JVC

SERVICE MANUAL

COLOUR VIDEO CAMERA HEAD

TK-1070E

BASIC CHASSIS

V57

(NOTE)
Electrical components having special safety-related characteristics are identified by shading () on the schematic diagram and by () on the parts list in SERVICE MANUAL. When replacing these components, by sure to use designated parts.

CONTENTS

SPECIFICATIONS	. 2
OPERATING INSTRUCTIONS	. 3
MAIN PARTS LOCATION	. 7
SPECIFIC SERVICE INSTRUCTIONS	. 9
SERVICE ADJUSTMENTS	. 15
PARTS LIST	. 43
STANDARD CIRCIUT DIAGRAM	

SPECIFICATIONS

Item	Content
Туре	Colour video camera head
Signal system	Based on PAL standard
Image pick up element	2/3-inch interline-transfer system CCD solid-state image sensor
illage pick up element	(single board type, with complementary color system)
Number of offestive pivole	756(H) × 581(V)
Number of effective pixels	
Scanning lines	625lines, 2:1 interraced
Scanning frequency	15,625Hz(H) , 50Hz(V)
Sync. system	Internal / External (Automatic)
Sync. input	Composite video signal : 1Vp-p, 75Ω unbaranced(BNC connector)
	Black burst signal: 0.45Vp-p, 75Ω
	HD / VD : 4Vp-p, 75Ω (Negative)
Sync. output	Composite sync. signal: 2Vp-p, 75Ω (Negative)
Video output	Composite video signal : 1Vp-p, 75Ω unbaranced(BNC connector)
	Separated Y/C video signal: Y / 1Vp-p, 75Ω unbaranced
	C / 0.3Vp-p(burst) , 75Ω unbaranced
	RGB video signals : 0.7Vp-p, 75Ω
Malaa OAL	47dB(GAIN "0", DETAIL "OFF", GAMMA "0.45", SHUTTER "NORM")
Video S/N	
Horizontal resolution	Composite: 460 TV lines
	Y/C: 470TV lines
	RGB: 460 TV lines
Standard required illumination	2000Lux(F5.0, 3200K)
Switching function	AGC selection "AUTO / FIX"
•	GAIN selection "0 / +6dB / +12dB"
	SHUTTER mode selection
	"NORM. / 1/120 / 1/125 / 1/250 / 1/500 / 1/1000 / 1/2000 /
	1/4000 / 1/10000"
	WHITE BALANCE mode selection
	"录 (halogen lamp) / AUTO / MANU."
	DETAIL selection "ON / OFF"
	GAMMA selection "0.45 / 1"
Adjusting-function	Flange-back adjustment
	manual white balance adjustment (2 axes : R-B, G-Mg)
	H PHASE adjustment
	SC PHASE adjustment
Lens mount	C mount
Power requirement	DC12V (±10%)
Power consumption	8.7VA(when input DC12V, when jointing HZ-C611AF(U))
Operating temperature range	0°C~ +40°C
	Less than 90% Rh (noncondensing)
Operating humidity range	△QMF51E2-1R0S (T1.0A)
Fuse	
Provived accessory	Lens mount cap ×1
	Iris plug(3-pin) ×1
,	Connection cable ×1
	Control section cover ×1
Dimensions	Width: 83.5mm(max.), Depth: 135mm(max.), Height: 82mm(max.)
	[including control section cover and tripod mounting base]
Weight	Approx. 710g (Only body)
	Y
*	*
I .	

Design & specification subject to change without notice.

OPERATING INSTRUCTIONS

WARNING:

88 TO PREVENT FIRE OR SHOCK HAZARD, NOT EXPOSE THIS APPLIANCE TO RAIN MOISTURE

CAUTION:
To provent electric shock, do not open the unit. No user serviceable parts inside. Refer servicing to qualified service personnel.

CAUTION:

To prevent electric shocks and risk of fire hazards, do NOT use other than the specified power source.

This installation should be made by a qualified service person and should conform to all local codes.

rhank you for purchasing this JVC colour video camera head

The TK-1070E is a cotour video camera head using a single CCD (Charge Coupled Device) solid-state pick-up element.

processing system for picture composition, graphics, editing, synthesis, measurement, recognition, analysis, etc.) shooting such material as images of paintings, photographs, real This camera head is for use in an image processing system subjects, etc. for processing

This instruction manual is divided into three sections: English, German and French.

2-17	18 - 33	34 - 50
Pages	Pages	Pages
nolish Pages	3ermanPages 18 - 33	renchPages 34 - 50

CONTENTS

Features	
Precautions (instellation)	
Controls and Their Locations4	
Connection Examples	
Adjustments for Gen-Lock Operation	
Precautions (use)	
Snacifications 17	

FEATURES

- 2/3" high-precision CCD (Charge Coupled Device) (with approx. 440,000 effective pixels) solid-state pickup element for clear pictures without image lag, burn or geometrical distortion.
- High-resolution design for a horizontal resolution of 470 TV lines (separated Y/C video signals).
 Optical RGB titlers to realize superior colour reproduction.

* Also fully read "Precautions (use)" on page 16.

pictures.

Orovenient external flange-back adjustment function.

Designed for use with optional video cannets lens HZ-C611AF(U) (F1.2, f =11-66 mm, 6:1 zoom ratio, auto focus.

electric zoom).
 The camera can be installed using either the bottom or top panel, according to the installation location.

This could damage components and degrade the picture.

Avoid instelling in places where there are strong magnetic fields and electric signals.
 The picture could be distroid.
 Avoid instelling in places where the camera would be subject to strong vibrations.

This could damage CCD and other components and cause

This could damage the camera.

Avoid installing in places where there is radiation.

Avoid installing in a humid or dusty place.

range of systems.

• All switches, adjustment controllers and button can be operated from the side of the unit.

• White balance adjustment with these settings. Thatogen lamp*, "MANU" or "AUTO (memory)*, according to the

colour temperature of the ambient light.

• Built-in electronic shutter allows switching between 9 shutter ÄGC (Automatic Gain Control) function to automatically increase camera's sensitivity when the level of ambient light DETAIL switch to emphasize edges of the playback

Do not install the camera where the temperature could exceed the allowable range. If used at extremely low or high temperatures, the camera could be damaged (allowable operating temperature range

Water can cause malfunctions and damage the camera.

Outputs 3 types of video signal: composite video signal, separated YCv video signals and RGB colour video signals.
 Gen-lock operation is possible by inputting an external sync reference signal (HD. VD, composite video signal or black burst signal).

Gamma correction switch to allow connection to a wider

Never expose the camera to rain or water.

INSTALLATION)

signal: composite video signal,

PRECAUTIONS

This mount is for the installation of a C-mount lens. Install the optional video camera tens HZ-C611AF(U) exclusively designed for this camera. A 2/3" C-mount lens for a TV

Lens mount

camera also can be installed.

LOCK screw
Loosen this screw when furning the FOCUS screw to
adjust the itange-back (the distance from the lens
mounting position to the focal point). Upon completion of adjustment, re-tighten it.

If distance L of the lens (shown below) is more than 8
 mm, the lens cannot be installed on this camera.

The cap prevents dirt getting into the camera and protects internal parts from dirt and damage. Be sure to cap the tens mount when the tens is not mounted.

POCUS screw

When a lens is mounted, the adjustment of flange-back (the distance from the lens mounting position to the focal point) may sometimes be required. When the flange-back is not correct, focusing may not be possible with the focus ring of the lens. Turn this seave to adjust the flange-back so that the best focus can be obtained. Lossen the LOCK screw when adjusting, and re-lighten it upon completion.

CONTROLS AND THEIR LOCATIONS

VIDEO OUT Power input connector (12 V ==) AUTO IRIS connector REF. IN Tripod mounting base Lens mount cap POCUS screw 1 (....) RGB-Y/C-REF. input/output connector S AF LENS ~ connector <Rear View> Lens Adjustment control section В <Front view> <Side view> 3 2

Pin assignment: RGB·V/C·REF, Input/output

connector (D-sub 9-pin)

Tripod mounting base

- predure screws (black) retaining the tripod smove if from the bottom panel. iounting base to the top panel with Į
- (2) Installation screws for tripod mounting base

This connector outputs either RGB wideo signals or separated YC whose signals either RGB wideo signals or separated YC whose signals either With the RGB-Y/C select swift. See "IB Adjustment control section" on page 11, the composite wideo signal, and composite sync signal. Also, the external sync reference signal (composite sync signal. Also, the external sync reference signal (composite video signal, back burst signal and HD. VD) can be input to this connector to the video signal connectors of the image processing system. When the connectors, use the optional camera cable VC-463-2E.

In the case of a D-sub connector, use the optional D-sub cable VC-463-2E.

In the case of a D-sub connector, use the optional D-sub cable VC-462-2E.

Use 2.6 mm-diameter screws (millimetric pitch screw)
 when attaching plug.

Use a connection cable with an impedance of 75 ohms. (The cable should be as short as possible.)
 When the external sync reference signal to be input is less than —4 dB with respect to the reference level, sync operation is not possible.

Reference level:

- Composite video signal = 1 Vp. 75 ohms
 Black burst signal = 4.5 Vp. 75 ohms
 Black burst signal = 4.5 Vp. 75 ohms
 HD. VD = 4 Vp. 75 ohms (Negative)
 Do not input the composite video signal for black burst signal and the HD. VD together.
 Signal and the HD. VD together.
 Do not input the external sync relecence signal to both REF. IN connector and the RGB-VIC-REF. input/output
 - connector.

 When the optional camera cable VC-451-2E is used, gen-lock operation with HD. VD is not possible.

when Y/C is selected Y (luminance) output C (chroma) output Composite video output (VBS) Composite video signal output (VBS) Composite sync output (C. SYNC) External sync input (VBS, B.B.), Horizontal drive pulse input (HD) 1 Vertical drive pulse input (VD) GND G (GREEN) output RGB is selected Signals when R (RED) output 8 (BLUE) output Pin No. 6

9 AF LENS connector

Connect the lens plug of the optional video camera tens HZ-C611AF(t) to this connector,

When picture is wholly bright or dark, adjust it by lits Compensation knob. (Iris is automatically set regardless of itis compensation setting.)

Pin No. Signal 1 DC 12V 2 GND 3 DC 8.5V 4 Insconted DC voltage (GND Pin assignment: AF LENS connector (DIN 6-pin)

BNC connector to output a composite video signal. Connect to the video input connector of a monitor, VTR, etc. VIDEO OUT connector

e VC-452-2E (optional)

BNC connector to input the external sync reference signal, and as a composite video signal or black burst signal. When the sync reference signal is input, the camera automatically switches from the internal to external sync mode to perform gen-lock operation B REF. IN connector

D-sub 9-pin

ox.2m) .

When the external sync reference signal to be input is less than -4 dB with respect to the reference level, sync operation is not possible.

screws (millimetric pitch screw)

Composite video signal = 1 Vp.p. 75 ohms
Black burst signal = 0.74 Vp.p. 75 ohms
Black burst signal = 0.74 Vp.p. 75 ohms
• When operating the camera using the internal sync
eleanene signal, unplug the connector.
When the ordernal sync reference signal is being input
to the RGB-V/C-REF. input/output connector, do not

Remove the three some mounting base to rem (2) Attach the tripod mounting these to rem (2) Attach the tripod mounting three screws (black). (1) Installation screws tripod mounting base		Bottom view		D-sub - D-sub cable (0-sub 9-pin - D-sub 9-pin)	D-sub 9-pin	• Use 2.6 mm-diameter s	
I ripod mounting base This is the base for installing the camera. 2 screw holes (1/4*-20/Uk) are provided for mounting the camera on a fixed or rotating base or tripod. When the case is to be installed on the top panel, reposition the tripod base on the top panel. Since the 2 screw holes are provided, if you want to strengthen the installation, use both screw holes. The tits cable of the lens can be stored and fixed in this base.	Dimensions 2.0 Color Co	Arranging the Iris cable Opening Opening Closing	Arrangement Sinaph Figure 5 October	(BNC	D-sub 8-pin D-sub 8-pin G/Y - Table 8-pin output G/Y - Table 8-pin output T-signal output B/C - CIB 8-signal output C-signal output	2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Use 2.6 mm-diameter screws (millmetric pitch screw) when attaching plug.

M AUTO IRIS connector

When using an auto-iris lens other than the optional HZ-C611AF(U), connect the iris cable of the lens to this

connector.

 Use auto-iris lenses using with a power consumption of If the cable has a plug of a different type, replace with the provided 3-pin iris plug. 50 mA or less.

Pin assignment: AUTO IRIS connector (3-pin)

GND Video (0.7 Vp-p. high impedance, no sync) DC 11.5 V (50 mA max)

Assembling the provided iris plug (3-pin) Clamp Colone Using clamp Use a cable with diameter of 4.6 mm or less.

White balance auto preset button [SET]

(ii) SHUTTEH mode select switch
This varies the shutter speed (the time the charge is stored). Normally, when a fast-moving object is being shot, sills or slow-motion played back pictures will be blurined. In this case, switching the shutter speed form the normal speed of 1/25 second to a faster speed allows each frame to be recorded with greater detail, at the higher speed.

_	_		_				_		_
1/25 second	Normally, set to this position.	1/120 second	1/125 second	1/250 second	1/500 second	1/1000 second	1/2000 second	1/4000 second	1/10000 second
NORM		120	125	250	200	1000	2000	4000	10000

Motes:
• Faster shutter speads require more light than the normal speed. (In the 1000 mode, the sensitivity is approx. 1/40 that at normal speed; in the 10000 mode, approx. 1/400.)

At faster shutter speeds, shooting with artificial lighting (especially fluorescent lights) will cause the pictures to flicker. Smear (bright horizontal or vertical lines) which can ollen be seen with solid-state pickups may appear in the picture.

POWER indicator

Lights when the camera is powered.

② White balance mode select switch [ﷺ. MANU, AUTO] Selects the white balance mode.

条: For shooting under the antificial light such as halogen famps (colour temperature approx.

ENGLISH

MANU : Manual adjustment is possible.

AUTO : For setting to the white balance stored by the white balance and preset button.

(3) White balance adjustment controls [G-Mg, B-F] When the white balance mode select switch is set to "MANU"; the white balance can be adjusted manually. (Use correctly adjusted colour monitor to check the white balance).

(Use Ordectly adjusted colour monitor to check the white balance).

G-Mg : Turn to the 'G' side to increase the amount of

magenia.

