L'intégrale de DIRICHLET

On pose

$$I = \int_0^{+\infty} \frac{\sin(x)}{x} \, dx.$$

1) Existence de I.

Soit $(\varepsilon, A) \in \mathbb{R}^2$ tels que $0 < \varepsilon < A$. Les deux fonctions $t \mapsto 1 - \cos(t)$ et $t \mapsto \frac{1}{t}$ sont de classe C^1 sur le segment $[\varepsilon, A]$. On peut donc effectuer une intégration par parties qui fournit

$$\int_{\epsilon}^{A} \frac{\sin(t)}{t} dt = \left[\frac{1 - \cos(t)}{t} \right]_{\epsilon}^{A} + \int_{\epsilon}^{A} \frac{1 - \cos(t)}{t^{2}} dt = \frac{1 - \cos(A)}{A} - \frac{1 - \cos(\epsilon)}{\epsilon} + \int_{\epsilon}^{A} \frac{1 - \cos(t)}{t^{2}} dt \quad (*).$$

• On fixe momentanément A>0. Les deux fonctions $t\mapsto \frac{\sin(t)}{t}$ et $t\mapsto \frac{1-\cos(t)}{t^2}$ sont continues sur]0,A].

Ensuite, $\frac{1-\cos(\epsilon)}{\epsilon} \underset{\epsilon \to 0}{\sim} \frac{\epsilon^2/2}{\epsilon} = \frac{\epsilon}{2} \underset{\epsilon \to 0}{\to} 0$. D'autre part, $\frac{1-\cos(t)}{t^2} \underset{t \to 0}{\sim} \frac{1}{2}$. Donc, la fonction $t \mapsto \frac{1-\cos(t)}{t^2}$ est prolongeable par continuité en 0 puis cette fonction est intégrable sur un voisinage de 0. Par suite, $\int_0^A \frac{1-\cos(t)}{t^2} dt$ est une intégrale convergente.

(*) montre alors que l'intégrale $\int_0^A \frac{\sin(t)}{t} dt$ est une intégrale convergente (ce qui est d'ailleurs immédiat puisque la fonction $t\mapsto \frac{\sin(t)}{t}$ est prolongeable par continuité en 0) et quand ϵ tend vers 0, on obtient

$$\forall A>0, \ \int_0^A \frac{\sin(t)}{t} \ dt = \frac{1-\cos(A)}{A} + \int_0^A \frac{1-\cos(t)}{t^2} \ dt \quad (**).$$

• Les fonctions $t \mapsto \frac{\sin(t)}{t}$ et $t \mapsto \frac{1 - \cos(t)}{t^2}$ sont continues sur $]0, +\infty[$.

Pour tout A > 0, $\left| \frac{1 - \cos(A)}{A} \right| \le \frac{2}{A}$ et donc, $\lim_{A \to +\infty} \frac{1 - \cos(A)}{A} = 0$. D'autre part, $\frac{1 - \cos(t)}{t^2} = 0$ et donc la fonction $t \mapsto \frac{1 - \cos(t)}{t^2}$ est intégrable sur un voisinage de $+\infty$. Par suite, $\int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt$ est une intégrale convergente.

 $(**) \ montre \ alors \ que \int_0^{+\infty} \frac{\sin(t)}{t} \ dt \ est \ une \ intégrale \ convergente. \ De \ plus, \ quand \ A \ tend \ vers \ +\infty, \ on \ obtient \int_0^{+\infty} \frac{\sin(t)}{t} \ dt = \int_0^{+\infty} \frac{1-\cos(t)}{t^2} \ dt.$

L'intégrale
$$\int_0^{+\infty} \frac{\sin(x)}{x} dx$$
 est convergente.

On a au passage obtenu une égalité qui en fournit une autre en posant $u = \frac{t}{2}$

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt = \int_0^{+\infty} \frac{2\sin^2(t/2)}{t^2} dt = \int_0^{+\infty} \frac{2\sin^2(u)}{4u^2} 2du = \int_0^{+\infty} \frac{\sin^2(u)}{u^2} du.$$

$$\int_0^{+\infty} \frac{\sin(x)}{x} dx = \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt.$$

2) L'intégrale I est semi-convergente.

