Deep Learning

Assignment 5: Spoken Digits Recognition

Instructor: Dr. Mehrandezh

Student: Marzieh Zamani

Spoken Digit Recognition on FSDD Dataset

- FSDD Dataset (2 native and 2 non-native speakers)
 - Training: 160 recordings per digit
 - Testing: 40 recordings per digit
- Student Dataset (1 non-native speaker)
 - Evaluation: 5 recordings per digit

- Sampling Frequency: 8000
- Mono

Classifiers

- Support Vector Machine (SVM)
- Long Short–Term Memory (LSTM)
- LSTM optimized by Bayesian Optimization
- Deep Convolutional Neural Network (DCNN) with Mel-frequency Spectrograms

Support Vector Machines (SVM) Classifier

SVM Classifier

- Specification: quadratic polynomial kernel
- Feature vector: N x 321 x 1
- ▶ Training dataset: FSDD (N=160 x 10)
- ▶ Testing dataset: FSDD ($N=40 \times 10$)
- Evaluation dataset: Student (N=5 x 10)

SVM Training & Testing on FSDD Dataset => 98%

SVM Classification | FSDD Testing Dataset

97.5%	2.5%
100.0%	
97.5%	2.5%
95.0%	5.0%
97.5%	2.5%
95.0%	5.0%
95.0%	5.0%
100.0%	
100.0%	
100.0%	

97.5%	97.6%	95.1%	95.0%	97.5%	97.4%	100.0%	97.6%	100.0%	100.0%
2.5%	2.4%	4.9%	5.0%	2.5%	2.6%		2.4%		
0	1	2	3	4	5	6	7	8	9

Predicted Class

SVM Evaluation on Student Dataset

SVM Classification | Student Recorded Digits

SVM Remarks

- **Testing dataset**: FSDD (N=40 x 10) => test accuracy= 98%
- **Evaluation dataset**: Student $(N=5 \times 10) =$ test accuracy= 32%
- SVM classifies FSDD dataset with an excellent accuracy of 98%; however, its classification accuracy for student spoken digits is significantly lower, 32%.
- It is worth mentioning that the classification accuracy of different digits are very distinct, ranging from 0% to 100%.

Feed-forward vs. Recurrent NN

- Feed-forward neural networks pass the data forward from input to output
- RNN has a feedback loop where data can be fed back into the input

Recurrent Neural Network structure

Recurrent Neural Network

Feed-Forward Neural Network

Long Short-Term Memory (LSTM) Classifier

- Designed to remembering information for long periods of time;
- The cell state is kind of like a conveyor belt of information
- Gates: optionally let information to cell state.

Long Short-Term Memory (LSTM) Classifier

The repeating module in a standard RNN contains a single layer.

The repeating module in an LSTM contains four interacting layers.

LSTM Architecture & Parameters

- ▶ 512 hidden units
- Initial Learning Rate: 0.0001

No	Layer Type	Output Size	Details
1.	INPUT	321	-
			Input Weights: 2048x321
2.	LSTM	512	Recurrent Weights: 2048x512
			Bias: 2048x1
3.	FC	10	Weights: 10x512
3.	FC	10	Bias: 10x1
4.	SOFTMAX	10	-
5.	Class Output	1	-

LSTM Training on FSDD Dataset

LSTM Testing on FSDD Dataset

LSTM Classification | FSDD Testing Dataset

E 00/
5.0%
7.5%
5.0%
2.5%
7.5%
5.0%
2.5%
10.0%

97.4%	97.4%	95.0%	97.5%	97.6%	95.2%	92.5%	90.5%	97.5%	94.7%
2.6%	2.6%	5.0%	2.5%	2.4%	4.8%	7.5%	9.5%	2.5%	5.3%
0	1	2	3	4	5	6	7	8	9
			Predicted Class						

LSTM Evaluation on Student Spoken Digits => 40%

LSTM Classification | Student Recorded Digits

LSTM Remarks

- **Testing dataset**: FSDD $(N=40 \times 10) = > test accuracy = 94\%$
- **Evaluation dataset**: Student $(N=5 \times 10) = > test accuracy = 40\%$
- LSTM classifies FSDD dataset with an excellent accuracy of 94%; however, its classification accuracy for student spoken digits is significantly lower, 40%.
- It is worth mentioning that the classification accuracy of different digits are very distinct, ranging from 0% to 100%.

