Organização e Arquitetura de Computadores

Unidades de Medida Computacionais

Nome	Abrev	Fator	Tam SI
quilo	K	$2^{10} = 1024$	10^{3}
mega	M	$2^{20} = 1048576$	10^{6}
giga	G	$2^{30} = 1073741824$	10 ⁹
tera	Т	2 ⁴⁰ = 1099511627776	10^{12}
peta	Р	2^{50} = 1125899906842624	10^{15}
exa	E	$2^{60} = 1152921504606846976$	10^{18}
zetta	Z	$2^{70} = 1180591620717411303424$	10^{21}
yotta	Υ	$2^{80} = 1208925819614629174706176$	10^{24}

Barramentos

Barramento de Dados:

Função: transportar bits de dados.

Direção: bidirecional (processador para memória e

memória para processador).

Características: largura (L), velocidade(V) e taxa de

transferência (T). Fórmula: T = L x V

Barramento de Endereço:

Função: transportar bits de endereço.

Direção: sempre do processador para a memória.

Características: largura.

Fórmula: 2^L

Barramento de Controle:

Função: transportar sinais de comunicação e controle. Direção: alguns fios do processador para a memória e outros no sentido inverso.

Características: apenas a individualidade de seus fios, não possuindo nenhuma característica física específica.

Memória

Componente capaz de armazenar informações que são manipuladas pelo sistemas para que possam er recuperadas quando necessário. *Write and Read* Operação de Escrita é destrutiva, uma vez que faz a cópia do dado e sobrepõe sobre o dado anterior na MP. Já a Operação de Leitura, copia o valor do local de origem sem modificá-lo.

- + Memória principal (RAM)
- + Memória cache
- + Registradores (interior dos processadores)
- + Memória secundária

- + Tempo de Acesso (Aumenta em direção à base)
- + Capacidade (Aumenta em direção à base)
- + Volatilidade (Não volátil e Volátil)
- Não volátil: memória ROM e memória secundária.
- Volátil: registradores, memórias cache e principal (RAM).
- + Tecnologia de fabricação
- Memórias semicondutoras: registradores, memórias cache e principal, ROM, SSD (mais caras).
- Memórias magnéticas: discos rígidos (não volátil e mais baratas).
 - Memórias ópticas: CD, DVDs
- + Custo (preço por byte armazenado)

Registradores

São internos ao processador (guardam instruções e dados que estão sendo manipulados em cada operação).

Memória Cache

Podem ser internas ou externas ao processador.

Memória principal

Capacidade superior à memória cache.

Memória secundária

Alta capacidade e custo inferior o da MP

Operação de Leitura

- 1 (REM) -(outro reg.)
- 1a O endereço é colocado no barramento de ende 2 Sinal de leitura no barramento de controle (deco 3 (RDM) ◀--(MP (REM)) nto de controle (decodificação)
- 4 (outro reg.) (RDM)

Figura 4.13 Exemplo de operação de leitura.

Operação de Escrita

O valor F7 é escrito no endereço 21O8 (valor antigo = 3A)

Figura 4.14 Exemplo de operação de escrita.

Fórmula para capacidade da MP

$$T = N \times M = 2^{E} \times M$$

MP é um conjunto de N células, onde cada uma armazena M bits, MP tem N endereços = 2^{E}

Exemplo:

MP tem espaço de endereçamento de 2K e cada célula armazena 16 bits. Qual a capacidade da MP e o tamanho de cada endereço?

$$\Rightarrow$$
 2 x 1000 = 2^1 x 2^{10} = 2^{11}

$$2^{11} \times 16 = 2^{11} \times 2^4 = 2^{15} =$$
capacidade de 32K bits