Estimating the Effect of a Mis-measured, Endogenous, Binary Regressor

Francis J. DiTraglia Camilo García-Jimeno

University of Pennsylvania

June 18th, 2017

Additively Separable Model

$$y = m(T^*, \mathbf{x}) + \varepsilon$$

- ▶ y Outcome of interest
- ▶ m Known or unknown function
- ▶ T* Unobserved, endogenous binary regressor
- ► T Observed, mis-measured binary surrogate for T*
- x Exogenous covariates
- \triangleright ε Mean-zero error term

What is the Effect of T^* ?

Re-write the Model

$$y = c(\mathbf{x}) + \beta(\mathbf{x}) T^* + \varepsilon$$
$$\beta(\mathbf{x}) = m(1, \mathbf{x}) - m(0, \mathbf{x})$$
$$c(\mathbf{x}) = m(0, \mathbf{x})$$

This Paper:

- ▶ Does a discrete instrument z (typically binary) identify $\beta(x)$?
- ▶ What assumptions are required for z and the surrogate T?
- ▶ How to carry out inference for a mis-classified regressor?

Example: Job Training Partnership Act (JPTA)

Heckman et al. (2000, QJE)

Randomized offer of job training, but about 30% of those *not* offered also obtain training and about 40% of those offered training don't attend. Estimate causal effect of *training* rather than *offer* of training.

- y − Log wage
- ▶ T* True training attendence
- ➤ T Self-reported training attendance
- x Individual characteristics
- \triangleright z Offer of job training

Related Literature

Continuous Treatment

Lewbel (1997, 2012), Schennach (2004, 2007), Chen et al. (2005), Hu & Schennach (2008), Song (2015), Hu et al. (2015)...

Binary, Exogenous Treatment

Aigner (1973), Bollinger (1996), Kane et al. (1999), Black et al. (2000), Frazis & Loewenstein (2003), Mahajan (2006), Lewbel (2007), Hu (2008)

Binary, Endogenous Treatment

Mahajan (2006), Shiu (2015), Ura (2015), Denteh et al. (2016)

Baseline Assumptions - Maintained Throughout

Additively Separable Model

$$y = c(\mathbf{x}) + \beta(\mathbf{x})T^* + \varepsilon, \quad \mathbb{E}[\varepsilon] = 0$$

Valid & Relevant Instrument

$$\mathbb{E}[\varepsilon|\mathbf{x},z] = 0, \quad \mathbb{E}\left[T^*|\mathbf{x},z=k\right] \neq \mathbb{E}\left[T^*|\mathbf{x},z=\ell\right]$$

Measurement Error Assumptions

- (i) $\mathbb{E}[\varepsilon|\mathbf{x}, z, T^*, T] = \mathbb{E}[\varepsilon|\mathbf{x}, z, T^*]$
- (ii) $\alpha_0(\mathbf{x}) = \mathbb{P}(T=1|T^*=0,\mathbf{x},z)$
- (iii) $\alpha_1(\mathbf{x}) = \mathbb{P}(T = 0 | T^* = 1, \mathbf{x}, z)$
- (iv) T is (positively) correlated with T^*

Theorem: Baseline Assumptions Fail to Identify $\beta(\mathbf{x})$

Sketch for Simple Case: $\alpha_0 = 0$

$$0 \le \alpha_1(\mathbf{x}) \le \min_{k} \{1 - p_k(\mathbf{x})\}$$
$$[1 - p_k(\mathbf{x})] \mathbb{E}[y | T = 0, z_k, \mathbf{x}] =$$
$$p_k(\mathbf{x}) \mathbb{E}[y | T = 1, z_k, \mathbf{x}] = p_k(\mathbf{x})\beta(\mathbf{x})$$

System of Equations given $E[\varepsilon|z] = 0$

Let
$$m_{tk}^* = \mathbb{E}[\varepsilon|T^* = t, z = k]$$

$$(1 - p_k)\bar{y}_{0k} = \alpha_1(p_k - \alpha_0)\left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + (1 - \alpha_0)c - (p_k - \alpha_0)(c + m_{1k}^*)$$

$$p_k\bar{y}_{1k} = (1 - \alpha_1)(p_k - \alpha_0)\left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) + \alpha_0c + (p_k - \alpha_0)(c + m_{1k}^*)$$

Theorem

2K equations in K+4 unknowns, but β is unidentified from conditional means of y regardless of how many values, K, the instrument takes on.

Intuition

Using $E[\varepsilon|z]=0$ to eliminate m_{0k}^* from the system "entangles" the equations such that each pair only provides one restriction.

Identification from Stronger Assumptions?

Second Moment Assumption

- (i) $\mathbb{E}[\varepsilon^2|\mathbf{x}, z, T^*, T] = \mathbb{E}[\varepsilon^2|\mathbf{x}, z, T^*]$
- (ii) $\mathbb{E}[\varepsilon^2|\mathbf{x},z] = \mathbb{E}[\varepsilon^2|\mathbf{x}]$

Third Moment Assumption

- (i) $\mathbb{E}[\varepsilon^3|\mathbf{x},z,T^*,T] = \mathbb{E}[\varepsilon^3|\mathbf{x},z,T^*]$
- (ii) $\mathbb{E}[\varepsilon^3|\mathbf{x},z] = \mathbb{E}[\varepsilon^3|\mathbf{x}]$

Sufficient Condition

- (i) T is conditionally independent of (ε, z) given (T^*, \mathbf{x})
- (ii) z is conditionally independent of ε given **x**

Identification Argument: Step I

Reparameterization

$$\theta_1(\mathbf{x}) = \beta(\mathbf{x}) / [1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})]$$

$$\theta_2(\mathbf{x}) = [\theta_1(\mathbf{x})]^2 [1 + \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})]$$

$$\theta_3(\mathbf{x}) = [\theta_1(\mathbf{x})]^3 [\{1 - \alpha_0(\mathbf{x}) - \alpha_1(\mathbf{x})\}^2 + 6\alpha_0(\mathbf{x})\{1 - \alpha_1(\mathbf{x})\}]$$

Theorem

Suppose that $\theta_1(\mathbf{x}), \theta_2(\mathbf{x})$ and $\theta_3(\mathbf{x})$ are identified. Then:

- $m{\theta}_1(\mathbf{x}) \neq 0 \implies \beta(\mathbf{x}), \alpha_0(\mathbf{x}) \text{ and } \alpha_1(\mathbf{x}) \text{ are identified}$
- $\theta_1(\mathbf{x}) = 0 \implies \beta(\mathbf{x})$ is identified but $\alpha_0(\mathbf{x})$ and $\alpha_1(\mathbf{x})$ are not.

First Moment Condition

Assumptions

- $\mathbb{E}[\varepsilon|z] = 0$
- $\mathbb{E}[\varepsilon|T^*,T,z] = \mathbb{E}[\varepsilon|T^*,z]$
- $\alpha_0 = \mathbb{P}(T = 1 | T^* = 0, z)$
- $\alpha_1 = \mathbb{P}(T = 0 | T^* = 1, z)$

Moment Condition

$$\mathsf{Cov}(y,z) - \left(\frac{\beta}{1 - \alpha_0 - \alpha_1}\right) \mathsf{Cov}(T,z) = 0$$

MC # 1 identifies
$$\beta/(1-\alpha_0-\alpha_1)$$

Second Moment Condition

Additional Assumptions

- $\qquad \mathbb{E}[\varepsilon^2|z] = \mathbb{E}[\varepsilon^2]$
- $\qquad \mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon^2|T^*,z]$

Moment Condition

$$\mathsf{Cov}(y^2,z) - \frac{\beta}{1 - \alpha_0 - \alpha_1} \left\{ 2\mathsf{Cov}(yT,z) - \beta\mathsf{Cov}(T,z) \left(\frac{1 + \alpha_0 - \alpha_1}{1 - \alpha_0 - \alpha_1} \right) \right\} = 0$$

Given MC #1, MC #2 identifies $(\alpha_1 - \alpha_0)$

Third Moment Condition

Additional Assumptions

- $\mathbb{E}[\varepsilon^3|z] = \mathbb{E}[\varepsilon^3]$
- $\qquad \mathbb{E}[\varepsilon^3|T^*,T,z] = \mathbb{E}[\varepsilon^3|T^*,z]$

Moment Condition

$$\begin{split} \mathsf{Cov}(y^3,z) - \left(\frac{\beta}{1-\alpha_0-\alpha_1}\right) \left\{ \ \beta^2 \left[1 + \frac{6\alpha_0(1-\alpha_1)}{(1-\alpha_0-\alpha_1)^2}\right] \mathsf{Cov}(T,z) \right. \\ \left. -3\beta \left[\frac{1-(\alpha_1-\alpha_0)}{1-\alpha_0-\alpha_1}\right] \mathsf{Cov}(y^T,z) + 3\mathsf{Cov}(y^2T,z) \right\} = 0 \end{split}$$

Theorem

Model is identified if $\beta \neq 0$ and $\alpha_0 + \alpha_1 < 1$. If $\beta = 0$, reduced form identifies β . If $\alpha_0 + \alpha_1 > 1$, β is identified up to sign.

GMM Estimator in Simple Special Case: $\alpha_0 = 0$

$$u(\theta) = y - c - \frac{\beta}{1 - \alpha_1} T$$

$$v(\theta) = y^2 - \sigma_{\varepsilon\varepsilon} - c^2 - \frac{\beta}{1 - \alpha_1} 2yT + \frac{\beta^2}{1 - \alpha_1}$$

$$\mathbb{E}\left[g_1(\mathbf{x}, \boldsymbol{\theta})\right] = \mathbb{E}\left[\begin{array}{c} u(\boldsymbol{\theta}) \\ v(\boldsymbol{\theta}) \end{array}\right] = \mathbf{0}, \quad \mathbb{E}\left[g_2(\mathbf{x}, \boldsymbol{\theta})\right] = \mathbb{E}\left[\begin{array}{c} u(\boldsymbol{\theta})z \\ v(\boldsymbol{\theta})z \end{array}\right] = \mathbf{0}$$

$$\beta = \frac{2\mathsf{Cov}(yT, z)}{\mathsf{Cov}(T, z)} - \frac{\mathsf{Cov}(y^2, z)}{\mathsf{Cov}(y, z)}$$

Simulation DGP: $y = \beta T^* + \varepsilon$

Errors

 $(\varepsilon, \eta) \sim$ jointly normal, mean 0, variance 1, correlation 0.5.

First-Stage

- ▶ Half of subjects have z = 1, the rest have z = 0.
- ► $T^* = \mathbf{1} \{ \gamma_0 + \gamma_1 z + \eta > 0 \}$

Mis-classification

- ▶ Set $\alpha_0 = 0$
- $ightharpoonup T | T^* = 1 \sim \mathsf{Bernoulli}(1 \alpha_1)$

$$\beta = 3$$
, $\alpha_1 = 0.1$, $\delta = 0.15$, $n = 1000$

$$\beta = 2$$
, $\alpha_1 = 0.1$, $\delta = 0.15$, $n = 1000$

 α_1

Bias = 0.001, SD = 0.042

$$\beta = 1$$
, $\alpha_1 = 0.1$, $\delta = 0.15$, $n = 1000$

$$\beta = 0.5, \, \alpha_1 = 0.1, \, \delta = 0.15, \, n = 1000$$

Bias = -0.012, SD = 0.616

Identification Failure when $\beta = 0$

Simple Special Case: $\alpha_0 = 0$

$$u(\theta) = y - c - \frac{\beta}{1 - \alpha_1} T$$

$$v(\theta) = y^2 - \sigma_{\varepsilon\varepsilon} - c^2 - \frac{\beta}{1 - \alpha_1} 2yT + \frac{\beta^2}{1 - \alpha_1}$$

$$\mathbb{E}\left[g_1(\mathsf{x},\theta)\right] = \mathbb{E}\left[\begin{array}{c}u(\theta)\\v(\theta)\end{array}
ight] = \mathbf{0}, \quad \mathbb{E}\left[g_2(\mathsf{x},\theta)\right] = \mathbb{E}\left[\begin{array}{c}u(\theta)z\\v(\theta)z\end{array}
ight] = \mathbf{0}$$

- β small \Rightarrow moment equalities uninformative about α_1
- $(c, \sigma_{\varepsilon\varepsilon})$ are identified at any hypothesized pair (α_1, β)

Auxiliary Moment Inequalities

General Case $\alpha_0 \neq 0$

$$\alpha_0(z) = \alpha_0, \ \alpha_1(z) = \alpha_1$$

$$\implies p_k^* = \frac{p_k - \alpha_0}{1 - \alpha_0 - \alpha_1}, \quad 1 - p_k^* = \frac{1 - p_k - \alpha_1}{1 - \alpha_0 - \alpha_1}$$

$$\alpha_0 + \alpha_1 < 1 \iff \mathsf{Cor}(T, T^*) > 0 \iff (1 - \alpha_0 - \alpha_1) > 0$$

Implications

- $\qquad \qquad \alpha_0 < \min_k \{p_k\}, \quad \alpha_1 < \min_k \{1 p_k\}$
- ▶ β is between β_{RF} and β_{IV}
- \triangleright β_{IV} inflated but has correct sign

Even Tighter Bounds for α_0, α_1 from Conditional Variances

Assume

$$\mathbb{E}[\varepsilon^2|T^*,T,z] = \mathbb{E}[\varepsilon^2|T^*,z]$$

Observables

$$\sigma_{tk}^2 = \mathsf{Var}(y|T=t, z=k)$$

Constrain Unobservables

$$s_{tk}^{*2} = Var(u|T^* = t, z_k) > 0$$

$$(p_k - \alpha_0) \left[(1 - \alpha_0) p_k \sigma_{1k}^2 - \alpha_0 (1 - p_k) \sigma_{0k}^2 \right] > \alpha_0 (1 - \alpha_0) p_k (1 - p_k) (\bar{y}_{1k} - \bar{y}_{0k})^2$$

$$(1 - p_k - \alpha_1) \left[(1 - \alpha_1) (1 - p_k) \sigma_{0k}^2 - \alpha_1 p_k \sigma_{1k}^2 \right] > \alpha_1 (1 - \alpha_1) p_k (1 - p_k) (\bar{y}_{1k} - \bar{y}_{0k})^2$$

Identification-Robust Joint Inference for $(\alpha_0, \alpha_1, \beta)$

- Auxiliary moment inequalities to bound (α_0, α_1)
- ▶ Joint CS for $(\alpha_0, \alpha_1, \beta)$ by inverting Anderson-Rubin Test
- ▶ Marginal inference for β by projection.
- Generalized Moment Selection (Andrews & Soares, 2010) for tighter confidence sets.
- Results are preliminary (not exploiting full set of inequalities) but this approach seems to work extremely well.

95% GMS Confidence Region

Conclusion

- ► Endogenous, mis-measured binary treatment.
- Important in applied work but no solution in the literature.
- Usual (1st moment) IV assumption fails to identify β
- ▶ Higher moment / independence restrictions identify β
- Identification-Robust Inference incorportating additional inequality moment conditions.