Package 'RGenData'

October 12, 2022

Type Package

Title Generates Multivariate Nonnormal Data and Determines How Many Factors to Retain
Version 1.0
Author John Ruscio
Maintainer John Ruscio <ruscio@tcnj.edu></ruscio@tcnj.edu>
Description The GenDataSample() and GenDataPopulation() functions create, respectively, a sample or population of multivariate nonnormal data using methods described in Ruscio and Kaczetow (2008). Both of these functions call a FactorAnalysis() function to reproduce a correlation matrix. The EFACompData() function allows users to determine how many factors to retain in an exploratory factor analysis of an empirical data set using a method described in Ruscio and Roche (2012). The latter function uses populations of comparison data created by calling the GenDataPopulation() function. <doi:10.1080 00273170802285693="">. <doi:10.1037 a0025697="">.</doi:10.1037></doi:10.1080>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2018-11-14 15:00:09 UTC
R topics documented:
EFACompData
Index

2 EFACompData

EFACompData	<i>EFACompData</i>
-------------	--------------------

Description

Comparison data

Usage

```
EFACompData(data, f.max, n.pop = 10000, n.samples = 500, alpha = .30, graph = FALSE,
corr.type = "pearson")
```

Arguments

data	Matrix to store the simulated data (matrix).
f.max	Largest number of factors to consider (scalar).
n.pop	Size of finite populations of comparison data (scalar, default is 10,000 cases).
n.samples	Number of samples drawn from each population (scalar, default is 500).
alpha	Alpha level when testing statistical significance of improvement with additional factor (scalar, default is .30)
graph	Whether to plot the fit of eigenvalues to those for comparison data (default is FALSE).
corr.type	Type of correlation (character, default is "pearson", user can also call "spearman").

Value

Nothing, displays number of factors on screen.

Author(s)

John Ruscio

References

```
Ruscio & Roche (2011)
```

Examples

```
# create data matrix x with n = 200 cases, k = 9 variables
# 3 variables load onto each of 3 orthogonal factors
# all marginal distributions are highly skewed
x <- matrix(nrow = 200, ncol = 9)
for (i in 1:3) {
    shared <- rchisq(200, 1)
    for (j in 1:3) {
        x[, (i - 1) * 3 + j] <- shared + rchisq(200, 1)</pre>
```

FactorAnalysis 3

```
}

# empirically determine number of factors in data matrix x

EFACompData(x, f.max = 5)
```

FactorAnalysis

FactorAnalysis

Description

Analyzes comparison data with known factorial structures

Usage

```
FactorAnalysis(data, corr.matrix = FALSE, max.iteration = 50,n.factors = 0,
corr.type = "pearson")
```

Arguments

data Matrix to store the simulated data (matrix).

corr.matrix Correlation matrix (default is FALSE)

max.iteration Maximum number of iterations (scalar, default is 50).

n. factors Number of factors (scalar, default is 0).

corr.type Type of correlation (character, default is "pearson", user can also call "spear-

man").

Value

\$loadings Factor loadings (vector, if one factor. matrix, if multiple factors)

\$factors Number of factors (scalar).

Author(s)

John Ruscio

References

Ruscio & Roche (2011)

4 GenDataPopulation

Examples

```
# create data matrix x with n = 200 cases, k = 9 variables
# 3 variables load onto each of 3 orthogonal factors
# all marginal distributions are highly skewed
x <- matrix(nrow = 200, ncol = 9)
for (i in 1:3) {
    shared <- rchisq(200, 1)
    for (j in 1:3) {
        x[, (i - 1) * 3 + j] <- shared + rchisq(200, 1)
    }
}
# perform factor analysis of data matrix x
FactorAnalysis(x)</pre>
```

GenDataPopulation

GenDataPopulation

Description

Simulates multivariate nonnormal data using an iterative algorithm

Usage

Arguments

```
supplied.data Data supplied by user.

n.factors Number of factors (scalar).

n.cases Number of cases (scalar).

max.trials Maximum number of trials (scalar, default is 5).

initial.multiplier

Value of initial multiplier (scalar, default is 1).

corr.type Type of correlation (character, default is "pearson", user can also call "spearman").

seed seed value (scalar, default is 0).
```

Value

dataPopulation of data

Author(s)

John Ruscio

GenDataSample 5

References

```
Ruscio & Roche (2011)
```

Examples

```
# create data matrix x with n = 200 cases, k = 9 variables
# 3 variables load onto each of 3 orthogonal factors
# all marginal distributions are highly skewed
x <- matrix(nrow = 200, ncol = 9)
for (i in 1:3) {
    shared <- rchisq(200, 1)
    for (j in 1:3) {
        x[, (i - 1) * 3 + j] <- shared + rchisq(200, 1)
    }
}
# generate (finite) population of data reproducing distributions and correlations in x
GenDataPopulation(x, n.factors = 3, n.cases = 10000)</pre>
```

GenDataSample

GenDataSample

Description

Bootstraps each variable's score distribution from a supplied data set.

Usage

```
GenDataSample(supplied.data, n.factors = 0, max.trials = 5, initial.multiplier = 1,
corr.type = "pearson", seed = 0)
```

Arguments

```
supplied.data Data supplied by user.

n.factors Number of factors (scalar, default is 0).

max.trials Maximum number of trials (scalar, default is 5).

initial.multiplier Value of initial multiplier (scalar, default is 1).

corr.type Type of correlation (character, default is "pearson", user can also call "spearman").

seed seed value (scalar, default is 0).
```

Value

dataSample of data

Author(s)

John Ruscio

6 GenDataSample

References

Ruscio & Kaczetow (2008)

Examples

```
# create data matrix x with n = 200 cases, k = 9 variables
# 3 variables load onto each of 3 orthogonal factors
# all marginal distributions are highly skewed
x <- matrix(nrow = 200, ncol = 9)
for (i in 1:3) {
    shared <- rchisq(200, 1)
    for (j in 1:3) {
        x[, (i - 1) * 3 + j] <- shared + rchisq(200, 1)
    }
}
# generate sample of data reproducing distributions and correlations in x
GenDataSample(x)</pre>
```

Index

```
EFACompData, 2
FactorAnalysis, 3
GenDataPopulation, 4
GenDataSample, 5
```