0.1 矩阵的初等变换

0.1.1 相抵标准型

定义 0.1 (矩阵相抵的定义)

设矩阵 $A, B, \Xi A$ 经有限次初等变换后变成 B, 则称 A 与 B 相抵, 记作 $A \sim B$.

 $\stackrel{ ext{$\widehat{Y}$}}{ ext{$\widehat{Y}$}}$ **笔记** 容易验证相抵是 $M_{\text{sxn}}(K)$ 上的一个等价关系. 在相抵关系下, 矩阵 A 的等价类称为 A 的相抵类.

命题 0.1 (矩阵相抵的等价命题)

数域 $K \perp s \times n$ 矩阵 $A \rightarrow B$ 相抵等价于:

- 1. A可以经过初等行变换和初等列变换变成B.
- 2. 存在K上s级初等矩阵 P_1, P_2, \cdots, P_t 与n级初等矩阵 Q_1, Q_2, \cdots, Q_m ,使得 $P_t \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_m = B$.
- 3. 存在K上s级可逆矩阵P与n级可逆矩阵Q,使得: PAQ = B.

定理 0.1 (相抵标准型)

设数域 $K \perp s \times n$ 矩阵 A 的秩为 r. 如果 r > 0, 那么 A 相抵于下述形式的矩阵:

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \tag{1}$$

称矩阵(??)为 A 的相抵标准形; 如果 r=0, 那么 A 相抵于零矩阵, 此时称 A 的相抵标准形是零矩阵.

推论 0.1

- 1. 数域 $K \perp s \times n$ 矩阵 A 和 B 相抵当且仅当它们的秩相等.
- 2. 设数域 K 上 $s \times n$ 矩阵 A 的秩为 r(r > 0), 则存在 K 上的 s 级、n 级可逆矩阵 $P \setminus Q$, 使得 $A = P\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}Q$

命题 0.2 (奇异阵的充要条件)

数域 K 上的 n 阶矩阵 A 是奇异阵的充要条件有:

- 1. 存在数域 K 上不为零的同阶方阵 B, 使得 AB = O.
- 2. 存在数域 K 上的 n 维非零列向量 x, 使得 Ax = 0.

证明

1. 充分性 (←): 显然若 A 可逆,则从 AB = O 可得到 B = O,因此充分性成立.

必要性 (⇒): 反之, 若 A 是奇异阵, 则存在数域 K 上的可逆阵 P,Q, 使得 $PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, 其中 r < n. 令

$$C = \begin{pmatrix} O & O \\ O & I_{n-r} \end{pmatrix}$$
, 则 $PAQC = O$. 又因为 P 可逆, 故 $AQC = O$. 只要令 $B = QC \in K$ 就得到了结论.

2. 充分性 (\leftarrow): 显然若 A 可逆, 则从 Ax = 0 可得到 x = 0, 因此充分性成立.

必要性 (⇒): 反之, 若 A 是奇异阵, 则存在数域 K 上的可逆阵 P,Q, 使 $PAQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, 其中 r < n. 令 $y = (0, \cdots, 0, 1)'$ 为 n 维列向量, 则 PAQy = 0. 又因为 P 可逆, 故 AQy = 0. 只要令 $x = Qy \in K$ 就得到了结论.

0.1.2 练习

△ 练习 0.1 设 A 为 n 阶实反对称阵, 证明: I_n – A 是非异阵.

证明 (反证法) 假设是 $I_n - A$ 是奇异阵, 则由命题??的 2, 可知存在 n 维非零实列向量 x, 使得 $(I_n - A)x = 0$, 即 Ax = x. 设 $x = (a_1, a_2, \dots, a_n)'$, 其中 a_i 都是实数, 则由 A 的反对称性以及命题??, 可知

$$0 = x'Ax = x'x = a_1^2 + a_2^2 + \dots + a_n^2.$$

从而 $a_1 = a_2 = \cdots = a_n = 0$, 即 x = 0, 这与已知矛盾.

△ 练习 0.2 设 A 为 n 阶可逆阵, 求证: 只用第三类初等变换就可以将 A 化为如下形状:

$$diag\{1, \dots, 1, |A|\}.$$

证明 假设 A 的第 (1,1) 元素等于零,因为 A 可逆,故第一行必有元素不为零.用第三初等变换将非零元素所在的列加到第一列,则到的矩阵中第 (1,1) 元素不为零.因此不设 A 的第 (1,1) 元素非零,于是可用三类初等变换将 A 的第一行及第一列其余素都消为零.这就是说.A 经过第三类初变换可化为如下形状:

$$\begin{pmatrix} a & O \\ O & A_1 \end{pmatrix}$$
.

