## Statistical Mechanics

February 15, 2023

# 1 Thermodynamics (TD)

- TD is motivated by applications: steam engines
- TD deals with macroscopic equilibrium states.

**Definition 1.1** (Macroscopic state). A description of a system based macroscopic measurements. Temperature, volume, mass, energy, pressure...

A macroscopic state is not infinitely precise. It doesn't refer to a particle.

**Definition 1.2** (Equilibrium state). A macroscopic state that does NOT change in time. No net transfer of energy or particle or of the system.

**Definition 1.3** (State function). A function of the small number of quantities that specifies an equilibrium state.

Main Assumption: For every equilibrium state there is a state function called the ENTROPY.

#### 1.1 Postulates of TD

## 1. Existence of S:

$$S \equiv S(U, V, N).$$

The fundamental relation (in the entropy representation)

A macroscopic system has equilibrium states that are characterised uniquely by a small set of extensive variables.

**Definition 1.4** (Extensive variables). Provides a measure of the size of a system. Answer "how much" questions. (U: energy, V:Volume, N:Number of particle (mass).)

The fundamental relation gives all TD info about the system. (because you can invert the equation above to get U,V,N)

Figure 1: Box with removable wall.

2. **Maximisation:** The values of the extensive variables of an isolated system in the absence of an internal constraint are those that maximise the entropy over the set of all constrained macroscopic states. We have then:

$$S(U_A, V_A, N_A, U_B, V_B, N_B)$$

$$U = U_A + U_B$$

same for V, N Removing wall, the values of  $U_A, V_A, N_A$  will be such that it maximises S.

3. Additivity: The entropy of a composite system is additive over its constituent subsystems.

$$S(X_A, X_B) = S(X_A) + S(X_B)$$

This is not true if there exist long range forces but usually well satisfied. Hold whenever interactions between particles are much shorter than the system size.

- 4. Continuity and Differentiability: The entropy is a continuous and differentiable function of the extensive parameters. (NOT true at phase transitions.)
- 5. **Extensivity:** The entropy is an extensive function of its extensive variables.

$$S(\lambda U, \lambda V, \lambda N) = \lambda S(U, V, N) \quad \lambda \in \mathbb{R}$$

(Only holds if surface effects can be neglected.)

6. **Monotonicity:** The entropy is a monotonically increasing function of energy for equilibrium volumes of the energy.

$$\frac{\partial S}{\partial U}|_{V,N} > 0$$

(Something funny happens at negative temperature.)

7. **Nernst postulate:** The entropy of any real physical system is non-negative.(Only applies to QM systems. Doesn't apply to f.eks ideal gas.)

**Definition 1.5** (Temperature in TD).

$$\left(\frac{\partial S}{\partial U}\right)|_{N,V} \equiv \frac{1}{T}$$

#### 1.2 TD laws

- If two systems are in equilibrium with a third system, they are also in equilibrium with each other. (Their intensive variables are equal)
- Heat is energy and energy us conserved.
- After the release of a constraint in a closed system, the entropy never decreases.

• The entropy of a quantum mechanical system goes to a constant as  $T \to 0$ .

0th law: It follows from P.2(maximisation) and P.3(additivity).

$$S = S(U_A, V_A, N_A) + S(U_B, V_B, N_B)$$
$$U_B = U - U_A$$

\*Caclulations\*

# 2 Small Changes: Inexact and exact differentials

Consider a function of 2 variables F(x,y) The differential of this is:

$$df = \left(\frac{\partial f}{\partial x}\right)_y dx + \left(\frac{\partial f}{\partial y}\right)_x dy \tag{1}$$

This is an exact differential.

Exact differential gives a unique (does not depend on the integration path) function (up to a constant) when integrated.

$$\int_{(0,0)}^{(x,y)} df = \int_{(0,0)}^{(y,y)} \frac{\partial f}{\partial y} \, dy + \int_{(0,y)}^{(x,y)} \frac{\partial F}{\partial x} \, dx$$

Condition for exact differential:

$$\left(\frac{\partial f}{\partial y}\right)_x = \left(\frac{\partial g}{\partial x}\right)_y$$

## But not every differential

$$df = f(x, y)dx + g(x, y)dy$$

is exact For instance:

$$dF = -ydx + xdy$$

is not exact. (The integral is path dependant.)

$$\int_{(0,0)}^{(x,y)} AF = \int_{(0,0)}^{(x,0)} -y dx + \int_{(x,0)}^{(x,y)} x dy = xy,$$

$$\int_{(0,0)}^{(x,y)} AF = \int_{(0,0)}^{(0,y)} x dy + \dots$$

Not the same.

We can always find an integrating non unique factor (function) so that

$$dG = r(x, y) \not dF$$

For

$$dF = -ydx + xdy$$

want

$$dG = (-r(x,y)y)dx + (r(x,y)x)dy$$

$$r = \frac{1}{xy}$$

This is the same thing as used when solving first order diff.equation.

Next: work and heat are not exact.

Conservation of energy: dU = dQ(Heat added) + dW(work done on the system) U is a state function so dU is exact. dQ and dW are inexact as they cannot be derived.

#### 2.0.1 Work

$$dW = \overrightarrow{F_{outer}} \cdot d\overrightarrow{x} > 0$$

$$F_{outer} = -F_{inside}$$

$$dW = -F_{inner} \cdot dx$$

$$dW = -pdV$$

$$-\frac{1}{p}dW = dV$$

$$(2)$$

Here -1/p plays the role of an integrating factor.

$$\int_{(0,0)}^{(p,v)} = \int_{(0,0)}^{p,0} + \int_{(p,0)}^{p,V} -pdV = -pV$$
$$\int_{(0,0)}^{(p,v)} = \int_{(0,0)}^{(0,v)} -pdV = 0$$

Path dependant work can also be magnetic or electric.

