Inferencia de Tipos

- Términos \sin anotaciones de tipos: $U := x \mid \lambda x.U \mid U \mid True \mid False \mid if \mid U \mid then \mid U \mid else \mid U$
- Términos con anotaciones de tipos: $U := x \mid \lambda x : \tau.M \mid U \mid True \mid False \mid if \mid U \mid then \mid U \mid else \mid U$

Erase

erase es una función que recibe un término tipado y la respuesta es el mismo término pero sin tipos. Ej.: $erase((\lambda x:Bool.x)\ True)=(\lambda x.x)\ True$

Algoritmo de Martelli-Montanari

$$\left\{ Xn \stackrel{?}{=} Xn \right\} \cup E \quad \xrightarrow{\text{Delete}} \qquad E$$

$$\left\{ C(\tau_1, \dots, \tau_n) \stackrel{?}{=} C(\sigma_1, \dots, \sigma_n) \right\} \cup E \quad \xrightarrow{\text{Decompose}} \qquad \left\{ \tau_1 \stackrel{?}{=} \sigma_1, \dots, \tau_n \stackrel{?}{=} \sigma_n \right\} \cup E$$

$$\left\{ \tau \stackrel{?}{=} Xn \right\} \cup E \quad \xrightarrow{\text{Swap}} \qquad \left\{ Xn \stackrel{?}{=} \tau \right\} \cup E$$

$$\text{si } \tau \text{ no es una incógnita}$$

$$\left\{ Xn \stackrel{?}{=} \tau \right\} \cup E \quad \xrightarrow{\text{Elim}} \left\{ Xn := \tau \right\} (E)$$

$$\text{si } Xn \text{ no ocurre en } \tau$$

$$\left\{ C(\tau_1, \dots, \tau_n) \stackrel{?}{=} C'(\sigma_1, \dots, \sigma_m) \right\} \cup E \quad \xrightarrow{\text{Clash}} \qquad \text{falla}$$

$$\text{si } C \neq C'$$

$$\left\{ Xn \stackrel{?}{=} \tau \right\} \cup E \quad \xrightarrow{\text{Occurs-Check}} \qquad \text{falla}$$

$$\text{si } Xn \neq \tau$$

$$\text{y } Xn \text{ ocurre en } \tau$$

- El Algoritmo termina para cualquier problema de unificación E.
- Si E no tiene solución, el algoritmo llega a una falla.
- Si E tiene solución llega a Ø. Además, el unificador resultante es el más general posible, es decir, mgu(E).

Algoritmo \mathcal{W}

- $\mathbb{W}(x) \leadsto \{x : X_k\} \vdash x : X_k, X_k \text{ incógnita fresca}$
- $\mathbb{W}(\theta) \leadsto \emptyset \vdash \theta : Nat$
- $\mathbb{W}(true) \leadsto \emptyset \vdash true : Bool$
- $\mathbb{W}(false) \leadsto \emptyset \vdash false : Bool$
- $\mathbb{W}(succ(U)) \leadsto S(\Gamma) \vdash S(succ(M)) : Nat \text{ donde}$
 - $\mathbb{W}(U) = \Gamma \vdash M : \tau$
 - $S = MGU\{\tau \stackrel{?}{=} Nat\}$
- $\mathbb{W}(pred(U)) \leadsto S(\Gamma) \vdash S(pred(M)) : Nat \text{ donde}$
 - $\mathbb{W}(U) = \Gamma \vdash M : \tau$
 - $S = MGU\{\tau \stackrel{?}{=} Nat\}$
- $\mathbb{W}(iszero(U)) \leadsto S(\Gamma) \vdash S(iszero(M)) : Bool \text{ donde}$
 - $\mathbb{W}(U) = \Gamma \vdash M : \tau$
 - $S = MGU\{\tau \stackrel{?}{=} Nat\}$
- $\mathbb{W}(if\ U\ then\ V\ else\ W) \leadsto S(\Gamma_1) \cup S(\Gamma_2) \cup S(\Gamma_3) \vdash S(if\ M\ then\ P\ else\ Q): S(\sigma)$ donde
 - $\mathbb{W}(U) = \Gamma_1 \vdash M : \rho$
 - $\mathbb{W}(V) = \Gamma_2 \vdash P : \sigma$
 - $\mathbb{W}(W) = \Gamma_3 \vdash Q : \tau$
 - $\bullet \ \ S = MGU\{\sigma \stackrel{?}{=} \tau, \rho \stackrel{?}{=} Bool\} \cup \{\sigma_1 \stackrel{?}{=} \sigma_2 \ \mid \ x : \sigma_1 \in \Gamma_i, x : \sigma_2 \in \Gamma_j, i, j \in \{1, 2, 3\}\}$
- $\mathbb{W}(\lambda x.U) \leadsto \Gamma' \vdash \lambda x: \tau'.M: \tau' \to \rho$ donde
 - $\mathbb{W}(U) = \Gamma \vdash M : \rho$
 - $\tau' = \left\{ \begin{array}{l} \alpha \ {\rm si} \ x : \alpha \in \Gamma \\ {\rm X}_k \ {\rm con} \ {\rm X}_k \ {\rm variable} \ {\rm fresca} \ {\rm en} \ {\rm otro} \ {\rm caso} \end{array} \right.$
 - $\Gamma' = \Gamma \ominus \{x\}$
- $\mathbb{W}(U|V) \leadsto S(\Gamma_1) \cup S(\Gamma_2) \vdash S(M|N) : S(X_k)$ donde
 - $\mathbb{W}(U) = \Gamma_1 \vdash M : \tau$
 - $\mathbb{W}(V) = \Gamma_2 \vdash N : \rho$
 - $\bullet~\mathbf{X}_k$ variable fresca
 - $S = MGU\{\tau \stackrel{?}{=} \rho \to \mathbf{X}_k\} \cup \{\sigma_1 \stackrel{?}{=} \sigma_2 \mid x : \sigma_1 \in \Gamma_1, x : \sigma_2 \in \Gamma_2\}$

$$\begin{array}{lll} \tau & ::= & \dots \mid \tau + \tau \\ M & ::= & \dots \mid \mathsf{left}_\tau(M) \mid \mathsf{right}_\tau(M) \mid \mathsf{case}\, M \ \mathsf{of} \ \mathsf{left}(x) \leadsto M \ \| \ \mathsf{right}(y) \leadsto M \end{array}$$

 $\mathbb{W}(\mathsf{left}(U)) \stackrel{def}{=} \Gamma \vdash \mathsf{left}_X(M) : \sigma + X$

donde:

- $\mathbb{W}(U) = \Gamma \vdash M : \sigma$
- X variable fresca.

 $\mathbb{W}(\mathsf{right}(U)) \stackrel{def}{=} \Gamma \vdash \mathsf{right}_X(M) : X + \tau$ donde:

- $\mathbb{W}(U) = \Gamma \vdash M : \tau$
- X variable fresca.

 $\mathbb{W}(\mathsf{case}\ U_1\ \mathsf{of}\ \mathsf{left}(x) \leadsto U_2\ \|\ \mathsf{right}(y) \leadsto U_3) \stackrel{def}{=}$ $S\Gamma_1 \cup S\Gamma_{2'} \cup S\Gamma_{3'} \vdash S(\mathsf{case}\ M_1\ \mathsf{of}\ \mathsf{left}(x) \leadsto M_2\ \|\ \mathsf{right}(y) \leadsto M_3) : S\tau$ donde:

- $\mathbb{W}(U_1) = \Gamma_1 \vdash M_1 : \tau_1$
- $\bullet \ \mathbb{W}(U_2) = \Gamma_2 \vdash M_2 : \tau_2$

- $$\begin{split} \bullet & \tau_y = \left\{ \begin{array}{l} \beta \text{ si } y: \beta \in \Gamma_3 \\ \text{Variable fresca en otro caso} \\ \bullet & \Gamma_{2'} = \Gamma_2 \ominus \{x\} \\ \bullet & \Gamma_{3'} = \Gamma_3 \ominus \{y\} \end{array} \right. \end{split}$$

- $\bullet \ S = \text{mgu } (\{\tau_1 \stackrel{?}{=} \tau_x + \tau_y, \tau_2 \stackrel{?}{=} \tau_3\} \cup \{\rho \stackrel{?}{=} \sigma \mid z : \rho \in \Gamma_i \land z : \sigma \in \Gamma_j \land i, j \in \{1, 2', 3'\}\})$

$$\begin{array}{lll} \tau & ::= & \dots & \mid & [\tau] \\ M & ::= & \dots & \mid & [&]_{\tau} & \mid & M :: M & \mid & \mathsf{foldr} \, M \, \mathsf{base} \hookrightarrow M; \, \, \mathsf{rec}(h,r) \hookrightarrow M \end{array}$$

 $\mathbb{W}([\]) \stackrel{def}{=} \emptyset \vdash [\]_X : [X]$ con X variable fresca

 $\mathbb{W}(U :: V) \stackrel{def}{=} S\Gamma_1 \cup S\Gamma_2 \vdash S(M :: N) : S\tau$ donde:

- $\mathbb{W}(U) = \Gamma \vdash M : \sigma$
- $\mathbb{W}(V) = \Gamma \vdash N : \tau$
- $S = \operatorname{mgu} \left(\left\{ \tau \stackrel{?}{=} [\sigma] \right\} \cup \left\{ \rho \stackrel{?}{=} \phi \mid x : \rho \in \Gamma_1 \land x : \phi \in \Gamma_2 \right\} \right)$

 $\mathbb{W}(\mathsf{foldr}\,U\,\mathsf{base} \hookrightarrow V;\; \mathsf{rec}(h,r) \hookrightarrow W) \stackrel{def}{=} S\Gamma_1 \cup S\Gamma_2 \cup S\Gamma_{3'} \vdash S(\mathsf{foldr}\,M\,\mathsf{base} \hookrightarrow N;\; \mathsf{rec}(h,r) \hookrightarrow O) : S\sigma_2) = 0$ donde:

- $W(U) = \Gamma \vdash M : \sigma_1$
- $\blacksquare \ \mathbb{W}(V) = \Gamma \vdash N : \sigma_2$
- W(W) = Γ ⊢ O : σ₃
- $\Gamma_{3'} = \Gamma_3 \ominus \{h, r\}$

