Modelos variables aleatorias

Eduardo Paluzo

Índice general

In	itrodu	ccion	5
Ι	Coı	nceptos previos importantes	7
1	Resu	ımen de fórmulas	9
	1.1	Esperanza matemática	9
	1.2	Varianza	9
	1.3	Función generatriz	9
II	M	odelos variables aleatorias discretas	11
2	Vari	ables aleatorias discretas	13
	2.1	Variable aleatoria degenerada	13
	2.2	Distribución de Bernoulli, Be(p)	13
	2.3	Distribución binomial	14
	2.4	Distribución geométrica	14
	2.5	Distribución binomial negativa	14
	2.6	Distribución de Poisson	15
	2.7	Distribución hipergeométrica	15
	2.8	Distribución uniforme discreta en N puntos	15
II	I M	Iodelos variables aleatorias continuas	17
3	Vari	ables continuas	19
	3.1	Distribución uniforme	19
	3.2	Distribución exponencial	19
	3.3	Distribución Gamma	20
	3.4	Distribución normal univariante	20

4	Índice genera	1

I	V D :	istribuciones Especiales	21
4	Dist	ribuciones especiales	23
	4.1	Distribución chi cuadrado (χ)	23
	4.2	Distribución t de student	23
	4.3	Distribución F de Snedecor	24

Introducción

Se pretende resumir y añadir aquellos conceptos de las variables aleatorias relativas a su distribución. Tomando como ejemplo los apuntes proporcionados en la asignatura de Teoría de la probabilidad impartida en el curso de segundo del grado en Matemáticas de la Universidad de Sevilla.

6 Índice general

Parte I Conceptos previos importantes

Resumen de fórmulas

1.1. Esperanza matemática

Viene dada por la expresión:

Caso discreto:
$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

Caso abs. Continuo:
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

1.2. Varianza

$$Var(X) = E(X^2) - (E(X))^2$$

1.3. Función generatriz

$$M_X(t) = E(e^{tX})$$

Parte II Modelos variables aleatorias discretas

Variables aleatorias discretas

2.1. Variable aleatoria degenerada

Una variable aleatoria X es degenerada cuando toda la masa de la probabilidad se concentra en un único punto. P(X = b) = 1.

- $F_X(x) = I_{[b,+\infty)}$
- $E(X^r) = b^r$
- Var(X) = 0
- $M_X(t) = E(e^{tX}) = e^{tb}$

2.2. Distribución de Bernoulli, Be(p)

Se trata de un experimento con dos posibles casos (cara o cruz, positivo o negativo,...) donde uno de los casos tiene probabilidad p y el otro q, donde q = 1 - p, es decir, la masa de la probabilidad se distribuye en dos puntos.

$$P(X = 1) = p$$
 $P(X = 0) = q$
 $P(X = x_i) = p^{x_i}q^{1-x_i}$

- $E(X^r) = p, \forall r > 0$
- E(X) = p
- Var(X) = pq
- $M_X(t) = q + pe^t$

Tiene como función de probabilidad del producto de distribuciones Bernoulli's la expresión

$$\prod_{i=1}^{n} P(X = x_i) = p^{\sum_{i=1}^{n} x_i} q^{n - \sum x_i}$$

Distribución binomial 2.3.

Se trata de la repetición de *n* experimentos Bernoulli. Es decir, la probabilidad de que se cumpla un suceso *k* veces **con reposición**.

$$P(X = k) = \binom{n}{k} p^k q^{n-k}$$

- E(X) = np
- $\blacksquare Var(X) = npq$
- $M_X(t) = (q + pe^t)^n$
- Es reproductiva

Distribución geométrica 2.4.

Mide el número de fracasos hasta que se llega al éxito.

$$P(X=k) = q^k p$$

- $E(X) = \frac{q}{p}$ $Var(X) = \frac{q}{p^2}$ $M_X(t) = \frac{p}{1 qe^t}$
- No es reproductiva

Distribución binomial negativa 2.5.

Se trata de la suma de distribuciones geométricas. número de experimentos realizados hasta que se obtiene el r-ésimo éxito

$$P(X = k) = \binom{k+r-1}{k} q^k p^r$$

- $E(X) = r \frac{q}{p}$ $Var(X) = r \frac{q}{p^2}$
- $M_X(t) = \frac{p^r}{(1 qe^t)^r}$
- Es reproductiva

Distribución de Poisson 2.6.

$$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

Cuando el número de ensayos de una Binomial tiende a infinito se trata de una distribución de Poisson.

