Nome:

Questão	Valor	Nota
1	1,5	
2	3,0	
3	2,0	
4	2,0	
5	1,5	
Total	10.0	

VR de Cálculo I-TO1-2023-2

Justifique todas as respostas, citando os teoremas que forem utilizados.

1. Considere a função

$$f(x) = \begin{cases} 2e^{-x} + e^{-\frac{1}{x}} \operatorname{sen}\left(\frac{\pi}{x}\right) &, \text{ se } x > 0\\ a &, \text{ se } x = 0\\ \frac{2x}{\ln(1-x)} &, \text{ se } x < 0 \end{cases}$$

- (a) Calcule os limites laterais da f(x) em x = 0;
- (b) Verifique se existe um valor de a para que a função dada seja contínua em x = 0.
- 2. Considere a função de expressão $f(x) = \frac{e^{2x}}{2x+1}$.
- (a) Determine o domínio da f. (Maximal)
- (b) Determine as interseções do gráfico da f com os eixos coordenados, caso existam.
- (c) Verifique se o gráfico da f possui assíntotas verticas e/ou horizontais. Caso possua, especifique a equação de cada assíntota.
- (d) Mostre que $f'(x) = \frac{4xe^{2x}}{(2x+1)^2}$ e estude seu sinal. Diga se a f possui extremos locais.
- (e) Mostre que $f''(x) = \frac{e^{2x}(4+16x^2)}{(2x+1)^3}$ e estude seu sinal. Diga se o gráfico da f possui algum ponto de inflexão.
- (f) Esboce o gráfico da f.
- **3.** Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \left(h(\cos^2(2x) + \int_0^x e^{t^2} dt)\right)^2$, onde $h: \mathbb{R} \to \mathbb{R}$ é uma função diferenciável que satisfaz a: h(0) = 2, h(1) = -1, h'(0) = -2 e h'(1) = -3.
- (a) Calcule $f'(x), x \in \mathbb{R}$.
- (b) Determine a equação da reta tangente ao gráfico de f no ponto de abscissa x = 0.
- (c) Pode-se garantir a existência de um zero de h no intervalo [0,1]? Justifique cuidadosamente.
- 4. Calcule as integrais abaixo:

(a)
$$\int \frac{x+2}{x^3-x} \, dx$$

(b)
$$\int x^2 \cos(x) \ dx$$

5. Determine os pontos sobre a elipse de equação $x^2 + 2y^2 + 2xy = 5$, tais que a reta tangente é paralela à reta 2y = x.