® BUNDESREPUBLIK ® Offenlegungsschrift ® DE 42 27 886 A 1

DEUTSCHES

PATENTAMT

Aktenzeichen:

P 42 27 886.4

Anmeldetag: (3) Offenlegungstag: 22. 8. 92

24. 2.94

(5) Int. Cl.⁶: B 60 G 17/01

B 60 G 21/08 B 60 G 21/10 G 01 C 19/64 G 01 C 9/00 G 01 B 11/24 G 01 P 15/14 B 62 D 3/08

Alcatel SEL Aktiengesellschaft, 70435 Stuttgart, DE

@ Erfinder:

Böhm, Manfred, Dr.-Ing., 7000 Stuttgart, DE

(S) Neigungsgeber für ein Fahrzeug mit einem Aufbau

(5) Neigungsgeber für ein Fahrzeug mit einem Aufbau
(5) Es wird ein Neigungsgeber (N) für ein Fahrzeug (F) mit Aufbau (A) zur Ermittlung des Neigungswinkels (a) des Aufbaus (A) gepanüber der Horizontalen (H) quer zur Fahrtrichtung angegeben. Der Neigungswinkel (a) wird uburd Jurich Messern der Drehrete (do/dt), mit der eine der Aufbau quer zur Fahrtrichtung dreht, gemessen und aus diesem Wert der Neigungswinkel (a) berechnet. Dieser Wert des Neigungswinkels kann in einem ersten Anwendungsbeispiel einem Warngerät zugeführt werden, das bei Überschreiten eines kritischen Wertes des Neigungswinkels (a) oder der Drehrete (do/dt) ein Warnsignal abgibt. Anstelle des Warnsignals kann auch ein Funktionssignal abgegeben werden, das die Fahrweise des Fahrzeuges, z. B. über die Bremse oder das Gaspedal, beeinträchtigt. In einem weiteren Anwendungsbeispiel wird das Ausgangssignal des Neigungsgebers einem Neigungskompensator zugeführt, der den genelgten Aufbau (A) wieder in die Horizontale aufrichtet.

Den generatieren der Drehrete eignen sich besonders Feserkreisel, die unter Ausnutzung des Segnac-Effekts wirken.

Beschreibung

Die Erfindung betrifft einen Neigungsgeber gemäß

Solche Neigungsgeber können in Fahrzeugen eingesetzt werden, um den Neigungswinkel des Aufbaus quer zur Längsrichtung des Fahrzeuges zu ermitteln, z. B. um dem Fahrer eine Warnung abzugeben oder um gegebenenfalls vorhandene, die Neigung des Aufbaus ausgleichende Neigungskompensatoren anzusteuern.

Eine Neigung des Aufbaus kann z.B. beim Durchfahren einer Kurve entstehen, da die Fahrzeuge der Fliebkraft unterliegen, die horizontal nach außen wirkt und die proportional der Fahrzeugmasse, dem Kehrwert des Kurvenradius und dem Quadrat der Fahrzeuggeschwindigkeit ist. Am Fahrzeug greift außerdem die der Fahrzeugmasse proportionale, vertikal wirkende Schwerkraft an. Aus Fliehkraft und Schwerkraft, die sich vektoriell addieren, bildet sich eine Summenkraft, die am Fahrzeugschwerpunkt angreift. Da dieser Schwerpunkt 20 immer oberhalb der Fahrbahn liegt, bewirkt sie ein

Dieses Kippmoment wird im allgemeinen durch die Konstruktion des Fahrzeugfahrwerkes kompensiert, so-fern die Fahrzeuggeschwindigkeit dem jeweiligen Kurvenradius angepaßt ist, und die Ladung eines Fahrzeuges nicht zu einer unzulässigen Erhöhung des Fahrzeugschwerpunktes führt.

