OPTIMISING ACCURACY IN CREDIT RISK PREDICTION

Evaluating Supervised and Unsupervised Learning Techniques for Credit Classification and Credit Scoring Group 9: Zhong Zhu Chen, He James, Lee Melisa, Liu Mingcheng, Syarwina Ridwan, Nur Diyanah Binte Hasan Malik

INTRODUCTION

You can enter a subtitle here if you need it

Optimising Accuracy in Credit Risk Prediction

Evaluating Supervised and Unsupervised Learning Techniques for Credit Classification and Credit Scoring

Dataset Description

- Credit risk crucial in loan approvals, interest rates
- Dataset from Kaggle with real-world application data, delinquency records
- Multiple features (education, income, etc.)

Motivation

- 2008 Financial Crisis linked to poor credit risk assessment
- Early identification of high-risk applicants crucial
- Reduce defaults, improve financial decisions

EXPLORATORY DATA ANALYSIS

You can enter a subtitle here if you need it

Credit Data – Features

Original Features:

- ID: Identification for each Customer
- Months_Balance: Month data was recorded on
- Status: Degree of credit delinquency

Feature Engineering:

- open_month: The month when credit account was opened
- end_month: The latest month or month when credit account was closed
- window: The total number of months the credit account was active for

Credit Data – Credit Definition

- Original Credit Status (8 different categorisations):
 - o '0': 1-29 days past due
 - o `1`: 30-59 days past due
 - o **'2':** 60-89 days overdue
 - o '3': 90-119 days overdue
 - o **'4':** 120-149 days overdue
 - o `5`: >150 days overdue/bad
 debts/write-offs
 - o `C`: Paid off that month
 - o `X`: No loan for the month
- Simplify credit categorisation into 'Good' or 'Bad' and find ideal definition of 'Bad Credit'
- Final 'Bad Credit' definition
 - o Credit Status: [2, 3, 4, 5]
 - Distribution: 1.5% of Dataset (vs2.54% of FRED last 10Y average)

Credit Data - Observation Window Testing

- Definition: Number of months the credit card account was active for
- Motivation: If the active window is too short, the model may lack sufficient reliability in in determining credit risk

Credit Data – Observation Window Testing

- Observe the number of months it took to observe the customer's first delinquency.
- Identify window period where most customers would have revealed that they are 'Bad Credit' (Recall: 'Bad Credit' defined as customers with delinquencies >60 days')

Credit Data - Vintage Analysis

- Analyse temporal/seasonal nature of cohort-based credit defaults based on <u>account</u> opening month (LHS) or based on <u>month data was recorded (LHS)</u>
- RHS Plot: Regular peaks observed every few months indicates the potential usefulness of open_month feature
- LHS Plot: Decreasing trend in percentage or delinquency but relatively constant absolute delinquency numbers indicates possible redundancy of months_balance feature

Applications Data - Feature Engineering

- Derived age, employment duration, income per family member
- Created employment-age ratio to reflect stability

$$AGE = \left\lfloor \frac{-DAYS_BIRTH}{365} \right\rfloor \qquad employment_age_ratio = \begin{cases} 0 & \text{if AGE} = 0 \\ \frac{YEARS_EMPLOYED}{AGE} & \text{otherwise} \end{cases}$$

$$\mbox{YEARS_EMPLOYED} = \begin{cases} 0 & \mbox{if DAYS_EMPLOYED} \geq 365243 \\ \left\lfloor \frac{-\mbox{DAYS_EMPLOYED}}{365} \right\rfloor & \mbox{otherwise} \end{cases}$$

$$married = \begin{cases} 1 & \text{if CNT_FAM_MEMBERS} - \text{CNT_CHILDREN} - 1 = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$income_per_family_member = \frac{AMT_INCOME_TOTAL}{CNT_FAM_MEMBERS}$$

Applications Data - Credit Score Distribution

- Right-skewed: Most users scored 0.6-1.0 (few delinquencies)
- < 0.4 scores indicate high-risk applicants

Applications Data - Categorical Insights

- Majority: Secondary education, working individuals
- Top occupations: Sales, labor, core staff
- 31% with unknown occupation → imputed

Applications Data - Correlation Findings

- Positive: Age, years employed, employment-age ratio
- Weak: Income → not a strong standalone predictor

SUPERVISED LEARNING

You can enter a subtitle here if you need it

Data Preprocessing - Credit Scoring with Exponential Decay

- Credit score decreases exponentially with increasing severity of delinquency (STATUS).
- Higher scores are assigned to less severe delinquencies.
- Mean score per user is computed to summarize overall creditworthiness
- months is duration of financial history, serving as a proxy for credit exposure over time

Credit Score =
$$e^{-\lambda \cdot \text{STATUS}}$$

$$ext{Mean Score}_{ ext{user}} = rac{1}{n} \sum_{i=1}^n e^{-\lambda \cdot ext{STATUS}_i}$$

months = Number of months of credit history available

Data Preprocessing - Dataset Merging + Cleaning & Encoding

Dataset Merging:

- Merged credit + application data → ~32K valid records
- Credit history window added (duration of records)

Cleaning & Encoding:

- Missing occupations imputed as "Unknown"
- Label encoding (binary), one-hot for multi-category features

Data Preprocessing - Feature Selection

Lasso regression selected 40+ important features

Random forest confirmed key predictors; age, income, credit history

Data Preprocessing - Dealing with Status 'C'/'X'

When transforming STATUS to a credit score: credit_score = exp(-STATUS), STATUS 'C' and 'X' are viewed as the same as STATUS 0.

C/X status	smogn	RMSE	MAE	R2
0	0	0.0050	0.0300	0.1338
0	1	0.0166	0.0822	0.5425
1	0	0.0020	0.0176	0.1353
1	1	0.0091	0.0544	0.5436

Data Preprocessing - SMOGN

To handle the imbalance issue, we applied smogn to the dataset. (Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise)

Model performance with smogn data sees a distinct improvement in all RMSE, MAE, and R² scores.

C/X status	smogn	RMSE	MAE	R2
0	0	0.0050	0.0300	0.1338
0	1	0.0166	0.0822	0.5425
1	0	0.0020	0.0176	0.1353
1	1	0.0091	0.0544	0.5436

Evaluation metrics

- 1. RMSE = $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i \widehat{y_i})^2}$,--how well the model fits overall
- 2. MAE = $\frac{1}{n}\sum_{i=1}^{n}|y_i-\widehat{y_i}|$, less sensitive to outliers than RMSE

3.
$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}$$
 --how much of the variability is explained

Without smogn, all scores are low. ->Focus on R²

C/X status	smogn	RMSE	MAE	R2
0	0	0.0050	0.0300	0.1338
0	1	0.0166	0.0822	0.5425
1	0	0.0020	0.0176	0.1353
1	1	0.0091	0.0544	0.5436

Logistic Regression & Lasso Regression - Motivation & Definitions

Logistic Regression

- Assumes a linear relationship between the independent variables (features) and the dependent variable (target)
- Struggles with complex, nonlinear relationships

Lasso Regression

- Linear regression with the addition of an L1 regularization term
- Penalizes the absolute values of the regression coefficients
- Reduces complexity and avoids overfitting
- ➤ To establish a baseline predictive performance

Logistic Regression & Lasso Regression - Model Training

Data

- ❖ Standardized with standard scalar
- ❖ 30-70 test train split

Logistic Regression

LinearRegression() from sklearn

Lasso Regression

- LassoCV() with:
 - ➣ 5-fold internal cross-validation
 - max_iter=10000
 - ➤ random_state=42

Both cross validated with 5-fold K-Fold Cross-Validation

Logistic Regression & Lasso Regression - Residual Analysis

Homoscedasticity Check plots:

- Residuals scattered across the predicted values with no clear pattern.
 - The assumption of homoscedasticity (constant variance) holds.

Logistic Regression & Lasso Regression - Residual Analysis

Q-Q plots:

- Residuals greatly deviate from the red reference line.
 - ➣ Not normally distributed.
- Curve on the right side of the plot
 - Unaccounted complexities in the data, missing explanatory variables or non-linear patterns

Logistic Regression & Lasso Regression - Model Evaluation

- Consistent training and testing scores: no overfitting.
- ♦ Low R²: aren't capturing the datas' complexity.
 - ➤ Lack the ability to capture non-linear relationships in the data.
- ❖ An even lower R² for Lasso CV : might be penalizing important features too aggressively

