(19) 日本国特許广 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-130427

(43)公開日 平成11年(1999)5月18日

(51) Int.Cl. ⁶	識別記号	F I		
CO1F 11/22		C01F 11/22		
B01D 53/70		C 0 2 F 1/58	M	
C02F 1/58		B 0 1 D 53/34	B 0 1 D 53/34 1 3 4 E	
		審查請求。未請求	₹ 請求項の数1 OL	(全 6 頁)
(21)出願番号	特願平 9-288545	(71)出顧人 00014	000148759	
		株式会	社タダノ	
(22)出顧日 平成9年(1997)10月21日		香川県	香川県高松市新田町甲34番地	
		(71)出顧人 59506	1809	
(31)優先権主張番号	特願平9-224671	旺栄別	旺栄開発工業株式会社	
(32)優先日	平 9 (1997) 8 月21日	高知県	高知県高知市長浜5033番地21	
(33)優先権主張国	日本(JP)	(72)発明者 木村	(72) 発明者 木村 秀孝	
			L高松市林町2217-13 株 河 河 究所内	式会社タダ
		(72)発明者 川原	めぐみ	
		香川県	L高松市林町2217-13 株	式会社夕夕
		ノ技術	研究所内	
		(74)代理人 弁理士	大浜 博	
			最	終頁に続く

(54) 【発明の名称】 弗化カルシウムの製造方法

(57)【要約】

【課題】 フロン等の弗素化合物を分解処理して得られ る混酸水溶液から純度の高い弗化カルシウムを低コスト

【解決手段】 フロン等の弗素化合物を分解処理して得 られる金属含有混酸水溶液Aを蒸留して溶解金属の大部 分が除去された蒸留混酸水溶液Bを得る蒸留工程と、該 蒸留工程により得られた蒸留混酸水溶液Bに該混酸水溶 液Bとの反応後の遷液が酸性を維持するカルシウム塩を 添加反応させて錦化カルシウムCaF,を生成沈殿させ る生成沈殿工程と、該生成沈殿工程により生成沈殿され た沈殿物C(弗化カルシウムCaF₁)を取り出す取出 工程とを順次実行するようにして、金属成分を含まない 高純度の弗化カルシウムCaFzが得られるようにして いる。

【特許請求の範囲】

【請求項1】 フロン等の弗素化合物を分解処理して得られる金属含有混酸水溶液を蒸留して溶解金属の大部分が除去された蒸留混酸水溶液を得る蒸留工程と、該蒸留工程により得られた蒸留混酸水溶液に該混酸水溶液との反応後の濾液が酸性を維持するカルシウム塩を添加反応させて弗化カルシウムを生成沈殿させる生成沈殿工程と、該生成沈殿工程により生成沈殿された弗化カルシウムを取り出す取出工程とを顧欠実行することを特徴とする弗化カルシウムの製造方法。

1.

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は、弗化カルシウムの製造方法に関し、さらに詳しくはフロン等の弗素化合物を分解処理して得られる金属含有混酸水溶液から純度の高い弗化カルシウムを製造する方法に関するものである。

[0002]

【従来の技術】近年、オゾン層を破壊する環境汚染物質 として知られているフロンガス等を無害化する技術が研 20 究開発されてきており、この無害化処理により分解生成 される混酸水溶液は、通常中和処理後に廃棄されてい た。

【0003】ところで、上記混酸水溶液には、弗化水素酸HFが多く含まれており、この混酸水溶液中に含まれる弗化水素酸HFにカルシウム塩を反応させることにより有用物質である弗化カルシウムCaF,を製造する方法が注目されてきている。

【0004】従来から行われていた弗化カルシウムを製造する方法としては、プロン等の弗素化合物を分解処理 30 して得られる混酸水溶液に直接カルシウム塩を添加反応させて弗化カルシウムCaF,を凝析沈殿物として取り出す方法が採用されていた。

[0005]

【発明が解決しようとする課題】上記したように弗素化 合物の分解処理により得られた混酸水溶液に直接カルシ ウム塩を反応させる方法を用いた場合、次のような問題 が生ずる。

【0006】即ち、フロン等の弗素化合物を分解処理して得られる混酸水溶液は、弗化水素酸HFおよび塩酸HCIからなる強酸性を呈する水溶液であり、当該混酸水溶液には、分解処理装置を構成する金属材料の溶出によって微量ではあるが金属が含まれる。従って、上記したように、金属を含有している混酸水溶液に直接カルシウム塩を添加反応させて弗化カルシウムCaFュを凝析沈敷物として取り出す方法を用いた場合、取り出された弗化カルシウム沈殿物中に不純物として金属成分が残留してしまり。

【0007】ところが、上記方法により得られた金属成分を含む弗化カルシウムCaF,は、高純度を必要とし

ない用途に用いる場合は問題とはならないが、望遠鏡用 レンズやカメラ用レンズとして用いられる蛍石レンズの 原料として用いた場合、不純物が存在しているとレンズ 性能を大幅に低下させてしまうため、金属成分を除去す る必要がある。この金属成分の除去には、大掛かりな装 置と手間を必要とし、多大の費用がかかっていた。

[0008]本願発明は、上記の点に鑑みてなされたもので、フロン等の弗素化合物を分解処理して得られる混酸水溶液から純度の高い弗化カルシウムを低コストで得ることを目的とするものである。

[00009]

【課題を解決するための手段】本願発明の方法では、上記課題を解決するために、フロン等の弗素化合物を分解処理して得られる金属含有混酸水溶液を蒸留して溶解金属の大部分が除去された蒸留混酸水溶液を得る蒸留工程と、該蒸留工程により得られた蒸留混酸水溶液に該混酸水溶液との反応後の濾液が酸性を維持するカルシウム塩を添加反応させて弗化カルシウムCaF、を生成沈殿させる生成沈殿工程と、該生成沈殿工程により生成沈殿された弗化カルシウムCaF、を取り出す取出工程とを顧次実行するようにしている。

【0010】上記のような方法とすると、蒸留工程において金属含有混酸水溶液から大部分の溶解金属が除去された混酸水溶液(例えば、弗化水素酸HFおよび塩酸HC1)に対して、カルシウム塩を添加反応させることにより弗化カルシウムCaF,を生成沈殿させることができ、金属成分を含まない生成沈殿物(換言すれば、弗化カルシウムCaF,)が得られる。つまり、この方法により得られた弗化カルシウムCaF,は高純度なものとなるのである。

【0011】なお、混酸水溶液に対して添加されるカルシウム塩としては、混酸水溶液との反応後の濾液が酸性を維持するもの(例えば、塩化カルシウムCaCl、、硝酸カルシウムCa(NO」)」、臭化カルシウムCaBr、、ヨウ化カルシウムCaI、等)が用いられるが、反応後の水溶液が強酸性を示すとともに、取り扱いがし易い点で塩化カルシウムCaCl、が望ましい。

【0012】その理由は、塩化カルシウムCaCliの場合、混酸水溶液中の弗化水素酸HFと下記反応式により弗化カルシウムCaFiを生成するが、生成された弗化カルシウムCaFiはコロイド(帯電)となっているため、強酸性の方が速やかな凝析沈殿が得られるからである。しかも弗化カルシウムCaFiの生成過程において混酸水溶液中に既に含まれている塩酸HClしか生成されず、酸と化合するような物質が生成されないからである。

[0013]2HF+CaCJ,--CaF,+2HC1 [0014]

【発明の実施の形態】以下、添付の図面を参照して、本 50 願発明の好適な幾つかの実施の形態について詳述する。 【0015】第1の実施の形態

図1には、第1の実施の形態にかかる弗化カルシウムの 製造方法の具体的な手順が示されている。

【0016】本実施の形態にかかる弗化カルシウムの製 造方法は、フロン等の弗素化合物を分解処理して得られ る金属含有混酸水溶液から高純度の弗化カルシウムCa F,を製造するものである。

【0017】例えば、フロンガスCC1,F,は、下記の 式により加水分解される。

[0018]

 $CCI_1F_1+2H_1O\rightarrow CO_2+2HF+2HCI$ ここで生成される炭酸ガスCO,は気体として分離され るが、混酸水溶液(即ち、弗化水素酸HFと塩酸HC1 との混合物)は、従来中和廃棄されることとなってい た。ところが、前記混酸水溶液中に含まれる弗化水素酸 HFから高純度の弗化カルシウムCaF、(蛍石)をリ サイクル製品として取り出すことが可能である。ところ で、上記混酸水溶液には、弗化水素酸HFと塩酸HC1 との他に、分解装置を構成する金属材料の溶出によって 微量の金属成分が含まれているため、当該金属成分の除 去が必要となる。

