ELETTROMAGNETISMO: piselli, erezioni e cazzi

Nico
Nico (Pipo Pipo), Michele Pisellini (michigay)

A.A. 2025/2026

Premessa

Non promettiamo rigore e assoluta correttezza nei seguenti appunti, visto che già è stato difficile cercare di seguire il buon Morgante ed i suoi giri pindarici durante le lezioni. Speriamo che tutto il nostro lavoro ed olio di gomito (stiamo copiando da appunti già esistenti e Griffiths) vi possano aiutare in questa materia, che tutt'ora non abbiamo capito se abbia o meno un ordine preciso, o se sia a libera interpretazione di chi la studia.

PS: non intendiamo in alcun modo seguire la sua notazione, ci teniamo alla vostra e sopratutto alla nostra saluta mentale.

 $\underbrace{\lim_{t \to \infty} \text{percezione del tempo}(t) = \lim_{i \to \infty} \text{bestemmie}_i}_{\textbf{Legge Morgantica}}$

Indice

1	Introduzione matematica 9					
	1.1	Flusso di un campo attraverso una superficie				
	1.2	Divergenza				
	1.3	Gradiente, lavoro e campi conservativi				
	1.4	Rotore				
2	Inti	Introduzione all'elettrostatica 1				
	2.1	Legge di Coulomb				
		2.1.1 Principio di sovrapposizione				
	2.2	Il campo elettrico				
		2.2.1 Distribuzioni continue di cariche				
	2.3	Esempi				
		•				
3	\mathbf{Leg}	ge di Gauss				
	3.1	Linee di forza del campo elettrico				
	3.2	Legge di Gauss				
		3.2.1 Formulazione infinitesimale e I legge di Maxwell				
	3.3	Esempi				
4	Il p	otenziale elettrico				
	4.1	Il rotore di E				
	4.2	Introduzione al potenziale				
	4.3	Potenziale della carica puntiforme				
	4.4	Potenziale di una distribuzione uniforme di carica				
	4.5	Esempi				
	4.6	Equazione di Poisson				
	4.7	Condizioni al contorno / Boundary conditions				
5	Lavoro ed energia elettrostatica 28					
	5.1	Energia di un sistema discreto di cariche				
	5.2	Energia di un sistema con distribuzione continua di carica				
	5.3	Esempi				
6	Ma	teriali conduttori e isolanti 29				
	6.1	Campo elettrico in un materiale conduttore				
		6.1.1 Esempi				
		6.1.2 Gabbia di Faraday				
	6.2	Capacità e condensatori				
		6.2.1 Condensatore all'infinito				
	6.3	Energia immagazzinata in un condensatore				
	6.4	Condensatore piano				
	6.5	Condensatore sferico				
	6.6	Condensatore cilindrico 3				

6 INDICE

7	I di	poli elettrici	33
	7.1	Potenziale e campo elettrico di dipolo	33
	7.2	Momento di dipolo di un sistema	33
	7.3	Interazioni di dipolo in un campo elettrico di stimolo	33
	7.4	Forza ed energia elettrostatica	33
		7.4.1 Interazione dipolo-carica	33
		7.4.2 Interazioni tra due dipoli	33
8	\mathbf{Cor}	renti elettriche e campo di polarizzazione	35
	8.1	La densità di corrente elettrica	35
	8.2	La corrente	35
	8.3	Legge di conservazione della carica	35
		8.3.1 Modelliziamo l'atomo	36
	8.4	Carica elettrica legata e libera	36
	8.5	Campo di polarizzazione	36
	8.6	Densità di carica superficiale nei materiali	36
	8.7	La pila di volta	36
	8.8	Potenza elettrica	36
	8.9	Leggi di Ohm	36
		8.9.1 Legge di Ohm locale	36
		8.9.2 Legge di Ohm (macroscopica)	36
_	~		~_
9		npi elettrici nei materiali	37
	9.1	Gabbia di Faraday	37
	9.2	Condensatori in serie e parallelo	37
		9.2.1 In serie	37
	0.0	9.2.2 In parallelo	37
	9.3	Campo di spostamento dielettrico	37
	9.4	Relazione costitutiva interna	37
	9.5	Condensatori reali	37
		9.5.1 Condensatore piano con dielettrico	37
		9.5.2 Considerazioni	37
	0.0	9.5.3 Condensatore piano con conduttore	37
	9.6	Esempi	37
	9.7	Interfaccia vuoto – dielettrico	39
	9.8	Problema di Dirichlet	40
10	Inte	erazioni e campi di risposta	41
		Interazione carica-carica indotta	41
	10.1	10.1.1 Caso limite $r \rightarrow r_0$	42
		10.1.2 Applicazione: estrazione di un elettrone da un metallo	43
	10.2	Carica superficiale indotta — Esercizio	43
		Interazione carica-dipolo indotto	44
		Sfere con distribuzione di carica opposta	46
		Polarizzazione di una sfera dielettrica	47
11	Mag	gnetismo	49
	11.1	Introduzione	49
		11.1.1 Momento di dipolo magnetico	49
	11.2	Legge di Biot–Savart	49
		II equazione di Maxwell e note sulla magnetostatica	50
	11.4	Forza di Lorentz	50
	11.5	Campo di magnetizzazione	50
		11.5.1 Interpretazione	50
	11.6	Esempi	50

INDICE 7

	ge di Ampere-Maxwell e campo magnetico H	51
12.1	IV equazione di Maxwell	51
12.2	Teorema di equivalenza di Ampère	51
12.3	Esempi	51
13 Pot	enziale vettore di Ampère	53
	Esempi	53
	Legge di Biot–Savart	53
	Esempi aggiuntivi	53
	Interazioni magnetiche	53
14 Cor	ne i materiali reagiscono ai campi magnetici di stimolo	55
	Relazione costitutiva interna	55
	Misure di suscettività magnetica	55
15 Stri	umenti e applicazioni	57
	Amperometro	57
10.1	15.1.1 Misure stazionarie di conducibilità	57
15.2	Modello a tempo di rilassamento	57
15.2	Effetto Hall	57
	Effetto Joule	57
	Leggi di Kirchhoff	57
	Circuito RC ed energia dissipata	57
	Studio dei condensatori con dielettrico	57
19.1	15.7.1 Densità di energia elettrica	57
	15.7.2 Forze che agiscono sul dielettrico	57
16 Intr	roduzione all'elettrodinamica	59
	Forza di Lorentz e moti di ciclotrone	59
	Relatività del campo elettrico	59
	Legge di induzione	59
	III legge di Maxwell	59
	Esempi	59
	Forze magnetodinamiche	59
10.0	16.6.1 Esempi	59
16.7	Alternatore—Generatore di corrente monofase	59
17 Ind	uttanza e circuiti	61
	Induttanza	61
	Densità di energia magnetica	61
	Circuiti RCL in serie in regime transitorio	61
		61
17.4	Circuiti RCL in regime armonico	61
		01
	teriali ferromagnetici	63
	Legge di Felici	63
	Ciclo di isteresi	63
	Magneti permanenti	63
	Campi magnetici nei materiali lineari	63
	Interfaccia tra due materiali lineari	63
	Esempi	63
	Circuiti magnetici	63
18.8	Trasformatore	63

8 INDICE

Introduzione matematica

Riassumiamo in questa sezione gli strumenti matematici necessari in questo corso. Il consiglio spassionato che vi sentiamo di darvi è quello di fare Analisi 2 prima di Elettromagnetismo, fidatevi che vi si semplificheranno parecchie robe (anche perché ci rifiutiamo di rifare nei particolari tutta la parte sugli integrali della fisica che trovate comodamente sui pdf del corso di Sfecci).

1.1 Flusso di un campo attraverso una superficie

Prendiamo un generico campo vettoriale \vec{C} ed una qualsiasi superficie S. Definiamo il flusso del campo attraverso la superficie come

$$\phi_{\vec{C},S} = \int_{S} \vec{C}(\vec{r}) \cdot \hat{n} dS$$

Se il campo considerato è uniforme, ossia ha sempre la stessa direzione, verso e modulo, e la superficie S è una superficie piana, abbiamo banalmente che

$$\phi_{\vec{C},S} = |\vec{C}|S\cos(\theta)$$

dove θ è l'angolo che il campo forma con il versore della superficie.

Nel caso in cui S sia una superficie, il suo versore normale è positivo, orientato verso l'esterno e la notazione diventa

$$\phi_{\vec{C},S} = \oint_S \vec{C}(\vec{r}) \cdot \hat{n} dS$$

Il "simbolo di vettore" sui campi, è proprio per dire che stiamo considerando delle funzioni vettoriali, cioè che prendono dei vettori e li mandano in altri vettori. Per quelli (sani) che preferiscono un pizzico di rigore matematico in più, stiamo semplicemente considerando delle funzioni

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$

In parole povere tutte le volte che parliamo di "campi", e vedete delle funzioni che hanno il simbolo di vettore sopra, stiamo prendendo la funzione appena scritta.

1.2 Divergenza

Definiamo la divergenza di un campo vettoriale nel seguente modo:

$$\lim_{dV \to 0} \frac{\oint \vec{E}(\vec{r}) \cdot \hat{n}dS}{dV} = \text{div}\vec{E}(\vec{r})$$

dove dV è il volume contenuto dalla superficie chiusa dS. Prendiamo ora questa superficie e dividiamola in 2 parti. Il flusso di 1 su 2 e di 2 su 1 si annullano tra loro. Possiamo considerare anche "infiniti" tagli su tutta la superficie, il che ci permette di ricavare

$$\int_{V_s} \operatorname{div} \vec{C}(\vec{r}) dV = \int_{V_s} \left(\oint_S \vec{E}(\vec{r}) \cdot \hat{n} dS \frac{1}{dV} \right) dV = \oint_S \vec{E}(\vec{r}) \cdot \hat{n} dS$$

che va sotto il nome di **teorema della divergenza**. Ovviamente questa non è in alcun modo una dimostrazione rigorosa di questo teorema, ma d'altronde siamo fisici e non matematici, perciò possiamo tranquillamente andare avanti.

Alcuni di voi si chiederanno, ma io ogni volta che devo ricavarmi la divergenza di un campo devo calcolarmi un integrale di superficie? La risposta è assolutamente no, anzi la formula per calcolare la divergenza è davvero molto molto semplice. Vediamo ora come ricavarla. Vogliamo calcolare il flusso di un campo attraverso un cubo di volume infinitesimo dV = dxdydz. Consideriamo la faccia dydz, la quale ha flusso $E_x(x+dx,y,z)dydz$, mentre la faccia opposta ha flusso $-E_x(x,y,z)dydz$. La somma dei due flussi ci da dunque come risultato

$$[E_x(x+dx,y,z) - E_x(x,y,z)] dydz = \frac{\partial E_x}{\partial x} dxdydz$$

dove nell'uguaglianza abbiamo brutalmente moltiplicato e diviso per dx (ricordo che siamo fisici e non matematici). Ripetiamo questo procedimento per tutte le facce del cubo e sommiamo:

$$\frac{\partial E_x}{\partial x} dx dy dz + \frac{\partial E_y}{\partial y} dx dy dz + \frac{\partial E_z}{\partial z} dx dy dz$$

e dividiamo per dV:

$$\operatorname{div} \vec{E}(\vec{r}) = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \vec{\nabla} \cdot \vec{E}$$

1.3 Gradiente, lavoro e campi conservativi

Consideriamo adesso una funzione della sola posizione, ossia una funzione scalare $f(\vec{r})$. Premettiamo subito per i mathematical addicted che ora stiamo considerando funzioni del tipo

$$f: \mathbb{R}^3 \to \mathbb{R}$$

Definiamo il gradiente di f come una quantità vettoriale che ci fornisce informazioni sulla direzione di massima variazione della funzione, e la ricaviamo come segue:

$$f(\vec{r} + d\vec{s}) - f(\vec{r}) = d\vec{s} \cdot \vec{\nabla} f(\vec{r}) = dx \frac{\partial f(\vec{r})}{\partial x} + dy \frac{\partial f(\vec{r})}{\partial y} + dz \frac{\partial f(\vec{r})}{\partial z}$$

perciò il gradiente è il seguente vettore

$$\operatorname{grad} f(\vec{r}) = \vec{\nabla} f(\vec{r}) = \left(\frac{\partial f(\vec{r})}{\partial x}, \frac{\partial f(\vec{r})}{\partial y}, \frac{\partial f(\vec{r})}{\partial z} \right)$$

Infine, riprendiamo dalla dinamica la definizione di lavoro di una forza come integrale di linea:

$$L = \int_{a}^{b} \vec{F} \cdot d\vec{s}$$

1.4 Rotore

Consideriamo le circuitazioni di un campo vettoriale su una qualsiasi curva chiusa γ , ossia

$$\oint_{\gamma} \vec{E} \cdot d\vec{s}$$

1.4. ROTORE 11

Se adesso dividiamo la curva in altre due γ_1 e γ_2 , l'integrale di linea sarà la somma dei due integrali sulle due nuove curve. I contributi sulla linea dove abbiamo diviso il cammino originale saranno ovviamente nulli, dato che la percorriamo una volta in un senso e l'altra nell'altro. Possiamo quindi suddividere il percorso in intervalli infinitesimali, ottenendo così:

$$\hat{n} \cdot \operatorname{rot} \vec{E}(\vec{r}) = \lim_{dS \to 0} \frac{\oint_{\gamma} \vec{E} \cdot d\vec{s}}{dS}$$

dove \hat{n} è il versore normale alla superficie. Valutiamo ora come calcolare il rotore in coordinate cartesiane, considerando come prima un cubo di volume dV = dxdydz. Calcoliamo l'integrale di linea considerando i tratti opposti tra loro.

