

Algebra Lineare

Università di Verona Imbriani Paolo -VR500437

Marzo 2024

Contents

1	Nur	neri complessi 7
	1.1	Insiemi di numeri
	1.2	Numeri Immaginari
	1.3	Operazioni dei numeri complessi
		1.3.1 Addizione
		1.3.2 Moltiplicazione
	1.4	Teorema fondamentale dell'algebra
	1.5	Coniugato e Modulo
	1.6	Coordinate polari
	1.7	Forma trigonometrica di un numero complesso 9
		1.7.1 Formula di De Moivre
	1.8	Definizione
	1.9	Teorema
	1.10	Radici quadrate di numeri reali negativi
2	Sist	emi lineari e matrici 13
	2.1	Sistemi lineari
	2.2	Definizione
	2.3	Definizione: forma matriciale
	2.4	Operazioni elementari
	2.5	Linee in \mathbb{R}^2
	2.6	Metodo di eliminazione di Gauss (EG) 21
	2.7	Risoluzione di sistema lineare
	2.8	Definizione
	2.9	Osservazione
		2.9.1 Teorema di Rouchè-Capelli
3	Mat	rici e le loro operazioni 26
	3.1	Definizione
	3.2	Definizione
	3.3	Definizione
	3.4	Prodotto di matrici
	3.5	Osservazione
	3.6	Definizione
	3.7	Matrici elementari
	3.8	Moltiplicazione con matrici elementari

	3.9	Definizione di invertibile	33
	3.10	Inverse di matrici elementari	34
	3.11	Proposizione	35
		3.11.1 Dimostrazione	35
	3.12	Proposizione	36
		3.12.1 Dimostrazione	36
	3.5 .		
4		rici invertibili e il determinante	38
	4.1	Proposizione	39
	4.0	4.1.1 Dimostrazione	39
	4.2	Calcolo della matrice inversa	39
	4.3	Teorema delle matrici invertibili	41
		4.3.1 Dimostrazione	41
		4.3.2 Nota	42
	4.4	Proposizione	42
		4.4.1 Dimostrazione	42
	4.5	Definizione	43
	4.6	Regola di Sarrus	44
	4.7	Teorema di Laplace	44
	4.8	Il determinante e la trasposta	45
	4.9	Il principio di induzione	46
	4.10	Proposizione	47
		4.10.1 Dimostrazione	47
	4.11		49
		4.11.1 Dimostrazione	49
	4 12	Corollario	51
	1.12	4.12.1 Dimostrazione	51
	4 13	Corollario	51
	1.10	4.13.1 Dimostrazione	51
	1 11	Formula per A^{-1}	52
		Teorema di Cramer	52
	1.10	reoreina di Ciantei	02
5	-	zi vettoriali e sottospazi	54
	5.1	Definizione	54
	5.2	Osservazioni	57
	5.3	Definizione di combinazione lineare	57
	5.4	Definizione	58
	5.5	Definizione	60

		5.5.1 Osservazione	60
	5.6	Definizione	61
	5.7	Definizione	61
	5.8	Definizione	62
	5.9	Proposizione	63
		5.9.1 Dimostrazione	63
	5.10	Definizione di spazio nullo	63
	5.11	Proposizione	64
		5.11.1 Dimostrazione	64
6	Din	endenza e indipendenza lineare	66
U	6.1	Proposizione e definizione di insieme di generatori	66
	0.1	6.1.1 Dimostrazione	67
	6.2	Definizione di linearmente dipendente	67
	6.3	Teorema e definizione di linearmente indipendente	67
	0.5	6.3.1 Dimostrazione	67
	6.4	Definizione di base	69
	6.5	Osservazione	69
	0.0	6.5.1 Base di C(U) per una matrice u in forma ridotta	70
	6.6	Proposizione	72
	6.7	Teorema	72
	0	6.7.1 Dimostrazione	72
	6.8	Lemma di Steinitz (senza dimostrazione)	73
	6.9	Corollario	73
	0.0	6.9.1 Dimostrazione	74
	6.10	Definizione di dimensione	74
		Corollario	74
		Proposizione	74
		6.12.1 Dimostrazione	75
7	Ann	olicazione Lineare	76
•		Definizione di applicazione lineare	76
	1.1	7.1.1 Osservazioni	76 76
	7.2	Applicazioni lineari $\mathbb{K}^n \to \mathbb{K}^n$	70 77
	7.3	Applicazioni lineari $\mathbb{R}^n \to \mathbb{R}^n$	77 79
	7.4	Applications della coordinate	79
	7.5	Applicazione delle coordinate $C_{\mathcal{B}}: \mathbb{K}^n \to \mathbb{K}^{\ltimes} \dots \dots$	81
	7.6	Teorema per cui l'applicazione lineare $C_{\mathcal{B}}$ è isomorfa	82

		7.6.1 Dimostrazione
	7.7	Osservazione
	7.8	Corollario
	7.0	7.8.1 Dimostrazione del corollario
	7.9	Matrice del cambio base
		7.9.1 Teorema
	7 10	7.9.2 Dimostrazione
	7.10	Matrice associata a f rispetto a basi
8	Ran	k + Nullity 89
	8.1	Definizione di spazio nullo e immagine 89
	8.2	Teorema (Nullità + Rango)
		8.2.1 Dimostrazione
	8.3	Dimensione di $C(A)$
		8.3.1 Proposizione
		8.3.2 Dimostrazione
	8.4	Dimensione di $N(A)$
		8.4.1 Corollario
	8.5	Procedimento per determinare basi di $C(A)$ e $N(A)$ 94
	8.6	Proposizione
	8.7	Teorema sulla relazione tra spazio nullo e soluzioni di sistemi
		lineari
		8.7.1 Dimostrazione
9	Aut	ovalori e autovettori 98
	9.1	Definizione di autovalore e autovettore
	9.2	Osservazione
	9.3	Definizione di polinomio caratteristico
	9.4	Teorema dell'autospazio
	9.5	Corollario
	9.6	Definizione di molteplicità
	9.7	Osservazione
	9.8	Proposizione
		9.8.1 Dimostrazione (r=2)
	9.9	Definizione di simile e diagonalizzabile

10	Diag	gonalizzazione di matrici	109
	10.1	Proposizione (Proprietà di matrici simili)	109
		10.1.1 Dimostrazione	109
	10.2	Teorema	111
		10.2.1 Dimostrazione	111
	10.3	Corollario	112
		10.3.1 Dimostrazione (10.2 + 9.8 + 6.12) \Box	. 112
	10.4	Osservazione	112
	10.5	Lemma	113
		10.5.1 Dimostrazione	113
	10.6	Teorema	113
		10.6.1 Dimostrazione	114
	10.7	Algoritmo per la diagonalizzazione	117
	10.8	Osservazione	118
	10.9	Teorema spettrale	118
11	Basi	i ortonomali	119
	11.1	Prodotto interno	120
	11.2	Norma euclidea	121
	11.3	Interpretazione geometrica del prodotto interno di \mathbb{R}^2	122
		Definizione	
	11.5	Proposizione	124
		11.5.1 Dimostrazione	
	11.6	Osservazione	124
	11.7	Definizione	125
	11.8	Algoritmo di Gram-Schmidt per l'ortonormalizzazione	126
		Corollario	
		11.9.1 Dimostrazione	127

1 Numeri complessi

1.1 Insiemi di numeri

Il sistema di numeri creato per contare fin dall'antichità sono i numeri naturali, definiti come tutti i numeri positivi.

$$\mathbf{N} = \{0, 1, 2, 3, 4, \ldots\}$$

Il sistema di numeri definito per calcolare i debiti sono i numeri interi, che possono essere minori di 0.

$$\mathbf{Z} = \{-2, -1, 0, 1, 2, \ldots\}$$

Il sistema di numeri definito per dividere è quello dei numeri razionali, definito come:

$$\mathbf{Q} = \{ \frac{p}{q} \mid p, q \in \mathbf{Z} \}$$

Il sistema definito per misurare grandezze reali è **R**. L'insieme di numeri reali, contiene tutti quelli precedenti, insieme ai numeri irrazionali come $\sqrt{2}$.

$$N\subset Z\subset Q\subset R$$

Poi abbiamo il sistema dei numeri complessi chiamato \mathbf{C} che permette di risolvere equazioni tipo:

$$x^2 + 1 = 0$$

1.2 Numeri Immaginari

Aggiungiamo ai numeri reali un "nuovo" numero i tale che:

$$i^2 = -1 \Rightarrow i = \sqrt{-1}$$

Questo numero è detto **unità immaginaria**. Definiamo l'insieme dei numeri complessi:

$$\mathbf{C} := \{\ a + bi \mid a, b \in \mathbf{R}\}\$$

Esempi: $6 + 7i, -12 + \frac{1}{2}i, 3 - \sqrt{2}i$

1.3 Operazioni dei numeri complessi

1.3.1 Addizione

$$z_1 = a + bi, z_2 = c + di \in \mathbf{C}$$

$$z_1 + z_2 = (a + bi) + (c + di)$$

= $a + c + bi + di$
= $(a + c) + (b + d)i$

1.3.2 Moltiplicazione

$$z_1 = a + bi, z_2 = c + di \in \mathbf{C}$$

$$z_1 \cdot z_2 = (a+bi) + (c+di)$$

= $ac + adi + bdi^2$
= $(ac - bd) + (ad + bc)i$

1.4 Teorema fondamentale dell'algebra

Qualsiasi equazione nella forma $a_nx^n + a_{n+1}x^{n+1} + ax + a_0 = 0$ dove $n \in \mathbb{N}, a_0, a_1, a_n \in \mathbb{N}, a_n \neq 0, x$ è un incognita, ammette n soluzioni in \mathbb{C} . $a_nx^n + a_{n+1}x^{n+1} + ax + a_0 = 0$ viene chiamato anche $Polinomio\ di\ grado\ n$.

1.5 Coniugato e Modulo

Sia $z = a + bi \in \mathbb{C}$. Il numero complesso:

$$\bar{z} := a - bi$$

è detto coniugato di z. Il modulo di z è $|z| = \sqrt{a^2 + b^2} \in \mathbf{R}$.

Proprietà: Siano $z_1 = a + bi, z_2 = c + di \in \mathbf{C}$

i.
$$z_1 \cdot \bar{z_1} = a^2 + b^2 = |z_1|^2$$

ii.
$$z_1 + \bar{z}_2 = \bar{z}_1 + \bar{z}_2$$

iii.
$$z_1 \bar{\cdot} z_2 = \bar{z_1} \cdot \bar{z_2}$$

iv. Se
$$z_1 \neq 0, \frac{\bar{1}}{z_1} = \frac{1}{z_1}$$
 infatti $\bar{z}_1 \cdot (\frac{\bar{1}}{z_1}) = \bar{1} = 1 - 0i = 1$

v. Se
$$z_1 \neq 0$$
 allora $\frac{\bar{z_1}}{z_2} = \frac{\bar{z_1}}{\bar{z_2}}$

vi. Se
$$z_1 \neq 0,$$
allora $\frac{1}{z_1} = \frac{a-bi}{a^2+b^2} = \frac{\bar{z}}{|z|^2}$

1.6 Coordinate polari

$$z = a + bi \in \mathbb{C} \Rightarrow (a, b) = (ReZ, InZ) \in \mathbb{R}^2.$$

Possiamo esprimere z in coordinate polari (r, α) dove r è la lunghezza del segmento OZ detto raggio polare e α è l'angolo compreso tra l'asse delle x e OZ misurato in senso antiorario.

$$\begin{array}{l} z_1 = (1,0) \to 1 \\ z_2 = (1,\frac{\pi}{2}) \to i \\ z_3 = (1,\pi) \to -1 \\ z_4 = (1,\frac{3\pi}{2}) \to -i \end{array}$$

1.7 Forma trigonometrica di un numero complesso

Dato un $z=(r,\alpha)$ in coordinate polari, vogliamo ricavare la forma algebrica.

$$\cos(\alpha) := \frac{a}{r} \qquad \sin(\alpha) := \frac{b}{r}$$

$$z = r(\cos(\alpha)) + i\sin(\alpha)$$

è detta forma trigonometrica di z.

Esempio:

$$\cos(0) + i\sin(0) = 1 \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}) = i \cos(\pi) + i\sin(\pi) = -1 \cos(\frac{3\pi}{2}) + i\sin(\frac{3\pi}{2})) = -i$$

In forma trigonometrica il prodotto diventa una somma di due angoli.

1.7.1 Formula di De Moivre

Dato
$$z = r(\cos(\alpha) + i\sin(\alpha)) \in \mathbb{C}$$
 allora

$$z^{n} = r^{n}(\cos(n\theta) + i\sin(n\theta))$$

1.8 Definizione

 $y \in \mathbf{C}, n \in \mathbf{N}$ si dicono radici n-esime di y le soluzioni dell'equazione $x^n = y$.

1.9 Teorema

Siano $y \in \mathbb{C}$, $n \in \mathbb{N}$ esistono precisamente n radici n-esime distinte $z_0, z_1, ..., z_{z-1}$ di y. Se:

$$y = r(\cos(\alpha) + i\sin(\alpha)$$

Allora:

$$z_0 = \sqrt{r} \left(\cos \left(\frac{\alpha}{n} \right) + i \sin \left(\frac{\alpha}{n} \right) \right)$$
$$z_k = \sqrt{r} \left(\cos \left(\frac{\alpha + (2\pi)k}{n} \right) + i \sin \left(\frac{\alpha + (2\pi)k}{n} \right) \right)$$

per
$$k = 1, ... n - 1$$

Dimostrazione: Per la formula di de Moivre:

$$(z_k)^n = (\sqrt{r})^2(\cos(\alpha + (2\pi)k)) + i\sin(\alpha + (2\pi)k)$$

$$= r(\cos(\alpha) + i\sin(\alpha) = y$$

Quindi $z_0,...z_{n-1}$ sono soluzioni di $y=x^n$, cioè sono radici n-esime di y. Siccome il periodo di sin e cos è 2π , sono tutte distinte.

1.10 Radici quadrate di numeri reali negativi

Sia $a \in \mathbf{R} \subseteq \mathbf{C}$ tale che a < 0, esistono precisamente due radici quadrate di a in \mathbf{C} . Infatti, abbiamo:

$$a = (-a)(\cos(\pi) + i\sin(\pi)$$

Per Teorema 1.9:

$$z_0 = \sqrt{-a} \left(\cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right) = i \sqrt{-a}$$
$$z_1 = \sqrt{-a} \left(\cos \left(\frac{3\pi}{2} \right) + i \sin \left(\frac{3\pi}{2} \right) \right) = i \sqrt{-a}$$

NB: $ax^2+bx+c, a,b,c\in {\bf R}$ o C Quindi: $\frac{-b+-\sqrt{b^2-4ac}}{2a}$ esistono due soluzioni anche se $\Delta<0$.

2 Sistemi lineari e matrici

2.1 Sistemi lineari

Esempio: valori nutrizionali (per porzione)

	Cheerios	Quakers
Proteine(g)	4	3
Carbs (g)	20	18
Grassi (g)	2	5

Quanti porzioni di Quakers e Cheerios ci danno una colazione con 9 g di proteine, 48 g di carboidrati e 8g di grassi?

$$\begin{cases} 4c + 3q = 9\\ 20c + 18q = 48\\ 2c + 5q = 8 \end{cases}$$

Un sistema lineare è un insieme di m equazioni in n incognite, che può essere scritto nel modo seguente:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
...
$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

dove $b_k, a_i j \in \mathbf{C}$ oppure \mathbf{R} per 1 <= i <= n, 1 <= j <= n, 1 <= k <= n. Se i termini noti sono tutti nulli il sistema è detto omogeneo.

Una n-upla $(x_1, ...x_n)$ di numeri complessi (o reali) è una soluzione se soddisfa tutte le n equazioni.

Esempio:

$$4C + 3Q = 9 (I)$$

 $20C + 18Q = 48 (II)$
 $2C + 5Q = 8 (III)$

Moltiplichiamo (I) per $\frac{1}{4}$ e otteniamo un sistema lineare equivalente (cioè avendo esattamente le stesse soluzioni).

(I') C +
$$\frac{1}{4}$$
Q = $\frac{9}{4}$
(II) 20C + 18Q = 48
(III) 2C + 5Q = 8

Calcolando (II) - 20(I') e (III) - 2(I') si ottiene un altro sistema lineare equivalente.

(I') C +
$$\frac{1}{4}$$
Q = $\frac{9}{4}$
(II') 0C + 3Q = 3
(III') 0C + $\frac{7}{2}$ Q = $\frac{7}{2}$

Moltiplichiamo (II') per $\frac{1}{3}$ si ottiene

$$\begin{array}{l} (I') \ C + \frac{1}{4}Q = \frac{9}{4} \\ (II'') + Q = 1 \\ (III') + \frac{7}{2}Q = \frac{7}{2} \end{array}$$

Calcolando (III')- $\frac{7}{2}({\rm II'})$ si ottiene:

(I')
$$C + \frac{1}{4}Q = \frac{9}{4}$$

(II'') + Q = 1
(III') + 0 = 0

Otteniamo dunque che Q = 1 e $C = \frac{9}{4} - \frac{3}{4} = \frac{7}{4}$.

Analogamente possiamo risolvere il sistema lineare:

$$\begin{pmatrix} 4 & 3 & 9 \\ 20 & 18 & 48 \\ 2 & 5 & 8 \end{pmatrix}$$

$$\rightarrow \frac{1}{4} \mathbf{R} \mathbf{1}$$

$$\begin{pmatrix} 1 & \frac{3}{4} & \frac{9}{4} \\ 20 & 18 & 48 \\ 2 & 5 & 8 \end{pmatrix}$$

$$\rightarrow R2 - 20(R1), R3 - 2(R1)$$

$$\begin{pmatrix} 1 & \frac{3}{4} & \frac{9}{4} \\ 0 & 3 & 3 \\ 0 & \frac{7}{2} & \frac{7}{2} \end{pmatrix}$$

2.2 Definizione

Siano $n, n \geq 1$ una tabella

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = (a_{ij})$$

di nxn elementi di **C** disposti in n righe e n colonne si chiama matrice di dimensione nxn. Gli elementi si dicono *coefficenti* (o *entrate*) della matrice e sono contrassegnati con un doppio indice ij dove i indica la rigaa e la j indica la colonna di appartenenza.

 $M_{nxn}(\mathbf{C}) = \text{L'insieme di tutte le matrici di dimensioni nxn con entrate } \mathbf{C}$ $M_{nxn}(\mathbf{R}) = \text{L'insieme di tutte le matrici di dimensioni nxn con entrate } \mathbf{R}$

ESEMPIO:

$$\begin{pmatrix} 3 & i & 2+7i \\ 0 & 1 & \pi \end{pmatrix} \in M_{2x3}(\mathbf{C})$$

$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \in M_{2x2}(\mathbf{R}) \subseteq M_{2x2}(\mathbf{C})$$

2.3 Definizione: forma matriciale

Un sistema lineare di n incognite e n equazioni:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
...
$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

può essere rappresentato nella forma matriciale:

$$Ax = b$$

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix} \text{ vettore dei termini noti}$$

$$La \text{ matrice } (A \mid B) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{n1} & \dots & a_{nn} & b_n \end{pmatrix}$$

è detta matrice aumentata.

Esempio:

$$\begin{cases} 2x_1 + 6x_2 + 3x_3 + 2x_4 = 4 \\ x_1 - 2x_2 + \frac{1}{2}x_3 + \frac{9}{4}x_4 = 1 \\ -x_1 + x_2 - \frac{1}{2}x_3 - x_4 = \frac{2}{5} \end{cases}$$

$$\begin{pmatrix} 2 & 6 & 3 & 2 & | 4 \\ 1 & -2 & \frac{1}{2} & \frac{9}{2} & | 1 \\ -1 & 1 & -\frac{1}{2} & -1 & | \frac{2}{5} \end{pmatrix}$$

$$\sim \frac{1}{2}R1$$

$$R2 - R1, R3 + R1 \sim \begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | 2\\ 1 & -2 & \frac{1}{2} & \frac{9}{2} & | 1\\ -1 & 1 & -\frac{1}{2} & -1 & | \frac{2}{5} \end{pmatrix}$$

$$-\frac{1}{5}R2 \sim \begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | 2\\ 0 & -5 & -1 & \frac{5}{4} & | -1\\ 0 & 4 & 1 & 0 & | \frac{12}{5} \end{pmatrix}$$

$$R3 - 4R2 \sim \begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | 2\\ 0 & 1 & \frac{1}{5} & -\frac{1}{4} & | \frac{1}{5}\\ 0 & 0 & \frac{1}{5} & 1 & | \frac{8}{5} \end{pmatrix}$$

$$5R3 \sim \begin{pmatrix} 1 & 3 & \frac{3}{2} & 1 & | 2\\ 0 & 1 & \frac{1}{5} & -\frac{1}{4} & | \frac{1}{5}\\ 0 & 0 & 1 & 5 & | 8 \end{pmatrix}$$

Si ottiene il sistema lineare:

$$\begin{cases} x_1 + 3x_2 + \frac{3}{2}x_3 + x_4 = 2\\ 2x_2 + \frac{1}{5}x_3 - \frac{1}{4}x_4 = \frac{1}{5}\\ x_3 + 5x_4 = 8 \end{cases}$$

Assegniamo un parametro alla variabile libera x_4 : $t = x_4$. Possiamo scrivere la soluzione con un parametro.

$$x_4 = t$$

$$x_3 = 8 - 5t$$

$$x_2 = \frac{1}{5} - \frac{1}{5}(8 - 5t) + \frac{1}{4}t = -\frac{7}{5} + t - \frac{1}{4}t = -\frac{7}{5} + \frac{5}{4}t$$

$$x_1 = 2 - 3(-\frac{7}{5} + \frac{5}{4}t) - \frac{3}{2}(8 - 5t) - 5 = 2 + \frac{21}{5} - 12 - \frac{15}{4}t + \frac{15}{2}t - t = \frac{10 + 21 - 60}{5} - \frac{15 + 30}{4}t - t = -\frac{29}{5} + \frac{15}{4}t - \frac{4}{4}t = -\frac{29}{5} + \frac{11}{4}t$$

Il sistema ha infinite soluzioni, una per ogni $t \in \mathbb{C}$.

2.4 Operazioni elementari

Attraverso le seguenti operazioni sulla matrice aumentata (A — b), si ottiene un sistema equivalente più semplice:

- Moltiplicare riga i (Ri) per uno scalare ($\alpha \in \mathbf{C}$). Questa operazioni non cambia le soluzioni del sistema se lo scalare non è $\neq 0$.
- Sommare una riga (Ri) con un multiplo di un'altra riga(Rj): Ri $+ \alpha$ Rj
- Scambiare riga i (Ri) e riga j (Rj): $R_i \longleftrightarrow R_j$

Esempio:

$$\begin{cases} 2x_1 + 6x_2 + 3x_3 = 4\\ x_1 - 2x_2 - \frac{1}{2}x_3 = 1\\ -x_1 + x_2 - \frac{7}{10} = \frac{2}{5} \end{cases}$$

Applichiamo l'algoritmo Eliminazione di Gauss.

$$\begin{pmatrix} 2 & 6 & 3 & | & 4 \\ 1 & -2 & \frac{1}{2} & | & 1 \\ -1 & 1 & \frac{7}{10} & | & \frac{2}{5} \end{pmatrix}$$

$$\sim \frac{1}{2}R1 \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 1 & -2 & \frac{1}{2} & | & 1 \\ -1 & 1 & \frac{7}{10} & | & \frac{2}{5} \end{pmatrix}$$

$$\sim R2 - R1, R3 + R1 \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 0 & -5 & -1 & | & -1 \\ 0 & 4 & \frac{4}{5} & | & \frac{12}{5} \end{pmatrix}$$

$$\sim -\frac{1}{5}R2 \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 0 & 1 & \frac{1}{5} & | & \frac{1}{5} \\ 0 & 4 & \frac{4}{5} & | & \frac{12}{5} \end{pmatrix}$$

$$\sim R3 - 4R2 \begin{pmatrix} 1 & 3 & \frac{3}{2} & | & 2 \\ 0 & 1 & \frac{1}{5} & | & \frac{1}{5} \\ 0 & 0 & 0 & | & \frac{8}{5} \end{pmatrix}$$

Lo scopo dell'algoritimo è di avere degli 1 in "diagonale" nella matrice.

$$\sim \frac{5}{8} R3 \begin{pmatrix} 1 & 3 & \frac{3}{2} & 2\\ 0 & 1 & \frac{1}{5} & \frac{1}{5}\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Otteniamo un sistema lineare equivalente:

$$x_1 + 3x_2 + \frac{3}{2}x_3 = 2$$
$$x_2 + \frac{1}{5}x_3 = \frac{1}{5}$$

0 non è mai uguale uno e quindi non esistono soluzioni a questo sistema lineare.

