Uma Abordagem de Monitoramento dos Sinais Motores da Doença de Parkinson Baseada em Jogos Eletrônicos Defesa de Tese

Aluno: Leonardo Melo de Medeiros

Orientador: Leandro Dias da Silva Orientador: Hyggo Oliveira de Almeida Universidade Federal de Campina Grande - UFCG

23 de Maio de 2016

Roteiro

Introdução

Estudo de Caso

Abordagem JOGUE-ME

Experimentos

GQM

Finalização

•0000 0000 Motivaçã

Introdução

Sistemas de Monitoramento de Saúde

A concepção de um sistema não invasivo de monitoramento é um grande desafio [Alemdar *et al.* , 2015].

0€000 0000 Motivação

Introdução

Aplicações dos Sistemas de Monitoramento da Saúde (SMS)

Atualmente, os Sistemas de Monitoramento da Saúde (SMS) permitem ao médico:

► Tratar preventivamente e pró-ativamente o estado de saúde [Mobyen Uddin Ahmed & Loutfi, 2013]; Introdução

Aplicações dos Sistemas de Monitoramento da Saúde (SMS)

Atualmente, os Sistemas de Monitoramento da Saúde (SMS) permitem ao médico:

- ► Tratar preventivamente e pró-ativamente o estado de saúde [Mobyen Uddin Ahmed & Loutfi, 2013];
- ► Reabilitar o paciente [Graziadio et al., 2014];

Introdução

Aplicações dos Sistemas de Monitoramento da Saúde (SMS)

Atualmente, os Sistemas de Monitoramento da Saúde (SMS) permitem ao médico:

- ► Tratar preventivamente e pró-ativamente o estado de saúde [Mobyen Uddin Ahmed & Loutfi, 2013];
- ► Reabilitar o paciente [Graziadio et al., 2014];
- ▶ Melhorar a qualidade de vida [Chen et al., 2014].

Introdução 00∙00 ___

Estratégias de Monitoramento da Saúde

Motivação

Introdução ○○○●○

SMS da Saúde Motora

Atualmente, os SMS da saúde motora permitem:

 quantificar as habilidades motoras dos usuários [Friedman et al., 2014, Patel et al., 2009]; Motivação

Introdução

SMS da Saúde Motora

Atualmente, os SMS da saúde motora permitem:

- quantificar as habilidades motoras dos usuários [Friedman et al., 2014, Patel et al., 2009];
- analisar a marcha dos usuários [Liao et al., 2014]

Introdução

SMS da Saúde Motora

Atualmente, os SMS da saúde motora permitem:

- quantificar as habilidades motoras dos usuários [Friedman et al., 2014, Patel et al., 2009];
- analisar a marcha dos usuários [Liao et al., 2014]
- ▶ identificar sinais de bradicinesia (lentidão dos movimentos) presente no Parkinson [Zwartjes et al., 2010].

Introdução

Abordagem Proposta

Nesta Tese, propomos monitorar a saúde de uma forma não invasiva usando jogos eletrônicos.

Jogos Aplicados à Saúde

Nos últimos anos, houve o surgimento de jogos para apoiar a prática de atividade física. Como por exemplo:

 Melhoria da saúde do idoso com: visado a reabilitação motora dos idosos [Graziadio et al., 2014];

Introdução

Jogos Aplicados à Saúde

Nos últimos anos, houve o surgimento de jogos para apoiar a prática de atividade física. Como por exemplo:

- Melhoria da saúde do idoso com: visado a reabilitação motora dos idosos [Graziadio et al., 2014];
- Jogos com sensores hápticos para quantificar a habilidade motora do paciente com Parkinson [Atkinson & Narasimhan, 2010];

Introdução

Jogos Aplicados à Saúde

Nos últimos anos, houve o surgimento de jogos para apoiar a prática de atividade física. Como por exemplo:

- Melhoria da saúde do idoso com: visado a reabilitação motora dos idosos [Graziadio et al., 2014];
- Jogos com sensores hápticos para quantificar a habilidade motora do paciente com Parkinson [Atkinson & Narasimhan, 2010];
- ▶ Jogos para o monitoramento dos sinais vitais(Batimento cardíaco) [Sinclair et al., 2009].

