Introduction

A posteriori error estimates and stopping criteria for a two-phase flow with nonlinear complementarity constraints

Ibtihel Ben Gharbia, Jad Dabaghi, Vincent Martin, Martin Vohralík

Inria Paris & Université Paris-Est

Interpore, New Orleans, May 17 2018

Outline

Introduction

- Introduction

System of PDEs with nonlinear complementarity constraints:

Find $\boldsymbol{U} \in \mathbb{R}^n$ such that

$$\mathcal{A}(oldsymbol{\mathcal{U}})=0$$

$$\mathcal{K}(\boldsymbol{\textit{U}}) \geq 0, \quad \mathcal{G}(\boldsymbol{\textit{U}}) \geq 0, \quad \mathcal{K}(\boldsymbol{\textit{U}})^T \mathcal{G}(\boldsymbol{\textit{U}}) = 0.$$

Motivation

- Treat nonlinearities on the constraints with the semi-smoothness theory
- Derive a posteriori error estimates at each semismooth step
- Formulate adaptive stopping criteria to save computational time

Application

▶▶▶ Compositional two-phase flow with phase transition in porous media.

Introduction

- Introduction
- 2 Model problem and its discretization
- A posteriori analysis
- Mumerical experiments
- Conclusion

Compositional two-phase flow with phase transition

$$\left\{ \begin{array}{l} \partial_t \textit{I}_w + \boldsymbol{\nabla} \cdot (\rho_w^l \boldsymbol{q}_l + \boldsymbol{J}_w^l) = \textit{Q}_w, \\ \partial_t \textit{I}_h + \boldsymbol{\nabla} \cdot (\rho_h^l \boldsymbol{q}_l + \rho_h^g \boldsymbol{q}_g + \boldsymbol{J}_h^l) = \textit{Q}_h, \\ 1 - \textit{S}_l \geq 0, \; \textit{HP}_g - \beta_l \chi_h^l \geq 0, \; (1 - \textit{S}_l)^T \left(\textit{HP}_g - \beta_l \chi_h^l\right) = 0 \end{array} \right. \quad \text{Unknowns: } \mathcal{S}_l, \textit{P}_l, \chi_h^l$$

$$\begin{split} \textit{l}_{w} &= \phi \rho_{w}^{l} \textit{S}_{l} + \phi \rho_{w}^{g} \textit{S}_{g} \\ \textit{l}_{h} &= \phi \rho_{h}^{l} \textit{S}_{l} + \phi \rho_{h}^{g} \textit{S}_{g} \end{split}$$

$$\mathbf{q}_{\mathrm{g}} = -\mathbf{\underline{K}} \frac{K_{r\mathrm{g}}(S_{\mathrm{g}})}{\mu_{\mathrm{g}}} \left[\mathbf{\nabla} P_{\mathrm{g}} - \left[\rho_{\mathrm{h}}^{\mathrm{l}} + \rho_{\mathrm{h}}^{\mathrm{g}} \right] g \mathbf{\nabla} z \right]$$

$$\mu_{
m g}$$
 Algebraic closure:

 $\mathbf{q}_{\mathrm{l}} = -\underline{\mathbf{K}} \frac{k_{\mathrm{rl}}(S_{\mathrm{l}})}{\mu_{\mathrm{l}}} \left[\nabla P_{\mathrm{l}} - \left[\rho_{\mathrm{w}}^{\mathrm{l}} + \rho_{\mathrm{h}}^{\mathrm{l}} \right] g \nabla z \right]$

$$\mathbf{J}_{\mathrm{h}}^{\mathrm{l}} = -\phi M^{\mathrm{h}} S_{\mathrm{l}} C_{\mathrm{l}} D_{\mathrm{h}}^{\mathrm{l}} \nabla \chi_{\mathrm{h}}^{\mathrm{l}}$$

$$\mathcal{S}_{\mathrm{l}}+\mathcal{S}_{\mathrm{g}}=1,\quad \chi_{\mathrm{h}}^{\mathrm{l}}+\chi_{\mathrm{w}}^{\mathrm{l}}=1,\quad \chi_{\mathrm{h}}^{\mathrm{g}}=1$$

$$ho_{vv}^l = \mathrm{cst}, \quad
ho_{vv}^\mathrm{g} = 0, \quad
ho_{\sigma} = \beta_{\sigma} P_{\sigma}, \quad
ho_{\mathrm{b}}^l = \beta_{\mathrm{l}} \chi_{\mathrm{b}}^l, \quad \chi_{\mathrm{b}}^\mathrm{g} = 1, \quad \chi_{\mathrm{w}}^\mathrm{g} = 0$$

$$\left\{ \begin{array}{l} \partial_t \emph{l}_w + \boldsymbol{\nabla} \cdot (\rho_w^l \boldsymbol{q}_l + \boldsymbol{J}_w^l) = \emph{Q}_w, \\ \partial_t \emph{l}_h + \boldsymbol{\nabla} \cdot (\rho_h^l \boldsymbol{q}_l + \rho_h^g \boldsymbol{q}_g + \boldsymbol{J}_h^l) = \emph{Q}_h, \\ 1 - \emph{S}_l \geq 0, \ \emph{HP}_g - \beta_l \chi_h^l \geq 0, \ (1 - \emph{S}_l)^T \left(\emph{HP}_g - \beta_l \chi_h^l \right) = 0 \\ \textbf{Darcv's law:} \end{array} \right.$$

