Deadline: 09/22 23:59

Problem D. Lunch Combo Ranking

Time limit 2000 ms Memory limit 1024MB

Problem Description

At NYCU, the campus cafeteria offers n dishes. Each dish has a taste score w_i (which can be positive if it is delicious, or negative if it is disappointing).

The cafeteria provides two kinds of lunch options:

- Single-dish lunch: Choose exactly one dish, with taste score equal to w_i .
- Combo lunch: Choose two different dishes, with taste score equal to the average of the two, i.e. $\frac{w_i+w_j}{2}$.

In total, there are $n + \binom{n}{2} = \frac{n(n+1)}{2}$ possible lunches.

The student council decides to rank all lunches by their taste score from smallest to largest.

They want to know: what is the k-th largest taste score?

Note: If two lunches have the same taste score, they are still treated as separate entries in the ranking.

Input format

The first line contains two integers n and k $(1 \le n \le 2 \times 10^5, 1 \le k \le \frac{n(n+1)}{2})$, the number of dishes and the ranking index to query.

The second line contains n integers w_1, w_2, \ldots, w_n ($-10^9 \le w_i \le 10^9$), where w_i is the taste score of the i-th dish.

Output format

Print two integers p and q on separate lines, representing the k-th largest taste score in irreducible fraction form $\frac{p}{q}$.

- \bullet p must be an integer.
- q must be a positive integer.
- |p| and q must be coprime.

Deadline: 09/22 23:59

Subtask score

Subtask	Score	Additional Constraints
1	8	$n \le 20$
2	12	$n \le 10^4$ and $k \le 2 \times 10^5$
3	24	$-100 \le w_i \le 100$
4	56	No additional constraints

Sample

Sample Input 1

3 3 8 -4 2

Sample Output 1

 $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Sample Input 2

3 4 8 -4 2

Sample Output 2

 $\begin{vmatrix} 2 \\ 1 \end{vmatrix}$

Sample Input 3

9 23

1 4 -5 6 -7 3 -9 2 8

Sample Output 3

 $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$