Motivação para uso de jogos para monitoramento dos dados motores

 Percentual expressivo de adultos e idosos que usam jogos em sua rotina diária (27% acima dos 50 anos [ESA, 2015]);

Introdução

Motivação para uso de jogos para monitoramento dos dados motores

- ▶ Percentual expressivo de adultos e idosos que usam jogos em sua rotina diária (27% acima dos 50 anos [ESA, 2015]);
- ► As tecnologias de sensores de movimento presentes nos jogos eletrônicos;

Introdução

Motivação para uso de jogos para monitoramento dos dados motores

- ▶ Percentual expressivo de adultos e idosos que usam jogos em sua rotina diária (27% acima dos 50 anos [ESA, 2015]);
- ▶ As tecnologias de sensores de movimento presentes nos jogos eletrônicos;
- Reprodução de movimentos específicos em um ambiente lúdico.

Introdução

Motivação para uso de jogos para monitoramento dos dados motores

- Percentual expressivo de adultos e idosos que usam jogos em sua rotina diária (27% acima dos 50 anos [ESA, 2015]);
- ► As tecnologias de sensores de movimento presentes nos jogos eletrônicos;
- Reprodução de movimentos específicos em um ambiente lúdico.

Monitorar os sinais em permite um melhor gerenciamento da doença e, por consequência, uma melhora na qualidade de vida.

Objetivo Principal

Conceber um SMS embutido num jogo eletrônico para motivar e abstrair o monitoramento dos sinais motores de uma maneira não invasiva.

Etapas do Trabalho

A da metodologia deste trabalho consistiu de três etapas sequenciais:

ETAPA 1 Quais os benefícios de acompanhar os sinais motores do paciente diariamente, do ponto de vista do profissional da saúde?

0000

Etapas do Trabalho

A da metodologia deste trabalho consistiu de três etapas sequenciais:

- ETAPA 1 Quais os benefícios de acompanhar os sinais motores do paciente diariamente, do ponto de vista do profissional da saúde?
- ETAPA 2 Como melhor adquirir e quantificar sinais motores utilizando sensores de movimento para monitorar os sinais do Parkinson?

Introdução ○○○○ ○○○●

Etapas do Trabalho

A da metodologia deste trabalho consistiu de três etapas sequenciais:

- ETAPA 1 Quais os benefícios de acompanhar os sinais motores do paciente diariamente, do ponto de vista do profissional da saúde?
- ETAPA 2 Como melhor adquirir e quantificar sinais motores utilizando sensores de movimento para monitorar os sinais do Parkinson?
- ETAPA 3 Na perspectiva dos usuários, a abordagem de quantificar os sinais motores é considerada não-invasiva e aplicável à rotina diária?

Parkinson

Estudo de Caso

Doença de Parkinson

Como estudo de caso, escolhemos Parkinson por ser uma doença neurodegenerativa crônica, progressiva e com causa desconhecida.

- Comum em idosos;
- Existem casos precoces em indivíduos antes dos 40 anos.

Doença de Parkinson (Parkinson)

O Parkinson é uma afecção do sistema nervoso central, a qual é expressa de forma crônica e progressiva.

► Causada pela morte dos neurônios produtores de dopamina da substância negra [Picon *et al.*, 2010].

Doença de Parkinson (Parkinson)

O Parkinson é uma afecção do sistema nervoso central, a qual é expressa de forma crônica e progressiva.

- ► Causada pela morte dos neurônios produtores de dopamina da substância negra [Picon *et al.*, 2010].
- Caracterizada pelos sinais cardinais de rigidez, bradicinesia, tremor e instabilidade postural [Jankovic, 2008].

Parkinson

Doença de Parkinson

Bradicinesia

► Enquanto que o sintoma de tremor é o mais visível do Parkinson, a bradicinesia é o sintoma motor mais incapacitante. Parkinson

Doença de Parkinson

Bradicinesia

- Enquanto que o sintoma de tremor é o mais visível do Parkinson, a bradicinesia é o sintoma motor mais incapacitante.
- a bradicinesia é acompanhada de: rigidez dos músculos, assimetria dos movimentos entre os membros e dificuldade nos movimentos.

Estágios da Doença

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala contém itens referentes a:

► Mental, comportamento e humor;

Parkinson

Estágios da Doença

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala contém itens referentes a:

- Mental, comportamento e humor;
- atividades da vida diária;

Parkinson

Estágios da Doença

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala contém itens referentes a:

- Mental, comportamento e humor;
- atividades da vida diária;
- exame motor;

Estágios da Doença

Escala Unificada de Avaliação da Doença de Parkinson (UPDRS)

A escala contém itens referentes a:

- Mental, comportamento e humor;
- atividades da vida diária;
- exame motor;
- complicações no tratamento.

Parkinson

Escala (UPDRS)

Fenômeno (On/Off)

Disease Data Form

Entrevista Semi-Estruturada com Profissionais de Saúde

Objetivo da Pesquisa

O objetivo da entrevista semiestruturada foi entender como é feito o acompanhamento do paciente com sintomatologia do Parkinson, juntamente aos profissionais de saúde.

Participantes

LEGENDA	PROFISSÃO	EXPERIÊNCIA (ANOS)
FIS_01	Fisioterapeuta	10
FIS_02	Fisioterapeuta	10
NEU_01	Neurologista	15
NEU_02	Neurologista	30

Entrevista

Resultado da Entrevista

ldentificamos a importância de monitorar a bradicinesia para acompanhar a evolução do Parkinson.

Resultado da Entrevista

- ▶ Identificamos a importância de monitorar a bradicinesia para acompanhar a evolução do Parkinson.
- Os profissionais de saúde informaram da importância de calcular:

Resultado da Entrevista

- ldentificamos a importância de monitorar a bradicinesia para acompanhar a evolução do Parkinson.
- Os profissionais de saúde informaram da importância de calcular:
 - 1. amplitude dos movimentos de abdução e adução dos braços;

Resultado da Entrevista

- ▶ Identificamos a importância de monitorar a bradicinesia para acompanhar a evolução do Parkinson.
- Os profissionais de saúde informaram da importância de calcular:
 - 1. amplitude dos movimentos de abdução e adução dos braços;
 - 2. a velocidade angular desse movimento.

Abordagem JOGUE-ME

A abordagem **JOGUE-ME** faz uso de jogos eletrônicos como interface de aquisição de sinais, tornando os usuários mais motivados a fornecer seus dados motores, em comparação ao uso dos dispositivos vestíveis.

Este trabalho pretende usar um ambiente de jogo para a execução de movimentos específicos com o propósito de quantificar os sinais motores dos usuários e consequentemente realizar o monitoramento.

Visão Geral da Abordagem JOGUE-ME

JOGUE-ME - Jogo com Monitoramento de Saúde Embutido

▶ **REQ-JOGUE-ME-01** - Pontuação e Taxa de Acerto;

- ▶ **REQ-JOGUE-ME-01** Pontuação e Taxa de Acerto;
- REQ-JOGUE-ME-02 Progresso e Evolução do Jogador e dos Desafios;

- ▶ **REQ-JOGUE-ME-01** Pontuação e Taxa de Acerto;
- REQ-JOGUE-ME-02 Progresso e Evolução do Jogador e dos Desafios;
- ▶ **REQ-JOGUE-ME-03** Estado de Fluxo:

- ▶ REQ-JOGUE-ME-01 Pontuação e Taxa de Acerto;
- REQ-JOGUE-ME-02 Progresso e Evolução do Jogador e dos Desafios;
- REQ-JOGUE-ME-03 Estado de Fluxo;
- REQ-JOGUE-ME-04 Preocupação com Integridade Física do Jogador;

- ▶ REQ-JOGUE-ME-01 Pontuação e Taxa de Acerto;
- REQ-JOGUE-ME-02 Progresso e Evolução do Jogador e dos Desafios;
- ▶ REQ-JOGUE-ME-03 Estado de Fluxo;
- REQ-JOGUE-ME-04 Preocupação com Integridade Física do Jogador;
- REQ-JOGUE-ME-05 Aquisição e Armazenamento de Sinais Motoress;

- ▶ **REQ-JOGUE-ME-01** Pontuação e Taxa de Acerto;
- REQ-JOGUE-ME-02 Progresso e Evolução do Jogador e dos Desafios;
- ▶ REQ-JOGUE-ME-03 Estado de Fluxo;
- REQ-JOGUE-ME-04 Preocupação com Integridade Física do Jogador;
- ▶ REQ-JOGUE-ME-05 Aquisição e Armazenamento de Sinais Motoress;
- ▶ REQ-JOGUE-ME-06 Mecanismo de Identificação de Sintomas Motores;

- ▶ REQ-JOGUE-ME-01 Pontuação e Taxa de Acerto;
- REQ-JOGUE-ME-02 Progresso e Evolução do Jogador e dos Desafios;
- REQ-JOGUE-ME-03 Estado de Fluxo;
- REQ-JOGUE-ME-04 Preocupação com Integridade Física do Jogador;
- REQ-JOGUE-ME-05 Aquisição e Armazenamento de Sinais Motoress;
- ▶ REQ-JOGUE-ME-06 Mecanismo de Identificação de Sintomas Motores;
- ► REQ-JOGUE-ME-07 Mecanismo de Visualização.

Processamento dos Sinais Biomecânicos

Cinemetria

► A Cinemetria consiste de um conjunto de métodos para medir os valores dos parâmetros cinemáticos;

Cinemetria

- ▶ A Cinemetria consiste de um conjunto de métodos para medir os valores dos parâmetros cinemáticos;
- Movimento Cinético é o estudo das forças e momentos que resultam no movimento do corpo e seus segmentos.

Sensor de Captura de Movimentos

Ms-Kinnect 1.0 e os Pontos Selecionados

Movimento Angular

Movimento de Abdução e Adução do Braço [McGinnis, 2013]

Mecanismo de Identificação de Sintomas Motores

Velocidade Angular do Movimento de Abdução e Adução

Filtragem de Dados: Remoção de Ciclos Incompletos

Classificador de Dados

Classificador de Dados

O classificador de dados, é utilizado para identificar possíveis usuários com problemas motores.

Máquina de Vetor de Suporte (SVM)

- Uma SVM utiliza vetores de separação através de uma técnica de hiperplano de separação ótima.
- Formalmente, classificadores que separam os dados por meio de um hiperplano utilizam um discriminante linear 1.

$$f(x) = w^T x + b \tag{1}$$

Estudo Analítico de Caso-Controle: Identificação da Bradicinesia

Objetivo da Pesquisa

Como melhor adquirir e quantificar sinais motores utilizando sensores de movimento para monitorar os sinais do Parkinson?

Estudo Analítico de Caso-Controle: Identificação da Bradicinesia

Objetivo da Pesquisa

Como melhor adquirir e quantificar sinais motores utilizando sensores de movimento para monitorar os sinais do Parkinson?

Coleta de Dados

- Protocolo de pesquisa submetido aprovado junto ao CEP da UFCG (CAAE: 14408213.9.1001.5182)
- Coleta realizada nas instituições:
 - 1. Hospital Universitário da UFAL;
 - 2. Fundação Pestalozzi;
 - 3. Clínica Fisioterapia do CESMAC;

Finalizaçã 00 0

Caso-Controle

Amostra

A técnica de amostragem utilizada para seleção, foi por conveniência, composta por:

Amostra

- A técnica de amostragem utilizada para seleção, foi por conveniência, composta por:
 - 1. 15 indivíduos portadores do Parkinson entre 51 e 65 anos (média de idade : 58 anos);

Amostra

- A técnica de amostragem utilizada para seleção, foi por conveniência, composta por:
 - 1. 15 indivíduos portadores do Parkinson entre 51 e 65 anos (média de idade : 58 anos);
 - 2. 15 sem o diagnostico, como grupo controle entre 50 e 65 anos (média : 57 anos).

Amostra

- A técnica de amostragem utilizada para seleção, foi por conveniência, composta por:
 - 1. 15 indivíduos portadores do Parkinson entre 51 e 65 anos (média de idade : 58 anos);
 - 2. 15 sem o diagnostico, como grupo controle entre 50 e 65 anos (média : 57 anos).
- No grupo de portadores do Parkinson, foram inclusos indivíduos até o Estágio 3 (Doença bilateral leve a moderada com alguma instabilidade postural e capacidade para viver independente), segundo a UPDRS.

Coleta dos Dados Utilizando o Jogo: Catch the Spheres

Processo de Coleta de Dados

 Voluntário se posiciona a 2m. do sensor de movimento;

Processo de Coleta de Dados

- Voluntário se posiciona a 2m. do sensor de movimento;
- Voluntário inicia o jogo;

Processo de Coleta de Dados

- Voluntário se posiciona a 2m. do sensor de movimento;
- Voluntário inicia o jogo;
- Voluntário abduz e aduz o braço esquerdo, e depois o direito 10 vezes o mais amplo e rápido possível;

Processo de Coleta de Dados

- Voluntário se posiciona a 2m. do sensor de movimento;
- Voluntário inicia o jogo;
- Voluntário abduz e aduz o braço esquerdo, e depois o direito 10 vezes o mais amplo e rápido possível;
- Voluntário fecha o jogo.

Classificação dos Dados

► Com os dados coletados, realizou-se uma classificação usando SVM com núcleo linear e *bias* de 0,10.

- ► Com os dados coletados, realizou-se uma classificação usando SVM com núcleo linear e *bias* de 0,10.
- O resultado com o núcleo linear foi o mais expressivo ante o Polinomial, Radial e MLP.

Definição dos Parâmetros

Aplicação do Método de Grid-Search

Para identificar os melhores parâmetros da SVM, foi aplicado o método *Grid-Search* [Li *et al.* , 2010] usando validação cruzada *Leave-One-Out* (LOOCV) [Kantardzic, 2011].

Grid-Search - Acurácia da Classificação

Grid-Search - FpRate

Classificação dos Dados

Matriz de Confusão

Resultado da Matriz de Confusão do Estudo Analítico Caso-Controle Usando SVM Linear

	Classe Preditiva		
	Parkinson	Controle	
Parkinson	12	3	
Controle	1	14	

Métricas da Classificação

Métricas	
TpRate	80,00%
FpRate	6,67%
Precision	92,31%
Accuracy	86,67%
F-Measure	85,71%

TpRate: taxa de acerto obtido;

FpRate: taxa de falso alarme obtido;

Precision : taxa de acerto de uma instância em determinada

classe;

40 / 52

Limitaçõe

Limitações do Método

A aprendizagem estatística deste trabalho é apenas um indicador e necessita da interpretação do profissional de saúde.

Limitaçõe

Outros Experimentos

Uso de Jogo em Smartphone Para Detecção de Tremor

Insucesso na Quantificação do Tremor

► Tremor do Parkinson é de repouso;

Limitações

Outros Experimentos

Uso de Jogo em Smartphone Para Detecção de Tremor

Insucesso na Quantificação do Tremor

- ► Tremor do Parkinson é de repouso;
- Indivíduos quando utilizavam o jogo reduziam drasticamente o sintoma;

Limitações de la companya de la comp

Outros Experimentos

Uso de Jogo em Smartphone Para Detecção de Tremor

Insucesso na Quantificação do Tremor

- ► Tremor do Parkinson é de repouso;
- Indivíduos quando utilizavam o jogo reduziam drasticamente o sintoma;
- Como os dados não seriam satisfatórios, logo a coleta tornou-se inviável.

Análise GQM com Usuários

Objetivo da Pesquisa

Etapa 3 da Pesquisa: Na perspectiva dos usuários, a abordagem de quantificar os sinais motores é considerada não-invasiva e aplicável à rotina diária?

Participantes

Nessa etapa da pesquisa foram avaliados 30 sujeitos, dos seguintes locais:

- Hospital Universitário da UFAL;
- Fundação Pestalozzi;
- Clínica de Fisioterapia do CESMAC.

Questões da Pesquisa

- 1. O usuário poderia integrar a abordagem JOGUE-ME à sua rotina diária ?
- 2. A segurança com a integridade física está de acordo com a faixa etária do usuário ?

Integrar a Abordagem à Rotina Diária

Métrica 1.1: Escala de Diversão do Jogo

Integrar a Abordagem à Rotina Diária

Métrica 1.3: Integrar o Jogo À Rotina Diária

Integrar a Abordagem à Rotina Diária

Métrica	Sim	Não
1.2: O jogo traz motivação ao usuário?		8,33%
1.4: O usuário considera o jogo simples, sem muitas regras		8,33%
e de fácil entendimento? Ele pode ser aplicado em diferen-		
tes idades?		
1.5: O usuário tem o costume de jogar esses jogos casuais	41,67%	58,33%
em casa?		
1.6: O usuário agregaria um jogo desse estilo em sua rotina	75%	25%
diária?		

Segurança à Integridade Física

Métrica 2.4: Faixa Etária do Jogo

Segurança à Integridade Física

Métrica	Sim	Não
2.1: Uma criança estaria segura jogando esse jogo, ao efe-		0%
tuar os movimentos dos braços?		
2.2: Um adulto estaria seguro ao jogar esse jogo, ao efetuar		0%
os movimentos dos braços?		
2.3: Um idoso estaria seguro ao jogar esse jogo, ao efetuar		25%
os movimentos dos braços?		

Conclusão e Trabalhos Futuros

Conclusão

Nos experimentos realizados, conseguimos demonstrar:

- ► A importância do acompanhamento dos sinais motores integrados à rotina diária do paciente;
- ► A viabilidade do desenvolvimento de jogos para o monitoramento, pois, obtivemos uma taxa de acurácia de 86,67% e falsos positivos de 6,67%.
- ▶ Um percentual de 83% dos usuários integrariam a a solução de monitoramento proposta em sua rotina diária.

Trabalhos Futuros

A partir dos resultados apresentados nesta tese e extensão da mesma, alguns trabalhos futuros são propostos para contribuição científica:

- Coletar uma amostra maior de pacientes com Parkinson, e agrupá-los de acordo com o estágio da doença [Goulart & Pereira, 2005];
- Usar técnicas de multi-classificação de dados [Chamasemani & Singh, 2011] para identificar o progresso do dp de acordo com as escalas de avaliação;
- Avaliar o sinal da bradicinesia em diferentes momentos do dia, para verificar a eficácia do tratamento medicamentoso [Picon et al., 2010].

Publicações

Publicações

Foram publicados três artigos, em conferências internacionais, relacionados à tese:

- Abstract: Monitoring Parkinson related Gait Disorders with Eigengaits, no, XX World Congress on Parkinson's Disease and Related Disorders (2013) [Medeiros et al., 2013];
- ► Full Paper: A Game-Based Approach to Monitor Parkinson's Disease: The bradykinesia symptom classification, no, International Symposium on Computer-Based Medical Systems (CBMS 2016) [Medeiros et al., 2016b];
- ► Full Paper: A Gait Analysis Approach to Track Parkinson's Disease Evolution Using Principal Component Analysis, no, International Symposium on Computer-Based Medical Systems (CBMS 2016) [Medeiros et al., 2016a].

DÚVIDAS ?

Alemdar, Hande, Tunca, Can, & Ersoy, Cem. 2015.

Daily life behaviour monitoring for health assessment using machine learning: Bridging the gap between domains. Personal ubiquitous computing.

Atkinson, S.D., & Narasimhan, V.L. 2010.

Design of an introductory medical gaming environment for diagnosis and management of parkinson's disease.

In: Trendz in information sciences computing.

Chamasemani, F. F., & Singh, Y. P. 2011.

Multi-class support vector machine (svm) classifiers - an application in hypothyroid detection and classification.