#### 2.0.2 Heat

$$\begin{split} dS &= S(U + \mathrm{d}Q, V, N) - S(U, V, N) \\ &= \left(\frac{\partial S}{\partial U}\right)_{(v,N)} \mathrm{d}Q \\ &\implies \mathrm{d}Q = TdS \end{split}$$
 
$$dS &= \frac{1}{T} \mathrm{d}Q$$

## 2.0.3 Conservation of energy

$$dU = dQ + dW$$

$$dU = TdS - pdV$$
(N const)
$$U = U(S, V, N)$$

$$dU = \left(\frac{\partial U}{\partial S}\right)_{V,N} dS + \left(\frac{\partial U}{\partial V}\right)_{S,N} dV + \left(\frac{\partial U}{\partial N}\right)_{S,V} dN$$

$$\left(\frac{\partial U}{\partial S}\right)_{V,N} = T$$

$$\left(\frac{\partial U}{\partial V}\right)_{S,N} = -P$$

$$\left(\frac{\partial V}{\partial N}\right)_{S,V} \equiv \mu$$

With N varying:

$$dU = TdS - PdV + \mu dN$$

In entropy representation:

$$S = S(U, V, N)$$

$$dS = \left(\frac{\partial S}{\partial U}\right)_{(V,N)} + \left(\frac{\partial S}{\partial V}\right)_{U,N} dV + \left(\frac{\partial S}{\partial N}\right)_{U,V} dN$$

$$dS = \frac{1}{T}dV + \frac{P}{T}dV - \frac{\mu}{T}dN$$

#### 2.1 TD Processes

For all processes in a closed system,

$$dS \ge 0$$

dS = 0 when system is already in equilibrium. Processes when dS > 0 in termed irreversible.

## 2.1.1 Quasistatic process

**Definition 2.1.** In the limit of infinitesimal changes at an equilibrium system (very slow ideal process)

$$\Rightarrow dS = 0$$

It's an idealisation, doesn't exist.

#### 2.1.2 Heat Engines

Produce work from heat (steam engine).

Such engines are cyclic,

$$dU = 0$$
,  $dS = 0$ ,  $dV = 0$ ,  $dN = 0$ 

in a cycle.

$$dU = 0 \implies dQ + dW = 0$$
$$\implies -dW = dQ$$

$$dS = 0$$

$$T dQ = 0$$

This shit doesn't do any work, new engine: Need a hot and a cold reservoir (to dump heat)

$$\begin{split} \frac{\mathrm{d}Q_i}{T_i} - \frac{\mathrm{d}Q_o}{T_o} &= 0\\ \Longrightarrow \ \mathrm{d}Q_o = \frac{T_i}{T_o} \mathrm{d}Q_i\\ \mathrm{d}Q_i - \mathrm{d}Q_0 + \mathrm{d}W &= 0\\ \Longrightarrow \ -\mathrm{d}W &= \mathrm{d}Q_i (1 - \frac{T_o}{T_i}) \end{split}$$

Efficiency

$$\eta = \frac{-\mathrm{d}W}{\mathrm{d}Q_i} = 1 - \frac{T_o}{T_i} = \frac{T_i - T_o}{T_i}$$

## 2.1.3 Fridge and Air conditioners

Diagram

Fridges are heat engines run in reverse.

$$dW + dQ_I - dQ_o = 0 \quad (dU = 0)$$

$$\frac{dQ_I}{T_I} - \frac{dQ_o}{T_o} \quad dS = 0$$

Coefficient of Performance is

$$COP_{cooling} = \frac{-dQ_o}{dW}$$

$$\implies dQ_I = T_I \frac{dQ_o}{T_o}$$

$$\left(\mathrm{d}W + (\frac{T_I}{T_o} - 1)\mathrm{d}Q_o\right) = 0$$

Reduce efficiency as  $T_o \to 0$ .

## 2.1.4 Heat Pumps

Same as refridgerators, but inside of fridge is outside of the house.

$$COP_{heating} = \frac{\mathrm{d}Q_I}{\mathrm{d}W} = \frac{1}{1 - \frac{T_o}{T_I}} = \frac{T_I}{T_I - T_O}$$

with

$$\begin{split} \mathrm{d}Q_O &= \frac{T_o}{T_I} \mathrm{d}Q_I \\ \mathrm{d}W + \mathrm{d}Q_I - \frac{T_o}{T_I} \mathrm{d}Q_I &= 0 \\ \mathrm{d}W &= \mathrm{d}Q_I \left(\frac{T_O}{T_I} - 1\right) \end{split}$$

For a non-reversible engine:

$$dS = \frac{\mathrm{d}Q_I}{T_I} - \frac{\mathrm{d}Q_O}{T_O} + \mathrm{d}A$$

A is the positive entropy generated in a cycle.

## 3 TD Potentials

Fundamental relation:

$$S = S(U, V, N)$$
or $U = U(S, V, N)$ 

from this we can derive all TD.

