

Mission Planner

[Mission Planner Demo]

Overview

- Review the importance of GCS software in UAV Operations
- Develop an understanding of the features and interface of "Mission Planner".
- Learn how the ArduPilot SITL can be used for testing and development of Autonomous UAV solutions.
- Explore Mission Planner and the SITL simulator through a series of Practical exercises

Background Information

- Ground Control Station:
 - Displays vital statistics and information to UAV operators.
 - Telemetry.
 - Control of autonomous missions.
 - Custom code to allow full automation.
 - Various Software Options:
 - Mission Planner (We Use This!)
 - QGroundControl
 - APM Planner

Mission Planner

- Open Source.
- Used to plan autonomous missions.
- Can be used to setup UAVs and Autopilots
- Wired and Wireless Telemetry.
- Able to view and set current parameters.
- Log error messages.
- Simulated UAVs for development.

Waypoints Drone

Current

Route

Position Home

Location

Movement Track

Data Page

Planning Page

• Mission Planner Installation - NOTE: This is an EXTERNAL software - download at your own risk!

Bugfix Parameter File

- meierkilian/ArdupilotIntro
 - Download "Plane.parm"
- https://github.com/meierkilian/ArdupilotIntro

[SITL Waypoint Mission Demo]

Simulation Setup

- Select 'Simulation' from top tab
- In Model, select 'plane'
- Click on the Plane
- Select 'Stable' version
- SITL will download and connect
- Go to 'Plan' tab to create waypoints
- Take off and control from 'Actions' menu
- Quick display menu
- Full status in Status Menu
- Error messages in 'Messages' menu
- ardupilot.org/planner/docs/mission-planner-simulation.html

Waypoint File Structure

```
OGC WPL 110
<INDEX> <CURRENT WP> <COORD FRAME> <COMMAND> <PARAM1> <PARAM2> <PARAM3> <PARAM4> <PARAM5/X/LATITUDE> <PARAM6/Y/LONGITUDE> <PARAM7/Z/ALTITUDE> <AUTOCONTINUE>
                                Unique Index of Waypoint Starting from 0
<INDEX>
                                Equal to 1 if the waypoint is the initial point, 0 Otherwise
<CURRENT WP>
<COORD FRAME>
                                Altitude Reference 3 - Relative to Home, 0 - Absolute, 10 -
                                Relative to Terrain
                                Numerical Identifier of the "Command" to be performed
<COMMAND>
                                Parameter Dependent on Command
<PARAM1>
<PARAM2>
                                Parameter Dependent on Command
                                Parameter Dependent on Command
<PARAM3>
<PARAM4>
                                Parameter Dependent on Command
                                X Coordinate of Waypoint (Lat.), based on CRF chosen
<PARAM5/X/LATITUDE>
                                Y Coordinate of Waypoint (Long.), based on CRF chosen
<PARAM6/Y/LONGITUDE>
<PARAM7/Z/ALTITUDE>
                                Z Coordinate of Waypoint (Alt.), in metres
                                Equal to 1 if the mission should automatically continue to the
<AUTOCONTINUE>
                                next waypoint
```

Mission Navigation Commands

Command	ID	PARAM 1	PARAM 2	PARAM 3	PARAM 4
WAYPOINT	16	HOLD TIME [s]	ACCEPT RADIUS [m]	PASS RADIUS [m]	YAW [deg]
LOITER UNLIMITED	17			RADIUS [m]	YAW [deg]
LOITER TURNS	18	NUM TURNS	HEADING REQ.	RADIUS [m]	
LOITER TIME	19	LOTER TIME [s]	HEADING REQ.	RADIUS [m]	
RETURN TO LAUNCH	20				
LAND	21	ABORT ALT. [m]	LAND MODE		YAW [deg]
TAKEOFF	22	PITCH [deg]			YAW [deg]
LOITER TO ALT	31	HEADING REQ.	RADIUS [m]		
VTOL TAKEOFF	84		HEADING [deg]		YAW [deg]
VTOL LAND	85	LAND OPTIONS		APPROAD ALT. [m]	YAW [deg]
SPLINE WAYPOINT	82	HOLD TIME [s]	WildDrone.eu		14

Mission Action Commands

Command	ID	PARAM 1	PARAM 2	PARAM 3	PARAM 4
SET MODE	17 6	MODE			
CHANGE SPEED	17 8	SPEED TYPE	SPEED	SPEED [m/s]	
MOUNT CONTROL*	20 5	PITCH [deg]	ROLL [deg]	YAW [deg]	ALTITUDE [m]
PAYLOAD PLACE	94	MAX DESCENT [m]			
DO JUMP	17 7	WAYPOINT NUM.	REPEATS		YAW [deg]

- Task 1 SITL Experimentation:
 - Using the SITL simulation. Load a plane.
 - Set the plane's Mode to TAKEOFF and then arm the vehicle.
 - Experiment with enabling and disabling the aileron servo how does the vehicle behave?
 - Can you disable the rudder as well, but this time using the parameter list?

- Task 2 Waypoint Mission Planning:
 - Using the SITL you already have running, plan a mission which includes Take-off and Landing from the same location, and at least 4 standard waypoints.
 - You should take-off to 40m, and then ascend to 120m by the final waypoint.
 - Consider how you will make the aircraft descend and reach the landing point as accurately as possible

- Task 3 Weather effects
 - Using the SITL you already have running have the plane takeoff and loiter at 100m.
 - Now set these two parameters in mission planner:
 - SIM_WIND_DIR = 60
 - SIM_WIND_SPD = 7.5
 - What do you notice about the loiter circle?
 - Now change SIM_WIND_TURB to 3
 - You should see that the "neat" loiter circle now varies a lot more.
 - Run the same mission you produced for task 2.
 - Reset these parameters to:
 - SIM_WIND_DIR = 180
 - SIM_WIND_SPD = 0
 - SIM_WIND_TURB = 0

- Task 4 Sensor Failures
 - Restart the Plane SITL simulation.
 - Have the plane takeoff to 100m again.
 - Now Set:
 - SIM_GPS_DISABLE = 1
 - What happens?
 - Next:
 - SIM_GPS_DISABLE = 0
 - SIM_RC_FAIL = 1