Computing Full Conformal Prediction Set with Approximate Homotopy

Eugene Ndiaye and Ichiro Takeuchi

Riken AIP

If you are predicting the label y of a new object with $\hat{y},$ how confident are you that $y=\hat{y}?$

Observations:
$$\mathcal{D}_n=\{(x_1,y_1),\cdots,(x_n,y_n)\} \text{ iid } \sim \mathbb{P}$$
 New input data:
$$x_{n+1}$$

Goal: build a set $\hat{\Gamma}(x_{n+1})$ that contains y_{n+1}

Observations:
$$\mathcal{D}_n = \{(x_1,y_1),\cdots,(x_n,y_n)\} \text{ iid } \sim \mathbb{P}$$
 New input data:
$$x_{n+1}$$

Goal: build a set $\hat{\Gamma}(x_{n+1})$ that contains y_{n+1}

Desirable property:

- $\blacksquare \mathbb{P}^{n+1}(y_{n+1} \in \hat{\Gamma}(x_{n+1})) \ge 1 \alpha \text{ for } \alpha \in (0,1)$
- \blacksquare size of $\hat{\Gamma}(x_{n+1})$ as small as possible

Main idea: Build a *conformity* function $\hat{\pi}$ such that

Given a confidence level $1 - \alpha$,

 $\hat{\pi}(y) > \text{ threshold}(\alpha) \text{ when } y \text{ is "typical" w.r.t. } y_1, \cdots, y_n.$

Main idea: Build a *conformity* function $\hat{\pi}$ such that

Given a confidence level $1 - \alpha$,

$$\hat{\pi}(y) > \text{ threshold}(\alpha) \text{ when } y \text{ is "typical" w.r.t. } y_1, \cdots, y_n.$$

Somehow, $\hat{\pi}$ is a p-value function for testing $H_0: y=y_{n+1}$

Framework

■ Learning algorithm e.g. ERM:

$$\hat{\beta}(y_{n+1}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n+1} \ell(y_i, x_i^\top \beta) + \lambda \Omega(\beta)$$

$$(e.g. \ \mathsf{Lasso}) \qquad \qquad \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n+1} (y_i - x_i^\top \beta)^2 + \lambda \, \|\beta\|_1$$

Framework

■ Learning algorithm e.g. ERM:

$$\hat{\beta}(y_{n+1}) \in \underset{\beta \in \mathbb{R}^p}{\arg\min} \sum_{i=1}^{n+1} \ell(y_i, x_i^\top \beta) + \lambda \Omega(\beta)$$

$$(e.g. \ \mathsf{Lasso}) \qquad \qquad \underset{\beta \in \mathbb{R}^p}{\min} \sum_{i=1}^{n+1} (y_i - x_i^\top \beta)^2 + \lambda \, \|\beta\|_1$$

■ Measures the quality of a prediction (score function):

$$\hat{R}_i(y_{n+1}) = \psi(y_i, x_i^\top \hat{\beta}(y_{n+1})) \quad \forall i \in [n+1]$$
(e.g. Lasso)
$$\hat{R}_i(y_{n+1}) = |y_i - x_i^\top \hat{\beta}(y_{n+1})|$$

Main tools

Let
$$U_1, \dots, U_n, U_{n+1}$$
 iid.

Order statistics:
$$U_{(1)} < \cdots < U_{(n)} < U_{(n+1)}$$

$$\operatorname{Rank}(U_{n+1}) = i$$
 when $U_{(i)} = U_{n+1}$.

$$\operatorname{Rank}(U_{n+1}) \sim \mathcal{U}\{1, \cdots, n+1\}$$

Main tools

Let
$$U_1, \dots, U_n, U_{n+1}$$
 iid.

Order statistics:
$$U_{(1)} < \cdots < U_{(n)} < U_{(n+1)}$$

$$Rank(U_{n+1}) = i \text{ when } U_{(i)} = U_{n+1}.$$

$$\operatorname{Rank}(U_{n+1}) \sim \mathcal{U}\{1, \cdots, n+1\}$$

Assumption: ψ is any function that preserves **iid** structure:

$$(x_1, y_1), \cdots, (x_{n+1}, y_{n+1}) \text{ iid } \Longrightarrow \hat{R}_1(y_{n+1}), \cdots, \hat{R}_{n+1}(y_{n+1}) \text{ iid }$$

$$\operatorname{Rank}(\hat{R}_{n+1}(y_{n+1})) \sim \mathcal{U}\{1, \cdots, n+1\} \perp \!\!\! \perp \mathbb{P} !$$

Conformity function:

$$\hat{\pi}(y_{n+1}) := 1 - \frac{1}{n+1} \text{Rank}(\hat{R}_{y_{n+1},n+1})$$

Lemma:
$$\mathbb{P}^{n+1}(\hat{\pi}(y_{n+1}) \leq \alpha) \leq \alpha \quad \forall \alpha \in (0,1)$$

Interpretation: $\hat{\pi}$ takes small value on non-conform/untypical data!

