CPT: An Assumption-Free Exact Test For Linear Model With Exchangeable Errors

Lihua Lei and Peter J. Bickel

Department of Statistics UC Berkeley

Stanford-Berkeley Joint Colloquium, 2017

Table of Contents

- Setup
- 2 Cyclic Permutation Test
- 3 Experiments
- 4 Discussion

Table of Contents

- Setup
- 2 Cyclic Permutation Test
- 3 Experiments
- 4 Discussion

Consider a linear model:

$$y = X\beta + \epsilon$$

where

- $y \in \mathbb{R}^n$: response vector;
- $X \in \mathbb{R}^{n \times p}$: **fixed** design matrix;
- $\beta \in \mathbb{R}^p$: coefficient vector;
- $\epsilon \in \mathbb{R}^n$: random error terms.

Goal: Test $H_0: \beta_1 = 0$ (v.s. $H_1: \beta_1 > 0$ or $H_1: \beta_1 \neq 0$)

Existing Methods: Regression methods

Examples:

- marginal t-test on OLS estimator;
- marginal z-test on general M-estimator, etc.

Pros:

- easily computed;
- intuitive and interpretable;
- implemented in standard software;

Cons:

- requires distributional conditions on $\mathcal{L}(\epsilon)$;
- requires geometric conditions on X;
- only controls Type-I error asymptotically.

Existing Methods: Permutation Tests

Examples:

- permute X_1 and recomputes $\hat{\beta}_1$ as the null population;
- permute the regression residuals and recomputes $\hat{\beta}_1$ as the null population (Freedman and Lane, 1983);

Pros:

- easily computed;
- only requires exchangeability of ϵ_i 's;

Cons:

- only works for random designs;
- only controls Type-I error asymptotically when p > 1.

Existing Methods: Fiducial Methods

Examples:

• Group-bound (Meinshausen, 2015).

Pros:

- requires no assumption on X;
- works for p > n in the sparse case;
- valid in finite-samples;

Cons:

- requires extremely strong assumption on $\mathcal{L}(\epsilon)$;
- potentially low power due to the artificial factors.

We derive a test, referred to as Cyclic Permutation Test (CPT),

which is valid in finite-sample;

- which is valid in finite-sample;
- with exact coverage α ;

- which is valid in finite-sample;
- with exact coverage α ;
- for arbitrary fixed design matrix X;

- which is valid in finite-sample;
- with exact coverage α ;
- for arbitrary fixed design matrix X;
- and for arbitrary exchangeable errors ϵ ;

- which is valid in finite-sample;
- with exact coverage α ;
- for arbitrary *fixed* design matrix *X*;
- and for arbitrary exchangeable errors ϵ ;
- with reasonable power in various practical situations.

Table of Contents

- Setup
- 2 Cyclic Permutation Test
- 3 Experiments
- 4 Discussion

Run linear regression with X_1 :

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix} \sim \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ X_{31} & X_{32} & \cdots & X_{3p} \\ X_{41} & X_{42} & \cdots & X_{4p} \\ X_{51} & X_{52} & \cdots & X_{5p} \\ X_{61} & X_{62} & \cdots & X_{6p} \end{pmatrix}$$

$$\begin{pmatrix} \hat{\beta}_1^{(0)}, \ \hat{\beta}_2^{(0)}, \ \dots, \ \hat{\beta}_p^{(0)} \end{pmatrix}$$

A pool of estimates: $\hat{\beta}_1^{(0)}$

Run linear regression with permuted X_1 :

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix} \sim \begin{pmatrix} X_{31} & X_{12} & \cdots & X_{1p} \\ X_{61} & X_{22} & \cdots & X_{2p} \\ X_{11} & X_{32} & \cdots & X_{3p} \\ X_{21} & X_{42} & \cdots & X_{4p} \\ X_{41} & X_{52} & \cdots & X_{5p} \\ X_{51} & X_{62} & \cdots & X_{6p} \end{pmatrix}$$
$$\begin{pmatrix} \hat{\beta}_1^{(1)}, \ \hat{\beta}_2^{(1)}, \ \dots, \ \hat{\beta}_p^{(1)} \end{pmatrix}$$