Turn to the "B" side to increase the amount of blue.

Turn to the "R" side to increase the amount of red. green in the picture. Turn to the "Mg" side to increase the amount B.B

-(ii) RGB-Y/C select switch

GEN LOCK PHASE adjustment section

SHUTTER mode select switch

Installation of the control section cover (provided)

=

3

(1) Insert the lug of the cover into the hole.
(2) Cover the section.
(3) Slide the cover lock knob in the direction of the arrow

Adjustment control section

Adjust and set, according to the shooting conditions and the equipment connected to the camera. After completing adjustments and settings, install the control section cover

-(1) DETAIL switch -6 AGC switch GAMMA correction switch (1) Gain select switch White balance mode select switch White balance auto preset indicator White balance auto preset button @ POWER indicate White balance adjustment control

① DETAIL, switch

Emphasizes the edges of the playback picture.

ON: Emphasizes the edges of the picture. When connecting a monitor, etc., set this position.

OFF: The edges of the picture are not emphasized. When connecting an innage processing system,

etc., set to this position.

ENGFISH

GAMMA correction switch
 Switch depending on the connected equipment.
 Admina is corrected. When connecting a monitor, VTR, etc., set to first position.
 Gamma is not corrected. When connecting a

image processing system, etc., set to this

: Outputs RGB signals, composite video signal (I) RGB·Y/C select switch [D-SUB OUT]
Switches the output signals of the RGB·Y/C-REF and composite sync signat.

Y/C VBS: Outputs separated Y/C video signals, composite Input/output connector. RGB : Outputs RGI

video signal and composite sync signal, video signal and signal and composite sync signal.

See "ADJUSTMENT FOR GEN-LOCK OPERATION" on page 15.

(provided, refer to page 13).

■ Power input connector (12 V ==) Input connector for power (DC 12 V).
Use the provided cable for connecting the camera to opional AC adapter AC-C724 (for the UK) or AC-C722 (for countries other than the UK).

Use a power source of DC 12 V.

Pin assignment: Power Input connector (8-pin) GND (DC 12 V) GND GND (DC 12 V) DC 12 V GND DC 12 V Pin No.

With the while balance mode select switch set to "AUTO", the while balance required for a particular lighting can be stored in memory. Press the white balance also preset button to memorize the white balance, white shouling a write object. The while balance also preset indicator lights (Colour temperature that can be stored in memory is from 2800K to 6000K.)

Switches the setting of the camera's sensitivity,

AUTO: AGC activated. The camera's sensitivity is
automatically made to increase when the level
of ambient light drops.

The sensitivity set with the Gain select switch is

6 AGC (Automatic Gain Control) switch

AUTO, FIX

When set to "AUTO", if the AGC is activated, the playback picture will become slightly grainy.

 Can select switch (0, +6, +12)
 Switches the sensitivity when the AGC switch is set to FKY.

+12:

œ

Normal sensitivity is engaged.
 Sensitivity increased by 6 dB.
 (The picture becomes slightly grainy.)
 : Sensitivity increased by 12 dB.

balance.

(3) White balance auto preset Indicator
Lights to indicate that the white balance has been stored in

When the shooting conditions change (when the colour temperature of the lighting changes), reset the white

CONNECTION EXAMPLES

Do not supply power to any of the connected equipment until all the connections are completed.
 Thoroughly read the instruction manuals of all equipment to be connected.

ADJUSTMENTS FOR GEN-LOCK OPERATION

When performing gen-lock operation by inputling an external sync reference signal, adjust the phase if necessary. The horizontal phase (H PHASE) needs to be adjusted and also colour sub-carrier phase (SC PHASE) adjustment is necessary when the external sync reference signal is a composite video signal or a black burst signal.

GEN LOCK COARSE SC PHASE FINE adjustment control H PHASE — adjustment control

亞

SC PHASE COARSE adjustment switch

Adjusts the horizontal phase by this controller.

Colour sub-carrier phase adjustment [SC PHASE]
Adjust the colour sub-carrier phase by these controllers.

Adjust by changing the setting (1 or 2) of the SC PHASE
COARSE adjustment switch in conjunction with the SC PHASE FINE adjustment control. (This adjustment is not

Shutter mode (NORM, 1/120, 1/125, 1/250, 1/500, 1/1000, 1/2000, 1/4000, 1/10000)

1/2000, 1/4000, 1/10000)
While balance mode finalogen
lamp, MANU, AUTO)
Detail select (ON, OFF)
Gamma correction select (OA5, 1)
D-Sub output select (FIGB, YIC VBS)

Adjustments Lens mount

Black burst signal: 0.45 Vp-p, 75

Power requirement Power consumption Operating temperature ange Operating humidity daximum external

7 dB (Gain select to "0", detail switch set to "OFF", gamma correction switch set to "0.45", shutter mode select switch set to

Video S/N (standard)

Hortzontal resolution

Recommended Illumination Switching function

: Flange-back, manual white balance (2 axes: G-Mg, B-R), H PHASE adjustment, SC PHASE adjustment 83.5(W) x 135(D) x 82(H) mm finctuding tripod mounting base (including tripod mounting ba and control section cover) : Approx. 710 g (Only body) : fris plug (3-pin) x 1 Lens mount cap x 1 : 0°C to +40°C : Less than 90% Rh (non-condensing) : C mount : DC 12 V (±10%) : B.7 VA Weight Provided accessory

Design and specifications subject to change without notice.
 This colour wideo camera haad is designed to output wideo signals conforming to the PAL standard, so that it cannot be used with wideo recorders and colour monitors which use colour systems other than PAL.

Control section cover x 1 (The lens mount cap is attached when shipped.)

ENGLISH Gen-lock operation may become unstable using a signal containing severe jitter such as the signal played back by a VTR.

For more details, consult your local dealer.

Horizontal phase adjustment [H PHASE]

necessary when the external sync reference signal is HD. VD. Also, this has no effect on RGB signals.)

SPECIFICATIONS

Type Signal system Pick-up element

Effective pixels Scanning lines Sync system Sync input

Do not shoot any source of bright light.

If the object contains very bright areas, bright vertical or horizontal lines may appear on the screen. This is called "smear" a phenomenon which other occurs with solid-stated "smear" a phenomenon which other occurs with solid-stated.

While operating, if any abnormal condition (strange sound, smell or smoke) or a malfunction (no picture, etc.) is observed, stop using the camera immediately, turn the power off, then call your local dealer.

When operation is incorrect or a malfunction is

observed:

PRECAUTIONS

4

and never touch parts inside the camera as you could

Turn the power off and wipe off the dirt with a dry soft cloth. If it is extremely dirty, use furniture cleaner to wipe it off. To clean the lens, use a blower or lens cleaning fissue (available from any carners dealer).

pick-ups, and is not a malfunction Do not disassemble the camera

This could damage the camera, whether it is operating or

Do not point the camera at the sun.

Sync output

Video output

damage the camera.

Do not allow anything to get inside the camera.

If a metal or flammable object gets inside the camera, it may

Do not drop the camera or subject it to shocks and vibrations to avoid possible damage.

Also fully read "Precautions (installation)" on page 3.

Colour video camera head Based on PAL standard 2/3" CCD solid-state image

756 (H) x581 (V) 625 lines, 2:1 interfaced Internal/External (Automatic) Composite video signal: 1 Vp-p, 75

ohms HD. VD: 4 Vp-p, 75 ohms

(Negative)
Composite sync signal: 2 Vp-p, 75
ohms (Negative)
Composite video signal: 1 Vp-p, 75

Separated Y/C video signals: Y 1 Vp-p, 75 ohms C 0.3 Vp-p (burst signal), 75

ohms RGB video signals: 0.7 Vp-p, 75

Composite: 460 TV lines Y/C: 470 TV lines RGB: 460 TV lines

2000 fux (f/5.0, 3200K) Gain select (AUTO, 0, +6 dB, +12 dB)

6 (No.50564)

MAIN PARTS LOCATION

FUNCTION

X White balance selection switch

This is the switch which sets the color temperature according to the installation location of the camera head, as color temperature differs with installation location.

Switch positon	Color temperature
∰ (halogen lamp)	about 3200K
MANU	about 2800K~7000K
AUTO	about 2800K~6000K

X Factory switch setting

Switches are factory set as follows.

Switch	Position
AGC	AUTO
GAIN	0
WHITE BALANCE	*
GAMMA	0.45
DETAIL	ON
D-SUB OUT	RGB
SC COARSE	1
SHUTTER	NORM(1/50)

< FRONT SIDE >

< REAR SIDE >

SPECIFIC SERVICE INSTRUCTIONS

■ NOTICE OF SERVICE

TWO-SIDE HOLE-THROUGH PC BOARD

A two-sided hole-through PC Board is used on this camera. Patterns and wires are designed extra thin to attain highdensity component mounting. Rough handling may damage the patterns/wires or other components. When disassembling, repairing or adjusting the PC boards, exercise care to avoid damage.

PREPAIRING CIRCUIT BOARD MODULES

(1) Removing circuit board module

Pull out the circuit board, after removing solder completely with a solder sucker.

NOTE:

- Take care not to damage or remove solder from other parts.
- If more than two circuit boards are removed, make sure that they are replaced in the proper position.
- Some circuit boards cannot be removed unless the shielding case and chassis frame have been removed. When removing any circuit board, check if this applies to the PC board.

(2) Suppling circuit board module

The module circuit board is supplied together with the assembly, but the parts which are filled with lines will not be supplied.

PREPLACING CHIP COMPONENTS

Use a soldering iron (temperature $260\sim300^{\circ}$ C. about 17W) with a slim tip and high insulating ability. those with a solder sucker (about 55W) are usually easier to use.

NOTE:

This video camera uses many mini-flat ICs. To remove these, melt the solder while picking up the individual pin with fine tipped tweezers or cut off the IC pins. Take care not to scratch or peel off the BOARD foil pattern.

OCHIP COMPONENTS DISPLAY

Besides the resistors, short jumpers, FETs, ceramic capacitors, transistors and other chip components, the chip tantalum capacitors and chip variable resistor (CH VR) are used on the camera. None of these chip components are reusable again once they have been used.

NOTE:

- 1. Avoid rough handling of the VR.
- Use a thin-tip insulated-type. screwdriver to adjust the CH VR.
- How to read printings

On certain chip components, printing is applied as follows:

① Chip metal glaze resistor (CH MG R)

The diagram shown in Fig. A- (A) is applied to some of these resistors.

Reading method (Example)

$$\frac{123}{1} = \frac{12}{1} \times \frac{10^3}{1} \text{ Unit}[\Omega]$$

Shorting jumper (0[Ω] of CH MG R) No diagram is applied to shorting jumpers. A"0"is printed on Type Shown in Fig. A

Fig.A Example of CH MG R / CH C Cap. codes

3 Chip ceramic capacitor (CH C Cap.)

Reading method (Example)

 As shown in Fig. B some chip ceramic capacitors are represented by two digits. Table A shows how those figures should be read.

Fig.B Example of CH C Cap. codes

r								_		
Aiphabet	Α	В	С	D	E	F	G	Н	J	К
Constant	1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.2	2.4
Alphabet	L	М	N	Р	Q	R	s	Т	U	٧
Constant	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2
Alphabet	w	Χ	Υ	z		a	b	d	е	f
Constant	6.8	7.5	8.2	9.1		2.5	3.5	4.0	4.5	5.0
Alphabet	m	n	t	у						
Constant	6.0	7.0	8.0	9.0						
Numeral	0	1	2	3	4	5	6	7	8	9
Multiplier	100	101	102	10 ³	104	105			10-2	10-1

Table A CH C Cap. capacity value

4 Chip Variable Resistor (CH VR)

A two-digit code is printed on some CH VRs.

They indicate a reading method, as shown in Table B.

Three-digit codes are also used. These codes are read in the same way as those for CH ${\sf MG}$ ${\sf R}.$

(5) Chip Tantalum Capacitor (CH Tan. Cap.)

The diagram shown in Fig. C is applied to some of the CH tantalum capacitors.

Reading methd (Example)

The type shown in Fig. C is $10\mu F,\ 16WV$ chip tantalum capacitor.

Fig.C Example of CH Tan. C Cap. codes

6 Chip Transistor

The labels shown in Table C are applied to the chip transistor.

Parts No.	Display method
2SC2778(BC)	®® K. C denotes ≥SC2778 parts ranking : B
2SC2404(D)	U. D
2SC2295(BC)	V.B V.C
2SC4176(4-5)	B34 B35
2SD601(QR)	Y. Q Y. R
2SD1030(RS)	1ZR 1ZS
2SB709(QR)	A. Q A. R
2SA1610(3-4)	Y33 Y34
2SA1022(BC)	E.B E.C

Table C Chip transistor labels

7 Chip FET

The following printing is applied to the chip FET.

Parts No.	Display method
2SK198(QR)	10R denotes Y 2SK198 parts ranking: Q
2SK94	x1 x2 x3 x4

Table D Chip FET codes

8 Chip Diode

The following labels are applied to the chip diode.

Parts No.	Display method
MA151K	MA151
MA151WK	M. T
MA157	M. R
1S2853	A3
1S2857	A5
MA3047(L)	4. 7L
MA3056(H)	5. 6H

Table E The display of chip diode

Code	12	22	32	52	72	13	23	33	53	73	14
Resistance Value	100Ω	220Ω	330Ω	470Ω	680Ω	1kΩ	2.2kΩ	3.3kΩ	4.7kΩ	6.8kΩ	10kΩ
Code	24	34	54	74	15	25	35	55	75	16	
Resistance Value	22kΩ	33kΩ	47kΩ	68kΩ	100kΩ	220kΩ	330kΩ	470kΩ	680kΩ	1ΜΩ	

Table B CH VR resistance value display method in two-dighit

●"CHARGE COUPLED DEVICE (CCD)" IMAGER

1 Precautions for handling and replacing CCD imager

CCD is characteristic of many advantages, but it also has some disadvantages. The following are measures to deal with these disadvantages.

- (1) CCD imager is a circuit element which is very sensitive to static electricity.
 - The potential differences caused by the electrostatic chargewhich have been accumulated in the clothing and human body-sometimes destruct the insulation of the CCD imager. Therefore, handle the "high-priced" CCD imager with more attention thereto tan to the C-MOS (Complementary MOS), especially during the dry season and in dry places.

- Maintain the CCD imager in the provided pack or aluminum foil so that it can be kept at the same potential. Never unpack its container until the very moment of servicing.
- (2) The CCD imager is easily damaged by dust. Also it suffers considerable deterioration, when exposed to strong light.
 - When servicing, make sure that the CCD imager is kept free from such foreign material as dust. Use dry soft cloth or soft cloth moistured with ethyl alcohol to wipe off the foreign material.

 Do not exposed the CCD imager to such strong light as direct sunlight.

- (3)CCD imager is damaged instantly by the following malfunctions. Pay close attention to these malfunctions before servicing
- ① After removal of CCD, charge may remain at each terminal in the circuit side for some time. In this situation, when CCD is inserted to the socket, CCD may be distracted instantaneously due to the charge. To avoid this, CCD should be inserted with passage of some time (2 to 3 minutes) after removal.

OSPECIAL CHARACTERISTICS OF A CCD

The following phenomena can be expected when using the video camera with the CCD imager; they are not malfunctions.

Smear phenomenon

This phenomenon occurs when shooting a very bright object (such as electronic light, fluorescent lamp, the sun or a strong reflection).

Video monitor screen.

Due to the interline-transfer organization of the CCD image sensors (Refer to "The Interline-transfer Organization of the CCD Image Sensors"), this phenomenon is caused by electronic charges generated beneath the photosensors by a light with a long wavelength, such as an infrared light.

In the shutter mode, as the signal level drops down, the smear level becomes high relatively. However this means no failure.

• False signal

When vertical stripes or straight lines are shot, they may look wavy.

Blemishes

The photosensor elements generate electronic charges which ultimately produce horizontal and vertical rows in the CCD image sensor.

Therefore, any malfunctioning photosensor element will eventually cause a blemish on the monitor screen.

The interline-transfer organization of CCD image sensors

This CCD video camera module adopts an interline transfer organization in which precisely aligned photosensors and vertical shift registers are arrayed interlinearly and horizontal shift register links up with the vertical shift register, as shown. Light variations are sensed by the photosensors, which generate electronic charges proportional to the light intensity. The generated charges are fed into the vertical shift registers all at one. The charges are then transferred from the vertical shift registers to the horizontal shift registers successively and finally reach the output amplifier to be read out successively.

■ DISASSEMBLY PROCEDURE

- Before disassembling each part, be sure to turn off the power.
- When disassembling and replacing, be sure to attach the dust cap to protect the CCD imager and the optical low pass filter.

1. Removing external parts

- 1-1 Removing the side cover
- (1) Remove the two screws of (a) shown in Fig. 1.
- 1-2 Removing the tripod base
- (1) Remove the three screws of ® shown in Fig. 1.
- 1-3 Removing the rear cover
- (1) Remove the two screws of © shown in Fig. 1.

Fig. 1

2. Removing the chassis parts

* Remove external parts according to the instructions in item 1.

2-1 Removing the aluminium case

- (1) Remove the two screws of ① shown in Fig. 2.
- (2) It can be removed by pulling toward the terminal direction.

2-2 Removing the front cover

(1) Remove the four screws of ® shown in Fig. 2.

2-3 Removing the top frame

 Remove the five screws of [®] and two screws of [®] shown in Fig. 2.

2-4 Removing the chassis mount

(1) After removing the top frame the two screws of © and remove the connector and wire.

2-5 Removing the bottom frame

(1) Remove the four screws of © shown in Fig. 2.

2-6 Removing the terminal ass'y

(1) Removing the connector by just removing the top and bottom frames allows the terminal ass'y to be removed.

2-7 Removing the boards

(1) The MATRIX board can be opened in the outside(arrow) direction by removing the two screws of (1) shown in Fig. 2. The board can be removed by opening further.

Note: To mount the board, tilt the MATRIX board up a little bit and push in both hinge connectors. At this time, make sure to completely push in the hinge connectors.

- The module can be remove earsily since it is connected with the connector.
- After performing all of the items mentioned above, the mother board can be independently removed from the others by removing the earth wire and connector.

Fig. 2

3. Replacing CCD imager

- (1) Remove the imager part from the chassis according to "2-4 Removing the chassis mount"
- (2) Remove the screws of ① shown in Fig. 3 and take out the shield insulator from the imager board.
- (3) Remove the imager module. (It can be removed by pulling out/in the IC socket of the CCD.)
- (4) Remove the two screws of ® shown in Fig. 3 and remove the CCD holder.
- (5) Remove the two screws of © shown in Fig. 3 and remove the CCD imager. Take care at this time not to miss the insulater rubber.
- (6) Remouting after replacement can be accomplished by performing the above procedure in reverse.

4. Replacing the optical low pass filter

Note: The optical low pass filter can be removed without removing housing parts such as the aluminium case.

Fig. 3

SERVICE ADJUSTMENT

TOOLS AND FIXTURES FOR ADJUSTMENT

MEASURING INSTRUMENTS Oscilloscope1

•TOOLS AND FIXTURES

1. PATTERNS (Gray scale Pattern) (White Pattern) (Colour bar Pattern) W YI CY G Mg R B Note: Reflection-type patterns eventually suffer from drops in signal output level or loss of output uniformity.Periodic replacement is recommended. CC-2T GS-2A* WC-2A* Transmissive type Reflective type($\gamma = 2.2$) Reflective type 2. DRIVERS 3. COLOUR TEMP. CONVERSION FILTER 4. PIN CLIP MJ-033* Adj. driver W2+W4 & C2+C12 Slightly bending the pin KENKO, HOYA filter tip facilitates its use. filter: W2, W4 filter: C2, C12 5. LENS C-mount lens · Iris can be controlled manually. Note: Parts marked with an asterisk(*) can be ordered from the following section: PARTS SECTION OF THE SALES ENGINEERING DEPARTMENT, · Lens flange-back should be standard TELEVISION RECIVER DIVISION. · Zoom lens is recommended Parts that is not marked with asterisk(*) are able to get at your side. F1.4 lens is recommended.

■ INSTRUMENT CONNECTION AND SET UP

PRIOR TO STARTING ADJUSTMENT

(1) Warming up

Before adjustment, turn on the camera to warm it up for more than 10 minutes so that the camera operation may be stabilized.

(2) Lighting

- Adjust the distance between the light and pattern so that the illumination on the pattern is about 2,500 lux and the illumination over the entire pattern surface is as uniform as possible.
- Correct adjustment will be impossible if the illumination is too high, too low or uneven.

(3) About CCD imager

The CCD image is susceptible to static electricity. The insulator of this element might be damaged if a potential difference is caused by the electrostatic charge carried by clothes or body. Be careful when holding it because it is costly. Use special care in a dry atmosphere in a dry season.

(4) Tripod mounting

When mounting the camera with the external cover remove on a tripod, avoid excessively tightening the rear screw (near center of camera bottom) of the tripod base. (The circuit board may be damaged if too tight.)

If only the front diecast section is not removed, a front to rear difference is produced which prevents proper securing. In this case, be sure to also remove the front diecast section.

■ ADJUSTMENT PROCEDURE

1. Presetting

Before adjustment, preset the following switches .

1) AGC switch	→"FIX"
2) GAIN switch	→"0"
3) WHITE BALANCE switch	→"※"(halogen)
4) GAMMA switch	→"0.45"
5) DETAIL switch	→"ON"
6) D-SUB OUT switch	→"Y/C"
7) SC COARSE switch	→"1"
8) SHUTTER switch	→"NORM" (OFF)

In holding a test pin with a probe, take care set contact with any other pin. The CCD imager will be damaged if some text pins are accidentally connected.

3. EXT. TRIGGER

In adjusting the signal system, extract the trigger signal as required.

H-rate: TP-27 (ID) [MATRIX Board]

V-rate : [I] connector Pin [SSG Module]

4. JUST SCAN

Unless otherwise specified, apply "just scan" to all pattern adjustments.

5. Repeat adjustments optimum conditions are established.

6. Chip VR

Chip VR rotating position is designated as shown in the figure below for the convenience of explanation, since the chip VR can be rotated 360°.

Full-counterclockwise

Mechanical center

Full-clockwis

Full-counterclockwise

Mechanical center

Full-counterclockwise

7. No Adjustment of unspecified VRs

Never rotate VRs other than those specified by this SERVICE MANUAL.

ADJUSTMENT LOCATIONS

■ ADJUSTING STEP

1. SSG(Synchronous Signal Generator) adjustment

Note: Normally, this adjustment is not necessary. Proceed to the next "Signal system adjustments" directly.

2. Signal system adjustments

1. SSG (Synchronous signal generator) ADJUSTMENT

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description

No.	Item	instrument & pattern	Test point	Adjustment part	Description			
1	908fH & 4fsc adjustment	This adjustmen this adjustmen adjustment.	nt is required only when replacing peripheral devices which relate to SSG IC and the next signal system adjustment by skipping this					
	·	Frequency counter DC voltmeter SSG or HD-VD generator	TG Module F connector ⑤pin SSG Module I connector ⑥pin	C24(908fH) [TG Module] C07(4fsc) [SSG Module]	 Connect the frequency counter with F connector ⑤pin TG module and set to 14.1875MHz± 10Hz using C24(908fH). Insert the signal of SSG in the RGB·Y/C·SYNC in/out terminal and apply the H·V lock. If the H lock is at a distance at this time, apply the H lock with C07(4fsc). Connect the DC voltmeter with ⑥pin of the SSG module and set to 17.734475MHz± 10Hz using C07(4fsc). 			

2. SIGNAL SYSTEM ADJUSTMENTS

No.	Item	Measuring instrument & pattern	Test point	Adjustment part				Desc	riptio	n			
1	Preset	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-92 (VIDEO OUT) [TERMINAL Board]	R32(G MIX) [CDS Module] R59(GAMMA-2) R55(KNEE) R81(G CLIP) R86(R/B CLIP) R70(\(\gamma\) 1 G PED) R05 (\(\gamma\) 1 R/B PED) R71 (\(\gamma\) 1 R/B CLIP) [PROCESS Module] R12(W CLIP) [ENCODER Module]	1) AGC 2) GAII 3) WHI 4) GAM 5) DET. 6) D-St 7) SC (8) SHU Relea	Stment TE BA IMA AIL JB OU COAR: TTER ase the coper lioscop litude: MA 2 P LIP DESTA P(r = 1) EDES LIP(r)	LANCE IT SE is follow in the entropy of the $AL(r = 1)$ $TAL(r = 1)$	ving it iris iris wave	\rightarrow FIX \rightarrow 0 \rightarrow $\%$.4 \rightarrow 0 N \rightarrow 1 \rightarrow NC \rightarrow 1 \rightarrow NC (open I) \rightarrow R8	55 DRM(0) and opecom 2(G M 5(KN 11(G 0) 66(R/E 70(71 11(71) 71(71)	OFF) 1 con ust sc nes ma MIX) MMAA EE) CLIP) 3 CLIP G PE G CL	nnect to that aximu2) D) IIP) PED) CLIP)	the
2	SUB VOLTAGE adjustment	next adjustn	djustment is requinent. TP-A1 (CCD output) [IMAGER Module]	R15(VSUB) [IMAGER Module]	1. Cor with bed 2-1 • Sin the	nnect to R15(he DO (VSUB) the sp volta side	volti) so pecifie age in	meter that d vali	to TF the in ue as ons a	mager show are inc	and a r's vo n in f	djust Itage igure
		Integral num	ber part Decimal points. : E 1 → 14.1	part Numeric value	A B	C 12	D 13 onder	E 14	F 15 st foi	G 16 integ	H 17 gral n	18	J 19

No.	ltem	Measuring instrument & pattern	Test point	Adjustment part	Description
3	WHITE BALANCE rough	with the folio	s adjustment is per owing adjustment.	rformed only when	replacing the circuit board, normally proceed
	adjustment (INDOOR)	DC voltmeter	M connector ③ pin & ④ pin [CONTROL Module]	R43(R CONT.) R41(B CONT.) [CONTROL Module]	 Connect the DC voltmeter to ③pin of the M connector. Adjust to 2.55V with R43(R CONT.). Connect the DC voltmeter to ④pin of the M connector. Adjust to 2.75V by R41(B CONT.).
4	AGC MAXIMUM VOLTAGE adjustment	DC voltmeter	TP-F1 [CDS Module]	R16 (MAX GAIN) [CDS Module]	Connect the DC voltmeter to TP-F1 and adjust to 2.8V with R16(MAX GAIN).
5	0dB GAIN adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-F2 TP-F3 [CDS Module]	R12(0dB GAIN) [CDS Module]	 Adjust the iris knob so that TP-F2(CCD output)becomes 150mV as shown in figure 5-1. Connect the oscilloscope to TP-F3 and adjust with R12(0dB GAIN) so that 300mV is attained. (Figure 5-2)
			digni in the state of the state	150mV	300mV
		,	Fig. 5-1		Fig. 5-2
6	G CONTROL adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-F2 TP-D1 [PROCESS Module]	R56(G CONT) [PROCESS Module]	• Set the iris to CCD output = 150mV. 1. Connect the oscilloscope to TP-D1 and adjust with R56(G CONT) so that 250mV is attained. (Figure 6-1) 250mV
			·		

No.	ltem	Measuring instrument & pattern	Test point	Adjustment part	Description
7	GAMMA adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 [PROCESS Module]	R54(GAMMA) R59 (GAMMA-2) [PROCESS Module]	Set the iris to CCD output = 150mV. Connect the oscilloscope to TP-D4 and adjust with R54(GAMMA) so that 380mV is attained. (Figure 7-1) Next, adjust with R59(GAMMA-2) so that 370mV is attained. Fig. 7-1
8	KNEE adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 [PROCESS Module]	R55(KNEE) [PROCESS Module]	Fully open the iris. (So that more than 600mV is attained in the release status.) Connect the oscilloscope to TP-D4 and adjust with R55(KNEE) so that 560mV is attained. (Figure 8-1) Fig. 8-1
9	R-B GAIN adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 TP-D3 [PROCESS Module]	R52(R GAIN) R51(B GAIN) [PROCESS Module]	Set the iris to CCD output = 150mV. Connect CH1 of the oscilloscope to TP-D4 and connect CH2 of the oscilloscope to TP-D3. Invert CH2 waveform (INV) and add (ADD) to CH1. Adjust the red waveform with R52(R GAIN) and R51(B GAIN) so that the waveform becomes flat. (R) (B) Fig. 9-1

