- (a) Upload the project report and netlist into Canvas. Report should be ECE422_YourName/Names_Project.pdf
- (b) Further testbench instructions will be provided in class.
- (c) Project can be done alone or in a group of two.

You are required to design a two-stage single ended CMOS opamp with Miller (pole-splitting) compensation in the $0.18\mu m$ process (the minimum channel length is $0.18\mu m$). The parameters for this process are provided on Canvas. Your simulation results with the BSIM3 model must meet the specifications given below.

The final report should be no longer than 3 pages of text. Include a table comparing simulated results with the specifications. Attach all relevant analysis and simulations as appendices. If you are using hspice, you need to include AD/AS and PD/PS in your SPICE simulations. Assume AD = AS = $0.6\mu \text{m} \cdot \text{W}$, PD = PS = $1.2\mu \text{m} + 2 \cdot \text{W}$ where W is the transistor width in μm . The layout is not part of the project.

What is the simulated input common mode range (i.e., V_{icmin} and $V_{ic,max}$) and output swing (i.e., $V_{o,max}$ and $V_{o,min}$) for the designed opamp? Please make sure that the project report is concise and well documented.

Load capacitance	5pF
Power supply	Vdd = 0.9V, Vss = -0.9V
Open loop gain	$\geq 65dB$
Phase margin	≥ 60°
Unity gain frequency	$\geq 12MHz$