1η Προγραμματιστική Εργασία Αναζήτηση και συσταδοποίηση διανυσμάτων στη C/C++

Ονοματεπώνυμο	AM
Κόλιας Γεώργιος	1115201600070
Κατρακάζας Γρηγόριος	1115201600063

Makefile

main_lsh.cpp
// main lsh
main_cube.cpp
// main cube
main_clustering.cpp
// main clustering

math.cpp

// μαθηματικές συναρτήσεις math.h

ReadMNIST.cpp

// διαβασμα αρχείων, αποθήκευση των δεδομένων σε <vector<vector >> και επιστροφή του size του.

ReadMNIST.h

hashtable.cpp

// HashTableCreate

HashTableDestroy

HashTableInsert

HashTableFindNN -> *και για lsh και για cube* -> Βρίσκει τον approximate κοντινότερο, νιοστό και σε ακτίνα R γείτονα

hashtable.h

Ish_function.cpp

// συνάρτησεις

h -> hash function

g -> υπολογίζει το g

manhattan distance

find_W -> υπολογισμός W

true_nearest_neighbour -> Βρίσκει τον πραγματικό κοντινότερο γείτονα true_nearest_neighbourNR -> Βρίσκει τον πραγματικό νιοστό κοντινότερο γείτονα και σε ακτίνα R

Ish_nearest_neighborNR-> Καλεί την HashTableFindNN που επιστρέφει τον approximate κοντινότερο, νιοστό και σε ακτίνα R γείτονα για κάθε hashtable , και μετά βρισκει συνολικα τον κοντινότερο, νιοστό και σε ακτίνα R Ish_nearest_neighborR -> ίδια με την απο πάνω αλλα για το cube

header.h ApproximateNNStatistics.h TrueNNStatistics.h

ComparePairs.h

// δομή ουράς

Clustering.cpp

//συναρτήσεις

ClusteringInitialization -> επιλέγει τα κέντρα - clusters (το 1ο τυχαία , και τα υπολοιπα με βάσει το αλγόριθμο kmeans++)

ClusteringAssignmentLLoyd -> ανάθεση κάθε εικόνας στο κοντινότερο κέντρο σύμφωνα με το LSH (βρίσκει επαναληπτικα εικόνες μέσα σε ένα R)

ClusteringAssignmentLSH -> ανάθεση κάθε εικόνας στο κοντινότερο κέντρο σύμφωνα με τον αλγόριθμο LLoyd

ClusteringAssignmentCUBE -> ανάθεση κάθε εικόνας στο κοντινότερο κέντρο σύμφωνα με το Cube (βρίσκει επαναληπτικα εικόνες μέσα σε ένα R)

ClusteringUpdate -> επανυπολογισμός καινουργιου κέντρου σε κάθε cluster ωστε να εχουμε το ελαχιστο αθροισμα αποστασεων της κάθε εικόνας απο το κέντρο

ClusteringPrint -> εκτυπωση κεντρων και χρόνου

ClusteringSilhouette-> υπολογισμος μέσου όρου silhouette όλων των εικόνων ClusteringFinishCondition -> τέλος επαναλήψεων αν το καινούργιο κεντρο απέχει πολύ λιγο απο το παλιο

Clustering.h

Compile: > make

- g++ -o lsh main_lsh.cpp lsh_function.cpp math.cpp hashtable.cpp ReadMNIST.cpp
- g++ -o cube main_cube.cpp lsh_function.cpp math.cpp hashtable.cpp ReadMNIST.cpp
- g++ -o clustering main_clustering.cpp clustering.cpp lsh_function.cpp math.cpp hashtable.cpp ReadMNIST.cpp

Παράδειγμα εκτελέσεων

- ./Ish -d train-images.idx3-ubyte -q t10k-images.idx3-ubyte -k 4 -L 5 -o results Ish -N 5 -R 10000
- ./cube -d train-images.idx3-ubyte -q t10k-images.idx3-ubyte -k 4 -M
 5000 -probes 5000 -o results cube -N 5 -R 10000

Αυτή είναι η εκτέλεση για το cube. Για 30 πρώτα έχουμε το αρχείο results cube.txt

 ./clustering -i t10k-images.idx3-ubyte -c clustering.conf -o results clustering -m Classic

Αυτή είναι η εκτέλεση για το clustering και έχουμε το αρχείο results_clustering.txt.

Περιγραφή εργασίας

Έχουν υλοποιηθεί όλα τα ζητούμενα.Εχουμε επισυνάψει τα παρακάτω αρχεία με βάση της παραπάνω εκτελέσεις:

- results lsh.txt
- results_cube.txt

Τα οποια εχουν τα αποτελέσματα των πρώτων 30 queries

results_clustering.txt

Το οποίο περιέχει τα αποτελέσματα το clustering