

사상체질 판별 모델 개발

Team 데마시아

김현동 한진규 김세원

목차

. 프로젝트 개요

Ⅳ. 실험 및 평가

l. 활용 데이터

Ⅴ. 활용 계획 및 기대효과

|||₋ 모델 개발 방법

Ⅰ. 프로젝트 개요 🆺

김현동

한진규

김세원

- 연세대학교 산업공학과 재학
- 다수의 '겹강' 및 팀 프로젝트로 다져진 전우애
- 데이터마이닝을 줄인 '데마'에서 시작해 '리그오브레전드'의 가상 국가 중 하나인 '데마시아'까지

I. 프로젝트 개요 肇

- 한의학은 현대의학과 달리 사람들의 체질과 오장육부의 기능 강약 차이 등을 근거로 삼으며 질병 원인을 규명함
- 그러나 환자에게 있어 '신뢰'를 주지 못한다는 평가를 받고 있으며, 지난해 공개된 '한의약산업실 태조사'에 따르면 향후 성장 필요 요인 1순위는 '고객과의 신뢰 구축'
- 사상체질은 체형기상, 용모사기, 성질재간, 병증약리를 바탕으로 사람의 체질을 태양인, 소양인, 태음인, 소음인으로 구분해놓은 것
- 한의학 처방 및 치료의 기본이 되는 사상체질 분류를 데이터 분석적 접근을 통해 보다 객관적인 결과를 제공하고자 본 프로젝트 기획
- 치료에서의 가치 뿐만 아닌, 고객과의 신뢰 구축 및 데이터 시대에서 한의학이 발전할 토대가 될 것이라 생각

https://m.locallife.news/news/view/106561784 4853689

Ⅱ. 활용 데이터 ःःःं

	ID	SEX	AGE	JOB	EDUCATION	MARRIAGE	DRINK	SMOKE	CHARACTER1	CHARACTER2	 BODYMEAS_8HAND6	BODYMEAS_8HAND7	BODYMEAS_8HAND8	SYSTOLICBP	DIASTOLICBP	GLUCOSE
0	KDCT00001	2	48.666	2	5	2	NaN	NaN	2	2	 82.0	91.0	96.0	120	80	104.0
1	KDCT00002	2	80.773	14	3	2	NaN	NaN	1	1	 92.0	96.0	99.0	124	65	110.0
2	KDCT00003	1	50.008	3	3	2	NaN	NaN	3	1	 80.0	81.0	81.0	121	75	79.0
3	KDCT00004	2	50.551	14	4	2	NaN	NaN	1	1	 91.0	94.0	99.0	113	81	100.0
4	KDCT00005	1	49.581	8	2	2	NaN	NaN	3	2	 98.0	98.0	100.0	129	72	92.0
495	KDCT00496	1	50.682	3	5	2	1.0	2.0	3	1	 74.5	80.0	88.0	120	80	71.0
496	KDCT00497	2	42.542	3	5	2	2.0	3.0	3	1	 64.5	76.0	79.0	110	70	74.0
497	KDCT00498	1	48.797	7	5	2	1.0	2.0	3	2	 95.0	96.5	97.5	150	100	125.0
498	KDCT00499	1	51.263	7	4	2	1.0	1.0	3	2	 86.0	89.5	91.4	110	80	85.0
499	KDCT00500	2	53.767	5	3	2	3.0	3.0	2	1	 76.2	87.3	91.0	120	80	84.0
500 r	500 rows × 73 columns															

