Atomic Types
$$T$$
 $:=$ $A \rightarrow B$ $A \rightarrow B$

Figure 1. Syntax.

Figure 3. Disjointness.

Figure 2. Subtyping.

$$\epsilon \vdash 1, 2 : (Int * Int) \Rightarrow Int \cap Int$$

Definition 1. (Disjointness) Two sets S and T are *disjoint* if there does not exist an element x, such that $x \in S$ and $x \in T$.

Definition 2. (Disjointness) Two types A and B are *disjoint* if there does not exist an expression e, which is not a merge, such that $\epsilon \vdash e : A', \epsilon \vdash e : B', A' <: A, \text{ and } B' <: B.$

Figure 4. Typing.

Definition 3. (Disjointness) $A \perp B = \not\exists C.A <: C \land B <: C$

Two types A and B are disjoint if their least common supertype is $\top.$