import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt

#reading the data
df = pd.read_csv('https://raw.githubusercontent.com/stedy/Machine-Learning-with-R-datasets/

df.head(10)

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
5	31	female	25.740	0	no	southeast	3756.62160
6	46	female	33.440	1	no	southeast	8240.58960
7	37	female	27.740	3	no	northwest	7281.50560
8	37	male	29.830	2	no	northeast	6406.41070
9	60	female	25.840	0	no	northwest	28923.13692

#one-hot encoding
data=pd.get_dummies(df)

data.head()

	age	bmi	children	charges	sex_female	sex_male	smoker_no	smoker_yes	re
0	19	27.900	0	16884.92400	1	0	0	1	
1	18	33.770	1	1725.55230	0	1	1	0	
2	28	33.000	3	4449.46200	0	1	1	0	
3	33	22.705	0	21984.47061	0	1	1	0	
4	32	28.880	0	3866.85520	0	1	1	0	

X = data.drop('charges',axis=1)

X

```
Y = data['charges']
X.shape, Y.shape
     ((1338, 11), (1338,))
X.isnull().sum()
                         0
     age
     bmi
                         0
     children
                         0
     sex_female
                         0
     sex_male
                         0
     smoker_no
                         0
     smoker_yes
                         0
     region_northeast
                         0
     region_northwest
                         0
                         0
     region_southeast
     region_southwest
                         0
     dtype: int64
Y.head()
     0
          16884.92400
     1
          1725.55230
     2
          4449.46200
     3
          21984.47061
           3866.85520
     Name: charges, dtype: float64
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=12)
len(x_test),len(x_train),len(X)
     (268, 1070, 1338)
#building of neural network
tf.random.set_seed(42)
model = tf.keras.Sequential([
    tf.keras.layers.Dense(10),
```

```
tf.keras.layers.Dense(5),
tf.keras.layers.Dense(1)
1)
#model compile
model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=0.001),
   loss=tf.keras.losses.mae,
   metrics=['mae'])
model.fit(x_train,y_train,epochs=100,verbose=1)
 Epoch 1/100
 Epoch 2/100
 Epoch 3/100
 Epoch 4/100
 Epoch 5/100
 Epoch 6/100
 Epoch 7/100
 Epoch 8/100
 Epoch 9/100
 Epoch 10/100
 Epoch 11/100
 Epoch 12/100
 Epoch 13/100
 Epoch 14/100
 Epoch 15/100
 Epoch 16/100
 Epoch 17/100
 Epoch 18/100
 Epoch 19/100
 Epoch 20/100
 Epoch 21/100
```

3 of 8 01-07-2023, 08:28

0- 0---/--- 1--- 7700 0540

```
Epoch 22/100
 Epoch 23/100
 Epoch 24/100
 Epoch 25/100
 Epoch 26/100
 Epoch 27/100
 Epoch 28/100
 Epoch 29/100
 model.evaluate(x_test,y_test)
 [6372.556640625, 6372.556640625]
#building of neural network
tf.random.set_seed(42)
model1 = tf.keras.Sequential([
 tf.keras.layers.Dense(200),
 tf.keras.layers.Dense(150),
 tf.keras.layers.Dense(100),
 tf.keras.layers.Dense(50),
 tf.keras.layers.Dense(25),
 tf.keras.layers.Dense(5),
 tf.keras.layers.Dense(1)
])
#model compile
model1.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=0.01),
     loss=tf.keras.losses.mae,
     metrics=['mae'])
history=model1.fit(x_train,y_train,epochs=500)
 Epoch 1/500
 Epoch 2/500
 Epoch 3/500
 Epoch 4/500
 Fnoch 5/500
```

```
Epoch 6/500
Epoch 7/500
Epoch 8/500
Epoch 9/500
Epoch 10/500
Epoch 11/500
Epoch 12/500
Epoch 13/500
Epoch 14/500
Epoch 15/500
Epoch 16/500
Epoch 17/500
Epoch 18/500
Epoch 19/500
Epoch 20/500
Epoch 21/500
Epoch 22/500
Epoch 23/500
Epoch 24/500
Epoch 25/500
Epoch 26/500
Epoch 27/500
Epoch 28/500
Epoch 29/500
```

model1.summary()

Model: "sequential_3"

Lavier (from) Outside Chara Baran #

Layer (туре)	Output Snape	raram #
dense_13 (Dense)	(None, 200)	2400
dense_14 (Dense)	(None, 150)	30150
dense_15 (Dense)	(None, 100)	15100
dense_16 (Dense)	(None, 50)	5050
dense_17 (Dense)	(None, 25)	1275
dense_18 (Dense)	(None, 5)	130
dense_19 (Dense)	(None, 1)	6

Total params: 54,111 Trainable params: 54,111 Non-trainable params: 0

from tensorflow.keras.utils import plot_model
plot_model(model1,show_shapes=True)

model1.evaluate(x_test,y_test)

```
#plot history or we can say training curve
pd.DataFrame(history.history).plot()
plt.ylabel('loss')
plt.xlabel('epochs')
```

Text(0.5, 0, 'epochs')

Colab paid products - Cancel contracts here

8 of 8