Example 3.1 (Ideal Gas).

$$S = Nk_B \left(\frac{3}{2}ln(\frac{V}{N}) + ln(\frac{V}{N}) + lnX\right)$$

where X is independent of U, V, N

$$\frac{1}{T} = \frac{\partial S}{\partial V}_{V,N} = \frac{3}{2}Nk_B \frac{1}{U}$$

$$\implies U = \frac{3}{2}Nk_b T$$

$$\frac{P}{T} = \frac{\partial S}{\partial V}_{V,N} = \frac{Nk_b}{V}$$

$$\implies PV = Nk_B T$$

$$-\frac{\mu}{T} = \frac{\partial S}{\partial N}_{U,V} = \frac{S}{N} - Nk_B \frac{5}{2} \frac{1}{N} = \frac{S}{N} - \frac{5}{2}k_B$$

$$\implies S = \frac{5}{2}k_B N - \frac{\mu N}{T}$$

These are all equations of states, not fundamental relations.

How can we extract TD info at constant T, P etc. ?

$$T = \frac{\partial U}{\partial S_{V,N}} - \frac{\partial U}{\partial V_{S,N}}$$

#### 3.1 Legendre Transform

Given y = y(x) let's call  $\frac{\partial y}{\partial x} = p$ 

 $\tilde{y}(p)$ 

Try  $\tilde{y} = y$  and make a table.

Useless, no way to know where on the x-axis.

р у

Second try: replace  $\tilde{y}$  by the y-intercept of the curved tangent. This works, but requires  $\frac{\partial y}{\partial x}$  monotonic (as temperature is).

$$y - \tilde{y} = px$$

$$\tilde{y} = y - px$$

## Example 3.2.

$$y = x^{2}$$

$$p = \frac{\partial y}{\partial x} = 2x \implies x = \frac{p}{2}$$

$$\tilde{y}(p) = y - px = x^{2} - px = \frac{p^{2}}{2} - p\frac{p}{2} = -\frac{p^{2}}{y}$$

Inverse:

$$y(x) = \tilde{y} + px = -\frac{p^2}{y} + px = \frac{-(2x)^2}{y} + 2x^2 = x^2$$

Differentials:

$$d\tilde{y} = dy - pdx - dpx = -xdp$$
$$dy = d\tilde{y} + xdp + pdx = pdx$$

Switches and negative.

## 3.2 Helmholtz free energy

$$U = U(S, V, N)$$

want a function of T, V, N that gives all TD info.

$$T = \frac{\partial U}{\partial S}_{V,N}$$

$$F = U - TS$$

eliminate U, S in favour of T, V, N

$$= F(T, V, N)$$

(is a fundamental relation.)

$$dF = dU - TdS - sdT$$

recall  $dU = TdS - PdV + \mu dN$ 

$$= -sdT - PdV + \mu dN$$

$$\implies -S = \frac{\partial F}{\partial T_{V,N}} - p = \frac{\partial F}{\partial V_{T,N}} \quad \mu = \frac{\partial F}{\partial N_{T,V}}$$

## 3.3 Enthalpy

P instead of v.

$$p = -\left(\frac{\partial U}{\partial V}\right)_{S,N}$$
$$H = U + PV$$

want to eliminate V

$$=H(S,P,N)$$

$$dH = TdS + VdP + \mu dN$$
 
$$T = \frac{\partial H}{\partial S_{P,N}} \quad V = \frac{\partial H}{\partial P_{S,N}} \quad \mu = \frac{\partial H}{\partial N_{S,P}}$$

For experiments at constant P, N Then

$$dH = TdS = dQ$$

or

$$dH = dQ$$

(No integrating factor since it's one dimensional.)

### 3.4 Gibbs free energy

Double Legendre transform: replace S with T and replace V by P.

$$G = U - TS + PV = G(T, P, N)$$
 
$$dG = -SdT + VdP + \mu dN$$
 
$$-S = \frac{\partial G}{\partial T_{P,N}}, \quad V = \frac{\partial G}{\partial P_{T,N}} \quad \mu = \frac{\partial G}{\partial N_{P,T}}$$

## 3.5 Summary

- Energy: U(S, V, N)
- Helmholtz F(T, V, N) = U TS
- Enthalpy H(S, P, N) = U + PV
- Gibbs: G(T, P, N) = U TS + PV
- $f(S, V, \mu) = U \mu N$
- Grand potential (Landau potential) :  $\Omega(T,V,\mu) = U TS \mu N$
- $f(S, P, \mu) = U + PV \mu N$
- $f(T, P, \mu) = U TS + PV \mu N$

# 4 Extensivity

From the postulate,

$$S(\lambda U, \lambda V, \lambda N) = \lambda S(U, V, N)$$

in systems where surface effect can be neglected.

**Assume that it holds:** For energy:

$$U(\lambda S, \lambda V, \lambda N) = \lambda U(S, V, N)$$

Now vary  $\lambda$ : Differentiate w.r.t  $\lambda$  and let  $\lambda = 1$ 

$$\text{LHS} = \frac{\partial}{\partial \lambda} U(\lambda S, \lambda V, \lambda N) = \frac{\partial}{\partial (\lambda S)} U(\lambda S, \lambda V, \lambda N) \left( \frac{\partial (\lambda S)}{\partial \lambda} \right)_{\lambda = 1} + \frac{\partial}{\partial \lambda V} U(\lambda S, \lambda V, \lambda N) \left( \frac{\partial (\lambda V)}{\partial \lambda} \right)_{\lambda = 1}$$

$$+ \frac{\partial}{\partial (\lambda N)} U(\lambda S, \lambda V, \lambda N)$$

$$\text{RHS} = U(S, V, N)$$

$$\implies TS - PV + \mu N = U \quad \text{Euler's equation}$$

$$(3)$$

For the entropy equation:

$$S = \frac{U}{T} + \frac{P}{T}V - \frac{\mu}{T}N.$$

Same stuff.

