Chapitre 3

Intérêts composés et Annuités

1 Intérêts composés

Définition. Un capital est placé à intérêts composés, lorsque à la fin de chaque période de placement, l'intérêt simple de cette période est ajouté au capital initial pour produire un intérêt simple à son tour pendant la période suivante.

En intérêts composés, les intérêts sont ajoutés au capital. On dit qu'ils sont capitalisés à la fin de chaque période.

La capitalisation des intérêts est généralement annuelle mais elle peut être semestrielle, trimestrielle, mensuelle ou autre (selon la période).

■ Valeur acquise (ou valeur définitive)

 \blacktriangleright La durée de placement est un nombre entier de périodes :

Si on désigne par :

 C_0 : le capital initial.

n: le nombre de périodes.

i : taux d'intérêt par période.

 C_n : le capital « définitif » acquis à la fin de la $n^{\grave{e}me}$ période.

Période	Capital placé au début de période	Intérêts payés à la fin de chaque période	valeur acquise en fin de période
1	C_0	$C_0 i$	$C_1 = C_0 + C_0 i$ $= C_0 (1+i)$
2	C_1	$C_1 i$	$C_2 = C_1 + C_1 i$ $= C_1 (1+i)$ $= C_0 (1+i)^2$
3	C_2	C_2i	$C_3 = C_2 + C_2 i$ $= C_2 (1+i)$ $= C_0 (1+i)^3$
n	C_{n-1}	$C_{n-1}i$	$C_{n} = C_{n-1} + C_{n-1}i$ $= C_{n-1}(1+i)$ $= C_{0}(1+i)^{n}$

La formule générale de la valeur acquise (ou définitive) à intérêts composés est :

$$C_n = C_0(1+i)^n$$

L'intérêt total (ou global) à payer (le coût de l'emprunt) est :

$$I_G = C_0(1+i)^n - C_0 = C_0((1+i)^n - 1)$$

Exemple: Soit un capital de 10 000 DH placé pendant 3 ans à intérêts composés au taux annuel de 10%.

On a:

$$C_3 = 10\ 000 \times (1+0.1)^3 = 10\ 000 \times 1.1^3 = 13\ 310\ \mathrm{DH}$$

Soit un intérêt total:

$$I_G = 13 \ 310 - 10 \ 000 = 3310 \ \mathrm{DH}$$
.

Remarque : Dans la formule donnant la valeur acquise à intérêts compoés, il y a concordance entre les taux et les périodes considérées. En effet,

- le nombre n de périodes est en années si i est un taux annuel;
- le nombre n de périodes est en semestres si i est un taux semestriel;
- le nombre n de périodes est en trimestres si i est un taux trimestriel;
- le nombre n de périodes est en mois si i est un taux mensuel.
 - ▶ La durée de placement est un nombre fractionnaire de périodes :

Exemple: Quelle est la valeur acquise au bout de 5 ans et 3 mois d'un capital de 12 000 DH placé à intérêts composés au taux annuel de 7,5%.

a) La solution rationnelle

Dans ce cas, on considère que la valeur acquise au bout de 5 ans, C_5 , reste placée à intérêts simples pendant 3 mois.

Ce qui donne

$$C_{5+\frac{3}{12}} = C_5 + C_5 \times \frac{3}{12} \times 0.075$$

Comme

$$C_5 = 12~000 \times 1.075^5 = 17~227,55~\mathrm{DH}$$

On obtient alors

$$C_{5+\frac{3}{12}} = 17550, 57$$
 DH

b) La solution commerciale

Dans la pratique, on généralise la formule des intérêts composés au cas où n (n est le nombre de périodes!!) n'est pas un nombre entier de périodes :

$$C_n = C_0(1+i)^n$$

même si n n'est pas entier.

Dans notre exemple, avec la solution commerciale on obtient :

$$C_{5+\frac{3}{12}}=12000\times 1.075^{5+\frac{3}{12}}=17541,86$$
 DH

Remarque

La valeur acquise donnée par la solution commerciale est toujours inférieure à celle donnée par la solution rationnelle.

