

Desarrollo de un app para la estimación de ventas en la tienda de farmacia Rossmann

Integrantes:

- 1. Edwin Chirre (Data translator)
- 2. Angel Haro (Data Scientist)
- 3. Jaqueline Villamarín (ML Engineer)
- 4. William Chuquer (Developer)

Rossmann es la 2da cadena de farmacia más grande de Alemania

RSSMANN

Fundado en 1972 por Dirk Rossmann

2da cadena de farmacia más grande de Alemania

Tiene más de 3,000 tiendas

Se ubica en 7 países de Europa

Desarrollar app para predecir las ventas de las tiendas

Situación actual

Objetivo

Propuesta

Los gerentes de las tienda predicen las ventas diarias bajo su propia experiencia, por lo que no hay uniformidad en dicho cálculo Predecir de manera confiable y estandarizada las ventas diarias de cada tienda mediante un algoritmo de machine learning Desarrollar un app donde cada gerente pueda predecir la venta de sus tiendas

Pasos para la creación del formulario de predicción de ventas

Formulario de Predicción de Ventas **Tiendas ROSSMANN**

Llene el siguiente formulario y compruebe cual será el valor en Dólares probable en la tienda seleccionada

ld Tienda:	¿Tiene Promoción?		
1	☐ ¿Es Feriado Estatal?		
Seleccionar Fecha Estimación	Tipo de feriado estatal:		
2022/11/27	Ninguno ▼		
Predecir Venta de Tienda			
La venta estimada para la tienda 1 es \$5025.17 USD			

Pasos para crear el formulario analítico

Entendimiento de la data

Base de datos de 1115 Tiendas

Base de datos de Ventas de cada tienda. Histórico de 01ENE2013 hasta el 31JUL2015, más de 1millón de registros

Variables			
store.csv	train.csv		
Store	Store		Variable de Predicción
StoreType	DayOfWeek		
Assortment	Date		
CompetitionDistance	Sales -	-	
CompetitionOpenSinceMonth	Customers		
CompetitionOpenSinceYear	Open		
Promo2	Promo		
Promo2SinceWeek	StateHoliday	1	
Promo2SinceYear	SchoolHoliday	1	
PromoInterval]	

Creación del modelo

Ficha técnica

Se realizó un modelo Xgboost regressor

Se consideraron 30 variables

Tiene un RMSE de 370

Generación del API con FastAPI (Métodos Rest)

Publicación de la imagen en Docker

Docker Desktop

Docker HUB

Servicios en la Nube (AWS)

Interfaz Web para consumir el modelo y disponibilizar a los usuarios (Streamlit)

Formulario de Predicción de Ventas Tiendas ROSSMANN

Llene el siguiente formulario y compruebe cual será el valor en Dólares probable en la tienda seleccionada


```
mport pandas as pd
 mport streamlit as st
 import datetime as dt
import ParametrosPrediccion as pp
import json
import pickle
API URLBASE = "https://ventaproductos-container.mrcbe3o1f4emc.us-east-2.cs.amazonlightsail.com/"
API KEY = "3N3YtdacZPUfke8fI5L98Fc0k10Fqz10AeiNMkABHxaLkteNuWUvsf3I53R6mls411dZZdt7PnmBJ2vKYyA5CARoR2EcA G20kdA"
def execute prediction request(Store: int, Promo: int, SchoolHoliday: int, CompetitionDistance: float,
                                CompetitionOpen: float, Promo2: int, Promo2Open: float, IsPromo2Month: int,
                                Day: int, Month: int, Year: int, WeekOfYear: int , DayOfWeek 1:float,
                                DayOfWeek 2:float, DayOfWeek 3:float, DayOfWeek 4:float,
                                DayOfWeek 5:float, DayOfWeek 6:float, DayOfWeek 7:float,
                                StateHoliday 0:float, StateHoliday a:float, StateHoliday b:float, StateHoliday c:float,
                                StoreType a:float, StoreType b:float, StoreType c:float, StoreType d:float,
                                Assortment a:float, Assortment b:float, Assortment c:float) -> float:
    payload = {
        'Store': int(Store),
        'Promo': int(Promo),
        'SchoolHoliday': int(SchoolHoliday),
        'CompetitionDistance': CompetitionDistance,
        'CompetitionOpen': CompetitionOpen,
        'Promo2': int(Promo2),
        'Promo2Open': Promo2Open,
        'IsPromo2Month': int(IsPromo2Month),
        'Day': int(Day),
        'Month': int(Month),
         'Year': int(Year),
```


QR's de la solución analítica

Enlace del API

Enlace del interfaz web

Github de la solución (click en el ícono)