Amount of components:

$$\begin{split} \textit{I}_{w} &= \phi \rho_{w}^{l} \textit{S}_{l} + \phi \rho_{w}^{g} \textit{S}_{g} \\ \textit{I}_{h} &= \phi \rho_{h}^{l} \textit{S}_{l} + \phi \rho_{h}^{g} \textit{S}_{g} \end{split}$$

$$egin{aligned} \mathbf{q}_{ ext{l}} &= - \underline{\mathbf{K}} rac{\mathbf{\textit{K}}_{r ext{l}}(\mathbf{\textit{S}}_{ ext{l}})}{\mu_{ ext{l}}} \left[oldsymbol{
abla} P_{ ext{l}} - \left[
ho_{ ext{w}}^{ ext{l}} +
ho_{ ext{h}}^{ ext{l}}
ight] g oldsymbol{
abla} z
ight] \ \mathbf{q}_{ ext{g}} &= - \underline{\mathbf{K}} rac{\mathbf{\textit{K}}_{r ext{g}}(\mathbf{\textit{S}}_{ ext{g}})}{\mu_{ ext{g}}} \left[oldsymbol{
abla} P_{ ext{g}} - \left[
ho_{ ext{h}}^{ ext{l}} +
ho_{ ext{h}}^{ ext{g}}
ight] g oldsymbol{
abla} z
ight] \end{aligned}$$

Fick flux:

$$\mathbf{J}_{\mathrm{h}}^{\mathrm{l}}=-\phi\mathbf{\textit{M}}^{\mathrm{h}}\mathbf{\textit{S}}_{\mathrm{l}}\mathbf{\textit{C}}_{\mathrm{l}}\mathbf{\textit{D}}_{\mathrm{h}}^{\mathrm{l}}\boldsymbol{\nabla}\chi_{\mathrm{h}}^{\mathrm{l}}$$

$$S_l + S_g = 1, \quad \chi_h^l + \chi_w^l = 1, \quad \chi_h^g = 1$$

Algebraic closure:

Capillary pressure: $P_g = P_1 + P_c(S_1)$

Assumption

Water incompressible only present in liquid phase and gas slightly compressible

$$\rho_{\rm w}^{\rm l}={\rm cst},\quad \rho_{\rm w}^{\rm g}=0,\quad \rho_{\rm g}=\beta_{\rm g}P_{\rm g},\quad \rho_{\rm h}^{\rm l}=\beta_{\rm l}\chi_{\rm h}^{\rm l},\quad \chi_{\rm h}^{\rm g}=1,\quad \chi_{\rm w}^{\rm g}=0$$

Compositional two-phase flow with phase transition

$$\left\{ \begin{array}{l} \partial_t \textit{I}_w + \boldsymbol{\nabla} \cdot (\rho^l_w \boldsymbol{q}_l + \boldsymbol{J}^l_w) = \textit{Q}_w, \\ \partial_t \textit{I}_h + \boldsymbol{\nabla} \cdot (\rho^l_h \boldsymbol{q}_l + \rho^g_h \boldsymbol{q}_g + \boldsymbol{J}^l_h) = \textit{Q}_h, \\ 1 - \textit{S}_l \geq 0, \ \textit{HP}_g - \beta_l \chi^l_h \geq 0, \ (1 - \textit{S}_l)^T \left(\textit{HP}_g - \beta_l \chi^l_h\right) = 0 \end{array} \right.$$

Fick flux:

$$I_{
m w} = \phi
ho_{
m w}^{
m l} \mathcal{S}_{
m l} + \phi
ho_{
m w}^{
m g} \mathcal{S}_{
m g}$$

$$egin{aligned} I_{
m W} &\equiv \phi
ho_{
m W}^{} \mathcal{S}_{
m l} + \phi
ho_{
m W}^{
m g} \mathcal{S}_{
m g} \ I_{
m h} &= \phi
ho_{
m h}^{
m l} \mathcal{S}_{
m l} + \phi
ho_{
m h}^{
m g} \mathcal{S}_{
m g} \end{aligned}$$

$$\mathbf{J}_{\mathrm{h}}^{\mathrm{l}} = -\phi \mathbf{M}^{\mathrm{h}} \mathbf{S}_{\mathrm{l}} \mathbf{C}_{\mathrm{l}} \mathbf{D}_{\mathrm{h}}^{\mathrm{l}} \mathbf{\nabla} \chi_{\mathrm{h}}^{\mathrm{l}}$$

$$S_{l} + S_{l}$$

$$S_l + S_g = 1, \quad \chi_h^l + \chi_w^l = 1, \quad \chi_h^g = 1$$

Capillary pressure:
$$P_g = P_1 + P_c(S_1)$$

Algebraic closure:

Darcy's law:

 $\mathbf{q}_{\mathrm{l}} = - \underline{\mathbf{K}} rac{\mathbf{K}_{\mathrm{rl}}(S_{\mathrm{l}})}{\mu_{\mathrm{l}}} \left[\mathbf{\nabla} P_{\mathrm{l}} - \left[
ho_{\mathrm{w}}^{\mathrm{l}} +
ho_{\mathrm{h}}^{\mathrm{l}}
ight] g \mathbf{\nabla} \mathbf{z}
ight]$

 $oldsymbol{\mathsf{q}}_{\mathrm{g}} = - oldsymbol{\mathsf{K}} rac{ oldsymbol{\mathsf{k}}_{r\mathrm{g}}(\mathcal{S}_{\mathrm{g}})}{\mu_{\mathrm{g}}} \left[oldsymbol{
abla} oldsymbol{P}_{\mathrm{g}} - \left[
ho_{\mathrm{h}}^{\mathrm{l}} +
ho_{\mathrm{h}}^{\mathrm{g}}
ight] g oldsymbol{
abla} z
ight]$

$$\chi_{
m h}^{
m g}=1$$

Assumption Water incompressible only present in liquid phase and gas slightly compressible

$$ho_{\mathrm{w}}^{\mathrm{l}}=\mathrm{cst},\quad
ho_{\mathrm{w}}^{\mathrm{g}}=0,\quad
ho_{\mathrm{g}}=eta_{\mathrm{g}}P_{\mathrm{g}},\quad
ho_{\mathrm{h}}^{\mathrm{l}}=eta_{\mathrm{l}}\chi_{\mathrm{h}}^{\mathrm{l}},\quad \chi_{\mathrm{h}}^{\mathrm{g}}=1,\quad \chi_{\mathrm{w}}^{\mathrm{g}}=0$$

Discretization by the finite volume method

Numerical solution:

$$\boldsymbol{U}^n := (\boldsymbol{U}_K^n)_{K \in \mathcal{T}_n}, \qquad \boldsymbol{U}_K^n := (S_K^n, P_K^n, \chi_K^n) \quad \text{one value per cell}$$

Time discretization: Consider: $t_0 = 0 < t_1 < \cdots < t_{N_t} = t_F = N_t \Delta t$ with constant time step Δt .

$$\partial_t^n v_K := \frac{v_K^n - v_K^{n-1}}{\Delta t}.$$

Space discretization: \mathcal{T}_h a superadmissible family of conforming simplicial meshes (Ciarlet) of the space domain Ω .

$$(\nabla v \cdot \mathbf{n}_{K,\sigma}, 1)_{\sigma} := |\sigma| \frac{v_L - v_K}{d_{KL}} \ \sigma \in \mathcal{E}_K^{int},$$

Discretization of water equation

$$\boldsymbol{S}^n_{\mathrm{w},K}(\boldsymbol{U}^n) = \partial_t^n I_{\mathrm{w},K} + \sum_{\sigma \in \mathcal{E}_K^{\mathrm{int}}} F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) - Q_{\mathrm{w},K}^n = 0,$$

Total flux

$$F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) = (\mathfrak{M}^l)_{\sigma}^n (\psi^l)_{\sigma}^n + (j_{\mathrm{w}}^l)_{\sigma}^n \quad \sigma \in \mathcal{E}_K^{\mathrm{int}}$$

Discretization of hydrogen equation

$$\mathbf{S}_{\mathrm{h},K}^{n}(\mathbf{U}^{n}) = |K|\partial_{t}^{n}I_{\mathrm{h},K} + \sum_{\sigma \in \mathcal{E}_{K}^{\mathrm{int}}}F_{\mathrm{h},K,\sigma}(\mathbf{U}^{n}) - Q_{\mathrm{h},K}^{n} = 0$$

Total flux

$$\mathcal{F}_{h,\mathcal{K},\sigma}(\boldsymbol{U}^n) = \chi_{\mathcal{K}}^n(\mathfrak{M}^l)_{\sigma}^n(\psi^l)_{\sigma}^n + (\psi^g)_{\sigma}^n(\mathfrak{M}^g)_{\sigma}^n(\rho_g^*)_{\sigma}^n + (j_h^l)_{\sigma}^n, \quad \sigma \in \mathcal{E}_{\mathcal{K}}^{int}$$

- m¹: mobility of liquid phase
- mg: mobility of gas phase
- ψ^1 : potential of liquid phase
- ψ^{g} : potential of gas phase

- j_h! discrete Fick term
- $Q_{w,K}^n$, $Q_{h,K}^n$: source term constant in space and time

$$\boldsymbol{S}_{\mathrm{w},K}^{n}(\boldsymbol{U}^{n}) = \partial_{t}^{n} I_{\mathrm{w},K} + \sum_{\sigma \in \mathcal{E}_{K}^{\mathrm{int}}} F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^{n}) - Q_{\mathrm{w},K}^{n} = 0,$$

Total flux

Introduction

$$F_{\mathrm{w},K,\sigma}(\boldsymbol{U}^n) = (\mathfrak{M}^l)^n_{\sigma}(\psi^l)^n_{\sigma} + (\mathrm{j}^l_{\mathrm{w}})^n_{\sigma} \quad \sigma \in \mathcal{E}_K^{\mathrm{int}}$$

Discretization of hydrogen equation

$$m{\mathcal{S}}_{h,\mathcal{K}}^n(m{\mathcal{U}}^n) = |\mathcal{K}|\partial_t^n \emph{\emph{I}}_{h,\mathcal{K}} + \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}^{int}} \emph{\emph{F}}_{h,\mathcal{K},\sigma}(m{\mathcal{U}}^n) - \emph{\emph{Q}}_{h,K}^n = 0,$$

Total flux

$$\textit{\textbf{F}}_{h,\mathcal{K},\sigma}(\textit{\textbf{U}}^n) = \chi_{\mathcal{K}}^n(\mathfrak{M}^l)_\sigma^n(\psi^l)_\sigma^n + (\psi^g)_\sigma^n(\mathfrak{M}^g)_\sigma^n(\rho_g^*)_\sigma^n + (j_h^l)_\sigma^n, \quad \sigma \in \mathcal{E}_{\mathcal{K}}^{int}$$

- m¹: mobility of liquid phase
- mg: mobility of gas phase
- ψ^1 : potential of liquid phase
- $\psi^{\rm g}$: potential of gas phase

- j_h: discrete Fick term
- Q_{wK}^n , Q_{hK}^n : source term

Numerical experiments

$$\boldsymbol{\mathcal{S}}^n_{\text{w},K}(\boldsymbol{\mathit{U}}^n) = \partial_t^n \textit{I}_{\text{w},K} + \sum_{\sigma \in \mathcal{E}_{\kappa}^{\text{int}}} \textit{F}_{\text{w},K,\sigma}(\boldsymbol{\mathit{U}}^n) - \textit{Q}_{\text{w},K}^n = 0,$$

Total flux

$$extstyle extstyle ext$$

Discretization of hydrogen equation

$$m{\mathcal{S}}_{h,K}^n(m{\mathcal{U}}^n) = |K|\partial_t^n \emph{\emph{I}}_{h,K} + \sum_{\sigma \in \mathcal{E}_{\nu}^{int}} \emph{\emph{F}}_{h,K,\sigma}(m{\mathcal{U}}^n) - \emph{\emph{Q}}_{h,K}^n = 0,$$

Total flux

$$\textit{\textbf{F}}_{h,\textit{\textbf{K}},\sigma}(\textit{\textbf{U}}^{n}) = \chi_{\textit{\textbf{K}}}^{\textit{\textbf{n}}}(\mathfrak{M}^{l})_{\sigma}^{\textit{\textbf{n}}}(\psi^{l})_{\sigma}^{\textit{\textbf{n}}} + (\psi^{g})_{\sigma}^{\textit{\textbf{n}}}(\mathfrak{M}^{g})_{\sigma}^{\textit{\textbf{n}}}(\rho_{g}^{*})_{\sigma}^{\textit{\textbf{n}}} + (j_{h}^{l})_{\sigma}^{\textit{\textbf{n}}}, \quad \sigma \in \mathcal{E}_{\textit{\textbf{K}}}^{int}$$

