Team Project 2 : Posterize a photo

Team#3 ImPosters

Project Goal

Transform a photo image into a pop-art style poster

Implementation Step 1. Grayscale Transform


```
dst = src.copy()

for y in range(0, height):
    for x in range(0, width):
        grayColor = (src.item(y, x,0)+src.item(y, x,1)+src.item(y, x,2))/3
        dst[y, x] = round(grayColor)
return dst
```

We will color all the segments with a new color so the original rgb values are useless.

So turn it into grayscale image which only contains brightness information

Implementation Step 2. Histogram Analysis

histogram output

By skimming through the image, the program finds the region's max intensity values.

Continually Repeats until finding 5 max intensities to divide the image into 6 regions.

```
def setBoundaryByHistogram(src):
   height, width, color = src.shape
   pixelNumOfEachBoundary = height * width / 6
   stack = [0 for i in range(256)]
   maxValueOfEachBoundary = []
   for y in range(0, height):
       for x in range(0, width):
           stack[src.item(y, x, 0)] += 1
   countNumb = 0
   for i in range(0, 255):
       countNumb += stack[i]
       if countNumb >= pixelNumOfEachBoundary :
           countNumb -= pixelNumOfEachBoundary
           maxValueOfEachBoundary.append(i)
           print(i)
   return maxValueOfEachBoundary
```

Implementation Step 3. Divide Segment

Base on the boundaries we calculated, divide segments by their intensity levels.

```
def devideLevel(src):
    height, width, color = src.shape
    maxValueOfEachBoundary = setBoundaryByHistogram(src)
    dst = src.copy();
    for y in range(0, height):
        for x in range(0, width):
            if src.item(y, x, 0) < maxValueOfEachBoundary[0]:</pre>
                 dst[y, x] = 0
            elif src.item(y, x, 0) < maxValueOfEachBoundary[1]:</pre>
                 dst[y, x] = 1
            elif src.item(y, x,0) < maxValueOfEachBoundary[2]:</pre>
                 dst[y, x] = 2
            elif src.item(y, x, 0) < maxValueOfEachBoundary[3]:</pre>
                 dst[y, x] = 3
            elif src.item(y, x, 0) < maxValueOfEachBoundary[4]:</pre>
                 dst[y, x] = 4
             else:
                dst[y, x] = 5
    return dst
```

Implementation Step 4. Soften edges


```
height, width, color = src.shape
dst = src.copy()
mask55 = np.ones((5,5), np.float64) / 25
cv2.filter2D(src, -1, mask55, dst)
return dst
         soften
                                unsoften
        soften
                                  unsoften
```

def softenImage(src):

Implementation Step 5. Coloring

Color each region with color palette

```
palette1 = [
(0, 0, 0), #검은색
(164, 46, 105), #보라색
(13, 100, 210), #귤색
(50, 170, 240), #덜면한귤색
(164, 227, 255),#연한귤색
(242, 250, 253) #흰색
]
```

```
palette2 = [
    (0, 0, 0), #블랙
    (40, 41, 38), #검은색
    (125, 99, 22), #심해색
    (44, 189, 250), #하늘색
    (251, 194, 156), #살구색
    (255, 248, 178) #연노랑
```

```
palette3 = [
    (148, 58, 108), #보라
    (58, 19, 189), #목젖색
    (233, 151, 35), #뽕따꼭따리
    (60, 200, 255), #레몬껍질색
    (141, 243, 197), #메로나
    (208, 246, 250) #귤피색
    神여기에 팔레트 색상 추가
```

Overall process of program

Work history

merge personal result

discussing prototype of color palette

merging sub projects

prototype of converted Image

discussion of result Image

More Examples

More Examples

Q&A