Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет программной инженерии и компьютерной техники Кафедра информатики и прикладной математики

Методы цифровой обработки сигналов

Исследование эффективности метода медианной фильтрации для подавления импульсных помех Лабораторная работа 3 Вариант 8

Старался: Шкаруба Н.Е. Группа: Р3418 **Работу принял**: Тропченко А.А.

Задание

Цель работы - определение возможностей применения медианного фильтра для подавления импульсных помех.

Пусть на входе системы наблюдается смесь полезного сигнала и импульсной помехи. При этом на входе помеха по своей амплитуде в несколько раз превышает амплитуду сигнала. Путем медианной фильтрации с использованием фильтра с различным размером окна сканирования удается увеличить соотношение сигнал/шум. По результатам моделирования построить зависимости.

Ī	No	Частота	Амплитуда	Число	Амплитуда
	31≅	сигнала	сигнала	помех	помехи
Ī	8	3	2	30 - 60	20

Результаты моделирования

а) Соотношения сигнал/шум в выходной смеси от размера окна сканирования (S=3,5,7,9,11) и числа импульсных помех; (число импульсных помех, частота сигнала, амплитуда помехи выбираются в соответствии с вариантом задания)

N	30
	SNR
S	out
3	0,95
5	1,379
7	3,835
9	2,791
11	2,206

S\	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60
N		SNR out														
		0,81	0,84	0,92	0,82	0,81	0,88	0,85	0,77	0,82		0,81	0,70	0,93	0,77	
3	0,95	2	3	5	8	9	2	3	3	3	0,77	6	8	7	9	0,8
	1,37	1,03	0,90	1,14		0,76	0,83	0,72	0,90	0,88	0,73	0,86	0,94	0,92	0,72	0,80
5	9	3	3	8	0,79	8	1	4	5	1	8	2	6	2	8	6
	3,83	1,04	1,02	3,83	1,07	0,78		1,00	0,94	0,83	0,81			0,83	0,80	0,78
7	5	3	8	3	4	9	0,93	2	4	3	6	0,83	1,02	6	6	7
	2,79	2,78	0,85	2,61	0,99		2,79	1,06		0,93		0,81	0,91	1,19	0,82	0,88
9	1	2	3	3	8	2,74	4	1	2,85	1	2,61	5	4	7	5	1
	2,20	2,21	2,03	0,78	2,23	2,02	2,23	0,77	2,21	1,10		1,11	2,10	1,97	2,07	1,10
11	6	8	8	9	4	3	2	9	7	2	2,04	5	4	1	7	4

b) Соотношения сигнал/шум на выходе для линейного усредняющего фильта при тех же, что в.п 1,а) значениях (размер окна фильтра постоянен и равен 3)

S	3
	SNR
N	out
30	0,867
32	0,75
34	0,883
36	0,791
38	0,824
40	0,816
42	0,817
44	0,765
46	0,813
48	0,807
50	0,733
52	0,783
54	0,792
56	0,772
58	0,775
60	0,823

с) Соотношения сигнал/шум на выходе от частоты полезного сигнала для фиксированного числа импульсных помех (например, 3; 5; 15) (частота сигнала варьируется от 1 до 30)

3	5	15				
SNR	SNR	SNR				
out	out	out				
34,69	33,67	1,35				
17,11	17,39	1,29				
8,47	8,46	1,22				
5,82	5,74	1,43				
4,24	4,25	1,33				
3,43	3,34	1,22				
2,88	2,81	1,25				
2,47	2,48	1,23				
2,18	2,12	1,2				
1,91	1,84	1,19				
1,7	1,7	1,02				
1,59	1,57	1,12				
1,47	1,39	1,13				
1,36	1,33	0,92				
1,25	1,25	0,95				
1,15	1,11	1,05				

Схема устройства

Вывод

В ходе данной работе были построены зависимости соотношения выходного сигнал/шум к размеру сканирующего окна и числу импульсных помех. В итоге чем больше импульсов, тем хуже выходной сигнал. Чем больше окно, тем стабильнее выходное значение. Была также построена зависимость сигнал/шум от количества импульсов для линейного фильтра. Независимо от количества импульсов сигнал приблизительно одинаково плох, так что этот фильтр не очень эффективен. Третья зависимость была сигнал/шум от частоты полезного сигнала для медианного фильтра - фильтр справляется со своей работой только при очень маленьком количестве импульсов и при низкой частоте сигнала. Последняя зависимость была сигнал/шум от частоты линейного фильтра. Здесь видно, что линейный фильтр при маленьком количестве импульсов выдает немного лучшие результаты по сравнению с результатами при немного большем количестве импульсов.