1	Os números de protões, neutrões e electrões da espécie X ²⁺ , sabendo que X é isótopo da espécie ₈₂ Y ²¹⁰ e isótono da espécie ₈₄ Z ²¹⁴ são, respectivamente, iguais a:				
	A. 84, 214 e 84	B. 80, 214 e 82	C . 82, 128 e 80	D. 82, 130 e	e 80
2		os hipotéticos 90X ²³³ ; aY ^b e o de X; então o átomo Y dev		Z tem 144 neutrões, é isótop	oo de X e isóbaro de Y e
	A. 90 protões	B. 91 protões	C. 143 protõe	s D. 142 pro	tões
3	São dados três átomos genéricos "A", "B" e "C". O átomo "A" tem número atómico 70 e número de massa 160. O átomo "C" tem 94 neutrões, sendo isótopo de "A". O átomo "B" é isóbaro de "C" e isótono de "A". O número de electrões do átomo "B" é:				
	A. 160	B . 70	C. 74	D . 78	
4		do enxofre nas substâncias B. 0, +6, +4, +6, +2	S ₈ , H ₂ S, H ₂ SO ₃ , H ₂ SO ₄ e S 2 C. 0, -2, +4, +6		+6, -2
5		guintes, com referência ao	elemento flúor:		
	 I - O flúor é um halogénio II - O flúor localiza-se no segundo período da tabela periódica III - O flúor é menos electronegativo do que o cloro IV - O flúor tem propriedades similares às do cloro São correctas as afirmações: 				
	A. I, II e III	B . II, III e IV	C . I, II e IV	D. I, III e IV	r
6	Assinale a alternativa que não é correcta: A. o nº máximo de electrões em cada orbital é dois. B. no nível quântico principal quatro, há 16 orbitais. C. no subnível 5f, há 7 orbitais. D. 5, 1, 0,-1/2 são os quatro números quânticos de electrões de maior energia de um átomo de elemento que pertence ao grupo IA				ue pertence ao grupo IA
7	da tabela periódica.	•	, and the second	-	
7	0,05 mol/l.s. A massa de l	NO_2 formada em 1 minuto	eg. Admita que a formação o é:	o do O2 tem uma velocidade	e media constante igual a
	A . 96 g	B. 55,2 g	C. 12,0 g.	D . 552,0 g.	
8	Mediu-se o grau de conductibilidade eléctrica de volumes iguais de duas soluções aquosas, uma do ácido HA e outra do ácido HB. Os resultados constam da tabela a seguir apresentada.				
	Intensidade	da luz da lâmpada	Solução do HA Mais intensa	Solução do HB Fraca	
	De acordo com estes resultados, as soluções HA e HB podem ser respectivamente:				
	A. CH ₃ COOH 0,1M e CH ₃ COOH 0,1M B. CH ₃ COOH 0,1M e H ₂ SO ₄ 0,1M C. HCl 0,1M e CH ₃ COOH 0,1M D. HCl 0,01M e CH ₃ COOH 0,1M				
9	Dada a equação da reacção em fase gasosa $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$ mediram-se as velocidades iniciais em função das				
	concentrações iniciais de reagentes e conclui-se que quando a concentração inicial do NO triplicou, mantendo constante a concentração inicial de O_2 , a velocidade inicial aumentou nove vezes, quando a concentração inicial de O_2 se reduziu a metade mantendo constante a concentração inicial de NO , a velocidade inicial também se reduziu a metade. A expressão da lei de velocidade para esta equação é: A. $v = K[NO]^2 \cdot [O_2]$ B. $v = K[NO] \cdot [O_2]^2$ C. $v = K[NO]^2 \cdot [O_2]^2$ D. $v = K[NO] \cdot [O_2]$				
10	Dos processos indicados p	pelas figuras a), b), c) e d) a	abaixo, é mais rápido e exot	térmico o processo:	
	ENERGÍA CAMINHO DA REACÇÃO (R = REAGENTES; P = PRODUTOS)				
	A . a)	В. с)	C. d)	D . b)	
	1x a)	D . C)	c. u _j	υ. υ)	

Exam	e de Admissão de Quín	nica – 2007				Página 2 de 5		
11		A expressão da lei da velocidade para a decomposição do pentóxido de dinitrogénio traduzida pela equação:						
		$2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$, que segue o mecanismo abaixo dado é:						
	(i) $N_2O_{5(g)} \rightarrow NO_{2(g)} + 1$							
	(ii) $NO_{3(g)} \rightarrow NO_{(g)} + O_{(g)}$		nide)					
	(iii) $NO_{(g)} + N_2O_{5(g)} \rightarrow$		pida)					
	(iv) $N_2O_{4(g)} \rightarrow 2NO_{2(g)}$ $\Delta v = k D_{12}O_{512}$	$\mathbf{B.} \mathbf{v} = \mathbf{k} [\mathbf{N}_2 \mathbf{O}_5]$	$\mathbf{C.} \ \mathbf{v} = \mathbf{k} \ [\mathbf{NO}_3]$	1	D. $v = k [N_2O_4]$			
	$\mathbf{R} \cdot \mathbf{V} = \mathbf{K} \left[1 \mathbf{V}_2 \mathbf{O}_5 \right]$	D. $V = K [1 \sqrt{205}]$	C. V – K [1103]	I	D. V – K [1\2O4]			
10	Λ ~ - 1-1-: 1	-1: 1- 1	-~	2IC1 + II - I	+ 2HC1	114 2		
12	temperatura ambiente,		ção traduzida pela equação:	$21Cl(g) + H_2(g) \rightarrow l_2$	$_{(s)}$ + 2HCl(g), para a c	quai colectaram-se, a		
				77.1 '1.1	Τ ^			
	Concentraç		Concentração de H ₂ (g)		e Instantânea			
	(em mo		(em mol/dm³)	,	nol*dm-3*s-1)			
	1 0,		0,25		,02			
	2 0,		0,50		2,04			
	3 0,	00	0,50		,08			
	A. $v = k [ICl]^2 [H_2]$	B. $v = k [I_2]$	$[HCl]^2$ C. $v = k$	[ICl] [H ₂]	$\mathbf{D.} \ \mathbf{v} = \mathbf{k} \ [\mathrm{ICl}]^2 \ [\mathrm{H}]$	[2] [HCl] ²		
13			íbrio os gases SO ₂ , O ₂ e SO ₃ .	. As quantidades pro	esentes no estado de	equilíbrio são 0,64		
	mol, 0,28 mol e 0,56 mo							
	O equilíbrio neste siste			1 77	5.4 D (1 77 44		
	A. Á direita porque K	$_{\rm eq}$ > 1 B . A direction	eita porque $K_{eq} < 1$ C. Á	esquerda porque K	eq >1 D. A esqu	erda porque K _{eq} < 1		
14								
	C111111-	$2NO_{2(g)} \square N_2$	$_{2}O_{4(g)}$ + nKj					
	Considere o equilíbrio	vermelho in	color					
	A cor vermelha aumen							
	A. Se aumenta a temp			menta a temperatur	a e diminui a pressão)		
	C. Se diminui a tempe				e aumenta a pressão			
	r -	r		r	F	_		
15	Sabendo que a solubilid	ade de CaCO3 a 298	K, é 9,33·10 ⁻⁵ M, o seu K ₁	os é:				
	1							
	4 70 10 -10 3 52	D 150 10	-13 14 0 0 7 1	0 = 9 3 #2	D 0 50 10 - 10 34	r		
	A $4,70 \cdot 10^{-10} \mathrm{M}^2$,		D $0.59 \cdot 10^{-10} \text{ M}$	_		
16	Sabendo que $\lg 2 = 0.36$	010, o valor do pH d	e uma solução de HCl a 2·1	$0^{-1} \text{M} \text{\'e}$:				
	A . 13,3	B . 0,69	C . 0,56		D . 0,4			
	A. 13,3	D . 0,09	C . 0,30		D . 0,4			
17	O valor de Ka do CH3C	COOH a 25°C é igual	l a 1,7.10 ^{- 5} M. O valor de K	_b do CH_3COO^- é:				
		8	,					
	A. $1,9 \cdot 10^{-8} \cdot M$	B. 1,0·10	C. 5,9	$10^{-10} \mathrm{M}$	D . $1,4\cdot10^{-2}$ M			
18								
10	Ao realizar-se a reacção	$H^{+}_{(aq)} + HS^{-}_{(aq)} \leftarrow$	\longrightarrow H ₂ S _(aq) , verificou-se q	jue, no equilíbrio, [I	H_2S] = 0,8 mol/l e [HS^{-}] = 0,2 mol/l. O		
	valor da constante de e	quilíbrio na temperat	ura em que a experiência foi	realizada é $K = 1,0$.107. Nas condições	da experiência, [H ⁺]		
	em mol/l é:							
	A . 1,6.10 ⁻⁸ .	B . 4,0.10 ⁻⁷	C . 2,5.1	10^{6} .	D . $2,0.10^7$.			
