Symbolic Regression of Hyperelastic Laws with a Stress-Based Custom Loss:

Invariant Features, Robust Implementation, and a Mooney–Rivlin Case Study

(Your Name)

September 6, 2025

Abstract

We present a robust workflow to discover interpretable hyperelastic strain-energy functions by symbolic regression (SR). The method regresses a candidate energy $\Psi(I_1^b, I_2^b, J)$ from data while enforcing physics through a *stress-based custom loss*. Given features $X = [I_1^b, I_2^b, J]^{\top}$ and first Piola-Kirchhoff targets, the loss differentiates Ψ w.r.t. invariants, assembles stress, and minimizes the MSE on selected stress components (e.g. P_{11}). We detail implementation aspects in Julia (SymbolicRegression.jl + DynamicDiff.jl), common pitfalls (elementwise finiteness checks, function signatures, scalar vs. vector indexing), and demonstrate the pipeline on a Mooney-Rivlin benchmark with synthetic data. The resulting framework is stable, extensible, and preserves model interpretability.

1 Motivation and Contributions

Classical hyperelastic models (Neo–Hookean, Mooney–Rivlin, Ogden) postulate $\Psi(\cdot)$ and fit parameters. Symbolic regression (SR) instead *discovers* a functional form from data with algebraic building blocks, yielding concise, interpretable constitutive laws.

Contributions.

- A stress-driven custom loss that ties SR directly to continuum mechanics: we differentiate $\Psi(I_1^b, I_2^b, J)$, assemble σ and \mathbf{P} , and compare against measured/ground-truth stresses.
- A pragmatic, numerically robust Julia implementation with invariant features, volumetric stabilization, and strict NaN/Inf guards.
- A Mooney–Rivlin case study with synthetic uniaxial data, showing that SR rediscovers a compact and physically meaningful energy.
- Documentation of subtle implementation pitfalls and their fixes: (i) finiteness checks on arrays; (ii) argument order for the stress assembler; (iii) scalar indexing for batched derivatives.

2 Background

2.1 Kinematics and invariants

Let \mathbf{F} be the deformation gradient with $J = \det \mathbf{F} > 0$. Define $\mathbf{B} = \mathbf{F} \mathbf{F}^{\top}$ and $\mathbf{C} = \mathbf{F}^{\top} \mathbf{F}$. Isochoric (bar) invariants remove volumetric stretch via

$$\bar{\mathbf{B}} = J^{-2/3}\mathbf{B}, \qquad I_1^b = \operatorname{tr}\left(\bar{\mathbf{B}}\right), \qquad I_2^b = \frac{1}{2}\left[(\operatorname{tr}\bar{\mathbf{B}})^2 - \operatorname{tr}\left(\bar{\mathbf{B}}^2\right)\right].$$
 (1)

We consider $\Psi = \Psi(I_1^b, I_2^b, J)$, with a volumetric penalty U(J) embedded in Ψ .

2.2 Stresses from Ψ

A standard deviatoric/volumetric split for the Cauchy stress is

$$\sigma = \sigma_{\text{dev}} + \sigma_{\text{vol}},\tag{2}$$

$$\boldsymbol{\sigma}_{\text{dev}} = \frac{2}{J} \left(g_1 \,\bar{\mathbf{B}} + g_2 \left(I_1^b \mathbf{I} - \bar{\mathbf{B}} \right) \right)_{\text{dev}},\tag{3}$$

$$\sigma_{\text{vol}} = J g_J \mathbf{I}, \tag{4}$$

where $g_1 = \partial \Psi / \partial I_1^b$, $g_2 = \partial \Psi / \partial I_2^b$, $g_J = \partial \Psi / \partial J$, and $\text{dev}(\cdot)$ is the deviatoric projection. The first Piola–Kirchhoff stress follows as

$$\mathbf{P} = J \, \boldsymbol{\sigma} \, \mathbf{F}^{-\top}. \tag{5}$$

3 SR pipeline and custom loss

Data layout

We train on samples n = 1, ..., N with

$$X = \begin{bmatrix} I_1^b \\ I_2^b \\ J \end{bmatrix} \in \mathbb{R}^{3 \times N}, \qquad \{\mathbf{F}_n\}_{n=1}^N, \qquad y \in \mathbb{R}^N \text{ where } y_n = (P_{11})_n.$$

