1. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 24.10.2017 23:59

$\mathbf{W}\mathbf{S}$	WS 2017/2018		
Prof.	$\mathbf{W}.$	Rhode	

Zeit	Raum	Abgabe im Moodle; Mails mit Betreff: [SMD1718]
Di. 10-12	CP-03-150	philipp2.hoffmann@udo.edu und jan.soedingrekso@udo.edu
Di. 16-18	P1-02-110	felix.neubuerger@udo.edu und tobias.hoinka@udo.edu
Di. 16-18	CP-03-150	simone.mender@udo.edu und maximilian.meier@udo.edu

Aufgabe 1: Polynom

3 P.

Werten Sie das Polynom $f(x) = (1-x)^6$ numerisch auf unterschiedliche Weise im Bereich $0.999 \le x \le 1.001$ an 1000 Stellen aus und stellen Sie das Ergebnis grafisch dar.

- a) Berechnung von $(1-x)^6$.
- b) Berechnung des ausmultiplizierten Polynoms (binomische Formel) auf naive Weise.
- c) Berechnung des ausmultiplizierten Polynoms mittels Horner-Schema.

Interpretieren Sie die Ergebnisse für 16-Bit, 32-Bit und 64-Bit Gleitkommazahlen.

Hinweis: Erstellen sie das Array für die x-Werte mit 16-Bit Präzision mit

Analog für 32-Bit und 64-Bit.

Aufgabe 2: Grenzwert

4P.

a) Berechnen Sie den Grenzwert

$$\lim_{x \to 0} (\sqrt{9-x} - 3)/x$$

b) Versuchen Sie, obigen Grenzwert numerisch zu berechnen, indem Sie für x nacheinander 0,1, 0,01, 0,001, ... bis 10^{-20} einsetzen. Interpretieren Sie das Ergebnis.

Aufgabe 3: Numerische Stabilität

3 P.

Betrachten Sie die Funktionen

a)
$$f(x) = (x^3 + 1/3) - (x^3 - 1/3)$$
 und

b)
$$g(x) = ((3 + x^3/3) - (3 - x^3/3))/x^3$$
.

Bestimmen Sie empirisch, für welche Bereiche von x (grob) das numerische Ergebnis

• vom algebraischen um nicht mehr als 1 % abweicht,

1. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 24.10.2017 23:59

WS 2017/2018 Prof. W. Rhode

- gleich Null ist.
- c) Stellen Sie das Ergebnis in geeigneter Form graphisch dar (d. h. z. B. logarithmische x-Skala)!

Aufgabe 4:
$$e^-e^+ \rightarrow \gamma \gamma$$

10 P.

Ein Term des differentiellen Wirkungsquerschnitts für die Reaktion $e^-e^+ \to \gamma\gamma$ ist gegeben durch

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{s} \left(\frac{2 + \sin^2(\theta)}{1 - \beta^2 \cos^2(\theta)} \right) \quad .$$

mit

$$s=(2E_{\rm e})^2\quad (E_{\rm e}$$
ist die Energie des e^ oder e^ im Schwerpunktsystem),
$$\beta=\sqrt{1-\gamma^{-2}}$$

$$\gamma=\frac{E_{\rm e}}{m_{\rm e}}\quad (m_{\rm e}=511\,{\rm keV})$$

und der Feinstrukturkonstante α .

- a) Ist diese Gleichung für $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$ numerisch stabil? In welchem Bereich von θ ist die Gleichung für $E_{\mathrm{e}}=50\,\mathrm{GeV}$ numerisch instabil?
- b) Beheben Sie die Stabilitätsprobleme durch eine geeignete analytische Umformung. (Hinweis: Nutzen Sie $1 \beta^2 = 1/\gamma^2$ und $1 = \sin^2(\theta) + \cos^2(\theta)$)
- c) Zeigen Sie, dass Sie die Stabilitätsprobleme behoben haben, indem Sie beide Gleichungen in den kritischen Intervallen darstellen.
- d) Berechnen Sie die Konditionszahl. Wie hängt diese von θ ab?
- e) Stellen Sie den Verlauf der Konditionszahl als Funktion von θ ($0 \le \theta \le \pi$) grafisch dar. In welchem Bereich ist das Problem gut, in welchem schlecht konditioniert?