Venkata Srinivas Kompally (NUID: 002137855)

Program Structures & Algorithms Fall 2021

Assignment No. 2

⊙ Task:

Part 1) Implement three methods of class called Timer. Timer is invoked from a class called Benchmark_Timer which implements the Benchmark interface.

Part 2) Implement InsertionSort (in the InsertionSort class) by simply looking up the insertion code used by Arrays.sort.

Part 3) Implement a main program (or you could do it via your own unit tests) to actually run the following benchmarks: measure the running times of this sort, using four different initial array ordering situations: random, ordered, partially-ordered and reverse-ordered.

Relationship Conclusion:

The Order of Growth for Randomly Ordered Array of Size N is $\approx N^{1.36}$

The Order of Growth for Ordered Array of Size N is $pprox N^{0.80}$

The Order of Growth for Reverse Ordered Array of Size N is $\approx N^{1.53}$

The Order of Growth for Partially Ordered Array of Size N is $\approx N^{1.09}$

The Order of growth, based on running time of insertion sort is:

Ordered < Partially Ordered < Randomly Ordered < Reverse Ordered

- Evidence to support the conclusion:
- 1. Output (Snapshot of Code output in the terminal)


```
| Post | Post | Dec | Dec| | D
```

2. Graphical Representation

Random Ordered Array:

Initial input size is 200 and increased upto 3200. Calculated the running time of the soring algorithm Random Orderly.

Using Doubling Hypothesis:

For Function $T(N) = aN^b$

N = Input Size

a = Constant

b = slope of the log-log graph

The average slope for Randomly Ordered Array is: 1.36

The Equation of such a line is:

$$llg(T(N)) = aN^{1.36}$$

The average slope for Ordered Array is: 0.80

The Equation of such a line is:

$$llg(T(N)) = aN^{0.80}$$

The average slope for Reverse Ordered Array is: 1.54

The Equation of such a line is:

$$llg(T(N)) = aN^{1.54}$$

The average slope for Partially Ordered Array is: 1.09

The Equation of such a line is:

$$llg(T(N)) = aN^{1.09}$$

• Unit tests result:

Part 1: Timer Test

Part 2: Insertion Sort