	Train		Test		cv					
Model\metrics	RMSE	MAE	R²	RMSE	MAE	R²	RMSE	MAE	R²	Note
Linear regression	0.1403	0.0711	0.0190	0.1391	0.0696	0.0189	0.1404	0.0712	0.0166	Underfit
Lasso	0.1403	0.0710	0.0190	0.1391	0.0696	0.0188	0.1416	0.0724	0.0002	Underfit

Decision Tree - Motivation & Definitions

Decision Tree

- Split the data into subsets based on feature values
- Each node represents a decision rule, and leaves represent predictions
- ❖ Intuitive and flexible
- Can overfit if not properly pruned or regulated

Decision Tree - Model Training

Trained with DecisionTreeRegressor()

- ❖ Random State 42
- ❖ RandomizedSearchCV 5-fold cross validation over
 - max_depth: [5, 10, 15, 20, None],
 - min_samples_split: [2, 5, 10],
 - min_samples_leaf: [1, 2, 4],
 - max_features: ['sqrt', 'log2', None]
- ❖ Optimized separately for: RMSE, MAE, and R²
- ❖ Selected best parameters for evaluation

Decision Tree - Tuning with Cross Validation

- ❖ High R² value
- ♦ Lower R² value (0.3452)
- Disparity between training and testing performance
- Results from Randomized Search CV indicate limiting tree depth and increasing samples per leaf can't provide much improvement in generalization.

Decision Tree – Randomized Search CV with a different data split							
Results\Optimizing Goal	Test	CV-RMSE	CV-MAE	CV- R²			
RMSE	0.1162	0.1139	0.116	0.1147			
MAE	0.0450	0.0428	0.0514	0.0525			
R ²	0.3452	0.3713	0.3473	0.3619			
min_samples_split	2	2	5	5			
min_samples_leaf	1	1	2	1			
max_features	None	log2	log2	log2			
max_depth	None	None	20	20			
Note		Best overall		Good fit			

Decision Tree - Model Evaluation

Without Hyperparameter Tuning:

- ❖ Perform exceptionally well on the training set
 - \succ High R² value: captures most of the variance in the training set.
- A significant drop in performance on testing:
 - ► Lower R² value: struggles to generalize on unseen data.
 - Overfitting

	Decision Tree							
Metrics	train	test	CV-RMSE	CV-MAE	CV- R²			
RMSE	0.0309	0.118	0.1074	0.1127	0.1074			
MAE	0.0047	0.0455	0.0401	0.0537	0.0401			
R ²	0.9524	0.2948	0.4149	0.3563	0.4149			
Note	Ove	erfit	Good fit		Good fit			

Decision Tree - Model Evaluation

With Hyperparameter Tuning:

- Strategies like limiting tree depth and increasing the minimum samples per leaf can help reduce overfitting.
- ❖ Slight improvement: Other measures were needed for generalization.

	Decision Tree								
Metrics	train	train test CV-RMSE CV-MAE CV- R2							
RMSE	0.0309	0.118	0.1074	0.1127	0.1074				
MAE	0.0047	0.0455	0.0401	0.0537	0.0401				
R ²	0.9524	0.2948	0.4149	0.3563	0.4149				
Note	Ove	erfit	Good fit		Good fit				

Decision Tree - Residual Analysis

- ❖ A wider spread for the test residuals (orange)
- Q-Q plot for the train set fits much better than the test one
 - > Overfit
- Q-Q plots have Deviations at the tail:
 - more extreme values than expected under normality.

Decision Tree - Residual Analysis

Homoscedasticity Check plots:

- A noticeable pattern where the residual variance changes as the predicted values increase
 - No uniform variance (homoscedasticity)

Decision Tree and Random Forest models do not rely on the assumption of homoscedasticity.

In fact, it can indicate that the models are capturing non-linear relationships or complex patterns within the dataset.

Random Forest - Motivation & Definitions

Random Forest

- An ensemble model that builds multiple decision trees and combines their predictions.
- Reduce overfitting by aggregating results.
- Perform well with complex, high-dimensional data.