SR proposes a candidate $\Psi(\cdot)$; we use automatic differentiation to obtain (g_1, g_2, g_J) per sample, assemble **P**, and minimize MSE on P_{11} .

Loss definition (per-sample and batched)

For each n:

$$g_{1,n} = \frac{\partial \Psi}{\partial I_1^b} \Big|_{X_n}, \qquad g_{2,n} = \frac{\partial \Psi}{\partial I_2^b} \Big|_{X_n}, \qquad g_{J,n} = \frac{\partial \Psi}{\partial J} \Big|_{X_n},$$
 (6)

$$\mathbf{P}_n = \mathbf{P}_{\text{from}} - \mathbf{Psi}_{\text{full}} (g_{1,n}, g_{2,n}, g_{J,n}, \mathbf{F}_n), \qquad \ell_n = ((\mathbf{P}_n)_{11} - y_n)^2. \tag{7}$$

The loss is $\mathcal{L} = \frac{1}{N} \sum_{n} \ell_n$.

Numerical guards & common pitfalls

Finiteness checks. isfinite(x) is scalar-only. For arrays use all(isfinite, x). Accidentally forming tuples in all calls can trigger cryptic _all_tuple frames; use the pattern:

Function signatures. Our assembler is

Always pass scalars per sample: P_from_Psi_full(g1[n], g2[n], gJ[n], F_list[n]).

Indexing. Mixing per-batch vectors with per-sample operations causes signature mismatches; index before calling the assembler.

4 Mooney–Rivlin case study

4.1 Model and synthetic data

A compressible Mooney–Rivlin energy reads

$$\Psi_{MR}(I_1^b, I_2^b, J) = C_1(I_1^b - 3) + C_2(I_2^b - 3) + U(J), \tag{8}$$

with U(J) a volumetric penalty (e.g. $U = \frac{\kappa}{2}(J-1)^2$ or a $\kappa \log J$ form). We generate synthetic uniaxial data by prescribing stretches λ and forming

$$\mathbf{F} = \operatorname{diag}(\lambda, \lambda_t, \lambda_t), \quad \lambda_t = \lambda^{-1/2} \text{ for } J = 1 \text{ (incompressible case)},$$

then compute **P** from Ψ_{MR} and collect $X = [I_1^b, I_2^b, J]$ and $y = P_{11}$.

4.2 SR configuration (sketch)

We allow a compact operator set to bias towards interpretable formulas:

$$\mathcal{O}_{\mathrm{binary}} = \{+, -, \times\}, \quad \mathcal{O}_{\mathrm{unary}} = \{\mathrm{safe_log}, \mathrm{safe_sqrt}, \mathrm{exp}\}.$$

The search runs for a fixed number of iterations with our custom loss. A validation split helps avoid overfitting.

4.3 Results and discussion

On synthetic Mooney–Rivlin data, SR typically recovers an energy of the form

$$\Psi^{\star} \approx \tilde{C}_1 (I_1^b - 3) + \tilde{C}_2 (I_2^b - 3) + \tilde{U}(J),$$

up to algebraic transforms. Stress-stretch curves (P_{11} vs. λ) match the reference closely, confirming that a stress-driven loss guides SR to physically meaningful minima.

5 Reproducibility recipe

- 1. Data. Generate synthetic uniaxial data from a known Mooney–Rivlin law:
 - 1.1. Choose (C_1, C_2, κ) and a stretch grid $\lambda \in [\lambda_{\min}, \lambda_{\max}]$.
 - 1.2. Form $\mathbf{F}(\lambda)$, compute J, $\bar{\mathbf{B}}$, and (I_1^b, I_2^b) .
 - 1.3. Evaluate **P** from the analytic model; set $y = P_{11}$.
- 2. **Features.** Build $X = \begin{bmatrix} I_1^b \\ I_2^b \\ J \end{bmatrix}$ column-wise.
- 3. **SR config.** Choose compact operator sets; cap complexity (optional).
- 4. Loss. Use the custom stress MSE on P_{11} with derivative-based assembly.
- 5. Validation. Hold out samples or stretches to monitor generalization.

6 Common issues & fixes

- MethodError: isfinite(::Vector{Float64}). Use all(isfinite, v) for arrays; keep isfinite(x) for scalars.
- no method matching P_from_Psi_full(::Vector,...) Ensure you pass scalars: g1[n], g2[n], gJ[n] and F_list[n].
- Silent NaNs/Infs. Early-return Inf from the loss if any sample becomes non-finite; assert at assembly points.

7 Outlook

The framework extends to richer operator sets (e.g. rational or piecewise terms), multi-component stress fitting, and constraints (e.g. convexity surrogates). Incorporating weak polyconvexity checks during search is promising.

A Flow diagram (SR pipeline)

B Loading Scenarios

We summarize three standard loading paths used for identification and validation of incompressible and nearly-incompressible hyperelastic models. For each case we give a representative deformation gradient \mathbf{F} , principal stretches, and a schematic.

Figure 1: End-to-end pipeline tying SR to continuum stress assembly.

B.1 Uniaxial Tension/Compression

For a stretch λ in the x-direction and incompressibility (or nearly so), a common choice is

$$\mathbf{F}_{\mathrm{uni}} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda^{-1/2} & 0 \\ 0 & 0 & \lambda^{-1/2} \end{bmatrix}, \qquad J = \det \mathbf{F}_{\mathrm{uni}} = 1 \text{ (incompressible)}.$$

The associated invariants of the left Cauchy–Green tensor $\mathbf{b} = \mathbf{F}\mathbf{F}^{\top}$ are

$$I_1 = \operatorname{tr}(\mathbf{b}), \qquad I_2 = \frac{1}{2} \Big[(\operatorname{tr} \mathbf{b})^2 - \operatorname{tr}(\mathbf{b}^2) \Big].$$

Figure 2: Uniaxial loading: reference and deformed sketches.

B.2 Equibiaxial Tension

Two equal in-plane stretches λ with incompressibility give

$$\mathbf{F}_{\text{equi}} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^{-2} \end{bmatrix}, \qquad J = 1.$$

Figure 3: Equibiaxial loading: reference and deformed sketches.

B.3 Plane Strain (Pure Shear Test)

A typical plane-strain (pure-shear) choice is

$$\mathbf{F}_{\mathrm{ps}} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda^{-1} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad J = 1.$$

Figure 4: Plane-strain loading: reference and deformed sketches.

Remarks on Stress Extraction. In our pipeline, nominal stresses (first Piola–Kirchhoff) P_{11} are assembled from the energy density $\Psi(I_1, I_2, J)$ via

$$P = \frac{\partial \Psi}{\partial \mathbf{F}} = 2 \frac{\partial \Psi}{\partial I_1} \mathbf{F} - 2 \frac{\partial \Psi}{\partial I_2} \mathbf{F}^{-\top} \mathbf{b} \mathbf{F}^{-\top} + \frac{\partial \Psi}{\partial J} J \mathbf{F}^{-\top},$$

specialized to each ${\bf F}$ above. This provides consistent targets for symbolic regression when fitting Ψ from data.