float64

float64

float64

497 non-null

데이터 전처리 - 결측치 처리

• 주어진 데이터에서 결측치를 가지는 column이 많았기에 결측치 삭제 / 보간 방법 구상

vata	COTUMNS (COLAT /	5 COLUMNS);		35	COLDHEAT2	500	non-null	int64
#	Column	Non-Null Count	Dtvpe	36	COLDHEAT3	500	non-null	int64
				37	COLDHEAT4	500	non-null	int64
0	ID	500 non-null	object	38	WATER1	499	non-null	float64
1	SEX	500 non-null	int64	39	WATER3	500	non-null	int64
2	AGE	500 non-null	float64	40	COLDHEAT_S	499	non-null	float64
3	JOB	500 non-null	int64	41	COLDHEAT_G	499	non-null	float64
4	EDUCATION	500 non-null	int64	42	HYPER1	500	non-null	int64
5	MARRIAGE	500 non-null	int64	43	DIABE1	500	non-null	int64
6	DRINK	26 non-null	float64	44	HYPERLI1	500	non-null	int64
7	SMOKE	26 non-null	float64	45	HEALTH1	499	non-null	float64
8	CHARACTER1	500 non-null	int64	46	SLEEP3_1	500	non-null	int64
9	CHARACTER2	500 non-null	int64	47	SLEEP3 2	500	non-null	int64
10	CHARACTER3	500 non-null	int64	48	FATIGUE1	500	non-null	int64
11	CHARACTER4	500 non-null	int64	49	FATIGUE2_1	500	non-null	int64
12	CHARACTER5	500 non-null	int64	50	FATIGUE2 2	500	non-null	int64
13	CHARACTER6	500 non-null	int64	51	FATIGUE2 3	500	non-null	int64
14	CHARACTER7	499 non-null	float64	52	FATIGUE2 4	500	non-null	int64
15	CHARACTER8	499 non-null	float64	53	FATIGUE2_5	500	non-null	int64
16	CHARACTER9	500 non-null	int64	54	FINALDIAGNOSIS	500	non-null	int64
17	CHARACTER10	500 non-null	int64	55	HEIGHT	500	non-null	float64
18	CHARACTER11	500 non-null	int64	56	WEIGHT	500	non-null	float64
19	CHARACTER12	500 non-null	int64	57	BMI	500	non-null	float64
20	CHARACTER13	500 non-null	int64	58	BODYMEAS 8HAND1	500	non-null	float64
21	CHARACTER14	500 non-null	int64	59	BODYMEAS 8HAND2	500	non-null	float64
22	CHARACTER15	500 non-null	int64	60	BODYMEAS 8HAND3	500	non-null	float64
23	DIET4	421 non-null 474 non-null	float64	61	BODYMEAS 8HAND4	500	non-null	float64
24 25	DIET7 DIGEST1	500 non-null	float64 int64	62	BODYMEAS 8HAND5	500	non-null	float64
26	DIGESTI DIGEST3	500 non-null	int64	63	BODYMEAS 8HAND6	500	non-null	float64
27	SWEAT1	500 non-null	int64	64	BODYMEAS 8HAND7		non-null	float64
28	SWEAT3	498 non-null	float64	65	BODYMEAS 8HAND8		non-null	float64
29	STOOL1	500 non-null	int64	66	SYSTOLICBP		non-null	int64
30	ST00L7	500 non-null	int64	67	DIASTOLICBP		non-null	int64
31	ST00L12 7	267 non-null	float64	68	GLUCOSE		non-null	float64
32	STOOL12_7 STOOL12_8	267 non-null	float64	69	T CHOL		non-null	float64
52	3.00012_0	207 HOH HOLL	. 100 004					. 100 004

float64

70 TG

71 HDL_CHOL

72 LDL CHOL

- ' 'DRINK', 'SMOKE'는 오직 26명이 답변했고, 그 외 에도 'STOOL12_7', 'STOOL12_8'에 다수의 결측치 존재
- 결측치를 1개 이상 포함하는 특성 =
 ['DRINK', 'SMOKE', 'CHARACTER7',
 'CHARACTER8', 'DIET4', 'DIET7', 'SWEAT3',
 'STOOL12_7', 'STOOL12_8', 'WATER1',
 'COLDHEAT_S', 'COLDHEAT_G', 'HEALTH1',
 'GLUCOSE', 'T_CHOL', 'TG', 'HDL_CHOL',
 'LDL_CHOL']