- $\tau_h = \left\{ \begin{array}{l} \alpha \text{ si } h : \alpha \in \Gamma_3, \\ \text{variable fresca si no} \end{array} \right.$ $\tau_r = \left\{ \begin{array}{l} \beta \text{ si } r : \beta \in \Gamma_3, \\ \text{variable fresca si no} \end{array} \right.$

- $S = \text{mgu} \left(\{ \sigma_1 \stackrel{?}{=} [\tau_h], \sigma_2 \stackrel{?}{=} \sigma_3, \sigma_3 \stackrel{?}{=} \tau_r \} \cup \{ \rho \stackrel{?}{=} \sigma \mid x : \rho \in \Gamma_i \land x : \sigma \in \Gamma_i \land i, j \in \{1, 2, 3'\} \} \right)$

Lógica de Primer Orden

- Conjunto de Símbolos de Función $\mathcal{F} = \{f, g, h, \dots\}$. Cada símbolo de función tiene una aridad asignada.
 - Aquellas que tienen aridad 0 son constantes.
- Conjunto de Símbolos de Predicado $\mathcal{P} = \{P, Q, R, \geq, \leq, \dots\}$. Cada símbolo de predicado tiene una aridad asignada.
- Variables $\mathcal{X} = \{X, Y, Z, \dots\}$
- Términos: $t ::= x(f(t_1, \ldots, t_n))$
- Fórmulas: $\sigma ::= P(t_1, \dots, t_n) \mid \bot \mid \sigma \to \sigma \mid \sigma \land \sigma \mid \sigma \lor \sigma \mid \neg \sigma \mid \forall x.\sigma \mid \exists x.\sigma$
 - Si dos fórmulas son exactamente iguales pero difieren en el nombre de las variables de los cuantificadores, también se consideran iguales.

Lógica clásica
$$\begin{array}{c} \text{Logica clásicas} & \text{LpO} \\ \text{Reglas clásicas} & \text{LFM} \\ \hline \Gamma \vdash \tau \end{array} \\ \text{PBC} & \frac{\Gamma \vdash \tau \lor \neg \tau}{\Gamma \vdash \tau} \text{ LEM} & \frac{\Gamma \vdash \forall X. \sigma}{\Gamma \vdash \sigma \{X := t\}} \forall E & \frac{\Gamma \vdash \sigma \{X := t\}}{\Gamma \vdash \exists X. \sigma} \exists I \\ \hline \frac{\Gamma \vdash \neg \neg \tau}{\Gamma \vdash \tau} \neg \neg_e & \frac{\Gamma \vdash \sigma X \notin \text{fv}(\Gamma)}{\Gamma \vdash \forall X. \sigma} \forall I & \frac{\Gamma \vdash \exists X. \sigma}{\Gamma \vdash \exists X. \sigma} \xrightarrow{\Gamma, \sigma \vdash \tau} X \notin \text{fv}(\Gamma, \tau)}{\Gamma \vdash \tau} \exists E \\ \\ \{f(t_1, \ldots, t_n) \stackrel{?}{=} f(s_1, \ldots, s_n)\} \cup E & \frac{\text{Decompose}}{\Rightarrow} & \{t_1 \stackrel{?}{=} s_1, \ldots, t_n \stackrel{?}{=} s_n\} \cup E \\ \\ \{t \stackrel{?}{=} X\} \cup E & \xrightarrow{\text{Swap}} & \{X \stackrel{?}{=} t\} \cup E \\ \text{si t no es una variable} \\ \\ \{X \stackrel{?}{=} t\} \cup E & \xrightarrow{\text{Elim}} \{X := t\} & \text{si $X \notin \text{fv}(t)$} \\ \\ \{f(t_1, \ldots, t_n) \stackrel{?}{=} g(s_1, \ldots, s_m)\} \cup E & \xrightarrow{\text{Clash}} & \text{falla} \\ \text{si $f \neq g$} \\ \\ \{X \stackrel{?}{=} t\} \cup E & \xrightarrow{\text{Occurs-Check}} & \text{falla} \\ \end{array}$$

si $X \neq t$ v $X \in fv(t)$

Resolución

Es útil como técnica de demostración por refutación.

Resolución para Lógica de Primer Orden

Importante: Si un cuantificador tiene un mismo nombre de variable ligada renombrarla.

- 1. Deshacerse del conectivo \Longrightarrow $-\sigma \Longrightarrow \tau \to \neg \sigma \lor \tau$
- 2. Empujar el conectivo lo más posible hacia adentro, paso por paso afectando a cada término.

```
-\neg(\sigma \land \tau) \rightarrow \neg \lor \neg \tau-\neg(\sigma \lor \tau) \rightarrow \neg \sigma \land \neg \tau-\neg \neg \sigma \rightarrow \sigma-\neg \forall X.\sigma \rightarrow \exists X.\neg \sigma-\neg \exists X.\sigma \rightarrow \forall X.\neg \sigma
```

• 3. Extraer los cuantificadores \forall/\exists hacia afuera. Se asume que $X \notin fv(\tau)$

```
- * (\forall X.\sigma) \land \tau \rightarrow \forall X.(\sigma \land \tau)

* (\forall X.\sigma) \lor \tau \rightarrow \forall X.(\sigma \lor \tau)

* (\exists X.\sigma) \land \tau \rightarrow \exists X.(\sigma \land \tau)

* (\exists X.\sigma) \lor \tau \rightarrow \exists X.(\sigma \lor \tau)

- * \tau \land (\forall X.\sigma) \rightarrow \forall X.(\tau \land \sigma)

* \tau \lor (\forall X.\sigma) \rightarrow \forall X.(\tau \lor \sigma)

* \tau \land (\exists X.\sigma) \rightarrow \exists X.(\tau \land \sigma)

* \tau \lor (\exists X.\sigma) \rightarrow \exists X.(\tau \lor \sigma)
```