LSTM-Optimized by Bayesian Optimization

- Optimization parameters and range
 - Initial Learning Rate: [1e−5, 1e−1]
 - => Optimal value = 2.199e-04
 - Number of Hidden Units: [10, 1000]
 - => Optimal value = 768
- Feature vector: N x 321 x 1
- Training dataset: FSDD ($N=160 \times 10$)
- **Testing accuracy**: FSDD $(N=40 \times 10)$
- => test accuracy: 94% increased to 97.75%
- Evaluation dataset: Student (N=5 x 10)
- => test accuracy: 40% increased to 42%

LSTM-Optimized Testing on FSDD Dataset => 98%

LSTM-Optimized Classification | FSDD Testing Dataset

5.0%
7.5%
2.5%
7.5%
2.5%
2.5%
5.0%

100.0%	94.9%	93.0%	95.2%	97.5%	97.6%	97.4%	95.1%	100.0%	97.4%
	5.1%	7.0%	4.8%	2.5%	2.4%	2.6%	4.9%		2.6%
0	1	2	3	4	5	6	7	8	9

Predicted Class

LSTM-Optimized Evaluation on Student Spoken Digits => 42%

LSTM-Optimized Classification | Student Recorded Digits

100.0%	57.1%		100.0%	20.0%	25.0%				62.5%
	42.9%			80.0%	75.0%		100.0%		37.5%
0	1	2	3	4	5	6	7	8	9
					Pred	icted (Class		

LSTM-Optimized Remarks

- Optimization parameters and range
 - Initial Learning Rate: [1e-5, 1e-1]
 - => Optimal value = 2.1988
 - Number of Hidden Units: [10, 1000]
 - => Optimal value = 768
- ▶ Testing accuracy: FSDD $(N=40 \times 10)$
- => test accuracy: 94% increased to 97.75%
- Evaluation dataset: Student (N=5 x 10)
- => test accuracy: 40% increased to 42%

DCNN Architecteur and Parameters

No	Layer Type	Output Size	Filter Size / Stride
1.	INPUT IMAGE	40×81×1	
2.	CONV	40×81×12	5×5;K = 12
3.	BN	40×81×12	
4.	ACT (ReLU)	40×81×12	
5.	POOL	20×41×12	F=3, S=2
6.	CONV	20×41×24	3x3;K = 24
7.	BN	20×41×24	
8.	ACT (ReLU)	20×41×24	
9.	POOL	10×21×24	F=3, S=2
10.	CONV	10×21×48	3x3;K = 48
11.	BN	10×21×48	
12.	ACT (ReLU)	10×21×48	
13.	POOL	5×11×48	F=3, S=2
14.	CONV	5×11×48	3x3;K = 48
15.	BN	5×11×48	
16.	ACT (ReLU)	5×11×48	
17.	CONV	5×11×48	3x3;K = 48
18.	BN	5×11×48	
19.	ACT (ReLU)	5×11×48	
20.	POOL	4×10×48	F=2, S=1
21.	DO	4×10×48	dropoutProb = 0.2
22.	FC	1x1x10	
23.	SOFTMAX	1x1x10	
24.	Class Output	1x1x1	

DCNN Training on FSDD Dataset

DCNN Testing on FSDD Dataset

DCNN Classification | FSDD Testing Dataset

2.5%
5.0%
5.0%
2.5%
2.5%

100.0%	100.0%	95.2%	97.4%	95.2%	100.0%	100.0%	97.6%	97.6%	100.0%
		4.8%	2.6%	4.8%			2.4%	2.4%	
0	1	2	3	4	5	6	7	8	9
			Predicted Class						

DCNN Evaluation on Student Spoken Digits => 86%

DCNN Classification | Student Recorded Digits

100.0%	
80.0%	20.0%
80.0%	20.0%
60.0%	40.0%
100.0%	
80.0%	20.0%
100.0%	
60.0%	40.0%
100.0%	
100.0%	

100.0%	66.7%	66.7%	100.0%	100.0%	80.0%	83.3%	100.0%	100.0%	83.3%
	33.3%	33.3%			20.0%	16.7%			16.7%
0	1	2	3	4	5	6	7	8	9

Predicted Class

DCNN Evaluation on Student Spoken Digits

- ▶ **Testing dataset**: FSDD (N=40 x 10) => test accuracy= 98%
- **Evaluation dataset**: Student $(N=5 \times 10) = > test accuracy = 86\%$
- DCNN classifies FSDD dataset with a slightly higher accuracy of 98%.
- Its strength is revealed when it can improve the classification accuracy for student spoken digits from 40% to 86%. This means that not only DCNN is stronger than other networks.

References

- https://www.mathworks.com/help/audio/examples/spo ken-digit-recognition-with-wavelet-scattering-anddeep-learning.html
- 2. Free Spoken Digit Dataset (FSDD), available at https://github.com/Jakobovski/free-spoken-digit-dataset
- https://www.mathworks.com/videos/series/understanding-wavelets-121287.html
- 4. https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python
- 5. https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://en.wikipedia.org/wiki/Bayesian_optimization#:~: text=Bayesian%20optimization%20is%20a%20sequential, expensive%2Dto%2Devaluate%20functions.

Thanks for your attention

Questions are welcome