Nuclear Engineering 150 – Discussion Section Team Exercises #1

*Problems 1 & 2 borrowed from Nuclear Engineering 101 homework problem sets, Fall 2016

Problem 1

The radioactive isotope 233 Pa can be produced following neutron capture by 232 Th when the resulting 233 Th decays to 233 Pa. In the neutron flux of a typical reactor, neutron capture in 1 g of 232 Th produces 233 Th at of a rate of 233 Pa.

- a) What are the activities (in Ci) of ²³³Th and ²³³Pa after this sample is irradiated for 1.5 hours?
- b) The sample is then placed in storage with no further irradiation so that the 233 Th can decay away. What are the activities (in Ci) of 233 Th and 233 Pa after 48 hours of storage?
- c) The decay of 233 Pa results in 233 U, which is also radioactive. After the above sample has been stored for 1 year what is the 233 U activity in Ci? (Hint: it should not be necessary to set up an additional differential equation to find the 233 U activity.)

Recall: $1 \text{ Ci} = 3.7 \times 10^{10} \text{ s}^{-1}$

Problem 2

Use the following masses for parts (a) and (b):

Nucleus	Atomic Mass
n	1.008665 u
$^{1}\mathrm{H}$	1.007825 u
$^{2}\mathrm{H}$	2.014102 u
56 Fe	55.934939 u
^{98}Y	97.922203 u
$^{135}{ m I}$	134.910048 u
$^{235}{ m U}$	235.043924 u

Also, recall: $1\mathbf{u} \cdot c^2 = 931.502 \text{ MeV}$

a) Calculate the Q-value of the reaction:

235
U + $n \rightarrow ^{135}$ I + 98 Y + $3n$

b) Calculate the average binding energy per nucleon (in MeV) of $^2\mathrm{H},\,^{56}\mathrm{Fe},$ and $^{235}\mathrm{U}.$

Problem 3

a) Solve the first order differential equation

$$\frac{dy}{dx} + 3y = 0$$

b) Solve the second order differential equation (A and B are constants)

$$\frac{d^2y}{dx^2} - A^2y = B$$

The boundary condition is $y(\pm \frac{1}{A}) = 0$.

Problem 4

Classify the following cross section plots. They are, in no particular order:

- (1) $^{155}\mathrm{Gd}$ absorption
- (2) ²³⁵U fission
- (3) ²³⁸U absorption
- (4) ²³⁸U fission
- (5) ²³⁹Pu fission

