Chapter 24 Espaces vectoriels

Exercice 1 (24.1)

On considère dans \mathbb{K}^3 les vecteurs

$$u = (1, 0, 0);$$
 $v = (1, 1, 0);$ $w = (1, 1, 1);$ $g = (\alpha, \beta, \gamma).$

où α , β , γ sont des scalaires quelconques.

- 1. g est-il combinaison linéaire de u, v, w?
- **2.** g est-il combinaison linéaire de v et de w?

Solution 1 (24.1)

Exercice 2 (24.1)

Déterminer $\alpha \in \mathbb{R}$ pour que le vecteur $x = (7, \alpha, -6) \in \mathbb{R}^3$ soit une combinaison linéaire des vecteurs a = (2, -1, 3) et b = (1, 3, 7).

Solution 2 (24.1)

Le vecteur x est combinaison linéaire de a et b si, et seulement si il existe deux scalaires $s, t \in \mathbb{R}$ tels que x = sa + tb. Or

$$\exists s, t \in \mathbb{R}x = sa + tb \iff \exists s, t \in \mathbb{R}, \begin{pmatrix} 7 \\ \alpha \\ -6 \end{pmatrix} = s \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}$$

$$\iff \exists s, t \in \mathbb{R}, \begin{cases} 2s + t = 7 \\ -s + 3t = \alpha \\ 3s + 7t = -6 \end{cases}$$

$$\iff \exists s, t \in \mathbb{R}, \begin{cases} 2s + t = 7 \\ 3s + 7t = -6 \\ -s + 3t = \alpha \end{cases}$$

$$\iff \exists s, t \in \mathbb{R}, \begin{cases} 2s + t = 7 \\ 11t = -33 \\ -s + 3t = \alpha \end{cases}$$

$$\iff \exists s, t \in \mathbb{R}, \begin{cases} s = 5 \\ t = -3 \\ -s + 3t = \alpha \end{cases}$$

$$\iff \alpha = -5 - 9 = -14.$$

Conclusion

Le vecteur $x = (7, \alpha, -6)$ est combinaison linéaire de a = (2, -1, 3) et b = (1, 3, 7) si, et seulement si $\alpha = -14$.

Exercice 3 (24.1)

Montrer que le polynôme $Q \in \mathbb{R}[X]$, défini par $Q(X) = 7X^3 - 5X^2 + 11$ est combinaison linéaire des polynômes P_1, P_2, P_3, P_4 définis par

$$P_1(X) = X^3 + X^2 + X + 1$$
 $P_2(X) = X^2 + X + 1$ $P_3(X) = X + 1$ $P_4(X) = 1$

Solution 3 (24.1)

Pour $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$, on a

$$\begin{split} \alpha P_1 + \beta P_2 + \gamma P_3 + \delta P_4 &= Q \\ \iff \alpha X^3 + (\alpha + \beta) X^2 + (\alpha + \beta + \gamma) X + (\alpha + \beta + \gamma + \delta) &= 7X^3 - 5X^2 + 11 \\ \iff \begin{cases} \alpha &= 7 \\ \alpha + \beta &= -5 \\ \alpha + \beta + \gamma &= 0 \\ \alpha + \beta + \gamma + \delta &= 11 \end{cases} \\ \iff \alpha = 7 \text{ et } \beta = -12 \text{ et } \gamma = 5 \text{ et } \delta = 1. \end{split}$$

Conclusion

Le polynôme Q est combinaison linéaire de P_1 , P_2 , P_3 , P_4 car on a

$$Q = 7P_1 - 12P_2 + 5P_3 + P_4.$$

Exercice 4 (24.2)

Parmi les ensembles suivants, lesquels sont des sous-espace vectoriels de $E = \mathbb{R}^3$.

$$S_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \middle| z = y = 3x \right\}, \qquad S_{2} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \middle| z + y = 3x \right\},$$

$$S_{3} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \middle| zy = 3x \right\}, \qquad S_{4} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \middle| xyz = 0 \right\}.$$

Donner une démonstration ou un contre-exemple pour justifier votre réponse.

Solution 4 (24.2)

1. Avec la définition / caractérisation.

 S_1 est un sous-espace vectoriel de E. En effet, on a bien $0_E = (0,0,0)^T \in S_1$ (car $0 = 0 = 3 \cdot 0$).

Soit $\alpha \in \mathbb{R}$ et $u = (x, y, z)^T$, $v = (x', y', z')^T \in S_1$, on a

$$z = y = 3x \tag{1}$$

$$z' = y' = 3x' \tag{2}$$

(3)

$$u + v = (x + x', y + y', z + z')^T$$
 et $(z + z') = (y + y') = 3x + 3x' = 3(x + x')$.

Donc $u + v \in S_1$. De même,

$$\alpha u = (\alpha x, \alpha y, \alpha z)^T$$
 et $\alpha z = \alpha y = \alpha(3x) = 3(\alpha x)$.

donc $\alpha u \in S_1$.

Conclusion

 S_1 est un sous-espace vectoriel de \mathbb{R}^3 .

2ème méthode. En remarquant que

$$z = y = 3x \iff 3x - y = 0 \text{ et } y - z = 0.$$

On a donc $S_1 = \ker A$ où $A = \begin{pmatrix} 3 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$. S_1 est donc un sous-espace vectoriel de \mathbb{R}^3 .

3ème méthode. En écrivant S_1 sous la forme Vect $\{ \dots \}$

Soit $(x, y, z)^T \in \mathbb{R}^3$.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in S_1 \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ 3x \\ 3x \end{pmatrix} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}, x \in \mathbb{R}.$$

Ainsi S_1 est le sous-espace vectoriel engendré par le vecteur $(1,3,3)^T$; c'est donc un sous-espace vectoriel de E.

2. Avec la définition / caractérisation.

On a

$$S_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| z + y = 3x \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| 3x - y - z = 0 \right\}.$$

On a bien $0_E = (0, 0, 0)^T \in S_2 (\text{car } 3 \cdot 0 - 0 - 0 = 0).$

Soit $\alpha \in \mathbb{R}$ et $u = (x, y, z)^T$, $v = (x', y', z')^T \in S_2$, on a

$$3x - y - z = 0$$
 et $3x' - y' - z' = 0$. (4)

Or

$$u+v = (x+x', y+y', z+z')^T$$
 et $3(x+x')-(y+y')-(z+z') = (3x-y-z)+(3x'-y'-z') = 0+0=0$.

Donc $u + v \in S_2$. De même,

$$\alpha u = (\alpha x, \alpha y, \alpha z)^T$$
 et $3(\alpha x) - (\alpha y) - (\alpha z) = \alpha(3x - y - z) = \alpha 0 = 0$.