- 4. Skolemización
 - * En función de cuantificadores universales
 - $\begin{array}{c} \cdot \ \forall X. \forall Y. \exists Z. P(Z) \rightarrow \forall X. \forall Y. P(f(X,Y)) \\ \cdot \ \forall X. \exists Z. \forall Y. \exists D. P(D) \land Q(Z) \rightarrow \forall X. \forall Y. P(f(X,Y)) \land Q(g(X)) \\ * \ \exists X. \forall Y. \forall Z. P(X) \rightarrow \forall Y. \forall Z. P(c) \ \mathsf{c} \ \mathsf{cte}. \end{array}$
- 5. Distribuir los ∨
 - $\sigma \lor (\tau \land \rho) \to (\sigma \lor \tau) \land (\sigma \lor \rho)$ $(\sigma \land \tau) \lor \rho \to (\sigma \lor \rho) \land (\tau \lor \rho)$
- 6. Empujar los cuantificadores universales hacia adentro por cada \wedge .

Importante: 1 y 2 hacen a Forma Normal Negada. Añadiendo 3 tenemos Forma Normal Prenexa. Añadiendo 4 tenemos Forma Normal Skolem. Añadiendo 5 tenemos Forma Normal Conjuntiva y Añadiendo 6 tenemos Forma Clausal.

Fórmula Derivada

Una fórmula σ deriva de un conjunto de claúsulas sí y solo sí $\neg \sigma$ es insatisfactible (\emptyset) aplicando las claúsulas que tomamos como verdaderas.

Tips

- Cada cláusula tendrá variables llamadas diferentes.
- La Skolemización preserva la satisfactibilidad pero no la validez, es decir, no son fórmulas equivalentes.

$$-\exists X.(P(0) \Longrightarrow P(x))$$
 es válida pero $P(0) \Longrightarrow P(c)$ es inválida

- Cada cláusula está separada por un ∧.
- Las claúsulas que estén skolemizadas por la misma función no son renombradas a la hora de escribir las claúsulas, solo las variables.
- La Skolemización reemplaza la variable existencial por las variables ligadas de los cuantificadores que la encapsulan.
- Al calcular el MGU, las cláusulas van en positivo (aunque si o si tomamos un negativo y un positivo). Tomamos un literal de cada claúsula, los cancelamos y nos da un nuevo resultado.

```
- 3 y 6: \{\neg esDormilon(x_9), \neg posee(x_9, y_9), \neg ruidoso(y_9)\}, \{esDormilon(pepe)\}

- S9 = mgu(\{x_9 \stackrel{?}{=} pepe\}) = \{x_9 := pepe\}

- 9: \{\neg posee(pepe, y_9), \neg ruidoso(y_9)\}
```

- Nótese que 9 son los literales que no cancelamos pero con la sustitución correspondiente.

Relación entre Claúsulas y LPO

- 1 claúsula: $\{\neg menor(X,Y), menor(c,Y)\} \equiv \forall X. \forall Y. (\neg menor(X,Y) \lor menor(c,Y))$
- 2 claúsulas: $\{\neg menor(X,Y), menor(c,Y)\}\$ y $\{impar(Z), mayor(Z,w)\}\ \equiv\ \forall X. \forall Y. (\neg menor(X,Y) \lor menor(c,Y)) \land\ \ \forall Z. (impar(Z) \lor mayor(Z,w))$

Importante: Las letras en minúscula son constantes, son un valor fijo. Es por eso que quedan igual.

Resolución SLD

- Solo con claúsulas de Horn
- Resolución binaria (1 literal por cada cláusula)
- Resolución lineal (por cada resultado, usamos el resultado + otra claúsula para resolver)
- Empezamos a resolver con claúsula objetivo.

Cláusulas de Horn

- Cláusula Objetivo: O positivas n negativas
- Claúsulas de Definición
 - Hecho: 1 positiva 0 negativa
 - Consulta: 1 positiva n negativas

Importante: Las Claúsulas de Horn no pueden tener en una cláusula más de un positivo, ej.: $\{libro(k), radio(k)\}$ no es claúsula de Horn.

Programación Lógica

Tips

- Casos base al comienzo. El caso base permite unificar cuando está vacío.
- Recordar siempre los llamados recursivos.
- Recordar para matchear cosas que sean iguales decirlo directamente en la definición.
 - notasEstudiante(E, [(E, M, N) T], [(E, M, N) Res]) :- notasEstudiante(E, T, Res). Almacena las notas del estudiante si las E coinciden.
 - notasEstudiante(E, [(E2, M, N) T], Res) :- E \setminus = E2 → importante el E \setminus = E2 porque sino, aunque sea diferente va a armar diferentes ramas donde seguro aparezca el estudiante de vuelta. Nosotros solo queremos un resultado.
- Recordar siempre si un predicado es reversible o no para saber cómo usarlo.