Random Forest - Model Training

Trained with RandomForestRegressor()

- ❖ Random State 42
- RandomizedSearchCV 5-fold cross validation over
 - max_depth: [5, 10, 15, 20, None],
 - min_samples_split: [2, 5, 10],
 - min_samples_leaf: [1, 2, 4],
 - max_features: ['sqrt', 'log2', None]
- ❖ Optimized separately for: RMSE, MAE, and R²
- ❖ Selected best parameters for evaluation

Random Forest - Model Evaluation

- ❖ Higher R² value in testing:
 - ➤ better generalization to unseen data compared with Decision Tree.
- ❖ Difference in performance between training and testing sets:
 - > Still overfitting

	Random Forest							
Metrics	train	test	CV-RMSE	CV-MAE	CV- R²			
RMSE	0.0423	0.0856	0.0917	0.0914	0.0956			
MAE	0.0179	0.0409	0.0474	0.0473	0.0497			
R ²	0.911	0.6286	0.5738	0.5762	0.5372			
Note	Best o	overall		Good fit				

Random Forest - Model Evaluation

- Minor improvements with tuning:
 - > Reasonably robust
 - ➤ A potential plateau in performance gains, might require further regularization or feature selection

	Random Forest							
Metrics	train	test	CV-RMSE	CV-MAE	CV- R²			
RMSE	0.0423	0.0856	0.0917	0.0914	0.0956			
MAE	0.0179	0.0409	0.0474	0.0473	0.0497			
R²	0.911	0.6286	0.5738	0.5762	0.5372			
Note	Best o	overall		Good fit				

Random Forest - Tuning with Cross Validation

- Training results are slightly worse than the Decision Tree
- R² value in testing demonstrate generalization is stronger
- Disparity between training and testing sets
- Potential Plateau for performance gains

Random Forest - Randomized Search CV with a different data split							
Results\Optimizing Goal	Test	CV-RMSE	CV-MAE	CV- R²			
RMSE	0.089	0.0941	0.0943	0.0924			
MAE	0.0416	0.0478	0.0481	0.0451			
R²	0.616	0.5707	0.5691	0.5861			
min_samples_split	2	10	5	5			
min_samples_leaf	1	1	2	2			
max_features	None	None	sqrt	None			
max_depth	None	None	None	None			
Note	Best overall			Good fit			

Random Forest - Residual Analysis

- Smaller residuals than Decision Tree:
 - > better performance

Q-Q plot:

- Deviations at the tail:
 - more extreme values than expected under normality.
- ❖ Heavy-tailed residuals:
 - ➤ outliers or data complexity.

LightGBM - Motivation & Definitions

- ❖ A gradient boosting model
- Create decision tree-based ensembles
- Features leaf-wise growth and flexibility with hyperparameters
- Designed for speed and scalability
- Capable of handling large datasets with many features while providing accurate predictions

LightGBM - Training and Tuning

- ❖ The hyperparameter tuning was done through GridSearchCV on the grids shown in the table.
- The grid was adjusted according to the best parameters found in the first grid.

params	adjusted grid	previous grid
learning rate	[0.35, 0.4, 0.45]	[0.05, 0.1, 0.2, 0.3, 0.4, 0.5]
num_of_leaves	[550,575,600,625,650,675]	[255,300,400,511,600,700]
data in leaf	[5, 10, 20, 50]	[5, 10, 20, 50]
feature fraction	[0.8, 1.0]	[0.6, 0.8, 1.0]
bagging fraction	[0.8, 1.0]	[0.6, 0.8, 1.0]
bagging freq	[5,10]	[5,10]
max_depth	[-1, 5]	[-1, 5, 10]
boosting type	['dart']	['gbdt', 'rf', 'dart']

LightGBM -Training and Tuning

- overall, the best parameters are as indicated in the 4th column.
- ❖ The parameters in the 5th column differs from the 4th in lr only
 - Minor difference in performance

	LightGBM-model evaluation					
params	learning rate	0.4	0.4	0.35		
	num_of_leaves	600	600	600		
	data in leaf	20	5	5		
	feature fraction	1	0.8	0.8		
	bagging fraction	1	1	1		
	bagging freq	5	5	5		
	max_depth	-1	-1	-1		
	boosting type:	dart	dart	dart		
cv	R²	0.5886	0.6060	0.6221		
Train	RMSE	0.0009	0.0009	0.0009		
	MAE	0.0059	0.0054	0.0056		
	R²	0.9536	0.9538	0.9538		
Test	RMSE	0.0072	0.0068	0.0068		
	MAE	0.0412	0.0375	0.0375		
	R²	0.6375	0.6595	0.6585		
Note			Best overall	Good fit		

LightGBM - Residual Analysis

- Close-to-zero residual means on both sets:
 - making predictions
 with minimal bias.
- The relatively low variance on the training set:
 - consistently accurate on the training data.
- Notably higher variance on the testing set:
 - predictions on unseen
 data are less
 consistent
 - ➤ slight overfitting.

