

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICS			0625/62
Paper 6 Alternative to Practical		Oct	tober/November 2018
			1 hour
Candidates ans	wer on the Question Paper.		
No Additional M	aterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 A student is determining the spring constant *k* of a spring.

Fig. 1.1 shows the apparatus used.

Fig. 1.1

(a) On Fig. 1.1, measure the unstretched length l_0 of the coiled part of the spring, in mm.

Record this value of length l in Table 1.1 for $L = 0.00 \,\mathrm{N}$.

[1]

- (b) On Fig. 1.1, show how a set-square could be used to take readings in order to determine the length l_0 of the coiled part of the spring. [1]
- (c) The student places a $0.20\,\mathrm{N}$ load on the spring. He records the new length l of the spring in Table 1.1.

He repeats the procedure using loads of 0.40 N, 0.60 N, 0.80 N and 1.00 N. All the readings are recorded in Table 1.1.

(i) Calculate the extension e of the spring for each value of load L, using the equation $e = (l - l_0)$. Record the values of e in Table 1.1. [1]

(ii) Complete the column headings in Table 1.1.

Table 1.1

L/	1/	e/
0.00		0
0.20	31	
0.40	40	
0.60	46	
0.80	55	
1.00	63	

[1]

(d) Plot a graph of L/N (y-axis) against e/mm (x-axis).

[4]

(e) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

G = [2]

(f)	The gradient G is numerically equal to the spring constant k .
	Write down a value for k to a suitable number of significant figures for this experiment.
	k =N/mm [1]

[Total: 11]

2 A student is investigating the power of two lamps.

The circuit is shown in Fig. 2.1.

Fig. 2.1

(a) (i) Record the potential difference (p.d.) $V_{\rm T}$ across the lamps and the current $I_{\rm T}$ in the circuit, as shown in Fig. 2.2 and Fig. 2.3.

Fig. 2.2

Fig. 2.3

[2]

 $V_{\mathsf{T}} = \dots \qquad \qquad I_{\mathsf{T}} = \dots$

(ii) Calculate the power $P_{\rm T}$ produced by the lamp filaments, using the equation $P_{\rm T} = V_{\rm T} I_{\rm T}$.

 $P_{\mathsf{T}} = \dots$ [1]

(b) The student connects the voltmeter across lamp X only. She records the p.d. V_X X and the current I_X in the circuit.			ecords the p.d. $V_{\rm X}$ across	lamp	
			V _X =	1.3	V
			<i>I</i> _X =	0.18	A
	She	repeats the procedure with the voltmeter	connected acros	s lamp Y only.	
			V _Y =	1.2	V
			<i>I</i> _Y =	0.18	A
	(i)	Calculate the power $P_{\rm X}$ produced by the and calculate the power $P_{\rm Y}$ produced $P_{\rm Y}$ = $V_{\rm Y}I_{\rm Y}$.	lamp filament X by the lamp fil	using the equation P_{X} = ament Y using the equ	$V_{\rm X}I_{\rm X}$, uation
			<i>P</i> _X =		
			<i>P</i> _Y =		[1]
	(ii)	State and explain briefly whether the twithin the limits of experimental accuracy		wer $P_{\rm X}$ and $P_{\rm Y}$ are the	
		statement			
		explanation			
					[2]
(c)	The student repeats the experiment using two other lamps. She notices that one lar dimly lit, but the other lamp does not light at all.				
The p.d. $V_{\rm T}$ across the lamps is the same as in (b) , but the current $I_{\rm T}$ in the approximately half of the original value. The student concludes that the filament of one of the lamps is broken. State whether you agree with the student and give a reason for your answer.			ne current I_{T} in the circ	cuit is	
			broken.		
			r your answer.		
	stat	ement			
	reas	son			
					[2]

- (d) Draw a circuit diagram to show the circuit in Fig. 2.1 rearranged so that:
 - the lamps are connected in parallel
 - a variable resistor is connected to control the total current in the circuit
 - the ammeter will measure the total current in the circuit
 - the voltmeter will measure the p.d. across the lamps.

[3]

[Total: 11]

3 A student is determining the refractive index *n* of the material of a transparent block.

Fig. 3.1 shows the outline **ABCD** of the block.

Fig. 3.1

- (a) (i) On Fig. 3.1, draw a normal **NL** at the centre of side **AB**.
 - Continue the normal so that it passes through side **CD** of the block.

[1]

Label the point **F** where **NL** crosses **AB**.

(ii) •

		•	Label the point G where NL crosses C	CD.
		•	Draw a line EF at an angle $i = 30^{\circ}$ to t	he left of the normal and above side AB . [1]
	(iii)		k the positions of two pins P_1 and P_2 this type of ray-tracing experiment.	on line EF placed at a suitable distance apart
(b)	The	stud	dent observes the images of P_1 and P_2	through side CD of the block.
			es two pins P_3 and P_4 between his eye P_2 seen through the block, all appear ex	and the block so that P_3 , P_4 and the images of xactly one behind the other.
	The	posi	itions of P_3 and P_4 are marked on Fig. :	3.1.
	•	Drav	w a line passing through $\rm P_3$ and $\rm P_4$. Co	ontinue the line until it meets the normal NL .
	•	Lab	el the point J where the line meets the	normal.
	•	Lab	el the point H where the line meets side	e CD. Draw the line FH. [1]
(c)	(i)	Mea	asure and record the length $\it a$ of the line	e FH.
				<i>a</i> =[1]
	(ii)	Mea	asure and record the length $\it b$ of the line	e HJ .
				b =[1]
	(iii)	Calo	culate the refractive index n using the ϵ	equation $n = \frac{a}{b}$.
				<i>n</i> =[2]
(d)	A st		nt states that repeating the experiment	improves the reliability of the value obtained
Suggest additional values for the angle of incidence i that you would use experiment to improve the reliability.			ence i that you would use when repeating the	
				[2]
(e)	Stat	e on	e precaution that you would take in this	s experiment to obtain accurate results.
				F.4.1

4 A student is investigating whether the type of container affects the time taken for water to be heated from room temperature to boiling point.

The following apparatus is available:

250 cm³ copper can 250 cm³ aluminium can 250 cm³ glass beaker Bunsen burner measuring cylinder thermometer tripod and gauze stopwatch

Other apparatus normally available in the school laboratory is also available.

Plan an experiment to investigate whether the type of container affects the time taken for water to be heated from room temperature to boiling point.

You should:

- explain briefly how you would carry out the investigation
- state the key variables that you would control
- draw a table, or tables, with column headings to show how you would display your readings (you are **not** required to enter any readings in the table)

explain briefly how you would use your readings to reach a conclusion.

 [7]
[Total: 7]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.