Лабораторная работа № 4

Задание для самостоятельного выполнения

Мугари Абдеррахим

Содержание

1	Цель работы				
2	Описание выполнения всех лабораторных работ из раздела				
	2.1	Лабор	аторная работа 1. Простые модели компьютерной сети	7	
		2.1.1		7	
		2.1.2	Вывод по Лабораторной работе 1	7	
	2.2	Лабор	аторная работа 2. Исследование протокола ТСР и алгорит-		
		_	равления очередью RED	8	
		2.2.1	Цель работы	8	
		2.2.2		8	
	2.3	Лабор	аторная работа 3. Моделирование стохастических процессов	9	
		2.3.1		9	
		2.3.2	Вывод по Лабораторной работе 3	9	
3	Выг	іолнені	ие текущей работы :	11	
	3.1	Описа	иние моделируемой сети	11	
	3.2		пнение	12	
	3.3	Визуа	лизировали результаты в NAM:	18	
		3.3.1	Изменение размера окна ТСР на линке 1-го источника		
			при N=30 (рис. 3.2)	20	
		3.3.2	Изменение размера окна ТСР на всех источниках при		
			N=30 (рис. 3.3)	21	
		3.3.3	Изменение размера длины очереди на линке (R1–R2) при		
			$N=30$, $\mathbf{q}_{min}=75$, $\mathbf{q}_{max}=150$ (puc. 3.4)	22	
		3.3.4	Изменение размера средней длины очереди на линке		
			(R1–R2) при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150 (рис. 3.5)	24	
	3.4	Строи	ли графики с помощью Gnuplot:	25	
		4.0.1	Изменение размера окна ТСР на линке 1-го источника		
			при N=30 (рис. 4.1)	28	
		4.0.2	Изменение размера окна ТСР на всех источниках при		
			N=30(рис. 4.2)	29	

Сп	Список литературы				
5	Выводы		32		
	4.0.4	Изменение размера средней длины очереди на линке (R1–R2) при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150 (рис. 4.4)	31		
	4.0.3	Изменение размера длины очереди на линке (R1–R2) при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150 (рис. 4.3)	30		
	103	M_{2}			

Список иллюстраций

3.1	Схема моделируемой сети при N=30	19
3.2	Изменение размера окна ТСР на линке 1-го источника при N=30	20
3.3	Изменение размера окна TCP на всех источниках при N=30	21
3.4	Изменение размера длины очереди на линке (R1–R2) при N=30,	
	$\mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150 \dots \dots \dots \dots \dots$	22
3.5	Изменение размера средней длины очереди на линке (R1–R2)	
	при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150	24
4.1	Изменение размера окна TCP на линке 1-го источника при N=30	28
4.2	Изменение размера окна TCP на всех источниках при N=30	29
4.3	Изменение размера длины очереди на линке (R1–R2) при N=30,	
	$\mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150 \dots \dots \dots \dots \dots$	30
4.4	Изменение размера средней длины очереди на линке (R1–R2)	
	при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150	31

Список таблиц

1 Цель работы

- Цель данной лабораторной работы это выполнение задания для самостоятельного выполнения, основанного на знаниях, полученных в предыдущих трёх лабораторных занятиях, с использованием инструмента NS-2 для изучения и анализа поведения сети в условиях высокой нагрузки. Работа направлена на:
 - Исследование динамики окна ТСР.
 - Оценка поведения очередей на канале R1-R2.
 - Анализ производительности сети.
 - Визуализация топологии сети.

2 Описание выполнения всех лабораторных работ из раздела

2.1 Лабораторная работа 1. Простые модели компьютерной сети

2.1.1 Цель работы

• Цель лабораторной работы — освоение базовых навыков моделирования компьютерных сетей с помощью NS-2, изучение создания простых топологий сети, настройки агентов и приложений для передачи данных, а также анализ результатов с использованием визуализатора NAM. Работа учит моделированию сетей с различными топологиями (линейная, усложнённая, кольцевая) и дисциплинами обслуживания очередей (DropTail).