C Gradient of Strain Energy with Respect to Invariants

We consider isotropic hyperelastic materials whose strain-energy density is written as $\Psi = \Psi(I_1, I_2, J)$, where $I_1 = \operatorname{tr} \mathbf{C}$, $I_2 = \frac{1}{2}[(\operatorname{tr} \mathbf{C})^2 - \operatorname{tr}(\mathbf{C}^2)]$ are the first two invariants of the right Cauchy–Green tensor $\mathbf{C} = \mathbf{F}^{\top}\mathbf{F}$, and $J = \det \mathbf{F}$ is the Jacobian of the deformation. Invoking the chain rule and the standard identities $\partial I_1/\partial \mathbf{F} = 2\mathbf{F}$, $\partial I_2/\partial \mathbf{F} = 2(I_1\mathbf{F} - \mathbf{FC})$, and $\partial J/\partial \mathbf{F} = J \mathbf{F}^{-\top}$, the first Piola–Kirchhoff stress reads (see, e.g., [1, 2, 3])

$$\mathbf{P} = 2\Psi_{I_1}\mathbf{F} + 2\Psi_{I_2}(I_1\mathbf{F} - \mathbf{FC}) + \Psi_J J \mathbf{F}^{-\top}, \tag{9}$$

where $\Psi_{(\cdot)}$ denotes partial derivatives w.r.t. the listed arguments. This form is objective and isotropic by construction since Ψ depends only on invariants.

C.1 Isochoric-volumetric split

For nearly incompressible media, it is common to split $\Psi = \Psi_{\rm iso}(I_1^b, I_2^b) + U(J)$, where $I_1^b = J^{-2/3}I_1$ and $I_2^b = J^{-4/3}I_2$ are the modified (isochoric) invariants of $\mathbf{B} = \mathbf{F}\mathbf{F}^{\top}$ and U(J) penalizes volume changes [2, 3]. Denoting $g_1 = \partial \Psi/\partial I_1^b$, $g_2 = \partial \Psi/\partial I_2^b$ and $g_J = \partial U/\partial J$, the stress becomes

$$\mathbf{P} = 2 \left[g_1 J^{-2/3} \mathbf{F} + g_2 J^{-2/3} (I_1^b \mathbf{F} - J^{-2/3} \mathbf{F} \mathbf{C}) \right] + g_J J \mathbf{F}^{-\top}.$$
 (10)

The first bracket is deviatoric (trace-free in Cauchy form), while the second term produces the hydrostatic response. If $U(J) = \frac{1}{2} \kappa (J-1)^2$ or $U(J) = \frac{1}{2} \kappa (\ln J)^2$, then $g_J = \kappa (J-1)$ or $g_J = \kappa \ln J/J$, respectively, and the volumetric nominal stress is always $g_J J \mathbf{F}^{-\top}$.

C.2 Automatic & symbolic differentiation in learning Ψ

When Ψ is learned from data (e.g., via symbolic regression or neural networks), one differentiates Ψ with respect to its inputs to obtain g_1 , g_2 , and g_J and then assembles stresses using (10). This strategy, sometimes called Sobolev training in machine learning, ties the model to mechanics by fitting not only function values but also their derivatives [4]. Recent works show that learning $\Psi(I_1, I_2, J)$ (or $\Psi(I_1^b, I_2^b, J)$) with automatic/symbolic differentiation yields accurate and interpretable hyperelastic models [5, 6, 7].

C.3 Check against the implementation (Julia)

Your Julia routine P_from_Psi_full computes the isochoric part exactly as in (10), using $g_1 = \partial \Psi / \partial I_1^b$ and $g_2 = \partial \Psi / \partial I_2^b$ from automatic differentiation. This is correct and consistent with the literature. For the volumetric term, however, the code applies

$$\mathbf{P}_{\text{vol}}^{(\text{code})} = g_J \frac{J}{2} \mathbf{F}^{-\top},$$

whereas the continuum result is $\mathbf{P}_{\text{vol}} = g_J J \mathbf{F}^{-\top}$, cf. (9). The extra factor 1/2 underestimates volumetric stiffness by a factor of two. We recommend replacing (dPsi_dJ * (J/2.0)) by (dPsi_dJ * J) in both the ground-truth generator and the loss evaluation.

Diagnostics and best practices. (i) Ensure Ψ is normalized so that $g_1, g_2, g_J = 0$ at the reference state $(I_1^b, I_2^b, J) = (3, 3, 1)$, or include a small penalty for residual stresses at $\mathbf{F} = \mathbf{I}$. (ii) When using $U(J) = \frac{1}{2}\kappa(\ln J)^2$, guard $\ln J$ by clamping J away from 0 in the loss. (iii) Always report the deformation modes (uniaxial, equibiaxial, pure shear, volumetric) used for fitting and validation since they excite different combinations of (I_1^b, I_2^b, J) [1, 2].

Complexity	Loss	Equation
1	5.344	I_{2b}
3	0.237	$I_{2b}+I_{1b}$
5	0.026	$I_{2b} + (I_{1b} \cdot 0.834)$
7	0.002	$J \cdot (I_{2b} + (I_{1b} \cdot 0.834))$
9	1.259×10^{-5}	$(J - 0.129) \cdot (I_{1b} + (I_{2b} \cdot 1.125))$
11	4.611×10^{-6}	$(((J \cdot 1.597) - 0.617) \cdot I_{2b}) + (I_{1b} \cdot 0.870)$
13	2.288×10^{-8}	$J \cdot ((I_{1b} \cdot 0.870) + (((J \cdot 0.181)0.799) \cdot I_{2b}))$
15	3.333×10^{-10}	$(((((J \cdot 0.169) + 0.820) \cdot I_{2b}) + (0.878 \cdot I_{1b})) \cdot (J - 0.009)$

Table 1: Top discovered expressions (rounded to 3 decimals in equations).

D Regression results

References

References

- [1] R. W. Ogden, Non-Linear Elastic Deformations, Dover, 1997.
- [2] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, 2000.
- [3] J. Bonet and R. D. Wood, *Nonlinear Continuum Mechanics for Finite Element Analysis*, 2nd ed., Cambridge University Press, 2008.
- [4] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Świrszcz, and R. Pascanu, "Sobolev Training for Neural Networks," in Advances in Neural Information Processing Systems (NeurIPS), 2017.
- [5] M. Flaschel, S. Kumar, and L. De Lorenzis, "Unsupervised discovery of interpretable hyperelastic constitutive laws," Computer Methods in Applied Mechanics and Engineering, 381:113852, 2021.
- [6] R. Abdusalamov, M. Hillgärtner, and M. Itskov, "Automatic generation of interpretable hyperelastic material models by symbolic regression," *International Journal for Numerical Methods in Engineering*, 124(15):3373–3398, 2023.
- [7] G. Kissas, C. Wang, and G. E. Karniadakis, "The language of hyperelastic materials," Computer Methods in Applied Mechanics and Engineering, 428:170530, 2024.

E Extending Symbolic Regression to Viscoelasticity

Notation. We use **F** for the deformation gradient, $\mathbf{C} = \mathbf{F}^{\top}\mathbf{F}$, $\mathbf{B} = \mathbf{F}\mathbf{F}^{\top}$, $J = \det \mathbf{F}$, the rate-of-deformation tensor $\mathbf{D} = \frac{1}{2}(\mathbf{L} + \mathbf{L}^{\top})$ with $\mathbf{L} = \dot{\mathbf{F}}\mathbf{F}^{-1}$, and the Cauchy stress $\boldsymbol{\sigma}$.