#### 4.1 Gibbs-Duhem relation

Euler's equation:

$$U = TS - PV + \mu N$$

differentiate:

$$dU = \underbrace{TdS - PdV + \mu dN}_{dU} + SdT - VdP + Nd\mu$$

$$\implies 0 = SdT - VdP + Nd\mu \tag{4}$$

So changes in T, P, N are not independent for an extensive system.

For instance:

$$d\mu = -\frac{S}{N}dT + \frac{V}{N}dP$$

## 4.2 TD Potentials and Extensivity

Euler's Equation 
$$U=TS-PV+\mu N$$
  
Helmholtz  $F=U-TS=-PV+\mu N$   
Enthalpy $H=U+PV=TS+\mu N$   
Gibbs  $G=U-TS+PV=\mu N$   
 $f(T,P,\mu)=U-TS+PV-\mu N=0$  Check on extensivity

## 5 TD identities

Derivatives: What is held constant matters!

Ideal gas:

$$U = \frac{3}{2}Nk_BT, \quad PV = Nk_BT$$

$$\frac{\partial U}{\partial V_{T,N}} = 0$$

$$\frac{\partial U}{\partial V_{P,N}} = \frac{\partial}{\partial V}(\frac{3}{2}PV)_{P,N} = \frac{3}{2}P$$

$$\frac{\partial U}{\partial V_{S,N}} = -P$$

### Other TD potentials

$$dF = -SdT - PdV + \mu dN$$

See previous section for derivatives. We are often interested in quantities like

$$\frac{\partial V}{\partial P_{T,N}} = \left(\frac{\partial^2 G}{\partial P^2}\right)_{T,N} = -V\kappa_T$$

## 5.1 Standard Quantities

Coefficient of thermal expansion:

$$\alpha \equiv \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_{PN} \tag{5}$$

Isothermal compressibility:

$$\kappa_T = -\frac{1}{V} \left( \frac{\partial V}{\partial P} \right)_{T,N} \tag{6}$$

The negative sign in front is because most substance shrink when applying pressure. **Specific heat at constant pressure:** 

$$C_p = \frac{T}{N} \left( \frac{\partial S}{\partial T} \right)_{P,N} \tag{7}$$

Specific heat at constant volume:

$$C_v = \frac{T}{N} \left( \frac{\partial S}{\partial T} \right)_{V,N} \tag{8}$$

Heat capacity: = specific heat  $\times$  N

#### 5.2 Maxwell Relations

For N constant:

$$dU = TdS - PdV$$

because dU is an exact differential (orders of derivative doesn't matter):

$$\left(\frac{\partial T}{\partial V}\right)_{S,N} = -\left(\frac{\partial P}{\partial S}\right)_{V,N}$$

From

$$dF = -SdT - PdV + \mu dN$$
$$\frac{\partial S}{\partial V}_{V,N} = \frac{\partial P}{\partial T}_{V,N}$$

and from unnamed potential:

$$\left(\frac{\partial T}{\partial P}\right)_{S,N} = \left(\frac{\partial V}{\partial S}\right)_{P,N}$$

# 6 Manipulating partial derivatives as Jacobians

Jacobian:

$$\frac{\partial(U,V)}{\partial(x,y)} \equiv \begin{bmatrix} \frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} \\ \frac{\partial V}{\partial x} & \frac{\partial V}{\partial y} \end{bmatrix} = \frac{\partial U}{\partial x} \frac{\partial V}{\partial y} - \frac{\partial U}{\partial y} \frac{\partial V}{\partial x}$$
(9)

can be extended to any number of variables by adding rows and columns.

Property of Jacobians

$$\begin{split} \frac{\partial(U,V)}{\partial(x,y)} &= -\frac{\partial(V,U)}{\partial(x,y)} \\ &= -\frac{\partial(U,V)}{\partial(y,x)} &= \frac{\partial(V,U)}{\partial(y,x)} \end{split}$$

### 6.1 Connection to partial derivatives

$$\frac{\partial(U,y)}{\partial(x,y)} = \begin{bmatrix} \frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} \end{bmatrix} = \left(\frac{\partial U}{\partial x}\right)_y$$

So

$$\left(\frac{\partial F}{\partial T}\right)_{V,N} = \frac{\partial (F,V,N)}{\partial (T,V,N)}$$

Chain rule:

$$\frac{\partial(U,V)}{\partial(x,y)} = \frac{\partial(U,V)}{\partial(r,s)} \frac{\partial(r,s)}{\partial(x,y)}$$

$$= \begin{vmatrix} U_r & U_s \\ V_r & V_s \end{vmatrix} \cdot \begin{vmatrix} r_x & r_y \\ s_x & s_y \end{vmatrix}$$
$$= \begin{vmatrix} U_r r_x + U_s s_x & U_r r_y + U_s s_y \\ v_r r_x + v_s s_x & v_r r_y + v_s s_y \end{vmatrix}$$

