MATH 2418: Linear Algebra

Assignment 6

Due March 2, 2016

Term Spring, 2016

Recommended Text Book Problems (do not turn in): [Sec 4.2: # 1, 3, 9, 11, 19]; [Sec 4.3: # 3, 11, 13, 15, 17, 19];

- 1. Which of the followings are subspaces of \mathbb{R}^3 ? Show all of your work to receive full credit:
 - (a) $W = \{(x, y, z) : x, y, z \in \mathbb{R}; x = y + z\}.$
 - (b) $V = \{(x, y, 0) : x, y \in \mathbb{R}\}$
 - (c) $U = \{(1, 1, z) : z \in \mathbb{R}\}.$

Solution:

(a)
$$W = \{(x, y, z) : x, y, z \in \mathbb{R}; \ x = y + z\} = \{(y + z, \ y, \ z) : y, z \in \mathbb{R}\}$$
 Let $\mathbf{u} = (y + z, \ y, \ z), \quad \mathbf{v} = (y' + z', \ y', \ z') \in W$ and a, b be any scalars. Then

$$a\mathbf{u} + b\mathbf{v} = a(y+z, y, z) + b(y'+z', y', z')$$

$$= (ay + az, ay, az) + (by' + bz', by', bz')$$

$$= (ay + az + by' + bz', ay + by', az + bz')$$

$$= ((ay + by') + (az + bz'), ay + by', az + bz') \in W.$$

So W is a subspace of \mathbb{R}^3 .

(b) Let $\mathbf{u} = (x, y, 0), \mathbf{v} = (x', y', 0) \in V$ and a, b be any scalars. Then

$$a\mathbf{u} + b\mathbf{v} = a(x, y, 0) + b(x', y' 0)$$

= $(ax, ay, 0) + (bx' + by', 0)$
= $(ax + bx', ay + by', 0) \in V$.

So V is a subspace of \mathbb{R}^3 .

(c) Let $\mathbf{u} = (1, 1, z)$, $\mathbf{v} = (1, 1, z') \in U$. But, then $\mathbf{u} + \mathbf{v} = (1, 1, z) + (1, 1, z') = (2, 2, z + z') \notin U$. So U is not a subspace of \mathbb{R}^3 .

2. Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = (1, 6, 4), \mathbf{v}_2 = (2, 4, -1), \mathbf{v}_3 = (-1, 2, 5); \text{ and } \mathbf{w}_1 = (1, -2, -5), \mathbf{w}_2 = (0, 8, 9).$$

Prove that, $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \operatorname{Span}\{\mathbf{w}_1, \mathbf{w}_2\}.$

Solution: We will prove that every vector in the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is in $\mathrm{Span}\{\mathbf{w}_1, \mathbf{w}_2\}$, and every vector in the set $\{\mathbf{w}_1, \mathbf{w}_2\}$ is in $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

$$\begin{array}{lll} \mathbf{v}_1 = (1,6,4) &= (1,-2,-5) + (0,8,9) = & \mathbf{w}_1 + \mathbf{w}_2 \\ \mathbf{v}_2 = (2,4,-1) = 2(1,-2,-5) + (0,8,9) = 2\mathbf{w}_1 + \mathbf{w}_2 \\ \mathbf{v}_3 = (-1,2,5) = (-1)(1,-2,-5) &= (-1)\mathbf{w}_1 + (0)\mathbf{w}_2 \\ \mathrm{Hence} \ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathrm{Span}\{\mathbf{w}_1,\mathbf{w}_2\}. \end{array}$$

Again,

Therefore $\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\} = \operatorname{Span}\{\mathbf{w}_1,\mathbf{w}_2\}.$

3. Let $T_A : \mathbb{R}^3 \to \mathbb{R}^2$ be a matrix transformation, the multiplication by the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$ and $\mathbf{u}_1 = (0,1,1), \mathbf{u}_2 = (2,-1,1), \mathbf{u}_3 = (1,1,-2)$ be vectors in \mathbb{R}^3 . Determine if $\{T_A(\mathbf{u}_1), T_A(\mathbf{u}_2), T_A(\mathbf{u}_3)\}$ spans \mathbb{R}^2 ? Show all of your work to receive full credit.

