Fun with higher-order functions: continuations 2

Jacob Thomas Errington

20 March 2019

On Monday, we saw a few things.

▶ Why do we care about tail recursion?

On Monday, we saw a few things.

▶ Why do we care about tail recursion? Stack space is limited!

- ▶ Why do we care about tail recursion? Stack space is limited!
- ▶ How to convert to continuation-passing style.
 - 1. Change the type.
 - \dots -> A becomes

- ▶ Why do we care about tail recursion? Stack space is limited!
- ▶ How to convert to continuation-passing style.
 - 1. Change the type.

- ▶ Why do we care about tail recursion? Stack space is limited!
- ▶ How to convert to continuation-passing style.
 - 1. Change the type.
 - ... -> A becomes ... -> (A -> 'r) -> 'r.
 - 2. Change the implementation.
 - ► Instead of returning?

- ▶ Why do we care about tail recursion? Stack space is limited!
- ▶ How to convert to continuation-passing style.
 - 1. Change the type.
 - ... -> A becomes ... -> (A -> 'r) -> 'r.
 - 2. Change the implementation.
 - ► Instead of returning? Call the continuation!

- ▶ Why do we care about tail recursion? Stack space is limited!
- ▶ How to convert to continuation-passing style.
 - 1. Change the type.

- 2. Change the implementation.
 - ► Instead of returning? Call the continuation!
 - ▶ Work that happens after the recursive call goes where?

- ▶ Why do we care about tail recursion? Stack space is limited!
- ▶ How to convert to continuation-passing style.
 - 1. Change the type.

- 2. Change the implementation.
 - ► Instead of returning? Call the continuation!
 - Work that happens after the recursive call goes where? In the continuation!

Exercise: find all

Last class, we saw how to find *one* element of a tree satisfying a predicate. What if we want to find *all* elements of a tree satisfying a predicate?

Exercise: find all

Last class, we saw how to find *one* element of a tree satisfying a predicate. What if we want to find *all* elements of a tree satisfying a predicate?

In five minutes, write the function

find_all : ('a -> bool) -> 'a tree -> 'a list
that finds all elements of the tree satisfying the predicate.

Hint: use the @ operator to concatenate the two lists resulting from the recursive calls:

[1;2] @ [3;4] \mapsto [1;2;3;4].

Recall:

type 'a tree = Empty | Node of 'a tree * 'a * 'a tree

Exercise: convert to CPS

Now in five minutes, write find_all_k, a CPS version of find_all.

Exercise: convert to CPS

Now in five minutes, write find_all_k, a CPS version of find_all.

Remember the basic strategy:

- ► Instead of returning, call the continuation.
- ► Work that would go after the recursive call(s) goes into the continuation.

Regular expressions

What is a regular expression?

A regular expression (regex) is a way of defining a set of strings.

For example, to represent the set $\{apple, apply\}$, we can write the regular expression appl(e|y).

▶ Each individual letter is a regex. The regex c consisting of a character c represents the singleton set $\{c\}$.

- ▶ Each individual letter is a regex. The regex c consisting of a character c represents the singleton set $\{c\}$.
- ▶ If R_1 and R_2 are regexes, then $R_1|R_2$ is a regex. It represents the union of the two sets. For example, "apple" matches the regex apple|pear.

- ▶ Each individual letter is a regex. The regex c consisting of a character c represents the singleton set $\{c\}$.
- ▶ If R_1 and R_2 are regexes, then $R_1|R_2$ is a regex. It represents the union of the two sets. For example, "apple" matches the regex apple|pear.
- ▶ If R_1 and R_2 are regexes, then R_1 R_2 is a regex. It represents the concatenation of strings. For example, if "app" matches R_1 and "le" matches R_2 , then "apple" matches R_1 R_2 .

- ▶ Each individual letter is a regex. The regex c consisting of a character c represents the singleton set $\{c\}$.
- ▶ If R_1 and R_2 are regexes, then $R_1|R_2$ is a regex. It represents the union of the two sets. For example, "apple" matches the regex apple|pear.
- ▶ If R_1 and R_2 are regexes, then $R_1 R_2$ is a regex. It represents the concatenation of strings. For example, if "app" matches R_1 and "le" matches R_2 , then "apple" matches $R_1 R_2$.
- ▶ If R is a regex, then R^* is a regex. It represents repetition of a string zero or more times. Consider the regex ba(na)*. The following strings match it: "ba", "bana", "banana", "bananana", …

Plus two special cases

▶ The empty regex, \emptyset , which represents the empty set. No string matches this regex.

Plus two special cases

- ▶ The empty regex, \emptyset , which represents the empty set. No string matches this regex.
- ▶ The empty string, ϵ . This is useful for creating optional parts in a regex.
 - For example, the strings "great" and "greatest" match the regex great(est $|\epsilon\rangle$.

Our goal

Input: a regex and a string

Output: whether the string matches the regex. $\,$

Our goal

Input: a regex and a string

Output: whether the string matches the regex.

