

Examen – Théorie des graphes¹ Session 1, vendredi 13 janvier 2023

Documents autorisés : 1 page A4 recto-verso manuscrite

Durée: 1h30

▷ Exercice 1. (3 points) On considère le flot dans le réseau de la figure 1.

FIGURE 1 – Flot dans le réseau; l'étiquetage d'un arc a est f(a)/c(a) = valeur du flot sur l'arc/valeur de la capacité sur l'arc.

- **1.1.** On considère la coupe $X=\{s,a,b,c\}$ et $\bar{X}=\{d,e,p\}$. Quelle est la capacité de cette coupe ?
- $c(X, \bar{X}) = 10.$
- **1.2.** Quelle est la valeur de ce flot?
- ▶ $\omega(f) = 10$.
- 1.3. Le flot est-il maximum (on justifiera la réponse)?
- ightharpoonup Oui car $c(X, \bar{X}) = \omega(f)$.
 - 1. Un corrigé sera mis sous Moodle dans la journée

 \triangleright **Exercice 2.** (3 points) On considère la matrice suivante qui représente la matrice d'adjacences d'un graphe non orienté G:

$$M = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

2.1. Représentez graphiquement ce graphe.

Figure 2 – Représentation graphique du graphe de matrice d'adjacences M.

- **2.2.** À quoi correnspondent les nombres dans M^k ?
- ightharpoonup Dans $M^k,\,m^k_{ij}$ est le nombre de chemins de longueur k qui connectent le sommet i au sommet j.
- \triangleright **Exercice 3.** (5 points) Soit G un graphe simple ayant n sommets et n-1 arêtes qui n'est pas un arbre. On suppose qu'un sommet isolé est un arbre trivial.
 - **3.1.** Démontrez que G n'est pas connexe.
 - \blacktriangleright On procède par l'absurde. Supposons que G soit connexe. Puisque G n'est pas un arbre, il possède un cycle. Mais alors il a au moins n arêtes. D'où la contradiction.
 - **3.2.** Démontrez que G possède une composante connexe qui est un arbre.
 - ▶ Soit G_1, \ldots, G_p , les $p \ge 2$ composantes connexes de G et n_1, \ldots, n_p le nombre de sommets dans ces composantes connexes. On a $n = n_1 + \cdots + n_p$. Supposons maintenant qu'aucune composante connexe ne soit un arbre alors le nombre d'arêtes dans G_i est d'au moins de n_i et donc le nombre d'arêtes de G est d'au moins $n_1 + \cdots + n_p = n$. D'où la contradiction.

- **3.3.** Démontrer que G possède une composante connexe qui n'est pas un arbre.
- ▶ On procède comme dans la question précédente, mais on suppose que toutes les composantes connexes sont des arbres. Alors le nombre d'arêtes dans G est de $(n_1 1) + \cdots + (n_p 1) < n 1$. D'où la contradiction.
- **3.4.** Démontrer que si G possède exactement deux composantes connexes, alors celle qui n'est pas un arbre possède exactement un cycle.
- ▶ Ici p = 2. Si la première composante connexe est un arbre elle possède $n_1 1$ arêtes. Par suite la deuxième composante connexe, qui n'est pas un arbre, possède $(n-1) (n_1 1) = n_2$ arêtes. On en déduit que cette deuxième composante connexe est un arbre auquel on a ajouté exactement 1 arête. L'ajout de cette arête à l'arbre crée un cycle et 1 seul.
- Exercice 4. (4 points) Une grille (carrée) de sudoku est composée de 9 sous-grilles carrées de 9 cases chacune. Le jeu consiste, à partir d'une grille partiellement remplie avec des chiffres de 1 à 9, à la compléter de sorte que chaque rangée (ligne et colonne) et chaque sous-grille contiennent exactement une fois chacun des 9 chiffres. On s'intéresse ici à la construction d'une telle grille.
 - **4.1.** Modéliser ce problème à l'aide d'un graphe.
 - \blacktriangleright On modélise cette question par un graphe G à n=81 sommets (les cases); les arêtes relient deux sommets s'ils sont sur une même rangée ou dans une même sous-grille. Il s'agit d'un problème de coloration où les chiffres jouent le rôle des couleurs.
 - **4.2.** Quel est de degré de chaque sommet du graphe.
 - ▶ Chaque sommet est relié à 8+8+4=20 sommets, donc $\delta(v)=20$ pour tous les sommets.
 - **4.3.** Une telle grille existe. À quelle quantité correspond le nombre 9 de chiffres dans la théorie des graphes.
 - ▶ Les sous-grilles où les rangées sont des cliques à 9 sommets. Par suite le nombre chromatique est supérieur ou égale à 9. Comme une telle grille existe, ce nombre chromatique est inférieur ou égal à 9. Par suite c'est exactement 9.
- ▶ Exercice 5. (5 points) Le but de cet exercice est de démontrer par récurrence sur le nombre d'arêtes le
 - **Théorème 1** (Première partie du théorème de Mantel). Si G est un graphe à n sommets sans triangle (c'est-à-dire sans clique d'ordre 3), alors il a au plus $n^2/4$ arêtes.
 - **5.1.** Soit G est un graphe à n sommets sans triangle et $m \ge 1$ arêtes. Soit $\{u, v\}$ une arête dans ce graphe G. Montrez que $\delta(u) + \delta(v) \le n$.
 - ▶ Puisque u et v n'ont pas de voisin commun car il n'y a pas de triangle dans G, on a trivialement $\delta(u) + \delta(v) \leq n$.
 - 5.2. Démonter par récurrence sur le nombre d'arêtes le théorème.

 \blacktriangleright Le théorème est trivialement vrai pour n=1 et n=2.

On peut donc supposer que le nombre de sommets est supérieur ou égale à 3. Soit maintenant un graphe à $n \ge 3$ sommets.

- Le théorème est vrai pour le nombre d'arêtes égale à 0 ou 1.
- Soit maintenant un graphe à $n \geq 3$ sommets et $m \geq 1$ arêtes et soit $\{u,v\}$ une arête dans le graphe G. Si on supprime les sommets u et v, nous obtenons un graphe sans triangle à n-2 sommets, qui par hypothèse de récurrence a au plus $(n-2)^2/4$ arêtes. Ainsi, le nombre d'arêtes du graphe de départ est inférieur ou égal à $(n-2)^2/4+n-1=(n^2/4)$. On ajoute au nombre d'arêtes du graphe à n-2 sommets le nombre d'arêtes adjacentes aux sommets u et v qui est $\delta(u)+\delta(v)-1$ (dans $\delta(u)+\delta(v)$ l'arête $\{u,v\}$ est comptée 2 fois).