blockDAGs

Jörn

August 19, 2021

Contents

1	Dig	raph Utilities	6	
2	DAG			
	2.1	Functions and Definitions	8	
	2.2	Lemmas	9	
		2.2.1 Tips	9	
		2.2.2 Anticone	10	
		2.2.3 Future Nodes	10	
		2.2.4 Past Nodes	10	
			11	
		2.2.6 Reduce Past Reflexiv	13	
		2.2.7 Reachability cases	13	
			15	
3	blockDAGs 19			
	3.1	Functions and Definitions	19	
	3.2	Lemmas	20	
		3.2.1 Genesis	20	
		3.2.2 Tips	20	
	3.3	-	25	
		3.3.1 Reduce Past	26	
		3.3.2 Reduce Past Reflexiv	30	
			32	
4	Spe	ectre 4	10	
	4.1		40	
	4.2		42	
5	GH	OSTDAG	52	
	5.1		52	
	5.2		53	
	٠	5.2.1 Soundness of the $add-set-list$ function		

```
5.2.2
                 Soundness of the add - if - blue function . . . . . .
         5.2.3
                 Soundness of the larger - blue - tuple comparison . .
         5.2.4
                 Soundness of the choose_max_blue_set function . . . . .
                                                                                55
         5.2.5
                 55
                 5.2.6
theory Utils
 imports Main
begin
The following functions transform a list L to a relation containing a tuple
(a,b) iff a=b or a precedes b in the list L
fun list-to-rel:: 'a list \Rightarrow 'a rel
 where list-to-rel [] = \{\}
 | list-to-rel (x\#xs) = \{x\} \times (set (x\#xs)) \cup list-to-rel xs
lemma list-to-rel-in: (a,b) \in (list\text{-to-rel } L) \longrightarrow a \in set \ L \land b \in set \ L
proof(induct L, auto) qed
Show soundness of list-to-rel
lemma list-to-rel-equal:
(a,b) \in list\text{-}to\text{-}rel\ L \longleftrightarrow (\exists\ k::nat.\ hd\ (drop\ k\ L) = a \land b \in set\ (drop\ k\ L))
\mathbf{proof}(safe)
 assume (a, b) \in list\text{-}to\text{-}rel\ L
 then show \exists k. hd (drop \ k \ L) = a \land b \in set (drop \ k \ L)
 \mathbf{proof}(induct\ L)
   case Nil
   then show ?case by auto
 \mathbf{next}
   case (Cons\ a2\ L)
   then consider (a, b) \in \{a2\} \times set (a2 \# L) \mid (a,b) \in list-to-rel L by auto
   then show ?case unfolding list-to-rel.simps(2)
   proof(cases)
    case 1
     then have a = hd (a2 \# L) by auto
     moreover have b \in set (a2 \# L) using 1 by auto
     ultimately show ?thesis using drop0
      by metis
   next
     case 2
     then obtain k where k-in: hd (drop k (L)) = a \land b \in set (drop k (L))
      using Cons(1) by auto
     show ?thesis proof
      let ?k = Suc \ k
      show hd (drop ?k (a2 \# L)) = a \land b \in set (drop ?k (a2 \# L))
        unfolding drop-Suc using k-in by auto
     qed
```

```
qed
   qed
 \mathbf{next}
 \mathbf{fix} \ k
 assume b \in set (drop \ k \ L)
 and a = hd (drop \ k \ L)
 then show (hd (drop \ k \ L), \ b) \in list-to-rel \ L
 \mathbf{proof}(induct\ L\ arbitrary:\ k)
   {\bf case}\ Nil
   then show ?case by auto
 next
   case (Cons\ a\ L)
   consider (zero) k = 0 \mid (more) \ k > 0 by auto
   then show ?case
   proof(cases)
     case zero
   then show ?thesis using Cons drop-0 by auto
 next
   case more
   then obtain k2 where k2-in: k = Suc \ k2
     using gr0-implies-Suc by auto
     show ?thesis using Cons unfolding k2-in drop-Suc list-to-rel.simps(2) by
auto
   qed
 qed
qed
lemma list-to-rel-append:
 assumes a \in set L
 shows (a,b) \in list\text{-}to\text{-}rel\ (L @ [b])
 using assms
proof(induct L, simp, auto) qed
For every distinct L, list-to-rel L return a linear order on set L
lemma list-order-linear:
 assumes distinct L
 shows linear-order-on (set L) (list-to-rel L)
  unfolding linear-order-on-def total-on-def partial-order-on-def preorder-on-def
refl-on-def
 trans\text{-}def\ antisym\text{-}def
\mathbf{proof}(safe)
 \mathbf{fix} \ a \ b
 assume (a, b) \in list\text{-}to\text{-}rel\ L
 then show a \in set L
 proof(induct L, auto) qed
next
 \mathbf{fix} \ a \ b
 assume (a, b) \in list\text{-}to\text{-}rel\ L
 then show b \in set L
```

```
proof(induct L, auto) qed
\mathbf{next}
      \mathbf{fix} \ x
      assume x \in set L
     then show (x, x) \in list\text{-}to\text{-}rel\ L
      proof(induct L, auto) qed
\mathbf{next}
      \mathbf{fix} \ x \ y \ z
      assume as1: (x,y) \in list\text{-}to\text{-}rel\ L
     \mathbf{and} \ \ \mathit{as2} \colon (y,\,z) \in \mathit{list-to-rel}\ L
      then show (x, z) \in list\text{-}to\text{-}rel\ L
           using assms
      proof(induct L)
           {\bf case}\ {\it Nil}
           then show ?case by auto
      next
           case (Cons\ a\ L)
          then consider (nor) (x, y) \in \{a\} \times set (a \# L) \land (y, z) \in \{a\} \times set (a \# L)
                  |(xy)(x,y) \in list\text{-}to\text{-}rel\ L \land (y,z) \in \{a\} \times set\ (a \# L)
                   |(yz)(y,z) \in list\text{-}to\text{-}rel\ L \land (x,y) \in \{a\} \times set\ (a \# L)
                  |(both)(y,z) \in list\text{-}to\text{-}rel\ L \land (x,y) \in list\text{-}to\text{-}rel\ L\ \mathbf{by}\ auto
           then show ?case proof(cases)
           case nor
                  then show ?thesis by auto
           next
                 case xy
                  then have y \in set L using list-to-rel-in by metis
                 also have y = a using xy by auto
                  ultimately have \neg distinct (a \# L)
                       by simp
           then show ?thesis using Cons by auto
           next
           case yz
           then show ?thesis using list-to-rel.simps(2)
                 by (metis Cons.prems(2) SigmaD1 SigmaI UnI1 list-to-rel-in)
                 case both
                 then show ?thesis unfolding list-to-rel.simps(2) using Cons by auto
           qed
      qed
\mathbf{next}
      \mathbf{fix} \ x \ y
      assume (x, y) \in list\text{-}to\text{-}rel\ L
      and (y, x) \in list\text{-}to\text{-}rel\ L
      then show x = y
           using assms
      proof(induct\ L,\ simp)
           case (Cons\ a\ L)
                 then consider (nor) (x, y) \in \{a\} \times set (a \# L) \land (y, x) \in \{a\} \times set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land set (a \# L) \land (y, x) \in \{a\} \land (y
```

```
L)
      |(xy)(x,y) \in list\text{-}to\text{-}rel\ L \land (y,x) \in \{a\} \times set\ (a \# L)
      |(yz)(y,x) \in list\text{-to-rel } L \wedge (x, y) \in \{a\} \times set (a \# L)
      |(both)(y,x)| \in list\text{-}to\text{-}rel\ L \land (x,y) \in list\text{-}to\text{-}rel\ L\ \mathbf{by}\ auto
      then show ?case unfolding list-to-rel.simps
     proof(cases)
     case nor
      then show ?thesis by auto
     next
     case xy
     then show ?thesis
      by (metis Cons.prems(3) SigmaD1 distinct.simps(2) list-to-rel-in singletonD)
     next
       case yz
       then show ?thesis
       by (metis Cons.prems(3) SigmaD1 distinct.simps(2) list-to-rel-in singletonD)
      next
       case both
      then show ?thesis using Cons by auto
     qed
   qed
  next
   \mathbf{fix} \ x \ y
   assume x \in set L
   and y \in set L
   and x \neq y
   and (y, x) \notin list\text{-}to\text{-}rel\ L
   then show (x, y) \in \mathit{list-to-rel}\ L
   proof(induct L, auto) qed
  qed
{f lemma}\ list\mbox{-}to\mbox{-}rel\mbox{-}mono:
  assumes (a,b) \in list\text{-}to\text{-}rel\ (L)
 shows (a,b) \in list\text{-}to\text{-}rel (L @ L2)
  using assms
proof(induct L2 arbitrary: L, simp)
  case (Cons a L2)
  then show ?case
  proof(induct L, auto)
 qed
qed
lemma list-to-rel-mono2:
  assumes (a,b) \in list\text{-}to\text{-}rel\ (L2)
 shows (a,b) \in list\text{-}to\text{-}rel (L @ L2)
 using assms
```

```
proof(induct L2 arbitrary: L, simp)
 case (Cons a L2)
 then show ?case
 proof(induct L, auto)
 qed
qed
lemma map-snd-map: \bigwedge L. (map snd (map (\lambda i. (P i , i)) L)) = L
proof -
 \mathbf{fix}\ L
 show map snd (map (\lambda i. (P i, i)) L) = L
 proof(induct L)
   case Nil
   then show ?case by auto
 next
   case (Cons a L)
   then show ?case by auto
 qed
\mathbf{qed}
end
theory Digraph Utils
 imports Main Graph-Theory. Graph-Theory
begin
1
     Digraph Utilities
lemma graph-equality:
 assumes digraph \ G \wedge digraph \ C
 assumes verts G = verts \ C \land arcs \ G = arcs \ C \land head \ G = head \ C \land tail \ G =
tail C
 shows G = C
 by (simp \ add: \ assms(2))
lemma (in digraph) del-vert-not-in-graph:
 assumes b \notin verts G
 shows (pre-digraph.del-vert G b) = G
     proof -
      have v: verts (pre\text{-}digraph.del\text{-}vert\ G\ b) = verts\ G
        using assms(1)
        by (simp add: pre-digraph.verts-del-vert)
      have \forall e \in arcs \ G. \ tail \ G \ e \neq b \land head \ G \ e \neq b  using digraph-axioms
       assms\ digraph.axioms(2)\ loopfree-digraph.axioms(1)
```

```
by auto
       then have arcs G \subseteq arcs (pre-digraph.del-vert G b)
         using assms
         by (simp add: pre-digraph.arcs-del-vert subsetI)
       then have e: arcs \ G = arcs \ (pre-digraph.del-vert \ G \ b)
       by (simp add: pre-digraph.arcs-del-vert subset-antisym)
       then show ?thesis using v by (simp add: pre-digraph.del-vert-simps)
     qed
\mathbf{lemma}\ \mathit{del-arc-subgraph} :
 assumes subgraph H G
 assumes digraph \ G \wedge digraph \ H
 shows subgraph (pre-digraph.del-arc H e2) (pre-digraph.del-arc G e2)
 using subgraph-def pre-digraph.del-arc-simps Diff-iff
proof -
 have f1: \forall p \ pa. \ subgraph \ p \ pa = ((verts \ p::'a \ set) \subseteq verts \ pa \land (arcs \ p::'b \ set) \subseteq
arcs pa ∧
  wf-digraph pa \wedge wf-digraph p \wedge compatible pa p)
 using subgraph-def by blast
 have arcs\ H - \{e2\} \subseteq arcs\ G - \{e2\}\ using\ assms(1)
   by auto
 then show ?thesis
   \mathbf{unfolding} \ \mathit{subgraph-def}
     using f1 assms(1) by (simp add: compatible-def pre-digraph.del-arc-simps
wf-digraph.wf-digraph-del-arc)
qed
lemma graph-nat-induct[consumes 0, case-names base step]:
 assumes
cases: \bigwedge V. (digraph V \Longrightarrow card (verts V) = 0 \Longrightarrow P(V)
 \bigwedge W \ c. \ (\bigwedge V. \ (digraph \ V \Longrightarrow card \ (verts \ V) = c \Longrightarrow P \ V))
  \implies (digraph \ W \implies card \ (verts \ W) = (Suc \ c) \implies P \ W)
shows \bigwedge Z. digraph Z \Longrightarrow P Z
proof -
 fix Z:: ('a,'b) pre-digraph
 assume major: digraph Z
 then show P Z
 proof (induction card (verts Z) arbitrary: Z)
   case \theta
   then show ?case
     by (simp add: local.cases(1) major)
   case su: (Suc x)
   assume (\bigwedge Z. \ x = card \ (verts \ Z) \Longrightarrow digraph \ Z \Longrightarrow P \ Z)
   show ?case
     by (metis\ local.cases(2)\ su.hyps(1)\ su.hyps(2)\ su.prems)
 qed
qed
```

```
theory DAGs imports Main Graph-Theory.Graph-Theory begin
```

2 DAG

```
\begin{array}{l} \textbf{locale} \ \mathit{DAG} = \mathit{digraph} + \\ \textbf{assumes} \ \mathit{cycle-free} \colon \neg(v \to^+_G v) \end{array}
```

sublocale $DAG \subseteq wf$ -digraph **using** DAG-def digraph-def nomulti-digraph-def DAG-axioms **by** auto

2.1 Functions and Definitions

```
fun direct-past:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where direct-past G a = \{b \in verts \ G. \ (a,b) \in arcs-ends \ G\}
fun future-nodes:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where future-nodes G a = \{b \in verts \ G. \ b \rightarrow^+_G a\}
fun past-nodes:: ('a,'b) pre-digraph \Rightarrow 'a set
  where past-nodes G a = \{b \in verts G. a \rightarrow^+_G b\}
fun past-nodes-refl :: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where past-nodes-refl G a = \{b \in verts \ G. \ a \rightarrow^*_G b\}
fun anticone:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where anticone G a = \{b \in verts \ G. \ \neg(a \rightarrow^+_G b \lor b \rightarrow^+_G a \lor a = b)\}
\textbf{fun} \ \textit{reduce-past}{::} \ ('a,'b) \ \textit{pre-digraph} \ \Rightarrow \ 'a \ \Rightarrow \ ('a,'b) \ \textit{pre-digraph}
  where
  reduce-past G a = induce-subgraph G (past-nodes G a)
fun reduce-past-refl:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow ('a,'b) pre-digraph
  reduce-past-refl G a = induce-subgraph G (past-nodes-refl G a)
fun is-tip:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow bool
  where is-tip G a = ((a \in verts G) \land (\forall x \in verts G. \neg x \rightarrow^+ G a))
definition tips:: ('a,'b) pre-digraph \Rightarrow 'a set
  where tips G = \{v \in verts G. is-tip G v\}
fun kCluster:: ('a,'b) pre-digraph \Rightarrow nat \Rightarrow 'a set \Rightarrow bool
```

where $kCluster\ G\ k\ C = (if\ (C \subseteq (verts\ G))$

2.2 Lemmas

assumes $x \in tips G$

```
lemma (in DAG) unidirectional:
u \to^+_G v \longrightarrow \neg (v \to^*_G u)
  using cycle-free reachable1-reachable-trans by auto
2.2.1 Tips
lemma (in wf-digraph) tips-not-referenced:
  assumes is-tip G t
  shows \forall x. \neg x \rightarrow^+ t
  using is-tip.simps assms reachable1-in-verts(1)
  by metis
lemma (in DAG) del-tips-dag:
assumes is-tip G t
shows DAG (del-vert t)
  unfolding DAG-def DAG-axioms-def
proof safe
  show digraph (del-vert t) using del-vert-simps DAG-axioms
      digraph-def
    using digraph-subgraph subgraph-del-vert
    by auto
\mathbf{next}
    \mathbf{fix} \ v
   assume v \rightarrow^+ del\text{-}vert\ t\ v then have v \rightarrow^+ v using subgraph\text{-}del\text{-}vert
      by (meson arcs-ends-mono trancl-mono)
    then show False
      by (simp add: cycle-free)
  \mathbf{qed}
lemma (in digraph) tips-finite:
  shows finite (tips G)
 \textbf{using } \textit{tips-def fin-digraph. finite-verts } \textit{digraph. axioms} (1) \textit{ digraph-axioms } \textit{Collect-mono}
is\mbox{-}tip.simps
  by (simp add: tips-def)
lemma (in digraph) tips-in-verts:
  shows tips G \subseteq verts G unfolding tips-def
  using Collect-subset by auto
lemma tips-tips:
```

