Chapter 1

Axioms of Probability

Outline of Chapter 1

- 1.1 Introduction
- 1.2 Sample space and events
- 1.3 Axioms of probability
- 1.4 Basic theorems
- 1..5 Continuity of probability function
- 1.6 Probabilities of 0 and 1
- 1.7 Random selection of points from intervals
- 1.8 What is simulation?

Section 1.1

Introduction

1.1 Introduction

- In search of natural laws that govern a phenomenon, science often faces "events" that may or may not occur.
- In any experiment, an event that may or may not occur is called **random**.
- If the occurrence of an event is inevitable, it is called **certain**, and if it can never occur, it is called **impossible**.

1.1 Introduction

Luca Paccioli(1445-1514) Italian

```
(studies of chances of events)
Niccolo Tartaglia(1499-1557)
Girolamo Cardano(1501-1576)
Galileo Galielei(1564-1642)

Blaise Pascal(1623-1662) French
Pierre de Fermat(1601-1665)
1655 Christian Huygens(1629-1695) Dutch
first book "On Calculations in Games of Chance)
James Bernoulli(1654-1705)
Abraham de Moivre(1667-1754)
```

Pierre-Simon Laplace(1749-1827) Simeon Denis Poisson(1781-1840) Karl Friedrich Gauss(1777-1855)

Pafnuty Chebyshev(1821-1894) Russian Andrei Markov(1856-1922) Aleksandr Lyapunov(1857-1918)

Relative frequency and its problem

- In practice, $\lim_{n\to\infty} n(A)/n$ cannot be computed since it is impossible to repeat an experiment infinitely many times. Moreover, if for a large n, n(A)/n is taken as an approximation for the probability of A, there is no way to analyze the error
- There is no reason to believe that the limit of n(A)/n, as $n \to \infty$, exists. Also, if the existence of this limit is accepted as an axiom, many dilemmas arise that cannot be solved
- By this definition, probabilities that are based on our personal belief and knowledge are not justifiable
 - The probability that the price of oil will be raised in the next six months is 60%
 - The probability that it will snow next Christmas is 30%.

1900 David Hilbert(1862-1943) pointed out the urgent need for an axiomatic treatment of the theory of probability

Emile Borel(1871-1956) Serge Bernstein(1880-1968) Richard von Mises(1883-1953)

*1933 Andrei Kolmogorov(1903-1987) Russian successfully axiomatized the theory of probability

Section 1.2

Sample Space and Events

1.2 Sample space and events

- Experiment (eg. Tossing a die)
- Outcome(sample point)
- Sample space={all outcomes}
- Event: subsets of a sample space
 - If the outcome of an experiment belongs to an event E, we say that the event E has **occurred**.
- Ex1.1 tossing a coin once
 - sample space $S = \{H, T\}$
- Ex1.2 flipping a coin and tossing a die if T or flipping a coin again if H
 - $S = \{T1, T2, T3, T4, T5, T6, HT, HH\}$
 - $E=\{T3,T4,T5,T6\}$ is an event that flipping a coin results in T, and tossing a die results in a number greater than or equal to 3
 - If one flips a coin, gets T, tosses a die and get 5, we say that event E has occurred

Sample space and events

• Ex1.3 measuring the lifetime of a light bulb

$$S = \{x : x \ge 0\}$$

 $E = \{x : x \ge 100\}$ is the event that the light bulb lasts at least 100 hours

- Ex1.4 all families with 1, 2, or 3 children (genders specified in descending order of their ages)
 - $S = \{b,g,bg,gb,bb,gg,bbb,bgb,bgg,ggg,gbg,ggb,gbb\}$
 - *F*={b, bg, bb, bbb, bgb, bbg, bgg} represents families with male oldest child
 - $G=\{gg, bgg, ggb\}$ represents families with exactly two girls
- If the outcome of an experiment belongs to an event *E*, then we say that the event *E* has **occurred**

