Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Gradients of Convolutional Networks**

Class logistics and Agenda

- Wide/Deep Lab due soon!
- Agenda:
 - Finish CNN Discussion
 - CNN Demo
 - History of CNNs
 - with Modern CNN Architectures
- Next Time:
 - More Advanced CNN Demo

Class Overview, by topic

Last Time: CNNs, Putting it together

Structure of Each Tensor: Channels x Rows x Columns

Reminder: Convolution

Gradient of Convolution

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial X}$$
 for back propagation

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial F}$$
 for weight updates

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Finding derivatives with respect to F_{11} , F_{12} , F_{21} and F_{22}

$$\frac{\partial \mathcal{O}_{11}}{\partial F_{11}} = \ \boldsymbol{X}_{11} - \frac{\partial \mathcal{O}_{11}}{\partial F_{12}} = \ \boldsymbol{X}_{12} - \frac{\partial \mathcal{O}_{11}}{\partial F_{21}} = \ \boldsymbol{X}_{21} - \frac{\partial \mathcal{O}_{11}}{\partial F_{22}} = \ \boldsymbol{X}_{22}$$

$$\frac{\partial L}{\partial \vec{r}_{11}} = \frac{\partial L}{\partial O_{1}} * \frac{\partial O_{1}}{\partial F_{11}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{2}}{\partial F_{11}} * \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{22}}{\partial F_{11}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{11}}$$

$$\frac{\partial L}{\partial \vec{r}_{12}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{12}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{22}}{\partial F_{22}} * \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{12}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{12}}$$

$$\frac{\partial L}{\partial \vec{r}_{22}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{21}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{22}}{\partial F_{21}} * \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{21}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{22}}$$

$$\frac{\partial L}{\partial \vec{r}_{22}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{22}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{22}}{\partial F_{22}} * \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{23}}{\partial F_{22}} * \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{23}}{\partial F_{22}}$$

$$\frac{\partial L}{\partial \vec{r}_{22}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{12}}{\partial F_{22}} * \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{23}}{\partial F_{22}} * \frac{\partial L}{\partial O_{23}} * \frac{\partial O_{23}}{\partial F_{22}} * \frac{\partial L}{\partial O_{23}} * \frac{\partial O_{23}}{\partial F_{22}}$$

∂L ∂F,,

Filter updates

ðL

∂Q,,

дL

 ∂O_{2n}

Sensitivity from next layer

ðL

дО.

дL

∂Q,

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Gradient of Convolution

$$\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial X}$$
 for back propagation

$$\frac{\partial L}{\partial F} = \frac{\partial L}{\partial O} \frac{\partial O}{\partial F}$$

for weight updates

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Differentiating with respect to X_{11} , X_{12} , X_{21} and X_{22}

$$\frac{\partial Q_{11}}{\partial X_{11}} - \frac{1}{F_{11}} \frac{\partial Q_{11}}{\partial X_{12}} - \frac{1}{F_{12}} \frac{\partial Q_{11}}{\partial X_{21}} - \frac{1}{F_{21}} \frac{\partial Q_{11}}{\partial X_{22}} - \frac{1}{F_{22}}$$

Similarly, we can find local gradients for O_{12} , O_{21} and O_{22}

New sensitivity

$$\begin{aligned} &\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{n}} = &\frac{\partial \mathbf{L}}{\partial \mathcal{Q}_{n}} \bullet \mathbf{F}_{n} \\ &\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{n}} = &\frac{\partial \mathbf{L}}{\partial \mathcal{Q}_{n}} \bullet \mathbf{F}_{n} + &\frac{\partial \mathcal{L}}{\partial \mathcal{Q}_{n}} \bullet \mathbf{F}_{n} \\ &\frac{\partial \mathbf{L}}{\partial \mathbf{X}_{n}} = &\frac{\partial \mathbf{L}}{\partial \mathcal{Q}_{n}} \bullet \mathbf{F}_{n} \end{aligned}$$

$$\frac{\partial L}{\partial X_{n}} = \frac{\partial L}{\partial Q_{n}} \cdot F_{n} + \frac{\partial L}{\partial Q_{n}} \cdot F_{n}$$

$$\frac{\partial L}{\partial X_{p_1}} = -\frac{\partial L}{\partial Q_p} * \mathbf{F}_{p_2} + -\frac{\partial L}{\partial Q_p} * \mathbf{F}_{p_2} + -\frac{\partial L}{\partial Q_p} * \mathbf{F}_{p_2} + -\frac{\partial L}{\partial Q_p} * \mathbf{F}_{p_2}$$

$$\frac{\partial L}{\partial X_{22}} = -\frac{\partial L}{\partial Q_{22}} * F_{22} + -\frac{\partial L}{\partial Q_{22}} * F_{13}$$

$$\frac{\partial L}{\partial X_n} = \frac{\partial L}{\partial Q_n} * F_{21}$$

$$\frac{\partial L}{\partial X_{s1}} = \frac{\partial L}{\partial Q_{s1}} * F_{s2} + \frac{\partial L}{\partial Q_{s2}} * F_{s3}$$

$$\frac{\partial L}{\partial X_{g_2}} = -\frac{\partial L}{\partial Q_{g_2}} * F_{g_2}$$

F ₂₂	F21
F 12	F_{11}

Sensitivity from next layer (zero padded)

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Summary

CNN Gradient

- Takeaways:
 - Derivative of a convolutional layer is calculated through two additional convolutions
 - One for filter updates
 - One for calculating a new sensitivity
 - We need to run convolution fast in order to speed up both:
 - feedforward operations (inference and training)
 - back propagation (training)
- Another great resource:
 - https://becominghuman.ai/back-propagation-in-convolutionalneural-networks-intuition-and-code-714ef1c38199

Some Example CNN Architectures

CNN: Visuals

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

Jason Yosinski

Jeff Clune

Anh Nguyen

Thomas Fuchs

Hod Lipson

TensorFlow and Basic CNNs

Convolutional Neural Networks

in TensorFlow with Keras

11. Convolutional Neural Networks.ipynb

Demo

Next Lecture

More CNN architectures and CNN history