

FEATURE MAPS

Example. Non-linear classifiers.

$$x = (x_1, x_2)$$

$$\phi(x) = (1, 2x_1, 2x_2, \sqrt{2} x_1 x_2, x_1^2, x_2^2)$$

$$h(x; \theta, \theta_0) = \text{sign}(\theta \cdot \phi(x))$$

$$= \text{sign}(\theta_1 + \theta_2 2x_1 + \theta_3 2x_2 + \theta_4 \sqrt{2}x_1 x_2 + \theta_5 x_1^2 + \theta_6 x_2^2)$$

FEATURE MAPS

Example. Non-linear classifiers.

$$h(x; \theta, \theta_0)$$
= sign((x₁ - 1)² + (x₂ - 2)² - 9)
= sign(-4 - 2x₁ - 4x₂ + x₁² + x₂²)

CHALLENGES

High-Dimensional Features.

$$x = (x_1, x_2, ..., x_{1000}) \in \mathbb{R}^{1000}$$

$$\phi(x) = (1, ..., x_i, ..., \sqrt{2}x_i x_j, ..., x_i^2, ...) \in \mathbb{R}^{501501}$$

Inner Products.

Computing $\phi(x) \cdot \phi(x')$ for $x, x' \in \mathbb{R}^{1000}$ requires about 2,004,000 floating point operations.

KERNEL FUNCTIONS

Fortunately, many inner products simplify nicely.

$$K(x, x') = \phi(x) \cdot \phi(x')$$

$$= 1 + 2 \sum_{i} x_{i} x'_{i} + 2 \sum_{i < j} x_{i} x_{j} x'_{i} x'_{j} + \sum_{i} x_{i}^{2} x'_{i}^{2}$$

$$= 1 + 2 (\sum_{i} x_{i} x'_{i}) + (\sum_{i} x_{i} x'_{i})^{2}$$

$$= (x \cdot x' + 1)^{2}$$

For $x, x' \in \mathbb{R}^{1000}$, computing this requires only about 2000 floating point operations, less than the 501,501 operations needed for $\phi(x)$.

KERNEL FUNCTIONS

'Infinite dimensional'
positive definite
matrices

Definition.

A function $K: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a *kernel function* if

- 1. K(x,y) = K(y,x) for all $x, y \in \mathbb{R}^d$,
- 2. given $n \in \mathbb{N}$ and $x^{(1)}, x^{(2)}, ..., x^{(n)} \in \mathbb{R}^d$, the *Gram matrix* K with entries

$$K_{ij} = K(x^{(i)}, x^{(j)})$$

is positive semidefinite.

Example. $K(x, x') = \phi(x) \cdot \phi(x')$

Can be shown that all kernel functions are of this form!

EXAMPLES

Linear Kernel.

$$K(x, x') = x \cdot x'$$

Polynomial Kernel.

$$K(x, x') = (x \cdot x' + 1)^k$$

Radial Basis Kernel.

$$K(x, x') = \exp\left(-\frac{1}{2}||x - x'||^2\right)$$

Feature map $\phi(x)$ is infinite dimensional!

KERNEL TRICK

The kernel trick refers to the strategy of converting a learning algorithm and the resulting predictor into ones that involve only the computation of the kernel $K(x, x') = \phi(x) \cdot \phi(x')$ but not of the feature map $\phi(x)$.

SUPPORT VECTOR MACHINES

Learning.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy'(x \cdot x')$$
 subject to $\alpha_{x,y} \ge 0$ for all (x,y)

$$h(x; \theta) = \operatorname{sign}(\theta \cdot x) = \operatorname{sign}\left(\sum_{(x',y')} \alpha_{x',y'} y'(x \cdot x')\right)$$

KERNEL SUPPORT VECTOR MACHINES

Learning.

maximize
$$\sum_{(x,y)} \alpha_{x,y} - \frac{1}{2} \sum_{(x,y)} \sum_{(x',y')} \alpha_{x,y} \alpha_{x',y'} yy' K(x,x')$$
 subject to $\alpha_{x,y} \ge 0$ for all (x,y)

Prediction.

$$h(x; \theta) = \operatorname{sign}(\theta \cdot x) = \operatorname{sign}\left(\sum_{(x',y')} \alpha_{x',y'} y' K(x,x')\right)$$

We may use the linear, polynomial, or radial basis kernels to get different kinds of decision boundaries.

