CS₂

Introduction to **Programming Methods**

Last Time

Concurrency and Parallelism

synchronization of multiple threads

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Today's Lecture

Numerics: when good math goes wrong

Computer programmers are fallible

- losing satellite due to public vs. private var.
 - self.setValue(.) bypassed; worked at the time...
 - but code changed, so value overwrote other data
- losing a Mars orbiter due to conversion
 - we have switched to the metric system, right?

Computers are perfect with numbers...

■ right?

CS2 - INTRODUCTION TO PROGRAMMING METHODS

-

Integer Paradise

Dealing with bounded ints is great

- exact computations easy
 - as long as integers below a prescribed value (often, 32 bits)
 - 2 bits: 0 to 3
 - > 8 bits: 0 to 255
 - > n bits: 0 to 2ⁿ -1
 - signed int

 $-x \equiv \overline{x} + 1$

- most commonly: two's complemen
- > why?

 $v = -d_{31}2^{31} + \sum_{n=0}^{30} d_n 2^n$

» add/sub painless (bit overflow ignored)

	Most significant bit									
	0	1	1	1	1	1	1	1	=	127
	0	1	1	1	1	1	1	0	=	126
	0	0	0	0	0	0	1	0	=	2
	0	0	0	0	0	0	0	1	=	1
	0	0	0	0	0	0	0	0	=	0
ıt	1	1	1	1	1	1	1	1	=	-1
	1	1	1	1	1	1	1	0	=	-2
	1	0	0	0	0	0	0	1	=	-127
	1	0	0	0	0	0	0	0	=	-128

CS2 - INTRODUCTION TO PROGRAMMING METHODS

What About Reals?

Not so simple...

■ what's wrong?? [by the way, newer versions say: 0.1]

Tenths not very easy to represent in binary

So, computations often not perfect

and we can send people to the moon??

CS2 - INTRODUCTION TO PROGRAMMING METHODS

-

Fixed-Point Representation

Approximate positive reals w/ powers of 2

- first, decide how many bits to use
 - 32 bits or 64 bits quite common
- then, decide where to put the "binary point"
 - for instance, point before last bit \rightarrow quantum of 0.5

Signed reals?

$$b_i \ b_{i-1} \ \cdots \ b_2 \ b_1 \ b_0 \ . b_{-1} \ b_{-2} \ b_{-3} \ \cdots \ b_{-j}$$

same two's complement idea

 $\sum_{k=-j}^{l} b_k \cdot 2^k$

• e.g., 32 bits for numbers between -1 and $1-2^{-31}$

$$v = -d_0 2^0 + \sum_{n=1}^{32} d_n 2^{-n}$$

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Adaptive Representation?

Fixed-point is fast and simple

- but limited!
 - fixed accuracy, quite limited range
 - in fact, trade precision for range

Large range and high precision?

- would require lots of bits
- potentially wasteful

CS2 - INTRODUCTION TO PROGRAMMING METHODS

_

Floating-Point Representation

IEEE 754 definition

S

exponent

mantissa

Variants:

- single precision: 8 exp bits, 23 mant. bits
 - ■32 bits total
- double precision: 11 exp bits, 52 mant. bits
 - ■64 bits total
- extended precision: 15 exp bits, 63 mant. bits
 - mostly in Intel-compatible machines; stored in 80 bits
 - ▶1 bit wasted

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Single Precision FP

For 32 bits

exponent

mantissa

- \blacksquare represents a value of $(-1)^s$ $(1.m)_2$ 2^{e-127}
 - $1 \le (1.m)_2 < 2 0 < e < 255$
- example:

0xD1500000

 \bullet value = -1.625 2^{35} = -5.5834e+10

note: hexadecimal notation

xxxx: 0,1,2,...,8,9,A,B,C,D,E,F

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Special Numbers

S	e	m	value			
0	all zeros	all zeros	0			
1	all zeros	all zeros	-0			
0	all ones	all zeros	8			
1	all ones	all zeros				
0 or 1	all ones	non-zero	NaN			
0 or 1	all zeros	non-zero	(-1) ^s (0.m) ₂ 2 ⁻¹²⁶			

