HÁJEK'S FUZZY PROBABILITY LOGIC REVISITED

Tomáš Kroupa Vincenzo Marra ManyVal 2015

December 12, 2015

Department of Mathematics, University of Milan, Italy

MOTIVATION

Building logics for reasoning under probabilistic uncertainty:

- lacktriangle Boolean logic is the calculus for events arphi
- $oldsymbol{2}$ Łukasiewicz logic determines reasoning with probabilities Parphi

Features

- $ightharpoonup P\varphi$ reads as **probably** φ
- **probability** of φ is identified with truth value of $P\varphi$
- nesting of P is not allowed

HÁJEK'S LOGIC FP

LANGUAGE OF FP

Definition

The language of FP is built over variables $\{X_1, X_2, ...\}$ and

- ► connectives of Boolean logic
- connectives of Łukasiewicz logic
- symbol P for the modality probably

Any formula $\varphi \in Fm(FP)$ is either

- **1** non-modal: $\varphi \in Fm(Bool)$ or
- **2 modal**: φ is built from atomic modal formulas $P\psi$ with $\psi \in Fm(Bool)$ using the connectives of E

AXIOMS AND RULES OF FP

Axioms

- axioms of Bool for non-modal formulas
- ▶ axioms of Ł for modal formulas
- ▶ axioms for the modality *P*:

H1
$$P(\varphi) \rightarrow (P(\varphi \Rightarrow \psi) \rightarrow P\psi)$$

H2 $P(\varphi') \leftrightarrow \neg P\varphi$

H3
$$P(\varphi \lor \psi) \leftrightarrow [(P\varphi \rightarrow P(\varphi \land \psi)) \rightarrow P\psi]$$

Rules

- ▶ MP for both modal and non-modal formulas
- ▶ if $\varphi \in Fm(Bool)$, then $\varphi \vdash P\varphi$

PROBABILITY KRIPKE FRAMES

A probability Kripke frame is a structure

$$F = \langle W, \mathcal{B}, \mu \rangle$$

where W is a set of worlds and $\mu \colon \mathcal{B} \to [0,1]$ is a state of a BA $\mathcal{B} \subseteq 2^W$:

$$\mu(a \lor b) = \mu(a) + \mu(b), \quad a \land b = \bot, \qquad \mu(\top) = 1$$

Definition

A Kripke model over **F** is a structure $K = \langle F, (e_w)_{w \in W} \rangle$ such that

- $ightharpoonup e_w$ is a Boolean evaluation of non-modal formulas for each $w \in W$
- $\{w \in W \mid e_w(\varphi) = 1\} \in \mathcal{B}$, for each $\varphi \in Fm(Bool)$

INTERPRETATION

Definition

Let $K = \langle F, (e_w)_{w \in W} \rangle$ be a Kripke model over F. If $\varphi \in Fm(FP)$ is

- ▶ non-modal then $\|\varphi\|_{\mathbf{K}}^{\mathbf{W}} := e_{\mathbf{W}}(\varphi)$ for each $\mathbf{W} \in W$,
- \blacktriangleright an atomic modal formula $P\psi$, then

$$||P\psi||_{\mathbf{K}} := s(\{w \in W \mid e_w(\psi) = 1\}),$$

▶ a non-atomic modal formula, then $\|\varphi\|_{\mathsf{K}}$ is computed by using the operations of $[0,1]_{\mathit{MV}}$

COMPLETENESS

Theorem (Hájek)

Let Φ and Γ be finite sets of non-modal and modal formulas, respectively, and let $\psi \in Fm(FP)$. Then TFAE:

- \blacktriangleright Φ , $\Gamma \vdash_{FP} \psi$
- $ightharpoonup \|\psi\|_{
 m K}=$ 1 for all Kripke models **K** over every probability Kripke frame satisfying Φ and Γ

