Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

14 de febrero de 2024

Agenda: Aproximación de Funciones

- Complementos Ortogonales
- 2 Aproximación de funciones
- Mínimos Cuadrados
- Interpolación polinomial
- Recapitulando
- Para la discusión

• Si $|\bar{v}_i\rangle \in \mathbf{V}$ es ortogonal a $\mathbf{S} \subset \mathbf{V}$, si $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall |s_k\rangle \in \mathbf{S}$,

- Si $|\bar{v}_i\rangle \in \mathbf{V}$ es ortogonal a $\mathbf{S} \subset \mathbf{V}$, si $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall \ |s_k\rangle \in \mathbf{S}$,
- Dado $\mathbf{V}: \{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \cdots\}$ y $\mathbf{S} \subset \mathbf{V}$ con dim $\mathbf{S} = m$. Entonces, $\forall |v_k\rangle \in \mathbf{V}$ puede expresarse como la suma de dos vectores $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$ y esta descomposición es única $|v_k\rangle = |s_k\rangle + |s_k\rangle^{\perp}, |s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$, y adicionalmente, $||v_k\rangle||^2 = |||s_k\rangle||^2 + |||s_k\rangle^{\perp}||^2$.

- Si $|\bar{v}_i\rangle \in \mathbf{V}$ es ortogonal a $\mathbf{S} \subset \mathbf{V}$, si $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall \ |s_k\rangle \in \mathbf{S}$,
- Dado $\mathbf{V}: \{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \cdots\}$ y $\mathbf{S} \subset \mathbf{V}$ con dim $\mathbf{S} = m$. Entonces, $\forall |v_k\rangle \in \mathbf{V}$ puede expresarse como la suma de dos vectores $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^\perp \in \mathbf{S}^\perp$ y esta descomposición es única $|v_k\rangle = |s_k\rangle + |s_k\rangle^\perp$, $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^\perp \in \mathbf{S}^\perp$, y adicionalmente, $||v_k\rangle||^2 = |||s_k\rangle||^2 + |||s_k\rangle^\perp||^2$.
- Si $\mathbf{S} \subset \mathbf{V}$ de dimensión finita y $|v_k\rangle \in \mathbf{V}$ y $|s_k\rangle \in \mathbf{S} \Rightarrow |s_k\rangle = \sum_{i=1}^m \langle v_k | \mathbf{e}_i \rangle |\mathbf{e}_i \rangle$, será la proyección de $|v_k\rangle$ en \mathbf{S} .

- Si $|\bar{v}_i\rangle \in \mathbf{V}$ es ortogonal a $\mathbf{S} \subset \mathbf{V}$, si $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall \ |s_k\rangle \in \mathbf{S}$,
- Dado $\mathbf{V}: \{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \cdots\}$ y $\mathbf{S} \subset \mathbf{V}$ con dim $\mathbf{S} = m$. Entonces, $\forall |v_k\rangle \in \mathbf{V}$ puede expresarse como la suma de dos vectores $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$ y esta descomposición es única $|v_k\rangle = |s_k\rangle + |s_k\rangle^{\perp}$, $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$, y adicionalmente, $||v_k\rangle||^2 = |||s_k\rangle||^2 + |||s_k\rangle^{\perp}||^2$.
- Si $\mathbf{S} \subset \mathbf{V}$ de dimensión finita y $|v_k\rangle \in \mathbf{V}$ y $|s_k\rangle \in \mathbf{S} \Rightarrow |s_k\rangle = \sum_{i=1}^m \langle v_k | \mathbf{e}_i \rangle |\mathbf{e}_i \rangle$, será la proyección de $|v_k\rangle$ en \mathbf{S} .
- Dado un vector |x⟩ ∈ V y un subespacio de V con dimensión finita,
 S^m ⊂ V, entonces la distancia de |x⟩ a S^m es la norma de la componente de |x⟩, perpendicular a S^m.

