

# UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro de Ciências, Tecnologias e Saúde - CTS

# TESTE DE ENVIO DE ARQUIVOS EM DIFERENTES REDES SEM FIO

#### **RESULTADOS DO ESTUDO**

DISCIPLINA
DEC7563 - Redes sem Fios

DOCENTE Roberto Rodrigues Filho, Ph.D.

DISCENTES
Jose Norberto Fagundes Isaias (19202785)
Vinícius Souza Capistrano (18204884)



Teste de Envio De Arquivos em Diferentes Redes Sem Fio

# SUMÁRIO

| SUMÁRIO                                           | 2 |
|---------------------------------------------------|---|
| Introdução                                        | 3 |
| Objetivo Geral                                    | 3 |
| Objetivos Específicos                             | 3 |
| Metodologia                                       | 4 |
| Cenários de Teste                                 | 4 |
| Procedimento de Envio de Arquivos                 | 4 |
| Resultados                                        | 5 |
| Análise dos Resultados                            | 6 |
| Estrutura do Código                               | 7 |
| Código do Wi-Fi (ESP_Receptor_Wifi_Web_Final.ino) | 7 |
| Código do Bluetooth (ESP_Receptor_BT3.ino)        | 7 |
| Imagem das Interfaces                             | 8 |
| Conclusão                                         | 9 |
| Recomendações                                     | 9 |
| Próximos Passos                                   | 9 |



Teste de Envio De Arquivos em Diferentes Redes Sem Fio

# Introdução

Com a crescente demanda por conectividade e a expansão do uso de dispositivos móveis e IoT, o desenvolvimento de sistemas de comunicação sem fio robustos e eficientes tornou-se essencial. No entanto, o planejamento e a implementação de redes sem fio eficazes nem sempre acompanharam a rápida evolução tecnológica. O surgimento de plataformas como o ESP32 e Arduino, capazes de operar com diferentes tecnologias como Wi-Fi e Bluetooth, destaca a necessidade de uma análise comparativa detalhada dessas tecnologias sob diversas condições de uso.

Na prática, a transferência de arquivos em ambientes sem fio pode ser desafiadora, enfrentando problemas de latência, taxa de erro e limitações de alcance, especialmente em ambientes urbanos densos onde o espectro de RF é frequentemente saturado. Neste contexto, nosso software é desenvolvido com o objetivo de maximizar a eficiência das transferências de arquivos através de diferentes tecnologias sem fio, permitindo uma avaliação precisa da viabilidade técnica e prática de cada uma delas em variadas condições ambientais.

Este projeto pretende fornecer insights valiosos sobre as capacidades e limitações de Wi-Fi e Bluetooth em contextos práticos de uso, utilizando dispositivos de hardware comuns e acessíveis. Com esse estudo, esperamos identificar a tecnologia mais adequada para diferentes tipos de aplicação, baseados na eficiência, confiabilidade e praticidade em cenários de uso real.

## **Objetivo Geral**

Desenvolver uma solução robusta para avaliar e comparar a performance de diferentes tecnologias de comunicação sem fio (Wi-Fi e Bluetooth) no envio de arquivos em variadas condições ambientais. Esse estudo visa identificar a tecnologia mais eficiente e confiável para a transferência de arquivos em ambientes urbanos e rurais, contribuindo para melhorar a conectividade e a comunicação em dispositivos móveis e IoT.

#### **Objetivos Específicos**

Os objetivos específicos deste projeto são detalhados a seguir:

- Desenvolvimento de um sistema de avaliação: Criar uma aplicação integrada utilizando ESP32 para Wi-Fi e Bluetooth, que permita o envio e recebimento de arquivos de diversos formatos e tamanhos sob diferentes condições de teste.
- Análise comparativa das tecnologias: Comparar as taxas de transferência, a latência e as taxas de erro das diferentes tecnologias em diversos ambientes, para



# Teste de Envio De Arquivos em Diferentes Redes Sem Fio

determinar qual tecnologia é mais adequada para aplicativos específicos baseados em eficiência e confiabilidade.

Este documento apresenta os resultados do estudo preliminar realizado para comparar a performance das tecnologias Wi-Fi e Bluetooth na transferência de arquivos em diferentes condições ambientais, utilizando dispositivos ESP32.

### Metodologia

#### Configuração dos Dispositivos

- **ESP32**: Dois dispositivos ESP32 configurados um para Wi-Fi e um para Bluetooth.
- Fonte de Alimentação: Conexão a uma fonte de alimentação estável (carregador portátil).
- Sistema de Arquivos: Utilização do SPIFFS para armazenamento dos arquivos.