Die bei einer Kurvenfahrt auftretende Flichkraft führt jedoch bei gesederten Fahrzeugen immer dann zu einer Neigung des Aufbaus eines Fahrzeuges gegenüber dessen Fahrwerk, wenn die Fahrbahn nicht überhöht ausgebaut ist oder die Fahrzeugeigenschaften

nicht einer vorhandenen Überhöhung angepaßt sind. Wegen der Neigung des Fahrzeugaufbaus in Kurven as infolge der Fliehkraft kann es auch bei noch sicherem Fahrverhalten des Fahrzeugs zu Nebenwirkungen kommen, die unangenehm sind oder sogar zu Schäden führen. Dazu gehören der Fahrgastkomfort bei Bussen und

das Verrutschen nicht ausreichend gesicherter Ladung bei Lastkraftwagen.

Gefährlich ist allerdings das Kurvenverhalten von Tanklastern, weil bei Tanks ohne Schotten die bewegliche Tankfillssigkeit nach "außen" strömt, eine parabelförmige Oberfläche bildet und so den Schwerpunkt 45 ebenfalls nach außen verlagert. Dadurch wird die Gefahr des Kippens schwer vorhersehhar erhöht.

Der Erfindung liegt die Aufgabe zugrunde, einer technisch zuverlässigen und empfindlichen Neigungsgeber, sowie eine geeignete Anordnung eines solchen Nei- 50 gungsgebers zur Reduzierung des Kippmoments anzu-

Die Aufgabe wird durch die Merkmale des Anspruchs

1 sowie die der Ansprüche 5, 7 und 10 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind den 55 Unteransprüchen zu entnehmen.

Mehrere Ausführungsbeispiele der Erfindung sind anhand der Fig. 1 und 2 beschrieben. Es zeigen:

Fig. 1 ein erstes Ausführungsbeispiel eines Fahrzeuansicht abgebildet, und

Fig. 2 ein zweites Ausführungsbeispiel eines Fahrzeu es mit einem Neigungskompensator, ebenfalls in der

Rückansicht abgebildet.
In Fig. 1 ist ein erstes Ausführungsbeispiel eines Neigungsgebers N und dessen Anordnung in einem Fahrzeug Fabgebildet. Die Fig. 1 zeigt die Rückansicht eines Lastkraftwagens F mit einem schematisch abgebildeten

Fahrwerk FW und einem Aufbau A. Der Neigungsgeber N weist als Sensor vorteilhafterweise einen die Drehrate messenden Faserkreisel auf.

Ein solcher Faserkreisel und sein Funktionsprinzip sind an und für sich gesehen schon z.B. aus der Zeitschrift Mikrowellen Magazin, Heft 5/80, Seiten 417 bis 423 bekannt. Solche Faserkreisel weisen im wesentlichen eine zylindrisch gewickelte aus einer optischen Faser bestehende Spule auf, in der zwei Lichtbündel der gleichen Wellenlänge, der gleichen Polarisation und unter bekannter Phasenlage in entgegengesetzter Richtung in der Faser geführt werden. Dreht sich nun die Spule um ihre Zylinderachse, tritt der sogenannte Sagnac-Effekt auf, der eine Phasenverschiebung der beiden Lichtbündel zueinander bewirkt. Die Phasenverschiebung ist dabei proportional zur Drehrate. Diese Phasenverschiebung wird in einer an und für sich bekannten elektrischen und optischen Einrichtung ausgewertet. Aus diesem Ergebnis wird der Drehwinkel, den die Spu-le bei der Drehung erfahren hat, errechnet. Die Messung erfolgt dabei auf ein raumfestes Bezugssystem bezogen.

Der Faserkreisel eignet sich durch seine mechanische

Robustheit und seine kleinen Ausmaße sowie sein geringes Gewicht in vorteilhafter Weise als Drehratensensor. Ein weiterer Vorteil in der Verwendung eines Faser-kreisels liegt in seiner hohen Empfindlichkeit, die eine sehr geringe und auch zeitlich kurze Drehrate meßbar

Der Faserkreisel ist dabei derart optimiert, daß er für die Messung einer Drehrate da/dt - 1 bis 10°/h eine maximale Genauigkeit zeigt.

