

Reminders

Roland Badeau, roland.badeau@telecom-paris.fr

TSIA201

Program of the course unit

- Lesson Reminders
- ► Lesson + Tutorial *Filter synthesis*
- Lesson Frequency conversion
- Lesson Short time Fourier transform
- ► Practical work *Frequency conversion*, *STFT*
- Lesson + Tutorial Filter banks
- Lesson Wavelets
- Practical work Wavelets
- Tutorial Revision
- Written examination

TSIA201: Representations of signals

- ► This course introduces various digital signal processing tools :
 - ▶ Reminders about filtering, Z-transform, and recursive filters
 - ► Filter synthesis methods
 - ► Conversion of the sampling rate
 - Short-time Fourier transform
 - ► Filter banks
 - Wavelets
- ► These various notions will be used in the TSIA study track :
 - multirate processing and filter banks allow us to pre-process signals before applying machine learning methods
 - ▶ they find many applications, including denoising (SD-TSIA205)
 - time-frequency representations are essential tools in speech, audio, and multimedia signal processing (TSIA206, TSIA207)

Une école de l'IMT

Reminders

Reminders

- ▶ Website https://ecampus.paris-saclay.fr/ (English/French)
 - ► Links to course handout + slides
 - ► Subjects of tutorials and practical works + data
 - ► Solutions available online after every tutorial
 - ▶ Online submission of the practical works reports
- ► Grading (20 points)
 - Practical works reports (3 points for each practical work)
 - Examination (14 points)

Reminders

Part I

Discrete filtering

Causality and stability

- ► Convolution product : $y(n) = \sum_{m \in \mathbb{Z}} h(m)x(n-m)$
- ► Causality :
 - \triangleright y(n) only depends on x(k), k < n
 - Necessary and sufficient condition : h(m) = 0 if m < 0
 - ► Property : causal input ⇒ causal output
 - ► Remark : compulsory for real-time processing
- ► Stability :
 - ▶ Definition : bounded input ⇒ bounded output
 - Necessary and sufficient condition : $\sum_{m=-\infty}^{+\infty} |h(m)| < +\infty$ (h in
 - ► Property : continuous frequency response
 - ► Remark : numerically compulsory

 - ▶ If $x_q = x + e$, then $y_q = y + h * e$. ▶ If $h \in I^1(\mathbb{Z})$, $||h * e||_{\infty} \le ||h||_1 ||e||_{\infty}$, otherwise h * e may diverge.

Une école de l'IMT

Reminders

№ IP PARIS 6/35

Une école de l'IMT

Reminders

Ideal filters

- Frequency response : $H(e^{2i\pi v}) = \begin{cases} 1 & \text{if } |v| < v_c \\ 0 & \text{if } |v| > v_c \end{cases}$
- Impulse response : $h(n) = 2v_c \operatorname{sinc}(2\pi v_c n)$
- ► Exercise : band-pass filter
 - Frequency response : $H(e^{2i\pi v}) = \begin{cases} 1 & \text{if } ||v| |v_0|| < v_c \\ 0 & \text{if } ||v| |v_0|| > v_c \end{cases}$
 - Impulse response : $h(n) = 4v_c \operatorname{sinc}(2\pi v_c n) \cos(2\pi v_0 n)$
- ► Causality? Stability?

Transient and steady states

- Example:
 - \triangleright x(n) is a unit step signal : $x(n) = 1_{[0,+\infty[}(n)$
 - h(n) is an averaging filter : $h(n) = \frac{1}{N} \mathbb{1}_{[0,N-1]}(n)$
 - From n = 0 to N 2: transient state (ramp)
 - From n = N 1 to $+\infty$: steady state (constant signal)