0 = 1

2.5 Linee in \mathbb{R}^2

Consideriamo 2 equazioni in 2 incognite con coefficienti $\in \mathbb{R}$:

$$\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases}$$

dove $a_{11}, a_{12}, a_{21}, a_{22} \in \mathbf{R}$

$$\to y = -\frac{a_{11}}{a_{12}}x + \frac{b_1}{a_{12}}(I)$$

$$y = -\frac{a_{21}}{a_{22}}x + \frac{b_2}{a_{22}}(II)$$

1. Soluzione dove le due rette sul piano cartesiano si incontrano.

Figure 1: Rette incidenti: 1 soluzioni

2. Soluzione dove le due linee sono parallele (0 soluzioni)

Figure 2: Rette parallele: 0 soluzioni

3. Infinite soluzioni

Figure 3: Rette coincidenti: ∞ soluzioni

2.6 Metodo di eliminazione di Gauss (EG)

Data una matrice $M = (a_{ij})$ in $M_{nxn}(\mathbf{C})$ (oppure in $M_{nxn}(\mathbf{R})$ con righe R1, ... Rn, eseguiamo le seguenti operazioni elementari:

• Scegliamo la prima colonna non nulla j di M (partendo da sinistra). Dopo aver eventualmente scambiato due righe di M, otteniamo una matrice della forma:

$$\begin{pmatrix}
0 & \dots & 0 & a_{ij} & \dots & a_{in} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \dots & 0 & a_{nj} & \dots & a_{nn}
\end{pmatrix}$$

Moltiplicando R1 per $\frac{1}{a_{ij}}$, si ottiene

Adesso per ogni $2 \leq i \leq n,$ eseguiamo l'operazione elementare Ri -

 a_{ij} R1. Otteniamo una matrice di forma:

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & * & \dots & * \end{pmatrix}$$

• Ripetiamo il procedimento (a) sia M' per ottenere:

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & \dots & \dots & * \\ 0 & \dots & 0 & 0 & 1 & 0 & * & * \\ 0 & \dots & 0 & 0 & 0 & 0 & & * \end{pmatrix}$$

• Dopo un numero finito di passi , si ottiene una matrice che è una matrice a scala

//Rifare matrice

cioè esiste un numero $1 \le r \le n$ tale che:

- i. Le righe $1 \le i \le r$ sono non nulle
- ii. Ogni riga $2 \le i \le n$ ha un numero di zeri iniziali superiore alla riga precedente
- iii. Le righe $r+1 \le i \le n$ sono tutte nulle.

Inoltre il primo coefficiente non nullo di ogni riga è uguale a 1 ed è detto *pivot*. La matrice è detta *forma ridotta* di M. Le colonne che contengono un pivot vengono chiamate *dominanti*.

Esempio:

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & 0 & 5 & 4 \\ 0 & 10 & 0 & 30 & 2 \\ 0 & -i & 0 & 6 & 7 \end{pmatrix} \in M_{3x5} \in \mathbf{C}$$

$$R1 \longleftrightarrow R2 \begin{pmatrix} 0 & 10 & 0 & 30 & 2 \\ 0 & 0 & 0 & 5 & 4 \\ 0 & -i & 0 & 6 & 7 \end{pmatrix}$$

$$\frac{1}{10}R1 \begin{pmatrix} 0 & 1 & 0 & 3 & \frac{1}{5} \\ 0 & 0 & 0 & 5 & 4 \\ 0 & -i & 0 & 6 & 7 \end{pmatrix}$$

$$R3 + iR1 \begin{pmatrix} 0 & 1 & 0 & 3 & \frac{1}{5} \\ 0 & 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 6 + 3i & 7 + \frac{1}{3}i \end{pmatrix}$$

$$\frac{1}{5}R2 \begin{pmatrix} 0 & 1 & 0 & 3 & \frac{1}{5} \\ 0 & 0 & 0 & 1 & \frac{4}{5} \\ 0 & 0 & 0 & 6 + 3i & 7 + \frac{1}{3}i \end{pmatrix}$$

$$R3 - (6+3i)R2 \begin{pmatrix} 0 & 1 & 0 & 3 & \frac{1}{5} \\ 0 & 0 & 0 & 1 & \frac{4}{5} \\ 0 & 0 & 0 & \frac{11}{5} - \frac{11}{5}i \end{pmatrix}$$

$$(7 + \frac{1}{5}i - (6+3i)\frac{4}{5} = (7 + \frac{1}{5}i) - \frac{24}{5} + \frac{12}{5}i = \frac{11}{5} - \frac{11}{5}i$$

$$\frac{1}{\frac{11}{5} - \frac{11}{5}i}R3 \begin{pmatrix} 0 & 1 & 0 & 3 & \frac{1}{5} \\ 0 & 0 & 0 & 1 & \frac{4}{5} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2.7 Risoluzione di sistema lineare

Dato un sistema lineare

$$(*)Ax = b$$

con $A \in M_{nxn}(\mathbf{C}), b \in M_{nx1}(\mathbf{C})$ procediamo con (EG) sulla matrice aumentata (A|b) fino ad ottenere la forma ridotta (u|c) e sistema lineare corrispondente:

$$ux = c$$

che è equivalente a (*). Chiamiamo variabili dominanti le r variabilic he corrispondono alle colonne dominanti e variabili libere le rimanenti:

Esempio:

$$\begin{cases} 10x_1 + 10x_2 + 30x_3 = 2\\ 5x_3 = 4\\ -x_1 - x_2 + 6x_3 = 7 \end{cases}$$

$$\begin{pmatrix}
10 & 10 & 30 & 2 \\
0 & 0 & 5 & 4 \\
-1 & -1 & 6 & 7
\end{pmatrix}$$

$$(EG) \Rightarrow \begin{pmatrix} 1 & 1 & 3 & \frac{1}{4} \\ 0 & 0 & 1 & \frac{4}{5} \\ 0 & 0 & 0 & 0 \\ x_1 & x_2 & x_3 & 0 \end{pmatrix}$$

 x_1 e x_3 sono variabili dominanti e x_2 è variabile libera.

Si ha uno dei seguenti casi:

[1]: Tutte le colonne di (u|c) tranne c sono dominanti. In tal caso, il sistema ammette una e una sola soluzione.

Esempio 2.1:

$$\begin{pmatrix} 1 & \frac{3}{4} & \frac{9}{4} \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 $[\infty]$: L'ultima colonna e almeno colonna di u *non* sono dominanti. In tal caso un sistema ammette infinite soluzioni che possiamo ottenere assegnando parametri per ogni colonna libera.

Esempio 2.3:

$$\begin{pmatrix}
1 & 3 & \frac{3}{2} & 1 & 2 \\
0 & 1 & \frac{1}{5} & -\frac{1}{4} & \frac{1}{5} \\
0 & 0 & 1 & 5 & 8
\end{pmatrix}$$

[0]: L'ultima colonna c è dominante in tal caso il sistema non ammette soluzione.

Esempio 2.4:

$$\begin{pmatrix} 1 & 3 & \frac{3}{2} & 2 \\ 0 & 1 & \frac{1}{5} & \frac{1}{5} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Attenzione: La forma ridotta di una matrice **non è unica** ma le colonne dominanti sono univocamente determinate.

2.8 Definizione

Sia $A \in M_{nxn}(\mathbf{C})$) con forma ridotta U. Il numero r di righe non nulle, pari al numero di colonne dominanti, è detto **rango** di u e si indica rku (rank). Dimostreremo più avanti che ogni forma ridotta di A ha lo stesso rango, quindi definiamo il rango di A come rkA (rango di A) = rkU (rango di U). Si ha $rkA \leq min(n,n)$

2.9 Osservazione

Possiamo ricavare le condizioni $[1], [\infty], [0]$ usando il rango:

2.9.1 Teorema di Rouchè-Capelli

Sia $A \in M_{nxn}(\mathbf{C})$, sia $b \in M_{nxi}(\mathbf{C})$.

$$[1] \iff rkA = rk(A|b) = n$$
$$rkU = rk(u|c)$$
$$[\infty] \iff rkA = rk(A|b) < n$$
$$[0] \iff rkA < rk(A|b)$$

3 Matrici e le loro operazioni

3.1 Definizione

Sia $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$ e $B = (b_{ij})_{1 \le i \le n, 1 \le j \le n}$ matrici in $M_{nxn}\mathbf{C}$. Diciamo **somma** di A e B la matrice:

$$A + B = (a_{ij} + b_{ij})$$

$$= a_{11} + b_{11} \dots a_{1n} + b_{1n}$$

$$= a_{21} + b_{21} \dots a_{2n} + b_{2n}$$

$$= a_{n1} + b_{n1} \dots a_{nn} + b_{nn}$$

in $M_{nxn}\mathbf{C}$. Esempio:

$$\begin{pmatrix} 1 & 0 & i \\ 3 & 1 & 4 \end{pmatrix} + \begin{pmatrix} 2 & 4 & 1 \\ 2 & -i & 1+i \end{pmatrix} = \begin{pmatrix} 3 & 4 & 1+i \\ -1 & 1-i & 5+i \end{pmatrix}$$

Proprietà: L'addizione di matrice è associativa (cioè (A+B)+C=A+(B+C)) e commutativa (cioè A+B=B+A)

3.2 Definizione

Data una matrice $A = (a_{ij})_{1 \leq i \leq n, 1 \leq j \leq n} \in M_{nxn} \mathbf{C}$ e $\alpha \in \mathbf{C}$, diciamo prodotto della matrice A per lo scalare α la matrice:

$$\alpha A = (\alpha a_{ij}) \in M_{nxn}(\mathbf{C})$$

$$\frac{1}{2} \begin{pmatrix} 2+i & 5\\ i & 1-2i \end{pmatrix} = \begin{pmatrix} 1+\frac{1}{2}i & \frac{5}{2}\\ \frac{1}{2}i & \frac{1}{2}-i \end{pmatrix}$$

Proprietà:

$$\alpha(A+B) = \alpha A + \alpha B(\alpha+\beta)A = \alpha A + \beta A.$$

per $A, B \in M_{nxn}(\mathbf{C}), \alpha, \beta \in \mathbf{C}$.

3.3 Definizione

Accanto a una matrice $A = (a_{ij}) \in M_{nxn}(\mathbf{C})$, consideriamo la matrice A^t ottenuta da A scambiando le righe per le colonne detta trasposta di A. Esempio:

$$A = \begin{pmatrix} 1 & i & 7 \\ \pi & \frac{1}{12} & 0 \end{pmatrix} A^t = \begin{pmatrix} 1 & \pi \\ i & \frac{1}{12} \\ 7 & 0 \end{pmatrix}$$

3.4 Prodotto di matrici

(a) Una matrice di dimensione nx1 è detta vettore (colonna) e si usa la notazione:

$$v = \begin{pmatrix} v_1 \\ \cdot \\ \cdot \\ \cdot \\ v_n \end{pmatrix} \in M_{nx1}(\mathbf{C})$$

Una matrice di dimensione 1xn è detta vettore riga e si usa la notazione v^t .

$$v^t = \begin{pmatrix} v_1 & \dots & v_n \end{pmatrix} \in M_{1xn}(\mathbf{C})$$

Siano v^t un vettore riga in $M_{1xn}(\mathbf{C})$ e u un vettore colonna in $M_{nx1}(\mathbf{C})$. Si chiama **prodotto di** v^t **con u** il numero complesso $v_u^t = v_1u_1 + v_2u_2 + ... + v_nu_n \in \mathbf{C}$.

Esempio:

$$v^t = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} u = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

$$v_u^t = 1 + 0 + 9 = 10.$$

(b) possiamo vedere una matrice $A=(a_{ij})$ come n vettori riga $R_i=(a_{i1}...a_{in})$

detti **righe di A** oppure n
 vettori colonna: $c_j = \begin{pmatrix} a_{ij} \\ . \\ . \\ . \\ a_{nj} \end{pmatrix}$ detti **colonne di**

Α.

Esempio:

$$A = \begin{pmatrix} 10 & 2 & 1 \\ 2i & 4 & 0 \\ 0 & 2 & 8 \end{pmatrix} = \begin{pmatrix} 10 & 2 & 1 \\ 2i & 4 & 0 \\ 0 & 2 & 8 \end{pmatrix}$$

Siano $A = (a_{ij}) \in M_{nxn} \in \mathbf{C}$ e $B = (b_{ij}) \in M_{nxn} \in \mathbf{C}$ se n = s, allora possiamo formare il prodotto di A e B:

$$AB = (c_{ij})$$

dove $c_{ij}=R_iC_j=\begin{pmatrix}a_{i1}&\dots&a_{in}\end{pmatrix}\begin{pmatrix}b_{ij}\\ \cdot\\ \cdot\\ \cdot\\ b_{nj}\end{pmatrix}$ è il prodotto della riga i di A e la colonna j di B.

Esempio:

$$v^{t} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 & 0 \\ 0 & 1 & 5 \\ 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} R1C1 & R1C2 & R1C3 \\ R2C1 & R2C2 & R2C3 \end{pmatrix} = \begin{pmatrix} 4 & 12 & 22 \\ 4 & 9 & 21 \end{pmatrix}$$

Proprietà:

• Il prodotto di matrici è associativo:

$$(AB)C = A(BC)$$

• Leggi distributive:

$$(A+B)C = AC + BC$$
$$A(B+C) = AB + AC$$

• Scriviamo $I_n \in M_{nxn}(\mathbf{C})$ per la matrice ridotta e diciamo **matrice** identità.

ESEMPIO:

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
$$MI_{2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = M$$

Per ogni matrice $M = \in M_{nxn}(\mathbf{C})$ abbiamo che $MI_n = M = I_nM$

 $\bullet \ (AB)^t = B^t A^t$

ESEMPIO:

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \cdot B = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 5 & 13 \end{pmatrix}$$
$$A^{t} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot B^{t} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \\ 4 & 13 \end{pmatrix} = (AB)^{t}$$
$$B^{t}A^{t} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \\ 4 & 13 \end{pmatrix}$$

• Il prodotto tra matrici NON è commutativo.

$$AB \neq BA$$

3.5 Osservazione

Siano A =
$$(a_{ij}) \in M_{nxn}(\mathbf{C} \in b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in M_{nx1}(\mathbf{C}), x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. Consideriamo Ax = b in forma matriciale. Abbiamo:

$$Ax = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + & \dots & +a_{1n}x_n \\ \vdots & & \vdots \\ a_{n1}x_1 + & \dots & +a_{nn}x_n \end{pmatrix}$$

è uguale a
$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix};$$

$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + & \dots & +a_{1n}x_n \\ \vdots & & \vdots \\ a_{n1}x_1 + & \dots & +a_{nn}x_n \end{pmatrix} \leadsto \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n = b_n \end{cases}$$

ESEMPIO:

$$\begin{cases} 2x_1 + 6x_2 = 4 \\ x_1 - 2x_2 = 1 \\ -x_1 + x_2 = \frac{2}{5} \end{cases}$$

$$A = \begin{pmatrix} 2 & 6 \\ 1 & -2 \\ -1 & 1 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} b = \begin{pmatrix} 4 \\ 1 \\ \frac{2}{5} \end{pmatrix}$$

$$Ax = \begin{pmatrix} 2 & 6 \\ 1 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 & 6x_2 \\ x_1 & -2x_2 \\ -x_1 & x_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ \frac{2}{5} \end{pmatrix}$$

3.6 Definizione

Una matrice $A = a_{ij}$ di dimensione nxn si dice matrice quadrata di ordine n. Gli elementi di A a_{ii} formano la **diagonale** di A.

Esempio:

$$\begin{pmatrix} 0 & -10 & i \\ 7 & 8 & 0 \\ 100 & \frac{1}{2} & i \end{pmatrix}$$

Se tutti gli elementi fuori dalla diagonale sono nulli, allora è detta **matrice** diagonale.

Esempio:

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & i
\end{pmatrix}$$

Se tutti i coefficienti al di sotto della diagonale sono nulli, allora la matrice è detta matrice **triangolare** superiore o inferiore.

$$\begin{pmatrix} 0 & -10 & i \\ 0 & 8 & 0 \\ 0 & 0 & i \end{pmatrix} oppure \begin{pmatrix} 0 & 0 & 0 \\ 7 & 8 & 0 \\ 100 & \frac{1}{2} & i \end{pmatrix}$$

3.7 Matrici elementari

Prendiamo la matrice identità:

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Applichiamo le operazioni elementari alla matrice identità I_n per ottenere matrici elementari che denotiamo come segue:

• E_{ij} la matrice ottenuta da I_n scambiando la riga i con la riga j. Esempio:

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• $E_i(K)$ ottenuta da I_n moltiplicando la riga per lo scalare $\alpha \neq 0 \in \mathbb{C}$.

$$n = 3, \alpha = i + 5 \in \mathbf{C}$$

$$E_3(i+5) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i+5 \end{pmatrix}$$

• $E_{ij}(\alpha)$ ottenuta da I_n sommando la riga i con la riga j moltiplicata per $\alpha \in \mathbb{C}$.

$$n = 3, k = -\frac{5}{6}$$

$$E_{13} \left(-\frac{5}{6} \right) = \begin{pmatrix} 1 & 0 & -\frac{5}{6} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3.8 Moltiplicazione con matrici elementari

Esempio:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -1 & 5 \end{pmatrix}$$

$$E_{23}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 5 \\ 0 & 3 \end{pmatrix}$$

$$E_{3}(i+5)A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & i+5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 5 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ -i-5 & 5i+25 \end{pmatrix}$$

$$E_{13} \begin{pmatrix} -\frac{5}{6} \end{pmatrix} A = \begin{pmatrix} 1 & 0 & -\frac{5}{6} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 5 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} \frac{11}{6} & -\frac{25}{6} \\ 0 & 3 \\ -1 & 5 \end{pmatrix}$$

Vediamo che ogni operazioni elementare su una matrice $A \in M_{nxn}(\mathbf{C})$ corrisponde alla (pre)moltiplicazione di A con la matrice elementare ottenuta di I_n effettuando la medesima operazione elementare.

NB:

$$AE_1, (-\pi) = \begin{pmatrix} 1 & 0 \\ -1 & 5 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -\pi & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\pi & 0 \\ 0 & 3 \\ \pi & 5 \end{pmatrix}$$

Esempio:

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 2 & 15 \end{pmatrix} \rightsquigarrow R2 - 3R1 \sim E_{21}(-3) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 5 & 15 \end{pmatrix}$$

$$\frac{1}{5}R2 \sim E_2 \begin{pmatrix} \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 3 \end{pmatrix} = u = E_2 \begin{pmatrix} \frac{1}{5} \end{pmatrix} (E_{21}(-3))A$$

Quindi $u = E_2\left(\frac{1}{5}\right)(E_{21}(-3))A$. Si può svolgere lo stesso calcolo in questo modo:

$$\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 3 & 2 & 15 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ -\frac{3}{5} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 3 & 2 & 15 \end{pmatrix}$$

$$\Rightarrow$$

$$\begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ 3 & 2 & 15 & 0 & 1 \end{pmatrix} R2 - 3R1 \sim \begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ 0 & 5 & 15 & -3 & 1 \end{pmatrix}$$

$$\frac{1}{5}R3 \sim \begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ 0 & 1 & 3 & -\frac{3}{5} & \frac{1}{5} \end{pmatrix}$$

3.9 Definizione di invertibile

Una matrice A di dimensione nxn è detta invertibile se esiste un'altra matrice C di dimensione nxn tale che:

$$CA = I_n e AC = I_n$$

In tal caso, \mathbb{C} è detta inversa di A. L'inversa di A, quando esiste, è univocamente determinata e si indica A^{-1} . Infatti se \mathbb{C} e \mathbb{C} ' sono inverse di A allora:

$$C = I_n C = (C'A)C = C'(AC) = C'I_n = C'$$

Esempio:

$$A = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix}, C = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix}$$
$$AC = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$CA = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $\leadsto C = A^{-1}$

Se A, B $\in M_{nxn}(\mathbf{C})$ sono invertibili allora lo è anche il loro prodotto AB. Infatti l'inversa di AB = $B^{-1}A^{-1}$:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = (AI_n)A = AA^{-1}$$

$$= I_n$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = (B^{-1}I_n)B$$

$$= B^{-1}B = I_n$$

Quindi $(AB)^{-1} = B^{-1}A^{-1}$

3.10 Inverse di matrici elementari

La matrici elementari sono tutte invertibili con inverse:

$$E_{ij}^{-}1 = E_{ij}$$

Esempio:

$$E_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_{3}(i+5) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i+5 \end{pmatrix}$$

$$E_{3}\left(\frac{1}{i+5}\right)E_{3}(i+5) = I_{3}$$

$$E_{ij}\alpha^{-1} = E_{ij}(-\alpha)$$

$$E_{23}\left(-\frac{5}{6}\right) = \begin{pmatrix} 1 & 0 & -\frac{5}{6} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_{23}E_{23}\left(-\frac{5}{6}\right) = I_{3}$$

3.11 Proposizione

Sia Ax = b un sistema lineare in forma matriciale, cioè $A \in M_{nxn}(\mathbf{C})$ e $b \in M_{nx1}(\mathbf{C})$ Se (u|c) è una forma ridotta della matrice aumentata (A|b), allora i sistemi lineari Ax = b e Ux = c hanno precisamente le **stesse soluzioni.** cioè sono equivalenti.

3.11.1 Dimostrazione

Siano $E_1, ..., E_5$ le matrici elementari che trasformano (A|b) nella forma ridotta (u|c):

$$(A|b) \sim (A'|b') \sim \dots \sim (u|c)$$

Allora abbiamo $(u|c)=E_3,...,\underbrace{E_1(A|b)}_{A'|b'}$. Per 3.10, le matrici elementari

 $E_1, ..., E_5$ sono invertibili.

Dunque anche il prodotto $E = E_3...E_1$, è invertibile con $E^{-1} = E_1^{-1},...,E_5^{-1}$. Abbiamo che E(A-b) = (u-c), ovvero EA = u e Eb = c.

Pertanto, se $v \in M_{nx1}(\mathbf{C})$ è una soluzione di Ax = b, cioè Av = b, allora

$$U_v = (EA)v = E(Av) = Eb = c$$

Quindi v è soluzione di Ux = c.

Se $v \in M_{nx1}(\mathbf{C})$ è soluzione di Ux = c, cioè Uv = c, allora:

$$Av = \underbrace{(E^{-1}E)}_{I_n} Av = E^{-1}(EA)v = E^{-1}(Uv) = E^{-1}c = E^{-1}(Eb) = b$$

Quindi v è soluzione di Ax = b.

3.12 Proposizione

Sono equivalenti seguenti annunciati per $A \in M_{nxn}(\mathbf{C})$:

- i. Il sistema lineare Ax = b ammette soluzione per qualsiasi $b \in M_{nx1}(\mathbf{C})$
- ii. Il rkA di A è pari al numero di righe di A.

3.12.1 Dimostrazione

 $[(1) \longrightarrow (2)]$ Supponiamo (1) sia u una forma ridotta di A:

$$u = \begin{pmatrix} 1 & \dots & * * * & \dots & * * * & \dots & * \\ \vdots & 1 & \vdots & & & & & \\ \vdots & 0 & 1 & & & & & \\ \vdots & 0 & 0 & \ddots & & & & \\ 0 & \dots & \dots & 000 & \dots & 000 & 0 \end{pmatrix}$$

Queste righe esistono se e solo se rkA = rkU < # righe di u = # righe di A Esiste una matrice invertibile E tale che u = EA (E = prodotto delle matrici elementari dell'EG).

Consideriamo il vettore $c=\begin{pmatrix} 0\\ \vdots\\ 0\\ 1 \end{pmatrix}$ e mettiamo $b=E^{-1}C.$ Allora il sistema

lineare Ax = b ammette una soluzione v per (1) cioè Av = b. Allora:

$$Uv=Eb=E(E^{-1}C)=C$$
 per 3.11

Per il teorema di Ronché-Capelli, rk
U=rk(u—c), cioè

$$(u|c) = \begin{pmatrix} 1 & \dots & *** & \dots & *** & \dots & 0 \\ \vdots & 1 & & & \vdots & & 0 \\ \vdots & 0 & 1 & & & \vdots & \vdots \\ \vdots & 0 & 0 & \ddots & & \vdots & \vdots \\ 0 & \dots & \dots & 000 & \dots & 000 & 1 \end{pmatrix}$$

L'ultima riga non può essere nulla, altrimenti l'ultima colonna di (u—c) sarebbe una colonna dominante.

Dunque rk
A = rkU = # righe di U = # righe di A.

 $[(2) \longrightarrow (1)]$ Supponiamo (2)

Sia b $\in M_{nx1}(\mathbf{C})$ e consideriamo Ax = b. Eseguendo EG sulla matrice (A-b), otteniamo una forma ridotta (u-c). Siccome rkU = # righe di U, ogni riga di U contiene un *pivot*. Perciò rkU = rk(u-c) e quindi rkA = rk(A-b). Quindi siamo in caso [1] oppure $[\infty]$. del teorema RC. \square

4 Matrici invertibili e il determinante

Esempio:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 5 & 11 & -1 \\ -4 & -10 & -2 \end{pmatrix}$$

Eseguiamo EG e calcoliamo il prodotto delle matrici elementari contemporaneamente:

$$\begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 5 & 11 & -1 & 0 & 1 & 0 \\ -4 & -10 & -2 & 0 & 0 & 1 \end{pmatrix} \sim E_{21}(-5), E_{31}(4) \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -5 & 1 & 0 \\ 0 & -2 & -2 & 4 & 0 & 1 \end{pmatrix}$$

$$E_{32}(2) \sim \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -5 & 1 & 0 \\ 0 & 0 & -4 & -6 & 2 & 1 \end{pmatrix} \sim E_3 \left(-\frac{1}{4} \right) \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -5 & 1 & 0 \\ 0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}$$

Siccome rkU = 3, possiamo continuare per ottenere la matrice identità.

$$(u|E) \sim E_{23}(1) \begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -\frac{7}{2} & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}$$
$$\sim E_{12}(-2) \begin{pmatrix} 1 & 0 & 0 & 8 & -1 & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{7}{2} & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix}$$

Allora:

$$I_3 = E_{12}(-2)E_{23}(1)u = E_{12}(-2)E_{23}(1)EA$$

= $E'A$

Osserviamo che:

$$AE' = \begin{pmatrix} 1 & 2 & 0 \\ 5 & 11 & -1 \\ -4 & -10 & -2 \end{pmatrix} \begin{pmatrix} 8 & -1 & -\frac{1}{2} \\ -\frac{7}{2} & \frac{1}{2} & -\frac{1}{4} \\ \frac{3}{2} & -\frac{1}{2} & -\frac{1}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Dunque:

$$A^{-1} = E'$$

4.1 Proposizione

Sia $A \in M_{nxn}(\mathbf{C})$. A è invertibile se e solo se esiste una sequenza $E_1, ..., E_t$ di matrici elementari tali che $I_n = E_t ... E_1 A$.

4.1.1 Dimostrazione

Supponiamo che A sia invertibile. Per ogni $b \in M_{nx1}(\mathbf{C})$, il vettore $A^{-1}b =: v$ è una soluzione del sistema lineare Ax = b. Infatti:

$$Av = A(A^{-1}b) = (AA^{-1})b = I_nb = b$$

Per 3.12, abbiamo che rkA = n. (Il rango è il numero di righe non nulle nella forma ridotta di A). Esiste una forma ridotta di A:

$$u = \begin{pmatrix} 1 & * & \dots & * \\ 0 & 1 & * & \dots & * \\ & \vdots & & & \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Con 1 sulla diagonale e matrici elementari $E_1...E_t$ tali che $u=E_t...E_1A$. Proseguendo l'esempio precedente, troviamo matrici elementari $E_{t+1},...E_s$ tali che $I_n=E_s...E_{t+1}u=E_s...E_{t+1}, E_t...E_1A$.

Ora supponiamo che esistano $E_1,...,E_s$ matrici elementari tali che $I_n=E_s...E_1A$.

Per 3.10 le matrici elementari sono invertibili, quindi abbiamo:

$$E_1^{-1} \dots E_s^{-1} = E_1^{-1} \dots E_s^{-1} I_n = \underbrace{E_1^{-1} E_s^{-1}}_{(E_s \dots E_1)^{-1}} \underbrace{E_s \dots E_1}_{I_n} A$$

Dunque A è prodotto di matrici invertibili e quindi A è invertibile con $A^{-1}=E_s...E_1.$

4.2 Calcolo della matrice inversa

Data una matrice invertibile $A \in M_{nxn}(\mathbf{C})$.

Usiamo le operazioni elementari per trasformare A nella matrice identità, eseguiamo le medesime operazioni elementari su I_n per ottenere A^{-1} :

$$(A|I_n) \sim E_1(A'|E') \sim E_2 \cdots \sim E_s(I_n|A^{-1})$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 5 & 6 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\sim E_{31}(-5) \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & -4 & -15 & -5 & 0 & 1 \end{pmatrix}$$

$$\sim E_{32}(4) \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 0 & 1 & -5 & 4 & 1 \end{pmatrix}$$

$$\sim E_{23}(-4) \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 4 & 0 & 1 & 0 \\ 0 & 0 & 1 & -5 & 4 & 1 \end{pmatrix}$$

$$\sim E_{13}(-3) \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 20 & -15 & 4 \\ 0 & 0 & 1 & -5 & 4 & 1 \end{pmatrix}$$

$$\sim E_{12}(-2) \begin{pmatrix} 1 & 0 & 0 & -24 & 18 & 5 \\ 0 & 1 & 0 & 20 & -15 & 4 \\ 0 & 0 & 1 & -5 & 4 & 1 \end{pmatrix}$$

4.3 Teorema delle matrici invertibili

Sono equivalenti i seguenti enunciati per la matrice $A \in M_{nxn}(\mathbf{C})$:

- (a) A è invertibile.
- (b) Esiste una sequenza $E_1...E_t$ di matrici elementari tali che $E_t...E_1A=I_n$
- (c) rkA = n
- (d) Il sistema lineare Ax = b ammette soluzione per qualsiasi $b \in M_{nx1}(\mathbf{C})$
- (e) Il sistema lineare Ax = 0 (Vettore nullo) ammette la soluzione $x = (x^2)$

$$0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

- (f) Esiste una matrice $C \in M_{nxn}(\mathbf{C})$ tale che $CA = I_n$
- (g) Esiste una matrice $D \in M_{nxn}((C))$ tale che $AD = I_n$

4.3.1 Dimostrazione

- $(a) \iff (b) (4.2)$
- $(a) \Longrightarrow (g)$
- $(a) \Rightarrow (f)$
- $(g) \Longrightarrow (d) (4.1)$
- $(d) \Longrightarrow (c) (3.12)$
- $(e) \Longrightarrow (c)$
- $(f) \Longrightarrow (e)$

Supponiamo che esiste $C \in M_{nxn}(\mathbf{C})$ tale che $CA = I_n$. Sia $v \in M_{nx1}(\mathbf{C})$ una soluzione del sistema Ax = 0. Allora $v = vI_n = (CA)v = C(Av) = C0 = 0$. Esempio:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Box$$

4.3.2 Nota

$$D = I_n D = (CA)D = C(AD) = CI_n = C$$

Quindi:

$$C = D = A^{-1}$$

4.4 Proposizione

Sia $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2x2}(\mathbf{C})$ se $ad - bc \neq 0$, allora 0 è invertibile e

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Se ad - bc = 0 allora A non è invertibile.

4.4.1 Dimostrazione

$$M(\alpha N) = \alpha(MN)$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \end{pmatrix}$$

$$= \frac{1}{ad - bc} \begin{pmatrix} ad - bc & -ba + ab \\ cd - dc & -bc + ad \end{pmatrix}$$

$$= \frac{1}{ad - bc} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Quindi

$$\frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = A^{-1}$$

Se invece ad - bc = 0, allora

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d \\ -c \end{pmatrix} = \begin{pmatrix} ad - bc \\ cd - cd \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Quindi, $\begin{pmatrix} d \\ -c \end{pmatrix}$ è soluzione al sistema Ax = 0.

Se $\begin{pmatrix} d \\ -c \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, allora A non è invertibile per 4.3(e).

Se
$$\begin{pmatrix} d \\ -c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, allora d = c = 0.
 $A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ ha rango < 2, quindi A non è invertibile per 4.3(e).

4.5 Definizione

Definiamo una funzione:

$$det: M_{nxn}(\mathbf{C}) \to \mathbf{C}$$

Detta determinante per ricorrenza:

$$n = 1$$

$$A = (a) \quad det A := a$$

$$n = 2$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} det A := ad - bc$$

$$n \ge 3$$
$$A = a_{ij}$$

Si pone

$$det A = \sum_{i=1}^{n} (-1)^{j+1} a_{ij} det A_{ij}$$

dove A_{ij} è la matrice ottenuta da A cancellando la prima riga e la colonna j.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
$$det A = (-1)^2 \cdot 1 \cdot det \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} + (-1)^3 \cdot 2 \cdot det \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} + (-1)^4 \cdot 3 \cdot det \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} =$$

$$= -6 + 6 - 3 = -3$$

Ulteriore esempio:

$$det \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} =$$

$$(-1)^{1+1} \cdot 1 \cdot det \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} + (-1)^{2+1} \cdot 2 \cdot det \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix} + (-1)^{3+1} \cdot 3 \cdot det \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} =$$

$$= 1(-2-1) - 2(-3-0) + 3(3-0) = -3 + 6 + 9 = 12$$

4.6 Regola di Sarrus

Per una matrice di dimensione 3x3 possiamo usare la regola:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} a_{11} a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Esempio:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 0 & 1 \end{pmatrix}$$

$$det A = 1*1*0+2*3*1+3*0*2-3*1*1-1*3*2-2*0*0 = 6-3-6 = -3$$

4.7 Teorema di Laplace

Il determinante di una matrice $A = (a_{ij})$ può essere sviluppato per qualsiasi riga o colonna come segue:

Sviluppo per la riga i

$$det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

dove A_{ij} è la matrice ottenuta da A cancellando la riga i e la colonna j. Sviluppo per la colonna j

$$det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

Il valore $(-1)^{i+j} det A_{ij}$ è detto complemento algebrico di a_{ij} . Il segno si determina secondo a

$$\begin{pmatrix} + & - & + & \dots \\ - & + & - & \dots \\ + & - & + & \dots \\ \vdots & \vdots & \vdots & \end{pmatrix}$$

Esempio:

$$A = \begin{pmatrix} 1^+ & 2^- & 3^+ \\ 0^- & 1^+ & 3^- \\ 1^+ & 2^- & 0^+ \end{pmatrix}$$

Riga 3:

$$det A = 1 \cdot det \begin{pmatrix} 2^{-} & 3^{+} \\ 1^{+} & 3^{-} \end{pmatrix} - 2 \cdot det \begin{pmatrix} 1 & 3 \\ 0 & 3 \end{pmatrix} = (6-3) - 2(3-0) = 3 - 6 = -3$$

Colonna 3

$$det A = 3 \cdot det \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} - 3 \cdot det \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = 3(0-1) - 3(2-2) = -3$$

4.8 Il determinante e la trasposta

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
$$det A = ad - bc \qquad det A^t = ad - cb$$
$$\Longrightarrow det A = det A^t$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \quad det A = -3$$

$$A^t \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix}$$

Sviluppo per riga 1:

$$det A = 1 \cdot det \underbrace{\begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix}}_{A_{11}} - 2 \cdot det \underbrace{\begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}}_{A_{12}} + 3 \cdot det \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}}_{A_{13}} = -3$$

Sviluppo per la trasposta la colonna 1:

$$det A^{t} = 1 \cdot det \underbrace{\begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix}}_{A_{12}^{t} = (A_{11})^{t}} - 2 \cdot det \underbrace{\begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}}_{A_{12}^{t} = (A_{12})^{t}} + 3 \cdot det \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}}_{A_{13}^{t} = (A_{13})^{t}} = -3$$

Se $A = a_{ij} \in M_{nxn}(\mathbf{C})$, allora $det A = det A^t$.

4.9 Il principio di induzione

"Dimostrare che per ogni $n \geq 1$ vale una proprietà p
(n)"

 $p(n) = "Ogni matrice di A di dimensione nxn, <math>det A = det A^{t}$ "

Base dell'induzione

p(n) è vera per n = 1 ovvero p(1) è vera.

Passo induttivo

Supponendo che p(n) sia vera; ne consegue che p(n+1) è vera.

Allora p(n) è vera per tutti gli $n \in \mathbb{N}$.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{pmatrix}$$

Sviluppo per la riga 4:

$$det A = 10 \cdot det \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 8 \end{pmatrix}$$

(Si Laplasizza ulteriormente) Riga 3:

$$10(8 \cdot \begin{pmatrix} 1 & 2 \\ 0 & 5 \end{pmatrix} =$$

$$= 10 \cdot 8 \cdot (1 \cdot 5 - 0 \cdot 2)$$

$$= 80 \cdot 5$$

$$= 400$$

4.10 Proposizione

Sia $A = a_{ij} \in M_{nxn}(\mathbf{C})$ una matrice triangolo superiore o inferiore. Allora $det A = a_{11}a_{22}...a_{nn}$.

4.10.1 Dimostrazione

(Superiore) Induzione su n.

Proprietà $\mathbf{p}(\mathbf{n})$: per $A \in M_{nxn}(\mathbf{C}), det A = a_{11}...a_{nn}$

• Base dell'induzione: p(1) è vera:

$$A = a_{11} \in M_{1x1}(\mathbf{C})$$

• Passo induttivo: Supponiamo p(n):

$$A = a_{ij} \in M_{n+1n+1}(\mathbf{C})$$

Laplace per riga n+1

$$det A = a_{n+1n+1} det A_{n+1n+1} = a_{n+1n+1} (a_{nn}...a_{11})$$

Quindi p(n+1) è vera.

Per il principio di induzione, abbiamo dimostrato che p(n) è vera per ogni $n \in \mathbb{N}$. La dimostrazione per A triangole inferiore è simile.

Esempio:

(1)
$$u = \begin{pmatrix} 1 & 8 & 0 & i \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 5 - i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$det u = 1$$
$$u' = \begin{pmatrix} 1 & 8 & 0 & i \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$det u' = 0$$

Poiché il prodotto degli elementi sulla diagonale è uguale a 0.

(2)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \quad det A = -3$$
$$det(E_{23}A) = det \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 0 \\ 0 & 1 & 3 \end{pmatrix} = (LPj = 1) = 1 \cdot det \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} - 1 \cdot det \begin{pmatrix} 2 & 3 \\ 1 & 3 \end{pmatrix}$$
$$6 - 0 - (6 - 3) = 3 = -det A$$

$$det(E_{2}(2)A = det \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 6 \\ 1 & 2 & 0 \end{pmatrix}$$

$$= 1det \begin{pmatrix} 2 & 6 \\ 2 & 0 \end{pmatrix} + 1det \begin{pmatrix} 2 & 3 \\ 2 & 6 \end{pmatrix}$$

$$= -12 + 6$$

$$= -6 = 2detA$$

$$det(E_{13}(2)A = det \begin{pmatrix} 3 & 6 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$

$$= (j = 1)3det \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} + 1det \begin{pmatrix} 6 & 3 \\ 1 & 3 \end{pmatrix}$$

$$= 3(-6) + 1(18 - 3)$$

$$= -3 = detA$$

4.11 Teorema

Siano $A \in M_{nxn}(\mathbf{C}), 0 \neq \alpha \in \mathbf{C}$, allora:

$$det(EA) := \begin{cases} -detA & se \quad E = E_{ij} \\ \alpha detA & se \quad E = E_{i}(\alpha) \\ detA & se \quad E = E_{ij}(\alpha) \end{cases}$$

NB:

$$\det I_n = 1$$
 (Matrice diagonale)
 $\det E_{ij} = \det E_{ij}I_n = -1$
 $\det E_i(\alpha) = \det E_i(\alpha)I_n = \alpha$
 $\det E_{ij}(\alpha) = \det E_{ij}(\alpha)I_n = 1$

Quindi per $A \in M_{nxn}(\mathbf{C})$ ed ogni matrice elementare E, abbiamo

$$\det EA = \det E \det A$$

4.11.1 Dimostrazione

(n=2):

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{nxn}(\mathbf{C})$$
$$det A = ad - bc$$

$$det(E_{12}A \quad o \quad E_{21}A) = det\begin{pmatrix} c & d \\ a & b \end{pmatrix} = cb - ad = -detA$$

$$det(E_1(\alpha)A = det\begin{pmatrix} \alpha a & \alpha b \\ c & d \end{pmatrix} = \alpha ad - \alpha bc$$
$$\alpha(ad - bc) = \alpha detA$$

$$det(E_{21}(\alpha)A = det\begin{pmatrix} a & b \\ c + \alpha a & d + \alpha b \end{pmatrix} = a(\alpha + \alpha b) - b(c + \alpha a)$$
$$= ad + \alpha ab - bc - \alpha ab$$
$$= det A \qquad \Box$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 1 & 0 \end{pmatrix} \sim E_{31}(-1) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & -3 \end{pmatrix} \sim E_{3} \begin{pmatrix} -\frac{1}{3} \end{pmatrix} \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}}_{u}$$

$$det u = 1$$

$$u = E_3 \left(-\frac{1}{3}\right) E_{31}(-1)A$$

$$A = E_{31}(-1)^{-1} E_3 \left(-\frac{1}{3}\right)^{-1} u$$

$$E_{31}(1)E_3(-3)u$$

$$\det u = \det(E_{31}(1)E_3(-3)u) =$$

$$= \det(E_3(-3)u) = -3 \cdot \det u = -3$$

4.12 Corollario

Se $A \in M_{nxn}$, allora det $A \neq 0$ se e solo se A è invertibile.

4.12.1 Dimostrazione

Sia u una forma ridotta di A:

$$\det A \neq 0 \iff \det u \neq 0 \iff rkU = n \iff A$$
 è invertibile \square

4.13 Corollario

Siano $A, B \in M_{nxn}(\mathbf{C})$. Allora det $AB = \det A \det B$.

4.13.1 Dimostrazione

Caso 1: A non è invertibile allora $\det A = 0$. Se AB è invertibile, allora $A(B(AB)^{-1}) = AB(AB)^{-1} = I_n$ e $B(AB)^{-1}$ sarebbe l'inversa di A. Quindi AB non è invertibile. Allora $\det AB = 0 = \det A \det B$.

Caso 2: A è invertibile.

Per 4.1, esiste una sequenza $E_1 \dots E_t$ di matrici elementari tali che $E_t \dots E_1 A = I_n$.

Siccome $E_1 \dots E_t$ sono invertibili, possiamo considerare

$$A = (E_1^{-1} \dots E_t^{-1}) E_t \dots E_1 A$$
$$= E_1^{-1} \dots E_t^{-1} I_n = E_1^{-1} \dots E_t^{-1}$$

Dunque

$$\det AB = \det E_1^{-1} \dots E_t^{-1}B$$

$$= (teo.) \det E_t^{-1} \det E_2^{-1} \dots \det E_t^{-1} \det B$$

$$= (teo.) \det E_1^{-1} \dots \det E_t^{-1} \det B$$

$$= \det A \det B \qquad \square$$

4.14 Formula per A^{-1}

Se det $A \neq 0$, allora

$$A^{-1} = \frac{1}{\det A} A *$$

è la matrice i cui coefficienti sono i complementi algebrici di A^t e det $A^t = \frac{1}{\det A}$.

Esempio:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \quad A^t = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix}$$

$$A* = \begin{pmatrix} \det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & -\det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & \det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} \\ -\det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & \det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & -\det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} \\ \det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & -\det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} & \det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 0 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} -6 & 6 & 3\\ 3 & -3 & -3\\ -1 & 0 & 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{3} \begin{pmatrix} -6 & 6 & 3\\ 3 & -3 & -3\\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -1\\ -1 & 1 & 1\\ \frac{1}{3} & 0 & -\frac{1}{3} \end{pmatrix}$$

$$\det A^{-1} = -\frac{1}{3}$$

4.15 Teorema di Cramer

Sia $A \in M_{nxn}(\mathbf{C})$ con det $A \neq 0$, sia $b \in M_{nx1}(\mathbf{C})$. Allora il sistema lineare:

$$Ax = b$$

possiede un'unica soluzione.

$$p = \begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix}$$

dove $p_i = \frac{\det A_i}{\det A}$ dove A_i è la matrice ottentua da A sostituendo la colonna i con il vettore b.

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix} = A \quad \det A = -3$$

$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 2 & 0 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A_3 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$

$$\det A_1 = 1 \cdot \det \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{pmatrix} = -6$$

$$\det A_2 = 3$$

$$\det A_3 = -1$$

$$p_1 = \frac{-6}{-3} = 2, \ p_2 = \frac{3}{-3} = -1, \ p_3 = \frac{-1}{-3} = \frac{1}{3}$$
Dunque $p = \begin{pmatrix} 2 \\ -1 \\ \frac{1}{3} \end{pmatrix}$ è l'unica soluzione del sistema lineare $Ax = b$.

5 Spazi vettoriali e sottospazi

Esempio:

Possiamo identificare R^2 con l'insieme $M_{2x1} = \left(\begin{pmatrix} a \\ b \end{pmatrix} | a, b \in \mathbf{R} \right)$

Possiamo

• Sommare i vettori

$$\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} a + a' \\ b + b' \end{pmatrix}$$

• Moltiplicare per uno scalare $\alpha \in \mathbf{R}$

$$\alpha \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \alpha a \\ \alpha b \end{pmatrix}$$

5.1 Definizione

Sia $\mathbf{K} = \mathbf{R}$ oppure $\mathbf{K} = \mathbf{C}$; sia uno *spazio vettoriale* su \mathbf{K} è un insieme non vuoto \mathbf{V} i cui elementi sono detti *vettori* sul quale sono definite due operazioni:

- i. per $v, w \in \mathbf{V}$ abbiamo $v + w \in \mathbf{V}$ (addizione)
- ii. per $\alpha \in \mathbf{R}, v \in \mathbf{V}$ abbiamo $\alpha \mathbf{V} \in \mathbf{V}$ (moltiplicazione per uno scalare)

che godono della seguenti proprietà:

- i. Valgono le seguenti proprietà:
 - (v+u)+w=v+(u+w) per tutti i vettori dell'insieme $v,w,u\in\mathbf{V}$ (associativa)
 - esiste $0_v \in \mathbf{V}$ tale che $v + 0_v = v = 0_v + v$ per ogni $v \in \mathbf{V}$ (elemento neutro)
 - Per ogni $v \in \mathbf{V}$ esiste $w \in \mathbf{V}$ tale che $v + w = 0_v = w + v$, scriviamo w = -v
 - v + w = w + v per tutti $v, w \in \mathbf{V}$ (Commutativa)

ii. per ogni $v \in \mathbf{V}$

$$1v = v$$

iii. $(\alpha\beta)v = \alpha(\beta v)$ per tutti gli scalari $\alpha, \beta \in \mathbf{K}$ e tutti i vettori $v \in \mathbf{V}$

iv.
$$\alpha(v+w) = \alpha v + \alpha w$$

 $(\alpha + \beta)v = \alpha v + \beta w \ (Leggi \ Distributive)$

Esempi:

i. $v = M_{nxn}(\mathbf{K})$ è uno spazio vettoriale su \mathbf{K} con addizione di matrici e moltiplicazioni per scalari uguali

$$0_v = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$0_v = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

In particolare scirivamo

$$\mathbf{K}^n = M_{nx1}(\mathbf{K})$$

$$0_{\mathbf{K}n} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

ii. $\mathbf{K}[x]$ l'insieme dei polinomi a coefficenti in \mathbf{K} .

ES:

$$f = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

$$f = 1 - 2x + 3x^2 + 0x^3$$

$$9 = 1 + 6x^3 + 4x^4$$

$$9 = b_0 + b_1 x + \dots + b_n x^n$$

$$f + 9 = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

$$\alpha f = (\alpha a_0) + (\alpha a_1)x^1 + \dots + (\alpha a_n)x^n$$

 $\mathbf{K}[x]$ è uno spazio vettoriale. L'elemento neutro:

$$0+0x+\cdots+0x^n$$

 $\mathbf{K}[x]$ l'insieme di polinomi di grado $\leq n$ a coefficenti in \mathbf{K} è uno spazio vettoriale.

iii. Le successioni $(a_n)_{n \in \mathbb{N}} \in \mathbb{K}$ Esempio:

$$(1, -1, 2, 3, 6, i, \dots) \in \mathbf{C}$$

formano uno spazio vettoriale S su K.

$$(a_n)_{n\in\mathbf{N}} + (b_n)_{n\in\mathbf{N}} = (a_n + b_n)_{n\in\mathbf{N}}$$

$$\alpha(a_n)_{n\in\mathbf{N}} = (\alpha a_n)_{n\in\mathbf{N}}$$

L'insieme di successioni che soddisfano la relazione '

$$a_{k+2} - 5a_{k+1} + 3a_k = 0$$

per $k = 1, 2, 3, \dots \in \mathbf{N}$.

Esempio:

$$(1,0,-3,-15,-66,\dots)$$

è uno spazio vettoriale.

$$0_v = 0_{v'} = (0, 0, 0, 0, \dots)$$

iv. L'insieme di funzioni $f: \mathbf{R} \to \mathbf{R}$ è uno spazio vettoriale:

$$f, g \in \mathbf{R^R}$$

$$f + q : \mathbf{R} \to \mathbf{R}$$

$$(f+g)(x) = f(x) + g(x)$$

 $\alpha \in \mathbf{R}$,

$$\alpha f: \mathbf{R} \to \mathbf{R}$$

$$(\alpha f)(x) = \alpha f(x)$$

 $0_{\mathbf{R}^{\mathbf{R}}}$ è la funzione: $0_{\mathbf{R}^{\mathbf{R}}}(x) = 0$

v. $\mathbf{V} = \mathbf{0}_v$ è uno spazio vettoriale. Scriviamo $\mathbf{V} = \mathbf{0}$. PIPO

5.2 Osservazioni

Sia V uno spazio vettoriale su K. Siano $v \in V$, $a \in K$

• $\alpha 0_v = 0_v$ infatti $\alpha 0_v = \alpha (0_v + 0_v) = \alpha 0_v + \alpha 0_v$ Sommando con $-\alpha 0_v$, si ottiene

$$\alpha 0v + (-\alpha 0v) = (\alpha 0v + \alpha 0v) + (\alpha 0v)$$
$$= \alpha 0v + (\alpha 0v + (-\alpha 0v))$$
$$= \alpha 0v + 0v$$
$$\alpha 0v$$

• 0.v = 0v v = 1.v = (1+0).v = 1.v + 0.v = v + 0.vSommando con -v, si ottiene

$$0v = v + (-v) = (v + 0.v) + (-v) = 0.v + (v + (-v))$$
$$= 0.v + 0v$$
$$= 0.v$$

• Se $\alpha.v = 0v$, allora $\alpha = 0$ oppure v = 0v. Se $\alpha = 0$ allora

$$0.v = 0v$$

Se v = 0v:

$$\alpha.0v = 0v$$

• $(-\alpha)v = -(\alpha v) = \alpha(-v)$

5.3 Definizione di combinazione lineare

Sia **V** uno spazio vettoriale su **K** e siano $v_1 \dots v_n \in \mathbf{V}$, $\alpha_1 \dots \alpha_n \in \mathbf{K}$. Il vettore $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_n v_n$ è detto combinazione lineare di v_1, \dots, v_n con coefficienti α_1, \dots, v_n .

Il vettore
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix} \in \mathbf{C}^3$$
 è combinazione lineare di $e_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, e_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, e_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \text{ con coefficienti 1, 2, 3. Infatti}$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Un'altra combinazione lineare

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} - i \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

ESEMPIO:

$$f = 2x^2 + 4x + 3 \in \mathbf{R}[x]$$

è una combinazione lineare

$$g_1 = x^2 + 2x$$
, $g_2 = x - 1$, g_3 , $\frac{1}{2}x - 1$

infatti

$$2g_1 + 3g_2 + (-6)g_3 = 2(x^2 + 2x) + 3(x - 1) - 6\left(\frac{1}{2}x - 1\right)$$
$$= 2x^2 + 4x + 3x - 3 - 3x + 6$$
$$= 2x^2 + 4x + 3 = f$$

5.4 Definizione

Sia **V** uno spazio vettoriale e siano $v_1, \ldots, v_n \in \mathbf{V}$. Se ogni $v \in \mathbf{V}$ è combinazione linare di v_1, \ldots, v_n si dice (v_1, \ldots, v_n) è un insieme di generatori e **V** è detto *finitamente generato*.

$$(1)e_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
è un insieme di genetarore $\mathbb{K}^{3} = M_{3x1}(\mathbf{K})$

$$\text{per } \mathbb{K} = \mathbb{R} \text{ e } \mathbb{K} = \mathbb{C}$$
Infatti se $v = \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \in \mathbb{K}^{3}, \text{ allora:}$

$$v = v_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + v_{3} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Scrivendo
$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

abbiamo che $\{e_1, \ldots, e_n\}$ è un insieme di generatori di \mathbb{K}^n Dunque \mathbb{K}^n è finitamente generato.

Esempio:

$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{ è un insieme di generatori di } \mathbb{R}^2$$

$$\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{ è un insieme di generatori } \mathbb{R}^2.$$

$$\text{Infatti, se } v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2, \text{ allora}$$

$$v = (v_1 - v_2) \begin{pmatrix} 1 \\ 3 \end{pmatrix} + v_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 3(v_2 - v_1) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} (v_1 - v_2) + v_2 \\ 3(v_1 - v_2) + v_2 + 3(v_2 - v_1) \end{pmatrix}$$

$$v = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \in \mathbf{R}^2$$
$$v = 0. \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 4. \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 0. \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

I coefficenti della combinazione lineare non sono univocamenti determinati:

$$\binom{2}{3} = -1 \binom{1}{3} + 3 \binom{1}{1} + 3 \binom{0}{1}$$
$$= 0 \binom{1}{3} + 2 \binom{1}{1} + 1 \binom{0}{1}$$

Gli spazi vettoriali $\overbrace{\mathcal{S}}^{successioni}$, $\overbrace{\mathbf{K}[x]}^{polinomi}$, non sono finitamente generati

5.5 Definizione

Sia $\mathbb V$ uno spazio vettoriale su $\mathbb K$. Un sotto insieme $\emptyset \neq \mathbb U \subseteq \mathbb V$ è detto sottospazio di $\mathbb {V}$ se soddisfa le proprietà:

- i. Per ogni $u, u' \in \mathbb{U}, u + u' \in \mathbb{U}$
- ii. per ogni $u \in \mathbb{U}$, $\alpha \in \mathbb{K}$, $\alpha u \in \mathbb{U}$

5.5.1Osservazione

In tal caso $\mathbb U$ è uno spazio vettoriale rispetto alle stesse operazioni $+, \cdot$ di $\mathbb V.$

Esempi:

(1) Il sottoinsieme

$$u = \left\{ \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2 \mid v_2 = mv_1 \right\}$$

è un sottospazio di \mathbb{R}^2 per qualsiasi $n \in \mathbb{R}$. Infatti:

(i)

$$\begin{pmatrix} v \\ mv \end{pmatrix} + \begin{pmatrix} u \\ mu \end{pmatrix} = \begin{pmatrix} v+u \\ m(v+u) \end{pmatrix} \in U$$

(ii)
$$\alpha \begin{pmatrix} v \\ mv \end{pmatrix} = \begin{pmatrix} \alpha v \\ \alpha mv \end{pmatrix} = \begin{pmatrix} \alpha v \\ m(\alpha)v \end{pmatrix} \in U$$

5.6 Definizione

Dati $v_1, \ldots, v_n \in \mathbf{V}$, l'insieme $\langle v_1, \ldots, v_n = \alpha_1 v_1 + \cdots + \alpha_n v_n | \alpha_1, \ldots, \alpha_n \in \mathbf{R}$ di tutte le combinazioni lineari di v_1, \ldots, v_n è un sottospazio di \mathbf{V} . Infatti:

i.
$$\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) + \left(\sum_{i=1}^{n} \beta_{i} v_{i}\right)$$

$$= \alpha_{1} v_{1} + \dots + \alpha_{n} v_{n} + \beta_{1} v_{1} + \dots + \beta_{n} v_{n}$$

$$= (\alpha_{1} v_{1} + beta_{1} v_{1}) + \dots + (\alpha_{n} v - n + \beta_{n} v_{n})$$

$$= \sum_{i=1}^{n} (\alpha_{i} + \beta_{i}) \in \langle v_{1}, \dots, v_{n} \rangle$$

ii.
$$\beta(\sum_{i=1}^n \alpha_i v_i = \sum_{i=1}^n (\beta \alpha_i) v_i \in \langle v_1, \dots, v_n \rangle$$

Diciamo che $\langle v_1, \ldots, v_n \rangle$ è il sottospazio generato da v_1, \ldots, v_n

Esempi:

$$v = \mathbb{R}^2$$

$$\mathcal{L}\subseteq\mathbb{R}^2$$

è il sottospazio guidato da $\left(\frac{1}{m}\right)$

$$\left\langle \left(\frac{1}{m}\right)\right\rangle = \left\{\alpha \frac{1}{m} | \alpha \in \mathbb{R}\right\}$$

S' è il sottospazio di S generato da u_1 e u_2 .

5.7 Definizione

Se u, w sono sottospazi di V allora l'intersezione

$$u \cap w = \{ v \in \mathbf{V} | v \in U \land v \in W \}$$

è un sottospazio di V.

In generale, l'unione

$$u \cup w = \{v \in \mathbf{V} | v \in U \lor v \in W\}$$

Esempio:

$$v = \mathbb{R}^2$$

$$u = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} | \alpha \in \mathbb{R} \right\}$$

$$w = \left\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle = \left\{ \alpha \begin{pmatrix} 0 \\ \alpha \end{pmatrix} | \alpha \in \mathbb{R} \right\}$$

$$\begin{pmatrix} a \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \in U \cup W$$

Quindi $U \cup W \subseteq \mathbf{V}$ non soddisfa (i).

L'insieme $U+W=\{u+w|u\in U \wedge w\in W\}$ è un sottospazio di ${\bf v},$ detto che la somma di U e W.

$$U \cup W \subseteq U + W$$

perché

NB:

$$u = \{u = u + 0_v \mid u \in U\}$$

 $w = \{w = 0_v + w \mid w \in W\}$

5.8 Definizione

Consideriamo lo spazio vettoriale \mathbb{K}^n . Sia $A = (a_{ij}) \in M_{nxn}(\mathbb{K})$.

Il sottospazio di \mathbb{K}^n

$$C(A) = \left\langle \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix} \right\rangle$$

generato dalle colonne di A è detto lo spazio delle colonne di A.

$$\mathbb{K} = \mathbb{R}$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 6 & 3 \end{pmatrix} \in M_{2x3}(\mathbb{R})$$

$$C(A) \subseteq \mathbb{R}^2$$

$$C(A) = \left\{ x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 6 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 3 \end{pmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\}$$

$$C(A) = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ 6 \end{pmatrix} + (3) \begin{pmatrix} 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \in C(A)$$

NB:

$$\left\{ x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 6 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 3 \end{pmatrix} \right\} = \begin{pmatrix} x_1 + 2x_2 \\ 6x_2 + 3x_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 6 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 6 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

5.9 Proposizione

Sia $A = (a_{ij}) \in M_{nxn} \in (\mathbb{K})$

Lo spazio delle colonne C(A) consiste di tutti i vettori $b \in \mathbb{K}^n$ per i quali il sistema lineare Ax=b possiede soluzione.

5.9.1 Dimostrazione

$$C(A) = \left\{ \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = v_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix} + \dots + v_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix} \middle| v_1, \dots, v_n \in \mathbb{K}^2 \right\}$$

$$\left\{ b \in \mathbb{K}^n \middle| \exists v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \middle| Av = b \right\} \qquad \square$$

5.10 Definizione di spazio nullo

Sia
$$A \in M_{nxn}(\mathbb{K})$$
. L'insieme $N(A) = \left\{ v \in \mathbb{K}^n \mid Av = 0 \right\}$ dove $0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ è detto spazio nullo di A .

NOTAZIONE: N(A) sta per Null(A).

5.11 Proposizione

Lo spazio nullo N(A) di una matrice $A \in M_{nxn}(\mathbb{K})$ è uno sottospazio di K^n .

5.11.1 Dimostrazione

Siano $v, u \in N(A)$ cioè Av = 0 = Au, e sia $\alpha \in \mathbb{K}$. Allora

- A(v + u) = Av + Au = 0 + 0 = 0 (legge distributiva del prodotto di matrici) Quindi $v + u \in N(A)$
- $A(\alpha v) = \alpha(Av)$ (Proprietà di moltiplicazione con uno scalare) = $\alpha.0 = 0$ Quindi $\alpha v \in N(A)$

Dunque N(A) è un sottospazio.

Esempio: (1)

$$\mathbb{K} = \mathbb{C}, A = \begin{pmatrix} i & 0 \\ 0 & 1 \\ i & -1 \end{pmatrix}, N(A) \subseteq \mathbb{C}$$

N(A) = Soluzioni del sistema lineare <math>Ax = 0Risolviamo il sistema lineare:

$$\begin{pmatrix} i & 0 & 0 \\ 0 & 1 & 0 \\ i & -1 & 0 \end{pmatrix} \sim E_1 - i \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ i & -1 & 0 \end{pmatrix} \sim E_{31}(-i) \wedge E_{23}(1)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \quad \text{quindi N(A)} \left\{ 0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

(2)
$$\mathbb{K} = \mathbb{R}, A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 6 & 3 \end{pmatrix}, N(A) \subseteq \mathbb{R}^3$$

Risolviamo il sistema lineare Ax = 0

$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 6 & 3 & 0 \end{pmatrix} \sim E_2 \begin{pmatrix} \frac{1}{6} \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & \frac{1}{2} & 0 \end{pmatrix}$$

$$\sim \begin{cases} x_1 + 2x_2 = 0 \\ x_2 + \frac{1}{2}x_3 = 0 \end{cases} \quad \rightsquigarrow x_3 = t$$

$$\begin{cases} x_1 = -2(-\frac{1}{2}t) = t \\ x_2 = -\frac{1}{2}tx_3 = t \end{cases} \in \mathbb{R} \text{ Quindi}$$

$$N(A) = \begin{cases} \begin{pmatrix} t \\ -\frac{1}{2}t \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 1 \end{pmatrix} t \mid t \in \mathbb{R} \end{cases} = \begin{pmatrix} \begin{pmatrix} 1 \\ -\frac{1}{2} \\ -1 \end{pmatrix} \rangle \in R^3$$

6 Dipendenza e indipendenza lineare

Esempio:

$$\mathbb{K} = \mathbb{R}, \mathbb{V} = \mathbb{R}^2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in M_{2x1}(\mathbb{R}) \right\}$$

$$C = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} \text{ insieme di generatori.}$$

Infatti, per ogni $v = (v_1 v_2) \in \mathbb{V}$,

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = (v_2 - 2) \begin{pmatrix} 0 \\ 1 \end{pmatrix} + (v_1 - 3) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
$$= v_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + v_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
$$= 0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \left(v_1 - \frac{3}{2}v_2 \right) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{v_2}{2} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

I sottoinsiemi $\left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\} \subseteq \mathcal{C}$ sono insieme di generatori.

In particolare:

6.1 Proposizione e definizione di insieme di generatori

Se $\{v_1,\ldots,v_n\}$ è un insieme di generatori di uno spazio vettoriale $\mathbb V$ su $\mathbb K$ e v_n è combinazione di lineare v_1,\ldots,v_n allora $\{v_1,\ldots,v_n\}$ è un **insieme di generatori.**

6.1.1 Dimostrazione

Siano $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tali che $v_n = \sum_{i=1}^{n-1} \alpha_i v_i$. Per ogni $v \in \mathbb{V}$, esistono $\beta_1, \ldots, \beta_n \in \mathbb{K}$ tali che

$$v = \beta_1 v_1 + \dots + \beta_{n-1} v_{n-1} + \beta_n v_n$$

$$= \beta_1 v_1 + \dots + b_{n-1} v_{n-1} + \beta_n \left(\sum_{i=1}^{n-1} \alpha_i v_i \right)$$

$$= (\beta_1 + b_n \alpha_1) v_1 + \dots + (\beta_n + \beta_n \alpha_{n-1}) v_{n-1}$$

Quindi $\{v_1, \ldots, v_{n-1}\}$ è un insiemi di generatori. \square

6.2 Definizione di linearmente dipendente

Siano $v_1, \ldots v_n \in \mathbb{V}$ dei vettori in uno spazio vettoriale \mathbb{V} . Un insieme $\{v_1, \ldots, v_{n-1}\}$ è detto *linearmente dipendente*. Se almeno uno dei vettori v_1, \ldots, v_n è combinazione lineare dei rimanenti.

6.3 Teorema e definizione di linearmente indipendente

Siano $v_1, \ldots, v_n \in \mathbb{V}$. Sono equivalenti i seguenti enunciati:

- i. $\{v_1,\dots,v_n\}$ non è linearmente dipendente
- ii. se $\sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{n} \beta_i v_i$, allora $\alpha_i = \beta_i \ \forall \ 1 \leq i \leq n$.
- iii. Se $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ sono coefficenti tali che $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0v$, allora $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Se valgono le condizioni (i), (ii), (iii), allora $\{v_1, \ldots, v_n\}$ è detto linearmente indipendente.

6.3.1 Dimostrazione

Dimostreremo che (i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (i)

$$\neg(ii) \Longrightarrow \neg(i) \Longrightarrow \neg(iii)$$

$$[\neg 2 => \neg 3]$$

 $\sum_{i=1}^n \alpha_i v_i = \sum_{i=1}^n \beta_i v_i \Longrightarrow \alpha_i = \beta_i$ per ogni $1 \le i \le n.$ Supponiamo che

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0v$$

= $0.v_1 + 0.v_2 + \dots + 0.v_n$

Quindi $\alpha_1 = \cdots = \alpha_n = 0$ per (2).

$$[\neg(2) \Longrightarrow \neg(1)]$$

Supponiamo che $\sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{n} \beta_i v_i$ e $\alpha_j \neq \beta_j$ per qualche $1 \leq i \leq n$. Quindi $0v = \sum_{i=1}^{n} \alpha_i v_i - \sum_{i=1}^{n} \beta_i v_i = \sum_{i=1}^{n} (\alpha_i - \beta_i) v_i$.

E allora
$$v_j = \sum_{i=1}^{j-1} \frac{b_i - \alpha_i}{\alpha_j - \beta_j} v_i + \sum_{i=j+1}^n \frac{b_i - \alpha_i}{\alpha_j - \beta_j} v_i$$

Dunque $\{v_1, \ldots, v_n\}$ è linearmente dipendente.

$$[\neg(1) \Longrightarrow \neg(3)]$$

Supponiamo che $\{v_1,\ldots,v_n\}$ è linearmente dipendente cioè esistono

$$\alpha_i, \dots, \alpha_{j-1}, \alpha_{j+1}, \dots, \alpha_n \in \mathbb{K}$$

tali che

$$v_j = \sum_{i=1}^{j-1} \alpha_i v_i + \sum_{i=j+1}^n \alpha_i v_i$$

Allora $0v = \alpha_1 v_1 + \dots + \alpha_{j-1} v_{j-1} + (-1)v_j + \alpha_{j+1} v_{j+1} + \dots + \alpha_n v_n$

Dunque (3) non vale.

Esempi: (1)

$$\mathbb{K} = \mathbb{R}, \mathbb{V} = \mathbb{R}^2$$

L'insieme $\left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}3\\2\end{pmatrix}\right\}$ è linearmente indipendente. Infatti se

$$0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 3\alpha_2 \\ 2\alpha_2 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_1 + 3\alpha_2 \\ 2\alpha_2 \end{pmatrix}$$
 Quindi $\alpha_1 + 3\alpha_2 = 0$ e $2\alpha_2 = 0$.
Abbiamo $\alpha_2 = 0$ e $\alpha_1 = 0$

(2)

Un insieme $\{v_1, v_2\} \subseteq \mathbb{V}$ è linearmente dipendente se e solo se esiste $\alpha \in \mathbb{K}$ tale che $\alpha v_1 = v_2$ oppure $\alpha v_1 = v_2$ oppure $v_1 = \alpha v_2$.

(3)

Un insieme $\{v\} \subseteq \mathbb{V}$ è linearmente dipendente se e solo se v = 0v. Inoltre, per ogni $\{v_1, \ldots, v_n\}$ se $v_j = 0v$ per qualche j, allora $\{v_1, \ldots, v_n\}$ è linearmente dipendente perché $0v = \underbrace{0v_1}_{0v} + \cdots + \underbrace{0v_{j-1}}_{0v} + \underbrace{0v_j}_{0v} + \underbrace{0v_{j+1}}_{0v} + \cdots + \underbrace{0v_{j+1}}_{0v} + \underbrace{0v_{j+1}}_{0v} + \cdots + \underbrace{0v_{j+1}}_{0v} + \underbrace{$

$$\underbrace{0v}_{0v}$$
.

e quindi $\neg(3)$.

6.4 Definizione di base

Sia \mathbb{V} uno spazio vettoriale su \mathbb{K} e siano $v_1, \ldots, v_n \in \mathbb{V}$. L'insieme $U = \{v_1, \ldots, v_n\}$ è detto **base** di \mathbb{V} se U è un insieme di generatori di \mathbb{V} e U è linearmente indipendente.

6.5 Osservazione

Per teorema 6.4, un sottoinsieme $U \subseteq \mathbb{V}$ è una base se e solo se possiamo ricostruire in modo unico tutti i vettori di \mathbb{V} medianti combinazione lineari. Possiamo pensare di una base $U = \{b_1, \ldots, b_n\}$ di \mathbb{V} come un sistema di coordinate:

Sia
$$v \in \mathbb{V}$$
. Esiste un unico vettore $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{K}^n$ tale che $\mathbb{V} = \alpha_1 b_1 + \dots + \alpha_n b_n$.

Scriviamo
$$[v]_u$$
 per il vettore $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$.

Esempi: (1)

$$\mathbb{V} = \mathbb{K}^n, \mathcal{C} = \left\{ \underbrace{\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{e_1}, \underbrace{\begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}}_{e_2}, \dots, \underbrace{\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}}_{e_n} \right\}$$

è una base di \mathbb{K}^n detta base canonica.

Infatti per ogni
$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{K}^n$$
, abbiamo $v = v_1 e_1 + v_2 e_2 + \dots + v_n e_n$.

Supponiamo
$$\mathbb{O} = v_1 e_1 + \dots + v_n e_n = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
, quindi $v_1 = 0, v_2 = 0, \dots, v_n = 0$.

(2)
$$\mathbb{V} = \mathbb{R}^2, \mathbb{K} = \mathbb{R}, \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right\}$$

è una base di \mathbb{R}^2 .

6.5.1 Base di C(U) per una matrice u in forma ridotta

$$u = \begin{pmatrix} 1 & 2 & 7 & 3 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$C(U) = \left\langle \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 7\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\-1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \right\rangle \subseteq \mathbb{R}^4$$

Le colonne dominanti formano una base di C(U): Infatti Insiemi di generatori

Siano $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tali che

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \alpha_2 7 \\ \alpha_2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \alpha_3 \\ \alpha_3 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_1 + 7\alpha_2 \\ \alpha_2 + \alpha_3 \\ \alpha_3 \\ 0 \end{pmatrix}$$

Quindi $\alpha_3 = 0, \alpha_2 = \alpha_2 + \alpha_3 = 0, \alpha_1 = \alpha_1 + 7\alpha_2 = 0$

Insieme di generatori

Proposizione 6.1:

$$\begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 0 \\ 0 \end{pmatrix} = -1 \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 10 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

Quindi

$$\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 7\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} \right\}$$

è un insieme di generatori di C(U).

In generale le colonne dominanti di una matrice \mathbb{U} in forma ridotta formano una base C(U). Inoltre le colonne non nulle di U^t (cioè le righe non nulle di U) formano una base di $C(U^t)$.

6.6 Proposizione

Sia $\mathcal{B} = \{v_1, \dots, v_n\}$ una base di uno spazio vettoriale su \mathbb{K} .

