MAT-395: Linear Algebra Exercise Book

Logan Goldberg

January 30, 2017

Contents

1	Vector Spaces				
	1.1	Read	ding Proofs	3	
	1.2	Exer	cise Statements	3	
	1.3	Proc	ofs	5	
		1.3.1	Proof of Exercise 1	5	
		1.3.2	Proof of Exercise 3	6	
		1.3.3	Proof of Exercise 4	7	
		1.3.4	Proof of Exercise 9	8	
		1.3.5	Proof of Exercise 11	9	
		1.3.6	Proof of Exercise 13	10	
		1.3.7	Proof of Exercise 15	11	
		1.3.8	Proof of Exercise 17	12	
		1.3.9	Proof of Exercise 26	13	

Chapter 1

Vector Spaces

1.1 Reading Proofs

1.2 Exercise Statements

- 1. Let *V* be a vector space over *F*. Prove that 0v = 0 and r0 = 0 for all $v \in V$ and $r \in F$. Describe the different 0's in these equations. Prove that if rv = 0, then r = 0 or v = 0. Prove that rv = v implies that v = 0 or v = 1.
- 3. a. Find an abelian group *V* and a field *F* for which *V* is a vector space over *F* in at least two different ways, that is, there are two different definitions of scalar multiplication making *V* a vector space over *F*.
 - b. Find a vector space *V* over *F* and a subset *S* of *V* that is (1) a subspace of *V* and (2) a vector space using operations that differ from those of *V*.
- 4. Suppose that *V* is a vector space with basis $\mathcal{B} = \{b_i \mid i \in I\}$ and *S* is a subspace of *V*. Let $\{B_1, B_2, ..., B_k\}$ be a partition of \mathcal{B} . Then is it true that

$$S = \bigoplus_{i=1}^{k} (S \cap \langle B_i \rangle)?$$

What if $S \cap \langle B_i \rangle \supseteq \{0\}$ for all i?

- 9. Let M be an $m \times n$ matrix whose rows are linearly independent. Suppose that the k columns c_{i_1}, \ldots, c_{i_k} of M span the columns space of M. Let C be the matrix obtained from M by deleting all columns except c_{i_1}, \ldots, c_{i_k} . Show that the rows of C are also linearly independent.
- 11. Show that if *S* is a subspace of a vector space *V*, then $\dim(S) \leq \dim(V)$. Furthermore, if $\dim(S) = \dim(V) < \infty$, then S = V. Give an example to show that the finiteness is required in the second statement.
- 13. What is the relationship between $S \oplus T$ and $T \oplus S$? Is the direct sum operation commutative? Formulate and prove a similar statement concerning associativity. Is there an "identity" for direct sum? What about "negatives"?

- 15. Prove that the vector space $\mathscr C$ of all continuous functions from $\mathbb R$ to $\mathbb R$ is infinite-dimensional.
- 17. Let *S* be a subspace of *V*. The set $v + S = \{v + s \mid s \in S\}$ is called an **affine subspace** of *V*.
 - a) Under what conditions is an affine subspace of *V* a subspace of *V*?
 - b) Show that any two affine subspaces of the form v + S and w + S are either equal or disjoint.
- 26. Let V be a real vector space with complexification $V^{\mathbb{C}}$ and let U be a subspace of $V^{\mathbb{C}}$. Prove that there is a subspace S of V for which

$$U = S^{\mathbb{C}} = \{s + ti \mid s, t \in S\}$$

if and only if U is closed under complex conjugation $\chi \colon V^{\mathbb{C}} \to V^{\mathbb{C}}$ defined by $\chi(u+iv) = u-iv$.

1.3 Proofs

1.3.1 Proof of Exercise 1

Let *V* be a vector space over *F*. Prove that 0v = 0 and r0 = 0 for all $v \in V$ and $r \in F$. Describe the different 0's in these equations. Prove that if rv = 0, then r = 0 or v = 0. Prove that rv = v implies that v = 0 or v = 1.

Proof. For this proof, let $v \in V$ and $r \in R$ both be arbitrary. We begin by showing that 0v = 0. Using the properties of the field F and the distributive property,

$$0\nu = (0+0)\nu = 0\nu + 0\nu$$
.

Since $0v \in V$, we use the additive inverse of 0v to conclude that 0v = 0. Note that 0 in this instance corresponds to $0 \in F$, the additive identity of F.

From here, we will show that r0 = 0. Using the properties of the abelian group V and the distributive property,

$$r0 = r(0+0) = r0 + r0$$
.

