Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Test 10

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2,5:0,5-5(6,5-\frac{11}{2})=25:5-5(6,5-5,5)=$	3 p
	$=5-5\cdot 1=0$	2p
2.	$x_1 + x_2 = -m, \ x_1 x_2 = 1$	2 p
	$-m+2\cdot 1=1$, deci $m=1$	3 p
3.	$\sqrt{x-2} = 3 - 1 \Rightarrow x - 2 = 4$	3 p
	x = 6, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, numerele divizibile cu 10 sunt: 10, 20, 30, 40, 50, 60, 70, 80 și 90, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.	AB = 8, $AC = 6$, $BC = 10$	2p
	$P_{ABC} = 6 + 8 + 10 = 24$	3 p
6.	Unghiul A este ascuțit $\Rightarrow \cos A > 0$ și, cum $\sin^2 A + \cos^2 A = 1$, obținem $\cos A = \sqrt{1 - \left(\frac{4}{5}\right)^2} =$	3p
	$=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{9}{25}}=\frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A + I_2 = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \Rightarrow \det(A + I_2) = \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 2 \cdot 4 - 3 \cdot 1 =$	3 p
	=8-3=5	2p
b)	$A \cdot A = \begin{pmatrix} 4 & 4 \\ 12 & 12 \end{pmatrix} =$	3 p
	$=4\begin{pmatrix}1&1\\3&3\end{pmatrix}=4A$	2 p
c)	$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \text{ deci } AX = \begin{pmatrix} x+z & y+t \\ 3x+3z & 3y+3t \end{pmatrix} \text{ si } XA = \begin{pmatrix} x+3y & x+3y \\ z+3t & z+3t \end{pmatrix}$	3 p
	$ \begin{pmatrix} x+z & y+t \\ 3x+3z & 3y+3t \end{pmatrix} = \begin{pmatrix} x+3y & x+3y \\ z+3t & z+3t \end{pmatrix} \Leftrightarrow z=3y \text{ si } x+2y=t \Rightarrow X = \begin{pmatrix} x & y \\ 3y & x+2y \end{pmatrix}, \text{ unde } x $ si y sunt numere reale, deci există o infinitate de matrice $X \in \mathcal{M}_2(\mathbb{R})$ pentru care	2 p
	$A \cdot X = X \cdot A$	

Probă scrisă la matematică *M_tehnologic*

Test 10

Barem de evaluare și de notare

2.a)	$1*2 = \frac{1 \cdot 2 + 1 + 2 - 1}{2} =$	3p
	$=\frac{4}{2}=2$	2p
b)	$\frac{x^2 + 2x - 1}{2} \le 1 \Leftrightarrow x^2 + 2x - 3 \le 0 \Leftrightarrow (x + 3)(x - 1) \le 0$	3p
	$x \in [-3,1]$	2p
c)	(-1) * x = -1, unde x este număr real	2p
	(-1)*0*1**2020 = (-1)*(0*1**2020) = -1	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 2x - \frac{2}{x} =$	3р
	$= \frac{2(x^2 - 1)}{x} = \frac{2(x - 1)(x + 1)}{x}, x \in (0, +\infty)$ $f'(x) = 0 \Leftrightarrow x = 1$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1$	1p
	$f'(x) \le 0$, pentru orice $x \in (0,1] \Rightarrow f$ este descrescătoare pe $(0,1]$	2p
	$f'(x) \ge 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este crescătoare pe $[1, +\infty)$	2 p
c)	Pentru orice $x \in (0, +\infty)$, $f(x) \ge f(1)$ și, cum $f(1) = 1$, obținem $x^2 - 2\ln x \ge 1$	2 p
	$\left(\frac{2}{3}\right)^2 - 2\ln\frac{2}{3} \ge 1$, deci $2\ln\frac{2}{3} \le \frac{4}{9} - 1$, de unde obținem $\ln\frac{2}{3} \le -\frac{5}{18}$	3p
2.a)	$\int_{0}^{1} (f(x) + 2020x - 1) dx = \int_{0}^{1} x^{2020} dx = \frac{x^{2021}}{2021} \Big _{0}^{1} =$	3p
	$=\frac{1^{2021}-0^{2021}}{2021}=\frac{1}{2021}$	2p
b)	$F:\mathbb{R}\to\mathbb{R}$ este o primitivă oarecare a funcției f , deci $F'(x)=f(x)$, pentru orice număr real x	2p
	$F''(x) = f'(x) = 2020x^{2019} - 2020 = 2020(x^{2019} - 1) \ge 0$, pentru orice $x \in [1, +\infty)$, deci orice primitivă F a funcției f este convexă pe $[1, +\infty)$	3p
c)	$\int_{0}^{1} \left(f(-x) - f(x) \right) e^{x} dx = \int_{0}^{1} 4040x e^{x} dx = 4040 \int_{0}^{1} x e^{x} dx = 4040x e^{x} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} e^{x} dx = 4040 \int_{0}^{1} e^{x} dx = 40$	3p
	$= 4040e - 4040e^{x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 4040e - 4040e + 4040 = 4040$	2p