

FACIL: Neil Douglas WEEK: 4

EMAIL: neildouglas@cmail.carleton.ca**OFFICE:** CSAS, 4th Floor MacOdrum Library

COURSE: ECOR 2606 OFFICE HOURS: Friday 3:00 pm to 4:00 pm

Opener: (10 mins)

Core concepts to be covered today

Finding roots using the <u>Newton search</u> method

o Finding roots using the secant search method

But first, we're going to do a Kahoot quiz to quickly review what we learned about bisection search in last week's workshop. Answer the Kahoot questions based on the bisection search presented below.

Function: $3\sin\left(\frac{1}{2}x\right) = -1$

Root-finding form of this function:

Step	X_L	X_H	X_R	$f(X_L)$	$f(X_H)$	$f(X_R)$
1	5	10		+	-	
2						

Notes:

FACIL: Neil Douglas

WEEK: 4

EMAIL: neildouglas@cmail.carleton.ca**OFFICE:** CSAS, 4th Floor MacOdrum Library

COURSE: ECOR 2606

OFFICE HOURS: Friday 3:00 pm to 4:00 pm

Activity 1: Newton search (30 mins)

For this activity, we will be using the Newton search method to find a root of the following function: $x^2 + 2 = 5x$.

<u>Part A</u> – First let's watch a short video explaining the theory behind a Newton search. Use the space below to take some notes.

<u>Part B</u> – Let's apply what we've learned about Newton searches to explain graphically how a Newton search locates a root of $x^2 + 2 = 5x$. Our initial guess is x=3.5.

FACIL: Neil Douglas WEEK: 4

EMAIL: neildouglas@cmail.carleton.ca**OFFICE:** CSAS, 4th Floor MacOdrum Library

COURSE: ECOR 2606

OFFICE HOURS: Friday 3:00 pm to 4:00 pm

<u>Part C</u> – Manually perform three iterations of a Newton search on $x^2 + 2 = 5x$. What is our best guess at the root after three iterations? What is the absolute error of this guess? Round all answers to four decimal places.

Function in root-finding form:	
-	
Derivative of the function:	

Step	X_k	X_{k+1}	$f(X_{k+1})$	\boldsymbol{E}_{A}
1	3.5000			
2				
3				

Rough work:

FACIL: Neil Douglas

WEEK: 4

EMAIL: neildouglas@cmail.carleton.ca**OFFICE:** CSAS, 4th Floor MacOdrum Library

COURSE: ECOR 2606 OFFICE HOURS: Friday 3:00 pm to 4:00 pm

Activity 2: Secant search (30 mins)

For this activity, we will be using the secant search method to find a root of the same function presented in Activity 1.

<u>Part A:</u> First let's watch a quick video explaining the theory behind a secant search. Use the space below to take some notes.

<u>Part B:</u> Let's apply what we've learned about secant searches to explain graphically how a secant search locates a root of $x^2 + 2 = 5x$. The two starting points that we are given are x=2.1 and x=4.1.

FACIL: Neil Douglas

WEEK: 4

EMAIL: neildouglas@cmail.carleton.ca**OFFICE:** CSAS, 4th Floor MacOdrum Library

COURSE: ECOR 2606

OFFICE HOURS: Friday 3:00 pm to 4:00 pm

<u>Part C:</u> Manually perform three iterations of secant search on $x^2 + 2 = 5x$. What is our best guess of the root after three iterations? What is the absolute error on this estimation? Round all answers to four decimal places.

_

Step	X_{k-1}	X_k	X_{k+1}	$f(X_{k+1})$	\boldsymbol{E}_{A}
1	2.1000	4.1000			
2					
3					

Rough work:

Closer: What would you like to see on the mock-midterm? (5mins)

FACIL: Neil Douglas WEEK: 4

EMAIL: neildouglas@cmail.carleton.ca**OFFICE:** CSAS, 4th Floor MacOdrum Library

COURSE: ECOR 2606 OFFICE HOURS: Friday 3:00 pm to 4:00 pm