Math 110B (Algebra) *University of California, Los Angeles*

Aaron Chao

Winter 2022

These are my lecture notes for Math 110B (Algebra), which is the second course in Algebra taught by Nicolle Gonzales. The textbook for this class is *Abstract Algebra: An Introduction*, *3rd edition* by Hungerford.

	Contents	
1	Jan 3, 2022	2
2	1.1 Groups	4
	2.1 Groups (Cont'd)	4
	2.2 Symmetries	5
3	Jan 7, 2022	8
	3.1 Symmetries (Cont'd)	8
	3.2 Direct Product of Groups	8
	3.3 Properties of Groups	9
	3.4 Order of an Element	10
4		11
	4.1 Order of an Element (Cont'd)	11
	4.2 Subgroups	12

1 Jan 3, 2022

1.1 Groups

- Algebra \rightarrow study of mathematical structure.
- Rings \leftrightarrow "numbers" e.g. $\mathbb{R}, \mathbb{Z}, \mathbb{C}, \mathbb{Z}_p$ 2 operations $(+, \cdot)$

Question 1.1: What happens if we have only 1 operation (either \cdot or + but not both)? What kind of structure is this more basic setup?

Answer: Groups! It turns out groups encode the mathematical structures of the $\underline{\text{symmetries}}$ in nature.

Definition 1.2 (Group)

A group (G,*) is a nonempty set with a binary operation $*: G \times G \to G$ that satisfies

- 1. (Closure): $a * b \in G \quad \forall a, b \in G$
- 2. (Associativity): $(a * b) * c = a * (b * c) \quad \forall a, b, c \in G$
- 3. (Identity): $\exists e \in G$ such that $e * a = a = a * e \quad \forall a \in G$
- 4. (Inverse): $\forall a \in G, \exists d \in G \text{ such that } d * a = e = a * d$

Note:

• If * is addition, we just divide * by the usual + sign. In this case

$$e = 0$$
 and $d = -a$

• If the operation * is multiplication, we just divide * by the usual · sign. In this case

$$e = 1$$
 and $d = a^{-1}$

• Be aware that sometimes * is neither.

Definition 1.3 (Abelian)

If the * operation is commutative, i.e. a*b = b*a, then we say that G is <u>abelian</u> (named after the mathematician N.H. Abel)

Definition 1.4 (Order, Finite Group vs. Infinite Group)

The <u>order</u> of a group G, denoted |G|, is the number of elements it contains (as a set). Thus, G is a <u>finite group</u> if $|G| < \infty$ and G is an infinite group if $|G| = \infty$

Examples 1.5 (Examples of a group)

1. Rings where you "forget" multiplication. $\rightarrow (\mathbb{Z}, +)$ integers with $* = +, (\mathbb{R}[X], +)$, etc. Note: $(\mathbb{Z}, *)$ with $* = \cdot$ is not a group. Why?

Theorem 1.6

Every ring is an abelian group under addition.

Proof. e = 0, inverse = -a for each $a \in R$.

<u>Fact:</u> If $R \neq 0$ then (R, \cdot) is <u>never</u> a group since 0 has no multiplicative inverse.

Examples 1.7 (More examples of a group)

2. Fields without zero.

Theorem 1.8

Let \mathbb{F}^* denote the nonzero elements of a field \mathbb{F} . Then (\mathbb{F}^*,\cdot) is an abelian group.

<u>Recall:</u> A unit in a ring R is an element $a \in R$ with a multiplicative inverse $a^{-1} \in R$ such that $aa^{-1} = 1 = a^{-1}a$.

Theorem 1.9

The set of units \mathcal{U} inside a ring R is a group under multiplication.

Examples 1.10 (More examples of a group cont.)

3. $\mathcal{U}_n = \{m | (m, n) = 1\} \subseteq \mathbb{Z}_n$ is also a group, but under multiplication, $\underline{n = 4} \quad \mathbb{Z}_4 = \{0, 1, 2, 3\}, \quad \mathcal{U}_4 = \{1, 3\}$ $(\mathbb{Z}_4, +)$ and (\mathcal{U}_4, \cdot) are groups with different binary operation!

