Analysis Workshop Solutions

(Led by Professor Shkoller)

Last Update: September 19, 2011

Contents

9-12-11		3
Problem 1.1	 	 3
Problem $1.2 \ldots \ldots$	 	 4
Problem 1.3	 	 5
Problem 1.4	 	 6
Problem 1.5	 	 7
Problem 1.6	 	 8
Problem 1.7	 	 9
Problem 1.8		
Problem 1.9		
Problem 1.10	 	 12
Problem 1.11		
Problem 1.12	 	
Problem 1.13		
11001011 1110	 	
9-13-11		17
Problem $2.1 \ldots \ldots$	 	 17
Problem $2.2 \ldots \ldots$	 	 18
Problem $2.3 \ldots \ldots$	 	 19
Problem $2.4 \ldots \ldots$	 	 20
Problem 2.5	 	 21
Problem 2.6	 	 22
Problem 2.7	 	 23
Problem 2.8	 	 24
Problem 2.9	 	 25
Problem 2.10	 	 26
Problem 2.11	 	 27
Problem 2.12	 	 28
Problem 2.13	 	 29
9-14-11		30
Problem 3.1		
Problem 3.2	 	 31
Problem 3.3	 	 32
Problem 3.4	 	 34
Problem 3.5	 	 35
Problem 3.6	 	 36
Problem 3.7	 	 37
Problem 3.8	 	 38
Problem 3.9	 	 39
9-15-11		40
Problem 4.1		
Problem 4.2		
Problem 4.3		
Problem 4.4		_
Problem 4.5		
Problem $4.6 \dots \dots$	 	 45

Problem 4.7	46
Problem 4.8	47
Problem 4.9	49
Problem 4.10	50
Problem 4.11	51
9-16-11	52
Problem 5.1	52
Problem 5.2	53
Problem 5.3	55
Problem 5.4	56
Problem 5.5	57
Problem 5.6	58
Problem 5.7	59
Problem 5.8	60
Problem 5.9	
Problem 5.10	62
Problem 5.11	
Problem 5.12	
Problem 5.13	65

9-12-11

Problem 1.1

 $u \in C^{\infty}(\mathbb{R})$, spt $u \subset [-M, M]$.

Last Update: September 19, 2011

$$v(x) = \begin{cases} \frac{1}{x^{k+1}} \left[u(x) - \sum_{j=0}^{k} \frac{x^{j}}{j!} \frac{d^{j}u}{dx^{j}}(0) \right] & x \neq 0 \\ \frac{1}{(k+1)!} \frac{d^{k+1}u}{dx^{k+1}}(0) & x = 0 \end{cases}$$

Prove that v is continuous.

$$\sup_{[-M,M]} |v(x)| \le c \sup_{[-M,M]} \left| \frac{d^{k+1}u}{dx^{k+1}}(x) \right|$$

For $x \neq 0$, v is continuous because

$$v(x) = \frac{1}{k!} \int_0^1 (1-s)^k \frac{d^{k+1}u}{dx^{k+1}} (sx) \, ds.$$

$$\lim_{x \to 0} v(x) = \int_0^1 (1 - s) \frac{d^{k+1}u}{dx^{k+1}} (0) ds$$
$$= \frac{d^{k+1}u}{dx^{k+1}} (0) \int (1 - s)^k ds$$
$$= \frac{d^{k+1}u}{dx^{k+1}} (0) (-(1 - s)|_0^1)$$

where we passed the limit through the integral by the dominated convergence theorem.

For k=1, we can expand $u(x)=u(0)+xv(x),\ v\in C(\mathbb{R}).$ For k=2, we can expand $u(x)=u(0)+xu'(0)+x^2v(x),\ v\in C(\mathbb{R}).$

Test functions $u \in C_0^{\infty}(\mathbb{R})$.

Last Update: September 19, 2011

1.
$$\langle \operatorname{pv} \frac{1}{x}, u \rangle = \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{u(x)}{x} dx$$
. Is $\operatorname{pv} \frac{1}{x}$ a distribution?

2.
$$\langle \operatorname{fp} \frac{1}{x^2}, u \rangle = \lim_{\epsilon \to 0} \left(\int_{|x| \ge \epsilon} \frac{u(x)}{x^2} - 2 \frac{u(0)}{\epsilon} \right)$$
. Is it a distribution?

3.
$$\langle \operatorname{fp} \frac{H}{x^2}, u \rangle = \lim_{\epsilon \to 0} \left(\int_{|x| \ge \epsilon} \frac{u(x)}{x^2} - \frac{u(0)}{\epsilon} + u'(0) \log \epsilon \right)$$
. Is it a distribution?

$$\begin{split} \left\langle \operatorname{pv} \frac{1}{x}, u \right\rangle &= \lim_{\epsilon \to 0} \int_{M \ge |x| \ge \epsilon} \frac{u(0)}{x} + v(x) \, dx \\ &= \lim_{\epsilon \to 0} \int v(x) \, dx + \underbrace{u(0) \lim_{\epsilon \to 0} \int \frac{1}{x} \, dx}_{0 \text{(odd function)}} \\ \left| \left\langle \operatorname{pv} \frac{1}{x}, u \right\rangle \right| &\leq C \sup |v(x)| \leq C \sup |u'(x)| \end{split}$$

Last Update: September 19, 2011

Define δ such that $\delta * f = f \, \forall \, f \in C_0^0(\mathbb{R})$. Prove that there does not exist $\delta \in C_0^0(\mathbb{R})$ satisfying $\delta * f = f$. If there was such a δ , then $f(x) = \int_{\mathbb{R}} \delta(x-y) f(y) \, dy$. Hint: $f(0) = \int_{\mathbb{R}} \delta(-y) f(y) \, dy$.

Use tent functions f_n with f(-1/n) = f(1/n) = 0 and f(0) = 2n.

$$|f_n(0)| \le ||\delta||_{L^2} ||f_n||_{L^2}$$

$$||f_n||_{L^2} = 1$$

$$n \le |f_n(0)| \le ||\delta||_{L^2}$$

$$f_n(0) \ge n$$

$$||\delta||_{L^2} \ge n \ \forall \ n$$

From Shkoller: use the fact that the integral of f_n is 1 and $f_n(0) = n = \int_{-1/n}^{1/n} \delta(-y) f_n(y) dy$. Thus

$$\int_{-1/n}^{1/n} (n - \delta(y)) f_n(y) \, dy = 0.$$

Or you can use a rectangular function with height n and base [-1/n, 1/n]. There exists $\delta \in L^1$

Page 6 of 65

Poincaré Inequality. Let $u \in C_0^{\infty}(\mathbb{R}^n)$.

Last Update: September 19, 2011

- 1. $\int_{\mathbb{R}^n} |u(x)|^2 dx = -C_n \int_{\mathbb{R}^n} Du \cdot xu dx$. Find C_n .
- 2. $\int_{\Omega}|u(x)|^2\,dx\leq C\int_{\Omega}|Du(x)|^2\,dx\;\forall\;u\in C_0^{\infty}(\Omega),\;\Omega\subset\mathbb{R}^n$ bounded
- 1. In 1-D:

$$-\int_{-\infty}^{\infty} \frac{du}{dx} ux \, dx = -\int_{-\infty}^{\infty} \frac{1}{2} \frac{d}{dx} |u|^2 x \, dx$$
$$= \int_{-\infty}^{\infty} \frac{1}{2} |u|^2 \, dx - \frac{1}{2} |u|^2 x \Big|_{-\infty}^{\infty}$$

In n dimensions:

$$-\int_{\mathbb{R}^n} Du \cdot ux \, dx = \lim_{M \to \infty} \int_{B(0,M)} Du \cdot ux \, dx$$

$$= -\lim_{M \to \infty} \int_{B(0,M)} \frac{1}{2} D|u|^2 \cdot x \, dx$$

$$D|u|^2 = D\left(\sum_{i=1}^n u_i u_i\right)$$

$$-\int_{\mathbb{R}^n} Du \cdot ux \, dx = \lim_{M \to \infty} \left(-\int_{\partial B(0,M)} \frac{1}{2} |u|^2 x \cdot n \, dS + \frac{n}{2} \int_{B(0,M)} |u|^2 \, dx\right)$$

$$\int_{\mathbb{R}^n} |u(x)|^2 \, dx = -\frac{2}{n} \int_{\mathbb{R}^n} Du \cdot xu \, dx$$

2. Use part 1 (and Cauchy-Schwarz).

$$\int_{\Omega} |u|^2 dx = ||u||_{L^2}^2 \le C||Du||_{L^2}||u||_{L^2}$$
$$||u||_{L^2}^2 \le C^2||Du||_{L^2}^2$$

Singular integrals. Suppose $u \in C^{\infty}(\mathbb{R}^n - \{0\})$, with $u(rx) = r^{-n}u(x)$. Prove that

$$\langle T, \varphi \rangle = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} u(x) \varphi(x) dx$$

exists for all $\varphi \in C_0^\infty(\mathbb{R}^n)$ if and only if

Last Update: September 19, 2011

$$\int_{S^{n-1}} u(\omega) \, d\omega = 0.$$

Let's use n=2. Hint: Taylor expand φ (1st order).

$$\int_{\epsilon}^{M} \int_{0}^{2\pi} u(r,\theta) \varphi(r,\theta) r \, dr \, d\theta = \int_{\epsilon}^{M} \int_{0}^{2\pi} \frac{1}{r} u(1,\theta) \varphi(r,\theta) \, d\theta \, dr$$

How can we get rid of this non-integrability? Expand φ . So we get to something like

$$\int_{\epsilon}^{M} \frac{1}{r} \int_{0}^{2\pi} u(1,\theta) d\theta dr$$

Last Update: September 19, 2011

Compute $x^2\delta'$ and $x\delta''$ as distributions, where δ is the delta distribution.

$$\begin{split} \left\langle x^2 \delta', \varphi \right\rangle &= \left\langle \delta', x^2 \varphi \right\rangle \\ &= -\left\langle \delta, (x^2 \varphi)' \right\rangle \\ &= -\left\langle \delta, x^2 \varphi' + 2x\varphi \right\rangle \\ &= 0 \end{split}$$

$$\langle x\delta'', \varphi \rangle = \langle \delta'', x\varphi \rangle$$

$$= \langle \delta, (x\varphi)'' \rangle$$

$$= \langle \delta, x\varphi'' + 2\varphi' \rangle$$

$$= 2\varphi'(0)$$

Page 9 of 65

Compute $e^{ax}\delta'$ in \mathcal{S}' .

Last Update: September 19, 2011

$$\langle e^{ax}\delta', \varphi \rangle = \langle \delta', e^{ax}\varphi \rangle$$

$$= -\left\langle \delta, \frac{d}{dx} \left(e^{ax}\varphi \right) \right\rangle$$

$$= -\left\langle \delta, ae^{ax}\varphi + e^{ax}\varphi' \right\rangle$$

$$= -a\varphi(0) - \varphi'(0)$$

True or False. $T \in \mathcal{S}', \varphi \in \mathcal{S}$.

Last Update: September 19, 2011

- (a) $\langle T, \varphi \rangle = 0$ implies $\varphi T = 0$?
- (b) $\varphi T = 0$ implies $\langle T, \varphi \rangle = 0$?
- (a) Choose

$$\varphi = e^{-x^2}, \qquad \psi = e^{-(x+1)^2}.$$

$$\varphi \psi = e^{-x^2} e^{-(x+1)^2}$$

$$= e^{-2x^2 - 2x - 1}$$

$$\langle \delta', \varphi \psi \rangle = \left\langle \delta', e^{-2x^2 - 2x - 1} \right\rangle$$

$$= \left\langle \delta, (-4x - 2)e^{-2x^2 - 2x - 1} \right\rangle$$

$$= -2e^{-1}$$

$$\neq 0$$

Last Update: September 19, 2011

Compute the distributional derivative of $\log |x|$ on \mathbb{R} .

Since $\log |x| \in L^1_{loc}$, i.e. $\log |x|$ is locally integrable, we write

$$\langle (\log|x|)', \varphi \rangle = -\langle \log|x|, \varphi' \rangle$$

$$= -\int_{\mathbb{R}} \log|x| \varphi'(x) \, dx$$

$$= -\int_{|x| \le \epsilon} \log|x| \varphi'(x) \, dx - \int_{|x| \ge \epsilon} \log|x| \varphi'(x) \, dx$$

$$\int_{|x| \ge \epsilon} \log|x| \varphi'(x) \, dx = \log|x| \varphi(x)|_{-\epsilon}^{\epsilon} - \int_{|x| \ge \epsilon} \frac{\varphi(x)}{x} \, dx$$

$$= \log \epsilon \underbrace{(\varphi(\epsilon) - \varphi(-\epsilon))}_{\le |\varphi'(0)| 2\epsilon \to 0} - \int_{|x| \ge \epsilon} \frac{\varphi(x)}{x} \, dx \qquad \text{(Mean Value Theorem)}$$

$$\int_{|x| \le \epsilon} \log|x| \varphi'(x) \, dx = \int_{|x| \le \epsilon} \log|x| (\varphi'(x) - \varphi'(0)) \, dx + \int_{|x| \le \epsilon} \log|x| \varphi'(0) \, dx$$

$$\mathbf{1}_{|x| > \epsilon} \log|x| \varphi' \le \log|x| \varphi' \in L^1 \qquad \text{(LDCT)}$$

Or...

$$\langle (\log|x|)', \varphi \rangle = -\langle \log|x|, \varphi' \rangle$$

$$= -\int_{\mathbb{R}} \log|x| \varphi'(x) \, dx$$

$$= -\int_{\mathbb{R}} \lim_{\epsilon \to 0} \mathbf{1}_{|x| \ge \epsilon} \log|x| \varphi'(x) \, dx$$

$$= \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \log|x| \varphi'(x) \, dx$$

I think an integration by parts step has been omitted here...

$$\frac{d}{dx}\log|x| = \operatorname{pv}\frac{1}{x} \quad \text{in } \mathcal{D}'$$

Page 12 of 65

Last Update: September 19, 2011

Compute the distributional derivative of $\operatorname{pv} \frac{1}{x}$ in $\mathcal{S}'(\mathbb{R})$. Hint: Taylor expand $\epsilon \varphi(\epsilon)$ and $\epsilon \varphi(-\epsilon)$.

$$\frac{d}{dx}\operatorname{pv}\frac{1}{x} = -\operatorname{fp}\frac{1}{x^2} \quad \text{in } \mathcal{S}'$$

Last Update: September 19, 2011

Compute $\mathcal{F}\left(\operatorname{pv}\frac{1}{x}\right)$, $\mathcal{F}(H)$. H is the Heaviside function:

$$H = \left\{ \begin{array}{ll} 1 & x > 0 \\ 0 & x < 0 \end{array} \right.$$

1. By the LDCT, $\operatorname{pv} \frac{1}{x} \cdot x = 1$ in $\mathcal{S}'(\mathbb{R})$.

2.

$$\mathcal{F}(xf(x)) = \frac{i}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) \underbrace{(-i)xe^{-ix\xi}}_{\frac{d}{d\xi}e^{-ix\xi}} dx$$
$$= \frac{i}{\sqrt{2\pi}} \frac{d}{d\xi} \int_{\mathbb{R}} f(x)e^{-ix\xi} dx$$
$$= i \frac{d}{d\xi} \hat{f}(\xi)$$

Putting (1) and (2) together, we get that

$$\mathcal{F}\left(x \cdot \text{pv}\frac{1}{x}\right) = \mathcal{F}(1) = \frac{1}{\sqrt{2\pi}}\delta$$
$$= \frac{d}{d\xi}\hat{f}(\xi)$$
$$= \frac{1}{i\sqrt{2\pi}}\delta$$

$$\mathcal{F}(1) = \frac{1}{\sqrt{2\pi}} \delta$$
$$\mathcal{F}^* \mathcal{F}(\delta) = \mathcal{F}^* \frac{1}{\sqrt{2\pi}}$$

We have $\hat{f}(\xi) = \frac{1}{i\sqrt{2\pi}}H + C$. This must be odd.

$$\frac{1}{i\sqrt{2\pi}} + C = -C$$

$$C = \frac{i}{2\sqrt{2\pi}}$$

So

$$\mathcal{F}\left(\mathrm{pv}\frac{1}{x}\right) = \frac{H}{i\sqrt{2\pi}} + \frac{i}{2\sqrt{2\pi}}.$$

$$\begin{split} H &= i\sqrt{2\pi}\mathcal{F}\left(\mathrm{pv}\frac{1}{x}\right) + \frac{1}{2} \\ &= -i\sqrt{2\pi}\mathcal{F}^*\left(\mathrm{pv}\frac{1}{x}\right) + \frac{1}{2} \\ \mathcal{F}H &= i\sqrt{2\pi}\mathrm{pv}\frac{1}{x} + \mathcal{F}\left(\frac{1}{2}\right) \\ &= i\sqrt{2\pi}\mathrm{pv}\frac{1}{x} + \frac{1}{2\sqrt{2\pi}}\delta \end{split}$$

Last Update: September 19, 2011

T is even if $\langle T, \varphi(x) \rangle = \langle T, \varphi(-x) \rangle$. T is odd if $\langle T, \varphi(x) \rangle = -\langle T, \varphi(-x) \rangle$. **Prove.** For an even function, $\mathcal{F}T = \mathcal{F}^*T$. For an odd function, $\mathcal{F}T = -\mathcal{F}^*T$.

Even:

$$\langle \mathcal{F}^*T, \varphi(x) \rangle = \langle T, \mathcal{F}^*\varphi(x) \rangle$$

$$= \left\langle T, (2\pi)^{-n/2} \int \varphi(x) e^{ik \cdot x} dx \right\rangle$$

$$= \left\langle T, (2\pi)^{-n/2} \int \varphi(-x) e^{-ik \cdot x} dx \right\rangle$$

$$= \left\langle T, \mathcal{F}\varphi(-x) \right\rangle$$

$$= \left\langle \mathcal{F}T, \varphi(-x) \right\rangle$$

$$= \left\langle \mathcal{F}T, \varphi(x) \right\rangle$$

$$= \left\langle \mathcal{F}T, \varphi(x) \right\rangle$$

$$(1.2)$$

There are 2 negative signs in (1.1) that cancel each other out, one because d(-x) = -dx and the other from changing the order of integration.

Page 16 of 65

Last Update: September 19, 2011

Use the identity

$$|x| = xH(x) - xH(-x)$$

and what we computed for $\mathcal{F}H$, \mathcal{F}^*H , and $\frac{d}{d\xi}\widehat{\text{pv}\frac{1}{x}}$ to compute $\mathcal{F}(x)$.

$$\eta(x) = H(x) - \frac{1}{2}$$

$$= -\eta(-x)$$

$$= -H(-x) + \frac{1}{2}$$

$$= H(x) - \frac{1}{2}$$

$$H(x) = \eta(x) + \frac{1}{2}$$

$$H(-x) = \eta(-x) + \frac{1}{2}$$

9-13-11

Problem 2.1

Prove $\int_0^\pi x^{-1/4} \sin x \, dx \le \pi^{3/4}$

Hint: use Cauchy-Schwarz.

Last Update: September 19, 2011

Page 18 of 65

 $f \in L^2(0,\pi)$. Is it possible that

Last Update: September 19, 2011

$$\int_0^{\pi} [f(x) - \sin(x)]^2 dx \le \frac{4}{9}$$
$$\int_0^{\pi} [f(x) - \cos(x)]^2 dx \le \frac{1}{9}$$

For any $F,G\in L^2$, Minkowski's Inequality gives us that

$$||F + G||_{L^2} \le ||F||_{L^2} + ||G||_{L^2}.$$

Let $F = f(x) - \sin x$, $G = f(x) - \cos x$.

$$\left(\int_0^{\pi} \left[(f(x) - \sin x) - (f(x) - \cos x) \right]^2 dx \right)^{1/2} = \left(\int_0^{\pi} (\sin x - \cos x)^2 dx \right)^{1/2} = \sqrt{\pi}$$

$$\leq \left(\int_0^{\pi} [f(x) - \sin x]^2 dx \right)^{1/2} + \left(\int_0^{\pi} [f(x) - \cos x]^2 dx \right)^{1/2}$$

$$\leq \frac{2}{3} + \frac{1}{3}$$

$$= 1$$

Page 19 of 65

Let $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p(\mathbb{R})$, $g \in L^q(\mathbb{R})$. Show that f * g is continuous and that

$$\lim_{|x| \to \infty} (f * g)(x) = 0.$$

Hint: f and g can be approximated by "nice" functions.

Step 1: assume that $f, g \in C_c^{\infty}(\mathbb{R})$.

Last Update: September 19, 2011

$$\lim_{\delta \to 0} |f * g(x + \delta) - f * g(x)| \le \lim_{\delta \to 0} \int_{\mathbb{R}} |f(x - y + \delta) - f(x - y)||g(y)| dy$$

$$\le \int_{\mathbb{R}} \lim_{\delta \to 0} |f(x - y + \delta) - f(x - y)||g(y)| dy$$

$$= 0$$
(DCT)

Step 2: let f, g be the functions originally specified. There exist sequences $(f_n), (g_n) \subset C_c^{\infty}(\mathbb{R})$ such that $f_n \to f$ in L^p and $g_n \to g$ in L^q uniformly.

$$||f * g - f_n * g_n||_{\infty} = ||f * g - f * g_n + f * g_n - f_n * g_n||_{\infty}$$

$$\leq ||f * (g - g_n)||_{\infty} + ||(f - f_n) * g||_{\infty}$$

$$\leq ||f||_p ||g - g_n||_q + ||g_n||_q ||f - f_n||_p$$
(Young's Inequality)
$$\to 0$$

The conclusions follow from this work.

Let $f \in L^p(0,1), p > 0$. This implies $f \in L^q(0,1)$ for $0 < q \le p$. Prove

$$\lim_{q \to 0} ||f||_{L^q} = \exp \int_0^1 \log |f| \, dx.$$

Hint: expand the norm as

Last Update: September 19, 2011

$$\lim_{q \to 0} \left(\int_0^1 |f|^q \, dx \right)^{1/q}.$$

Keep in mind L'Hospital's Rule $(\frac{d}{dx}a^x)$.

$$\lim_{q \to 0} \log \left(\int_0^1 |f|^q dx \right)^{1/q} = \lim_{q \to 0} \frac{1}{q} \log \left(\int_0^1 |f|^q dx \right)$$

$$= \lim_{q \to 0} \frac{1}{\int_0^1 |f|^q dx} \cdot \left(\int_0^1 |f|^q \log |f| dx \right)$$

$$= \int_0^1 \log |f| dx$$
(DCT)

From Shkoller:

We are given $f \in L^p$, $0 < q \le p$. We reduced it to this:

$$\lim_{q \to 0} \frac{\int |f|^q \log |f| \, dx}{\int |f|^q \, dx}$$

What is the dominating function for the top, specifically for when |f| < 1? "When you need to construct a dominating function for log, it's going to be tricky." This is a monotone sequence (in q), so think monotone convergence theorem.

Page 21 of 65

Let $\Omega \subset \mathbb{R}^n$ bounded. $\Omega = (0,1)$ is OK.

Last Update: September 19, 2011

$$\begin{split} \|f\|_{L^p(\Omega)} & \leq Cp, \qquad p \geq 1, \ C \text{ independent of } p \\ & f \geq 0 \text{ a.e.} \end{split}$$

Show there exists \tilde{c} such that $e^{\tilde{c}f} \in L^1(\Omega)$. Hint: use Stirling's formula to relate p^p to p!.

$$n! \sim \sqrt{2\pi} n^{n + \frac{1}{2}} e^{-n}$$

$$\int_{0}^{1} e^{\tilde{c}f} dx = \int_{0}^{1} 1 + \tilde{c}f + \frac{\tilde{c}^{2}f^{2}}{2!} + \cdots dx$$

$$= \sum_{n=0}^{\infty} \frac{\tilde{c}^{n}}{n!} \int_{0}^{1} f^{n} dx \qquad (MCT)$$

$$\leq \sum_{n=0}^{\infty} \frac{\tilde{c}^{n}}{n!} C^{n} n^{n}$$

$$= \sum_{n=0}^{\infty} \frac{n^{n+\frac{1}{2}} (C\tilde{c})^{n}}{n! \sqrt{n}}$$

$$= \sum_{n=0}^{\infty} e^{n} (C\tilde{c})^{n}$$

$$= \sum_{n=0}^{\infty} (eC\tilde{c})^{n}$$

Let $f \in L^1(\mathbb{R})$ and h > 0. Set

Last Update: September 19, 2011

$$g_h(x) = \frac{1}{2h} \int_x^{x+h} f(y) \, dy.$$

Thus, $g_h \in L^1(\mathbb{R})$. Show that

$$\int_{\mathbb{R}} |g_h(x)| \, dx \le ||f||_{L^1(\mathbb{R})}.$$

$$||g_{h}||_{L^{1}} = \int_{\mathbb{R}} |g_{h}(x)| dx$$

$$= \int_{\mathbb{R}} \left| \frac{1}{2h} \int_{x}^{x+h} f(y) dy \right| dx$$

$$\leq \int_{\mathbb{R}} \frac{1}{2h} \int_{0}^{h} |f(x+y)| dy dx$$

$$= \lim_{M \to \infty} \int_{-M}^{M} \frac{1}{2h} \int_{0}^{h} |f(x+y)| dy dx$$

$$= \lim_{M \to \infty} \frac{1}{2h} \int_{0}^{h} \int_{-M}^{M} |f(x+y)| dx dy$$

$$\leq \lim_{M \to \infty} \frac{1}{2h} \int_{0}^{h} ||f||_{L^{1}(\mathbb{R})}$$

$$= \frac{1}{2} ||f||_{L^{1}(\mathbb{R})}$$

From Shkoller:

$$\frac{1}{2h} \int_{\mathbb{R}} \int_{\mathbb{R}} \underbrace{\mathbf{1}_{[x,x+h]}(y)}_{=\mathbf{1}_{[y-h,y]}(x)} f(y) \, dy \, dx$$

Let $f \in L^1(\mathbb{R})$ and we know that

Last Update: September 19, 2011

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(4x) f(x+y) \, dx \, dy = 1.$$

Compute $\int_{\mathbb{R}} f(x) dx$.

By Tonelli's Theorem, change the order of integration:

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(4x) f(x+y) \, dx \, dy = \int_{\mathbb{R}} \int_{\mathbb{R}} f(4x) f(x+y) \, dy \, dx$$
$$= \int_{\mathbb{R}} f(4x) \, dx \int_{\mathbb{R}} f(x+y) \, dy$$
$$= \frac{1}{4} \int_{\mathbb{R}} f(x) \, dx \int_{\mathbb{R}} f(x) \, dx = 1$$
$$\int_{\mathbb{R}} f(x) \, dx = \pm 2$$

We used the translation invariance of Lebesgue measure.

Page 24 of 65

 $(f_n) \subset L^p(\Omega), \Omega$ is bounded.

Last Update: September 19, 2011

$$1. ||f_n||_{L^p(\Omega)} \le C$$

2.
$$f_n \to f$$
 a.e.

Prove $f_n \to f$ in $L^q(\Omega)$ for all $1 \le q < p$.

$$||f_{n} - f||_{L^{q}(\Omega)}^{q} = ||f_{n} - f||_{L^{q}(E)}^{q} + ||f_{n} - f||_{q(E^{c})}^{q}$$

$$\leq ||f_{n} - f||_{L^{q}(E)}^{q} + \epsilon \mu(E^{c})$$

$$\leq \int_{E} |f - f_{n}|^{q} dx + \epsilon \mu(E^{c})$$

$$\leq ||f - f_{n}||_{L^{p}}^{q} \mu(E)^{1 - q/p} + \epsilon \mu(E^{c})$$

$$\leq (2c)^{q} \delta^{1 - q/p} + \epsilon \mu(E^{c})$$
(Hölder's)

Page 25 of 65

Last Update: September 19, 2011

Problem 2.9

 $f_n, f \in L^1, f_n \to f$ a.e. and $||f_n||_{L^1} \to ||f||_{L^1}$. Prove $||f_n - f||_{L^1} \to 0$. Hint: use Fatou's Lemma.

Consider the sequence

$$g_n = |f| + |f_n| - |f_n - f| \ge 0.$$

Then

$$2\int_{\Omega} |f| \, dx = \int_{\Omega} \lim_{n \to \infty} g_n \, dx$$

$$\leq \liminf_{n \to \infty} \int_{\Omega} (|f| + |f_n| - |f_n - f|) \, dx$$

$$\leq 2\int_{\Omega} |f| \, dx - \limsup_{n \to \infty} \int_{\Omega} |f_n - f| \, dx$$

If this was L^p instead of L^1 then it would still be true, except we would need to be clever about our sequence $g_n \Rightarrow \text{ for } n = 2, \text{ set } g_n = |f|^2 + |f_n|^2 - |f_n - f|^2.$

Now suppose $f_n \rightharpoonup f$ in L^1 . Is it still true?

No.

Construct a sequence $(f_n) \subset L^1(I), f_n \geq 0$, such that

1.
$$f_n \rightharpoonup f$$
 in L^1

2.
$$||f_n||_{L^1} \to ||f||$$

3.
$$||f_n - f||_{L^1} \not\to 0$$

Shkoller's suggestion:

$$f_n = 1 + \sin(nx)$$

Let $I = (0, 2\pi)$.

1.
$$f_n \rightharpoonup 1$$
, since $\sin(nx) \rightharpoonup 0$ via oscillation

2.
$$||f_n|| \to 2\pi = ||1||$$

3.

Last Update: September 19, 2011

For L^p , 1 , do the conditions of the previous problem give us strong convergence?

Page 28 of 65

Last Update: September 19, 2011

Let $au \in L^q(\Omega) \ \forall \ u \in L^p(\Omega), \ 1 \leq q \leq p \leq \infty$. Show that $a \in L^r(\Omega)$, where

$$r = \begin{cases} \frac{pq}{p-q} & p < \infty \\ q & p = \infty \end{cases}$$

Page 29 of 65

Last Update: September 19, 2011

Let $f \in L^1(a,b)$ and $\int_a^c f(y) dy = 0$ for all $c \in [a,b]$. Prove that f = 0 a.e.

Note that

$$\int_{a}^{c} f(y) \, dy = \int_{a}^{b} \mathbf{1}_{[a,c]} f(y) \, dy = 0.$$

For any $\varphi \in C^{\infty}(a,b)$, we can approximate φ by simple functions. Also note that $\mathbf{1}_{[j,k]} = \mathbf{1}_{[a,k]} - \mathbf{1}_{[a,j]}$. Thus, for any simple function φ_{sim} we have that

$$\int_{a}^{b} \varphi_{\rm sim} f(y) \, dy = 0.$$

Therefore, for any $\varphi \in C^{\infty}(a,b)$ we will have that

$$\int_{a}^{b} \varphi_{\rm sim} f(y) \, dy = 0.$$

We have proven before that this implies f = 0 a.e.

9-14-11

Problem 3.1

Is $\delta \in \mathcal{H}^{-1}(\mathbb{R})$? Recall that $\mathcal{H}^{-1}(\mathbb{R}) = [\mathcal{H}^1(\mathbb{R})]'$.

Last Update: September 19, 2011

In order for δ to be well-defined, we need continuous functions. Are the functions in $\mathcal{H}^1(\mathbb{R})$ continuous? Yes. So $\delta \in \mathcal{H}^{-1}(\mathbb{R})$.

Sobolev embedding:

$$\max_{x \in \Omega} |u(x)| \le c ||u||_{\mathcal{H}^s(\Omega)}, \qquad s > \frac{n}{2}, \ \Omega \subset \mathbb{R}^n$$

The Riesz Representation Theorem tells us that there exists $u \in \mathcal{H}^1(\mathbb{R})$ such that

$$(u,\varphi)_{\mathcal{H}^1(\mathbb{R})} = \langle \delta, \varphi \rangle \qquad \forall \ \varphi \in \mathcal{H}^1(\mathbb{R})$$

Can we find this u? It satisfies

$$\int_{\mathbb{R}} \left[u(x)\varphi(x) + \frac{du}{dx}(x) \frac{d\varphi}{dx}(x) \right] dx = \langle \delta, \varphi \rangle = \varphi(0) \quad \forall \ \varphi \in \mathcal{H}^{1}(\mathbb{R})$$

$$u - \frac{d^{2}u}{dx^{2}} = \delta \quad \text{in } \mathcal{H}^{-1}(\mathbb{R})$$

$$(1 - \xi^{2})\hat{u}(\xi) = \frac{1}{\sqrt{2\pi}}$$

$$\hat{u}(\xi) = \frac{1}{\sqrt{2\pi}(1 + \xi^{2})}$$

$$u(x) = \mathcal{F}^{*}(1 + 2\xi)/\sqrt{2\pi}$$

$$= \frac{e^{-|x|}}{\sqrt{2\pi}}$$

Page 31 of 65

Problem 3.2

Last Update: September 19, 2011

Let $\Omega \subset \mathbb{R}^n$ smooth, n = 2, ψ is a C^{∞} diffeomorphism of Ω , $u \in \mathcal{H}^k(\Omega)$, $k > \frac{n}{2} + 1$, k = 3. Prove that $u \circ \psi$ is also in $\mathcal{H}^k(\Omega)$.

To make this simpler, consider $u \in \mathcal{H}^3(\Omega) \cap \mathcal{H}^1_0(\Omega)$. Hint: for $u \in \mathcal{H}^3(\Omega) \cap \mathcal{H}^1_0(\Omega)$,

$$||u||_{H^3(\Omega)} = ||D^3 u||_{L^2(\Omega)}$$

Further Hint: if $||D^3u||_{L^2(\Omega)} \leq C$, then $||D^3(u \circ \psi)||_{L^2(\Omega)} \leq \tilde{C}$.

 $u \in H^3(\Omega)$. Assume $u \in C_0^{\infty}(\Omega)$ (density argument).

$$D(u \circ \psi) = Du \circ \psi \cdot D\psi$$
 (chain rule)
$$\vdots$$

$$D^{3}(u \circ \psi) = D^{3}u \circ \psi(D\psi, D\psi, D\psi) + Du \circ \psi D^{3}\psi + \text{l.o.t.}$$

$$\int_{\Omega} |D^{3}(u \circ \psi)|^{2} dx = \underbrace{\int_{\Omega} |D^{3}u \circ \psi|^{2} |(D\psi)|^{6} dx}_{\mathcal{I}} + \int_{\Omega} |Du \circ \psi|^{2} |D^{3}\psi|^{2} dx + \int_{\Omega} \text{l.o.t.}$$

$$\mathcal{I} \leq \|D\psi\|_{L^{\infty}}^{6} \int_{\Omega} |D^{3}u \circ \psi|^{2} dx$$

$$\leq \|D\psi\|_{L^{\infty}}^{6} \int_{\Omega} |D^{3}u|^{2} |\det D\psi| dx$$

$$\leq \underbrace{\|D\psi\|_{L^{\infty}}^{6} \int_{\Omega} |D^{3}u|^{2} |\det D\psi| dx}_{C}$$

Page 32 of 65

Problem 3.3

Multiplicative Algebra. Suppose that $u \in \mathcal{H}^s(\mathbb{R}^n)$ and $v \in \mathcal{H}^s(\mathbb{R}^n)$, $s > \frac{n}{2}$. Prove that

$$||uv||_{\mathcal{H}^s(\mathbb{R}^n)} \le c||u||_{\mathcal{H}^s(\mathbb{R}^n)}||v||_{\mathcal{H}^s(\mathbb{R}^n)}$$

Hint: use Fourier Transform.

Last Update: September 19, 2011

$$||u||_{\mathcal{H}^{s}(\mathbb{R}^{n})}^{2} = \int_{\mathbb{R}^{n}} (1 + |\xi|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi$$

$$||uv||_{H^{s}(\mathbb{R}^{n})} = \int_{\mathbb{R}^{n}} \langle \xi \rangle^{2s} |\widehat{uv}(\xi)|^{2} d\xi$$

$$= \int_{\mathbb{R}^{n}} \langle \xi \rangle^{2s} |\widehat{u} * \widehat{v}(\xi)|^{2} d\xi$$

$$= \int_{\mathbb{R}^{n}} \langle \xi \rangle^{2s} \left| \int_{\mathbb{R}^{n}} \widehat{u}(y - \xi) \widehat{v}(y) dy \right|^{2} d\xi$$

$$\leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \langle \xi + y \rangle^{2s} |\widehat{u}(\xi)|^{2} |\widehat{v}(y)|^{2} dy d\xi$$

$$= \int \int (1 + |\xi|^{2} + |y|^{2} + 2\xi y)^{2} |\widehat{u}(\xi)|^{2} |\widehat{v}(y)|^{2} dy d\xi$$

$$\leq C \int \int \langle \xi \rangle^{2s} \langle y \rangle^{2s} |\widehat{u}(\xi)|^{2} |\widehat{v}(y)|^{2} dy d\xi$$

$$= C \left(\int \langle \xi \rangle^{2s} |\widehat{u}(\xi)|^{2} d\xi \right) \left(\int \langle y \rangle^{2s} |\widehat{v}(y)|^{2} dy \right)$$

$$= C ||u||_{H^{s}(\mathbb{R}^{n})} ||v||_{H^{s}(\mathbb{R}^{n})}$$

Proof that $\widehat{fg} = \widehat{f} * \widehat{g}$:

The convolution theorem gives us

$$\widehat{f * g} = \widehat{f}\widehat{g}$$
$$f * g = \widecheck{f}\widecheck{g}.$$

Let $\hat{f} = F$, $\hat{g} = G$. Applying the 2nd version of the convolution theorem to these functions, we get

$$F * G = \check{F} \check{G}.$$

Applying the Fourier transform to this yields

$$F*G=\widehat{\check{F}\check{G}}.$$

Substituting f and g back in we see

$$\hat{f} * \hat{g} = \widehat{fg}.$$

From Shkoller:

Let's work in \mathbb{R} , so n=1.

$$\begin{split} \|uv\|_{H^{1}}^{2} &\leq c\|u\|_{H^{1}}^{2}\|v\|_{H^{1}}^{2} \\ \int_{\mathbb{R}} u^{2}v^{2} \, dx + \int_{\mathbb{R}} (uv)'^{2} \, dx &= \int_{\mathbb{R}} u^{2}v^{2} \, dx + \int_{\mathbb{R}} (u'^{2}v^{2} + 2uu'vv' + u^{2}v'^{2}) \, dx \\ &\stackrel{?}{\leq} c\|u\|_{H^{1}(\mathbb{R})}^{2}\|v\|_{H^{1}(\mathbb{R})}^{2} \\ \int_{\mathbb{R}} \left(\frac{du}{dx}\right)^{2} v^{2} \, dx &\leq \left\|\frac{du}{dx}\right\|_{L^{2}}^{2} \|v\|_{L^{\infty}}^{2} \\ &\leq \|u\|_{H^{1}}^{2}\|v\|_{L^{\infty}}^{2} \\ &\leq C\|u\|_{H^{1}}^{2}\|v\|_{H^{1}}^{2} \end{split} \tag{Sobolev Embedding}$$

$$\begin{split} \|uv\|_{H^{1}}^{2} &= \int_{\mathbb{R}} (1+\xi^{2}) |\mathcal{F}(uv)|^{2} d\xi \\ &= \int_{\mathbb{R}} (1+\xi^{2}) |\hat{u}*\hat{v}|^{2} d\xi \\ &= \underbrace{\int_{\mathbb{R}} |\hat{u}*\hat{v}|^{2} d\xi}_{\|\hat{u}*\hat{v}\|_{L^{2}}^{2}} + \int_{\mathbb{R}} \xi^{2} |\hat{u}*\hat{v}|^{2} d\xi \\ &\leq \underbrace{\frac{1}{2} \left(\|hatu\|_{L^{2}}^{2} \|\hat{v}\|_{L^{1}}^{2} + \|\hat{v}\|_{L^{2}}^{2} \|hatu\|_{L^{1}}^{2} \right)}_{\text{Young's inequality}} + \int_{\mathbb{R}} \xi^{2} |\hat{u}*\hat{v}|^{2} d\xi \end{split}$$

Consider

$$\int \xi \hat{u}(\xi - \eta) \hat{v}(\eta) \, d\eta.$$

Use a change of variables $(\xi - \eta + \eta)$ to move the ξ into the convolution. Then we get something like

$$\|(\xi \hat{u}) * \hat{v}\|_{L^2}^2 \le \|\xi \hat{u}\|_{L^2}^2 \|\hat{v}\|_{L^1}^2$$

The L^1 norm of the Fourier transform corresponds to the L^{∞} norm of the original function.

Problem 3.4

Suppose $u \in C_0^{\infty}(\mathbb{R}^3)$. By Gagliardo-Nirenberg,

$$\alpha \|Du\|_{L^2} \ge \beta \|u\|_{L^6}$$

Now suppose $u \in C_0^{\infty}(\mathbb{R}^2)$. By the second Poincaré Inequality,

$$C\sqrt{q}\|Du\|_{L^2} \ge \|u\|_{L^q}, \qquad 1 \le q < \infty$$
 (3.1)

Now consider the 2-D domains:

Last Update: September 19, 2011

$$\Omega_1 = \{(x, y) \mid 0 < x < 1; 0 < y < x\}
\Omega_2 = \{(x, y) \mid 0 < x < 1; 0 < y < x^2\}
\Omega_\beta = \{(x, y) \mid 0 < x < 1; 0 < y < x^\beta\}$$

Consider $u(x) = |x|^{\alpha}$. Take $\beta = 2$. For $u \in L^{8}(\Omega_{2})$, find α such that $u \in \mathcal{H}^{1}(\Omega_{2})$.

First consider $u(x) = x_1^{\alpha}$.

For $u(x) = x_1^{\alpha}$, $u \in L^8(\Omega_2)$ if $\alpha > -\frac{3}{8}$ and $u \in H^1(\Omega_2)$ if $\alpha > -\frac{1}{2}$. Thus, the curvature of the domain ruins the embedding in 3.1.

Page 35 of 65

Problem 3.5

Let $u \in L^2(\mathbb{R})$, with spt u compact. Let

$$\eta_{\epsilon}(x) = \frac{1}{\epsilon} \eta\left(\frac{x}{\epsilon}\right), \quad \text{spt } \eta_{\epsilon} \subset \overline{B(0, \epsilon)}, \quad \eta_{\epsilon} \in C_0^{\infty}$$

$$u_{\epsilon} = \eta_{\epsilon} * u$$

$$\left\|\frac{du_{\epsilon}}{dx}\right\|_{L^{2}(\mathbb{R})} \leq M.$$

Prove that $u \in \mathcal{H}^1(\mathbb{R})$.

The sequence is bounded, so by Banach-Alaoglu we have a weakly convergent subsequence: $\frac{du_{\epsilon}}{dx} \rightharpoonup g$. We need to show g is bounded and that g = Du.

- 1. $||g||_{L^2} \le \liminf_{n \to \infty} \left\| \frac{du_{\epsilon}}{dx} \right\| \le M$.
- 2. Need

$$\int g\varphi\,dx = -\int u\varphi'\,dx \quad \forall \ \varphi \in C_0^\infty$$

$$\int g\varphi \, dx = \lim_{\epsilon \to 0} \int u'_{\epsilon}\varphi \, dx$$
$$= \lim_{\epsilon \to 0} - \int u_{\epsilon}\varphi' \, dx$$
$$= -\int u\varphi' \, dx$$

Remarks from Shkoller:

If $(u_{\epsilon}) \subset H^1$ and $||u_{\epsilon}||_{H^1(0,1)} \leq M$, then

$$u_{\epsilon'} \rightharpoonup u \text{ in } H^1(0,1)$$

 $u_{\epsilon'} \to u \text{ in } L^2(0,1)$

If $||u_{\epsilon}||_{H^{s}(\mathbb{T}^{n})} \leq M$, then

$$u_{\epsilon'} \rightharpoonup u \text{ in } H^s(\mathbb{T}^n)$$

 $u_{\epsilon'} \rightarrow u \text{ in } H^r(\mathbb{T}^n) \quad \forall \ r < s$

Problem 3.6

Consider $B(0,1) \subset \mathbb{R}^3$. Define $u(x) = \frac{1}{|x|}$. Show that $Du = -\frac{x}{|x|^3}$.