Vérifions que la fonction $t\mapsto \frac{\sin(t)}{t}$ n'est pas intégrable sur $]0,+\infty[$ ou encore que $\int_0^{+\infty}\left|\frac{\sin(t)}{t}\right|dt=+\infty.$ Pour tout $n\in\mathbb{N}^*,$

$$\int_0^{+\infty} \left| \frac{\sin(t)}{t} \right| dt \geqslant \int_0^{n\pi} \left| \frac{\sin(t)}{t} \right| dt = \sum_{k=0}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t} dt = \sum_{k=0}^{n-1} \int_0^{\pi} \frac{|\sin(u+k\pi)|}{u+k\pi} du = \sum_{k=0}^{n-1} \int_0^{\pi} \frac{\sin(u)}{u+k\pi} du = \sum_{k=0}^{n-1} \int_0^{\pi} \frac{\sin(u)}{u+k\pi} du = \frac{2}{\pi} \sum_{k=0}^{n-1} \frac{1}{k+1} = \frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k}.$$

 $\mathrm{Quand}\ n\ \mathrm{tend}\ \mathrm{vers}\ +\infty,\ \mathrm{on}\ \mathrm{obtient}\ \int_0^{+\infty} \left|\frac{\sin(t)}{t}\right|\,dt \geqslant +\infty\ \mathrm{puis}\ \int_0^{+\infty} \left|\frac{\sin(t)}{t}\right|\,dt = +\infty.$

L'intégrale $\int_0^{+\infty} \frac{\sin(x)}{x} dx$ n'est pas absolument convergente.

3) Calcul d'une suite d'intégrales.

Pour $n \in \mathbb{N}$, on pose $J_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{\sin(t)} dt$. Pour $n \in \mathbb{N}$, l'intégrale J_n est convergente car la fonction $t \mapsto \frac{\sin((2n+1)t)}{\sin(t)}$ est continue sur $\left]0, \frac{\pi}{2}\right]$ et est prolongeable par continuité en 0.

Ensuite, pour tout $n \in \mathbb{N}$,

$$\begin{split} I_{n+1} - I_n &= \int_0^{\frac{\pi}{2}} \frac{\sin((2n+3)t) - \sin((2n+1)t)}{\sin(t)} \ dt = \int_0^{\frac{\pi}{2}} \frac{2\sin(t)\cos((2n+2)t)}{\sin(t)} \ dt = 2\int_0^{\frac{\pi}{2}} \cos((2n+2)t) \ dt \\ &= 2\left[\frac{\sin((2n+2)t)}{2n+2}\right]_0^{\pi} = 0. \end{split}$$

 $\mathrm{Donc,\ la\ suite}\ (J_n)_{n\in\mathbb{N}}\ \mathrm{est\ constante.\ On\ en\ d\acute{e}duit\ que\ pour\ tout\ }n\in\mathbb{N},\ J_n=J_0=\int_0^{\frac{\pi}{2}}\frac{\sin(t)}{\sin(t)}\ dt=\frac{\pi}{2}.$

$$\forall n \in \mathbb{N}, \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{\sin(t)} dt = \frac{\pi}{2}.$$

4) Une autre suite d'intégrales qui va tendre vers I.

Puisque $\frac{1}{\sin(t)}$ tend vers $+\infty$ quand t tend vers 0, l'essentiel de la valeur de l'intégrale J_n est fournie par les valeurs de t proche de 0. Or, $\sin(t) \underset{t\to 0}{\sim} t$. On considère donc pour $n \in \mathbb{N}$, l'intégrale $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{t} dt$. En posant u = (2n+1)t, on obtient pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{t} \ dt = \int_0^{(2n+1)\frac{\pi}{2}} \frac{\sin(u)}{u} \ du.$$

Puisque $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est une intégrale convergente ou encore puisque $\lim_{x \to +\infty} \int_0^x \frac{\sin(t)}{t} dt$ existe et vaut I, on a en particulier

$$I = \lim_{n \to +\infty} \int_0^{\frac{\pi}{2} + n\pi} \frac{\sin(t)}{t} \ dt = \lim_{n \to +\infty} I_n.$$

5) Le lemme de LEBESGUE pour les fonctions de classe C^1 .

