

고급시각화 분석

주요 패키지

graphics

- 막대차트, 파이차트, 산점도, 히스토 그램

lattice(격자)

- 서로 상관 있는 확률적 반응 변수의 시각화
- 범주 별로 독립된 패널을 격자처럼 배치

ggplot2

- 기하학적 객체에 미적 특정을 적용하여 시각화
- 그래프와 사용 간에 상호작용 기능 제공

ggmap

지도를 기반으로 위치, 영역, 시간과 공간에 따른 차이 변화

다양한 시각화 도구 🖁

histogram(param1, data=데이터셋)

기본예제

- 데이터 셋 가져오기
 - data(VADeaths)
 - View(VADeaths)
 - str(VADeaths) #
 - mode(VADeaths)
 - class(VADeaths)
- 데이터 리모델링(함수처리를 위해)
 - matrix --> data.frame 변환
 - df <- as.data.frame(VADeaths)
 - class(df); View(df)
 - matrix --> data.table 변환
 - dft <- as.data.frame.table(VADeaths)
 - class(dft); View(dft)

다양한 시각화 도구 🖁

■ histogram(param1, data=데이터셋)

다양한 시각화 도구 🖁

densityplot()

(subjective) dependency

기본예제

- barchart : 막대 그래프
 - 형식)
 - barchart(y-x축 | 변수조건, dataframe, layout)
 - install.packages("lattice")
 - library(lattice)
 - barchart(Var1~Freq| Var2, data=dft, layout=c(4,1))

다양한 시각화 도구 🖁

densityplot()

다양한 시각화 도구 🖁

Plot of teeth length according to vitamin C/Orange juice dose

기본예제

- 형식
 - dotplot(y~x축|조건, dataframe, layout)
 - dotplot(Var1~Freq|Var2, dft)
- Var2변수 단위(그룹화)로 점을 연결 하여 플로팅
 - dotplot(Var1~Freq, data=dft, groups=Var2, type="o", auto.key=list(space="right", points=T, lines=T))

다양한 시각화 도구 🖁

• 형식

기본예제

- - xyplot(y축~x축| 조건변수, dataframe or list)
 - 대기오염..
 - library(datasets)
 - str(airquality); View(airquality)
 - airquality의 Ozone(y), Wind(x) 산점도 플로팅
 - xyplot(Ozone~Wind, data=airquality)
 - Month변수 단위로 플로팅
 - xyplot(Ozone~Wind|Month, data=airquality)
 - xyplot(Ozone~Wind|Month, data=airquality, layout=c(5,1)
 - xyplot(Ozone~Wind|factor(Month), data=airquality, layout=c(5,1)

기본예제

- 추가 옵션..
 - pch : 점의 모양
 - 속성을 추가 처리..
 - 신규변수지정 <- xyplot(.....)
 - update(신규변수지정, 추가속성(속성="속성값"))
 - 예제
 - head(quakes) # quakes 데이터 확인
 - xyplot(lat~long, data=quakes, pch=".")
 - 추가변수 필요
 - tplot <-xyplot(lat~long, data=quakes, pch=".")</p>
 - 그래프에 제목 추가
 - tplot2 <- update(tplot, main="1964년 이후 태평양에서 발생한 지진위치")

확인예제:

- quakes를 기준으로 mag, stations을 x,y축으로 xyplot() 처리하고, 조건변수(depth를 4구간으로 나누어서)를 추가하여 화면레이아웃(2행2열)에 플로팅하세요..
 - xyplot(mag~stations|factor(depth%%6), data=quakes, pch=".", layout(3,2))
 - max(quakes\$depth) 680, min(quakes\$depth) 40, 한구간당 640/4 = 160
 - quakes\$part[quakes\$dept>=40&&quakes\$dept<200]=" 1구간"
 - quakes\$part[quakes\$dept>=200&&quakes\$dept<360] ="2구간"
 - xyplot(stations~mag|factor(part), data=quakes, pch="o", layout=c(2,2))

equal.count():

- 개념
 - 지정된 범위 대상 영역구분과 카운팅
- 형식: equal.count(data, number, overlap)
- ex) 지진의 깊이를 3영역으로 구분하여 카운팅
- depthgroup <-equal.count(quakes\$depth, number=3, overlap=0)
- depthgroup 변수 기준으로 플로팅
 - xyplot(lat~long|depthgroup, data=quakes, main="Fiji Earthquakes(depthgroup)", ylab="latitude", xlab="longitude", pch="@", col="red")

- 3차원(위도, 경도, 깊이) 산점도 그래프
 - cloud(1속성~2속성*3속성, data=프레임,list, zlim=3속성이 나타날범위지정, xlab="1속성레이블", ylab="2속성레이블", zlab="3속성레이블")
 - cloud(depth~lat*long, data=quakes, zlim=rev(range(quakes\$depth)), xlab="경도", ylab="위도", zlab="깊이")

확인예제:

- student.csv에 국어,영어, 수학 를 기준으로 cloud처리하세요..
 - student<-read.csv("student01.csv",header =
 T)</pre>
 - names(student)< c("grade","part","no","name","kor","eng","mat
 h")</pre>
 - cloud(kor~eng*math, data=student, zlim=rev(range(student\$kor)), xlab="영어점수",ylab="수학점수", zlab="국어점수", pch="o")

var1

다양한 시각화 도구 🖁

doubleYScale

horizonplot

World Indexes Change Since 2011

O₃ on 2001-07-01

ggplot 패키지:

- 필요한 패키지 설치..
 - install.package("ggplot2")
 - library(ggplot2) # 메모리로딩
 - ggplot2 패키지 제공 데이터 셋
 - data(diamonds)
 - data(mtcars)
 - data(mpg)
 - str(mpg) # map 데이터셋 구조 보기..
 - summary(mpg) # 요약 통계량
 - table(mpg\$drv) # 구동방식 빈도수

- 1개 변수 대상 : 속이 꽉찬 막대 모양의 세로막대 그래프
 - qplot(hwy, data=mpg)
- fill 옵션: hwy 변수를 대상을 drv변수에 색 채우기(누적 막대그래프)
 - qplot(hwy, data=mpg, fill=drv)
- binwidth 옵션 : 막대 폭 지정 옵션
 - qplot(hwy, data=mpg, fill=drv, binwidth=2)
- facets 옵션: drv변수 값으로 컬럼단위와 행단위로 패널 생성
 - 컬럼단위 패널 생성 facets=.∼기준변수
 - qplot(hwy, data=mpg, fill=drv, facets=.~ drv, binwidth=2)
 - 행단위 패널 생성 facets=기준변수~.■
 - qplot(hwy, data=mpg, fill=drv, facets=drv~., binwidth=2)

- 2변수 대상 기본 속이 꽉찬 점 모양과 점의 크기는 1를 갖는 산점도 그래프
 - qplot(displ, hwy, data=mpg)
 - mpg데이터셋의 displ(엔진크기)과 hwy 변수 이용
 - qplot(displ, hwy, data=mpg, color=drv)

- 색상, 크기, 모양 적용
 - ggplot2 패키지에서 제공..
 - str(mtcars); view(mtcars)
 - qplot()
 - color: 색상 factor(carb)
 - size : ∃기 size=qsec
 - shape : 모양 shape=factor(cyl)
 - qplot(wt, mpg, data=mtcars, size=qsec, color=factor(carb), shape=factor(cyl))

qplot() 함수 확인예제 :

 qplot함수를 이용해서, student 데이터셋, 두개의 변수 (국어, 영어)

- 크기 : 총계 조절

- 색상 : 학년

_ 모양: 반

- qplot(kor, eng, data=student, size=kor+eng+math, color=factor(grade), shape=factor(part))

- diamonds 데이터셋
 - price : 가격, carat: 무게, cut : 품질, color: 색상의 품질, clarity : 선명도, x:길이, y:폭
- 여러옵션..
 - geom : 포인트(point), 평활(smooth), line, freqploy를
 통해서 모양, 막대그래프(bar)
 - 한가지, 또는 벡터로 두가지를 혼합처리 c("point", "smooth")
 - fill : 레이아웃 색 cut 변수로..
- qplot(wt, mpg, data=mtcars, size=qsec)
- qplot(wt, mpg, data=mtcars, geom=c("point", "smooth"))
- qplot(mpg, wt, data=mtcars, color=factor(cyle), geom="point") + geom_line()

qplot() 확인예제 :

- student으로 qplot(), 국어, 영어점수 기준으로 평활, 점선옵션으로 화면을 출력하세요(색상은 반별)..
 - qplot(kor, eng, data=student, geom=c(
 "point","smooth"), color=factor(part))

ggplot() 함수

- aes(x축변수, y축변수, color색상) 함수 ==> ggplot()함수에서 <mark>미적 요소</mark> 를 처리할 내용
- +(연산자): 기존 ggplot()의 변수에서 추가할 옵션을 설정.
 - 기존변수 + geom_point()/geom_line()/geom_step()<poin t, line, step 추가>
- p<-ggplot(diamonds, aes(carat, price, color=cut))
- p+ geom_point() # point 추가

ggplot():

- ggsave()함수 : 디스크에 plot이미지를 저장..
 - ggplot() 생성..
 - ggsave(file="절대경로/XXX.pdf", dpi=해상도)
 - 가장 최근 그래프 저장!!!!
 - ex)
 ggsave(file="c:/Rwork/output/damond_price.j
 pg", dpi=72)

ggmap 패키지:

- 지도 관련 패키지 설치..
- library(ggplot2)
- install.packages("ggmap")
 - ggmap과 ggplot2(우선설치) 관련 패키지
- library(ggmap)
- 1. get_gogglemap() 함수
 - 지도위치정보 가져오기
 - gc <- geocode("seoul, korea", source="google") # geoloation API 이용
 - center <- as.numeric(gc) ## 위도 경도

ggmap 패키지:

- 지도 정보 생성하기..
 - map <- get_googlemap(center= 위치정보, language="한글 encoding 방식", color="색상 bw", scale="해상도 2(1280*1280픽셀)
 - map <- get_googlemap(center = center, language="ko-KR", color="bw", scale=2)

공간시각화!! 🕻

■특징

- 지도를 기반으로 하기 때문에 위치, 영역, 시간과 공간에 따른 차이 및 변화에 대한 것
- 위치:위도 및 경도,지도에 버블로 표현
- 영역: 데이터에 따른 색상으로 표현
- 시.공간: 레이어 형태로 추가하여 시각화

google 지도 불러오기 :

- library(ggplot2)
- library(ggmap)
- 위치정보를 변수로 할당
 - map <- get_googlemap("Jeonju", zoom=14, maptype="satellite", scale=2)
 - 지역과 zoom정도를 변경해서 확인하세요
- 화면으로 플로팅
 - 장치 허용크기 표시(extent="device")
 - ggmap(map, size=c(600,600), extent="device")

데이터를 통한 공간시각화 🕻

- 레이어 기법
 - 위치 정보 데이터 가져오기..
 - 맵을 플로딩
 - 위치 정보와 맵을 연결(point)
 - 위치 정보의 text와 해당 맵에서 표현하기

데이터를 통한 공간시각화 🕻

- 레이어 기법
 - 위치 정보 데이터 가져오기..
 - 맵을 플로딩
 - 위치 정보와 맵을 연결(point)
 - 위치 정보의 text와 해당 맵에서 표현하기

레이어 기법 :

- 데이터 가져오기
 - loc <- read.csv("c:/Rwork/Part-III/seouloffice.csv", header=T)
 - loc 구청명, 위도LON, 경도LAT
 - View(loc)
- 지도를 플로팅하기..
 - get_map("중심지역", 확대비율, 지도유형)
 - kor <- get_map("seoul", zoom=11, maptype="roadmap")
 - maptype: roadmap, satellite, terrain, hybrid
 - ggmap(kor) #실제 맵에 플로팅

레이어 기법:

- 레이어1: 지도 --> 레이어2: 지도 위에 포인트
 - kor.map <- ggmap(kor) + geom_point(data=loc, aes(x=LON,y=LAT), size=3)
 - 지도 플로팅 + 포인트(◈) 추가
 - geom_point(data=데이터셋, aes(x=X축위치 LON이라는 변수의 데이터값
- 레이어2 --> 레이어3: 지도의 포인트 위에 텍스트(구청명) 표시
 - kor.map + geom_text(data=loc, aes(x=LON, y=LAT+0.01, label=구청명), size=3)
 - 레이어2 + geom_text(data=데이터셋, aes(x=데이터셋변수1, y=데이터셋변수2_포인트상단표시를 위해+@@@, label=데이터셋변수3, size=크기)

- Part-II\university.csv
 - 대학교관련 위치정보 loading 후, 변수명 변경 학교명 --> name, LAT->xpt, LON->ypt
 - 해당 위치를 구글맵으로 표시하고, label도 표시

다양한 지도 유형 🖁

- 파일을 통한 데이터 로딩
 - #2015년도 6월 기준 대한민국 인구수.
 - pop <- read.csv("c:/Rwork/Part-II/population201506.csv",header=T)
- 지정한 변수의 데이터 프레임으로 변경..
 - region <- pop\$지역명
 - lon <- pop\$LON # 위도</p>
 - lat <- pop\$LAT # 경도</pre>
 - house <- pop\$세대수
 - vector에서 프레임 만들기..
 - df <- data.frame(region, lon, lat, house)

다양현 지도유형 🖁

- maptype="terrain/satellite/roadmap/hybrid"
 - map1 <- get_map("daegu", zoom=11, maptype="terrain")
 - map2 <- ggmap(map1)</pre>
 - map3
 - aes: 좌표 x=lon, y=lat, colour=house, size=house
 - map3 <- map2 +
 geom_point(aes(x=lon,y=lat,colour=house,
 size=house),data=df)
 - map3 + geom_text(data=df, aes(x=lon+0.01, y=lat+0.18, label=region), size=3)
 - 밀도 곡선 처리..
 - map3 + geom_density2d()

- 다음 조건에 맞게 quakes 데이터 셋의 수심(depth)과 리히터규모(mag)가 동일한 패널에 지진의 발생지를 산점도로 시각화 하시오. View(quakes)
 - lat:위도, long:경도, depth:수심, mag(리히트규모),
 stations(관측소)
 - 수심 3개 영역으로 범주화
 - 리히터규모 2개 영역으로 범주화
 - 수심과 리히터규모가 3행 2열 구조의 패널로 산점도 그래프 그리기 xyplot(범위1~범위2|조건, ...)
 - lattice 패키지의 equal.count()와 xyplot() 함수 이용

- 수심 **3**개 영역으로 범주화
 - 수심: quakes\$depth
 - depthgroup <- equal.count(quakes\$depth, number=3, overlap=0)
 - depthgroup
- 리히터규모 2개 영역으로 범주화
 - quakes\$mag
 - magnitudegroup<-equal.count(quakes\$mag, number=2, overlap=0)
- 수심과 리히터규모가 3행 2열 구조의 패널로 산점도 그래프 그리기
 - xyplot(lat~long | magnitudegroup* depthgroup, data=quakes, main="지진", ylab="latitude", xlab="longitude", pch="@", col=c("red","blue"))

- latticeExtra패키지에서 제공되는 SeatacWeather 데이터 셋에서 월 별로 최저기온과 최고기온을 선 그래프 로 플로팅 하시오.
 - lattice 패키지 xylot()함수 이용..
 - type="l" ==> 엘(line)
 - options(repos = c(CRAN =
 "https://cran.ma.imperial.ac.uk/", + CRANextra =
 "https://mirrors.ebi.ac.uk/CRAN/"))
 - install.packages("latticeExtra")
 - library(latticeExtra)
 - View(SeatacWeather)
 - xplot(min.temp + max.temp~day|month, data=SeatacWeather, type="l", layout=c(3,1))

- diamonds 데이터 셋을 대상으로 x축에 carat변수, y축에 price변수를 지정하고, clarity변수를 선 색으로 지정하여 미적요소 맵핑 객체를 생성한 후 산점도 그래프 주변에 부드러운 곡선이 추가되도록 레이아웃을 추가하시오.
 - qplot () 활용으로 처리시,
 - qplot(carat, price, data=diamonds, geom=c("point","smooth"),color=clarity)
 - ggplot() 활용
 - show01<-ggplot(diamonds, aes(carat,price,color=clarity))
 - show01<-show01+geom_point()</p>

이 장이 끝나면:

정리:

참고자료:

