What is math module in Python?

The math module is a standard module in Python and is always available. To use mathematical functions under this module, you have to import the module using import math.

Square root calculation import math math.sqrt(4)

This module does not support complex datatypes. The cmath module is the complex counterpart.

Functions in Python Math Module

Here is the list of all the functions and attributes defined in math module with a brief explanation of what they do.

Function	Description
ceil(x)	Returns the smallest integer greater than or equal to x.
copysign(x, y)	Returns x with the sign of y
fabs(x)	Returns the absolute value of x
factorial(x)	Returns the factorial of x
floor(x)	Returns the largest integer less than or equal to x
fmod(x, y)	Returns the remainder when x is divided by y
frexp(x)	Returns the mantissa and exponent of x as the pair (m, e)
fsum(iterable)	Returns an accurate floating point sum of values in the iterable

isfinite(x)	Returns True if x is neither an infinity nor a NaN (Not a Number)
isinf(x)	Returns True if x is a positive or negative infinity
isnan(x)	Returns True if x is a NaN
ldexp(x, i)	Returns x * (2**i)
modf(x)	Returns the fractional and integer parts of x
trunc(x)	Returns the truncated integer value of x
exp(x)	Returns e**x
expm1(x)	Returns e**x - 1
log(x[, base])	Returns the logarithm of x to the base (defaults to e)
log1p(x)	Returns the natural logarithm of 1+x
log2(x)	Returns the base-2 logarithm of x
log10(x)	Returns the base-10 logarithm of x
pow(x, y)	Returns x raised to the power y
sqrt(x)	Returns the square root of x
acos(x)	Returns the arc cosine of x
asin(x)	Returns the arc sine of x
atan(x)	Returns the arc tangent of x

atan2(y, x)	Returns atan(y / x)
cos(x)	Returns the cosine of x
hypot(x, y)	Returns the Euclidean norm, sqrt(x*x + y*y)
sin(x)	Returns the sine of x
tan(x)	Returns the tangent of x
degrees(x)	Converts angle x from radians to degrees
radians(x)	Converts angle x from degrees to radians
acosh(x)	Returns the inverse hyperbolic cosine of x
asinh(x)	Returns the inverse hyperbolic sine of x
atanh(x)	Returns the inverse hyperbolic tangent of x
cosh(x)	Returns the hyperbolic cosine of x
sinh(x)	Returns the hyperbolic cosine of x
tanh(x)	Returns the hyperbolic tangent of x
pi	mathematical constant e (2.71828)
е	mathematical constant e (2.71828)