Indecidibilidade

Prof^a Jerusa Marchi

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
e-mail: jerusa@inf.ufsc.br

Computabilidade

- Tudo que pode ser representado de modo finito
- Tudo o que pode ser descrito através de um "procedimento algorítmico"
- Toda linguagem que é recursivamente enumerável (ou seja pode ser reconhecida por uma máquina de Turing - Enumerador)
- Toda função recursiva parcial (ou seja, que pode ser gerada a partir das funções básicas e fechada sob composição, recursão primitiva e iteração ilimitada)

Computabilidade

Linguagem	Gramática	Funções Numéricas	Máquinas
Recursivamente Enumerável	Irrestrita	F.R.Parcial	MT
Recursiva	Irrestrita	F.R.Totais MT	
Sensível ao Contexto	Sensível ao Contexto	F.R.Primitivas	MT

Computabilidade

- Tudo o que é computável é computável por uma máquina de Turing
 - Máquinas de Turing que param aceitando ou não a entrada
 - Máquinas de Turing que podem rodar para sempre com entradas que não são aceitas

Decidibilidade

- Tomemos a Máquina de Turing que pára em respostas a todas as entradas como sendo a noção formal precisa correspondente à intuitiva idéia de algoritmo
 - Tese de Church-Turing
- Máquina de Turing vista como um algoritmo
- O que é efetivamente computável?

Decidibilidade

- Antes de definir máquinas de Turing como programas (algoritmos) precisamos definir um "hardware" que execute tais programas
 - Máquinas de Turing Universais

- Uma Máquina de Turing que pode ser programada, podendo assim solucionar "qualquer" problema passível de resolução através de uma Máquina de Turing
- A Máquina de Turing Universal recebe como entrada uma máquina de Turing e a entrada a computar
- A entrada e a descrição da máquina são "programadas" em uma linguagem reconhecida pela Máquina de Turing Universal

Convensão:

- Um estado da máquina de Turing deverá ser da forma $\{q\}\{0,1\}^*$
- Um símbolo de fita será representado como uma cadeia $\{a\}\{0,1\}^*$
- Seja $M = (K, \Sigma, \delta, s, \{H\})$ uma Máquina de Turing
 - Sejam i e j os menores inteiros, tais que $2^i \ge |K|$ e $2^j \ge |\Sigma| + 2$ (\leftarrow e \rightarrow)
 - · Cada estado em K será representado como um símbolo q seguido de uma cadeia binária de comprimento i
 - · Cada símbolo em Σ será representado como o símbolo a seguido de uma cadeia binária de comprimento j

Convensão:

- Para representar □, ▷, → e ← serão utilizados os quatro menores símbolos em ordem lexicográfica
 - lacksquare \Box $a0^j$
 - $> -a0^{j-1}1$
 - $\longrightarrow a0^{j-2}10$
 - $\rightarrow -a0^{j-2}11$

Convensão:

- O estado inicial da Máquina será sempre representado como o primeiro estado lexicográfico $q0^i$
- A tabela de transição σ da representação "M" da Máquina de Turing consiste em uma sequência de cadeias da forma

onde q e p são representações de estados e a e b representações de símbolos

Convensão:

- As quádruplas são relacionadas em ordem lexicográfica crescente, começando com $\delta(s, \sqcup)$
- O conjunto H é determinado indiretamente pela não ocorrência de seus estados como primeiros componentes em qualquer quádrupla de "M"
 - Se M decide uma linguagem ($H = \{q_{accept}, q_{reject}\}$), q_{accept} será, lexicograficamente, o menor dos dois estados de parada

- Qualquer Máquina de Turing pode ser representada segundo esssa convenção
- O mesmo método será utilizado para representar quaisquer cadeias sobre o alfabeto da máquina de Turing
 - para simplificar $\Gamma \subset \Sigma$
- a representação de w, será notacionada "w"

Exemplo:

- $M = (K, \Sigma, \delta, s, \{h\})$ onde:

 - $oldsymbol{\delta}$:

estado	símbolo	δ
s	a	(q,\sqcup)
S	Ц	(h,\sqcup)
S	\triangleright	(s, \rightarrow)
q	a	(s,a)
q	Ц	(s, \rightarrow)
q	\triangleright	(q, \rightarrow)

$$\blacksquare$$
 $|K|=3$ então $i=2$, pois $2^2\geq 3$

- $|\Sigma|=3$ então j=3 pois $2^3\geq 3+2$
- Estados e símbolos ficam assim representados

estado/símbolo	representação
s	q00
q	q01
h	q11
	a000
\triangleright	a001
\leftarrow	a010
\longrightarrow	a011
a	a100

Exemplo:

• A representação da cadeia $\triangleright aa \sqcup a$ será

"
$$\triangleright aa \sqcup a$$
" = $a001a100a100a000a100$

A representação "M" da máquina de Turing M será

$$"M" = (q00, a100, q01, a000), (q00, a000, q11, a000),$$
$$(q00, a001, q00, a011), (q01, a100, q00, a011),$$
$$(q01, a000, q00, a011), (q01, a001, q01, a011)$$

- Apresentada a representação de qualquer máquina de Turing como "algoritmo", podemos agora introduzir uma Máquina de Turing Universal (U)
 - U recebe como entrada
 - uma representação "M" de uma certa máquina M
 - uma representação "w" de uma dada sentença de entrada w

m D pára em resposta a entrada "M""w" se e somente se M para em resposta à entrada w

$$U("M","w") = "M(w)"$$

- ullet A máquina U é uma MT de 3 fitas que opera da seguinte forma:
 - A cadeia "M""w" é gravada em sua primeira fita
 - U move "M" para a segunda fita
 - U desloca "w" para a esquerda na primeira fita
 - U grava na terceira fita a codificação do estado inicial s de "M", que é sempre $q0^i$ (os valore de i e j são obtidos por U via inspeção de "M")

