1 Задача 2.3

В последовательности вещественных чисел $a_0, a_1, a_2, \dots, a_N$ первые два члена (a_0,a_1) заданы, а последующие $(a_0,a_1,a_2...,a_N)$ определяются с помощью рекуррентного соотношения

$$a_{n+1} + a_{n-1} = \arcsin 2a_n$$

Последовательность обрывается в тот момент, когда дальнейшее применение этого соотношения становится невозможным ($|a_N| > 1/2$, так что арксинус неопределен). Таким образом, длина последовательности $N(a_0, a_1)$ полностью определяется ее начальными условиями (т.е., первыми двумя членами).

- 1. Покажите, что при некоторых особых начальных условиях (a_0^*, a_1^*) последовательность бесконечна: $N(a_0^*, a_1^*) = \infty$. Как выглядит множество особых точек (a_0^*, a_1^*) на плоскости начальных условий (a_0, a_1) ? Что это: одна точка, множество изолированных точек, линии, целые области?
- 2. Как выглядят достаточно далекие члены в бесконечной последовательности?
- 3. По какому закону расходится величина $N(a_0,a_1)$ при приближении точки (a_0,a_1) к какой-либо особой точке (a_0^*,a_1^*) ?
- 4. Опишите далекие члены в очень длинной, но конечной последовательности $(N\gg 1)$

Решение

- $\frac{d}{dx}(\arcsin x-x)=\frac{1}{\sqrt{1-x^2}}-1\geq 0$ при $0\leq x<1$ и $\arcsin 0-0=0,$ значит аrcsin $x\geq x$ при $0\leq x<1$
- Также $\arcsin x \le x$ при $-1 < x \le 0$
- Тогда | $\arcsin x \ge |x|$ Пусть $\exists N : \begin{cases} a_N < 0 \\ a_{N-1} \ge 0 \end{cases}$
- Тогда $a_{N+1} = \arcsin(2a_N) a_{N-1} \le 2a_N a_{N-1} < a_N < 0$
- $a_{N+2} = \arcsin(2a_{N+1}) a_N \le 2a_{N+1} a_N = a_{N+1} + (a_{N+1} a_N) < a_{N+1} < a_{N+1}$
- Мы только что показали, что $a_{N+1} < a_N < 0 \Rightarrow a_{N+2} < a_{N+1} < a_N < 0$
- Тогда $\forall n \geq N \ a_{n+1} < a_n$, то есть $\{a_n\} \downarrow$
- Значит либо $\{a_n\}$ обрывается, либо имеет конечный предел: $-\frac{1}{2} \leq \lim_{n \to \infty} a_n < 0$
- Предположим, что предел существует и конечен и равен x.

- 13 Тогда $x + x = \arcsin 2x \Rightarrow x = 0$. Противоречие. Значит $\{a_n\}$ обрывается.
- 14 Пусть $\exists N : \begin{cases} a_N < 0 \\ a_{N-1} \ge a_N \end{cases}$
- тогда $a_{N+1} = \arcsin(2a_N) a_{N-1} < 2a_N a_{N-1} \le a_N < 0$
- $a_{N+2} = \arcsin(2a_{N+1}) a_N < 2a_{N+1} a_N = a_{N+1} + (a_{N+1} a_N) \le a_{N+1} < a_{N+1} <$
- $a_N < 0$
- мы только что показали, что $a_{N+1} < a_N < 0 \Rightarrow a_{N+2} < a_{N+1} < a_N < 0$
- 19 Тогда $\forall n \geq N \ a_{n+1} < a_n$, то есть $\{a_n\} \downarrow$
- ²⁰ Значит либо $\{a_n\}$ обрывается, либо имеет конечный предел: $-\frac{1}{2} \leq \lim_{n \to \infty} a_n < 0$
- ²¹ Предположим, что предел существует и конечен и равен x.
- 22 Тогда $x + x = \arcsin 2x \Rightarrow x = 0$. Противоречие. Значит $\{a_n\}$ обрывается.
- иначе $\forall N \begin{bmatrix} a_N \geq 0 \\ a_{N-1} < a_N \end{bmatrix}$
- 24 Пусть $\exists N : a_N < 0$. Тогда $0 > a_N > a_{N-1}$.
- $a_{N-1} < 0 \Rightarrow a_{n-1} > a_{N-2}$.
- Значит $\forall n \leq N \ 0 > a_n > a_{n-1} > \cdots > a_0$, то есть $\{a_n\} \uparrow$ до n = N
- $A = \{N | a_N < 0\}$. Предположим, что A конечно. Возьмем $M = \sup A$.
- 28 Тогда $\forall m \leq M \; \{a_m\} \uparrow$ и $a_m < 0$
- y $\forall n > M \ a_n \geq 0$
- 30 $a_{M+1} > a_M$
- $a_{M+2} = \arcsin(2a_{M+1}) a_M \ge 2a_{M+1} a_M = a_{M+1} + (a_{M+1} a_M) > a_{M+1}$
- $a_{M+3} = \arcsin(2a_{M+2}) a_{M+1} \ge 2a_{M+2} a_{M+1} = a_{M+2} + (a_{M+2} a_{M+1}) > a_{M+2}$
- зз Тогда $\{a_m\} \uparrow$ при $m \ge M$
- 34 Значит либо $\{a_m\}$ обрывается, либо имеет конечный предел: $0<\lim_{n\to\infty}a_n\leq \frac{1}{2}$
- 35 Но если этот предел существует, то он равен 0. Противоречие. Значит $\{a_m\}$
- з обрывается.
- з Тогда осталось 2 варианта:
- $38 1) \forall n \ a_n \geq 0$
- 39 Пусть $\exists N : a_N > a_{N-1}$
- 40 Тогда $a_{N+1} = \arcsin(2a_N) a_{N-1} \ge 2a_N a_{N-1} = a_N + (a_N a_{N-1}) > a_N$
- 41 Аналогичными рассуждениями приходим к тому, что $\{a_n\} \uparrow$ и последова-
- 42 тельность обрывается.
- иначе $\forall n \ a_n \leq a_{n-1}$
- 44 Тогда $\{a_n\}$ \downarrow и ограничена снизу, значит если такая ситуация возможна, то
- 45 по т. Вейерштрасса $\lim_{n \to \infty} a_n = 0$
- ${}_{46} 2) \forall N \begin{cases} a_N < 0 \\ a_{N-1} < a_N \end{cases}$
- 47 Аналогичными рассуждениями приходим к тому, что $\{a_n\}$ \uparrow и ограниче-
- 48 на сверху, значит если такая ситуация возможна, то по т. Вейерштрасса
- $\lim_{n\to\infty}a_n=0$

- теперь поймем, возможны ли вообще последние 2 случая.
- 51 При больших n $a_n \ll 1 \Rightarrow a_{n+1} + a_{n-1} = \arcsin 2a_n \sim 2a_n$
- $a_{n+1} a_n = a_n a_{n-1} \Rightarrow \{a_n\}$ арифметическая прогрессия
- 3 Значит если $\forall n \ a_n \neq a_{n+1}$, то $\{a_n\}$ расходится (обрывается), так как $a_n \simeq$
- $a_0 + (a_1 a_0)n$ и $\exists N : |a_N| > \frac{1}{2}$.
- Тогда единственный возможный вариант $a_n \equiv 0$
- 56 2. Достаточно далекие члены в бесконечной последовательности выглядят
- 57 как арифметическая прогрессия или тождественный ноль
- 3. При приближении точки (a_0,a_1) к нашей особой точке (0,0) несложно оце-
- 59 нить, по какому закону расходится величина $N(a_0,a_1)$:
- 60 $a_N \simeq a_0 + (a_1 a_0)N = \frac{1}{2} \Rightarrow N \propto \left| \frac{\frac{1}{2} a_0}{a_1 a_0} \right|$
- 61 4. Далекие члены в очень длинной, но конечной последовательности $(N\gg 1)$:
- $a_n \simeq a_0 + (a_1 a_0)n$
- 63 (Тут используем формулу для малых a_n , так как иначе последовательность
- 64 оборвется довольно быстро)