Recommendation Based on Personal-values: beyond Recommending What You Might Prefer

YASUFUMI TAKAMA

TOKYO METROPOLITAN UNIVERSITY, JAPAN

Research Topics

Web Intelligence

Recommendation

InfoVis.

Support for improving AI performance

Support for information access/understanding

Human in the loop

Table of Contents

- ▶ Introduction to Information Recommendation
 - ► Aim of recommendation
 - Algorithms
 - Evaluation metrics
- Beyond Accuracy
 - Challenges
 - ► Personal values
 - ► Introduction to collaborative filtering
 - ► Extension: user modeling from browsing history, item modeling

Recommendation is

▶ Find items of interest to target user from vast amount of items

Used Information for Recommendation

User DB

- Binary data (implicit)
 - Purchase = like
- Ordinal data (explicit)
 - 5-scale rating

Purchase/ evaluation

Demographic information (age/gender/…)

Interaction data (purchase/ rating/…)

Assumption behind Recommendation

- ► Similar users have similar preference for items
 - **▶** Purchased same items in the past
 - Similar demographic information
- Users prefer items similar to those they preferred in the past
 - Movies of same categories
 - New album of favorite singer

anditions of similar users

Collaborative Filtering

Collaborative Filtering

- ► Rating Matrix
 - ▶ Record of user-item interaction
 - ▶ Value
 - ▶ Rating ··· 1:bad 5:good
 - ▶ Implicit feedback ··· 1:buy 0:not yet
 - ► Predict unknown rating value
- Neighborhood-based approach
 - ► User-based: similar user = similar ratings to same items
 - ▶ Item-based: similar item = similar ratings by same user

Neighborhood-based CF

A: 5

B: 2

Rating matrix

	4	Х	2	1	Х	Х
	4	X	X	X	4	Х
Similarity /	Х	3	X	2	2	Х
between (Х	X	2	5	X	4
vectors	Х	X	1	4	3	4

- Prediction by weighted average
 - ► Rating × similarity
- Similarity of user vectors
 - Cosine
 - Pearson correlation coefficient

Matrix Factorization-based CF

- ► Neighborhood-based CF = Memory-based approach
 - ► User/item vector = row/column of rating matrix
 - ► Too sparse: few common items rated by different users
 - ► Cold start problem, sparsity problem
- ► Solution: dimensionality reduction
 - ▶ Rating matrix ⇒ user models, item models with lower dimensions
 - ▶ Prediction by dot product of item/user vectors
 - Model-based approach

Variations of Matrix Factorizationbased CF

- ► SVD (Singular Value Decomposition) [Sarwar00]
- ► NMF (Non-negative Matrix Factorization) [Lee00]
 - ▶ U, V: non-negative values
- PMF (Probabilistic Matrix Factorization) [Salakhutdinov07]
 - ▶ Rating ~ $N(UV^T, \sigma^2)$

Model-based CF

- ► Matrix Factorization-based CF (MCF)
- ► Neural-based CF (NCF)[He17]
- Common strategy
 - ► Learning latent factors for user/item
- ▶ Difference in predicted rating calculation
 - ► MCF: linear function ··· dot product
 - ▶ NCF: nonlinear function

Rating matrix

Latent

Predicted rating

Evaluation Metrics

- ▶ Prediction error
 - ► MAE (Mean Absolute Error)
 - ► RMSE (Root Mean Square Error)
- ► Top-N recommendation
 - ▶ Precision: ★÷■
 - ▶ Recall: ★÷■

Actual rating	5	3	2
Predicted rating	4	3	4

$$MAE = \frac{|5-4|+|3-3|+|2-4|}{3} = 1.0$$

$$RMSE = \sqrt{\frac{(5-4)^2 + (3-3)^2 + (2-4)^2}{3}} = 1.29$$

Recommend *N* items

favorite items

Beyond Accuracy

- ► Traditional challenge
 - ► Cold start problem: new users, new items
 - ► How to achieve high accuracy for new users?
- Recent challenges
 - ► Context awareness: location, time of day, weekday/weekend, etc.
 - ▶ Long-tail items: recommend unpopular items
 - ▶ **Diversity:** recommend different set of items
 - ▶ Behavior change: recommend different actions from past

Long-tail Item Recommendation

- ► Long-tail: unpopular item
 - ► Amazon: 1/3 of sales from long-tail items (past)
 - ► Common practice: 80 % of sales from 20% popular items
 - ► Head area << tail area
 - ▶ Difficult in brick & mortar shops
- Merit for seller (company)
 - ► Gain of sales
- Merit for customers
 - ▶ Personalized service ⇒ customer satisfaction ↑

