Public Policy 529 Quiz #2

Student ID number (8-digits):

1.	Each year, third graders in Michigan take state-mandated tests for English. The school superintendent cites improvement in these test scores as evidence that the school district's reforms are working. Last year, the mean score was 1,295 (s =220; n =1,190). This year, the mean score was 1,308 (s =227; n =1,182). The tests covered the same content.
	(a) Are these independent or dependent samples? Should we assume equal or unequal variances? Explain.

(b) Perform a significance test in which the null hypothesis is that the mean test scores are the same ($\alpha = .05$)? Report the usual items and a p-value.

2. Last year, on the state math tests for third graders, 50% of students were rated as "advanced/proficient" (<i>n</i> =1,190). This year, 55% students were in that category (<i>n</i> =1,182).
(a) Using the correct formula, calculate the 95% confidence interval for the difference.
(b) Perform the appropriate test of statistical significance versus the null hypothesis of no difference (α =.05). Report the usual items.

- 3. Find the critical value of the test statistic that would be needed to reject the null hypothesis that the two variables below are independent at the .01 level of significance.
 - . tab fund gunlaw

How	Favor Or Oppose Gun			
Fundamentalist	Permits			
Is R Currently	FAVOR	OPPOSE	Total	
FUNDAMENTALIST	229	91	320	
MODERATE	387	139	526	
LIBERAL	285	91	376	
Total	901	321	1,222	

- 4. A voting rights group is comparing the wait times at two polling stations. On average, it took voters 40 minutes to get a ballot at Slauson Middle School (s=10; n=21), compared to 50 minutes at Scarlett Middle School (s=15; n=19).
 - (a) Perform a test of statistical significance in which the null hypothesis is that average wait times are the same ($\alpha = .01$). Report the usual items and a *p*-value.

(b) Would your procedures change if you learned that wait times for a ballot were not normally distributed? Explain.
5. Answer the following questions.
(a) The <i>t</i> -statistic from a one-sided hypothesis test is 2.59. There are 26 degrees of freedom. What is the <i>p</i> -value? (a range is okay)
(b) A researcher randomly assigns randomly-selected members of the population into treatment and control groups. These groups are dependent samples. TRUE or FALSE?
(c) What are the minimum sample size criteria to perform a difference of proportions significance test with a <i>z</i> statistic?

Public Policy 529 Formula Sheet

Descriptive and Distributional Statistics

$$\bar{y} = \frac{\sum y_i}{n}$$

$$s^2 = \frac{\sum (y_i - \bar{y})^2}{n-1}$$

$$Z = \frac{y - \mu_y}{\sigma}$$

$$IQR = Q_3 - Q_1$$

$$SS = \sum (y_i - \bar{y})^2$$

$$s = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n - 1}}$$

$$\sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}$$

Probability

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

$$P(A \text{ and } B) = P(A) \times P(B|A)$$

$$P(\sim A) = 1 - P(A)$$

$$P(A \text{ and } B) = P(A) \times P(B)$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(x) = \frac{n!}{x!(n-x)!} \pi^{x} (1-\pi)^{n-x}$$

Confidence Intervals and Significance Tests

$$t = \frac{\bar{y} - \mu_0}{\hat{\sigma}_{\bar{y}}}$$

$$\hat{\sigma}_{\hat{\pi}} = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

$$Z = \frac{\hat{\pi} - \pi_0}{\hat{\sigma}_{\pi_0}}$$

$$\mathrm{c.i.} = \bar{y} \pm t \cdot \hat{\sigma}_{\bar{y}}$$

$$\hat{\sigma}_{\bar{y}} = \frac{s}{\sqrt{n}}$$

$$c.i. = \bar{y} \pm Z \cdot \hat{\sigma}_{\bar{v}}$$

$$\hat{\sigma}_{\pi_0} = \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$$

