AUGMENTED REALITY FOR MARITIME NAVIGATION ASSISTANCE

Paper done by Julia Hertel and Frank Steinicke

2021 IEEE Virtual Reality and 3D User interfaces (VR)

27 March – 1 April

Frederico Vieira nº mec : 98518

Ricardo Antunes nº mec: 98275

Pages: 9

Human-Computer-Interaction 6 April 2022

Motivation

- It is the 1st experiment that studies depth perception in outdoor environments
- Interesting topic
- May improve navigation assistance interfaces

Introduction:

• This work consist of carrying out an experiment to improve maritime navigation.

- It was intended to change:
 - 2D Radar;
 - The concentration on driving;
 - The focus on some critical moments

Objectives

- Two fundamental questions:
 - 1. How accurate do persons perceive large egocentric distances in outdoor environments using OSTAR?
 - 2.How are different design attributes influencing the depth perception?

Experiences

• One to investigate perception of depth, accuracy and influence of different attributes design has.

• Study on a boat to verify the validity of the first results

BACKGROUND

ASSESSING DEPTH PERCEPTION:

Depth Cues in Vista Space

- According to Cutting the egocentric space around a person can be divided into three bands:
 - 1. Personal space (o-2m)
 - 2. Action space (2-30m)
 - 3. View space (30m-infinite)

The Influence of Visual Attributes in AR

• In general, cold colors are perceived further away than warm colors.

 Objects with high luminosity are perceived closer than objects with low luminosity.

• The texture gradient influences the depth perceived by the human visual system.

Overview

- In line with previous research:
 - (i) coloring;
 - (ii) shape;
 - (iii) relation to the floor;

Overview

Table – Experimental Design

	Variable name	Levels / Values / Unit
Independent	Coloration	Red
variables		Blue
		Checkered
	Shape	Torus
		Cube
	Relation to floor	On-ground
		Off-ground without shadow
		Off-ground with shadow
	Target distance	15m, 30m,
		45m, 60m, 75m
Random	Initial depth	2 - 90m
factors	Yaw rotation	-45°- 45°
	Size	0.75m - 1.25m
Dependent variable	Signed error	m

Hypotheses

H1: Virtual objects will be perceived farther away in action space (15 and 30m) and closer in vista space (45, 60, and 75m).

H2: The matching task error will increase with an increasing target distance.

H₃: The object's coloration will influence on the matching task error.

H4: A torus shape will decrease the matching task accuracy compared to cube-shaped object.

H₅: The relation to floor will influence the matching task error.

Setup

- Headset Microsoft HoloLens 21
- 3D engine Unity2
- Microsoft Mixed Reality Toolkit (version 2.4)
- Microsoft Xbox One controller
- Noise-cancelling headphones
- Empty parking lot with a length of 8om.

Implementation

• Participants performed the task by translating the virtual objects to the desired position using the controller's joystick.

Experimental Task and Procedure

3 blocks trials with 90 conditions

270 trials with 5 training trials

15 participants

Results

Results

Pilot Study

- Study carried out on a boat;
- Objective:
 - user to move the 3D objects with different colors and try to distinguish them

Pilot Study- Results

- Participant reported that blue objects were more difficult to see and locate than red ones.
- This time we also included white objects. As expected, these performed even better than the reds.

CONCLUSION

signature