10	Λ 1οί dο D1- Μ. ' · ·	/DVI =t \ ~ /	obedecida no caso da mistur	11.	wie ander :			
19	A lei de Boyle-Mariotte	(PV = const.) nao e	obedecida no caso da mistur	ra gasosa em equilic	orio quimico:			
	$N_2 + 3H_2 \longrightarrow 2I$	NH3, em temperatur	a elevada constante, porque:					
	A . NH ₃ não é uma substância simples.							
	B. o equilíbrio químico é independente da pressão.							
	C. a massa em gramas r							
	D . o nº de moles varia o							
20		Com relação à reacção: $2A + 3B \rightarrow 2C + D$ pode-se afirmar que:						
	A. os reagentes "A" e "B" são consumidos com a mesma velocidade							
	B . a velocidade de desaparecimento de "A" é igual à velocidade de aparecimento de "C"							
		C. os produtos "C" e "D" são formados com a mesma velocidade						
			rês (3) vezes maior do que a	velocidade de desap	parecimento de "B"			
24	1							
21	Na reacção representad	a pela eguação: $\frac{1}{2}$ A	$_{\rm b}$ + B \rightarrow AB verificance	que 480 segundos	anós o seu início a	concentração de As		
	Na reacção representada pela equação: $\frac{1}{2}$ A ₂ + B \rightarrow AB verificou-se que, 480 segundos após o seu início, a concentração de A ₂							
			nção inicial de A_2 era de 1,1 m					
	A. $2,0.10^{-3}$ moles/l/s	B . 4,0.10 ⁻³ t	noles/1/s C . 2.0.10	⁻² moles/l/s	D . 4,0.10 ⁻² moles	/1/s		

cxam	e de Admissão de Quillica	- 2007		ragina 5 de 5	
22	A molaridade de uma soluçã	ão de HNO3 cuja concentração	o dos iões OH^- é de $5,0$	·10 ^{- 12} M a 25°C é:	
	A . $6 \cdot 10^{-4}$ M	B . $2 \cdot 10^{-3}$ M	C. $4 \cdot 10^{-1}$ M	D . $2 \cdot 10^{-1}$ M	
23	Sabendo que a solubilidade do PbBr ₂ a 25°C é igual a 1,32·10 ⁻² o valor de K _{ps} é:				
	A . 6,3·10 ⁻⁶	B. $0.92 \cdot 10^{-4}$	C . $9,2\cdot10^{-6}$	D . $4,1\cdot10^{-2}$	
24	O coeficiente térmico da v	elocidade de uma dada reacçã	ão é igual a 2,8. Quantas	s vezes altera a velocidade da reacção quando a	
	temperatura passa de 20°C j	para 75°C?			
	A. Aumenta $10^{5,5 \times \lg(2,8)} =$	287 vezes	B . Diminui	$10^{5,5 \times \lg(2,8)} = 287 \text{ vezes}$	
	C. Aumenta $5,5 \times 2,8 = 15$	5,4 vezes	D . Diminui	$5,5 \times 2,8 = 15,4 \text{ vezes}$	
25	À temperatura ambiente,	a energia de activação d	e uma certa reacção	é diminuída em 4,00KJ/mol. Sabendo que	
	$R=8,314 \text{ J} \times \text{mol}^{-1} \times \text{K}^{-1}$, a	velocidade da reacção é :			
	A. Aumentada 4 vezes	B . Diminuída 4 vezes	C. Aumentada 5 vez	zes D. Diminuída 19 vezes	
26		2.			
	As semi-equações I: F	$Fe \rightarrow Fe^{2+} + 2e^{-};$ II: C	$Cl_2 + 2e^- \rightarrow 2Cl^-$ represe	entam respectivamente semi-reacções de:	
	A. Oxidação e redução.	B . Neutralização e redução	3	ação. D. Esterificação e oxidação.	
27	Os nox do P, Cr e Al nos co	ompostos PH3, CrF3, e Al ₂ O3 s	ão respectivamente:		
	A . –3, -3 e +3	B. +3, +3 e +3	C . –3, +3 e +3	D . +3, -3 e –3	
	 2. B⁻ + e⁻ → B²; E⁰ = 1,25V. 3. C⁻ + 2e⁻ → C³; E⁰ = -1,25V. 4. D + 2e⁻ → D²; E⁰ = 0,68V. 5. E + 4e⁻ → E⁴; E⁰ = 0,38V. Que combinação dessas reacções resultaria numa célula electroquímica com o maior potencial? 				
	A. 1 e 3.	B. 2 e 3	C. 2 e 5.	D . 4 e 5.	
29	Num frasco de Erlenmeyer contendo uma solução aquosa 1,0 molar de nitrato férrico introduz-se uma lâmina de ferro, lixada e limpa. Em seguida, fecha-se o frasco com uma válvula que impede o acesso de ar, mas permite a saída de gases. Assinale a opção que contém a afirmação certa em relação ao que ocorrerá no frasco: A. a lâmina de ferro ganhará massa. B. a cor da solução mudará de verde para castanha. C. a presença de ferro não irá alterar a solução. D. a lâmina de ferro perderá massa.				
30	Dada a equação de uma rea	cção redox Zn+Cu ²⁺ □ Zn	²⁺ +Cu . Os eléctrodos er	nvolvidos são:	
	A. Zn/Zn^{2+} e Cu/Cu^{2+}	B. Zn/Cu^{2+} e Cu/Zn^{2}	C. Zn/Cu e Zn	$^{2+}/\text{Cu}^{2+}$ D . Zn/Zn^{2+} e Cu/Zn	
31	A reacção 4H₃PO₃ →3H₃F	PO ₄ + PH ₃ classifica-se como s	endo uma reacção de:		
	A . Combinação	B . Combustão	C. Desproporciona	mento D . Desintegração	
32	Na reacção Zn+Cu²+□	Zn ²⁺ +Cu o redutor e o oxida	ante são respectivamente:		
	A . Zn ²⁺ Cu ²⁺	B . Cu ²⁺ e Zn ²⁺	C. Cu ²⁺ e Zn	D . Zn e Cu ²⁺	
33		1 ₃ -CH ₂ -CH(CH ₃)-CH(C ₂ H ₅)-C gados aos carbonos 3 e 4 da ca			
	A. isopropil e metil.	B. metil e etil.	C. metil e isopropil.	D. etil e isopropil.	
34		0			
	O composto orgânico A. éter m-cloro benzóico. C. 3-cloro, 1-epoxi-cicloh		temático de: B . 1-cloro, 3-ceto-o D . 3-cloro ciclohex		

35	O etanol utilizado cor		óveis node ser substituído nor	metanol. A combustão completa desses álcoois
33				ão incompleta produzem outros compostos. Os
	produtos da oxidação o	do metanol são:	-	•
		oono e dióxido de carbono.	B. carbono e gás o	
36	C. aldeído acético e á		D. metanal e ácid- dratante (cal virgem, por exempl	
30	A. álcool desnaturado		C. acetona.	D . eteno.
37	N ₂ O ₄ e 0,40mol de No 100°C, a concentração e dos cálculos conclui- A. endotérmico cuja co B. favorecido pelo aum C. exotérmico cuja con	O ₂ em equilíbrio. No tempo de N ₂ O ₄ é de 0,25mol/l. No se que a produção de N ₂ O ₄ o constante de equilíbrio a 142°	o T_2 ainda à 100°C, acresce-se o tempo T_4 , a 142°C, no equilib é um processo: C é de 2,00. e no tempo T_3 ainda não se atir é igual a 2,00.	e à 100°C uma mistura reaccional de 0,80mol de 0,40mol de N ₂ O ₄ e depois no tempo T ₃ , ainda a rio encontram-se 0,41mol de N ₂ O ₄ . Destes dados agiu o equilíbrio.
38	A normalidade de uma	solução aquosa de ácido su	lfúrico 98% em massa e densida	de 1,84Kg/l é igual a
	A . 18,38	B . 1,80	C . 0,038	D . 36,76
39	O pH de uma solução	aquosa de ácido fórmico 6,2	25.10 ⁻³ N, cujo Ka é igual a 1,60.1	10 ⁻⁴ , é igual a:
	A. $3 - \log 6,25 = 2,20$	•	C . $4 - \log 1, 6 = 3$,	
				<u> </u>
40		os seguintes sais (i) nitrato d terão, respectivamente, o se		(iii) iodeto de potássio e (iv) carbonato de sódio,
	A. Ácido; básico neut		B . Básico; básico;	neutro e neutro
	C. Ácido; neutro; neu		D. Ácido; básico b	
41	O pOH de uma soluçã	ão resultante da mistura de	50,00ml de uma solução aquosa	a de HNO3 0,20N a 100,00ml de uma solução de
	•	= 1.80×10^{-5} e pK _b = 4.75) s	•	•
	•	\mathbf{B} . $6 - \lg 1,20 = 5,9$		0.43 D .4.75
 	A. 14 + 10g 0,20 = 13	D. 0 – 1g 1,20 – 3,3	$\mathbf{C}. 11 - \log 3, 7 - 1$	D . 4,/3
42		=	pectivamente, agentes oxidantes	
	(i) $NO + NO_2$ (iii) $CuI_2 \rightarrow$		(ii) $AgNO_3 \rightarrow$ (iv) $H_2O_2 \rightarrow$	Ag + NO2 + O2 2H2O + O2
	A . NO; O ²⁻ ; I ⁻ e O ⁻	B . NO; NO ₃ -; Cu		
43	Nas ranccões (pão bal	anceadas) dadas palas agua	cões abaixo, estão envolvidos	respectivamente, os seguintes números totais de
13	electrões em cada proc	esso:	-	respectivamente, os seguintes números totais de
	(i) $(NH_4)_2Cr_2O_7$			
	(ii) $Na_3AsO_3 + I_2$ (iii) $P + KOH + I_3$		AsO ₄ + HI O ₂	
	· ,	$nSO_4 + 4H_2O \rightarrow$	$MnO_2 + K_2SO_4 + H_2SO_4$	
	A . 3; 1; 1 e 3	B . 3; 1; 1 e 2	C . 3; 1; 3 e 6	D . 6; 2; 3 e 6
44		a de Lítio foi um grande ava	nço tecnológico. A partir das se	mi-reacções abaixo, para fins comparativos, a
	afirmação correcta é:	$E_{red}^0 = -3,05V$		
	$Zn^{2+}_{(aq)} + 2e^{-} \rightarrow Zn_{(s)}$			
		oxidado espontaneamente r um agente redutor mais for		
		im agente redutor mais forte	-	
			trolítica, formam uma célula gal	vânica.
45			a um dos postulados do químic	
	A . As propriedades das influência mútua na mo		las pelo tipo de átomos, sua qua	ntidade, ordem de ligação na molécula e pela sua
			o ciclo apresenta além de átom	os de Carbono, outros diferentes deste.
	C. Na adição de compo	ostos hidrogenados, o Hidro	ogénio liga-se ao Carbono mais l	nidrogenado da ligação dupla.
	D . Uma cadeia homog	énea é formada por uma suc	cessão de apenas átomos de Car	bono.
46	O valor da constante d	e equilíbrio da reacção: CO	$(g) + H_2O(g) \longleftrightarrow CO_2(g)$) + H ₂ (g) é 5,0; a uma determinada temperatura.
