การทำแบบจำลองความลึกท้องน้ำตื้นจากภาพถ่ายดาวเทียมบริเวณท่าเรือน้ำลึก Satellite Derived Bathymetry Production in Deepwater Port

เทพชัย ศรีน้อย^{1,*} และไพศาล สันติธรรมนนท์²

^{1,2} ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพมหานคร *Corresponding author; E-mail address: thepchaisrinoi@gmail.com

บทคัดย่อ

แบบจำลองความลึกท้องน้ำตื้นจากภาพถ่ายดาวเทียม เป็นข้อมูลราสเตอร์จากการใช้ภาพถ่ายดาวเทียม ในช่วงคลื่นตามองเห็นและอินฟราเรดประกอบกับค่าระดับตัวอย่างในภาคสนามนำเข้าทำแบบจำลองผ่านสมการ เชิงประจักษ์เพื่อคำนวณสัมประสิทธิ์สมการในการแปลงค่าการสะท้อนเป็นค่าระดับท้องน้ำตื้นที่ความลึกไม่เกิน 30 เมตร ข้อมูลนี้มีความสำคัญต่อการจัดการการคมนาคมทางเรือบริเวณท่าเรือน้ำลึก ซึ่งค่าระดับบริเวณใกล้ชายฝั่ง ของท่าเรือจำเป็นต้องลึกกว่าบริเวณชายหาดตามปกติ การศึกษาครั้งนี้เป็นการทำแบบจำลองจากภาพถ่าย ดาวเทียมเซนทิเนล-2 กับค่าระดับจากเรือหยั่งความลึกบริเวณท่าเรือน้ำลึก ในช่วงเดือนธันวาคม พ.ศ.2563 นิคม อุตสาหกรรมมาบตาพุด จังหวัดระยอง นำเข้าสมการเชิงประจักษ์ของสตัมป์ ซึ่งแปลงสัดส่วนค่าลอการิทึมของค่า การสะท้อนสีน้ำเงินเทียบกับสีเขียว ให้เป็นค่าระดับความลึกของท้องน้ำตื้น โดยสนใจศึกษาประเด็นเรื่องของความ ถูกต้องของแบบจำลองที่มีความแตกต่างกันเมื่อเลือกภาพที่บันทึกต่างเวลาและประเด็นการเลือกใช้แบนด์สีน้ำเงิน แบบใดจึงจะให้ความถูกต้องของแบบจำลองได้ดีกว่า ผลการศึกษาพบว่าการเลือกภาพต่างเวลาส่งผลให้ได้ความถูก ต้องของแบบจำลองที่แตกต่างกัน และแบนต์สีน้ำเงินในแบบแบนด์ที่ 2 ให้ความถูกต้องของแบบจำลองได้ดีกว่า แบบแบนด์ที่ 1 ทั้งนี้ข้อจำกัดของวิธีการทำแบบจำลองดังกล่าวคือการมีสิ่งปกคลุมน้ำทะเลจำนวนมากส่งผลทำให้ แบบจำลองประมาณความลึกได้น้อยกว่าความลึกในภาคสนาม ส่งผลต่อความถูกต้องบริเวณท่าเรือน้ำลึก

คำสำคัญ : แบบจำลองความลึกท้องน้ำตื้น (Satellite Derived Bathymetry)