【0019】そとで、図1に示すように、フロン等の弗 素化合物を分解処理して得られる金属含有混酸水溶液A (弗化水素酸HF:10%、塩酸HC1:25%、金属 成分:0.1%)を容器1に入れ、オイルバス2を用い て蒸留する蒸留工程が実行される。ここで、オイルバス 2の温度は金属含有混酸水溶液Aの温度が弗化水素酸H Fの沸点である112.2℃より高くなるように約13 0~180℃とされる。符号3は容器1から蒸発した混 酸を冷却するための水冷冷却装置である。

【0020】前記蒸留工程においては、大部分の金属成 分が容器1内に残留され、残余の金属成分(約10pp m) を含む蒸留混酸水溶液B (弗化水素酸HF: 5%、 塩酸HC1:12%)が得られる。

【〇〇21】上記のようにして得られた蒸留混酸水溶液 Bに対して該蒸留混酸水溶液Bとの反応後の濾液が酸性 を維持するカルシウム塩(例えば、塩化カルシウムCa C I,)を添加反応させて弗化カルシウムCaF,を生成 沈殿させる生成沈殿工程が実行される。 ここでは、10 Ogの蒸留混酸水溶液Bに対して14gの塩化カルシウ ムCaCl,が添加され(つまり、蒸留混酸水溶液B中 に含まれる弗化水素酸HFの当量に相当する塩化カルシ ウムCaC1,が添加され)、次式の反応により弗化力 ルシウムCaF,が生成される。

 $[0022]2HF+CaCl_{i}\rightarrow CaF_{i}+2HCl$ 上記反応により得られた弗化カルシウムCaFzはコロ イド(帯電)となるが、撹拌後の自然沈降により弗化力 ルシウムCaF,の沈殿物Cと塩酸HCIからなる上澄 み液Dとに分離される。このとき、上澄み液D中には、 蒸留時に蒸気に伴われて出た極微量の金属成分がイオン 50 えば、水酸化ナトリウムNaOHの水溶液)を加えて中

として沈殿物Cから分離される。かくして、分離生成さ れた沈殿物C(即ち、弗化カルシウムCaF₁)は、不 純物を含まない高純度のものとなるのである。

【0023】ここで、蒸留混酸水溶液Bに対して添加さ れるカルシウム塩としては、塩化カルシウムCaC 12 の他に、硝酸カルシウムCa(NO,)、臭化カルシウ ムCaBrz、ヨウ化カルシウムCal,等を用いること ができる。

【0024】カルシウム塩として、硝酸カルシウムCa 10 (NO,),を用いる場合、100gの蒸留混酸水溶液B に対して20.5gの硝酸カルシウムCa(NO₃)₂を 添加すると(つまり、蒸留混酸水溶液B中に含まれる弗 化水素酸HFの当量に相当する硝酸カルシウムCa(N O,) zを添加すると)、次式により弗化カルシウムCa F₂が生成される。

[0025]

 $2HF+Ca(NO_1) \rightarrow CaF_1+2HNO_3$ また、カルシウム塩として、臭化カルシウムCaBrz を用いる場合、100gの蒸留混酸水溶液Bに対して2 20 5gの臭化カルシウムCaBr,を添加すると(つま り、蒸留混酸水溶液B中に含まれる弗化水素酸HFの当 量に相当する臭化カルシウムCaBг、を添加する と)、次式により弗化カルシウムCaF,が生成され

[0026]2HF+CaBr,→CaF,+2HBr また、カルシウム塩として、ヨウ化カルシウムCal。 を用いる場合、100gの蒸留混酸水溶液Bに対して3 6. 8gのヨウ化カルシウムCallを添加すると(つ) まり、蒸留混酸水溶液B中に含まれる弗化水素酸HFの 30 当量に相当するヨウ化カルシウムCalュを添加する と)、次式により弗化カルシウムCaF,が生成され る。

[0027]2HF+CaI,→CaF,+2HI つまり、いずれの場合にも反応後の濾液は酸性を示し、 生成された弗化カルシウムCaF,はコロイド(帯電) となっているため、強酸性の方が速やかな凝析沈殿が得 られるが、硝酸カルシウムCa(NO,)、臭化カルシ ウムCaBr」およびヨウ化カルシウムCal」は、取り 扱いがしにくいので塩化カルシウムCaCl、が望まし 40 bis

【0028】次に、上記生成沈殿工程により得られた沈 殿物C(即ち、弗化カルシウムCaF』)を、上澄み液 Dを廃棄することにより取り出す取出工程が実行され る。該取出工程により取り出された沈殿物C(即ち、弗 化カルシウムCaF,) は乾燥により製品とされるが、 前記沈殿物Cは酸性を帯びているため、水洗あるいは中 和により酸抜きを行った後に乾燥させて生成物子(即 ち、高純度の弗化カルシウムCaF,)とされる。

