Seminari 1 Processos de Ramificació

Víctor Ballester Ribó NIU: 1570866

Processos estocàstics Grau en Matemàtiques Universitat Autònoma de Barcelona Marc de 2023

Exercici 1. Considerem dos punts $A := (a, \alpha)$ i $B := (b, \beta)$ tals que $b > a \ge 0$ i $\alpha, \beta > 0$, tots ells naturals. Definim la reflexió de A en l'eix horizontal t com el punt $A' := (a, -\alpha)$. Justifiqueu el resultat següent. Principi de reflexió: el nombre de trajectòries de A a B que toquen o creuen l'eix t és igual al nombre de trajectòries de A' a B.

Resolució. Cal veure que hi ha una bijecció entre el conjunt de trajectòries de A a B que toquen o creuen l'eix t i el conjunt de trajectòries de A' a B. Sigui $s=(s_a,s_{a+1},\ldots,s_b)$ una trajectòria de A a B que toca o creua l'eix. Llavors $\exists k \in \{a,\ldots,b-1\}$ tal que $s_k=0$. Ara si considerem la trajectòria

$$s' = (-s_a, -s_{a+1}, \dots, -s_{k-1}, s_k, s_{k+1}, \dots, s_b)$$

tenim que s' és una trajectòria de A' a B ja que per construcció no em perdut la continuïtat i també per construcció cada s_j difereix en una unitat dels seus veïns s_{j-1} i s_{j+1} .

Recíprocament, si $s = (s_a, s_{a+1}, \dots, s_b)$ és una trajectòria de A' a B, aleshores pel teorema de Bolzano existeix $k \in \{a, \dots, b-1\}$ tal que $s_k = 0$. Ara si considerem la trajectòria

$$s' = (-s_a, -s_{a+1}, \dots, -s_{k-1}, s_k, s_{k+1}, \dots, s_b)$$

tenim que s' és una trajectòria de A a B (pel mateix argument que abans) que toca o creua l'eix t (almenys en (k, s_k)).

Figura 1: Exemple de trajectòries de A a B que toquen o creuen l'eix t i de A' a B.

Exercici 2. Demostreu el teorema de la votació: sigui n i x enters positius tals que existeixen dos enters positius n_1 i n_2 tals que $n_1 + n_2 = n$ i $n_1 - n_2 = x$. Definim $N_{n,x} = \binom{n}{n_1}$. Proveu que existeixen exactament $\frac{x}{n}N_{n,x}$ trajectòries $(0,s_1,\ldots,s_{n-1},x)$ tals que van de l'origen al punt (n,x) i són tals que $s_1,\ldots,s_{n-1}>0$. Com a aplicació, suposem que en una votació amb dos partits, A i B, el partit A ha tret n_1 vots i el partit B n_2 vots amb $n_1 > n_2$. Quina és la probabilitat que en tot moment de l'escrutini el partit A vagi per endavant? Feu el cas concret $n_1 = 1200$ i $n_2 = 800$.

Víctor Ballester NIU: 1570866

Resolució. Fixem-nos que el nombre de trajectòries per anar de l'origen al punt (n, x) és $N_{n,x}$. En efecte, si usem n_1 passos cap endavant (i.e positius o cap amunt en la figura anterior) i n_2 passos cap endarrera (i.e. negatius o cap avall) aleshores tenim que el nombre de trajectòries vindrà determinat un cop col·loquem les posicions dels passos positius, que podem fer-ho de $\binom{n}{n_1} = N_{n,x}$ maneres diferents.

Fixem-nos que el que ens demanen és equivalent a comptar el nombre de trajectòries $(1, s_2, \ldots, s_{n-1}, x)$ que van des del punt (1,1) al punt (n,x) i són tals que $s_2, \ldots, s_{n-1} > 0$ (ja que si des de l'origen no volem tocar l'eix només podem anar cap amunt), que a la vegada és el nombre total de trajectòries que van des del punt (1,1) al punt (n,x) menys el nombre de trajectòries que van des del punt (1,1) al punt (n,x) i tallen o toquen l'eix t. El primer terme d'aquests dos és $N_{n-1,x-1} = \binom{n-1}{\tilde{n}_1} = \binom{n-1}{n_1-1}$ ja que \tilde{n}_1 i \tilde{n}_2 satifan:

$$\begin{cases} \tilde{n}_1 + \tilde{n}_2 = n - 1 \\ \tilde{n}_1 - \tilde{n}_2 = x - 1 \end{cases} \iff \begin{cases} 2\tilde{n}_1 = n + x - 2 \\ 2\tilde{n}_2 = n - x \end{cases} \iff \begin{cases} 2\tilde{n}_1 = 2n_1 - 2 \\ 2\tilde{n}_2 = 2n_2 \end{cases} \iff \begin{cases} \tilde{n}_1 = n_1 - 1 \\ \tilde{n}_2 = n_2 \end{cases}$$

