TENTATIVE

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC9284BF

CD SINGLE CHIP PROCESSOR WITH BUILT-IN 1BIT DA CONVERTER

The TC9284BF is a single chip processor for sync separation protection/synchronization, EFM demodulation, error correction/interpolation, microcomputer interface, CLV servo a focus tracking servo in CD player system. And, built-in 1bit DA converter. In combination with the TA8190F/TA8191F/TA2031F/TA2035F/TA2065F/TA2077F, which are focus tracking servo LSI, a CD player system can be composed very simply.

QFP80-P-1420-0.80A

Weight: 1.57g (Typ.)

FEATURES

- Positive sync pattern detection, sync signal protection and synchronization.
- Built-in EFM demodulation and subcode demodulation circuit.
- Has the correction capacity of single and double corrections for C1 and C2 correcting units, respectively, using CIRC correction theoretical format.
- Jitter absorbing capacity of ±5 frames.
- Built-in 16K RAM.
- Built-in digital out circuit.
- Smooth muting through zero cross detection.
- Read timing free subcode Q data.
- Built-in data slicer and analog PLL (free-adjustment VCO adopted) circuit.
- Focus/tracking loop gain auto adjusting function incorporated.
- Built-in AFC and APC circuits for disc motor CLV servo.
- Built-in focus tracking servo control circuit.
- Tracking search control capable of coping with all modes.
- Built-in 1bit DA converter.
 - Function of DA converter.
 - (1) Built-in 8-time oversampling digital filter.
 - (2) Built-in soft mute function.
- Built-in microcomputer interface circuit.
- Double speed play is possible.
- In CMOS structure, high speed and low power dissipation.
- 80 pin flat package.

2001-06-19

PIN CONNECTION/BLOCK DIAGRAM

PIN FUNCTION

PIN No.	SYMBOL	1/0	FUNCTIONAL DESCRIPTION	REMARKS		
1	GNDA	_	Analog grand terminal for DA converter (R channel)	1		
2	RO	0	R channel data forward output terminal.	-		
3	RO	0	R channel data reverse output terminal.	_		
4	V_{DA}	_	Analog power supply terminal for DA converter.	_		
5	ĪŌ	0	L channel data reverse output terminal.	_		
6	LO	0	L channel data forward output terminal.	_		
7	GNDA	_	Analog grand terminal for DA converter (L channel)	_		
8	TEST3	I	Test terminal. Normally, keep at "H" level or open.			
9	TEST4	I	Test terminal. Normally, keep at "H" level or open.	With pull-up resistor		
10	TEST5	I	Test terminal. Normally, keep at "H" level or open.			
	40 O.K	_	Subcode Q data CRC check adjusting result output			
11	SBOK	0	terminal.	_		
- 10			The adjusting result is OK at "H" level.			
12	V_{DDD}	_	Digital supply voltage terminal. (+5V)	_		
13	GNDD	_	Digital ground terminal.	<u> </u>		
	14 BUS0 / I/O		Command and data sending/receiving input/output	Schmitt input		
			terminals.	Open drain output		
17	BUS3			With pull-up resistor		
		CE I	Command and data sending/receiving chip enable signal			
18	CCE		input terminal.			
			The bus line becomes active at "L" level.	Schmitt input		
19 BUCK		1	Command and data sending / receiving clock input			
	DOCK		terminal.			
20	PFCK	0	Regeneration system frame periodic signal output	_		
20	TTCK		terminal. 7.35kHz	_		
21	RST	1	Reset input terminal.	With pull-up resistor		
۷ ۱		'	The internal system is reset at "L" level.	with pun-up resistor		
22	SUBSYC	0	Subcode sync signal output terminal.	_		
23	SUBD	0	Subcode P~W output terminals.	_		
24	CLCK		Subcode P~W data readout clock input terminal.	l		
25	V_{DDD}	-	Digital supply voltage terminal.	I		
26	GNDD	l	Digital ground terminal.	_		
27	DFCT	0	Defect detection signal output terminal. V _{REF} when			
21	DFCI	O	defect is detected. Normally, HiZ.	_		
28	TEL2	_	Tracking gain adjusting analog switch output terminals			
29	TEL1	0	V _{REF} or HiZ.	_		
			Tracking servo loop low frequency phase compensator			
30	TGUL	0	change-over analog switch output terminal.	_		
			HiZ (gain up) when detecting shock. Normally, V _{REF} .			

