

006220 "G3E T5960

1 A method of forming an electrical device including providing a substrate
2 having a first dielectric upper layer, forming a depression in said first dielectric upper layer,
3 filling said depression with an electrically conductive film having an electrical resistivity and
4 an upper surface that is co-planar with the first dielectric upper layer, said method
5 comprising:

6 reacting a chemical composition with at least one monolayer of said upper
7 surface; and

8 forming a second dielectric upper layer over said electrically conductive film
9 and said first dielectric upper layer, wherein:

10 at least an exposed surface of the electrically conductive film is
11 unoxidized;

12 said second dielectric upper layer is adhered to said electrically
13 conductive film.

14
15 2. The method as defined in Claim 1, wherein reacting a chemical composition
16 with at least one monolayer of said upper surface comprises:

17 providing a nitrogen-containing composition;

18 heating said first dielectric upper layer; and

19 exposing said upper surface to said nitrogen-containing composition to form
20 a chemical reaction compound having a higher resistance to oxidation than said
21 electrically conductive film.

3 The method as define in Claim 1, wherein forming a second dielectric upper
4 layer over said electrically conductive film and said first dielectric upper layer comprises *in*
5 *situ* depositing said second dielectric upper layer over said electrically conductive film and
at least one monolayer of said upper surface.

7 4. The method as define in Claim 1, wherein forming a second dielectric upper
8 layer over said electrically conductive film and said first dielectric upper layer comprises *in*
9 *situ* depositing said second dielectric upper layer over said electrically conductive film and
10 said first dielectric upper layer after reacting said chemical composition with at least one
11 monolayer of said upper surface.

13 5. The method as define in Claim 1, wherein reacting said chemical composition
14 with at least one monolayer of said upper surface forms a passivation layer upon said upper
15 surface of said electrically conductive film.

1 6. A method of forming an electrical device including providing a substrate
2 having a first dielectric upper layer; forming a depression in said first dielectric upper layer,
3 filling the depression with an electrically conductive film having an upper surface that is co-
4 planar with the first dielectric upper layer, said method comprising:

5 reacting a chemical composition with at least one monolayer of said upper
6 surface to form a passivation layer having a thickness not greater than about 50Å
7 upon the upper surface; and

8 forming a second dielectric upper layer over said electrically conductive film
9 and said first dielectric upper layer, wherein:

10 at least an exposed surface of the electrically conductive film is
11 unoxidized;

12 said second dielectric upper layer is adhered to said electrically
13 conductive film.

14 7. The method as define in Claim 6, wherein the passivation layer upon the
15 upper surface has a thickness in a range from about 2Å to about 20Å.
16 ✓

17 8. The method as define in Claim 6, wherein reacting said chemical
18 composition with said at least one monolayer comprises forming a passivation layer upon
19 said upper surface that is adsorbed onto said at least one monolayer.
20

1 9. The method as define in Claim 6, wherein said passivation layer is formed by
2 the steps comprising:

3 forming a first layer by chemically reacting components of said chemical
4 composition and said at least one monolayer; and

5 forming a second layer by adsorbing portions of said chemical composition
6 onto said first layer.

7
8 9. A method of forming an electrical device, the method comprising:

10 forming an electrically conductive interconnect disposed within a first
11 dielectric layer, said electrically conductive interconnect having an upper surface;

12 forming a first passivation layer disposed upon said upper surface, said first
13 passivation layer including chemical reaction products and solid solution mixtures
14 between said electrically conductive interconnect and a chemical compound; and

15 forming an ILD disposed upon said first dielectric layer and upon said upper
16 surface, said ILD being continuously adhered to said upper surface.

17 11. The method as defined in Claim 10, wherein forming said electrically
18 conductive interconnect further comprises:

19 forming a first titanium liner layer within a depression in said first dielectric
20 layer;

21 forming a first titanium nitride layer upon said first titanium liner layer; and

22 forming a tungsten film upon said first titanium nitride layer so as to fill the
23 depression.

1 12. The method as defined in Claim 10, wherein forming said first passivation
2 layer further comprises forming a first tungsten nitride layer upon said upper surface, wherein
3 said first tungsten nitride layer has a thickness of less than about 50Å.

4
5 13. The method as defined in Claim 10, further comprising forming a second
6 passivation layer comprising ammonia and its derivatives that is adsorbed upon said first
7 passivation layer, wherein said first passivation layer comprises a tungsten nitride compound.

8
9 14. The method as defined in Claim 10, wherein said first passivation layer
10 comprises a layer upon said upper surface comprising ammonia and its derivatives that is
11 adsorbed upon said upper surface.

12
13 15. A method of forming an electrical device, the method comprising:
14 forming an electrically conductive interconnect disposed within a dielectric
15 layer, said electrically conductive interconnect having an upper surface, and further
16 including the steps of:

17 forming a titanium liner layer disposed within a depression in said
18 dielectric layer;

19 forming a titanium nitride layer disposed upon said titanium liner
20 layer; and

21 forming a tungsten film disposed upon said titanium nitride layer and
22 filling said depression;

23 forming a passivation layer composed of tungsten nitride, disposed upon said
24 upper surface, and having a thickness of less than about 50Å; and

25 forming an ILD disposed upon said dielectric layer and upon said upper
26 surface, said ILD being continuously adhered to said upper surface.

005265 00000000000000000000000000000000

- 1 16. A method of forming an electrical device, the method comprising:
2 forming an electrically conductive interconnect having an upper surface and
3 being disposed within a dielectric layer, and further including the steps of:
4 forming a titanium liner layer disposed within a depression in said
5 dielectric layer;
6 forming a titanium nitride layer disposed upon said titanium liner
7 layer; and
8 forming a tungsten film disposed upon said titanium nitride layer and
9 filling said depression;
10 forming a first passivation layer comprising a tungsten nitride compound and
11 being disposed upon said upper surface;
12 forming a second passivation layer comprising ammonia and its derivatives
13 that is adsorbed upon said first passivation layer; and
14 forming an ILD disposed upon said dielectric layer and upon said upper
15 surface, said ILD being continuously adhered to said upper surface.

1 17. A method of forming an electrical device, the method comprising:
2 forming an electrically conductive interconnect disposed within a dielectric
3 layer, said electrically conductive interconnect having an upper surface, and further
4 including the steps of:

5 forming a titanium liner layer disposed within a depression in said
6 dielectric layer;

7 forming a titanium nitride layer disposed upon said titanium liner
8 layer; and

9 forming a tungsten film disposed upon said titanium nitride layer and
10 filling said depression;

11 forming a passivation layer disposed upon said upper surface comprising
12 ammonia and its derivatives that are adsorbed upon said upper surface; and

13 forming an ILD disposed upon said dielectric layer and upon said upper
14 surface, said ILD being continuously adhered to said upper surface.

15
16 18. A method of forming an interconnect in an electronic device, the method
17 comprising:

18 forming a metallic structure disposed within a first silicon oxide layer, said
19 metallic structure having an upper surface;

20 forming a passivation layer disposed upon said upper surface, said passivation
21 layer including chemical reaction products and solid solution mixtures between said
22 metallic structure and a chemical compound; and

23 forming a second silicon oxide layer disposed upon said first silicon oxide
24 layer and upon said upper surface, said second silicon oxide layer being
25 continuously adhered to said upper surface.
26

00000000000000000000000000000000

1 19. The method as defined in Claim 18, wherein forming said metallic structure
2 further comprises:

3 forming a titanium liner layer disposed within an interconnect corridor in said
4 first silicon oxide layer;

5 forming a titanium nitride layer disposed upon said titanium liner layer; and

6 forming a tungsten film disposed upon said titanium nitride layer.

7
8 20. The method as defined in Claim 18, wherein:

9 said passivation layer further comprises forming a tungsten nitride layer
10 disposed upon said upper surface; and

11 said tungsten nitride layer having a thickness of less than about 50Å.

12
13 21. The method as defined in Claim 18, further comprising forming a second
14 layer comprising ammonia and its derivatives that is adsorbed upon said passivation layer,
15 wherein said passivation layer comprises a tungsten nitride compound.

16
17 22. The method as defined in Claim 18, wherein said passivation layer comprises
18 a layer upon said upper surface comprising ammonia and its derivatives that is adsorbed upon
19 said upper surface.

1 23. A method of forming an interconnect in an electronic device, the method
2 comprising:

3 forming a metallic structure disposed within a first silicon oxide layer, said
4 metallic structure having an upper surface, and further including the steps of:

5 forming a titanium liner layer disposed within an interconnect corridor
6 in said first silicon oxide layer;

7 forming a titanium nitride layer disposed upon said titanium liner
8 layer; and

9 forming a tungsten film disposed upon said titanium nitride layer;

10 forming a passivation layer composed of tungsten nitride, having a thickness
11 of less than about 50 \AA , and being disposed upon said upper surface; and

12 forming a second silicon oxide layer disposed upon said first silicon oxide
13 layer and upon said upper surface, said second silicon oxide layer being
14 continuously adhered to said upper surface.

1 24. A method of forming an interconnect in an electronic device, the method
2 comprising:

3 forming a metallic structure disposed within a first silicon oxide layer, said
4 metallic structure having an upper surface, and further including the steps of:

5 forming a titanium liner layer disposed within an interconnect corridor
6 in said first silicon oxide layer;

7 forming a titanium nitride layer disposed upon said titanium liner
8 layer; and

9 forming a tungsten film disposed upon said titanium nitride layer;

10 forming a first passivation layer disposed upon said upper surface and
11 composed of a tungsten nitride compound;

12 forming a second layer comprising ammonia and its derivatives that is
13 adsorbed upon said first passivation layer; and

14 forming a second silicon oxide layer disposed upon said first silicon oxide
15 layer and upon said upper surface, said second silicon oxide layer being
16 continuously adhered to said upper surface

1 25. A method of forming an interconnect in an electronic device, the method
2 comprising:

3 forming a metallic structure disposed within a first silicon oxide layer, said
4 metallic structure having an upper surface, and further including the steps of:

5 forming a titanium liner layer disposed within an interconnect corridor
6 in said first silicon oxide layer;

7 forming a titanium nitride layer disposed upon said titanium liner
8 layer; and

9 forming a tungsten film disposed upon said titanium nitride layer;

10 forming a passivation layer disposed upon said upper surface and composed
11 of ammonia and its derivatives that is adsorbed upon said upper surface; and

12 forming a second silicon oxide layer disposed upon said first silicon oxide
13 layer and upon said upper surface, said second silicon oxide layer being
14 continuously adhered to said upper surface.

15 Add AB

16 Add CS