

Presentation at NI Day 2010 22. April 2010 Lillestrøm, Norway (http://www.ni.com/norway/nidays)

MPC vs. PID

By Finn Haugen

(finn.haugen@hit.no)

Telemark University College

- PID control (Proportional + Integral + Derivative)
- MPC (Model-based Predictive Control)
- System used in practical demo: Air heater (temperature control)
- Adapting mathematical model to physical system
- PID settings based on Skogestad's model-based tuning
- MPC settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More about MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control signal increment
- Conclusions

Høgskolen i Telemark

PID control

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control error and weight of control signal increment
- Conclusions

Model-based Predictive Control (MPC)

The Control Design and Simulation module of LabVIEW contains an MPC controller

Process model:

x(k+1) = Ax(k) + Bu(k)y(k) = Cx(k) + Du(k)

Constraints:

$$y_{\min} \le y \le y_{\max}$$

$$u_{\min} < u < u_{\max}$$

 $\Delta u_{\min} < \Delta u < \Delta u_{\max}$

Optimization criterion:

$$= \sum_{k=0}^{N_p} \left\{ Q_1 \left[e_1(t_k) \right]^2 + Q_2 \left[e_2(t_k) \right]^2 + \dots + Q_n \left[e_n(t_k) \right]^2 \right\}$$

$$+ \sum_{k=1}^{N_c} R_1 \left\{ \left[\Delta u_1(t_k) \right]^2 + R_2 \left[\Delta u_2(t_k) \right]^2 + \dots + R_r \left[\Delta u_r(t_k) \right]^2 \right\}$$

$$= \text{Sum of future weighed squared control errors}$$
+Sum of future weighed increments of control variable

Figure 18-1. Prediction and Control Horizons

Figure 18-2. Moving the Prediction Horizon Forward in Time

(Figures from user manual of Control Design and Simulation module)

Assumed process model (discrete-time linear state-space model):

$$x(k+1) = Ax(k) + Bu(k)$$

$$y(k) = Cx(k) + Du(k)$$

System matrices A, B, C, D must have known values.

Can be found from physical laws or from system identification based on experiments.

Constraints to be defined (these are a part of the MPC controller):

$$y_{\min} \le y \le y_{\max}$$

$$\Delta u_{\min} \leq \Delta u \leq \Delta u_{\max}$$

$$u_{\min} \le u \le u_{\max}$$

Optimization criterion

(Will be minimized by the controller, typically using a QP algorithm (Quadratic Programming))

$$= \sum_{k=0}^{N_p} \left\{ Q_1 \left[e_1(t_k) \right]^2 + Q_2 \left[e_2(t_k) \right]^2 + \dots + Q_n \left[e_n(t_k) \right]^2 \right\}$$

+
$$\sum_{k=1}^{N_c} R_1 \left\{ \left[\Delta u_1(t_k) \right]^2 + R_2 \left[\Delta u_2(t_k) \right]^2 + \dots + R_r \left[\Delta u_r(t_k) \right]^2 \right\}$$

Sum of future weighed squared control errors
 +Sum of future weighed increments of control variable

How it works:

Present control signal is calculated from optimal future control system behaviour:

Figure 18-1. Prediction and Control Horizons

How it works:

Prediction horizon is moved ahead as time goes (the moving horizon principle):

Figure 18-2. Moving the Prediction Horizon Forward in Time

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control error and weight of control signal increment
- Conclusions

Air heater Temperature at outlet to be controlled by adjusting heat

More info about the air heater at http://home.hit.no/~finnh/air_heater

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control error and weight of control signal increment
- Conclusions

Adapting the model to physical system

Step in control signal:

Gain

= 3.5

Time constant

= 22 sec

Time delay

= 2 sec

Verifying the model, and possibly fine-tuning the model parameters, by running a simulator in parallel with the physical system:

Model seems to be excellent!

Many methods for system identification exist, and are implemented in System Identification Toolkit, but the simple approach described above works fine here.

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control error and weight of control signal increment
- Conclusions

Skogestad's PID tuning method

Specified closed-loop step resonse in terms of time-constant Tc:

PI(D) tuning formulas for various process models

Our
model:

Process type	$H_{psf}(s)$ (process)	K_p	T_i	T_d
Integrator + delay	$\frac{K}{s}e^{-\tau s}$	$\frac{1}{K(T_C+\tau)}$	$c\left(T_C+\tau\right)$	0
Time-constant + delay	$\frac{K}{Ts+1}e^{-\tau s}$	$\frac{T}{K(T_C+\tau)}$	$\min\left[T,c\left(T_C+\tau\right)\right]$	0
Integr + time-const + del.	$\frac{K}{(Ts+1)s}e^{-\tau s}$	$\frac{1}{K(T_C+\tau)}$	$c\left(T_C+ au\right)$	T
Two time-const + delay	$\frac{K}{(T_1s+1)(T_2s+1)}e^{-\tau s}$	$\frac{T_1}{K(T_C+ au)}$	$\min\left[T_1,c\left(T_C+\tau\right)\right]$	T_2
Double integrator + delay	$\frac{K}{s^2}e^{-\tau s}$	$\frac{1}{4K(T_C+\tau)^2}$	$4\left(T_C + \tau\right)$	$4\left(T_C + \tau\right)$

Skogestad's PID tuning method cont.

For the air heater:

$$K = 3.5$$

$$T = 22 s$$

$$T_{delay} = 2 s$$

Specification (a little arbitrary):

$$Tc = 10 s$$

PI tuning with Skogestad (time-constant with time-delay):

$$K_p = T/(K*(T_c+T_{delay})) = 22/(3.5*(10+2)) = 0.42$$

$$T_i = min(T, 1.5*(Tc+T_{delay})) = min(22, 1.5*(10+2)) = 18 s$$

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control error and weight of control signal increment
- Conclusions

MPC settings

Set the constraints, typically according to physical limits

Set not so different from process response time (time-constant). 30 is number of samples. Sampling time is 0.5 s, hence horizon is 15 sec. Time-constant is 22 sec.

Output Error
Weightings can be
set to 1. Then
adjust Control
Action Change
Weightings by
trial-and-error on
real system or
simulator (small
value gives fast,
abrupt control;
large gives
sluggish control)

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control error and weight of control signal increment
- Conclusions

PID vs. MPC

Setpoint step tracking (future setpoint is known)

MPC much better then PID, because MPC plans control by looking ahead.

Observe that MPC starts changing control ahead of setpoint change! PID changes control after setpoint is changed.

PID vs. MPC

Setpoint ramp tracking (future setpoint profile is known)

PID MPC

MPC much better than PID, because MPC plans control by looking ahead.

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control error and weight of control signal increment
- Conclusions

PID vs. MPC

Disturbance compensation

Disturbance = covering air inlet with hand for 10 sec. (Disturbance is not known in advance, and not measured.)

PID MPC

Not much difference between MPC and PID.

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings

• PID vs. MPC:

- Setpoint tracking
- Disturbance compensation (non-modeled disturbance)
- Propagation of measurement noise through the controller
- Robustness of control system stability against model error
- Control when the process output variable is constrained

More MPC:

- Playing with prediction and control horizons
- Playing with weight of control error and weight of control signal increment

Conclusions

PID vs. MPC

Propagation of measurement noise through controller

PID MPC

Smoother control signal with MPC (less propagation of noise through controller)

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings

• PID vs. MPC:

- Setpoint tracking
- Disturbance compensation (non-modeled disturbance)
- Propagation of measurement noise through the controller
- Robustness of control system stability against model error
- Control when the process output variable is constrained

More MPC:

- Playing with prediction and control horizons
- Playing with weight of control error and weight of control signal increment

Conclusions

PID vs. MPC

Robustness against model change (error): Increase of loop time-delay by 8 sec PID MPC

MPC is less robust against this model change. Makes sense because MPC is highly model-based.

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings

• PID vs. MPC:

- Setpoint tracking
- Disturbance compensation (non-modeled disturbance)
- Propagation of measurement noise through the controller
- Robustness of control system stability against model error
- Control when the process output variable is constrained

More MPC:

- Playing with prediction and control horizons
- Playing with weight of control error and weight of control signal increment

Conclusions

More about MPC: Constrained control

Control when output variable (temperature) is defined as constrained. Here: Max output (temperature) is set to 30 deg C, with a tolerance of 0.5 deg C (to avoid oscillations just below the limit).

Max limit of 30 deg C is maintained!

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained

• More MPC:

- Playing with prediction and control horizons
- Playing with weight of control error and weight of control signal increment
- Conclusions

More about MPC: Decreasing control horizon

Prediction horizons reduced from 30 to 5 sec:

More sluggish and less stable control.

May be explained by the controller taking only little (short-termed) future behaviour of control system into account when calculating control signal.

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained

• More MPC:

- Playing with prediction and control horizons
- Playing with weight of control signal increment
- Conclusions

More about MPC

Playing with weight of control signal change (control increment)

Weight increased from 40 to 1000: Weight decreased from 40 to 0.01:

Sluggish control!

Fast, but abrupt control!
("Dead-beat" control)

Disturbance applied by covering air inlet with hand for 10 sec)

- PID control
- Model-based Predictive Control (MPC)
- System used in practical demo: Air heater (temperature control)
- Adapting model to physical system
- PID controller settings based on Skogestad's model-based tuning
- MPC parameter settings
- PID vs. MPC:
 - Setpoint tracking
 - Disturbance compensation (non-modeled disturbance)
 - Propagation of measurement noise through the controller
 - Robustness of control system stability against model error
 - Control when the process output variable is constrained
- More MPC:
 - Playing with prediction and control horizons
 - Playing with weight of control signal increment
- Conclusions

Conclusions

- Reference tracking: MPC starts adjusting the control signal ahead of reference changes, while PID can not start before. MPC gives substantially less control error.
- Disturbance (non-measured) compensation: MPC and PID almost equal.
- Propagation of measurement noise through controller: Less with MPC than PID
- MPC: Constrained control: The controller is able to limit the process output variable (temperature) according to the set constraint.
- MPC: Setting a small control horizon: More sluggish and less stable control
- MPC: Weight of control signal increment:
 - Reducing weight: Fast, but abrupt control. Similar to on/off ("dead-beat") control
 - Increasing weight: Sluggish control