PIN FUNCTION

PIN No.	SYMBOL	1/0	FUNCTIONAL DESCRIPTION	REMARKS		
31	TGUH2	0	Tracking servo loop middle/high frequency phase compensator change-over analog switch output terminals.			
32	TGUH1	0	HiZ (gain up) when detecting shock. Normally, V _{REF} . TGUH1 is used at normal regeneration and TGUH2 is used at double speed regeneration.	_		
33	TKIC	0	Tracking actuator kick signal output terminal. Kicks in the outer circumferential direction at "H" level and in the inner circumferential direction at "L" level.	3-state output		
34	FMON	0	Feed servo ON/OFF analog switch output terminals. Servo on at "HiZ". Servo off at "V _{REF} ".	_		
35	TEST1	1	Test terminal. Normally, keep at "H" level or open.	With pull-up resistor		
36	FMFB	0	Feed motor FWD/BWD feeding control signal output terminal. Feed in the outer circumferential direction at "H" level and in the inner circumferential direction at "L" level.	3-state output		
37	TEST	ı	Test terminal. Normally, keep at "H" level or open.	With pull-up resistor		
38	DMON	0	Disc motor driving circuit gain change-over analog switch output terminal.	<u> </u>		
39	DMFC	0	Disc motor CLV servo AFC signal output terminal. COMMAND DMFC OUTPUT OPERATION DMFK H Motor acceleration DMSV PWM CLV servo ON DMBK L Motor deceleration DMOFF VREF CLV servo OFF	3-state output		
40	DMPC	0	Disc motor CLV servo APC signal output terminal.	3-state output		
41	2V _{REF}	ı	Double times reference voltage input terminal. ($V_{REF} \times 2$)	_		
42	SEL	0	SEL LD ON/OFF FOCUS SERVO OPERATION L OFF OFF LD OFF HIZ ON OFF Focus Search H ON ON FOCUS SERVO OPERATION Normal play, etc. Focus Servo ON : FOK)	3-state output		

PIN No.	SYMBOL	1/0		FUNCTIO	ON DESCRIPTION	REMARKS
			Focus actuate focus search	_	ignal output terminal in the	
43	FCSI	0	COMMAND	FCSI OUTPUT	OPERATION	3-state output
"			FORST	Н	Lens gets for away from disc	
			FOSET	L	Lens gets near disc	
			Others	HiZ	Other than focus search	
			Focus actuate focus gain ac	_	ignal output terminal in the ode.	
44	FKIC	0	COMMAND	FKIC OUTPUT	OPERATION	3-state output
44			FGASR	Н	Lens gets for away from disc	3-state output
			FGASS	L	Lens gets near disc	
			Others	HiZ	Other than focus adjustment	
45	FEL2	0	Fucus again	adjusting a	nalog switch output terminals.	
46	FEL1				·	
47	FEI	ı	Focus error s		Analog output	
48	TESH	ı	Tracking erro	_	put sample holding analog	_
49	TEOF	0	output termi	nal.	n ON/OFF analog switch	_
50	SBAD	ı	Sub beam ac	dding signa	l input terminal.	A seal and in most
51	RFRP	ı	RF ripple sig	nal input te	erminal.	Analog input
52	V _{REF}	ı	Reference vo	ltage input	terminal. (+2.1V)	_
53	RFI	I	RF signal inp	ut termina	l.	Analog input
54	GNDA	_	Analog grou	nd termina	l.	_
55	DTSC2	0	Data slice co	ntrol EFM s	signal passive output terminal.	_
56	MONIT	0	Internal signaterminal. Sel		LCK, LOCK and MBOV) output ommand.	_
57	DTSC1	0	Data slice co	ntrol EFM s	signal negative output terminal.	_
58	V_{DDA}	_	Analog supp	ly voltage t	terminal. (+ 5V)	_
59	PDCNT	I	PDO output At "L" level,		minal. ut is made to HiZ by force.	_
60	PDO	0	Phase error s	signal outpo	ut terminal between EFM signal	3-state output

