TOC QUESTIONS: (savitha)

1. Which of the following CFG's can't be simulated by an FSA?

A.S --> Sa | b

B.S --> aSb | ab

C.S --> abX, X --> cY, Y --> d | aX

D.None of these

Answer:b

2.In the following grammar:

 $x : := x \oplus y \mid 4$

y : : = z * y | 2

z : : = id

which of the following is true?

A.⊕ is left associative while * is right associative

B.Both ⊕ and * are left associative

C.⊕ is right associative while * is left associative

D.None of these

Answer:a

3. The productions

 $E \rightarrow E + E$

E-->E-E

E-->E*E

 $E \longrightarrow E / E$

_____> id

A.generate an inherently ambiguous language

B.generate an ambiguous language but not inherently so

C.are unambiguous

D.can generate all possible fixed length valid computation for carrying out addition, subtraction, multiplication and division, which can be expressed in one expression

Answer:b

4.Basic limitation of FSA is that it

- **A.**cannot remember arbitrary large amount of information
- **B.**sometimes fails to recognize grammars that are regular
- C.sometimes recognizes grammars are not regular
- **D.**None of these

Answer:a

5. Which of the following is not possible algorithmically?

- **A.**Regular grammar to context free grammar
- **B.**Non-deterministic FSA to deterministic FSA
- C.Non-deterministic PDA to deterministic PDA
- **D.**None of these

Answer: c

6.Pumping lemma is generally used for proving that

- **A.**given grammar is regular
- **B.**given grammar is not regular
- C.whether two given regular expressions are equivalent or not
- **D.**None of these

Answer: b

7.Set of regular languages over a given alphabet set is closed under

- **A.**union
- **B.**complementation
- C.intersection
- **D.**All of these

Answer: d

8. What can be said about a regular language L over {a} whose minimal finite state automation has two states?

A.L must be { aⁿ | n is odd}

```
B.L must be { a<sup>n</sup> | n is even}
    C. L must be \{a^n | > 0\}
    D.Either L must be {a<sup>n</sup> | n is odd}, or L must be {a<sup>n</sup> | n is even}
Answer: b
9.CFG can be recognized by a
    A.push-down automata
    B. linear automata
    C. both (a) and (b)
    D.none of these
Answer: a
10.A given grammar is called ambiguous if
    A.two or more productions have the same non-terminal on the left hand side
    B.a derivation tree has more than one associated sentence
    C.there is a sentence with more than one derivation tree corresponding to it
    D.brackets are not present in the grammar
Answer: c
11. The logic of pumping lemma is a good example of
    A.pigeon-hole principle
    B.divide-and-conquer technique
    C.recursion
    D.Iteration
      Answer: a
12. Given a grammar G a production of G with a dot at some position of the right side
is called
    A.LR (0) item of G
    B.LR (1) item of G
    C.both (a) and (b)
    D.none of these
```

Answer: a

13.If L be set of strings from alphabet, then kleen closure of L is given as

$$\mathbf{A}.L^+ = \bigcup_{i=0}^{\cdot} L^i$$

$$\mathbf{B.}L_0 = \bigcup_{i=0}^{\cdot} L^i$$

$$\mathbf{C}\boldsymbol{\cdot}_{L^*} = \bigcup_{i=0}^{\infty} L^i$$

$$\mathbf{D}.L^+ = \bigcup_{i=1}^r L^i$$

Answer: b

14. Grammers that can be translated to DFA's

- A. left linear grammar
- B. Right linear grammar
- C. generic grammar
- **D.** All of these

Answer: b

15. Recursive descent parsers are the type of:

- A. LL parsers
- B. LR parsers
- C. LALR parsers
- D. SLR parsers

Answer: a