- (1) \mathcal{B} è un insieme di generatori minimo, cioè nessun sottoinsieme di \mathcal{B} è un insieme di generatori.
- (2) \mathcal{B} è massimamente linearmente dipendente, cioè nessun insieme di vettori che contenga propriamente \mathcal{B} è linearmente indipendente.

6.7 Teorema

Sia V uno spazio vettoriale K finitamente generato.

- Se $\mathbb{V} \neq 0$, allora \mathbb{V} possiede una base.
- Se $\mathbb{V} = 0$, allora \mathbb{V} non possiede una base.

6.7.1 Dimostrazione

Se $V=0=\{0v\}$, allora ogni sottoinsieme non-vuoto di \mathbb{V} contiene 0v e quindi non può essere linearmente indipendente.

Supponiamo $V \neq 0$. Sia $\mathcal{B}_n = \{v_1, \dots, v_n\}$ un insieme di generatori. Se \mathcal{B}_n è linearmente indipendente, allora \mathcal{B}_n è una base di \mathbb{V} . Altrimenti uno dei vettori di \mathcal{B}_n è combinazione lineare dei rimanenti.

Senza perdita di generalità, supponiamo che:

$$v_n = \sum_{i=1}^{n-1} \alpha_i v_i$$

Per 6.1, $\mathcal{B}_{n-1} = \{v_1, \dots, v_n\}$ è un insieme di generatori. Se \mathcal{B}_{n-1} è linearmente indipendente allora è una base.

Altrimenti continuiamo come sopra. Proseguendo così, otteniamo un sottoinsieme di \mathcal{B}_n che è una base.

Esempio:

$$\mathbb{K} = \mathbb{R}, \mathbb{V} = \mathbb{R}^2$$

$$C_3 = \left\{ \overbrace{\begin{pmatrix} 0\\1 \end{pmatrix}}^{v_1}, \overbrace{\begin{pmatrix} 1\\0 \end{pmatrix}}^{v_2}, \overbrace{\begin{pmatrix} 3\\2 \end{pmatrix}}^{v_3} \right\}$$

 \mathcal{C}_3 è un insieme di generatori, ma non è linearmente dipendente:

$$v_3 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 3v_2 + 2v_1$$

Allora

$$\mathcal{C}_2 = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$

è un insieme di generatori. Inoltre C_2 è linearmente dipendente:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \alpha_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \alpha_1 \end{pmatrix} + \begin{pmatrix} \alpha_2 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} \alpha_2 \\ \alpha_1 \end{pmatrix}$$

Quindi $\alpha_1 = 0 = \alpha_2$. Allora C_2 è una base.

6.8 Lemma di Steinitz (senza dimostrazione)

Sia $\mathcal{G} = \{v_1, \ldots, v_n\}$ un insieme di generatori di \mathbb{V} e $\mathcal{L} = \{u_1, \ldots, u_n\}$ un insieme linearmente dipendente. Allora $m \leq n$ ed esiste un insieme di generatori di \mathbb{V} forrmato da \mathcal{L} e n-m vettori di \mathcal{G} .

6.9 Corollario

Se $\mathcal{B}_1 = \{v_1, \dots, v_n\}$ e $\mathcal{B}_2 = \{u_1, \dots, u_n\}$ sono basi di uno spazio vettoriale, allora n = m.

6.9.1 Dimostrazione

Ponendo $\mathcal{G} = \mathcal{B}_1$ e $\mathcal{L} = \mathcal{B}_2$ per il teorema di Steinitz, si ha $m \leq n$. Ponendo $\mathcal{G} = \mathcal{B}_2$ e $\mathcal{L} = \mathcal{B}_1$ si ha $n \leq m$.

6.10 Definizione di dimensione

Sia \mathbb{V} uno spazio vettoriale finitamente generato. Il numero di vettori che formano un base di \mathbb{V} è detto dimensione di \mathbb{V} e si indica con $dim_k\mathbb{V}$.

Esempio:

(1)

$$\mathbb{K} = \mathbb{C}, \mathbb{V} = \mathbb{C}$$

 $\{1\}$ è una base di $\mathbb V$ su $\mathbb C$. Dunque $dim_{\mathbb K}\mathbb V=dim_{\mathbb C}\mathbb C=1$

$$\mathbb{K} = \mathbb{R}, \mathbb{V} = \mathbb{C}$$

 $\{1, i\}$ è una base di \mathbb{V} su \mathbb{R}

[Insieme di generatori]

$$z \in \mathbb{C} = \mathbb{V}$$
 $z = a + bi = a(1) + b(i), a, b \in \mathbb{R}$.

[Linearmente indipendente]

 $0v \in \mathbb{C}$

0 = 0 + 0i è l'unico modo di scrivere 0 come combinazione lineare di $\{1, i\}$. $\Longrightarrow dim_{\mathbb{K}} \mathbb{V} = dim_{\mathbb{K}} \mathbb{C} = 2$.

6.11 Corollario

In uno spazio vettoriale \mathbb{V} di dimensione $dim_{\mathbb{K}}\mathbb{V}=n$, si ha

- i. Un insieme con > n vettori è linearmente dipendente.
- ii. Se n vettori sono linearmente indipendenti, allora formano una base
- iii. Ogni insieme di generatori consiste di almeno n vettori.

6.12 Proposizione

Sia $dim_{\mathbb{K}} \mathbb{V} = n$. Allora ogni sottospazio U di V ha dimensione $dim_{\mathbb{K}} \mathbb{U} \leq n$. Inoltre $dim_{\mathbb{K}} \mathbb{U} = n$ se e solo se $\mathbb{U} = \mathbb{V}$.

6.12.1 Dimostrazione

Sia $\mathcal{B} = \{u_1, \dots, u_n\}$ una base di \mathbb{U} . Allora \mathcal{B} è linearmente indipendente in \mathbb{V} perché 0v = 0u. Quindi possiamo completare \mathcal{B} a una base di \mathcal{B}' di \mathbb{V} (usando il teorema di Steinitiz). Allora

$$\#\mathcal{B} \leq \#\mathcal{B}'$$

Abbiamo che $\mathcal B$ contiene n elementi (cioè $\dim_{\mathbb K} \mathbb U = n$) se e solo se $\mathcal B$ è una base di $\mathbb V$. Quindi in tal caso, abbiamo $\mathbb U = < u_1, \ldots, u_n > = \mathbb V$

7 Applicazione Lineare

7.1 Definizione di applicazione lineare

Siano $\mathbb U$ e $\mathbb V$ spazi vettoriali su $\mathbb K$. Un'applicazione $f:\mathbb U\mapsto \mathbb V$ si dice lineare se per $u,u'\in \mathbb V$ e $\alpha\in \mathbb K$ si ha

i.
$$f(u + u') = f(u) + f(u')$$

ii.
$$f(\alpha u) = \alpha f(u)$$

7.1.1 Osservazioni

(a) $f(0u) \stackrel{5.2(b)}{=} f(0.0u) \stackrel{7.1(ii)}{=} 0. f(0u) \stackrel{5.2(b)}{=} 0v$

(b)
$$f(-u) \stackrel{5.2(d)}{=} f((-1).u) \stackrel{7.1(ii)}{=} -1.f(u) \stackrel{5.2(d)}{=} -f(u)$$

Esempi:

$$\mathbb{U} = \mathbb{R}_{2}[x] = \{a_{0} + a_{1}x + a_{2}x^{2} \mid a_{0}, a_{1}, a_{2} \in \mathbb{R}\}$$

$$\mathbb{V} = \mathbb{R}^{2} = M_{2x1}(\mathbb{R})$$

$$f : \mathbb{U} \mapsto \mathbb{V}$$

$$p = a_{0} + a_{1}x + a_{2}x^{2}$$

$$f(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix} = \begin{pmatrix} a_{0} + a_{1} \cdot 0 + a_{2} \cdot 0 \\ a_{0} + a_{1} \cdot 1 + a_{2} \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} a_{0} \\ a_{0} + a_{1} + a_{2} \end{pmatrix}$$

f è lineare. Infatti, $p = a_0 + a_1 x + a_2 x^2$, $q = b_0 + b_1 x + b_2 x^2$:

i. $f(p+q) = f((a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2) =$ $= \begin{pmatrix} a_0 + b_0 \\ (a_0 + b_0) + (a_1 + b_1) + (a_2 + b_2) \end{pmatrix}$ $f(p) + f(q) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} + \begin{pmatrix} b_0 \\ b_0 + b_1 + b_2 \end{pmatrix}$

$$= \begin{pmatrix} a_0+b_0\\ (a_0+a_1+a_2)+(b_0+b_1+b_2) \end{pmatrix}$$
 Quindi $f(p+q)=f(p)+f(q)$

ii.

$$\alpha \in \mathbb{R}$$

$$f(\alpha p) = f(\alpha(a_0) + \alpha(a_1 x) + \alpha(a_2 x^2))$$

$$= \begin{pmatrix} \alpha a_0 \\ \alpha a_0 + \alpha a_1 + \alpha a_2 \end{pmatrix}$$

$$\alpha f(p) = \alpha \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} = \begin{pmatrix} \alpha a_0 \\ \alpha(a_0 + a_1 + a_2) \end{pmatrix}$$
Quindi $f(\alpha p) = \alpha f(p)s$

7.2 Applicazioni lineari $\mathbb{K}^n \to \mathbb{K}^n$

Sia $A \in M_{nxn}(\mathbb{K})$, definiamo

$$f_A:\mathbb{K}^n\to\mathbb{K}^n$$

per ogni
$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{K}^n \ f(v) = Av$$

 f_A è lineare:

i.
$$f_A(v+w) = A(v+w) = Av + Aw = f_A(v) + f_A(w)$$

ii.
$$f_A(\alpha v) = A(\alpha v) = \alpha(Av) = \alpha f_A(v)$$

Esempio:

$$A = \begin{pmatrix} 2 & i \\ 0 & 1 - i \\ 1 & 0 \end{pmatrix} \in M_{3x2}(\mathbb{C})$$

$$f_A:\mathbb{C}^2\to\mathbb{C}^3$$

$$f_A\left(\begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} 2 & i\\0 & 1-i\\1 & 0 \end{pmatrix}\right)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + iy \\ (1 - i)y \\ x \end{pmatrix}$$

$$f : \mathbb{K}^3 \to \mathbb{K}^3$$

$$f \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) = f \left(x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right)$$

$$= x \begin{pmatrix} 2 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ -1 \end{pmatrix} + z \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Dunque $f = f_A$ dove $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 3 \end{pmatrix}$

Quindi

$$f_A(v) = Av$$

Per ogni applicazione lineare $f:\mathbb{K}^n\mapsto\mathbb{K}^n$ e per $v=\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}\in\mathbb{K}^n$, abbiamo

che:

$$v = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + v_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \dots + v_n \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

$$f(v) = f(v_1e_1 + v_2e_2 + \dots + v_ne_n) =$$

$$= f(v_1e_1) + f(v_2e_2) + \dots + f(v_ne_n) =$$

$$= v_1f(e_1) + v_2f(e_2) + \dots + v_nf(e_n) =$$

$$= (f(e_1), \dots, f(e_n)) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$- \Delta v$$

dove $A = (f(e_1), \ldots, f(e_n))$ e $\{e_1, \ldots, e_n\}$ è la base canonica di \mathbb{K}^n . Allora $f = f_A$. La matrice A è detta la matrice associata a f (rispetto alla base canonica).

<u>NB</u>: Per una matrice $A \in M_{nxn}(\mathbb{K})$ invertibile abbiano $f_A : \mathbb{K}^n \mapsto \mathbb{K}^n$ e $f_{A^{-1}} : \mathbb{K}^n \mapsto \mathbb{K}^n$. Osserviamo che:

$$f_{A^{-1}}(f_A(v)) = f_{A^{-1}}(Av) = A^{-1}(Av) = (A^{-1}A)v = I_nv = v$$
$$f_A(f_A^{-1}(v)) = f_A(A^{-1}v) = AA^{-1}v = I_nv = v$$

7.3 Definizione di Isomorfismo

Un'applicazione lineare $f: \mathbb{V} \to \mathbb{W}$ è detta **isomorfismo** se esiste $g: \mathbb{W} \to \mathbb{V}$ tale che g(f(v)) = v per ogni $v \in \mathbb{V}$ e f(g(w)) = w per ogni $w \in \mathbb{W}$. L'applicazione lineare g è detta inversa di f e si dice che \mathbb{V} e \mathbb{W} sono **isomorfi**. Scriviamo $f^{-1} = g$ e $\mathbb{V} \cong \mathbb{W}$.

Esempio: Sia $f : \mathbb{K}^n \to \mathbb{K}^n$ un'applicazione lineare. Allora esiste una matrice $A \in M_{nxn}(\mathbb{K})$ tale che $f = f_A$. L'applicazione lineare f è un isomorfismo se e solo se A è invertibile.

Infatti, supponiamo che esiste f^{-1} e consideriamo la matrice associata B, cioè $f^{-1} = f_B$. Allora, per ogni $v \in \mathbb{K}^n$, abbiamo:

$$(BAv = f_B f_A(v) = f^{-1} f(v) = v = f f^{-1}(v) = f_A f_B(v) = f_A(Bv) = (AB)v$$

Ne segue $AB = I_n = BA$. Quindi $B = A^{-1}$.

7.4 Applicazione delle coordinate

Sia $\mathcal{B}=\{b_1,\ldots,b_n\}$ una base di uno spazio vettoriale \mathbb{V} su \mathbb{K} . Per ogni α_1b_1+

$$\cdots + \alpha_n b_n = v \in \mathbb{V}$$
 abbiamo definito i vettori $[v]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$. L'applicazione:

$$C_{\mathcal{B}} = \mathbb{V} \mapsto \mathbb{K}^n$$

definita come:

$$C_{\mathcal{B}}(v) = [v]_{\mathcal{B}}$$

è lineare ed è detta **applicazione delle coordinate** rispetto alla base \mathcal{B} . Infatti, per $v = \alpha_1 b_1 + \cdots + \alpha_n b_n$ e $w = \beta_1 b_1 + \cdots + \beta_n b_n \in \mathbb{V}$ e $\alpha \in \mathbb{K}$, abbiamo:

i.
$$C_{\mathcal{B}}(v+w) = C_{\mathcal{B}} = (\alpha_1 b_1 + \dots + \alpha_n b_n + \beta_1 b_1 + \dots + \beta_n b_n) =$$

$$= C_{\mathcal{B}} = ((\alpha_1 + \beta_1)b_1 + \dots + (\alpha_n + \beta_n)b_n)$$

$$= \begin{pmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

$$C_{\mathcal{B}}(v) + C_{\mathcal{B}}(w) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

ii.
$$C_{\mathcal{B}}(\alpha v) = \begin{pmatrix} \alpha \alpha_1 \\ \vdots \\ \alpha \alpha_n \end{pmatrix}$$
$$\alpha C_{\mathcal{B}}(\alpha v) = \alpha \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Quindi $C_{\mathcal{B}}(\alpha v) = \alpha C_{\mathcal{B}}(v)$.

Esempio:

$$\mathbb{V} = \mathbb{R}_2[x], \mathbb{K} = \mathbb{R}$$
$$= \{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R}^2\}$$
$$\mathcal{B} = \{b_1 = 1 + x, b_2 = 1 + x^2, b_3 = x + x^2\}$$

è una base di V.

Prendiamo $v=6+3x-x^2\in\mathbb{V}$. Poichè \mathcal{B} è una base di \mathbb{V} , esistono $\alpha_1,\alpha_2,\alpha_3\in\mathbb{R}$ tali che $v=\alpha_1b_1+\alpha_2b_2+\alpha_3b_3$.

$$6 + 3x - x^{2} = \alpha_{1}(1+x) + \alpha(1+x^{2}) + \alpha_{3}(x+x^{2})$$

$$= (\alpha_1 + \alpha_1 x) + (\alpha_2 + \alpha_2 x^2) + (\alpha_3 x + \alpha_3 x^2)$$

= $(\alpha_1 + \alpha_2) + (\alpha_1 + \alpha_3)x + (\alpha_2 + \alpha_3)x^2$

Quindi

$$\Rightarrow \begin{cases} \alpha_1 + \alpha_2 = 6 \\ \alpha_1 + \alpha_3 = 3 \\ \alpha_2 + \alpha_3 = -1 \end{cases}$$

Risolviamo il sistema lineare:

$$\begin{pmatrix} 1 & 1 & 0 & 6 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & -1 \end{pmatrix} \xrightarrow{EG} \begin{pmatrix} 1 & 1 & 0 & 6 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

$$\rightsquigarrow \begin{cases} \alpha_1 = 6 - \alpha_2 = 5 \\ \alpha_2 = 3 + \alpha_3 = 1 \\ \alpha_3 = -2 \end{cases}$$

Quindi

$$6 + 3x - x^{2} = v = 5b_{1} + b_{2} + 2b_{3} =$$

$$= 5(1+x) + (1+x^{2}) - 2(x+x^{2})$$

7.5 Applicazione delle coordinate $C_{\mathcal{B}}: \mathbb{K}^n \mapsto \mathbb{K}^{\ltimes}$

Esempio:

$$\mathbb{V} = \mathbb{R}^2, \mathcal{B} = \left\{ b_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}, b_2 = \begin{pmatrix} \frac{1}{2} \\ 3 \end{pmatrix} \right\}$$

Per ogni $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$, esistono $\alpha_1, \alpha_2 \in \mathbb{R}$ tali che $v = \alpha_1 b_1 + \alpha_2 b_2 = \alpha_1 \begin{pmatrix} -1 \\ 2 \end{pmatrix} + \alpha_2 \begin{pmatrix} \frac{1}{2} \\ 3 \end{pmatrix}$

$$= \begin{pmatrix} -\alpha_1 + \frac{1}{2}\alpha_2 \\ 2\alpha_2 + 3\alpha_2 \end{pmatrix} = \begin{pmatrix} -1 & \frac{1}{2} \\ 2 & 3 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

Quindi $C_{\mathbb{B}}(v)=\begin{pmatrix}\alpha_1\\\alpha_2\end{pmatrix}$ è soluzione del sistema lineare Ax=v dove $A=\begin{pmatrix}-1&\frac{1}{2}\\2&3\end{pmatrix}=(b_1b_2)$

Siccome \mathcal{B} è una base, α_1 e α_2 sono univocamente determinati e quindi Ax = v ha soluzione per ogni $v \in \mathbb{R}^2$. Per Teorema 4.2, A è invertibile e $\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = A^{-1}v$. Calcolando A^{-1} :

$$\begin{pmatrix} -1 & \frac{1}{2} & 1 & 0 \\ 2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Operazioni Elementari}} \begin{pmatrix} 1 & 0 & \frac{3}{4} & \frac{1}{8} \\ 0 & 1 & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

Dunque, per ogni $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$,

$$C_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = A^{-1}v = \begin{pmatrix} \frac{3}{4} & \frac{1}{8} \\ \frac{1}{2} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \frac{3}{4}v_1 + \frac{1}{8}v_2 \\ \frac{1}{2}v_1 + \frac{1}{4}v_2 \end{pmatrix}$$

In generale per una base $\mathcal{B} = \{b_1, \dots, b_n\}$ di \mathbb{K}^n , la matrice $A = (b_1, \dots, b_n)$ è invertibile e $C_{\mathcal{B}} = f_{A^{-1}}$. Dunque $C_{\mathcal{B}} : \mathbb{K}^n \mapsto \mathbb{K}^{\ltimes}$ è isomorfismo con inversa f_A .

7.6 Teorema per cui l'applicazione lineare $C_{\mathcal{B}}$ è isomorfa

Sia \mathbb{V} uno spazio vettoriale su \mathbb{K} con base $\mathcal{B} = \{b_1, \dots, b_n\}$. L'applicazione lineare $C_{\mathcal{B}} = \mathbb{V} \mapsto \mathbb{K}^n$ è un *isomorfismo*.

7.6.1 Dimostrazione

Definiamo $g_{\mathcal{B}}: \mathbb{K}^n \mapsto \mathbb{V}$,

$$q_{\mathcal{B}} = \alpha_1 b_1 + \cdots + \alpha_n b_n$$

Mostriamo $g_{\mathcal{B}}$ è l'inversa di $C_{\mathcal{B}}$. Infatti:

$$C_{\mathcal{B}}(g_{\mathcal{B}}\left(\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}\right) = C_{\mathcal{B}}(\alpha_1 b_1 + \dots + \alpha_n b_n)$$
$$= \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Per ogni $v = \alpha_1 b_1 + \dots + \alpha_n b_n \in \mathbb{V}$,

$$g_{\mathcal{B}}(C_{\mathcal{B}}) = g_{\mathcal{B}}\left(\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}\right) = \alpha_1 b_1 + \dots + \alpha_n b_n = v$$

Dunque $g_{\mathcal{B}} = C_{\mathcal{B}}^{-1}$. \square

7.7 Osservazione

Se $f: V \mapsto W$ è un isomorfismo e $\mathcal{B} = \{b_1, \ldots, b_n\}$ è una base di V, allora $\{f(b_1), \ldots, f(b_n)\}$ è una base di W. In particolare, $dim_{\mathbb{K}}V = dim_{\mathbb{K}}W$.

7.8 Corollario

Due spazi vettoriale V e W sono isomorfi se e solo se $dim_{\mathbb{K}}V = dim_{\mathbb{K}}W$.

7.8.1 Dimostrazione del corollario

Se $f: V \mapsto W$ è un isomorfismo, allora $dim_{\mathbb{K}}V = dim_{\mathbb{K}}W$. (Osservazione 7.7)

Supponiamo V, W sono spazi vettoriali tali che $dim_{\mathbb{K}}V = dim_{\mathbb{K}}W$. Allora esiste una base di $V, \mathcal{B} = \{v_1, \dots, v_n\}$ ed esiste una base di $W, \mathcal{C} = \{c_1, \dots, c_n\}$. Consideriamo $C_{\mathcal{B}}: V \mapsto \mathbb{K}^n$ e $C_{\mathcal{C}}: W \mapsto \mathbb{K}^n$.

Notiamo che abbiamo:

dove $C_{\mathcal{C}}^{-1} \cdot C_{\mathcal{B}}(v) = C_{\mathcal{C}}^{-1}(C_{\mathcal{B}(v)}.$ L'applicazione lineare ha inversa $C_{\mathcal{B}}^{-1} \cdot C_{\mathcal{C}} : W \mapsto V$ dove $C_{\mathcal{B}}^{-1} \cdot C_{\mathcal{C}}(w) = C_{\mathcal{B}}^{-1}(C_{\mathcal{C}}(w))$ per ogni $w \in W$. Infatti:

$$C_{\mathcal{C}}^{-1} \cdot C_{\mathcal{B}}(C_{\mathcal{B}}^{-1} \cdot C_{\mathcal{C}}(w)) = C_{\mathcal{C}}^{-1}(C_{\mathcal{B}}(C_{\mathcal{B}}^{-1}(C_{\mathcal{C}}(w)))$$
$$= C_{\mathcal{C}}^{-1}(C_{\mathcal{C}}(w))$$
$$= w$$

$$C_{\mathcal{B}}^{-1} \cdot C_{\mathcal{C}}(C_{\mathcal{C}}^{-1} \cdot C_{\mathcal{B}}(v)) = C_{\mathcal{B}}^{-1}(C_{\mathcal{C}}(C_{\mathcal{C}}^{-1}(C_{\mathcal{B}}(v)))$$
$$= C_{\mathcal{B}}^{-1}(C_{\mathcal{B}}(v))$$

Dunque V e W sono isomorfi. NB: Per ogni $b_i \in \mathcal{B}$, abbiamo

$$C_{\mathcal{C}}^{-1} \cdot C_{\mathcal{B}}(b_i) = C_{\mathcal{C}}^{-1}(C_{\mathcal{B}}(b_i))$$

Ricordiamo che

$$b_i = 0.b_1 + \dots + 0.b_n$$

$$= C_c^{-1} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ \vdots 0 \end{pmatrix}$$

Per ottenere l'inversa:

$$C_{\mathcal{C}}^{-1} \left\{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \right\} = \sum_{i=1}^n \alpha_i c_i$$
$$= C_{\mathcal{C}}^{-1} = \left\{ C_{\mathcal{C}}^{-1} \cdot C_{\mathcal{B}}(b_1), \dots, C_{\mathcal{C}}^{-1} \cdot C_{\mathcal{B}}(b_n) \right\}$$
$$= \left\{ c_1, \dots, c_n \right\} = C$$

7.9 Matrice del cambio base

Esempio: $V = \mathbb{K}^2$ con basi:

$$\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 2 \end{pmatrix} \right\}$$
$$\mathcal{D} = \left\{ \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} \right\}$$

Sia $v \in V$. Dati numeri $\alpha_1, \alpha_2 \in \mathbb{K}$ tali che $v = \alpha_1 b_1 + \alpha_2 b_2 = \alpha_1 \begin{pmatrix} 3 \\ -1 \end{pmatrix} + \alpha_2 \begin{pmatrix} -2 \\ 2 \end{pmatrix}$, come possiamo determinare $\beta_1 \beta_2 \in \mathbb{K}$ tali che $v = \beta_1 \alpha_1 + \beta_2 \alpha_2 = \beta_1 \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \beta_2 \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$?