In: Sixth international conference on bio-inspired computing: Theories and applications. IFFF.

Chen, Huan, Liao, Guo-Tan, Fan, Yao-Chung, Cheng, Bo-Chao, Chen, Cheng-Min, & Kuo, Ting-Chun. 2014.

Design and implementation of a personal health monitoring system with an effective sym-based pvc detection algorithm in cardiology.

In: Symposium on applied computing. ACM.

ESA. 2015.

Essential facts about the u.s. computer and video game industry: Sales, demophahy and usage data.

Friedman, N., Rowe, J.B., Reinkensmeyer, D.J., & Bachman, M. 2014.

The manumeter: A wearable device for monitoring daily use of the wrist and fingers.

leee journal of biomedical and health informatics.

Goulart, Fátima, & Pereira, Luciana Xavier. 2005.

Uso de escalas para avaliação da doença de parkinson em fisioterapia.

Fisioterapia e pesquisa.

Graziadio, S., Davison, R., Shalabi, K., Sahota, K. M. A., Ushaw, G., Morgan, G., & Eyre, J. A. 2014.

Bespoke video games to provide early response markers to identify the optimal strategies for maximizing rehabilitation.

In: Proceedings of the 29th annual acm symposium on applied computing.

ACM.

Jankovic, J. 2008.

Parkinson's disease: clinical features and diagnosis.

Journal of neurology, neurosurgery & psychiatry.

Kantardzic, M. 2011.

Data mining: Concepts, models, methods, and algorithms. 2nd edn.

Piscataway, NJ, USA: John Wiley & Sons.

Li, Cheng-Hsuan, Lin, Chin-Teng, Kuo, Bor-Chen, & Ho, H.-H. 2010.

An automatic method for selecting the parameter of the normalized kernel function to support vector machines.

In: International conference on technologies and applications of artificial intelligence.

IFFF.

Liao, Chien-Ke, Lim, Chung Dial, Cheng, Ching-Ying, Huang, Cheng-Ming, & Fu, Li-Chen. 2014.

Vision based gait analysis on robotic walking stabilization system for patients with parkinson's disease.

In: International conference on automation science and engineering (case).

McGinnis. Peter. 2013.

Biomechanics of sport and exercise.

Human Kinetics.

Medeiros, Leonardo, Fischer, Robert, Almeida, Hyggo, Silva, Leandro, & Perkusich, Angelo. 2013.

Monitoring parkinson related gait disorders with eigengaits.

In: Xx world congress on parkinson's disease and related disorders.

Keynes International.

Medeiros, Leonardo, Almeida, Hyggo, Silva, Leandro, Perkusich, Mirko, & Fischer, Robert. 2016a.

A gait analysis approach to track parkinson's disease evolution using principal component analysis.

In: The 29th international symposium on computer-based medical systems (cbms 2016).
IEEE.

Medeiros, Leonardo, Almeida, Hyggo, Silva, Leandro, Perkusich, Mirko, & Fischer, Robert. 2016b.

A game-based approach to monitor parkinson's disease: The bradykinesia.

In: The 29th international symposium on computer-based medical systems (cbms 2016).

Mobyen Uddin Ahmed, Hadi Banaee, & Loutfi, Amy. 2013. Health monitoring for elderly: An application using case-based reasoning and cluster analysis.

Isrn artificial intelligence.

Monitoring motor fluctuations in patients with parkinson's disease using wearable sensors.

IEEE transactions on information technology in biomedicine.

Picon, Paulo, Gadelha, Maria, & Beltrame, Alberto. 2010. Protocolo clínico e diretrizes terapêutica - doença de parkinson.

Ministério da Saúde.

Sinclair, Jeff, Hingston, Philip, Masek, Martin, & Nosaka, Kazunori (Ken). 2009.

Using a virtual body to aid in exergaming system development.

leee computer graphics applications.

Zwartjes, D.G.M., Heida, T., van Vugt, J.P.P., Geelen, J.A.G., & Veltink, P.H. 2010.

Ambulatory monitoring of activities and motor symptoms in parkinson's disease.

leee transactions on biomedical engineering.