Steven Rosendahl Homework 3

1. Suppose that $a,b\in\mathbb{Z}$ and define the set $J=ax+by|x,y\in\mathbb{Z}$. Prove that J=Z if and only if gcd(a,b)=1.

Assume $J = \mathbb{Z}$. We know that $1 \in \mathbb{Z}$, so $1 \in J$, and $1 \in \{ax + by | x, y \in \mathbb{Z}\}$. Therefore 1 = ax + by, so gcd(a, b) = 1 by Bezout's Identity.

Assume gcd(a,b)=1. Then there exists $u,v\in\mathbb{Z}$ such that 1=au+bv by Bezuot's Identity. We know that any $n\in\mathbb{Z}$, we can represent it as $1\cdot n=a\cdot un+b\cdot vn$. Let x=un and y=vn. Then we have n=ax+by where $ax+by\in\mathbb{Z}$. Since n is any arbitrary integer, we can say that ax+by is any arbitrary integer for any $x,y\in\mathbb{Z}$, or $\{ax+by|x,y\in\mathbb{Z}\}=\mathbb{Z}$

 \triangle

2. We define the Fibonacci Sequence to be the sequence of integers x_0, x_1, x_2, \ldots satisfying the properties

$$x_0 = 0$$
, $x_1 = 1$, and $x_n = x_{n-1} + x_{n-2}$ for all $n \ge 2$.

Prove that $gcd(x_n, x_{n-1}) = 1$ for all $n \ge 1$. (Hint: Try using induction on n.)

For the base case, n = 2, we have that

$$x_{2} = x_{1} + x_{0}$$

$$= 1 + 0$$

$$= 1$$

$$x_{1} = 1$$

$$gcd(x_{1}, x_{2}) = 1.$$

We can assume that $gcd(x_n, x_{n-1}) = 1$ for $n \ge 2$. We now need to show that $gcd(x_{n+1}, x_n) = 1$ for $n \ge 1$. We also have that $x_{n+1} = x_n + x_{n-1}$, so $gcd(x_{n+1}, x_n) = gcd(x_n + x_{n-1}, x_n)$. By Bezout's Identity, we know that $gcd(x_n + x_{n-1}, x_n) = (x_n + x_{n-1})u + x_nv$ for some $u, v \in \mathbb{Z}$. Then

$$gcd(x_n + x_{n-1}, x_n) = x_n u + x_{n-1} u + x_n v$$

$$= x_{n-1} u + x_n (u + v)$$

$$= x_{n-1} u + x_n w$$

$$= gcd(x_{n-1}, x_n)$$

$$= 1 \text{ by the induction hypothesis.}$$

Therefore, $gcd(x_{n+1}, x_n) = 1$.

 \triangle

- 3. Let a, b, x be positive integers with $x \ge 2$ and set $d = \gcd(a, b)$.
 - (a) Prove that $x^d 1$ divides $gcd(x^a 1, x^b 1)$.

We know that $d=\gcd(a,b)$, so d|a and d|b. We have a=dn and b=dm. Then $x^a-1=x^{dn}-1$ and $x^b-1=x^{dm}-1$. We know that $x^{dn}=(x^d)^n$, so we can rewrite $x^{dn}-1$ as $(x^d)^n-1$. Now we have that $(x^d)^n-1=(x^d-1)(x^{dn-1}+x^{dn-2}+\cdots+1)$. Recall that $(x^d)^n-1=x^a-1$, so we have $x^a-1=(x^d-1)j$, where $j=(x^{dn-1}+x^{dn-2}+\cdots+1)\in\mathbb{Z}$. Therefore, $(x^a-1)|(x^d-1)$. We can apply the same argument for x^b-1 , and we will find that $(x^b-1)|(x^d-1)$. Since (x^d-1) divides both (x^b-1) and (x^a-1) , it divides $\gcd(x^a-1,x^b-1)$.

(b) Prove that $x^d - 1$ is a multiple of $gcd(x^a - 1, x^b - 1)$ and conclude that $x^d - 1 = gcd(x^a - 1, x^b - 1)$. (Hint: We know that there exist integers u and v such that d = au + bv. Now show that there exist integers α and β such that $x^d - 1 = \alpha(x^a - 1) + \beta(x^b - 1)$.)

Since we know d = au + bv for $u, v \in \mathbb{Z}$, we can say

$$x^{d} - 1 = x^{au+bv} - 1$$

$$= x^{au}x^{bv} - 1$$

$$= x^{au}x^{bv} - 1 + x^{au} - x^{au}$$

$$= x^{au} \cdot (x^{bv} - 1) + 1 \cdot (x^{au} - 1).$$

If we let $a = a^{au}$ and b = 1, then we have $x^d - 1 = a \cdot (x^{bv} - 1) + b \cdot (x^{au} - 1)$. Therefore, by Bezout's Identity, $x^d - 1 = \gcd(x^a - 1, x^b - 1)$.

Δ

4. Show that the equation 1495x + 50060y = 4 has no solutions for $x, y \in \mathbb{Z}$.

$$50060 = 1495(33) + 725$$
$$1495 = 725(2) + 45$$
$$725 = 45(16) + 5$$
$$45 = 5(9) + 0$$
$$gcd(50060, 1495) = 5$$

However, 5/4, so there is no solution.

5. Find all solutions to the equation 7x + 4y = 1 for $x, y \in \mathbb{Z}$.

$$7 = 4 \cdot 1 + 3$$
 $1 = 4 \cdot 1 - 3 \cdot 1$ $4 = 3 \cdot 1 + 1$ $= 4 \cdot 1 - (7 - 4) \cdot 1$ $= 4 \cdot 1 - 7 \cdot 1 + 4 \cdot 1$ $= 4 \cdot 2 - 7 \cdot 1$

x = 1 + 7n and y = 2 + 4n are solutions to the Diophantine equation.

6. Find all solutions to the equation 1485x + 1745y = 15 for $x, y \in \mathbb{Z}$.

$$\begin{array}{lll} 1745 = 1485(1) + 260 & 5 = 75 - 35(2) \\ 1485 = 260(5) + 185 & 5 = 75 - (185 - 75(2))(2) \\ 260 = 185(1) + 75 & = 75(5) - 185(2) \\ 185 = 72(2) + 35 & 5 = (260 - 185(1))(5) - 185(2) \\ 75 = 35(2) + 5 & = 260(5) - 187(7) \\ 35 = 7(5) + 0 & 5 = 260(5) - (1485 - 260(5))(7) \\ gcd(1745, 1485) = 5 & = 260(40) + 1485(-7) \\ 5 = (1745 - 1485(1))(40) + 1485(-7) \\ & = 1745(40) + 1485(-47) \\ 15 = 1745(120) + 1485(-141) \end{array}$$

 $x = -141 + \frac{349n}{3}$ and y = 120 + 99n are solutions to the equation.

7. Suppose you have two small champagne glasses, one holding 8 ounces and another holding 5 ounces. Is it possible to fill one of the glasses with exactly 1 ounce of champagne? If so, how can this be done? If not, prove that it cannot be done.

We need to find a solution to the Diophantine Equation

$$8x + 5y = 1.$$

We know that gcd(8,5)=1, and 1|1, so there is a solution. Working backwards through the Euclidian Algorithm gives us

$$1 = 3 - 2(1)$$

$$= 3(2) - 5$$

$$= 8(2) + 5(-3).$$

Therefore, if we fill the first glass up twice and empty the second glass three times, we will end up with 1 ounce leftover.