

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Lyzamin.	Arkusz diagnostyczny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy
	MMAP-P0-100, MMAP-P0-200,
Formy arkusza:	MMAP-P0-300, MMAP-P0-400,
	MMAP-P0-660, MMAP-P0-700,
	MMAP-P0-Q00
Data publikacji dokumentu:	30 września 2022 r.

Uwaga: Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2023 i 2024 ¹		
Wymaganie ogólne	Wymaganie szczegółowe	
I. Sprawność rachunkowa.	Zdający:	
Wykonywanie obliczeń na liczbach	I.1) wykonuje działania (dodawanie,	
rzeczywistych, także przy użyciu	odejmowanie, mnożenie, dzielenie,	
kalkulatora, stosowanie praw działań	potęgowanie, pierwiastkowanie,	
matematycznych przy przekształcaniu	logarytmowanie) w zbiorze liczb	
wyrażeń algebraicznych oraz	rzeczywistych.	
wykorzystywanie tych umiejętności przy		
rozwiązywaniu problemów w kontekstach		
rzeczywistych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Obliczamy wartość wyrażenia:

$$(1+3\cdot 2^{-1})^{-2} = \left(1+3\cdot \frac{1}{2}\right)^{-2} = \left(1+\frac{3}{2}\right)^{-2} = \left(\frac{5}{2}\right)^{-2} = \left(\frac{2}{5}\right)^2 = \frac{4}{25}$$

¹ Komunikat o wymaganiach egzaminacyjnych obowiązujących w roku 2023 i 2024, <u>https://www.gov.pl/web/edukacja-i-nauka/wymagania-egzaminacyjne-obowiazujace-na-egzaminie-maturalnym-wroku-2023-i-2024</u>

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
I. Sprawność rachunkowa.	Zdający:	
Wykonywanie obliczeń na liczbach	I.9) stosuje związek logarytmowania	
rzeczywistych, także przy użyciu	z potęgowaniem, posługuje się wzorami na	
kalkulatora, stosowanie praw działań	logarytm iloczynu, logarytm ilorazu	
matematycznych przy przekształcaniu	i logarytm potęgi.	
wyrażeń algebraicznych oraz		
wykorzystywanie tych umiejętności przy		
rozwiązywaniu problemów w kontekstach		
rzeczywistych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Komentarz

Obliczamy wartość wyrażenia:

$$2\log_5 5 + 1 - \frac{1}{2}\log_5 625 = 2 \cdot 1 + 1 - \frac{1}{2} \cdot 4 = 2 + 1 - 2 = 1$$

Zadanie 3. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	XI.2) zlicza obiekty, stosując reguły	
2. Dobieranie i tworzenie modeli	mnożenia i dodawania [].	
matematycznych przy rozwiązywaniu		
problemów praktycznych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Wśród wielokrotności liczby 25 nieparzyste to te, których końcówka dwucyfrowa to 25 lub 75, co daje dwie możliwości. Cyfrę setek możemy wybrać na 10 sposobów, natomiast cyfrę tysięcy na 9 sposobów.

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: II.6) dodaje i odejmuje wyrażenia wymierne […].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Przekształcamy wyrażenie

$$\frac{2}{x-1} - 5 = \frac{2}{x-1} - \frac{5 \cdot (x-1)}{x-1} = \frac{2-5x+5}{x-1} = \frac{-5x+7}{x-1}$$

Zadanie 5. (0-2)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymagania szczegółowe		
III. Wykorzystanie i interpretowanie	I. Zdający:	
reprezentacji.	II.1) stosuje wzory skróconego mnożenia	
Stosowanie obiektów matematycznych	na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 ;	
i operowanie nimi, interpretowanie pojęć	II.2) dodaje, odejmuje i mnoży wielomiany	
matematycznych.	jednej i wielu zmiennych;	

Zasady oceniania

2 pkt – wybranie dwóch poprawnych odpowiedzi: D i F.

1 pkt – wybranie jednej lub dwóch odpowiedzi, z których jedna jest poprawna: D albo F.

0 pkt – odpowiedź całkowicie niepoprawna albo brak odpowiedzi.