Train Mean	0.042%	Train Variance	0.092%
Test Mean	-0.094%	Test Variance	0.675%

LightGBM - Feature Importance Analysis

- Made better use of features compared with Lasso
- Top features:
 MONTHS_BALANCE, DAYS_BIRTH,
 DAYS_EMPLOYED and income
 features,
 - in accordance with that
 of the Random Forest
 model.

LightGBM - Feature Importance Analysis

- Train the model on a dataset with selected feature: The performance is slightly worse.
 - > Features all contain more or less useful information
 - Contribution may be negligible when considering the cost

	metrics	scaled	scaled +top18	scaled +top9
Train	RMSE	0.0009	0.0009	0.0009
	MAE	0.0054	0.0055	0.0057
	R ²	0.9538	0.9538	0.9527
Test	RMSE	0.0068	0.0068	0.0073
	MAE	0.0375	0.0377	0.0398
	R ²	0.6573	0.6568	0.6333

LightGBM -Model Evaluation

- Better than the Random Forest model:
 - ➤ Much Better RMSE and MAE on the train set.
 - Much Better RSME on the test set and slightly improved MAE.
 - ➤ Higher R² on the train & test set

	LightGBM-model evaluation					
params	learning rate	0.4	0.4	0.35		
	num_of_leaves	600	600	600		
	data in leaf	20	5	5		
	feature fraction	1	0.8	0.8		
	bagging fraction	1	1	1		
	bagging freq	5	5	5		
	max_depth	-1	-1	-1		
	boosting type:	dart	dart	dart		
cv	R²	0.5886	0.6060	0.6221		
Train	RMSE	0.0009	0.0009	0.0009		
	MAE	0.0059	0.0054	0.0056		
	R²	0.9536	0.9538	0.9538		
Test	RMSE	0.0072	0.0068	0.0068		
	MAE	0.0412	0.0375	0.0375		
	R²	0.6375	0.6595	0.6585		
Note			Best overall	Good fit		

LightGBM -Model Evaluation

'DART'-Dropouts meet Multiple Additive Regression Trees.

- Address
 Over-specialization:
 - trees added later in boosting focus too narrowly on specific instances
- Randomly drop trees during training
 - Encourages the model
 to rely on a broader
 set of trees,
 - improve generalization and reduce overfitting.

	LightGBM-model evaluation					
params	learning rate	0.4	0.4	0.35		
	num_of_leaves	600	600	600		
	data in leaf	20	5	5		
	feature fraction	1	0.8	0.8		
	bagging fraction	1	1	1		
	bagging freq	5	5	5		
	max_depth	-1	-1	-1		
	boosting type:	dart	dart	dart		
cv	R²	0.5886	0.6060	0.6221		
Train	RMSE	0.0009	0.0009	0.0009		
	MAE	0.0059	0.0054	0.0056		
	R²	0.9536	0.9538	0.9538		
Test	RMSE	0.0072	0.0068	0.0068		
	MAE	0.0412	0.0375	0.0375		
	R²	0.6375	0.6595	0.6585		
Note			Best overall	Good fit		

LightGBM - Model Evaluation

- clear difference
 between training and
 testing sets:
 - the overfitting
 issue still
 exists.
- Improvement for hyperparameter tuning is negligible
 - ➤ a potential
 plateau in
 performance gains.

	LightGBM-model evaluation					
params	learning rate	0.4	0.4	0.35		
	num_of_leaves	600	600	600		
	data in leaf	20	5	5		
	feature fraction	1	0.8	0.8		
	bagging fraction	1	1	1		
	bagging freq	5	5	5		
	max_depth	-1	-1	-1		
	boosting type:	dart	dart	dart		
cv	R²	0.5886	0.6060	0.6221		
Train	RMSE	0.0009	0.0009	0.0009		
	MAE	0.0059	0.0054	0.0056		
	R²	0.9536	0.9538	0.9538		
Test	RMSE	0.0072	0.0068	0.0068		
	MAE	0.0412	0.0375	0.0375		
	R²	0.6375	0.6595	0.6585		
Note			Best overall	Good fit		

