Bioinformatics 2018-2019 Date: 05 December, 2018 Project report

Bioinformatics @Data Science A.Y. 2018-2019

# **Network Biology project**

Pochiraju Venkata Naga Sai Krishna Abhinay (1819771) Rachuri Mani Niharika (1819748)

Group no. 7

# **Abstract**

The seed genes list provided by the instructor are for Autoinflammatory diseases. This disease is mainly caused due to change in the genes that regulates the immune system. In this project we focused mainly on exploring the functionality of every gene in the list using official HGNC website, finding out all the interactions of the genes by rigorous searching in different databases (IID, BioGrid). We constructed network analysis graphs of all the genes, demonstrated how each gene interacts with one another and there by performed some set functions (union, intersection) on the network we built out how non-proteins are connected and built interactomes.

# 1 Basic introduction about the disease/process

The seed genes provided by the instructor belongs to Autoinflammatory disease. These diseases are a group of rare diseases characterized by seemingly unprovoked episodes of fever and inflammation and also known as 'periodic fever syndromes.' Autoinflammatory diseases involve abnormal activation of the innate immune system and are caused by changes in genes that regulate the innate immune system. These genetic changes can be passed from parents to their children, leading to multiple cases of disease in an extended family. The seed gene list for Autoinflammatory diseases, as given by the instructor are as follows:

ADCY3, CXCR2, DNMT3B, FAP, FOS, FUT2, GPR35, IFIH1, IL23R, IL27, IL2RA, KEAP1, LCE3B, NFKB1, NXPE1, OR5B21, OSMR, PTPN2, RAVER1, RNF186, RPS6KB1, SH2B3, TNFRSF6B, TYK2.

# 2 Seed genes

For the seed genes provided, we have used the official HGNC website (<a href="https://www.genenames.org/">https://www.genenames.org/</a>) and the official UniProt website (<a href="https://www.uniprot.org/">https://www.uniprot.org/</a>) to collect some basic information about the Official Gene Symbol, Uniprot AC (Accession number), Protein Name, Entrez Gene ID and Functionality. The table below shows these information for all the seed genes.

The excel file with this data is also attached by name: Q2-SeedGenesInfo.xlsx.

| Table 1. Seed Gen | es |
|-------------------|----|
|-------------------|----|

| Seed Gene | Official<br>Gene<br>Symbol | Approved Name                                                   | Uniprot AC            | Protien Name                                                | Entrez<br>Gene<br>ID | Functionality                                                                                           |
|-----------|----------------------------|-----------------------------------------------------------------|-----------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------|
| ADCY3     | ADCY3                      | adenylate cyclase 3                                             | O60266 (ADCY3_HUMAN)  | Adenylate cyclase type 3                                    | 109                  | It Catalyzes of G-protein signaling.                                                                    |
| CXCR2     | CXCR2                      | C-X-C motif<br>chemokine<br>receptor 2                          | P25025 (CXCR2_HUMAN)  | C-X-C chemokine receptor type 2                             | 3579                 | It is used as a<br>Receptor for<br>interleukin-8 and<br>binding of IL-8.                                |
| DNMT3B    | DNMT3B                     | DNA<br>methyltransferase<br>3 beta                              | Q9UBC3 (DNM3B_HUMAN ) | DNA (cytosine-<br>5)-<br>methyltransferase<br>3B            | 1789                 | It is Essential for<br>the<br>establishment of<br>DNA<br>methylation<br>patterns during<br>development. |
| FAP       | FAP                        | fibroblast<br>activation protein<br>alpha                       | Q12884 (SEPR_HUMAN)   | Prolyl<br>endopeptidase<br>FAP                              | 2191                 | It Plays a role in tissue remodeling during development and wound healing.                              |
| FOS       | FOS                        | Fos proto-<br>oncogene, AP-1<br>transcription<br>factor subunit | P01100 (FOS_HUMAN)    | Proto-oncogene<br>c-Fos                                     | 2353                 | It has an important role in signal transduction, cell proliferation and differentiation                 |
| FUT2      | FUT2                       | fucosyltransferas<br>e 2                                        | Q10981 (FUT2_HUMAN)   | Galactoside 2-<br>alpha-L-<br>fucosyltransferas<br>e 2      | 2524                 | It Mediates the transfer of fucose to the terminal galactose.                                           |
| GPR35     | GPR35                      | G protein-<br>coupled receptor<br>35                            | Q9HC97 (GPR35_HUMAN)  | G-protein coupled receptor 35                               | 2859                 | It acts as a receptor for kynurenic acid.                                                               |
| IFIH1     | IFIH1                      | interferon<br>induced with<br>helicase C<br>domain 1            | Q9BYX4 (IFIH1_HUMAN)  | Interferon- induced helicase C domain- containing protein 1 | 64135                | It Innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acid.                     |
| IL23R     | IL23R                      | interleukin 23<br>receptor                                      | Q5VWK5 (IL23R_HUMAN)  | Interleukin-23 receptor                                     | 14923<br>3           | Associates with IL12RB1 to form the interleukin-23 receptor.                                            |
| IL27      | IL27                       | interleukin 27                                                  | Q8NEV9 (IL27A_HUMAN)  | Interleukin-27 subunit alpha                                | 24677<br>8           | It has an ability<br>to functions in<br>innate immunity.                                                |