A pool of estimates: $\hat{\beta}_1^{(0)}$, $\hat{\beta}_1^{(1)}$

Run linear regression with permuted X_1 :

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix} \sim \begin{pmatrix} X_{41} & X_{12} & \cdots & X_{1p} \\ X_{51} & X_{22} & \cdots & X_{2p} \\ X_{31} & X_{32} & \cdots & X_{3p} \\ X_{61} & X_{42} & \cdots & X_{4p} \\ X_{11} & X_{52} & \cdots & X_{5p} \\ X_{21} & X_{62} & \cdots & X_{6p} \end{pmatrix}$$
$$\begin{pmatrix} \hat{\beta}_1^{(2)}, \ \hat{\beta}_2^{(2)}, \ \dots, \ \hat{\beta}_p^{(2)} \end{pmatrix}$$

A pool of estimates: $\hat{\beta}_1^{(0)}$, $\hat{\beta}_1^{(1)}$, $\hat{\beta}_1^{(2)}$

Run linear regression with permuted X_1 :

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix} \sim \begin{pmatrix} X_{21} & X_{12} & \cdots & X_{1p} \\ X_{41} & X_{22} & \cdots & X_{2p} \\ X_{61} & X_{32} & \cdots & X_{3p} \\ X_{11} & X_{42} & \cdots & X_{4p} \\ X_{31} & X_{52} & \cdots & X_{5p} \\ X_{51} & X_{62} & \cdots & X_{6p} \end{pmatrix}$$

$$\begin{pmatrix} \hat{\beta}_1^{(3)}, \ \hat{\beta}_2^{(3)}, \ \dots, \ \hat{\beta}_p^{(3)} \end{pmatrix}$$

A pool of estimates: $\hat{\beta}_{1}^{(0)}$, $\hat{\beta}_{1}^{(1)}$, $\hat{\beta}_{1}^{(2)}$, $\hat{\beta}_{1}^{(3)}$

Run linear regression with permuted X_1 :

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix} \sim \begin{pmatrix} X_{61} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ X_{41} & X_{32} & \cdots & X_{3p} \\ X_{51} & X_{42} & \cdots & X_{4p} \\ X_{31} & X_{52} & \cdots & X_{5p} \\ X_{11} & X_{62} & \cdots & X_{6p} \end{pmatrix}$$
$$\begin{pmatrix} \hat{\beta}_1^{(m)}, \hat{\beta}_2^{(m)}, \dots, \hat{\beta}_p^{(m)} \end{pmatrix}$$

A pool of estimates: $\hat{\beta}_{1}^{(0)}$, $\hat{\beta}_{1}^{(1)}$, $\hat{\beta}_{1}^{(2)}$, $\hat{\beta}_{1}^{(3)}$, ..., $\hat{\beta}_{1}^{(m)}$.

A pool of estimates: $\hat{\beta}_{1}^{(0)}$, $\hat{\beta}_{1}^{(1)}$, $\hat{\beta}_{1}^{(2)}$, $\hat{\beta}_{1}^{(3)}$, ..., $\hat{\beta}_{1}^{(m)}$.

A pool of estimates: $\hat{\beta}_{1}^{(0)}$, $\hat{\beta}_{1}^{(1)}$, $\hat{\beta}_{1}^{(2)}$, $\hat{\beta}_{1}^{(3)}$, ..., $\hat{\beta}_{1}^{(m)}$.

- Calculate the rank of $\hat{\beta}_1^{(0)}$ in the pool;
- Reject H_0 if the rank is extreme;
- Widely used in boosting, random forests, etc., to construct measure of variable importance;
- ullet Unfortunately fails to control type-I error even with i.i.d. ϵ_i 's.

Generally, we consider a pool of statistics: $\eta_0^T y$, $\eta_1^T y$, ..., $\eta_m^T y$.

Generally, we consider a pool of statistics: $\eta_0^T y$, $\eta_1^T y$, ..., $\eta_m^T y$.

- Calculate the rank R of $\eta_0^T y$ in the pool;
- Hope that R is "uniform" under H_0 but "extreme" under H_1 ;
- Reject H_0 if R is "extreme".

A Slight Detour: Marginal Rank Test

Call $(S_0, S_1, ..., S_m)$ invariant under cyclic permutation group (CPG) iff for any $j \in [m]$,

$$(S_0, S_1, \ldots, S_m) \stackrel{d}{=} (S_j, S_{j+1}, \ldots, S_{j+m}).$$

A Slight Detour: Marginal Rank Test

Call $(S_0, S_1, ..., S_m)$ invariant under cyclic permutation group (CPG) iff for any $j \in [m]$,

$$(S_0, S_1, \ldots, S_m) \stackrel{d}{=} (S_j, S_{j+1}, \ldots, S_{j+m}).$$

Proposition (L. and Bickel, 2017)

Assume that $(S_0, S_1, ..., S_m)$ is invariant under CPG. For any function $f : \mathbb{R} \to \mathbb{R}$, let R_f denote the rank of $f(S_0)$ (in a decreasing order with ties broken randomly). Then

- 2 Let $U \sim \mathrm{Unif}([0,1])$. Then

$$ho riangleq rac{R-U}{m+1} \sim U([0,1]).$$

Cyclic Permutation Test: Guiding Principles

Goal: construct η_0, \ldots, η_m such that

Cyclic Permutation Test: Guiding Principles

Goal: construct η_0, \ldots, η_m such that

(Validity)

$$(\eta_0^T y, \ldots, \eta_m^T y)$$

is invariant under CPG under H_0 ;

Cyclic Permutation Test: Guiding Principles

Goal: construct η_0, \ldots, η_m such that

(Validity)

$$(\eta_0^T y, \ldots, \eta_m^T y)$$

is invariant under CPG under H_0 ;

• (High Power) there exists f such that

$$f(\eta_0^T y) \gg \max_{j \in [m]} f(\eta_j^T y)$$

under H_1 .

Write
$$X$$
 as $(X_1 \ X_{[-1]})$ and β as $(\beta_1, \beta_{[-1]})$, then
$$\eta^T y = (\eta^T X_1)\beta_1 + (\eta^T X_{[-1]})\beta_{[-1]} + \eta^T \epsilon.$$

Write
$$X$$
 as $(X_1 \ X_{[-1]})$ and β as $(\beta_1, \beta_{[-1]})$, then
$$\eta^T y = (\eta^T X_1)\beta_1 + (\eta^T X_{[-1]})\beta_{[-1]} + \eta^T \epsilon.$$

Under
$$H_0$$
: $\beta_1 = 0$,

$$\eta^{\mathsf{T}} y = \underbrace{(\eta^{\mathsf{T}} X_{[-1]}) \beta_{[-1]}}_{\text{Deterministic Part}} + \underbrace{\eta^{\mathsf{T}} \epsilon}_{\text{Stochastic Part}}$$

Write
$$X$$
 as $(X_1 \ X_{[-1]})$ and β as $(\beta_1, \beta_{[-1]})$, then
$$\eta^T y = (\eta^T X_1)\beta_1 + (\eta^T X_{[-1]})\beta_{[-1]} + \eta^T \epsilon.$$

Under H_0 : $\beta_1 = 0$,

$$\eta^{\mathsf{T}} y = \underbrace{(\eta^{\mathsf{T}} X_{[-1]}) \beta_{[-1]}}_{\text{Deterministic Part}} + \underbrace{\eta^{\mathsf{T}} \epsilon}_{\text{Stochastic Part}}$$

Idea: matching the deterministic part and making the stochastic part invariant under CPG.