Using rule:

$$det(AB) = det(A)det(B)$$

An identity:

$$\frac{\partial(U,V)}{\partial(x,y)}\frac{\partial(a,b)}{\partial(c,d)} = \frac{\partial(u,v)}{\partial(c,d)}\frac{\partial(a,b)}{\partial(x,y)}$$

chain rule gives:

$$\frac{\partial(U,V)}{\partial(x,y)}\frac{\partial(a,b)}{\partial(c,d)} = \frac{\partial(U,V)}{\partial(r,s)}\frac{\partial(r,s)}{\partial(x,y)}\frac{\partial(a,b)}{\partial(r,s)}\frac{\partial(r,s)}{\partial(c,d)}$$

$$= \frac{\partial(U,V)}{\partial(r,s)} \frac{\partial(r,s)}{\partial(c,d)} \frac{\partial(a,b)}{\partial(r,s)} \frac{\partial(r,s)}{\partial(x,y)}$$

$$= \frac{\partial(U,V)}{\partial(c,d)} \frac{\partial(a,b)}{\partial(x,y)}$$

**Reciprocals:** 

$$\frac{\partial(U,V)}{\partial(U,V)} = \begin{vmatrix} \frac{\partial U}{\partial U} & \frac{\partial U}{\partial V} \\ \frac{\partial V}{\partial U} & \frac{\partial V}{\partial V} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$

chain rule:

$$1 = \frac{\partial(U, V)}{\partial(U, V)} = \frac{\partial(U, V)}{\partial(x, y)} \frac{\partial(x, y)}{\partial(U, V)}$$

$$\implies \left(\frac{\partial U}{\partial x}\right)_y = \frac{\partial(U, y)}{\partial(x, y)}$$

$$= \left(\frac{\partial(x, y)}{\partial(U, y)}\right)^{-1}$$

Example 6.1.

$$\left(\frac{\partial P}{\partial T}\right)_{V,N}$$

in terms standard quantities. Standard quantities:

$$\alpha = \left(\frac{\partial V}{v \partial T}\right)_{P,N}$$

$$K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_{T,N}$$

$$C_p = \frac{T}{N} \left(\frac{\partial S}{\partial T}\right)_{P,N}$$

$$\left(\frac{\partial P}{\partial T}\right)_{V,N} = \frac{\partial (P,V,N)}{\partial (T,V,N)} = \frac{\partial (P,V,N)}{\partial (P,T,N)} \underbrace{\frac{\partial (P,T,N)}{\partial (T,V,N)}}_{-\partial (V,T,N)} - \left(\frac{\partial V}{\partial T}\right)_{P,N} \left(\frac{\partial P}{\partial V}\right)_{T,N}$$

$$\begin{split} &= \frac{1}{V} \left( \frac{\partial V}{\partial T} \right)_{P,N} \frac{1}{-\frac{1}{V} \left( \frac{\partial V}{\partial P} \right)_{T,N}} \\ &= \frac{\alpha}{\kappa_T} \end{split}$$

**Example 6.2.**  $\left(\frac{\partial T}{\partial P}\right)_{H,N}$  in terms of std. quantities.

$$\begin{split} \left(\frac{\partial T}{\partial P}\right)_{H,N} &= \frac{\partial (T,H,N)}{\partial (P,H,N)} = \frac{\partial (T,H,N)}{\partial (T,P,N)} \frac{\partial (T,P,N)}{\partial P,H,N} = -\frac{\partial (H,T,N)}{\partial (P,T,N)} \frac{\partial (T,P,N)}{\partial (H,P,N)} = \frac{\left(\frac{\partial H}{\partial P}\right)_{T,N}}{\left(\frac{\partial H}{\partial T}\right)_{P,N}} \\ &= \frac{V(T\alpha-1)}{NC_p} \\ dH &= TdS + VdP + \mu dN \\ \left(\frac{\partial H}{\partial P}\right)_{T,N} &= T\left(\frac{\partial S}{\partial P}\right)_{T,N} + V = V - T\left(\frac{\partial V}{\partial T}\right)_{P,N} \end{split}$$

Want  $\left(\frac{\partial S}{\partial P}\right)_{T,N}$  Maxwell relation

$$-SdT + VdP + \mu dN = 0$$
 
$$\Longrightarrow \left(\frac{\partial S}{\partial P}\right)_{T,N} = -\left(\frac{\partial V}{\partial T}\right)_{P,N}$$
 
$$\left(\frac{\partial H}{\partial T}\right)_{P,N} = T\left(\frac{\partial S}{\partial T}\right)_{P,N}$$
 
$$dH = TdS \implies \Delta H = T\Delta S$$
 
$$\frac{\Delta H}{\Delta T} = \frac{T\Delta}{\Delta T} = \frac{T(S(T + \Delta T) - S(T))}{\Delta T}$$
 
$$\frac{\Delta H}{\Delta T} = \frac{T\Delta S}{\Delta T}$$

Which T ?  $T, T + \Delta T$  or something else? Check an arbitrary  $T + g\Delta T$ 

$$\begin{split} \frac{\Delta H}{\Delta wT} &= \frac{(T + g\Delta T\Delta S)}{\Delta T} = \frac{T\Delta S}{\Delta T} + g\Delta S \to 0 \quad when\Delta \to 0 \\ &\left(\frac{\partial H}{\partial T}\right)_{P,N} = T\left(\frac{\partial S}{\partial T}\right)_{P,N} \end{split}$$

Example 6.3 (Cp and Cv).

