Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektronických měření

PROTOKOL O MĚŘENÍ

Název úlohy

MĚŘENÍ POLOVODIČOVÝCH DIOD

Číslo úlohy

201-3R

Zadání

- 1. Multimetrem zkontrolujte prahové napětí $U_{TO_{MP}}$, určete vývody měřené diody.
- 2. Změřte a nakreslete voltampérové charakteristiky (VACH) dané diody v propustném směru až do proudu 20 mA; z VACH stanovte prahové napětí $U_{TO_{ch}}$ při $I_F=20~mA$, které v charakteristice vyznačte. Z VACH odečtěte a graficky vyznačte katalogový údaj: napětí v propustném směru U_F .
- 3. Do VACH nakreslete pracovní zatěžovací přímku a určete pracovní bod diody pro $R_{SERIOVY}=270~\Omega,~U_{ZDROJE}=5~V,~I=16,16~mA.$
- 4. Stanovte grafickopočetní metodou velikost diferenciálního odporu diody r_d pro proudu $I_F = 18 \ mA$. Odečet v grafu vyznačte.
- 5. U všech měřených hodnot vypočítejte procentní chybu měření.
- 6. Pomocí systému UNIMA změřte VACH danné diody v propustném směru.

Poř. č.	PŘÍJMEI	ZNÍ a Jméno				Třída	Skupina	Školní rok	
26		VYKYDAL Jan				3A	3	2013	/2014
Datum měření Datum		odevzdání	Počet listů		Klasifikace				
						příprava	meření	protokol	obhajoba
14.4.		28.4.		9					
Protokol	Protokol o měření obsahuje:			Teoretický úvod T		Tabulky naměřených a vypočtených hodnot			
		Schéma		Vzor výpočtu					
		Tabulka použitých přístrojů		Grafy					
		Postup měř	ření	Závěr					

1 Teoretický úvod

Slovo dioda je uměle vytvořené slovo z řeckého slova "di" (dva) a koncovky slova elektroda. Polovodičová dioda má obvykle dva vývody nazývané anoda a katoda, anoda je připojena k části polovodičového krystalu označovaného P (Positive) a katoda k části polovodičového krystalu označovaného N (Negative). Diody de vyrábí dopováním polovodiče, tj. přidáváním příměsí do polovodiče. Jako příměsi se používají prvky které mají o jeden valenční elektron více pro vytvoření krystalu N, tyto prvky se nazývají donory, nebo prvky které mají o jeden valenční elektron méně, pro vytváření krystalů P, tyto prvky se nazývají akceptory.

1.1 výroba PN přechodu

Přechod se vyrábí jak již bylo zmíněno dotování polovodičové destičky příměsemi. Na polovodičovou destičku se položí nečistota která je tvořena atomy co mají ve valenční vrstvě o jeden elektron méně než polovodičová destička. Na druhou část destičky se položí nečistota která je tvořena elektrony, které mají ve valenční vrstvě o jeden elektron více než polovodičová destička. Tato destička se zahřeje v peci na teplotu přibližně $600\ ^{\circ}C$.

Po zatavení nečistot do polovodiče dojde k rekombinaci elektronů a děr na rozhraní přechodů PN. Po určitém čase bude vlivem rekombinace vytvořena zóna v oblasti přechodu PN, takřka bez volných nosičů náboje. Tento přechod bývá označován jako hradlová vrstva. Po vytvoření této hradlové vrstvi již k další rekombinaci nedochází. I přesto že mezi přechody PN hradlová vrstva je, dochází vlivem okolní teploty k velmi malému proudu elektronů přechodem PN.

1.2 PN v propustném směru

Připojíme-li anodu na kladný pól zdroje a katodu na záporný pól zdroje, a napětí zdroje bude dostatečné k překonání hradlové vrstvy, toto napětí bývá označované jako prahové napětí, začne přechodem PN procházet proud.

1.3 PN v závěrném směru

Připojíme li k anodě záporný pól zdroje a ke katodě kladný pól zdroje, dojde k přitažení volných elektronů ke katodě a pohybu děr k anodě, důsledkem této události dojde k rozšíření hradlové vrstvy. Tohoto jevu se používá u varikapů.

1.4 Zatěžovací přímka

Zatěžovací přímka slouží ke graficko-početní metodě analýzy obvodů s lineárním a nelineárním prvkem. V průsečíku zatěžovací přímky a VACH nelineárního prvku sestrojíme kolmice k osám x, y a odečteme z osy x napětí na nelineárním prvku a z osy y proud v obvodu.