shows is-tip G x using tips-def CollectD assms(1) by metis

2.2.2 Anticone

```
lemma (in DAG) tips-anticone:
 assumes a \in tips G
 and b \in tips G
 and a \neq b
 shows a \in anticone \ G \ b
proof(rule ccontr)
 assume a \notin anticone G b
 then have k: (a \rightarrow^+ b \lor b \rightarrow^+ a \lor a = b) using anticone.simps assms tips-def
   by fastforce
  then have \neg (\forall x \in verts \ G. \ x \rightarrow^+ a) \lor \neg (\forall x \in verts \ G. \ x \rightarrow^+ b) using
reachable 1-in-verts
     assms(3) cycle-free
   by (metis)
 then have \neg is-tip G a \vee \neg is-tip G b using assms(3) is-tip.simps k
   by (metis)
 then have \neg a \in tips \ G \lor \neg b \in tips \ G \ using \ tips-def \ CollectD \ by \ metis
 then show False using assms by auto
qed
lemma (in DAG) anticone-in-verts:
 shows anticone G a \subseteq verts G using anticone.simps by auto
lemma (in DAG) anticon-finite:
  shows finite (anticone G a) using anticone-in-verts by auto
lemma (in DAG) anticon-not-refl:
  shows a \notin (anticone \ G \ a) by auto
2.2.3 Future Nodes
lemma (in DAG) future-nodes-not-refl:
 assumes a \in verts G
 shows a \notin future-nodes G a
 using cycle-free future-nodes.simps reachable-def by auto
2.2.4 Past Nodes
lemma (in DAG) past-nodes-not-refl:
 assumes a \in verts G
 shows a \notin past-nodes G a
 using cycle-free past-nodes.simps reachable-def by auto
lemma (in DAG) past-nodes-verts:
 shows past-nodes G a \subseteq verts G
 using past-nodes.simps reachable1-in-verts by auto
lemma (in DAG) past-nodes-refl-ex:
 assumes a \in verts G
```

```
shows a \in past-nodes-refl G a
 using past-nodes-refl.simps reachable-refl assms
 by simp
lemma (in DAG) past-nodes-refl-verts:
 shows past-nodes-refl G a \subseteq verts G
 using past-nodes.simps reachable-in-verts by auto
lemma (in DAG) finite-past: finite (past-nodes G a)
 by (metis finite-verts rev-finite-subset past-nodes-verts)
lemma (in DAG) future-nodes-verts:
 shows future-nodes G a \subseteq verts G
 using future-nodes.simps reachable1-in-verts by auto
lemma (in DAG) finite-future: finite (future-nodes G a)
 by (metis finite-verts rev-finite-subset future-nodes-verts)
lemma (in DAG) past-future-dis[simp]: past-nodes G a \cap future-nodes G a = \{\}
proof (rule ccontr)
 assume \neg past-nodes G a \cap future-nodes G a = \{\}
 then show False
    using past-nodes.simps future-nodes.simps unidirectional reachable1-reachable
by auto
qed
        Reduce Past
2.2.5
lemma (in DAG) reduce-past-arcs:
 shows arcs (reduce\text{-}past\ G\ a) \subseteq arcs\ G
 using induce-subgraph-arcs past-nodes.simps by auto
lemma (in DAG) reduce-past-arcs2:
 e \in arcs \ (reduce-past \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in DAG) reduce-past-induced-subgraph:
 shows induced-subgraph (reduce-past G a) G
 using induced-induce past-nodes-verts by auto
lemma (in DAG) reduce-past-path:
 assumes u \to^+_{reduce\text{-}past\ G\ a} v
 shows u \to^+_G v
 using assms
proof induct
 case base then show ?case
   using dominates-induce-subgraphD r-into-trancl' reduce-past.simps
   bv metis
next case (step \ u \ v) show ?case
```

using dominates-induce-subgraphD reachable1-reachable-trans reachable-adjI reduce-past.simps step.hyps(2) step.hyps(3) by metis

```
qed
```

```
lemma (in DAG) reduce-past-path2:
 assumes u \to^+_G v
 and u \in past\text{-}nodes \ G \ a
 and v \in past-nodes G a
 shows u \to^+ reduce\text{-past } G \ a^{-v}
 using assms
\mathbf{proof}(induct\ u\ v)
 case (r\text{-}into\text{-}trancl\ u\ v\ )
 then obtain e where e-in: arc e(u,v) using arc-def DAG-axioms wf-digraph-def
  then have e-in2: e \in arcs (reduce-past G a) unfolding reduce-past.simps in-
duce-subgraph-arcs
   using arcE\ r-into-trancl.prems(1)\ r-into-trancl.prems(2) by blast
 then have arc-to-ends (reduce-past G a) e = (u,v) unfolding reduce-past.simps
  arcE\ arc-to-ends-def induce-subgraph-head induce-subgraph-tail
   by metis
 then have u \rightarrow_{reduce-past~G~a} v using e-in2 wf-digraph.dominatesI DAG-axioms
   by (metis reduce-past.simps wellformed-induce-subgraph)
 then show ?case by auto
next
  case (trancl-into-trancl a2 b c)
  then have b-in: b \in past-nodes G a unfolding past-nodes.simps
   by (metis (mono-tags, lifting) adj-in-verts(1) mem-Collect-eq
       reachable 1\hbox{-}reachable \ reachable 1\hbox{-}reachable -trans)
  then have a2-re-b: a2 \rightarrow^+_{reduce-past\ G\ a} b using trancl-into-trancl by auto
  then obtain e where e-in: arc \ e \ (b,c) using trancl-into-trancl
     arc-def DAG-axioms wf-digraph-def by auto
  then have e-in2: e \in arcs (reduce-past G a) unfolding reduce-past.simps in-
duce-subgraph-arcs
   using arcE trancl-into-trancl
   b-in by blast
 then have arc-to-ends (reduce-past G a) e = (b,c) unfolding reduce-past.simps
using e-in
  arcE arc-to-ends-def induce-subgraph-head induce-subgraph-tail
   by metis
 then have b \rightarrow_{reduce-past\ G\ a} c using e-in2 wf-digraph.dominatesI DAG-axioms
   \mathbf{by}\ (\textit{metis reduce-past}. \textit{simps wellformed-induce-subgraph})
  then show ?case using a2-re-b
   by (metis trancl.trancl-into-trancl)
qed
```

```
lemma (in DAG) reduce-past-pathr:
 assumes u \to^* reduce\text{-}past\ G\ a\ ^v
 shows u \to^*_G v
 by (meson assms induced-subgraph-altdef reachable-mono reduce-past-induced-subgraph)
2.2.6 Reduce Past Reflexiv
lemma (in DAG) reduce-past-refl-induced-subgraph:
 shows induced-subgraph (reduce-past-refl G a) G
 using induced-induce past-nodes-refl-verts by auto
lemma (in DAG) reduce-past-refl-arcs2:
  e \in arcs (reduce-past-refl \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in DAG) reduce-past-refl-digraph:
 assumes a \in verts G
 shows digraph (reduce-past-refl G a)
 using digraphI-induced reduce-past-refl-induced-subgraph reachable-mono by simp
2.2.7 Reachability cases
lemma (in DAG) reachable 1-cases:
 obtains (nR) \neg a \rightarrow^+ b \land \neg b \rightarrow^+ a \land a \neq b
  \mid (one) \ a \rightarrow^+ b
  | (two) b \rightarrow^+ a
 |(eq)|a = b
 using reachable-neq-reachable1 DAG-axioms
 by metis
lemma (in DAG) verts-comp:
 assumes x \in tips G
 shows verts G = \{x\} \cup (anticone \ G \ x) \cup (verts \ (reduce-past \ G \ x))
 show verts G \subseteq \{x\} \cup anticone G \times x \cup verts (reduce-past G \times x)
 proof(rule subsetI)
   \mathbf{fix} \ xa
   assume in-V: xa \in verts G
   then show xa \in \{x\} \cup anticone \ G \ x \cup verts \ (reduce-past \ G \ x)
   proof( cases x xa rule: reachable1-cases)
     case nR
     then show ?thesis using anticone.simps in-V by auto
     next
       case one
    then show ?thesis using reduce-past.simps induce-subgraph-verts past-nodes.simps
in-V
        by auto
     next
```

case two

```
have is-tip G x using tips-tips assms(1) by simp
      then have False using tips-not-referenced two by auto
      then show ?thesis by simp
     next
      case eq
      then show ?thesis by auto
     qed
   qed
 next
    show \{x\} \cup anticone \ G \ x \cup verts \ (reduce-past \ G \ x) \subseteq verts \ G \ using \ di-
graph.tips-in-verts
  digraph-axioms anticone-in-verts reduce-past-induced-subgraph induced-subgraph-def
   subgraph-def assms by auto
 qed
lemma (in DAG) verts-comp2:
 assumes x \in tips G
 and a \in verts G
 obtains a = x
 \mid a \in anticone \ G \ x
 \mid a \in past-nodes \ G \ x
 using assms
proof(cases a x rule:reachable1-cases)
 case one
 then show ?thesis
   by (metis assms(1) tips-not-referenced tips-tips)
next
case two
 then show ?thesis using past-nodes.simps wf-digraph.reachable1-in-verts(2) wf-digraph-axioms
   mem-Collect-eq that(3)
   by (metis (no-types, lifting))
next
 case nR
 then show ?thesis using that(2) anticone.simps assms by auto
qed
lemma (in DAG) verts-comp-dis:
 shows \{x\} \cap (anticone\ G\ x) = \{\}
 and \{x\} \cap (verts \ (reduce\text{-past} \ G \ x)) = \{\}
 and anticone G x \cap (verts \ (reduce\text{-past} \ G \ x)) = \{\}
proof(simp-all, simp add: cycle-free, safe) qed
lemma (in DAG) verts-size-comp:
 assumes x \in tips G
 shows card (verts G) = 1 + card (anticone G x) + card (verts (reduce-past G))
x))
proof -
```

```
have f1: finite (verts G) using finite-verts by simp
 have f2: finite \{x\} by auto
 have f3: finite (anticone G x) using anticone.simps by auto
 have f_4: finite (verts (reduce-past G(x)) by auto
  have c1: card \{x\} + card (anticone G(x)) = card (\{x\}) (anticone G(x)) using
card-Un-disjoint
  verts-comp-dis by auto
 have (\{x\} \cup (anticone\ G\ x)) \cap verts\ (reduce-past\ G\ x) = \{\}\ using\ verts-comp-dis
by auto
 then have card (\{x\} \cup (anticone \ G \ x) \cup verts (reduce-past \ G \ x))
     = card \ \{x\} + card \ (anticone \ G \ x) + card \ (verts \ (reduce-past \ G \ x))
       using card-Un-disjoint
   by (metis c1 f2 f3 f4 finite-UnI)
 moreover have card (verts G) = card (\{x\} \cup (anticone Gx) \cup verts (reduce-past
G(x)
   using assms verts-comp by auto
 moreover have card \{x\} = 1 by simp
 ultimately show ?thesis using assms verts-comp
   by presburger
qed
end
theory TopSort
 imports DAGs Utils
begin
Function to sort a list L under a graph G such if a references b, b precedes
a in the list
fun top-insert:: ('a::linorder,'b) pre-digraph \Rightarrow'a list \Rightarrow 'a \Rightarrow 'a list
 where top-insert G [] a = [a]
  | top-insert G (b # L) a = (if (b \rightarrow ^+ _G a) then (a # (b # L)) else (b #
top-insert G(L(a))
fun top-sort:: ('a::linorder,'b) pre-digraph \Rightarrow 'a list \Rightarrow 'a list
 where top-sort G = [
 \mid top\text{-}sort \ G \ (a \# L) = top\text{-}insert \ G \ (top\text{-}sort \ G \ L) \ a
2.2.8
        Soundness of the topological sort algorithm
lemma top-insert-set: set (top-insert G L a) = set L \cup \{a\}
proof(induct L, simp-all, auto) qed
lemma top-sort-con: set (top\text{-sort } G L) = set L
proof(induct L)
case Nil
then show ?case by auto
next
 case (Cons\ a\ L)
 then show ?case using top-sort.simps(2) top-insert-set insert-is-Un list.simps(15)
```

```
sup\text{-}commute
   by (metis)
qed
lemma top-insert-len: length (top-insert G L a) = Suc (length L)
proof(induct L)
{\bf case}\ Nil
then show ?case by auto
\mathbf{next}
 case (Cons\ a\ L)
 then show ?case using top-insert.simps(2) by auto
qed
lemma top-sort-len: length (top-sort G L) = length L
proof(induct L, simp)
 case (Cons a L)
 then have length (a\#L) = Suc (length L) by auto
 then show ?case using
     top-insert-len top-sort.simps(2) Cons
   by (simp add: top-insert-len)
qed
lemma top-insert-mono:
assumes (y, x) \in list\text{-}to\text{-}rel\ ls
shows (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}insert \ G \ ls \ l)
 using assms
proof(induct ls, simp)
 case (Cons a ls)
 consider (rec) a \rightarrow^+_G l \mid (nrec) \neg a \rightarrow^+_G l by auto
 then show ?case
 proof(cases)
   case rec
   then have sinse: (top\text{-insert }G\ (a \# ls)\ l) = l \# a \# ls
     unfolding top-insert.simps by simp
   show ?thesis unfolding sinse list-to-rel.simps using Cons
     by auto
 next
   case nrec
   then have sinse: (top\text{-insert }G\ (a\ \#\ ls)\ l)=a\ \#\ top\text{-insert }G\ ls\ l
     unfolding top-insert.simps by simp
   consider (ya) y = a \mid (yan) (y, x) \in list\text{-to-rel } ls  using Cons by auto
   then show ?thesis proof(cases)
     case ya
     then show ?thesis unfolding sinse list-to-rel.simps
     by (metis Cons.prems SigmaI UnI1 top-insert-set insertCI list-to-rel-in sinse)
   next
     case yan
```

```
then show ?thesis using Cons unfolding sinse list-to-rel.simps by auto
   qed
 qed
qed
lemma top-sort-mono:
 assumes (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ ls)
 shows (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ (l \# ls))
 using assms
 by (simp add: top-insert-mono)
fun (in DAG) top-sorted :: 'a list \Rightarrow bool where
top\text{-}sorted [] = True |
top\text{-}sorted\ (x \# ys) = ((\forall y \in set\ ys.\ \neg\ x \to^+_G y) \land top\text{-}sorted\ ys)
lemma (in DAG) top-sorted-sub:
 assumes S = drop \ k \ L
 and top-sorted L
shows top-sorted S
 using assms
\mathbf{proof}(induct\ k\ arbitrary:\ L\ S)
 case \theta
 then show ?case by auto
\mathbf{next}
 case (Suc\ k)
 then show ?case unfolding drop-Suc using top-sorted.simps
   by (metis Suc.prems(1) drop-Nil list.sel(3) top-sorted.elims(2))
qed
lemma top-insert-part-ord:
 assumes DAG G
 and DAG.top-sorted GL
 shows DAG.top-sorted G (top-insert G L a)
 using assms
proof(induct L)
 case Nil
 then show ?case
   by (simp add: DAG.top-sorted.simps)
\mathbf{next}
 case (Cons b list)
 consider (re) b \rightarrow^+_G a \mid (nre) \neg b \rightarrow^+_G a by auto
 then show ?case proof(cases)
   case re
   have (\forall y \in set \ (b \# list). \neg a \rightarrow^+ G \ y)
   proof(rule ccontr)
     assume \neg (\forall y \in set (b \# list). \neg a \rightarrow^+_G y)
```

```
then obtain wit where wit-in: wit \in set (b \# list) \land a \rightarrow^+_G wit by auto
     then have b \to^+ G wit using re
      by auto
     then have \neg DAG.top\text{-}sorted\ G\ (b \# list)
      using wit-in using DAG.top-sorted.simps(2) Cons(2)
      by (metis DAG.cycle-free set-ConsD)
     then show False using Cons by auto
   then show ?thesis using assms(1) DAG.top-sorted.simps Cons
     by (simp add: DAG.top-sorted.simps(2) re)
 next
   have DAG.top-sorted G list using Cons(2,3)
     by (metis\ DAG.top\text{-}sorted.simps(2))
   then have DAG.top-sorted G (top-insert G list a)
     using Cons(1,2) by auto
  moreover have (\forall y \in set \ (top\text{-}insert \ G \ list \ a). \ \neg \ b \rightarrow^+_{\ G} y \ ) using top-insert-set
   Cons\ DAG.top\text{-}sorted.simps(2)\ nre
     by (metis Un-iff empty-iff empty-set list.simps(15) set-ConsD)
   ultimately show ?thesis using Cons(2)
     by (simp\ add:\ DAG.top\text{-}sorted.simps(2)\ nre)
 qed
qed
lemma top-sort-sorted:
 assumes DAGG
 shows DAG.top-sorted G (top-sort G L)
 using assms
proof(induct L)
 case Nil
 then show ?case
   by (simp\ add:\ DAG.top\text{-}sorted.simps(1))
 case (Cons\ a\ L)
 then show ?case unfolding top-sort.simps using top-insert-part-ord by auto
qed
lemma top-sorted-rel:
 assumes DAG G
 and y \to^+_G x
 and x \in set L
 and y \in set L
 and DAG.top-sorted G L
shows (x,y) \in list\text{-}to\text{-}rel\ L
 using assms
proof(induct\ L,\ simp)
 have une: x \neq y using assms
   by (metis DAG.cycle-free)
```

```
case (Cons\ a\ L)
       then consider x = a \land y \in set (a \# L) \mid y = a \land x \in set L \mid x \in set L \land y \in 
set\ L
            using une by auto
      then show ?case proof(cases)
      case 1
            then show ?thesis unfolding list-to-rel.simps by auto
       next
            case 2
            then have \neg DAG.top\text{-}sorted\ G\ (a\ \#\ L)
                  using assms\ DAG.top\text{-}sorted.simps(2)
                   by fastforce
            then show ?thesis using Cons by auto
     next
           case 3
   then show ?thesis unfolding list-to-rel.simps using Cons DAG.top-sorted.simps(2)
            by metis
     qed
qed
lemma top-sort-rel:
      assumes DAG G
     and y \to^+_G x
     and x \in set L
      and y \in set L
shows (x,y) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ L)
      using assms top-sort-sorted top-sorted-rel top-sort-con
     by metis
end
theory blockDAG
     imports DAGs DigraphUtils
begin
3
                   blockDAGs
locale blockDAG = DAG +
     assumes genesis: \exists p \in verts \ G. \ \forall r. \ r \in verts \ G \ \longrightarrow (r \rightarrow^+_G p \lor r = p)
     and only-new: \forall e. (u \rightarrow^+_{(del-arc\ e)} v) \longrightarrow \neg arc\ e\ (u,v)
3.1 Functions and Definitions
fun (in blockDAG) is-genesis-node :: 'a \Rightarrow bool where
\textit{is-genesis-node } v = ((v \in \textit{verts } G) \, \land \, (\textit{ALL } x. \, (x \in \textit{verts } G) \, \longrightarrow \, x \to^*_G v))
```

definition (in blockDAG) genesis-node:: 'a

```
where genesis-node = (THE \ x. \ is-genesis-node \ x)
```

