FDA Submission

Your Name: Divyansh Choubisa

Name of your Device: Chest X-Rays Pneumonia Detector

Algorithm Description

1. General Information

Intended Use Statement: Help Radiologists in detecting Pneumonia in Chest X-Rays

Indications for Use:

- Applicable for men and women from 1 to 90 years old
- Chest X-Ray image must be taken in the AP or PA position
- Chest X-Ray image must be in DICOM format

Device Limitations:

 Diagnosis can be made on a computer with a standard CPU, although a GPU is preferred

Clinical Impact of Performance:

- The model has a lower precision and higher recall
- This means the model is most confident when the test result is negative
- Therefore, it is best used for worklist prioritization and not as a diagnosis tool

2. Algorithm Design and Function

DICOM Checking Steps:

- Modality is "DX"
- Body part examined is "CHEST"
- Patient Position is "PA" or "AP"

Preprocessing Steps:

- Image is normalized
- Image is reshaped
- Image is repeated across 3 channels

CNN Architecture:

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
model_1 (Model)	(None,	7, 7, 5 <mark>1</mark> 2)	14714688
flatten_1 (Flatten)	(None,	25088)	0
dropout_1 (Dropout)	(None,	25088)	0
dense_1 (Dense)	(None,	1024)	25691136
dropout_2 (Dropout)	(None,	1024)	0
dense_2 (Dense)	(None,	512)	524800
dropout_3 (Dropout)	(None,	512)	0
dense_3 (Dense)	(None,	256)	131328
dropout_4 (Dropout)	(None,	256)	0
dense_4 (Dense)	(None,	1)	257

Total params: 41,062,209 Trainable params: 28,707,329 Non-trainable params: 12,354,880

- The model is based on the VGG16 model
- The model uses the first 16 layers of the VGG16 model
- The VGG16 model output is flattened and passed through several additional dense and dropout layers

3. Algorithm Training

Parameters:

• Types of augmentation used during training

- Horizontal flips
- No Vertical flips
- Height shift range of 0.1,
- Width shift range of 0.1,
- Rotation range of 25,
- Shear range of 0.1,
- Zoom range of 0.15
- Batch size: 64
- Optimizer learning rate: 1e-4
- Layers of pre-existing architecture that were frozen: First 16 layers of VGG model
- Layers of pre-existing architecture that were fine-tuned: None
- Layers added to pre-existing architecture: Flatten, Dense and Dropout layers

Final Threshold and Explanation:

Threshold: 0.5215

• F1 Score: 0.4297

The final threshold of 0.5215 was based on the highest F1 Score of 0.4297. Based on this paper the average radiologist has a F1 Score of 0.387. This means this model achieved a better performance as the average radiologist.

4. Databases

- The Dataset can be found here: NIH Chest X-ray Dataset
- It contains 112,120 chest x-ray images
- Each image has the following meta data:
 - Image Index
 - Finding Labels
 - Follow-up #
 - Patient ID
 - Patient Age
 - Patient Gender
 - View Position
 - Original Image Size
 - Original Image Pixel Spacing

Description of Training Dataset:

- The training data is split equally between Pneumonia and non Pneumonia patients
- It contains 2290 images

Description of Validation Dataset:

- The training data has 20% Pneumonia and 80% non Pneumonia patients
- It contains 1430 images

5. Ground Truth

- 112,120 X-ray images with disease labels from 30,805 unique patients
- The disease labels were created using Natural Language Processing (NLP) to mine the associated radiological reports
- The labels are expected to be >90% accurate and suitable for weakly-supervised learning
- The data includes 14 common thoracic pathologies:
 - Atelectasis
 - Consolidation
 - Infiltration
 - Pneumothorax
 - Edema
 - Emphysema
 - Fibrosis
 - Effusion
 - Pneumonia
 - Pleural thickening
 - Cardiomegaly
 - Nodule
 - Mass
 - Hernia

6. FDA Validation Plan

Patient Population Description for FDA Validation Dataset:

- Applicable for men and women from 1 to 90 years old
- Chest X-Ray image must be taken in the AP or PA position
- Chest X-Ray image must be in DICOM format

Ground Truth Acquisition Methodology:

• Silver Standard: Validation by 3 different radiologists

Algorithm Performance Standard:

• The algorithm's F1 score should be more than that of average radiologist (0.387)