From Fick's second law,

On integration,
$$\frac{dc_A}{dx} = k_1 \Rightarrow c_A = k_2 + k_2$$

$$x = 0 \Rightarrow R_1 = Cas = Cas$$

Penetration Theory
$$t = 0 , z = 7, 0, CA = CAf$$

$$t = 0 , z = 0, CA = CAf$$

$$t = 0 , z = 0, CA = CAf$$

$$t = 0 , CA = CAf$$

$$\frac{CA - CAb}{CAC - CAb} = 1 - erf(\eta)$$

$$\frac{DAB}{AC} \cdot CAi - CAi$$

$$\frac{DAB}{AC} \cdot CAi - CAi$$

Na, ang =
$$2\sqrt{\frac{D_{AB}}{\pi t}}$$
 C (At - CAb)

KL (tt) = $\sqrt{\frac{D_{AB}}{\pi t}}$ => KL, ang = $(2\sqrt{\frac{D_{AB}}{\pi tc}})$

Surface Renewal Theory,

@ Boundary layer Theory

$$\frac{1}{L} \int_{0}^{L} k_{LX} dx = \left(\frac{Se^{\frac{1}{2}} D_{AB}}{L} \right) \int_{0}^{L} \frac{0.332}{\pi} \left(\frac{eu_0 x}{4l} \right)^{\frac{1}{2}} dx$$

$$K_L$$
, ang L = 0.6643 Re Sc.

 $Shap = 0.664$ Re L Sc. L

$$Sh = 2 + 0.3 Re^{0.5} se^{0.83}$$

$$Sh = 2 + 0.3 Re^{0.5} se^{0.83}$$

She =
$$\frac{1}{2}$$
 when $\frac{1}{100}$ atmosphere is so $\frac{1}{100}$ Sh = $\frac{1}{2}$ + 0.3 Re $\frac{1}{100}$ Sh = $\frac{1}{2}$ + $\frac{1}{100}$ Sh = $\frac{1}{2}$ + $\frac{1}{100}$ Sh = $\frac{1}{2}$ + $\frac{1}{100}$ Reunoids no.