Stochastic process

IV Stochastic Differential Equations

Seongho Joo

SNU MILAB

Examples and Some Solution Methods

Examples and Some Solution Methods

To solve the SDEs, Itô formula is the key.

Example 1. Given
$$N_0$$
, solve

$$dN_t = rN_t dt + \alpha N_t dB_t$$
 (1.1)

$$\frac{\mathrm{d}N_t}{N_t} = r\,\mathrm{d}t + \alpha\,\mathrm{d}B_t$$

$$\Longrightarrow \int_0^t \frac{\mathrm{d}N_s}{N_s} = rt + \alpha B_t$$

$$(\ln(x))' = \frac{1}{x} \text{ 이므로 Itô formula를 적용할 g로 } g(t,x) = \ln x \text{가 적절하다.}$$

$$\mathrm{d}\ln N_t = \frac{1}{N_t} \cdot \mathrm{d}N_t + \frac{1}{2} \left(-\frac{1}{N_t^2}\right) (\mathrm{d}N_t)^2 = \frac{\mathrm{d}N_t}{N_t} - \frac{1}{2}\alpha^2\,\mathrm{d}t$$

$$\Longrightarrow \ln \frac{N_t}{N_0} = (r - \frac{1}{2}\alpha^2)t + \alpha B_t$$
 We get $N_t = N_0 \exp((r - \frac{1}{2}\alpha^2)t + \alpha B_t)$

Cont.

Remark.

$$\mathbb{E} N_t = \mathbb{E} N_0 e^{rt} \tag{1.2}$$

Apply Itô formula to $Y_t = e^{\alpha B_t}$

$$dY_t = \alpha e^{\alpha B_t} dB_t + \frac{1}{2} \alpha^2 e^{\alpha B_t} dt$$
 (1.3)

$$Y_t = Y_0 + \alpha \int_0^t e^{\alpha B_s} dB_s + \frac{1}{2} \alpha^2 \int_0^t e^{\alpha B_s} ds$$
 (1.4)

Since $\mathbb{E} \int_0^t e^{\alpha B_s} dB_s = 0$ We get

$$\mathbb{E} Y_t = \mathbb{E} Y_0 + \frac{1}{2} \alpha^2 \int_0^t \mathbb{E} Y_s \, \mathrm{d}s$$
 (1.5)

which implies $\mathbb{E} Y_t = e^{\frac{1}{2}\alpha^2 t}$

Remark. Since $B_t = \tilde{\mathcal{O}}(\sqrt{t})$,

$$N_t \to \begin{cases} \infty & \text{if } r > \frac{1}{2}\alpha^2 \\ \text{fluctuate} & \text{if } r = \frac{1}{2}\alpha^2 \\ 0 & \text{if } r < \frac{1}{2}\alpha^2 \end{cases}$$
 (1.6)

a.s. as $t \to \infty$.

Examples and Some Solution Methods

Example 2. Solve

$$dX = AX_t dt + H_t dt + K dB_t$$
 (1.7)

where

$$dX = \begin{pmatrix} dX_1 \\ dX_2 \end{pmatrix}, A = \begin{pmatrix} 0 & 1 \\ -\frac{1}{CL} & -\frac{R}{L} \end{pmatrix}, H_t = \begin{pmatrix} 0 \\ \frac{1}{L}G_t \end{pmatrix}, K = \begin{pmatrix} 0 \\ \frac{\alpha}{L} \end{pmatrix}$$
 (1.8)

Rewrite the eq. (1.8) as

$$\exp(-At) dX_t - \exp(-At)AX_t dt = \exp(-At)(H(t) dt + K dB_t)$$
(1.9)

Apply the Itô formula to the function $g:[0,\infty)\times\mathbb{R}^2\to\mathbb{R}^2$ given by

$$g(t, x_1, x_2) = \exp(-At) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 (1.10)

then we obtain that

$$d(\exp(-At)X_t) = -A\exp(-At)X_t dt + \exp(-At) dX_t$$
(1.11)