Funciones Útiles

```
member(?elemento, ?lista): Devuelve verdadero si el elemento está en la lista.
Eso sí, solo devuelve verdadero si el elemento está completo.
Ej.: member((tomas, plp, N), [(tomas, plp, 10), (angel, plp, 3)]) devuelve N = 10 porque es lo
que le falta para unificar.
Ej.: member((tomas, plp, 10), [(tomas, plp, 10)]) devuelve true.
Obs: usar member con cuidado, uno de los parámetros enviarlo seguro.
length(?lista, ?longitud): Devuelve la longitud de la lista si no se proporciona la
longitud, caso contrario, devuelve true o false.
Ej.: length([1, 2], A): devuelve A = 2
Ej.: length([1, 2], 2): devuelve true
Ej.: length(A, 2): devuelve [_, _]
Ej.: length(A, B): devuelve todas las posibles listas, es decir: A = [_], B = 0, A=[_, _], B = 1...
sum_list(+Lista, ?Res): Devuelve la suma de los elementos de una lista si no se especifica Res.
Si se especifica, devuelve true o false.
Ej.: sum_list([1, 2], 3): true
Ej.: sum_list([1, 2], A): A = 3
reverse(?L1, ?L2): Tiene varias funciones.
Ej.: reverse([1, 2], [2, 1]) -> false.
```

```
Ej.: reverse([1, 2], B) \rightarrow B = [2, 1]
Ej.: reverse(A, [2, 1]) -> B = [1, 2]
between(+Low, +High, ?N): Devuelve como respuesta
los elementos que están entre Low y High inclusive. Abre n ramas donde n es la distancia de 1 a 2.
Ej.: between(1, 2, N): N = 1 y N = 2.
nonvar(@Term): Devuelve true si es un valor.
Ej.: nonvar(2): true
Ej.: nonvar(A): false
var(@Term): Devuelve true si es una variable, es decir, no tiene un valor.
Ej.: var(A): true
Ej.: var(2): false
append(?List1, ?List2, ?List1And2): Tiene varias funciones.
Si se envían los tres argumentos devuelve true si la concatenación de List1 y List2 es la tercera.
   Ej.: append([1], B, C): C = [1 \mid B]
   Ej.: append(A, B, [1, 2, 3]): Devuelve todas las posibles instancias de A y B
   que resultan en [1, 2, 3].
   A = [1] B = [2, 3], A = [1, 2] B = [3], ...
   Ej.: inorder(Izq, Res2), inorder(Der, Res3), append(Res2, [R | Res3], Res).
   Agrega el llamado recursivo siempre a la izquierda, luego la raíz y la recursión del lado derecho.
not(:Goal): Devuelve verdadero si el cuerpo es falso.
   Ej.: not(esEstudiante(tomas)) será verdadero sí y solo sí tomas NO es estudiante.
   Ej.: not(conoceLenguaje(tomas, lisp)) es verdadero sí y solo sí tomás no sabe lisp.
   Ej.: not((conoceLenguaje(tomas, lisp), esEstudiante(tomas))) será verdadero sí y solo sí
   tomás no sabe lisp ni tampoco es estudiante.
last(?List, ?Last): Devuelve el último elemento de una lista, o devuelve
verdadero sí y solo sí Last es el último elemento de List.
Ej.: last([1, 2], 1): False
Ej.: last([1, 2], A): A = 2
flatten(+List, -FlatList): Elimina las listas anidadas pasando todo a un solo nivel.
Ej.: flatten([1, [2, 3, [4, 5, [6,7]]]], B) \rightarrow B = [1, 2, 3, 4, 5, 6, 7]
sort(+List, ?SortedList): Ordena la lista de manera ascendente.
Si se proporcionan ambos elementos, es verdadero sí y solo sí SortedList es List ordenada de
manera ascendente.
Ej.: sort([3, 2, 1], B): B = [1, 2, 3]
Ej.: sort([1, 2, 3], [3, 1, 2]): False
Ej.: sort([3, 2, 1], [1, 2, 3]): True
is(?Expr, +Expr2): Resuelve la expresión de la derecha y la unifica con la expresión de la izquierda.
is se convierte a = cuando se resuelve la expresión.
Ej.: 1 is 0+1 \rightarrow Evalua a true pues 1 = 1
Operadores Aritméticos: Requieren de tener ambos argumentos instanciados.
<(+A, +B): Es verdadero sí y solo sí A es menor a B.
Ej.: 2 < 2: False
<=(+A, +B): Es verdadero sí y solo sí A es menor o igual que B.
Ej.: 2 =< 2: True
=:=(+A, +B): Es verdadero sí y solo sí A y B son iguales.
==(+A, +B): Es verdadero sí y solo sí A y B tienen un valor diferente.
Ej.: 1 =\= 2: True
Operadores no Aritméticos
= (?T, ?V): Realiza la unificación de términos.
Si ambos términos son proporcionados, es verdadero sí y solo sí unifican.
Ej.: A = B \rightarrow A = B.
```

```
Ej.: A = 1 \rightarrow A = 1. Asigna el valor de 1 a la variable A. Ej.: 1 = 2 \rightarrow False. 
\=(+Expr, +Expr2): Su uso tiene sentido cuando ambas expresiones están instanciadas. 
Devuelve verdadero si no unifican. 
Ej.: f(g) = h(f) \rightarrow Verdadero porque no unifica por clash.
```

Ejercicios Útiles

```
desdeReversible(+Low, ?High): Devuelve tantos elementos haya de distancia de X a Y. Uno por uno.
Abre n ramas siendo n la distancia entre X e Y.
desdeReversible(X, Y) :- var(Y), Y = X.
desdeReversible(X, Y) :- nonvar(Y), X =< Y.
desdeReversible(X, Y) :- var(Y), X1 is X + 1, desdeReversible(X1, Y).
parteQueSuma(+L,+S,-P): Es verdadero cuando P es una lista con elementos de L que suman S.
parteQueSuma(_, 0, []).
parteQueSuma([X|XS], S, [X|P]) := S1 is S - X, S1 >= 0, parteQueSuma(XS, S1, P).
parteQueSuma([_|XS], S, P) :- S > 0, parteQueSuma(XS, S, P).
borrar(+L, +E, ?Res): La idea es usarlo con L y E instanciadas.
borrar([], _, []).
borrar([H | T], H, XS) :- borrar(T, H, XS).
borrar([H | T], E, [H | XS]) :- H \= E, borrar(T, E, XS).
sacarDuplicados(+L, ?Res): La idea es usarlo con L instanciada.
sacarDuplicados([], []).
sacarDuplicados([H | XS], L2) :- member(H, XS), sacarDuplicados(XS, L2).
sacarDuplicados([H | XS], [H | L2]) :- not(member(H, XS)), sacarDuplicados(XS, L2).
permutacion(?L, ?Res): La idea es usarlo con L instanciada.
permutacion([], []).
permutacion(L1, [H|T]) :- append(L, [H|R], L1), append(L, R, Resto), permutacion(Resto, T).
reparto(+L, +N, -LListas): Es verdadero sí y solo sí LListas es una
lista de N listas (N mayor a 1) de cualquier longitud (inc. vacias) tales que al concatenarlas se obtiene
reparto([], 0, []). % Cuando N=O solo podemos unificar si ya repartimos todo L.
reparto(L, N, [X|Xs]) :-
   N > 0, % Hay sublistas por generar.
   append(X, L2, L), % Generamos todas las posibles sublistas X.
   N2 is N-1, % L2 es lo que queda de L para repartir en N-1 sublistas.
   reparto(L2, N2, Xs). % Generamos el resto de las sublistas.
repartoSinVacias(+L, -LListas) similar al anterior, pero ninguna de las listas de LListas puede ser vacía
Como no pueden haber sublistas vacías, a lo sumo hay N sublistas siendo length(L, N).
repartoSinVacias(L, Xs) :-
   length(L, N),
   between(1, N, K), % Generamos todas los posibles K = cantidades de sublistas.
   reparto(L, K, Xs), % Repartimos en K sublistas.
   \mathtt{not}((\mathtt{member}(\mathtt{X},\ \mathtt{Xs}),\ \mathtt{length}(\mathtt{X},\ \mathtt{0}))). % No pueden haber sublistas vacías.
```

Generación Infinita

- Nunca usar más de un generador infinito.
- Si se usa un generador infinito, pensar que esa generación debe limitarse por una condición.

 Si hay que generar infinitas listas, primero generamos todas las listas que suman 1 en vez de generar todas las listas con 1 elemento.

Ejemplos de Generación Infinita

```
\begin{split} & \text{generarCapicua(L)} :- \text{desde(1, N), listaQueSuma(N, L), esCapicua(L)}. \\ & \text{esCapicua(L)} :- \text{reverse(L,L)}. \\ & \text{Acá el handler de la generación infinita es listaQueSuma, mientras que el filter lo hace esCapicua.} \\ & \text{coprimos(X,Y)} :- \text{nonvar(X), nonvar(Y), 1 is gcd(X,Y)}. \\ & \text{coprimos(X, Y)} :- \text{desdeReversible(1, S), between(1, S, X), Y is S-X, 1 is gcd(X, Y)}. \end{split}
```

Paradigma Orientado a Objetos

Básico

- Los programas están conformados por objetos que interactúan entre sí con mensajes.
- Un mensaje es simplemente una solicitud al objeto receptor donde este mensaje tiene respuesta sí y solo sí el objeto receptor entiende ese mensaje. Esta respuesta es ofrecida por un método del mismo objeto.
- Colaboradores Internos: Son los atributos o variables de instancia de un objeto.
- Colaboradores Externos: Son los parámetros o argumentos que tiene un mensaje particular.
 - 1@1 insideTriangle with: 0@0 with: 0@0 with: 0@0. Se realiza una instancia de Point 1@1 y se envía el mensaje insideTriangle con tres keywords o también llamados parámetros.

Encapsulamiento

Una clase debería estar abierta a extensión pero cerrada a modificaciones.

Solo es posible interactuar con un objeto a través de sus métodos los cuales ofrece pues, el estado interno de un objeto es inaccesible desde el exterior.

Objetos, objetos y objetos

Todo objeto es instancia de alguna clase, y a su vez, estas son objetos.

