

Chapter 2

CRYPTOGRAPHY AND CRYPTOCURRENCY

OVERVIEW

- Blockchain definition
- Bitcoin Design Features
- Cryptographic Hash Functions
- Timestamped Append-only logs
- Block Headers & Merkle Trees
- Asymmetric Cryptography & Digital Signatures
- Bitcoin Addresses

Study Questions

- What is distributed ledger technology (DLT)?
- The relationships between blockchain and DLT?
- What is a block, transactions?
- Types of blockchains?
- Advantages & Disadvantages of Blockchains?
- Potential applications of blockchain in practice?
- Group of 3 or 4 students:
 - self-study and take notes: 25 minutes
 - discussion: 25 minutes

Blockchain - Definition

- A blockchain is a type of distributed ledger technology (DLT) that consists of growing list of records, called blocks, that are securely linked together using cryptography [wikipedia].
- Each block contains:
 - a timestamp
 - a cryptographic hash of the previous block,
 - transaction data (generally represented as a Merkle tree, where data nodes are represented by leaves)
- Types of blockchains:
 - Public Blockchains
 - Private Blockchains
 - Hydrid blockchains (consortiums)
 - Sidechains

Blockchain - An Instance

Structure of Bitcoin blockchain (image: wikipedia)

- Public blockchains:
 - open, decentralized networks of computers accessible to anyone who want to request or validate a transaction (check for accuracy)
 - Those (miners) who validate transactions receive rewards.
 - Proof-of-work or proof-of-stake consensus mechanisms are used.
 - Examples: the Bitcoin and Ethereum (ETH) blockchains.

- Private blockchains:
 - NOT open, they have access restrictions
 - Require a permission from the system administrator to join
 - They are typically governed by one entity, meaning they're centralized
 - Example: Hyperledger is a private, permissioned blockchain

- Hybrid blockchains (consortiums):
 - a combination of public and private blockchains
 - contain centralized and decentralized features.
 - Example: Dragonchain, Energy Web Foundation, and R3.

Sidechains:

- a blockchain running parallel to the main chain.
- allows users to move digital assets between two different blockchains
- improves scalability and efficiency.
- Example: the Liquid Network.

Blockchain - How it works

Benefits of Blockchain Over Traditional Finance

- Trustless
- Unstoppable
- Immutable
- Decentralized
- Lower Cost
- Peer-to-Peer
- Transparent
- Universal Banking

Disadvantages of Blockchain

- Environmental Impact
- Personal Responsibility
- Growing Pains
- False Narratives

Applications of Blockchain

- Cryptocurrencies: Bitcoin, Ethereum, etc.
- Smart Contracts
- Decentralized Banking
- Video Games/Art
- Peer-to-peer Energy Trading
- Supply chain and logistics tracking
- Healthcare process optimization

Applications of Blockchain

- Real estate processing platform
- NFT marketplaces: These are marketplaces that allow you to buy nonfungible tokens (NFTs) → "FTX sập rồi"
- Music royalties tracking
- Personal identity security
- Automated Advertising Campaigns

BITCOIN DESIGN FEATURES

Cryptography & Timestamped Logs

- Cryptographic Hash Functions
- Timestamped Append-only Logs (Blocks)
- Block Headers & Merkle Trees
- Asymmetric Cryptography & Digital Signatures
- Addresses

Decentralized Network Consensus

- Consensus through Proof of Work
- Network of Nodes
- Native Currency

Transaction Script & UTXO

- Transaction Inputs & Outputs
- Unspent Transaction Output (UTXO)
- Scripting language

CRYPTOGRAPHIC HASH FUNCTIONS

Hash = Digital Fingerprints for Data

General Properties

- Maps Input x of any size to an Output of fixed size called a 'Hash'
- Deterministic: Always the same Hash for the same x
- Efficiently computed

Cryptographic Properties

- Preimage resistant (One way): infeasible to determine x from Hash(x)
- Collision resistant: infeasible to find and x and y where Hash(x) = Hash(y)
- Avalanche effect: Change x slightly and Hash(x) changes significantly
- Puzzle friendliness: knowing Hash(x) and part of x it is still very hard to find rest of x 1

CRYPTOGRAPHIC HASH FUNCTIONS

Hash = Digital Fingerprints for Data

Use cases

- Hash password before storing in database
- Verify data integrity when receiving
- Using as reference
- Using in digital signature

Bitcoin hash functions

- Headers & Merkle Trees SHA 256
- Bitcoin Addresses SHA 256 and RIPEMD160

Hash calculator online

TIME-STAMP DIGITAL DOCUMENT

TIME-STAMP DIGITAL DOCUMENT

WHY TIME-STAMP?