No.	ltem	Measuring instrument & pattern	Test point	Adjustment part	Description
10	PEDESTAL adjustment	Oscilloscope (H-rate 10:1)	TP-D4 [PROCESS Module]	R57(PED.) [PROCESS Module]	Close the iris with the lens cap. Connect the oscilloscope to TP-D4 and adjust with R57(PED.) so that 40mV is attained. (Figure 10-1) Fig. 10-1
11	G CLIP adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 [PROCESS Module]	R81(G CLIP) [PROCESS Module]	Fully open the iris. Connect the oscilloscope to TP-D4 and adjust with R81(G CLIP) so that 550mV is attained. (Figure 11-1) Fig. 11-1
12	R/B CLIP adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 TP-D3 [PROCESS Module]	R86(R/B CLIP) [PROCESS Module]	Fully open the iris. Connect CH1 of the oscilloscope to TP-D4 and connect CH2 of the oscilloscope to TP-D3. Invert CH2 waveform (INV) and add (ADD) to CH1. Adjust with R86(R/B CLIP) so that the waveform becomes flat. (Figure 12-1) Becomes flat Fig. 12-1
13	G GAIN (γ = 1) adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 [PROCESS Module]	R12 (71 G GAIN) [PROCESS Module]	 Set the iris to CCD output = 150mV. Set the GAMMA switch to 1. Connect the oscilloscope to TP-D4 and adjust with R12(γ1 G GAIN) so that 360mV is attained. (Figure 13-1)

No.	ltem	Measuring instrument & pattern	Test point	Adjustment part	Description
14	R/B GAIN $(\gamma = 1)$ adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 TP-D3 [PROCESS Module]	R23 (71 R/B GAIN) [PROCESS Module]	 Set the iris to CCD output = 150mV. Set the GAMMA switch to 1. 1. Connect CH1 of the oscilloscope to TP-D4 and connect CH2 of the oscilloscope to TP-D3. 2. Invert CH2 waveform (INV) and add (ADD) to CH1. 3. Adjust with R23(γ1 R/B GAIN) so that the waveform becomes flat. (Figure 14-1)
			(R)	(B)	Fig. 14-1
15	G PEDESTAL $(\gamma = 1)$ adjustment	Oscilloscope (H-rate 10:1)	TP-D4 [PROCESS Module]	R70 (71 G PED.) [PROCESS Module]	 Close the iris with the lens cap. Set the GAMMA switch to 1. 1. Connect the oscilloscope to TP-D4 and adjust with R70(r1 G PED) so that 40mV is attained. (Figure 15-1)
					Fig. 15-1
16	H/B PEDESTAL (γ=1) adjustment	Oscilloscope (H-rate 10:1)	TP-D4 TP-D3 [PROCESS Module]	R05 (y1 R/B PED.) [PROCESS Module]	 Close the iris with the lens cap. Set the GAMMA switch to 1. 1. Connect CH1 of the oscilloscope to TP-D4 and connect CH2 of the oscilloscope to TP-D3. 2. Invert CH2 waveform (INV) and add (ADD) to CH1. 1. Adjust the waveform with R05(γ1 R/B PED) so that it becomes flat. (Figure 16-1)
					Fig. 16-1
17	G CLIP (γ = 1) adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 [PROCESS Module]	R09 (71 G CLIP) [PROCESS Module]	 Fully open the iris. Set the GAMMA switch to 1. 1. Connect the oscilloscope to TP-D4 and adjust with R09(71 G CLIP) so that 550mV is attained. (Figure 17-1)
					550mV Fig. 17-1

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
18	R/B CLIP (γ = 1) adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D4 TP-D3 [PROCESS Module]	R071 (71 R/B CLIP) [PROCESS Module]	 Fully open the iris Set the GAMMA switch to 1. Connect CH1 of the oscilloscope to TP-D4 and connect CH2 of the oscilloscope to TP-D3. Invert CH2 waveform (INV) and add (ADD) to CH1. Adjust with R71(γ1 R/B CLIP) so that the red waveform becomes flat. (Figure 18-1)
					Becomes flat
19	G1·G2 GAIN adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-21 TP-22 TP-23 [MATRIX Board]	R35(G1 GAIN) R37(G2 GAIN) [MATRIX Board]	 Setting for the iris is CCD output = 150mV. Set the GAMMA switch to 0.45 Connect CH1 of the oscilloscope to TP-21 and connect CH2 of the oscilloscope to TP-22. Invert CH2 waveform (INV) and add (ADD) to CH1. Adjust with R35(G1 GAIN) so that the waveform becomes flat. (Figure 19-1) Connect CH2 of the oscilloscope to TP-23. Adjust with R37(G2 GAIN) so that the waveform becomes flat. (Figure 19-2) Becomes flat Fig. 19-1 Becomes flat Fig. 19-2

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
20	R/B1·R/B2 GAIN adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-25 TP-26 TP-24 [MATRIX Board]	R36(R/B1 GAIN) R38(R/B2 GAIN) [MATRIX Board]	Setting for the iris is CCD output = 150mV. Connect CH1 of the oscilloscope to TP-25 and connect CH2 of the oscilloscope to TP-26. Invert CH2 waveform (INV) and add (ADD) to CH1. Adjust with R36(R/B1 GAIN) so that the waveform becomes flat. (Figure 20-1) Connect CH2 of the oscilloscope to TP-24. Adjust with R38(R/B2 GAIN) so that the waveform becomes flat. (Figure 20-2) Becomes flat Fig. 20-1 Becomes flat
21	MPX OFF SET adjustment	Oscilloscope (H-rate 10:1)	TP-28 [MATRIX Board]	R39(MPX) [MATRIX Board]	Close the iris with the lens cap. Connect the oscilloscope to TP-28 and adjust with R39(MPX) so that every 1H video length differentiation disappears Fig. 21-1
22	R-Y/B-Y OFF SET adjustment	Oscilloscope (H-rate 10:1)	TP-28 TP-29 [MATRIX Board]	R06(R-Y DC) R07(B-Y DC) [PULSE MIX Module]	Close the iris with the lens cap. Connect the oscilloscope to TP-28 and adjust with R06(R-Y DC) so that the blanking section lines up with the video length level. (Figure 22-1) Next, connect the oscilloscope to TP-29 and adjust with R07(B-Y DC) so that the blanking section lines up with the video length level. (Figure 22-1) Line up with the video length Fig. 22-1

No.	ltem	Measuring instrument & pattern	Test point	Adjustment part	Description
23	Y SET UP adjustment	Oscilloscope (H-rate 10:1)	TP-92 (VIDEO OUT) [TERMINAL Board]	R17(Y-SET UP) [ENCODER Module]	Close the iris with the lens cap. Connect the oscilloscope to TP-92(VIDEO OUT) and adjust with R17(Y SET UP) so that 52.5mV is attained. (Figure 23-1) Fig. 23-1
24	Y GAIN adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-92 (VIDEO OUT) [TERMINAL Board]	R10(Y GAIN) [ENCODER Module]	Set the iris to CCD output = 150mV. Connect the oscilloscope to TP-92 and adjust with R10(Y GAIN) so that the image output becomes 700mV. (Figure 24-1) Fig. 24-1
25	WHITE.CLIP adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-92 (VIDEO OUT) [TERMINAL Board]	R12(W CLIP) [ENCODER Module]	Fully open the iris. Connect the oscilloscope to TP-92 and adjust with R12(W CLIP) so that the image output's white peak becomes 770mV. (Figure 25-1) 770mV Fig. 25-1
26	SYNC. LEVEL adjustment	Oscilloscope (H-rate 10:1)	TP-92 (VIDEO OUT) [TERMINAL Board]	R20 (SYNC LEVEL) [ENCODER Module]	Close the iris with the lens cap. Connect the oscilloscope to TP-92 and adjust with R20(SYNC LEVEL) so that 300mV is attained. (Figure 26-1) Fig. 26-1

No.	ltem	Measuring instrument & pattern	Test point	Adjustment part	Description
27	BURST LEVEL adjustment	Oscilloscope (H-rate 10:1) Vectorscope	TP-92 (VIDEO OUT) [TERMINAL Board]	R30 (BURST LEVEL) [ENCODER Module]	● Close the iris with the lens cap. [When using the oscilloscope] 1. Connect the oscilloscope to TP-92 and adjust with R30(BURST LEVEL) so that 300mV is attained. (Figure 27-1) [When using the vectorscope] 1. Adjust with R30 so that the burst level is at the 75% point. (Figure 27-2)
			300mV	Fig. 27-1	75% point Fig. 27-2
28	APERTURE CONTROL LEVEL adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-92 (VIDEO OUT) [TERMINAL Board]	R05(AP.L.) R03 (DTL-OFF AP.L.) [ENCODER Module]	Set the iris to the image output = 560mV. Connect the oscilloscope to TP-92 and adjust with R05(AP.L.) so that the midrange gray scale's white peak degree of overshoot becomes 70mV. (Figure 28-1) 70mV
					Fig. 28-1 2. Turn the DETAIL switch OFF. 3. Adjust with R03(DTL-OFF AP.L.) so that the midrange scale white peak overshoot is stopped at the point just before it occurs.
29	V CONTOUR adjustment	Oscilloscope (V-rate 10:1) Gray scale pattern	TP-92 (VIDEO OUT) [TERMINAL Board]	R89 (V CONTOUR) [MATRIX Board]	 Set the iris to image output = 560mV. Set the DETAIL switch to ON. Connect the oscilloscope to TP-92 and adjust with R89(V CONTOUR) so that the midrange gray scale's white peak degree of overshoot becomes 70mV. (Figure 29-1)

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
30	MPX OFF SET fine adjistment	Oscilloscope (H-rate 10:1) Vectorscope Make sure to overrap.	TP-92 (VIDEO OUT) [TERMINAL Board] hey R-Y	R39(MPX) [MATRIX Board]	Close the iris with the lens cap. Turn to the GAMMA switch to 1. [When using the vectorscope] Use R39(MPX) to adjust so that the balls of the carrier overrap. [When using the oscilloscope] Connect the oscilloscope to TP-92 and adjust with R39 so that the flicker of set up level becomes as small as possible. (figier 30-2)
		Flicke	Fig. 30-2	aspossible.	
31	CARRIER BALANCE adjustment	Oscilloscope (H-rate 10:1) Vectorscope	TP-92 (VIDEO OUT) [TERMINAL Board] R-Y Fig. 31-1	R06(R-Y DC) R07(B-Y DC) [PULSE MIX Module] R05 (71 R/B PED) [MATRIX Board] B-Y	 Close the iris with the lens cap. [When using the vectorscope] 1 Adjust with R06(R-Y DC) so that the carrier comes over the B-Y axis, and adjust with R07(B-Y DC) so that the carrier comes to the intersecting point of the R-Y axis and R-Y axis. (Figure 31-1) 2. Switch the GAMMA switch over to 1. 3. Adjust with R05(γ1 R/B PED) so that the carrier comes to the intersecting point of the R-Y axis and R-Y axis. (Figure 31-1) [When using the oscilloscope] 1. Connect the oscilloscope to TP-92 and adjust with R06 and R07 so that the carrier becomes minimal. (Figure 31-2) 2. Switch the GAMMA switch over to 1. 3. Adjust with R05(γ1 R/B PED) so that the carrier becomes minimal. (Figure 31-2) After adjustment, return the GAMMA switch to 0.45.
		T T	Fig. 31-2	■ ┌╂ ────╂	

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
32	WHITE BALANCE adjustment1 (INDOOR)	Oscilloscope (H-rate 10:1) Vectorscope Gray scale pattern	TP-92 (VIDEO OUT) [TERMINAL Board]	R52(R GAIN) R51(B GAIN) R23 (71 R/B GAIN) [PROCESS Module]	• Set TP-92 to 714mV with the iris knob. [When using the oscilloscope] 1. Connect to TP-92 and adjust with R52(R GAIN) and R51(B GAIN) so that the gray scale mid-section's carrier becomes minimum. (Figure 32-1) 2. Switch the GAMMA switch over to 1. 3. Adjust with R23(r1 R/B GAIN) so that the gray scal mid-section becomes minimum. (Figure 32-1)
					Fig. 32-1
	·				[When using the vectorscope] 1. Line up with R52 and R51 so that the carrier becomes minimum and comes within the center of the vectorscope. 2. Switch the GAMMA switch over to 1. 3. Adjust with R23 so that the carrier becomes minimum and comes within the center of the vectorscope. (Figure 32-2)
					R-Y Mg
				-	Fig. 32-2 • After adjustment, return the GAMMA switch to 0.45.

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
					·
No.	PEAK WHITE BALANCE adjustment	instrument	TP-92 (VIDEO OUT) [TERMINAL Board]	R86(R/B-CLIP) R71 (/1 R/B CLIP) [PROCESS Module]	 Fully open the iris. [When using the oscilloscope] 1. Adjust with R86(R/B CLIP) so that the gray scale peak-section's carrier becomes minimum. (Figure 33-1) 2. Switch the GAMMA switch over to 1. 3. Adjust with R71(γ1 R/B CLIP) so that the gray scale peak-section becomes minimum. (Figure 33-1) Fig. 33-1 [When using the vectorscope] 1. Line up with R86 so that the carrier becomes minimum and comesto the center of the vectorscope. (Figure 33-2) 2. Switch the GAMMA switch over to 1. 3. Line up with R71 so that the carrier becomes minimum and comes to the center of the vectorscope. (Figure 33-2) Fig. 33-2
					After adjustment, return the GAMMA switch to 0.45.

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
34	COLOUR REPEATABIL- ITY adjustment	Oscilloscope (H-rate 10:1) Vectorscope Colour bar pattern (Red signal) OR EL 10% (Yellow signal)	TP-92 (VIDEO OUT) [TERMINAL Board] G G Fig. 34-1	R87(R-Y MIX) R88(B-Y MIX) R42(R-Y GAIN) R44 (B-Y GAIN) [MATRIX Board]	Play the colour bar and adjust the white with the iris knob so that TP-92 becomes 700mV. Perform the various adjustments with R87(R-Y MIX), R88(B-Y MIX), R42(R-Y GAIN) and R44(B-Y GAIN) so that the red signal alignment to point (A), and the yellow signal alignment to point (B) are obtained. (Figure 34-1) Note: When unable to use the vectorscope, play the colour bar, while observing the TV monitor and adjust to the optimum colour repeatability.
35	G MIX adjustment	Oscilloscope (H-rate 10:1) Colour bar pattern	TP-92 (VIDEO OUT) [TERMINAL Board]	R32(G MIX) [CDS Module]	Play the colour bar and adjust the white with the iris knob so that TP-92 becomes 700mV. Adjust with R32(G MIX) so that the flickering of the red portion of the colour bar is eliminated. (Figure 35-1) Eliminate the flicker. Fig. 35-1
36	Y/C Y LEVEL adjustment	Oscilloscope (H-rate 10:1) Colour bar pattern	TP-92 (VIDEO OUT) [TERMINAL Board] TP-J4 [RGB DRIVE Module]	R89(Y LEVEL) [RGB DRIVE Module]	Comfirm that the D-SUB OUT switch is Y/C. Play the colour bar and adjust the white with the iris knob so that TP-92 becomes 700mV. Connect the oscilloscope to TP-J4 and adjust with R89(Y LEVEL) so that 700mV is attained. (Figure 36-1) Fig. 36-1

No.	ltem	Measuring instrument & pattern	Test point	Adjustment part	Description
37	Y/C C LEVEL adjustment	Oscilloscope (H-rate 10:1)	TP-92 (VIDEO OUT) [TERMINAL Board] TP-J5 [RGB DRIVE Module]	R33(C LEVEL) [ENCODER Module]	Comfirm yhat the D-SUB OUT switch is Y/C. Connect the oscilloscope to TP-J5 and adjust with R33(C LEVEL) so that the burst signal becomes 300mV. (Figure 37-1) Fig. 37-1
38	WHITE BALANCE adjustment2 (AUTO)	Oscilloscope (H-rate 10:1) Vectorscope Gray scale pattern Colour temperature transformation filter W4 + W2	TP-92 (VIDEO OUT) [TERMINAL Board]	R52(A/W B) R53(A/W R) [MATRIX Board] R49 (A/W R SUB) [CONTROL Module]	 Switch the WHITE BALANCE switch over to AUTO position. Install the colour temperature transformer filter to the front of the lens. Adjust TP-92 with the iris knob so that 700mV is attained. Rotate R53(A/W R) completely to the left. [When using the oscilloscope] 1. Adjust with R52(A/W B) and R49(A/W R SUB) so that, when the white balance switch is pressed, the mid-range gray scale becomes minimal. (Figure 38-1) 2. Remove the colour temperature transformer filter and adjust with R53(A/W R) so that, when the WHITE BALANCE SET switch is pressed, the mid-range gray scale becomes minimal. Fig. 38-1 [When using the vectorscope] 1. Align with R52 and R49 so that the carrier becomes minimal and comes to the center of the vectorscope when the WHITE BALANCE SET switch is pressed. (Figure 38-2) 2. Remove the colour temperature transformation filter and align with R53 so that the carrier becomes minimal and comes to the center of the vectorscope when the white balance switch is pressed. R-Y Fig. 38-2

No. Item Measuring instrument a pattern Test point Adjustment part Description	
WHITE BALANCE (H-rate 10:1) BALANCE adjustment3 (MANUAL) Gray scale pattern Colour temperature transformation filter C12 + C2 WHITE BOALANCE switch MANU position. ITP-92 (VIDEO OUT) R33 (MANU. R) GRAY scale pattern Colour temperature transformation filter C12 + C2 WHITE BALANCE switch MANU position. IR30 (MANU.R) ICONTROL. Module] Protate R25(G-Mg) to the incendence on the front of the lens. Adjust TP-92 with the iris knob so the is attained. Rotate R35(MANU. R GAIN) to the center. When using the oscilloscopel 1. Adjust with R21 and R33 gray scale mid-range carrier becomes with the vectorscope. WHITE BALANCE switch MANU position. Install the colour temperature transformation on the front of the lens. Adjust TP-92 with the iris knob so the is attained. Rotate R25(G-Mg) to the mechanical center. Rotate R35(MANU. R GAIN) to the center. When using the vectorscopel 1. Adjust with R21 and R33 gray scale mid-range carrier becomes with the vectorscope. When using the vectorscope of the vectorscope. When using the vectorscope of the vectorscope. When using the vectorscope. The vectorscope. When using the using the vectorscope. When using the vectorscope. When using the using the using the vecto	center. mechanical NU R) so r becomes reformation so that the minimum. the carrier e center of former filter the carrier

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
40	6dB/12dB GAIN adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-D1 [PROCESS Module]	R15(6dB GAIN) R17 (12dB GAIN) [CONTROL Module]	Confirm that the WHITE BALANCE switch is ∴. 1. Connect the oscilloscope to TP-D1 and adjust the iris knob so that the waveform becomes 100mV. 2. Switch the GAIN switch to 6dB and adjust with R15(6dB GAIN) so that 200mV is attained. (Figure 40-1) 3. Switch the GAIN switch over to 12dB and adjust with R17(12dB GAIN) so that 400mV is attained. 100mV 200mV (When 6dB) 400mV (When 12dB) Fig. 40-1
41	AGC SET adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-92 (VIDEO OUT) [TERMINAL Board]	R04(AGC SET) [CDS Module]	 Set the TP-92(VIDEO OUT) to 469mV with the iris knob. Switch the AGC switch over to AUTO. Adjust with R04(AGC SET) so that 490mV is attained.(Figure 41-1)
42	IRIS SET adjustment	DC voltmeter Gray scale pattern	TP-92 (VIDEO OUT) [L] Connector pin [TERMINAL board]	R90(IRIS SET) [MATRIX Board]	 Set the TP-92(VIDEO OUT) to 700mV with the iris knob. 1. Adjust with R90(IRIS SET) so that L connector @pin (AF lens terminal @pin) voltage becomes 1.87V.
43	H. PHASE adjustment	Oscilloscope (H-rate 10:1)	TP-92 (VIDEO OUT) SYNC IN terminal [TERMINAL Board]	R13(H PHASE) R12 (H PHASE SUB) [TERMINAL Board]	Input the VBS signal included in the SYNC IN terminal and apply external synchronization. Rotate R13(H PHASE) to the mechanical center. Connect CH1 of the oscilloscope to TP-92 (VIDEO OUT) and connect CH2 of the oscilloscope to the SYNC IN terminal. Align the external synchronous signal and the camera side horizontal phase by R12(H PHASE SUB).

No.	ltem	Measuring instrument & pattern	Test point	Adjustment part	Description
44	FLANGE-	Monitor TV	TP-92	LOCK screw	This adjustment can be made without removing the cover.
	BACK adjustment	Zoom lens Resolution pattern , object with clearly defined black and white lines or Siemens chart.	(VIDEO OUT) [TERMINAL Board]	- Cous screw	 Fully open the iris in a dark location. Place the resolution pattern in a location that is more then 5 meters away. (Place the pattern as far away as possible.) Adjust the focus to the chart with TELE terminal. Next, confirm that the focusing is normal while gently focusing to WIDE status. If the focus is not aligned, loosen the LOCK screw, adjust the FOCUS screw and align the focus. Repeat steps 2 and 3 until the optimum focus is reached. Tighten the LOCK screw at the point where the best back focus is attained.
45.	FINAL CHECK	Oscilloscope (H-rate 10:1) Vectorscope Gray scale pattern Color bar pattern colored object	TP-92 (VIDEO OUT) [TERMINAL Board]		1. Take a picture of the colour bar in the standard iris mode or the auto iris mode (= lens with the auto iris function) and confirm that the various color carriers on the vectorscope are in the position indicated in figure 2. Operate the various switches and confirm that the action is normal. 3. roject the gray scale pattern and check the WHITE BALANCE, CARRIER BALANCE and Y SET UP etc. with TP-92 (VIDEO OUT). 4. Take a picture of a suitable coloured object and check the color repeatability and the camera functions. 5. If the check results are unsatisfactory, carry out the various item checks once more. Fig. 45-1

3. RGB CIRCUIT ADJUSTMENTS

Perform this adjustment after adjusting SSG (Synchronous signal generator) and the signal system.

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
2	RGB OUT adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	TP-92 (VIDEO OUT) [TERMINAL Board] TP-J3(R OUT) TP-J5(B OUT) TP-J4(G OUT) [RGB DRIVE Module] Fig. 2-1	R30(RGB CLIP) R15(R GAIN) R26(R SET UP) R68(B GAIN) R82(B SET UP) R40(G GAIN) R51(G SET UP) R77(G SYNC) [RGB DRIVE Module] A 630mV	 Set TP-92 to 700mV with the iris knob. Adjust with R30(RGB CLIP) so that the waveform amplitude becomes maximum. Confirm that D-SUB OUT switch is set at RGB. Connect the oscilloscope to TP-J3 and adjust with R15(R GAIN) so that 630mV is attained from black to white. (Figure 2-1) Install the lens cap and adjust with R26(R SET UP) so that the set up level for the blanking section becomes 20mV.(Figure 2-2) Remove the lens cap and confirm that 700mV is attained from the blanking to the white peak. (Figure 2-3) [If 700mV is not attained, adjust by R15 to attain 700mV and confirm the set up level once more.] ★ Perform the adjustments for B and G in the same manner. B output→ Adjust TP-J5 with R68(B GAIN) and R82(B SET UP). G output→ Adjust TP-J4 with R40(G GAIN) and R51(G SET UP). [When adjusting the G output, rotate R77(G SYNC) completely to the left] Note: Perform adjustment so that the various RGB outputs attain the same gain.
3	RGB APERTURE CONTROL adjustment	Oscilloscope (H-rate 10:1) Gray scale pattern	Fig. 2-3 TP-92 (VIDEO OUT) [TERMINAL Board] TP-J4 [RGB DRIVE Module]	R30(RGB CLIP) R77(G SYNC) [RGB DRIVE Module] R10(RGB AP.L) [SUB RGB Module]	Set TP-92 to 571mV(80IRE) with the iris knob. Adjust with R30(RGB CLIP) so that the waveform amplitude becomes maximum. Rotate R77(G SYNC) completely to the left. Connect the oscilloscope to TP-J4 and adjust with R10(RGB AP.L) so that the gray scale mid-section white peak becomes 70mV. (Figure 3-1) Fig. 3-1

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
4	RGB COLOUR REPEATABIL- ITY adjustment	Oscilloscope (H-rate 10:1) Colour bar pattern	TP-92 (VIDEO OUT) [TERMINAL Board] TP-J3(R OUT) TP-J5(B OUT) TP-J4(G OUT) [RGB DRIVE Module]	R30(RGB CLIP) [RGB DRIVE Module] R10(R-Y MTX) R09(R-Y GAIN) R63(B-Y MTX) R62(B-Y GAIN) R35(G-Y MTX) [RGB DRIVE Module]	Set TP-92 to 700mV with the iris knob. Adjust with R30(RGB CLIP) so that the waveform amplitude becomes maximum. Connect the oscilloscope to TP-J3 and align the red level with the white with R10(R-Y MTX) and R09(R-Y GAIN). (Figure 4-1) W Y C G M R B Align the level.
					Fig. 4-1 2. Connect the oscilloscope to TP-J5 and adjust with R63(B-Y MTX) and R62(B-Y GAIN) so that the magenta level becomes approximately 85% white and blue level becomes approximately 95%. (Figure 4-2) W C M B 100% Fig. 4-2
					Connect the oscilloscope to TP-J4 and adjust with R35(G-Y MTX) so that the yellow level becomes same level white.
					Aline the level. Fig. 4-3

No.	Item	Measuring instrument & pattern	Test point	Adjustment part	Description
5	RGB CLIP adjustment	Oscilloscope (H-rate 10:1) Colour bar pattern	TP-J3 [RGB DRIVE Module]	R30(RGB CLIP) [RGB DRIVE Module]	 Fully open the iris. Connect the oscilloscope to the TP-J3 and adjust with R30(RGB CLIP) so that red is apply 1V to flatten out.
:					Apply 1V to flatten out.
6	Confirmation	RGB monitor			 Confirm with following procedure if a RGB monitor is available. 1. Compare the RGB output with the image output and confirm that the hue is equal. 2. If there is an extreme difference in the hue, adjust the RGB circuit once more.

PARTS LIST

CAUTION

- The parts marked <u>^</u> are very important for the safety. When replacing these parts, be sure to use specified ones to secure the safety and performance.
- The module circuit board is supplied together with the assembly, but the parts which do not have the drawing in this Parts List, P. C. Board Ass'y and the Parts No. columns of which are filled with lines . will not be supplied.
- As a rule, the resistors and capacitors which are indicated as shown in (NOTE 2) "HOW TO EXPRESS PARTS NUMBERS OF STANDARD PARTS" are not shown in the list of the parts on the board.

 When ordering the service parts, confirm the resistance/rated power, capacitance/rated voltage, and type of the parts, then order by the part No. indicated according to (NOTE 2).

