Magnetisches Moment von Kernen

a)
$$j = l + s$$

 $j^2 = (l + s)^2 = l^2 + s^2 + 2l \cdot s = l^2 + s^2 + 2l \cdot (j - l) = s^2 - l^2 + 2j \cdot l$
 $\Rightarrow j \cdot l = \frac{1}{2} (j^2 + l^2 - s^2)$

b)
$$\langle jm_{j}|g_{l}\boldsymbol{j}^{2}|jm_{j}\rangle = j(j+1)$$

$$\langle jm_{j}|g_{l}\boldsymbol{j}\cdot\boldsymbol{l}|jm_{j}\rangle = \langle jm_{j}|g_{l}\frac{1}{2}(\boldsymbol{j}^{2}+\boldsymbol{l}^{2}-\boldsymbol{s}^{2})|jm_{j}\rangle =$$

$$= \frac{g_{l}}{2}\Big[j(j+1)+l(l+1)-s(s+1)\Big]$$

$$\langle jm_{j}|g_{s}\boldsymbol{s}\cdot\boldsymbol{j}|jm_{j}\rangle = \langle jm_{j}|g_{l}\frac{1}{2}(\boldsymbol{j}^{2}+\boldsymbol{s}^{2}-\boldsymbol{l}^{2})|jm_{j}\rangle =$$

$$= \frac{g_{s}}{2}\Big[j(j+1)+s(s+1)-l(l+1)\Big]$$

$$\langle jm_{j}|g_{l}\boldsymbol{j}\cdot\boldsymbol{l}+g_{s}\boldsymbol{s}\cdot\boldsymbol{j}|jm_{j}\rangle = \langle jm_{j}|g_{l}\boldsymbol{j}\cdot\boldsymbol{l}|jm_{j}\rangle + \langle jm_{j}|g_{s}\boldsymbol{s}\cdot\boldsymbol{j}|jm_{j}\rangle =$$

$$= \frac{1}{2}\Big(g_{l}\Big[j(j+1)+l(l+1)-s(s+1)\Big]+g_{s}\Big[j(j+1)+s(s+1)-l(l+1)\Big]\Big)$$

$$g_{\text{Kern}} = \frac{\langle j m_j | g_l \mathbf{j} \cdot \mathbf{l} + g_s \mathbf{s} \cdot \mathbf{j} | j m_j \rangle}{\langle j m_j | g_l \mathbf{j}^2 | j m_j \rangle} =$$

$$= \frac{g_l [j(j+1) + l(l+1) - s(s+1)] + g_s [j(j+1) + s(s+1) - l(l+1)]}{2j(j+1)}$$

c)
$$\Delta_{lsj} := j(j+1) + s(s+1) - l(l+1)$$

$$g_{\text{Kern}} = g_{\text{Kern}} + g_l - g_l = g_l + \frac{g_l(-\Delta_{lsj} + 2j(j+1)) + g_s\Delta_{lsj} - g_l2j(j+1)}{2j(j+1)}$$

$$= g_l + \frac{g_l(-\Delta_{lsj}) + g_s\Delta_{lsj}}{2j(j+1)} = g_l + (g_s - g_l)\frac{\Delta_{lsj}}{2j(j+1)}$$

d)
$$j = l \pm \frac{1}{2}$$
; $s = \frac{1}{2}$; $s(s+1) = \frac{3}{4}$; $j(j+1) = l^2 + 2l + \frac{3}{4}$

$$\frac{\Delta_{lsj}}{2j(j+1)} = \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)} = \frac{l^2 + 2l + \frac{3}{4} + \frac{3}{4} - l^2 - l}{2l^2 + 4l + \frac{3}{2}}$$
$$= \frac{l + \frac{3}{2}}{2l^2 + 4l + \frac{3}{2}} = \frac{l + \frac{3}{2}}{(2l+1)(l+\frac{3}{2})} = \frac{1}{2l+1}$$

$$\Rightarrow g_{\text{Kern}} = g_l \pm (g_s - g_l) \frac{\Delta_{lsj}}{2j(j+1)} = g_l \pm \frac{(g_s - g_l)}{2l+1}$$

e)
$$\mu_N = \frac{e\hbar}{2m_p}$$

Der Isospin des Deuterons

a)

$$T_z = 1: \psi_{pp} = |\uparrow\uparrow\rangle$$

$$T_z = 0: \ \psi_{pn} = |\uparrow\downarrow\rangle$$

$$T_z = -1: \ \psi_{nn} = |\downarrow\downarrow\rangle$$

b)

$$\psi(T_z=1)=|\uparrow\uparrow\rangle$$

$$\psi_1(T_z=0)=\frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle\right)$$

$$\psi_2(T_z=0)=\frac{1}{\sqrt{2}}\left(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle\right)$$

$$\psi(T_z = -1) = |\downarrow\downarrow\rangle$$

	Symmetrie	Ψ	T_z	<u>T</u>	
c)	Antisymmetrisch	$\psi = \frac{1}{\sqrt{2}} \left(\uparrow\downarrow\rangle - \downarrow\uparrow\rangle \right)$	0	0	
	Symmetrisch	$\psi = \!\uparrow\uparrow\rangle$	1	1	
		$\psi = \frac{1}{\sqrt{2}} \left(\uparrow\downarrow\rangle + \downarrow\uparrow\rangle \right)$	0	1	
		$\psi = \ket{\downarrow\downarrow}$	-1	1	

- d) $|\Psi_{\rm Ort}\rangle$ is symmetrisch, da L=0
- e) $|\Psi_{Spin}\rangle |\Psi_{Isospin}\rangle$ muss antisymmetrisch sein, damit $|\Psi\rangle$ antisymmetrisch ist.
- f) Da S=1 ist die Spin-Wellenfunktion symmetrisch, weshalb die Isospin-Wellenfunktion antisymmetrisch sein muss.

g)

Quadrupolmoment der Kerne

$$x = ar\sin(\theta)\cos(\varphi)$$

$$y = ar \sin(\theta) \sin(\varphi)$$

$$z = br\cos(\theta)$$

a)
$$\rho_{\text{el}} = \frac{Ze}{V} = \frac{3Ze}{4\pi a^2 b}; \quad \|\mathbf{r}\|^2 = r^2 \left(a^2 \sin^2(\theta) + b^2 \cos^2(\theta)\right)$$

$$Q = \int_{V} \rho_{\text{el}}(\mathbf{r}) \left[3z^2 - \|\mathbf{r}\|^2\right] dV = \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi} \rho_{\text{el}} a^2 b r^2 \sin(\theta) \left[3z^2 - \|\mathbf{r}\|^2\right] d\theta d\varphi dr$$

$$= 2\pi \rho_{\text{el}} ab^2 \int_{0}^{1} \int_{0}^{\pi} r^4 \sin(\theta) \left[-a^2 \sin^2(\theta) + 2b^2 \cos^2(\theta)\right] d\theta dr$$

$$= 2\pi \rho_{\text{el}} ab^2 \int_{0}^{1} r^4 dr \int_{0}^{\pi} \sin(\theta) \left[-a^2 \sin^2(\theta) + 2b^2 \cos^2(\theta)\right] d\theta$$

$$= \frac{2}{5}\pi \rho_{\text{el}} ab^2 \left[-a^2 \int_{0}^{\pi} \sin^3(\theta) d\theta + 2b^2 \int_{0}^{\pi} \cos^2(\theta) \sin(\theta) d\theta\right]$$

$$= \frac{2}{5}\pi \rho_{\text{el}} ab^2 \left[-a^2 \frac{4}{3} + b^2 \frac{4}{3}\right]$$

$$= \frac{2}{5}(b^2 - a^2) \frac{4\rho_{\text{el}} \pi ab^2}{3}$$

$$= \frac{2}{5}Ze(b^2 - a^2)$$

a und *b* hier vertauscht (im Vergleich zur Angabe) wegen der Parametrisierung. Können aber durch neue Parametrisierung einfach getauscht werden. Der Übersichtlichkeit halber wird in der nächsten Aufgabe die Notation aus der Angabe übernommen.

b)
$$Q(\text{Ta}) = 6 \cdot 10^{-24} e \text{ cm}^2$$
; $Q(\text{Sb}) = -1.2 \cdot 10^{-24} e \text{ cm}^2$; $R = 1.3 \cdot A^{\frac{1}{3}} \text{ fm}$

$$a = R(1 + \epsilon)$$

$$b = \frac{R}{\sqrt{1 + \epsilon}}$$

$$a^2 - b^2 = (1 + \epsilon)^2 R^2 - \frac{R^2}{1 + \epsilon} \approx 3R^2 \epsilon$$

$$\frac{a}{b} = (1 + \epsilon)^{3/2}$$

$$Q(\text{Ta}) = \frac{2}{5} Z_{\text{Ta}} e(a^2 - b^2) \approx \frac{2}{5} 73 e^3 R^2 \epsilon_{\text{Ta}} = \frac{438}{5} e^2 R^2 \epsilon_{\text{Ta}}$$

$$\Rightarrow \epsilon_{\mathrm{Ta}} = \frac{5}{438} \frac{Q(\mathrm{Ta})}{eR^2} = 0.146$$

$$Q(Sb) = \frac{2}{5} Z_{Sb} e(a^2 - b^2) \approx \frac{2}{5} 51 e^3 R^2 \epsilon_{Sb} = \frac{306}{5} e R^2 \epsilon_{Sb}$$

$$\Rightarrow \epsilon_{\rm Sb} = \frac{5}{306} \frac{Q({
m Sb})}{eR^2} = -0.053$$

$$\left. \frac{a}{b} \right|_{\epsilon_{\mathrm{Ta}}} = \underline{1.227}$$

$$\left. \frac{a}{b} \right|_{\epsilon_{Sh}} = \underline{0.921}$$