Finite State Markov Decision Processes

T. Kam

Outline

- Motivation
- 2 Markov Decision Process
- Markov Chain preliminaries
 - Conditional probabilities
 - Unconditional probability distributions
 - Long-run Properties of Markov Chain
- 4 Bellman functional equation
- 5 Example: Stochastic optimal growth model

Motivation

- Equilibrium business cycle models aggregate risk
- Partial equilibrium investment, asset pricing models with aggregate risk
- Heterogeneous agent models with individual decision-maker risk
- Dynamic Industrial Organization models (entry/exit), firm-specific risk

MDP

Model as dynamic stochastic decision problem (Markov Decision Process):

- Simple extension of previous deterministic dynamic programming problem.
- Exogenous finite-state Markov chain "shock" ε_t .
- \bullet ε_t perturbs *transition function* for the (endogenous) state vector.

Markov Chains

Definition (Markov property)

A stochastic process $\{\varepsilon_t\}$ has the Markov property if for all $k\geq 1$ and all t,

$$\Pr\left(\left.\varepsilon_{t+1}\right|\varepsilon_{t},\varepsilon_{t-1},...,\varepsilon_{t-k}\right)=\Pr\left(\left.\varepsilon_{t+1}\right|\varepsilon_{t}\right).$$

$$Pr(Future \mid Present \& Past) = Pr(Future \mid Present)$$

Definition

A time invariant (homogeneous) Markov chain is defined by

- Finite state space for the Markov chain $S = \{s_1, ..., s_n\}$.
- **2** An $n \times n$ transition/stochastic matrix P with typical element:

$$P_{ij} = \Pr\left(\varepsilon_{t+1} = s_j | \varepsilon_t = s_i\right)$$

for i, j = 1, ..., n.

3 A $1 \times n$ vector λ_0 – containing the initial distribution across states – whose i-th element is the probability of being in state i at time 0:

$$\lambda_{0i} = \Pr\left(\varepsilon_0 = s_i\right).$$

For this definition to be valid, matrix P and vector λ must always satisfy the following:

- **1** $P_{ij} \ge 0$,
- The rows of P are probability distributions and so must sum to 1:

$$\sum_{j=1}^{n} P_{ij} = 1$$

$$= \Pr \left\{ (\varepsilon_1 = s_1 | \varepsilon_0 = s_i) \cup (\varepsilon_1 = s_2 | \varepsilon_0 = s_i) \right.$$

$$\cdots \cup (\varepsilon_1 = s_n | \varepsilon_0 = s_i) \right\},$$

6
$$\sum_{i=1}^{n} \lambda_{0i} = 1$$
.

Conditional probabilities. Probability of moving from state i to state j in one period is:

$$P_{ij} = \Pr\left(\varepsilon_{t+1} = s_j | \varepsilon_t = s_i\right).$$

We can show that

$$\Pr\left(\varepsilon_{t+k} = s_j | \varepsilon_t = s_i\right) = P_{ij}^{(k)}.$$

where $P_{ij}^{(k)}$ is the i, j element of the matrix $P^k = \underbrace{PPP\cdots P}_{k \text{ times}}$.

Unconditional probabilities. Unconditional probability distributions of ε_t for each period t.

ullet Start at t=0 with given initial unconditional distribution λ_0

$$\lambda_1 = \lambda_0 P$$

• so we have

$$\lambda_2 = \lambda_1 P = \lambda_0 P^2$$

$$\vdots$$

$$\lambda_t = \lambda_0 P^t$$

where the *i*th element of λ_t is $\Pr(\varepsilon_t = s_i)$.

• Or we have

$$\lambda_{t+1} = \lambda_t P.$$

Steady state distribution [Appendix B]

- Existence of stationary distribution
- ${f 2}$ If stochastic matrix P strictly positive elements, stationary distribution is unique.
- $\textbf{ If stochastic matrix } P^{\tau} \text{, for some } \tau > 1 \text{, strictly positive,} \\ \text{stationary distribution is unique.}$

Theorem (MC-LLN)

Let $h:S\to\mathbb{R}$. If $\{\varepsilon_t\}$ is a Markov chain (P,λ_0) on the finite set $S=\{s_1,...,s_n\}$ such that it is asymptotically stable with stationary distribution λ^* , then as $T\to\infty$,

$$\frac{1}{T} \sum_{t=0}^{T} h(\varepsilon_t) \to \sum_{j=1}^{n} h(s_j) \lambda^*(s_j)$$

with probability one.

MDP: Notation

- $x_t \in X$ current endogenous state vector (e.g. capital in the growth model);
- $u_t \in A$ current action vector (e.g. consumption/next-period capital;
- P stochastic matrix containing the conditional probability of moving from one state to another;
- S space of finite exogenous states.
- \bullet $\Delta(S)$ space of distributions over S. Probability simplex.
- $\lambda_0 \in \Delta(S)$ initial distribution of the finite states.
- $\varepsilon_t \sim \mathsf{Markov}(P, \lambda_0)$

Model of controlled Markov (endogenous) state:

$$x_{t+1} = F(x_t, u_t, \varepsilon_{t+1}).$$

Timing assumption:

- Start period t.
- Random variable ε_t is observed as $\varepsilon_t^o = s_i$ where i = 1, ..., n.
- Given F known, current endogenous state x_t known.
- Decision u_t taken given known states (x_t, ε_t^o) .
- Induces realization of x_{t+1} .
- Enter period t+1 ...

