CCF 全国信息学奥林匹克联赛(NOIP2015)复赛

提高组 day2

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	跳石头	子串	运输计划
英文题目与子目录名	stone	substring	transport
可执行文件名	stone	substring	transport
输入文件名	stone.in	substring.in	transport.in
输出文件名	stone.out	substring.out	transport.out
每个测试点时限	1秒	1 秒	1秒
测试点数目	10	10	20
每个测试点分值	10	10	5
附加样例文件	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)		
题目类型	传统	传统	传统
运行内存上限	128M	128M	256M

二. 提交源程序文件名

对于 C++语言	stone.cpp	substring.cpp	transport.cpp
对于 C 语言	stone.c	substring.c	transport.c
对于 pascal 语言	stone.pas	substring.pas	transport.pas

三. 编译命令(不包含任何优化开关)

7, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
对于 C++语言	g++ -o stone	g++ -o substring	g++ -o transport
	stone.cpp -lm	substring.cpp -lm	transport.cpp -lm
对于 C 语言	gcc -o stone stone.c	gcc -o substring	gcc -o transport
	-lm	substring.c -lm	transport.c -lm
对于 pascal 语言	fpc stone.pas	fpc substring.pas	fpc transport.pas

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: CPU AMD Athlon(tm) II x2 240 processor, 2.8GHz, 内存 4G, 上述时限以此配置为准。
- 4、只提供 Linux 格式附加样例文件。
- 5、特别提醒:评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。

1. 跳石头

(stone.cpp/c/pas)

【问题描述】

一年一度的"跳石头"比赛又要开始了!

这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石 (不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。

为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M 块岩石(不能移走起点和终点的岩石)。

【输入格式】

输入文件名为 stone.in。

输入文件第一行包含三个整数 L, N, M, 分别表示起点到终点的距离, 起点和终点之间的岩石数, 以及组委会至多移走的岩石数。

接下来 N 行,每行一个整数,第 i 行的整数 Di(0 < Di < L)表示第 i 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。

【输出格式】

输出文件名为 stone.out。

输出文件只包含一个整数,即最短跳跃距离的最大值。

【输入输出样例1】

stone.in	stone.out
25 5 2	4
2	
11	
14	
17	
21	

见选手目录下的 stone/stone1.in 和 stone/stone1.ans。

【输入输出样例1说明】

将与起点距离为 2 和 14 的两个岩石移走后,最短的跳跃距离为 4 (从与起点距离 17 的岩石跳到距离 21 的岩石,或者从距离 21 的岩石跳到终点)。

【输入输出样例2】

见选手目录下的 stone/stone2.in 和 stone/stone2.ans。

【数据规模与约定】

对于 20%的数据, 0 ≤ M ≤ N ≤ 10。

对于 50%的数据, $0 \le M \le N \le 100$ 。

对于 100%的数据,0 \leq M \leq N \leq 50,000,1 \leq L \leq 1,000,000,000。

2. 子串

(substring.cpp/c/pas)

【问题描述】

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个 <u>互不重</u>的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出的位置不同也认为是不同的方案。

【输入格式】

输入文件名为 substring.in。

第一行是三个正整数 n, m, k, 分别表示字符串 A 的长度,字符串 B 的长度,以及问题描述中所提到的 k, 每两个整数之间用一个空格隔开。

第二行包含一个长度为 n 的字符串,表示字符串 A。

第三行包含一个长度为 m 的字符串,表示字符串 B。

【输出格式】

输出文件名为 substring.out。

输出共一行,包含一个整数,表示所求方案数。**由于答案可能很大,所以这里要求输 出答案对 1,000,000,007 取模的结果。**

【输入输出样例1】

substring.in	substring.out	
6 3 1	2	
aabaab		
aab		

见选手目录下 substring/substring1.in 与 substring/substring1.ans。

【输入输出样例2】

substring.in	substring.out
6 3 2	7
aabaab	
aab	

见选手目录下 substring/substring2.in 与 substring/substring2.ans。

【输入输出样例3】

substring.in	substring.out
6 3 3	7
aabaab	
aab	

见选手目录下 substring/substring3.in 与 substring/substring3.ans。

【输入输出样例说明】

所有合法方案如下:(加下划线的部分表示取出的子串)

样例 1: <u>aab</u> aab / aab <u>aab</u>

样例 2: <u>a ab</u> aab / <u>a</u> aba <u>ab</u> / a <u>a</u> ba <u>ab</u> / aab <u>a</u> <u>ab</u>