3.2 Lemmas

```
lemma subs:
 assumes blockDAG G
 shows DAG G \wedge digraph G \wedge fin-digraph G \wedge wf-digraph G
  using assms blockDAG-def DAG-def digraph-def fin-digraph-def by blast
3.2.1 Genesis
lemma (in blockDAG) genesisAlt :
 (\textit{is-genesis-node } a) \longleftrightarrow ((a \in \textit{verts } G) \land (\forall \textit{r.} (r \in \textit{verts } G) \longrightarrow r \rightarrow^* a))
 by simp
lemma (in blockDAG) genesis-existAlt:
  \exists a. is-genesis-node a
  using genesis genesisAlt
  by (metis reachable1-reachable reachable-refl)
lemma (in blockDAG) unique-genesis: is-genesis-node a \wedge is-genesis-node b \longrightarrow a
= b
      using genesisAlt reachable-trans cycle-free
            reachable-reft reachable-reachable1-trans reachable-neq-reachable1
      by (metis (full-types))
lemma (in blockDAG) genesis-unique-exists:
  \exists !a. is-genesis-node a
  using genesis-existAlt unique-genesis by auto
lemma (in blockDAG) genesis-in-verts:
  genesis-node \in verts G
  using is-genesis-node.simps genesis-node-def genesis-existAlt the II2 genesis-unique-exists
   by metis
3.2.2 Tips
lemma (in blockDAG) tips-exist:
\exists x. is-tip G x
  \mathbf{unfolding}\ is\text{-}tip.simps
proof (rule ccontr)
  assume \nexists x. \ x \in verts \ G \land (\forall xa \in verts \ G. \ (xa, x) \notin (arcs\text{-}ends \ G)^+)
  then have contr: \forall x. \ x \in verts \ G \longrightarrow (\exists y. \ y \rightarrow^+ x)
  have \forall x y. y \rightarrow^+ x \longrightarrow \{z. x \rightarrow^+ z\} \subseteq \{z. y \rightarrow^+ z\}
   using Collect-mono trancl-trans
   by metis
```

then have $sub: \forall x y. y \rightarrow^+ x \longrightarrow \{z. x \rightarrow^+ z\} \subset \{z. y \rightarrow^+ z\}$

using cycle-free by auto

have part: $\forall x. \{z. x \rightarrow^+ z\} \subseteq verts G$

```
using reachable1-in-verts by auto
  then have fin: \forall x. finite \{z. x \rightarrow^+ z\}
   \mathbf{using}\ \mathit{finite-verts}\ \mathit{finite-subset}
   by metis
  then have trans: \forall x y. y \rightarrow^+ x \longrightarrow card \{z. x \rightarrow^+ z\} < card \{z. y \rightarrow^+ z\}
   using sub psubset-card-mono by metis
  then have inf: \forall y \in verts \ G. \ \exists x. \ card \ \{z. \ x \to^+ z\} > card \ \{z. \ y \to^+ z\}
  using fin contr genesis
     reachable 1-in-verts(1)
  by (metis (mono-tags, lifting))
  have all: \forall k. \exists x \in verts \ G. \ card \ \{z. \ x \to^+ z\} > k
  proof
   \mathbf{fix} \ k
   show \exists x \in verts \ G. \ k < card \ \{z. \ x \rightarrow^+ z\}
   proof(induct \ k)
     case \theta
     then show ?case
       using inf neq\theta-conv
       by (metis contr genesis-in-verts local.trans reachable1-in-verts(1))
     case (Suc\ k)
     then show ?case
       using Suc-lessI inf
       by (metis contr local.trans reachable1-in-verts(1))
   qed
  qed
  then have less: \exists x \in verts \ G. card (verts G) < card \{z. \ x \rightarrow^+ z\} by simp
  have \forall x. \ card \ \{z. \ x \rightarrow^+ z\} \leq card \ (verts \ G)
   using fin part finite-verts not-le
   by (simp add: card-mono)
  then show False
   using less not-le by auto
lemma (in blockDAG) tips-not-empty:
 shows tips G \neq \{\}
proof(rule ccontr)
  assume as1: \neg tips G \neq \{\}
  obtain t where t-in: is-tip G t using tips-exist by auto
  then have t-inV: t \in verts G by auto
  then have t \in tips \ G using tips-def CollectI t-in by metis
  then show False using as1 by auto
qed
lemma (in blockDAG) tips-unequal-gen:
  assumes card(verts G) > 1
  and is-tip G p
 shows \neg is-genesis-node p
```

```
proof (rule ccontr)
 assume as: \neg \neg is-genesis-node p
 have b1: 1 < card (verts G) using assms by linarith
 then have 0 < card ((verts \ G) - \{p\}) using card-Suc-Diff1 as finite-verts b1
by auto
 then have ((verts\ G) - \{p\}) \neq \{\} using card-gt-0-iff by blast
 then obtain y where y-def:y \in (verts \ G) - \{p\} by auto
 then have uneq: y \neq p by auto
 then have reachable 1 G y p using is-genesis-node.simps as
     reachable-neq-reachable1 Diff-iff y-def
   by metis
 then have \neg is-tip G p
   by (meson is-tip.elims(2) reachable1-in-verts(1))
 then show False using assms by simp
qed
lemma (in blockDAG) tips-unequal-gen-exist:
 assumes card(verts G) > 1
 shows \exists p. p \in verts \ G \land is\text{-tip} \ G \ p \land \neg is\text{-genesis-node} \ p
proof -
 have b1: 1 < card (verts G) using assms by linarith
 obtain x where x-in: x \in (verts\ G) \land is-genesis-node\ x
   using genesis genesisAlt genesis-node-def by blast
 then have 0 < card ((verts G) - \{x\}) using card-Suc-Diff1 x-in finite-verts b1
 then have ((verts\ G) - \{x\}) \neq \{\} using card-gt-0-iff by blast
 then obtain y where y-def:y \in (verts \ G) - \{x\} by auto
 then have uneq: y \neq x by auto
 have y-in: y \in (verts \ G) using y-def by simp
 then have reachable 1 G y x using is-genesis-node.simps x-in
     reachable-neq-reachable1 uneq by simp
 then have \neg is-tip G x
   by (meson is-tip.elims(2) y-in)
 then obtain z where z-def: z \in (verts \ G) - \{x\} \land is\text{-tip} \ G \ z \text{ using } tips\text{-}exist
 is-tip.simps by auto
 then have uneq: z \neq x by auto
 have z-in: z \in verts \ G  using z-def by simp
 have \neg is-genesis-node z
 proof (rule ccontr, safe)
   assume is-genesis-node z
   then have x = z using unique-genesis x-in by auto
   then show False using uneq by simp
 qed
 then show ?thesis using z-def by auto
lemma (in blockDAG) del-tips-bDAG:
```

```
assumes is-tip G t
and \neg is-genesis-node t
shows blockDAG (del\text{-}vert\ t)
  unfolding blockDAG-def blockDAG-axioms-def
proof safe
  show DAG(del\text{-}vert\ t)
    using del-tips-dag assms by simp
\mathbf{next}
  \mathbf{fix} \ u \ v \ e
  assume wf-digraph.arc (del-vert t) e(u, v)
  then have arc: arc \ e \ (u,v) using del\text{-}vert\text{-}simps \ wf\text{-}digraph.arc\text{-}def \ arc\text{-}def
   \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{mem-Collect-eq}\ \mathit{wf-digraph-del-vert})
  assume u \rightarrow^+ pre\text{-}digraph.del\text{-}arc (del\text{-}vert\ t)\ e\ ^v
  then have path: u \rightarrow^+ del-arc e v
   using del-arc-subgraph subgraph-del-vert digraph-axioms
        digraph-subgraph
   by (metis arcs-ends-mono trancl-mono)
  show False using arc path only-new by simp
  obtain g where gen: is-genesis-node g using genesisAlt genesis by auto
  then have genp: g \in verts (del\text{-}vert \ t)
   using assms(2) genesis del-vert-simps by auto
  have (\forall r. \ r \in verts \ (del\text{-}vert \ t) \longrightarrow r \rightarrow^*_{del\text{-}vert \ t} g)
  proof safe
  \mathbf{fix} \ r
  assume in-del: r \in verts (del-vert t)
  then obtain p where path: awalk r p g
   using reachable-awalk is-genesis-node.simps del-vert-simps gen by auto
  have no-head: t \notin (set (map (\lambda s. (head G s)) p))
  proof (rule ccontr)
   assume \neg t \notin (set (map (\lambda s. (head G s)) p))
   then have as: t \in (set \ (map \ (\lambda s. \ (head \ G \ s)) \ p))
   by auto
   then obtain e where tl: t = (head \ G \ e) \land e \in arcs \ G
     using wf-digraph-def awalk-def path by auto
   then obtain u where hd: u = (tail \ G \ e) \land u \in verts \ G
     using wf-digraph-def tl by auto
   have t \in verts G
     using assms(1) is-tip.simps by auto
   then have arc-to-ends G e = (u, t) using the
     by (simp add: arc-to-ends-def hd)
   then have reachable 1 G u t
     using dominatesI tl by blast
   then show False
     using is-tip.simps assms(1)
     hd by auto
  have neither: r \neq t \land g \neq t
     using del-vert-def assms(2) gen in-del by auto
```

```
have no-tail: t \notin (set (map (tail G) p))
proof(rule ccontr)
 assume as2: \neg t \notin set (map (tail G) p)
 then have tl2: t \in set (map (tail G) p) by auto
 then have t \in set \ (map \ (head \ G) \ p)
 proof (induct rule: cas.induct)
   case (1 \ u \ v)
   then have v \notin set \ (map \ (tail \ G) \ []) by auto
   then show v \in set \ (map \ (tail \ G) \ []) \Longrightarrow v \in set \ (map \ (head \ G) \ [])
     by auto
 \mathbf{next}
   case (2 \ u \ e \ es \ v)
   then show ?case
     using set-awalk-verts-not-Nil-cas neither awalk-def cas.simps(2) path
     by (metis UnCI tl2 awalk-verts-conv'
         cas-simp\ list.simps(8)\ no-head\ set-ConsD)
 qed
 then show False using no-head by auto
have pre-digraph.awalk (del-vert t) r p g
 unfolding pre-digraph.awalk-def
proof safe
 show r \in verts (del\text{-}vert \ t) using in-del by simp
next
 \mathbf{fix} \ x
 assume as3: x \in set p
 then have ht: head G x \neq t \land tail G x \neq t
   using no-head no-tail by auto
 have x \in arcs G
   using awalk-def path subsetD as3 by auto
 then show x \in arcs (del\text{-}vert \ t) \text{ using } del\text{-}vert\text{-}simps(2) \ ht \ by \ auto
 have pre-digraph.cas G r p g using path by auto
 then show pre-digraph.cas (del-vert t) r p g
 proof(induct \ p \ arbitrary:r)
   then have r = g using awalk-def cas.simps by auto
   then show ?case using pre-digraph.cas.simps(1)
     by (metis)
 next
   case (Cons \ a \ p)
   assume pre: \bigwedge r. (cas r p g \Longrightarrow pre-digraph.cas (del-vert t) r p g)
   and one: cas \ r \ (a \ \# \ p) \ g
   then have two: cas (head G a) p g
     using awalk-def by auto
   then have t: tail (del-vert t) a = r
     using one cas.simps awalk-def del-vert-simps(3) by auto
   then show ?case
     unfolding pre-digraph.cas.simps(2) t
```

```
using pre two del-vert-simps(4) by auto
   qed
  qed
  then show r \to^*_{del\text{-}vert\ t} g by (meson wf-digraph.reachable-awalkI
  del-tips-dag assms(1) DAG-def digraph-def fin-digraph-def)
  then show \exists p \in verts (del-vert t).
       (\forall r. \ r \in verts \ (del\ vert \ t) \longrightarrow (r \rightarrow^+ del\ vert \ t \ p \lor r = p))
   using gen genp
   by (metis reachable-rtranclI rtranclD)
qed
lemma (in blockDAG) tips-cases [consumes 2, case-names ma past nma]:
 assumes p \in tips G
 and x \in verts G
 obtains (ma) x = p
       \mid (past) \ x \in past-nodes \ G \ p
       \mid (nma) \ x \in anticone \ G \ p
proof -
 consider (eq)x = p \mid (neq) \neg x = p by auto
 then show ?thesis
 proof(cases)
   case eq
   then show thesis using eq ma by simp
 next
   consider (in-p)x \in past-nodes \ G \ p \mid (nin-p)x \notin past-nodes \ G \ p \ by \ auto
   then show ?thesis
   proof(cases)
     case in-p
       then show ?thesis using past by auto
     next
       case nin-p
      then have nn: \neg p \rightarrow^+_G x using nin-p past-nodes.simps assms(2) by auto
     have \neg x \rightarrow^+_G p using is-tip.simps assms tips-def CollectD by metis
      then have x \in anticone\ G\ p\ using\ anticone.simps\ neq\ nn\ assms(2) by auto
     then show ?thesis using nma by auto
   qed
 qed
qed
3.3
      Future Nodes
lemma (in blockDAG) future-nodes-ex:
 assumes a \in verts G
 shows a \notin future\text{-}nodes G a
 using cycle-free future-nodes.simps reachable-def by auto
```

3.3.1 Reduce Past

```
lemma (in blockDAG) reduce-past-not-empty:
 assumes a \in verts G
 and \neg is-genesis-node a
shows (verts (reduce-past G a)) \neq {}
proof -
 obtain g
   where gen: is-genesis-node g using genesis-existAlt by auto
 have ex: g \in verts (reduce-past G a) using reduce-past.simps past-nodes.simps
genesisAlt\ reachable-neq-reachable1\ reachable-reachable1-trans\ gen\ assms(1)\ assms(2)
then show (verts (reduce-past Ga)) \neq {} using ex by auto
\mathbf{qed}
lemma (in blockDAG) reduce-less:
 assumes a \in verts G
 shows card (verts (reduce-past G a)) < card (verts G)
proof -
 have past-nodes G a \subset verts G
   using assms(1) past-nodes-not-refl past-nodes-verts by blast
 then show ?thesis
   by (simp add: psubset-card-mono)
qed
lemma (in blockDAG) reduce-past-dagbased:
 assumes a \in verts G
 and \neg is-genesis-node a
 shows blockDAG (reduce-past G a)
 unfolding blockDAG-def DAG-def blockDAG-def
proof safe
 show digraph (reduce-past G a)
   using digraphI-induced reduce-past-induced-subgraph by auto
 show DAG-axioms (reduce-past G a)
   unfolding DAG-axioms-def
   using cycle-free reduce-past-path by metis
 show blockDAG-axioms (reduce-past G a)
 unfolding blockDAG-axioms-def
 proof safe
   assume arc: wf-digraph.arc (reduce-past G a) e (u, v)
   then show u \rightarrow^+_{pre-digraph.del-arc\ (reduce-past\ G\ a)\ e} v \Longrightarrow False
   proof -
      assume e-in: (wf-digraph.arc (reduce-past G a) e (u, v))
```

```
then have (wf-digraph.arc G e (u, v))
         using assms reduce-past-arcs2 induced-subgraph-def arc-def
        proof -
         have wf-digraph (reduce-past G a)
        {f using}\ reduce-past. simps\ subgraph-def subgraph-refl wf-digraph. well formed-induce-subgraph
           by metis
         then have e \in arcs (reduce-past G a) \wedge tail (reduce-past G a) e = u
                    \land head (reduce-past G a) e = v
           using arc wf-digraph.arcE
           by metis
         then show ?thesis
           using arc-def reduce-past.simps by auto
       then have \neg u \rightarrow^+ del - arc e v
         using only-new by auto
       then show u \to^+ pre\text{-}digraph.del\text{-}arc\ (reduce\text{-}past\ G\ a)\ e}\ v \Longrightarrow False
         using DAG.past-nodes-verts reduce-past.simps blockDAG-axioms subs
              del-arc-subgraph digraph.digraph-subgraph digraph-axioms
              subgraph-induce-subgraphI
         by (metis arcs-ends-mono trancl-mono)
     qed
   next
       obtain p where gen: is-genesis-node p using genesis-existAlt by auto
       have pe: p \in verts \ (reduce\text{-past} \ G \ a) \land (\forall \ r. \ r \in verts \ (reduce\text{-past} \ G \ a) \longrightarrow
r \to^* reduce\text{-past } G \ a \ p)
       proof
      show p \in verts (reduce-past G a) using genesisAlt induce-reachable-preserves-paths
       reduce-past.simps\ past-nodes.simps\ reachable 1-reachable\ induce-subgraph-verts
assms(1)
           assms(2) gen mem-Collect-eq reachable-neq-reachable1
           by (metis (no-types, lifting))
         show \forall r. \ r \in verts \ (reduce\text{-past} \ G \ a) \longrightarrow r \rightarrow^*_{reduce\text{-past} \ G \ a} \ p
         proof safe
           \mathbf{fix} \ r \ a
           assume in-past: r \in verts (reduce-past G a)
           then have con: r \rightarrow^* p using gen genesisAlt past-nodes-verts by auto
           then show r \rightarrow^*_{reduce\text{-}past\ G\ a}\ p
           proof -
           have f1: r \in verts \ G \land a \rightarrow^+ r
           using in-past past-nodes-verts by force
           obtain aaa :: 'a \ set \Rightarrow 'a \ set \Rightarrow 'a \ where
           f2: \forall x0 \ x1. \ (\exists \ v2. \ v2 \in x1 \land v2 \notin x0) = (aaa \ x0 \ x1 \in x1 \land aaa \ x0 \ x1 \notin x1)
x\theta)
             by moura
           have r \to^* aaa (past-nodes G a) (Collect (reachable G r))
                  \longrightarrow a \rightarrow^+ aaa \ (past-nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
               using f1 by (meson reachable1-reachable-trans)
```

```
then have an (past-nodes G a) (Collect (reachable G r)) \notin Collect
(reachable G r)
                       \vee aaa (past-nodes G a) (Collect (reachable G r)) \in past-nodes
G a
               by (simp add: reachable-in-verts(2))
             then have Collect (reachable G r) \subseteq past-nodes G a
               using f2 by (meson subsetI)
             then show ?thesis
                    using con induce-reachable-preserves-paths reachable-induce-ss
reduce	ext{-}past.simps
           by (metis (no-types))
           qed
         qed
       qed
       show
       \exists p \in verts \ (reduce\text{-past } G \ a). \ (\forall r. \ r \in verts \ (reduce\text{-past } G \ a)
        \longrightarrow (r \rightarrow^+_{reduce\text{-}past\ G\ a}\ p \lor r = p))
         using pe
         by (metis reachable-rtranclI rtranclD)
     qed
   qed
lemma (in blockDAG) reduce-past-gen:
 assumes \neg is-genesis-node a
 and a \in verts G
 shows blockDAG.is-qenesis-node Gb \Longrightarrow blockDAG.is-qenesis-node (reduce-past
G(a) b
proof -
 assume gen: blockDAG.is-genesis-node G b
 have une: b \neq a using gen assms(1) genesis-unique-exists by auto
 have a \rightarrow^* b using gen \ assms(2) by simp
 then have a \rightarrow^+ b
   using reachable-neq-reachable1 is-genesis-node.simps assms(2) une by auto
 then have b \in (past-nodes\ G\ a) using past-nodes.simps gen by auto
 then have inv: b \in verts (reduce-past G a) using reduce-past.simps induce-subgraph-verts
 \mathbf{have} \forall \ r. \ r \in \ verts \ (\mathit{reduce-past} \ G \ a) \longrightarrow r \rightarrow^*_{reduce-past} \ G \ a \ b
   proof safe
     fix r a
     assume in-past: r \in verts (reduce-past G a)
     then have con: r \rightarrow^* b using gen genesisAlt past-nodes-verts by auto
     then show r \rightarrow^*_{reduce\text{-}past\ G\ a}\ b
     proof -
     have f1: r \in verts \ G \land a \rightarrow^+ r
     using in-past past-nodes-verts by force
     obtain aaa :: 'a \ set \Rightarrow 'a \ set \Rightarrow 'a \ where
```

```
f2: \forall x0 \ x1. \ (\exists v2. \ v2 \in x1 \land v2 \notin x0) = (aaa \ x0 \ x1 \in x1 \land aaa \ x0 \ x1 \notin x0)
      by moura
     have r \rightarrow^* aaa \ (past\text{-}nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
          \longrightarrow a \rightarrow^+ aaa \ (past-nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
        using f1 by (meson reachable1-reachable-trans)
     then have an (past-nodes G a) (Collect (reachable G r)) \notin Collect (reachable
G(r)
                \vee aaa (past-nodes G a) (Collect (reachable G r)) \in past-nodes G a
        by (simp\ add:\ reachable-in-verts(2))
      then have Collect (reachable G r) \subseteq past-nodes G a
        using f2 by (meson subsetI)
      then show ?thesis
             using con induce-reachable-preserves-paths reachable-induce-ss re-
duce	ext{-}past.simps
     by (metis (no-types))
     qed
   qed
  then show blockDAG.is-genesis-node (reduce-past G a) b using inv is-genesis-node.simps
     by (metis\ assms(1)\ assms(2)\ blockDAG.is-genesis-node.elims(3)
        reduce-past-dagbased)
  qed
lemma (in blockDAG) reduce-past-gen-rev:
 assumes \neg is-genesis-node a
 and a \in verts G
 shows blockDAG.is-genesis-node (reduce-past\ G\ a)\ b \Longrightarrow blockDAG.is-genesis-node
G b
proof
 assume as1: blockDAG.is-genesis-node (reduce-past G a) b
 have bD: blockDAG (reduce-past G a) using assms reduce-past-dagbased blockDAG-axioms
by simp
  obtain gen where is-gen: is-genesis-node gen using genesis-unique-exists by
 then have blockDAG.is-genesis-node (reduce-past G a) gen using reduce-past-gen
assms by auto
 then have gen = b using as 1 blockDAG.unique-genesis bD by metis
 then show blockDAG.is-genesis-node (reduce-past G a) b \Longrightarrow blockDAG.is-genesis-node
G b
   using is-gen by auto
qed
lemma (in blockDAG) reduce-past-gen-eq:
 assumes \neg is-genesis-node a
 and a \in verts G
 shows blockDAG.is-genesis-node (reduce-past\ G\ a)\ b = blockDAG.is-genesis-node
 using reduce-past-gen reduce-past-gen-rev assms assms by metis
```

3.3.2 Reduce Past Reflexiv

```
lemma (in blockDAG) reduce-past-refl-induced-subgraph:
 shows induced-subgraph (reduce-past-refl G a) G
 using induced-induce past-nodes-refl-verts by auto
lemma (in blockDAG) reduce-past-refl-arcs2:
 e \in arcs (reduce-past-refl \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in blockDAG) reduce-past-refl-digraph:
 assumes a \in verts G
 shows digraph (reduce-past-refl G a)
 using digraphI-induced reduce-past-refl-induced-subgraph reachable-mono by simp
lemma (in blockDAG) reduce-past-refl-dagbased:
 assumes a \in verts G
 shows blockDAG (reduce-past-refl G a)
 unfolding blockDAG-def DAG-def
proof safe
 show digraph (reduce-past-refl G a)
   using reduce-past-refl-digraph assms(1) by simp
 show DAG-axioms (reduce-past-refl G a)
   unfolding DAG-axioms-def
   using cycle-free reduce-past-refl-induced-subgraph reachable-mono
   by (meson arcs-ends-mono induced-subgraph-altdef trancl-mono)
next
 show blockDAG-axioms (reduce-past-refl G a)
   unfolding blockDAG-axioms
 proof
   \mathbf{fix} \ u \ v
   show \forall e. \ u \rightarrow^+ pre\text{-}digraph.del\text{-}arc (reduce\text{-}past\text{-}refl G a) e ^v
        \longrightarrow \neg wf-digraph.arc (reduce-past-refl G a) e (u, v)
   proof safe
     \mathbf{fix} \ e
     assume a: wf-digraph.arc (reduce-past-refl G a) e (u, v)
     and b: u \rightarrow^+ pre-digraph.del-arc (reduce-past-refl G a) e^{-v}
     have edge: wf-digraph.arc G e (u, v)
        using assms reduce-past-arcs2 induced-subgraph-def arc-def
      proof -
        have wf-digraph (reduce-past-refl G a)
          using reduce-past-refl-digraph digraph-def by auto
         then have e \in arcs (reduce-past-refl G a) \land tail (reduce-past-refl G a) e
= u
                  \land head (reduce-past-refl G a) e = v
          using wf-digraph.arcE arc-def a
          by (metis (no-types))
        then show arc e(u, v)
```

```
using arc-def reduce-past-refl.simps by auto
       qed
     \begin{array}{l} \mathbf{have}\ u \to^+ pre\text{-}digraph.del\text{-}arc\ G\ e\ ^v \\ \mathbf{using}\ a\ b\ reduce\text{-}past\text{-}refl\text{-}digraph\ del\text{-}arc\text{-}subgraph\ digraph\text{-}axioms \end{array}
        digraphI-induced past-nodes-refl-verts reduce-past-refl.simps
        reduce-past-refl-induced-subgraph subgraph-induce-subgraph I arcs-ends-mono
trancl-mono
       by metis
     then show False
       using edge only-new by simp
   qed
next
       obtain p where gen: is-genesis-node p using genesis-existAlt by auto
       have pe: p \in verts (reduce-past-refl G a)
       using qenesisAlt induce-reachable-preserves-paths
       reduce-past.simps past-nodes.simps reachable 1-reachable induce-subgraph-verts
           gen mem-Collect-eg reachable-neg-reachable1
           assms by force
     have reaches: (\forall r. \ r \in verts \ (reduce\text{-past-refl} \ G \ a) \longrightarrow
            (r \rightarrow^+ reduce-past-refl\ G\ a\ p \lor r = p))
         proof safe
           \mathbf{fix} \ r
           assume in-past: r \in verts (reduce-past-refl G a)
           assume une: r \neq p
           then have con: r \rightarrow^* p using gen genesisAlt reachable-in-verts
           reachable 1-reachable
             by (metis in-past induce-subgraph-verts
                 past-nodes-refl-verts reduce-past-refl.simps subsetD)
           have a \rightarrow^* r using in-past by auto
           then have reach: r \to^* G \upharpoonright \{w.\ a \to^* w\}
           proof(induction)
             case base
             then show ?case
               using con induce-reachable-preserves-paths
               by (metis)
           next
             case (step \ x \ y)
             then show ?case
             proof -
               have Collect (reachable G y) \subseteq Collect (reachable G x)
                 using adj-reachable-trans step.hyps(1) by force
               then show ?thesis
                 using reachable-induce-ss step.IH reachable-neq-reachable1
                 by metis
             qed
           qed
           then show r \rightarrow^+_{reduce-past-refl\ G\ a} p unfolding reduce-past-refl.simps
        past-nodes-refl.simps using reachable-in-verts une wf-digraph.reachable-neg-reachable1
            by (metis (mono-tags, lifting) Collect-cong wellformed-induce-subgraph)
```

```
then show \exists p \in verts (reduce-past-refl G a). (\forall r. r \in verts (reduce-past-refl
G(a)
       \longrightarrow (r \rightarrow^+_{reduce\text{-}past\text{-}refl\ G\ a}\ p \lor r = p)) unfolding blockDAG-axioms-def
          using pe reaches by auto
       qed
     qed
3.3.3 Genesis Graph
definition (in blockDAG) gen-graph::('a,'b) pre-digraph where
gen-graph = induce-subgraph \ G \ \{blockDAG.genesis-node \ G\}
lemma (in blockDAG) gen-gen : verts (gen-graph) = \{genesis-node\}
 unfolding genesis-node-def gen-graph-def by simp
lemma (in blockDAG) gen-graph-one: card (verts gen-graph) = 1 using gen-gen
by simp
lemma (in blockDAG) gen-graph-digraph:
  digraph gen-graph
using digraphI-induced induced-induce gen-graph-def
      genesis-in-verts by simp
\mathbf{lemma} (\mathbf{in} \mathit{blockDAG}) \mathit{gen-graph-empty-arcs}:
arcs \ gen-graph = \{\}
  proof(rule ccontr)
    assume \neg arcs gen-graph = \{\}
    then have ex: \exists a. \ a \in (arcs \ gen-graph)
      by blast
    also have \forall a. a \in (arcs \ gen-graph) \longrightarrow tail \ G \ a = head \ G \ a
    proof safe
      \mathbf{fix} \ a
      assume a \in arcs gen-graph
      then show tail G a = head G a
       using digraph-def induced-subgraph-def induce-subgraph-verts
            induced-induce gen-graph-def by simp
    then show False
       using digraph-def ex gen-graph-def gen-graph-digraph induce-subgraph-head
induce-subgraph-tail
          loopfree-digraph.no-loops
      by metis
  qed
\mathbf{lemma} \ (\mathbf{in} \ blockDAG) \ gen\text{-}graph\text{-}sound:
  blockDAG (gen-graph)
  unfolding blockDAG-def DAG-def blockDAG-axioms-def
```

```
proof safe
  show digraph gen-graph using gen-graph-digraph by simp
 next
  have (arcs\text{-}ends\ gen\text{-}graph)^+ = \{\}
     using trancl-empty gen-graph-empty-arcs by (simp add: arcs-ends-def)
  then show DAG-axioms gen-graph
    by (simp add: DAG-axioms.intro)
\mathbf{next}
  \mathbf{fix} \ u \ v \ e
  have wf-digraph.arc\ gen-graph\ e\ (u,\ v) \equiv False
    using wf-digraph.arc-def gen-graph-empty-arcs
    by (simp add: wf-digraph.arc-def wf-digraph-def)
  then show wf-digraph.arc gen-graph e(u, v) \Longrightarrow
       u \rightarrow^+ pre-digraph.del-arc\ gen-graph\ e\ v \Longrightarrow False
    by simp
  have refl: genesis-node \rightarrow^*_{gen-graph} genesis-node
    using gen-gen rtrancl-on-refl
    by (simp add: reachable-def)
  have \forall r. \ r \in verts \ gen\text{-}graph \longrightarrow r \rightarrow^*_{gen\text{-}graph} \ genesis\text{-}node
  proof safe
    \mathbf{fix} \ r
   assume r \in verts gen-graph
    then have r = genesis-node
      using gen-gen by auto
    then show r \rightarrow^*_{gen\text{-}graph} genesis-node
      by (simp add: local.refl)
  qed
  then show \exists p \in verts \ gen\text{-}graph.
        (\forall r. \ r \in verts \ gen\text{-}graph \longrightarrow r \rightarrow^+_{qen\text{-}graph} \ p \lor r = p)
    by (simp add: gen-gen)
lemma (in blockDAG) no\text{-}empty\text{-}blockDAG:
  shows card (verts G) > 0
proof -
  have \exists p. p \in verts G
    using genesis-in-verts by auto
  then show card (verts G) > \theta
    using card-gt-0-iff finite-verts by blast
qed
lemma (in blockDAG) gen-graph-all-one:
card\ (verts\ (G)) = 1 \longleftrightarrow G = gen\text{-}graph
  {f using} \ card	ext{-}1	ext{-}singletonE \ gen	ext{-}graph	ext{-}def \ genesis	ext{-}in	ext{-}verts
induce-eq\text{-}iff\text{-}induced\ induced-subgraph-refl\ singleton D\ gen\text{-}graph\text{-}def\ genesis-node\text{-}def\ genesis-node\ general}
 by (metis qen-qen qenesis-existAlt is-qenesis-node.simps less-one linorder-neqE-nat
 neq0-conv no-empty-blockDAG tips-unequal-gen-exist)
```

```
lemma blockDAG-nat-induct[consumes 1, case-names base step]:
assumes
bD: blockDAG\ Z
and
 cases: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = 1 \Longrightarrow P(V)
 \bigwedge W \ c. \ (\bigwedge V. \ (blockDAG \ V \Longrightarrow card \ (verts \ V) = c \Longrightarrow P \ V))
 \implies (blockDAG W \implies card (verts W) = Suc c \implies P(W)
shows P Z
proof -
 have bG: card\ (verts\ Z) > 0 using bD blockDAG.no-empty-blockDAG by auto
 show ?thesis
   using bG bD
 proof (induction card (verts Z) arbitrary: Z rule: Nat.nat-induct-non-zero)
   case 1
   then show ?case using cases(1) by auto
next
 case su: (Suc \ n)
 show ?case
   by (metis\ local.cases(2)\ su.hyps(2)\ su.hyps(3)\ su.prems)
 qed
qed
lemma blockDAG-nat-less-induct[consumes 1, case-names base step]:
 assumes
bD: blockDAG Z
and
cases: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = 1 \Longrightarrow P(V)
 \bigwedge W \ c. \ (\bigwedge V. \ (blockDAG \ V \Longrightarrow card \ (verts \ V) < c \Longrightarrow P \ V))
  \implies (blockDAG \ W \implies card \ (verts \ W) = c \implies P \ W)
shows P Z
proof -
 have bG: card\ (verts\ Z) > \theta using blockDAG.no-empty-blockDAG\ assms(1) by
 \mathbf{show}\ P\ Z
   using bD bG
 proof (induction card (verts Z) arbitrary: Z rule: less-induct)
   fix Z::('a, 'b) pre-digraph
   assume a:
     (\bigwedge Za.\ card\ (verts\ Za) < card\ (verts\ Z) \Longrightarrow blockDAG\ Za \Longrightarrow 0 < card\ (verts\ Za)
Za) \Longrightarrow P Za
   assume blockDAG\ Z
   then show P Z using a cases
     by (metis\ blockDAG.no-empty-blockDAG)
 qed
qed
lemma (in blockDAG) blockDAG-size-cases:
 obtains (one) card (verts G) = 1
```

```
| (more) \ card \ (verts \ G) > 1
 using no-empty-blockDAG
 by linarith
lemma (in blockDAG) blockDAG-cases-one:
 shows card (verts G) = 1 \longrightarrow (G = gen-graph)
proof (safe)
 assume one: card (verts G) = 1
 then have blockDAG.genesis-node G \in verts G
   by (simp add: genesis-in-verts)
 then have only: verts G = \{blockDAG.genesis-node G\}
   by (metis one card-1-singletonE insert-absorb singleton-insert-inj-eq')
 then have verts-equal: verts G = verts (blockDAG.gen-graph G)
   using blockDAG-axioms one blockDAG.gen-graph-def induce-subgraph-def
    induced-induce blockDAG.genesis-in-verts
   by (simp add: blockDAG.gen-graph-def)
 have arcs G = \{\}
 proof (rule ccontr)
   assume not-empty: arcs \ G \neq \{\}
   then obtain z where part-of: z \in arcs \ G
    by auto
   then have tail: tail G z \in verts G
    using wf-digraph-def blockDAG-def DAG-def
      digraph-def\ blockDAG-axioms\ nomulti-digraph.axioms(1)
    by metis
   also have head: head G z \in verts G
      by (metis (no-types) DAG-def blockDAG-axioms blockDAG-def digraph-def
         nomulti-digraph.axioms(1) part-of wf-digraph-def)
   then have tail G z = head G z
   using tail only by simp
 then have \neg loopfree-digraph-axioms G
   {\bf unfolding}\ loop {\it free-digraph-axioms-def}
    using part-of only DAG-def digraph-def
    by auto
   then show False
    using DAG-def digraph-def blockDAG-axioms blockDAG-def
      loopfree-digraph-def by metis
 then have arcs G = arcs (blockDAG.gen-graph G)
   by (simp add: blockDAG-axioms blockDAG.gen-graph-empty-arcs)
 then show G = gen\text{-}graph
   unfolding blockDAG.gen-graph-def
   using verts-equal blockDAG-axioms induce-subgraph-def
   blockDAG.gen-graph-def by fastforce
qed
lemma (in blockDAG) blockDAG-cases-more:
 shows card (verts G) > 1 \longleftrightarrow (\exists b \ H. (blockDAG H \land b \in verts \ G \land del-vert \ b
= H)
```

```
proof safe
 assume card (verts G) > 1
 then have b1: 1 < card (verts G) using no-empty-blockDAG by linarith
 obtain x where x-in: x \in (verts \ G) \land is-genesis-node x
   using genesis genesisAlt genesis-node-def by blast
 then have 0 < card ((verts \ G) - \{x\}) using card-Suc-Diff1 x-in finite-verts b1
by auto
 then have ((verts\ G) - \{x\}) \neq \{\} using card-gt-0-iff by blast
 then obtain y where y-def:y \in (verts \ G) - \{x\} by auto
 then have uneq: y \neq x by auto
 have y-in: y \in (verts \ G) using y-def by simp
 then have reachable 1 G y x using is-genesis-node.simps x-in
     reachable-neq-reachable1 uneq by simp
 then have \neg is-tip G x
   using y-in by force
 then obtain z where z-def: z \in (verts \ G) - \{x\} \land is\text{-tip } G \ z \text{ using } tips\text{-exist}
 is-tip.simps by auto
 then have uneq: z \neq x by auto
 have z-in: z \in verts \ G  using z-def by simp
 have \neg is-genesis-node z
 proof (rule ccontr, safe)
   assume is-genesis-node z
   then have x = z using unique-genesis x-in by auto
   then show False using uneq by simp
 qed
 then have blockDAG (del-vert z) using del-tips-bDAG z-def by simp
 then show (\exists b \ H. \ blockDAG \ H \land b \in verts \ G \land del\text{-}vert \ b = H) using z-def
by auto
next
 fix b and H::('a,'b) pre-digraph
 assume bD: blockDAG (del-vert b)
 assume b-in: b \in verts G
 show card (verts G) > 1
 proof (rule ccontr)
   assume \neg 1 < card (verts G)
   then have 1 = card (verts G) using no-empty-blockDAG by linarith
 then have card ( verts ( del-vert b)) = \theta using b-in del-vert-def by auto
 then have ¬ blockDAG (del-vert b) using bD blockDAG.no-empty-blockDAG
   by (metis less-nat-zero-code)
 then show False using bD by simp
 qed
qed
lemma (in blockDAG) blockDAG-cases:
 obtains (base) (G = gen\text{-}graph)
 | (more) (\exists b \ H. (blockDAG \ H \land b \in verts \ G \land del-vert \ b = H))
 using blockDAG-cases-one blockDAG-cases-more
   blockDAG-size-cases by auto
```

```
lemma blockDAG-induct[consumes 1, case-names fund base step]:
 assumes base: blockDAG G
 assumes cases: \bigwedge V:('a,'b) pre-digraph. blockDAG V \Longrightarrow P (blockDAG.gen-graph
      \bigwedge H::('a,'b) pre-digraph.
  ( \land b :: 'a. \ blockDAG \ (pre-digraph. del-vert \ H \ b) \Longrightarrow b \in verts \ H \Longrightarrow P(pre-digraph. del-vert \ H \ b)
(H b)
  \implies (blockDAG \ H \implies P \ H)
    shows P G
\mathbf{proof}(induct\text{-}tac\ G\ rule\text{:}blockDAG\text{-}nat\text{-}induct)
  show blockDAG G using assms(1) by simp
  fix V::('a,'b) pre-digraph
  assume bD: blockDAG\ V
  and card (verts V) = 1
  then have V = blockDAG.qen-graph V
   using blockDAG.blockDAG-cases-one equal-reft by auto
  then show P \ V \ using \ bD \ cases(1)
   by metis
\mathbf{next}
  fix c and W::('a,'b) pre-digraph
  show (\bigwedge V. blockDAG\ V \Longrightarrow card\ (verts\ V) = c \Longrightarrow P\ V) \Longrightarrow
          blockDAG \ W \Longrightarrow card \ (verts \ W) = Suc \ c \Longrightarrow P \ W
  proof -
   assume ind: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = c \Longrightarrow P(V)
   and bD: blockDAG W
   and size: card (verts W) = Suc c
   have assm2: \land b. \ blockDAG \ (pre-digraph.del-vert \ W \ b)
           \implies b \in verts \ W \implies P(pre\text{-}digraph.del\text{-}vert \ W \ b)
   proof -
     \mathbf{fix} \ b
     assume bD2: blockDAG (pre-digraph.del-vert W b)
     assume in-verts: b \in verts W
     have verts (pre-digraph.del-vert\ W\ b) = verts\ W\ - \{b\}
       by (simp add: pre-digraph.verts-del-vert)
     then have card ( verts (pre-digraph.del-vert W b)) = c
      \mathbf{using}\ in\text{-}verts\ fin\text{-}digraph.finite\text{-}verts\ bD\ subs\ fin\text{-}digraph.fin-digraph-del\text{-}vert
        size
       by (simp add: fin-digraph.finite-verts subs
           DAG.axioms \ assms(1) \ digraph.axioms)
     then show P (pre-digraph.del-vert W b) using ind bD2 by auto
   show ?thesis using cases(2)
     by (metis \ assm2 \ bD)
  qed
qed
function genesis-nodeAlt:: ('a::linorder,'b) pre-digraph \Rightarrow 'a
```

```
where genesis-nodeAlt G = (if (\neg blockDAG G) then undefined else
  if (card\ (verts\ G\ )=1) then (hd\ (sorted-list-of-set\ (verts\ G)))
  else genesis-nodeAlt\ (reduce-past G\ ((hd\ (sorted-list-of-set\ (tips\ G))))))
  by auto
termination proof
 let ?R = measure (\lambda G. (card (verts G)))
 show wf ?R by auto
  \mathbf{fix} \ G :: ('a::linorder, 'b) \ pre-digraph
 \mathbf{assume} \neg \neg \mathit{blockDAG} \ \mathit{G}
 then have bD: blockDAG G by simp
 assume card (verts G) \neq 1
 then have bG: card\ (verts\ G) > 1 using bD blockDAG.blockDAG-size-cases by
auto
  have set (sorted-list-of-set (tips G)) = tips G
   by (simp add: bD subs tips-def fin-digraph.finite-verts)
  then have hd (sorted-list-of-set (tips G)) \in tips G
   using hd-in-set bD tips-def bG blockDAG.tips-unequal-gen-exist
       empty-iff empty-set mem-Collect-eq
   by (metis (mono-tags, lifting))
  then show (reduce-past G (hd (sorted-list-of-set (tips G))), G) \in measure (\lambda G.
card (verts G)
   using blockDAG.reduce-less bD
   using tips-def by fastforce
qed
lemma genesis-nodeAlt-one-sound:
 assumes bD: blockDAG G
 and one: card (verts G) = 1
 shows blockDAG.is-genesis-node\ G\ (genesis-node\ Alt\ G)
proof -
  have exone: \exists ! x. x \in (verts \ G)
  \textbf{using } bD \ one \ blockDAG. genesis-in-verts \ blockDAG. genesis-unique-exists \ blockDAG. reduce-less
       blockDAG.reduce-past-dagbased less-nat-zero-code less-one by metis
  then have sorted-list-of-set (verts G) \neq []
   by (metis card.infinite card-0-eq finite.emptyI one
       sorted\mbox{-}list\mbox{-}of\mbox{-}set\mbox{-}empty\ sorted\mbox{-}list\mbox{-}of\mbox{-}set\mbox{-}inject\ zero\mbox{-}neq\mbox{-}one)
  then have genesis-nodeAlt G \in verts \ G using hd-in-set genesis-nodeAlt.simps
bD exone
   by (metis one set-sorted-list-of-set sorted-list-of-set.infinite)
  then show one-sound: blockDAG.is-genesis-node G (genesis-nodeAlt G)
   using bD one
   by (metis blockDAG.blockDAG-size-cases blockDAG.reduce-less
       blockDAG.reduce-past-dagbased less-one not-one-less-zero)
qed
lemma genesis-nodeAlt-sound:
 assumes blockDAG G
 shows blockDAG.is-genesis-node\ G\ (genesis-nodeAlt\ G)
```

```
proof(induct-tac G rule:blockDAG-nat-less-induct)
 show blockDAG G using assms by simp
\mathbf{next}
 fix V::('a,'b) pre-digraph
 assume bD: blockDAG\ V
 assume one: card (verts V) = 1
 then show blockDAG.is-genesis-node V (genesis-nodeAlt V)
   using genesis-nodeAlt-one-sound bD
   by blast
next
 fix W::('a,'b) pre-digraph
 \mathbf{fix} \ c :: nat
 assume basis:
   (\bigwedge V:('a,'b) \text{ pre-digraph. blockDAG } V \Longrightarrow card \text{ (verts } V) < c \Longrightarrow
 blockDAG.is-genesis-node V (genesis-nodeAlt V))
 assume bD: blockDAG W
 assume cd: card (verts W) = c
 consider (one) card (verts W) = 1 | (more) card (verts W) > 1
   using bD blockDAG.blockDAG-size-cases by blast
 then show blockDAG.is-genesis-node W (genesis-nodeAlt W)
 proof(cases)
   \mathbf{case} one
   then show ?thesis using genesis-nodeAlt-one-sound bD
   by blast
 \mathbf{next}
   case more
   then have not-one: 1 \neq card (verts W) by auto
   have se: set (sorted-list-of-set (tips W)) = tips W
     by (simp add: bD subs tips-def fin-digraph.finite-verts)
    obtain a where a-def: a = hd (sorted-list-of-set (tips W))
     by simp
   have tip: a \in tips W
   using se a-def hd-in-set bD tips-def more blockDAG.tips-unequal-gen-exist
      empty-iff empty-set mem-Collect-eq
   by (metis (mono-tags, lifting))
   then have ver: a \in verts W
     by (simp add: tips-def a-def)
   then have card ( verts (reduce-past W a)) < card (verts W)
     using more cd blockDAG.reduce-less bD
     by metis
   then have cd2: card ( verts (reduce-past W a)) < c
     using cd by simp
   have n-gen: \neg blockDAG.is-genesis-node W a
     using blockDAG.tips-unequal-gen bD more tip tips-def Collect-mem-eq by
fast force
   then have bD2: blockDAG (reduce-past W a)
     using blockDAG.reduce-past-dagbased ver bD by auto
   have ff: blockDAG.is-genesis-node (reduce-past W a)
    (genesis-nodeAlt (reduce-past W a)) using cd2 basis bD2 more
```

```
by blast
have rec: genesis-nodeAlt W = genesis-nodeAlt (reduce-past W (hd (sorted-list-of-set
(tips W))))
    using genesis-nodeAlt.simps not-one bD
    by metis
    show ?thesis using rec ff bD n-gen ver blockDAG.reduce-past-gen-eq a-def by
metis
    qed
qed
end
theory Spectre
    imports Main Graph-Theory.Graph-Theory blockDAG
```

