Investigación de Operativa

Clase de análisis de sensibilidad e interpretación de los resultados

Universidad Católica de Cordoba

1417749@ucc.edu.ar

Ing. Sergio H. Rosa Curso 2020

¿Cuál es el objetivo?

OBJETIVO DEL
ANÁLISIS DE SENSIBILIDAD

Responder preguntas del tipo: ¿Qué pasa si se modifican algunos parámetros del modelo?

¿Cuáles parámetros?

 $C_j y B_i$

Impacto en Z

Impacto que tienen en el valor de las variables

Ejemplo

Cambios en el coeficiente de la FO

Determinación de los intervalos de los coeficiente de la FO

Si c_j E a una variable No Básica

Máximo
$$\rightarrow$$
 $[-\infty, \Delta Cj^+]$

Mínimo
$$\rightarrow$$
 [$\triangle Cj^-$, ∞]

$$\Delta Z = \Delta c_k x_k$$

Veamos un ejemplo

```
Max. (Z) = 40X1 + 50X2 + 30X3

Sa 3X1 + 4X2 + 2X3 <= 1.200 (Horas Secc. 1)

1X1 + 2X2 + 1X3 <= 800 (Horas Secc. 2)

1X1 + 1X2 >= 300 (Demanda)

X1, X2, X3 >= 0
```

$$X_1=300$$
 $X_2=0$
 $X^*=$
 $X_3=150$
 $X_1=0$
 $X_2=0$
 $X_3=0$
 $X_3=0$
 $X_3=0$

Ejemplos sobre las variaciones

Ej.: ¿Qué sucede si se produce un aumento en las ganancias de \$3 en el producto 2?

Como la variación esta dentro del intervalo $-\infty \le \Delta C_2 \le 5 \xrightarrow{}$ no se produce ningún cambio

Ej.: ¿Qué sucede si se produce una disminución en las ganancias de \$4 en el producto 1?

La variación esta dentro del intervalo será \rightarrow -5 \leq $\Delta C_1 \leq$ 5 No se producen cambios en las variables, si cambia el valor de z de la siguiente manera:

El valor actual de $C_1 = 40 \rightarrow C_1 = 36$ $\Delta Z = \Delta C_1 X_1$; en nuestro ejemplo: $\Delta Z = -4 (300) = -1200$ Lo que lleva al nuevo Z = 16.500 - 1.200 = 15.300

Nota: cualquier cambio fuera del intervalo cambia la base, se debe resolver nuevamente.

Resultados del Solver de Excel

Celda objetivo (Máx)

Celda Nombre	elda Nombre Valor original	
\$E\$3	0	16500

Celdas de variables

Celda	Nombre	Valor original	Valor final	Entero
\$B\$2	X1	0	300	Continuar
\$C\$2	X2	0	0	Continuar
\$D\$2	X3	0	150	Continuar

Celdas de variables

		Final	Reducio	do	Objetivo	Perr	misible	Permisible
Celda	Nombre	Valor	Coste	•	Coeficiente	Aun	nentar	Reducir
\$B\$2	X1	300		0	40		5	5
\$C\$2	X2	0		-5	50		5	1E+30
\$D\$2	X3	150		0	30	·	1E+30	3,33333333

Resumen de cambios en los coeficientes

Cambio lado derecho de las restricciones

$$a_{11}x_1 + a_{12}x_2 \le b_1$$

$$x_{2} = \frac{b_{1}}{a_{12}} - \frac{a_{11}}{a_{12}} x_{1}$$

Cambio lado derecho de las restricciones

Calculo de los intervalos

Si la restricción es No Limitante del tipo $\leq \rightarrow [\Delta bi^{-}, \infty]$

Si la restricción es No Limitante del tipo \geq \rightarrow [- ∞ , Δbi^+]

Si la restricción es Limitante del tipo

$$\Delta Z = \Delta b_i y_i$$

Ejemplos sobre las variaciones

Ej.: ¿Cómo afecta a la FO un incremento en las horas de sección 2 de 200 hs?

Como la variación esta dentro del intervalo $-350 \le \Delta b_2 \le \infty \rightarrow$ no se produce ningún cambio

Ej.: ¿Qué sucede si hay una disminución de las horas de la sección 1 en 100 unidades?

La variación esta dentro del intervalo será \rightarrow -300 \leq $\Delta b_1 \leq$ 300 Se se producen cambios en las variables, no cambia la base. Cambia el valor de Z de la siguiente manera:

El valor actual de $b_1 = 1.200 \rightarrow b_1 = 1.100$ $\Delta Z = \Delta b_1 y_1$; en nuestro ejemplo: $\Delta Z = -100 (15) = 1.500$ Lo que lleva al nuevo Z = 16.500 - 1.500 = 15.000

Ejemplos sobre las variaciones

Ej.: ¿Qué sucede si hay una disminución de las horas de la sección 1 en 100 unidades?

