Memory Circuits & Systems

Exercise-4 SRAM-based Analog CIM for Binary CNN

Professor Po-Tsang Huang

International College of Semiconductor Technology National Yang Ming Chiao Tung University

Introduction of 3x3 Convolution

Example of a 3x3 convolution

$$W_{4} \times I_{6} + W_{5} \times I_{7} + W_{6} \times I_{8} + W_{7} \times I_{11} + W_{8} \times I_{12} + W_{9} \times I_{13}$$

$$O_{9} = W_{1} \times I_{13} + W_{2} \times I_{14} + W_{3} \times I_{15} + W_{4} \times I_{18} + W_{5} \times I_{19} + W_{6} \times I_{20} + W_{7} \times I_{23} + W_{8} \times I_{24} + W_{9} \times I_{25}$$

 $O_1 = W_1 \times I_1 + W_2 \times I_2 + W_3 \times I_3 +$

Design a SRAM based CIM for 3x3 convolution

- The followings should be defined by yourself:
 - ◆ V_{Ref}
 - ◆ Input pulse width for 0/1 (RWL)
 - ◆ Cycle time of inputs and clock
- Design hints:
 - ♦ 8T-SRAM cells
 - ◆ 1 column with 9 rows
 - Store weights in SRAM cells by initial conditions (.IC)
 - \bullet BL = \overline{BL} are biased at VDD
 - WL is biased at GND

Input Specification

♦Input:

Input	Description		
In ₁ - In ₉	Input feature map, each input is 1 bit		
V_{Ref}	Reference voltage		
ф	Precharge signal		

*

Input feature map:

0	0	1	1	1
1	1	0	1	1
1	1	1	0	0
0	1	1	1	0
1	0	1	0	1

Weights

Output Specification

Output:

Output	Bit width	Description
0	1	Output feature map

- ♦ The output should be quantized to 1-bit: O = Q($\sum IxW$), where Q(x) = $\begin{cases} 0 & x < 5 \\ 1, & x \ge 5 \end{cases}$
- Hints:

Measurement & Analysis

- Measure:
 - ◆ Delay (from the first cycle of 9 input features to the last cycle of the ninth convolutional output)
 - ◆ Power
- Calculate: (1MAC = 2OPs)
 - ◆ Energy efficiency (TOPs/W)
 - ◆ Throughput (TOPs/s)

Submission: Report & Source codes

Deadline: 2024/05/9 P.M. 23:55