1 Semaine 13-17 mai 2019

1.1 Notation

- 1. $\mathbb{N} = \{0, 1, 2, ...\}$
- 2. $\mathbb{N}_{+} = \{1, 2, ...\}$

1.2 À faire no 1

Rédiger en LaTeX tous les développements mathématiques des travaux de la semaine du 6 mai 2019.

1.3 À faire no 2

1. Contexte:

$$S = \sum_{i=1}^{\infty} X_i \times 1_{\{N \ge i\}}$$

- 2. Hypothèses:
 - N est une v.a. discrète définie sur \mathbb{N} avec $E[N] < \infty$.
 - $\underline{X} = \{X_i, i \in \mathbb{N}_+\}$, où \underline{X} forme une suite de v.a. strictement positives identiquement distribuées et $X_i \sim X$ avec $E[X] < \infty$.
 - $\underline{X} = \{X_i, i \in \mathbb{N}_+\}$, où \underline{X} forme une suite de v.a. strictement positives indépendantes
 - N et \underline{X} sont indépendantes.
- 3. Développer l'expression de E[S].

1.4 À faire no 3

1. Contexte:

$$S = \sum_{i=1}^{\infty} X_i \times 1_{\{N \ge i\}}$$

- 2. Hypothèses:
 - N est une v.a. discrète définie sur \mathbb{N} avec $E[N] < \infty$.
 - $\underline{X} = \{X_i, i \in \mathbb{N}_+\}$, où \underline{X} forme une suite de v.a. strictement positives identiquement distribuées et $X_i \sim X$ avec $E[X] < \infty$.
 - N et \underline{X} sont indépendantes.
- 3. Développer l'expression de E[S].
- 4. Développer l'expression générale de $F_S(x)$, $x \ge 0$.
- 5. Hypothèses additionnelles:
 - $N \sim Binomiale (5, 0.3)$.
 - $X \sim Exponentielle\left(\beta = \frac{1}{10}\right)$.

• Les composantes de \underline{X} sont comonotones.

Questions:

- (a) Développer l'expression de $F_S(x)$, $x \ge 0$.
- (b) Calculer $F_S(x)$, pour x = 0, 10, 20, 30.
- (c) Calculer E[S].

1.5 À faire no 4

1. Contexte:

$$S = \sum_{i=1}^{\infty} X_i \times 1_{\{N \ge i\}}$$

- 2. Hypothèses:
 - N est une v.a. discrète définie sur $\{0, 1, 2\}$.
 - X_1, X_2 sont des v.a. identiquement distribuées définies sur \mathbb{N}_+ , avec

$$F_{X_1}(k) = F_{X_2}(k) = F_X(k)$$

pour $k \in \mathbb{N}_+$.

• Soit une copule C de dimension 3. La fonction de répartition conjointe de (N, X_1, X_2) , notée F_{N,X_1,X_2} , est définie par

$$F_{N,X_{1},X_{2}}(n,k_{1},k_{2}) = C(F_{N}(n),F_{X_{1}}(k_{1}),F_{X_{2}}(k_{2}))$$

pour $n \in \{0, 1, 2\}, k_1, k_2 \in \mathbb{N}_+$.

3. Développer l'expression générale de

$$f_{N,X_1,X_2}(n,k_1,k_2)$$

en fonction de F_{N,X_1,X_2} .

- 4. Développer l'expression générale de $F_S(x)$, $x \ge 0$.
- 5. Hypothèses additionnelles no1:
 - Pr(N = 0) = 0.4, Pr(N = 1) = 0.5, Pr(N = 2) = 0.1.
 - Soit X une v.a. discrète définie sur $\{1, 2, ..., 20\}$, dont la fmp est

$$f_X(k) = \frac{\left(\frac{4}{3+k}\right)^3 - \left(\frac{4}{4+k}\right)^3}{1 - \left(\frac{4}{24}\right)^3},$$

pour k = 1, 2, ..., 20.

• C est une copule de Clayton à trois (3) dimensions

$$C(u_1, u_2, u_3) = \left(u_1^{-\delta} + u_2^{-\delta} + u_3^{-\delta} - 2\right)^{-\frac{1}{\delta}}$$

pour $(u_1, u_2, u_3) \in [0, 1]^3$.

Questions (effectuer les calculs pour $\delta = 2, 5, 10$):

(a) Calculer les valeurs $f_{N,X_1,X_2}(n,k_1,k_2)$ pour

$$(n, k_1, k_2) \in \{0, 1, 2\} \times \{1, 2, ..., 20\} \times \{1, 2, ..., 20\}.$$

- (b) Développer l'expression de $f_S(k)$, $k \in \{0, 1, 2, ..., k_0\}$, où k_0 est la valeur maximale pouvant être prise par S selon les hypothèses du modèle.
- (c) Indiquer la valeur de k_0 .
- (d) Calculer les valeurs de $f_S(k)$, $k \in \{0, 1, 2, ..., k_0\}$.
- (e) Calculer les valeurs de $F_S(k)$, $k \in \{0, 1, 2, ..., k_0\}$.
- (f) Calculer E[S].
- (g) Calculer $\pi_S(k)$, pour $k \in \{0, 1, 2, ..., k_0\}$.
- (h) Calculer $TVaR_{\kappa}(S)$, pour $\kappa = F_S(k)$ avec $k \in \{0, 1, 2, ..., k_0 1\}$.
- 6. Hypothèses additionnelles no2:
 - Pr(N = 0) = 0.4, Pr(N = 1) = 0.5, Pr(N = 2) = 0.1.
 - Soit X une v.a. discrète définie sur $\{1, 2, ..., 20\}$, dont la fmp est

$$f_X(k) = \frac{\left(\frac{4}{3+k}\right)^3 - \left(\frac{4}{4+k}\right)^3}{1 - \left(\frac{4}{24}\right)^3},$$

pour k = 1, 2, ..., 20.

 \bullet C est une copule de Clayton imbriquée à trois (3) dimensions

$$C(u_1, u_2, u_3) = \left(u_1^{-2} + \left(\left(u_2^{-5} + u_3^{-5} - 1\right)^{-\frac{1}{5}}\right)^{-2} - 1\right)^{-\frac{1}{2}}$$

pour $(u_1, u_2, u_3) \in [0, 1]^3$.

Questions:

(a) Calculer les valeurs $f_{N,X_1,X_2}(n,k_1,k_2)$ pour

$$(n, k_1, k_2) \in \{0, 1, 2\} \times \{1, 2, ..., 20\} \times \{1, 2, ..., 20\}.$$

- (b) Développer l'expression de $f_S(k)$, $k \in \{0, 1, 2, ..., k_0\}$, où k_0 est la valeur maximale pouvant être prise par S selon les hypothèses du modèle.
- (c) Indiquer la valeur de k_0 .
- (d) Calculer les valeurs de $f_S(k)$, $k \in \{0, 1, 2, ..., k_0\}$.
- (e) Calculer les valeurs de $F_S(k)$, $k \in \{0, 1, 2, ..., k_0\}$.
- (f) Calculer E[S].
- (g) Calculer $\pi_S(k)$, pour $k \in \{0, 1, 2, ..., k_0\}$.
- (h) Calculer $TVaR_{\kappa}(S)$, pour $\kappa = F_S(k)$ avec $k \in \{0, 1, 2, ..., k_0 1\}$.