089109 - Cálculo 1 - Turmas C

DÉCIMA QUINTA LISTA DE EXERCÍCIOS

Prof. Marcelo José Dias Nascimento

11 de junho de 2010

Exercício 1. Calcule o volume do sólido de revolução obtido pela rotação, em torno do eixo x, dos seguintes conjuntos:

- (a) $F = \{(x, y) \in \mathbb{R}^2; x^2 \le y \le x\};$
- (b) $G = \{(x, y) \in \mathbb{R}^2; 1 \leqslant x^2 + y^2 \leqslant 4, y \geqslant 0\}$
- (c) $H = \{(x, y) \in \mathbb{R}^2; 1 \le x \le 4, 0 \le y \le \sqrt{x}\}.$

(Respostas: (a) $\frac{2\pi}{15}$ (b) $\frac{28\pi}{3}$ (c) $\frac{15\pi}{2}$)

Exercício 2. Calcule:

- (a) o volume da esfera gerada pela rotação do semicírculo de raio R ao redor do eixo x.
- (b) o volume do cone reto de revolução de raio R e altura h.
- (c) o volume do tronco de cone reto de revolução de altura h e raios das bases r e R.

(Respostas: (a) $\frac{4\pi R^3}{3}$ (b) $\frac{\pi R^2 h}{3}$ (c) $\frac{\pi h}{3}(R^2 + r^2 + Rr)$)

Exercício 3. Encontre o volume do sólido obtido pela rotação em torno do eixo x da região sob a curva $y = \sqrt{x}$ de 0 até 4.

(Resposta: 8π)

Exercício 4. Ache o volume de um sólido obtido pela rotação do eixo x do conjunto de pares (x, y) tais que $x^2 + y^2 \le r^2$, $y \ge 0$ (r > 0).

(Resposta: $4\pi r^3/3$)

Podemos usar o mesmo método visto em sala de aula para determinar o volume de um sólido obtido pela rotação, em torno do eixo y, de uma região compreendida entre o eixo y e uma curva $x = h(y), c \le y \le d$, apenas substituindo x por y. Neste caso, cada secção transversal tem área A(y) igual a

$$A(y) = \pi[h(y)]^2$$

e o volume V do sólido S é, portanto,

$$V(S) = \int_{c}^{d} A(y) \, dy = \int_{c}^{d} \pi [h(y)]^{2} \, dy.$$

Exercício 5. Calcule o volume do sólido obtido pela rotação, em torno do eixo y, da região compreendida entre o eixo y e a curva $x=\frac{2}{y},\,1\leqslant y\leqslant 4.$

(Resposta: 3π)

Exercício 6. Calcule o volume do sólido obtido pela rotação, em torno do eixo x, do conjunto

$$A = \left\{ (x, y) \in \mathbb{R}^2 \; ; \; \frac{1}{x} \leqslant y \leqslant x \, , \; 1 \leqslant x \leqslant 2 \right\} \; .$$

 $(Resposta: \frac{11\pi}{6})$

Exercício 7. Calcule o volume do sólido obtido pela rotação, em torno do eixo y, da região compreendida entre a parábola $y=x^2$ e a reta y=2x no primeiro quadrante.

 $(Resposta: \frac{8\pi}{3})$

Exercício 8. Ache o volume de um sólido obtido pela rotação do eixo y da região limitada por

$$y = x^3$$
, $y = 8$ e $x = 0$.

(Resposta: $96\frac{\pi}{5}$)

Exercício 9. Calcule o comprimento da curva $y=x^{3/2},\,1\leqslant x\leqslant 4.$

(Resposta: $\frac{8}{27} \left[10^{3/2} - \left(\frac{13}{4} \right)^{3/2} \right]$)

Exercício 10. Calcule o comprimento da curva $y = \sqrt{1-x^2}, \ 0 \leqslant x \leqslant \frac{\sqrt{2}}{2}.$

(Resposta: $\frac{\pi}{4}$)

Exercício 11. Calcule o comprimento da curva $y = \frac{x^2}{2}, \ 0 \le x \le 1.$

(Respostas: $\frac{1}{2}[\sqrt{2} + \ln(1+\sqrt{2})]$)