1 What is Presto?

2 Overview

3 Functions description

3.1 CompensateDelayAndFreqShift

Signature [So]=CompensateDelayAndFreqShift(S,zeros,plotflag)
Return-Values

So: S enriched with informations about completion and compensation.

The frequency data of So are compensated

Entries

- S: The mesured data to be compensated, contained in the fields freq and value of the S-structure S.
- zeros= $DVC.CDAFS.zeros_at_inf$: Number of zeros at infty for $S_{1,2}$ and $S_{2,1}$. This information is used during the computation of a completion for those elements.
- plotflag=DVC.CDAFS.plot_flag: If plotflag is diff of 0 the result is ploted Constants
- $DVC.CDAFS.sign_in_zero_trans_12$: The constant frequency shift applied to $S_{1,2}$ and $S_{2,1}$ is defined up to π . This constant fixes the sign of the imaginary part of $S_{1,2}$ at the zero frequency (at the measurment point nearest to zeros). Poss. values $\{-1,1\}$. **Important**: the identified coupling matrices corresponding to those nomalizations can be deduced from one an other by a change of sign of certain couplings.
- $DVC.CDAFS.delay_range$: Range of possible delay compensation to be considered.
- $DVC.CDAFS.poly_order$: Degree of the 1/s polynomial used to compute completion.
- $DVC.CDAFS.omega_lim$: For $|w| > w_{lim}$ the 1/s polynomial defining the completion, should fit the data as good as possible. In other words the users believes that for $|w| > w_{lim}$ a 1/s expansion of degree DVC.CDAFS.poly_order is a good approximation of the frequency behaviour of the filter. **Important**: the number of selected data points should be enough so that a meaningfull approximation can

be computed, i.e $card(|w_k| > w_{lim}) >> poly_order$.

 $DVC.CDAFS.error_lim$: If the error between the data (with best compensation) and the 1/s expansion (on the data points with $|w| > w_lim$) is greater than error_lim a warning message is released.

 $DVC.CDAFS.causal_bound(1,1)$: Bound for the distance to causal systems for the completion of $S_{1,1}$. This bound is expressed in percent.

 $DVC.CDAFS.causal_bound(2,2)$: Same as prev. but for $S_{2,2}$.

 $DVC.CDAFS.modulus_factor(1,1)$: The modulus of the completion is controlled so as to be less than: $modulus_factor*max_w(|S_{1,1}|)$.

 $DVC.CDAFS.modulus_factor(2,2)$: Same as prev. but for $S_{2,2}$.

 $DVC.CDAFS.number_of_control_points$: Number of (equaly spaced on the sub-arc of the unit circle where the completion is defined) control points used to control the modulus of the completion. This number should be choosen in regards of DVC.CDAFS.poly_order (good results seems to be obtained with $number_of_control_points \ge 5 * .poly_order$).

DVC.CDAFS.number_of_fourier_coeffs: Number of Fourier coeffs. used to estimate non-causal part of completed data.

 $DVC.CDAFS.iso_flag$: Indicates which kind of isometry is used when passing to the disk to evaluate the non-causal part of completed data. Possibilities are L^{∞} or L^2 isometry which are obtained resp. for the values $\{0,1\}$ of the flag.

Description

The function proceeds roughly in three steps: first the delay components of $S_{1,1}$ and $S_{2,2}$ are estimated and compensated, then completions are determined for all entries and finally constant frequency shifts are applied so as to ensure $Imag(S_{1,1}) = Imag(S_{2,2}) = 0$. A frequency shifts on the diagonal terms is also estimated by using the hypothesis that in the ideal case the system is lossless.

Delay determination: For $S_{1,1}$ and $S_{2,2}$ the delay component is estimated in the following way. Let $K = \{k, |w_k| > w_{lim} \text{ the selected measurement points. Given } \tau \in [delay_range] \text{ we define}$

$$\psi(\tau) = \min_{(a_0, a_1, \dots) \in \mathbb{C}^{poly_order+1}} \sum_{k \in K} |S_{1,1}(w_k)e^{i\tau w_k} - \sum_{l=0}^{poly_order} \frac{a_l}{(w_k)^l}|^2.$$

The 'optimal' delay compensation τ_{opt} is defined by,

$$\psi(\tau_{opt}) = \min_{\tau \in [delay_range]} \psi(\tau)$$

Completions: We recall that I_2 and I_{∞} are respectively the L^2 and L^{∞} isometries definied as in ??. Let p be a polynomial defining a possible completion of the measured data we denote by $S_{i,j} \vee p$ the extended function defined on the whole imaginary axes (note that between two measurement points, $S_{i,j}$ is defined by spline interpolation, so that it can be considered as a function on the interval $[\min(w_i), \max(w_i)]$). The constrained optimisation problem we address to determine a completion of our data (for $iso_flag = 0$) is the following:

$$! \min_{p \in \mathbb{C}^{poly_order}[x]} \sum_{k \in K} |S_{i,j}(w_k) - p(\frac{1}{w_k})|^2$$

under the following constraints

$$||P_{H_0^2}(I_{\infty}(S_{i,j}) \vee p)||_2 \leq ||I_{\infty}(S_{i,j})||_2.causal_bound(i,j)$$

$$\forall w \in [control_points] \quad |p(\frac{1}{w_c})| \leq modulus_factor(i,j). \max_k(|S_{i,j}(w_k)|)$$

If there is no element p satisfying those constraints then the following relaxed problem is solved,

!
$$\min_{p \in \mathbb{C}^{poly_order}[x]} ||P_{H_0^2}(I_{\infty}(S_{i,j}) \vee p)||_2^2$$

under the following constraint

$$\forall w \in [control_points] \quad |p(\frac{1}{w_c})| \leq modulus_factor(i,j). \max_k(|S_{i,j}(w_k)|)$$

for which p = 0 is a feasable point. For $iso_{-}flag = 1$ the L^{2} isometry is used instead (the value at infinity is substracted, so as to ensure that $S_{i,j} \vee p - p_{0}$ is L^{2} integrable).

3.2 PlotS

Signature PlotS(S, g_t, l_f) Return-Values none Entries S: The S structure to be plotted

 $g_t = DVC.PS.graphic_type_flag$: indicates if a Nyquist or a Bode plot is expected. Possible value are $\{b,n\}$

 $l_f = DVC.PS.legend_flag$: indicates if a legend should appear for each curve (data, compl., rat. app.). Possible values are $\{0,1\}$

Constants none

Description

The PlotS function plots a Nyquist or Bode diagram of a given S-structure. Depending of what fields are present in S, data, completion and rational approximation are plotted

3.3 CompFourierCoeffs

Signature [So]=CompFourierCoeffs(Si)

Return-Values

So: Si enriched with the Fourier coefficients of each channel

Entries

Si: S-structure for which completion to infty exists

Constants

DVC.CFC.n_Fourier: Number of Fourier coefficients to be computed DVC.CFC.n_comp: Number of points taken in completion evaluation DVC.CFC.n_spline: Number of points taken after splines (interpolating data and completion) have been computed. Those evaluation points are used in the to evaluate integrals for Fourier coeffs. computation.

Description

The procedure computes positive and negative indexed Fourier coefficients. The positive ones are added to the S-structure, the negative ones are used to compute the "distance" to causality see [3.1].

3.4 RatApp

Signature [SS]=RatApp(S,n,Is_type,solver)

Return-Values

Entries

SS: S enriched with the computed rational approximation

- S: S-structure for which completion and Fourier coeffs. have been computed
- n: Target MacMillan degree
- $Is_type=DVC.RA.divide_by_z_minus_one$: Type of isometry used to pass to the circle. L^2 and L^∞ isometries are available. For the L^2 isometry the value at ∞ for $S_{1,1}$ and $S_{2,2}$ is first subtracted. Possible values are 0 for L^∞ and 1 for L^2 .
- solver=DVC.RA.solver_flag: Specifies which rational approximation engine to use, i.e RARL2 [??] and hyperion [??] are available. The corresponding argument values are {'RARL2','HARL2'}

Constants none

Description

The engine hyperion is only available under linux.