样例 3: <u>a a b</u> aab / <u>a a</u> baa <u>b</u> / <u>a</u> ab <u>a</u> a <u>b</u> / <u>a</u> aba <u>a b</u> / <u>a</u> aba <u>a b</u>

【输入输出样例 4】

见选手目录下 substring/substring4.in 与 substring/substring4.ans。

【数据规模与约定】

对于第1组数据: 1≤n≤500, 1≤m≤50, k=1;

对于第 2 组至第 3 组数据: 1≤n≤500, 1≤m≤50, k=2;

对于第 4 组至第 5 组数据: 1≤n≤500, 1≤m≤50, k=m;

对于第 1 组至第 7 组数据: $1 \le n \le 500$, $1 \le m \le 50$, $1 \le k \le m$:

对于第1组至第9组数据: 1≤n≤1000, 1≤m≤100, 1≤k≤m;

对于所有 10 组数据: 1≤n≤1000, 1≤m≤200, 1≤k≤m。

3. 运输计划

(transport.cpp/c/pas)

【问题描述】

公元 2044 年,人类进入了宇宙纪元。

L 国有 n 个星球,还有 n-1 条 $\overline{\mathbf{X}}$ / $\overline{\mathbf{n}}$ 航道,每条航道建立在两个星球之间,这 n-1 条 航道 \mathbf{E} / \mathbf{E} L 国的所有星球。

小 P 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 u_i 号星球沿 <u>最快</u>的宇航路径飞行到 v_i 号星球去。显然,飞船驶过一条航道是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 t_i ,并且任意两艘飞船之间 **不会**产生任何干扰。

为了鼓励科技创新,L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小 P 把某一条航道改造成虫洞,飞船驶过虫洞**不消耗**时间。

在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后,这 m 个运输计划会 *同时*开始,所有飞船<u>一起</u>出发。当这 m 个运输计划 <u>都完成</u>时,小 P 的物流公司的阶段性工作就完成了。

如果小P可以*自由选择*将哪一条航道改造成虫洞,试求出小P的物流公司完成阶段性工作所需要的最短时间是多少?

【输入格式】

输入文件名为 transport.in。

第一行包括两个正整数 $n \times m$,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。

接下来 n-1 行描述航道的建设情况,其中第 i 行包含三个整数 a_i , b_i 和 t_i ,表示第 i 条双向航道修建在 a_i 与 b_i 两个星球之间,任意飞船驶过它所花费的时间为 t_i 。

接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 u_i 和 v_i ,表示第 j 个运输计划是从 u_i 号星球飞往 v_i 号星球。

【输出格式】

输出文件名为 transport.out。

共1行,包含1个整数,表示小P的物流公司完成阶段性工作所需要的最短时间。

【输入输出样例1】

transport.in	transport.out
6 3	11
1 2 3	
1 6 4	
3 1 7	
4 3 6	
3 5 5	
3 6	
2 5	
4 5	

见选手目录下的 transport/transport1.in 与 transport/transport1.ans

【输入输出样例1说明】

将第 1 条航道改造成虫洞:则三个计划耗时分别为:11、12、11,故需要花费的时间为 12。

将第 2 条航道改造成虫洞:则三个计划耗时分别为: 7、15、11,故需要花费的时间为 15。

将第3条航道改造成虫洞:则三个计划耗时分别为:4、8、11,故需要花费的时间为11。

将第 4 条航道改造成虫洞:则三个计划耗时分别为: 11、15、5,故需要花费的时间为 15。

将第 5 条航道改造成虫洞:则三个计划耗时分别为: 11、10、6,故需要花费的时间为 11。

故将第3条或第5条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为11。

【样例输入输出 2】

见选手目录下的 transport/transport2.in 与 transport/transport2.ans。

【数据规模与约定】

所有测试数据的范围和特点如下表所示

测试点编号	n=	m=	约定
1		1	
2	100	100	第 i 条航道连接 i 号星球与 i+1 号星球
3			
4	2000	1	
5	1000	1000	
6	2000	2000	第 i 条航道连接 i 号星球与 i+1 号星球
7	3000	3000	
8	1000	1000	
9	2000	2000	
10	3000	3000	
11	80000	1	
12	100000		
13	70000	70000	
14	80000	80000	第 i 条航道连接 i 号星球与 i+1 号星球
15	90000	90000	
16	100000	100000	
17	80000	80000	
18	90000	90000	
19	100000	100000	
20	300000	300000	
所有数据			1≤a _i ,b _i ,u _j ,v _j ≤n,0≤t _i ≤1000

请注意常数因子带来的程序效率上的影响。