Akanksha Yadav

Education

2015-2019 Bachelor of Science in Chemistry (4 Year BS)

Along with a Minor degree in Biosciences Indian Institute of Technology Bombay, Mumbai

CGPA: 8.86/10

2019-2021 Master of Science in Molecular Biology

(Ongoing) International Max Planck Research School-Molecular Biology, Göttingen

Research Experience

May-June Rotation III - Investigating Ubiquitin dynamics using NMR-based relaxation dispersion Guide: Prof. Christian Griesinger, NMR-based Structural Biology group, MPI-BPC

020 Guide. Froi. Christian Gheshiger, Nivin-based Structural biology group, WF1-bFC

- Analyzed $^1H^{-15}N$ **TROSY** experiments of 15N-labeled ubiquitin in water/d8-glycerol, 900MHz Calculated τ_c for ubiquitin samples from R_1 and R_2 relaxation data using Ccp-Nmr Analysis
- Analyzed $^1H^{-15}N$ CPMG relaxation dispersion data and wrote scripts to fit into two/three-state fast-exchange Luz-Meiboom model

Mar-Apr Rotation II - Analyzing MD simulations of ArfB in solution v/s in ribosome complex 2020 Guide: Prof. Helmut Grubmüller, Theoretical and Computational Biophysics group, MPI-BPC

- Performed 600ns of molecular dynamics simulation of free protein ArfB in explicit solvent starting from a cryo-EM derived structure in ribosome complex, using **GROMACS**
- Analyzed secondary structure composition along trajectories and performed principal component analysis (**PCA**) with respect to different domains to identify dominant modes of motion
- Investigated mechanism of C-terminal of ArfB helping to position N-terminal, in the ribosome, for catalyzing **peptidyl-tRNA hydrolysis** using RMSF, RMSD and distance analyses

Jan-Feb Rotation I - Prediction of gene expression measurements using cis and trans-eQTLs 2020 Guide: Dr. Johannes Söding, Quantitative and Computational Biology group, MPI-BPC

- Modified the PredictDB pipeline from PrediXcan to build **gene expression prediction** models using cis- and trans-eQTLs (discovered from **Tejaas**)
- Compared models' (different methods for **confounder correction** used on gene expression input data) performance using summary statistics
- Compared models' predictive performance across different races using nested cross-validation

2017-2019 Molecular Dynamics Studies of Small Molecule Ligands with G-Quadruplex DNA Guide: Prof. Pradeepkumar P.I., Dept. of Chemistry, IIT Bombay

- Modelled and optimized potential G-quadruplex binding ligands using Gaussian 09
- Performed rigid docking of ligand with receptor G4 DNA in silico using Autodock 4.2
- Performed molecular dynamics simulations of ligand-DNA complex using AMBER 16
- Assisted performing biophysical assays to study interactions of ligands with G-quadruplexes
- Kumari, B.; <u>Yadav, A.</u>; Pany, S.P.; Pradeepkumar P.I; Kanvah, S.; Cationic red emitting fluorophore: A light up NIR fluorescent probe for G4-DNA. *J. Photochem. Photobiol., B*, 2019, 190, 128-136

Summer **GUI development for a data-based chemical modelling software suite, CANDIY** 2018 *Guide: Prof. Gaurav Chopra, Dept. of Chemistry, Purdue University*

- Studied features of CANDOCK, part of CANDIY, designed for **docking** of small molecule ligands with biomolecules, coded in C++ for adding in the GUI
- Integrated 3D molecule renderer from Avogadro (open source) into Qt-based GUI of CANDOCK
- Parsed atomic and bond information from CANDOCK to Avogadro for visualization of input molecule integrated with the functions to run the program from the GUI

Scholastic Achievements

2019-2021	Recipient of stipend by the International Max Planck Research School (IMPRS)
2015-2019	Granted INSPIRE Scholar Award by the Dept. of Science and Technology, Govt. of India
2018	Recipient of summer stipend under Purdue Undergraduate Research Experience program
2016,2017	Awarded the Institute Academic Prize for two consecutive years
	Ranked 2nd (SPI:10.0 in Spring semester 2016-17) in the 2015 batch, Department of Chemistry
2011-2015	Qualified the National Talent Search Examination and received a scholarship
2013	Selected for the Indian National Mathematical Olympiad from Mumbai zone conducted by
	HBCSE under the National Board of Higher Mathematics
2009	Among top 50 scholarship holders in state-level two-tier Mathematics Prodigy Competition

Academic Projects

Apr 2019 Macro-molecular Crystallography course project - raw data processing Guide: Prof. Ruchi Anand, Dept. of Chemistry

- Processed diffraction data starting from raw images on **iMOSFLM** including peak picking, indexing, refining, integration, merging and scaling
- Determined space group, unit cell parameters, mosaicity and processing parameters
- Used COOT to visualize a given electron density and predict structure of putative ligand

