DS de Maths

Durée 2 heures

Pas de document, ni calculatrice, ni téléphone portable Les 2 parties sont indépendantes, et notées chacune sur 10

Partie 1 : Courbes, intégrales multiples

On considère la courbe C d'équations paramétriques : $\begin{cases} x = \cos(\pi t) \\ y = (1+t)^2(1-t) \end{cases} t \in [-1, 1]$

- 1. Déterminer la tangente à la courbe au point de paramètre t = 1 Point régulier $\frac{dM}{dt} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$
- 2. Déterminer la tangente à la courbe au point de paramètre t = -1 Point singulier

$$\frac{dM}{dt} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} mais \frac{y'}{x'} = \frac{(1+t)(3t-1)}{\pi \sin(\pi t)} = \frac{u(3u-4)}{-\pi \sin(\pi u)} \sim \frac{-4u}{-\pi^2 u} \xrightarrow{u=0} \frac{4}{\pi^2} \approx 0.4$$

- 3. Déterminer le(s) point(s) de la courbe où la tangente est horizontale y' = 0 et $x' \neq 0$: t = 1/3 et le(s) point(s) de la courbe où la tangente est verticale. x' = 0 et $y' \neq 0$: t = 0
- 4. Résumer les résultats précédents sur une représentation sommaire de la courbe

5. Pour quelles valeurs de t entre -1 et 1 la relation entre x et t peut-elle s'écrire $\pi t = \arccos(x)$? Pour $t \in [0,1]$. En effet 'cos' est une bijection de $[0,\pi]$ sur [-1,1]. Sa réciproque est à valeur dans $[0,\pi]$. Justifier que pour les autres valeurs de t entre -1 et 1 on a $\pi t = -\arccos(x)$

pour
$$t \in [-1,0]$$
, $-t \in [0,1]$ et $t+1 \in [0,1]$ donc (ci-dessus) $\pi(-t) = \arccos(x(-t)) = \arccos(x(t))$
ou.. $t+1 \in [0,1]$ donc $\pi(t+1) = \arccos(x(t+1)) = \arccos(-x(t)) = \pi - \arccos(x(t))$

En déduire dans chacun de ces 2 cas une expression de y en fonction de x. pour $t \in [0,1]$ (en haut de la courbe),

$$y = \varphi_1(x) = \left(1 + \frac{\arccos(x)}{\pi}\right)^2 \left(1 - \frac{\arccos(x)}{\pi}\right)$$

pour $t \in [-1,0]$ (en bas de la courbe),

$$y = \varphi_2(x) = \left(1 - \frac{\arccos(x)}{\pi}\right)^2 \left(1 + \frac{\arccos(x)}{\pi}\right)$$

On considère maintenant la surface S limitée par la courbe C.

6. Par un découpage à x constant, montrer que l'aire de S peut s'écrire $A = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} d... \right) d...$

$$A = \int_{x=-1}^{1} \left(\int_{y=\varphi_{2}(x)}^{\varphi_{1}(x)} dy \right) dx = \int_{x=-1}^{1} \left(\varphi_{1}(x) - \varphi_{2}(x) \right) dx$$

7. Dans l'intégrale obtenue, on fera le changement de variable $x = \cos(\pi t)$ (bien sûr!)

et on trouvera un résultat de la forme $A = k \int_{-\infty}^{\infty} (t - t^3) \sin(\pi t) dt$ où k est une constante à déterminer.

$$\sin x = \cos(\pi t), \arccos(x) = \pi t, \text{donc } \varphi_1(x) = (1+t)^2 (1-t) = (1+t)(1-t^2) \text{ et } \varphi_2(x) = (1-t)^2 (1+t) = (1-t)(1-t^2)$$

$$A = \int_{-1}^{0} (2t(1-t^2))(-\pi)\sin(\pi t)dt = 2\pi \int_{-1}^{1} (t-t^3)\sin(\pi t)dt$$

8. Finir le calcul. Vérifier. Deux intégrations par parties $A = \frac{12}{\pi^2} \approx 1.216$ ouf!

Le rectangle autour de la courbe fait à peu près 2*1.2. Penser que S en vaut la moitié n'est pas absurde.

Partie 2 : Séries entières

Soit (u_n) une suite de réels.

On définit la suite (v_n) par la formule : $\forall n \in \mathbb{N} / v_n = \frac{1}{2}(u_n + u_{n+1})$

On étudie alors les séries $\sum u_n$ et $\sum v_n$

1. **Premier cas particulier** : Soit a un réel. On étudie le cas où $u_n = a^n$. Calculer v_n .

$$v_n = \frac{1}{2}(a^n + a^{n+1}) = a^n \left(\frac{1+a}{2}\right)$$
 série géométrique de raison a (sauf si $a = -1$, dans ce cas c'est la série nulle)

A quelle condition la série $\sum u_n$ converge-t-elle ? si et seulement si -1 < a < 1

A quelle condition la série $\sum v_n$ converge-t-elle ? si et seulement si $-1 \le a < 1$

(Étudier en particulier le cas où a = -1)

2. **Deuxième cas particulier** : On étudie le cas où $u_n = \frac{1}{n+1}$. Calculer v_n .

