CPE 111 Discrete Mathematics for Computer Engineers International Program, 2022 Homework 1, due on LEB2 at noon on 17 Aug 2022

Chapter 1

Sec 1.1

- 1. Which of these are propositions? What are the truth values of those that are propositions?
 - a) Do not eat in the classroom.
 - **b)** What time is it?
 - c) There is pollution in Bangkok.
 - **d)** 4 + x = 5.
 - e) The moon is made of green cheese
 - **f**) $2n \ge 50$.
- **2.** Suppose that Smartphone A has 256MB RAM and 32GB ROM, and the resolution of its camera is 8 MP; Smartphone

B has 288 MB RAM and 64 GB ROM, and the resolution of its camera is 4 MP; and Smartphone C has 128 MB RAM and 32 GB ROM, and the resolution of its camera is 5 MP. Determine the truth value of each of these propositions.

- b) Smartphone C has more ROM or a higher resolution camera than Smartphone B.
- **d**) If Smartphone B has more RAM and more ROM than Smartphone C, then it also has a higher resolution camera.

3. Determine whether these biconditionals are true or false.

a)
$$2 + 2 = 4$$
 if and only if $1 + 2 = 3$.

b)
$$1 + 1 = 2$$
 if and only if $2 + 3 = 5$.

c)
$$1 + 1 = 3$$
 if and only if monkeys can fly.

d)
$$0 > 1$$
 if and only if $2 > 1$.

- **4.** Construct a truth table for each of these compound propositions.
 - \mathbf{c}) $\mathbf{q} \oplus (\mathbf{p} \wedge \mathbf{q})$

p	q	p ∧ q	$\mathbf{q} \oplus (\mathbf{p} \wedge \mathbf{q})$
T	T		
T	F		
F	T		
F	F		

e) $(q \rightarrow \neg p) \rightarrow (p \leftrightarrow q)$

p	q	¬р	$q \rightarrow \neg p$	$p \leftrightarrow q$	$(q \to \neg p) \to (p \leftrightarrow q)$
Т	T	F			
Т	F	F			
F	T	T			
F	F	T			

5. Evaluate each of these expressions.

a)
$$(1\ 1011 \oplus 1\ 1001) \oplus 1\ 1010$$

Sec 1.2

6. Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output $(p \land \neg r) \land (\neg q \lor r)$ from input bits p, q, and r.

Sec 1.3

- 7. Use De Morgan's laws to find the negation of each of the following statements.
- a) Kwame will take a job in industry or go to graduate school.

$$\neg (p \lor q) = ?$$

b) James is young and strong.

$$\neg (p \land q) = ?$$

8. Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautology.

p	q	$p \rightarrow q$	$(\neg p \land (p \to q)$	$(\neg p \land (p \to q)) \to \neg q$
T	T			
T	F			
F	Т			
F	F			

9. Show that $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \ V \ r)$ are logically equivalent.

p	q	r	$\neg p$	$q \rightarrow r$	pvr	$\neg p \rightarrow (q \rightarrow r)$	$q \rightarrow (p \ v \ r)$
T	Т	T					
T	Т	F					
T	F	T					
T	F	F					
F	Т	T					
F	Т	F					
F	F	Т					
F	F	F					

Sec 1.4

- 9. Let Q(x) be the statement "x + 10 > 2x." If the domain consists of all integers, what are these truth values?
 - a) Q(5)
 - b) $\exists x Q(x)$
 - c) $\forall x Q(x)$
 - g) $\exists x \neg Q(x)$
- 10. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.
 - a) $\exists x(x^2 = 2)$
 - b) $\exists x(x^3 = -1)$
 - c) $\forall x(x^2+1 \ge 2)$
 - d) $\exists x(x^2 \neq x)$
 - e) $\forall x(x^2 > x)$

Sec 1.5

- 11. Determine the truth value of each of these statements if the domain of each variable consists of all real numbers.
 - a) $\forall x \exists y (x = y^2)$
 - b) $\exists x \forall y (xy = 0)$
 - c) $\exists x \exists y (x y = y x)$
 - d) $\exists x \forall y (y = 0 \rightarrow xy = 1)$
 - e) $\forall x \exists y (x+2y = 2 \land 2x + 4y = 5)$
 - f) $\forall x \forall y \exists z (z = (x + y) / 2)$