Based on the SPECTRE paper by Sompolinsky, Lewenberg and Zohar 2016

4 Spectre

begin

4.1 Definitions

Function to check and break occuring ties

```
fun tie-break-int:: 'a::linorder \Rightarrow 'a \Rightarrow int \Rightarrow int where tie-break-int a b i = (if i=0 then (if (b < a) then -1 else 1) else (if i > 0 then 1 else -1))
```

Function to check if all entries of a list are zero

```
fun zero-list:: int list \Rightarrow bool
where zero-list [] = True
| zero-list (x \# xs) = ((x = 0) \land zero-list xs)
```

Function given a list of votes, sums them up if not only zeros, otherwise "no vote"

```
fun sumlist-break :: 'a::linorder \Rightarrow 'a \Rightarrow int list \Rightarrow int where sumlist-break a b L = (if (zero-list L) then 0 else tie-break-int a b (sum-list L))
```

Spectre core algorithm, vote - SpectreVabc returns 1 if a votes in favour of b (or b = c), -1 if a votes in favour of c, 0 otherwise

```
function vote-Spectre :: ('a::linorder,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a \Rightarrow int where vote-Spectre V a b c = ( if (\neg blockDAG\ V \lor a \notin verts\ V \lor b \notin verts\ V \lor c \notin verts\ V) then 0 else
```

```
if (b=c) then 1 else
  if (((a \rightarrow^+_V b) \lor a = b) \land \neg(a \rightarrow^+_V c)) then 1 else
  if (((a \rightarrow^+ V c) \lor a = c) \land \neg (a \rightarrow^+ V b)) then -1 else
  if ((a \rightarrow^+_V b) \land (a \rightarrow^+_V c)) then
  (sumlist-break b c (map (\lambda i).
 (vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set (past-nodes V a))))
 else
   sumlist-break b c (map (\lambda i.
   (vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a))))
  by auto
termination
proof
let R = measures [(\lambda(V, a, b, c), (card (verts V))), (\lambda(V, a, b, c), card \{e, e\}, e])
\rightarrow^* V a\})
 show wf ?R
   by simp
next
  \mathbf{fix}\ V::('a::linorder,\ 'b)\ pre-digraph
  \mathbf{fix} \ x \ a \ b \ c
  assume bD: \neg (\neg blockDAG\ V \lor a \notin verts\ V \lor b \notin verts\ V \lor c \notin verts\ V)
  then have a \in verts \ V by simp
  then have card (verts (reduce-past V a)) < card (verts V)
   using bD blockDAG.reduce-less
   by metis
  then show ((reduce-past V a, x, b, c), V, a, b, c)
       \in measures
          [\lambda(V, a, b, c)]. card (verts V),
           \lambda(V, a, b, c). card \{e. e \rightarrow^*_V a\}
   by simp
\mathbf{next}
  fix V::('a::linorder, 'b) pre-digraph
 \mathbf{fix} \ x \ a \ b \ c
 assume bD: \neg (\neg blockDAG\ V \lor a \notin verts\ V \lor b \notin verts\ V \lor c \notin verts\ V)
  then have a-in: a \in verts \ V using bD by simp
  assume x \in set (sorted-list-of-set (future-nodes V(a))
  then have x \in future-nodes V a using DAG.finite-future
    set\text{-}sorted\text{-}list\text{-}of\text{-}set\ bD\ subs
   by metis
  then have rr: x \to^+ V a using future-nodes.simps bD mem-Collect-eq
   by simp
  then have a-not: \neg a \rightarrow^* V x using bD DAG unidirectional subs by metis
  have bD2: blockDAG\ V using bD by simp
  have \forall x. \{e. e \rightarrow^*_V x\} \subseteq verts \ V \text{ using } subs \ bD2 \ subsetI
     wf-digraph.reachable-in-verts(1) mem-Collect-eq
   by metis
  then have fin: \forall x. finite \{e.\ e \rightarrow^* V x\} using subs bD2 fin-digraph.finite-verts
     finite-subset
   by metis
  have x \to^*_V a using rr wf-digraph.reachable 1-reachable subs bD2 by metis
```

```
then have \{e. e \rightarrow^*_V x\} \subseteq \{e. e \rightarrow^*_V a\} using rr
     wf-digraph.reachable-trans Collect-mono subs bD2 by metis
  then have \{e. e \rightarrow^*_V x\} \subset \{e. e \rightarrow^*_V a\} using a-not
  subs bD2 a-in mem-Collect-eq psubsetI wf-digraph.reachable-refl
  then have card \{e. e \rightarrow^*_V x\} < card \{e. e \rightarrow^*_V a\} using fin
   by (simp add: psubset-card-mono)
  then show ((V, x, b, c), V, a, b, c)
      \in measures
          [\lambda(V, a, b, c). \ card \ (verts \ V), \ \lambda(V, a, b, c). \ card \ \{e. \ e \rightarrow^*_{V} a\}]
   by simp
qed
Given vote-Spectre calculate if a < b for arbitrary nodes
definition Spectre-Order :: ('a::linorder,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a \Rightarrow bool
 where Spectre-Order G a b = (sumlist-break \ a \ b \ (map \ (\lambda i.
  (vote-Spectre\ G\ i\ a\ b))\ (sorted-list-of-set\ (verts\ G)))=1)
Given Spectre-Order calculate the corresponding relation over the nodes of
G
definition Spectre-Order-Relation :: ('a::linorder,'b) pre-digraph \Rightarrow ('a \times 'a) set
 where Spectre-Order-Relation G \equiv \{(a,b) \in (verts \ G \times verts \ G)\}. Spectre-Order
G \ a \ b
4.2
       Lemmas
lemma zero-list-sound:
  zero-list L \equiv \forall a \in set L. a = 0
proof(induct L, auto) qed
lemma sumlist-one-mono:
 assumes \forall x \in set L. x \geq 0
 and \exists x \in set L. x > 0
 and L \neq []
shows sumlist-break a b L = 1
  using assms
proof(induct\ L,\ simp)
 case (Cons\ a2\ L)
  then have nz: \neg zero\text{-}list\ (a2 \# L) \text{ using } assms
   by (metis less-int-code(1) zero-list-sound)
  consider (bq) a2 > 0 \mid a2 = 0 using Cons
   by (metis le-less list.set-intros(1))
  then show ?case
  proof(cases)
   case bq
   then have sum-list L \geq 0 using Cons
     by (simp add: sum-list-nonneg)
   then have sum-list (a2 \# L) > 0 using bg sum-list-def
     by auto
```

```
then show ?thesis using nz sumlist-break.simps tie-break-int.simps
      by auto
    next
      case 2
      then have be: \exists a \in set L. \ 0 < a \text{ using } Cons
        by (metis less-int-code(1) set-ConsD)
      then have L \neq [] by auto
      then have sumlist-break a b L = 1 using Cons be
        by auto
      then show ?thesis using sum-list-def 2 sumlist-break.simps nz
        by auto
    qed
qed
lemma domain-tie-break:
  shows tie-break-int a b c \in \{-1, 1\}
 using tie-break-int.simps by simp
lemma domain-sumlist:
  shows sumlist-break a b c \in \{-1, 0, 1\}
  using insertCI sumlist-break.elims domain-tie-break
  by (metis insert-commute)
lemma domain-sumlist-not-empty:
  assumes \neg zero-list l
  shows sumlist-break a b l \in \{-1, 1\}
  using sumlist-break.elims domain-tie-break assms
  by metis
lemma Spectre-casesAlt:
  fixes V:: ('a::linorder,'b) pre-digraph
  and a :: 'a::linorder and b :: 'a::linorder and c :: 'a::linorder
  obtains (no-bD) (\neg blockDAG V \lor a \notin verts \ V \lor b \notin verts \ V \lor c \notin verts \ V)
  | \ (\textit{equal}) \ (\textit{blockDAG} \ V \ \land \ a \in \textit{verts} \ V \ \land \ b \in \textit{verts} \ V \ \land \ c \in \textit{verts} \ V) \ \land \ b = c
  | (one) (blockDAG \ V \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land 
         b \neq c \land (((a \rightarrow^+_V b) \lor a = b) \land \neg(a \rightarrow^+_V c))
  | (two) (blockDAG \ V \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land b \neq c
  \wedge \neg (((a \to^+_V b) \lor a = b) \land \neg (a \to^+_V c)) \land 
  ((a \to^+ V c) \lor a = c) \land \neg (a \to^+ V b)
  | (three) (blockDAG \ V \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land b \neq c
   \wedge \neg (((a \to^+_V b) \lor a = b) \land \neg (a \to^+_V c)) \land
   \neg(((a \to^+_V c) \lor a = c) \land \neg(a \to^+_V b)) \land
  ((a \rightarrow^+ V b) \land (a \rightarrow^+ V c))
  | (four) (blockDAG \ V \land a \in verts \ V \land b \in verts \ V \land c \in verts \ V) \land b \neq c \land 
  \neg(((a \rightarrow^+_V b) \lor a = b) \land \neg(a \rightarrow^+_V c)) \land
   \neg(((a \to^+_V c) \lor a = c) \land \neg(a \to^+_V b)) \land
```

```
\neg((a \to^+ _V b) \land (a \to^+ _V c))
 by auto
lemma Spectre-theo:
 assumes P \theta
 and P1
 and P(-1)
 and P (sumlist-break b c (map (\lambda i).
(vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set ((past-nodes V a)))))
 and P (sumlist-break b c (map (\lambda i).
  (vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a))))
shows P (vote-Spectre V \ a \ b \ c)
 using assms vote-Spectre.simps
 by (metis (mono-tags, lifting))
lemma domain-Spectre:
 shows vote-Spectre V a b c \in \{-1, 0, 1\}
proof(rule Spectre-theo, simp, simp, simp, metis domain-sumlist, metis domain-sumlist)
qed
lemma antisymmetric-tie-break:
 shows b \neq c \implies tie-break-int b c i = -tie-break-int c b (-i)
 unfolding tie-break-int.simps using less-not-sym by auto
{\bf lemma}\ antisymmetric\text{-}sumlist\text{:}
 shows b \neq c \Longrightarrow sumlist-break \ b \ c \ l = - \ sumlist-break \ c \ b \ (map \ (\lambda x. -x) \ l)
proof(induct \ l, \ simp)
 case (Cons\ a\ l)
 have sum-list (map uminus (a \# l)) = - sum-list (a \# l)
   by (metis map-ident map-map uminus-sum-list-map)
 moreover have zero-list (map (\lambda x. -x) l) \equiv zero-list l
 proof(induct l, auto) qed
 ultimately show ?case using sumlist-break.simps antisymmetric-tie-break Cons
by auto
qed
lemma vote-Spectre-antisymmetric:
 shows b \neq c \Longrightarrow vote\text{-}Spectre\ V\ a\ b\ c = -\ (vote\text{-}Spectre\ V\ a\ c\ b)
proof(induction V a b c rule: vote-Spectre.induct)
 case (1 \ V \ a \ b \ c)
 show vote-Spectre\ V\ a\ b\ c=-\ vote-Spectre\ V\ a\ c\ b
 proof(cases a b c V rule:Spectre-casesAlt)
 case no-bD
```

```
then show ?thesis by fastforce
  next
  case equal
  then show ?thesis using 1 by simp
  next
   case one
   then show ?thesis by auto
  next
   case two
   then show ?thesis by fastforce
 next
   case three
   then have ff: vote-Spectre V a b c = (sumlist-break\ b\ c\ (map\ (\lambda i.
 (vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set (past-nodes V a))))
     by (metis (mono-tags, lifting) vote-Spectre.elims)
   have ff2: vote-Spectre V a c b = (sumlist-break \ c \ b \ (map \ (\lambda i.
   (- vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set (past-nodes V a))))
      using three 1 vote-Spectre.simps map-eq-conv
      by (smt\ (verit,\ ccfv\text{-}SIG))
      have (map (\lambda i. - vote-Spectre (reduce-past V a) i b c) (sorted-list-of-set
(past-nodes\ V\ a)))
    = (map\ uminus\ (map\ (\lambda i.\ vote-Spectre\ (reduce-past\ V\ a)\ i\ b\ c)
      (sorted-list-of-set\ (past-nodes\ V\ a))))
      using map-map by auto
    then have vote-Spectre V a c b = - (sumlist-break b c (map (\lambda i).
   (vote-Spectre (reduce-past V a) i b c)) (sorted-list-of-set (past-nodes V a))))
   using antisymmetric-sumlist 1 ff2
   by (metis verit-minus-simplify(4))
   then show ?thesis using ff
     by presburger
  next
   case four
   then have ff: vote-Spectre V a b c = sumlist-break b c \pmod{\lambda i}.
  (vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a)))
     using vote-Spectre.simps
     by (metis (mono-tags, lifting))
   have ff2: vote-Spectre V a c b = (sumlist-break c b (map (<math>\lambda i.
   (- vote-Spectre V i b c)) (sorted-list-of-set (future-nodes V a))))
      using four 1 vote-Spectre.simps map-eq-conv
      by (smt (z3))
    have (map (\lambda i. - vote-Spectre \ V \ i \ b \ c) \ (sorted-list-of-set \ (future-nodes \ V \ a)))
    = (map\ uminus\ (map\ (\lambda i.\ vote-Spectre\ V\ i\ b\ c)\ (sorted-list-of-set\ (future-nodes))
V(a))))
      using map-map by auto
    then have vote-Spectre V a c b = - (sumlist-break b c (map (\lambda i.