On adopte toujours la solution commerciale sauf indication contraire.

On dit alors que la capitalisation est continue.

■ Valeur actuelle

La valeur actuelle est la somme C_0 qu'il faut placer aujourd'hui à intérêt composé pour obtenir C_n après n période de placement. C'est le processus inverse de la capitalisation qui s'appelle actualisation.

$$C_0 = C_n (1+i)^{-n}$$

Exemple: Quelle somme faut-il placer maintenant à intérêt composé au taux annuel de 7% pour obtenir au bout de 4 ans une valeur définitive de 75000 dh?

On a
$$C_0 = 75000(1,07)^{-4}$$
 donc $C_0 = 57217, 14$ DH.

■ Taux proportionnels et taux équivalents

► Taux proportionnels

Définition. Deux taux sont proportionnels lorsque leur rapport est égal au rapport des durées de leurs périodes respectives.

Exemple: Au taux annuel de 10% correspond le taux semestriel « proportionnel » de 5% et le taux trimestriel « proportionnel » de 2,5%.

5% et le taux trimestriel « proportionnel » de 2,5%.
En effet :
$$\frac{10}{5} = \frac{1 \text{ ann\'ee}}{1 \text{ semestre}} = 2$$
 et $\frac{10}{2,5} = \frac{1 \text{ ann\'ee}}{1 \text{ trimestre}} = 4$

En intérêts simples, deux taux proportionnels produisent sur un même capital les mêmes intérêts au bout du même temps. Il n'en est pas de même dans le cas des intérêts composés.

Exemple Calculons l'intérêt simple produit par un capital de 10000 DH placé pendant un an au taux annuel de 10%

Période	Taux	Durée de placement	Valeur acquise
1 année	10%	1 année	$10000 \times (1+0, 1 \times 1) = 11000$
1 semestre	5%	2 semestres	$10000 \times (1+0,05 \times 2) = 11000$
1 trimestre	2.5%	4 trimistres	$10000 \times (1+0,025 \times 4) = 11000$

Maintenant, reprenons le même exemple mais en utilisant les intérêts composés.

Période	Taux	Durée de placement	Valeur acquise
1 année	10%	1 année	$10000 \times (1+0,1) = 11000$
1 semestre	5%	2 semestres	$10000 \times (1+0,05)^2 = 11025$
1 trimestre	2.5%	4 trimistres	$10000 \times (1+0,025)^4 = 11038,13$

En intérêts composés et à taux proportionnels les valeurs acquises par un même capital pendant une même durée augmentent quand les périodes de capitalisation deviennent plus petites. D'où le recours au taux équivalents.

► Taux équivalents

Définition. Deux taux sont équivalents lorsque, à intérêts composés, ils aboutissent pour un même capital, à la même valeur acquise pendant la même durée de placement

De manière générale, deux placements définis respectivement par leurs taux $(i_1$ et i_2) et par leurs périodes $(p_1$ et p_2). Les placements sont effectués à taux équivalent s'ils aboutissent pour un même capital C_0 à la même valeur acquise.

C'est-à-dire:

$$C_0(1+i_1)^{p_1} = C_0(1+i_2)^{p_2}$$

Exemple: Quel est le taux semestriel équivalent au taux annuel de 10%? Le taux annuel est $i_a = 10\%$. Soit i_s le taux semestriel équivalent. On a :

$$C_0(1+i_a)^1 = C_0(1+i_s)^2.$$

Donc

$$(1+0,10)^1 = (1+i_s)^2$$

1,1 = $(1+i_s)^2 \Longrightarrow 1+i_s = 1, 1^{\frac{1}{2}} \Longrightarrow i_s = 1, 1^{\frac{1}{2}} - 1 = 0,0488$