 $\underline{n=6}$ $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}, \quad \mathcal{U}_6 = \{1, 5\}$ (\mathcal{U}_6, \cdot) is a group

- $1 \cdot 5 = 5 \pmod{6} \in \mathcal{U}_6$ (closure)
- 1 = e (identity)
- $1 \cdot 1 = 1$, $5 \cdot 5 = 25 \equiv 1 \pmod{6}$ (inverse)
- Associativity is clear

2 Jan 5, 2022

2.1 Groups (Cont'd)

Examples 2.1

4. $(M_{n \times m}(\mathbb{F}), +) = m \times n$ matrices over \mathbb{F} under addition e = zero matrix, inverse of a matrix -M

Definition 2.2 (General linear group)

Denote by $GL_n(\mathbb{F})$ the set of nxn invertible matrices under multiplication. $(\det(A) \neq 0 \quad \forall A \in GL_n)$

- Closed: $det(A \cdot B) = det(A) \cdot det(B) \neq 0 \implies AB \in GL_n \quad \forall A, B \in GL_N$
- Associativity: Obvious.
- Identity: $det(I) = 1 \neq 0 \implies I \in GL_n(\mathbb{F})$
- Inverse: $A \in GL_n$; $\det(A^{-1}) = \frac{1}{\det(A)} \neq 0 \implies A^{-1} \in GL_n(\mathbb{F})$

Fact: $GL_n(\mathbb{F})$ is a group for any field \mathbb{F} .

Comment:

- $\det(A+B) \neq \det(A) + \det(B)$
- $\det(AB) = \det(A) \cdot \det(B)$

Definition 2.3 (Special linear group)

Let $SL_n(\mathbb{F})$ denote the set of invertible matrices over \mathbb{F} with det = 1

Exercise. Show that $SL_n(\mathbb{F})$ is a group.

2.2 Symmetries

Example 2.4 (Symmetries over a square)

Rotations and reflection These operations (maps) form a group under composition. So *=0. For instance, suppose $r_3 \circ t = h$

The group of rotations/reflections of a square is called <u>Dihedral Group of degree 4</u>, denoted D_4 .

$$D_4 = \{r_1, r_2, r_3, r_4, d, t, h, v \mid \text{under } \circ \}$$

These are Professor Gonzales's lovely drawings.

Example 2.5 (Symmetries of a regular polygon with n sides)

Called the dihedral groups of degree n, D_n .

• <u>n=</u>3

• <u>n=4</u>

• $\underline{n=5}$

• <u>n=6</u> etc...

Observe: $|D_n| = 2n$ because you have n-axes of reflection and n-angles of notation.

Example 2.6 (The symmetric group)

Let $n \in \mathbb{N}$, and S_n be the set of all permutations of the numbers $\{1, ..., n\}$.

Note: any permutation of $\{1,...,n\}$ can be thought of as a bijection $\{1,...,n\} \rightarrow \{1,...,n\}$.

- This allows us to compose permutations just like functions.
- $\implies S_n$ is a group!

Definition 2.7 (Symmetric group)

The symmetric group S_n is the group of permutations of the integers of the integers $\{1,...,n\}$.

Given any permutation $\sigma \in S_n$,

$$\sigma: \{1, ..., n\} \to \{1, ..., n\},$$
$$i \mapsto \sigma_i$$

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ \sigma_1 & \sigma_2 & \cdots & \sigma_{n-1} & \sigma_n \end{pmatrix} \rightarrow e = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma_1^{-1} & \sigma_2^{-1} & \cdots & \sigma_n^{-1} \end{pmatrix}$$

Group operation: function composition.

Example 2.8

$$\frac{\mathbf{n}=2:}{e = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}} \tau = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$\tau \circ \tau = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = e$$

$$\tau \circ e = \tau$$

$$e \circ \tau = \tau$$

$$e \circ \tau = e$$

$$\implies S_2 = \{e, \tau\} \text{ is a group}$$

$$e^{-1} = e$$

$$\tau^{-1} = \tau$$

Associativity: obvious because of function composition

3 Jan 7, 2022

3.1 Symmetries (Cont'd)

Example 3.1

Exercise. τ_{212} ?

3.2 Direct Product of Groups

Definition 3.2 (Direct product)

Given $(G, *), (H, \star)$ both groups define the binary operation:

$$(G \times H) \times (G \times H) \to G \times H$$

 $(g,h) \square (g',h') \mapsto (g * g', h \star h')$

 $\frac{\text{Side note:}}{\odot \colon S \times S \to S} \Longrightarrow S \text{ group}$

Example 3.3

$$S_2 \times D_4$$
: $(\tau_1, r_{270^{\circ}}) \square (\tau_1, v) = (\tau_1 \circ \tau_1, r_{270^{\circ}}v) = (e, t)$

Example 3.4

$$(\mathbb{R}, +) \times (\mathbb{R}^*, \cdot)$$
$$(5, 2)\square(-5, \pi) = (0, 2\pi)$$

Example 3.5

$$\mathbb{Z}_n \times \mathbb{Z}_m \quad n, m \in \mathbb{N}.$$

$$(a,b) \square (a',b') = \underbrace{(a+a', b+b')}_{\text{mod } n}$$

$$(5,5)\square(2,2) = (5+2,5+2)$$

$$= (7,1)$$

3.3 Properties of Groups

<u>Notation</u>: Going forward, we omit * in the notation: $(G,*) \to G$. Use multiplicative notation for abstract groups. Instead $a*b \to ab$.

$$\underbrace{a * a * a * a \cdots * a}_{n \text{ times}} \to a^n$$

However, for very explicit groups like

 $(\mathbb{Z},+),(\mathbb{R},+),(\mathbb{Z}_n,+),$ etc, we use <u>additive notation</u>. (*=+)

$$a * b \rightarrow a + b$$

$$\underbrace{a * \cdots * a}_{n \text{ times}} \to n \cdot a$$

(Review notation on page 198 of book)

Theorem 3.6

G group, $a, b, c \in G$. Then

- 1. $e \in G$ is unique
- 2. if ab = ac or $ba = ca \implies b = c$
- 3. $\forall a \in G : a^{-1}$ is unique.

Proof.

1. Suppose $\exists e' \in G$ s.t $e \neq e'$ but $e'a = a = ae' \ \forall a \in G$. \Longrightarrow let $a = e \implies e'e = e = ee'$

On the other hand $e \cdot e' = e' = e'e$

$$\implies e = e'$$

 $2. \ ab = ac, \quad a, b, c \in G.$

Since $a^{-1} \in G$

$$\implies \underbrace{a^{-1}a}_{e}b = \underbrace{a^{-1}a}_{e}c$$

$$\implies e \cdot b = e \cdot c$$

$$\implies b = c$$

3. Suppose $a \in G \exists$ two distinct inverses.

 $d_1, d_2 \in G$.

$$d_1 a = e = a d_1$$

$$d_2 a = e = a d_2$$

$$\implies d_1 = d_1 e = d_1 a d_2 = e \cdot d_2 = d_2$$

Corollary 3.7

G group, $a, b \in G$. Then

- 1. $(ab)^{-1} = b^{-1}a^{-1}$
- 2. $(a^{-1})^{-1} = a$

| Proof. Exercise.

Note: ab = ba (G is abelian) $(ab)^{-1} = a^{-1}b^{-1}$ Generally: $ab \neq ba \implies a^{-1}b^{-1} \neq b^{-1}a^{-1}$

3.4 Order of an Element

Definition 3.8 (Order (of an element) and Finite vs. Infinite order)

The <u>order</u> of an element $a \in G$ is the smallest $k \in \mathbb{N}$ such that $a^k = e$. We denote this by |a|.

If k is finite $\implies a$ has finite order.

If k is infinite $\implies a$ has infinite order.

Example 3.9

$$S_2; e, \tau_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$|e| = 1; e' = e$$

$$|\tau_1| = 2 \quad \tau_1^2 = \tau_1 \circ \tau_1 = e$$

$$\tau_1^4 = \tau_1^2 \circ \tau_1^2 = e \circ e = e$$

Example 3.10

 $\mathbb{Z} \leftarrow e = 0.$

|1| = ?

 $1 \cdot n = 0$ for which n?

Answer none!

 $\implies |1| = \infty$

4 Jan 10, 2022

4.1 Order of an Element (Cont'd)

Theorem 4.1

G-group, $a \in G$

- 1. If $|a| = \infty$, then $a^i \neq a^j$ for any $i, j \in \mathbb{Z}$ with $i \neq j$.
- 2. If $\exists i \neq j$ such that $a^i = a^j \implies |a| < \infty$.

Proof. We prove (2) (because $1 \Leftrightarrow 2$).

WLOG suppose i > j, then if $a^i = a^{j'} \implies a^{i-j} = a^i a^{-j} \implies = a^j a^{-j} = a^0 = e$ $\implies |a| \le i - j < \infty$

Theorem 4.2

G group, $a \in G \quad |a| = n$

- 1. $a^k = e \Leftrightarrow n \mid k \quad (n \leq k)$
- 2. $a^i = a^j \Leftrightarrow i \equiv j \pmod{n}$
- 3. if n = td $d \ge 1 \implies |a^t| = d$.

