Problem J. Just enough squares

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Ivan has a grid paper of size $w \times h$ $(1 \le w, h \le 10^5)$. So it contains $w \times h$ squares of size 1×1 . We can use integer coordinates (x, y) to denote any corner of any of the 1×1 squares $(0 \le y \le w \text{ and } 0 \le y \le h)$.

In this grid paper, Tomi has drawn a *simple* polygon of n vertices $(3 \le n \le 50)$. The i-th vertex has integer coordinates (x_i, y_i) $(0 \le x_i \le w \text{ and } 0 \le y_i \le h)$.

Ivan thinks Tomi's polygon is so good it can be sold to the local art museum. So he will cut the polygon out of the paper in such a way that the whole polygon will be cut out and every 1×1 square is either completely cut out or completely left in the original grid paper. Additionally, he will cut out as few 1×1 squares as possible.

Input

The first line of input contains 3 space separated integers: n, w and h.

The *i*-th of the next *n* lines contains 2 spaces separated integers: x_i and y_i . You are guaranteed that every ordered pair (x_i, y_i) will be different.

Output

Output a single integer: the number of 1×1 squares Ivan will cut.

Example

standard input	standard output
9 8 5	27
1 4	
4 5	
5 3	
7 3	
8 2	
5 1	
4 0	
0 2	
2 3	

Note

A simple polygon is a polygon that does not intersect itself and has no holes.

The green squares are cut out in the solution for the sample case:

