Abstract of the Disclosure

A given magnetic field and a given wave are applied to a conductive fluid so as to satisfy the relations of:

$$l_{\perp} > \delta(1)$$

$$\lambda_{"} > \delta$$
 (2)

on condition that a length of said conductive fluid is set to l_{\perp} (m), and the equations of δ =(2/ σ $\mu\omega$)^{1/2} and λ_{n} =2 π B/ ω ($\rho\mu$)^{1/2} are defined (σ : the electric conductivity (S/m) of said conductive fluid, ρ : the density (kg/m³) of said conductive fluid, μ : the permeability of said conductive fluid, B: the strength of said magnetic field (T), ω : the angular frequency of said wave), thereby to generate and propagate a given vibration into said conductive fluid.