Saddle point problems in liquid crystal modelling

Alison Ramage
Dept of Mathematics
University of Strathclyde
Glasgow, Scotland

Eugene C. Gartland, Jr. Dept of Mathematics Kent State University Ohio, USA

Liquid Crystals

occur between solid crystal and isotropic liquid states

- may have different equilibrium configurations
- switch between stable states by altering applied voltage, magnetic field, boundary conditions, ...

Liquid Crystal Displays

twisted nematic device

Static and Dynamic Continuum Theory of Liquid Crystals, lain W. Stewart (2004)

Modelling: Director-based models

- director: average direction of molecular alignment unit vector $\mathbf{n} = (\cos\theta\cos\psi, \cos\theta\sin\psi, \sin\theta)$
- order parameter: measure of orientational order

$$S = \frac{1}{2} < 3\cos^2\theta_m - 1 >$$

Finding Equilibrium Configurations

minimise the free energy density

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \psi, \nabla \theta, \nabla \psi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) d\mathcal{S}$$
$$F_{bulk} = F_{elastic} + F_{electrostatic}$$

- if fixed boundary conditions are applied, surface energy term can be ignored
- solutions with least energy are physically relevant
- use calculus of variations: Euler-Lagrange equations

Elastic Energy

Frank-Oseen elastic energy

$$F_{elastic} = \frac{1}{2}K_1(\nabla \cdot \mathbf{n})^2 + \frac{1}{2}K_2(\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + \frac{1}{2}K_3(\mathbf{n} \times \nabla \times \mathbf{n})^2 + \frac{1}{2}(K_2 + K_4)\nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}]$$

Frank elastic constants

$$K_1$$
 splay K_2 twist K_3 bend $K_2 + K_4$ saddle-splay

One-Constant Approximation

set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

vector identities

$$(\nabla \times \mathbf{n})^2 = (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + (\mathbf{n} \times \nabla \times \mathbf{n})^2$$
$$\nabla (\mathbf{n} \cdot \mathbf{n}) = 0$$
$$[(\nabla \cdot \mathbf{n})^2 + (\nabla \times \mathbf{n})^2] + \nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}] = \|\nabla \mathbf{n}\|^2$$

• elastic energy $F_{elastic} = \frac{1}{2}K\|\nabla\mathbf{n}\|^2$

Electrostatic Energy

- applied electric field \mathbf{E} of magnitude E
- electrostatic energy

$$F_{electrostatic} = -\frac{1}{2}\epsilon_0 \epsilon_{\perp} \mathbf{E}^2 - \frac{1}{2}\epsilon_0 \epsilon_a (\mathbf{n} \cdot \mathbf{E})^2$$

• dielectric anisotropy $\epsilon_a = \epsilon_{\parallel} - \epsilon_{\perp}$

$$\epsilon_a = \epsilon_{\parallel} - \epsilon_{\perp}$$

 permittivity of free space ϵ_0

Model Problem: Twisted Nematic Device

• two parallel plates distance d apart

• strong anchoring parallel to plate surfaces (n fixed)

• rotate one plate through $\pi/2$ radians

• electric field $\mathbf{E} = (0, 0, E(z))$, voltage V

Equilibrium Equations 1

• equilibrium equations on $z \in [0, d]$

$$F = \frac{1}{2} \int_0^d \left\{ K \|\nabla \mathbf{n}\|^2 - \epsilon_0 \epsilon_\perp E^2 - \epsilon_0 \epsilon_a (\mathbf{n} \cdot \mathbf{E})^2 \right\} dz$$

- director $\mathbf{n} = (u, v, w)$, $|\mathbf{n}| = 1$
- constraint applied via Lagrange multipliers λ
- electric potential ϕ : $E = \frac{d\phi}{dz}$
- unknowns u, v, w, ϕ, λ

Equilibrium Equations 2

• nondimensionalised equilibrium equations on $z \in [0, 1]$

$$F = \frac{1}{2} \int_0^1 \left[(u_z^2 + v_z^2 + w_z^2) - \alpha^2 \pi^2 (\beta + w^2) \phi_z^2 - \lambda (u^2 + v^2 + w^2 - 1) \right] dz$$

dimensionless parameters

$$\alpha^2 = \frac{\epsilon_0 \epsilon_a V^2}{K \pi^2}, \qquad \beta = \frac{\epsilon_\perp}{\epsilon_a}$$

boundary conditions:

at
$$z = 0$$
: $\theta = \psi = \phi = 0$, at $z = 1$: $\theta = 0$, $\psi = \frac{\pi}{2}$, $\phi = 1$