Under H_0 : $\beta_1 = 0$,

$$\eta^T y = \underbrace{(\eta^T X_{[-1]}) \beta_{[-1]}}_{\text{Deterministic Part}} \quad + \quad \underbrace{\eta^T \epsilon}_{\text{Stochastic Part}}$$

Construct $(\eta_0, \eta_1, \dots, \eta_m)$ such that

- $X_{[-1]}^T \eta_j \equiv \gamma_{[-1]}$ for some $\gamma_{[-1]} \in \mathbb{R}^{p-1}$;
- $(\eta_0^T \epsilon, \eta_1^T \epsilon, \dots, \eta_m^T \epsilon)$ is invariant under CPG.

Assume n is divisible by m+1 with n=(m+1)r. Then $(\eta_0^T\epsilon,\eta_1^T\epsilon,\ldots,\eta_m^T\epsilon)$ is invariant under CPG if

$$\eta_0=\eta^*=(\eta_1^*,\dots,\eta_n^*),$$

and

$$\eta_j = \pi_L^r(\eta^*) \triangleq (\eta_{jr+1}^*, \dots, \eta_{jr+n}^*)$$

where π_L is the *left-shift operator* on S_n , the permutation group with n elements.

Assume n is divisible by m+1 with n=(m+1)r. Then $(\eta_0^T\epsilon,\eta_1^T\epsilon,\ldots,\eta_m^T\epsilon)$ is invariant under CPG if

$$\eta_0 = \eta^* = (\eta_1^*, \ldots, \eta_n^*),$$

and

$$\eta_j = \pi_L^r(\eta^*) \triangleq (\eta_{jr+1}^*, \dots, \eta_{jr+n}^*)$$

where π_L is the *left-shift operator* on S_n , the permutation group with n elements.

Example:
$$n = 6, m = 2$$
,

$$\eta_0 = (\eta_1^*, \eta_2^*, \eta_3^*, \eta_4^*, \eta_5^*, \eta_6^*),$$

$$\eta_1 = \big(\eta_3^*, \eta_4^*, \eta_5^*, \eta_6^*, \eta_1^*, \eta_2^*\big),$$

$$\eta_2 = (\eta_5^*, \eta_6^*, \eta_1^*, \eta_2^*, \eta_3^*, \eta_4^*).$$

Proof of the special case (n = 6, m = 2): By definition,

Proof of the special case (n = 6, m = 2): By definition,

Proof of the special case (n = 6, m = 2): ϵ is exchangeable,

$$\begin{pmatrix} \epsilon_1 & \epsilon_2 & \epsilon_3 & \epsilon_4 & \epsilon_5 & \epsilon_6 \\ \epsilon_5 & \epsilon_6 & \epsilon_1 & \epsilon_2 & \epsilon_3 & \epsilon_4 \\ \epsilon_3 & \epsilon_4 & \epsilon_5 & \epsilon_6 & \epsilon_1 & \epsilon_2 \end{pmatrix} \stackrel{d}{=} \begin{pmatrix} \epsilon_5 & \epsilon_6 & \epsilon_1 & \epsilon_2 & \epsilon_3 & \epsilon_4 \\ \epsilon_3 & \epsilon_4 & \epsilon_5 & \epsilon_6 & \epsilon_1 & \epsilon_2 \\ \epsilon_1 & \epsilon_2 & \epsilon_3 & \epsilon_4 & \epsilon_5 & \epsilon_6 \end{pmatrix}$$

As a consequence,

$$(\eta_0^T \epsilon, \eta_1^T \epsilon, \eta_2^T \epsilon) \stackrel{d}{=} (\eta_1^T \epsilon, \eta_2^T \epsilon, \eta_0^T \epsilon)$$

Want to construct $(\eta_0, \eta_1, \dots, \eta_m)$ such that

- $\bullet \ X_{[-1]}^T \eta_j \equiv \gamma_{[-1]} \ \text{for some} \ \gamma_{[-1]} \in \mathbb{R}^{p-1};$
- $(\eta_0^T \epsilon, \eta_1^T \epsilon, \dots, \eta_m^T \epsilon)$ is invariant under CPG.

