StuDocu.com

tema 5-6

Física Bàsica (Universitat Autònoma de Barcelona)

Camps variables (Cap. 5 i 6)

3 de juny de 2014

Cognoms: Grup: Nom: NIA:

- 1. Expliqueu com construiríeu un transformador per passar d'un voltatge de $220~\rm V$, a l'entrada, a un voltatge de $22~\rm kV$, a la sortida.
- 2. Expliqueu per què al treure un conductor d'una zona a on hi ha una camp magnètic \vec{B} , sorgeix una força que dificulta l'extracció.
- 3. Una espira quadrada de costat a està en el pla xy. Es sotmet l'espira a un camp magnètic variable $\vec{B} = K(e^{-\gamma t}\vec{e}_x \cos\nu t \vec{e}_y + \sin\omega t \vec{e}_z)$, on K, γ , ν i ω són constants. Calculeu el flux magnètic i la força electromotriu induïda en l'espira.
- 4. Quines condicions han de complir les components tangencials (paral·leles) del camp elèctric, \vec{E} , en la superfície de separació entre dos medis? Justifiqueu la vostra resposta.
- 5. Enuncieu i expliqueu l'equació de Maxwell pel rotacional de la intensitat magnètica, \vec{H} .

Camps variables (Cap. 5 i 6)

3 de juny de 2014

Cognoms: Grup: Nom: NIA:

1. Expliqueu com construiríeu un transformador per passar d'un voltatge de $220~\rm V,$ a l'entrada, a un voltatge de $5~\rm V,$ a la sortida.

- 2. Expliqueu per què al treure un conductor d'una zona a on hi ha una camp magnètic \vec{B} , sorgeix una força que dificulta l'extracció.
- 3. Una espira circular de radi a està en el pla yz. Es sotmet l'espira a un camp magnètic variable $\vec{B} = K(e^{-\gamma t}\vec{e}_x \cos\nu t\vec{e}_y + \sin\omega t\vec{e}_z)$, on K, γ , ν i ω són constants. Calculeu el flux magnètic i la força electromotriu induïda en l'espira.
- 4. Quines condicions han de complir les components normals (perpendiculars) de la inducció magnètica, \vec{B} , en la superfície de separació entre dos medis? Justifiqueu la vostra resposta.
- 5. Definiu i expliqueu el concepte de corrent de desplaçament. Com afecta al camp \vec{H} (intensitat magnètica) aquest corrent?