We need to show that for any $\varphi \in C_0^{\infty}(B(0,1))$,

$$\int -\frac{x}{|x|^3} \varphi \, dx = -\int \frac{1}{|x|} \frac{\partial}{\partial x_i} \varphi \, dx, \ i=1,2,3.$$

We split the integral up as

$$\begin{split} \int_{B(0,1)-B(0,\epsilon)} \frac{1}{|x|} \frac{\partial}{\partial x_i} \varphi \, dx &= \int_{\partial B(0,\epsilon)} \frac{1}{|x|} \varphi \mathbf{n}_i \, dS - \int_{B(0,1)-B(0,\epsilon)} \varphi \left(-\frac{x_i}{|x|^3} \right) \, dx \\ &= \int_{\partial B(0,1)} \frac{1}{|\epsilon|} \varphi \widehat{\mathbf{n}_i \epsilon^2} \, d\omega - \int_{B(0,1)-B(0,\epsilon)} \varphi \left(-\frac{x_i}{|x|^3} \right) \, dx \\ &= -\int_{B(0,1)} \varphi \left(-\frac{x}{|x|^3} \right) \, dx \end{split}$$

Page 37 of 65

Problem 3.7

$$u_j \rightharpoonup u \text{ in } W_0^{1,1}(0,1)$$

 $\frac{du_j}{dx} \rightharpoonup \frac{du}{dx} \text{ in } L^1(0,1)$

Prove $u_j \to u$ a.e.

$$\begin{aligned} u_j(x)^{\text{FTC}} y_j(0) + \int_0^x \frac{du_j}{dy}(y) \, dy \\ \lim_{j \to \infty} u_j(x) &= \lim_{j \to \infty} \int_0^x \frac{du_j}{dy}(y) \, dy \\ &= \int_0^1 \mathbf{1}_{[0,x]} \frac{du_j}{dy}(y) \, dy \\ &\stackrel{\text{DCT}}{=} \int_0^x \lim_{j \to \infty} \mathbf{1}_{[0,x]} \frac{du_j}{dy}(y) \, dy \\ &= \int_0^x \frac{du}{dy}(y) \, dy \\ &= u(x) \quad \text{a.e.} \end{aligned}$$

Problem 3.8

If (u_j) is bounded in $H^1(0,1)$, what does $u_j \frac{du_j}{dx}$ converge weakly to in $L^2(0,1)$ and why?

We know that there exists M such that

$$||u_j||_{L^2}, \left|\left|\frac{du_j}{dx}\right|\right|_{L^2} < M.$$

Then by Banach-Alaoglu, $u_j \rightharpoonup g$ and $\frac{du_j}{dx} \rightharpoonup h$.

$$\int_0^1 u_j \frac{du_j}{dx} \phi \, dx \to \int_0^1 u \frac{du}{dx} \phi \, dx \quad \forall \ \phi \in L^2(0,1)$$

$$\int (u_j - u) \frac{du_j}{dx} \phi \, dx + \int \underbrace{\left(\frac{du_j}{dx} - \frac{du}{dx}\right)}_{\to 0 \text{ weakly}} \underbrace{\left(\frac{du_j}{dx} - \frac{du}{dx}\right)}_{L^2} \le \left\|\frac{du_j}{dx}\right\|_{L^2} \|\phi\|_{L^2}$$

Problem 3.9

Let $u: \mathbb{R} \to \mathbb{R}$,

$$\hat{u}(\xi) = \frac{1}{\langle \xi \rangle (1 + \log \langle \xi \rangle)}, \qquad \langle \xi \rangle = \sqrt{1 + \xi^2}$$

Suppose $u \in H^{1/2}(\mathbb{R})$ but $u \notin L^{\infty}$. Thus, $\mathcal{F}u \notin L^{1}(\mathbb{R})$ (since $\int_{\mathbb{R}} f(x)e^{-ix\xi} dx$). Note that $|\xi| < \langle \xi \rangle$. Prove that

$$||u||_{H^{1/2}(\mathbb{R})}^2 \le C + 2 \int_1^\infty \frac{1}{|\xi|(1+|\xi|^2)} d\xi$$

Hint: apply the change of variables $s = 1 + \log |\xi|$.

See 201C Practice Final #1 Problem 2.

Page 40 of 65

9-15-11

Problem 4.1

 $f \in L^1([a,b])$ and

Last Update: September 19, 2011

$$\int_{a}^{c} f(x) \, dy = 0 \quad \forall \ c \in [a, b]$$

Prove that this implies f=0 a.e. This relies on the Lebesgue differentiation theorem:

$$f(x) = \lim_{\delta \to 0} \int_{x}^{x+\delta} f(y) \, dy$$
 a.e.

The Lebesgue differentiation theorem is used to prove the fundamental theorem of calculus.

$$g(c) = \int_a^c f(y) \, dy = 0$$

$$g'(c) = 0$$

$$f(c) = 0$$
 a.e. by FTOC

The following statement is nonsense (set c = 0):

$$\int_{a}^{c} f(y) \, dy = \beta \neq 0$$

Is $L^{\infty}(\mathbb{R})$ a Hilbert space?

No. The parallelogram law states that

$$||f + g||_{\infty}^{2} + ||f - g||_{\infty}^{2} = 2||f||_{\infty}^{2} + ||g||_{\infty}^{2}$$

Choose f and g with disjoint support. For example, $f = \mathbf{1}_{(-\infty,0]}, g = \mathbf{1}_{[0,\infty)}$.

Last Update: September 19, 2011

Let M be a closed linear subspace of a Hilbert space \mathcal{H} and $x \in \mathcal{H}$ but $x \notin M$. Prove that there is a unique point in M minimizing the distance $(x,y)_{y\in M}$.

See H&N page 131.

Page 43 of 65

 $F: \mathbb{R}^n \to \mathbb{R}$ convex and C^1 . $K \subset \mathbb{R}^n$ convex $u \in \mathbb{R}^n$. Show that $F(u) \leq F(v) \ \forall \ v \in K$ implies $(F'(u), v - u) \geq 0 \ \forall \ v \in K$.

$$F(v) = F(u) + DF(u) \cdot (v - u) + O(\|v - u\|^2)$$

$$F(u) \le F(v)$$

$$DF(u) \cdot (v - u) \ge 0$$

From Shkoller (to make it rigorous):

Last Update: September 19, 2011

Convexity says that

$$F(tu + (1-t)v) \le tF(u) + (1-t)F(v).$$

We know that

$$F(u) \le F(v)$$

$$tF(u) \le tF(v)$$

$$F(u) - (1-t)F(u) \le tF(v)$$

$$F(u) \le (1-t)F(u) + tF(v)$$

We are missing something above...Something that convexity argument comes down to...

$$\lim_{t\to 0} \frac{F(u) \le F((1-t)u + tv)}{t} \ge 0$$

Page 44 of 65

Let (x_n) be a weakly convergent sequence in a Hilbert space \mathcal{H} . What is a necessary and sufficient condition for (x_n) to be strongly convergent?

For strong convergence, we want

Last Update: September 19, 2011

$$\lim_{n \to \infty} ||x_n - x|| = 0.$$

Writing this out as an inner product, we get

$$\langle x_n - x, x_n - x \rangle = \langle x, x \rangle - 2 \operatorname{Re} \langle x_n, x \rangle + \langle x, x \rangle$$

Basically, we want

$$||x_n||^2 \to ||x||^2$$

Suppose $a: H \times H \to \mathbb{R}$ is a continuous bilinear form. Suppose a is positive definite: $a(u, u) \geq 0 \ \forall \ u \in H$. Prove that $v \mapsto F(v) = a(v, v)$ is convex, C^1 , and compute its derivative.

Hints:

- 1. Define $A \in \mathcal{L}(\mathcal{H})$ such that $a(u,v) = (Au,v) \ \forall \ u,v \in \mathcal{H}$
- 2. $t(1-t)a(u-v, u-v) \ge 0$

Last Update: September 19, 2011

Page 46 of 65

Last Update: September 19, 2011

For a bounded self-adjoint operator $A: \mathcal{H} \to \mathcal{H}$, prove that

$$\|A\|=\sup_{\|x\|=1}|\left\langle x,Ax\right\rangle |.$$

See page 198 in H&N.

Page 47 of 65

Let (x_n) be a weakly convergent sequence in \mathcal{H} . Define P_{x_n} as the projection $\langle x_n, \cdot \rangle \frac{x_n}{\|x_n\|}$. What can we say about

(a) strong convergence of (P_{x_n}) ?