- $E(X) = Var(X) = \lambda$
- $M_X(t) = e^{\lambda(e^t 1)}, \forall t \in \mathcal{R}$
- Es reproductiva

2.7. Distribución hipergeométrica

Se trata de un experimento en el que tenemos N elementos, de los cuales N_1 son de un tipo y el resto de otro tipo. En la variable aleatoria X se cuenta **el número de** elementos del primer tipo que hay en la muestra extraida

$$P(X = k) = \frac{\binom{N_1}{k} \binom{N - N_2}{n - k}}{\binom{N}{n}}$$

- E(X) = np
- $Var(X) = npq \frac{N-n}{N-1}$ Nota 2.7.1. $p = \frac{N_1}{N}$ q = 1 - p

Distribución uniforme discreta en N puntos 2.8.

La masa de la probabilidad se distribuye de igual forma sobre *N* puntos.

$$P(X=x_k)=\frac{1}{N}, k=1,\ldots,N$$

- $E(X) = \frac{N+1}{2}$ $Var(X) = \frac{N^2-1}{12}$

Parte III

Modelos variables aleatorias continuas

Variables continuas

Distribución uniforme 3.1.

Una distribución uniforme en el intervalo (a, b) tiene como **función de densidad**

$$f(x) = \frac{1}{b-a} I_{[a,b]}(x), x \in \mathbb{R}$$

Se trata de la selección al azar de un punto del intervalo. Tiene como función de distribución

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a < x < b \\ 1, & x > b \end{cases}$$

- $E(X) = \frac{a+b}{2}$
- $Var(X) = \frac{(b-a)^2}{12}$ $E(X^k) = \frac{b^{k+1} a^{k+1}}{(b-a)(k+1)}$

3.2. Distribución exponencial

Una distribución exponencial de parámetro λ tiene como función de densidad

$$f(x) = \lambda e^{-\lambda x} I_{(0,+\infty)}(x)$$

y como función de distribución

$$F(x) = (1 - e^{-\lambda x})I_{(0,+\infty)}(x)$$

- $E(X) = \frac{1}{\lambda}$
- $Var(X) = \frac{1}{\lambda^2}$ $E(X^k) = \frac{k!}{\lambda^k}$
- No es reproductiva

Distribución Gamma 3.3.

$$f(X) = \frac{a^p}{\Gamma(p)} e^{-ax} x^{p-1} I_{(0,+\infty)}$$

- $\Gamma(1) = 1$
- $\Gamma(p) = (p-1)\Gamma(p-1)$

Distribución normal univariante 3.4.

Sea X una variable aleatoria que se distribuye según una $N(\mu,\sigma^2)$, su función de densidad es de la forma

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Parte IV Distribuciones Especiales

Distribuciones especiales

Distribución chi cuadrado (χ) 4.1.

Una χ^2_n con n grados de libertad es la suma de n distribuciones N(0,1) al cuadrado. Es decir,

$$\chi_n^2 = \sum_{i=1}^n X_i^2$$
, $X_i \operatorname{con} F \in N(0,1)$, $\forall i \in \mathbb{N}$

- $\chi_{n_1}^2 + \chi_{n_2}^2 = \chi_{n_1 + n_2}^2$ $E\chi_n^2 = n$ $\frac{\chi_n^2}{n} \xrightarrow{P} 1$

- $\frac{1}{\sigma^2}\sum (Y_k \bar{Y})^2$ se distribuye según una chi cuadrado con n-1 grados de libertad. Con cada Y_i con distribución $N(\mu, \sigma^2)$

Distribución t de student 4.2.

Si tenemos

X una N(0,1)

y

Y una χ_n^2

entonces

$$\frac{X}{\sqrt{\frac{Y}{n}}}$$
 se distribuye según una t_n

- la función de densidad es simétrica.
- Tiende en ley a una N(0,1)
- $\sqrt{n} \frac{\bar{X} \mu}{S_c}$ se distribuye según una t_{n-1}

4.3. Distribución F de Snedecor

Sean

X, Y con distribuciónes χ^2_n y χ^2_m , independientes.

Entonces se tiene,

$$\frac{\frac{X}{n}}{\frac{Y}{m}}$$
 se distribuye según una $F_{n,m}$