Facultatea de Inginerie Industriala si Robotica – U.P.B. Specializarea IAII

PROIECT DE AN

Prelucrări prin așchiere

Numele și prenumele: Bilan Alexia-Iuliana Grupa: 631AD

Subgrupa: 1

Profesor îndrumător: Marius Lazăr

Cuprins

1. Capitolul 1: Date initiale pentru proiectarea procesului si sistemului
tehnologic
2. Capitolul 2: Analiza constructiv functionala si tehnologica 6
3. Capitolul 3: Semifabricare si prelucrari 14
4. Capitolul 6: Structura detaliata a procesului tehnologic

Cap. 1: Date inițiale pentru proiectarea procesului și sistemului tehnologic

1.1 Produsul și desenul de execuție

Produsul pentru care se realizează tehnologia fabricării este "Cuplaj pentru axe de transmisie".

Piesa ar putea funcționa ca un **cuplaj între arborele motorului și un alt arbore sau echipament**. Găurile ar putea fi folosite pentru prinderea cu șuruburi de siguranță, iar piesa ar transmite mișcarea de rotație de la motor la componenta conectată.

Desenul original primit în cadrul proiectului se regăsește în figura 1.1, iar desenul de execuție al reperului este reprezentat in figura 1.2.

Figura 1.1

1.2 Desenul de ansamblu

Produsu Ipentru care se realizează tehnologia face parte din ansamblul "Cuplaj pentru axe de transmisie".

1.3 Volumul de producție

Conform cerințelor de proiectare, volumul de producție este 10.000buc/an.

1.4 Condiții de livrare, fondul de timp

Pentru cuplajul din acest proiect timpul de livrare tipic este între 8 și 12 săptămâni. Timpul efectiv de prelucrare pe piesă poate fi între 2 ore și 4 ore.

1.5 Date referitoare la unitatea de producție

1.5.1 Denumirea unității de producție

Unitatea de productie unde este realizat reperul atasat se numeste Power Belt, București.

1.5.2Dotare tehnica

Această unitate dispune atât de flanșe sau bucșe de prindere,chei de blocare, amortizoare (opțional), cât și de matrițe, strunguri normale, freze universale, masini de găurit si rectificat.

1.5.3 Gradul de calificare al operatorilor

Pentru fabricarea eficientă a unui cuplaj pentru axe de transmisie, sunt necesari operatori cu un nivel mediu spre avansat de calificare, în special în operarea mașinilor CNC și în controlul calității.

Aceștia trebuie să fie capabili să respecte toleranțe stricte și să opereze echipamente complexe.

1.5.4 Regimul de utilizare al resurselor umane

Regimul de lucru se realizeaza în următorul mod:

- Manager de proiect: 160 ore
- **Ingineri mecanici:** 320 ore (80 ore în planificare + 160 ore în instalare + 80 ore în testare)
- **Tehnicieni:** 360 ore (240 ore în instalare + 120 ore în instruire)

1.6 Cerinte tehnico economice

Cerințele tehnico-economice pentru fabricarea cuplajului pentru axe de transmisie implică alegerea materialelor de calitate, care să ofere rezistență și durabilitate.

Optimizarea proceselor de fabricație contribuie la reducerea costurilor și a timpului de producție.

1.7 Objective principale

Realizarea unor noi tehnologii pentru piesa atașată, reducerea vibrațiilor și șocurilor care apar în timpul funcționării, protejând echipamentele și prelungind durata de viață a ansamblului.

Cap. 2: Analiza constructiv funcțională și tehnologică

2.1 Analiza desenului de execuție al reperului

Desenul primit a fost analizat, iar în urma evaluării s-au efectuat actualizări în ceea ce privește toleranțele generale, inclusiv adăugarea și ajustarea toleranțelor și abaterilor. Standardul STAS inițial a fost înlocuit cu unul actualizat, iar indicatorul a fost substituit cu unul standardizat. De asemenea, rugozitățile au fost ajustate pentru a corespunde funcției specifice a suprafețelor.

