Calibration Analysis with a new amplitude, $\mathbf{A}_{in} = 850 mV$

Berkay IPEK

September 2025

Contents

1	Intr	oduction	2	
2	Calibration: memXpoly9			
	2.1	Memory Order 0-5	3	
	2.2	Memory Order 4-9	4	
	2.3	Three critical frequencies	4	
		2.3.1 Input Singal Spectrums	5	
		2.3.2 Output Singal Spectrums	7	
		2.3.3 Calibrated Singal Spectrums		

1 Introduction

The amplitude of the input and output voltage should be $850 \,\mathrm{mV}$. However, in our case, it was $650 \,\mathrm{mV}$. Therefore, we applied this change and re-run for 19 different frequencies.

In the this document, we are going to analyze which orders of memory and polynomial are required to match minimum THD requirement (-80 dB).

2 Calibration: memXpoly9

From the figure below, we observe that higher frequencies lead to a greater number of harmonics. This implies that the polynomial order should be at least 9.

Figure 1: THD values for polynomial orders 1-9

To determine the required memory order, we will analyze the optimal value for calibration by plotting different memory orders on a single graph, while keeping the polynomial order fixed at 9.

2.1 Memory Order 0-5

Figure 2: THD values for memory order 0-5

2.2 Memory Order 4-9

Figure 3: THD values for memory order 4-9

As you can see from these two graphs, there are three main problematic frequencies that need to be studied.

2.3 Three critical frequencies

The critical three main frequencies are as follows : 1.919 GHz 1.923 GHz and 1.935 GHz.

2.3.1 Input Singal Spectrums

Figure 4: Input Voltage Spectrum @ 1.919 GHz

Figure 5: Input Voltage Spectrum @ 1.923 GHz

Figure 6: Input Voltage Spectrum @ $1.935~\mathrm{GHz}$

From these graphs, the input spectrums look fine.

2.3.2 Output Singal Spectrums

Figure 7: Output Voltage Spectrum @ 1.919 GHz

Figure 8: Output Voltage Spectrum @ $1.923~\mathrm{GHz}$

Figure 9: Output Voltage Spectrum @ 1.935 GHz

From these graphs, the output spectrums are looking what we expect.

2.3.3 Calibrated Singal Spectrums

Figure 10: Calibrated Voltage Spectrum @ 1.919 GHz

Figure 11: Calibrated Voltage Spectrum @ 1.923 GHz

Figure 12: Calibrated Voltage Spectrum @ 1.935 GHz

From these graphs, the problem might be the even harmonics or dominant $3\mathrm{rd}$ harmonic.