Exams Statistics and Probability: Probability Part

Master Statistics and Data Science

Instructor: Roula Tsonaka

1. The joint frequency function for the number of audio equipment sales X_1 and number of electronic equipment sales X_2 per hour for a wholesale retailer are given below:

	$X_2 = 0$	$X_2 = 1$	$X_2 = 2$
$X_1 = 0$	0.1	0	0
$X_1 = 1$	0.1	0.2	0
$X_1 = 2$	0.1	?	0.15

Choose the correct answer in the following questions:

- (a) Which is the missing value?
 - (i) 0
 - (ii) 0.8
 - (iii) 0.35
 - (iv) 0.45
- (b) What is the probability that both $X_1 \leq 1$ and $X_2 < 1$?
 - (i) 0
 - (ii) 0.1
 - (iii) 0.2
 - (iv) 0.4
- (c) Are X_1 , X_2 correlated? Explain.
 - (i) Yes, because $P(X_2 = j \mid X_1 = 2) = P(X_2 = j)$ for all j.
 - (ii) No, because $P(X_2 = j \mid X_1 = 2) \neq P(X_2 = j)$ for all j.
 - (iii) No, because $E(X_1 \cdot X_2) = E(X_1)E(X_2)$.
 - (iv) Yes, because $Cov(X_1, X_2) \neq 0$.
- (d) Which of the following statements is correct?
 - (i) If X_1 , X_2 are independent, then they are correlated.
 - (ii) If X_1 , X_2 are not correlated, then they are independent.

- (iii) If X_1, X_2 are independent, then they are not correlated.
- (e) What is the value of $E(X_1^2 \cdot X_2)$?
 - (i) 1.5.
 - (ii) 2.8.
 - (iii) 0.21.
- (f) What is the expected value of the random variable X_1 given that the random variable X_2 takes the value 0?
 - (i) 0.3.
 - (ii) 1.
 - (iii) 0.4.

Solution:

- (a) We know that: $\sum_{i=0}^{2} \sum_{j=0}^{2} P(X_1 = i, X_2 = j) = 1$. Thus. ? = 0.35. The correct answer is (iii).
- (b) $P(X_1 \le 1, X_2 < 1) = P(X_1 = 0, X_2 = 0) + P(X_1 = 1, X_2 = 0) = 0.1 + 0.1 = 0.2$ The correct answer is (iii).
- (c) We need to compute $Cov(X_1, X_2) = E(X_1 \cdot X_2) E(X_1)E(X_2)$. $E(X_1 \cdot X_2) = \sum_{i=0}^2 \sum_{j=0}^2 i \cdot j P(X_1 = i, X_2 = j) = 1 \cdot 1 \cdot P(X_1 = 1, X_2 = 1) + 2 \cdot 1 \cdot P(X_1 = 2, X_2 = 1) + 2 \cdot 2 \cdot P(X_1 = 2, X_2 = 2) = 1 \cdot 0.2 + 2 \cdot 0.35 + 4 \cdot 0.15 = 1.5$ Then $E(X_1) = \sum_{i=0}^2 i \cdot P(X_1 = i) = 1 \cdot 0.3 + 2 \cdot 0.6 = 1.5$. And $E(X_2) = \sum_{j=0}^2 j \cdot P(X_2 = i) = 0 \cdot 0.3 + 1 \cdot 0.55 + 2 \cdot 0.15 = 0.85$. Thus $Cov(X_1, X_2) = 1.5 1.5 \cdot 0.85 = 0.225$. The correct answer is (iv).
- (d) The correct answer is (iii).
- (e) $E(X_1^2 \cdot X_2) = \sum_{i=0}^2 \sum_{j=0}^2 i^2 \cdot j \cdot P(X_1 = i, X_2 = j) = 1 \cdot 1 \cdot P(X_1 = 1, X_2 = 1) + 2^2 \cdot 1 \cdot P(X_1 = 2, X_2 = 1) + 2^2 \cdot 2 \cdot P(X_1 = 2, X_2 = 2) = 1 \cdot 0.2 + 4 \cdot 0.35 + 8 \cdot 0.15 = 2.8$. The correct answer is (ii).
- (f) We need first $P(X_1 = i \mid X_2 = 0)$, i = 0, 1, 2. The marginal frequency function for X_2 has been computed in (b). We have: $P(X_1 = 0 \mid X_2 = 0) = 0.1/0.3$, $P(X_1 = 1 \mid X_2 = 0) = 0.1/0.3$ and $P(X_1 = 2 \mid X_2 = 0) = 0.1/0.3$. Then $E(X_1 \mid X_2 = 0) = 1 \cdot 0.1/0.3 + 2 \cdot 0.1/0.3 = 1$. The correct answer is (ii).

