A Level Maths - S2 Sam Robbins 13SE

Hypothesis testing

1 Tests of hypotheses

Statistical hypothesis - An assertion or conjecture concerning a population.

To test the validity of a statement a random sample is taken from the population and that data can them be used to provide evidence that either supports or does not support the hypothesis.

Null hypothesis - H_0 - A hypothesis assumed to be true Alternative hypothesis - H_1 - The situation if H_0 is false.

If the data leads to rejection of the null hypothesis the alternative hypothesis will be accepted.

The sample data is used to evaluate the **test statistic**, probabilities related to it can be calculated using the null hypothesis.

If the test statistic is found in the **critical region** the null hypothesis will be rejected.

The **boundary values** of the critical region are called the critical values.

2 Method

- 1. Establish the null and alternative hypothesis $(H_0 \text{ and } H_1)$
- 2. Define distribution under H_0
- 3. Decide on the significance level
- 4. Collect data, state the test statistic, X=
- 5. Calculate the probability of obtaining the test statistic or a more extreme result (same direction as H_1)
- 6. Compare this to the sig level as a decimal
 - If greater than the sig level, it is a non significant result, it is not in the critical region and we do not reject H_0
 - If less than sig level, it is a significant result, it is in the critical region and we reject H_0
- 7. Interpret the results in terms of the original claim

2.1 Example

Establish the null and alternative hypothesis

 $H_0: p = 0.5$ $H_1: p > 0.5$

Define the distribution under H_O

Under $H_0 \ X \sim B(15, 0.5)$

Decide on the significance level

5%

Collect data, state the test statistic

X = 12

Calculate the probability of obtaining the test statistic or a more extreme result

$$P(X \ge 12) = 1 - P(X \le 11)$$

= 1 - 0.9824
= 0.0176

Compare this to the sig level as a decimal 0.0176 < 0.05

Interpret the results in terms of the original claim

There is evidence to reject H_0 in favour of H_1 . The test is significant.

A Level Maths - S2 Sam Robbins 13SE

2.2 Finding critical values

We require a value c such that:

$$P(X \ge c) < 0.05$$

 $1 - P(X \le c - 1) < 0.05$
 $P(X \le c - 1) > 0.95$

Test against tables

$$P(X < 11) = 0.9824$$

$$c - 1 = 11$$
$$c = 12$$

2.3 Two tailed tests

When doing a two tailed test the significance level must be split in two. For example if the significance level is 5% then it must be split into 2.5% for each tail.

Two tailed test also concern equal or not equal, rather than inequalities, for example:

 $H_0: p = 0.15$ $H_1: p \neq 0.15$