$$C_{v} = \frac{T}{N} \left( \frac{\partial S}{\partial T} \right)_{V,N} = \frac{T}{N} \frac{\partial (S, V, N)}{\partial (T, V, N)}$$
$$= \frac{T}{N} \frac{\partial (S, V, N)}{\partial (T, P, N)} \underbrace{\frac{\partial (T, P, N)}{\partial (V, T, N)}}_{\frac{\partial (P, T, N)}{\partial (V, T, N)}} = \underbrace{\frac{1}{\left( \frac{\partial V}{\partial P} \right)_{T, N}}}$$

$$= -\frac{T}{NVK_T} \frac{\partial(S, V, N)}{\partial(T, P, N)}$$

$$\frac{\partial(S, V, N)}{\partial(T, P, N)} = \left(\frac{\partial S}{\partial T}\right)_{P,N} \left(\frac{\partial V}{\partial P}\right)_{T,N} - \left(\frac{\partial V}{\partial T}\right)_{P,N} \left(\frac{\partial S}{\partial P}\right)_{T,N}$$

$$= \frac{NVC_P\kappa_T}{T} + (\alpha V)^2$$

$$\implies C_V = \frac{-T}{NVK_T} \left(\frac{-NVK_TC_P}{T} + (\alpha V)^2\right)$$

$$C_P = C_V + \frac{T\alpha^2 V}{NK_T}$$

or

## 7 Extrema Principles

TD postulate: S = S(U, V, N, X) (N unconstrained extensive variable), is maximized for U, V, N constant as a function of X. X is the position of the wall. In equilibrium:

$$\frac{\partial S}{\partial X}_{U,V,N,X_0} = 0$$

 $X_0$  is the equilibrium value.

$$\frac{\partial^2 S}{\partial x^2}_{U,V,N,X_0} < 0$$

since entropy is max.

Similarly, U = U(S,V,N,X) is minimized for S,V,N constant.

*Proof.* Near equilibrium at constant V and N

$$dS = \frac{\partial S}{\partial U}_{V,N,X_0,U_0} dU + \frac{\partial S}{\partial X}_{U,V,N,X_0} dX + \frac{1}{2} \left( \frac{\partial^2 S}{\partial X^2} \right)_{U,V,N,X_0} dx^2$$

$$\implies dU = TdS - \frac{T}{2} \left( \frac{\partial^2 S}{\partial X^2} \right)_{U,V,N,X_0} dX^2$$

For S, V, N constant:

$$dU = -\frac{T}{2} \left( \frac{\partial^2 S}{\partial X^2} \right)_{UVNX_0} dX^2 > 0$$

U has a minimum in equilibrium for S, V, N constant.

Process is where entropy is constant and system minimises energy by doing work on the surroundings.

## 7.1 Helmholtz Free Energy F

F is minimal in equilibrium for constant T, V, N

A big box with system inside and within the system there's a movable wall with a piston connected to the wall which goes outside of the system and the box. Outside the system inside the box is the reservoir, can exchange heat, but with V, N constant. In equilibrium:

$$\frac{\partial (U + U_R)}{\partial X} = 0$$
 for const.  $V + V_R, N + N_R, S + S_R$ 

where U is system energy.

$$\frac{\partial^2}{\partial X^2}(U+U_R) > 0$$

Entropy is conserved:  $\frac{\partial (S+S_R)}{\partial X} = 0$ 

$$F = U - TS$$

$$\frac{\partial F}{\partial X} = \frac{\partial U}{\partial X} - \frac{\partial}{\partial X} (T_R S) = \frac{\partial U}{\partial X} - T_R \frac{\partial S}{\partial X}$$

$$= \frac{\partial U}{\partial X} + T_R \frac{\partial S_R}{\partial X}$$

Since reservoir can't do work or anything

$$TdS = dU$$

so

$$= \frac{\partial}{\partial X}(U + U_R) = 0$$
$$\frac{\partial^2 F}{\partial X^2} = \frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U_R}{\partial X^2} = \frac{\partial^2}{\partial X^2}(U + U_R) > 0$$

The max work that can be extracted:

$$dF = -SdT + dW + \mu dN$$

with dW = -PdV + dW' and dW' is other work For constant T, V, N

$$dF = dW'$$

Free energy Enthalpy and Gibbs free energy are also minimized in equilibrium (see 15.3 and 15.4, Swendsen.)

### 7.2 Exergy

$$dU = TdS - PdV + dW_X + \mu dN$$

 $dW_X$  is work on system by moving internal wall. For constant T, P, N, G is minimized

$$dG = -SdT + VdP + \mu dN + dW_X$$

$$\implies dG = dW_X$$

at  $P = P_0, T = T_0$  standard  $T_0 = \text{room temp}, P_0 = 1 \text{atm}.$ 

$$Exergy = G(T_0, P_0, X) - G(T_0, P_0, X_0)$$

This is the amount of work that can be extracted at standard pressure and temperature. (Important in engineering for machines in real environment. )

# 8 Stability Conditions

## 8.1 Composite system



Figure 2: Composite system

Using the additivity postulate:

$$\Delta U = U(S, V + \Delta V, N) + \tilde{U}(\tilde{S}, \tilde{V} - \Delta, \tilde{N}) - (U(S, V, N) + U(\tilde{S}, \tilde{V}, \tilde{N})) \ge 0$$

$$(10)$$

The second term is the equilibrium energy, and it's minimised.

#### Specialise to identical systems:

$$\tilde{U} = U$$

Then

$$\Delta U = U(S, V + \Delta V, N)v + U(S, V - \Delta V, N) - 2U(S, V, N) \ge 0$$

For  $\Delta V$  infinitesimal:

$$\frac{\partial^{2} U}{\partial V^{2}} (\Delta V)^{2}$$

$$\implies \left(\frac{\partial^{2} U}{\partial V^{2}}\right)_{S,N} \geq 0$$

$$dU = TdS - PdV + \mu dN$$

$$\frac{\partial U}{\partial V}_{S,V} = -P$$

$$\left(\frac{\partial^{2} U}{\partial^{2}}\right)_{S,N} = -\frac{1}{\left(\frac{\partial V}{\partial P}\right)_{S,V}}$$

$$= \frac{1}{VK_{s}} \geq 0$$

$$K_{s} > 0$$
(11)

where  $K_s$  is the isentropic compressibility.