2.1.2 Вывод по Лабораторной работе 1

• В результате выполнения лабораторной работы освоены базовые навыки работы с NS-2: создание шаблона сценария, настройка топологий (линейная, звездообразная, кольцевая), использование агентов (TCP, UDP), приложений (FTP, CBR), дисциплин очередей (DropTail) и визуализация

результатов в NAM. Установлено, что:

- Линейная топология демонстрирует простую передачу данных с минимальной перегрузкой.
- Усложнённая топология с узким местом вызывает потерю пакетов из-за перегрузки в очереди.
- Кольцевая топология с динамической маршрутизацией позволяет перераспределять трафик при разрыве соединений, что повышает надёжность сети.

2.2 Лабораторная работа 2. Исследование протокола TCP и алгоритма управления очередью RED

2.2.1 Цель работы

• Цель работы — углублённое изучение протокола TCP (в частности, TCP Reno) и алгоритма RED для управления очередями, моделирование их взаимодействия в сети с NS-2, анализ динамики окна TCP и поведения очередей, а также сравнение различных вариантов TCP (Reno, NewReno, Vegas).

2.2.2 Вывод по Лабораторной работе 2

• Работа позволила изучить работу TCP Reno, его механизмы управления перегрузкой, а также алгоритм RED для управления очередями. Установлено, что:

- ТСР Reno эффективно адаптируется к потерям, но может вызывать синхронизированные перегрузки при многопоточной передаче.
- RED предотвращает переполнение буфера, отбрасывая пакеты с вероятностью, зависящей от средней длины очереди, но не устраняет временные пики.
- Сравнение с NewReno и Vegas показало, что NewReno уменьшает задержки, а Vegas снижает потери, но может ограничивать производительность.

2.3 Лабораторная работа 3. Моделирование стохастических процессов

2.3.1 Цель работы

• Цель работы — изучение стохастических моделей обслуживания (СМО), таких как М|М|1 и М|М|п|R, с использованием NS-2 для моделирования систем массового обслуживания с бесконечной и конечной ёмкостью очереди, а также анализ характеристик системы (вероятность потерь, средняя длина очереди) и построение графиков.

2.3.2 Вывод по Лабораторной работе 3

- Работа позволила изучить стохастические модели обслуживания (M|M|1)
 с помощью NS-2, моделирование случайного поступления пакетов и анализа их влияния на очередь. Установлено, что:
 - Теоретические характеристики (вероятность потерь, средняя длина очереди) соответствуют модели М|М|1 (загрузка системы).

 График демонстрирует случайные колебания длины очереди, что подтверждает экспоненциальное распределение интервалов поступления и обслуживания.

3 Выполнение текущей работы:

3.1 Описание моделируемой сети

- Сеть состоит из **N TCP-источников**, **N TCP-приёмников**, двух маршрутизаторов **R1 и R2** между источниками и приёмниками (**N** — не менее 20).
- Между **ТСР-источниками** и первым маршрутизатором установлены дуплексные соединения:
 - Пропускная способность: 100 Мбит/с
 - Задержка: 20 мс
 - Очередь: DropTail
- Между **ТСР-приёмниками** и вторым маршрутизатором установлены дуплексные соединения:
 - Пропускная способность: 100 Мбит/с
 - Задержка: 20 мс
 - Очередь: DropTail
- Между маршрутизаторами установлено **симплексное соединение** (R1–R2):
 - Пропускная способность: 20 Мбит/с

- Задержка: 15 мс
- Очередь: **RED**
- Размер буфера: 300 пакетов
- В обратную сторону (R2–R1) симплексное соединение:
 - Пропускная способность: 15 Мбит/с
 - Задержка: 20 мс
 - Очередь: DropTail
- Протокол передачи данных: FTP поверх TCPReno
- Параметры алгоритма RED:
 - Минимальный порог (q_{min}): 75
 - Максимальный порог (q_{max}): 150
 - Коэффициент сглаживания (\mathbf{q}_w): **0.002**
 - Максимальная вероятность отбрасывания (**p**_{max}): **0.1**
- Максимальный размер ТСР-окна: 32
- Размер передаваемого пакета: 500 байт
- Время моделирования: не менее 20 единиц модельного времени