Eine solche Drehrate entspricht etwa einer Auslenkungsrate des Aufbauschwerpunktes S um 0,1 mm/s. Da die Kippgefahr bei Auslenkungen des Schwerpunktes oberhalb von etwa 0,1 m beginnt, entspricht der Faser-kreisel einer Genauigkeitsklasse von 0,1%.

Diese Genauigkeit ist notwendig zu möglichst frühzeitigen Erkennung einer Kippgefahr, da neben der Messung des Winkels a die Bewertung von dessen Anderung da/dt eine entscheidende Rolle spielt. Denn die Kippgefahr ist dann groß, wenn bereits große Winkel a mit großen Drehraten da/dt zusammentreffen, jedoc klein, wenn bei großem a die Drehrate da/dt gegen Null geht. Aus den fahrdynamischen Eigenschaften eines bestimmten Fahrzeugs ergeben sich die zulässigen und nicht zulässigen Verläufe von a und da/dt die im Auswerterechner zu berücksichtigen sind.

Der Faserkreisel ist unterhalb des Aufbaus A so angebracht, daß seine Drehachse parallel zur Fahrzeugachse ausgerichtet ist. Dabei ist der Ort der Befestigung nicht wesentlich, denn eine Neigung des Aufbaus A führt auch zu einer Neigung der gesamten Ladefläche, wenn diese ausreichend steif ist.

Die Auswerteeinrichtung des Neigungsgebers muß dabei nicht in unmittelbarer Nähe des Faserkreisels angebracht sein, sondern sie kann sich z. B. auch im Motorraum oder in der Fahrerzelle befinden.

In einem ersten Anwendungsbeispiel werden die den ges mit einem Kippwarngerät schematisch in der Rflick- 60 Neigungswinkel a oder die Drehrate da/dt enthaltenden Ausgangsdaten des Neigungsgebers N einem Kipp-Warngerät zugeführt, das ein Kippsignal abgibt, sobald der Neigungswinkel a des Aufbaus A gegenüber der Horizontalen quer zur Längsrichtung des Fahrzeuges F einen vorgegebenen Schwellwert au oder dau/dt übersteigt. Das Kippsignal kann sowohl ein Warnsignal als auch ein Signal sein, das einen Eingriff in die Funktionsweise des Fahrzeuges, z. B. Bremsen oder Gas, bewirkt.

Das Kippsignal kann auch aus einer Mischung beider Signalarten bestehen. Es ist beispielsweise vorgeseh das. Kippsignal für unterschiedliche Werte des Neigungswinkels a oder der Drehrate da/dt in mehrere Stufen aufzuteilen. So wird z. B. beim Erreichen eines ersten Schwellwertes af oder daf eine optische Anzeige im Fahrerhaus aktiviert, bei Erreichen eines höheren Schwellwertes az oder daz/dt wird eine akustische Warnung abgegeben, bei Erreichen eines noch höheren dritten Schwellwertes as oder das/dt erfolgt ein mechanisches Rüttein, z. B. des Fahrersitzes oder des Lenkrades. Bei Erreichen eines vierten Schwellwertes au oder das/dt erfolgt der Eingriff in die Funktionsfähigkeit des Fahrzeuges. Die genannten einzelnen Maßnahmen kön-nen natürlich auch in anderer Reihenfolge und/oder einer anderen Zusammensetzung erfolgen. Ein solches Kipp-Warngerät hat den Vorteil, daß es nachträglich eingebaut werden kann.

Die Ausgangswerte des Neigungsgebers N werden zum Erzeugen des Kippsignals auf eine Rechnereinheit 20 geführt, in der die Schwellwerte für die einzelnen Warnstufen und/oder Funktionsstufen gespeichert sind. Durch Vergleich momentaner Werte a des Neigungswinkels oder da/dt der Drehrate mit entsprechenden Schwellwerten ermittelt der Rechner das jeweils vorgesehene Kippsignal, das dann über die Rechnereinheit an die jeweilige Warn-Funktionseinheit geleitet wird und dort durch eine entsprechende Einheit ein Warnsignal

oder Funktionssignal erzeugt.

