The Year Earth Changed

Mengting Yan(my2400)

Yang Liu(yl8240)

Introduction

- People were required to stay at home during COVID-19 lockdown period.
- The Year Earth Changed documentary reveals that air quality and global emission of greenhouse gas have fallen due to COVID-19 lockdown. The moment we paused, the earth was able to breath again.

Fig. 1 The Himalayas before and after lockdown in Jalandhar, India(source: https://www.heraldscotland.com/news/19283486.lorraine-k elly-show-probed-photoshopping-himalayas-row-involving-david-attenborough-bbc-documentary/)

Introduction

- Our study has two parts: firstly we analyzed air quality in India and California, secondly we studied carbon dioxide emissions in China, United States and India.
- Preliminary evaluations: we found **drops** of both the air pollution and carbon dioxide emission during the COVID-19 lockdown period.
- Importance of our study: provide insights regarding health and control of air pollution and greenhouse gas emissions.

---Air Quality Analysis

India:

- > 2015 to 2022
- ► PM2.5, PM10, NO, NO2, NOx, NH3, CO, SO2, O3, Benzene, Toluene, Xylene, AQI and AQI_Bucket
- Lockdown period: 2020.03.25 2020.06.06
- Data wrangling: missing data

	Missing Values	% of Total Values
Xylene	18109	61.300000
PM10	11140	37.700000
NH3	10328	35.000000
Toluene	8041	27.200000
Benzene	5623	19.000000
AQI	4681	15.900000
AQI_Bucket	4681	15.900000
PM2.5	4598	15.600000
NOx	4185	14.200000
O3	4022	13.600000
SO2	3854	13.100000
NO2	3585	12.100000
NO	3582	12.100000
CO	2059	7.000000

---Air Quality Analysis

India:

- City select: Ahmedabad, Bengaluru, Chennai, Delhi, Hyderabad and Mumbai
- Factors that might affect the air quality of India.

- Compare the level of AQI before and after the lockdown period
- Compare the impact of lockdown period between India and California

Result

- As AQI levels have a significant drop after the lockdown policy was posted, we concluded that the lockdown policy has a very positive impact on air pollution in both India and California.
- Except for all those experiments, we also calculate the average AQL value of all those cities before and after the lockdown policy. The AQI value dropped 66.8% in Ahmedabad, 29.2% in Bengaluru, 22.5% in Chennai, 52.8% in Delhi, 29.8% in Hyderabad, and 50.3% in Mumbai. In California, the AQI value dropped 39.1% in Fresno, 50.3% in Los Angeles, and 7.7% in Oakland.

- Representative countries: China, the U.S and India
- ► Dataset: acquired from Carbon Monitor [1]; contains emissions data from Jan 1 2019 to Dec 30 2020; measured from electrical power generation, industrial production, ground transportation, residential activity, and domestic and international aviation.

lockdown period of each country:

Country	Lockdown Period	
India	Mar 25 2020 - May 31 2020	
United States (New York State)	Mar 19 2020 - June 18 2020	
China (Wuhan)	Jan 23 2020 - Mar 25 2020	

(Investigated from [2][3][4][5])

Fig 2. CO2 during pre-lockdown period in 2019 and 2020

Country (before lockdown)	Mean in 2019	Mean in 2020	Difference in Means of 2019 and 2020
China (Jan.1 - Jan.23)	0.92	0.83	-0.09 (-10%)
India (Jan.1 - Mar.25)	0.29	0.26	-0.03 (-10%)
U.S (Jan.1 - Mar.19)	1.70	1.61	-0.09 (-5%)

Fig 3. CO2 during lockdown period in 2019 and 2020

Country (during lockdown)	Mean in 2019	Mean in 2020	Difference in Means of 2019 and 2020
China (Jan.23 - Mar.25)	0.93	0.61	-0.32 (-34%)
India (Mar.25 - May.31)	0.29	0.18	-0.11 (-38%)
U.S (Mar.19 - June.18)	1.75	1.36	-0.39 (-22 %)

- Yearly Co2 from 2014 2020
 - ▶ Obtained 2014-2018 data from Climate Watch [6]
 - Computed the sum of daily emissions in 2019-20
 - Fig 5. In 2020, growth in **China** is much **slower** than previous years and **significant drops** in **India** and **U.S**

Discussion

- Our findings present evidence that, during the COVID-19 pandemic, air pollution has declined across India and California in the U.S and CO2 emission has declined in U.S, and India. Growth of CO2 in China was slower in 2020.
- Improvement of pollution are likely associated with reduced ground transportation and aviation as people working remotely and travels were limited.
- Pro:
- Real-time CO2 emission measurements provide ground based quantification of pollution change
- Our research is also geographically broad, including 3 countries across the world
- Con:
- Only studied correlation rather than causation of pollution and COVID-19
- Lacks the consideration of weather and large-scale events that could potentially impact the pollution level.

Conclusion

- Studied the impact of COVID-19 lockdown on environmental changes
- Analyzed the air pollution in India and California and showed a decrease of AQI level in both areas during COVID-19 lockdown period
- Analyzed the CO2 emissions in China, the U.S and India and found a decrease in average emission during COVID-19 lockdown period and reductions of yearly emissions in the U.S and India. The increase of yearly emission in China was slower.
- Protect the public health and the planet earth
- Future Work: study the causation of COVID-19 lockdown and environmental changes and the impact of weather and large-scale events

Reference

- ► [1]"Carbon monitor." [Online]. Available: https://carbonmonitor.org/
- [2]. Timeanddate.com. 2022. *First Day of Stay at Home Order in the United States*. [online] Available at: https://www.timeanddate.com/holidays/us/lockdown-day-1 [Accessed 25 April 2022].
- [3] Timeanddate.com. 2022. *Last Day of Stay at Home Order in the United States*. [online] Available at: https://www.timeanddate.com/holidays/us/last-day-of-lockdown [Accessed 25 April 2022].
- [4]. En.wikipedia.org. 2022. *COVID-19 lockdown in China Wikipedia*. [online] Available at: https://en.wikipedia.org/wiki/COVID-19_lockdown_in_China [Accessed 25 April 2022].
- [5] the Guardian. 2022. 'It's positively alpine!': Disbelief in big cities as air pollution falls. [online] Available at:https://www.theguardian.com/environment/2020/apr/11/positively-alpine-disbelief-air-pollution-falls-lockdown-coronavirus [Accessed 25 April 2022].
- [6]. [Online]. Available: https://www.climatewatchdata.org/

Thank you!