#### Cenários de Teste

- **Distância:** Testes realizados a distâncias de 15m, 30m, 60m e 100m.
- Obstáculos: Testes com linha de visão direta e com obstáculos (paredes, móveis).
- Ambiente: Testes em áreas urbanas com alta densidade de dispositivos.

#### Procedimento de Envio de Arquivos

- Carregamento do código nos ESP32.
- 2. Inicialização do servidor Web-Wifi e Bluetooth.
- 3. Envio e recepção de arquivos de diferentes tamanhos:
  - a. 100KB pequeno;
  - b. 500KB médio;
  - c. 1MB grande.
- 4. Coleta de dados sobre tempo de transferência, latência, jitter e pacotes enviados.
- 5. Repetição dos testes para garantir consistência.

### UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências, Tecnologias e Saúde - CTS

#### Resultados do Estudo

Teste de Envio De Arquivos em Diferentes Redes Sem Fio

# Resultados

Os resultados foram coletados em condições climáticas de chuvas leves, temperatura de aproximadamente 14°C e umidade aproximada de 91%.

| Cenário  | Distânci<br>a | Obstác<br>ulos | Ambien<br>te | Tipo de<br>Arquivo | Tamanh<br>o do<br>Arquivo | Duratio<br>n (ms)<br>Bluetoo<br>th | Duratio<br>n (ms)<br>Wifi | Jitter<br>(ms)<br>Wifi | Packets<br>Wifi | RSSI         |
|----------|---------------|----------------|--------------|--------------------|---------------------------|------------------------------------|---------------------------|------------------------|-----------------|--------------|
| Teste 01 | 15m           | Não            | Urbano       | Imagem             | 100 KB                    | 6435                               | 7645                      | 97                     | 71              | -55 a<br>-65 |
| Teste 02 | 15m           | Não            | Urbano       | Imagem             | 500 KB                    | 33224                              | 40072                     | 99                     | 358             | -55 a<br>-66 |
| Teste 03 | 15m           | Não            | Urbano       | Imagem             | 1 MB                      | 68718                              | 102194                    | 98                     | 732             | -55 a<br>-67 |
| Teste 04 | 15m           | Paredes        | Urbano       | Imagem             | 100 KB                    | 6426                               | 7563                      | 94                     | 71              | -75          |
| Teste 05 | 15m           | Paredes        | Urbano       | Imagem             | 500 KB                    | 84368                              | 40685                     | 102                    | 358             | -75          |
| Teste 06 | 15m           | Paredes        | Urbano       | Imagem             | 1 MB                      | 252886                             | 102673                    | 98                     | 732             | -75          |
| Teste 07 | 30m           | Não            | Urbano       | Imagem             | 100 KB                    | 6411                               | 7537                      | 101                    | 71              | -60 a<br>-65 |
| Teste 08 | 30m           | Não            | Urbano       | Imagem             | 500 KB                    | 35569                              | 40399                     | 98                     | 358             | -60 a<br>-66 |
| Teste 09 | 30m           | Não            | Urbano       | Imagem             | 1 MB                      | 70035                              | 101994                    | 98                     | 732             | -60 a<br>-67 |
| Teste 10 | 30m           | Paredes        | Urbano       | Imagem             | 100 KB                    | NF                                 | 7710                      | 100                    | 71              | -90          |
| Teste 11 | 30m           | Paredes        | Urbano       | Imagem             | 500 KB                    | NF                                 | NF                        | NF                     | 358             | -90          |
| Teste 12 | 60m           | Não            | Urbano       | Imagem             | 100 KB                    | 6386                               | 7502                      | 100                    | 71              | -60 a<br>-70 |



## Teste de Envio De Arquivos em Diferentes Redes Sem Fio

| Teste 13 | 60m  | Não     | Urbano | Imagem | 500 KB | 34048 | 40183  | 96  | 358 | -60 a<br>-71 |
|----------|------|---------|--------|--------|--------|-------|--------|-----|-----|--------------|
| Teste 14 | 60m  | Não     | Urbano | Imagem | 1 MB   | 53340 | 102577 | 98  | 732 | -60 a<br>-72 |
| Teste 15 | 60m  | Paredes | Urbano | Imagem | 100 KB | NF    | NF     | NF  | NF  | NF           |
| Teste 16 | 60m  | Paredes | Urbano | Imagem | 500 KB | NF    | NF     | NF  | NF  | NF           |
| Teste 17 | 100m | Não     | Urbano | Imagem | 1 MB   | NF    | 7728   | 100 | 71  | -60 a<br>-72 |
| Teste 18 | 100m | Não     | Urbano | Imagem | 100 KB | NF    | 40153  | 95  | 358 | NF           |
| Teste 19 | 100m | Não     | Urbano | Imagem | 500 KB | NF    | 104054 | 102 | 732 | NF           |