$$c.i. = \hat{\pi} \pm Z \cdot \hat{\sigma}_{\hat{\pi}}$$

$$se_{\text{diff}} = \sqrt{(se_1)^2 + (se_2)^2}$$

$$z = \frac{(\hat{\pi}_2 - \hat{\pi}_1) - H_0}{se_0}, \text{ where } se_0 = \sqrt{\frac{\hat{\pi}(1 - \hat{\pi})}{n_1} + \frac{\hat{\pi}(1 - \hat{\pi})}{n_2}} \qquad c.i. = (\hat{\pi}_2 - \hat{\pi}_1) \pm z\sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}}$$

$$\hat{\pi} = \frac{\hat{\pi}_1 n_1 + \hat{\pi}_2 n_2}{n_1 + n_2}$$

$$t = \frac{(\bar{y}_2 - \bar{y}_1) - H_0}{se_{\text{diff}}}$$
 $ci = (\bar{y}_2 - \bar{y}_1) \pm t \cdot se_{\text{diff}}$

Unequal Variance:

$$se_{\text{diff}} = \hat{\sigma}_{\bar{y}_1 - \bar{y}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \qquad df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} \qquad \text{approx. } df = \min(n_1 - 1, n_2 - 1)$$

Equal Variance:

$$se_{\text{diff}} = \hat{\sigma}_{\bar{y}_1 - \bar{y}_2} = \sqrt{\frac{s_{pooled}^2}{n_1} + \frac{s_{pooled}^2}{n_2}} = s_{pooled} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \qquad s_{pooled} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$$df = n_1 + n_2 - 2$$

$$t = \frac{\bar{y}_d - H_0}{\hat{\sigma}_{\bar{y}_d}} \qquad \qquad \hat{\sigma}_{\bar{y}_d} = \frac{s_d}{\sqrt{n}}, \text{ where } s_d = \sqrt{\frac{\sum (y_{di} - \bar{y}_d)^2}{n - 1}}$$

Measures of Association

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$
, where $f_e = \frac{\text{(row total)(column total)}}{n}$

TABLE B: t Distribution Critical Values

	Confidence Level								
	80%	90%	95%	98%	99%	99.8%			
	Right-Tail Probability								
df	t.100	t.050	t _{.025}	t.010	t.005	t.001			
1	3.078	6.314	12.706	31.821	63.656	318.289			
2 3	1.886	2.920	4.303	6.965	9.925	22.328			
3	1.638	2.353	3.182	4.541	5.841	10.214			
4	1.533	2.132	2.776	3.747	4.604	7.173			
5	1.476	2.015	2.571	3.365	4.032	5.894			
6	1.440	1.943	2.447	3.143	3.707	5.208			
7	1.415	1.895	2.365	2.998	3.499	4.785			
8	1.397	1.860	2.306	2.896	3.355	4.501			
9	1.383	1.833	2.262	2.821	3.250	4.297			
10	1.372	1.812	2.228	2.764	3.169	4.144			
11	1.363	1.796	2.201	2.718	3.106	4.025			
12	1.356	1.782	2.179	2.681	3.055	3.930			
13	1.350	1.771	2.160	2.650	3.012	3.852			
14	1.345	1.761	2.145	2.624	2.977	3.787			
15	1.341	1.753	2.131	2.602	2.947	3.733			
16	1.337	1.746	2.120	2.583	2.921	3.686			
17	1.333	1.740	2.110	2.567	2.898	3.646			
18	1.330	1.734	2.101	2.552	2.878	3.611			
19	1.328	1.729	2.093	2.539	2.861	3.579			
20	1.325	1.725	2.086	2.528	2.845	3.552			
21	1.323	1.721	2.080	2.518	2.831	3.527			
22	1.321	1.717	2.074	2.508	2.819	3.505			
23	1.319	1.714	2.069	2.500	2.807	3.485			
24	1.318	1.711	2.064	2.492	2.797	3.467			
25	1.316	1.708	2.060	2.485	2.787	3.450			
26	1.315	1.706	2.056	2.479	2.779	3.435			
27	1.314	1.703	2.052	2.473	2.771	3.421			
28	1.313	1.701	2.048	2.467	2.763	3.408			
29	1.311	1.699	2.045	2.462	2.756	3.396			
30	1.310	1.697	2.042	2.457	2.750	3.385			
40	1.303	1.684	2.021	2.423	2.704	3.307			
50	1.299	1.676	2.009	2.403	2.678	3.261			
60	1.296	1.671	2.000	2.390	2.660	3.232			
80	1.292	1.664	1.990	2.374	2.639	3.195			
100	1.290	1.660	1.984	2.364	2.626	3.174			
∞	1.282	1.645	1.960	2.326	2.576	3.091			

