GEE9018 (5095) F'16 Midterm: Programming Examination

TIME: 2016/11/17 15:30 – 18:20

Problem01 (50%) Please use OpenMP to parallelize the following problems:

(a) (20%) Calculating $pi(\pi)$ with Monte Carlo

The Monte-Carlo method is a random sampling technique and known to be applicable to solve the problem of calculating $pi(\pi)$, in which a target circle $(x^2 + y^2 = 1)$ with radius R = 1 is used. The Monte-Carlo method then randomly chooses a pair (x, y), both ranging from 0 to 1, in the first quadrant as shown in Figure 1.

Fig 1. Circle area = $\pi/4$

As a result, the relationship between the area and random particles can be expressed as:

$$\frac{\pi}{4} = \frac{\#particles \ in \ gray \ area}{\#total \ particles}$$

Note: You must use 1 as the seed in your modified program once the library routine for randomization is called. Please complete/compile your program (with a designated thread count 8) and run as

>./P1a_omp 1000000000

PI = 3.141520

time: 3.442488 s

GEE9018 F16 Midterm Nov 14, 2016 Prof. Hung-Pin (Charles) Wen

(b) (30%) Finding the inverse matrix with Gauss-Jordan elimination Given a sample matrix represented as follows,

a 11	a 12	a 13	1	0	0		1	0	0	X ₁₁	X 21	X 31	
a 21	a 22	a 23	0	1	0	=	0	1	0	X12	X 22	X 32	
a 31	a 32	a 33	0	0	1		0	0	1	 X 13	X 23	X 33	

where A is the target matrix, and an identity matrix is augmented after A. Gauss-Jordan elimination is performed on this matrix iteratively until the left-hand side of the augmented matrix becomes an identity matrix. At the end, the matrix X is the result for the inverse of matrix A.

Note 1: Do not print the final result on screen (only use when debugging).

Note 2: Six test cases (from input1.txt to input6.txt) are provided.

Note 3: Use command "diff" to verify your result with the golden answer from the serial program.

Please complete/compile your program (with a designated thread count 8) and run as

(serial program)

> ./P1b input5.txt output5_golden.txt

Memory usage: 8672 k-bytes

time: 3.709641 s

(parallel program)

> ./P1b_omp input5.txt output5.txt

Memory usage: 8324 k-bytes

time: 1.070326 s

(verify the results)

> diff output5.txt output5_golden.txt

<u>Problem02</u> (50%) Please use the POSIX <u>pthreads</u> to parallelize the following problem: Brownian motion is the random motion of particles suspended in a fluid. The motion of pollens will be observed to prove the random motion of particles indirectly by simulation, in which the movement of a piece of pollen (a.k.a. a "big particle") is targeted.

"p2_pth.c" and "B_Motion.h" are the two files used for this problem. Please type "make" on screen to compile your code and output your executable program as "p2_pth".

Please note that "process()" is the recommended (but not limited) function suitable for parallelization and mainly consists of three steps per timestep:

- 1. move(): move the particles first.
- 2. get_distance(): calculate the distances between every two particles.
- 3. collision(): evaluate if collision occurs between two particle and then update speeds and directions of particles if collision happens.

Be aware of "pos" in each particle when updating the position, "distance_list" in each particle when updating the distances, and "velocity" in each particle when updating its speed. You may refer to "B_Motion.h" for more details if necessary.

The basic information and the movement of the pollen will be printed on screen:

```
> ./p2_pth 1 3
           Brownian Motion Simulation ======
======
Thread number is 1.
Temperature is 70 degree.
Space is 3.000 (in 0.0001 * micrometer^3)
Number of time step is 10 (per 1e-11 sec)
Environment Status:
         Number of gas particles: 2744
         Kinetic energy of each gas particle: 7.100100e-21 (J)
         Velocity of each gas particle: 17.472959 (m/s)
         Mass of a gas particle: 4.651163e-23 (kg)
         Mass of the pollen: 4.651163e-21 (kg)
Step: 0
          x: 3.347165e-08
                             y: 3.586248e-08
                                                z: 3.347165e-08
```

Step: 1	x: 3.360165e-08	y: 3.595248e-08	z: 3.336165e-08			
Step: 2	x: 3.348165e-08	y: 3.595248e-08	z: 3.342165e-08			
Step: 3	x: 3.353165e-08	y: 3.597248e-08	z: 3.343165e-08			
Step: 4	x: 3.350165e-08	y: 3.598248e-08	z: 3.342165e-08			
Step: 5	x: 3.346165e-08	y: 3.595248e-08	z: 3.342165e-08			
Step: 6	x: 3.346165e-08	y: 3.595248e-08	z: 3.340165e-08			
Step: 7	x: 3.346165e-08	y: 3.596248e-08	z: 3.340165e-08			
Step: 8	x: 3.346165e-08	y: 3.596248e-08	z: 3.340165e-08			
Step: 9 x: 3.346165e-08 y: 3.596248e-08 z: 3.340165e-08 Memory usage: 59860 bytes Time: 2.620244 sec						

The movement of the pollen will be printed and plotted in file "answer.txt".

	<u> </u>				
> cat answer.txt					
Step: 0	x: 3.347165e-08	y: 3.586248e-08	z: 3.347165e-08		
Step: 1	x: 3.360165e-08	y: 3.595248e-08	z: 3.336165e-08		
Step: 2	x: 3.348165e-08	y: 3.595248e-08	z: 3.342165e-08		
Step: 3	x: 3.353165e-08	y: 3.597248e-08	z: 3.343165e-08		
Step: 4	x: 3.350165e-08	y: 3.598248e-08	z: 3.342165e-08		
Step: 5	x: 3.346165e-08	y: 3.595248e-08	z: 3.342165e-08		
Step: 6	x: 3.346165e-08	y: 3.595248e-08	z: 3.340165e-08		
Step: 7	x: 3.346165e-08	y: 3.596248e-08	z: 3.340165e-08		
Step: 8	x: 3.346165e-08	y: 3.596248e-08	z: 3.340165e-08		
Step: 9	x: 3.346165e-08	y: 3.596248e-08	z: 3.340165e-08		
		=== Plot ======	=========		

GEE9018 F16 Midterm Nov 14, 2016 Prof. Hung-Pin (Charles) Wen

	O
O	O
	0
	O
	<u>e</u>
	O
Mamory usage: 50860 bytes	
Memory usage: 59860 bytes	
Time: 2.620244 sec	

GEE9018 F16 Midterm Nov 14, 2016 Prof. Hung-Pin (Charles) Wen

<u>Problem03</u> (20%) Please use the task structure in OpenMP for parallelization to modify the source program (P3_omp.c) that solves a recursive function for binomial coefficients, expressed as

$$inom{n}{k} = inom{n-1}{k-1} + inom{n-1}{k} \quad ext{ for all integers } n,k:1 \leq k \leq n-1,$$

with initial/boundary values

$$egin{pmatrix} n \ 0 \end{pmatrix} = egin{pmatrix} n \ n \end{pmatrix} = 1 \quad ext{for all integers } n \geq 0$$

>./P3_omp 5 2
Please input number n and k:5 2
C(5,2)=10
>