Discriminative Training I: Intro & PRO

April 3, 2014

$$\mathbf{e}^* = \arg \max_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{g})$$

$$= \arg \max_{\mathbf{e}} \frac{p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})}{p(\mathbf{g})}$$

$$= \arg \max_{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})$$

$$= \arg \max_{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})$$

$$\mathbf{e}^* = \arg \max_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{g})$$

$$= \arg \max_{\mathbf{e}} \frac{p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})}{p(\mathbf{g})}$$

$$= \arg \max_{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})$$

$$= \arg \max_{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) + \log p(\mathbf{e})$$

$$\mathbf{e}^* = \arg \max_{\mathbf{e}} p(\mathbf{e} \mid \mathbf{g})$$

$$= \arg \max_{\mathbf{e}} \frac{p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})}{p(\mathbf{g})}$$

$$= \arg \max_{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})$$

$$= \arg \max_{\mathbf{e}} p(\mathbf{g} \mid \mathbf{e}) \times p(\mathbf{e})$$

Does this look familiar? $\log p(e)$

$$= \arg \max_{\mathbf{e}} \left[\frac{1}{1} \right]^{\top} \left[\frac{\log p(\mathbf{g} \mid \mathbf{e})}{\log p(\mathbf{e})} \right]$$

$$\mathbf{w}^{\top} \qquad \mathbf{h}(\mathbf{g}, \mathbf{e})$$

The Noisy Channel

 $-\log p(\mathbf{g}|\mathbf{e})$

Improvement I:

change $\vec{\mathbf{w}}$ to find better translations

 $-\log p(\mathbf{g}|\mathbf{e})$ •

Improvement 2:

Add dimensions to make points separable

Linear Models

$$\mathbf{e}^* = \arg\max_{\mathbf{e}} \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e})$$

- Improve the modeling capacity of the noisy channel in two ways
 - Reorient the weight vector
 - Add new dimensions (new features)
- Questions
 - What features? h(g, e)
 - How do we set the weights?

Mann

beißt

Hund

x BITES y

Mann

beißt

Hund

x BITES y

Mann

beißt

man

bites

Hund

cat

Mann be

man

bite

Hund

cat

t

beißt

Hund

dog

Mann

heißt

man bite

Hund

dog

Mann

beißt

Hund

dog bite

man

Mann

man

beißt

bites

Hund

dog

Feature Classes

Lexical

Are lexical choices appropriate?

bank = "River bank" vs. "Financial institution"

Configurational

Are semantic/syntactic relations preserved? "Dog bites man" vs. "Man bites dog"

Grammatical

Is the output fluent / well-formed?

"Man bites dog" vs. "Man bite dog"

What do lexical features look like?

First attempt:

$$score(\mathbf{g}, \mathbf{e}) = \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e})$$
$$h_{15,342}(\mathbf{g}, \mathbf{e}) = \begin{cases} 1, & \exists i, j : g_i = Hund, e_j = cat \\ 0, & \text{otherwise} \end{cases}$$

But what if a cat is being chased by a Hund?

What do lexical features look like?

Latent variables enable more precise features:

$$score(\mathbf{g}, \mathbf{e}, \mathbf{a}) = \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$$

$$h_{15,342}(\mathbf{g}, \mathbf{e}, \mathbf{a}) = \sum_{(i,j) \in \mathbf{a}} \begin{cases} 1, & \text{if } g_i = Hund, e_j = cat \\ 0, & \text{otherwise} \end{cases}$$

Standard Features

Target side features

- log p(e) [n-gram language model]
- Number of words in hypothesis
- Non-English character count

Source + target features

- log relative frequency e|f of each rule $[\log \#(e,f) \log \#(f)]$
- log relative frequency f|e of each rule
 log #(e,f) log #(e)
- "lexical translation" log probability e|f| of each rule $[\approx \log p_{modell}(e|f)]$
- "lexical translation" log probability f|e of each rule [$\approx \log p_{modell}(f|e)$]

Other features

- Count of rules/phrases used
- Reordering pattern probabilities

Feature Locality

- Dynamic programming recombination assumes that features are "rule local"
 - The must have the same value independent of the other rules that are used around them
- Features that look at "large amounts of structure" are expensive to compute
- Language models are "medium sized" features

Why do this?

