ELECTROSTATIC BREAKDOWN PROTECTIVE ELEMENT OF SEMICONDUCTOR INTEGRATED CIRCUIT

Patent Number:

JP4068575

Publication date:

1992-03-04

Inventor(s):

SATO SHINICHI

SHARP CORP

Applicant(s):

Application Number: JP19900183665 19900709

Priority Number(s):

IPC Classification:

H01L29/784; H01L23/60; H01L27/04

EC Classification:

Equivalents:

Abstract

PURPOSE:To increase gate breakdown pressure resistance and current driving capability of a transister by a method wherein a source-side diffusion layer is also formed under an element dielectric isolation film, and a gate electrode overlaps with at least the source only on an element separation insulating film, in an electrostatic breakdown protective element by a transistor of MOS type in which an element

CONSTITUTION: An electrostatic breakdown protective element F3 of a transistor of MOS type in which an element dielectric isolation film 7 is used for a gate insulating film comprises a P-type Si substrate 3, drains 1, 4 formed by using an N-well opposite in conductivity type to the P-type Si substrate, sources 2, 5 formed by using an N-well similar to that described above, a gate electrode 6 of polycrystalline Si, and a LOCOS film 7 which is a gate insulating film. The sources 2, 5 and the drains 1, 4 overlap with the gate electrode 6 under the LOCOS film 7. Furthermore, since the gate 6 and the drains 1, 4 are electrically connected to terminal D, and the sources 2, 5 are electrically connected to ground E, if a positive static charges are applied to the terminal, the gate voltage increases, causing the transistor to be turned on and causing static charges to escape to the ground.

Data supplied from the esp@cenet database - 12

출력 일자: 2002/11/6

발송번호 : 9-5-2002-039144571

수신 : 서울 서초구 서초3롱 1571-18 청화빌딤 2

발송일자 : 2002.10.31 제출기일 : 2002.12.31

이영필 귀하

137-874

특허청 의견제출통지서

줄원인

명칭 떼어차밀드코리아반도체 주식회사 (출원민코드: 119990252056)

주소 경기 부천시 원미구 도당동 82-3

대리인

성명 이영필 외 1명

주소 서울 서초구 서초3동 1571-18 청화빌딩 2층

출원번호

10-2001-0008434

발명의 명칭

정전기적 방전으로부터의 보호를 위한 필드 트랜지스터 및그 제조방

이 출원에 대한 심사결과 아래와 같은 거절이유가 있어 특허법 제63조의 규정에 의하여 이를 통지하으니 의견이 있거나 보정이 필요할 경우에는 삼기 제출기일까지 의견서 또는/및 보정서를 제출하여 주시기 바랍니다. (삼기 제출기일에 대하여 매퇴 1월 단위로 연장을 신청할 수 있으며, 이 신청 대하여 불도의 기간연장승인봉지는 하지 않습니다.)

이 출원의 특허점구범위 제 1~18항에 기재된 발명은 그 출원전에 이 발명이 속하는 기술분야에서 이 출원의 특허점구범위 제 1~18항에 기재된 발명은 그 출원전에 이 발명한 수 있는 것이므로 특허법 제통상의 지식을 가진 자가 아래에 지적한 것에 의하여 용이하게 발명할 수 있는 것이므로 특허법 제 29조제2항의 규정에 의하여 특허를 받을 수 없습니다.

[아래]
본천은 정전기보호트랜지스터에 관한 것으로 게이트 도전막 패턴 전체를 필드 산화막 위에만 형성 참으로써 강한 전계에 의한 게이트 절연막의 파괴를 방지하고/저농도 소스/드레인 영역이 필드 산 장으로써 강한 전계에 의한 게이트 절연막의 파괴를 방지하고/저농도 소스/드레인 영역이 필드 산 한 로메인 단자와 별크 사이에 완전한 전 화막을 개재하여 게이트의 가장자리의 중첩되도록 항으로써 드레인 단자와 별크 사이에 완전한 류 결무가 령성되도록 항을 특징으로 하나, 이는 일본특개평04-68575호(1992.3.4)(이하,인용예)에 서 정전파크로록 항을 특징으로 하나, 이는 일본특개평04-68575호(1992.3.4)(이하,인용예)에 서 정전파크로 항을 특징으로 하나, 이는 일본에 비이트를 협성하고, 소스/ 드레인 영역이 소자 서 정전파크를 통하여 게이트의 가장자리와 오버랠되도록 한 기술과 유사하여 당해 기술보야에서 본리 절연막을 통하여 게이트의 가장자리와 오버랠되도록 한 기술과 유사하여 당해 기술보야에서 본리 절연막을 가진 자가 상기의 인용예에 의해 용이하게 발명할 수 있습니다.

[첨 부] · 밀본쪽개평04-68575호 끝.

2002.10.31

특허정

심사4국

심사담당관실 반도체2

심사관 정해곤

출력 일자: 2002/11/6

<<만내>>

, 윤의사항이 있으시면 ㅎ 042-481-5986 로 문의하시기 바랍니다.

독여청 진원 모두는 깨끗한 특허행정의 구현을 위하여 외션을 다하고 있습니다. 만일 엄부처리과점에서 직원의 부조리행 위가 있으면 신고하여 주시기 바랍니다. ▶ 홈페이지(www.kipo.go.kr)내 부조리신고센터

【일본특게평04-68575호】

⑩日本國特許庁(JP)

①特許出頭公開

◎ 公開特許公報 (A)

平4-68575

@Int. Cl. *

識別記号

厅内整理番号

@公開 平成4年(1992)3月4日

29/784 H 01 L

Н

審査請求 未請求 請求項の数 1 (全 3頁)

❷発明の名称

半導体集積回路の静電磁場保護業子

願 平2-183665 ②符

願 平2(1990)7月9日 多出 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社

明 君

シャーブ株式会社 ⑦出 頤 人

大阪府大阪市阿倍野区長池町22番22号

弁理士 野河 信太郎 の代理 人

明部

1. 発明の名称

半導体集団国路の野草建場保護業子

2. 特許請求の疑問

1、 素子分離絶縁膜をゲート絶縁度に利用した MOS排造のトランジスタによる計算破壊保護者 平であって、第1導電型の半導体基板と、その半 導体表板と逆ヶイプの妻 2 専業型の不能物拡散領 娘と、ゲート電極なよびゲート絶縁破としての茶 子分離絶縁展とからなり、臨不能物飲故領域が少 なくとも、MOSトランジスタのソース側の煮子 分離絶縁契の直下に形成され、かつ上記不純物拡 散領線が少なくともMOSトランジスタのソース 例で、第千分離絶縁度下でのみ、ゲート電極とオ ━パーラップしており、MOSトランジスタのド レインとゲートが、境子パッドと電気的に接続さ れ、しかもソースが電視電位あるいは接地電位に 電気的に接続された半等体集積回路の肝電吸療保

3. 発明の詳細な説明

(イ)産業上の科用分野

本発明は、半導体系被自참の静電波響保護索子 に関するものである。

(ロ) 従来の技術

従来の半導体業強回路中の素子分離差線裏(ロ コス酸化粧)がゲート絶縁眩となる寄生トランジ スタを利用した静電破壊保運票子は、第3回に示 **ず禄に、ゲート電極として、半導は集後回路中の** ゲート電低度ではなく、会易能熱度を用いていた。 すなわち、第3回において、保護煮子F。は、 **ロコス酸化膜31、ドレイン32およびソース3** 3 のパ′層を育するP型Si基胺34上に、BP SG展35が配股され、N 宿に通ずるコンタク トホール36条介してA!-Siの金属配線37 が装酒され、その一端が埼平の方向(図示Aで示 す矢郎方向)に延设され、他築が図示日で示す矢 即方向で推地されている。

(ハ)発明が解決しようとする異型

従来技術では、保護索子として用いる寄生トラ 、ンジスタのしまい歯電圧が、一般にPN接合の接

持開平4-68575 (2)

合計圧よりも高いため、芥生トランジスタの電流 窓動能力が、計画鉄道保護にほとんど寄与してい なかった。

また、半導体表別自然中のゲート電気署を、ゲート電切とし、点子分離を改装をゲート絶縁変とした寄生トランジスタのしまい位置王は、一般にPバ接合の接合計圧よりも低いが、案4回に示す様に、ゲート絶縁裏の一郎が、半等体変項回路のゲート絶縁裏となり、ゲート被壊電圧が低いため、特電破壊保護回路として利用できなかった。

すなわち、第4図に示すように、保護会子下:
は、ココス酸化球41、ドレイン42およびソース43のN 一層を有するP型S i 番返44上に、ゲート連接線45を介してポリS i 相(ゲート電低)46が配設され、そのゲート電域上と、ド・暦42。43上に、それぞれコンタクトボール47.48。49を有する白足S G 積50 か被 層され、さらに発力したといる。

ゲート電極が素子分離池路線上でのみ少なくとも ソースとオーバーラップした構造とし、ドレイン とゲートを端子パッドと電気的に伝統し、しかも ソースを電源あるいは、接地と電気的に接続する ことにより、ゲート被壊耐圧が高く、かつトラン ジスタの電流駆動能力を十分に利用できる様にし たものである。

(お)変変例

以下図に示す実施例に基づいてこの発明を辞述 する。なお、これによってこの発明は落足を受け るものでなはい。

第1、2回において、素子分離地域裏をゲート 複様原に利用したMOSトランジスタ型の静電破 域保護素子Pェは、P型Si 密板3と、この基板 と22タイプの導電型のN*ウエルを用いて形成さ れたドレイン1、4と、同じくN*ウエルを用い て形成されたソース2、5と、ポリSiのゲート 電医6と、ゲート絶縁展であるロコス裏7とから 主としてなる。

更に、ソース2.5およびドレイン1.4がロ

(二)浅温を解決するための手及および作用

利展を扱う。 対象を与り、 では、 ののののでは、 のののでは、 ののでは、 の

すなわら、この発明は、素子分離絶縁感がゲート継縁限となり、半導体系数回路中のゲート電極 層がゲート電極となる存生トランジスタを利用し、 ソース例函数層を業子分離絶縁膜下にも形成し、

コス領下で、ゲート電振6とオーバーラップしている。 さうに、上記P型S i 慈阪3上に、全面に、BPS G 減 8 が設度され、N 質 4 、5 に通ずるコンタクトホール9 およびゲート電極6 に通ずるコンタクトホール1 0を育し、これらコンタクトホール1 0を育し、これらコンタクトホール9、1 0を介して入1 - S i の金属配換用1 i が賃賃され、その一端が端半の方向(図示りで示す失句方向)に延迟され、他端が図示とで示す矢句方向で接地されている。

この裏宮例のものは、MOSトランジスタ型の 保護スチド。のソース2.5、ドレイン1.4と、 MOSトランジスタ型の保護素子ド。のPolr-Siゲート電低をとからなっており、ドレイン拡散音が よびソース拡散層がロコス酸化原ででオーバーラップする構成にし、特に、N*ウエルI.2を 保護素子のソース、ドレイン拡散層として利用することにより、従来のCMOS集後回路の製造工程数と増加させることなく素子を形成できる。

さらに、ゲート、ドレインは端子に、ソースは

特別平4-68575 (3)

院区、第2回は第1回におけるA-A線矢視図、 接地に重気的に接続されていることから、端子に 第3回および第4回はそれぞれ従来例を赤す構成 袋明図である。

- 1、4……ドレイン拡散層。
- 2.5……ソース拡放暦、
- 3 …… P 型 S I 番板、
- 8 ……ゲート電板、7 ……ロコス酸化族、
- 8……日PSG膜、
- g.i0……コンタクトホール、
- 1 […… Al-Siの金属記録歴。

近の胎理気が印放された場合、ゲート電圧が上昇 し、PN供合とゲート紀録展が破壊する前にトラ ンジスタがロNL、計電気を接比へ送すことがで き、ゲート破垣のほこうない余子を作成できる。 (へ)発明の効果

以上のようにこの発明によれば、鬼子分離降縁 僕がゲート絶縁波となり、半導体集役団路中のゲ ート電気度がゲート電優となる寄生トランジスタ を利用し、保護素子のソース側拡散暦を素子分離 絶縁酸下にも形成し、MOSトランジスタのゲー ト電话が煮子分無絶縁模上でのみソースとオーバ ーラップした構造とし、MOSトランジスタのド レインとゲートを結子パッドと電気的に接続し、 しかもMOSトランジスタのソースを電源あるい は、接地と電気的に接続することにより、ゲート 敬禄對圧が高く、かつトランジスタの 電流駆動能 力を向上できる効果がある。

4.四面の簡単な説明

第1図はこの発明の一実施例を示す金体機成説

2 网

