Să se determine subgrupurile și să se descrie laticea acestora pentru grupurile, \mathbb{Z}_p cu p prim, $\mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_4 , \mathbb{Z}_6 , D_3 , $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times Z_4$, \mathbb{Z}_8 , D_4 , Q grupul cuarternionilor.

Determinați subgrupurile normale ale grupurilor D_3 , D_4 , Q.

• Grupuri \mathbb{Z}_p cu p prim

 $\mathbb{Z}_p = \{\hat{0}, \hat{1}, \dots, \widehat{p-1}\}. \ p \text{ prim} \Rightarrow \operatorname{ord}(\hat{j}) = \frac{p}{(p,j)} = p, \ (\forall) 1 \leq j \leq p-1.$ Deci $\mathbb{Z}_p = \langle \hat{1} \rangle = \langle \hat{2} \rangle = \dots = \langle \widehat{p-1} \rangle$, adică poate fi generat de oricare dintre elementele $\hat{1}, \ldots, \widehat{p-1}$.

Teorema Lagrange ne spune că într-un grup finit G, pentru orice subgrup H < G, avem |H||G|. În cazul de față pentru $G=\mathbb{Z}_p$, dacă $H<\mathbb{Z}_p$, atunci |H||p, dar p este prim și deci $|H| \in \{1, p\}$, deci $H = \hat{0}$ sau $H = \mathbb{Z}_p$. Deci \mathbb{Z}_p cu p prim nu are subgrupuri proprii adică $\sharp H$ a.î. $1 \leq H \leq \mathbb{Z}_p$.

În fiecare dintre figurile următoare segmentul ce unește două subgrupuri reprezintă incluziunea subgrupului scris mai jos în cel scris mai sus.

Pentru \mathbb{Z}_p laticea subgrupurilor este

• Grupul Klein $\mathbb{Z}_2 \times \mathbb{Z}_2$.

 $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(\hat{0}, \hat{0}), (\hat{1}, \hat{0}), (\hat{0}, \hat{1}), (\hat{1}, \hat{1})\}$. Ordinul oricărui element diferit de $(\hat{0}, \hat{0})$ este 2. Fiecare dintre aceste elemente generează un subgrup de ordin 2.

Astfel $H_1 = \langle (\hat{1}, \hat{0}) \rangle = \{(\hat{0}, \hat{0}), (\hat{1}, \hat{0})\}, H_2 = \langle (\hat{0}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}) \rangle = \{(\hat{0}, \hat{0}), (\hat{0}, \hat{1})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0}), (\hat{1}, \hat{0})\}, H_3 = \langle (\hat{1}, \hat{1}), (\hat{1}, \hat{0}), (\hat{1$ $\{(\hat{0},\hat{0}),(\hat{1},\hat{1})\}.$

 $|H_1| = |H_2| = |H_3| = 2$. Laticea subgrupurilor este următoarea

• Grupul \mathbb{Z}_4 .

 $\mathbb{Z}_4 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}\}.$ Avem $\operatorname{ord}(\hat{0}) = 1$, $\operatorname{ord}(\hat{1}) = 4 = \operatorname{ord}(\hat{3})$ şi $\operatorname{ord}(\hat{2}) = \hat{2}$. Deci $\mathbb{Z}_4 = \langle \hat{1} \rangle = \langle \hat{3} \rangle$. Avem un subgrup propriu $\langle \hat{2} \rangle = \{\hat{0}, \hat{2}\}$.

Laticea subgrupurilor pentru \mathbb{Z}_4 este

• Grupul \mathbb{Z}_6 .

 $\mathbb{Z}_6 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}\}.$ Avem $\operatorname{ord}(\hat{0}) = 1$, $\operatorname{ord}(\hat{1}) = 6 = \operatorname{ord}(\hat{5})$, $\operatorname{ord}(\hat{2}) = \operatorname{ord}(\hat{4}) = \frac{6}{(2.6)} = 1$

 $\frac{6}{(4,6)} = \frac{6}{2} = 3.$ Deci $\mathbb{Z}_6 = \langle \hat{1} \rangle = \langle \hat{5} \rangle$, $H = \langle \hat{2} \rangle = \langle \hat{4} \rangle = \{\hat{0}, \hat{2}, \hat{4}\}$ iar $K = \langle \hat{3} \rangle = \{\hat{0}, \hat{3}\}$. |H| = 3

Laticea subgrupurilor pentru \mathbb{Z}_6 este:

Până aici toate grupurile prezentate sunt abeliene și deci subgrupuriloe acestora sunt în fiecare caz este normale.

• Grupul $D_3 \simeq S_3$.

Acesta este primul grup din lista celor propuse spre studiu care nu este abelian. Voi folosi permutări.

 $S_3 = \{ id_{[3]}, a = (123), a^2 = (132), b = (12), ab = (123)(12) = (13), a^2b = (132)(12) = (23) \}.$ În scrierea uzuală $a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ și $b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. În scrierea folosită anterior se scriu de fapt imaginile elementelor prin permutarea respectivă. Mai mult, în această scriere a unei permutări elementele fixate de permutare NU sunt menționate. Astfel, a(1) = 2, a(2) = 3, a(3) = 1. As a apare scrierea compactă a = (123). Pentru b

avem b(1)=2,b(2)=1,b(3)=3, de unde b=(12). Pentru grupul S_3 avem $a^3=\mathrm{id}_{[3]},b^2=(ab)^2=(a^2b)^2=\mathrm{id}_{[3]}$. Mai avem relația $ba = a^2b$. Deci ord(a) = ord(a²) = 3, ord(b) = ord(ab) = ord(a²b) = 2.

Subgrupurile grupului S_3 , primul neabelian pe care-l studiem, sunt:

 $K = \langle a \rangle = \langle a^2 \rangle = \{ id_{[3]}, a, a^2 \}$, $H_1 = \langle b \rangle = \{ id_{[3]}, b \}$, $H_2 = \langle ab \rangle = \{ id_{[3]}, ab \}$, $H_3 = \langle a^2b \rangle = \{ id_{[3]}, a^2b \}.$

K este un subgrup de index 2, deci normal. H_1, H_2, H_3 sunt de index 3. Din teorie nu reiese că sunt normale.

Să facem o verificare pentru unul dintre acestea.

Elementul $b \in H_1$ îl vom conjuga cu $a^2 \in S_3$. $a^3 = \mathrm{id}_{[3]} \Rightarrow a^{-1} = a^2$ și $(a^2)^{-1} = a$. Avem $a^2b(a^2)^{-1}=a^2ba=baa=ba^2\notin H_1$. Deci conjugarea lui $b\in H_1$ cu un element din S_3 NU este un element din H_1 , deci H_1 nu este normal.

Nici subgrupurile H_2 și H_3 nu sunt normale.

Laticea subgrupurilor în acest caz este

• Grupul $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Toate elementele diferite de identitate sunt de ordin 2. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 = \{(\hat{0}, \hat{0}, \hat{0}), (\hat{1}, \hat{0}, \hat{0}), (\hat{0}, \hat{1}, \hat{0}), (\hat{0}, \hat{0}, \hat{1}), (\hat{1}, \hat{1}, \hat{0}), (\hat{1}, \hat{0}, \hat{1}), (\hat{0}, \hat{1}, \hat{1}), (\hat{1}, \hat{1}, \hat{1})\}$ Laticea subgrupurilor este

Toate subgrupurile sunt normale, grupul $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ fiind abelian.

• Grupul \mathbb{Z}_8 .

$$\mathbb{Z}_8 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}, \hat{6}, \hat{7}\}.$$

Elementele nenule au ordinele: $\operatorname{ord}(\hat{1}) = \operatorname{ord}(\hat{3}) = \operatorname{ord}(\hat{5}) = \operatorname{ord}(\hat{7}) = 8$, $\operatorname{ord}(\hat{2}) =$ $\operatorname{ord}(\hat{6}) = 4 \operatorname{si} \operatorname{ord}(\hat{4}) = 2.$

$$\mathbb{Z}_8 = <\hat{1}> = <\hat{3}> = <\hat{5}> = <\hat{7}>,$$

 $<\hat{2}> = <\hat{6}> = {\hat{0},\hat{2},\hat{4},\hat{6}} \simeq \mathbb{Z}_4,$

$$<2>=<6>=\{0,2,4,6\}\simeq \mathbb{Z}_4,$$

$$<\hat{4}>=\{\hat{0},\hat{4}\}\simeq \mathbb{Z}_2.$$

Toate subgrupurile sunt normale pentru că \mathbb{Z}_8 este abelian.

Laticea subgrupurilor este

• Grupul diedral \mathcal{D}_4 .

Grupul simetriilor pătratului este generat de R, rotația cu 90° în sens antiorar în jurul centrului pătratului și s una din cele patru simetrii ale pătratului. Avem relațiile R^4 $s^2 = id \, si \, R^3 s = sR$. Alte relații care se deduc din acestea sunt $R^2 s = sR^2, Rs = sR^3$. Grupul nu este abelian.

$$D_4 = \{ \text{id}, R, R^2, R^3, s, Rs, R^2s, R^3s \}.$$

$$\operatorname{ord}(R) = \operatorname{ord}(R^3) = 4 = \frac{4}{(3,4)} = 4.$$

$$\operatorname{ord}(R^2) = \operatorname{ord}(s) = \operatorname{ord}(Rs) = \operatorname{ord}(R^2s) = \operatorname{ord}(R^3s) = 2.$$
De exemplu $(R^2s)^2 = R^2sR^2s = sR^2R^2s = sR^4s = s \operatorname{id} s = s^2 = \operatorname{id} \Rightarrow \operatorname{ord}(R^2s) = 2.$

 $\langle R^2 \rangle \triangleleft \langle R \rangle \triangleleft D_4$. Nu rezultă imediat că $\langle R^2 \rangle \triangleleft D_4$. Trebuie să facem conjugarea. Este suficient cu generatorii grupului D_4 . Conjugarea lui R^2 cu R ne dă R^2 , fiind puteri ale lui R. $sR^2s^{-1} = sR^2s = ssR^2 = idR^2 = R^2$. Conjugarea păstrează subgrupul $\langle R^2 \rangle$, deci acesta este

Nu același lucru se întâmplă pentru subgrupurile $\langle s \rangle$, $\langle Rs \rangle$, $\langle R^2s \rangle$, $\langle R^3s \rangle$.

Voi face conjugarea cu generatorii R și s pentru subgrupul $\langle Rs \rangle$. $R^4 = \mathrm{id} \Rightarrow R^{-1} = R^3$.

Avem $R(Rs)R^{-1} = RRsR^3 = sR^2R^3 = sR^5 = sR = R^3s \notin Rs > .$ Deci < Rs > nu este normal în D_4 .

Vedem că $\langle Rs \rangle \triangleleft \langle R^2, Rs \rangle \triangleleft D_4$, dar $\langle Rs \rangle$ nu este subgrup normal în D_4 .

• Fie G un grup și $\operatorname{Aut}(G) = \{f: G \longrightarrow G \mid f \text{ automorfism}\}$. Este ușor de văzut că $\operatorname{Aut}(G)$ este grup: compunerea morfismelor este asociativă, id_G este elementul neutru la compunere iar fiecare automorfism (morfism bijectiv) are un invers.

Considerăm $\text{Inn}(G) = \{\varphi_g : G \longrightarrow G \mid \varphi_g(x) = gxg^{-1}, \forall x \in G\}$ subgrupul automorfismelor interioare.

Demonstrăm că φ_g este automorfism al grupului G.

- φ_g morfism: $\varphi_g(xy) = g(xy)g^{-1} = gxyg^{-1} = gxg^{-1}gyg^{-1} = \varphi_g(x)\varphi_g(y)$. φ_g injectiv: $\varphi_g(x) = \varphi_g(y) \Leftrightarrow gxg^{-1} = gyg^{-1}$. Înmulțind la stânga cu g^{-1} și la dreapta
- φ_q surjectiv: Fie $y \in G$. Trebuie să rezolvăm ecuația $\varphi_q(x) = y$ în funție de x. $\varphi_q(x) = y$ $y \Leftrightarrow gxg^{-1} = y \Leftrightarrow x = g^{-1}yg$. Deci pentru $\forall y \in G, \exists x = g^{-1}yg \in G$ a.î. $\varphi_g(x) = y$.

Considerăm aplicația $F: G \longrightarrow \text{Inn}(G)$ definită prin $F(g) = \varphi_g$. Demonstrăm că F este morfism. Trebuie arătat că $F(g_1g_2) = F(g_1) \circ F(g_2)$.

 $F(g_1g_2) = \varphi_{g_1g_2}. \ \varphi_{g_1g_2}(x) = g_1g_2x(g_1g_2)^{-1} = g_1g_2xg_2^{-1}g_1^{-1} = g_1(g_2xg_2^{-1})g_1^{-1} = \varphi_{g_1}(g_2xg_2^{-1}) = \varphi_{g_1}(\varphi_{g_2}(x)) = (\varphi_{g_1} \circ \varphi_{g_2})(x) \Rightarrow \varphi_{g_1g_2} = \varphi_{g_1} \circ \varphi_{g_2}, \text{ adică } F(g_1g_2) = F(g_1) \circ F(g_2).$