- 2. The general practitioners' office at LUMC receives on average 4 phone calls per minute on a Friday night. The manager of the unit wishes to know the following probabilities:
 - (a) What is the probability that 5 or 6 or 7 phone calls are received in a minute?
 - (b) What is the probability that no phone calls are received between 10pm and 10.10pm?
 - (c) What is the expected number of phone calls between 10pm and 10.10pm? And the standard deviation?
 - (d) What is the probability that we have to wait more than 20 seconds for the next call?

Solution:

- Let X the number of calls per minute on a Friday night. We know that $X \sim Poisson(\lambda = 4)$. We want $P(5 \le X \le 7) = P(X = 5) + P(X = 6) + P(X = 7) = \frac{4^5}{5!} \times \exp^{-4} + \frac{4^6}{6!} \times \exp^{-4} + \frac{4^7}{7!} \times \exp^{-4}$
- Let Y the number of calls in 10 minutes. Then $Y \sim Poisson(\lambda' = 10 \times 4 = 40)$. We want $P(Y = 0) = \exp^{-\lambda'} = \exp^{-40} = 4.248354e 18$. The probability is very small.
- E(Y) = 40 and the standard deviations is $\sqrt{Var(Y)} = \sqrt{40}$.
- Let Z the waiting time between calls. Then $Z \sim Exponential(\lambda = 4)$ or $Z \sim Exponential(\beta = 1/4)$. Then $P(Z > 20/60) = 1 P(Z \le 1/3) = 1 (1 \exp^{-4 \times 1/3}) = \exp^{-4 \times 1/3} = 0.264$.
- 3. Suppose that a fair coin is tossed 900 times.
 - (a) Compute approximately the probability of obtaining more than 495 heads.
 - (b) Let Y be the number of heads in 900 tosses of the coin. How big needs m to be such that $P(440 \le Y \le m) \approx 0.5$?

Solution:

• We shall approximate the probability of obtaining more than 495 heads. For $i=1,\ldots,900$, let $X_i=1$ if a head is obtained on the ith toss and let $X_i=0$ otherwise. Then $E(X_i)=1/2$ and $Var(X_i)=1/4$. Therefore, the values X_1,\ldots,X_{900} form a random sample of size n=900 from a distribution with mean 1/2 and variance 1/4. It follows from the central limit theorem that the distribution of the total number of heads $H=\sum_{i=1}^{900} X_i$ will be approximately the normal distribution for which the mean is $(900)\times(1/2)=450$, the variance is $(900)\times(1/4)=225$, and the standard deviation is $\sqrt{(225)}=15$. Therefore, the variable Z=(H450)/15 will have approximately the standard normal distribution. Thus,

$$P(H > 495) = P(\frac{H - 450}{15} > \frac{495 - 450}{15}) = P(Z > 3) = 1 - \Phi(3) = 0.0013.$$

• We want to find m such that $P(440 \le H \le m) = 0.5$. Since $\mu = E(X_i) = 0.5$ and $\sigma^2 = Var(X_i) = 0.25$ by central limit theorem, $Z = \frac{H-450}{15}$ is approximately standard normal. So,

$$\begin{split} P(440 \leq H \leq m) &= P(\frac{440 - 450}{15} \leq \frac{H - 450}{15} \leq \frac{m - 450}{15}) \\ &= P(\frac{-10}{15} \leq Z \leq \frac{m - 450}{15}) = P(-0.6666667 \leq Z \leq \frac{m - 450}{15}) \\ &= \Phi(\frac{m - 450}{15}) - 0.2524925. \end{split}$$

Thus $\Phi(\frac{m-450}{15}) = 0.5 + 0.2524925$ and $\Phi(\frac{m-450}{15}) = 0.7524925$. Thus, from the table we find that $\Phi^{-1}(0.7524925) = 0.6823542$ and therefore $m = 0.6823542 \times 15 + 450 = 460.2353$.

- 4. The instructor of the Probability course prepares two sets of exams: Exam A and Exam B for the final examination in September. The probability that a student will get Exam A is 0.80. The probability that the first question on the exam is difficult is 0.90 for exam B and 0.15 for exam A. Compute the following:
 - (a) What is the probability that the first question on your exam is marked as difficult?
 - (b) What is the probability that your exam is B given that the first question on the exam is marked as difficult?

Solution:

- (a) Let C be the event that the first question on the exam is marked as difficult. Let B_1 be the event that the exam is A and B_2 be the event that the exam is B. Applying the formula $P(C) = \sum_{i=1}^{2} P(C \mid B_i) P(B_i)$ gives $P(C) = 0.15 \times 0.8 + 0.9 \times 0.2 = 0.3$.
- (b) The probability that the exam is B given that the first question on the exam is marked as difficult is equal to

$$P(B_2 \mid C) = \frac{P(C, B_2)}{P(C)} = \frac{P(C \mid B_2)P(B_2)}{P(C)}$$

= $\frac{0.9 \times 0.2}{0.3} = 0.6$.

Motivate your answers!

Good luck!