Want to construct $(\eta_0, \eta_1, \dots, \eta_m)$ such that

- $\bullet \ X_{[-1]}^{T}\eta_{j} \equiv \gamma_{[-1]} \ \text{for some} \ \gamma_{[-1]} \in \mathbb{R}^{p-1};$
- $(\eta_0^T \epsilon, \eta_1^T \epsilon, \dots, \eta_m^T \epsilon)$ is invariant under CPG.
- $\bullet \ \eta_j = \pi_L^{rj}(\eta^*).$

Want to construct $(\eta_0, \eta_1, \dots, \eta_m)$ such that

- $\bullet \ X_{[-1]}^T \eta_j \equiv \gamma_{[-1]} \ \text{for some} \ \gamma_{[-1]} \in \mathbb{R}^{p-1};$
- $(\eta_0^T \epsilon, \eta_1^T \epsilon, \dots, \eta_m^T \epsilon)$ is invariant under CPG.
- $\bullet \ \eta_j = \pi_L^{rj}(\eta^*).$

Let $\Pi = \Pi_{L;r}$ be the permutation matrix that $\pi_L^r(z) = \Pi z$. The above conditions are equivalent to:

$$\begin{pmatrix} -I_{p-1} & X_{[-1]}^T \\ -I_{p-1} & X_{[-1]}^T \Pi \\ \vdots & \vdots \\ -I_{p-1} & X_{[-1]}^T \Pi^m \end{pmatrix} \begin{pmatrix} \gamma_{[-1]} \\ \eta^* \end{pmatrix} = 0.$$

$$\begin{pmatrix} -I_{p-1} & X_{[-1]}^T \\ \vdots & \vdots \\ -I_{p-1} & X_{[-1]}^T \Pi^m \end{pmatrix} \begin{pmatrix} \gamma_{[-1]} \\ \eta^* \end{pmatrix} = 0.$$
 (1)

Theorem (L. and Bickel, 2017)

Assume n is divisible by m + 1 with n = (m + 1)r,

1 (1) always has a non-zero solution if

$$n + p - 1 > (m + 1)(p - 1) \leftrightarrow m < n/(p - 1)$$

② for any solution $(\gamma_{[-1]}, \eta^*)$ of (1),

$$(\eta^{*T}y, \pi_L^r(\eta^*)^Ty, \cdots \pi_L^{rm}(\eta^*)^Ty)$$

is invariant under CPG under H_0 .

- We can construct (η_0, η_1) provided that $n \ge p$;
- In general, we want $m+1 \ge 1/\alpha$ in order to avoid randomized p-values;
- For example, when $\alpha=0.05$, a default choice is m=19. In this case we need

$$n \geq 19(p-1) \Longleftrightarrow n/p \geq 19$$

which is reasonable in various applications.

Recall that

$$\eta_j^T y = \underbrace{(X_1^T \eta_j) \cdot \beta_1}_{\text{Deterministic Signal}} + \underbrace{\gamma_{[-1]}^T \beta_{[-1]}}_{\text{Deterministic Nuisance}} + \underbrace{\eta_j^T \epsilon}_{\text{Stochastic Part}}.$$

Recall that

$$\eta_j^{\mathsf{T}} y = \underbrace{(X_1^{\mathsf{T}} \eta_j) \cdot \beta_1}_{\text{Deterministic Signal}} + \underbrace{\gamma_{[-1]}^{\mathsf{T}} \beta_{[-1]}}_{\text{Deterministic Nuisance}} + \underbrace{\eta_j^{\mathsf{T}} \epsilon}_{\text{Stochastic Part}}.$$

To enhance power, we want

$$X_1^T \eta_0 \gg \max_j X_1^T \eta_j.$$

Recall that

$$\eta_j^T y = \underbrace{(X_1^T \eta_j) \cdot \beta_1}_{\text{Deterministic Signal}} + \underbrace{\gamma_{[-1]}^T \beta_{[-1]}}_{\text{Deterministic Nuisance}} + \underbrace{\eta_j^T \epsilon}_{\text{Stochastic Part}}.$$

To enhance power, we want

$$X_1^T \eta_0 \gg \max_j X_1^T \eta_j.$$

A simple setting:

$$X_1^T \eta_0 = \gamma_1 + \delta, \quad X_1^T \eta_j = \gamma_1, \ \forall j > 0.$$

When $\|\eta_i\|_2 = 1$, δ measures the effective Signal-to-Noise Ratio.

