Лекция 12

Логика предикатов

Определение 1. Предикатом называется функция $P(x_1, ..., x_n), x_i \in M$,

$$i = 1, ..., n$$
 значение $P(x_1, ..., x_i) \in \{\mathsf{M}, \mathsf{Л}\}.$ $P: M^n \to \{\mathsf{M}, \mathsf{Л}\}.$

Если n = 0, то это высказывание.

Логические операции: ¬, &, \lor , ⊃ , ~, +;

Дополнительно существует 2 квантора:

 \forall – квантор общности (для любого);

∃ – квантор существования (существует).

Определение 2. ($\forall x$) P(x) принимает значение истина \leftrightarrow для всех $a \in M$: $P(a) = \mathsf{U}$. ($\forall x$)P(x) принимает значние ложь \Leftrightarrow существует хотя бы одно $a_0 \in M$: $P(a_0) = \mathsf{J}$.

Определение 3. ($\exists x$)P(x) принимает значение истина \iff существует хотя бы одно $a_0 \in M : P(a_0) = \mathsf{H}.$ ($\exists x$)P(x) принимает значение ложь \iff для всех $a \in M$ $P(a) = \mathsf{H}.$

Пример 1. Пусть $P(x) \rightarrow 'x$ – четное' на множестве N.

Тогда
$$(\forall x)P(x) = \Lambda$$
, $(\exists x)P(x) = \mathsf{H}$;

Область истинности предикатов

Определение 4. Областью истинности предиката $P(x_1, ..., x_n)$ называется подмножество $\widetilde{M} \subseteq M^n$: $\forall < s_1, ..., s_n > \in \widetilde{M}$ $P|_{< s_1, ..., s_n >} = \mathsf{M}$.

$$P_1(x_1, \dots, x_n) \& P_2(x_1, \dots, x_n) = P_1(x_1, \dots, x_n) \cap P_2(x_1, \dots, x_n);$$

$$P_1(x_1, \dots, x_n) \vee P_2(x_1, \dots, x_n) = P_1(x_1, \dots, x_n) \cup P_2(x_1, \dots, x_n);$$

Пример 2.

 $P_1(x, y) \to x \ge y$; область истинности под прямой y = x.

Формула логики предикатов (ЛП)

Алфавит логики предикатов.

- 1. x_1 , ... , x_n предметные переменные.
- 2. $A_i^{(j)}$ предикатные символы, где j число мест предиката (число переменных), i номер предикатного символа.
- 3. Логические операции: ¬, &, ∨, ⊃ , ~, +.
- 4. \forall , \exists − кванторы.
- 5.), (скобки.

Определение 5. Переменные, находящиеся в области действия какого-либо квантора, называются связными. Остальные – свободные.

Пример 3.

A(x, y): x, y — свободные;

 $(\forall x) A(x, y); x$ – связная, y – свободная;

$$(\forall x)$$
 $(\exists y)$ $A(x,y)$; x,y – связные;

Определение 6. Формулой логики предикатов будем называть слово в алфавите ЛП, удовлетворяющее условиям.

- 1. $A_i^{(j)}(x_1, ..., x_n)$ атомарная формула.
- 2. Если A и B формулы, то $(\neg A)$, (A & B), $(A \lor B)$, $(A \supset B)$, $(A \sim B)$, (A + B) тоже формулы. Связные переменные одной формулы не могут быть свободными другой.
- 3. Если $A(x, x_1, ..., x_n)$ формула со свободными переменными $x, x_1, ..., x_n$, то
 - $(\forall x)$ $A(x, x_1, ..., x_n)$ и $(\exists x)$ $A(x, x_1, ..., x_n)$ тоже формулы со свободными переменными $x_1, ..., x_n$. Свободная переменная x становится связной.
- 4. Других правил образования формул нет.

Пример 4. Слово $(\forall x)A_1(x)$ & $A_2(x)$ не является формулой, т.к. в A_1 x связная переменная, а в A_2 x — свободная переменная.

