

ALJABAR LINEAR

Pertemuan ke-8 - Geometri dari Sistem Linear

Oleh:

Annastya Bagas Dewantara, S.T., M.T.

(email: annastya.bagas@ui.ac.id)

Fakultas Teknik

Universitas Indonesia

Daftar Paparan

Vektor dan Persamaan Parametrik

2 Dot Product

3 Cross Product

Vektor dan Persamaan Parametrik

1 Vektor dan Persamaan Parametrik

- Open Dot Product
- Cross Product

Garis pada \mathbb{R}^2 *dan* \mathbb{R}^3

Persamaan parametrik adalah persamaan yang merepresentasikan suatu koordinat dari suatu titik sebagai fungsi dari satu atau lebih variabel bebas (**Parameter (t)**), dimana $-\infty < \mathbf{t} < \infty$.

Teori

Jika L adalah garis pada \mathbb{R}^2 atau \mathbb{R}^3 yang memuat titik \mathbf{x}_0 dan parallel dengan vektor nonzero \vec{v} . Maka persamaan tersebut adalah:

$$x = x_0 + tv$$

Pada \mathbb{R}^2

$$x_0 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad v = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad t = 1$$

Maka

$$x = x_0 + tv = \begin{bmatrix} 3 \\ 2 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 3+3t \\ 2+t \end{bmatrix}$$

$$= \begin{bmatrix} 6 \\ 3 \end{bmatrix}
ightarrow egin{bmatrix} \mathsf{Pada} \ t = 1 \end{bmatrix}$$

Pada \mathbb{R}^3

$$x_0 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad v = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \quad t = 1$$

$$x = x_0 + tv = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 + 2t \\ 2 - t \\ 3t \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}
ightarrow extstyle{Pada } t = 1$$

Bidang pada \mathbb{R}^3

Teori

Jika **W** adalah bidang pada \mathbb{R}^3 yang memuat titik \mathbf{x}_0 dan **parallel** terhadap **vektor noncollinear** $\vec{v_1}$ dan $\vec{v_2}$. Maka persamaan tersebut adalah:

$$x = x_0 + t_1 v_1 + t_2 v_2$$

Contoh 1:

$x_0 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, \quad t = 1$ $\begin{aligned} x - y + 2z &= 5 \\ \text{Jika:} \\ v &= t_1, z = t_2 \end{aligned}$ Maka: $x = x_0 + t_1 v_1 + t_2 v_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t_1 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + t_2 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ $= egin{bmatrix} 1 + t_1 \\ 2 + 2t_2 \\ 2t_1 + t_2 \end{bmatrix}$

Contoh 2:

$$x - y + 2z = 5$$

Jika:
 $y = t_1, z = t_2$
Maka:

Maka:

$$x - y + 2z = 5$$

 $x = 5 + y - 2z$
 $x = 5 + t_1 - 2t_2$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 + t_1 - 2t_2 \\ t_1 \\ t_2 \end{bmatrix}$$

Translasi pada Garis dan Bidang

Persamaan parametrik dapat direpresentasikan sebagai **translasi** dari garis atau bidang yang melalui origin, dengan arah vektor tertentu, sejauh **x**₀:

Pada
$$\mathbb{R}^2$$
: $\{t\mathbf{v}:t\in\mathbb{R}\}$ $\xrightarrow{+\mathbf{x}_0}$ $\{\mathbf{x}_0+t\mathbf{v}:t\in\mathbb{R}\}$

Pada
$$\mathbb{R}^3$$
: $\{t_1 \mathbf{v_1} + t_2 \mathbf{v_2} : t_1, t_2 \in \mathbb{R}\} \xrightarrow{+\mathbf{x_0}} \{\mathbf{x_0} + t_1 \mathbf{v_1} + t_2 \mathbf{v_2} : t_1, t_2 \in \mathbb{R}\}$

Dot Product

Vektor dan Persamaan
 Parametrik

- **2** Dot Product
- Cross Product

Dot Product dari Sistem Linear

Persamaan Linear pada \mathbb{R}^n :

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

dengan $\mathbf{a} = (a_1, a_2, \dots, a_n), \mathbf{x} = (x_1, x_2, \dots, x_n), \text{ maka:}$

$$\mathbf{a} \cdot \mathbf{x} = b$$

Sistem Persamaan Homogen:

$$\mathbf{a} \cdot \mathbf{x} = 0 \Rightarrow \boxed{\vec{u} \cdot \vec{v} = 0, \vec{u} \perp \vec{v}}$$

General sistem:

Vektor dan Persamaan Parametrik

$$A\mathbf{x} = 0 \iff \mathbf{r}_i \cdot \mathbf{x} = 0 \quad (i = 1, ..., \text{m-equation})$$

Sehingga solution dari Ax = 0 terdiri atas vektor x yang orthogonal terhadap tiap baris pada A.

