EE263 Autumn 2015 S. Boyd and S. Lall

Dynamic interpretation of eigenvectors

- ▶ invariant sets
- ▶ complex eigenvectors & invariant planes
- ▶ left eigenvectors
- modal form
- ▶ discrete-time stability

Dynamic interpretation

suppose $Av=\lambda v,\ v\neq 0$ if $\dot x=Ax$ and x(0)=v, then $x(t)=e^{\lambda t}v$ several ways to see this, e.g.,

$$x(t) = e^{tA}v = \left(I + tA + \frac{(tA)^2}{2!} + \cdots\right)v$$
$$= v + \lambda tv + \frac{(\lambda t)^2}{2!}v + \cdots$$
$$= e^{\lambda t}v$$

(since
$$(tA)^k v = (\lambda t)^k v$$
)

Dynamic interpretation

- ▶ for $\lambda \in \mathbb{C}$, solution is complex (we'll interpret later); for now, assume $\lambda \in \mathbb{R}$
- \blacktriangleright if initial state is an eigenvector v, resulting motion is very simple always on the line spanned by v
- ▶ solution $x(t) = e^{\lambda t}v$ is called *mode* of system $\dot{x} = Ax$ (associated with eigenvalue λ)
- ▶ for $\lambda \in \mathbb{R}$, $\lambda < 0$, mode contracts or shrinks as $t \uparrow$
- ▶ for $\lambda \in \mathbb{R}$, $\lambda > 0$, mode expands or grows as $t \uparrow$

Invariant sets

a set $S\subseteq \mathbb{R}^n$ is invariant under $\dot{x}=Ax$ if whenever $x(t)\in S$, then $x(\tau)\in S$ for all $\tau\geq t$

 $\it i.e.$: once trajectory enters $\it S$, it stays in $\it S$ _

vector field interpretation: trajectories only cut into S, never out

4

Invariant sets

 $\text{suppose } Av = \lambda v \text{, } v \neq 0 \text{, } \lambda \in \mathbb{R}$

- ▶ line $\{ tv \mid t \in \mathbb{R} \}$ is invariant (in fact, ray $\{ tv \mid t > 0 \}$ is invariant)
- ▶ if $\lambda < 0$, line segment $\{ tv \mid 0 \le t \le a \}$ is invariant

Complex eigenvectors

suppose $Av=\lambda v,\ v\neq 0,\ \lambda$ is complex for $a\in\mathbb{C}$, (complex) trajectory $ae^{\lambda t}v$ satisfies $\dot{x}=Ax$ hence so does (real) trajectory

$$x(t) = \Re \left(a e^{\lambda t} v \right)$$

$$= e^{\sigma t} \begin{bmatrix} v_{\text{re}} & v_{\text{im}} \end{bmatrix} \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{bmatrix} \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}$$

where

$$v = v_{\rm re} + iv_{\rm im}, \quad \lambda = \sigma + i\omega, \quad a = \alpha + i\beta$$

- lacktriangle trajectory stays in *invariant plane* span $\{v_{
 m re},v_{
 m im}\}$
- $ightharpoonup \sigma$ gives logarithmic growth/decay factor
- \blacktriangleright ω gives angular velocity of rotation in plane

Dynamic interpretation: left eigenvectors

$$\text{suppose } w^{\mathsf{T}}A = \lambda w^{\mathsf{T}} \text{, } w \neq 0$$

then

$$\frac{d}{dt}(w^{\mathsf{T}}x) = w^{\mathsf{T}}\dot{x} = w^{\mathsf{T}}Ax = \lambda(w^{\mathsf{T}}x)$$

 $i.e., \ w^{\mathsf{T}}x$ satisfies the DE $d(w^{\mathsf{T}}x)/dt = \lambda(w^{\mathsf{T}}x)$

hence
$$w^{\mathsf{T}}x(t) = e^{\lambda t}w^{\mathsf{T}}x(0)$$

- ightharpoonup even if trajectory x is complicated, $w^{\mathsf{T}}x$ is simple
- ▶ if, e.g., $\lambda \in \mathbb{R}$, $\lambda < 0$, halfspace $\{ \ z \mid w^\mathsf{T}z \leq a \ \}$ is invariant (for $a \geq 0$)
- ▶ for $\lambda = \sigma + i\omega \in \mathbb{C}$, $(\Re w)^\mathsf{T} x$ and $(\Im w)^\mathsf{T} x$ both have form

