ASSIGNMENT 1

Q2.3.1, Q2.3.2, Q2.3.3, Q2.4.1, Q2.4.2, Q2.4.3

Section 2: Time and Space Complexity Analysis

2.3 Time Complexity Analysis Questions

Problem 1

Question:

For the given code snippet, find the time complexity in terms of Big O (O), Theta (Θ), and Omega (Ω). Provide a step-by-step explanation of how you arrived at the time complexity.

Answer:

- Analyze the nested loops. The outer loop runs `n` times, and for each iteration of the outer loop, the inner loop also runs `n` times. This results in `n * $n = n^2$ operations for adjusting `a`.
- The second loop (for 'k') is independent and runs 'n' times for adjusting 'b'.

Time Complexity:

- **-Big O (O)**: The worst-case scenario is $O(n^2)$ due to the nested loops.
- -Theta (Θ): Since the dominant term in the total operations is n² and there are no scenarios where the algorithm would perform better or worse than this rate of growth, the average-case complexity is also $\Theta(n^2)$.
- -Omega (Ω): The best-case scenario, which is also $\Omega(n^2)$, aligns with the worst-case since the loops will always perform n^2 operations for adjusting "a plus n" operations for adjusting 'b', but n^2 is the dominant term.

Problem 2

Question:

Determine the time complexity for the following function:

Answer:

- Analysis:
 - The first loop runs approximately n/2 times.
- The second loop is a geometric progression starting from 1 and multiplying by 2 each time until 'n'. This runs in O(log n) time.
 - The third loop, identical to the second loop, also runs in O(log n) time.
- Overall Time Complexity:
- -Big O (O): Considering the combination of loops, the worst-case time complexity is O(n $\log^2 2$ n) because the outer loop runs n/2 times, and each of the two inner loops runs $\log n$ times.
- -Theta (Θ): The average-case complexity, considering the nature of loops and their execution path, remains $\Theta(n \log^2 2 n)$.
 - **Omega** (Ω): The best-case scenario, given the lower bounds of the loops, is $\Omega(n \log^2 2 n)$.

Problem 3

Question:

Evaluate the time complexity for this recursive function:

Answer:

- Analysis:
- This function makes two recursive calls for each value of 'a' greater than 0, effectively doubling the number of calls with each decrement of 'a'.

-Overall Time Complexity:

- **-Big O (O):** The time complexity is $O(2^n)$ because each function call spawns two additional calls.
 - -Theta (Θ): The average-case complexity mirrors the worst-case, so it is also $\Theta(2^n)$.
- **Omega** (Ω): The best-case scenario, where 'a ≤ 0 ', executes in constant time, $\Omega(1)$, but considering the growth rate as 'a' increases, the lower bound in terms of growth behavior is $\Omega(2^n)$ for 'a ≥ 0 '.

2.4 Space Complexity Analysis Questions

Problem 1

Question:

For the given code snippet, analyze the space complexity in terms of Big O (O), Theta (Θ) , and Omega (Ω) . Present a step-by-step explanation of your analysis.

- Analysis:

- This function performs an in-place reversal of an array. The variables 'start', 'end', and 'temp' are used for index tracking and swapping elements.

- Space Complexity:

- -Big O (O): The space complexity is 'O(1)' as the memory usage does not scale with the size of the input array. Only a constant amount of extra space ('start', 'end', 'temp') is used regardless of the input size.
- -Theta (Θ): Since the algorithm consistently uses a fixed amount of space, the average-case space complexity is also $\Theta(1)$.
- **Omega** (Ω): The best-case scenario also has a space complexity of $\Omega(1)$, reflecting that even in the most efficient case, the algorithm requires a constant amount of space.

Problem 2

Question:

Analyze the space complexity of the following function:

- Analysis:

- This function calculates the nth Fibonacci number using dynamic programming. The 'dp' array of size 'n + 1' stores intermediate Fibonacci values.

-Space Complexity:

- **Big O (O):** The space complexity is O(n) as the algorithm allocates an array of size n + 1 to store the Fibonacci sequence up to n.
- **-Theta** (Θ): Given the allocation of memory scales linearly with 'n', the average-case space complexity is ' $\Theta(n)$ '.
- **Omega** (Ω): The best-case space complexity is also $\Omega(n)$, indicating that the minimum space required by the algorithm grows linearly with the input size.

Problem 3

Question:

Evaluate the space complexity for this function:

-Analysis:

- This function computes the length of the longest common subsequence between two strings 's1' and 's2' using dynamic programming. The 'dp' 2D array of size '(m + 1) x (n + 1)' is used to store the lengths of the longest common subsequences for all subproblems.

- Space Complexity:

- -Big O (O): The space complexity is `O(mn)` due to the allocation of a 2D array whose size is directly proportional to the lengths of the input strings `s1` and `s2`.
- **-Theta (\Theta)**: The average-case space complexity is $\Theta(mn)$ as the space used by the algorithm scales with the product of the lengths of the two input strings.
- **-Omega** (Ω): The best-case scenario still requires a space complexity of ` Ω (mn)` for the dynamic programming table.