Kvantemekanisk harmonisk svingning og hæve-/sænkeoperatorer

af

Louis Clément

Hillerød Tekniske Gymnasium

SOP fag
Matematik A, Fysik A
SOP vejledere
Mikkel Oglesby
Jacob Skytte Salgaard Bendtsen

6. december 2020

Indhold

L	Gen	nnemgang af matematiske metoder	1
	1.1	Vektorrum	1
	1.2	Linære operatorer	2

1 Gennemgang af matematiske metoder

1.1 Vektorrum

Definition 1.1. Et linært vektorrum \mathbb{V} er defineret over et felt \mathbb{F} (hvor vi stort set kun vil beskæftige os med \mathbb{C}). En $vektor \mid X \rangle$ er da et element af \mathbb{V} . Disse elementer har følgende egenskaber

- En regel for $|V\rangle + |W\rangle$
- En regel for $a | V \rangle$, $\forall a \in \mathbb{F}$
- Distributiv skalar multiplikation for vektorelementer $a(|V\rangle + |W\rangle) = a\,|V\rangle + a\,|W\rangle)$
- Distributiv skalar multiplikation for skalar elementer $(a+b)\,|V\rangle=a\,|V\rangle+b\,|V\rangle$
- Associativ skalar multiplikation $a(b \, | V \rangle) = ab \, | V \rangle$
- Abelsk addition $|V\rangle + |W\rangle = |W\rangle + |V\rangle$
- Associativ addition $|V\rangle + (|W\rangle + |Z\rangle) = (|V\rangle + |W\rangle) + |Z\rangle$
- Nulvektor, $|V\rangle+|0\rangle=|V\rangle$ samt et inverst element der kan fremstille en nulvektor ved addition $|V\rangle+|-V\rangle=|0\rangle$

Definition 1.2. Indre produktrum er et vektorrum \mathbb{V} med et såkaldt indre produkt. Det indre produkt mellem to vektorer V og W betegnes $\langle V|W\rangle$ og overholder

- Symmetri $\langle V|W\rangle=\langle W|V\rangle^*$ hvorledes * betegner komplekst konjugerede for $\mathbb C$
- $\langle V|V\rangle \ge 0$ og $\langle V|V\rangle = 0 \iff |V\rangle = |0\rangle$

•
$$\langle V | (a | W \rangle + b | Z \rangle) \rangle = \langle V | aW + bZ \rangle = a \langle V | W \rangle + b \langle V | Z \rangle$$

Det indre produkt kan defineres mere eksplicit som

$$\langle V|W\rangle = \sum_{i} \sum_{j} v_{i}^{*} w_{j} \delta_{ij}$$

$$= \sum_{i} v_{i}^{*} w_{i}$$
(1.1)

for en ortonormal basis, derfor $\delta_{ij} = \langle i|j\rangle$

1.2 Linære operatorer

Definition 1.3. En linær operator eller linær transformation T er en funktion $T: \mathbb{V}_1 \to \mathbb{V}_2$ således at

$$T(cv_1 + v_2) = c(Tv_1) + Tv_2 (1.2)$$

Definition 1.4. En kommutator er defineret som

$$[\Omega, \Lambda] = \Omega \Lambda - \Lambda \Omega \tag{1.3}$$

Definition 1.5. Enhver operator i $\mathbb{V}^n(C)$ har n eigenværdier. Eigenværdiligningen (en omskrevet version) er

$$(\Omega - \omega \hat{I}) |V\rangle = |0\rangle \tag{1.4}$$

Betingelsen for eigenvektorer (som aldrig er nulvektoren) er

$$\det\left(\Omega - \omega\hat{I}\right) = 0\tag{1.5}$$

hvor \hat{I} er identitetsoperatoren. Vi kan omskrive eigenværdiligningen (i Matrix-repræsentation) til

$$\sum_{j} (\Omega_{ij} - \omega \delta_{ij}) v_j = 0 \tag{1.6}$$

Sættes determinanten til 0 får vi karakterligningen (hvor c_w er $\det(\Omega_{ij})\hat{I}\,|w\rangle)$

$$\sum_{m=0}^{n} c_w \omega^m = 0 \tag{1.7}$$

og karakterpolynomiet

$$P^{n}(\omega) = \sum_{m=0}^{n} c_{w} \omega^{m} \tag{1.8}$$

Eksempel 1.5.1. Rotationsoperatoren $R(\frac{1}{2}\pi e_x)$ kan repræsenteres ved en matrix således

$$R\left(\frac{1}{2}\pi e_x\right) \leftrightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \end{bmatrix}$$

Da kan vi skrive karakterligningen som

$$\det(\Omega - \omega \hat{I}) = \begin{vmatrix} 1 - \omega & 0 & 0 \\ 0 & -\omega & -1 \\ 0 & 1 & -\omega \end{vmatrix} = 0$$

Hvor karakterpolynomiet kan skrives som $(1 - \omega)(\omega^2 + 1) = 0$, og $\omega \in \{1, i, -i\}$.

Sætter vi $\omega=1$ ind i (1.6) får vi

$$\begin{bmatrix} 1-1 & 0 & 0 \\ 0 & 0-1 & -1 \\ 0 & 1 & 0-1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{cases} 0=0 \\ x_2 - x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

Hvorfor $x_2=x_3=0$. Da $\omega=1$ er lignende $|1\rangle$ får vi at enhver vektor af nedenstående form er acceptabel

$$x_1 | 1 \rangle \leftrightarrow \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$$