hyperplanes

distance from origin to $H(\mathbf{x}_0, \mathbf{a})$. we are looking for a vector in the same direction as \mathbf{a} . Find $L(\mathbf{0}, \mathbf{a}) \cap$ $H(\mathbf{x}_0, \mathbf{a})$. Now $\mathbf{x} \in L \cap H \Rightarrow x = t\mathbf{a}$ and $\mathbf{a} \cdot \mathbf{x} = \mathbf{a} \cdot \mathbf{x}_0 \Rightarrow \mathbf{a} \cdot (t\mathbf{a}) = a\mathbf{x}_0 \rightarrow t(\mathbf{a} \cdot \mathbf{a}) = a\mathbf{x}_0 \rightarrow t = \frac{\mathbf{a} \cdot \mathbf{x}_0}{||\mathbf{a}||^2}$ and now take $t\mathbf{a} = \operatorname{proj}_a(\mathbf{x}_0)$ and $||t\mathbf{a}|| = \frac{|a \cdot \mathbf{x}_0|}{||a||^2} ||a|| = \frac{|a \cdot \mathbf{x}_0|}{||a||}$ if we have another point \mathbf{y}_0 not on the hyperplane and we take $\operatorname{proj}_a(\mathbf{x}_0 - \mathbf{y}_0)$ then we have the distance

from the hyperplane to \mathbf{y}_0