MF 790 HW 4, PART 2

This assignment is due on Thursday, October 28th at 8 AM. Problems 1 is worth 20 points, and problems 2, 3 are worth 15 points each, for a total of 50 points.

- 1. Computation of the Greeks. Do Exercise 4.9 parts (i) through (v) on page 192 respectively of the class textbook.
- 2. Vega and Implied Volatility. Continuing the previous exercise, recall the price of the call option at $t \leq T$ given $S_t = s$ is

$$c(t,s) = \mathbb{E}^{\mathbb{Q}} \left[e^{-r(T-t)} (\widetilde{S}_T - K)^+ \middle| \widetilde{\mathcal{F}}_t, \widetilde{S}_t = s \right]$$

= $xN(d_+(T-t,s)) - Ke^{-r(T-t)} N(d_-(T-t,s)).$

where under \mathbb{Q} , $\widetilde{S} \sim \text{GBM}(r, \sigma^2)$. Thinking of c as a function of the volatility σ , in this exercise we will investigate the $vega\ c_{\sigma}(t, s; \sigma)$.

- (a) Show for all (t, s) that $(s Ke^{-r(T-t)})^+ \le c(t, s) \le s$. **Hint**: use the expected value representation for c(t, s) along with $(a b) \le (a b)^+ \le a$ for all reals a, b > 0.
- (b) In class we saw "c(t,s) = huge formula" but in reality the formula is not that bad. Indeed, show that

$$c_{\sigma}(t,s;\sigma) = K\sqrt{T-t}e^{-r(T-t)}\dot{N}\left(d_{-}(T-t,s)\right)$$

Conclude that $c_{\sigma}(t, s; \sigma) > 0$ and hence the call option price is strictly increasing in the volatility. **Hint**: use the result from part (i) of Exercise 4.9 in the class textbook above.

(c) Show that $\lim_{\sigma\to 0} c(t,s;\sigma) = (s - Ke^{-r(T-t)})^+$ and $\lim_{\sigma\to\infty} c(t,s;\sigma) = s$.

Based upon the above results we see for $t \leq T, S_t = s$ that given any "market" call price c^{mkt} lying within the "reasonable" range

$$c^{\text{mkt}} \in \left(\left(s - Ke^{-r(T-t)} \right)^+, s \right)$$

there is a unique volatility $\widehat{\sigma} = \widehat{\sigma}(t, s)$ such that

$$c^{\text{mkt}} = c(t, s; \widehat{\sigma}).$$

This volatility is called the "Black-Scholes implied volatility", and is widely used when quoting options prices. It is also what gives rise to the "implied volatility surface".

3. Self-financing Trading Without Re-balancing (taken from Professor Shreve).

A summer quant intern is assigned the task of monitoring the effectiveness of a deltahedging strategy for a long call position, where the call has expiry T and strike K. Given t < T and $S_t = s$, we denote by $c(t, s; \sigma)$ the call price in the Black-Scholes model. We include σ to highlight the dependence on σ .

Assume the call expires n days from now, and set $t_0 = 0$, $t_n = T$ and t_j the time of

market opening on day j. At time t_j , the stock price is S_{t_j} . The market price of the call is observed, yielding implied volatility σ_{t_j} . The delta-hedge

$$\Delta_{t_j} = c_s \left(t_j, S_{t_j}; \sigma_{t_j} \right)$$

is computed, and a short position in the stock of size Δ_{t_j} is taken. The portfolio holding the long call and the short stock position thus has opening of the day value

$$c\left(t_{j}, S_{t_{j}}; \sigma_{t_{j}}\right) - \Delta_{t_{j}} S_{t_{j}}.$$

The value of the portfolio at the close of the day is

$$c(t_{j+1}, S_{(t_{j+1})-}; \sigma_{t_j}) - \Delta_{t_j} S_{(t_{j+1})-},$$

where $S_{(t_{j+1})-}$ denotes the closing price of the stock on day j. The profit (normally called P&L for "profit and loss") on day j is thus

$$P_{j} = c\left(t_{j+1}, S_{(t_{j+1})-}; \sigma_{t_{j}}\right) - c\left(t_{j}, S_{t_{j}}; \sigma_{t_{j}}\right) - \Delta_{t_{j}}\left(S_{(t_{j+1})-} - S_{t_{j}}\right).$$

The intern is asked to monitor the daily P&L over the lifetime of the option and observe if $\sum_{j=0}^{n-1} P_j$ is approximately zero.

In this problem, we ask if there is any reason to expect $\sum_{j=0}^{n-1} P_j \approx 0$. We make the simplifying assumption that the implied volatilities all the take the same value, i.e. $\sigma_{t_j} = \sigma > 0$ for all j. We also assume the closing stock price on day j is the opening price on day j+1. These assumptions are not satisfied in real markets. However, understanding whether $\sum_{j=0}^{n-1} P_j$ would be approximately zero under these idealized conditions provides insight into what to expect in real markets.

- (a) Show that in the Black-Scholes model, $\sum_{j=0}^{n-1} P_j$ is approximately equal to an expression involving the call price at the final time, the call price at the initial time, and an integral with respect to the stock price.
- (b) Show that the expression you obtained in (a) is not approximately zero, but rather is equal to a certain integral with respect to time. (Hint: Use Itô 's formula.)
- (c) Conclude from your answer in (b) that $\sum_{j=0}^{n-1} P_j$ is approximately equal to

$$\sum_{j=0}^{n-1} r [c(t_j, S(t_j)) - \Delta(t_j) S(t_j)] (t_{j+1} - t_j).$$

Hint Use the fact that $c(t, s; \sigma)$ satisfies the Black-Scholes partial differential equation.)

Note The expression obtained in (c) represents the earnings that would accrue if the daily portfolio value returned the risk-free rate r. This is the core of the Black-Scholes argument; the long call position together with the value of the hedge should return the risk-free rate on the net value of the long call and short stock position.