3.2 Выполнение

- Мы выполняли работу следующим образом, создавая и редактируя файл test.tcl и последовательно добавляя код для симуляции
- Мы вставляли код для создания симулятора и файлов трассировки:
- # Инициализация симулятора

set sim [new Simulator]

```
# Создание файла для визуализации в NAM

set nam_file [open sim_out.nam w]

$sim namtrace-all $nam_file

# Создание файла для записи трассировки событий

set trace_file [open sim_trace.tr w]

$sim trace-all $trace file
```

• Мы устанавливали параметры TCP Reno, соответствующие описанию:

```
# Настройка параметров агента TCP
Agent/TCP set window_ 32
Agent/TCP set pktSize_ 500
```

• Мы включали процедуру complete для обработки данных и завершения работы

```
}
        else if ($1 == "a" && NF > 2) {
            print $2, $3 >> "avg temp.a"
        }
    }
}
# Удаление старых временных файлов и создание новых
exec rm -f queue temp.q avg temp.a
exec touch queue temp.q avg temp.a
set qf [open queue temp.q w]
puts $qf "0.Color: black"
close $qf
set af [open avg temp.a w]
puts $af "0.Color: black"
close $af
exec awk $awk script full queue.q
# Запуск графиков и NAM
exec xgraph -fg black -bg white -bb -tk -x time -t "TCPRenoCWND" graph
exec xgraph -fg black -bg white -bb -tk -x time -t "TCPRenoCWND" graph
exec xgraph -fg black -bg white -bb -tk -x time -y queue queue temp.q
exec xgraph -bb -fg black -bg white -tk -x time -y average queue avg t
exec nam sim out.nam &
```

```
exit 0
```

• Мы включали процедуру trackWindow для периодической записи размера окна

```
# Процедура для записи данных окна TCP

proc trackWindow {tcp_obj output_file} {

    global sim

    set interval 0.01

    set current_time [$sim now]

    set window_size [$tcp_obj set cwnd_]

    puts $output_file "$current_time $window_size"

    $sim at [expr $current_time + $interval] "trackWindow $tcp_obj $output]
}
```

• Мы добавляли код для создания маршрутизаторов R1 и R2

```
# Создание узлов маршрутизаторов
set router1 [$sim node]
set router2 [$sim node]
```

• Мы устанавливали соединения между R1 и R2 согласно описанию

```
# Настройка каналов связи между маршрутизаторами
$sim simplex-link $router1 $router2 20Mb 15ms RED
$sim simplex-link $router2 $router1 15Mb 20ms DropTail
$sim queue-limit $router1 $router2 300
```

• Мы добавляли код для создания 30 источников, 30 приёмников и их соединений с маршрутизаторами

```
# Создание узлов и соединений

set node_count 30

for {set j 0} {$j < $node_count} {incr j} {

    set sender($j) [$sim node]

    set receiver($j) [$sim node]

    $sim duplex-link $sender($j) $router1 100Mb 20ms DropTail

    $sim duplex-link $receiver($j) $router2 100Mb 20ms DropTail

# Создание ТСР-соединений и привязка FTP

    set tcp_conn($j) [$sim create-connection TCP/Reno $sender($j) TCPSink

    set ftp_src($j) [$tcp_conn($j) attach-source FTP]

}
```

• Мы создавали и настраивали файлы для мониторинга окон ТСР

```
# Файлы для записи данных окна TCP

set window_one [open graphicreno1 w]

puts $window_one "0.Color: black"

set window_all [open graphicrenoall w]

puts $window all "0.Color: black"
```

• Мы добавляли код для мониторинга очереди на канале R1-R2

```
# Мониторинг очереди

set queue_monitor [$sim monitor-queue $router1 $router2 [open queue_monitor
[$sim link $router1 $router2] queue-sample-timeout
```

• Мы устанавливали параметры RED для канала R1-R2

```
# Настройка RED-очереди

set red_queue [[$sim link $router1 $router2] queue]

$red_queue set thresh_ 75

$red_queue set maxthresh_ 150

$red_queue set q_weight_ 0.002

$red_queue set linterm 10
```

• Мы добавляли код для записи текущей и средней длины очереди

```
# Трассировка параметров очереди

set queue_trace [open full_queue.q w]

$red_queue trace curq_

$red_queue trace ave_

$red_queue attach $queue_trace
```

• Мы настраивали запуск FTP-источников и мониторинг окон

```
# Запуск FTP и мониторинга окна

for {set j 0} {$j < $node_count} {incr j} {

$sim at 0.0 "$ftp src($j) start"
```

```
$sim at 0.0 "trackWindow $tcp_conn($j) $window_all"
}
$sim at 0.0 "trackWindow $tcp_conn(1) $window_one"
```

• Мы указывали время завершения и запуск симуляции

```
# Завершение симуляции через 20 секунд

$sim at 20.0 "complete"

# Старт симуляции

$sim run
```

• Мы выполняли команду в терминале для запуска симуляции

3.3 Визуализировали результаты в NAM:

- В NAM мы видели звездообразную топологию с R1 и R2, соединяющими 30 источников и 30 приёмников, а также движение пакетов, особенно на канале R1-R2, где наблюдались перегрузки
- Чёрные линии обозначают активные каналы, а узлы пронумерованы для идентификации. В процессе симуляции (при воспроизведении в NAM) можно увидеть передачу пакетов и поведение очереди, особенно на канале R1-R2, где применён RED-алгоритм для управления перегрузкой (рис. 3.1).

Рис. 3.1: Схема моделируемой сети при N=30

• также у нас было 4 графика, выведенных с помощью xgraph, которые являются:

3.3.1 Изменение размера окна TCP на линке 1-го источника при N=30 (рис. 3.2).

Рис. 3.2: Изменение размера окна TCP на линке 1-го источника при N=30

- График отображает размер окна TCP (в байтах, интерпретируемых как пакеты) для одного соединения при наличии 30 источников в течение 0–20 секунд.
- Быстрый рост окна отражает попытку TCP определить доступную пропускную способность, а резкие падения сигнализируют о перегрузке (например, потеря пакетов), после чего окно корректируется для стабилизации соединения.

3.3.2 Изменение размера окна TCP на всех источниках при N=30 (рис. 3.3).

Рис. 3.3: Изменение размера окна TCP на всех источниках при N=30

- График показывает суммарный размер очереди TCP (в пакетах) для всех 30 источников в течение 0–20 секунд.
- Начальный пик указывает на синхронизированный трафик от всех источников, создающий кратковременную перегрузку.
- Пилообразный паттерн отражает периодическое возникновение и устранение перегрузок в совокупности всех ТСР-соединений, делящих узкое

место в сети.

• Это демонстрирует адаптивное поведение ТСР в условиях конкуренции за ресурсы.

3.3.3 Изменение размера длины очереди на линке (R1–R2) при N=30, $q_{min} = 75$, $q_{max} = 150$ (рис. 3.4).

Рис. 3.4: Изменение размера длины очереди на линке (R1–R2) при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150

• График показывает изменение длины очереди (в метках, интерпретируемых как пакеты) на канале между маршрутизаторами R1 и R2 в течение

0-20 секунд.

- Начальный резкий скачок указывает на внезапный всплеск трафика или узкое место в начале симуляции, возможно из-за синхронизированной отправки данных от нескольких источников.
- Периодические пики отражают регулярные всплески трафика или задержки в обработке. Увеличение высоты пиков со временем может свидетельствовать о нарастающей нагрузке на сеть.
- Быстрое очищение очереди после каждого пика говорит об эффективной работе механизма управления очередью (например, RED).

3.3.4 Изменение размера средней длины очереди на линке (R1–R2) при N=30, q_{min} = 75, q_{max} = 150 (рис. 3.5).

Рис. 3.5: Изменение размера средней длины очереди на линке (R1–R2) при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150

- График иллюстрирует среднюю длину очереди (в пакетах) на канале R1-R2 в течение 0–20 секунд.
- Начальный скачок соответствует всплеску трафика
- Периодические пики показывают, что средняя очередь отражает регулярные события перегрузки, но сглаживает мгновенные колебания.

- Стабильное возвращение к 0 между пиками подтверждает, что очередь эффективно справляется с трафиком, не допуская длительных задержек.
- Эти графики вместе дают представление о том, как TCP-соединения и управление очередью работают в условиях многоисточникового трафика, показывая как индивидуальное, так и совокупное поведение в симулированной сети.

