Repetytorium matematyki elementarnej

- ćwiczenia 4

dr Piotr Jastrzębski

1 Tematyka

- Wielomiany:
 - Dzielenie wielomianów.
 - Twierdzenie Bezouta.
 - Schemat Hornera.
 - Pierwiastki wymierne wielomianów o współczynnikach całkowitych.
 - Wykresy.

2 Wielomian

2.1 Definicja

Wielomianem jednej zmiennej nazywamy wyrażenie określone wzorem:

$$W(x) = a_x x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

gdzie $n \in \mathbb{N}$, $a_0, a_1, \ldots, a_n \in \mathbb{R}$, $a_n \neq 0$. Liczbę n nazywamy stopniem wielomianu, a_0, a_1, \ldots, a_n – współczynnikami wielomianu, a_0 – wyrazem wolnym wielomianu.

Wielomian zerowy:

$$W(x) \equiv 0$$

(nie ma określonego stopnia - czasem przyjmuje się $-\infty$).

2.2 Równość wielomianów

Wielomiany są sobie równe jeśli ich współczynniki i stopnie są sobie odpowiednio równe.

Przykład:

$$W(x) = 4x^4 + 8x + 12$$

$$P(X) = 4(x^4 + 2x + 3)$$

2.3 Podzielność wielomianów

- Wielomian W(x) jest podzielny przez wielomian $P(x) \not\equiv 0$ wtedy i tylko wtedy, gdy istnieje wielomian Q(x) taki, że $W(x) = P(x) \cdot Q(x)$.
- Jeżeli W(x) i P(x) są wielomianami oraz $P(x) \not\equiv 0$, to istnieją takie dwa jednoznacznie wyznaczone wielomiany Q(x) i R(x), że $W(x) = Q(x) \cdot P(x) + R(x)$, przy czym albo wielomian $R(x) \equiv 0$ albo stopień R(x) jest mniejszy od stopnia wielomianu P(x).
- Wielomian Q(x) nazywany jest ilorazem, a R(x) resztą z dzielenia wielomianu W(x) przez P(x).

2.4 Pierwiastek wielomianu

- Każdą liczbę a, dla której W(a) = 0 nazywamy pierwiastkiem wielomianu W(x).
- Wielomian stopnia n ma co najwyżej n pierwiastków.
- Wielomian stopnia nieparzystego ma co najmniej jeden pierwiastek.

Twierdzenie 1 (Twierdzenie Bezoute'a). Liczba a jest pierwiastkiem wielomianu W(x) wtedy i tylko wtedy, gdy wielomian W(x) jest podzielny przez wielomian x-a.

Reszta z dzielenia wielomianu W(x) przez wielomian x-a jest równa W(a).

2.5 Schemat Hornera

$$(2x^3 - 5x^2 + 4x - 1) : (x - 1)$$

	2	-5	4	-1
Dział. (pom.)	2	$1 \cdot 2 + (-5)$	$1 \cdot (-3) + 4$	$1 \cdot 1 + (-1)$
1	2	-3	1	0

$$(2x^3 - 5x^2 + 4x - 1) : (x - 1) = 2x^2 - 3x + 1$$

$$(5x^3 + 2x - 3) : (x+4)$$

	5	0	2	-3
Dział.	5	$(-4)\cdot 5 + 0$	$(-4)\cdot(-20)+2$	$(-4) \cdot 82 + (-3)$
-4	5	-20	82	-331

$$5x^3 + 2x - 3 = (5x^2 - 20x + 82) \cdot (x+4) + (-331)$$

2.6 Wiel. o współ. całk.

Jeżeli liczba całkowita $r \neq 0$ jest pierwiastkiem wielomianu W(x) o współczynnikach całkowitych, to jest ona dzielnikiem wyrazu wolnego a_0 .

Jeżeli ułamek nieskracalny $\frac{p}{q}$, gdzie $p,q \in \mathbb{Z}$, $q \neq 0$ jest pierwiastkiem wielomianu W(x) o współczynnikach całkowitych, to licznik p jest dzielnikiem wyrazu wolnego a_0 , a mianownik q jest dzielnikiem współczynnika a_n .

3 Extra

Materiały dodatkowe:

- wzory Viete'a Link
- metody na rozwiązanie równania sześciennego Link
- metody na rozwiązanie równania stopnia czwartego Link

Źródło definicji: Wikipedia; A.Cewe, H. Nahorska, I. Pancer, Tablice Matematyczne, Wyd. Podkowa, Gdańsk 1999.