Reminders

PARIS 8/35

Une école de l'IMT

Reminders

Phase and group delays

- Frequency response : $H(e^{i2\pi v}) = H_R(v)e^{i\phi(v)}$
- ► Phase and group delays

$$\begin{cases} \tau_p(v_0) &= -\frac{1}{2\pi} \frac{\phi(v_0)}{v_0} \\ \tau_g(v_0) &= -\frac{1}{2\pi} \frac{d\phi}{dv}(v_0) \end{cases}$$

ightharpoonup Frequency response in the neighborhood of v_0

$$H(e^{i2\pi v}) \simeq H_R(v_0) e^{-i2\pi(v_0\tau_p(v_0)+(v-v_0)\tau_g(v_0))}$$

Filtering of a narrowband signal (y = h * x)

$$x(n) = a(n)e^{i2\pi v_0 n} \Rightarrow y(n) \simeq H_R(v_0)a(n - \tau_g(v_0))e^{i2\pi v_0(n - \tau_g(v_0))}$$

► Linear phase filters (constant delay)

Part II

Z-transform

'35 Une école de l'IMT

Reminder

Une école de l'IMT

Reminders

Z-transform

- ▶ Definition : $H(z) = \sum_{n=-\infty}^{+\infty} h(n)z^{-n}$, called Transfer function
- ▶ Domain of convergence : $\mathscr{D} = \{z/\sum_{n=-\infty}^{+\infty} |h(n)||z|^{-n} < +\infty\}$
- ► Causal case : $R = \inf\{|z|, z \in \mathbb{C}/\sum h(n)z^{-n} < +\infty\}$, $\in \mathbb{R} \cup \{+\infty\}$

$$z = 1$$
 at $v = 0$
 $z = i$ at $v = 1/4$

- ► FIR filters : $D = \mathbb{C} \setminus 0$ or ∞
- ► Anti-causality : 𝒯 is a disk
- ► Causality : 𝒯 is the complement of a disk
- ► General case : \mathcal{D} is a ring (or \emptyset)

Basic properties

- ightharpoonup Stability: the ring \mathscr{D} contains the unit circle
 - ► The ZT matches the DTFT on the unit circle
- ► Linearity : $a_1h_1 + a_2h_2 \rightarrow a_1H_1 + a_2H_2$ ($\mathcal{D} \supset \mathcal{D}_1 \cup \mathcal{D}_2$)
- ▶ Delay : $y(n) = x(n-k) \Leftrightarrow Y(z) = z^{-k}X(z)$
- ► Convolution product
 - ▶ If y = h * x, then Y(z) = H(z)X(z), $\mathcal{D}_y \supset \mathcal{D}_h \cap \mathcal{D}_x$
- ▶ Insertion of zeros : $Y(z) = X(z^L) \Leftrightarrow y(nL) = x(n), y = 0$ elsewhere
- ► Inverse filter
 - ▶ If $h*h_i = \delta$, then $H(z)H_i(z) = 1$ for $z \in \mathcal{D}_h \cap \mathcal{D}_{h_i}$

Examples of ZT

- \blacktriangleright $h(n) = \delta(n) \Rightarrow H(z) = 1 \ \forall z \in \mathbb{C}$
- ► $h(n) = \mathbf{1}_{[0,+\infty]}(n) \Rightarrow H(z) = \frac{1}{1-z^{-1}} \forall |z| > 1$
- $h(n) = \mathbf{1}_{[0...N-1]}(n) \Rightarrow H(z) = \frac{1-z^{-N}}{1-z^{-1}} \ \forall z \neq 0$
- ► AR1 filter :
 - $h(n) = \begin{cases} a^n & \text{if } n \ge 0 \\ 0 & \text{if } n < 0 \end{cases} \Rightarrow H(z) = \frac{1}{1 az^{-1}},$ $\mathscr{D} = \{z \in \mathbb{C}/|z| > |a|\}$
 - $h(n) = \begin{cases} -a^n & \text{if } n < 0 \\ 0 & \text{if } n \ge 0 \end{cases} \Rightarrow H(z) = \frac{1}{1 az^{-1}},$

Autoregressive filter of order 1

y(n) - ay(n-1) = x(n) $H(z) = \frac{1}{1-az^{-1}}$ I/O relationship Transfer function

Implementation	y(n)=ay(n-1)+x(n)	$y(n) = \frac{y(n+1) - x(n+1)}{a}$
IR $(x(n)=\delta_0(n))$	$h(n) = a^n 1_{\{n \ge 0\}}$	$h(n) = -a^n \mathbb{1}_{\{n < 0\}}$
Domain \mathscr{D}	$\{z \in \mathbb{C}/ z > a \}$	$\{z \in \mathbb{C}/ z < a \}$
Properties	causal, stable if $ a < 1$	anti-causal, stable if $ a {>}1$