- \mathfrak{M}^1 : mobility of liquid phase
- \mathfrak{M}^g : mobility of gas phase
- ψ^1 : potential of liquid phase
- ψ^g : potential of gas phase

- j_h! discrete Fick term
- Qⁿ_{w,K}, Qⁿ_{h,K}: source term constant in space and time

Conclusion

Discrete complementarity problem

To reformulate the discrete constraints:

Definition (C-function)

$$\forall (\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^n \times \mathbb{R}^n, \ f(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \geq 0, \ \boldsymbol{b} \geq 0, \ \boldsymbol{a}^T \boldsymbol{b} = 0$$

min-function:
$$min(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \ge 0, \ \boldsymbol{b} \ge 0, \ \boldsymbol{a}^T \boldsymbol{b} = 0.$$

$$1 - S_K^n \ge 0, \ H(P_K^n + P_c(S_K^n)) - \beta_1 \chi_K^n \ge 0, \ (1 - S_K^n)^T (H(P_K^n + P_c(S_K^n)) - \beta_1 \chi_K^n) = 0$$

$$\min\left(1-S_{\kappa}^{n},H(P_{\kappa}^{n}+P_{c}(S_{\kappa}^{n}))-\beta_{1}\chi_{\kappa}^{n}\right)=0$$

Discrete complementarity problem

To reformulate the discrete constraints:

Definition (C-function)

$$\forall (\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^n \times \mathbb{R}^n, \ f(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \geq 0, \ \boldsymbol{b} \geq 0, \ \boldsymbol{a}^T \boldsymbol{b} = 0$$

min-function: min
$$(\boldsymbol{a}, \boldsymbol{b}) = 0 \iff \boldsymbol{a} \ge 0, \ \boldsymbol{b} \ge 0, \ \boldsymbol{a}^T \boldsymbol{b} = 0.$$

Application: complementarity constraints for the two-phase model

$$1 - S_K^n \ge 0, \ H(P_K^n + P_c(S_K^n)) - \beta_1 \chi_K^n \ge 0, \ (1 - S_K^n)^T (H(P_K^n + P_c(S_K^n)) - \beta_1 \chi_K^n) = 0$$

$$\updownarrow$$

$$\min (1 - S_K^n, H(P_K^n + P_c(S_K^n)) - \beta_1 \chi_K^n) = 0$$

Introduction

- A posteriori analysis

nonlinear diffusion PDEs. SIAM J. Sci. Comput. 2013.

Bibliography

Global overview

Introduction

W. PRAGER AND J. L. SYNGE, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 1947.

M. AINSWORTH AND J. T. ODEN. A posteriori error estimation in finite element analysis. Pure and Applied Mathematics, New York, 2000. R. VERFÜRTH, A posteriori error estimation techniques for finite element methods, Oxford, 2013.

Equilibrated flux reconstructions

P. DESTUYNDER AND B. MÉTIVET, Explicit error bounds in a conforming finite element method, Math.

A. ERN AND M. VOHRALÍK, Adaptive inexact Newton methods with a posteriori stopping criteria for

Multiphase compositional flows

D. A. DI PIETRO, E. FLAURAUD, M. VOHRALÍK, AND S. YOUSEF, A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, J. Comput. Phys, 2014.

C. CANCÈS, I. S. POP, AND M. VOHRALÍK, An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp., 2014.

Weak solution

$$X = L^{2}((0, t_{F}); H^{1}(\Omega)), Y = H^{1}((0, t_{F}); L^{2}(\Omega)), Z = \{v \in L^{2}((0, t_{F}); L^{2}(\Omega)), v \geq 0\}$$

Assumption (Weak formulation

$$\begin{split} P_{l}, P_{g}, \chi_{h}^{l} \in X, & S_{l}, S_{g}, I_{w}, I_{h}, \in Y & \Phi_{w}, \Phi_{h} \in [L^{2}((0, t_{F}); \mathbf{H}(\operatorname{div}, \Omega)]^{d} \\ \int_{0}^{t_{F}} \left(\partial_{t} I_{c}, \varphi\right)_{\Omega}(t) \operatorname{dt} - \left(\Phi_{c}, \nabla \varphi\right)_{\Omega}(t) \operatorname{dt} - \left(Q_{c}, \varphi\right)_{\Omega}(t) \operatorname{dt} = 0 & \forall \varphi \in X, \ c = w, h \\ \int_{0}^{t_{F}} \left(\lambda - (1 - S_{l}), HP_{g} - \beta_{l} \chi_{h}^{l}\right)_{\Omega}(t) \operatorname{dt} \geq 0 & \forall \lambda \in Z, \quad 1 - S_{l} \in Z, \ c = w, h \end{split}$$

$$The initial condition, as well as the algebraic closure hold.$$

$$\|\varphi\|_X = \left\{ \sum_{n=1}^{N_t} \int_{I_n} \sum_{K \in \mathcal{T}_h} \|\varphi\|_{X,K}^2 \, \mathrm{d}t \right\}^{\frac{1}{2}}, \quad \|\varphi\|_{X,K}^2 = \varepsilon h_K^{-2} \left\|\varphi\right\|_K^2 + \left\|\nabla\varphi\right\|_K^2.$$

Define continious and piecewise \mathbb{P}_1 in time and discontinous in space functions

$$\underbrace{I_{c,h\tau}(\cdot,t^n)=I_{c,h}^n},\quad \underbrace{S_{h\tau}(\cdot,t^n)=S_h^n}\quad \underbrace{P_{h\tau}(\cdot,t^n)=P_h^n},\quad \underbrace{\chi_{h\tau}(\cdot,t^n)=\chi_h^n}$$

Weak solution

$$X = L^{2}((0, t_{F}); H^{1}(\Omega)), Y = H^{1}((0, t_{F}); L^{2}(\Omega)), Z = \{v \in L^{2}((0, t_{F}); L^{2}(\Omega)), v \geq 0\}$$