- Bind a signed document to a particular date and time
- Prove in the future that the signed document existed at this particular date and time.
- Ensure the accuracy of the date and the time it indicates and the integrity of the data to which the date and time are bound

USE CASE

Digital signature for contract

TIME-STAMP DIGITAL DOCUMENT

WHY TIME-STAMP?

- Bind a signed document to a particular date and time
- Prove in the future that the signed document existed at this particular date and time.
- Ensure the accuracy of the date and the time it indicates and the integrity of the data to which the date and time are bound

USE CASE

Digital signature for contract

TIMESTAMPED APPEND-ONLY - BLOCKCHAIN

GENESIS BLOCK

BLOCK HEADER

BLOCK 1 HEADER

VERSION
PREVIOUS BLOCK HEADER HASH
MERKLE ROOT HASH
TIME
nBits
NONCE

- Version
- Previous Block hash
- Merkle Root hash
- Timestamp
- Difficulty target
- Nonce

MERKLE TREE

Binary Data Tree with Hashes

SYMMETRIC & ASYMMETRIC CRYPTOGRAPHY

SYMMETRIC ENCRYPTION

SYMMETRIC & ASYMMETRIC CRYPTOGRAPHY

ASYMMETRIC ENCRYPTION

ASYMMETRIC CRYPTOGRAPHY & DIGITAL SIGNATURES

BITCOIN ADDRESSES

BITCOIN ADDRESSES

Hash

431fe1aa711c0059f2ebd544d54eaf7ed640da0b64e20fb94d47fc21b212aae7

First 4 bytes

(8 hex digits)

09bcbf6b

bc1q4sget3wen4saumutffq5nu6xwhmatsf3qgfga5

0.02678693 BTC 🖦

bc1qraqzvlczphp2k3sxkenpulapym26snljxv5wy5 1DkUPjSjPB1gpobtZf9t75w2oC4Xk3t17c

Sign transaction with private key

----BEGIN RSA PRIVATE KEY----

MIIBOgIBAAJBAKj34GkxFhD90vcNLYLInFEX6Ppy1tPf9Cnzj4p4WGeKLs1Pt8Qu KUpRKfFLfRYC9AlKjbJTWit+CqvjWYzvQwECAwEAAQJAIJLixBy2qpFoS4DSmoEm o3qGy0t6z09AlJtH+5OeRV1be+N4cDYJKffGzDa88vQENZiRm0GRq6a+HPGQMd2k TQlhAKMSvzIBnni7ot/OSie2TmJLY4SwTQAevXysE2RbFDYdAiEBCUEaRQnMnbp7 9mxDXDf6AU0cN/RPBjb9qSHDcWZHGzUCIG2Es59z8ugGrDY+pxLQnwfotadxd+Uy v/Ow5T0q5glJAiEAyS4Ral9YG8EWx/2w0T67ZUVAw8eOMB6BIUg0Xcu+3okCIBOs /5OiPgoTdSy7bcF9IGpSE8ZgGKzgYQVZeN97YE00

----END RSA PRIVATE KEY----

Verify transaction with public key

----BEGIN RSA PUBLIC KEY----

MEgCQQCo9+BpMRYQ/dL3DS2CyJxRF+j6ctbT3/Qp84+KeFhnii7NT7fELilKUSnx S30WAvQCCo2yU1orfgqr41mM70MBAgMBAAE=

----END RSA PUBLIC KEY----

HASH

SHA 256

61087f7e8804c5361dd0291c2dd4083a6d28014a999b43c981a42435cf0fce00

HASH

RIPEMD 160

21799c282798d07dc5cf385d5fe2fcb7c5e91a53

Bitcoin address

3xVUrcYNkxtrpgeD6Lez2QbfZGW7g3MDWTV34mZy

base58

2x SHA 256

21799c282798d07dc5cf385d5fe2fcb7c5e91a5309bcbf6b

QUESTIONS

- Why bitcoin need time-stamp and hash?
- Why we need seed phrase instead of password to initiate blockchain transaction?

DISCUSSION