#### Análise dos Resultados

#### 1. Taxa de Transferência:

- Bluetooth: Demonstrou uma taxa de transferência geralmente superior, mas com variabilidade significativa conforme a distância e a presença de obstáculos.
- Wi-Fi: Apresentou tempos de transferência mais consistentes, embora mais longos em comparação ao Bluetooth.

#### 2. Latência e Jitter:

- **Wi-Fi:** Apresentou jitter maior, o que pode indicar variabilidade na qualidade de serviço, especialmente em distâncias maiores e com obstáculos.
- o Bluetooth: Notamos um jitter insignificante entre 0 e 1.

#### 3. RSSI (Indicador de Força de Sinal):

- Wi-Fi: A força do sinal variou entre -55 a -72 dBm, indicando uma conexão razoavelmente forte, porém em condições com obstáculos obtivemos um sinal abaixo de -80 inclusive a perda de sinal.
- Bluetooth: N\u00e3o especificado diretamente, mas inferido a partir dos RSSI do Wifi.



Teste de Envio De Arquivos em Diferentes Redes Sem Fio

# Estrutura do Código

O projeto é dividido em dois códigos para utilizar o ESP32 em diferentes modos de comunicação (Wi-Fi e Bluetooth) para gerenciar e exibir informações de dispositivos conectados. O código Wi-Fi oferece uma interface web para visualização e download de arquivos, enquanto o código Bluetooth se concentra na recepção e exibição de dados via monitor serial.

## Código do Wi-Fi (ESP\_Receptor\_Wifi\_Web\_Final.ino)

O código para Wi-Fi no ESP32 implementa um servidor web que permite a visualização e gerenciamento de dispositivos conectados. As funcionalidades principais incluem:

- Configuração da Rede Wi-Fi: Conexão à rede Wi-Fi com SSID e senha definidos.
- **Servidor Web:** Configuração de um servidor web que disponibiliza uma página para exibir informações.
- Exibição de Informações: A página web mostra o IP do ESP32, dispositivos conectados e suas informações de RSSI (força do sinal).
- Atualização em Tempo Real: A página é atualizada a cada segundo para refletir o status atual dos dispositivos conectados e o estado da transferência de arquivos.
- **Download de Arquivos:** Permite o download dos arquivos que foram carregados para o ESP32.

# Código do Bluetooth (ESP\_Receptor\_BT3.ino)

O código para Bluetooth no ESP32 foca na comunicação Bluetooth para receber dados de dispositivos conectados. As funcionalidades principais incluem:

- Configuração do Bluetooth: Inicialização do módulo Bluetooth do ESP32.
- Recepção de Dados: Recebe dados via Bluetooth e processa esses dados conforme necessário.
- Visualização Serial: Exibe no monitor serial o IP do ESP32, dispositivos conectados, status da transferência de arquivos (sucesso ou falha).
- Atualização de Estado: Mantém e atualiza o estado dos dispositivos conectados via Bluetooth.

Códigos disponíveis em <a href="https://github.com/VCapis/esp32">https://github.com/VCapis/esp32</a> wifi bt.git .



Teste de Envio De Arquivos em Diferentes Redes Sem Fio

## **Imagem das Interfaces**





Teste de Envio De Arquivos em Diferentes Redes Sem Fio

# Conclusão

Os testes mostraram que, enquanto o Bluetooth oferece maiores velocidades de transferência, ele é mais suscetível a interferências e obstáculos. O Wifi, apesar de ser mais lento, proporciona uma conexão mais estável e consistente independente da distância ou interferências.

#### Recomendações

- 1. **Bluetooth:** Recomendado para ambientes onde a velocidade é crítica e a interferência é mínima.
- 2. Wi-Fi: Adequado para ambientes onde a estabilidade e distância são importantes.

#### **Próximos Passos**

- Realizar testes adicionais com diferentes tipos de arquivos para validar ainda mais os resultados.
- Considerar a integração de outras tecnologias emergentes para comparar desempenho.
- Desenvolvimento de uma aplicação mobile a fim de executar as mesmas funcionalidades de um ESP.