

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo			
Save 54%	Total ₹ 14,974			
You get 6 months extra for free	Offer expires 15 Jun 2022			

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo		
Save 25%	Total ₹ 12,252		

3 months	₹ 2,269 / mo		
Save 17%	Total ₹ 6,807		

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo		
Save 67%	₹ 21,700 ₹ 19,602		
You get 6 months extra for free	Offer expires 15 Jun 2022		

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹1,348 / mo			
Save 45%	₹ 13,475 ₹ 12,128			

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo			
Save 17%	₹ -6,807 ₹ 6,126			

Proceed to pay

Basic Properties of Homomorphism

- 1. f(e) = e, where e and e are identity elements of G and G respectively.
- 2. $f(x^{-1}) = (f(x))^{-1}$, for all $x \in G$
- 3. $f(x^n) = (f(x))^n$ for all $x \in G$, $n \in Z$
- 4. Let $f: G \to G$ be a homomorphism, then ker f is a normal subgroup of G.

Fundamental Theorem of Homomorphism:

Let $f: G \to G$ is a onto homomorphism from G to G if ker(f) is a kernel of f, then

$$\frac{G}{\ker(f)} \approx f(G) \approx G$$

$$\Rightarrow \frac{G}{\ker(f)} \approx G$$

Note: Let $f: G \to G$ is a group homomorphism then $\frac{G}{\ker(f)}$ is a

subgroup of G' because $\frac{G}{\ker(f)} \approx f(G) \& f(G)$ is a subgroup of G', then

$$O\left[\frac{G}{\ker(f)}\right]O(G)$$
.

Q.3. Let $f: Z_{14} \rightarrow Z_{10}$ be a homomorphism with $O(\ker f) = 7$ then order of range set of f is

- (a) 1 (b) 2
- (c) 5 (d) 10

Q.4. Let $f: Z_{10} \to Z_8$ be a homomorphism then which of the following possible order for Kernal of f

(a) 2

(b) 5

(c) 8

(d) 1

Group Homomorphism

Group isomorphism : A mapping $f : (G, o) \rightarrow (G', o')$ is said to be a group isomorphism if

- (a) f is group homomorphism.
- (b) f is one-one
- (c) f is onto

Note: If a mapping $f: G \to G$ is a group isomorphism then G & G are called isomorphic group.

General method:

To show that G & G' are isomorphism group.

Given that $G = (\{1, w, w^2\}, .\} & G' = (0, 1, 2\}, +_3)$

	1	W	w^2		+3	0	1	2
1	1	w	w^2		0	0	1	2
w	w	w^2	1 w	&	1	1	2	0
w^2	w ²	1	W		2	2	0	1

(1)
$$O(G) = O(G') = 3$$

(2) Number of elements of order 3 are 2 in both group.

So, both are isomorphic.

We can write $G \cong G$.

Note: If G & G` are two isomorphic group, then we can write $G \cong G$.

Conclusion: The additive group of integer G = (Z, +) is isomorphic to the additive group G' = (mZ, +); $m \ne 0$.

Important results:

- Any two cyclic group of equal order are isomorphic.
- 2. Any cyclic group of order n is isomorphic to $(Z_n, +_n)$
- 3. An infinite cyclic group is isomorphic to the addditive group of integer i.e. isomorphic to (Z, +)
- Every group of prime order is cyclic.
- Let G be a finite group of order pq i.e. O(G) = pq (where p < q & p, q are prime)
 - Case -1: If $p \nmid q-1$, then G is cyclic.
 - Case -2: If $p \mid q-1$, then G need not be cyclic.

Q.1. Let G be a group of order 15. Then total number of non-isomorphic subgroup of G are

(a) 1

(b) 2

(c)3

(d) 4

Q.2. Let G be a cyclic group of order 12, then the number of non-isomorphic subgroup of G is

(a) 2

(b) 4

(c) 6

(d) 12

Result : Let G be a abelian group of order n, then A mapping $f: G \to G$ s.t. $f(x) = x^m$ is isomorphism iff gcd(m, n) = 1.

Example : Let G be a abelian group of orde 6, then mapping $\phi(x) = x^5$ is isomorphism.

Q.3. Let G be a group of order 7 and $\phi(x) = x^4$; $x \in G$. Then ϕ is

(a) Not one-one (b) Not a homomorphism

(c) Not onto (d) Isomorphism

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

- Q.4. G is a group of order 51. Then which of the following statement is false?
 - (a) All proper subgroup of G are cyclic.
 - (b) If G has only one subgroup of order 3 and only one subgroup of order 17 then G is cyclic.
 - (c) G must have an element of order 17.
 - (d) None of these

Cauchy Theorem: Let G be a finite group and $p \mid O(G)$; where p is prime, then G has at least one element of order p.

Result

(1) Let G be a group of order $n = p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$, then number of non-isomorphic abelian group are $X(n_1) \cdot X(n_2) \cdot \dots \cdot X(n_m)$, where X(n) is partition of n.

Example :Number of non-isomorphic abelian group of order $8 = 2^3$ are X(3) = 3.

Q.5. Number of abelian group of order 72, which are non-isomorphic

(a) 5

(b) 6

(c) 7

(d) 8

Automorphism : Let G be a group, then the mapping $f: G \rightarrow G$ is called automorphism if

- (i) f is one-one
- (ii) f is onto
- (iii) f is homomorphism
- i.e. A mapping $f: G \rightarrow G$ is called automorphism if it is isomorphism

Note: Let $Z = \text{group of integer under addition then } f: Z \to Z \text{ s.t. } f(x) = mx; m \neq \{1, -1\}$

Then it will not be onto mapping.

So, it will not be automorphism.

⇒ Z have only two automorphism.

Automorphism Group:

Let G be a group, then the set of all automorphism of G form a group under the composition of mapping and this is denoted by Aut G.

Example

Let G = Z, then Aut $Z = \{f(x) = x \& f(x) = -x\}$ **(1)** \Rightarrow Aut $Z \approx Z_2$.

- **(2)** Let $G = Z_m$, then Aut $Z = (Z_m) \approx U(m)$
 - Suppose $G = Z_4$, then $Aut(Z_4) \approx U(4) \approx Z_2$ **(i)**
 - Suppose $G = Z_5$ then $Aut(Z_5) \approx U(5) \approx Z_4$. (ii)
- $Aut(K_4) \approx S_3$ (3)
- Aut $(S_n) \approx S_n$; for all $n \ge 3$ $Aut(Z_p \times Z_p \times Z_p) = GL(n, Z_p)$ 'n' times **(5)**

- Q6. For any group G, Aut(G) denote the group of automorphism of G. Which of the following are true?
 - (a) If G is finite, then Aut(G) is finite
 - (b) If G is cyclic, then Aut(G) is cyclic
 - (c) If G is infinite, then Aut(G) is infinite
 - (d) If Aut (G) is isomorphic to Aut(H) then G is isomorphic to H. CSIR NET DEC-2018

Q7. Let $G = Z_3 \times Z_3$ be a group then order of Aut($Z_3 \times Z_3$) is

(a) 48

(b) 168

(c)50

(d) 150

Q8. The order of Aut(Aut(Aut(K₄))) is

(a) 4

(b) 5

(c)6

(d) 8

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR