MATHEMATICAL REASONING Chapter 4, 5 y 6

FEED BACK

En el siguiente arreglo determine la cantidad total de palitos utilizados.

Resolución:

Iniciamos el análisis desde la forma más simple de la figura:

Cantidad de palitos de palitos $3 + 2^2 - 1$

Respuesta:

899

01

Calcule la suma de cifras del valor de N.

<u>Resolución</u>

Analizamos inductivamente:

$$M = \left(\underbrace{39}_{2 \text{ cifras}}\right) \left(\underbrace{63}_{2 \text{ cifras}}\right) = 2457$$

$$M = \left(\underbrace{339}_{3 \text{ cifras}}\right) \left(\underbrace{663}_{3 \text{ cifras}}\right) = 224757$$

$$M = \left(\underbrace{3339}_{4 \text{ cifras}}\right) \left(\underbrace{\frac{6663}_{4 \text{ cifras}}}\right) = 22247757$$

$$M = \left(\underbrace{333 \dots 339}_{20 \text{ cifras}}\right) \left(\underbrace{666 \dots 663}_{20 \text{ cifras}}\right)$$

$N = \left(\underbrace{333...339}_{20 \ cifras}\right) \left(\underbrace{666...663}_{20 \ cifras}\right)$

Suma de cifras

$$18 = 2 \times 9$$

$$27 = 3 \times 9$$

$$36 = 4 \times 9$$

En la siguiente secuencia, halle el número de circunferencias

Resolución

en la figura 10.

Si
$$m + n + p + q = 17$$
 calcule
$$\frac{mnp\overline{q} + \overline{npqm} + \overline{pqmn} + \overline{qmnp}}{mnp\overline{p}}$$

Resolución

Ubicamos los sumandos de manera vertical:

Resolución

Si.

Deducimos las cifras en el esquema:

Calcule la suma de cifras del dividendo

8532|39 - 30

 $Suma\ cifras_{(Dividendo)} = 8 + 5 + 3 + 2 = 18$

Heraldo quiere impresionar a su padre planteándole este problema, luego lo resuelve. Determine el valor de 2a+b.

$$(15^2 + 25^2 + 35^2 + \dots + 115^2)^{84} = \overline{\dots \dots ab}$$

Resolución

Recordar

 \forall n > 1, se cumple:

$$(\cdots 5)^n = \cdots 25$$

11 términos

11 términos

$$(\cdots 5 + \cdots 5 + \cdots 5 + \cdots + \cdots 5)^{84} = \overline{\cdots ab}$$

$$(\cdots 5)^{84} = \overline{\cdots ab}$$

$$(\cdots 25) = \overline{\cdots ab}$$

$$2\mathbf{a} + \mathbf{b} = \mathbf{9}$$

ENGRANAJES Y POLEAS

Los problemas de este tipo hacen referencia a entender el movimiento mecánico producido al ensamblar de manera adecuada poleas y engranajes.

TIPOS DE UNIÓN DE LOS ENGRANAJES	GRÁFICA	TIPO DE GIRO O MOVIMIENTO
Eje transversal	H	Ambos engranajes giran en el mismo sentido
Engranaje Tangencial	HA	Los engranajes giran en sentido contrario
Faja de transmisión directa	H	Ambos engranajes giran en el mismo sentido
Faja de transmisión cruzada	H	Los engranajes giran en sentido contrario

En el sistema mostrado, si el engranaje A se mueve en sentido horario, ¿en qué sentido girará el engranaje B?

Resolución

Respuesta:

HORARIO

En el sistema mostrado se han concatenado 100 engranajes en forma similar a la mostrada en la figura. ¿Cuántos engranajes giran en el mismo sentido que el engranaje número 1?

Resolución

Recordemos

Solo 1 en Sentido Antihorario Solo 1 en S. Antihorario Solo 1 en S. Antihorario

N° de engranajes en S. Antihorario: 33

Mismo sentido que el N° 1: 100-33 = 67

En el sistema mostrado, ¿cuántos engranajes giran en sentido horario y cuántos en sentido antihorario?

Resolución

Respuesta: 12 horario y 11 antihorario

Una rueda A de 80 dientes engrana con otra rueda B de 50 dientes. Fija el eje B, hay otra rueda C de 15 dientes que engrana con una rueda D de 40 dientes. Si A da 150 vueltas por minuto, ¿cuántas vueltas dará la rueda D?

Resolución

Dientes IP #Vueltas — (# Dientes) x (#Vueltas) = cte

$$80 \times 150 = 50 \times V_{R}$$

$$240 = V_{R}$$

$$V_{B} = V_{C} = 240$$

$$15x240 = 40xV_{D}$$

$$90 = V_{D}$$

Respuesta:

90