Projet 9_Prédiction de la demande en électricité

Parcours <u>Data Analyst</u> Xuefei ZHANG_Avril 2022

Sommaire

- 1. Constitution de dataframes
- 2. Correction de l'effet température_rég linéaire
- 3. Désaisonnalisation: CVS
 - a. régression linéaire
 - b. moyennes mobiles
- 4. Prédiction de la consommation
 - a. lissage exponentiel Holt-Winters
 - b. SARIMAX
- 5. Analyse à posteriori

1. Constitution de dataframes

- Récupération des jeux de données appropriés
- Nettoyage de jeux de données
- Traitement de dataframes

1.1 Sources de données

1. données mensuelles de consommation totale d'électricité https://www.rte-france.com/eco2mix/telecharger-les-indicateurs

métropole: Ile-de-France

2. mesures de l'effet météo sur la consommation électrique: DJUchauffage, DJUclimatisation https://cegibat.grdf.fr/simulateur/calcul-dju

station météo: Paris

seuil: 18°C

* Le **degré jour** est une valeur représentative de l'écart entre la température d'une journée donnée et un seuil de température préétabli (18 °C dans le cas des DJU ou **Degré Jour Unifié**). ils permettent de calculer les besoins de chauffage et de climatisation d'un bâtiment.

1.2 import & traitement des jeux de données

0 DJUchauffage 90 non-null float64 dtypes: float64(1) memory usage: 1.4 KB None

	DJUchauffage
time	
2014-01-01	324.4
2014-02-01	281.9
2014-03-01	223.9
2014-04-01	135.5
2014-05-01	100.2

0	time	96	non-null	datetime64
1	DJUcli	mat	96 non-null	float64
dty	pes: da	tetim	ne64[ns](1),	float64(1)
me	mory u	sage	: 1.6 KB	
No	ne	1999		

	DJUclimat
time	
2014-01-01	0.0
2014-02-01	0.0
2014-03-01	0.0
2014-04-01	0.0
2014-05-01	2.2

	consom_total
Mois	
2014-01-01	7612
2014-02-01	6749
2014-03-01	6509
2014-04-01	5396
2014-05-01	5279

^{*} lci ces 3 jeux de données sont tous pour région **lle-de-France**

^{*} seuil de référence température pour DJU: 18°C

1.3 Constitution de dataframe

DJU= pd.merge(DJUclimat, DJUchauffage,left_index=**True**, right_index=**True**) DJU.tail()

	DJUclimat	DJUchauffage
time		
2021-02-01	0.0	302.8
2021-03-01	0.2	271.0
2021-04-01	0.9	228.3
2021-05-01	5.1	138.3
2021-06-01	47.6	1.4

```
df= pd.merge(DJU, Energy, left_index=True, right_index=True)
df.index.names= ['time']
print(df.info())
df.head()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 90 entries, 2014-01-01 to 2021-06-01
Data columns (total 3 columns):
               Non-Null Count Dtype
# Column
0 DJUclimat 90 non-null
                             float64
   DJUchauffage 90 non-null
                               float64
2 consom total 90 non-null
                              int64
dtypes: float64(2), int64(1)
memory usage: 2.8 KB
None
```

	DJUclimat	DJUchauffage	consom_total
time			
2014-01-01	0.0	324.4	7612
2014-02-01	0.0	281.9	6749
2014-03-01	0.0	223.9	6509

1.4 illustration

2. Correction de la consommation de l'effet température due au chauffage électrique

via régression linéaire

2. régression linéaire 1

import statsmodels.api as sm from statsmodels.formula.api import ols import statsmodels.formula.api as smf import statsmodels.stats.api as sms from scipy import stats

consom_total ~ DJUchauffage

P-value < 0.5% => rejet de H0, DJUchauffage a de l'impact sur consom_total.

distribution des résidus: normalité vérifiée

from statsmodels.compat import lzip import statsmodels

name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']
test = sms.het_breuschpagan(reg.resid, reg.model.exog)
lzip(name, test)

[('Lagrange multiplier statistic', 0.5205145718556348), ('p-value', 0.4706222628074068), ('f-value', 0.5119082000094789), ('f p-value', 0.47620807233808404)]

H0: homoscédasticité des résidus P-value >5% => non-rejet de H0, ctd. présence de homoscédasticité pour les résidus du modèle reg

2. régression linéaire 2

consom_total ~ DJUchauffage + DJUclimat

reg2 = smf.ols('consom_total~ DJUchauffage + DJUclimat', data=df).fit()
reg2.summary()

OLS Regression Results

ce model avec arrive à expliquer **94.8**% de variance en consom_total

Dep. Variable:	consom_total	R-squared:	0.949
Model:	OLS	Adj. R-squared:	0.948
Method:	Least Squares	F-statistic:	806.3
Date:	Wed, 06 Apr 2022	Prob (F-statistic):	7.07e-57
Time:	16:11:20	Log-Likelihood:	-631.40
No. Observations:	90	AIC:	1269.
Df Residuals:	87	BIC:	1276.
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	4240.4917	76.546	55.398	0.000	4088.348	4392.635
DJUchauffage	9.1505	0.299	30.596	0.000	8.556	9.745
DJUclimat	2.8211	0.872	3.234	0.002	1.087	4.555

P-values < 0.5% => rejet de H0, DJUchauffage et DJUclimat ont tous de l'impact sur consom_total.

distribution des résidus du reg2: normalité vérifiée

name = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']
test = sms.het_breuschpagan(reg2.resid, reg2.model.exog)
lzip('reg2', name, test)

[('r', 'Lagrange multiplier statistic', 0.8346853429817336),

('e', 'p-value', 0.6587951309509059),

('g', 'f-value', 0.40720780899355646),

('2', 'f p-value', 0.666767636817603)]

P-value >5% => non-rejet de H0, homoscédasticité de résidus est vérifiée

corrélation des 2 variables explicatives: -50% reg2 a ses 2 variables explicatives fortement corrélées, et reg2 n'est pas bcp mieux que reg en variance expliquée, donc on pourrait utiliser reg.

2. Calcul: consommation corrigée de DJUchauffage (reg)

consommation corrigée = consommation totale - DJUchauffage * coeff de rég

df['conso_corrected'] = df['consom_total'] - df['DJUchauffage']*reg.params['DJUchauffage']
df.head()

*corriger la consommation de l'effet température due au chauffage électrique (DJUchauffage)

	DJUclimat	DJUchauffage	consom_total	conso_corrected
time				
2014-01-01	0.0	324.4	7612	4865.366090
2014-02-01	0.0	281.9	6749	4362.205613
2014-03-01	0.0	223.9	6509	4613.280726

conso corrected oscillent entre 4000-5000

3. Désaisonnalisation (Correction de Variation Saisonnière) de la consommation suite à la correction précédente

- 3.1 méthode régression linéaire
- 3.2 méthode moyennes mobiles

3.1 désaisonnalisation via régression linéaire

data avant désaisonnalisation conso_corrected (x) => série désaisonnalisée (x_cvs)

	conso_corrected		x_cvs	
time			time 2014-01-01	4482.512574
014-01-01	4865.366090	_	2014-01-01	4487.617398
014-02-01	4362.205613	4	2014-03-01	4535.555549 4699.987306
2014-03-01	4613.280726		2014-05-01	4646.091933
014-04-01	4248.746933		2014-06-01 2014-07-01	4616.834461 4432.245913
014-05-01	4430.625408		2014-08-01	4282.979502 4738.531003
			2014-03-01	4750.551000

fluctuation x_cvs un peu moins que conso_corrected

3.2 désaisonnalisation via méthode moyennes mobiles (rolling mean)

X= x.copy()
X['rolling_mean_CVS'] = X.rolling(window=12).mean()

X['rolling_mean_diff'] = X['rolling_mean_CVS'] - X['rolling_mean_CVS'].shift(12)

*désaisonnalisation => moyennes mobiles. window=12: Calculer les moyennes à base de tous les 12 observations

*différenciation: difference between current time step & 12 last steps .shift(12): seasonality changes per 12 months

Observations:

- rolling_mean_CVS (moyenne mobile) : tendance, car la saisonnalité de data brut est déduite à travers traitement
 X.rolling(window=12).mean()
- rolling_mean_diff (résidus): quasiment constante et ses valeurs se concentrent autour de 0.
- ce résultat résonne avec celui du statsmodel 'seasonal_decompose'

3.3 désaisonnalisation_comparaison_algorithme de décomposition

decomp_x = seasonal_decompose(df['conso_corrected'],
model='add')

* on observe dans conso_corrected que l'ampleur de saisonnalité ne change pas avec le temps (non-exponentiel),donc on opte pour 'additive'

^{* 3} composantes de série temporelle

En référant le résultat de décomposition seasonal_decompose, on voit que la 2ème **méthode (moyennes mobiles)** est plus performante en désaisonnalisation.

4. Prédiction de la consommation en électricité

- Lissage exponentiel
- SARIMAX

Respectivement, pour quelle raison on peut utiliser ces deux méthodes?

- Lissage exponentiel (Exponential Smoothing) attache <u>plus d'importance sur les données récentes</u>, ctd.
 elle est plus adaptée à la prédiction pour les séries qui changent vite au fil du temps (météo, CA des start-up, un nouveau produit...)
- A la différence d'ARMA et ARIMA qui ne peuvent être appliqués dans série sans saisonnalité, SARIMA
 et SARIMAX permet de modéliser les données qui présentent une saisonnalité.

ARMA: AutoRegressive Integrated Moving Average
ARIMA: AutoRegressive Integrated Moving Average
SARIMA: Seasonal Auto-Regressive Integrated Moving Average
SARIMAX: Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors

4.1 Lissage exponentiel: simple, double, Holt-Winters

LES: ni la tendance ni la saisonnalité n'est prise en compte

LED: tendance oui, mais saisonnalité non

HW: tendance & saisonnalité toutes prises en compte par cette méthode, prédiction a l'air relativement satisfaisante

4.2 SARIMAX_model3 (model choisi)

```
model3 = SARIMAX(np.asarray(x['conso_corrected']), order=(1,0,1), seasonal_order=(1,0,1,12))
results3 = model3.fit()  # training
results3.summary()  p-values < 5% =< rejet de H0,
model3 n'a pas de paramètres non-significatifs
```

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.9974	0.010	95.477	0.000	0.977	1.018
ma.L1	-0.8055	0.075	-10.812	0.000	-0.952	-0.660
ar.S.L12	0.9963	0.020	50.563	0.000	0.958	1.035
ma.S.L12	-0.8854	0.291	-3.037	0.002	-1.457	-0.314
sigma2	2.597e+04	4436.588	5.853	0.000	.73e+04	3.47e+04

Ljung-Box (L1) (Q):	0.84	Jarque-Bera (JB):	7.78
Prob(Q):	0.36	Prob(JB):	0.02
Heteroskedasticity (H):	1.55	Skew:	-0.55
Prob(H) (two-sided):	0.24	Kurtosis:	3.93

H0: homoscédasticité (présence de hétéroscédasticité) non-rejet de H0: **homoscédasticité** de résidu vérifiée

normalité de résidu vérifiée

test de blancheur du résidu: ljungbox test

H0: les valeurs du résidu se distribuent indépendamment, résidu est un bruit blanc sans autocorrélation.

non-rejet de H0: blancheur de résidu vérifié.

4.2 SARIMAX_prédiction

5. Analyse à posteriori

- test de précision sur une période passée

Pour vérifier la performance de nos models de deux méthodes (ExponentialSmoothing vs SARIMAX), ici on va faire une analyse comparative des données <u>observées</u> et '<u>prédites' pour une période passée</u>

5.1 SARIMAX_test de précision sur une période passée via **graphique**

```
x_past = x['conso_corrected'][:'2019']
# y_past = np.log(x_past)
x_forecast = x['conso_corrected']['2020']  # 'prédire' la consommation en 2020
```


=> Conclusion: en terme de tendance et fluctuation de saisonnalité, ce model a une performance satisfaisante.