Donc $\alpha u \in S_2$.

Conclusion

 S_2 est un sous-espace vectoriel de \mathbb{R}^3 .

2ème méthode. S_2 est le noyau de la matrice $A = \begin{pmatrix} 3 & 1 & 1 \end{pmatrix}$: c'est donc un sous-espace vectoriel de \mathbb{R}^3 .

2ème méthode bis. On peut remarquer que S_2 est un plan passant par l'origine, c'est donc un plan vectoriel de \mathbb{R}^3 .

4ème méthode. On écrit S_2 comme Vect $\{(1,0,3)^T, (0,1,-1)^T\}$.

3. L'ensemble S_3 n'est pas un sous-espace vectoriel de E. Par exemple,

$$\begin{pmatrix} 1\\1\\3\\1 \end{pmatrix} \in S_3, \qquad \begin{pmatrix} 1\\3\\1 \end{pmatrix} \in S_3, \qquad \text{mais} \qquad \begin{pmatrix} 1\\1\\3\\1 \end{pmatrix} + \begin{pmatrix} 1\\3\\1 \end{pmatrix} = \begin{pmatrix} 2\\4\\4 \end{pmatrix} \notin S_3$$

puisque ce dernier vecteur ne vérifie par la condition zy = 3x.

4. L'ensemble S_4 n'est pas un sous-espace vectoriel de E. Par exemple $(1,1,0)^T \in S_4$, $(0,0,1)^T \in S_4$ leur somme $(1,1,1)^T \notin S_4$.

Géométriquement, S_4 est l'union du plan (Oxy) (d'équation z=0), du plan (Oxz) (d'équation y=0) et du plan (Oyz) (d'équation x=0.

Exercice 5 (24.2)

On considère les sous-ensembles de \mathbb{R}^5 suivants

$$F = \{ (x, y, z, t, w) \in \mathbb{R}^5 \mid x + y = z + t + w \}$$

et $G = \{ (x, y, z, t, w) \in \mathbb{R}^5 \mid x = y \text{ et } z = t = w \}.$

Vérifier que F et G sont des sous-espaces vectoriels de E, puis déterminer $F \cap G$.

Exercice 6 (24.2)

Dans l'espace vectoriel $E = \mathbb{R}^3$, on considère les sous-ensembles

$$F = \left\{ \left. (\lambda - 3\mu, 2\lambda + 3\mu, \lambda) \, \right| \, (\lambda, \mu) \in \mathbb{R}^2 \, \right\} \quad \text{et} \quad G = \left\{ \, (x, y, z) \in E \, \mid \, x + 2y = 0 \, \right\}.$$

- 1. Prouver que les ensembles F et G sont des sous-espaces vectoriels de E.
- **2.** Déterminer le sous-espace vectoriel $F \cap G$.

Exercice 7 (24.2)

Soit *A* une matrice (n, n) et $\lambda \in \mathbb{R}$ un scalaire fixé. Montrer que l'ensemble

$$S = \{ x \in \mathbb{R}^n \mid Ax = \lambda x \}$$

est un sous-espace vectoriel de \mathbb{R}^n .

Solution 7 (24.2)

 $0_{\mathbb{R}^n} \in S \text{ car } A0 = 0 = \lambda 0.$

Soit $x, y \in S$ et $\alpha \in \mathbb{R}$. Alors

$$A(x + y) = Ax + Ay = \lambda x + \lambda y = \lambda (x + y);$$

donc $x + y \in S$. De plus,

$$A(\alpha x) = \alpha(Ax) = \alpha(\lambda x) = \lambda(\alpha x);$$

ce qui prouve que $\alpha x \in S$.

Conclusion

S est un sous-espace vectoriel de \mathbb{R}^n .

2ème méthode. Pour $x \in \mathbb{R}^n$, on a

$$x \in S \iff Ax = \lambda x \iff Ax - \lambda x = 0$$
$$\iff Ax - \lambda I_n x = 0 \iff (A - \lambda I_n) x = 0 \iff x \in \ker (A - \lambda I_n).$$

L'ensemble S est donc le noyau de la matrice $A - \lambda I_n$; c'est donc un sous-espace vectoriel de \mathbb{R}^n .

Exercice 8 (24.2)

On se place dans le \mathbb{R} -espace vectoriel $\mathcal{M}_3(\mathbb{K})$.

- **1.** On dit qu'une matrice A de $\mathcal{M}_3(\mathbb{K})$ est *symétrique* lorsque $A^T = A$. Montrer que l'ensemble $\mathcal{S}_3(\mathbb{K})$ des matrices symétriques est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{K})$.
- **2.** On dit qu'une matrice A de $\mathcal{M}_3(\mathbb{K})$ est *antisymétrique* lorsque $A^T = -A$. Montrer que l'ensemble $\mathcal{A}_3(\mathbb{K})$ des matrices symétriques est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{K})$.

Solution 8 (24.2)

1. La matrice nulle (3,3), notée 0_3 est symétrique: $0_3^T = 0_3$. Soit $A, B \in \mathcal{S}_3(\mathbb{K})$ et $\alpha \in \mathbb{K}$. Alors

$$(A + B)^T = A^T + B^T = A + B$$
 et $(\alpha A)^T = \alpha A^T = \alpha A$.

On a donc $A + B \in \mathcal{S}_3(\mathbb{K})$ et $\alpha A \in \mathcal{S}_3(\mathbb{K})$.

Conclusion

L'ensemble $\mathcal{S}_3(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{K})$.

2. La matrice nulle (3,3), notée 0_3 est antisymétrique: $0_3^T = 0_3 = -0_3$. Soit $A, B \in \mathcal{A}_3(\mathbb{K})$ et $\alpha \in \mathbb{K}$. Alors

$$(A + B)^T = A^T + B^T = (-A) + (-B) = -(A + B)$$
 et $(\alpha A)^T = \alpha A^T = \alpha (-A) = -(\alpha A)$.

On a donc $A + B \in \mathcal{A}_3(\mathbb{K})$ et $\alpha A \in \mathcal{A}_3(\mathbb{K})$.

Conclusion

L'ensemble $\mathcal{A}_3(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{K})$.

Exercice 9 (24.2)

Démontrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathbb{K}[X]$.

1.
$$A = \{ P \in \mathbb{K}[X] \mid P(0) = P(1) \}.$$

2.
$$B = \{ P \in \mathbb{K}[X] \mid (X^2 + 1) \text{ divise } P \}.$$

3.
$$C = \{ a(X^3 - 3) + b(X^2 - 2) \mid (a, b) \in \mathbb{K}^2 \}.$$

Solution 9 (24.2)

Exercice 10 (24.2)

Soit $F = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions $\mathbb{R} \to \mathbb{R}$ muni de l'addition et la multiplication externe usuelle (point par point).

1. Parmi les ensembles suivant, lesquels sont des sous-espace vectoriel de F?

$$S_1 = \{ f \in F \mid f(0) = 1 \}, \qquad S_2 = \{ f \in F \mid f(1) = 0 \}.$$

2. Montrer que l'ensemble

$$S_3 = \{ f \in F \mid f \text{ est dérivable et } f' - f = 0 \}$$

est un sous-espace vectoriel de F.

Solution 10 (24.2)

Le vecteur nul de $F = \mathcal{F}(\mathbb{R}, \mathbb{R})$ est la fonction $\tilde{0} : \mathbb{R} \to \mathbb{R}, x \mapsto 0$.

- 1. S_1 n'est pas un sous-espace vectoriel de F. Pour le montrer, il suffit d'utiliser *un seul* des arguments suivants:
 - Puisque $\tilde{0}(0) = 0 \neq 1$, alors $\tilde{0} \notin S_1$: S_1 n'est donc pas un sous-espace vectoriel de F.
 - On a $\exp \in S_1$ et $\cos \in S_1$ et pourtant $(\exp + \cos)(0) = 1 + 1 = 2 \neq 1$, donc $\exp + \cos \notin S_1$. S_1 n'est donc pas un sous-espace vectoriel de F.
 - On a $\exp \in S_1$ mais $2 \exp \notin S_1$. S_1 n'est donc pas un sous-espace vectoriel de F.
- \star On a $\tilde{0}(1) = 0$ donc $\tilde{0} \in S_2$. De plus, si $f, g \in S_2$ et $\alpha \in \mathbb{R}$, on a

$$(f+g)(1) = f(1) + g(1) = 0 + 0 = 0;$$

donc $f + g \in S_2$. De plus,

$$(\alpha f)(1) = \alpha(f(1)) = \alpha \cdot 0 = 0;$$

donc $\alpha f \in S_2$.

Conclusion

L'espace S_2 est un sous-espace vectoriel de F.

2. La fonction nulle $\tilde{0}$ est dérivable et

$$\forall x \in \mathbb{R}, \tilde{0}'(x) - \tilde{0}(x) = 0 - 0 = 0$$
:

donc $\tilde{0} \in S_3$. Soit $f, g \in S_3$ et $\alpha \in \mathbb{R}$. L'application f + g est dérivable en tant que somme de fonctions dérivables et pour $x \in \mathbb{R}$,

$$(f+g)'(x) - (f+g)(x) = f'(x) + g'(x) - f(x) - g(x) = f'(x) - f(x) + g'(x) - g(x) = 0 + 0 = 0;$$

donc $f + g \in S_3$. Deplus,

$$(\alpha f)'(x) - (\alpha f)(x) = \alpha f'(x) - \alpha f(x) = \alpha \left(f'(x) - f(x) \right) = \alpha \cdot 0 = 0;$$

donc $\alpha f \in S_3$.

Conclusion

L'espace S_3 est un sous-espace vectoriel de F.

2ème méthode Les solutions de l'équation différentielle f'-f=0 sont les application de la forme

$$\mathbb{R} \to \mathbb{R} \quad \text{où} \quad \lambda \in \mathbb{R}.$$

$$x \mapsto \lambda e^x$$

Autrement dit,

$$S_3 = \{ \lambda \exp | \lambda \in \mathbb{R} \} = \text{Vect} \{ \exp \}.$$

 S_3 est donc la droite vectorielle engendré par la fonction exp : c'est donc un sous-espace vectoriel de F.

Exercice 11 (24.2)

Soit U et V deux sous-espace vectoriel d'un espace vectoriel E.

- **1.** Montrer que $U \cap V$ est un sous-espace vectoriel de E.
- **2.** Montrer que $U \cup V$ est un sous-espace vectoriel de E si, et seulement si $U \subset V$ ou $V \subset U$.
- **3.** Donner un exemple de sous-espace U et V de \mathbb{R}^3 qui illustre le fait que $U \cap V$ est un sous-espace vectoriel, mais que $U \cup V$ ne l'est pas.

Solution 11 (24.2)

1. U et V sont des sous-espace vectoriel de E, donc

$$0_E \in U$$
 et $0_E \in V$,

c'est-à-dire $0_E \in U \cap V$. Soit $x, y \in U \cap V$, $\alpha, \beta \in \mathbb{K}$.

Puisque U est un sous-espace vectoriel de E, il est stable par combinaison linéaire. On a donc $\alpha x + \beta y \in U$.

De même V est un sous-espace vectoriel de E, donc $\alpha x + \beta y \in V$. Finalement

$$\alpha x + \beta y \in U$$
 et $\alpha x + \beta y \in V$,

c'est-à-dire $\alpha x + \beta y \in U \cap V$.

Conclusion

 $U \cap V$ est un sous-espace vectoriel de E.

2. Si $U \subset V$, alors $U \cup V = V$ est un sous-espace vectoriel de E. De même si $V \subset U$, alors $U \cup V = U$ est un sous-espace vectoriel de E.

Réciproquement, on suppose que $U \cup V$ est un sous-espace vectoriel de E.

Supposons que $U \not\subset V$, nous allons alors montrer que $V \subset U$. Puisque $U \not\subset V$, il existe un vecteur x tel que

$$x \in U$$
 et $x \notin V$.

Soit $y \in V$. Alors $x, y \in U \cup V$ et puisque $U \cup V$ est un sous-espace vectoriel de E, on a $x + y \in U \cup V$.

- Premier cas: si x + y ∈ U.
 Puisque x ∈ U et que U est un sous-espace vectoriel de E, on a y = (x + y) (x) ∈ U.
- Deuxième cas : si $x + y \in V$. Puisque V est un sous-espace vectoriel de E, on a $x = (x + y) - (y) \in V$, ce qui est faux.

Finalement, on $ay \in U$. Nous avons donc montré $V \subset U$.

Conclusion

 $U \cup V$ est un sous-espace vectoriel de E si, et seulement si $U \subset V$ ou $V \subset U$.

3. Par exemple $U = \{ (x, y, z)^T \mid z = 0 \}$ et $V = \{ (x, y, z)^T \mid x = 0 \}$.

Exercice 12 (24.2)

Soit E un \mathbb{K} -espace vectoriel et $(F_n)_{n\in\mathbb{N}}$ une famille croissante (au sens de l'inclusion) de sous-espace vectoriel de E, c'est-à-dire vérifiant

$$\forall n\in \mathbb{N}, F_n\subset F_{n+1}.$$

Montrer que $F = \bigcup_{n \in \mathbb{N}} F_n$ est un sous-espace vectoriel de E.