Soit f une fonction de classe C^1 sur un segment [a,b] de $\mathbb R$ à valeurs dans $\mathbb R$ ou $\mathbb C$. Montrons que $\lim_{\lambda\to+\infty}\int_a^b f(t)\sin(\lambda t)\ dt=0$. Une intégration par parties fournit pour $\lambda>0$,

$$\begin{split} \left| \int_{\alpha}^{b} f(t) \sin(\lambda t) \ dt \right| &= \left| \left[-f(t) \frac{\cos(\lambda t)}{\lambda} \right]_{\alpha}^{b} + \int_{\alpha}^{b} f'(t) \frac{\cos(\lambda t)}{\lambda} \ dt \right| \\ &= \frac{1}{\lambda} \left| -f(b) \cos(\lambda b) + f(\alpha) \cos(\lambda \alpha) + \int_{\alpha}^{b} f'(t) \cos(\lambda t) \ dt \right| \\ &\leqslant \frac{1}{\lambda} \left(|f(\alpha)| + |f(b)| + \int_{\alpha}^{b} |f'(t)| \ dt \right). \end{split}$$

$$\lim_{\lambda\to +\infty}\frac{1}{\lambda}\left(|f(\alpha)|+|f(b)|+\int_{\alpha}^{b}|f'(t)|\ dt\right)=0\ \mathrm{et\ donc\ }\lim_{\lambda\to +\infty}\int_{\alpha}^{b}f(t)\sin(\lambda t)\ dt=0.$$

6) La fonction $t \mapsto \frac{1}{\sin(t)} - \frac{1}{t}$.

 $\mathrm{Pour}\ t\in\left]0,\frac{\pi}{2}\right],\ \mathrm{on\ pose}\ f(t)=\frac{1}{\sin(t)}-\frac{1}{t}.\ f\ \mathrm{est\ de\ classe}\ C^{1}\ \mathrm{sur}\ \left]0,\frac{\pi}{2}\right].$

 $f(t) = \frac{t - \sin(t)}{t \sin(t)} \underset{t \to 0}{\sim} \frac{t^3/6}{t^2} = \frac{t}{6} \underset{t \to 0}{\to} 0. \text{ Donc f est prolongeable par continuit\'e en 0 en posant } f(0) = 0 \text{ (on note encore f le prolongement obtenu)}.$ Ensuite, pour $t \in \left]0, \frac{\pi}{2}\right],$

$$f'(t) = \frac{-\cos(t)}{\sin^2(t)} + \frac{1}{t^2} = \frac{\sin^2(t) - t^2\cos(t)}{t^2\sin^2(t)}.$$

De plus,

$$\begin{split} \sin^2(t) - t^2 \cos(t) &= \limits_{t \to 0} \left(t - \frac{t^3}{6} + o\left(t^3\right) \right)^2 - t^2 \left(1 - \frac{t^2}{2} + o\left(t^2\right) \right) = \limits_{t \to 0} \left(t - \frac{t^3}{6} \right)^2 - t^2 \left(1 - \frac{t^2}{2} \right) + o\left(t^4\right) \\ &= \limits_{t \to 0} t^4 \left(-\frac{1}{3} + \frac{1}{2} \right) + o\left(t^4\right) = \frac{t^4}{6} + o\left(t^4\right) \end{split}$$

et donc $f'(t) \underset{t \to 0}{\sim} \frac{t^4/6}{t^4} = \frac{1}{6}$. Ainsi, $f \in C^0\left(\left[0, \frac{\pi}{2}\right], \mathbb{R}\right) \cap C^1\left(\left]0, \frac{\pi}{2}\right], \mathbb{R}\right)$ et f' a une limite réelle en 0. D'après le théorème de la limite de la dérivée, $f \in C^1\left(\left[0, \frac{\pi}{2}\right], \mathbb{R}\right)$.

7) Limite de $J_{\mathfrak{n}}-I_{\mathfrak{n}}$ et calcul de I.

Pour tout $n \in \mathbb{N}$, d'après 3),

$$\frac{\pi}{2} - I_n = J_n - I_n = \int_0^{\frac{\pi}{2}} \left(\frac{1}{\sin(t)} - \frac{1}{t} \right) \sin((2n+1)t) \ dt = \int_0^{\frac{\pi}{2}} f(t) \sin((2n+1)t) \ dt.$$

D'après 6), f est de classe C^1 sur le segment $\left[0, \frac{\pi}{2}\right]$ et donc, d'après le lemme de LEBESGUE, $\frac{\pi}{2} - I_n$ tend vers 0 quand n tend vers $+\infty$. Mais alors, d'après 4),

$$I = \lim_{n \to +\infty} I_n = \frac{\pi}{2}.$$

On a montré que

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}.$$