山东大学<u>计算机科学与技术</u>学院

<u>计算机组成原理</u> 课程实验报告

学号: 姓名: 班级: 实验题目: 时序系统实验 实验学时: 2 实验日期: 2023. 04. 18 实验目的: 掌握计算机实验中时序系统的设计方法。设计一个基本时序系统,该系统具有 4 个节拍电平 及四相工作脉冲,其时序关系参阅下图中的 MO—M3, TO—T3。 мз • M2 M1 MO TO Т1 T2 ТЗ 硬件环境: 1. 实验室台式机 2. 计算机组成与设计实验箱 软件环境: Quartus II 13.0 实验内容与设计: 1、实验内容 根据如下的原理图实现基本时序系统的电路: 指示灯 指示灯 (4个节拍电平) (4个工作脉冲) $\overline{Y3}$ $\overline{Y2}$ $\overline{Y1}$ Qa Qb Qc SL 移位器 3-8译码器 CLK А В С QO 开关数据 计数器

计数器可以采用 74LS161, 译码器采用 74LS138, 移位寄存器采用 74LS194, 反相器采用 74LS04。

实验要求:

- ◆ 开关数据为移位器预置 0001。
- ◆ 选用适当方案,设计出实验线路图。
- ◆ 设计试验步骤。
- ◆ 利用指示灯观察实验现象,写出实验报告。

2、实验原理图

3、实验步骤

- (1) 原理图输入: 首先根据电路图,使用了8个 input 元件,8个 output 元件以及74161、74138等元件来完成电路图的输入。
 - (2) 管脚锁定:下为管脚分配图:

pin_name2	Input	PIN_67	4	84_N0	PIN_67	2.5 V (default)
	Input	PIN_75	5	B5_N0	PIN_75	2.5 V (default)
pin_name3 pin_name4	Input	PIN_52	3	83 NO	PIN_52	2.5 V (default)
pin_name5	Input	PIN_55	4	84 NO	PIN_55	2,5 V (default)
pin_name6	Input	PIN_64	4	84 NO	PIN_64	2.5 V (default)
pin_name7	Input	PIN_66	4	84 NO	PIN_66	2.5 V (default)
pin_name8	Input	PIN 34	2	82 NO	PIN_34	2.5 V (default)
pin_name9	Input	PIN_84	5	BS NO	PIN 84	2.5 V (default)
pin_name 10	Output	PIN_77	5	85 NO	PBN_77	2.5 V (default)
pin_name11	Output	PIN_B3	5	85_NO	PIN_83	2.5 V (default)
pin_name 12	Output	PIN 42	3	B3_N0	PIN_42	2,5 V (default)
pin_name13	Output.	PIN_39	3	B3_N0	PIN_39	2.5 V (default)
pin_name14	Output	PIN_60	4	B4_N0	PIN_60	2.5 V (default)
pin_name15	Output	PIN_65	4	B4_N0	PIN_65	2.5 V (default)
pin_name16	Output	PIN_70	4	B4_N0	PIN_70	2.5 V (default)
pin_name 17	Output	PIN_74	5	B5_N0	PIN 74	2.5 V (default)

(3) 原理图编译、适配和下载:选择 EP4CE6/10 完成原理图的编译适配和下载。

4、实验结果

由于实验要求将移位器预置为 0001, 我们往 74194 中先输入 0001, 同时选择直送的方式即可。根据 74194 功能表, 当 S1 和 S0 都为高电平时表示直送,数码 8-数码 5 表示 74194 的输出,可以发现此时输出为 0001, 而数码 4-数码 1 表示 74138 的输出,由于 74138 是译码器,在初始情况下输出为 0,所以数码 4-数码 1 显示为 0001。

接下来,我们选择左移操作,即将 S1 置为 1, S0 置为 0,同时需要注意的是,我们每次输入 CLK 脉冲,四个脉冲移位器才执行一次操作,故此时数码 8-数码 5 的输出为 0001 左移一位即为 0010,而数码 4-数码 1 的值为 0001。

我们继续左移,还是将 S1 置为 1, S0 置为 0,则此时的输出数码 8-数码 5 的输出为 0010 左移一位即为 0100,而数码 4-数码 1 的值为 0001。

之后我们在测试右移功能,这时我们将 S1 置为 0, S0 置为 1,则此时的输出数码 8-数码 5 的输出为 0100 左移一位即为 0010,而数码 4-数码 1 的值为 0001。

再测试一次右移功能,还是将 S1 置为 0, S0 置为 1,则此时的输出数码 8-数码 5 的输出为 0010 左移一位即为 0001,而数码 4-数码 1 的值为 0001。

结论分析与体会:

通过本实验我对于基本时序系统的实现有了一个深入的理解。利用稳定的脉冲连接计数器,每次脉冲可以使得计数器+1,将计数器产生的二进制结果通过三八译码器译码为单位的输出,进而生成 MO-M3 的节拍,将三八译码器输出结果中的 M3 与移位寄存器的脉冲端连接,使得当 M3 发生一次正沿脉冲的时候,令移位寄存器左移,进而产生 TO-T3 的节拍。