Лекции по дискретной математике

me and boyz

3 октября 2021 г.

Содержание

- 1 Дискретные функции и их представление. Индуктивное определение формулы. Полные системы. Критерий полноты.
- Дискретные функции и их представление.
 Индуктивное определение формулы. Полные системы. Критерий полноты.

Определение. Дискретной функцией называется любая функция, отображающая конечное множество A в конечное множество B.

Область определения дискретной функции часто представляется в виде декартового произведения множеств относительно небольшой мощности.

Если $f:A\to B$ - дискретная функция и $A=A_1\times\cdots\times A_n$, то f обозначают следующим образом $f(x_1;\ldots;x_n)$ и называют дискретной функцией от n переменных x_1,\ldots,x_n . При этом x_i принимает всевозможные значения из A_i . Если $A_1=\cdots=A_n=B$ и $B=\{0,1\}$, то f называется булевой функцией.

Определение. Обозначим далее $\Omega = \{0,1\}$, тогда булевой функцией от n переменных называется любое отображение $f:\Omega^n \to \Omega$.

0-местными булевыми функциями будем называть элементы $0, 1 \in \Omega$.

Замечание. Существуют функции k - значной логики.

Обозначать булеву функцию будем $f(x_1; ...; x_n)$ или $f(\vec{x})$, если количество переменных известно из контекста.

Определение. Если $f(x_1; ...; x_n)$ - булева функция и $\vec{\alpha} = (a_1; ...; a_n) \in \Omega^n$, то образ $\vec{\alpha}$ при отображении f называют значением функции f на наборе $\vec{\alpha}$. Обозначение: $f(\vec{\alpha})$.

Определение. Если рассматривать 0 и 1 как числа $\in \mathbb{N}_0$, то для набора $\vec{\alpha} = (a_1; \dots; a_n)$ обозначим $||\vec{\alpha}|| = a_1 + \dots + a_n$ - вес вектора $\vec{\alpha}$.

$$\widetilde{a}=\sum_{i=1}^n a_i 2^{n-i}$$
 - лексикографический порядок.
 Пример.

$$\vec{\alpha} = (1; 1; 0; 1) \Rightarrow ||\vec{\alpha}|| = 1 + 1 + 0 + 1 = 3.$$

Естественным образом задания является табличный, при этом координата *i*-вектора f^{\downarrow} соответствует значению $f(\vec{\alpha})$, где $\tilde{a}=i$.

Пример.

$$\begin{array}{ccccc} x_0 & x_1 & f^{\downarrow} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

Утверждение. $|F_2(n)| = 2^{2^n}$.

Определение. Весом булевой функции f называют величину ||f|| = $|\{\vec{\alpha} \in \Omega^n \mid f(\vec{\alpha}) = 1\}|.$

Определение. Функция от n-1 переменной, определяемая равенством $\varphi(a_{i_n};\ldots;a_{i_n})=f'(a_1;\ldots;a_{i-1};b;a_{i+1};\ldots;a_n),$ называется функцией полученной из f' фиксацией i-ой переменной значением b.

Обозначением $\varphi = f_i^b(x_1;\dots;x_n)$, аналогично фиксация k переменных значениями $b_1,\dots,b_k:\varphi=f_{i_1;\dots;i_n}^{b_1;\dots;b_k}(x_1;\dots;x_n)$. Общее название таких функци φ - подфункции f.

Если $f(a_1;\ldots;a_{i-1};0;a_{i+1};\ldots;a_n)=f(a_1;\ldots;a_{i-1};1;a_{i+1};\ldots;a_n)$, то переменная x_i называется несущественной переменной функции f, в противном случае - существенной.

Onpedenenue. Пусть x_i -несущественная (фиктивная) переменная функции f,g получена из f фиксацией x_i любой константой, тогда говорят, что g получена удалением из f несущественной переменной x_i , а f получена из g добавлением фиктивной переменной x_i .

Пусть задано множество функций $\mathbb{K} = \{f_i : i \in I\}$ и множество символов переменных $X = \{x_1; ...; x_n\}.$

Определение.

- 1. Любой символ переменной есть формула над классом К.
- 2. Если f_j символ m местной функции из $\mathbb{K},$ а A_1,\dots,A_m формулы над \mathbb{K} , то $f_i(A_1; \ldots; A_m)$ - формула над \mathbb{K} .
- 3. Других формул нет.

Множество формул над \mathbb{K} обозначается $\Phi(\mathbb{K})$. При m=0 формула есть символ над К, т.е. константа.

