Exemplar Problem

Sequence and Series

13. If A is the arithmetic mean and G $_{\rm 1}$, G $_{\rm 2}$ be two geometric means between any two numbers, then prove that

$$2A = \frac{G_1^2}{G_2} + \frac{G_2^2}{G_1}.$$

Solution:

Given A is the arithmetic mean and G_1 , G_2 be two geometric means between any two numbers

Let the two numbers be 'a' and 'b'

The arithmetic mean is given by $A=\frac{a+b}{2}$ and the geometric mean is given

by
$$G = \sqrt{ab}$$

We have to insert two geometric means between a and b

Now that we have the terms a, G1, G2, b

 G_1 will be the geometric mean of a and G_2 and G_2 will be the geometric mean

of G₁ and b

Hence
$$G_1 = \sqrt{aG_2}$$
 and $G_2 = \sqrt{G_1b}$

$$Square G_1 = \sqrt{aG_2}$$

$$\Rightarrow$$
 $G_1^2 = aG_2$

$$Put G_2 = \sqrt{G_1 b}$$

$$\Rightarrow G_1^2 = a\sqrt{G_1b}$$

Squaring on both sides we get

$$\Rightarrow$$
 $G_1^4 = a^2 (G_1b)$

$$\Rightarrow$$
 $G_1^3 = a^2b$

$$\Rightarrow G_1 = a^{\frac{2}{3}}b^{\frac{1}{3}}.....1$$

Put value of G_1 in $G_2 = \sqrt{G_1b}$

$$\Rightarrow G_2 = \sqrt{a^{\frac{2}{3}}b^{\frac{1}{3}}b}$$

$$= \left(a^{\frac{2}{3}}b^{\frac{1}{3}+1}\right)^{\frac{1}{2}}$$

$$= \left(a^{\frac{2}{3}}b^{\frac{1}{3}+1}\right)^{\frac{1}{2}}$$

On simplification we get

$$= \left(a^{\frac{2}{3}}b^{\frac{4}{3}}\right)^{\frac{1}{2}}$$

$$=a^{\frac{1}{3}}b^{\frac{2}{3}}....2$$

Now we have to prove that $2A = \frac{G_1^2}{G_2} + \frac{G_2^2}{G_1}$

Consider RHS

$$\Rightarrow \text{RHS} = \frac{G_1^2}{G_2} + \frac{G_2^2}{G_1}$$

Substitute values of G_1 and G_2 from 1 and 2

$$\Rightarrow RHS = \frac{\left(a^{\frac{2}{3}}b^{\frac{1}{3}}\right)^{2}}{a^{\frac{1}{3}}b^{\frac{2}{3}}} + \frac{\left(a^{\frac{1}{3}}b^{\frac{2}{3}}\right)^{2}}{a^{\frac{2}{3}}b^{\frac{1}{3}}}$$

$$= \frac{a^{\frac{4}{3}}b^{\frac{2}{3}}}{a^{\frac{1}{3}}b^{\frac{2}{3}}} + \frac{a^{\frac{2}{3}}b^{\frac{4}{3}}}{a^{\frac{2}{3}}b^{\frac{1}{3}}}$$

$$= \frac{a^{\frac{4}{3}}b^{\frac{2}{3}}}{a^{\frac{2}{3}}b^{\frac{2}{3}}} + \frac{a^{\frac{2}{3}}b^{\frac{4}{3}}}{a^{\frac{2}{3}}b^{\frac{1}{3}}}$$

Taking LCM and simplifying we get

$$=a^{\frac{4}{3}-\frac{1}{3}}b^{\frac{2}{3}-\frac{2}{3}}+a^{\frac{2}{3}-\frac{2}{3}}b^{\frac{4}{3}-\frac{1}{3}}$$

$$\Rightarrow$$
 RHS = a + b

Divide and multiply by 2

$$\Rightarrow RHS = 2\frac{a+b}{2}$$

But
$$A = \frac{a+b}{2}$$

Therefore

Hence RHS = LHS

Hence proved