Continuação:

- U simula os passos de computação de M como segue:
 - percorre a segunda fita até encontrar uma quádrupla cujo primeiro componente corresponda ao estado codificado gravado na terceira fita e cujo segundo componente corresponda ao símbolo codificado apontado na primeira fita
 - Uma vez encontrada esta quádrupla, U altera o estado corrente, subtituindo-o pelo terceiro componente da quádrupla e realiza, em sua primeira fita, a ação especificada pelo quarto componente

Continuação:

- Se o quarto componente
 - codifica um símbolo do alfabeto da fita de M, esse símbolo é gravado na primeira fita, substituindo o símbolo corrente
 - for $a0^{j}10$ (\leftarrow), U move o primeiro cabeçote para o primeiro símbolo a à esquerda
 - for $a0^{j}11$ (\rightarrow), U move o primeiro cabeçote para o primeiro símbolo a à direita

Continuação:

- ullet se um \sqcup for encontrado, U o converte para a representação $a0^j$
- se em algum passo a combinação de estado/símbolo não for encontrada na segunda fita, isso significa que o estado corrente é um estado de parada
- ullet U também pára em um estado de parada conveniente

m Dadas uma Máquina de Turing arbitrária M e uma palavra arbitrária w, M pára ao computar w?

- A existência de uma MT Universal (U), ou seja, uma máquina de Turing que simula uma MT M para uma entrada w, prova que L(U), ou seja a linguagem formada por todas as Máquinas de Turing e todas as entradas, é recursivamente enumerável
- Ao mostrar a indecidibilidade do problema da parada, mostra-se que não existe uma MT que sempre páre e que seja equivalente a U, ou seja, que L(U) não é recursiva
 - A classe das linguagens recursivas é uma subconjunto estrito da classe das linguagens recursivamente enumeráveis

- Teorema: O problema da Parada para MT é indecidível.
- Prova: Suponha que o problema da parada seja decidível. Então existe uma MT P que sempre pára em resposta a uma entrada < M, w>

Continuação

A partir da máquina P seria possível construir uma máquina P' que entra em loop se e somente se P pára em um estado final, ou ainda P' entra em loop se e somente se M pára com a entrada w

Continuação

- \blacksquare Para construir P', faça como segue:
 - para cada par (p,a), com $p \in K$ e $a \in \Gamma$ onde $\delta(p,a)$ é indefinida, $\delta(p,a) \to (l,a)$ onde l é um novo estado
 - ullet crie novas transições $\delta(l,a) o (l,a)$ para todo símbolo $a \in \Sigma$

Continuação

lacktriangle A partir da máquina P' pode-se obter uma máquina P''

Continuação

- Para construir P'' a partir de P' construa transições para:
 - Duplicar a entrada < M > para obter < M, M > (basta copiar a entrada M na fita M111M)
 - Agir como P' sobre a entrada

Continuação

- ullet agora considere o que acontece se $< P^{\prime\prime} >$ for submetida como entrada para a MT $P^{\prime\prime}$
 - se P'' entra em loop, para a entrada < P'' > é porque P'' pára se a entrada é < P'' >
 - se P'' pára quando a entrada é < P'' > é porque P'' não pára se a entrada é < P'' >, ou seja

$$P^{\prime\prime}$$
 pára com entrada $< P^{\prime\prime} >$ sse $P^{\prime\prime}$ não pára com entrada $< P^{\prime\prime} >$

• Mas P'' pode ser construída a partir de P. Assim, P não pode existir e portanto o problema da parada é indecidível

- O conjunto das funções recursivas parciais é efetivamente computável?
 - As funções recursivas parciais podem não ser definidas para todas as entradas (φ, ψ, ρ)
 - As funções recursivas totais são definidas para todas as entradas (f, g, h)
 - $\varphi(x)$ denota a aplicação da função (considerando-a como um procedimento) a x
 - não necessáriamente existe um objeto chamado $\varphi(x)$ pois φ aplicada a x pode ser indefinida

- Notacionaremos
 - $\varphi(x) \downarrow \text{ para "} \varphi \text{ aplicada a } x \text{ \'e definida"}$
 - $\varphi(x) \not \mid para "\varphi aplicada a x não é definida"$

- ullet Teorema: Não há função recursiva que decida se $\varphi(x)$ é definida
- Prova: Suponha que seja possível enumerar todas as funções recursivas parciais de uma variável por $\varphi_1, \varphi_2, ..., \varphi_n, ...$ Suponha que exista uma função recursiva total f, de modo que:

$$f(x) \simeq \left\{ egin{array}{ll} 1 & \mbox{se } arphi_x(x) \downarrow \ 0 & \mbox{se } arphi_x(x) \not\downarrow \end{array}
ight.$$

em Funções Recursivas Parciais

Então:

é recursiva parcial, definida como segue:

$$\rho(x) \simeq \mu y(y + f(x) = 0)$$

Logo ρ deve ser φ_y para algum y.

em Funções Recursivas Parciais

Mas então:

O que é uma contradição. Logo não existe tal f.

- Tese de Church-Turing
 - Uma função é computável sse é recursiva parcial total.

Considerações:

- A linguagem L(U) não é recursiva
- Não há algoritmo que decida, para uma dada MT arbitrária M e uma palavra arbitrária de entrada w, se M aceita w ou não
 - Os problemas para os quais não existem algoritmos são ditos indecidíveis
- O conjunto das linguagens recursivas é fechado em relação à operação de complemento
- O conjunto das linguagens recursivamente enumeráveis não é fechada em relação à operação de complemento