Source: "Table of Percentage Points of the *t*-Distribution." Computed by Maxine Merrington, Biometrika, 32 (1941): 300. Reproduced by permission of the Biometrika trustees.

TABLE A: Normal curve tail probabilities. Standard normal probability in right-hand tail (for negative values of z, probabilities are found by symmetry)

	Second Decimal Place of z									
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0352	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
2.9	.0019	.0018	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014
3.0	.00135									
3.5	.000233									
4.0	.0000317									
4.5	.00000340									
5.0	.000000287									

Source: R. E. Walpole, Introduction to Statistics (New York: Macmillan, 1968).

TABLE C: Chi-Squared Distribution Values for Various Right-Tail Probabilities

	Right-Tail Probability							
df	0.250	0.100	0.050	0.025	0.010	0.005	0.001	
1	1.32	2.71	3.84	5.02	6.63	7.88	10.83	
2	2.77	4.61	5.99	7.38	9.21	10.60	13.82	
3	4.11	6.25	7.81	9.35	11.34	12.84	16.27	
4	5.39	7.78	9.49	11.14	13.28	14.86	18.47	
5	6.63	9.24	11.07	12.83	15.09	16.75	20.52	
6	7.84	10.64	12.59	14.45	16.81	18.55	22.46	
7	9.04	12.02	14.07	16.01	18.48	20.28	24.32	
8	10.22	13.36	15.51	17.53	20.09	21.96	26.12	
9	11.39	14.68	16.92	19.02	21.67 23.21	23.59 25.19	27.88 29.59	
10	12.55	15.99	18.31	20.48				
11	13.70	17.28	19.68	21.92	24.72	26.76	31.26	
12	14.85	18.55	21.03 22.36	23.34 24.74	26.22 27.69	28.30 29.82	32.91 34.53	
13 14	15.98 17.12	19.81 21.06	22.36	24.74 26.12	27.09	31.32	34.33 36.12	
15	18.25	22.31	25.00	27.49	30.58	32.80	37.70	
16	19.37	23.54	26.30	28.85	32.00	34.27	39.25	
17	20.49	24.77	27.59	30.19	33.41	35.72	40.79	
18	21.60	25.99	28.87	31.53	34.81	37.16	42.31	
19	22.72	27.20	30.14	32.85	36.19	38.58	43.82	
20	23.83	28.41	31.41	34.17	37.57	40.00	45.32	
25	29.34	34.38	37.65	40.65	44.31	46.93	52.62	
30	34.80	40.26	43.77	46.98	50.89	53.67	59.70	
40	45.62	51.80	55.76	59.34	63.69	66.77	73.40	
50	56.33	63.17	67.50	71.42	76.15	79.49	86.66	
60	66.98	74.40	79.08	83.30	88.38	91.95	99.61	
70	77.58	85.53	90.53	95.02	100.4	104.2	112.3	
80	88.13	96.58	101.8	106.6	112.3	116.3	124.8	
90	98.65	107.6	113.1	118.1	124.1	128.3	137.2	
100	109.1	118.5	124.3	129.6	135.8	140.2	149.5	

Source: Calculated using StaTable, software from Cytel Software, Cambridge, MA.