Relations between events

• Subset: $E \subseteq F$

- Equality: $E \subseteq F$ and $F \subseteq E$
- Intersection: EF or $E \cap F$
- Union: $E \cup F$
- Complement: E^c
- Difference: $E F = E \cap F^c$

Venn diagrams

- Certainty
 - An event is called certain if its probability is one
- Impossibility
 - An event is called impossible if its probability is zero
- Mutually exclusiveness

• A set of events are called <u>mutually exclusive</u> if the intersection of any two of them is the empty set

• Similarly, we define

$$\bigcup_{i=1}^{n} E_i, \bigcap_{i=1}^{n} E_i, \bigcup_{i=1}^{\infty} E_i, \text{ and } \bigcap_{i=1}^{\infty} E_i$$

Useful identities between events

- $(E^c)^c = E, E \cup E^c = S$, and $EE^c = \emptyset$
- Commutative law:

$$E \cup F = F \cup E$$
, $EF = FE$

Associative laws:

$$E \cup (F \cup G) = (E \cup F) \cup G, \quad E(FG) = (EF)G$$

• Distributive laws:

$$(EF) \cup H = (E \cup H)(F \cup H), \quad (E \cup F)H = (EH) \cup (FH)$$

- $(E^c)^c = E, E \cup E^c = S$, and $EE^c = \emptyset$
- Commutative law:

$$E \cup F = F \cup E$$
, $EF = FE$

• Associative laws:

$$E \cup (F \cup G) = (E \cup F) \cup G$$
, $E(FG) = (EF)G$

Distributive laws:

$$(EF) \cup H = (E \cup H)(F \cup H), \quad (E \cup F)H = (EH) \cup (FH)$$

Useful identities

$$E = EF \cup EF^{c}$$

$$E = ES = E(F \cup F^{c}) = EF \cup EF^{c}$$

De Morgan's Laws

• De Morgan's first laws:

$$(E \cup F)^c = E^c F^c, \qquad \left(\bigcup_{i=1}^n E_i\right)^c = \bigcap_{i=1}^n E_i^c, \qquad \left(\bigcup_{i=1}^\infty E_i\right)^c = \bigcap_{i=1}^\infty E_i^c$$

De Morgan's second laws:

$$(EF)^c = E^c \cup F^c, \qquad \left(\bigcap_{i=1}^n E_i\right)^c = \bigcup_{i=1}^n E_i^c, \qquad \left(\bigcap_{i=1}^\infty E_i\right)^c = \bigcup_{i=1}^\infty E_i^c$$

Example 1.9

- Prove De Morgan's first law: For E and F, two events of a sample space S, $(E \cup F)^c = E^c F^c$
- We prove $(E \cup F)^c \subseteq E^c F^c$ and $(E \cup F)^c \supseteq E^c F^c$
- To prove the first inclusion, suppose that x is an outcome that belongs to $(E \cup F)^c$
- Then x does not belong to $E \cup F$, meaning that \underline{x} is neither in E nor in F
- So x belongs to both E^c and F^c and hence to E^cF^c
- The other inclusion can be proved similarly

Section 1.3

Axioms of Probability

What is an axiom?

Assumption vs axiom

$$A \rightarrow B$$

$$A_{1} \rightarrow A$$

$$A_{2} \rightarrow A_{1}$$

$$\vdots$$

$$A_{n} \rightarrow A_{n-1}$$

1.3 Axioms of probability

f=R>R P= Evant > [0,1]

- *S*: the sample space
- A: an event
- *P* is called a probability
- *P*(*A*) is called the probability of *A* if the following axioms are satisfied

Axiom 1
$$P(A) \ge 0$$
.

Axiom 2
$$P(S) = 1$$
.

Axiom 3 If $\{A_1, A_2, A_3, ...\}$ is a sequence of mutually exclusive events (i.e., the joint occurrence of every pair of them is impossible: $A_i A_j = \emptyset$ when $i \neq j$), then

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} P(A_i).$$

Equally likely

- Events A and B are equally likely if P(A) = P(B)
- Sample points ω and μ are equally likely if events $\{\omega\}$ and $\{\mu\}$ are equally likely, i.e. $P(\{\omega\}) = P(\{\mu\})$

- Theorem 1.1 The probability of the empty set \emptyset is 0. That is, $P(\emptyset) = 0$
- Proof.