2.2 Analiza caracteristicilor constructive prescrise piesei

Otelul carbon aliat prezinta o rezistenta mare la solicitari mecanice, oboseala si sunt des utilizate in fabricarea componentelor mecanice.

Materialul impus in constructia piesei este Otelul carbon aliat SR EN 10083-1:1995 STAS 791-88.

2.2.1 Caracteristici prescrise materialului piesei

a) Simbolul

Se simbolizează cu grupul de litere 42CrMo4, indicand materialul otel carbon aliat, utilizat frecvent in fabricarea componentelor mecanice.

b) Compozitia chimica

Element	С	Si (max)	Mn	P (max)	S (max)	Cr	Molibden
							(Mo)
Continut	0,38 -	0,40%	0,60 -	0,025%	0,035%	0,90 -	0,15 - 0,30%
	0,45%		0,90%			1,20%	

c) Proprietati fizico-mecanice

In tabelul urmator sunt prezentate principalele proprietati fizico-mecanice ale materialului.

Proprietate	Valoare
Rezistența la tracțiune Rm [N/mm2]	850 – 1100 N/mm²
Limita de curgere convenţională Rp0,2 [N/mm2]	650 – 900 N/mm²
Elongația A [%]	14 – 17%
Duritatea Brinell HBS [Kg/mm2]	248 – 300 HB
Rezistența la impact la 20°C [Joule]	≥ 30 J

d) Tratamente termice posibile:

<u>Călirea</u>

încălzire la o temperatură ridicată (aproximativ 820-860°C), urmată de răcire rapidă (în ulei sau apă). Structura interna a otelului se schimba, formand martensita.

<u>Revenirea</u>

După călire, piesa se reîncălzește la o temperatură mai joasă (aproximativ 540-680°C) și se răcește lent pentru a reduce fragilitatea și a crește tenacitatea. Martensita formată anterior se transformă în **ferită** și **cementită**, în funcție de temperatură și timp.

Normalizarea

Încălzirea oțelului la aproximativ 850-900°C, urmată de răcire în aer. Acest procedeu duce la transformarea austenitei în perlită și ferită la răcire controlată.

<u>Cementarea</u>

Încălzirea piesei într-o atmosferă bogată în carbon, urmată de călire pentru a îmbunătăți duritatea suprafeței.

Reacția chimică:

 $Fe + C \rightarrow Fe_3 C$ (formarea de cementită la suprafață)

e) Modul de livrare

Cementita se livreaza **sub formă de incluziuni dure** în oțelurile cementate sau tratate termic.

2.2.2 Caracteristici prescrise suprafetelor

In figura 2.2.2 sunt prezentate principalele suprafete ce urmeaza a fi prelucrate prin aschiere.

Fig 2.2.2 Suprafete principale

Caracteristicile prescrise suprafețelor se prezintă în tabelul 2.2.2.

Sk	Forma nominala a suprafetelor	Precizia dimensionala	Precizia de forma macrogeometrica	Rugozitatea Ra [μm]	Precizia de pozitie relativa	Alte condiţii (duritate, acoperiri de protecţie etc.)
S1	Plană exterioară	$(\frac{\emptyset 3.5 + 0.008}{-0.000})$	$\frac{\square \ 0.0025}{K}$	Ra 6.3 IT12 (N9)	B – bază de referință în analizapiesei	,
S2	Plană exterioară	$(\frac{066+0.019}{m})$	□ 0.008	Ra 3,2 IT11 (N8)	A – bază de referință în analiza piesei	
S3	Cilindrică interioară	$\frac{016+0.011}{-0.000}$	<u>○ 0.005</u> <u>K</u>	Ra 0,8 IT9 (N6)	⊥ 0,005 B	
S4	Plană exterioară	$(\frac{0.000}{0.000})$	<u>□ 0.005</u> <u>K</u>	Ra 6.3 IT12 (N9)	0,008 A 	Piesa nu necesită tratamen te termice