【0029】例えば、沈殿物Cにアルカリ性水溶液(例

6

性電解質水溶液E(ナトリウムイオンと塩素イオンと弗化カルシウムとを含む)とし、これを撹拌して弗化カルシウムCaF,の沈殿物を中性電解質水溶液E中にコロイド状にしみ込ませ、そのうえで弗化カルシウムCaF,コロイドを中性電解質水溶液E中で沈殿物として凝析沈降させて生成物Fを得る。なお、前記沈殿物Cに対して同様な中和処理を施することにより酸抜きされた生成物Fを得るようにしてもよい。

5

【0030】また、前記酸抜きは水洗によっても可能であり、この場合、大量の水により水洗した後、遠心分離 10 機等により弗化カルシウムCaF₂を分離すればよい。 【0031】第2の実施の形態

図2には、本願発明の第2の実施の形態にかかる弗化カルシウムの製造方法の具体的な手順が示されている。

【0032】この場合、弗化カルシウムCaF,の沈殿 物Cを上澄み液Dから分離するまでの手順は第1の実施 の形態におけると同様である。

【0033】即ち、フロン等の弗素化合物を分解処理して得られる金属含有混酸水溶液A(弗化水素酸HF:1 と)0%、塩酸HC1:25%、金属成分:0.1%)を容 20 る。器1に入れ、オイルバス2を用いて蒸留する蒸留工程が実行される。ここで、オイルバス2の温度は金属含有混酸水溶液Aの温度が弗化水素酸HFの沸点である11 を見2.2℃より高くなるように約130~180℃とされる。符号3は容器1から蒸発した混酸を冷却するための水冷冷却装置である。 当場

【0034】前記蒸留工程においては、大部分の金属成分が容器1内に残留され、残余の金属成分(約10ppm)を含む蒸留混酸水溶液B(弗化水素酸HF:5%、塩酸HC1:12%)が得られる。

【0035】上記のようにして得られた蒸留温酸水溶液 Bに対して該蒸留混酸水溶液Bとの反応後の濾液が酸性を維持するカルシウム塩(例えば、塩化カルシウムCaF,を生成 沈殿させる生成沈殿工程が実行される。とこでは、100gの蒸留混酸水溶液Bに対して14gの塩化カルシウムCaCl,が添加され(つまり、蒸留混酸水溶液B中に含まれる弗化水素酸HFの当量に相当する塩化カルシウムCaCl,が添加され)、次式の反応により弗化カルシウムCaCl,が生成される。

【0036】2HF+CaC1、→CaF、+2HC1 上記反応により得られた弗化カルシウムCaF、はコロイド(帯電)となるが、撹拌後の自然沈降により弗化カルシウムCaF、の沈殿物Cと塩酸HC1からなる上澄み液Dとに分離される。このとき、上澄み液D中には、蒸留時に蒸気に伴われて出た極微量の金属成分がイオンとして沈殿物Cから分離される。かくして分離生成された沈殿物C(即ち、弗化カルシウムCaF、)は、不純物を含まない高純度のものとなるのである。

【0037】ここで、蒸留混酸水溶液Bに対して添加さ 50 内に収納された沈殿物C(即ち、弗化カルシウムCaF

れるカルシウム塩としては、塩化カルシウムCaCl. の他に、硝酸カルシウムCa(NO,)。、臭化カルシウムCaBr.、ヨウ化カルシウムCal,等を用いることができる

【0038】カルシウム塩として、硝酸カルシウムCa(NO_3)。を用いる場合、1008の蒸留混酸水溶液 B に対して20.58の硝酸カルシウムCa(NO_3)。を添加すると(つまり、蒸留混酸水溶液 B中に含まれる弗化水素酸 HF の当量に相当する硝酸カルシウムCa(NO_3)。を添加すると)、次式により弗化カルシウムCa E_2 が生成される。

[0039]

2 H F + C a (NO₂) $_z$ → C a F $_z$ + 2 H NO $_z$ また、カルシウム塩として、臭化カルシウムC a B r $_z$ を用いる場合、100 g の蒸留混酸水溶液Bに対して25 g の臭化カルシウムC a B r $_z$ を添加すると(つまり、蒸留混酸水溶液B 中に含まれる弗化水素酸H F の当量に相当する臭化カルシウムC a B r $_z$ を添加すると)、次式により弗化カルシウムC a F $_z$ が生成される。