$$e^{\sigma t} \left(\alpha \cos(\omega t) + \beta \sin(\omega t) \right)$$

7

Summary

- ightharpoonup right eigenvectors are initial conditions from which resulting motion is simple (i.e., remains on line or in plane)
- ▶ *left eigenvectors* give linear functions of state that are simple, for any initial condition

$$\dot{x} = \begin{bmatrix} -1 & -10 & -10 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} x$$

block diagram:

$$\mathcal{X}(s)=s^3+s^2+10s+10=(s+1)(s^2+10)$$
 eigenvalues are $-1,~\pm i\sqrt{10}$

9

trajectory with x(0) = (0, -1, 1):

left eigenvector associated with eigenvalue -1 is

$$g = \begin{bmatrix} 0.1 \\ 0 \\ 1 \end{bmatrix}$$

let's check $g^{\mathsf{T}}x(t)$ when x(0)=(0,-1,1) (as above):

eigenvector associated with eigenvalue $i\sqrt{10}$ is

$$v = \begin{bmatrix} -0.554 + i0.771\\ 0.244 + i0.175\\ 0.055 - i0.077 \end{bmatrix}$$

so an invariant plane is spanned by

$$v_{\rm re} = \begin{bmatrix} -0.554\\ 0.244\\ 0.055 \end{bmatrix}, \quad v_{\rm im} = \begin{bmatrix} 0.771\\ 0.175\\ -0.077 \end{bmatrix}$$

for example, with $x(0) = v_{\rm re}$ we have

Example: Markov chain

probability distribution satisfies p(t+1) = Pp(t)

$$p_i(t) = \text{Prob}(z(t) = i) \text{ so } \sum_{i=1}^n p_i(t) = 1$$

$$P_{ij} = \operatorname{Prob}(z(t+1) = i \mid z(t) = j)$$
, so $\sum_{i=1}^{n} P_{ij} = 1$ (such matrices are called *stochastic*)

rewrite as:

$$[1 \ 1 \ \cdots \ 1]P = [1 \ 1 \ \cdots \ 1]$$

i.e., $[1\ 1\ \cdots\ 1]$ is a left eigenvector of P with e.v. 1

hence $\det(I-P)=0$, so there is a right eigenvector $v\neq 0$ with Pv=v

it can be shown that v can be chosen so that $v_i \geq 0$, hence we can normalize v so that $\sum_{i=1}^n v_i = 1$

interpretation: v is an *equilibrium distribution*; i.e., if p(0)=v then p(t)=v for all $t\geq 0$

(if v is unique it is called the *steady-state distribution* of the Markov chain)

Modal form

suppose A is diagonalizable by T define new coordinates by $x=T\tilde{x}$, so

$$T\dot{\tilde{x}} = AT\tilde{x} \quad \Leftrightarrow \quad \dot{\tilde{x}} = T^{-1}AT\tilde{x} \quad \Leftrightarrow \quad \dot{\tilde{x}} = \Lambda\tilde{x}$$

Modal form

in new coordinate system, system is diagonal (decoupled):

trajectories consist of \boldsymbol{n} independent modes, i.e.,

$$\tilde{x}_i(t) = e^{\lambda_i t} \tilde{x}_i(0)$$

hence the name modal form

Real modal form

when eigenvalues (hence T) are complex, system can be put in *real modal form*:

$$S^{-1}AS = \operatorname{diag}(\Lambda_r, M_{r+1}, M_{r+3}, \dots, M_{n-1})$$

where $\Lambda_r = \operatorname{diag}(\lambda_1, \dots, \lambda_r)$ are the real eigenvalues, and

$$M_j = \begin{bmatrix} \sigma_j & \omega_j \\ -\omega_j & \sigma_j \end{bmatrix}, \quad \lambda_j = \sigma_j + i\omega_j, \quad j = r + 1, r + 3, \dots, n$$

where λ_j are the complex eigenvalues (one from each conjugate pair)

Real modal form

block diagram of 'complex mode':