S5	Cilindrică exterioara	$\frac{0.000}{0.000}$	<u>○ 0.006</u> <u>K</u>	Ra 6.3 IT12 (N9)	concentricitate 0,02 A K	
S6	Cilindrică interioară	Ø3+0.006 -0.000 H6	<u>○ 0.003</u> <i>K</i>	Ra 6.3 IT12 (N9)	<u> </u> 0,004 B	

Tab. 2.2.2 Caracteristicile suprafetelor

2.2.3 Masa piesei

Masa aproximativă a piesei este de **14.616 kg** si este determinata cu ajutorul programului de proiectare SolidWorks 2022.

Fig. 2.2.3

2.2.4 Clasa piesei

Conform desenului de executie si a caracteristicilor piesei se poate spune ca piesa face parte din clasa de rezistență a șuruburilor. Clasa de rezistență a șuruburilor reprezintă nivelul de rezistență mecanică și deformabilitate al acestora, indicând câtă forță pot suporta înainte de a se rupe sau deforma.

2.3 Analiza caracteristicilor functionale ale piesei

2.3.1 Rolul functional al piesei

Principalul rol al piesei este de a transmite cuplul. Cuplajul permite transferul eficient al cuplului motorului către arborele sau echipamentul conectat, asigurând funcționarea corectă a sistemului. De asemenea, ajută la reducerea uzurii și la protejarea axelor de suprasarcini.

2.3.2 Rolul functional al suprafetelor piesei si ajustaje prescrise

a) Rolul functional al suprafetelor piesei

In general, rolul functional al piesei este dat de rolul functional al tuturor suprafetelor acesteia(fig.2.3.2), asadar acestea se prezinta in tabelul 2.3.2.

Fig. 2.3.2.

Nr. Sup.	Forma suprafetei	Rolul functional
S1, S2, S4	Plana exterioara	Au un rol funcțional și asigură etanșarea corectă cu celelalte suprafețe din ansamblu. De asemenea, servesc la fixare, iar prelucrarea corectă a lor este esențială.
S3,S6	Cilindrica interioara	Au rol functional de ghidare, acestea ajuta la pozitionarea corecta a piesei in ansamblu, fiind in contact cu tijele de ghidare din acesta.
S5	Cilindrica exterioara	Suprafața cilindrică exterioară poate contribui la transmiterea cuplului între diferitele componente ale sistemului, prin contactul cu alte suprafețe de tip cilindric.

Tabel 2.3.2 Rolul functional

b) Ajustaje prescrise

Reperul nu are ajustaje prescrise.

2.3.3 Concordanta dintre caracteristicile prescrise si cele impuse de rolul functional

Nr. Sup.	Precizia prescrisă inițial în desen	Propunere modificare	Justificare
S3	Ra 6.3	Ra 0.8	O rugozitate mai mică (0.8 µm) indică o suprafață mai netedă si poate rezista mai bine la uzură în aplicații cu solicitări mecanice sau cu solicitări de contact 11xcessive11.
S5	Ra 6.3	Ra 0.8	Pentru suprafata S5, reducerea rugozității la 0.8 µm poate ajuta la asigurarea unei potriviri mai precise și a unui contact mai stabil, evitând

			jocurile 12xcessive sau vibrațiile.
S6	concentricitate 0,012 Ra 6.3	⊥ 0,001 A Ra 0.8	O toleranță de perpendicularitate mai strânsă va reduce riscul de înclinare sau de deviere în timpul funcționării, ceea ce poate îmbunătăți stabilitatea și durata de viață a ansamblului.

Tabel 2.3.3

2.4 Analiza caracteristicilor tehnologice ale piesei

2.4.1 Prelucrabilitatea materialului

Oțelul carbon aliat, 42CrMo4, are o bună prelucrabilitate, permițându-se obținerea unor forme complexe și detalii precise, ceea ce îl face ideal pentru aplicații de transmisie și componente mecanice.