Определение. Число символов функций из К, встречающихся в формуле A назовем рангом формулы A. Обозначение: r(A).

Определение.

- 1. Подформула формулы x_i только она сама.
- 2. Подформулы $f_j(A_1;\ldots;A_n)$ на сама и все подформулы формулы $A_1;\ldots;A_n$.

Определение. Пусть A - произвольная формула, в ее записи присутствует только переменные x_{i_1},\ldots,x_{i_k} . Набор x_{j_1},\ldots,x_{j_m} называется допустимым, если $\{x_{i_1},\ldots,x_{i_k}\}\subseteq\{x_{j_1},\ldots,x_{j_m}\}$.

Каждой формуле при фиксированном допустимом наборе $(x_1; ...; x_n)$ сопоставляется по следующему правилу:

- 1. Если A есть x_i , то ей сопоставляется функция f, значения которой определяются равенством $f(a_1; \ldots; a_n) = a_i, (a_1; \ldots; a_n) \in \Omega^n$.
- 2. Если A есть $f_j(A_1; \ldots; A_m)$ и формулам A_1, \ldots, A_m сопоставлены функции $\varphi_1(x_1; \ldots; x_n); \ldots; \varphi_m(x_1; \ldots; x_n)$, то формуле A сопоставляется функция f, значения которой определяются равенством $f(a_1; \ldots; a_n) = f_j(b_1; \ldots; b_n)$, где $b_{\zeta} = \varphi_{\zeta}(a_1; \ldots; a_n), \zeta \in \overline{1, n}$.

Определение. Формулы A и B равносильны, если они представляют одну и ту же функцию на любом допустимом наборе. Обозначение: $A \equiv B$.

Определение. Пусть A - произвольная формула над классом $\mathbb{K}=(\&,\vee,\neg)$. Двойственной к A называется формула полученная из A заменой $\&\leftrightarrow\vee$. Обозначение: A^* .

Теорема. $A^*(x_1; \ldots; x_n) = \overline{A(\overline{x_1}; \ldots; \overline{x_n})}.$

Cледствие. $A \equiv B \Leftrightarrow A^* \equiv B^*$.

Определение. Замыканием системы \mathbb{K} булевых функций называют множество всех булевых функций представимых формулами над \mathbb{K} . Обозначение: $[\mathbb{K}]$.

Утверждение.

- 1. $\mathbb{K} \subseteq [\mathbb{K}]$
- 2. $\mathbb{K}_1 \subseteq \mathbb{K}_2 \Rightarrow [\mathbb{K}_1] \subseteq [\mathbb{K}_2]$
- 3. $[[\mathbb{K}]] = [\mathbb{K}]$

 $\mbox{\it Onpedenenue.}$ Система $\mathbb K$ называется полной, если (замыкание) $[\mathbb K]=F_2.$

Пример.

$$\mathbb{K}_0 = \{x_1 \cdot x_2; x_1 \vee x_2; \overline{x_1}\}\$$
 $\mathbb{K}_5 = \{x_1 \cdot x_2; x_1 \oplus x_2; 1\}$ Полные

Onpedenehue. Класс булевых функций называется замкнутым, если $\mathbb{K} = [\mathbb{K}].$

Говорят, что набор $\vec{\beta}$ мажорирует набор $\vec{\alpha}$, если $\forall i\in\overline{1,n}:a_i\leq b_i.$ Обозначение: $\vec{\alpha}\preccurlyeq\vec{\beta}.$

Пример.

$$T_0 = \{ f(x_1; \dots; x_n) \mid f(0; \dots; 0) = 0 \}$$

$$T_1 = \{ f(x_1; \dots; x_n) \mid f(1; \dots; 1) = 1 \}$$

$$L=\{f(x_1;\ldots;x_n)=a_1x_1\oplus\cdots\oplus a_nx_n\mid a_i\in\Omega, i\in\overline{0,n}\}$$
 – класс линейных функций

$$S = \{f(x_1; \ldots; x_n) \mid f(x_1; \ldots; x_n) \equiv \overline{f(\overline{x_1}; \ldots; \overline{x_n})}\}$$
 – класс самодвойственных функций

$$M = \{ f(x_1; \dots; x_n) \mid \text{верно}\vec{\alpha} \leq \vec{\beta}, \text{то} f(\vec{\alpha} \leq f(\vec{\beta})) \forall \vec{\alpha}, \vec{\beta} \in \Omega^n \} -$$
класс монотонных функций

Лемма. Булева функция $f(x_1; \ldots; x_n)$ не является монотонной $\Leftrightarrow \exists \vec{\alpha}$ и $\vec{\beta}$ отличающиеся только в одной координате (соседние наборы), такие что $\vec{\alpha} \preccurlyeq \vec{\beta}$ и $f(\vec{\alpha}) > f(\vec{\beta})$.