| IL2RA   | IL2RA   | interleukin 2<br>receptor subunit                             | P01589 (IL2RA_HUMAN) | Interleukin-2 receptor subunit                          | 3559       | Receptor for interleukin-2.                                                       |
|---------|---------|---------------------------------------------------------------|----------------------|---------------------------------------------------------|------------|-----------------------------------------------------------------------------------|
| KEAP1   | KEAP1   | alpha<br>kelch like ECH<br>associated protein<br>1            | Q14145 (KEAP1_HUMAN) | alpha Kelch-like ECH- associated protein 1              | 9817       | Acts as a substrate adapter protein for the E3 ubiquitin ligase complex.          |
| LCE3B   | LCE3B   | late cornified envelope 3B                                    | Q5TA77 (LCE3B_HUMAN) | Late cornified<br>envelope protein<br>3B                | 35314<br>3 | It is involved in innate cutaneous host defense (Probable).                       |
| NFKB1   | NFKB1   | nuclear factor<br>kappa B subunit 1                           | P19838 (NFKB1_HUMAN) | Nuclear factor<br>NF-kappa-B p105<br>subunit            | 4790       | NF-kappa-B is a pleiotropic transcription factor present in almost all cell.      |
| NXPE1   | NXPE1   | neurexophilin<br>and PC-esterase<br>domain family<br>member 1 | Q8N323 (NXPE1_HUMAN) | NXPE family member 1                                    | 12040<br>0 | It Decreases viability and Increased caspase vaccinia virus (VACV).               |
| OR5B21  | OR5B21  | olfactory receptor<br>family 5<br>subfamily B<br>member 21    | A6NL26 (OR5BL_HUMAN) | Olfactory<br>receptor 5B21                              | 21996<br>8 | Odorant receptor.                                                                 |
| OSMR    | OSMR    | oncostatin M<br>receptor                                      | Q99650 (OSMR_HUMAN)  | Oncostatin-M-<br>specific receptor<br>subunit beta      | 9180       | Associates with IL31RA to form the IL31 receptor.                                 |
| PTPN2   | PTPN2   | protein tyrosine<br>phosphatase, non-<br>receptor type 2      | P17706 (PTN2_HUMAN)  | Tyrosine-protein<br>phosphatase non-<br>receptor type 2 | 5771       | It is Non-<br>receptor that<br>dephosphorylate<br>s receptor<br>protein tyrosine. |
| RAVER1  | RAVER1  | ribonucleoprotein<br>, PTB binding 1                          | Q8IY67 (RAVR1_HUMAN) | Ribonucleoprotei<br>n PTB-binding 1                     | 12595<br>0 | It Cooperates with PTBP1 to modulate regulated alternative splicing events.       |
| RNF186  | RNF186  | ring finger<br>protein 186                                    | Q9NXI6 (RN186_HUMAN) | E3 ubiquitin-<br>protein ligase<br>RNF186               | 54546      | It is a E3 ubiquitin protein.                                                     |
| RPS6KB1 | RPS6KB1 | ribosomal protein<br>S6 kinase B1                             | P23443 (KS6B1_HUMAN) | Ribosomal<br>protein S6 kinase<br>beta-1                | 6198       | Serine/threonine -protein kinase that acts downstream of mTOR signaling.          |
| SH2B3   | SH2B3   | SH2B adaptor protein 3                                        | Q9UQQ2 (SH2B3_HUMAN) | SH2B adapter protein 3                                  | 10019      | It Links T-cell receptor activation signal                                        |

| TNFRSF6<br>B | TNFRSF6<br>B | TNF receptor superfamily member 6b | O95407 (TNF6B_HUMAN) | Tumor necrosis<br>factor receptor<br>superfamily<br>member 6B | 8771 | C-gamma-1.  It is a decoy receptor that can neutralize the cytotoxic ligands. |
|--------------|--------------|------------------------------------|----------------------|---------------------------------------------------------------|------|-------------------------------------------------------------------------------|
| TYK2         | TYK2         | tyrosine kinase 2                  | P29597 (TYK2_HUMAN)  | Non-receptor<br>tyrosine-protein<br>kinase TYK2               | 7297 | Probably involved in intracellular signal transduction.                       |

to mbosmbolimoso

# 3 Summary on interaction data

In this part we have retrieved all the binary protein interactions from two PPI sources (BioGRID Human, IID).