Rozwiązanie

DF

Komentarz

Przekształcamy wyrażenia, stosując wzór skróconego mnożenia na różnicę kwadratów dwóch wyrażeń:

$$[3 - (x - y)] \cdot [3 + (x - y)] = 9 - (x - y)^2 = 9 - (x^2 - 2xy + y^2)$$

oraz

$$-[(x-y)-3]\cdot[(x-y)+3] = -[(x-y)^2-9] = 9 - (x^2-2xy+y^2).$$

Zadanie 6. (0-3)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.5) rozwiązuje równania wielomianowe
Stosowanie obiektów matematycznych	postaci $W(x) = 0$ dla wielomianów
i operowanie nimi, interpretowanie pojęć	doprowadzonych do postaci iloczynowej lub
matematycznych.	takich, które dają się doprowadzić do
	postaci iloczynowej metodą wyłączania
	wspólnego czynnika przed nawias lub
	metodą grupowania.

Zasady oceniania

- 3 pkt zastosowanie poprawnej metody rozwiązania równania i podanie wszystkich rozwiązań równania: x=-3 lub x=2 lub x=3.
- 2 pkt rozwiązanie jednego z równań: $x^2 9 = 0$ albo x 2 = 0.
- 1 pkt przekształcenie lewej strony równania $3x^3 6x^2 27x + 54 = 0$ do postaci iloczynu wielomianów stopnia co najwyżej drugiego.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Przekształcamy lewą stronę równania do postaci iloczynu:

$$3x^{3} - 6x^{2} - 27x + 54 = 0$$
$$3x^{2}(x - 2) - 27(x - 2) = 0$$
$$(x - 2)(3x^{2} - 27) = 0$$
$$3(x - 2)(x^{2} - 9) = 0$$

Stąd otrzymujemy kolejno

$$x-2=0$$
 lub $x^2-9=0$
 $x-2=0$ lub $(x-3)(x+3)=0$
 $x-2=0$ lub $x-3=0$ lub $x+3=0$
 $x=2$ lub $x=3$ lub $x=-3$

Rozwiązaniami równania są liczby: (-3), 2 oraz 3.

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: III.6) rozwiązuje równania wymierne postaci $\frac{V(x)}{W(x)} = 0$, gdzie wielomiany $V(x)$ i $W(x)$ są zapisane w postaci iloczynowej.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Wyznaczamy dziedzinę równania: $D = R \setminus \{-1,1\}$.

Licznik ułamka jest równy 0, gdy

$$(x^2 + x) = 0$$
 lub $(x + 3) = 0$ lub $(x - 1) = 0$

Zatem

$$x(x+1) = 0$$
 lub $x = -3$ lub $x = 1$

$$x = 0$$
 lub $x = -1$ lub $x = -3$ lub $x = 1$

Spośród tych czterech liczb do dziedziny należą tylko x=-3 oraz x=0.

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	I.6) posługuje się pojęciem przedziału	
Stosowanie obiektów matematycznych	liczbowego, zaznacza przedziały na osi	
i operowanie nimi, interpretowanie pojęć	liczbowej;	
matematycznych.	I.7) stosuje interpretację geometryczną	
	i algebraiczną wartości bezwzględnej,	
	rozwiązuje równania i nierówności typu:	
	$ x + 4 = 5, x - 2 < 3, x + 3 \ge 4.$	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Komentarz

Dany zbiór składa się z dwóch przedziałów, których końce są równo odległe od liczby (-2). Z własności wartości bezwzględnej mamy, że

$$|x-a| \ge r$$
 wtedy i tylko wtedy, gdy $x \le a-r$ lub $x \ge a+r$.

Zatem uwzględniając interpretację geometryczną możemy stwierdzić, że rozwiązaniem jest C

Zadanie 9. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: IV.2) stosuje układy równań do rozwiązywania zadań tekstowych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 10.1. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymagania ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji. 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	Zdający: V.4) odczytuje z wykresu funkcji: dziedzinę, zbiór wartości [].	

Zasady oceniania

1 pkt – rozwiązanie poprawne.

0 pkt – rozwiązanie niepoprawne albo brak rozwiązania.

Przykładowe pełne rozwiązanie

[-4, 4]

Zadanie 10.2. (0-1)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymaganie szczegółowe		
II. Wykorzystanie i tworzenie informacji.	Zdający:	
1. Interpretowanie i operowanie	V.4) odczytuje z wykresu funkcji: []	
informacjami przedstawionymi w tekście,	miejsca zerowe, przedziały	
zarówno matematycznym, jak	monotoniczności, przedziały, w których	
i popularnonaukowym, a także w formie	funkcja przyjmuje wartości większe (nie	
wykresów, diagramów, tabel.	mniejsze) lub mniejsze (nie większe) od	
	danej liczby [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

FΡ

Zadanie 10.3.