Per 7.5, $C_{\mathcal{B}} \cdot C_{\mathcal{B}}^{-1} = f_c$ per una matrice C, cioè per ogni $\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \in \mathbb{K}^2$, $C_{\mathcal{B}} \cdot C_{\mathcal{B}} \cdot C_{\mathcal{B}$

In questo esempio abbiamo che $C_{\mathcal{B}}: \mathbb{K}^2 \mapsto \mathbb{K}^2 \in C_{\mathcal{B}}^{-1}: \mathbb{K}^2 \mapsto \mathbb{K}^2$ sono della forma

$$C_{\mathcal{B}} = f_{A^{-1}} e C_{\mathcal{B}}^{-1} = f_{\mathcal{B}}$$

$$\text{dove } B = \begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix} e A = \begin{pmatrix} \frac{1}{2} & 1 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Allora

$$f_{A^{-1}B} = f_{A^{-1}} \cdot f_B = C_{\mathcal{B}} \cdot C_{\mathcal{B}}^{-1} = f_c$$

Quindi $C = A^{-1}B$. Calcolando A^{-1} :

$$\begin{pmatrix} \frac{1}{2} & 1 & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 & 1 \end{pmatrix} \stackrel{EG}{\Longrightarrow} \begin{pmatrix} \frac{2}{3} & -\frac{4}{3} \\ \frac{2}{3} & \frac{2}{3} \end{pmatrix} \underbrace{\begin{pmatrix} 3 & -2 \\ -1 & 2 \end{pmatrix}}_{\mathcal{B}} = \begin{pmatrix} \frac{10}{3} & -4 \\ \frac{4}{3} & 0 \end{pmatrix}$$

Allora, per ogni $v \in V$, abbiamo

$$\begin{pmatrix} \frac{10}{3} & -4\\ \frac{4}{3} & 0 \end{pmatrix} [v]_{\mathcal{B}} = [v]_{\mathcal{D}}$$

7.9.1 Teorema

Siano $\mathcal{B} = \{b_1, \ldots, b_n\}$ e \mathcal{C} ? = $\{c_1, \ldots, c_n\}$ basi di uno spazio vettoriale V. Esiste una matrice $A_{\mathcal{B} \to \mathcal{C}}$ tale che $[v]_{\mathcal{C}} = A_{\mathcal{B} \to \mathcal{C}}$. Le colonne di $A_{\mathcal{B} \to \mathcal{C}}$ sono i vettori $[b_1]_{\mathcal{C}}, \ldots, [b_n]_{\mathcal{C}}$ è detta matrice del cambio di base $\mathcal{B} \to \mathcal{C}$.

7.9.2 Dimostrazione

Esempio:

$$V = \mathbb{R}_2[x] = \{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R}^2\}$$
$$\mathcal{B} = \{1 + x, 1 + x^2, x + x^2\}$$
$$\mathcal{C} = \{1, x, x^2\}$$

NB:

$$C_{\mathcal{C}}(a_0 + a_1 x + a_2 x^2) = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix}$$

$$A_{\mathcal{B} \mapsto \mathcal{C}} = ([b_1]_{\mathcal{C}}, [b_2]_{\mathcal{C}}, [b_3]_{\mathcal{C}}) =$$

$$= (C_{\mathcal{C}}[b_1], C_{\mathcal{C}}[b_2], C_{\mathcal{C}}[b_3])$$

$$= (C_{\mathcal{C}}[1+x], C_{\mathcal{C}}[1+x^2], C_{\mathcal{C}}[x+x^2]) =$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

per ogni $a_0 + a_1 x + a_2 x^2$:

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} a_0 + a_1 \\ a_0 + a_2 \\ a_1 + a_2 \end{pmatrix} = [a_0 + a_1 x + a_2 x^2]_{\mathcal{C}}$$

$$a_0 + a_1 x + a_2 x^2 = (a_0 + a_1)(1+x) + (a_0 + a_2)(1+x^2) + (a_1 + a_2)(x+x^2)$$

7.10 Matrice associata a f rispetto a basi

Esempio:

$$U = \mathbb{R}_2[x], V = \mathbb{R}^2$$
$$f: U \mapsto V$$

tale che $f(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix}$ Ovvero, per ogni $p = a_0 + a_1 x + a_2 x^2$,

$$f(p) = f(a_0 + a_1x + a_2x^2) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix}$$

Abbiamo $\mathcal{C} = \{1, x, x^2\}$ base di U e $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ base di V.

Per 7.2, esiste una matrice A associata a $C_{\mathcal{B}} \cdot f \cdot C_{\mathcal{C}}^{-1}$ rispetto alla base canonica:

$$C_{\mathcal{B}} \cdot f \cdot C_{\mathcal{C}}^{-1} = f_A$$

dove

$$A = (C_{\mathcal{B}} \cdot f(1), C_{\mathcal{B}} \cdot f(x), C_{\mathcal{B}} \cdot f(x^{2}))$$

$$= C_{\mathcal{B}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, C_{\mathcal{B}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, C_{\mathcal{B}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, C_{\mathcal{B}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix}$$

Per ogni $p \in U$, $[f(p)]_{\mathcal{B}} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} [p]_{\mathcal{C}}$

Es.
$$p = 3 + 2x - x^2$$
 $f(p)$?

$$[p]_{\mathcal{C}} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$$
$$[f(p)]_{\mathcal{B}} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$
$$f(p) = 4b_1 - b_2 = 4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 - 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

7.10.1 Teorema

Siano U, V spazi vettoriale su \mathbb{K} , $f: U \mapsto V$, $\mathcal{C} = \{c_1, \ldots, c_n\}$ base di $U, \mathcal{B} = \{b_1, \ldots, b_n\}$ base di V. Esiste una matrice $A \in M_{nxn}(\mathbb{K})$ tale che $A[u]_{\mathcal{C}} = [u]_{\mathcal{B}}$ per ogni $u \in U$. A è detta matrice associata ad f rispetto alla base \mathcal{C} di U e la base \mathcal{B} di V, Le sue colonne sono $[f(c_1)]_{\mathcal{B}}, \ldots, [f(c_n)]_{\mathcal{B}}$.

Esempio: Definiamo l'applicazione $id: V \mapsto V$ come id(v) = v per ogni $v \in V$. Allora la matrice associata a id rispetto ad una base \mathcal{C} e \mathcal{B} di V è la matrice del cambio base $A_{\mathcal{C} \mapsto \mathcal{B}}$.

8 Rank + Nullity

8.1 Definizione di spazio nullo e immagine

Sia $f: V \to W$ un applicazione linare, allora:

$$N(f) := \{ v \in V \mid f(v) = 0w \}$$

è un sottospazio di V, detto lo spazio nullo di f. Inoltre

$$Im(f) = \{ f(v) \mid v \in V \}$$

è un sottospazio di W detto immagine di f.

Esempi:

(1)

$$A = (a_{ij}) \in M_{nxn}(\mathbb{K})$$

$$f_A : \mathbb{K}^n \to \mathbb{K}^n$$

$$N(f_A) = \{v \in \mathbb{K}^n \mid Av = 0\} = N(A)$$

$$Im(f_A) = \{Av \in \mathbb{K}^n \mid v \in \mathbb{K}^n\}$$

$$= \left\{ \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nxn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11}v_1 & \dots & a_{1n}v_n \\ \vdots & \ddots & \vdots \\ a_{n1}v_1 & \dots & a_{nxn}v_n \end{pmatrix} \middle| \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{K}^n \right\}$$

$$= \left\{ \begin{pmatrix} a_{11}v_1 \\ \vdots \\ a_{n1}v_1 \end{pmatrix} + \dots + \begin{pmatrix} a_{1n}v_n \\ \vdots \\ a_{nn}v_n \end{pmatrix} = v_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix} + \dots + v_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{pmatrix} \middle| v_1, \dots, v_n \in \mathbb{K} \right\}$$

$$= C(A) \text{Spazio delle colonne di A}$$

(2)
$$\mathbb{V} = \mathbb{R}^2, \mathbb{W} = \mathbb{R}^2, f(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix}$$
$$p = a_0 + a_1 x + a_2 x^2, f(p) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix}$$

$$N(f) = \left\{ p = a_0 + a_1 x + a_2 x^2 \mid f(p) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$= \{ p = a_0 + a_1 x + a_2 x^2 \mid a_0 = 0, a_1 + a_2 = 0 \}$$

$$Im(f) = \left\{ f(p) = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} \mid p = a_0 + a_1 x + a_2 x^2 \right\}$$

$$= \left\{ \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} \mid a_0, a_1, a_2 \in \mathbb{R} \right\}$$

8.2 Teorema (Nullità + Rango)

Sia $f: V \mapsto W$ un'applicazione lineare. Allora:

$$dim_{\mathbb{K}}V = dim_{\mathbb{K}}N(f) + dim_{\mathbb{K}}Im(f)$$

8.2.1 Dimostrazione

Notiamo che $N(f) \subseteq V$ e inoltre è un sottospazio di V. Quindi

$$dim_{\mathbb{K}}N(f) = m \le n = dim_{\mathbb{K}}V$$

per 6.11.

Sia $\{v_1,\ldots,v_n\}\subseteq N(f)\subseteq V$ una base di N(f). Per il teorema di Steinitz, possiamo completare $\{v_1,\ldots,v_n\}$ a una base di V

$$\{v_1,\ldots,v_m,v_{m+1},\ldots,v_n\}$$

Si può dimostrare che l'insieme $\{f(v_{m+1}), \ldots, f(v_n)\}$ è una base di Im(f), cioè $dim_{\mathbb{K}}Im(f)$ è uguale n-m. Dunque

$$dim_{\mathbb{K}}V = n = (n - m) + n = dim_{\mathbb{K}}N(f) + dim_{\mathbb{K}}Im(f) \quad \Box$$

Esempio:

$$f: V \mapsto W, V = \mathbb{R}_2[x], W = \mathbb{R}^2$$

Per ogni $p = a_0 + a_1 x + a_2 x^2$, definiamo $f(p) = \begin{pmatrix} p(0) \\ p(1) \end{pmatrix} = \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix}$

$$N(f) = \left\{ a_0 + a_1 x + a_2 x^2 \mid \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$
$$= \left\{ a_0 + a_1 x + a_2 x^2 \mid a_0 = 0, a_1 = -a_2 \right\}$$
$$= \left\{ ax + ax^2 \mid a \in \mathbb{R} \right\}$$

$$= \{a(x - x^2) \mid a \in \mathbb{R}\}\$$
$$< x - x^2 >$$

L'insieme $\{x-x^2\}$ è un insieme di generatori ed è anche linearmente indipendente, cioè è una base di N(f).

Completiamo $\{x - x^2\}$ a una base di $V = \mathbb{R}_2[x]$:

$$\{x - x^2, 1, x\} \subseteq V$$

Dimostriamo che
$$\mathcal{B} = \{f(1), f(x)\} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$
 è una base di $Im(f) = \left\{ \begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} \mid a_0, a_1, a_2 \in \mathbb{R} \right\}$

Linearmente indipendente

Siano
$$\alpha, \beta \in \mathbb{R}$$
 tali che $\alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \alpha \\ \alpha + \beta \end{pmatrix}$ Quindi $\alpha = 0$ e $\beta = \alpha + \beta = 0$.

Insieme di generatori

Per ogni
$$\begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} \in Im(f)$$
, abbiamo che
$$\begin{pmatrix} a_0 \\ a_0 + a_1 + a_2 \end{pmatrix} = a_0 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (a_1 + a_2) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Quindi \mathcal{B} è un insieme di generatori.

8.3 Dimensione di C(A)

Esempio:
$$A = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & \frac{2}{3} & 0 \end{pmatrix}$$
:
$$C(A) = \left\langle \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ \frac{2}{3} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle \subseteq \mathbb{R}^3$$

$$A = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 1 \\ 1 & \frac{2}{3} & 0 \end{pmatrix} \xrightarrow{E_1\left(\left(\frac{1}{3}\right)\right)} \begin{pmatrix} 1 & \frac{2}{3} & 0 \\ -1 & 0 & 1 \\ 1 & \frac{2}{3} & 0 \end{pmatrix} \xrightarrow{E_{21}1, E_{31}(-1)} \begin{pmatrix} 1 & \frac{2}{3} & 0 \\ 0 & \frac{2}{3} & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & \frac{2}{3} & 0 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{pmatrix} = U$$

In 6.6 abbiamo visto che le colonne dominanti $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} \frac{2}{3} \\ 1 \\ 0 \end{pmatrix}$ formano una base di C(U) e $dim_{\mathbb{K}}C(U)=2$.

Il problema è che $C(U) \neq C(A)$, in particolare $\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \notin C(U)$.

$$\left(\alpha \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \beta \begin{pmatrix} \frac{2}{3}\\1\\0 \end{pmatrix} = \begin{pmatrix} 3\\-1\\1 \end{pmatrix}\right) \rightsquigarrow \begin{cases} \alpha + \frac{2}{3}\beta = 3\\\beta = -1\\0 = 1 \end{cases}$$

Il sistema lineare non ha soluzione.

8.3.1 Proposizione

Sia $A \in M_{nxn}(\mathbb{K})$ e sia $U \in M_{nxn}(\mathbb{K})$ una forma ridotta di A. Allora lo spazio delle colonne C(A) e lo spazio delle colonne di C(U) sono isomorfi e quindi $dim_{\mathbb{K}}C(A) = dim_{\mathbb{K}}C(U) = rkU = rkA$.

8.3.2 Dimostrazione

Sia E la matrice invertibile tale che U=EA e $A=E^{\prime}U$. Consideriamo l'applicazione lineare:

$$f_E: \mathbb{K}^n \mapsto \mathbb{K}^n, f_E(v) = Ev$$

Con inversa $f_E^{-1}: \mathbb{K}^n \mapsto \mathbb{K}^n, f_E^{-1} = f_{E^{-1}}(v) = E^{-1}v.$

$$\mathbb{K}^n \xleftarrow{f_E} f_{E-1} \longrightarrow \mathbb{K}^n$$

$$C(A) \xleftarrow{f_E} C(U)$$

E, per $w \in C(U)$, abbiamo $f_{E^{-1}}(w) \in C(A)$. Infatti

$$C(A) = < a_1, \dots, a_n > \text{dove} A = (a_1, \dots, a_n) e C(U) = < u_1, \dots, u_n > \text{dove} u = (u_1, \dots, u_n)$$

Inoltre $(u_1, ..., u_n) = U = EA = E(a_1, ..., a_n) = (Ea_1, ..., Ea_n)$ e quindi $a_1 = E^{-1}u_1, ..., a_n = E^{-1}u_n$. Dunque, per ogni:

$$v = \sum_{i=1}^{n} \alpha_i a_i \in C(A)$$

abbiamo che

$$f_E(v) = f_E\left(\sum_{i=1}^n \alpha_i a_i\right) =$$

$$= \sum_{i=1}^n \alpha_i f_E(a_i) =$$

$$= \sum_{i=1}^n \alpha_i E(a_i) =$$

$$= \sum_{i=1}^n \alpha_i u_i \in C(U)$$

e, per ogni $w = \sum_{i=1}^n \beta_i u_i \in C(U)$, abbiamo che $f_{E^{-1}}(w) = \sum_{i=1}^n \beta_i (E^{-1}u_i) = \sum_{i=1}^n \beta_i a_i \in C(A)$.

Quindi abbiamo un'applicazione lineare $f_E: C(A) \mapsto C(U)$ con inversa $f_{E^{-1}}: C(U) \mapsto C(A)$, dunque f_E è un isomorfismo e $dim_{\mathbb{K}}C(A) \stackrel{7.7}{=} dim_{\mathbb{K}}C(U) = rkU$.

Esempio:

$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} \frac{2}{3}\\1\\0 \end{pmatrix} \right\}$$

è una base di C(U), quindi:

$$\left\{ f_{E^{-1}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, f_{E^{-1}} \begin{pmatrix} \frac{2}{3} \\ 1 \\ 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ \frac{2}{3} \end{pmatrix} \right\}$$

è una base di C(A) per 7.7. In generale, le colonne di A che corrispondono alle colonne dominanti di U formano una base di C(A).

8.4 Dimensione di N(A)

Sia $A \in M_{nxn}(\mathbb{K})$. Per il teorema Nullità+Rango dice

$$n = dim_{\mathbb{K}^{\times}} K^{n} = \underbrace{dim_{\mathbb{K}^{\times}} N(f_{A})}_{dim_{\mathbb{K}^{\times}} N(A)} + \underbrace{dim_{\mathbb{K}^{\times}} Im(f_{A})}_{dim_{\mathbb{K}^{\times}} C(A) = rkA}$$

8.4.1 Corollario

Sia $A \in M_{nxn}(\mathbb{K})$. Allora

$$dim_{\mathbb{K}}N(A) = n - rkA$$

8.5 Procedimento per determinare basi di C(A) e N(A)

Sia $A \in M_{mxn}(\mathbb{K})$ con r = rkA e d = n - r = n - rkA.

- (1) Per determianre una base di C(A):
 - Si trasforma A in forma ridotta U
 - Le colonne di A che corrispondono alle colonne dominanti di U formano una base di C(A)
- (2) Per determinare una base di N(A):
 - Si risolve il sistema lienare omogeneo Ax = 0. assegnando parametri t_1, \ldots, t_d alle d variabili libere e ricavando le rimanenti variabile tramite "sostituzione all'indietro".
 - $1 \le i \le d$ si ottiene una soluzione u_i di Ax = 0 assegnando 1 al parametro t_i e 0 ai rimanenti parametri.
 - Così facendo otteniamo $\{u_1, \ldots, u_d\}$ un insieme linearmente indipendente
 - dunque $\{u_1, \ldots, u_d\}$ è una base di N(A)

Esempio:

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 2 & 5 & 7 & 2 \end{pmatrix} \in M_{3x4}(\mathbb{R})$$

$$\begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 2 & 5 & 7 & 2 \end{pmatrix} \stackrel{E_{31}(-1)}{\sim} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \stackrel{E_{31}(-1)}{\sim} \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} = U$$

Le colonne $\begin{pmatrix} 1\\0\\2 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\5 \end{pmatrix}$ formano una base

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} 2\\1\\5 \end{pmatrix} \right\} \text{di } C(A)$$

Allora $dim_{\mathbb{K}}N(A)=4-rkA=4-2=2$ (Nullità). Risolviamo il sistema lineare Ax=0:

$$\Rightarrow \begin{cases}
 x_1 + 2x_2 + 3x_3 = 0 \\
 x_2 + x_3 + 2x_4 = 0 \\
 x_3 = t \\
 x_4 = s
\end{cases}
\Rightarrow \begin{cases}
 x_1 = -2(-t - 2s) - 3t = -t + 4s \\
 x_2 = -t - 2s \\
 x_3 = t \\
 x_4 = s
\end{cases}$$

Soluzioni:

$$\begin{pmatrix} -t+4s \\ -t-2s \\ t \\ s \end{pmatrix} = t \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 4 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

L'insieme
$$\left\{\begin{pmatrix}-1\\-1\\1\\0\end{pmatrix},\begin{pmatrix}4\\-2\\0\\1\end{pmatrix}\right\}$$
è una base di $N(A)$.

8.6 Proposizione

Sia $f: V \mapsto W$ un'applicazione lineare tra spazi vettoriali V, W. Se A è la matrice associata a f rispetto alla base \mathcal{B} di V e una base \mathcal{B} di W, allora

$$dim_{\mathbb{K}}(Im(f)) = rkA$$

Di conseguenza $dim_{\mathbb{K}}N(f) = dim_{\mathbb{K}}V - rkA$. La dimensione $dim_{\mathbb{K}}(Imf)$ è detta rango di f e scriviamo rk(f). La dimensione $dim_{\mathbb{K}}N(f)$ è detta la nullità di f.

8.7 Teorema sulla relazione tra spazio nullo e soluzioni di sistemi lineari

Siano $A \in M_{mxn}(\mathbb{K}), b \in \mathbb{K}^n$. Se $p \in \mathbb{K}^n$ è una soluzione di Ax = b, allora l'insiemen di tutte le soluzioni di Ax = b è

$$L = \{ p + u \mid u \in N(A) \}$$

Utile soltanto se ho una matrice con infinite soluzioni.

8.7.1 Dimostrazione

Se
$$v = p + u$$
 con $u \in N(A)$ allora $Av = A(p + u) = Ap + Au \underbrace{=}_{Au = 0} Ap \underbrace{=}_{\text{soluzione}} b$

Quindi v è una soluzione di Ax=b. Viceversa, se v è una soluzione di Ax=b, allora Av=b=Ap. Quindi

$$0 = Av - Ap = A(v - p) \quad e \quad \underbrace{v - p}_{v} \in N(A)$$

Dunque
$$v = (v - p) + p = u + p \in L$$
.

Esempio:

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 2 & 5 & 7 & 2 \end{pmatrix}$$

$$N(A) = \left\{ t \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 4 \\ -2 \\ 0 \\ 1 \end{pmatrix} \middle| t, s \in \mathbb{R} \right\}$$

$$b = \begin{pmatrix} 6 \\ 4 \\ 16 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 4 \middle| 4 \\ 16 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & 0 & 6 \\ 0 & 1 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_1 + 2x_2 + 3x_3 = 6 \\ x_2 + x_3 + 2x_4 = 4 \end{cases}$$

Ponendo le variabili libere uguale a 0:
$$x_3 = x_4 = 0$$
. Troviamo una soluzione particolare $p = \begin{pmatrix} -2 \\ 4 \\ 0 \\ 0 \end{pmatrix}$.

Dunque l'insieme di soluzioni Ax = b è

$$L = \left\{ \begin{pmatrix} -2\\4\\0\\0 \end{pmatrix} + t \begin{pmatrix} -1\\-1\\1\\0 \end{pmatrix} + s \begin{pmatrix} 4\\-2\\0\\1 \end{pmatrix} \middle| t, s \in \mathbb{R} \right\}$$

9 Autovalori e autovettori

$$f: \mathbb{K}^m \mapsto \mathbb{K}^m$$

$$\exists A \in M_{mxm}(\mathbb{K}) \text{ tale che } f = f_A$$

Esempi: Consideriamo un'applicazione lineare:

$$f_A: \mathbb{R}^2 \mapsto \mathbb{R}^2$$

pern una matrice $A \in M_{2x2}(\mathbb{R})$

1)
$$A = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}, \alpha \in \mathbb{R}^2$$

Allora

$$f_A\left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \alpha v_1 \\ \alpha v_2 \end{pmatrix} = \alpha \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

2)

$$A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \alpha \neq \beta \in \mathbb{R}$$

Allora

$$f_A\begin{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \alpha v_1 \\ \beta v_2 \end{pmatrix}$$

Ma se $v_2 = 0$ o $v_1 = 0$:

$$f_A\left(\begin{pmatrix}v_1\\0\end{pmatrix}\right) = \begin{pmatrix}\alpha & 0\\0 & \beta\end{pmatrix}\begin{pmatrix}v_1\\0\end{pmatrix} = \begin{pmatrix}\alpha v_1\\0\end{pmatrix} = \alpha\begin{pmatrix}v_1\\0\end{pmatrix}$$

$$f_A\left(\begin{pmatrix}0\\v_2\end{pmatrix}\right) = \begin{pmatrix}\alpha & 0\\0 & \beta\end{pmatrix}\begin{pmatrix}0\\v_2\end{pmatrix} = \begin{pmatrix}0\\\beta v_2\end{pmatrix} = \beta\begin{pmatrix}0\\v_2\end{pmatrix}$$

3)

$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$$

Allora

$$f_A\left(\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}\right) = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 3v_1 - 2v_2 \\ v_1 \end{pmatrix}$$

per ogni $\begin{pmatrix} t \\ t \end{pmatrix} \in \mathbb{R}^2,\, t \in \mathbb{R},$ abbiamo che

$$f_A\begin{pmatrix} t \\ t \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} t \\ t \end{pmatrix} = \begin{pmatrix} 3t - 2t \\ t \end{pmatrix} = \begin{pmatrix} t \\ t \end{pmatrix} = 1. \begin{pmatrix} t \\ t \end{pmatrix}$$

Per ogni $\binom{2t}{t} \in \mathbb{R}^2$, $t \in \mathbb{R}$, abbiamo che

$$f_A\left(\begin{pmatrix} 2t \\ t \end{pmatrix}\right) = \begin{pmatrix} 6t - 2t \\ 2t \end{pmatrix} = \begin{pmatrix} 4t \\ 2t \end{pmatrix} = 2.\begin{pmatrix} t \\ t \end{pmatrix}$$

9.1 Definizione di autovalore e autovettore

Sia $A \in M_{nxn}(\mathbb{K})$. Uno scalare $\lambda \in \mathbb{K}$ è detto **autovalore** di A se esiste un vettore $0 \neq v \in \mathbb{K}^n$ tale che:

$$Av = \lambda v$$

In tal caso v è detto **autovettore** di A rispetto all'autovalore λ .

