Домашнее задание № 1.

Тема: Оценивание параметров распределения.

Крайний срок сдачи: 7 марта 2023 г., 18:00.

Домашнее задание состоит из четырёх заданий, которые делятся на теоретическую (T1-T4) и вычислительную части (N1-N4). Максимальный балл за домашнюю работу равен 10. В случае обнаружения фактов списывания, всем участникам инцидента ставится оценка -10 (минус 10).

Решение нужно прислать через бот @aimasters_ bot в виде **одного PDF** файла (в любом другом формате решения проверяться не будут). Этот PDF файл должен содержать

- решения теоретических задач T1-T4 набранные в LaTeX, Word,... или написанные от руки и затем отсканированные;
- программный код для численных заданий N1-N4;
- графики, показывающие, что код работает корректно, и численные результаты работы кода.

1

T1 (1.5 балла) Дана выборка из распределения Лапласа (двойного экспоненциального распределения) с плотностью

$$p(x,\theta) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}, \qquad x \in \mathbb{R}.$$

где $\mu \in \mathbb{R}, \sigma > 0$ - параметры. Найдите оценки параметров μ, σ

- (а) методом максимального правдоподобия¹;
- (b) методом моментов.

 $^{^{1}}$ Обратите внимание, что оценка максимального правдоподобия для μ не определяется однозначно в случае, когда размер выборки является чётным числом.

N1 (1 балл) Зафиксируйте значения μ , σ и просимулируйте M=100 выборок размера n=999 из распределения Лапласа. По каждой выборке оцените параметры μ и σ методом моментов и методом максимума правдоподобия. Постройте диаграммы размаха, показывающие, какой метод лучше.

2

Дана выборка $x_1, ..., x_n$ из показательного (экспоненциального) закона с функцией распределения $F(x) = 1 - e^{-\theta x}, x \ge 0$, где $\theta > 0$ - параметр.

Т2 (1.5 балла) Рассматриваются оценки параметра θ вида

$$\hat{\theta}_C = \frac{C}{x_1 + \dots + x_n},$$

где C>0 может зависеть от n. При каком значении параметра C оценка $\hat{\theta}_C$ является несмещённой? При каком значении параметра C она является состоятельной?

 Π одсказка. Показательное распределение является частным случаем гамма-распределения $\Gamma(k,\theta)$ с плотностью

$$p(x) = \frac{\theta^k}{\Gamma(k)} x^{k-1} e^{-\theta x}, \quad x > 0,$$

где $k, \theta > 0$, $\Gamma(k)$ — гамма функция. Известно, что сумма двух независимых случайных величин с распределениями $\Gamma(k_1, \theta)$ и $\Gamma(k_2, \theta)$ имеет распределение $\Gamma(k_1 + k_2, \theta)$.

N2 (1 балл) Известно, что функция надёжности

$$f(t) = e^{-\theta t}, \qquad t > 0,$$

может быть несмещённо оценена при помощи

$$\hat{f}_n(t) = \left(1 - \frac{t}{x_1 + \dots + x_n}\right)^{n-1} \mathbb{I}\{x_1 + \dots + x_n > t\}.$$

Проверьте это утверждение эмпирически: зафиксируйте θ и смоделируйте выборку размера n=1000 из показательного закона.

Затем для значений t, выбранных по решётке из некоторого интервала, оцените $\hat{f}_n(t)$. Сравните график оценки $\hat{f}_n(t)$ с графиком функции надёжности. Как изменится визуальное впечатление от такого сравнения, если оценить функцию надёжности по нескольким (2-3) выборкам и взять среднее значение полученных оценок в каждой точке?