Intuitively, we want to implement a function of type

string -> regex -> bool

Our goal

Input: a regex and a string

Output: whether the string matches the regex.

Intuitively, we want to implement a function of type

string -> regex -> bool

But first, what's regex?

Defining regex in OCaml

It turns out that encoding inductive definitions in OCaml is a piece of cake.

Defining regex in OCaml

type regex =

It turns out that encoding inductive definitions in OCaml is a piece of cake.

```
| Epsilon (* empty string *)
| Empty (* empty regex *)
| Single of char
| Cat of regex * regex
| Alt of regex * regex
| Star of regex
The regex b(a)* is represented in code as
let r1 = Cat (Single 'b', Star (Single 'a')).
```

A few more things to clear up

string doesn't have *structure!* So instead, we'll use a char list as input.

A few more things to clear up

string doesn't have *structure*! So instead, we'll use a char list as input.

We will *generalize* the matching algorithm. Rather than check whether the *whole string* matches the regex, we will check whether a *prefix* of the string matches the regex. If so, we return the remaining characters of the string.

For example,

- ▶ accept ['b';'a';'n'] r1 returns ['n']; the "n" is left over.
- ▶ accept ['b';'a'] r1 returns []; the matched prefix is the whole string.
- ▶ accept ['e'] r1 fails, since there is no prefix match.

For example,

- ▶ accept ['b';'a';'n'] r1 returns ['n']; the "n" is left over.
- ▶ accept ['b';'a'] r1 returns []; the matched prefix is the whole string.
- ▶ accept ['e'] r1 fails, since there is no prefix match.

Given these examples, what should the return type be? char list -> regex -> ?

For example,

- ▶ accept ['b';'a';'n'] r1 returns ['n']; the "n" is left over.
- ▶ accept ['b';'a'] r1 returns []; the matched prefix is the whole string.
- ▶ accept ['e'] r1 fails, since there is no prefix match.

Given these examples, what should the return type be? char list -> regex -> char list option

For example,

- ▶ accept ['b';'a';'n'] r1 returns ['n']; the "n" is left over.
- ▶ accept ['b';'a'] r1 returns []; the matched prefix is the whole string.
- ▶ accept ['e'] r1 fails, since there is no prefix match.

Given these examples, what should the return type be? char list -> regex -> (char list -> 'r) -> (unit -> 'r) -> 'r

And now we convert to CPS, expanding the option into separate success and failure continuations.

Now it's code it!

Basic type theory

option vs success and failure continuations

option vs success and failure continuations

Or, why are algebraic data types called "algebraic"?

Type
$$T ::= \text{unit} | T_1 * T_2 | T_1 + T_2 | T_1 \to T_2$$

Let's be more precise about what a "type" is.

Type
$$T ::= \text{unit} | T_1 * T_2 | T_1 + T_2 | T_1 \to T_2$$

unit

Type
$$T ::= \text{unit} | T_1 * T_2 | T_1 + T_2 | T_1 \to T_2$$

Type
$$T:=\mathrm{unit}\mid T_1*T_2\mid T_1+T_2\mid T_1\to T_2$$
 type ('a, 'b) either = Left of 'a | Right of 'b

Type
$$T:=$$
 unit $\mid T_1*T_2\mid T_1+T_2\mid T_1\to T_2$
t1 -> t2

Let's be more precise about what a "type" is.

Type
$$T ::= \text{unit} | T_1 * T_2 | T_1 + T_2 | T_1 \to T_2$$

These are all the basic ways we can combine types. We can form functions with \rightarrow , form alternatives with +, and we can form pairs with *.

▶ How many values of type unit are there?

► How many values of type unit are there? Just one, by definition.

- ► How many values of type unit are there? Just one, by definition.
- ► How many values of type unit + unit are there?

- ► How many values of type unit are there? Just one, by definition.
- ► How many values of type unit + unit are there?

 Recall that this is as if we had defined in pseudo-OCaml

 type unit + unit = Left of unit | Right of unit.

 How many different ways can we make values of this type?

- ► How many values of type unit are there? Just one, by definition.
- ► How many values of type unit + unit are there?

 Recall that this is as if we had defined in pseudo-OCaml

 type unit + unit = Left of unit | Right of unit.

 How many different ways can we make values of this type?

 Two, one for each constructor, since there's only one possibility for each unit inside.

- ► How many values of type unit are there? Just one, by definition.
- How many values of type unit + unit are there? Recall that this is as if we had defined in pseudo-OCaml type unit + unit = Left of unit | Right of unit. How many different ways can we make values of this type? Two, one for each constructor, since there's only one possibility for each unit inside.
- ► How many values of type (unit + unit) * (unit + unit) are there?

- ► How many values of type unit are there? Just one, by definition.
- ► How many values of type unit + unit are there?

 Recall that this is as if we had defined in pseudo-OCaml

 type unit + unit = Left of unit | Right of unit.

 How many different ways can we make values of this type?

 Two, one for each constructor, since there's only one possibility for each unit inside.
- ► How many values of type (unit + unit) * (unit + unit) are there?

 Four. Two possibilities for each component of the pair.

Suppose type A has n values. How many values of type unit \rightarrow A are there?

Suppose type A has n values. How many values of type unit → A are there?
Remember, the values of this type are functions. How many different functions can you write having this type?
let f ((): unit): A = (*value of type A *)

▶ Suppose type A has n values. How many values of type unit -> A are there?
Remember, the values of this type are functions. How many different functions can you write having this type?
let f ((): unit): A = (*value of type A *)
You can write n different functions; one for each value in A.

- Suppose type A has n values. How many values of type unit -> A are there?
 Remember, the values of this type are functions. How many different functions can you write having this type?
 let f ((): unit): A = (*value of type A *)
 You can write n different functions; one for each value in A.
- ► Suppose type A has k values and B has n values. How many values of type A → B are there? Hint: to determine the function, we have to choose for each input what its output is. In other words, how many input-output pairs are there?

- Suppose type A has n values. How many values of type unit -> A are there?
 Remember, the values of this type are functions. How many different functions can you write having this type?
 let f ((): unit): A = (*value of type A *)
 You can write n different functions; one for each value in A.
- Suppose type A has k values and B has n values. How many values of type A -> B are there? Hint: to determine the function, we have to choose for each input what its output is. In other words, how many input-output pairs are there? There are n^k different such functions.

The algebra of types

Now we understand the type constructors *, +, and -> through their combinatorics, i.e. by *counting* the values.

The algebra of types

Now we understand the type constructors *, +, and -> through their combinatorics, i.e. by *counting* the values.

Upshot: we can now use our knowledge of arithmetic to refactor types!

Isomorphic types

For example, unit $\to A$ has the same number of values as A, because $n^1 = n$.

This suggests that A and unit $\rightarrow A$ are isomorphic types; we can convert from one to the other and back.

Isomorphic types

For example, unit $\to A$ has the same number of values as A, because $n^1 = n$.

This suggests that A and unit $\rightarrow A$ are isomorphic types; we can convert from one to the other and back.

Proof:

```
let oneway (f : unit -> 'a) -> 'a =
  f ()

let otherway (x : 'a) : unit -> 'a =
  fun () -> x
```

unit * unit \cong ?

 $unit * unit \cong unit$

```
unit * unit \cong unit because 1 \times 1 = 1
```

 $(unit + unit) * (unit + unit) \cong ?$

 $(unit + unit) * (unit + unit) \cong unit + unit + unit + unit$

```
(unit + unit) * (unit + unit) \cong unit + unit + unit + unit
because 2 \times 2 = 4
```

$$(A*B) \to C \cong A \to B \to C$$

$$(A * B) \rightarrow C \cong A \rightarrow B \rightarrow C$$

because $n^{k_1 \times k_2} = (n^{k_2})^{k_1}$

$$(A*B) \to C \cong A \to B \to C$$

because $n^{k_1 \times k_2} = (n^{k_2})^{k_1}$
This is a combinatorial justification for currying

Now we can fully understand the connection between option and success / failure continuations.

Now we can fully understand the connection between option and success / failure continuations.

First, notice that A option is the same as unit +A.

▶ None is represented by the unit in the left branch.

Now we can fully understand the connection between option and success / failure continuations.

First, notice that A option is the same as unit +A.

- ▶ None is represented by the unit in the left branch.
- ightharpoonup Some x holds a value x : A and that's in the right branch.

1. A option

- 1. A option
- 2. (unit + A)

- 1. A option
- 2. (unit + A)Since A option \cong unit + A

- 1. A option
- 2. (unit + A)Since A option \cong unit + A
- 3. $((\text{unit} + A) \to R) \to R$ by CPS conversion.

- 1. A option
- 2. (unit + A)Since A option \cong unit + A
- 3. $((\text{unit} + A) \to R) \to R$ by CPS conversion.
- 4. $((\text{unit} \to R) * (A \to R)) \to R$

- 1. A option
- 2. (unit + A)Since A option \cong unit + A
- 3. $((\text{unit} + A) \to R) \to R$ by CPS conversion.
- 4. $((\text{unit } \rightarrow R) * (A \rightarrow R)) \rightarrow R$ because $n^{k_1+k_2} = n^{k_1} \times n^{k_2}$.

- 1. A option
- 2. (unit + A)Since A option \cong unit + A
- 3. $((\text{unit} + A) \to R) \to R$ by CPS conversion.
- 4. $((\text{unit } \rightarrow R) * (A \rightarrow R)) \rightarrow R$ because $n^{k_1+k_2} = n^{k_1} \times n^{k_2}$.
- 5. $(\text{unit} \to R) \to (A \to R) \to R$

- 1. A option
- 2. (unit + A)Since A option \cong unit + A
- 3. $((\text{unit} + A) \to R) \to R$ by CPS conversion.
- 4. $((\text{unit } \rightarrow R) * (A \rightarrow R)) \rightarrow R$ because $n^{k_1+k_2} = n^{k_1} \times n^{k_2}$.
- 5. $(\text{unit} \to R) \to (A \to R) \to R$ by currying.