Une école de l'IMT

Reminders

Une école de l'IMT

Reminders

Recursive filters

Recursive filters

- ▶ Input-output relationship : $\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$
- ► Computation of the output (causal implementation)

$$y(n) = \frac{1}{a_0} \left[\sum_{k=0}^{M} b_k x(n-k) - \sum_{k=1}^{N} a_k y(n-k) \right]$$

► Transfer function :
$$H(z) = \frac{\sum\limits_{k=0}^{M} b_k z^{-k}}{\sum\limits_{k=0}^{N} a_k z^{-k}} = \frac{b_0}{a_0} \frac{\prod\limits_{k=1}^{M} (1 - c_k z^{-1})}{\prod\limits_{k=1}^{N} (1 - d_k z^{-1})}$$

Examples of recursive filters

ightharpoonup Auto-Regressive filters (if M=0, AR of order N)

$$y(n) = \frac{b_0}{a_0}x(n) - \sum_{k=1}^{N} \frac{a_k}{a_0}y(n-k)$$

- ► Finite Impulse Response filters
 - ▶ If N = 0, FIR filter of length M $h(n) = \begin{cases} \frac{b_n}{a_0} & \text{if } n = 0 \dots M \\ 0 & \text{sinon} \end{cases}$
 - Causal filters, unconditionally stable
 - ▶ If the IR is symmetric or anti-symmetric, the phase is linear

Recursive filters

► Transfer function of a recursive filter

$$H(z) = \frac{\sum\limits_{k=0}^{M} b_k z^{-k}}{\sum\limits_{k=0}^{N} a_k z^{-k}} = \frac{b_0}{a_0} \frac{\prod\limits_{k=1}^{M} (1 - c_k z^{-1})}{\prod\limits_{k=1}^{N} (1 - d_k z^{-1})}$$

- ► Definition of the poles and zeros
- ightharpoonup Domain of convergence : \mathscr{D} is a ring bounded by 2 poles, with no pole inside
- \triangleright Stable filters : \mathscr{D} is the largest ring containing the unit circle and no pole
- ► Stable and causal filters : whose poles are all strictly inside the unit circle
- ▶ If the a_k and b_k are real, the poles and zeros are either real, or form conjugate pairs

Une école de l'IMT

Reminders

№ IP PARIS 18/35

Une école de l'IMT

D IP PARIS

Computation of the IR from the ZT

- 1. If necessary, extract from H(z) a term in z^n , so that the numerator and denominator of H(z) only contain negative powers of z plus a constant
- 2. Factorize the numerator and denominator as products of monomials of z^{-1}
- 3. Partial fraction decomposition of H(z) as a function of z^{-1}
- 4. Expansion in power series :
 - ightharpoonup of z^{-1} if we compute the causal IR, or if we compute the stable IR and if the pole is inside the unit circle:
 - of z if we compute the anti-causal IR, or if we compute the stable IR and if the pole is outside the unit circle.
- 5. Identify the resulting expression with $H(z) = \sum_{n \in \mathbb{Z}} h(n) z^{-n}$

Example :
$$H(z) = \frac{1}{1 - \frac{5}{2}z^{-1} + z^{-2}}$$

Geometric interpretation of the FR

$$|H(z)| = \frac{1}{PM \times QM}$$

$$\arg H(z) = 2\arg(OM) - \arg(PM) - \arg(QM)$$

Spectral factorization

► Factorization of the transfer function

$$H(z) = rac{b_0}{a_0} \prod_{\substack{k=1 \ k=1}}^{M} (1 - c_k z^{-1})$$

► Amplitude response $(z = e^{2i\pi v})$

$$|H(e^{2i\pi v})|^2 = H(z)H(1/z^*)^* = \left|\frac{b_0}{a_0}\right|^2 \frac{\prod\limits_{k=1}^{M} (1-c_k z^{-1})(1-c_k^* z)}{\prod\limits_{k=1}^{M} (1-d_k z^{-1})(1-d_k^* z)}$$