Ainsi,

$$i_s = 4,88\%.$$

Exemple: Quel est le taux annuel équivalent au taux mensuel de 1%? Le taux mensuel est $i_m = 1\%$. Soit i_a le taux annuel équivalent. On a :

$$(1+i_a)^1 = (1+i_m)^{12}.$$

Donc

$$1 + i_a = (1 + 0.01)^{12}$$
$$1 + i_a = 1,01^{12} \Longrightarrow i_a = 1,01^{12} - 1 = 0,1268$$

Ainsi,

$$i_a = 12,68\%.$$

2 Annuités

Définition

- On appelle annuité une suite de règlements « versements » effectués à intervalles de temps égaux.
- La période est l'intervalle de temps entre deux règlements consécutifs.
- Si les versements sont égaux, on parle d'annuité constante.
- Si la période est différente de l'année, on parle de semestrialités, mensualités ...

Remarque

Lorsqu'on parle de semestrialités, mensualités, etc., il faut utiliser les taux d'intérêts équivalents appropriés.

■ Annuité : cas général

On considère une suite de n versements A_k effectués aux époques k.

Soit i le taux d'intérêt correspondant à la période.

Sur un axe de temps, on peut représenter la succession des versements de la manière suivante :

 V_a : est la valeur actuelle de l'ensemble des n versements à la date 0.

 V_A : est la valeur acquise de l'ensemble des n versements à la date du dernier.

▶ Valeur acquise « Constitution d'un capital »

La Valeur acquise se calcule à la date du dernier versement : c'est la somme capitalisée des n versements.

Le tableau suivant donne la valeur acquise de chaque versement à la date n:

Versements	Date	Nombre de périodes restantes	Valeurs acquises
A_1	1	n-1	$A_1(1+i)^{n-1}$
A_2	2	n-2	$A_2(1+i)^{n-2}$
A_3	3	n-3	$A_3(1+i)^{n-3}$
A_k	k	n-k	$A_k(1+i)^{n-k}$
	•••		
A_n	n	0	A_n

La valeur acquise V_A est donc donnée par :

$$V_A = A_1(1+i)^{n-1} + A_2(1+i)^{n-2} + \dots + A_k(1+i)^{n-k} + \dots + A_n$$

$$V_A = \sum_{k=1}^n A_k (1+i)^{n-k}$$

Exemple : On verse 1000 DH le 01/5/2004, puis 2000 DH le 01/5/2005 et 3000 DH le 01/5/2006.

Quelle est la valeur acquise de ces trois versements au taux annuel i = 8%?

$$V_A = 1000 \times 1,08^2 + 2000 \times 1,08 + 3000 = 6326,40$$

▶ Valeur actuelle « Remboursement d'une dette »

La valeur actuelle se calcule à la date 0: c'est la somme actualisée des n versements.

Le tableau suivant donne la valeur actuelle de chaque versement à la date 0 :

Versements	Date	Nombre de périodes précédentes	Valeurs actualisées
A_1	1	1	$A_1(1+i)^{-1}$
A_2	2	2	$A_2(1+i)^{-2}$
A_3	3	3	$A_3(1+i)^{-3}$
	•••		
A_k	k	k	$A_k(1+i)^{-k}$
A_n	n	n	$A_n(1+i)^{-n}$

La valeur actuelle V_a est donnée donc par :

$$V_a = A_1(1+i)^{-1} + A_2(1+i)^{-2} + \dots + A_k(1+i)^{-k} + \dots + A_n(1+i)^{-n}$$

$$V_a = \sum_{k=1}^{n} A_k (1+i)^{-k}$$

Exemple : Calculer la valeur actuelle des trois versements précédents : « 1000 DH le 01/5/2004, puis 2000 DH le 01/5/2005 et 3000 DH le 01/5/2006 au taux annuel i=8% »

$$V_a = 1000 \times 1,08^{-1} + 2000 \times 1,08^{-2} + 3000 \times 1,08^{-3} = 5022,1 \text{ DH }.$$

Remarque : On vérifie que : $V_a = V_A(1+i)^{-n}$ et $V_A = V_a(1+i)^n$.

