# Множественная линейная регрессия. Постановка задачи. Вероятностный подход. Решение задачи. Прогнозирование.

Напомним, что *регрессионный анализ* может одновременно рассматриваться и как раздел *математической статистики*, и как раздел *эконометрики; регрессионному анализу* посвящена глава в большинстве монографий и учебников по *анализу* данных.

#### Постановка задачи.

Предположим, что имеется *п объектов*, каждый из которых описывается *т признаками* (факторами, предикторами), влияющими на значение переменной отклика. Линейная регрессионная модель необходима нам для прогноза значений переменной отклика по известным значениям факторов.

Например, весьма актуально получение инструмента для оценки возможной *стоимости квартиры* по её основным характеристикам, таким как

- общая площадь;
- жилая площадь;
- расстояние до центра;
- расстояние до метро;
- этаж;
- этажность дома

- ...

## В терминах регрессионной модели,

- под *объектами* будем понимать квартиры;
- под *факторами* перечисленные выше свойства;
- под переменной отклика стоимость квартиры.

Будем нумеровать объекты индексом i (i=1,...,n), а факторы – индексом j (j=1,...,m).

Обозначим через  $X_{i\,j}$  —значение j-го признака i-го объекта  $(i=1,...,n;\ j=1,...,m).$  Таким образом, каждый i-ый объект представим как m-мерный вектор  $X_i\equiv \left(x_{i1},...,x_{i\,m}\right),\ i=1,...,n$  .

|      | Сырые | данные | для | этой | задачи | могут | иметь, | например, | следуюший |
|------|-------|--------|-----|------|--------|-------|--------|-----------|-----------|
| вид: |       |        |     |      |        |       |        |           |           |

| TotalSquare (m2) | LivingSquare (m2) | DistCenter (km) | DistMetro (km) | Price           |
|------------------|-------------------|-----------------|----------------|-----------------|
| 80               | 53                | 17              | 2,1            | 14 612 000,00 ₽ |
| 76               | 51                | 1               | 0,7            | 16 931 128,00 ₽ |
| 96               | 72                | 16              | 1,3            | 18 905 472,00 ₽ |
| 56               | 37                | 16              | 2,2            | 14 829 304,00 ₽ |
| 75               | 56                | 6               | 2,8            | 19 214 025,00 ₽ |
| 75               | 56                | 11              | 1,1            | 19 582 950,00 ₽ |
| 97               | 65                | 12              | 1,4            | 19 123 259,00 ₽ |
| 30               | 24                | 14              | 2,3            | 6 035 280,00 ₽  |
| 84               | 63                | 7               | 1,9            | 20 058 696,00 ₽ |
| 50               | 33                | 11              | 2,4            | 13 807 800,00 ₽ |
| 55               | 44                | 6               | 1,7            | 13 087 745,00 ₽ |
| 94               | 71                | 10              | 1,7            | 17 337 266,00 ₽ |
| 91               | 68                | 5               | 1,4            | 17 189 900,00 ₽ |
| 32               | 26                | 7               | 1,8            | 6 405 792,00 ₽  |
| 86               | 65                | 4               | 0,3            | 19 267 698,00 ₽ |
| 55               | 41                | 2               | 1,6            | 13 827 495,00 ₽ |
| 65               | 49                | 18              | 1,7            | 11 242 920,00 ₽ |
| 45               | 34                | 9               | 2,2            | 12 004 470,00 ₽ |
| 47               | 38                | 4               | 1,3            | 10 586 844,00 ₽ |

Здесь каждая строка соответствует одной квартире.

Обозначим значение *зависимого признака i* -го объекта (т.е. стоимости квартиры) через  $y_i$ , i=1,...,n.

Будем искать зависимость в виде линейной функции *т* переменных:

$$f(x_1,...,x_m) = \theta_0 + \theta_1 x_1 + ... + \theta_m x_m,$$
 (1)

Здесь  $x_j$ , (j=1,...,m)— независимые переменные (факторы, т.е. характеристики квартиры), зависимая переменная (прогнозируемая цена квартиры),  $\theta_0$ ,  $\theta_1$ ,...,  $\theta_m$  — искомые параметры линейной зависимости. При m=1 получаем рассмотренную ранее модель однофакторной линейной регрессии.

