

SF1625 Envariabelanalys Tentamen Tisdagen 23 oktober 2018

Skrivtid: 8.00-11.00 Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes

Tentamen består av tre delar; A, B och C, som vardera ger maximalt 12 poäng. Till antalet erhållna poäng från del A adderas dina bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	Е	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

1. Låt $f(x) = \frac{x^2 - 1}{|x - 1|}$, med $x \neq 1$.

(a) Bestäm gränsvärdet
$$\lim_{x\to 1+} (f(x))$$
. (2 p)

(b) Avgör om gränsvärdet
$$\lim_{x\to 1} (f(x))$$
 existerar. (2 p)

(c) För vilka
$$x$$
 gäller det att $f(x) < 1$. (2 p)

2. Beräkna nedanstående integraler.

(a)
$$\int_0^{\pi/2} \frac{\cos(x)}{1 + \sin^2(x)} dx$$
. (3 p)
(b) $\int_0^1 \frac{x^2}{1 + x^2} dx$. (3 p)

(b)
$$\int_0^1 \frac{x^2}{1+x^2} dx$$
. (3 p)

DEL B

3. En modell för en population P(t) ges av integralekvationen

$$P'(t) = 2P(t) - 2\int_0^t P(s) ds - e^{2t},$$

där t är tiden.

- (a) Deriverar man integralekvationen erhåller man en andra ordningens ordinär differential ekvation (ODE). Bestäm denna ODE. (2 p)
- (b) Bestäm P(t) om startpopulationen P(0) = 10. (4 p)
- 4. Funktionen $f(x) = \sqrt{x}$ är definierad för alla positiva reella tal.
 - (a) Bestäm Taylorpolynomet P(x) av grad 2 till f kring punkten x = 4. (2p)
 - (b) Bestäm ett närmevärde till $\sqrt{5}$ som avviker högst 1/200 från det faktiska värdet.

(4 p)

DEL C

5. Visa att
$$\ln(n!) > 1 + n(\ln(n) - 1)$$
 för alla $n \ge 2$. (6 **p**)

6. Antag att funktionen $\phi \colon \mathbb{R} \to \mathbb{R}$ är två gånger deriverbar och att $\phi''(x)$ är kontinuerlig överallt. Visa att om $\phi''(x) > x^2$ för alla x, och om $\phi(0) = -1$, så finns det ett tal c > 0sådant att $\phi(c) = 0$. (6 p)