### 한국 기온 데이터 Functional Principal Component Analysis



1조 정영욱 최예림 오희준 배현주



**01** 데이터 소개 및 시각화

02

Multivariate PCA

 $\mathbf{O}$ 

**Functional PCA** 







◆ 2018년 90개의 관측소에서 관측한 월별 기온 데이터 수집

데이터 출처: 기상자료개방포털 (https://data.kma.go.kr/cmmn/main.do)

#### Plot of Raw Data (검은색 선은 평균값)



#### 90개 관측소 위치



### 에이터 소개 및 시각화 Smoothing

### Smooth by Fourier basis expansion

: MSE를 통한 basis 개수 선정 (후보: 3,5,7,9,11)



| # basis | 3     | 5     | 7     | 9     | 11    |
|---------|-------|-------|-------|-------|-------|
| MSE     | 2.218 | 1.488 | 0.389 | 0.300 | 0.012 |

→ MSE의 값이 가장 크게 감소하는 지점인 7개의 basis 결정

◆ Smooth by Fourier basis expansion (# of basis : 7)





## 에이터 소개 및 시각화 Smoothing

◆ 1차 미분(First Derivative) Plot



2월 - 7월: 기온 증가

8월 - 1월: 기온 감소

# 에이터 소개 및 시각화 Smoothing

◆ 2차 미분(Second Derivative) Plot



1월 - 2월 / 6월 / 10월: 양의 가속도 → 3월 - 4월 / 7월 - 8월 / 12월: 음의 가속도 5월 / 11월: 0에 가까운 가속도

→ 대체적으로 1월에 기온이 빠르게 감소하고 5월에 온도가 가장 빠르게 상승한다.



## Multivariate PCA Scree Plot



#### 주성분이 3개인 지점부터 분산의 변동성이 완만해짐

|                        | PC1      | PC2      | PC3      |     | PC11     | PC12     |
|------------------------|----------|----------|----------|-----|----------|----------|
| Standard deviation     | 2.804071 | 1.592239 | 0.793123 |     | 0.154103 | 0.118509 |
| Proportion of Variance | 0.65523  | 0.21127  | 0.05242  | ••• | 0.00198  | 0.00117  |
| Cumulative Proportion  | 0.65523  | 0.8665   | 0.91892  |     | 0.99883  | 1        |

각 PC의 분산 설명력

# Multivariate PCA Biplot



◆ 제 1 주성분에 대하여 4 계절이 모두 강한 양의 상관

◆ 제 2 주성분에 대하여 '여름'의 계절이 강한 음의 상관관계를, '겨울'의 계절이 강한 양의 상관관계를 보임





- ◆ basis의 개수에 따라 PC의 개수도 7개로 설정
  - → 적절한 PC의 개수는 3개로 판단

## Functional PCA Eigenfunctions





- ◆ centered된 데이터에 PCA 적용
- ◆ 3개의 PC로 전체 변동의 96% 설명
- ◆ 첫 세 개의 PC의 eigenfunction
  - 관측소 간 가장 큰 변동은 겨울에 발생
  - 첫 번째 eigenfunction이 모두 양수이기 때문에 두 번째 eigenfunction에 음수 부분 존재



argvals

## Functional PCA Scores for Two PC Functions







### Functional PCA Scores for Two PC Functions





→ 여름과 겨울의 기온차가 작은 지역이 PC2의 값이 큼

| Region  | diff |
|---------|------|
| 서귀포     | 26.1 |
| 고산      | 26.7 |
| 제주      | 27.3 |
| 성산      | 28.3 |
| 인제      | 28.4 |
| 강릉      | 28.6 |
| 창원      | 28.9 |
| 속초      | 29.5 |
| 울산      | 29.5 |
| 고흥      | 29.6 |
| 강진군     | 29.7 |
| 북강릉     | 29.8 |
| 울진      | 29.8 |
| 여수      | 29.8 |
| 진도(첨찰산) | 29.8 |
| 동해      | 30   |
| 흑산도     | 30.1 |
| 양산시     | 30.3 |
| 부산      | 30.4 |
| 해남      | 30.4 |
| 거제      | 30.4 |
| 대관령     | 30.6 |
|         |      |

8월 기온 - 1월 기온

#### Functional PCA

### 12

### Comparison with Multivariate PCA

#### Functional PCA



#### Multivariate PCA







◆ 3개의 군집으로 k-means 군집분석