

Fachbereich Mathematik

Seminar zu Lie-Algebren

Wurzelsysteme: einfache Wurzeln, Weyl-Gruppe und Irreduzibilität

Fabian Gabel

29.05.2016

Betreuer: Prof. Dr. rer. nat. Jan-Hendrik Bruinier, M.Sc. Markus Schwagenscheidt

Version vom 13. Mai 2016

Inhaltsverzeichnis

Einleitung		3
1	Grundlagen zu Wurzelsystemen	3
2	Einfache Wurzeln	7
3	Die Weyl-Gruppe	8
4	Irreduzible Wurzelsysteme	8
Literaturverzeichnis		

Einleitung

Basierend auf [Hum72, S.49-55] soll in dieser Ausarbeitung auf . . . eingegangen werden.

1 Grundlagen zu Wurzelsystemen

Dieser Abschnitt beinhaltet die für diese Arbeit benötigten Grundlagen zu Wurzelsystemen.

Im Folgenden bezeichne E stets einen EUKLIDischen Vektorraum, also einen \mathbb{R} -Vektorraum mit Skalarprodukt (\cdot,\cdot) . Unter einer $Spiegelung\ \sigma$ versteht man eine orthogonale Abbildung, welche eine Hyperebene, also einen Unterraum der Kodimension 1, punktweise fixiert und jeden Vektor des orthogonalen Komplements der Hyperebene auf sein Negatives abbildet. Jeder Vektor $\alpha \in E \setminus \{0\}$ induziert eine $Spiegelung\ \sigma_{\alpha}$ an der Hyperebene

$$P_{\alpha} := \operatorname{span}(\{\alpha\})^{\perp} = \{\beta \in E \mid (\beta, \alpha) = 0\}.$$

Definiert man nun $\langle \beta, \alpha \rangle := \frac{2(\beta, \alpha)}{(\beta, \alpha)}$, so gilt

$$\sigma_{\alpha}(\beta) = \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha = \beta - \langle \beta, \alpha \rangle \alpha,$$

denn $\sigma_{\alpha}(\alpha) = -\alpha$ und $\sigma_{\alpha}(\beta) = \beta$ für alle $\beta \in P_{\alpha}$. Man beachte, dass im Gegensatz zum Skalarprodukt, der Ausdruck $\langle \alpha, \beta \rangle$ nur linear in der ersten Variablen ist. Es gilt jedoch $\operatorname{sign}\langle \alpha, \beta \rangle = \operatorname{sign}(\alpha, \beta)$ für alle $\alpha, \beta \in E$.

Definition 1.1. Eine Teilmenge Φ des euklidischen Vektorraums E heißt Wurzelsystem in E, falls folgende Bedingungen erfüllt sind:

- (R1) Die Menge Φ ist endlich, sie spannt E auf und sie enthält nicht die 0.
- (R2) Falls $\alpha \in \Phi$, so sind $\pm \alpha$ die einzigen Vielfachen von α in Φ .
- (R3) Falls $\alpha \in \Phi$, so lässt die Spiegelung σ_{α} die Menge Φ invariant, also $\sigma_{\alpha}(\Phi) = \Phi$.
- (R4) Falls $\alpha, \beta \in \Phi$, dann ist $\langle \beta, \alpha \rangle \in \mathbb{Z}$.

Oft lassen sich Eigenschaften von Wurzelsystemen, bereits anhand der Eigenschaften von Erzeugern dieses Wurzelsystems ausmachen.

Definition 1.2. Eine Teilmenge Δ von Φ heißt *Fundamentalsystem*, falls die folgenden Bedingungen erfüllt sind:

- (B1) Es ist Δ eine Vektorraumbasis von E.
- (B2) Jede Wurzel $\beta \in \Phi$ lässt sich schreiben als $\beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha$ mit ganzzahligen Linearfaktoren k_{α} die alle dasselbe Vorzeichen besitzen.

Die Elemente von Δ bezeichnet man auch als *einfache* Wurzeln.

Bemerkung. Einen Beweis dafür, dass jedes Fundamentalsystem eine Basis besitzt, findet man zum Beispiel in [Hum72, S.48] oder [EW06, S.116]. Aus Eigenschaft (B1) von Fundamentalsystemen folgt sofort, dass die Linearfaktoren in (B2) eindeutig bestimmt sind. Es lässt sich daher die Höhenfunktion

$$\operatorname{ht}(\beta) := \sum_{\alpha \in \Delta} k_{\alpha}$$

Abbildung 1: Das Wurzelsystem A2

definieren. Entsprechend des Vorzeichens der Höhenfunktion bezeichnet man Wurzeln auch als *positiv* oder *negativ*. Einfache Wurzeln sind stets positiv. Zudem induziert jedes Fundamentalsystem Δ eine Halbordnung auf Φ durch

$$\beta \leq \alpha$$
 gilt genau dann, wenn $\alpha - \beta$ positiv ist oder $\alpha = \beta$ gilt.

Bezüglich eines Wurzelsystems Φ lassen sich auch Vektoren des umfassenden Vektorraums klassifizieren.

Definition 1.3. Sei Φ ein Wurzelsystem in E. Ein Vektor $\gamma \in E$ heißt $regul\"{a}r$, falls $\gamma \in E \setminus \bigcup_{\alpha \in \Phi} P_{\alpha}$. Die Familie $(P_{\alpha})_{\alpha \in \Phi}$ liefert eine Partition von E in maximal zusammenhängende Mengen, die sogenannten WEYL-Kammern. Die jedem $\gamma \in E$ eindeutig zugeordnete WEYL-Kammer zuordnen, werde mit $\mathfrak{C}(\gamma)$ bezeichnet.

Liegen zwei reguläre Wurzeln γ, γ' in derselben WEYL-Kammer, so liegen sie bezüglich allen Hyperebenen P_{α} derselben Seite, was bedeutet, dass $\mathrm{sign}(\gamma, \alpha) = \mathrm{sign}(\gamma', \alpha)$ gilt, für alle $\alpha \in \Phi$. Bezeichnet man mit

$$\Phi^+(\gamma) := \{ \alpha \in \Phi \mid (\gamma, \alpha) > 0 \}$$

die Menge aller Wurzeln, die mit γ einen spitzen Winkel einschließen, so gilt in diesem Falle $\Phi^+(\gamma) = \Phi^+(\gamma')$. Bezeichnet man zudem mit $\Delta(\gamma)$ das Fundamentalsystem aller Wurzeln $\alpha \in \Phi^+(\gamma)$, die sich als Summe $\alpha = \beta_1 + \beta_2$ zweier positiver Wurzeln $\beta_1, \beta_2 \in \Phi^+(\gamma)$ schreiben lassen, so gilt zusätzlich $\Delta(\gamma) = \Delta(\gamma')$. Dass $\Delta(\gamma)$ tatsächlich ein Fundamentalsystem von Φ ist, lässt sich in [Hum72, S.48] nachlesen. Wurzeln, die sich in der oben genannten Weise ausdrücken lassen, bezeichnet man auch als *zerlegbar*.

Das folgende Lemma fasst nochmals die vorangehenden Überlegungen zusammen.

Lemma 1.4. Seien $\gamma, \gamma' \in E$ regulär bezüglich des Wurzelsystems Φ . Dann folgt aus $\mathfrak{C}(\gamma) = \mathfrak{C}(\gamma')$, dass $\Phi^+(\gamma) = \Phi^+(\gamma')$. Dies ist wiederum genau dann der Fall, wenn $\Delta(\gamma) = \Delta(\gamma')$ gilt. Jeder WEYL-Kammer $\mathfrak{C}(\gamma)$ entspricht also genau ein Fundamentalsystem $\Delta(\gamma)$.

Die soeben eingeführten Begriffe veranschaulicht Abbildung 1.

Definition 1.5. Sei Φ ein Wurzelsystem in E mit Fundamentalsystem Δ . Gilt für ein reguläres $\gamma \in E$, dass $\Delta = \Delta(\gamma)$, so bezeichnet man $\mathfrak{C}(\Delta) := \mathfrak{C}(\gamma)$ als Fundamental-kammer bezüglich Δ .

Wir betrachten nun einen Spezialfall von Spiegelungsgruppen. Allgemeine Spiegelungsgruppen werden in [Hum92] behandelt.

Definition 1.6. Sei Φ ein Wurzelsystem in E. Dann bezeichnet \mathcal{W} die von den Spiegelungen σ_{α} , $\alpha \in \Phi$, erzeugte Untergruppe der allgemeinen linearen Gruppe $\mathrm{GL}(E)$. Man nennt \mathcal{W} die WEYL-*Gruppe* von Φ .

Es lassen sich nun unterschiedliche von W induzierte Gruppenoperationen betrachten. Über deren Wohldefiniertheit gibt die folgende Proposition Auskunft. Mit weiteren Eigenschaften dieser Gruppenoperationen behandelt Abschnitt 3.