Per calcular el segon terme usem l'exercici 1 i calculem el nombre de trajectòries que van des de (1,-1) a (n,x). Aquest nombre és $N_{n-1,x+1}=\binom{n-1}{\bar{n}_1}=\binom{n-1}{n_1}$ ja que \bar{n}_1 i \bar{n}_2 satifan:

$$\begin{cases} \bar{n}_1 + \bar{n}_2 = n - 1 \\ \bar{n}_1 - \bar{n}_2 = x + 1 \end{cases} \iff \begin{cases} 2\bar{n}_1 = n + x \\ 2\bar{n}_2 = n - x + 2 \end{cases} \iff \begin{cases} 2\bar{n}_1 = 2n_1 \\ 2\bar{n}_2 = 2n_2 - 2 \end{cases} \iff \begin{cases} \bar{n}_1 = n_1 \\ \bar{n}_2 = n_2 - 1 \end{cases}$$

Per tant, el valor que ens demana l'exercici és:

$$\binom{n-1}{n_1-1} - \binom{n-1}{n_1} = \frac{n!}{(n-n_1)!n_1!} \left(\frac{n_1}{n} - \frac{n-n_1}{n}\right) = \binom{n}{n_1} \frac{2n_1-n}{n} = \frac{x}{n} \binom{n}{n_1} = \frac{x}{n} N_{n,x}$$

La segona part és una simple aplicació del que hem fet. Si pensem que els vots al partit A són passos positius en la nostra trajectòria i els vots al partit B són passos negatius, aleshores el que ens demanen és el nombre de trajectòries que van des de (0,0) a $(n_1 + n_2, n_1 - n_2)$ i que sempre estan estrictament per sobre l'eix t. Aquest nombre és:

$$\frac{x}{n}N_{n,x} = \frac{400}{2000}N_{n,x} = \frac{1}{5}N_{n,x}$$

I la probabilitat que sempre estiguin per sobre l'eix t és:

$$\frac{\frac{1}{5}N_{n,x}}{N_{n,x}} = \frac{1}{5}$$

ja que recordem que $N_{n,x}$ és el nombre total de trajectòries que van des de (0,0) a (n_1+n_2,n_1-n_2) .

Exercici 3. Donat un passeig aleatori simple, sortint de 0, calculeu la probabilitat de visitar alguna vegada l'estat b, on b és un enter estrictament positiu.

Resolució. Sigui $(X_n)_{n\geq 1}$ variables aleatòries tals que $\mathbb{P}(X_n=1)=p$ i $\mathbb{P}(X_n=-1)=q$ i $X_0=0$ independent de totes les altres. Sigui $S_n=\sum_{i=0}^n X_i$ un passeig aleatori simple. Volem calcular $\mathbb{P}(D)$ on $D=\{\exists n\in\mathbb{N}\cup\{0\}:S_n=b\}$. Per això definim C_z com

$$C_z := \{ \exists n \in \mathbb{N} \cup \{0\} : S_n = b \text{ i } S_m > -z, m = 0, \dots, n-1 \}$$

Fixem-nos que $\mathbb{P}(C_z)$ és exactament la probabilitat d'arruïnar el nostre contrincant en el joc de la ruïna del jugador fent la translació b=a-z (usant la notació de classe). Per tant, usant les fórmules que vam demostrar:

$$\mathbb{P}(C_z) = \begin{cases} \frac{-\left(\frac{p}{q}\right)^a + \left(\frac{p}{q}\right)^{a-z}}{1 - \left(\frac{p}{q}\right)^a} & \text{si } p \neq 1/2 \\ \frac{z}{a} & \text{si } p = 1/2 \end{cases} = \begin{cases} \frac{-\left(\frac{p}{q}\right)^{b+z} + \left(\frac{p}{q}\right)^b}{1 - \left(\frac{p}{q}\right)^{b+z}} & \text{si } p \neq 1/2 \\ \frac{z}{b+z} & \text{si } p = 1/2 \end{cases}$$

Notem que $C_z \subseteq C_{z+1}$, ja que si $S_m > -z$ aleshores també tindrem $S_m > -(z+1) \ \forall m=0,\ldots,n-1$. D'altra banda notem que $D = \bigcup_{z=0}^{\infty} C_z$. En efecte, tenim que si $\exists n \in \mathbb{N} \cup \{0\}$ de manera que $S_n = b$ aleshores prenent $\ell := \min_{m=0,\ldots,n-1} S_m$ tenim que n també satisfà la condició de l'esdeveniment $C_{\ell+1}$. I per tant, està a la unió $\bigcup_{z=0}^{\infty} C_z$. L'altra inclusió és clara ja que cada $C_z \subseteq D$. Per tant, pel lema de les unions creixents tenim que $\mathbb{P}(D) = \lim_{z\to\infty} \mathbb{P}(C_z)$. Aquest límit és fàcilment calculable i dona:

$$\mathbb{P}(D) = \lim_{z \to \infty} \begin{cases} \frac{-\left(\frac{p}{q}\right)^{b+z} + \left(\frac{p}{q}\right)^{b}}{1 - \left(\frac{p}{q}\right)^{b+z}} & \text{si } p \neq 1/2 \\ \frac{z}{b+z} & \text{si } p = 1/2 \end{cases} = \begin{cases} \left(\frac{p}{q}\right)^{b} & \text{si } p < 1/2 \\ 1 & \text{si } p \geq 1/2 \end{cases}$$

Víctor Ballester NIU: 1570866

Exercici 4. Suposem que dos jugadors A i B, amb fortuna conjunta a (amb $a \in \mathbb{N}$), juguen partides en què A pot guanyar una unitat (que perd B) amb probabilitat p, B pot guanyar una unitat amb probabilitat q i poden empatar (llavors no guanya res cap dels dos) amb probabilitat r. Suposem que aquestes probabilitats són estrictament positives i que p+q+r=1. Suposem que les successives partides són independents. Definim u(i) com la probabilitat que A guanyi el joc (és a dir, B s'arruïna), suposant que la fortuna inicial del jugador A fossin i unitats. Deduïu una equació en diferències per a u(i). Resoleu aquesta equació, amb les condicions frontera adequades i calculeu la probabilitat que A quanyi el joc si la seva fortuna inicial eren z unitats.

Resolució. Sigui $(X_n)_{n\geq 1}$ les variables aleatòries que simulen cada partida. Per tant, X_n pot prendre els valors 1, -1, 0 amb probabilitats p, q, r respectivament. Tenim que de forma similar a la ruïna del jugador:

 $\mathbb{P}(A \text{ guanya amb fortuna inicial } i) = \mathbb{P}(A \text{ guanya amb fortuna inicial } i \mid X_1 = 1)p + \\ + \mathbb{P}(A \text{ guanya amb fortuna inicial } i \mid X_1 = -1)q + \mathbb{P}(A \text{ guanya amb fortuna inicial } i \mid X_1 = 0)r = \\ = \mathbb{P}(A \text{ guanya amb fortuna inicial } i + 1)p + \mathbb{P}(A \text{ guanya amb fortuna inicial } i - 1)q + \\ + \mathbb{P}(A \text{ guanya amb fortuna inicial } i)r$

Escrit en forma de recurrència tenim que:

$$u(i) = u(i+1)p + u(i-1)q + u(i)r \implies u(i+1) + u(i)\frac{r-1}{p} + u(i-1)\frac{q}{p} = 0$$

El polinomi característic d'aquesta equació és $x^2 + \frac{r-1}{p}x + \frac{q}{p} = 0$, les arrels del qual són 1 i $\frac{q}{p}$. Fixem-nos que si p = q, aleshores les arrels són linealment dependents, però llavors és fàcil veure que hi ha una altra solució linealment independent de u(i) = 1, que és u(i) = i. Per tant, la solució general és:

$$\begin{cases} u(i) = c_1 + c_2 \left(\frac{q}{p}\right)^i & \text{si } p \neq q \\ u(i) = c_1 + c_2 i & \text{si } p = q \end{cases}$$

Les condicions de frontera són u(0) = 0 i u(a) = 1, ja que si i = 0 aleshores A no té fortuna i per tant no pot guanyar i si i = a aleshores A té tota la fortuna i per tant ja ha guanyat. Per tant, tenim que per $p \neq q$:

$$\begin{cases} c_1 + c_2 = 0 \\ c_1 + c_2 \left(\frac{q}{p}\right)^a = 1 \end{cases} \implies c_2 = -\frac{1}{1 - \left(\frac{q}{p}\right)^a} \quad i \quad c_1 = \frac{1}{1 - \left(\frac{q}{p}\right)^a}$$

I per p = q:

$$\begin{cases} c_1 = 0 \\ c_1 + c_2 a = 1 \end{cases} \implies c_1 = 0 \quad i \quad c_2 = \frac{1}{a}$$

Finalment la solució és:

$$u(z) = \begin{cases} \frac{1 - \left(\frac{q}{p}\right)^z}{1 - \left(\frac{q}{p}\right)^a} & \text{si } p \neq q\\ \frac{z}{a} & \text{si } p = q \end{cases}$$

que no depèn de r.