(NOTE 1) ABBREVIATIONS OF RESISTORS, CAPACITORS AND TOLERANCES

RESISTORS		·	CAPACITORS
CR	Carbon Resistor	C CAP.	Ceramic Capacitor
FR	Fusible Resistor	E CAP.	Electrolytic Capacitor
PR	Plate Resistor	M CAP.	Mylar Capacitor
VR	Variable Resistor	HV CAP.	High Voltage Capacitor
HV R	High Voltage Resistor	MF CAP.	Metalized Film Capacitor
MFR	Metal Film Resistor	MM CAP.	Metalized Mylar Capacitor
MG R	Metal Glazed Resistor	MP CAP.	Metalized Polystyrol Capacitor
MP R	Metal Plate Resistor	PP CAP.	Polypropylene Capacitor
OM R	Metal Oxide Film Resistor	PS CAP.	Polystyrol Capacitor
CMF R	Coating Metal Film Resistor	TF CAP.	Thin Film Capacitor
UNF R	Non-Flammable Resistor	MPP CAP.	Metalized Polypropylene Capacitor
CH V R	Chip Variable Resistor	TAN. CAP.	Tantalum Capacitor
CH MG R	Chip Metal Glazed Resistor	CH C CAP.	Chip Ceramic Capacitor
COMP. R	Composition Resistor	BP E CAP.	Bi-Polar Electrolytic Capacitor
LPTC R	Linear Positive Temperature Coefficient Resistor	CH AL E CAP.	Chip Aluminum Electrolytic Capacitor
		CH AL BP CAP.	Chip Aluminum Bi-Polar Capacitor
		CH TAN. E CAP.	Chip Tantalum Electrolytic Capacitor
		CH AL BP E CAP.	Chip Tantalum Bi-Polar Electrolytic Capacitor

	TOLERANCES								
F	G	J	К	M	N	R	н	Z	Р
±1%	±2%	± 5%	±10%	± 20%	±30%	+30%	+50%	+80%	+ 100%

(NOTE 2) HOW TO EXPRESS PARTS NUMBERS OF STANDARD PARTS

EXPLODED VIEW PARTS LIST

Γ	SYMBOL NO.	PART NO.	PART NAME	REMARKS
	1 2 3 4 5	CAT-A001A CAT-B501A	MOTHER BOARD MATRIX BOARD TERMINAL BOARD IMAGER MODULE BO TG MODULE BOARD	CAT-1501A CAT-2001A CAT-9501A ARD
	6 7 8 9 1 0	CAT-C501A CAT-D001B CAT-E501A CAT-F001B CAT-G501A	SSG MODULE BOARD PROCESS MODULE B ENCODER MODULE BO GEN LOCK MODULE	OARD
BBBB	1 1 1 2 1 3 1 4 1 6	CAT-H501A CAT-J001B CAT-K001B CAT-L001A CM34695-001	CONTROL MODULE B RGB MODULE BOARD RGB SUB MODULE B PULSE MIXER MODU SHIELD CASE	OARD
	1 7 1 8 1 9 2 0 2 1	CM 4 6 8 9 0 - 0 0 1 CM 4 4 8 0 7 - 0 1 0 CM 4 6 7 8 1 - 0 0 1 CM 4 6 7 8 0 - 0 0 1 CM 4 5 8 6 7 - 0 0 1	INSULATOR MODULE INSULATOR MODULE INSULATOR MODULE INSULATOR DUST COVER	× 2
	2 2 2 3 2 4 2 5 2 6	CM22072-B01 SPSK2040R SPSK2040M CM34691-001 CE41848-00A	FRONT COVER MINI SCREW MINI SCREW LPF HOLDER L. P. FILTER ASSY	× 4 × 2
	2 7 2 8 2 9 3 0 3 1	SPSK2040R CM21346-003 CM44319-A01 CM46726-001 LPSP2605Z	MINI SCREW CHASSIS MOUNT SEPARATOR ECCENTRIC ROD ASSY SCREW	×2
	3 2 3 3 3 4 3 5 3 6	CM44651-002 CM46725-001 CM44652-001 CM44653-001 CM44653-001	LOCK PLATE LOCK SCREW PUSH BAR LOCKING ARM ADJUST SPRING	× 2
,	3 7 3 8 3 9 4 0 4 1	CM3 4 6 8 9 - A 0 1 SPSK 2 0 4 0 R CM3 4 6 9 2 - 0 0 1 CM4 3 6 9 1 - 0 0 1 I CX 0 2 4 B R - 6	ADJUST RING MINI SCREW FRONT BRACKET INSU. RUBBER CCD IMAGER	× 3
	4 2 4 3 4 4 4 5 4 6 4 7 4 8	SPSH2060M CM34690-A01 SPSH2060M CM34697-001 SPSK2040R CM22202-001 SPSK2040R	MINI SCREW IMAGER HOLDER MINI SCREW IM SHIELD-R MINI SCREW TOP FRAME MINI SCREW	× 2 × 2 × 1 0
	4 9 5 0 5 1 5 4 5 5	A 7 5 7 7 4 - 0 2 0 - 0 1 5 CM 2 2 0 7 0 - 0 0 1 CM 4 6 7 2 9 - 0 0 1 CM 2 2 0 7 1 - A 0 1 CH 4 0 3 2 6 - 0 0 9 S N	SUMI TUBE BOTTOM FRAME SLIDE KNOB TERMINAL BRACKET 9P CONN. SOCKET	×3
	5 6 5 7 5 8 5 9 6 0	CH40327-A05 WLS3000N NNS3000N CEMB004-00A QMD3A06-001	RETAINER LOCK WASHER NUT BNC CONNECTOR DIN SOCKET	× 2 × 2 × 2 × 2 × 2
	6 1 6 2	SPSK2040R QMDB108-001	MINI SCREW MINI CONNECTOR	× 2

Γ	SYMBOL NO.	PART NO.	PART NAME	REMARKS
	6 5 6 6 6 8 6 9 7 0	CM3 4 7 6 2 - 0 0 C SPSK 2 0 8 0 R CM2 2 0 7 4 - 0 0 3 CM2 2 0 7 3 - B 0 1 - M 0 SPSK 2 0 4 0 R	SIDE COVER ASSY MINI SCREW ALMINIUM CASE REAR COVER MINI SCREW	× 2 × 2
▲	7 1 7 2 7 3 7 4 7 5	CM34694-006 (R) SPSK2040R CM21394-C0A-M0 CM32754-C01-M0 CM46969-00A	R RATING LABEL MINI SCREW TRIPOD BASE ASS TRIPOD COVER ASSY SCREW	×2 ×3
	7 6 7 7. 7 8	CM46981-A01 SPSH2023M CM47239-001	HEAT SINK-S MINI SCREW EARTH SPRING	

PACKING

PACKING PARTS LIST

Г	SYMBOL NO.	PART NO.	PART NAME	REMARKS
	1 2 4 5 7	CP20513-007 CP30609-002 (R) CP20539-A0A CP30367-009 CE41155-001	PACKING CASE ROLL LBL SHEET PACKING CUSHION POLY BAG IRIS PLUG	
Δ	8 · · · · · · · · · · · · · · · · · · ·	VC462-2 TK-1070E-IB-A CM22184-B0A	CAMERA CABLE INST BOOK CONT COVER ASSY	2 m

EXPLODED VIEW

PRINTED CIRCUIT BOARD PARTS LIST

1.MOTHER BOARD (CAT-1501A)

			/	
	SYMBOL NO.	PART NO.	PART NAME	REMARKS
	CAPACITOR C1002 C1003 C1004 C1005 C1006	NEE 1 0 JM-1 0 6 R Z NEE 1 1 VM-4 7 4 R Z NEE 1 1 CM-1 0 6 R Z NEE 2 1 CM-1 0 5 R Y QEHA 1 VM-3 3 7 M	CHIP TAN E CAP. CHIP TAN E CAP. CHIP TAN E CAP. CHIP TAN E CAP. E CAP.	10 μF 6.3 V M 0.47 μF 35 V M 10 μF 16 V M 1 μF 16 V M 330 μF 35 V M
	C 1 0 0 7 C 1 0 0 8 C 1 0 0 9	QEHA1CM-227M NEE11CM-226RZ NEE11CM-226RZ	E CAP. CHIP TAN E CAP. CHIP TAN E CAP.	2 2 0 μ F 1 6 V M 2 2 μ F 1 6 V M 2 2 μ F 1 6 V M
	COIL L1001	CELP015-820	P COIL	
	TRANSISTOR Q1001 Q1003 Q1004 Q1005 Q1006	2 SB 7 0 9 (QR) -W 2 SC 2 7 7 8 (BC) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	
	Q1007 Q1008 Q1009	2SD1742 (P) -X 2SB709 (QR) -W 2SC2778 (BC) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	,
Δ	OTHERS RG1001	CM 4 6 7 7 2 - 0 0 1 CE 4 1 8 9 6 - C 0 A	INSULATOR A SW REGULATOR	

2.TERMINAL BOARD (CAT-9501A)

r			,	<u> </u>
	SYMBOL NO.	PART NO.	PART NAME	REMARKS
	RESISTOR R9021	QRD122J-100S	C R	10 \O 1/2W J
	CAPACITOR C9005 C9010 C9011 C9012	NEE11CM-106RZ NEN11EM-106RP NEN11EM-106RP QCT81CH-221YLS	CHIP TAN E CAP. CHIP AL BP E CAP CHIP AL BP E CAP CHIP C CAP.	10 µF 16 V M 10 µF 25 V M 10 µF 25 V M 220 pF 16 V H
	DIODE D9001 D9002 D9003 D9004 D9005	MA157-W MA157-W MA157-W MA157-W MA157-W MA3047(L)-W	DIODE DIODE DIODE DIODE ZENER DIODE	,
	D 9 0 0 6 D 9 0 0 7 D 9 0 0 9 D 9 0 1 0 D 9 0 1 1	MA 1 5 7 - W MA 3 2 0 0 (M) - W MA 2 9 1 - W MA 1 5 7 - W MA 1 5 7 - W	DIODE ZENER DIODE CHIP DIODE DIODE DIODE	
	D 9 0 1 2 D 9 0 1 3 D 9 0 1 4	MA157-W MA157-W MA3200 (M) -W	DIODE DIODE ZENER DIODE	
	TRANSÍSTOR Q9001 Q9002 Q9003	2SC2778 (BC) -W 2SD1030 (RS) -W 2SD601 (QR) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	
Δ	FUSE F9001	QMF51E2-IR0S	FUSE	1 A
	OTHERS S 9 0 0 2	QMD 8 A 0 3 - 0 0 1	MINI CONNECTOR	

(No.50564) 49

3.MATRIX BOARD(CAT-2001A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R R2035 R2036 R2037 R2038 R2039	CEVP005-103XM CEVP005-103XM CEVP005-103XM CEVP005-103XM CEVP005-103XM	CH V R CH V R CH V R CH V R CH V R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
R 2 0 4 2 R 2 0 4 3 R 2 0 4 4 R 2 0 5 2 R 2 0 5 3	CEVP005-103XM CEVP005-103XM CEVP005-103XM CEVP005-682XM CEVP005-682XM	CH V R	10 kΩ R-Y GAIN 10 kΩ R-Y/B-YGAIN 10 kΩ B-Y GAIN 6.8 kΩ A/WB 6.8 kΩ A/WR
R 2 0 8 7 R 2 0 8 8 R 2 0 8 9 R 2 0 9 0	CEVP005-103XM CEVP005-103XM CEVP005-103XM CEVP005-223XM	CH V R CH V R CH V R CH V R	$\begin{array}{cccc} 1 \ 0 \ k \ \Omega & R-Y & M \ I \ X \\ 1 \ 0 \ k \ \Omega & B-Y & M \ I \ X \\ 1 \ 0 \ k \ \Omega & V. & CONTOUR \\ 2 \ 2 \ k \ \Omega & IR \ IS & SET \end{array}$
CAPACITOR C2001 C2003 C2005 C2007 C2020	NEA11CM-106RZ NEA11CM-106RZ NEA11CM-106RZ NEE21CM-105RY NEE21CM-105RY	CHIP AL E CAP. CHIP AL E CAP. CHIP AL E CAP. CHIP TAN E CAP. CHIP TAN E CAP.	10 \(\mu \text{F} \) 16 \(V \) M 10 \(\mu \text{F} \) 16 \(V \) M 10 \(\mu \text{F} \) 16 \(V \) M 1 \(\mu \text{F} \) 16 \(V \) M 1 \(\mu \text{F} \) 16 \(V \) M
C 2 0 2 2 C 2 0 2 3 C 2 0 2 4 C 2 0 2 5 C 2 0 2 6	NEE 2 1 CM-1 0 5 RY NEE 2 1 CM-1 0 5 RY	CHIP TAN E CAP.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C 2 0 2 8 C 2 0 2 9 C 2 0 3 0 C 2 0 3 1 C 2 0 3 6	NEE 2 1 CM-1 0 5 RY NEE 2 1 CM-1 0 5 RY	CHIP TAN E CAP.	1 μF 1 6 V M 1 μF 1 6 V M
C 2 0 3 8 C 2 0 4 1 C 2 0 4 3 C 2 0 4 4 C 2 0 4 5	NEA 1 1 CM-1 0 6 R Z NEE 2 1 CM-1 0 5 R Y NEE 1 1 CM-1 0 6 R Z NEA 1 1 CM-1 0 6 R Z NEE 2 1 CM-1 0 5 R Y	CHIP AL E CAP. CHIP TAN E CAP. CHIP TAN E CAP. CHIP AL E CAP. CHIP TAN E CAP.	1 0 μF 1 6 V M 1 μF 1 6 V M 1 0 μF 1 6 V M 1 0 μF 1 6 V M 1 μF 1 6 V M
C 2 0 4 7 C 2 0 4 8 C 2 0 4 9 C 2 0 5 0	NEA10JM-226RZ NEA10JM-226RZ NEE21CM-105RY NEE21CM-105RY	CHIP AL E CAP. CHIP AL E CAP. CHIP TAN E CAP. CHIP TAN E CAP.	2 2 μ F 6. 3 V M 2 2 μ F 6. 3 V M 1 μ F 1 6 V M 1 μ F 1 6 V M
TRANSFORME T2001 T2002 T2003 T2004 T2005	R CE41120-00AY CE41120-00AY CE411120-00AY CE41917-00AY CE41918-00AY CE41920-00AY	REFLOW TRANSF. REFLOW TRANSF. REFLOW TRANSF. REFLOW TRANSF. REFLOW TRANSF.	
DIODE D2001 D2002	MA157-W MA151A-W	DIODE DIODE	
TRANSISTOR Q2 0 0 1 Q2 0 0 2 Q2 0 0 3 Q2 0 0 4 Q2 0 0 5	2 S A 1 0 2 2 (BC) -W 2 S A 1 0 2 2 (BC) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	
Q2006 Q2007 Q2008 Q2009	2 SA 1 0 2 2 (BC) -W 2 SA 1 0 2 2 (BC) -W 2 SA 1 0 2 2 (BC) -W 2 SA 1 0 2 2 (BC) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	

50 (No.50564)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
TRANSISTOR Q2010 Q2011 Q2012 Q2013 Q2014	2 SA 1 0 2 2 (BC) -W 2 SC 2 7 7 8 (BC) -W 2 SC 2 7 7 8 (BC) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	
Q 2 0 1 5 Q 2 0 1 6 Q 2 0 1 7 Q 2 0 1 8 Q 2 0 1 9	2 S C 2 7 7 8 (BC) -W 2 S B 7 0 9 (QR) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	
Q 2 0 2 0 Q 2 0 2 1 Q 2 0 2 2 Q 2 0 2 3 Q 2 0 2 4	2SB709 (QR) -W 2SC2778 (BC) -W 2SB709 (QR) -W 2SB709 (QR) -W 2SC2295 (BC) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	
Q 2 0 2 5 Q 2 0 2 6 Q 2 0 2 8 Q 2 0 2 9	2SC2295 (BC) -W 2SC2778 (BC) -W 2SC2778 (BC) -W 2SC2778 (BC) -W 2SB709 (QR) -W	CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR CHIP TRANSISTOR	
I C I C 2 0 0 1 I C 2 0 0 2 I C 2 0 0 3 I C 2 0 0 4 I C 2 0 0 5	CX20151 CXL1505M CXL1505M UPC358G-W UPC358G-W	I. C. I. C. I. C. I. C. I. C.	