- Si $|\bar{v}_i\rangle \in \mathbf{V}$ es ortogonal a $\mathbf{S} \subset \mathbf{V}$, si $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall \ |s_k\rangle \in \mathbf{S}$,
- Dado $\mathbf{V}: \{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \cdots\}$ y $\mathbf{S} \subset \mathbf{V}$ con dim $\mathbf{S} = m$. Entonces, $\forall |v_k\rangle \in \mathbf{V}$ puede expresarse como la suma de dos vectores $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$ y esta descomposición es única $|v_k\rangle = |s_k\rangle + |s_k\rangle^{\perp}$, $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$, y adicionalmente, $||v_k\rangle||^2 = |||s_k\rangle||^2 + |||s_k\rangle^{\perp}||^2$.
- Si $\mathbf{S} \subset \mathbf{V}$ de dimensión finita y $|v_k\rangle \in \mathbf{V}$ y $|s_k\rangle \in \mathbf{S} \Rightarrow |s_k\rangle = \sum_{i=1}^m \langle v_k | \mathbf{e}_i \rangle | \mathbf{e}_i \rangle$, será la proyección de $|v_k\rangle$ en \mathbf{S} .
- Dado un vector |x⟩ ∈ V y un subespacio de V con dimensión finita,
 S^m ⊂ V, entonces la distancia de |x⟩ a S^m es la norma de la componente de |x⟩, perpendicular a S^m.
- Más aún esa distancia será mínima y $|x\rangle_{\mathbf{S}^m}$ la proyección de $|x\rangle$, en \mathbf{S}^m será el elemento de \mathbf{S}^m más próximo a $|x\rangle$ y, por la mejor aproximación.

• Sea $\{|v_1\rangle, |v_2\rangle, |v_3\rangle, \cdots, |v_n\rangle, \cdots\}$ un espacio euclidiano de dimensión infinita, \mathbf{V} , y un subespacio $\mathbf{S}^m \subset \mathbf{V}$, con dimensión finita dim $\mathbf{S} = m$, y sea un elemento $|v_i\rangle \in \mathbf{V}$. La proyección de $|v_i\rangle$ en $\mathbf{S}^m, |s_i\rangle$, será el elemento de \mathbf{S}^m más próximo a $|v_k\rangle$. En otras palabras $||v_i\rangle - |s_i\rangle|| \le ||v_i\rangle - |t_i\rangle|| \ \forall \ |t_i\rangle \in \mathbf{S}$.

- Sea $\{|v_1\rangle, |v_2\rangle, |v_3\rangle, \cdots, |v_n\rangle, \cdots\}$ un espacio euclidiano de dimensión infinita, \mathbf{V} , y un subespacio $\mathbf{S}^m \subset \mathbf{V}$, con dimensión finita dim $\mathbf{S} = m$, y sea un elemento $|v_i\rangle \in \mathbf{V}$. La proyección de $|v_i\rangle$ en $\mathbf{S}^m, |s_i\rangle$, será el elemento de \mathbf{S}^m más próximo a $|v_k\rangle$. En otras palabras $||v_i\rangle |s_i\rangle|| \leq |||v_i\rangle |t_i\rangle|| \ \forall \ |t_i\rangle \in \mathbf{S}$.
- Considemos funciones continuas, reales de variable real, en $[0, 2\pi]$, $\mathcal{C}^{\infty}_{[0,2\pi]}$, mediante funciones trigonométricas y con el producto interno definido por: $\langle f | g \rangle = \int_0^{2\pi} \mathrm{d}x \ f(x) \ g(x)$.

