 10–16 нояб.	11	Вынужденные колебания	⁰ 11.1 ⁰ 11.2 T13	10.8 10.6 10.23 10.59	10.20 10.25 10.82 T14
					10.92

× 11 1°

 0 **11.1.** К последовательно соединенным резистору с сопротивлением R=3,2 кОм и конденсатору ёмкостью C=1 мкФ приложено сетевое напряжение с частотой f=50 Гц. Найдите сдвиг фаз $\Delta \varphi$ между напряжением в сети и напряжением на резисторе.

ΩTBeT: Δφ ≈ −45°.

Damo	Peueuu.
R = 3,2 nou	$\mathcal{L}_{c} = \mathcal{L}_{o} e^{i\omega t}$
C = 1 un 9	Î= che = ciwhoeiwt = wchoeite
f=50 (y	
Δφ -?	Ûr: ÎR = wreû, ei \(\frac{t}{2} ei \omega^2 - cylunymo ra \(\frac{t}{2} \).
	ÛR + Ûc = Ée eiwt = Ée Ée ronposence beeneu
	ûp -// na pequemope
Z	$tq \varphi = \lambda = -$
	1/4 WRCIÑO WRC 100H-3,2.13.10=
Λ	* ê 3 - 5 + 2 - # .
mbem: -#	

1511.2

 0 **11.2.** Некоторый двухполюсник, имеющий импеданс $Z = 3 + i\sqrt{3}$ [Ом], подключён к идеальному источнику переменной ЭДС с амплитудой $\mathcal{E}_0 = 2 \text{ B}$. Найдите среднюю мощность, потребляемую двухполюсником.

Ответ: P = 0.5 Вт.

Dano:

Penuten!

$$\frac{\mathcal{E}_0}{\sqrt{12}} = \frac{e^{i\psi}}{e^{i\psi}} = \frac{\mathcal{E}_0}{\sqrt{12}} = \frac{i(\psi - \frac{\pi}{6})}{\sqrt{12}} = \frac{i(\psi - \frac{\pi}{6}$$

Let y = 0 (re bewell na qp. mongrocus

$$\frac{1}{2} = \frac{1}{6} \left(\frac{1}{6} - \frac{1}{6} \right)$$

$$\hat{T} = \frac{1}{6} \left(\frac{\omega + -\frac{1}{6}}{6} \right)$$

$$\hat{T} = \frac{1}{6} \cos(\omega + -\frac{1}{6})$$

$$P = EJ = \frac{C_0^2}{\sqrt{12}} \cos \omega + \cos(\omega + - \frac{4}{6}) = \frac{E_0^2}{\sqrt{12}} = \frac{1}{2} (\cos(2\omega + - \frac{4}{6}) + \cos \frac{4}{6})$$

$$\overline{P} = \frac{\varepsilon^{2}}{2\sqrt{12}} \cos \frac{\pi}{6} = \frac{\varepsilon^{2}}{2\sqrt{12}} \frac{\sqrt{3}}{2} = \frac{\varepsilon^{2}}{8} = \frac{4}{8} = 0.5 \text{ BT}$$

Oulem: 0,5

Т13. (2023-1Б) В представленной на рисунке электрической схеме генератор Г создаёт переменный ток по закону $I(t) = I_0(\cos \omega_0 t + \cos 2\omega_0 t)$, где $\omega_0 = 1/\sqrt{LC}$. Определите выделяющуюся на сопротивлении R среднюю мощность, если $\sqrt{L/C} = 3/2 R$.

<u>Otbet:</u> $P = \frac{3}{4}I_0^2 R$.

Peumus.

It-1= I, (cosw.t + coc2w.t)

$$\hat{I}_{R} = \frac{1}{R} \frac{I_{0} e^{i\omega_{0}t}}{\frac{1}{R} - i\frac{2\pi}{2R} + i\frac{2\pi}{2R}} + \frac{1}{R} \frac{I_{0} e^{i2\omega_{0}t}}{\frac{1}{R} - i\frac{2\pi}{2R} + 2i\frac{2\pi}{2R}} =$$

$$= I_{0} e^{i\omega_{0}t} - \frac{I_{0} e^{i2\omega_{0}t}}{1 + i} = I_{0} e^{i\omega_{0}t} + \frac{I_{0}}{\sqrt{i}} e^{i(2\omega_{0}t - \frac{\pi}{4})}$$

$$P = I_{R}^{2} R - \left(I_{0}^{2} \cos(\omega_{0}t + \frac{I_{0}^{2}}{2} \cos(2\omega_{0}t - \frac{\pi}{4}) + \sqrt{\epsilon} I_{0}^{2} \cos(\omega_{0}t \cos(2\omega_{0}t - \frac{\pi}{4})) R$$

$$= \left(I_{0}^{2} \left(\frac{1}{2} + \frac{1}{2} \cos_{2}\omega_{0}t\right) + \frac{I_{0}^{2}}{2} \left(\frac{1}{2} + \frac{1}{2} \cos_{2}\left(2\omega_{0}t - \frac{\pi}{4}\right)\right) \right) + \frac{\sqrt{\epsilon}}{2} I_{0}^{2} \left[\cos_{3}(\omega_{0}t - \frac{\pi}{4}) + \cos_{3}(\omega_{0}t - \frac{\pi}{4})\right] R$$

$$\hat{P} = \left(\frac{I_{0}^{2}}{2} + \frac{I_{0}^{2}}{2}\right) R - \frac{3}{4} I_{0}^{2} R$$

$$Omberon: \hat{P} = \frac{3\pi}{4} I_{0}^{2} R$$