MODULE BOARD PARTS LIST

1.IMAGER MODULE BOARD (CAT-A001A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R RA015	CEVP003-333WA	CH V R	33kû V SUB

2.TG MODULE BOARD (CAT-B501A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
CAPACITOR CB024	QAT3661-100M	TRIM. CAPACITOR	10pF SUB OSC

3.SSG MODULE BOARD (CAT-C501A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
CAPACITOR CC007	QAT3661-200M	TRIM CAPACITOR	200pF MASTER OSC

4.PROCESS MODULE BOARD (CAT-D001B)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R RD005 RD009 RD012 RD023 RD051	CEVP005-332XM CEVP005-682XM CEVP005-222XM CEVP005-222XM CEVP005-103XM	CH V R CH V R CH V R CH V R CH V R	3. 3 k \(\tilde{\alpha} \) 7 1 R/B PED 6. 8 k \(\tilde{\alpha} \) 7 1 G CLIP 2. 2 k \(\alpha \) 7 1 G GAIN 2. 2 k \(\alpha \) 7 1 R/B GAIN 10 k \(\alpha \) B GAIN
RD052 RD054 RD055 RD056 RD059	CEVP005-103XM CEVP005-103XM CEVP005-103XM CEVP005-103XM CEVP005-103XM	CH V R CH V R CH V R CH V R	10k\(\Omega\) R GAIN 10k\(\Omega\) GAMMA 10k\(\Omega\) KNEE 10k\(\Omega\) G CONT 10k\(\Omega\) GAMMA2
RD062 RD070 RD071 RD081 RD086	CEVP005-223XM CEVP005-332XM CEVP005-682XM CEVP005-222XM CEVP005-222XM	CH V R CH V R CH V R CH V R	22k0 PED 3.3k0 71 G PED 6.8k0 71 R/B CLIP 2.2k0 G CLIP 2.2k0 R/B CLIP

5.ENCODER MODULE BOARD (CAT-E501A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R RE003 RE005 RE010 RE012 RE017	CEVP003-474WA CEVP003-223WA CEVP003-473WA CEVP003-473WA CEVP003-223WA	CH V R	470 kΩ DTL OFF APL 22 kΩ AP LEVEL 47 kΩ Y GAIN 47 kΩ WC 22 kΩ Y SET UP
RE020 RE030 RE033	CEVP003-473WA CEVP003-223WA CEVP003-331WA	CH V R CH V R CH V R	47kΩ SYNC LEVEL 22kΩ BURST LEVEL 330 Ω C LEVEL

6.CDS & AW MODULE BOARD (CAT-F001B)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R RF004 RF012 RF016 RF032	CEVP003-102WA CEVP003-332WA CEVP003-332WA CEVP003-471WA	CH V R CH V R CH V R CH V R	1 k \Omega AGC SET 3. 3 k \Omega 0 dB GAIN 3. 3 k \Omega MAX GAIN 470 \Omega G MIX

7.GEN LOCK MODULE BOARD (CAT-G501A)

8.CONTROL MODULE BOARD (CAT-H501A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R RH005 RH012 RH013 RH015 RH017	QVPB606-102K CEVP005-103XM QVPB606-103K CEVP005-103XM CEVP005-103XM	V R CH V R V R CH V R CH V R	1kΩ SC FINE 10kΩ SUB H PHASE 10kΩ H PHASE 10kΩ 6dB GAIN 10kΩ 12dB GAIN
RH021	QVPB606-103K	V R	10 kΩ R-B
RH025	QVPB606-103K	V R	10 kΩ G-Mg
RH030	CEVP005-332XM	CH V R	3.3 kΩ MANU. R
RH033	CEVP005-223XM	CH V R	22 kΩ MANU. R. GAIN
RH041	CEVP005-472XM	CH V R	4.7 kΩ B CONT
RH043	CEVP005-472XM	CH V R	4. 7 kΩ R CONT
RH049	CEVP005-223XM	CH V R	22 kΩ A/WB SUB
OTHERS SWH001 SWH002 SWH003 SWH004 SWH005	QSS1A12-C07 QSS1A12-C07 QSS1A12-C07 QSS1A12-C07 QSS1A13-C05	SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH SLIDE SWITCH	SC COARCE DETAIL GAMMA D SUB OUT GAIN MODE
SWH 0 0 6	QSS1A12-C07	SLIDE SWITCH DIP SWITCH PUSH SWITCH SLIDE SWITCH	GAIN
SWH 0 0 7	CESD007-001		SHUTTER
SWH 0 0 8	QSP1A11-C02		WB SET
SWH 0 0 9	QSS1A13-C05		WB MODE

9.RGB MODULE BOARD (CAT-J001B)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R RJ009 RJ010 RJ015 RJ026 RJ030	CEVP003-222WA CEVP003-103WA CEVP003-682WA CEVP003-103WA CEVP003-332WA	CH V R CH V R CH V R CH V R CH V R	2. 2 k \(\Omega \) R - Y GAIN 10 k \(\Omega \) R - Y MATRIX 6. 8 k \(\Omega \) R GAIN 10 k \(\Omega \) R SET UP 3. 3 k \(\Omega \) RGB CLIP
RJ035 RJ040 RJ051 RJ062 RJ063	CEVP003-222WA CEVP003-682WA CEVP003-103WA CEVP003-332WA CEVP003-103WA	CH V R	2. 2 k \(\Omega \) G - Y MATRIX 6. 8 k \(\Omega \) G GAIN 10 k \(\Omega \) G SET UP 3. 3 k \(\Omega \) B - Y GAIN 10 k \(\Omega \) B - Y MATRIX
RJ068 RJ077 RJ082 RJ089	CEVP003-682WA CEVP003-473WA CEVP003-103WA CEVP003-472WA	CH V R CH V R CH V R CH V R	6. 8 kΩ G GAIN 47 kΩ G SYNC 10 kΩ B SET UP 4. 7 kΩ Y LEVEL

10.RGB SUB MODULE BOARD (CAT-K001B)

SYMBOL NO.	PART NO.	PART NAME	REMARKS
VARIABLE R RK010	CEVP003-472WA	CH V R	4. 7kΩ RGB AP. L

11.PULSE MIXER MODULE BOARD (CAT-L001A)

SYMBOL NO.	PART NO.	PART NAME	REMARKS		
RESISTOR RL006 RL007	CEVP005-223XM CEVP005-223XM	CH V R CH V R	22k\Omega R-Y DC 22k\Omega B-Y DC		

VICTOR COMPANY OF JAPAN, LIMITED
IMAGING SYSTEMS DIVISION 1106 Iwai-city, Ibaraki-prefecture, 306-06, Japan

STANDARD CIRCUIT DIAGRAM

* Since the circuit diagram is a standard one, the circuit and circuit constants may be subject to change for improvement without any notice.

SAFETY

The compornents identified by the Asymbol and shading are critical for safety. For continued safety replace safety critical components only with manufactures recomended parts.

■ Voltages and Waveforms

The voltages and waveforms are measured under the following conditions.

• Illumination :Illumination condition during adjustment

Object

:Gray scale pattern (GS-2A)

Color bar pattern (CC-2T)

• Iris

:Set the VIDEO OUT wave form level to

700mV_{PD,WP} (AGC FIX) with IRIS switch (at

the lens side)

Switch

: AGC = FIX(GAIN = 0dB)

WHITE BALANCE = X

DETAIL = ON GAMMA = 0.45 D-SUB OUT = RGB SHUTTER = NORM SC COARSE = 1

Voltages

:All DC voltage values.

• Waveforms :Use 10 : 1 probe

Parts symbol number indications [Example]

• In the PC board:CAT-1501A

R1001→R1 or R01 C1023→C23

◆ Module PC board:CAT-A001A

ICA001→IC1 QA023-Q23

Parts not actually used

Parts shown in parentheses (), e.g., (R45), are not actually

(They are not mounted on the board.)

VR and switch functions

VR and switch functions are indicated by nearby rectangles. Where VRs etc. are grouped, the VR symbols are indicated above the rectangle.

■ Schematic indications

1. Resistors

Resistance value

non-unit

 $[\Omega]$:

K

 $:IK\Omega]$

М

:[ΜΩ]

 Rated allowable power non-unit

:1/10[W]

:As indicated

others Type

non-indication :Carbon resistor or Chip resistor :Oxide metal film resistor

OMR

:Metal film resistor

MFR FR

:Fusible resistor

2. Capacitoris

Capacitance value

1or higher

:[pF] less than 1 :[µF]

Withstand voltage

non-indication :DC50[V]

others :DC withstand voltage[V]

AC indication :AC withstand voltage[V]

Electolytic Capacitors

47/50

:Capacitance value[µF]/withstand voltage[V]

Type

non-indication :Ceramic capacitor

MY

:Mylar capacitor

NP

:Non-polar electolytic capacitor

BP

:Bipolar electolytic capacitor

n

:Tantalum capacitor

3. Coils

non-unit

[[H]

others

:As indicated

4. Power Supply

:+12V :+8.5V

:+7.7V ____:+5V

■ Color of P.C.Board. patten.

:Top side Blue :Bottomside

■ PIN ARRANGEMENTS OF ICs AND TRANSISTORS

Transistor

2SA1022(BC) 2SD1030(RS) 2SB709(QR) 2SD1742(P) 2SC2295(BC) 2SD601(QR) 2SC2778(BC)

G TOP VIEW

PCB LOCATION

	PCB No.	PCB NAME	CN No.	
1	CAT-1501A	MOTHER		
2	CAT-2001A	MATRIX	D,E	
9	CAT-9501A	TERMINAL	L,f,g	
Α	CAT-A001A	IMAGER	O,e	
В	CAT-B501A	TG	F,G,P	
С	CAT-C501A	SSG	ı	
D	CAT-D001B	PROCESS	С	
Ε	CAT-E501A	ENCODER	J	
F	CAT-F001B	CDS AW	A,B,T	
G	CAT-G501A	GEN LOCK	Н	
Н	CAT-H501A	CONTROL	M,N	
J	CAT-J001B	RGB DRIVER	K,a,b	
K	CAT-K001B	RGB-SUB	a,b	
L	CAT-L001A	PULSE MIXER	Q	

■ PULSE MIXER PCB(CAT-L001A)CIRCUIT DIAGRAM

JVC

SERVICE MANUAL

COLOR VIDEO CAMERA HEAD

TK-1070E

BASIC CHASSIS

V57

Supplement

It is notified that the TK-1070E has been altered in the circuitry of the MATRIX board of the products which were manufactured in October, 1991 and after.

Therefore, this supplement contains only the matters different from the original service manual of the TK-1070E (No. 50564) issued in May, 1991. For further details refer to the original.

Altered Points

- 1. MATRIX board
 - (1) The PULSE MIXER board is incorporated in the MATRIX board.
 - (2) Non-adjusting MPX OFFSET (with addition of the Line Offset Compensator circuit)
 - (3) Change of the board assembly to CAT-2002A in number (interchangeable with old assembly number CAT-2001A)
 - 2. PULSE MIXER board
 - (1) Deleted
 - 3. GEN-LOCK board
 - (1) Change of the board figure. □□□□
 - (2) Change of the board assembly to CAT-G502A in number

MATRIX CIRCUIT BOARD

Side A

Side B

■ RGB DRIVER / RGB-SUB PCB (CAT-J001B/CAT-K001B) CIRCUIT DIAGRAM

34 (No.50564)

■ CONTROL PCB(CAT-H501A)CIRCUIT DIAGRAM

■ GEN LOCK PCB(CAT-G501A)CIRCUIT DIAGRAM

■ CDS AW PCB(CAT-F001B)CIRCUIT DIAGRAM

■ ENCODER PCB(CAT-E501A)CIRCUIT DIAGRAM

■ PROCESS PCB(CAT-D001B)CIRCUIT DIAGRAM

■ SSG PCB(CAT-C501A)CIRCUIT DIAGRAM

■ TG PCB(CAT-B501A)CIRCUIT DIAGRAM

■ IMAGER PCB(CAT-A001A)CIRCUIT DIAGRAM

■ TERMINAL PCB(CAT-9501A) PATTEN

TOP VIEW

BOTTOM VIEW

■ TERMINAL PCB(CAT-9501A)CIRCUIT DIAGRAM

TK-1070E

70E

■ MOTHER / MATRIX PCB (CAT-1501A/CAT-2001A) PATTEN

TOP VIEW

BOTTOM VIEW

TK-1070E

■ MATRIX PCB(CAT-2001A)CIRCUIT DIAGRAM

■ MOTHER PCB(CAT-1501A)WAVE FORM

Object = Gray scale pattern (GS-2A) 1 4.8Vp-p/20µs ③ 5.2Vp-p/20μs ② 4.8Vp-p/5ms 4 5.3Vp-p/20μs ⑤ 0.42Vp-p/0.2μs 6 5.4Vp-p/0.2μs ⑦ 5.4Vp-p/0.2μs 9 5.4Vp-p/20μs Φ 4.6Vp-p/20μs 1 0.3Vp-p/20µs ① 0.46Vp-p/20μs **ⓑ** 0.5Vp-p/20μs ① 0.27Vp-p/20μs ① 0.12Vp-p/20μs 1 0.07Vp-p/20μs (19) 0.2Vp-p/20μs **②** 0.15Vp-p/20μs ② 0.8Vp-p/20μs ② 0.6Vp-p/20μs 2 2.0Vp-p/20μs **3** 0.72Vp-p/20μs Object = Color bar pattern (CC-2T) ③ 0.28Vp-p/20μs ① 0.5Vp-p/20μs **1** 0.5 Vp-p/20μs D 0.32Vp-p/20μs ① 0.68Vp-p/20μs 📵 0.5Vp-p/20μs 0.3Vp-p/20μs **②** 0.35Vp-p/20μs ② 0.84Vp-p/20μs **%** 1.5Vp-p/20μs ② 1.5Vp-p/20μs **2** 1.5Vp-p/20μs

