Op.155. No.1 恒温槽的装配与性能测定

孙肇远 PB22030708, Jan. 2025

University of Science and Technology of China, Hefei, Anhui, China

1. 引言

本实验意在了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术,绘制恒温槽灵敏度曲线(温度一时间曲线),学会分析恒温槽的性能.

2. 实验

2.1. 实验过程

检查浴槽中水位, 打开电脑, 记录温度数据;

调节不同组别, 记录对应数据文件;

实验结束, 将加热调压器电压先调整到 0 V, 关闭冷却水, 关闭剩余仪器的开关, 关闭软件, 保存好数据, 关闭电脑.

3. 结果与讨论

3.1. 实验数据

根据我们获得的图像, 我们可以读取相应最高温度与最低温度, 同时可以读出周期, 根据读取的数据算得灵敏度:

组	最高温度/℃	最低温度/℃	周期/s	灵敏度/℃
DTC, 150, 无冷却水	20.997	20.984	92	0.0065
DTC, 150, 有冷却水	20.988	20.981	68	0.0035
DTC, 200, 无冷却水	21.015	20.986	113	0.0145
DTC, 200, 有冷却水	20.997	20.978	45	0.0095
继电器, 150, 无冷却水	21.071	20.975	563	0.0480
继电器, 150, 有冷却水	20.961	20.875	98	0.0430
继电器, 200, 无冷却水	21.127	20.976	842	0.0755
继电器, 200, 有冷却水	21.014	20.879	142	0.0675

Table 1. 实验数据处理结果

其中灵敏度取了绝对值.

3.2. 结果讨论

根据我们做出的图像和数据, 我们可以分析出以下结论:

- 1°对于同一套加热仪器, 当控温装置, 是否通冷却水情况相同时, 其加热电压越高, 最高温度越高, 灵敏度越差, 周期越长;
- 2° 对于同一套加热仪器, 当加热电压, 是否通冷却水情况相同时, 采用 DTC 控制比采用继电器控制的最高温度更低, 最低温度更高, 灵敏度更好, 周期更短;
- 3°对于同一套加热仪器, 当加热电压, 控温装置相同时, 通冷却水可以减小周期, 且提高灵敏度.

3.3. 误差分析讨论

本实验可能误差如下:

- 1° 用继电器控制时,由于需要人工调节金属丝的位置,会导致调节的位置与设定的温度产生偏差,从而导致 DTC 与继电器的设定温度并不相同,导致误差;
- 2° 由于继电器采用水银的热胀冷缩来控制电路通断, 而实验中由于搅拌等影响, 会使仪器有一定的振动, 这就导致水银液面不稳定, 会导致继电器电路不稳定, 产生误差;
- 3°恒温槽中搅拌器可能离加热器距离较远,并且搅拌速率可能不够快,从而导致恒温槽中温度不均匀,导致一定的误差.

3.4. 实验体会与认识

通过本次实验, 我们绘制恒温槽灵敏度曲线, 学会了分析恒温槽的性能.

4. 附件

4.1. 原始数据处理

Fig. 2. DTC,150, 无冷却水

4. 附件 3

Fig. 3. DTC,150, 有冷却水

Fig. 4. DTC,200, 无冷却水

Fig. 5. DTC,200, 有冷却水

Fig. 6. 继电器,150, 无冷却水

4. 附件 5

Fig. 7. 继电器,150, 有冷却水

Fig. 8. 继电器,200, 无冷却水

Fig. 9. 继电器,200, 有冷却水