Difficulty in recommending long-tail items

- Popularity bias
 - ► Popular item:
 - ► Attract positive ratings
 - ► Recommend to many users
 - ► Regardless of CF algorithms
- Solution
 - Consider other factors than accuracy
 - ▶ e.g. Diversity

Vacant

Diversified

Star Wars EP1

Diversity

- ▶ [Within user] Different types of items for a user
 - ▶ Different genres, artists, topics, etc.
- ▶ [Between users] Different items for different users

Problem:

famous item

Concentration to

- Useful for solving social concerns
 - ► Hotels, restaurants
- ► Long-tail items contribute to diversification

suitable

homogenous

Star Wars EP1

Behavior Change

- Social concern in modern society
 - ► Health promotion
 - ▶ Walking route recommendation
 - ► Healthy food/recipe recommendation
 - Energy-saving behavior
 - ► Infection prevention
- Challenges
 - ▶ Past behavior is meaningless: Favorite ≠ profitable
 - ► From Favorite items to profitable & Acceptable items
 - ▶ Explanation: Why this items is recommended

Future

Peak-shift

Green Curtain

Personality & Personal Values

- Personal values
 - Basis for ethical action
 - Acquired nature
 - ► Rockeach value survey (RVS)
 - ► Terminal values (18 items)
 - ► End-states of existence
 - ► True friendship / Happiness / etc.
 - ► Instrumental values (18 items)
 - ▶ Preferable modes of behavior
 - ▶ Ambition / Love / Courage / etc.

- Personality
 - ► Individual difference among people in behavior patterns, cognition, emotion
 - ▶ Inherent nature
 - ▶ Big-five factors
 - ▶ Openness to experience
 - ▶ Conscientiousness
 - Extroversion
 - ► Agreeableness
 - Neuroticism

Challenge for Personal Values-based Recommendation

- ▶ Distance to preference
 - ▶ What to recommend to "*Ambitious*" user?
 - ▶ Difficult to directly apply to recommendation
- ► Independent of target item domain
 - ▶ Modeling method should be common to any items
- Possibility of computation
 - ▶ Without interpretation / tuning by human expert
 - ► Implicit modeling

Personal Values as Important Attributes for Decision Making

Both users agree in *attribute* level

BUT

Total evaluation is different

Different personal values

Rating Matching Rate (RMR)

Review1

Attribute	Polarity
Total	Positive
Story	Positive Positive
Actor	Positive V
Music	Negative

Review2

Attribute	Polarity
Total	Negative
Story	Negative
Actor	Positive
Music	Positive

✓ Same polarity as total evaluation

RMR

Attribute	Story	Actor	Music
Match	2	1	0
Unmatch	0	1	2
RMR	1.0	0.5	0.0

- User model = n-dimensional vector consisting of each attribute's RMR
- High RMR = strong effect on decision making

Advantage of Personal Values-based User Modeling

- ► Model is constructed on attribute space of target item
 - ► Easy to combine with ordinary recommendation methods
 - ► Can be calculated for any attribute IF rating is given
- ▶ Stable modeling with small number of reviews (<10)
 - ► Effective for "lack of information" problem
- Potential for
 - ► Interpretability: suitable for **Explanation** of recommendation
 - ▶ Recommending Acceptable items: satisfy important attributes
 - ▶ Recommending Long-tail items: shown by experiments

Personal Values-based Collaborative Filtering (Neighborhood-based CF)

- Extend User-based collaborative filtering
- ▶ Used for user-user similarity calculation
 - ► Baseline: correlation of item ratings (i.e. neighborhood-based)
 - ▶ Proposed: correlation of RMR

Experimental Result

- ► Target data: 4Travel
 - ▶ 5,079 users
 - ▶ 7,295 hotels
 - ▶ 64,137 ratings: sparse dataset
- Comparison of MAE
 - ► All methods achieved lower MAE for around 4
 - Proposed method: lower MAE for lower ratings

Potential for Long-tail item recommendation

- ▶ Long Tail selection: select unpopular items with high predicted ratings
 - ▶ PV can enhance effect of Long Tail selection
- ▶ PV can improve precision

MCFPV (Matrix-based CF employing Personal Values)

- ▶ Difference from usual approach
 - ▶ Latent factors ⇒ Item's attributes
 - ▶ User / Item models: RMR
 - ► Recommend higher score items

Interpretability

Large value in M_R (story, cast) \Rightarrow Users care about casts' reputation if they put priority on story.

