

COMP 6721

Project Assignment - 2 **Spam Detector**

Submitted to

Prof. Dr. René Witte

Team name

FL-G08

TA and Marker

Ms. Fathima Nihatha

Team members

Apoorv Semwal	40083939
Ayush Dave	40080515
Mayank Jariwala	40075419

Analysis

• <u>Flow Diagrams:</u> For **Evaluating** our Spam Classifier we tried both the **Unigram approach** (with 2 different **REGEX explained below**) and a **Bigram approach**.

Finally it was the **Unigram Approach with Regex-2** which gave us better results compared to other options.

Training Flow:

Testing Flow:

• Problem formulation for training the Naïve Bayes Classifier: Every single file provided within Training dataset (1000 HAM and 997 SPAM), was passed through a regular expression to split the file string and arrive a vocabulary of unique words. For splitting the file string we started our development with the regex provided in the problem statement, '[^a-zA-Z]' i.e. split at every non-alphabet character. However, we also tried checking if we could arrive at better results by slightly tweaking the regex to '\W' which is equivalent to '[^a-zA-Z0-9_]' i.e. split at every non-alphanumeric character (except underscore). We would be showing results for both.

> **REGEX-1**: [^a-zA-Z]

• <u>Vocabulary Size:</u> 59251 Unique Words

• <u>Confusion Matrix over Test Dataset:</u> Considering **SPAM** as a positive class and **HAM** as the negative class.

Test Files = 800	Predicted (Spam)	Predicted (Ham)	
Actual (Spam)	TP=364	FN=36	400
Actual (Ham)	FP=7	TN=393	400
	371	429	

• **Evaluation Metrics:** Based on the above confusion matrix values following evaluation metrics were calculated.

Accuracy: TP + TN / (TP + TN + FP + FN)

Recall: TP / (TP + FN)**Precision**: TP / (TP + FP)

F1-Score: 2 * Recall * Precision / (Recall + Precision)

Evaluation Metric	Value
Accuracy	94.625
Precision	98.113
Recall	91.0
F1-Score	94.423

> REGEX-2: [^a-zA-Z0-9_] with unigram approach

• <u>Vocabulary Size:</u> 63480 Unique Words

• Confusion Matrix over Test Dataset:

Test Files = 800	Predicted (Spam)	Predicted (Ham)	
Actual (Spam)	TP=366	FN=34	400
Actual (Ham)	FP=5	TN=395	400
	371	429	

• Evaluation Metrics:

Evaluation Metric	Value
Accuracy	95.125
Precision	98.652
Recall	91.5
F1-Score	94.942

> REGEX-2: [^a-zA-Z0-9_] With Bigram Approach:

*Note: Code for this has not been committed to the master branch and can be seen in a different branch — 'bigram' - https://github.com/apoorvsemwal/IntroToAl-SpamDetector/tree/bigram.

• Evaluation Metrics:

Evaluation Metric	Value
Accuracy	14.375
Precision	0
Recall	0
F1-Score	NA

We obtained **best accuracy** for **Unigram Approach** with **Regex-2** - [^a-zA-Z0-9_] - 95.125%

For unigram with Regex-2 we also tried **removing the stop words** (frequently occurring words like this, the etc.) to check if it results in any improvement. However it resulted in a decrease in **accuracy – 84.75%. Code can be checked in branch** 'stop_words' - https://github.com/apoorvsemwal/IntroToAl-SpamDetector/tree/stop_words

Overall in general the Unigram with Regex-2 model was able to show very high Precision signifying that there is very high possibility of a mail being SPAM if our model predicts it to be a SPAM. This is desirable as we do not want our model to predict SPAM for a genuine mail.

However a slightly lower Recall signifies that in some 9% of the cases model might not classify a mail as SPAM at all while the mail was actually a SPAM.

References

- 1. https://stackoverflow.com/questions/28931224/adding-value-labels-on-a-matplotlib-bar-chart
- 2. https://stackoverflow.com/questions/265960/best-way-to-strip-punctuation-from-a-string

Instructions to run the project:

- Download/Clone the Project Repo to your local machine –
 [IntroToAl-SpamDetector](https://github.com/apoorvsemwal/IntroToAl-SpamDetector.git)
 or access it from Google drive –
 https://drive.google.com/open?id=1hFeO5xocprJfMTZcDSfcwEt-uOsAlrHS
- Copy the train and test with names as 'train' and 'test' respectively inside the project root directory i.e. 'IntroToAl-SpamDetector'.
 - *Note: Train and Test data folders can be downloaded from Google drive. The final directory structure should look exactly as shown in Google drive https://drive.google.com/drive/folders/1hFeO5xocprJfMTZcDSfcwEt-uOsAlrHS
- Navigate to '\IntroToAl-SpamDetector\src' in your terminal
- Run CMD: python launcher.py
- Check results folder '\IntroToAl-SpamDetector\results'