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.4) odczytuje z wykresu funkcji: []
informacjami przedstawionymi w tekście,	największe i najmniejsze wartości funkcji
zarówno matematycznym, jak	(o ile istnieją) w danym przedziale
i popularnonaukowym, a także w formie	domkniętym [].
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 11. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: IX.4) posługuje się równaniem okręgu $(x-a)^2+(y-b)^2=r^2$.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Środkiem okręgu jest punkt S = (3, -1). Obliczmy długość odcinka AS:

$$|AS| = \sqrt{(3-8)^2 + (-1-11)^2} = \sqrt{(-5)^2 + (-12)^2} = \sqrt{25+144} = \sqrt{169} = 13$$

Zadanie 12.1. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.2) oblicza wartość funkcji zadanej wzorem
2. Dobieranie i tworzenie modeli	algebraicznym.
matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Największa głębokość basenu jest miejscu odległym od płytszego brzegu o 25 m.

$$y(25) = 0.18 \cdot 25 - 0.9 = 3.6$$

Zadanie 12.2. (0-2)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: V.5) interpretuje współczynniki występujące we wzorze funkcji liniowej; V.6) wyznacza wzór funkcji liniowej na podstawie informacji o jej wykresie lub o jej własnościach.

Zasady oceniania

2 pkt – poprawne obliczenie wartości współczynnika a: a = 0.04.

1 pkt – poprawne obliczenie wartości współczynnika b: b = 1,2.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Obliczamy wartość współczynnika b:

$$b = y(0) = 1.2$$

W celu obliczenia wartości współczynnika a obliczamy głębokość basenu w odległości 15 m od płytszego brzegu, gdzie łączą się obie płaszczyzny dna:

$$y(15) = 0.18 \cdot 15 - 0.9 = 1.8$$

Zatem

$$a \cdot 15 + 1,2 = 1,8$$

i stad a = 0.04.

Zadanie 13.1. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.8) interpretuje współczynniki występujące
1. Stosowanie obiektów matematycznych	we wzorze funkcji kwadratowej w postaci
i operowanie nimi, interpretowanie pojęć	ogólnej, kanonicznej i iloczynowej (jeśli
matematycznych.	istnieje).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Komentarz

Funkcja f dana jest w postaci kanonicznej $f(x) = a(x-p)^2 + q$, z której można odczytać współrzędne wierzchołka W = (p,q).

Zadanie 13.2. (0-1)

` ,	
Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: V.4) odczytuje z wykresu funkcji: dziedzinę, zbiór wartości [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Komentarz

Funkcja f dana jest w postaci kanonicznej $f(x)=a(x-p)^2+q$, z której można odczytać współrzędne wierzchołka W(p,q). Biorąc pod uwagę, że współczynnik a=-1, stwierdzamy, że ramiona paraboli są opuszczone do dołu, a największa przyjmowana przez nią wartość jest w wierzchołku, dla którego q=2.

Zadanie 14.1 (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VI.1) oblicza wyrazy ciągu określonego wzorem ogólnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Komentarz

$$a_{50} = \frac{7^{50}}{21} = \frac{7^{49}}{3}$$

Zadanie 14.2 (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć	Zdający: VI.3) sprawdza, czy dany ciąg jest arytmetyczny lub geometryczny;
matematycznych.	VI.5) stosuje wzór [] na sumę <i>n</i> początkowych wyrazów ciągu geometrycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

PF

Komentarz

Aby sprawdzić, czy ciąg (a_n) jest geometryczny, sprawdzamy, czy jego iloraz jest stały:

$$q = \frac{a_{n+1}}{a_n} = \frac{7^{n+1}}{21} : \frac{7^n}{21} = \frac{7^{n+1}}{7^n} = 7$$

Obliczamy sumę trzech początkowych wyrazów:

$$S_3 = a_1 + a_2 + a_3 = \frac{1}{3} + \frac{7}{3} + \frac{49}{3} = \frac{57}{3} = 19$$

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.2) posługuje się równaniem prostej na
1. Stosowanie obiektów matematycznych	płaszczyźnie w postaci kierunkowej, w tym
i operowanie nimi, interpretowanie pojęć	wyznacza równanie prostej o zadanych
matematycznych.	własnościach.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Podstawiając współrzędne punktu A do równania prostej, otrzymamy

$$3 = 3 \cdot (-1) + b$$

a stąd

$$b = 6$$

Zadanie 16.1 (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja. 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.	Zdający: VI.2) w prostych przypadkach bada, czy ciąg jest rosnący, czy malejący.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

А3

Komentarz

Obliczmy różnicę ciągu:

$$a_{n+1} - a_n = [3(n+1) - 1] - [3n-1] = 3n+3-1-3n+1=3$$

Ponieważ różnica ciągu jest liczbą dodatnią, więc ciąg jest rosnący.

