A phase angle $\vartheta(t)$ is computed by utilizing thigh angular position $\phi(t)$ and its integral $\Phi(t)=\int_0^t\phi(\tau)d\tau$ in the following way:

$$\vartheta(t) = an2((\Phi(t) + \Gamma)z, (\phi(t) + \gamma))$$

where the scale factor z, the thigh angle shift γ , and the thigh integral shift Γ are given by

$$egin{aligned} z &= rac{|\phi_{ ext{max}} - \phi_{ ext{min}}|}{|\Phi_{ ext{max}} - \Phi_{ ext{min}}|}, \ \gamma &= -\left(rac{\phi_{ ext{max}} + \phi_{ ext{min}}}{2}
ight), \quad \Gamma = -\left(rac{\Phi_{ ext{max}} + \Phi_{ ext{min}}}{2}
ight). \end{aligned}$$

Fig. 3. Phase plane of the thigh angle $\phi(t)$ vs. its integral $\Phi(t)$ during prosthetic leg experiments (see Section IV). The phase plane has been scaled by z and shifted by (γ,Γ) to achieve a circular orbit across the stride, which improves the linearity of the phase variable $\vartheta(t)$.