3.4 Строили графики с помощью Gnuplot:

• Мы создавали файл graph для построения графиков

```
#!/usr/bin/gnuplot -persist

# Устанавливаем кодировку и терминальный тип с шрифтом

set encoding utf8

set terminal pngcairo font "Arial,10"

# Определяем файл для сохранения первого графика

set output 'tcp_window_single.png'

# Заголовок графика для одного источника

set title "Динамика окна ТСР для одного источника при N=30"

# Названия осей с настройкой шрифта

set xlabel "Время (c)" font "Arial,11"

set ylabel "Размер окна (пакеты)" font "Arial,11"

# Построение графика из файла graphicrenol

plot "graphicrenol" using 1:2 with lines lc "black" title "ТСР окно"

# Указываем файл для второго графика

set output 'tcp windows all.png'
```

```
# Заголовок для графика всех источников
set title "Окна ТСР для всех источников при N=30"
# График на основе данных из graphicrenoall
plot "graphicrenoall" using 1:2 with lines lc "black" title "TCP окна"
# Задаём имя файла для графика очереди
set output 'queue size.png'
# Заголовок для графика длины очереди
set title "Размер очереди на канале (R1-R2)"
# Полписи осей
set xlabel "Время (c)" font "Arial,11"
set ylabel "Длина очереди (пакеты)" font "Arial, 11"
# Рисуем график из файла queue temp.q
plot "queue temp.q" using 1:2 with lines lc "black" title "Текущая очереды
# Устанавливаем файл для графика средней очереди
set output 'average queue size.png'
# Заголовок для средней длины очереди
set title "Средняя длина очереди на канале (R1-R2)"
# Оси с подписями
set xlabel "Время (c)" font "Arial,11"
set ylabel "Средняя длина (пакеты)" font "Arial, 11"
# Построение графика из файла temp.a
plot "temp.a" using 1:2 with lines lc "black" title "Средняя очередь"
```

4

- Делали файл исполняемым и запускали его
- Это создавало четыре PNG-файла с графиками: tcp_window_single.png , tcp_windows_all.png, queue_size.png, average_queue_size.png

4.0.1 Изменение размера окна ТСР на линке 1-го источника при N=30 (рис. 4.1)

Рис. 4.1: Изменение размера окна ТСР на линке 1-го источника при N=30

4.0.2 Изменение размера окна TCP на всех источниках при N=30(рис. 4.2)

Рис. 4.2: Изменение размера окна TCP на всех источниках при N=30

4.0.3 Изменение размера длины очереди на линке (R1–R2) при N=30, q_{min} = 75, q_{max} = 150 (рис. 4.3)

Рис. 4.3: Изменение размера длины очереди на линке (R1–R2) при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150

4.0.4 Изменение размера средней длины очереди на линке (R1–R2) при N=30, q_{min} = 75, q_{max} = 150 (рис. 4.4)

Рис. 4.4: Изменение размера средней длины очереди на линке (R1–R2) при N=30, \mathbf{q}_{min} = 75, \mathbf{q}_{max} = 150

• Мы уже анализировали графики и визуализацию в NAM для оценки динамики окна TCP, перегрузок на канале R1-R2 и эффективности RED, сравнивая полученные данные с теоретическими ожиданиями, основанными на знаниях из предыдущих лабораторных работ.

5 Выводы

- Симуляция демонстрирует работу сети с 30 TCP-соединениями, использующими протокол Reno, через узкое место с RED-очередью. Графики показывают адаптивное поведение TCP и эффективное управление перегрузкой, а топология NAM подтверждает структуру сети. Полученные данные позволяют анализировать производительность сети, перегрузки и стабильность при нагрузке от множества источников.
- Таким образом, результаты симуляции, выполненные как задание для самостоятельного выполнения, предоставляют глубокое понимание взаимодействия ТСР Reno, RED-очереди и сетевых характеристик в условиях высокой нагрузки, позволяя оценить производительность сети и выявить области для оптимизации, опираясь на знания, полученные в предыдущих трёх лабораторных занятиях.

Подробнее см. в [1–3].

Список литературы

- 1. Gross D., Harris C.M. Fundamentals of Queueing Theory. 4th изд. Wiley, 2008.
- 2. Team T.N. NS-2 Network Simulator User Guide. ISI, 2006.
- 3. Williams T., Kelley C. Gnuplot 5.4 Reference Manual. 2020.