Zadanie 16.2 (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: III.3) rozwiązuje nierówności liniowe z jedną niewiadomą.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Rozwiązujemy nierówność $a_n > 25$:

$$a_n > 25$$

$$3n - 1 > 25$$

$$n > 8\frac{2}{3}$$

Najmniejszą liczbą naturalną, która spełnia tę nierówność, jest n = 9.

Zadanie 16.3 (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.1) oblicza wyrazy ciągu określonego
1. Stosowanie obiektów matematycznych	wzorem ogólnym;
i operowanie nimi, interpretowanie pojęć	VI.3) sprawdza, czy dany ciąg jest
matematycznych.	arytmetyczny lub geometryczny;
	VI.4) stosuje wzór [] na sumę n
	początkowych wyrazów ciągu
	arytmetycznego.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Komentarz

Wypisujemy kilka początkowych wyrazów ciągu (a_n) i obliczamy ich sumy:

$$2+5=7$$

$$2+5+8=15$$

$$2+5+8+11=26$$

$$2+5+8+11+14=40$$

$$2+5+8+11+14+17=57$$

Suma sześciu początkowych wyrazów ciągu (a_n) jest równa 57.

Zadanie 17. (0-1)

· ,	
Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX. 2) posługuje się równaniem prostej na
1. Stosowanie obiektów matematycznych	płaszczyźnie w postaci kierunkowej, w tym
i operowanie nimi, interpretowanie pojęć	wyznacza równanie prostej o zadanych
matematycznych.	własnościach (takich jak na przykład
	przechodzenie przez dwa dane punkty,
	znany współczynnik kierunkowy,
	równoległość lub prostopadłość do innej
	prostej, styczność do okręgu).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 18. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VII.2) korzysta z wzorów $\sin^2 \alpha + \cos^2 \alpha = 1$, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Przekształcamy dane wyrażenie:

$$(1 - \cos 20^{\circ}) \cdot (1 + \cos 20^{\circ}) - \sin^{2} 20^{\circ} =$$

$$= (1 - \cos^{2} 20^{\circ}) - \sin^{2} 20^{\circ} =$$

$$= \sin^{2} 20^{\circ} - \sin^{2} 20^{\circ} = 0$$

Zadanie 19. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymaganie szczegółowe
 III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych; 	Zdający: XII.1) oblicza prawdopodobieństwo w modelu klasycznym.
3. Tworzenie pomocniczych obiektów matematycznych na podstawie istniejących, w celu przeprowadzenia argumentacji lub rozwiązania problemu.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Komentarz

Niech A oznacza zdarzenie polegające na wylosowaniu kuli białej. Przyjmujemy, że w pojemniku jest 4n kul białych oraz 5n kul czerwonych i obliczamy prawdopodobieństwo wylosowania kuli białej spośród 9n wszystkich kul:

$$P(A) = \frac{4n}{9n} = \frac{4}{9}$$

Zadanie 20. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 3. Tworzenie pomocniczych obiektów matematycznych na podstawie istniejących, w celu przeprowadzenia argumentacji lub rozwiązania problemu.	Zdający: VIII.5) stosuje własności kątów wpisanych i środkowych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Każdy z trójkątów $ABO,\,BCO\,$ oraz $ACO\,$ jest równoramienny (ramionami są promienie okręgu). Wynika stąd, że

$$|\angle AOB| = 180^{\circ} - 2 \cdot 40^{\circ} = 100^{\circ}$$

$$|\angle BOC| = 180^{\circ} - 2 \cdot 10^{\circ} = 160^{\circ}$$

Kąty AOB, BOC oraz AOC tworzą razem kąt pełny, stąd

$$|\angle AOC| = 360^{\circ} - (100^{\circ} + 160^{\circ}) = 100^{\circ}$$

Stąd

$$|\angle ACO| = (180^{\circ} - 100^{\circ}): 2 = 40^{\circ}$$

Zadanie 21. (0-2)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja. 4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych.	Zdający: VII.4) oblicza kąty trójkąta i długości jego boków przy odpowiednich danych (rozwiązuje trójkąty m.in. z wykorzystaniem twierdzenia cosinusów). VIII.2) [] stosuje twierdzenie: w trójkącie naprzeciw większego kąta wewnętrznego leży dłuższy bok.

Zasady oceniania

2 pkt – zastosowanie twierdzenia cosinusów i obliczenie cosinusa największego kąta trójkąta: $\cos\alpha=\frac{1}{4}$.

1 pkt – zastosowanie twierdzenia cosinusów i zapisanie równania $8^2=6^2+7^2-2\cdot 6\cdot 7\cdot \cos\alpha.$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Oznaczmy miarę największego kąta w rozpatrywanym trójkącie przez α .

W trójkącie największy kąt wewnętrzny znajduje się naprzeciw najdłuższego boku. Korzystamy z twierdzenia cosinusów i obliczamy cosinus największego kąta:

$$8^{2} = 6^{2} + 7^{2} - 2 \cdot 6 \cdot 7 \cdot \cos \alpha$$
$$64 = 36 + 49 - 84 \cos \alpha$$
$$\cos \alpha = \frac{1}{4}$$

Zadanie 22. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.7) stosuje twierdzenia: Talesa,
Stosowanie obiektów matematycznych	odwrotne do twierdzenia Talesa,
i operowanie nimi, interpretowanie pojęć	o dwusiecznej kąta oraz o kącie między
matematycznych.	styczną a cięciwą.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Komentarz

Korzystając z twierdzenia o dwusiecznej kąta otrzymujemy proporcję

$$\frac{|AD|}{|CD|} = \frac{|AB|}{|CB|}$$

Podstawiając długości odpowiednich odcinków, mamy

$$\frac{3,2}{|CD|} = \frac{4}{4.6}$$

Stąd

$$|CD| = \frac{3,2 \cdot 4,6}{4} = \frac{92}{25}$$

Zadanie 23. (0-4)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: XIII. rozwiązuje zadania optymalizacyjne w sytuacjach dających się opisać funkcją kwadratową.

Zasady oceniania

- 4 pkt zastosowanie poprawnej metody obliczenia liczby wiatraków maksymalizującej zysk oraz poprawny wynik: x = 115 oraz Z(115) = 13055 zł.
- 3 pkt zapisanie dziedziny funkcji Z: $x \in [0,150] \cap \mathbb{Z}$ oraz obliczenie pierwszej współrzędnej wierzchołka paraboli i zapisanie, że 115 należy do dziedziny funkcji Z
- 2 pkt zapisanie poprawnego wzoru funkcji Z zysku w postaci jawnej: $Z(x) = -x^2 + 230x 170$.
- 1 pkt zapisanie funkcji Z zysku w postaci Z(x) = P(x) K(x).
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Zysk ze sprzedaży jest różnicą przychodu ze sprzedaży wiatraków oraz kosztu ich wytworzenia: $Z(x) = P(x) - K(x) = -x^2 + 230x - 170$.

Tygodniowo w zakładzie można wyprodukować maksymalnie 150 wiatraków, więc dziedziną funkcji Z jest zbiór wszystkich liczb całkowitych z przedziału [0,150].

Ponieważ funkcja $Z(x) = -x^2 + 230x - 170$ jest funkcją kwadratową, największą wartość przyjmuje dla argumentu będącego pierwszą współrzędną wierzchołka paraboli.

Korzystając ze wzoru $p=-\frac{b}{2a}$, obliczamy

$$x = -\frac{230}{2 \cdot (-1)} = \frac{-230}{-2} = 115$$

Liczba x = 115 należy do dziedziny funkcji Z.

Największy tygodniowy zysk jest osiągany przy produkcji 115 wiatraków tygodniowo. Obliczymy go, przyjmując x=115:

$$Z(115) = -115^2 + 230 \cdot 115 - 170 = 13055 \text{ z}$$

Przy produkcji 115 wiatraków tygodniowo zysk firmy będzie równy 13 055 zł.

Zadanie 24.1. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji. 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel. III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: XII.2) oblicza średnią arytmetyczną i średnią ważoną [].

Zasady oceniania

1 pkt – rozwiązanie poprawne.

0 pkt – rozwiązanie niepoprawne albo brak rozwiązania.

Rozwiązanie

Α

Komentarz

Dodając wszystkie płace pracowników firmy F, otrzymujemy sumę

$$75 \cdot 4000 + 50 \cdot 4800 + 20 \cdot 5000 + 10 \cdot 6000 + 5 \cdot 7000 = 735000$$

Dzieląc ją przez liczbę pracowników, mamy

 $735\ 000:160 = 4\ 593,75$

Zadanie 24.2. (0-1)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji. 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel. III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: XII.2) […] znajduje medianę i dominantę.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Komentarz

Mediana jest średnią arytmetyczną płac pracownika nr 80 i 81 przy uporządkowaniu ich w porządku niemalejącym. Obaj pracownicy otrzymują płacę miesięczną równą 4800 zł.

