

基于DMSO作为合成子的[3+2] 环加成反应构筑中氮茚化合物

Undergraduate Dissertation Defense

答辩人 : 何建新

指导教师: 舒文明

答辩时间: 2019年6月6日

内容提要

■课题背景概述

■实验方案设计

■研究小结与展望

中氮茚的应用与合成

■ 药物领域: 抗菌、抗惊厥、促食等

■ 材料领域: 发光材料, 荧光探针等

Org. Biomol. Chem. 2016, 14, 7804

Solvent	Health Score	Reactivity Score	Life Cycle Score
DMSO	7	2	6
DMF	2	9	7
NMF	2	10	7
NMP	3	8	4
DMA	2	8	2
ACN	6	10	3

Dipolar Aprotic Solvents

Green Chem., 2011, 13, 854-862

DMSO作合成子的应用

Synthesis., **2016**, 48, 1421-1436

■ DMSO 是一种稳定溶剂,温和氧化剂,安全性高,绿色环保!

本课题方案设计

Org. Lett. 2017, 19, 4948

THIS WORK

Ph

■ 设计亮点:

- □ 首次提出以DMSO为次甲基碳源,构筑五元芳环
- □ 选择了无过渡金属催化的条件,绿色环保
- □ 在尝试反应阶段,我们得到了预期产物

条件优化

Entry	Additive	Oxidant	Temp (°C)	Yield (%)
1	-	$K_2S_2O_8$	130	71
2	-	$Na_2S_2O_8$	130	66
3	-	$(NH_4)_2S_2O_8$	130	59
4	-	Oxone	130	60
5	TfOH	$K_2S_2O_8$	130	78
6	MsOH	$K_2S_2O_8$	130	45
7	$TsOH \cdot H_2O$	$K_2S_2O_8$	130	17
8	HC1	$K_2S_2O_8$	130	26
9	H2SO4	$K_2S_2O_8$	130	30
10	TFA	$K_2S_2O_8$	130	83
11	TFA	-	130	0
12	TFA	$K_2S_2O_8$	120	80
13	TFA	$K_2S_2O_8$	140	78

	-	100 0,011	U
Entry	Ar	Product	Yield (%) ^b
1	Ph	3a	83
2	$4-MeC_6H_4$	3b	72
3	$3-MeOC_6H_4$	3c	82
4	$4-MeOC_6H_4$	3d	65
5	$3,4-(MeO)_2C_6H_3$	3e	76
6	$3,4-(OCH_2O) C_6H_3$	3f	87
7	$2-ClC_6H_4$	3g	70
8	$4-ClC_6H_4$	3h	91
9	$2,4-\text{Cl}_2\text{C}_6\text{H}_3$	3i	92
10	$3,4-\text{Cl}_2\text{C}_6\text{H}_3$	3j	83
11	$3-BrC_6H_4$	3k	81
12	$4-BrC_6H_4$	31	76
13	2-furyl	3m	82
14	2-thienyl	3n	75
15	1-naphthyl	30	86
16	2-naphthyl	3p	78

.

底物拓展

4b, 0%

4c, 58%

4f, 74%

机理探讨

机理探讨

研究小结

综上,我们成功发展了一种中氮茚骨架的构筑方法,其:

- 经条件优化,广泛底物拓展得中氮茚化合物 20 个,每个产物均经过红外,高分辨质谱,熔点,核磁氢谱,碳谱测试。证明此方法广谱性较好,有较好的推广潜力。
- 在课题相关工作中,参与发表三篇SCI论文,其中一篇与此工作密切相关J. Org. Chem. **2019**, 84, 2962

展望

此项工作还值得我们进一步思考:

- 吡啶基上的取代基效应值得进一步研究
- 关于反应机理的细节可进行动力学分析
- 关于此类型的中氮茚药理活性,荧光性能的可继续研究

Xangtze University

致谢

- •感谢化工系各老师四年的陪伴!
- •感谢指导老师三年的教诲!
- •感谢各位同学四年的支持!

