Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики :::::::::: Университет итмо

учебный центр общей физики фтф

Группа	P3220	К работе допущен	
Студент Касьяненко В.М.		Работа выполнена	
Преподаватель	Хвастунов Н.Н.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 3.07 Изучение свойств ферромагнетика.

1. Цель работы.

- а) Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H);
- б) Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы;
- в) Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости;
- г) Расчёт мощности потерь энергии в ферромагнетике в процессе его перемагничивания.

2. Задачи, решаемые при выполнении работы.

- Настройка прибора;
- Подсчёт вспомогательных коэффициентов α, β, χ;
- Оценка погрешностей величин.

3. Объект исследования.

Сердечник (магнитопровод) трансформатора как образец для изучения

магнитных свойств ферромагнитного материала.

4. Метод экспериментального исследования.

Лабораторный (многократные измерения величин).

5. Рабочие формулы и исходные данные.

Исходные данные:

illibic.			
Величина	Значение		
N ₁	1665		
N_2	970		
l	0,078 ± 0,001 M		
R_1	68 ± 6,8 Ом		
R_2	470000 ± 47000 Om		
C ₁	47*10 ⁻⁸ ± 47*10 ⁻⁹ Φ		
S	$64*10^{-6} \pm 5*10^{-6} \text{ m}^2$		
μ_0	4*pi*10 ⁻⁷ Γ _H		
Соответственно статичные коэффициенты:			
α	$313,914 \pm 31,648 \frac{1}{M*0M}$		
β	$3,558 \pm 0,575 \frac{O_{M}*\Phi}{M^2}$		

$$\bullet \quad \alpha = \frac{N_1}{l*R_1}$$

$$\bullet \quad \beta = \frac{R_2 * C_1}{N_2 * S}$$

•
$$\alpha = \frac{N_1}{l*R_1}$$

• $\beta = \frac{R_2*C_1}{N_2*S}$
• $\chi = K_{\chi}K_{\chi} * \frac{N_1*R_2*C_1}{N_2*R_1} * f$

$$\bullet \quad B = \beta * K_y * Y$$

•
$$P = \chi * S_{\Pi\Gamma}$$

•
$$H = \alpha * K_x * X$$

•
$$P = \chi * S_{\Pi\Gamma}$$

• $H = \alpha * K_{\chi} * X$
• $\mu = \frac{B}{\mu_0 * H}$

 α , β , χ – коэффициенты, необходимые для расчета основных величин;

11 – индукция магнитного поля в образце;

12 – мощность перемагничивания;

5 – напряженность магнитного поля;

2 – магнитная проницаемость.

6. Измерительные приборы.

Таблица 0.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	запоминающий осциллограф	цифровой	$K_x = \{0,05; 0,1\} B$ $K_y = \{0,01; 0,02; 0.05\} B$	± 3%

7. Схема установки.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1.

Х _С , дел.	Y _r , дел.	H _C , A/M	Вг, Тл	
3,8	6,5	$119,287 \pm 12,934$	$1,156 \pm 0,191$	

Таблица 2.

Х _т , дел.	Y _m , дел.	H _m , A/M	В _т , Тл	μ_{m}
17,5	15,1	$549,350 \pm 57,869$	$2,686 \pm 0,442$	$3890,873 \pm 760,222$

Таблица 3.

U, B	Х, дел.	К _х , В/дел.	Н, А/м	Ү, дел.	К _у , В/дел.	В, Тл	μ
20	4,0	0,1	125,566	6,3	0,05	1,121	7104,340
19	4,0	0,1	125,566	6,0	0,05	1,067	6762,114
18	3,9	0,1	122,426	5,5	0,05	0,978	6357,046
17	3,5	0,1	109,870	5,0	0,05	0,890	6446,159
16	3,5	0,1	109,870	4,5	0,05	0,801	5801,543
15	3,2	0,1	100,452	4,5	0,05	0,801	6345,474
14	3,1	0,1	97,313	4,2	0,05	0,747	6108,575
13	6,0	0,05	94,174	4,0	0,05	0,712	6016,433
12	5,5	0,05	86,326	4,0	0,05	0,712	6563,395
11	5,2	0,05	81,618	3,5	0,05	0,623	6074,244
10	5,0	0,05	78,480	3,2	0,05	0,570	5779,709

9	5,0	0,05	78,480	7,5	0,02	0,534	5414,675
8	4,5	0,05	70,631	6,8	0,02	0,484	5453,058
7	4,3	0,05	67,492	5,3	0,02	0,377	4445,076
6	3,5	0,05	54,935	5,0	0,02	0,356	5156,927
5	3,0	0,05	47,087	8,5	0,01	0,302	5103,828

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Представим, что мы выполняем работу в настоящий момент, тогда в соответствии с методическими указаниями:

- Занесём в бланк протокола значения параметров, указанных на стенде: см. пункт 5, исходные данные. Они будут необходимы нам для нахождения коэффициентов α, β, χ.
- 2) Соберем лабораторную установку.