Solution:

$$T_A(\mathbf{u}_1) = A\mathbf{u}_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

$$T_A(\mathbf{u}_2) = A\mathbf{u}_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

$$T_A(\mathbf{u}_3) = A\mathbf{u}_3 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

Now, we will check if any vector $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbb{R}^2$ can be written as a linear combination of $T_A(\mathbf{u}_1)$, $T_A(\mathbf{u}_2)$, $T_A(\mathbf{u}_3)$. i.e. if we can find scalars x_1, x_2, x_3 such that : $x_1T_A(\mathbf{u}_1) + x_2T_A(\mathbf{u}_2) + x_3T_A(\mathbf{u}_3) = \mathbf{b}$.

i.e.
$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

The augmented matrix is $\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & -2 & 3 & b_2 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{-1}{2}R_2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 1 & \frac{-3}{2} & \frac{-b_2}{2} \end{bmatrix}$ which corresponds to a consistent linear system. So, we can determine x_1, x_2, x_3 such that :

$$x_1T_A(\mathbf{u}_1) + x_2T_A(\mathbf{u}_2) + x_3T_A(\mathbf{u}_3) = \mathbf{b}$$

for any $\mathbf{b} \in \mathbb{R}^2$. Hence $\{T_A(\mathbf{u}_1), T_A(\mathbf{u}_2), T_A(\mathbf{u}_3)\}$ spans \mathbb{R}^2 .

- 4. Determine if the following set of vectors are linearly independent or dependent.
 - (a) (-3,0,4), (5,-1,2), (1,1,3) in \mathbb{R}^3 .
 - (b) $\cos 2x$, $3\sin^2 x$, $-4\cos^2 x$ in the space $F(-\infty,\infty)$ of all real valued functions defined on $(-\infty,\infty)$.
 - (c) $1+3x+3x^2$, $x+4x^2$, $5+6x+3x^2$ in P_2 , the vector space of all polynomials of degree ≤ 2 .

Solution:

(a) Suppose $k_1(-3,0,4) + k_2(5,-1,2) + k_3(1,1,3) = \mathbf{0}$ in \mathbb{R}^3 .

The corresponding linear system is

$$-3k_1 + 5k_2 + k_3 = 0$$
$$-k_2 + k_3 = 0$$
$$4k_1 + 2k_2 + 3k_3 = 0$$

The determinant of the coefficient matrix:

$$\begin{vmatrix} -3 & 5 & 1 \\ 0 & -1 & 1 \\ 4 & 2 & 3 \end{vmatrix} = -3(-3-2) + 4(5+1) = 15 + 24 = 39 \neq 0.$$

Therefore the linear system has only the trivial solution $k_1 = k_2 = k_3 = 0$. Hence the vectors (-3, 0, 4), (5, -1, 2), (1, 1, 3) in \mathbb{R}^3 .

(b) We know $\cos 2x = \cos^2 x - \sin^2 x = \left(\frac{-1}{4}\right)\left(-4\cos^2 x\right) + \left(\frac{-1}{3}\right)\left(3\sin^2 x\right)$. So $\cos 2x$ is a linear combination of $3\sin^2 x$ and $-4\cos^2 x$. Therefore $\cos 2x$, $3\sin^2 x$, $-4\cos^2 x$ are linearly dependent.

(c) Suppose $a(1+3x+3x^2)+b(x+4x^2)+c(5+6x+3x^2)=0$ in P_2 . i.e. $(a+5c)+(3a+b+6c)x+(3a+4b+3c)x^2=0$ in P_2 (meaning that a zero polynomial). So

$$a + 5c = 0$$
$$3a + b + 6c = 0$$
$$3a + 4b + 3c = 0$$

The determinant of the coefficient matrix:

$$\begin{vmatrix} 1 & 0 & 5 \\ 3 & 1 & 6 \\ 3 & 4 & 3 \end{vmatrix} = 1(3 - 24) + 5(12 - 3) = -21 + 45 = 24 \neq 0.$$

So the coefficient matrix is invertible and the linear system has only the trivial solution a = b = c = 0. Hence $1 + 3x + 3x^2$, $x + 4x^2$, $5 + 6x + 3x^2$ are linearly independent in P_2 . 5. (a) Determine if (2, -2, 0), (2, -1, 4), (2, 7, -6) lie on the same plane in \mathbb{R}^3 .

(b) Determine if (-1, 2, 3), (2, -4, -6), (-7, 14, 21) lie on the same line on \mathbb{R}^3 .

Solution:

(a) Suppose $a(2, -2, 0) + b(2, -1, 4) + c(2, 7, -6) = \mathbf{0}$ in \mathbb{R}^3 .

The corresponding linear system is:

$$2a + 2b + 2c = 0$$
$$-2a - b + 7c = 0$$
$$4b - 6c = 0$$

The determinant of coefficient matrix is:

$$\begin{vmatrix} 2 & 2 & 2 \\ -2 & -1 & 7 \\ 0 & 4 & -6 \end{vmatrix} = 2(6 - 28) + 2(-12 - 8) = -44 - 40 = -84 \neq 0.$$

So the system has only the trivial solution a = b = c = 0 and therefore the vectors (2, -2, 0), (2, -1, 4), (2, 7, -6) are linearly independent, so do not lie on same plane.

