Priority Inheritance with Backtracking for Iterative Multi-agent Path Finding

Keisuke Okumura¹, Manao Machida², Xavier Défago¹, Yasumasa Tamura¹

Tokyo Institute of Technology
 NEC Corporation

IJCAI-19 Aug. 13th, 2019

Multi-agent Path Finding (MAPF)

given

- graph
- agents (starts)
- goals

obtain

1. paths without collisions

s.t.

all agents are on their goals simultaneously

computationally **DIFFICULT** to obtain optimal solutions

Multi-agent Path Finding (MAPF)

Systems with moving agents will be more and more common.

YouTube/Mind Blowing Videos

Twitter/People's Daily, China

In practical scenarios, MAPF must be solved **iteratively**

OUR FOCUS

one-shot MAPF

Iterative Multi-agent Path Finding

complete! given graph A A agents (starts) XX tasks (set of goals) obtain 1. paths without collisions B C C

2. task allocation

s.t.

all tasks are completed in finite time

✓ for solving iterative MAPF, propose an algorithm PIBT that ensures reachability **★**

(in biconnected-like graph)

all agents reach their goals in finite time after being given

fast, scalable

500 agents, within 0.5 sec

adaptive for iterative use

Multi-agent Pickup & Delivery
[Ma et al., AAMAS17]

Design Choice of Algorithm

optimality vs speed

centralized vs decentralized

globally vs locally

+ Adaptivity for Iterative Use

Prioritized Planning incomplete

Priority Inheritance

countermeasure to priority inversion

priority inheritance

[Sha et al., 1990]

Stuck Again

Priority inheritance is insufficient to prevent all stuck situations.

with Backtracking

Agents with priority inheritance have to wait for backtracking.

Guarantee of Local Movement

Lemma 1

The agent with **highest priority** successfully moves to a target node if the two nodes (current, target) belong to a simple cycle.

Local to Global Movement

Lemma 1

(depends on graph)

the agent with highest priority can move to an **arbitrary neighbor** node in next timestep.

such an agent always reach its goal with the shortest path

by dynamic priorities,

(it is enabled to ensure that)

all agents reach their own goals in finite time

Dynamic Priorities

Once an agent reaches its goal, it drops priority.

Agents that have not reached goal have higher priority.

unique between agents for every timestep

$$p_i(t) \leftarrow \eta_i(t) + \epsilon_i$$
 for an agent a_i at timestep t

elapsed timestep

since a_i last updated its goal, or, be zero if no goal

tie-breaker, in [0, 1) unique between agents

Reachability

Theorem 2

If a graph G has a simple cycle for all pairs of adjacent nodes, then, with PIBT, all agents reach their own goals within $\operatorname{diam}(G)\cdot |A|$ timesteps after being given.

#agents

example

undirected: biconnected

- directed: ring

NOT ensure that all agents be on their goals simultaneously!

ost003d, 194x194 [Sturtevant, 2012]

600

15 _{/17}

^{*}average over only success cases within the solver (in 100 times)

0

Exp.2 Multi-agent Pickup & Delivery

[Ma et al., AAMAS17]

task = (pickup loc., delivery loc.)

service time (steps)

PIBT with task allocation let free agents move to the nearest pickup loc.

comp. time

20

Conclusion

- ✓ PIBT is an algorithm for solving iterative MAPF
- ✓ PIBT ensures reachability in biconnected-like graph

future work

- expand time window
 technical paper is available,
 called winPIBT [arXiv:1905.10149]
- relax graph conditions
- adapt to full asynchrony

PIBT

priority inheritance backtracking

prioritized planning

dynamic priorities

Appendix

Multi-agent Sushi Pickup & Delivery

inspired by conveyor belt sushi

Simple Sketch of PIBT

An agent starts its planning with

- receiving priority inheritance
- becoming the highest in unplanned agents
- 1. Initialize/update candidate nodes for next timestep Sends invalid as backtracking if no candidates
- 2. Pickup one node from candidates
- 3. If no agent there, move there (fin.)
 Otherwise, do priority inheritance and wait for backtracking
- 4. Receive backtracking valid: move there (fin.)

invalid: back to 1

simple grid, 8x8

^{*}average over only success cases within the solver (in 100 times)

lak105d, 25x31 [Sturtevant, 2012]

22 /17

^{*}average over only success cases within the solver (in 100 times)

arena, 49x49 [Sturtevant, 2012]

23 /17

^{*}average over only success cases within the solver (in 100 times)

Cons of PIBT

cons-2. tree (without cycles) — potentially cause deadlock

Computational Complexity

Proposition

Assume that PIBT performs in a centralized way.

The computational complexity of PIBT in one step is

$$O(|A| \cdot \Delta(G) \cdot F)$$

maximum degree of G

Maximum time required to choose the next target node

e.g., let node evaluation function be -cost(current, goal)

Communication

PIBT can be performed locally to some extent. (for decentralized)

Communication assumption is sufficient that two agents in close proximity can talk directly and utilize multi-hop communication.

Adapt Decentralized Fashion

PIBT relatively smoothly adapts to decentralized fashion. This transition requires three steps.

- ✓ detect interacting groups ← might be difficult
- ✓ collect priorities Updating rule of priorities relaxes this effort, e.g., take care only when $\eta_i(t)$ (primally term) becomes zero.
- ✓ plan paths sequentially within groups
 Priority inheritance and backtracking is performed by token passing.

message counts: O(|A|)

PIBT on MAPF in Simple Grids

I don't know why but PIBT seems to solve MAPF in 100% without any vacant in simple grids. 5x5 4-connected graph success rate 80 60 40 10 20 agents

In 8x8 4-connected graph, we obtain similar results.