- 1.1.2 A= { x | x ∈ R ∧ x ∈ 6 }. Check if x is real and if x < 6.

 (a) 3 ∈ A is true. (b) 6 ∈ A is false. (c) 5 ¢ A is false. (d) 8 ¢ A is false. (e) -8 ∈ A is true.

 (f) 3.4 ¢ A is false.
- 1.1.11 Which of there are the empty set?
 - (a) {x|xe|Rxx²-1=0} contains x=1, so not empty.
 - (b) $\{x \mid x \in \mathbb{R} \ , \ x^2 \cdot 1 = 0\} = \emptyset$ since there does not exist a real number x, such that $x^2 = -1$.
 - (c) {x | zeR x z² = -9} = \$\text{\$\text{\$\text{\$a\$} as above mutatis mutandis.}}
 - (d) {x| x & R x = 2x+1} is non-compty, since it contains x=2x+1 c=> x=-1.
 - (e) {z | x & R x z = z + 1 } = 0 since x = x + 1 c=> 0 = 1, i.e. no solution x & R.
- 1.1.12 All subsets of $\{a,b\}$. $\emptyset = \{\}, \{a\}, \{b\}, \{a,b\}.$
- 1.1.28 (a) $1\{A = \{3,7,2\}, \text{ find } P(A).$ $P(A) = \{\emptyset, \{2\}, \{3\}, \{7\}, \{2,3\}, \{2,7\}, \{3,7\}, \{2,3,7\}\}.$
 - (b) |A| = 3.
 - (c) |P(A)| = 8.
 - 1.2.5 Let $U = \{1,2,3,...,9\}$, $A = \{1,2,4,6,8\}$, $B = \{2,4,5,9\}$ $C = \{x \in \mathbb{Z}_+ | x^2 \leq 16\}$ and $D = \{7,8\}$.
 - (a) AUB = {1,2,4,5,6,8,9}. Union and intersection
 - (b) $A \cup C = \{1,2,3,4,6,8\}.$
 - (c) AUD = {1,2,4,6,7,8}.
 - (d) BUC = {1,2,3,4,5,9}.
 - (e) Anc = {1,2,4}.
 - (f) And = {83.
 - (9) Bac = {2,4}.
 - (h) LAD = Ø.
- 1.2.9 Let U = {a, b, c, d, e, f, g, h}, A = {a, c, f, g}, B = {a, e} and C = {b, h}.
 - (a) $\overline{A} = \{b, d, e, h\}$. Complements: $\overline{A} = U A$.
 - (b) B = {b,c,d, {,g,h}.
 - (c) AUB = {b,d,h}.

1.2.28 100 people: 37 |F|
33 |V|
9 |F
$$\cap$$
 C|
12 |V \cap C|
10 |F \cap V|
12 | FUV \cap C|= |F \cap V \cap C|
3 |F \cap V \cap C|

Those who want none of the servings are $|F \cap V \cap C|$. Theorem 3 gives us $|F \cup V \cup C| = 37 + 33 + 30 - 10 - 12 - 9 + 3 = 72$.

So 72 people eat at least one offering, while 100-72=28 people don't partalee. $|\overline{F} \cap V \cap C| = 28$.

1. 3.13
$$e_1 = 0$$
, $e_n = e_{n-1} - 2$ $e_1 = 0$ $e_2 = e_1 - 2 = 0$ $e_3 = e_2 - 2 = -2 = 0$ $e_4 = e_3 - 2 = -2 - 2 = 0$

1.3.14
$$f_1 = 4$$
, $f_n = n \cdot f_{n-1}$ $f_1 = 4$

$$f_2 = 2 \cdot f_1 = 2 \cdot 4 = 8$$

$$f_3 = 3 \cdot f_2 = 3 \cdot 8 = 24$$

$$f_4 = 4 \cdot f_3 = 4 \cdot 24 = 96$$

1.4.1
$$m = 20$$
, $n = 3$ write as $qn+r$ with $0 \le r \le n$.
 $20 = 6 \cdot 3 + 2$

1.4.3
$$m = 3$$
, $n = 22$ $3 = 0.22 + 3$

1.4.5 Write as powers of primes (prime factorization)
a)
$$828 = 2 \cdot 414 = 2^{2} \cdot 207 = 2^{2} \cdot 3 \cdot 69 = 2^{2} \cdot 3^{2} \cdot 23$$

(d)
$$1125 = 5.225 = 54.45 = 53.9 = 32.53$$

1.4.6 Find
$$gcd(a,b)=d$$
, and write $d=sa+tb$.

$$\alpha = 60$$
, $b = 100$ $100 = 1.60 + 40$ $60 = 1.40 + 20$ $40 = 2.20 + 0$

Hence d=20 and

$$2a = 60 - 40 = 60 - (100 - 60)$$

= $2 \cdot 60 - 1 \cdot 100$

where s=2 and t=-1

1.4.7
$$a = 45$$
, $b = 33$ $45 = 1.33 + 12$ $33 = 2.12 + 9$ $12 = 1.9 + 3$ $9 = 3.5 + 0$

$$3 = 12 - 9 = 12 - (35 - 2 \cdot 12)$$
$$= 3 \cdot 12 - 33 = 3 (45 - 33) - 33$$
$$= 3 \cdot 45 - 4 \cdot 33$$

s = 3, t = -4.

1.4.10
$$\frac{72 - 2^3 \cdot 3^5}{108 + 2^3 \cdot 3^3} = 8 \cdot 27 = 216.$$

1. 4.11
$$|So = 2.3.5^2| \Rightarrow |cm(70, 180) = 2.3.5^2.7 = 10.50.$$

1.4.26 Show that if $gcd(a_1c)=1$ and c|ab, then c|b.

Assuming gcd(a,c)=1, then there are integers s and t such that sa+tc=1 by theorem 4. Thus sab+tcb=b, and if clab we have c|b.

1.4.27 Show that if $gcd(a_1c)=1$, a/m and c/m, then ac/m.

There is an integer b such that $m=a\cdot b$, and since c|m, then c|ab. Now with 1.4.26 it follows that c|b since gcd(a,c)=1. Thus there is an integer n such that $b=c\cdot n$, which gives us m=ab=acn=>ac/m.

1.4.29 Show that gcd(ca,cb) = c.gcd(a,b).

Let $d=\gcd(a_1b)$, then d|a and d|b. There exist integers m and n such that $a=ol\cdot m$ and $b=d\cdot n$. Multiply through by c, then $cdm=ca \quad and \quad cdn=cb.$

Therefore $c \cdot cl = c \cdot g \cdot cd(a,b) | ca$ and $c \cdot g \cdot cd(a,b) | cb$, so $c \cdot g \cdot cd(a,b)$ is a common divisor.

Theorem 4 yields integers sand t such that gcd(a,b) = sa+tb, so we have

Any common divisor of ca and be divides eged (a,b). But then eged (a,b) is indeed the greatest common divisor of ged (ca,cb), i.e. $c \cdot g \cdot cd(a,b) = g \cdot cd(ca,cb).$