1. บทน้ำ

ข้อมูลค่าระดับท้องทะเลโดยเฉพาะท้องน้ำตื้นริมชายฝั่งทะเลเป็นข้อมูลที่มีความสำคัญทั้งทางด้านการ ติดตามการเปลี่ยนแปลงชายฝั่งทะเล สภาพแวดล้อมชายฝั่งทะเล การท่องเที่ยว ตลอดจนการคมนาคมขนส่งทาง เรือโดยเฉพาะบริเวณท่าเรือน้ำลึกซึ่งต้องมีค่าระดับที่เหมาะสมกับเรือที่จะเข้าจอดเทียบท่า แนวทางการจัดทำ ข้อมูลชุดนี้คือการออกภาคสนามรังวัดค่าระดับทั้งวิธีงานระดับสำหรับบริเวณริมชายฝั่ง และท้องน้ำตื้นมาก การใช้ เรือหยั่งความลึกน้ำ (Bathymetry SONAR) ด้วยหลักการสะท้อนของคลื่น สำหรับพื้นที่ท้องน้ำตื้นน้อยกว่าจนถึง ท้องน้ำลึก เป็นวิธีที่ให้ความถูกต้องของค่าระดับสูงในระดับหลายเชนติเมตร แต่มีค่าใช้จ่ายพอสมควร และใช้เวลา รังวัดที่ยาวนาน ปัจจุบันนี้ข้อมูลภาพถ่ายดาวเทียมในช่วงคลื่นตามองเห็นและอินฟราเรด (Optical and Infrared Satellite Imagery) สามารถเข้าถึงได้ง่ายในปัจจุบัน และมีหลายผลิตภัณฑ์ซึ่งเปิดให้ผู้ใช้งานได้โดยไม่เสียค่าใช้จ่าย เช่น Sentinel 2 หรือ Landsat 8 หรือ 9 ภาพถ่ายดาวเทียมรูปแบบนี้มีภาพในช่วงคลื่นสีน้ำเงินและสีเขียวที่ สามารถหาดุนั้นที่ท้องน้ำตื้นได้ในระดับหนึ่ง สามารถนำค่าการสะท้อนในช่วงคลื่นดังกล่าวประกอบกับค่ารังวัดค่า ระดับในภาคสนามนำเข้าสมการเชิงประจักษ์ (Empirical Equation) เพื่อคำนวณสัมประสิทธิ์การแปลงค่าการ สะท้อนจากภาพถ่ายให้เป็นค่าประมาณระดับท้องน้ำในบริเวณนั้นได้ ทำให้ได้แบบจำลอง ความลึกท้องน้ำตื้น (Satellite Derived Bathymetry Model) บริเวณกว้างได้ในระยะเวลาสั้น และประหยัดค่าใช้จ่ายได้

การทำแบบจำลองความลึกท้องน้ำตื้นคือสมการเชิงประจักษ์จะมีความเหมาะสมสำหรับพื้นที่ท้องน้ำที่มี ลักษณะอุดมคติ ความใสของน้ำทะเล ความเรียบของทรายท้องน้ำ ซึ่งพอพบได้บริเวณชายฝั่งทะเล ส่วนกรณี ท่าเรือน้ำลึกซึ่งท้องน้ำไม่ตื้นนัก และปัจจัยอื่นที่ส่งผลต่อลักษณะของน้ำทะเลทำให้ไม่สามารถประมาณค่าระดับ ท้องน้ำได้ง่ายนัก เป็นความท้าทายของการศึกษาทำแบบจำลองความลึกท้องน้ำตื้นเป็นอย่างยิ่ง

การศึกษานี้เป็นการทดลองทำแบบจำลองความลึกท้องน้ำตื้นบริเวณท่าเรืออุตสาหกรรมมาบตาพุด จังหวัดระยอง ด้วยค่าระดับตัวอย่างจากเรือหยั่งความลึกน้ำ กับภาพถ่ายดาวเทียม Sentinel-2 ด้วยสมการเชิง ประจักษ์ของสตัมป์ (Stumpf Empirical Equation) โดยสนใจศึกษาประเด็นเรื่องของความถูกต้องของ แบบจำลองที่มีความแตกต่างกันเมื่อเลือกภาพที่บันทึกต่างเวลา โดยภาพถ่ายดาวเทียมนี้โคจรมาบันทึกตำแหน่ง เดิมในทุกสัปดาห์ แสดงถึงความละเอียดเชิงเวลา (Temporal Resolution) ของภาพถ่าย และประเด็นการเลือกใช้ แบนด์สีน้ำเงินแบบใดจึงจะให้ความถูกต้องของแบบจำลองได้ดีกว่า เพราะภาพถ่ายนี้มีแบนด์สีน้ำเงินให้เลือก 2 แบบ คือ แบนด์ 1 และแบนด์ 2 แตกต่างกันที่ความยาวคลื่นและความละเอียดของจุดภาพ (Spatial Resolution) แสดงถึงความละเอียดเชิงช่วงคลื่น (Spectral Resolution) ของภาพถ่ายดาวเทียม เพื่อศึกษาข้อดีข้อเสียของการ ทำแบบจำลองความลึกท้องน้ำตื้นด้วยวิธีการดังกล่าว นำไปสู่การติดตามการเปลี่ยนแปลงท้องน้ำตื้นในการก่อสร้าง ปรับปรุงท่าเรือน้ำลึกต่อไปในอนาคต

2. ทฤษฎีที่เกี่ยวข้อง

แบบจำลองความลึกท้องน้ำตื้นจากภาพถ่ายดาวเทียม (Satellite Derived Bathymetry : SDB) มี พื้นฐานมาจากความเข้าใจโดยทั่วไปว่า สำหรับบริเวณชายฝั่งทะเลท้องน้ำตื้นที่น้ำใสมาก ท้องน้ำเรียบราบแล้ว ความเข้มของสีน้ำทะเลบ่งบอกความลึกของน้ำทะเล หมายความว่ายิ่งสีน้ำทะเลเข้มมาก แสดงว่าบริเวณนั้นน้ำ ทะเลมีความลึกมาก สามารถเห็นได้จากการวิเคราะห์จากภาพถ่ายในช่วงคลื่นสีน้ำเงินและสีเขียว

ความสัมพันธ์ระหว่างค่าการสะท้อนของภาพถ่ายดาวเทียมกับความลึกของท้องน้ำ ในงานวิจัยส่วนใหญ่ ยังคงเป็นแบบสมการเชิงประจักษ์ (Empirical Equation) งานศึกษานี้ เราสนใจสมการของสตัมป์ (Stumpf Algorithm) โดยกำหนดให้ ค่าการสะท้อนซึ่งบอกเป็นเลขดิจิตอลในแต่ละช่องพิกเซลของภาพถ่ายทางดาวเทียม ภาพหนึ่ง มีค่าการสะท้อนในช่วงคลื่นสีน้ำเงินเป็น L_B และมีค่าในช่วงคลื่นสีเขียวเป็น L_G บริเวณนั้นมีค่าความลึก เป็น H สมการแสดงความสัมพันธ์ของค่าการสะท้อนกับค่าความลึกเชิงประจักษ์เป็นดังนี้

$$H = m_{1S} \frac{\ln(1000L_B)}{\ln(1000L_G)} + m_{0S}$$

เมื่อ m_{1S}, m_{0S} เป็นสัมประสิทธิ์ของสมการ สามารถคำนวณได้จากการทำการถดถอยเชิงเส้น (Linear

Regression) การได้สัมประสิทธิ์จะสามารถ นำมาคำนวณแปลงเป็นแบบจำลองความลึกได้

ภาพที่ 1 ตัวอย่างแบบจำลองความลึกท้องน้ำ ตื้นบริเวณเกาะหมาก จังหวัดตราด ด้วยภาพ ถ่ายดาวเทียม Sentinel-2 และค่าระดับจาก ดาวเทียม ICESat-2 ผ่าน Stumpf Algorithm

ภาพถ่ายดาวเทียม Sentinel-2 แบบ L2A Bottom of Atmosphere มีแบนด์ที่สามารถนำมาใช้ทำ แบบจำลองประมาณระดับท้องน้ำตื้นได้เป็นไปตามตารางที่ 1

Band	Wavelength	Description	Resolution (m)	
B1	443.9 nm (S2A) 442.3 nm (S2B)	Ultra Blue (Coastal and Aerosol)	60	
B2	496.6 nm (S2A) 492.1 nm (S2B)	Blue	10	
В3	560 nm (S2A) 559 nm (S2B)	Green	10	

ตารางที่ 1 ข้อมูลเกี่ยวกับแบนด์ในภาพถ่ายดาวเทียม Sentinel-2 บางส่วนสำหรับการทำแบบจำลองประมาณ ระดับท้องน้ำตื้นด้วยภาพถ่ายดาวเทียม