Last Update: September 19, 2011

- (b) norm convergence of (P_{x_n}) ?
- (a) $x_n \rightharpoonup x$

$$P_{x_n}y = \langle x_n, y \rangle \frac{x_n}{\|x_n\|}$$
$$\|P_{x_n}y\| = |\langle x_n, y \rangle|$$
$$\leq C(y) \text{ bounded}$$

So there exists a subsequence $P_{x_n} \rightharpoonup \tilde{y} \in \mathcal{H}$. This means that $\langle P_{x_n} y, z \rangle \rightarrow \langle \tilde{y}, z \rangle \ \forall \ z \in \mathcal{H}$. Thus,

$$\langle x_n, y \rangle \frac{\langle x_n, z \rangle}{\|x_n\|} \to \langle \tilde{y}, z \rangle$$

Choose a subsequence of (x_n) such that $||x_n|| \to M$. Then

$$\frac{1}{\|x_n\|} \langle x_n, y \rangle \langle x_n, z \rangle \to \frac{1}{M} \langle x, y \rangle \langle x, z \rangle$$

$$\langle x, y \rangle \langle x, z \rangle \frac{1}{M} = \langle \tilde{y}, z \rangle \qquad \forall \ z \in \mathcal{H}$$

$$\left\langle \frac{\langle x, y \rangle x}{M}, z \right\rangle = \langle \tilde{y}, z \rangle$$

$$\tilde{y} = \langle x, y \rangle \frac{x}{M}$$

$$P_{x_n} y \to \tilde{y} = \langle x, y \rangle \frac{x}{M}$$

$$||P_{x_n}y - \tilde{y}||^2 = \langle P_{x_n}y - \tilde{y}, P_{x_n}y - \tilde{y} \rangle$$
=

From Joe:

Is there an operator $P_x: \mathcal{H} \to \mathcal{H}$ such that for each $y \in \mathcal{H}$

$$\lim_{n \to \infty} ||P_x(y) - P_{x_n}(y)|| = 0$$

This would imply that $P_{x_n}(y) \rightharpoonup P_x(y)$. Fix y. Consider

$$\langle P_{x_n}(y), z \rangle = \frac{\langle x_n, y \rangle \langle x_n, z \rangle}{\|x_n\|}$$

If $x_n \rightharpoonup x$ then we know that $||x_n|| < M$ for some M.

From Chuan:

Let
$$\mathcal{H} = L^2(0,1), x_n = 1 + \sin(n\pi x), x_n \rightharpoonup 1$$
. Then

$$P_{x_n} f = \langle x_n, f \rangle \frac{x_n}{\|x_n\|}$$

$$= \int_0^1 (1 + \sin(n\pi x)) f(x) dx$$

$$= \int_0^1 f(x) dx \frac{1 + \sin(n\pi x)}{\sqrt{\frac{3}{2}}}$$

Apparently this is not a Cauchy sequence in L^2 , so it does not converge strongly.

(b) Consider $x_n = e_n$ in $\ell^2(\mathbb{N})$. Then $||P_{e_n} - P_{e_m}|| = \sqrt{2}$, so it is not a Cauchy sequence and hence not convergent.

Let $\mathcal{H} = L^2(\mathbb{T})$ and $A: \mathcal{H} \to \mathcal{H}$. Define

Last Update: September 19, 2011

$$A(f) = \int_0^{2\pi} \left[\cos(x) \cos(y) + 2 \cos(2x) \cos(y) + \cos(x) \cos(2y) \right] f(y) \, dy$$

What is the condition on $g \in \mathcal{H}$ for Af = g to have a solution?

This might be the same as

$$\left[\begin{array}{cc} 1 & 2 \\ 1 & 0 \end{array}\right] \mathbf{x} = \mathbf{b}$$

If the range is closed then either there exists a solution or g is not \bot to ker A^* . This operator is compact.

Page 50 of 65

Let \mathcal{F} be the Fourier transform on $L^2(\mathbb{T})$ and

Last Update: September 19, 2011

$$P = \frac{1}{2}(I + i\mathcal{F})$$

$$Q = \frac{1}{2}(I - i\mathcal{F})$$

Instead of the fourier transform, use a bounded linear transformation satisfying

$$F^2 = -I$$
$$F^* = -F$$

Prove that P and Q are orthogonal projections.

 $P^2 \stackrel{?}{=} P$

$$P^{2}(x) = \frac{1}{4}(I + iF)(I + iF)$$
$$= \frac{1}{4}(I + 2IF - F^{2})$$
$$= \frac{1}{2}(I + iF)$$

 $P^*\stackrel{?}{=}P$

$$P^* = (I + iF)^*$$
$$= (I^* - iF^*)$$
$$= (I + iF)$$
$$= P$$

 $A:\mathcal{H}\to\mathcal{H},\,A$ is bounded and linear, and there exists c>0 such that

$$c\|x\| \leq \|Ax\| \ \forall \ x$$

What can you say about ran A?

Last Update: September 19, 2011

Page 52 of 65

9-16-11

Problem 5.1

Last Update: September 19, 2011

Let \mathcal{H} be a separable Hilbert space. Suppose we have 2 orthonormal systems (bases), (e_n) and (f_n) . Let (λ_n) be a bounded sequence of complex numbers. We have

$$Tx = \sum_{n=1}^{\infty} \lambda_n(x, e_n) f_n.$$

- 1. Prove that T is a bounded linear operator, with $||T||_{\text{op}} = \sup |\lambda_n|$
- 2. T is compact iff $\lambda_n \to 0$ as $n \to \infty$.
- 3. If K is a compact operator on \mathcal{H} then there exists orthonormal (e_n) and (f_n) and a sequence of complex numbers (λ_n) converging to zero such that

$$Kx = \sum \lambda_n(x_n, e_n) f_n \quad \forall \ x \in \mathcal{H}$$

1.

$$||Tx||^2 \le \left\| \sum \lambda_n(x, e_n) f_n \right\|^2$$

$$\le \sum |\lambda_n|^2 (x, e_n)^2$$

$$\le (\sup |\lambda_n|)^2 ||x||^2$$

Let λ_{n_j} be a subsequence such that $|\lambda_{n_j}| \to A = \sup |\lambda_n|$. Then

$$||Te_{n_i}||^2 = ||\lambda_{n_i}||^2 \to A^2$$

2. If T is compact, then it takes weakly convergent sequences to strongly convergent sequences. $(e_n) \rightharpoonup 0$, so $||Te_n|| \to 0$. This is the case because $||Te_n|| = |\lambda_n| \to 0$.

Let

$$T_N = \sum_{n=1}^N \lambda_n(x, e_n) f_n$$

$$||T_N - T||_{\text{op}} = \left\| \sum_{N+1}^\infty \lambda_n(x, e_n) f_n \right\|_{\text{op}}$$

$$= \sup_{n > N} |\lambda_n|$$

$$\to 0$$

3. Apply the spectral decomposition theorem to K^*K , which is positive. $(\langle x, K^*Kx \rangle = \langle Kx, Kx \rangle \geq 0)$

"Extremely important problem!"

Last Update: September 19, 2011

 $L^2(0,1)$, complex-valued.

$$\langle f, g \rangle_{L^2} = \int_0^1 f(x) \overline{g(x)} \, dx$$

Define $T: L^2(0,1) \to L^2(0,1)$ by

$$Tf(x) = \int_0^x f(t) dt, \quad x \in [0, 1].$$

- 1. Show that T is bounded and compact.
- 2. Show that T has no eigenvalues. This means that if $Tf = \lambda f$, $\lambda \in \mathbb{C}$, $f \in L^2(0,1)$, then f = 0.
- 3. Find $\lim_{n\to\infty} ||T^n||$ and using this, prove that the spectrum of T is $\{0\}$. i.e. $T-\lambda I$ is an isomorphism of $L^2(0,1)$ onto itself iff $\lambda\neq 0$.

1. Bounded:

$$|Tf(x)| \le \int_0^x |f(t)| dt$$

$$\le \int_0^1 |f(t)| dt = ||f||_{L^1}$$

$$\le ||f||_{L^2} ||1||_{L^2} = ||f||_{L^2}$$

$$||T|| \le 1.$$

Compact

T is compact if for every bounded subset $\{f_n\} \subset L^2(0,1)$, $\|f_n\|_{L^2} \leq M$, it is true that $\{Tf_n\}$ is precompact. By Arzela-Ascoli, $\{Tf_n\}$ is precompact if it is bounded and equicontinuous. Bounded is easy:

$$||Tf_n||_{L^2} \le ||T||_{\text{op}} ||f_n|| \le M.$$

To show equicontinuous, fix x. Then

$$|Tf_n(x+\delta) - Tf_n(x)| = \left| \int_0^{x+\delta} f_n(t) dt - \int_0^x f_n(t) dt \right|$$

$$= \left| \int_x^{x+\delta} f_n(t) dt \right|$$

$$\leq \int_0^1 \mathbf{1}_{[x,x+\delta]} |f_n(t)| dt$$

$$\leq \left(\int_0^1 \mathbf{1}_{[x,x+\delta]} dt \right)^{1/2} ||f_n||_{L^2}$$

$$\leq \sqrt{\delta} M.$$

Thus, $\{f_n\}$ is equicontinous and bounded, so $\{Tf_n\}$ is precompact, so T is a compact operator.

2. Set $Tf = \lambda f$ and differentiate with respect to t:

$$\frac{d}{dt} \int_0^x f(t) dt = \frac{d}{dt} \lambda f(x)$$

$$f(x) - f(0) = 0$$

$$f(x) = f(0)$$

$$\int_0^0 f(t) dt = 0 = \lambda f(0)$$

$$f(0) = 0 = f(x)$$

3. Note that $\left|\int_{0}^{x} f(t) dt\right| \leq ||f||_{L^{2}}$. We compute:

$$|T^{2}f(x)| = \left| \int_{0}^{x} \int_{0}^{x_{1}} f(t) dt dx_{1} \right|$$

$$\leq \int_{0}^{x} ||f||_{L^{2}} dx_{1}$$

$$= x||f||_{L^{2}}$$

$$|T^{3}f(x)| = \left| \int_{0}^{x} \int_{0}^{x_{2}} \int_{0}^{x_{1}} f(t) dt dx_{1} dx_{2} \right|$$

$$\leq \int_{0}^{x} \int_{0}^{x_{2}} ||f||_{L^{2}} dx_{1} dx_{2}$$

$$= \int_{0}^{x} x_{2} ||f||_{L^{2}} dx_{2}$$

$$= \frac{x^{2}}{2} ||f||_{L^{2}}$$

From here I claim that

$$||T^n f|| \le \frac{1}{(n-1)!} ||f||_{L^2}.$$

Thus, $\lim_{n\to\infty} ||T^n|| = 0 = r(T)$ (the spectral radius). Thus, the only element in the spectrum of T is 0.

