1 – Tutorial cálculo algebráico y	Seguir algún tutorial de un entorno de cálculo algebraico y simbólico	Vectores Derivadas	Tutorial (mathemática, wofram alpha, octave, matlab, etc.)
simbólico		Sumatorios	http://www.mathprogramming- intro.org/
		Solve y NSolve	
2 – Mínimos cuadrados	Estudiar los conceptos básicos		
3 – Aplicación al modelo SIS+gamma	Las ecuaciones de transformación del modelo SIS + gamma pueden escribirse de la siguiente manera (inversa):		Plantear el problema en Mathematica usando Solve.
	$b_{1} = \theta_{i_{1}} - \theta_{0} \left(\frac{\theta_{i_{1}}}{\sqrt{{\theta_{i_{1}}}^{2} + {\theta_{i_{2}}}^{2}}} \right) - g_{1}\theta_{i_{1}} - g_{2}\theta_{i_{2}}$		Aplicarlo a Q2237+0305 (las coordenadas de las imágenes y de la galaxia lente vienen en http://www.cfa.harvard.edu/castles/
	$b_{2} = \theta_{i_{2}} - \theta_{0} \left(\frac{\theta_{i_{2}}}{\sqrt{{\theta_{i_{1}}}^{2} + {\theta_{i_{2}}}^{2}}} \right) + g_{1}\theta_{i_{2}} - g_{2}\theta_{i_{1}}$		
	Donde los datos son las coordenadas relativas a la posición de la galaxia de las diferentes imágenes del sistema lente, $\vec{\theta_i} = (\theta_{i_1}, \theta_{i_2})$, y las incógnitas son los 5 parámetros del modelo: la posición de la fuente, $\vec{b} = (b_1, b_2)$; la "potencia" de la lente, θ_0 ; y las dos componentes del "shear", $g = (g_1, g_2)$.		
	Para un sistema cuádruple hay 4X2 datos (las 8 coordenadas) que corresponden a 8 ecuaciones y el sistema de ecuaciones estaría sobre-determinado. Lo lógico entonces es definir una función a minimizar y aplicar el método de mínimos cuadrados.		
	La función de mérito la podemos definir como:		

	$s^2 = \sum_{i=1}^4 \left\{ \left[b_1 - \theta_{i_1} + \theta_0 \left(\frac{\theta_{i_1}}{\sqrt{\theta_{i_1}^2 + \theta_{i_2}^2}} \right) + g_1 \theta_{i_1} + g_2 \theta_{i_2} \right]^2 + \left[b_2 - \theta_{i_2} + \theta_0 \left(\frac{\theta_{i_2}}{\sqrt{\theta_{i_1}^2 + \theta_{i_2}^2}} \right) - g_1 \theta_{i_2} + g_2 \theta_{i_1} \right]^2 \right\}$ $Y \text{ el sistema de ecuaciones que hay que resolver es:}$ $\left\{ \frac{\partial s^2}{\partial b_1} = 0, \frac{\partial s^2}{\partial b_2} = 0, \frac{\partial s^2}{\partial \theta_0} = 0, \frac{\partial s^2}{\partial g_1} = 0, \frac{\partial s^2}{\partial g_2} = 0 \right\}$ Este procedimiento asume que el error en b_1 y	
4 – Aplicación	b_2 es el mismo. Bondad del ajuste	
a un conjunto de objetos de CASTLES.	Aplicación de diferentes criterios de Chi2	
5 – Predicciones para los flujos		