- Una clase es un objeto que abstrae el comportamiento de todas sus instancias.
- Todas las instancias de una clase tienen los mismos atributos
 - Cada instancia puede modificar a gusto sus valores sin afectar a las demás. Cada instancia es única.
- Todas las instancias de una clase usan el mismo método para responder un mismo mensaje.
 - Todas las instancias responden de la misma manera. Esto es porque el receptor no conoce al emisor, salvo que el emisor se envíe como colaborador.

Palabras Reservadas

nil, true, false, self, super, thisContext

Literales

Caracteres: \$Strings: 'hola'

Símbolos (inmutables): #holaConstantes numéricas: 29, -1, 5

Herencia

- Cada clase es subclase de alguna otra clase. Si no se especifica, las clases heredan de Object por defecto.
- Una clase hereda todos los métodos de su superclase.
- Una clase puede hacer un overrida a un método definido en la superclase por otro más específico.
- self: Hace referencia al objeto de instancia.
- super: Hace referencia a la super-clase de la instancia.

Nota: self==super porque refieren al mismo objeto pero difieren en que, si se usa super la búsqueda del método que implementa el mensaje m debe comenzar desde la superclase.

super vs self

- super busca siempre hacia arriba, es decir, las super-clases de la clase a la que mandamos el mensaje. Si el mensaje no está en el super, arroja un error NotUnderstand.
- self busca siempre hacia abajo. Si el mensaje no está, arroja un error NotUnderstand.

Clase Abstracta

Llamamos clase abstracta a una clase que está destinada a abstraer el comportamiento de sus subclases pero no tienen instancias.

Tipos de Mensajes

- Mensajes Unarios: Reciben un solo parámetro.
 - 1 class
 - Mensaje: class Receptor: 1
- Mensajes Binarios: Reciben dos parámetros.
 - -1+2
 - Mensaje: + Receptor: 1 Colaborador: 2
- Mensajes Keyword: Reciben parámetros que se pueden distinguir con nombre. No importa el orden en cual se envían porque están dados por una key.

```
a at: 1 put: 'hola'Mensaje: at:put — Receptor: a — Colaborador/es: 1, 'hola'
```

La prioridad de los mensajes es la siguiente: unario > binario > keyword

Nota: Los paréntesis () definen la prioridad máxima.

Bloques / Closures

- Permiten reutilizar código. Recuerdan el estado cuando fueron definidos y qué variables estaban presente. Es una secuencia de envíos de mensajes.
- No usar return dentro de bloques. Corta todo tipo de ejecución.
- Los argumentos obligatorios tienen prioridad sobre los locales.
- Los parámetros se envían como value: param
- Cuando se almacenan en una variable no se ejecutan.
- Para llamar a un bloque hay que enviar todos sus parámetros.
- Devuelven como resultado la última expresión.

```
hacerAlgo
|bloque val|
bloque := [:x :y | |z| z:=10. x+y+z].
val := bloque value: 1 value: 2. // retorna 13

hacerAlgo
|bloque val val2|
bloque := [:x | [:y | |z| z:=10. x+y+z]].
val := bloque value: 1. // retorna el bloque [:y | |z| z:=10. x+y+z] que
recuerda el valor de x cuando se definió, es decir, 1.
val2 := val value: 2. //retorna el resultado del bloque más interno, es decir,
1+2+10 = 13.
```

Return

- Se indica con \wedge .
- Corta todo tipo de ejecución, es decir: $[|x||x:=0. \land 0]$ value. devuelve 0.
- No usar return en bloques. Porque como el bloque vive en un universo aparte, el return es algo peligroso.
- Si el return no se indica dentro del método, devuelve self. Es decir, la instancia del objeto que recibió el mensaje.

Colecciones

Existen varias: Bag (Multiconjunto), Set (Conjunto), Array (Arreglo), OrderedCollection (Lista), SortedCollection (Lista Ordenada) y Dictionary Hash (Hash).

```
Bag with: 1 with: 2 with: 4
#(1 2 4) = (Array with: 1 with: 2 with: 4)
Bag withAll: #(1 2 4)
```

Mensajes más comunes

- add: agrega un elemento
- at: devuelve el elemento en una posición (indexa desde 1).
- at:put: agrega un elemento a una posición.
- includes: responde si un elemento pertenece o no.
- includesKey: responde si una clave pertenece o no.
- do: evalúa un bloque con cada elemento de la colección. No muta ni devuelve un resultado, solo sirve para efectos secundarios.
- select: Devuelve los elementos de una colección que cumplen un predicado (filter de funcional).
- reject: la negación del select
- collect: Es el map de funcional.
- detect: devuelve el primer elemento que cumple un predicado.
- detect:ifNone: permite ejecutar un bloque si no se encuentra ningun elemento
- reduce: toma un bloque de dos o mas parámetros de entrada y hace fold de los elementos de izquierda a derecha.