Supervised Model Performance Summary

Linear Models (Linear, Lasso):

- Simple, interpretable baselines
- Consistent RMSE but poor R²
- Weak at modeling non-linearities

Tree-Based Models (DT, RF):

- Captured feature interactions better
- Random Forest improved generalization over Decision Tree

LightGBM:

- Best R², efficient training with DART boosting
- Slight overfitting observed → potential performance plateau

Future Directions:

- Explore richer features
- Try hybrid/ensemble models (e.g., XGBoost)

UNSUPERVISE D LEARNING

You can enter a subtitle here if you need it

Unsupervised Preprocessing – Overview

- 1. Apply Predefined definition of bad credit
 - o Outer merged credit and applications dataset together
 - Label encoded categorical values
 - o Binarised credit_status with bad credit = 1
- 2. Check for missing data
 - Dropped 25.8% of rows with missing data
- 3. Remove duplicate IDs to reduce class imbalance
 - Filtered out duplicate IDs
 - Verified default proportion remained unchanged after transformation (1.689% 'Bad Credit')
- 4. Scaling data

K-Means – Motivation & Definitions

K-Means

- Groups similar data points together based on feature similarity
- Partition the dataset into k distinct, non-overlapping clusters

Motivations:

- Centroid-based clustering
- Scalability and computational efficiency
- Effective on scaled, continuous data
- Ease of evaluation and hyperparameter tuning

Steps:

- Select k cluster centroids (hyperparameter tuning)
- Assign each data point to the nearest centroid
- Update centroids based on the mean of assigned points
- Repeat the process until convergence

K-Means - Preprocessing (PCA)

- **Dimensionality reduction**: very high dimension gives curse of dimensionality
- Noise reduction: filter noise by focusing on principal components that capture most variance

Tune n_components by Cumulative Explained Variance:

- Fit PCA incrementally from 1 component up to min(n_samples, n_features)
- Track the cumulative explained variance ratio at each step
- Decide a threshold of 90%

K-Means (Traditional Elbow Method) – Train & Tuning

kmeans = KMeans(n_clusters=k, n_init=n_init, init=init_method, random_state=run)

Hyperparameters:

- k: number of clusters (to be tuned)
- n_init=10 : number of times the algorithm will run with different starting centroid seeds
- init_method="k-means++": method for initializing the centroids. Typical method is "k-means++"
- Random_state(run)=42 : sets the seed for random number generator used during centroid initialization

k = 5

Use KneeLocator to detect the "elbow"

K-Means (Enhanced Elbow Method) – Train & Tuning

kmeans = KMeans(n_clusters=k, n_init=n_init, init=init_method, random_state=run)

Hyperparameters:

- k: number of clusters (to be tuned)
- n_init : number of times the algorithm will run with different starting centroid seeds (to be tuned)
- init_method="k-means++": method for initializing the centroids. Typical method is "k-means++"
- Random_state(run)=42 : sets the seed for random number generator used during centroid initialization

```
k = 5
n_init = 30
```


K-Means (Elbow Method) - Clustering

K-Means algorithm is expected to group customers with similar risk profiles into the same cluster.

Each cluster groups together customers with similar "risk" characteristics (e.g. delinquency days, etc.). Once we have run the K-Means, we can compute the centroid of each cluster in the original feature space and look at its average risk metrics. Then, sort these centroids by their mean risk score (by the some first principal components that most correlates with risk).

```
label_map = {
    0: "Very Stable",
    1: "Little Risk",
    2: "Moderate Risk",
    3: "High Risk",
    4: "Likely to Default"
}
```



```
Final K-Means trained with k=5, n_init=30
RiskProfile

Very Stable 15071
Moderate Risk 6127
Likely to Default 5818
High Risk 4840
Little Risk 4249
Name: count, dtype: int64
```

K-Means (Traditional Silhouette Method)

Best k = 6

A silhouette score indicates how similar a data point is to its own cluster as compared to other clusters.