Dans notre exemple : $V_a = 6326, 4 \times 1, 08^{-3} = 5022, 1$ DH.

■ Cas particulier « annuités constantes »

Quelque soit k, $A_k = a$, on a alors :

La valeur acquise:

$$V_A = \sum_{k=1}^n A_k (1+i)^{n-k}$$

$$= A_1 (1+i)^{n-1} + A_2 (1+i)^{n-2} + \dots + A_n$$

$$= a ((1+i)^{n-1} + (1+i)^{n-2} + \dots + 1)$$

$$= a \frac{(1+i)^n - 1}{(1+i) - 1}.$$

Donc

$$V_A = a \frac{(1+i)^n - 1}{i}.$$

La valeur actuelle:

$$V_{a} = \sum_{k=1}^{n} A_{k} (1+i)^{-k}$$

$$= a((1+i)^{-1} + (1+i)^{-2} + \dots + (1+i)^{-n})$$

$$= a(1+i)^{-n} ((1+i)^{n-1} + (1+i)^{n-2} + \dots + 1)$$

$$= a(1+i)^{-n} \frac{(1+i)^{n} - 1}{(1+i) - 1}.$$

Donc

$$V_a = a \frac{1 - (1+i)^{-n}}{i}.$$

Remarque : On peut calculer la valeur actuelle directement à partir de la valeur acquise calculée précédemment :

$$V_a = V_A \times (1+i)^{-n} = a \frac{(1+i)^n - 1}{i} \times (1+i)^{-n} = a \frac{1 - (1+i)^{-n}}{i}$$

Exemple: 4 annuités constantes de 5000 DH sont versées périodiquement à partir du premier janvier 2002 au taux annuel 10%.

Calculer leur valeur actuelle et leur valeur acquise.

On a a = 5000

Valeur acquise au premier janvier 2005:

$$V_A = 5000 \frac{(1+0,1)^4 - 1}{0,1} = 23205 \text{ DH}.$$

Valeur actuelle au premier janvier 2001:

$$V_a = 5000 \frac{1 - (1 + 0, 1)^{-4}}{0, 1} = 15849, 33 \text{ DH}.$$

■ Remboursement d'une dette

Une personne emprunte une somme d'argent C à un taux d'intérêt i qu'elle désire rembourser au moyen de n versements périodiques A_k (ici on traite la cas général). Les versements se font une période après la date de l'emprunt.

La valeur actuelle des n versements doit être égale au montant de l'emprunt C. On doit donc avoir :

$$C = \sum_{k=1}^{n} A_k (1+i)^{-k}$$

Si les remboursements sont constants de valeur a, on a :

$$C = a \frac{1 - (1+i)^{-n}}{i}$$

Montant des annuités constantes de remboursement :

Si l'on connaît le montant de l'emprunt C, le taux d'intérêt i et le nombre de remboursements n, on peut déterminer le montant a des remboursements s'ils sont constants : On a

$$C = a \frac{1 - (1+i)^{-n}}{i} \iff a = C \times \frac{i}{1 - (1+i)^{-n}}$$

Exemple: Une personne contracte un emprunt d'un montant 100 000 DH et elle souhaite le rembourser en 12 versements (périodes) égaux au taux d'intérêt par période 13%. Calculer le montant de ces remboursements.

Le montant des remboursements est donné par :

$$a = 100000 \times \frac{0.13}{1 - (1.13)^{-12}} = 16898,61 \text{ DH}.$$

Quel est le coût de cet emprunt?

La personne a emprunté 100000 DH et doit rembourser $12 \times 16898, 61 = 202783, 30$ DH. Le coût de l'emprunt est donc égal à :

$$202783, 30 - 100000 = 102783, 30 \text{ DH}.$$

Remarquer que dans cet exemple, le coût de l'emprunt est supérieur à son montant