Lecture 16: 3 June, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

The curse of dimensionality

- ML data is often high dimensional especially images
 - A 1000×1000 pixel image has 10^6 features
- Data behaves very differently in high dimensions
 - 2D unit square, 0.04% probability of being near the border (within 0.001)
 - 10⁴D hypercube, 99.999999% probability of being near the border
- Distances between items
 - 2D unit square, mean distance between 2 random points is 0.52
 - 3D unit cube, mean distance between 2 random points is 0.66
 - $10^6 D$ unit hypercube, mean distance between 2 random points is approximately 408.25
 - There's a lot of "space" in higher dimensions!
 - Higher danger of overfitting

Dimensionality reduction

- Remove unimportant features by projecting to a smaller dimension
- Example: project blue points in 3D to black points in 2D plane
- Principal Component Anaylsis transform d-dimensional input to k-dimensional input, preserving essential features

Singular Value Decomposition (SVD)

- Input matrix M, dimensions $n \times d$
 - Rows are items, columns are features
- Decompose M as UDV^{\top}
 - D is a $k \times k$ diagonal matrix, positive real entries
 - \blacksquare *U* is $n \times k$, *V* is $d \times k$
 - Columns of *U*, *V* are orthonormal unit vectors, mutually orthogonal
- Interpretation
 - Columns of V correspond to new abstract features
 - lacksquare Rows of U describe decomposition of terms across features
 - $M = \sum_{i} D_{ii} (\boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{\top})$
 - For columns \mathbf{u}_i of U and \mathbf{v}_i of V, $\mathbf{u}_i \cdot \mathbf{v}_i^{\top}$ is an $n \times d$ matrix, like M
 - $\mathbf{u}_i \cdot \mathbf{v}_i^{\top}$ describes components of rows of M along direction \mathbf{v}_i

Madhavan Mukund Lecture 16: 3 June, 2021 DMML Apr-Jul 2021

Singular vectors

- Unit vectors passing through the origin
- Want to find "best" k singular vectors to represent feature space
- Suppose we project $a_i = (a_{i1}, a_{i2}, \dots, a_{id})$ onto \mathbf{v} through origin
- Minimizing distance of a_i from v is equivalent to maximizing the projection of a_i onto v
- Length of the projection is $a_i \cdot v$

Singular vectors . . .

- Sum of squares of lengths of projections of all rows in M onto $\mathbf{v} |M\mathbf{v}|^2$
- First singular vector unit vector through origin that maximizes the sum of projections of all rows in *M*

$$\mathbf{v}_1 = rg\max_{|\mathbf{v}|=1} |M\mathbf{v}|$$

■ Second singular vector — unit vector through origin, perpendicular to v_1 , that maximizes the sum of projections of all rows in M

$$\mathbf{v}_2 = \arg\max_{\mathbf{v} \perp \mathbf{v}_1; \ |\mathbf{v}| = 1} |M\mathbf{v}|$$

■ Third singular vector — unit vector through origin, perpendicular to \mathbf{v}_1 , \mathbf{v}_2 , that maximizes the sum of projections of all rows in M

$$\mathbf{v}_3 = rg \max_{\mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2; \ |\mathbf{v}| = 1} |M\mathbf{v}|$$

Singular vectors . . .

- With each singular vector \mathbf{v}_j , associated singular value is $\sigma_j = |M\mathbf{v}_j|$
- Repeat r times till $\max_{\boldsymbol{v} \perp \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_r; \ |\boldsymbol{v}|=1} |M\boldsymbol{v}| = 0$
 - r turns out to be the rank of M
 - Vectors $\{v_1, v_2, \dots, v_r\}$ are orthonormal right singular vectors
- Our greedy strategy provably produces "best-fit" dimension r subspace for M
 - Dimension *r* subspace that maximizes content of *M* projected onto it
- Corresponding left singular vectors are given by $\mathbf{u}_i = \frac{1}{\sigma_i} M \mathbf{v}_i$
- Can show that $\{u_1, u_2, \dots, u_r\}$ are also orthonormal

Singular Value Decomposition

- M, dimension $n \times d$, of rank r uniquely decomposes as $M = UDV^{\top}$
 - $V = [v_1 \ v_2 \ \cdots \ v_r]$ are the right singular vectors
 - D is a diagonal matrix with $D[i, i] = \sigma_i$, the singular values
 - $U = [u_1 \ u_2 \ \cdots \ u_r]$ are the left singular vectors

$$\begin{array}{c}
M \\
n \times d
\end{array} =
\begin{bmatrix}
U \\
n \times r
\end{bmatrix}
\begin{bmatrix}
D \\
r \times r
\end{bmatrix}
\begin{bmatrix}
V^{\top} \\
r \times d
\end{bmatrix}$$

Rank-k approximation

- \blacksquare M has rank r, SVD gives rank r decomposition
- Singular values are non-increasing $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$
- Suppose we retain only k largest ones
- We have
 - Matrix of first k right singular vectors $V_k = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_k]$,
 - Corresponding singular values $\sigma_1, \sigma_2, \ldots, \sigma_k$
 - Matrix of k left singular vectors $U_k = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_k]$
- Let D_k be the $k \times k$ diagonal matrix with entries $\sigma_1, \sigma_2, \ldots, \sigma_k$
- Then $U_k D_k V_k^{\top}$ is the best fit rank-k approximation of M
- In other words, by truncating the SVD, we can focus on k most significant features implicit in M

PCA and variance

- Interpret PCA in terms of preserving variance
- Different projections have different variance
- SVD orders projections in decreasing order of variance
- Criterion for choosing when to stop
 - Choose k so that a desired fraction of the variance is "explained"

Manifold learning

- Projection may not always help
- Swiss roll dataset
- Projection onto 2 dimesions is not useful
- Better to unroll the image

■ Discover the manifold along which the data lies