X*= Los valores de las variables cambian

$$Z^* = 16.500 - 100^*15 = 15.000$$

Nota: cualquier cambio fuera del intervalo, se debe resolver nuevamente.

Resultados del Solver de Excel

Informe de resultados

Celda	Nombre	Valor de la celda	Fórmula	Estado	Demora
\$E\$5	Horas de sección 1	1100	\$E\$5<=\$F\$5	Vinculante	0
\$E\$6	Horas de sección 2	400	\$E\$6<=\$F\$6	No vinculante	400
\$E\$7	Demanda mínima	300	\$E\$7>=\$F\$7	Vinculante	0

Informe de sensibilidad

Celda	Nombre	Final Valor	Sombra Precio	Restricción Lado derecho	Permisible Aumentar	Permisible Reducir
\$E\$5	Horas de sección 1	1200	15	1200	700	300
\$E\$6	Horas de sección 2	450	0	800	1E+30	350
\$E\$7	Demanda mínima	300	-5	300	100	300

Solución gráfica

NO

SI

Resolver **Nuevamente** **Cambia** la Base

Variación de Valores del **Dentro del** Lado intervalo? Derecho

Restricción No Limitante? $(S_i>0)$

Se Modifica el Valor de la Holgura

Restricción Limitante?

 $(S_i=0)$

 $\lambda_i \rightarrow \text{valores de las variables}$ en la solución

 $\lambda_{ii} \rightarrow$ tasas de sustitución de la variable de holgura/excedente correspondiente al bi

Se Modifican valores de variables básicas y valor de Z

$$\Delta Z = \Delta b_i Y_i$$

$$\mathbf{x}_{i} = \lambda_{i} + \Delta b_{i} \lambda_{ij} (\leq; =)$$

$$\mathbf{x}_{i} = \lambda_{i} - \Delta \mathbf{b}_{i} \lambda_{ij} (\geq)$$

No se modifica la Base

Regla del 100%

La validez de los cambios informados por el análisis de sensibilidad son *ceteris paribus*.

No obstante, existe una regla práctica, conocida como regla del 100%, la cual sostiene que "para considerar cambios simultáneos se deben sumar los porcentajes de cambio tanto de los incrementos como de las disminuciones permisibles; si la suma de los cambios porcentuales no excede el 100%, la base óptima no se modificará".

Esto es válido tanto para cambios en el vector de términos independientes de las restricciones como en los coeficientes que preceden a las variables en la FO.

Programación Lineal Entera

Supuestos de la PL

Única Función Objetivo Sujeta a Restricciones Aditividad Proporcionalidad Divisibilidad Certidumbre

Formulación general

Max.
$$(Z) = c_1 x_1 + c_2 x_2 + c_3 x_3 + ... + c_n x_n$$

S. A:

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + ... + a_{1n} x_n \le b_1$$
 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + ... + a_{2n} x_n = b_2$
 $...$
 $a_{m1} x_1 + a_{m2} x_2 + a_{m3} x_3 + ... + a_{mn} x_n \ge b_m$

 $x_i \ge 0$ y enteras

Utilización de variables binarias

Restricciones lógicas

Restricciones de elección múltiple

Elegir un proyecto u otro \Rightarrow $x_n + x_m = 1$

Elegir por lo menos un proyecto $\Rightarrow x_n + x_m \ge 1$

No más de k de entre n proyectos $\Rightarrow x_1 + x_2 + \dots + x_n \le k$

Decisiones dependientes (condicionales)

No se desea elegir la opción *k* a menos que se elija primero la opción *m*

$$x_k \le x_m$$
 ó $x_k - x_m \le 0$

Si se elige una, se debe elegir la otra $\Rightarrow x_k - x_m = 0$ Si elige la opción m, no podrá elegir la k y viceversa $\Rightarrow x_k + x_m \le 1$

Restricciones de tamaño de lote

 $20 \le x_j \le 100$ \Rightarrow no funciona porque esta restricción dice que debe ser por lo menos 20 y nosotros queremos que $x_j = 0$ ó bien, $20 \le x_j \le 100$.

Necesitamos usar una variable 0 – 1, por ejemplo y_i para la acción j.

Si
$$y_i = 1 \Rightarrow$$
 se realiza el producto j

Si **y**_i **= 0** ⇒ no se realiza el producto j

$$x_j \le 100 y_j$$

 $x_i \ge 20 y_i$

De esta forma, si
$$y_j = 1 \Rightarrow 20 \le x_j \le 100$$
 y si $y_j = 0 \Rightarrow x_j = 0$

Restricción de costo fijo

Ejemplo

Supongamos una empresa que fabrica dos tipos de productos: A y B.