## 8.2 Heat Transfer

$$\begin{split} \Delta U &= U(S + \Delta S, V, N)v + U(S - \Delta S, V, N) - 2U(S, V, N) \geq 0 \\ & \left(\frac{\partial^2 U}{\partial S^2}\right)_{V,N} \geq 0 \\ & \left(\frac{\partial U}{\partial S}\right)_{V,N} = T \implies \\ & \left(\frac{\partial^2 U}{\partial S^2}\right)_{V,N} = \left(\frac{\partial T}{\partial S}\right)_{V,N} = \left[\left(\frac{\partial S}{\partial T}\right)_{V,N}\right]^{-1}] \\ &= \left[\frac{N}{T}\frac{T}{N}\left(\frac{\partial S}{\partial T}\right)_{V,N}\right]^{-1} \geq 0 \end{split}$$

## 8.3 Volume Exchange for Helmholtz Free Energy

$$\Delta F = F(T, V + \Delta V, N) + F(T, V - \Delta V, N) - 2F(T, V, N) \ge 0$$

$$\left(\frac{\partial^2 F}{\partial V^2}\right)_{T,N} \ge 0$$

$$\Rightarrow \left(\frac{\partial F}{\partial V}\right)_{T,N} = -P$$

$$\left(\frac{\partial^2 F}{\partial V^2}\right)_{T,N} = \left(\frac{\partial P}{\partial V}\right)_{T,N} = \left[v\frac{1}{-v}\left(\frac{\partial V}{\partial P}\right)_{T,N}\right]^{-1}$$

$$\frac{1}{VK_T} \ge 0$$

$$\Rightarrow K_T \ge 0$$

## 8.4 Heat Exchange for Enthalpy

$$H(S + \Delta S, P, N) + H(S - \Delta S, P, N) - 2H(S, P, N) \ge 0$$

$$\Longrightarrow \left(\frac{\partial^2 H}{\partial S^2}\right)_{P,N} \ge 0$$

$$\left(\frac{\partial H}{\partial S}\right)_{P,N} = T$$

$$\left(\frac{\partial^2 H}{\partial S^2}\right)_{P,N} = \left[\left(\frac{\partial S}{\partial T}\right)_{P,N}\right]^{-1} \ge 0$$

$$\Longrightarrow C_p \ge 0$$

The stability conditions that we have derived so far are only valid for extensive variables!

#### 8.5 What about intensive variables?

We use TD relations.

$$\left(\frac{\partial F}{\partial T}\right)_{V,N} = -S, \quad \left(\frac{\partial^2 F}{\partial T^2}\right)_{V,N} = -\left(\frac{\partial S}{\partial T}\right) = \frac{-1}{\left(\frac{\partial^2 U}{\partial S^2}\right)_{V,N}} < 0$$

$$\left(\frac{\partial U}{\partial S}\right)_{V,N} = T, \quad \left(\frac{\partial^2 U}{\partial S^2}\right)_{V,N}$$

$$\left(\frac{\partial^2 F}{\partial T^2}\right)_{V,N} < 0$$
(12)

so

### 8.6 Van der Waal's gas

Ideal gas:

$$F = -Nk_bT \left[ ln(\frac{V}{N}) + \frac{3}{2}ln(k_BT) + X \right]$$

#### Free, non-interacting particles

Include interactions "treated crudely":

The interaction has two main effects:

- 1. Energy is lowered by the mean interaction energy  $\propto \frac{N}{V}$  per particle.
- 2. The hard-core potential restricts the volume to  $V \rightarrow V Nb$

$$F_{VDW} = -Nk_BT \left[ ln(\frac{V - Nb}{N}) + \frac{3}{2}ln(k_BT) + X \right] - a\frac{N^2}{V}$$

where a (measure of attraction) and b (hard-core) are constants. This is an extensive system, meaning we could use the Euler's equation.

Pressure:

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} = \frac{Nk_BT}{V - Nb} + a\frac{N^2}{V^2}$$

Stability:

$$\left(\frac{\partial^2 F}{\partial V^2}\right)_{T,N} \geq$$



Figure 3: Van der Waal interaction model.

$$\begin{split} \left(\frac{\partial F}{\partial V}\right)_{T,N} &= -P \\ \left(\frac{\partial^2 F}{\partial V^2}\right)_{T,N} &= -\left(\frac{\partial P}{\partial V}\right)_T, N) > 0 \\ \Longrightarrow \left(\frac{\partial P}{\partial V}\right)_{T,N} < 0 \end{split}$$

The highlighted part is unstable since  $\left(\frac{\partial P}{\partial V}\right)_{T,N} \geq 0$ .

Want to calculate the critical temperature  $T_c$ :

$$\left(\frac{\partial P}{\partial V}\right)_{T,N} = 0 = \left(\frac{\partial^2 P}{\partial V^2}\right)_{T,N} = 0$$

$$\frac{\partial P}{\partial V} = \frac{-Nk_BT}{(V_N b)^2} + 2a\frac{N^2}{V^3} = 0$$

$$\implies Nk_BTV^3 = 2aN^2(V - Nb)^2$$

$$\left(\frac{\partial^2 P}{\partial V^2} = \frac{2Nk_BT}{(V - Nb)^3} - 6a\frac{N^2}{V^4} = 0$$

$$\implies 2Nk_BTV^4 = 6aN^2(V - Nb)^3$$



Figure 4: Pressure vs Volume diagram.

