TALLER DE MICROCONTROLADORES CON DSPIC33FJ32MC202

Instructor: Juan David Rosadio Vega

Miembro IEEE RAS UNAC

Contacto: +51933718584

jrlte98@gmail.com

Un microcontrolador es un circuito integrado que en su interior contiene una unidad central de procesamiento (CPU), unidades de memoria (RAM y ROM), puertos de entrada y salida y periféricos. Se puede decir con toda propiedad que un microcontrolador es una microcomputadora completa encapsulada en un circuito integrado.

ARQUITECTURA VON NEUMANN

ARQUITECTURA HARVARD

FAMILIA DSPIC33

- Tienen un Procesador de señal digital (DSP) para aplicaciones integradas de alto rendimiento que ejecutan lazos de control de tiempo crítico
- Incluyen periféricos especializados

Todo esto lo hace ideal para control de motores con uso intensivo de matemáticas, conversión de energía digital de alta eficiencia.

SPDIP

SSOP QFN

Name	Value	
Architecture	16-bit	
Max CPU Speed (MHz)	40	
CPU Speed (MIPS/DMIPS)	40	
Program Memory Size (KB)	32	
SRAM (KB)	2 -40 to 150	
Temperature Range (C)		
Operating Voltage Range (V)	3 to 3.6	
Pin Count	28	
Analog Peripherals	1-A/D 6x12-bit @ 1100(ksps)	
UART	1	
SPI	1	
12C	1	
Timers	3 x 16-bit 1 x 32-bit	
Motor Control PWM Outputs	8	
Input Capture	4	
Max PWM outputs (including complementary)	10	
Number of PWM Time Bases	3	
Output Compare Channels	4	
Class B Hardware	Yes	
Quadrature Encoder Interface	1	
Peripheral Pin Select / Pin Muxing	Yes	

Figure 1: The proposed line-following robot and its corresponding block diagram.

Fig. 1 The low cost micromouse kit designed for teaching

Table 1 Position and orientation calculations for step motor micromouse

Fig. 6 Position calculation of the micromouse when right or left step motor moves one step

Fig. 2 A MATLAB program for learning maze solving algorithms

EMPECEMOS

CREACION DE PROYECTO

CONFIGURACION INICIAL

FIGURE 8-1: dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 OSCILLATOR SYSTEM DIAGRAM

2: If the Oscillator is used with XT or HS modes, an external parallel resistor with the value of 1 MΩ must be connected.

3: The term FP refers to the clock source for all of the peripherals, while FcY refers to the clock source for the CPU. Throughout this document, FcY and FP are used interchangeably, except in the case of DOZE mode. FP and FcY will be different when DOZE mode is used with any ratio other than 1:1 which is the default.

8.1 CPU Clocking System

The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 devices provide seven system clock options:

- · Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Secondary (LP) Oscillator
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

8.1.1.2 Primary

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

$$FCY = \frac{FOSC}{2}$$

FCY: Frecuencia de ciclo de instrucción-Fuente de reloj de la CPU.

Universidad Nacional del Callao IEEE Student Branch

Configuration Bits							
	Address	Name	Value	Field	Option	Category	Setting
Q	F80000	FBS	000F	BWRP		Boot Segment Write Protect	Boot Segment may be written
				BSS	NO_FLASH	Boot Segment Program Flash Code Protection	No Boot program Flash segment
7	F80004	FGS	0007	GWRP	OFF	General Code Segment Write Protect	User program memory is not write-protected
7.				GSS	OFF	General Segment Code Protection	User program memory is not code-protected
	F80006	FOSCOLL		FNOSC	PRI	Oscillator Mode	Primary Oscillator (XT, HS, EC)
Ê				IESO	OFF	Internal External Switch Over Mode	Start-up device with user-selected oscillator source
	F80008	FOSC		POSCMD	XT	Primary Oscillator Source	XT Oscillator Mode
				OSCIOFNC	OFF	OSC2 Pin Function	OSC2 pin has clock out function
				IOL1WAY	ON	Peripheral Pin Select Configuration	Allow Only One Re-configuration
				FCKSM	CSDCMD	Clock Switching and Monitor	Both Clock Switching and Fail-Safe Clock Monitor are disabled
	F8000A	FWDT	005F	WDTPOST	PS32768	Watchdog Timer Postscaler	1:32,768
				WDTPRE	PR128	WDT Prescaler	1:128
				WINDIS	OFF	Watchdog Timer Window	Watchdog Timer in Non-Window mode
			—	FWDTEN	OFF	Watchdog Timer Enable	Watchdog timer enabled/disabled by user software
	F8000C	FPOR	00F7	FPWRT	PWR128	POR Timer Value	128ms
				ALTI2C	OFF	Alternate I2C pins	I2C mapped to SDA1/SCL1 pins
				LPOL	ON	Motor Control PWM Low Side Polarity bit	PWM module low side output pins have active-high output polarity
				HPOL	ON	Motor Control PWM High Side Polarity bit	PWM module high side output pins have active-high output polarity
				PWMPIN	ON	Motor Control PWM Module Pin Mode bit	PWM module pins controlled by PORT register at device Reset
	F8000E	FICD	00C3	ICS	PGD1	Comm Channel Select	Communicate on PGC1/EMUC1 and PGD1/EMUD1
				JTAGEN	OFF	JTAG Port Enable	JTAG is Disabled
Memory Configuration Bits ▼ Format Read/Write ▼ Generate Source Code to Output							
P Configuration Bits Configuration Bits Configuration Bits Configuration Bits Toutput Configuration Bits Configuration Bits Configuration Bits							

Universidad Nacional del Callao IEEE Student Branch

Universidad Nacional del Callao IEEE Student Branch

Universidad Nacional del Callao IEEE Student Branch

A Student Chapter of the IEEE Robotics & Automation Society

LISTO PARA PROGRAMAR!!!

IMPLEMENTACION EN PROTEUS

Ruta donde se genera el archivo HEX, dentro de la carpeta "MPLABXProjects"

Propiedades del Dspic:

- Seleccionar ruta del archivo HEX
- Colocar la frecuencia del oscilador externo Fosc

https://predictabledesigns.com/the-beginners-guide-to-designing-with-the-dspic33-microcontroller/

BIBLIOGRAFIA

- Dspic33fj32mc202 Device Overview https://www.microchip.com/wwwproducts/en/dsPIC33FJ32MC202
- dsPIC33F Family Data Sheet http://ww1.microchip.com/downloads/en/DeviceDoc/70165d.pdf
- 16-bit Embedded Control Solutions https://ww1.microchip.com/downloads/en/DeviceDoc/00001032T.pdf
- **Motor Control and Drive Design Solutions** https://ww1.microchip.com/downloads/en/DeviceDoc/00000896P.pdf