Теорема. T_0, T_1, M, S, L - замкнуты.

Теорема. (Критерий Поста)

Система булевых функций $\mathbb K$ полна $\Leftrightarrow \mathbb K$ содержит функции из $F_2 \backslash T_0, F_2 \backslash T_1, F_2 \backslash M, F_2 \backslash S, F_2 \backslash L$. Док-во:

Необходимость

 \forall произвольного замкнутого класса $G \neq F_2$, если \mathbb{K} не содержит ни одной функции из $F \backslash G$, то $\mathbb{K} \subset G \Rightarrow [\mathbb{K}] \subset [G] \neq F_2 \Rightarrow \mathbb{K}$ - не является полной.

Достаточность

Рассмотрим функции $f_1 \notin T_0, f_2 \notin T_1, f_3 \notin L, f_4 \notin S, f_5 \notin M$. Покажем, что если $\mathbb{K} \nsubseteq G$, где $G \in \{T_0, T_1, S, M, L\}$, то \overline{x} и $x_1 \cdot x_2 \in [\mathbb{K}]$.

Рассмотрим 2 случая:

1. $f_1(1;...;1) = 1$, но тогда $f(x;...;x) = 1 \in [\mathbb{K}]$. Т.к. $\mathbb{K} \nsubseteq T_1$, то $\exists f_2 \in \mathbb{K} \mid f_2(1;...;1) = 0 \in [\mathbb{K}]$. Покажем, что $\overline{x} \in [\mathbb{K}]$. Т.к. $\mathbb{K} \nsubseteq M$, то $\exists f_3 \in \mathbb{K} \mid f_3 \notin M$, т.е. $\exists \vec{\alpha} \preccurlyeq \vec{\beta} \mid f_3(\vec{\alpha}) > f_3(\vec{\beta})$.

Рассмотрим функцию $f(a_1; \ldots; a_{j-1}; x_j; a_{j+1}; \ldots; a_n) \equiv \overline{x_j}$, т.к. 0 и 1 $\in [\mathbb{K}]$, то и $\overline{x} \in [\mathbb{K}]$.

2. $f_1(1;...;1) = 0$, то $f_1(x;...;x) = \overline{x} \in [\mathbb{K}]$. Покажем, что 0 и $1 \in [\mathbb{K}]$.

Рассмотрим
$$f_4 \in \mathbb{K} \mid f_4 \notin S \Rightarrow \exists (a_1; \ldots; a_n) \mid f_4(a_1; \ldots; a_n) = f_4(\overline{a_1}; \ldots; \overline{a_n}) = const \in \{0, 1\} \in [\mathbb{K}].$$
 Т.к. $\overline{x} \in [\mathbb{K}]$, то 0 и $1 \in [\mathbb{K}]$.

Покажем $x_1 \cdot x_2 \in [\mathbb{K}].$

Т.к. $\mathbb{K} \notin L$, то $\exists f_5 \in \mathbb{K} \mid f_5 \notin L$, т.е. в ее многочлене Жегалкина \exists моном степени больше $1(*) \Rightarrow \exists$ моном, содержащий $x_1 \cdot x_2$.

Рассмотрим многочлен Жегалкина функции f_5 :

$$f_5(x_1; \dots; x_n) = x_1 \cdot x_2 \cdot g_1(x_3; \dots; x_n) \oplus x_1 \cdot g_2(x_3; \dots; x_n) \oplus x_2 \cdot g_3(x_3; \dots; x_n) \oplus g_4(x_3; \dots; x_n).$$

Рассмотрим функцию f, полученную из f_5 , следующим образом:

$$f(x_1; x_2) = f_5(x_1; x_2; a_3; \dots; a_n) = x_1 x_2 C_1 \oplus x_1 C_2 \oplus x_2 C_3 \oplus C_4.$$

 $C_1=1$, т.к. см (*). Рассмотрим функцию $f(x_1\oplus C_3;x_2\oplus C_2)=x_1x_2\oplus C_2C_3\oplus C_4\Rightarrow x_1x_2\in [\mathbb{K}].$