Алгоритмы в математике (теория чисел)

Михайлов Максим

8 сентября 2022 г.

Оглавление стр. 2 из 35

Оглавление

Лекц	ция 1 — 3 марта	3
1	Алгебраические тела, обзор	3
Лекц	ция 2 11 марта	5
2	На пути к доказательству теоремы Фробениуса I	5
Леки	ция 3 18 марта	8
3	На пути к доказательству теоремы Фробениуса II	8
Леки	ция 5 2 апреля	10
4	Введение в кватернионы	10
Леки	ция 6 9 апреля	14
	4.1 Напоминание о кватернионах	14
5	Кватернионы и $SU(2)$	15
6	SU(2) и $SO(3)$	17
Лекц	ция 7 16 апреля	19
7	Алгебраические топологические тела	19
Лекц	ция 8 23 апреля	22
8	Топологические группы	22
	8.1 Топология	22
Лекц	ция 9 30 апреля	25
	8.2 Топологические группы	25
Лекц	ция 10 7 мая	28
9	р-адические числа	28
	9.1 Модули	28
Лекц	ция 11 14 мая	32
	9.2 Теорема Островского	32

3 марта

1 Алгебраические тела, обзор

Определение. Алгебраическое тело — множество T с бинарными операциями + и \cdot , такими, что:

- 1. (T, 0, +) абелева группа:
 - $\forall \alpha, \beta, \gamma$ $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
 - $\exists 0 : \alpha + 0 = \alpha = 0 + \alpha$
 - $\forall \alpha \in T \ \exists (-\alpha) : \alpha + (-\alpha) = 0 = (-\alpha) + \alpha$
 - $\star \ \forall \alpha, \beta \in T \quad \alpha + \beta = \beta + \alpha$
- 2. $((T \setminus \{0\}), 1, *)$ группа:
 - $\alpha(\beta \gamma) = (\alpha \beta) \gamma$
 - $\exists 1: \alpha \cdot 1 = \alpha = 1 \cdot \alpha$
 - $\forall \alpha \neq 0 \ \exists \alpha^{-1} : \alpha \alpha^{-1} = 1 = \alpha^{-1} \alpha$
 - \star Если умножение не коммутативно, то T тело, иначе поле.
- 3. Дистрибутивность: $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$, $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$

Пример. \mathbb{F}_p — поле вычетов по модулю p.

$$\mathbb{F}_p = \{0, 1, 2 \dots p - 1\}$$

Таблица 1.1: Таблицы сложения и умножения в \mathbb{F}_2

Пусть есть поле $\mathbb{F}_k, k = n \cdot m, m \neq 0, n \neq 0$. Т.к. n < k и m < k, то $n \cdot m = 0$. Таким образом, в поле есть делители нуля.

Примечание. Переход от \mathbb{Q} к \mathbb{R} — топологическая конструкция, поэтому будем рассматривать переход из \mathbb{Q} в \mathbb{C} над рациональными числами.

Определение.
$$\mathbb{C} \cong K[t]/(t^2+1)K[t]$$

Теорема 1 (Фробениуса). Дано тело T, такое что $T \supset \mathbb{R}$. Тогда:

- 1. Каждый элемент $\mathbb R$ коммутирует с каждым элементом T.
- 2. Каждый элемент T представим как:

$$x = x_0 + x_1 i_1 + x_2 i_2 + \cdots + x_n i_n$$

Из этого следует, что выполнено одно из:

- 1. T это \mathbb{R}
- 2. T это \mathbb{C}
- 3. T это \mathbb{K}

Если $i_1, i_2 \dots i_n$ — базис \mathbb{I} , то dim $\mathbb{I} \in \{0, 1, 3\}$

11 марта

На пути к доказательству теоремы Фробениуса I

$$\langle \mathbb{I} = \{ z \mid z^2 \in \mathbb{R}, z^2 \le 0 \}$$

Примечание. $\mathbb{R} \cap \mathbb{I} = \{0\}$

Теорема 2. $\mathbb{R} \oplus \mathbb{I} = T$

Лемма 1. Если $z \in \mathbb{I}$, то $\forall \alpha \in \mathbb{R} \ \alpha z \in \mathbb{I}$.

Доказательство.

$$(\alpha z)^2 = \alpha^2 z^2 \le 0 \Longrightarrow \alpha z \in \mathbb{I}$$

Лемма 2. Если $z \in \mathbb{I}$ и z^{-1} существует, то $z^{-1} \in \mathbb{I}$, где z^{-1} это такой элемент \mathbb{I} , что $zz^{-1} = 1$.

Доказательство.

$$z^{2}(z^{-1})^{2} = \underbrace{zz}_{<0} z^{-1}z^{-1} = 1 \Rightarrow z^{-1}z^{-1} < 0 \Rightarrow z^{-1} \in \mathbb{I}$$

Лемма 3. Всякий элемент x из T представим единственным образом в виде:

$$x \stackrel{!}{=} a + z, \quad a \in \mathbb{R}, z \in \mathbb{I}$$

Доказательство. $\langle x \in T, \{x^0, x, x^2 \dots x^{n+1}\}$ — линейно зависимые, т.к. пространство размерности n+1, а элементов n+2. Тогда по определению линейной зависимости $\exists \{\alpha_i\}_{i=0}^{n+1} \subset \mathbb{R}$, такие что:

$$\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_{n+1} x^{n+1} = 0$$

Тогда x является корнем многочлена вида x-a=0 и тогда x=a, либо x является корнем многочлена вида $x^2+2\alpha x+\beta=0$ и тогда x можно представить в виде a+z.

Покажем единственность. Пусть x = a + y и x = b + z, где $a, b \in \mathbb{R}, y, z \in \mathbb{I}$.

$$a+y-b-z=0$$

$$a+y-b=z$$

$$\underbrace{(a-b)^2}_{\in \mathbb{R}} + 2(a-b)y + \underbrace{y^2}_{\in \mathbb{R}} = \underbrace{z^2}_{\in \mathbb{R}}$$

$$2(a-b)y=0$$

Таким образом, либо a=b, а следовательно y=z, либо $y=0 \implies x \in \mathbb{R} \implies z=0$

Лемма 4. Пусть $u, v \in \mathbb{I}$, $a, b \in \mathbb{R}$. Тогда $uv + vu = \xi \in \mathbb{R}$ и $au + bv = \eta \in \mathbb{I}$.

Доказательство. Положим, что $\{1, u, v\}$ линейно зависим, т.е. $\exists \alpha, \beta, \gamma : \alpha + \beta u + \gamma v = 0$.

$$\beta u = -\alpha - \gamma v \implies \alpha = 0 \implies u = -\frac{\gamma}{\beta}v$$

$$\langle uv + vu = -\frac{\gamma}{\beta}v^2 - \frac{\gamma}{\beta}v^2 = \frac{-2\gamma}{\beta}v^2 \in \mathbb{R}$$

$$-\frac{\alpha\gamma}{\beta}v + bv = \left(b - \frac{\alpha\gamma}{\beta}\right)v \in \mathbb{I}$$

Положим, что $\{1, u, v\}$ линейно независим.

$$\eta^{2} = (\beta + z)^{2} = (au + bv)^{2} = a^{2}u^{2} + b^{2}v^{2} + ab(uv + vu)$$
$$(\beta + z)^{2} = a^{2}u^{2} + b^{2}v^{2} + ab(\alpha + y)$$
$$\beta^{2} + 2\beta z + z^{2} = a^{2}u^{2} + b^{2}v^{2} + ab(\alpha + y)$$
$$2\beta z = ab(\alpha + y)$$

Если z = 0, то $\{1, u, v\}$ линейно зависим $(\beta = au + bv)$ — противоречие.

$$\langle z \neq 0, z = \frac{ab}{2\beta}y$$

$$au + bv = \beta + \frac{ab}{2\beta}y$$

$$a'u + b'v = \beta' + \frac{a'b'}{2\beta'}y$$

$$(a - a')u + (b - b')v = (\beta - \beta') + \left(\frac{ab}{2\beta} - \frac{a'b'}{2\beta'}\right)y$$

Тогда мы можем выбором a и b занулить $\frac{ab}{2\beta}-\frac{a'b'}{2\beta'},$ поэтому $\{1,u,v\}$ линейно зависимы. Не дописано

Лемма 5.

- $u, v \in \mathbb{I}$
- $u^2 = -1$
- $v^2 = -1$
- $w = u \cdot v$

Тогда:

$$u^2 = v^2 = w^2 = -1$$

$$uv = -vu = w$$

$$vw = -wv = u$$

$$wu = -uw = v$$

Доказательство. Дома.

Лекция 3

18 марта

3 На пути к доказательству теоремы Фробениуса II

Пример (split complex number). Это не тело.

Числа представимы в виде z=a+bj, есть дополнение $z^*=a-bj$ и тогда $zz^*=a^2-b^2$. Изотропные элементы $e_1=\frac{1+j}{2}$ и $e_2=\frac{1-j}{2}$ образуют базис в этих числах. Кроме того, $e_1e_1^*=e_2e_2^*=0$

Таблица 3.1: Таблица Кэли

$$\begin{array}{c|cccc} & 1 & j \\ \hline 1 & 1 & j \\ \hline j & j & 1 \end{array}$$

Пример. $\mathbb{R}[t]_{t^2\mathbb{R}[t]}, z = a + bd$

Лемма 6. Пусть $u^2=-1, v^2=-1, w=uv$. Тогда $w=uv\in \mathbb{I}, w^2=-1, uv=-vu=\omega, v\omega=-\omega v=u$ и т.д.

Доказательство.

$$\langle (uv)(vu) = -vu = 1 \Longrightarrow vu = (uv)^{-1}$$

$$\mathbb{R} \ni uv + vu = uv + (uv)^{-1} \in \mathbb{I} \implies uv - vu = 0 \implies uv = -vu$$

Теорема 3.

•
$$\mathbb{I} = \{0\} \implies T \cong \mathbb{R}$$

- $\mathbb{I} = \{x\}, i := \frac{x}{\sqrt{-x^2}}, i^2 = -1 \implies T \cong \mathbb{C}$
- $\mathbb{I} = \{x, y\}, i := \frac{x}{\sqrt{-x^2}}, iy =: b + z, j_0 := iy b = z, j = \frac{j_0}{\sqrt{-j_0^2}} \implies \exists k = ij \implies q = \alpha + i\beta + j\gamma + k\delta \implies T \cong \mathbb{K}$
- $\{i, j, k, m\} \in \mathbb{I}$.

Тогда пусть im = a + x, jm = b + y, km = c + z, где $a, b, c \in \mathbb{R}$, $x, y, z \in \mathbb{I}$. Рассмотрим $l_0 = m + ai + bj + ck \in \mathbb{I}$, при этом $l_0 \neq 0$ и il_0 , jl_0 , $kl_0 \in \mathbb{I}$. Тогда il = -li, jl = -lj, kl = -lk.

$$|lj = -ijl = -kl$$

$$|jli = -lji = lk$$
 $\Longrightarrow kl = -kl = 0$

Примечание. Четвёртая лекция транслировалась в низком качестве, поэтому не была сохранена. Основной материал о кватернионах рассказан повторно в пятой лекции.

2 апреля

4 Введение в кватернионы

Будем обозначать $q=q_0+\tilde{q}$, где q_0 — вещественная часть, а \tilde{q} — мнимая. Также можно неформально говорить, что $q_0\in\mathbb{R}$, а $\tilde{q}\in\mathbb{R}^3$.

Пространство кватернионов $\mathbb K$ в неком смысле изоморфно $\mathbb R^4$. В этом пространстве можно выделить подпространство мнимых кватернионов, изоморфное $\mathbb R^3$. Распишем $\tilde q$:

$$q = q_0 + q_1 i + q_2 j + q_3 k$$

Операция сложения работает "поэлементно":

$$p + q = (p_0 + q_0) + (\tilde{p} + \tilde{q}) = (p_0 + q_0) + (p_1 + q_1)i + (p_2 + q_2)j + (p_3 + q_3)k$$

Умножение более интересно и определяется следующими правилами:

$$ij = k = -ji$$

$$jk = i = -kj$$

$$ki = j = -ik$$

$$i^{2} = j^{2} = k^{2} = ijk = -1$$

Тогда умножение в явном виде:

$$(p_{0} + p_{1}i + p_{2}j + p_{3}k)(q_{0} + q_{1}i + q_{2}j + q_{3}k) =$$

$$p_{0}q_{0} - \langle \tilde{p}, \tilde{q} \rangle + p_{0}\tilde{q} + q_{0}\tilde{p} + [\tilde{p} \times \tilde{q}]$$

$$[p \times q] := \det \begin{vmatrix} i & j & k \\ p_{1} & p_{2} & p_{3} \\ q_{1} & q_{2} & q_{3} \end{vmatrix}$$

Нейтральные элементы:

• По сложению: $0 = 0 + \tilde{0}$

• По умножению: $1 = 1 + \tilde{0}$

Определение. Сопряженным к кватерниону $q = q_0 + \tilde{q}$ называется кватернион:

$$q^* = q_0 - \tilde{q}$$

Определение (норма кватерниона).

$$||q|| = qq^*$$
 $|q| = \sqrt{||q||} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$

Определение.

$$q^{-1} = \frac{q^*}{\|q\|}$$

Определение (единичная сфера).

$$S = \{ q \in \mathbb{K} \mid ||q|| = |q| = 1 \}$$

Примечание. Если |q| = 1, то $q^{-1} = q^*$

Свойства.

1.
$$(q^*)^* = (q_0 - \tilde{q})^* = q_0 + \tilde{q} = q$$

2.
$$q + q^* = 2q_0 -$$
 "след"

3.
$$(pq)^* = q^*p^*$$

4.
$$qq^* = (q_0 + \tilde{q})(q_0 - \tilde{q}) = q_0^2 - \tilde{q}\tilde{q} = q_0^2 - [\tilde{q} \times \tilde{q}] + \langle \tilde{q}, \tilde{q} \rangle = q^*q = ||q|| = ||q^*||$$

5.
$$||pq|| = (pq)(pq)^* = (pq)(q^*p^*) = p(qq^*)p^* = p||q||p^* = ||q||pp^* = ||q|||p|| = ||p||||q||$$

6. ||q|| = 1 — единичный кватернион.