【0040】2HF+CaBr₂→CaF₂+2HBrまた、カルシウム塩として、ヨウ化カルシウムCal₂を用いる場合、100gの蒸留混酸水溶液Bに対して36.8gのヨウ化カルシウムCaI₂を添加すると(つまり、蒸留混酸水溶液B中に含まれる弗化水素酸HFの当量に相当するヨウ化カルシウムCaI₂を添加すると)、次式により弗化カルシウムCaF₂が生成される。

【0041】2HF+CaI,→CaF,+2HI
30 つまり、いずれの場合にも反応後の濾液は酸性を示し、 生成された弗化カルシウムCaF,はコロイド(帯電) となっているため、強酸性の方が速やかな凝析沈殿が得 られるが、硝酸カルシウムCa(NO,)」、臭化カルシ ウムCaBr,およびヨウ化カルシウムCaI,は、取り 扱いがしにくいので塩化カルシウムCaCI,が望まし い。

【0042】次に、上記生成沈殿工程により得られた沈殿物C(即ち、弗化カルシウムCaF₁)を、上澄み液 Dを廃棄することにより取り出す取出工程が実行される。該取出工程により取り出された沈殿物C(即ち、弗化カルシウムCaF₁)は乾燥により製品とされるが、前記沈殿物Cは酸性を帯びているため、酸抜き処理を施す必要がある。

【0043】上記酸抜き処理は、前記沈殿物C(即ち、 期化カルシウムCaCl)を透析膜(例えば、セロフ ァン紙等)からなる透析容器7内に収納し、透析溶媒 (例えば、水)を入れた溶媒容器4内に浸漬した状態で 水を常時入れ換えることにより行われる。符号5は給水 管、6は排水管である。このようにすると、透析容器7 内に収納された分解物C(即ち、単化カルシウムCaF

。)における酸濃度と透析溶媒である水における酸濃度との濃度差により透析溶媒である水が透析容器7内に徐々に浸透していき、沈殿物C(即ち、弗化カルシウムCaF,)を含むコロイド溶液の酸濃度が低下していく。上記酸抜き処理は、沈殿物C(即ち、CaF,)がPH5.8~8.6となった時点で終了とし、乾燥した後に生成物F(高純度の弗化カルシウムCaF,)として取り出される。なお、沈殿物C(即ち、弗化カルシウムCaF,)を含むコロイド溶液の酸濃度がある程度(例えば、PH5程度)まで下がってきたら透析溶媒として蒸10溜水を用いるのが望ましい。また、上記酸抜き処理において、系内温度を20~30°に上昇させ且つ沈殿物C(即ち、弗化カルシウムCaF,)を含むコロイド溶液を撹拌してやると透析速度を約3倍に上げることができる。

【0044】上記のような酸抜き処理を採用すれば、中和のためのアルカリ溶剤や遠心分離機等の脱水設備が不要となり、比較的簡易で経済性を損なうことなく高純度の弗化カルシウム CaF_z を得ることができる。

[0045]

【発明の効果】本願発明によれば、蒸留工程において金米

【図1】

* 属含有混酸水溶液から大部分の溶解金属が除去された混酸水溶液(例えば、弗化水素酸HFおよび塩酸HC1)に対して、カルシウム塩を添加反応させることにより弗化カルシウムCaF,を生成沈酸させるようにしているので、金属成分を含まない生成沈殿物(換言すれば、弗化カルシウムCaF。)が得られることとなり、簡単な方法により蛍石レンズ等の原料として最適な高純度の弗化カルシウムCaF。(蛍石)が得られるという優れた効果がある。

10 【図面の簡単な説明】

【図1】本願発明の第1の実施の形態にかかる弗化カルシウムの製造方法の手順を示す工程図である。

【図2】本願発明の第2の実施の形態にかかる弗化カル シウムの製造方法の手順を示す工程図である。

【符号の説明】

1 は容器、2 はオイルバス、3 は水冷冷却装置、4 は溶媒容器、5 は給水管、6 は排水管、7 は透析容器、A は金属含有混酸水溶液、B は蒸留混酸水溶液、C は沈殿物、D は上澄み液、E は中性電解質水溶液、F は生成20 物。

CaCis.

フロントページの続き

(72)発明者 柏木 大心

香川県高松市林町2217-13 株式会社タダ

ノ技術研究所内

(72)発明者 金澤 正澄

高知県高知市長浜5033番地21 旺栄開発工

業株式会社内