Updated on March 9, 2022 Math 3607

Review for Midterm 2

Preliminaries

Two Types of Errors

- absolute error
- relative error

Floating-Point Numbers

• binary scientific notation:

$$\pm \left(1 + \frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_d}{2^d}\right) 2^E,$$

where b_i is 0 or 1 and E is an integer.

- -d determines the resolution
- the range of E determines the scope or extent
- IEEE Standard (double-precision; 64 bits)
 - $-d = 52 \text{ and } -1022 \le E \le 1023$
 - $| eps | = 2^{-52} \approx 2 \times 10^{-16}$
 - realmin, realmax

Floating-Point Numbers

- Key features
 - On any interval of the form $[2^E, 2^{E+1})$, there are 2^d evenly-spaced f-p numbers.
 - The spacing between two adjacent f-p numbers in $[2^E, 2^{E+1})$ is $2^{E-d} = 2^E$ eps.
 - The gap between 1 and the next f-p number is eps], the machine epsilon.
 - Representation error (in relative sense) is bounded by $\frac{1}{2}$ [eps].

Conditioning (of a problem)

- The condition number measures the ratio of error in the result (or output) to error in the data (or input).
- Recall the definition of condition number $\kappa_f(x)$
- A large condition number implies that the error in a result may be much greater than the round-off error used to compute it.
- Catastrophic cancellation is one of the most common sources of loss of precision.

Stability (of an algorithm)

• When an algorithm produces much more error than can be explained by the condition number, the algorithm is unstable.

Square Linear Systems

Polynomial Interpolation

• Polynomial interpolation leads to a square linear system of equations with a Vandermonde matrix.

Gaussian Elimination and (P)LU Factorization

- A triangular linear system is solved by backward substitution or forward elimination.
- A general linear system is solved by Gaussian elimination.
- Gaussian elimination (with partial pivoting) is equivalent to (P)LU factorization.
- Solving a triangular linear system of size $n \times n$ takes $\sim n^2$ flops.
- PLU factorization takes $\sim \frac{2}{3}n^2$ flops.

Norms

A norm generalizes the notion of length for vectors and matrices.

 \bullet Vector p-norm

$$\|\mathbf{v}\|_p = \left(\sum_{i=1}^n |b_i|^p\right)^{1/p}, \quad p \in [1, \infty)$$

and

$$\|\mathbf{v}\|_{\infty} = \max_{i} |v_i|$$

• Matrix *p*-norm (induced)

$$\left\|A\right\|_{p} = \max_{\left\|\mathbf{x}\right\|_{p} = 1} \left\|A\mathbf{x}\right\|_{p}, \quad p \in [1, \infty]$$

• Frobenius norm (non-induced)

$$||A||_F = \left(\sum_i \sum_j |a_{i,j}|^2\right)^{1/2}$$

• MATLAB: norm can calculate both vector and matrix norms

Row and Column Operations

Various row and column operations can be emulated by matrix multiplications. ("Left-multiplication for row actions, right-multiplication for column actions")

- row/column extraction (unit vector)
- row/column swap (elementary permutation matrix)
- row/column rearrangement (permutation matrix)
- row replacement $R_i \to R_i + cR_j$ (Gaussian transformation matrix)

Conditioning/Stability

- Partial pivoting is needed for numerical stability.
- The matrix condition number is equal to the condition number of solving a linear system of equations.

Programming Notes

- Built-in functionalities
 - backslash $(\)$
 - lu
 - norm
 - cond, condest, linsolve
- $\bullet \ \ Demonstration/Instructional\ codes$
 - backsub and forelim $\,$
 - \mathtt{GEnp} and \mathtt{GEpp}
 - mylu and myplu

Overdetermined Linear Systems

Polynomial Approximation

- The most common solution to overdetermined systems is obtained by *least squares*, which minimizes the 2-norm of the residual vector.
- Least squares is used to find fitting functions that depend linearly on the unknown parameters.
- Equivalence of the LLS problem and the normal equation
 - linear algebra proof
 - calculus proof

QR Factorization

- Orthogonal sets of vectors are preferred to nonorthogonal ones in computing. (no catastrophic cancellation)
- Matrices with orthonormal columns and orthogonal matrices enjoy many nice analytical properties.
- QR factorization plays a role in LLS similar to that of LU factorization in square linear systems.

Two Types of QR Factorization

For $A \in \mathbb{R}^{m \times n}$, $m \ge n$:

- Thick QR factorization: A = QR
 - $-Q \in \mathbb{R}^{m \times m}$ orthogonal
 - $-R \in \mathbb{R}^{m \times n}$ upper triangular
 - obtained by using successive Householder transformation matrices for triangularization
- Thin: $A = \widehat{Q}\widehat{R}$
 - $\hat{Q} \in \mathbb{R}^{m \times n}$ orthonormal columns
 - $-\widehat{R} \in \mathbb{R}^{n \times n}$ upper triangular
 - obtained by Gram-Schmidt orthonormalization procedure

Householder Transformation Matrices

- \bullet A Householder transformation matrix H (associated with a vector \mathbf{z}) is a reflection matrix which is
 - symmetric,
 - orthogonal, and
 - transforms \mathbf{z} to $\pm \|\mathbf{z}\|_2 \mathbf{e}_1$.

Programming Notes

- Built-in functionalities
 - backslash (\)
 - qr
- Demonstration/Instructional codes
 - lsqrfact: solving least squares using QR
 - gs: Gram-Schmidt (for homework)