Assumption (Weak formulation)

$$\begin{split} & P_l, P_g, \chi_h^l \in \textbf{\textit{X}}, \quad \textbf{\textit{S}}_l, \textbf{\textit{S}}_g, \textbf{\textit{I}}_w, \textbf{\textit{I}}_h, \in \textbf{\textit{Y}} \qquad \boldsymbol{\Phi}_w, \boldsymbol{\Phi}_h \in [\textbf{\textit{L}}^2((0, \textbf{\textit{I}}_F); \textbf{\textit{H}}(\text{div}, \Omega)]^d \\ & \int_0^{\textbf{\textit{I}}_F} \left(\partial_t \textbf{\textit{I}}_c, \varphi\right)_\Omega(t) \, \mathrm{d}t - \left(\boldsymbol{\Phi}_c, \boldsymbol{\nabla}\varphi\right)_\Omega(t) \, \mathrm{d}t - \left(\boldsymbol{\textit{Q}}_c, \varphi\right)_\Omega(t) \, \mathrm{d}t = 0 \quad \forall \varphi \in \textbf{\textit{X}}, \ \textbf{\textit{c}} = w, h \\ & \int_0^{\textbf{\textit{I}}_F} \left(\lambda - (1 - \textbf{\textit{S}}_l), \textbf{\textit{HP}}_g - \beta_l \chi_h^l\right)_\Omega(t) \, \mathrm{d}t \geq 0 \quad \forall \lambda \in \textbf{\textit{Z}}, \quad 1 - \textbf{\textit{S}}_l \in \textbf{\textit{Z}}, \ \textbf{\textit{c}} = w, h \end{split}$$

The initial condition, as well as the algebraic closure hold.

$$\|\varphi\|_{X} = \left\{ \sum_{n=1}^{N_{t}} \int_{I_{n}} \sum_{K \in \mathcal{T}_{h}} \|\varphi\|_{X,K}^{2} dt \right\}^{\frac{1}{2}}, \quad \|\varphi\|_{X,K}^{2} = \varepsilon h_{K}^{-2} \|\varphi\|_{K}^{2} + \|\nabla\varphi\|_{K}^{2}.$$

Define continious and piecewise \mathbb{P}_1 in time and discontinous in space functions

$$\underbrace{I_{c,h\tau}(\cdot,t^n)=I_{c,h}^n}_{\in\mathbb{P}_0},\quad\underbrace{S_{h\tau}(\cdot,t^n)=S_h^n}_{\in\mathbb{P}_0}\quad\underbrace{P_{h\tau}(\cdot,t^n)=P_h^n}_{\in\mathbb{P}_2},\quad\underbrace{\chi_{h\tau}(\cdot,t^n)=\chi_h^n}_{\in\mathbb{P}_2}$$

Weak solution

$$X = L^{2}((0, t_{F}); H^{1}(\Omega)), Y = H^{1}((0, t_{F}); L^{2}(\Omega)), Z = \{v \in L^{2}((0, t_{F}); L^{2}(\Omega)), v \geq 0\}$$

Assumption (Weak formulation)

$$\begin{split} &P_{l},P_{g},\chi_{h}^{l}\in X, \qquad S_{l},S_{g},\mathit{l}_{w},\mathit{l}_{h},\in Y \qquad \Phi_{w},\Phi_{h}\in [\mathit{L}^{2}((0,\mathit{t}_{F});\mathsf{H}(\mathrm{div},\Omega)]^{d}\\ &\int_{0}^{\mathit{t}_{F}}\left(\partial_{t}\mathit{l}_{c},\varphi\right)_{\Omega}(t)\,\mathrm{d}t-\left(\Phi_{c},\nabla\varphi\right)_{\Omega}(t)\,\mathrm{d}t-\left(\mathit{Q}_{c},\varphi\right)_{\Omega}(t)\,\mathrm{d}t=0 \quad \forall\varphi\in X,\;c=\mathrm{w},\mathrm{h}\\ &\int_{0}^{\mathit{t}_{F}}\left(\lambda-\left(1-S_{l}\right),\mathit{HP}_{g}-\beta_{l}\chi_{h}^{l}\right)_{\Omega}(t)\,\mathrm{d}t\geq0 \quad \forall\lambda\in Z, \quad 1-S_{l}\in Z,\;c=\mathrm{w},\mathrm{h} \end{split}$$

The initial condition, as well as the algebraic closure hold.

$$\|\varphi\|_{X} = \left\{ \sum_{n=1}^{N_{t}} \int_{I_{n}} \sum_{K \in \mathcal{T}_{h}} \|\varphi\|_{X,K}^{2} dt \right\}^{\frac{1}{2}}, \quad \|\varphi\|_{X,K}^{2} = \varepsilon h_{K}^{-2} \|\varphi\|_{K}^{2} + \|\nabla \varphi\|_{K}^{2}.$$

Define continious and piecewise \mathbb{P}_1 in time and discontinous in space functions:

$$\underbrace{I_{c,h\tau}(\cdot,t^n)=I_{c,h}^n}_{\in\mathbb{P}_0},\quad\underbrace{S_{h\tau}(\cdot,t^n)=S_h^n}_{\in\mathbb{P}_0}\quad\underbrace{P_{h\tau}(\cdot,t^n)=P_h^n}_{\in\mathbb{P}_2},\quad\underbrace{\chi_{h\tau}(\cdot,t^n)=\chi_h^n}_{\in\mathbb{P}_2}$$

Error measure

Dual norm of the residual for the components
$$\|\mathcal{R}_c(S_{h\tau},P_{h\tau},\chi_{h\tau})\|_{X'} = \sup_{\varphi \in X, \|\varphi\|_X = 1} |\int_0^{t_{\mathbb{P}}} \left(Q_{\mathbf{c}} - \partial_t I_{c,h\tau},\varphi\right)_{\Omega}(t) + \left(\Phi_{c,h\tau},\nabla\varphi\right)_{\Omega}(t)\,\mathrm{d}t|\,.$$