 $\lessdot q \in \mathbb{K}$ такое, что $\|q\|=1$, т.е. $q_0^2+|\tilde{q}|_{\mathbb{R}^3}^2=1$

$$\exists \varphi \in \mathbb{R} : \begin{cases} \cos^2 \varphi = q_0^2 \\ \sin^2 \varphi = |\tilde{q}|_{\mathbb{R}^3}^2 \end{cases}$$

$$\exists ! \varphi \in [0, \pi] : \begin{cases} \cos^2 \varphi = q_0^2 \\ \sin^2 \varphi = |\tilde{q}|_{\mathbb{R}^3}^2 \end{cases}$$

Очевидно, не любой кватернион так можно представить. Поэтому < $ilde{u}=rac{ ilde{q}}{| ilde{q}|}.$ Тогда:

$$q = q_0 + |\tilde{q}| \cdot \tilde{u} = \cos \varphi + \tilde{u} \sin \varphi$$

$$\langle \mathcal{L}(v) \quad \mathcal{L} : \mathbb{K} \times \mathbb{R}^3 \to \mathbb{K} \quad \mathcal{L}_q(v) = q\tilde{v}q^*$$

Лемма 7. $\forall v \in \mathbb{R}^3 \;\; |v| = |\mathcal{L}_q(v)| \; \text{при} \; |q| = 1$

Доказательство. Фиксируем $v \in \mathbb{R}^3, q \in \mathbb{K}$ такой, что ||q|| = 1.

$$\left\| \mathcal{L}_q(v) \right\| = \|q\tilde{v}q^*\| = \|q\| \cdot \|\tilde{v}\| \cdot \|q^*\| = \|\tilde{v}\| = \|v\|_{\mathbb{R}^3}$$

Лемма 8. $\forall q \in \mathbb{K} : ||q|| = 1 \ \forall \alpha \in \mathbb{R} \ \mathcal{L}_q(\alpha p + s) = \alpha \mathcal{L}_q(p) + \mathcal{L}_q(s)$

Доказательство.

$$\mathcal{L}_q(\alpha p + s) = q(\alpha p + s)q^* = \alpha q p q^* + q s q^* = \alpha \mathcal{L}_q(p) + \mathcal{L}_q(s)$$

Лемма 9. $\forall \alpha \in \mathbb{R} \setminus \{0\} \ \ \forall q \in \mathbb{K} : \|q\| = 1 \ \ |\alpha \tilde{q}| = |\mathcal{L}_q(\alpha \tilde{q})|$

Доказательство. С помощью расписывания определения через координаты:

$$\mathcal{L}_q(v) = (q_0^2 - |\tilde{q}|^2)v + 2\langle \tilde{q}, \tilde{v} \rangle \tilde{v} - 2q_0[\tilde{q} \times \tilde{v}]$$
(1)

$$\mathcal{L}_q(\alpha\tilde{q}) = \alpha \mathcal{L}_q(\tilde{q}) = \alpha((q_0^2 - |\tilde{q}|^2)\tilde{q} + 2\langle \tilde{q}, \tilde{q} \rangle \tilde{q} - 2q_0[\tilde{q} \times \tilde{q}]) = \alpha(q_0^2 + |\tilde{q}|^2)\tilde{q} = \alpha\tilde{q}$$

Теорема 4. $\forall q \in \mathbb{K}: |q|=1$. Тогда q можно представить как $q=\cos \varphi + \tilde{u}\sin \varphi$. Кроме того, $\mathcal{L}_q(v)=q\tilde{v}q^*=q\tilde{v}q^{-1}$.

Тогда действие \mathcal{L}_q на \mathbb{R}^3 — поворот на угол 2φ относительно оси u.

Доказательство. Зафиксируем $v \in \mathbb{R}^3$. Разложим v как $v = \vec{a} + \vec{b}$, где $\vec{a} \parallel \vec{u}$, а $\vec{n} \perp \vec{u}$

$$\mathcal{L}_q(v) = \mathcal{L}_q(\vec{a} + \vec{n}) = \mathcal{L}_q(\vec{a}) + \mathcal{L}_q(\vec{n})$$

$$\mathcal{L}_q(\vec{a}) \stackrel{\exists K \in \mathbb{R}: a = k\tilde{q}}{=} \vec{a}$$

$$\mathcal{L}_{q}(\vec{n}) = (q_{0}^{2} - |\tilde{q}|^{2})\vec{n} + 2 \langle \vec{n}, \vec{q} \rangle \vec{n} - 2q_{0}[\tilde{n} \times \vec{q}]$$
$$= (q_{0}^{2} - |\tilde{q}|^{2})\vec{n} - 2q_{0}[\tilde{n} \times \vec{q}]$$

$$= (\cos^2 \varphi - \sin^2 \varphi)\vec{n} + 2\cos \varphi \cdot \sin \varphi \underbrace{[\tilde{u} \times \vec{n}]}_{\vec{n}_{\perp}}$$

$$= \cos 2\varphi \vec{n} + \sin 2\varphi \vec{n}_{\perp}$$

$$|\vec{n}_{\perp}| = |[\tilde{u} \times \vec{n}]| = |\tilde{u}| \cdot |\vec{n}| \cdot \sin \frac{\pi}{2} = |\vec{n}|$$

Теорема 5 (*). $\triangleleft q \in \mathbb{K} : ||q|| = 1, q = \cos \frac{\varphi}{2} + \tilde{u} \sin \frac{\varphi}{2}$

 \mathcal{L}_{q^*} — это поворот либо вектора на угол $-\varphi$, либо координатной сетки на угол φ .

Доказательство. Т.к. $||q|| = 1, q^* = q^{-1}$.

$$\mathcal{L}_{q^{-1}}(\mathcal{L}_{q}(v)) = q^{-1}(qvq^{-1})q = eve = v$$

Теорема 6. $\lessdot p,q \in \mathbb{K}: \|p\| = \|q\| = 1.$ Тогда $\mathcal{L}_q \circ \mathcal{L}_p = \mathcal{L}_{q \cdot p}.$

Доказательство. Фиксируем $p, q \in \mathbb{K}, v \in \mathbb{R}^3$.

$$\mathcal{L}_q(\mathcal{L}_p(v)) = q(pvp^*)q^* = qpv(qp)^* = \mathcal{L}_{q\cdot p}(v)$$

$$q = q_0 + \tilde{q} = \cos\frac{\varphi}{2} + \tilde{u}\sin\frac{\varphi}{2}$$

Подставим в (1):

$$\mathcal{L}_{q}(v) = \left(\cos^{2}\frac{\varphi}{2} - \sin^{2}\frac{\varphi}{2}\right)\tilde{v} + 2\sin\frac{\varphi}{2}\left\langle\tilde{u},\tilde{v}\right\rangle \cdot \tilde{u} - 2\cos^{2}\frac{\varphi}{2}[\tilde{u}\times\tilde{v}]$$
$$= \cos\varphi\tilde{v} + (1 - \cos\varphi)\left\langle\tilde{u},\tilde{v}\right\rangle\tilde{u} - \sin\varphi[\tilde{u}\times\tilde{v}]$$

Пример. $\triangleleft u = \frac{1}{\sqrt{3}}(1, 1, 1)$, поворот на $\frac{2\pi}{3}$.

$$\mathcal{L}_{q}((1,0,0)) = \cos\frac{2\pi}{3} \cdot i + \left(1 - \cos\frac{2\pi}{3}\right) \cdot \frac{1}{\sqrt{3}} \left\langle (1,1,1), (1,0,0) \right\rangle \cdot \frac{1}{\sqrt{3}} (i+j+k)$$

$$-\sin\frac{2\pi}{3} \left[\frac{1}{\sqrt{3}} (i+j+k) \times i \right]$$

$$= \frac{i}{2} + \frac{3}{2} \cdot \frac{i+j+k}{3} + \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}} \begin{vmatrix} i & j & k \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix}$$

$$= -\frac{i}{2} + \frac{i+j+k}{2} + \frac{j-k}{2} = \frac{2j}{2} = j$$

9 апреля

4.1 Напоминание о кватернионах

Кватернионы записываются как:

$$q = q_0 + q_1 i + q_2 j + q_3 k \stackrel{\text{def}}{=} q_0 + \tilde{q}$$

Таблица 6.1: Таблица Кэли для кватернионов

Пространство кватернионов есть прямое произведение действительных чисел и чистых кватернионов:

$$\mathbb{K} = \mathbb{R} \oplus \underbrace{\mathbb{P}_E}_{\simeq \mathbb{R}^3}$$

$$\begin{array}{c|ccccc} \langle \cdot, \cdot \rangle & i & j & k \\ \hline i & 1 & 0 & 0 \\ k & 0 & 1 & 0 \\ j & 0 & 0 & 1 \\ \end{array}$$

Таблица 6.2: Скалярное произведение кватернионов

Пусть
$$q \in \mathbb{K}, \vec{v} \in \{0\} \oplus \mathbb{P}_{E}. \, \sphericalangle \mathcal{L}_{q}(v) = qvq^{-1}.$$

$$|q| \coloneqq \sqrt{\|q\|}, \|q\| \coloneqq qq^*, q^{-1} \coloneqq \frac{q^*}{\|q\|}$$

Если |q|=1, то $q=\cos \frac{\varphi}{2}+\tilde{u}\sin \frac{\varphi}{2}$, где $\tilde{u}=\frac{\tilde{q}}{|\tilde{q}|}$. В этом случае qvq^{-1} есть поворот на угол φ .

5 Кватернионы и SU(2)

Рассмотрим матрицы $A \in \mathbb{C}^{2\times 2}$, которым соответствуют операторы $\hat{A}: \mathbb{C}^2 \to \mathbb{C}^2$.

Тогда $AA^* = E$, где $A^* -$ **эрмитово сопряжение**, т.е. транспонируем матрицу и каждый элемент комплексно сопрягаем.

Т.к. $\det(AB) = \det A \cdot \det B$, следовательно $1 = \det E = \det(AA^*) = \det A \cdot \det A^* \implies \det A = \frac{1}{\det A^*}$. Кроме того, $\det A = \det A^{\mathrm{T}}$ и $\prod_i a_i^* = (\prod_i a_i)^*$ и $\sum_i b_i^* = (\sum_i b_i)^*$ и тогда:

$$\sum_{j} \prod_{i} a_{ij}^{k} = \sum_{j} \left(\prod_{i} a_{ij} \right)^{*} = \left(\sum_{j} \prod_{i} a_{ij}^{*} \right)$$

И следовательно $\det A^* = (\det A)^*$

Определение. SU(2) — группа A таких, что $AA^* = E$ и $\det A = 1$

$$\lessdot A \in SU(2), A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}.$$

$$\det A = 1 \implies \alpha \delta - \beta \gamma = 1$$

Тогда:

$$\begin{cases} E_{11} = \alpha \overline{\alpha} + \beta \overline{\beta} = 1 \\ E_{12} = \alpha \overline{\gamma} + \beta \overline{\delta} = 0 \\ E_{21} = \gamma \overline{\alpha} + \delta \overline{\beta} = 0 \\ E_{22} = \gamma \overline{\gamma} + \delta \overline{\delta} = 1 \end{cases}$$

Из условий для E_{11} и E_{22} :

$$|\alpha|^2 + |\beta|^2 = 1 \implies \begin{cases} \alpha = e^{i\varphi_1} \cos \theta \\ \beta = e^{i\varphi_2} \sin \theta \end{cases}$$

$$|\gamma|^2 + |\delta|^2 = 1 \implies \begin{cases} \gamma = e^{i\psi_1} \cos \chi \\ \delta = e^{i\psi_2} \sin \chi \end{cases}$$

Из E_{12} и E_{21} :

$$\begin{split} e^{i\varphi_1}\cos\theta e^{-i\psi_1}\cos\chi + e^{i\varphi_2}\sin\theta e^{-i\psi_2}\sin\chi &= 0\\ e^{i(\varphi_1 - \psi_1)}\cos\theta\cos\chi + e^{i(\varphi_2 - \psi_2)}\sin\theta\sin\chi &= 0 \end{split}$$

$$2\cos(\varphi_1 - \psi_1)\cos\theta\cos\chi + 2i\sin(\varphi_2 - \chi_2)\sin\theta\sin\chi = 0$$

$$\begin{cases} \cos(\varphi_1 - \psi_1)\cos\theta\cos\chi = 0\\ \sin(\varphi_2 - \psi_2)\sin\theta\sin\chi = 0 \end{cases}$$

$$A^{-1} = \begin{pmatrix} \delta & -\beta\\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} \overline{\alpha} & \overline{\gamma}\\ \overline{\beta} & \overline{\delta} \end{pmatrix} \implies \delta = \overline{\alpha}, \gamma = -\overline{\beta}$$

Пусть $\alpha = a + ic$, $\beta = b + id$, где $a, b, c, d \in \mathbb{R}$.

$$A = \begin{pmatrix} a+ic & b+id \\ -b+id & a-ic \end{pmatrix}$$

$$= a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} ic & b+id \\ -b+id & -ic \end{pmatrix}$$

$$= a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + c \begin{pmatrix} ic & 0 \\ 0 & i \end{pmatrix} + d \begin{pmatrix} 0 & i \\ ic & 0 \end{pmatrix}$$

$$\stackrel{\Xi_{0}}{=} \stackrel{\Xi_{1}}{=} \stackrel{\Xi_{2}}{=} \stackrel{\Xi_{3}}{=} \stackrel{\Xi_{3}}{=}$$

Таблица 6.3: Таблица Кэли для матриц Ξ_i

Таким образом, у нас есть соответствие SU(2) и \mathbb{K} : $\Xi_0 \Leftrightarrow 1, \Xi_1 \Leftrightarrow i, \Xi_2 \Leftrightarrow j, \Xi_3 \Leftrightarrow k$. Но это не изоморфизм — ограничение на $\det A = 1$ не позволяет любому кватерниону сопоставить элемент SU(2). Найдем, чему SU(2) изоморфно.

Определение. Множество нормированных кватернионов $\mathbb{NK} = \{|q| = 1 \mid q \in \mathbb{K}\}$

Определение. \mathbb{NK} — подгруппа (по умножению) \mathbb{K}

$$S^3 \sim NK \subset K$$

Здесь и далее $\stackrel{G}{\cong}$ обозначает групповой изоморфизм.

$$\mathbb{NK} \stackrel{G}{\cong} SU(2) \quad \{0\} \oplus \mathbb{P}_E \stackrel{G}{\cong} SO(3)$$

Резюмируя: мы взяли подгруппу кватернионов \mathbb{NK} и построили изоморфизм между этой подгруппой и SU(2). На прошлом занятии мы построили изоморфизм между группой вращений SO(3) и $\{0\} \oplus \mathbb{P}_E$. Эти изоморфизмы по умножению. Также есть изоморфизм по сложению между \mathbb{P}_E и \mathbb{R}^3

6 SU(2) и SO(3)

Любое вращение трёхмерного пространства можно рассматривать как переход произвольной точки сферы в другую произвольную точку сферы. Спроектируем сферу на плоскость, которую будем считать $\mathbb C$ с осями ξ и η . Оси сферы - xyz.

Упражнение читателю — показать, что:

$$\xi = \frac{x}{\frac{1}{2} - z} \quad \eta = \frac{y}{\frac{1}{2} - z}$$

Тогда введём комплексное число $\zeta = \xi + i\eta$. Не более сложно заметить, что:

$$\zeta = \frac{\frac{1}{2} + z}{x - iy}$$

, что следует из $x^2 + y^2 + z^2 = 1$

Нам надо научиться вращать вокруг оси z и x, тогда композицией этих двух действий мы сможем получить любое вращение.

Вращение вокруг оси z, т.е. в комплексной плоскости тривиально:

$$\zeta'=e^{i\theta}\zeta$$

Поворот вокруг оси x на угол χ (без доказательства):

$$\zeta'' = \frac{\zeta \cos \frac{\chi}{2} + i \sin \frac{\chi}{2}}{i\xi \sin \frac{\chi}{2} + \cos \frac{\chi}{2}}$$

Тогда композиция этих преобразований имеет вид:

$$A = \frac{a\xi + b}{c\xi + d}$$

Будем кодировать вращения как вектора \vec{K} , где направление определяет ось, относительно которой происходит вращение, и модуль определяет угол поворота ($|K| \leq \pi$).

Тогда мы можем рассмотреть многообразие таких векторов. В нём отождествлены противоположные точки. Есть проблема: оно связно, но оно не односвязно, т.е. у него нетривиальна фундаментальная группа. По теореме каждое многообразие можно достроить до односвязного, такое многообразие называется **накрытием**. Для SO(3) такое многообразие это SU(2).

Пример. Рассмотрим накрытие для окружности. Т.к. единственное другое многообразие с размерностью 1 это прямая, то будем строить накрытие из прямой. С помощью преобразования e^{it} будем накручивать прямую на окружность. Если в какой-либо точке прекратить накручивать, то точка конца помешает. Число слоев в накрытии, соттветствующих одной точке, называется **кратностью накрытия**. Кратность накрытия окружности — ∞.

Кратность накрытия для SO(3) - 2.

16 апреля

7 Алгебраические топологические тела

Что общего у поля вещественных чисел, поля комплексных чисел и тела кватернионов? Разумеется, много чего, но нас интересует тот факт, что они являются евклидовыми пространствами. Для удобства будем обозначать \mathbb{R} , \mathbb{C} , \mathbb{K} как K.

Определение. Элементы последовательности $a_1, a_2 \dots a_n \dots$, где $a_i \in K$, **сходятся** к $a \in K$, если $\rho(a_n, a) \to 0$. Тогда обозначаем $\lim_{n \to \infty} a_n = a$.

Определение. Если на теле введено понятие сходимости, то такое тело называется **топологическим**.

На топологическом теле операции непрерывны, т.е. если $\lim_{n\to\infty} a_n = a$ и $\lim_{n\to\infty} b_n = b$, то:

$$\lim_{n\to\infty} a_n + b_n = a + b \qquad \lim_{n\to\infty} a_n b_n = ab$$

Из этих двух равенств также следует непрерывность вычитания и умножения, т.к. $\lim_{n\to\infty}-a_n=-a$ и $\lim_{n\to\infty}a_n^{-1}=a^{-1}$.

Определение. Топологическое тело с операциями +, ·, -, -1 называется **алгебраически- топологическим**

Норма для K:

1.
$$\mathbb{R}: ||r|| = \sqrt{r \cdot r}$$

2.
$$\mathbb{C}: ||z|| = \sqrt{z \cdot z^*}$$

3.
$$\mathbb{K} : ||q|| = \sqrt{q \cdot q^*}$$

Тогда метрика на K это $\rho(z_1, z_2) = ||z_1 - z_2||$.

Определение. Топология на K это $\tau \subset 2^K$ такое, что:

- 1. $\{0\}, K \in \tau$
- 2. $\bigcup_i T_i \in \tau$
- 3. $\bigcap_{KOH} T_i \in \tau$

Элементы τ называются **открытыми**.

Пример.

$$T_0 := \{z \in K \mid \left\|z - z_p\right\| < B\}, B \in \mathbb{R}_+$$

О непрерывности некоторого отображения $f:A\to B$ можно говорить только если $A,B\in \operatorname{Top}^1$

Обозначение. Для тела L и X, Y ⊂ L:

- $X + Y := \{x + y \mid x \in X, y \in Y\}$
- $X Y := \{x y \mid x \in X, y \in Y\}$
- $XY := \{xy \mid x \in X, y \in Y\}$
- $XY^{-1} := \{xy^{-1} \mid x \in X, y \in Y\}$

Определение. Последовательность $U_1, U_2 \dots U_n \dots$, где $U_n \subset L$ и $0 \in U_{n+1} \subset U_n$ называется системой окрестностей нуля топологического тела L, если $\forall n \in \mathbb{N} \ \exists p$:

- 1. $(U_p + U_p) \subset U_n$
- 2. $U_pU_p \subset U_n$
- 3. $-U_p \subset U_n$
- 4. $(e + U_p)^{-1} \subset e + U_n$, где e единица тела L.
- 5. $\forall a \in L \ aU_p \subset U_n, U_p a \subset U_n$

Определение. Последовательность $a_1, a_2 \dots a_n \dots$, где $\forall i \ a_i \in L$, сходится к $a \in L$, если:

$$\forall n \ \exists r \ \forall p > n \ (a_p - a) \in U_n$$

Теорема 7. Если на теле² L определена сходимость и $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b$, то:

$$\lim_{n \to \infty} a_n + b_n = a + b$$

$$\lim_{n \to \infty} a_n \cdot b_n = a \cdot b$$

$$\lim_{n \to \infty} -a_n = -a$$

$$\lim_{n \to \infty} a_n^{-1} = a^{-1}$$

 $^{^{1}}$ Категория топологических пространств

² Не обязательно топологическом

Доказательство. По условию теоремы $\exists p_1: a_{p_1} \in a+U_n, \exists p_2: b_{p_2} \in b+U_n$. Пусть $p=\max(p_1,p_2).^3$

$$a_p + b_p \in a + b + U_n + U_n$$

По определению системы окрестностей нуля:

$$\exists p_3: U_{p_3} + U_{p_3} \subset U_n$$

$$(a_p + b_p) - (a+b) \in U_n$$

Аналогично остальные пункты.

 $[\]overline{\,}^3$ На лекции этого не было, но мне кажется это необходимым.

23 апреля

8 Топологические группы

8.1 Топология

Определение. Топология на множестве M — система подмножеств $\tau \subset 2^M$, $\tau = \{A_i\}_{i \in I}$, для которой выполнены **аксиомы топологии**:

- 1. $M, \emptyset \in \tau$
- 2. $\bigcup_i A_i \in \tau$
- 3. $\bigcap_{i}^{\text{KOH.}} A_i \in \tau$

 $T = (M, \tau)$ называется топологическим пространством.

Примечание. Множества A_i называются **открытыми**.

Пример.

- Дискретная топология τ_d все подмножества открыты.
- Стандартная топология на прямой τ_s топология открытых интервалов.
- Топология Зарисского на прямой τ_z открытые множества суть открытые интервалы, из которых выкинуто конечно или счётное число точек.
- Топология окружности τ_c
- Антидискретная топология τ_a открыто только M и \varnothing

Определение. Окрестность точки P — всякое открытое множество, содержащее точку P.

Рассмотрим произвольное $S \subset M$. Мы можем классифицировать точку P относительно S:

- 1. Внутренняя точка $∃O_P : O_P \subset S$
- 2. Внешняя точка $\exists O_P : O_P \cap S = \emptyset$
- 3. Граничная точка $\forall O_P \ O_P \cap S \neq \emptyset, O_P \cap \overline{S} \neq \emptyset$

Определение. Множество внутренних точек $Int(S)^{-1}$ — **открытое ядро** S. ∂S — **граница** S.

$$S = \langle S \rangle \cup \langle M \setminus S \rangle \cup \partial S$$

Примечание. $\partial \langle S \rangle = \emptyset$

Рассмотрим отображение $\sigma: M_1 \to M_2$, где $2^{M_1} = \{A_i\}, 2^{M_2} = \{B_i\}$

$$\sigma(A_i \cup A_k) = \sigma(A_i) \cup \sigma(A_k) \quad \sigma(A_i \cap A_k) \neq \sigma(A_i) \cap \sigma(A_k)$$

$$\sigma^{-1}(B_i \cup B_l) = \sigma^{-1}(B_i) \cup \sigma^{-1}(B_l) \quad \sigma^{-1}(B_i \cap B_l) = \sigma^{-1}(B_i) \cap \sigma^{-1}(B_l)$$

Определение. Рассмотрим топологические пространства $T_1 = (M_1, \tau_1)$ и $T_2 = (M_2, \tau_2)$. Тогда $\sigma^{-1}(\tau_2)$ — топология на M_1 . Но на M_1 уже есть топология τ_1 . Если τ_1 сильнее, чем $\sigma^{-1}(\tau_2)$, то σ называется **непрерывным** отображением.

