Matrix Algebra

Ch.8

mailto:eyeofyou@korea.ac.kr

2020년 6월 30일

1 Matrix Algebra

Matrix

Definition 1 (Matrix). *Matrix is a rectangular array of numbers (scalars)*

Let $a_{ij} \in \mathbb{R}$ or $A_{ij} \in \mathbb{R}$ be the *i*th row and *j*th column element of matrix A

Definition 2 (Equal).

$$A = B \quad \iff \begin{cases} same \ size \\ a_{ij} = b_{ij} \quad \forall i, j \end{cases}$$

Addition, Subtraction

Let A, B be $n \times k$ matrices and $r \in \mathbb{R}$

Definition 3 (Addition).

$$(A+B)_{ij} := a_{ij} + b_{ij} \quad \forall i, j$$

Important note: the first + and the second + are not same operators

Definition 4 (Subtraction).

$$(A-B)_{ij} := a_{ij} - b_{ij} \quad \forall i, j$$

Multiplications of Matrices

Definition 5 (Scalar Multiplication).

$$(rA)_{ij} := rA_{ij} \quad \forall i, j$$

Let A be $n \times k$ matrix and B be $k \times m$ matrix. Then AB is $n \times m$ matrix.

Definition 6 (Matrix Multiplication).

$$(AB)_{ij} := A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{ik}B_{kj} = \sum_{r=1}^{k} A_{ir}B_{rj}$$

For $n \times n$ matrices, identity matrix I_n is a multiplicative identity.

$$AI = IA = A$$

Laws of Matrix Algebra

Laws of Matrix Algebra

$$(A+B)+C=A+(B+C)$$
 (Associative Law for Addition)
 $(AB)C=A(BC)$ (Associative Law for Multiplication)
 $A+B=B+A$ (Commutative Law for Addition)
 $A(B+C)=AB+AC$ (Distributive Law)
 $(A+B)C=AC+BC$ (Distributive Law)

Important Note: $AB \neq BA$

Transpose

Definition 7 (Transpose). A^{\dagger} $(n \times m)$ is a transpose of A $(m \times n)$ if:

$$(A^{\mathsf{T}})_{ij} := A_{ji} \quad \forall i, j$$

$$(A \pm B)^{\intercal} = A^{\intercal} \pm B^{\intercal}$$

 $(A^{\intercal})^{\intercal} = A$
 $(rA)^{\intercal} = rA^{\intercal}$
 $(AB)^{\intercal} = B^{\intercal}A^{\intercal}$ (Theorem 8.1)

2 Special Kinds of Matrices

Special Kinds of Matrices (1)

Suppose A is $k \times n$ matrix. Then,

Definition 8 (Special Kinds of Matrices (1)). • A is a square matrix if k = n

- A is a column matrix if n = 1
- A is a row matrix if k = 1
- A is a diagonal matrix if k = n and $a_{ij} = 0$ $\forall i \neq j$
- A is a scalar matrix if $A = tI_n$
- A is an upper-triangular matrix if $a_{ij} = 0 \quad \forall i > j$
- A is a <u>lower-triangular matrix</u> if $a_{ij} = 0$ $\forall i < j$

Special Kinds of Matrices (2)

Definition 9 (Special Kinds of Matrices (2)). • A is a <u>symmetric matrix</u> if A is square matrix and $a_{ij} = a_{ji} \quad \forall i, j. \ Or, \ A^{\mathsf{T}} = A$

- A is an Idempotent matrix if AA = A
- A is a permutation matrix if A is the result of I_n with ERO_1 (row exchange)
- A is a nonsingular matrix if rankA = #row = #column

If a coefficient matrix of a system of linear equations is <u>nonsingular</u>, this system has only one solution $\mathbf{x} = A^{-1}\mathbf{b}$

3 Elementary Matrices

Elementary Matrix

Let E be an elementary matrix of some EROs. Then,

Theorem 1 (8.3). ERO with a matrix A is equivalent to EA

Theorem 2 (8.2). • Let $E1_{ij}$ be the permutation matrix with interchanging R_i and R_j of I_n , then $E1_{ij}$ is equivalent to $ERO_1(i,j)$

- Let $E2_{k,j,i}$ be the result of $ERO_2(k,j,i)$ from I_n , then $E2_{k,j,i}$ is equivalent to $ERO_2(k,j,i)$
- Let $E3_{k,i}$ be the result of $ERO_3(k,i)$ from I_n , then $E3_{k,i}$ is equivalent to $ERO_3(k,i)$

Elementary Matrix

Definition 10 (Elementary Matrix). E1, E2, E3 are <u>elementary matrices</u> corresponding to their EROs