#### 3.1 Data Sources

We collected the interactions from the first source (BioGRID) programmatically. The second source was accessed manually from the IID website (<a href="http://iid.ophid.utoronto.ca/iid/Search By Proteins/">http://iid.ophid.utoronto.ca/iid/Search By Proteins/</a>).

List of interactions among non-seed genes: We have written a script that finds out the interactions among the non-seed genes. There are 250 interactions in this category. These interactions have been saved in non-SeedGeneInteractions.csv. Following are some of the first rows of these interactions.

Table 2. Non-Seed Gene Interactions

| Gene A        | Gene B        |
|---------------|---------------|
| ADCY8         | CALM2         |
| ADCY8         | KRAS          |
| CREB1         | RP5-1085F17.2 |
| RP5-1085F17.2 | RP4-811H24.2  |
| RP5-1085F17.2 | RP11-472F14.2 |
| RP5-1085F17.2 | RTF1          |
| RP5-1085F17.2 | CTR9          |
| RP5-1085F17.2 | POLR2A        |

#### 3.1.1 Network Visualizations of Interactions:

We visualized these networks with python and Gephi. The following are some of the network visualizations of the interactions: (In the included files, there are 2 files named edges.xlsx and nodes.xlsx, which we used in Gephi to plot a Network Visualization). In all the network graphs, blue nodes are the seed genes, and the yellow nodes are the interacting genes (which are not seed genes). And there is an edge between nodes if there is an interaction between them.



Figure 1: BioGRID interactions (2 different layouts)



Figure 2: IID interactions



Figure 3: IID and BioGRID interactions combined (1st layout using python and 2nd layout using Gephi)



Figure 4: Different layout representing all the interactions (plotted using Gephi)

# 3.2 Interaction Data tables

The interaction data has been saved in 2 different files with names corresponding to the database, i.e., biogrid.xlsx, and IID.csv.

#### 3.2.1 BioGRID

While getting the data from the BioGRID database, we found out that there are two functions available in python to get the interactions with the given protein/gene. One function (query function) provides Entrez Gene/Locuslink to provide the interactions. And the second function (BioGRID class) provides the interactions directly. These two kinds of interactions are in different sheets of the same notebook biogrid.xlsx

Following are some of the first rows from both the files:

Table 3. BioGRID 1

| SeedGene | GeneA              | GeneB                  | Interactor Desc 1         | Interactor Desc 2         |
|----------|--------------------|------------------------|---------------------------|---------------------------|
| ADCY3    | entrez             | entrez                 | biogrid:107256 entrez     | biogrid:106627 entre      |
|          | gene/locuslink:805 | gene/locuslink:11<br>4 | gene/locuslink:CALM2      | z<br>gene/locuslink:ADCY8 |
| ADCY3    | entrez             | entrez                 | biogrid:107256 entrez     | biogrid:106627 entre      |
|          | gene/locuslink:805 | gene/locuslink:11<br>4 | gene/locuslink:CALM2      | z<br>gene/locuslink:ADCY8 |
| ADCY3    | entrez             | entrez                 | biogrid:106663 entrez     | biogrid:106623 entre      |
|          | gene/locuslink:154 | gene/locuslink:10      | gene/locuslink:ADRB2      | z<br>gene/locuslink:ADCY3 |
| ADCY3    | entrez             | entrez                 | biogrid:106663 entrez     | biogrid:106623 entre      |
|          | gene/locuslink:154 | gene/locuslink:10<br>9 | gene/locuslink:ADRB2      | z<br>gene/locuslink:ADCY3 |
| ADCY3    | entrez             | entrez                 | biogrid:107506 entrez     | biogrid:106627 entre      |
|          | gene/locuslink:108 | gene/locuslink:11      | gene/locuslink:CFTR entre | Z                         |
|          | 0                  | 4                      | z gene/locuslink:tcag7.78 | gene/locuslink:ADCY8      |