3

ТЗ (1 балл) Как было доказано на лекции, для любого набора чисел $X_1,..,X_n$ выборочное среднее $M_X=n^{-1}\sum_{i=1}^n X_i$ и выборочная медиана

$$MED_X = \begin{cases} X_{(k)}, & n = 2k + 1, \\ \frac{1}{2}(X_{(k)} + X_{(k+1)}), & n = 2k, \end{cases}$$

отличаются друг от друга не более чем на (выборочное) стандартное отклонение $\sigma_X = \left(n^{-1}\sum_{i=1}^n (X_i-M_X)^2\right)^{1/2}$, то есть

$$|M_X - MED_X| \le \sigma_X.$$

Покажите, что данное неравенство не может быть улучшено в том смысле, что не существует константы $C \in (0,1)$, для которой неравенство

$$\left| M_X - MED_X \right| \le C\sigma_X \tag{1}$$

верно для всех наборов чисел $X_1,..,X_n$.

N3 (1.5 балла) Выборочная медиана является оценкой (теоретической) медианы распределения $x_{1/2}$, которая определяется как решение уравнения F(x) = 1/2, где F- функция распределения. Известно, что эта оценка является асимптотически нормальной (см. Лагутин "Наглядная математическая статистика", глава 7),

$$\sqrt{n} \Big(MED_X - x_{1/2} \Big) \xrightarrow{Law} \mathcal{N} \Big(0, \frac{1}{(2p(x_{1/2}))^2} \Big), \qquad n \to \infty, \qquad (2)$$

при условии, что распределение является абсолютно непрерывным с плотностью p(x) и $p(x_{1/2}) > 0$.

Пусть X имеет показательное распределение со значением параметра $\theta = 5$ (см. задание 2). Перед проведением численного эксперимента, описанного ниже, подсчитайте значение $x_{1/2}$ и значение асимптотической дисперсии $\sigma^2 := (2p(x_{1/2}))^{-2}$.

- (i) Промоделируйте $M{=}100$ выборок размера n=1000 из этого распределения.
- (ii) Для каждой выборки, оцените левую часть (2).
- (iii) Постройте график квантиль-квантиль, сравнивающие эмпирические квантили в левой части (2) с теоретическими квантилями нормального распределения.
- (iv) Повторите шаги (i)-(iii) для n=10000, n=100000. Убедитесь, что с увеличением n распределение приближается к нормальному.
- (v) Оцените дисперсию выборок при каждом n. Постройте на одном графике три диаграммы размаха дисперсий ошибок (для n=1000,10000,100000) и убедитесь, что дисперсии сходятся к асимтотической дисперсии σ^2 .

4

Т4 (1 балл) Обозначим семейство распределений

$$P_{\theta} = \left\{ Law(\xi^2), \qquad \xi \sim \mathcal{N}(0, \theta) \right\}. \tag{3}$$

- (а) Докажите, что данное семейство является экспоненциальным.
- (b) Используя только свойства экспоненциальных семейств:
 - найдите математическое ожидание и дисперсию величины X, имеющей распределение из семейства P_{θ} ;
 - предполагая, что дана выборка $X_1,...,X_n$ из распределения, входящего в семейство P_{θ} , найдите оценку параметра θ методом максимального правдоподобия и методом моментов.

N4 (1.5 балла) Пусть X_0, X_1, X_2, \dots - цены акций в моменты времени $0, 1, 2, \dots$ Рассмотрим квадраты теоретических лог-доходностей

$$Y_k = [\log(X_k/X_{k-1})]^2, \qquad k = 1, 2, \dots$$

Рассмотрите цены акции некоторой компании (например, IBM - data(ibm) в пакете waveslim) и для величин Y_k оцените параметры в предположении, что

- (i) Y_k имеет распределение квадрата нормальной случайной величины со средним 0 неизвестной дисперсией θ , см. (3);
- (ii) Y_k имеет показательное распределение с неизвестным параметром.

Отобразите на одном графике эмпирическую функцию распределения величин Y_k и теоретические функции распределения указанных моделей. Визуально определите, какая из моделей лучше описывает данные.

Подсказка. Обратите внимание, что распределения из семейства (3) являются частными случаями гамма-распределения (см задачу Т2), функция распределения которой доступна в языке R (рgamma).