Machine learning I, supervised learning: logistic regression

General classification problem

- $\mathcal{X} = \mathbb{R}^d$
- $ightharpoonup \mathcal{Y} = \{-1, 1\} \text{ or } \mathcal{Y} = \{0, 1\}.$
- $I(y,z) = 1_{y\neq z}$ ("0-1" loss)
- $ightharpoonup F = \mathcal{Y}^{\mathcal{X}}$

Problem

Optimizing on $F = \mathcal{Y}^{\mathcal{X}}$ is equivalent to optimizing in the set of subsets of \mathcal{X} .

We cannot differentiate on this hypothesis space and it is not clear how to regularize.

Using scikit

Exercice 1:

Use scikit to perform a logistic regression on the **digits** dataset. template : **logistic_regression/logistic_regression_digits.py**

Subsets

Exercice 2: Combinatorial problem

If we wanted to try all mappings in $\mathcal{Y}^{\mathcal{X}}$, if $|\mathcal{X}|=n$, how many mappings would there be?

Real-valued function

Instead of an application in $\mathcal{Y}^\mathcal{X}$, we will learn $g:\mathcal{X}\to\mathbb{R}$ and define $f(x)=\mathrm{sign}(g(x))$ with

$$sign(x) = \begin{cases} 1 \text{ if } x \ge 0 \\ -1 \text{ if } x < 0 \end{cases}$$

Risk

The risk (generalization error) of $f = sign \circ g$ writes :

$$R(g) = P(\operatorname{sign}(g(x)) \neq y)$$

$$= E \left[1_{\operatorname{sign}(g(x)) \neq y} \right]$$

$$= E \left[1_{yg(x) < 0} \right]$$
(1)

Several solutions

There might be many optimal maps g, i.e : such that $\operatorname{sign}(g(x)) = f^*(x)$ for all x. (Here, $f^*(x)$ is the Bayes predictor, which is the optimal predictor : it minimizes the generalization error (risque réel))

Margin based 0-1 loss function Φ_{0-1}

$$R(g) = E \left[1_{\operatorname{sign}(g(x)) \neq y} \right]$$

$$= E \left[1_{yg(x) < 0} \right]$$

$$= E \left[\Phi_{0-1}(yg(x)) \right]$$
(2)

Empirical risk minimization

The corresponding empirical risk writes:

$$\frac{1}{n} \sum_{i=1}^{n} \Phi_{0-1}(y_i g(x_i)) \tag{3}$$

Issue with this objective function?

- non-convex
- not continuous

Convex surrogate

Key idea : replace Φ_{0-1} by another function Φ that is easier to optimize (convexity) but still represents the correctness of the classification.

Natural question : but does minimizing the $\Phi\text{-risk}$ lead to a good "0-1" loss prediction? Answering this question requires an advanced study.

Most common convex surrogates

Définition

Logistic loss

$$\Phi(u) = \log(1 + e^{-u}) \tag{4}$$

With linear predictors $(g(x_i) = \langle \theta, x_i \rangle)$, this loss will lead to **logistic regression** (which is classification despite its name).

Most common convex surrogates

If $\mathcal{Y} = \{0,1\}$, \hat{y} is the prediction and y is the correct label, then we sometimes write :

$$I(\hat{y}, y) = y \log(1 + e^{-\hat{y}}) + (1 - y) \log(1 + e^{\hat{y}})$$
 (5)

(cross entropy loss)

Logistic function

Most common convex surrogates

Définition

Hinge loss

$$\Phi(u) = \max(1 - u, 0) \tag{6}$$

With linear predictors, this loss will lead to **Support vector** machines.

Définition

Squared hinge loss

$$\Phi(u) = (\max(1 - u, 0))^2 \tag{7}$$

Hinge loss

Logistic regression

- $ightharpoonup g(x) = \langle x, \theta \rangle = x^T \theta.$
- $f(x) = sign(\langle x^T \theta \rangle)$
- ▶ It can be seen as "linear regression applied to classification".

Application on a toy dataset

Application on a toy dataset

Logistic regression

In this section we use the setting $\mathcal{Y} = \{0, 1\}$.

► prediction :
$$\hat{y} = x^T \theta$$

$$I(\hat{y}, y) = y \log(1 + e^{-\hat{y}}) + (1 - y) \log(1 + e^{\hat{y}})$$
 (8)

(cross entropy loss)

Logistic regression estimator

If I is the logistic loss, it is defined as

$$\hat{\theta}_{logit} = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n I(x_i^T \theta, y_i)$$

Logistic regression

We can show that the logistic loss is stricly convex in θ :

$$\theta \mapsto y \log(1 + e^{-x^T \theta}) + (1 - y) \log(1 + e^{x^T \theta})$$
 (9)

This means that if we manage to fing θ that cancels the **gradient** of the empirical risk, θ is a global minimizer.

Sigmoid

Définition

Sigmoid function

$$\sigma: \mathbb{R} \to \mathbb{R}$$
.

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{10}$$

No closed-form solution

Since the loss is convex, to minimize it is sufficient to look for the cancellation of the gradient. However, the corresponding equation has no closed-form solution.

We thus need to use iterative algorithms (Gradient descent, Newton's method)

Practical usage of logistic regression

In practice, it is common practice to :

- ► regularize the logistic loss to avoid overfitting, for instance with a *L*2 penalty (as in ridge regression)
- use feature maps and classify with $\phi(x)$ instead of x.

Application to a simple 2D dataset.

Application to the digits dataset.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html

Data transformation (feature maps)

