Осенняя Школа по информационным технологиям ОИЯИ 7 — 11 октября 2023

Глубокое обучение с подкреплением

(Deep Reinforcement learning)

Соколинский Леонид Борисович доктор физ.-мат. наук, профессор

Где применяется обучение с подкреплением

- Игры (шахматы, нарды, го и др.)
- Беспилотный автомобиль (self-driving car)
- Автоматические системы управления технологическими процессами (industry automation)
- Роботрейдинг: биржевые финансовые сделки (trading and finance)
- Обработка естественного языка (NLP natural language processing)
- Рекомендательные сервисы
- Роботы-манипуляторы
- Маркетинг и реклама
- Здравоохранение
- ...

Этимология

Обучение с подкреплением

Глубокое обучение

Глубокое обучение с подкреплением

Глубокое обучение

нейронная сеть

Прецедент = (Данные задачи, Правильный ответ)

Искусственный нейрон сигмоид

 $\pmb{x} = (x_1, x_2, ..., x_n)$ – входные сигналы: $0 \le x_i \le 1$

 $oldsymbol{w} = (w_1, w_2, ..., w_n)$ – синаптические веса: $w_i \in \mathbb{R}$

b – смещение: $b \in \mathbb{R}$

a – выходной сигнал: 0 < a < 1

Вычисление выходного сигнала в нейронной сети

$$a_i^{(1)} = x_j \ (j = 1, ..., 4)$$

$$z_1^{(2)} = b_1^{(2)} + w_{11}^{(2)} a_1^{(1)} + w_{21}^{(2)} a_2^{(1)} + w_{31}^{(2)} a_3^{(1)} + w_{41}^{(2)} a_4^{(1)}$$

$$a_1^{(2)} = \sigma\left(z_1^{(2)}\right)$$

$$z_2^{(2)} = b_2^{(2)} + w_{21}^{(2)} a_1^{(1)} + w_{22}^{(2)} a_2^{(1)} + w_{23}^{(2)} a_3^{(1)} + w_{24}^{(2)} a_4^{(1)}$$

$$a_2^{(2)} = \sigma\left(z_2^{(2)}\right)$$

$$z_1^{(3)} = b_1^{(3)} + w_{11}^{(3)} a_1^{(2)} + w_{12}^{(3)} a_2^2$$

$$a_1^{(3)} = \sigma\left(z_1^{(3)}\right)$$

Глубокая нейронная сеть

Пример с «крестиками-ноликами»

Наивный взгляд на глубокое обучение с подкреплением

Пример с «крестиками-ноликами»

Реальный взгляд на глубокое обучение с подкреплением

Марковский процесс

- *Агент* (agent) сторона, которая обучается и принимает решения
- Среда (environment) сторона, с которой агент взаимодействует (игра + противник + судья)
- Вознаграждение (reward) числовое значение, генерируемое судьей в зависимости от успешности действия агента (в простейшем случае: 1 выигрыш, 0 проигрыш)
- Агент и среда взаимодействуют на каждом шаге дискретной последовательности временных шагов: t=0,1,2,3,...
- На каждом шаге t агент получает состояние (state) среды (ответный ход противника) $S_t \in \mathcal{S}$, на основе которого выполняет действие (action) $A_t \in \mathcal{A}$
- На следующем шаге t+1 агент получает вознаграждение $R_{t+1}\in \mathcal{R}\subset \mathbb{R}$ и переходит в новое состояние $S_{t+1}\in \mathcal{S}$

$$(S_0, A_0, 0) \to (S_1, A_1, R_1) \to (S_2, A_2, R_2) \to (S_3, A_3, R_3) \to \dots$$

«Цветные крестики-нолики»

- Агент начинает игру и ставит «крестики»
- Противник (среда) ставит «нолики»

- Можно использовать только белые клетки
- Судья (среда) после каждого хода освобождает одну желтую клетку
- Побеждает тот, кто поставит три своих знака по диагонали, вертикали или горизонтали
- За правильные ходы начисляются очки (вознаграждение)
- За победу назначается вознаграждение +20

Дерево игры

Дерево состояний

Пример марковского процесса

Эпизоды и доходы

Эпизод (episode) – серия взаимодействий агента со средой (партия в игре)

Эпизод представляется в виде конечного марковского процесса:

$$(S_0, A_0, 0) \rightarrow (S_1, A_1, R_1) \rightarrow (S_2, A_2, R_2) \rightarrow ... \rightarrow (S_T, A_T, R_T)$$

 \mathcal{L}_{oxod} (return) с момента времени t до конца эпизода:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-t-1} R_T = \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

 $0 \le \gamma \le 1$ – коэффициент обесценивания (discount rate)

Пример вычисления дохода

Коэффициент обесценивания $\gamma=\frac{1}{2}$

Доход
$$G_0 = 5 + \frac{1}{2}10 + \frac{1}{4}20 = 15$$

Стратегия (Policy)

$$\pi: \mathcal{A} \times \mathcal{S} \rightarrow [0; 1]$$

Стратегия определяет для каждого состояния $s \in S$ с какой вероятностью следует предпринять то или иное действие из всех возможных:

$$\forall s \in \mathcal{S}: \sum_{a \in \mathcal{A}_s} \pi(a|s) = 1$$

 \mathcal{A}_{ς} - все возможные действия в состоянии s

Стратегия в классических «крестиках-ноликах»

- Стратегия противника
 - 1. Поставить о в центральную клетку (если она свободна)
 - 2. Поставить в свободную угловую клетку
 - 3. Занять диагональ и выиграть
- Какой стратегии должен придерживаться агент, чтобы выиграть игру?

Стратегия агента

$$s_0$$
 A
 B
 C

 1
 $\frac{1}{4}$
 0
 $\frac{1}{4}$

 2
 0
 0
 0

 3
 $\frac{1}{4}$
 0
 $\frac{1}{4}$

$$\sum_{a \in \mathcal{A}} \pi(a|s_0) = 1$$

$$\pi(A1|s_0) = \pi(A3|s_0) = \pi(C1|s_0) = \pi(C3|s_0) = \frac{1}{4};$$

$$\pi(B1|s_0) = \pi(B2|s_0) = \pi(B3|s_0) = \pi(A2|s_0) =$$

$$= \pi(C2|s_0) = 0$$

$$egin{array}{c|ccccc} s_1 & A & B & C \\ 1 & \times & 0 & 0 \\ 2 & 0 & \bullet & 0 \\ 3 & 0 & 0 & 1 \\ \hline \end{array}$$

$$\sum_{a\in\mathcal{A}}\pi(a|s_1)=1$$

$$\pi(C3|s_1) = 1;$$

$$\pi(A2|s_1) = \pi(A3|s_1) = \pi(B1|s_1) =$$

$$= \pi(B3|s_1) = \pi(C1|s_1) = \pi(C2|s_1) = 0$$

$$\sum_{a \in \mathcal{A}} \pi(a|s_3) = 1$$

 $s_2 A B$

$$\pi(B3|s_2) = 1;$$

 $\pi(B1|s_2) = \pi(C2|s_2) = 0$

$$\pi(A3|s_2) = 1;$$

 $\pi(A2|s_2) = \pi(B1|s_2) =$
 $= \pi(B3|s_2) = \pi(C2|s_2) = 0$

Функция качества действия (Q-функция)

Функция $q_{\pi}(s,a)$ качества действия a в состоянии s при стратегии π — это ожидаемый доход, когда агент предпринимает действие a в состоянии s и в дальнейшем следует стратегии π

Вычисление качества действия

Отношение квазипорядка на множестве стратегий

$$\pi \geqslant \acute{\pi} \iff \forall s \in \mathcal{S}: q_{\pi}(s, a) \geq q_{\acute{\pi}}(s, a)$$

08.10.2024

Оптимальная стратегия $oldsymbol{\pi}_*$

$$\forall \pi : \pi_* \geqslant \pi$$

Если дерево состояний конечно, то существует как минимум одна оптимальная стратегия π_*

Оптимальные функция качества действия $oldsymbol{q}_*(oldsymbol{s},oldsymbol{a})$

Все оптимальные стратегии имеют одинаковую функцию качества действия, называемую *оптимальной*:

$$q_*(s,a)$$

Жадная оптимальная стратегия для известной оптимальной Q-функции

В состоянии s выбираем действие a, которое имеет максимальное качество

arepsilon-жадная оптимальная стратегия для известной оптимальной Q-функции

- В состоянии s с вероятностью $(1-\varepsilon)$ выбираем действие a, которое имеет максимальное качество
- ullet Остальным возможным k действиям назначаем вероятность выбора $rac{arepsilon}{k}$
- ε малое положительное число
- ullet arepsilon-жадные оптимальные стратегии используются в обучении с подкреплением

Q-таблица

- Действия $a_1 \qquad a_2 \qquad a_3$ $S_1 = \begin{cases} s_1 & q_*(s_1, a_1) & q_*(s_1, a_2) & q_*(s_1, a_3) \\ q_*(s_2, a_1) & q_*(s_2, a_2) & q_*(s_2, a_3) \\ s_3 & q_*(s_3, a_1) & q_*(s_3, a_2) & q_*(s_3, a_3) \\ s_4 & q_*(s_4, a_1) & q_*(s_4, a_2) & q_*(s_4, a_3) \end{cases}$
 - Q-таблица