Proof.

1. If $a^k = e$ and since $a^n = e$ with n-smallest such integer, then k > n, and so k = nd + r with $0 \le r < n$

$$a^{k} = a^{nd+r} = (a^{n})^{d}a^{r} = e^{d}a^{r} = a^{r}$$

If $0 < r < n \implies a^r \neq e \implies a^k \neq e$ $r = 0 \implies k = nd \implies n \mid k$.

- 2. If $a^i = a^j \implies a^{i-j} = e$
 - $\implies n \mid i j \text{ by part } 1.$
 - $\implies i j \equiv 0 \pmod{n}$
 - $\implies i \equiv j \pmod{n}$
- 3. If n = td $(d \ge 1) \stackrel{?}{\Longrightarrow} |a^t| = d$

Since $a^n = e \implies (a^t)^d = e \implies |a^t| \le d$.

If $|a^t| = k < d \implies (a^t)^k = a^{tk} = e$

But $tk for <math>tk < n \implies \neq$ because n is the smallest positive integer such that $a^n = e$.

 $\implies k = d \implies |a^t| = d.$

Corollary 4.3

G- abelian group with $|a| < \infty$ $\forall a \in G$. Suppose $c \in G$ such that $|a| \leq |c|$ $\forall a \in G$. Then $|a| \mid |c|$.

Proof. Suppose not. \exists some $a \in G$ such that $|a| \nmid |c|$. Consider prime factorizations of |a| and |c|.

 \implies Then \exists some prime p such that $|a| = p^r m$ $|c| = p^s n$ where r > s (s might be zero) and $(p_1 m) = 1 = (p_1 n)$.

Then by (3) of Theorem 4.2 of previous theorem,

$$|a^m| = p^r$$
 and $|c^{p^s}| = n$

$$\Longrightarrow_{\text{because } (p^r, n) = 1} |\underbrace{a^m \cdot c^{p^s}}_{\in G}| = p^r \cdot n$$

Note: $|a| = n, |b| = m, |a \cdot b| \neq n \cdot m \text{ unless } (n, m) = 1$

Recall: $|c| = p^s \cdot n$ where s < r

- $\implies p^r > p^s$
- $\implies p^r n > p^s n$
- $\implies |a^m \cdot c^{p^s}| > |c|$
- \implies \neq because c is the element in G with maximal order! So $a^m c^{p^s} \in G$ cannot have order larger than c.

4.2 Subgroups

Definition 4.4 (Subgroup)

A subset $H \subseteq G$ is a subgroup of (G, *) if it is also a group under *.

Note:

 $G \subseteq G \implies G$ is always a subgroup of itself (Improper subgroup)

 $\{e\} \subseteq G \implies \{e\}$ is always a subgroup of G (Trivial subgroup of G)

 \implies Any subgroup $e \neq H \neq G$ is called a nontrivial proper subgroup.

Examples 4.5

- $(\mathbb{Z},+)\subseteq (\mathbb{Q},+)$
- $\{e, r_{90}, r_{180}, r_{270}\} \subseteq D_4$
- $SL_n(\mathbb{F}) \subseteq GL_n(\mathbb{F})$

Note: any subgroup always contains e.

Theorem 4.6

A nonempty subset H of G is a subgroup if:

- $1. \ ab \in H \quad \forall a, b \in H$
- $2. \ a^{-1} \in H \quad \forall a \in H$

Proof. Since $H \neq \emptyset$ $\exists a \in H$. By (2), $\exists a^{-1} \in H$. \Longrightarrow By (1) $aa^{-1} = e \in H$ \Longrightarrow $e \in H$.

Theorem 4.7

Any closed nonempty finite subset H of G is a subgroup.

Proof. By Theorem 4.6, we need only show that H contains inverses.

If $a \in H$ $a^k \in H$ $\forall k \in \mathbb{Z}$.

Since H is finite, not all a^k can be distinct.

$$\implies |a| = n < \infty \text{ for some } n \in \mathbb{N}.$$

$$\implies a^n = e$$

$$\implies a^{n-1} \cdot a = e = a \cdot a^{n-1}$$

$$\text{If } n>1 \implies a^{-1} \in H$$

If
$$n = 1 \implies a^{-1} = e \implies a = e \implies a^{-1} = e \in H$$
.