Table 4. BioGRID 2

| SeedGene | GeneA | GeneB    |
|----------|-------|----------|
| ADCY3    | ADCY3 | CD79B    |
| ADCY3    | ADCY8 | tcag7.78 |
| ADCY3    | ADCY3 | SLC17A2  |
| ADCY3    | ADCY3 | LGALS3   |
| ADCY3    | ADCY3 | ANKMY2   |
| ADCY3    | ADCY3 | CNGA3    |

# 3.2.2 IID (Integrated Interaction Database)

We downloaded the interactions for IID from the IID website (<a href="http://iid.ophid.utoronto.ca/iid/Search\_By\_Proteins/">http://iid.ophid.utoronto.ca/iid/Search\_By\_Proteins/</a>), but later we found out that the data from the website that we downloaded includes experimentally detected PPIs from 9 curated databases (BioGRID, IntAct, I2D, MINT, InnateDB, DIP, HPRD, BIND, BCI). So, we did all the analysis in the further steps using two different data. One, all the interactions that we downloaded from the IID website, and the other considering only the interactions which have "iid" in the Sources column. Below are some of the first few lines from both the data. The file IID.xlsx indicates all the interactions that we retrieved for the IID website, and the file iidOnly.csv has all the interactions which include the source database as iid.

Following are some of the first rows from both the files:

Table 5. IID 1

| Query | Query   | Partner | Query  | Partner | Species | Evidence Type | <b>Detection Methods</b> | PubMed   | Sources |
|-------|---------|---------|--------|---------|---------|---------------|--------------------------|----------|---------|
| ID    | UniProt | UniProt | Symbol | Symbol  |         |               |                          | IDs      |         |
| ADCY3 | 060266  | Q2Y0W8  | ADCY3  | SLC4A8  | human   | exp           | affinity                 | 28514442 | biogrid |
|       |         |         |        |         |         |               | chromatography           |          |         |
| ADCY3 | 060266  | P07101  | ADCY3  | TH      | human   | pred          | -                        | 25402006 | iid     |
| ADCY3 | O60266  | P17931  | ADCY3  | LGALS3  | human   | exp           | affinity                 | ######## | biogrid |
|       |         |         |        |         |         |               | chromatography           |          |         |
| ADCY3 | 060266  | Q8NI99  | ADCY3  | ANGPTL6 | human   | pred          | -                        | 21836163 | iid     |
| ADCY3 | O60266  | 000624  | ADCY3  | SLC17A2 | human   | exp           | affinity                 | 28514442 | biogrid |
|       |         |         |        |         |         |               | chromatography           |          |         |

Table 6. IID 2 (IID only)

| Gene A | Gene B  |
|--------|---------|
| ADCY3  | TH      |
| ADCY3  | ANGPTL6 |
| ADCY3  | GUCY2C  |
| ADCY3  | PRKAR2B |
| ADCY3  | PDE4C   |

# 3.3 Summary of Main results

As we did all the analysis using two sets of data, we added a column for IID, which shows the summary and statistics in both cases (Full data from the IID website, and subset of this full data with IID as source).

Table 7. Summary

| Database        | Num of Seed Genes in DB | Num of interacting proteins in DB | Total num of interactions found |
|-----------------|-------------------------|-----------------------------------|---------------------------------|
| BioGRID         | 21                      | 897                               | 990                             |
| IID – Full Data | 23                      | 3211                              | 4906                            |
| IID Only        | 22                      | 2548                              | 3925                            |

The python script for the 3rd part is labeled: Q3.py

# 4 Interactomes data

This part of the question has been implemented programmatically, code and files included (The files have been included which show all the interactions from BioGrid+IID+8DBs as BioGRIDandIIDcombined.xlsx and interactions from BioGRID+IID as BioGRIDandIIDcombined1.xlsx)

#### 4.1 Seed Genes interactome

In this part, we found the interactions which include seed genes only. As mentioned above, we did the analy-sis for two types of IID data. In the full data (BioGRID+IID+8DBs from IID website), there is a total of 25 in-teractions which include only the seed genes and have been saved in the file, 4-1-SeedGeneInteractome.csv. And, in the subset of full data BioGRID+IID, there are only 19 interactions which include only the seed genes, which has been saved in the file, 4-1-SeedGeneInteractome1.csv. The interesting thing that we observed here in both the files is that all these interactions are only from the IID database even though we considered the interactions from both the databases.

#### 4.2 Union interactome

In this part, we found all the protein interactions with at least one seed gene. There is a total of 4913 interac-tions involving at least one seed gene in the data with all the interactions (BioGRID+IID+8DBs from IID web-site) and have been saved in the file, 4-2-UnionInteractome.csv. And, there is a total of 3932 interactions for BioGRID+IID only and has been saved in the file, 4-2-UnionInteractome1.csv.