■ SW REG.(CE41896-C0A)CIRCUIT DIAGRAM

(No.50564) 7

■ MOTHER PCB(CAT-1501A)CIRCUIT DIAGRAM

■ VIDEO SIGNAL BLOCK DIAGRAM

LINE OFFSET COMPENSATOR

● MATRIX board assembly list 01 CAT-2002A

Symbol No.	Part No.	Part Name	Description	
IC2001	CX20151	I.C.(M)	SONY	
	CXL1505M-C1	I.C.(M)	SONY	
1	CXL1505M-C1	I.C.(M)	SONY	
	UPC358G	I.C.(M)	NEC	
	UPC358G	1.C.(M)	NEC	
	UPC4558G	I.C.(M)	NEC	
	UPC4556G	I.C.(M)	NEC	
1	SC14S66F	I.C.(M)	TOSHIBA	
IC2009		I.C.(M)	MOTOROLA	
IC2003		I.C.(M)	TOSHIBA	
102010	1044455F	1.0.1007	TOSHIBA	
02001	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
02002	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
02003	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
02004	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
02005	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
02006	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
02007	2SA1022(BC)	TRANSISTOR		
02007	2SA1022(BC)		MATSUSHITA	
		TRANSISTOR TRANSISTOR	MATSUSHITA	
02009	2SA1022(BC)		MATSUSHITA	
Q2010	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
Q2011	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
Q2012	2SA1022(BC)	TRANSISTOR	MATSUSHITA	
Q2013	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
02014	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
Q2015	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
Q2016	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
Q2017	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
02018	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
Q2019	2SB709(QR)	TRANSISTOR	MATSUSHITA	
02020	2SB709(QR)	TRANSISTOR	MATSUSHITA	
02021	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
02022	2SB709(QR)	TRANSISTOR	MATSUSHITA	
02023	2SB709(QR)	TRANSISTOR	MATSUSHITA	
02024	2SC2295(BC)	TRANSISTOR	MATSUSHITA	
Q2025	2SC2295(BC)	TRANSISTOR	MATSUSHITA	
Q2026	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
02028	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
02029	2SB709(QR)	TRANSISTOR	MATSUSHITA	
02030	2SC2778(BC)	TRANSISTOR	MATSUSHITA	
D2001	MA157	SI.DIODE	MATSUSHITA	
R2001	QRSA08J-0R0	M.G.RESISTOR	0 1/10W	
R2002	QRSA08J-ORO	M.G.RESISTOR	0 1/10W	
R2007	QRSA08J-103	M.G.RESISTOR	10K 1/10W	
R2008	QRSA08J-103	M.G.RESISTOR	10K 1/10W	
R2009	QRSA08J-103	M.G.RESISTOR	10K 1/10W	
R2010	QRSA08J-103	M.G.RESISTOR	10K 1/10W	
R2011	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2012	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2013	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2014	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2015	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2016	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2017	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2018	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2019	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
R2020	QRSA08J-102	M.G.RESISTOR	1.0K 1/10W	
2020	210A000-102	W.G.NEOIO TUM	1.01	

Symbol No.	Part No.	Part Name		Description		
R2021	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2022	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2023	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2024	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2025	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2026	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2027	QRSA08J-153	M.G.RESISTOR	15K	1/10W		
R2028	QRSA08J-153	M.G.RESISTOR	15K	1/10W		
R2029	QRSA08J-183	M.G.RESISTOR	18K	1/10W		
R2030	QRSA08J-103	M.G.RESISTOR	10K	1/10W		
R2033	QRSA08J-122	M.G.RESISTOR	1.2K	1/10W		
R2034	QRSA08J-332	M.G.RESISTOR	3.3K	1/10W		
R2035	CEVP005-103	TRIM.RESISTOR	10K	G1.GAIN		
R2036	CEVP005-103	TRIM.RESISTOR	10K	R1/B1.GAIN		
R2037	CEVP005-103	TRIM.RESISTOR	10K	G2.GAIN		
R2038	CEVP005-103	TRIM.RESISTOR	10K	R2/B2.GAIN		
R2042	CEVP005-103	TRIM.RESISTOR	10K	R-Y.GAIN		
R2043	CEVP005-103	TRIM.RESISTOR	10K	R-Y/B-YGAIN		
R2044	CEVP005-103	TRIM.RESISTOR	10K	B-Y.GAIN		
R2045	QRSA08J-153	M.G.RESISTOR	15K	1/10W		
R2046	QRSA08J-104	M.G.RESISTOR	100K	1/10W		
R2047	QRSA08J-562	M.G.RESISTOR	5.6K	1/10W		
R2048	QRSA08J-562	M.G.RESISTOR	5.6K	1/10W		
R2049	QRSA08J-273	M.G.RESISTOR	27K	1/10W		
R2050	QRSA08J-332	M.G.RESISTOR	3.3K	1/10W		
R2051	QRSA08J-332	M.G.RESISTOR	3.3K	1/10W		
R2052	CEVP005-682	TRIM.RESISTOR	6.8K	A/W.B		
R2053	CEVP005-682	TRIM.RESISTOR	6.8K	A/W.R		
R2054	QRSA08J-273	M.G.RESISTOR	27K	1/10W		
R2055	QRSA08J-153	M.G.RESISTOR	15K	1/10W		
R2056	QRSA08J-104	M.G.RESISTOR	100K	1/10W		
R2057	QRSA08J-683	M.G.RESISTOR	68K	1/10W		
R2058	QRSA08J-223	M.G.RESISTOR	22K	1/10W		
R2059	QRSA08J-152	M.G.RESISTOR	1.5K	1/10W		
R2060	QRSA08J-152	M.G.RESISTOR	1.5K	1/10W		
R2061	QRSA08J-152	M.G.RESISTOR	1.5K	1/10W		
R2062	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2063	QRSA08J-103	M.G.RESISTOR	10K	1/10W		
R2064	QRSA08J-103	M.G.RESISTOR	10K	1/10W		
R2065	QRSA08J-683	M.G.RESISTOR	68K	1/10W		
R2066	QRSA08J-223	M.G.RESISTOR	22K	1/10W		
R2067	QRSA08J-152	M.G.RESISTOR	1.5K	1/10W		
R2068	QRSA08J-152	M.G.RESISTOR	1.5K	1/10W		
R2069	QRSA08J-152	M.G.RESISTOR	1.5K	1/10W		
R2070	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2071	QRSA08J-102	M.G.RESISTOR	10K	1/10W		
R2072	QRSA08J-103	M.G.RESISTOR	10K	1/10W		
R2073	QRSA08J-822	M.G.RESISTOR	8.2K	1/10W		
R2074	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2075	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		
R2076	QRSA08J-272	M.G.RESISTOR	2.7K	1/10W		
R2077	QRSA08J-103	M.G.RESISTOR	10K	1/10W		
R2078	QRSA08J-333	M.G.RESISTOR	33K	1/10W		
R2079	QRSA08J-183	M.G.RESISTOR	18K	1/10W		
R2080	QRSA08J-472	M.G.RESISTOR	4.7K	1/10W		
R2081	QRSA08J~103	M.G.RESISTOR	10K	1/10W		
R2084	QRSA08J-103	M.G.RESISTOR	1.0K	1/10W		
	4110MUUJ-1UZ	WI.G. NESISTON	1.00	111044		
R2085	QRSA08J-102	M.G.RESISTOR	1.0K	1/10W		

Symbol No.	Part No.	Part Name		Description	Symbol No.	Part No.	Part Name	De	scription
R2087	CEVP005-103	TRIM.RESISTOR	10K	R-Y.MIX	C2037	NCB21HK-223	CER.CAPACITOR	0.022	50V
R2088	CEVP005-103	TRIM.RESISTOR	10K	B-Y.MIX	C2038	NEA11CM-106	E.CAPACITOR	10	16V
R2089	CEVP005-103	TRIM.RESISTOR	10K	V.CONTOUR	C2039	NCB11EK-104	CER.CAPACITOR	0.10	25V
R2090	CEVP005-223	TRIM.RESISTOR	22K	IRIS.SET	C2040	NCB11EK-104	CER.CAPACITOR	0.10	25V
R2093	QRSA08J-0R0	M.G. RESISTOR	0	1/10W	C2041	NEE21CM-105	TAN.CAPACITOR	1.0	16V
R2094	QRSA08J-391	M.G. RESISTOR	390	1/10W	C2042	NCB21HK-223	CER.CAPACITOR	0.022	50V
R2097	QRSA08J-103	M.G. RESISTOR	10K	1/10W	C2043	NEE11CM-106	TAN.CAPACITOR	10	16V
R2098	QRSA08J-105	M.G. RESISTOR	1.0M	1/10W	C2044		E.CAPACITOR	10	16V
R2099	QRSA08J-104	M.G. RESISTOR	100K	1/10W	C2045	NEE21CM-105	TAN.CAPACITOR	1.0	16V
R2100	QRSA08J-104	M.G.RESISTOR	100K	1/10W	C2047	NEA10JM-226	E.CAPACITOR	22	6.3V
R2101	QRSA08J-394	M.G. RESISTOR	390K	1/10W	C2048	NEA10JM-226	E.CAPACITOR	22	6.3V
R2102	QRSA08J-104	M.G. RESISTOR	100K	1/10W	C2049	NEE21CM-105	TAN.CAPACITOR	1.0	16V
R2103	QRSA08J-104	M.G.RESISTOR	100K	1/10W	C2050	NEE21CM-105	TAN.CAPACITOR	1.0	16V
R2104	QRSA08J-474	M.G. RESISTOR	470K	1/10W	C2051	NCT03CH-100	CER.CAPACITOR	10P	50V
R2105	QRSA08J-222	M.G. RESISTOR	2.2K	1/10W	C2052	NCT03CH-100	CER.CAPACITOR	10P	50V
R2106	QR\$A08J-103	M.G. RESISTOR	10K	1/10W	C2053	NCT03CH-100	CER CARACITOR	100	501/
R2107	QRSA08J-472	M.G.RESISTOR	4.7K	1/10W	C2053	NCT03CH-100	CER.CAPACITOR	10P	50V
R2108	QRSA08J-473	M.G.RESISTOR	4.7K				CER.CAPACITOR	10P	50V
R2108	QRSA08J-473			1/10W	C2055	NCS21HJ-121	CER.CAPACITOR	120P	50V
		M.G. RESISTOR	47K	1/10W	C2056	NCT03CH-220	CER.CAPACITOR	22P	50V
R2110	CEVP005-223	TRIM.RESISTOR	22K	R-Y.DC	C2057	NCT03CH-390	CER.CAPACITOR	39P	50V
R2111	CEVP005-223	TRIM.RESISTOR	22K	B-Y.DC	C2058	NCB21HK-332	CER.CAPACITOR	3300P	50V
R2112	QRSA08J-103	M.G.RESISTOR	10K	1/10W	C2059	NCB11HK-104	CER.CAPACITOR	0.10	50V
R2113	QRSA08J-563	M.G. RESISTOR	56K	1/10W	C2061	NEE11AM-475	TAN.CAPACITOR	4.7	10V
2				1	C2062	NEE11AM-475	TAN.CAPACITOR	4.7	10V
C2001	NEA11CM-106	E.CAPACITOR	10	16V	C2063	NCT03CH-221	CER.CAPACITOR	220P	50V
C2002	NCF11HZ-473	CER. CAPACITOR	0.047	50V	C2064	NCB21EK-393	CED CADACITOD	0.000	051/
	NEA11CM-106	E.CAPACITOR	10	16V	C2004	NCD2 IEK-383	CER.CAPACITOR	0.039	25V
	NCF11HZ-473	CER. CAPACITOR	0.047	50V	1	7			
	NEA11CM-106	E.CAPACITOR	10	16V	TDOOG	01447900 001	TECT DOLLT		
1	NCF11HZ-473	CER. CAPACITOR	0.047		,	CM47280-001	TEST POINT		
i .	NEE21CM-105	TAN.CAPACITOR		50V	1	CM47280-001	TEST POINT		
	NCF11HZ-473		1.0	16V		CM47280-001	TEST POINT		
	NCB11EK-104	CER.CAPACITOR	0.047	50V	TP2004		TEST POINT		
i 1		CER. CAPACITOR	0.10	25V		CM47280-001	TEST POINT		
62011	NCB1 1EK-104	CER. CAPACITOR	0.10	25V		CM47280-001	TEST POINT		
60010	NC014EK 104	OFF CARACITOR	- 40	13.0	TP2007		TEST POINT		
	NCB11EK-104	CER.CAPACITOR	0.10	25V		CM47280-001	TEST POINT		
	NCB11EK-104	CER.CAPACITOR	0.10	25V	1P2009	CM47280-001	TEST POINT		
	NCB1 1EK-104	CER.CAPACITOR	0,10	25V			- 80		
	NCB1 1EK-104	CER.CAPACITOR	0.10	25V					
	NCB11EK-104	CER.CAPACITOR	0.10	25V	T2001	CE41120-00A	TRANSFORMER		
- 1	NCB11EK-104	CER.CAPACITOR	0.10	25V	T2002	CE41120-00A	TRANSFORMER	1	
	NCB11EK-104	CER.CAPACITOR	0.10	25V	T2003	CE41917-00A	TRANSFORMER		
	NCB11EK-104	CER.CAPACITOR	0.10	25V	T2004	CE41918-00A	TRANSFORMER		
1	NEE21CM-105	TAN.CAPACITOR	1.0	16V	T2005	CE41920-00A	L.P.F.	ĺ	
C2021	NCB21HK-103	CER.CAPACITOR	0.010	50V					
C2022	NEE21CM-105	TAN.CAPACITOR	1.0	16V					
	NEE21CM-105	TAN.CAPACITOR	1.0	16V					
	NEE21CM-105	TAN.CAPACITOR	1.0	16V		£			
	NEE21CM-105	TAN.CAPACITOR	1.0	16V					
	NEE21CM-105	TAN.CAPACITOR	1.0	16V	1		1		
	NCB21HK-103	CER.CAPACITOR	0.010	50V			,.		
- 1	NEE21CM-105	TAN.CAPACITOR	1.0	16V					
	NEE21CM-105	TAN.CAPACITOR	1.0	16V		(*)			
	NEE21CM-105	TAN.CAPACITOR	1.0	16V					
	NEE21CM-105	TAN.CAPACITOR	1.0	16V					
canaa	NC011EV 104	CER CARACITOR	0.10	251/					
	NCB11EK-104	CER.CAPACITOR	0.10	25V		1			
	NCB11EK-104	CER.CAPACITOR	0.10	25V			-		
	NCB11EK-104	CER.CAPACITOR	0.10	25V	1	40			
	NCB11EK-104	CER.CAPACITOR	0.10	25V			,		
U2U36	NEE21CM-105	TAN.CAPACITOR	1.0	16V	1			i	