1. What is the magnitude of $\vec{w} = [0.5, 0.5]$?

2. Multiple the following two vectors $(\vec{x}*\vec{w}^T)$, where $\vec{x}=[0.5,0.5]$ and $\vec{w}=[0.75,1.25]$

3.	Multiple the following two vectors $(\vec{x}^T * \vec{w})$ using the vectors from the previous problem.												

4.	What	is	the	dot	product	of	\vec{x}	and	\vec{w}	using	the	values	${\rm from}$	the	previous
	proble	m?)												

5. What is the angle between \vec{x} and \vec{w} using the values from the previous problem? Draw the vectors and label the angle that you found.

6. Add the following vectors, and draw the resultant and the original vectors. $\vec{x}=[0.5,0.5]$ and $\vec{w}=[0.75,-1]$

7. What is the difference between prediction and classification?

- 8. Using the perceptron learning algorithm and a single neuron, find the weights that correctly predict the "OR" function. Continue updating the weights using the algorithm discussed in class until you converge on a correct solution. Show all of your work. The initial weights are $w_0 = 0, w_1 = 0.5, w_2 = -0.5$ and the learning parameter $\nu = 0.25$. You may also assume that $x_0 = 1$.
- $\begin{array}{cccc} x_1 & x_2 & \text{OR} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$