Solution 12 (24.2)

Exercice 13 (24.2)

Montrer que

$$F = \left\{ \left. f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \; \middle| \; \exists (A, \phi) \in \mathbb{R}^2, \forall x \in \mathbb{R}, f(x) = A \cos(x + \phi) \right. \right\}.$$

est un \mathbb{R} -espace vectoriel.

Solution 13 (24.2)

Nous allons montrer que F est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

L'application nulle $\tilde{0}$ appartient clairement à F car $\tilde{0} = 0$ cos (prendre A = 0 et $\phi = 0$).

Soit $f, g \in F$ et $\lambda, \mu \in \mathbb{R}$. Il existe $A, B, \phi, \psi \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}, f(x) = A\cos(x + \phi) \text{ et } g(x) = B\cos(x + \psi).$$

De plus,

$$\forall x \in \mathbb{R}, (\lambda f + \mu g)(x) = \lambda A \cos(x + \phi) + \mu B \cos(x + \psi)$$

$$= (\lambda A \cos \phi + \mu B \cos \psi) \cos x - (\lambda A \sin \phi + \mu B \sin \psi) \sin x$$

$$= A' \cos x + B' \sin x$$

où l'on a posé $A' = \lambda A \cos \phi + \mu B \cos \psi$ et $B' = \lambda A \sin \phi + \mu B \sin \psi$. Si A' = B' = 0, alors $\lambda f + \mu g = \tilde{0} \in F$. Sinon, l'égalité

$$\left(\frac{A'}{\sqrt{A'^2 + B'^2}}\right)^2 + \left(\frac{B'}{\sqrt{A'^2 + B'^2}}\right)^2 = 1$$

assure l'existence d'un réel α tel que

$$\cos \alpha = \frac{A'}{\sqrt{A'^2 + B'^2}}, \qquad \sin \alpha = \frac{B'}{\sqrt{A'^2 + B'^2}}.$$

On a alors

$$\forall x \in \mathbb{R}, (\lambda f + \mu g)(x) = \sqrt{A'^2 + B'^2} (\cos \alpha \cos(x) - \sin \alpha \sin(x))$$
$$= \sqrt{A'^2 + B'^2} \cos(x + \alpha).$$

Ce qui montre que $\lambda f + \mu g \in F$.

Exercice 14 (24.2)

Soit $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrice (2,2) à coefficients réels. Parmi les ensembles suivants, lesquels sont des sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$?

$$W_{1} = \left\{ \begin{array}{cc} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}, \qquad W_{2} = \left\{ \begin{array}{cc} \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\},$$

$$W_{3} = \left\{ \begin{array}{cc} \begin{pmatrix} a^{2} & 0 \\ 0 & b^{2} \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}.$$

Solution 14 (24.2)

Exercice 15 (24.2)

Montrer que les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^3

- en utilisant la définition (ou caractérisation) d'un sous-espace vectoriel ;
- en les décrivant comme le noyau d'une matrice ou comme l'image d'une matrice.

$$\mathbf{1.} \ \ F_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \ \middle| \ x + y - z = 0 \right\}.$$

2.
$$F_2 = \left\{ \begin{pmatrix} 2s+t \\ s-t \\ s+t \end{pmatrix} \middle| (s,t) \in \mathbb{R}^2 \right\}.$$

3.
$$F_3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } x + y - z = 0 \right\}.$$

4.
$$F_4 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - y - 2z = 0 \right\} \bigcap \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 3x - y - z = 0 \right\}.$$

$$\mathbf{5.} \ F_5 = \left\{ \begin{pmatrix} 2t \\ 3t \\ t \end{pmatrix} \middle| \ t \in \mathbb{R} \right\}.$$

Solution 15 (24.2)

Solution partielle.

On détaille la forme forme $\text{Im}(M) = \text{Vect}(v_1, \dots, v_k)$. Pour l'utilisation de la définition, voir l'exercice ???...

- 1. Avec la défintion...
- V2 On a $F_1 = \ker A$ où $A = \begin{pmatrix} 1 & 1 & -1 \end{pmatrix}$ et donc F_1 est un sous-espace vectoriel de \mathbb{R}^3 .
- V3 Pour $(x, y, z)^T \in \mathbb{R}^3$,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in F_1 \iff x + y - z = 0 \iff x = -y + z \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Ainsi,

$$F_1 = \operatorname{Vect} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} = \operatorname{Im}(M) \quad \text{avec} \quad M = \begin{pmatrix} -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

et donc F_1 est un sous-espace vectoriel de \mathbb{R}^3 . On a également $F_1 = \ker A$ où $A = \begin{pmatrix} 1 & 1 & -1 \end{pmatrix}$

2. On a directement,

$$F_2 = \left\{ \begin{pmatrix} 2s + t \\ s - t \\ s + t \end{pmatrix} \middle| s, t \in \mathbb{R} \right\} = \left\{ s \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \middle| s, t \in \mathbb{R} \right\} = \operatorname{Vect} \left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\} = \operatorname{Im}(M)$$

avec $M = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}$ et donc F_2 est un sous-espace vectoriel de \mathbb{R}^3 .

3. On a $F_3 = \ker B$ où $B = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$ donc F_3 est un sous-espace vectoriel de \mathbb{R}^3 .

V2 Pour $u = (x, y, z)^T \in \mathbb{R}^3$, on a,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in F_3 \iff \begin{cases} x - y + z &= 0 \\ x + y - z &= 0 \end{cases} \iff \begin{cases} x - y + z &= 0 \\ 2y - 2z &= 0 \end{cases}$$

$$\iff \begin{cases} x &= 0 \\ y &= z \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad z \in \mathbb{R}.$$

Ainsi, $F_3 = \text{Vect} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$ et donc F_3 est un sous-espace vectoriel de \mathbb{R}^3 . On peut remarquer que F_3 est une droite vectorielle.

4. Pour $u = (x, y, z)^T \in \mathbb{R}^3$, on a

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in F_4 \iff \begin{cases} x - y - 2z &= 0 \\ 3x - y - z &= 0 \end{cases} \iff \begin{cases} x - y - 2z &= 0 \\ 2y + 5z &= 0 \end{cases}$$

$$\iff \begin{cases} x &= -\frac{1}{2}z \\ y &= -\frac{5}{2}z \end{cases} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} -1/2 \\ -5/2 \\ 1 \end{pmatrix}, \quad z \in \mathbb{R}.$$

Finalement, $F_4 = \text{Vect} \left\{ \begin{pmatrix} -1/2 \\ -5/2 \\ 1 \end{pmatrix} \right\}$ est un sous-espace vectoriel de \mathbb{R}^3 . On peut remarquer que F_4 est une droite vectorielle.

