

Bayesian Analysis: An Illustrative Application

Andreas Schwab

Iowa State University

Academy of Management Conference 2023

- Bayesian statistics offer an established methodology for drawing inferences and assessing plausibility of theories.
- Bayesian analysis advantages
 - Predictive probability statements for hypothesized effects based on the specific observed data
 - Enables incorporating of prior knowledge into the estimation of hypothesized effects
 - Encourages the comparison of alternative models

Bayesian analysis

- Distinctly different from Statistical Significance Tests
- 3 Steps of Bayesian Analysis
 - (1) Specify Prior Distributions
 - (2) Estimate Posterior Distribution using collected data to update Prior Distributions
 - (3) Use Posterior Distribution to evaluate hypotheses

Bayesian Analysis Step 1: Specify Prior Distributions

- Specify upfront a "prior" probability distribution for hypothesized effects based on what we already know about this effect.
- Alternative approaches
 - Uninformed priors
 - Previously published research
 - Theory-based priors
 - Experts and knowledgeable individuals
 - Sequential priors based on earlier gathered data

Bayesian Analysis Step 2: Estimate Posterior Distribution

$$p(\theta|data) \propto p(data|\theta)p(\theta)$$

"posterior" ∝ "likelihood" × "prior"

- Bayesian analyses calculate posterior distributions of the proposed effects by updating the expected distribution (prior) using the observed data (likelihood).
- Markov Chain Monte Carlo (MCMC) sampling to perform this update ("Bayesian Magic").

Bayesian Analysis Step 3: Evaluate Posterior Distribution

- Posterior distributions enable evaluation of both the strength and uncertainty of hypothesized effects.
- Posterior distributions also enable the comparison of alternative models – including models employing different prior distributions.

Bayesian Studies: An Illustrative Example

Hansen, Perry, & Reese (2004). A Bayesian Operationalization of the Resource-Based View. *Strategic Management Journal*.

- Research Objective:
 Effects of administrative decisions on firm performance.
- Hypothesis: Buying organizational units improves firm financial returns.
- Method:
 - Bayesian hierarchical linear analysis that also accounts for industry, firm, and year effects.
 - Markov-Chain Monte Carlo sampling
 - Flat "uninformed" priors (with robustness checks for alternative priors)

Hansen, Perry, & Reese (2004). A Bayesian Operationalization of the Resource-Based View. *Strategic Management Journal*.

Results: Probabilities for Effects of
 Administrative Actions on Firm Performance

Actions	Accounting Returns
Buying units	0.8111
Selling units	0.5584
Org. restructuring	0.9274
Alliances	0.4571
Hiring	0.5867
New Markets	0.4646
Finanical restructuring	0.0516
Personnel changes	0.1169
Lay-offs	0.3082
New products	0.7434

Buying units has a 81% probability of improving firm performance.

Hansen, Perry, & Reese (2004). A Bayesian Operationalization of the Resource-Based View. *Strategic Management Journal*.

Posterior Distribution of Effects on Firm Performance

Hansen, Perry, & Reese (2004). A Bayesian Operationalization of the Resource-Based View. *Strategic Management Journal*.

Posterior Distribution of Effects on Firm Performance

Conclusions

- Bayesian analyses can be applied to virtually any research question, statistical problem, and empirical context.
- Prior distributions create opportunities for integrating prior research for better accumulating knowledge across studies.
- In the past, the execution of Bayesian analysis difficult was difficult and sometimes tedious.

Useful guides for Bayesian applications

Richard McElreath (2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan