UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

PAUTA EXAMEN ALGEBRA Y ALGEBRA LINEAL (MAT 520142)

Problema 1. (25 puntos) Sea $f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}, x \longrightarrow f(x) = e^{\frac{x-1}{x^2-2x+1}}$.

- 1.1) Determine el dominio de f.
- 1.2) Determine el recorrido de f.
- 1.3) ξ Es f biyectiva?. En caso negativo haga las restricciones necesarias para que lo sea y defina f^{-1} .

SOLUCION:

1.1) Si Dom(f) es el dominio de f, entonces

$$Dom(f) = \{x \in \mathbb{R} : e^{\frac{x-1}{x^2-2x+1}} \in \mathbb{R}\}$$
$$= \{x \in \mathbb{R} : x \neq 1\}$$
$$= \mathbb{R} - \{1\}$$

7 Puntos

1.2) Si Rec(f) es el recorrido de la función, entonces

$$Rec(f) = \{ y \in \mathbb{R} : \exists \ x \in \mathbb{R} - \{1\} : y = e^{\frac{1}{x-1}} \}$$

$$= \{ y \in \mathbb{R} : \exists \ x \in \mathbb{R} - \{1\} : x = \frac{\ln y + 1}{\ln y} \ y \ y > 0 \}$$

$$= \mathbb{R}^+ - \{1\}$$

8 Puntos]

1.3) Sean x, y en el Dom(f) tales que f(x) = f(y), entonces $e^{\frac{1}{x-1}} = e^{\frac{1}{y-1}}$. Aplicando ln (que es una función inyectiva), sigue que x = y. Así, f es inyectiva.

[4 Puntos]

Como $Rec(f) \neq Cod(f)$, sigue que f no es sobreyectiva.

[2 Puntos]

Para obtener una función biyectiva a partir de la función f, debemos redefinir el dominio y codominio de la f. Así, si ponemos $f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R}^+ - \{1\}$, definida por $f(x) = e^{\frac{1}{x-1}}$, resulta que f es una función biyectiva. Su inversa f^{-1} , queda definida por $f^{-1}: \mathbb{R}^+ - \{1\} \longrightarrow \mathbb{R} - \{1\}$, $f^{-1}(x) = \frac{1}{\ln x} + 1$. [4 Puntos]

Problema 2. (25 puntos) Sea V = C([0,1]) con el producto interior

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx \quad \forall f, g \in V$$

y sea S el subespacio generado por los vectores $p_0(x) = 1$ y $p_1(x) = 2x - 1$. Calcule la mejor aproximación de $p(x) = e^x$ por vectores de S.

Indicación: $\int e^x dx = e^x + C$, $\int xe^x dx = e^x(x-1) + C$.

SOLUCION:

Primero observemos que p_0 y p_1 son l.i., por lo tanto $\{p_0, p_1\}$ es una base para S. Pongamos $u = \alpha_1 p_0 + \alpha_2 p_1$ la m.a. de $p(x) = e^x$ por vectores de S. Entonces se debe satisfacer el siguiente sistema:

$$\begin{pmatrix} < p_0, p_0 > & < p_1, p_0 > \\ < p_0, p_1 > & < p_1, p_1 > \end{pmatrix} \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} < p, p_0 > \\ < p, p_1 > \end{pmatrix}$$

Además, $\langle p_0, p_0 \rangle = 1$, $\langle p_1, p_0 \rangle = 0$, $\langle p_0, p_1 \rangle = 0$, $\langle p_1, p_1 \rangle = \frac{1}{3}$, $\langle p, p_0 \rangle = e - 1$ (e - 1 es aproximadamente 1, 7182), $\langle p, p_1 \rangle = 3 - e$ (aprx. 0,2817). [15 Puntos]

Así, obtenemos

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & \frac{1}{3} \end{array}\right) \cdot \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}\right) = \left(\begin{array}{c} e - 1 \\ 3 - e \end{array}\right)$$

de donde $\alpha_1 = e - 1 = 1,7182$ y $\alpha_2 = 3(3 - e)$ (aprox. 0,8451). Finalmente la m.a. de p por elementos de S es: $u = 1,6902 \cdot x + 0,8731$. [10 Puntos]

Problema 3. (25 puntos) Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una aplicación lineal tal que:

$$Ker(T) = \langle \{(1,1,1)\} \rangle$$
, $T(1,1,0) = (0,2,1)$ y $T(1,0,0) = (0,0,-1)$.

- 3.1) Diga si T es biyectiva. Justifique.
- 3.2) Demuestre que $\{(1,1,1),(1,1,0),(1,0,0)\}$ es base de \mathbb{R}^3 .
- 3.3) Determine la ecuación de definición de T.

SOLUCION:

3.1) Como el $Ker(T) \neq \{(0,0,0)\}, T$ no es inyectiva. Así, T no puede ser biyectiva.

[6 Puntos]

- **3.2)** Como el determinante de la matriz $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ es dintinto de cero, sigue que el conjunto $B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ es l.i.. Como la dimensión de \mathbb{R}^3 es 3, sigue que B es l.i. maximal, y por lo tanto es base de \mathbb{R}^3 . [6 Puntos]
- **3.3)** Para $(x, y, z) \in \mathbb{R}^3$ arbitrario, sean α , β , γ las componentes de (x, y, z) respecto de la base B. Haciendo los calculos respectivos se obtiene que:

$$\alpha = z$$
, $\beta = y - z$ y $\gamma = x - y$.