Значение формулы в данной интерпретации

Определение 7. Под интерпретацией будем понимать упорядоченную пару $I = \langle M, f \rangle$, где M — множество значений переменных, f — соответствие предикатному символу конкретного предиката.

$$A_i^{(j)} \rightarrow P(x_1, ..., x_n);$$

Пример 5. $I = \langle R, f \rangle$, $f: A^{(2)}(x, y) \to x \ge y$;

$$A^{(2)}(x,y)|_{<2,4>}=\pi;$$

$$A^{(2)}(x,y)|_{<5,3>} = H;$$

 $(\forall x)(\exists y)A^{(2)}(x,y) = H;$
 $(\exists x)(\forall y)A^{(2)}(x,y) = \pi.$

Рассмотрим, какое значение может принимать формула F в заданной интерпретации I = < M, f > на оценке $< s_1, ..., s_n >$.

Повторим пункты определения формулы.

- 1. Если формула атомарная, то её значение равно значению соответствующего предиката.
- 2. Пусть

$$A|_{\langle S_1,...,S_n \rangle} = t_1; B|_{\langle S_1,...,S_n \rangle} = t_2; t_1, t_2 \in \{\mathsf{M}, \mathsf{Л}\}.$$
 Тогда $\neg A|_{\langle S_1,...,S_n \rangle} = \neg t_1$ (A & B) $|_{\langle S_1,...,S_n \rangle} = t_1 \otimes t_2$ (A \vee B) $|_{\langle S_1,...,S_n \rangle} = t_1 \vee t_2$ (A \supset B) $|_{\langle S_1,...,S_n \rangle} = t_1 \supset t_2$ (A \supset B) $|_{\langle S_1,...,S_n \rangle} = t_1 + t_2$

3. В формуле A(x) содержатся еще свободные переменные x_1, \dots, x_n . Тогда

$$(\forall x) A(x)|_{\langle S_1, \dots, S_n \rangle} = \mathbb{N} \Leftrightarrow \forall a \in M \ A(a)|_{\langle S_1, \dots, S_n \rangle} = \mathbb{N}$$

$$(\forall x) A(x)|_{\langle S_1, \dots, S_n \rangle} = \mathbb{N} \Leftrightarrow \exists a_0 \in M \ A(a_0)|_{\langle S_1, \dots, S_n \rangle} = \mathbb{N}$$

$$(\exists x) A(x)|_{\langle S_1, \dots, S_n \rangle} = \mathbb{N} \Leftrightarrow \exists a_0 \in M \ A(a_0)|_{\langle S_1, \dots, S_n \rangle} = \mathbb{N}$$

$$(\exists x) A(x)|_{\langle S_1, \dots, S_n \rangle} = \mathbb{N} \Leftrightarrow \forall a \in M \ A(a)|_{\langle S_1, \dots, S_n \rangle} = \mathbb{N}$$

Задача 1. Рассмотрим интерпретацию

$$I = \langle N \cup \{0\}, f \rangle$$

$$f : S(x, y, z) = \mathbb{N} \leftrightarrow x + y = z$$

$$P(x, y, z) = \mathbb{N} \leftrightarrow x * y = z$$

 $(A \sim B)|_{\langle S_1,...,S_n \rangle} = t_1 \sim t_2$

Требуется на языке логики предикатов записать формулы истинные тогда и только тогда, когда:

1.
$$x = 0$$
.

2.
$$x = 1$$
.

3. x – четное.

4. x — простое.

5.
$$x \leq y$$
.

6.
$$x = y$$
.

7. Сложение коммутативно.

Решение.

1.
$$x = 0$$

$$(\forall y) (x + y = y)$$

 $(\forall y) \ S(x, y, y) = F_0(x)$ – обозначение, причем x – свободная переменная, y – связная (те переменные, которые есть в формулировке утверждения, свободные).

2. x = 1.

$$(\forall y) (x \cdot y = y)$$
$$(\forall y) P(x, y, y) = F_1(x)$$

3. χ – чётное

$$(\exists y) (y + y = x)$$

$$(\exists y) S(y, y, x) = F_2(x)$$

4. *x* – нечётное:

$$\neg F_2(x)$$

5. x — простое

$$(x \neq 0\&1)\&(\forall y)(\forall z)(y \cdot z = x \supset (y = 1)\lor(z = 1))$$

$$\neg F_0(x) \& \neg F_1(x) \& (\forall y) (\forall z) (P(y, z, x) \supset (F_1(y) \lor F_1(z)).$$

6. $x \leq y$

$$(\exists z) (x + z = y)$$

$$(\exists z) S(x, z, y) = F_3(x, y).$$

7. x = y

$$F_3(x,y)\&F_3(y,x)$$

или

$$(\forall v) (\exists u) (x + v = u \supset y + v = u)$$

$$(\forall v) (\exists u) (S(x, v, u) \supset S(y, v, u)).$$

8. Сложение коммутативно. Свободных переменных нет.

$$(\forall x)(\forall y)(\exists z)(S(x,y,z)\supset (S(y,x,z))$$

Могут существовать несколько вариантов формул.

Равносильность формул логики предикатов

Определение 1. Формулы $F_1 \equiv_I F_2$ равносильны в данной интерпретации $I = \langle M, f \rangle$, если в этой интерпретации на любой оценке свободных переменных они принимают одинаковые истинностные значения.

Определение 2. Формула $F_1 \equiv_M F_2$ равносильны на множестве M, если в любой интерпретации $I = \langle M, f \rangle$, содержащей множество M на любой оценке свободных переменных они принимают одинаковые истинностные значения.

Определение 3. Формула $F_1 \equiv F_2$ равносильны в логике предикатов, если они равносильны на всех множествах, т.е. в любой интерпретации и на любой оценке свободных переменных они принимают одинаковые истинностные значения.

Пример 1.

$$F_1 = (\forall x) A(x)$$

$$F_2 = (\exists x) A(x)$$

1.
$$I = < \mathbb{N}, f >$$

 $f: A(x) \to x \ge 1$
 $F_1 \equiv_I F_2: F_1 = F_2 = \mathbb{M}$

- 2. На одноэлементном множестве $M = \{a\}$. $F_1 \equiv_M F_2$.
- 3. $F_1 \not\equiv F_2$ в ЛП Рассмотрим $I = <\mathbb{N}, f>, f: A(x) \to x$ — чётное Тогда $F_1 = \mathbb{N}, F_2 = \mathbb{N}$

Основные равносильности логики предикатов

1. Перенос отрицания через квантор: квантор меняется на противоположный.

$$\neg(\forall x)A(x) \equiv (\exists x)\neg A(x) \tag{1.1}$$

$$\neg(\exists x)A(x) \equiv (\forall x)\neg A(x) \tag{1.2}$$

2. Квантор с переменной x можно выносить за скобки, если одна формула зависит от x, а другая нет.

$$(\forall x) A(x) \lor B \equiv (\forall x) (A(x) \lor B) \tag{2.1}$$

$$(\exists x) A(x) \lor B \equiv (\exists x) (A(x) \lor B) \tag{2.2}$$

$$(\forall x) A(x) \& B \equiv (\forall x) (A(x) \& B) \tag{2.3}$$

$$(\exists x) A(x) \& B \equiv (\exists x) (A(x) \& B)$$
(2.4)

3. Если обе формулы зависят от x, то справедливы только 2 тождества из 4:

$$(\forall x) A(x) \& (\forall x) B(x) \equiv (\forall x) (A(x) \& B(x))$$
(3.1)

$$(\exists x) A(x) \lor (\exists x) B(x) \equiv (\exists x) (A(x) \lor B(x)) \tag{3.2}$$

4. Одноимённые кванторы можно переставлять (разноимённые – нет).

$$(\forall x) (\forall y) A(x, y) \equiv (\forall y) (\forall x) A(x, y)$$
(4.1)

$$(\exists x) (\exists y) A(x, y) \equiv (\exists y) (\exists x) A(x, y)$$

$$(4.2)$$

5. Правило замены (переименования) переменной в области действия квантора. Всюду в области действия квантора связную переменную формулы можно переименовать в другую переменную, не содержащуюся в *A*.

$$(\forall x) A(x) \equiv (\forall z) A(z) \tag{5.1}$$

$$(\exists x) A(x) \equiv (\exists z) A(z) \tag{5.2}$$

Доказательство тождеств

1. Докажем тождество (1.1): $\exists (\forall x) A(x) \equiv (\exists x) \exists A(x)$

A(x): свободные переменные – < $x, x_1, ..., x_n >$,

$$(∀ x) A(x)$$
: свободные переменные – < x_1 , ..., x_n >.

Рассмотрим произвольную интерпретацию $I = \langle M, f \rangle$ и произвольную оценку свободных переменных $\langle s_1, ..., s_n \rangle$.

Возможны два случая:

1)
$$\forall \tilde{s} \in M \quad A(\tilde{s})|_{\leq s_1, \dots, s_n >} = M$$

2)
$$\exists s_0 \in M \ A(s_0)|_{\langle s_1,...,s_n \rangle} = \Lambda$$

<u>В первом случае.</u> Левая часть: $(\forall x) A(x)|_{\langle s_1,...,s_n \rangle} = \mathbb{N} \Rightarrow \mathbb{I}(\forall x) A(x)|_{\langle s_1,...,s_n \rangle} = \Lambda$

Правая часть:
$$A(x)|_{<\tilde{s},s_1,\dots,s_n>}=\mathsf{И}$$
 , $\forall\ \tilde{s}\in M$. Тогда

$$\exists A(x)|_{\leq \tilde{s}, s_1, \dots, s_n >} = \Lambda \quad \forall \ x = \tilde{s} \in M \quad \text{if} \quad (\exists \ x) \exists A(x)|_{\leq s_1, \dots, s_n >} = \Lambda.$$

Во втором случае. Левая часть: $\exists s_0 \in M \ A(x)|_{< s_0, s_1, \dots, s_n>} = \Lambda \Rightarrow$

$$(\forall x) A(x)|_{\langle s_1,...,s_n \rangle} = \Lambda \text{ u } \exists (\forall x) A(x)|_{\langle s_1,...,s_n \rangle} = \text{ H.}$$

Правая часть: $\exists \ s_0 \in M \ A(s_0)|_{< s_1,\dots,s_n>} = \Lambda \Rightarrow \exists A(s_0)|_{< s_1,\dots,s_n>} = \mathbb{M}$

$$\mathsf{H} \Rightarrow (\exists x) \mathsf{I} A(x)|_{\langle S_1, \dots, S_n \rangle} = \mathsf{H}.$$

Докажем тождество (1.2): $\exists (\exists x) A(x) \equiv (\forall x) \exists A(x)$

В тождество (1.1) подставим вместо $A(x) \to \exists A(x)$: $\exists (\forall x) \exists A(x) \equiv (\exists x) \exists \exists A(x)$;

и возьмем отрицание от левой и правой части: $\exists \exists (\forall x) \exists A(x) \equiv \exists (\exists x) \exists A(x)$.

Получим тождество (1.2): $1(\exists x)A(x) \equiv (\forall x) 1A(x)$.

2. Докажем тождество (2.1): $(\forall x) A(x) \lor B \equiv (\forall x) (A(x) \lor B)$

A(x): свободные переменные – < x, x_1 , ..., x_n >

$$(\forall x) A(x), B$$
: свободные переменные – $< x_1, ..., x_n >$

Рассмотрим произвольную интерпретацию $I = \langle M, f \rangle$ и произвольную оценку свободных переменных $\langle s_1, \dots, s_n \rangle$.

Возможны 2 случая:

1)
$$B|_{\leq S_1,...,S_n >} = M$$

2)
$$B|_{} = \Lambda$$

В первом случае. $(\forall x) A(x) \lor B|_{\langle S_1, \dots, S_n \rangle} = \mathsf{H}$ и $(\forall x) (A(x) \lor B)|_{\langle S_1, \dots, S_n \rangle} = \mathsf{H}$.

Во втором случае.
$$(\forall x) A(x) \vee B|_{\langle S_1, \dots, S_n \rangle} = (\forall x) A(x)|_{\langle S_1, \dots, S_n \rangle}$$
 и $(\forall x) (A(x) \vee B)|_{\langle S_1, \dots, S_n \rangle} = (\forall x) A(x)|_{\langle S_1, \dots, S_n \rangle}$. Правая и левая часть тождества равны.

Тождества (2.2) - (2.4) доказываются аналогично.

3. Докажем справедливость тождества (3.1):

$$(\forall x) A(x) \& (\forall x) B(x) \equiv (\forall x) (A(x) \& B(x))$$

A(x), B(x): свободные переменные – $< x, x_1, ..., x_n >$

$$(\forall x) A(x), (\forall x) B(x)$$
: свободные переменные – $\langle x_1, ..., x_n \rangle$

Рассмотрим произвольную интерпретацию $I = \langle M, f \rangle$ и произвольную оценку свободных переменных $\langle s_1, \dots, s_n \rangle$.

Схема доказательства: л.ч. = И 🗧 пр.ч. = И.

Докажем л.ч. = $И \Rightarrow пр.ч. = И$.

$$(\forall x) A(x) \& (\forall x) B(x)|_{\langle s_1, \dots, s_n \rangle} = \mathbb{M} \quad \Rightarrow \ (\forall x) A(x)|_{\langle s_1, \dots, s_n \rangle} = \mathbb{M} \mathbb{M}$$

$$(\forall x) B(x)|_{\langle S_1,\dots,S_n \rangle} = \text{И. Следовательно},$$

$$\forall \ \tilde{s} \in M \quad A(x)|_{<\tilde{s},s_1,\dots,s_n>} =$$
 И и $\forall \ \tilde{s} \in M \quad B(x)|_{<\tilde{s},s_1,\dots,s_n>} =$ И. Получим,

$$A(x) \& B(x)|_{\leq \tilde{s}, s_1, \dots, s_n >} = \mathbb{M} \ \ \forall \ \tilde{s} \in M \ \ \Rightarrow \ \ (\forall \ x)(A(x) \& B(x))|_{\leq s_1, \dots, s_n >} = \mathbb{M}$$

Доказательство по схеме **пр.ч.** = $\mathbb{N} \Rightarrow \mathbf{л.ч.} = \mathbb{N}$ аналогично (в обратном порядке)

Опровергнем тождество:
$$(\forall x) A(x) \lor (\forall x) B(x) \equiv (\forall x) (A(x) \lor B(x))$$

Контрпример (конкретная интерпретация): $I = \langle N, f \rangle$,

$$f: \begin{cases} A(x) \to x - \text{четное} \\ B(x) \to x - \text{нечетное} \end{cases}$$

Тогда $(\forall x) A(x) - \Lambda u (\forall x) B(x) - \Lambda$. Вся левая часть – Λ .

А правая часть $(\forall x) (A(x) \lor B(x)) = \text{И. Тождество несправедливо.}$

Аналогично опровергнем

$$(\exists x) \ A(x) \ \& \ (\exists x) \ B(x) \equiv \ (\exists x) \ (A(x) \& B(x))$$

$$(\exists x) A(x) \& (\exists x) B(x) = V, \text{ HO } (\exists x) (A(x) \& B(x)) = \Lambda$$

4. Доказать самостоятельно.

$$(\forall x) (\forall y) A(x, y) \equiv (\forall y) (\forall x) A(x, y)$$
. Cxema: $\pi. \cdot \cdot \cdot = \mathsf{M} \subseteq \mathsf{mp. \cdot \cdot} \cdot = \mathsf{M}$.

$$(\exists x) (\exists y) A(x, y) \equiv (\exists y) (\exists x) A(x, y)$$
. Cxema: $\pi.4. = \pi$

Опровергнем тождество: $(\exists x) (\forall y) A(x,y) \equiv (\forall y) (\exists x) A(x,y)$.

Контрпример.
$$I = \langle R, f \rangle$$
, $f: A(x, y) = V \Leftrightarrow x \leq y$

$$(\exists x) \ (\forall y) \ A(x,y) = \Pi, \ (\forall y) \ (\exists x) \ A(x,y) = \ И.$$
 Тождество несправедливо.

Разноименные кванторы переставлять нельзя.

Задачи на экзамене.

Доказать или опровергнуть тождества

1.
$$(\exists x) A(x) \supset B = (\exists x) (A(x) \supset B)$$

2.
$$(\exists x) A(x) \supset B = (\forall x) (A(x) \supset B)$$
.

Решим 1. (
$$\exists x$$
) $A(x) \supset B = \exists (\exists x) A(x) \lor B$, ($\exists x$) ($A(x) \supset B$) = ($\exists x$) ($\exists A(x) \lor B$) $\Rightarrow \exists (\exists x) A(x) \lor B = (\exists x) (\exists A(x) \lor B)$ $\Rightarrow (\forall x) \exists A(x) \lor B = (\exists x) \exists A(x) \lor B$ Контрпример: $I = \langle N, f \rangle$, $f : B(y) \to y < 0$ — тожд. Л, $A(x) \to x$ —чётное ($\forall x$) $\exists A(x) \neq (\exists x) \exists A(x)$.

Решим
$$(\exists x) A(x) \supset B = (\forall x) (A(x) \supset B) \Rightarrow \exists (\exists x) A(x) \lor B = (\forall x) (\exists A(x) \lor B)$$

 $\Rightarrow (\forall x) \exists A(x) \lor B = (\forall x) \exists A(x) \lor B)$