Now we have the following set of equations:

- $\bullet \ X_1^T \eta_0 = \gamma_1 + \delta$
- $\bullet \ X_1^T \eta_j = \gamma_1, \ \forall j > 0;$
- $X_{[-1]}^T \eta_j = \gamma_{[-1]} \ \forall j \ge 0;$
- $\bullet \ \eta_j = \Pi^j \eta^*.$

Now we have the following set of equations:

- $\bullet \ X_1^T \eta_0 = \gamma_1 + \delta$
- $\bullet \ X_1^T \eta_j = \gamma_1, \ \forall j > 0;$
- $X_{[-1]}^T \eta_j = \gamma_{[-1]} \ \forall j \ge 0;$
- $\eta_j = \Pi^j \eta^*$.

The goal is to maximize δ (after normalizing η_j 's).

Now we have the following set of equations:

- $\bullet \ X_1^T \eta_0 = \gamma_1 + \delta$
- $\bullet \ X_1^T \eta_j = \gamma_1, \ \forall j > 0;$
- $X_{[-1]}^T \eta_j = \gamma_{[-1]} \ \forall j \ge 0;$
- $\eta_j = \Pi^j \eta^*$.

The goal is to maximize δ (after normalizing η_j 's).

Write γ for $(\gamma_1, \gamma_{[-1]}^T)^T$ and $e_{1,p}$ for $(1, 0, \dots, 0)^T \in \mathbb{R}^p$. Then

$$\max_{\delta \in \mathbb{R}, \gamma \in \mathbb{R}^p, \eta \in \mathbb{R}^n, ||\eta|| = 1} \delta \tag{2}$$

s.t.
$$\begin{pmatrix} -e_{1,p} & -I_p & X^T \\ 0 & -I_p & X^T \Pi \\ \vdots & \vdots & \vdots \\ 0 & -I_p & X^T \Pi^m \end{pmatrix} \begin{pmatrix} \delta \\ \gamma \\ \eta \end{pmatrix} = 0.$$
 (3)

To simplify the notation, let

$$A(X) = \begin{pmatrix} -I_p & -I_p & \cdots & -I_p \\ X & \Pi^T X & \cdots & (\Pi^m)^T X \end{pmatrix} \in \mathbb{R}^{(n+p)\times(m+1)p}.$$

Then (2)-(3) is equivalent to

$$\begin{array}{l} \max \\ \delta \in \mathbb{R}, \gamma \in \mathbb{R}^p, \eta \in \mathbb{R}^n, \|\eta\| = 1 \end{array} \delta$$
s.t. $\left(-e_{1,p(m+1)} \stackrel{.}{\cdot} A(X)^T \right) \left(\begin{array}{c} \delta \\ \gamma \\ \eta \end{array} \right) = 0.$

Theorem (L. and Bickel, 2017)

(3) always has a non-zero solution if

$$n+p+1>(m+1)p\Longleftrightarrow m<(n+1)/p.$$

2 Let $\begin{pmatrix} \tilde{\gamma} \\ \tilde{\eta} \end{pmatrix}$ be the OLS estimator by regressing $A(X)_1$ on $A(X)_{[-1]}$ with RSS being the residual sum of squares. Then the optimal solution of (2) is given by

$$\eta^*(X) = \frac{\tilde{\eta}}{\|\tilde{\eta}\|_2}, \quad \delta^*(X) = \frac{\text{RSS}}{\|\tilde{\eta}\|_2}.$$