2è méth. On remarque que F_4 est le noyau de la matrice $A=\begin{pmatrix} 1 & -1 & -2 \\ 3 & -1 & -1 \end{pmatrix}$; et on a

$$A \underset{L}{\sim} \begin{pmatrix} 1 & -1 & -2 \\ 3 & -1 & -1 \end{pmatrix} \underset{L}{\sim} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 2 & 5 \end{pmatrix} \underset{L}{\sim} \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 5/2 \end{pmatrix} \underset{L}{\sim} \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 5/2 \end{pmatrix}$$

Et on a donc, pour $(x, y, z)^T \in \mathbb{R}^3$,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \ker A \iff \exists t \in \mathbb{R}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -t/2 \\ -5t/2 \\ t \end{pmatrix} = t \begin{pmatrix} -1/2 \\ -5/2 \\ 1 \end{pmatrix}.$$

On retrouve
$$F_4 = \text{Vect} \left\{ \begin{pmatrix} -1/2 \\ -5/2 \\ 1 \end{pmatrix} \right\}$$

5. On a directement

$$F_{5} = \left\{ \begin{pmatrix} 2t \\ 3t \\ t \end{pmatrix} \middle| t \in \mathbb{R} \right\} = \left\{ t \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \middle| t \in \mathbb{R} \right\} = \operatorname{Vect} \left\{ \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \right\}.$$

Ainsi F_5 est un sous-espace vectoriel de \mathbb{R}^3 . On peut remarquer que F_5 est une droite vectorielle.

Exercice 16 (24.2)

1. Écrire, si possible, le vecteur $v = (1, 1, -3) \in \mathbb{R}^3$ comme combinaison linéaire des vecteurs

$$u_1 = (-3, 1, 2), \quad u_2 = (4, -2, 1), \quad u_3 = (-5, 1, 7).$$

2. Montrer que Vect $\{u_3\} \subset \text{Vect }\{u_1,u_2\}$ mais que ces deux sous-espaces vectoriels ne sont pas égaux.

Solution 16 (24.2)

1. Pour $(\alpha, \beta, \gamma) \in \mathbb{R}^3$,

$$\alpha u_1 + \beta u_2 + \gamma u_3 = v \iff \begin{cases} -3\alpha + 4\beta - 5\gamma &= 1\\ \alpha - 2\beta + \gamma &= 1\\ 2\alpha + \beta + 7\gamma &= -3 \end{cases}$$

$$\iff \begin{cases} \alpha - 2\beta + \gamma &= 1\\ -3\alpha + 4\beta - 5\gamma &= 1\\ 2\alpha + \beta + 7\gamma &= -3 \end{cases}$$

$$\iff \begin{cases} \alpha - 2\beta + \gamma &= 1\\ -2\beta - 2\gamma &= 4\\ 5\beta + 5\gamma &= -5 \end{cases}$$

$$\iff \begin{cases} \alpha - 2\beta + \gamma &= 1\\ \beta + \gamma &= -2\\ 0 &= 5 \end{cases}$$

Ce dernier système n'étant pas compatible, le vecteur v n'est pas combinaison linéaire des vecteurs u_1, u_2, u_3 .

2. Pour $(\alpha, \beta) \in \mathbb{R}^2$,

$$\alpha u_1 + \beta u_2 = u_3 \iff \begin{cases} -3\alpha + 4\beta &= -5 \\ \alpha - 2\beta &= 1 \\ 2\alpha + \beta &= 7 \end{cases} \iff \begin{cases} -2\beta &= -2 \\ \alpha - 2\beta &= 1 \\ 5\beta &= 5 \end{cases} \iff \beta = 1 \text{ et } \alpha = 3.$$

Ainsi $u_3 = 3u_1 + u_2 \in \text{Vect} \{ u_1, u_2 \}$. Puisque Vect $\{ u_1, u_2 \}$ est un sous-espace vectoriel de \mathbb{R}^3 , on a alors

Vect
$$\{u_3\} \subset \text{Vect }\{u_1, u_2\}$$
.

L'inclusion est stricte puisque, par exemple, $u_1 \in \text{Vect } \{u_1, u_2\}$ et n'est pas colinéaire à u_3 , c'est-à-dire $u_1 \notin \text{Vect } \{u_3\}$.

Exercice 17 (24.2)

Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , on pose

$$u = (1, 2, 3),$$
 $v = (2, -1, 1),$ $a = (1, 0, 1)$ et $b = (0, 1, 1).$

Démontrer que Vect(u, v) = Vect(a, b).

Solution 17 (24.2)

Montrons que $Vect(a, b) \subset Vect(u, v)$. Le vecteur a est combinaison linéaire de u et v puisque

$$a = \alpha u + \beta v \iff \begin{cases} \alpha + 2\beta &= 1\\ 2\alpha - \beta &= 0\\ 3\alpha + \beta &= 1 \end{cases} \iff \begin{cases} \alpha + 2\beta &= 1\\ -5\beta &= -2\\ -5\beta &= -2 \end{cases}$$

D'où l'on déduit $a = \frac{1}{5}u + \frac{2}{5}v$. Mutatis mutandis,

$$b = \alpha u + \beta v \iff \begin{cases} \alpha + 2\beta &= 0 \\ 2\alpha - \beta &= 1 \\ 3\alpha + \beta &= 1 \end{cases} \iff \begin{cases} \alpha + 2\beta &= 0 \\ -5\beta &= 1 \\ -5\beta &= 1 \end{cases}$$

et l'on a $b = \frac{2}{5}u - \frac{1}{5}v$. Ainsi, $\{a, b\} \subset \text{Vect } \{u, v\}$; et comme Vect(a, b) est le plus petit sous-espace vectoriel de \mathbb{R}^3 contenant a et b et que Vect(u, v) est un sous-espace vectoriel \mathbb{R}^3 , on a bien $\text{Vect}(a, b) \subset \text{Vect}(u, v)$. Réciproquement, on trouve rapidement (les zéros aidant)

$$a + 2b = (1,0,1) + (0,2,2) = (1,2,3) = u$$
 et $2a - b = (2,0,2) - (0,1,1) = (2,-1,1) = v$.

Ainsi $\{u, v\} \subset \text{Vect}(a, b)$ et donc $\text{Vect}(u, v) \subset \text{Vect}(a, b)$.

Conclusion

Par double inclusion, Vect(a, b) = Vect(u, v).