- Sea $\{|v_1\rangle, |v_2\rangle, |v_3\rangle, \cdots, |v_n\rangle, \cdots\}$ un espacio euclidiano de dimensión infinita, \mathbf{V} , y un subespacio $\mathbf{S}^m \subset \mathbf{V}$, con dimensión finita dim $\mathbf{S} = m$, y sea un elemento $|v_i\rangle \in \mathbf{V}$. La proyección de $|v_i\rangle$ en $\mathbf{S}^m, |s_i\rangle$, será el elemento de \mathbf{S}^m más próximo a $|v_k\rangle$. En otras palabras $||v_i\rangle |s_i\rangle|| \leq |||v_i\rangle |t_i\rangle|| \ \forall \ |t_i\rangle \in \mathbf{S}$.
- Considemos funciones continuas, reales de variable real, en $[0,2\pi]$, $\mathcal{C}^{\infty}_{[0,2\pi]}$, mediante funciones trigonométricas y con el producto interno definido por: $\langle f | g \rangle = \int_0^{2\pi} \mathrm{d}x \ f(x) \ g(x)$.
- Para ese espacio vectorial tenemos una base ortogonal definida por $|e_0\rangle = 1$, $|e_{2n-1}\rangle = \cos(nx)$ y $|e_{2n}\rangle = \sin(nx)$,

- Sea $\{|v_1\rangle, |v_2\rangle, |v_3\rangle, \cdots, |v_n\rangle, \cdots\}$ un espacio euclidiano de dimensión infinita, \mathbf{V} , y un subespacio $\mathbf{S}^m \subset \mathbf{V}$, con dimensión finita $\dim \mathbf{S} = m$, y sea un elemento $|v_i\rangle \in \mathbf{V}$. La proyección de $|v_i\rangle$ en S^m , $|s_i\rangle$, será el elemento de S^m más próximo a $|v_k\rangle$. En otras palabras $||v_i\rangle - |s_i\rangle|| \le |||v_i\rangle - |t_i\rangle|| \ \forall \ |t_i\rangle \in \mathbf{S}$.
- Considemos funciones continuas, reales de variable real, en $[0, 2\pi]$, $\mathcal{C}^{\infty}_{[0,2\pi]}$, mediante funciones trigonométricas y con el producto interno definido por: $\langle f | g \rangle = \int_0^{2\pi} dx \ f(x) \ g(x)$.
- Para ese espacio vectorial tenemos una base ortogonal definida por $|e_0\rangle = 1$, $|e_{2n-1}\rangle = \cos(nx)$ y $|e_{2n}\rangle = \sin(nx)$,
- Cualquier función definida en $[0, 2\pi]$ puede expresarse como

$$|f\rangle = \sum_{i=1}^{\infty} C_i |e_i\rangle, = \frac{1}{2} a_0 + \sum_{k=1}^{\infty} \left[a_k \cos(kx) + b_k \operatorname{sen}(kx) \right],$$

donde

$$a_k = \frac{1}{-} \int_{-\infty}^{2\pi} dx \ f(x) \cos(kx) \wedge b_k = \frac{1}{-} \int_{-\infty}^{2\pi} dx \ f(x) \sin(kx).$$
A. Núñez (UIS)

Aproximación de Funciones

Aproximación de Funciones

14 de febrero de 2024

4/9

• La idea es determinar el valor más aproximado de una cantidad física, c, a partir de un conjunto de medidas experimentales: $\{x_1, x_2, x_3, \dots, x_n\}$.

- La idea es determinar el valor más aproximado de una cantidad física,
 c, a partir de un conjunto de medidas experimentales:
 {x₁, x₂, x₃, · · · , x_n}.
- Asociamos las medidas con las componentes de un vector $|x\rangle \equiv (x_1, x_2, x_3, \cdots, x_n)$ en \mathbb{R}^n

- La idea es determinar el valor más aproximado de una cantidad física,
 c, a partir de un conjunto de medidas experimentales:
 {x₁, x₂, x₃, · · · , x_n}.
- Asociamos las medidas con las componentes de un vector $|x\rangle \equiv (x_1, x_2, x_3, \cdots, x_n)$ en \mathbb{R}^n
- Supondremos su mejor aproximación c $|1\rangle \equiv (c, c, c, \cdots, c)$, será la proyección perpendicular de $|x\rangle$ (las medidas) sobre el subespacio generado por $|1\rangle$:

$$|x\rangle = c |1\rangle \Rightarrow c = \frac{\langle x | 1\rangle}{\langle 1 | 1\rangle} = \frac{x_1 + x_2 + x_3, \dots + x_n}{n}.$$

- La idea es determinar el valor más aproximado de una cantidad física, c, a partir de un conjunto de medidas experimentales: $\{x_1, x_2, x_3, \dots, x_n\}$.
- Asociamos las medidas con las componentes de un vector $|x\rangle \equiv (x_1, x_2, x_3, \cdots, x_n)$ en \mathbb{R}^n
- Supondremos su mejor aproximación c $|1\rangle \equiv (c, c, c, \cdots, c)$, será la proyección perpendicular de $|x\rangle$ (las medidas) sobre el subespacio generado por $|1\rangle$:

$$|x\rangle = c |1\rangle \Rightarrow c = \frac{\langle x | 1\rangle}{\langle 1 | 1\rangle} = \frac{x_1 + x_2 + x_3, \dots + x_n}{n}.$$

 Es una manera sofisticada de construir el promedio aritmético de las medidas.

- La idea es determinar el valor más aproximado de una cantidad física, c, a partir de un conjunto de medidas experimentales: $\{x_1, x_2, x_3, \dots, x_n\}$.
- Asociamos las medidas con las componentes de un vector $|x\rangle \equiv (x_1, x_2, x_3, \cdots, x_n)$ en \mathbb{R}^n
- Supondremos su mejor aproximación c $|1\rangle \equiv (c, c, c, \cdots, c)$, será la proyección perpendicular de $|x\rangle$ (las medidas) sobre el subespacio generado por $|1\rangle$:

$$|x\rangle = c |1\rangle \Rightarrow c = \frac{\langle x | 1\rangle}{\langle 1 | 1\rangle} = \frac{x_1 + x_2 + x_3, \dots + x_n}{n}.$$

- Es una manera sofisticada de construir el promedio aritmético de las medidas.
- La proyección perpendicular de $|x\rangle$ sobre $|1\rangle$ hace mínima la distancia entre el subespacio generado por $|1\rangle$ y el vector $|x\rangle$, por tanto $[d(|x\rangle,c|1\rangle)]^2$

Ajuste a una recta

• La consecuencia más conocida es el "ajuste" de un conjunto de datos $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots, (x_n, y_n)\}$ a la ecuación de una recta y = cx.

Ajuste a una recta

- La consecuencia más conocida es el "ajuste" de un conjunto de datos $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots, (x_n, y_n)\}$ a la ecuación de una recta y = cx.
- Queremos que la distancia entre $|y\rangle$ y su valor más aproximado $|y\rangle_{\approx}=\operatorname{c}|x\rangle$ sea la menor posible. Por lo tanto, $\left\||\operatorname{c} x-y\rangle\right\|^2$ será la menor posible y $\left|\operatorname{c} x-y\right\rangle$ será perpendicular a $\mathbf{S}\left(|x\rangle\right)$,

$$\langle x | cx - y \rangle = 0 \Rightarrow c = \frac{\langle x | y \rangle}{\langle x | x \rangle} = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3 + \dots + x_n y_n}{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}.$$

Ajuste a una recta

- La consecuencia más conocida es el "ajuste" de un conjunto de datos $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)\}$ a la ecuación de una recta y = cx.
- Queremos que la distancia entre $|y\rangle$ y su valor más aproximado $|y\rangle_{\approx}=\operatorname{c}|x\rangle$ sea la menor posible. Por lo tanto, $\||\operatorname{c} x-y\rangle\|^2$ será la menor posible y $|\operatorname{c} x-y\rangle$ será perpendicular a $\mathbf{S}(|x\rangle)$,

$$\langle x | cx - y \rangle = 0 \implies c = \frac{\langle x | y \rangle}{\langle x | x \rangle} = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3 + \dots + x_n y_n}{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}.$$

• Si la recta a "ajustar" es y = cx + b, entondes $|b\rangle = b|1\rangle$, y tenemos:

$$|y\rangle = c|x\rangle + |b\rangle \Rightarrow \begin{cases} \langle x|y\rangle \Rightarrow \sum_{i=1}^{n} x_{i}y_{i} = c\sum_{i=1}^{n} x_{i}^{2} + b\sum_{i=1}^{n} x_{i} \\ \langle b|y\rangle \Rightarrow \sum_{i=1}^{n} y_{i} = c\sum_{i=1}^{n} x_{i} + bn \end{cases}$$

Interpolación polinomial de puntos experimentales

• Supongamos que tenemos puntos experimentales $\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\}$ y para modelar ese experimento quisiéramos una función que ajuste estos puntos, de manera que: $\{(x_1,y_1=f(x_1)),\cdots,(x_n,y_n=f(x_n))\}$. Para encontrar este polinomio lo expresaremos como una combinación lineal de polinomios de Legendre

Interpolación polinomial de puntos experimentales

- Supongamos que tenemos puntos experimentales $\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\}$ y para modelar ese experimento quisiéramos una función que ajuste estos puntos, de manera que: $\{(x_1,y_1=f(x_1)),\cdots,(x_n,y_n=f(x_n))\}$. Para encontrar este polinomio lo expresaremos como una combinación lineal de polinomios de Legendre
- Esto es: $f(x) = \sum_{k=0}^{n-1} C_k | P_k \rangle = \sum_{k=0}^{n-1} C_k P_k(x) \Rightarrow$

$$\begin{cases} y_1 = f(x_1) = C_0 P_0(x_1) + C_1 P_1(x_1) + \dots + C_{n-1} P_{n-1}(x_1) \\ y_2 = f(x_2) = C_0 P_0(x_2) + C_1 P_1(x_2) + \dots + C_{n-1} P_{n-1}(x_2) \\ \vdots \\ y_n = f(x_n) = C_0 P_0(x_n) + C_1 P_1(x_n) + \dots + C_{n-1} P_{n-1}(x_n) \end{cases}$$

n ecuaciones con n incógnitas $\{C_0, C_1, \cdots C_{n-1}\}$.

Recapitulando

- **⊙** Complementos ortogonales. Dado un vector $|x\rangle \in \mathbf{V}$ y un subespacio de \mathbf{V} con dimensión finita, $\mathbf{S}^m \subset \mathbf{V}$, entonces la distancia de $|x\rangle$ a \mathbf{S}^m será mínima y es la norma de la componente de $|x\rangle$, perpendicular a \mathbf{S}^m
- **3** Aproximación de funciones y complementos ortogonales. La proyección de $|v_i\rangle$ en $\mathbf{S}^m, |s_i\rangle$, será el elemento de \mathbf{S}^m más próximo a $|v_k\rangle$
- **3** Aproximación mediante series de funciones trigonométricas. Con el producto interno definido por: $\langle f | g \rangle = \int_0^{2\pi} \mathrm{d}x \ f(x) \ g(x)$ y una base ortogonal $|e_0\rangle = 1, \ |e_{2n-1}\rangle = \cos(nx)$ y $|e_{2n}\rangle = \sin(nx)$,
- Métodos de Mínimos cuadrados
- Aproximación de funciones mediante una base de polinomios ortogonales

Para la discusión

Considere el espacio vectorial, $\mathcal{C}_{[-1,1]}^{\infty}$, de funciones reales, continuas y continuamente diferenciables definidas en el intervalo [-1,1] con una base de monomios $\left\{1,x,x^2,x^3,x^4,\cdots\right\}$

Suponga la función $h(x) = sen(3x)(1-x^2)$:

- **1** Expanda la función h(x) en términos de la base de monomios y de polinomios de Legendre, grafique, compare y encuentre el grado de los polinomios en los cuales difieren las expansiones.
- ② Expanda la función h(x) en términos de la base de monomios y de polinomios de Chebyshev, grafique, compare y encuentre el grado de los polinomios en los cuales difieren las expansiones.
- **3** Expanda la función h(x) en términos de la base de polinomios de Legendre y de Chebyshev, grafique, compare y encuentre el grado de los polinomios en los cuales difieren las expansiones.
- Stime en cada caso el error que se comete como función del grado del polinomio (o monomio) de la expansión.

¿Qué puede concluir respecto a la expansión en una u otra base?