Grupo Discente de Estudos da Disciplina: Álgebra Linear e Geometria Analítica

— Revisão da Unidade 2: Determinantes — Setembro/2018

1 Conceitos básicos sobre determinantes

- 1. O que é o determinante de uma matriz?
- 2. Seja a matriz A=[-2], de ordem 1. Calcule o $\det(A)$, ou seja, o determinante dessa matriz.
- 3. Seja a matriz $B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 0 & 4 \end{pmatrix}$. Calcule o $\det(B)$.
- 4. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Nem toda matriz quadrada tem determinante.
 - (b) ____ As matrizes nulas de ordem n terão determinante igual ao número de elementos da matriz.
 - (c) ___ É correto afirmar que A = [2] representa uma matriz, e que $\det(A) = |2|$ representa o determinante da matriz de ordem 1 que contém apenas o elemento 2.
 - (d) ___ A matriz identidade de ordem 1 tem determinante 0.
 - (e) ___O determinante da matriz nula de ordem 3 também é 3.
 - (f) ____ Não é possível calcular o determinante de uma matriz $A = (a_{ij})_{3\times 4}$.
- 5. Seja a matriz $J=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, de ordem 2, onde a,b,c e d representam números reais. Como podemos calcular o $\det(B)$?
- 6. Se $\begin{vmatrix} 1 & x \\ 5 & 7 \end{vmatrix} = 2$, qual é o valor de x?
- 7. A *Regra de Sarrus* é utilizada para calcular o determinantes de matrizes quadradas de ordem 3. Data a matriz genérica abaixo, calcule seu determinante aplicando a Regra de Sarrus:

$$G = \begin{pmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{pmatrix}$$

8. Calcule o determinante da matriz $F = \begin{pmatrix} 2 & 3 & 1 \\ -1 & -4 & -1 \\ 6 & 0 & 7 \end{pmatrix}$:

9. Se
$$\begin{vmatrix} 1 & 0 & -2 \\ 2 & y & 1 \\ -1 & 3 & 7 \end{vmatrix} = 10$$
, qual é o valor de y ?

- 10. Qual a ordem da matriz $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$? E o tipo da matriz $B = \begin{pmatrix} 1 & -3 & 0 & 7 & 2 \\ 2 & -2 & 4 & 5 & \sqrt{3} \\ 3 & -1 & 6 & 3 & 9 \end{pmatrix}$?
- 11. O que é uma matriz quadrada de ordem n?
- 12. Em uma matriz quadrada A de ordem n, podemos afirmar que sua diagonal principal é formada pelos elementos $a_{11}, a_{22}, a_{33}, \cdots, a_{nn}$? Por quê?
- 13. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Matrizes que não são quadradas, não têm diagonal principal
 - (b) ___ Matrizes que não são quadradas, não têm diagonal secundária
 - (c) ____ Toda matriz tem uma, e somente uma, diagonal principal
 - (d) ___ Toda matriz tem uma, e somente uma, diagonal secundária
 - (e) ____ Matriz quadrada de ordem n não têm diagonal secundária
 - (f) ____ Os elementos formados pelos números "1" na matriz $E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, representam sua diagonal principal
 - (g) ___ Os elementos formados pelos números "1" na matriz $F = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, representam sua diagonal principal
 - (h) ___ Uma matriz com ordem $1 \times n$ é uma matriz linha
 - (i) ____ Uma matriz com ordem $m \times 1$ é uma matriz coluna
 - (j) ___ Uma matriz com ordem 7×5 tem 75 elementos
 - (k) ____ Em uma matriz quadrada de ordem n, os elementos tais que i+j=n+1 formam a diagonal secundária
- 14. A representação da seguinte matriz está correta? Por quê?

$$A = \begin{vmatrix} -1 & 7 & 2 \\ 0 & 5 & -5 \end{vmatrix}_{3 \times 2}$$

15.	O que significa dizer que uma determinada matriz tem 2 elementos nulos?		
16.	Uma matriz A pode ser representada pela notação $A=(a_{ij})_{m\times n}$ onde a_{ij} ou $[A]_{ij}$ é o elemento na linha i e coluna j dessa matriz. Em relação a essa forma de notação, marque a resposta correta:		
	\bigcirc Se uma matriz B tem ordem 3×2 , o elemento b_{42} estará localizado em alguma das diagonais da matriz (principal ou secundária)		
	\bigcirc Uma matriz C com ordem $4 imes 2$ não pode ter um elemento na posição c_{31}		
	O Não existe como indicar todos os elementos da j-ésima coluna de uma matriz		
	\bigcirc A i-ésima linha de uma matriz A qualquer, com ordem $m \times n$, corresponde aos elementos $a_{i1}, a_{i2}, a_{i3}, \cdots, a_{in}$		
	\bigcirc A j-ésima linha de uma matriz A qualquer, com ordem $m \times n$, corresponde aos elementos $a_{1j}, a_{2j}, a_{3j}, \cdots, a_{mj}$		