E.1 Two-stage learning strategy

We propose a staged workflow:

- 1. Elastic identification. Learn $\Psi_{\rm iso}(I_1^b, I_2^b)$ and U(J) using low-rate or equilibrium data as in Sec. C (fit $g_1 = \partial \Psi / \partial I_1^b$, $g_2 = \partial \Psi / \partial I_2^b$, $g_J = \partial \Psi / \partial J$).
- 2. Viscous augmentation. With Ψ fixed, learn a viscous contribution $\sigma_{\rm v}$ from rate-dependent histories (relaxation, creep, ramps, cyclic), enforcing dissipation $\mathcal{D} = \sigma_{\rm v} : \mathbf{D} \geq 0$.

E.2 Kelvin-Voigt baseline (finite strain)

A robust baseline is a deviatoric Kelvin–Voigt model combined with the learned elastic stress:

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_{e}(\mathbf{B}; I_{1}^{b}, I_{2}^{b}, J) + 2 \eta_{dev} \mathbf{D}_{dev} + \kappa_{v} \operatorname{tr}(\mathbf{D}) \mathbf{I}, \tag{11}$$

where σ_e is the elastic Cauchy stress derived from Ψ , and $\mathbf{D}_{dev} = \mathbf{D} - \frac{1}{3} \operatorname{tr}(\mathbf{D}) \mathbf{I}$. Often $\kappa_v = 0$ for nearly incompressible materials. In nominal form, $\mathbf{P} = J \boldsymbol{\sigma} \mathbf{F}^{-\top}$. This model corresponds to a quadratic pseudo-potential of dissipation $\Phi = \eta_{dev} \mathbf{D}_{dev} : \mathbf{D}_{dev} + \frac{1}{2} \kappa_v (\operatorname{tr} \mathbf{D})^2$, and guarantees $\mathcal{D} = 2 \eta_{dev} \|\mathbf{D}_{dev}\|^2 + \kappa_v (\operatorname{tr} \mathbf{D})^2 \ge 0$.

E.3 Generalized Maxwell (Prony series) with internal variables

To capture fading memory, augment the deviatoric stress by N Maxwell branches with Prony series parameters:

$$\dot{\mathbf{s}}_i + \frac{1}{\tau_i} \mathbf{s}_i = 2 G_i \mathbf{D}_{\text{dev}}, \qquad \boldsymbol{\sigma}'_{\text{v}} = \sum_{i=1}^N \mathbf{s}_i, \qquad G(t) = G_{\infty} + \sum_{i=1}^N G_i e^{-t/\tau_i},$$
 (12)

where $(\cdot)'$ denotes deviatoric part. The unconditionally stable exact update over a time step Δt is

$$\mathbf{s}_{i}^{n+1} = \alpha_{i} \, \mathbf{s}_{i}^{n} + 2 G_{i} \left(1 - \alpha_{i} \right) \frac{\mathbf{E}_{\text{dev}}^{n+1} - \mathbf{E}_{\text{dev}}^{n}}{\Delta t}, \quad \alpha_{i} = e^{-\Delta t / \tau_{i}}, \tag{13}$$

with **E** a chosen strain measure (for small steps, $\mathbf{E}_{\text{dev}} \approx \int \mathbf{D}_{\text{dev}} dt$). In practice, one may also use the midpoint rule $\mathbf{s}_i^{n+1} = \alpha_i \, \mathbf{s}_i^n + 2 \, G_i \, \alpha_i \, \Delta t \, \mathbf{D}_{\text{dev}}^{n+1}$, which differentiates cleanly in AD frameworks. The full nominal stress is $\mathbf{P} = \mathbf{P}_{\text{e}} + J \, \boldsymbol{\sigma}_{\text{v}} \, \mathbf{F}^{-\top}$.

