Computação Verde na Camada de Aplicação

Thales Paiva

thalespaiva@gmail.com

Orientado pelo Prof. Dr. Alfredo Goldman

Computação Verde

Minimizar o impacto ambiental de sistemas computacionais através de:

- Reciclagem e descarte de hardware
- Projeto e fabricação de componentes
- Métricas e padrões
- Uso eficiente de recursos computacionais

Computação Verde na Camada de Aplicação

Pouco estudada

Baseada em otimização para performance

Sugestões sem validação empírica

Muitos estudos através de simuladores

Experimentos na Camada de Aplicação

Perfis de consumo de potência

Escolha de **algoritmos**

Eliminação de code smells

Agendamento de processos

Perfis de Consumo de Potência

Escolha do Algoritmo

Melhor performance implica menos energia?

Baseado em [2]

Comparamos os algoritmos de ordenação:

- QuickSort
- BucketSort esparso com InsertionSort

Consumo Médio de Potência

Tempo Médio

Consumo de Energia

Agendamento de Processos Paralelos

Há número ótimo de processos paralelos?

Experimento:

- 32 processos da aplicação **pidigits** [3]
- Agendamento por conta do GNU parallel [4]
- i processos de cada vez, para i em {1,2, ..., 32}
- •energy_analyser com 50 iterações

Consumo de Potência

Tempo Médio

Consumo de Energia

(desconsiderando o consumo base do sistema)

Consumo Total de Energia

(considerando o consumo base do sistema)

Conclusões

- O consumo de potência varia de acordo com a aplicação
- Nem sempre melhor performance == menos energia
- Aplicações adaptáveis são promissoras
- Sistemas embarcados != PC
- Code Smells n\u00e3o parecem oferecer oportunidades reais
- Agendamento de processos é promissor

Referências

- [1] Harmon, Robert R., and Nora Auseklis. "Sustainable IT services: Assessing the impact of green computing practices." Management of Engineering \& Technology, 2009. PICMET 2009. Portland International Conference on. IEEE, 2009.
- [2] Bunse, Christian, et al. "Choosing the" Best" Sorting Algorithm for Optimal Energy Consumption." ICSOFT (2), 2009.
- [3] The Computer Language Benchmark Game. URL: http://benchmarksgame.alioth.debian.org/
- [4] O. Tange (2011): GNU Parallel The Command-Line Power Tool, The USENIX Magazine, 2011:42-47.