(b) Since (2, -4, -6) = (-2)(-1, 2, 3) and (-7, 14, 21) = 7(-1, 2, 3), they are multiple of eachother, so they lie on the same line.

6. Use the **Wronskian** W(x) to check if the following vectors are linearly independent in $F(-\infty,\infty)$.

(a)
$$2, 2x+3, x^2-1$$
.

(b)
$$5e^x$$
, $e^x \sin x$, $e^x \cos x$.

Solution:
(a)
$$W(x) = \begin{vmatrix} 2 & 2x+3 & x^2-1 \\ 0 & 2 & 2x \\ 0 & 0 & 2 \end{vmatrix} = 8 \neq 0.$$

So 2, 2x + 3, $x^2 - 1$ are linearly independent in $F(-\infty, \infty)$.

(b)
$$W(x) = \begin{vmatrix} 5e^x & e^x \sin x & e^x \cos x \\ 5e^x & e^x (\sin x + \cos x) & e^x (\cos x - \sin x) \\ 5e^x & 2e^x \cos x & -2e^x \sin x \end{vmatrix} = 5e^x \cdot e^x \cdot e^$$

Therefore $5e^x$, $e^x \sin x$, $e^x \cos x$ are linearly independent in $F(-\infty, \infty)$.

- 7. True or False.
 - (a) **T** $\stackrel{\frown}{\mathbf{F}}$: Let A and B be two subsets of a vector space V such that $\operatorname{Span}\{A\} = \operatorname{Span}\{B\}$, then A = B.
 - (b) (\mathbf{T}) **F**: Let A be an $m \times n$ matrix, then the solution set of $A\mathbf{x} = \mathbf{0}$ is a subspace of \mathbb{R}^n .
 - (c) **T** (F): Let A be an $m \times n$ matrix, then the solution set of $A\mathbf{x} = \mathbf{b}$ is a subspace of \mathbb{R}^n .
 - (d) (\mathbf{T}) **F**: If the set $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent then $\{2\mathbf{u}, 3\mathbf{v}\}$ is also linearly independent.
 - (e) \mathbf{T} (F): If three vectors in \mathbb{R}^3 are linearly dependent, then they must lie on the same line.
 - (f) (\mathbf{T}) **F**: The vectors (-2,0,1), (3,2,5), (6,-1,1), (7,0,-2) in \mathbb{R}^3 are linearly dependent.

Reasons:

- (a) $A = \{(1,0), (0,1)\}$ and $B = \{(2,0), (0,2)\}$ are two subsets of \mathbb{R}^2 such that $\text{Span}\{A\} = \text{Span}\{B\}$, but $A \neq B$.
- (b) Let W denote the solution set of $A\mathbf{x} = \mathbf{0}$. Suppose \mathbf{u}, \mathbf{v} be any two vectors in W, then $A\mathbf{u} = \mathbf{0}$ and $A\mathbf{v} = \mathbf{0}$. Now, let a, b be any scalars, then $A(a\mathbf{u} + b\mathbf{v}) = aA\mathbf{u} + bA\mathbf{v} = a\mathbf{0} + b\mathbf{0} = \mathbf{0}$. Hence $a\mathbf{u} + b\mathbf{v} \in W$. Therefore W is a subspace of \mathbb{R}^n .
- (c) Let W denote the solution set of $A\mathbf{x} = \mathbf{b}$. Suppose \mathbf{u}, \mathbf{v} be any two vectors in W, then $A\mathbf{u} = \mathbf{b}$ and $A\mathbf{v} = \mathbf{b}$. But then $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{b} + \mathbf{b} = 2\mathbf{b}$. So $\mathbf{u} + \mathbf{v} \notin W$ for $\mathbf{b} \neq \mathbf{0}$. Hence W is not a subspace.
- (d) Suppose $a(2\mathbf{u}) + b(3\mathbf{v}) = \mathbf{0} \Rightarrow (2a)\mathbf{u} + (3b)\mathbf{v} = 0$. But $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent. So 2a = 0 and $3b = 0 \Rightarrow a = 0$ and b = 0. Hence $\{2\mathbf{u}, 3\mathbf{v}\}$ is also linearly independent.
- (e) The vectors (1,0,0),(0,1,0) and (1,1,0) are linearly dependent in \mathbb{R}^3 but do not line on same line.
- (f) Set of 4 vectors in \mathbb{R}^3 is linearly dependent.