再对 A_1 同样处理,不断做下去,可将 A 化为对角阵,并且对角元素均非零.因此我们只要对对角阵证明结论即可.为简化讨论,我们先考虑二阶对角阵:

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
.

将其第一行乘以 $(1-a)a^{-1}$ 加到第行上, 再将第二行加到第一行上得到:

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \rightarrow \begin{pmatrix} a & 0 \\ 1 - a & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & b \\ 1 - a & b \end{pmatrix}.$$

将其第一列乘以-b 加到第二列上, 再将第行乘以a-1 加到第二行上得到:

$$\begin{pmatrix} 1 & b \\ 1-a & b \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 1-a & ab \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & ab \end{pmatrix}.$$

从而原结论对二阶对角阵成立. 对于 n 阶对角阵 $B=diag\{a_1,a_2,\cdots,a_n\}$ 而言, 按照上述方法对 $B\begin{pmatrix}1&2\\1&2\end{pmatrix}$ 所对应的子矩阵进行第三类初等变换得到

$$\begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & & & \\ & a_1 a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix}.$$

按照上述方法对再对 $B\begin{pmatrix}2&3\\2&3\end{pmatrix}$ 所对应的子矩阵进行第三类初等变换得到

$$\begin{pmatrix} 1 & & & & \\ & a_1 a_2 & & & \\ & & a_3 & & \\ & & & \ddots & \\ & & & & a_n \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & a_1 a_2 a_3 & & \\ & & & \ddots & \\ & & & & a_n \end{pmatrix}.$$

同理依次对 $B\begin{pmatrix}k&k+1\\k&k+1\end{pmatrix}$, $k=1,2\cdots,n-1$ 所对应的子矩阵按照上述方法进行第三类初等变换, 最后得到

$$B = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & a_1 a_2 \cdots a_n \end{pmatrix}.$$

于是原结论对对角阵也成立. 而我们所用的初等变换始终是第三类初等变换. 这就得到了结论.

练习 0.3 求证: 任一n 阶矩阵均可表示为形如 $I_n + a_{ij}E_{ij}$ 这样的矩阵之积, 其中 E_{ij} 是 n 阶基础矩阵. 证明 由命题??可知任意一个n 阶矩阵都可表示为有限个初等阵和具有下列形状的对角阵 D 之积:

$$D = \operatorname{diag}\{1, \cdots, 1, 0, \cdots, 0\},\$$

故只要对初等阵和D证明结论即可.对D,假设D有r个1,则

$$D = (I_n - E_{r+1,r+1}) \cdots (I_n - E_{nn}).$$

第三类初等阵已经是这种形状了,即 $P_{ij}(c)=I_n+cE_{ij}$. 对第二类初等阵 $P_i(c)$,显然我们有 $P_i(c)=I_n+(c-1)E_{ii}$. 对第一类初等阵 P_{ij} ,由练习**??**可知,只用第三类初等变换就可以将 P_{ij} 化为 $P_n(-1)=\mathrm{diag}\{1,\cdots,1,-1\}$,因此对第一类初等阵结论也成立. 具体地,我们有

$$P_{ij} \cdot P_{ij} \left(-1\right) P_{j} \left(-1\right) P_{ji} \left(-1\right) P_{ij} \left(1\right) = I_n.$$

由此可得

$$\begin{split} P_{ij} &= \left[P_{ij} \left(-1 \right) P_{j} \left(-1 \right) P_{ji} \left(-1 \right) P_{ij} \left(1 \right) \right]^{-1} = P_{ij}^{-1} \left(1 \right) P_{ji}^{-1} \left(-1 \right) P_{j}^{-1} \left(-1 \right) P_{ij}^{-1} \left(-1 \right) \\ &= P_{ij} \left(-1 \right) P_{ji} \left(1 \right) P_{j} \left(-1 \right) P_{ij} \left(1 \right) = \left(I_n - E_{ij} \right) \left(I_n + E_{ji} \right) \left(I_n - 2E_{jj} \right) \left(I_n + E_{ij} \right). \end{split}$$