Nahezu jedes Fahrzeug hat einen gefederten Aufbau. 30 Die Forderung ist u. a. durch die Länge der Federwege charakterisiert. Außerdem sind die Federwege durch Anschläge begrenzt Hieraus ergeben sich die Randwerte für die Ermittlung der kritischen Werte, bei denen eine Kippgefahr vorliegt. Ein Grenzwert des Neigungswinkels a ist gegeben, wenn der Fahrzeugaufbau A auf der Kurvenaußenseite sich so weit neigt, daß der untere Federungsanschlag erreicht wird und gleichzeitig auf der Kurveninnenseite die Federung voll entlastet is

Vor Erreichen des Grenzwertes des Kippwinkels 40 können in der oben aufgezeigten Weise weitere Schwellwerte definiert werden, die das Herannahen der Kippgefahr signalisieren. Dabei kann auch die Art der Ladung, z. B. wegen der Rutschgefahr, berücksichtigt

Wird z. B. als Fahrzeug F ein Nutzfahrzeug herangezogen und dieses ungleichmeßig beladen, dann kann eine Neigung des Nutzfahrzeuges F schon im Stillstand auftreten. Diese Neigung kann über den Neigungsgeber N automatisch ermittelt, und über den Rechner für die weitere Betrachtung herausgemittelt werden. Hierzu ist es sinnvoll, den Rechner mit Informationen darüber zu versorgen, ob sich das Fahrzeug in Bewegung befindet oder ob es steht. Weiter kann durch einen zweiten, am Fahrwerk FW befestigten Neigungsgeber ermittelt so werden, ob die statische Schräglage tatsächlich durch ein ungleichmäßiges Beladen oder auf einen geneigten Untergrund, auf dem sich das Fahrzeug befindet, zurückzuführen ist. Diese Information ist dem Rechner ebenfalls zuzuführen.

In einem zweiten Anwendungsbeispiel eines erfindungsgemäßen Neigungsgebers werden die Ausgangsdaten des Neigungsgebers N einem Neigungskompen-sator NK zugeführt, der die Lage des Schwerpunktes S des Aufbaus A, abhängig von der Große des Neigungswinkels a, in seiner Lage verändert. Um eine solche Änderung zu bewirken, können die Ausbauten z. B. um eine Achse parallel zur Längsachse, wie in Fig. 2 abgebildet, gelagert sein. Bei dieser Ausführung wird der Neigungswinkel a des Aufhaus bezüglich der Horizontalen stets vom Neigungsgeber ermittelt und das Ausgangssignal auf eine Vorrichtung V gegeben, die in der Lage ist, den Aufbau A in die Horizontale zurlickzudrehen. Eine Abweichung wird vom Neigungsgeber erfaßt und durch den Neigungskompensator NK ausgeglichen. Die Drehung des Aufbaus A kann hydraulisch über einen Stempel, wie in Fig. 2 angedeutet, oder elektrisch über einen Linearantrieb erfolgen.

Eine Änderung des Schwerpunktes A kann auch durch die Verschiebung des Aufbaus, Teilen davon oder mit dem Aufbau verbundener Teile erreicht werden. Die Verschiebung verläuft dabei quer zur Längsrichtung des Fahrzeuges und zwar um einen von der Art des Aufbaus und/oder der Ladung abhängigen Betrag. Sie ist umso größer, je größer der Neigungswinkel des Aufbaus ist, und wirkt der die Neigung verursachenden Kraft entge-

Maßnahmen, die einen Neigungswinkel a durch Verändern der Lage des Aufbaus, Teilen davon oder mit diesen befestigten Teilen kompensiert, eignen sich besonders für die Nachrüstung von Fahrzeugen

Die Elemente zur Kompenzation des Neigungswin-kels a können auch Bestandteile des Fahrwerks FW sein. So können speziell Federung und Lenkung, und zwar besonders dann, wenn getrennt regelbare hydropneumatische Federelemente zur Kompensation des Neigungswinkels herangezogen werden. In diesen Fällen können Fahrwerk und Aufbau als Einheit betrachtet

