Fuzzy Difference-in-Differences (de Chaisemartin & D'Haultfœuille, REStud 2018)

Presenter: Francesco Ruggieri

March 9, 2021

Introduction

- Goal: study instrumented difference-in-differences with heterogeneity in treatment effects
- Fuzzy DID is a commonly used design
 - But it is not always explicitly recognized as such in empirical work (e.g. Duflo 2001)
- In a related article, Blundell and Costa Dias (2009) discusses fuzzy DID with heterogeneity

Today's Presentation

- Identification of a (conditional) LATE with a standard Wald estimand and strong assumptions
- Identification of a (conditional) LATE with a corrected Wald estimand and other assumptions
- Extension to designs with multiple treatment groups

2 Identification Results

- $T \in \{0,1\}$ denotes time, $G \in \{0,1\}$ indicates a time-invariant group
- D is a binary treatment, not a deterministic function of G and T, i.e., $D \neq GT$
- $Y \in \mathbb{R}$ is an **outcome** of interest
- $Z \equiv GT$ is a **binary instrument** (not nested in Hudson, Hull, and Liebersohn 2017)
- Unlike sharp designs, fuzzy designs allow for
 - Units to be treated in the control group (G = 0)
 - Units to be treated (in either group) in T=0

The IV-DID Wald Estimand

• Reduced-form and first-stage (saturated) linear regressions:

$$Y = \alpha + \beta G + \gamma T + \delta GT + U$$

$$D = \lambda + \eta G + \phi T + \rho GT + V$$

• The coefficient associated with D in the structural equation is the **IV-DID Wald estimand**:

$$\omega \equiv rac{\Delta_Y(1) - \Delta_Y(0)}{\Delta_D(1) - \Delta_D(0)}$$

where $\Delta_Y(g)$ and $\Delta_D(g)$ denote **time trends** in group $g \in \{0,1\}$

Further Assumptions

Without loss of generality, define D and G such that

• The treatment rate increases over time in the treated group,

$$\mathbb{E}[D|G = 1, T = 1] - \mathbb{E}[D|G = 1, T = 0] > 0$$

The treatment rate in the control group does not increase more than in the treated group,

$$\mathbb{E}[D|G=1, T=1] - \mathbb{E}[D|G=1, T=0] > \mathbb{E}[D|G=0, T=1] - \mathbb{E}[D|G=0, T=0]$$

Potential Outcomes and Potential Treatments

- D and Y are linked by **potential outcomes** Y(0), Y(1)
- Potential treatments are D(0), D(1), where D = D(t) is observed (G is subsumed)
 - Both potential treatments are **observed** in a repeated cross section
 - Potential treatments are independent of time within each group
- Within each group, units **switch** treatment only in **one direction**:

$$\mathbb{P}(D(1) \ge D(0)|G) = 1$$
 or $\mathbb{P}(D(1) \le D(0)|G) = 1$

2 Identification Results

- Further assume that
 - Common trends holds, i.e., $\mathbb{E}[Y(0)|G,T=1] \mathbb{E}[Y(0)|G,T=0]$ does not depend on G
 - The ATE among units treated in the pre-period is stable over time within each group, i.e.,

$$\mathbb{E}[Y(1) - Y(0)|G, T = 1, D(0) = 1] = \mathbb{E}[Y(1) - Y(0)|G, T = 0, D(0) = 1]$$

- Then the IV-DID Wald estimand identifies a weighted average of two causal parameters:
 - \bullet $\tau_1 \equiv \mathbb{E}\left[Y(1) Y(0) | G = 1, T = 1, D(1) > D(0)\right]$, the ATE among treated "switchers"
 - ② $\tau_0 \equiv \mathbb{E}\left[Y(1) Y(0) | G = 0, T = 1, D(1) \neq D(0)\right]$, the ATE among control "switchers"

• Case (a): the treatment rate **increases** in the control group. Then

$$\omega = lpha au_1 + (1-lpha) au_0 \quad ext{with} \quad lpha \equiv rac{\mathbb{P}\left(D(1) > D(0) | G = 1
ight)}{\mathbb{P}\left(D(1) > D(0) | G = 1
ight) - \mathbb{P}\left(D(1) > D(0) | G = 0
ight)}$$

 $\alpha>1$ \Longrightarrow the IV-DID estimand **negatively weights** the ATE among **control switchers**

Case (b): the treatment rate decreases in the control group. Then

$$\omega = lpha au_1 + (1-lpha)\, au_0 \quad ext{with} \quad lpha \equiv rac{\mathbb{P}\left(D(1) > D(0) | G = 1
ight)}{\mathbb{P}\left(D(1) > D(0) | G = 1
ight) + \mathbb{P}\left(D(1) < D(0) | G = 0
ight)}$$

 $\alpha \in (0,1) \implies$ the IV-DID estimand is a **convex combination** of **ATEs among switchers**

