
 \Rightarrow $1 = \frac{1}{2}(-\ln 2 + C)$ \Rightarrow $C = 2 + \ln 2$. 所以

$$y = \frac{u(x)}{x} =$$

因此
$$y = \frac{1}{x}(-\ln|x| + C)$$

4.
$$y(2) = 1$$
 \Rightarrow $1 = \frac{1}{2}(-\ln 2 + C)$ \Rightarrow $C = 2 + \ln 2$. 所以

$$y = \frac{u(x)}{x} = \frac{1}{x}(-\ln|x| + 2 + \ln 2)$$

例 5 求微分方程 $(y^2 - 6x)\frac{dy}{dx} + 2y = 0$ 的通解.

解

例 5 求微分方程 $(y^2 - 6x) \frac{dy}{dx} + 2y = 0$ 的通解.

解 1. 转化为一阶线性微分方程:

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0$$

- 2. 求解齐次部分
- 3. 常数变易:

例 5 求微分方程 $(y^2 - 6x) \frac{dy}{dx} + 2y = 0$ 的通解.

解 1. 转化为一阶线性微分方程:

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$

- 2. 求解齐次部分
- 3. 常数变易:

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$\Rightarrow \quad \frac{dx}{dy} = -\frac{y^2 - 6x}{2y}$$

- 2. 求解齐次部分
- 3. 常数变易:

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$\Rightarrow \quad \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

- 2. 求解齐次部分
- 3. 常数变易:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分
- 3. 常数变易:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0$
- 3. 常数变易:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易: 假设 $x = u(y) \cdot y^3$

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易:假设 $x = u(y) \cdot y^3$,代入方程 $\frac{dx}{dy} \frac{3}{y} = -\frac{1}{2}y$

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
- 3. 常数变易: 假设 $x = u(y) \cdot y^3$,代入方程 $\frac{dx}{dy} \frac{3}{y} = -\frac{1}{2}y \Rightarrow u' = -\frac{1}{2}y^{-2}$

解 1. 转化为一阶线性微分方程:

$$(y^{2} - 6x)\frac{dy}{dx} + 2y = 0 \implies \frac{dy}{dx} = -\frac{2y}{y^{2} - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^{2} - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

2. 求解齐次部分
$$\frac{dx}{dy} - \frac{3}{y}x = 0 \Rightarrow x = Cy^3$$

3. 常数变易: 假设 $x = u(y) \cdot y^3$,代入方程 $\frac{dx}{dv} - \frac{3}{v} = -\frac{1}{2}y \Rightarrow u' = -\frac{1}{2}y^{-2} \Rightarrow u = \frac{1}{2}y^{-1} + C$

解 1. 转化为一阶线性微分方程:

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$\Rightarrow \quad \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

例 5 求微分方程 $(y^2 - 6x)\frac{dy}{dx} + 2y = 0$ 的通解.

$$\Rightarrow \frac{dy}{dy} = -\frac{1}{2y}$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$
 - 3. 常数变易: 假设 $x = u(y) \cdot y^3$,代入方程 $\frac{dx}{dv} \frac{3}{v} = -\frac{1}{2}y \Rightarrow u' = -\frac{1}{2}y^{-2} \Rightarrow u = \frac{1}{2}y^{-1} + C$

因此
$$x = uy^3 =$$

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} = -\frac{1}{2}y + \frac{3}{y}x$$

$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

- 2. 求解齐次部分 $\frac{dx}{dy} \frac{3}{y}x = 0 \Rightarrow x = Cy^3$

3. 常数变易: 假设
$$x = u(y) \cdot y^3$$
,代入方程
$$\frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y \Rightarrow u' = -\frac{1}{2}y^{-2} \Rightarrow u = \frac{1}{2}y^{-1} + C$$

$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0 \quad \Rightarrow \quad \frac{dy}{dx} = -\frac{2y}{y^2 - 6x}$$
$$dx \qquad y^2 - 6x$$

$$\Rightarrow \frac{dx}{dy} = -\frac{y^2 - 6x}{2y} = -\frac{1}{2}y + \frac{3}{y}x$$
$$\Rightarrow \frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y$$

$$\frac{dy}{dx} = \frac{3}{x} x = 0 \Rightarrow x = Cy^3$$

3. 常数变易:假设 $x = u(y) \cdot y^3$,代入方程

$$\frac{dx}{dy} - \frac{3}{y}x = -\frac{1}{2}y \implies u' = -\frac{1}{2}y^{-2} \implies u = \frac{1}{2}y^{-1} + C$$

因此 $x = uy^3 = \left[\frac{1}{2}y^{-1} + C\right]y^3 = \frac{1}{2}y^2 + Cy^3$