Artificial Intelligence

PBL problem II

SGD-SVM

Team. 6 2015038195 김재희 2015040900 박영빈 2015050746 유승완 2017011676 김나연 2017012142 안다영 2017012479 이하영

INDEX

- I. Problem
- Ⅱ. Data
- Ⅲ. SGD-SVM
- IV. Hyperparameter Tuning
- V. Conclusion

I. Problem

Taking too much time!

Ⅱ. Data

 The company prepared 'New Ik' image dataset

 DI + D2 + New Ik datasets will be used to <u>train</u> our model

 Other New 5k dataset' and
 'D2 dataset' will be D3 to test our model

Ⅱ. Data

Gradient Decent

- We will validate our model using Stratified Kfold with GridSearchCV
- Mini batch size, learning rate will be an important parameter in SGD

Ⅱ. Data

Preprocessing - One-hot encoding and Scaling

```
def one_hot(self, y):
    one-hot encode : 1 is hot, -1 is cold
    0.00
    onehot = np.ones(self.n_classes)
    for i in range(self.n_classes):
        if y != i:
            onehot[i] = -1
    return onehot
```

```
1 print(D1_labels_train[0])
5

one_hot(D1_labels_train[0])
array([-1., -1., -1., -1., -1., -1., -1.])
```

sklearn.preprocessing.StandardScaler()

SGDSVM - __init__()

```
def __init__(self, C=1000.0, eta=0.1, max_iter=5, batch_size=128, random_state=1234):
```

- C : Penalty parameter C of the error term.
- eta: Learning Rate.
- max_iter: Hard limit on iterations within solver, or -1 for no limit.
- batch_size : Mini batch size for SGD(Stochastic Gradient Descent).
- random_state : Random seed number

SGDSVM - fit() Init Parameter

```
# init parameter
self.rgen = np.random.RandomState(self.random_state)
W = self.rgen.normal(loc=0.0, scale=0.01, size=(self.n_features, self.n_classes))
b = np.ones((1, self.n classes))
W = W[:,:]
b = b[:,:]
# the best W and b that have the best accuracy
self.best_W = W_[:]
self.best_b = b_[:]
```

SGDSVM - fit() Mini-batch without Replacement

```
ss = np.arange(n) # range of the number of data points
n_batches = int(np.ceil(len(y) / self.batch_size)) # number of batches
# random sampling without replacement
self.rgen.shuffle(ss)

for i in range(n_batches):
    # mini-batch
    batch_idx = ss[self.batch_size * i: self.batch_size * (i + 1)]
```

SGDSVM - fit() Update with Weight Averaging

```
# gradient dw, db = self.\_SGD(X, y, W, b, batch\_idx)

# update (weight averaging)

W = np.subtract(W, np.multiply(self.eta, dw))

b = np.subtract(b, np.multiply(self.eta, db))

W_ = np.add(np.multiply((it/(it+1)), W_), np.multiply((it/(it+1)), W))

b_ = np.add(np.multiply((it/(it+1)), b_), np.multiply((it/(it+1)), b))
```

$$\begin{aligned} & w_{k+1} \leftarrow w_k - \eta \nabla_w \tilde{F}(w_k, b_k) \\ & b_{k+1} \leftarrow b_k - \eta \nabla_b \tilde{F}(w_k, b_k) \\ & \bar{w}_{k+1} \leftarrow \frac{k}{k+1} \bar{w}_k + \frac{1}{k+1} w_{k+1} \\ & \bar{b}_{k+1} \leftarrow \frac{k}{k+1} \bar{b}_k + \frac{1}{k+1} b_{k+1} \end{aligned}$$

SGDSVM - _SGD() Compute Gradient

```
for idx in batch idx:
  Xr = X[idx,:].reshape(self.n features, I)
  yr = (self.one hot(y[idx])).reshape(self.n classes, I)
  # using chain rule
  z = np.add(np.dot(W.T, Xr), b.T)
  conditions = np.multiply(yr, z)
  conditions[conditions <= I] = I # misclassified</pre>
  conditions [conditions > 1] = 0
  v = np.dot(Xr, np.multiply(-yr.T, conditions.T))
  dW = np.add(dW, v)
  db = np.add(db, np.multiply(-yr.T, conditions.T))
dW /= self.batch size
dW = np.add(dW, np.dot((I / self.C), W)) # margin
db /= self.batch size
```

$$\nabla_w \tilde{F}(w_k, b_k) = \frac{1}{|B_k|} \sum_{r \in B_k} \begin{cases} -y_r x_r & \text{if } y_i \langle w_k, x_r \rangle + b_k \le 1 \\ 0 & \text{o.w.} \end{cases} + \lambda w_k$$

$$\nabla_b \tilde{F}(w_k, b_k) = \frac{1}{|B_k|} \sum_{r \in B_k} \begin{cases} -y_r & \text{if } y_i \langle w_k, x_r \rangle + b_k \le 1 \\ 0 & \text{o.w.} \end{cases}$$

SGDSVM - fit() Keep the Best

```
# keep the best weight and bias
if self._check_score(X, y, self.best_W, self.best_b) < self._check_score(X, y, W_, b_):
    self.best_W = W_[:]
    self.best_b = b_[:]</pre>
```

SGDSVM - predict()

```
def predict(self, X):
 try:
    z = np.dot(X, self.best W) + self.best b
    y_pred = np.argmax(z, axis=1)
  except AttributeError:
    raise RuntimeError("You must train classifier before predicting data!")
  return y_pred
```

IV. Hyperparameter Tuning

IV. Hyperparameter Tuning

eta 🦼	₃ batch_size 🔻 max_iter 🖵 C		C 🔻	Accuracy	
0.01	16	200	300	0.908208333	
0.01	64	200	100	0.907333333	
0.01	64	200	200	0.90725	
0.01	128	200	1000	0.906875	
0.01	32	200	500	0.906791667	
0.01	32	200	300	0.906375	
0.01	32	200	200	0.904375	
0.01	32	200	100	0.903333333	
0.01	16	200	500	0.902416667	
0.01	16	200	200	0.902166667	
0.01	64	200	1000	0.901875	
0.01	16	200	100	0.901	
0.01	128	200	100	0.9008	

V. Conclusion

SGDSVM(C=300.0, eta=0.01, max_iter=200, batch_size=16)

Accuracy: 0.90533

Thanks!