GENERALIZED STATES

GENERALIZED STATES

- **1** Boolean algebra of events $\langle \mathcal{E}, \vee, \wedge, ', \top, \bot \rangle$
- 2 MV-algebra of probability degrees $\langle \mathcal{D}, \oplus, \odot, \neg, 1, 0 \rangle$

Definition

A mapping s: $\mathcal{E} \to \mathcal{D}$ is a generalized state if

▶ for every $a, b \in \mathcal{E}$ such that $a \land b = \bot$,

$$s(a \lor b) = s(a) \oplus s(b)$$
 and $s(a) \odot s(b) = 0$

▶ $s(\top) = 1$

GENERALIZED STATES: EXAMPLES

Example

Any state of \mathcal{E} is a generalized state $\mathcal{E} \to [0,1]$.

Let $S(\mathcal{E})$ be the state space of E and let $\mathcal{D} = C(S(\mathcal{E}))$.

Example

- ▶ For each $a \in \mathcal{E}$, the map $\hat{a} : P \in \mathcal{S}(\mathcal{E}) \mapsto P(a)$ is continuous affine.
- ▶ Let $s(a) = \hat{a}$. Then

$$s: E \to C(\mathcal{S}(\mathcal{E}))$$

is a generalized state.

But \mathcal{D} can even be non-semisimple...

INFINITE LOTTERY: CLASSICAL SOLUTION

What is a probability that $n \in \mathbb{N}$ is drawn at random?

Boolean algebra of events ${\mathcal E}$ is the finite-cofinite algebra:

$$\mathcal{E} = \{A \subseteq \mathbb{N} \mid A \text{ finite or cofinite}\}$$

Put

$$P(A) = \begin{cases} 0 & A \text{ finite,} \\ 1 & A \text{ cofinite.} \end{cases}$$

Then P is a state of \mathcal{E} .

The probability that $n \in \mathbb{N}$ is drawn is 0.

INFINITE LOTTERY VIA CHANG'S ALGEBRA

What is a probability that $n \in \mathbb{N}$ is drawn at random?

Now we evaluate the events in Chang's algebra:

$$\mathcal{C} = \{0, \varepsilon, 2\varepsilon, \dots, 1 - 2\varepsilon, 1 - \varepsilon, 1\}$$

Define:

$$s(A) = \begin{cases} |A|\varepsilon & A \text{ finite,} \\ 1 - |A'|\varepsilon & A \text{ cofinite.} \end{cases}$$

Then $s \colon \mathcal{E} \to \mathcal{C}$ is a generalized state.

The probability that $n \in \mathbb{N}$ is drawn is ε .

PROPERTIES OF GENERALIZED STATES

Proposition

A mapping s: $\mathcal{E} \to \mathcal{D}$ is a generalized state iff

- 2 $s(a') = \neg s(a)$
- 3 $s(\top) = 1$

In case that $\mathcal{E} = \mathcal{D}$ the three identities are among axioms of internal states (Flaminio, Montagna).

FP LOGIC WITH SEMANTICS BASED

ON GENERALIZED STATES

ALTERNATIVE AXIOMS FOR MODALITY

Axioms

- axioms of Bool for non-modal formulas
- ▶ axioms of Ł for modal formulas
- ▶ axioms for the modality *P*:

A1
$$P(\varphi \lor \psi) \leftrightarrow (P\varphi \oplus P(\psi \land \neg \varphi))$$

A2 $P(\varphi') \leftrightarrow \neg P\varphi$
A3 $P\overline{1}$

Rules

- ▶ MP for both modal and non-modal formulas
- ▶ if $\varphi \in Fm(Bool)$, then $\varphi \vdash P\varphi$

SEMANTICS AND INTERPRETATION

Definition

- ▶ A probabilistic structure is a triple $S = \langle \mathcal{E}, \mathcal{D}, s \rangle$, where $s \colon \mathcal{E} \to \mathcal{D}$ is a generalized state.
- A probabilistic model is a pair $M = \langle S, v \rangle$, where v is an \mathcal{E} -evaluation of non-modal formulas and S is a probab. structure.

