CS608 Software Testing

Dr. Stephen Brown
Room Eolas 116
stephen.brown@mu.ie

Taking Notes

- Take notes during each lecture don't just sit and listen
 - Active participation helps to retain knowledge
 - And improves understanding
- Evidence that handwritten notes are more effective than typed notes
- Slides and textbook are additional learning aides
 - Not a substitute for taking your own notes
 - After each day's lecture & lab, read relevant chapter(s) in the book
- Labs are essential part of the course
 - Only learn how to test software through active engagement

MODULE OVERVIEW

CS608 Module Overview

 This module provides students with an understanding of the essential principles of testing, and experience in applying these in an automated test environment

CS608 Module Overview

- This module provides students with an understanding of the essential principles of testing, and experience in applying these in an automated test environment
- Topics include:
 - Essential principles of testing
 - Automated test tools
 - Testing in the software process,
 - Black-box and white-box test techniques
 - Testing object-oriented software
 - Testing software systems (Web Application)

CS608 Module Overview

- This module provides students with an understanding of the essential principles of testing, and experience in applying these in an automated test environment
- Topics include essential principles of testing, automated test tools, testing in the software process, black-box test techniques, white-box test techniques, testing object-oriented software, system/application testing
- Balance between principles and applying them in practice

Goals

- Develop knowledge and understanding
- Gain some experience

Goals

- A knowledge and understanding of:
 - The essential principles of testing
 - The essential principles of test automation
 - Advanced testing issues, including random testing

Goals

- A knowledge and understanding of:
 - The essential principles of testing
 - The essential principles of test automation
 - Advanced testing issues

• Experience in:

- Applying the principles to unit, object-oriented, and application testing
- In an automated test environment

Learning Outcomes

- Be able to:
 - describe the principles of software testing
 - describe and compare testing techniques
 - select test techniques and design test cases
 - design and implement automated tests
 - evaluate test coverage
 - describe and evaluate testing in the software development process

Approach

- Fast paced:
 - Cover unit testing and application testing relatively quickly
 - To give more time for:
 - Object-oriented testing
 - Test automation
 - Random testing
 - Other advanced Issues

Tools

- In this module, you will learn to make use of a number of software test automation tools
- These tools are representative examples picked for ease of use
- But CS608 is not a tools training course you will not learn all the details of these tools
- Once you know how to use representative tools, moving to new tools should be straightforward
- Reference Chapter 11 "Test Automation"

TEXTBOOK

- Essentials of Software Testing has been written specially as a textbook for this module (published by Cambridge University Press)
- Each topic starts with worked examples, then covers principles in more detail
- Uses test automation throughout

TEXTBOOK

Software Testing

Ralf Bierig • Stephen Brown Edgar Galván • Joe Timoney

BOOK & SLIDES BUT I STRONGLY RECOMMEND YOU TAKE NOTES DURING LECTURES

Timetable

Semester 2			ubsequent weeks		
Times	Monday	Tuesday	Wednesday	Thursday	Friday
9:00-10:00					
10:00-11:00				CS615/CS615C	CS603
11:00-12:00	CS610 Callan S/W lab	CS608 Callan S/W Lab	CS605 Callan S/W Lab	Callan S/W lab	Callan S/W lab
12:00-13:00					
13:00-14:00					
14:00-15:00					
15:00-16:00	CS610 Callan S/W lab	CS608 Eolas 019 Group A 1500-16:30		CS615/CS615C	
16:00-17:00		CS608 Eolas 019 Grp A 15:00-16:30 Grp B 16:30-18:00	CS605 Callan S/W Lab	Details pending	CS603 Callan S/W lab
17:00-18:00		CS608 Eolas 019 Group B 16:30-18:00			
18:00-19:00		CS608 Callan S/W Lab			

Typical Morning Lecture (Callan SW Lab/1.105) 9:00 – 12:00 with two 10-minute breaks

1. Complete previous topic:

- Consider the topic in more detail
- Identify key points
- Notes for experienced testers
- Questions from previous week's lab