## Геометрическая интерпретация

Геометрически можно интерпретировать задачу следующим образом. Точки с координатами  $(x_{i1},...,x_{i\,m},\,y_i),\,\,i=1,...,n,\,$  образуют «облако» в пространстве  $R^{m+1}$ . Нужно построить такую *гиперплоскость* вида (1),

которая бы наилучшим образом проходила через это облако точек. Здесь термин «наилучший» означает (как и в случае однофакторной линейной регрессии) «минимизирующий сумму квадратов отклонений фактических значений зависимой переменной от ожидаемых в соответствии с линейной моделью». Для случая 2-х переменных линейная модель представима как плоскость в 3-хмерном пространстве:



Источник: http://www.statmethods.net/graphs/images/scatter3d.png

#### Решение задачи. Вероятностный подход.

Понятно, что вследствие наличия случайной компоненты точки «облака», вообще говоря, не будут находиться в одной гиперплоскости.

Обозначим случайную величину («ошибку») i-го измерения через  $\mathcal{E}_i$ . Будем считать, что ошибки всех n измерений распределены одинаково, а именно – закон распределения вероятности ошибки будем предполагать нормальным (гауссовым) и будем считать, что систематическая ошибка отсутствует (то есть «разброс» цен при одинаковых параметрах квартир вызван исключительно совокупным влиянием случайных факторов). В этом случае математическое ожидание ошибки равно нулю. Обозначим среднее квадратическое отклонение ошибки через  $\sigma$ . Математическая запись названных условий имеет вид:  $M \varepsilon_i = 0$ ,  $D \varepsilon_i = \sigma^2$ , i = 1,...,n).

Запишем систему относительно искомых величин  $\theta_0, \theta_1, ..., \theta_m$ :

$$y_{1} = \theta_{0} + \theta_{1}x_{11} + \dots + \theta_{m}x_{1m} + \varepsilon_{1}$$

$$y_{2} = \theta_{0} + \theta_{1}x_{21} + \dots + \theta_{m}x_{2m} + \varepsilon_{2}$$

$$y_{i} = \theta_{0} + \theta_{1}x_{i1} + \dots + \theta_{m}x_{im} + \varepsilon_{i}$$

$$y_{n} = \theta_{0} + \theta_{1}x_{n1} + \dots + \theta_{m}x_{nm} + \varepsilon_{n}$$

$$(2)$$

Введём обозначения:

Введём обозначения: 
$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1j} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \dots & x_{2j} & \dots & x_{2m} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & x_{i1} & x_{i2} & \dots & x_{ij} & \dots & x_{im} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nj} & \dots & x_{nm} \end{pmatrix} Y = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix}, \ \mathcal{E} = \begin{pmatrix} \mathcal{E}_1 \\ \dots \\ \mathcal{E}_n \end{pmatrix}, \ \Theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_m \end{pmatrix}$$
 и перепишем систему (2) в матричной форме:

и перепишем систему (2) в матричной форме:

$$Y = X\Theta + \varepsilon. \tag{3}$$

Выразим вектор ошибок  $\varepsilon$  из системы (3):

$$\varepsilon = Y - X\Theta. \tag{4}$$

Запишем сумму квадратов ошибок (минимизируемую функцию):

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} \equiv \varepsilon^{T} \varepsilon = (Y - X\Theta)^{T} (Y - X\Theta) = (Y^{T} - \Theta^{T} X^{T}) (Y - X\Theta) =$$

$$= Y^{T}Y - Y^{T}X\Theta - \Theta^{T}X^{T}Y + \Theta^{T}X^{T}X\Theta = Y^{T}Y - 2\Theta^{T}X^{T}Y + \Theta^{T}X^{T}X\Theta.$$

Обозначим

$$F(\Theta) \equiv Y^T Y - 2 \Theta^T X^T Y + \Theta^T X^T X \Theta. \tag{5}$$

Минимизируем функцию (5) по  $\Theta$ . Найдём градиент функции  $F(\Theta)$ :

 $grad\ F(\Theta) = -2X^TY + 2X^TX\Theta$  и потребуем выполнения равенства  $grad\ F(\Theta) = 0$ . Получим систему:

$$X^T X \Theta = X^T Y. (6)$$

Будем считать, что  $\det(X^T X) \neq 0$ , а значит, решение системы (6) запишется в виде:

$$\hat{\Theta} = \left(X^T X\right)^{-1} X^T Y. \tag{7}$$

Найденное решение (вектор параметров) позволяет осуществлять прогноз значений зависимого признака по известным значениям независимых признаков:

Применительно к рассмотренному примеру, получим прогнозируемое значение

$$\widehat{\mathcal{Y}}_{l} = X_{i}\widehat{\boldsymbol{\Theta}}, \quad i = n+1, \dots$$
 (8)