If $\varphi \in Fm(FP)$ is

- **1** non-modal, then $\|\varphi\|_{\mathbf{M}} := v(\varphi)$,
- ② an atomic modal formula $P\psi$, then $\|P\psi\|_{M} := s(v(\psi))$,
- **3** a non-atomic modal formula, then $\|\varphi\|_{\mathbf{M}}$ is computed by using the operations of $[0,1]_{\mathbf{MV}}$.

STRONG COMPLETENESS

Theorem

Let Φ and Γ be any sets of non-modal and modal formulas, respectively, and let $\psi \in Fm(FP)$. Then TFAE:

- \blacktriangleright Φ , $\Gamma \vdash_{FP} \psi$
- $ightharpoonup \|\psi\|_{
 m M}=$ 1 for all probabilistic models **M** satisfying Φ and Γ

Corollary

FP is strongly complete with respect to all probabilistic models $\mathbf{M} = \langle \mathcal{E}, \mathcal{D}, s, v \rangle$ such that \mathcal{D} is an MV-chain.

STANDARD STRONG COMPLETENESS

Theorem

Let Φ and Γ be finite sets of non-modal and modal formulas, respectively, and let $\psi \in Fm(FP)$. Then TFAE:

- \blacktriangleright Φ , $\Gamma \vdash_{FP} \psi$
- $ightharpoonup \|\psi\|_{\mathbf{M}}=$ 1 for all probabilistic models $\mathbf{M}=\langle\mathcal{E}, [0,1], s, v\rangle$ satisfying Φ and Γ

LINDENBAUM-TARSKI ALGEBRA OF FP FOR *n* VARIABLES

- ▶ Let V be the canonical basis of \mathbb{R}^{2^n}
- ▶ Let $\Delta_V \subseteq [0,1]^{2^n}$ be the convex hull of V

Fact

Let $\bar{\alpha}: V \to \{0,1\}$ be the BF corresponding to a non-modal formula $\alpha(X_1,\ldots,X_n)$. Then $\bar{\alpha}$ has a unique extension $f_{\bar{\alpha}} \in \mathcal{M}(\Delta_V)$ that is linear on each face of Δ_V .

LINDENBAUM-TARSKI ALGEBRA OF FP FOR 17 VARIABLES

- ▶ Let V be the canonical basis of \mathbb{R}^{2^n}
- ▶ Let $\Delta_V \subseteq [0,1]^{2^n}$ be the convex hull of V

Fact

Let $\bar{\alpha}: V \to \{0,1\}$ be the BF corresponding to a non-modal formula $\alpha(X_1,\ldots,X_n)$. Then $\bar{\alpha}$ has a unique extension $f_{\bar{\alpha}} \in \mathcal{M}(\Delta_V)$ that is linear on each face of Δ_V .

- $② \mathcal{D} = Free_{2^n}(\mathsf{k})/\equiv_P \ \simeq \ \mathcal{M}(\Delta_V)$
- $([\alpha]) = f_{\bar{\alpha}}$

FINITE MODEL PROPERTY

Theorem

Let $\psi \in Fm(FP)$. Then TFAE:

- \blacktriangleright $\vdash_{\mathit{FP}} \psi$
- ▶ $\|\psi\|_{\mathbf{M}} = 1$ for all finite probabilistic models $\mathbf{M} = \langle \mathcal{E}, [0, 1], s, v \rangle$, that is, \mathcal{E} is a finite BA.

FUTURE RESEARCH

- ▶ Development of more "algebraic" semantics for FP
- ▶ Algebraic framework for probabilistic structures $\langle \mathcal{E}, \mathcal{D}, \mathsf{s} \rangle$
- ► FP over many-valued events Łukasiewicz logic in both layers