Since $r0 \in V$, we use the additive inverse of r0 to conclude that r0 = 0. Note that 0 in this instance corresponds to $0 \in V$, the zero vector of V.

Next, we will show that if rv = 0, then r = 0 or v = 0. Assume $r \neq 0$ (because r = 0 is silly). Notice that rv = 0 = r0 since r0 = 0. Then $\frac{1}{r}(rv) = \frac{1}{r}(r0)$ if and only if v = 0.

Finally, we show that if rv = v, then v = 0 or r = 1. Using our scalar multiplication axioms, we arrive at the conclusion that rv = v = 1v if and only if (r-1)v = 0. Since $r-1 \in F$, we may use the fact that if (r-1)v = 0, then r-1 = 0 or v = 0.

1.3.2 Proof of Exercise 3

- a. Find an abelian group *V* and a field *F* for which *V* is a vector space over *F* in at least two different ways, that is, there are two different definitions of scalar multiplication making *V* a vector space over *F*.
- b. Find a vector space *V* over *F* and a subset *S* of *V* that is (1) a subspace of *V* and (2) a vector space using operations that differ from those of *V*.

Proof. We begin with part a.

a. \mathbb{C} over \mathbb{C} is already a vector space when equipped with ordinary addition and scalar multiplication of complex numbers.

Therefore, define the function $g: \mathbb{C} \times \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ given by $g((x, v)) = (\overline{x}, v)$ where \overline{x} is the complex conjugate of x. When composed with the ordinary multiplication map $\mathbf{mul}: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$, $\mathbf{mul} \circ g$, defines a scalar multiplication function. Since multiplication of complex numbers is both associative and distributive, we need only check that 1v = v for any $v \in \mathbb{C}$. Since $1 \in \mathbb{R}$ however, $\overline{1} = 1$, so 1v = v for any $v \in \mathbb{C}$. Hence \mathbb{C} over \mathbb{C} with operations of ordinary addition and $\mathbf{mul} \circ g$ for scalar multiplication forms a vector space.

b. $\mathbb C$ over $\mathbb C$ is a vector space with ordinary addition and scalar multiplication as its operations. The subset $\mathbb R\subseteq\mathbb C$ is a subspace of $\mathbb C$ since it's closed under ordinary addition and scalar multiplication.

Now using \mathbb{R} as a vector space over \mathbb{R} , let $+' : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a vector addition function defined as $x +' y = e^x e^y$. From the properties of exponent rules, +' satisfies the properties of vector addition. Therefore, \mathbb{R} over \mathbb{R} using +' and with ordinary addition as scalar multiplication is a vector space with different operations from \mathbb{C} over \mathbb{C} .

1.3.3 Proof of Exercise 4

Suppose that V is a vector space with basis $\mathscr{B} = \{b_i \mid i \in I\}$ and S is a subspace of V. Let $\{B_1, B_2, ..., B_k\}$ be a partition of \mathscr{B} . Then is it true that

$$S = \bigoplus_{i=1}^{k} (S \cap \langle B_i \rangle)?$$

What if $S \cap \langle B_i \rangle \supseteq \{0\}$ for all i?

Proof. Let $V = \mathbb{R}^2$ and $S = \{(x, y) \mid x + 2y = 0\}$. Let \mathcal{B} be the standard basis and $\mathbf{B} = \{\{e_1\}, \{e_2\}\}$. Then notice that

$$S \cap \langle \{e_1\} \rangle = \{0\}$$
 and $S \cap \langle \{e_2\} \rangle = \{0\}$

Therefore, $\sum_{k=1}^{2} (S \cap \langle \{e_i\} \rangle) = \{0\}$, so S is not the direct sum of spans of blocks of basis vectors intersected with S.

Alternatively, fix $k, n \in \mathbb{N}$ with k < n, let $V = \mathbb{R}^{\omega}$, and let $S = \mathbb{R}^n$ be a subspace of V. We will assume that $S \cap \langle B_i \rangle \supseteq \{0\}$. For each block $B_i \in \mathbf{B}$, let $S \cap \{B_i\} = \{b_i, 0\}$. Since S is closed under linear combination, $\langle \{b_i\} \rangle \subseteq S \cap \{B_i\}$. Then there are k basis vector of \mathscr{B} in \mathbb{R}^n which, together, span a subspace \mathbb{R}^k of \mathbb{R}^n . But since k < n, \mathbb{R}^k does not span \mathbb{R}^n by Theorem 1.7. Thus S is not the direct sum of S intersected with finitely many spans of blocks in partition \mathbf{B} .