De este modo,

$$T(x,y,z) = T(z(1,1,1) + (y-z)((1,1,0) + (x-y)(1,0,0))$$

$$= zT(1,1,1) + (y-z)T(1,1,0) + (x-y)T(1,0,0)$$

$$= z \cdot (0,0,0) + (y-z) \cdot (0,2,1) + (x-y) \cdot (0,0,-1)$$

$$= (0,2y-2z,-x+2y-z).$$
[6 Puntos]

[7 Puntos]

Problema 4. (25 puntos) Considere la matriz real
$$A = \begin{pmatrix} 2 & 2 & -6 \\ 2 & -1 & -3 \\ -2 & -1 & 1 \end{pmatrix}$$
.

- 4.1) Determine una base para \mathbb{R}^3 formada por vectores propios de A. Exhiba una matriz diagonal similar (semejante) con A indicando la matriz de similaridad P.
- 4.2) Sean $B = \{1, sen(x), cos(x)\} \subseteq C(\mathbb{R}), V = \langle B \rangle$ y $T \in \mathcal{L}(V)$ con $[T]_B = A$. ¿ Por qué $\lambda = 6$ es un valor propio de T?. Encuentre una base para el espacio propio de T asociado a $\lambda = 6$.

Solución

4.1) Primero buscamos los valores propios asociados a A.

Si λ_1 , λ_2 y λ_3 son los valores propios de A, éstos se obtienen de la ecuación $det(A-\lambda I)=0$.

Se tiene:

$$det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 & -6 \\ 2 & -1 - \lambda & -3 \\ -2 & -1 & 1 - \lambda \end{vmatrix} = -(\lambda + 2) \begin{vmatrix} 2 - \lambda & 2 & -6 \\ 2 & -1 - \lambda & -3 \\ 0 & 1 & 1 \end{vmatrix}$$
$$= -(\lambda + 2) \begin{vmatrix} 2 - \lambda & 8 & -6 \\ 2 & 2 - \lambda & -3 \\ 0 & 0 & 1 \end{vmatrix} = -(\lambda + 2)\{(2 - \lambda)^2 - 16\}$$
$$= -(\lambda - 6)(\lambda + 2)^2$$
$$= 0$$

Así, los valores propios de A son $\lambda_1 = 6$ y $\lambda_2 = -2$ (doble).

[5 Puntos]

Ahora buscamos los espacios propios asociados a los autovalores de A. Espacio propio asociado a $\lambda_1=6$:

$$S_{\lambda_{1}}: = \left\{ \begin{bmatrix} x \\ y \\ x \end{bmatrix} \in \mathbb{R}^{3} : \begin{bmatrix} -4 & 2 & -6 \\ 2 & -7 & -3 \\ -2 & -1 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} x \\ y \\ x \end{bmatrix} \in \mathbb{R}^{3} : \begin{bmatrix} 5 & 1 & 5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} x \\ y \\ x \end{bmatrix} \in \mathbb{R}^{3} : 2x + y + 5z = 0 \land y + z = 0 \right\}$$

$$= \left\{ \{(-2, -1, 1)\} \right\}$$

[3 Puntos]

Espacio propio asociado a $\lambda_2 = -2$:

$$S_{\lambda_{2}}: = \left\{ \begin{bmatrix} x \\ y \\ x \end{bmatrix} \in \mathbb{R}^{3} : \begin{bmatrix} 4 & 2 & -6 \\ 2 & 1 & -3 \\ -2 & -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^{3} : \begin{bmatrix} 2 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} x \\ y \\ x \end{bmatrix} \in \mathbb{R}^{3} : 2x + y - 3z = 0 \right\}$$

$$= \left\{ (1, -2, 0), (0, 3, 1) \right\} >$$

[3 Puntos]

Luego, una base para \mathbb{R}^3 formada por vectores propios de A es:

$$B := \{(-2, -1, 1), (1, -2, 0), (0, 3, 1)\},\$$

y para

$$P = \begin{pmatrix} -2 & 1 & 0 \\ -1 & -2 & 3 \\ 1 & 0 & 1 \end{pmatrix}$$
, la matriz similar a A es $P^{-1}AP = \begin{pmatrix} 6 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ [4 Puntos]

4.2) Como $A = [T]_B$ y $\lambda = 6$ es un valor propio de A, entonces $\lambda = 6$ es un valor propio de T puesto que $\sigma(T) = \sigma(A)$. Por otra parte, para $v \in V$ resulta

$$v \in S_{\lambda}(T) \iff T(v) = \lambda v$$

$$\iff [T]_{B}[v]_{B} = \lambda[v]_{B}$$

$$\iff A[v]_{B} = 6[v]_{B}$$

$$\iff [v]_{B} \in \langle \{(-2, -1, 1)\} \rangle$$

$$\iff v \in \{w\}$$

donde w(x) = -2 - sen(x) + cos(x). Así, $\{w\}$ es una base para $S_{\lambda}(T)$ con $\lambda = 6$. [10 Puntos]

MCP/JMS/LNB/jms. 4/12/2002.