Exercice 18 (24.2)

1. Écrire, si possible, le vecteur $v = (5, 1, 6) \in \mathbb{R}^3$ comme combinaison linéaire des vecteurs

$$u_1=(0,1,1),\quad u_2=(1,2,3),\quad u_3=(2,-1,3).$$

2. Montrer que Vect $\{v, u_1, u_3\}$ = Vect $\{u_1, u_2, u_3\}$.

Solution 18 (24.2)

Exercice 19 (24.2)

On considère les vecteur suivants

$$v_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \qquad u = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}, \qquad w = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}.$$

- 1. Montrer que u est combinaison linéaire de v_1 et v_2 et expliciter cette combinaison linéaire. Montrer que w n'est pas combinaison linéaire de v_1 et v_2 .
- **2.** Comparer les quatres sous-espaces vectoriels de \mathbb{R}^3 suivants

$$\operatorname{Vect} \left\{ \left. v_1, v_2 \right. \right\} \qquad \operatorname{Vect} \left\{ \left. \left. v_1, v_2, u \right. \right\} \right. \qquad \operatorname{\mathbb{R}}^3.$$

- **3.** En déduire que Vect $\{v_1, v_2, u, w\} = \mathbb{R}^3$.
- **4.** Montrer également que tout vecteur $b \in \mathbb{R}^3$ peut être exprimer comme combinaison linéaire de v_1, v_2, u, w d'une infinité de manières différentes.

Solution 19 (24.2)

1. Le vecteur u est combinaison linéaire de v_1 et v_2 s'il existe des scalaire α , β tels que $u = \alpha v_1 + \beta v_2$. Or

$$\begin{pmatrix} -1\\2\\5 \end{pmatrix} = \alpha \begin{pmatrix} -1\\0\\1 \end{pmatrix} + \beta \begin{pmatrix} 1\\2\\3 \end{pmatrix} \iff \begin{cases} -\alpha + \beta & = -1\\2\beta & = 2\\\alpha + 3\beta & = 5 \end{cases}$$

$$\iff \begin{cases} -\alpha + \beta & = -1\\\beta & = 1\\4\beta & = 4 \end{cases} \iff \beta = 1 \text{ et } \alpha = 2.$$

Ce système admet donc pour solution $(\alpha, \beta) = (2, 1)$: il est compatible. Ainsi, u est combinaison linéaire de v_1 et v_2 . On peut d'ailleurs vérifier

$$2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$$

De manière analogue, pour w,

$$\begin{pmatrix} 1\\2\\5 \end{pmatrix} = \alpha \begin{pmatrix} -1\\0\\1 \end{pmatrix} + \beta \begin{pmatrix} 1\\2\\3 \end{pmatrix} \iff \begin{cases} -\alpha + \beta &= 1\\2\beta &= 2\\\alpha + 3\beta &= 5 \end{cases}$$

$$\iff \begin{cases} -\alpha + \beta &= 1\\\beta &= 1\\\beta &= 1\\4\beta &= 6 \end{cases} \implies \beta = 1 \text{ et } \beta = 3/2.$$

312

Ce système est donc incompatible : w n'est pas combinaison linéaire de v_1 et v_2 .

Variante. Le même raisonnement pour u, mais en écrivant le système $\alpha v_1 + \beta v_2 = u$ matriciellement:

$$\begin{pmatrix} -1 & 1 & | & -1 \\ 0 & 2 & | & 2 \\ 1 & 3 & | & 5 \end{pmatrix} \sim \begin{pmatrix} -1 & 1 & | & -1 \\ 0 & 2 & | & 2 \\ 0 & 4 & | & -4 \end{pmatrix} \sim \begin{pmatrix} -1 & 1 & | & -1 \\ 0 & 2 & | & 2 \\ 0 & 0 & | & 0 \end{pmatrix}$$

Le système $\alpha v_1 + \beta v_2 = u$ est donc compatible : u est combinaison linéaire de v_1 et v_2 .

2. Puisque $u = 2v_1 + v_2$, $u \in \text{Vect} \{ v_1, v_2 \}$ et donc $\{ v_1, v_2, u \} \subset \text{Vect} \{ v_1, v_2 \}$. Puisque $\text{Vect} \{ v_1, v_2, u \}$ est le plus petit sous-espace vectoriel contenant v_1, v_2, u et que $\text{Vect} \{ v_1, v_2 \}$ est un sous-espace vectoriel, on a $\text{Vect} \{ v_1, v_2, u \} \subset \text{Vect} \{ v_1, v_2 \}$.

On aurait également pu remarquer que tout vecteur $x = av_1 + bv_2 + cu$ peut s'écrire comme combinaison linéaire de v_1 et v_2 en substituant $2v_1 + v_2$ à u.

Réciproquement, on a trivialement $\{v_1, v_2\} \subset \text{Vect }\{u, v_1, v_2\}$ et par un argument analogue au précédent, on a Vect $\{v_1, v_2\} \subset \text{Vect }\{u, v_1, v_2\}$.

Ainsi, par double inclusion, Vect $\{v_1, v_2\} = \text{Vect } \{v_1, v_2, u\}.$

Géométriquement, Vect { v_1, v_2 } est le sous-espace vectoriel engendré par deux vecteurs non colinéaires ne \mathbb{R}^3 : c'est un plan de \mathbb{R}^3 .

De plus, $w \notin \text{Vect} \{v_1, v_2\}$, donc le sous-espace vectoriel Vect $\{v_1, v_2, w\}$ est plus grand (au sens de l'inclusion) que le plan Vect $\{v_1, v_2\}$. Nous allons montrer que c'est \mathbb{R}^3 . L'inclusion Vect $\{v_1, v_2, w\}$ est triviale. Ainsi, pour montrer que Vect $\{v_1, v_2, w\} = \mathbb{R}^3$, il suffit de montrer que tout vecteur $b = (b_1, b_2, b_3)^T \in \mathbb{R}^3$ s'écrit comme combinaison linéaire, $b = \alpha v_1 + \beta v_2 + \gamma w$.

La matrice augmentée de ce système d'inconnues α , β , γ est

$$(A|b) = \begin{pmatrix} -1 & 1 & 1 & b_1 \\ 0 & 2 & 2 & b_2 \\ 1 & 3 & 5 & b_3 \end{pmatrix} \simeq \begin{pmatrix} -1 & 1 & 1 & b_1 \\ 0 & 2 & 2 & b_2 \\ 0 & 4 & 6 & b_1 + b_3 \end{pmatrix} \simeq \begin{pmatrix} -1 & 1 & 1 & b_1 \\ 0 & 2 & 2 & b_2 \\ 0 & 0 & 2 & b_1 + b_3 - 2b_2 \end{pmatrix}$$

Ce système est toujours compatible. Ainsi Vect $\{v_1, v_2, w\} = \mathbb{R}^3$.