17. Sabendo-se que uma matriz qualquer A de ordem $m \times n$ tem a forma genérica

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix},$$

construa a matriz
$$B = (b_{ij})_{5 \times 4}$$
, onde $b_{ij} = \begin{cases} i \times j & \text{se } i < j \\ j \div i & \text{se } i > j \\ i + j & \text{se } i = j \end{cases}$

2 Matrizes especiais

18. Já vimos e estudamos 12 (doze) tipos de matrizes especiais, ou seja, aquelas matrizes que apresentam alguma particularidade que as diferenciam de outras matrizes genéricas. Liste todas as matrizes especiais:

1.	
2.	

3. _____

4. _____

5. _____

6. _____

7. _____

8. _____

9. _____

10. _____

11. _____

12. _____

19. O que é uma *matriz nula*? Que letra geralmente é utilizada para representar tal matriz?

20. A matriz nula O=(0) é uma matriz quadrada, uma matriz linha ou uma matriz coluna?

21.	O que é uma matriz diagonal?			
22.	O que é uma matriz triangular?			
23.	Indique se a sentença é verdadeira (V) ou falsa (F):			
	(a) Em situações especiais, como na multiplicação de matrizes, uma matriz nula pode conter um elemento com o valor 1			
	(b) Uma matriz retangular de ordem $m \times n$ com $m \neq n$ não pode ser nula			
	(c) Uma matriz diagonal é uma matriz retangular de ordem $m \times n$ com $m \neq n$, na qual todos os elementos que não estão na diagonal principal são nulos			
	(d) Uma matriz diagonal pode ter a diagonal principal com todos os elementos nulos			
	(e) Uma matriz triangular de ordem n é aquela onde todos os elementos que estão acima da diagonal principal, E MAIS todos os elementos que estão abaixo da diagonal principal, são nulos.			
	(f) Para que uma matriz seja considerada triangular, todos os elementos que estão acima OU abaixo da diagonal principal (não simultaneamente) devem ser nulos.			
	(g) Uma matriz diagonal nunca poderá ser uma matriz nula			
24.	O que é uma matriz identidade? Que letra geralmente é utilizada para representar tal matriz?			
25.	O que é uma <i>matriz transposta</i> ? Como é representada?			
26	Indique se a sentença é verdadeira (V) ou falsa (F):			
_0.	(a) Uma matriz nula <i>O</i> de ordem 1 pode ser uma matriz identidade			
	(b) Uma matriz identidade não precisa ser quadrada			
	(c) A diagonal secundária de uma matriz identidade tem todos os seus elementos nulos			
	(d) A diagonal principal de uma matriz identidade tem todos os seus elementos unitários			
	(e) Existe uma matriz identidade de ordem 1, ou seja, $I_1 = [1]$			
	(f) Para que uma matriz A seja transposta em A^t , é necessário que ela seja quadrada			
	(g) Dada uma matriz identidade I qualquer, sua transposta I^t não é mais uma matriz identidade			
	(h) A transposta de uma matriz nula O de ordem $m \times n$ com $m \neq n$, também será uma matriz nula O^t com a mesma ordem			

(i) ___ A matriz transposta B^t de uma matriz B só terá a mesma ordem da matriz B se a matriz B for quadrada

(j)
$$(A^t)^t = A$$

27. O que é uma matriz oposta? Como é representada?

28. O que é uma matriz simétrica?

29. Uma matriz de ordem $m \times n$ com $m \neq n$ pode ser simétrica? Por quê?

30. O que é uma matriz anti-simétrica?

31. Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Matriz Identidade

Matriz Nula

Matriz Coluna

Matriz Diagonal

Matriz Triangular

32. Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$D = (7)$$

Matriz Identidade

Matriz Quadrada

Matriz Nula

Matriz Linha

Matriz Coluna

33. Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Matriz Diagonal

Matriz Simétrica

- Matriz Triangular
- O Matriz Identidade
- 34. Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$F = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- Matriz Identidade
- Matriz Triangular
- Matriz Diagonal
- Matriz Simétrica
- Matriz Nula
- 35. Marque a(s) alternativa(s) que corresponde(m) à seguinte matriz:

$$G = \begin{pmatrix} 0 & -2 & 0 \\ 2 & 0 & 3 \\ 0 & -3 & 0 \end{pmatrix}$$

- Matriz Identidade
- Matriz Triangular
- Matriz Diagonal
- Matriz Anti-Simétrica
- O Nenhuma das respostas acima
- 36. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ Existe uma matriz nula, quadrada, linha, coluna, diagonal, simétrica e antisimétrica
 - (b) ____ Existe uma matriz nula, diagonal e triangular
 - (c) ____ Toda matriz anti-simétrica tem sua diagonal principal composta por elementos nulos (zeros)
 - (d) ___ Se A=-1B, então B é a oposta de A
 - (e) ___ Se $A = A^t$, então elas não são simétricas
 - (f) ___ Se $B = -(B^t)$, então elas são anti-simétricas
 - (g) $A \neq (A^t)^t$

3 Operações com matrizes

37. Quais as 2 condições necessárias para afirmarmos que uma matriz A é igual a uma matriz B?

38. É possível somar ou diminuir matrizes de ordens diferentes? Por quê?

39. Se $A=(a_{ij})_{m\times n}$ e $B=(b_{ij})_{m\times n}$ são matrizes da mesma ordem, então é verdade que $C=(c_{ij})_{m\times n}$ tal que $c_{ij}=a_{ij}+b_{ij}$?

40. Se $C=(c_{ij})_{m\times n}$ e $D=(d_{ij})_{m\times n}$ são matrizes da mesma ordem, então é verdade que $E=(e_{ij})_{m\times n}$ tal que $e_{ij}=c_{ij}-d_{ij}$?

- 41. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ___ A adição de matrizes é comutativa: A + B = B + A
 - (b) ____ A adição de matrizes não é associativa: $A + (B + C) \neq (A + B) + C$
 - (c) ___ Não existe um elemento nulo tal que: A + O = A
 - (d) Somar uma matriz com sua oposta resulta em uma matriz nula: A + (-A) = O
 - (e) ____ Transposição da soma é diferente da soma das transposições: $(A+B)^t \neq A^t + B^t$
 - (f) ____ Subtrair é somar com a oposta: A B = A + (-B)
- 42. Como é feita a multiplicação de um valor escalar por uma matriz, por exemplo: seja α um número real qualquer, e B uma matriz qualquer de ordem $m \times n$, como é feita a multiplicação $\alpha \times B$?

43. Se A e B são matrizes de mesma ordem e α e β são escalares, assinale a(s) propriedades(s) correta(s):

- \bigcirc Distributiva: $A(\alpha + \beta) = A\alpha\beta$
- \bigcirc Distributiva: $A(\alpha + \beta) = A\alpha + A\beta$
- \bigcirc Distributiva: $\alpha(A+B) = \alpha A + \alpha B$
- \bigcirc Distributiva: $\alpha(A+B) = \alpha AB$
- \bigcirc Associativa: $\alpha(\beta A) = \alpha A + \beta$
- \bigcirc Associativa: $\alpha(\beta A) = (\alpha \beta)A$

44. Sejam A e B matrizes quadradas de mesma ordem. Para realizar a multiplicação entre elas, basta que cada elemento a_{ij} seja multiplicado pelo elemento correspondente b_{ij} ?

45. As matrizes $A = (a_{ij})_{5\times 3}$ e $B = (b_{ij})_{5\times 3}$ podem ser multiplicadas? Por quê?

- 46. Assinale a(s) alternativa(s) correta(s):
 - \bigcirc A multiplicação de matrizes é comutativa: AB = BA
 - \bigcirc Multiplicar as matrizes $A=(a_{ij})_{50\times 33}$ e $B=(b_{ij})_{33\times 1}$ resultará na matriz $C=(c_{ij})_{50\times 1}$
 - O Para realizar a multiplicação de duas matrizes, o número de linhas em ambas as matrizes deverá ser o mesmo
 - \bigcirc A multiplicação de matrizes é associativa: A(BC) = (AB)C
 - \bigcirc A multiplicação de matrizes não é distributiva: $A(B+C) \neq AB+AC$
 - \bigcirc A multiplicação de uma matriz A por uma matriz Identidade apropriada, resulta na mesma matriz A: AI=A
 - \bigcirc A transposição de um produto de duas matrizes é igual ao produto das transposições: $(AB)^t = A^tB^t$

4 Matriz inversa

- 47. O que é uma matriz inversa? Como é representada?
- 48. Indique se a sentença é verdadeira (V) ou falsa (F):
 - (a) ____ Se $B = A^{-1}$, então $B = \frac{1}{4}$
 - (b) ___ Se $AB = BA = I_n$, então $B = A^{-1}$
 - (c) ___ Se Ae Bsão matrizes inversíveis, então $(AB)^{-1}=\frac{1}{AB}$
 - (d) ___ Se A e B são matrizes inversíveis, então $(AB)^{-1} = A^{-1} + B^{-1}$
 - (e) ___ Se A e B são matrizes inversíveis, então $(AB)^{-1} = A^{-1}B^{-1}$
 - (f) ___ Matrizes que não são quadradas são inversíveis