$$v_n = \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n+2} \right) = \frac{2n+3}{2(n+1)(n+2)} \sim \frac{1}{n}$$

La série $\sum u_n$ converge-t-elle ? $u_n \sim \frac{1}{n}$ série harmonique : diverge La série $\sum v_n$ converge-t-elle ? idem

3. **Troisième cas particulier**: On étudie le cas où $u_n = \frac{(-1)^n}{n+1}$. Calculer v_n .

$$v_n = \frac{1}{2} \left(\frac{(-1)^n}{n+1} + \frac{(-1)^{n+1}}{n+2} \right) = \frac{(-1)^n}{2(n+1)(n+2)}$$

La série $\sum u_n$ converge-t-elle ? Critère des séries alternées : converge La série $\sum v_n$ converge-t-elle ? idem

ou $|v_n| = \frac{1}{2(n+1)(n+2)} \sim \frac{1}{2n^2}$ série de Riemann convergente donc la série $\sum v_n$ converge absolument

On revient désormais au cas général

- 4. Montrer que si la série $\sum u_n$ converge, alors la série $\sum v_n$ converge. Comparer alors $\sum_{n=0}^{\infty} u_n$ et $\sum_{n=0}^{\infty} v_n$. Si la série $\sum u_n$ converge, alors la série $\sum u_{n+1}$ converge, et donc par combinaison linéaire, la série $\sum v_n$ converge. On a alors $\sum_{n=0}^{\infty} v_n = \frac{1}{2} \left(\sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} u_{n+1} \right) = \frac{1}{2} \left(\sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} u_n \frac{1}{2} u_n \right)$
- 5. Que peut-on dire de la série $\sum v_n$ si la série $\sum u_n$ converge absolument ? $|v_n| \le \frac{1}{2} (|u_n| + |u_{n+1}|)$ Si la série $\sum u_n$ converge absolument, alors la série $\sum u_{n+1}$ également. Alors par combinaison linéaire, la série $\sum \frac{1}{2} (|u_n| + |u_{n+1}|)$ aussi et par majoration, la série $\sum u_n$ converge absolument.
- 6. Que peut-on dire de la série $\sum u_n$ si la série $\sum v_n$ converge?

Rien : cf 1. Si $u_n = (-1)^n$, la série $\sum v_n$ est la série nulle donc converge mais la série $\sum u_n$ diverge

- 7. Calculer la somme partielle $T_n = \sum_{k=0}^n v_k$ en fonction de la somme partielle $S_n = \sum_{k=0}^n u_k$. $T_n = \sum_{k=0}^n v_k = \frac{1}{2} \left(\sum_{k=0}^n u_k + \sum_{k=0}^n u_{k+1} \right) = \frac{1}{2} \left(\sum_{k=0}^n u_k + \sum_{k=0}^{n+1} u_k \right) = \sum_{k=0}^n u_k \frac{1}{2} u_0 + \frac{1}{2} u_{n+1} = S_n \frac{1}{2} u_0 + \frac{1}$
- 8. Que peut-on en déduire pour la série $\sum u_n$ si la série $\sum v_n$ converge et que $u_n \xrightarrow[n \to \infty]{} 0$?

 Sous ces hypothèses T_n a une limite et $u_{n+1} \xrightarrow[n \to \infty]{} 0$ donc $S_n \xrightarrow[n \to \infty]{} \lim_{n \to \infty} (T_n) + \frac{1}{2}u_0$ et donc $\sum u_n$ converge vers $\sum_{n=0}^{\infty} v_n + \frac{1}{2}u_0$
- 9. En utilisant les résultats précédents, proposer un algorithme de calcul approché à 10^{-10} près de $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$. Elle vérifie le critère des séries alternées donc l'écart entre la somme partielle de rang n et la somme de la série est inférieur à $|u_{n+1}| = \frac{1}{n+2}$. Il faudrait donc presque 10^{10} termes pour avoir la précision souhaitée. Ce n'est pas raisonnable en temps (sans compter l'accumulation des arrondis qui obligerait à calculer chaque terme à 10^{-20} près).

Mais la série $v_n = \frac{\left(-1\right)^n}{2\left(n+1\right)\left(n+2\right)}$ du 3. vérifie aussi le critère des séries alternées donc l'écart entre la somme partielle de rang n et la somme de la série est maintenant inférieur à $\left|v_{n+1}\right| = \frac{1}{2\left(n+2\right)\left(n+3\right)}$. Il ne faudrait plus qu'à peu près $\frac{1}{2}10^5 = 50000$ termes pour avoir la précision souhaitée. Il restera à ajouter $\frac{1}{2}u_0 = \frac{1}{2}(\operatorname{cf} 8.)$

pseudo code : # faire les calculs avec une précision de 1e-15

initialiser S à 0 initialiser signe à 1

```
pour n de 0 à 50000 faire
S←S+signe/2/(n+1)/(n+2)
signe←-signe
fin pour
afficher ( 'somme de la série harmonique alternée =' S+0.5, '+/- 1e-10 )
```

Résultat : .69314718066 Somme de la série = ln(2)=.69314718056

Écart : -0.99933 e-10