Der Lenkradeinschlag ist ebenfalls eine nützliche Information zur Unterscheidung von Neigungen infolge von Kurvenfahrt und solchen infolge einer zwar geraden, aber quer zur Fahrtrichtung geneigten Straße, z. B. infolge von Hanglage. Bei geraden Fahrten kann dann trotz Neigung auf die Neigungskompensation gegebenenfalls verzichtet werden, obwohl sie auch dann von

In einem einfachen Ausführungsbeispiel einer Neigungskompensation wird der Aufbau A um die Längse drehbar so gelagert, daß auch die Längakräfte von den Lagern aufgenommen werden. Dabei werden z. B. zur Stützung des Aufbaus A je ein oder mehrere Hydraulikstempel so verteilt, daß die von diesen auf zunehmenden Kräfte der maximalen Zuladung für den Aufbau ihrer Leistungsfähigkeit angepaßt sind Je mehr Stempel verwendet werden, desto kleiner können diese sein und desto schneller sind sie verstellbar. Die Stempel jeder Seite sind über eine Druckringleitung miteinander verbunden Jede der beiden Druckringleitungen führt zu einer Druckpumpe, die im Wechseltakt arbeitet. Dies bedeutet, daß sie die insgesamt konstante Menge an Hydraulikflüssigkeit umpumpt, je nachdem, welche Seite des Aufbaus gehoben werden soll.

Das Steuersignal für die Pumpe wird von der Rechneremheit geliefert, die eine Anzahl von Eingangsdaten enthält. Dazu gehören vor allem der Drehwinkel und der Lenkradeinschlag. Weitere Daten können von Sensoren wie Druckmesser, Lotgeber und Temperaturmesser geliefert werden.

Der Druckmesser liefert den Differenzdruck zwischen rechter und linker Seite des Aufbaus. Er ist bei Geradeausfahrt Null und steigt mit wachsender Flieb-

Ferner kann der Lotmesser auf einfache Weise die Funktion des zweiten Faserkreisels übernehmen und diesen ersetzen. Über den Lounesser wird auch die Be-

zugsrichtung (Horizontale) gemessen, gegenüber der der vom Faserkreisel ermittelte Neigungswinkel gemessen wird. Die Bezugsrichtung wird dabei automatisch, z. B. durch betätigen der Zündung vor Fahrtantritt er-mittelt. Bei ihrer Ermittlung kann auch eine statische Schräglage des Aufbaus A mitberücksichtigt werden.

Die Temperatur ist nützlich zur Berechnung des fliehkraftbedingten Druckes, der durch den temperaturbedingten Druckanteil (Ausdehnungskoeffizienten der Hydraulikflüssigkeit) verfälscht wird.

Bei dem auch in Fig. 2 abgebildeten Ausführungsbeispiel liegt der Drehpunkt D für den Aufbau A unterhalb seines Schwerpunktes S. Die Anhebung des Aufbaus erfolgt dann auf der Kurvenaußenseite. Legt man je-doch den Drehpunkt D für den Aufbau A über den 18 Schwerpunkt S des beladenen Aufbaus, dann wird man den Regelablauf umkehren. Der Aufbau A wird dann auf der Kurveninnenseite angehoben. Der Schwerpunkt S wandert dann ebenfalls zur Kurveninnenseite und die Rader werden dort mehr belastet.

Nachtellig bei dieser Methode ist jedoch die Verstärkung der Neigung nach außen. Sie kommt daher nur für volle Flüssigkeits- oder Schüttgutbehälter in Frage.

Bei der Verwendung von automatischen Stempeln kann der Energieverbrauch des Neigungskompensators 25 minimiert werden, indem der von einem Druckspeicher aufgebaute Hochdruck zur Neigungskompensation bei Wegfall des Bedarfs über eine Pumpe wiederum in den Hochdruckspeicher gepumpt wird und diesen Hochdruckspeicher dabei nachlädt.

