Problem A: 智能调度

Description:

随着饿了么逐渐成为外卖行业的第一大品牌,为了进一步提高服务品质,即时配送也逐渐成为提高服务的核心环节。如何解决订单的即时配送,通过全局优化来提升用户体验,降低成本是饿了么亟待解决的核心问题。为了解决该问题阿饿君想出了一个智能调度系统,该系统能针对商家产生的订单分配给最合适的骑手,最大化的提升用户体验、降低成本。但是阿饿君天生笨笨的,没法实现该系统,只能求助于聪明的你啦, 赶快来拯救可怜的阿饿君吧!

Input:

在本题中,阿饿君会给出 N(N < 10^3)个餐厅午高峰(10:00-14:00)的订单详情, 具体格式如下:

1. 餐厅信息数据格式

字段	类型	说明
rst_id	整型	餐厅 id
Lng	浮点数	餐厅经度
Lat	浮点数	餐厅纬度

2. 订单信息数据格式

字段	类型	说明	
order_id	整型	订单 id	
rst_id	整型	餐厅 id	
customer_lng	浮点型	客户经度	
customer_lat	浮点型	客户纬度	
make_order_time	整型	订单出餐时长,单位s	
promised_at	字符串	承诺送达时间	
		格式:YYYY-MM-DD HH:mm:ss	
		样例: 2016-09-01 10:23:34	
created_at	字符串	订单创建时间	
		格式:YYYY-MM-DD HH:mm:ss	
		样例: 2016-09-01 10:23:34	

- 3. 最多可以使用 M (M < 10^4) 个骑手,骑手都有相同的初始位置。
- 4. 程序一共有三个测试集 , 按测试集大小分为简单、中等、困难三个层次 ; 程序必须全部通过三个测试机才可以参与排名。

为了帮助你快速实现该调度系统, 阿饿君做了如下模型假设:

- 1. 雇佣一个骑手需要花费 200 元/天;
- 2. 骑手任何时刻的配送订单总数不能大于7单。
- 3. 骑手去餐厅取餐时,若订单还未出餐骑手需要在该餐厅进行等待;
- 4. 骑手去客户送餐时,到达客户地址即认为送餐成功,不许额外的时间等待;
- 5. 当决定雇佣一个骑手是,可以将骑手从初始位置瞬移(不需要耗费任何时间)到指定的任意商家或用户地址,之后骑手只能以 3m/s 的速度在商户、用户之间的直线上行驶。任何两点之间的实际骑行距离 = 1.4 * 球面距离:
 - a. 两点(lat1, lng1)和(lat2, lng2)间的球面距离公式:

distance =
$$2*R* \arcsin \sqrt{\sin^2\left(\frac{\pi}{180}*\Delta lat\right) + \cos\left(\frac{\pi}{180}*lat1\right)*\cos\left(\frac{\pi}{180}*lat2\right)*\sin^2\left(\frac{\pi}{180}*\Delta lng\right)}$$
 其中, $\Delta lat = \frac{lat1-lat2}{2}$, $\Delta lng = \frac{lng1-lng2}{2}$,R 为地球半径,取 6378137 米。

- 6. 假设订单的实际送达时间 T,记配送误差为 $\Delta t = Ceil(\frac{(T-promised_at)}{60})$, Ceil 为向上取整函数, Δt 单位为分钟。我们会根据配送误差 Δt 对用户进行不同的赔偿;计算公式为一分段函数 $f(\Delta t)$:
 - a. $\Delta t \leq 0$, 赔偿 0 元。
 - b. $\Delta t > 0$, 赔偿 $\Delta t * \log(\Delta t + 1) + 5$ 元。
- 7. 调度方案的总代价为 total_cost = 200 * 雇佣骑手个数 + $\sum_{1}^{N} f(\Delta t)$ 阿饿君希望聪明的你把这 N 个订单分配给最合适的 m (m <= M) 个骑手来完成这 N 个定订单配送 , 使得总代价尽可能小 ;

Output:

每个骑手按操作序号升序输出自己的配送操作顺序列表,满足如下格式: 骑手 id,操作序号,骑手经度,骑手纬度,订单 id,操作类型(take/delivery),操作时间

Judge rules:

只要满足下面任一规则条件,即为非法调度方案;非法调度方案不参与最后的排名,记零分。规则如下:

- 1. 程序接受两个参数输入, 第一参数代表 restaurant.csv ,第二个参数代表 order.csv。
- 2. 调度程序必须全部通过三个测试集,否则记零分。
- 3. 不满足任一模型假设的。
- 4. 任一订单取餐时间晚于送餐时间。
- 5. 任一订单的、餐厅、骑手的信息与给定的数据集不一致。
- 6. 任一订单的取送必须是同一个骑手完成的。
- 7. 任一骑手同时刻出现在多个不同的位置。
- 8. 有遗漏订单没有参与调度。
- 9. 发现类同代码的方案直接取消参赛资格。

Sample Input:

restaurant.csv

- 1,121.3968400000,31.2145100000
- 2,121.5841000000,31.2006500000

order.csv

- 1,1,121.4039800000,31.2061200000,6,2016-09-18 11:11:10,2016-09-18 10:21:10
- 2,2,121.5878070000,31.2099080000,13,2016-09-18 12:03:40,2016-09-18 11:13:40
- 3,2,121.5938700000,31.1864400000,7,2016-09-18 11:28:04,2016-09-18 10:38:04 Sample Output:
 - 1,1,121.3968400000,31.2145100000,1,take,2016/9/18 10:21:16
 - 1,2,121.4039800000,31.2061200000,1, delivery,2016/9/18 10:27:41
 - 2,1,121.5841000000,31.2006500000,3,take,2016/9/18 10:38:11
 - 2,2,121.5938700000,31.1864400000,3, delivery,2016/9/18 10:48:22
 - 2,3,121.5841000000,31.2006500000,2,take,2016/9/18 11:13:53
 - 2,4,121.5878070000,31.2099080000,2, delivery,2016/9/18 11:19:56

输出描述:订单由两个骑手完成,一号骑手配送了第一个订单,二号骑手配送了第2,3号订单。3个订单均未超时未产生罚款。最终代价为2*200=400。