

Florencia Grasso fgrasso@agro.unc.edu.ar

Isomería

Fenómeno que presentan ciertos compuestos llamados isómeros consistente en poseer la misma fórmula molecular pero propiedades físicas y químicas distintas, debido a la distinta disposición de los átomos o grupos de átomos dentro de la molécula.

Isomería

Isomería estructural

Compuestos
con igual
fórmula
molecular,
pero distinta
estructura

Estereoisomería

Compuestos con igual fórmula molecular, igual estructura, pero distinta configuración

Isomería conformacional

Compuestos con igual fórmula molecular, igual estructura, igual configuración, pero distinta conformación

- □ Isomería estructural de cadena: igual FM y distinta cadena (forma del esqueleto carbonado).
- ☐ Isomería estructura de función: igual FM y diferente grupo funcional.
- ☐ Isomería estructural de posición: igual FM, igual grupo funcional y diferente posición del GF en la cadena.

Distintos esqueletos de carbono C₄H₁₀

CH₃ | CH₃CHCH₃

 $CH_3CH_2CH_2CH_3$

2-metilpropano (isobutano)

Butano

Diversos grupos funcionales C₂H₆O $\mathrm{CH_3CH_2OH}$

 CH_3OCH_3

Alcohol etílico

Éter dimetílico

Posición diferente de los grupos funcionales C₃H₉N

 $\mathrm{CH_{3}CHCH_{3}}^{\mathrm{NH_{2}}}$

у

y

 $CH_3CH_2CH_2NH_2$

Isopropil amina

Propilamina

Distinta estructura

Distinto orden de enlace

- → Distintos esqueletos
- → Distintos grupos funcionales
- → Distintos puntos de unión

Distintas propiedades físicas y químicas

Tipo de isomería	Nombre	Punto de fusión	Punto de ebullición
Isómeros de cadena	metilpropano	-160 °C	-11,7 °C
	n-butano	-140 °C	-1 °C
Isómeros de	etanol	-114 °C	78 °C
función	éter dimetílico	-24 °C	0,5 °C
Isómeros de	isopropilamina	-95 °C	34 °C
posición	propilamina	-83 °C	48 °C

Tipo de isomería	Nombre	Propiedades químicas
Isómeros de cadena	metilpropano	Δ Hcomb = -2878 KJ7mol
	n-butano	Δ Hcomb = -2870 KJ7mol
Isómeros de función	etanol	pKa = 15,9
	éter dimetílico	Disuelve en H ₂ SO ₄
Isómeros de posición	isopropilamina	pKb = 3,32
	propilamina	pKb = 3,40

rotación en torno al eje del solapamiento

Conformación eclipsada

solapamiento

Conformación anti

Proyección de Newman

Etano. Análisis conformacional

Propano. Análisis conformacional

Figura 4.3.

Butano, Análisis conformacional

Tensión torsional se debe a la repulsión de los pares de electrones σ de enlaces que están eclipsados

Tensión estérica se debe a las fuerzas de Van der Waals repulsivas que se dan entre átomos que se ven forzados a acercarse más de lo que permiten sus radios atómicos

Interacción	Causa	Energía (kcal/mol)
H-H eclipsada	Tensión torsional	1
H-CH ₃ eclipsada	Principalmente tensión torsional	1,3
CH ₃ -CH ₃ gauche	Tensión torsional	0,9
CH ₃ -CH ₃ eclipsada	Tensión torsional y tensión estérica	3

CONFORMACIÓN

DISPOSICIÓN ESPACIAL QUE SE PRODUCE POR LA ROTACIÓN LIBRE EN TORNO A LOS ENLACES σ

LAS BARRERAS ENERGÉTICAS
DEL INTERCAMBIO ENTRE
CONFÓRMEROS SON
SUPERADAS A TEMPERATURA
AMBIENTE

NO SON AISLABLES

- □ Para un alcano superior la conformación más estable será aquella en la que todos los enlaces C-C estén dispuestos de forma alternada y en la que los sustituyentes más voluminosos guarden entre sí una disposición anti.
- ☐ Si la molécula tiene otros grupos distintos de alquilo, hay que considerar además factores polares y la posibilidad de formación de enlaces por puente de hidrógeno al realizar su análisis conformacional.

n-octano cadena en forma de zig-zag

La tensión anular del ciclobutano resulta de dos factores: del ángulo comprimido desde 109,5° a 90° (tensión angular o de Baeyer) y de la tensión torsional de los enlaces eclipsados.

estabilidad

Calores de combustión

Calor de combustión

cicloalcano

Tamaño de anilllo	Cicloalcano	Calor de combustión (Kcal/mol)	Calor de combustión / CH ₂ (Kcal/mol)	Tensión de anillo por CH ₂ (Kcal/mol)	Tensión de anillo total (Kcal/mol)
3	Ciclopropano	499,8	166,6	9,2	27,6
4	Ciclobutano	655,9	164,0	6,6	26,4
5	Ciclopentano	793,5	158,7	1,3	6,5
6	Ciclohexano	944,5	157,4	0,0	0,0
7	Cicloheptano	1108,3	158,3	0,9	6,3
8	Ciclooctano	1268,9	158,6	1,2	9,6
Alcano de referencia, de cadena larga		157,4	0,0	0,0	

CONFORMACIÓN DEL CICLOBUTANO

CONFORMACIÓN DEL CICLOPENTANO

CONFORMACIONES DEL CICLOHEXANO

EQUILIBRIO ENTRE CONFORMACIONES DEL CICLOHEXANO

POSICIONES AXIALES Y ECUATORIALES EN CICLOHEXANOS

