CIT 596: ALGORITHMS & COMPUTATION

Comparing Common https://tutorcs.com/Common Paring Char. Language Common Running Char. Language Char. Language

Common Running Times

Certain asymptotic growth rates show up very often in the analysis of algorithms.

• Constant: O(1)Assignment Project Exam Help n^2

• Logarithmic: $O(\log n)$ https://tutorcs.com

• Quadratic: $O(n^2)$

• Polynomial: $O(n^k)$

• Exponential: $O(2^n)$

Constant: O(1)

- Running time of: Basic operations like arithmetic with bounded-length numbers, accessing an array entry, or assigning a value to a variable.
- Example of a $\Theta(1)$ function: f(n) = 2 Exam Help
 - f(1000) = 2 https://tutorcs.com
- Note: WeChat: cstutorcs
 - c = O(g(n)) for every constant c and non-decreasing function g.

Logarithmic: $O(\log n)$

- Running time of:
 - binary search on a sorted array

 Assignment Project Exam Help
 - heap operations
- Example of a $\Theta(\log n)$ https://ibhorces.pom $2\log_2(n) + 4$
 - $f(1000) \approx 24$ WeChat: cstutorcs
- Notes:
 - $\log_a(n) = O(n^{\epsilon})$ for all a > 1 and $\epsilon > 0$.
 - $\log_a(n) = \Theta(\log_b(n))$ for all a, b > 1.

Linear: O(n)

- Running time of:
 - Addition of *n*-digit numbers
 - Huffman's algorithm for data compression
- Example of a $\Theta(n)$ function: f(n) = 2n + 1
 - f(1000) = 2001 WeChat: cstutorcs
- Note:
 - It takes $\Theta(n)$ time just to read the whole input.

Linearithmic: $O(n \log n)$

- Running time of:
 - Merge sort
 - Expected running time of randomized quicksort

 Assignment Project Exam Help
- Example of a $\Theta(n \log ht)$ with the strong $n = 2n \log_3 n$
 - $f(1000) \approx 12575$ WeChat: cstutorcs
- Note:
 - Close to linear and still considered quite fast for most applications.

Quadratic: $O(n^2)$

- Running time of:
 - Insertion sort
 - DNA sequence alignment algorithms

 Assignment Project Exam Help
 - Many algorithms with nettres: lotytorcs.com
- Example of a $\Theta(n^2)$ full terms f(xt) it or $cs^2 + 3n + 1$
 - f(1000) = 1003001

Polynomial: $O(n^k)$ for any positive integer k

- Running time of:
 - Finding shortest paths between all pairs of nodes in a graph $(O(n^3))$
 - Many algorithms with spigenment Project (E3) am Help
- Many algorithms with quadruple-nested loops $(O(n^4))$, etc. https://tutorcs.com Example of a $\Theta(n^4)$ function: $f(n) = n^4 + 2n^3 + n$ f(1000) = 1002000001000 Chat: cstutorcs
- Notes:
 - $n^k = O(n^\ell)$ if $k \le \ell$.
 - If a computational problem has a polynomial-time algorithm, we generally consider the problem tractable.

Exponential: $O(2^n)$

Running time of:

- Towers of Hanoi with n rings
- Finding all subsets of Stephniem Project Exam Help
- Example of a $\Theta(2^n)$ function: $f(n) = 2^n$
 - f(1000) =107150860718626732094842504906000181056140481170553360744375038837 03510511249361224931983788156958581275946729175531468251871452856923140435 98457757469857480393456777482423098542107460506237114187795418215304647498 35819412673987675591655459460770629145711964776865421676604298316526243868 37205668069376

Notes:

- $2^n = \Omega(n^k)$ for all k.
- Running times like O(n!), $O(n^n)$, or $O(2^{n^2})$ are even more disastrously slow.