2. Start a new topic:

- Introduction
- Worked example
- Test implementation and results
- Evaluation

Typical Afternoon Lab 14:00-18:00

- Develop tests based on the day's topic
 - I strongly recommend working the problems on paper first
 - Then use your paper work to code the automated tests
 - And answer the assessment quiz
- Lab Timetable (3h labs)
 - 13:00-15:00 in Callan SW lab (Callan 1.105)
 - 15:00-16:30 in Eolas E019 (Group A)
 - 16:30-18:00 in Eolas E019 (Group B)
- Extra lab time
 - 18:00-19:00 in Callan SW lab (Callan 1.105)
- Change your group on Moodle (subject to space limits)

- Exercises based on the day's topic
- I expect it to take you up to 3 hours of work
- Implement test code on the lab PC's or on your own PC
 - Use Lab 1 to check you have the necessary software/setup
 - The book examples and labs have all been checked on lab PCs
 - The book examples and labs have been checked on macOS & Linux
 - But I can't support you on your own laptop if you have software problems...

- Exercises based on the day's topic
- Do on the lab PC's or on your own PC
- Three parts:

1. Develop the tests

- 1. Generate the answer to a testing problem
- 2. You can use Excel, but I strongly recommend using pen and paper
- 2. Implement the automated test code

3. Complete the lab assessment

- 1. Use your answer to complete a Moodle Quiz
- 2. Grade assigned when then quiz closes (6 days)

- Exercises based on the day's topic
- Do on the lab PC's or on your own PC
- Three parts: develop tests, implement tests, and assessment
- You have 6 days to complete the assessment for each lab
 - I am available during Tuesday afternoons for questions
 - You must complete the lab assessment/quiz on your own
 - However, as software testing is a collaborative activity, you may work together developing the answers for the labs
 - The assessment quiz closes on Monday at 12:00 the following week to give you time to review your marks before next lecture

- Exercises based on the day's topic
- Do on the lab PC's or on your own PC
- Three parts: develop tests, implement tests, and assessment
- You have 6 days to complete the assessment for each lab
- Let me know immediately if you are unable to complete a lab through illness etc.
 - You will have to submit your written work also in this case

Continuous Assessment Activities

- Everything is on Moodle
- Assessment typically for each topic, the lab consists of:
 - Develop your tests (on paper)
 - Write an automated test program (in Java)
 - Run your tests and collect the output
- Assessment
 - Complete a quiz to grade your lab work

Assessment

- Formal Written Examination:
 - 80%
 - 1 x 3 hour written exam at the end of the semester
- Continuous Assessment:
 - 20%
 - 10 labs, one every week

Material

- CS608 on Moodle (<u>moodle.maynoothuniversity.ie</u>)
 - Slides
 - Lab exercises
 - Instructions
 - Code
 - Support Material
 - Executable book examples (ZIP file)

Other Useful Books

- Software Testing [Roper] highly recommended
- Testing OO Systems [Binder] very detailed!
- The Art of Software Testing [Myers] classic text, but out of date
- Introduction to Software Testing [Ammann & Offutt] rigorous, mathematical approach

Asking Questions

- During lectures, if you don't understand or need clarification, ask!
- Ask questions via Moodle "Class Discussion Forum"
 - I will copy any questions asked by email into the forum so everyone can see my answer
- Ask lab-related questions in the following week's lecture

Software Tools Examples in the Book and Labs

- Environment
 - Windows, linux, and macos
 - Command line/terminal (quick tutorial available on Moodle)
 - Gradle build automation tool
- Software requirements (only 2)
 - Java LTS version: Java JDK 21
 - Google Chrome browser
- Note: gradle will download any other software needed automatically
- Test Framework: TestNG
- Test coverage measurement: JaCoCo
- Web Application Testing: Selenium with Chrome browser
- All details available on Moodle

Focus on Automated Testing

- This means running tests automatically, rather than by hand
- Introduced as needed during the lectures
- Covered in more detail as a topic

Independent Study

- After the lectures/labs:
 - Complete outstanding lab work and assignments
 - Tidy up/review your notes
 - Read the relevant chapters in the book
 - Re-do worked examples in the book
 - Do additional exercises
 - Do exam questions (library EXPERT database)
 - Read up material in the secondary books (library)
 - Prepare questions for the following week

Artificial Intelligence for Software Testing

- AI Tools such as Copilot have become a valuable tool for coding
- For example:
 - ChatGPT
 - GitHub Copilot
 - Microsoft Copilot
- These tools can be used to assist in testing also
- Once you are familiar with the software testing techniques, we will examine how well ChatGPT produces software tests

Any Questions?