Contoh Dot Product dari Sistem Linear

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, RREF : \Rightarrow \begin{bmatrix} 1 & 3 & 0 & 4 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Solusi general:

Vektor dan Persamaan Parametrik

$$\mathbf{x} = (-3r - 4s - 2t, r, -2s, s, t, 0)$$

Maka ortogonalitas dapat diketahui dengan $r_i \cdot x = 0$, (i = 1, ..., m-equation):

$$\mathbf{r}_1 \cdot \mathbf{x} = 1(-3r - 4s - 2t) + 3r + (-2)(-2s) + 2t = 0$$

Cross Product

Vektor dan Persamaan **Parametrik**

- **Dot Product**
- Cross Product

Definisi dan Notasi

Definisi: Jika $\mathbf{u}=(u_1,u_2,u_3)$ dan $\mathbf{v}=(v_1,v_2,v_3)$ adalah vektor di \mathbb{R}^3 , maka **cross product** didefinisikan sebagai

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

Notasi determinan:

$$\mathbf{u} imes \mathbf{v} = egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{bmatrix}$$

Contoh: Cross Product

Contoh 1: Misalkan $\mathbf{u} = (1, 2, -2) \text{ dan } \mathbf{v} = (3, 0, 1)$. Maka

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 3 & 0 & 1 \end{vmatrix} = (2, -7, -6).$$

Hasil dari $\mathbf{u} \times \mathbf{v}$ akan selalu tegak lurus terhadap \mathbf{u} dan \mathbf{v} .

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0, \quad \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

Teorema: Hubungan Cross Product dan Dot Product

Teorema untuk vektor $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$

$$\mathbf{a.} \ \mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

b.
$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

c.
$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

d.
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$

e.
$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$

(Identitas Lagrange)

Cross Product pada Vektor Satuan

Vektor satuan standar di \mathbb{R}^3 :

$$\mathbf{i} = (1,0,0), \quad \mathbf{j} = (0,1,0), \quad \mathbf{k} = (0,0,1)$$

Pembuktian:

$$\mathbf{i}\times\mathbf{j}=\left(\begin{vmatrix}0&0\\1&0\end{vmatrix},-\begin{vmatrix}1&0\\0&0\end{vmatrix},\begin{vmatrix}1&0\\0&1\end{vmatrix}\right)=(0,0,1)=\mathbf{k}$$

Maka Hasil perkalian silang:

$$\mathbf{i}\times\mathbf{j}=\mathbf{k},\quad\mathbf{j}\times\mathbf{k}=\mathbf{i},\quad\mathbf{k}\times\mathbf{i}=\mathbf{j}$$

$$\mathbf{j} \times \mathbf{i} = -\mathbf{k}, \quad \mathbf{k} \times \mathbf{j} = -\mathbf{i}, \quad \mathbf{i} \times \mathbf{k} = -\mathbf{j}$$

Setiap vektor dapat ditulis sebagai kombinasi linear:

$$(v_1, v_2, v_3) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

Contoh:

$$(2,-3,4) = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$$

Teorema: Sifat-sifat Cross Product

Properti Cross Product

Vektor dan Persamaan Parametrik

Jika $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ dan $k \in \mathbb{R}$:

a.
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

b.
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

c.
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$

d.
$$k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$$

e.
$$\mathbf{u} \times \mathbf{u} = \mathbf{0}$$

Right-Hand Rule

Jika \mathbf{u}, \mathbf{v} adalah vektor tak nol, maka arah $\mathbf{u} \times \mathbf{v}$ dapat ditentukan dengan **aturan** tangan kanan:

- 1. Putar **u** menuju **v** melalui sudut θ .
- 2. Jika jari-jari tangan kanan mengikuti arah rotasi, maka ibu jari menunjuk arah $\mathbf{u} \times \mathbf{v}$.

Interpretasi Geometri dari Cross Product

Jika $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, maka norma $\mathbf{u} \times \mathbf{v}$ memiliki interpretasi geometris.

Dari identitas Lagrange:

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

Karena $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$, maka

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

Scalar Triple Product

Mulai dari definisi:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$$

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k}$$

Maka:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = u_1 \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 \\ w_1 \end{vmatrix}$$

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Example

Contoh: Hitung hasil triple product skalar $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ dari vektor berikut:

$$u = 3i - 2j - 5k$$
, $v = i + 4j - 4k$, $w = 3j + 2k$.

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix}$$

$$= 3\begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} - (-2)\begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} + (-5)\begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$
$$= 3((4)(2) - (-4)(3)) + 2((1)(2) - (0)(-4)) - 5((1)(3) - (0)(4))$$

= 3(8 + 12) + 2(2) - 5(3)

$$= 60 + 4 - 15 = 49$$

Interpretasi Geometris Determinan 2x2

$$A = \left| \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \right|$$

Bukti: Anggap $\mathbf{u} = (u_1, u_2, 0), \ \mathbf{v} = (v_1, v_2, 0), \ \text{maka}$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & 0 \\ v_1 & v_2 & 0 \end{vmatrix} = \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \mathbf{k}$$

Sehingga

$$A = \|\mathbf{u} \times \mathbf{v}\| = \left| \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \right|$$

Interpretasi Geometris Determinan 3x3

$$V = egin{bmatrix} \mathsf{det} egin{bmatrix} u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \end{bmatrix}$$

Bukti:

Luas alas =
$$\|\mathbf{v} \times \mathbf{w}\|$$
, $h = \frac{|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|}{\|\mathbf{v} \times \mathbf{w}\|}$

$$V = (\mathsf{luas\ alas})(\mathsf{tinggi}) = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = \left| \mathsf{det} \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix} \right|$$

Daftar Pustaka

1 Vektor dan Persamaan Parametrik

- Dot Product
- Cross Product