PIN No.	SYMBOL	1/0	FUNCTIONAL DESCRIPTION	REMARKS					
			TMAX signal output terminal. Hiz at time of system clock.						
			TMAX PERIOD TMAX OUTPUT						
61	TMAX	0	Longer than L specified period	3-state output					
			Shorter than H (2V _{REF}) Specified period HiZ						
62	LPFN		LPF amplifier inverting input terminal for PLL.	_					
63	LPFO	0	LPF amplifier output terminal for PLL.	_					
64	VCOF	ı	VCO filter terminal.	_					
65	TESTX	I	Test terminal.	_					
66	НS	0	Double speed monitor output terminal. Double speed operation at "L" level.	_					
67	GNDD	_	Digital ground terminal.	_					
68	SPDA	0	Processor status signal output terminal. Correction process judging result, memory buffer capacity, etc.	_					
69	COFS	0	Correction system frame periodic signal output terminal. 7.35kHz.	_					
70	WDCK	0	Word clock output terminal. Normally, 88.2kHz.	_					
71	снск	0	Channel clock output terminal. Normally, 44.1kHz.	_					
72	вск	0	Bit clock output terminal. Normally, 1.4112MHz.	_					
73	AOUT	0	Audio data output terminal.	_					
74	ЕМРН	0	Emphasis ON/OFF indication signal output terminal. Emphasis ON at "H" level.	_					
75	DOUT	0	Digital out output terminal.	_					
76	TEST2	I	Test terminal. Normally, keep at "H" level or open.	With pull-up resistor					
77	V_{DDX}	0	Oscillator supply voltage terminal.	_					
78	ΧI	I	Crystal oscillator connecting terminal.						
79	хо	0	crystal oscillator conflecting terminal.	XI XO					
80	GNDX	0	Oscillator grand terminal. —						

MAXIMUM RATINGS ($Ta = 25^{\circ}C$)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	V_{DD}	-0.3~6.0	V
Input Voltage	VIN	-0.3~V _{DD} +0.3	V
Power Dissipation	PD	1250	mW
Operating Temperature	T _{opr}	- 35~85	°C
Storage Temperature	T _{stg}	- 55~150	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{DD} = 5V$, $2V_{REF} = 4.2V$, $V_{REF} = 2.1V$, Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TES	T CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Supply Voltage		V_{DD}	_	Ta = −35~85°C		4.5	5.0	5.5	V
Operating Supp	oly Current	I _{DD}		XI = 16.9344 In normal			40	70	mA
	"H" Level	V _{IH} (1)		Whole inpu	ut terminals except	3.5	1	$V_{DD} + 0.3$	
Innut Valtaga	"L" Level	V _{IL} (1)		-	UCK and CCE	0	_	1.5	v
Input Voltage	"H" Level	V _{IH} (2)		BUSO~3, B	-	4.0	_	$V_{DD} + 0.3$	· ·
	"L" Level	V _{IL} (2)		(Schmitt in	put)	0	_	1.0	
Input Current	"H" Level	lін	_	VIH — JVI	MOS input terminals cept analog input	_	_	1.0	μΑ
Imput Current	"L" Level	կլ		V _{IL} = 0V te		- 1.0	_	_	μ Λ
Try State Leak	"H" Level	ITLH		V _{IH} = 5V		<u> </u>	_	1.0	μΑ
Current	"L" Level	ITLL		V _{IL} = 0V	V _{IL} = 0V			_	μ –
	"H" Level	I _{OH} (1)		V _{OH} = 4.6V	WDCK, CHCK, BCK, AOUT, DOUT, XO	_	_	- 2.0	
	"L" Level	lOL (1)	_	V _{OL} = 0.4V	V _{OUT} = V _{DD}	2.0	_	_	
	"H" Level	I _{OH} (2)		V _{OH} = 4.6V	SBOK, PFCK, SUBSYC, SUBD, CLCK, SEL, HS, FCSI, FKIC, PDCNT,	_	_	- 0.5	
Output Current	"L" Level	I _{OL} (2)	_	VOL = 0.4V	MONIT, COFS, SPDA VOUT = VDD	1.0	_	_	A
Carrent	"H" Level	IOH (3)		V _{OH} = 3.8V	TKIC, FMFB, DMFC, DMPC, TMAX	_	_	-0.4	mA
	"L" Level	I _{OL} (3)	_	V _{OL} = 0.4V	V _{OUT} = 2V _{REF}	1.0	_	_	
	"H" Level	I _{OH} (4)		V _{OH} = 3.8V	PDO	_	_	- 1.0	
	"L" Level	^I OL (4)	_	V _{OL} = 0.4V	V _{OUT} = 2V _{REF}	1.0	_	_	
Analog Switch	"H" Level	^I OFH		V _{IH} = 5V	1	_	_	1.0	
OFF Current	"L" Level	lOFL	_	V _{IL} = 0V		- 1.0	_	_	μ A

