Lista de Problemas II Bacharelado em Ciência da Computação Álgebra Linear 1 - 2017.2 Prof.º Dr.º Gersonilo Oliveira da Silva gersonilo@hotmail.com gersonilo.silva@ufrpe.br

Todas as respostas devem ser **devidamente** justificadas

Problema 1) Considere o conjunto \mathbb{R}^3 , com a operação canônica de soma e produto por escalar. Mostre que este conjunto é um Espaço Vetorial com a soma induzida e produto escalar induzido pelas operações canônicas.

Problema 2) Considerando o Espaço Vetorial $[\mathbb{R}^3, \oplus, \otimes]$, mostre que para todo $n \in \mathbb{N}^*$ e $n \geq 3$, os conjuntos \mathbb{R}^n , com a soma canônica de \mathbb{R}^n e produto escalar canônico de \mathbb{R}^n , são Espaços Vetoriais.

Problema 3) Considere o espaço cartesiano \mathbb{R}^3 . Defina apropriadamente o produto vetorial. Usando a definição de produto vetorial defina apropriadamente área. Defina apropriadamente produto misto. Usando a definição de produto misto defina apropriadamente volume.

Problema 4) Considere o espaço cartesiano \mathbb{R}^3 e a definição de produto vetorial. Use a notação: $v \times u$, para produto vetorial. Mostre que para todo v, $u \in \mathbb{R}^3$, temos que o vetor $v \times u$ é ortogonal aos vetores v e u. (Sugestão: Use a operação de produto interno e a condição de ortogonalidade dada por tal operação.)

Problema 5) Considere o conjunto das matrizes reais de ordem $n \times m$: $M(\mathbb{R}, n \times m)$. Defina apropriadamente as operações de soma canônica e produto por escalar canônico. Mostre que este conjunto para todo $n, m \in \mathbb{N}^*$, é um Espaço Vetorial com soma induzida e produto escalar induzido pelas operações canônicas.

Problema 6) Considere o conjunto dos polinômios a uma variável real com grau menor ou igual a n: $\mathcal{P}_n(\mathbb{R})$. Defina apropriadamente as operações de soma e produto por escalar canônicos. Mostre que este conjunto é um Espaço Vetorial com operações induzidas pelas operações canônicas, para todo $n \in \mathbb{N}^*$.

Problema 7) Mostre que o conjunto dos polinômios a uma variável real com grau igual a n, não é um Espaço Vetorial.

Problema 8) Defina apropriadamente combinação linear. Use essa definição para definir apropriadamente o conceito de dependência e independência linear.

Problema 9) Verifique se os conjuntos de vetores do Espaço Vetorial \mathbb{R}^3 , são Linearmente Independentes:

- $\alpha := \{(1,0,1), (1,1,1), (1,2,3)\};$
- $\beta := \{(1,0,0), (1,1,1), (1,1,0)\};$
- $\gamma := \{(\sqrt{2}, \sqrt{3}, 0), (1, 0, 1), (\pi, \sin(1), \log(2))\};$

Problema 10) Considere o Espaço Vetorial \mathbb{R}^3 . Escreva o vetor $v = (1, \sqrt{2}, \sqrt{3})$, em combinação linear com os vetores: $v_1 = (1, 1, 0), v_2 = (0, 1, 1)$ e $v_3 = (1, 1, 1)$.

Problema 11) Considere o Espaço Vetorial $\mathcal{P}_3(\mathbb{R})$. Escreva o vetor $v = x^3 - \sqrt{\pi}x^2 + \log(2)x + 1$, em combinação linear com os vetores: $v_1 = 1$, $v_2 = x^2 + 1$, $v_3 = x^3 + x^2 + 1$ e $v_4 = x$.

Problema 12) Defina conjunto gerador para um Espaço Vetorial. Mostre que os seguintes conjuntos, α , são geradores dos Espaços Vetoriais, V:

- $\alpha := \{(1,1,1), (1,0,1), (1,1,0), (1,0,0)\} \in V := \mathbb{R}^3;$
- $\alpha := \{1, x, x^2, x^3\} \text{ e } V := \mathcal{P}_3(\mathbb{R});$

Problema 13) Considere o Espaço Vetorial $M(\mathbb{R},2)$. Exiba um conjunto gerador desse Espaço.

Problema 14) Considere o Espaço Vetorial $M(\mathbb{R},4)$. Exiba um conjunto gerador desse Espaço.

Problema 15) Defina apropriadamente o conceito de Base para um Espaço Vetorial. Exiba exemplos de Espaços Vetoriais e suas respectivas Bases.

Problema 16) Considere o Espaço Vetorial \mathbb{R}^4 . Fazendo uso dos vetores: $v_1 = (1, 1, 0, 0)$ e $v_2 = (1, 0, 1, 1)$, construa uma base para o Espaço Vetorial.

Problema 17) Considere o Espaço Vetorial $\mathcal{P}_4(\mathbb{R})$. Fazendo uso dos vetores: $v_1 = 1 + x^2$ e $v_2 = x^3 + x$, construa uma base para o Espaço Vetorial.

Problema 18) Considere o Espaço Vetorial $M(\mathbb{R},3)$. Fazendo uso dos vetores:

$$v_1 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} , v_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} , v_3 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

construa uma base para o Espaço Vetorial.

Problema 19) Considere a seguinte definição:

Definição[**Dimensão de um Espaço Vetorial**]: Dado um Espaço Vetorial V, e uma Base $\alpha := (v_1, ..., v_n)$. Diremos que sua dimensão é o número de vetores de sua Base, isto é, dim(V) = n.

Para cada Espaço Vetorial abaixo determine sua dimensão:

- $V := \mathcal{P}_4(\mathbb{R});$
- $V := M(\mathbb{R}, 3)$;
- $V := S(\mathbb{R}, 3)$ [O Espaço Vetorial das Matrizes Simétricas de ordem 3].

Problema 20) Considere os seguintes conjuntos. Determine quais deles são Espaços Vetoriais:

- $V_1 := \{(x, y, x + y, x y) : x, y \in \mathbb{R}\};$
- $V_2 := \{(x, y, z) : x, y, z \in \mathbb{R}, x + y + z = 0\};$
- $V_3 := \{(x, y, z, w) : x, y, z \in \mathbb{R}, x + y = z w\};$

• $V_4 := \{(x, y, z) : x, y, z \in \mathbb{Q}\};$

Problema 21) Defina apropriadamente Subespaço Vetorial. Considere os Espaços Vetoriais: \mathbb{R}^3 , $M(\mathbb{R},3)$ e $\mathcal{P}_3(\mathbb{R})$. Elenque todos os seus Subespaços Vetoriais, exibindo para cada uma base e sua respectiva dimensão.

"Toda reforma interior e toda mudança para melhor dependem exclusivamente da aplicação do nosso próprio esforço."

 $Immanuel\ Kant$