

Veamos que $W \cong D_6$ y para esto queremos encontrar dos simetrías del hexágono a las que correspondan a y b:

Estas dos simetrías corresponden a (216543), en el caso de a, y (165432), en el caso de b. Por el dibujo podemos saber que estas dos simetrías son idempotentes. Veamos que $((216543)(165432))^6 = 1$:

Si definimos $f: S \to D_6$ como f(a) = (216543) y f(b) = (165432) entonces ya vimos que $(f(a)f(b))^6 = 1$. Por el punto 3 de la tarea sabemos que f se extiende de forma única a un homomorfismo de grupos $f: W \to D_6$. Verifiquemos ahora que f es de hecho un isomorfismo. (216543)(165432) = (612345), una rotación de 60° en el sentido de las manecillas del reloj. Esta rotación nos permite generar cuálquier rotación y junto con las reflecciones de la base, podemos generar todas las reflexiones. Para observar esto, supongamos que queremos generar la siguiente reflexión:

Entonces podemos hacer las siguientes rotaciones y reflexiones para generarla:

Similarmente podemos hacer esto con cualquier tipo de reflexión y por lo tanto estos dos elementos sí generan a todo D_6 . Por lo tanto f es sobre. Ahora veamos que $|W| = |D_6| = 12$ con lo que demostraríamos que f es un isomorfismo. Todo palabra en W tiene longitud a lo sumo 6 pues sea w una palabra de longitud mayor a 6. Si w tiene repeticiones de letras, la podemos reducir a una palabra sin repeticiones de la forma abababa... ó bababab... Ahora como ababab = bababa entonces abababa... = bababa... y abababa... = ababab... y abababa... = abababa... y así puedo seguir reduciendo sucesivamente cualquier pedazo de la palabra que tenga longitud mayor a 6 hasta llegar a una palabra cuya longitud es a lo sumo 6. Si una palabra w no tiene repeticiones y $\ell(w) \leq 6$ entonces no se puede reducir de ninguna manera. Entonces $W = \{1, a, b, ab, ba, aba, bab, abab, ababa, ababa, ababab = bababa\}$ y por lo tanto $|W| = |D_6| = 12$ y tenemos que f es un isomorfismo.

Consideremos ahora el siguiente sistema de Coxeter (W, S') con $S' = \{a, b, c\}$ y el siguiente diagrama:

Veamos ahora que $W' \cong D_6$ de una manera muy similar a la anterior. Definamos $f': S' \to D_6$ como f'(a) = (216543), f'(b) = (432165) y f'(c) = (456123) que corresponden a las siguientes simetrías:

Veamos que $(f'(a)f'(b))^3 = 1$:

, que $(f'(a)f'(c))^2 = 1$:

, y que $(f'(b)f'(c))^2 = 1$:

Entonces f' se extiende a un homomorfismo $f': W' \to D_6$. Igual que antes verifiquemos que esta función es sobre y que |W'| = 12 para concluir que es un isomorfismo. Ahora (216543) (456123) = (165432), la simetría que junto con f'(b) generan todo D_6 como vimos anteriormente. Entonces f' es sobreyectiva. Ahora $W' = \{1, a, b, c, ab, ac, ba, bc, aba, bca, acb, abac\}$ pues las relaciones entre los generadores dicen que a y c conmutan, al igual que b y c. Además aba = bab, y si a cualquiera de las palabras 1, a, b, c, ab, ac, ba, bc, aba, bca, acb, abac les pongo una letra después, esta palabra o ya está en esta lista, o se puede reducir a una en esta lista por medio de las reglas. Entonces |W'| = 12 y podemos concluir que $W'_6 \cong W$.