- ▶ Poles of || < 1 : stability + causality
- ightharpoonup Zeros of || < 1: minimal phase

All-pass filters

- ▶ Definition : $H(z) = \prod_{k=1}^{N} \frac{z^{-1} c_k^*}{1 c_k z^{-1}}$ where $|c_k| < 1 \ \forall k$
- \vdash H(z) is all-pass, **causal** and stable
- Properties (if y = h * x):

 - An all-pass filter is such that $\sum_{n=-\infty}^{N} |x(n)|^2 \ge \sum_{n=-\infty}^{N} |y(n)|^2$ Proof: $x_N(n) = x(n) \times \mathbf{1}_{1-\infty,N}(n)$

Une école de l'IMT

Reminders

Reminders

№ IP PARIS 22/35

Une école de l'IMT

Reminders

Reminders

D IP PARIS

Spectral factorization

Minimal phase filters

- ▶ Definition : filter whose poles and zeros are all inside the unit circle
- Any causal and stable recursive filter is the product of an all-pass filter and a minimal phase filter
- Properties (if g is causal and stable, y = g * x and $|G| = |G_m|$):

 - The inverse filter is stable and causal $\sum_{n=-\infty}^{N} |y_m(n)|^2 \ge \sum_{n=-\infty}^{N} |y(n)|^2$
 - \triangleright g_m has the lowest group delay

Minimal phase filters

Part IV

FIR filters: window method

5/35 Une école de l'IMT

Reminders

№ IP PARIS 26/35

Une école de l'IMT

Reminders

D IP PAR

Window method

- ► Example : the low-pass filter
- ▶ Ideal low-pass filter : $h(n) = 2v_c \operatorname{sinc}(2v_c n)$
 - ► The response is IIR, non-causal, non-stable

- ► Synthesis of a type I causal FIR filter
 - ► Truncation and temporal shift

Gibbs phenomenon

27/35

'IMT Reminders

Une école de l'IMT

Reminders

⊗ IP PA

Gibbs phenomenon

Gibbs phenomenon

Une école de l'IMT

© IP PARIS 28/35

Une école de l'IMT

Reminders

Gibbs phenomenon

Gibbs phenomenon

Gibbs phenomenon

Gibbs phenomenon

Une école de l'IMT

Reminders

© IP PARIS 28/35

Une école de l'IMT

Reminders

Gibbs phenomenon

Gibbs phenomenon

Gibbs phenomenon

三選動

Une école de l'IMT

№ IP PARIS 28/35

Une école de l'IMT

Reminders

Choice of a suitable window

$h(n) = 2v_c \operatorname{sinc}(2v_c n) w(n)$

where w(n) is a symmetric window of finite support

Rectangular window

$$w(n) = \mathbf{1}_{[0\dots P-1]}(n)$$

 \blacktriangleright Width : 2/P, second lobe : -13 dB, decrease rate : -6 dB / octave

Bartlett window

$$w(n) = 1 - \left| \frac{2n}{P-1} - 1 \right|$$

➤ Width : 4/P, second lobe : -26 dB, decrease rate : -12 dB / octave

Hann window

$$w(n) = 0.5 - 0.5\cos(2\pi n/(P-1))$$

➤ Width : 4/P, second lobe : -31 dB, decrease rate : -18 dB / octave

./35 Une école de l'IMT

Reminders

Reminders

№ IP PARIS 32/35

Une école de l'IMT

Reminders

P IP PARIS

Hamming window

$w(n) = 0.54 - 0.46\cos(2\pi n/(P-1))$

Width: 4/P, second lobe: -41 dB, decrease rate: -6 dB / octave

Blackman window

$$w(n) = 0.4266 - 0.4965\cos(2\pi n/(P-1)) + 0.076\cos(4\pi n/(P-1))$$

Width: 6/P, second lobe: -57 dB, decrease rate: -18 dB / octave

Window method

- ► Advantages :
 - ► Stability, causality
 - ► Linear phase filter if symmetric window
- ► Drawbacks :
 - ► the transition bands are widened
 - ► the spurious ripples
 - are due to side lobes

 - do not have a constant amplitudeare the same in passband and stopband

IP PARIS

35/35

Une école de l'IMT

Reminders