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Analog Switch ON Resistance	RON (1)	_	FEL1/2, TEL1/2, FMON, TGUL, TGUH1/2, DFCT, TEOF, DMON	l	l	0.3	kΩ
	RON (2)		TESH		-	0.6	
	R _{UP} (1)		RST		50		
Pull-up Resistance	R _{UP} (2)	_	TEST, TEST1~5		30	_	kΩ
	R _{UP} (3)		BUS3~0	8	_	_	
Oscillation Amplifier Feedback Resistance	R _N	_	XI XO between	2	4	6	kΩ
Operating Frequency Ratio	f _{op}		XI	6	_	28	MHz
Total Harmonic Distortion + Noise	THD + N	1	1kHz sine wave Full-scale input	I	- 85	- 80	dB
S/N Ratio	S/N	1		90	98	_	dB
Dynamic Range	DR	1	1kHz sine wave -60dB input conversion	90	95		dB
Cross-talk	СТ	1	1kHz sine wave Full-scale input		- 95	- 85	dB

TEST CIRCUIT 1: Application circuit example-2 is used.

LPF : SHIBASOKU 725C BUILT-IN FILTER
DISTORTION FACTOR GAUGE : SHIBASOKU 725C OR EQUIVALENT

MEASURING ITEM	DISTORTION FACTOR GAUGE FILTER SETTING A WEIGHT
THD + N, CT	OFF
S/N, DR	ON

A WEIGHT : IEC-A OR EQUIVALENT

AC CHARACTERISTICS (1) Clock system timing

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Clock Pulse	"H" Level	tHW			18	_	_	
Width	"L" Level	t _{LW}		XI input	18	_	_	
Input Rising Ti	ne	t _r	-		_	_	10	ns
Input Falling Ti	me	t _f			_	_	10	
Transfer Time	"H" Level	t _{pHL1}		XI→MCK	_	_	60	
(1)	"L" Level	t _{pLH1}	1 —		_	_	60	
Transfer Time	"H" Level	t _{pHL2}		MCK→BCK	_	_	60	
(2)	"L" Level	t _{pLH2}			_	_	60	ns
Transfer Time	"H" Level	t _{pHL3}		MCK→COFS	_	_	100	
(3)	"L" Level	t _{pLH3}	_	IVICK-COF3	_	_	100	
Output Rising	Time (1)	t _{or1}		MCV PCV	_	_	15	
Output Falling Time (1)		t _{of1}	1 —	MCK, BCK	_	_	15	ns
Output Rising Time (2)		t _{or2}		COEC	_	_	40	nc
Output Falling	Time (2)	t _{of2}	_	COFS	_	_	40	ns