- **3.** D'après la question précédente, on sait que $\{v_1, v_2, w\}$ engendre \mathbb{R}^3 , et donc, *a fortiori*, $\{v_1, v_2, u, w\}$ également.
- **4.** Nous allons montrer directement que $\{v_1, v_2, u, w\}$ engendre \mathbb{R}^3 et que tout vecteur $b \in \mathbb{R}^3$ s'écrit d'un infinité de façons comme combinaison linéaire de v_1, v_2, u, w .

Cela revient à dire que l'équation $b = \alpha v_1 + \beta v_2 + \gamma u + \delta w$ admet une infinité de solution. Si *B* désigne la matrice obtenue avec ces quatres vecteurs comme colonnes, on a

$$B = \begin{pmatrix} -1 & 1 & -1 & 1 \\ 0 & 2 & 2 & 2 \\ 1 & 3 & 5 & 5 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} -1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Puisqu'il y a un pivot sur chaque ligne, le système Bx = b est toujours compatible, ainsi, tout vecteur $b \in \mathbb{R}^3$ s'écrit comme combinaison linéaire de v_1, v_2, u, w . De plus, les solutions de ce système s'écrivent avec une variable libre (correspondant à la troisième colonne), ainsi, il y a une infinité de solutions au système Bx = b.

Exercice 20 (24.2)

Soit $v, w \in \mathbb{R}^n$. Expliquer la différence entre les ensembles

$$A = \{v, w\}$$
 et $B = \text{Vect}\{v, w\}.$

Solution 20 (24.2)

L'ensemble A ne contient que deux vecteurs : c'est un ensemble fini a deux éléments (éventuellement un seul si v = w).

L'ensemble B est le sous-espace vectoriel engendré par $\{v, w\}$. Comme son nom l'indique, c'est un sous-espace vectoriel de \mathbb{R}^n et il contient les vecteurs v et w; on a donc toujours $A \subset B$.

En général B contient une infinité de vecteurs. Plus précisément c'est l'ensemble de toutes les combinaisons linéaires de v et w.

Nous pouvons déjà observer dans \mathbb{R}^3 .

- Si v et w ne sont pas colinéaires, alors B est un plan vectoriel. Il contient donc une infinité de vecteurs.
- Si v et w sont colinéaires mais au moins l'un des deux est non nuls, alors $B = \text{Vect } \{ v \} = \text{Vect } \{ w \}$ est une droite vectorielle. Donc B contient une infinité (mais une «plus petite infinité» que le cas précédent).
- Enfin, si $v = w = 0_{\mathbb{R}^n}$, alors $B = \{0_{\mathbb{R}^n}\} = A$. C'est le seul cas où B est un ensemble fini.

Ces résultats se généralisent à un espace vectoriel quelconque.

Exercice 21 (24.2)

On considère l'ensemble

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \,\middle|\, x_1 + x_2 + x_3 + x_4 = 0 \text{ et } x_1 - x_2 + x_3 - x_4 = 0 \right\}.$$

Montrer que V est un sous-espace vectoriel de \mathbb{R}^4 :

- 1. en utilisant la définition de sous-espace vectoriel;
- **2.** en exhibant une famille finie qui engendre V;
- 3. en écrivant V comme le noyau d'une matrice.

Solution 21 (24.2)

1. On a clairement $V \subset \mathbb{R}^4$ et $0_{\mathbb{R}^4} = (0, 0, 0, 0)^T \in V$.

Soit $u = (x_1, x_2, x_3, x_4) \in V$ et $v = (y_1, y_2, y_3, y_4)^T \in V$. On a donc

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$y_1 + y_2 + y_3 + y_4 = 0$$

$$x_1 - x_2 + x_3 - x_4 = 0$$

$$y_1 - y_2 + y_3 - y_4 = 0$$

Or $u + v = (x_1 + y_1, x_2 + y_2, x_3 + y_3, x_4 + y_4)^T$ et

$$(x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3) + (x_4 + y_4) = (x_1 + x_2 + x_3 + x_4) + (y_1 + y_2 + y_3 + y_4) = 0 + 0 = 0$$

$$(x_1 + y_1) - (x_2 + y_2) + (x_3 + y_3) - (x_4 + y_4) = (x_1 - x_2 + x_3 - x_4) + (y_1 - y_2 + y_3 - y_4) = 0 + 0 = 0$$

ainsi, $u + v \in V$. De plus, si $\alpha \in \mathbb{R}$, on a $\alpha u = (\alpha x_1, \alpha x_2, \alpha x_3, \alpha x_4)$ et

$$(\alpha x_1) + (\alpha x_2) + (\alpha x_3) + (\alpha x_4) = \alpha (x_1 + x_2 + x_3 + x_4) = 0$$

$$(\alpha x_1) - (\alpha x_2) + (\alpha x_3) - (\alpha x_4) = \alpha(x_1 - x_2 + x_3 - x_4) = 0$$

donc $\alpha u \in V$.

Conclusion

V est un sous-espace vectoriel de \mathbb{R}^4 .

2. Soit $x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$,

$$x \in V \iff \left\{ \begin{array}{ccccc} x_1 & +x_2 & +x_3 & +x_4 & =0 \\ x_1 & -x_2 & +x_3 & -x_4 & =0 \end{array} \right. \iff \left\{ \begin{array}{ccccc} x_1 & +x_2 & +x_3 & +x_4 & =0 \\ & -2x_2 & + & -2x_4 & =0 \end{array} \right.$$

$$\iff \left\{ \begin{array}{cc} x_1 &= -x_3 \\ x_2 &= -x_4 \end{array} \right. \iff \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array} \right) = x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

Ainsi,

$$V = \operatorname{Vect} \left\{ \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix} \right\};$$

est un sous-espace vectoriel de \mathbb{R}^4 .

3.

$$V = \ker A \quad \text{où} \quad A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$$

Donc V est un sous-espace vectoriel de \mathbb{R}^4 .

Exercice 22 (24.2)

On considère l'espace vectoriel $E = \mathscr{C}(\mathbb{R}, \mathbb{R})$ des fonctions continues sur \mathbb{R} et à valeurs réelles. On note $\phi : \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x}$. Montrer l'égalité

Vect (ch, sh) = Vect (exp,
$$\phi$$
).

Solution 22 (24.2)

Exercice 23 (24.2)

Montrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R},\mathbb{R})$ en les décrivant sous la forme Vect(A).

