GP1 HW4

Jiete XUE

October 9, 2025

Problem 1 (The hyperbolic orbit)
(1)

Problem 2 (A parabolic orbit)

Problem 3 (Proof of Kepler's First Law) We start from Binet's equation:

$$h^2 u^2 \left(\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u \right) = -\frac{F}{m}. \tag{3.1}$$

Where $h=r^2\dot{\theta}$ is a constant, $u=\frac{1}{r},\,F=-\frac{GMm}{r^2}=-GMmu^2.$ Hence,

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2} + u = \frac{Gm}{h^2}.\tag{3.2}$$

$$u = A\cos(\theta + \theta_0) + \frac{GM}{h^2}.$$
 (3.3)

$$r = \frac{1}{A\cos(\theta + \theta_0) + \frac{GM}{h^2}}. (3.4)$$

We can use the initial condition to determine A and θ_0 . Anyway, we know it is a quadratic curve.