Booleanos

- ifFalse:, ifTrue:ifFalse, &, —, and:, or:, not, =, \leq , \geq
- \\: te da el resto

Machete

```
Sintáxis
    | var1 var2... |
    [:arg1 :arg2 | | var1 var 2 | expresion1. expresion2...]
    expresion1. expresion2. expresion3
    objeto mensaje
    objeto msg1; msg2.
    var := expresion
    ^expresion
Palabras Reservadas
    self, super, thisContext, false, true, nil
Literales
    123, 123.4, $c, 'texto', #simbolo, #(123 123.3 $a) array
```

Ejercicios Útiles

Jerarquía

```
20 + 3 * 5
Mensaje: + | Obj Receptor: 20 | Colaboradores: 3 | Res = 23
Mensaje: * | Obj Receptor: 23 | Colaboradores 5 | Res = 115

20 + (3*5)
Mensaje: * | Obj Receptor: 3 | Colaboradores: 5 | Res = 15
Mensaje: + | Obj Receptor: 20 | Colaboradores 15 | Res = 35

1 = 2 ifTrue: ['what!?'].
Mensaje: = | Obj Receptor: 1 | Colaboradores: 2 | Res = instanciaFalse
Mensaje: ifTrue | Obj Receptor: instanciaFalse | Colaboradores: ['what!?'].
| Res = False.

101 insideTriangle: 000 with: 200 with: 002.
Mensaje: insideTriangle:with:with: | Obj. Receptor: 101
(instancia de point) | Colaboradores: 000 with: 200 with: 002
Object subclass: #SnakesAndLadders
```

```
instanceVariablesNames: 'players squares turn die over'
  classVariableNames: ''
  poolDictionaries: ''
  category: 'SnakesAndLadders'

Hay varios mensajes acá.
Mensaje: subclass | Receptor: Object Class |Colaborador: #SnakesAndLadders
Mensaje: instanceVariableNames | Receptor: SnakesAndLadders |
Colaboradores: 'players squares turn die over' cada uno por separado
Mensaje: classVariableNames | Receptor: SnakesAndLadders |Colaborador: ''
Mensaje: poolDictionaries | Receptor: SnakesAndLadders | Colaborador: ''
Mensaje: category | Receptor: SnakesAndLadders |Colaborador: 'SnakesAndLadders'
```

Bloques

```
[ :x :y | |z| z:=x+y ] value: 1 value: 2. Bloque bien definido, dos parámetros
y una variable local.
[ :x :y | x+1 ] value: 1. Arroja error, falta un parámetro.
[:x | [:y | x+1]] value: 2. Bloque bien definido, devuelve un nuevo bloque [:y | x+1]
[:x :y :z | x + y + z] valueWithArguments: #(1 2 3). Bloque bien definido,
envía tres argumentos en orden.
[ |x y z| x + 1] Arroja error. x es UndefinedObject.
[ :x :y :z | x + 1] Bloque bien definido, espera 3 argumentos
obligatorios pero termina usando uno.
Class: BlockClosure
curry
   [:x \mid [:y \mid self value: x value: y]].
flip
   ^[:x :y | self value: y value: x].
Class: Integer
Iterativa
   timesDo: aBlock
   | count |
   count := 1.
    [count <= self]
       whileTrue:
           [aBlock value. count := count + 1]
Recursiva
   timesDo2: aBlock
   self > 0 ifFalse: ^self.
   aBlock value.
   self - 1 timesDo: aBlock.
Class: Collection
map: aBlock
   Icol2I
   col2:=(self class) new.
   self do: [ :elem | col2 add: (aBlock value: elem)].
   ^col2.
minimo: aBlock
"Una implementación poco elegante de la obtención del valor original que genera un mínimo
luego de aplicar un bloque."
   | minElement minValue |
   self do: [:each | | val |
       minValue ifNotNil: [
           (val := aBlock value: each) < minValue ifTrue: [</pre>
```

```
minElement := each.
    minValue := val]]
ifNil: ["Caso del primer elemento que se lee"
    minElement := each.
    minValue := aBlock value: each].
].
^minElement
```

Listas

```
#collect: es el map.
| res |
res := #(1 2 4) collect: [:numero | numero * 2].
El resultado sería multiplicar por dos todos los
elementos de la lista, es decir, [2, 4, 8].
#select: es el filter
res := #(1 2 3) select: [:numero | numero = 1 ].
El resultado sería [1]
sabeResponder: L
   res := #(1 2 3) select:[:each | each respondsTo: #ptff]. -> Los true no hace falta colocarle =.
    ^res
sabeResponder (solo closure)
^[:L | L select: [:each | each respondsTo: #ptff]].
#inject: into: El primer argumento es el resultado de la llamada anterior y el segundo el
elemento actual.
listaNumeros := OrderedCollection with: 1 with: 2 with: 3.
listaNumerosSuma := listaNumeros
inject: 0
into: [ :result :elem | result + elem ].
El resultado seria 6.
#reduce: (o #fold): Es el foldl que conocemos, hace algo de izquierda a derecha.
#(10 20 5 30 15) reduce: [:max :each | max max: each].
El resultado en este ejemplo sería el 30.
\#(1\ 2\ 3\ 4\ 5) reduce: [:product :each | product * each].
El resultado en este ejemplo sería 120.
#reduceRight: es un foldr convencional. Resuelve de derecha a izquierda.
#(1 2 3 6) reduceRight: [:acc :each | each-acc].
El resultado en este ejemplo sería 0.
#do
listaNumeros := OrderedCollection with: 1 with: 2 with: 3.
listaNumeros2 := OrderedCollection new.
listaNumeros do: [ :each | listaNumeros2 add: each + 1 ].
En este caso, listaNumeros2 termina teniendo los valores de [2, 3, 4].
Almacenar en una lista todos los divisores de un numero
Op1:
```