Residual for the constraints

$$\mathcal{R}_{\mathrm{e}}(S_{h au},P_{h au},\chi_{h au}) = \int_{0}^{t_{\mathrm{F}}} \left(1-S_{h au},H\left[P_{h au}+P_{c}(S_{h au})
ight] - eta_{\mathrm{l}}\chi_{h au}
ight)_{\Omega}(t)\,\mathrm{d}t.$$

Error measure for the nonconformity of the pressure

$$\mathcal{N}_{p} = \inf_{\delta_{p} \in X} \left\{ \sum_{c \in \mathcal{C}_{p}} \int_{0}^{t_{F}} \left\| \mu_{p}^{-1} k_{rp}(\mathcal{S}_{p}) \rho_{c}^{p} \underline{\mathbf{K}} \nabla \left(P_{h\tau} - \delta_{p} \right) (t) \right\|^{2} dt \right\}^{\frac{1}{2}},$$

$$\mathcal{N}_{\chi} := \inf_{\theta \in X} \left\{ \int_{0}^{t_{\mathrm{F}}} \left\| -M^{\mathrm{h}} S_{h\tau} \left(\rho_{\mathrm{w}}^{\mathrm{l}}/M^{\mathrm{w}} + \beta_{\mathrm{l}}/M^{\mathrm{h}} \chi_{h\tau} \right) D_{\mathrm{h}}^{\mathrm{l}} \nabla (\chi_{h\tau} - \theta)(t) \right\|^{2} \, \mathrm{d}t \right\}^{\frac{1}{2}},$$

$$\mathcal{N} = \left\{ \sum_{c \in \mathcal{C}} \left\| \mathcal{R}_c(\mathcal{S}_{h\tau}, P_{h\tau}, \chi_{h\tau}) \right\|_{\mathcal{X}'}^2 \right\}^{\frac{1}{2}} + \left\{ \sum_{c \in \mathcal{D}} \mathcal{N}_p^2 + \mathcal{N}_\chi^2 \right\}^{\frac{1}{2}} + \mathcal{R}_e(\mathcal{S}_{h\tau}, P_{h\tau}, \chi_{h\tau})$$

Raviart Thomas spaces

Definition

The lowest-order Raviart-Thomas space is defined by

$$\textbf{RT}_{\textbf{0}}(\Omega) = \{\textbf{\textit{w}}_{\textit{h}} \in \textbf{\textit{H}}(\operatorname{div}, \Omega), \textbf{\textit{w}}_{\textit{h}}|_{\textit{K}} \in \textbf{\textit{RT}}_{\textbf{0}}(\textit{K}) \ \forall \textit{K} \in \mathcal{T}_{\textit{h}}\}$$

$$\mathsf{RT}_0(K) = [\mathbb{P}_0(K)]^2 + \vec{\pmb{x}} \cdot \mathbb{P}_0(K)$$

Figure: **RT**₀ space.

Degrees of freedom:

$$\textit{v}_j = (\textit{\textbf{v}} \cdot \textit{\textbf{n}}_{e_j}, 1)_{e_j}, \;\; \textit{\textbf{e}}_j \in \partial \textit{\textbf{K}}, \;\; \textit{\textbf{j}} = \{1, 2, 3\} \,.$$

Phase pressure reconstruction

$$P_K^{n,k,i}$$
 constant $\Rightarrow \nabla P_K^{n,k,i} = 0$.

Define $\boldsymbol{\xi}_{1,h}^{n,k,i} \in \mathbf{RT}_0(K)$

$$\left(\boldsymbol{\xi}_{1,h}^{n,k,i} \cdot \boldsymbol{n}_{K}, 1\right)_{\sigma} = -|\sigma| \frac{P_{L}^{n,k,i} - P_{K}^{n,k,i}}{d_{KL}}$$

The **discontinuous** \mathbb{P}_2 liquid phase pressure $P_h^{n,k,i}$ satisfy

$$\left(-\nabla P_h^{n,k,i}\right)|_K = \left(\xi_{1,h}^n\right)_K, \ \left(P_h^{n,k,i},1\right)_K = |K|P_K^{n,k,i^{1.01} \frac{1}{6}}$$

The Oswald interpolation operator defines continous \mathbb{P}_2 functions:

- $I_{\text{os}}(P_h^{n,k,i}) \in \mathbb{P}_2 \cap H_0^1(\Omega)$
- $I_{os}(\widehat{P}_h^{n,k,i}) \in \mathbb{P}_2 \cap H_0^1(\Omega)$

Inexact semismooth Newton method

The finite volume scheme provides

$$|K|\partial_t^n I_{c,K} + \sum_{\sigma \in \mathcal{E}_{\kappa}} F_{c,K,\sigma}(\boldsymbol{U}^n) = |K|Q_{\mathrm{h},K}^n,$$

Inexact semismooth linearization

$$\frac{|\mathcal{K}|}{\Delta t} \left[I_{c,K} \left(\boldsymbol{U}^{n,k-1} \right) - I_{c,K}^{n-1} + \mathcal{L}_{c,K}^{n,k,i} \right] + \sum_{\sigma \in \mathcal{E}^{\text{int}}} F_{c,K,\sigma}^{n,k,i} - |K| Q_{c,K}^n + \boldsymbol{R}_{c,K}^{n,k,i} = 0$$

Linear perturbation in the accumulation

$$\mathcal{L}_{c,K}^{n,k,i} = \sum_{K' \in \mathcal{T}} \frac{|K|}{\Delta t} \frac{\partial I_{c,K}^n}{\partial \boldsymbol{U}_{K'}^n} (\boldsymbol{U}_{K'}^{n,k-1}) \left[\boldsymbol{U}_{K'}^{n,k,i} - \boldsymbol{U}_{K'}^{n,k-1} \right],$$

Linearized component flux

$$F_{c,K,\sigma}^{n,k,i} = \sum_{K',c,T} \frac{\partial F_{c,K,\sigma}}{\partial \boldsymbol{U}_{K'}^{n}} \left(\boldsymbol{U}^{n,k-1}\right) \left[\boldsymbol{U}_{K'}^{n,k,i} - \boldsymbol{U}_{K'}^{n,k-1}\right] + F_{c,K,\sigma} \left(\boldsymbol{U}^{n,k-1}\right).$$

Component flux reconstructions

Discretization flux reconstruction:

$$\left(\Theta_{c,h,\mathrm{disc}}^{n,k,i}\cdot\boldsymbol{n}_{K},1\right)_{\sigma}=F_{c,K,\sigma}\left(\boldsymbol{U}^{n,k,i}\right)\quad\forall K\in\mathcal{T}_{h}$$

Linearization flux reconstruction:

$$\left(\boldsymbol{\Theta}_{c,h,\text{lin}}^{n,k,i}\cdot\boldsymbol{n}_{K},1\right)_{\sigma}=F_{c,K,\sigma}^{n,k,i}-F_{c,K,\sigma}\left(\boldsymbol{U}^{n,k,i}\right)\quad\forall K\in\mathcal{T}_{h},$$

Agebraic flux reconstruction:

$$\left(\boldsymbol{\Theta}_{c,h,\mathrm{alg}}^{n,k,\boldsymbol{i}}\cdot\boldsymbol{n}_{K},1\right)_{\partial K}=-\boldsymbol{R}_{c,K}^{n,k,\boldsymbol{i}}\quad\forall K\in\mathcal{T}_{h}$$

Total flux reconstruction:

$$\Theta_{c,h}^{n,k,i} = \Theta_{c,h,\mathrm{disc}}^{n,k,i} + \Theta_{c,h,\mathrm{lin}}^{n,k,i} + \Theta_{c,h,\mathrm{alg}}^{n,k,i}$$

Proposition (Equilibration property)

$$\left(Q_{c,K}^{n} - \frac{I_{c,K}(\boldsymbol{U}^{n,k-1}) - I_{c,K}^{n-1} + \mathcal{L}_{c,K}^{n,k,i}}{\tau_{n}} - \nabla \cdot \Theta_{c,h}^{n,k,i}, 1\right)_{L} = 0$$

Error estimators

$$\eta_{\mathrm{R},K,c}^{n,k,i} = \min \left\{ C_{\mathrm{PW}}, \varepsilon^{-\frac{1}{2}} \right\} h_{K} \left\| Q_{c,h}^{n} - \frac{l_{c,K}(\boldsymbol{U}^{n,k-1}) - l_{c,K}^{n-1} + \mathcal{L}_{c,K}^{n,k,i}}{\tau_{n}} - \nabla \cdot \Theta_{c,h}^{n,k,i} \right\|_{K}$$

$$\eta_{\mathrm{R},K,c}^{n,k,i}(t) = \left\| \Theta_{c,h}^{n,k,i} - \Phi_{c,h}^{n,k,i}(t) \right\|$$

$$f_{NA,K,c}^{n,k,l}(t) = \left(\left\{ 1 - S_{h\tau}^{n,k,l} \right\}^{-1}(t), \left\{ H \left[P_{h\tau}^{n,k,l} + P_c \left(S_{h\tau}^{n,k,l} \right) \right] - P_c^{n,k,l} \right\} \right)$$

$$n^{n,k,i} = \|\mathbf{\Theta}^{n,k,i}\| \rightarrow n^{n,k,i}$$

$$\mathcal{N}^{n} < n_{v}^{n,k,i} + n_{v}^{n,k,i} + n_{v}^{n,k,i} + n_{v}^{n,k,i}$$

Error estimators

$$\eta_{R,K,c}^{n,k,i} = \min \left\{ C_{PW}, \varepsilon^{-\frac{1}{2}} \right\} h_{K} \left\| Q_{c,h}^{n} - \frac{l_{c,K}(\boldsymbol{U}^{n,k-1}) - l_{c,K}^{n-1} + \mathcal{L}_{c,K}^{n,k,i}}{\tau_{n}} - \nabla \cdot \boldsymbol{\Theta}_{c,h}^{n,k,i} \right\|_{K} \\
\eta_{F,K,c}^{n,k,i}(t) = \left\| \boldsymbol{\Theta}_{c,h}^{n,k,i} - \boldsymbol{\Phi}_{c,h\tau}^{n,k,i}(t) \right\|_{K} \\
\eta_{NC,K,\rho,c}^{n,k,i}(t) = \left\| \frac{k_{l}(S_{l})}{\mu_{l}} \rho_{c}^{p} \underline{\mathbf{K}} \nabla (P_{h\tau,p}^{n,k,i} - l_{os}(P_{h,p}^{n,k,i}))(t) \right\|_{K} t \in I_{n}, \\
\eta_{P,K,pos}^{n,k,i}(t) = \left(\left\{ 1 - S_{h\tau}^{n,k,i} \right\}^{+}(t), \left\{ H \left[P_{h\tau}^{n,k,i} + P_{c} \left(S_{h\tau}^{n,k,i} \right) \right] - \beta_{l} \chi_{h\tau}^{n,k,i} \right\}^{+}(t) \right)_{K} \right\} \\
\eta_{NA,K,c}^{n,k,i} = \varepsilon^{-\frac{1}{2}} h_{K}(\tau_{n})^{-1} \left\| I_{c,K}(\boldsymbol{U}^{n,k,i}) - I_{c,K}(\boldsymbol{U}^{n,k-1}) - \mathcal{L}_{c,K}^{n,k,i} \right\|_{K} \\
\eta_{P,K,neg}^{n,k,i}(t) = \left(\left\{ 1 - S_{h\tau}^{n,k,i} \right\}^{-}(t), \left\{ H \left[P_{h\tau}^{n,k,i} + P_{c} \left(S_{h\tau}^{n,k,i} \right) \right] - \beta_{l} \chi_{h\tau}^{n,k,i} \right\}^{-}(t) \right)_{K} \right\}$$

$$\mathcal{N}^n \leq \eta_{\mathrm{disc}}^{n,k,i} + \eta_{\mathrm{lin}}^{n,k,i} + \eta_{\mathrm{alg}}^{n,k}$$