3) Зафиксируем входную частоту генератора: $f = 31 \, \Gamma$ ц, начальную амлитуду выходного сигнала генератора $V = 20 \, \mathrm{B}$ для режима Vрр:

- 4) Продолжаем настраивать прибор.
- 5) Подберём значения K_x , K_y так, что картинка петли будет занимать существенную часть экрана:

 $K_x = 100 \text{mV} = 0.1 \text{B}, K_y = 50 \text{mV} = 0.05 \text{B}.$

- 6) После регулировки получаем п.7
- 7) Приняв X_C и Y_r за координаты пересечения графика петли с осями координат, получим: см. Таблица 1.

8) Отметим координаты вершины петли гистерезиса: X_m и Y_m . Найдём соответствующие им H_m и B_m , а так же определим значение магнитной проницаемости μ , соответствующее состоянию насыщения. см Таблица 2.

9) Приняв деление за 1см, разметим график петли (красные – оси координат):

Значит, площадь полученной петли: $S_{\Pi\Gamma}=138.5~\text{см}^2=1385~\text{*}~10^{-5}~\text{м}^2$. Определим коэффициент χ и среднюю мощность P, расходуемую на перемагничивание образца:

$$\chi = 8,643 * 10^{-4} \pm 0,157 * 10^{-3} ; P = 1,197 * 10^{-5} \pm 2,176*10^{-6} B_{T}.$$

- 10) С шагом 1 В будем устанавливать меньшие амплитуды напряжения генератора (получим 16 значений). Вместе с тем будем выбирать необходимые коэффициенты K_x и K_y , при которых петля будет занимать максимальную площадь экрана. Запишем полученные значения с соответствующими ими значениями H, B и μ . (см. Таблица 3).
- 11) По полученным данным построим кривую начального намагничивания $B_m = B_m(H_m)$ и график зависимости магнитной проницаемости $\mu = \mu(H_m)$ от напряженности магнитного поля (см. График 1, График 2). Аппроксимируем их.
- 12) Графически найдем напряженность поля H_{max} , соответствующую максимуму магнитной проницаемости μ_{max} материала:

$$H_{\text{max}} = 125,566 \pm 13,048 \text{ A/M};$$

 $B_{max} = 1,121 \pm 0,185 \ T$ л.

Тогда найдем магнитную проницаемость для данной мощности по формуле:

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Для коэффициента α:

$$\alpha = \frac{N_1}{l * R_1}$$

$$\Delta \alpha = \sqrt{\left(\frac{\partial \alpha}{\partial N_1} * \Delta N_1\right)^2 + \left(\frac{\partial \alpha}{\partial l} * \Delta l\right)^2 + \left(\frac{\partial \alpha}{\partial R_1} * \Delta R_1\right)^2}$$

$$\Delta \alpha = \sqrt{\left(\frac{\Delta N_1}{l * R_1}\right)^2 + \left(\frac{N_1 * \Delta l}{l^2 * R_1}\right)^2 + \left(\frac{N_1 * \Delta R_1}{l * R_1^2}\right)^2}$$

$$\Delta \alpha = 31,648 \frac{1}{M*0M}$$

Для коэффициента β:

$$\beta = \frac{R_2 * C_1}{N_2 * S}$$

$$\Delta\beta = \sqrt{\left(\frac{c_1 * \Delta R_2}{N_2 * S}\right)^2 + \left(\frac{R_2 * \Delta C_1}{N_2 * S}\right)^2 + \left(\frac{R_2 * C_1}{S * N_2^2} * \Delta N_2\right)^2 + \left(\frac{R_2 * C_1}{N_2 * S^2} * \Delta S\right)^2}$$

$$\Delta \beta = 0.575 \frac{O_{\rm M}*\Phi}{M^2}$$

Для коэффициента χ (по аналогии), полагая $\Delta f=1B$:

$$\Delta \chi = \pm 0.157 * 10^{-3};$$

Для величины средней мощности, расходуемой на перемагничивание образца, полагая $\Delta S_{\Pi\Gamma} = \pm 1 \,\, \text{cm}^2 = \pm 10^{-4} \,\, \text{m}^2$:

$$P = \chi * S_{\Pi\Gamma}$$

$$\Delta P = \sqrt{(S_{H\Gamma} * \Delta \chi)^2 + (\chi * \Delta S_{H\Gamma})^2}$$

$$\Delta P = 2,176 * 10^{-6} \text{ Br}$$

Для величины $H=H_{max}$ ($K_x=0.1\,$ В/дел. ; $X=4.0\,$ дел.), полагая $\Delta X=\pm 0.1\,$ дел.:

$$H = \alpha K_x * X$$

$$\Delta H = \sqrt{(K_x * X * \Delta \alpha)^2 + (\alpha * X * \Delta K_x)^2 + (\alpha * K_x * \Delta X)^2}$$

$$\Delta H = \pm 13,048 \frac{A}{M}$$

Для величины $B=B_{max}$ ($K_y=0{,}05$ В/дел. ; $Y=6{,}3$ дел.), полагая $\Delta Y=\pm 0{,}1$ дел.:

$$B = \beta * K_{v} * Y$$

$$\Delta B = \sqrt{\left(K_y * Y * \Delta \beta\right)^2 + \left(\beta * Y * \Delta K_y\right)^2 + \left(\beta * K_y * \Delta Y\right)^2}$$

$$\Delta B = \pm 0,185$$
 Тл

Для величины магнитной проницаемости $\mu = \mu_{max}$ (B = B_{max}, H = H_{max}, μ_0 = const -> $\Delta\mu_0$ = 0):

$$\mu = \frac{B}{\mu_0 * H}$$

$$\Delta \mu = \sqrt{\left(\frac{\Delta B}{\mu_0 * H}\right)^2 + \left(\frac{B * \Delta H}{\mu_0 * H^2}\right)^2}$$

$$\Delta \mu = \pm 1417,595$$

Для коэрцитивной силы H_C ($X_C = 3.8$ дел.; $K_x = 0.1$ В/дел.) — по аналогии с H_{max} : $\Delta H_C = \pm 12.934$ А/м.

Для остаточной индукции B_r ($Y_r = 6,5$ дел.; $K_y = 0,05 B$ /дел.) — по аналогии с B_{max} : $\Delta B_r = \pm 0.191$ Тл.

Также по аналогии с нахождением погрешностей для H_{max} , B_{max} , μ_{max} , найдем погрешности для соответствующих величин, соответствующих состоянию насыщения: $\Delta H_m = \pm 57,869~A/M$; $\Delta B_m = \pm 0,442~T\pi$; $\Delta \mu_m = \pm 760,222$;

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1.

График 2.

12. Выводы и анализ результатов работы.

Окончательный результат:

- Получены значения исследуемого образца:
 - коэрцитивной силы: $H_C = 119,287 \pm 12,934 \frac{A}{M}$;

- остаточной индукции: $B_r = 1{,}156 \pm 0{,}191 \text{ Тл};$
- Получены значения в состоянии насыщения:
 - Индукции $B_m = 2,686 \pm 0,442 \text{ Тл};$
 - Напряженности $H_m = 549,350 \pm 57,869 \frac{A}{M}$;
 - *Магнитной проницаемости* $\mu_m = 3890,873 \pm 760,222;$
- Получена мощность потерь на перемагничивание ферромагнетика (с оценкой величины её погрешности):
 - $P = 1.197 * 10^{-5} \pm 2.176 * 10^{-6} BT$;
- Графически получено максимальное значение проницаемости и напряженности поля, на которой она наблюдается:
 - $\mu_{max} = 7104,340 \pm 1417,595;$
 - $H_{max} = 125,566 \pm 13,048 \text{ A/m}.$

Графики:

- График зависимости магнитной индукции от напряженности:
 - B = B(H) c M. График 1.
- График зависимости магнитной проницаемости от напряженности:
 - $\mu = \mu(H) c M$. График 2.

<u>Вывод:</u> В ходе лабораторной работы посредством работы с устройством ЦЗО, способном отображать зависимость магнитной индукции от напряженности магнитного поля в ферромагнетике (петля гистерезиса), были определены значения индукции насыщения, остаточной индукции, коэрцитивной силы. Таким образом, можно определить максимальную индукцию для данного магнитного материала, магнитную индукцию, остающуюся в намагниченном материале после того, как намагничивающее поле убирают, а также можно определить характеристику способности ферромагнетика сохранять намагниченное состояние. Аппроксимация графиков показала стабильность зависимостей.