Électricité et magnétisme Chapitre 7 - Circuits en courant continu

Loïc Séguin-Charbonneau

Cégep Édouard-Montpetit

26 octobre 2021

Exercice sur la loi des nœuds

Le diagramme ci-dessous illustre un nœud dans un circuit. Les courants sont

$$I_1 = 100 \text{ mA}$$

 $I_2 = 45 \text{ mA}$
 $I_3 = 80 \text{ mA}$
 $I_4 = 300 \text{ mA}$

Déterminer I_5 et la direction du courant dans cette branche.

Exercice sur la loi des mailles

On considère le circuit suivant dans lequel $\mathcal{E}=12\,\mathrm{V},\ R_1=100\,\Omega$ et $R_3=50\,\Omega$. Le courant qui circule dans le circuit est de $I=30\,\mathrm{mA}.$ Déterminer R_2 .

Pikachus en série et parallèle

Soit R_s la résistance équivalente à trois Pikachus en série et R_p la résistance équivalente à trois Pikachus en parallèle. On suppose que tous les Pikachus ont la même résistance.

Quelle est la valeur du rapport $\frac{R_s}{R_p}$?

A. 9

B. 3

C. 1

D. 1/3

E. 1/9

Trouvons le courant dans chaque branche

Identifier la direction du courant (au hasard!)

Identifier la direction des mailles et le nœud

Batterie d'ordinateur

Un ordinateur portable a une batterie de $49.9\,\mathrm{W}\,h$ avec une f.é.m. de $11.4\,\mathrm{V}$. L'ordinateur vient avec un chargeur de $30\,\mathrm{W}$. Lorsque la batterie fournit un courant de $800\,\mathrm{mA}$ à l'ordinateur, la différence de potentiel à ses bornes chute à $10.9\,\mathrm{V}$.

- 1. Quelle est la résistance interne de la batterie?
- 2. Quelle est la puissance perdue sous forme de chaleur dans la batterie?
- 3. Si la batterie est complètement vide au départ, combien de temps est nécessaire pour la charger complètement ? (Vous pouvez négliger la résistance interne ici.)

Défibrillateur cardiaque

Défibrillateur

Un défibrillateur cardiaque est composé d'une source de tension dont la fém est 2500 V et d'un condensateur de 32 μ F. Pour charger le condensateur, on le place en série avec une résistance de $10\,\mathrm{k}\Omega$. Quel est le temps requis pour que le condensateur atteigne 95 % de sa charge maximale ?

Défibrillateur

Maintenant que le condensateur est chargé, on peut utiliser le défibrillateur. On connecte le condensateur en série avec le cœur et le condensateur se décharge à travers ce dernier. La décharge dans le cœur prend 5 ms et est complète lorsqu'il ne reste que 10 % des charges initiales sur le condensateur. Quelle est la résistance du thorax?

Quel était le courant dans le cœur $1\,\mathrm{ms}$ après le début de la décharge ?

Quelle est l'énergie qui est fournie par le condensateur au cœur?