VESTNIK SLOVENSKEGA KEMIJSKEGA DRUŠTVA

ZVEZEK IX., ŠT. 3-4, 1962

Posebni odtis

DIE SYNTHESE VON BROMTRIFLUORID IN EINER GLASAPPARATUR

J. SLIVNIK und A. ZEMLJIČ

Nuklearinstitut »Jožef Stefan«, Ljubljana

Eingegangen am 17. Dezember 1962

Die Synthese von BrF3 verläuft in einer Pyrex-Glas-Apparatur ohne Schwierigkeiten, wenn die Apparatur sorgfältig vorgetrocknet ist und die Temperatur während der Synthese 50°C nicht übersteigt. In der beschriebenen Apparatur ist es möglich 100 g BrF3 in 4 Stunden zu synthetisieren. Das Produkt ist 99,5 %-ieges BrF3 und ist für magnetochemische Untersuchungen in Hinsicht auf ferromagnetische Verunreinigungen günstiger, als die Produkte, die in Eisen- oder Stahlapparaturen synthetisiert werden.

Bromtrifluorid findet wegen seiner physikalischen Eigenschaften immer grössere Verwendung sowohl in der Forschung, wie auch in der Technologie. Vor allem wird das BrF₃ als Fluorierungsmittel und Lösungsmittel für Fluoride angewandt. Die Elementarsynthese in Stahl- oder Eisenapparaturen ist in der Literatur beschrieben (1, 2). Da aber bei magnetochemischen Untersuchungen schon Spuren von ferromagnetischen Verunreinigungen stören, ist es wünschenwert, wenn die Synthese in Apparaturen, die keine ferromagnetischen Konstruktionsmateriale enthalten, ausgeführt wird. Bei der Synthese kleinerer BrF₃-Mengen hat sich eine Apparatur aus Pyrex-Glas vorzüglich bewährt.

Experimentelles

Die Elementarsynthese verläuft schon bei $10^{\circ}\,\mathrm{C}$ (3) nach der Gleichung:

 $Br + 3 F_2 = 2 BrF_3$ $\triangle H_{298} = -75 Kcal/Mol$

Erst bildet sich bei diesen Reaktionsbedingungen auch etwas Brommonofluorid, das aber später mit überschüssigem Fluor weiter zum Bromtrifluorid fluoriert wird.

Reines Brom (E. Merck, Darmstadt) haben wir 24 Stunden über Calciumchlorid getrocknet, anschliessend im Vakuum destiliert und in das Reaktionsgefäss (a) eingefüllt (Abb. 1). Das elektrolytisch in einer 20 A Elektrolysenzelle (4) gewonnene Fluor wurde durch zwei mit einem Trockeneis-Trichloräthylen-Gemisch (—78°C) gekühlte Kupferfallen und durch ein Rohr mit Natriumfluorid auf Nickelspänen geleitet um Spuren von HF zu entfernen. Die Strömungsgeschwindigkeit des Fluors wurde mit dem Betriebsstrom der Elektrolysenzelle reguliert. Es muss darauf geachtet werden, dass die Strömungsgeschwindigkeit des Fluors nicht zu gross ist, da es sonst zu lokalen Überhitzungen kommt, bei denen sich Brompentafluorid bildet. Das Reaktionsgefäss ist mit einem Wasserkühlmantel (d)

Abb. 1: Glasappatur für BrF3-Synthese

versehen und auf ca 15°C gekühlt. Gegen die Luftfeuchtigkeit ist das Reaktionsgefäss mit der Kühlfalle (c), die auf — 78°C gekühlt ist, geschützt. Da Brom bei 14°C noch einen beträchtlichen Dampfdruck hat (130 mm Hg) ist die Apparatur oben mit einem auf — 78°C gekühlten Kühlfinger (b) versehen, um Bromverluste zu vermeiden. Jede 30 Minuten wurde der Kühlfinger aufgetaut, so dass das kondensierte Brom zurück in das Reaktionsgefäss fliessen konnte. Ein Rührer im Reaktionsgefäss erübrigt sich, da das Reaktionsgemisch vom durchströmenden Fluor gemischt wird. Es ist günstig da die Dichten von Brom und Bromtrifluorid ziemlich verschieden sind, so dass sich zwei Schichten bilden. Das Bromtrifluorid über dem Brom ist zwar noch bräunlich gefärbt, da es noch gelöstes Brom enthält. Den Verlauf der Synthese kann man also gut beobachten, gegen das Ende der Synthese verschwindet die Bromschicht und der Farbenumschlag von rotbraun auf gelb zeigt an, dass die Synthese beendet ist.

Nach Bedarf kann das Reaktionsprodukt noch in einer Glasapparatur im Vakuum destiliert werden. Es muss jedoch darauf geachtet werden, dass nur Pyrex-Glas verwendet wird, und dass die Temperatur bei Arbeiten

im Glas 30°C nicht übersteigt.

Povzetek

SINTEZA BROMOVEGA TRIFLUORIDA V STEKLENI APARATURI

J. SLIVNIK in A. ZEMLJIČ

Nuklearni inštitut » Jožef Stefan«, Ljubljana

Sprejeto 17. decembra 1962

Sinteza bromovega trifluorida v stekleni aparaturi poteka brez večjih težav. Aparatura mora biti skrbno osušena, temperatura med sintezo pa ne sme biti višja od 30°C. V opisani aparaturi lahko v štirih urah pripravimo 100 g čistega bromovega trifluorida. Produkt vsebuje 99,5 % BrF₃ in je za magnetokemične meritve glede na vsebnost feromagnetnih primesi primernejši od produktov, dobljenih v železnih ali jeklenih aparaturah.

Literatur

- (1) Simons, J. H., Inorganic Syntheses Vol. III, McGraw-Hill, New York 1950, S. 184.
- (2) Brauer, G., Handbuch der Präparativen Anorg. Chemie, Enke, Stuttgart 1954, S. 130.
 - (3) Simons, J. H., Fluorine Chemistry Vol. 1, Acad. Press, New York 1950, S. 191.
 (4) Slivnik, J., Zemljič, A., Repts J. Stefan Inst. 5 (1958) 49.