Table 2: Effect of maximum entropy training for alignment template approach (WP: word penalty feature, CLM: class-based language model (five-gram), MX: conventional dictionary).

		objective criteria [%]					subjective criteria [%]		
		SER	WER	PER	mWER	BLEU	SSER	IER	
	Baseline($\lambda_m = 1$)	86.9	42.8	33.0	37.7	43.9	35.9	39.0	
	ME	81.7	40.2	28.7	34.6	49.7	32.5	34.8	
	ME+WP	80.5	38.6	26.9	32.4	54.1	29.9	32.2	
	ME+WP+CLM	78.1	38.3	26.9	32.1	55.0	29.1	30.9	
	ME+WP+CLM+MX	77.8	38.4	26.8	31.9	55.2	28.8	30.9	

Discriminative

Parameter Learning

Hypothesis Space

Hypothesis Space

Preliminaries

We assume a decoder that computes:

$$\langle \mathbf{e}^*, \mathbf{a}^* \rangle = \arg \max_{\langle \mathbf{e}, \mathbf{a} \rangle} \mathbf{w}^\top \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$$

And K-best lists of, that is:

$$\{\langle \mathbf{e}_i^*, \mathbf{a}_i^* \rangle\}_{i=1}^{i=K} = \arg i^{\text{th}} - \max_{\langle \mathbf{e}, \mathbf{a} \rangle} \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$$

Standard, efficient algorithms exist for this.

Learning Weights

- Try to match the reference translation exactly
 - Conditional random field
 - Maximize the conditional probability of the reference translations
 - "Average" over the different latent variables

Problems

- These methods give "full credit" when the model exactly produces the reference and no credit otherwise
- What is the problem with this?

Cost-Sensitive Training

 Assume we have a cost function that gives a score for how good/bad a translation is

$$\ell(\hat{\mathbf{e}}, \mathcal{E}) \mapsto [0, 1]$$

- Optimize the weight vector by making reference to this function
 - We will talk about two ways to do this

K-Best List Example

K-Best List Example

- $0.8 \le \ell < 1.0$ $0.6 \le \ell < 0.8$ $0.4 \le \ell < 0.6$

Training as Classification

- Pairwise Ranking Optimization
 - Reduce training problem to binary classification with a linear model
- Algorithm
 - For i=1 to N
 - Pick random pair of hypotheses (A,B) from K-best list
 - Use cost function to determine if is A or B better
 - Create *i*th training instance
 - Train binary linear classifier

- $0.8 \le \ell < 1.0$ $0.6 \le \ell < 0.8$ $0.4 \le \ell < 0.6$ $0.2 \le \ell < 0.4$ $0.0 \le \ell < 0.2$

- $0.8 \le \ell < 1.0$

- $0.6 \le \ell < 0.8$ $0.4 \le \ell < 0.6$ $0.2 \le \ell < 0.4$ $0.0 \le \ell < 0.2$

- $0.8 \le \ell < 1.0$ $0.6 \le \ell < 0.8$ $0.4 \le \ell < 0.6$ $0.2 \le \ell < 0.4$ $0.0 \le \ell < 0.2$

 h_2

- $0.8 \le \ell < 1.0$ $0.6 \le \ell < 0.8$ $0.4 \le \ell < 0.6$ $0.2 \le \ell < 0.4$ $0.0 \le \ell < 0.2$

- $0.8 \le \ell < 1.0$

- 0.6 ≤ ℓ < 0.8
 0.4 ≤ ℓ < 0.6
 0.2 ≤ ℓ < 0.4
 0.0 ≤ ℓ < 0.2

- $0.8 \le \ell < 1.0$
- $0.6 \le \ell < 0.8$
- $0.4 \le \ell < 0.6$ $0.2 \le \ell < 0.4$ $0.0 \le \ell < 0.2$

$$0.04 < \ell < 0.6$$

•
$$0.2 \le \ell < 0.4$$

•
$$0.0 \le \ell < 0.2$$

Fit a linear model

Fit a linear model

K-Best List Example

- 0.8 ≤ ℓ < 1.0
 0.6 ≤ ℓ < 0.8
 0.4 ≤ ℓ < 0.6
 0.2 ≤ ℓ < 0.4
 0.0 ≤ ℓ < 0.2