1.3.4 Proof of Exercise 9

Let M be an $m \times n$ matrix whose rows are linearly independent. Suppose that the k columns c_{i_1}, \ldots, c_{i_k} of M span the columns space of M. Let C be the matrix obtained from M by deleting all columns except c_{i_1}, \ldots, c_{i_k} . Show that the rows of C are also linearly independent.

Proof. By Theorem 1.15, elementary column operations do not affect the rank of a matrix. Thus rk(M) = rk(C) = n, so the rows of C are linearly independent.

1.3.5 Proof of Exercise 11

Show that if *S* is a subspace of a vector space *V*, then $\dim(S) \leq \dim(V)$. Furthermore, if $\dim(S) = \dim(V) < \infty$, then S = V. Give an example to show that the finiteness is required in the second statement.

Proof. Let S be a subspace of V. Let $\mathscr{B} = \{b_i \mid i \in I\}$ and \mathscr{C} be bases and V and S respectively. Then if $v \in S$, v can be written as a finite linear combination of vectors in \mathscr{B} , where all of the coefficients are nonzero, say

$$v = \sum_{j \in B_v} r_j b_j$$

where $B_v \subseteq \mathcal{B}$ is the index set of basis vectors whose span contains v. Because \mathscr{C} is a basis for the subspace S,

$$\bigcup_{v \in S} B_v \subseteq I$$

for if the vectors in S can be expressed as finite linear combinations of the vectors in a proper superset \mathcal{B}' of \mathcal{B} , then \mathcal{B}' is a maximal linearly independent set, violating the maximality of \mathcal{B} .

Since $|B_v| < \aleph_0$ for all $v \in S$, Theorem 0.17 allows us to conclude that

$$|\mathscr{C}| \le |I| \le \aleph_0 |\mathscr{B}|$$
.

Therefore $\dim(S) \leq \dim(V)$ as desired. (DO REST OF THIS EXERCISE)

1.3.6 Proof of Exercise 13

What is the relationship between $S \oplus T$ and $T \oplus S$? Is the direct sum operation commutative? Formulate and prove a similar statement concerning associativity. Is there an "identity" for direct sum? What about "negatives"?

Proof. I claim that $(S(V), \{0\}, \oplus)$ is a commutative monoid. Let $S, T, R \in S(V)$ be independent subspaces of V. Note that $S \oplus T$ is itself a subspace in S(V), so S(V) is closed under \oplus . To show that \oplus is associative, notice the following.

$$(S \oplus T) \oplus R = \{u + v \mid u \in S, v \in T\} \oplus R$$
$$= \{(u + v) + w \mid u \in S, v \in T, w \in R\}$$

Using the associativity of +,

$$= \{u + (v + w) \mid u \in S, v \in T, w \in R\}$$
$$= U \oplus \{v + w \mid v \in T, w \in R\}$$
$$= U \oplus (V \oplus R)$$

Hence \oplus is associative. \oplus is also commutative.

$$S \oplus T = \{u + v \mid u \in S, v \in T\}$$

Using the commutativity of +,

$$= \{v + u \mid u \in S, v \in T\}$$
$$= T \oplus S$$

To show that $\{0\}$ is the identity element of S(V), simply note that

$$S \oplus \{0\} = \{u + 0 \mid u \in S\}$$

Since 0 is the additive identity of V,

$$= \{u \mid u \in S\} = S$$
$$= \{0 + u \mid u \in S\}$$
$$= \{0\} \oplus S$$

Despite being a commutative monoid, $(S(V), \{0\}, \oplus)$ does not have inverses. Suppose for contradiction $S \oplus T = \{0\}$. Then if $x \in S \oplus T$, then x = u + v for $u \in S$ and $v \in T$. But by set equality, x = 0, so u = -v, violating the independence of S and T.

Hence $(S(V), \{0\}, \oplus)$ is a commutative monoid.

1.3.7 Proof of Exercise 15

Prove that the vector space $\mathscr C$ of all continuous functions from $\mathbb R$ to $\mathbb R$ is infinite-dimensional. We begin with a Lemma about the linear independence of monomials.

Lemma 1.3.1. Fix $n \in \mathbb{N}$. The set of vectors $\{1, x, x^2, \dots, x^n\}$ is a linearly independent subset of \mathscr{C} .

