Lecture 13

Cross Sections And Decay Rates

20th century witnessed the development of collider physics. Effective means to determine which particles exist and their properties and interactions.

- Rutherford discovery of the nucleus using α 1911
- Andersen's discovery of anti-electrons 1932

These were made with "Natural accelerators" α 's or cosmic rays

Around 1930 man made collisions started winning.

eg: 1 MeV

Now 13 TeV at the LHC.

Collisions map free fixed momenta initial states \rightarrow final fixed momentum states.

QFT predicts probability for projections to occur.

Probabilities typically dependant on parameters (angles, momenta, etc)

$$P(v_1,...v_n)$$
 - differential probabilities

Given by

$$|\langle \psi_{final}, +\infty | \psi_{initial}, -\infty \rangle|^2$$

$$\langle f|S|i\rangle$$
 S-matrix

QFT tell us how to calculate S given some Lagrangian (next week)

S-matrix elements are the primary object of interest for particle physics.

S-matrix elements always calculated pertubatively

$$S = \underbrace{1}_{\text{free theory}} + \underbrace{iT}_{\text{perturbatively small}}$$

QFT + Lagrangian gives a procedure (recipe) for calculating S

Very nice interpretation in terms of picture "Feynman diagrams"

QM Perturbation Theory

$$H = H_0 + V$$

Remember we are interested in how some free state at early times $(-\infty)$ evolve to some (potentially) other free state at late times.

At early times have a state with a given energy E, which is an eigenstate of H_0

$$H_0 |\phi\rangle = E |\phi\rangle$$

Including the interaction piece, will also be eigenstate of the full Hamiltonian with the same energy.

$$H|\psi\rangle = E|\psi\rangle$$

Now we can formally write,

$$|\psi\rangle = |\phi\rangle + \frac{1}{E - H_0}V|\psi\rangle$$

which can be verified by multiplying through by $(E - H_0)$.

Whats happening here is that the interaction at intermediate times is inducing transitions among the states $|\phi\rangle$, which are non-interacting at early (and late) times.

So the full state $|\psi\rangle$ is given by the free state $|\phi\rangle$ plus a scattering term.

Really want to express the full state $|\psi\rangle$ entirely in terms of $|\phi\rangle$.

We do this by defining operator T: $V |\psi\rangle = T |\phi\rangle$.

This gives us

$$|\psi\rangle = |\phi\rangle + \frac{1}{E - H_0} T |\phi\rangle$$

or

$$V|\psi\rangle = V|\phi\rangle + V\frac{1}{E - H_0}T|\phi\rangle$$
$$= T|\phi\rangle$$

So we get a nice iterate equation for T

$$T = V + V \frac{1}{E - H_0} T$$

which we can solve perturbatively in V.

eg

$$T = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \dots$$

Of course, we are interested in inner products of these with the initial/final states

$$\underbrace{\langle \phi_f | T | \phi_i \rangle}_{T_{fi}} = \underbrace{\langle \phi_f | V | \phi_i \rangle}_{V_{fi}} + \sum_j \frac{\langle \phi_f | V | \phi_j \rangle \, \langle \phi_j | V | \phi_i \rangle}{E - H_0} + \dots$$

Example of scattering of 2 electrons

$$|i\rangle = |e_1, e_2\rangle$$
 $|f\rangle = |e_3, e_4\rangle$

$$T_{fi} = V_{fi} + \sum_{n} V_{fn} \frac{1}{E_i - E_n} V_{ni} + \dots$$

- E_i is the initial (= final) energy
- E_f is the energy of the intermediate state

Now, the \sum_n runs over energy thing in the Hilbert (Fock) space, however only certain states will be non-0.

In relativistic theory, the action-at-a-distance of EM is replaced by a process where 2 electrons interact with a γ which travels at c. (This tells us there should be γ in the intermediate state)

$$V \sim e \int d^3x \psi \phi \psi$$
 (Ignoring spin)

this operator will have terms that go like ($\sim a_{e_3}^{\dagger} \ a_{\gamma}^{\dagger} \ a_{e_1}$)

However, here all terms involve a_{γ}^{\dagger} . Because $|i\rangle$ and $|f\rangle$ do not contain a γ , $V_{fi}=0$

to get a non-zero term, we need $|n\rangle$ with a photon.

$$T_{fi} = \frac{\langle e_3 e_4 | V | e_3 \gamma e_2 \rangle \langle e_3 \gamma e_2 | V | e_1 e_2 \rangle}{(E_1 + E_2) - (E_3 + E_4 + E_\gamma)} + (2\text{nd term})$$

Note: $E_n \neq E_i$ which is allowed by uncertainty principle.

Look at

$$\langle e_3 \gamma e_2 | V | e_1 e_2 \rangle = \langle \gamma e_3 | V | e_1 \rangle$$

(up to overall normalization from $\langle e_2|e_2\rangle$.