Correction

- $\forall t \in \mathbb{R}, -t \in \mathbb{R} \text{ et } \varphi(-t) = \dots = -\varphi(t) \text{ donc } \varphi \text{ est impaire.}$ 1.a $\forall t \in \mathbb{R}, t + \pi \in \mathbb{R}$ et $\varphi(t + \pi) = \arcsin(\sin(2t + 2\pi)) = \varphi(t)$ donc φ est π périodique.
- Pour $t \in [0, \pi/4]$, on a $2t \in [0, \pi/2] \subset [-\pi/2, \pi/2]$ donc $\varphi(t) = \arcsin(\sin 2t) = 2t$. 1.b Pour $t \in [\pi/4, \pi/2]$, on a $2t \in [\pi/2, \pi]$. Puisque $\sin 2t = \sin(\pi - 2t)$ et que $\pi - 2t \in [0, \pi/2] \subset [-\pi/2, \pi/2]$ on a $\varphi(t) = \pi - 2t$.
- De part les simplifications qui précèdent, l'imparité et la périodicité, on obtient l'allure ci-dessous : 1.c

- $(1+x)^2 \ge 0$ donne $-2x \le 1+x^2$ et $(1-x)^2 \ge 0$ donne $2x \le 1+x^2$. Par suite $|2x| \le 1+x^2$. 2.a
- Pour tout $x \in \mathbb{R}$, $1+x^2 \neq 0$ donc $\frac{2x}{1+x^2}$ existe et par la question précédente $\frac{2x}{1+x^2} \in [-1,1]$, or la 2.b fonction arcsin est définie sur [-1,1] donc $\arcsin \frac{2x}{1+x^2}$ existe. Ainsi f est définie sur $\mathbb R$.
- 2.c f est impaire donc sa courbe représentative est symétrique par rapport à l'origine du repère.
- $\frac{2\tan t}{1+\tan^2 t} = \frac{2\frac{\sin t}{\cos t}}{1+\frac{\sin^2 t}{1+\frac{\sin^2 t}{1+\frac{\sin^2 t}{1+\frac{\sin^2 t}{1+\frac{\sin^2 t}{1+\frac{\sin^2 t}{1+\frac{\cos^2 t}{1+\frac{\cos^2$ 3.a
- $f(x) = f(\tan(\arctan x)) = \varphi(\arctan x)$. 3.b
- La fonction arctan est croissante sur $]-\infty,-1]$ à valeurs dans, $]-\pi/2,-\pi/4]$ où φ est décroissante donc 3.c par composition f est décroissante sur $]-\infty,1]$.

La fonction arctan est croissante sur [-1,1] à valeurs dans, $[-\pi/4,\pi/4]$ où φ est croissante donc par composition f est croissante sur [-1,1].

La fonction arctan est croissante sur $[1,+\infty[$ à valeurs dans, $[\pi/4,\pi/2[$ où φ est décroissante donc par composition f est décroissante sur $[1,+\infty[$.

3.d

Sur $]-\infty,-1[\cup]-1,1[\cup]1,+\infty[$ on a $\frac{2x}{1+x^2}\in]-1,1[$ et la fonction arcsin est dérivable sur]-1,1[donc f

est dérivable sur le domaine considéré et, après calculs : $f'(x) = \begin{cases} \frac{2}{1+x^2} & \text{si } |x| < 1 \\ \frac{-2}{1+x^2} & \text{si } |x| > 1 \end{cases}$.

4.c
$$\lim_{x \to 1^{-}} f'(x) = 1$$
 et $\lim_{x \to 1^{+}} f'(x) = -1$.

5.a
$$f(x) = h \Leftrightarrow \frac{2x}{1+x^2} = \sin h$$
 (l'équivalence est vraie car $h \in]0, \pi/2[$)
Les solutions de l'équation $\frac{2x}{1+x^2} = \sin h$ sont $x_1 = \frac{1-\cos h}{\sin h}$ et $x_2 = \frac{1+\cos h}{\sin h}$.

5.b Le point
$$I$$
 a pour coordonnée $\begin{cases} x = 1/\sin h \\ y = h \end{cases}$.

Les coordonnées du point I vérifie $y = \arcsin \frac{1}{r}$ et x > 1.

La représentation graphique de la fonction $x\mapsto \arcsin x \ \mathrm{sur}\ \big]-1,+\infty\big[$ donne le lieu des points I .

Cette représentation est aisée car
$$\frac{x}{\arcsin \frac{1}{x} \frac{\pi}{2} \setminus 0}$$
:

