Ústav fyzikální elektroniky Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Milan Suk **Naměřeno:** 9. března 2017

Obor: F **Skupina:** ČT 8:00 **Testováno:**

Úloha č. 2: Měření odporu

 $T=22,1~^{\circ}\mathrm{C}$ $p=98,9~\mathrm{hPa}$ $\varphi=50~\%$

1. Úvod

Cílem toho měření je

- 1. zjistit odpor rezistoru pomocí měření napětí a proudu a s použitím Ohmova zákona.
- 2. změřit volampérovou charakteristiku žárovky

2. Postup měření

2.1. Metoda A

U metody A je změřeným napětí U správné napětí na rezistoru, ale měřený proud je roven součtu proudu I_R , takoucího rezistorem, a I_A , který protéká ampérmetrem. Pro hledaný odpor platí

$$R = \frac{U}{I_A - \frac{U}{R_V}} \tag{1}$$

kde R_V je odpor voltmetru.

Obrázek 1: Schéma k metodě A

2.2. Metoda B

Při zapojení metodou B měříme správný proud I_A , který se shoduje s proudem na rezistoru, ale zato změřené napětí je dáno součtem napětí na ampérmetru a rezistoru. Zde pro hledanou hodnotu odporu platí

$$R = \frac{U_V - R_A I_A}{I_A} \tag{2}$$

kde R_A je odpor ampérmetru.

Obrázek 2: Schéma k metodě B

2.3. Měření voltampérové charakteristiky žárovky

Nakonec měření voltampérové charakteristiky žárovky provádíme pomocí zapojení A a postupně měříme dvojici (napětí [mA], proud [V]), přičemž napětí na zdroji volíme v rozmezí od U=0V do U=20V.

3. Výsledky

Velikost odporu ampérmetru při rozsahu do 400mA činí

$$R_A = 1.165\Omega \tag{3}$$

a odpor volmetru je

$$R_V = 11.1M\Omega \tag{4}$$

3.1. Metoda A

	U[V]	I [mA]	$R [\Omega]$
R_{1A}	20.51	199.2	102.9628 ± 0.07
R_{2A}	20.92	$21.7 \cdot 10^{-3}$	1055749.0339 ± 0.7

Tabulka 1: Měření odporů metodou A

Nepřesnost měření je podle principu šíření nejistot

$$u(R_A) = \frac{\sqrt{I^2 u^2(U) + U^2 u^2(I)}}{(I - \frac{U}{R_V})^2}$$
 (5)

3.2. Metoda B

	U[V]	I [mA]	$R [\Omega]$
R_{1B}	23.01	208.5	109.19 ± 0.07
R_{2B}	19.92	$19.9 \cdot 10^{-3}$	1000904.9 ± 0.7

Tabulka 2: Měření odporů metodou A

Zde je nepřesnost měření podle principu šíření nejistot

$$u(R_B) = \frac{\sqrt{I^2 u^2(U) + U^2 u^2(I)}}{I^2}$$
 (6)

3.3. Měření voltampérové charakteristiky žárovky

Obrázek 3: Voltapmérová charakteristika žárovky

4. Zhodnocení měření, závěr

	R
R_{1A}	102.9628
R_{2A}	1055749.0339
R_{1B}	109.1947
R_{2B}	1000904.9251

Tabulka 3: Měření odporů metodou A