3. เครื่องมือและวิธีการศึกษา

เครื่องมือที่ใช้ในการศึกษาประกอบด้วยภาพถ่ายดาวเทียมจาก Sentinel-2 ค่าระดับตัวอย่างใน ภาคสนามจากเรือหยั่งความลึกน้ำ บริการที่ใช้ดาวน์โหลดและคำนวณภาพถ่ายดาวเทียมจาก Google Earth Engine และโปรแกรม python สำหรับการคำนวณสัมประสิทธิ์แบบจำลองและความถูกต้องของแบบจำลอง

การเลือกภาพถ่ายดาวเทียม Sentinel 2 แบบ L2A Bottom of the Atmosphere ซึ่งมีการตรวจแก้ อิทธิพลจากชั้นบรรยากาศ ซึ่งบันทึกภาพในช่วงเดือนพฤศจิกายน ธันวาคม พ.ศ. 2563 และมกราคม พ.ศ. 2564 ผ่านระบบบริการ Google Earth Engine เลือกภาพที่ไม่มีเมฆปกคลุมท้องน้ำตื้น ได้ภาพถ่ายมา 7 ภาพ โดย บันทึกภาพในวันที่ 2 และ 27 พฤศจิกายน พ.ศ. 2563 วันที่ 22 และ 27 ธันวาคม พ.ศ. 2563 และวันที่ 1, 11 และ 16 มกราคม พ.ศ. 2564 ลักษณะของภาพถ่ายดาวเทียมทั้ง 7 ภาพเป็นไปดังภาพที่ 2

ภาพที่ 2 ภาพถ่ายดาวเทียม Sentinel-2 จำนวน 7 ภาพที่เลือกมาศึกษาการทำแบบจำลองความลึกท้องน้ำตื้น

ภาพถ่ายดาวเทียมแต่ละภาพจะนำไปคำนวณสัดส่วนของลอการิทึมของการสะท้อนสีน้ำเงินเทียบกับสี เขียว ตามสมการเชิงประจักษ์ของสตัมป์ โดยทำทั้งกรณีที่เลือกสีน้ำเงินจาก Band 1 คู่กับสีเขียวจาก Band 3 (B1-3 Combination) กับสีน้ำเงินจาก Band 2 คู่กับสีเขียวจาก Band 3 (B2-3 Combination) ดาวน์โหลด GeoTiff จาก Google Earth Engine แล้วอ่านไฟล์ด้วยการเขียนโปรแกรม python ผ่านไลบรารี่ Rasterio

ค่าระดับจากเรือหยั่งความลึกน้ำแบบลำแสงเดี่ยว (Single Beam Echo Sounder) ความถี่สูง ค่าพิกัดได้ จากเครื่องรับสัญญาณดาวเทียม บันทึกเป็นค่าพิกัดทางราบแบบระบบพิกัดกริดแผนที่ Universal Transverse Mercator (EPSG:32647) และค่าพิกัดทางดิ่งแบบ Orthometric Height ประมวลผลด้วยเทคนิคการรังวัดแบบ จลน์ในทันที (Real Time Kinematics) เทียบกับหมุดควบคุมของ กนอ. (GPS จท. 816 กรมเจ้าท่า) ซึ่งได้รับความ อนุเคราะห์จากบริษัท อิตาเลียนไทย ดีเวล็อปเมนต์ จำกัด บันทึกค่ารังวัดเมื่อเดือนธันวาคม พ.ศ. 2563 นำค่า ระดับตัวอย่างมาศึกษาผ่านซอฟท์แวร์สำหรับระบบสารสนเทศภูมิศาสตร์ (QGIS) แสดงผลดังภาพที่ 3 ทางซ้าย คัดเลือกค่าระดับตัวอย่าง 3 แนว โดย 1 แนวใช้สำหรับทำแบบจำลอง Training Data (แสดงด้วยสีเหลือง) และ 2 แนวใช้ทดสอบความถูกต้องของแบบจำลอง Test Data (แสดงด้วยสีเขียว) แสดงดังภาพที่ 3 ทางขวา

ภาพที่ 3 ค่าระดับตัวอย่างในภาคสนาม (ซ้าย) และแนวของค่าระดับสำหรับทำและทดสอบแบบจำลอง (ขวา)

ค่าระดับที่เลือกมาบันทึกเป็นแบบ csv โดยแปลงพิกัดเป็นค่าพิกัดทางราบแบบระบบพิกัดจืออเดติกส์ Geodetic (EPSG: 4326) นำเข้าโปรแกรม python ด้วยไลบรารี่ pandas และ geopandas dataframe ทำการ กรองค่าระดับเลือกส่วนที่ Orthometric Height อยู่ระหว่าง -20 เมตร ถึง 0 เมตร

นำข้อมูลค่าระดับไปคำนวณหาค่าในภาพถ่ายดาวเทียมที่จัดเตรียมไว้แล้ว นำส่วนที่ใช้ทำแบบจำลอง (training data) ทำการถดถอยเชิงเส้น (linear regression) ด้วยไลบรารี่ scikit-learn คำนวณสัมประสิทธิ์ ของสตัมป์ในแต่ละภาพ ได้ค่าแล้วนำมาคำนวณค่าระดับของแบบจำลองในส่วนที่ใช้ทดสอบแบบจำลอง นำมา เปรียบเทียบกับค่าระดับในภาคสนาม ทำการคำนวณความถูกต้องของแบบจำลองด้วย Root Mean Square Error และค่า R-square ศึกษาความแตกต่างของความถูกต้องเมื่อเลือกใช้ภาพถ่ายต่างเวลา และคู่แบนด์สีน้ำเงิน กับสีเขียวที่แตกต่างกัน เพื่อหาแนวทางการทำแบบจำลองที่เหมาะสมสำหรับพื้นที่ท่าเรือน้ำลึกต่อไป

4. ผลการศึกษาและการอภิปรายผล

ผลการคำนวณความถูกต้องของแบบจำลองความลึกท้องน้ำตื้นเมื่อเลือกภาพต่างเวลาและเลือกคู่แบนด์ทำ แบบจำลองตามสมการเชิงประจักษ์ของสตัมป์ แสดงผลดังตารางที่ 2 และการเปรียบเทียบผล แสดงดังภาพที่ 4

	B1 - B3 Combination			B2 - B3 Combination				
วันที่	R ² จาก ชุด ทดสอบ แรก	RMSE (m) จากชุด ทดสอบ แรก	R ² จาก ชุด ทดสอบ สอง	RMSE (m) จากชุด ทดสอบ สอง	R ² จาก ชุด ทดสอบ แรก	RMSE (m) จากชุด ทดสอบแรก	R ² จาก ชุด ทดสอบ สอง	RMSE (m) จากชุด ทดสอบ สอง
2-Nov	0.0604	5.071	0.2683	3.893	0.4732	3.698	0.7430	2.236
27-Nov	0.0070	5.338	0.4917	3.255	0.3445	3.902	0.6440	2.716
22-Dec	0.2821	4.248	0.5450	3.100	0.7442	2.410	0.7980	2.020
27-Dec	0.7035	2.706	0.7087	3.052	0.7494	2.615	0.7641	2.588
1-Jan	0.4135	3.682	0.3728	4.021	0.8238	2.076	0.5854	3.345
11-Jan	0.2157	4.390	0.2837	3.932	0.7440	2.867	0.5418	3.104
16-Jan	0.3527	3.791	0.6906	2.750	0.6085	3.190	0.7374	2.535

ตารางที่ 2 ตารางประเมินความถูกต้องของแบบจำลอง

ผลการศึกษาแสดงให้เห็นว่าการใช้ค่ารังวัดตัวอย่างในภาคสนามชุดเดียวแต่ใช้ภาพถ่ายดาวเทียมต่างเวลา ทำให้ได้ค่าความถูกต้องที่แตกต่างกัน โดยการใช้คู่แบนด์ 1 กับ 3 ทำให้ได้แบบจำลองความถูกต้องตั้งแต่ประมาณ 3 เมตรจนถึง 5 เมตร (ค่าต่ำสุดที่ 2.706 เมตร จากชุดทดสอบแรก เมื่อใช้ภาพวันที่ 27 ธันวาคม 2563 กับ 2.750 เมตร จากชุดทดสอบที่สอง เมื่อใช้ภาพวันที่ 16 มกราคม 2564) ส่วนการใช้คู่แบนด์ 2 กับ 3 ทำให้ได้แบบจำลอง ความถูกต้องตั้งแต่ประมาณ 2 เมตรจนถึง 4 เมตร (ค่าต่ำสุดที่ 2.076 เมตร จากชุดทดสอบแรก เมื่อใช้ภาพวันที่ 1 มกราคม 2564 กับ 2.020 เมตร จากชุดทดสอบที่สอง เมื่อใช้ภาพวันที่ 22 ธันวาคม 2563) ค่า R-square ของการ ทดสอบสะท้อนถึงสหสัมพันธ์ของค่าระดับจากแบบจำลองกับค่าระดับทดสอบในภาคสนาม ชุดทดสอบที่ให้ค่า R-square น้อย มักให้ค่า RMSE ที่สูง พบได้จากการทำแบบจำลองจากคู่แบนด์ 1 กับ 3 โดยเฉพาะภาพวันที่ 27 พฤศจิกายน ชุดทดสอบเร็กให้ RMSE ถึง 5.338 เมตร R-square ที่ 0.0070 ซึ่งเสมือนว่าตัวแปรทั้งสองไม่มี ความสัมพันธ์กัน ชุดทดสอบที่ให้ R-square สูง มักให้ค่า RMSE ที่ต่ำ พบได้บ่อยในการทำแบบจำลองจากคู่แบนด์ 2 กับ 3 กับภาพในช่วงเดือนปลายธันวาคม 2563 ต้นเดือนมกราคม 2564

ภาพที่ 4 กราฟแท่งเปรียบเทียบค่าความถูกต้องของแบบจำลอง เมื่อใช้ภาพต่างเวลา-ต่างคู่แบนด์ทำแบบจำลอง

จากภาพที่ 4 จะเห็นว่าแบบจำลองที่ใช้ภาพถ่ายวันที่ 27 ธันวาคม 2563 ให้ความถูกต้องต่ำกว่าวันอื่นโดย ภาพรวม โดยทั่วไปแล้ว ความคาดหวังของแบบจำลองความลึกท้องน้ำตื้นจะอยู่ที่ไม่มากกว่า 3 เมตร การเลือกใช้คู่ แบนด์ 2 – 3 จะมีความเหมาะสมมากกว่า โดยเฉพาะการใช้ภาพถ่ายในวันที่ 22 ธันวาคม 2563 เดือนเดียวกับ เดือนที่ทำการบันทึกค่ารังวัดในภาคสนาม การกระจายตัวของค่าจากแบบจำลองและค่ารังวัดภาคสนามดังภาพที่ 5

ภาพที่ 5 กราฟการกระจายของค่าจากแบบจำลองและภาคสนามจากสองชุดทดสอบ : SDB 22 ธันวาคม คู่ B2-B3 เส้นสีแดงเป็นแนวที่ค่าของตัวแปรทั้งสองมีค่าตรงกัน ไม่ใช่กราฟการถดถอยเชิงเส้นของสองตัวแปร

แบบจำลองความลึกท้องน้ำตื้นจากภาพวันที่ 22 ธันวาคม 2563 ใช้คู่แบนด์ 2 กับ 3 ทำแบบจำลอง ผ่าน สมการเชิงประจักษ์ของสตัมป์ แสดงดังภาพที่ 6 ทางขวา พร้อมกราฟการกระจายของสัดส่วนลอการิทึมกับค่า ระดับสำหรับการคำนวณสัมประสิทธิ์ของสตัมป์ของการทำแบบจำลองความลึก แสดงดังภาพที่ 6 ทางซ้าย

ภาพที่ 6 กราฟการทำการถดถอยเชิงเส้นเพื่อคำนวณสัมประสิทธิ์ของสตัมป์ (ซ้าย) และแบบจำลองความลึกท้องน้ำ ตื้นบริเวณท่าเรือน้ำลึกที่ได้จากสัมประสิทธิ์ดังกล่าว (ขวา)

ทั้งนี้ปัจจัยที่ส่งผลต่อความถูกต้องไม่ได้มีเพียงประเด็นเรื่องความใกล้กันของเวลาบันทึกภาพและบันทึกค่า รังวัด มีประเด็นเรื่อง สภาพสิ่งปกคลุมน้ำซึ่งเป็นข้อจำกัดที่ส่งผลต่อความถูกต้องของแบบจำลอง เมื่อนำค่ารังวัด ภาคสนามทั้งหมดมาประเมินความถูกต้องจะพบว่ามีบริเวณที่แบบจำลองประมาณได้ตื้นกว่าความเป็นจริงเพราะ สิ่งปกคลุมน้ำหรือสภาพคลื่นบนผิวน้ำทะเลที่ทำให้อัลกอริทึมของแบบจำลองประมาณได้ตื้นเกินไป ดังภาพที่ 7

ภาพที่ 7 กราฟการกระจายของค่าจากแบบจำลองและภาคสนาม เมื่อทำค่ารังวัดภาคสนามทั้งหมดมาประเมิน ความถูกต้อง (ซ้าย) แบบจำลองจะมีบางพื้นที่ซึ่งประมาณได้ตื้นกว่าที่เป็นจริง แสดงเป็นจุดสีแดง (ขวา)

5. สรุปผลและข้อเสนอแนะ

การทำแบบจำลองความลึกท้องน้ำตื้นด้วยภาพถ่ายดาวเทียมประกอบกับค่าระดับจากเรือหยั่งความลึกน้ำ บริเวณพื้นที่ศึกษานิคมอุตสาหกรรมมาบตาพุด ผ่านแบบจำลองสมการเชิงประจักษ์ของสตัมป์นั้นการเลือกคู่แบนด์ น้ำเงิน - เขียว (Band 2 และ 3) จาก Sentinel-2 ให้ความถูกต้องสูงกว่าแบบแบนด์อัลตร้าน้ำเงิน - เขียว (Band 1 และ 3) และการเลือกใช้ภาพต่างเวลาทำให้ได้ความถูกต้องของแบบจำลองที่ต่างกันด้วย

ลักษณะของสิ่งปกคลุมน้ำเป็นข้อจำกัดของการทำแบบจำลองประมาณระดับท้องน้ำตื้นด้วยวิธีดังกล่าว การหาทางเลือกใช้ภาพถ่ายหรือแนวทางการตรวจแก้ภาพที่ลดปัจจัยดังกล่าวออกได้เป็นประเด็นศึกษาที่น่าสนใจ ในการพัฒนาความถูกต้องของแบบจำลองให้ดีขึ้น ตลอดจนการติดตามการเปลี่ยนแปลงของความลึกน้ำในราย สัปดาห์ ต้องมีการวัดค่าระดับตัวอย่าง และการบันทึกภาพบริเวณพื้นที่ศึกษาโดยต้องพยายามศึกษาแนวทางการ บันทึกภาพให้สามารถบันทึกลงไปในน้ำจนถึงท้องน้ำตื้นได้ โดยพยายามให้ลักษณะตะกอน สิ่งปกคลุมผิวน้ำ บริเวณนั้นรบกวน บดบังความลึกที่แท้จริงของท้องน้ำตื้นให้ได้มากที่สุด

6. กิตติกรรมประกาศ

ขอขอบพระคุณ คุณประจวบ เรียบร้อย จากบริษัท อิตาเลียนไทย ดีเวล๊อปเมนต์ จำกัด สำหรับค่าระดับ ตัวอย่างในภาคสนาม และ รองศาสตราจารย์ ดร.ไพศาล สันติธรรมนนท์ ผู้ผลักดันให้มีการวิจัยทางด้านความลึก ท้องน้ำตื้นในประเทศไทย ด้วยเทคโนโลยีการสำรวจที่พัฒนาอย่างก้าวกระโดดในปัจจุบัน

7. บรรณานุกรม

Google Developers. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A Retrieved from https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS S2 SR (July 2022)

Gasica, T. A. and Pratomo, D. G.: SHALLOW WATERS DEPTH ESTIMATION USING EMPIRICAL SATELLITE DERIVED BATHYMETRY AND SENTINEL-2 DATA, CASE STUDY: EAST COASTAL WATERS OF JAVA ISLAND, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 93–99, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-93-2022, 2022.

Stumpf, R. P., Holderied, K., & Sinclair, M. (2003). **Determination of water depth with high-resolution satellite imagery over variable bottom types.** Limnology and Oceanography, 48(1), 547–556.