	Uma análise dos gases	em equilíbrio resultou nas so	eguintes quantidades:	
	0,90 moles de CO	0,25 moles de H ₂ O	0,50 moles de H	2 •
	O volume total da mist	2	o de moles de CO 2 na mistura	-
	A . 0 , 01	B . 0,45	C . 2,25	D . 5,00
	A. 0,01	D . 0,43	U . 2,23	D . 5,00

47	O processo de fermentação alcoólica é representado pela equação:				
	A. $C_{12}H_{22}O_{11} + H_2O \rightarrow 4C_3H_1$	₆ O ₃	B. $C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$		
	C. $C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H$	₅ OH	D . $C_6H_{12}O_6 \rightarrow 6C + 6H_2O$		
48	Da reacção de trimerização do .	Acetilino, C ₂ H ₂ , obtém-se:			
	A . C_7H_8	B . C ₉ H ₁₂	C . C_8H_{10}	D . C_6H_6	
49	O ácido propanóico reage com	NaOH para dar origem ao co	omposto:		
	A . CH ₃ -CH ₂ -COONa	\mathbf{B} . CH_3 - CH_2 - CH_2 - ONa .	C . CH ₂ =CHONa-CH ₃ .	D . $CH_3CH_2COOH + Na$.	
50	O ácido fórmico, é responsável pela irritação causada na pele humana, provocada pela picada das formigas. Qual das substâncias abaixo poderia ser aplicada na pele, a fim de atenuar esse efeito irritante?				
	A. Mg(OH) ₂ .	B . C_2H_5 -OH.	C. NH ₄ Cl.	D . H ₃ PO ₄ .	
51	Os grupos funcionais representados pelas letras i, ii, iii. iv, v, vi, vii, viii podem representar as seguintes funções orgânicas: i) RCOOR', ii) C _n H _{2n-2} , iii) RCOH, iv) RCOOCOR', v) R-O-R, vi) C _n H _{2n+2} , vii) RCOR', viii) RCOOH, ix) C _n H _{2n} e x) ROH A. i) Éter, ii) Alcino, vi) Alcano e x) Álcool B. ii) Cicloalceno, iv) Anidrido, vii) Cetona e ix) Alceno C. iii) Aldeído, v) Éter, vi) Cicloalcano e viii) Ácido carboxílico D. iv) Éster, vi) Alcano, viii) Ácido Carboxílico e x) Álcool				
52	Das classes de compostos orgânicos abaixo indicadas podem constituir isómeros de função as seguintes: A. Ácidos carboxílicos, seus respectivos ésteres e seus respectivos anidridos B. Dienos, cicloalcenos e alcinos C. Álcoois saturados, éteres saturados e cetonas D. Aldeídos, cetonas e álcoois saturados				
53	Geralmente, o formaldeído usa	-se sob a forma de solução aq	uosa, a formalina, que se aplica	como:	
	A. fertilizante.	B . desinfectante.	C. solvente.	D . aditivo alimentar.	
54	Os plásticos de formol obtidos	a partir do formaldeído repre	sentam uma mistura de:		
	A. resinas formol-fenólicas.	B . fenol e formaldeído	C. ésteres fenólicos	D. formalina e formaldeído	
55	Considere a reacção seguinte: 2Cu²+ + 4I⁻ ← → 2CuI + 2I₂ Cada ião de Cu²+				
	A. aceita 1 electrão	B. cede 1 electrão	C. aceita 2 electrões	D. cede 2 electrões	
56	Um alqueno é um hidrocarboneto cujas moléculas possuem:				
	A. só ligações simples	B. uma ligação dupla	C. duas ligações duplas	D. uma ligação tripla	
57	Os compostos orgânicos que são capazes de reduzir o licor de Fehling e o reagente de Tollens são:				
	A. álcoois e aldeídos	B . apenas os aldeídos	C. aldeídos e cetonas simples	D .apenas as cetonas simples	
58	As moléculas dos aldeídos são:				
	A. polares devido à presença d		B. apolares devido à presen		
59	 C. polares devido à presença o Na reacção traduzida pela equa 		D . apolares devido à presen	ца по дтиро сатрохиісо	
	ROH + Metal \rightarrow RO-Metal ⁺ + $^{1}/_{2}$ H ₂				
	A reactividade do ROH com o			CH OH > CH OH	
	A. RCH ₂ OH > CH ₃ OH > R ₃ C. CH ₃ OH > RCH ₂ OH > R ₂		B . R ₃ OH > R ₂ CHOH > R ₀ D . CH ₃ OH > RCH ₂ OH >		
60	O formaldeido é muito usado n	O formaldeido é muito usado no fabrico de polímeros chamados de:			
	A. Borrachas sintéticas		B. Resinas (de rede tridimen		
	C. Polipeptídeos		D . Poliesteres, como a "Ter	ryiene	