Off State

$$\theta(z) \equiv 0, \qquad \psi(z) = \frac{\pi z}{2}, \qquad \phi(z) = z$$

On State

Critical Voltage

switching occurs at

$$V_c = \frac{\pi}{2} \sqrt{\frac{3K}{\epsilon_0 \epsilon_a}}$$

Discrete Free Energy

- grid of N+1 points z_k a distance Δz apart
- approximate integral by mid-point rule

$$F \simeq \frac{\Delta z}{2} \sum_{k=0}^{N-1} \left\{ \left[\frac{u_{k+1} - u_k}{\Delta z} \right]^2 + \left[\frac{v_{k+1} - v_k}{\Delta z} \right]^2 + \left[\frac{w_{k+1} - w_k}{\Delta z} \right]^2 - \alpha^2 \pi^2 \left(\beta + \left[\frac{w_k^2 + w_{k+1}^2}{2} \right] \right) \left[\frac{\phi_{k+1} - \phi_k}{\Delta z} \right]^2 - \lambda_k \left[\frac{u_k^2 + u_{k+1}^2}{2} + \frac{v_k^2 + v_{k+1}^2}{2} + \frac{w_k^2 + w_{k+1}^2}{2} - 1 \right] \right\}$$

Euler-Lagrange Equations

• set $\frac{\partial F}{\partial u_k}, \frac{\partial F}{\partial v_k}, \frac{\partial F}{\partial w_k}, \frac{\partial F}{\partial \phi_k}, \frac{\partial F}{\partial \lambda_k}$ equal to zero

- solve $\nabla \mathbf{F}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$ N+1 gridpoints $\Rightarrow n = N-1$ unknowns
- use Newton's method: solve

$$\nabla^2 \mathbf{F}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{F}(\mathbf{x}_j)$$

• linear system, coefficient matrix is Hessian $\nabla^2 \mathbf{F}(\mathbf{x}_i)$

$$abla^2 \mathbf{F} = \left[egin{array}{cccc}
abla_{\mathbf{n}\mathbf{n}}^2 \mathbf{F} &
abla_{\mathbf{n}\phi}^2 \mathbf{F} &
abla_{\mathbf{n}\lambda}^2 \mathbf{F} \\
abla_{\mathbf{n}\mathbf{n}}^2 \mathbf{F} &
abla_{\mathbf{n}\phi}^2 \mathbf{F} &
abla_{\mathbf{n}\lambda}^2 \mathbf{F} \\
abla_{\mathbf{n}\mathbf{n}}^2 \mathbf{F} &
abla_{\mathbf{n}\phi}^2 \mathbf{F} &
abla_{\mathbf{n}\lambda}^2 \mathbf{F} \end{array}
ight]$$

• matrix notation: $\nabla^2_{nn} \mathbf{F} = A$

$$A = \begin{bmatrix} \nabla_{\mathbf{u}\mathbf{u}}^{2} \mathbf{F} & 0 & 0 \\ 0 & \nabla_{\mathbf{v}\mathbf{v}}^{2} \mathbf{F} & 0 \\ 0 & 0 & \nabla_{\mathbf{w}\mathbf{w}}^{2} \mathbf{F} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0 \\ 0 & A_{vv} & 0 \\ 0 & 0 & A_{ww} \end{bmatrix}$$

- A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks
- $A_{uu}=A_{vv}=rac{1}{\Delta z} \mathrm{tridiag}(-1,2-\Delta z^2 \lambda_j,-1)$
- $A_{ww} = \frac{1}{\Delta z} \operatorname{tridiag}(-1, 2 \Delta z^2 \lambda_j \gamma_j, -1)$

$$\gamma_j = \frac{\alpha^2 \pi^2}{2} [(\phi_{j+1} - \phi_j)^2 + (\phi_j - \phi_{j-1})^2]$$

Eigenvalues of A

- at first Newton step (initial linear ϕ , $\lambda_j=1$) block matrices are Toeplitz
- find eigenvalues using Fourier analysis
- $\sigma_{\min}(A_{uu}) = \sigma_{\min}(A_{vv}) \simeq \Delta z(\pi^2 \lambda_1) > 0$ A_{uu} and A_{vv} are initially positive definite
- $\sigma_{\min}(A_{ww}) \simeq \Delta z (\pi^2 (1 \alpha^2) \lambda_1)$ $A_{ww} \text{ is initially positive definite iff } V < \frac{2}{\sqrt{3}} V_c$
- at subsequent Newton iterations, A_{uu} , A_{vv} , A_{ww} may all be indefinite
- ullet number of negative eigenvalues increases with V

• matrix notation: $\nabla^2_{\mathbf{n}\lambda}\mathbf{F} = B$

• the $3n \times n$ matrix B has structure

$$B = \Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad egin{array}{l} B_u = exttt{diag}(\mathbf{u}) \\ B_v = exttt{diag}(\mathbf{v}) \\ B_w = exttt{diag}(\mathbf{w}) \end{array}$$