$$E_x(x,y,z)dx - E_x(x,y+dy,z)dx = [E_x(x,y,z) - E_x(x,y+dy,z)]dx = -\frac{\partial E_x(x,y,z)}{\partial y}dydx$$

$$E_y(x+dx,y,z)dy - E_y(x,y,z)dy = [E_y(x+dx,y,z) - E_y(x,y,z)]dy = \frac{\partial E_y(x,y,z)}{\partial x}dxdy$$

e perciò troviamo che

$$\operatorname{rot} \vec{E}(\vec{r})|_{z} = \frac{\partial E_{y}(x, y, z)}{\partial x} - \frac{\partial E_{x}(x, y, z)}{\partial y}$$

Iteriamo questo procedimento anche per le altre componenti, ricavando

$$\operatorname{rot} \vec{E}(\vec{r})|_{x} = \frac{\partial E_{z}(x, y, z)}{\partial y} - \frac{\partial E_{y}(x, y, z)}{\partial z}$$
$$\operatorname{rot} \vec{E}(\vec{r})|_{y} = \frac{\partial E_{z}(x, y, z)}{\partial z} - \frac{\partial E_{z}(x, y, z)}{\partial x}$$

Abbiamo quindi trovato il rotore:

$$\operatorname{rot} \vec{E} = \vec{\nabla} \times \vec{E} = \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}, \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right)$$

Introduzione all'elettrostatica

La materia possiede, oltre alla massa, una proprietà intrinseca detta carica elettrica, che dà luogo ad interazioni elettriche. L'elettrostatica studia queste interazioni sotto l'ipotesi ideale di condizioni stazionarie (cariche ferme). Questa è un'approssimazione valida quando le cariche non si muovono o si muovono molto lentamente rispetto alle scale temporali di interesse.

2.1 Legge di Coulomb

La carica elettrica si presenta con due segni opposti (positivo e negativo). In molti materiali, su scala macroscopica, le cariche tendono a bilanciarsi (la materia è in genere elettricamente neutra), ma è possibile separare le cariche e creare distribuzioni con eccessi locali di carica. Le cariche producono campi elettrici e, in presenza di altre cariche, questi campi danno origine a forze elettriche. Tali forze, in genere, sono di gran lunga più intense delle forze gravitazionali a scale microscopiche.

Dalle misure sperimentali compiute da Coulomb si ottiene la legge che esprime la forza elettrica che una carica puntiforme q_1 esercita su un'altra carica puntiforme q_2 . La forma vettoriale della legge di Coulomb è

$$\vec{F_{12}} = \frac{1}{4\pi\varepsilon_0} \; \frac{q_1q_2}{|\vec{r_2} - \vec{r_1}|^2} \underbrace{\frac{(\vec{r_2} - \vec{r_1})}{|\vec{r_2} - \vec{r_1}|}}_{\text{versore}} = \frac{1}{4\pi\varepsilon_0} \; \frac{q_1q_2}{|\vec{r_2} - \vec{r_1}|^3} (\vec{r_2} - \vec{r_1}),$$

dove \mathbf{r}_1 e \mathbf{r}_2 sono le posizioni di q_1 e q_2 rispettivamente, e ε_0 è la costante dielettrica del vuoto che vale:

$$\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{C^2}{N \cdot m^2}$$

L'espressione per il modulo della forza, in funzione della distanza $r = |\vec{r}_2 - \vec{r}_1|$, è

$$F = \frac{1}{4\pi\varepsilon_0} \frac{|q_1 q_2|}{r^2} \hat{r}$$

Il verso della forza dipende dai segni delle cariche: se i segni sono uguali la forza è repulsiva, se i segni sono opposti la forza è attrattiva. Il modulo della forza F_{q_1} è identico ad F_{q_2} e l'unità di misura è Coulomb: [F] = C. Ovviamente per quanto detto prima questa legge vale solo per cariche ferme.

2.1.1 Principio di sovrapposizione

Per un sistema di più cariche puntiformi $q_1, q_2 \dots, q_n$ alle distanze $r_1, r_2 \dots, r_n$ vale **il principio di sovrap- posizione**: la forza totale su una carica Q è la somma vettoriale delle forze dovute a ciascuna delle altre cariche.

$$\vec{F_Q} = \sum_{i} \vec{F_i} = \vec{F_1} + \vec{F_2} + \dots = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1Q}{r_1^2} \hat{r_1} + \frac{q_2Q}{r_2^2} \hat{r_2} + \dots \right) = \frac{Q}{4\pi\varepsilon_0} \left(\frac{q_1}{r_1^2} \hat{r_1} + \frac{q_2}{r_2^2} \hat{r_2} + \dots \right)$$

2.2 Il campo elettrico

Dal Principio di sovrapposizione e legge di Coulomb siamo arrivati al seguente risultato che possiamo riscrivere in questo modo:

$$\vec{F_Q} = \frac{Q}{4\pi\varepsilon_0} \sum_i (\frac{q_i}{r_i^2} \hat{r_i}) = \frac{Q}{4\pi\varepsilon_0} \sum_i \frac{q_i(\vec{r} - \vec{r_i})}{|\vec{r} - \vec{r_i}|^3}$$

dove $\vec{E}(\vec{r}) \equiv \frac{1}{4\pi\varepsilon_0} \sum_i (\frac{q_i}{r_i^2} \hat{r_i})$ viene definito come **Campo Elettrico**¹, si nota come questo è una funzione della posizione \vec{r} siccome i vettori di separazione $\vec{r_i}$ dipendono dalla posizione del punto di campo. Quindi il **Campo Elettrico** è una quantità vettoriale che varia da punto a punto ed è determinata dalla configurazione delle cariche sorgente. Fisicamente è la forza che agisce su una carica unitaria dovuta a tutte le altre cariche presenti. La sua unità di misura è $[E] = \frac{N}{C}$.

2.2.1 Distribuzioni continue di cariche

La definizione precedente di Campo Elettrico presupponeva che la sorgente del campo sia un insieme di cariche puntiformi discrete. Se invece la carica è distribuita in modo continuo su una regione, allora il campo diventerà:

$$\vec{E}(\vec{r}) = \frac{1}{q} \int d\vec{F}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{1}{r^2} \hat{r} dq$$

 $^{^1\}mathrm{Si}$ sta facendo l'ipotesi di considerare un insieme discreto di cariche ferme

2.3. ESEMPI 15

Supponiamo ora di avere una distribuzione di carica volumetrica di carica (e di non avere cariche esterne al di fuori del volume considerato). Definiamo quindi la **densità volumetrica di carica** come $\rho(\vec{r}) = \frac{dq}{dV}$ la cui dimensione è $[\rho] = \frac{C}{m^3}$. Per quanto visto prima il Campo Elettrico (per una densità di carica volumetrica) sarà:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{(\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3} dq = \frac{1}{4\pi\varepsilon_0} \int_V \frac{(\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3} \rho(\vec{r'}) dV$$

Definiamo ora la densità di carica superficiale σ e lineare λ come:

$$\sigma(\vec{r}) = \frac{dq}{dS} \qquad [\rho] = \frac{C}{m^2}$$

$$\lambda(\vec{r}) = \frac{dq}{dl}$$
 $[\rho] = \frac{C}{m}$

Con campi elettrici:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_S \frac{(\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3} \sigma(\vec{r'}) dS \qquad \vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_l \frac{(\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3} \lambda(\vec{r'}) dl$$

2.3 Esempi

Legge di Gauss

3.1 Linee di forza del campo elettrico

Per rappresentare graficamente i campi elettrostatici e magnetici si utilizzano le **linee di campo** o **linee di forza**. Le **linee di forza** sono curve che, in ogni punto dello spazio, risultano tangenti al vettore campo. Su di esse si indica, mediante una freccia, il verso del campo stesso.

Consideriamo il caso 1, il più semplice possibile: una singola carica puntiforme q posta nell'origine. Le linee di forza del campo avranno direzione radiale. Poiché il campo diminuisce come $\frac{1}{r^2}$, i vettori si accorciano man mano che ci si allontana dall'origine. L'intensità del campo non è indicata dalla lunghezza dei vettori, ma dalla **densità** delle linee di campo: il campo è più intenso dove le linee sono più ravvicinate (in prossimità dell'origine) e più debole dove esse si diradano.

Anche se la rappresentazione avviene su una superficie bidimensionale, occorre ricordare che il campo possiede simmetria sferica. La densità delle linee può quindi essere espressa come:

 $\frac{n}{S}$

dove n è il numero di linee di campo e S la superficie sulla quale esse si distribuiscono.

Passiamo ora al caso 2: due cariche opposte disposte sullo stesso asse. Le linee di forza risultano perpendicolari al piano equatoriale e si estendono dalla carica positiva verso quella negativa. Sebbene le linee possano, in generale, estendersi all'infinito, in questo caso esse devono necessariamente chiudersi sulla carica opposta: se infatti considerassimo il flusso del campo attraverso una superficie chiusa che le racchiude, esso risulterebbe nullo, poiché il numero di linee che esce sarebbe uguale a quello che rientra.

Inoltre, le linee di forza **non possono mai intersecarsi**, poiché ciò implicherebbe che in un punto il campo avesse due direzioni diverse, il che è fisicamente impossibile.

Infine, se supponiamo che le due cariche siano poste a una distanza r tra loro e che ci si trovi a una distanza $d \ll r$ da una delle due cariche q_1 , l'effetto dell'altra carica q_2 diventa trascurabile, e il campo risulta praticamente quello di una singola carica.

Vediamo ora il caso 3: due cariche uguali disposte sullo stesso asse. Lungo il piano equatoriale, il campo avrà una risultante parallela al piano stesso.

È interessante notare che, allontanandosi molto dal sistema, la distanza tra le due cariche diventa trascurabile, al punto da non poter più distinguere se si tratta di due cariche o di una sola. In tal caso, le linee di forza delle due cariche tendono asintoticamente a configurarsi come linee di forza radiali che partono dal punto centrale tra le due cariche.

3.2 Legge di Gauss

La legge di Gauss costituisce una delle relazioni fondamentali dell'elettrostatica e mette in relazione il flusso del campo elettrico attraverso una superficie chiusa con la carica elettrica racchiusa dalla superficie stessa.

Essa è equivalente alle equazioni di Coulomb e di Maxwell in regime elettrostatico e rivela sia una interpretazione fisica del concetto di "sorgente" del campo elettrico sia uno strumento matematico potente per il calcolo del campo in presenza di opportune simmetrie. Nel caso di una carica positiva avrò un flusso uscente (positivo), viceversa se è negativa; D'altra parte se ho una carica esterna alla superficie scelta, questa non contribuirà in alcun modo al flusso totale, poiché le sue linee di campo entrano da un lato ed escono dall'altro.

Consideriamo ora il caso 1: Flusso del campo elettrico di una carica puntiforme q, contenuta al centro di una sfera.

$$\oint_{S} \vec{E} \cdot d\vec{S} = \oint_{S} \vec{E} \cdot \hat{n} dS = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{1}{4\pi\varepsilon_{0}} \frac{q\hat{\mathbf{r}}}{r^{2}} \left(r^{2} \sin\theta d\theta d\phi \hat{\mathbf{r}}\right) = \int_{0}^{2\pi} \int_{0}^{\pi} \frac{q}{4\pi\varepsilon_{0}} \sin\theta d\theta d\phi = \frac{q}{\varepsilon_{0}}.$$

Si osservi che la dipendenza dal raggio si annulla: l'area della sfera cresce come r^2 , mentre il campo elettrico diminuisce come $\frac{1}{r^2}$; il loro prodotto risulta quindi costante. Ne consegue che lo stesso numero di linee di campo attraversa qualsiasi sfera centrata nell'origine. In generale, il flusso attraverso una superficie chiusa dipende solo dalla carica racchiusa, indipendentemente dalla posizione della carica e dalla forma e dimensioni della superficie. Ciò che conta è l'angolo solido $d\Omega = \frac{dS\cos\theta}{r^2}$ che dovrà essere $\Omega = 4\pi$.