 A; Aj = → ∀~†j
- Let $A_1 = S$ and $A_i = \emptyset$ for $i \ge 2$
- Then, A_1 , A_2 , A_3 , ... is a sequence of mutually exclusive events
- By Axiom 3,

$$P(S) = P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i) = P(S) + \sum_{i=2}^{\infty} P(\emptyset)$$

implying that $\sum_{i=2}^{\infty} P(\emptyset) = 0$

• This is only possible if $P(\emptyset) = 0$

Theorem 1.2

• **Theorem 1.2** Let $\{A_1, A_2, ..., A_n\}$ be a mutually exclusive set of events. Then

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

- **Proof.** For i > n, let $A_i = \emptyset$.
- Then $A_1, A_2, A_3, ...$ is a sequence of mutually exclusive events.
- Thus, by Axiom 3 and Theorem 1.1, we get

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = P\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \sum_{i=1}^{\infty} P(A_{i})$$

$$= \sum_{i=1}^{n} P(A_{i}) + \sum_{i=n+1}^{\infty} P(A_{i}) = \sum_{i=1}^{n} P(A_{i}) + \sum_{i=n+1}^{\infty} P(\emptyset)$$

$$= \sum_{i=1}^{n} P(A_{i}). \quad \blacklozenge$$

- Axiom 3 is stated for a *countably infinite* collection of mutually exclusive events.
- For this reason, it is also called the *axiom of countable additivity*.
- Theorem 1.1 states that the same property holds for a *finite* collection of mutually exclusive events as well.
- That is, *P* also satisfies *finite additivity*.

• One might want ask if one can replace axiom 3 by its finite version, i.e.

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

- The answer is no! We would then not be able to handle the countable additivity.
- The countable union and intersection of events occur often.
- Consider tossing a die repeatedly.
- Event A_n represents that the **first** six occurs in the n-th toss.

• Then, $\{A_n, n = 1, 2, \dots\}$ are mutually exclusive.

$$A_{\lambda}A_{\bar{j}} = \phi$$

• $\bigcup_{i=1}^{\infty} A_i$ is the event that a six **eventually** occurs

An important implication of Theorem 1.2

• An important special case of Theorem 1.2

$$P(A_1 \cup A_2) = P(A_1) + P(A_2)$$

• An important implication of Theorem 1.2

$$0 \le P(A) \le 1$$

• To see this, note that from Theorem 1.2

$$P(\underline{A \cup A^c}) = P(A) + P(A^c)$$

• By Axiom 2,

$$P(A \cup A^c) = P(S) = 1$$

• Therefore, $P(A) + P(A^c) = 1$. This and Axiom 1 imply that $P(A) \le 1$

Sample Spaces with Equally Likely Outcomes

- Suppose that a sample space contains *N* points that are equally likely to occur
 - The probability of each occurrence of a sample point is 1/N

$$1 = P(S) = P(\{s_1, s_2, \dots, s_N\})$$

= $P(\{s_1\}) + P(\{s_2\}) + \dots + P(\{s_N\}) = NP(\{s_1\})$

- Before Kolmogorov introduced the three axioms in 1933, this was taken as the definition of probability.
- It is now called the classical definition of probability

Theorem 1.3 Classical Definition of Probability

• **Theorem 1.3** Let S be the sample space of an experiment. If S has N points that are all equally likely to occur, then for any event A of S,

$$P(A) = \frac{N(A)}{N}.$$

where N(A) is the number of points of A.

- **Proof.** Let $S = \{s_1, s_2, ..., s_N\}$, where each s_i is an outcome (a sample point) of the experiment. $A = \{s_1, s_2, ..., s_N\}$
- Since the outcomes are equiprobable,

$$P(\lbrace s_i \rbrace) = 1/N$$
 for all $i, 1 \le i \le N$.

