Theorem 4.5 (LTI systems and convolution). A LTI system H with impulse response h is such that

$$\mathcal{H}x = x * h$$
.

In other words, a LTI system computes a convolution. In particular, the output of the system is given by the convolution of the input and impulse response.

Proof. Using the fact that δ is the convolutional identity, we can write

$$Hr(t) = H\{r * \delta\}(t)$$

Rewriting the convolution in terms of an integral, we have

an integral, we have
$$\mathcal{H}x(t) = \mathcal{H}\left\{\int_{-\infty}^{\infty} x(\tau)\delta(\cdot - \tau)d\tau\right\}(t).$$

Since \mathcal{H} is a linear operator, we can pull the integral and $x(\tau)$ (which is a constant) with respect to the operation performed by \mathcal{H}) outside \mathcal{H} to obtain

$$\mathcal{H}x(t) = \int_{-\infty}^{\infty} x(\tau) \mathcal{H}\{\delta(\cdot - \tau)\}(t) d\tau$$

interchange H with both X(I) and integral

Since
$$\mathcal H$$
 is time invariant, we can interchange the order of $\mathcal H$ and the time shift of δ by τ (i.e., $\mathcal H\{\delta(-\tau)\}=\mathcal H\delta(-\tau)$) and then use the fact that $h=\mathcal H\delta$ to obtain
$$\mathcal Hx(t)=\int_{-\infty}^\infty x(\tau)\mathcal H\delta(t-\tau)d\tau \qquad \text{hen } \mathcal H$$
 then
$$\mathcal Hx(t)=\int_{-\infty}^\infty x(\tau)\mathcal H\delta(t-\tau)d\tau \qquad \text{hen } \mathcal H$$
 (by definition)
$$=x*h(t).$$

Thus, we have shown that $\Re x = x * h$, where $h = \Re \delta$.