This gives

$$X_t = \exp(At)(X_0 + \int_0^t \exp(-As)H_s \, ds + \int_0^t \exp(-As)K \, dB_s)$$
 (1.12)

Examples and Some Solution Methods

Example 3. Let (B_1,\ldots,B_n) be Brownian motion in $\mathbb{R}^n,\alpha_1,\ldots,\alpha_n$ constants. Solve the stochastic differential equation

$$dX_t = rX_t dt + X_t \left(\sum_{k=1}^n \alpha_k dB_k(t) \right); \quad X_0 > 0.$$
 (1.13)

Divide by X_t :

$$\frac{\mathrm{d}X_t}{X_t} = r\,\mathrm{d}t + \sum_{k=1}^n \alpha_k \,\mathrm{d}B_k(t) \tag{1.14}$$

Note that $d(\log X_t)=\frac{1}{X_t}\,dX_t-\frac{1}{2X_t^2}(\,dX_t)^2$ and $(\,dX_t)^2=X_t^2\sum_{k=1}^n\alpha_k^2\,dt$ which implies

$$d(\log X_t) = r dt + \sum_{k=1}^n \alpha_k dB_k(t) - \frac{1}{2} \sum_{k=1}^n \alpha_k^2 dt$$
$$\log(X_t/X_0) = \left(r - \frac{1}{2} \sum_{k=1}^n \alpha_k^2\right) t + \sum_{k=1}^n \alpha_k B_k(t)$$
$$\implies X_t = X_0 \exp\left(\left(r - \frac{1}{2} \sum_{k=1}^n \alpha_k^2\right) t + \sum_{k=1}^n \alpha_k B_k(t)\right)$$

An Existence and Uniqueness Result

An Existence and Uniqueness Result

We now turn to the existence and uniqueness question (A) above.

Theorem 1 (Existence and uniqueness theorem for stochastic differential equations)

Let T>0 and $b(\cdot,\cdot):[0,T]\times\mathbb{R}^d\to\mathbb{R}^n, \sigma(\cdot,\cdot):[0,T]\times\mathbb{R}^n\to\mathbb{R}^{n\times m}$ be measurable functions satisfying

$$|b(t,x)| + |\sigma(t,x)| \le C(1+|x|); \quad x \in \mathbb{R}^n, t \in [0,T]$$
 (2.1)

where $|\sigma|^2 = \sum_{i=1}^{\infty} |\sigma_{ij}|^2$ and such that

$$|b(t,x) - b(t,y)| + |\sigma(t,x) - \sigma(t,y)| \le D|x-y|; \quad x,y \in \mathbb{R}^n, t \in [0,T]$$
 (2.2)

Let Z be a random variable which is independent of σ -algebra \mathcal{F}_{∞} generated by $B_s(\cdot), s \geq 0$ and such that $\mathbb{E}|Z|^2 < \infty$. Then the SDE

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t, \quad 0 \le t \le T, X_0 = Z$$
 (2.3)

has a unique continuous in t solution $X_t(w)$ with the property

■ $X_t(w)$ is adapted to the filtration generated by $B_s(\cdot), s \leq t$ and Z

$$\mathbb{E} \int_0^T |X_t|^2 \, \mathrm{d}t < \infty \tag{2.4}$$

An Existence and Uniqueness Result

Lemma 1 (Gronwall's ineqaulity)

Let v(t) be a nonnegative function such that

$$v(t) \le C + A \int_0^t v(s) \, \mathrm{d}s \text{ for } 0 \le t \le T \text{ and some constants } C, A$$
 (2.5)

then

$$v(t) \le C \exp(At) \text{ for } 0 \le t \le T$$
 (2.6)

Proof For non trivial case, assume $A \neq 0$. Let $\phi(t) = \int_0^t v(s) \, \mathrm{d}s$, then $\phi'(t) \leq C + A\phi(t)$. Note that

$$\frac{d}{dt}(e^{-At}\phi(t)) = e^{-At}(\phi'(t) - A\phi(t)) \le Ce^{-At}.$$
(2.7)

Integrating both sides give us $\phi(t) \leq \frac{C}{A}(e^{At}-1)$, plugging into the $\phi'(t) \leq C + A\phi(t)$ gives us $v(t) \leq C \exp(At)$.

