OpenArray BIOIBERICA: Expression Analysis

 ${\bf imputant\ inicialment\ NAs}$

May 29, 2019

Les dades han de llegir-se en format .csv o .xlsx i han de veure's al full1 del fitxer. Cap nom pot contenir caràcters estranys (ni ni % ni) ni lletres gregues; recomanem substituir α per alf, β per bet, γ per gam, etc. La primera fila ha de contenir el nom de la variable. Al full2 del fitxer, hi ha d'haver una columna amb el nom del gen (exactament igual que com apareix a la primera fila del full1) i una altra columna amb dues lletres que representin la funcionalitat del gen (BF, IR, etc.).

Si hi ha zeros, es transformen en NA.

Tractament dels NA's i logaritme

El tractament dels NA's és el següent:

- 1. S'eliminen aquelles i files (mostres) sense cap observació d'expressió vàlida.
- 2. S'eliminen aquelles columnes (gens) que, per a algun tractament, tinguin el 50% o més de rèpliques missing (si del.badRows=T) o un nombre de rèpliques mínim especificat a noNAmin a la funció gestioNA(data, removeO=TRUE, del.badRows=TRUE, noNaMin=NULL).
- 3. Un cop eliminades les columnes i files segons els criteris anteriors, s'imputen els NA's restants amb la llibreria mice. Aquesta opció no és recomanable si els valors faltants segueixen alguna pauta, com ara afectar més un o altre tractament, com sembla que és el cas.
- 4. En acabar el tractament dels NA, es pren logaritme decimal de les dades.

1.1 ANOVA diferències entre tractaments, per gens

	gen-func	statistic	p-value	p-value FDR
TFF3	BF	4.289870	0.035226	0.133076
CLDN15	BF	7.527711	0.006030	0.041003
HNMT	EH	14.110654	0.000441	0.014985
ANPEP	EH	4.577323	0.029541	0.125550
GCG	EH	3.030333	0.080627	0.195808
TLR4	IR	10.102885	0.001924	0.021805
TGFbeta1	IR	3.385014	0.063217	0.165338
IFNGR1	IR	4.660779	0.028093	0.125550
REG3G	IR	7.876584	0.005107	0.041003
GBP1	IR	5.711002	0.015361	0.087047
SLC15A1	NT	3.540070	0.056988	0.161465
SLC13A1	NT	3.644385	0.053191	0.161465
SLC11A2	NT	3.862233	0.046159	0.156939
SOD2	OX	11.029692	0.001330	0.021805
HSPA4	S	2.735336	0.099364	0.225225

Table 1.1: P-valors de l'ANOVA entre tractaments pel teixit **Jejunum**, es mostren només els gens amb diferències significatives. Les dades faltants (NA) s'han imputat.

Important: **FDR** significa false discovery rate. Per evitar els falsos positius, i decidir si un **p-valor té significació experimental** en el conjunt de tests que es fan, se solen fer correccions. Una de les més utilitzades és la de Benjamini-Hochberg que veieu a la columna FDR p-value. Interpretació: a nivell experimental només s'haurien de considerar significatius del conjunt experimental aquells tests en els que el FDR p-value estigui per sota de determinat threshold, per exemple 0.1. En aquest cas, a l'Ili no n'hi ha cap d'experimentalment significatiu, mentre que al Jejú sí.

	gen-func	statistic	p-value	p-value FDR
TFF3	$_{\mathrm{BF}}$	3.999960	0.062501	0.310998
OCLN	BF	5.127328	0.036886	0.287589
MUC2	BF	5.048447	0.038189	0.287589
MUC13	BF	4.619160	0.046385	0.287589
GCG	EH	7.192223	0.016315	0.287589
GBP1	IR	5.384009	0.033013	0.287589
SLC15A1	NT	3.770276	0.070225	0.310998

Table 1.2: P-valors de l'ANOVA entre tractaments pel teixit **Ileum**, es mostren només els gens amb diferències significatives. Les dades faltants (NA) s'han imputat.

No obstant, ens guiarem per la singificació a cada gen (ANOVA p-value) i mostrarem el FDR com a informació addicional. En l'ANOVA, els p-valors són significatius sí són < 0.05 i quasi-significatius si són < 0.1.