- Q-таблица содержит значения оптимальной *q*-функции
- Q-таблица однозначно определяет жадную оптимальную стратегию

Q-таблица вычисляется с помощью Q-обучения

Q-обучение

Для каждого эпизода

$$(S_1, A_1, R_1) \to (S_2, A_2, R_2) \to \dots \to (S_T, A_T, R_T)$$

обновляем соответствующие элементы Q-таблицы по формуле

$$Q_{S_{t},A_{t}} \coloneqq Q_{S_{t},A_{t}} + \eta \left(R_{t+1} + \gamma \max_{a} Q_{S_{t+1},a} - Q_{S_{t},A_{t}} \right)$$

 η – скорость обучения

 γ — коэффициент обесценивания

Алгоритм Q-обучения

Заполняем Q-таблицу нулями

Если известна модель среды (следующее состояние и вознаграждение однозначно определяются действием агента), генерируем эпизоды, выбирая действия случайным образом и выполняем Q-обучение

Если модель среды неизвестна (среда включает взаимодействие с контрагентом), генерируем эпизоды с помощью ε -жадной* оптимальной стратегии и выполняем Q-обучение

*В этом случае нельзя использовать жадную стратегию, так как она не гарантирует обход всего дерева состояний

© Соколинский Л.Б.

Задача «Микрошашки» (пример Q-обучения)

- Имеется одна шашка, установленная в клетке s₁
- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

 S3
 S6
 50

 S2
 S5
 50

 S1
 S4
 10

• Выполнить цикл Q-обучения на основе последовательности эпизодов (начальные значения элементов Q-таблицы положить равными нулю, использовать $\eta=0.1$, $\gamma=1$)

$$(s_1, \text{up}, 0) \to (s_2, \text{right}, 50) \to (s_5, \blacksquare, 0)$$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	\mathbf{s}_1	s_2	S_3
up	0	0	0
right	0	0	0

	s_1	s_2	S_3
up	-0.1 = 0.1(-1)	0	0
right	0	5 = 0.1 · 50	0

s_3	s_6	50
s ₂ -	→ S ₅	50
\mathbf{s}_1	S ₄	10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

 $(s_1, \text{right}, 10) \rightarrow (s_4, \blacksquare, 0)$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	s_1	\mathbf{s}_2	S_3
up	-0.1	0	0
right	0	5	0

	\mathbf{s}_1	s_2	S_3
up	-0.1	0	0
right	1 = 0.1 · 10	5	0

S_3	s_6	50
\mathbf{s}_2	S ₅	50
s_1	→ s ₄	10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

$$(s_1, \text{up}, 0) \rightarrow (s_2, \text{up}, -1) \rightarrow (s_3, \text{up}, -10) \rightarrow (s_3, \text{right}, 50) \rightarrow (s_6, \blacksquare, 0)$$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	\mathbf{s}_1	s_2	s_3
up	-0.1	0	0
right	1	5	0

	\mathbf{s}_1	s_2	s_3
up	0.31 = -0.1 + 0.1(-1 + 5 + 0.1)	-0.1 = 0.1(-1)	-1 = 0.1(-10)
right	1	5	5 = 0.1 · 50

\$ ₃ -	• s ₆	50
S ₂	S ₅	50
\mathbf{s}_1	S ₄	10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

$$(s_1, \text{up}, 0) \rightarrow (s_2, \text{up}, -1) \rightarrow (s_3, \text{right}, 50) \rightarrow (s_6, \blacksquare, 0)$$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	\mathbf{s}_1	\mathbf{s}_2	s_3
up	0.31	-0.1	-1
right	1	5	5

	\mathbf{s}_1	\mathbf{s}_2	S_3
up	$ \begin{array}{c} 0.679 \\ = 0.31 + 0.1(-1 + 5) \\ - 0.31) \end{array} $	$ \begin{array}{c} 0.31 \\ = -0.1 + 0.1(-1 + 5) \\ + 0.1) \end{array} $	-1
right	1	5	9.5 = 5 + 0.1(50 - 5)

s ₃ -	• s ₆	50
S ₂	S ₅	50
\mathbf{s}_1	S ₄	10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

 $(s_1, \text{up}, 0) \to (s_2, \text{right}, 50) \to (s_5, \blacksquare, 0)$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	\mathbf{s}_1	\mathbf{s}_2	s_3
up	0.679	0.31	-1
right	1	5	9.5