Определение. Отображение называется непрерывным в точке $P \in M$, если:

$$\forall O_{\sigma(P)} \ \exists O_P : \sigma(O_P) \subset O_{\sigma(P)}$$

Определение. σ непрерывно, если прообраз всякого открытого множества открыт:

$$\forall B \in \tau_2 \ \sigma^{-1}(B) \in \tau_1$$

Эти определения эквивалентны.

Определение. Предельная точка последовательности — точка, в любой окрестности которой содержатся все элементы последовательности, начиная с некоторого номера.

Определение. Точка прикосновения множества — точка, в каждой окрестности которой находится хотя бы одна точка из множества.

Точка прикосновения — не всегда предельная точка и наоборот. Эти понятия совпадают, если выполнены **аксиомы счётности**:

- 1. У каждой точки есть счётная система определяющих окрестностей, т.е. любое открытое множество, содержащее эту точку, лежит в такой окрестности.
- 2. База топологии счётна.

 $^{^{1}}$ Также обозначается $\langle S \rangle$

Аксиомы отделимости:

- 1. Для любых двух точек p и q существуют окрестности O_p и O_q такие, что $q \notin O_p$, $p \notin O_q$.
- 2. У любых двух точек есть непересекающиеся окрестности.
 - *Примечание.* Из 2 следует 1, но не наоборот. Контрпример τ_z .
- 3. Для любого замкнутого множества и точки, не лежащей в нём, существуют непересекающиеся окрестности.
- 4. Для любых двух замкнутых непересекающихся множеств существуют непересекающиеся окрестности.

30 апреля

8.2 Топологические группы

Определение. Топологическая группа — множество G такое, что:

- 1. G группа с операцией μ , отобажением обратного элемента inv и единицей e.
- 2. G топологическое пространство с топологией τ .
- 3. Операции μ , inv непрерывны в топологии τ .

Примечание. Отображение топологических пространств $f: T_1 \to T_2$ непрерывно, если:

$$\forall W \subset T_2 - \text{откр.} \ \exists V \subset T_1 - \text{откр.} \ f(V) \subset W$$

Примечание. Здесь и далее W_t, U_t, V_t обозначает открытую окрестность точки t.

Непрерывность μ :

$$x, y \in G, W = W_{u(x,y)} \implies \exists U = U_x, V = V_y : UV \subset W$$

Непрерывность inv:

$$x \in G, W = W_{\mathrm{inv}(x)} \implies \exists U = U_x : U^{-1} \subset W$$

$$x, y \in G, W = W_{\mu(x, \mathrm{inv}(y))} \implies \exists U = U_x, V = V_y : UV^{-1} \subset W$$

 Π ример. \mathbb{R}^2 со операцией сложения и окрестностью $O_v, v \in \mathbb{R}^2$:

$$O_v := \{ u \in \mathbb{R}^2 \mid ||u - v|| < \alpha, \alpha \in \mathbb{R}_+ \}$$

Пример. Группа U(1) — группа поворотов окружности:

$$U(1) := \{z \mid |z| = 1\}$$

Пример. Группа всех матриц GL(n).

Норма порождена скалярным произведением $\langle A, B \rangle = \operatorname{tr} A^{\mathrm{T}} B$.

Свойства.

1. $\{x_i\}_{i=1}^n$ — совокупность элементов G, $\{V_i\}$ — их окрестности.

$$\lessdot y=x_1^{m_1}x_2^{m_2}\dots x_n^{m_n}$$
 и W — окрестность $y.$ Тогда $V_1^{m_1}V_2^{m_2}\dots V_n^{m_n}\subset W$

Доказательство. По индукции.

2. $\langle f_a, f_b', \varphi : G \to G, f_a(x) = xa, f_b'(x) = bx, \varphi(x) = \text{inv}(x)$. Это гомеоморфизмы.

Доказательство. f_a — биекция по свойствам группы.

Непрерывность: пусть
$$f_a(x)=xa=y$$
. $\lessdot W=W_y$, тогда $\exists U=U_x, V=V_a:UV\subset W\implies Ua\subset W\implies f_a(U)\subset W$

3. $\triangleleft P$ — подмножество G, F — замкнутое в G, U — открытое в G. Тогда $\forall a \in G$ aF, Fa, F^{-1} замкнутые и UP, PU, U^{-1} открыты.

Доказательство. $Fa = f_a(F)$, но f_a гомеоморфизм.

$$UP = \bigcup_{x \in P} \underbrace{Ux}_{\text{откр.}}$$
 и объединение открытых множеств открыто. \Box

4. Однородность: $\forall p, q \in G \ \exists f \in \text{homo}(G) : f(p) = q$

Это значит, что топологические свойства группы однозначно определяются её свойствами в окрестности какой-либо точки.

5. Регулярность: $\langle x \in G, S \subset G - \text{замкнутое}, x \notin S \implies \exists O_x, O_S : O_x \cap O_S = \{\emptyset\}$

Доказательство. Пусть e — нейтральный элемент группы $G, V = V_e$.

$$e^{-1}e=e\implies \exists U=U_e:U^{-1}U\subset V$$

Покажем, что $\overline{U} \subset V$.

$$\forall x \in \overline{U} \implies \exists O_x : O_x \cap U \neq \emptyset$$

$$xU$$
 содержит точку x , т.к. $e \in U$, следовательно $\exists b \in U: xb = a \in U, x = ab^{-1} \in UU^{-1} \subset V \implies \overline{U} \subset V$

- 6. Пусть H топологическая подгруппа G. Тогда:
 - (a) qH открыто.
 - (b) H замкнуто и H компонента связности.

Теорема 8. Пусть G — связная топологическая группа, т.е. у нее нет подгрупп. Пусть e — нейтральный элемент $G, U = U_e$.

Тогда U индуцирует все G.

Доказательство. $\triangleleft V = U \cap \mathrm{inv}(U)$. Тогда $V^{-1} = V$.

$$\sphericalangle V_1 \subset V_2 \subset \ldots \subset V_n \subset \ldots \subset V_\infty$$
, где $V_i = V_{i-1}V$, а $V_1 = V$.

По определению $V_i = \bigcup_{p \in V} V_{i-1} p$ и объединение открытых открыто. Тогда по индукции V_∞ открыто, но при этом оно содержит все элементы группы, т.е. замкнуто. Таким образом, V_∞ открыто и замкнуто, т.е. является компонентой связности, и т.к. G связна, $V_\infty = G$.

Лекция 10. 7 мая стр. 28 из 35

Лекция 10

7 мая

9 p-адические числа

9.1 Модули

Определение. Модуль — функция $|\cdot|:\mathbb{K} \to \mathbb{R}_+$ такая, что:

- 1. $|x| = 0 \iff x = 0$
- 2. |xy| = |x||y|
- 3. $|x + y| \le |x| + |y|$

Определение. Модуль **неархимедов**, если $|x + y| \le \max(|x|, |y|)$

Примечание. Из неархимедовости следует третье свойство модуля.

Определение. Тривиальный модуль:
$$|x| \coloneqq \begin{cases} 0, & x = 0 \\ 1, & x \neq 0 \end{cases}$$

Определение. p**-адическая оценка**¹, где p — простое число:

$$v_p(x) := \begin{cases} +\infty, & x = 0 \\ n, & x \in \mathbb{Z} \land x = p^n \cdot \tilde{x} \land \tilde{x} \not p \\ v_p(m) - v_p(k), & x = \frac{m}{k} \end{cases}$$

Определение (p-модуль). $|x|_p \coloneqq p^{-v_p(x)}$

Лемма 10.

$$v_p(xy) = v_p(x) + v_p(y)$$

¹ Modulation

Лекция 10. 7 мая стр. 29 из 35

$$v_p(x+y) \ge \min(v_p(x), v_p(y))$$

Доказательство. Пусть $x=p^k \tilde{x}, y=p^l \tilde{y}$ и $\tilde{x}, \tilde{y} \not / p$.

$$xy = p^k \tilde{x} \cdot p^l \tilde{y} = p^{k+l} \tilde{x} \tilde{y}$$

Пусть k > l.

$$x + y = p^k \tilde{x} + p^l \tilde{y} = p^l (p^{u-l} \tilde{x} + \tilde{y})$$

Лемма 11. Определение $|\cdot|_p$ корректно, т.е. $|\cdot|_p$ — модуль.

Доказательство.

$$|xy|_{p} \stackrel{\text{def}}{=} p^{-v_{p}(xy)} \stackrel{(2)}{=} p^{-v_{p}(x)-v_{p}(y)} = p^{-v_{p}(x)} p^{-v_{p}(y)} \stackrel{\text{def}}{=} |x|_{p} |y|_{p}$$

$$|x+y|_{p} \stackrel{\text{def}}{=} p^{-v_{p}(x+y)} \stackrel{(3)}{\leq} p^{-\min(v_{p}(x),v_{p}(y))} = \max(p^{v_{p}(x)},p^{v_{p}(y)}) \stackrel{\text{def}}{=} |x|_{p} |y|_{p}$$

Забавный факт: $\lim_{n \to +\infty} |p^n|_p \to 0$

Лемма 12. Свойства модуля в произвольном **К**:

- 1. |e| = 1
- 2. $\exists n : x^n = e \implies |x| = 1$
- 3. |-e|=1
- 4. |-x| = x

Доказательство.

1.
$$|e| = |e \cdot e| = |e| \cdot |e| = 1$$

2.
$$1 = |e| = |x^n| = |x|^n$$

3.
$$|-e \cdot -e| = |e^2| = 1$$

4. Из предыдущего пункта.

Лемма 13. $x \neq |y| \implies |x + y| = \max(|x|, |y|)$

Лекция 10. 7 мая стр. 30 из 35

Доказательство. Пусть |x| > |y|.

$$|x + y| \le \max(|x|, |y|) = x$$

$$|x| = |(x + y) - y| \le \max(|x + y|, |y|) = |x + y|$$

$$|x + y| \le |x|$$

$$|x| \le |x + y|$$

$$\Rightarrow |x + y| = |x|$$

Лемма 14.

$$|x+y| \le \max(|x|,|y|) \iff |z+1| \le \max(|z|,1)$$

Доказательство.

⇒ очевидно

 \longleftarrow Рассмотрим случай y=0. Тогда $\forall x \ |x| \leq \max(|x|,0) = |x|$ очевидно верно. Рассмотрим случай $y\neq 0$. Тогда пусть $z=\frac{x}{y}$.

$$\left|\frac{x}{y} + 1\right| \le \max\left(\left|\frac{x}{y}\right|, 1\right) \implies |x + y| \le \max(|x|, |y|)$$

Утверждение. $|x| \le 1 \implies |x-1| \le 1$

Определение. Метрика, порожденная модулем: d(x, y) := |x - y|

Лемма 15. Если модуль неархимедов, то $d(x,y) \le \max(d(x,z),d(z,y))$

Утверждение. Все треугольники в К с неархимедовым модулем равнобедренные.

Пример. $x = p^k \tilde{x}, y = p^l \tilde{y}, \tilde{x}, \tilde{y} \not/ p$ Если k > l:

$$p^{k}\tilde{x} + p^{l}\tilde{y} = p^{l}\underbrace{(p^{k-l}\tilde{x} + \tilde{y})}_{:/p}$$

Если k = l:

$$p^k \tilde{x} + p^k \tilde{y} = p^k \underbrace{(\tilde{x} + \tilde{y})}_{\text{может} : p}$$

Лекция 10. 7 мая стр. 31 из 35

Пример. $p_1 = 5, p_2 = 3$

$$|50|_{5} = |5^{2} \cdot 2|_{5} = 5^{-2} = \frac{1}{25} \quad |50|_{3} = 1$$

$$|17|_{5} = 5^{-0} = 1 \quad |17|_{3} = 1$$

$$|15|_{5} = 5^{-1} = \frac{1}{5} \quad |15|_{3} = 3^{-1} = \frac{1}{3}$$

$$\left|\frac{3}{25}\right|_{5} = 5^{-(0-2)} = 25 \quad \left|\frac{3}{25}\right|_{3} = 3^{-(1-0)} = \frac{1}{3}$$

Пример. $x = \frac{2}{15}, y = \frac{3}{15}, z = \frac{7}{15}$

$$|x - y|_5 = \left| \frac{1}{15} \right|_5 = 5^{-(0-1)} = 5 \quad |x - y|_3 = \left| \frac{1}{15} \right|_3 = 3$$

$$|x - z|_5 = \left| \frac{1}{3} \right|_5 = 1 \quad |x - z|_3 = \left| \frac{1}{3} \right|_3 = 3$$

$$|y - z|_5 = \left| \frac{4}{15} \right|_5 = 5 \quad |y - z|_3 = \left| \frac{4}{15} \right|_3 = 3$$

Мы получили равносторонний треугольник при $|\cdot|_3$.

Определение.

$$B := \{x \mid d(x, x_0) < r\}$$
$$\overline{B} := \{x \mid d(x, x_0) \le r\}$$

Лемма 16.

- 1. $b \in B(a,r) \implies B(b,r) = B(a,r)$, аналогичное верно для \overline{B}
- 2. B(a,r) открытое и замкнутое. Если $r \neq 0$, то $\overline{B}(a,r)$ тоже открытое и замкнутое.
- 3. $r > s, B(a,r) \cap B(b,s) \neq \emptyset \implies B(b,s) \subset B(a,r)$

Доказательство.

1. |b - a| < r.

$$\forall x \in B(a,r) \quad |x-b| \le \max(|x-a|,|b-a|) < r \implies x \in B(b,r) \implies B(a,r) \subset B(b,r)$$

- 2. Рассмотрим точку вне шара, она принадлежит с некоторой окрестностью дополнению шара, следовательно дополнение открыто, следовательно шар замкнут.
- 3. $B(a, s) = B(c, s) \subset B(c, r) = B(b, r)$

Лекция 11. 14 мая стр. 32 из 35

Лекция 11

14 мая

9.2 Теорема Островского

Примечание. Аксиома Архимеда:

$$\forall \varepsilon, M \ \exists n \in \mathbb{N} : n\varepsilon > M$$

У архимедовости поля есть связсь с аксиомой Архимеда, сейчас мы её найдём.

Определение.

$$Z: \mathbb{Z} \to \mathbb{K} \quad Z(n) := \begin{cases} \mathbb{O}, & n = 0 \\ \mathbb{1} + \mathbb{1} + \dots + \mathbb{1}, & n \in \mathbb{N} \\ -(\mathbb{1} + \mathbb{1} + \dots + \mathbb{1}), n < 0 \end{cases}$$

Теорема 9. Модуль неархимедов $\iff \forall n \in \mathbb{Z} \ |Z(n)| \le 1$

Доказательство.

