FT II – Fundamentos: Transferencia de massa

Felipe B. Pinto 61387 – MIEQB

6 de maio de 2024

Conteúdo

massa	Τ	es de transferencia de	ļ.	3	verocidades	5
			. 2	4	Coeficiente de Difusão	6
	2	ções	. 3	5	Lei da difusão	7
Exemplo 1 4 6 Fluxo máximo (molar) de i	Ехе		. 4	6	Fluxo máximo (molar) de i	8

1 Operações de transferencia de massa

1.1 Destilação

- Líquido–Vapor
- Todos os componentes tem duas fases
- Composição diferente em cada fase

1.2 Absorção Gasosa

- Gás–Liquido
- Apenas uma componente se distribui

1.3 Secagem

- · Gás-Sólido
- Difusão do líquido presente no sólido para o gás

1.4 Extração Líquido–Líquido

- Solução heterogenea
- Solvente + Solução → Extrato + Resíduo

2 Composições

Concentração mássica

$$ho_A = rac{m_A}{V} ~~
ho = \sum_i
ho_i$$

Concentração molar

$$c_A = rac{
ho_A}{M_A} = rac{N_A}{v} = rac{p_A}{R\,T}$$

Fração molar

$$y_A=rac{c_A}{c}=rac{p_A/(R\,T)}{P/(R\,T)}=rac{p_A}{P}$$

Exemplo 1

A composição molar de uma mistura gasosa a $273\,\mathrm{K}$ e $1.5\,\mathrm{E}^5$ Pa é

O_2	СО	CO_2	N_2
7%	10%	15%	68%

Determine

E1 a)

A composição em percentagem mássica

Resposta

$$\rho_X = \frac{m_X \frac{g(X)}{\text{mol}}}{M \frac{g}{\text{mol}}} = \frac{100 m_X}{M} \frac{\% g_X}{g};$$

$$m_X \frac{g_X}{\text{mol}} = \frac{M_X g_X}{\text{mol}_X} \frac{c_X \text{mol}_X}{\text{mol}} = M_X c_X \frac{g_X}{\text{mol}};$$

$$M \frac{g}{\text{mol}} = \sum m_X \frac{g(X)}{\text{mol}} \Longrightarrow$$

$$\implies \rho_X = \frac{100 \, M_X \, c_X}{\sum m_X} \, \frac{\% \mathrm{g_X}}{\mathrm{g}}$$

	O_2	СО	CO_2	N_2
m_x	2.24	2.80	6.60	19.04
$ ho_X$	7.301	9.126	21.512	62.060
			Λ.	I = 30.68

E1 b)

A massa específica da mistura gasosa

Resposta

Assumindo gás ideal.

$$\rho = \frac{M \, n}{V} = \frac{M \, n}{\frac{n \, RT}{P}} = \frac{M \, P}{R \, T} \cong \frac{30.68 \, \mathrm{E}^{-3} * 1.5 \, \mathrm{E}^{5}}{8.314 * 273.15} \cong 2.026 \, \mathrm{kg \, m^{-3}}$$

Velocidade mássica

$$v = rac{\sum_{i=1}^{n}
ho_i \, v_i}{\sum_{i=1}^{n}
ho_i} = rac{\sum_{i=1}^{n}
ho_i \, v_i}{
ho}$$

Velocidade média molar

$$V = rac{\sum_{i=1}^n c_i \, v_i}{c}$$

Velocidade relativa

Velocidade do componente i relativamente à velocidade média mássica/molar

$$egin{aligned} \Delta v_i &= v_i - v \ \Delta V_i &= v_i - V \end{aligned}$$

Coeficiente de Difusão

$$D=f(P,T, ext{natureza do componente}) \ J_A=-D_{A,B}\;
abla c_A$$

Valores típicos Gases $(1 \rightarrow 10) E^{-5}$

Líquidos
$$(0.5 \rightarrow 2) E^{-9}$$

Sólidos
$$(1 \rightarrow 1\,000\,000\,000\,000) \,\mathrm{E}^{-24}$$

5 Lei da difusão

1^a Lei de Fick

$$J_A = -D_{A,B}
abla c_A$$

 $D_{A,B}$ Coeficiente de difusão

Sistemas

Unidirecional

Isobárico e isotérmico

$$J_{A,z} = -D_{A,B}rac{\mathrm{d}c_A}{\mathrm{d}z}$$

$$J_{A,z} = -c\,D_{A,B}rac{\mathrm{d}y_A}{\mathrm{d}z}$$

6 Fluxo máximo (molar) de i

$$N_A=c_A\,v_A=y_A(N_A+N_B)-c\,D_{A,B}\,
abla y_A \ N_{A,z}=y_A(N_{A,z}+N_{B,z})-c\,D_{A,B}\,rac{\mathrm{d} y_A}{\mathrm{d} z}$$

$$J_{A,z} = c_A(v_{A,z} - V_z) = -c D_{A,B} \frac{\mathrm{d}y_A}{\mathrm{d}z} \implies$$

$$\implies c_A v_{A,z} =$$

$$= c_A v_z - c D_{A,B} \frac{\mathrm{d}y_A}{\mathrm{d}z} =$$

$$= c_A \left(\frac{c_A v_{A,z} + c_B v_{B,z}}{c}\right) - c D_{A,B} \frac{\mathrm{d}y_A}{\mathrm{d}z} =$$

$$= y_A \left(c_A v_{A,z} + c_B v_{B,z}\right) - c D_{A,B} \frac{\mathrm{d}y_A}{\mathrm{d}z};$$

$$N_A = c_A v_A \implies$$

$$\implies c_A v_{A,z} = N_{A,z} = y_A \left(N_{A,z} + N_{B,z}\right) - c D_{A,B} \frac{\mathrm{d}y_A}{\mathrm{d}z} \implies$$

$$\implies N_A = y_A \left(N_A + N_B\right) - c D_{A,B} \nabla y_A$$

6.1 Formas equivalentes para fluxo de massa em sistemas binarios (A,B)

Flux	Gradient	Fick rate eq	Restrictions
n_A	$ abla \omega_A \ abla ho_A$	$n_A = -\rho D_{A,B} \nabla \omega_A + \omega_A (n_A + n_B)$ $n_A = -D_{A,B} \nabla \rho_A + \omega_A (n_A + n_B)$	Constant $ ho$
j_A	$ abla \omega_A \ abla ho_A$	$j_A = -\rho D_{A,B} \nabla \omega_A$ $j_A = -D_{A,B} \nabla \rho_A$	
N_A	$ abla y_A \ abla c_A$	$N_A = -c D_{A,B} \nabla y_A + y_A (N_A + N_B)$ $N_A = -D_{A,B} \nabla c_A + y_A (N_A + N_B)$	Constant <i>c</i>
J_A	$ abla y_A \ abla c_A$	$J_A = -c D_{A,B} \nabla y_A$ $J_A = -D_{A,B} \nabla c_A$	