Zadanie 24.3. (0-1)

Wymaganie szczegółowe
y: konuje działania [] w zbiorze liczb wistych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Komentarz

Do grupy, o której mowa w zadaniu, zaliczamy pracowników z płacą $4000\,$ zł, $4800\,$ zł oraz $5000\,$ zł. Jest ich razem

$$75 + 50 + 20 = 145$$
.

Obliczamy, jakim procentem liczby wszystkich pracowników jest liczba pracowników w danej grupie:

$$\frac{145}{160} \cdot 100\% = 90,625\% \approx 91\%$$

Zadanie 25. (0-3)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.4. Stosowanie i tworzenie strategii podczas rozwiązywania zadań, również w sytuacjach	Zdający: VII.4) oblicza kąty trójkąta i długości jego boków przy odpowiednich danych
nietypowych.	(rozwiązuje trójkąty m.in. z wykorzystaniem twierdzenia cosinusów).
	VIII.2) [] stosuje twierdzenie: w trójkącie naprzeciw większego kąta wewnętrznego leży dłuższy bok.

Zasady oceniania

- 3 pkt obliczenie promienia okręgu opisanego na podstawie ostrosłupa, poprawne zastosowanie twierdzenia Pitagorasa do obliczenia wysokości H bryły i poprawny wynik: $H=5\sqrt{5}$.
- 2 pkt obliczenie promienia okręgu opisanego na podstawie ostrosłupa oraz poprawne zastosowanie twierdzenia Pitagorasa do obliczenia wysokości *H* bryły.
- 1 pkt obliczenie promienia R okręgu opisanego na trójkącie równobocznym: R=10.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Podstawą ostrosłupa jest trójkąt równoboczny o boku $10\sqrt{3}$.

Ponieważ krawędzie boczne ostrosłupa mają taką samą długość, spodek wysokości ostrosłupa jest punktem jednakowo odległym od wierzchołków podstawy bryły, czyli jest środkiem okręgu opisanego na podstawie.

Obliczamy promień $\,R\,$ okręgu opisanego na

podstawie:
$$R = \frac{10\sqrt{3}\cdot\sqrt{3}}{3} = 10$$
.

i otrzymujemy kolejno

Oznaczmy przez A, B, C, S wierzchołki ostrosłupa, przez S' – spodek wysokości H opuszczonej z wierzchołka S na podstawę ABC (patrz rysunek). Stosujemy do trójkąta AS'S twierdzenie Pitagorasa

$$|AS'|^{2} + |S'S|^{2} = |SA|^{2}$$

$$R^{2} + H^{2} = |SA|^{2}$$

$$10^{2} + H^{2} = 15^{2}$$

$$H^{2} = 225 - 100$$

$$H = 5\sqrt{5}$$

Wysokość ostrosłupa jest równa $5\sqrt{5}$.

Zadanie 26. (0-2)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	I.2) przeprowadza proste dowody dotyczące
kilkuetapowych, podawanie argumentów	podzielności liczb całkowitych i reszt
uzasadniających poprawność rozumowania,	z dzielenia nie trudniejsze niż dowód
odróżnianie dowodu od przykładu.	podzielności przez 24 iloczynu czterech
	kolejnych liczb naturalnych.

Zasady oceniania

- 2 pkt przekształcenie danego wyrażenia do postaci $5 \cdot (2n^2 + 6n + 1) + 3$ oraz zapisanie, że $2n^2 + 6n + 1$ jest liczbą całkowitą.
- 1 pkt przekształcenie wyrażenia $10n^2+30n+8$ do postaci $5\cdot(2n^2+6n+1)+3$.
- 0 pkt –rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Przekształcamy równoważnie dane wyrażenie

$$10n^2 + 30n + 8 = 10n^2 + 30n + 5 + 3 = 5 \cdot (2n^2 + 6n + 1) + 3.$$

Ponieważ wartość wyrażenia $2n^2+6n+1$ jest liczbą całkowitą, to $5\cdot(2n^2+6n+1)$ jest wielokrotnością liczby 5, zatem $5\cdot(2n^2+6n+1)+3$ przy dzieleniu przez 5 daje resztę 3. To należało wykazać.