Lemma:
$$\mathbb{P}^{n+1}(\hat{\pi}(y_{n+1}) > \alpha) \ge 1 - \alpha \quad \forall \alpha \in (0,1)$$

¹(V. Vovk, A. Gammerman, and G. Shafer, 2005)

²(G. Shafer and V. Vovk, 2008)

³(J. Lei, M. G'Sell, A. Rinaldo, R.J. Tibshirani, and L. Wasserman, 2018)

Lemma:
$$\mathbb{P}^{n+1}(\hat{\pi}(y_{n+1}) > \alpha) \ge 1 - \alpha \quad \forall \alpha \in (0,1)$$

 y_{n+1} is unknown!

 $^{^{1}(}V.\ Vovk,\ A.\ Gammerman,\ and\ G.\ Shafer,\ 2005)$

²(G. Shafer and V. Vovk, 2008)

³(J. Lei, M. G'Sell, A. Rinaldo, R.J. Tibshirani, and L. Wasserman, 2018)

Lemma:
$$\mathbb{P}^{n+1}(\hat{\pi}(y_{n+1}) > \alpha) \ge 1 - \alpha \quad \forall \alpha \in (0,1)$$

 y_{n+1} is unknown!

Idea: just test **all** the possibilities ^{1 2 3}

$$y_{n+1} \in \hat{\Gamma}(x_{n+1}) := \{ y \in \mathbb{R} : \hat{\pi}(y) > \alpha \}$$

¹(V. Vovk, A. Gammerman, and G. Shafer, 2005)

²(G. Shafer and V. Vovk, 2008)

³(J. Lei, M. G'Sell, A. Rinaldo, R.J. Tibshirani, and L. Wasserman, 2018)

Lemma:
$$\mathbb{P}^{n+1}(\hat{\pi}(y_{n+1}) > \alpha) \ge 1 - \alpha \quad \forall \alpha \in (0,1)$$

 y_{n+1} is unknown!

Idea: just test **all** the possibilities ^{1 2 3}

$$y_{n+1} \in \hat{\Gamma}(x_{n+1}) := \{ y \in \mathbb{R} : \hat{\pi}(y) > \alpha \}$$

Proposition:
$$\mathbb{P}^{n+1}(y_{n+1} \in \hat{\Gamma}(x_{n+1})) \ge 1 - \alpha \quad \forall \alpha \in (0,1)$$

¹(V. Vovk, A. Gammerman, and G. Shafer, 2005)

²(G. Shafer and V. Vovk, 2008)

³(J. Lei, M. G'Sell, A. Rinaldo, R.J. Tibshirani, and L. Wasserman, 2018)

Actual limitations

$$\hat{\Gamma}(x_{n+1}) := \{ y \in \mathbb{R} : \hat{\pi}(y) > \alpha \}$$

Issue: compute $\hat{\pi}(y)$ *i.e.* refit the model $\hat{\beta}(y), \ \forall y \in \mathbb{R}.$

Actual limitations

$$\hat{\Gamma}(x_{n+1}) := \{ y \in \mathbb{R} : \hat{\pi}(y) > \alpha \}$$

Issue: compute $\hat{\pi}(y)$ *i.e.* refit the model $\hat{\beta}(y), \forall y \in \mathbb{R}$.

- \blacksquare Ok if y_{n+1} has finite number of possibilities
- Ok for Ridge regression (and least square)
- Ok for Elastic net (and Lasso) very recently!
- Non linear regression and others: ???

Actual limitations

$$\hat{\Gamma}(x_{n+1}) := \{ y \in \mathbb{R} : \hat{\pi}(y) > \alpha \}$$

Issue: compute $\hat{\pi}(y)$ *i.e.* refit the model $\hat{\beta}(y), \forall y \in \mathbb{R}$.

- \blacksquare Ok if y_{n+1} has finite number of possibilities
- Ok for Ridge regression (and least square)
- Ok for Elastic net (and Lasso) very recently !
- Non linear regression and others: ???

Heuristic: arbitrary discretization of a large interval $[y_{\min}, y_{\max}]$.

Approximates the conformal set while keeping strong statistical and computational guarantee.

Approximated ERM

Given a candidate y

$$\hat{\beta}(y) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} P_y(\beta) = \sum_{i=1}^n \ell(y_i, x_i^\top \beta) + \ell(y, x_{n+1}^\top \beta) + \lambda \Omega(\beta)$$

Approximated ERM

Given a candidate y

$$\hat{\beta}(y) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} P_y(\beta) = \sum_{i=1}^n \ell(y_i, x_i^\top \beta) + \ell(y, x_{n+1}^\top \beta) + \lambda \Omega(\beta)$$

Approximate the conformal set $\hat{\Gamma}(x_{n+1})$ based on $\beta(y) \approx \hat{\beta}(y)$

$$P_y(\beta(y)) - P_y(\hat{\beta}(y)) \le \epsilon$$
.

Build a Solution Path: $\{y_{t_1},\cdots,y_{T_\epsilon}\}$ such that

$$\forall y \in [y_{\min}, y_{\max}], \ \exists t_k \ \text{s.t.} \ P_y(\beta(y_{t_k})) - P_y(\hat{\beta}(y)) \leq \epsilon$$

Build a Solution Path: $\{y_{t_1}, \dots, y_{T_{\epsilon}}\}$ such that

$$\forall y \in [y_{\min}, y_{\max}], \ \exists t_k \ \text{s.t.} \ P_y(\beta(y_{t_k})) - P_y(\hat{\beta}(y)) \leq \epsilon$$

Now we need to recompute the model only T_{ϵ} times (vs infinite times for the exact solution).

Duality gap bound

$$\hat{\beta}(y) \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg \, min}} \underbrace{\sum_{i=1}^n \ell(y_i, x_i^\top \beta) + \ell(y, x_{n+1}^\top \beta) + \lambda \Omega(\beta)}_{P_y(\beta)}$$

$$\hat{\theta}(y) \in \underset{\theta \in \mathbb{R}^{n+1}}{\operatorname{arg \, max}} \underbrace{-\sum_{i=1}^n \ell^*(y_i, -\lambda \theta_i) - \ell^*(y, -\lambda \theta_{n+1}) - \lambda \Omega^*(X^\top \theta)}_{D_y(\theta)}$$

■ Bound on the approximation error:

$$P_y(\beta(y)) - P_y(\hat{\beta}(y)) \le G_y(\beta(y), \theta(y))$$
.

Duality gap bound

$$\hat{\beta}(y) \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg \, min}} \underbrace{\sum_{i=1}^n \ell(y_i, x_i^\top \beta) + \ell(y, x_{n+1}^\top \beta) + \lambda \Omega(\beta)}_{P_y(\beta)}$$

$$\hat{\theta}(y) \in \underset{\theta \in \mathbb{R}^{n+1}}{\operatorname{arg \, max}} \underbrace{-\sum_{i=1}^n \ell^*(y_i, -\lambda \theta_i) - \ell^*(y, -\lambda \theta_{n+1}) - \lambda \Omega^*(X^\top \theta)}_{D_y(\theta)}$$

Bound on the approximation error:

$$P_y(\beta(y)) - P_y(\hat{\beta}(y)) \le G_y(\beta(y), \theta(y))$$
.

■ Variation of the gap = Variation of the loss:

$$G_y(\beta, \theta) - G_{y_0}(\beta, \theta) = \ell(y, x_{n+1}^{\top}\beta) - \ell(y_0, x_{n+1}^{\top}\beta)$$
.

Achievements

 \blacksquare If the loss ℓ is smooth, we can guarantee that

$$\hat{\Gamma}(x_{n+1}) \subset \Gamma^{(\epsilon)}(x_{n+1})$$

- Without smoothness, we can still provide a valid conformal set using ϵ -solution.
- \blacksquare Computational complexity: upper and lower bound on T_{ϵ} w.r.t. to the regularity of the loss:

e.g.
$$T_{\epsilon} \in O(1/\sqrt{\epsilon})$$
 for smooth loss.

Figure: Illustration for Ridge regression.

Figure: Evaluate the computational time for Lasso

	Coverage	Length	Time	
Oracle	0.9	1.685	0.59	
Split	0.9	3.111	0.26	
1e-2	0.9	1.767	2.17	
1e-4	0.9	1.727	8.02	
1e-6	0.9	1.724	45.94	
1e-8	0.9	1.722	312.56	

Table: Empirical coverage

	Oracle	Split	1e-2	1e-4	1e-6	1e-8
Smooth Chebychev						
Coverage	0.92	0.95	0.92	0.92	0.92	0.92
Length	1.940	2.271	1.998	1.990	1.987	1.981
Time	0.019	0.016	0.073	0.409	3.742	36.977
Linex regression						
Coverage	0.91	0.93	0.91	0.91	0.91	0.91
Length	2.189	2.447	2.231	2.209	2.205	2.199
Time	0.013	0.012	0.050	0.234	2.054	20.712

Table: Regression problem with different loss function regularized with Ridge penalty on Boston and Diabetes dataset.

- $\blacksquare \ \ell(a,b) = \gamma \log \cosh((a-b)/\gamma) \text{ is a smooth approx. of } \|\cdot\|_{\infty}.$
- $\blacksquare \ \ell(a,b) = \exp(\gamma(a-b)) \gamma(a-b) 1 \text{ is an "asymmetric version" of the quadratic loss.}$

Implementation available at

https://github.com/EugeneNdiaye/homotopy_conformal_prediction