Check:

max = 3.402823466e+38

min = 1.401298464e-45

Examples: $0 \times \infty$,

underflow

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Double-Precision FP

Same exact principles

■ represents value of (-1)^s(1.m)₂ 2^{e-1023}

```
max = 1.7976931348623157e+308
min = 5e-324
```


CS2 - INTRODUCTION TO PROGRAMMING METHODS

11

Floating-Point Operations

Conceptually

- ■First, compute exact result
- Make it fit into desired precision
 - ■Possibly overflow if exponent too large
 - lacktriangle Possibly round to fit into mantissa

Example: $(-1)^{s_1} m_1 2^{e_1} \times (-1)^{s_2} m_2 2^{e_2}$

- exact result: $(-1)^s m 2^e$
 - \blacksquare s = s1+s2, m = m1.m2, e = e1+e2
 - $m \ge 2$? shift m right, increment e; e out of range? overflow
 - round *m* to fit mantissa precision

CS2 - INTRODUCTION TO PROGRAMMING METHODS

FP Addition

Operands: $(-1)^{s_1} m_1 2^{e_1}$ and $(-1)^{s_2} m_2 2^{e_2}$

• Assume $e_1 > e_2$

exact result: $(-1)^s m 2^e$

• exponent $e=e_1$; sign s; significand m

■ result of signed align & add

 $(-1)^{s1} m1$ $(-1)^{s2} m2$

Normalization:

• If $m \ge 2$, shift m right, increment e

- if m < 1, shift m left k positions, decrement e by k
- overflow if *e* out of range, round *m* to fit precision

CS2 - INTRODUCTION TO PROGRAMMING METHODS

13

Math vs. Numerics

Properties of Addition

- commutative? YES
- associative? NO
 - lacksquare overflow and rounding
- 0 is additive identity? YES
- always additive inverse ALMOST
 - except for ±infinity & NaNs
- $a \ge b \Rightarrow a+c \ge b+c$? ALMOST
 - except for ±infinity & NaNs

CS2 - INTRODUCTION TO PROGRAMMING METHODS

[Numerics in C]

C provides two levels

- float single precisiondouble double precision
- Casting between int, float, & double
 - double or float to (64 bit) int
 - > truncates fractional part (rounding toward zero)
 - int to double
 - exact conversion
 - int to float
 - depends on rounding mode...

CS2 - INTRODUCTION TO PROGRAMMING METHODS

15

More Numerical Catastrophes...

Understanding FP helps with accuracy...

- \blacksquare p(.) polynomial having x=1, 2,..., 25 as roots
 - unique one of degree 25
- two examples of eval:

 $\begin{array}{l} p(x) = -15511210043330985984000000 + \\ 59190128811701203599360000 x - \\ 100480171548351161548800000 x^2 + \\ 102339530601744675672576000 x^3 - \\ 70874145319837672677196800 x^4 + \\ 35770355645907606826362624 x^5 - \\ 13746468217967926978680000 x^6 + \\ 414445780247115877036800 x^7 - \\ 1001369304512841374110000 x^6 + \\ 19692810045110820242880 x^9 - \\ 31882014375298512782500 x^{10} + 4284218746244111474800 x^{11} - 4805455874273354125 x^{12} + 45145946926994481865 x^{13} - 3557372853474553750 x^{16} + 234961569422786050 x^{15} - \\ 222653937825000 x^{18} + 96822976300 x^{16} + 71747104875 x^{20} + \\ 333685495 x^{21} - 4858750 x^{22} + 50050 x^{23} - 325 x^{24} + x^{25} \end{array}$

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Numerics Can Ruin a Game Too

CS2 - INTRODUCTION TO PROGRAMMING METHODS

1-

How Numerics Can Kill

- problem quickly identified as numeric
 - but this part worked just fine on Ariane 4!
- Error was due to "a data conversion from 64bit floating point to 16-bit signed integer value. The floating point number which was converted had a value greater than what could be represented by a 16-bit signed integer."
 - Ariane 5 was... faster
- \$7.5B in development and launch lost

CS2 - INTRODUCTION TO PROGRAMMING METHODS