Proof.

 \bullet Uniqueness Let $X_1(t,w), X_2(t,w)$ be solutions with initial values Z, \hat{Z} resp. We will show that

$$\mathbb{P}(\{X_1(t,w) = X_2(t,w)\}, t \in [0,T]) = 1$$
(2.8)

Put $a(s,w) = b(s,X_s) - b(s,\hat{X}_s)$ and $\gamma(s,w) = \sigma(s,X_s) - \sigma(s,\hat{X}_s)$. Then

$$\mathbb{E} |X_t - \hat{X}_t|^2 = \mathbb{E} \left(Z - \hat{Z} + \int_0^t a \, \mathrm{d}s + \int_0^t \gamma \, \mathrm{d}B_s \right)^2$$

$$\leq 3 \mathbb{E} |Z - \hat{Z}|^2 + 3 \mathbb{E} \left(\int_0^t a \, \mathrm{d}s \right)^2 + 3 \mathbb{E} \left(\int_0^t \gamma \, \mathrm{d}B_s \right)^2$$

$$\leq 3 \mathbb{E} |Z - \hat{Z}|^2 + 3t \mathbb{E} \int_0^t a^2 \, \mathrm{d}s + 3 \mathbb{E} \int_0^t \gamma^2 \, \mathrm{d}s$$

$$\leq 3 \mathbb{E} |Z - \hat{Z}|^2 + 3(1+t)D^2 \int_0^t \mathbb{E} |X_s - \hat{X}_s|^2 \, \mathrm{d}s$$

Let
$$v(t) = \mathbb{E} |X_t - \hat{X}_t|^2$$
; $0 \le t \le T$ satisfies

$$v(t) \le F + A \int_0^t v(s) \, ds$$
 where $F = 3 \mathbb{E} |Z - \hat{Z}|^2$ and $A = 3(1+T)D^2$ (2.9)

Cont.

By the Gronwall inequality, we conclude that

$$v(t) \le F \exp(At) \tag{2.10}$$

Now assume that $Z=\hat{Z}$. Then F=0 and v(t)=0 for each $t\geq 0$. By the continuity of $t\mapsto |X_t-\hat{X}_t|$ the argument follows.

Existence

Define $Y_t^{(0)} = X_0$ and $Y_t^{(k)}$ inductively as follows

$$Y_t^{(k+1)} = X_0 + \int_0^t b(s, Y_s^{(k)}) \, \mathrm{d}s + \int_0^t \sigma(s, Y_s^{(k)}) \, \mathrm{d}B_s \tag{2.11}$$

Then, a similar computation as for the uniqueness above gives

$$\mathbb{E}|Y_t^{(k+1)} - Y_t^{(k)}|^2 \le (1+T)3D^2 \int_0^t \mathbb{E}|Y_s^{(k)} - Y_s^{(k-1)}|^2 \,\mathrm{d}s,\tag{2.12}$$

for k > 1, t < T and

$$\mathbb{E} |Y_t^{(1)} - Y_t^{(0)}|^2 = \mathbb{E} \left| \int_0^t b(s, X_0) \, ds + \int_0^t \sigma(s, X_0) \, dB_s \right|^2$$

$$\leq 2C^2 t^2 (1 + \mathbb{E} |X_0|^2) + 2C^2 t (1 + \mathbb{E} |X_0|^2) \leq A_1 t$$

where the constant A_1 only depends on C,T and $\mathbb{E}|X_0|^2$.