PERCEPTRON

Learning.

- 1. Initialize $\theta = 0$, $\theta_0 = 0$.
- 2. Repeat until no mistakes are found: Select data $(x, y) \in S_n$ in sequence: If $y(\theta^T x + \theta_0) \le 0$, then $\theta \leftarrow \theta + yx$, $\theta_0 \leftarrow \theta_0 + y$.

Prediction.

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta \cdot x + \theta_0)$$

From the learning algorithm, we see that

$$\theta = \sum_{x,y} \alpha_{x,y} yx$$
 and $\theta_0 = \sum_{x,y} \alpha_{x,y} y$ for some $\alpha_{x,y} \in \mathbb{N}$.

PERCEPTRON

Learning.

- 1. Initialize $\theta = 0$, $\theta_0 = 0$.
- 2. Repeat until no mistakes are found: Select data $(x, y) \in S_n$ in sequence: If $\sum_{x',y'} \alpha_{x',y'} yy'(x \cdot x' + 1) \leq 0$, then $\alpha_{x,y} \leftarrow \alpha_{x,y} + 1$.

$$h(x; \theta, \theta_0) = \operatorname{sign}\left(\sum_{x', y'} \alpha_{x', y'} y'(x \cdot x' + 1)\right)$$

KERNEL PERCEPTRON

Learning.

- 1. Initialize $\theta = 0$, $\theta_0 = 0$.
- 2. Repeat until no mistakes are found: Select data $(x, y) \in \mathcal{S}_n$ in sequence: If $\sum_{x',y'} \alpha_{x',y'} yy'(K(x,x')+1) \leq 0$, then $\alpha_{x,y} \leftarrow \alpha_{x,y} + 1$.

$$h(x; \theta, \theta_0) = \operatorname{sign}\left(\sum_{x', y'} \alpha_{x', y'} y'(K(x, x') + 1)\right)$$

KERNEL PERCEPTRON

Data is always separable when using radial basis kernels!

LINEAR REGRESSION

Learning.

Let $n\lambda \alpha_{x,y} = y - \theta \cdot x$ so we have $n\lambda \alpha = Y - X\theta$.

Recall that the exact solution θ satisfies

$$(n\lambda I + X^{\mathsf{T}}X)\theta = X^{\mathsf{T}}Y$$

so we may derive the following:

$$X(n\lambda I + X^{T}X)\theta = XX^{T}Y$$

$$n\lambda(Y - n\lambda\alpha) + XX^{T}(Y - n\lambda\alpha) = XX^{T}Y$$

$$n\lambda Y - (n\lambda I + XX^{T})n\lambda\alpha = 0$$

$$\alpha = (n\lambda I + K)^{-1}Y$$

Gram matrix Kwith entries $K_{ij} = \chi^{(i)} \cdot \chi^{(j)}$

LINEAR REGRESSION

Prediction.

Moreover,

$$n\lambda X^{\top}\alpha = X^{\top}Y - X^{\top}X\theta$$

$$= (n\lambda I + X^{\top}X)\theta - X^{\top}X\theta = n\lambda\theta$$
So $\theta = X^{\top}\alpha = \sum_{(x',y')} \alpha_{x',y'} x'$. Therefore,
$$y = \theta \cdot x = \sum_{(x',y')} \alpha_{x',y'} x \cdot x'$$

KERNEL LINEAR REGRESSION

Learning.

$$\alpha = (n\lambda I + K)^{-1}Y$$

Gram matrix Kwith entries $K_{ij} = K(x^{(i)}, x^{(j)})$

$$y = \sum_{(x',y')} \alpha_{x',y'} K(x,x')$$

KERNEL LINEAR REGRESSION

SUMMARY

- Kernel Functions
 - Feature Maps
 - Inner Products
 - Polynomial Kernel
 - Radial Basis Kernel
- Kernel Trick
 - Support Vector Machines
 - Perceptron
 - Linear Regression