   (vote-Spectre\ V\ i\ b\ c))\ (sorted-list-of-set\ (future-nodes\ V\ a))))
   using antisymmetric-sumlist 1 ff2
   by (metis verit-minus-simplify(4))
   then show ?thesis using ff
```

```
by linarith
 qed
qed
lemma vote-Spectre-reflexive:
assumes blockDAG V
 and a \in verts V
shows \forall b \in verts \ V. \ vote\text{-}Spectre \ V \ b \ a \ a = 1 \ using \ vote\text{-}Spectre.simps \ assms
by auto
lemma Spectre-Order-reflexive:
assumes blockDAG V
 and a \in verts V
shows Spectre-Order V a a
 unfolding Spectre-Order-def
proof -
 obtain l where l-def: l = (map (\lambda i. vote-Spectre V i a a) (sorted-list-of-set (verts))
V)))
   by auto
 have only-one: l = (map \ (\lambda i.1) \ (sorted-list-of-set \ (verts \ V)))
   using l-def vote-Spectre-reflexive assms sorted-list-of-set(1)
   by (simp add: fin-digraph.finite-verts subs)
 have ne: l \neq []
   using blockDAG.no-empty-blockDAG length-map
    by (metis assms(1) length-sorted-list-of-set less-numeral-extra(3) list.size(3)
l-def)
  then have snn: \neg zero-list\ l\ using\ only-one
   using zero-list.elims(2) by fastforce
 have sum-list l = card (verts \ V) using ne only-one sum-list-map-eq-sum-count
   by (simp add: sum-list-triv)
 then have sum-list l > 0 using blockDAG.no-empty-blockDAG assms(1) by simp
  then show sumlist-break a a (map (\lambda i. vote-Spectre V i a a) (sorted-list-of-set
(verts\ V)) = 1
   using l-def ne sumlist-break.simps tie-break-int.simps
   list.exhaust verit-comp-simplify1(1) snn by auto
\mathbf{qed}
{f lemma}\ vote	ext{-}Spectre	ext{-}one	ext{-}exists:
 assumes blockDAG V
 and a \in verts V
 and b \in verts V
shows \exists i \in verts \ V. \ vote-Spectre \ V \ i \ a \ b \neq 0
 show a \in verts \ V \ using \ assms(2) by simp
 show vote-Spectre V a a b \neq 0
   using assms
 proof(cases a b a V rule: Spectre-casesAlt, simp, simp, simp, simp)
```

```
case three
   then show ?thesis
    by (meson DAG.cycle-free blockDAG.axioms(1))
   case four
   then show ?thesis
     by blast
 qed
qed
lemma Spectre-Order-antisym:
 assumes blockDAG V
 and a \in verts V
 and b \in verts V
 and a \neq b
 shows Spectre-Order V a b = (\neg (Spectre-Order V b a))
proof -
 obtain wit where wit-in: vote-Spectre V wit a b \neq 0 \land wit \in verts V
   using vote-Spectre-one-exists assms
 obtain l where l-def: l = (map (\lambda i. vote-Spectre V i a b) (sorted-list-of-set (verts))
V)))
   by auto
 have wit \in set (sorted-list-of-set (verts V))
   using wit-in sorted-list-of-set(1)
   fin-digraph.finite-verts subs
   by (simp add: fin-digraph.finite-verts subs assms(1))
 then have vote-Spectre V wit a b \in set l unfolding l-def
   by (metis (mono-tags, lifting) image-eqI list.set-map)
 then have ne0: \neg zero-list l using assms l-def zero-list-sound
   zero-neq-one wit-in
   by blast
  then have dm: sum list-break a b l \in \{-1,1\} using domain-sum list-not-empty
 obtain l2 where l2-def: l2 = (map (\lambda i. vote-Spectre V i b a) (sorted-list-of-set
(verts\ V)))
     by auto
   have minus: l2 = map \ uminus \ l
     unfolding l-def l2-def map-map
     using vote-Spectre-antisymmetric assms(4)
     by (metis comp-apply)
   then have ne02: \neg zero-list l2 using ne0 zero-list-sound
     by fastforce
   then have anti: sumlist-break a b l = - sumlist-break b a l2 unfolding minus
     using antisymmetric-sumlist ne0 assms(4) by metis
  have dm2: sumlist-break b a l2 \in \{-1,1\} using ne02 domain-sumlist-not-empty
   then show ?thesis unfolding Spectre-Order-def using anti l-def dm l2-def
   add.inverse-inverse empty-iff equal-neg-zero insert-iff zero-neg-one
```

```
by (metis)
qed
lemma Spectre-Order-total:
 assumes blockDAG V
 and a \in verts \ V \land b \in verts \ V
\mathbf{shows}\ \mathit{Spectre-Order}\ \mathit{V}\ \mathit{a}\ \mathit{b}\ \lor\ \mathit{Spectre-Order}\ \mathit{V}\ \mathit{b}\ \mathit{a}
proof safe
 assume notB: \neg Spectre-Order\ V\ b\ a
 consider (eq) a = b| (neq) a \neq b by auto
 then show Spectre-Order\ V\ a\ b
 proof (cases)
 case eq
 then show ?thesis using Spectre-Order-reflexive assms by metis
 next
    then show ?thesis using Spectre-Order-antisym notB assms
      by blast
  \mathbf{qed}
qed
\mathbf{lemma}\ \mathit{Spectre-Order-Relation-total}\colon
 assumes blockDAG G
 shows total-on (verts G) (Spectre-Order-Relation G)
 unfolding total-on-def Spectre-Order-Relation-def
 \mathbf{using}\ \mathit{Spectre-Order-total}\ \mathit{assms}
 by fastforce
lemma Spectre-Order-Relation-reflexive:
 assumes blockDAG G
 shows refl-on (verts G) (Spectre-Order-Relation G)
 unfolding refl-on-def Spectre-Order-Relation-def
 using Spectre-Order-reflexive assms by fastforce
{\bf lemma}\ Spectre-Order-Relation-antisym:
 assumes blockDAG G
 shows antisym (Spectre-Order-Relation G)
 unfolding antisym-def Spectre-Order-Relation-def
 using Spectre-Order-antisym assms by fastforce
{\bf lemma}\ vote\text{-}Spectre\text{-}Preserving:
 assumes c \to^+ G b
 shows vote-Spectre G a b c \in \{0,1\}
  using assms
proof(induction G a b c rule: vote-Spectre.induct)
```

```
case (1 \ V \ a \ b \ c)
 then show ?case
 proof(cases a b c V rule:Spectre-casesAlt)
 case no-bD
   then show ?thesis by auto
 next
 case equal
 then show ?thesis by simp
 next
   {f case} one
   then show ?thesis by auto
 \mathbf{next}
   case two
   then show ?thesis
     by (metis local.1.prems trancl-trans)
 next
   case three
   then have b \in past-nodes \ V \ a \ by \ auto
   also have c \in past\text{-}nodes\ V\ a\ using\ three\ by\ auto
   ultimately have c \rightarrow^+_{reduce-past\ V\ a} b using DAG.reduce-past-path2 three 1
     by (metis\ blockDAG.axioms(1))
   then have all 1: \forall x. \ x \in set \ (sorted-list-of-set \ (past-nodes \ V \ a)) \longrightarrow
         vote-Spectre (reduce-past V a) x b c \in \{0, 1\} using 1 three by auto
    obtain the-map where the-map-in:
    the-map = (map \ (\lambda i. \ vote-Spectre \ (reduce-past \ V \ a) \ i \ b \ c)
   (sorted-list-of-set\ (past-nodes\ V\ a))) by auto
    consider (zero-l) zero-list the-map
             (n\text{-}zero\text{-}l) \neg zero\text{-}list the\text{-}map by auto
    then have sumlist-break b c (map (\lambda i. vote-Spectre (reduce-past V a) i b c)
     (sorted-list-of-set\ (past-nodes\ V\ a))) \in \{0,1\}
    \mathbf{proof}(\mathit{cases})
     case zero-l
     then show ?thesis unfolding the-map-in by auto
       case n-zero-l
       then have nem: the-map
          \neq [] using zero-list-sound
         zero-list.simps(1) the-map-in
         by metis
          have exune: \exists x \in set the\text{-map}. x \neq 0 using n-zero-list-sound
the-map-in
         by blast
       have all 01-1: \forall x \in set the\text{-}map. \ x \in \{0,1\}
         unfolding the-map-in set-map
         using all1
         by blast
       then have \exists x \in set the\text{-}map. \ x = 1 \text{ using } exune
         by blast
       then have \exists x \in set the\text{-}map. \ x > 0
```

```
using zero-less-one by blast
       moreover have \forall x \in set the\text{-}map. \ x \geq 0 \text{ using } all 01\text{-}1
         by (metis empty-iff insert-iff less-int-code(1) not-le-imp-less zero-le-one)
         ultimately show ?thesis using nem unfolding the-map-in using sum-
list-one-mono
         \mathbf{bv} blast
     qed
   then show ?thesis using three
     by simp
  next
    case four
    then have all 01: \forall a2. \ a2 \in set \ (sorted-list-of-set \ (future-nodes \ V \ a)) \longrightarrow
                            vote-Spectre V a2 b c \in \{0,1\}
      using 1
      by metis
    obtain the-map where the-map-in:
     the-map = (map\ (\lambda i.\ vote-Spectre\ V\ i\ b\ c)\ (sorted-list-of-set\ (future-nodes\ V\ i))
a))) by auto
    consider (zero-l) zero-list the-map
             (n\text{-}zero\text{-}l) \neg zero\text{-}list the\text{-}map by auto
    then have sumlist-break b c (map\ (\lambda i.\ vote-Spectre V\ i\ b\ c)
     (sorted-list-of-set\ (future-nodes\ V\ a))) \in \{0,1\}
    \mathbf{proof}(\mathit{cases})
     case zero-l
     then show ?thesis unfolding the-map-in by auto
   next
       case n-zero-l
       then have nem: the-map
          \neq [] using zero-list-sound
         zero-list.simps(1) the-map-in
          have exune: \exists x \in set the\text{-map}. x \neq 0 using n-zero-l zero-list-sound
the	ext{-}map	ext{-}in
         by blast
       have all 01-2: \forall x \in set the\text{-map}. \ x \in \{0,1\}
         unfolding the-map-in set-map
         using all01
         by blast
       then have \exists x \in set the\text{-}map. \ x = 1 \text{ using } exune
         by blast
       then have \exists x \in set the\text{-}map. \ x > 0
         using zero-less-one by blast
       moreover have \forall x \in set the\text{-}map. \ x \geq 0 \text{ using } all 01\text{-}2
         by (metis empty-iff insert-iff less-int-code(1) not-le-imp-less zero-le-one)
         ultimately show ?thesis using nem unfolding the-map-in using sum-
list-one-mono
         \mathbf{bv} blast
     qed
    then show ?thesis using vote-Spectre.simps
```

```
by (simp add: four)
  qed
qed
lemma Spectre-Order-Preserving:
  assumes blockDAG G
 and b \to^+ G a
 shows Spectre-Order \ G \ a \ b
proof -
 have set-ordered: set (sorted-list-of-set (verts G)) = verts G
   \mathbf{using}\ assms(1)\ subs\ fin-digraph.finite\text{-}verts
   sorted-list-of-set by auto
 have a-in: a \in verts \ G \ using \ wf-digraph.reachable1-in-verts(2) \ assms \ subs
   by metis
 have b-in: b \in verts \ G \ using \ wf-digraph.reachable1-in-verts(1) \ assms \ subs
   by metis
 obtain the-map where the-map-in:
     the-map = (map \ (\lambda i. \ vote-Spectre \ G \ i \ a \ b) \ (sorted-list-of-set \ (verts \ G))) by
auto
 obtain wit where wit-in: wit \in verts G and wit-vote: vote-Spectre G wit a b \neq
0
   using vote-Spectre-one-exists a-in b-in assms(1)
   by blast
 have (vote\text{-}Spectre\ G\ wit\ a\ b) \in set\ the\text{-}map
   unfolding the-map-in set-map
   using assms(1) fin-digraph.finite-verts
  subs sorted-list-of-set(1) wit-in image-iff
   by metis
  then have exune: \exists x \in set the\text{-}map. \ x \neq 0
   using wit-vote by blast
 have all 01: \forall x \in set the -map. x \in \{0,1\}
  unfolding set-ordered the-map-in set-map using vote-Spectre-Preserving assms(2)
image-iff
   by (metis (no-types, lifting))
 then have \exists x \in set the\text{-}map. \ x = 1 \text{ using } exune
         by blast
  then have \exists x \in set the\text{-}map. \ x > 0
   using zero-less-one by blast
 moreover have \forall x \in set the\text{-}map. \ x \geq 0 \text{ using } all 01
   by (metis empty-iff insert-iff less-int-code(1) not-le-imp-less zero-le-one)
  ultimately show ?thesis unfolding the-map-in Spectre-Order-def using sum-
list-one-mono
     empty-iff set-empty
   by (metis)
qed
```

```
lemma Spectre-Order-Relation-Preserving: assumes blockDAG G and b \to^+{}_G a shows (a,b) \in (Spectre-Order-Relation \ G) unfolding Spectre-Order-Relation-def using assms wf-digraph.reachable1-in-verts subs Spectre-Order-Preserving SigmaI case-prodI mem-Collect-eq by fastforce end theory Ghostdag imports blockDAG Utils TopSort begin
```