- $\operatorname{rank}(B^T) = n$
- $\bullet \ B^T B = \Delta z^2 I_n$
- ullet information available about basis for nullspace of B^T

• matrix notation: $\nabla^2_{\phi\phi} \mathbf{F} = -C$

$$\nabla_{\phi\phi}^2 \mathbf{F} = -C$$

• the $n \times n$ matrix C is symmetric and tridiagonal

•
$$C = \frac{1}{\Delta z} \mathrm{tridiag}(-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$$

$$a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_{j-1}^2 + w_j^2)) > 0$$

$$a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_j^2 + w_{j+1}^2)) > 0$$

diagonally dominant with positive real diagonal entries

C is positive definite

• matrix notation: $\nabla^2_{\mathbf{n}\phi}\mathbf{F} = D$

$$\nabla_{\mathbf{n}\phi}^2 \mathbf{F} = D$$

$$D = \Delta z \begin{bmatrix} 0 \\ 0 \\ \mu D_w \end{bmatrix}, \qquad \mu = \frac{\alpha^2 \pi^2}{\Delta z}$$

• the $n \times n$ matrix D_w is tridiagonal

$$D_w = \operatorname{diag}(\mathbf{w})\operatorname{tridiag}(\phi_j - \phi_{j-1}, \phi_{j-1} - 2\phi_j + \phi_{j+1}, \phi_j - \phi_{j+1})$$

- D_w has complex eigenvalues (including one zero)
- $\operatorname{rank}(D) = n 1$

Four Saddle-Point Problems

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \phi, \lambda]$

$$H = \begin{bmatrix} A & D & B \\ \hline D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix}$$

$$H = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix} \qquad H = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix}$$

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \phi]$

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \qquad H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

double saddle-point structure

Iterative Solution

- outer iteration: Newton's method tol=1e-4
- inner iteration: MINRES tol=1e-4
- check accuracy by calculating energy of final solution

Matrix Conditioning

- eigenvalues of H lie in $[\lambda_{\min}, \lambda_s] \cup [\lambda_{s+1}, \lambda_{\max}]$
- estimate of matrix conditioning:

N	condest	$\lambda_{\min}(H)$	$\lambda_s(H)$	$\lambda_{s+1}(H)$	$\lambda_{\max}(H)$
8	1.64e+6	-6.68e+2	-5.40e-4	1.88e-1	3.07e+1
16	2.58e+7	-1.44e+3	-6.26e-5	2.19e-1	6.33e+1
32	4.09e+8	-2.98e+3	-7.68e-6	1.28e-1	1.28e+2
64	6.51e+9	-6.07e+3	-9.56e-7	6.60e-2	2.56e+2
128	1.04e+11	-1.23e+4	-1.20e-7	3.33e-2	5.12e+2
256	1.66e+12	-2.46e+4	-1.50e-8	1.67e-2	1.03e+3
	$O(N^4)$	O(N)	$O(N^{-3})$	$O(N^{-1})$	O(N)

Diagonal Preconditioning

$$H = \begin{bmatrix} A & D & B \\ D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix}$$

$$\mathcal{D} = \left[egin{array}{cccc} D_A & 0 & 0 & 0 \ 0 & D_C & 0 \ 0 & 0 & \Delta z \, I \end{array}
ight] \qquad egin{array}{cccc} D_A & = & |\mathrm{diag}(A)| \ D_C & = & \mathrm{diag}(C) \end{array}$$

• estimated condition of $P^{-1}H$ is $O(N^2)$

$$\lambda_{\min} = -2$$
, $\lambda_s = O(N^{-2})$, $\lambda_{s+1} = O(N^{-2})$, $\lambda_{\max} = 2$.

Constraint-type Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

$$C_1 = \begin{bmatrix} D_A & 0 & D \\ 0 & \Delta z I & 0 \\ \hline D^T & 0 & -C \end{bmatrix}, \qquad C_2 = \begin{bmatrix} A & 0 & D \\ 0 & \Delta z I & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

 Projected Preconditioned Conjugate Gradients Dollar et al. (2006)

Iteration Counts

iteration counts at first Newton step

\overline{N}	8	16	32	64	128	256
\mathcal{D}	15	40	117	382	1293	5126
C_1	13	25	50	98	195	387
C_2	7	9	8	9	7	8

iteration counts at last Newton step

N	8	16	32	64	128	256
\mathcal{D}	37	134	414	1617	7466	34755
C_1	22	55	226	635	2259	7166
C_2	6	14	23	43	65	114

Other methods?

- block tridiagonal?
- more sophisticated constraint preconditioning?
- Schur complement approximation?
- augmented Lagrangian methods?
- inner/outer iteration?
- connection with harmonic maps?