Análisis de Distribuciones de Poisson y Normal con Python

Tu Nombre

24 de octubre de 2025

Resumen

Este documento presenta el análisis de dos ejercicios de distribuciones de probabilidad fundamentales: la distribución de Poisson para eventos raros en un intervalo continuo, y la distribución normal para variables continuas. Se implementan cálculos de probabilidades y parámetros utilizando Python.

Índice

1.	Intr	oducción	2
2.	Dist	ribución de Poisson	2
	2.1.	Descripción del Problema	2
	2.2.	Definición Matemática	2
	2.3.	Código Python	2
	2.4.	Cálculos y Resultados	3
		2.4.1. Probabilidad de cero eventos	3
		2.4.2. Probabilidad de dos o más eventos	3
		2.4.3. Esperanza matemática	3
3.	Dist	ribución Normal	3
	3.1.	Descripción del Problema	3
	3.2.	Definición Matemática	4
	3.3.		4
	3.4.		4
		3.4.1. Estandarización de valores	4
		3.4.2. Cálculo de probabilidad	4
4.	Con	nparación y Aplicaciones	5
		Distribución de Poisson	5
	4.2.	Distribución Normal	5
5 .	Pro	piedades	5
		Propiedades de la Distribución de Poisson	5
		Propiedades de la Distribución Normal	5

1. Introducción

Las distribuciones de probabilidad son herramientas fundamentales en estadística y ciencia de datos. En este documento se analizan dos distribuciones importantes: la distribución de Poisson para modelar eventos discretos en un intervalo continuo, y la distribución normal para variables continuas.

2. Distribución de Poisson

2.1. Descripción del Problema

La distribución de Poisson modela la probabilidad de que ocurra un número determinado de eventos en un intervalo fijo de tiempo o espacio, cuando estos eventos ocurren con una tasa constante conocida (λ) y son independientes entre sí.

En este caso, se tiene:

• Tasa de eventos: $\lambda = 0.2$ eventos por km

■ Distancia considerada: 5 km

■ Parámetro de Poisson: $\lambda_{total} = 0.2 \times 5 = 1$

2.2. Definición Matemática

La función de masa de probabilidad de Poisson está dada por:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

donde:

- k: número de eventos
- \bullet λ : tasa promedio de eventos
- e: constante de Euler (aproximadamente 2.71828)

2.3. Código Python

```
import math

# Distribucion de poisson
print("Distribuci n de poisson")

# Datos
lambda_km = 0.2
km = 5
lmbda = lambda_km * km

# a) P(X = 0)
P0 = math.exp(-lmbda) * (lmbda**0) / math.factorial(0)

# b) P(X = 1 - [P(0) + P(1)]
```

```
P1 = math.exp(-lmbda) * (lmbda**1) / math.factorial(1)
P_ge2 = 1 - (P0 + P1)

# c) Esperanza
esperanza = lmbda

# Resultados
print("P(X = 0):", round(P0, 4))
print("P(X = 2):", round(P_ge2, 4))
print("Esperanza E[X]:", esperanza)
```

Listing 1: Cálculo de probabilidades con distribución de Poisson

2.4. Cálculos y Resultados

2.4.1. Probabilidad de cero eventos

$$P(X=0) = \frac{e^{-1} \cdot 1^0}{0!} = e^{-1} \approx 0.3679$$

2.4.2. Probabilidad de dos o más eventos

$$P(X \ge 2) = 1 - [P(X = 0) + P(X = 1)]$$

$$P(X = 1) = \frac{e^{-1} \cdot 1^{1}}{1!} = e^{-1} \approx 0,3679$$

$$P(X \ge 2) = 1 - (0,3679 + 0,3679) = 0,2642$$

2.4.3. Esperanza matemática

Para la distribución de Poisson, la esperanza es igual al parámetro λ :

$$E[X] = \lambda = 1$$

Cuadro 1: Resultados de la distribución de Poisson

Parámetro	Valor
P(X=0)	0.3679
$P(X \ge 2)$	0.2642
E[X]	1.0000

3. Distribución Normal

3.1. Descripción del Problema

La distribución normal (o gaussiana) es una distribución continua fundamental en estadística. En este problema se analiza una variable con:

- Media (μ): 170
- Desviación estándar (σ) : 6

Se busca calcular la probabilidad de que la variable esté entre 165 y 180.

3.2. Definición Matemática

La función de densidad de probabilidad normal está dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

La probabilidad acumulada se calcula usando la función de distribución acumulativa (CDF):

$$P(a < X < b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

donde Φ es la función de distribución acumulativa normal estándar.

3.3. Código Python

```
from scipy.stats import norm

# Distribuci n normal
print("Distribuci n normal")

# Datos
mu = 170
sigma = 6

# P(165 < X < 180) = ((180- )/ ) - ((165- )/ )
P_165_180 = norm.cdf(180, mu, sigma) - norm.cdf(165, mu, sigma)

print("\n=== Distribuci n Normal ===")
print("P(165 < X < 180):", round(P_165_180, 4))</pre>
```

Listing 2: Cálculo de probabilidades con distribución normal

3.4. Cálculos y Resultados

3.4.1. Estandarización de valores

$$z_1 = \frac{165 - 170}{6} = -0.8333$$
$$z_2 = \frac{180 - 170}{6} = 1.6667$$

3.4.2. Cálculo de probabilidad

$$P(165 < X < 180) = \Phi(1,6667) - \Phi(-0,8333)$$

 $P(165 < X < 180) = 0,9522 - 0,2023 = 0,7499$

Cuadro 2: Resultados de la distribución normal

Parámetro	\mathbf{Valor}
μ	170
σ	6
P(165 < X < 180)	0.7499
$z_1 \; (para \; 165)$	-0.8333
$z_2 \text{ (para 180)}$	1.6667

4. Comparación y Aplicaciones

4.1. Distribución de Poisson

■ **Tipo**: Discreta

• **Dominio**: k = 0, 1, 2, ...

• Parámetros: λ (tasa promedio)

■ Aplicaciones: Número de llamadas telefónicas, defectos en manufactura, accidentes de tráfico

4.2. Distribución Normal

■ **Tipo**: Continua

■ **Dominio**: $-\infty < x < \infty$

 \blacksquare Parámetros: μ (media), σ (desviación estándar)

• Aplicaciones: Alturas de personas, errores de medición, puntajes de tests

5. Propiedades

5.1. Propiedades de la Distribución de Poisson

• Media: $E[X] = \lambda$

• Varianza: $Var(X) = \lambda$

• La suma de variables de Poisson independientes es Poisson

5.2. Propiedades de la Distribución Normal

■ Media: $E[X] = \mu$

• Varianza: $Var(X) = \sigma^2$

• Simétrica alrededor de la media

• Aproximadamente 68 % de los datos dentro de $\mu \pm \sigma$