

Lecture 5: Decision Rules

Lecturer: Jie Fu, Ph.D.

EEL 3850

Outline

- Maximum-Likelihood Estimation Decision Rules
- Maximum A Posteriori (MAP) Decision Rule
- The probability of error using decision rule

Motivating problem: Binary Communication System

A transmitter Tx sends A_0 and A_1 .

- A receiver Rx processes the output of the channel into one of two values B_0 and B_1 .
- The channel is a noisy channel that determines the probabilities between A_0 , A_1 and B_0 , B_1 .

The receiver must use a decision rule to determine from the output B_0 or B_1 whether the symbol that was sent was most likely A_0 or A_1 .**

Frequentist vs Bayesian

- Frequentist statistician: draws conclusions from data by computing relative frequency of events in the data.
- Bayesian statistician: draws conclusions from data by testing out the hypothesis and computing their observed probability from data.
 - It computes the uncertainty of hypothesis by inducing prior beliefs.
 - It tests hypothesis.

Decision Problem and Decision Rules

A decision rule tells how to choose an input given an observed output.

- optimal decision problem:
 - 1. Maximize the likelihood of the input.
 - 2. Choose the input that minimizes the probability of error.

Maximize Likelihood Estimate(MLE) decision rule

MLE: Maximize the likelihood of the input

If the set of events $\{A_0, A_1\}$ partitions Ω , and assuming $P(A_i) > 0$, for all i. Then the Maximum Likelihood decision rule is given by:

$$P(B|A_0) \underset{A_1}{\gtrless} P(B|A_1)$$

Interpretation: If top inequality holds, choose A0, if the bottom inequality holds, choose A1

Alternatively, the MLE RULE:

$$\widehat{A}_i$$
, where $i = \arg \max_{i \in \{0,1\}} P(B_j | A_i)$.

- MLE
- 1. B0
- 2. B1

Two cases:

1.
$$P(A_0) = \frac{2}{5}$$
, $P(A_1) = \frac{3}{5}$
2. $P(A_0) = \frac{1}{10}$, $P(A_1) = \frac{9}{10}$

If we receive B_0 , using the MLE rule, which one to select?

$$P(B|A_0) \underset{A_1}{\overset{A_0}{\geqslant}} P(B|A_1)$$

- MLE: if the probability of A0 given B0 is greater than the probability of A1 given B0, then we select A0, Otherwise, we select A1.

Maximum a Posterior (MAP) rule

 we choose the input that maximizes the a posteriori probability (APP), we call this a maximum a posteriori (MAP) decision rule.

If the set of events $\{A_0, A_1\}$ partitions Ω , and assuming $P(A_i) > 0$, for all i. Then the Maximum A Posteriori decision rule is given by:

$$P(A_0|B) \underset{A_1}{\gtrless} P(A_1|B)$$

$$\iff \frac{P(B|A_0)P(A_0)}{P(B)} \underset{A_1}{\gtrless} \frac{P(B|A_1)P(A_1)}{P(B)}$$

Given B_j , choose \widehat{A}_i , where $i = \arg \max_{i \in \{0,1\}} P(A_i|B_j)$.

- MAP
- 1. B0
- 2. B1

Two cases:

1.
$$P(A_0) = \frac{2}{5}$$
, $P(A_1) = \frac{3}{5}$
2. $P(A_0) = \frac{1}{10}$, $P(A_1) = \frac{9}{10}$

$$P(A_0|B) \underset{A_1}{\overset{A_0}{\gtrless}} P(A_1|B)$$

Observing B0

Observing B1

 If a decision rule always selects A0 regardless of what is being received, what is the probability of error?

1.
$$P(A_0) = \frac{2}{5}$$
, $P(A_1) = \frac{3}{5}$
2. $P(A_0) = \frac{1}{10}$, $P(A_1) = \frac{9}{10}$

Question: How to calculate the probability of ERROR?

$$P(E) = P(E|B_0)P(B_0) + P(E|B_1)P(B_1)$$

Probability of Error for case 1

Probability of Error for case 2

Continue the same step for scenario 2

Left as an exercise