In general, for any permutation matrix $\Pi \in \mathbb{R}^{n \times n}$,

$$\delta^*(X) \neq \delta^*(\Pi X).$$

$$\max_{\mathsf{perm.}} \, \delta^*(\mathsf{\Pi} X).$$

In general, for any permutation matrix $\Pi \in \mathbb{R}^{n \times n}$,

$$\delta^*(X) \neq \delta^*(\Pi X).$$

This leads to a secondary optimization problem:

$$\max_{\mathsf{perm.}\ \Pi\in\mathbb{R}^{n\times n}}\delta^*(\Pi X).$$

This is a Nonlinear Traveling Salesman Problem;

In general, for any permutation matrix $\Pi \in \mathbb{R}^{n \times n}$,

$$\delta^*(X) \neq \delta^*(\Pi X).$$

$$\max_{\mathsf{perm.}} \, \delta^*(\mathsf{\Pi} X).$$

- This is a Nonlinear Traveling Salesman Problem;
- We do not need the exact maximizer;

In general, for any permutation matrix $\Pi \in \mathbb{R}^{n \times n}$,

$$\delta^*(X) \neq \delta^*(\Pi X).$$

$$\max_{\mathsf{perm.}\ \Pi\in\mathbb{R}^{n\times n}} \delta^*(\Pi X).$$

- This is a Nonlinear Traveling Salesman Problem;
- We do not need the exact maximizer;
- Genetic Algorithm can be efficient;

In general, for any permutation matrix $\Pi \in \mathbb{R}^{n \times n}$,

$$\delta^*(X) \neq \delta^*(\Pi X).$$

$$\max_{\mathsf{perm.}} \, \delta^*(\mathsf{\Pi} X).$$

- This is a Nonlinear Traveling Salesman Problem;
- We do not need the exact maximizer;
- Genetic Algorithm can be efficient;
- Implemented by gaoptim package in R.

Comparison Between Genetic Algorithm and Naive Stochastic Search (n = 1000)

Cyclic Permutation Test: Summary

Table of Contents

- Setup
- 2 Cyclic Permutation Test
- 3 Experiments
- 4 Discussion

Example 1: i.i.d. normal design + normal error

Size (Two–Sided Test) for i. i. d. Normal Design with normal Errors (α = 0.05)

Power (One–Sided Test) for i. i. d. Normal Design with normal Errors ($\alpha = 0.05)$

method — CPT --- LAD --- OLS

Example 2: i.i.d. cauchy design + cauchy error

Size (Two–Sided Test) for i. i. d. Cauchy Design with cauchy Errors (α = 0.05)

Power (One–Sided Test) for i. i. d. Cauchy Design with cauchy Errors ($\alpha = 0.05)$

method — CPT --- LAD --- OLS

Example 3: ANOVA design + cauchy error

Power (One–Sided Test) for ANOVA Design with cauchy Errors ($\alpha\,{=}\,0.05)$

method — CPT ---- CAD --- OLS

Example 4: ANOVA design + cauchy mixture error

Size (Two–Sided Test) for ANOVA Design with Cauchy Mixture Errors ($\alpha = 0.05$)

Power (One–Sided Test) for ANOVA Design with Cauchy Mixture Errors (α = 0.05)

method — CPT --- LAD --- OLS

Table of Contents

- Setup
- 2 Cyclic Permutation Test
- 3 Experiments
- 4 Discussion

Conclusion

We derive a test, referred to as Cyclic Permutation Test (CPT),

- which is valid in finite-sample;
- with exact coverage α ;
- for arbitrary fixed design matrix X;
- and for arbitrary exchangeable errors ϵ ;
- with reasonable power in various practical situations.

Further comments:

- Easy to extend CPT to allow n not divisible by m + 1;
- Easy to extend CPT to test general linear hypothesis $H_0: A\beta = 0$ where $A \in \mathbb{R}^{r \times p}$ with full rank r;
- The power can be analyzed asymptotically in various situations.

Open Problems

- Relation between n/p and confidence level α ?
- Other construction that mimics general M-estimators, e.g. LAD estimator?
- Faster approach to find a good ordering?
- Why is OLS so robust? Self-normalizing property?
- Marginal Rank test in other applications?