E.4 SR design choices for viscosity

We outline three complementary SR routes:

- 1. Parametric Prony fit. Choose $\{\tau_i\}$ on a log-spaced grid and learn nonnegative $\{G_i\}$ (and optionally G_{∞}), or learn both using positive reparameterizations $(G_i = \text{softplus}(\cdot), \tau_i = \text{softplus}(\cdot))$. This preserves linearity of the branch update and guarantees $\mathcal{D} \geq 0$.
- 2. **SR for viscosity law.** Postulate $\sigma'_{\mathbf{v}} = 2 \mu(I_1^b, I_2^b, J, \mathcal{I}_{\mathbf{D}^b}) \mathbf{D}_{\text{dev}}$, where $\mathcal{I}_{\mathbf{D}^b}$ are invariants of the isochoric rate \mathbf{D}^b . Use SR to discover a sparse, interpretable $\mu(\cdot)$ with a nonnegativity constraint (e.g., softplus envelope).
- 3. **SR for evolution laws.** Keep the Maxwell structure but let the driving term be a sparse function discovered by SR: $\dot{\mathbf{s}}_i + \mathbf{s}_i/\tau_i = \sum_k c_{ik} \phi_k(\mathbf{C}, \mathbf{D})$, enforcing $\sum_i \mathbf{s}_i : \mathbf{D} \geq 0$.

E.5 Losses, constraints, and differentiation through time

Given sequences $\{\mathbf{F}(t_m)\}_{m=0}^M$ and measured components of **P** or $\boldsymbol{\sigma}$, define

$$\mathcal{L} = \sum_{\text{seq}} \sum_{m} w_{m} \|\mathcal{O}[\mathbf{P}(\mathbf{F}(t_{m}); \theta)] - y_{m}\|_{2}^{2} + \lambda_{\text{diss}} \sum_{m} \max(0, -\boldsymbol{\sigma}_{v}(t_{m}) : \mathbf{D}(t_{m})) + \lambda_{\text{reg}} \|\theta\|_{1},$$
(14)

where θ collects parameters (elastic and viscous). Time integration of (12) is differentiable: use exact updates (13) or an AD-friendly one-step scheme (implicit Euler or midpoint). For identifiability, include diverse histories (step-relaxation, creep, ramp at multiple rates, cyclic loading) and loading modes (uniaxial, equibiaxial, pure shear).

E.6 Implementation notes (Julia)

- Reuse the learned Ψ and its gradients (g_1, g_2, g_J) for the elastic part (Sec. C).
- Compute **D** per step via $\mathbf{D}^{n+1} = \frac{1}{2\Delta t} (\mathbf{F}^{n+1} \mathbf{F}^{n+1\top} \mathbf{F}^n \mathbf{F}^{n\top}) \mathbf{B}^{-1/2}$ or use the simple finite difference $\frac{1}{2\Delta t} (\mathbf{L} + \mathbf{L}^{\top})$ with $\mathbf{L} = \dot{\mathbf{F}} \mathbf{F}^{-1}$ if $\dot{\mathbf{F}}$ is available.
- Update $\{\mathbf{s}_i\}$ with $\alpha_i = \exp(-\Delta t/\tau_i)$; form $\boldsymbol{\sigma}_{\mathbf{v}}' = \sum_i \mathbf{s}_i$ and push-forward to $\mathbf{P}_{\mathbf{v}} = J \boldsymbol{\sigma}_{\mathbf{v}} \mathbf{F}^{-\top}$.
- Enforce positivity via reparameterization: $G_i = \text{softplus}(\hat{G}_i), \ \tau_i = \text{softplus}(\hat{\tau}_i), \ \eta_{\text{dev}} = \text{softplus}(\hat{\eta}).$

References

References

- [1] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, 2000.
- [2] J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer, 1998.
- [3] S. Reese and S. Govindjee, "A theory of finite viscoelasticity and numerical aspects," *International Journal of Solids and Structures*, 35(26–27):3455–3482, 1998.
- [4] R. M. Christensen, Theory of Viscoelasticity, 2nd ed., Dover, 2003.

- [5] Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springer, 1993.(QLV)
- $[6]\,$ J. D. Ferry, $\it Viscoelastic Properties of Polymers, 3rd ed., Wiley, 1980.$