Hyperparameters:

- k: no. of clusters
- n_init=10
- init_method="k-means++"
- Random_state(run)=42

K-Means (Enhanced Silhouette Method)

Best $n_{init} = 10$

The enhanced silhouette has an additional parameter, n_init , [5,10,20,30], which determines how many times the algorithm will run with different starting centroid seeds.

k and n init combination which results in the greatest silhouette score

- k: no. of clusters
- $n_{init} = [5, 10, 20, 30]$: no. of times algorithm runs with different starting centroid seeds
- init method="k-means++"
- Random_state(run)=42

K-Means (Silhouette Method) - Clustering

K-Means algorithm groups the customers into three different clusters based on their risk profiles.

The risk profiles are:

- Likely to Default
- Little Risk
- Very Stable

K-Means Evaluation

iForest – Motivation & Definitions

Motivation: Highly imbalanced nature of the dataset (1.7% 'Bad credit')' makes it naturally suited for an anomaly detection approach.

iForest Definition: Recursive construction of binary trees (isolation trees) choosing random features and splitting them using the feature minimum and maximum.

Core Intuition: Anomalies requires fewer splits to isolate because they differ significantly from rest of data.

How it works: Uses average path length h(x) from root node to terminating node to evaluate anomaly score s(x, n)

$$s(x,n)=2^{-rac{E(h(x))}{c(n)}}c(m)=egin{cases} rac{2H(m-1)-rac{2(m-1)}{n}}{c} & ext{for } m>2\\ 1 & ext{for } m=2\\ 0 & ext{otherwise} \end{cases}$$

iForest - Training and Tuning

Hyperparameters:

- n_estimators=200: The number of base estimators in the ensemble
- max_samples=1.0: Number of samples to use to train each tree
- contamination=c: The proportion of anomalies in the dataset (to be tuned)
- max_features=1.0: Proportion of features used when training each tree

Evaluation Metrics:

- Precision: TP/(TP+FP)
- Recall: TP/(TP+FN)
- Accuracy: (TP+TN)/Total Data
- F2 Score: $(1+\beta^2)$ * (Precision + Recall)/ $(\beta^2$ * Precision + Recall)

iForest - Base Model 1 (Contamination Tuning)

Hypothesis: Anomalies detected corresponds to 'Bad Credit' customers, as they represent a minority class and are more likely to exhibit behavioural patterns that deviate from the majority 'Good Credit' group Contamination range: [1.5% - 3.0%]

iForest - Model 2 (Autoencoders)

Hypothesis: Autoencoders can reduce data noise and improve model performance Number of Dimensions: [5 - 22]

iForest - Model 3 (Applying Feature Selection)

```
Features used: ['FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'AMT_INCOME_TOTAL',
'DAYS_BIRTH', 'MONTHS_BALANCE', 'NAME_EDUCATION_TYPE', 'NAME_HOUSING_TYPE',
'OCCUPATION_TYPE']
```


iForest - Model 4 (Using All Good Credit)

Hypothesis:

Training model on only good credit can improve extreme class imbalance and improve performance

Accuracy: 95.6%

Precision: 16.2%

Recall: 38.5%

F2 Score: 30.2%

Unsupervised Overall Evaluation

Criteria	Isolation Forest	K-means
F2 Score	30.2%	10.2%
Interpretability	Moderate — based on anomaly scores, harder to trace specific decisions	High — centroids are intuitive, but may not capture complex patterns
Efficiency	Training: O(t*m*logm)	Training: O(n*k*i*d)
	<pre>Inference: 0(t*logm)</pre>	Inference: O(k*d)

PROJECT EVALUATION

You can enter a subtitle here if you need it

Overall Evaluation

Model Evaluation Summary Table (✓ = Yes, X = No, ~ = Partial)

Criteria / Model	Linear Reg.	Lasso Reg.	Decision Tree	Random Forest	LightGBM	K-Means	Isolation Forest
Handles Non-linearity	X	X	✓	✓	✓	✓	~
Robust to Outliers	X	X	~	✓	√	X	√
Good Interpretability	1	1	1	~	~	X	X
Feature Importance Available	X	✓	✓	1	✓	X	X
Handles Target Imbalance	X	Х	X	~	✓	✓	✓
Scalable to Large Datasets	√	✓	×	4	✓	Х	4
Hyperparameter Tuning Required	X	✓	1	1	✓	✓	✓
Effective with High Dimensionality	✓	✓	×	1	✓	X	✓
Produces Usable Credit Score Output	✓	√	1	✓	√	X	×
/isual Interpretability Plots etc.)	✓	1	√	~	√	✓	✓

THANK YOU!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**