Vediamo il **caso 2**: Gruppo di cariche sparse all'interno della superficie. Possiamo sfruttare il **Principio di sovrapposizione** e scrivere:

$$\oint \vec{E} \cdot d\vec{S} = \oint \sum_{i=1}^{n} \vec{E}_{i} \cdot d\vec{S} = \sum_{i=1}^{n} \left(\oint \vec{E}_{i} \cdot d\vec{S} \right) = \sum_{i=1}^{n} \left(\frac{1}{\varepsilon_{0}} q_{i} \right) = \frac{Q_{int}}{\varepsilon_{0}}$$

Dove Q_{int} è la carica interna alla superficie gaussiana considerata.

$$\oint \vec{E} \cdot d\vec{S} = \frac{Q_{int}}{\varepsilon_0}$$

3.2.1 Formulazione infinitesimale e I legge di Maxwell

Supponiamo ora di avere una carica distribuita su un volume, sia $\rho(\vec{r})$ la densità volumetrica di carica, allora si ha:

$$\oint_{S} \vec{E} \cdot \hat{n} dS = \frac{1}{\varepsilon_{0}} \int_{V_{s}} \rho(\vec{r}) dV$$

Possiamo sfruttare il teorema della divergenza e scrivere:

$$\oint_{S} \vec{E} \cdot \hat{n} \, dS = \int_{V_{s}} (\vec{\nabla} \cdot \vec{E}) \, dV = \frac{1}{\varepsilon_{0}} \int_{V_{s}} \rho(\vec{r}) dV$$

Essendo gli integrali sullo stesso volume si trova così la I equazione di Maxwell o Legge di Gauss, un equazione che lega la divergenza del campo elettrico alla densità di carica.

$$| \vec{\nabla} \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho |$$

3.3 Esempi

Il potenziale elettrico

Vogliamo definire un potenziale scalare associato al campo elettrico. Per farlo, mostreremo che il campo elettrico è un campo irrotazionale, ovvero il suo rotore è nullo. Questo ci permetterà di introdurre il concetto di potenziale elettrico, grandezza scalare da cui è possibile ricavare il campo stesso.

4.1 Il rotore di E

Il campo elettrico \vec{E} non è una funzione vettoriale qualsiasi, ma un tipo molto speciale di campo: uno il cui rotore è nullo. Sfrutteremo questa proprietà dei campi elettrostatici per ridurre un problema vettoriale (determinare \vec{E}) a un problema scalare molto più semplice.

Consideriamo l'integrale di linea lungo un percorso (da a a b) del campo elettrico generato da una carica puntiforme:

$$\begin{split} \int_a^b \vec{E}(\vec{r}) \cdot d\vec{l} &= \int_a^b \frac{q}{4\pi\varepsilon_0 r^2} \hat{r} \cdot d\vec{l} \quad \text{con} \quad \hat{r} \cdot d\vec{l} = dr \\ &= \frac{q}{4\pi\varepsilon_0} \int_a^b \frac{dr}{r^2} = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right) \end{split}$$

Da cui segue immediatamente che, se $r_a = r_b$, l'integrale di linea è nullo. Possiamo quindi affermare che, **per** campi elettrostatici,

$$\oint_{\gamma} \vec{E} \cdot d\vec{l} = 0$$

e, in base al teorema di Stokes (o del rotore):

$$\boxed{\vec{\nabla} \times \vec{E} = 0}$$

Si deduce facilmente che anche nel caso in cui si abbiano N cariche, anche con il principio di sovrapposizione, l'integrale di linea resta nullo per l'additività dell'integrale. Di conseguenza, il teorema di Stokes risulta valido anche in questo caso.

4.2 Introduzione al potenziale

Il **potenziale elettrico** $V(\vec{r})$ è una grandezza scalare che caratterizza un campo elettrostatico $\vec{E}(\vec{r})$. Poiché, per un campo elettrostatico conservativo, l'integrale di linea è indipendente dal percorso (dipende solo dai punti iniziale e finale), si definisce

$$V(\vec{r}) \equiv -\int_{0}^{\vec{r}} \vec{E}(\vec{r}') \cdot d\vec{l}$$

dove \mathcal{O} è un punto di riferimento scelto (convenzionalmente il punto in cui si assegna V=0). Di conseguenza V dipende solo dalla posizione \vec{r} .

Ciò che ha significato fisico è la differenza di potenziale tra due punti a e b:

$$\Delta V_{ab} = V(b) - V(a) = -\int_a^b \vec{E} \cdot d\vec{l}.$$

Dal teorema fondamentale del calcolo (applicato lungo una curva) si ha inoltre

$$V(b) - V(a) = \int_{a}^{b} (\nabla V) \cdot d\vec{l}.$$

Poiché le due espressioni valgono per ogni coppia di punti a, b, si ottiene la relazione locale

$$\vec{E}(\vec{r}) = -\nabla V(\vec{r}).$$

Commenti sul potenziale

- Utilizzare il potenziale risulterà spesso più semplice per determinare il campo elettrico.
- Il punto di riferimento \mathcal{O} . Cambiare il punto di riferimento equivale ad aggiungere una costante C al potenziale. Infatti, scegliendo un altro riferimento \mathcal{O}' ,

$$V'(\vec{r}) = -\int_{\mathcal{O}'}^{\vec{r}} \vec{E} \cdot d\vec{l} = -\int_{\mathcal{O}'}^{\mathcal{O}} \vec{E} \cdot d\vec{l} - \int_{\mathcal{O}}^{\vec{r}} \vec{E} \cdot d\vec{l} = V(\vec{r}) + C,$$

dove $C = -\int_{\mathcal{O}'}^{\mathfrak{O}} \vec{E} \cdot d\vec{l}$. Naturalmente aggiungere una costante a V non modifica né le differenze di potenziale né il gradiente ∇V .

• Principio di sovrapposizione: se $\vec{E} = \sum_{i=1}^{N} \vec{E}_i$, allora

$$V(\vec{r}) = -\int_{0}^{\vec{r}} \vec{E} \cdot d\vec{l} = -\int_{0}^{\vec{r}} \sum_{i=1}^{N} \vec{E}_{i} \cdot d\vec{l} = \sum_{i=1}^{N} \left(-\int_{0}^{\vec{r}} \vec{E}_{i} \cdot d\vec{l} \right) = \sum_{i=1}^{N} V_{i}(\vec{r}).$$

• Unità di misura: il potenziale si misura in Volt (V), dove

$$[V] = V = \frac{J}{C} = \frac{N m}{C}.$$

4.3 Potenziale della carica puntiforme

Per una carica puntiforme q posta nell'origine il campo elettrico è

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}.$$

Scegliendo come riferimento il potenziale nullo all'infinito ($\Theta = \infty$) si ha

$$V(\vec{r}) = -\int_{\infty}^{r} \vec{E} \cdot d\vec{l} = -\int_{\infty}^{r} \frac{q}{4\pi\varepsilon_0} \frac{1}{r'^2} dr' = \frac{q}{4\pi\varepsilon_0} \frac{1}{r}.$$

Quindi il potenziale di una carica puntiforme (con $V(\infty) = 0$) è

$$V(\vec{r}) = \frac{q}{4\pi\varepsilon_0 r} \,.$$

Ora, per un sistema discreto di N cariche puntiformi $\{q_i\}$ distribuite nelle posizioni $\{\vec{r}_i\}$, il principio di sovrapposizione afferma che il campo totale è la somma dei campi individuali:

$$\vec{E}(\vec{r}) = \sum_{i=1}^{N} \vec{E}_i(\vec{r}).$$

Ne segue che il potenziale totale, definito come

$$V(\vec{r}) = -\int_{\infty}^{\vec{r}} \vec{E}(\vec{r}') \cdot d\vec{l},$$

si può scrivere come somma dei contributi individuali:

$$V(\vec{r}) = \sum_{i=1}^{N} \frac{q_i}{4\pi\varepsilon_0 |\vec{r} - \vec{r}_i|}.$$

4.4 Potenziale di una distribuzione uniforme di carica

Calcoliamo il potenziale generato da una distribuzione volumetrica di carica. Conoscendo il potenziale di una carica puntiforme, si divide il volume in elementi infinitesimi di carica dq e si sommano (integrando) i contributi di tutte le parti:

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \frac{1}{|\vec{r} - \vec{r}'|} dq.$$

Ricordando che $dq = \rho(\vec{r}') dV'$, si ottiene

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathcal{V}} \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} dV'$$

dove V indica il dominio volumetrico occupato dalla distribuzione di carica e $\rho(\vec{r}')$ è la densità volumetrica di carica.

4.5 Esempi

4.6 Equazione di Poisson

Abbiamo trovato che il **campo elettrico** (\vec{E}) può essere scritto come il **gradiente** di una funzione scalare, il **potenziale elettrostatico** (V):

$$\vec{E} = -\vec{\nabla}V$$

mentre dalla legge di Gauss per il campo elettrico nel vuoto si ha:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

dove ρ è la densità di carica e ϵ_0 è la permittività elettrica del vuoto. Mettendole assieme (sostituendo la prima nella seconda) si ottiene:

$$\vec{\nabla} \cdot (-\vec{\nabla} V) = \frac{\rho}{\epsilon_0}$$

ovvero

$$\nabla^2 V = -\frac{\rho}{\epsilon_0}$$

Si trova quindi l'**Equazione di Poisson**, dove $\nabla^2 = \vec{\nabla} \cdot \vec{\nabla}$ è l'operatore **Laplaciano**. Perciò, in una regione dove non ci sono cariche, la **densità di carica è nulla** $(\rho = 0)$, si ottiene:

$$\nabla^2 V = 0$$

Ottenendo l'Equazione di Laplace.

4.7 Condizioni al contorno / Boundary conditions

Determiniamo proprietà generali per il campo elettrico quando si attraversa una superficie che porta una densità di carica superficiale. In un tipico problema elettrostatico viene fornita una distribuzione di carica sorgente ρ e si desidera trovare il campo elettrico \vec{E} che essa produce. A meno che la simmetria del problema non consenta una soluzione immediata tramite la legge di Gauss, è spesso conveniente calcolare prima il potenziale elettrico come passaggio intermedio.

(1) Componente normale (perpendicolare) – discontinuità.

Supponiamo che la superficie abbia **spessore nullo**. Vogliamo capire cosa succede attraversando la superficie. Sappiamo che:

$$\vec{\nabla} \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_0}, \qquad \vec{\nabla} \times \vec{E} = 0.$$

Consideriamo una superficie gaussiana cilindrica di altezza trascurabile $(h \to 0)$. Poiché la regione è molto piccola, possiamo considerare $\vec{E}(\vec{r})$ costante. Si ha quindi:

$$\oint \vec{E} \cdot \hat{n} \, dS = \underbrace{\int_{S_{lat}} \vec{E}_{l} \cdot \hat{n} \, dS}_{(h \sim 0) \to 0} + \int_{S_{b1}} \vec{E}_{1} \cdot \hat{n} \, dS + \int_{S_{b2}} \vec{E}_{2} \cdot \hat{n} \, dS = \int_{S_{b1}} E_{\perp 1} \, dS - \int_{S_{b2}} E_{\perp 2} \, dS.$$

Dove S_{lat} è la superficie laterale del cilindro e S_{b1} , S_{b2} le superfici di base. In uno dei due integrali compare un segno negativo perché il versore normale è opposto. Si ottiene quindi:

$$E_1 S_b - E_2 S_b = \frac{Q}{\varepsilon_0} = \frac{\sigma S_b}{\varepsilon_0},$$

e di conseguenza:

$$E_{\perp 1} - E_{\perp 2} = \frac{\sigma}{\varepsilon_0}.$$

Attraversando una qualsiasi superficie carica, la componente perpendicolare del campo elettrico presenta quindi una discontinuità pari a $\frac{\sigma}{\varepsilon_0}$.

(2) Componente tangenziale (parallela) – continuità.

Per la componente parallela alla superficie, utilizziamo invece il fatto che il rotore del campo elettrico è nullo. Consideriamo un percorso rettangolare (una superficie di Stokes) con i lati lunghi paralleli alla superficie e quelli corti perpendicolari, in modo da poter trascurare il loro contributo poiché $h \sim 0$. Applicando la circuitazione del campo elettrico si ottiene:

$$\oint \vec{E} \cdot d\vec{l} = \int_{l_1} \vec{E}_1 \cdot d\vec{l} + \int_{l_2} \vec{E}_2 \cdot d\vec{l} = \int_{l} E_{\parallel 1} \, dl - \int_{l} E_{\parallel 2} \, dl = E_{\parallel 1} l - E_{\parallel 2} l.$$

Ne segue che attraversando una qualunque superficie carica, la componente parallela del campo elettrico non presenta discontinuità:

$$E_{\parallel 1} - E_{\parallel 2} = 0 \quad \Rightarrow \quad E_{\parallel 1} = E_{\parallel 2}.$$

Verifiche su casi noti

• Piano infinito carico:

Per un piano infinito con densità superficiale σ il campo è uniforme da entrambi i lati e si verifica

$$\Delta E_{\perp} = \frac{\sigma}{\varepsilon_0}, \qquad \Delta E_{\parallel} = 0.$$

• Due piani con cariche opposte:

Anche in questo caso valgono le stesse condizioni di discontinuità per la componente normale e continuità per la tangenziale:

$$\Delta E_{\perp} = \frac{\sigma}{\varepsilon_0}, \qquad \Delta E_{\parallel} = 0. \label{eq:delta_E}$$

• Sfera cava con carica superficiale (guscio sferico):

Per un guscio sferico di raggio R con densità superficiale σ il campo interno è zero ($E_{\rm in}=0$), mentre immediatamente all'esterno della superficie si ha

$$E_{\mathrm{out}}(R) = \frac{\sigma}{\varepsilon_0},$$

quindi la componente perpendicolare presenta un salto da 0 a σ/ε_0 . La componente tangenziale è nulla poiché il campo è radiale.

Figura 4.1: Diagramma delle relazioni tra $\rho,\,V$ ed $\vec{E}.$

Lavoro ed energia elettrostatica

Supponiamo di avere una configurazione stazionaria di cariche e di voler spostare una carica Q dal punto a al punto b (supponendo che lo spostamento non perturb i il campo elettrostatico). Quanto lavoro si compie? In ogni punto lungo il percorso la forza che agisce su Q è la forza elettrica $\vec{F}_{\rm campo} = Q\vec{E}$; la forza che si esercita in opposizione a questa forza elettrica, quando un agente esterno muove la carica lentamente, è $\vec{F}_{\rm ext} = -Q\vec{E}$ (analoga al sollevare un mattone: la gravità esercita una forza mg verso il basso, mentre chi solleva esercita una forza mg verso l'alto).

La forza elettrostatica è conservativa, quindi il lavoro dipende solo dai punti iniziale e finale e non dal percorso.

Lavoro compiuto dal campo

$$W_{\text{campo}} = \int_{a}^{b} \vec{F}_{\text{campo}} \cdot d\vec{l} = Q \int_{a}^{b} \vec{E} \cdot d\vec{l} = -Q [V(b) - V(a)] = -\Delta U,$$

dove definiamo $\Delta U = U(b) - U(a)$ come la variazione di energia potenziale elettrostatica.

Lavoro compiuto dall'agente esterno (quasi-statico)

$$W_{\text{ext}} = \int_{a}^{b} \vec{F}_{\text{ext}} \cdot d\vec{l} = -Q \int_{a}^{b} \vec{E} \cdot d\mathbf{l} = Q [V(b) - V(a)] = \Delta U.$$

Quindi si trovano i seguenti risultati:

$$\Delta U = Q[V(b) - V(a)]$$
 e $W_{\text{campo}} = -\Delta U$, $W_{\text{ext}} = \Delta U$.

Se scegliamo il riferimento del potenziale in modo che $V(\infty) = 0$, il lavoro necessario (dall'agente esterno) per portare la carica Q dall'infinito al punto \vec{r} è

$$W_{\rm ext} = \Delta U = U(\vec{r}) - U(\infty) = Q[V(\vec{r}) - 0] = QV(\vec{r}).$$

Si osserva che in questo caso il potenziale elettrico V è l'energia potenziale per unità di carica.

Si osserva che in questo caso il potenziale elettrico V è l'energia potenziale per unità di carica.

5.1 Energia di un sistema discreto di cariche

Supponiamo di avere un sistema di cariche puntiformi, immaginando di portare le cariche, una alla volta, da lontano, La prima carica, q_1 , non richiede lavoro, poiché non c'è ancora un campo da contrastare. portando q_2 avremo che il lavoro di q_2 sarà:

$$W_2 = \int_{\infty}^{|\vec{r_2} - \vec{r_1}|} \frac{q_1 q_2}{4\pi\varepsilon_0} \frac{(\vec{r_2} - \vec{r_1})}{|\vec{r_2} - \vec{r_1}|^2} \cdot d\vec{l_2} = \frac{q_1 q_2}{4\pi\varepsilon_0} \frac{1}{|\vec{r_2} - \vec{r_1}|}$$

Si nota un importante differenza rispetto al caso gravitazionale, qua il lavoro può essere positivo o negativo, dipende acnhe dal segno delle cariche:

- + e -: si attraggono per cui il lavoro fatto dal campo è negativo
- + e + (o e -) per cui per avvicinarle dobbiamo fornire energia, il sistema accumulerà energia potenziale e se non le tengo ferme le cariche tenderenno ad allontanarsi, il lavoro del campo è positivo mentre il lavoro esterno fatto sul sistema sarà negativo e quindi si dovrrà fornire un energia positiva.

Aggiungendo una terza carica si trova:

$$W_3 = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_3 q_2}{|\vec{r_3} - \vec{r_2}|} + \frac{q_3 q_1}{|\vec{r_3} - \vec{r_1}|} \right)$$

di conseguenza aggiungendo una quarta carica si trova

$$W_3 = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_4 q_3}{|\vec{r_4} - \vec{r_3}|} + \frac{q_4 q_2}{|\vec{r_4} - \vec{r_2}|} + \frac{q_4 q_1}{|\vec{r_4} - \vec{r_1}|} \right)$$

Si può quindi trovare la regola generale, considerando il lavoro complessivo per spostare tutte le cariche da distanza infinita alla loro posizione finale trovando:

$$W = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{q_i q_j}{|\vec{r_i} - \vec{r_j}|}$$

si mette j > i altrimenti conteremmo la stessa coppia 2 volte, possiamo riscrivere la seguente come:

$$W = \frac{1}{8\pi\varepsilon_0} \sum_{i=1}^n \sum_{\substack{j=1\\j\neq i}}^n \frac{q_i q_j}{r_{ij}}.$$

Si noti che in questa forma il risultato non dipende dall'ordine con cui si assemblano le cariche, poiché ogni coppia compare nella somma. Infine, estraiamo il fattore q_i :

$$W = \frac{1}{2} \sum_{i=1}^{n} q_i \left(\sum_{\substack{j=1\\j \neq i}}^{n} \frac{1}{4\pi\varepsilon_0} \frac{q_j}{r_{ij}} \right).$$

Il termine fra parentesi è il potenziale nel punto \vec{r}_i (la posizione di q_i) dovuto a tutte le altre cariche (apparte q_i). Pertanto:

$$W = \frac{1}{2} \sum_{i=1}^{n} q_i V(\vec{r_i}).$$

Questo è il lavoro necessario per assemblare una configurazione di cazzi puntiformi e rappresenta anche l'energia immagazzinata nella configurazione del sistema.

5.2 Energia di un sistema con distribuzione continua di carica

Estendiamo il risultato precedente considerando elementi infinitesimi di carica e integrando sulla distribuzione continua. Per la configurazione considerata si ha

$$W = \frac{1}{2} \int V(\vec{r}) dq = \frac{1}{2} \int_{V} \rho(\vec{r}) V(\vec{r}) dV,$$

dove $\rho(\vec{r})$ è la densità di carica e V è un volume che contiene le cariche. Usando la legge di Gauss $\nabla \cdot \vec{E} = \rho/\varepsilon_0$ otteniamo

$$W = \frac{1}{2}\varepsilon_0 \int_{\mathcal{V}} V(\vec{r}) \left(\nabla \cdot \vec{E}(\vec{r}) \right) dV.$$

Applichiamo ora l'identità vettoriale

$$\nabla \cdot (V\vec{E}) = V(\nabla \cdot \vec{E}) + \vec{E} \cdot \nabla V$$

Da ciò segue

$$V(\nabla \cdot \vec{E}) = \nabla \cdot (V\vec{E}) - \vec{E} \cdot \nabla V.$$

Poiché $\nabla V = -\vec{E}$, abbiamo $\vec{E} \cdot \nabla V = \vec{E} \cdot (-\vec{E}) = -\vec{E} \cdot \vec{E}$. Sostituendo nell'integrale otteniamo

$$\begin{split} W &= \frac{1}{2} \varepsilon_0 \int_{\mathcal{V}} \left[\nabla \cdot \left(V \vec{E} \right) - \vec{E} \cdot \nabla V \right] dV \\ &= \frac{1}{2} \varepsilon_0 \int_{\mathcal{V}} \nabla \cdot \left(V \vec{E} \right) dV \ + \ \frac{1}{2} \varepsilon_0 \int_{\mathcal{V}} \vec{E} \cdot \vec{E} \, dV. \end{split}$$

Applicando il teorema della divergenza al primo termine:

$$W = \frac{1}{2}\varepsilon_0 \oint_{S_V} V(\vec{r}) \, \vec{E}(\vec{r}) \cdot \hat{n} \, dS + \frac{1}{2}\varepsilon_0 \int_V \vec{E}(\vec{r}) \cdot \vec{E}(\vec{r}) \, dV.$$

Osservazioni sulla scelta del volume di integrazione

Abbiamo ottenuto la relazione

$$W \; = \; \frac{\varepsilon_0}{2} \int_{\mathcal{V}} V(\vec{r}) \left(\vec{\nabla} \cdot \vec{E}(\vec{r}) \right) d\mathcal{V} \; = \; \frac{\varepsilon_0}{2} \oint_{S_{\mathcal{V}}} V(\vec{r}) \, \vec{E}(\vec{r}) \cdot \hat{n} \, dS \; + \; \frac{\varepsilon_0}{2} \int_{\mathcal{V}} \vec{E}(\vec{r}) \cdot \vec{E}(\vec{r}) \, d\mathcal{V}.$$

Questa è esatta per ogni volume V che contenga l'intera distribuzione di carica considerata. Di conseguenza:

- Se si sceglie di integrare su un volume V più grande che contiene comunque tutte le cariche, l'integrale di volume $\int_V \vec{E}^2 dV$ cresce (poiché l'integrando è positivo), ma il termine di superficie $\oint_{S_V} V \vec{E} \cdot \hat{n} dS$ diminuisce in maniera tale che la somma o U_e rimanga invariata: quindi il valore di W non dipende dalla scelta del volume finché esso contiene tutta la carica e si include il relativo termine di superficie.
- Per sorgenti localizzate (cioè quando tutta la carica è contenuta in una regione finita), è utile estendere
 V a tutto lo spazio (e quindi all'infinito). Per grandi raggi r abbiamo:

$$|\vec{E}| \sim \frac{1}{r^2}, \qquad V \sim \frac{1}{r}, \qquad |S| \sim r^2,$$

quindi il contributo superficiale si stima come

$$\oint_S V \, \vec{E} \cdot \hat{n} \, dS \ \sim \ V \, |\vec{E}| \, |S| \ \propto \ \frac{1}{r} \ \longrightarrow \ 0 \quad \text{per} \ r \to \infty.$$

In tale limite il termine di superficie si annulla e resta la forma puramente sul campo.

Se si estende l'integrazione a tutto lo spazio e si suppone che il campo e il potenziale decadano abbastanza rapidamente all'infinito (in modo che il termine di superficie vada a zero), si ricava:

$$W = U_e = \frac{\varepsilon_0}{2} \int_{\mathcal{V}} \vec{E}^2(\vec{r}) \, dV$$

Densità di energia

Definiamo una nuova quantità la densità di energia elettrica:

$$u_e(\vec{r}) \equiv \frac{\varepsilon_0}{2} \vec{E}^2(\vec{r})$$
 cosicché $U_e = \int_{\mathcal{U}} u_e(\vec{r}) dV$.

Questa definizione è valida anche fuori dal regime puramente elettrostatico.

Equivalenza delle formulazioni (discreto vs continuo)

Le due espressioni sono equivalenti a condizione di trattare con attenzione i contributi che, nel caso ideale delle cariche puntiformi, diventano infiniti. In particolare:

• Se la distribuzione di carica è regolare (non contiene cariche ideali puntiformi) le due formule

$$\frac{1}{2} \int \rho(\vec{r}) \, V(\vec{r}) \, d\mathcal{V} \qquad \mathrm{e} \qquad \frac{\varepsilon_0}{2} \int \vec{E}(\vec{r}) \cdot \vec{E}(\vec{r}) \, d\mathcal{V}$$

danno lo stesso risultato finito.

• Se la carica è puntiforme, la seconda formula

$$\frac{\varepsilon_0}{2} \int \vec{E}(\vec{r}) \cdot \vec{E}(\vec{r}) \, d\mathcal{V}$$

diverge perché il campo $\vec{E}(\vec{r})$ cresce senza limite nelle regioni molto vicine alla carica. Questo riflette il fatto che, idealizzando la carica come concentrata in un punto, l'energia richiesta per "costruirla" risulta infinita. Nella formulazione discreta per N cariche puntiformi si evita questa divergenza.

Principio di sovrapposizione

Infine, una nota sul principio di sovrapposizione: poiché l'energia è quadratica nel campo, l'energia totale di due sistemi non è semplicemente la somma delle energie prese singolarmente.

5.3 Esempi

Materiali conduttori e isolanti

Quasi tutti i materiali inorganici sono cristallini: gli atomi sono disposti su un reticolo periodico. Tuttavia questi materiali non si comportano tutti allo stesso modo. Nel diamante gli elettroni sono fortemente legati ai propri atomi (con carica totale nulla all'esterno). Nel rame, invece, esistono elettroni delocalizzati — non si tratta di ionizzazione, ma di elettroni che occupano bande contigue e possono spostarsi da un atomo all'altro; questi elettroni formano una specie di "fluido" mobile che porta corrente e carica nel materiale.

Possiamo quindi distinguere, in prima approssimazione, due tipi di materiale:

- Isolanti (o dielettrici): gli elettroni rimangono legati agli stessi atomi e non vi sono portatori liberi in grado di muoversi su scala macroscopica.
- Conduttori: una parte degli elettroni è libera di muoversi tra gli atomi e quindi può sostenere correnti macroscopiche.

Vedremo più avanti che questi comportamenti si rappresentano convenientemente introducendo due densità di carica: ρ_b (bound — carica legata) e ρ_f (free — carica libera). D'ora in avanti chiameremo **campi** di stimolo i campi applicati dall'esterno al sistema, e **campi di risposta** i campi generati dal moto delle cariche (in particolare dal moto degli elettroni) in risposta al campo di stimolo.

