Отчёт по лабораторной работе №5

Дисциплина: Научное программирование

Дэнэилэ Александр Дмитриевич, НПМмд-02-23

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Подгонка полиномиальной прямой	7
	3.2 Матричные преобразования	11
	3.2.1 Вращение	12
	3.2.2 Отражение	13
	3.2.3 Дилатация	14
4	Выводы	16
Сп	исок литературы	17

Список таблиц

Список иллюстраций

3.1	Исходные данные. Матрица и векторы
3.2	Матрица А
3.3	График $y = -0.8929x^2 + 5.65x - 4.4$
	График Polyfit
3.5	Граф "домик"
3.6	Результат поворота
3.7	Результат отражения
3.8	Результат расширения

1 Цель работы

Ознакомиться с основами работы с системами линейных уравнений в GNU Octave.

2 Задание

- 1. Ознакомиться с реализацией метода Гаусса.
- 2. Изучить метод левого деления.
- 3. Ознакомиться с LU-разложением и LUP-разложением.

3 Выполнение лабораторной работы

3.1 Подгонка полиномиальной прямой

1. Создадим матрицу данных и отдельные вектора *x* и *y* (рис. 3.1), которые в графическом представлении имеют вид (рис. 3.2).

```
>> D = [ 1 1 ; 2 2 ; 3 5 ; 4 4 ; 5 2 ; 6 -3]
D =
  1 1
  2
  5 2
>> xdata = D(:,1)
xdata =
  1
  2
  3
>> ydata = D(:,2)
ydata =
  2
  5
  2
  -3
```

Рис. 3.1: Исходные данные. Матрица и векторы

2. Мы хотим подогнать наши данные под кривую $y=a_1x^2+a_2x+a_3$. Для этого создадим матрицу A (рис. 3.2).

Рис. 3.2: Матрица А

4. Для построения полиномиальной кривой создадим векторы x и y (рис. ??) и построим график (рис. 3.3).

Рис. 3.3: График $y = -0.8929x^2 + 5.65x - 4.4$

5. Для построения полиномальной кривой можно использовать встроенный метод *polyfit* (рис. 3.4), В результате получаем такой график

Рис. 3.4: График Polyfit

3.2 Матричные преобразования

Создадим матрицу данных и отдельные вектора x и y (рис. $\ref{eq:condition}$), которые в графическом представлении имеют вид (рис. $\ref{eq:condition}$).

Рис. 3.5: Граф "домик"

3.2.1 Вращение

Изучим, как осуществляется вращение изображения.

Зададим угол поворота и матрицу вращения, посчитаем новые координаты для угла 90 градусов и угла 225 градусов. В результате получаем такую картинку (рис. 3.6).

Рис. 3.6: Результат поворота

3.2.2 Отражение

Изучим, как осуществляется отражение изображения относительно прямой. Зададим матрицу отражения относительно прямой x=y, посчитаем новые координаты. В результате получаем такую картинку (рис. 3.7).

Рис. 3.7: Результат отражения

3.2.3 Дилатация

Изучим, как осуществляется дилатация (расширение или сжатие) изображения. Зададим матрицу расширения в 2 раза, посчитаем новые координаты. В результате получаем такую картинку (рис. 3.8)).

Рис. 3.8: Результат расширения

4 Выводы

Изучил подгонку полиномиальной прямой и матричные преобразования в Octave.

Список литературы