Cont (2).

So by induction on k, we obtain

$$\mathbb{E}\left|Y_t^{(K+1)} - Y_t^{(k)}\right|^2 \le \frac{A_2^{k+1}t^{k+1}}{(k+1)!}; \quad k \ge 0, t \in [0, T]$$
(2.13)

for some suitable constant A_2 depending only on C, D, T and $\mathbb{E}|X_0|^2$. Now

$$\begin{split} \sup_{0 \leq t \leq T} |Y_t^{(k+1)} - Y_t^{(k)}| &\leq \int_0^T \left| b(s, Y_s^{(k)}) - b(s, Y_s^{(k-1)}) \right| \, \mathrm{d}s \\ &+ \sup_{0 \leq t \leq T} \left| \int_0^t (\sigma(s, Y_s^{(k)}) - \sigma(s, Y_s^{(k-1)})) \, \mathrm{d}B_s \right| \\ \mathrm{Since} \, \left\{ A + B > 2^{-k} \right\} &\subseteq \left\{ A > 2^{-k-1} \right\} \cup \left\{ B > 2^{-k-1} \right\}, \\ \mathbb{P}(\sup_{0 \leq t \leq T} |Y_t^{(k+1)} - Y_t^{(k)}| > 2^{-k}) \\ &\leq \mathbb{P}\left(\left(\int_0^T |b(s, Y_s^{(k)}) - b(s, Y_s^{(k-1)})| \, \mathrm{d}s \right)^2 > 2^{-2k-2} \right) \\ &+ \mathbb{P}\left(\sup_{0 \leq t \leq T} \left| \int_0^t (\sigma(s, Y_s^{(k)}) - \sigma(s, Y_s^{(k-1)})) \, \mathrm{d}B_s \right| > 2^{-k-1} \right) \\ &\leq 2^{2k+2} D^2(T+1) \int_0^T \frac{A_2^k t^k}{k!} \, \mathrm{d}t \leq \frac{(4A_2T)^{k+1}}{(k+1)!}, \ \ \text{if} \, A_2 \geq D^2(T+1) \end{split}$$

Cont (3).

Therefore, by the Borel-Cantelli Lemma,

$$\mathbb{P}\left(\sup_{0\leq t\leq T}|Y_t^{(k+1)}-Y_t^{(k)}|>2^{-k} \text{ for infinitely many } k\right)=0 \tag{2.14}$$

Therefore, almost surely there exists $k_0(w)$ such that

$$\sup_{0 \le t \le T} |Y_t^{(k+1)} - Y_t^{(k)}| \le 2^{-k} \quad \text{ for } k \ge k_0$$
 (2.15)

Therefore the sequence

$$Y_t^{(n)} = Y_t^{(0)} + \sum_{k=0}^{n-1} (Y_t^{(k+1)}(w) - Y_t^{(k)}(w))$$
 (2.16)

is uniformly convergent in [0,T] almost surely. Denotes the limit process by X_t . Then, X_t is t-continuous and \mathcal{F}_t^Z -measurable for all t.

Moreover using eq. (2.13), we can deduce that

$$\mathbb{E}|Y_t^{(m)} - Y_t^{(n)}|^{2^{1/2}} \le \sum_{k=n}^{\infty} \left(\frac{(A_2 t)^{k+1}}{(k+1)!}\right)^{1/2} \to 0 \text{ as } n \to \infty$$
 (2.17)

So $\{Y_t^{(n)}\}_{n=1}^{\infty}$ converges in $L^2(P)$ to a limit Y_t , then we must have $Y_t = X_t$.

Cont (4).