5.1 SARIMAX_test de précision sur une période passée via **métriques**

```
from sklearn.metrics import * |

print('MAE:', mean_absolute_error(x_forecast, pred_past))  # importance d'une erreur est linéaire avec son amplitude, si le dataset contient des valeurs print('MSE:', mean_squared_error(x_forecast, pred_past))  # carré, exponentiel. quand on accorde grande importance aux grandes erreurs print('RMSE:', np.sqrt(mean_squared_error(x_forecast, pred_past)))  # Root Mean Squared Error: more reasonable than MSE, additive print('median absolute_error(x_forecast, pred_past)))  # Median absolute error = median(IYvrai - Y predI): très peu sensible aux grande error print('MAPE', mean_absolute_percentage_error(x_forecast, pred_past))  # MAPE: puts a heavier penalty on negative errors than on positive errors.
```

MAE: 270.5459186289376 MSE: 109924.36755772762 RMSE: 331.54843923283306

median abs err: 275.86205359088945

MAPE 6.802266940024825 %

MAE = $(1/n) * \Sigma(|réalité - prédit|)$

- [0, infini positif[, moyenne arithmétique des erreurs absolues
- facile à interpréter, peut être grand si dataset contient outliers

$$\mathrm{RMSD}(\hat{\theta}) = \sqrt{\mathrm{MSE}(\hat{\theta})} = \sqrt{\mathrm{E}((\hat{\theta} - \theta)^2)}.$$

- RMSE: [0, infini positiff, c'est écart-type des résidus (distance entre la prédiction et la réalité)
- RMSE mesure à quel niveau les données sont concentrées autour de la ligne de best-fit
- et sert à comparer les erreurs de différents modèles prédictifs pour un ensemble de données particulier

MAPE = $(1/n) * \Sigma(|réalité - prédit| / |réalité|) * 100$

- [0,1], c'est la différence moyenne en prédiction et réalité, bon pour les données non-négatives
- intuitive et facile à interpréter

Selon les résultats de ces métriques entre autres RMSE et MAPE, on en conclut que ce model est performant. niveau de précision SARIMAX model: 93.2 %

5.2 Holt-Winters_test de précision sur une période passée via **graphique**

```
X_test = X['conso_corrected']
X_past = X_test[:'2019']
X_forecast = X_test['2020':'2021']
print(X_forecast.shape)
```

'prédire' la consommation 2020-2021 (18 mois)

Conclusion:

- en terme de tendance, HW est performant. mais au niveau de saisonnalité, HW n'est pas assez satisfaisante.
- Vu l'année 2020 n'est pas assez typique (COVID19 et confinement), on dit que l'anomalie de l'année 2020 a fait l'effet de déviation.

5.2 Holt-Winters_test de précision sur une période passée via **métriques**

```
print('MAE_HW:', mean_absolute_error(X_forecast, hwpast_pred))
print('RMSE_HW:', np.sqrt(mean_squared_error(X_forecast, hwpast_pred)))
print('MAPE_HW', mean_absolute_percentage_error(X_forecast, hwpast_pred)*100, '%')
```

MAE_HW: 267.92226967935557 RMSE_HW: 331.15716772004475 MAPE_HW 6.465679977815281 %

niveau de précision Holt-Winters: 93.5 %

5.3 comparaison de 2 méthodes

Lissage exponentiel Holt-Winters

- Facile à employer
- 2. 3 paramètres: **trend, seasonal, seasonal_periods**
- 3. Peut être utilisé pour les séries qui présentent saisonnalité ou pas
- 4. Pertinent pour prédiction qui attache bcp de poids sur la **période récente**
- En cas d'événement 'black swan' (ie.Covid19, guerre) => peu rigoureuse & précision impactée

SARIMAX

- 1. Pas simple à employer : démarche compliquée
- bcp de paramètres order=(P,D,Q), seasonal_order=(P,D,Q,s), qui donne bcp de possibilités de combinaison
- 3. Exige tester ACF PACF pour le choix de certains paramètres (identification à priori des models potentiels)
- Exige vérifier les conditions d'utilisation (vérification des models potentiels): normalité résidu, homoscédasticité résidu, blancheur résidu, non présence de paramètre non-significatifs
- 5. Rigeur
- 6. De divers résultats de prédiction: niveau moyen, niveau supérieur et inférieur (alpha=)

Q & A

Merci

P9_PRÉDICTION DE CONSOMMATION EN ÉLECTRICITÉ

Data Analyst_Xuefei ZHANG

08 avril 2022