Proof. Suppose the linear combination

$$0 = r_0 x^0 + r_1 x^1 + \dots + r_n x^n.$$

has a nontrivial solution. Since each x^i is distinct and there is a nontrivial solution, n > 1, so

$$x^{0} = 1 = -\frac{1}{r_{0}} (r_{1}x^{1} + \dots + r_{n}x^{n})$$

Since there is no $y \in \mathbb{R}$ with xy = 1, we've arrived at a contradiction since 1 cannot be written as the sum of monomials. Hence $\{1, x, x^2, ..., x^n\}$ is linearly independent.

Now we proceed with the proof.

Proof. Suppose that \mathscr{C} is finite dimensional with $n = \dim(\mathscr{C})$. Choose basis β with $|\beta| = n$. Notice that the set $\{1, x, x^2, x^3, ..., x^n\}$ is a linearly independent set by Lemma 1.3.2 of cardinality n+1. This violates the maximality of β . Since $n \in \mathbb{N}$ was arbitrary, \mathscr{C} is infinite-dimensional. \square

1.3.8 Proof of Exercise 17

Let *S* be a subspace of *V*. The set $v + S = \{v + s \mid s \in S\}$ is called an **affine subspace** of *V*.

- a) Under what conditions is an affine subspace of V a subspace of V?
- b) Show that any two affine subspaces of the form v+S and w+S are either equal or disjoint.

Proof. Let *S* be a subspace of the vector space *V*.

a. I claim that s+V is a subspace if and only if $v \in S$. Assume the contrary that v+S is a subspace with $v \notin S$; it should then be closed under linear combination. Let $u_1, u_2 \in v+S$ and fix $a, b \in F$. Then $au_1 + bu_2 \in v+S$. However,

$$au_1 + bu_2 = a(v + s_1) + b(v + s_2) = (a + b)v + (as_1 + bs_2).$$

This new vector is not in v + S, so S is not a subspace. On the other hand, v in the subspace S means that v + S is a subspace since S is closed under linear combination.

b. Let $v, w \in V$ be vectors and let S be an arbitrary subspace. Let v + S and w + S be affine subspaces of V. For argument's sake, $(v+S) \cap (w+S)$ is empty or nonempty. Suppose there is some $u \in (v+S) \cap (w+S)$. Fix $s_1, s_2 \in S$ with $u = v + s_1 = w + s_2$. Then

$$u = v + s_1 = w + s_2 \Leftrightarrow v - w = s_1 - s_2 \Leftrightarrow (v - w) \in S$$

Now suppose that $x \in v + S$. Fix $t \in S$ with x = v + t. Since S is closed under linear combination,

$$v + t = v + (t + 0) = v + t - (v - w) + (s_1 - s_2) = w + (t + s_1 - s_2).$$

Because $s_1 - s_2 \in S$, $x \in w + S$. If $x \in w + S$, then a similar argument will show that $x \in v + S$. Hence v + S = w + S.

1.3.9 Proof of Exercise 26

Let V be a real vector space with complexification $V^{\mathbb{C}}$ and let U be a subspace of $V^{\mathbb{C}}$. Prove that there is a subspace S of V for which

$$U = S^{\mathbb{C}} = \{s + ti \mid s, t \in S\}$$

if and only if *U* is closed under complex conjugation $\chi: V^{\mathbb{C}} \to V^{\mathbb{C}}$ defined by $\chi(u+iv) = u-iv$.

Proof. Let U be a subspace of $V^{\mathbb{C}}$. We will show that there is a subspace S of V such that $U = S^{\mathbb{C}}$ if and only if U is closed under the complex conjugate map.

Suppose that *S* is a subspace of *V* such that $U = S^{\mathbb{C}}$. Let $(v, w) \in U$. Since $(v, w) \in U$, v and w are in *S*. Since *S* is a subspace, $0 \in S$ and $-w \in S$ as well. Therefore, $(v, -w) \in U$, and thus *U* is closed under χ .

Alternatively, assume that U is closed under χ . Let $U = S \times S$. Let $(a + bi) \in \mathbb{C}$ and $(v, w) \in U$ both be arbitrary. Then

$$(a+bi)(v,w) = (av-bw, aw+bv) \in U$$

Since *U* is closed under the complex conjugate map, $(av - bw, -aw - bv) \in U$ as well. Furthermore, since *U* is a subspace, *U* is closed under linear combination. Thus,

$$(av - bw, aw + bv) + (av - bw, -aw - bv) = (2av - 2bw, 0) \in U.$$

By definition of U, $U = S \times S$, so $av - bw \in S$. Hence S is closed under linear combination, and thus S is a subspace of V.

Chapter 2

Linear Transformations