(2) Microcomputer interface timing

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Clock Pulse	"H" Level	t _{BHW}		BUCK	10	_	_	
Width (1)	"L" Level	t _{BLW}		BUCK	10	_	_	,,,
Clock Pulse Width (2)	"H" Level	tcc		CCE	6	_	_	μ s
Delay Time (1)		t _{CB}	-	<u>CCE</u> →BUCK	l	_	6	
Delay Time (2)		t _{WB}	1	Command Data→BUCK	0	_	_	
Delay Time (3)		t _{CS}	1	CCE→Status Output	l	_	6	μ s
Delay Time (4)		t _{BC}	_	BUCK→CCE	6	_	_	
Setup Time (1)		t _{RD}	_	BUCK→Read Data Output	_	_	6	
Setup Time (2)		t _{BA}	_	BUCK→ACK, Each Parity Output	-	_	6	μ s
Hold time (1)		t _{SZ1}	_	BUCK→Status, ACK, Each Parity Output	_	_	6	
Hold time (2)		t _{SZ2}	_	CCE→Status Output		_	6	μ s
Hold time (3)		tWH	_	BUCK→Command Data	6	_	_	

(a) Write command processing mode

(b) Read command processing mode

(Microcomputer Output)

(c) Idle mode

(Microcomputer Output)

(3) Data output timing

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Transfer Time	"H" Level	t _{pHL}	_	BCK→AOUT, WDCK, CHCK	_	_	30	20
Transfer Time	"L" Level	t _{pLH}	_	BCK—AOUT, WDCK, CHCK	_	_	30	ns
Output Rising Time		tor	_	AOUT, WDCK, CHCK	_	_	15	200
Output Falling	Time	t _{of}	_	AGGI, WEEK, CHEK	_	_	15	ns

11

(4) Output timing for subcode P~W

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Clock Pulse	"H" Level	tHW	—	CLCK	2	_	_	
Width	"L" Level	tLW	_	CLCK	2	_	_	μ s
Setup Time		tsup	_	PFCK→SUBD	0.4	_	_	c
Read Access Time		tRAC		CLCK→SUBD	1.2	_		μ s

(5) Output timing for subcode Q

	~							
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Transfer Time	"H" Level	t _{pHL}	_	PFCK→SBOK, SUBSYC	- 50	_	200	ns
	"L" Level	t _{pLH}	_		- 50	_	200	
Output Rising Time		tor	_	SBOK, SUBSYC		_	40	ns
Output Falling Time		t _{of}	_		_	_	40	

(6) Status signal output timing

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Hold Time	"H" Level	tHDH	_	WDCK→SPDA	_	_	200	ns
	"L" Level	tHDL	_		_	_	200	
Output Rising Time		tor	_	·SPDA	_	_	40	ns
Output Falling Time		t _{of}	_		_	-	40	

(7) Digital out output timing

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Transfer Time	"H" Level	t _{pHL}	_	MCK→DOUT	_		60	20
	"L" Level	t _{pLH}	_		_	_	60	ns
Output Rising Time		tor	_	DOUT	_	_	14	nc
Output Falling Time		tof	_		_	_	14	ns

APPLICATION CIRCUIT EXAMPLE-1 (+5V single power supply used)

(Cautions)

- Quality of crystal oscillation wave form largely affect S/N ratio and noise distortion. Further, this is also true then system clock is input externally through the XI terminal.
- The wiring between the TC9284BF output and the TA2009F input must be made the shortest.
- The condenser between V_{DD} and GND shall be connected as close to the pin as possible.

PACKAGE DIMENSIONS

QFP80-P-1420-0.80A Unit: mm

Weight: 1.57g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.