Oct 2018 Bioinformatics course project - Understanding de novo DNA synthesis Guide: Prof. Prasenjit Bhaumik, Dept. of Biosciences and Bioengineering

- Literature review regarding DNA polymerase showing de novo synthesis activity
- Recognizing **primase** and **polymerase** active sites in available PDB structures, understanding the mechanism of action and comparing key residues involved
- Utilizing multiple sequence alignment, secondary and tertiary structure prediction and fold recognition tools to gain insight into structure of **PrimPol**

Sep 2016 Molecular biology course project - Modelling a Genetic Switch Guide: Prof. Swati Patankar, Dept. of Biosciences and Bioengineering

- Designed a **hypothetical switch** to drive a **targeted** system for checking **cancer cell growth**
- Incorporated an **optoelectronic gate**, based on a **series of porphyrins**, stimulated using an input photon of green light produced by an intracellular GFP construct
- Applied **small molecule targeted therapy** strategy by utilizing the switch to activate a repressor ligand photochemically, which then binds to **promoter region** and arrests transcription

Nov 2015 Computer Programming and Utilization course project - Text Processor Guide: Prof. Varsha Apte, Dept. of Computer Science and engineering

- Coded an editing software that took raw electronic text as input and used simple commands fed by the user to invoke desired utilities
- Utilized basic structures in C++ to create editing tools like Find and Replace, Encode, Decode

Skill set

Languages	$C/C++$, R, Python, Bash, \LaTeX
Software	PyMol, Chimera, Coot, ClustalX, GROMACS, CCP4i, CcpNmr, Autodock, Gaussian,
	AMBER, Rosetta, 3DNA, Adobe Illustrator, AutoCAD, Solidworks
Wet lab	UV/Visible and IR spectroscopy, agarose gel electrophoresis, Gibson assembly, PCR and cloning, DNA quantification, protein purification, SDS-PAGE, cell culture, transfection, mRNA microinjection, fast kinetics using stopped flow, single-molecule FRET using TIRF microscopy, light microscopy, NMR and Mass Spectroscopy of proteins

Key Courses Undertaken

Organic: Reactions of carbonyl compounds, Thermal and photochemical reactions (Chemistry) **Inorganic:** Magnetochemistry, Organometallic Chemistry Physical: Chemical Thermodynamics, Data Analysis, Introduction to computational quantum mechanics, Molecular energetics and dynamics, Molecular spectroscopy, Computational Chemistry Others Calculus, Linear Algebra, Differential equations, Quantum Physics, Basics of electricity/magnetism Minor Molecular Biology, Genetic Engineering, Introduction to Computational Biology, Metabolism and Bioenergetics, Molecular cell biology and Genetics, Bioinformatics, Molecular biophysics DNA and Gene Expression: DNA Structure, Replication and Repair, Genomics, Epigenetics, Master (2 lectures Transcription, Translation, RNA Splicing, RNA-based regulation, Protein Structures and Folding each) Metabolic and Genetic Networks: Enzyme Mechanisms and Regulation, Biological Membranes, Photosynthesis, Metabolic Networks, Signal Transduction, Microbiomes Cell Biology, Immunology: Protein Sorting and Processing, Ubiquitin, Nucleocytoplasmic Transport, Cytoskeleton, Cell Cycle, Meiosis, Apoptosis, Cancer, Infectious Diseases, Immunology: Innate Immunity, T Cell Development and Function, B Cells

Extracurricular Activities

- Misc. Member of **Hertha Sponer College** of Multiscale Bioimaging (MBExC) platform, Göttingen targeting select students to provide interdisciplinary training in natural sciences/biomedicine
 - Attended UK Biobank Scientific Conference 2020, Lindau Online Science Days 2020
 - Joined The Physics of Life online summer school 2020 by Princeton University
 - Successfully completed the workshop Statistics for Life Scientists conducted by the SIB, Basel
 - Qualified for finals of Bioinformatics Contest 2018 organized by Stepik and Rosalind
 - Completed courses on **Coursera**: Introduction to genomic technologies JHU, Bioinformatics-I (with honors) UC San Diego, Machine Learning Stanford
 - Cleared level A1.1 of **German language** course
 - Volunteered to organize Asia-Pacific Conference of Theoretical and Computational Chemistry, 8
- Sports Secured **gold medal** in the 200m event at the annual athletic championship conducted by Bombay City District Amateur Athletic Association (BCDAAA)
 - Bagged bronze medal in 4x100m relay at Bombay YMCA annual athletic meet
 - Won bronze medals in the events 100,200m at the institute Athletic General Championship
 - Part of the IIT Bombay Athletics team selected to participate in Inter IIT competition

References

Email
Dr. Johannes Söding | Quantitative and Computational Biology group, MPI-BPC
Email
Prof. Dr. Helmut Grubmüller | Theoretical and Computational Biophysics group, MPI-BPC
Email
Prof. Dr. Christian Griesinger | NMR-based Structural Biology group, MPI-BPC
Email
Prof. Anindya Dutta | Department of Chemistry, IIT Bombay