Chapter 1

Propositional Logic

1.1 The Language of Propositional Logic

Definition 1.1. An **alphabet** for propositional logic is a pair $\mathcal{A} = (\mathcal{V}, \mathcal{C})$, where each component is as follows.

- V is a countably infinite set of **propositional variables**.
- ullet C is a finite set of **connectives** with

$$\mathcal{C} = \bigcup_{i \geq 0} \mathcal{C}_i,$$

where C_i is the set of connectives of arity i.

Remark. In the default setting, we usually let

$$\begin{split} \mathcal{C}_0 &= \{\bot, \top\} \\ \mathcal{C}_1 &= \{\neg\} \\ \mathcal{C}_2 &= \{\land, \lor, \rightarrow, \leftrightarrow\} \end{split}$$

and $C_j = \emptyset$ for $j \geq 3$.

Definition 1.2. The language \mathcal{L} of formulas over alphabet $\mathcal{A} = (\mathcal{V}, \mathcal{C})$ is the minimal set that satisfies the following statements.

- Each propositional variable in \mathcal{V} is a formula.
- If \star is a connective in C_k and $\alpha_1, \alpha_2, \dots, \alpha_k$ are formulas, then $\star \alpha_1 \alpha_2 \cdots \alpha_k$ is a formula.

1.2 Truth Assignment

Definition 1.3. A **truth assignment** is a function $\tau : \mathcal{V} \to \{0, 1\}$. It can be extended to $\bar{\tau} : \mathcal{L} \to \{0, 1\}$ by assigning each connective with arity k to a boolean function from $\{0, 1\}^k$ to $\{0, 1\}$.

Remark. By convention, we use the truth table as follows.

	_	$ \frac{\overline{\tau}(\bot)}{0} \overline{\tau}(\top) $	$\frac{\bar{\tau}(\cdot)}{\cdot}$	$egin{array}{c c} lpha & ar{ au}(eg lpha) & ar{ au}(eg lpha) & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	-
$\bar{\tau}(\alpha)$	$\bar{ au}(eta)$	$\bar{\tau}(\alpha \wedge \beta)$	$\bar{\tau}(\alpha \vee \beta)$	$\bar{\tau}(\alpha \to \beta)$	$\bar{\tau}(\alpha \leftrightarrow \beta)$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Table 1.1: Truth Table

Definition 1.4. We say that a truth assignment τ satisfies a formula α if $\bar{\tau}(\alpha) = 1$. Also, we say that τ satisfies a set Σ of formulas if it satisfies each formula in Σ .

Definition 1.5. Let Σ be a set of formulas and let α be a formula. We say that Σ **tautologically implies** α , denoted by $\Sigma \models \alpha$, if every truth assignment satisfying Σ also satisfies α .

1.3 Proof System

Definition 1.6. The collection Λ of **axioms** consists of the formulas listed below, where α, β, γ are formulas.

(A1)
$$\alpha \to (\beta \to \alpha)$$
.

(A2)
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)).$$

(A3)
$$(\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$$
.

Definition 1.7. A **proof** of a formula α from a collection Γ of formulas is a sequence of formulas

$$(\alpha_1, \alpha_2, \ldots, \alpha_n)$$

satisfying the following properties.

- (a) $\alpha_n = \alpha$.
- (b) For $2 \le k \le n$, either $\alpha_k \in \Lambda \cup \Gamma$ or there exist $1 \le i < k$ and $1 \le j < k$ with $\alpha_j = \alpha_i \to \alpha_k$.

If there exists a proof of φ from Γ , we write $\Gamma \vdash \varphi$. If $\varnothing \vdash \varphi$, we write $\vdash \varphi$ for short.

Theorem 1.8. For any formula α , we have $\vdash \alpha \rightarrow \alpha$.

Proof. The proof of $\alpha \to \alpha$ is as follows.

1.
$$(\alpha \to ((\alpha \to \alpha) \to \alpha)) \to ((\alpha \to (\alpha \to \alpha)) \to (\alpha \to \alpha))$$
.

2.
$$\alpha \to ((\alpha \to \alpha) \to \alpha)$$
.

3.
$$(\alpha \to (\alpha \to \alpha)) \to (\alpha \to \alpha)$$
.

4.
$$\alpha \to (\alpha \to \alpha)$$
.

5.
$$\alpha \to \alpha$$
.

Proposition 1.9. Let Γ and Δ be sets of formulas and let α be a formula. If $\Gamma \vdash \alpha$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash \alpha$.

Proof. To be completed. \Box

Theorem 1.10. Let Γ be a set of formulas and let α and β be formulas. If $\Gamma \cup \{\alpha\} \vdash \beta$, then $\Gamma \vdash \alpha \to \beta$.

Proof. If $\beta \in \Lambda \cup \Gamma$, then we have $\Gamma \vdash \alpha \to \beta_k$ since $\vdash \beta_k \to (\alpha \to \beta_k)$. Furthermore, if $\beta = \alpha$, then we also have $\Gamma \vdash \alpha \to \beta$ since $\vdash \beta \to \beta$ by Theorem 1.8. Thus, one only needs to consider the case that $\beta \notin \Lambda \cup \Gamma \cup \{\alpha\}$.

Suppose that $(\beta_1, \beta_2, \ldots, \beta_n)$ is a proof of β from $\Gamma \cup \{\alpha\}$. For $1 \leq k \leq n$, we prove that $\Gamma \vdash \alpha \to \beta_k$ by induction on k. The induction basis holds for k = 1 since $\beta_1 \in \Lambda \cup \Gamma \cup \{\alpha\}$. For the induction step, let $k \geq 2$ and assume that $\Gamma \vdash \alpha \to \beta_\ell$ for $1 \leq \ell < k$. We have proved for the case that $\beta \in \Lambda \cup \Gamma \cup \{\alpha\}$, and thus we assume without loss of generality that there exist $1 \leq i < k$ and $1 \leq j < k$ such that $\beta_j = \beta_i \to \beta_k$. Note that $\Gamma \vdash \alpha \to \beta_i$ and $\Gamma \vdash \alpha \to (\beta_i \to \beta_k)$ hold by induction hypothesis. Therefore, since

$$\vdash (\alpha \to (\beta_i \to \beta_k)) \to ((\alpha \to \beta_i) \to (\alpha \to \beta_k)),$$

we can conclude that $\Gamma \vdash \alpha \to \beta_k$, which completes the proof.