Proposition 1.7. Sei Φ ein Wurzelsystem über E mit WEYL-Gruppe W. Dann gelten für alle $\gamma, \gamma' \in E$ und $\sigma \in W$ die folgenden Aussagen:

- (1) W operiert auf der Menge der regulären Elemente: Es ist $\sigma(\gamma)$ genau dann regulär, wenn γ regulär ist.
- (2) Aus $\mathfrak{C}(\gamma) = \mathfrak{C}(\gamma')$ folgt, dass auch $\mathfrak{C}(\sigma(\gamma)) = \mathfrak{C}(\sigma(\gamma'))$. Es operiert \mathcal{W} auf der Menge der WEYL-Kammern $\{\mathfrak{C}(\gamma) \mid \gamma \text{ regulär}\}$ durch $\mathfrak{C}(\sigma(\gamma)) = \sigma(\mathfrak{C}(\gamma))$.
- (3) W operiert auf der Menge der Fundamentalsysteme $\{\Delta(\gamma) \mid \gamma \text{ regulär}\}$:

 Ist Δ ein Fundamentalsystem für Φ , so auch $\sigma(\Delta)$.
- (4) Die unter (3) und (4) beschriebenen Gruppenoperationen sind kompatibel in dem Sinne, dass $\sigma(\Delta(\gamma)) = \Delta(\sigma(\gamma))$.

Beweis. (1): Angenommen $\sigma(\gamma)$ sein nicht regulär, dann existiert ein $\alpha \in \Phi$, sodass $\sigma(\gamma) \in P_{\alpha}$. Damit folgt $\sigma(\gamma) = \sigma_{\alpha}\sigma(\gamma)$, da σ_{α} Elemente aus P_{α} fixiert. Hieraus folgt nun $\gamma = \sigma^{-1}\sigma_{\alpha}\sigma(\gamma) = \sigma_{\sigma(\alpha)}(\gamma)$, was wiederum $\gamma \in P_{\sigma(\alpha)}$ impliziert. Zu Beginn wurde jedoch γ als regulär vorausgesetzt. Es muss also auch $\sigma(\gamma)$ regulär sein.

Die Umkehrung der Aussage folgt aus der gezeigten Implikationsrichtung durch Anwendung der Spiegelung σ^{-1} auf $\sigma(\gamma)$.

(2): Es gelte $\mathfrak{C}(\gamma) = \mathfrak{C}(\gamma')$. Angenommen $\mathfrak{C}(\sigma(\gamma)) \neq \mathfrak{C}(\sigma(\gamma'))$. Dann existiert ein $\alpha \in \Phi$, sodass $(\sigma(\gamma), \alpha) > 0$ während andererseits $(\sigma(\gamma'), \alpha) < 0$. Wir betrachten nun die Abbildung $x \mapsto (\sigma(x), \alpha)$. Diese ist als Linearform stetig bezüglich der EUKLIDischen Topologie auf E. Da $\mathfrak{C}(\gamma)$ eine zusammenhängende Menge ist, folgt mit dem Zwischenwertsatz [Bar15, S.232], dass ein reguläres $x \in \mathfrak{C}(\gamma)$ existiert mit $(\sigma(x), \alpha) = 0$. Dies bedeutet

jedoch gerade, dass $\sigma(x) \in P_{\alpha}$ und damit wäre $\sigma(x)$ nicht regulär im Widerspruch zu (1). Es muss also auch $\mathfrak{C}(\sigma(\gamma)) = \mathfrak{C}(\sigma(\gamma'))$ gelten.

Sei nun für den zweiten Teil der zu beweisenden Aussage $x \in \mathfrak{C}(\sigma(\gamma))$. Daraus folgt $\mathfrak{C}(x) = \mathfrak{C}(\sigma(\gamma))$. Dann gilt nach der soeben bewiesenen Aussage auch $\mathfrak{C}(\sigma^{-1}(x)) = \mathfrak{C}(\gamma)$. Insbesondere gilt also $\sigma^{-1}(x) \in \mathfrak{C}(\gamma)$ und damit auch $x \in \sigma(\mathfrak{C}(\gamma))$

Die umgekehrte Ungleichung folgt analog: Ist $x \in \sigma(\mathfrak{C}(\gamma))$, so ist $\sigma(x) \in \mathfrak{C}(\gamma)$, also $\mathfrak{C}(\sigma(x)) = \mathfrak{C}(\gamma)$. Wie schon gezeigt, folgt daraus unter Betrachtung von Bildern unter $\sigma^{-1} = \sigma$ sofort $\mathfrak{C}(x) = \mathfrak{C}(\sigma(\gamma))$, also insbesondere $x \in \mathfrak{C}(\sigma(\gamma))$.

