Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours et les exercices portent sur les éléments précédés d'un astérisque (*) sur la fin du chapitre 25 : Déterminants.

Déterminants

On fixe K un corps de caractéristique différente de 2, et E un espace vectoriel de dimension finie.

Déterminant d'une famille de vecteurs dans une base.

Forme n-linéaire, symétrique, antisymétrique, alternée. Il suffit de vérifier la symétrie ou l'antisymétrie sur les transpositions. (\star) Une forme n linéaire est antisymétrique ssi elle est alternée. Une forme n-linéaire alternée envoie une famille liée sur 0. (\star) Soit $b=(e_1,\ldots,e_n)$ une base de E et f une forme n-linéaire alternée, alors il existe un scalaire λ tel que

$$\forall (x_1, \dots, x_n) \in E^n, f(x_1, \dots, x_n) = \lambda \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n x_{\sigma(i), i}$$

où pour tout j dans [[1, n]], on décompose x_j dans la base b sous la forme $x_j = \sum_{i=1}^n x_{i,j} e_i$. (\star) L'espace vectoriel des formes n-linéaires alternées est de dimension 1. Définition du déterminant dans une base b, noté det. Pour deux bases b, b', det $= \det_b(b')$ det. Caractérisation des bases par la non nullité de leur déterminant dans la base b.

Déterminant d'un endomorphisme

(*) Soit $u \in \mathcal{L}(E)$, pour toute base $b = (e_1, \dots, e_n)$, le scalaire $\det_b(u(e_1), \dots, u(e_n))$ ne dépend pas de la base b, c'est le déterminant de u. $\forall (x_1, \dots, x_n) \in E^n$, $\det_b(u(x_1), \dots, u(x_n)) = \det(u) \det_b(x_1, \dots, x_n)$. Multiplicativité du déterminant. Caractérisation des endomorphismes inversibles.

Déterminant d'une matrice

Définition du déterminant de $A = (a_{i,j})_{1 \le i,j \le n}$ via $\det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n a_{\sigma(j),j}$. Déterminant des matrices diagonales,

triangulaires. Lien entre déterminant d'une matrice et d'un endomorphisme. Multiplicativité du déterminant, caractérisation des matrices inversibles. Dexu matrices semblables ont même déterminant. (\star) Invariance du déterminant par transposition. n-linéarité alternée en les lignes de la matrice.

Calcul de déterminants

Déterminant des transvections, dilatations, matrices de permutation. Méthode par échelonnement, pivot, opérations élémentaires. Notion de mineur, de cofacteur d'une matrice carrée. Développement par rapport à une colonne, par rapport à une ligne. (\star) Déterminant de Vandermonde. Déterminant triangulaire par blocs. Outils polynomiaux.

Application du déterminant

Comatrice. (\star) com $(A)^TA = A$ com $(A)^T = \det(A)I_n$. Calcul d'inverse. Résolution de systèmes linéaires, formule de Cramer. Caractérisation du rang. Equation d'hyperplan à l'aide d'une base.

* * * * *