NB: Se v=0, si ha sempre che $Av=A0=0=\lambda 0=\lambda v$ per qualsiasi λ . Quindi è essenziale richiedere $v\neq 0$ nella definizione.

Esempio: $\lambda_1 = 1$ $\lambda_2 = 2$ sono autovettori di $A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$. Ogni vettore della forma $v_1 = \begin{pmatrix} t \\ t \end{pmatrix}$ per t = 0 è autovettore di A rispetto $\lambda_1 = 1$.

Ogni vettore di forma $v_2 = {2t \choose t}$ per $t \neq 0$ è autovettore di A rispetto a $\lambda_2 = 2$.

9.2 Osservazione

Sia $A \in M_{nxn}(\mathbb{K}), v \neq 0$ in \mathbb{K}^n .

(1) v è auttovettore di A rispetto a $\lambda \in \mathbb{K} \stackrel{DEF}{\iff} Av = \lambda v \iff 0 = Av - \lambda v \to Av - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} v \to \begin{pmatrix} A - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \end{pmatrix} v \to (A - \lambda I_n)v$

$$\iff v \in N(A - \lambda I_n)$$

 $\iff v$ è soluzione del sistema lineare $(A - \lambda I_n)x = 0$

(2) $\lambda \in \mathbb{K}$ è autovalore di A \iff il sistema lineare ha $(A - \lambda I_n)x = 0$ possiede una soluzione diversa da $0. \iff (A - \lambda I_n)$ non è invertibile. \iff det $A - \lambda I_n = 0$

$$\begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{pmatrix} = \det (A - \lambda I_n) = \det \begin{pmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{pmatrix}$$
$$= -3\lambda + \lambda^2 + 2$$
$$= \lambda^2 - 3\lambda + 2$$
$$= (\lambda - 1)(\lambda - 2)$$

 λ è autovalore di $A \iff (\lambda - 1)(\lambda - 2) = 0 \iff \lambda = 1$ o $\lambda = 2$.

9.3 Definizione di polinomio caratteristico

Data una matrice $A \in M_{nxn}(\mathbb{K})$, il polinomio di grado n $P_a = \det A - \lambda I_n \in \mathbb{K}[\lambda]$ è detto **polinomio caratteristico**.

Esempio:
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$P_A = \det A - \lambda I_2 = \det \begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix}$$

$$= \lambda^2 + 1$$

Quindi A non possiede autovalori reali, però A ha autovalori complessi $\lambda_1=i$ e $\lambda_2=-i$.

9.4 Teorema dell'autospazio

Sia $A \in M_{nxn}(\mathbb{K})$:

- 1. Gli autovalori di A sono esattamente gli zeri del polinomio caratteristico p_A .
- 2. Gli autovettori relativi a un autovalore λ sono esattamente le soluzioni non nulle del sistema lienare $(A \lambda I_n)x = 0$ ovvero gli elementi non nulli di N(A). Chiamiamo $N(A \lambda I_n)$ l'autospazio di λ e scriviamo:

$$E_A(\lambda) = N(A - \lambda I_n)$$

9.5 Corollario

Ogni matrice $A \in M_{nxn}(\mathbb{K})$ ha al massimo n autovalori. Ogni matrice $A \in M_{nxn}(\mathbb{C})$ possiede n autovalori in \mathbb{C} (non sono necessariamente distinti) per il teorema fondamentale dell'algebra (1.3).

$$p_A = (-1)^n (\lambda - \lambda_1)^{n_1} \dots (\lambda - \lambda_r)^{n_r}$$

9.6 Definizione di molteplicità

Sia $\lambda \in \mathbb{K}$ un autovalore di $A \in M_{nxn}(\mathbb{K})$.

- 1. Si dice **moltiplicità algebrica** di λ , la molteplicità n_{λ} di λ come uno zero di p_A cioè $p_A = (\lambda \lambda_1)^{n_1} \dots (\lambda \lambda_r)^{n_r}$, allora la moltiplicità algebrica di λ_i e n_i per ogni $1 \le i \le r$.
- 2. Si dice moltiplicità geometrica di λ la dimensione di $E_A(\lambda)$.

Esempio:

$$A = \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix} \in M_{nxn}(\mathbb{C})$$

Autovalori di A: $p_A = det(A - \lambda I_2)$

$$p_A = \det \begin{pmatrix} 5 - \lambda & -2 \\ 4 & -1 - \lambda \end{pmatrix} = (5 - \lambda)(-1 - \lambda) + 8 =$$
$$= \lambda^2 - 4\lambda + 3 =$$
$$= (\lambda - 3)(\lambda - 1)$$

Gli autovalori di A sono $\lambda_1=3$ e $\lambda_2=1$. Molteplicità algebrica: $n_1=1,n_2=1$.

Molteplicità geometrica: $E_A(\lambda) = N(A - \lambda I_n)$.

$$= \left\{ v \in \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{C} \mid \begin{pmatrix} 5 - \lambda & -2 \\ 4 & -2 - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$E_A(3) = N \left(\begin{pmatrix} 2 & -2 \\ 4 & -5 \end{pmatrix} \right) = \left\{ v \in \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \mid \begin{pmatrix} 2 & -2 \\ 4 & -5 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$d_1 = dim_{\mathbb{K}} E_A(3) = 2 - rk \begin{pmatrix} 2 & -2 \\ 4 & -5 \end{pmatrix} \stackrel{EG}{\sim} \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$

$$E_{A}(1) = N \left(\begin{pmatrix} 4 & -2 \\ 4 & -3 \end{pmatrix} \right) = \left\{ v \in \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} \middle| \begin{pmatrix} 4 & -2 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$
$$d_{2} = dim_{\mathbb{K}} E_{A}(1) = 2 - rk \begin{pmatrix} 4 & -2 \\ 4 & -3 \end{pmatrix} \stackrel{EG}{\sim} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{pmatrix}$$
$$= 2 - 1 = 1$$

9.7 Osservazione

Siano v_1, \ldots, v_n autovettori di una matrice $A \in M_{nxn}(\mathbb{K})$ rispetto a $\lambda_1, \ldots, \lambda_r$. Supponiamo che $\{v_1, \ldots, v_n\}$ sia linearmente indipendente.

NB:

$$U = \underbrace{\langle v_1, \dots, v_r \rangle}_{\{\sum_{i=1}^r \alpha_i v_i \mid \alpha_i \in \mathbb{K}\}} \subseteq \underbrace{\mathbb{K}^n}^{\text{sottospazio}}$$

quindi $\{v_1,\ldots,v_n\}$ è una base di U. Sia $v=\alpha_1v_1+\cdots+\alpha_rv_r\in U$. Allora

$$Av = A(\alpha_1 v_1 + \dots + \alpha_r v_r)$$

$$= \alpha_1(Av_1) + \dots + \alpha_r(Av_r)$$

$$= \alpha_1(\lambda_1 v_1) + \dots + \alpha_r(\lambda_r v_r)$$

$$= (\alpha_1 \lambda_1) v_1 + \dots + (\alpha_r \lambda_r) v_r \in U$$

Abbiamo che $f_A:U\mapsto U$ è un applicazione lineare. Allora

$$[f_A(v)]_{\mathcal{B}} = [Av]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \lambda_1 \\ \vdots \\ \alpha_r \lambda_r \end{bmatrix} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_r \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_r \end{bmatrix} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_r \end{bmatrix} [v]_{\mathcal{B}}$$

Quindi $D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_r \end{bmatrix}$ è la matrice associata a f_A rispetto alla base $\mathcal B$

nel dominio e nel codominio per teorema 7.11. In particolare se n = r, allora \mathcal{B} è una base di \mathbb{K}^n e abbiamo:

$$\mathbb{K}^{n} \xrightarrow{f_{A}} \mathbb{K}^{n}$$

$$C_{\mathcal{B}^{-1}} \downarrow C_{\mathcal{B}} \qquad \downarrow C_{\mathcal{B}}$$

$$\mathbb{K}^{n} \xrightarrow{f_{D}} \mathbb{K}^{n}$$

che equivale

$$v = \sum_{i=1}^{n} \alpha_{1} v_{1} \longrightarrow Av$$

$$\downarrow \qquad \qquad \downarrow$$

$$[v]_{\mathcal{B}} = \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} \longrightarrow [Av]_{\mathcal{B}}$$

quindi $f_D = C_{\mathcal{B}} f_A C_B^{-1}$.

Abbiamo $C_B^{-1}=f_{\mathcal{B}}$ dove $(v_1,\ldots,v_n)=B$ per 7.5 e $C_{\mathcal{B}}=(C_{\mathcal{B}}^{-1})^{-1}$ e $f_{\mathcal{B}}=f_{\mathcal{B}^{-1}}.$ Allora

$$f_D = f_{B^{-1}} f_A f_B = f_{B^{-1}AB}$$

e quindi

$$D = B^{-1}AB$$

Esempio:

$$A = \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix}$$

Autovalori: $\lambda_1 = 3, \ \lambda_2 = 1.$

Gli autovettori rispetto $\lambda_1 = 3: \begin{pmatrix} 1 \\ 1 \end{pmatrix} t, t \neq 0.$

Gli autovettori rispetto a $\lambda_2 = 1: \begin{pmatrix} 1 \\ 2 \end{pmatrix} s, s \neq 0$. Quindi $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ è una base di \mathbb{R}^2 formata da autovettori di A.

Dunque:

$$D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Abbiamo $D = B^{-1}AB$. Calcoliamo $B^{-1} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix} \stackrel{EG}{\sim} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1 \end{pmatrix}$.

$$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

9.8 Proposizione

Sia $A \in M_{nxn}(\mathbb{K})$. Se v_1, \ldots, v_r sono autovettori di A che corrispondono a r autovalori distinti $\lambda_1, \ldots, \lambda_r$, allora $\{v_1, \ldots, v_r\}$ è linearmente indipendente. In particolare, se abbiamo n autovalori distinti, allora esiste una base \mathbb{K}^n formata da autovettori.

9.8.1 Dimostrazione (r=2)

 $\{v_1, v_2\}$ linearmente indipendennte $\stackrel{6.3}{\iff} v_1$ non è combinazione lineare di v_2 (cioè v_1 non è multiplo di v_2). Mostriamo che non è possibile trovare $\alpha \in \mathbb{K}$ tale che $\alpha v_2 = v_1$. Se $v_1 = \alpha v_2$, allora

$$\lambda_1 v_1 = A v_1 = A(\alpha v_2) = \alpha(A v_2) = \alpha(\lambda_2 v_2)$$

Quindi

$$\alpha \lambda_2 v_2 = \lambda_1 v_1 = \lambda_1 (\alpha v_2) = \alpha \lambda_1 v_2$$

cioè

$$\phi = \alpha \lambda_2 v_2 - \alpha \lambda_1 v_2 = \alpha (\lambda_2 - \lambda_1) v_2 = 0$$

Perciò $v_2 = 0$ (definizione di autovettore) e $\lambda_2 \neq \lambda_1$ (quindi $\lambda_2 - \lambda_1 \neq 0$), concludiamo che $\alpha = 0$. Ma è impossibile che $v_1 = 0$ perché v_1 è autovettore. Dunque non esiste un tale scalare α . \square

Esempio:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in M_{3x3}(\mathbb{R})$$

- i. autovalori di A
- ii. moltiplicità algebriche
- iii. moltiplicità geometriche e basi di $E_A(\lambda_i)$
- i. Calcoliamo il det $(A \lambda I_3) = P_A$ il polinomio caratteristico della matrice A. Le radici di P_A sono gli autovalori di A.

$$A - \lambda I_3 = \begin{pmatrix} -\lambda & 1 & 1\\ 1 & -\lambda & 1\\ 1 & 1 & -\lambda \end{pmatrix}$$

utilizziamo la regola di Sarrus per calcolare il determinante:

$$\begin{pmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \\ 1 & 1 \end{pmatrix}$$

$$= -\lambda^{3} + 1 + 1 - (-\lambda) - (-\lambda) - (-\lambda) = -\lambda^{3} + 3\lambda + 2$$

Osserviamo che $\lambda = 2$ è radice di p_A .

Dividiamo $\lambda - 2$:

 $\leadsto p_A=\lambda^3+3\lambda+2=(\lambda-2)(-\lambda^2-2\lambda-1).$ Allora le radici di $-\lambda^2-2\lambda-1$ sono:

$$\frac{-(-2) \pm \sqrt{(-2)^2 - 4(-1)(-1)}}{2(-1)} = \frac{2 \pm \sqrt{0}}{-2} = -1$$

Quindi $p_A = -(\lambda - 2)(\lambda + 1)^2$ e gli autovalori sono $\lambda_1 = 2, \lambda_2 = -1$.

ii. Molteplicità algebriche: $n_1 = 1, n_2 = 2$.

iii. Molteplicità geometriche: $d_1 = dim_{\mathbb{R}} E_A(2), d_2 = dim_{\mathbb{R}} E_A(-1).$

$$E_{A}(\lambda_{i}) = N(A - \lambda_{i}I_{3})$$

$$E_{A}(2) = N\left(\begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}\right) = \underbrace{3 - rk\begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}}_{Rank+Nullity}$$

$$E_{A}(2) = N\left(\begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}\right) = \underbrace{3 - rk\begin{pmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{pmatrix}}_{Rank+Nullity}$$

$$A - \lambda_1 I_3 = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = U$$

$$rk(A - \lambda_1 I_3) = 2$$

$$= 3 - 2 = 1$$

$$E_A(-1) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Calcoliamo una base per $E_A(2) = N \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$ usando il metodo in capitolo per il calcolo di base di spazi nulli:

$$\begin{cases} v_1 - \frac{1}{2}v_2 - \frac{1}{2}v_2 = 0 \\ v_2 - v_3 = 0 \\ v_3 = t \end{cases} \rightsquigarrow \begin{cases} v_1 = t \\ v_2 = t \\ v_3 = t \end{cases} \rightsquigarrow \begin{pmatrix} t \\ t \\ t \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Quindi

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

è una base dell'autospazio $E_A(2)$. Calcoliamo ora una base di $E_A(-1)$

$$N\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}:$$

$$\begin{cases} v_1 = -t - s \\ v_2 = t \\ v_3 = s \end{cases} \rightsquigarrow \begin{pmatrix} -t - s \\ t \\ s \end{pmatrix} = t \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Quindi

$$\mathcal{B}_2 = \left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}$$

Osserviamo che $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$ è una base

di \mathbb{R}^3 . Infatti \mathcal{B} è linearmente indipendente $\iff B = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

ha rango $3 \iff \det B \neq 0$.

$$\begin{pmatrix} 1 & -1 & -1 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Come possiamo notare, la matrice possiede 3 colonne dominanti e quindi la matrice è di rango 3. Quindi \mathcal{B} è linearmente indipendente e allora è anche una base di \mathbb{R}^3 .

Per 9.7, la matrice diagonale:

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

e la matrice invertibile:

$$\begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

tali che $D = B^{-1}AB$ e $BDB^{-1} = \underbrace{BB^{-1}}_{I_n} A \underbrace{B^{-1}B}_{I_n} = A.$

9.9 Definizione di simile e diagonalizzabile

Due matrici $A, B \in M_{nxn}(\mathbb{K})$ sono **simili** se esiste matrice invertibile $S \in M_{nxn}(\mathbb{K})$ tale che $B = S^{-1}AS$.

Se $A \in M_{nxn}(\mathbb{K})$ è detta **diagonalizzabile** se esiste una matrice diagonale D tale che A e D sono simili.

10 Diagonalizzazione di matrici

10.1 Proposizione (Proprietà di matrici simili)

Siano $A, B \in M_{nxn}(\mathbb{K})$ due matrici simili, cioè esiste una matrice invertibile S tale che $B = S^{-1}AS$.

1.

$$\det A = \det B$$

$$\iff$$

$$p_A = p_B$$

 $2. A \in B$ hanno gli stessi autovalori.

3.
$$A^n = SB^nS^{-1}$$

4. Se
$$B = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$
 è diagonale, allora det $A = \lambda_1, \dots, \lambda_n$ e

$$A^{n} = S \begin{pmatrix} \lambda_{1}^{n} & 0 \\ & \ddots & \\ 0 & \lambda_{n}^{n} \end{pmatrix} S^{-1}$$

10.1.1 Dimostrazione

1. abbiamo supposto che $B = S^{-1}AS$

$$\det B = \det S^{-1} A S$$

$$\stackrel{\stackrel{4.13}{=}}{=} \det S^{-1} \det A \det S$$

$$\stackrel{\stackrel{4.14}{=}}{=} \frac{1}{\det S} \det S \det A$$

$$= \det A$$

Analogamente si vede $p_A = p_B$.

2. Gli autovalori di una matrice sono le radici del polinomio caratteristico quindi segue da (1) che gli autovalori coincidono.

$$A = I_n A I_n = (SS^{-1}) A (SS^{-1}) = S(S^{-1}AS) S^{-1}$$
$$= SBS^{-1}$$

Allora

$$A^{n} = \underbrace{(SBS^{-1})(SBS^{-1}) \dots (SBS^{-1})(SBS^{-1})}_{n \text{ volte}}$$

$$= SB\underbrace{(S^{-1}S)}_{I_{n}} B\underbrace{(S^{-1}S)}_{I_{n}} \dots \underbrace{(S^{-1}S)}_{I_{n}} B\underbrace{(S^{-1}S)}_{I_{n}} BS^{-1}$$

$$= SB^{n}S^{-1}$$

4. $\det A = \det B \stackrel{4.10}{=} \lambda_1, \dots, \lambda_n$ Osserviamo:

$$B^{n} = \underbrace{\begin{pmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{pmatrix} \dots \begin{pmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{pmatrix}}_{n \text{ yelto}}$$

$$=\begin{pmatrix} \lambda_1^n & 0 \\ & \ddots & \\ 0 & & \lambda_n^n \end{pmatrix}$$
 Quindi $A=SB^nS^{-1}=S\begin{pmatrix} \lambda_1^n & 0 \\ & \ddots & \\ 0 & & \lambda_n^n \end{pmatrix}S^{-1}$ \square

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad S^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

10.2 Teorema

Una matrice $A \in M_{nxn}(\mathbb{K})$ è diagonalizzabile \iff esiste una base di \mathbb{K}^n formata da autovettori di A.

10.2.1 Dimostrazione

 (\Leftarrow) Se esiste una base di autovettori, allora abbiamo dimostrato in 9.7 che A è diagonalizzabile.

 (\Longrightarrow) Supponiamo che $A=PDP^{-1}$ dove P è una matrice invertibile e diagonale. $P=(v_1,\ldots,v_n)$ dove $v_1,\ldots,v_n\in\mathbb{K}^n$ sono le colonne di P.

$$D = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

Allora
$$AP = (PDP^{-1})P = (PD)\underbrace{(P^{-1}P)}_{L} = PD.$$

$$AP = A(v_1 \dots v_n) = (Av_1 \dots Av_n)$$

$$PD = (v_1 \dots v_n) \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} = (\lambda_1 v_1, \lambda_2 v_2 \dots \lambda_n v_n)$$

Allora $Av_1 = \lambda_1 v_1, Av_2 = \lambda_2 v_2 \dots Av_n = \lambda_n v_n$. Siccome $v_i \neq 0$ per ogni $1 \leq i \leq n$ perché la matrice è invertibile. Dunque $v_1 \dots v_n$ sono tutti autovettori di A rispetto agli autovalori $\lambda_1 \dots \lambda_n$.

Siccome P è invertibile, il rango di P è uguale a n (per il teorema delle matrici invertibili). Per 8.3, le colonne di P sono linearmente indipendente. Per 6.12 $\{v_1 \dots v_n\}$ è un insieme di generatori, cioè \mathcal{B} è una base. \square

Esempio:

$$A = \begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix}$$

A ha autovalori $\lambda_1 = 3, \lambda_2 = 1$

$$\begin{pmatrix} 5 & -2 \\ 4 & -1 \end{pmatrix} = A = \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}}_{D} \underbrace{\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}}_{P-1}$$

10.3 Corollario

Se $A \in M_{nxn}(\mathbb{K})$ possiede n autovalori distinti, allora A è diagonalizzabile.

10.3.1 Dimostrazione (10.2 + 9.8 + 6.12)

10.4 Osservazione

ESEMPIO:

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

è diagonalizzabile, ma gli autovalori sono $\lambda_1 = 2, \lambda_2 = 1$ (abbiamo solo **due** autovalori distinti) (la molteplicità algebrica di λ_2 è uguale a $n_2 = 2$). La condizione di 10.3 è sufficiente ma non è necessaria.

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$P_M = \det(M - \lambda I_2) = \det\begin{pmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{pmatrix} = (1 - \lambda)^2$$

Autovalore: $\lambda_1 = 1$, $n_1 = 2$.

$$E_m(\lambda_i) = E_m(1) = N \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix}$$

$$\begin{cases} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2 \mid \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

$$= \left\{ \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R} \mid v_2 = 0 \right\}$$

$$= \left\{ \begin{pmatrix} t \\ 0 \end{pmatrix} \in \mathbb{R} \mid t \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle$$

Gli insiemi di autovettori linearmente indipendenti $\left\{ \begin{pmatrix} t \\ 0 \end{pmatrix} \right\}, t \neq 0$. Quindi non esiste una base di \mathbb{R}^2 formata di autovettori di M perché ogni base contiene due vettori. Per 10.2 la matrice non è diagonalizzabile.

10.5 Lemma

Sia $A \in M_{nxn}(\mathbb{C})$ con autovalori distinti $\lambda_1 \dots \lambda_r$ con molteplicità algebriche $n_1 \dots n_r$ e molteplicità geometriche $d_1 \dots d_r$.

1.
$$n_1 + n_2 + \cdots + n_r = n$$

2.
$$1 \le d_i \le n_i$$
 per ogni $1 \le i \le r$

10.5.1 Dimostrazione

$$p_A = \det (A - \lambda I_n) = (\lambda - \lambda_r)^{n_1} \dots (\lambda - \lambda_r)^{n_r}$$

Quindi

$$n = n_1 + \cdots + n_r$$

10.6 Teorema

Sia $A \in M_{nxn}(\mathbb{C})$ con autovalori distinti $\lambda_1 \dots \lambda_r$ molteplicità algebriche $n_1 \dots n_r$ e molteplicità geometriche $d_1 \dots d_r$

I seguenti enunciati sono equivalenti:

- (1) A è diagonalizzabile
- $(2) d_1 + \cdots + d_r = n$
- (3) $n_i = d_i$ per ogni $1 \le i \le r$

10.6.1 Dimostrazione

 $[(1) \to (2)]$ Supponiamo che A sia diagonalizzabile. Per 10.2, esiste una base \mathcal{B} di \mathbb{K}^n formata da autovettori di A.

$$\underbrace{\bigcup}_{E_A(\lambda_i)}, \left(\right), \left(\right)_{\mathbb{K}^n} \qquad t_i = \#(\mathcal{B} \cap E_A(\lambda_i))$$

 $t_i = \#(\mathcal{B} \cap E_A(\lambda_i)) = \text{numero di elementi di } \mathcal{B} \text{ contenuti in } E_A(\lambda_i)$

NB:

$$E_A(\lambda_i) \subseteq \mathbb{K}^n = N(A - \lambda_i I_n) = \{\text{autovettori di A rispetto a } \lambda_i\} \cup 0v$$

Allora $t_i \leq d_i = dim_{\mathbb{C}} E_A(\lambda_i)$ perché gli elementi di \mathcal{B} sono linearmente indipendenti. Inoltre

$$n = t_1 + t_2 + \ldots + t_r \le d_1 + \ldots + d_r \underbrace{\le}_{10.5} \le n_1 + \ldots + n_r = n$$

Dunque

$$n = d_1 + \dots d_r$$

 $[(2) \rightarrow (3)]$ Supponiamo (2) cioè

$$d_1 + \ldots + d_r = n \stackrel{10.5}{=} n_1 + \ldots + n_r$$

Siccome $1 \leq d_i \leq n_i$ per ogni $1 \leq i \leq r$, concludiamo che $d_i = n_i$

 $[(3) \to (1)]$ Supponiamo che $n_i = d_i$ per ogni $1 \le i \le r$. Per ogni $1 \le i \le r$, scegliamo una base $\mathcal{B}_i = \{v_1, \ldots, v_{d_i}\}$ di $E_A(\lambda_i)$

$$\underbrace{\begin{pmatrix} E_A(\lambda_1) \\ E_A(\lambda_i) \end{pmatrix}}, \begin{pmatrix} E_A(\lambda_2) \\ \end{pmatrix}, \dots \begin{pmatrix} E_A(\lambda_i) \\ \\ \mathbb{K}^n \end{pmatrix}$$

Mostreremo che $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \ldots \cup \mathcal{B}_r$

Perché \mathcal{B} contiene esattamente

$$d_1 + d_2 + \ldots + d_r = n_1 + n_2 + \ldots + n_r = n_1$$

elementi, basta verificare indipendenza lineare.

$$0v = \underbrace{\alpha_{11}v_{11} + \ldots + \alpha_{1d_1}v_{1d_1}}_{w_1} + \underbrace{\alpha_{21}v_{21} + \ldots + \alpha_{2d_2}v_{2d_2}}_{w_2} + \ldots$$

$$\ldots \underbrace{\alpha_{r1}v_{r1} + \ldots + \alpha_{rd_r}v_{rd_r}}_{w_r}$$

Vogliamo dimostrare che $a_{ij} = 0$ per ogni $1 \le i \le r$ e ogni $1 \le j \le d_i$. Definiamo $w_i = \alpha_{i1}v_{i1} + \ldots + \alpha_{id_i}v_{id_i}$ per ogni $1 \le i \le r$ e notiamo $w_i \in E_A(\lambda_i)$.

Quindi w_i è un autovettore di A rispetto a λ_i oppure $w_i = 0$. Quindi

$$0 = w_1 + w_2 + \dots w_r$$

una combinazione lineare di autovettori rispetto a autovalori distinti. Per 9.8, autovettori rispetto ad autovalori distinti sono linearmente indipendenti. Dunque $w_1 = w_2 = \ldots = w_r = 0$. Allora, per ogni $1 \le i \le r$, abbiamo

$$0 = w_i = \alpha_{i1}v_{i1} + \ldots + \alpha_{id_i}v_{id_i}$$

Poiché $\mathcal{B}_i = \{v_{i1}, \ldots, v_{id_i}\}$ è una base, concludiamo che $\alpha_{i1} = \cdots = \alpha_{id_i} = 0$. Dunque $\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_r$ è linearmente indipendente con n elementi e quindi è una base di \mathbb{C}^n

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_{2x2} \in (\mathbb{C})$$

Gli autovalori di A sono le radici del polinomio caratteristico:

$$P_A = \det (A - \lambda I_2)$$

$$= \det \begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix}$$

$$= (-\lambda)^2 - (-1)$$

$$= \lambda^2 + 1$$

Autovalori: $\lambda_1 = i$, $\lambda_2 = -i$. Molteplicità algebrica: $n_1 = 1$, $n_2 = 1$ Molteplicità geometrica: (lemma 10.5)

$$d_i = dim_{\mathbb{C}} E_A(\lambda_i)$$

$$1 \le d_1 \le n_1 = 1 \to d_1 = 1$$

 $1 \le d_2 \le n_2 = 1 \to d_2 = 1$

Allora $n_1 = d_1$ e $n_2 = d_2$, quindi A è diagonalizzabile.

Abbiamo $D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ la matrice diagonale. Nella dimostrazione, abbiamo visto che $P = (v_1, v_2)$ dove $\mathcal{B} = \{v_1, v_2\}$ è una base di $E_A(\lambda_i)$. Calcoliamo $\mathcal{B}_1 \in \mathcal{B}_2$:

$$E_A(\lambda_1) = N\left(\begin{pmatrix} 0 - \lambda_1 & -1\\ 1 & 0 - \lambda_1 \end{pmatrix}\right) = \begin{pmatrix} -i & -1\\ 1 & -i \end{pmatrix}$$

Risolviamo

$$\begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightsquigarrow \begin{cases} -ix_1 - x_2 = 0 \\ x_1 - ix_2 = 0 \end{cases}$$

$$\begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix} \stackrel{E_{12}}{\sim} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \stackrel{E_{21}(i)}{\sim} \begin{pmatrix} 1 & -i \\ 0 & 0 \end{pmatrix}$$

$$\rightsquigarrow \begin{cases} x_1 - ix_2 = 0 \\ x_2 = t \end{cases} \qquad \xrightarrow{x_1 = it} \quad x_2 = t$$

$$\mathcal{B}_1 = \left\{ egin{pmatrix} i \\ 1 \end{pmatrix} \right\}$$
è una base di $E_A(\lambda_1)$

Risolviamo ora per λ_2

$$\mathcal{B}_2 = \left\{ \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}$$
 è una base di $E_A(\lambda_2)$

Dunque
$$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_{\in} = \left\{ \begin{pmatrix} i \\ 1 \end{pmatrix}, \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\} \in D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, P = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$$

Calcoliamo $\begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$:

$$\begin{pmatrix} i & -i & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \overset{EG}{\sim} \begin{pmatrix} 1 & 0 & -\frac{1}{2}i & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$A = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} -\frac{i}{2} & \frac{1}{2} \\ \frac{i}{2} & \frac{1}{2} \end{pmatrix}$$

10.7 Algoritmo per la diagonalizzazione

Data una matrice quadrata di $A \in M_{nxn}(\mathbb{C})$

- (1) Calcoliamo il polinomio caratteristico $P_A = \det(A \lambda I_n)$ e determiniamo gli zeri distinti $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ con molteplicità algebrica n_1, \ldots, n_r , ovvero $P_A = (-1)^n (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \ldots (\lambda - \lambda_r)^{n_r}$
- (2) Per ciascuno $1 \leq i \leq r$ calcoliamo la molteplicità geometrica

$$d_i = dim_{\mathbb{C}} E_A(\lambda_i) = N(A - \lambda_i I_n) = n - rk(A - \lambda_i I_n)$$

(3) Verifichiamo se $n_i = d_i$ per ogni $1 \le i \le r$ (oppure se $d_1 + \ldots + d_r = n$)

- (4) In caso positivo determiniamo una base di $E_A(\lambda_i) = N(A \lambda_i I_n)$ (usando 8.5) per ogni $1 \le i \le r$.
- (5) L'unione delle basi da luogo ad una base $\mathcal{B} = \{v_1 \dots v_n\}$ di \mathbb{C}^n composta da autovettori di A.
- (6) Ponendo $P = (v_1, v_2, \ldots, v_n)$ e D la matrice diagonale

$$egin{pmatrix} \left(egin{pmatrix} \lambda_1 & & & & & & \\ & \ddots & & & & & \\ & & & \lambda_2 \end{pmatrix} & & & & \\ & & & & \begin{pmatrix} \lambda_2 & & & & \\ & \ddots & & & & \\ & & & \lambda_2 \end{pmatrix} & & & \\ & & & & \begin{pmatrix} \lambda_r & & & \\ & \ddots & & & \\ & & & \lambda_r \end{pmatrix} \end{pmatrix}$$

Su cui diagonale abbiamo autovalori $\lambda_1, \ldots, \lambda_r$ con le loro molteplicità.

- (7) Calcoliamo P^{-1} usando 4.2 oppure 4.14
- (8) Otteniamo $D = P^{-1}AP$

10.8 Osservazione

Sia A una matrice su \mathbb{R} . Se A è diagonalizzabile su \mathbb{R} . Infatti in tal caso la matrice $(A-\lambda_i I_n)$ sono tutte matrici su \mathbb{R} e possiamo risolvere i sistemi lineari $(A-\lambda_i I_n)x=0$ su \mathbb{R} ottenendo una base di \mathbb{R}^n composta di autovettori di A e $P,D\in M_{nxn}(\mathbb{R})$

10.9 Teorema spettrale

Sia $A \in M_{nxn}(\mathbb{R})$ una matrice simmetrica cioè $A = A^t \left(Es : \begin{pmatrix} a & c \\ c & b \end{pmatrix} \right)$. Allora tutti gli autovalori di A sono reali e A è diagonalizzabile su \mathbb{R} .

11 Basi ortonomali

$$V = \mathbb{R}^2$$
 $\mathcal{B}_{can} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$

$$\mathcal{B}_2 = \left\{ \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

$$\mathcal{B}_3 = \left\{ \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix}, \begin{pmatrix} -\frac{4}{5} \\ \frac{3}{5} \end{pmatrix} \right\}$$

Nota bene: Per ogni
$$b_1=\begin{pmatrix} x_1\\y_1\end{pmatrix}, b_2=\begin{pmatrix} x_2\\y_2\end{pmatrix},$$
 abbiamo che:
$$x_1y_1+x_2y_2=0$$

11.1 Prodotto interno

Sia $A \in M_{nxn}(\mathbb{C})$. La matrice coniugata \overline{A} di $A = (a_{ij})$ è la matrice $\overline{A} = (\overline{a_{ij}})$. La matrice $A^H = \overline{A}^t = \overline{A}^t$.

Esempio:

$$A = \begin{pmatrix} 1 & i & 3 \\ 2+i & 0 & 1 \end{pmatrix} \qquad \overline{A} = \begin{pmatrix} 1 & -i & 3 \\ 2-i & 0 & 1 \end{pmatrix}$$
$$A^{H} = \begin{pmatrix} 1 & 2-i \\ -i & 0 \\ 3 & 1 \end{pmatrix}$$

Siano
$$v=\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}, w=\begin{pmatrix}w_1\\\vdots\\w_n\end{pmatrix}\in\mathbb{K}^n,$$
 il prodotto:

$$(v \mid w) = v^H w = (\overline{v_1} \dots \overline{v_n}) \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \sum_{i=1}^n \overline{v}_i w_i$$

è detto prodotto interno (standard) in \mathbb{K}^n .

Valgono le seguenti priorità per $v,w,z=\begin{pmatrix} z_1\\ \vdots\\ z_n\end{pmatrix}\in\mathbb{K}^n,\,\alpha,\beta\in\mathbb{K}$:

i.
$$(v \mid w) = \overline{(w \mid v)}$$

ii. $(v \mid \alpha w + \beta z) = \alpha(v \mid w) + \beta(v \mid z)$, in particolare, possiamo definire:

$$f_v : \mathbb{K}^n \mapsto \mathbb{K}, f_v(w) = (v \mid w)$$

dove f_v è un applicazione lineare.

iii.
$$(\alpha v + \beta w \mid z) = \overline{\alpha}(v \mid z) + \overline{\beta}(w \mid z)$$

iv. Se $v \neq 0$, allora

$$(v \mid v) = v^H v = \overline{v_1} v_1 + \dots + \overline{v_n} v_n = |v_1|^2 + \dots + |v_n|^2 \in \mathbb{R} > 0$$

v. in generale, se $v \in \mathbb{R}^n$ allora:

$$(v \mid w) \in \mathbb{R}$$

11.2 Norma euclidea

$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$$

$$(v \mid v) = v_1^2 + v_2^2$$

 $\sqrt{(v \mid v)} = \sqrt{v_1^2 + v_2^2}$

è la lunghezza di v.

Sia $v \in \mathbb{K}^n$. Il numero reale $||v|| = \sqrt{(v \mid v)} \in \mathbb{R} > 0$ è detta norma euclidea di v. Valgono le seguenti proprietà per $v, w, \in \mathbb{K}^n$, $\alpha \in \mathbb{K}^n$:

- i. $\|\alpha v\| = \sqrt{(\alpha v \mid \alpha v)} = |\alpha| \|v\|$
- ii. Se $v \neq 0$, allora ||v|| > 0
- iii. $\|v+w\| \leq \|v\| + \|w\|,$ detta disuguaglianza triangolare.

11.3 Interpretazione geometrica del prodotto interno di \mathbb{R}^2

Figure 4: Vectors $\mathbf{u_1}$ and $\mathbf{u_2}$ with angle θ between them

$$0 \le \theta \le \pi$$

L'angolo tra $v \in w$. Vale la formula:

$$(v \mid w) = ||v|| ||w|| \cos \theta$$

Si ottiene la formula per calcolare l'angolo θ :

$$\cos \theta = \frac{(v \mid w)}{\|v\| \|w\|}$$

11.4 Definizione

Due vettori $v, w \in \mathbb{R}^n$ si dicono ortogonali se $(v \mid w) = 0$. Un'insieme di vettori $\{v_1, \ldots, v_r\}$ è detto ortogonale se $(v_j \mid v_j) = 0$ per ogni $1 \leq i, j \leq r$ con $i \neq j$.

$$\left\{ \underbrace{\binom{6}{-2}}_{v}, \underbrace{\binom{-2}{-6}}_{w} \right\}$$

$$(v \mid w) = 6 \cdot -2 + (-2) \cdot (-6) = 0$$

11.5 Proposizione

Sia $\{v_1, \ldots, v_n\}$ un insieme ortogonale di vettori non nulli di \mathbb{K}^n . Allora $\{v_1, \ldots, v_n\}$ è linearmente indipendente.

11.5.1 Dimostrazione

Siano $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tali che $alpha_1v_n + \cdots + \alpha_nv_n = 0$ per ogni $1 \le k \le n$

$$0 = (v_k \mid 0) = (v_k \mid \alpha_1 v_1 + \dots + \alpha_n v_n) =$$

$$= \alpha_1(v_k \mid v_1) + \dots + \alpha_n(v_k \mid v_n) = \alpha_k \underbrace{(v_k \mid v_k)}_{\neq 0}$$

Concludiamo che $0 = \alpha_k$ (dividendo per $(v_k \mid v_k)$)

Dunque $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$ e $\{v_1, \ldots, v_n\}$ è linearmente indipendente.

Esempio:

$$\left\{ \begin{pmatrix} 1\\2\\-4 \end{pmatrix}, \begin{pmatrix} -4\\2\\0 \end{pmatrix}, \begin{pmatrix} \frac{4}{5}\\\frac{8}{5}\\1 \end{pmatrix} \right\}$$

è ortogonale e quindi è linearmente indipendente. Siccome $\dim_{\mathbb{R}} \mathbb{R}^3 = 3$, abbiamo una base ortogonale di \mathbb{R}^3 .

11.6 Osservazione

Sia $\mathcal{B}=v_1,\ldots,v_n$ una base ortogonale di \mathbb{K}^n e sia $u\in\mathbb{K}^n$. Allora $u=\alpha_1v_1+\cdots+\alpha_nv_n$ e

$$(v_k \mid u) = (v_k \mid \alpha_1 v_1 + \dots + \alpha_n v_n) =$$

$$= \alpha_1(v_k \mid v_1) + \dots + \alpha_n(v_k \mid v_n) = \alpha_k(v_k \mid v_k)$$

Quindi

$$\alpha_k = \frac{(v_k \mid u)}{(v_k \mid v_k)}$$

per ogni $1 \le k \le n$.

$$\mathcal{B} = \left\{ \begin{pmatrix} i \\ 1 \end{pmatrix}, \begin{pmatrix} i \\ -1 \end{pmatrix} \right\}$$

è un insieme ortogonale quindi è una base di \mathbb{C}^2 . Esistono $\alpha_1, \alpha_2 \in \mathbb{C}$ tali che $u = \begin{pmatrix} 2+5i \\ -7i \end{pmatrix} = \alpha_1 v_1 + \alpha_2 v_2$.

Per 11.6 abbiamo che

e

$$\alpha_{1} = \frac{(v_{1} \mid u)}{(v_{1} \mid v_{1})}$$

$$\alpha_{2} = \frac{(v_{2} \mid u)}{(v_{2} \mid v_{2})}$$

$$(v_{1} \mid u) = (\bar{i} \quad \bar{1}) \begin{pmatrix} 2+5i \\ -7i \end{pmatrix} = -2i+5-7i = 5-9i$$

$$(v_{1} \mid v_{1}) = (-i \quad 1) \begin{pmatrix} i \\ 1 \end{pmatrix} = 1+1=2$$

$$(v_{2} \mid u) = (\bar{i}-\bar{1}) \begin{pmatrix} 2+5i \\ -7i \end{pmatrix} = -2i+5+7i = 5+5i$$

$$(v_{2} \mid v_{2}) = (-i \quad -1) \begin{pmatrix} i \\ -1 \end{pmatrix} = 1+1=2$$

Dunque $\alpha_1 = \frac{5}{2} - \frac{9}{2}i$ e $\alpha_2 = \frac{5}{2} + \frac{5}{2}i$.

11.7 Definizione

Un insieme $\{v_1, \ldots, v_n\}$ ortogonale tale che $||v_i| = 1$ per ogni $1 \le i \le n$ è detto **ortonormale**.

Se $\mathcal{B} = \{v_1, \ldots, v_n\}$ è ina base ortonormale di \mathbb{K}^n e $u = \alpha_1 v_1 + \cdots + \alpha_n v_n \in \mathbb{K}^n$, allora $\alpha_k = (v_k \mid u)$ per ogni $1 \leq k \leq n$.

NB

$$\mathcal{B} = \{\underbrace{e_1}_{}, \dots, \underbrace{e_n}_{}\} \qquad u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

$$(e_k \mid u) = \begin{pmatrix} 0 & \dots & 1 & \dots & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = u_k$$

Per ogni $u \in \mathbb{K}^n$, al combinaizone lineare di \mathcal{B}_{can} uguale a u è data da:

$$u = u_1 e_1 + \dots + u_k e_k + \dots u_n e_n$$

Esempio:

$$\mathcal{B} = \left\{ \begin{pmatrix} i \\ 1 \end{pmatrix}, \begin{pmatrix} i \\ -1 \end{pmatrix} \right\}$$
$$\|v_1\| = \sqrt{v_1 \mid v_1} = \sqrt{2}, \|v_2\| = \sqrt{2}$$
$$\overset{Normalzizzazione}{\hookrightarrow} \mathcal{B}' = \left\{ \frac{1}{\|v_1\|} v_1, \frac{1}{\|v_2\|} v_2 \right\}$$

NB

$$||u_i|| = ||\frac{1}{||v_i||} v_i|| \stackrel{11.2}{=} \frac{1}{||v_i||} ||v_i|| = 1$$

$$\to (u_1 \mid u_2) = \left(\frac{1}{||v_1||} v_1 \mid \frac{1}{||v_2||} v_2\right) \stackrel{11.10}{=} \frac{1}{||v_2||} \left(\frac{1}{||v_1||} v_1 \mid v_2\right) = \frac{1}{||v_1||} \frac{1}{||v_2||} (v_1 \mid v_2) = 0$$

$$\dots (u_1 \mid u_2) = 0$$

Dunque \mathcal{B}' è una base ortonormale.

11.8 Algoritmo di Gram-Schmidt per l'ortonormalizzazione

Sia $\{v_1, \ldots, v_n\}$ un insieme di generatori di un sottospazio U di \mathbb{K}^n . Poniamo:

$$u_1 = v_1$$
$$u_2 = v_2 - \alpha_{12}u_1$$

dove

$$\alpha_{12} = \frac{(u_1 \mid v_2)}{(u_1 \mid u_1)} = \frac{(u_1 \mid v_2)}{\|u_1\|^2}$$
$$(u_1 \mid u_2) = (v_1 \mid v_2 - \alpha_{12}v_1) = (v_1 \mid v_2) - \alpha_{12}(v_1 \mid v_1) =$$

$$(v_1 \mid v_2) = \frac{(v_1 \mid v_2)}{(v_1 \mid v_1)} (v_1 \mid v_1)$$

$$= (v_1 \mid v_2) = (v_1 \mid v_2) - (v_1 \mid v_2) \frac{(v_1 \mid v_1)}{(v_1 \mid v_1)} = 0$$

$$(u_2 \mid u_1) = (v_2 - \alpha_{12}v_1 \mid v_1) =$$

$$= (v_2 \mid v_1) - \overline{\alpha_{12}} (v_1 \mid v_1) =$$

$$= (v_2 \mid v_1) - \frac{(v_1 \mid v_2)}{v_1 \mid v_1} (v_1 \mid v_1) =$$

$$= (v_2 \mid v_1) - \overline{(v_1 \mid v_2)} \frac{(v_1 \mid v_1)}{(v_1 \mid v_1)} =$$

$$(v_2 \mid v_1) - \overline{(v_1 \mid v_2)} \stackrel{11.1}{=} 0$$

 $\dots u_k = v_k - \sum_{i=1}^{k-1} \alpha_{ik} u_i$ dove

$$\alpha_{ik} = \frac{(u_i \mid v_i)}{(u_i \mid u_i)}$$

Allora $\{u_1, \ldots, u_n\}$ è un insieme di generatori ortogonali di U. Normalizzando i vettori, ovvero ponendo

$$u_k' = \frac{u_k}{\|u_k\|}$$

otteniamo un insieme di generatori ortonormale $\{u'_1,\ldots,u'_n\}$ di U.

11.9 Corollario

Ogni sottospazio di U di \mathbb{K}^n possiede una base **ortonormale**.

11.9.1 Dimostrazione

Sia $\{v_1, \ldots, v_n\}$ una base di U. Allora l'insieme di generatori di ortonormale ottenuto con l'algoritmo di Gram-Schmidt è una base ortonormale di U per 11.5. \square

Esempio di ortonormalizzazione:

$$\mathcal{S} = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$

$$||v_1|| = \sqrt{4+1} = \sqrt{5}$$

$$\alpha_{12} = \frac{(v_1 \mid v_2)}{(v_1 \mid v_1)} = \frac{2}{5}$$

$$u_1 = v_1$$

$$u_2 = v_2 - \alpha_{12}u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{(v_1 \mid v_2)}{(v_1 \mid v_1)} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{2}{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ -\frac{2}{5} \end{pmatrix}$$

$$(u_1 \mid u_2) = \begin{pmatrix} 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{5} \\ -\frac{2}{5} \end{pmatrix} = \frac{2}{5} - \frac{2}{5} = 0$$

$$\left\{ u_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} \frac{1}{2} \\ -\frac{2}{5} \end{pmatrix} \right\}$$

è una base ortogonale.

Normalizzando otteniamo:

$$u'_{1} = \frac{1}{\|u_{1}\|} \begin{pmatrix} 2\\1 \end{pmatrix} = \frac{1}{\sqrt{(5)}} \begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{5}}\\\frac{1}{\sqrt{5}} \end{pmatrix}$$

$$\|u_{2}\| = \sqrt{(u_{2} \mid u_{2})} = \sqrt{\frac{1}{25} + \frac{4}{25}} = \sqrt{\frac{5}{25}} = \frac{1}{\sqrt{5}}$$

$$u'_{2} = \frac{1}{\|u_{2}\|} \begin{pmatrix} \frac{1}{5}\\-\frac{2}{5} \end{pmatrix} = \sqrt{5} \begin{pmatrix} \frac{1}{5}\\-\frac{2}{5} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{5}}{5}\\-\frac{2\sqrt{5}}{5} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}}\\-\frac{2}{\sqrt{5}} \end{pmatrix}$$
Dunque $\mathcal{B}' = \left\{ \begin{pmatrix} \frac{2}{\sqrt{5}}\\\frac{1}{\sqrt{5}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{5}}\\-\frac{2}{\sqrt{5}} \end{pmatrix} \right\}$ è una base ortonormale di \mathbb{R}^{2}