• Now let $A = \{s_{i_1}, s_{i_2}, \dots, s_{i_{N(A)}}\}$, where $s_{i_j} \in S$ for all i_j .

Proof of Theorem 1.3 - Continuation

• Since $\{s_{i_1}\}, \{s_{i_2}\}, \ldots, \{s_{i_{N(A)}}\}$ are mutually exclusive, Axiom 3 implies that

$$P(A) = P(\{s_{i_1}, s_{i_2}, \dots, s_{i_{N(A)}}\})$$

$$= P(\{s_{i_1}\}) + P(\{s_{i_2}\}) + \dots + P(\{s_{i_{N(A)}}\})$$

$$= \frac{1}{N} + \frac{1}{N} + \dots + \frac{1}{N}$$

$$= \frac{N(A)}{N}$$

Example 1.12

- An elevator with two passengers stops at the second, third, and fourth floors.
- If it is equally likely that a passenger gets off at any of the three floors,
 - what is the probability that the passengers get off at different floors?

Solution of Example 1.13

- Let a and b denote the two passengers and a_2b_4 mean that a gets off at the second floor and b gets off at the fourth floor, with similar representations for other cases.
- Let A be the event that the passengers get off at different floors.
- Then

$$S = \{a_2b_2, a_2b_3, a_2b_4, a_3b_2, a_3b_3, a_3b_4, a_4b_2, a_4b_3, a_4b_4\}$$
$$A = \{a_2b_3, a_2b_4, a_3b_2, a_3b_4, a_4b_2, a_4b_3\}$$

- So N = 9 and N(A) = 6.
- Therefore, the desired probability is N(A)/N = 6/9 = 2/3.

Section 1.4

Basic Theorems

Theorem 1.4

- Theorem 1.4 For any event A, $P(A^c) = 1 P(A)$.
- **Proof.** A and A^c are mutually exclusive.
- Thus,

$$P(A) + P(A^c) = 1$$

• But $A \cup A^c = S$ and P(S) = 1, so

$$1 = P(S) = P(A \cup A^{c}) = P(A) + P(A^{c})$$

• Therefore, $P(A^c) = 1 - P(A)$.

Theorem 1.5

• **Theorem 1.5** *If* $A \subseteq B$, then

$$P(B - A) = P(BA^c) = P(B) - P(A).$$

- **Proof.** $A \subseteq B$ implies that $B = (B A) \cup A$ (see Figure 1.2).
- But $(B-A)A = \emptyset$.
- So the events B A and A are mutually exclusive, and

$$P(B) = P((B - A) \cup A) = P(B - A) + P(A).$$

• This gives P(B - A) = P(B) - P(A).

Corollary of Theorem 1.5

- Corollary. If $A \subseteq B$, then $P(A) \le P(B)$.
- Proof.
- By Theorem 1.5, P(B A) = P(B) P(A).
- Since $P(B A) \ge 0$, we have that $P(B) P(A) \ge 0$.
- Hence $P(B) \ge P(A)$.

Theorem 1.6

- **Theorem 1.6** $P(A \cup B) = P(A) + P(B) P(AB)$
- **Proof.** Since $A \cup B = A \cup (B AB)$ (see Figure 1.3) and $A(B AB) = \emptyset$,
- So A and B AB are mutually exclusive events and

$$P(A \cup B) = P(A \cup (B - AB)) = P(A) + P(B - AB). \tag{1.3}$$

• Now since $AB \subseteq B$, Theorem 1.5 implies that

$$P(B - AB) = P(B) - P(AB).$$

• Therefore, (1.3) gives

$$P(A \cup B) = P(A) + P(B) - P(AB).$$

Figure 1.3 The shaded region is B - AB. Thus $A \cup B = A \cup (B - AB)$.

Example 1.16

- Suppose that in a community of 400 adults, 300 bike or swim or do both, 160 swim, and 120 swim and bike.
- What is the probability that an adult, selected at random from this community, bikes?

