Nakamura Labo. Seminar No.1

Limit of Sequence of Real Numbers and Vector Spaces

171-T7710 NARITA Fumiya

Shiromoto Lab., Department of Mathematical Engineering, Faculty of Engineering, Kumamoto University

Contents

Limit of Sequence of Real Numbers and Vector Spaces Limit of Sequence of Real Numbers Vector Spaces

Definition (convergence of sequence of real numbers)

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Then,

$$(a_n)_{n=1}^{\infty}$$
 converges to $\alpha \in \mathbb{R}$
 $\stackrel{\mathrm{def}}{\Leftrightarrow} \forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N} \text{ s.t. } \forall n \geq N(\varepsilon) \Rightarrow |a_n - \alpha| < \varepsilon.$

One writes

$$\lim_{n\to\infty} a_n = \alpha \text{ or } a_n \to \alpha \ (n\to\infty).$$

Then, α is a **limit** of $(a_n)_{n=1}^{\infty}$. If $(a_n)_{n=1}^{\infty}$ does not converge, we say $(a_n)_{n=1}^{\infty}$ diverges.

(a) (convergence of monotone bounded sequences) Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Then,

$$(a_n)_{n=1}^{\infty}$$
 is a monotonically increasing (decreaing) sequence $\stackrel{\text{def}}{\Leftrightarrow} \forall n, a_n \leq a_{n+1} \ (a_n \geq a_{n+1}).$

For all monotone sequences of real numbers $(a_n)_{n=1}^{\infty}$,

$$(a_n)_{n=1}^{\infty}$$
 converges $\Leftrightarrow (a_n)_{n=1}^{\infty}$ is bounded.

Especially, if $(a_n)_{n=1}^{\infty}$ is bounded monotonically increasing (decreaing) sequence,

$$\lim_{n\to\infty}a_n=\sup a_n\;\big(\lim_{n\to\infty}a_n=\inf a_n\big).$$

(b) (Cauchy(1789-1857)) Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Then,

$$(a_n)_{n=1}^{\infty}, \exists \alpha \in \mathbb{R}, (a_n)_{n=1}^{\infty} \text{ converges } \alpha$$

 $\Leftrightarrow (a_n)_{n=1}^{\infty}, \forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}, N(\varepsilon) \leq n, m \Rightarrow |a_n - a_m| < \varepsilon.$

Definition (limit superior and limit inferior)

For all sequences of real numbers $(a_n)_{n=1}^{\infty}$,

(a) We define **limit superior** $\limsup a_n$ as follows:

$$n\rightarrow\infty$$

(i) If $(a_n)_{n=1}^{\infty}$ is not upper bounded,

$$\limsup_{n\to\infty} a_n \coloneqq +\infty.$$

(ii) If $(a_n)_{n=1}^{\infty}$ is upper bounded, we define a new sequence $(\check{a}_p)_{p=1}^{\infty}$ as follows:

$$(\check{a}_p)_{p=1}^{\infty} := \sup\{a_n \mid n \geq p\} = \sup\{a_p, a_{p+1}, \ldots\},$$

and define $\limsup a_n$ as follows:

$$n\rightarrow\infty$$

$$\limsup_{n\to\infty} a_n = \begin{cases} \lim_{p\to\infty} \check{a}_p & \left((\check{a}_p)_{p=1}^\infty \text{ is lower bounded} \right) \\ -\infty & \left((\check{a}_p)_{p=1}^\infty \text{ is not lower bounded} \right). \end{cases}$$

Definition (limit superior and limit inferior)

- (b) Similarly, we define **limit inferior** $\liminf_{n\to\infty} a_n$ as follows:
 - (i) If $(a_n)_{n=1}^{\infty}$ is not lower bounded,

$$\liminf_{n\to\infty}a_n:=-\infty.$$

(ii) If $(a_n)_{n=1}^{\infty}$ is lower bounded, we define a new sequence $(\check{a}_p)_{p=1}^{\infty}$ as follows:

$$(\check{a}_p)_{p=1}^\infty \coloneqq \sup\{a_n \mid n \ge p\} = \inf\{a_p, a_{p+1}, \ldots\},$$

and define $\liminf_{n\to\infty} a_n$ as follows:

$$\liminf_{n\to\infty} a_n = \begin{cases} \lim_{p\to\infty} \check{a}_p & ((\check{a}_p)_{p=1}^\infty \text{ is upper bounded}) \\ +\infty & ((\check{a}_p)_{p=1}^\infty \text{ is not upper bounded}). \end{cases}$$

Definition (vector spaces over real number field)

Let X be a set with 2 **linear operators** (addition " +" and scalar multiplication " \cdot "). We call that set X is a **vector space over** \mathbb{R} or **linear space over** \mathbb{R} if set X satisfies the following conditions:

- (a) Axiom of commutative group and the following conditions are satisfied. $\forall x, y, z \in X$,
 - (i) (x + y) + z = x + (y + z) (associativity 1),
 - (ii) x + y = y + x (commutativity),
 - (iii) $\forall x \in X$, $\exists \mathbf{0} \in X$ s.t. $\mathbf{0} + x = x + \mathbf{0} = x$ (existence of identity element of addition),
 - (iv) $\forall x \in X$, $\exists x^{-1}$ s.t. $x + x^{-1} = x^{-1} + x = \mathbf{0}$ (existence of inverse elements of addition). We denote x^{-1} by -x.

Definition (vector spaces over real number field)

- (b) Axiom of scalar multiplication and the following conditions are satisfied. $\forall \alpha, \beta \in \mathbb{R}, \forall x, y \in X$,
 - (i) $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}$ (distributivity 1),
 - (ii) $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}$ (distributivity 2),
 - (iii) $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \cdot \beta) \cdot \mathbf{x}$ (associativity 2),
 - (iv) $\forall x \in X$, $\exists \mathbf{1}$ s.t. $\mathbf{1} \cdot x = x \cdot \mathbf{1} = x$ (existence of identity element of scalar multiplication).

Definition (linear mapping, linear independence)

(a) For 2 vector spaces X, Y over \mathbb{R} ,

mapping
$$\phi: X \to Y$$
 is a **linear mapping**

$$\stackrel{\text{def}}{\Leftrightarrow} \forall \mathbf{x}, \mathbf{y} \in X, \forall \alpha, \beta \in \mathbb{R}, \ \phi(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \phi(\mathbf{x}) + \beta \phi(\mathbf{y}).$$

We denote the set of all linear mappings from X to Y by $\mathcal{L}(X, Y)$. And,

linear mapping $\phi: X \to Y$ is **isomorphism**

 $\overset{\text{def}}{\Leftrightarrow} \phi: X \to Y \text{ is bijection.}$

Then, we call that X and Y are **isomorphic** (as vector spaces).

Definition (linear mapping, linear independence)

(b) For an infinite vector system $\{x_1, x_2, \dots, x_m\}$,

linear combination of x_1, x_2, \ldots, x_m

$$\stackrel{\text{def}}{\Leftrightarrow} \forall \alpha_i \in \mathbb{R}, \ \sum_{i=1}^m \alpha_i \mathbf{x}_i = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_m \mathbf{x}_m.$$

Especially,

vector system $\{x_1, x_2, \dots, x_m\}$ is linear independence

$$\stackrel{\text{def}}{\Leftrightarrow} \sum_{i=1}^m \alpha_i \mathbf{x}_i = \mathbf{0} \Leftrightarrow \alpha_1 = \alpha_2 = \cdots = \alpha_m = \mathbf{0}.$$

Otherwise, if a vector system is not linear independence, we call that the vector system is **linear dependence**.

Definition (linear mapping, linear independence)

(c) (Expand (b) for finite vector systems.)

(a) If all m+1 vectors $y_1, y_2, \ldots, y_m, y_{m+1}$ in vector space X over \mathbb{R} are linear combinations of m vectors $x_1, x_2, \ldots, x_m \in X$, the vector system $\{y_1, y_2, \ldots, y_m, y_{m+1}\}$ is linear dependence.

(b) maximal system

(a) subspace

(b) spanned subspace

(c) basis

(d) dimention