5 GHOSTDAG

 $list) \times 'a)$

Based on the GHOSTDAG blockDAG consensus algorithmus by Sompolinsky and Zohar 2018

5.1 Funcitions and Definitions

Function to compare the size of set and break ties. Used for the GHOSTDAG maximum blue cluster selection

```
\mathbf{fun}\ larger\text{-}blue\text{-}tuple::
 (('a::linorder\ set\ \times\ 'a\ list)\ \times\ 'a) \Rightarrow (('a\ set\ \times\ 'a\ list)\ \times\ 'a) \Rightarrow (('a\ set\ \times\ 'a\ list)
\times 'a)
  where larger-blue-tuple A B =
  (if (card (fst (fst A))) > (card (fst (fst B))) \lor
  (card\ (fst\ (fst\ A)) \geq card\ (fst\ (fst\ B)) \land snd\ A \leq snd\ B)\ then\ A\ else\ B)
Function to add node a to a tuple of a set S and List L
fun add-set-list-tuple :: (('a::linorder\ set\ \times\ 'a\ list)\ \times\ 'a) \Rightarrow ('a::linorder\ set\ \times\ 'a)
  where add-set-list-tuple ((S,L),a) = (S \cup \{a\}, L @ [a])
Function that adds a node a to a kCluster S, if S + a remains a kCluster.
Also adds a to the end of list L
\mathbf{fun} \ app-if-blue-else-add-end::
('a::linorder,'b) pre-digraph \Rightarrow nat \Rightarrow 'a \Rightarrow ('a::linorder set \times 'a list)
 \Rightarrow ('a::linorder set \times 'a list)
where app-if-blue-else-add-end G k a (S,L) = (if (kCluster <math>G k (S \cup \{a\}))
then add-set-list-tuple ((S,L),a) else (S,L @ [a])
```

Function to select the largest ((S, L), a) according to larger - blue - tuplefun $choose-max-blue-set :: (('a::linorder set <math>\times$ 'a list) \times 'a) $list \Rightarrow (('a set \times 'a list) \times 'a)$

```
where choose-max-blue-set L = fold (larger-blue-tuple) L (hd L)
```

```
GHOSTDAG ordering algorithm
```

```
function OrderDAG :: ('a::linorder,'b) pre-digraph <math>\Rightarrow nat \Rightarrow ('a \ set \times 'a \ list)
  where
  OrderDAG\ G\ k =
  (if (\neg blockDAG\ G) then (\{\},[]) else
 if (card\ (verts\ G) = 1) then (\{genesis-nodeAlt\ G\}, [genesis-nodeAlt\ G]) else
let\ M = choose-max-blue-set
  ((map\ (\lambda i.(((OrderDAG\ (reduce-past\ G\ i)\ k))\ ,\ i))\ (sorted-list-of-set\ (tips\ G))))
 in fold (app-if-blue-else-add-end G k) (top-sort G (sorted-list-of-set (anticone G
(snd\ M))))
(add\text{-}set\text{-}list\text{-}tuple\ M))
 by auto
termination proof
 let ?R = measure (\lambda(G, k), (card (verts G)))
 show wf ?R by auto
next
 \mathbf{fix} \ G::('a::linorder,'b) \ pre-digraph
 \mathbf{fix} \ k :: nat
 \mathbf{fix} \ x
 assume bD: \neg \neg blockDAG G
 assume card (verts G) \neq 1
 then have card\ (verts\ G) > 1 using bD\ blockDAG.blockDAG-size-cases by auto
  then have nT: \forall x \in tips \ G. \ \neg \ blockDAG.is-genesis-node \ G \ x
   using blockDAG.tips-unequal-gen bD tips-def mem-Collect-eq
   by metis
  assume x \in set (sorted-list-of-set (tips G))
  then have in-t: x \in tips \ G  using bD
  by (metis card-qt-0-iff length-pos-if-in-set length-sorted-list-of-set set-sorted-list-of-set)
  then show ((reduce-past G(x, k), G(x) \in measure(\lambda(G(x), k), card(verts G)))
   using blockDAG.reduce-less bD tips-def is-tip.simps
   by fastforce
qed
```

Creating a relation on verts G based on the GHOSTDAG OrderDAG algorithm

```
fun GhostDAG-Relation :: ('a::linorder,'b) pre-digraph <math>\Rightarrow nat \Rightarrow 'a rel where GhostDAG-Relation G k = list-to-rel (snd (OrderDAG G k))
```

5.2 Soundness

```
lemma OrderDAG-casesAlt:

obtains (ntB) \neg blockDAG G

\mid (one) \ blockDAG G \land card (verts \ G) = 1

\mid (more) \ blockDAG G \land card (verts \ G) > 1
```

5.2.1 Soundness of the add - set - list function

```
\mathbf{lemma}\ add\text{-}set\text{-}list\text{-}tuple\text{-}mono\text{:}
 shows set L \subseteq set (snd (add-set-list-tuple ((S,L),a)))
 using add-set-list-tuple.simps by auto
\mathbf{lemma}\ add\text{-}set\text{-}list\text{-}tuple\text{-}mono2\text{:}
  shows set (snd (add\text{-}set\text{-}list\text{-}tuple ((S,L),a))) \subseteq set L \cup \{a\}
 using add-set-list-tuple.simps by auto
lemma add-set-list-tuple-length:
 shows length (snd (add-set-list-tuple ((S,L),a))) = Suc (length L)
proof(induct L, auto) qed
5.2.2 Soundness of the add - if - blue function
lemma app-if-blue-mono:
 assumes finite S
 shows (fst\ (S,L))\subseteq (fst\ (app-if-blue-else-add-end\ G\ k\ a\ (S,L)))
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp add: assms card-mono subset-insertI)
lemma app-if-blue-mono2:
 shows set (snd (S,L)) \subseteq set (snd (app-if-blue-else-add-end G k a (S,L)))
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp add: subsetI)
lemma app-if-blue-append:
 shows a \in set (snd (app-if-blue-else-add-end G k a (S,L)))
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by simp
lemma app-if-blue-mono3:
 shows set (snd (app-if-blue-else-add-end G k a (S,L))) \subseteq set L \cup \{a\}
 {\bf unfolding} \ app-if-blue-else-add-end. simps \ add-set-list-tuple. simps
 by (simp add: subsetI)
lemma app-if-blue-mono4:
 assumes set L1 \subseteq set L2
 shows set (snd (app-if-blue-else-add-end G k a (S,L1)))
  \subseteq set (snd (app-if-blue-else-add-end G k a (S2,L2)))
   {\bf unfolding} \ app-if-blue-else-add-end. simps \ add-set-list-tuple. simps
 using assms by auto
lemma app-if-blue-card-mono:
```

assumes finite S

```
shows card (fst (S,L)) \leq card (fst (app-if-blue-else-add-end G k a (S,L)))
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp add: assms card-mono subset-insertI)
lemma app-if-blue-else-add-end-length:
 shows length (snd (app-if-blue-else-add-end G k a (S,L))) = Suc (length L)
proof(induction L, auto) qed
        Soundness of the larger - blue - tuple comparison
lemma larger-blue-tuple-mono:
 assumes finite (fst V)
 shows larger-blue-tuple ((app-if-blue-else-add-end\ G\ k\ a\ V),b)\ (V,b)
      = ((app-if-blue-else-add-end \ G \ k \ a \ V),b)
 using assms app-if-blue-card-mono larger-blue-tuple.simps eq-refl
 by (metis fst-conv prod.collapse snd-conv)
\mathbf{lemma}\ \mathit{larger-blue-tuple-subs}:
 shows larger-blue-tuple A B \in \{A,B\} by auto
        Soundness of the choose_max_blue_set function
5.2.4
lemma choose-max-blue-avoid-empty:
 assumes L \neq []
 shows choose-max-blue-set L \in set L
 unfolding \ choose-max-blue-set.simps
proof (rule fold-invariant)
   show \bigwedge x. \ x \in set \ L \Longrightarrow x \in set \ L \text{ using } assms \text{ by } auto
 next
   show hd L \in set L using assms by auto
 next
   \mathbf{fix} \ x \ s
   assume x \in set L
   and s \in set L
   then show larger-blue-tuple x s \in set L using larger-blue-tuple.simps by auto
 qed
        Auxiliary lemmas for OrderDAG
5.2.5
lemma fold-app-length:
 shows length (snd (fold (app-if-blue-else-add-end G k)
 L1 PL2) = length L1 + length (snd PL2)
proof(induct L1 arbitrary: PL2)
case Nil
then show ?case by auto
\mathbf{next}
```

case (Cons a L1)

```
then show ?case unfolding fold-Cons comp-apply using app-if-blue-else-add-end-length
   by (metis add-Suc add-Suc-right length-Cons old.prod.exhaust snd-conv)
qed
lemma fold-app-mono:
 shows snd (fold (app-if-blue-else-add-end G k) L2 (S,L1) = L1 @ L2
\mathbf{proof}(induct\ L2\ arbitrary:\ S\ L1,\ simp)
 case (Cons\ a\ L2)
 then show ?case unfolding fold-simps(2) using app-if-blue-else-add-end.simps
   \mathbf{by} \ simp
qed
lemma fold-app-mono1:
 assumes x \in set \ (snd \ (S,L1))
 shows x \in set (snd (fold (app-if-blue-else-add-end G k) L2 (S2,L1)))
 using fold-app-mono
 by (metis Cons-eq-appendI append.assoc assms in-set-conv-decomp sndI)
lemma fold-app-mono2:
 assumes x \in set L2
 shows x \in set (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
 using assms unfolding fold-app-mono by auto
lemma fold-app-mono3:
 assumes set L1 \subseteq set L2
 shows set (snd (fold (app-if-blue-else-add-end G k) L (S1, L1)))
  \subseteq set (snd (fold (app-if-blue-else-add-end G k) L (S2, L2)))
 using assms unfolding fold-app-mono
 by auto
lemma fold-app-mono-ex:
 shows set (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)) = (set L2 \cup set
 unfolding fold-app-mono by auto
lemma fold-app-mono-rel:
 assumes (x,y) \in list\text{-}to\text{-}rel\ L1
 shows (x,y) \in list-to-rel (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
 using assms
\mathbf{proof}(induct\ L2\ arbitrary:\ S\ L1,\ simp)
 case (Cons a L2)
 then show ?case
   unfolding fold.simps(2) comp-apply
   using list-to-rel-mono app-if-blue-else-add-end.simps
   by (metis add-set-list-tuple.simps prod.collapse snd-conv)
qed
```

```
\mathbf{lemma}\ fold\text{-}app\text{-}mono\text{-}rel2:
 assumes (x,y) \in list\text{-}to\text{-}rel\ L2
 shows (x,y) \in list\text{-}to\text{-}rel \ (snd \ (fold \ (app\text{-}if\text{-}blue\text{-}else\text{-}add\text{-}end \ G \ k) \ L2 \ (S,L1)))
 using assms
 by (simp add: fold-app-mono list-to-rel-mono2)
lemma fold-app-app-rel:
 assumes x \in set L1
 and y \in set L2
 shows (x,y) \in list\text{-}to\text{-}rel (snd (fold (app-if\text{-}blue\text{-}else\text{-}add\text{-}end G k) L2 (S,L1)))
 using assms
proof(induct L2 arbitrary: S L1, simp)
  case (Cons a L2)
 then show ?case
   unfolding fold.simps(2) comp-apply
   using list-to-rel-append app-if-blue-else-add-end.simps
  by (metis Un-iff add-set-list-tuple.simps fold-app-mono-rel set-ConsD set-append)
qed
lemma chosen-max-tip:
 assumes blockDAG G
 assumes x = snd ( choose-max-blue-set (map (\lambda i. (OrderDAG (reduce-past G i)
k, i)
      (sorted-list-of-set\ (tips\ G))))
 shows x \in set (sorted-list-of-set (tips G)) and x \in tips G
proof -
  obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i))
  (sorted-list-of-set\ (tips\ G))) using blockDAG.tips-exist by auto
  have mm: choose-max-blue-set pp \in set \ pp \ using \ pp-in choose-max-blue-avoid-empty
       digraph.tips-finite subs assms(1)
      list.map-disc-iff\ sorted-list-of-set-eq-Nil-iff\ blockDAG.tips-not-empty
     by (metis (mono-tags, lifting))
   then have kk: snd (choose-max-blue-set pp) \in set (map snd pp)
   have mm2: \Lambda L. (map snd (map (\lambda i. ((OrderDAG (reduce-past G i) k), i)) L))
= L
   proof -
     show map snd (map (\lambda i. (OrderDAG (reduce-past G i) k, i)) L) = L
     \mathbf{proof}(induct\ L)
       case Nil
       then show ?case by auto
     next
       case (Cons a L)
       then show ?case by auto
     qed
   qed
```

```
have set (map \ snd \ pp) = set \ (sorted-list-of-set \ (tips \ G))
     using mm2 pp-in by auto
    then show x \in set (sorted-list-of-set (tips G)) using pp-in <math>assms(2) kk by
blast
   then show x \in tips G
     using digraph.tips-finite sorted-list-of-set(1) kk subs assms pp-in by auto
qed
lemma chosen-map-simps1:
  assumes x \in set \ (map \ (\lambda i. \ (P \ i, \ i)) \ L)
 shows fst \ x = P \ (snd \ x)
 using assms
proof(induct L, auto) qed
lemma chosen-map-simps:
 assumes blockDAG G
 assumes x = map (\lambda i. (OrderDAG (reduce-past G i) k, i))
      (sorted-list-of-set\ (tips\ G))
  shows snd (choose-max-blue-set x) \in set (sorted-list-of-set (tips G))
   and snd (choose-max-blue-set x) \in tips G
   and set (map \ snd \ x) = set \ (sorted-list-of-set \ (tips \ G))
   and choose\text{-}max\text{-}blue\text{-}set\ x \in set\ x
   and \neg blockDAG.is-genesis-node G (snd (choose-max-blue-set x)) \Longrightarrow
  blockDAG (reduce-past G (snd (choose-max-blue-set x)))
  and OrderDAG (reduce-past G (snd (choose-max-blue-set x))) k = fst (choose-max-blue-set
x)
proof -
  obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i))
  (sorted-list-of-set (tips G))) using blockDAG.tips-exist by auto
  have mm: choose-max-blue-set pp \in set \ pp \ using \ pp-in choose-max-blue-avoid-empty
       digraph.tips-finite subs assms(1)
      list.map-disc-iff\ sorted-list-of-set-eq-Nil-iff\ blockDAG.tips-not-empty
     by (metis (mono-tags, lifting))
   then have kk: snd (choose-max-blue-set pp) \in set (map snd pp)
   have seteq: set (map \ snd \ pp) = set \ (sorted-list-of-set \ (tips \ G))
     using map-snd-map pp-in by auto
   then show snd (choose-max-blue-set x) \in set (sorted-list-of-set (tips G))
     using pp-in assms(2) kk by blast
   then show tip: snd (choose\text{-}max\text{-}blue\text{-}set x) \in tips G
     using digraph.tips-finite sorted-list-of-set(1) kk subs assms pp-in by auto
   show set (map \ snd \ x) = set \ (sorted-list-of-set \ (tips \ G))
     using map-snd-map assms(2)
     by simp
   then show choose-max-blue-set x \in set \ x \ using \ seteq \ pp-in \ assms(2)
     mm bv blast
  show OrderDAG (reduce-past\ G\ (snd\ (choose-max-blue-set\ x)))\ k = fst\ (choose-max-blue-set\ x)
x)
```

```
by (metis (no-types) assms(2) chosen-map-simps1 mm pp-in)
   assume \neg blockDAG.is-genesis-node G (snd (choose-max-blue-set x))
   then show blockDAG (reduce-past G (snd (choose-max-blue-set x)))
     using tip blockDAG.reduce-past-dagbased assms(1) digraph.tips-in-verts subs
subsetD
     by metis
qed
       OrderDAG soundness
lemma Verts-in-OrderDAG:
 assumes blockDAG G
 and x \in verts G
 shows x \in set (snd (OrderDAG G k))
 using assms
proof(induct \ G \ k \ arbitrary: x \ rule: OrderDAG.induct)
 case (1 G k x)
 then have bD: blockDAG G by auto
 assume x-in: x \in verts G
 then consider (cD1) card (verts G) = 1 (cDm) card (verts G) \neq 1 by auto
 then show x \in set (snd (OrderDAG G k))
 \mathbf{proof}(\mathit{cases})
   case (cD1)
   then have set (snd (OrderDAG G k)) = \{genesis-nodeAlt G\}
    using 1 OrderDAG.simps by auto
   then show ?thesis using x-in bD cD1
       genesis-nodeAlt-sound blockDAG.is-genesis-node.simps
    using 1
    by (metis card-1-singletonE singletonD)
 next
   case (cDm)
   then show ?thesis
   proof -
    obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
     (sorted-list-of-set\ (tips\ G))) using blockDAG.tips-exist by auto
    then have tt2: snd (choose-max-blue-set pp) \in tips G
      using chosen-map-simps bD
      by blast
    show ?thesis
      proof(rule blockDAG.tips-cases)
      show blockDAG G using bD by auto
      show snd (choose-max-blue-set pp) \in tips G using tt2 by auto
      show x \in verts \ G  using x-in by auto
      assume as1: x = snd (choose-max-blue-set pp)
      obtain fCur where fcur-in: fCur = add-set-list-tuple (choose-max-blue-set
pp
         by auto
```

have $x \in set (snd(fCur))$

```
unfolding as1 using add-set-list-tuple.simps fcur-in
         add\text{-}set\text{-}list\text{-}tuple.cases\ snd\text{-}conv\ insertI1\ snd\text{-}conv
         by (metis (mono-tags, hide-lams) Un-insert-right fst-conv list.simps(15)
set-append)
       then have x \in set (snd (fold (app-if-blue-else-add-end G k)
               (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
(pp)))))) (fCur)))
         using fold-app-mono1 surj-pair
       by (metis)
     then show ?thesis unfolding pp-in fcur-in using 1 OrderDAG.simps cDm
       by (metis (mono-tags, lifting))
       assume anti: x \in anticone\ G\ (snd\ (choose-max-blue-set\ pp))
      obtain ttt where ttt-in: ttt = add-set-list-tuple (choose-max-blue-set pp) by
auto
       have x \in set (snd (fold (app-if-blue-else-add-end G k)
               (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
pp))))))
                 ttt))
         using pp-in sorted-list-of-set(1) anti bD subs
        DAG.anticon-finite fold-app-mono2 surj-pair top-sort-con by metis
       then show x \in set (snd (OrderDAG G k)) using OrderDAG.simps pp-in
bD cDm ttt-in 1
         by (metis (no-types, lifting) map-eq-conv)
     next
       assume as2: x \in past-nodes G (snd (choose-max-blue-set pp))
       then have pas: x \in verts (reduce-past G (snd (choose-max-blue-set pp)))
         using reduce-past.simps induce-subgraph-verts by auto
       have cd1: card (verts G) > 1 using cDm bD
         using blockDAG.blockDAG-size-cases by blast
      have (snd\ (choose-max-blue-set\ pp)) \in set\ (sorted-list-of-set\ (tips\ G)) using
tt2
       digraph.tips-finite\ bD\ subs\ sorted-list-of-set(1)\ \mathbf{by}\ auto
       moreover
       have blockDAG (reduce-past G (snd (choose-max-blue-set pp))) using
       blockDAG.reduce-past-dagbased bD tt2 blockDAG.tips-unequal-gen
       cd1 tips-def CollectD by metis
       ultimately have bass:
         x \in set ((snd (OrderDAG (reduce-past G (snd (choose-max-blue-set pp)))))
k)))
         using pp-in 1 cDm tt2 pas by metis
       then have in-F: x \in set (snd (fst ((choose-max-blue-set pp))))
         using x-in chosen-map-simps(6) pp-in
         using bD by fastforce
       then have x \in set (snd (fold (app-if-blue-else-add-end G k)
       (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone}\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set\ pp)))))
        (fst((choose-max-blue-set pp)))))
         by (metis fold-app-mono1 in-F prod.collapse)
       moreover have OrderDAG \ G \ k = (fold \ (app-if-blue-else-add-end \ G \ k)
```

```
(top-sort G (sorted-list-of-set (anticone G (snd (choose-max-blue-set pp)))))
              (add-set-list-tuple (choose-max-blue-set pp))) using cDm 1 OrderDAG.simps
pp	ext{-}in
                  by (metis (no-types, lifting) map-eq-conv)
              then show x \in set (snd (OrderDAG G k))
                  by (metis (no-types, lifting) add-set-list-tuple-mono fold-app-mono1
                           in	ext{-}F\ prod.collapse\ subset-code(1))
           qed
       qed
   \mathbf{qed}
qed
\mathbf{lemma} \ \mathit{OrderDAG-in-verts} :
    assumes x \in set (snd (OrderDAG G k))
   shows x \in verts G
   using assms
\mathbf{proof}(induction\ G\ k\ arbitrary:\ x\ rule:\ OrderDAG.induct)
    case (1 G k x)
   consider (inval) \neg blockDAG G | (one) blockDAG G \land
    card\ (verts\ G) = 1 \mid (val)\ blockDAG\ G\ \land
    card (verts G) \neq 1  by auto
    then show ?case
    proof(cases)
       case inval
       then show ?thesis using 1 by auto
    next
       case one
    \textbf{then show}~? the sis~\textbf{using}~Order DAG. simps~1~genesis-node Alt-one-sound~block DAG. is-genesis-node. simps~1~genesis-node. simps~1
           using empty-set list.simps(15) singleton-iff sndI by fastforce
    \mathbf{next}
       case val
       then show ?thesis
      proof
       have bD: blockDAG G using val by auto
           obtain M where M-in:M = choose-max-blue-set (map (\lambda i. (OrderDAG
(reduce\text{-}past\ G\ i)\ k,\ i))
             (sorted-list-of-set\ (tips\ G))) by auto
         obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
             (sorted\text{-}list\text{-}of\text{-}set\ (tips\ G)))\ \mathbf{using}\ blockDAG.tips\text{-}exist\ \mathbf{by}\ auto
          have set (snd (OrderDAG G k)) =
               set (snd (fold (app-if-blue-else-add-end G k) (top-sort G (sorted-list-of-set
(anticone \ G \ (snd \ M))))
           (add-set-list-tuple M))) unfolding M-in val using OrderDAG.simps val
              by (metis (mono-tags, lifting))
           then have set (snd (OrderDAG G k))
    = set (top-sort G (sorted-list-of-set (anticone G (snd M)))) \cup set (snd (add-set-list-tuple
M))
              using fold-app-mono-ex
```

```
by (metis eq-snd-iff)
    then consider (ac) x \in set (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd
M))))
      (co) x \in set (snd (add-set-list-tuple M))
     using 1 by auto
   then show x \in verts \ G \ proof(cases)
      case ac
      then show ?thesis using top-sort-con DAG.anticone-in-verts val
      sorted-list-of-set(1) subs
        by (metis DAG.anticon-finite subsetD)
     next
      case co
      then consider (ma) x = snd M \mid (nma) x \in set (snd(fst(M)))
        using add-set-list-tuple.simps
        by (metis (no-types, lifting) Un-insert-right append-Nil2 insertE
           list.simps(15) prod.collapse set-append sndI)
      then show ?thesis proof(cases)
        case ma
        then show ?thesis unfolding M-in using bD
          chosen-map-simps(2) digraph.tips-in-verts subs
      next
         have mm: choose-max-blue-set\ pp\in set\ pp\ {\bf unfolding}\ pp-in\ {\bf using}\ bD
chosen-map-simps(4)
      by (metis (mono-tags, lifting) Nil-is-map-conv choose-max-blue-avoid-empty)
        then have x \in set (snd (OrderDAG (reduce-past G (snd M)) k))
          unfolding M-in choose-max-blue-avoid-empty blockDAG.tips-not-empty
bD
         by (metis (no-types, lifting) ex-map-conv fst-conv mm pp-in snd-conv)
      then have x \in verts (reduce-past G (snd M)) using 1 val chosen-map-simps
M-in pp-in
        sorted-list-of-set(1) digraph.tips-finite subs\ bD
         then show x \in verts \ G using reduce-past.simps induce-subgraph-verts
past-nodes.simps
         by auto
      qed
    qed
   qed
 qed
qed
lemma OrderDAG-length:
 shows blockDAG G \Longrightarrow length (snd (OrderDAG G k)) = card (verts G)
 proof(induct G k rule: OrderDAG.induct)
   case (1 G k)
```

```
then show ?case proof (cases G rule: OrderDAG-casesAlt)
       case ntB
       then show ?thesis using 1 by auto
       next
          case one
          then show ?thesis using OrderDAG.simps by auto
       next
       case more
       show ?thesis using 1
      proof -
          have bD: blockDAG G using 1 by auto
           obtain ma where pp-in: ma = (choose-max-blue-set \ (map \ (\lambda i. \ (OrderDAG
(reduce-past\ G\ i)\ k,\ i))
            (sorted-list-of-set\ (tips\ G))))
             by (metis)
          then have backw: OrderDAG G k = fold (app-if-blue-else-add-end G k)
                         (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ ma))))
                         (add-set-list-tuple ma) using OrderDAG.simps pp-in more
              by (metis (mono-tags, lifting) less-numeral-extra(4))
         have tt: snd\ ma \in set\ (sorted-list-of-set\ (tips\ G)) using pp-in chosen-max-tip
          more by auto
          have ttt: snd \ ma \in tips \ G \ using \ chosen-max-tip(2) \ pp-in
          more by auto
       then have bD2: blockDAG (reduce-past G (snd ma)) using blockDAG.tips-unequal-gen
bD more
          blockDAG.reduce-past-dagbased bD tips-def
              by fastforce
          then have length (snd (OrderDAG (reduce-past G (snd ma)) k))
                                = card (verts (reduce-past G (snd ma)))
              using 1 tt bD2 more by auto
          then have length (snd (fst ma))
                                = card (verts (reduce-past G (snd ma)))
              using bD chosen-map-simps(6) pp-in
              by fastforce
         then have length (snd (add-set-list-tuple ma)) = 1 + card (verts (reduce-past
G (snd ma)))
              by (metis add-set-list-tuple-length plus-1-eq-Suc prod.collapse)
          then show ?thesis unfolding backw
              using subs DAG.verts-size-comp ttt
           add. assoc\ add. commute\ bD\ fold-app-length\ length-sorted-list-of-set\ top-sort-length\ length-sorted-list-of-set\ length\ length
              by (metis (full-types))
       qed
   qed
qed
lemma OrderDAG-total:
   assumes blockDAG G
   shows set (snd (OrderDAG G k)) = verts G
```

```
using Verts-in-OrderDAG OrderDAG-in-verts assms(1)
 by blast
\mathbf{lemma} \quad \mathit{OrderDAG-distinct} \colon
 assumes blockDAG G
 shows distinct (snd (OrderDAG G k))
 {\bf using} \ {\it OrderDAG-length} \ {\it OrderDAG-total}
  card-distinct assms
 by metis
lemma GhostDAG-linear:
  assumes blockDAG G
 shows linear-order-on (verts G) (GhostDAG-Relation G k)
 unfolding GhostDAG-Relation.simps
 using list-order-linear OrderDAG-distinct OrderDAG-total assms by metis
lemma GhostDAG-preserving:
 assumes blockDAG G
 and x \to^+_G y
\mathbf{shows}\ (y,x)\in\ GhostDAG\text{-}Relation\ G\ k
  unfolding GhostDAG-Relation.simps using assms
\mathbf{proof}(induct\ G\ k\ arbitrary:\ x\ y\ rule:\ OrderDAG.induct\ )
  case (1 G k)
  then show ?case proof (cases G rule: OrderDAG-casesAlt)
   case ntB
   then show ?thesis using 1 by auto
   next
     case one
     then have \neg x \rightarrow^+_G y
       using subs wf-digraph.reachable1-in-verts 1
       by (metis DAG.cycle-free OrderDAG-casesAlt blockDAG.reduce-less
       blockDAG.reduce-past-dagbased blockDAG.unique-genesis less-one not-one-less-zero)
     then show ?thesis using 1 by simp
   next
     case more
     obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
      (sorted-list-of-set\ (tips\ G))) using blockDAG.tips-exist by auto
     have backw: list-to-rel (snd (OrderDAG G k)) =
                   list-to-rel (snd (fold (app-if-blue-else-add-end G k)
                (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
pp)))))
                 (add\text{-}set\text{-}list\text{-}tuple\ (choose\text{-}max\text{-}blue\text{-}set\ pp))))
         using OrderDAG.simps less-irrefl-nat more pp-in
         by (metis (mono-tags, lifting))
     obtain S where s-in:
      (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set\ pp))))))
= S \ \mathbf{by} \ simp
```

```
obtain t where t-in: (add\text{-}set\text{-}list\text{-}tuple\ (choose\text{-}max\text{-}blue\text{-}set\ pp)) = t by
simp
     obtain ma where ma-def: ma = (snd (choose-max-blue-set pp)) by simp
     have ma-vert: ma \in verts \ G \ unfolding \ ma-def \ using \ chosen-map-simps(2)
digraph.tips-in-verts
     more(1) subs subsetD pp-in by blast
     have ma-tip: is-tip G ma unfolding ma-def
       using chosen-map-simps(2) more pp-in tips-tips
         by (metis (no-types))
       then have no-gen: \neg blockDAG.is-genesis-node G ma unfolding ma-def
using pp-in
     blockDAG.tips-unequal-gen more
       by metis
     then have red-bd: blockDAG (reduce-past G ma)
       {\bf using} \ blockDAG. reduce-past-dagbased \ more \ ma-vert \ {\bf unfolding} \ ma-def
       by auto
     consider (ind) x \in past\text{-}nodes \ G \ ma \land y \in past\text{-}nodes \ G \ ma
       |(x-in)| x \notin past-nodes G ma \land y \in past-nodes G ma
       |(y-in)| x \in past-nodes G ma \land y \notin past-nodes G ma
       |(both\text{-}nin) \ x \notin past\text{-}nodes \ G \ ma \land y \notin past\text{-}nodes \ G \ ma \ by \ auto
     then show ?thesis proof(cases)
       case ind
       then have x \rightarrow^+_{reduce\text{-}past\ G\ ma} y using DAG.reduce-past-path2 more
           1 subs
         by (metis)
       moreover have ma-tips: ma \in set (sorted-list-of-set (tips G))
         using chosen-map-simps(1) pp-in more(1)
         unfolding ma-def by auto
      ultimately have (y,x) \in list\text{-}to\text{-}rel \ (snd \ (OrderDAG \ (reduce\text{-}past \ G \ ma) \ k))
         unfolding ma-def
         using more 1 ind less-numeral-extra(4) ma-def red-bd
         by (metis)
       then have (y,x) \in list\text{-}to\text{-}rel \ (snd \ (fst \ (choose\text{-}max\text{-}blue\text{-}set \ pp)))
         using chosen-map-simps(6) pp-in 1 unfolding ma-def by fastforce
    then have rel-base: (y,x) \in list-to-rel (snd (add-set-list-tuple(choose-max-blue-set
pp)))
         using add-set-list-tuple.simps list-to-rel-mono prod.collapse snd-conv
         by metis
       show ?thesis
         unfolding ma\text{-}def\ backw\ s\text{-}in
         using rel-base unfolding t-in
         using fold-app-mono-rel prod.collapse
         by metis
     next
       case x-in
       then have y \in set (snd (OrderDAG (reduce-past G ma) k))
      unfolding reduce-past.simps using induce-subgraph-verts Verts-in-OrderDAG
```

```
more red-bd reduce-past.elims
        by (metis)
      then have y-in-base: y \in set (snd (fst (choose-max-blue-set pp)))
        unfolding ma-def using chosen-map-simps(6) more pp-in
        bv fastforce
      consider (x-t) x = ma \mid (x-ant) x \in anticone \ G \ ma \ using \ DAG.verts-comp2
       subs 1 ma-tip ma-vert
      mem\text{-}Collect\text{-}eq\ tips\text{-}def\ wf\text{-}digraph.reachable1\text{-}in\text{-}verts(1)\ x\text{-}in
        by (metis (no-types, lifting))
      then show ?thesis proof(cases)
      case x-t
       then have (y,x) \in list-to-rel (snd (add-set-list-tuple (choose-max-blue-set
pp)))
        unfolding x-t ma-def
       using y-in-base add-set-list-tuple.simps list-to-rel-append prod.collapse sndI
        by metis
      then show ?thesis unfolding ma-def backw s-in
        unfolding t-in
        using fold-app-mono-rel prod.collapse
        by metis
     \mathbf{next}
      case x-ant
      then have x \in set (sorted-list-of-set (anticone G ma))
        using sorted-list-of-set(1) more subs
        by (metis DAG.anticon-finite)
      moreover have y \in set (snd (add-set-list-tuple (choose-max-blue-set pp)))
        using add-set-list-tuple-mono in-mono prod.collapse y-in-base
        by (metis (mono-tags, lifting))
      ultimately show ?thesis unfolding backw
        by (metis fold-app-app-rel ma-def prod.collapse top-sort-con)
     qed
     next
      case y-in
      then have y \in past-nodes G ma unfolding past-nodes.simps using 1(2,3)
          wf-digraph.reachable1-in-verts(2) subs mem-Collect-eq trancl-trans
        by (metis (mono-tags, lifting))
      then show ?thesis using y-in by simp
     next
      case both-nin
      consider (x-t) x = ma \mid (x-ant) x \in anticone \ G \ ma \ using \ DAG.verts-comp2
      subs 1 ma-tip ma-vert
      mem-Collect-eq tips-def wf-digraph.reachable1-in-verts(1) both-nin
        by (metis (no-types, lifting))
      then show ?thesis proof(cases)
        case x-t
        have y \in past\text{-}nodes\ G\ ma\ using\ 1(3)\ more
        past-nodes.simps unfolding x-t
```

```
by (simp add: subs wf-digraph.reachable1-in-verts(2))
         then show ?thesis using both-nin by simp
       next
         have y-ina: y \in anticone \ G \ ma
         proof(rule ccontr)
           \mathbf{assume} \neg \ y \in \mathit{anticone} \ G \ \mathit{ma}
           then have y = ma
            unfolding anticone.simps using subs wf-digraph.reachable1-in-verts(2)
1(2,3)
            ma	ext{-}tip\ both	ext{-}nin
            \mathbf{by}\ \mathit{fastforce}
            then have x \to^+_G ma using I(\beta) by auto
            then show False using subs 1(2)
              by (metis wf-digraph.tips-not-referenced ma-tip)
           qed
         case x-ant
          then have (y,x) \in \mathit{list-to-rel} (top-sort G (sorted-list-of-set (anticone G
ma)))
        using y-ina DAG.anticon-finite subs 1(2,3) sorted-list-of-set(1) top-sort-rel
          by metis
         then show ?thesis unfolding backw ma-def using
         fold-app-mono list-to-rel-mono2
           by (metis old.prod.exhaust)
       qed
     qed
   \mathbf{qed}
 qed
\quad \text{end} \quad
```