Lab 3 ICP Algorithm

We will go through the ICP algorithm in this exercise. We will try to minimize the amount of calculations we need.

Given two pointsets:

$$S = \{ (-4, 4, 3), (16, 4, 3) \}$$

$$R = \{ (-1, 11, 3), (13, -3, 3), (256, 7, 204), (-503, 211, 905) \}$$

What are the closest points to S in R? Set up the correspondence.

i	Si	ri
1	(-4, 4, 3)	
2	(16, 4, 3)	

What are the two centroids of s_i 's and r_i 's?

Centroid of S = _		
_		
Centroid of R =		

What are the two pointsets after translating their centroids to origin?

i	Si	r_i
1		
2		

Compute the matrices we need

Compute

$$\bar{R}_1^T S_1 = \left(\begin{array}{c} \\ \\ \end{array} \right) \left[\bar{R}_2^T S_2 = \left(\begin{array}{c} \\ \\ \end{array} \right) \right]$$

The matrix C will be the addition of them

$$\bar{R}_1^T S_1 + \bar{R}_2^T S_2 = \left(\right)$$

Computing the Eigenvectors, the one with largest Eigenvalue should be approximately

$$(\cos(22.5), 0, 0, \sin(22.5))$$

What is the rotational axis and what is the angle rotated?