Quando gli elettroni sono liberi di muoversi, il campo di stimolo esercita su di essi una forza che li sposta: questo spostamento costituisce una corrente elettrica, cioè uno spostamento macroscopico di carica.

A grandi linee, e a livello atomico, ciò che succede in presenza di un campo di stimolo è il seguente. Il campo esterno provoca uno spostamento relativo tra il nucleo e la nube elettronica di ciascun atomo; questo crea un dipolo elettrico che produce un campo elettrico (effetto microscopico). Tale effetto è presente sia nei dielettrici sia nei conduttori, ma con esiti diversi: nei dielettrici lo spostamento è limitato, mentre nei conduttori il moto degli elettroni può risultare in una corrente macroscopica (effetto macroscopico).

Struttura elettronica e densità di carica

Si distinguono, a livello atomico, i seguenti insiemi di elettroni:

- Elettroni di valenza: sono gli elettroni più esterni; partecipano ai legami chimici e, quando delocalizzati, sono i principali responsabili della conduzione elettrica.
- Elettroni di core: sono più vicini al nucleo e fortemente legati.

Il nucleo atomico porta una carica positiva che, in prima approssimazione puntiforme, si può rappresentare con la delta di Dirac:

$$\rho_{\text{nucleo}}(\vec{r}) = Ze \, \delta(\vec{r}),$$

dove Z è il numero atomico ed e > 0 è il modulo della carica dell'elettrone. Tuttavia, a causa della presenza degli elettroni di core che schermano parzialmente la carica del nucleo, gli elettroni di valenza percepiscono spesso una carica nucleare efficace $\tilde{Z}e$: in molte semplificazioni si può dunque scrivere

$$\rho_{\text{eff}}(\vec{r}) = \tilde{Z}e\,\delta(\vec{r}),$$

intesa come carica positiva concentrata in prossimità del centro atomico dopo aver tenuto conto della schermatura degli elettroni interni.

Un'altra approssimazione spesso usata per modellare qualitativamente un atomo è quella della sfera atomica: si approssima la nube elettronica esterna come una distribuzione negativa uniforme (o comunque distribuita su una regione di raggio r) che neutralizza la carica positiva centrale. Se la carica totale della nube di valenza ha modulo $\tilde{Z}e$ e occupa un volume atomico $V_{\rm atom}=\frac{4}{3}\pi r^3$, la densità volumetrica della nube elettronica può essere approssimata come

$$\rho_e(\vec{r}) \simeq -\frac{\tilde{Z}e}{V_{\text{atom}}} = -\frac{\tilde{Z}e}{\frac{4}{3}\pi r^3}$$

Nel contesto dei materiali solidi conviene tenere presente le seguenti considerazioni:

- Se gli elettroni di valenza possono spostarsi liberamente da un punto all'altro del materiale, essi costituiscono portatori di carica e la loro densità contribuisce a ρ_f : il materiale è un conduttore o semimetallo.
- Se gli elettroni di valenza sono localizzati sull'atomo e non partecipano al trasporto macroscopico, la loro carica è considerata legata e contribuisce a ρ_b : il materiale si comporta come un isolante (o dielettrico).

6.1 Campo elettrico in un materiale conduttore

In questa sezione consideremo campi elettrici di stimolo costanti.

Le proprietà più importanti per un conduttore sono le seguenti:

- $\vec{E} = 0$ all'interno di un conduttore, perchè se vi fossero delle cariche esse si muoverebbero e non ci troveremmo più in una situazione elettrostatica.
 - Da questo segue che, in caso vi sia la presenza di un campo di stimolo (E_s) , le cariche all'interno del conduttore creerebbero un campo di risposta, in modo da annullare E_s
- $\rho = 0$ all'interno di un conduttore, ciò segue dalla legge di Gauss in forma locale: $\nabla E = \frac{\rho}{\epsilon_0} = 0$.
- Qualsiasi carica rimanente all'interno del conduttore verra' ridistribuita sulla superficie.
- Un conduttore rappresenta una superfice equipotenziale, da cui si ottiene che \vec{E} perpendicolare alla superficie del materiale. Ciò porta a concludere che sulla superfice di un conduttore è presenta una discontinuità per la componente E_{\perp_R} , che vale, immediatamente fuori dalla superfice:

$$\vec{E} = E_{\perp} \hat{n} = \frac{\sigma}{\epsilon_0} \to \Delta E_{\perp_R} = \frac{\sigma}{\epsilon_0}$$

in termini di pote nziale questo si traduce in: $\sigma = -\epsilon_0 \frac{\partial V}{\partial n}$

6.1.1 Esempi

Guscio sferico conduttore

Analizziamo il caso di un guscio sferico conduttore al cui all'interno vi è una carica di stimolo q, il campo, internamente deve essere nulla, quindi la carica ridistribuitosi con densità σ sulla deve essere pari a -q, d'altra parte all'esterno del conduttore noteremo la presenza di questa carica interna, poichè un altra ridistribuzione di cariche avviene sulla superfice esterna del conduttore, per contrastare quella interna.

Carica non centrata

Immaginiamo di avere una sfera conduttrice con all'interno unaćavità di qualsiasi forma, al cui interno vi è una carica. In questo caso avremo

- Una ridistribuzione di cariche sulla superfice interna, che dovrà essere pari a -q
- Poichè ora all'interno del conduttore non vi sono più cariche vi sarà una ridistribuzione **uniforme** di cariche sulla superfice. Inoltre l'unica configurazione che permette di avere campo nullo all'interno è quella in cui la carica si distribuisce uniformemente.

Ci potremmo chiedere come ciò sia possibile (ci potremmo aspettare una ridistribuzione non uniforme), basti sapere che *esiste* una modo di ridistribuire la carica -q tale che esso cancella la carica interna, permettendo la ridistribuzione uniforme.

Ovviamente, ciò vale anche per una carica esterna, a parti invertite (la ridistribuzione non uniforme si ha sulla superfice esterna).

6.1.2 Gabbia di Faraday

Vediamo infine il caso di una cavità senza all'interno cariche. In questo caso osserviamo subito che al suo interno non vi deve essere campo, poichè $\oint_{\gamma} \vec{E} dl = 0$, se avessimo un campo all'interno della cavità e prendessimo un percorso chiuso passante per essa, ma che si chiude all'interno del conduttore, otterremo un risultato diverso. Tale principio è detto il principio della **gabbia di Faraday**

6.2 Capacità e condensatori

Supponiamo di avere due conduttori di carica +Q e -Q, poichè il V è costante sulle superfici possiamo trattarne la differenza:

$$\Delta V = V^+ - V^- = \int_-^+ \vec{E} dl$$

- 6.2.1 Condensatore all'infinito
- 6.3 Energia immagazzinata in un condensatore
- 6.4 Condensatore piano
- 6.5 Condensatore sferico
- 6.6 Condensatore cilindrico

I dipoli elettrici

- 7.1 Potenziale e campo elettrico di dipolo
- 7.2 Momento di dipolo di un sistema
- 7.3 Interazioni di dipolo in un campo elettrico di stimolo
- 7.4 Forza ed energia elettrostatica
- 7.4.1 Interazione dipolo-carica
- 7.4.2 Interazioni tra due dipoli

Correnti elettriche e campo di polarizzazione

8.1 La densità di corrente elettrica

Supponiamo che le cariche possano spostarsi e quindi fluire all'esterno di un volumetto definito (come un parallelepipedo). Definiremo una componente del campo densità di corrente tale che

$$\vec{J_x} dt dy dz = dq \rightarrow \vec{J} = \frac{dq}{dt dy dz}$$

Da cui concludiamo che esso rappresenta la quantità di carica che attraversa la superfice dydz per unità di tempo $\left\lceil \frac{C}{m^2s} \right\rceil$.

Per una superfice piana si ottiene: $\vec{J}\vec{S} = \vec{J}\hat{n}S = JS\cos(\theta)$.

Ovviamente se il piano è parallalelo a \vec{J} , allora $\vec{J} \cdot \vec{S} = 0$.

Per una superfice definita in modo arbitrario:

- 1. Scomponiamo $d\vec{S}=d\vec{S}_x+d\vec{S}_y+d\vec{S}_z=d\vec{S}\hat{n_x}+d\vec{S}\hat{n_y}+d\vec{S}\hat{n_z}$
- 2. Da cui si ottiene $\left(\vec{J_x}d\vec{S}\hat{n_x} + \vec{J_y}d\vec{S}\hat{n_y} + \vec{J_z}d\vec{S}\hat{n_z}\right)dt = \vec{J} \cdot d\vec{S}\hat{n}dt = \vec{J} \cdot \hat{n}dS$

Se \vec{J} è costante allora vuol dire che le cariche si muovono uniformemente nella stessa direzione, cio accade frequentemente in un filo cilindrico in cui fluisce carica.

8.2 La corrente

Nel caso in cui la superfice sia piana, di area A, e \vec{J} sia uniforme e perpendicolare alla superficie:

$$\vec{J}d\vec{S} = JA = I$$

Definiamo I come la corrente attraverso la superfice $\left[A = \frac{C}{s}\right]$.

Per una superfice generica si ottiene:

$$I = \int_{S} \vec{J}(\vec{r}) \cdot \hat{n} dS$$

oppure definita come $I = \frac{dQ}{dt}$

8.3 Legge di conservazione della carica

Immaginando di prendere un tubo cilindrico e localizzando un volumetto parallelepipedeo, supponendo che la densità di corrente sia costante, posso constatare le seguenti:

- Attraverso la superfici paralleli a \vec{J} non passerà alcuna carica (per definizione di \vec{J})
- Essendo \vec{J} costante: $\vec{J}\hat{n}_1S_1 + \vec{J}\hat{n}_2S_2 = \vec{J}\hat{n}S \vec{J}\hat{n}S = 0$

In generale, per una superfice chiusa:

$$\frac{dQ}{dt} = -\oint_{S} \vec{J}(\vec{r}, t)\hat{n}dS$$

da cui si ricava che, se vi è un flusso all'interno di un volumetto, la carica al suo interno cambia di una quantità pari al flusso di \vec{J} . Tale legge viene detta **legge di conservazione della carica in forma integrale** (per sistemi isolati).

Inoltre, riscrivendo $Q = \oint_{V_S} \rho(\vec{r}, t)$:

$$\frac{d}{dt} \oint_{V_S} \rho(\vec{r}, t) = -\oint_{S_V} \vec{J}(\vec{r}, t) \hat{n} dS = -\int_{V_S} \nabla \vec{J}(\vec{r}, t) dV$$

poichè non abbiamo fatto alcuna ipotesi sul volume, si ottiene la legge di conservazione della carica in forma locale:

$$\frac{d}{dt}\rho(\vec{r},t) = -\nabla \vec{J}(\vec{r},t)$$

Utilizzando le leggi appena ricavate osserviamo ciò che accade all'interno di un materiale inizialmente isolato, privo di campi di stimolo (ma con una carica build-in). Si ha per t=0 una specifica $\rho(\vec{r},0)$ che al tempo t, dopo lo stimolo diviene

$$\underbrace{\rho_C(\vec{r}, t)}_{\text{d'interesse}} = \rho_{tot}(\vec{r}, t) - \underbrace{\rho_{build-in}(\vec{r}, 0)}_{=\rho(\vec{r}, 0)}$$

che posso riformulare come

$$\rho_C(\vec{r},t) = \int_0^t \frac{\partial}{\partial t'} \rho(\vec{r},t') dt' = -\int_0^t \nabla \vec{J}(\vec{r},t') dt' = -\nabla \int_0^t \vec{J}(\vec{r},t') dt'$$

Quindi le correnti si sono generate a causa di uno stimolo.

- 8.3.1 Modelliziamo l'atomo
- 8.4 Carica elettrica legata e libera
- 8.5 Campo di polarizzazione
- 8.6 Densità di carica superficiale nei materiali
- 8.7 La pila di volta
- 8.8 Potenza elettrica
- 8.9 Leggi di Ohm
- 8.9.1 Legge di Ohm locale
- 8.9.2 Legge di Ohm (macroscopica)

Campi elettrici nei materiali

- 9.1 Gabbia di Faraday
- 9.2 Condensatori in serie e parallelo
- 9.2.1 In serie
- 9.2.2 In parallelo
- 9.3 Campo di spostamento dielettrico
- 9.4 Relazione costitutiva interna
- 9.5 Condensatori reali
- 9.5.1 Condensatore piano con dielettrico
- 9.5.2 Considerazioni

Notiamo che se $\varepsilon_0 >> 1$, allora $\sigma_f \sim \sigma_b$

9.5.3 Condensatore piano con conduttore

Inseriamo nel condensatore un conduttore, ma non a contatto con le armature, allora posso vederlo come più condensatori in serie La capacità sarà quindi:

$$C = \frac{\varepsilon_0 A}{d - b}$$

9.6 Esempi

Esempio 1: dielettrici in serie

Consideriamo un condensatore piano le cui armature hanno area A e in cui sono inseriti, in serie lungo la direzione del campo, due strati dielettrici di spessori h_1 e h_2 e costanti dielettriche relative ε_1 e ε_2 . La differenza di potenziale tra le armature è V. Assumendo campi uniformi e perpendicolari alle superfici, si può scrivere

$$V = h_1 E_1 + h_2 E_2,$$

dove E_1 ed E_2 sono i moduli dei campi elettrici nei due materiali.