Theorem

$$\eta_{\mathrm{R},K,c}^{n,k,i} = \min \left\{ C_{\mathrm{PW}}, \varepsilon^{-\frac{1}{2}} \right\} h_{K} \left\| Q_{\mathrm{c},h}^{n} - \frac{l_{\mathrm{c},K}(\boldsymbol{U}^{n,k-1}) - l_{\mathrm{c},K}^{n-1} + \mathcal{L}_{\mathrm{c},K}^{n,k,i}}{\tau_{n}} - \nabla \cdot \Theta_{\mathrm{c},h}^{n,k,i} \right\|_{K}$$

$$\eta_{\mathrm{F},\mathrm{K},c}^{n,\mathrm{k},\mathrm{i}}(t) = \left\| \Theta_{c,\mathrm{h}}^{n,\mathrm{k},\mathrm{i}} - \Phi_{c,\mathrm{h}\tau}^{n,\mathrm{k},\mathrm{i}}(t) \right\|_{\mathcal{K}}$$

 $\eta_{\mathrm{NA},K,c}^{n,k,i} = \varepsilon^{-\frac{1}{2}} h_K(\tau_n)^{-1} \left\| I_{c,K}(\boldsymbol{U}^{n,k,i}) - I_{c,K}(\boldsymbol{U}^{n,k-1}) - \mathcal{L}_{c,K}^{n,k,i} \right\|_{K}$

$$\eta_{\mathrm{NC},K,p,c}^{n,k,i}(t) = \left\| \frac{k_{\mathrm{rl}}(\mathbf{S}_{\mathbf{i}})}{\mu_{\mathbf{l}}} \rho_{c}^{p} \mathbf{K} \nabla (P_{h\tau,p}^{n,k,i} - I_{\mathrm{os}}(P_{h,p}^{n,k,i}))(t) \right\|_{K} \quad t \in I_{n},$$

 $\eta_{\mathrm{P},\mathrm{K},\mathrm{neg}}^{n,k,i}(t) = \left(\left\{1 - S_{h\tau}^{n,k,i}\right\}^{-}(t), \left\{H\left[P_{h\tau}^{n,k,i} + P_{c}\left(S_{h\tau}^{n,k,i}\right)\right] - \beta_{1}\chi_{h\tau}^{n,k,i}\right\}^{-}(t)\right)\right\}$

 $\eta_{\mathrm{alg,K,c}}^{\mathsf{n,k,i}} = \left\| \mathbf{\Theta}_{\mathsf{c},\mathsf{h},\mathrm{alg}}^{\mathsf{n,k,i}} \right\|_{\mathsf{L}} o \eta_{\mathrm{alg}}^{\mathsf{n,k,i}}$

 $\mathcal{N}^n \leq \eta_{\text{disc}}^{n,k,i} + \eta_{\text{lin}}^{n,k,i} + \eta_{\text{alg}}^{n,k,i}$

$$\left(C_{n,k,i}^{(l)} \right)$$

$$\eta_{P,K,pos}^{n,k,i}(t) = \left(\left\{ 1 - S_{h\tau}^{n,k,i} \right\}^{+}(t), \left\{ H \left[P_{h\tau}^{n,k,i} + P_c \left(S_{h\tau}^{n,k,i} \right) \right] - \beta_1 \chi_{h\tau}^{n,k,i} \right\}^{+}(t) \right)_{\nu}$$

$$i \in I_n,$$
 $[i \setminus] \quad \rho \in n,k,$

$$t \in I_n$$

$$t \in I_n$$
,

$$t \in I_n$$

$$\in I_n$$

$$- \nabla \cdot \Theta_{c,h}^{n,k,i}$$

Adaptivity

Algorithm 1 Adaptive inexact semismooth Newton algorithm

```
Initialization: Choose an initial vector \mathbf{\textit{U}}^{n,0} \in \mathcal{M}_{3N_h,1}(\mathbb{R}), \ (k=0) Do
```

$$k = k + 1$$

Compute $\mathbb{A}^{n,k-1} \in \mathcal{M}_{3N_h,3N_h}(\mathbb{R})$, $\mathbf{B}^{n,k-1} \in \mathcal{M}_{3N_h,1}(\mathbb{R})$ Consider $\mathbb{A}^{n,k-1}\mathbf{U}^{n,k} = \mathbf{B}^{n,k-1}$

Initialization for the linear solver: Define $U^{n,k,0} = U^{n,k-1}$, (i = 0)

$$i = i + 1$$

Compute Residual: $\mathbf{R}^{n,k,i} = \mathbf{B}^{n,k-1} - \mathbb{A}^{n,k-1} \mathbf{U}^{n,k,i}$ Compute estimators

While
$$\eta_{\mathrm{lin}}^{n,k,i} \geq \gamma_{\mathrm{lin}} \eta_{\mathrm{disc}}^{n,k,i}$$

End

Introduction

- Numerical experiments

Numerical experiments

 Ω : one-dimensional core with length L=200m. We consider the **semismooth Newton-min solver** and assume that the algebraic solver has converged.

Gas injection ▶

Introduction

liquid

Van Genuchten-Mualem model:

$$P_c(S_{
m l}) = P_r \left(S_{
m le}^{-rac{1}{m}} - 1
ight)^{rac{1}{n}} \ k_{
m rl}(S_{
m l}) = \sqrt{S_{
m le}} \left(1 - (1 - S_{
m le}^{rac{1}{m}})^m
ight)^2, \ k_{
m rg}(S_{
m l}) = \sqrt{1 - S_{
m le}} \left(1 - S_{
m le}^{rac{1}{m}}
ight)^{2m}$$

Introduction

- Introduction
- 2 Model problem and its discretization
- A posteriori analysis
- Mumerical experiments
- Conclusion

Conclusion

Conclusion

Introduction

- We devised an a posteriori error estimate between the exact and approximate solution for a wide class of semi-smooth Newton methods.
- This estimate distinguishes the error components ⇒ adaptive stopping criteria.
- The adaptive semismooth Newton method requires less iterations.

Ongoing work:

- Devise adaptive stopping criteria for algebraic solver
- Devise space-time adaptivity

Thank you for your attention!