Branch and bound

For linear programming: with powers of 2.

a) The problem

- We have a linear programming problem for which one of two things is true:
- 1) We don't have all the linear inequalities but we have a relaxed version (subset) of them. Ex: TSP. for n>6, with just the basic facets.
- 2) We do have all the available inequalities, but they are not precise enough to limit our answer to only the realistic possibilities.

a) The problem

- We have a linear programming problem for which one of two things is true:
- 1) We don't have all the linear inequalities but we have a relaxed version (subset) of them. (Ex: TSP. for n>6)
- 2) We do have all the available inequalities, but they are not precise enough to limit our answer to only the realistic possibilities.
- But: we do know that the optimal answer (as a vector)
 has a finite number of allowed values for the
 coordinates. [Examples: 0 or 1 for STSP, non-negative
 integers for knapsack problem, powers of 2 for the
 balanced minimal evolution problem.]

- a) (cont.) Steps for the case of a problem which only allows powers of 2 as coordinates.
- 1) Run the LP solver (such as simplex method) to get answer zero: vector \mathbf{x}_0 and objective function value \mathbf{p}_0 .

a) (cont.) Steps for the case of a problem which only allows powers of 2 as coordinates.

- 1) Run the LP solver (such as simplex method) to get answer zero: vector \mathbf{x}_0 and objective function value \mathbf{p}_0 .
- 2) If \mathbf{x}_0 has all coordinates powers of 2, then we say it is *complete*, and it is our final answer.

a) (cont.) Steps for the case of a problem which only allows powers of 2 as coordinates.

- 1) Run the LP solver (such as simplex method) to get answer zero: vector \mathbf{x}_0 and objective function value p_0 .
- 2) If \mathbf{x}_0 has all coordinates powers of 2, then we say it is *complete*, and it is our final answer.
- 3) If not, then we create some new LP problems 1A, 1B, etc. by adding *new inequalities one at a time*, just enough to force an offending coordinate away from its disallowed value.
- 4) We solve each of these (as long as they are still *feasible*) to get answers 1A, 1B, ... etc.

a) (cont.) Steps for the case of a problem which only allows powers of 2 as coordinates.

- 1) Run the LP solver (such as simplex method) to get answer zero: vector \mathbf{x}_0 and objective function value p_0 .
- 2) If \mathbf{x}_0 has all coordinates powers of 2, then we say it is *complete*, and it is our final answer.
- 3) If not, then we create some new LP problems 1A, 1B, etc. by adding new inequalities one at a time, just enough to force an offending coordinate away from its disallowed value.
- 4) We solve each of these (as long as they are still *feasible*) to get answers 1A, 1B, ... etc.
- 5) For each new answer we check whether it is complete, and if not whether it *merits further branching* into more new problems.
- 6) The process ends when no more branching is indicated; and the final answer is the optimal one from among the complete answers found.

b) Example in 2d

Maximize p = 6.75x + 5y subject to

$$-x <= 0$$

$$-y <= 0$$

$$x \le 8.3$$

 $79x + 18y \le 693.5$ Require all coordinates of answer (x,y) to be powers of 2.

Optimal Solution: p = 93.87; x = 6.5, y = 10

Answer zero:

$$p = 93.87$$
; $x = 6.5$, $y = 10$

Branches:

Maximize p = 6.75x + 5y subject to

$$-x <= 0$$

$$-y <= 0$$

$$y <= 10$$

$$x \le 8.3$$

x <= 4

Maximize p = 6.75x + 5y subject to

$$-x <= 0$$

$$-y <= 0$$

$$x \le 8.3$$

$$x >= 8$$

1A: Optimal Solution:

$$p = 77$$
; $x = 4$, $y = 10$

1B: Optimal Solution:

$$p = 71.08$$
; $x = 8$, $y = 3.417$

$$p = 77$$
; $x = 4$, $y = 10$

Branches:

2B: Not feasible.

Maximize p = 6.75x + 5y subject to

$$-x <= 0$$

$$-y <= 0$$

$$x \le 8.3$$

$$x <= 4$$

$$y <= 8$$

2A: Optimal Solution:

$$p = 67$$
; $x = 4$, $y = 8$

Complete solution.

$$p = 71.08$$
; $x = 8$, $y = 3.417$

Branches:

$$y >= 4$$

Maximize p = 6.75x + 5y subject to

$$-x <= 0$$

$$-y <= 0$$

$$y <= 10$$

$$x \le 8.3$$

$$x >= 8$$

$$y <= 2$$

2D: Not feasible ($x \ge 8$ and $y \ge 4$).

2C: Optimal Solution: p = 66.03; x = 8.3, y = 2

66.03 < 67 (best complete solution) so: No further branching.

So final answer is p=67 at x=4, y=8.