Geometrie - examen

- 1. a) Definiți noțiunea de susbpațiu afin. (5 puncte).
- b) În \mathbb{R}^3 (cu structura canonică de spațiu afin) considerăm punctele $A_1 = (1,0,2), A_2 = (2,3,\alpha)$ și $B_1 = (2,3,0), B_2 = (1,1,3), B_3 = (0,0,5)$ (unde $\alpha \in \mathbb{R}$). Determinați α astfel încât $(A_1A_2) \cap (B_1B_2B_3) = \emptyset$. (10 puncte).
- c) Există spații afine \mathcal{A} care au subspații afine $d, \pi \subset \mathcal{A}$ astfel încât $dim(d) = 1, dim(\pi) = 2, d \cap \pi = \emptyset$ dar d nu este paralelă cu π ? Justificați răspunsul dat. (5 puncte).
- 2. a) Definiți noțiunea de transformare afină. (5 puncte).
- b) Fie $\mathcal{A}=\mathbb{R}^3$ cu str. canonică de spațiu afin și funcția $\tau:\mathcal{A}\to\mathcal{A}, \tau(X)=AX+B$ unde

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Fie $\pi \subset \mathcal{A}$ planul de ecuație $x_1 + x_2 + x_3 = 1$. Determinați $\tau(\pi)$ și decideți dacă $\tau(\pi)||\pi$. (15 puncte).

- c) Dați exemplu de o dreaptă $d \subset \mathcal{A}$ astfel încât $\tau(d)||d$. (5 puncte).
- 3. a) Definiți noțiunea de spațiu afin euclidian. (5 puncte).
- b) În $\mathcal{E} = \mathbb{R}^3$ inzestrat cu str. canonică de spațiu afin euclidian se consideră punctele $O = (0,0,0), A = (2,0,0), B = (0,2,0), C = (\alpha,\beta,0)$ și planul $\pi: x_1+x_2+x_3-8=0$. Găsiți valorile lui $\alpha,\beta\in\mathbb{R}$ precum și un punct $V\in\pi$ astfel încât VOABC să fie piramidă patrulateră regulată. (15 puncte).
- c) Pentru C=(2,2,0), există un plan π astfel încât pentru orice $V\in\pi$, piramida VOABC nu este regulată? Justificare. (5 puncte).
- 4. a) Definiți noțiunea de plan proiectiv. (5 puncte).
- b) Fie X este un plan proiectiv, $d_1 \neq d_2$ drepte în X și $O \in X \setminus d_1 \cup d_2$. Definim $f: d_1 \to d_2$ prin f(P) = P' unde $\{P'\} = OP \cap d_2$. Arătați că f este corect definită și bijecție. (10 puncte).
- c) Arătați că dacă X este un plan proiectiv ce conține o dreaptă d de cardinal finit, card(d) = n atunci X este finit și avem $card(X) = n^2 n + 1$. (5 puncte).

Toate subiectele sunt obligatorii. Din oficiu: 10 puncte. Nota = $[\frac{Punctaj}{10}]$.