Theorem 3 (8.4). Let $A \in M_n$ (set of $n \times n$ matrices), $E_i \in EM$ (set of elementary matrices), and (R)REFM be the set of (R)REF matrices. Then:

$$\exists E_i \quad i = 1, 2, \dots, m \quad s.t. \quad \prod_{i=m}^{1} E_i A \in (R)REFM$$

or

$$E_m E_{m-1} \cdots E_2 E_1 A \in (R) REFM$$

4 Algebra of Square Matrices

Inverse of Matrices

Suppose $A, B \in M_n$

Definition 11 (Inverse, Invertible). B is (left, or right) inverse for A if:

$$\underbrace{AB}_{B: \ Right \ inverse} = \underbrace{B: \ Left \ inverse}_{B: \ Right \ inverse} = I$$

A is <u>invertib</u>le if $\exists B$

Notation: $B = A^{-1}$

Theorem 4 (8.5:Uniquenes of Inverse). $A \in M_n$ can have <u>at most</u> one inverse. (left inverse = right inverse)

Inverse Matrices and the Solution of Linear Systems

Theorem 5 (8.6). For $A \in M_n$,

$$\exists A^{-1} \quad \Rightarrow \quad \begin{cases} A \text{ is nonsingular} \\ \text{Unique solution of } A\mathbf{x} = \mathbf{b} \quad \Rightarrow \quad \mathbf{x} = A^{-1}\mathbf{b} \end{cases}$$

Proof: easy

Theorem 6 (8.7: inverse of Th 8.6).

$$A \in M_n \text{ is nonsingular } \Rightarrow \exists A^{-1}$$

Proof: difficult

Calculation of Inverse Matrix

Calculation of Inverse Matrix

$$[A|I] \xrightarrow{EROs} [I|A^{-1}]$$

If RREF is not I_n , $\not\equiv A^{-1}$

Theorem 7 (8.8). Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2$. A is nonsingular iff $ad - bc \neq 0$

For general case $(A \in M_n)$, see Ch.9

Equivalent statements

Theorem 8 (8.9). For $A \in M_n$, the following statements are equivalent

- 1. $\exists A^{-1}$
- 2. A has right inverse
- 3. A has left inverse
- 4. $A\mathbf{x} = \mathbf{b}$ has at least one solution for every \mathbf{b}
- 5. $A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b}
- 6. A is nonsingular
- 7. rankA = n

Properties of Inverse Matrices and Their Exponentials

Theorem 9 (8.10). If $A, B \in M_n$ and $\exists A^{-1}, B^{-1}$,

- 1. $(A^{-1})^{-1} = A$
- 2. $(A^{\mathsf{T}})^{-1} = (A^{-1})^{\mathsf{T}}$
- 3. $\exists (AB)^{-1} \wedge (AB)^{-1} = B^{-1}A^{-1}$

Definition 12 (Matrix Exponential).

$$A^m := \prod_{i=1}^m A$$

$$A^{-m} := (A^{-1})^m$$

5

Expoenetial Properties of Invertible Matrices

Theorem 10 (8.11).

$$\exists A^{-1} \quad \Rightarrow \quad \begin{cases} \exists A^{-m} \quad \forall m \in \mathbb{N} \\ A^r A^s = A^{r+s} \quad \forall r, s \in \mathbb{N} \\ \forall r \in \mathbb{R} - \{0\}, \quad \exists (rA)^{-1} \wedge (rA)^{-1} = \frac{1}{r} A^{-1} \end{cases}$$

Important Note: $(AB)^k \neq A^k B^k$

5 Partitioned Matrices

Partitioned Matrices

Somtimes, matrix of matrices can be more convenient.

Definition 13 (Submatrix, Partitioned matrix). • A <u>submatrix</u> of matrix A is a matrix obtained by deleting some R_i or C_j

• A partitioned matrix is a matrix partitioned into submatrices by horizontal and/or vertical lines which extended along entire rows or columns of a matrix A

Partitioned Matrices

Theorem 11 (8.15). Let A be a square matrix partitioned as

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

6

and $A_{11}, A_{22} \in M_n$. Then,

$$\exists A_{22}^{-1} \land \exists D^{-1} \land D = A_{11} - A_{12}A_{22}^{-1}A_{21}$$

$$D^{-1}$$

$$\Rightarrow A^{-1} = \begin{pmatrix} D^{-1} & -D^{-1}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}D^{-1} & A_{22}^{-1}(I + A_{21}D^{-1}A_{12}A_{22}^{-1}) \end{pmatrix}$$