Úsekový tvar přímky:

$$\frac{x}{p} + \frac{y}{q} = 1\tag{1}$$

kde:

\boldsymbol{x}	souřadnice x bodu náležícího této přímce
y	souřadnice y bodu náležícího této přímce
p	souřadnice x bodu ležícího na ose x
q	souřadnice v bodu ležícího na ose v

Odvození rovnice pro zatěžovací přímku:

$$U_D + U_R = U$$

$$U_D + IR = U$$

$$\frac{U_D}{U} + \frac{IR}{U} = 1$$
(2)

kde:

Odvození bodů zatěžovací přímky:

$$\frac{U_D}{U} + \frac{0}{U} = 1$$

$$U_D = U = U$$

$$P = [U; 0]$$

$$\frac{0}{U} + \frac{IR}{U} = 1$$

$$I = \frac{U}{I}$$

$$Q = \left[0; \frac{U}{R}\right]$$
(4)

kde:

1.5 Dynamický (diferenciální) odpor

Pokud pracujeme se součástkou který má nelineární VACH, tak si výpočty můžeme zjednodušit tak, že v jednom konkrétním pracovním bodě si spočítáme diferenciální odpor, pomocí tohoto diferenciálního odporu můžeme počítat s nelineárním prvkem v konkrétním pracovním bodu, jakoby byl lineární.

1.5.1 Graficko-početní metoda zjištění diferenciálního odporu

Na VACH si zvolíme konkrétní pracovní bod, k tomuto pracovnímu bodu sestrojíme tečnu. V libovolném místě k tečně doplníme dvě strany a sestrojíme pravoúhlí trojúhelník, přičemž strana splývající s tečnou bude přepona, viz. graf č. 2.

Výpočet diferenciálního odporu:

$$r_d = \frac{\Delta U}{\Delta I} \tag{5}$$

kde:

 r_ddiferenciální odpor ΔU ...odvěsna pravoúhlého trojúhelníku rovnoběžná s osou x ΔI ...odvěsna pravoúhlého trojúhelníku rovnoběžná s osou y

2 Schéma

Schéma č. 1: Zjišťování elektrod (anody a katody)

Schéma č. 2: Měření VACH

3 Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Typ	Evidenční číslo	
M_1	DMM	MASTECH MY-64	0655	
M_2	DMM	MASTECH MY-64	0659	
R_1	odporová dekáda	XL6	0025	
Z_1 (schéma č. 2)	zdroj ss. napětí	TESLA BK-127	0138	
_	měřící systém	UNIMA KS3	_	

Tabulka č. 1: Použité přístroje

4 Postup měření

4.1 Určený vývodů měřené diody

- Zapojíme měřící obvod dle schématu č. 1.
- Zjistíme proud procházející obvodem. Pokud obvodem proud neprochází, nebo je proud velmi malí, tak
 to znamená že dioda je buď přerušená a nebo je na kladný potenciál zdroje připojena katoda diody, v
 opačném případě je na kladný potenciál zdroje připojena anoda.

4.2 Měření VACH

- Zapojíme obvod dle schématu č. 2.
- Na regulovatelném ss. zdroji nastavujeme napětí.
- Pomocí měřících přístrojů (voltmetru a ampérmetru), si zaznamenáváme naměřené hodnoty.
- Naměřené hodnoty vyneseme ho souřadnicového systému a proložíme je křivkou.

4.3 Měření VACH měřícím systémem UNIMA

- Vzhledem ke komplexnosti a množství funkcí tohoto měřícího systému, postupuje dle dokumentace k tomuto přístroji.
- Kvůli chybějící možnosti exportovat grafická výstup ze systému UMINA, po naměření VACH vytvoříme snímek obrazovky, který dále zpracujeme rastvovímy editory k tomuto účelu určenými.

