Temporal locality - item itself

Spottal locality -> nearby addresses

Direct Mapped Cooks Simulation (E=1)

$$M=10$$
 byte addresses $2^4\Rightarrow 4$ bit $Tog_{SI}=g_0$
 $8=2$ bytes/block $\Rightarrow 2'=1=|B0|$ PA

 $S=4$ sets $=2^2\Rightarrow |S||=2$
 $C=1$ Blocks/set

 $C=1$ Blocks/set

٨

11

FTM WIM

Coone size = C = SXEXB

For E-way set associative case, we need to compere all tags an that set with ous tog

Is no motion: One line is selected for eviction and replacement

2-way set Associative Coche Simulation (F=2)

M = 16 byte addresses = $2^4 \Rightarrow |PA| = 4$

 $B = 2 \text{ bytes / block} = 2' \Rightarrow |BO| = 1$ |Tag| = 2

S = 2 sets = $2^1 = 1$ |SI| = 1

Tos	3	SI	2 0

E=2 Blocks/set

QQQQ miss 0 1 NOOO hit

Q	1 00 MTO] MTO]	(EJM [8]M O) 1
1	1 01 M[6] M[7]	,

- \exists 01hn Zzim
- 8 AQQD mi5
- hit Q 0000

Write operations

The line you want to write What to do on a write-hit? \rightarrow is on the cache-

Write-through (write immediately to the memory)

Write both in cooline and to memory

Write-book (defer write to mem until replacement of line)

Need a dirty bit (line different from mem or not)

a dirty bit (line different from mem or no

What to do on a write-miss? \rightarrow oddress which is not in the cache.

Write-allocate

Load into coone, update line in coone

No-write-allocate

Writes immediately to the memory

when we have to replace the block, update data back to mem if the write bit is set.

Somerwise, dan 't.

Typical

Write through + no-write-allocate

Write-book + write allocate

<u>Ornek:</u> U 1-coche, d-coche

32 LB , 8 way , Mem Address = 48 bit

$$C = 32 \text{ VB} = 2^{5} \times 2^{10} = 2^{15}$$

 $E = 8 = 2^3$ $\rightarrow 8$ lines in each set

$$S = 2^b$$
 $|S| = 6$

$$C = 2^{15} = S \times E \times B \Rightarrow 2^{15} = 2^6 = 8$$
 1801=6

TYPES OF CACHE MISSES

Cold (compulsory) miss

The cooke is empty

Copocity miss

The set of active cache blocks (working set) is larger than the cache.

Conflict miss - Most likely to volppen in direct-mapped access

Multiple data abjects all map to the same level k black

CACHE PERFORMANCE METRICS

Miss rate

Fraction of memory references not found in coone (misses/accesses) = 1 - NH rate

HIT HME

Time to deliver a line in the coche to the processor Includes time to determine whether the line is in the coeffe

Miss Penalty

Additional time required because of a miss

HH rate vs. Miss rate

 $\left\{\begin{array}{c} \text{cache hit time} \rightarrow 1 \text{ cycle} \\ \text{miss penalty} \rightarrow 100 \text{ cycles} \end{array}\right.$

197 hits: 1 cycle + 0.03 * 100 cycles = 4 cycles Nitrate 1.97 is twice

1.99 hits: 1 cycle + 0.01 *100 cycles = 2 cycles

as 200d as 1.99

- use miss rate &

THE MEMORY MOUNTAIN

Read through put

Number of bytes read from mem per second (MB(s)

Memory Mountain

Measured read throughput as a function of spatial and temporal legality

0.25

0.0

0.25

Matrix Multiplication (jik)

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (ikj)

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (jki)

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kji)

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0