首都圏高速道路網における 動的OD交通量推定モデルのパラメータ推定

Parameter Estimation of OD Flow Estimation Model in Metropolitan Expressway Network

石川裕太郎(東北大学) 酒井高良 (東北大学) 赤松隆 (東北大学)

1. 背景

- * OD推定モデルのパラメータの重要性
- **❖** Day-to-day, Within-dayにおける動的な変動特性:未検証

2. 目的

❖ 長期間時々刻々の観測データに基づき,動的OD推定モデルの パラメータを推定し,その変動特性を検証する

3. 分析対象ネットワークとデータ

❖ 首都圏高速道路網

- 64の起点,68の終点から構成
- 総延長:160 km
- 日交通量:約100万台

記号	路線	記号	路線
1	羽田線	7	小松川線
2	目黒線	10	台場線
3	渋谷線	C1	都心環状線
4	新宿線	C2	中央環状線
5	池袋線	S1	川口線
6	向島線	В	湾岸線

◇ データ:感知器における観測データ

- 感知器の数:約900個
- 観測期間:2014年1月1日-12月31日
- 日内1分刻みの速度・交通量データ

❖ 分析対象日:140日

- 晴天かつ平日
- 大規模な交通規制のない日
- 分析対象時間:6:00-22:00

時々刻々の発生・集中交通量

ネットワークの総交通費用 が観測済み

4. モデルと定式化

⇒ 時空間ネットワークを用いた 動的OD推定モデル

- $o \in \mathcal{O}$:時空間起点ノード
 - 起点 r , 発生時刻 \mathcal{T}_i^{Ori} に対応
- $d\in\mathcal{D}$:時空間終点ノード
- 終点S,集中時刻 \mathcal{T}_i^{Des} に対応(o,d):時空間 OD ペア
 - ${\mathcal G}$ 上の最短経路費用に基づき決定
- q_{od} :時空間OD交通量
- c_{od} :時空間OD費用

時空間ネットワーク \mathcal{G} 3次元で位置と時刻の情報を保有 \mathcal{T}_j^{Des} 発生時刻と集中時刻は独立に集約化 \mathcal{T}_i^{Ori} 観測データから \mathcal{G} の構造が決定 (o,d) を分析日ごとに定義

5. 効率的解法の提案

◆ 二重制約重力モデルのパラメータ推定と等価な最適化問題[P]

$$\min Z_P(\mathbf{q}) = \sum_{(o,d)} q_{od} (\ln q_{od} - 1)$$
[P] s.t.
$$\sum_{(o,d)} c_{od}q_{od} = \hat{E}, \qquad \sum_{d} q_{od} = O_o \quad \forall o, \qquad \sum_{o} q_{od} = D_d \quad \forall d, \qquad q_{od} \geq 0 \quad \forall o, d$$
総交通費用制約 発生制約 集中制約

◆ [P] の双対問題 [D] を構築

[D]
$$\max Z_D(\gamma) = -\sum_{o,d} A_o B_d O_o D_d \exp(-\gamma c_{od}) + \sum_o O_o \ln A_o + \sum_d D_d \ln B_d - \gamma \hat{E}$$
s.t. (1) and (2)
$$Z'_D(\gamma) \equiv \frac{dZ_D}{d\gamma} = \sum_{o,d} c_{od} q_{od} - \hat{E} \qquad Z''_D(\gamma) \equiv \frac{d^2 Z_D}{d\gamma^2} = -\sum_{o,d} c_{od}^2 q_{od}$$

時空間OD選択確率に重力型関数を仮定: $p_{od}=lpha_oeta_d\exp(-\gamma c_{od})$

• 交通費用, 起点, 終点に対応する3種類のパラメータを**最尤推定**

二重制約型重力モデルに 総交通費用条件を 加えたものと等価

推定するパラメータは γ , \mathbf{A} , \mathbf{B} ($\mathbf{A} \equiv [\dots, A_o, \dots]_{\mathcal{O}} \mathbf{B} \equiv [\dots, B_d, \dots]_{\mathcal{D}}$)

❖ 解法アルゴリズム

- [D] は ^γ について凸二次の微分の情報を
 - 利用可能

Newton 法

Balancing 法

…二重制約重力モデルの 解法アルゴリズム(Bregman(1967)) (パラメータ ↑ はgiven) Step.0 Initialization 初期解 $\gamma^0 := 0$,繰り返し回数 n = 0 とする.

Step.1 Convergence test 収束条件を満たせば終了.

Step.2 Bregman's balancing method

パラメータ γ^n のもとで時空間OD交通量パターン ${\bf Q}$ を求める. ${\bf Q}$ ならびにパラメータ ${\bf A}, {\bf B}$ に基づき, $Z_D(\gamma^n)$ を求める.

Step.3 Gradient Calculation $Z_D'(\gamma^n), Z_D''(\gamma^n)$ を求める.

6. 結果と考察

条件設定

- * 分析日 $D \in Day$ に対し、 分析対象時間を日内8つの時間帯に分割し、 時間帯 T ごとにパラメータを推定
- ullet \mathcal{T}_i^{Ori} は5分間隔, \mathcal{T}_i^{Des} は時間帯幅と同一

交通費用にかかるパラメータ ? …利用者の費用に対する感度

* Within-day 変動特性 分析日Dの時間帯Tの推定値 $\gamma_{D,T}$ を,時間帯ごとに年間で平均化

【時間帯推定値の特徴】

朝・夕方

<u> → 小(交通費用に鈍感)</u>

<u>昼・夜間</u> ▶大(交通費用に敏感)

利用者のOD選択行動は ネットワークの混雑状況に依存

起点にかかるパラメータ A …地点の魅力度

❖ Day-to-day 変動特性分析日 *D* の時々刻々の推定値を, 起点ごとに日内で平均化

日々の推定値が 確率的に変動すると仮定

 $\mathbf{A}_r = [\dots, A_{r,D}, \dots]_{Day}$ は確率変数 起点間の相関関係を分析

2グループ $\mathcal{O}_1,\mathcal{O}_2$ に分類

【**空間分布**】 C1近傍とその他の 2グループに分類

【日推定値の特徴】

空間分布との対応関係が存在

❖ Within-day変動特性

起点 r ごとに日内時々刻々の 推定値の推移をプロットし、

Within-dayの日内推移に ①日々のばらつき大 & 日内変動大 ②日々のばらつき小 & 日内変動小 の2タイプが出現

Day-to-dayの知見を活用し, \mathcal{O}_2 $\mathcal{O}_1,\mathcal{O}_2$ 2つのグループごとに分析

時間帯推定値の日内推移 時間帯推定値の年間平均 時間帯推定値の年間分散 Within-day @ origin node 502 in 0: 1.75 - 0.50

【時間帯推定値の特徴】 起点グループ間で違い

【②1: C1近傍の起点】

- 日内推移は安定的
- ・起点の魅力度は変化しない
- ・OD交通量は パラメータの影響を受けずに決定
- 【*O*2: その他の起点】 推定値は時間に依存
- ・時間帯により、起点の魅力度が変化・ γ と同様に混雑状況に依存?

代表的起点についての結果のみを提示