Positive RMR
Negative RMR

Model Relation Matrix

Model Relation Matrix

- Manual Setting[Shiraishi17]
 - ▶ Diagonal matrix
- Learning from rating matrix
 - Based on prediction error
 - ► BPR (Bayesian Personalized Ranking) [Rendle09]

$$\begin{pmatrix} 1 & \cdots & 0 & -1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & \cdots & 0 & -1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 2 & 0 & \cdots & -1 \end{pmatrix}$$

$$M_{R} = \begin{pmatrix} w_{1,1} & \cdots & w_{1,L} & w_{1,L+1} & \cdots & w_{1,2L} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ w_{L,1} & \cdots & w_{L,L} & w_{L,L+1} & \cdots & w_{L,2L} \end{pmatrix} \quad M_{U}$$

 M_{V} (Negative) (Positive)

Experiments: Dataset

Dataset	# User	# Item	# Rating	Density
Yahoo! Movie	18,507	6,746	523,730	0.00420
Hotpepper Beauty	31,976	8,101	72,386	0.00028

- ▶ Yahoo! Movie: rating \in {1,2,..,5}
 - ▶ 5 Attributes: Story, Cast, Scenario, Visuals, Music
- ► Hotpepper Beauty: rating \in {1,2,..,5}
 - ▶ 4 attributes: Atmosphere, Service, Skill, Price

Result: P@3, R@3, Div@3 Yahoo! Movie

Result: (X) Popularity vs. (Y) Diversity

■MCFPV(PRE) ■MCFPV(BPR) ■SVD ■PMF ■NMF

Good / Bad Points of Personal Values-based User Modeling

- ▶ [GOOD] Model is constructed on attribute space of target item
 - ► Easy to combine with ordinary recommendation methods
 - ► Can be calculated for any attribute IF rating is given
- ▶ [GOOD] Stable modeling with small number of reviews (<10)
 - ► Effective for cold-start / sparsity problem
- ► [BAD] Need reviews POSTED by target users
 - ▶ # of reviewers << # of ROMs

User Modeling from Review Browsing Behavior

Access コスパ:4.0余余余余余 Cost performance 接客対応:2.0 金金金金金金 Service Room 風呂:5.0 会会会会会 Bathroom 食事:5.0 金金金金金 Meal

都道府県:神奈川県 アクセス:3.0 会会会会会 コスパ:5.0 会会会会会 接客対応:5.0 会会会会会 部屋:3.5 会会会会会 風呂:5.0 会会会会会会 食事:4.0会会会会会

都道府県:神奈川県 コスパ:5.0 ☆☆☆☆☆ 接客対応:3.0 会会会会会会 部屋:2.5 金金金金金金金金 風呂:3.0 会会会会会会 食事:2.5 ☆☆☆☆☆☆

Access Cost performance Service Room Bathroom Meal

Access Cost performance Service Room Bathroom Meal

Attribute-level evaluation (by reviewers)

From user modeling to item modeling

User modeling

[Proposed] Item modeling

More review available for item than user

From RMR to Lift value

Personal-values-based user model

Attribute evaluation	Total evaluation
Pos	Pos
Neg	Neg

$$RMR = \frac{\#matched}{\#unmatched + \#matched}$$

Proposed method

Attribute evaluation	Total evaluation
Pos	Pos
Pos	Neg
Neg	Pos
Neg	Neg

Lift value

Calculate 4 values for attribute

Calculation of Lift value

4 patters of lift value

$$lift(X \to Y) = \frac{P(X \land Y)}{P(X)P(Y)}$$

Example for movie data

Attr	P→P	P→N	N→P	N→N
Story	2.00	0.67	0.00	1.33
$lift(Pos \rightarrow Pos) = 2.0$				

The probability of "The movie is favored" doubles with the condition of "Story is favored"

Explaining recommendation with lift value

Attribute evaluation	Total evaluation
Pos	Pos
Pos	Neg
Neg	Pos
Neg	Neg

"People who like story tend to be satisfied with the movie"

"People tend to be satisfied with the movie even though they do not like Visual quality"

Attribute	P→P	P→N	N→P	N→N
Story	2.00	0.67	0.00	1.33
Casts	1.08	0.93	0.87	1.11
Direction	1.22	0.81	0.83	1.14
Visual quality	0.00	1.33	2.00	1.33
Music	1.12	0.67	0.97	1.09

As I don't care about visual quality, I might like it.

Conclusion

- Personal values-based information recommendation
 - ► RMR: Modeling user's personal values
 - ► Introduction to collaborative filtering (neighborhood-based, Matrix-based): effective for long-tail item recommendation
 - User modeling from browsing history
 - ► Item modeling with explanation
- Beyond recommending favorite items
 - Paradigm shift to acceptable items
 - Extend applicability of recommender systems: behavior change support, etc.