33 URINE2

34 COLDHEAT1

500 non-null

500 non-null

- · 결측치 보간을 수행하기 위해 결측된 자리에 모든 응답자들의 해당 특성 평균(mean)치 사용
- 다만 결측치도 특성 별 상이함이 존재 → 결측치가 소수인 경우, 해당 특성과 연관이 많은 기타 특성의 분포를 고려해서 보간

e.g. DIET4, DIET7의 결측치를 채우기 위해 DIGEST1, DIGEST3의 데이터를 활용

500 non-null

int64

→ 결측치 보간 후 500명 모두 특성 값을 모두 가지는 데이터셋 완성

24 DIGEST1

25 DIGEST3

500 non-null

500 non-null

int64

int64

50 FATIGUE2 3

- 주어진 데이터셋에서 태음인, 소음인, 소양인 데이터의 클래스 수가 불균형적 → Accuracy Paradox 야기할 수 있음
- Train Data에 SMOTE를 이용해서 데이터를 증강함

Train Data 클래스 균형

데이터 전처리 - 체질 별 특성 분포 파악

• Seaborn의 facet_grid를 이용해서 체질별로 특성들이 어떻게 분포되어 있는지 확인

설명 근거 LOW

설명력 존재

추가적 고려 필요

데이터 전처리 - 입력 변수 선택

- ANOVA를 이용해 클래스 별 데이터의 분포 차이가 유의미(lpha=0.05)하면 보존함
- ID 등 출력변수와 무관한 데이터 삭제, 성능 악화 변수 (DRINK, SMOKE) 삭제
- 최종적으로 37개의 입력 변수 선택

```
kill = []

for col in df.columns:
    f_statistic, p_value = stats.f_oneway(df1[col], df2[col], df3[col])
    alpha = 0.05 # 유의수준 (보통 0.05 사용)
    if p_value > alpha:
        kill.append(col)
    print(col, p_value)
    print()

SEX 0.7962500816698056
```

```
: X

: *** AGE **EDUCATION** CHARACTER1** CHARACTER2** CHARACTER3** CHARACTER6** CHARACTER7* CHARACTER7** CHA
```

- Tree-based Classifier (특히 XGBoost)에서는 오히려 변수 차원을 축소하고 모델을 학습했을 때 좋지 못한 성능 도출 → DRINK & SMOKE 제거한 입력 변수 유지
- ANN은 중요도 낮은 입력변수의 계수를 0으로 축소시키는 알고리즘

SVC 0.4737 DTC 0.9737 RFC 0.9847 GNB 0.6534 MLP 0.5485 XGB 0.9825 ETC 0.9583

다양한 모델 적용

적용 데이터셋 정리:

- ANN: 69개의 입력변수, test 데이터 증강
- KNN: 40개의 입력변수, test 데이터 증강
- Tree-based Algorithms: 69개의 입력변수, test 데이터 증강

• Gaussion Naïve Bayes, Support Vector Machine 등도 이용했으나 성능 ↓

• Classification Algorithm별 성능지표는 fl score와 accuracy를 사용했으며, fl score는 Precision과 Recall의 조화평균으로 유의미한 성능지표로 사용될 수 있음

ANN Classification

ANN Architecture

https://www.analyticsvidhya.com/blog/2021/07/understandingthe-basics-of-artificial-neural-network-ann/

- Input layer, hidden layer, output layer 존재
- Hidden layer 수와 노드 개수는 hyperparameter
- Layer 사이에 활성화 함수 존재 → 선형 연산 값을 비선형으로 변환

ANN Classification


```
# Splitting data into 80% training and 20% testing and validation (10% each)
X train, X temp, y train, y temp = train test split(data scale, y, test size=0.2, random state=42, stratify = y)
# Convert the arrays to PyTorch tensors
X_train = torch.tensor(X_train.values, dtype=torch.float32)
y_train = torch.tensor(y_train.values, dtype=torch.long)
X temp = torch.tensor(X temp.values, dtype=torch.float32)
y_temp = torch.tensor(y_temp.values, dtype=torch.long)
# Splitting the remaining 20% into 50% testing and 50% validation
X test, X val, y test, y val = train test split(X temp, y temp, test size=0.5, random state=42, stratify = y temp)
class Model(nn.Module):
    def __init__(self, in_features = 69, h1 = 120, h2 = 60, h3 = 30, h4 = 15, h5 = 8, out_features = 4):
        super(). init ()
        self.fc1 = nn.Linear(in_features, h1)
        self.fc2 = nn.Linear(h1, h2)
       self.fc3 = nn.Linear(h2, h3)
       self.fc4 = nn.Linear(h3, h4)
       self.fc5 = nn.Linear(h4, h5)
       self.out = nn.Linear(h5, out_features)
    def forward(self,x):
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
       x = F.relu(self.fc3(x))
       x = F.relu(self.fc4(x))
       x = F.relu(self.fc5(x))
       x = self.out(x)
        return x
```

- 69개의 입력 변수
- Hidden Layer 1: 120개 노드
- Hidden Layer 2: 60개 노드
- Hidden Layer 3: 30개 노드
- · Hidden Layer 4: 15개 노드
- Hidden Layer 5: 8개 노드
- 활성화 함수는 ReLu 사용
- Train: Test = 8: 2, test 데이터의 절반은 Validation 데이터로 활용

ANN Classification

total_samples = y_test_tensor.size(0)

Model Accuracy on Test Data: 56.00%

accuracy = (correct_predictions / total_samples) * 100

print(f'Model Accuracy on Test Data: {accuracy:.2f}%')

```
epoch 500, Training Loss: 2.632936229929328e-06, Validation Loss: 13.440617561340332
epoch 500, Training ACC: 1.0, Validation Acc: 0.5
555 55
11.308338165283203
X_test = StandardScaler().fit_transform(X_test)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
y_test_tensor = y_test
model = Model()
model.load_state_dict(torch.load('best_model.pth'))
model.eval()
Model(
  (fc1): Linear(in_features=69, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=60, bias=True)
  (fc3): Linear(in_features=60, out_features=30, bias=True)
  (fc4): Linear(in_features=30, out_features=15, bias=True)
  (fc5): Linear(in features=15, out features=8, bias=True)
  (out): Linear(in_features=8, out_features=4, bias=True)
correct_predictions = (predicted_labels == y_test_tensor).sum().item()
```

→ 테스트 데이터에 대한예측 성능 (Accuracy) = 56%

- 에포크 = 100,000
- 손실 함수 = Cross Entropy
- Optimizer = Adam (learning rate = 0.01)

Before Moving On

DRINK와 SMOKE를 제거한 데이터셋을 이용해서 hyperparameter 튜닝 과정 없이 다양한 알고리즘을 적용한 raw 결과:

SVC 0.4259

DTC 0.6167

RFC 0.7071

GNB 0.521

MLP 0.5041

XGB 0.8054

ETC 0.6532

→ hyperparameter 튜닝을 통해 알고리즘 별 성능 개선 및 최적의 hyperparameter 탐색을 목적으로 함

K-NN Classification

https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

- K 개의 '이웃' 데이터를 기반으로 새로운 데이터의 분포를 예측
- 고려할 주변 데이터 수, k(n)는 hyperparameter
- 입력 변수 별 scale이 큰 영향을 주기 에, 데이터 scaling 필수


```
# Provide Labels for all three classes ('Class 0', 'Class 1', 'Class 2')
class_labels = ['Class 0', 'Class 1', 'Class 2']
cm = confusion_matrix(test_y, pred)

# Display confusion matrix with appropriate class labels
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=class_labels
disp.plot(cmap='Blues', colorbar=False)

Accuracy: 0.520
Recall Score: 0.520
Precision Score: 0.538
F1 Score: 0.507
```


Resulting Confusion Matrix

n_neighbor decision

• Train: Test = 8:2

Accuracy = 0.520, F1 Score = 0.507

IV. 실험 및 평가

K-NN Classification + PCA

군인 일이 마음:
[0.25409871 0.09151851 0.07804152 0.06415241 0.0408582 0.03755308
0.03414491 0.03063064 0.02915106 0.0280603 0.02543744 0.02513854
0.02415101 0.02138579 0.01968768 0.01828294 0.0163748 0.01564791
0.01504745 0.01447524 0.01385089 0.01267528 0.01140054 0.01124646
0.010868
0.00581529 0.00387756 0.00230074 0.00210917 0.00201858 0.00188795
0.00168806]
누적 분산 설명 비율:
[0.25409871 0.34561722 0.42365874 0.48781115 0.52866935 0.56622243
0.60036734 0.63099798 0.66014904 0.68820934 0.71364678 0.73878532
0.76293634 0.78432213 0.80400981 0.82229275 0.83866755 0.85431547
0.86936292 0.88383816 0.89768905 0.91036433 0.92176486 0.93301132
0.94387932 0.95326864 0.96100997 0.96826042 0.97445128 0.98030263
0.98611793 0.98999549 0.99229623 0.9944054 0.99642399 0.99831194
1.]
•
d = np.argmax(cumsum >= 0.80) +1 #누적된 설명가능한 분산의 비율이 0.80 이상
print('적합한 PC 개수:', d)

보사 선명 비율

적합한 PC 개수: 15

2 -232.257455 -91.044864 -24.973369 -15.387523 14.746423 30.837054 76.063899 -20.896779 53.243769 -5.231041 12.926144 38.523000 6.255342 57.905205 36.208213 **3** -267.091613 -100.270349 -29.283245 -19.225482 0.297863 35.715615 65.676028 -11.549151 61.531612 -5.504689 1.351058 44.800517 22.684800 78.034358 41.540218 4 .262 935166 .106 227740 .27 991550 .5 783761 7.755305 30 451924 79 495711 .25 954843 48 446620 2.812927 21 386844 44 666454 .6 020085 51 143096 33 88607 495 -221,980369 -91.835973 -24.365038 -9.114581 15.297867 26.887518 91.097365 -33.412618 50.384399 -2.724579 21.994533 38.605246 -0.705895 53.434874 36.995532 499 -233.720177 -9.0301027 -27.227860 -29.649053 3.243316 29.828477 79.947034 -17.336223 64.194158 -7.973780 4.335782 39.832601 28.638381 86.696391 47.172322 500 rows × 15 columns

PCA를 통한 적합한 PC 개수 추출 = 15개

Display confusion matrix with appropriate class labels
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=class_labels)
disp.plot(cmap='Blues', colorbar=False)

Accuracy: 0.510 Recall Score: 0.510 Precision Score: 0.508 F1 Score: 0.501

n_neighbor decision

• F1 Score = 0.501

→ 전반적인 성능 하락

Tree-based Classifiers

- 단일 의사결정 나무 → 의사결정 나무의 집합 → 더욱 random한 Random Forest
- 모델 별로 출력에 영향을 주는 특성의 중요도를 다르게 평가

Decision Tree

Random Forest

Extra Forest

https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147

https://www.researchgate.net/figure/Structure -of-Extra-Trees-Kapoor-2020-Extra-Treesconstructs-the-set-of-decisiontrees_fig1_364771403

XGBoost

- Random Forest와 비슷하게 Decision Tree의 Ensemble
- 이전 Tree의 예측 오차를 기반으로 새로운 Tree 훈련
- 이전 Gradient Boosting Model 보다 좋은 성능 + 빠른 속도

https://www.researchgate.net/figure/A-general-architecture-of-XGBoost_fig3_335483097

ETC 0.6579

- X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 2023) X test = X test.reset index(drop=True) y test = y test.reset index(drop=True) x_shuffled = sklearn.utils.shuffle(X_train, random_state=312) y_shuffled = sklearn.utils.shuffle(y_train, random_state=312) smote = SMOTE(random state=312) X train, y train = smote.fit resample(x shuffled, y shuffled) r = 2023classifiers = { 'DTC': DecisionTreeClassifier(random state=r), 'RFC': RandomForestClassifier(random state=r), 'XGB': XGBClassifier(random state=r), 'ETC': ExtraTreesClassifier(random state=r) for name in classifiers: score = cross val score(classifiers[name], X train, y train, cv=5, scoring='accuracy').mean() print(name, score.round(4)) DTC 0.6205 RFC 0.7107 XGB 0.807
- Train: Test = 8:2 분리
- Cross-Validation = 5 수행
- Train Data 기준 XGB가 80.7%의 정확도로 최고의 성능을 보여줌
- XGB를 최적의 모델로 선정, grid search를 통한 hyperparameter tuning