It remains to show X_t satisfies eq. (2.3). For all n we have

$$Y_t^{(n+1)} = X_0 + \int_0^t b(s, Y_s^{(n)}) \, \mathrm{d}s + \int_0^t \sigma(s, Y_s^{(n)}) \, \mathrm{d}B_s.$$
 (2.18)

LHS goes to X_t as $n \to \infty$ uniformly almost surely. By eq. (2.17) and the Fatou lemma we have

$$\mathbb{E} \int_0^T |X_t - Y_t^{(n)}|^2 dt \le \liminf \mathbb{E} \int_0^T |Y_t^{(m)} - Y_t^{(n)}|^2 dt \to 0$$
 (2.19)

as $n \to \infty$. It follows by the Itô isometry that

$$\int_0^t \sigma(s, Y_s^{(n)}) dB_S \to \int_0^t \sigma(s, X_s) dB_S$$
 (2.20)

in $L^2(P)$ and by the Hölder inequality that

$$\int_0^t b(s, Y_s^{(n)}) \, \mathrm{d}s \to \int_0^t b(s, X_s) \, \mathrm{d}s \tag{2.21}$$

in $L^2(p)$. By taking the limit, we obtain eq. (2.3) for X_t .

• Why do we need that independent Z of B?

Cont (4).

It remains to show X_t satisfies eq. (2.3). For all n we have

$$Y_t^{(n+1)} = X_0 + \int_0^t b(s, Y_s^{(n)}) \, \mathrm{d}s + \int_0^t \sigma(s, Y_s^{(n)}) \, \mathrm{d}B_s.$$
 (2.18)

LHS goes to X_t as $n \to \infty$ uniformly almost surely. By eq. (2.17) and the Fatou lemma we have

$$\mathbb{E} \int_0^T |X_t - Y_t^{(n)}|^2 dt \le \liminf \mathbb{E} \int_0^T |Y_t^{(m)} - Y_t^{(n)}|^2 dt \to 0$$
 (2.19)

as $n \to \infty$. It follows by the Itô isometry that

$$\int_0^t \sigma(s, Y_s^{(n)}) dB_S \to \int_0^t \sigma(s, X_s) dB_S$$
 (2.20)

in $L^2(P)$ and by the Hölder inequality that

$$\int_{0}^{t} b(s, Y_{s}^{(n)}) ds \to \int_{0}^{t} b(s, X_{s}) ds$$
 (2.21)

in $L^2(p)$. By taking the limit, we obtain eq. (2.3) for X_t .

ullet Why do we need that independent Z of B?

We need B to be a Brownian motion with respect to the filtration \mathcal{F}^Z_t to define $\int_0^t \sigma(s,Z)\,\mathrm{d}B_s$.

- If We are only given the functions b(t,x) and $\sigma(t,x)$ and ask for a pair of processes $((\tilde{X}_t,\tilde{B}_t),\mathcal{H}_t)$ on a probability space $(\Omega,\mathcal{F},\mathbb{P})$, then the solution $(\tilde{X}_t,\tilde{B}_t)$ is called a weak solution. Here \mathcal{H}_t is an increasing family of σ -algebras such that \tilde{X}_t is \mathcal{H}_t -adapted and \tilde{B}_t is an \mathcal{H}_t -Brownian motion.
- The uniqueness we obtained in the previous proof is called strong or path-wise uniqueness, while weak uniqueness simply means that any two solutions are identical in law, i.e. have the same finite-dimensional distributions.

- If We are only given the functions b(t,x) and $\sigma(t,x)$ and ask for a pair of processes $((\tilde{X}_t,\tilde{B}_t),\mathcal{H}_t)$ on a probability space $(\Omega,\mathcal{F},\mathbb{P})$, then the solution $(\tilde{X}_t,\tilde{B}_t)$ is called a weak solution. Here \mathcal{H}_t is an increasing family of σ -algebras such that \tilde{X}_t is \mathcal{H}_t -adapted and \tilde{B}_t is an \mathcal{H}_t -Brownian motion.
- The uniqueness we obtained in the previous proof is called strong or path-wise uniqueness, while weak uniqueness simply means that any two solutions are identical in law, i.e. have the same finite-dimensional distributions.

