Дифференцирование

17 декабря 2024 г.

Лаврущев Иван Б05-431

Содержание

1	XMN	и, как бы здесь изъебнуться	1
2	ПОІ	ІОГНАЛИ	
	2.1	Задачка для советских яслей	2
	2.2	Кто не посчитает получит пиздюлей	2
	2.3	Пять утра я сижу блять фразы для дифференциатора пишу	2
	2.4	Коллеги не падайте со стульев, тут полный шок	2
	2.5	Какое милое говно	2
	2.6	Блин жрать охота, может пойти дошик заварить	2
	2.7	Задачка для советских яслей	2
	2.8	Не ну что это за рукоблудие	3
	2.9	Хватит сидеть в тик токе, лучше уясни этот момент, коллега	3
	2.10	Кто посчитает, тот получит энергосик	3
	2.11	Продавец пятерочки запросто продифференцирует данное выражение	3
	2.12	ААААААААААА заебло	3
	2.13	Что бы посчитать такое великое	3
	2.14	Задачка для советских яслей	3
	2.15	Ты реально не можешь понять, что	3
3	Мал	іенько поколдуем	4

1 Хмм, как бы здесь изъебнуться

$$5 \cdot \sin(10 \cdot x^3) + \cos(20 \cdot x - 1)^3$$

После упрощения получаем:

$$5 \cdot \sin(10 \cdot x^3) + \cos(20 \cdot x - 1)^3$$

2 ПОГНАЛИ

2.1 Задачка для советских яслей

$$(5)' = 0$$

2.2 Кто не посчитает получит пиздюлей

$$(10)' = 0$$

2.3 Пять утра я сижу блять фразы для дифференциатора пишу

$$(x)' = 1$$

2.4 Коллеги не падайте со стульев, тут полный шок

$$(x^3)' = 3 \cdot x^{3-1} \cdot 1$$

2.5 Какое милое говно

$$(10 \cdot x^3)' = 0 \cdot x^3 + 10 \cdot 3 \cdot x^{3-1} \cdot 1$$

2.6 Блин жрать охота, может пойти дошик заварить

$$(\sin(10 \cdot x^3))' = \cos(10 \cdot x^3) \cdot 0 \cdot x^3 + 10 \cdot 3 \cdot x^{3-1} \cdot 1$$

2.7 Задачка для советских яслей

$$(5 \cdot \sin(10 \cdot x^3))' = 0 \cdot \sin(10 \cdot x^3) + 5 \cdot \cos(10 \cdot x^3) \cdot 0 \cdot x^3 + 10 \cdot 3 \cdot x^{3-1} \cdot 1$$

2.8 Не ну что это за рукоблудие

$$(20)' = 0$$

2.9 Хватит сидеть в тик токе, лучше уясни этот момент, коллега

$$(x)' = 1$$

2.10 Кто посчитает, тот получит энергосик

$$(20 \cdot x)' = 0 \cdot x + 20 \cdot 1$$

2.11 Продавец пятерочки запросто продифференцирует данное выражение

$$(1)' = 0$$

2.12 АААААААААААА заебло

$$(20 \cdot x - 1)' = 0 \cdot x + 20 \cdot 1 - 0$$

2.13 Что бы посчитать такое... великое

$$(\cos(20 \cdot x - 1))' = -1 \cdot \sin(20 \cdot x - 1) \cdot 0 \cdot x + 20 \cdot 1 - 0$$

2.14 Задачка для советских яслей

$$(\cos(20 \cdot x - 1)^3)' = 3 \cdot \cos(20 \cdot x - 1)^{3-1} \cdot -1 \cdot \sin(20 \cdot x - 1) \cdot 0 \cdot x + 20 \cdot 1 - 0$$

3

2.15 Ты реально не можешь понять, что

$$(5 \cdot \sin(10 \cdot x^3) + \cos(20 \cdot x - 1)^3)' = 0 \cdot \sin(10 \cdot x^3) + 5 \cdot \cos(10 \cdot x^3) \cdot 0 \cdot x^3 + 10 \cdot 3 \cdot x^{3-1} \cdot 1 + 3 \cdot \cos(20 \cdot x - 1)^{3-1} \cdot -1 \cdot \sin(20 \cdot x - 1)^{3-1} \cdot 1 + 3 \cdot \cos(20 \cdot x - 1)^{$$

3 Маленько поколдуем

$$0 \cdot \sin(10 \cdot x^3) + 5 \cdot \cos(10 \cdot x^3) \cdot 0 \cdot x^3 + 10 \cdot 3 \cdot x^{3-1} \cdot 1 + 3 \cdot \cos(20 \cdot x - 1)^{3-1} \cdot -1 \cdot \sin(20 \cdot x - 1) \cdot 0 \cdot x + 20 \cdot 1 - 0$$

После упрощения получаем:

$$5 \cdot \cos(10 \cdot x^3) \cdot 10 \cdot 3 \cdot x^2 + 3 \cdot \cos(20 \cdot x - 1)^2 \cdot -1 \cdot \sin(20 \cdot x - 1) \cdot 20$$

УРААААА ПОБЕДА, производная просто опущена как дешёвка