Last Update: September 19, 2011

Let C be a nonempty closed and convex bounded subset of a Banach space X. Let $f: C \to C$ satisfy

$$||f(x) - f(y)|| \le ||x - y||$$
 $\forall x, y \in C$.

Then there exists in C an approximate fixed point sequence of f. Assume $0 \in C$.

An approximate fixed point sequence is a sequence (x_n) such that for every $S \subset X$, $f: S \to S$ and

$$\lim_{n \to \infty} ||x_n - f(x_n)|| = 0.$$

 $\text{Hint: for } \epsilon > 0, \text{ let } C_\epsilon = \{(1-\epsilon)x \mid x \in C\}, \, C_\epsilon \subset C.$

Let

$$f_{\epsilon} = (1 - \epsilon)f.$$

Then f_e is a contraction mapping because

$$||f_{\epsilon}(x) - f_{\epsilon}(y)|| = ||(1 - \epsilon)f(x) - (1 - \epsilon)f(y)||$$

= $(1 - \epsilon)||f(x) - f(y)||$
 $\leq (1 - \epsilon)||x - y||.$

Therefore, there exists $x_{\epsilon} \in C_{\epsilon}$ such that $f_{\epsilon}(x_{\epsilon}) = x_{\epsilon}$.

$$||x_{\epsilon} - f(x_{\epsilon})|| = ||x_{\epsilon} - \frac{x_{\epsilon}}{1 - \epsilon}||$$
$$= ||x_{\epsilon}|| \left|1 - \frac{1}{1 - \epsilon}\right|$$

Page 56 of 65

True or False. Let A be a closed, bounded, and convex subset of C[0,1].

$$A = \{x \in C[0,1] \ \big| \ 0 = x(0) \le x(t) \le x(1) = 1\}$$

The mapping $T:A\to A$ defined by

Last Update: September 19, 2011

$$T(x)(t) = tx(t)$$

has a fixed point.

Assume we have a fixed point: Tf(t) = f(t). Then tf(t) = f(t), and so 0 = f(t)(1 - t). Thus, f(t) = 0 on [0, 1]. But this does not satisfy the criteria. $\Rightarrow \Leftarrow$

Page 57 of 65

Problem 5.5

Let $1 , <math>q = \frac{p}{p-1}$. Suppose that we have $f_n \rightharpoonup f$ in $L^p(\Omega)$, $g_n \to g$ in $L^q(\Omega)$. Show

$$f_n g_n \rightharpoonup fg$$
 in $\mathcal{D}'(\Omega)$ (i.e. distributionally)

This is the same as saying $f_n g_n \stackrel{*}{\rightharpoonup} fg$ in $L^{\infty}(\Omega)$.

Add and subtract something, use Hölder's inequality.

$$f_n g_n - fg = f_n g_n - fg_n + fg_n - fg$$

Here goes nothing... For $\phi \in L^1(\Omega)$, we want to show that the following converges to zero as $n \to \infty$.

$$\int_{\Omega} f_n g_n \phi \, dx - \int_{\Omega} f g \phi \, dx = \int_{\Omega} [f_n g_n - f g] \phi \, dx$$

$$= \int_{\Omega} [(f_n g_n - f g_n) + (f g_n - f g)] \phi \, dx$$

$$= \int_{\Omega} (f_n g_n - f g_n) \phi \, dx + \int_{\Omega} (f g_n - f g) \phi \, dx$$

$$= \int_{\Omega} g_n (f_n - f) \phi \, dx + \int_{\Omega} f (g_n - g) \phi \, dx$$

Page 58 of 65

Last Update: September 19, 2011

Consider a subspace of $\ell^{\infty}(\mathbb{Z})$. $c_0 \subset \ell^{\infty}$ are the bilateral sequences, $x = (x_n)$, such that $x_n \to 0$ as $|n| \to \infty$. $\mathcal{F}: L^1(S^1) \to c_0$, meaning that the Fourier coefficients of a function f is in c_0 . \mathcal{F} is bounded and injective. Prove that $\mathcal{F}(L^1(S^1)) \neq c_0$.

Hint: prove by contradiction. Use the open mapping theorem. Construct a sequence

$$D_N = \sum_{-N}^{N} e^{inx} = \text{Dirichlet kernel}$$

Try to integrate this and find that it blows up.

Problem 5.7

Let $T \in \mathcal{L}(X,Y)$ be compact and $x_n \rightharpoonup x$. Show $T(x_n) \to Tx$ in Y. Hint: show $T(x_n) \rightharpoonup T(x)$ in Y.

Let $f \in Y'$. Define

$$g(x) = f(T(x)).$$

Then

$$||g|| \le ||f|| ||T||$$

Thus, $g \in X'$.

$$g(x_n) - g(x) \to 0$$
$$g(x_n - x) \to 0$$
$$f(T(x_n - x)) \to 0$$

So $Tx_n \to Tx$. Now assume that $Tx_n \not\to Tx$. Then there exists a subsequence (x_{n_k}) such that for every $\epsilon > 0$,

$$||Tx_{n_k} - Tx|| \ge \epsilon.$$

 (x_{n_k}) is a bounded sequence. T is compact, so $Tx_{n_{k_l}} \to y$ in Y. This gives us a contradiction.

Last Update: September 19, 2011

We have separable Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 . $A:\mathcal{H}_1\to\mathcal{H}_2$ is bounded and linear. Suppose we have a linear operator $B\in\mathcal{L}(\mathcal{H}_2,\mathcal{H}_1)$ and compact operators E_i on H_i , i=1,2 such that

$$BA = I_{\mathcal{H}_1} - E_1$$
$$AB = I_{\mathcal{H}_2} - E_2.$$

Prove that N(A) is finite dimensional, and that R(A) is closed in \mathcal{H}_2 .

Page 61 of 65

Last Update: September 19, 2011

 \mathcal{H} is a separable Hilbert space. (e_n) , (f_n) are orthonormal bases. The closure of the span of $\{f_n\} = \mathcal{H}$.

- 1. Prove that if $\sum_{n=1}^{\infty} ||e_n f_n||^2 < 1$ then $\{e_n\}$ is also complete and orthonormal.
- 2. Suppose $\sum_{n=1}^{\infty} < \infty$. Prove that $\{e_n\}$ is a complete orthonormal basis.

Page 62 of 65

Last Update: September 19, 2011

Suppose $f \in L^1(0,1)$ but $f \notin L^2(0,1)$. Find a complete orthonormal basis $\{\phi_n\}$ for $L^2(0,1)$ such that each $\phi_n \in C^0([0,1])$ and such that

$$\int_0^1 f(x)\phi_n(x) dx = 0 \qquad \forall n$$

Last Update: September 19, 2011

Let \mathcal{H}_1 , \mathcal{H}_2 be separable Hilbert spaces. Suppose that $A:\mathcal{H}_1\to\mathcal{H}_2$ and it is continuous, linear, and injective. Let (v_j) be a bounded sequence in \mathcal{H}_1 such that (Av_j) converges strongly in \mathcal{H}_2 to some w. Prove that there exists $v\in\mathcal{H}_1$ such that $v_j\rightharpoonup v$ in \mathcal{H}_1 .

Page 64 of 65

Last Update: September 19, 2011

Let $\mathcal{H} = \bigoplus_{j=1}^{\infty} \mathcal{H}_j$, \mathcal{H}_j is finite-dimensional. That is, for $v \in \mathcal{H}$, $v = \sum_{j=1}^{\infty} v_j$, $v_j \in \mathcal{H}_j$. Let $C = (c_1, c_2, c_3, \ldots), c_j > 0$.

$$A_{C,\mathcal{H}} = \{ v \mid ||v_j|| \le c_j \} \subset \mathcal{H}$$

- 1. Prove $C \in \ell^2$ iff $A_{C,\mathcal{H}}$ is compact in \mathcal{H} .
- 2. Prove that every compact subset $K \subset \mathcal{H}$ is contained in *some* $A_{C,\mathcal{H}}$ for some \mathcal{H} and $C \in \ell^2$.

Page 65 of 65

Let G be an unbounded set in $(0, \infty)$. Define

Last Update: September 19, 2011

$$D = \big\{ x \in (0,\infty) \ \big| \ nx \in G \text{ for infinitely many } n \big\}$$

Prove that D is dense in $(0, \infty)$. (n is not restricted to the natural numbers)

Page 66 of 65