Seguidament, mostrem les taules amb tots els gens, siguin significatius o no.

	statistic	p.value	p.BH
TFF3	4.289870	0.035226	0.133076
OCLN	1.688072	0.220406	0.356847
ZO1	2.247876	0.142361	0.268905
CLDN15	7.527711	0.006030	0.041003
MUC2	1.425364	0.273253	0.403940
MUC13	1.619238	0.233026	0.360131
SI	0.922862	0.420254	0.549563
DAO1	1.228128	0.322537	0.456927
HNMT	14.110654	0.000441	0.014985
ANPEP	4.577323	0.029541	0.125550
GCG	3.030333	0.080627	0.195808
IGF1R	0.188897	0.829947	0.905717
ALPI	0.401128	0.677019	0.801247
TLR4	10.102885	0.001924	0.021805
TGFbeta1	3.385014	0.063217	0.165338
CCL20	0.703446	0.511554	0.644179
IFNGR1	4.660779	0.028093	0.125550
REG3G	7.876584	0.005107	0.041003
PPARGC1alfa	2.592927	0.110161	0.234092
FAXDC2	0.000397	0.999603	0.999603
GBP1	5.711002	0.015361	0.087047
IL8	2.065524	0.163658	0.292861
SLC5A1	0.350626	0.710258	0.804959
SLC16A1	0.007725	0.992309	0.999603
SLC15A1	3.540070	0.056988	0.161465
SLC13A1	3.644385	0.053191	0.161465
SLC11A2	3.862233	0.046159	0.156939
SLC30A1	2.260270	0.141033	0.268905
SLC39A4	1.018607	0.386361	0.525451
GPX2	0.391191	0.683416	0.801247
SOD2	11.029692	0.001330	0.021805
HSPB1	1.719791	0.214854	0.356847
HSPA4	2.735336	0.099364	0.225225
NR3C1	0.161487	0.852440	0.905717

Table 1.3: P-valors de l'ANOVA entre tractaments pel teixit **Jejunum**. Les dades faltants (NA) s'han imputat. Es mostren tots els gens, sigui significaius o no.

	statistic	p.value	p.BH
TFF3	3.999960	0.062501	0.310998
OCLN	5.127328	0.036886	0.287589
ZO1	1.551361	0.269552	0.491535
MUC2	5.048447	0.038189	0.287589
MUC13	4.619160	0.046385	0.287589
SI	0.425341	0.667502	0.823569
DAO1	0.815407	0.476111	0.737972
HNMT	0.044331	0.956871	0.984280
ANPEP	2.093045	0.185739	0.411278
GCG	7.192223	0.016315	0.287589
IGF1R	2.465014	0.146542	0.411278
ALPI	2.511450	0.142406	0.411278
TLR4	0.981080	0.415859	0.678506
TGFbeta1	2.177256	0.175816	0.411278
CCL20	0.387651	0.690735	0.823569
IFNGR1	1.982830	0.199808	0.412937
REG3G	0.104091	0.902344	0.984280
GBP1	5.384009	0.033013	0.287589
IL8	0.467250	0.642804	0.823569
SLC5A1	2.313421	0.161132	0.411278
SLC16A1	0.066077	0.936565	0.984280
SLC15A1	3.770276	0.070225	0.310998
SLC13A1	1.292670	0.326243	0.561862
SLC11A2	1.843052	0.219625	0.425523
SLC30A1	0.643417	0.550667	0.775940
SLC39A4	2.270356	0.165604	0.411278
GPX2	0.015876	0.984280	0.984280
SOD2	0.418557	0.671611	0.823569
HSPB1	0.028564	0.971939	0.984280
HSPA4	2.158540	0.177963	0.411278
NR3C1	0.645271	0.549789	0.775940

Table 1.4: P-valors de l'ANOVA entre tractaments pel teixit Ileum. Les dades faltants (NA) s'han imputat. Es mostren tots els gens, sigui significaius o no.

1.2 Heatmap

La distància entre genss depèn del coeficient de correlació, concretament $d = \frac{1}{2}(1-r)$. La distància entre mostres és l'Euclidiana. El mètode d'enllaç jeràrquic és l'anomenat *complete* (veí més llunyà) per als gens i ward.D2 per a les mostres.

1.2.1 Jejunum

La clau de colors correspon als nivells d'expressió. No hi ha valors perduts.

Al dendrograma de l'esquerra de la imatge hi ha els clústers dels gens, els 6 colors corresponen a les 6 funcionalitats gèniques. No es veu cap agrupació clara per funcionalitat (els colors del dendrograma estan força barrejats). Hi ha un gen outlier REG3G amb nivells d'expressió més alts en algunes de les mostres. El dendrograma a la part superior de la imatge correspon amb els colors negre, taronja i vermell segons la llegenda. La mostra Sample 22 (CON2) forma un clúster separat que destaca per nivells d'expressió més baixos (colors blaus). Sample 16 (SDP-PDP) també destaca lleugerament per tenir nivells d'expressió

més alts. Llevat de la mostra singular (sample22), es podrien considerar tres clústers amb les mostres de CON2 i SPD-PDP més barrejades. Les mostres tractades amb SDP2 queden més agrupades entre sí formant el clúster central i es caracteritzen per nivells d'expressió més intermedis. En general, els nivells d'expressió més elevats pertoquen a les mostres de SDP-PDP i els més baixos a les mostres de CON2.

Les similituds i diferències entre tractaments que veiem en un clúster (dendrograma) no són del mateix tipus que hem tractat en un test anova. Més explícitament, en l'ANOVA és comparen les mitjanes dels tractaments a cada gen per separat (tenint òbviament en compte les desviacions típiques). En l'anàlisi de clústers, les agrupacions entre tractaments es basen en el comportament en el conjunt dels gens comparant les distàncies entre mostres en tots els gens alhora.

1.2.2 Ilenum

1.3 Tukey

1.3.1 Jejunum

	T1.mean	T1.sd	T2.mean	T2.sd	T3.mean	T3.sd	2-1	3-1	3-2
BF.TFF3	0.012	0.215	0.023	0.072	0.249	0.116	0.991	0.049	0.061
BF.CLDN15	-0.319	0.166	-0.123	0.180	0.027	0.048	0.092	0.005	0.250
EH.HNMT	-0.069	0.070	-0.049	0.086	0.182	0.101	0.914	0.001	0.001
EH.ANPEP	0.143	0.285	0.132	0.119	0.493	0.228	0.996	0.050	0.043
EH.GCG	0.005	0.174	0.043	0.057	0.264	0.278	0.934	0.087	0.156
IR.TLR4	0.158	0.171	0.103	0.123	0.447	0.085	0.757	0.008	0.002
IR.TGFbeta1	0.136	0.216	0.013	0.090	0.239	0.066	0.329	0.487	0.053
IR.IFNGR1	-0.175	0.125	-0.140	0.106	0.028	0.115	0.865	0.030	0.074
IR.REG3G	1.282	0.530	0.207	0.306	0.810	0.553	0.004	0.255	0.122
IR.GBP1	0.346	0.199	0.211	0.224	0.606	0.141	0.470	0.105	0.012
NT.SLC15A1	-0.012	0.253	0.021	0.093	0.347	0.339	0.971	0.069	0.102
NT.SLC13A1	-0.176	0.408	-0.023	0.255	0.390	0.389	0.739	0.048	0.169
NT.SLC11A2	-0.439	0.066	-0.210	0.241	-0.044	0.346	0.249	0.039	0.500
OX.SOD2	0.013	0.073	-0.031	0.096	0.222	0.112	0.711	0.006	0.001
S.HSPA4	-0.220	0.053	-0.137	0.134	0.027	0.287	0.701	0.086	0.303

Table 1.5: Tukey:comparacions múltiples Gene-Tractament

Només s'han comparat dos a dos els gens amb diferències significatives a l'ANOVA de la Table 1.1. *Nota:* Veiem que les diferències significatives a la majoria de gens són entre SDP-PDP i els altres tractaments (un d'ells o ambdós), gairebé mai no hi ha diferències significatives entre CON2 i SDP2.

1.3.2 Ilenum

	T1.mean	T1.sd	T2.mean	T2.sd	T3.mean	T3.sd	2-1	3-1	3-2
BF.TFF3	0.063	0.120	0.233	0.198	0.472	0.224	0.512	0.056	0.244
BF.OCLN	0.015	0.081	0.091	0.058	0.246	0.135	0.586	0.036	0.127
BF.MUC2	0.152	0.139	0.336	0.185	0.653	0.271	0.525	0.036	0.149
BF.MUC13	0.097	0.218	0.313	0.163	0.492	0.138	0.277	0.038	0.346
EH.GCG	-0.021	0.310	0.091	0.203	0.512	0.050	0.754	0.021	0.043
IR.GBP1	-0.007	0.225	-0.143	0.074	0.277	0.226	0.616	0.169	0.029
NT.SLC15A1	-0.083	0.236	-0.115	0.278	0.410	0.349	0.989	0.137	0.085

 Table 1.6:
 Tukey:
 comparacions múltiples Gene-Tractament

Nota: Com al Jejú, veiem diferències significatives a la majoria de gens entre SDP-PDP i els altres tractaments (un d'ells o ambdós).