### 4.3 Intersection interactome

This part of the question highlights the interactions that involve at least one seed gene confirmed by both da-tabases (BioGRID and IID). This also has been implemented programmatically and the results have been saved in the file, 4-3-intersectionInteractome.csv. Note: we used only the interactions from BioGRID and IID (only) for this as we were supposed to find the intersection interactome confirmed by BioGRID and IID. There are a total of 129 interactions in this interactome.

Note: The format for the files for these 3 interactomes are: interactor A Gene Symbol, interactor B Gene Symbol, interactor A Uniprot AC, interactor B Uniprot AC, Database source. As the intersection interactome covers only the interactions confirmed by both DBs, the column Database source will be excluded. To get the Uniprot ACs for all these Gene symbols, we tried uniprot api\_idmapping (<a href="https://www.uniprot.org/help/api\_idmapping">https://www.uniprot.org/help/api\_idmapping</a>), but there were some problems getting them. So, we download-ed the mappings from (<a href="https://www.uniprot.org/uploadlists/">https://www.uniprot.org/uploadlists/</a>). These results have been saved in the file uniprot-list.xlsx.

The python script for the 4th part is labeled: Q4.py.

# 5 Enrichment analysis

In this part of the project we were supposed to find Gene Ontology categories and Pathways for the 3 interactomes that we developed above in the 4th part. So, using excel, we get all the unique set of all the Genes that are involved in the interactions for the data from the tables of 4th part, and use the online GUI of InnateDB to perform these tasks.

*Note*: We tried to perform these tasks programmatically using the KEGG module from bioservices. Specifically using the function get\_pathway\_by\_gene(), but we could get only id and the pathway name. But using the GUI of InnateDB (<a href="http://www.innatedb.com/redirect.do?go=batchPw">http://www.innatedb.com/redirect.do?go=batchPw</a> and <a href="http://www.innatedb.com/redirect.do?go=batchGo">http://www.innatedb.com/redirect.do?go=batchGo</a>) we get more detailed results. So, we proceeded to use the online portal.

First, we take all the unique proteins/genes from the interactions in 4.1, 4.2 and 4.3 and save them in files: 4-1PA.xls, 4-2PA.xls and 4-3PA.xls respectively. Then using the above links and uploading these files we get pathways and GO categories for all the three interactomes respectively.

The results were downloaded and named: 5-1-GO-SeedGeneInteractome.xls, 5-1-GO-UnionInteractome.xls, 5-1-GO-IntersectionInteractome.xls, 5-2-Pathway-SeedGeneInteractome.xls, 5-2-Pathway-UnionInteractome.xls and 5-2-Pathway-IntersectionInteractome.xls respectively.

# 6 Notes and comments

- We were provided with 24 seed genes. Out of which we couldn't find the interactions for: 3 seed genes in BioGRID database (LCE3B, NXPE1 and OR5B21), and 2 seed genes in IID database (NXPE1 and RNF186).
- There is a huge difference in the number of interactions for our seed genes in BioGRID (990) and IID (3925) databases.
- The code snippets and all the supporting tables are in the attached folder.
- Some of the interactions were between the same seed genes, although we couldn't find why that happens.
- The data returned from the IID website includes data about interactions from not only IID but 8 other databases (BioGRID, IntAct, I2D, MINT, InnateDB, DIP, HPRD, BIND, BCI).
- We downloaded the interactions for IID from <a href="http://iid.ophid.utoronto.ca/iid/Search\_By\_Proteins/">http://iid.ophid.utoronto.ca/iid/Search\_By\_Proteins/</a>, but the site was down later. But the site to download now has been changed to <a href="http://178.128.224.72/search\_by\_proteins/">http://178.128.224.72/search\_by\_proteins/</a>
- We came across an interesting python-based library called GOATOOLS. The documentation
  can be found here (<a href="https://github.com/tanghaibao/goatools">https://github.com/tanghaibao/goatools</a>) which would be very useful for
  Gene Ontology analysis.

#### References

- Walter, & Eliza Hall Institute of Medical Research. (2018, August 07). Autoinflammatory diseases | The Walter and Eliza Hall Institute of Medical Research. Retrieved from <a href="https://wehi.edu.au/research-diseases/immune-disorders/autoinflammatory-diseases">https://wehi.edu.au/research-diseases/immune-disorders/autoinflammatory-diseases</a>
- Rivas, J. D., & Fontanillo, C. (n.d.). Protein–Protein Interactions Essentials: Key Concepts to Building and Analyzing Interactome Networks. Retrieved from <a href="https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000807">https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000807</a>