 $\implies |\mathbb{O}| = 0$, поэтому $|Z(0)| \le 1$ выполнено, для отрицательных n будет верно, если докажем для положительных n. Докажем по индукции:

База.
$$|1| = 1 \le 1$$

Индукция. Пусть $|k| \le 1$, тогда $|k+1| \le \max(|k|, 1) \le 1$

$$\iff$$
 $\forall m \in \mathbb{N}$

$$\begin{aligned} |x+1|^m &= |(x+1)^m| \\ &\overset{\text{бином}}{=} \left| \sum_{i=0}^m z\left(C_m^i\right) x^i \right| \leq \sum_{i=0}^m |z(C_m^i)| |x|^i \end{aligned}$$

Лекция 11. 14 мая стр. 33 из 35

$$\leq \sum_{i=0}^{m} |x|^{i} = 1 + |x| + |x|^{2} + \dots + |x|^{m}$$

$$\leq (m+1) \max(|x|^{m}, 1)$$

$$\forall m \in \mathbb{N} \quad |x+1|^m \le \max(|x|^m, 1) \implies |x+1| \le \max(|x|, 1)$$

$$\implies \lim_{m \to +\infty} |x+1| \le \lim_{m \to \infty} \sqrt[m]{m+1} \max(|x|, 1)$$

$$\implies |x+1| \le \max(|x|, 1)$$

Определение. Модуль $|\cdot|_1$ эквивалентен $|\cdot|_2$, если $\exists \alpha \in \mathbb{R}: \forall x \in \mathbb{K} \ |x|_1 = |x|_2^{\alpha}$

Теорема 10 (Островский). Любой нетривиальный модуль над $\mathbb Q$ эквивалентен либо $|\cdot|_p$, либо $|\cdot|_{\infty}$

Доказательство. Рассмотрим архимедов модуль | · |.

Тогда по определению $\exists n \in \mathbb{Z} : |Z(n)| > 1$. Пусть n_0 — минимальный такой $n, |n_0| \eqqcolon x$.

 $\exists \alpha: x=n_0^\alpha, \ \alpha=\log_{n_0} x.$ Будем доказывать, что это α подходит как коэффициент эквивалентности рассматриемого модуля и $|\cdot|_\infty$, т.е. рассмотрим произвольное $n\in Z(\mathbb{N})$ и покажем, что $|n|=|n|_\infty^\alpha$.

Выпишем n в системе счисления с основанием n_0 :

$$n = \sum_{i=0}^{k} a_i n_0^i, \quad 0 \le a_i < n_0, a_k \ne 0, n_0^k \le n < n_0^{k+1}$$

$$|n| = \left| \sum_{i=0}^{k} a_i n_0^i \right| \le \sum_{i=0}^{k} |a_i| n_0^{i\alpha} \le \sum_{i=0}^{k} n_0^{i\alpha} = n_0^{k\alpha} \sum_{i=0}^{k} n_0^{-i\alpha} \le n_0^{k\alpha} \sum_{i=0}^{\infty} n_0^{i\alpha} = n_0^{k\alpha} \underbrace{\left(\frac{n_0^{\alpha}}{n_0^{\alpha} - 1}\right)}_{C} \le n^{\alpha} C$$

Подставим n вместо n^N , $N \in \mathbb{N}$.

$$|n|^{N} = |n^{N}| \le C \cdot n^{N\alpha} \implies \lim_{N \to \infty} |n| \le \underbrace{\prod_{N \to \infty}^{N-1} \sqrt[N]{C}}_{N \to \infty} n^{\alpha} \implies |n| \le n^{\alpha}$$

$$n_{0}^{(k+1)\alpha} = |n_{0}^{k+1}| = |n + n_{0}^{k+1} - n| \le |n| + |n_{0}^{k+1} - n|$$

$$|n| \ge n_{0}^{(k+1)\alpha} - |n_{0}^{k+1} - n|$$
(4)

Лекция 11. 14 мая стр. 34 из 35

$$\geq n_0^{(k+1)\alpha} - (n_0^{k+1} - n)^{\alpha}$$

$$\geq n_0^{(k+1)\alpha} - (n_0^{k+1} - n_0^k)^{\alpha}$$

$$= n_0^{(k+1)\alpha} \left(1 - \left(1 - \frac{1}{n_0} \right)^{\alpha} \right)$$

$$=: n_0^{(k+1)\alpha} \tilde{C}$$

$$> \tilde{C} n^{\alpha}$$

По предельному переходу как в (4) получается $|n| \ge n^{\alpha}$. Но из (4) $|n| \le n^{\alpha}$, следовательно $|n| = n^{\alpha}$ и архимедов модуль эквивалентен $|\cdot|_{\infty}$.

Рассмотрим неархимедов модуль $|\cdot|$, тогда по определению $\forall n \in \mathbb{N} \ |Z(n)| \leq 1$.

 $\exists \tilde{n}: |Z(\tilde{n})| < 1$, т.к. иначе модуль был бы тривиальным.

$$n_0 := \min\{\tilde{n} : |Z(\tilde{n}) < 1\}$$

Утверждение. n_0 простой.

Доказательство. Пусть $n_0 = a \cdot b, \ a,b > 1$. Т.к. $a,b < n_0,$ то $|a| = |b| = 1 \implies |n_0| = |ab| = |a| \cdot |b| = 1$, но $|n_0| < 1$ — противоречие.

Обозначим тогда n_0 за p.

 $\langle n = pq + s, s \neq 0, s$

$$n = p^{v}n', n' \not p \implies |n| = |p^{v}| \cdot |n'| = |p|^{v} = c^{-v}, c = |p|^{-1}$$

 α , которое даст нам эквивалентность, это $\log_{|p|^{-1}} p$, т.к. $(|p|^{-1})^{-v\alpha} = p^{-v}$.

Примечание. Это доказательство — для \mathbb{N} , но переход к \mathbb{Q} очевиден. Зная, что $\forall n \in \mathbb{N} \ |n| = n^{\alpha}$ мы можем показать, что $\left|\frac{a}{b}\right| = \left(\frac{a}{b}\right)^{\alpha}$:

$$\left|\frac{a}{b}\right| = \left(\frac{a}{b}\right)^{\alpha} \iff |a| = \left(\frac{a}{b}\right)^{\alpha} b^{\alpha} \iff |a| = a^{\alpha}$$

Утверждение.

$$\forall n \in \mathbb{Q} \quad \prod_{p \in \mathbb{P} \cup \{\infty\}} |n|_p = 1$$

Лекция 11. 14 мая стр. 35 из 35

Доказательство. Разложим n на простые множители:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$$

$$|n|_{\infty} = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$$

$$p \neq p_i \implies |n_p| = 1$$

$$p = p_i \implies |n|_p = p^{-\alpha_i}$$

Определение. (x_n) — последовательность Коши¹, если

$$\forall \varepsilon > 0 \ \exists M \in \mathbb{N} : \forall m, n \geq M \ |x_m - x_n| < \varepsilon$$

Определение. Поле \mathbb{K} **полное**, если любая последовательность Коши имеет предел в \mathbb{K} . **Определение.** $S \subset \mathbb{K}$ **плотно** в \mathbb{K} , если

$$\forall \alpha \in \mathbb{K} \ \forall U_x \ \exists s \in S : s \in U_x$$

Поле рациональных чисел $\mathbb Q$ не полное, поэтому мы его пополнили до $\mathbb R$. Мы сделаем аналогично: рассмотрим множество последовательностей Коши $\mathrm{CS}(\mathbb K)$ и факторизуем его: $\mathrm{CS}(\mathbb K)/N$, где $N \coloneqq \{(x_n): x_n \xrightarrow[n \to +\infty]{} 0\}$. Таким образом (с p-адическим модулем) мы получим p-адические числа.

Примечание. Рациональные числа плотны в р-адических числах.

р-адические числа записываются как:

$$\sum_{i=-k}^{+\infty} a_i p^i$$

в противопоставление \mathbb{R} , которые записываются как:

$$\sum_{i=-\infty}^{k} a_i 10^i$$

¹ Или фундаментальная последовательность.