- ullet Modify the assumptions made for identification result #1
- Instead, assume some version of conditional common trends:

$$\mathbb{E}[Y(d)|G, T = 1, D(0) = d] - \mathbb{E}[Y(d)|G, T = 0, D(0) = d]$$

does not depend on G for $d \in \{0,1\}$

Consider a "time-corrected" Wald estimand:

$$\omega_{\mathsf{TC}} \equiv \frac{\mathbb{E}\left[Y | G = 1, \, T = 1\right] - \mathbb{E}\left[Y + (1 - D)\delta_0 + D\delta_1 | G = 1, \, T = 0\right]}{\mathbb{E}\left[D | G = 1, \, T = 1\right] - \mathbb{E}\left[D | G = 1, \, T = 0\right]}$$

with

$$\delta_d \equiv \mathbb{E}[Y|D=d, G=0, T=1] - \mathbb{E}[Y|D=d, G=0, T=0]$$
 for $d \in \{0, 1\}$

- ω_{TC} identifies τ_1 , the ATE among switchers in the treated group
- Intuition behind this "correction":
 - Begin with $\mathbb{E}[Y|G=1, T=0]$
 - Add $\delta_0 \times \mathbb{P}\left(D=0|G=1,T=0\right)$ and $\delta_1 \times \mathbb{P}\left(D=1|G=1,T=0\right)$
 - ullet Obtain a counterfactual $\mathbb{E}\left[Y|G=1,T=1
 ight]$ purged from the contribution of switchers
 - ullet Contrast between $\mathbb{E}\left[Y|G=1,T=1
 ight]$ and "corrected" $\mathbb{E}\left[Y|G=1,T=0
 ight]
 ightarrow$ switchers
 - Scale the numerator by the evolution of the treatment rate in the treated group

2 Identification Results

These identification results can be extended to situations with multiple treatment groups

- Groups $G \in \{0, 1, \dots, \overline{g}\}$
- Partition them into three super-groups based on how the treatment rate evolves
 - Group g belongs to \mathcal{G}_i , \mathcal{G}_s , or \mathcal{G}_d if $\Delta_D(g)$ increases, is stable, or decreases
- The target parameter becomes the **ATE among all switchers**, i.e.,

$$au^*\equiv \mathbb{E}\left[\left.Y(1)-Y(0)
ight|T=1,igcup_{g=0}^{\overline{g}}\left\{D(0)
eq D(1),G=g
ight\}
ight]$$

• For compactness of notation, define $G^* \equiv \mathbb{I}[G \in \mathcal{G}_i] - \mathbb{I}[G \in \mathcal{G}_d] \in \{-1,0,1\}$

Under the same assumptions as in **identification result** #1, τ^* is identified as follows:

Ompute four difference-in-differences contrasts:

$$\mathsf{DID}_{R}^{*}\left(g,g'
ight)\equiv\Delta_{R}\left(g
ight)-\Delta_{R}\left(g'
ight)$$

where *R* is either *Y* or *D* and $(g, g') \in \{(1, 0), (0, -1)\}$

Compute two Wald estimands by taking ratios of DiD contrasts:

$$\omega_{\mathsf{DID}}^*(1,0) \equiv rac{\mathsf{DID}_Y^*\left(1,0
ight)}{\mathsf{DID}_D^*\left(1,0
ight)} \qquad \omega_{\mathsf{DID}}^*(0,-1) \equiv rac{\mathsf{DID}_Y^*\left(0,-1
ight)}{\mathsf{DID}_D^*\left(0,-1
ight)}$$

Compute a convex combination of these two Wald estimands:

$$\omega_{\mathsf{DID}}^* \equiv \theta \omega_{\mathsf{DID}}^*(1,0) + (1-\theta) \, \omega_{\mathsf{DID}}^*(0,-1)$$

Under the same assumption as in **identification result #2**, τ^* is identified as follows:

① Compute **two time correction terms** (for $d \in \{0,1\}$):

$$\delta_d^* \equiv \mathbb{E}[Y|D=d, G^*=0, T=1] - \mathbb{E}[Y|D=d, G^*=0, T=0]$$

② Compute two time-corrected Wald ratios (for $g \in \{-1, 1\}$):

$$\omega_{TC}^*(g) \equiv \frac{\mathbb{E}[Y|G^* = g, T = 1] - \mathbb{E}[Y + (1 - D)\delta_0^* + D\delta_1^*|G^* = g, T = 0]}{\mathbb{E}[D|G^* = g, T = 1] - \mathbb{E}[D|G^* = g, T = 0]}$$

Compute a convex combination of these two time-corrected Wald ratios:

$$\omega_{\mathsf{TC}}^* \equiv \theta \omega_{\mathsf{TC}}^*(1) + (1 - \theta) \omega_{\mathsf{TC}}^*(-1)$$

- In practice, super-groups $G^* \in \{-1,0,1\}$ may be **known** ex ante or need to be **estimated**
 - Estimation is likely necessary when the treatment varies at the unit level
- The authors develop a data-based procedure to classify groups into three super-groups
 - This hinges on running t-tests within each group to compare the treatment rate over time
- Once super-groups have been determined, target parameters can be estimated