

Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ingeniería Eléctrica

IE0411 Microelectrónica -G01-

Tarea 5: Temporización II

Jorge Muñoz Taylor (A53863) - jorge.munoztaylor@ucr.ac.crII-2020

1. Parte A

- A.1. Retardo mínimo del path.
- · Se tiene para cada etapa del circuito:

- Los valores corresponden al esfuerzo lógico de cada compuerta junto con su retardo p
- · Va con todos los g se puede obtener el estuerzo lógico del path:

$$6 = 1.4.5 \cdot 4.5$$

$$\rightarrow 6 = 4.94$$

• Se tiene entonces:

F = G B H

=
$$(4.94)(1)(\frac{180}{45})$$

= sfuero eléctrico Control

$$F = (4.94)(1)(4)$$

 $\Rightarrow F = 19.76$

· Para obtener P debemos sumar los retardos parásitos de cada compuerta (ver el dibujo hecho al inicio, ahí está el valor de cada retardo):

$$P = \sum P$$

$$\rightarrow P = 1 + 2 + 2 + 2 + 2$$

$$\rightarrow P = 9$$

· Sabiendo que tenemos 5 etapas ya podemos calcular el retardo mínimo:

$$D = N F^{\frac{1}{N}} + P$$

$$= (5)(19.76)^{\frac{1}{5}} + 9$$

$$\rightarrow D = 18.08 \rightarrow \text{retardo mínimo del path}$$

A.2. Tiempo de propagación de todo el path:

- Se tiene un valor de τ de $\tau = 11$ ps
- · Tenemos la relación.

$$d = \frac{tpd}{\tau}$$

· Despejamos tpd:

· Si tomamos el retardo minimo de todo el path tenemos:

$$tpd = (18.08)(11 ps)$$

 $\rightarrow tpd = 198.88 ps$

A.3. Capacitancia de entrada para (x, y, z, w):

· Tenemos :

$$h = \frac{Cout}{Cin}$$

$$\Rightarrow Cin = \frac{1}{h} Cout, donde h = \frac{f}{g}$$

$$\Rightarrow Cin = \frac{9}{f} Cout, donde f = F^{\frac{1}{N}}$$

$$\Rightarrow Cin = \frac{9}{(19.76)^{\frac{1}{5}}} Cout$$

$$\Rightarrow Cin = \frac{9}{1.82} Cout, para cada etapa$$

Para X:
$$Cin_X = \frac{4}{3(1.82)}(180) = [131.87]$$

Para Y:

$$Cin y = \frac{5}{3(1.82)}(180 = 164.83)$$

Para
$$\Xi$$
:
$$Cin_{\Xi} = \frac{5}{3(1.82)}(180) = 164.83$$

$$Cin_{\omega} = \frac{4}{3(1.82)}(180) = [131.87]$$

A.4. El dimensionamiento de los transistores:

· Inversor de entrada:

$$p mos \cdot k = 2$$
 comparadas con el inversor

$$\frac{Cin}{f} = \frac{45}{1.82} = 24.72$$

• El dimensionamiento queda:
$$pmes = 2 \cdot (2472) = 49.45$$

 $nmos = 1 \cdot (2472) = 24.72$

Para
$$x$$
.

pmos: $k=1 \cdot (2) = 2$

nmos: $k = 2 \cdot (1) = 2$

inversor

pmos:
$$k=1 \cdot (2) = 2$$

nmos: $k = 2 \cdot (1) = 2$
inversor

· El dimensionamiento queda:

pmos =
$$\left(\frac{131.87}{1.82}\right)$$
. 2 = 144.91
nmos = $\left(\frac{131.87}{1.82}\right)$. 2 = 144.91

pmos: K = 2.2 = 4nmos: K = 1.1 = 1

· El dimensionamiento queda:

$$p mos = \left(\frac{164.83}{1.82}\right) 4 = 362.26$$

$$n mos = \left(\frac{164.83}{1.82}\right) \cdot 1 = 90.56$$

· Para Z:

pmos:
$$K = 2.2 = 4$$

nmos:
$$k = 1 \cdot 1 = 1$$

dimensionamiento queda:

$$p \, \text{mos} = \left(\begin{array}{c} \underline{164.83} \\ 1.82 \end{array} \right) \cdot 4 = 362.26$$

$$n \, \text{mos} = \left(\underline{164.83} \\ 1.82 \end{array} \right) \cdot 1 = 90.56$$

pmos:
$$k = 2.1 = 2$$

n mos:
$$k = 1.2 = 2$$

El dimensionamiento queda:

pmos =
$$\left(\frac{131.87}{1.82}\right) \cdot 2 = 144.91$$

n mos = $\left(\frac{131.87}{1.82}\right) \cdot 2 = 144.91$

2. Parte B

- 1) Valor máximo de Borrowing por etapa
- El periodo del reloj: $T = \frac{1}{582.5 \text{ MHz}} = 1716.74 \text{ ps}$

Latch 1:
$$I - (t_{setup} + skew) = 858.37 - (60 + 5) = 793.37 ps$$

Latch 2:
$$\frac{T}{2}$$
 - $\left(t \, \text{setup}_{D} + \text{skew}\right) = 85837 - \left(35 + 5\right) = 818.37 \, \text{ps}$

Latch 3:
$$\frac{T}{2}$$
 - $\left(t \operatorname{setup}_{A} + \operatorname{skew}\right) = 858.37 - \left(25 + 5\right) = 828.37 \, \text{ps}$

latch 4:
$$I = \frac{1}{2} - (t \operatorname{setup} + s \ker \omega) = 858.37 - (35 + 5) = 818.37 \text{ ps}$$

· Entonces, el borrowing máximo por etapa es:

2) Determinar cualei etapas presentan borrowing y calcular el tiempo por etapa.

Etapa 1:
$$\Delta_1 - 858.37 = 798 - 858.37 = -60.37 \text{ ps}$$

Etapa 2: $\Delta_2 - 1716.79 = 2095 - 1716.79 = 378.26 \text{ ps}$ (borrow)

Etapa 3: $\Delta_3 - 2575.11 = 2988 - 2575.11 = 412.89 \text{ ps}$ (borrow)

Etapa 4: $\Delta_4 - 3433.48 = 4200 - 3433.48 = 766.52 \text{ ps}$ (borrow)

* Las etapas 2, 3 y 4 presentan borrowing

3) Determinar si existe violación de tiempos de setup en los latches

Etapa 1:
$$(\Delta_1 = 798) < (t_{borrow_{max}} = 1651.74 ps)$$

Etapa 2: $(\Delta_2 = 2095) < (t_{borrow_{max}} = 2535.11 ps)$
Etapa 3: $(\Delta_3 = 2988) < (t_{borrow_{max}} = 3403.48 ps)$

Etapa 4:
$$(\Delta_4 = 4200) \ L \ (t_{borrow_{max_4}} = 4251.85 \ ps)$$

:. No hay violación de setup en ninguna etapa

4) Dibujar los diagramas de tiempo del circuito

· Rangos donde operan en modo transparente:

Latch 1: [858.37 ps ~ 1651.74 ps]

Latch 2: [2095 ps ~ 2535.11 ps]

Latch 3: [2988 ps ~ 3403.48 ps]

Latch 4: [4200 ~ 4251.85 ps]

5)