Se sull'interfaccia non sono presenti cariche libere $(-\sigma_{f_1} + \sigma_{f_2} = 0)$, la componente normale del vettore \vec{D} è continua:

$$D_{\perp 1} = D_{\perp 2} = D$$
,

ovvero, D è lo stesso in entrambi gli strati. Poiché $\vec{D}=\varepsilon_0\varepsilon\,\vec{E},$ si ottiene

$$E_1 = \frac{D}{\varepsilon_0 \varepsilon_1}, \qquad E_2 = \frac{D}{\varepsilon_0 \varepsilon_2}.$$

Sostituendo in V:

$$V = D\left(\frac{h_1}{\varepsilon_0 \varepsilon_1} + \frac{h_2}{\varepsilon_0 \varepsilon_2}\right).$$

Poiché il campo di spostamento è dato da $D = \frac{Q}{A}$ (con Q carica sulle armature), risulta

$$V = \frac{Q}{A} \left(\frac{h_1}{\varepsilon_0 \varepsilon_1} + \frac{h_2}{\varepsilon_0 \varepsilon_2} \right) = Q \left(\frac{1}{\varepsilon_0 A} \left(\frac{h_1}{\varepsilon_1} + \frac{h_2}{\varepsilon_2} \right) \right).$$

Dunque la capacità totale C del sistema è

$$C = \frac{Q}{V} = \frac{\varepsilon_0 A}{\frac{h_1}{\varepsilon_1} + \frac{h_2}{\varepsilon_2}}.$$

Introducendo le capacità dei singoli strati, $C_1 = \frac{\varepsilon_0 \varepsilon_1 A}{h_1}$ e $C_2 = \frac{\varepsilon_0 \varepsilon_2 A}{h_2}$, si ottiene la nota relazione per condensatori in serie:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}.$$

Esempio 2: dielettrici in parallelo

Consideriamo ora due dielettrici affiancati (ad esempio due rettangoli contigui) inseriti fra le armature di un condensatore piano. Le armature sono equipotenziali e la differenza di potenziale tra di esse è V; lo spessore comune dei dielettrici è h. Poiché lo stesso potenziale viene applicato alle due regioni, il campo elettrico è lo stesso in entrambe:

$$E = \frac{V}{h}$$
.

Tuttavia i materiali si polarizzano in modo diverso, quindi il vettore di spostamento normale \vec{D}_{\perp} è diverso nei due dielettrici:

$$\vec{D}_{\perp,i} = \varepsilon_0 \varepsilon_i \, \vec{E}, \qquad i = 1, 2.$$

La carica totale sulle armature è la somma delle cariche accumulate sopra ciascuna area A_1 e A_2 :

$$Q = Q_1 + Q_2 = \vec{D}_{\perp,1} A_1 + \vec{D}_{\perp,2} A_2.$$

Sostituendo $\vec{D}_{\perp,i} = \varepsilon_0 \varepsilon_i \vec{E}$ e E = V/hsi ottiene

$$Q = \varepsilon_0 \frac{V}{h} \left(\varepsilon_1 A_1 + \varepsilon_2 A_2 \right) = V \underbrace{\frac{\varepsilon_0}{h} \left(\varepsilon_1 A_1 + \varepsilon_2 A_2 \right)}_{C}.$$

Quindi la capacità totale è

$$C = \frac{\varepsilon_0}{h} \big(\varepsilon_1 A_1 + \varepsilon_2 A_2 \big).$$

Definendo le capacità dei singoli "rami" come $C_i = \frac{\varepsilon_0 \varepsilon_i A_i}{h}$, si verifica la legge dei condensatori in parallelo:

$$C = C_1 + C_2.$$

9.7 Interfaccia vuoto – dielettrico

Vediamo cosa succede ai campi elettrici nell'interfaccia tra il vuoto e un materiale dielettrico. Indicheremo con \hat{n} il versore normale alla superficie (direzione convenzionale dal vuoto verso il dielettrico) e con α l'angolo che il vettore campo forma con la *superficie* (cioè con l'interfaccia).

Nel vuoto vale

$$\vec{D}_{\rm est} = \varepsilon_0 \vec{E}_{\rm est},$$

mentre nel dielettrico

$$\vec{D}_{\rm int} = \varepsilon_0 \varepsilon \, \vec{E}_{\rm int}.$$

Condizioni al contorno sull'interfaccia vuoto—dielettrico. Se indichiamo con $\alpha_{\rm est}$ e $\alpha_{\rm int}$ gli angoli di $\vec{E}_{\rm est}$ e $\vec{E}_{\rm int}$ rispetto all'interfaccia, allora le componenti parallela e perpendicolare di \vec{E} si esprimono come

$$E_{\parallel} = E \cos \alpha, \qquad E_{\perp} = E \sin \alpha.$$

• la componente parallela di \vec{E} è continua (si conserva):

$$\vec{E}_{\mathrm{est},\parallel} = \vec{E}_{\mathrm{int},\parallel},$$

che in forma scalare diventa

$$E_{\rm est} \cos \alpha_{\rm est} = E_{\rm int} \cos \alpha_{\rm int}.$$

• la componente perpendicolare di \vec{D} presenta una discontinuità (non si conserva) pari alla densità di carica libera sulla superficie σ_f :

$$\vec{D}_{\text{est},\perp} - \vec{D}_{\text{int},\perp} = \sigma_{\text{f}}.$$

In assenza di carica libera sulla superficie ($\sigma_f = 0$) si ha quindi

$$\vec{D}_{\mathrm{est},\perp} = \vec{D}_{\mathrm{int},\perp},$$

che in forma scalare diventa

$$D_{\rm est} \sin \alpha_{\rm est} = D_{\rm int} \sin \alpha_{\rm int}.$$

Ora sostituiamo $D_{\rm est}=\varepsilon_0 E_{\rm est}$ (vuoto) e $D_{\rm int}=\varepsilon_0 \varepsilon E_{\rm int}$ (dielettrico) nella condizione sulla componente perpendicolare:

$$\varepsilon_0 E_{\mathrm{est}} \sin \alpha_{\mathrm{est}} = \varepsilon_0 \varepsilon E_{\mathrm{int}} \sin \alpha_{\mathrm{int}} \implies E_{\mathrm{est}} \sin \alpha_{\mathrm{est}} = \varepsilon E_{\mathrm{int}} \sin \alpha_{\mathrm{int}}.$$

Infine facendo il rapporto si trova:

$$\frac{E_{\rm est} \sin \alpha_{\rm est}}{E_{\rm est} \cos \alpha_{\rm est}} = \frac{\varepsilon \, E_{\rm int} \sin \alpha_{\rm int}}{E_{\rm int} \cos \alpha_{\rm int}}$$

ottenendo

$$\tan \alpha_{\rm est} = \varepsilon \, \tan \alpha_{\rm int} \quad .$$

Interpretazione e casi limite

• La componente perpendicolare di \vec{E} in generale non è continua (non si conserva): la sua discontinuità è causata dalle cariche sulla superficie (libere o legate).

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$
.

Può risultare meno intuitivo che la componente parallela di \vec{D} non sia necessariamente continua. In elettrostatica si ha $\nabla \times \vec{E} = 0$, perciò \vec{E}_{\parallel} è continuo; invece

$$\nabla \times \vec{D} = \nabla \times \vec{P}$$
.

quindi se la polarizzazione \vec{P} ha rotore non nullo allora $\nabla \times \vec{D} \neq 0$ e la componente parallela di \vec{D} può essere discontinua.

- Se $\varepsilon > 1$, allora $\tan \alpha_{\rm int} > \tan \alpha_{\rm est}$, cioè $\alpha_{\rm int} > \alpha_{\rm est}$: all'interno del dielettrico il campo si inclina maggiormente rispetto alla normale e quindi risulta più parallelo all'interfaccia.
- Per incidenza perpendicolare ($\alpha_{\rm est} = 0$) si ha $\alpha_{\rm int} = 0$ (non c'è deviazione).
- Nel limite $\varepsilon \to \infty$ si ottiene $\alpha_{\rm int} \to 90^{\circ}$ (campo quasi parallelo all'interfaccia).

9.8 Problema di Dirichlet

Consideriamo una disposizione di pezzi di rame (conduttori), ciascuno collegato tramite fili di rame al polo di una propria batteria. Gli altri poli delle batterie sono collegati mediante fili alla parete di una gabbia di Faraday in rame, che fa da massa (potenziale di riferimento, scelto uguale a zero).

Quando le correnti cessano (regime elettrostatico), la condizione di equilibrio (o dalla legge di Ohm si) impone che ogni conduttore sia equipotenziale: cioè ciascun pezzo di rame assume un potenziale costante su tutta la sua superficie.

Problema di Dirichlet. Determinare il potenziale elettrico $V(\vec{r})$ nella regione dello spazio esterna ai conduttori, imponendo che V assuma i valori assegnati sulle superfici dei conduttori e che sia nullo sulla massa (gabbia di Faraday).

Per ottenere il campo elettrico si calcola $\vec{E}(\vec{r}) = -\nabla V(\vec{r})$. Nella regione esterna ai conduttori le cariche libere sono distribuite solo sulle superfici dei conduttori stessi: Nello spazio compreso fra le superfici dei conduttori e le pareti della gabbia non è presente una densità di carica volumetrica libera. Di conseguenza l'equazione di Poisson

$$\nabla^2 V(\vec{r}) = -\frac{\rho(\vec{r})}{\varepsilon_0}$$

si riduce all'equazione di Laplace

$$\nabla^2 V(\vec{r}) = 0$$

nel dominio considerato (regione esterna ai conduttori e interna alla gabbia), soggetta alle condizioni al contorno di Dirichlet sopra specificate.

Interazioni e campi di risposta

10.1 Interazione carica-carica indotta

Consideriamo una sfera conduttrice di raggio r_0 , collegata a terra, e una carica puntiforme immobile q posta sull'asse a distanza r dal centro della sfera. Vogliamo determinare il campo elettrico in un generico punto esterno P e la forza che agisce su q a causa dell'induzione sulla sfera.

All'interno di un conduttore in equilibrio elettrostatico il campo elettrico è nullo e, poiché la sfera è collegata a terra, il suo potenziale è V=0. La presenza di q induce sulla sfera una distribuzione di carica superficiale che rende il potenziale costante (nullo) sulla superficie.

Per il problema della sfera conduttrice collegata a terra si può usare il metodo delle cariche immagine: la regione esterna alla sfera è equivalente al campo prodotto dalla carica reale q e da una carica immagine. La carica immagine non è una carica fisica ma un artificio matematico: si introduce una carica fittizia (con ampiezza e posizione scelte opportunamente) in modo che la somma dei campi di q e dell'immagine riproduca esattamente il campo reale nella regione esterna e soddisfi la condizione al contorno V=0 sulla superficie. Per il teorema di unicità della soluzione di Dirichlet, la soluzione così costruita è la soluzione fisica nella regione esterna. Fisicamente, l'immagine rappresenta in modo equivalente la distribuzione di carica indotta sulla superficie della sfera, ma non corrisponde a una sorgente reale nello spazio libero.

Eguagliando i potenziali sulla superficie della sfera si trova che l'immagine è una carica puntiforme

$$\frac{q}{4\pi\varepsilon_0 r} + \frac{q'}{4\pi\varepsilon_0 r_0} = 0$$

$$q' = -q\frac{r_0}{r}, \qquad r' = \frac{r_0^2}{r},$$

posta sull'asse nella stessa direzione di q ma all'interno della sfera, a distanza r' dal centro. Quindi, nella regione esterna tutto si comporta come se ci fossero la carica reale q e la carica immagine q' puntiforme posta a distanza r_0^2/r dal centro nella direzione della carica stimolante.

Per verificarlo si può calcolare il potenziale in un generico punto esterno di coordinate (r', θ) (con $r' > r_0$) e usare il principio di sovrapposizione:

$$V(\vec{r'}) = \frac{q}{4\pi\varepsilon_0} \frac{1}{\sqrt{r'^2 + r^2 - 2r'r\cos\theta}} + \frac{q'}{4\pi\varepsilon_0} \frac{1}{\sqrt{r'^2 + \left(\frac{r_0^2}{r}\right)^2 - 2r'\frac{r_0^2}{r}\cos\theta}}.$$

Sostituendo $q' = -qr_0/r$ si ottiene

$$V(\vec{r'}) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\sqrt{r'^2 + r^2 - 2r'r\cos\theta}} - \frac{r_0/r}{\sqrt{r'^2 + \frac{r_0^4}{r^2} - 2r'\frac{r_0^2}{r}\cos\theta}} \right).$$

che può essere riscritto come:

$$V(\vec{r}') = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\sqrt{r'^2 + r^2 - 2r'r\cos\theta}} - \frac{1}{\sqrt{r'^2 \frac{r^2}{r_0^2} + r_0^2 - 2r'r\cos\theta}} \right)$$

Si verifica che questa espressione soddisfa le condizioni di Dirichlet richieste:

- per $r' \to \infty$ si ha $V(\vec{r'}) \to 0$;
- per $r' = r_0$ (sulla superficie) si ottiene $V(\vec{r'}) = 0$.

Per il teorema di unicità, la soluzione così costruita è dunque la soluzione fisica nella regione esterna.

Possiamo ora calcolare la forza agente sulla carica q. La forza è la forza coulombiana dovuta al campo generato dalla carica immagine q' (la carica reale non esercita forza su se stessa). La distanza tra q e q' è

$$\Delta = r - r' = r - \frac{r_0^2}{r} = \frac{r^2 - r_0^2}{r}.$$

Applicando la legge di Coulomb e ricordando $q' = -qr_0/r$, l'intensità della forza radiale (attrattiva) è

$$F(r) = q \cdot \frac{1}{4\pi\varepsilon_0} \frac{q'}{\Delta^2} = -\frac{q^2 r_0 r}{4\pi\varepsilon_0 (r^2 - r_0^2)^2}.$$

L'energia potenziale di interazione U(r) (assunta nulla a distanza infinita) si ottiene integrando la forza:

$$U(r) = -\int_{\infty}^{r} F(s) \, \mathrm{d}s.$$

Poiché

$$F(s) = -\frac{q^2 r_0 s}{4\pi\varepsilon_0 (s^2 - r_0^2)^2},$$

si usa la derivata

$$\frac{\mathrm{d}}{\mathrm{d}s} \bigg(\frac{1}{s^2 - r_0^2} \bigg) = - \frac{2s}{(s^2 - r_0^2)^2},$$

e si ottiene

$$U(r) = -\frac{q^2 r_0}{8\pi\varepsilon_0(r^2 - r_0^2)}.$$

Il potenziale di risposta nel punto occupato da q (il potenziale dovuto alle cariche indotte) è

$$V_R(r) = \frac{q'}{4\pi\varepsilon_0 \Delta} = -\frac{qr_0}{4\pi\varepsilon_0(r^2 - r_0^2)}.$$

Ne segue la relazione

$$U(r) = \frac{1}{2} q V_R(r),$$

cioè l'energia non è semplicemente qV_R ma la metà. Questo fattore $\frac{1}{2}$ compare perché la distribuzione di carica indotta dipende linearmente da q e si forma progressivamente: all'infinito $q' \to 0$, mentre avvicinandosi q' cresce (in modulo).

10.1.1 Caso limite $r \rightarrow r_0$

Ponendo $z = r - r_0 \ll r_0$ (distanza dalla superficie) si ha

$$r' = \frac{r_0^2}{r} = \frac{r_0^2}{r_0 + z} \simeq r_0 - z + O\left(\frac{z^2}{r_0}\right),$$

 \mathbf{e}

$$q' = -q\frac{r_0}{r} \simeq -q\left(1 - \frac{z}{r_0}\right) \simeq -q.$$

Questo è Un comportamento riconducibile ai dipoli, a metà tra le cariche nel piano equatoriale ho una superficie equipotenziale. Quando $r \simeq r_0$ la sfera "diventa un piano" che diventa per l'appunto il piano equatoriale di un dipolo. La separazione fra q e la sua immagine vale approssimativamente $\Delta \simeq 2z$ e la forza si riduce alla forza tra due cariche opposte quasi uguali separate da 2z:

$$F(z) \simeq -\frac{q^2}{16\pi\varepsilon_0 z^2},$$

mentre l'energia potenziale, per $z \ll r_0$, vale

$$U(z) \simeq -\frac{q^2}{16\pi\varepsilon_0 z}.$$

10.1.2 Applicazione: estrazione di un elettrone da un metallo

Consideriamo un elettrone (carica -e) che si allontana dalla superficie di un metallo. A distanza z dalla superficie l'elettrone è attratto dalla sua immagine e, a distanze maggiori di pochi Å, l'energia potenziale è approssimata da

$$U(z) \simeq -\frac{e^2}{16\pi\varepsilon_0 z}.$$

Se si prolungasse questa legge fino a z=0 si otterrebbe un'energia cinetica (necessaria per fare uscire l'elettrone) infinita; nella realtà, però, per distanze dell'ordine della distanza interatomica a (di alcuni Å) il modello classico non è più valido e l'energia potenziale si raccorda con l'energia di estrazione del metallo (work function) W_F . Per $z \lesssim a$ si assume un valore approssimativo $U \simeq -W_F$. Imponendo il raccordo formale

$$-\frac{e^2}{16\pi\varepsilon_0 a} = -W_F$$

si ricava la distanza caratteristica di raccordo

$$a = \frac{e^2}{16\pi\varepsilon_0 W_F}.$$

Qui W_F è tipicamente dell'ordine di pochi eV $(1 \text{ eV} \simeq 1.602 \times 10^{-19} \text{ J})$.

10.2 Carica superficiale indotta — Esercizio

Vogliamo capire come è fatta la distribuzione di carica sulla superficie di un piano conduttore davanti al quale mettiamo una carica puntiforme.

Prendiamo un piano conduttore; sul lato opposto (il vuoto) poniamo una carica puntiforme q a distanza z_0 dal piano e adesso calcoliamo la distribuzione di carica indotta sulla superficie del conduttore.

Ricordando la relazione che lega la densità superficiale di carica alla componente normale del campo elettrico appena fuori dal conduttore:

$$\sigma = \varepsilon_0 E_n$$

dove E_n è la componente normale (alla superficie) del campo appena all'esterno (mentre all'interno del conduttore ci ricordiamo che il campo è nullo).

Ora per trovare E_n usiamo il metodo delle immagini: sostituiamo il piano conduttore con una carica immagine -q posta simmetricamente a distanza z_0 dall'altro lato del piano. Consideriamo un punto sulla superficie a distanza radiale R dall'asse (coordinate cilindriche). La distanza di quel punto dalla carica reale (o dall'immagine) è:

$$r = \sqrt{R^2 + z_0^2}.$$

Quindi la componente z (normale) del campo dovuta alla carica reale q in quel punto vale:

$$E_z^{(q)} = \frac{q}{4\pi\varepsilon_0 r^2} \cdot \frac{z_0}{r} = \frac{q z_0}{4\pi\varepsilon_0 (R^2 + z_0^2)^{3/2}}.$$

(dove la prima frazione è il modulo del campo radiale e la seconda fornisce la proiezione sull'asse z quindi il loro prodotto è il modulo della componente normale di \vec{E} .) Adesso per trovarci il campo totale sappiamo che la carica immagine -q fornisce una componente z di uguale modulo e con segno tale che, subito fuori dal piano, le due componenti normali si sommano: il risultato è quindi il doppio della componente normale. Quindi la componente normale totale subito fuori dal piano è:

$$E_n = -2\frac{q z_0}{4\pi\varepsilon_0 (R^2 + z_0^2)^{3/2}}$$

dove il segno negativo indica che, per q > 0, il campo punta verso il conduttore (cioè verso il basso). Da ciò otteniamo la densità superficiale indotta:

$$\sigma(R) = \varepsilon_0 E_n = -\frac{q z_0}{2\pi (R^2 + z_0^2)^{3/2}}.$$

Facciamo delle osservazioni:*-

- $\sigma(R)$ ha simmetria cilindrica rispetto all'asse passante per la carica.
- $|\sigma(R)|$ è massima per R=0 e tende a 0 per $R\to\infty$. Infatti

$$|\sigma_{\text{max}}| = |\sigma(0)| = \frac{q}{2\pi z_0^2}.$$

• Se q > 0, allora $\sigma(R) < 0$ per ogni R: la carica di polarizzazione è negativa (ossia di segno opposto a q), come mostra il segno negativo nella formula.

Verifichiamo la carica totale indotta (sul piano): integriamo $\sigma(R)$ su tutto il piano usando corone circolari (con elemento di area $dA = R dR d\theta$):

$$Q = \int_0^{2\pi} \int_0^{\infty} \sigma(R) R dR d\theta = 2\pi \int_0^{\infty} \left(-\frac{q z_0}{2\pi (R^2 + z_0^2)^{3/2}} \right) R dR.$$

Semplificando:

$$Q = -qz_0 \int_0^\infty \frac{R}{(R^2 + z_0^2)^{3/2}} dR.$$

Effettuiamo il cambio di variabile $u=R^2+z_0^2,\,du=2R\,dR\,(R\,dR=\frac{1}{2}du);$ i limiti vanno da $u=z_0^2$ a $u\to\infty$:

$$Q = -\frac{qz_0}{2} \int_{z_0^2}^{\infty} u^{-3/2} du = -\frac{qz_0}{2} \left[-2u^{-1/2} \right]_{z_0^2}^{\infty} = -\frac{qz_0}{2} \left(0 - \left(-\frac{2}{z_0} \right) \right) = -q.$$

Quindi la carica totale indotta sul piano è -q, come ci si aspettava.

10.3 Interazione carica-dipolo indotto

Consideriamo una sfera metallica isolata e neutra di raggio r_0 , stimolata da una carica puntiforme positiva q posta sull'asse a distanza $r > r_0$ dal centro. La presenza di q provoca una distribuzione di carica indotta sulla superficie della sfera; all'interno del metallo il campo elettrico è nullo, mentre la sfera, essendo isolata, mantiene un potenziale costante (non necessariamente nullo).

Il potenziale al centro dovuto alla carica di stimolo è

$$V_s(0) = \frac{q}{4\pi\varepsilon_0 r}.$$

Poiché la sfera è neutra, la carica totale indotta sulla superficie è nulla:

$$\int_{S} \sigma \, \mathrm{d}S = 0.$$

Di conseguenza il potenziale dovuto esclusivamente alla carica indotta valutato al centro è

$$V_R(0) = \int_S \frac{\sigma(\mathbf{r}')}{4\pi\varepsilon_0 r_0} \, dS = \frac{1}{4\pi\varepsilon_0 r_0} \int_S \sigma \, dS = 0.$$

Per costruire la soluzione esterna si può usare il metodo delle cariche immagine, come nel caso della sfera collegata a terra, con un piccolo adattamento: introduciamo

ullet una carica immagine $q'=-qrac{r_0}{r}$ collocata lungo l'asse all'interno della sfera alla distanza

$$r' = \frac{r_0^2}{r},$$

(questa è la stessa immagine che si usa per la sfera collegata a terra e garantisce che la somma dei potenziali di q e q' sia nulla sulla superficie);

• inoltre aggiungiamo una carica puntiforme al centro della sfera q'' (che contribuisce con potenziale costante sulla superficie).

Per imporre la neutralità della sfera imponiamo che la carica totale fittizia interna sia nulla, cioè scegliamo

$$q'' = -q'$$
.

Con questa scelta la somma delle cariche immagine è nulla e la carica totale indotta rappresentata dalle immagini è zero (coerente con la sfera isolata e neutra).

Il potenziale di risposta (cioè il potenziale dovuto alle cariche indotte, valutato nella posizione della carica reale, o in un punto esterno) si ottiene sommando i contributi di q' e q''. In particolare, nel punto dove si trova la carica q (a distanza r dal centro), il potenziale di risposta è

$$V_R(r) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q''}{r} + \frac{q'}{r - r'} \right).$$

Sostituendo $q'=-q\frac{r_0}{r},\ q''=-q'=q\frac{r_0}{r}$ e $r'=\frac{r_0^2}{r}$ si ottiene

$$V_R(r) = \frac{qr_0}{4\pi\varepsilon_0} \left(\frac{1}{r^2} - \frac{1}{r^2 - r_0^2} \right) = -\frac{q\,r_0^3}{4\pi\varepsilon_0} \frac{1}{r^2(r^2 - r_0^2)}, \qquad r > r_0.$$

Da questo si ricava l'energia di interazione (assumendo $U(\infty) = 0$) fra la carica e la sfera:

$$U(r) = \frac{1}{2} q V_R(r) = -\frac{q^2 r_0^3}{8\pi\varepsilon_0} \frac{1}{r^2(r^2 - r_0^2)}.$$

Il fattore $\frac{1}{2}$ è dovuto al fatto che la distribuzione indotta dipende linearmente da q.

Limite prossimità alla superficie. Se la carica si trova molto vicina alla superficie, $z \equiv r - r_0 \ll r_0$, la carica centrale q'' dà un contributo quasi uniforme sulla calotta vicina e risulta spesso trascurabile rispetto al contributo locale della carica immagine q'. In tale limite la sfera si comporta come se fosse un conduttore in collegamento a massa (l'approssimazione del piano conduttore locale): la separazione fra la carica e la sua immagine è approssimativamente $\Delta \simeq 2z$ e si recuperano le leggi del caso piano,

$$F(z) \simeq -\frac{q^2}{16\pi\varepsilon_0 z^2}, \qquad U(z) \simeq -\frac{q^2}{16\pi\varepsilon_0 z}, \qquad (z \ll r_0).$$

Momento di dipolo indotto. Le cariche immagine definiscono un momento di dipolo indotto sulla sfera (la sola carica q' a distanza r' dall'origine contribuisce al dipolo, la carica q'' al centro non contribuisce). Il vettore momento di dipolo indotto vale

$$\vec{p} = q' \, \vec{r'} = -q \frac{r_0}{r} \, \frac{r_0^2}{r} \, \hat{r} = -\frac{q r_0^3}{r^2} \, \hat{r}.$$

Si può esprimere lo stesso risultato in funzione del campo stimolante al centro della sfera,

$$\vec{E_s}(0) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r} \quad \Rightarrow \quad \vec{p} = 4\pi\varepsilon_0 r_0^3 \vec{E_s}(0).$$

Poiché il volume della sfera è $V = \frac{4}{3}\pi r_0^3$, risulta anche la forma spesso usata

$$\vec{p} = 3 \mathcal{V} \varepsilon_0 \vec{E_s}(0).$$

Si osserva che P è la somma dei campi di stimolo ed ha una validità generale anche se il campo di stimolo non è uniforme.