2.4.2 Forma constructiva a piesei

Forma constructivă a cuplajului din oțel carbon aliat (42CrMo4) este proiectată pentru a permite o conectare eficientă între arbori, optimizând distribuția forțelor și asigurând o funcționare stabilă și fiabilă în timpul transmiterii puterii.

2.4.3 Posibilitatea folosirii unor suprafete ale piesei ca baza de referinta sau orientare si fixare

Suprafețele piesei pot fi utilizate ca baze de referință pentru orientare și fixare, asigurând astfel o aliniere precisă în timpul asamblării. Această caracteristică facilitează montajul corect al cuplajului și contribuie la stabilitatea și performanța sa în funcționare.

2.4.4 Analiza prescrierii rationale ale tolerantelor

In baza analizei desenului de executie si a explicatiilor tabelare se poate constata ca tolerantele sunt prescrise rational.

2.4.5 Gradul de unificare al caracteristicilor constructive

Gradul de unificare este unul dintre indicii de tehnologicitate absoluti utilizati pentru aprecierea tehnologicitatii produselor (a celor de tip piesa, in mod special). Acesta se poate determina cu relatia

$$\lambda = \frac{l_t - l_d}{l_t} \times 100 \, [\%] \tag{2.4.5}$$

unde: It –numarul total de elemente constructive de tipul respectiv; Id –numarul de elemente diferite

Gauri:

$$\lambda = \frac{5 \text{-} 1}{5} * 100 = 80\% > 50\%$$

Filete:

$$\lambda = 0\%$$

Gradul de unificare mediu:

$$\lambda m = \frac{\lambda 1 + \lambda 2}{2} = \frac{80 + 0}{2} = 40\%$$

În urma analizei gradului de unificare mediu se poate spune faptul că acesta este unul mediu, având valoarea $\lambda m = 40\%$.

2.4.6 Concordanta dintre caracteristicile prescrise si conditiile de tehnologicitate

Semifabricatul este obtinut prin turnare, astfel trebuie respectate o serie de conditii pentru a nu aparea diferite defecte. In tabelul urmator sunt detaliate principalele conditii de turnare, dar si conditii ale procedeelor de aschiere.

Tabelul 2.4.6 Conditii de turnare

Nr. Crt.	Conditie	Grad de satisfactie, justificari
1	Forma cuplajului trebuie să fie proiectată pentru a permite o aliniere corectă și o conexiune eficientă între	DA - Forma cuplajului este proiectată pentru a permite o
	arbori. Aceasta poate include forme geometrice simple	conexiune optimă între arbori.
	(circulară sau cilindrică) care facilitează fabricarea și	Utilizarea formelor geometrice
	asamblarea.	simple, precum cilindrice sau
		conice, facilitează fabricația și
		asamblarea.
2	Axele găurilor trebuie să fie poziționate cu precizie în	DA - Axele găurilor sunt plasate
	raport cu forma piesei pentru a asigura o îmbinare	cu precizie, respectând
	corectă cu alte componente.	toleranțele de fabricație. Aceasta
		asigură o îmbinare corectă cu
		șuruburile sau alte elemente de
		fixare, reducând riscul de
		nealiniere și îmbunătățind astfel
		performanța cuplajului.
3	Prelucrarea piesei trebuie să fie optimizată pentru a	NU - Deși se urmărește
	reduce timpul și costurile de fabricație.	reducerea numărului de operații
		de prelucrare, este posibil ca
		unele forme complexe să
		necesite operații suplimentare.
4	Suprafețele care servesc ca baze de referință sau de fixare	DA - Suprafețele care funcționează
		ca baze de referință sunt proiectate

tre	ouie să fie planificate astfel încât să faciliteze procesul	pentru a facilita asamblarea și a
de	asamblare și s ă asigure stabilitate în timpul	oferi stabilitate.
fun	cționării.	

