Solution for JEE problem from 2003

Raja Asiwal and Danish Amin EE17BTECH11034 and EE17BTECH11013

IIT Hyderabad

February 14, 2019

Problem Statement

If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$, intersects in two distinct points, then find the conditions on r.

Graph1

Figure: graph1

Graph2

Figure: graph2

Solution

from the above graph it is clear that for given r_1 and r_2

$$|r_1 + r_2| > C_1 C_2 > |r_1 - r_2|$$

Now,

General equation of a circle at a given center G and radius R is

$$C \equiv \mathbf{X}^{\mathsf{T}}\mathbf{X} - 2\mathbf{G}^{\mathsf{T}}\mathbf{X} + \mathbf{G}^{\mathsf{T}}\mathbf{G} - R^2 = 0$$

Given equation of fixed circle is $x^2 + y^2 - 8x + 2y + 8 = 0$ or in matrix form

$$C_1 \equiv \mathbf{X}^T \mathbf{X} - 2 \begin{pmatrix} 4 & -1 \end{pmatrix} \mathbf{X} + 8 = 0$$

and the equation for variable circle is $(x-1)^2 + (y-3)^2 = r^2$ or in matrix form

$$C_2 \equiv \mathbf{X}^T \mathbf{X} - 2 \begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{X} + 10 - r^2 = 0$$

solution

So radius of C₁ is

$$R_1 = \sqrt{(4 - 1)^T (4 - 1) - 8} = 3$$

and radius of C₂is

$$R_2 = \sqrt{\begin{pmatrix} 1 & 3 \end{pmatrix}^T \begin{pmatrix} 1 & 3 \end{pmatrix} - 10 + r^2} = r$$

now the distance between any two points P_1 and P_2 is given by this relation

$$\mathsf{P_1P_2} = ||\mathsf{P_1} - \mathsf{P_2}||$$

so distance between center of C_1 and C_2 is given by

$$C_1C_2 = \|(4 - 1) - (1 3)\| = 5$$

Solution

So from the above discussed inequality which is

$$|r_1 + r_2| > C_1 C_2 > |r_1 - r_2|$$

and substituting the values r_1 , r_2 , and C_1C_2 we get

$$|r+3| > 5 > |r-3|$$

therefore the condition on r is this

Graph3

Figure: graph1