Campo e carica superficiale indotta (caso campo uniforme). Per un dipolo puntiforme \vec{p} posto all'origine il campo generale è

$$\mathbf{E}(\mathbf{R}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{3(\mathbf{p} \cdot \hat{\mathbf{R}})\hat{\mathbf{R}} - \mathbf{p}}{R^3} \right).$$

Nel caso particolare di una sfera conduttrice immersa in un campo uniforme $\vec{E_0}$ (stato di stimolo uniforme), il momento indotto è $\vec{p} = 4\pi\varepsilon_0 r_0^3 \vec{E_0}$ e la densità di carica superficiale indotta è

$$\sigma(\theta) = 3\varepsilon_0 E_0 \cos \theta$$
,

dove θ è l'angolo col polo in direzione di $\vec{E_0}$ e la componente normale del campo sul conduttore fornisce $\sigma = \varepsilon_0 E_n$.

10.4 Sfere con distribuzione di carica opposta

Consideriamo ora due distribuzioni sferiche uguali e sovrapposte traslate di un vettore \mathbf{s} , con densità volumetriche ρ e $-\rho$. Il totale di carica di ciascuna sfera è

$$q = \rho \mathcal{V} = \rho \frac{4}{3} \pi r_0^3,$$

e il momento di dipolo risultante (per lo spostamento relativo s) è

$$\mathbf{p} = q \mathbf{s} = \mathcal{V} \rho \mathbf{s}.$$

Un risultato generale utile è che per una sfera uniformemente polarizzata (cioè con polarizzazione per unità di volume \vec{P} costante) il campo elettrico all'interno è omogeneo e vale

$$\vec{E}_{\mathrm{int}} = -rac{\vec{P}}{3arepsilon_0}.$$

Se la polarizzazione è collegata al momento totale come $\vec{p} = \vec{P} V$, allora si può anche scrivere

$$\vec{E}_{\mathrm{int}} = -rac{\vec{p}}{3arepsilon_0 \mathcal{V}}.$$

Nel limite in cui lo spessore dello strato carico diventa piccolo $(s \to 0$, si passa a una superficie polarizzata) si ottiene la densità di carica di legame sulla superficie

$$\sigma_b = \vec{P} \cdot \hat{n} = \rho \, (s \cdot \hat{\mathbf{n}}),$$

e, usando $\vec{p} = \vec{P} V$,

$$\sigma_b = \frac{\vec{p} \cdot \hat{n}}{V}.$$

Questa descrizione fornisce il passaggio tra il modello di due sfere volumetriche con carica opposta e il modello limite di una superficie polarizzata (o di una sfera con momento di dipolo totale \vec{p}). Nel caso particolare della sfera conduttrice che abbiamo studiato nel paragrafo precedente, l'induzione crea proprio un momento di dipolo $\vec{p} = 4\pi\varepsilon_0 r_0^3 \vec{E_s}(0)$ e la corrispondente carica superficiale può essere ottenuta dalle formule precedenti nel caso di stimolo uniforme o più in generale dal derivare del potenziale sulla superficie.

Sulla superficie del conduttore è $E \cdot \hat{n} = 3E_s \cdot \hat{n}$

10.5 Polarizzazione di una sfera dielettrica

Consideriamo una distribuzione dielettrica con momento dipolare totale \vec{p} e volume V. Per un dielettrico uniformemente polarizzato la densità di carica legata superficiale è

$$\sigma_b = \vec{P} \cdot \hat{n},\tag{10.1}$$

dove \vec{P} è il vettore di polarizzazione. Se la polarizzazione è uniforme e il momento dipolare totale è \vec{p} , allora

$$\vec{P} = \frac{\vec{p}}{V},\tag{10.2}$$

e per una sfera uniformemente polarizzata il campo (campo interno dovuto alle cariche di bound) vale:

$$\vec{E}_{\rm R} = -\frac{\vec{p}}{3\varepsilon_0 V} = -\frac{\vec{P}}{3\varepsilon_0}.$$
 (10.3)

Ora prendiamo una sfera di materiale lineare, omogeneo e isotropo, con suscettività elettrica $\chi = \varepsilon - 1$). Quindi si ha:

$$\vec{P} = \varepsilon_0 \chi \, \vec{E},\tag{10.4}$$

dove \vec{E} è il campo totale all'interno della sfera. Quindi si ha che:

$$\vec{E} = \vec{E}_s + \vec{E}_R = \vec{E}_s - \frac{\vec{P}}{3\varepsilon_0}.$$
 (10.5)

Sostituendo con quanto trovato prima si ottiene:

$$\vec{P} = \varepsilon_0 \chi \left(\vec{E}_s - \frac{\vec{P}}{3\varepsilon_0} \right) = \varepsilon_0 \chi \, \vec{E}_s - \frac{\chi}{3} \, \vec{P}. \tag{10.6}$$

Raccogliendo i termini in \vec{P} :

$$\vec{P}\left(1 + \frac{\chi}{3}\right) = \varepsilon_0 \chi \, \vec{E}_s \quad \Rightarrow \quad \vec{P} = \varepsilon_0 \vec{E}_s \frac{\chi}{1 + \chi/3} = \varepsilon_0 \vec{E}_s \frac{3\chi}{3 + \chi}. \tag{10.7}$$

Il momento dipolare totale indotto nella sfera risulta quindi (con un fattore $\frac{\chi}{3+\chi}$ in più)

$$\vec{p} = \mathcal{V} \, \vec{P} = \mathcal{V} \varepsilon_0 \vec{E}_0 \frac{3\chi}{3+\chi}. \tag{10.8}$$

Mentre il campo interno alla sfera è

$$\vec{E} = \frac{P}{\chi \varepsilon_0} = \frac{1}{\varepsilon_0 \chi} \varepsilon_0 \chi \vec{E_s} \frac{3}{3 + \chi} = \vec{E_s} \frac{3}{3 + \chi}$$

che in particolare tende al risultato del conduttore ideale per $\varepsilon \to \infty$.

Magnetismo

11.1 Introduzione

D'ora in poi cominceremo a considerare il problema delle cariche in moto. È noto che se avviciniamo due fili percorsi da corrente di stessa direzione essi si attraggono; se i fili sono percorsi da correnti in verso opposto, si respingono. Questo fenomeno non si spiega con forze elettriche su una carica di prova posta tra i fili, ma è dovuto alla forza magnetica associata al campo magnetico \vec{B} prodotto dalle cariche in movimento.

Inoltre i primi fenomeni magnetici osservati storicamente erano associati a dipoli (es.: bussole). Non è possibile isolare un monopolo magnetico nella materia ordinaria: questa proprietà si esprime matematicamente con la prima equazione di Maxwell per il campo magnetico

$$\nabla \cdot \vec{B}(\vec{r}, t) = 0, \tag{11.1}$$

la cui forma integrale implica che il flusso magnetico uscente da qualsiasi superficie chiusa è nullo:

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0. \tag{11.2}$$

11.1.1 Momento di dipolo magnetico

Un dipolo magnetico possiede un momento magnetico vettoriale \vec{m} e subisce una coppia (momento delle forze) se immerso in un campo magnetico esterno \vec{B} :

$$\vec{C} = \vec{m} \times \vec{B}.\tag{11.3}$$

L'analogia con il dipolo elettrico (momento di dipolo elettrico \vec{p} e coppia $\vec{p} \times \vec{E}$) è utile ma occorre ricordare che le sorgenti magnetiche sono correnti piuttosto che cariche libere isolate.

11.2 Legge di Biot-Savart

Definiamo la corrente stazionaria come un flusso di cariche continuo nel tempo; essa caratterizza campi magnetici statici e questo regime prende il nome di **magnetostatica**. Le condizioni per la magnetostatica sono

$$\frac{\partial \rho}{\partial t} = 0, \quad \frac{\partial \vec{J}}{\partial t} = 0,$$

ovunque e per qualsiasi t. In magnetostatica vale inoltre l'equazione di continuità nella forma

$$\nabla \cdot \vec{J} = 0$$

Il campo magnetico generato da una corrente stazionaria (in questo caso in superfici o volumi) è dato dalla **legge di Biot–Savart**:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} I \int \frac{d\vec{l'} \times \hat{r}}{r^2} = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r'}) \times \hat{r}}{r^2} d\tau', \tag{11.4}$$

dove l'integrazione lungo il filo si svolge nel verso della corrente, $d\vec{l}'$ è un elemento di lunghezza del filo e \hat{r} è il versore che collega l'elemento di corrente al punto di osservazione. La costante μ_0 è la permeabilità magnetica del vuoto e vale $\mu_0 = 4\pi \cdot 10^{-7} \,\text{N/A}^2$ (ciò impone che l'unità di misura di \vec{B} sia: tesla, [T] = N/(Am)).

Per un filo rettilineo infinito si ricava l'espressione

$$B(R) = \frac{\mu_0 I}{2\pi R},\tag{11.5}$$

valida nell'approssimazione in cui la lunghezza del filo è molto maggiore della distanza R dal filo.

Ricordiamo che una singola carica **non** può costituire una corrente stazionaria, poichè, proprio a causa del suo movimento cambia le condizioni del punto considerato a istanti diversi (un attimo prima c'è, un attimo dopo no).

Infine notiamo che il campo $\vec{B}(\vec{r})$ rispetta il principio di sovrapposizione: se abbiamo una collezzione di sorgenti di corrente $\vec{B}_{tot}(\vec{r})$ sarà la somma (**vettoriale**) dei singoli campi.

11.3 II equazione di Maxwell e note sulla magnetostatica

La condizione

$$\nabla \cdot \vec{B} = 0 \tag{11.6}$$

enuncia l'assenza di monopoli magnetici e garantisce che le linee di campo magnetico siano sempre chiuse. La legge di Ampère, nella forma corretta di Ampère–Maxwell, mette in relazione $\nabla \times \vec{B}$ con densità di corrente e il termine di spostamento elettrico:

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}.$$
 (11.7)

In magnetostatica il termine di derivata temporale si annulla e si recupera la legge di Ampère classica:

$$\nabla \times \vec{B} = \mu_0 \vec{J}. \tag{11.8}$$

11.4 Forza di Lorentz

Una carica in movimento è soggetta alla forza di Lorentz:

$$\vec{F}_{\text{mag}} = Q \left(\vec{v} \times \vec{B} \right), \tag{11.9}$$

mentre se sono presenti sia campo elettrico che magnetico la forza totale su una carica è

$$\vec{F} = Q \left[\vec{E} + \left(\vec{v} \times \vec{B} \right) \right]. \tag{11.10}$$

dove Q è la carica che subisce la forza e \vec{v} è la velocita' della carica. Poichè il termine magnetico $(\vec{v} \times \vec{B})$ è sempre perpendicolare a \vec{v} , esso non compie lavoro sulla carica puntiforme e quindi non varia l'energia cinetica associata al moto (se non intervengono altri campi non conservativi).

11.5 Campo di magnetizzazione

11.5.1 Interpretazione

11.6 Esempi

Legge di Ampere-Maxwell e campo magnetico H

- 12.1 IV equazione di Maxwell
- 12.2 Teorema di equivalenza di Ampère
- 12.3 Esempi

Potenziale vettore di Ampère

- 13.1 Esempi
- 13.2 Legge di Biot–Savart
- 13.3 Esempi aggiuntivi
- 13.4 Interazioni magnetiche

Come i materiali reagiscono ai campi magnetici di stimolo

- 14.1 Relazione costitutiva interna
- 14.2 Misure di suscettività magnetica

Strumenti e applicazioni

15.1	Amperometro
15.1.1	Misure stazionarie di conducibilità
15.2	Modello a tempo di rilassamento
15.3	Effetto Hall
15.4	Effetto Joule
15.5	Leggi di Kirchhoff
15.6	Circuito RC ed energia dissipata
15.7	Studio dei condensatori con dielettrico
15.7.1	Densità di energia elettrica
15.7.2	Forze che agiscono sul dielettrico

Introduzione all'elettrodinamica

- 16.1 Forza di Lorentz e moti di ciclotrone
- 16.2 Relatività del campo elettrico
- 16.3 Legge di induzione
- 16.4 III legge di Maxwell
- 16.5 Esempi
- 16.6 Forze magnetodinamiche
- 16.6.1 Esempi
- 16.7 Alternatore–Generatore di corrente monofase

Induttanza e circuiti

- 17.1 Induttanza
- 17.2 Densità di energia magnetica
- 17.3 Circuiti RCL in serie in regime transitorio
- 17.4 Circuiti RCL in regime armonico
- 17.4.1 Curva di risonanza di un circuito RCL

Materiali ferromagnetici

- 18.1 Legge di Felici
- 18.2 Ciclo di isteresi
- 18.3 Magneti permanenti
- 18.4 Campi magnetici nei materiali lineari
- 18.5 Interfaccia tra due materiali lineari
- 18.6 Esempi
- 18.7 Circuiti magnetici
- 18.8 Transformatore