Capitolul 3: Semifabricare si prelucrari

3.1 Projectarea semifabricatului

a) Date initiale

- Materialul piesei: Otel Carbon aliat 42CrMo4 EN 10083-1:1995 STAS 791-88

- Seria de fabricatie: 10.000 buc/an

- Caracteristicile piesei sunt conform tabelului 2.2.2

b) Metoda de semifabricare: Turnare

Avand in vedere materialul impus realizarii piesei, otel carbon aliat, metoda de semifabricare este turnarea. Aceasta poate fi folosita pentru a obtine semifabricate aproape de forma finala, reducand necesitatea de prelucrari ulterioare.

c) Procedeul:

Procedeele de turnare se clasifica in functie de numarul de piese obtinute in forma de turnare. Numarul ridicat de piese de realizat (zeci de mii) duce la procedeul de turnare in forme permanente. Pe aceasta baza a fost luata in cauza o varianta tehnic acceptabila care se prezinta in tabelul 3.1.a:

Tabel 3.1.a

Varianta	Tip semifabricat	Metoda de semifabricare	Procedeu de semifabricare
1	Cu adaos mare	Turnare	Turnare in forme permanente

Valorile corespund **clasei de adaos de prelucrare F**, conform tabelului 3.1.1:

			Cla	ase de ac	daosuri d	e preluc	rare precizat	e	
				M	letale și a	aliaje tur	nate		
Metoda	Oţel	Fontă cenușie	Fontă cu grafit nodular	Fontă maleabilă	Aliaje de cupru	Aliaje de zinc	Aliaje de metale ușoare	Aliaje pe bază de nichel	Aliaje pe bază de cobalt
Formare în amestec clasic și manuală	GK	FH	FH	FH	FH	FH	FH	GK	GK
Formare în amestec clasic, mecanizată și forme coji	FH	EG	EG	EG	V	EG	EG	FH	FH
Forme metalice permanente (turnare gravitațional ă și la joasă presiune)	-	DF	DF	DF	DF	DF	DF	-	-
Turnare sub presiune	-	-	-	-	BD	BD	BD	-	-
Formare de precizie	E	E	E	-	E	-	E	E	E

Tabel 3.1.1 Clase tipice de adaosuri de prelucrare

Suprafata	Dimensiunea prescrisa piesei [mm]	Adaosul de prelucrare total [mm]	Dimensiunea prescrisa semifabricatului [mm]
S1	Ø3.5 + 0.008	0.5	Ø 4 + 0.008
	- 0.000		- 0.000
S2	Ø66 + 0.019	1	Ø 67 + 0.019
	- 0.000		- 0.000
S3	Ø16 + 0.011	0.5	Ø 16.5 + 0.011
	- 0.000		- 0.000
S4	Ø33 + 0.016	0.5	Ø 33.5 +0.016
	- 0.000		- 0.000
S5	Ø22 + 0.013	0.5	Ø 22.5 +0.013
	- 0.000		- 0.000
S6	Ø3 + 0.006	0.5	Ø 3.5 +0.006
	- 0.000		- 0.000

Tabel 3.1.b Caracteristicile semifabricatului cu adaos mare

In figura urmatoare este reprezentat desenul piesei brut turnate.

A a a separatie matrila

Adaos tehnologic

Adaos prelucrare

Form a semifabricat real

Tolerante generale ISO 8062 - C19

Fig. 3.1

Precizia turnarii este: CT9 ISO 8062

3.2 Prelucrari

a) Date initiale:

- Tipul si caracteristicile suprafetelor din tabelul 2.2.2

- Precizia prescrisa fiecarei suprafete: desen de executie, tabelul 2.2.2

- Materialul: Otel carbon aliat SR EN 10083-1:1995 STAS 791-88.

- Programa de productie: 10.000 buc/an

- Semifabricat: Conform cap. 3.1

- Recomandari

In tabelul 3.2.b sunt prezentate prelucrarile necesare pentru indeplinirea caracteristicilor suprafetelor piesei ce urmeaza a fi prelucrata.

Nr. Sup.	Forma	Var.	Prelucrari/Ra [μm]		
			Prel. 1	Prel. 2	Prel. 3
S6x8	Cilindrica interioara	1	Centruire	Gaurire	Alezare de finisare IT9, Ra= 0.8 µm
\$1	Plana exterioara	1	Strunjire exterioara de degrosare IT12; Ra=6,3 µm	-	-
S2	Plana exterioara	I	Frezare de Degrosare IT11; Ra= 3,2 µm	-	-
\$3	Cilindrica interioara	I	Strunjire interioara de finisare IT9; Ra=0.8 µm	-	-

Bilan Alexia-Iuliana PA 631AD 2024

S4	Plana exterioara	I	Frezare de	-	-
			degrosare		
			IT12		
			Ra=6.3		
S5	Cilindrica exterioara		Frezare de	-	-
			degrosare		
			IT12		
			Ra=6.3		

Tabel 3.2.b Stabilirea prelucrarilor principale

Procesul tehnologic este definit ca fiind totalitatea operatiilor care comporta prelucrari mecanice sau chimice, tratamente termice, impregnari, montaje etc. si prin care materiile prime sau semifabricatele sunt transformate in produse finite.

In subcapitolul 2.2.4 "Clasa piesei", s-a stabilit familia piesei din care face parte reperul studiat si anume clasa de rezistenta a suruburilor.

Cap. 6: Structura detaliata a procesului tehnologic

Tabel 6.1

Nr. de ordine si denumirea operatiei	Schita preliminara a operatiei	Utilaj, scule, dispoziti
preliminare		ve, SDV-uri
0.Turnare	-	U: Instalatie de turnare D/S: Forma de turnare V: Subler

6.2 Utilaje si SDV-uri, metodele si procedeele de reglare la dimensiune

6.2.1. Utilaje

Avand in vedere capitolele anterioare si procesele tehnnologice detaliate din tabelele 6.1.a/b, din cadrul primului proces si al doilea, in tabelul 6.2.1a/b se detaliaza utilajele folosite in functie de fiecare operatie in parte.

Tabel 6.2.1 Utilaje

Nr. și denumirea operației	Tip utilaj	Marca utilaj	Caracteristici tehnice
0.Turnare	Rame de turnare/forme permanente	-	-
1. Strunjire exterioara 3. Strunjire interioara	Strung de precizie Optimum TM 3310D	TO IT HO	Avans longitudinal: 0,02 - 0,4 mm/rot (24 trepte) Avans transversal0: 0,01 - 0,2 mm/rot (32 trepte) Cursa sanie superioara: 90 mm Cursa sanie transversala: 168 mm Inaltime scaun portcutit: 16 mm Adaptor fixare ax: Camlock DIN ISO 702-2 No. 4 Inaltimea centrelor: 165 mm Alezaj ax: 38 mm Latime batiu: 190 mm Diametru de strunjire peste sania transversala: 216 mm Turatii ax: 65 - 2000 rpm Distanta dintre varfuri: 1000 mm Diametru de strunjire peste batiu: 330 mm

Bilan Alexia-Iuliana PA 631AD 2024

2. Frezare
exterioara de
degrosare
4. Frezare
exterioara de
degrosare
5. Frezare
exterioara de
degrosare
6. Centruire,
Gaurire, Alezare
de finisare

Masina de gaurit si frezat Cormak ZX7032G

Dimensiuni masa: 700 x 190 mm Cursa pe axa X: 460 mm Cursa pe axa Y 225 mm Cursa pinolei: 75mm Turatii ax: 95 / 180 / 270 / 500 / 930 / 1420 rpm Distanta ax masa (max.): 460 mm Numar trepte de turatie : 6 trepte Inclinare cap de actionare: -45° la +45° Greutate aproximativa: 185 kg Putere motor vertical: 0.9 KW 1.2 CP

7. Inspectie finala

Banc de lucru modular 990MA6, 1155x1500x750 mm, Unior4

Material: tablă premium PLUS; Sistem de închidere centralizată cu încuietoare și cheie rabatabilă; 5 sertare: (3x L 560 x L 570 x H 70mm, 2x L 560 Χ L 605 x H150mm); capacitate sertar: 45 kg Blat de lucru: din lemn cu 30 de cârlige -Capacitate de încărcare

statică: 2300 kg

6.2.2. Dispozitive port-piesa (DPP)

Conform reperului, in tabelul 6.2.2 se stabilesc dispozitivele de prindere ale piesei, tinand cont de masina unealta aleasa, de fiecare operatie in parte cu schemele caracteristice.

Tabel 6.2.2

Nr. Op.	Dispozitiv port-piesa	
2,4,5,6	Mandrina cu bucsa	
	elastica	
1,3	Portscula Weldon	

6.2.3 Scule si dispozitive port-scula (SDPS)

Pentru fiecare operatie in parte s-au determinat, in functie de prelucrare, de fazele acesteia, de masina unealta, sculele necesare si dispozitivele port-scula ale acestora, detaliate in tabelul 6.2.3, corespunzator fiecarui proces tehnologic in parte.

Tabel 6.2.3.

	140610.2.3.	_	
Nr suprafata	Scula	Tip	Nume
1		177.9-2009-11	Cutit strunjire exterioara
2		R300-035C3 12H	Freza frontala

3		A10K-SCLCL 06	Cutit strunjire interioara
4		415-013A12-05H	Freza frontala
5	D 1943	415-013A12-05H	Freza frontala
6.1	5.55 S	462.1-1000-065A0- XM H10F	Burghiu de centruire

6.2	400.1-0500-030A1- NM N1BU	Burghiu de gaurire
6.3	435.T-0500-A1-XF H10F	Burghiu de finisare

6.2.4. Verificatoare

In tabelul 6.2.4 sunt stabilite verificatoarele necesare pentru controlul corespunzator a tuturor operatiilor din cadrul procesului tehnologic, avand in vedere tipul suprafetelor, al semifabricatului si a preciziei finale a reperului.

Tabel 6.2.4. Verificatoare

Operatia	Verificator				
·	Tip	Dimensiuni care se pot masura	Valoarea diviziunii	Domeniul de masurare	
0.Turnare	Subler digital ABS, Mitutoyo, 0-500mm, capete in varfuri, 551-204-10	Exterior Interior Adâncimi	0.01	0500mm	
1. Strunjire exterioara	Subler digital ABS, Mitutoyo, 0-500mm, capete in varfuri, 551-204-10	Exterior Interior Adâncimi	0.02	0150mm	
2. Frezare frontala 4. Frezare frontala 5. Frezare frontala	Şubler Digital ABS Caliper CoolantProof IP67 0-150mm, Blade 500-706-20 ^[13]	Exterior Interior Adâncimi	0.02	0150 mm	
	Etalon de rugozitate Plăcuţe etalon pentru rugozitate 6 piese, 0.4-12.5 µm NF E 05-501, ISO/R 468 si ISO 2632 ^[14]	Rugozitati	-	0.412.5 μm	
3. Strunjire interioara	Set 8 etaloane de rugozitate rabotate 0,8 - 100	Rugozitati	-	0.8100μm	
6.1 Centruire 6.2 Gaurire 6.3 Alezare	Calibru tampon trece/nu trece	Interior	-	4mm P7	
	Etalon de rugozitate Ra 0,05 - 12,5 CEP 498861-1 ISO 4287	Rugozități	-	0,0512, 5 μm	