	\mathbf{s}_1	\mathbf{s}_2	s_3
up	1.0111 = 0.679 + 0.1(-1 + 5 - 0.679)	0.31	-1
right	1	9.5 = 5 + 0.1(50 - 5)	9.5

		Ī
s_3	s_6	50
s ₂ -	→ S ₅	50
\mathbf{s}_1	S ₄	10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

 $(s_1, \text{right}, 10) \rightarrow (s_4, \blacksquare, 0)$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	\mathbf{s}_1	\mathbf{s}_2	S_3
up	1.0111	0.31	-1
right	1	9.5	9.5

	\mathbf{s}_1	\mathbf{s}_2	s_3
up	1.0111	0.31	-1
right	1.9 = 1 + 0.1(10 - 1)	9.5	9.5

		ī
s_3	s_6	50
s_2	S_5	50
s ₁ -	→ S ₄	10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

 $(s_1, \text{up}, 0) \to (s_2, \text{right}, 50) \to (s_5, \blacksquare, 0)$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	\mathbf{s}_1	\mathbf{s}_2	S_3
up	1.0111	0.31	-1
right	1.9	9.5	9.5

	s_1	s_2	s_3
up	1.76 ≈ 1.0111 + 0.1(-1 + 9.5 - 1.0111)	0.31	-1
right	1.9	13.55 = $9.5 + 0.1(50 - 9.5)$	9.5

		-
s_3	s_6	50
s ₂ -	→ S ₅	50
\mathbf{s}_1	S ₄	10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

 $(s_1, \text{right}, 10) \rightarrow (s_4, \blacksquare, 0)$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	\mathbf{s}_1	\mathbf{s}_2	S_3
up	1.76	0.31	-1
right	1.9	13.55	9.5

	\mathbf{s}_1	\mathbf{s}_2	s_3
up	1.76	0.31	-1
right	2.71 = 1.9 + 0.1(10 - 1.9)	13.55	9.5

S_3	S_6	50
s_2	S_5	50
		1.0
s_1	• S ₄	10
s ₂		50 10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

 $(s_1, \text{up}, 0) \to (s_2, \text{right}, 50) \to (s_5, \blacksquare, 0)$

- Двигать шашку можно на одну клетку вверх (up) или вправо (right)
- При попадании в зеленую клетку начисляется указанное справа от нее вознаграждение и игра заканчивается
- При попытке выхода за границы доски, шашка остается в той же клетке и начисляется вознаграждение (-10)
- За каждое перемещение в соседнюю белую клетку начисляется вознаграждение (-1)

	s_1	s_2	s_3
up	1.76	0.31	-1
right	2.71	13.55	9.5

	s_1	s_2	s_3
up	$\begin{array}{c} 2.84 \\ \approx 1.76 + 0.1(-1 \\ + 13.55 - 1.76) \end{array}$	0.31	-1
right	2.71	17.2 ≈ 13.55 + 0.1(50 - 13.55)	9.5

s_3	s_6	50
s ₂ -	→ S ₅	50
\mathbf{s}_1	S ₄	10

$$Q_{S_t,A_t} \coloneqq Q_{S_t,A_t} + 0.1 \left(R_{t+1} + \max_{a} Q_{S_{t+1},a} - Q_{S_t,A_t} \right)$$

После Q-обучения жадная оптимальная стратегия обеспечивает максимальный доход

 $(s_1, \text{up}, 0) \to (s_2, \text{right}, 50) \to (s_5, \blacksquare, 0)$

© Соколинский Л.Б

	\mathbf{s}_1	s_2	s_3
up	2.84	0.31	-1
right	2.71	17.2	9.5

Проблема комбинаторного взрыва

- Во многих задачах, к которым мы хотели бы применять обучение с подкреплением, пространство состояний комбинаторное, а его размер огромен
- Например, количество неповторяющихся шахматных партий многократно превышает количество атомов в наблюдаемой Вселенной
- В таких случаях невозможно найти оптимальную стратегию в результате Q-обучения
- Для сложных задач можно найти стратегию, приближающуюся к оптимальной, с помощью *глубокого обучения с подкреплением*

Для аппроксимация оптимальной Q-функции используем нейронную сеть

Слой 0 Слой 1 Слой 2

Для построения эпизода используем ε -приближенную жадную оптимальную стратегию

- Находясь в состоянии s_t выполняем действие $a_t = \arg\max_a \widetilde{q}_*(s,a)$
- Для вычисления $\widetilde{q}_*(s,a)$ используем нейронную сеть

