Lab #4: House Price Prediction using LR with Regularization

Step1. [Import dataset]. Using Pandas, import "Ames_House_Sales_Cropped.csv" file and print properties such as head, shape, columns, dtype, info and value_counts

```
In [1]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

In [30]:

```
df = pd.read_csv('Ames_House_Sales_Cropped.csv')
```

In [31]:

df

Out[31]:

	BldgType	CentralAir	1stFlrSF	2ndFlrSF	3SsnPorch	BedroomAbvGr	BsmtFinSF1	Bsmt
0	1Fam	Υ	856.0	854.0	0.0	3	706.0	
1	1Fam	Υ	1262.0	0.0	0.0	3	978.0	
2	1Fam	Υ	920.0	866.0	0.0	3	486.0	
3	1Fam	Υ	961.0	756.0	0.0	3	216.0	
4	1Fam	Υ	1145.0	1053.0	0.0	4	655.0	
1374	1Fam	Υ	953.0	694.0	0.0	3	0.0	
1375	1Fam	Υ	2073.0	0.0	0.0	3	790.0	
1376	1Fam	Υ	1188.0	1152.0	0.0	4	275.0	
1377	1Fam	Υ	1078.0	0.0	0.0	2	49.0	
1378	1Fam	Υ	1256.0	0.0	0.0	3	830.0	

1379 rows × 39 columns

In [5]:

```
df.head()
```

Out[5]:

	BldgType	CentralAir	1stFlrSF	2ndFlrSF	3SsnPorch	BedroomAbvGr	BsmtFinSF1	BsmtFin
0	1Fam	Υ	856.0	854.0	0.0	3	706.0	
1	1Fam	Υ	1262.0	0.0	0.0	3	978.0	
2	1Fam	Υ	920.0	866.0	0.0	3	486.0	
3	1Fam	Υ	961.0	756.0	0.0	3	216.0	
4	1Fam	Υ	1145.0	1053.0	0.0	4	655.0	

5 rows × 39 columns

In [6]:

```
df.shape
```

Out[6]:

(1379, 39)

In [7]:

df.columns

Out[7]:

In [10]:

df.dtypes

Out[10]:

BldgType object CentralAir object 1stFlrSF float64 float64 2ndFlrSF 3SsnPorch float64 BedroomAbvGr int64 BsmtFinSF1 float64 BsmtFinSF2 float64 **BsmtFullBath** int64 BsmtHalfBath int64 **BsmtUnfSF** float64 float64 EnclosedPorch Fireplaces int64 **FullBath** int64 GarageArea float64 int64 GarageCars GarageYrBlt float64 float64 GrLivArea HalfBath int64 KitchenAbvGr int64 LotArea float64 LotFrontage float64 LowQualFinSF float64 MSSubClass int64 MasVnrArea float64 float64 MiscVal MoSold int64 OpenPorchSF float64 OverallCond int64 OverallQual int64 PoolArea float64 ScreenPorch float64 TotRmsAbvGrd int64 TotalBsmtSF float64 WoodDeckSF float64 YearBuilt int64 YearRemodAdd int64 YrSold int64 SalePrice float64 dtype: object

localhost:8888/notebooks/PML LAB 4-checkpoint.ipynb

In [12]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1379 entries, 0 to 1378
Data columns (total 39 columns):

#	Column	Non-Null Count	Dtype
0	BldgType	1379 non-null	object
1	CentralAir	1379 non-null	object
2	1stFlrSF	1379 non-null	float64
3	2ndFlrSF	1379 non-null	float64
4	3SsnPorch	1379 non-null	float64
4 5	BedroomAbvGr	1379 non-null	int64
6	BsmtFinSF1	1379 non-null	
7	BsmtFinSF2		float64
8		1379 non-null 1379 non-null	float64
9	BsmtFullBath		int64
	BsmtHalfBath	1379 non-null	int64
10	BsmtUnfSF	1379 non-null	float64
11	EnclosedPorch	1379 non-null	float64
12	Fireplaces	1379 non-null	int64
13	FullBath	1379 non-null	int64
14	GarageArea	1379 non-null	float64
15	GarageCars	1379 non-null	int64
16	GarageYrBlt	1379 non-null	float64
17	GrLivArea	1379 non-null	float64
18	HalfBath	1379 non-null	int64
19	KitchenAbvGr	1379 non-null	int64
20	LotArea	1379 non-null	float64
21	LotFrontage	1379 non-null	float64
22	LowQualFinSF	1379 non-null	float64
23	MSSubClass	1379 non-null	int64
24	MasVnrArea	1379 non-null	float64
25	MiscVal	1379 non-null	float64
26	MoSold	1379 non-null	int64
27	OpenPorchSF	1379 non-null	float64
28	OverallCond	1379 non-null	int64
29	OverallQual	1379 non-null	int64
30	PoolArea	1379 non-null	float64
31	ScreenPorch	1379 non-null	float64
32	TotRmsAbvGrd	1379 non-null	int64
33	TotalBsmtSF	1379 non-null	float64
34	WoodDeckSF	1379 non-null	float64
	YearBuilt	1379 non-null	int64
	YearRemodAdd		
	YrSold	1379 non-null	
	SalePrice	1379 non-null	
		, int64(16), obj	
	ny usago: 420 3.		` '

memory usage: 420.3+ KB

In [13]:

df.value_counts

Out[13]:

	d method Dat		_		BldgType (CentralAi	r 19	stFlrSF
	rSF 3SsnPor							
0	1Fam	Υ	856.0	854.				3
1	1Fam	Y 1	L262.0	0.	0.0	9		3
2	1Fam	Υ	920.0	866.	0.0	9		3
3	1Fam	Υ	961.0	756.	0 0.6	9		3
4	1Fam		L145.0	1053.				4
		1 _	1143.0	1000.				4
• • •	• • •	• • •	• • •	• •			• •	• •
1374	1Fam	Υ	953.0	694.				3
1375	1Fam	Y 2	2073.0	0.	0.0	9		3
1376	1Fam	Y 1	L188.0	1152.	0 0.6	9		4
1377	1Fam		L078.0	0.				2
1378	1Fam	Y 1	1256.0	0.	0 0.6	0		3
	BsmtFinSF1	BsmtFinSF2	BsmtFu	llBath	BsmtHalfBat	th	0vera	allQual
\								
0	706.0	0.0		1		0		7
1	978.0	0.0		0		1		6
2	486.0	0.0		1		0		7
3	216.0	0.0		1		^		7
4	655.0	0.0		1		0		8
 1374	0.0	0.0		0	• •	0		 6
1375	790.0	163.0		1		0		6
1376	275.0	0.0		0		0		7
1377	49.0	1029.0		1		0		5
1378	830.0	290.0		1		0		5
1370	030.0	230.0		_		0		,
	PoolArea S	creenPorch	TotRmsA	bvGrd	TotalBsmtSF	WoodDec	kSF	YearBuil
t \								
0	0.0	0.0		8	856.0		0.0	200
3	0.0	0.0		Ū	050.0		•••	200
	0.0	0.0		_	1262.0	20		407
1	0.0	0.0		6	1262.0	29	8.0	197
6								
2	0.0	0.0		6	920.0		0.0	200
1								
3	0.0	0.0		7	756.0		0.0	191
	0.0	0.0		,	750.0		0.0	171
5				_				
4	0.0	0.0		9	1145.0	19	2.0	200
0								
1374	0.0	0.0		7	953.0		0.0	199
	0.0	0.0		,	222.0		0.0	100
9								
1375	0.0	0.0		7	1542.0	34	9.0	197
8								
1376	0.0	0.0		9	1152.0		0.0	194
1	J.0	0.0		,				±2¬'
	2 2	2 2		_	40=0			40=
1377	0.0	0.0		5	1078.0	36	6.0	195
0								
1378	0.0	0.0		6	1256.0	73	6.0	196
5								
-								

localhost:8888/notebooks/PML LAB 4-checkpoint.ipynb

2003

0

YearRemodAdd YrSold SalePrice

2008

208500.0

```
1976
                       2007
                               181500.0
1
2
               2002
                       2008
                               223500.0
3
               1970
                       2006
                               140000.0
4
               2000
                       2008
                               250000.0
                         . . .
               2000
                       2007
                               175000.0
1374
1375
               1988
                        2010
                               210000.0
               2006
                       2010
                               266500.0
1376
1377
               1996
                       2010
                               142125.0
                       2008
                               147500.0
1378
               1965
[1379 rows x 39 columns]>
```

Step2. [Predict Sale Price without Categorical features]

- 1.Drop both categorical features BldgType and CentralAir (USE drop() and pop() methods)
- 2.Prepare X matrix (36 feature columns) and y vector (ie., SalePrice column)
- 3.Split dataset for training and testing as X_train, X_test, y_train, y_test (use 25% test size).
- 4.Create LinearRegression model, fit on training set and predict on test set
- 5.Compute Mean Squared Error (MSE) on actual values and predicted values (you will get output as 1474827326.0).

```
In [14]:
```

```
df.pop('CentralAir')
Out[14]:
        Υ
0
1
        Υ
2
        Υ
3
        Υ
1374
        Υ
1375
        Υ
1376
        Υ
1377
        Υ
        Υ
1378
Name: CentralAir, Length: 1379, dtype: object
```

In [16]:

```
ndf=df.drop(['BldgType'],axis=1)
ndf
```

Out[16]:

	1stFlrSF	2ndFlrSF	3SsnPorch	BedroomAbvGr	BsmtFinSF1	BsmtFinSF2	BsmtFullBath
0	856.0	854.0	0.0	3	706.0	0.0	1
1	1262.0	0.0	0.0	3	978.0	0.0	0
2	920.0	866.0	0.0	3	486.0	0.0	1
3	961.0	756.0	0.0	3	216.0	0.0	1
4	1145.0	1053.0	0.0	4	655.0	0.0	1
1374	953.0	694.0	0.0	3	0.0	0.0	0
1375	2073.0	0.0	0.0	3	790.0	163.0	1
1376	1188.0	1152.0	0.0	4	275.0	0.0	0
1377	1078.0	0.0	0.0	2	49.0	1029.0	1
1378	1256.0	0.0	0.0	3	830.0	290.0	1

1379 rows × 37 columns

In [18]:

```
y=ndf['SalePrice']
y
```

Out[18]:

```
0
        208500.0
1
        181500.0
2
        223500.0
3
        140000.0
        250000.0
1374
        175000.0
1375
        210000.0
1376
        266500.0
1377
        142125.0
        147500.0
1378
```

Name: SalePrice, Length: 1379, dtype: float64

```
In [19]:
```

```
col=['1stFlrSF', '2ndFlrSF', '3SsnPorch','BedroomAbvGr','BsmtFinSF1','BsmtFinSF2','BsmtFull
X=ndf[col]
X
```

Out[19]:

	1stFlrSF	2ndFlrSF	3SsnPorch	BedroomAbvGr	BsmtFinSF1	BsmtFinSF2	BsmtFullBath
0	856.0	854.0	0.0	3	706.0	0.0	1
1	1262.0	0.0	0.0	3	978.0	0.0	0
2	920.0	866.0	0.0	3	486.0	0.0	1
3	961.0	756.0	0.0	3	216.0	0.0	1
4	1145.0	1053.0	0.0	4	655.0	0.0	1
1374	953.0	694.0	0.0	3	0.0	0.0	0
1375	2073.0	0.0	0.0	3	790.0	163.0	1
1376	1188.0	1152.0	0.0	4	275.0	0.0	0
1377	1078.0	0.0	0.0	2	49.0	1029.0	1
1378	1256.0	0.0	0.0	3	830.0	290.0	1

1379 rows × 36 columns

→

In [20]:

from sklearn.model_selection import train_test_split

In [21]:

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75,test_size=0.25)

In [22]:

from sklearn.linear_model import LinearRegression

In [23]:

```
model = LinearRegression()
model.fit(X_train,y_train)
```

Out[23]:

LinearRegression()

In [24]:

```
y_pred = model.predict(X_test)
y_pred
```

Out[24]:

```
array([278935.46760284, 184809.97301153, 182520.43414718, 76483.10947771,
       150887.34597605, 131258.56301645, 148585.24002343, 219097.29021401,
       111773.72913835, 154881.76229039, 256457.65115608, 318666.12035276,
       159561.7926296 , 169107.86682563, 284670.76042656, 181162.50230694,
       227278.48539688, 114165.89801476, 294931.91089851, 293854.41405179,
       111435.02196622, 382585.58559473, 165973.92154629, 169983.25590793,
       233764.73014481, 256793.62698861, 141571.18375276, 236487.34960355,
       110407.21426591, 256140.69565805, 116395.91328469, 246533.22979261,
       297638.63909922, 67305.0554531 , 99905.83719632, 127802.47702706,
       164970.2581652 , 107724.12361544, 295939.4760221 , 191015.64411747,
       118704.79917791, 123437.69393744, 174063.85709086, 289498.87116956,
       224265.54740821, 324401.30417851, 255494.61362604, 239541.04302594,
       55786.42143874, 147705.02545961, 108706.2471813 , 179216.94913311,
       176248.36836102, 94056.17368155, 154939.16090248, 155810.5399734,
       121532.36318911, 183547.46384496, 189454.96089569, 89208.20961407,
       352481.06371935, 179664.02452966, 123126.97142585, 213608.94529321,
       175539.14858387, 143633.83226572, 253326.60653631, 117216.66854023,
       203411.64478104, 194715.49377294, 229472.71664896, 115651.09160892,
       178241.14827662, 236505.51781256, 219307.57126792, 204502.34677502,
       280994.60010451, 80073.90667113, 181434.71323535, 345032.82419352,
       236500.06566161, 212514.13302149, 192407.95486381, 142416.55271327,
       259468.7204445 , 120750.14329522, 226366.87209352, 96780.09952695,
       127163.17111758, 273574.37672692, 108517.67103149, 256173.98073332,
       228790.59367182, 88910.50049467, 107165.22214306, 217146.62770519,
        58964.35975604, 105063.33080949, 320544.61249786, 86138.74731506,
       116839.9388387 , 105712.01945374, 88230.90550046, 107652.68223998,
       287090.16939842, 229465.77535541, 158494.22780582, 204864.27385771,
       239609.37680689, 110442.75382776, 122941.92801304, 196560.69862189,
       281001.20763735, 220768.98319365, 175182.06264764, 177842.14883526,
       144528.98007098, 89249.33171787, 244389.89418398, 216270.93679401,
       248220.02700825, 138666.51927131, 154560.04755823, 221112.55156718,
       188362.59021471, 307203.62609492, 189581.32178303, 183577.46991967,
       225368.77356014, 174519.66453824, 101554.978302 , 293361.03611142,
       154012.24355422, 215330.16029933, 61812.07114214, 179234.77485403,
       225272.72744757, 177373.59763724, 151409.50180686, 111112.42636732,
       199536.361842 , 156681.59243024, 251611.1346998 , 134180.23992892,
       358140.1693967 , 154567.52731523 , 204091.40490632 , 121956.1236706 ,
       125826.70580346, 84907.0843445 , 196986.38415147, 85904.43755063,
       150656.93797411, 118650.29179834, 195818.871078 , 175546.47631959,
       170931.96314849, 208790.97470297, 67379.38866588, 187151.29277591,
       186719.96869974, 134660.74721073, 105614.18483508, 79513.26298969,
       124566.70915102, 122550.68752771, 206222.27957192, 207601.22965933,
       146159.01052126, 152363.80695361, 145495.0606997 , 173907.24721372,
       152747.5053473 , 49317.18217061, 213494.73086963, 44082.42523023,
       225190.28027351, 258281.36606756, 311000.95634462, 106095.4649713,
       271811.12874892, 159944.11359786, 226011.83194734, 174465.73073269,
       123728.0160802 , 181138.90667533, 111038.64757558, 89889.85094022,
       123564.48045469, 250749.37890992, 226613.92673256, 210434.24370752,
       207660.39092568, 292946.37527581, 334214.98921072, 133817.05041267,
       111125.04462064, 139295.3398275 , 102650.43024674, 194340.182154
       122023.34009653, 276061.24429208, 269946.5997433 , 196227.72886623,
       264731.11726338, 89901.09609902, 304188.42231002, 375521.98855508,
       111007.44643434, 350583.50095325, 342750.39394037, 110615.57193354,
       145956.36088972, 172249.53317499, 232427.35295181, 152857.99881604,
```

```
119692.98800232, 116730.19848642, 204857.36322241, 244716.63533763,
121656.14394599, 80838.88733147, 196484.62439457, 143926.78270525,
106731.16943813, 194536.2272504 , 158474.12778809, 222614.21867115,
101549.90251678, 147893.15229663, 320820.25505894, 54731.41824227,
174055.67716066, 107403.96861738, 20317.15304097, 197697.74888904,
87979.6495762 , 245044.00505482, 137239.8607613 , 178076.30627442,
202934.38670694, 208592.35841259, 182895.66157271, 173665.02493717,
187506.78653531, 191522.33185992, 195263.35443505, 262094.61033262,
161424.46981284, 156789.32222922, 103129.22065772, 219923.35629208,
159162.70875961, 259900.44388485, 192866.20003135, 312664.28514545,
188000.48911174, 183052.42071648, 118131.16319897, 105606.97184016,
174562.14609183, 98671.51317334, 110028.85776064, 247856.70997153,
96614.73642864, 204370.74006904, 199319.43354319, 276169.70745246,
137136.46481863, 189550.95222814, 127295.63955043, 258359.51237967,
127024.88223935, 155902.77325132, 144286.75347553, 332376.7892343,
243087.52260861, 210040.44140568, 114455.28504463, 202191.37155523,
339030.87673504, 90609.78663929, 305497.84068171, 184070.6180781,
                 79610.54167769, 294912.04178084, 66993.51568241,
287059.69348526,
200053.34479378, 122697.83324424, 178671.12407925, 124541.03500813,
256665.37732096, 233212.15027303, 94485.1448137, 177833.98011138,
138853.91780848, 183255.58095821, 154441.37726845, 152409.41675422,
191323.66654094, 251395.00733515, 308279.40016699, 141436.09277925,
270164.76638018, 221497.30954601, 147840.06207748, 295243.09480318,
224575.0239214 , 367455.91468599, 230812.55543866, 105480.92918135,
120875.02893366, 153886.45181622, 123686.71604039, 344316.10144485,
223039.5741509 , 117427.00403197, 388531.26435691, 255607.40556548,
244320.6800141 , 273483.63005768, 222328.99257133, 308105.45493609,
283690.0908143 , 226343.71533342, 136431.10961914, 150610.65617637,
44036.2995959 , 153481.99615241, 169535.67163367, 187240.21625236,
291409.819297 , 87683.66518659, 232799.80069605, 160632.59383701,
138829.37808239, 166849.87559837, 95769.8914938, 219251.88582997,
136377.60902172, 147907.69764383, 294279.56152334, 194101.09245019,
127886.62776903])
```

In [25]:

```
from sklearn.metrics import mean_squared_error
```

In [26]:

```
mean_squared_error(y_test,y_pred)
```

Out[26]:

930012256.3673348

Step3. [Create Scatter Plot]. Plot Scatterplot between y_test and y_pred.

In [27]:

plt.scatter(y_test,y_pred)

Out[27]:

<matplotlib.collections.PathCollection at 0x3e09ca1130>

Step4. [Encode Categorical columns]. Using get_dummies() method, perform one hot encoding on the two categorical columns, BldgType and CentralAir.Now, you will get 5 columns for BldgType variable and 2 columns for CentralAir column. So, now you have 43 independent variables and 1 dependent variable

In [32]:

encode_df=pd.get_dummies(df, columns=["CentralAir","BldgType"])
encode_df.head()

Out[32]:

	1stFIrSF	2ndFlrSF	3SsnPorch	BedroomAbvGr	BsmtFinSF1	BsmtFinSF2	BsmtFullBath	Bs
0	856.0	854.0	0.0	3	706.0	0.0	1	
1	1262.0	0.0	0.0	3	978.0	0.0	0	
2	920.0	866.0	0.0	3	486.0	0.0	1	
3	961.0	756.0	0.0	3	216.0	0.0	1	
4	1145.0	1053.0	0.0	4	655.0	0.0	1	

5 rows × 44 columns

```
In [34]:
encode df.shape
Out[34]:
(1379, 44)
In [35]:
encode_df.columns
Out[35]:
Index(['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'BsmtFinSF1',
       'BsmtFinSF2', 'BsmtFullBath', 'BsmtHalfBath', 'BsmtUnfSF',
       'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageArea', 'GarageCar
s',
       'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea',
       'LotFrontage', 'LowQualFinSF', 'MSSubClass', 'MasVnrArea', 'MiscVal',
       'MoSold', 'OpenPorchSF', 'OverallCond', 'OverallQual', 'PoolArea',
       'ScreenPorch', 'TotRmsAbvGrd', 'TotalBsmtSF', 'WoodDeckSF', 'YearBuil
t',
       'YearRemodAdd', 'YrSold', 'SalePrice', 'CentralAir_N', 'CentralAir_
Υ',
       'BldgType_1Fam', 'BldgType_2fmCon', 'BldgType_Duplex', 'BldgType_Twnh
s',
       'BldgType_TwnhsE'],
      dtype='object')
```

Step5. [Predict Sale Price with Categorical features]

```
In [37]:
```

```
en_y=encode_df['SalePrice']
en_y
```

Out[37]:

```
0
        208500.0
1
        181500.0
2
        223500.0
3
        140000.0
        250000.0
4
1374
        175000.0
        210000.0
1375
1376
        266500.0
1377
        142125.0
        147500.0
Name: SalePrice, Length: 1379, dtype: float64
```

In [38]:

Out[38]:

	1stFlrSF	2ndFlrSF	3SsnPorch	BedroomAbvGr	BsmtFinSF1	BsmtFinSF2	BsmtFullBath
0	856.0	854.0	0.0	3	706.0	0.0	1
1	1262.0	0.0	0.0	3	978.0	0.0	0
2	920.0	866.0	0.0	3	486.0	0.0	1
3	961.0	756.0	0.0	3	216.0	0.0	1
4	1145.0	1053.0	0.0	4	655.0	0.0	1
1374	953.0	694.0	0.0	3	0.0	0.0	0
1375	2073.0	0.0	0.0	3	790.0	163.0	1
1376	1188.0	1152.0	0.0	4	275.0	0.0	0
1377	1078.0	0.0	0.0	2	49.0	1029.0	1
1378	1256.0	0.0	0.0	3	830.0	290.0	1

1379 rows × 43 columns

In [42]:

```
en_X_train, en_X_test, en_y_train, en_y_test = train_test_split(en_X,en_y, train_size=0.75,
```

In [44]:

```
model1 = LinearRegression()
model1.fit(en_X_train,en_y_train)
```

Out[44]:

LinearRegression()

In [46]:

```
en_y_pred=model1.predict(en_X_test)
en_y_pred
```

Out[46]:

```
array([164570.2289465 , 85752.90331142, 198303.44446022, 122475.14440184,
       175345.78182408, 242830.9535424 , 327131.8650892 , 208850.75498362,
       182132.06296091, 63457.73994568, 154016.77303419, 271424.75748695,
      196168.36447424, 231896.15634764, 99949.01255692, 199586.65283043,
       294455.29422805, 237034.98692393, 156399.80969278, 143322.19881947,
       87317.2057708 , 459342.96310705 ,180678.56647699 , 80595.77914091,
       150473.52639588, 163119.60771014, 87932.58954817, 298702.16262193,
       139136.14996624, 122356.71597519, 253724.88904318, 124943.48205879,
       190378.91666766, 144311.69637699, 138626.02445074, 108390.1027098,
       233825.57182049, 321069.91502648, 152596.17234961, 126562.81992625,
       178895.51749365, 174107.6608674 , 192718.60711014, 84271.1131178 ,
       190926.80720668, 351883.95006538, 237798.33729765, 194988.74848599,
       67864.93144598, 148773.78149566, 141287.95243988, 123734.33873651,
       217729.45043704, 264523.39376933, 284496.30996522, 128633.42861504,
       317463.52519012, 229500.59769751, 216913.34511063, 307023.56295031,
       358046.85973153, 88894.0337679 , 213448.6569423 , 151371.96447342,
       238996.23694776, 206439.35207547, 204300.08235509, 220515.23746768,
       179526.34220759, 97765.62725349, 133030.81385702, 121228.16797878,
       214547.60810556, 163777.79551537, 164400.69495282, 120648.22075953,
       200289.83660161, 530827.98834513, 181721.08012888, 139279.91703074,
       211403.97993066, 88370.23134691, 56223.93985288, 101568.38551049,
       42264.51151882, 269839.9568285 , 219235.93693798, 215559.95896189,
       126180.17980655, 94017.76423989, 186571.38998992, 239285.74298627,
       141136.12202831, 100748.65571204, 234996.84810377, 173317.89471206,
       181170.946485 , 249499.12608691, 59117.53960148, 229825.43138893,
       119229.96389029, 205049.89031161, 289237.16371655, 376713.79583967,
                                     , 131801.04010263, 81714.62196234,
       235314.99706438, 181872.51623
       210450.63983055, 196657.14311654, 116418.2029669 , 157203.17235198,
       141407.83746433, 278946.26986854, 120653.05708992, 147431.71254596,
       120051.95320744, 357597.60225624, 147189.71484067, 143672.2215596 ,
       61735.64050934, 102990.92664158, 343747.05725358, 309335.75077198,
       95077.1881864 , 193859.12199213, 115282.82098695, 164363.93263394,
       299418.50596946, 160799.72506617, 237317.14924853, 150426.28776088,
       141741.9803877 , 80971.65674589, 116287.05395
                                                       , 199189.16365547,
       221398.20911546, 164624.5967068 , 185917.00418407, 232085.78361981,
       161510.37140786, 104607.19634645, 200311.61620566, 193889.93887375,
       360335.63024868, 246880.79734329, 205218.08855951, 149324.66818697,
       219012.52290642, 167950.75652282, 145145.31856183, 213907.37040049,
       166208.00694456, 177565.36744714, 213638.54963519, 128934.89419079,
       127262.06873791, 125732.53616288, 208350.8422771 , 187367.98102733,
       151979.80533747, 98238.80563602, 216376.11908759, 172434.74819286,
       219380.06611483, 169934.88709872, 119439.25910028, 94943.44404374,
       194718.96343604, 119048.86428917, 223908.48489293, 371007.58160088,
       131761.77339371, 202862.19185752, 167584.64261554, 164880.4508151 ,
       135912.95156555, 204349.79412468, 191707.2384559 , 166312.47307931,
       248073.37082883, 158225.96622289, 208273.00886696, 206677.62501901,
       145066.05374636, 188972.2930174 , 112066.39047524, 60843.20451136,
       233862.34059841, 227048.34860413, 236280.16982428, 202861.74018479,
       256347.47173762, 163072.37056444, 208215.47237552, 158121.8268503 ,
       138950.11023881, 131493.60318191, 135309.51482775, 153401.6418395 ,
       87988.96611115, 164203.71884155, 77495.00725865, 190624.2880739
       169614.69937832, 214544.41436752, 158770.76775524, 172081.73067651,
        72404.36280403, 134968.67610532, 121233.70422819, 106284.16747329,
```

```
178255.45274396, 111941.93036186, 214003.21483718, 118547.46238145,
212332.22284787, 167744.85468928, 106327.02745505, 260835.23902291,
207737.0688117 , 240112.93783816, 162717.39329454,
                                                   74013.00523018,
214061.17644297, 201153.36902766, 205434.63928939, 204243.08249187,
138793.30501713, 140952.80163748, 191512.24334499, 152215.21020833,
324085.39591175, 304774.23081278, 190512.0628138 , 148811.52086832,
                                  91427.2383567 , 240968.26030391,
183278.8260974 , 190898.89420528,
185624.17527773, 109241.47600847, 120318.3714745 , 180293.28625808,
185887.05318141, 147999.96663853, 203640.95270351, 207262.65897148,
146553.60081434, 225114.56488878, 195969.54558455, 135946.68422957,
 98360.86043366, 145093.48293363, 187527.90880649, 112485.22475333,
162337.18285397, 137396.86809542, 107782.38128734, 200885.0785942,
186191.74170784, 246205.62704462, 236007.79504838, 109664.72894365,
              , 271856.0319398 , 252559.63167735, 131192.23890725,
203706.62006734, 112676.08277595, 134454.5979042 , 122227.56150572,
225246.88731473, 207800.75783298, 276095.60530002, 134212.74190231,
158840.30722338, 161414.7159675 , 247093.81102185, 125407.70093713,
140731.92957038, 285092.65610423, 122166.41527203, 265957.16664687,
141846.17715973, 215257.29075487, 133644.67328412, 150444.80270245,
138159.96247511, 370790.96568457, 190143.1932688 , 138562.74477412,
157486.7882223 , 206893.81926977, 193463.29137986, 162321.36289893,
247387.66849631, 176097.83285155, 319862.93484745, 108892.79206792,
157281.06435892, 114875.28570174, 150046.14802086, 224016.84426732,
182743.95014861, 184259.86747379, 216961.78153856, 217129.89206972,
150042.28914975, 183894.29966913, 241653.96996239, 185373.50085041,
142737.94707988, 213872.65242864, 227772.66374861, 371458.8533591 ,
159852.55997952, 105446.77692945, 74753.49864747, 218084.73229221,
115766.14039221, 124870.49571699, 158277.63592713, 42046.97387378,
298295.97719517, 113869.82743718, 311823.56766763, 150483.58747027,
113422.79568058, 110758.54387485, 281329.77955246, 168222.64224303,
186504.6443444 , 118499.73767561, 118439.53660929, 159798.94608422,
285467.65714161, 184380.8672137 , 429972.49494309, 157974.11370633,
198929.95549095, 229184.4784674 , 339430.23265359, 188218.7187889 ,
155268.47972511])
```

In [47]:

```
mean_squared_error(en_y_test,en_y_pred)
```

Out[47]:

1603931409.178651

Step6.[Normalize using StandardScaler and Predict Sale Price]

In [48]:

```
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
```

```
In [49]:
```

```
s= scale.fit_transform(en_X_train)
s
```

Out[49]:

```
array([[-0.75507716, 1.18098615, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522],

[ 0.84436732, -0.81547136, -0.10770338, ..., -0.17580466, -0.16683226, 3.4768675 ],

[ 4.34791239, -0.81547136, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522],

...,

[ -0.77030997, -0.81547136, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522],

[ 2.26101815, -0.81547136, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522],

[ 0.72758249, -0.81547136, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522]])
```

In [50]:

```
s1 = scale.transform (en_X_test)
s1
```

Out[50]:

```
array([[ 1.37751549, -0.81547136, -0.10770338, ..., 5.68813139, -0.16683226, -0.28761522],
        [ 0.24267154,  0.23565892, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522],
        [-0.98356923,  1.0544825, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522],
        [ 1.68724918, -0.81547136, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522],
        [ -0.83124118,  1.15798549, -0.10770338, ..., -0.17580466, -0.16683226, -0.28761522],
        [ 1.49937792, -0.81547136, -0.10770338, ..., 5.68813139, -0.16683226, -0.28761522]])
```

In [51]:

```
model2 = LinearRegression()
model2.fit(s,en_y_train)
```

Out[51]:

LinearRegression()

In [52]:

```
se_y_pred = model2.predict(s1)
se_y_pred
```

Out[52]:

```
array([164570.22894655, 85752.90331148, 198303.4444603 , 122475.14440177,
      175345.78182411, 242830.95354235, 327131.86508911, 208850.75498374,
      182132.06296088, 63457.73994563, 154016.77303418, 271424.75748691,
      196168.36447425, 231896.15634765, 99949.01255693, 199586.65283044,
       294455.29422812, 237034.98692395, 156399.80969275, 143322.19881946,
       87317.20577081, 459342.96310711, 180678.56647711, 80595.7791409,
      150473.5263959 , 163119.60771012, 87932.58954817, 298702.16262202,
      139136.14996625, 122356.71597514, 253724.88904314, 124943.48205877,
      190378.91666769, 144311.69637702, 138626.0244507 , 108390.10270977,
      233825.57182049, 321069.91502646, 152596.17234961, 126562.81992627,
      178895.51749359, 174107.66086738, 192718.60711018, 84271.11311782,
      190926.80720662, 351883.95006535, 237798.33729765, 194988.748486
       67864.93144594, 148773.78149566, 141287.95243988, 123734.33873654,
      217729.45043705, 264523.39376926, 284496.30996528, 128633.4286151,
      317463.52519014, 229500.59769751, 216913.34511065, 307023.5629503,
      358046.85973159, 88894.03376787, 213448.65694224, 151371.96447341,
      238996.23694776, 206439.35207551, 204300.0823551 , 220515.2374677 ,
      179526.34220757, 97765.6272535 , 133030.81385704, 121228.16797873,
      214547.60810557, 163777.7955153 , 164400.69495282, 120648.22075952,
      200289.83660161, 530827.98834524, 181721.08012888, 139279.91703071,
      211403.97993059, 88370.23134689, 56223.93985289, 101568.38551036,
       42264.51151872, 269839.95682852, 219235.93693798, 215559.95896183,
      126180.17980651, 94017.76423984, 186571.38998992, 239285.74298627,
      141136.12202832, 100748.65571206, 234996.84810376, 173317.89471207,
      181170.94648492, 249499.12608694, 59117.53960138, 229825.43138894,
      119229.96389044, 205049.8903116 , 289237.16371656, 376713.79583962,
      235314.9970644 , 181872.51622998, 131801.04010258, 81714.6219623 ,
      210450.63983049, 196657.14311654, 116418.20296697, 157203.17235194,
      141407.83746423, 278946.26986855, 120653.05708991, 147431.71254586,
      120051.95320748, 357597.60225625, 147189.71484064, 143672.22155962,
       61735.64050933, 102990.9266416 , 343747.05725362, 309335.75077205,
       95077.18818639, 193859.12199209, 115282.82098686, 164363.93263394,
       299418.5059694 , 160799.72506624, 237317.14924855, 150426.28776082,
      141741.98038769, 80971.65674594, 116287.05394993, 199189.16365541,
      221398.20911547, 164624.59670678, 185917.00418407, 232085.78361985,
      161510.37140789, 104607.1963465 , 200311.61620573, 193889.93887367,
      360335.63024878, 246880.79734332, 205218.08855951, 149324.66818695,
      219012.52290643, 167950.75652274, 145145.3185618 , 213907.37040049,
      166208.00694456, 177565.36744706, 213638.54963519, 128934.89419081,
      127262.06873794, 125732.53616292, 208350.84227703, 187367.98102726,
      151979.8053375 , 98238.80563596, 216376.11908756, 172434.74819292,
      219380.06611489, 169934.88709875, 119439.25910027, 94943.44404374,
      194718.96343606, 119048.86428917, 223908.48489295, 371007.58160084,
      131761.7733937 , 202862.19185749, 167584.64261553, 164880.4508151 ,
      135912.95156556, 204349.79412469, 191707.23845592, 166312.47307932,
      248073.37082873, 158225.96622294, 208273.00886694, 206677.62501894,
      145066.05374631, 188972.29301732, 112066.39047525, 60843.20451138,
      233862.34059848, 227048.34860413, 236280.16982431, 202861.74018481,
      256347.4717376 , 163072.37056451, 208215.47237559, 158121.82685026,
      138950.11023881, 131493.60318192, 135309.51482778, 153401.6418395 ,
       87988.96611119, 164203.71884157, 77495.00725866, 190624.28807396,
       169614.69937832, 214544.41436747, 158770.76775523, 172081.73067662,
       72404.36280403, 134968.67610533, 121233.70422815, 106284.16747337,
       178255.45274396, 111941.930362 , 214003.2148373 , 118547.46238146,
```

```
212332.22284787, 167744.85468928, 106327.02745505, 260835.23902289,
207737.06881171, 240112.93783827, 162717.39329451, 74013.00523018,
214061.17644298, 201153.36902759, 205434.63928942, 204243.08249182,
138793.3050171 , 140952.80163746, 191512.24334502, 152215.21020836,
324085.39591178, 304774.23081285, 190512.06281379, 148811.52086828,
183278.82609735, 190898.89420526, 91427.23835665, 240968.26030388,
185624.17527773, 109241.47600849, 120318.37147449, 180293.28625808,
185887.05318141, 147999.96663851, 203640.95270348, 207262.6589715,
146553.60081428, 225114.56488868, 195969.54558458, 135946.68422952,
98360.86043365, 145093.48293363, 187527.90880647, 112485.22475333,
162337.18285387, 137396.86809537, 107782.38128735, 200885.0785942 ,
186191.74170786, 246205.62704466, 236007.79504849, 109664.72894361,
              , 271856.03193978, 252559.63167736, 131192.23890726,
66069.691295
203706.62006731, 112676.08277586, 134454.59790426, 122227.56150567,
225246.88731479, 207800.75783312, 276095.60529998, 134212.74190233,
158840.30722344, 161414.71596746, 247093.81102187, 125407.70093715,
140731.92957045, 285092.65610426, 122166.41527204, 265957.1666469 ,
141846.17715971, 215257.29075479, 133644.67328416, 150444.80270244,
138159.96247507, 370790.96568459, 190143.19326877, 138562.74477407,
157486.7882223 , 206893.81926978, 193463.29137984, 162321.36289896,
247387.66849623, 176097.83285157, 319862.93484749, 108892.79206788,
157281.06435888, 114875.28570176, 150046.14802088, 224016.84426723,
182743.95014858, 184259.86747375, 216961.78153849, 217129.89206965,
150042.28914979, 183894.29966913, 241653.96996241, 185373.50085041,
142737.94707987, 213872.65242873, 227772.66374871, 371458.85335927,
159852.55997952, 105446.77692943, 74753.49864743, 218084.73229234,
115766.14039216, 124870.49571701, 158277.6359271 , 42046.97387374,
298295.97719524, 113869.82743721, 311823.5676677 , 150483.58747027,
113422.7956805 , 110758.54387486 , 281329.77955245 , 168222.64224302 ,
186504.64434444, 118499.73767559, 118439.5366092 , 159798.94608423,
285467.65714171, 184380.86721368, 429972.49494319, 157974.11370633,
198929.95549095, 229184.47846748, 339430.23265358, 188218.71878896,
155268.47972515])
```

In [53]:

```
mean_squared_error(en_y_test,se_y_pred)
```

Out[53]:

1603931409.178804

Step7. [Normalize using MinMaxScaler and Predict Sale Price]

In [55]:

```
from sklearn.preprocessing import MinMaxScaler
m_scaler = MinMaxScaler()
```

In [57]:

```
ms = m_scaler.fit_transform(en_X_train)
ms1 = m_scaler.transform(en_X_test)
```

In [58]:

```
model3 =LinearRegression()
model3.fit(ms,en_y_train)
```

Out[58]:

LinearRegression()

In [60]:

```
me_y_pred = model3.predict(ms1)
me_y_pred
```

Out[60]:

```
array([164570.22894655, 85752.90331148, 198303.4444603 , 122475.14440177,
       175345.78182411, 242830.95354235, 327131.86508911, 208850.75498374,
       182132.06296088, 63457.73994563, 154016.77303418, 271424.75748691,
       196168.36447425, 231896.15634765, 99949.01255693, 199586.65283044,
       294455.29422812, 237034.98692395, 156399.80969275, 143322.19881946,
       87317.20577081, 459342.96310711, 180678.56647711, 80595.7791409,
       150473.5263959 , 163119.60771012, 87932.58954817, 298702.16262202,
       139136.14996625, 122356.71597514, 253724.88904314, 124943.48205877,
       190378.91666769, 144311.69637702, 138626.0244507, 108390.10270977,
       233825.57182049, 321069.91502646, 152596.17234961, 126562.81992627,
       178895.51749359, 174107.66086738, 192718.60711018, 84271.11311782,
       190926.80720662, 351883.95006535, 237798.33729765, 194988.748486
       67864.93144594, 148773.78149566, 141287.95243988, 123734.33873654,
       217729.45043706, 264523.39376926, 284496.30996528, 128633.4286151,
       317463.52519014, 229500.59769751, 216913.34511065, 307023.5629503
       358046.85973159, 88894.03376787, 213448.65694224, 151371.96447341,
       238996.23694776, 206439.35207551, 204300.0823551 , 220515.2374677 ,
       179526.34220757, 97765.6272535 , 133030.81385704, 121228.16797873,
       214547.60810557, 163777.7955153 , 164400.69495282, 120648.22075952,
       200289.83660161, 530827.98834524, 181721.08012888, 139279.91703071,
       211403.97993059, 88370.23134689, 56223.93985289, 101568.38551036,
       42264.51151872, 269839.95682852, 219235.93693798, 215559.95896183,
       126180.17980651, 94017.76423985, 186571.38998992, 239285.74298627,
       141136.12202832, 100748.65571206, 234996.84810376, 173317.89471207,
       181170.94648492, 249499.12608694, 59117.53960138, 229825.43138894,
       119229.96389044, 205049.8903116 , 289237.16371656, 376713.79583962,
       235314.9970644 , 181872.51622998 , 131801.04010258 , 81714.6219623 ,
       210450.63983049, 196657.14311654, 116418.20296697, 157203.17235194,
       141407.83746423, 278946.26986855, 120653.05708991, 147431.71254586,
       120051.95320748, 357597.60225625, 147189.71484064, 143672.22155962,
        61735.64050933, 102990.9266416 , 343747.05725362, 309335.75077205,
       95077.18818639, 193859.12199209, 115282.82098686, 164363.93263394,
       299418.5059694 , 160799.72506624, 237317.14924855, 150426.28776082,
       141741.98038769, 80971.65674594, 116287.05394993, 199189.16365541,
       221398.20911546, 164624.59670678, 185917.00418407, 232085.78361985,
       161510.37140789, 104607.1963465 , 200311.61620573, 193889.93887367,
       360335.63024878, 246880.79734332, 205218.08855951, 149324.66818695,
       219012.52290643, 167950.75652274, 145145.3185618 , 213907.37040049,
       166208.00694456, 177565.36744706, 213638.54963519, 128934.89419081,
       127262.06873794, 125732.53616292, 208350.84227703, 187367.98102726,
       151979.8053375 , 98238.80563596, 216376.11908756, 172434.74819292,
       219380.06611489, 169934.88709875, 119439.25910027, 94943.44404374,
       194718.96343606, 119048.86428917, 223908.48489295, 371007.58160084,
       131761.7733937 , 202862.19185749, 167584.64261553, 164880.4508151 ,
       135912.95156556, 204349.79412469, 191707.23845592, 166312.47307932,
       248073.37082873, 158225.96622294, 208273.00886694, 206677.62501894,
       145066.05374631, 188972.29301731, 112066.39047525, 60843.20451138,
       233862.34059848, 227048.34860413, 236280.16982431, 202861.74018481,
       256347.4717376 , 163072.37056451, 208215.47237559, 158121.82685026,
       138950.11023881, 131493.60318193, 135309.51482778, 153401.6418395,
       87988.96611119, 164203.71884157, 77495.00725866, 190624.28807396,
       169614.69937832, 214544.41436747, 158770.76775523, 172081.73067662,
       72404.36280403, 134968.67610533, 121233.70422815, 106284.16747337,
       178255.45274396, 111941.930362 , 214003.2148373 , 118547.46238146,
```

```
212332.22284787, 167744.85468928, 106327.02745505, 260835.23902289,
207737.06881171, 240112.93783827, 162717.39329451, 74013.00523018,
214061.17644298, 201153.36902759, 205434.63928942, 204243.08249182,
138793.3050171 , 140952.80163746, 191512.24334502, 152215.21020836,
324085.39591178, 304774.23081285, 190512.06281379, 148811.52086828,
183278.82609735, 190898.89420526, 91427.23835665, 240968.26030387,
185624.17527773, 109241.47600849, 120318.37147449, 180293.28625808,
185887.05318141, 147999.96663851, 203640.95270348, 207262.6589715,
146553.60081428, 225114.56488868, 195969.54558458, 135946.68422952,
98360.86043365, 145093.48293363, 187527.90880647, 112485.22475333,
162337.18285387, 137396.86809537, 107782.38128735, 200885.0785942,
186191.74170786, 246205.62704466, 236007.79504849, 109664.72894361,
              , 271856.03193978, 252559.63167735, 131192.23890726,
66069.691295
203706.62006731, 112676.08277586, 134454.59790426, 122227.56150567,
225246.88731479, 207800.75783312, 276095.60529998, 134212.74190233,
158840.30722344, 161414.71596746, 247093.81102187, 125407.70093715,
140731.92957045, 285092.65610426, 122166.41527204, 265957.1666469 ,
141846.17715971, 215257.29075479, 133644.67328416, 150444.80270244,
138159.96247507, 370790.96568459, 190143.19326877, 138562.74477407,
157486.7882223 , 206893.81926978, 193463.29137984, 162321.36289896,
247387.66849623, 176097.83285157, 319862.93484749, 108892.79206788,
157281.06435888, 114875.28570176, 150046.14802088, 224016.84426723,
182743.95014858, 184259.86747375, 216961.78153849, 217129.89206965,
150042.28914979, 183894.29966913, 241653.96996241, 185373.50085041,
142737.94707987, 213872.65242873, 227772.66374871, 371458.85335927,
159852.55997952, 105446.77692943, 74753.49864743, 218084.73229234,
115766.14039216, 124870.49571701, 158277.6359271 , 42046.97387374,
298295.97719524, 113869.82743721, 311823.5676677 , 150483.58747027,
113422.7956805 , 110758.54387486, 281329.77955245, 168222.64224302,
186504.64434444, 118499.73767559, 118439.5366092 , 159798.94608423,
285467.65714171, 184380.86721368, 429972.49494319, 157974.11370633,
198929.95549095, 229184.47846748, 339430.23265358, 188218.71878896,
155268.479725151)
```

In [61]:

```
mean_squared_error(en_y_test,me_y_pred)
```

Out[61]:

1603931409.1788046

Step8. [Predict using SGD Regressor]¶

```
In [62]:
```

```
from sklearn.linear_model import SGDRegressor
from sklearn.pipeline import make_pipeline
```

```
In [63]:
```

```
SGD = make_pipeline(StandardScaler(), SGDRegressor(max_iter=1000, tol=1e-3))
SGD.fit(X, y)
```

Out[63]:

```
In [64]:
r_y_pred = SGD.predict(X)
r_y_pred
Out[64]:
array([234288.73879777, 194490.33616557, 228853.39973738, ...,
       227979.03201414, 122838.6043447 , 145512.54381131])
In [65]:
mean_squared_error(y,r_y_pred)
Out[65]:
1236182786.527191
Step8. [Predict using Ridge Regression]
In [66]:
from sklearn.linear_model import Ridge
In [69]:
RidgeCV = Ridge(alpha=1.0)
RidgeCV.fit(s,en_y_train)
ridge_y_pred = RidgeCV.predict(s)
ridge_y_pred
Out[69]:
array([201846.8910729 , 254209.54024493, 338463.77172917, ...,
        88246.41853185, 352706.2962025 , 210331.1763083 ])
In [70]:
mean_squared_error(en_y_train,ridge_y_pred)
Out[70]:
1065862697.5487247
Step8. [Predict using Lasso Regression]
```

```
In [71]:
```

```
from sklearn.linear_model import Lasso
```

```
In [72]:
```

```
LassoCV = Lasso(alpha=1.0)
LassoCV.fit(s,en_y_train)
C:\Users\Admin\anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_
descent.py:529: ConvergenceWarning: Objective did not converge. You might wa
nt to increase the number of iterations. Duality gap: 188735847371.2207, tol
erance: 631484515.8030617
  model = cd_fast.enet_coordinate_descent(
Out[72]:
Lasso()
In [74]:
lasso_y_pred = LassoCV.predict(s)
lasso_y_pred
Out[74]:
array([201847.50954454, 254242.82719469, 338702.94581108, ...,
        88327.65667808, 352770.5563025, 210188.32752228])
In [75]:
mean_squared_error(en_y_train,lasso_y_pred)
```

Out[75]:

1065858586.2635835

Step9.[RMSE]. Print Root Mean Squared Error values (use numpy.sqrt() method) as below and compare error values.¶

In [76]:

```
from math import sqrt
```

In [77]:

```
print("RMSE without one hot encoding: ",sqrt(mean_squared_error(y_test,y_pred)))
print("RMSE with one hot encoding: ",sqrt(mean_squared_error(en_y_test,en_y_pred)))
print("RMSE with one and Standard Scaling: ",sqrt(mean_squared_error(en_y_test,se_y_pred)))
print("RMSE with one and MinMax Scaling: ",sqrt(mean_squared_error(en_y_test,me_y_pred)))
print("RMSE of SGDRegressor with one and Standard Scaler: ",sqrt(mean_squared_error(y,r_y_print("RMSE of RigdCV with one and Standard Scaler: ",sqrt(mean_squared_error(en_y_train,rprint("RMSE of LassoCV with one and Standard Scaler: ",sqr
```

```
RMSE without one hot encoding: 30496.102314350515

RMSE with one hot encoding: 40049.11246430626

RMSE with one and Standard Scaling: 40049.11246430817

RMSE with one and MinMax Scaling: 40049.11246430818

RMSE of SGDRegressor with one and Standard Scaler: 35159.39115694683

RMSE of RigdCV with one and Standard Scaler: 32647.552703820307

RMSE of LassoCV with one and Standard Scaler: 32647.489739083823
```