Lemma 2

If b and σ satisfy the conditions of Theorem 1 then we have A solution (weak or strong) of eq. (2.3) is weakly unique.

 There are stochastic differential equations which have no strong solutions but still a (weakly) unique weak solution

Example 3 (The Tanaka equation). Consider the 1-dimensioanl stochastic differential equation

$$dX_t = \operatorname{sign}(X_t) \, dB_t; \quad X_0 = 0 \tag{3.1}$$

where

$$\operatorname{sign}(x) = \begin{cases} +1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Note that $\sigma(t,x)=\mathrm{sign}(x)$ does not satisfy the Lipschitz condition, so theorem 1 does not apply. Indeed, the eq. (3.1) has no strong solution. To see this, let \hat{B}_t be a Brownian motion generating the filtration $\hat{\mathcal{F}}_t$ and define

$$Y_t = \int_0^t \operatorname{sign}(\hat{B}_s) \, \mathrm{d}\hat{B}_s$$

By the Tanaka formula we have

$$Y_t = |\hat{B}_t| - |\hat{B}_0| - \hat{L}_t(w),$$

where $\hat{L}_t(w)$ is the local time for $\hat{B}_t(w)$ at 0.

Cont (2).

It follows that Y_t is measurable w.r.t the σ -algebra \mathcal{G}_t generated by $|\hat{B}_s(\cdot)|$; $s \leq t$, which is strictly contained in $\hat{\mathcal{F}}_t$. Hence the σ -algebra \mathcal{N}_t generated by $Y_s(\cdot)$; $s \leq t$ is also strictly contained in $\hat{\mathcal{F}}_t$

Now suppose X_t is a strong solution of eq. (3.1). It follows that X_t is a Brownian motion w.r.t the measure \mathbb{P} . Let \mathcal{M}_t be the σ -algebra generated by $X_s(\cdot); s \leq t$. We can write eq. (3.1) as

$$dB_t = \operatorname{sign}(X_t) \, dX_t \tag{3.2}$$

By the above argument applied to $\hat{B}_t = X_t, Y_t = B_t$ we conclude that \mathcal{F}_t is strictly contained in \mathcal{M}_t . But this contradicts that X_t is a strong solution. Hence strong solutions of eq. (3.1) do not exist.

Cont (2).

It follows that Y_t is measurable w.r.t the σ -algebra \mathcal{G}_t generated by $|\hat{B}_s(\cdot)|$; $s \leq t$, which is strictly contained in $\hat{\mathcal{F}}_t$. Hence the σ -algebra \mathcal{N}_t generated by $Y_s(\cdot)$; $s \leq t$ is also strictly contained in $\hat{\mathcal{F}}_t$

Now suppose X_t is a strong solution of eq. (3.1). It follows that X_t is a Brownian motion w.r.t the measure \mathbb{P} . Let \mathcal{M}_t be the σ -algebra generated by $X_s(\cdot); s \leq t$. We can write eq. (3.1) as

$$dB_t = \operatorname{sign}(X_t) \, dX_t \tag{3.2}$$

By the above argument applied to $\hat{B}_t = X_t, Y_t = B_t$ we conclude that \mathcal{F}_t is strictly contained in \mathcal{M}_t . But this contradicts that X_t is a strong solution. Hence strong solutions of eq. (3.1) do not exist.

To find a weak solution of eq. (3.1) we simply choose X_t to be any Brownian motion \hat{B}_t . Then we define \tilde{B}_t by

$$\tilde{B}_t = \int_0^t \operatorname{sign}(\hat{B}_s) \, \mathrm{d}\hat{B}_s = \int_0^t \operatorname{sign} \, \mathrm{d}X_s$$

i.e. $d\tilde{B}_t = \operatorname{sign}(X_t) dX_t$. Then

$$dX_t = \operatorname{sign}(X_t) d\tilde{B})_t$$

so X_t is a weak solution.