SÖZDİZİM ÇÖZÜMLEME (4)

LR(k) Gramerleri

- LR(k) = soldan-sağa tarama, en sağdan türetimler, k tane sonraki sözcük
- Temel durumlar
 - LR(0), LR(1)
 - Bazı türleri SLR and LALR(1)
- LR(0) gramerleri için ayrıştırıcılar:
 - Sonraki sözcüğe gerek duymadan işlemleri belirler
 - · Ötele-indirge yöntemine göre adımları yürütür

2

LR(0) Gramer Örneği

- İç-içe listeler
 - S → (L) | d
 - L \rightarrow S | L,S
- Örnekler
 - (a,b,c)
 - ((a,b), (c,d), (e,f))
 - (a, (b,c,d), ((f,g)))

(d:değişken adı)

LR(0) Ayrıştırma Tablosunu Oluşturma

- Ayrıştırma tablosu oluşturmak için
 - Ayrıştırma durumlarını tanımla
 - Durumlar arası geçişleri belirlemek için bir DFA oluştur
 - DFA kullanarak ayrıştırma tablosunu oluştur
- Her LR(0) durumu bir LR(0) parçalar kümesine karşı düşer (parça:item)
 - LR(0) parçası: $X \rightarrow \alpha$, β ($X \rightarrow \alpha\beta$ gramerin bir türetimi)
 - LR(0) parçaları, görülmesi mümkün olan tüm türetimler üzerindeki gelişimin izini sürer
 - $X \Rightarrow \alpha$. β parçası şunu ifade eder: ayrıştırıcı yığını üzerinde α ile eşleşen bir sözcük katarı görülmüştür ve artık girişte β ile eşleştirilebilecek bir katarın görülmesi beklenmektedir

1

LR(0) Durum Örneği

 Bir LR(0) parçası: tanım bölümünde bir nokta (.) içeren bir türetim kuralı

$$\begin{array}{c|c} \text{durum} & \xrightarrow{E \to \text{say1.}} \\ & \xrightarrow{E \to (\cdot, S)} & \text{parça} \end{array}$$

- Noktadan önce yer alan türetim kısmı halen yığına yerleştirilmiş olan bölümdür (indirgenecek bir kuralın başlangıç bölümü)
- Noktayı izleyen türetim kısmı ise ayrıştırmanın o aşamasından sonra görülmesi umulan türetim bölümüdür

Başlangıç Durumu ve Durum Kılıfı (Closure)

- Başlangıç durumu
 - Gramere şu yeni türetimi ekle: S' → S\$
 - DFA'nın başlangıç durumu boş yığına sahiptir:
 S' → . S \$ (noktadan öncesi boş)
- Bir ayrıştırıcı durum kılıfı: bir parçalar kümesi geri getiren fonksiyon
 - Kılıf(S) → {S} ile başla (S parçasını kümeye ekle)
 - S kümesinde yer alan her X $\rightarrow \alpha$. Y β parçası için:
 - Y nonterminalini tanımlayan her Y → γ türetim kuralı için,
 Y → . γ parçasını Kılıf(S) kümesine ekle

 Kılıf Uygulama Örneği

 Örnek gramer:
 $S \rightarrow (L) \mid d$
 $L \rightarrow S \mid L, S$

 DFA
 Səşlangıç

 başlangıç
 S' \rightarrow . S\$

 durumu
 S \rightarrow . (L)

 S \rightarrow . d

• Kılıf uygulandıktan sonra, bir sonraki aşamada indirgenebilecek

- Kılıf uygulandıktan sonra, bir sonraki aşamada indirgenebilecek olan türetimleri içeren bir küme elde edilir
- Eklenen parçalarda "," tanımın hemen başında yer alır:
 Bu parçalar için henüz yığına bir bilgi yerleştirilmiş değildir

Geçiş İşlemi (Goto Operation)

Geçiş İşlemi (Soto Operation)

Geçiş İşlemi => Ayrıştırıcı durumları arasındaki geçişleri tanımlar
(ayrıştırıcı durumu (D) ≡ parçalar kümesi (I))

Algoritma: D durumu ve bir Y simgesi için:

Eğer [X → α . Y β] parçası I içinde yer alıyor ise,
Geçiş(I, Y) = Kılıf([X → α Y . β])

S'→. S \$
S → . (L)
S → . d

D durumu

Kılıf({S → (.L) })

Ayrıştırma Tablosunun Oluşturulması

- Tabloda yer alan durumlar = DFA durumları
- "c" terminali üzerinden S → S' durum geçişi için
 - tablo[S,c] = ötele (S') [S'=geçiş(S,c)]
- "N" non-terminali üzerinden S \rightarrow S' durum geçişi için
 - tablo[S,N] = (S')[S'=geçiş(S,N)]
- Eğer S, X \rightarrow β için bir indirgeme durumu ise
 - tablo[S,*] = indirge(X \rightarrow β) [* : tüm terminal simgeler]

S, S': durumlar

Terminaller (C) non-terminaller durum (S) Sonraki işlem Ve durum işlem tablosu durum tablosu ■ Algoritma: O anda geçerli olan S durumu ve C giriş terminaline karşı düşen tablo girişine bak ■ Eğer Tablo[S,C] = ötele(S') ise öteleme işlemi: o push(C), push(S') ■ Eğer Tablo[S,C] = X → α ise indirgeme işlemi: o pop(2*|α|), S'= top(), push(X), push(Tablo[S',X])

İndirgeme İşlemi •Yığında $\alpha\beta$ varken $X \rightarrow \beta$ 'a indirge β 'yı yığından çek (yığında α ve bir durum kaldı) Yığındaki durumdan X ile bir DFA geçişi yap X'i ve yeni DFA durumunu yığına yerleştir <u>işlem</u> türetim giris ötele, 2'e geç indirge $S \rightarrow d$ ((a),b) **←** ((a),b) **←** 1(3(3 1(3(3a2 a),b) indirge L \rightarrow S $((S),b) \leftarrow$ 1(3(3S7_),b) Gecis(3,S)=7

LR(0) Özeti

- LR(0) ayrıştırıcısı için:
 - LR(0) grameri seç
 - LR(0) durumlarını hesapla ve DFA oluştur:
 - o Durumları hesaplamak için kılıf işlemini uygula
 - o Durum geçişlerini belirlemek için geçiş işlemini uygula
 - DFA'dan LR(0) ayrıştırma tablosunu oluştur
- Bunlar otomatik olarak gerçekleştirilebilir

LR(0) Kısıtlamaları

- Bir LR(0) ayrıştırıcısı, indirgeme işlemi içeren durumlarda noktanın sona ulaştığı bir tek parça bulunuyor ise, doğru çalışır.
 - Sonraki sözcüğü dikkate almadan her zaman indirge
- Daha karmaşık bir gramer için, "ötele/indirge" veya "indirge/indirge" çelişkileri içeren tablo girişleri oluşabilir
- Seçim yapmak için sonraki sözcük dikkate alınmalıdır

celişki yok ötele/indirge indirge/indirge $L \rightarrow L, S$. $S \rightarrow S, L$ $L \rightarrow S$.

