Machine Learning: Homework 2

Laurent Hayez

October 16, 2016

Exercise 1. Find out (by hand or WEKA) with the simple rule (1R) which attribute best predicts whether a car gets stolen or not.

Solution. Using the file ML_hayezl_carRelation.arff and WEKA, we derive the following one rule:

 $price=low \implies FALSE$, $price=medium \implies FALSE$, $price=high \implies TRUE$.

The details can be found in the file ML_hayezl_carRelationResults.txt.

Exercise 2. Decide (by hand and WEKA) whether Logan is Scottish based on the following attributes and using a Naïve Bayes classifier. Logan likes shortbread, drinks whiskey and eats porridge but doesn't like lager and doesn't watch soccer. Bonus: use a smoothing technique. (+1p)

Solution. Let $E = \{\text{shortbread} = \text{yes}, \text{lager} = \text{no}, \text{ whisky} = \text{yes}, \text{ porridge} = \text{yes}, \text{ soccer} = \text{no}\}$. We need to compute $\mathbb{P}[\text{Logan is Scottish} \mid E]$. With the naive Bayes

approach, we need to compute

$$\mathbb{P}[\operatorname{Logan} \text{ is Scottish} \mid E] = \frac{1}{\mathbb{P}[E]} \cdot \mathbb{P}[\operatorname{shortbread} = \operatorname{yes} \mid \operatorname{yes}] \cdot \\ \mathbb{P}[\operatorname{lager} = \operatorname{no} \mid \operatorname{yes}] \cdot \\ \mathbb{P}[\operatorname{whisky} = \operatorname{yes} \mid \operatorname{yes}] \cdot \\ \mathbb{P}[\operatorname{porridge} = \operatorname{yes} \mid \operatorname{yes}] \cdot \\ \mathbb{P}[\operatorname{soccer} = \operatorname{no} \mid \operatorname{yes}] \cdot \\ \mathbb{P}[\operatorname{being Scottish}]$$

Computing the conditional probabilities and the probability of being Scottish using Table 1, we obtain

$$\frac{6}{3} \cdot \frac{3}{7} \cdot \frac{4}{7} \cdot \frac{5}{7} \cdot \frac{4}{7} \cdot \frac{7}{13} = 0.046.$$

Computing the same thing but for $\mathbb{P}[\text{Logan is not Scottish} \mid E]$, we obtain 0.0064. Hence

$$\mathbb{P}[E] = 0.046 + 0.0064 = 0.052,$$

$$\mathbb{P}[\text{Logan is Scottish} \mid E] = 0.878,$$

$$\mathbb{P}[\text{Logan is not Scottish} \mid E] = 0.122.$$

Hence Logan is Scottish with probability 0.878.

We can use for example the Laplace estimator as a smoothing technique so that we don't have conditional probabilities being equal to 0. The Laplace estimator add 1 to the count for every attribute value class combination. Hence Table 1 becomes Table 2. The previous computations become $\mathbb{P}[E] = 0.038 + 0.008 = 0.046$,

$$\mathbb{P}[\text{Logan is Scottish} \mid E] = 0.825$$

$$\mathbb{P}[\text{Logan is not Scottish} \mid E] = 0.174$$

so the conclusion does not change.

WEKA gives the same result by training it with the file ML_hayezl_scottsRelation.arff and predicting if Logan is Scottish or not with the file ML_hayezl_scottsRelationPredict.arff. The results can be found in ML_hayezl_scottsRelationResults.txt for the training and in ML_hayezl_scottsRelationPredictResults.txt for the prediction.

Table 1: Probabilities of the attributes given that the person is Scottish or not

Shortbread	yes	no	Lager	yes	no	Whisky	yes	no
yes	6	3	yes	4	3	yes	4	2
no	1	3	no	3	3	no	3	4
yes	6/7	3/6	yes	4/7	3/6	yes	4/7	2/6
no	1/7	3/6	no	3/7	3/6	no	3/7	4/6
Porridge	yes	no	Soccer	yes	no			
yes	5	3	yes	3	4			
no	2	3	no	4	2			
yes	5/7	3/6	yes	3/7	4/6			
no	2/7	3/6	no	4/7	2/6			

Table 2: Probabilities of the attributes given that the person is Scottish or not (with Laplace estimator)

Shortbread	yes	no	Lager	yes	no	Whisky	yes	no
yes	7	4	yes	5	4	yes	5	3
no	2	4	no	4	4	no	4	5
yes	7/9	4/8	yes	5/9	4/8	yes	5/9	3/8
no	2/9	4/8	no	4/9	4/8	no	4/9	5/8
Porridge	yes	no	Soccer	yes	no			
Porridge yes	yes 6	no 4	Soccer yes	yes 4	no 5			
			1					
yes	6	4	yes	4	5			