Combine:

$$2V = 3(V - Nb)$$

and 
$$k_BT_c=\frac{2aN^2(3Nb-Nb)^2}{N(3Nb)^3}=\frac{8}{27}\frac{a}{b}$$
 
$$P_c=\frac{N_kBT}{V_c-Nb}-a\frac{N^2}{V_c^2}=\frac{1}{27}\frac{a}{b^2}$$
 
$$\frac{P_cV_c}{Nk_BT_c}=\frac{3}{8}$$
 Ideal gas: 1

insert Fig.4 Both unphysical, unstable.

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T.N}$$

$$\left(\frac{\partial P}{\partial V}\right)_{T,N} = -\left(\frac{\partial^2 F}{\partial V^2}\right)_{T,N} < 0$$

For stability.

$$\begin{split} V &= \left(\frac{\partial G}{\partial P}\right)_{T,N} \\ &\left(\frac{\partial V}{\partial P}\right)_{T,N} = \left(\frac{\partial^2 G}{\partial P^2}\right)_{T,N} < 0 \end{split}$$

second derivative of intensive variabel less than 0 for stability.

insert Fig.5 Cap: Van der Waal's gas at  $T < T_C$  Stability

$$\left(\frac{\partial^2 F}{\partial V^2}\right)_{T,N} > 0 \Rightarrow \left(\frac{\partial P}{\partial V}\right)_{T,N} < 0$$

This is violated on D-F. Assumption of homogeneity breaks down. The homogeneous solution is unstable (unphysical. NOT realised) on D-F.

**insert Fig.6** Maxwell construct: Choose a line which crosses the graph 3 times which also divides the area into 2 equal parts. In the region B-H there are 3 possible values for V given a P (one is unphysical (DF), but there are still two to choose from.) TD stable state at const. P, T, N minimises **Gibbs free energy**. Calculate G! Van der Waal's gas is extensive:

$$U = TS - PV + \mu N$$
 
$$G = U - TS + PV = \mu N$$

Recall Gibbs-Duhem relation:

$$d\mu = -\left(\frac{S}{N}\right)dT + \left(\frac{V}{N}\right)dP = \frac{V}{N}dP$$

$$\implies G = \int dG = \int d\mu N = \int dPV$$

Area under the curve.

$$V = \left(\frac{\partial G}{\partial P}\right)_{T,N}$$

At C, G there are two phases that coexists:  $V_C$  and  $V_G$  Since  $V_C$  is bigger than  $V_G$ , so  $V_C$  describes a gas phase and  $V_C$  describes a liquid phase.

insert Fig.8 and 9

$$\rho_C = \frac{N}{V_C}, \quad \rho_G = \frac{N}{V_G}$$

#### 8.7 Phases

C-phase:  $V_C$  volume fraction  $\frac{V_C}{V} = X_C$  G-phase:  $V_G$  volume fraction  $\frac{V_G}{V} = X_G$   $\implies V_C + V_G = V \implies X_C + X_G = 1$ 

Total number of particles:

$$N = V_C \rho_C^* + V_G \rho_G^*$$
$$\frac{N}{V} = X_C \rho_C^* + X_G \rho_G^*$$

Set  $X_G = 1 - X_C$ ,  $\frac{N}{V}$ 

$$\rho = X_C \rho_C^* + (1 - X_C) \rho_G^*$$

$$X_C = \frac{\rho - \rho_G^*}{\rho_C^* - \rho_G^*}, \quad X_G = 1 - X_C$$

insert Fig.10 From Helmholtz Free energy,  $T < T_C$ 

insert Fig.11

$$P = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$$

insert Fig.12

## 8.8 Clausius-Clapeyron

Assume extensivity  $\implies$  Gibbs-Duhem relation

$$d\mu = -\frac{S}{N}dT + \frac{V}{N}dP = -sdT + \frac{1}{n}dP$$

where  $s \equiv \frac{S}{N}$ ,  $n \equiv \frac{N}{V}$ 

Liquid

$$\mu_2^l - \mu_1^l = -s(T_2^l - T_1^l) + \frac{1}{n^l}(P_2^l - P_1^l)$$

Gas

$$\mu_2^l - \mu_1^l = -s(T_2^l - T_1^l) + \frac{1}{n^l}(P_2^l - P_1^l)$$

l stands for liquid On the ceexistence line in equilibrium:

$$\mu_1^l = \mu_1^g$$

same with all other variables. Subtract the eqs:

$$0 = (s^g - s^l)(T_2 - T_1) + \left(\frac{1}{n^l} - \frac{1}{n^g}\right)(P_2 - P_1)$$

$$\Longrightarrow \frac{P_2 - P_1}{T_2 - T_1} = \frac{s^g - s^l}{T_2 - T_1} = \frac{s^g - s^l}{\frac{1}{n^g} - \frac{1}{n^l}}$$

$$\Longrightarrow \left(\frac{\partial P}{\partial T}\right)_{\text{alone coexistence}} = \frac{(s^g - s^l)}{\frac{1}{n^g} - \frac{1}{n^l}}$$

# 9 More particle types: Gibbs Phase rule

$$dU = TdS - PdV + \sum_{i=1}^{K} \mu_i dN_i$$

There are 2+K independent variable. Extensive:

$$U = TS - PV + \sum_{i=1}^{k} \mu_i N_i$$

Gibbs-Duhem:

$$d\mu = -\frac{S}{N}dT + \frac{V}{N}dP + \sum_{i=1}^{k} N_i d\mu_i$$

If we have  $\phi$  phases, then there is a Gibbs-Duhem rel. for each phase.