1.4 Línies de mitjanes dels gens, per tractament

1.4.1 Jejunum

Ordenat per família gènica primer i dins de la família per T1 decreixent

Les línies puntejades indiquen els gens en els quals hi les ha diferències significatives més rellevants entre les mitjanes dels tractaments. No es visualitzen les desviacions típiques i, per tant, la significació pot no coincidir amb les distàncies verticals més elevades.

El tractament SDP-PDP tendeix a tenir nivells més elevats d'expressió en mitjana, de fet és superior en tots els gens amb diferències significatives (exceptuant REG3G).

Ordenat per ordre decreixent d'expressió en el tractament T1

Com a la imatge anterior, però encara més clarament, el tractament SDP-PDP té valors més elevats en mitjana en tots els gens que presenten diferències significatives, menys en un d'ells.

1.4.2 IlenumOrdenat per família gènica primer i dins de la família per CON2 decreixent

Compte que l'escala vertical no és la mateixa que pel Jejú, per això les oscil·lacions aparenten ser més significatives quan realment no ho són !

Tal i com passa en el Jejú, també a l'Ili el tractament SDP-PDP té valors més elevats en mitjana en tots els gens que presenten diferències significatives.

Ordenat per ordre decreixent d'expressió en el tractament T1

Mateixos comentaris que al gràfic anterior.

1.5 Components principals

1.5.1 Variables=mitjanes de tractaments, casos=gens

Una primera versió de components principals considera les variables=mitjanes dels tractaments (3 variables en aquest cas) i casos=gens. No és la versió estàndard. S'òbvia el detall de les mostres i només ens quedem amb els valors mitjans.

Jejunum: Variables=mitjanes de tractaments, casos=gens

Amb dues components s'explica el 93% (85.60+7.41) de la variabilitat mitjana dels tractaments, en el cas del Jejú.

Important: les fletxes corresponen a les mitjanes dels tractaments en aquest cas. Les mitjanes de tractaments que tenen les fletxes amb un angle menor estan més correlacionades positivament, en el sentit que els seus nivells d'expressió mitjans en les gràfiques de línies pugen i baixen simultàniament d'una manera més evident (Fig. 1.4.1). Correlació negativa seria un angle proper a 180 graus i indicaria que quan un s'expressa més en un tractament, en l'altre menys.

En aquest cas, les mitjanes dels tres tractaments estan positivament correlacionats, però CON2 i SDP2 tenen una correlació més elevada.

A la gràfica de dispersió els punts són els gens (no les mostres) i els colors són les funcions gèniques. No s'aprecien agrupacions clares de colors.

Ilenum: Variables=mitjanes de tractaments, casos=gens

1.5.2 Components principals: Variables=gens, casos=mostres

La segona versió de components principals és l'estàndard. Considera les variables=gens i casos=mostres. Només es mostren les fletxes d'aquells gens que són significatius i alhora estan ben representatts (qualitat de representació superior al 50% en el pla). Aquest mètode té globalment una qualitat de representació una mica més baixa perquè té el compte els nivells d'expressió de totes les mostres, no només els nivells mitjans en els tractaments.

Jejunum: Variables=gens, casos=mostres

Les dues imatges superiors corresponen a les dues primeres components, les dues ingeriors a les components 1 i 3. La variabilitat explicada per les dues primeres components és del 57.94% (39.31+18.63),

la tercera component explica un 8.49%. En les dues primeres components, totes les mostres de SDP-PDP estan al primer quadrant, indicant valors d'expressió més elevada en tots els gens significatius i amb bona qualitat de repreentació (degut a que tots els gens també estan al primer quadrant).

Mirant conjuntament les quatre gràfiques, també apreciem que les mostres de color taronja (sDP2) presenten nivells d'expressió mitjans en les components 1 i 3 i mitjans-baixos en la segona component.

$Ilenum:\ Variables=gens,\ casos=mostres$

Els resultats són similars al Jejú, amb una tendència a tenir valors elevats d'expressió en les mostres de SDP-PDP (en 3 de les quatre mostres).