•
$$|S| = 400$$

•
$$|A \cup B| = 300$$

•
$$|A| = 160$$

•
$$|A \cap B| = 120$$

•
$$|B| = ?$$

- Let A be the event that the person swims and B be the event that he or she bikes.
- Then $P(A \cup B) = 300/400$, P(A) = 160/400, and P(AB) = 120/400.
- Hence the relation $P(A \cup B) = P(A) + P(B) P(AB)$ implies that

$$P(B) = P(A \cup B) + P(AB) - P(A)$$

$$= \frac{300}{400} + \frac{120}{400} - \frac{160}{400}$$

$$= \frac{260}{600}$$

Generalization of theorem 1.6

$$P(A_1 \cup A_2 \cup A_3)$$
= $P(A_1) + P(A_2) + P(A_3) - P(A_1 A_2) - P(A_2 A_3)$
- $P(A_1 A_3) + P(A_1 A_2 A_3)$

Inclusion-exclusion principle

- Add the probabilities of those intersections that are formed of an odd number of events
- Subtract the probabilities of those formed of an even number of events.
- This formula can be proven by induction

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(A_{i}A_{j})$$

$$+ \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n} P(A_{i}A_{j}A_{k})$$

$$- \cdots + (-1)^{n-1} P(A_{1}A_{2} \cdots A_{n})$$

Theorem 1.7

- **Theorem 1.7** $P(A) = P(AB) + P(AB^c)$.
- **Proof.** Clearly, $A = AS = A(B \cup B^c) = AB \cup AB^c$.
- Since AB and AB^c are mutually exclusive,

$$P(A) = P(AB \cup AB^c) = P(AB) + P(AB^c).$$

Example 1.20

- In a community,
 - 32% of the population are male smokers;
 - 27% are female smokers.
- What percentage of the population of this community smoke?
- Solution.
- Let A be the event that a randomly selected person from this community is a smoker.
- Let B be the event that the person is male.
- By Theorem 1.7,

$$P(A) = P(AB) + P(AB^{c}) = 0.32 + 0.27 = 0.59$$

Homework 1

- Section 1.2: B.29, B.30, B.33, B.34
- Section 1.4: A.24, B.40, B.42, B.46
- Due date: 4 pm, Friday, March 8, 2024
- No late homework is accepted.
- EECS building room 845

- Hint for problem B.33 of Section 1.2.
 - By the event that infinitely many of the A_i 's occur, the author means the event that **all but finitely many** of the A_i 's occur.

Section 1.5

Continuity of Probability Functions

Continuous Real Functions

- Let f be a real valued function
- That is, $f: R \to R$.
- f is said to be continuous at c, if sequence $f(x_n)$ converges to f(c) for any sequence $\{x_n\}$ that converges to c
- $f(x_n) \to f(c)$ whenever $x_n \to c$, or

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right)$$

- Equivalently, $\lim_{x\to c} f(x) = f(c)$
- f is continuous on the real line if it is continuous at all real points

- Probability functions map from a set to a real number
- We now show that probability functions are continuous
- A sequence of events of a sample space is called increasing if

$$E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots \subseteq E_n \subseteq E_{n+1} \cdots$$

• It is called decreasing if

$$E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots \supseteq E_n \supseteq E_{n+1} \supseteq \cdots$$

• For an increasing sequence of events, define

$$\lim_{n\to\infty} E_n = \bigcup_{n=1}^{\infty} E_n.$$

• For a decreasing sequence of events, define

$$\lim_{n\to\infty} E_n = \bigcap_{n=1}^{\infty} E_n$$

Theorem 1.8 Continuity of Probability Function

• **Theorem 1.18** For any increasing or decreasing sequence of events, $\{E_n, n \ge 1\}$,

$$\lim_{n\to\infty} P(E_n) = P\left(\lim_{n\to\infty} E_n\right).$$

- Proof of Theorem 1.8.
- For increasing sequence $\{E_n, n \ge 1\}$, define

$$F_1 = E_1$$
, $F_n = E_n - E_{n-1}$, $n = 2, 3, ...$

• Clearly, $\{F_i, i \ge 1\}$ is a mutually exclusive set of events that satisfies the following relations:

$$\bigcup_{i=1}^{n} F_i = \bigcup_{i=1}^{n} E_i = E_n, \qquad n = 1, 2, \dots$$

$$\bigcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} E_i$$

• Hence,

$$P\left(\lim_{n\to\infty} E_n\right) = P\left(\bigcup_{i=1}^{\infty} E_i\right) = P\left(\bigcup_{i=1}^{\infty} F_i\right) = \sum_{i=1}^{\infty} P(F_i) = \lim_{n\to\infty} \sum_{i=1}^{n} P(F_i)$$

$$= \lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} F_i\right) = \lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} E_i\right) = \lim_{n \to \infty} P(E_n)$$

Ì

Figure 1.5 The circular disks are the E_i 's and the shaded circular annuli are the F_i 's, except for F_1 , which equals E_1 .

- Now consider decreasing sequence $\{E_n, n \ge 1\}$.
- Sequence $\{E_n^c, n \ge 1\}$ is an increasing sequence.
- It follows from the previous analysis that

$$P\left(\lim_{n\to\infty} E_n\right) = P\left(\bigcap_{i=1}^{\infty} E_i\right) = 1 - P\left[\left(\bigcap_{i=1}^{\infty} E_i\right)^c\right] = 1 - P\left(\bigcup_{i=1}^{\infty} E_i^c\right)$$

$$= 1 - P\left(\lim_{n\to\infty} E_n^c\right) = 1 - \lim_{n\to\infty} P(E_n^c)$$

$$= 1 - \lim_{n\to\infty} [1 - P(E_n)]$$

$$= 1 - 1 + \lim_{n\to\infty} P(E_n)$$

$$= \lim_{n\to\infty} P(E_n).$$

Example 1.21

- Suppose that some individuals in a population produce offspring of the same kind.
- The offspring of the initial population are called *second* generation
- The offspring of the second generation are called *third generation*, and so on.
- If with probability

$$\exp\left(-\frac{2n^2+7}{6n^2}\right)$$

the entire population completely dies out by the *n*th generation generation before producing any offspring, what is the probability that such a population survives forever?

- Solution.
- Let E_n denote the event of extinction of the entire population by the nth generation; then

$$E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq \cdots$$
.

- If E_n occurs, then E_{n+1} also occurs.
- Hence, by Theorem 1.8,

$$P(\{\text{population survives forever}\})$$

$$= 1 - P(\{\text{population eventually dies out}\})$$

$$= 1 - P\left(\bigcup_{i=1}^{\infty} E_i\right) = 1 - \lim_{n \to \infty} P(E_n)$$

$$= 1 - \lim_{n \to \infty} \exp\left(-\frac{2n^2 + 7}{6n^2}\right)$$

$$= 1 - e^{-1/3}$$

J. IJ / TIV

Section 1.6

Probabilities 0 and 1

1.6 Probabilities 0 and 1

- It is **correct** that
 - $P(\emptyset) = 0;$
 - P(S) = 1.
- However, it is incorrect to say that
 - the empty set is the only event that has probability 0;
 - the sample space is only event that has probability 1.
- There are infinitely many events that
 - have probability 0;
 - have probability 1.

An Example

- Randomly select a point from the interval (0,1).
- Each point in (0,1) has a decimal representation

$$0.529387043219721 \cdots$$

• Let A_n be the event that the selected decimal has 3 as its first n digits; then

$$A_1 \supset A_2 \supset A_3 \supset A_4 \supset \cdots \supset A_n \supset A_{n+1} \supset \cdots$$

$$P(A_n) = (1/10)^n$$

$$P\left(\frac{1}{3} \text{ is selected}\right) = P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} \left(\frac{1}{10}\right)^n = 0.$$

$$P\left((0,1) - \left\{\frac{1}{3}\right\}\right) = 1$$