Para fabricarlos tiene que disponer de una maquinaria especial, la que debe alquilar con las siguientes tarifas:

Maquinaria para el producto A a \$500 por semana.

Maquinaria para el producto B a \$550 por semana.

El resto de la información respecto a insumos necesarios por unidad y contribución unitaria se proporcionan en la siguiente tabla:

	Hs. Mano de Obra	Insumos	Contribución a las utilidades
Producto A	5	7	10
Producto B	3	2	8
Disponibilidad semanal	250	300	

Restricción de costo fijo

- 1). Objetivo: maximizar el beneficio total.
- 2). Variables:

 x_A = unidades del producto A a producir semanalmente.

 x_B = unidades del producto B a producir semanalmente.

 $y_A = 1 \circ 0$, si es que el producto A se produce o no se produce.

 $y_B = 1 \circ 0$, si es que el producto B se produce o no se produce.

- 3). Restricciones
 - I) Disponibilidad de Hs de MO.
 - II) disponibilidad de Insumos
- 4) Condición de no negatividad, enteras

Restricción de costo fijo

Max. (Z) =
$$10 X_A + 8 X_B - 500 Y_A - 550 Y_B$$
 sa
$$5 x_A + 3 x_B \le 250 \qquad \text{Hs. MO}$$

$$7 x_A + 2 x_B \le 300 \qquad \text{Insumos}$$

$$X_A \qquad \le M Y_A$$

$$X_B \le N Y_B$$

$$X_A, X_B \ge 0 \text{ y enteras}$$

$$Y_A, Y_B = \text{binarias}$$

M se puede reemplazar por la producción máxima posible de A, en este caso, M = 42 unidades.

De la misma manera se procede para N que para este caso es N = 83 unidades.

Transporte y Asignación

El problema de transporte

Regla del 100%

- 1. m Orígenes con oferta conocida
- 2. n Destinos con demanda conocida
- 3. $a_i \rightarrow oferta del O_i$
- 4. $b_j \rightarrow demanda del D_j$
- 5. Total de Oferta = Total de Demanda

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

Planteo del modelo

Objetivo: encontrar el esquema de transporte de mínimo costo

Variables (x_{ij}) : unidades a transportar del O_i al D_j

Restricciones:

- Cada origen transporta todo lo que tiene
- Cada destino recibe todo lo que demanda

El modelo

mín
$$\sum_{i=1}^{h} \sum_{j=1}^{k} c_{ij} x_{ij}$$

sa
$$\sum_{j=1}^{k} x_{ij} = a_{i} \qquad i = 1, 2, ..., h$$

$$\sum_{i=1}^{h} x_{ij} = b_{j} \qquad j = 1, 2, ..., k$$

$$x_{ij} \ge 0 \text{ y enteras } \forall i, \forall j$$

Problema de asignación

Planteo del problema

Objetivo: asignar los individuos a los puestos de trabajo al mínimo costo total

Variables (x_{ij}): el individuo i se asigna o no al puesto j → variables binarias

Restricciones:

- Cada individuo se asigna a un puesto de trabajo
- · Cada puesto recibe un solo individuo

El modelo

$$\begin{aligned} &\text{min } \sum_{i=1}^m \sum_{j=1}^m c_{ij} x_{ij} \\ &\text{sa} \\ &\sum_{j=1}^m x_{ij} = 1 \qquad i=1,2,...,m \\ &\sum_{i=1}^m x_{ij} = 1 \qquad j=1,2,...,m \\ &x_{ij} \quad \text{binaria} \quad \forall i, \forall j \end{aligned}$$

Ejemplo de aplicación

Una empresa debe distribuir cuatro promotores, de su nueva línea de máquinas para riego automático, a cuatro regiones del país. En la tabla se muestran los incrementos estimados en ventas, en cada región, de acuerdo al promotor que asigne.

	Regiones					
Promotor	1	1 2 3 4				
Α	20	22	22	15		
В	25	15	16	20		
С	18	20	18	20		
D	21	15	20	24		

Ejemplo de aplicación

Sa

Sa

$$A1 + A2 + A3 + A4 = 1$$
 $B1 + B2 + B3 + B4 = 1$
 $C1 + C2 + C3 + C4 = 1$
 $D1 + D2 + D3 + D4 = 1$
 $A1 + B1 + C1 + D1 = 1$
 $A2 + B2 + C2 + D2 = 1$
 $A3 + B3 + C3 + D4 = 1$
 $Xij = 0 - 1$