

Машинное обучение и тексты

Spam Folder

Coursella

COCA-COLA Coca-Cola Soda

Overall

← KPIs
 ←

Pros & cons

Relevance

♥ Predictive

₩onder

MORE

Insights powered by Wonderflow AI. Ask anything you would like to know, we have the answers.

Области машинного обучения

Классическое Обучение

«Собери из вещей лучшие наряды»

Кластеризация

Алгоритмы кластеризации

K-means

Demonstration of the standard algorithm

1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color).

by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram

generated by the means.

2. k clusters are created

3. The centroid of each of the *k* clusters becomes the new mean.

Steps 2 and 3 are repeated until convergence has been reached.

Ставим три ларька с шаурмой оптимальным образом

(иллюстрируя метод К-средних)

1. Ставим ларьки с шаурмой в случайных местах

2. Смотрим в какой кому ближе идти

3. Двигаем ларьки ближе к центрам их популярности

4. Снова смотрим и двигаем

5. Повторяем много раз

6. Готово, вы великолепны!

Примеры задач кластеризации

- NLP:

- Анализ отзывов
- Тематическое моделирование
- Определение тональности и настроений

Другие области:

- Кластеризация генов или белков на основе их функций или экспрессии в геномных данных для выявления групп сходных биологических функций
- Группировка клиентов по потребительским привычкам
- Кластеризация пользователей по общим интересам

Классификация - заранее знаем классы!

Бинарная и многоклассовая

KNN

Примеры задач классификации

- NLP:
 - Выявление фейковых и реальных новостей (бинарная классификация)
 - Токсичность
 - Спам
- Другие области:
 - Кредиты
 - Наличие заболевания

Немного про регрессию

Регрессия

Как работать с данными?

- Выполняем предобработку, которой мы научились + векторизация
- EDA (exploratory data analysis)
 - На этом этапе важно:
 - Обработать NaN (заменить средним / медианой / dropna)
 - Обработать выбросы (слишком высокие или слишком низкие значения)
 - Проверить дубликаты (как правило их удаляют)
 - Постройте визуализации, которые помогут лучше понять ваши данные
- Разбиваем данные на train и test
- Обучение
- Валидация
- Наслаждаемся жизнью модель делает все за нас))) (если бы...)

https://lena-voita.github.io/nlp_course/word_embeddings.html

Подробнее о EDA

Начинаем обучение!

Representing Data

one sample

one feature

outputs / labels

Train и Test - для обучения с учителем

TEST - на этой части TRAIN - на этой части датасета мы обучаем нашу модель датасета мы тестируем нашу модель

Training and Test Data

training set

test set

Обучаем модель

Fit - обучаем

Predict - делаем предсказания (первым делом как раз на тестовой выборке и смотрим метрики)

Тестируем нашу модель

Model Performance on Training Data

Model Performance on Test Data

классификация

Confusion Matrix

Actual Predict	0	1
0	TN	FN
1	FP	TP

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 \, Score = \frac{2 * Precision * Recall}{Precision + Recall}$$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Accuracy дает общую картину того, насколько можно полагаться на прогноз модели. Этот показатель не учитывает разницу между классами и типами ошибок. Поэтому он недостаточно хорош для несбалансированных наборов данных.

Precision показывает сколько реальных объектов класса среди всех тех, что классификатор отнес к этому классу.

Recall измеряет способность модели обнаруживать выборки, относящиеся к классу Positive.

F1-score - это среднее гармоническое значение между precision и recall.

- Perfect prediction
- Normal prediction
- Random prediction
- Better quality direction

Немного про LLM

NOOO YOU CAN'T JUST MIX
UP ALL THE STEPS OF YOUR TASK
AND ASK AN LLM TO DO IT ALL.
HOW WILL YOU EVER MAKE A RELIABLE
AND EXTENSIBLE SYSTEM THAT WAY?
imgflip.com

HAHALIMGOBRRR

GPT-40: The flagship model across audio, vision, and text by OpenAl	Grok-2: Grok-2 by xAI	Claude 3.5: Claude by Anthropic
Llama 3.1: Open foundation and chat models by Meta	Gemini: Gemini by Google	Mixtral of experts: A Mixture-of-Experts model by Mistral AI
GPT-4-Turbo: GPT-4-Turbo by OpenAl	Jamba 1.5: Jamba by AI21 Labs	Gemma 2: Gemma 2 by Google
Claude: Claude by Anthropic	DeepSeek Coder v2: An advanced code model by DeepSeek	Nemotron-4 340B: Cutting-edge Open model by Nvidia
Llama 3: Open foundation and chat models by Meta	Athene-70B: A large language model by NexusFlow	Qwen Max: The Frontier Qwen Model by Alibaba
GPT-3.5: GPT-3.5-Turbo by OpenAl	Yi-Large: State-of-the-art model by 01 Al	Yi-Chat: A large language model by 01 Al
Phi-3: A capable and cost-effective small language models (SLMs) by Microsoft	Reka Core: Frontier Multimodal Language Model by Reka	Reka Flash: Multimodal model by Reka
Command-R-Plus: Command R+ by Cohere	Command R: Command R by Cohere	Qwen 1.5: The First 100B+ Model of the Qwen1.5 Series
GLM-4: Next-Gen Foundation Model by Zhipu Al	DBRX Instruct: DBRX by Databricks Mosaic Al	InternLM: A multi-language large-scale language model (LLM), developed by SHLAB.

HuggingFace