Diagonalization

diagonalization simplifies many matrix expressions

e.g., resolvent:

$$\begin{split} (sI - A)^{-1} &= \left(sTT^{-1} - T\Lambda T^{-1} \right)^{-1} \\ &= \left(T(sI - \Lambda)T^{-1} \right)^{-1} \\ &= T(sI - \Lambda)^{-1}T^{-1} \\ &= T \operatorname{diag} \left(\frac{1}{s - \lambda_1}, \dots, \frac{1}{s - \lambda_n} \right) T^{-1} \end{split}$$

powers (i.e., discrete-time solution):

$$\begin{split} \boldsymbol{A}^k &= \left(T\Lambda T^{-1}\right)^k \\ &= \left(T\Lambda T^{-1}\right) \cdots \left(T\Lambda T^{-1}\right) \\ &= T\Lambda^k T^{-1} \\ &= T\operatorname{diag}(\lambda_1^k, \dots, \lambda_n^k) T^{-1} \end{split}$$

(for k < 0 only if A invertible, i.e., all $\lambda_i \neq 0$)

Diagonalization

exponential (i.e., continuous-time solution):

$$\begin{split} e^A &= I + A + A^2/2! + \cdots \\ &= I + T\Lambda T^{-1} + \left(T\Lambda T^{-1}\right)^2/2! + \cdots \\ &= T(I + \Lambda + \Lambda^2/2! + \cdots)T^{-1} \\ &= Te^\Lambda T^{-1} \\ &= T \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})T^{-1} \end{split}$$

Analytic function of a matrix

for any analytic function $f: \mathbb{R} \to \mathbb{R}$, *i.e.*, given by power series

$$f(a) = \beta_0 + \beta_1 a + \beta_2 a^2 + \beta_3 a^3 + \cdots$$

we can define f(A) for $A \in \mathbb{R}^{n \times n}$ (i.e., overload f) as

$$f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots$$

substituting $A = T\Lambda T^{-1}$, we have

$$f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots$$

$$= \beta_0 T T^{-1} + \beta_1 T \Lambda T^{-1} + \beta_2 (T \Lambda T^{-1})^2 + \cdots$$

$$= T (\beta_0 I + \beta_1 \Lambda + \beta_2 \Lambda^2 + \cdots) T^{-1}$$

$$= T \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) T^{-1}$$

Solution via diagonalization

assume A is diagonalizable consider LDS $\dot{x}=Ax,$ with $T^{-1}AT=\Lambda$ then

$$x(t) = e^{tA}x(0)$$

$$= Te^{\Lambda t}T^{-1}x(0)$$

$$= \sum_{i=1}^{n} e^{\lambda_i t}(w_i^{\mathsf{T}}x(0))v_i$$

thus: any trajectory can be expressed as linear combination of modes

Interpretation

- \blacktriangleright (left eigenvectors) decompose initial state x(0) into modal components $w_i^\mathsf{T} x(0)$
- $ightharpoonup e^{\lambda_i t}$ term propagates *i*th mode forward *t* seconds
- ▶ reconstruct state as linear combination of (right) eigenvectors

Application

for what x(0) do we have $x(t) \to 0$ as $t \to \infty$?

divide eigenvalues into those with negative real parts

$$\Re \lambda_1 < 0, \ldots, \Re \lambda_s < 0,$$

and the others,

$$\Re \lambda_{s+1} \geq 0, \dots, \Re \lambda_n \geq 0$$

from

$$x(t) = \sum_{i=1}^{n} e^{\lambda_i t} (w_i^{\mathsf{T}} x(0)) v_i$$

condition for $x(t) \to 0$ is:

$$x(0) \in \operatorname{span}\{v_1, \dots, v_s\},\$$

or equivalently,

$$w_i^{\mathsf{T}} x(0) = 0, \quad i = s + 1, \dots, n$$

(can you prove this?)

Stability of discrete-time systems

suppose A diagonalizable

consider discrete-time LDS
$$x(t+1) = Ax(t)$$

if
$$A = T\Lambda T^{-1}$$
, then $A^k = T\Lambda^k T^{-1}$

then

$$x(t) = A^t x(0) = \sum_{i=1}^n \lambda_i^t(w_i^\mathsf{T} x(0)) v_i \to 0 \quad \text{as } t \to \infty$$

for all x(0) if and only if

$$|\lambda_i| < 1, \quad i = 1, \dots, n.$$

we will see later that this is true even when A is not diagonalizable, so we have

 $\mbox{\bf fact:}\ x(t+1) = Ax(t)$ is stable if and only if all eigenvalues of A have magnitude less than one