Глубокое обучение с подкреплением

- 1. Инициализируем веса w каким-либо образом
- 2. С помощью ε -жадной оптимальной стратегии генерируем эпизод, вычисляя качество возможных действий с помощью нейронной сети:

$$(S_0, A_0, 0) \to (S_1, A_1, R_1) \to \cdots \to (S_T, \blacksquare, R_T)$$

3. На каждом шаге t=0,...,T-1 корректируем веса:

$$\mathbf{w} \coloneqq \mathbf{w} - \eta \nabla_{\mathbf{w}} C$$

• Ошибка вычисляется по формуле

$$C = \frac{1}{2} \left(R_{t+1} + \gamma \max_{a} \widetilde{q}_*(S_{t+1}, a) - \widetilde{q}_*(S_t, A_t) \right)^2$$

4. Повторяем шаги 2-3 много раз

Спасибо за внимание!

Вспомогательные слайды

Андрей Андреевич Марков

Андрей Андреевич Марков (2 июня 1856 — 20 июля 1922) русский математик, академик, внесший большой вклад в теорию вероятностей, математический анализ и теорию чисел.

- А. А. Марков был сыном чиновника Андрея Григорьевича Маркова, служившего в Лесном департаменте в чине коллежского советника, а затем вышедшего в отставку и служившего в Санкт-Петербурге частным поверенным.
- Андрей Марков страдал туберкулёзом коленного сустава и до 10 лет ходил на костылях. После операции, проведённой известным хирургом Кадэ, он получил возможность ходить нормально.
- В 1866 году его отдали в 5-ю Петербургскую гимназию. Это классическое учебное заведение с преподаванием древних языков (латинского и греческого) пришлось ему не по вкусу; по большинству предметов он учился плохо, исключение составлял только один предмет математика.
- В 1874 году А. А. Марков окончил гимназию и поступил в Санкт-Петербургский университет. Там он слушал лекции профессоров А. Н. Коркина и Е. И. Золотарёва, а также Пафнутия Львовича Чебышёва, оказавшего определяющее влияние на выбор научной деятельности Андрея Маркова. 31 мая 1878 года он окончил Петербургский университет по математическому разряду физико-математического факультета со степенью кандидата.
- С 13 декабря 1886 года, по предложению Чебышёва, он был избран адъюнктом физикоматематического отделения (чистая математика); с 3 марта 1890 года экстраординарный академик, а с 2 марта 1896 года ординарный академик Императорской Санкт-Петербургской академии наук. С 1880 года приват-доцент, с 1886 года профессор физико-математического факультета Санкт-Петербургского университета. С 1898 года действительный статский советник.
- Умер в Петрограде в 1922 году. Похоронен на Митрофаниевском кладбище Санкт-Петербурга. В 1954 году перезахоронен на Литераторских мостках, Волковское кладбище.

Отношение квазипорядка

• Рефлексивность

$$a \leq a$$

• Транзитивность

$$a \leq b \wedge b \leq c \Rightarrow a \leq c$$

Отношение (частичного) порядка

• Рефлексивность

$$a \leq a$$

• Транзитивность

$$a \leq b \wedge b \leq c \Rightarrow a \leq c$$

• Антисимметричность

$$a \leq b \wedge b \leq a \Rightarrow a = b$$

Глубокое обучение с подкреплением в игре «крестики-нолики»

• Векторизуем игровое поле (9 нейронов входного слоя)

 0 – пустая клетка
 1 2 3

 1 – крестик
 2 × 0

 2 – нолик
 3 × × 0

- Добавляем действие: координаты клетки, куда ставим очередной крестик (2 нейрона входного слоя)
- Используем сигмоидные нейроны для скрытого слоя
- Всем состояниям, кроме финальных назначаем вознаграждение 0
- Проигрышу соответствует вознаграждение 0
- Ничьей соответствует вознаграждение 10
- Выигрышу соответствует вознаграждение 100
- Полагаем $\gamma = 1$, $\eta = 0.1$

Генерация эпизодов и обучение

- Методы генерации эпизодов
 - Контрагент, делает случайные ходы (примитивная модель среды)
 - Агент играет сам с собой (предпочтительный метод при начальном обучении)
 - Агент играет с человеком (применяется в завершающей стадии обучения)
- Тактики обучения
 - Непосредственное обучение в процессе игры
 - Отложенное обучение:
 - Перед началом игры делается копия вектора весов: $\acute{w}\coloneqq w$
 - ullet На протяжении одной игры ходы делаются на основе $oldsymbol{w}$, а корректируется $oldsymbol{\acute{w}}$
 - ullet По завершению игры выполняется присваивание: $oldsymbol{w}\coloneqq oldsymbol{\acute{w}}$
 - $-\,\,$ Рекомендуется постепенно уменьшать скорость обучения η