Problem 2.12 - Uncertainty Analysis, Case A2

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$p_{1} + \frac{\rho \, v_{1}^{2}}{2} \, \left(1 - \left(\frac{d_{1}}{d_{2}}\right)^{4}\right) \, \mapsto \, \begin{pmatrix} d_{1} & 30 \pm 0.5 & \text{Uniform}\mathcal{D} \\ d_{2} & 20 \pm 0.5 & \text{Uniform}\mathcal{D} \\ v_{1} & 4.0 \pm 0.05 & \text{Uniform}\mathcal{D} \\ \rho & 998 \pm 0.5 & \text{Uniform}\mathcal{D} \\ p_{1} & 0.10 \times 10^{5} \pm 0.005 \times 10^{5} & \text{Uniform}\mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

PAnalysisEnvironment

$$y = \frac{1}{2} \left(1 - \frac{x_1^4}{x_2^4} \right) x_3^2 x_4 + x_5$$

Vari	able	Uncertainty Interval	Distribution	$ \partial f/\partial x_i $
x ₁	d_1	$(3.00 \pm 0.05) \times 10^{1}$	Uniform	5.3892×10^3
x ₂	\mathbf{d}_2	$(2.00 \pm 0.05) \times 10^{1}$	Uniform	8.0838×10^3
x 3	\mathbf{v}_1	$(4.00 \pm 0.05) \times 10^{0}$	Uniform	1.62175×10^4
X4	ρ	$(9.980 \pm 0.005) \times 10^{2}$	Uniform	3.25×10^1
x ₅	p_1	$(1.00 \pm 0.05) \times 10^4$	Uniform	1.

У	- 22 435	
Ymin Ymax	-31 321.5404485137 -15 087.7546840479	= y - 8886.54 = y + 7347.25
ε_{\max} $y \pm \varepsilon_{\max}$	8063.625 (-2.2±0.8) ×10 ⁴	$= -35.9 \%$ $= -2.2(8) \times 10^4$
u _c y ± u _c	2858.06502714249 (-2.2±0.3) ×10 ⁴	$= -12.7 \%$ $= -2.2(3) \times 10^4$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{\mathbf{x}_{i}} \mathbf{f}[\mathbf{x}]| \varepsilon_{i}; \mathbf{f}[\mathbf{x}] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
-22435 \pm 8063.62
\in [-30499; -14371]
\approx (-2.2 \pm 0.8) \times 10^4 = -2.2(8) \times 10^4
```

Combined Standard Uncertainty

$$u_c = \left(\sum_{i=1}^{n} (\partial_{x_i} f[x])^2 u_i^2\right)^{1/2}; f[x] \pm u_c // QUCA$$

```
-22435 \pm 2858.07
\in [-25293; -19577]
\simeq (-2.2 \pm 0.3) \times 10^4 = -2.2(3) \times 10^4
```

Monte Carlo Simulation

```
Block[\{data, trials = 10^6\},
  data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
   -22547.8392638872 ± 2865.7
    ∈ [-25414; -19682]
   \simeq (-2.3 \pm 0.3) \times 10^4 = -2.3(3) \times 10^4
```