XGBoost - hyperparameter grid search

```
param_grid = [{'xgbclassifier_ max_depth': [None, 3, 6, 9, 12],
               'xgbclassifier_min_child_weight': [1, 3, 5, 7, 10],
               'xgbclassifier n estimators': [50, 100, 150, 200]
gs = GridSearchCV(estimator = pipe,
                 param grid = param grid,
                 scoring = 'f1 macro',
                 cv=10,
                 n jobs= -1, error score='raise', verbose=3)
gs = gs.fit(X train, y train)
print(gs.best_score_)
print(gs.best params )
```

• XGBoost에서 가지는 hyperparameter max_depth, min_child_weight, n_estimators 를 왼쪽과 같이 다양하게 설정하고, grid search를 실행해 macro fl score (f1-score의 산술평균)가 가장 높은 hyperparameter 선정

[CV 8/10] END xgbclassifier_max_depth=9, xgbclassifier_min_child_weight=5, xgbclassifier_n_estimators=100;, score=0.819 total time= [CV 4/10] END xgbclassifier max_depth=9, xgbclassifier min_child_weight=5, xgbclassifier n_estimators=150;, score=0.761 total time= 0.6s [CV 10/10] END xgbclassifier_max_depth=9, xgbclassifier_min_child_weight=5, xgbclassifier__n_estimators=150;, score=0.820 total time= 0.6s {'xgbclassifier__max_depth': None, 'xgbclassifier__min_child_weight': 3, 'xgbclassifier__n_estimators': 150}

→ Cross-Validation = 10으로 설정, max_depth = None, min_child_weight = 3, n_estimators = 150으로 설정했을 때 train 의 macro fl score가 0.8283으로 산출

XGBoost - hyperparameter grid search

- 정해진 hyperparameter를 바탕으로 Cross-validation = 5로 축소 (연산 속도 개선), 최종 모델 결정
- 구한 최적 모델을 'model.json'으로 별도 extract
- 최적 모델을 Test Data에 적용

→ Test Data 성능 Accuracy = 0.740 Recall = 0.718 Precision = 0.737 F1 Score : 0.725

XGBoost - hyperparameter grid search

- SHAP value 기준 사상체질 분류에 가장 큰 영향을 주는 요소는 SWEAT3, SWEAT1,BMI임
- 실제로 한의학에서 규정하는 사상체질 분류 기준 중 체중 및 체형이 많은 영향을 준다는 것을 알 수 있음
- 더욱 많은 데이터를 학습시키거나, 주관적 요소가 들어갈 수 있는 '정도' 표기 데이터가 아닌 숫자 데이터가 주어진다면 실질적으로 영향을 주는 요소를 정확하게 판별할 수 있음

V. 활용 및 기대 효과 🎉

진단 '대체' 가 아닌 '보조' 의 역할 수행

- · 데이터만을 바탕으로 체질 진단을 하는 것은 오히려 섣부를 수 있음 → 특히 주어진 데이터가 정량적인 수치 데이터가 아닌, '정도'를 나타내기에 주관적 요소가 포함될 가능성 다분
- 한의사의 체질 진단을 돕는 보조 도구로서의 역할을 수행해야 할 것
- 입력 변수들의 '유의미함'을 판단하는 데에는 입력변수들의 수치적 영향력 뿐만이 아닌, 한의학이 정의한 체질 분류 방법론이 동시에 적용되어야 함 → 전문가의 의견 + 데이터 기반 근거 형성

한의학 대중화

- 간단한 문답으로 구성된 앱 등을 통해 사람들이 손쉽게 체질 자가진단을 할 수 있고, 이를 기반으로 체질별 생활습관 · 식습관 추천 가능
- 한의사와의 상담 및 전문가 의견이 필수적임을 명시해야 할 필요

감사합니다!