1.
$$F_1 = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid f' - 2f = 0 \}.$$

2.
$$F_2 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' - \omega^2 f = 0 \} \text{ où } \omega \in \mathbb{R}_+^{\star}.$$

3. $F_3 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' + 2f' + f = 0 \}.$

3.
$$F_3 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' + 2f' + f = 0 \}.$$

4.
$$F_4 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' - 4f = 0 \}.$$

Solution 23 (24.2)

1. Les solution de l'équation différentielle f' - 2f = 0 sont les fonction de la forme

$$\mathbb{R} \to \mathbb{R} , \quad \lambda \in \mathbb{R}$$
$$x \mapsto \lambda e^{2x}$$

Autrement dit,

$$F_1 = \mathrm{Vect}\,(g) \quad \mathrm{avec} \quad g : \mathbb{R} \rightarrow \mathbb{R} \ .$$

$$x \mapsto e^{2x} \ .$$

2. Les solution de l'équation différentielle $f'' - \omega^2 f = 0$ sont les fonction de la forme

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} & & \\ x & \mapsto & \lambda e^{-\omega x} + \mu e^{\omega x} & & \end{array} , \quad (\lambda, \mu) \in \mathbb{R}^2$$

Autrement dit,

$$F_2 = \mathrm{Vect}\,(g,h) \quad \mathrm{avec} \quad g: \ \mathbb{R} \ o \ \mathbb{R} \quad \mathrm{et} \ h: \ \mathbb{R} \ o \ \mathbb{R} \ .$$

$$x \ \mapsto \ e^{-\omega x} \qquad \qquad x \ \mapsto \ e^{\omega x} \ .$$

3. Les solution de l'équation différentielle f'' + 2f' + f = 0 sont les fonction de la forme

$$\mathbb{R} \to \mathbb{R} , \quad (\lambda, \mu) \in \mathbb{R}^2$$
$$x \mapsto (\lambda x + \mu) e^{-x}$$

Autrement dit,

4. Les solution de l'équation différentielle f'' - 4f = 0 sont les fonction de la forme

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \lambda e^{-2x} + \mu e^{2x} \end{array}, \quad (\lambda, \mu) \in \mathbb{R}^2$$

Autrement dit,

$$F_4 = \mathrm{Vect}\,(g,h) \quad \text{avec} \quad g: \ \mathbb{R} \ \to \ \mathbb{R} \quad \text{et $h: \mathbb{R} \to \mathbb{R}$} \\ x \ \mapsto \ e^{-2x} \qquad \qquad x \ \mapsto \ e^{2x} \ .$$

Exercice 24 (24.2)

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
.

1. En calculant A^{-1} , résoudre l'équation suivante d'inconnue α et β :

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix} \tag{1}$$

2. Soit $w_1 = (1,2)^T$ et $w_2 = (1,-1)^T$. Montrer que Vect $\{w_1, w_2\} = \mathbb{R}^2$. C'est-à-dire, montrer que *tout* vecteur $b \in \mathbb{R}^2$ est combinaison linéaire de w_1 et w_2 en résolvant l'équation b = Ax d'inconnue x:

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \tag{2}$$

3. Montrer que si v et w sont deux vecteurs non nuls de \mathbb{R}^2 , avec $v = (a, c)^T$ et $w = (b, d)^T$, alors

$$\operatorname{Vect} \left\{ \left. v, w \right. \right\} = \mathbb{R}^2 \iff \forall t \in \mathbb{R}, v \neq tw \iff \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$$

Solution 24 (24.2)

1. On trouve facilement $A^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$. Deplus,

$$A\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Ainsi,

$$A \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix} \iff \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = A^{-1} \begin{pmatrix} 2 \\ -5 \end{pmatrix} \iff \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}.$$

Ainsi, l'équation (1) a pour unique solution $(\alpha, \beta) = (-1, 3)$.

2. Soit $b = (b_1, b_2) \in \mathbb{R}^2$. Montrons que $b \in \text{Vect } (w_1, w_2)$, c'est-à-dire

$$\exists (\alpha,\beta) \in \mathbb{R}^2, \alpha w_1 + \beta w_2 = b.$$

Cette dernière équation équivaut succéssivement à

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \iff A \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
$$\iff \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = A^{-1} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} b_1/3 + b_2/3 \\ 2b_1/3 - b_2/3 \end{pmatrix}.$$

Ceci prouve l'existence de α et β . On a d'ailleurs $\alpha = b_1/3 + b_2/3$ et $\beta = 2b_1/3 - b_2/3$.

Nous avons donc montrer que Vect $(w_1, w_2) \subset \mathbb{R}^2$. L'inclusion réciproque est triviale car $w_1, w_2 \in \mathbb{R}^2$. Ainsi, Vect $(w_1, w_2) = \mathbb{R}^2$.

3. Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

On remarque que $b \in \mathbb{R}^2$ est combinaison linéaire de v, w si, et seulement si il existe $(\alpha, \beta) \in \mathbb{R}^2$ tels que

$$\alpha v + \beta w = b$$
 c'est-à-dire $A \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = b$.

Puisque les vecteur v et w sont non nuls, rg(A) = 1 ou rg(A) = 2. La matrice A est une matrice carrée et caractérisation des matrices inversible permet d'affirmer que

• Si rg(A) = 2, la matrice A est inversible et l'équation $\alpha v + \beta w = b$ admet une solution (d'ailleurs unique $A^{-1}b$). Ainsi, tout vecteur de \mathbb{R}^2 est combinaison linéaire de v et w, d'où

$$Vect (v, w) = \mathbb{R}^2.$$

• Si $\operatorname{rg}(A) = 1$, alors A n'est pas inversible et il existe $b \in \mathbb{R}^2$ telle que l'équation $\alpha v + \beta w = b$ n'ait pas de solution, c'est-à-dire $b \notin \operatorname{Vect}(v, w)$ et donc $\operatorname{Vect}(v, w) \neq \mathbb{R}^2$.

Remarquons enfin qu'une matrice (2, 2) n'est pas inversible si, et seulement si elle est de rang 0 ou 1, si, et seulement si l'une des ses colonne est colinéaire à l'autre, si, et seulement si son déterminant est nul. Ainsi

Vect
$$\{v, w\} = \mathbb{R}^2 \iff \forall t \in \mathbb{R}, v \neq tw \iff \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$$

Exercice 25 (24.2)

Soient E un \mathbb{K} -espace vectoriel, A et B deux parties quelconques de E.

- **1.** Comparer Vect $(A \cap B)$ et Vect $(A) \cap$ Vect (B).
- **2.** Comparer Vect $(A \cup B)$ et Vect $(A) \cup$ Vect (B).

Solution 25 (24.2)