(3): Da σ als orthogonale Abbildung insbesondere injektiv ist, folgt, dass $\sigma(\Delta)$ wieder ein System linear unabhängiger Vektoren und damit aufgrund von (B1) wieder eine Basis von E ist.

Ist nun $\beta \in \Phi$ gegeben, so gilt $\sigma(\beta) = \sigma(\sum_{\alpha \in \Delta} k_{\alpha}\alpha) = \sum_{\alpha \in \Delta} k_{\alpha}\sigma(\alpha) = \sum_{\sigma(\alpha) \in \sigma(\Delta)} k_{\alpha}\sigma(\alpha)$ aufgrund der Linearität von σ . Die Vorzeichen der Linearfaktoren k_{α} bleiben zudem unverändert, womit (B2) folgt. Damit ist auch $\sigma(\Delta)$ ein Fundamentalsystem.

(4): Wir stellen zunächst fest, dass aufgrund der Aussage (3), die zu zeigende Gleichheit in dem Sinne wohldefiniert ist, dass $\sigma(\Delta(\gamma))$ als Bild eines Fundamentalsystems wieder ein Fundamentalsystem darstellt.

Sei nun $\sigma(\alpha) \in \sigma(\Delta(\gamma))$. Da $\alpha \in \Delta(\gamma)$, gilt definitionsgemäß $(\alpha, \gamma) > 0$. Spiegelungen erhalten als Isometrien das Skalarprodukt, es gilt also auch $(\sigma(\alpha), \sigma(\gamma)) > 0$. Dies wiederum impliziert $\sigma(\alpha) \in \Phi^+(\sigma(\gamma))$. Angenommen $\sigma(\alpha)$ wäre eine zerlegbare Wurzel. Dann ist auch α zerlegbar, da σ bijektiv ist. Dies steht jedoch im Wiederspruch dazu, dass mit $\alpha \in \Delta$ die Wurzel α als einfach vorausgesetzt wurde. Also muss $\sigma(\alpha)$ auch einfach sein, womit $\sigma(\alpha) \in \sigma(\Delta(\gamma))$ folgt. Das bedeutet, dass $\sigma(\Delta(\gamma)) \subseteq \Delta(\sigma(\gamma))$.

Da σ bijektiv ist und beide Mengen als Teilmengen des endlichen Wurzelsystems Φ auch endlich sind, folgt hiermit bereits die Gleichheit.

2 Einfache Wurzeln

In diesem Abschnitt sollen einige Eigenschaften einfacher Wurzeln bewiesen werden. Im Folgenden bezeichne Δ eine fest gewählte Basis des Wurzelsystems Φ im EUKLIDischen

8 LITERATUR

Vektorraum E.

Lemma 2.1. *Ist* $\alpha \in \Phi$ *eine positive aber nicht einfache Wurzel, so ist für alle* $\beta \in \Delta$ *die Differenz* $\alpha - \beta$ *eine notwendig positive Wurzel.*

Korollar 2.2. Jedes $\beta \in \Phi^+$ lässt sich als Linearkombination $\alpha_1 + \cdots + \alpha_k$ mit $\alpha_i \in \Delta$ so schreiben, dass jede Partialsumme $\alpha_1 + \cdots + \alpha_i$, $i \in \{1, \dots, k\}$, eine Wurzel ist.

Lemma 2.3. Sei $\alpha \in \Delta$. Dann permutiert die Spiegelung σ_{α} alle von α verschiedenen Wurzeln, also

$$\sigma_{\alpha}(\Phi^+ \setminus \{\alpha\}) = \Phi^+ \setminus \{\alpha\}.$$

Korollar 2.4. Sei $\delta := \frac{1}{2} \sum_{\beta \succ 0} \beta$. Dann gilt $\sigma_{\alpha}(\delta) = \delta - \alpha$ für alle $\alpha \in \Delta$.

3 Die Weyl-Gruppe

4 Irreduzible Wurzelsysteme

Literatur

- [Bar15] BARTSCH, René: *Allgemeine Topologie*. 2. Auflage. Berlin Boston : De Gruyter, 2015
- [EW06] ERDMANN, K.; WILDON, M.J.: *Introduction to Lie Algebras*. Springer, 2006 (Springer Undergraduate Mathematics Series)
- [Hum72] HUMPHREYS, J.E.: *Introduction to Lie Algebras and Representation Theory*. Springer, 1972 (Graduate Texts in Mathematics)
- [Hum92] HUMPHREYS, J.E.: *Reflection Groups and Coxeter Groups*. Cambridge University Press, 1992 (Cambridge Studies in Advanced Mathematics)