FIG. 1

FIG. 2A

FIG. 2B

FIG. 3

FIG. 4

FIG. 5

FIG. 7

FIG. 8F

. **⊗**E

FIG. 8G

REST AVAILABLE COPY

BEST AVAILABLE COPY

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 13A. DLB

Duramycin — NH. CO. (CH₂)₅. NH. CO— biotin

 $^+_{
m NH}_2$. Čl

FIG. 13B. DIB

Duramycin — NH. C. (CH₂)₃. S. CH₂. CO. NH. (CH₂)₆. NH. CO — biotin

NA = neutravidinB = biotinDur = Duramycin Dur ww(B) NA FIG. 13C. (DLB)₄NA

n = 5 to 8 Duramycin residues per IgG Monomer (150,000 Da) is shown

FIG. 13F. (DIM)_n HIgG-F

n = 5 to 8 Duramycin residues per IgG (F) = fluorescein

Monomer (150,000 Da) is shown

FIG. 13G. (DIM)_n HIgG-B

n = 5 to 8 Duramycin residues per IgG

(B) = biotin

Monomer (150,000 Da) is shown

Duramycin — NH_2 . CH_2 . CH_2 . SO_3

Duramycin — NH. C.
$$CH_2$$
. CH_2 . CH_2 . CH_2 .

FIG. 13K. DS-2

 SO_3

FIG. 13M. DS-4

 SO_3

 SO_3

FIG. 13N. DS-5

+ Duramycin --- NH₂. CH₂. CH₂. CH₂. CH₂. SO3

Duramycin — NH. C. CH₂. CH₂. CH₂. S S —

 $-NO_2$

_000×

FIG. 130. DC-1

Ala-S-Ala

cystine

β-methyllanthionine

Abu-S-Ala

Lysinoalanine Ala-NH-Lys

R= OH, as in cidofovir, or labile hydrophobic group

FIG. 14B

FIG. 14D

FIG. 14C

FIG. 15

BEST AVAILABLE COPY

BEST AVAILABLE COPY

FIG. 18A

3G4-2BVH original sequence:

								M	G	W	T	W	I	F	I	L	I	L	s	v
121								ATG	GGA	TGG	ACC	TGG	ATC	TTT	ATT	TTA	ATC	CTG	TCA	GTA
								TAC	CCT	ACC	TGG	ACC	TAG	AAA	TAA	AAT	TAG	GAC	AGT	CAT
									Pvu:	ľľ										
									~~~		-									
	T	T	G	v	H	s	E	V	Q	L	Q	Q	S	G	P	E	L	E	K	P
181	ACT	ACA																	AAG	CCT
	TGA	TGT	CCA	CAG	GTG	AGA	CTC	CAG	GTC	GAC	GTC	GTC	AGA	CCT	GGA	CTC	GAC	CTC	TTC	GGA
	G	Α	S	v	ĸ	L	s	C	K	A	S	G	Y	S	F	T	G	Y	N	M
241	GGC	GCT	TCA	GTG	AAG	CTA	TCC	TGC	AAG	GCT	TCT	GGT	TAC	TCA	TTC	ACT	GGC	TAC	AAC	ATG
	CCG	CGA	AGT	CAC	TTC	GAT	AGG	ACG	TTC	CGA	AGA	CCA	ATG	AGT	AAG	TGA	CCG	ATG	TTG	TAC
	N	W	v	K	Q	S	H	G	K	S	L	E	W	I	G	H	I	D	P	Y
301	AAC	TGG	GTG	AAA	CAG	AGC	CAT	GGA	AAG	AGC	CTT	GAA	TGG	ATT	GGA	CAT	ATT	GAT	CCT	TAC
	TTG	ACC	CAC	TTT	GTC	TCG	GTA	CCT	TTC	TCG	GAA	CTT	ACC	TAA	CCT	GTA	TAA	CTA	GGA	ATG
	Y	G	D	T	s	Y	N	Q	ĸ	F	R	G	ĸ	A	T	L	T	v	D	K
361	TAT	GGT	GAT	ACT	TCC	TAC	AAC	CAG	AAG	TTC	AGG	GGC	AAG	GCC	ACA	TTG	ACT	GTA	GAC	AAA
	ATA	CCA	CTA	TGA	AGG	ATG	TTG	GTC	TTC	AAG	TCC	CCG	TTC	CGG	TGT	AAC	TGA	CAT	CTG	TTT
	S	S	s	T	A	Y	M	Q	L	K	s	L	T	S	E	D	S	Α	v	Y
421	TCC	TCC	AGC	ACA	GCC	TAC	ATG	CAG	CTC	AAG	AGC	CTG	ACA	TCT	GAG	GAC	TCT	GCA	GTC	TAT
	AGG	AGG	TCG	TGT	CGG	ATG	TAC	GTC	GAG	TTC	TCG	GAC	TGT	AGA	CTC	CTG	AGA	CGT	CAG	ATA
	Y	C	v	K	G	G	Y	Y	G	H	W	Y	F	D	v	W	G	Α	G	T
481	TAC	TGT	GTA	AAG	GGG	GGT	TAC	TAC	GGG	CAC	TGG	TAC	TTC	GAT	GTC	TGG	GGC	GCA	GGG	ACC
	ATG	ACA	CAT	TTC	CCC	CCA	ATG	ATG	CCC	GTG	ACC	ATG	AAG	CTA	CAG	ACC	CCG	CGT	CCC	TGG
	Bs	stEI	[																	
	~-			-																
	T	V	T	v	s	S	Α	T	T	Т	A	P	S	V	Y	P	L	V	P	
541																			CCG	
	TGC	CAG	TGG	CAG	AGG	AGT	CGA	TGT	TGT	TGT	CGG	GGT	AGA	CAG	ATA	GGG	AAC	CAG	GGC	CCG
	BamHI						EcoF	EcoRI							Xhc	)I				
	~~~	. ~ ~ ~ -					~~~		•									~~~	. ~ ~ ~ ~	•
601	GGA	TCC	CCC	GGG	CTG	CAG	GAA	TTC	GAT	ATC	AAG	CTT	ATC	GAT	ACC	GTC	GAC	CTC	GAG	GGG
	CCT	AGG	GGG	CCC	GAC	GTC	CTT	AAG	CTA	TAG	TTC	GAA	TAG	CTA	TGG	CAG	CTG	GAG	CTC	CCC

The RACE product 3G4-2BVH is cloned and grafted onto the human $\gamma 1$ constant region at the BstEII site. Thus, it contains the mouse leader sequence and its VH is joined with the human CH1 sequence in the following way: leader/3G4VH/VSS-AST...

	Mouse Leader	\downarrow_1	mature protein		
1	MGWTWIFILI	LSVTTGVHSE	VQLQQSGPEL	EKPGASVKLS	CKASGYSFTG
51	YNMNWVKQSH	GKSLEWIGHI	DPYYGDTSYN	QKFRGKATLT	VDKSSSTAYM
				↓BstEI]	graft site
101	QLKSLTSEDS	AVYYCVKGGY	YGHWYFDVWG	AGTTVTVSS 2	ASTKGPSVFPL
151	APSSKSTSG			•	human vicHi

FIG. 18B

3G4-2BVL original sequence:

																М	D	М	R	A
61																ATG	GAC	ATG	AGG	GCT
																TAC	CTG	TAC	TCC	CGA
	₽	Α	Q	I	L	G	F	L	L	L	L	F	P	G	T	R	C	D	I	Q
121	CCT															AGA				
	GGA															TCT			TAG	
	M	Т	Q	S	₽	S	S	L	S	Α	S	L	G	E	R	V	S	L	Т	С
181																GTC				
	TAC	TGG	GTC													CAG				ACA
	R	A	s	Q	D	I	G	s	s	L	N	W	L	Q	Q	G	P	D	G	T
241																GGA				
	GCC				-											CCT				
	I	K	R	L	I	Y	A	T	S	S	\mathbf{r}	D	s	G	V	Þ	ĸ	R	F	S
301																CCC		AGG	TTC	AGT
	TAA	TTT	GCG	GAC	TAG		CGG									GGG	TTT		AAG	TCA
	G	S	R	S	G	S	D	Y	S	L	T	I	s	s	L	E	s	E	D	F
361																GAG				
	CCG	TCA			-	-										CTC			CTA	
	v	D	Y	Y	С	L	Q	Y	V	S	s	P	P	T	F	G	A	G	T	K
421														-		GGT				
	CAT	CTG	ATA	ATG	ACA	GAT	GTT	ATA	CAA	TCA	AGA			TGC	AAG	CCA			TGG	TTC
												Bbs	sΙ				Ban	hHI		
												~~~	~~~				~~~		•	
	L	Ę	L	K	R	Α	D	A	A	P	T	V	F	I	F	G	R	I	P	
481																GGG				
	GAC	CTC	GAC	TTT	GCC	CGA	CTA	CGA	CGT	GGT	TGA	CAG	AAG	TAG	AAG	CCC	GCC	TAG	GGG	GCC

The RACE product 3G4-2BVL is grafted to human  $\kappa$  constant region at the BbsI site. Thus, it contains the mouse leader sequence and its VL is joined withIN the human CL1 sequence in the following way: leader/3G4-VL/TVF-IFP...

	Mouse L	eader	√mature pro	otein	
1	MDMRAPAQIL	GFLLLLFPGT	RCDIQMTQSP	SSLSASLGER	VSLTCRASQD
51	IGSSLNWLQQ	GPDGTIKRLI	YATSSLDSGV	PKRFSGSRSG	SDYSLTISSL
			FR4↓	↓B	bsI graft site
101	ESEDFVDYYC	LQYVSSPPTF	GAGTKLELKR		FPPSDEQLKSGTAS  human kappa constant
					numan kappa constant



**FIG. 19A** 



FIG. 19B



FIG. 20



FIG. 21

## LOCALIZATION OF CH3G4 TO BLOOD VESSELS IN

## ORTHOTOPIC MDA-MB-435 TUMORS IN MICE



FIG. 22

TEST AVAILABLE COPY





## HUVEC







FIG. 24B





435s-luc







FIG. 27



FIG. 28









FIG. 31



FIG. 32



FIG. 33