Die Erfindung wird vorteilhafterweise bei steuerbaren größeren Fahrzeugen 2. B. in Lastkraftfahrzeugen, eingesetzt. Sie hieret beim Transport von Gefahrengut z. B. durch Tanklastfahrzeuge, aufgrund der erreichba ren hohen Meßgenauigkeit des Neigungswinkelgebers 35

eine verbesserte Sicherheitzstufe.

Als Aufbau des Fahrzeuges kann z. B. ein Schüttgut-behälter, ein Tank für eine Plüssigkeit, eine Halterung für einen Container oder auch der Sattel eines Sattel-schleppers, oder die Zapfenseite des Auflegers des Sattelschleppers angesehen werden. Bei Bussen stellt der Fahrgastraum den Aufbau dar und es kann der Nei-gungswinkel der Sitze oder Sitzgruppen aus Komfortgründen kompensiert werden.

Patentansprüche,

1. Neigungsgeber (N) für ein Fahrzeug (F) mit einem Aufbau (A) zur Ermittlung des Neigungswin-kels (a) des Aufbaus (A) gegenüber der Horizonta-len (H) quer zur Fahrtrichtung des Fahrzeuges (F) über die Messung der Drehrate (da/dt), mit der sich der Aufbau in Richtung des Neigungswinkels (a)

2. Neigungsgeber nach Anspruch 1, dadurch ge-kennzeichnet, daß der Neigungswinkel (a) in einem

Inertialsystem ermittelt wird.

3. Neigungsgeber nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Neigungswinkel (a) über einen optischen Faserkreisel mit so einer Faserspule, der unter Ausnützung des Sag-nac-Effekts wirkt, ermittelt wird.

4. Neigungsgeber nach Anspruch 3, dadurch gekennzeichnet, daß die Mittelachse der Faserspule des Faserkreisels parallel zur Fahrzeuglängsachse as

5. Kippwarngerat mit einem Neigungsbereich nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nach Überschreitung eines kritischen Wertes des Neigungswinkels (a) oder der Drehrate (da/ dt) ein Warnsignal erzeugt wird.

6. Kippwarngerät mit einem Neigungsgeber nach einem der Ansprüche 1 bis 4, dadurch gekennzeich-net, daß bei Vorliegen verschiedener kritischer Werte abhängig vom Neigungswinkel (a) oder der Drehrate (da/dt) unterschiedliche Warnsignale ab-

gegeben werden.

7. Neigungskompensator mit einem Neigungsgeber nach einem der Ausprüche 1 bis 6, dadurch gekennzeichnet, daß er eine Vorrichtung zur Bewegung des Schwerpunktes (S) des Aufbaus (A) quer zur Fahrzeuglängsrichtung abhängig vom Neigungswinkel (a) aufweist, durch die der Neigungswinkel (a) auf ein Minimum regelbar ist.

8. Fahrzeug mit einem Neigungskompensator nach Anspruch 7, dadurch gekennzeichnet, daß der Aufbau (A) des Fahrzeuges (F) in Lingsrichtung des Fahrzeuges (F) drehbar gelagert ist und durch die Vorrichtung zur Bewegung der Neigungswinkel (a) regelbar ist.

9. Fahrzeug mit einem Neigungskompensator nach Anspruch 7, dadurch gekennzeichnet, daß der Aufbau (A), Teile davon oder mit dem Aufbau verbun-

dene Teile quer zur Längsachse durch die Vorrich-

tung zur Bewegung verschiebbar sind. 10. Vorrichtung zur Verhinderung des Kippens eines Fahrzeuges mit einem Neigungsgeber nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nach Überschreiten eines kritischen Wertes des Neigungswinkels (a) oder der Drehrate (da/dt) eine Geschwindigkeitsverringerung des Fahrzeuges bewirkt wird.

Hierzu I Seite(n) Zeichnungen

THIS PAGE BLANK (USPTO)

Nummer: Int. Cl.⁵: Offenlegungstag:

DE 42 27 886 A1 B 60 G 17/01 24. Februar 1994