Remarks

- Decision maker can no longer just plan a deterministic sequence of actions.
- Makes a sequence of alternative state-contingent actions.
- To be able to make such a comprehensive list of state-contingent actions, decision maker must be able to form "correct" expectations of random future states.
- Apply von-Neumann-Morgernstern expected utility model of decision making in risky environments.

MDP: Bellman Equation

Suppose the current state is $(x_t, \varepsilon_t) = (x, s_i)$, where $i \in \{1, ..., n\}$.

So now the Bellman equation is given by

$$V(x, s_i) = \sup_{x' \in \Gamma(x, s_i)} U(x, x', s_i) + \beta \sum_{j=1}^{n} P_{ij} V(x', s_j)$$

for all $(x, s_i) \in X \times S$.

Modified Bellman Operator

- Same mechanics as deterministic MDP we considered before. Just with a little modification.
- For every $x \in X$, there is a vector

$$\mathbb{R}^n \ni \mathbf{v}(x) = (V(x, s_1), ..., V(x, s_n)) \equiv (V_1(x), ..., V_n(x)).$$

• Space of all vectors real-valued, continuous and bounded functions, $\mathbf{v}: X \to \mathbb{R}^n$: $[C_b(X)]^n$.

Vector space of functions: Complete metric space

- Metric space $([C_b(X)]^n, d)$.
- Distance function, $d:[C_b(X)]^n imes [C_b(X)]^n o \mathbb{R}_+$ given either by

$$d_{\infty}^{n}(\mathbf{v}, \mathbf{v}') = \sum_{i=1}^{n} d_{\infty}(V_{i}, V_{i}') = \sum_{i=1}^{n} \sup_{x \in X} |V(x, s_{i}) - V'(s, s_{i})|,$$

or

$$d_{\infty}^{\max}(\mathbf{v}, \mathbf{v}') = \max_{i \in \{1, \dots, n\}} \{ d_{\infty}(V_i, V_i') \}.$$

• Complete metric space $([C_b(X)]^n, d)$.

Intuition:

- Fix each current $\varepsilon = s_i$, for every $x \in X$.
- RHS of the Bellman equation defines a operator T_i that maps $C_b(X)$ into itself.
- So $T_i: C_b(X) \to C_b(X), i = 1, ..., n$.
- This is because for fixed $\varepsilon = s_i$.
 - $\bullet \sum_{j=1}^n P_{ij}V(x',s_j) \in C_b(X),$
 - i.e. is a convex combination of all $V(x',s_j)\in C_b(X)$.

So "stacking" these T_i 's together we have for each $x \in X$,

$$T:[C_b(X)]^n o [C_b(X)]^n$$
 defined as $T\mathbf{v}(x)=\left[egin{array}{c} T_1V(x,s_1)\ dots\ T_nV(x,s_n) \end{array}
ight]$

$$T: [C_b(X)]^n o [C_b(X)]^n$$
 defined as

 $= \begin{bmatrix} \sup_{x' \in \Gamma(x,s_1)} U(x,x',s_1) + \beta \sum_{j=1}^n P_{1j} V(x',s_j) \\ \vdots \\ \sup_{x' \in \Gamma(x,s_n)} U(x,x',s_n) + \beta \sum_{j=1}^n P_{nj} V(x',s_j) \end{bmatrix}.$

Punchline

- Each *i*-th component of T, T_i is a contraction mapping on a complete metric space $(C_b(X), d_\infty)$
- Then $T:[C_b(X)]^n \to [C_b(X)]^n$ is also a contraction mapping on the complete metric space $([C_b(X)]^n,d)$
- Recall, $d:=d_{\infty}^n$ or $d:=d_{\infty}^{\max}$.

Theorem

There exists a unique \mathbf{v} that satisfies the Bellman principle of optimality.

Theorem (Properties of v)

Assume, for each fixed $\varepsilon' \in S$:

- **1** $U: X \times A \rightarrow \mathbb{R}$ is bounded and continuous;
- \bullet $F: X \times A \rightarrow \mathbb{R}$ is continuous; and
- **3** $\Gamma: X \to P(A)$ is compact and continuous.

Then the value function \mathbf{v} is also bounded on $X \times S$ and for each $\varepsilon \in S$, and it is continuous on X.

Theorem (Unique state-contingent optimal plan)

- If U is strictly increasing, V is strictly increasing on X.
- Also if U is strictly concave and F is weakly concave, for each ε , then V_i is weakly concave on X, for each i=1,...,n, and there exists a unique strategy (stationary optimal strategy) for each $\varepsilon \in S$.

Parametric forms:

$$U(c) \begin{cases} = \frac{c^{1-\sigma}-1}{1-\sigma} & \sigma > 1 \\ = \ln(c) & \sigma \to 1 \end{cases}$$

and

$$f(k, A(i)) = A(i)k^{\alpha} + (1 - \delta)k; \quad \alpha \in (0, 1), \delta \in (0, 1].$$

This is done as two separate functions. Now let's code this up as our Python Tutorial.