5 Tabulky naměřených a vypočítaných hodnot

U[V]	I [mA]	$\%_{chyba_U}$ [%]	$\%_{chyba_I}$ [%]
0	0	_	_
0,2016	0, 5	0,996	2,800
0,2323	1	0,930	1,800
0,2514	1,502	0,898	1,466
0,2652	2	0,877	1,300
0,2751	2, 5	0,864	1,200
0,2839	3	0,852	1,133
0,2986	4	0,835	1,050
0,3086	5	0,824	1,000
0,3186	6	0,814	0,967
0,3270	7	0,806	0,943
0,3344	8	0,799	0,925
0,3411	9	0,793	0,911
0,3471	10	0,788	0,900
0,3526	11	0,784	0,891
0,3580	12	0,779	0,883
0,3628	13	0,776	0,877
0,3671	14	0,772	0,871
0,3713	15	0,769	0,867
0,3753	16	0,766	0,863
0,3791	17	0,764	0,859
0,3815	18	0,762	0,856
0,3857	19	0,759	0,853
0,3890	20	0,757	0,850

Tabulka č. 2: Měření VACH diody DOA5

veličina	U[V]	$I_F [mA]$	komentář
$U_{TO_{MP}}$	0,2108	1	měřeno MY-64
U_F	0,2800	1	katalogový údaj
$U_{TO_{ch}}$	0,3890	20	měřeno MY-64

Tabulka č. 3: Prahových napětí

6 Vzory výpočtů

Výpočet relativní procentuální chyby digitu:

$$\delta_{digit\%} = \frac{\pm digit}{MH} \cdot 100 = \frac{\pm 0.01}{0.5} \cdot 100 \doteq \underline{\pm 2.\%}$$

Celková procentuální chyba:

$$\delta_{\%} = \pm \delta_{MH\%} \pm \delta_{digit\%} = \pm 0, 8 \pm 2 \doteq \underline{\pm 2, 8~\%}$$

Výpočet bodu zatěžovací přímky ležícího na ose x s využitím vztahu (3)

$$P = [U;0] = \underline{[5;0]}$$

Výpočet bodu zatěžovací přímky ležícího na ose y s využitím vztahu (4)

$$Q = \left[0; \frac{U}{R}\right] = \left[0; \frac{5}{270}\right] \doteq \underbrace{\boxed{[0; 0, 185]}}$$

Výpočet diferenciálního odporu s využitím vztahu (5)

$$r_d = \frac{\Delta U}{\Delta I} = \frac{0, 2}{5 \cdot 10^{-3}} = \underline{40 \ \Omega}$$

7 Grafy

Graf č. 1: Voltampérová charakteristika, vynesení $U_{TO_{ch}}$ při 20 mA

Graf č. 2: Konstrukce diferenciálního odporu

Graf č. 3: Zatěžovací přímka, při $U_{ZDROJE}~=~5~V$ a $R_{SERIOVY}~=~270~\Omega$

Graf č. 4: Výstup ze systému UNIMA

8 Závěr

8.1 Chyby měřících přístrojů

Procentuální chyba použitých měřících přístrojů (M_1 a M_2) nepřekročila Při měření stejnosměrných napětí 3 % a při měření střídavých napětí 1 %, tudíž by se dali považovat použité měřící přístroje za vhodné a naměřené hodnoty za dostatečně přesné. Maximální procentuální chyba byla při měření stejnosměrných napětí 0,996 %, při měření stejnosměrných proudů dosáhla maximální procentuální chyba hodnoty 2,8 %.

8.2 Zhodnocení

- 1. Byli zjištěny vývody použité diody DOA5 na základě měření, dále bylo změřeno prahové napětí diody $U_{TO_{MP}} = 0,2108\ V.$
- 2. Byla změřena VACH diody a zanesena do grafu, napětí $U_{TO_{MP}} = 0,3890~V$ při proudu $I_F = 20~mA$.
- 3. Byli spočítány souřadnice zatěžovací přímky (P=[5;0] a $Q\doteq[0;0,185]$), zatěžovací přímky byla zakreslena do grafu č. 3.
- 4. Velikost diferenciálního odporu byla stanovena na hodnotu $r_d = 40~\Omega$, při proudu $I_F = 18~mA$. Zjištění údajů pro výpočet bylo demonstrováno na grafu č. 2.
- 5. U všech změřených hodnot VACH byli spočítány procentní chyby měření, které byli shrnuty v tabulce č. 1.
- 6. Za pomoci měřícího systému UNIMA byla změřena VACH diody DOA5 v propustném směru do proudu $I_F = 20 \ mA$. Výsledná charakteristika je v grafu č. 4. Naměřené hodnoty systémem UNIMA, se podobají hodnotám naměřenými pomocí metody popsané v postupu měření (měření VACH), tudíž by se dali naměřené VACH považovat za správné.