Math 111 Chapter 2.5: Continuity

(DEFINITION) A function f is continuous at $x = a$ if $\lim_{x \to a} f(x)$ exists and $\lim_{x \to a} f(x) = f(a)$
(EXAMPLES)
(DEFINITION) A function f is continuous on an interval $[a,b]$ it is continuous for all numbers in the interval.
(EXAMPLES)
A function f is not continuous at $x = a$ if:
1.
2.
3.

(EXAMPLES)

1. Jump discontinuity

$$g(t) = \begin{cases} 2 - t^2 & t \le -1 \\ e^{-t} & t > -1 \end{cases}$$

2. Removable discontinuity

$$p(x) = \frac{x - 4}{x^2 - x - 12}$$

3. Infinite discontinuity

$$q(x) = \frac{4}{(x-3)^2}$$

$$r(x) = \frac{x - 4}{x^2 - x - 12}$$

(EXAMPLES)

1. What value of b makes h continuous at $\pi/2$?

$$h(t) = \begin{cases} \sin t & t > \pi/2 \\ b - t & t \le \pi/2 \end{cases}$$

2. Is p continuous at x = 0? Why, or why not?

$$p(x) = \begin{cases} |x| & x \neq 0 \\ 4 & x = 0 \end{cases}$$

3. Is it possible to define w(x) so that w is continuous at x = 1?

$$w(x) = \frac{x^3 - 1}{x - 1}$$

(COMMON CONTINUOUS FUNCTIONS)

- 1. Power functions, x^r ,
- 2. Exponential functions, a^x
- 3. Logarithmic functions, $\log_a x$
- 4. Trigonometric functions $\sin x$, $\cos x$
- 5. Absolute value function |x|

(EXAMPLES)

(THEOREM) If
$$\lim_{x\to a}g(x)=b$$
 and f is continuous at b , then $\lim_{x\to a}f(g(x))=f(b)$.

(EXAMPLES)

$$\lim_{x \to 0} \cos(x^2 + \pi)$$