

PROVINCIA DI CHIETI

SETTORE 6 - PIANIFICAZIONE, PROGETTAZIONE E MANUTENZIONE STRADALE

Via Discesa delle Carceri 1, 66032 Chieti www.provincia.chieti.it

LAVORI DI SISTEMAZIONE STRADA PROVINCIALE N. 107 PELIGNA CASOLI-GESSOPALENA 4[^] LOTTO

PROGETTO ESECUTIVO

A.12		RELAZIONE DI CALCOLO OPERE DI SOSTEGNO				
PROT. n°	scala: V	ARIE		DATA: 20/09/2015		
CL.	revisione	data	descrizione			
CL.						
DEL						
FASC. SUB						
RESPONSABILE DEL PR	OCEDIMENTO					

RAGGRUPPAMENTO TEMPORANEO:

STUDIO	MONTEPARA
	NGEGNERIA CIVILE

Prof. Ing. Antonio Montepara Via V. Simeoni n° 12 66036 Orsogna (CH) Tel. 0871/869652 email: info@studiomontepara.it P&L engineering SEDE LEGALE Strada Cavagnari, 10 43100 Parma

Tel. 0521/986776

Questo elaborato non puo' essere riprodotto ne' integralmente, ne' in parte per scopi diversi da quelli per cui e' stato fornito.

Ing. LUCA GALLICANI

TIMBRO E FIRMA	TIMBRO E FIRMA	TIMBRO E FIRMA

SETTORE 6 - PIANIFICAZIONE, PROGETTAZIONE E MANUTENZIONE STRADALE

LAVORI DI SISTEMAZIONE STRADA PROVINCIALE N. 107 PELIGNA CASOLI – GESSOPALENA – 4^ LOTTO

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO OPERE DI SOSTEGNO

RELAZIONE DI CALCOLO MURO SU PALI SEZ 52-60

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilitàdei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009
- Circolare C.S.L.P. 02/02/2009 n.617 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ . In particolare si distinguono combinazioni di carico di tipo A1-M1 nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo A2-M2 nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura $(R \ e \ C)$ e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima. La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ε l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\beta' = \beta + \theta$$

dove $\theta = \text{arctg}(k_h/(1\pm k_v))$ essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h .

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))*(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = \arctan[(\gamma/(\gamma_{\text{sat}} - \gamma_{\text{w}})) * (k_{\text{h}}/(1 \pm k_{\text{v}}))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_{g}

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_g >= 1.0$

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere

intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Il coefficiente di sicurezza fornito da Fellenius si esprime secondo la seguente formula:

dove n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima} e c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia.

Inoltre u_i ed l_i rappresentano la pressione neutra lungo la base della striscia e la lunghezza della base della striscia ($l_i = b_i/\cos\alpha_i$).

Quindi, assunto un cerchio di tentativo lo si suddivide in n strisce e dalla formula precedente si ricava η . Questo procedimento viene eseguito per il numero di centri prefissato e viene assunto come coefficiente di sicurezza della scarpata il minimo dei coefficienti così determinati.

Analisi dei pali

Per l'analisi della capacità portante dei pali occorre determinare alcune caratteristiche del terreno in cui si va ad operare. In particolare bisogna conoscere l'angolo d'attrito ϕ e la coesione c. Per pali soggetti a carichi trasversali è necessario conoscere il modulo di reazione laterale o il modulo elastico laterale.

La capacità portante di un palo solitamente viene valutata come somma di due contributi: portata di base (o di punta) e portata per attrito laterale lungo il fusto. Cioè si assume valida l'espressione:

$$Q_T = Q_P + Q_L - W_P$$

dove:

Q_T portanza totale del palo Q_P portanza di base del palo

Q_L portanza per attrito laterale del palo

W_P peso proprio del palo

e le due componenti Q_P e Q_L sono calcolate in modo indipendente fra loro.

Dalla capacità portante del palo si ricava il carico ammissibile del palo Q_A applicando il coefficiente di sicurezza della portanza alla punta η_p ed il coefficiente di sicurezza della portanza per attrito laterale η_1 .

Palo compresso:

$$Q_A = Q_p / \eta_p + Q_l / \eta_l - W_p$$

Palo teso:

$$Q_A = Q_1 / \eta_1 + W_p$$

Capacità portante di punta

In generale la capacità portante di punta viene calcolata tramite l'espressione:

$$Q_P = A_P(cN'_c + qN'_q + 1/2B\gamma N'_{\gamma})$$

dove A_P è l'area portante efficace della punta del palo, c è la coesione, q è la pressione geostatica alla quota della punta del palo, γ è il peso specifico del terreno, d è il diametro del palo ed i coefficienti N'_c N'_q N'_g sono i coefficienti delle formule della capacità portante corretti per tener conto degli effetti di forma e di profondità. Possono essere utilizzati sia i coefficienti di Hansen che quelli di Vesic con i corrispondenti fattori correttivi per la profondità e la forma.

Il parametro η che compare nell'espressione assume il valore:

$$\eta = \frac{1 + 2K}{3}$$

quando si usa la formula di Vesic e viene posto uguale ad 1 per le altre formule. K_0 rappresenta il coefficiente di spinta a riposo che può essere espresso come: $K_0 = 1 - \sin\phi$.

Capacità portante per resistenza laterale

La resistenza laterale è data dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali palo-terreno in condizioni limite:

$$Q_L = integrale_S \tau_a dS$$

dove τ_a è dato dalla nota relazione di Coulomb $\tau_a = c_a + \sigma_h tg \delta$

dove c_a è l'adesione palo-terreno, δ è l'angolo di attrito palo-terreno, γ è il peso specifico del terreno, z è la generica quota a partire dalla testa del palo, L e P sono rispettivamente la lunghezza ed il perimetro del palo, K_s è il coefficiente di spinta che dipende dalle caratteristiche meccaniche e fisiche del terreno dal suo stato di addensamento e dalle modalità di realizzazione del palo.

Portanza trasversale dei pali - Analisi ad elementi finiti

Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante elastica K espressa in $Kg/cm^2/cm$ che rappresenta la pressione (in Kg/cm^2) che bisogna applicare per ottenere l'abbassamento di 1 cm.

Nel metodo degli elementi finiti occorre discretizzare il particolare problema. Nel caso specifico il palo viene suddiviso in un certo numero di elementi di eguale lunghezza. Ogni elemento è caratterizzato da una sezione avente area ed inerzia coincidente con quella del palo.

Il terreno viene schematizzato come una serie di molle orizzontali che reagiscono agli spostamenti nei due versi. La rigidezza assiale della singola molla è proporzionale alla costante di Winkler orizzontale del terreno, al diametro del palo ed alla lunghezza dell'elemento. La molla, però, non viene vista come un elemento infinitamente elastico ma come un elemento con comportamento del tipo elastoplastico perfetto (diagramma sforzi-deformazioni di tipo bilatero). Essa presenta una

resistenza crescente al crescere degli spostamenti fino a che l'entità degli spostamenti si mantiene al di sotto di un certo spostamento limite, X_{max} oppure fino a quando non si raggiunge il valore della pressione limite. Superato tale limite non si ha un incremento di resistenza. E' evidente che assumendo un comportamento di questo tipo ci si addentra in un tipico problema non lineare che può essere risolto solo mediante una analisi al passo.

Questa modellazione presenta il notevole vantaggio di poter schematizzare tutti quei comportamenti individuati da Broms e che sarebbe impossibile trattare in un modello numerico. In particolare risulta automatico analizzare casi in cui si ha insufficiente portanza non per rottura del palo ma per rottura del terreno (vedi il caso di un palo molto rigido in un terreno molle).

Determinazione degli scarichi sul palo.

Gli scarichi sui pali vengono determinati mediante il metodo delle rigidezze.

La piastra di fondazione viene considerata infinitamente rigida (3 gradi di libertà) ed i pali vengono considerati incastrati o incernierati (la scelta del vincolo viene fatta dall'Utente nella tabella CARATTERISTICHE del sottomenu PALI) a tale piastra.

Viene effettuata una prima analisi di ogni palo di ciascuna fila (i pali di ogni fila hanno le stesse caratteristiche) per costruire una curva carichi-spostamenti del palo. Questa curva viene costruita considerando il palo elastico. Si tratta, in definitiva, della matrice di rigidezza del palo Ke, costruita imponendo traslazioni e rotazioni unitarie per determinare le corrispondenti sollecitazioni in testa al palo.

Nota la matrice di rigidezza di ogni palo si assembla la matrice globale (di dimensioni 3x3) della palificata, *K*.

A questo punto, note le forze agenti in fondazione (N, T, M) si possono ricavare gli spostamenti della piastra (abbassamento, traslazione e rotazione) e le forze che si scaricano su ciascun palo. Infatti indicando con p il vettore dei carichi e con u il vettore degli spostamenti della piastra abbiamo:

$$u = K^{-1}p$$

Noti gli spostamenti della piastra, e quindi della testa dei pali, abbiamo gli scarichi su ciascun palo. Allora per ciascun palo viene effettuata un'analisi elastoplastica incrementale (tramite il metodo degli elementi finiti) che, tenendo conto della plasticizzazione del terreno, calcola le sollecitazioni in tutte le sezioni del palo., le caratteristiche del terreno (rappresentate da Kh) sono tali che se non è possibile raggiungere l'equilibrio si ha collasso per rottura del terreno.

Normativa

N.T.C. 2008 - Approccio 1

Simbologia adottata

γ_{Gsfav}	Coefficiente parziale sfavorevole sulle azioni permanenti
$\gamma_{ m Gfav}$	Coefficiente parziale favorevole sulle azioni permanenti
γ_{Qsfav}	Coefficiente parziale sfavorevole sulle azioni variabili
$\gamma_{\rm Ofav}$	Coefficiente parziale favorevole sulle azioni variabili

 $\gamma_{tan\phi}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

Coefficienti di partecipazione combinazioni statiche

Coefficienti parzial	i per le azioni o per l'et	ffetto delle azior	<u>ni:</u>			
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	$\gamma_{ m Gfav}$	1.00	1.00	0.90	0.90
Permanenti	Sfavorevole	$\gamma_{ m Gsfav}$	1.30	1.00	1.10	1.30
Variabili	Favorevole	$\gamma_{ m Qfav}$	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	$\gamma_{ m Qsfav}$	1.50	1.30	1.50	1.50
	i per i parametri geotec	enici del terreno				
Parametri			M1	<i>M</i> 2	<i>M</i> 2	M1
Tangente dell'ango	lo di attrito	$\gamma_{ an\phi'}$	1.00	1.25	1.25	1.00
Coesione efficace		$\gamma_{c'}$	1.00	1.25	1.25	1.00
Resistenza non dre		$\gamma_{ m cu}$	1.00	1.40	1.40	1.00
Resistenza a compi		$\gamma_{ m qu}$	1.00	1.60	1.60	1.00
Peso dell'unità di v	olume	γ_{γ}	1.00	1.00	1.00	1.00
Coefficienti parzial	tecipazione combinaz			4.2	EQU	IIVD
Coefficienti parzial	i per le azioni o per l'es Effetto	ffetto delle azion	<i>A1</i>	A2	<i>EQU</i>	HYD 0.00
Coefficienti parzial Carichi Permanenti	i per le azioni o per l'es Effetto Favorevole	ffetto delle azior γ _{Gfav}	<i>A1</i> 1.00	1.00	1.00	0.90
Coefficienti parzial Carichi Permanenti Permanenti	i per le azioni o per l'es Effetto Favorevole Sfavorevole	ffetto delle azior γ _{Gfav} γ _{Gsfav}	<i>A1</i> 1.00 1.00	1.00 1.00	1.00 1.00	0.90 1.30
Coefficienti parzial Carichi Permanenti Permanenti Variabili	i per le azioni o per l'es Effetto Favorevole Sfavorevole Favorevole	ffetto delle azior γ _{Gfav} γ _{Gsfav} γ _{Qfav}	A1 1.00 1.00 0.00	1.00 1.00 0.00	1.00 1.00 0.00	0.90 1.30 0.00
Coefficienti parzial Carichi Permanenti Permanenti	i per le azioni o per l'es Effetto Favorevole Sfavorevole	ffetto delle azior γ _{Gfav} γ _{Gsfav}	<i>A1</i> 1.00 1.00	1.00 1.00	1.00 1.00	0.90 1.30
Coefficienti parzial Carichi Permanenti Permanenti Variabili Variabili	i per le azioni o per l'es Effetto Favorevole Sfavorevole Favorevole	ffetto delle azion γ _{Gfav} γ _{Gsfav} γ _{Qfav} γ _{Qsfav}	AI 1.00 1.00 0.00 1.00	1.00 1.00 0.00	1.00 1.00 0.00	0.90 1.30 0.00
Coefficienti parzial Carichi Permanenti Permanenti Variabili Variabili	i per le azioni o per l'es Effetto Favorevole Sfavorevole Favorevole Sfavorevole	ffetto delle azion γ _{Gfav} γ _{Gsfav} γ _{Qfav} γ _{Qsfav}	AI 1.00 1.00 0.00 1.00	1.00 1.00 0.00	1.00 1.00 0.00	0.90 1.30 0.00
Coefficienti parzial Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzial Parametri Tangente dell'ango	Ei per le azioni o per l'ei Effetto Favorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	ffetto delle azion γ _{Gfav} γ _{Gsfav} γ _{Qfav} γ _{Qsfav}	AI 1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00	0.90 1.30 0.00 1.50
Coefficienti parzial Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzial Parametri Tangente dell'ango Coesione efficace	Ei per le azioni o per l'ei Effetto Favorevole Sfavorevole Favorevole Sfavorevole Si per i parametri geotec	ffetto delle azion γ _{Gfav} γ _{Gsfav} γ _{Qfav} γ _{Qsfav} γ _{Qsfav}	AI 1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00	1.00 1.00 0.00 1.00	0.90 1.30 0.00 1.50
Coefficienti parzial Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzial Parametri Tangente dell'ango	Ei per le azioni o per l'ei Effetto Favorevole Sfavorevole Favorevole Sfavorevole Si per i parametri geotec	ffetto delle azion γ _{Gfav} γ _{Gsfav} γ _{Qsfav} γ _{Qsfav} γ _{Qsfav} cnici del terreno:	AI 1.00 1.00 0.00 1.00 1.00 1.00 1.00	1.00 1.00 0.00 1.00 M2 1.25 1.25 1.40	1.00 1.00 0.00 1.00 M2 1.25 1.25 1.40	0.90 1.30 0.00 1.50 M1 1.00 1.00
Coefficienti parzial Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzial Parametri Tangente dell'ango Coesione efficace	Ei per le azioni o per l'ei Effetto Favorevole Sfavorevole Favorevole Sfavorevole Si per i parametri geotec lo di attrito mata ressione uniassiale	ffetto delle azion γ _{Gfav} γ _{Gsfav} γ _{Qsfav} γ _{Qsfav} γ _{nici} γ _{tanφ'} γ _{c'}	AI 1.00 1.00 0.00 1.00 MI 1.00 1.00	1.00 1.00 0.00 1.00 M2 1.25 1.25	1.00 1.00 0.00 1.00 M2 1.25 1.25	0.90 1.30 0.00 1.50 M1 1.00 1.00

FONDAZIONE SUPERFICIALE

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parziali		
	R1	R2	R3
Capacità portante della fondazione	1.00	1.00	1.40
Scorrimento	1.00	1.00	1.10
Resistenza del terreno a valle	1.00	1.00	1.40
Stabilità globale		1.10	

PALI DI FONDAZIONE

 $\overline{\text{CARICHI VERTICALI. C}}$ oefficienti parziali γ_R per le verifiche dei pali

Pali trivellati

		R 1	R2	R3
Punta	$\gamma_{ m b}$	1.00	1.70	1.35
Laterale compressione	$\gamma_{ m s}$	1.00	1.45	1.15
Totale compressione	$\gamma_{ m t}$	1.00	1.60	1.30
Laterale trazione	$\gamma_{ m st}$	1.00	1.60	1.25

CARICHI TRASVERSALI. Coefficienti parziali γ_T per le verifiche dei pali.

	R1	R2	R3
$\gamma_{ m T}$	1.00	1.60	1.30

Coefficienti di riduzione ξ per la determinazione della resistenza caratteristica dei pali Numero di verticali indagate 1 ξ_3 =1.70 ξ_4 =1.70

Geometria muro e fondazione

Descrizione	Muro a mensola in c.a.
Altezza del paramento	3.50 [m]
Spessore in sommità	0.30 [m]
Spessore all'attacco con la fondazione	0.51 [m]
Inclinazione paramento esterno	3.50 [°]
Inclinazione paramento interno	0.00 [°]
Lunghezza del muro	10.00 [m]

Fondazione

Lunghezza mensola fondazione di valle	1.30 [m]
Lunghezza mensola fondazione di monte	1.30 [m]
Lunghezza totale fondazione	3.11 [m]
Inclinazione piano di posa della fondazione	0.00 [°]
Spessore fondazione	0.60 [m]
Spessore magrone	0.10 [m]

Descrizione pali di fondazione

Pali in c.a.

Numero di file di pali 2

Vincolo pali/fondazione Cerniera

Tipo di portanza Portanza laterale e portanza di punta

Simbologia adottata

N numero d'ordine della fila

 \mathbf{X} ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m]

Numero di pali della fila nr.

diametro dei pali della fila espresso in [cm] D L

lunghezza dei pali della fila espressa in [m]

alfa inclinazione dei pali della fila rispetto alla verticale espressa in [°]

ALL allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI)

Materiali utilizzati per la struttura

Calcestruzzo

Peso specifico 2500.0 [kg/mc]

Classe di Resistenza Rck 250

Resistenza caratteristica a compressione R_{ck} 250.0 [kg/cmq] Modulo elastico E 306658.85 [kg/cmq]

Acciaio

Tipo B450C

Tensione di snervamento σ_{fa} 4588.0 [kg/cmq]

Calcestruzzo utilizzato per i pali

Classe di Resistenza Rck 250 Resistenza caratteristica a compressione R_{ck} 250 [kg/cmq]

Modulo elastico E 306658.85 [kg/cmq]

Acciaio utilizzato per i pali

Tipo B450C

Tensione ammissibile σ_{fa} 4588.0 [kg/cmq] Tensione di snervamento σ_{fa} 4588.0 [kg/cmq]

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	\mathbf{X}	Y	\mathbf{A}
1	1.00	0.00	0.00
2	20.00	1.50	4.51

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0.00 [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno
Descrizione Descrizione terreno

 γ Peso di volume del terreno espresso in [kg/mc] γ_s Peso di volume saturo del terreno espresso in [kg/mc]

 ϕ Angolo d'attrito interno espresso in [°] δ Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [kg/cmq]

 c_a Adesione terra-muro espressa in [kg/cmq]

Descrizione	γ	$\gamma_{ m s}$	ф	δ	c	$\mathbf{c_a}$
Detrito calcareo	1850	1850	27.00	18.00	0.000	0.000
Argille marnose	2500	2500	23.50	15.67	0.100	0.000
Drenaggio	1800	1800	30.00	20.00	0.000	0.000
<u>Parametri medi</u>						
Descrizione	γ	$\gamma_{ m s}$	ф	δ	c	$\mathbf{c_a}$
Detrito calcareo	1850	1850	27.00	18.00	0.000	0.000
Argille marnose	2500	2500	23.50	15.67	0.100	0.000
Drenaggio	1800	1800	30.00	20.00	0.000	0.000
<u>Parametri minim</u>	<u>i</u>					
Descrizione	γ	$\gamma_{\rm s}$	ф	δ	c	$\mathbf{c_a}$
Detrito calcareo	1850	1850	27.00	18.00	0.000	0.000
Argille marnose	2500	2500	23.50	15.67	0.100	0.000
Drenaggio	1800	1800	30.00	20.00	0.000	0.000

Stratigrafia

Simbologia adottata

N Indice dello strato

H Spessore dello strato espresso in [m]

a Inclinazione espressa in [°]

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta Terreno Terreno dello strato

Nr.	H	a	Kw	Ks	Terreno
1	4.00	0.00	0.00	0.54	Detrito calcareo
2	15.00	0.00	11.61	0.60	Argille marnose

Terreno di riempimento (drenante)

Drenaggio

Descrizione combinazioni di carico

α . 1	1 .	1
Simbol	เกดเส	adottata
Dunio		cicio i i circi

F/S Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

 γ Ψ Coefficiente di partecipazione della condizione

Coefficiente di combinazione della condizione

Combinaz	zione n°	1 -	Caso	A1-M1	(STR)
Comomaz	MOHE H		Caso	7 7 T TATT	(DIII)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1.00	1.00	1.00
Peso proprio terrapieno	FAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.30	1.00	1.30

Combinazione n° 2 - Caso A2-M2 (GEO)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00

Combinazione n° 3 - Caso A2-M2 (GEO-STAB)

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00

Combinazione n° 4 - Caso A1-M1 (STR) - Sisma Vert. negativo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00

Combinazione n° 5 - Caso A1-M1 (STR) - Sisma Vert. positivo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00

Combinazione nº 6 - Caso A2-M2 (GEO) - Sisma Vert. positivo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00

Combinazione n° 7 - Caso A2-M2 (GEO) - Sisma Vert. negativo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00
Spinta terreno	SFAV	1.00	1.00	1.00

Combinazione n° 8 - Caso A2-M2 (GEO-STAB) - Sisma Vert. positivo

	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1.00	1.00	1.00
Peso proprio terrapieno	SFAV	1.00	1.00	1.00

Spinta terreno	SFAV	1.00	1.00	1.00			
Combinazione n° 9 - Caso A		STAB) - Si		-			
	S/F	γ	Ψ	$\gamma * \Psi$			
Peso proprio muro	SFAV	1.00	1.00	1.00			
Peso proprio terrapieno	SFAV	1.00	1.00	1.00			
Spinta terreno	SFAV	1.00	1.00	1.00			
Combinazione n° 10 - Quasi	Permanente	(SLE)					
	S/F	γ	Ψ	$\gamma * \Psi$			
Peso proprio muro		1.00	1.00	1.00			
Peso proprio terrapieno		1.00	1.00	1.00			
Spinta terreno		1.00	1.00	1.00			
Combinazione n° 11 - Frequente (SLE)							
-	S/F	γ	Ψ	$\gamma * \Psi$			
Peso proprio muro		1.00	1.00	1.00			
Peso proprio terrapieno		1.00	1.00	1.00			
Spinta terreno		1.00	1.00	1.00			
Spinia terrene		1.00	1100	1.00			
Combinazione n° 12 - Rara (SLE)							
	S/F	γ	Ψ	$\gamma * \Psi$			
Peso proprio muro		1.00	1.00	1.00			
Peso proprio terrapieno		1.00	1.00	1.00			
Spinta terreno		1.00	1.00	1.00			
-							
Combinazione n° 13 - Quasi	Permanente	(SLE) - Sist	_				
	S/F	γ	Ψ	$\gamma * \Psi$			
Peso proprio muro		1.00	1.00	1.00			
Peso proprio terrapieno		1.00	1.00	1.00			
Spinta terreno		1.00	1.00	1.00			
Combinazione n° 14 - Quasi	Permanente	(SLE) - Sisi	ma Vert. ne	<u>gativo</u>			
	S/F	γ	Ψ	$\gamma * \Psi$			
Peso proprio muro		1.00	1.00	1.00			
Peso proprio terrapieno		1.00	1.00	1.00			
Spinta terreno		1.00	1.00	1.00			
Combinazione n° 15 - Frequ	ente (SLE) - :	Sisma Vert	positivo				
	S/F	γ	Ψ	$\gamma * \Psi$			
Peso proprio muro		1.00	1.00	1.00			
Peso proprio terrapieno		1.00	1.00	1.00			
Spinta terreno		1.00	1.00	1.00			
Spinta terreno		1.00	1.00	1.00			
Combinazione n° 16 - Frequ				**)I(
Dago proprio mura	S/F	γ 1.00	Ψ 1.00	γ*Ψ			
Peso proprio muro		1.00	1.00	1.00			
Peso proprio terrapieno		1.00	1.00	1.00			
Spinta terreno		1.00	1.00	1.00			
Combinazione n° 17 - Rara		a Vert. posi					
_	S/F	γ	Ψ	$\gamma * \Psi$			
Peso proprio muro		1.00	1.00	1.00			

Peso proprio terrapieno	 1.00	1.00	1.00
Spinta terreno	 1.00	1.00	1.00

Combinazione n° 18 - Rara (SLE) - Sisma Vert. negativo

	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1.00	1.00	1.00
Peso proprio terrapieno		1.00	1.00	1.00
Spinta terreno		1.00	1.00	1.00

Impostazioni analisi pali

Numero elementi palo 40

<u>Tipo carico palo</u> Distribuito

Calcolo della portanza metodo di Hansen

Criterio di rottura del sistema terreno-palo

Pressione limite passiva con moltiplicatore pari a 1.00

Andamento pressione verticale

Geostatica

Impostazioni di analisi

Metodo verifica sezioni	State limite
Metodo verifica sezioni	Stato limite

Impostazioni verifiche SLU

Coefficienti parziali per resistenze di calcolo dei materiali	<u>i</u>
Coefficiente di sicurezza calcestruzzo a compressione	1.50
Coefficiente di sicurezza calcestruzzo a trazione	1.50
Coefficiente di sicurezza acciaio	1.15
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza per la sezione	1.00

Impostazioni verifiche SLE

Condizioni ambientali	Ordinarie
Armatura ad aderenza migliorata	
Verifica fessurazione	
Sensibilità delle armature	Poco sensibile
Valori limite delle aperture delle fessure	$w_1 = 0.20$
	$w_2 = 0.30$
	$w_3 = 0.40$
Metodo di calcolo aperture delle fessure	E.C. 2
<u>Verifica delle tensioni</u>	
Combinazione di carico	Rara $\sigma_c < 0.60 f_{ck}$ - $\sigma_f < 0.80 f_{yk}$
	Quasi permanente $\sigma_c < 0.45 f_{ck}$

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione Sisma Combinazione sismica

 CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento CS_{QLIM} Coeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

\mathbf{C}	Tipo	Sisma	cs_{sco}	cs_{rib}	cs_{qlim}	cs _{stab}
1	A1-M1 - [1]					
2	A2-M2 - [1]					
3	STAB - [1]					3.54
4	A1-M1 - [2]	Orizzontale + Verticale negativo				
5	A1-M1 - [2]	Orizzontale + Verticale positivo				
6	A2-M2 - [2]	Orizzontale + Verticale positivo				
7	A2-M2 - [2]	Orizzontale + Verticale negativo				
8	STAB - [2]	Orizzontale + Verticale positivo				1.41
9	STAB - [2]	Orizzontale + Verticale negativo				1.22
10	SLEQ - [1]					
11	SLEF - [1]					
12	SLER - [1]					
13	SLEQ - [1]	Orizzontale + Verticale positivo				
14	SLEQ - [1]	Orizzontale + Verticale negativo				
15	SLEF - [1]	Orizzontale + Verticale positivo				
16	SLEF - [1]	Orizzontale + Verticale negativo				
17	SLER - [1]	Orizzontale + Verticale positivo				
18	SLER - [1]	Orizzontale + Verticale negativo				

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate :

Origine in testa al muro (spigolo di monte)

Ascisse X (espresse in [m]) positive verso monte Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle

Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

<u>Tipo di analisi</u>

Calcolo della spinta metodo di Culmann Calcolo della stabilità globale metodo di Fellenius Calcolo della spinta in condizioni di Spinta attiva

Sisma

Combinazioni SLU

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g*\beta_m*St*S)=29.66$

Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 14.83$
Combinazioni SLE Accelerazione al suolo a_g Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione (β_m) Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)	0.89 [m/s^2] 1.50 1.00 1.00 0.50 $k_h=(a_g/g*\beta_m*St*S)=13.66$ $k_v=0.50*k_h=6.83$
Forma diagramma incremento sismico	Rettangolare
Partecipazione spinta passiva (percento) Lunghezza del muro	0.0 10.00 [m]
Peso muro Baricentro del muro	8232.66 [kg] X=-0.24 Y=-2.98
Superficie di spinta Punto inferiore superficie di spinta Punto superiore superficie di spinta Altezza della superficie di spinta Inclinazione superficie di spinta(rispetto alla verticale)	X = 1.30 $Y = -4.10X = 1.30$ $Y = 0.024.12$ [m] 0.00 [°]
COMBINAZIONE n° 6	
Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	6698.92 [kg] 6484.56 [kg] 1681.07 [kg] X = 1.30 [m] $Y = -2.71$ [m] 14.53 [°] 47.69 [°]
Incremento sismico della spinta Punto d'applicazione dell'incremento sismico di spinta Inclinazione linea di rottura in condizioni sismiche	7842.58 [kg] X = 1.30 [m] Y = -2.04 [m] 21.37 [°]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	8196.39 [kg] X = 0.65 [m] Y = -1.75 [m] 2441.72 [kg] 1220.86 [kg] 2430.96 [kg] 1215.48 [kg]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente	18948.87 [kg] 22514.54 [kg] 22514.54 [kg] 18948.87 [kg] 0.83 [m] 2.18 [m]

Risultante in fondazione	29427.26	[kg]
Inclinazione della risultante (rispetto alla normale)	40.08	[°]
Momento rispetto al baricentro della fondazione	18693.48	[kgm]

Sollecitazioni paramento

Combinazione n° 6

L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in kgm Sforzo normale positivo di compressione, espresso in kg

Taglio positivo se diretto da monte verso valle, espresso in kg

Nr. 1	Y 0.00	N 0.00	M 0.00	T 0.00		
2	0.70	562.42	453.70	1368.22		
3	1.40	1199.66	1968.01	3067.31		
4	2.10	1911.74	4778.24	5121.80)	
5	2.80	2698.65	9149.29	7574.09)	
6	3.50	3560.39	15358.18	10419.76)	
410			0 2000 2000 60000		5000 7000 8000 9000 10000	0 400 1200 1200 1600 1600 1600 1600 1600 16
			Mon	nenti [kgm] Ta	glio [kg]	Sforzo Normale [kg]

Inviluppo sollecitazioni piastra di fondazione

Combinazione n° 6

Dimensioni della piastra(Simmetria)

Larghezza(m) = 5.00 Altezza(m) = 3.11

Origine all'attacco con il muro sull'asse di simmetria

Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero

I momenti negativi tendono le fibre superiori

Sollecitazioni in direzione Y

Nr.	Y	$\mathbf{M}_{\mathbf{ymin}}$	$\mathbf{M}_{ ext{ymax}}$	$\mathbf{T}_{ ext{ymin}}$	T_{ymax}
1	0.00	-3.18	6.51	-4209.81	1642.63
2	0.06	-430.31	171.22	-4272.45	3120.94
3	0.16	-523.97	595.72	-588.25	5082.28
4	0.26	-170.21	1233.97	0.00	8625.57
5	0.36	0.00	2095.60	0.00	13272.23

6	0.46	0.00	3175.77	0.00	18321.87
7	0.56	0.00	4452.38	0.00	23717.12
8	0.66	0.00	5948.13	0.00	29701.16
9	0.77	0.00	8371.21	0.00	27573.41
10	0.88	0.00	10872.40	0.00	26119.34
11	0.98	0.00	13516.91	0.00	26589.34
12	1.09	0.00	16327.78	0.00	27792.36
13	1.19	0.00	19320.18	0.00	30224.61
14	1.30	0.00	22829.06	0.00	30073.44
15	1.81	-3803.34	0.00	-7812.33	0.00
16	1.92	-3007.60	0.00	-6979.96	0.00
17	2.03	-2341.13	0.00	-5969.83	0.00
18	2.14	-1786.48	0.00	-5061.30	0.00
19	2.25	-1329.72	0.00	-4300.58	0.00
20	2.36	-958.50	0.00	-3613.69	0.00
21	2.46	-721.81	0.00	-2983.21	6.14
22	2.56	-597.09	0.00	-2456.16	0.00
23	2.66	-462.29	0.00	-1969.15	0.00
24	2.76	-345.57	0.00	-1509.23	0.00
25	2.86	-260.45	0.00	-1137.62	0.00
26	2.96	-168.92	23.63	-1155.92	0.00
27	3.06	-72.92	22.24	-1178.15	14.29
28	3.11	0.00	2.26	-848.28	223.25

Sollecitazioni in direzione X

Nr.	X	M_{xmin}	$\mathbf{M}_{\mathbf{xmax}}$	T_{xmin}	T_{xmax}
1	0.00	0.00	2450.50	-1919.31	1113.32
2	0.20	0.00	2104.03	-6044.81	2913.85
3	0.40	0.00	952.63	-11052.52	3451.01
4	0.60	-1153.13	0.68	-16416.71	3421.28
5	0.75	-2517.47	0.00	-9233.91	2588.72
6	0.90	-2979.55	0.00	-3249.65	3345.40
7	1.05	-2505.41	0.00	-2457.79	9336.10
8	1.20	-1124.95	0.74	-3283.96	16520.32
9	1.40	0.00	987.36	-3312.64	11168.57
10	1.60	0.00	2170.51	-2762.96	6169.27
11	1.80	0.00	2540.14	-1760.77	2058.44
12	2.00	0.00	2216.59	-5860.31	3143.66
13	2.20	0.00	1079.44	-10835.06	3730.56
14	2.40	-994.97	1.06	-16022.02	3698.52
15	2.55	-2334.19	0.00	-9032.24	2921.07
16	2.70	-2740.50	0.00	-3002.59	3634.59
17	2.85	-2257.45	0.00	-1910.41	9678.77
18	3.00	-841.67	1.81	-2597.94	16583.90
19	3.20	0.00	1377.35	-2621.25	11541.18
20	3.40	0.00	2627.36	-1858.57	6517.83
21	3.60	0.00	3055.92	-1617.19	2856.62
22	3.80	0.00	2778.69	-5930.51	5163.66
23	4.00	0.00	1642.43	-11344.27	6368.20
24	4.20	-491.39	5.70	-16998.28	6320.43
25	4.35	-1966.53	0.00	-10398.37	6178.11

26	4.50	-2638.98	0.00	-4738.54	5233.48
27	4.65	-2478.16	0.00	0.00	5856.59
28	4.80	-1611.56	25.87	0.00	12430.15
29	5.00	-9.75	112.03	0.00	7019.67

Armature e tensioni nei materiali del muro

Combinazione n° 6

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]

A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]

 N_u sforzo normale ultimo espresso in [kg]

 M_u momento ultimo espresso in [kgm]

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kg]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kg]

VRd Resistenza al taglio, espresso in [kg]

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	${f A_{fi}}$	N_u	$\mathbf{M}_{\mathbf{u}}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	V_{Rcd}	$\mathbf{V}_{\mathbf{Rsd}}$
1	0.00	100, 30	10.05	8.04	0	0	1000.00	12161		
2	0.70	100, 34	10.05	8.04	17529	-14141	31.17	13052		
3	1.40	100, 39	10.05	8.04	9064	-14870	7.56	13909		
4	2.10	100, 43	10.05	8.04	6521	-16298	3.41	14742		
5	2.80	100, 47	10.05	8.04	5273	-17878	1.95	15916		
6	3.50	100 51	10.05	8 04	4524	-19516	1 27	17085		

Armature e tensioni nei materiali della fondazione

Combinazione n° 6

Simbologia adottata

B base della sezione espressa in [cm]

H altezza della sezione espressa in [cm]

 $A_{\rm fi}$ area di armatura in corrispondenza del lembo inferiore in [cmq]

 A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]

 $\begin{array}{ll} N_u & \text{sforzo normale ultimo espresso in [kg]} \\ M_u & \text{momento ultimo espresso in [kgm]} \end{array}$

CS coefficiente sicurezza sezione

VRcd Aliquota di taglio assorbito dal cls, espresso in [kg]

VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kg]

VRd Resistenza al taglio, espresso in [kg]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	${f A_{fi}}$	N_u	$\mathbf{M_u}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$
1	0.06	100, 60	10.05	12.06	0	26276	51.04	18633		
2	0.46	100, 60	10.05	12.06	0	26276	8.27	18633		
3	0.88	100, 60	10.05	12.06	0	26276	2.42	18633		
4	1.30	100, 60	10.05	12.06	0	26276	1.15	18633		

Fondazione di monte

 $(L'ascissa\ X,\ espressa\ in\ [m],\ \grave{e}\ positiva\ verso\ valle\ con\ origine\ in\ corrispondenza\ dell'estremo\ libero\ della\ fondazione\ di\ monte)$

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	${f A_{fi}}$	N_u	$\mathbf{M}_{\mathbf{u}}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$
1	0.05	100, 60	10.05	12.06	0	26276	301.15	18633		
2	0.45	100, 60	10.05	12.06	0	-21961	47.51	18633		
3	0.87	100, 60	10.05	12.06	0	-21961	16.52	18633		
4	1.30	100, 60	10.05	12.06	0	-21961	5.77	18633		

Analisi dei pali

Combinazione n° 6

Risultanti sulla base della fondazione (per metro lineare di muro)

Orizzontale [kg] 18948.9 Verticale [kg] 22514.5 Momento [kgm] -18693.5

Spostamenti della piastra di fondazione

Orizzontale 0.24693 [cm] Verticale [cm] 0.01738 $[^{\circ}]$ Rotazione -0.00577

Scarichi in testa ai pali

Fila nr.	N.pali	N [kg]	T [kg]	M [kgm]	Tu [kg]	Mu [kgm]
1	6	5671	15791	0	20687	0
2	6	31854	15791	0	20687	0

Calcolo della portanza

tensione tangenziale media palo-terreno in [kg/cmq] τ_{m}

 σ_{p} tensione sul terreno alla punta del palo in [kg/cmq]

 N_c , N_q , N_γ fattori di capacità portante

N'_c, N'_q, N'_γ fattori di capacità portante corretti

portanza caratteristica per attrito e aderenza laterale in [kg]

 $\begin{array}{c} P_p \\ P_t \end{array}$ portanza caratteristica di punta in [kg]

portanza caratteristica totale in [kg]

portanza di progetto, con applicazione dei coeff. parziali alle singole aliquote della portanza, in [kg] $P_{d,s} \\$

portanza di progetto, con applicazione del coeff. parziale alla portanza totale, in [kg]

PT Parametri Terreno utilizzati

Fila	N_c	N'_c	N_q	N'_q	N_{γ}	N'_{γ}	$ au_{\mathbf{m}}$	$\sigma_{\rm p}$
1	18.67	44.42	9.12	13.41	5.30	3.18	-0.01	2.50
2	18.67	44.42	9.12	13.41	5.30	3.18	0.06	8.26

Fila	$\mathbf{P_l}$	$\mathbf{P}_{\mathbf{p}}$	$\mathbf{P_t}$	$P_{d,s}$	$P_{d,c}$	PT
1	14927	52381	108768	46126	61653	MEDI
1	14927	52381	108768	46126	61653	MINIMI
2	14927	52381	108768	46126	61653	MEDI
2	14927	52381	108768	46126	61653	MINIMI

Verifica a punzonamento della fondazione

- D diametro dei pali della fila espresso in [cm]
- H_f altezza della fondazione in corrispondenza della fila espressa in [cm]
- S_1 superficie di aderenza palo-fondazione ($H_f\Pi D$) espressa in [cmq]
- N sforzo normale trasmesso dal palo alla fondazione espresso in [kg]
- τ_c tensione tangenziale palo-fondazione espressa in [kg/cmq]

Fila	D	$\mathbf{H_f}$	$\mathbf{S_l}$	N	$ au_{ m c}$
1	60.0	60.0	11309.7	5671	0.50
2	60.0	60.0	11309 7	31854	2.82

Sollecitazioni nei pali e verifiche delle sezioni

Combinazione nº 6

- Nr. numero d'ordine della sezione a partire dall'attacco palo-fondazione
- Y ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m])
- M momento flettente espresso in [kgm]
- N sforzo normale espresso in [kg]
- T taglio espresso in [kg]
- $M_{\rm u}$ momento ultimo espresso in [kgm]
- N_u sforzo normale ultimo espresso in [kg]
- T_u taglio ultimo espresso in [kg]
- CS coefficiente di sicurezza

Sollecitazioni e tensioni per la fila di pali nr. 1

Nr.	Y	\mathbf{M}	\mathbf{N}	T	$\mathbf{A_f}$	$\mathbf{M_u}$	N_{u}	T_{u}	CS
1	0.00	0	5671	15791	48.25	0	458483	22237	80.85
2	0.20	-3159	5809	15655	48.25	48271	88774	22237	15.28
3	0.40	-6290	5943	15371	48.25	44993	42509	22237	7.15
4	0.60	-9364	6071	14941	48.25	43592	28261	22237	4.66
5	0.80	-12352	6193	14367	48.25	42801	21460	22237	3.47
6	1.00	-15226	6311	13647	48.25	42347	17552	22237	2.78
7	1.20	-17955	6423	12782	48.25	42055	15044	22237	2.34
8	1.40	-20511	6529	11771	48.25	41855	13324	22237	2.04
9	1.60	-22866	6631	10616	48.25	41712	12096	22237	1.82
10	1.80	-24989	6727	9315	48.25	41608	11201	22237	1.67
11	2.00	-26852	6817	7870	48.25	41532	10545	22237	1.55
12	2.20	-28426	6903	6281	48.25	41477	10072	22237	1.46
13	2.40	-29682	6983	4548	48.25	41439	9749	22237	1.40
14	2.60	-30591	7057	2671	48.25	41417	9555	22237	1.35
15	2.80	-31126	7127	652	48.25	41408	9481	22237	1.33
16	3.00	-31256	7191	-1508	48.25	41414	9527	22237	1.32
17	3.20	-30955	7249	-3807	48.25	41434	9704	22237	1.34
18	3.40	-30193	7303	-6246	48.25	41472	10031	22237	1.37
19	3.60	-28944	7351	-8145	48.25	41532	10547	22237	1.43
20	3.80	-27315	7393	-9497	48.25	41616	11264	22237	1.52
21	4.00	-25416	7431	-10378	48.25	41724	12199	22237	1.64
22	4.20	-23340	7463	-10862	48.25	41862	13385	22237	1.79
23	4.40	-21167	7489	-11015	48.25	42035	14872	22237	1.99
24	4.60	-18964	7510	-10897	48.25	42252	16733	22237	2.23
25	4.80	-16785	7526	-10563	48.25	42523	19067	22237	2.53
26	5.00	-14672	7537	-10061	48.25	42867	22020	22237	2.92

27	5.20	-12660	7542	-9433	48.25	43306	25800	22237	3.42
28	5.40	-10774	7542	-8714	48.25	43854	30701	22237	4.07
29	5.60	-9031	7537	-7936	48.25	44472	37115	22237	4.92
30	5.80	-7444	7526	-7124	48.25	45304	45806	22237	6.09
31	6.00	-6019	7510	-6301	48.25	46416	57916	22237	7.71
32	6.20	-4759	7489	-5483	48.25	47548	74828	22237	9.99
33	6.40	-3662	7462	-4684	48.25	48762	99360	22237	13.32
34	6.60	-2725	7430	-3914	48.25	49404	134689	22237	18.13
35	6.80	-1942	7392	-3182	48.25	48296	183802	22237	24.86
36	7.00	-1306	7350	-2492	48.25	43349	243932	22237	33.19
37	7.20	-808	7301	-1849	48.25	35346	319536	22237	43.76
38	7.40	-438	7248	-1256	48.25	24102	399036	22237	55.05
39	7.60	-187	7189	-713	48.25	11630	448004	22237	62.32
40	7.80	-44	7125	-220	48.25	2822	455940	22237	63.99
41	8.00	0	7056	-220	48.25	0	458483	22237	64.98

Sollecitazioni e tensioni per la fila di pali nr. 2

Nr.	Y	M	N	T	$\mathbf{A_f}$	$\mathbf{M_u}$	N_u	$T_{\rm u}$	CS
1	0.00	0	31854	15791	48.25	0	458483	22237	14.39
2	0.20	-3159	31986	15655	48.25	33248	336677	22237	10.53
3	0.40	-6290	32101	15371	48.25	44785	228567	22237	7.12
4	0.60	-9364	32198	14941	48.25	48913	168188	22237	5.22
5	0.80	-12352	32278	14367	48.25	49354	128966	22237	4.00
6	1.00	-15226	32340	13647	48.25	48963	104000	22237	3.22
7	1.20	-17955	32384	12782	48.25	48174	86886	22237	2.68
8	1.40	-20511	32410	11771	48.25	47566	75159	22237	2.32
9	1.60	-22866	32419	10616	48.25	47024	66671	22237	2.06
10	1.80	-24989	32410	9315	48.25	46616	60460	22237	1.87
11	2.00	-26852	32384	7870	48.25	46216	55737	22237	1.72
12	2.20	-28426	32339	6281	48.25	45892	52210	22237	1.61
13	2.40	-29682	32277	4548	48.25	45657	49649	22237	1.54
14	2.60	-30591	32198	2671	48.25	45495	47884	22237	1.49
15	2.80	-31126	32101	652	48.25	45397	46819	22237	1.46
16	3.00	-31256	31986	-1508	48.25	45360	46419	22237	1.45
17	3.20	-30955	31853	-3807	48.25	45386	46704	22237	1.47
18	3.40	-30193	31703	-6246	48.25	45483	47757	22237	1.51
19	3.60	-28944	31535	-8145	48.25	45666	49754	22237	1.58
20	3.80	-27315	31349	-9497	48.25	45939	52724	22237	1.68
21	4.00	-25416	31146	-10378	48.25	46309	56750	22237	1.82
22	4.20	-23340	30925	-10862	48.25	46710	61889	22237	2.00
23	4.40	-21167	30686	-11015	48.25	47133	68328	22237	2.23
24	4.60	-18964	30430	-10897	48.25	47631	76428	22237	2.51
25	4.80	-16785	30156	-10563	48.25	48154	86514	22237	2.87
26	5.00	-14672	29864	-10061	48.25	48756	99239	22237	3.32
27	5.20	-12660	29555	-9433	48.25	49154	114750	22237	3.88
28	5.40	-10774	29228	-8714	48.25	49405	134032	22237	4.59
29	5.60	-9031	28883	-7936	48.25	49194	157337	22237	5.45
30	5.80	-7444	28521	-7124	48.25	48244	184848	22237	6.48
31	6.00	-6019	28141	-6301	48.25	46005	215098	22237	7.64
32	6.20	-4759	27743	-5483	48.25	42811	249595	22237	9.00
33	6.40	-3662	27327	-4684	48.25	38768	289305	22237	10.59

34	6.60	-2725	26894	-3914	48.25	33726	332838	22237	12.38
35	6.80	-1942	26444	-3182	48.25	27658	376532	22237	14.24
36	7.00	-1306	25975	-2492	48.25	20990	417433	22237	16.07
37	7.20	-808	25489	-1849	48.25	14125	445756	22237	17.49
38	7.40	-438	24985	-1256	48.25	7909	451357	22237	18.07
39	7.60	-187	24464	-713	48.25	3474	455353	22237	18.61
40	7.80	-44	23924	-220	48.25	844	457723	22237	19.13
41	8.00	0	23368	-220	48.25	0	458483	22237	19.62

Stabilità globale muro + terreno

Combinazione n° 9

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kg]
- α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Fellenius

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -0.66 Y[m] = 2.97

Raggio del cerchio R[m] = 15.16

Ascissa a valle del cerchio Xi[m]= -14.38

Ascissa a monte del cerchio Xs[m]= 14.38Larghezza della striscia dx[m]= 1.15

Coefficiente di sicurezza C= 1.22

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	$\alpha(^{\circ})$	Wsinα	b/cosa	ф	c	u
1	4317.29	74.50	4160.29	4.30	22.18	0.00	0.00
2	11089.12	61.81	9774.14	2.44	20.45	0.05	0.00
3	16077.71	53.54	12931.53	1.94	19.18	0.08	0.00
4	19879.22	46.71	14469.92	1.68	19.18	0.08	0.00
5	22862.99	40.67	14899.72	1.52	19.18	0.08	0.00
6	25255.21	35.14	14537.00	1.41	19.18	0.08	0.00
7	27180.11	29.97	13578.29	1.33	19.18	0.08	0.00
8	28714.12	25.06	12162.24	1.27	19.18	0.08	0.00
9	29907.40	20.34	10395.21	1.23	19.18	0.08	0.00
10	30794.08	15.76	8363.99	1.20	19.18	0.08	0.00
11	31397.62	11.28	6142.92	1.17	19.18	0.08	0.00
12	30615.20	6.87	3664.46	1.16	19.18	0.08	0.00
13	30297.81	2.51	1325.29	1.15	19.18	0.08	0.00
14	24576.61	-1.85	-791.58	1.15	19.18	0.08	0.00
15	24319.53	-6.21	-2630.42	1.16	19.18	0.08	0.00
16	23827.67	-10.61	-4387.04	1.17	19.18	0.08	0.00
17	23072.33	-15.07	-6000.54	1.19	19.18	0.08	0.00
18	22036.67	-19.64	-7405.27	1.22	19.18	0.08	0.00
19	20698.57	-24.33	-8528.31	1.26	19.18	0.08	0.00
20	19025.79	-29.21	-9285.04	1.32	19.18	0.08	0.00
21	16971.09	-34.34	-9572.63	1.39	19.18	0.08	0.00
22	14463.02	-39.80	-9258.30	1.50	19.18	0.08	0.00
23	11386.84	-45.75	-8156.52	1.65	19.18	0.08	0.00
24	7538.15	-52.44	-5975.37	1.89	19.18	0.08	0.00
25	2524.53	-60.41	-2195.37	2.33	19.18	0.08	0.00

$$\begin{split} \Sigma W_i &= 518828.68 \text{ [kg]} \\ \Sigma W_i sin \alpha_i &= 52218.61 \text{ [kg]} \\ \Sigma W_i cos \alpha_i tan \phi_i &= 158761.31 \text{ [kg]} \\ \Sigma c_i b_i / cos \alpha_i &= 26937.51 \text{ [kg]} \end{split}$$

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kgm] Sforzo normale positivo di compressione, espresso in [kg] Taglio positivo se diretto da monte verso valle, espresso in [kg]

Inviluppo combinazioni SLU

Nr.	Y	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.70	562.42	562.42	30.08	481.34	154.17	1447.18
3	1.40	1199.66	1199.66	263.16	2078.55	617.01	3225.22
4	2.10	1911.74	1911.74	919.02	5026.95	1413.07	5358.67
5	2.80	2698.65	2698.65	2247.04	9591.46	2584.72	7889.92
6	3.50	3560.39	3560.39	4508.68	16049.06	4127.57	10814.55

Inviluppo combinazioni SLE

Nr.	Y	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.70	562.42	562.42	22.85	151.26	123.21	491.79
3	1.40	1199.66	1199.66	205.34	723.74	492.85	1240.22
4	2.10	1911.74	1911.74	720.00	1897.12	1118.31	2254.70
5	2.80	2698.65	2698.65	1758.69	3870.42	2041.00	3576.63
6	3.50	3560.39	3560.39	3531.77	6861.16	3264.08	5209.17

Inviluppo armature e tensioni nei materiali del muro

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fs} area di armatura in corrispondenza del lembo di monte in [cmq]
- A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq]
- σ_c tensione nel calcestruzzo espressa in [kg/cmq]
- τ_{c} tensione tangenziale nel calcestruzzo espressa in [kg/cmq]
- σ_{fs} tensione nell'armatura disposta sul lembo di monte in [kg/cmq]
- σ_{fi} tensione nell'armatura disposta sul lembo di valle in [kg/cmq]
- N_u sforzo normale ultimo espresso in [kg]
- M_u momento ultimo espresso in [kgm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kg]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kg]
- VRd Resistenza al taglio, espresso in [kg]

Inviluppo SLU

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	${f A_{fi}}$	N_u	$\mathbf{M}_{\mathbf{u}}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$
1	0.00	100, 30	10.05	8.04	0	0	1000.00	12161		
2	0.70	100, 34	10.05	8.04	16334	-13979	29.04	13052		
3	1.40	100, 39	10.05	8.04	8535	-14788	7.11	13909		
4	2.10	100, 43	10.05	8.04	6175	-16237	3.23	14742		
5	2.80	100, 47	10.05	8.04	5016	-17828	1.86	15916		
6	3.50	100, 51	10.05	8.04	4320	-19473	1.21	17085		

Inviluppo SLE

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	${f A_{fi}}$	$\sigma_{\rm c}$	$ au_{ m c}$	$\sigma_{\!fs}$	$\sigma_{ m fi}$
1	0.00	100, 30	10.05	8.04	0.00		0.00	0.00
2	0.70	100, 34	10.05	8.04	1.20	0.18	28.02	-13.60
3	1.40	100, 39	10.05	8.04	4.66	0.41	165.33	-50.01
4	2.10	100, 43	10.05	8.04	10.11	0.67	424.23	-108.31
5	2.80	100, 47	10.05	8.04	17.47	0.95	815.04	-188.77
6	3.50	100, 51	10.05	8.04	26.67	1.27	1348.37	-291.69

Inviluppo armature e tensioni nei materiali della fondazione

Simbologia adottata

- B base della sezione espressa in [cm]
- H altezza della sezione espressa in [cm]
- A_{fi} area di armatura in corrispondenza del lembo inferiore in [cmq]
- A_{fs} area di armatura in corrispondenza del lembo superiore in [cmq]
- σ_c tensione nel calcestruzzo espressa in [kg/cmq]
- τ_c tensione tangenziale nel calcestruzzo espressa in [kg/cmq]
- σ_{fi} tensione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq]
- σ_{fs} tensione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq]
- N_u sforzo normale ultimo espresso in [kg]
- M_u momento ultimo espresso in [kgm]
- CS coefficiente sicurezza sezione
- VRcd Aliquota di taglio assorbito dal cls, espresso in [kg]
- VRsd Aliquota di taglio assorbito dall'armatura, espresso in [kg]
- VRd Resistenza al taglio, espresso in [kg]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Inviluppo SLU

Nr.	\mathbf{Y}	В, Н	$\mathbf{A_{fs}}$	${f A_{fi}}$	N_u	$\mathbf{M}_{\mathbf{u}}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	$\mathbf{V}_{\mathbf{R}\mathbf{s}\mathbf{d}}$
1	0.06	100, 60	10.05	12.06	0	26276	51.04	18633		
2	0.46	100, 60	10.05	12.06	0	26276	8.27	18633		
3	0.88	100, 60	10.05	12.06	0	26276	2.42	18633		
4	1.30	100, 60	10.05	12.06	0	26276	1.15	18633		
<u>Invilu</u>	ıppo SLI	<u> </u>								
Nr.	X	В, Н	$\mathbf{A_{fs}}$	${f A_{fi}}$	$\sigma_{ m c}$	$ au_{ m c}$	$\sigma_{ m fi}$	$\sigma_{\!\scriptscriptstyle fs}$		
5	0.06	100, 60	10.05	12.06	0.74	0.17	16.04	48.73		
6	0.46	100, 60	10.05	12.06	5.02	1.44	290.47	-55.99		

17.15

35.95

12.06

12.06

2.12 992.83 -191.39

1.99 2081.58 -401.26

Fondazione di monte

0.88

1.30

100, 60

100, 60

10.05

10.05

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Inviluppo SLU

7

8

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	${f A_{fi}}$	N_u	$\mathbf{M_u}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	$\mathbf{V}_{\mathbf{Rcd}}$	V_{Rsd}
1	0.05	100, 60	10.05	12.06	0	-21961	111.82	18633		
2	0.45	100, 60	10.05	12.06	0	0	28.00	18633		
3	0.87	100, 60	10.05	12.06	0	0	7.56	18633		
4	1.30	100, 60	10.05	12.06	0	0	3.35	18633		
<u>Invilu</u>	ppo SLI	<u>E</u>								
Nr.	X	B, H	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	$\sigma_{\rm c}$	$ au_{ m c}$	$\sigma_{\!\scriptscriptstyle \mathrm{fi}}$	$\sigma_{\!\scriptscriptstyle fs}$		
5	0.05	100, 60	10.05	12.06	0.57	0.10	11.36	37.12		
6	0.45	100, 60	10.05	12.06	2.67	0.67	154.49	-29.78		
7	0.87	100, 60	10.05	12.06	8.75	0.71	506.78	-97.69		
8	1.30	100, 60	10.05	12.06	17.62	0.36	1020.05	-196.63		

Inviluppo sollecitazioni nei pali e verifiche delle sezioni

- Nr. numero d'ordine della sezione a partire dall'attacco palo-fondazione
- Y ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m])
- M momento flettente espresso in [kgm]
- N sforzo normale espresso in [kg]
- T taglio espresso in [kg]
- momento ultimo espresso in [kgm] $M_{\rm u}$
- N_u sforzo normale ultimo espresso in [kg]
- taglio ultimo espresso in [kg] T_u CS
- coefficiente di sicurezza

Inviluppo sollecitazioni fila di pali nr. 1

Nr.	\mathbf{Y}	Mmin	Mmax	Tmin	Tmax	Nmin	Nmax
1	0.00	0.00	0.00	4344.45	15790.72	79.05	17064.39
2	0.20	-3158.78	-868.89	4204.86	15655.01	219.07	17202.61
3	0.40	-6289.78	-1709.86	3925.69	15370.86	356.39	17334.53
4	0.60	-9363.96	-2495.00	3506.94	14941.44	491.01	17460.16
5	0.80	-12352.24	-3196.39	2948.61	14366.75	622.92	17579.49
6	1.00	-15225.59	-3786.11	2250.69	13646.80	752.13	17692.52
7	1.20	-17954.96	-4236.25	1413.18	12781.62	878.64	17799.25
8	1.40	-20511.28	-4518.88	650.67	11771.24	1002.45	17899.69
9	1.60	-22865.53	-4649.02	24.22	10615.76	1123.56	17993.82
10	1.80	-24988.68	-4653.86	-479.41	9315.35	1241.96	18081.66
11	2.00	-26851.75	-4557.98	-893.10	7870.26	1357.66	18163.20
12	2.20	-28425.80	-4383.29	-1417.29	6280.83	1470.66	18238.45
13	2.40	-29681.97	-4149.10	-2060.85	4547.57	1580.96	18307.39
14	2.60	-30591.48	-3872.25	-2757.19	2671.13	1688.55	18370.04
15	2.80	-31125.71	-3567.17	-3320.76	652.41	1793.44	18426.39
16	3.00	-31256.19	-3246.11	-3828.57	-1507.51	1895.63	18476.44
17	3.20	-30954.68	-2919.28	-5482.63	-1621.29	1995.12	18520.19
18	3.40	-30193.22	-2595.02	-6701.93	-1575.02	2091.91	18557.64
19	3.60	-28944.09	-2280.01	-8145.38	-1502.76	2185.99	18588.80
20	3.80	-27315.02	-1979.46	-9497.00	-1411.03	2277.38	18613.66
21	4.00	-25415.62	-1697.26	-10378.45	-1305.50	2366.06	18632.22
22	4.20	-23339.92	-1436.16	-10862.28	-1191.04	2452.03	18644.48
23	4.40	-21167.47	-1197.95	-11015.12	-1071.75	2535.31	18650.45

24	4.60	-18964.45	-983.60	-10897.44	-951.08	2615.88	18650.11
25	4.80	-16784.96	-793.38	-10563.46	-831.83	2693.75	18643.48
26	5.00	-14672.27	-627.01	-10061.16	-716.30	2768.92	18630.55
27	5.20	-12660.03	-483.75	-9432.53	-606.28	2841.39	18611.33
28	5.40	-10773.53	-362.50	-8713.78	-503.17	2911.15	18585.80
29	5.60	-9030.77	-261.86	-7935.79	-408.01	2978.22	18553.98
30	5.80	-7443.61	-180.26	-7124.43	-321.56	3042.58	18515.86
31	6.00	-6018.73	-115.95	-6301.04	-244.34	3104.24	18471.44
32	6.20	-4758.52	-67.08	-5482.91	-176.70	3163.19	18420.72
33	6.40	-3661.94	-31.74	-4683.70	-118.82	3219.45	18363.70
34	6.60	-2725.20	-7.98	-3913.97	-70.82	3273.00	18300.39
35	6.80	-1942.40	6.19	-3181.56	-32.70	3323.85	18230.78
36	7.00	-1306.09	12.73	-2492.11	-4.46	3371.99	18154.87
37	7.20	-807.67	13.62	-1849.40	13.93	3417.44	18072.66
38	7.40	-437.79	10.84	-1255.81	22.51	3460.18	17984.16
39	7.60	-186.63	6.75	-712.64	21.88	3500.22	17889.35
40	7.80	-44.10	2.42	-220.49	12.12	3537.56	17788.25
41	8.00	0.00	0.00	-220.49	12.12	3572.20	17680.85

Inviluppo verifiche fila di pali nr. 1

Nr.	Y	${f A_f}$	$\mathbf{M_{u}}$	$N_{\rm u}$	$T_{\mathbf{u}}$	CS
1	0.00	48.25	0	458483	22237	26.87
2	0.20	48.25	21063	2820	22237	12.87
3	0.40	48.25	33227	2301	22237	6.46
4	0.60	48.25	39866	2128	22237	4.33
5	0.80	48.25	40544	2046	22237	3.28
6	1.00	48.25	40539	2004	22237	2.66
7	1.20	48.25	40536	1985	22237	2.26
8	1.40	48.25	40536	1983	22237	1.98
9	1.60	48.25	40537	1993	22237	1.77
10	1.80	48.25	40540	2016	22237	1.62
11	2.00	48.25	40544	2052	22237	1.51
12	2.20	48.25	40550	2100	22237	1.43
13	2.40	48.25	40557	2162	22237	1.37
14	2.60	48.25	40566	2241	22237	1.33
15	2.80	48.25	40578	2340	22237	1.30
16	3.00	48.25	40592	2464	22237	1.30
17	3.20	48.25	40610	2620	22237	1.31
18	3.40	48.25	39501	2818	22237	1.35
19	3.60	48.25	37214	3074	22237	1.41
20	3.80	48.25	34627	3397	22237	1.49
21	4.00	48.25	31728	3798	22237	1.61
22	4.20	48.25	28553	4292	22237	1.75
23	4.40	48.25	25195	4902	22237	1.93
24	4.60	48.25	21774	5658	22237	2.16
25	4.80	48.25	18399	6601	22237	2.45
26	5.00	48.25	14976	7788	22237	2.81
27	5.20	48.25	11644	9302	22237	3.27
28	5.40	48.25	8788	11262	22237	3.87
29	5.60	48.25	6390	13844	22237	4.65
30	5.80	48.25	4425	17326	22237	5.69

31	6.00	48.25	2862	22153	22237	7.14
32	6.20	48.25	1664	29090	22237	9.20
33	6.40	48.25	791	39356	22237	12.22
34	6.60	48.25	200	55587	22237	16.98
35	6.80	48.25	156	82165	22237	24.72
36	7.00	48.25	29	127614	22237	25.24
37	7.20	48.25	277	200306	22237	25.35
38	7.40	48.25	65	298815	22237	25.48
39	7.60	48.25	9	411997	22237	25.62
40	7.80	48.25	36	453402	22237	25.77
41	8.00	48.25	0	458483	22237	25.93

<u>Inviluppo sollecitazioni fila di pali nr. 2</u>

Nr.	\mathbf{Y}	Mmin	Mmax	Tmin	Tmax	Nmin	Nmax
1	0.00	0.00	0.00	4344.45	15790.72	13133.94	31853.68
2	0.20	-3158.78	-868.89	4204.86	15655.01	13272.71	31986.22
3	0.40	-6289.78	-1709.86	3925.69	15370.86	13406.27	32101.07
4	0.60	-9363.96	-2495.00	3506.94	14941.44	13534.62	32198.25
5	0.80	-12352.24	-3196.39	2948.61	14366.75	13657.76	32277.76
6	1.00	-15225.59	-3786.11	2250.69	13646.80	13775.69	32339.59
7	1.20	-17954.96	-4236.25	1413.18	12781.62	13888.42	32383.74
8	1.40	-20511.28	-4518.88	650.67	11771.24	13995.94	32410.22
9	1.60	-22865.53	-4649.02	24.22	10615.76	14098.25	32419.02
10	1.80	-24988.68	-4653.86	-479.41	9315.35	14195.35	32410.14
11	2.00	-26851.75	-4557.98	-893.10	7870.26	14287.24	32383.59
12	2.20	-28425.80	-4383.29	-1417.29	6280.83	14373.92	32339.36
13	2.40	-29681.97	-4149.10	-2060.85	4547.57	14455.39	32277.46
14	2.60	-30591.48	-3872.25	-2757.19	2671.13	14531.66	32197.88
15	2.80	-31125.71	-3567.17	-3320.76	652.41	14602.72	32100.62
16	3.00	-31256.19	-3246.11	-3828.57	-1507.51	14668.57	31985.69
17	3.20	-30954.68	-2919.28	-5482.63	-1621.29	14729.21	31853.08
18	3.40	-30193.22	-2595.02	-6701.93	-1575.02	14784.64	31702.80
19	3.60	-28944.09	-2280.01	-8145.38	-1502.76	14834.86	31534.84
20	3.80	-27315.02	-1979.46	-9497.00	-1411.03	14879.88	31349.20
21	4.00	-25415.62	-1697.26	-10378.45	-1305.50	14919.69	31145.89
22	4.20	-23339.92	-1436.16	-10862.28	-1191.04	14954.29	30924.90
23	4.40	-21167.47	-1197.95	-11015.12	-1071.75	14983.68	30686.23
24	4.60	-18964.45	-983.60	-10897.44	-951.08	15007.86	30429.89
25	4.80	-16784.96	-793.38	-10563.46	-831.83	15015.17	30155.87
26	5.00	-14672.27	-627.01	-10061.16	-716.30	14925.74	29864.18
27	5.20	-12660.03	-483.75	-9432.53	-606.28	14826.89	29554.81
28	5.40	-10773.53	-362.50	-8713.78	-503.17	14718.62	29227.76
29	5.60	-9030.77	-261.86	-7935.79	-408.01	14600.93	28883.04
30	5.80	-7443.61	-180.26	-7124.43	-321.56	14473.81	28520.64
31	6.00	-6018.73	-115.95	-6301.04	-244.34	14337.28	28140.56
32	6.20	-4758.52	-67.08	-5482.91	-176.70	14191.32	27742.81
33	6.40	-3661.94	-31.74	-4683.70	-118.82	14035.95	27327.39
34	6.60	-2725.20	-7.98	-3913.97	-70.82	13871.15	26894.28
35	6.80	-1942.40	6.19	-3181.56	-32.70	13696.94	26443.50
36	7.00	-1306.09	12.73	-2492.11	-4.46	13513.30	25975.05
37	7.20	-807.67	13.62	-1849.40	13.93	13320.24	25488.92

38	7.40	-437.79	10.84	-1255.81	22.51	13117.77	24985.11
39	7.60	-186.63	6.75	-712.64	21.88	12905.87	24463.62
40	7.80	-44.10	2.42	-220.49	12.12	12684.55	23924.46
41	8.00	0.00	0.00	-220.49	12.12	12453.81	23367.63

Inviluppo verifiche fila di pali nr. 2

Nr.	Y	$\mathbf{A_f}$	$\mathbf{M_u}$	N_u	T_{u}	CS
1	0.00	48.25	0	458483	22237	14.39
2	0.20	48.25	25538	324414	22237	10.53
3	0.40	48.25	37909	216034	22237	7.12
4	0.60	48.25	43900	156057	22237	5.22
5	0.80	48.25	47156	118644	22237	3.99
6	1.00	48.25	48569	95192	22237	3.19
7	1.20	48.25	47794	79570	22237	2.66
8	1.40	48.25	47165	68816	22237	2.30
9	1.60	48.25	46658	61104	22237	2.04
10	1.80	48.25	46180	55342	22237	1.85
11	2.00	48.25	45784	51036	22237	1.71
12	2.20	48.25	45492	47852	22237	1.60
13	2.40	48.25	45280	45540	22237	1.53
14	2.60	48.25	45131	43947	22237	1.48
15	2.80	48.25	45039	42988	22237	1.45
16	3.00	48.25	45005	42637	22237	1.44
17	3.20	48.25	44948	42913	22237	1.46
18	3.40	48.25	43162	43895	22237	1.50
19	3.60	48.25	41073	45736	22237	1.57
20	3.80	48.25	38642	48461	22237	1.67
21	4.00	48.25	35858	52147	22237	1.81
22	4.20	48.25	32729	56942	22237	1.99
23	4.40	48.25	29253	62929	22237	2.21
24	4.60	48.25	25559	70409	22237	2.50
25	4.80	48.25	21793	79751	22237	2.85
26	5.00	48.25	18096	91505	22237	3.30
27	5.20	48.25	14323	106302	22237	3.88
28	5.40	48.25	10807	124306	22237	4.58
29	5.60	48.25	7854	146850	22237	5.45
30	5.80	48.25	5435	173693	22237	6.48
31	6.00	48.25	3512	204229	22237	7.64
32	6.20	48.25	2040	238207	22237	9.00
33	6.40	48.25	969	277847	22237	10.59
34	6.60	48.25	244	322129	22237	12.38
35	6.80	48.25	190	367743	22237	14.24
36	7.00	48.25	32	410651	22237	16.07
37	7.20	48.25	305	444865	22237	17.49
38	7.40	48.25	49	450855	22237	18.07
39	7.60	48.25	7	455132	22237	18.61
40	7.80	48.25	28	457669	22237	19.13
41	8.00	48.25	0	458483	22237	19.62

CALCOLO PARATIA DI PALI

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'.

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche.

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996.

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996.

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Metodo di analisi

Calcolo della profondità di infissione

Nel caso generale l'equilibrio della paratia è assicurato dal bilanciamento fra la spinta attiva agente da monte sulla parte fuori terra, la resistenza passiva che si sviluppa da valle verso monte nella zona interrata e la controspinta che agisce da monte verso valle nella zona interrata al di sotto del centro di rotazione.

Nel caso di paratia tirantata nell'equilibrio della struttura intervengono gli sforzi dei tiranti (diretti verso monte); in questo caso, se la paratia non è sufficientemente infissa, la controspinta sarà assente.

Pertanto il primo passo da compiere nella progettazione è il calcolo della profondità di infissione necessaria ad assicurare l'equilibrio fra i carichi agenti (spinta attiva, resistenza passiva, controspinta, tiro dei tiranti ed eventuali carichi esterni).

Nel calcolo classico delle paratie si suppone che essa sia infinitamente rigida e che possa subire una rotazione intorno ad un punto (*Centro di rotazione*) posto al di sotto della linea di fondo scavo (per paratie non tirantate).

Occorre pertanto costruire i diagrammi di spinta attiva e di spinta (resistenza) passiva agenti sulla paratia. A partire da questi si costruiscono i diagrammi risultanti.

Nella costruzione dei diagrammi risultanti si adotterà la seguente notazione:

 K_{am} diagramma della spinta attiva agente da monte

 K_{av} diagramma della spinta attiva agente da valle sulla parte interrata

 K_{pm} diagramma della spinta passiva agente da monte

 K_{pv} diagramma della spinta passiva agente da valle sulla parte interrata.

Calcolati i diagrammi suddetti si costruiscono i diagrammi risultanti

$$D_m = K_{pm} - K_{av}$$
 e $D_v = K_{pv} - K_{am}$

Questi diagrammi rappresentano i valori limiti delle pressioni agenti sulla paratia. La soluzione è ricercata per tentativi facendo variare la profondità di infissione e la posizione del centro di rotazione fino a quando non si raggiunge l'equilibrio sia alla traslazione che alla rotazione.

Per mettere in conto un fattore di sicurezza nel calcolo delle profondità di infissione si può agire con tre modalità :

- 1. applicazione di un coefficiente moltiplicativo alla profondità di infissione strettamente necessaria per l'equilibrio
- 2. riduzione della spinta passiva tramite un coefficiente di sicurezza
- 3. riduzione delle caratteristiche del terreno tramite coefficienti di sicurezza su $tan(\phi)$ e sulla coesione

Calcolo della spinte

Metodo di Culmann (metodo del cuneo di tentativo)

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb: cuneo di spinta a monte della parete che si muove rigidamente lungo una superficie di rottura rettilinea o spezzata (nel caso di terreno stratificato).

La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il valore della spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo).

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura $(R \ e \ C)$ e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima nel caso di spinta attiva e minima nel caso di spinta passiva.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni si ricava il punto di applicazione della spinta.

Per tenere conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

Il metodo di Mononobe-Okabe considera nell'equilibrio del cuneo spingente la forza di inerzia dovuta al sisma. Indicando con *W* il peso del cuneo e con *C* il coefficiente di intensità sismica la forza di inerzia valutata come

$$F_i = W^*C$$

Indicando con S la spinta calcolata in condizioni statiche e con S_s la spinta totale in condizioni sismiche l'incremento di spinta è ottenuto come

$$DS = S - S_s$$

L'incremento di spinta viene applicato a 1/3 dell'altezza della parete stessa(diagramma triangolare con vertice in alto).

Analisi ad elementi finiti

La paratia è considerata come una struttura a prevalente sviluppo lineare (si fa riferimento ad un metro di larghezza) con comportamento a trave. Come caratteristiche geometriche della sezione si assume il momento d'inerzia I e l'area A per metro lineare di larghezza della paratia. Il modulo elastico è quello del materiale utilizzato per la paratia.

La parte fuori terra della paratia è suddivisa in elementi di lunghezza pari a circa 5 centimetri e più o meno costante per tutti gli elementi. La suddivisione è suggerita anche dalla eventuale presenza di tiranti, carichi e vincoli. Infatti questi elementi devono capitare in corrispondenza di un nodo. Nel caso di tirante è inserito un ulteriore elemento atto a schematizzarlo. Detta L la lunghezza libera del tirante, A_f l'area di armatura nel tirante ed E_s il modulo elastico dell'acciaio è inserito un elemento di lunghezza pari ad L, area A_f , inclinazione pari a quella del tirante e modulo elastico E_s . La parte interrata della paratia è suddivisa in elementi di lunghezza, come visto sopra, pari a circa 5 centimetri

I carichi agenti possono essere di tipo distribuito (spinta della terra, diagramma aggiuntivo di carico, spinta della falda, diagramma di spinta sismica) oppure concentrati. I carichi distribuiti sono riportati sempre come carichi concentrati nei nodi (sotto forma di reazioni di incastro perfetto cambiate di segno).

Schematizzazione del terreno

La modellazione del terreno si rifà al classico schema di Winkler. Esso è visto come un letto di molle indipendenti fra di loro reagenti solo a sforzo assiale di compressione. La rigidezza della singola molla è legata alla costante di sottofondo orizzontale del terreno (costante di Winkler). La costante di sottofondo, k, è definita come la pressione unitaria che occorre applicare per ottenere uno spostamento unitario. Dimensionalmente è espressa quindi come rapporto fra una pressione ed uno spostamento al cubo $[F/L^3]$. È evidente che i risultati sono tanto migliori quanto più è elevato il numero delle molle che schematizzano il terreno. Se (m è l'interasse fra le molle (in cm) e b è la larghezza della paratia in direzione longitudinale (b=100 cm) occorre ricavare l'area equivalente, A_m , della molla (a cui si assegna una lunghezza pari a 100 cm). Indicato con E_m il modulo elastico del materiale costituente la paratia (in Kg/cm^2), l'equivalenza, in termini di rigidezza, si esprime come

Per le molle di estremità, in corrispondenza della linea di fondo scavo ed in corrispondenza dell'estremità inferiore della paratia, si assume una area equivalente dimezzata. Inoltre, tutte le molle hanno, ovviamente, rigidezza flessionale e tagliante nulla e sono vincolate all'estremità alla traslazione. Quindi la matrice di rigidezza di tutto il sistema paratia-terreno sarà data dall'assemblaggio delle matrici di rigidezza degli elementi della paratia (elementi a rigidezza flessionale, tagliante ed assiale), delle matrici di rigidezza dei tiranti (solo rigidezza assiale) e delle molle (rigidezza assiale).

Modalità di analisi e comportamento elasto-plastico del terreno

A questo punto vediamo come è effettuata l'analisi. Un tipo di analisi molto semplice e veloce sarebbe l'analisi elastica (peraltro disponibile nel programma *PAC*). Ma si intuisce che considerare il terreno con un comportamento infinitamente elastico è una approssimazione alquanto grossolana. Occorre quindi introdurre qualche correttivo che meglio ci aiuti a modellare il terreno. Fra le varie soluzioni possibili una delle più praticabili e che fornisce risultati

soddisfacenti è quella di considerare il terreno con comportamento elasto-plastico perfetto. Si assume cioè che la curva sforzi-deformazioni del terreno abbia andamento bilatero. Rimane da scegliere il criterio di plasticizzazione del terreno (molle). Si può fare riferimento ad un criterio di tipo cinematico: la resistenza della molla cresce con la deformazione fino a quando lo spostamento non raggiunge il valore X_{max} ; una volta superato tale spostamento limite non si ha più incremento di resistenza all'aumentare degli spostamenti. Un altro criterio può essere di tipo statico: si assume che la molla abbia una resistenza crescente fino al raggiungimento di una pressione p_{max} . Tale pressione p_{max} può essere imposta pari al valore della pressione passiva in corrispondenza della quota della molla. D'altronde un ulteriore criterio si può ottenere dalla combinazione dei due descritti precedentemente: plasticizzazione o per raggiungimento dello spostamento limite o per raggiungimento della pressione passiva. Dal punto di vista strettamente numerico è chiaro che l'introduzione di criteri di plasticizzazione porta ad analisi di tipo non lineare (non linearità meccaniche). Questo comporta un aggravio computazionale non indifferente. L'entità di tale aggravio dipende poi dalla particolare tecnica adottata per la soluzione. Nel caso di analisi elastica lineare il problema si risolve immediatamente con la soluzione del sistema fondamentale (K matrice di rigidezza, u vettore degli spostamenti nodali, p vettore dei carichi nodali)

Ku=p

Un sistema non lineare, invece, deve essere risolto mediante un'analisi al passo per tener conto della plasticizzazione delle molle. Quindi si procede per passi di carico, a partire da un carico iniziale p0, fino a raggiungere il carico totale p. Ogni volta che si incrementa il carico si controllano eventuali plasticizzazioni delle molle. Se si hanno nuove plasticizzazioni la matrice globale andrà riassemblata escludendo il contributo delle molle plasticizzate. Il procedimento descritto se fosse applicato in questo modo sarebbe particolarmente gravoso (la fase di decomposizione della matrice di rigidezza è particolarmente onerosa). Si ricorre pertanto a soluzioni più sofisticate che escludono il riassemblaggio e la decomposizione della matrice, ma usano la matrice elastica iniziale (*metodo di Riks*).

Senza addentrarci troppo nei dettagli diremo che si tratta di un metodo di Newton-Raphson modificato e ottimizzato. L'analisi condotta secondo questa tecnica offre dei vantaggi immediati. Essa restituisce l'effettiva deformazione della paratia e le relative sollecitazioni; dà informazioni dettagliate circa la deformazione e la pressione sul terreno. Infatti la deformazione è direttamente leggibile, mentre la pressione sarà data dallo sforzo nella molla diviso per l'area di influenza della molla stessa. Sappiamo quindi quale è la zona di terreno effettivamente plasticizzato. Inoltre dalle deformazioni ci si può rendere conto di un possibile meccanismo di rottura del terreno.

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso paratia+terreno deve fornire un coefficiente di sicurezza non inferiore a 1.10.

È usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento è supposta circolare.

In particolare il programma esamina, per un dato centro 3 cerchi differenti: un cerchio passante per la linea di fondo scavo, un cerchio passante per il piede della paratia ed un cerchio passante per il punto medio della parte interrata. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 6x6 posta in prossimità della sommità della paratia. Il numero di strisce è pari a 50.

Il coefficiente di sicurezza fornito da Fellenius si esprime secondo la seguente formula:

$$\begin{split} & \sum_{i}^{c_{i}b_{i}} \sum_{i}^{c_{i}cos\alpha_{i}} + [W_{i}cos\alpha_{i}\text{-}u_{i}l_{i}]tg\phi_{i}\;) \\ & \qquad \qquad \qquad \qquad \qquad \qquad \\ & \eta = \underbrace{ \sum_{i}W_{i}sin\alpha_{i}} \end{split}$$

dove n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima} e c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia.

Inoltre u_i ed l_i rappresentano la pressione neutra lungo la base della striscia e la lunghezza della base della striscia ($l_i = b_i/\cos\alpha_i$).

Quindi, assunto un cerchio di tentativo si suddivide in n strisce e dalla formula precedente si ricava η . Questo procedimento è eseguito per il numero di centri prefissato e è assunto come coefficiente di sicurezza della scarpata il minimo dei coefficienti così determinati.

CALCOLO PARATIA TRA LE SEZ. 16-21

Geometria paratia

Tipo paratia: Paratia di pali		
Altezza fuori terra	4.00	[m]
Profondità di infissione	8.00	[m]
Altezza totale della paratia	12.00	[m]
Lunghezza paratia	10.00	[m]
Numero di file di pali	1	
Interasse fra i pali della fila	1.60	[m]
Diametro dei pali	80.00	[cm]
Numero totale di pali	5	
Numero di pali per metro lineare	0.50	

Geometria cordoli

Simbologia adottata

n° Y numero d'ordine del cordolo

posizione del cordolo sull'asse della paratia espresso in [m]

Cordoli in calcestruzzo

Base della sezione del cordolo espresso in [cm]
Altezza della sezione del cordolo espresso in [cm] Н

Cordoli in acciaio
A Area della sezione in acciaio del cordolo espresso in [cmq]
W Modulo di resistenza della sezione del cordolo espresso in [cm^3]

\mathbf{n}°	\mathbf{Y}	Tipo	В	H	\mathbf{A}	\mathbf{W}
1	0.00	Calcestruzzo	120.00	100.00		

Geometria profilo terreno

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa alla paratia, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

Profilo di monte

N	X	Y	\mathbf{A}
2	43.00	13.00	16.82
3	51.00	13.00	0.00

Profilo di valle

N	X	Y	\mathbf{A}
1	-10.00	-4.00	0.00
2.	0.00	-4 00	0.00

Descrizione terreni

Simbologia adottata

 $\begin{array}{lll} n^{\circ} & & numero \ d'ordine \ dello \ strato \ a \ partire \ dalla \ sommità \ della \ paratia \\ Descrizione & Descrizione \ del \ terreno \\ \gamma & peso \ di \ volume \ del \ terreno \ espresso \ in \ [kg/mc] \\ \gamma_s & peso \ di \ volume \ saturo \ del \ terreno \ espresso \ [kg/mc] \\ \phi & angolo \ d'attrito \ interno \ del \ terreno \ espresso \ in \ [°] \\ \delta & angolo \ d'attrito \ terreno/paratia \ espresso \ in \ [°] \\ c & coesione \ del \ terreno \ espressa \ in \ [kg/cmq] \end{array}$

\mathbf{n}°	Descrizione	γ	$\gamma_{\rm s}$	ф	δ	c
1	argilla limosa	1900.00	1900.00	21.00	14.00	0.100
2	Argilla marnosa	2500.00	2500.00	23.50	15.67	0.130

Descrizione stratigrafia

Simbologia adottata

n° numero d'ordine dello strato a partire dalla sommità della paratia

sp spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]

kw costante di Winkler orizzontale espressa in Kg/cm²/cm α inclinazione dello strato espressa in GRADI(°)

Terreno Terreno associato allo strato

\mathbf{n}°	sp	α	kw	Terreno
1	3.00	0.00	0.60	argilla limosa
2	20.00	0.00	4.26	Argilla marnosa

Caratteristiche materiali utilizzati

~		
('//	cestruzzo	•
-u	C & S i I i u z . z . U	

Peso specifico	2500	[kg/mc]
Classe di Resistenza	C25/30	
Resistenza caratteristica a compressione R _{ck}	306	[kg/cmq]
Tensione di progetto a compressione σ_c	99	[kg/cmq]
Tensione tangenziale ammissibile τ_{c0}	6.1	[kg/cmq]
Tensione tangenziale ammissibile τ_{c1}	18.5	[kg/cmq]
Acciaio		
Tipo	B450C	
Tensione di snervamento f _{yk}	4589	[kg/cmq]

Caratteristiche acciaio cordoli in c.a.

cur uncertaine accume cor act in cia.		
Tipo	FeB44K	
Tensione di snervamento f _{yk}	4400	[kg/cmq]

Condizioni di carico

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

Forza orizzontale espressa in [kg], positiva da monte verso valle

F_y M Forza verticale espressa in [kg], positiva verso il basso

Momento espresso in [kgm], positivo ribaltante

 Q_i, Q_f Intensità dei carichi distribuiti sul profilo espresse in [kg/mq]

Intensità dei carichi distribuiti sulla paratia espresse in [kg/mq], positivi da monte verso valle

Risultante carico distribuito sulla paratia espressa in [kg]

Condizione nº 1

 $X_i = 43.00$ $X_f = 51.00$ $Q_i = 1000$ Carico distribuito sul profilo $Q_f = 1000$

Combinazioni di carico

Nella tabella sono riportate le condizioni di carico di ogni combinazione con il relativo coefficiente di partecipazione.

Combinazione n° 1 [DA1 - A1M1]

Spinta terreno

Combinazione n° 2 [DA1- A2M2]

Spinta terreno

Combinazione n° 3 [DA1 - A1M1]

Spinta terreno

Condizione 1 (Condizione 1) x 1.00

Combinazione n° 4 [DA1- A2M2]

Spinta terreno

Condizione 1 (Condizione 1) x 1.00

Combinazione n° 5 [DA1 - A1M1]

Spinta terreno

Combinazione n° 6 [DA1- A2M2]

Spinta terreno

Combinazione n° 7 [DA1 - A1M1]

Spinta terreno

Condizione 1 (Condizione 1 / sisma V+) x 0.20

Combinazione n° 8 [DA1- A2M2]

Spinta terreno

Condizione 1 (Condizione 1 / sisma V+) x 0.20

Combinazione n° 9

Spinta terreno

Condizione 1 (Condizione 1) x 0.20

Combinazione n° 10

Spinta terreno

Condizione 1 (Condizione 1) x 0.50

Combinazione n° 11

Spinta terreno

Condizione 1 (Condizione 1) x 1.00

Combinazione n° 12

Spinta terreno

Condizione 1 (Condizione 1 / sisma V+) x 0.20

Combinazione n° 13

Spinta terreno

Condizione 1 (Condizione 1 / sisma V+) x 0.50

Combinazione n° 14

Spinta terreno

Condizione 1 (Condizione 1 / sisma V+) x 1.00

Impostazioni di progetto

Spinte e verifiche secondo:

Peso dell'unità di volume

Parametri

Norme Tecniche sulle Costruzioni 14/01/2008

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali	per le azioni o per l'effett	o delle azioni:		
Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{ m Gfav}$	1.00	1.00
Permanenti	Sfavorevole	$\gamma_{ m Gsfav}$	1.30	1.00
Variabili	Favorevole	$\gamma_{ m Ofav}$	0.00	0.00
Variabili	Sfavorevole	$\gamma_{ m Qsfav}$	1.50	1.30

1.00

M1

 γ_{γ}

1.00

M2

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali	per le azioni o per l'effet	to delle azioni:		
Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{ m Gfav}$	1.00	1.00
Permanenti	Sfavorevole	$\gamma_{ m Gsfav}$	1.00	1.00
Variabili	Favorevole	$\gamma_{ m Qfav}$	0.00	0.00
Variabili	Sfavorevole	$\gamma_{ m Qsfav}$	1.00	1.00
Coefficienti parziali	per i parametri geotecnic	i del terreno:		

Tangente dell'angolo di attrito	$\gamma_{ an\phi'}$	1.00	1.25
Coesione efficace	$\gamma_{c'}$	1.00	1.25
Resistenza non drenata	$\gamma_{ m cu}$	1.00	1.40
Resistenza a compressione uniassiale	$\gamma_{ m qu}$	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

Impostazioni di analisi

Analisi per Combinazioni di Carico.

Rottura del terreno: Pressione passiva

 $\underline{Influenza\ \delta\ (angolo\ di\ attrito\ terreno-paratia):}\quad Nel\ calcolo\ del\ coefficiente\ di\ spinta\ attiva\ Ka\ e\ nell'inclinazione\ della\ spinta\ attiva\ (non\ viene\ considerato\ per\ la\ spinta\ passiva)$

Stabilità globale: Metodo di Fellenius

Impostazioni analisi sismica

Combinazioni/Fase	\mathbf{SLU}	SLE
Accelerazione al suolo [m/s^2]	2.120	0.893
Massimo fattore amplificazione spettro orizzontale F ₀	2.525	2.479
Periodo inizio tratto spettro a velocità costante Tc*	0.379	0.332
Coefficiente di amplificazione topografica (St)	1.000	1.000
Coefficiente di amplificazione per tipo di sottosuolo (Ss)	1.373	1.500
Coefficiente di riduzione per tipo di sottosuolo (α)	0.913	0.913
Spostamento massimo senza riduzione di resistenza Us [m]	0.060	0.060
Coefficiente di riduzione per spostamento massimo (β)	0.455	0.455
Coefficiente di intensità sismica (percento)	12.314	5.670
Rapporto intensità sismica verticale/orizzontale (kv)	0.00	

Influenza sisma nella spinta attiva da monte

Forma diagramma incremento sismico: Triangolare con vertice in alto.

Analisi della paratia

L'analisi è stata eseguita per combinazioni di carico

La paratia è analizzata con il metodo degli elementi finiti.

Essa è discretizzata in 80 elementi fuori terra e 160 elementi al di sotto della linea di fondo scavo.

Le molle che simulano il terreno hanno un comportamento elastoplastico: una volta raggiunta la pressione passiva non reagiscono ad ulteriori incremento di carico.

Altezza fuori terra della paratia	4.00	[m]
Profondità di infissione	8.00	[m]
Altezza totale della paratia	12.00	[m]

Forze agenti sulla paratia

Tutte le forze si intendono positive se dirette da monte verso valle. Esse sono riferite ad un metro di larghezza della paratia. Le Y hanno come origine la testa della paratia, e sono espresse in [m]

Simbologia adottata

n° Indice della Combinazione/Fase Tipo Tipo della Combinazione/Fase Pa Spinta attiva, espressa in [kg]

Is Incremento sismico della spinta, espressa in [kg]

Pw Spinta della falda, espressa in [kg]
Pp Resistenza passiva, espressa in [kg]
Pc Controspinta, espressa in [kg]

\mathbf{n}°	Tipo	Pa	$\mathbf{Y}_{\mathbf{Pa}}$	Is	$\mathbf{Y}_{\mathbf{I}\mathbf{s}}$	Pw	$\mathbf{Y}_{\mathbf{Pw}}$	Pp	$\mathbf{Y}_{\mathbf{Pp}}$	Pc	Y_{Pc}
1	[A1-M1]	4570	3.03					-6744	$5.1\hat{4}$	2174	9.57
2	[A2-M2]	4466	3.03					-7086	5.57	2619	9.91
3	[A1-M1]	4570	3.03					-6744	5.14	2174	9.57
4	[A2-M2]	4466	3.03					-7086	5.57	2619	9.91
5	[A1-M1] S	2411	3.15	1630	2.67			-5902	5.00	1860	9.45
6	[A2-M2] S	4448	3.08	2573	2.67			-11938	5.92	4917	10.19
7	[A1-M1] S	2411	3.15	1630	2.67			-5902	5.00	1860	9.45
8	[A2-M2] S	4448	3.08	2573	2.67			-11938	5.92	4917	10.19
9	[SLEQ]	2465	3.15					-3417	4.90	952	9.44
10	[SLEF]	2465	3.15					-3417	4.90	952	9.44
11	[SLER]	2465	3.15					-3417	4.90	952	9.44
12	[SLEQ] S	2444	3.15	635	2.67			-4367	4.93	1289	9.43
13	[SLEF] S	2444	3.15	635	2.67			-4367	4.93	1289	9.43
14	[SLER] S	2444	3.15	635	2.67			-4367	4.93	1289	9.43

 $Simbologia\ adottata$

n° Indice della Combinazione/FaseTipo Tipo della Combinazione/Fase

- Rc Risultante carichi esterni applicati, espressa in [kg]
- Rt Risultante delle reazioni dei tiranti (componente orizzontale), espressa in [kg]
- Rv Risultante delle reazioni dei vincoli, espressa in [kg]
- Rp Risultante delle reazioni dei puntoni, espressa in [kg]

\mathbf{n}°	Tipo	Rc	$\mathbf{Y}_{\mathbf{Rc}}$	Rt	$\mathbf{Y}_{\mathbf{Rt}}$	Rv	$\mathbf{Y}_{\mathbf{R}\mathbf{v}}$	Rp	Y_{Rp}
1	[A1-M1]	0	0.00						
2	[A2-M2]	0	0.00						
3	[A1-M1]	0	0.00						
4	[A2-M2]	0	0.00						
5	[A1-M1] S	0	0.00						
6	[A2-M2] S	0	0.00						
7	[A1-M1] S	0	0.00						
8	[A2-M2] S	0	0.00						
9	[SLEQ]	0	0.00						
10	[SLEF]	0	0.00						
11	[SLER]	0	0.00						
12	[SLEQ] S	0	0.00						
13	[SLEF] S	0	0.00						
14	[SLER] S	0	0.00						

Simbologia adottata

n° Indice della Combinazione/Fase Tipo Tipo della Combinazione/Fase

Punto di nullo del diagramma, espresso in [m]

P_{INV} Punto di inversione del diagramma, espresso in [m]

C_{ROT} Punto Centro di rotazione, espresso in [m]

MP Percentuale molle plasticizzate, espressa in [%]

R/R_{MAX} Rapporto tra lo sforzo reale nelle molle e lo sforzo che le molle sarebbero in grado di esplicare, espresso in [%]

Pp Portanza di punta, espressa in [kg]

\mathbf{n}°	Tipo	$\mathbf{P}_{\mathbf{NUL}}$	$\mathbf{P_{INV}}$	C_{ROT}	MP	R/R_{MAX}	Pp
1	[A1-M1]	4.00	4.70	7.21	8.70	1.77	126470
2	[A2-M2]	4.08	5.40	7.59	17.39	3.30	81076
3	[A1-M1]	4.00	4.70	7.21	8.70	1.77	126470
4	[A2-M2]	4.08	5.40	7.59	17.39	3.30	81076
5	[A1-M1] S	4.00	4.50	7.08	6.83	1.91	126470
6	[A2-M2] S	4.17	6.00	7.94	25.47	5.99	81076
7	[A1-M1] S	4.00	4.50	7.08	6.83	1.91	126470
8	[A2-M2] S	4.17	6.00	7.94	25.47	5.99	81076
9	[SLEQ]	4.00	4.20	7.07	2.48	1.08	126470
10	[SLEF]	4.00	4.20	7.07	2.48	1.08	126470
11	[SLER]	4.00	4.20	7.07	2.48	1.08	126470
12	[SLEQ] S	4.00	4.30	7.06	4.35	1.39	126470
13	[SLEF] S	4.00	4.30	7.06	4.35	1.39	126470
14	[SLER] S	4.00	4.30	7.06	4.35	1.39	126470

Valori massimi e minimi sollecitazioni per metro di paratia

$Simbologia\ adottata$

n° Indice della combinazione/fase Tipo Tipo della combinazione/fase

Y ordinata della sezione rispetto alla testa espressa in [m]
M momento flettente massimo e minimo espresso in [kgm]

N sforzo normale massimo e minimo espresso in [kg] (positivo di compressione)

taglio massimo e minimo espresso in [kg]

\mathbf{n}°	Tipo	\mathbf{M}	$\mathbf{Y}_{\mathbf{M}}$	T	$\mathbf{Y}_{\mathbf{T}}$	N	$\mathbf{Y}_{\mathbf{N}}$	
1	[A1-M1]	7919	5.40	4570	4.00	7540	12.00	MAX
		0	1.20	-2174	7.20	0	0.00	MIN
2	[A2-M2]	9448	5.75	4466	4.05	7540	12.00	MAX
		0	1.20	-2619	7.55	0	0.00	MIN
3	[A1-M1]	7919	5.40	4570	4.00	7540	12.00	MAX
		0	1.20	-2174	7.20	0	0.00	MIN

4	[A2-M2]	9448	5.75	4466	4.05	7540	12.00	MAX
		0	1.20	-2619	7.55	0	0.00	MIN
5	[A1-M1] S	6790	5.25	4041	4.00	7540	12.00	MAX
		0	0.00	-1860	7.05	0	0.00	MIN
6	[A2-M2] S	17455	6.10	7021	4.15	7540	12.00	MAX
		0	0.00	-4917	7.90	0	0.00	MIN
7	[A1-M1] S	6790	5.25	4041	4.00	7540	12.00	MAX
		0	0.00	-1860	7.05	0	0.00	MIN
8	[A2-M2] S	17455	6.10	7021	4.15	7540	12.00	MAX
		0	0.00	-4917	7.90	0	0.00	MIN
9	[SLEQ]	3474	5.25	2465	4.00	7540	12.00	MAX
		0	1.60	-952	7.05	0	0.00	MIN
10	[SLEF]	3474	5.25	2465	4.00	7540	12.00	MAX
		0	1.60	-952	7.05	0	0.00	MIN
11	[SLER]	3474	5.25	2465	4.00	7540	12.00	MAX
		0	1.60	-952	7.05	0	0.00	MIN
12	[SLEQ] S	4706	5.25	3079	4.00	7540	12.00	MAX
		0	0.00	-1289	7.05	0	0.00	MIN
13	[SLEF] S	4706	5.25	3079	4.00	7540	12.00	MAX
		0	0.00	-1289	7.05	0	0.00	MIN
14	[SLER] S	4706	5.25	3079	4.00	7540	12.00	MAX
		0	0.00	-1289	7.05	0	0.00	MIN

Spostamenti massimi e minimi della paratia

Simbologia adottata

n° Tipo Y Indice della combinazione/fase

Tipo della combinazione/fase ordinata della sezione rispetto alla testa della paratia espressa in [m]

spostamento orizzontale massimo e minimo espresso in [cm] positivo verso valle U spostamento verticale massimo e minimo espresso in [cm] positivo verso il basso

n°	Tipo	U	$\mathbf{Y}_{\mathbf{U}}$	V	$\mathbf{Y}_{\mathbf{V}}$	
1	[A1-M1]	0.5507	0.00	0.0056	0.00	MAX
		-0.0148	9.10	0.0000	0.00	MIN
2	[A2-M2]	0.7165	0.00	0.0056	0.00	MAX
		-0.0180	9.55	0.0000	0.00	MIN
3	[A1-M1]	0.5507	0.00	0.0056	0.00	MAX
		-0.0148	9.10	0.0000	0.00	MIN
4	[A2-M2]	0.7165	0.00	0.0056	0.00	MAX
		-0.0180	9.55	0.0000	0.00	MIN
5	[A1-M1] S	0.4628	0.00	0.0056	0.00	MAX
		-0.0126	8.95	0.0000	0.00	MIN
6	[A2-M2] S	1.4562	0.00	0.0056	0.00	MAX
		-0.0350	10.10	0.0000	0.00	MIN
7	[A1-M1] S	0.4628	0.00	0.0056	0.00	MAX
		-0.0126	8.95	0.0000	0.00	MIN
8	[A2-M2] S	1.4562	0.00	0.0056	0.00	MAX
		-0.0350	10.10	0.0000	0.00	MIN
9	[SLEQ]	0.2323	0.00	0.0056	0.00	MAX
		-0.0065	8.95	0.0000	0.00	MIN
10	[SLEF]	0.2323	0.00	0.0056	0.00	MAX
		-0.0065	8.95	0.0000	0.00	MIN
11	[SLER]	0.2323	0.00	0.0056	0.00	MAX
		-0.0065	8.95	0.0000	0.00	MIN
12	[SLEQ] S	0.3165	0.00	0.0056	0.00	MAX
		-0.0088	8.95	0.0000	0.00	MIN
13	[SLEF] S	0.3165	0.00	0.0056	0.00	MAX
		-0.0088	8.95	0.0000	0.00	MIN
14	[SLER] S	0.3165	0.00	0.0056	0.00	MAX
		-0.0088	8.95	0.0000	0.00	MIN

Metodo di Fellenius

Numero di cerchi analizzati 100

Simbologia adottata

n° Indice della combinazione/fase Tipo Tipo della combinazione/fase

(X_C; Y_C) Coordinate centro cerchio superficie di scorrimento, espresse in [m]

R Raggio cerchio superficie di scorrimento, espresso in [m]

 $\begin{array}{ll} (X_V;Y_V) & \text{Coordinate intersezione del cerchio con il pendio a valle, espresse in } [m] \\ (X_M;Y_M) & \text{Coordinate intersezione del cerchio con il pendio a monte, espresse in } [m] \\ \end{array}$

FS Coefficiente di sicurezza

\mathbf{n}°	Tipo	$(\mathbf{X}_{\mathbf{C}}, \mathbf{Y}_{\mathbf{C}})$	R	$(\mathbf{X}_{\mathbf{V}}, \mathbf{Y}_{\mathbf{V}})$	$(\mathbf{X}_{\mathbf{M}}, \mathbf{Y}_{\mathbf{M}})$	FS
2	[A2-M2]	(0.00; 10.80)	22.80	(-17.36; -3.99)	(22.45; 6.79)	1.96
4	[A2-M2]	(0.00; 10.80)	22.80	(-17.36; -3.99)	(22.45; 6.79)	1.96
6	[A2-M2] S	(0.00; 10.80)	22.80	(-17.36; -3.99)	(22.45; 6.79)	1.37
8	[A2-M2] S	(0.00; 10.80)	22.80	(-17.36; -3.99)	(22.45; 6.79)	1.37

Combinazione n° 6

Numero di strisce 50

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa alla paratia (spigolo contro terra) Le strisce sono numerate da monte verso valle N° numero d'ordine della striscia

W peso della striscia espresso in [kg]

 α angolo fra la base della striscia e l'orizzontale espresso in gradi (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [kg/cmq]

b larghezza della striscia espressa in [m]

 L sviluppo della base della striscia espressa in [m] (L=b/cos α)

 u pressione neutra lungo la base della striscia espressa in [kg/cmq]

 Ctn, Ctt
 contributo alla striscia normale e tangenziale del tirante espresse in [kg]

Caratteristiche delle strisce

\mathbf{N}°	\mathbf{W}	α (°)	Wsinα	\mathbf{L}	ф	c	u	(Ctn; Ctt)
1	840.10	-48.08	-625.15	1.18	19.18	0.104	0.000	(0;0)
2	2489.78	-45.19	-1766.49	1.12	19.18	0.104	0.000	(0;0)
3	3984.35	-42.44	-2688.93	1.07	19.18	0.104	0.000	(0;0)
4	5344.10	-39.81	-3421.56	1.03	19.18	0.104	0.000	(0;0)
5	6584.49	-37.27	-3987.77	0.99	19.18	0.104	0.000	(0;0)
6	7717.59	-34.82	-4406.86	0.96	19.18	0.104	0.000	(0; 0)
7	8753.05	-32.44	-4695.15	0.93	19.18	0.104	0.000	(0;0)
8	9698.72	-30.12	-4866.72	0.91	19.18	0.104	0.000	(0; 0)
9	10561.00	-27.85	-4933.88	0.89	19.18	0.104	0.000	(0; 0)
10	11345.23	-25.63	-4907.61	0.87	19.18	0.104	0.000	(0; 0)
11	12055.89	-23.45	-4797.79	0.86	19.18	0.104	0.000	(0;0)
12	12696.71	-21.31	-4613.41	0.85	19.18	0.104	0.000	(0;0)
13	13270.87	-19.19	-4362.78	0.84	19.18	0.104	0.000	(0; 0)
14	13781.05	-17.11	-4053.59	0.83	19.18	0.104	0.000	(0; 0)
15	14229.50	-15.04	-3693.07	0.82	19.18	0.104	0.000	(0;0)
16	14618.12	-13.00	-3288.07	0.81	19.18	0.104	0.000	(0;0)
17	14948.50	-10.97	-2845.08	0.80	19.18	0.104	0.000	(0; 0)
18	15221.94	-8.96	-2370.37	0.80	19.18	0.104	0.000	(0; 0)
19	15439.48	-6.96	-1869.97	0.79	19.18	0.104	0.000	(0;0)
20	15601.94	-4.96	-1349.74	0.79	19.18	0.104	0.000	(0;0)
21	15709.92	-2.98	-815.45	0.79	19.18	0.104	0.000	(0;0)
22	15763.81	-0.99	-272.75	0.79	19.18	0.104	0.000	(0; 0)
23	22780.86	1.01	400.62	0.80	19.18	0.104	0.000	(0; 0)
24	23093.54	3.02	1218.35	0.80	19.18	0.104	0.000	(0;0)

25	23349.43	5.04	2053.09	0.80	19.18	0.104	0.000	(0;0)
26	23548.09	7.07	2898.78	0.81	19.18	0.104	0.000	(0;0)
27	23688.87	9.11	3749.29	0.81	19.18	0.104	0.000	(0;0)
28	23770.90	11.15	4598.34	0.82	19.18	0.104	0.000	(0; 0)
29	23793.02	13.22	5439.48	0.82	19.18	0.104	0.000	(0; 0)
30	23753.82	15.30	6266.00	0.83	19.18	0.104	0.000	(0;0)
31	23651.58	17.40	7070.93	0.84	19.18	0.104	0.000	(0;0)
32	23484.23	19.52	7846.91	0.85	19.18	0.104	0.000	(0;0)
33	23249.28	21.67	8586.18	0.86	19.18	0.104	0.000	(0; 0)
34	22943.80	23.86	9280.41	0.88	19.18	0.104	0.000	(0;0)
35	22564.31	26.08	9920.62	0.89	19.18	0.104	0.000	(0;0)
36	22106.66	28.35	10497.05	0.91	19.18	0.104	0.000	(0;0)
37	21565.91	30.66	10998.92	0.93	19.18	0.104	0.000	(0;0)
38	20936.12	33.04	11414.24	0.96	19.18	0.104	0.000	(0;0)
39	20210.09	35.48	11729.43	0.98	19.18	0.104	0.000	(0;0)
40	19379.01	37.99	11928.92	1.02	19.18	0.104	0.000	(0; 0)
41	18431.93	40.60	11994.51	1.06	19.18	0.104	0.000	(0; 0)
42	17355.00	43.31	11904.46	1.10	19.18	0.104	0.000	(0; 0)
43	16130.32	46.15	11632.16	1.16	19.18	0.104	0.000	(0; 0)
44	14734.07	49.14	11144.01	1.23	19.18	0.104	0.000	(0; 0)
45	13169.00	52.33	10424.10	1.31	18.13	0.092	0.000	(0; 0)
46	11752.74	55.77	9717.24	1.43	17.07	0.080	0.000	(0; 0)
47	10185.38	59.55	8780.68	1.58	17.07	0.080	0.000	(0; 0)
48	8273.23	63.82	7424.79	1.82	17.07	0.080	0.000	(0; 0)
49	5816.51	68.91	5426.89	2.23	17.07	0.080	0.000	(0;0)
50	2208.82	75.69	2140.24	3.24	17.07	0.080	0.000	(0;0)

Resistenza a taglio paratia= 0.00 [kg] $\Sigma W_i = 766582.63 \text{ [kg]}$ $\Sigma W_i \sin \alpha_i = 145854.44 \text{ [kg]}$ $\Sigma W_i \cos \alpha_i \tan \phi_i = 235127.67 \text{ [kg]}$ $\Sigma c_i b_i / \cos \alpha_i = 50930.73 \text{ [kg]}$

Descrizione armatura pali e caratteristiche sezione

Diametro del palo 80.00 [cm]

L'armatura del palo è costituita da $16\phi18(A_f=40.72 \text{ cmq})$ longitudinali e staffe $\phi10/20.0 \text{ cm}$.

Verifica armatura paratia (Sezioni critiche)

Simbologia adottata

n° Indice della combinazione/fase Tipo Tipo della Combinazione/Fase

Y ordinata della sezione rispetto alla testa della paratia espressa in [m]

M momento flettente espresso in [kgm]

N sforzo normale espresso in [kg] (positivo di compressione)

Mu momento ultimo di riferimento espresso in [kgm] Nu sforzo normale ultimo di riferimento espresso in [kg]

FS fattore di sicurezza (rapporto fra la sollecitazione ultima e la sollecitazione di esercizio)

T taglio espresso in [kg]

Tr taglio resistente espresso in [kg] FS_T fattore di sicurezza a taglio

n°	Tipo	Y	M	N	Mu	Nu	FS
1	[A1-M1]	5.35	15835	6723	55522	23572	3.51
2	[A2-M2]	5.70	18888	7163	54926	20830	2.91
3	[A1-M1]	5.35	15835	6723	55522	23572	3.51
4	[A2-M2]	5.70	18888	7163	54926	20830	2.91
5	[A1-M1] S	5.20	13572	6535	56289	27101	4.15
6	[A2-M2] S	6.05	34902	7603	52903	11524	1.52
7	[A1-M1] S	5.20	13572	6535	56289	27101	4.15
8	[A2-M2] S	6.05	34902	7603	52903	11524	1.52
n°	Tipo	Y	T	Tr	FS		
1	[A1-M1]	4.00	9141	51281	5.61		
2	[A2-M2]	4.05	8933	51281	5.74		
3	[A1-M1]	4.00	9141	51281	5.61		
4	[A2-M2]	4.05	8933	51281	5.74		
5	[A1-M1] S	4.00	8083	51281	6.34		
6	[A2-M2] S	4.15	14042	51281	3.65		

51281

51281

6.34

3.65

Simbologia adottata

7

8

n° Indice della combinazione/fase Tipo Tipo della Combinazione/Fase

[A1-M1] S

[A2-M2] S

Y ordinata della sezione rispetto alla testa della paratia espressa in [m]

4.00

4.15

σ_c tensione nel calcestruzzo, espressa in [kg/cmq]

 $\begin{array}{ll} \sigma_f & \text{tensione nell'armatura longitudinale del palo, espressa in [kg/cmq]} \\ \tau_c & \text{tensione tangenziale nel calcestruzzo, espresso in [kg/cmq]} \end{array}$

 σ_{st} tensione nell'armatura trasversale, espresso in [kg/cmq]

n°	Tipo	$\sigma_{\rm c}$	$Y(\sigma_c)$	$\sigma_{\!\scriptscriptstyle \mathrm{f}}$	$Y(\sigma_{\rm f})$	$ au_{ m c}$	$Y(\tau_c)$	$\sigma_{\rm st}$	$Y(\sigma_{st})$
9	[SLEQ]	21.96	5.25	601.30	5.15	1.35	4.00	918.00	4.00
10	[SLEF]	21.96	5.25	601.30	5.15	1.35	4.00	918.00	4.00
11	[SLER]	21.96	5.25	601.30	5.15	1.35	4.00	918.00	4.00
12	[SLEQ] S	29.90	5.20	876.40	5.15	1.66	4.00	1125.34	4.00
13	[SLEF] S	29.90	5.20	876.40	5.15	1.66	4.00	1125.34	4.00
14	[SLER] S	29.90	5.20	876.40	5.15	1.66	4.00	1125.34	4.00

8083

14042

Verifica armatura paratia (Inviluppo)

Simbologia adottata

Indice della Combinazione/Fase Tipo Y Tipo della Combinazione/Fase

ordinata della sezione con fattore di sicurezza minimo, espressa in [m]

M momento flettente, espresso in [kgm]

sforzo normale, espresso in [kg] (positivo di compressione) momento ultimo di riferimento, espresso in [kgm] sforzo normale ultimo di riferimento, espresso in [kg] Mu Nu

FS fattore di sicurezza (rapporto fra la sollecitazione ultima e la sollecitazione di esercizio)

T

taglio, espresso in [kg]
Taglio resistente, espresso in [kg] Tr FS_T fattore di sicurezza a taglio

n°	Tipo	Y	M	N	Mu	Nu	FS	T	Tr	FS_T
1	[A1-M1]	0.00	0	0	0	0	1000.00	0	01	00.00000
2	[A2-M2]	0.05	0	63	0	-162458	2585.60	1	51281	68549.06
6	[A2-M2] S	0.10	0	126	662	740362	5891.61	3	51281	17104.25
6	[A2-M2] S	0.15	0	188	1397	739618	3923.79	7	51281	7597.93
6	[A2-M2] S	0.20	1	251	2424	738578	2938.71	12	51281	4272.83
6	[A2-M2] S	0.25	2	314	3741	737245	2346.72	19	51281	2734.24
6	[A2-M2] S	0.30	3	377	5343	735622	1951.30	27	51281	1898.61
6	[A2-M2] S	0.35	4	440	7228	733713	1668.20	37	51281	1394.82
6	[A2-M2] S	0.40	6	503	9390	731523	1455.32	48	51281	1067.86
6	[A2-M2] S	0.45	9	565	11826	729057	1289.26	61	51281	843.71
6	[A2-M2] S	0.50	13	628	14528	726320	1155.97	75	51281	683.39
6	[A2-M2] S	0.55	17	691	17492	723318	1046.54	91	51281	564.77
6	[A2-M2] S	0.60	22	754	20710	720059	955.01	108	51281	474.56
6	[A2-M2] S	0.65	28	817	24175	716550	877.25	127	51281	404.35
6	[A2-M2] S	0.70	34	880	27880	712798	810.32	147	51281	348.64
6	[A2-M2] S	0.75	42	942	31816	708812	752.07	169	51281	303.70
6	[A2-M2] S	0.80	51	1005	35975	704600	700.88	192	51281	266.92
6	[A2-M2] S	0.85	62	1068	40348	700170	655.50	217	51281	236.44
6	[A2-M2] S	0.90	73	1131	44927	695533	614.99	243	51281	210.90
6	[A2-M2] S	0.95	86	1194	49507	687979	576.29	271	51281	189.28
6	[A2-M2] S	1.00	100	1257	53321	668813	532.22	300	51281	170.83
6	[A2-M2] S	1.05	116	1319	57107	649782	492.46	331	51281	154.94
6	[A2-M2] S	1.10	133	1382	60741	629787	455.61	363	51281	141.18
6	[A2-M2] S	1.15	152	1445	64234	609395	421.69	397	51281	129.17
6	[A2-M2] S	1.20	173	1508	67609	589125	390.68	432	51281	118.63
6	[A2-M2] S	1.25	196	1571	70722	567698	361.41	473	51281	108.45
6	[A2-M2] S	1.30	221	1634	73794	546555	334.57	522	51281	98.16
6	[A2-M2] S	1.35	248	1696	76610	523770	308.74	580	51281	88.38
6	[A2-M2] S	1.40	279	1759	79363	500846	284.69	645	51281	79.46
6	[A2-M2] S	1.45	313	1822	81840	476652	261.59	718	51281	71.44
6	[A2-M2] S	1.50	351	1885	84162	452307	239.96	798	51281	64.29
6	[A2-M2] S	1.55	393	1948	86227	427578	219.52	885	51281	57.96 52.26
6	[A2-M2] S	1.60	439	2011	88129	403258	200.56	979	51281	52.36
6	[A2-M2] S	1.65	491 549	2073	89514	378070	182.34	1081	51281	47.42
6 6	[A2-M2] S [A2-M2] S	1.70 1.75	548 610	2136 2199	90604 90998	353381 327958	165.42 149.13	1191 1308	51281 51281	43.07 39.22
6	[A2-M2] S	1.73	679	2262	91081	303560	134.20	1432	51281	35.81
6	[A2-M2] S	1.85	754	2325	90310	278604	119.84	1564	51281	32.79
6	[A2-M2] S	1.90	835	2323	89263	255160	106.87	1703	51281	30.10
6	[A2-M2] S	1.95	924	2450	87895	233166	95.11	1850	51281	27.71
6	[A2-M2] S	2.00	1020	2513	86440	212884	84.70	2005	51281	25.58
6	[A2-M2] S	2.05	1125	2576	84966	194595	75.54	2167	51281	23.66
6	[A2-M2] S	2.10	1237	2639	82712	176394	66.84	2337	51281	21.94
6	[A2-M2] S	2.15	1359	2702	80753	160578	59.43	2514	51281	20.39
6	[A2-M2] S	2.13	1489	2765	78991	146656	53.05	2700	51281	19.00
6	[A2-M2] S	2.25	1629	2827	77079	133797	47.32	2892	51281	17.73
6	[A2-M2] S	2.30	1778	2890	75406	122544	42.40	3093	51281	16.58
6	[A2-M2] S	2.35	1938	2953	73933	112639	38.14	3301	51281	15.53
6	[A2-M2] S	2.40	2109	3016	72630	103873	34.44	3517	51281	14.58
6	[A2-M2] S	2.45	2290	3079	71206	95722	31.09	3741	51281	13.71
~	[] 0			2017	. 1200	, , ,	21.07	27.11	0.1201	10.71

6	[A2-M2] S	2.50	2483	3142	69517	87954	28.00	3972	51281	12.91
6	[A2-M2] S	2.55	2688	3204	68030	81109	25.31	4212	51281	12.18
6	[A2-M2] S	2.60	2904	3267	66711	75045	22.97	4459	51281	11.50
6	[A2-M2] S	2.65	3134	3330	65537	69643	20.91	4714	51281	10.88
6	[A2-M2] S	2.70	3376	3393	64486	64810	19.10	4976	51281	10.30
6	[A2-M2] S	2.75	3632	3456	63542	60465	17.50	5247	51281	9.77
6	[A2-M2] S	2.80	3901	3519	62690	56546	16.07	5526	51281	9.28
6	[A2-M2] S	2.85	4184	3581	61918	52997	14.80	5812	51281	8.82
6	[A2-M2] S	2.90	4482	3644	61218	49772	13.66	6105	51281	8.40
6	[A2-M2] S	2.95	4795	3707	60579	46834	12.63	6407	51281	8.00
6	[A2-M2] S	3.00	5123	3770	59995	44148	11.71	6715	51281	7.64
6	[A2-M2] S	3.05	5466	3833	59462	41698	10.88	6984	51281	7.34
6	[A2-M2] S	3.10	5822	3896	58977	39464	10.13	7260	51281	7.06
6	[A2-M2] S	3.15	6192	3958	58532	37420	9.45	7545	51281	6.80
	[A2-M2] S	3.20	6576	4021	58124	35541	9.43 8.84	7838	51281	6.54
6	-		6976	4021		33809		8140		
6	[A2-M2] S	3.25			57747		8.28		51281	6.30
6	[A2-M2] S	3.30	7391	4147	57399	32207	7.77	8450	51281	6.07
6	[A2-M2] S	3.35	7821	4210	57076	30722	7.30	8769	51281	5.85
6	[A2-M2] S	3.40	8268	4273	56776	29341	6.87	9096	51281	5.64
6	[A2-M2] S	3.45	8731	4335	56496	28054	6.47	9432	51281	5.44
6	[A2-M2] S	3.50	9211	4398	56235	26852	6.11	9777	51281	5.24
6	[A2-M2] S	3.55	9709	4461	55991	25727	5.77	10131	51281	5.06
6	[A2-M2] S	3.60	10224	4524	55761	24672	5.45	10493	51281	4.89
6	[A2-M2] S	3.65	10758	4587	55546	23682	5.16	10864	51281	4.72
6	[A2-M2] S	3.70	11311	4650	55343	22750	4.89	11244	51281	4.56
6	[A2-M2] S	3.75	11883	4712	55152	21872	4.64	11633	51281	4.41
6	[A2-M2] S	3.80	12475	4775	54972	21043	4.41	12030	51281	4.26
6	[A2-M2] S	3.85	13086	4838	54802	20261	4.19	12436	51281	4.12
6	[A2-M2] S	3.90	13718	4901	54641	19521	3.98	12851	51281	3.99
6	[A2-M2] S	3.95	14371	4964	54489	18820	3.79	13274	51281	3.86
6	[A2-M2] S	4.00	15046	5027	54345	18155	3.61	13707	51281	3.74
6	[A2-M2] S	4.05	15735	5089	54210	17534	3.45	13846	51281	3.70
6	[A2-M2] S	4.10	16430	5152	54085	16960	3.29	13968	51281	3.67
6	[A2-M2] S	4.15	17130	5215	53970	16430	3.15	14042	51281	3.65
6	[A2-M2] S	4.20	17833	5278	53863	15942	3.02	13997	51281	3.66
6	[A2-M2] S	4.25	18532	5341	53766	15495	2.90	13935	51281	3.68
6	[A2-M2] S	4.30	19229	5404	53677	15084	2.79	13855	51281	3.70
6	[A2-M2] S	4.35	19922	5466	53595	14706	2.69	13757	51281	3.73
6	[A2-M2] S	4.40	20610	5529	53519	14358	2.60	13643	51281	3.76
6	[A2-M2] S	4.45	21292	5592	53450	14038	2.51	13511	51281	3.80
6	[A2-M2] S	4.50	21967	5655	53385	13743	2.43	13362	51281	3.84
6	[A2-M2] S	4.55	22635	5718	53326	13470	2.36	13195	51281	3.89
6	[A2-M2] S	4.60	23295	5781	53272	13219	2.29	13011	51281	3.94
6	[A2-M2] S	4.65	23946	5843	53272	12987	2.22	12809	51281	4.00
6	[A2-M2] S	4.70	24586	5906	53175	12774	2.16	12590	51281	4.07
6	[A2-M2] S	4.75	25216	5969	53173	12577	2.10	12354	51281	4.07
6	[A2-M2] S	4.80	25833	6032	53093	12377	2.11	12100	51281	4.13
						12397		11829		
6	[A2-M2] S	4.85	26438	6095	53057		2.01		51281	4.34
6	[A2-M2] S	4.90	27030	6158	53024	12079	1.96	11541	51281	4.44
6	[A2-M2] S	4.95	27607	6220	52994	11940	1.92	11235	51281	4.56
6	[A2-M2] S	5.00	28169	6283	52966	11814	1.88	10912	51281	4.70
6	[A2-M2] S	5.05	28714	6346	52941	11700	1.84	10572	51281	4.85
6	[A2-M2] S	5.10	29243	6409	52919	11598	1.81	10214	51281	5.02
6	[A2-M2] S	5.15	29754	6472	52899	11506	1.78	9839	51281	5.21
6	[A2-M2] S	5.20	30246	6535	52882	11425	1.75	9447	51281	5.43
6	[A2-M2] S	5.25	30718	6597	52866	11354	1.72	9037	51281	5.67
6	[A2-M2] S	5.30	31170	6660	52853	11293	1.70	8611	51281	5.96
6	[A2-M2] S	5.35	31600	6723	52842	11242	1.67	8166	51281	6.28
6	[A2-M2] S	5.40	32009	6786	52833	11201	1.65	7705	51281	6.66
6	[A2-M2] S	5.45	32394	6849	52826	11168	1.63	7226	51281	7.10
6	[A2-M2] S	5.50	32755	6912	52821	11145	1.61	6729	51281	7.62
6	[A2-M2] S	5.55	33092	6974	52818	11132	1.60	6216	51281	8.25
6	[A2-M2] S	5.60	33402	7037	52817	11127	1.58	5685	51281	9.02
6	[A2-M2] S	5.65	33687	7100	52818	11132	1.57	5137	51281	9.98

6	[A2-M2] S	5.70	33944	7163	52821	11146	1.56	4572	51281	11.22
6	[A2-M2] S	5.75	34172	7226	52826	11170	1.55	3989	51281	12.86
6	[A2-M2] S	5.80	34372	7288	52833	11203	1.54	3389	51281	15.13
6	[A2-M2] S	5.85	34541	7351	52843	11246	1.53	2772	51281	18.50
6	[A2-M2] S	5.90	34680	7414	52854	11300	1.52	-2462	51281	20.83
6	[A2-M2] S	5.95	34786	7477	52868	11363	1.52	-2402	51281	19.52
6	[A2-M2] S	6.00	34861	7540	52884	11438	1.52	-2784	51281	18.42
6	[A2-M2] S	6.05	34902	7603	52903	11524	1.52	-2931	51281	17.50
6	[A2-M2] S	6.10	34909	7665	52924	11621	1.52	-3069	51281	16.71
6	[A2-M2] S	6.15	34885	7728	52948	11730	1.52	-3199	51281	16.03
6	[A2-M2] S	6.20	34830	7791	52974	11850	1.52	-3321	51281	15.44
6	[A2-M2] S	6.25	34745	7854	53002	11981	1.53	-3434	51281	14.93
6	[A2-M2] S	6.30	34633	7917	53033	12123	1.53	-3540	51281	14.49
6	[A2-M2] S	6.35	34494	7980	53067	12276	1.54	-3638	51281	14.10
6	[A2-M2] S	6.40	34330	8042	53102	12440	1.55	-3775	51281	13.58
	-	6.45		8105		12616	1.56			
6	[A2-M2] S		34141		53140			-4238	51281	12.10
6	[A2-M2] S	6.50	33929	8168	53181	12803	1.57	-4678	51281	10.96
6	[A2-M2] S	6.55	33695	8231	53224	13002	1.58	-5095	51281	10.07
6	[A2-M2] S	6.60	33440	8294	53270	13212	1.59	-5491	51281	9.34
6	[A2-M2] S	6.65	33166	8357	53318	13434	1.61	-5865	51281	8.74
6	[A2-M2] S	6.70	32873	8419	53369	13669	1.62	-6219	51281	8.25
6	[A2-M2] S	6.75	32562	8482	53423	13917	1.64	-6552	51281	7.83
6	[A2-M2] S	6.80	32234	8545	53480	14177	1.66	-6866	51281	7.47
6	[A2-M2] S	6.85	31891	8608	53539	14451	1.68	-7161	51281	7.16
6	[A2-M2] S	6.90	31533	8671	53602	14739	1.70	-7438	51281	6.89
6	[A2-M2] S	6.95	31161	8734	53668	15042	1.70	-7696	51281	6.66
	-									
6	[A2-M2] S	7.00	30776	8796	53737	15359	1.75	-7938	51281	6.46
6	[A2-M2] S	7.05	30379	8859	53809	15692	1.77	-8162	51281	6.28
6	[A2-M2] S	7.10	29971	8922	53885	16041	1.80	-8369	51281	6.13
6	[A2-M2] S	7.15	29553	8985	53965	16407	1.83	-8561	51281	5.99
6	[A2-M2] S	7.20	29124	9048	54048	16791	1.86	-8737	51281	5.87
6	[A2-M2] S	7.25	28688	9111	54135	17192	1.89	-8898	51281	5.76
6	[A2-M2] S	7.30	28243	9173	54227	17613	1.92	-9045	51281	5.67
6	[A2-M2] S	7.35	27790	9236	54323	18054	1.95	-9177	51281	5.59
6	[A2-M2] S	7.40	27332	9299	54423	18517	1.99	-9296	51281	5.52
6	[A2-M2] S	7.45	26867	9362	54528	19001	2.03	-9402	51281	5.45
6	[A2-M2] S	7.50	26397	9425	54639	19508	2.07	-9495	51281	5.40
6	[A2-M2] S	7.55	25922	9488	54754	20041	2.11	-9576	51281	5.36
_	-									
6	[A2-M2] S	7.60	25443	9550	54876	20598	2.16	-9645	51281	5.32
6	[A2-M2] S	7.65	24961	9613	55003	21184	2.20	-9703	51281	5.29
6	[A2-M2] S	7.70	24476	9676	55136	21797	2.25	-9749	51281	5.26
6	[A2-M2] S	7.75	23988	9739	55276	22442	2.30	-9785	51281	5.24
6	[A2-M2] S	7.80	23499	9802	55423	23118	2.36	-9811	51281	5.23
6	[A2-M2] S	7.85	23008	9865	55578	23828	2.42	-9827	51281	5.22
6	[A2-M2] S	7.90	22517	9927	55740	24575	2.48	-9834	51281	5.21
6	[A2-M2] S	7.95	22025	9990	55911	25360	2.54	-9831	51281	5.22
6	[A2-M2] S	8.00	21534	10053	56090	26186	2.60	-9820	51281	5.22
6	[A2-M2] S	8.05	21043	10116	56279	27055	2.67	-9800	51281	5.23
6	[A2-M2] S	8.10	20553	10179	56478	27971	2.75	-9772	51281	5.25
6	[A2-M2] S	8.15	20064	10175	56688	28936	2.83	-9737	51281	5.27
	-									
6	[A2-M2] S	8.20	19577	10304	56909	29954	2.91	-9695	51281	5.29
6	[A2-M2] S	8.25	19093	10367	57143	31029	2.99	-9645	51281	5.32
6	[A2-M2] S	8.30	18610	10430	57390	32164	3.08	-9589	51281	5.35
6	[A2-M2] S	8.35	18131	10493	57651	33364	3.18	-9526	51281	5.38
6	[A2-M2] S	8.40	17655	10556	57927	34635	3.28	-9457	51281	5.42
6	[A2-M2] S	8.45	17182	10619	58219	35980	3.39	-9382	51281	5.47
6	[A2-M2] S	8.50	16713	10681	58530	37408	3.50	-9302	51281	5.51
6	[A2-M2] S	8.55	16248	10744	58859	38923	3.62	-9217	51281	5.56
6	[A2-M2] S	8.60	15787	10807	59209	40533	3.75	-9127	51281	5.62
6	[A2-M2] S	8.65	15330	10870	59581	42246	3.89	-9032	51281	5.68
6	[A2-M2] S	8.70	14879	10970	59978	44071	4.03	-8932	51281	5.74
	-									
6	[A2-M2] S	8.75	14432	10996	60402	46019	4.19	-8829	51281	5.81
6	[A2-M2] S	8.80	13991	11058	60854	48100	4.35	-8721	51281	5.88
6	[A2-M2] S	8.85	13555	11121	61338	50326	4.53	-8610	51281	5.96

6 [A2-M2] S 8,90 12299 11247 62414 55275 4791 8-377 51281 6.04 6 [A2-M2] S 9,00 12281 11310 63013 58031 5.13 8-8255 51281 6.21 6 [A2-M2] S 9,00 11868 1373 63659 61002 5.36 8-1813 151281 6.31 6 [A2-M2] S 9,10 11461 11435 64356 6421 5.62 8004 51281 6.41 6 [A2-M2] S 9,10 11461 11498 65111 67685 5.89 7-875 51281 6.61 6 [A2-M2] S 9,20 10667 11561 65931 71455 6.18 7-743 51281 6.62 6 [A2-M2] S 9,20 10667 11561 65931 71455 6.18 7-743 51281 6.62 6 [A2-M2] S 9,30 9900 11687 67796 80034 6.85 7-7474 51281 6.86 6 [A2-M2] S 9,35 9526 11750 6886 84935 7-723 7-7345 51281 6.86 6 [A2-M2] S 9,35 9526 11750 6886 84935 7-723 7-7345 51281 6.86 6 [A2-M2] S 9,40 9159 11812 70031 99318 7.65 7-7197 51281 7-73 6 [A2-M2] S 9,55 8101 12001 73340 108649 9.05 6-671 51281 7-74 6 [A2-M2] S 9,55 8101 12001 73340 108649 9.05 6-6717 51281 7-74 6 [A2-M2] S 9,60 7-762 12064 74371 115583 9.58 6627 51281 7-74 6 [A2-M2] S 9,60 7-762 12064 74371 115583 9.58 6627 51281 7-74 6 [A2-M2] S 9,80 6481 12127 75506 123218 1016 6-481 51281 7-74 6 [A2-M2] S 9,80 6481 12217 75506 123218 1016 6-481 51281 7-74 6 [A2-M2] S 9,95 5891 6139 1227 75506 123218 1016 6-481 51281 7-74 6 [A2-M2] S 9,90 5884 12247 80950 16270 1310 5-835 51281 8.99 6 [A2-M2] S 9,90 5884 12441 82458 174433 1401 5745 51281 7-85 6 [A2-M2] S 9,90 5884 12441 82458 174433 1401 5745 51281 7-85 6 [A2-M2] S 9,90 5884 12441 82458 174433 1401 5745 51281 8.99 6 [A2-M2] S 10.05 5397 12304 84148 187992 1520 12.28 6041 51281 8.99 6 [A2-M2] S 10.05 5397 12304 84148 187992 1520 12.28 6041 51281 8.99 6 [A2-M2] S 10.05 5397 12304 84148 187992 1520 12.28 5404 51281 1.05 6 [A2-M2] S 10.05 5397 12304 84148 187992 1520 12.28 540 51281 1.05 6 [A2-M2] S 10.05 5397 13308 8381 29334 29349 22.54 4-703 51281 1.05 6 [A2-M2] S 10.05 5397 13308 8383 2938 6627 51281 1.05 6 [A2-M2] S 10.05 5397 13308 8383 2938 2938 51281 13.05 6 [A2-M2] S 10.05 5397 13008 9383 2938 2938 51281 13.05 6 [A2-M2] S 10.05 5397 13008 9383 29390 22.54 4-703 51281 13.4 6 [A2-M2] S 10.05 5383											
6 A2-M2 S 9.00 228 1310 63013 5803 5.13 8-255 5128 6.21 6 A2-M2 S 9.10 11461 1498 6511 6621 5.56 -813 5128 6.41 6 A2-M2 S 9.20 10667 11561 66931 71455 6.18 -7743 5128 6.61 6 A2-M2 S 9.25 10280 11661 6931 71455 6.18 -7743 5128 6.62 A2-M2 S 9.35 9900 11624 66823 7557 6.09 7610 5128 6.62 A2-M2 S 9.35 9526 11750 68861 84935 7.23 -7336 5128 6.86 A2-M2 S 9.30 9900 11875 768804 84935 7.23 -7336 5128 6.86 A2-M2 S 9.40 9159 11875 768861 84935 7.23 -7336 <t< td=""><td>6</td><td>[A2-M2] S</td><td>8.90</td><td>13124</td><td>11184</td><td>61857</td><td>52713</td><td>4.71</td><td>-8495</td><td>51281</td><td>6.04</td></t<>	6	[A2-M2] S	8.90	13124	11184	61857	52713	4.71	-8495	51281	6.04
6 A2-M2 S 9.05 11868 11373 63659 61002 5.56 -8131 51281 6.31 6 A2-M2 S 9.15 11061 11435 64356 64211 5.62 8004 51281 6.51 6 A2-M2 S 9.20 10667 11561 6593 71455 5.58 -7875 51281 6.51 6 A2-M2 S 9.20 10667 11861 65931 71455 6.58 -7474 51281 6.74 6 A2-M2 S 9.35 9526 11750 68861 84935 7.23 -7336 51281 6.74 6 A2-M2 S 9.45 8799 11812 70031 90318 7.65 7.197 51281 7.13 6 A2-M2 S 9.55 8101 12001 73340 108649 5.57 6914 51281 7.74 6 A2-M2 S 9.65 7431 12127 7560 122218	6	[A2-M2] S	8.95	12699	11247	62414		4.91	-8377	51281	6.12
6 [A2-M2] S 9.10 11461 11435 64356 64211 5.62 -8004 \$1281 6.51 6 [A2-M2] S 9.20 10667 11561 65931 71455 6.18 -7743 51281 6.51 6 [A2-M2] S 9.20 10667 11624 66823 7557 6.50 .7610 51281 6.74 6 [A2-M2] S 9.30 9900 11687 67796 80034 6.85 -7474 51281 6.86 6 [A2-M2] S 9.40 9159 11817 7031 90318 7.65 -7177 51281 6.76 6 [A2-M2] S 9.45 8799 11817 71321 96252 8.11 -7056 51281 7.13 6 [A2-M2] S 9.60 7762 12064 74371 115583 9.55 6711 51281 7.24 6 [A2-M2] S 9.65 7431 12127 75506 122318 <td>6</td> <td>[A2-M2] S</td> <td>9.00</td> <td>12281</td> <td>11310</td> <td>63013</td> <td>58031</td> <td>5.13</td> <td>-8255</td> <td>51281</td> <td>6.21</td>	6	[A2-M2] S	9.00	12281	11310	63013	58031	5.13	-8255	51281	6.21
66 [A2-M2] S 9.15 11061 11498 65111 67685 5.89 -7875 51281 6.62 66 [A2-M2] S 9.20 10667 11561 6593 71455 6.62 -6.61 6.22 6.62 6 [A2-M2] S 9.30 990 11624 66823 75557 6.50 -7610 51281 6.86 6 [A2-M2] S 9.45 8799 11875 71321 90318 7.23 -7336 51281 7.13 6 [A2-M2] S 9.45 8799 11875 71321 90228 8.57 -0914 51281 7.13 6 [A2-M2] S 9.55 8101 11001 7334 118583 9.58 -6027 1281 7.24 6 [A2-M2] S 9.50 7707 12189 7676 131281 7.92 6 [A2-M2] S 9.75 6790 12252 8153 141020 1.53 1618 12218	6	[A2-M2] S	9.05	11868	11373	63659	61002	5.36	-8131	51281	6.31
66 [A2-M2] S 9.15 11061 11498 65111 67685 5.89 -7875 51281 6.62 66 [A2-M2] S 9.20 10667 11561 6593 71455 6.62 -6.61 6.22 6.62 6 [A2-M2] S 9.30 990 11624 66823 75557 6.50 -7610 51281 6.86 6 [A2-M2] S 9.45 8799 11875 71321 90318 7.23 -7336 51281 7.13 6 [A2-M2] S 9.45 8799 11875 71321 90228 8.57 -0914 51281 7.13 6 [A2-M2] S 9.55 8101 11001 7334 118583 9.58 -6027 1281 7.24 6 [A2-M2] S 9.50 7707 12189 7676 131281 7.92 6 [A2-M2] S 9.75 6790 12252 8153 141020 1.53 1618 12218	6	[A2-M2] S	9.10	11461	11435	64356	64211	5.62	-8004	51281	6.41
6 [A2-M2] S 9.20 10667 11561 65931 71455 6.18 7743 \$1281 6.64 6 [A2-M2] S 9.30 9900 11687 67796 80034 6.85 7474 \$1281 6.69 6 [A2-M2] S 9.30 9900 11687 67796 80034 6.85 7474 \$1281 6.99 6 [A2-M2] S 9.45 8799 11875 7031 90318 7.65 7-179 51281 7.13 6 [A2-M2] S 9.50 8447 11938 7240 102258 8.57 6014 51281 7.13 6 [A2-M2] S 9.60 7762 11064 73341 11583 9.58 6671 51218 7.74 6 [A2-M2] S 9.60 7762 12064 73311 11538 9.58 6671 12181 7.97 6 [A2-M2] S 9.80 6481 <t>12218 7.99 1160 <</t>		-									
66 (A2-M2) S 9.25 10280 11624 66823 75557 6.50 -7610 51281 6.74 66 (A2-M2) S 9.30 990 11679 68034 48935 7.23 -7336 51281 6.86 6 (A2-M2) S 9.45 8799 11875 71321 90252 8.11 -7056 51281 7.27 6 (A2-M2) S 9.50 8447 11938 72400 102328 8.57 -6914 51281 7.27 6 (A2-M2) S 9.50 8447 11938 74301 10838 8.57 -6914 51281 7.27 6 (A2-M2) S 9.50 7431 11218 7606 11281 7.60 12318 1.72 7.57 6 (A2-M2) S 9.50 7431 12127 7550 12321 1.81 10.00 6335 51281 7.91 6 (A2-M2) S 9.50 6481 12315 7.959											
6 [A2-M2] S 9.30 9900 11687 67796 80034 6.85 7-474 \$1281 6.89 6 [A2-M2] S 9.40 9159 11812 70031 90318 7.65 7.197 51281 7.13 6 [A2-M2] S 9.45 8799 11875 71321 90518 7.55 7.197 51281 7.13 6 [A2-M2] S 9.45 8799 11875 71321 90518 8.57 6914 51281 7.27 6 [A2-M2] S 9.55 8447 11938 72400 102328 8.57 6914 51281 7.42 6 [A2-M2] S 9.55 8101 12001 73340 108649 9.05 6-6771 51281 7.57 6 [A2-M2] S 9.60 7762 10264 74371 115583 9.58 6627 51281 7.74 6 [A2-M2] S 9.65 7431 12127 75506 123218 10.16 6-6481 51281 7.94 6 [A2-M2] S 9.65 7431 12127 75506 123218 10.16 6-6481 51281 8.99 6 [A2-M2] S 9.85 6179 12325 78153 141020 11.51 6-1688 51281 8.99 6 [A2-M2] S 9.85 6179 12325 78153 141020 11.51 6-1688 51281 8.99 6 [A2-M2] S 9.85 6179 12378 80950 162170 13.10 -5893 51281 8.70 6 [A2-M2] S 9.95 5597 15264 8448 187992 15.04 -5596 51281 8.96 6 [A2-M2] S 9.95 5597 15264 8448 187992 15.04 -5596 51281 8.91 6 [A2-M2] S 9.95 5597 15264 8448 187992 15.04 -5596 51281 8.91 6 [A2-M2] S 10.10 4780 12629 86749 21717 17.20 -5298 51281 9.16 6 [A2-M2] S 10.10 4780 12629 86749 21717 17.20 -5298 51281 9.66 [A2-M2] S 10.10 4780 12629 87924 233473 18.40 -5149 51281 9.66 [A2-M2] S 10.25 4030 12881 9083 233781 25.51 4407 51281 10.56 [A2-M2] S 10.25 4030 12881 9083 233781 25.51 4407 51281 10.26 [A2-M2] S 10.25 4030 12881 9083 31781 25.51 4407 51281 10.26 [A2-M2] S 10.25 4030 12881 9083 31781 25.51 4407 51281 10.26 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.66 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.56 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.56 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.56 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.56 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.56 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.56 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.56 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 11.55 [A2-M2] S 10.55 2359 13320 84842 445179 334.2 -3674 51281 13.56 [A2-M2] S 10.55 2359											
6		-									
6 IA2-M2 S 9,40 9159 11812 70031 90318 7,65 -7107 51281 7.23 6 IA2-M2 S 9,45 8799 11875 71321 96522 8.11 -7056 51281 7.24 6 IA2-M2 S 9,50 8447 11938 72400 102328 8.57 -6914 51281 7.42 6 IA2-M2 S 9,60 7662 12044 73471 115583 9,58 -6627 51281 7.74 6 IA2-M2 S 9,65 7431 12127 75506 123218 10.66 6627 51281 7.74 6 IA2-M2 S 9,75 6790 12252 78153 141020 11,51 -6188 5281 8.99 6 IA2-M2 S 9,85 6179 12378 80950 162170 13.10 -5893 51281 8.70 6 IA2-M2 S 9,90 5884 12441 82488 174341											
6 IA2-M2 S 9.45 8799 11875 71321 96252 8.11 -7056 51281 7.42 6 IA2-M2 S 9.50 8447 11938 72400 102328 8.57 -6914 51281 7.42 6 IA2-M2 S 9.50 7862 12044 74371 115583 9.58 -6627 51281 7.57 6 IA2-M2 S 9.60 7762 12044 74371 115583 9.58 -6627 51281 7.91 6 IA2-M2 S 9.60 7431 12127 75506 123218 10.16 6481 51281 7.91 6 IA2-M2 S 9.75 6790 122578 78153 141020 11.31 -6188 51281 8.99 6 IA2-M2 S 9.80 6179 12378 80950 162170 13.10 -5893 51281 8.93 6 IA2-M2 S 9.95 5597 12504 84148 187992 <td></td>											
6 [A2-MZ] S 9,50 8447 11938 72400 102328 8,57 -6914 51281 7.42 6 [A2-MZ] S 9,55 8101 12001 73340 108649 9.05 -6771 51281 7.57 6 [A2-MZ] S 9,65 7431 12127 75506 123218 10.16 6481 51281 7.74 6 [A2-MZ] S 9,65 7431 12127 75506 12318 9.08 6481 51281 8.09 6 [A2-MZ] S 9,75 6790 12252 78153 14100 11.51 -6188 5281 8.99 6 [A2-MZ] S 9,85 6179 12378 80950 162170 13.10 -5893 51281 8.70 6 [A2-MZ] S 9,95 5597 12504 84148 187992 15.04 5258 51281 9,16 6 [A2-MZ] S 10.00 5045 1266 266994 217177		-									
6 [A2-M2] S 9.55 8101 12001 73340 108649 9.05 -6771 51281 7.574 6 [A2-M2] S 9.60 7762 12046 115583 9.58 -6627 51281 7.74 6 [A2-M2] S 9.75 7431 12127 75506 123218 10.16 -6481 51281 8.09 6 [A2-M2] S 9.75 6790 12252 78153 14100 11.51 -6188 51281 8.09 6 [A2-M2] S 9.85 6479 12378 80950 161210 13.10 -5893 51281 8.49 6 [A2-M2] S 9.90 5884 12441 82458 174343 14.01 -5745 51281 8.93 6 [A2-M2] S 10.00 5317 12504 84148 187992 15.04 >5596 51281 9.68 6 [A2-M2] S 10.05 5045 12250 86749 202533		-									
6 [A2-M2] S 9.60 7762 12064 74371 115583 9.58 -6675 51281 7.74 6 [A2-M2] S 9.65 7431 12127 75506 123218 10.16 -6481 51281 8.09 6 [A2-M2] S 9.75 6790 12252 78153 141020 11.51 -6188 51281 8.09 6 [A2-M2] S 9.80 6481 12315 79599 151260 12.28 -6041 51281 8.49 6 [A2-M2] S 9.85 6179 12378 80950 162170 13.10 -5893 51281 8.70 6 [A2-M2] S 9.90 5884 12414 82458 174343 1401 >5746 51281 8.70 6 [A2-M2] S 10.00 5317 12566 8694 202533 16.12 -5447 51281 9.61 6 [A2-M2] S 10.10 4780 12692 87924 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-									
66 [A2-M2] S 9.65 7431 12127 75506 12218 10.16 -6481 51281 8.09 66 [A2-M2] S 9.70 7107 12189 76761 131656 10.80 -6335 51281 8.09 66 [A2-M2] S 9.75 6790 12252 78153 141020 11.51 -6188 51281 8.09 66 [A2-M2] S 9.85 6179 12378 80950 162170 13.10 -5893 51281 8.79 66 [A2-M2] S 9.90 5884 12441 82458 174343 14.01 -5745 51281 9.96 6 [A2-M2] S 10.00 5517 12566 86549 202533 16.12 -5447 51281 9.16 6 [A2-M2] S 10.05 5045 12629 86749 202533 16.12 -5447 51281 9.16 6 [A2-M2] S 10.10 4780 12629 86794		-									
6 [A2-M2] S 9,70 7107 12189 76761 131656 10.80 6-335 51281 8.09 6 [A2-M2] S 9,80 6481 12315 79599 151260 12.28 -6041 51281 8.29 6 [A2-M2] S 9,85 6179 122378 80950 162170 13.10 -5745 51281 8.49 6 [A2-M2] S 9,90 5884 12441 82458 174343 14.01 -5745 51281 9,91 6 [A2-M2] S 10.00 5317 12566 86594 202533 16.12 -5596 51281 9,91 6 [A2-M2] S 10.00 5317 12560 86594 202533 16.12 -5596 51281 9,16 6 [A2-M2] S 10.10 4780 12692 87924 233473 18.40 5149 51281 9,14 6 [A2-M2] S 10.15 4522 12759 80902											
6 [A2-M2] S 9.80 6481 12315 79599 151260 12.28 6041 51281 8.49 6 [A2-M2] S 9.80 6481 12315 79599 151260 12.28 6041 51281 8.49 6 [A2-M2] S 9.90 5884 12441 82458 174343 14.01 -5745 51281 8.916 6 [A2-M2] S 9.90 5877 12504 84148 18792 15.04 -5596 51281 9.16 6 [A2-M2] S 10.05 5045 15069 86749 202333 16.12 -5447 51281 9.16 6 [A2-M2] S 10.10 4780 12692 86749 2033473 18.40 -5149 51281 9.66 [A2-M2] S 10.10 4780 12692 87924 233473 18.40 -5149 51281 9.06 [A2-M2] S 10.15 45222 12755 8909 251277 19.70 <td>6</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	6	-									
6 [A2-M2] S 9.80 6481 12315 79599 151260 12.28 -6041 51281 8.49 6 [A2-M2] S 9.90 5884 12441 82458 174343 14.01 -5745 51281 8.70 6 [A2-M2] S 9.95 5597 12504 84148 187992 15.04 -5596 51281 9.96 6 [A2-M2] S 10.00 5317 12566 85694 202533 16.12 -5447 51281 9.96 6 [A2-M2] S 10.10 4780 12629 87924 233473 18.40 -5149 51281 9.96 6 [A2-M2] S 10.15 4522 12755 89090 251277 17.0 -5000 51281 10.26 6 [A2-M2] S 10.25 4030 12881 99034 290349 22.54 44703 51281 10.57 6 [A2-M2] S 10.35 3567 13006 90285	6	[A2-M2] S		7107	12189	76761		10.80	-6335	51281	8.09
6 [A2-M2] S 9.85 6179 12378 80950 162170 13.10 -5893 51281 8.70 6 [A2-M2] S 9.90 5884 12441 82458 174343 14.01 -5893 51281 8.93 6 [A2-M2] S 10.00 5317 12566 85694 202533 16.12 -5447 51281 9.41 6 [A2-M2] S 10.10 4780 12692 86749 217177 17.20 -5298 51281 9.66 6 [A2-M2] S 10.15 4522 12755 8900 251277 19.70 -5000 51281 9.66 6 [A2-M2] S 10.20 4272 12818 89916 269770 21.05 -4825 51281 10.56 6 [A2-M2] S 10.30 3394 12943 91037 31606 22.54 4703 51281 10.60 6 [A2-M2] S 10.35 3567 13006 9985	6	[A2-M2] S	9.75	6790	12252	78153	141020	11.51	-6188	51281	8.29
6 [A2-M2] S 9.90 5884 12441 82458 174443 14.01 -5745 51281 9.16 6 [A2-M2] S 10.00 5317 12566 85694 202533 16.12 -5447 51281 9.41 6 [A2-M2] S 10.00 5317 12566 85694 202533 16.12 -5447 51281 9.41 6 [A2-M2] S 10.10 4780 12692 87924 233473 18.40 -5149 51281 9.66 6 [A2-M2] S 10.10 44780 12692 87924 233473 18.40 -5149 51281 10.26 6 [A2-M2] S 10.20 4272 12818 89090 251277 19.70 -5000 51281 10.26 6 [A2-M2] S 10.25 4030 12881 90343 290349 22.54 4703 51281 10.26 6 [A2-M2] S 10.35 3567 13006 90985	6	[A2-M2] S	9.80	6481	12315	79599	151260	12.28	-6041	51281	8.49
6 [A2-M2] S 9.95 5597 12504 84148 187992 15.04 -5596 51281 9.16 6 [A2-M2] S 10.00 5317 12566 85694 202533 16.12 -5447 51281 9.68 6 [A2-M2] S 10.10 4780 12692 87924 233473 18.40 -5149 51281 9.68 6 [A2-M2] S 10.15 4522 12755 89090 251277 19.70 -5000 51281 10.26 6 [A2-M2] S 10.20 4272 12818 89916 269770 21.05 -4852 51281 10.57 6 [A2-M2] S 10.30 3794 12943 91057 31066 24.00 -4555 51281 10.50 6 [A2-M2] S 10.35 3567 13006 90985 331781 25.51 -4407 51281 11.64 6 [A2-M2] S 10.45 3133 13132 89623	6	[A2-M2] S	9.85	6179	12378	80950	162170	13.10	-5893	51281	8.70
6 [A2-M2] S 9.95 5597 12504 84148 187992 15.04 -5596 51281 9.16 6 [A2-M2] S 10.00 5317 12566 85694 202533 16.12 -5447 51281 9.68 6 [A2-M2] S 10.10 4780 12669 87924 233473 18.40 -5149 51281 9.68 6 [A2-M2] S 10.15 4522 12755 89090 251277 19.70 -5000 51281 10.26 6 [A2-M2] S 10.20 4272 12818 89916 269770 21.05 -4852 51281 10.57 6 [A2-M2] S 10.30 3794 12943 90087 31781 25.51 -4403 51281 10.50 6 [A2-M2] S 10.35 3567 13006 90985 331781 25.51 -4407 51281 11.64 6 [A2-M2] S 10.45 3133 31332 3853	6	[A2-M2] S	9.90	5884	12441	82458	174343	14.01	-5745	51281	8.93
6 [A2-M2] S 10.00 5317 12566 85694 202533 16.12 -5447 51281 9.41 6 [A2-M2] S 10.10 4780 12692 87924 233473 18.40 -5149 51281 9.66 6 [A2-M2] S 10.15 4522 12755 89090 251277 19.70 -5000 51281 10.57 6 [A2-M2] S 10.20 4272 12818 89916 269770 21.05 -4852 1281 10.06 6 [A2-M2] S 10.30 3794 12943 91057 310606 24.00 -4555 51281 10.57 6 [A2-M2] S 10.40 3346 13069 90586 331781 25.51 -4407 51281 11.66 6 [A2-M2] S 10.45 3133 13132 89623 375601 28.60 -4112 51281 12.04 6 [A2-M2] S 10.45 3133 13132 89623 <td>6</td> <td>[A2-M2] S</td> <td>9.95</td> <td>5597</td> <td>12504</td> <td>84148</td> <td>187992</td> <td>15.04</td> <td>-5596</td> <td>51281</td> <td>9.16</td>	6	[A2-M2] S	9.95	5597	12504	84148	187992	15.04	-5596	51281	9.16
6 [A2-M2] S 10.05 5045 12629 86749 217177 17.20 -5298 51281 9,68 6 [A2-M2] S 10.15 4780 12692 87924 233473 18.40 -5149 51281 9.96 6 [A2-M2] S 10.20 4272 12818 89916 269770 21.05 -4852 51281 10.57 6 [A2-M2] S 10.20 4272 12818 89916 269770 21.05 -4852 51281 10.57 6 [A2-M2] S 10.30 3794 12943 91057 310606 24.00 -4555 51281 11.05 6 [A2-M2] S 10.30 3367 13006 90985 331781 25.51 -4407 51281 11.06 6 [A2-M2] S 10.40 3346 13069 90863 335781 22.51 -4407 51281 11.64 6 [A2-M2] S 10.45 3133 31312 88623 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-									
6 [A2-M2] S 10.10 4780 12692 87924 233473 18.40 -5149 51281 9.96 6 [A2-M2] S 10.25 4522 12755 89090 251277 19.70 -5000 51281 10.26 6 [A2-M2] S 10.25 4030 12881 99834 290349 22.54 -4703 51281 10.90 6 [A2-M2] S 10.35 3567 13006 90985 331781 25.51 -4407 51281 11.26 6 [A2-M2] S 10.40 3346 13069 90586 353778 27.07 -4259 51281 12.04 6 [A2-M2] S 10.40 3346 13069 90586 353778 27.07 -4259 51281 12.04 6 [A2-M2] S 10.50 2928 13195 88481 398753 30.22 -3965 51281 12.47 6 [A2-M2] S 10.55 2730 13258 86724<		-									
6 [A2-M2] S 10.15 4522 12755 89090 251277 19.70 -5000 51281 10.26 6 [A2-M2] S 10.20 4272 12818 89916 269770 21.05 4852 51281 10.57 6 [A2-M2] S 10.30 3794 12943 91057 310606 24.00 -4555 51281 11.26 6 [A2-M2] S 10.35 3567 13006 90856 333778 25.51 -4407 51281 11.64 6 [A2-M2] S 10.40 3346 13069 90856 353778 27.07 -4259 51281 12.04 6 [A2-M2] S 10.45 3133 13132 89623 375601 28.60 -4112 51281 12.47 6 [A2-M2] S 10.65 2235 13320 8481 398753 30.22 -3965 51281 12.43 6 [A2-M2] S 10.65 2355 13383 82554 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-									
6 [A2-M2] S 10.20 4272 12818 89916 269770 21.05 -4852 51281 10.57 6 [A2-M2] S 10.25 4030 12881 90834 290349 22.54 -4703 51281 10.06 6 [A2-M2] S 10.35 3567 13006 90985 331781 25.51 -4407 51281 11.66 6 [A2-M2] S 10.40 3346 13069 90586 353778 27.07 -4259 51281 12.47 6 [A2-M2] S 10.40 3346 13069 90586 353778 27.07 -4259 51281 12.47 6 [A2-M2] S 10.50 2928 13195 88481 398753 30.22 -3965 51281 12.47 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 13.43 6 [A2-M2] S 10.70 2178 13446 80122		-									
6 [A2-M2] S 10.25 4030 12881 90834 290349 22.54 -4703 51281 10.90 6 [A2-M2] S 10.30 3794 12943 91057 310606 24.00 -4555 51281 11.64 6 [A2-M2] S 10.40 3346 13069 90586 353778 27.07 -4259 51281 12.04 6 [A2-M2] S 10.45 3133 13132 89623 375601 28.60 -4112 51281 12.04 6 [A2-M2] S 10.55 2730 13258 88481 398753 30.22 -3965 51281 12.93 6 [A2-M2] S 10.60 2539 13320 84842 445179 33.42 -3674 51281 13.43 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 14.53 6 [A2-M2] S 10.75 2009 13509 77187		-									
6 [A2-M2] S 10.30 3794 12943 91057 310606 24.00 -4555 51281 11.26 6 [A2-M2] S 10.40 3346 13069 9088 331781 25.51 -4407 51281 11.64 6 [A2-M2] S 10.45 3133 13132 89623 375601 28.60 -4112 51281 12.47 6 [A2-M2] S 10.50 2928 13195 88481 398753 30.22 -3965 51281 12.47 6 [A2-M2] S 10.55 2730 13258 86724 421223 31.77 -3819 51281 13.43 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 13.96 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 14.53 6 [A2-M2] S 10.75 2009 13509 77187<		-									
6 [A2-M2] S 10.35 3567 13006 90985 331781 25.51 -4407 51281 11.64 6 [A2-M2] S 10.40 3346 13069 90586 353778 27.07 -4259 51281 12.04 6 [A2-M2] S 10.45 3133 13132 89623 375601 28.60 -4112 51281 12.47 6 [A2-M2] S 10.55 2730 13258 86724 421223 31.77 -3819 51281 13.96 6 [A2-M2] S 10.60 2539 13320 84842 445179 33.42 -3674 51281 13.96 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 13.96 6 [A2-M2] S 10.075 2009 13509 77187 518959 38.42 -3241 51281 15.15 6 [A2-M2] S 10.85 1692 13635 7058		-									
6 [A2-M2] S 10.40 3346 13069 90586 353778 27.07 -4259 51281 12.04 6 [A2-M2] S 10.45 3133 13132 89623 375601 28.60 -4112 51281 12.47 6 [A2-M2] S 10.50 2928 13195 88481 398753 30.22 -3965 51281 12.93 6 [A2-M2] S 10.60 2539 13320 84842 445179 33.42 -3674 51281 13.43 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 14.53 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 15.35 6 [A2-M2] S 10.05 2178 13446 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.80 1847 13579 74102											
6 [A2-M2] S 10.45 3133 13132 89623 375601 28.60 -4112 51281 12.47 6 [A2-M2] S 10.50 2928 13195 88481 398753 30.22 -3965 51281 12.93 6 [A2-M2] S 10.65 2539 13320 84842 4421223 31.77 -3819 51281 13.43 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 14.53 6 [A2-M2] S 10.70 2178 13446 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.70 2178 13446 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.70 2178 13464 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.80 1847 13572 7410											
6 [A2-M2] S 10.50 2928 13195 88481 398753 30.22 -3965 51281 12.93 6 [A2-M2] S 10.55 2730 13258 86724 421223 31.77 -3819 51281 13.43 6 [A2-M2] S 10.60 2539 13320 84842 445179 33.42 -3674 51281 13.96 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 14.53 6 [A2-M2] S 10.70 2178 13446 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.75 2009 13509 77187 518959 38.42 -3241 51281 15.82 6 [A2-M2] S 10.80 1847 13572 74102 544439 40.12 -3088 51281 15.82 6 [A2-M2] S 10.80 1544 13697 66935		-									
6 [A2-M2] S 10.55 2730 13258 86724 421223 31.77 -3819 51281 13.43 6 [A2-M2] S 10.60 2539 13320 84842 445179 33.42 -3674 51281 13.96 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 14.53 6 [A2-M2] S 10.70 2178 13446 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.75 2009 13509 77187 518959 38.42 -3241 51281 15.82 6 [A2-M2] S 10.85 1692 13635 70582 568666 41.71 -2956 51281 11.55 6 [A2-M2] S 10.95 1404 13760 62938 616957 44.84 -2674 51281 19.17 6 [A2-M2] S 11.00 1270 13823 58868											
6 [A2-M2] S 10.60 2539 13320 84842 445179 33.42 -3674 51281 13.96 6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 14.53 6 [A2-M2] S 10.70 2178 13446 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.75 2009 13509 77187 518959 38.42 -3241 51281 15.82 6 [A2-M2] S 10.80 1847 13572 74102 544439 40.12 -3098 51281 16.55 6 [A2-M2] S 10.85 1692 13635 70582 568666 41.71 -2956 51281 17.35 6 [A2-M2] S 10.95 1404 13660 62938 616957 44.84 -2674 51281 19.17 6 [A2-M2] S 11.00 1270 13823 5886<		-									
6 [A2-M2] S 10.65 2355 13383 82554 469163 35.06 -3529 51281 14.53 6 [A2-M2] S 10.70 2178 13446 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.75 2009 13509 77187 518959 38.42 -3241 51281 15.15 6 [A2-M2] S 10.80 1847 13572 74102 544439 40.12 -3098 51281 16.55 6 [A2-M2] S 10.85 1692 13635 70582 568666 41.71 -2956 51281 11.35 6 [A2-M2] S 10.90 1544 13697 66935 593621 43.34 -2815 51281 18.22 6 [A2-M2] S 11.00 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555		-									
6 [A2-M2] S 10.70 2178 13446 80122 494529 36.78 -3385 51281 15.15 6 [A2-M2] S 10.75 2009 13509 77187 518959 38.42 -3241 51281 15.82 6 [A2-M2] S 10.80 1847 13572 74102 544439 40.12 -3098 51281 16.55 6 [A2-M2] S 10.85 1692 13635 70582 568666 41.71 -2956 51281 17.35 6 [A2-M2] S 10.90 1544 13697 66935 593621 43.34 -2815 51281 18.22 6 [A2-M2] S 11.09 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 21.40 6 [A2-M2] S 11.10 1023 13949 50218		-									
6 [A2-M2] S 10.75 2009 13509 77187 518959 38.42 -3241 51281 15.82 6 [A2-M2] S 10.80 1847 13572 74102 544439 40.12 -3098 51281 16.55 6 [A2-M2] S 10.85 1692 13635 70582 568666 41.71 -2956 51281 17.35 6 [A2-M2] S 10.90 1544 13697 66935 593621 43.34 -2815 51281 18.22 6 [A2-M2] S 10.95 1404 13760 62938 616957 44.84 -2674 51281 19.17 6 [A2-M2] S 11.00 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 22.71 6 [A2-M2] S 11.10 1023 13949 50218		-									
6 [A2-M2] S 10.80 1847 13572 74102 544439 40.12 -3098 51281 16.55 6 [A2-M2] S 10.85 1692 13635 70582 568666 41.71 -2956 51281 17.35 6 [A2-M2] S 10.90 1544 13697 66935 593621 43.34 -2815 51281 18.22 6 [A2-M2] S 10.95 1404 13760 62938 616957 44.84 -2674 51281 19.17 6 [A2-M2] S 11.00 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 20.23 6 [A2-M2] S 11.10 1023 13949 50218 684408 49.07 -2258 51281 22.71 6 [A2-M2] S 11.15 911 14012 45183<	6	-				80122	494529		-3385	51281	
6 [A2-M2] S 10.85 1692 13635 70582 568666 41.71 -2956 51281 17.35 6 [A2-M2] S 10.90 1544 13697 66935 593621 43.34 -2815 51281 18.22 6 [A2-M2] S 10.95 1404 13760 62938 616957 44.84 -2674 51281 19.17 6 [A2-M2] S 11.00 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 22.71 6 [A2-M2] S 11.10 1023 13949 50218 684408 49.07 -2258 51281 22.71 6 [A2-M2] S 11.15 911 14012 45183 695274 49.62 -2121 51281 22.71 6 [A2-M2] S 11.25 705 14137 35189 </td <td>6</td> <td></td> <td></td> <td></td> <td></td> <td>77187</td> <td>518959</td> <td>38.42</td> <td></td> <td></td> <td>15.82</td>	6					77187	518959	38.42			15.82
6 [A2-M2] S 10.90 1544 13697 66935 593621 43.34 -2815 51281 18.22 6 [A2-M2] S 10.95 1404 13760 62938 616957 44.84 -2674 51281 19.17 6 [A2-M2] S 11.00 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 21.40 6 [A2-M2] S 11.10 1023 13949 50218 684408 49.07 -2258 51281 22.71 6 [A2-M2] S 11.15 911 14012 45183 695274 49.62 -2121 51281 22.71 6 [A2-M2] S 11.20 804 14074 40040 700483 49.77 -1985 51281 25.83 6 [A2-M2] S 11.25 705 14137 35189 <td>6</td> <td>[A2-M2] S</td> <td>10.80</td> <td>1847</td> <td>13572</td> <td>74102</td> <td>544439</td> <td>40.12</td> <td>-3098</td> <td>51281</td> <td>16.55</td>	6	[A2-M2] S	10.80	1847	13572	74102	544439	40.12	-3098	51281	16.55
6 [A2-M2] S 10.95 1404 13760 62938 616957 44.84 -2674 51281 19.17 6 [A2-M2] S 11.00 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 21.40 6 [A2-M2] S 11.10 1023 13949 50218 684408 49.07 -2258 51281 22.71 6 [A2-M2] S 11.15 911 14012 45183 695274 49.62 -2121 51281 22.71 6 [A2-M2] S 11.20 804 14074 40040 700483 49.77 -1985 51281 25.83 6 [A2-M2] S 11.25 705 14137 35189 705396 49.90 -1850 51281 27.72 6 [A2-M2] S 11.35 527 14263 26389 <td>6</td> <td>[A2-M2] S</td> <td>10.85</td> <td>1692</td> <td>13635</td> <td>70582</td> <td>568666</td> <td>41.71</td> <td>-2956</td> <td>51281</td> <td>17.35</td>	6	[A2-M2] S	10.85	1692	13635	70582	568666	41.71	-2956	51281	17.35
6 [A2-M2] S 11.00 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 21.40 6 [A2-M2] S 11.10 1023 13949 50218 684408 49.07 -2258 51281 22.71 6 [A2-M2] S 11.15 911 14012 45183 695274 49.62 -2121 51281 24.17 6 [A2-M2] S 11.20 804 14074 40040 700483 49.77 -1985 51281 25.83 6 [A2-M2] S 11.25 705 14137 35189 705396 49.90 -1850 51281 27.72 6 [A2-M2] S 11.30 613 14200 30637 710006 50.00 -1716 51281 29.88 6 [A2-M2] S 11.35 527 14263 26389	6	[A2-M2] S	10.90	1544	13697	66935	593621	43.34	-2815	51281	18.22
6 [A2-M2] S 11.00 1270 13823 58868 640724 46.35 -2535 51281 20.23 6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 21.40 6 [A2-M2] S 11.10 1023 13949 50218 684408 49.07 -2258 51281 22.71 6 [A2-M2] S 11.15 911 14012 45183 695274 49.62 -2121 51281 24.17 6 [A2-M2] S 11.20 804 14074 40040 700483 49.77 -1985 51281 25.83 6 [A2-M2] S 11.25 705 14137 35189 705396 49.90 -1850 51281 27.72 6 [A2-M2] S 11.30 613 14200 30637 710006 50.00 -1716 51281 29.88 6 [A2-M2] S 11.35 527 14263 26389	6	[A2-M2] S	10.95	1404	13760	62938	616957	44.84	-2674	51281	19.17
6 [A2-M2] S 11.05 1143 13886 54555 662608 47.72 -2396 51281 21.40 6 [A2-M2] S 11.10 1023 13949 50218 684408 49.07 -2258 51281 22.71 6 [A2-M2] S 11.15 911 14012 45183 695274 49.62 -2121 51281 24.17 6 [A2-M2] S 11.20 804 14074 40040 700483 49.77 -1985 51281 25.83 6 [A2-M2] S 11.25 705 14137 35189 705396 49.90 -1850 51281 25.83 6 [A2-M2] S 11.30 613 14200 30637 710006 50.00 -1716 51281 29.88 6 [A2-M2] S 11.35 527 14263 26389 714307 50.08 -1583 51281 29.88 6 [A2-M2] S 11.40 448 14326 22452										51281	
6 [A2-M2] S 11.10 1023 13949 50218 684408 49.07 -2258 51281 22.71 6 [A2-M2] S 11.15 911 14012 45183 695274 49.62 -2121 51281 24.17 6 [A2-M2] S 11.20 804 14074 40040 700483 49.77 -1985 51281 25.83 6 [A2-M2] S 11.25 705 14137 35189 705396 49.90 -1850 51281 27.72 6 [A2-M2] S 11.30 613 14200 30637 710006 50.00 -1716 51281 29.88 6 [A2-M2] S 11.35 527 14263 26389 714307 50.08 -1583 51281 32.40 6 [A2-M2] S 11.40 448 14326 22452 718294 50.14 -1450 51281 35.35 6 [A2-M2] S 11.45 375 14388 18830	6	-					662608	47.72			
6 [A2-M2] S 11.15 911 14012 45183 695274 49.62 -2121 51281 24.17 6 [A2-M2] S 11.20 804 14074 40040 700483 49.77 -1985 51281 25.83 6 [A2-M2] S 11.25 705 14137 35189 705396 49.90 -1850 51281 27.72 6 [A2-M2] S 11.30 613 14200 30637 710006 50.00 -1716 51281 29.88 6 [A2-M2] S 11.35 527 14263 26389 714307 50.08 -1583 51281 29.88 6 [A2-M2] S 11.40 448 14326 22452 718294 50.14 -1450 51281 32.40 6 [A2-M2] S 11.45 375 14388 18830 721963 50.18 -1319 51281 38.87 6 [A2-M2] S 11.50 309 14451 12538								49.07			
6 [A2-M2] S 11.20 804 14074 40040 700483 49.77 -1985 51281 25.83 6 [A2-M2] S 11.25 705 14137 35189 705396 49.90 -1850 51281 27.72 6 [A2-M2] S 11.30 613 14200 30637 710006 50.00 -1716 51281 29.88 6 [A2-M2] S 11.35 527 14263 26389 714307 50.08 -1583 51281 32.40 6 [A2-M2] S 11.40 448 14326 22452 718294 50.14 -1450 51281 35.35 6 [A2-M2] S 11.45 375 14388 18830 721963 50.18 -1319 51281 35.35 6 [A2-M2] S 11.50 309 14451 15524 725311 50.19 -1189 51281 43.13 6 [A2-M2] S 11.60 197 14577 9874		-									
6 [A2-M2] S 11.25 705 14137 35189 705396 49.90 -1850 51281 27.72 6 [A2-M2] S 11.30 613 14200 30637 710006 50.00 -1716 51281 29.88 6 [A2-M2] S 11.35 527 14263 26389 714307 50.08 -1583 51281 32.40 6 [A2-M2] S 11.40 448 14326 22452 718294 50.14 -1450 51281 32.40 6 [A2-M2] S 11.45 375 14388 18830 721963 50.18 -1319 51281 38.87 6 [A2-M2] S 11.50 309 14451 15524 725311 50.19 -1189 51281 43.13 6 [A2-M2] S 11.55 250 14514 12538 728355 50.18 -1060 51281 48.40 6 [A2-M2] S 11.65 150 14640 7531		-									
6 [A2-M2] S 11.30 613 14200 30637 710006 50.00 -1716 51281 29.88 6 [A2-M2] S 11.35 527 14263 26389 714307 50.08 -1583 51281 32.40 6 [A2-M2] S 11.40 448 14326 22452 718294 50.14 -1450 51281 35.35 6 [A2-M2] S 11.45 375 14388 18830 721963 50.18 -1319 51281 38.87 6 [A2-M2] S 11.50 309 14451 15524 725311 50.19 -1189 51281 43.13 6 [A2-M2] S 11.55 250 14514 12538 728335 50.18 -1060 51281 48.40 6 [A2-M2] S 11.60 197 14577 9874 731033 50.15 -931 51281 55.07 6 [A2-M2] S 11.65 150 14640 7531		-									
6 [A2-M2] S 11.35 527 14263 26389 714307 50.08 -1583 51281 32.40 6 [A2-M2] S 11.40 448 14326 22452 718294 50.14 -1450 51281 35.35 6 [A2-M2] S 11.45 375 14388 18830 721963 50.18 -1319 51281 38.87 6 [A2-M2] S 11.50 309 14451 15524 725311 50.19 -1189 51281 43.13 6 [A2-M2] S 11.55 250 14514 12538 728335 50.18 -1060 51281 48.40 6 [A2-M2] S 11.60 197 14577 9874 731033 50.15 -931 51281 55.07 6 [A2-M2] S 11.65 150 14640 7531 733406 50.10 -804 51281 63.80 6 [A2-M2] S 11.70 110 14703 5510 735453 50.02 -677 51281 75.71 6 [A2-M2] S <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-									
6 [A2-M2] S 11.40 448 14326 22452 718294 50.14 -1450 51281 35.35 6 [A2-M2] S 11.45 375 14388 18830 721963 50.18 -1319 51281 38.87 6 [A2-M2] S 11.50 309 14451 15524 725311 50.19 -1189 51281 43.13 6 [A2-M2] S 11.55 250 14514 12538 728335 50.18 -1060 51281 48.40 6 [A2-M2] S 11.60 197 14577 9874 731033 50.15 -931 51281 55.07 6 [A2-M2] S 11.65 150 14640 7531 733406 50.10 -804 51281 63.80 6 [A2-M2] S 11.70 110 14703 5510 735453 50.02 -677 51281 75.71 6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S											
6 [A2-M2] S 11.45 375 14388 18830 721963 50.18 -1319 51281 38.87 6 [A2-M2] S 11.50 309 14451 15524 725311 50.19 -1189 51281 43.13 6 [A2-M2] S 11.55 250 14514 12538 728335 50.18 -1060 51281 48.40 6 [A2-M2] S 11.60 197 14577 9874 731033 50.15 -931 51281 55.07 6 [A2-M2] S 11.65 150 14640 7531 733406 50.10 -804 51281 63.80 6 [A2-M2] S 11.70 110 14703 5510 735453 50.02 -677 51281 75.71 6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S											
6 [A2-M2] S 11.50 309 14451 15524 725311 50.19 -1189 51281 43.13 6 [A2-M2] S 11.55 250 14514 12538 728335 50.18 -1060 51281 48.40 6 [A2-M2] S 11.60 197 14577 9874 731033 50.15 -931 51281 55.07 6 [A2-M2] S 11.65 150 14640 7531 733406 50.10 -804 51281 63.80 6 [A2-M2] S 11.70 110 14703 5510 735453 50.02 -677 51281 75.71 6 [A2-M2] S 11.75 76 14765 3808 737176 49.93 -552 51281 92.91 6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S		-									
6 [A2-M2] S 11.55 250 14514 12538 728335 50.18 -1060 51281 48.40 6 [A2-M2] S 11.60 197 14577 9874 731033 50.15 -931 51281 55.07 6 [A2-M2] S 11.65 150 14640 7531 733406 50.10 -804 51281 63.80 6 [A2-M2] S 11.70 110 14703 5510 735453 50.02 -677 51281 75.71 6 [A2-M2] S 11.75 76 14765 3808 737176 49.93 -552 51281 92.91 6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S 11.90 12 14954 599 740426 49.51 -182 51281 282.27											
6 [A2-M2] S 11.60 197 14577 9874 731033 50.15 -931 51281 55.07 6 [A2-M2] S 11.65 150 14640 7531 733406 50.10 -804 51281 63.80 6 [A2-M2] S 11.70 110 14703 5510 735453 50.02 -677 51281 75.71 6 [A2-M2] S 11.75 76 14765 3808 737176 49.93 -552 51281 92.91 6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S 11.90 12 14954 599 740426 49.51 -182 51281 282.27											
6 [A2-M2] S 11.65 150 14640 7531 733406 50.10 -804 51281 63.80 6 [A2-M2] S 11.70 110 14703 5510 735453 50.02 -677 51281 75.71 6 [A2-M2] S 11.75 76 14765 3808 737176 49.93 -552 51281 92.91 6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S 11.90 12 14954 599 740426 49.51 -182 51281 282.27		-									
6 [A2-M2] S 11.70 110 14703 5510 735453 50.02 -677 51281 75.71 6 [A2-M2] S 11.75 76 14765 3808 737176 49.93 -552 51281 92.91 6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S 11.90 12 14954 599 740426 49.51 -182 51281 282.27											
6 [A2-M2] S 11.75 76 14765 3808 737176 49.93 -552 51281 92.91 6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S 11.90 12 14954 599 740426 49.51 -182 51281 282.27		-									
6 [A2-M2] S 11.80 49 14828 2425 738577 49.81 -428 51281 119.95 6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S 11.90 12 14954 599 740426 49.51 -182 51281 282.27		-									
6 [A2-M2] S 11.85 27 14891 1356 739659 49.67 -304 51281 168.63 6 [A2-M2] S 11.90 12 14954 599 740426 49.51 -182 51281 282.27		-									
6 [A2-M2] S 11.90 12 14954 599 740426 49.51 -182 51281 282.27		-									
• •		-									
6 [A2-M2] S 11.95 3 15017 149 740882 49.34 -60 51281 851.47	6					599					
	6	[A2-M2] S	11.95	3	15017	149	740882	49.34	-60	51281	851.47

Simbologia adottata n° Indice della co Indice della combinazione/fase Tipo Y Tipo della Combinazione/Fase ordinata della sezione, espressa in [m]

tensione massima nel calcestruzzo, espressa in [kg/cmq] tensione massima nei ferri longitudinali, espressa in [kg/cmq] $\sigma_{\!\scriptscriptstyle c}$ $\sigma_{\rm f}$ tensione massima nei ferri trasversali, espressa in [kg/cmq] σ_{st}

Y	σ _c n° - Tipo	$\sigma_{\rm f}$ n $^{\circ}$ - Tipo	τ _c n° - Tipo	σ _{st} n° - Tipo
0.00	0.001 - [A1-M1]	0.001 - [A1-M1]	0.0012 - [SLEQ] S	0.0012 - [SLEQ] S
0.05	0.0112 - [SLEQ] S	0.1712 - [SLEQ] S	0.0012 - [SLEQ] S	0.0312 - [SLEQ] S
0.10	0.0212 - [SLEQ] S	0.3412 - [SLEQ] S	0.0012 - [SLEQ] S	0.1412 - [SLEQ] S
0.15	0.0312 - [SLEQ] S	0.5012 - [SLEQ] S	0.0012 - [SLEQ] S	0.3012 - [SLEQ] S
0.20	0.0412 - [SLEQ] S	0.6712 - [SLEQ] S	0.0012 [SLEQ] S	0.5412 - [SLEQ] S
0.25	0.0412 [SLEQ] S	0.8412 - [SLEQ] S	0.0012 [SLEQ] S	0.8512 - [SLEQ] S
0.23	0.0012 - [SLEQ] S	1.0212 - [SLEQ] S	0.0012 - [SLEQ] S	1.2212 - [SLEQ] S
0.35	0.0812 - [SLEQ] S	1.1912 - [SLEQ] S	0.0012 [SLEQ] S	1.6612 - [SLEQ] S
0.40	0.0912 - [SLEQ] S	1.3712 - [SLEQ] S	0.0012 - [SLEQ] S	2.1712 - [SLEQ] S
0.45	0.1012 - [SLEQ] S	1.5612 - [SLEQ] S	0.0012 [SLEQ] S	2.7412 - [SLEQ] S
0.50	0.1012 [SLEQ] S 0.1212 - [SLEQ] S	1.7412 - [SLEQ] S	0.0012 [SLEQ] S	3.3812 - [SLEQ] S
0.55	0.1312 - [SLEQ] S	1.9312 - [SLEQ] S	0.0012 [SLEQ] S	4.1012 - [SLEQ] S
0.60	0.1412 - [SLEQ] S	2.1312 - [SLEQ] S	0.0112 [SLEQ] S	4.8712 - [SLEQ] S
0.65	0.1612 - [SLEQ] S	2.3312 - [SLEQ] S	0.0112 [SLEQ] S	5.7212 - [SLEQ] S
0.70	0.1712 - [SLEQ] S	2.5412 - [SLEQ] S	0.0112 [SLEQ] S	6.6412 - [SLEQ] S
0.75	0.1712 [SLEQ] S 0.1912 - [SLEQ] S	2.7512 - [SLEQ] S	0.0112 [SLEQ] S	7.6212 - [SLEQ] S
0.80	0.2012 - [SLEQ] S	2.9712 - [SLEQ] S	0.0112 [SLEQ] S	8.6712 - [SLEQ] S
0.85	0.2212 - [SLEQ] S	3.1912 - [SLEQ] S	0.0112 [SLEQ] S	9.7812 - [SLEQ] S
0.90	0.2312 - [SLEQ] S	3.4212 - [SLEQ] S	0.0212 - [SLEQ] S	10.9712 - [SLEQ] S
0.95	0.2512 [SLEQ] S	3.6612 - [SLEQ] S	0.0212 [SLEQ] S	12.2212 - [SLEQ] S
1.00	0.2712 - [SLEQ] S	3.9112 - [SLEQ] S	0.0212 - [SLEQ] S	13.5412 - [SLEQ] S
1.05	0.2812 - [SLEQ] S	4.1712 - [SLEQ] S	0.0212 [SLEQ] S	14.9312 - [SLEQ] S
1.10	0.3012 - [SLEQ] S	4.4312 - [SLEQ] S	0.0212 [SLEQ] S	16.3912 - [SLEQ] S
1.15	0.3212 - [SLEQ] S	4.7112 - [SLEQ] S	0.0312 - [SLEQ] S	17.9112 - [SLEQ] S
1.20	0.3412 - [SLEQ] S	4.9912 - [SLEQ] S	0.0312 - [SLEQ] S	19.5012 - [SLEQ] S
1.25	0.3612 - [SLEQ] S	5.2912 - [SLEQ] S	0.0312 - [SLEQ] S	21.1612 - [SLEQ] S
1.30	0.3812 - [SLEQ] S	5.5912 - [SLEQ] S	0.0312 - [SLEQ] S	22.8912 - [SLEQ] S
1.35	0.4112 - [SLEQ] S	5.9112 - [SLEQ] S	0.0412 - [SLEQ] S	24.6812 - [SLEQ] S
1.40	0.4312 - [SLEQ] S	6.2312 - [SLEQ] S	0.0412 - [SLEQ] S	26.5412 - [SLEQ] S
1.45	0.4512 - [SLEQ] S	6.5712 - [SLEQ] S	0.0412 - [SLEQ] S	28.4712 - [SLEQ] S
1.50	0.4812 - [SLEQ] S	6.9312 - [SLEQ] S	0.0412 - [SLEQ] S	30.4712 - [SLEQ] S
1.55	0.5112 - [SLEQ] S	7.2912 - [SLEQ] S	0.0512 - [SLEQ] S	32.5412 - [SLEQ] S
1.60	0.5312 - [SLEQ] S	7.6712 - [SLEQ] S	0.0512 - [SLEQ] S	34.6712 - [SLEQ] S
1.65	0.5612 - [SLEQ] S	8.0612 - [SLEQ] S	0.0612 - [SLEQ] S	37.4112 - [SLEQ] S
1.70	0.5912 - [SLEQ] S	8.4812 - [SLEQ] S	0.0612 - [SLEQ] S	41.3012 - [SLEQ] S
1.75	0.6212 - [SLEQ] S	8.9212 - [SLEQ] S	0.0712 - [SLEQ] S	46.2312 - [SLEQ] S
1.80	0.6612 - [SLEQ] S	9.3912 - [SLEQ] S	0.0812 - [SLEQ] S	52.0712 - [SLEQ] S
1.85	0.7012 - [SLEQ] S	9.9112 - [SLEQ] S	0.0912 - [SLEQ] S	58.8412 - [SLEQ] S
1.90	0.7412 - [SLEQ] S	10.4712 - [SLEQ] S	0.1012 - [SLEQ] S	66.5212 - [SLEQ] S
1.95	0.7812 - [SLEQ] S	11.0812 - [SLEQ] S	0.1112 - [SLEQ] S	75.1212 - [SLEQ] S
2.00	0.8312 - [SLEQ] S	11.7512 - [SLEQ] S	0.1212 - [SLEQ] S	84.6512 - [SLEQ] S
2.05	0.8812 - [SLEQ] S	12.4812 - [SLEQ] S	0.1412 - [SLEQ] S	95.1012 - [SLEQ] S
2.10	0.9412 - [SLEQ] S	13.2712 - [SLEQ] S	0.1612 - [SLEQ] S	106.6412 - [SLEQ] S
2.15	1.0112 - [SLEQ] S	14.1612 - [SLEQ] S		121.3012 - [SLEQ] S
2.20	1.0812 - [SLEQ] S	15.1512 - [SLEQ] S		138.5212 - [SLEQ] S
2.25	1.1712 - [SLEQ] S	16.2812 - [SLEQ] S		158.1712 - [SLEQ] S
2.30	1.2612 - [SLEQ] S	17.5712 - [SLEQ] S		180.2512 - [SLEQ] S
2.35	1.3812 - [SLEQ] S	19.0412 - [SLEQ] S		204.6712 - [SLEQ] S
2.40	1.5112 - [SLEQ] S	20.7312 - [SLEQ] S		231.1512 - [SLEQ] S
2.45	1.6512 - [SLEQ] S	22.6512 - [SLEQ] S		259.1712 - [SLEQ] S
2.50	1.8212 - [SLEQ] S	24.8512 - [SLEQ] S		288.0412 - [SLEQ] S
2.55	2.0212 - [SLEQ] S	27.3312 - [SLEQ] S		316.9612 - [SLEQ] S
2.60	2.2312 - [SLEQ] S	30.1012 - [SLEQ] S		345.2712 - [SLEQ] S
2.65	2.4812 - [SLEQ] S	33.1812 - [SLEQ] S		372.5412 - [SLEQ] S
2.70	2.7512 - [SLEQ] S	36.5612 - [SLEQ] S		398.6812 - [SLEQ] S
2.75	3.0412 - [SLEQ] S	40.2512 - [SLEQ] S	0.6212 - [SLEQ] S	423.8712 - [SLEQ] S

```
2.80
          3.3712 - [SLEQ] S
                             45.2812 - [SLEQ] S
                                                   0.6612 - [SLEQ] S 448.4712 - [SLEQ] S
2.85
          3.7112 - [SLEQ] S
                             54.2612 - [SLEQ] S
                                                   0.7012 - [SLEQ] S 472.8312 - [SLEQ] S
2.90
                             64.2312 - [SLEQ] S
                                                   0.7312 - [SLEQ] S 497.3112 - [SLEQ] S
          4.0912 - [SLEQ] S
2.95
                                                   0.7712 - [SLEQ] S 522.1712 - [SLEQ] S
          4.4812 - [SLEQ] S
                             75.1912 - [SLEQ] S
3.00
          4.9112 - [SLEQ] S 87.1712 - [SLEQ] S
                                                   0.8112 - [SLEQ] S 547.6212 - [SLEQ] S
3.05
          5.3612 - [SLEQ] S 100.0412 - [SLEQ] S
                                                   0.8312 - [SLEQ] S 564.2412 - [SLEQ] S
3.10
          5.8312 - [SLEQ] S 113.6912 - [SLEQ] S
                                                   0.8612 - [SLEQ] S 582.1812 - [SLEQ] S
3.15
          6.3112 - [SLEQ] S 128.1312 - [SLEQ] S
                                                   0.8912 - [SLEQ] S 601.4512 - [SLEQ] S
3.20
                                                   0.9212 - [SLEQ] S 622.0912 - [SLEQ] S
          6.8212 - [SLEQ] S 143.3712 - [SLEQ] S
3.25
          7.3512 - [SLEQ] S 159.4412 - [SLEQ] S
                                                   0.9512 - [SLEQ] S 644.0912 - [SLEQ] S
3.30
          7.9012 - [SLEQ] S 176.3612 - [SLEQ] S
                                                   0.9812 - [SLEQ] S 667.4412 - [SLEQ] S
3.35
          8.4812 - [SLEQ] S 194.1512 - [SLEQ] S
                                                   1.0212 - [SLEQ] S 692.1212 - [SLEQ] S
                                                   1.0612 - [SLEQ] S 718.1012 - [SLEQ] S
3.40
          9.0812 - [SLEQ] S 212.8512 - [SLEQ] S
3.45
          9.7012 - [SLEQ] S 232.4912 - [SLEQ] S
                                                   1.1012 - [SLEQ] S 745.3612 - [SLEQ] S
                                                   1.1412 - [SLEQ] S 773.8812 - [SLEQ] S
3.50
         10.3612 - [SLEQ] S 253.0812 - [SLEQ] S
3.55
                                                   1.1812 - [SLEQ] S 803.6412 - [SLEQ] S
         11.0312 - [SLEQ] S 274.6812 - [SLEQ] S
3.60
         11.7412 - [SLEQ] S 297.3012 - [SLEQ] S
                                                   1.2312 - [SLEQ] S 834.6212 - [SLEQ] S
3.65
         12.4812 - [SLEQ] S 320.9712 - [SLEQ] S
                                                   1.2812 - [SLEQ] S 866.8112 - [SLEQ] S
3.70
         13.2512 - [SLEQ] S 345.7412 - [SLEQ] S
                                                   1.3312 - [SLEQ] S 900.2112 - [SLEQ] S
3.75
         14.0512 - [SLEQ] S 371.6312 - [SLEQ] S
                                                   1.3812 - [SLEQ] S 934.7912 - [SLEQ] S
3.80
         14.8812 - [SLEQ] S 398.6812 - [SLEQ] S
                                                   1.4312 - [SLEQ] S 970.5612 - [SLEQ] S
3.85
         15.7412 - [SLEQ] S 426.9212 - [SLEQ] S
                                                   1.4812 - [SLEQ] S1007.5012 - [SLEQ] S
3.90
         16.6412 - [SLEQ] S 456.3812 - [SLEQ] S
                                                   1.5412 - [SLEQ] S1045.6212 - [SLEQ] S
3.95
         17.5712 - [SLEQ] S 487.0912 - [SLEQ] S
                                                   1.6012 - [SLEQ] S1084.9012 - [SLEQ] S
4.00
         18.5412 - [SLEQ] S 519.1012 - [SLEQ] S
                                                   1.6612 - [SLEQ] S1125.3412 - [SLEQ] S
4.05
         19.5212 - [SLEQ] S 551.3212 - [SLEQ] S
                                                   1.5812 - [SLEQ] S1073.1412 - [SLEQ] S
4.10
         20.4612 - [SLEQ] S 582.4612 - [SLEQ] S
                                                   1.5112 - [SLEQ] S1028.5512 - [SLEQ] S
4.15
         21.3712 - [SLEQ] S 612.2712 - [SLEQ] S
                                                   1.4412 - [SLEQ] S 979.8412 - [SLEQ] S
4.20
         22.2312 - [SLEQ] S 640.6412 - [SLEQ] S
                                                   1.3712 - [SLEQ] S 926.9712 - [SLEQ] S
4.25
                                                   1.2812 - [SLEQ] S 870.0912 - [SLEQ] S
         23.0512 - [SLEQ] S 667.4212 - [SLEQ] S
4.30
         23.8112 - [SLEQ] S 692.4712 - [SLEQ] S
                                                   1.1912 - [SLEQ] S 809.1612 - [SLEQ] S
                                                   1.1012 - [SLEQ] S 749.9712 - [SLEQ] S
4.35
         24.5312 - [SLEQ] S 715.6712 - [SLEQ] S
4.40
         25.1912 - [SLEQ] S 737.0612 - [SLEQ] S
                                                   1.0212 - [SLEQ] S 692.7012 - [SLEQ] S
4.45
         25.8012 - [SLEQ] S 756.7012 - [SLEQ] S
                                                   0.9412 - [SLEQ] S 637.2812 - [SLEQ] S
4.50
         26.3612 - [SLEQ] S 774.6412 - [SLEQ] S
                                                   0.8612 - [SLEQ] S 583.6812 - [SLEQ] S
4.55
         26.8712 - [SLEQ] S 790.9312 - [SLEQ] S
                                                   0.7812 - [SLEQ] S 531.8412 - [SLEQ] S
         27.3412 - [SLEQ] S 805.6312 - [SLEQ] S
                                                   0.7112 - [SLEQ] S 481.7412 - [SLEQ] S
4.60
4.65
         27.7612 - [SLEQ] S 818.7912 - [SLEQ] S
                                                   0.6412 - [SLEQ] S 433.3412 - [SLEQ] S
4.70
         28.1512 - [SLEQ] S 830.4512 - [SLEQ] S
                                                   0.5712 - [SLEQ] S 386.5912 - [SLEQ] S
4.75
         28.4912 - [SLEQ] S 840.6812 - [SLEQ] S
                                                   0.5012 - [SLEQ] S 341.4812 - [SLEQ] S
4.80
         28.7812 - [SLEQ] S 849.5212 - [SLEQ] S
                                                   0.4412 - [SLEQ] S 297.9512 - [SLEQ] S
4.85
         29.0512 - [SLEQ] S 857.0112 - [SLEQ] S
                                                   0.3812 - [SLEQ] S 255.9912 - [SLEQ] S
                                                   0.3212 - [SLEQ] S 215.5612 - [SLEQ] S
4.90
         29.2712 - [SLEQ] S 863.2112 - [SLEQ] S
4.95
         29.4612 - [SLEQ] S 868.1612 - [SLEQ] S
                                                   0.2612 - [SLEQ] S 176.6212 - [SLEQ] S
5.00
         29.6112 - [SLEQ] S 871.9012 - [SLEQ] S
                                                   0.2012 - [SLEQ] S 139.1612 - [SLEQ] S
5.05
         29.7312 - [SLEQ] S 874.5012 - [SLEQ] S
                                                   0.1512 - [SLEQ] S 103.1312 - [SLEQ] S
5.10
         29.8212 - [SLEQ] S 875.9812 - [SLEQ] S
                                                   0.1012 - [SLEQ] S 68.5112 - [SLEQ] S
5.15
         29.8812 - [SLEQ] S 876.4012 - [SLEQ] S
                                                   0.0512 - [SLEQ] S
                                                                       35.2612 - [SLEQ] S
5.20
         29.9012 - [SLEQ] S 875.7912 - [SLEQ] S
                                                   0.019 - [SLEQ]
                                                                        9.079 - [SLEQ]
5.25
         29.9012 - [SLEQ] S 874.2012 - [SLEQ] S
                                                   0.0412 - [SLEQ] S
                                                                       27.2212 - [SLEQ] S
5.30
                                                   0.0812 - [SLEQ] S
         29.8812 - [SLEQ] S 871.6712 - [SLEQ] S
                                                                      56.5112 - [SLEQ] S
5.35
         29.8212 - [SLEQ] S 868.2412 - [SLEQ] S
                                                   0.1212 - [SLEQ] S 84.5512 - [SLEQ] S
5.40
         29.7412 - [SLEQ] S 863.9412 - [SLEQ] S
                                                   0.1612 - [SLEQ] S 111.3612 - [SLEQ] S
5.45
         29.6412 - [SLEQ] S 858.8312 - [SLEQ] S
                                                   0.2012 - [SLEQ] S 136.9712 - [SLEQ] S
5.50
         29.5212 - [SLEQ] S 852.9312 - [SLEQ] S
                                                   0.2412 - [SLEQ] S 161.4212 - [SLEQ] S
5.55
         29.3712 - [SLEQ] S 846.2912 - [SLEQ] S
                                                   0.2712 - [SLEQ] S 184.7212 - [SLEQ] S
                                                   0.3012 - [SLEQ] S 206.9112 - [SLEQ] S
         29.2012 - [SLEQ] S 838.9312 - [SLEQ] S
5.60
         29.0212 - [SLEQ] S 830.9012 - [SLEQ] S
                                                   0.3412 - [SLEQ] S 228.0112 - [SLEQ] S
5.65
5.70
         28.8112 - [SLEQ] S 822.2212 - [SLEQ] S
                                                   0.3712 - [SLEQ] S 248.0612 - [SLEQ] S
5.75
         28.5912 - [SLEQ] S 812.9412 - [SLEQ] S
                                                   0.3912 - [SLEQ] S 267.0912 - [SLEQ] S
         28.3512 - [SLEQ] S 803.0912 - [SLEQ] S
                                                   0.4212 - [SLEQ] S 285.1112 - [SLEQ] S
5.80
5.85
         28.0912 - [SLEQ] S 792.6912 - [SLEQ] S
                                                   0.4412 - [SLEQ] S 302.1612 - [SLEQ] S
5.90
         27.8212 - [SLEQ] S 781.7812 - [SLEQ] S
                                                   0.4712 - [SLEQ] S 318.2712 - [SLEQ] S
5.95
         27.5312 - [SLEQ] S 770.3912 - [SLEQ] S
                                                   0.4912 - [SLEQ] S 333.4712 - [SLEQ] S
```

```
6.00
         27.2412 - [SLEQ] S 758.5512 - [SLEQ] S
                                                   0.5112 - [SLEQ] S 347.7712 - [SLEQ] S
6.05
         26.9212 - [SLEQ] S 746.2912 - [SLEQ] S
                                                   0.5312 - [SLEQ] S 361.2212 - [SLEQ] S
6.10
         26.6012 - [SLEQ] S 733.6312 - [SLEQ] S
                                                   0.5512 - [SLEQ] S 373.8312 - [SLEQ] S
6.15
         26.2712 - [SLEQ] S 720.6112 - [SLEQ] S
                                                   0.5712 - [SLEQ] S 385.6312 - [SLEQ] S
6.20
         25.9212 - [SLEQ] S 707.2512 - [SLEQ] S
                                                   0.5812 - [SLEQ] S 396.6412 - [SLEQ] S
6.25
         25.5712 - [SLEQ] S 693.5712 - [SLEQ] S
                                                   0.6012 - [SLEQ] S 406.9012 - [SLEQ] S
6.30
         25.2112 - [SLEQ] S 679.6012 - [SLEQ] S
                                                   0.6112 - [SLEQ] S 416.4312 - [SLEQ] S
6.35
         24.8412 - [SLEQ] S 665.3712 - [SLEQ] S
                                                   0.6312 - [SLEQ] S 425.2612 - [SLEQ] S
                                                   0.6412 - [SLEQ] S 433.4012 - [SLEQ] S
6.40
         24.4612 - [SLEQ] S 650.9012 - [SLEQ] S
6.45
         24.0712 - [SLEQ] S 636.2112 - [SLEQ] S
                                                   0.6512 - [SLEQ] S 440.8912 - [SLEQ] S
6.50
         23.6812 - [SLEQ] S 621.3212 - [SLEQ] S
                                                   0.6612 - [SLEQ] S 447.7512 - [SLEQ] S
         23.2812 - [SLEQ] S 606.2712 - [SLEQ] S
6.55
                                                   0.6712 - [SLEQ] S 454.0012 - [SLEQ] S
6.60
         22.8812 - [SLEQ] S 591.0612 - [SLEQ] S
                                                   0.6812 - [SLEQ] S 459.6712 - [SLEQ] S
6.65
         22.4712 - [SLEQ] S 575.7212 - [SLEQ] S
                                                   0.6812 - [SLEQ] S 464.7812 - [SLEQ] S
         22.0612 - [SLEQ] S 560.2612 - [SLEQ] S
6.70
                                                   0.6912 - [SLEQ] S 469.3612 - [SLEQ] S
         21.6412 - [SLEQ] S 544.7212 - [SLEQ] S
6.75
                                                   0.7012 - [SLEQ] S 473.4312 - [SLEQ] S
         21.2212 - [SLEQ] S 529.1012 - [SLEQ] S
6.80
                                                   0.7012 - [SLEQ] S 477.0112 - [SLEQ] S
6.85
         20.8012 - [SLEQ] S 513.4312 - [SLEQ] S
                                                   0.7112 - [SLEQ] S 480.1212 - [SLEQ] S
         20.3812 - [SLEQ] S 497.7212 - [SLEQ] S
6.90
                                                   0.7112 - [SLEQ] S 482.8012 - [SLEQ] S
6.95
         19.9512 - [SLEQ] S 482.0012 - [SLEQ] S
                                                   0.7112 - [SLEQ] S 485.0512 - [SLEQ] S
7.00
         19.5312 - [SLEQ] S 466.2712 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 486.9112 - [SLEQ] S
7.05
         19.1012 - [SLEQ] S 450.5512 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 488.3912 - [SLEQ] S
7.10
         18.6712 - [SLEQ] S 434.8712 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 489.5212 - [SLEQ] S
7.15
         18.2412 - [SLEQ] S 419.2312 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 490.3112 - [SLEQ] S
7.20
         17.8112 - [SLEQ] S 403.6612 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 490.7912 - [SLEQ] S
7.25
         17.3812 - [SLEQ] S 388.1612 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 490.9812 - [SLEQ] S
7.30
         16.9512 - [SLEQ] S 372.7612 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 490.9012 - [SLEQ] S
7.35
         16.5312 - [SLEQ] S 357.4612 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 490.5712 - [SLEQ] S
7.40
         16.1012 - [SLEQ] S 342.2912 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 490.0012 - [SLEQ] S
7.45
         15.6812 - [SLEQ] S 327.2612 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 489.2112 - [SLEQ] S
7.50
         15.2612 - [SLEQ] S 312.3712 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 488.2212 - [SLEQ] S
7.55
         14.8412 - [SLEQ] S 297.6612 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 487.0512 - [SLEQ] S
                                                   0.7212 - [SLEQ] S 485.7112 - [SLEQ] S
7.60
         14.4212 - [SLEQ] S 283.1212 - [SLEQ] S
7.65
         14.0012 - [SLEQ] S 268.7812 - [SLEQ] S
                                                   0.7112 - [SLEQ] S 484.2012 - [SLEQ] S
7.70
         13.5912 - [SLEQ] S 254.6612 - [SLEQ] S
                                                   0.7112 - [SLEQ] S 482.5512 - [SLEQ] S
7.75
         13.1912 - [SLEQ] S 240.7612 - [SLEQ] S
                                                   0.7112 - [SLEQ] S 480.7512 - [SLEQ] S
7.80
         12.7812 - [SLEQ] S 227.1012 - [SLEQ] S
                                                   0.7112 - [SLEQ] S 478.8112 - [SLEQ] S
7.85
         12.3812 - [SLEQ] S 213.7112 - [SLEQ] S
                                                   0.7012 - [SLEQ] S 476.7312 - [SLEQ] S
7.90
         11.9812 - [SLEQ] S 200.6012 - [SLEQ] S
                                                   0.7012 - [SLEQ] S 474.5112 - [SLEQ] S
         11.5912 - [SLEQ] S 187.7812 - [SLEQ] S
7.95
                                                   0.7012 - [SLEQ] S 472.1312 - [SLEQ] S
8.00
         11.2112 - [SLEQ] S 175.2712 - [SLEQ] S
                                                   0.6912 - [SLEQ] S 469.5712 - [SLEQ] S
8.05
         10.8312 - [SLEQ] S 163.1012 - [SLEQ] S
                                                   0.6912 - [SLEQ] S 466.8012 - [SLEQ] S
8.10
                                                   0.6812 - [SLEQ] S 463.8012 - [SLEQ] S
         10.4512 - [SLEQ] S 151.2812 - [SLEQ] S
8.15
         10.0812 - [SLEQ] S 139.8412 - [SLEQ] S
                                                   0.6812 - [SLEQ] S 460.5112 - [SLEQ] S
8.20
                                                   0.6712 - [SLEQ] S 456.8912 - [SLEQ] S
          9.7212 - [SLEQ] S 128.7912 - [SLEQ] S
8.25
          9.3612 - [SLEQ] S 123.5912 - [SLEQ] S
                                                   0.6712 - [SLEQ] S 452.8612 - [SLEQ] S
                                                   0.6612 - [SLEQ] S 448.3612 - [SLEQ] S
8.30
          9.0212 - [SLEQ] S 119.3912 - [SLEQ] S
8.35
          8.6812 - [SLEQ] S 115.2912 - [SLEQ] S
                                                   0.6512 - [SLEQ] S 443.3112 - [SLEQ] S
8.40
          8.3512 - [SLEQ] S 111.2812 - [SLEQ] S
                                                   0.6412 - [SLEQ] S 437.6212 - [SLEQ] S
8.45
          8.0312 - [SLEQ] S 107.3812 - [SLEQ] S
                                                   0.6412 - [SLEQ] S 431.2212 - [SLEQ] S
8.50
          7.7212 - [SLEQ] S 103.6112 - [SLEQ] S
                                                   0.6212 - [SLEQ] S 424.0412 - [SLEQ] S
8.55
          7.4312 - [SLEQ] S
                             99.9612 - [SLEQ] S
                                                   0.6112 - [SLEQ] S 416.0212 - [SLEQ] S
8.60
          7.1412 - [SLEQ] S
                             96.4412 - [SLEQ] S
                                                   0.6012 - [SLEQ] S 407.1512 - [SLEQ] S
          6.8712 - [SLEQ] S
                             93.0712 - [SLEQ] S
                                                   0.5912 - [SLEQ] S 397.4212 - [SLEQ] S
8.65
                              89.8512 - [SLEQ] S
                                                   0.5712 - [SLEQ] S 386.8812 - [SLEQ] S
8.70
          6.6112 - [SLEQ] S
8.75
                                                   0.5512 - [SLEQ] S 375.6012 - [SLEQ] S
          6.3712 - [SLEQ] S
                              86.7912 - [SLEQ] S
                                                   0.5412 - [SLEQ] S 363.6812 - [SLEQ] S
8.80
          6.1412 - [SLEQ] S
                              83.8912 - [SLEQ] S
                                                   0.5212 - [SLEQ] S 351.2612 - [SLEQ] S
8.85
          5.9212 - [SLEQ] S
                              81.1612 - [SLEQ] S
8.90
          5.7212 - [SLEQ] S
                              78.5812 - [SLEQ] S
                                                   0.5012 - [SLEQ] S 338.4812 - [SLEQ] S
8.95
          5.5312 - [SLEQ] S
                              76.1612 - [SLEQ] S
                                                   0.4812 - [SLEQ] S 325.4912 - [SLEQ] S
          5.3512 - [SLEQ] S
9.00
                             73.9012 - [SLEQ] S
                                                   0.4612 - [SLEQ] S 312.4412 - [SLEQ] S
9.05
          5.1812 - [SLEQ] S
                             71.8012 - [SLEQ] S
                                                   0.4412 - [SLEQ] S 299.4612 - [SLEQ] S
                                                   0.4212 - [SLEQ] S 286.6912 - [SLEQ] S
9.10
          5.0312 - [SLEQ] S
                             69.8312 - [SLEQ] S
9.15
          4.8912 - [SLEQ] S 68.0012 - [SLEQ] S
                                                   0.4012 - [SLEQ] S 274.2212 - [SLEQ] S
```

```
9.20
           4.7512 - [SLEQ] S
                               66.3012 - [SLEQ] S
                                                     0.3912 - [SLEQ] S 262.1412 - [SLEQ] S
                                                     0.3712 - [SLEQ] S 250.5412 - [SLEQ] S
 9.25
                               64.7212 - [SLEQ] S
           4.6312 - [SLEQ] S
 9.30
           4.5212 - [SLEQ] S
                               63.2512 - [SLEQ] S
                                                     0.3512 - [SLEQ] S 239.4812 - [SLEQ] S
 9.35
           4.4112 - [SLEQ] S
                               61.8812 - [SLEQ] S
                                                     0.3412 - [SLEQ] S 229.0612 - [SLEQ] S
 9.40
                                                     0.3212 - [SLEQ] S 219.4312 - [SLEQ] S
           4.3112 - [SLEQ] S
                               60.6012 - [SLEQ] S
 9.45
           4.2212 - [SLEQ] S
                               59.3912 - [SLEQ] S
                                                     0.3112 - [SLEQ] S 211.1012 - [SLEQ] S
 9.50
           4.1312 - [SLEQ] S
                               58.2412 - [SLEQ] S
                                                     0.3012 - [SLEQ] S 204.8412 - [SLEQ] S
 9.55
           4.0412 - [SLEQ] S
                               57.1212 - [SLEQ] S
                                                     0.2912 - [SLEQ] S 198.6412 - [SLEQ] S
 9.60
           3.9612 - [SLEQ] S
                               56.0412 - [SLEQ] S
                                                     0.2812 - [SLEQ] S 192.5112 - [SLEQ] S
 9.65
                               55.0012 - [SLEQ] S
           3.8812 - [SLEQ] S
                                                     0.2712 - [SLEQ] S 186.4312 - [SLEQ] S
 9.70
           3.8012 - [SLEQ] S
                               54.0012 - [SLEQ] S
                                                     0.2712 - [SLEQ] S 180.4112 - [SLEQ] S
 9.75
           3.7312 - [SLEQ] S
                               53.0412 - [SLEQ] S
                                                     0.2612 - [SLEQ] S 174.4612 - [SLEQ] S
 9.80
           3.6512 - [SLEQ] S
                               52.1112 - [SLEQ] S
                                                     0.2512 - [SLEQ] S 168.5812 - [SLEQ] S
 9.85
           3.5912 - [SLEQ] S
                               51.2212 - [SLEQ] S
                                                     0.2412 - [SLEQ] S 162.7712 - [SLEQ] S
 9.90
                               50.3712 - [SLEQ] S
           3.5212 - [SLEQ] S
                                                     0.2312 - [SLEQ] S 157.0312 - [SLEQ] S
 9.95
           3.4612 - [SLEQ] S
                               49.5512 - [SLEQ] S
                                                     0.2212 - [SLEQ] S 151.3712 - [SLEQ] S
                                                     0.2112 - [SLEQ] S 145.7812 - [SLEQ] S
10.00
           3.3912 - [SLEQ] S
                               48.7712 - [SLEQ] S
10.05
           3.3412 - [SLEQ] S
                               48.0212 - [SLEQ] S
                                                     0.2112 - [SLEQ] S 140.2812 - [SLEQ] S
10.10
           3.2812 - [SLEQ] S
                               47.3112 - [SLEQ] S
                                                     0.2012 - [SLEQ] S 134.8512 - [SLEQ] S
10.15
           3.2312 - [SLEQ] S
                               46.6312 - [SLEQ] S
                                                     0.1912 - [SLEQ] S 129.5112 - [SLEQ] S
10.20
           3.1812 - [SLEQ] S
                               45.9912 - [SLEQ] S
                                                     0.1812 - [SLEQ] S 124.2612 - [SLEQ] S
10.25
           3.1312 - [SLEQ] S
                               45.3812 - [SLEQ] S
                                                     0.1812 - [SLEQ] S 119.0912 - [SLEQ] S
                               44.8012 - [SLEQ] S
10.30
           3.0812 - [SLEQ] S
                                                     0.1712 - [SLEQ] S 114.0112 - [SLEQ] S
10.35
           3.0412 - [SLEQ] S
                               44.2512 - [SLEQ] S
                                                     0.1612 - [SLEQ] S 109.0112 - [SLEQ] S
           3.0012 - [SLEQ] S
10.40
                               43.7412 - [SLEQ] S
                                                     0.1512 - [SLEQ] S 104.1112 - [SLEQ] S
10.45
           2.9612 - [SLEQ] S
                               43.2512 - [SLEQ] S
                                                     0.1512 - [SLEQ] S 99.3012 - [SLEQ] S
10.50
           2.9212 - [SLEQ] S
                                                     0.1412 - [SLEQ] S
                               42.8012 - [SLEQ] S
                                                                         94.5812 - [SLEQ] S
10.55
           2.8912 - [SLEQ] S
                               42.3712 - [SLEQ] S
                                                     0.1312 - [SLEQ] S
                                                                         89.9612 - [SLEQ] S
10.60
           2.8612 - [SLEQ] S
                               41.9712 - [SLEQ] S
                                                     0.1312 - [SLEQ] S
                                                                         85.4312 - [SLEQ] S
           2.8312 - [SLEQ] S
10.65
                               41.6112 - [SLEQ] S
                                                     0.1212 - [SLEQ] S
                                                                         81.0012 - [SLEQ] S
10.70
           2.8012 - [SLEQ] S
                               41.2712 - [SLEQ] S
                                                     0.1112 - [SLEQ] S
                                                                         76.6612 - [SLEQ] S
10.75
           2.7812 - [SLEQ] S
                               40.9512 - [SLEQ] S
                                                     0.1112 - [SLEQ] S
                                                                         72.4212 - [SLEQ] S
10.80
           2.7512 - [SLEQ] S
                               40.6712 - [SLEQ] S
                                                     0.1012 - [SLEQ] S
                                                                         68.2812 - [SLEQ] S
10.85
           2.7312 - [SLEQ] S
                               40.4112 - [SLEQ] S
                                                     0.0912 - [SLEQ] S
                                                                         64.2412 - [SLEQ] S
                               40.1712 - [SLEQ] S
                                                     0.0912 - [SLEQ] S
                                                                         60.2912 - [SLEQ] S
10.90
           2.7112 - [SLEQ] S
10.95
           2.7012 - [SLEQ] S
                               39.9612 - [SLEQ] S
                                                     0.0812 - [SLEQ] S
                                                                         56.4512 - [SLEQ] S
11.00
           2.6812 - [SLEQ] S
                               39.7712 - [SLEQ] S
                                                     0.0812 - [SLEQ] S
                                                                         52.7012 - [SLEQ] S
11.05
           2.6712 - [SLEQ] S
                               39.6112 - [SLEQ] S
                                                     0.0712 - [SLEQ] S
                                                                         49.0612 - [SLEQ] S
11.10
           2.6512 - [SLEQ] S
                               39.4712 - [SLEQ] S
                                                     0.0712 - [SLEQ] S
                                                                         45.5212 - [SLEQ] S
                                                                         42.0712 - [SLEQ] S
11.15
           2.6412 - [SLEQ] S
                               39.3512 - [SLEQ] S
                                                     0.0612 - [SLEQ] S
                                                                         38.7312 - [SLEQ] S
           2.6312 - [SLEQ] S
                               39.2512 - [SLEQ] S
11.20
                                                     0.0612 - [SLEQ] S
11.25
           2.6312 - [SLEQ] S
                               39.1812 - [SLEQ] S
                                                     0.0512 - [SLEQ] S
                                                                         35.4912 - [SLEQ] S
11.30
           2.6212 - [SLEQ] S
                               39.1212 - [SLEQ] S
                                                     0.0512 - [SLEQ] S
                                                                         32.3512 - [SLEQ] S
11.35
           2.6212 - [SLEQ] S
                               39.0912 - [SLEQ] S
                                                     0.0412 - [SLEQ] S
                                                                         29.3212 - [SLEQ] S
11.40
           2.6112 - [SLEQ] S
                               39.0712 - [SLEQ] S
                                                     0.0412 - [SLEQ] S
                                                                         26.3812 - [SLEQ] S
                               39.0712 - [SLEQ] S
                                                     0.0312 - [SLEQ] S
                                                                         23.5512 - [SLEQ] S
11.45
           2.6112 - [SLEQ] S
11.50
           2.6112 - [SLEQ] S
                               39.0912 - [SLEQ] S
                                                     0.0312 - [SLEQ] S
                                                                         20.8212 - [SLEQ] S
11.55
           2.6112 - [SLEQ] S
                               39.1312 - [SLEQ] S
                                                     0.0312 - [SLEQ] S
                                                                         18.1912 - [SLEQ] S
11.60
           2.6212 - [SLEQ] S
                               39.1812 - [SLEQ] S
                                                     0.0212 - [SLEQ] S
                                                                         15.6612 - [SLEQ] S
11.65
           2.6212 - [SLEQ] S
                               39.2512 - [SLEQ] S
                                                     0.0212 - [SLEQ] S
                                                                         13.2412 - [SLEQ] S
11.70
           2.6212 - [SLEQ] S
                               39.3412 - [SLEQ] S
                                                     0.0212 - [SLEQ] S
                                                                         10.9212 - [SLEQ] S
                               39.4412 - [SLEQ] S
                                                     0.0112 - [SLEQ] S
                                                                          8.7012 - [SLEQ] S
11.75
           2.6312 - [SLEQ] S
11.80
           2.6412 - [SLEQ] S
                               39.5512 - [SLEQ] S
                                                     0.0112 - [SLEQ] S
                                                                          6.5912 - [SLEQ] S
11.85
           2.6512 - [SLEQ] S
                               39.6712 - [SLEQ] S
                                                     0.0112 - [SLEQ] S
                                                                          4.5712 - [SLEQ] S
11.90
           2.6512 - [SLEQ] S
                               39.8112 - [SLEQ] S
                                                     0.0012 - [SLEQ] S
                                                                          2.6612 - [SLEQ] S
                                                     0.0012 - [SLEQ] S
11.95
           2.6612 - [SLEQ] S
                              39.9612 - [SLEQ] S
                                                                          0.8512 - [SLEQ] S
```

Verifica a SLU * Diagrammi M-N delle sezioni

Di seguito sono riportati per ogni tratto di armatura i diagrammi di interazione M_u - N_u della sezione; sono stati calcolati 16 punti per ogni sezione analizzata.

Per la costruzione dei diagrammi limiti si sono assunti i seguenti valori:

Tensione caratteristica cubica del cls

 $R_{bk} = 306 [kg/cmq]$

Tensione caratteristica cilindrica del cls (0.83xR _{bk})	$R_{ck} = 254 \text{ (Kg/cm}^2\text{)}$
Fattore di riduzione per carico di lunga permanenza	$\psi = 0.85$
Tensione caratteristica di snervamento dell'acciaio	$f_{yk} = 4589 [kg/cmq]$
Coefficiente di sicurezza cls	$\gamma_c = 1.50$
Coefficiente di sicurezza acciaio	$\gamma_{\rm s} = 1.15$
Resistenza di calcolo del cls($\psi R_{ck}/\gamma_c$)	$R_{c}^{*} = 144 \text{ (Kg/cm}^{2})$
Resistenza di calcolo dell'acciaio (f_{vk}/γ_s)	$R_{s}^{*} = 3990 \text{ (Kg/cm}^{2})$
Modulo elastico dell'acciaio	$E_s = 2100000 \text{ (Kg/cm}^2\text{)}$
Deformazione ultima del calcestruzzo	$\varepsilon_{\rm cu} = 0.0035(0.35\%)$
Deformazione del calcestruzzo al limite elastoplastico	$\varepsilon_{\rm ck} = 0.0020(0.20\%)$
Deformazione ultima dell'acciaio	$\varepsilon_{yu} = 0.0100(1.00\%)$
Deformazione dell'acciaio al limite elastico (R* _s /E _s)	$\varepsilon_{\rm yk} = 0.0015(0.19\%)$

Legame costitutivo del calcestruzzo

Per il legame costitutivo del calcestruzzo si assume il diagramma parabola-rettangolo espresso dalle seguenti relazioni:

Tratto parabolico: $0 <= \varepsilon_c <= \varepsilon_{ck}$

$$\sigma_{c} = \frac{R^{*}_{c}(2\epsilon_{c}\epsilon_{ck} - \epsilon_{c}^{2})}{\epsilon_{ck}^{2}}$$

Tratto rettangolare: $\varepsilon_{ck} < \varepsilon_c < = \varepsilon_{cu}$

$$\sigma_c = R^*_c$$

Legame costitutivo dell'acciaio

Per l'acciaio si assume un comportamento elastico-perfettamente plastico espresso dalle seguenti relazioni:

 $\sigma_s = E_s \varepsilon_s \text{ per } 0 <= \varepsilon_s <= \varepsilon_{sy}$ $\sigma_s = R_s^* \text{ per } \varepsilon_{sy} < \varepsilon_s < = \varepsilon_{su}$

Tratto armatura 1

Nr	N_u	$\mathbf{M_{u}}$
1	-162458.32	0.00
2	0.00	50398.01
3	98804.37	71876.21
4	148206.56	79221.22
5	197608.75	85338.92
6	247010.94	88899.44
7	296413.12	91105.10
8	345815.31	90937.79
9	395217.50	88757.21
10	444619.68	84895.33
11	494021.87	80182.49
12	543424.06	74248.96
13	592826.24	67071.42
14	642228.43	58609.99
15	691630.62	48780.63
16	741032.81	0.00
17	741032.81	0.00
18	691630.62	-48780.63
19	642228.43	-58609.99
20	592826.24	-67071.42
21	543424.06	-74248.96
22	494021.87	-80182.49
23	444619.68	-84895.33
24	395217.50	-88757.21
25	345815.31	-90937.79
26	296413.12	-91105.10
27	247010.94	-88899.44
28	197608.75	-85338.92

29	148206.56	-79221.22
30	98804.37	-71876.21
31	0.00	-50398.01
32	-162458.32	0.00

Verifica sezione cordoli

Simbologia adottata

momento flettente espresso in [kgm] nel piano orizzontale taglio espresso in [kg] nel piano orizzontale momento flettente espresso in [kgm] nel piano verticale taglio espresso in [kg] nel piano verticale $M_{\text{h}} \\$

 T_h M_v

 $T_{\rm v}$

Cordolo N° 1 (X=0.00 m) (Cordolo in c.a.)

B=120.00 [cm]	H=100.00 [cm]		
$A_{fv}=15.27 [cmq]$	$A_{fh}=15.27 [cmq]$	Staffe \phi10/20	Nbh=2 - Nbv=4
$M_h=17974 [kgm]$	M_{uh} =57467 [kgm]	FS=3.20	
$T_h = 35948 \text{ [kg]}$	$T_{Rh}=117908 \text{ [kg]}$	$FS_T=3.28$	
$M_v = 3840 [kgm]$	M_{uv} =57467 [kgm]	FS=14.97	
$T_v = 4800 \text{ [kg]}$	$T_R = 138290 \text{ [kg]}$	$FS_{Tv} = 28.81$	

CAI	COI	OPA	RATIA	TRA	LE SEZ.	23-25
	/\ \\ /\	~			エノエン トフェンダノ。	40-40

Geometria paratia

Tipo paratia: Paratia di pali		
Altezza fuori terra	3.00	[m]
Profondità di infissione	6.00	[m]
Altezza totale della paratia	9.00	[m]
Lunghezza paratia	10.00	[m]
Numero di file di pali	1	
Interasse fra i pali della fila	1.60	[m]
Diametro dei pali	80.00	[cm]
Numero totale di pali	5	
Numero di pali per metro lineare	0.50	

Geometria cordoli

Simbologia adottata

n° Y numero d'ordine del cordolo

posizione del cordolo sull'asse della paratia espresso in [m]

Cordoli in calcestruzzo

Base della sezione del cordolo espresso in [cm] Η Altezza della sezione del cordolo espresso in [cm]

Cordoli in acciaio
A Area della sezione in acciaio del cordolo espresso in [cmq]
W Modulo di resistenza della sezione del cordolo espresso in [cm^3]

\mathbf{n}°	Y	Tipo	В	H	A	\mathbf{W}
1	0.00	Calcestruzzo	120.00	100.00		

Geometria profilo terreno

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa alla paratia, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

Profilo di monte

N	X	Y	A
2	1.00	0.50	26.57
3	10.00	0.50	0.00
4	40.00	5.00	8.53
5	49.00	5.00	0.00

Profilo di valle

N	X	Y	A
1	-10.00	-3.00	0.00
2.	0.00	-3.00	0.00

Descrizione terreni

Simbologia adottata

n°	numero d'ordine dello strato a partire dalla sommità della paratia
Descrizione	Descrizione del terreno
γ	peso di volume del terreno espresso in [kg/mc]
$\gamma_{\rm s}$	peso di volume saturo del terreno espresso [kg/mc]
ф	angolo d'attrito interno del terreno espresso in [°]
δ	angolo d'attrito terreno/paratia espresso in [°]
c	coesione del terreno espressa in [kg/cmq]

\mathbf{n}°	Descrizione	γ	$\gamma_{\rm s}$	ф	δ	c
1	argilla limosa	1900.00	1900.00	21.00	14.00	0.010
2	Argilla marnosa	2500.00	2500.00	23.50	15.67	0.130

Descrizione stratigrafia

Simbologia adottata

n° numero d'ordine dello strato a partire dalla sommità della paratia

sp spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]

kw costante di Winkler orizzontale espressa in $Kg/cm^2/cm$ α inclinazione dello strato espressa in $GRADI(^\circ)$

Terreno Terreno associato allo strato

\mathbf{n}°	sp	α	kw	Terreno
1	3.00	0.00	0.34	argilla limosa
2	20.00	0.00	4.26	Argilla marnosa

Caratteristiche materiali utilizzati

Calcestruzzo

Current in Age		
Peso specifico	2500	[kg/mc]
Classe di Resistenza	C25/30	
Resistenza caratteristica a compressione R _{ck}	306	[kg/cmq]
Tensione di progetto a compressione σ_c	99	[kg/cmq]
Tensione tangenziale ammissibile τ_{c0}	6.1	[kg/cmq]
Tensione tangenziale ammissibile τ_{c1}	18.5	[kg/cmq]
Acciaio		
Tipo	B450C	
Tensione di snervamento f _{yk}	4589	[kg/cmq]

Caratteristiche acciaio cordoli in c.a.

FeB44K Tipo Tensione di snervamento f_{vk} 4400 [kg/cmq]

Condizioni di carico

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

Forza orizzontale espressa in [kg], positiva da monte verso valle

F_y M Forza verticale espressa in [kg], positiva verso il basso

Momento espresso in [kgm], positivo ribaltante

 $Q_{\rm i},\,Q_{\rm f}$ Intensità dei carichi distribuiti sul profilo espresse in [kg/mq]

Intensità dei carichi distribuiti sulla paratia espresse in [kg/mq], positivi da monte verso valle

Risultante carico distribuito sulla paratia espressa in [kg]

Condizione n° 1

Carico distribuito sul profilo	$X_i = 1.00$	$X_{\rm f} = 9.00$	$Q_i = 1000$	$Q_f = 1000$
Carico distribuito sul profilo	$X_i = 40.00$	$X_f = 49.00$	$Q_i = 1000$	$Q_f = 1000$

Combinazioni di carico

Nella tabella sono riportate le condizioni di carico di ogni combinazione con il relativo coefficiente di partecipazione.

Combinazione n° 1 [DA1 - A1M1]

Spinta terreno

Combinazione n° 2 [DA1- A2M2]

Spinta terreno

Combinazione n° 3 [DA1 - A1M1]

Spinta terreno

Condizione 1 (Condizione 1) x 1.00

Combinazione n° 4 [DA1- A2M2]

Spinta terreno

Condizione 1 (Condizione 1) x 1.00

Combinazione n° 5 [DA1 - A1M1]

Spinta terreno

Combinazione n° 6 [DA1- A2M2]

Spinta terreno

Combinazione n° 7 [DA1 - A1M1]

Spinta terreno

Condizione 1 (Condizione 1 / sisma V+) x 0.20

Combinazione n° 8 [DA1- A2M2]

Spinta terreno Condizione 1 (Condizione 1 / sisma V+)	x 0.20
Combinazione n° 9 Spinta terreno Condizione 1 (Condizione 1)	x 0.20
Combinazione n° 10 Spinta terreno Condizione 1 (Condizione 1)	x 0.50
Combinazione n° 11 Spinta terreno Condizione 1 (Condizione 1)	x 1.00
Combinazione n° 12 Spinta terreno Condizione 1 (Condizione 1 / sisma V+)	x 0.20
Combinazione n° 13 Spinta terreno Condizione 1 (Condizione 1 / sisma V+)	x 0.50
Combinazione n° 14 Spinta terreno Condizione 1 (Condizione 1 / sisma V+)	x 1.00

Impostazioni di progetto

<u>Spinte e verifiche secondo</u> : Norme Tecniche sulle Costruzioni 14/01/2008

Coefficienti di partecipazione combinazioni statiche								
Coefficienti parziali i	Coefficienti parziali per le azioni o per l'effetto delle azioni:							
Carichi	Effetto	o dene azioni.	A1	A2				
Permanenti	Favorevole	$\gamma_{ m Gfav}$	1.00	1.00				
Permanenti	Sfavorevole	$\gamma_{ m Gsfav}$	1.30	1.00				
Variabili	Favorevole	$\gamma_{ m Qfav}$	0.00	0.00				
Variabili	Sfavorevole	$\gamma_{ m Qsfav}$	1.50	1.30				
Coefficienti parziali p	per i parametri geotecnic	i del terreno:						
Parametri			M1	<i>M</i> 2				
Tangente dell'angolo	di attrito	$\gamma_{ an\phi'}$	1.00	1.25				
Coesione efficace		$\gamma_{c'}$	1.00	1.25				
Resistenza non drena		γ_{cu}	1.00	1.40				
Resistenza a compres		$\gamma_{ m qu}$	1.00	1.60				
Peso dell'unità di vol	ume	γ_{γ}	1.00	1.00				
Coefficienti di parte	cipazione combinazion	i sismiche						
Coefficienti parziali p	per le azioni o per l'effett	o delle azioni:						
Carichi	Effetto		A1	A2				
Permanenti	Favorevole	$\gamma_{ m Gfav}$	1.00	1.00				
Permanenti	Sfavorevole	$\gamma_{ m Gsfav}$	1.00	1.00				
Variabili	Favorevole	$\gamma_{ m Qfav}$	0.00	0.00				
Variabili	Sfavorevole	$\gamma_{ m Qsfav}$	1.00	1.00				
Coefficienti parziali j	per i parametri geotecnic	i del terreno:						
Parametri			M1	<i>M</i> 2				
Tangente dell'angolo	di attrito	$\gamma_{ an\phi'}$	1.00	1.25				
Coesione efficace γ_c 1.00 1				1.25				

Resistenza non drenata	$\gamma_{ m cu}$	1.00	1.40
Resistenza a compressione uniassiale	$\gamma_{ m qu}$	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

Impostazioni di analisi

Analisi per Combinazioni di Carico.

Rottura del terreno: Pressione passiva

Influenza δ (angolo di attrito terreno-paratia): Nel calcolo del coefficiente di spinta attiva Ka e nell'inclinazione della spinta attiva (non viene considerato per la spinta passiva)

Stabilità globale: Metodo di Fellenius

Impostazioni analisi sismica

Combinazioni/Fase	SLU	SLE
Accelerazione al suolo [m/s^2]	2.120	0.893
Massimo fattore amplificazione spettro orizzontale F ₀	2.525	2.479
Periodo inizio tratto spettro a velocità costante Tc*	0.379	0.332
Coefficiente di amplificazione topografica (St)	1.000	1.000
Coefficiente di amplificazione per tipo di sottosuolo (Ss)	1.373	1.500
Coefficiente di riduzione per tipo di sottosuolo (α)	0.978	0.978
Spostamento massimo senza riduzione di resistenza Us [m]	0.045	0.045
Coefficiente di riduzione per spostamento massimo (β)	0.495	0.495
Coefficiente di intensità sismica (percento)	14.360	6.612
Rapporto intensità sismica verticale/orizzontale (kv)	0.00	

Influenza sisma nella spinta attiva da monte

Forma diagramma incremento sismico: Triangolare con vertice in alto.

Analisi della paratia

L'analisi è stata eseguita per combinazioni di carico

La paratia è analizzata con il metodo degli elementi finiti.

Essa è discretizzata in 60 elementi fuori terra e 120 elementi al di sotto della linea di fondo scavo.

Le molle che simulano il terreno hanno un comportamento elastoplastico: una volta raggiunta la pressione passiva non reagiscono ad ulteriori incremento di carico.

Altezza fuori terra della paratia	3.00	[m]
Profondità di infissione	6.00	[m]
Altezza totale della paratia	9.00	[m]

Forze agenti sulla paratia

Tutte le forze si intendono positive se dirette da monte verso valle. Esse sono riferite ad un metro di larghezza della paratia. Le Y hanno come origine la testa della paratia, e sono espresse in [m]

Simbologia adottata

n° Indice della Combinazione/Fase Tipo Tipo della Combinazione/Fase Pa Spinta attiva, espressa in [kg]

Is Incremento sismico della spinta, espressa in [kg]

Pw Spinta della falda, espressa in [kg]
Pp Resistenza passiva, espressa in [kg]
Pc Controspinta, espressa in [kg]

\mathbf{n}°	Tipo	Pa	$\mathbf{Y}_{\mathbf{Pa}}$	Is	$\mathbf{Y}_{\mathbf{Is}}$	Pw	$\mathbf{Y}_{\mathbf{Pw}}$	Pp	$\mathbf{Y}_{\mathbf{Pp}}$	Pc	$\mathbf{Y}_{\mathbf{Pc}}$
1	[A1-M1]	5454	1.96					-8375	4.04	2922	7.93

_	5 4 9 3 593	1000	4.05				0005	4.0.	20.45	0.00
2	[A2-M2]	4989	1.95			 	-8035	4.25	3047	8.00
3	[A1-M1]	6933	1.90			 	-11164	4.20	4231	7.98
4	[A2-M2]	6515	1.88			 	-11423	4.56	4908	8.11
5	[A1-M1] S	4056	1.98	1477	2.00	 	-8428	4.02	2895	7.92
6	[A2-M2] S	4957	1.95	1667	2.00	 	-11126	4.44	4502	8.08
7	[A1-M1] S	4247	1.97	1581	2.00	 	-8945	4.05	3117	7.93
8	[A2-M2] S	5195	1.94	1754	2.00	 	-11850	4.50	4902	8.10
9	[SLEQ]	4294	1.97			 	-6444	3.94	2150	7.89
10	[SLEF]	4589	1.95			 	-6951	3.97	2362	7.90
11	[SLER]	5078	1.92			 	-7813	4.02	2736	7.91
12	[SLEQ] S	4275	1.97	642	2.00	 	-7443	3.98	2526	7.90
13	[SLEF] S	4569	1.95	703	2.00	 	-8063	4.02	2792	7.92
14	[SLER] S	5054	1.92	809	2.00	 	-9129	4.08	3267	7.94

Simbologia adottata

n° Indice della Combinazione/Fase Tipo Tipo della Combinazione/Fase

Rc Risultante carichi esterni applicati, espressa in [kg]

Rt Risultante delle reazioni dei tiranti (componente orizzontale), espressa in [kg]

Rv Risultante delle reazioni dei vincoli, espressa in [kg] Rp Risultante delle reazioni dei puntoni, espressa in [kg]

\mathbf{n}°	Tipo	Rc	$\mathbf{Y}_{\mathbf{Rc}}$	Rt	$\mathbf{Y}_{\mathbf{Rt}}$	Rv	$\mathbf{Y}_{\mathbf{R}\mathbf{v}}$	Rp	$\mathbf{Y}_{\mathbf{Rp}}$
1	[A1-M1]	0	0.00						
2	[A2-M2]	0	0.00						
3	[A1-M1]	0	0.00						
4	[A2-M2]	0	0.00						
5	[A1-M1] S	0	0.00						
6	[A2-M2] S	0	0.00						
7	[A1-M1] S	0	0.00						
8	[A2-M2] S	0	0.00						
9	[SLEQ]	0	0.00						
10	[SLEF]	0	0.00						
11	[SLER]	0	0.00						
12	[SLEQ] S	0	0.00						
13	[SLEF] S	0	0.00						
14	[SLER] S	0	0.00						

Simbologia adottata

n° Indice della Combinazione/Fase Tipo Tipo della Combinazione/Fase

 $\begin{array}{lll} P_{NUL} & Punto \ di \ nullo \ del \ diagramma, \ espresso \ in \ [m] \\ P_{INV} & Punto \ di \ inversione \ del \ diagramma, \ espresso \ in \ [m] \\ C_{ROT} & Punto \ Centro \ di \ rotazione, \ espresso \ in \ [m] \\ MP & Percentuale \ molle \ plasticizzate, \ espressa \ in \ [\%] \end{array}$

R/R_{MAX} Rapporto tra lo sforzo reale nelle molle e lo sforzo che le molle sarebbero in grado di esplicare, espresso in [%]

Pp Portanza di punta, espressa in [kg]

n°	Tipo	$\mathbf{P}_{\mathrm{NUL}}$	$\mathbf{P}_{\mathbf{INV}}$	C_{ROT}	MP	R/R_{MAX}	Pp
1	[A1-M1]	3.00	3.60	6.09	9.92	5.62	99331
2	[A2-M2]	3.00	4.00	6.25	17.36	9.04	63915
3	[A1-M1]	3.00	3.90	6.20	15.70	7.78	99331
4	[A2-M2]	3.00	4.55	6.49	26.45	13.70	63915
5	[A1-M1] S	3.00	3.60	6.09	9.92	6.99	99331
6	[A2-M2] S	3.01	4.40	6.41	23.14	13.01	63915
7	[A1-M1] S	3.00	3.65	6.10	10.74	7.48	99331
8	[A2-M2] S	3.01	4.50	6.46	24.79	14.05	63915
9	[SLEQ]	3.00	3.40	6.02	6.61	5.27	99331
10	[SLEF]	3.00	3.45	6.03	7.44	5.70	99331
11	[SLER]	3.00	3.60	6.07	9.92	6.49	99331
12	[SLEQ] S	3.00	3.50	6.05	8.26	6.15	99331
13	[SLEF] S	3.00	3.60	6.07	9.92	6.69	99331
14	[SLER] S	3.00	3.70	6.12	12.40	7.67	99331

Valori massimi e minimi sollecitazioni per metro di paratia

n°	Indice della combinazione/fase
Tipo	Tipo della combinazione/fase

Y M N T

n°	Tipo	M	$\mathbf{Y}_{\mathbf{M}}$	T	$\mathbf{Y}_{\mathbf{T}}$	N	$\mathbf{Y}_{\mathbf{N}}$	
1	[A1-M1]	9155	4.25	5454	3.00	5655	9.00	MAX
		0	0.10	-2922	6.05	0	0.00	MIN
2	[A2-M2]	9271	4.40	4989	3.00	5655	9.00	MAX
		0	0.10	-3047	6.25	0	0.00	MIN
3	[A1-M1]	13001	4.35	6933	3.00	5655	9.00	MAX
		0	0.10	-4231	6.20	0	0.00	MIN
4	[A2-M2]	14158	4.65	6515	3.00	5655	9.00	MAX
		0	0.10	-4908	6.45	0	0.00	MIN
5	[A1-M1] S	9082	4.20	5534	3.00	5655	9.00	MAX
		0	9.00	-2895	6.05	0	0.00	MIN
6	[A2-M2] S	13232	4.55	6624	3.00	5655	9.00	MAX
		0	0.00	-4502	6.40	0	0.00	MIN
7	[A1-M1] S	9749	4.25	5828	3.00	5655	9.00	MAX
		0	0.00	-3117	6.10	0	0.00	MIN
8	[A2-M2] S	14254	4.65	6948	3.00	5655	9.00	MAX
		0	0.00	-4902	6.45	0	0.00	MIN
9	[SLEQ]	6821	4.15	4294	3.00	5655	9.00	MAX
		0	0.20	-2150	6.00	0	0.00	MIN
10	[SLEF]	7475	4.15	4589	3.00	5655	9.00	MAX
		0	0.20	-2362	6.00	0	0.00	MIN
11	[SLER]	8614	4.20	5078	3.00	5655	9.00	MAX
		0	0.20	-2736	6.05	0	0.00	MIN
12	[SLEQ] S	7969	4.20	4917	3.00	5655	9.00	MAX
		0	0.00	-2526	6.05	0	0.00	MIN
13	[SLEF] S	8778	4.20	5271	3.00	5655	9.00	MAX
		0	0.00	-2792	6.05	0	0.00	MIN
14	[SLER] S	10194	4.25	5862	3.00	5655	9.00	MAX
		0	0.00	-3267	6.10	0	0.00	MIN

Spostamenti massimi e minimi della paratia

Simbologia adottata

Indice della combinazione/fase

ordinata della sezione rispetto alla testa espressa in [m] momento flettente massimo e minimo espresso in [kgm] sforzo normale massimo e minimo espresso in [kg] (positivo di compressione) taglio massimo e minimo espresso in [kg]

Tipo	Tipo della combinazione/fase
Y	ordinata della sezione rispetto alla testa della paratia espressa in [m]
U	spostamento orizzontale massimo e minimo espresso in [cm] positivo verso valle
V	spostamento verticale massimo e minimo espresso in [cm] positivo verso il basso

n°	Tipo	\mathbf{U}	$\mathbf{Y}_{\mathbf{U}}$	V	$\mathbf{Y}_{\mathbf{V}}$	
1	[A1-M1]	0.5310	0.00	0.0032	0.00	MAX
		-0.0393	9.00	0.0000	0.00	MIN
2	[A2-M2]	0.5708	0.00	0.0032	0.00	MAX
		-0.0450	9.00	0.0000	0.00	MIN
3	[A1-M1]	0.7874	0.00	0.0032	0.00	MAX
		-0.0607	9.00	0.0000	0.00	MIN
4	[A2-M2]	0.9698	0.00	0.0032	0.00	MAX
		-0.0831	9.00	0.0000	0.00	MIN
5	[A1-M1] S	0.5250	0.00	0.0032	0.00	MAX
		-0.0388	9.00	0.0000	0.00	MIN
6	[A2-M2] S	0.8711	0.00	0.0032	0.00	MAX
		-0.0729	9.00	0.0000	0.00	MIN
7	[A1-M1] S	0.5675	0.00	0.0032	0.00	MAX
		-0.0422	9.00	0.0000	0.00	MIN
8	[A2-M2] S	0.9583	0.00	0.0032	0.00	MAX
		-0.0814	9.00	0.0000	0.00	MIN
9	[SLEQ]	0.3858	0.00	0.0032	0.00	MAX
		-0.0277	9.00	0.0000	0.00	MIN
10	[SLEF]	0.4252	0.00	0.0032	0.00	MAX
		-0.0307	9.00	0.0000	0.00	MIN
11	[SLER]	0.4961	0.00	0.0032	0.00	MAX
		-0.0362	9.00	0.0000	0.00	MIN
12	[SLEQ] S	0.4557	0.00	0.0032	0.00	MAX
		-0.0332	9.00	0.0000	0.00	MIN
13	[SLEF] S	0.5061	0.00	0.0032	0.00	MAX
		-0.0372	9.00	0.0000	0.00	MIN
14	[SLER] S	0.5977	0.00	0.0032	0.00	MAX
		-0.0446	9.00	0.0000	0.00	MIN

Stabilità globale

Metodo di Fellenius Numero di cerchi analizzati

Simbologia adottata

Indice della combinazione/fase

Tipo Tipo della combinazione/fase

Coordinate centro cerchio superficie di scorrimento, espresse in [m] $(X_C; Y_C)$

Raggio cerchio superficie di scorrimento, espresso in [m]

 $(X_V; Y_V)$ Coordinate intersezione del cerchio con il pendio a valle, espresse in [m] Coordinate intersezione del cerchio con il pendio a monte, espresse in [m] $(X_M; Y_M)$

Coefficiente di sicurezza FS

\mathbf{n}°	Tipo	$(\mathbf{X}_{\mathbf{C}}, \mathbf{Y}_{\mathbf{C}})$	R	$(\mathbf{X}_{\mathbf{V}}, \mathbf{Y}_{\mathbf{V}})$	$(\mathbf{X}_{\mathbf{M}}, \mathbf{Y}_{\mathbf{M}})$	FS
2	[A2-M2]	(-0.90; 0.90)	9.94	(-10.05; -2.98)	(9.03; 0.45)	3.33
4	[A2-M2]	(-0.90; 0.90)	9.94	(-10.05; -2.98)	(9.03; 0.45)	2.84
6	[A2-M2] S	(0.00; 8.10)	17.10	(-13.02; -2.99)	(15.73; 1.36)	1.83
8	[A2-M2] S	(0.00; 8.10)	17.10	(-13.02; -2.99)	(15.73; 1.36)	1.82

Combinazione n° 8

50 Numero di strisce

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa alla paratia (spigolo contro terra) Le strisce sono numerate da monte verso valle numero d'ordine della striscia Ν° W peso della striscia espresso in [kg]

α angolo fra la base della striscia e l'orizzontale espresso in gradi (positivo antiorario)

angolo d'attrito del terreno lungo la base della striscia φ

coesione del terreno lungo la base della striscia espressa in [kg/cmq]

blarghezza della striscia espressa in [m]

sviluppo della base della striscia espressa in [m] (L=b/cosα) L pressione neutra lungo la base della striscia espressa in [kg/cmq] Ctn, Ctt contributo alla striscia normale e tangenziale del tirante espresse in [kg]

Caratteristiche delle strisce

\mathbf{N}°	\mathbf{W}	α (°)	Wsinα	L	ф	c	u	(Ctn; Ctt)
1	427.09	-48.17	-318.22	0.85	19.18	0.104	0.000	(0; 0)
2	1280.62	-45.39	-911.73	0.81	19.18	0.104	0.000	(0; 0)
3	2057.02	-42.75	-1396.34	0.77	19.18	0.104	0.000	(0; 0)
4	2766.03	-40.22	-1786.00	0.74	19.18	0.104	0.000	(0; 0)
5	3415.18	-37.78	-2092.03	0.72	19.18	0.104	0.000	(0;0)
6	4010.41	-35.41	-2323.83	0.69	19.18	0.104	0.000	(0; 0)
7	4556.49	-33.12	-2489.35	0.68	19.18	0.104	0.000	(0; 0)
8	5057.30	-30.88	-2595.48	0.66	19.18	0.104	0.000	(0; 0)
9	5516.06	-28.69	-2648.27	0.65	19.18	0.104	0.000	(0; 0)
10	5935.45	-26.55	-2653.07	0.63	19.18	0.104	0.000	(0;0)
11	6317.72	-24.45	-2614.75	0.62	19.18	0.104	0.000	(0; 0)
12	6664.78	-22.38	-2537.70	0.61	19.18	0.104	0.000	(0; 0)
13	6978.25	-20.34	-2426.00	0.60	19.18	0.104	0.000	(0; 0)
14	7259.51	-18.33	-2283.41	0.60	19.18	0.104	0.000	(0; 0)
15	7509.72	-16.35	-2113.46	0.59	19.18	0.104	0.000	(0;0)
16	7729.88	-14.38	-1919.48	0.58	19.18	0.104	0.000	(0;0)
17	7920.84	-12.43	-1704.65	0.58	19.18	0.104	0.000	(0; 0)
18	8083.30	-10.49	-1471.97	0.58	19.18	0.104	0.000	(0; 0)
19	8217.84	-8.57	-1224.39	0.57	19.18	0.104	0.000	(0; 0)
20	8324.93	-6.65	-964.71	0.57	19.18	0.104	0.000	(0; 0)
21	8404.93	-4.75	-695.70	0.57	19.18	0.104	0.000	(0;0)
22	8458.12	-2.85	-420.06	0.57	19.18	0.104	0.000	(0;0)
23	8484.67	-0.95	-140.46	0.57	19.18	0.104	0.000	(0; 0)
24	12209.73	0.98	207.96	0.58	19.18	0.104	0.000	(0; 0)
25	12523.11	2.93	639.88	0.58	19.18	0.104	0.000	(0; 0)
26	12631.53	4.89	1075.70	0.58	19.18	0.104	0.000	(0; 0)
27	12544.38	6.85	1495.59	0.59	19.18	0.104	0.000	(0; 0)
28	12427.69	8.82	1905.01	0.59	19.18	0.104	0.000	(0; 0)

29	12281.05	10.80	2300.88	0.59	19.18	0.104	0.000	(0; 0)
30	12103.92	12.79	2680.01	0.60	19.18	0.104	0.000	(0;0)
31	11895.60	14.80	3039.11	0.60	19.18	0.104	0.000	(0;0)
32	11655.30	16.83	3374.75	0.61	19.18	0.104	0.000	(0;0)
33	11382.03	18.88	3683.36	0.62	19.18	0.104	0.000	(0;0)
34	11074.61	20.96	3961.15	0.62	19.18	0.104	0.000	(0;0)
35	10731.69	23.06	4204.08	0.63	19.18	0.104	0.000	(0;0)
36	10351.62	25.20	4407.84	0.64	19.18	0.104	0.000	(0;0)
37	9932.50	27.38	4567.76	0.66	19.18	0.104	0.000	(0;0)
38	9472.04	29.60	4678.71	0.67	19.18	0.104	0.000	(0;0)
39	8903.85	31.87	4701.40	0.69	19.18	0.104	0.000	(0;0)
40	8299.29	34.20	4664.96	0.70	19.18	0.104	0.000	(0;0)
41	7729.58	36.60	4608.11	0.73	19.18	0.104	0.000	(0;0)
42	7165.84	39.07	4516.21	0.75	19.18	0.104	0.000	(0;0)
43	6541.48	41.63	4345.65	0.78	19.18	0.104	0.000	(0;0)
44	5847.56	44.30	4083.97	0.81	19.18	0.104	0.000	(0;0)
45	5074.27	47.10	3716.88	0.86	19.18	0.104	0.000	(0;0)
46	4264.31	50.05	3269.00	0.91	18.13	0.056	0.000	(0;0)
47	3532.94	53.20	2828.85	0.97	17.07	0.008	0.000	(0;0)
48	2710.21	56.60	2262.60	1.06	17.07	0.008	0.000	(0;0)
49	1752.22	60.34	1522.71	1.18	17.07	0.008	0.000	(0;0)
50	617.30	64.17	555.61	1.34	17.07	0.008	0.000	(0; 0)

Resistenza a taglio paratia= 0.00 [kg]

$$\begin{split} \Sigma W_i &= 371031.85 \text{ [kg]} \\ \Sigma W_i \sin \alpha_i &= 43566.68 \text{ [kg]} \\ \Sigma W_i \cos \alpha_i \tan \phi_i &= 117560.77 \text{ [kg]} \\ \Sigma c_i b_i / \cos \alpha_i &= 31324.14 \text{ [kg]} \end{split}$$

Descrizione armatura pali e caratteristiche sezione

Diametro del palo	80.00	[cm]
Area della sezione trasversale	5026.55	[cmq]
Copriferro	3.00	[cm]

L'armatura del palo è costituita da $12\phi18(A_f=30.54~cmq)$ longitudinali e staffe $\phi10/20.0~cm$.

Verifica armatura paratia (Sezioni critiche)

Simbologia adottata

n° Indice della combinazione/fase Tipo Tipo della Combinazione/Fase

Y ordinata della sezione rispetto alla testa della paratia espressa in [m]

M momento flettente espresso in [kgm]

- N sforzo normale espresso in [kg] (positivo di compressione)
- Mu momento ultimo di riferimento espresso in [kgm]
- Nu sforzo normale ultimo di riferimento espresso in [kg]
- FS fattore di sicurezza (rapporto fra la sollecitazione ultima e la sollecitazione di esercizio)
- T taglio espresso in [kg]
- Tr taglio resistente espresso in [kg]
- FS_T fattore di sicurezza a taglio

\mathbf{n}°	Tipo	Y	\mathbf{M}	N	Mu	Nu	FS
1	[A1-M1]	4.20	18310	5278	41301	11905	2.26
2	[A2-M2]	4.35	18536	5466	41372	12201	2.23
3	[A1-M1]	4.30	25994	5404	40461	8411	1.56
4	[A2-M2]	4.65	28317	5843	40446	8346	1.43
5	[A1-M1] S	4.20	18164	5278	41325	12008	2.28
6	[A2-M2] S	4.55	26464	5718	40545	8760	1.53
7	[A1-M1] S	4.20	19492	5278	41115	11133	2.11
8	[A2-M2] S	4.60	28507	5781	40409	8194	1.42

\mathbf{n}°	Tipo	Y	T	Tr	FS
1	[A1-M1]	3.00	10907	51281	4.70
2	[A2-M2]	3.00	9978	51281	5.14
3	[A1-M1]	3.00	13866	51281	3.70
4	[A2-M2]	3.00	13030	51281	3.94
5	[A1-M1] S	3.00	11067	51281	4.63
6	[A2-M2] S	3.00	13248	51281	3.87
7	[A1-M1] S	3.00	11656	51281	4.40
8	[A2-M2] S	3.00	13896	51281	3.69

Simbologia adottata

 n° Indice della combinazione/fase Tipo Tipo della Combinazione/Fase

Y ordinata della sezione rispetto alla testa della paratia espressa in [m]

σ_c tensione nel calcestruzzo, espressa in [kg/cmq]

 σ_f tensione nell'armatura longitudinale del palo, espressa in [kg/cmq] τ_c tensione tangenziale nel calcestruzzo, espresso in [kg/cmq]

 σ_{st} tensione nell'armatura trasversale, espresso in [kg/cmq]

\mathbf{n}°	Tipo	$\sigma_{\rm c}$	$Y(\sigma_c)$	$\sigma_{\!\scriptscriptstyle \mathrm{f}}$	$Y(\sigma_f)$	$ au_{ m c}$	$Y(\tau_c)$	$\sigma_{ m st}$	$Y(\sigma_{st})$
9	[SLEQ]	50.38	4.15	1797.55	4.10	2.33	3.00	1583.21	3.00
10	[SLEF]	55.26	4.15	1987.87	4.10	2.49	3.00	1690.67	3.00
11	[SLER]	63.74	4.20	2318.81	4.15	2.75	3.00	1868.51	3.00
12	[SLEQ] S	58.94	4.20	2131.30	4.15	2.67	3.00	1810.61	3.00
13	[SLEF] S	64.96	4.20	2366.17	4.15	2.86	3.00	1939.76	3.00
14	[SLER] S	75.50	4.25	2777.41	4.20	3.17	3.00	2155.36	3.00

Verifica armatura paratia (Inviluppo)

Simbologia adottata

n° Indice della Combinazione/Fase Tipo Tipo della Combinazione/Fase

Y ordinata della sezione con fattore di sicurezza minimo, espressa in [m]

M momento flettente, espresso in [kgm]

N sforzo normale, espresso in [kg] (positivo di compressione) Mu momento ultimo di riferimento, espresso in [kgm]

Nu sforzo normale ultimo di riferimento, espresso in [kg]

FS fattore di sicurezza (rapporto fra la sollecitazione ultima e la sollecitazione di esercizio)

T taglio, espresso in [kg]

Tr Taglio resistente, espresso in [kg] FS_T fattore di sicurezza a taglio

\mathbf{n}°	Tipo	Y	M	N	Mu	Nu	FS	T	Tr	FS_T
1	[A1-M1]	0.00	0	0	0	0	1000.00	0	01	00.0000.00
1	[A1-M1]	0.05	0	63	0	-121844	1939.20	1	51281	53776.75
1	[A1-M1]	0.10	0	126	0	-121844	969.60	4	51281	13429.48
8	[A2-M2] S	0.15	1	188	2257	698197	3704.05	18	51281	2869.49
4	[A2-M2]	0.20	3	251	7393	693144	2757.93	71	51281	717.27
4	[A2-M2]	0.25	8	314	17684	683018	2174.11	147	51281	349.72
4	[A2-M2]	0.30	18	377	31138	669780	1776.65	229	51281	223.88

4	[A2-M2]	0.35	31	440	46475	654690	1488.53	319	51281	160.87
4	[A2-M2]	0.40	50	503	58531	593333	1180.40	416	51281	123.34
4	[A2-M2]	0.45	73	565	68157	528152	933.98	520	51281	98.66
4	[A2-M2]	0.50	102	628	75336	465278	740.51	631	51281	81.32
4	[A2-M2]	0.55	136	691	80122	406572	588.25	748	51281	68.55
4	[A2-M2]	0.60	177	754	82642	352630	467.69	872	51281	58.82
4	[A2-M2]	0.65	224	817	82491	301408	369.00	1002	51281	51.18
4	[A2-M2]	0.70	277	880	80700	256220	291.28	1138	51281	45.05
4	[A2-M2]	0.75	338	942	77828	217319	230.58	1280	51281	40.05
4	[A2-M2]	0.80	405	1005	74359	184462	183.49	1429	51281	35.90
4	[A2-M2]	0.85	481	1068	70914	157629	147.57	1583	51281	32.40
4	[A2-M2]	0.90	564	1131	68081	136607	120.79	1746	51281	29.36
4	[A2-M2]	0.95	655	1194	65089	118653	99.39	1920	51281	26.70
4	[A2-M2]	1.00	755	1257	62725	104467	83.13	2101	51281	24.41
4	[A2-M2]	1.05	863	1319	60768	92929	70.43	2287	51281	22.42
4	[A2-M2]	1.10	980	1382	58143	82005	59.32	2479	51281	20.69
4	[A2-M2]	1.15	1107	1445	56018	73158	50.62	2677	51281	19.15
4	[A2-M2]	1.20	1243	1508	54264	65857	43.67	2881	51281	17.80
4	[A2-M2]	1.25	1388	1571	52793	59737	38.03	3091	51281	16.59
4	[A2-M2]	1.30	1544	1634	51544	54540	33.39	3307	51281	15.51
3	[A1-M1]	1.35	1714	1696	50437	49929	29.43	3529	51281	14.53
3	[A1-M1]	1.40	1896	1759	49470	45908	26.09	3756	51281	13.65
3	[A1-M1]	1.45	2089	1822	48630	42409	23.27	3988	51281	12.86
3	[A1-M1]	1.50	2295	1885	47892	39339	20.87	4227	51281	12.13
3	[A1-M1]	1.55	2512	1948	47240	36626	18.80	4471	51281	11.47
3	[A1-M1]	1.60	2742	2011	46661	34215	17.02	4720	51281	10.86
3	[A1-M1]	1.65	2984	2073	46143	32058	15.46	4975	51281	10.31
3	[A1-M1]	1.70	3240	2136	45677	30120	14.10	5236	51281	9.79
3	[A1-M1]	1.75	3508	2199	45257	28370	12.90	5501	51281	9.32
3	[A1-M1]	1.80	3790	2262	44875	26783	11.84	5773	51281	8.88
3	[A1-M1]	1.85	4085	2325	44528	25338	10.90	6049	51281	8.48
3	[A1-M1]	1.90	4395	2388	44211	24018	10.06	6331	51281	8.10
3	[A1-M1]	1.95	4719	2450	43920	22808	9.31	6619	51281	7.75
3	[A1-M1]	2.00	5057	2513	43653	21695	8.63	6912	51281	7.42
3	[A1-M1]	2.05	5410	2576	43406	20669	8.02	7210	51281	7.11
3	[A1-M1]	2.10	5778	2639	43178	19720	7.47	7513 7822	51281	6.83
3	[A1-M1]	2.15	6161	2702	42967 42771	18841	6.97	7822	51281	6.56
	[A1-M1]	2.20 2.25	6560 6975	2765 2827	42771	18024 17263	6.52	8136	51281 51281	6.30 6.07
3	[A1-M1] [A1-M1]	2.23	7406	2827	42388	16554	6.11 5.73	8455 8779	51281	5.84
3 3	[A1-M1]	2.35	7853	2953	42418	15891	5.73	9109	51281	5.63
3	[A1-M1]	2.33	8317	3016	42238	15270	5.06	9444	51281	5.43
3	[A1-M1]	2.45	8798	3079	41969	14687	4.77	9784	51281	5.24
3	[A1-M1]	2.43	9296	3142	41837	14140	4.77	10130	51281	5.06
3	[A1-M1]	2.55	9811	3204	41714	13625	4.25	10480	51281	4.89
3	[A1-M1]	2.60	10344	3267	41597	13139	4.02	10836	51281	4.73
3	[A1-M1]	2.65	10895	3330	41487	12681	3.81	11197	51281	4.58
3	[A1-M1]	2.70	11464	3393	41383	12248	3.61	11563	51281	4.43
3	[A1-M1]	2.75	12051	3456	41285	11839	3.43	11935	51281	4.30
3	[A1-M1]	2.80	12657	3519	41191	11451	3.25	12311	51281	4.17
3	[A1-M1]	2.85	13282	3581	41103	11083	3.09	12693	51281	4.04
3	[A1-M1]	2.90	13927	3644	41019	10734	2.95	13079	51281	3.92
3	[A1-M1]	2.95	14590	3707	40939	10402	2.81	13470	51281	3.81
3	[A1-M1]	3.00	15274	3770	40864	10086	2.68	13896	51281	3.69
3	[A1-M1]	3.05	15965	3833	40793	9793	2.56	13754	51281	3.73
3	[A1-M1]	3.10	16645	3896	40730	9532	2.45	13590	51281	3.77
3	[A1-M1]	3.15	17314	3958	40674	9299	2.35	13409	51281	3.82
3	[A1-M1]	3.20	17969	4021	40625	9091	2.26	13210	51281	3.88
3	[A1-M1]	3.25	18609	4084	40580	8906	2.18	12992	51281	3.95
3	[A1-M1]	3.30	19232	4147	40541	8742	2.11	12754	51281	4.02
3	[A1-M1]	3.35	19837	4210	40506	8596	2.04	12498	51281	4.10
3	[A1-M1]	3.40	20422	4273	40475	8468	1.98	12222	51281	4.20
3	[A1-M1]	3.45	20986	4335	40448	8356	1.93	11927	51281	4.30
3	[A1-M1]	3.50	21526	4398	40425	8260	1.88	11613	51281	4.42

3	[A1-M1]	3.55	22042	4461	40405	8177	1.83	11280	51281	4.55
3	[A1-M1]	3.60	22532	4524	40388	8109	1.79	10928	51281	4.69
3	[A1-M1]	3.65	22995	4587	40375	8054	1.76	10556	51281	4.86
3	[A1-M1]	3.70	23428	4650	40365	8011	1.72	10165	51281	5.04
3	[A1-M1]	3.75	23830	4712	40358	7981	1.69	9756	51281	5.26
8	[A2-M2] S	3.80	24269	4775	40348	7939	1.66	9327	51281	5.50
8	[A2-M2] S	3.85	24736	4838	40336	7889	1.63	8878	51281	5.78
8	[A2-M2] S	3.90	25179	4901	40326	7849	1.60	8411	51281	6.10
8	[A2-M2] S	3.95	25600	4964	40318	7818	1.57	7940	51281	6.46
8	[A2-M2] S	4.00	25996	5027	40313	7795	1.55	7482	51281	6.85
8	[A2-M2] S	4.05	26367	5089	40310	7781	1.53	7004	51281	7.32
8	[A2-M2] S	4.10	26712	5152	40308	7775	1.53	6507	51281	7.32
8	[A2-M2] S	4.15	27029	5215	40308	7777	1.49	5990	51281	8.56
			27029	5278	40309	7788		5454	51281	9.40
8	[A2-M2] S	4.20					1.48			
8	[A2-M2] S	4.25	27579	5341	40316	7807	1.46	4899	51281	10.47
8	[A2-M2] S	4.30	27809	5404	40323	7835	1.45	4324	51281	11.86
8	[A2-M2] S	4.35	28008	5466	40331	7872	1.44	3730	51281	13.75
8	[A2-M2] S	4.40	28175	5529	40342	7917	1.43	3117	51281	16.45
8	[A2-M2] S	4.45	28309	5592	40356	7972	1.43	2485	51281	20.63
8	[A2-M2] S	4.50	28409	5655	40371	8036	1.42	-2032	51281	25.24
8	[A2-M2] S	4.55	28474	5718	40389	8110	1.42	-2334	51281	21.97
8	[A2-M2] S	4.60	28507	5781	40409	8194	1.42	-2735	51281	18.75
8	[A2-M2] S	4.65	28508	5843	40431	8287	1.42	-3147	51281	16.30
8	[A2-M2] S	4.70	28478	5906	40456	8391	1.42	-3540	51281	14.49
8	[A2-M2] S	4.75	28418	5969	40483	8503	1.42	-3914	51281	13.10
8	[A2-M2] S	4.80	28331	6032	40513	8625	1.43	-4271	51281	12.01
8	[A2-M2] S	4.85	28217	6095	40544	8757	1.44	-4609	51281	11.13
8	[A2-M2] S	4.90	28076	6158	40578	8899	1.45	-4931	51281	10.40
8	[A2-M2] S	4.95	27911	6220	40615	9052	1.46	-5235	51281	9.80
8	[A2-M2] S	5.00	27723	6283	40654	9214	1.47	-5523	51281	9.28
8	[A2-M2] S	5.05	27511	6346	40696	9387	1.48	-5796	51281	8.85
8	[A2-M2] S	5.10	27279	6409	40740	9571	1.49	-6052	51281	8.47
4	[A2-M2]	5.15	27028	6472	40787	9766	1.51	-6293	51281	8.15
4	[A2-M2]	5.20	26770	6535	40835	9968	1.53	-6520	51281	7.87
4	[A2-M2]	5.25	26493	6597	40887	10182	1.54	-6731	51281	7.62
4	[A2-M2]	5.30	26197	6660	40941	10409	1.56	-6929	51281	7.40
4	[A2-M2]	5.35	25884	6723	40999	10649	1.58	-7113	51281	7.21
4	[A2-M2]	5.40	25555	6786	41060	10903	1.61	-7284	51281	7.04
4	[A2-M2]	5.45	25210	6849	41124	11172	1.63	-7441	51281	6.89
4	[A2-M2]	5.50	24851	6912	41193	11456	1.66	-7643	51281	6.71
4	[A2-M2]	5.55	24478	6974	41265	11757	1.69	-7886	51281	6.50
4	[A2-M2]	5.60	24092	7037	41342	12076	1.72	-8112	51281	6.32
4	[A2-M2]	5.65	23695	7100	41422	12412	1.75	-8322	51281	6.16
4	[A2-M2]	5.70	23286	7163	41508	12768	1.78	-8517	51281	6.02
4	[A2-M2]	5.75	22867	7226	41598	13145	1.82	-8696	51281	5.90
4	[A2-M2]	5.80	22438	7288	41694	13544	1.86	-8860	51281	5.79
4	[A2-M2]	5.85	22000	7351	41796	13966	1.90	-9010	51281	5.69
	-				41790		1.90	-9010 -9146		
4	[A2-M2]	5.90	21554	7414		14414			51281	5.61
4	[A2-M2]	5.95	21101	7477	42017	14888	1.99	-9268	51281	5.53
4	[A2-M2]	6.00	20642	7540	42138	15392	2.04	-9377	51281	5.47
4	[A2-M2]	6.05	20176	7603	42267	15927	2.09	-9472	51281	5.41
4	[A2-M2]	6.10	19705	7665	42403	16495	2.15	-9555	51281	5.37
4	[A2-M2]	6.15	19230	7728	42549	17100	2.21	-9626	51281	5.33
4	[A2-M2]	6.20	18750	7791	42704	17744	2.28	-9684	51281	5.30
4	[A2-M2]	6.25	18268	7854	42869	18431	2.35	-9730	51281	5.27
4	[A2-M2]	6.30	17782	7917	43045	19164	2.42	-9765	51281	5.25
4	[A2-M2]	6.35	17294	7980	43233	19948	2.50	-9789	51281	5.24
4	[A2-M2]	6.40	16805	8042	43435	20787	2.58	-9807	51281	5.23
4	[A2-M2]	6.45	16315	8105	43651	21686	2.68	-9816	51281	5.22
4	[A2-M2]	6.50	15824	8168	43883	22652	2.77	-9814	51281	5.23
4	[A2-M2]	6.55	15333	8231	44132	23691	2.88	-9803	51281	5.23
4	[A2-M2]	6.60	14843	8294	44401	24810	2.99	-9780	51281	5.24
4	[A2-M2]	6.65	14354	8357	44692	26019	3.11	-9748	51281	5.26
4	[A2-M2]	6.70	13867	8419	45006	27327	3.25	-9707	51281	5.28

4	[A2-M2]	6.75	13381	8482	45347	28745	3.39	-9655	51281	5.31
4	[A2-M2]	6.80	12898	8545	45717	30287	3.54	-9595	51281	5.34
4	[A2-M2]	6.85	12419	8608	46121	31969	3.71	-9525	51281	5.38
4	[A2-M2]	6.90	11943	8671	46563	33807	3.90	-9447	51281	5.43
4	[A2-M2]	6.95	11470	8734	47047	35823	4.10	-9359	51281	5.48
4	[A2-M2]	7.00	11002	8796	47580	38041	4.32	-9264	51281	5.54
4	[A2-M2]	7.05	10539	8859	48169	40492	4.57	-9160	51281	5.60
4	[A2-M2]	7.10	10081	8922	48822	43209	4.84	-9048	51281	5.67
4	[A2-M2]	7.15	9629	8985	49550	46237	5.15	-8928	51281	5.74
4	[A2-M2]	7.20	9182	9048	50364	49626	5.48	-8800	51281	5.83
4	[A2-M2]	7.25	8742	9111	51280	53441	5.87	-8664	51281	5.92
4	[A2-M2]	7.30	8309	9173	52318	57761	6.30	-8521	51281	6.02
4	[A2-M2]	7.35	7883	9236	53502	62687	6.79	-8371	51281	6.13
4	[A2-M2]	7.40	7464	9299	54862	68346	7.35	-8214	51281	6.24
4	[A2-M2]	7.45	7054	9362	56438	74906	8.00	-8049	51281	6.37
4	[A2-M2]	7.50	6651	9425	58283	82586	8.76	-7877	51281	6.51
4	[A2-M2]	7.55	6257	9488	60469	91684	9.66	-7699	51281	6.66
4	[A2-M2]	7.60	5872	9550	62163	101096	10.59	-7514	51281	6.83
4	[A2-M2]	7.65	5497	9613	63956	111851	11.64	-7322	51281	7.00
4	[A2-M2]	7.70	5131	9676	66086	124632	12.88	-7123	51281	7.20
4	[A2-M2]	7.75	4775	9739	68652	140034	14.38	-6918	51281	7.41
4	[A2-M2]	7.80	4429	9802	70792	156680	15.98	-6706	51281	7.65
4	[A2-M2]	7.85	4093	9865	73380	176839	17.93	-6489	51281	7.90
4	[A2-M2]	7.90	3769	9927	76067	200361	20.18	-6264	51281	8.19
4	[A2-M2]	7.95	3456	9990	78966	228287	22.85	-6034	51281	8.50
4	[A2-M2]	8.00	3154	10053	80763	257425	25.61	-5798	51281	8.85
4	[A2-M2]	8.05	2864	10116	82214	290375	28.70	-5555	51281	9.23
4	[A2-M2]	8.10	2586	10179	83124	327134	32.14	-5306	51281	9.66
4	[A2-M2]	8.15	2321	10242	82432	363722	35.51	-5051	51281	10.15
4	[A2-M2]	8.20	2069	10304	80484	400937	38.91	-4791	51281	10.70
4	[A2-M2]	8.25	1829	10367	77560	439637	42.41	-4524	51281	11.34
4	[A2-M2]	8.30	1603	10430	73765	480028	46.02	-4251	51281	12.06
4	[A2-M2]	8.35	1390	10493	69071	521329	49.68	-3973	51281	12.91
4	[A2-M2]	8.40	1192	10556	63497	562505	53.29	-3689	51281	13.90
4	[A2-M2]	8.45	1007	10619	57111	602147	56.71	-3398	51281	15.09
4	[A2-M2]	8.50	837	10681	50134	639629	59.88	-3102	51281	16.53
4	[A2-M2]	8.55	682	10744	41851	659240	61.36	-2801	51281	18.31
4	[A2-M2]	8.60	542	10807	33479	667477	61.76	-2493	51281	20.57
4	[A2-M2]	8.65	417	10870	25918	674917	62.09	-2179	51281	23.53
4	[A2-M2]	8.70	308	10933	19228	681500	62.34	-1860	51281	27.57
4	[A2-M2]	8.75	215	10996	13464	687170	62.50	-1535	51281	33.41
4	[A2-M2]	8.80	139	11058	8678	691880	62.57	-1204	51281	42.59
4	[A2-M2]	8.85	78	11121	4909	695588	62.55	-868	51281	59.11
4	[A2-M2]	8.90	35	11184	2192	698262	62.43	-525	51281	97.65
4	[A2-M2]	8.95	9	11247	551	699876	62.23	-177	51281	289.75

Simbologia adottata

n° Indice della combinazione/fase
Tipo Tipo della Combinazione/Fase
Y ordinata della sezione, espressa in [m]

 $\begin{array}{ll} \sigma_c & \text{tensione massima nel calcestruzzo, espressa in [kg/cmq]} \\ \sigma_f & \text{tensione massima nei ferri longitudinali, espressa in [kg/cmq]} \\ \sigma_{st} & \text{tensione massima nei ferri trasversali, espressa in [kg/cmq]} \end{array}$

Y	$\sigma_{ m c}$ $ m n^{\circ}$ - Tipo	σ _f n° - Tipo	$ au_{ m c}$ $ m n^\circ$ - $ m Tipo$	σ_{st} n $^{\circ}$ - Tipo
0.00	0.001 - [A1-M1]	0.001 - [A1-M1]	0.0012 - [SLEQ] S	0.0012 - [SLEQ] S
0.05	0.0114 - [SLER] S	0.1714 - [SLER] S	0.0014 - [SLER] S	0.0814 - [SLER] S
0.10	0.0214 - [SLER] S	0.3514 - [SLER] S	0.0014 - [SLER] S	0.3114 - [SLER] S
0.15	0.0314 - [SLER] S	0.5214 - [SLER] S	0.0014 - [SLER] S	0.6914 - [SLER] S
0.20	0.0514 - [SLER] S	0.7014 - [SLER] S	0.0014 - [SLER] S	1.2314 - [SLER] S
0.25	0.0614 - [SLER] S	0.8914 - [SLER] S	0.0114 - [SLER] S	4.5614 - [SLER] S
0.30	0.0814 - [SLER] S	1.1214 - [SLER] S	0.0214 - [SLER] S	13.2914 - [SLER] S
0.35	0.1014 - [SLER] S	1.4214 - [SLER] S	0.0414 - [SLER] S	25.3214 - [SLER] S
0.40	0.1214 - [SLER] S	1.8014 - [SLER] S	0.0614 - [SLER] S	38.5614 - [SLER] S
0.45	0.1614 - [SLER] S	2.2614 - [SLER] S	0.0814 - [SLER] S	52.9914 - [SLER] S

```
0.50
          0.2014 - [SLER] S
                               2.8314 - [SLER] S
                                                    0.1014 - [SLER] S 68.6114 - [SLER] S
          0.2514 - [SLER] S
                                                                       85.4014 - [SLER] S
0.55
                               3.5014 - [SLER] S
                                                    0.1314 - [SLER] S
0.60
          0.3114 - [SLER] S
                               4.3114 - [SLER] S
                                                    0.1614 - [SLER] S 109.7014 - [SLER] S
                                                    0.2114 - [SLER] S 141.6914 - [SLER] S
0.65
          0.3914 - [SLER] S
                               5.3314 - [SLER] S
0.70
          0.4914 - [SLER] S
                               6.6514 - [SLER] S
                                                    0.2614 - [SLER] S 178.1514 - [SLER] S
0.75
          0.6214 - [SLER] S
                               8.3314 - [SLER] S
                                                    0.3214 - [SLER] S 215.0414 - [SLER] S
0.80
          0.7814 - [SLER] S
                              10.3914 - [SLER] S
                                                    0.3714 - [SLER] S 248.1314 - [SLER] S
0.85
                                                    0.4114 - [SLER] S 276.1514 - [SLER] S
          0.9714 - [SLER] S
                              12.8314 - [SLER] S
0.90
                                                    0.4414 - [SLER] S 300.5914 - [SLER] S
          1.2014 - [SLER] S
                              18.0614 - [SLER] S
0.95
          1.4514 - [SLER] S
                              25.0314 - [SLER] S
                                                    0.4814 - [SLER] S 323.6014 - [SLER] S
                                                    0.5114 - [SLER] S 346.6614 - [SLER] S
1.00
          1.7414 - [SLER] S
                              33.2414 - [SLER] S
                                                    0.5514 - [SLER] S 370.5914 - [SLER] S
1.05
          2.0514 - [SLER] S
                              42.6714 - [SLER] S
                                                    0.5814 - [SLER] S 395.7414 - [SLER] S
1.10
          2.4014 - [SLER] S
                              53.3514 - [SLER] S
1.15
          2.7714 - [SLER] S
                              65.2814 - [SLER] S
                                                    0.6214 - [SLER] S 422.2414 - [SLER] S
                                                    0.6614 - [SLER] S 450.0914 - [SLER] S
1.20
          3.1814 - [SLER] S
                              78.4814 - [SLER] S
1.25
          3.6114 - [SLER] S
                              92.9914 - [SLER] S
                                                    0.7114 - [SLER] S 479.2814 - [SLER] S
1.30
                                                    0.7514 - [SLER] S 509.7614 - [SLER] S
          4.0814 - [SLER] S 108.8214 - [SLER] S
1.35
          4.5914 - [SLER] S 126.0314 - [SLER] S
                                                    0.8014 - [SLER] S 541.4914 - [SLER] S
1.40
          5.1214 - [SLER] S 144.6314 - [SLER] S
                                                    0.8514 - [SLER] S 574.4314 - [SLER] S
1.45
          5.7014 - [SLER] S 164.6514 - [SLER] S
                                                    0.9014 - [SLER] S 608.5314 - [SLER] S
1.50
          6.3114 - [SLER] S 186.1514 - [SLER] S
                                                    0.9514 - [SLER] S 643.7514 - [SLER] S
1.55
          6.9614 - [SLER] S 209.1414 - [SLER] S
                                                    1.0014 - [SLER] S 680.0814 - [SLER] S
          7.6514 - [SLER] S 233.6714 - [SLER] S
1.60
                                                    1.0614 - [SLER] S 717.4914 - [SLER] S
          8.3714 - [SLER] S 259.7714 - [SLER] S
1.65
                                                    1.1114 - [SLER] S 755.9414 - [SLER] S
1.70
          9.1414 - [SLER] S 287.4714 - [SLER] S
                                                    1.1714 - [SLER] S 795.4314 - [SLER] S
1.75
          9.9514 - [SLER] S 316.8214 - [SLER] S
                                                    1.2314 - [SLER] S 835.9414 - [SLER] S
1.80
         10.8014 - [SLER] S 347.8514 - [SLER] S
                                                    1.2914 - [SLER] S 877.4514 - [SLER] S
1.85
         11.7014 - [SLER] S 380.5914 - [SLER] S
                                                    1.3514 - [SLER] S 919.9514 - [SLER] S
1.90
         12.6414 - [SLER] S 415.0814 - [SLER] S
                                                    1.4214 - [SLER] S 963.4314 - [SLER] S
1.95
         13.6214 - [SLER] S 451.3514 - [SLER] S
                                                    1.4814 - [SLER] S1007.8814 - [SLER] S
                                                    1.5514 - [SLER] S 1053.2914 - [SLER] S
2.00
         14.6514 - [SLER] S 489.4514 - [SLER] S
2.05
         15.7314 - [SLER] S 529.4114 - [SLER] S
                                                    1.6214 - [SLER] S 1099.6514 - [SLER] S
2.10
         16.8614 - [SLER] S 571.2514 - [SLER] S
                                                    1.6914 - [SLER] S 1146.9614 - [SLER] S
2.15
         18.0314 - [SLER] S 615.0314 - [SLER] S
                                                    1.7614 - [SLER] S 1195.2214 - [SLER] S
2.20
         19.2614 - [SLER] S 660.7714 - [SLER] S
                                                    1.8314 - [SLER] S 1244.4014 - [SLER] S
2.25
         20.5314 - [SLER] S 708.5114 - [SLER] S
                                                    1.9114 - [SLER] S 1294.5214 - [SLER] S
         21.8614 - [SLER] S 758.2814 - [SLER] S
2.30
                                                    1.9814 - [SLER] S1345.5614 - [SLER] S
2.35
         23.2414 - [SLER] S 810.1314 - [SLER] S
                                                    2.0614 - [SLER] S1397.5314 - [SLER] S
2.40
         24.6714 - [SLER] S 864.0814 - [SLER] S
                                                    2.1414 - [SLER] S1450.4214 - [SLER] S
2.45
         26.1614 - [SLER] S 920.1814 - [SLER] S
                                                    2.2214 - [SLER] S 1504.2214 - [SLER] S
         27.7014 - [SLER] S 978.4514 - [SLER] S
2.50
                                                    2.3014 - [SLER] S1558.9314 - [SLER] S
2.55
         29.3014 - [SLER] S 1038.9414 - [SLER] S
                                                    2.3814 - [SLER] S 1614.5514 - [SLER] S
2.60
         30.9614 - [SLER] S1101.6714 - [SLER] S
                                                    2.4614 - [SLER] S 1671.0814 - [SLER] S
2.65
         32.6814 - [SLER] S1166.6914 - [SLER] S
                                                    2.5514 - [SLER] S 1728.5214 - [SLER] S
2.70
                                                    2.6314 - [SLER] S 1786.8614 - [SLER] S
         34.4514 - [SLER] S1234.0314 - [SLER] S
2.75
         36.2814 - [SLER] S1303.7214 - [SLER] S
                                                    2.7214 - [SLER] S1846.1014 - [SLER] S
2.80
         38.1814 - [SLER] S1375.8014 - [SLER] S
                                                    2.8114 - [SLER] S1906.2414 - [SLER] S
2.85
         40.1314 - [SLER] S1450.3114 - [SLER] S
                                                    2.9014 - [SLER] S 1967.2614 - [SLER] S
2.90
         42.1514 - [SLER] S1527.2714 - [SLER] S
                                                    2.9914 - [SLER] S 2029.1414 - [SLER] S
2.95
         44.2314 - [SLER] S1606.7314 - [SLER] S
                                                    3.0814 - [SLER] S2091.8514 - [SLER] S
3.00
         46.3814 - [SLER] S1688.7114 - [SLER] S
                                                    3.1714 - [SLER] S2155.3614 - [SLER] S
3.05
         48.5514 - [SLER] S1771.4914 - [SLER] S
                                                    3.0814 - [SLER] S2089.5414 - [SLER] S
3.10
         50.6614 - [SLER] S1852.1414 - [SLER] S
                                                    2.9914 - [SLER] S 2030.8514 - [SLER] S
3.15
         52.7114 - [SLER] S1930.4814 - [SLER] S
                                                    2.9014 - [SLER] S 1967.9914 - [SLER] S
3.20
                                                    2.8014 - [SLER] S 1900.9614 - [SLER] S
         54.7014 - [SLER] S 2006.3214 - [SLER] S
3.25
         56.6214 - [SLER] S 2079.5114 - [SLER] S
                                                    2.6914 - [SLER] S 1829.5114 - [SLER] S
3.30
         58.4714 - [SLER] S2149.8714 - [SLER] S
                                                    2.5814 - [SLER] S1753.6614 - [SLER] S
3.35
         60.2414 - [SLER] S2217.2214 - [SLER] S
                                                    2.4614 - [SLER] S 1673.3714 - [SLER] S
3.40
         61.9414 - [SLER] S2281.3814 - [SLER] S
                                                    2.3414 - [SLER] S 1588.6514 - [SLER] S
3.45
         63.5414 - [SLER] S2342.1814 - [SLER] S
                                                    2.2114 - [SLER] S1499.4914 - [SLER] S
3.50
         65.0614 - [SLER] S2399.4414 - [SLER] S
                                                    2.0714 - [SLER] S1405.8814 - [SLER] S
3.55
         66.4814 - [SLER] S2452.9714 - [SLER] S
                                                    1.9314 - [SLER] S1307.8314 - [SLER] S
3.60
         67.8014 - [SLER] S2502.6114 - [SLER] S
                                                    1.7714 - [SLER] S1205.3114 - [SLER] S
3.65
         69.0114 - [SLER] S2548.1714 - [SLER] S
                                                    1.6214 - [SLER] S 1098.3414 - [SLER] S
```

```
3.70
         70.1214 - [SLER] S2589.4814 - [SLER] S
                                                    1.4514 - [SLER] S 986.9014 - [SLER] S
3.75
         71.1214 - [SLER] S2626.3614 - [SLER] S
                                                    1.2914 - [SLER] S 876.3014 - [SLER] S
3.80
         72.0014 - [SLER] S2658.8414 - [SLER] S
                                                    1.1314 - [SLER] S 769.3914 - [SLER] S
3.85
                                                    0.9814 - [SLER] S 666.1014 - [SLER] S
         72.7814 - [SLER] S2687.0714 - [SLER] S
3.90
         73.4514 - [SLER] S2711.1914 - [SLER] S
                                                    0.8314 - [SLER] S 566.3714 - [SLER] S
3.95
         74.0214 - [SLER] S2731.3414 - [SLER] S
                                                    0.6914 - [SLER] S 470.1414 - [SLER] S
4.00
         74.4914 - [SLER] S2747.6714 - [SLER] S
                                                    0.5614 - [SLER] S 377.3614 - [SLER] S
4.05
         74.8714 - [SLER] S2760.3114 - [SLER] S
                                                    0.4214 - [SLER] S 287.9514 - [SLER] S
4.10
                                                    0.3014 - [SLER] S 201.8514 - [SLER] S
         75.1514 - [SLER] S2769.3914 - [SLER] S
4.15
         75.3514 - [SLER] S2775.0414 - [SLER] S
                                                    0.1814 - [SLER] S 119.0114 - [SLER] S
         75.4714 - [SLER] S2777.4114 - [SLER] S
4.20
                                                                       73.509 - [SLEQ]
                                                    0.119 - [SLEQ]
4.25
         75.5014 - [SLER] S2776.6114 - [SLER] S
                                                    0.189 - [SLEQ]
                                                                      120.069 - [SLEQ]
4.30
         75.4614 - [SLER] S2772.7614 - [SLER] S
                                                    0.2510 - [SLEF]
                                                                      167.2210 - [SLEF]
4.35
         75.3514 - [SLER] S2766.0014 - [SLER] S
                                                    0.3210 - [SLEF]
                                                                      214.6610 - [SLEF]
4.40
         75.1614 - [SLER] S2756.4314 - [SLER] S
                                                    0.3911 - [SLER]
                                                                      267.0211 - [SLER]
4.45
         74.9014 - [SLER] S2744.1914 - [SLER] S
                                                    0.4711 - [SLER]
                                                                      318.6911 - [SLER]
                                                    0.5514 - [SLER] S 375.0714 - [SLER] S
4.50
         74.5814 - [SLER] S2729.3714 - [SLER] S
4.55
         74.1914 - [SLER] S2712.1114 - [SLER] S
                                                    0.6414 - [SLER] S 434.1314 - [SLER] S
4.60
         73.7514 - [SLER] S2692.4914 - [SLER] S
                                                    0.7214 - [SLER] S 490.5114 - [SLER] S
4.65
         73.2514 - [SLER] S2670.6414 - [SLER] S
                                                    0.8014 - [SLER] S 544.2614 - [SLER] S
4.70
         72.6914 - [SLER] S2646.6614 - [SLER] S
                                                    0.8814 - [SLER] S 595.4314 - [SLER] S
4.75
         72.0814 - [SLER] S2620.6514 - [SLER] S
                                                    0.9514 - [SLER] S 644.0914 - [SLER] S
4.80
         71.4214 - [SLER] S2592.7014 - [SLER] S
                                                    1.0214 - [SLER] S 690.3114 - [SLER] S
4.85
         70.7214 - [SLER] S2562.9314 - [SLER] S
                                                    1.0814 - [SLER] S 734.1314 - [SLER] S
4.90
         69.9714 - [SLER] S2531.4314 - [SLER] S
                                                    1.1414 - [SLER] S 775.6114 - [SLER] S
                                                    1.2014 - [SLER] S 814.8314 - [SLER] S
4.95
         69.1814 - [SLER] S2498.2814 - [SLER] S
5.00
         68.3514 - [SLER] S2463.5814 - [SLER] S
                                                    1.2514 - [SLER] S 851.8214 - [SLER] S
5.05
         67.4814 - [SLER] S2427.4314 - [SLER] S
                                                    1.3114 - [SLER] S 886.6614 - [SLER] S
5.10
         66.5814 - [SLER] S2389.8914 - [SLER] S
                                                    1.3514 - [SLER] S 919.3914 - [SLER] S
                                                    1.4014 - [SLER] S 950.0814 - [SLER] S
5.15
         65.6414 - [SLER] S2351.0714 - [SLER] S
5.20
         64.6714 - [SLER] S2311.0514 - [SLER] S
                                                    1.4414 - [SLER] S 978.7714 - [SLER] S
5.25
         63.6814 - [SLER] S 2269.8914 - [SLER] S
                                                    1.4814 - [SLER] S 1005.5214 - [SLER] S
5.30
         62.6514 - [SLER] S2227.6914 - [SLER] S
                                                    1.5214 - [SLER] S 1030.3914 - [SLER] S
5.35
         61.6014 - [SLER] S2184.5214 - [SLER] S
                                                    1.5514 - [SLER] S 1053.4314 - [SLER] S
5.40
         60.5314 - [SLER] S2140.4514 - [SLER] S
                                                    1.5814 - [SLER] S 1074.6914 - [SLER] S
5.45
         59.4414 - [SLER] S2095.5514 - [SLER] S
                                                    1.6114 - [SLER] S 1094.2214 - [SLER] S
5.50
         58.3314 - [SLER] S 2049.9014 - [SLER] S
                                                    1.6414 - [SLER] S1112.0814 - [SLER] S
5.55
         57.2014 - [SLER] S2003.5714 - [SLER] S
                                                    1.6614 - [SLER] S1128.3114 - [SLER] S
5.60
         56.0514 - [SLER] S1956.6114 - [SLER] S
                                                    1.6814 - [SLER] S1142.9614 - [SLER] S
5.65
         54.8914 - [SLER] S1909.1014 - [SLER] S
                                                    1.7014 - [SLER] S1156.0814 - [SLER] S
5.70
         53.7114 - [SLER] S1861.0914 - [SLER] S
                                                    1.7214 - [SLER] S1167.7314 - [SLER] S
5.75
         52.5214 - [SLER] S1812.6514 - [SLER] S
                                                    1.7314 - [SLER] S1177.9414 - [SLER] S
5.80
         51.3314 - [SLER] S1763.8414 - [SLER] S
                                                    1.7514 - [SLER] S1186.7614 - [SLER] S
5.85
         50.1214 - [SLER] S1714.7214 - [SLER] S
                                                    1.7614 - [SLER] S1194.2514 - [SLER] S
5.90
                                                    1.7714 - [SLER] S 1200.4414 - [SLER] S
         48.9114 - [SLER] S1665.3414 - [SLER] S
5.95
         47.6914 - [SLER] S1615.7514 - [SLER] S
                                                    1.7814 - [SLER] S1205.3914 - [SLER] S
6.00
         46.4714 - [SLER] S1566.0214 - [SLER] S
                                                    1.7814 - [SLER] S1209.1314 - [SLER] S
6.05
         45.2414 - [SLER] S1516.1814 - [SLER] S
                                                    1.7814 - [SLER] S1211.7214 - [SLER] S
6.10
         44.0114 - [SLER] S1466.3014 - [SLER] S
                                                    1.7914 - [SLER] S1213.1914 - [SLER] S
6.15
         42.7814 - [SLER] S1416.4214 - [SLER] S
                                                    1.7914 - [SLER] S1213.5814 - [SLER] S
                                                    1.7914 - [SLER] S1212.9514 - [SLER] S
6.20
         41.5514 - [SLER] S1366.5914 - [SLER] S
6.25
         40.3214 - [SLER] S1316.8514 - [SLER] S
                                                    1.7814 - [SLER] S1211.3414 - [SLER] S
6.30
         39.0914 - [SLER] S1267.2514 - [SLER] S
                                                    1.7814 - [SLER] S1208.7914 - [SLER] S
6.35
                                                    1.7814 - [SLER] S 1205.3414 - [SLER] S
         37.8714 - [SLER] S1217.8314 - [SLER] S
6.40
         36.6514 - [SLER] S1168.6414 - [SLER] S
                                                    1.7714 - [SLER] S 1201.0414 - [SLER] S
6.45
         35.4414 - [SLER] S1119.7214 - [SLER] S
                                                    1.7614 - [SLER] S1195.9314 - [SLER] S
6.50
         34.2314 - [SLER] S1071.1114 - [SLER] S
                                                    1.7514 - [SLER] S1190.0614 - [SLER] S
6.55
         33.0314 - [SLER] S1022.8514 - [SLER] S
                                                    1.7414 - [SLER] S1183.4814 - [SLER] S
6.60
         31.8314 - [SLER] S 974.9814 - [SLER] S
                                                    1.7314 - [SLER] S1176.2414 - [SLER] S
6.65
         30.6514 - [SLER] S 927.5414 - [SLER] S
                                                    1.7214 - [SLER] S1168.3814 - [SLER] S
6.70
         29.4714 - [SLER] S 880.5814 - [SLER] S
                                                    1.7114 - [SLER] S1159.9514 - [SLER] S
         28.3014 - [SLER] S 834.1214 - [SLER] S
6.75
                                                    1.7014 - [SLER] S1151.0214 - [SLER] S
         27.1514 - [SLER] S 788.2014 - [SLER] S
6.80
                                                    1.6814 - [SLER] S1141.6414 - [SLER] S
6.85
         26.0014 - [SLER] S 742.8814 - [SLER] S
                                                    1.6714 - [SLER] S1131.8714 - [SLER] S
```

```
6.90
         24.8714 - [SLER] S 698.1814 - [SLER] S
                                                    1.6514 - [SLER] S1121.7814 - [SLER] S
6.95
         23.7514 - [SLER] S 654.1514 - [SLER] S
                                                    1.6414 - [SLER] S1111.4414 - [SLER] S
7.00
         22.6514 - [SLER] S 610.8314 - [SLER] S
                                                    1.6214 - [SLER] S1100.9214 - [SLER] S
7.05
         21.5514 - [SLER] S 568.2714 - [SLER] S
                                                    1.6114 - [SLER] S 1090.3114 - [SLER] S
7.10
         20.4714 - [SLER] S 526.5114 - [SLER] S
                                                    1.5914 - [SLER] S 1079.6914 - [SLER] S
7.15
         19.4114 - [SLER] S 485.6014 - [SLER] S
                                                    1.5714 - [SLER] S 1069.1414 - [SLER] S
7.20
         18.3614 - [SLER] S 445.6014 - [SLER] S
                                                    1.5614 - [SLER] S 1058.7814 - [SLER] S
7.25
         17.3314 - [SLER] S 406.5714 - [SLER] S
                                                    1.5414 - [SLER] S 1048.6914 - [SLER] S
7.30
         16.3114 - [SLER] S 368.5814 - [SLER] S
                                                    1.5314 - [SLER] S1038.9514 - [SLER] S
7.35
         15.3114 - [SLER] S 331.7014 - [SLER] S
                                                    1.5214 - [SLER] S 1029.6314 - [SLER] S
7.40
         14.3314 - [SLER] S 296.0514 - [SLER] S
                                                    1.5014 - [SLER] S 1020.7414 - [SLER] S
7.45
         13.3714 - [SLER] S 261.7214 - [SLER] S
                                                    1.4914 - [SLER] S 1012.2414 - [SLER] S
7.50
         12.4314 - [SLER] S 228.8414 - [SLER] S
                                                    1.4814 - [SLER] S 1003.9314 - [SLER] S
7.55
         11.5114 - [SLER] S 197.5814 - [SLER] S
                                                    1.4714 - [SLER] S 995.4114 - [SLER] S
         10.6214 - [SLER] S 168.1114 - [SLER] S
                                                    1.4514 - [SLER] S 985.9414 - [SLER] S
7.60
          9.7614 - [SLER] S 140.6714 - [SLER] S
                                                    1.4314 - [SLER] S 974.3414 - [SLER] S
7.65
          8.9314 - [SLER] S 117.7414 - [SLER] S
                                                    1.4114 - [SLER] S 958.9014 - [SLER] S
7.70
7.75
          8.1514 - [SLER] S 108.2814 - [SLER] S
                                                    1.3814 - [SLER] S 937.4714 - [SLER] S
7.80
          7.4214 - [SLER] S
                              99.3614 - [SLER] S
                                                    1.3414 - [SLER] S 907.8614 - [SLER] S
7.85
          6.7514 - [SLER] S
                              91.0914 - [SLER] S
                                                    1.2814 - [SLER] S 868.5714 - [SLER] S
7.90
          6.1514 - [SLER] S
                              83.5714 - [SLER] S
                                                    1.2114 - [SLER] S 819.6914 - [SLER] S
7.95
                              76.8514 - [SLER] S
                                                    1.1214 - [SLER] S 763.1614 - [SLER] S
          5.6214 - [SLER] S
                                                    1.0314 - [SLER] S 702.3214 - [SLER] S
8.00
          5.1514 - [SLER] S
                              70.9614 - [SLER] S
8.05
                              65.8414 - [SLER] S
                                                    0.9414 - [SLER] S 640.7814 - [SLER] S
          4.7514 - [SLER] S
8.10
                              61.4414 - [SLER] S
                                                    0.8614 - [SLER] S 581.5414 - [SLER] S
          4.4114 - [SLER] S
          4.1214 - [SLER] S
                              57.6514 - [SLER] S
                                                    0.7814 - [SLER] S 526.7814 - [SLER] S
8.15
8.20
          3.8714 - [SLER] S
                              54.3814 - [SLER] S
                                                    0.7014 - [SLER] S 478.6914 - [SLER] S
8.25
          3.6514 - [SLER] S
                              51.4714 - [SLER] S
                                                    0.6614 - [SLER] S 446.0914 - [SLER] S
8.30
          3.4414 - [SLER] S
                              48.7514 - [SLER] S
                                                    0.6214 - [SLER] S 418.0114 - [SLER] S
                                                    0.5714 - [SLER] S 389.5214 - [SLER] S
8.35
          3.2414 - [SLER] S
                              46.2014 - [SLER] S
8.40
          3.0614 - [SLER] S
                              43.8514 - [SLER] S
                                                    0.5314 - [SLER] S 360.6414 - [SLER] S
8.45
          2.9014 - [SLER] S
                              41.6814 - [SLER] S
                                                    0.4914 - [SLER] S 331.3514 - [SLER] S
8.50
          2.7414 - [SLER] S
                              39.7014 - [SLER] S
                                                    0.4414 - [SLER] S 301.6714 - [SLER] S
8.55
          2.6114 - [SLER] S
                              37.9214 - [SLER] S
                                                    0.4014 - [SLER] S 271.5914 - [SLER] S
                                                    0.3614 - [SLER] S 241.1214 - [SLER] S
8.60
          2.4814 - [SLER] S
                              36.3214 - [SLER] S
                                                    0.3114 - [SLER] S 210.2614 - [SLER] S
          2.3814 - [SLER] S
                              34.9314 - [SLER] S
8.65
                                                    0.2614 - [SLER] S 179.0014 - [SLER] S
8.70
          2.2814 - [SLER] S
                              33.7414 - [SLER] S
                                                    0.2214 - [SLER] S 147.3414 - [SLER] S
8.75
          2.2114 - [SLER] S
                              32.7514 - [SLER] S
8.80
          2.1514 - [SLER] S
                              31.9614 - [SLER] S
                                                    0.1714 - [SLER] S 115.3014 - [SLER] S
                                                                        82.8614 - [SLER] S
8.85
          2.1014 - [SLER] S
                              31.3914 - [SLER] S
                                                    0.1214 - [SLER] S
8.90
          2.0714 - [SLER] S
                              31.0214 - [SLER] S
                                                    0.0714 - [SLER] S
                                                                        50.0314 - [SLER] S
8.95
          2.0614 - [SLER] S
                             30.8714 - [SLER] S
                                                    0.0214 - [SLER] S 16.8114 - [SLER] S
```

Verifica a SLU * Diagrammi M-N delle sezioni

Di seguito sono riportati per ogni tratto di armatura i diagrammi di interazione M_u - N_u della sezione; sono stati calcolati 16 punti per ogni sezione analizzata.

Per la costruzione dei diagrammi limiti si sono assunti i seguenti valori:

Tensione caratteristica cubica del cls	$R_{bk} = 306 [kg/cmq]$
Tensione caratteristica cilindrica del cls (0.83xR _{bk})	$R_{ck} = 254 \text{ (Kg/cm}^2\text{)}$
Fattore di riduzione per carico di lunga permanenza	ψ= 0.85
Tensione caratteristica di snervamento dell'acciaio	$f_{yk} = 4589 [kg/cmq]$
Coefficiente di sicurezza cls	$\gamma_{\rm c} = 1.50$
Coefficiente di sicurezza acciaio	$\gamma_{\rm s} = 1.15$
Resistenza di calcolo del cls($\psi R_{ck}/\gamma_c$)	$R_{c}^{*} = 144 \text{ (Kg/cm}^{2})$
Resistenza di calcolo dell'acciaio (f_{yk}/γ_s)	$R_{s}^{*} = 3990 \text{ (Kg/cm}^{2})$
Modulo elastico dell'acciaio	$E_s = 2100000 \text{ (Kg/cm}^2\text{)}$
Deformazione ultima del calcestruzzo	$\varepsilon_{\rm cu} = 0.0035(0.35\%)$
Deformazione del calcestruzzo al limite elastoplastico	$\varepsilon_{\rm ck} = 0.0020(0.20\%)$
Deformazione ultima dell'acciaio	$\varepsilon_{yu} = 0.0100(1.00\%)$
Deformazione dell'acciaio al limite elastico (R*s/Es)	$\varepsilon_{\rm yk} = 0.0015(0.19\%)$

Legame costitutivo del calcestruzzo

Per il legame costitutivo del calcestruzzo si assume il diagramma parabola-rettangolo espresso dalle seguenti relazioni: $Tratto\ parabolico:\ 0<=\varepsilon_c<=\varepsilon_{ck}$

$$\sigma_{c} = \frac{R^{*}_{~c}(2\epsilon_{c}\epsilon_{ck} - \epsilon_{c}^{~2})}{\epsilon_{ck}^{~2}}$$

Tratto rettangolare: $\varepsilon_{ck} < \varepsilon_c < = \varepsilon_{cu}$

$$\sigma_c = R_c^*$$

Legame costitutivo dell'acciaio

Per l'acciaio si assume un comportamento elastico-perfettamente plastico espresso dalle seguenti relazioni:

 $\sigma_s = E_s \varepsilon_s \text{per } 0 <= \varepsilon_s <= \varepsilon_{sy}$ $\sigma_s = R_s^* \text{ per } \varepsilon_{sy} < \varepsilon_s <= \varepsilon_{su}$

Tratto armatura 1

Nr	N_{u}	$\mathbf{M_{u}}$
1	-121843.74	0.00
2	0.00	38440.16
3	93389.10	60878.72
4	140083.64	68660.78
5	186778.19	74656.49
6	233472.74	79504.86
7	280167.29	81958.36
8	326861.84	83129.15
9	373556.39	82245.61
10	420250.93	79241.85
11	466945.48	75191.74
12	513640.03	70100.61
13	560334.58	63846.47
14	607029.13	56324.52
15	653723.68	47457.34
16	700418.22	0.00
17	700418.22	0.00
18	653723.68	-47457.34
19	607029.13	-56324.52

20	560334.58	-63846.47
21	513640.03	-70100.61
22	466945.48	-75191.74
23	420250.93	-79241.85
24	373556.39	-82245.61
25	326861.84	-83129.15
26	280167.29	-81958.36
27	233472.74	-79504.86
28	186778.19	-74656.49
29	140083.64	-68660.78
30	93389.10	-60878.72
31	0.00	-38440.16
32	-121843.74	0.00

Verifica sezione cordoli

 $\begin{tabular}{ll} Simbologia \ adottata \\ M_h & momento \ flettente \ espresso \ in \ [kgm] \ nel \ piano \ orizzontale \end{tabular}$

 T_h M_v

taglio espresso in [kg] nel piano orizzontale momento flettente espresso in [kgm] nel piano verticale taglio espresso in [kg] nel piano verticale

Cordolo N° 1 (X=0.00 m) (Cordolo in c.a.)

B=120.00 [cm]	H=100.00 [cm]	
$A_{fv} = 12.06 \text{ [cmq]}$	$A_{fh}=12.06 [cmq]$	Staffe \phi10/20
$M_h = 17787 \text{ [kgm]}$	M_{uh} =45506 [kgm]	FS=2.56
$T_h = 35574 \text{ [kg]}$	$T_{Rh}=117908 [kg]$	$FS_T = 3.31$
$M_v = 3840 \text{ [kgm]}$	$M_{uv} = 45506 \text{ [kgm]}$	FS=11.85
$T_{}=4800 \text{ [kg]}$	$T_{p}=138290 \text{ [kg]}$	FS _T =28.81

Staffe \$10/20

Nbh=2 - Nbv=4

120

RELAZIONE DI CALCOLO GABBIONI

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilitàdei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009
- Circolare C.S.L.P. 02/02/2009 n.617 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

Calcolo delle sollecitazioni sia del muro che della fondazione e verifica in diverse sezioni al ribaltamento, allo scorrimento ed allo schiacciamento.

Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ . In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura $(R \ e \ C)$ e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima. La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ε l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove $\theta = \operatorname{arctg}(k_h/(1\pm k_v))$ essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di k_h .

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))*(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_{w}))*(k_{h}/(1\pm k_{v}))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W \qquad \qquad F_{iV} = \pm k_v W$$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Eseguendo il calcolo mediante gli eurocodici si puo impostare $\eta_r >= 1.0$.

Deve quindi essere verificata la seguente diseguaglianza

$$\frac{M_s}{M_r} >= \eta_r$$

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante. Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_s >= 1.0$

$$F_r$$
 $\longrightarrow >= \eta_s$
 F_s

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere

aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} >= \eta_q$$

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_q >= 1.0$ *Terzaghi* ha proposto la seguente espressione per il calcolo della capacità portante di una

Terzaghi ha proposto la seguente espressione per il calcolo della capacità portante di una fondazione superficiale.

$$q_u = cN_c s_c + qN_q + 0.5B\gamma N_\gamma s_\gamma$$

La simbologia adottata è la seguente:

- c coesione del terreno in fondazione;
- φ angolo di attrito del terreno in fondazione;
- γ peso di volume del terreno in fondazione;
- B larghezza della fondazione;
- D profondità del piano di posa;
- q pressione geostatica alla quota del piano di posa.

I fattori di capacità portante sono espressi dalle seguenti relazioni:

$$N_{q} = \frac{e^{2(0.75\pi - \phi/2)tg(\phi)}}{2cos^{2}(45 + \phi/2)}$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_{\gamma} = \frac{tg\phi}{2} \frac{K_{p\gamma}}{cos^{2}\phi}$$

I fattori di forma s_c e s_γ che compaiono nella espressione di q_u dipendono dalla forma della fondazione. In particolare valgono 1 per fondazioni nastriformi o rettangolari allungate e valgono rispettivamente 1.3 e 0.8 per fondazioni quadrate.

termine $K_{p\gamma}$ che compare nell'espressione di N_{γ} non ha un'espressione analitica. Pertanto si assume per N_{γ} l'espressione proposta da Meyerof

$$N_{\gamma} = (N_{q} - 1)tg(1.4*\phi)$$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a $\eta_{\rm g}$

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_g >= 1.0$

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\begin{array}{ccc} & c_i b_i + (W_i - u_i b_i) tg \phi_i \\ & \Sigma_i & (& & \\ \hline & & \\ &$$

dove il termine m è espresso da

$$m = (1 + \frac{tg\phi_i tg\alpha_i}{\eta})\cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approsimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

Normativa

N.T.C. 2008 - Approccio 1

Peso dell'unità di volume

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti γ_{Gsfav} Coefficiente parziale favorevole sulle azioni permanenti $\gamma_{G\text{fav}}$ Coefficiente parziale sfavorevole sulle azioni variabili γ_{Qsfav} Coefficiente parziale favorevole sulle azioni variabili γ_{Qfav} Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione della coesione drenata $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione non drenata γ_{cu}

Coefficiente parziale di riduzione del carico ultimo γ_{qu}

Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce γ_{γ}

Coefficienti di partecipazione combinazioni statiche

Coefficienti parzia	<u>ali per le azioni o per l'e</u>	erretto derre	azioiii.			
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	$\gamma_{ m Gfav}$	1,00	1,00	0,90	0,90
Permanenti	Sfavorevole	$\gamma_{ m Gsfav}$	1,30	1,00	1,10	1,30
Variabili	Favorevole	$\gamma_{ m Qfav}$	0,00	0,00	0,00	0,00
Variabili	Sfavorevole	γ_{Qsfav}	1,50	1,30	1,50	1,50
Coefficienti parzia	ali per i parametri geote	ecnici del ter				
Parametri			M1	<i>M</i> 2	<i>M</i> 2	<i>M1</i>
Tangente dell'ang		$\gamma_{ an\phi'}$	1,00	1,25	1,25	1,00
Coesione efficace		$\gamma_{\mathrm{c'}}$	1,00	1,25	1,25	1,00
Resistenza non dr	enata	γ_{cu}	1,00	1,40	1,40	1,00
Resistenza a comp	pressione uniassiale	$\gamma_{ m qu}$	1,00	1,60	1,60	1,00
Peso dell'unità di	volume	γ_{γ}	1,00	1,00	1,00	1,00
Coefficienti di ne	vrtaginaziona gambina	zioni sismio	ho			
Coefficienti parzia	artecipazione combina		azioni:	42	FOLL	ШЪ
Coefficienti parzia	ali per le azioni o per l'o Effetto	effetto delle	azioni: A1	A2	EQU	HYD
Coefficienti parzia Carichi Permanenti	ali per le azioni o per l'e Effetto Favorevole	effetto delle γ _{Gfav}	<u>azioni:</u> A I 1,00	1,00	1,00	0,90
Coefficienti parzia Carichi Permanenti Permanenti	ali per le azioni o per l'o Effetto Favorevole Sfavorevole	effetto delle γ _{Gfav} γ _{Gsfav}	azioni: AI 1,00 1,00	1,00 1,00	1,00 1,00	0,90 1,30
Coefficienti parzia Carichi Permanenti Permanenti Variabili	ali per le azioni o per l'e Effetto Favorevole Sfavorevole Favorevole	effetto delle γ _{Gfav} γ _{Gsfav} γ _{Qfav}	azioni: A1 1,00 1,00 0,00	1,00 1,00 0,00	1,00 1,00 0,00	0,90 1,30 0,00
Coefficienti parzia Carichi Permanenti Permanenti	ali per le azioni o per l'o Effetto Favorevole Sfavorevole	effetto delle γ _{Gfav} γ _{Gsfav}	azioni: AI 1,00 1,00	1,00 1,00	1,00 1,00	0,90 1,30
Coefficienti parzia Carichi Permanenti Permanenti Variabili Variabili	ali per le azioni o per l'e Effetto Favorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	Peffetto delle YGfav YGsfav YQfav YQsfav	azioni: AI 1,00 1,00 0,00 1,00	1,00 1,00 0,00	1,00 1,00 0,00	0,90 1,30 0,00
Coefficienti parzia Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzia	ali per le azioni o per l'e Effetto Favorevole Sfavorevole Favorevole	Peffetto delle YGfav YGsfav YQfav YQsfav	azioni: AI 1,00 1,00 0,00 1,00	1,00 1,00 0,00 1,00	1,00 1,00 0,00 1,00	0,90 1,30 0,00 1,50
Coefficienti parzia Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzia Parametri	ali per le azioni o per l'e Effetto Favorevole Sfavorevole Favorevole Sfavorevole Sfavorevole	YGfav YGsfav YQfav YQsfav YQsfav	azioni: A1 1,00 1,00 0,00 1,00 reno: M1	1,00 1,00 0,00 1,00	1,00 1,00 0,00 1,00	0,90 1,30 0,00 1,50
Coefficienti parzia Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzia Parametri Tangente dell'ang	ali per le azioni o per l'o Effetto Favorevole Sfavorevole Favorevole Sfavorevole Sfavorevole ali per i parametri geote	effetto delle YGfav YGsfav YQfav YQsfav ecnici del ter Ytanφ'	azioni: AI 1,00 1,00 0,00 1,00 reno: MI 1,00	1,00 1,00 0,00 1,00 M2 1,25	1,00 1,00 0,00 1,00 M2 1,25	0,90 1,30 0,00 1,50 <i>M1</i> 1,00
Coefficienti parzia Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzia Parametri Tangente dell'ang Coesione efficace	ali per le azioni o per l'o Effetto Favorevole Sfavorevole Favorevole Sfavorevole ali per i parametri geote olo di attrito	effetto delle YGfav YGsfav YQfav YQsfav ecnici del ter Ytanφ' Yc'	azioni: AI 1,00 1,00 0,00 1,00 reno: MI 1,00 1,00	1,00 1,00 0,00 1,00 M2 1,25 1,25	1,00 1,00 0,00 1,00 M2 1,25 1,25	0,90 1,30 0,00 1,50 <i>M1</i> 1,00 1,00
Coefficienti parzia Carichi Permanenti Permanenti Variabili Variabili Coefficienti parzia Parametri Tangente dell'ang Coesione efficace Resistenza non dr	ali per le azioni o per l'o Effetto Favorevole Sfavorevole Favorevole Sfavorevole ali per i parametri geote olo di attrito	effetto delle YGfav YGsfav YQfav YQsfav ecnici del ter Ytanφ'	azioni: AI 1,00 1,00 0,00 1,00 reno: MI 1,00	1,00 1,00 0,00 1,00 M2 1,25	1,00 1,00 0,00 1,00 M2 1,25	0,90 1,30 0,00 1,50 <i>M1</i> 1,00

 γ_{γ}

1,00

1,00

1,00

1,00

FONDAZIONE SUPERFICIALE

Coefficienti parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Coefficienti parziali			
	R1	R2	R3	
Capacità portante della fondazione	1,00	1,00	1,40	
Scorrimento	1,00	1,00	1,10	
Resistenza del terreno a valle	1,00	1,00	1,40	
Stabilità globale		1,10		

Geometria muro e fondazione

Descrizione

Muro a gradoni in pietrame

Descrizione dei gradoni

Simbologia adottata

Nr. numero d'ordine del gradone (a partire dall'alto) Bs base superiore del gradone espressa in [m] Bi base inferiore del gradone espressa in [m] Hg altezza del gradone espressa in [m] α_e inclinazione esterna del gradone espressa in [°]

 $\begin{array}{ll} \alpha_e & \quad \text{inclinazione esterna del gradone espressa in } [^{\circ}] \\ \alpha_i & \quad \text{inclinazione interna del gradone espressa in } [^{\circ}] \end{array}$

Nr.	Bs	Bi	Hg	$\alpha_{\rm e}$	α_{i}
1	2,00	2,00	1,00	0,00	0,00
2	2,00	2,00	1,00	0,00	0,00
3	2,00	2,00	1,00	0,00	0,00

Altezza del paramento 3,00 [m]

Fondazione

Lunghezza mensola fondazione di valle	0,00 [m]
Lunghezza mensola fondazione di monte	0,00 [m]
Lunghezza totale fondazione	2,00 [m]
Inclinazione piano di posa della fondazione	3,50 [°]
Spessore fondazione	0,00 [m]
Spessore magrone	0,30 [m]

Materiali utilizzati per la struttura

Pietrame

 $\begin{array}{ll} \text{Peso specifico} & 2100,0 \text{ [kg/mc]} \\ \text{Tensione ammissibile a compressione } \sigma_c & 30,0 \text{ [kg/cmq]} \\ \text{Angolo di attrito interno } \phi_p & 40,00 \text{ [°]} \\ \text{Resistenza a taglio } \tau_p & 5,0 \text{ [kg/cmq]} \end{array}$

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

N	\mathbf{X}	\mathbf{Y}	A
1	1,00	0,00	0,00
2	10,00	0,00	0,00

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0,00 [°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento 0,00 [m]

Descrizione terreni

Simbologia adottata

Nr. Indice del terreno Descrizione Descrizione Descrizione Descrizione terreno

 γ Peso di volume del terreno espresso in [kg/mc] γ Peso di volume saturo del terreno espresso in [kg/mc]

 ϕ Angolo d'attrito interno espresso in [°] δ Angolo d'attrito terra-muro espresso in [°]

c Coesione espressa in [kg/cmq]

 c_a Adesione terra-muro espressa in [kg/cmq]

Descrizione	γ	$\gamma_{ m s}$	ф	δ	c	$\mathbf{c_a}$
Detrito calcareo	1850	1850	20.00	13.33	0,050	0,000
Argille limose	1900	1900	21.00	14.00	0,100	0,000
Argille marnose	2700	2700	23.50	15.67	0,130	0,000
DRENAGGIO	1800	1800	30.00	20.00	0,000	0,000

Stratigrafia

Simbologia adottata

N Indice dello strato

HSpessore dello strato espresso in [m]

Inclinazione espressa in [°] а

Costante di Winkler orizzontale espressa in Kg/cm²/cm Kw

Ks Coefficiente di spinta Terreno dello strato Terreno

Nr.	H	a	$\mathbf{K}\mathbf{w}$	Ks	Terreno
1	1,50	0,00	0,76	0,00	Detrito calcareo
2	5,20	0,00	0,87	0,00	Argille limose
3	1,80	0,00	0,00	0,00	Argille marnose

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m] X

 F_{x} Componente orizzontale del carico concentrato espressa in [kg]

 F_y MComponente verticale del carico concentrato espressa in [kg]

Momento espresso in [kgm]

Ascissa del punto iniziale del carico ripartito espressa in [m]

Ascissa del punto finale del carico ripartito espressa in [m]

 X_i X_f Q_i Intensità del carico per x=X_i espressa in [kg/m]

Intensità del carico per x=X_f espressa in [kg/m]

Tipo carico: D=distribuito C=concentrato

Condizione n° 1 (Condizione 1)

 $X_i = 0.70$ $X_f = 10.00$ $\mathbf{Q_{i}}=1000,00$ $\mathbf{Q_{f}}=1000,00$ Profilo

Descrizione combinazioni di carico

Simbologia adottata

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole)

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione γ Ψ

Combinazione n° 1 - Caso A1-M1 (STR)						
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,30	1.00	1,30		
•						
Combinazione nº 2 - Caso A1	-M1 (STR)					
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,30	1.00	1,30		
Peso proprio terrapieno	SFAV	1,30	1.00	1,30		
Spinta terreno	SFAV	1,30	1.00	1,30		
Combinazione n° 3 - Caso A1						
	S/F	γ	Ψ	γ*Ψ		
Peso proprio muro	SFAV	1,30	1.00	1,30		
Peso proprio terrapieno	FAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,30	1.00	1,30		
Combinazione n° 4 - Caso A1	<u>-M1 (STR)</u>					
	S/F	γ	Ψ	$\gamma * \Psi$		
Peso proprio muro	FAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,30	1.00	1,30		
Spinta terreno	SFAV	1,30	1.00	1,30		
Combinazione n° 5 - Caso A2		<u>)</u>				
	S/F	γ	Ψ	$\gamma * \Psi$		
Peso proprio muro	SFAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		
G 1: : 06 G FO	(OI II)					
Combinazione n° 6 - Caso EQ	-)T(.b. NT.6		
.	S/F	γ	Ψ	$\gamma * \Psi$		
Peso proprio muro	FAV	0,90	1.00	0,90		
Peso proprio terrapieno	FAV	0,90	1.00	0,90		
Spinta terreno	SFAV	1,10	1.00	1,10		
Combinazione nº 7 Casa A2	M2 (CEO	CTAD)				
Combinazione n° 7 - Caso A2	•)T(*)T(
Daga mannia never	S/F	γ 1.00	Ψ 1.00	γ*Ψ		
Peso proprio muro	SFAV	1,00	1.00	1,00		
Peso proprio terrapieno	SFAV	1,00	1.00	1,00		
Spinta terreno	SFAV	1,00	1.00	1,00		

Combinazione n° 8 - Caso	A1-M1 (STR)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.50	1.00	1.50
Combinazione n° 9 - Caso	A1-M1 (STR)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.50	1.00	1.50
Combinazione n° 10 - Caso	A1-M1 (STR)		
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.50	1.00	1.50
	2111	1.00	1.00	1.00
Combinazione n° 11 - Caso	A1-M1 (STR)		
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.50	1.00	1.50
Combinazione n° 12 - Caso	A2-M2 (GEC))		
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.30	1.00	1.30
Combinazione n° 13 - Caso	FOLI (SLII)			
Comemazione ii 12 Cuso	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	FAV	0,90	1.00	0,90
Peso proprio terrapieno	FAV	0,90	1.00	0,90
Spinta terreno	SFAV	1,10	1.00	1,10
Condizione 1	SFAV	1.50	1.00	1.50
Condizione 1		1.00	1.00	1.00
Combinazione n° 14 - Caso		D-STAB)		
D .	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.30	1.00	1.30

Combinazione n° 15 - Caso	A1-M1 (STR) - Sisma V	ert. positivo)_
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 16 - Caso	A1-M1 (STR) - Sisma V	ert. negativ	0
	S/F	γ	Ψ	_ γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 17 - Caso	A2-M2 (GEC)) - Sisma V	ert. positiv	0
	S/F	γ	Ψ	 γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 18 - Caso	A2-M2 (GEC)) - Sisma V	vert. negativ	70
	S/F	γ	Ψ	_ γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 19 - Caso	EQU (SLU) -	Sisma Ver	t. positivo	
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 20 - Caso	EQU (SLU) -	Sisma Ver	t. negativo	
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 21 - Caso	A2-M2 (GEC)-STAB) - S	Sisma Vert.	positivo
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 22 - Caso	A2-M2 (GEC)-STAB) - S	Sisma Vert.	negativo
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00

Combinazione n° 23 - Caso	A1-M1 (STR) - Sisma V	ert. positivo)_
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 24 - Quas	i Permanente	(SLE)		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Combinazione n° 25 - Frequ	uente (SLE)			
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Condizione 1	SFAV	1.00	0.40	0.40
Combinazione n° 26 - Rara	(SLE)			
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Impostazioni di analisi

<u>Calcolo della portanza</u> metodo di Terzaghi

Coefficiente correttivo su Nγ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su Nγ per effetti cinematici (combinazioni sismiche SLE): 1,00

Impostazioni avanzate

Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni Diagramma correttivo per eccentricità negativa con aliquota di parzializzazione pari a 0.00

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

C Identificativo della combinazione

Tipo Tipo combinazione *Sisma* Combinazione sismica

 CS_{SCO} Coeff. di sicurezza allo scorrimento CS_{RIB} Coeff. di sicurezza al ribaltamento CS_{QLIM} Coeff. di sicurezza a carico limite CS_{STAB} Coeff. di sicurezza a stabilità globale

\mathbf{C}	Tipo	Sisma	cs_{sco}	cs_{rib}	cs _{qlim}	cs _{stab}
1	A1-M1 - [1]		2,46		3,63	
2	A1-M1 - [1]		3,82		2,89	
3	A1-M1 - [1]		2,46		3,63	
4	A1-M1 - [1]		3,82		2,89	
5	A2-M2 - [1]		2,15		2,12	
6	EQU - [1]			6,63		
7	STAB - [1]					1,56
8	A1-M1 - [2]		1,78		2,62	
9	A1-M1 - [2]		1,27		3,21	
10	A1-M1 - [2]		1,78		2,62	
11	A1-M1 - [2]		1,27		3,21	
12	A2-M2 - [2]		1,02		1,84	
13	EQU - [2]			3,56		
14	STAB - [2]					1,39
15	A1-M1 - [3]	Orizzontale + Verticale positivo	2,34		3,40	
16	A1-M1 - [3]	Orizzontale + Verticale negativo	2,46		3,61	
17	A2-M2 - [3]	Orizzontale + Verticale positivo	1,13		1,81	
18	A2-M2 - [3]	Orizzontale + Verticale negativo	1,16		1,92	
19	EQU - [3]	Orizzontale + Verticale positivo		4,77		
20	EQU - [3]	Orizzontale + Verticale negativo		4,34		
21	STAB - [3]	Orizzontale + Verticale positivo				1,41
22	STAB - [3]	Orizzontale + Verticale negativo				1,44
23	A1-M1 - [4]	Orizzontale + Verticale positivo	2,34		3,40	
24	SLEQ - [1]		10,17		3,93	
25	SLEF - [1]		4,91		3,81	
26	SLER - [1]		2,76		3,63	

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate : Origine in testa al muro (spigolo di monte) Ascisse X (espresse in [m]) positive verso monte Ordinate Y (espresse in [m]) positive verso l'alto

Le forze orizzontali sono considerate positive se agenti da monte verso valle Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta	metodo di Culmann
Calcolo del carico limite	metodo di Terzaghi
Calcolo della stabilità globale	metodo di Bishop
Calcolo della spinta in condizioni di	Spinta attiva

<u>Sisma</u>

Combinazioni SLU

Accelerazione al suolo a _g	1.65 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.45
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	0.24
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_b = (a_g/g * \beta_m * St * S) = 5$

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g^*\beta_m^*St^*S)=5.82$ Coefficiente di intensità sismica verticale (percento) $k_v=0.50 * k_h=2.91$

Combinazioni SLE

Accelerazione al suolo ag	0.67 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.50
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	0.18
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g * \beta_m * St * S) = 1.84$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 0.92$

Forma diagramma incremento sismico Stessa forma diagramma statico

Partecipazione spinta passiva (percento)	0,0	
Lunghezza del muro	80,00	[m]

Peso muro	12856,88 [kg]		
Baricentro del muro	X=-0.99 $Y=-1.53$		

Superficie di spinta

Punto inferiore superficie di spinta	X = 0.00	Y = -3,12
Punto superiore superficie di spinta	X = 0.00	Y = 0.00
Altezza della superficie di spinta	3,12 [m]	

Inclinazione superficie di spinta (rispetto alla verticale) 3,12 [m] 0,00 [°]

COMBINAZIONE n° 12

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	3575,77 3508,42 690,75 X = 0,00 11,14 48,52	[kg] [kg] [kg] [m] [°]	Y = -2,12	[m]
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte	0.00 X = 0.00	[kg] [m]	Y = 0.00	[m]
Risultanti Risultante dei carichi applicati in dir. orizzontale Risultante dei carichi applicati in dir. verticale Sforzo normale sul piano di posa della fondazione Sforzo tangenziale sul piano di posa della fondazione Eccentricità rispetto al baricentro della fondazione Lunghezza fondazione reagente Risultante in fondazione Inclinazione della risultante (rispetto alla normale) Momento rispetto al baricentro della fondazione Carico ultimo della fondazione	3508,42 13547,63 13736,55 2674,81 0,18 2,00 13994,55 11,02 2537,90 25311,83	[kg] [kg] [kg] [m] [m] [kg] [column{2}[column{		
Tensioni sul terreno Lunghezza fondazione reagente Tensione terreno allo spigolo di valle Tensione terreno allo spigolo di monte	2,00 1,0648 0,3063	[m] [kg/cmo	-	

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 14.63$	$N_{q} = 5.49$	$N_{\gamma} = 1.99$
Fattori forma	$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
I coefficienti N' tengono con	nto dei fattori di forma	, profondità, inclinazione	carico, inclinazione
piano di posa, inclinazione pe	endio.		
	$N'_{c} = 14.63$	$N'_{q} = 5.49$	$N'_{\gamma} = 1.99$

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a scorrimento	1.02
Coefficiente di sicurezza a carico ultimo	1.84

Sollecitazioni nel muro e verifica delle sezioni

Combinazione n° 12

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro

Le verifiche sono effettuate assumendo una base della sezione B=100 cm

altezza della sezione espressa in [cm] Η N sforzo normale [kg]

momento flettente [kgm] M

T taglio [kg]

eccentricità dello sforzo rispetto al baricentro [cm] e

tensione di compressione massima nel pietrame in [kg/cmq]

 $\begin{matrix} \sigma_p \\ Ms \end{matrix}$ momento stabilizzante [kgm]

Mr momento ribaltante [kgm]

Cs coeff. di sicurezza allo scorrimento

Cr coeff. di sicurezza al ribaltamento

Nr.	Y	H	N	\mathbf{M}	\mathbf{T}	e	$\sigma_{\rm p}$	Ms	Mr	Cs	Cr
1	0,43	200,00	1800	0	0	0,00	0,09	1800	0	99,90	99,90
2	1,00	200,00	4200	44	266	1,04	0,22	4301	44	388,66	98,03
3	1,43	200,00	6000	256	762	4,27	0,34	6289	256	137,82	24,53
4	2,00	200,00	8400	881	1431	10,49	0,55	8954	881	74,82	10,17
5	2,48	200,00	10420	1742	2186	16,72	0.78	11275	1742	49,74	6,47

COMBINAZIONE n° 13

Valore della spinta statica	4245,12	[kg]		
Componente orizzontale della spinta statica	4165,18	[kg]		
Componente verticale della spinta statica	819,92	[kg]		
Punto d'applicazione della spinta	X = 0.00	[m]	Y = -2,10	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	11,14	[°]		
Inclinazione linea di rottura in condizioni statiche	48,15	[°]		
Peso terrapieno gravante sulla fondazione a monte	0,00	[kg]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.00	[m]	Y = 0.00	[m]

<u>Risultanti</u>

Risultante dei carichi applicati in dir. orizzontale	4165,18	[kg]
Risultante dei carichi applicati in dir. verticale	12391,11	[kg]
Momento ribaltante rispetto allo spigolo a valle	3732,84	[kgm]
Momento stabilizzante rispetto allo spigolo a valle	13288,09	[kgm]
Sforzo normale sul piano di posa della fondazione	12622,28	[kg]
Sforzo tangenziale sul piano di posa della fondazione	3400,96	[kg]
Eccentricità rispetto al baricentro della fondazione	0,24	[m]
Lunghezza fondazione reagente	2,00	[m]
Risultante in fondazione	13072,43	[kg]
Inclinazione della risultante (rispetto alla normale)	15,08	[°]
Momento rispetto al baricentro della fondazione	3090,61	[kgm]

COEFFICIENTI DI SICUREZZA

Coefficiente di sicurezza a ribaltamento 3.56

Stabilità globale muro + terreno

Combinazione n° 14

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

- W peso della striscia espresso in [kg]
- α angolo fra la base della striscia e l'orizzontale espresso in $[\circ]$ (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [kg/cmq]
- b larghezza della striscia espressa in [m]
- u pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36

Numero di strisce 25

Cerchio critico

Coordinate del centro X[m] = -2,22 Y[m] = 1,39

Raggio del cerchio R[m] = 5.03

Ascissa a valle del cerchio Xi[m]=-4,70Ascissa a monte del cerchio Xs[m]=2,62Larghezza della striscia dx[m]=0,29

Coefficiente di sicurezza C= 1.39

Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	α (°)	Wsinα	b/cosa	ф	c	u
1	586,29	68.94	547,11	0,81	16.23	0,04	0,00
2	936,42	61.23	820,84	0,61	16.23	0,04	0,00
3	1194,18	54.87	976,65	0,51	16.66	0,06	0,00
4	1404,11	49.41	1066,24	0,45	17.07	0,08	0,00
5	1579,12	44.51	1107,00	0,41	17.07	0,08	0,00
6	1727,42	40.00	1110,26	0,38	17.07	0,08	0,00
7	1682,28	35.76	983,23	0,36	17.07	0,08	0,00
8	1582,81	31.75	832,90	0,34	17.07	0,08	0,00
9	1688,75	27.90	790,31	0,33	17.07	0,08	0,00
10	1959,53	24.19	802,94	0,32	17.07	0,08	0,00
11	2024,71	20.58	711,78	0,31	17.07	0,08	0,00
12	2078,49	17.06	609,70	0,31	17.07	0,08	0,00
13	2121,54	13.60	498,84	0,30	17.07	0,08	0,00
14	2154,38	10.19	381,16	0,30	17.07	0,08	0,00
15	2177,35	6.82	258,50	0,29	17.07	0,08	0,00
16	1770,32	3.47	107,14	0,29	17.07	0,08	0,00
17	355,26	0.13	0,82	0,29	17.07	0,08	0,00
18	350,89	-3.20	-19,61	0,29	17.07	0,08	0,00
19	336,99	-6.55	-38,45	0,29	17.07	0,08	0,00
20	313,41	-9.92	-54,00	0,30	17.07	0,08	0,00
21	279,89	-13.33	-64,51	0,30	17.07	0,08	0,00
22	236,06	-16.78	-68,15	0,31	17.07	0,08	0,00
23	181,41	-20.30	-62,93	0,31	17.07	0,08	0,00
24	115,23	-23.90	-46,68	0,32	17.07	0,08	0,00
25	36,61	-27.60	-16,96	0,33	17.07	0,08	0,00

 $\Sigma W_i = 28873,45 \text{ [kg]}$ $\Sigma W_i \sin \alpha_i = 11234,12 \text{ [kg]}$ $\Sigma W_i \tan \phi_i = 8833,08 \text{ [kg]}$ $\Sigma \tan \alpha_i \tan \phi_i = 3.05$

COMBINAZIONE n° 17

Valore della spinta statica Componente orizzontale della spinta statica Componente verticale della spinta statica Punto d'applicazione della spinta Inclinaz. della spinta rispetto alla normale alla superficie Inclinazione linea di rottura in condizioni statiche	2094,69 2055,00 405,86 X = 0,00 11,17 51,52	[kg] [kg] [kg] [m] [°]	Y = -2,25	[m]
Incremento sismico della spinta	507,91	[kg]		
Punto d'applicazione dell'incremento sismico di spinta	X = 0.00	[m]	Y = -2,25	[m]
Inclinazione linea di rottura in condizioni sismiche	48,90	[°]		
Peso terrapieno gravante sulla fondazione a monte Baricentro terrapieno gravante sulla fondazione a monte Inerzia del muro Inerzia verticale del muro Inerzia del terrapieno fondazione di monte Inerzia verticale del terrapieno fondazione di monte	0,00 $X = 0,00$ $748,75$ $374,37$ $0,00$ $0,00$	[kg] [m] [kg] [kg] [kg]	Y = 0.00	[m]
Risultanti				
Risultante dei carichi applicati in dir. orizzontale	3302,02	[kg]		
Risultante dei carichi applicati in dir. verticale	13735,52	[kg]		
Sforzo normale sul piano di posa della fondazione	13911,49	[kg]		
Sforzo tangenziale sul piano di posa della fondazione	2457,33	[kg]		
Eccentricità rispetto al baricentro della fondazione	0,19	[m]		
Lunghezza fondazione reagente	2,00	[m]		
Risultante in fondazione	14126,85	[kg]		
Inclinazione della risultante (rispetto alla normale)	10,02	[°]		
Momento rispetto al baricentro della fondazione	2613,64	[kgm]		
Carico ultimo della fondazione	25215,15	[kg]		
<u>Tensioni sul terreno</u>				
Lunghezza fondazione reagente	2,00	[m]		
Tensione terreno allo spigolo di valle	1,0849	[kg/cmq	_	
Tensione terreno allo spigolo di monte	0,3037	[kg/cmq]	

Fattori per il calcolo della capacità portante

Coeff. capacità portante	$N_c = 14.63$	$N_{q} = 5.49$	$N_{\gamma} = 1.99$
Fattori forma	$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$

I coefficienti N' tengono conto dei fattori di forma, profondità, inclinazione carico, inclinazione piano di posa, inclinazione pendio.

 $N'_{c} = 14.63$ $N'_{q} = 5.49$ $N'_{\gamma} = 1.99$

COEFFICIENTI DI SICUREZZA

Sollecitazioni nel muro e verifica delle sezioni

Combinazione n° 17

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Le verifiche sono effettuate assumendo una base della sezione B=100 cm

altezza della sezione espressa in [cm] Η

N sforzo normale [kg]

momento flettente [kgm] M

T taglio [kg]

eccentricità dello sforzo rispetto al baricentro [cm] e

tensione di compressione massima nel pietrame in [kg/cmq]

 $\begin{matrix} \sigma_p \\ Ms \end{matrix}$ momento stabilizzante [kgm]

Mr momento ribaltante [kgm]

Cs coeff. di sicurezza allo scorrimento Cr coeff. di sicurezza al ribaltamento

Nr.	Y	Н	N	\mathbf{M}	T	e	$\sigma_{\rm p}$	Ms	Mr	Cs	Cr
1	0,43	200,00	1800	22	105	1,25	0,09	1800	22	968,37	80,13
2	1,00	200,00	4200	138	349	3,28	0,23	4232	138	296,95	30,71
3	1,43	200,00	6000	369	762	6,14	0,36	6126	369	137,81	16,62
4	2,00	200,00	8400	959	1313	11,42	0,56	8657	959	81,55	9,03
5	2,48	200,00	10420	1746	2005	16,76	0.78	10862	1746	54,24	6,22

Inviluppo sollecitazioni nel muro e verifica delle sezioni

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Le verifiche sono effettuate assumento una base della sezione $B=100\,\mathrm{cm}$

- H altezza della sezione espressa in [cm]
- N sforzo normale [kg]
- M momento flettente [kgm]
- T taglio [kg]
- e eccentricità dello sforzo rispetto al baricentro [cm]
- σ_{p} $\,$ tensione di compressione massima nel pietrame in [kg/cmq]
- Ms momento stabilizzante [kgm]
- Mr momento ribaltante [kgm]
- Cs coeff. di sicurezza allo scorrimento
- Cr coeff. di sicurezza al ribaltamento

Inviluppo combinazioni SLU

Y	H	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
0,43	200,00	1800	2340	0	22	0	105
1,00	200,00	4200	5460	12	138	84	349
1,43	200,00	6000	7800	96	369	333	762
2,00	200,00	8400	10920	379	959	664	1431
2,48	200,00	10420	13546	801	1746	1127	2190
3,12	200,00	12857	16714	1721	3468	2072	3594
	1,00 1,43 2,00 2,48	Y H 0,43 200,00 1,00 200,00 1,43 200,00 2,00 200,00 2,48 200,00 3,12 200,00	0,43 200,00 1800 1,00 200,00 4200 1,43 200,00 6000 2,00 200,00 8400 2,48 200,00 10420	0,43 200,00 1800 2340 1,00 200,00 4200 5460 1,43 200,00 6000 7800 2,00 200,00 8400 10920 2,48 200,00 10420 13546	0,43 200,00 1800 2340 0 1,00 200,00 4200 5460 12 1,43 200,00 6000 7800 96 2,00 200,00 8400 10920 379 2,48 200,00 10420 13546 801	0,43 200,00 1800 2340 0 22 1,00 200,00 4200 5460 12 138 1,43 200,00 6000 7800 96 369 2,00 200,00 8400 10920 379 959 2,48 200,00 10420 13546 801 1746	0,43 200,00 1800 2340 0 22 0 1,00 200,00 4200 5460 12 138 84 1,43 200,00 6000 7800 96 369 333 2,00 200,00 8400 10920 379 959 664 2,48 200,00 10420 13546 801 1746 1127

Inviluppo combinazioni SLE

Nr.	\mathbf{Y}	H	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
7	0,43	200,00	1800	1800	0	0	0	0
8	1,00	200,00	4200	4200	2	10	20	92
9	1,43	200,00	6000	6000	38	110	169	404
10	2,00	200,00	8400	8400	172	442	293	750
11	2,48	200,00	10420	10420	365	901	540	1190
12	3,12	200,00	12857	12857	804	1839	1146	2056

Inviluppo combinazioni SLU

Nr.	\mathbf{Y}	H	e	$\sigma_{\rm p}$	Ms	Mr	Cs	Cr
1	0,43 20	00,00	0,00	0,09	2340	22	99,90	99,90
2	1,00 20	00,00	0,23	0,21	5569	138	1131,23	431,55
3	1,43 20	00,00	1,83	0,32	8147	369	259,87	56,30
4	2,00 20	00,00	5,26	0,49	11603	1071	142,65	19,84
5	2,48 20	00,00	8,65	0,66	14618	2107	91,37	12,21

Inviluppo combinazioni SLE

Nr.	Y	H	e	$\sigma_{\rm p}$	Ms	Mr	Cs	Cr
1	0,43 20	00,00	0,00	0,09	2340	22	99,90	99,90
2	1,00 20	00,00	0,23	0,21	5569	138	1131,23	431,55
3	1,43 20	00,00	1,83	0,32	8147	369	259,87	56,30
4	2,00 20	00,00	5,26	0,49	11603	1071	142,65	19,84

Momenti [kgm]

Taglio [kg]

Sforzo Normale [kg]

Pressioni sul terreno

RELAZIONE DI CALCOLO MURI SU PALI Km – 34+430

Normativa

N.T.C. 2008 - Approccio 1

Simbologia adottata						
	favorevole sulle azioni permanenti avorevole sulle azioni permanenti					
γ _{Qsfav} Coefficiente parziale s	favorevole sulle azioni variabili					
G 0011 111	avorevole sulle azioni variabili li riduzione dell'angolo di attrito drenat	0				
	li riduzione della coesione drenata	O .				
	li riduzione della coesione non drenata					
144	li riduzione del carico ultimo li riduzione della resistenza a compress	ione uniassiale delle rocce				
Coefficienti di partecipazio	one combinazioni statiche					
Coefficienti parziali per le a	zioni o per l'effetto delle azio	mi·				
Carichi	Effetto		A1	A2	EQU	HYD
Permanenti	Favorevole	$\gamma_{ m Gfav}$	1,00	1,00	0,90	0,90
Permanenti	Sfavorevole	$\gamma_{ m Gsfav}$	1,30	1,00	1,10	1,30
Variabili	Favorevole	$\gamma_{ m Qfav}$	0,00	0,00	0,00	0,00
Variabili	Sfavorevole	$\gamma_{ m Qsfav}$	1,50	1,30	1,50	1,50
Coefficienti parziali per i pa	nrametri geotecnici del terreno	<u>):</u>				
Parametri			M1	M2	M2	M1
Tangente dell'angolo di attri	ito	$\gamma_{tan\phi'}$	1,00	1,25	1,25	1,00
Coesione efficace		$\gamma_{c'}$	1,00	1,25	1,25	1,00
Resistenza non drenata		γ _{cu}	1,00	1,40	1,40	1,00
Resistenza a compressione u	uniassiale	$\gamma_{ m qu}$	1,00	1,60 1,00	1,60 1,00	1,00 1,00
Peso dell'unità di volume		γ_{γ}	1,00	1,00	1,00	1,00
Coefficienti di partecipazio						
Carichi	zioni o per l'effetto delle azio Effetto	<u>nn:</u>	A1	A2	EQU	HYD
Permanenti	Favorevole	$\gamma_{ m Gfav}$	1,00	1,00	1,00	0,90
Permanenti	Sfavorevole	γ _{Gsfav}	1,00	1,00	1,00	1,30
Variabili	Favorevole	γ _{Qfav}	0,00	0,00	0,00	0,00
Variabili	Sfavorevole	$\gamma_{ m Qsfav}$	1,00	1,00	1,00	1,50
	arametri geotecnici del terreno	<u>o:</u>	1.01			
Parametri			M1	M2	M2	M1
Tangente dell'angolo di attri	ito	γ _{tanφ'}	1,00	1,25	1,25	1,00
Coesione efficace Resistenza non drenata		γ _{c'}	1,00 1,00	1,25 1,40	1,25 1,40	1,00 1,00
Resistenza a compressione i	uniassiale	$\gamma_{ m cu}$	1,00	1,60	1,60	1,00
Peso dell'unità di volume		γ_{γ}	1,00	1,00	1,00	1,00
FONDAZIONE SUPERFI	<u>ICIALE</u> · le verifiche agli stati limite	ultimi STR e GEO				
Verifica				Coefficienti parzia	li	
			R1	R2	R3	
Capacità portante della fond	lazione		1,00	1,00	1,40	
Scorrimento	la.		1,00	1,00	1,10	
Resistenza del terreno a vall Stabilità globale	le		1,00	1,00 1,10	1,40	
PALI DI FONDAZIONE CARICHI VERTICALI. Co	pefficienti parziali γ_R per le ve	rifiche dei pali				
Pali trivellati		_		7.0	_	22
Dunto		R		R2		25
Punta	γ _ь	1,0		1,70		,35
Laterale compressione Totale compressione	$\gamma_{ m s}$	1,0 1,0		1,45 1,60		,15 ,30
Laterale trazione	$\gamma_{ m t} \ \gamma_{ m st}$	1,0		1,60		,25
				1,00	1	,
CARICHI TRASVERSALI	. Coefficienti parziali γ_T per l	e verifiche dei pali. R	1	R2	т	R3
	γ_{T}	1,0		1,60		,30
Coefficienti di riduzione E r	per la determinazione della re	sistenza caratteristica d	ei pali			
Numero di verticali indagate		$\xi_3=1$		$\xi_4 = 1,70$		

Geometria muro e fondazione

Descrizione Muro a mensola in c.a.

2.00 [m] Altezza del paramento Spessore in sommità 0,30 [m] Spessore all'attacco con la fondazione 0,30 [m] 0,00 [°] Inclinazione paramento esterno Inclinazione paramento interno 0,00 [°] Lunghezza del muro 45,00 [m]

Fondazione

0,25 [m] Lunghezza mensola fondazione di valle 0,25 [m] Lunghezza mensola fondazione di monte 0,80 [m] Lunghezza totale fondazione Inclinazione piano di posa della fondazione 0,00 [°] Spessore fondazione 0.50 [m]0,10 [m] Spessore magrone

Descrizione pali di fondazione

Pali in c.a.

Numero di file di pali Vincolo pali/fondazione Incastro

Tipo di portanza Portanza laterale e portanza di punta

Simbologia adottata N numero d'ordine della fila

N X ascissa della fila misurata dallo spigolo di monte della fondazione espressa in [m] Numero di pali della fila

nr. D

diametro dei pali della fila espresso in [cm] lunghezza dei pali della fila espressa in [m]

alfa

inclinazione dei pali della fila rispetto alla verticale espressa in [°] allineamento dei pali della fila rispetto al baricentro della fondazione (CENTRATI o SFALSATI)

ALL alfa 0,40 50,00 8,00 45 0.00 Centrati

Materiali utilizzati per la struttura

Calcestruzzo

2500,0 [kg/mc] Peso specifico Classe di Resistenza C32/40 Resistenza caratteristica a compressione R_{ck} 407,9 [kg/cmq] Modulo elastico E 343054,09 [kg/cmq]

Acciaio

Tipo

Tensione di snervamento σ_{fa} 4588,0 [kg/cmq]

Calcestruzzo utilizzato per i pali

Classe di Resistenza C25/30 Resistenza caratteristica a compressione R_{ck} 306 [kg/cmq] Modulo elastico E 320665,55 [kg/cmq]

Acciaio utilizzato per i pali

Tipo B450C Tensione ammissibile σ_{fa} 4588,0 [kg/cmq] Tensione di snervamento σ_{fa} 4588,0 [kg/cmq]

0.00

Geometria profilo terreno a monte del muro

Simbologia adottata e sistema di riferimento

5,00

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

0.00

N numero ordine del punto

X ascissa del punto espressa in [m] Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

Y

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale	0,00	[°]
Altezza del rinterro rispetto all'attacco fondaz.valle-paramento	0,00	[m]

Descrizione terreni

 Simbologiu
 accommendation

 Nr.
 Indice del terreno

 Descrizione
 Descrizione terreno

 γ Peso di volume del terreno espresso in [kg/mc]

 β Peso di volume saturo del terreno espresso in [cg/mc]

 δ Angolo d'attrito interno espresso in [cg/mc]

 c Coesione espressa in [kg/cmq]

 c_a Adesione terra-muro espressa in [kg/cmq]

Descrizione	γ	γ _s	ф	δ	c	$\mathbf{c_a}$
Terreno 1	1800	2000	24.00	16.00	0,000	0,000
Terreno 2	1800	2000	28.00	18.67	0,000	0,000
Parametri medi						
Descrizione	γ	Ϋ́s	ф	δ	c	$\mathbf{c_a}$
Terreno 1	1800	2000	24.00	16.00	0,000	0,000
Terreno 2	1800	2000	28.00	18.67	0,000	0,000
Parametri minimi						
Descrizione	γ	$\gamma_{\rm s}$	ф	δ	c	$\mathbf{c_a}$
Terreno 1	1800	2000	24.00	16.00	0,000	0,000
Terreno 2	1800	2000	28.00	18.67	0.000	0,000

Stratigrafia

Simbologia adottata

Indice dello strato Spessore dello strato espresso in [m] Inclinazione espressa in [°] Costante di Winkler orizzontale espressa in Kg/cm²/cm Coefficiente di spinta Terreno dello strato

N H a Kw Ks Terreno

H 2,50 15,00 **Ks** 0,50 0,50 Nr. **a** 0,00 Terreno 1 2 0,00 Terreno 1 0,00 11,37 Terreno 2

Condizioni di carico

Simbologia e convenzioni di segno adottate

Condizione n° 1 (Condizione 1)

 $Q_i = 2000,00$ $Q_f = 2000,00$ $X_{i}=0,00$ $X_{f}=5,00$ Profilo

Descrizione combinazioni di carico

Sim	hal	ngia	adottata

Effetto dell'azione (FAV: Favorevole, SFAV: Sfavorevole) Coefficiente di partecipazione della condizione F/S

Coefficiente di combinazione della condizione

Combinazione nº 1 - Caso A1-M1 ((STR)
----------------------------------	-------

	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno Spinta terreno	FAV SFAV	1,00 1,30	1.00 1.00	1,00 1,30
Spinta terreno	згач	1,50	1.00	1,50
Combinazione n° 2 - Caso A1-M1 (STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Combinazione n° 3 - Caso A1-M1 (STR)				
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Combinazione nº 4 - Caso A1-M1 (STR)				
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Combinazione nº 5 - Caso A2-M2 (GEO)				
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione nº 6 - Caso A2-M2 (GEO-S'	<u>ΓΑΒ)</u>			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione nº 7 - Caso A1-M1 (STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.50	1.00	1.50
Combinazione nº 8 - Caso A1-M1 (STR)				
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1 Combinazione n° 9 - Caso A1-M1 (STR)	SFAV	1.50	1.00	1.50
Communication in a Custo III III (STR)	S/F	γ	Ψ	γ∗ Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
1 1		,		,

Peso proprio terrapieno	SFAV	1,30	1.00	1,30
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.50	1.00	1.50
Condizione i	SFAV	1.30	1.00	1.50
Combinazione n° 10 - Caso A1-M1 ((STR)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,30	1.00	1,30
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,30	1.00	1,30
Condizione 1	SFAV	1.50	1.00	1.50
Condizione 1	SIAV	1.50	1.00	1.50
Combinazione nº 11 - Caso A2-M2 ((GEO)			
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.30	1.00	1.30
Combinazione n° 12 - Caso A2-M2 ((CEO STAD)			
Combinazione II 12 - Caso Az-Wiz (<u>(JEO-STAB)</u> S/F	۸,	Ψ	γ∗ Ψ
p ·		γ		•
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.30	1.00	1.30
Combinazione n° 13 - Caso A1-M1 ((STR) - Sisma Vert. positi	ivo		
	S/F	γ	Ψ	γ∗Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Spinta terreno	SIAV	1,00	1.00	1,00
Combinazione nº 14 - Caso A1-M1 ((STR) - Sisma Vert. negat	tivo		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
G 1: : 0.15 G A2.M2.	(CEO) C: W	.•		
Combinazione n° 15 - Caso A2-M2 ((GEO) - Sisma Vert. posii S/F		Ψ	γ* Ψ
Daga muamuia muuna		γ	-	
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 16 - Caso A2-M2 ((GEO) - Sisma Vert, nega	tivo		
	S/F	γ	Ψ	γ∗ Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
-				.,,~~
Combinazione n° 17 - Caso A2-M2 (\ - /	
ъ.	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Combinazione n° 18 - Caso A2-M2 ((GEO-STAB) - Sisma Ve	rt. negativo		
	S/F	<u>γ</u>	Ψ	γ* Ψ
Daga propria mura	SFAV	1,00	1.00	1,00
Peso proprio muro Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Spina terreno	51717	1,00	1.00	1,00
Combinazione nº 19 - Caso A1-M1 ((STR) - Sisma Vert. positi	ivo		
	S/F	γ	Ψ	$\gamma * \Psi$
Peso proprio muro	FAV	1,00	1.00	1,00
Peso proprio terrapieno	FAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 20 - Caso A1-M1 ((STR) - Sisma Vert negat	tivo		
Compilation in 20 Case AT-WIT	S/F	γ	Ψ	γ∗ Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Condizione 1	SI'AV	1.00	1.00	1.00
Combinazione n° 21 - Caso A2-M2 ((GEO) - Sisma Vert. posit	tivo		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
		•		

Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione nº 22 - Caso A2-M2	(GEO) - Sisma Vert. nega	<u>tivo</u>		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 23 - Caso A2-M2 ((GEO-STAB) - Sisma Ve	rt. positivo		
	S/F	γ	Ψ	γ* Ψ
Peso proprio muro	SFAV	1,00	1.00	1.00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 24 - Caso A2-M2		rt. negativo		
	S/F	γ	Ψ	γ*Ψ
Peso proprio muro	SFAV	1,00	1.00	1,00
Peso proprio terrapieno	SFAV	1,00	1.00	1,00
Spinta terreno	SFAV	1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 25 - Quasi Perman	ente (SLE)			
Comemications in 25 Quality Commission	S/F	γ	Ψ	γ* Ψ
Peso proprio muro		1,00	1.00	1.00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 26 - Frequente (SL				
_	S/F	γ	Ψ	γ*Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00
Combinazione n° 27 - Rara (SLE)				
	S/F	γ	Ψ	γ∗ Ψ
Peso proprio muro		1,00	1.00	1,00
Peso proprio terrapieno		1,00	1.00	1,00
Spinta terreno		1,00	1.00	1,00
Condizione 1	SFAV	1.00	1.00	1.00

Impostazioni analisi pali

Numero elementi palo Tipo carico palo Calcolo della portanza Distribuito

metodo di Meyerhof

Criterio di rottura del sistema terreno-palo

Pressione limite passiva con moltiplicatore pari a 1,00

Andamento pressione verticale Geostatica

Metodo verifica sezioni

Impostazioni di analisi

Impostazioni verifiche SLU	
Coefficienti parziali per resistenze di calcolo dei materiali	
Coefficiente di sicurezza calcestruzzo a compressione	1.50
Coefficiente di sicurezza calcestruzzo a trazione	1.50
Coefficiente di sicurezza acciaio	1.15
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza per la sezione	1.00
Impostazioni verifiche SLE	
Condizioni ambientali	Ordinarie
Armatura ad aderenza migliorata	
Verifica fessurazione	
Sensibilità delle armature	Poco sensibile
Valori limite delle aperture delle fessure	$w_1 = 0.20$
	$w_2 = 0.30$
	$w_3 = 0.40$
Metodo di calcolo aperture delle fessure	Circ. Min. 252 (15/10/1996)
<u>Verifica delle tensioni</u>	
Combinazione di carico	Rara $\sigma_c < 0.60 f_{ck}$ - $\sigma_f < 0.80 f_{vk}$
	Quasi permanente $\sigma_c < 0.45 \ f_{ck}$

Stato limite

Impostazioni avanzate

Influenza del terreno sulla fondazione di valle nelle verifiche e nel calcolo delle sollecitazioni

Quadro riassuntivo coeff. di sicurezza calcolati

 Simbologia adottata

 C
 Identificativo della combinazione

 Tipo
 Tipo combinazione

 Sisma
 Combinazione sismica

 CS_{SCO} Coeff. di sicurezza al ribaltamento

 CS_{RIB} Coeff. di sicurezza a carico limite

 CS_{STAB} Coeff. di sicurezza a stabilità globale

C	Tipo	Sisma	cs_{sco}	cs_{rib}	cs_{qlim}	cs _{stab}
1	A1-M1 - [1]				'	
2	A1-M1 - [1]					
3	A1-M1 - [1]					
4	A1-M1 - [1]					
5	A2-M2 - [1]					
6	STAB - [1]					7,43
7	A1-M1 - [2]					
8	A1-M1 - [2]					
9	A1-M1 - [2]					
10	A1-M1 - [2]					
11	A2-M2 - [2]					
12	STAB - [2]					4,95
13	A1-M1 - [3]	Orizzontale + Verticale positivo				
14	A1-M1 - [3]	Orizzontale + Verticale negativo				
15	A2-M2 - [3]	Orizzontale + Verticale positivo				
16	A2-M2 - [3]	Orizzontale + Verticale negativo				
17	STAB - [3]	Orizzontale + Verticale positivo				2,76
18	STAB - [3]	Orizzontale + Verticale negativo				2,37
19	A1-M1 - [4]	Orizzontale + Verticale positivo				
20	A1-M1 - [4]	Orizzontale + Verticale negativo				
21	A2-M2 - [4]	Orizzontale + Verticale positivo				
22	A2-M2 - [4]	Orizzontale + Verticale negativo				
23	STAB - [4]	Orizzontale + Verticale positivo				2,63
24	STAB - [4]	Orizzontale + Verticale negativo				2,27
25	SLEQ - [1]					
26	SLEF - [1]					
27	SLER - [1]					

Analisi della spinta e verifiche

Sistema di riferimento adottato per le coordinate : Origine in testa al muro (spigolo di monte)
Ascisse X (espresse in [m]) positive verso monte
Ordinate Y (espresse in [m]) positive verso l'alto
Le forze orizzontali sono considerate positive se agenti da monte verso valle
Le forze verticali sono considerate positive se agenti dall'alto verso il basso

Calcolo riferito ad 1 metro di muro

Tipo di analisi

Calcolo della spinta metodo di Mononobe-Okabe Calcolo della stabilità globale metodo di Bishop Calcolo della spinta in condizioni di Spinta attiva

Sisma

Combinazioni SLU

Accelerazione al suolo ag	1.60 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.46
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	1.00
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g * \beta_m * St * S) = 23.68$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 11.84$

Combinazioni SLE

Accelerazione al suolo ag	0.63 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.50
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	1.00
Rapporto intensità sismica verticale/orizzontale	0.50
Coefficiente di intensità sismica orizzontale (percento)	$k_h = (a_g/g * \beta_m * St * S) = 9.69$
Coefficiente di intensità sismica verticale (percento)	$k_v = 0.50 * k_h = 4.84$

Forma diagramma incremento sismico

Inclinazione superficie di spinta(rispetto alla verticale)

Partecipazione spinta passiva (percento)	0,0
Lunghezza del muro	45,00 [m]
Peso muro	2500,00 [kg]
Baricentro del muro	X=-0,15 Y=-1,50

Superficie di spinta		
Punto inferiore superficie di spinta	X = 0.25	Y = -2,50
Punto superiore superficie di spinta	X = 0.25	Y = 0.00
Altezza della superficie di spinta	2,50	[m]

COMBINAZIONE n° 11

Lunghezza fondazione reagente

Inclinazione della risultante (rispetto alla normale)

Momento rispetto al baricentro della fondazione

Risultante in fondazione

Valore della spinta statica	5396,83	[kg]		
Componente orizzontale della spinta statica	5260,20	[kg]		
Componente verticale della spinta statica	1206,67	[kg]		
Punto d'applicazione della spinta	X = 0.25	[m]	Y = -1,44	[m]
Inclinaz. della spinta rispetto alla normale alla superficie	12,92	[°]		
Coefficiente di spinta attiva in condizioni statiche	0,4451	[°]		
De 4	1550.00	ff1		
Peso terrapieno gravante sulla fondazione a monte	1550,00	[kg]		
Baricentro terrapieno gravante sulla fondazione a monte	X = 0.13	[m]	Y = -1,00	[m]
Risultanti				
Risultante dei carichi applicati in dir. orizzontale	5260,20	[kg]		
Risultante dei carichi applicati in dir. verticale	5256,67	[kg]		
Sforzo normale sul piano di posa della fondazione	5256,67	[kg]		
Sforzo tangenziale sul piano di posa della fondazione	5260,20	[kg]		
Eccentricità rispetto al baricentro della fondazione	0,88	[m]		

Rettangolare

0,00

-1,45

45,02

7436,55

4649,54

[m]

[kg]

[kgm]

[°]

Sollecitazioni paramento

Combinazione n° 11
L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro
Momento positivo se tende le fibre contro terra (a monte), espresso in kgm
Sforzo normale positivo di compressione, espresso in kg
Taglio positivo se diretto da monte verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,10	75,00	5,77	116,70
3	0,20	150,00	23,60	241,21
4	0,30	225,00	54,27	373,53
5	0,40	300,00	98,57	513,66
6	0,50	375,00	157,26	661,59
7	0,60	450,00	231,15	817,34
8	0,70	525,00	320,99	980,89
9	0,80	600,00	427,58	1152,25
10	0,90	675,00	551,70	1331,43
11	1,00	750,00	694,13	1518,41
12	1,10	825,00	855,64	1713,20
13	1,20	900,00	1037,03	1915,80
14	1,30	975,00	1239,06	2126,20
15	1,40	1050,00	1462,53	2344,42
16	1,50	1125,00	1708,21	2570,45
17	1,60	1200,00	1976,88	2804,28
18	1,70	1275,00	2269,33	3045,93
19	1,80	1350,00	2586,33	3295,38
20	1,90	1425,00	2928,66	3552,64
21	2,00	1500,00	3297,11	3817,71

Inviluppo sollecitazioni piastra di fondazione

Sollecitazioni in direzione Y

Nr.	Y	$\mathbf{M}_{ ext{vmin}}$	M_{vmax}	$T_{ m vmin}$	T_{vmax}
1	0,00	0,00	0,29	-22,53	22,46
2	0,05	-3,40	1,63	-96,28	0,00
3	0,10	-10,68	0,00	-190,06	0,00
4	0,15	-25,68	0,00	-275,23	0,00
5	0,20	-17,76	0,00	-277,45	810,66
6	0,25	-33,08	52,67	-335,61	1790,92
7	0,55	-222,00	0,00	-1875,71	210,82
8	0,60	-140,46	0,00	-1509,90	0,00
9	0,65	-94,14	0,00	-1315,18	0,00
10	0,70	-40,40	0,00	-816,28	0,00
11	0,75	-9,90	0,00	-407,59	0,00
12	0,80	0,00	1,58	-31,35	24,28

Sollecitazioni in direzione X

<u>Solleci</u>	tazioni in direzione	<u> X</u>			
Nr.	X	$\mathbf{M}_{ ext{xmin}}$	M_{xmax}	$T_{ m xmin}$	T_{xmax}
1	0,00	-6,04	0,00	-82,49	7,76
2	0,08	-6,10	0,00	-274,17	44,10
3	0,17	-5,22	0,00	-313,88	97,71
4	0,25	-6,14	6,16	-162,18	269,56
5	0,35	0,00	5,33	-216,08	56,75
6	0,45	0.00	6,28	-72,58	8,58
7	0,55	0,00	6,28	-8,58	72,58
8	0,65	0,00	5,33	-56,75	216,08
9	0.75	-6,14	6,16	-269,56	162,18
10	0,83	-5,22	0,00	-97,71	313,88
11	0,92	-6,10	0,00	-44,10	274,17
12	1,00	-6,04	0,00	-82,49	82,49
13	1,08	-6,10	0,00	-274,17	44,10
14	1,17	-5,22	0,00	-313,88	97,71
15	1,25	-6,14	6,16	-162,18	269,56
16	1,35	0,00	5,33	-216,08	56,75
17	1,45	0,00	6,28	-72,58	8,58
18	1,55	0,00	6,28	-8,58	72,58
19	1,65	0,00	5,33	-56,75	216,08
20	1,75	-6,14	6,16	-269,56	162,18
21	1,83	-5,22	0,00	-97,71	313,88
22	1,92	-6,10	0,00	-44,10	274,17
23	2,00	-6,04	0,00	-82,49	82,49
24	2,08	-6,10	0,00	-274,17	44,10
25	2,17	-5,22	0,00	-313,88	97,71
26	2,25	-6,14	6,16	-162,18	269,56
27	2,35	0,00	5,33	-216,08	56,75
28	2,45	0,00	6,28	-72,58	8,58
29	2,55	0,00	6,28	-8,58	72,58
30	2,65	0,00	5,33	-56,75	216,08
31	2,75	-6,14	6,16	-269,56	162,18
32	2,83	-5,22	0,00	-97,71	313,88
33	2,92	-6,10	0,00	-44,10	274,17
34	3,00	-6,04	0,00	-82,49	82,49
35	3,08	-6,10	0,00	-274,17	44,10
36	3,17	-5,22	0,00	-313,88	97,71
37	3,25	-6,14	6,16	-162,18	269,56
38	3,35	0,00	5,33	-216,08	56,75
39	3,45	0,00	6,28	-72,58	8,58
40	3,55	0,00	6,28	-8,58	72,58
41	3,65	0,00	5,33	-56,75	216,08
42	3,75	-6,14	6,16	-269,56	162,18
43	3,83	-5,22	0,00	-97,71	313,88
44	3,92	-6,10	0,00	-44,10	274,17
45	4,00	-6,04	0,00	-82,49	82,49
46	4,08	-6,10	0,00	-274,17	44,10
47	4,17	-5,22	0,00	-313,88	97,71
48	4,25	-6,14	6,16	-162,18	269,56
49	4,35	0,00	5,33	-216,08	56,75
50	4,45	0,00	6,28	-72,58	8,58
	* *	,	, -	,	- ,

51	4,55	0,00	6,28	-8,58	72,58
52	4,65	0,00	5,33	-56,75	216,08
53	4,75	-6,14	6,16	-269,56	162,18
54	4,83	-5,22	0,00	-97,71	313,88
					274,17
55	4,92	-6,10	0,00	-44,10	
56	5,00	-6,04	0,00	-82,49	82,49
57	5,08	-6,10	0,00	-274,17	44,10
58	5,17	-5,22	0,00	-313,88	97,71
59	5,25	-6,14	6,16	-162,18	269,56
60	5,35	0,00	5,33	-216,08	56,75
61	5,45	0,00	6,28	-72,58	8,58
62	5,55	0,00	6,28	-8,58	72,58
63	5,65	0,00	5,33	-56,75	216,08
64	5,75	-6,14	6,16	-269,56	162,18
65	5,83	-5,22	0,00	-97,71	313,88
66	5,92	-6,10	0,00	-44,10	274,17
67	6,00	-6,04	0,00	-82,49	82,49
68	6,08	-6,10	0,00	-274,17	44,10
69	6,17	-5,22	0,00	-313,88	97,71
70	6,25	-6,14	6,16	-162,18	269,56
71	6,35	0,00	5,33	-216,08	56,75
72	6,45	0,00	6,28	-72,58	8,58
73	6,55	0,00	6,28	-8,58	72,58
74	6,65	0,00	5,33	-56,75	216,08
75	6,75	-6,14	6,16	-269,56	162,18
76	6,83	-5,22	0,00	-97,71	313,88
77	6,92	-6,10	0,00	-44,10	274,17
78	7,00	-6,04	0,00	-82,49	82,49
79	7,08	-6,10	0,00	-274,17	44,10
80	7,17	-5,22	0,00	-313,88	97,71
81	7,25	-6,14	6,16	-162,18	269,56
82	7,35	0,00	5,33	-216,08	56,75
83		0,00		-72,58	
	7,45		6,28		8,58
84	7,55	0,00	6,28	-8,58	72,58
85	7,65	0,00	5,33	-56,75	216,08
86	7,75	-6,14	6,16	-269,56	162,18
87	7,83	-5,22	0,00	-97,71	313,88
88	7,92	-6,10	0,00	-44,10	274,17
89	8,00	-6,04	0,00	-82,49	82,49
90	8,08	-6,10	0,00	-274,17	44,10
91	8,17	-5,22	0,00	-313,88	97,71
92	8,25	-6,14	6,16	-162,18	269,56
93	8,35	0,00	5,33	-216,08	56,75
94	8,45	0,00	6,28	-72,58	8,58
95	8,55	0,00	6,28	-8,58	72,58
96	8,65	0,00	5,33	-56,75	216,08
97	8,75	-6,14	6,16	-269,56	162,18
98	8,83	-5,22		-97,71	313,88
99			0,00		
	8,92	-6,10	0,00	-44,10	274,17
100	9,00	-6,04	0,00	-82,49	82,49
101	9,08	-6,10	0,00	-274,17	44,10
102	9,17	-5,22	0,00	-313,88	97,71
103	9,25	-6,14	6,16	-162,18	269,56
104	9,35	0,00	5,33	-216,08	56,75
105	9,45	0,00	6,28	-72,58	8,58
106	9,55	0,00	6,28	-8,58	72,58
107	9,65	0,00	5,33	-56,75	216,08
108	9,75	-6,14	6,16	-269,56	162,18
109	9,83	-5,22	0,00	-97,71	313,88
110	9,92	-6,10	0,00	-44,10	274,17
111	10,00	-6,04	0,00	-82,49	82,49
112	10,08	-6,10	0,00	-274,17	44,10
113	10,17	-5,22	0,00	-313,88	97,71
114	10,25	-6,14	6,16	-162,18	269,56
115	10,35	0,00	5,33	-216,08	56,75
116	10,45	0,00	6,28	-72,58	8,58
117	10,55	0,00	6,28	-8,58	72,58
117	10,65	0,00	5,33	-56,75	216,08
		-6,14		-36,75 -269,56	162,18
119	10,75		6,16		
120	10,83	-5,22	0,00	-97,71	313,88
121	10,92	-6,10	0,00	-44,10	274,17
122	11,00	-6,04	0,00	-82,49	82,49
123	11,08	-6,10	0,00	-274,17	44,10
124	11,17	-5,22	0,00	-313,88	97,71
125	11,25	-6,14	6,16	-162,18	269,56
126	11,35	0,00	5,33	-216,08	56,75
127	11,45	0,00	6,28	-72,58	8,58
128	11,55	0,00	6,28	-8,58	72,58
129	11,65	0,00	5,33	-56,75	216,08
130	11,75	-6,14	6,16	-269,56	162,18

131	11,83	-5,22	0,00	-97,71	313,88
132	11,92	-6,10	0,00	-44,10	274,17
133	12,00	-6,04	0,00	-82,49	82,49
134	12,08	-6,10	0,00	-274,17	44,10
135	12,17	-5,22	0,00	-313,88	97,71
136	12,25	-6,14	6,16	-162,18	269,56
137	12,35	0.00	5,33	-216,08	56,75
138	12,45	0,00	6,28	-72,58	8,58
139	12,55	0,00	6,28	-8,58	72,58
140	12,65	0,00	5,33	-56,75	216,08
141	12,75	-6,14	6,16	-269,56	162,18
142	12,83	-5,22	0,00	-97,71	313,88
143	12,92	-6,10	0,00	-44,10	274,17
144	13,00	-6,04	0,00	-82,49	82,49
145	13,08	-6,10	0,00	-274,17	44,10
146	13,17	-5,22	0,00	-313,88	97,71
147	13,25	-6,14	6,16	-162,18	269,56
148	13,35	0,00	5,33	-216,08	56,75
149	13,45	0,00	6,28	-72,58	8,58
150	13,55	0,00	6,28	-8,58	72,58
151	13,65	0,00	5,33	-56,75	216,08
	,				
152	13,75	-6,14	6,16	-269,56	162,18
153	13,83	-5,22	0,00	-97,71	313,88
154	13,92	-6,10	0,00	-44,10	274,17
155	14,00	-6,04	0,00	-82,49	82,49
156	14,08	-6,10	0,00	-274,17	44,10
157	14,17	-5,22	0,00	-313,88	97,71
158	14,25	-6,14	6,16	-162,18	269,56
159	14,35	0,00	5,33	-216,08	56,75
160	14,45	0,00	6,28	-72,58	8,58
161	14,55	0,00	6,28	-8,58	72,58
162	14,65	0,00	5,33	-56,75	216,08
163	14,75	-6,14	6,16	-269,56	162,18
164	14,83	-5,22	0,00	-97,71	313,88
165	14,92	-6,10	0,00	-44,10	274,17
166	15,00	-6,04	0,00	-82,49	82,49
167	15,08	-6,10	0,00	-274,17	44,10
168	15,17	-5,22	0,00	-313,88	97,71
169	15,25	-6,14	6,16	-162,18	269,56
170	15,35	0,00	5,33	-216,08	56,75
171	15,45	0,00	6,28	-72,58	8,58
172	15,55	0,00	6,28	-8,58	72,58
173	15,65	0,00	5,33	-56,75	216,08
174	15,75	-6,14	6,16	-269,56	162,18
175	15,83	-5,22	0,00	-97,71	313,88
176	15,92	-6,10	0,00	-44,10	274,17
177	16,00	-6,04	0,00	-82,49	82,49
178	16,08	-6,10	0,00	-274,17	44,10
179	16,17	-5,22	0,00	-313,88	97,71
180	16,25	-6,14	6,16	-162,18	269,56
181	16,35	0,00	5,33	-216,08	56,75
182	16,45	0,00	6,28	-72,58	8,58
183	16,55	0,00	6,28	-8,58	72,58
184	16,65	0,00	5,33	-56,75	216,08
185	16,75	-6,14	6,16	-269,56	162,18
186	16,83	-5,22	0,00	-97,71	313,88
187	16,92	-6,10	0,00	-44,10	274,17
188	17,00	-6,04	0,00	-82,49	82,49
189	17,00	-6,10	0,00		82,49 44,10
				-274,17	,
190	17,17	-5,22	0,00	-313,88	97,71
191	17,25	-6,14	6,16	-162,18	269,56
192	17,35	0,00	5,33	-216,08	56,75
193	17,45	0,00	6,28	-72,58	8,58
194	17,55	0,00	6,28	-8,58	72,58
195	17,65	0,00	5,33	-56,75	216,08
196	17,75	-6,14	6,16	-269,56	162,18
197	17,83	-5,22	0,00	-97,71	313,88
198	17,92	-6,10	0,00	-44,10	274,17
199	18,00	-6,04	0,00	-82,49	82,49
200	18,08	-6,10	0,00	-274,17	44,10
201	18,17	-5,22	0,00	-313,88	97,71
202	18,25	-5,22 -6,14	6,16	-162,18	269,56
203	18,35	0,00	5,33	-216,08	56,75
204	18,45	0,00	6,28	-72,58	8,58
205	18,55	0,00	6,28	-8,58	72,58
206	18,65	0.00	5,33	-56,75	216,08
207	18,75	-6,14	6,16	-269,56	162,18
208	18,83	-5,22	0,00	-97,71	313,88
209	18,92	-6,10	0,00	-44,10	274,17
210	19,00	-6,04	0,00	-82,49	82,49

211	10.00	C 10	0.00	274.17	44.10
211	19,08	-6,10 5.22	0,00	-274,17	44,10
212	19,17	-5,22	0,00	-313,88	97,71
213	19,25	-6,14	6,16	-162,18	269,56
214	19,35	0,00	5,33	-216,08	56,75
215	19,45	0,00	6,28	-72,58	8,58
216	19,55	0,00	6,28	-8,58	72,58
217	19,65	0,00	5,33	-56,75	216,08
218	19,75	-6,14	6,16	-269,56	162,18
219	19,83	-5,22	0,00	-97,71	313,88
220	19,92	-6,10	0,00	-44,10	274,17
221	20,00	-6,04	0,00	-82,49	82,49
222	20,08	-6,10	0,00	-274,17	44,10
223	20,17	-5,22	0,00	-313,88	97,71
224	20,25	-6,14	6,16	-162,18	269,56
225	20,35	0,00	5,33	-216,08	56,75
226	20,45	0,00	6,28	-72,58	8,58
227	20,55	0,00	6,28	-8,58	72,58
228	20,65	0,00	5,33	-56,75	216,08
229	20,75	-6,14	6,16	-269,55	162,18
230	20,83	-5,22	0,00	-97,71	313,87
231	20,92	-6,10	0,00	-44,09	274,16
232	21,00	-6,04	0,00	-82,51	82,48
233	21,08	-6,10	0,00	-274,19	44,11
234	21,17	-5,22	0,00	-313,89	97,72
235	21,25	-6,14	6,16	-162,20	269,58
236	21,35	0.00	5,33	-216,06	56,76
237	21,45	0.00	6,28	-72,61	8,59
238	21,55	0.00	6,27	-8,55	72,49
239	21,65	0.00	5,33	-56,68	216,17
240	21,75	-6,14	6,15	-269,05	162,04
241	21,83	-5,23	0,00	-97,16	313,43
242	21,92	-6,12	0,00	-41,98	272,61
243	22,00	-6,03	0,00	-85,34	78,77
244	22,08	-5,96	0,00	-264,28	45,73
245	22,17	-4,95	0,00	-301,17	101,80
246	22,25	-5,54	5,55	-166,52	246,42
247	22,33	0,00	4,99	-218,19	69,64
248	22,42	-0,08	5,91	-106,71	20,49
249	22,50	0,00	4,34	-62,73	16,45
,	,00	0,00	.,	02,	10,10

Armature e tensioni nei materiali del muro

Combinazione nº 11

Continutar Y (espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm] H altezza della sezione espressa in [cm] area di armatura in corrispondenza del lembo di monte in [cmq] Afi area di armatura in corrispondenza del lembo di valle in [cmq] N_{ii} sforzo normale ultimo espresso in [kg]

 $\begin{array}{c} A_{fs} \\ A_{fi} \\ N_u \\ M_u \\ CS \\ VRcd \\ VRsd \\ VRd \end{array}$

momento ultimo espresso in [kgm]
coefficiente sicurezza sezione
Aliquota di taglio assorbito dal cls, espresso in [kg]
Aliquota di taglio assorbito dall'armatura, espresso in [kg]

Resistenza al taglio, espresso in [kg]

Nr.	Y	B, H	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	N_u	$\mathbf{M_{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	100, 30	10,05	8,04	0	0	1000,00	14316		
2	0,10	100, 30	10,05	8,04	343936	-26460	4585,81	14327		
3	0,20	100, 30	10,05	8,04	170764	-26867	1138,43	14337		
4	0,30	100, 30	10,05	8,04	82240	-19837	365,51	14347		
5	0,40	100, 30	10,05	8,04	48891	-16063	162,97	14357		
6	0,50	100, 30	10,05	8,04	34135	-14315	91,03	14367		
7	0,60	100, 30	10,05	8,04	25991	-13350	57,76	14377		
8	0,70	100, 30	10,05	8,04	20837	-12740	39,69	14387		
9	0,80	100, 30	10,05	8,04	17287	-12319	28,81	14397		
10	0,90	100, 30	10,05	8,04	14697	-12012	21,77	14408		
11	1,00	100, 30	10,05	8,04	12727	-11779	16,97	14418		
12	1,10	100, 30	10,05	8,04	11181	-11596	13,55	14428		
13	1,20	100, 30	10,05	8,04	9936	-11448	11,04	14438		
14	1,30	100, 30	10,05	8,04	8913	-11327	9,14	14448		
15	1,40	100, 30	10,05	8,04	8060	-11226	7,68	14458		
16	1,50	100, 30	20,11	16,08	14248	-21634	12,66	18189		
17	1,60	100, 30	10,05	8,04	6718	-11067	5,60	14478		
18	1,70	100, 30	10,05	8,04	6182	-11004	4,85	14489		
19	1,80	100, 30	10,05	8,04	5715	-10948	4,23	14499		
20	1,90	100, 30	10,05	8,04	5303	-10900	3,72	14509		
21	2,00	100, 30	10,05	8,04	4939	-10856	3,29	14519		

Armature e tensioni nei materiali della fondazione

Combinazione nº 11

Simbologia adottata
B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]

area di armatura in corrispondenza del lembo inferiore in [cmq] area di armatura in corrispondenza del lembo superiore in [cmq] sforzo normale ultimo espresso in [kg] momento ultimo espresso in [kgm] $\begin{array}{c} A_{fi} \\ A_{fs} \\ N_{u} \\ M_{u} \\ CS \\ VRcd \\ \end{array}$

Aliquota di taglio assorbito dal cls, espresso in [kg]
Aliquota di taglio assorbito dall'armatura, espresso in [kg]
Resistenza al taglio, espresso in [kg] VRsd

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	N_u	$\mathbf{M_{u}}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	V_{Rcd}	V_{Rsd}
1	0,00	100, 50	10,05	10,05	0	18159	1000,00	20744		
2	0,05	100, 50	10,05	10,05	0	-18159	5342,07	20744		
3	0,10	100, 50	10,05	10,05	0	-18159	1000,00	20744		
4	0,15	100, 50	10,05	10,05	0	-18159	707,12	20744		
5	0,20	100, 50	10,05	10,05	0	-18159	1000,00	20744		
6	0,25	100, 50	10,05	10,05	0	-18159	344,81	20744		

Fondazione di monte

 $(L'ascissa\ X,\ espressa\ in\ [m],\ \grave{e}\ positiva\ verso\ valle\ con\ origine\ in\ corrispondenza\ dell'estremo\ libero\ della\ fondazione\ di\ monte)$

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	N_u	M_u	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	100, 50	10,05	10,05	0	18159	1000,00	20744		
2	0,05	100, 50	10,05	10,05	0	-18159	1000,00	20744		
3	0,10	100, 50	10,05	10,05	0	-18159	449,48	20744		
4	0,15	100, 50	10,05	10,05	0	-18159	192,90	20744		
5	0,20	100, 50	10,05	10,05	0	-18159	129,28	20744		
6	0,25	100, 50	10,05	10,05	0	-18159	81,80	20744		

Analisi dei pali

Combinazione nº 11

Risultanti sulla base della fondazione (per metro lineare di muro)

[kg] 5256,7 Orizzontale

Verticale [kg] Momento [kgm] -4649,5

Spostamenti della piastra di fondazione

Orizzontale [cm]

Verticale [cm] 0,00668 Rotazione [°] -0,08372

Scarichi in testa ai pali

Fila nr.	N.pali	N [kg]	T [kg]	M [kgm]	Tu [kg]	Mu [kgm]
1	45	5257	5260	-4650	11958	-10570

Calcolo della portanza

 $\begin{array}{l} \tau_{m} \\ \sigma_{p} \\ N_{c}, \ N_{q}, \ N_{\gamma} \\ N'_{c}, \ N'_{q}, \ N'_{\gamma} \\ P_{l} \\ P_{p} \\ P_{t} \\ P_{d,s} \\ P_{d,c} \\ PT \end{array}$ tensione tangenziale media palo-terreno in [kg/cmq] tensione sul terreno alla punta del palo in [kg/cmq]

fattori di capacità portante fattori di capacità portante corretti

portanza caratteristica per attrito e aderenza laterale in [kg] portanza caratteristica di punta in [kg] portanza caratteristica totale in [kg]

portanza di progetto, con applicazione dei coeff. parziali alle singole aliquote della portanza, in [kg] portanza di progetto, con applicazione del coeff. parziale alla portanza totale, in [kg]

Parametri Terreno utilizzati

Fila 1	N _c 25.80	N'c 60.23	N _q 14.72	N' _q 23.52	Ν_γ 11.19	Ν'_γ 14.29	τ _m -0.01	σ _p 3.21
Fila	P ₁ 8990		P _p 39854	P _t 79108	P _{d,s} 25717	P _d 4491		PT MEDI
1	8990		39854	79108	25717	4491		MINIMI

Verifica a punzonamento della fondazione

diametro dei pali della fila espresso in [cm] altezza della fondazione in corrispondenza della fila espressa in [cm] superficie di aderenza palo-fondazione ($H_I\Pi D$) espressa in [cmq] H S₁ sforzo normale trasmesso dal palo alla fondazione espresso in [kg] tensione tangenziale palo-fondazione espressa in [kg/cmq]

Fila N 5257 τ_c 0,13 250,0 39269,9 50,0

Sollecitazioni nei pali e verifiche delle sezioni

ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m]) momento flettente espresso in [kgm] sforzo normale espresso in [kg]

Combinazione n° 11

Nr. numero d'ordine della sezione a partire dall'attacco palo-fondazione
Y ordinata della sezione a partire dall'attacco palo-fondazione positiva
M momento flettente espresso in [kgm]
N sforzo normale espresso in [kg]
T taglio espresso in [kg]
Mu momento ultimo espresso in [kgm]

taglio espresso in [kg] momento ultimo espresso in [kgm] sforzo normale ultimo espresso in [kg] taglio ultimo espresso in [kg] coefficiente di sicurezza

Sollecitazioni e tensioni per la fila di pali nr. 1

Nr.	Y	M	N	T	$\mathbf{A_f}$	$\mathbf{M_u}$	N_u	$T_{\mathbf{u}}$	CS
1	0,00	-4650	5257	5260	44,23	33110	37434	18249	7,12
2	0,20	-5701	5353	5153	44,23	32572	30583	18249	5,71
3	0,40	-6732	5446	4947	44,23	32216	26062	18249	4,79
4	0,60	-7721	5535	4640	44,23	31931	22890	18249	4,14
5	0,80	-8649	5621	4232	44,23	31726	20616	18249	3,67
6	1,00	-9496	5703	3723	44,23	31577	18963	18249	3,33
7	1,20	-10240	5781	3112	44,23	31468	17765	18249	3,07

8	1,40	-10863	5856	2401	44,23	31392	16923	18249	2,89
9	1,60	-11343	5927	1589	44,23	31343	16378	18249	2,76
10	1,80	-11661	5995	676	44,23	31318	16101	18249	2,69
11	2,00	-11796	6059	-337	44,23	31317	16085	18249	2,65
12	2,20	-11728	6119	-1450	44,23	31341	16352	18249	2,67
13	2,40	-11439	6176	-2662	44,23	31395	16951	18249	2,74
14	2,60	-10906	6229	-3545	44,23	31488	17985	18249	2,89
15	2,80	-10197	6279	-4138	44,23	31622	19472	18249	3,10
16	3,00	-9370	6325	-4489	44,23	31803	21470	18249	3,39
17	3,20	-8472	6368	-4640	44,23	32039	24082	18249	3,78
18	3,40	-7544	6407	-4630	44,23	32326	27453	18249	4,29
19	3,60	-6618	6442	-4494	44,23	32667	31799	18249	4,94
20	3,80	-5719	6474	-4264	44,23	33114	37484	18249	5,79
21	4,00	-4866	6502	-3965	44,23	33668	44984	18249	6,92
22	4,20	-4073	6526	-3619	44,23	34299	54953	18249	8,42
23	4,40	-3349	6547	-3247	44,23	34834	68091	18249	10,40
24	4,60	-2700	6565	-2863	44,23	35510	86335	18249	13,15
25	4,80	-2127	6578	-2480	44,23	35831	110798	18249	16,84
26	5,00	-1631	6589	-2108	44,23	35502	143381	18249	21,76
27	5,20	-1210	6595	-1754	44,23	33439	182298	18249	27,64
28	5,40	-859	6598	-1425	44,23	29838	229219	18249	34,74
29	5,60	-574	6598	-1123	44,23	24812	285203	18249	43,23
30	5,80	-349	6593	-852	44,23	18140	342346	18249	51,92
31	6,00	-179	6586	-614	44,23	10610	390534	18249	59,30
32	6,20	-56	6574	-409	44,23	3403	398648	18249	60,64
33	6,40	26	6559	-238	44,23	1568	400713	18249	61,09
34	6,60	73	6541	-100	44,23	4448	397472	18249	60,77
35	6,80	93	6518	5	44,23	5659	396108	18249	60,77
36	7,00	92	6493	77	44,23	5621	396150	18249	61,01
37	7,20	77	6463	116	44,23	4716	397169	18249	61,45
38	7,40	53	6430	124	44,23	3315	398746	18249	62,01
39	7,60	29	6394	100	44,23	1796	400456	18249	62,63
40	7,80	9	6354	44	44,23	553	401856	18249	63,25
41	8,00	0	6310	44	44,23	0	402479	18249	63,78
COMBI	INAZIONE n°	<u>° 21</u>							
·									
Valore o	della spinta sta	atica				4729,18	[kg]		
Valore o	della spinta sta nente orizzont	atica ale della spinta s				4609,45	[kg]		
Valore o Compoi	della spinta sta nente orizzont nente verticale	atica ale della spinta s e della spinta stat				4609,45 1057,39	[kg] [kg]	V 147	
Valore of Compose Compose Punto d	della spinta sta nente orizzont nente verticale 'applicazione	atica ale della spinta s e della spinta stat della spinta	ica			4609,45 $1057,39$ $X = 0,25$	[kg] [kg] [m]	Y = -1,47	[m]
Valore of Composi Composi Punto d Inclinaz	della spinta sta nente orizzont nente verticale 'applicazione z. della spinta	atica ale della spinta s e della spinta stat della spinta rispetto alla norn	ica nale alla superfi	cie		4609,45 1057,39 X = 0,25 12,92	[kg] [kg] [m] [°]	Y = -1,47	[m]
Valore of Composi Composi Punto d Inclinaz	della spinta sta nente orizzont nente verticale 'applicazione z. della spinta	atica ale della spinta s e della spinta stat della spinta	ica nale alla superfi	cie		4609,45 $1057,39$ $X = 0,25$	[kg] [kg] [m]	Y = -1,47	[m]
Valore of Composi Composi Punto d Inclinaz Coeffici	della spinta sta nente orizzont nente verticale 'applicazione z. della spinta iente di spinta	atica ale della spinta se della spinta stat della spinta rispetto alla norn attiva in condizi	ica nale alla superfi	cie		4609,45 1057,39 X = 0,25 12,92 0,4451	[kg] [kg] [m] [°] [°]	Y = -1,47	[m]
Valore of Composi Composi Punto d Inclinaz Coeffici	della spinta sta nente orizzont nente verticale 'applicazione z. della spinta iente di spinta	atica ale della spinta sa e della spinta stat della spinta rispetto alla norn attiva in condizi ella spinta	ica nale alla superfi oni statiche			4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74	[kg] [kg] [m] [°] [°]	,	
Valore of Composi Composi Punto d Inclinaz Coeffici Increme Punto d	della spinta sta nente orizzont nente verticale 'applicazione z. della spinta iente di spinta ento sismico de 'applicazione	atica ale della spinta se della spinta stat della spinta rispetto alla norn attiva in condizi ella spinta dell'incremento s	cica nale alla superfic ioni statiche sismico di spinta			4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25	[kg] [kg] [m] [°] [kg] [m]	Y = -1,47 $Y = -1,25$	[m]
Valore of Composi Composi Punto d Inclinaz Coeffici Increme Punto d	della spinta sta nente orizzont nente verticale 'applicazione z. della spinta iente di spinta ento sismico de 'applicazione	atica ale della spinta sa e della spinta stat della spinta rispetto alla norn attiva in condizi ella spinta	cica nale alla superfic ioni statiche sismico di spinta			4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74	[kg] [kg] [m] [°] [°]	,	
Valore of Compor Compor Punto d Inclinaz Coeffici Increme Punto d Coeffici	della spinta sta nente orizzont nente verticale 'applicazione e della spinta iente di spinta ento sismico d 'applicazione iente di spinta	atica ale della spinta se della spinta stat della spinta rispetto alla norn attiva in condizi ella spinta dell'incremento s attiva in condizi	ica nale alla superfictioni statiche sismico di spinta toni sismiche			4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25	[kg] [kg] [m] [°] [kg] [m] [°]	,	
Valore of Composition of Punto d Inclinaz Coefficion Increme Punto d Coefficion	della spinta sta nente orizzont nente verticale 'applicazione e della spinta iente di spinta ento sismico d 'applicazione e iente di spinta	atica ale della spinta se della spinta stat della spinta rispetto alla norn attiva in condizi ella spinta dell'incremento s	ica nale alla superficoni statiche sismico di spinta oni sismiche one a monte	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746	[kg] [kg] [m] [°] [kg] [m]	,	
Valore of Composition of Punto d Inclinaz Coefficion Increme Punto d Coefficion Peso ter Baricen	della spinta sta nente orizzont nente verticale 'applicazione e della spinta iente di spinta ento sismico d 'applicazione e iente di spinta	atica ale della spinta se e della spinta stat della spinta rispetto alla norr attiva in condizi ella spinta dell'incremento s attiva in condizi nte sulla fondazi	ica nale alla superficoni statiche sismico di spinta oni sismiche one a monte	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00	[kg] [kg] [m] [°] [kg] [m] [°]	Y = -1,25	[m]
Valore of Composition of Punto d Inclinaz Coefficion Increme Punto d Coefficion Peso ter Baricen Inerzia of	della spinta sta nente orizzont nente verticale 'applicazione e della spinta iente di spinta ento sismico d 'applicazione e iente di spinta trapieno grava tro terrapieno	atica ale della spinta se della spinta stat della spinta rispetto alla norr attiva in condizi ella spinta dell'incremento s attiva in condizi attiva in condizi ente sulla fondazi gravante sulla fo	ica nale alla superficoni statiche sismico di spinta oni sismiche one a monte	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13	[kg] [kg] [m] [°] [kg] [m] [°]	Y = -1,25	[m]
Valore of Composition of Punto d Inclinaz Coefficion of Punto d Coefficion of Peso ter Baricen Inerzia of Inerzia of Iner	della spinta sta nente orizzont nente verticale 'applicazione of the della spinta nente di spinta ento sismico de 'applicazione of iente di spinta trapieno grava tro terrapieno del muro verticale del n	atica ale della spinta se della spinta stat della spinta rispetto alla norr attiva in condizi ella spinta dell'incremento s attiva in condizi attiva in condizi ente sulla fondazi gravante sulla fo	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a mor	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02	[kg] [kg] [m] [°] [kg] [m] [°]	Y = -1,25	[m]
Valore of Composition of Punto de Inclinaza Coefficial Increme Punto de Coefficial Peso ter Baricen Inerzia de	della spinta sta nente orizzont nente verticale 'applicazione ¿. della spinta iente di spinta 'applicazione iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno	atica ale della spinta se della spinta stat della spinta rispetto alla norr attiva in condizi ella spinta dell'incremento se attiva in condizi attiva in condizi nte sulla fondazi gravante sulla fon	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a mon	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01	[kg] [kg] [m] [°] [kg] [m] [°] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Composition of Punto de Inclinaza Coefficial Increme Punto de Coefficial Peso ter Baricen Inerzia de Inerzia de	della spinta sta nente orizzont nente verticale 'applicazione z. della spinta iente di spinta ento sismico d 'applicazione iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno verticale del te	atica ale della spinta se della spinta stat della spinta rispetto alla norr attiva in condizi ella spinta dell'incremento s attiva in condizi ante sulla fondazi gravante sulla fondazi fondazione di m	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a mon	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53	[kg] [kg] [m] [°] [kg] [m] [°] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Composition Punto di Inclinazia Coefficial Peso ter Baricen Inerzia di Inerzia	della spinta sta nente orizzont nente verticale 'applicazione o della spinta i iente di spinta ento sismico di 'applicazione o iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno verticale del te	atica ale della spinta se della spinta stat della spinta rispetto alla norn attiva in condizi ella spinta dell'incremento s attiva in condizi ante sulla fondazi gravante sulla fondazi fondazione di m errapieno fondaz	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a mon	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Composition Punto d Inclinaz Coefficial Increme Punto d Coefficial Peso ter Baricen Inerzia d In	della spinta sta nente orizzont nente verticale 'applicazione o della spinta si iente di spinta ento sismico de 'applicazione o iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno verticale del to titi nte dei carichi	atica ale della spinta se della spinta stat della spinta rispetto alla norn attiva in condizi ella spinta dell'incremento s attiva in condizi nte sulla fondazi gravante sulla fon fondazione di m errapieno fondaz applicati in dir.	ica nale alla superficioni statiche sismico di spinta coni sismiche one a monte ondazione a monte conte ione di monte orizzontale	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Comport Comport Punto d Inclinaz Coefficial Increme Punto d Coefficial Peso ter Baricen Inerzia of I	della spinta sta nente orizzont nente verticale 'applicazione o della spinta si iente di spinta ento sismico de 'applicazione o iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno verticale del te tati nte dei carichi nte dei carichi	atica ale della spinta se della spinta stat della spinta rispetto alla norn attiva in condizi ella spinta dell'incremento s attiva in condizi inte sulla fondazi gravante sulla fon fondazione di merrapieno fondaz applicati in dir. applicati in dir.	nale alla superficioni statiche sismico di spinta coni sismiche one a monte ondazione a mon conte ione di monte orizzontale verticale	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77 8736,54 6154,05	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Comport Comport Punto d Inclinaz Coefficial Increme Punto d Coefficial Peso ter Baricen Inerzia d Inerzia	della spinta sta nente orizzont nente verticale 'applicazione e z. della spinta ento sismico d 'applicazione e iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno verticale del te terrapieno verticale del te te dei carichi nermale sul pi	atica ale della spinta se e della spinta stat della spinta rispetto alla norre attiva in condizi ella spinta dell'incremento se attiva in condizi inte sulla fondazi gravante sulla fon nuro fondazione di merrapieno fondaz applicati in dire applicati in dire ano di posa della	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a mon ionte ione di monte orizzontale verticale i fondazione	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77 8736,54 6154,05 6154,05	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Compore Compore Punto de Inclinaza Coefficial Increme Punto de Coefficial Peso ter Baricen Inerzia de Inerzia d	della spinta sta nente orizzont nente verticale l'applicazione e z. della spinta iente di spinta ento sismico d l'applicazione e iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno verticale del te mite dei carichi nermale sul pi tangenziale su	atica ale della spinta se e della spinta stat della spinta rispetto alla norr attiva in condizi ella spinta dell'incremento s attiva in condizi inte sulla fondazi gravante sulla fo nuro fondazione di m errapieno fondaz applicati in dir, ano di posa della l piano di posa d	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a monte ionte ione di monte orizzontale verticale a fondazione ella fondazione	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77 8736,54 6154,05 6154,05 8736,54	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Composition Composition Punto de Inclinaz Coefficial Increme Punto de Coefficial Peso ter Baricen Inerzia de In	della spinta sta nente orizzont nente verticale 'applicazione e z. della spinta iente di spinta ento sismico de 'applicazione e iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno verticale del te nti nte dei carichi normale sul pi tangenziale su icità rispetto a	atica ale della spinta se della spinta stat della spinta rispetto alla norr attiva in condizi ella spinta dell'incremento s attiva in condizi nte sulla fondazi gravante sulla fo nuro fondazione di m errapieno fondaz applicati in dir. ano di posa della l piano di posa della l piano di posa della l baricentro della	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a monte ionte ione di monte orizzontale verticale a fondazione ella fondazione	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77 8736,54 6154,05 6154,05 8736,54 1,41	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Comport Comport Punto de Increme Punto de Coefficion Peso terra Baricen Inerzia e Iner	della spinta sta nente orizzont nente verticale l'applicazione e z. della spinta iente di spinta ento sismico d l'applicazione e iente di spinta trapieno grava tro terrapieno del muro verticale del n del terrapieno verticale del te mite dei carichi nermale sul pi tangenziale su	atica ale della spinta se della spinta stat della spinta della spinta trispetto alla norre attiva in condizi ella spinta dell'incremento se attiva in condizi ante sulla fondazi gravante sulla fon uro fondazione di merrapieno fondaz applicati in dire applicati in dire ano di posa della l piano di posa della	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a monte ionte ione di monte orizzontale verticale a fondazione ella fondazione	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77 8736,54 6154,05 8736,54 1,41 -3,04	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg] [kg] [kg] [kg] [kg	Y = -1,25	[m]
Valore of Comport Comport Punto de Increme Punto de Coefficion Peso ter Baricen Inerzia e Inerzi	della spinta stanente orizzont nente verticale l'applicazione de la spinta del muro verticale del muro verticale del terapieno del ed la spinta del del carichi ne dei carichi normale sul pi tangenziale su icità rispetto a zza fondazion te in fondazion ne la supportationale sul pi tangenziale su icità rispetto a zza fondazion te in fondazion ne del morazionate del morazionate in fondazion ne del morazionate in fondazion ne del morazionate in fondazion ne del morazionate del morazionate in fondazion ne del morazionate del morazionate in fondazion ne del morazionate del mo	atica ale della spinta se della spinta stat della spinta della spinta trispetto alla norre attiva in condizi ella spinta dell'incremento se attiva in condizi ante sulla fondazi gravante sulla fon uro fondazione di merrapieno fondaz applicati in dire applicati in dire ano di posa della l piano di posa della	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a mon ionte ione di monte orizzontale verticale a fondazione ella fondazione a fondazione	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77 8736,54 6154,05 6154,05 8736,54 1,41	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg] [kg] [kg] [kg]	Y = -1,25	[m]
Valore of Composition Composition Punto di Inclinazi Coeffici Increme Punto di Coeffici Peso ter Baricen Inerzia di Inerz	della spinta stanente orizzont nente verticale l'applicazione de la spinta i ente di spinta ento sismico de l'applicazione de la spinta ente di spinta ente di spinta ente di spinta ente del carrapieno del muro verticale del trapicale del te dei carichi inte dei carichi inte dei carichi inte dei carichi internale sul pi tangenziale su icità rispetto a zza fondazion te in fondazio cione della risu	atica ale della spinta se della spinta stat della spinta rispetto alla norr attiva in condizi ella spinta dell'incremento s attiva in condizi ante sulla fondazi gravante sulla fo nuro fondazione di m errapieno fondaz applicati in dir. applicati in dir. ano di posa della l piano di posa d al baricentro della e reagente	nale alla superficioni statiche sismico di spinta ioni sismiche one a monte ondazione a monte ionte ione di monte orizzontale verticale a fondazione ella fondazione a fondazione alla normale)	ı		4609,45 1057,39 X = 0,25 12,92 0,4451 3286,74 X = 0,25 0,6746 1400,00 X = 0,13 592,02 296,01 331,53 165,77 8736,54 6154,05 6154,05 8736,54 1,41 -3,04 10686,41	[kg] [kg] [m] [°] [kg] [m] [kg] [kg] [kg] [kg] [kg] [kg] [kg]	Y = -1,25	[m]

Sollecitazioni paramento

Combinazione n° 21
L'ordinata Y(espressa in m) è considerata positiva verso il basso con origine in testa al muro
Momento positivo se tende le fibre contro terra (a monte), espresso in kgm
Sforzo normale positivo di compressione, espresso in kg
Taglio positivo se diretto da monte verso valle, espresso in kg

Nr.	Y	N	M	T
1	0,00	0,00	0,00	0,00
2	0,10	75,00	11,09	223,00
3	0,20	150,00	44,86	453,82
4	0,30	225,00	102,11	692,44
5	0,40	300,00	183,61	938,87
6	0,50	375,00	290,14	1193,11
7	0,60	450,00	422,49	1455,16
8	0,70	525,00	581,44	1725,02
9	0,80	600,00	767,76	2002,69
10	0,90	675,00	982,23	2288,16
11	1,00	750,00	1225,65	2581,45
12	1,10	825,00	1498,78	2882,54
13	1,20	900,00	1802,42	3191,45
14	1,30	975,00	2137,33	3508,16
15	1,40	1050,00	2504,31	3832,68
16	1,50	1125,00	2904,13	4165,01
17	1,60	1200,00	3337,57	4505,15
18	1,70	1275,00	3805,42	4853,10
19	1,80	1350,00	4308,45	5208,85
20	1,90	1425,00	4847,45	5572,42
21	2,00	1500,00	5423,20	5943,79

Inviluppo sollecitazioni piastra di fondazione

Combinazione nº 21

Dimensioni e la 21

Dimensioni della piastra(Simmetria)

Larghezza(m) = 22.50 Altezza(m) = 0.80

Origine all'attacco con il muro sull'asse di simmetria

Ascissa X positiva verso destra

Ordinata Y positiva dall'attacco con il muro verso l'estremo libero

I momenti negativi tendono le fibre superiori

Sollecitazioni in direzione Y

Nr.	Y	$\mathbf{M}_{ ext{ymin}}$	$\mathbf{M}_{ ext{ymax}}$	T_{ymin}	T_{ymax}
1	0,00	0,00	0,29	-26,24	28,76
2	0,05	-3,76	2,15	-101,91	1,67
3	0,10	-11,48	0,14	-200,76	0,00
4	0,15	-27,71	0,00	-315,20	48,70
5	0,20	-16,56	0,00	-282,55	991,55
6	0,25	-32,33	68,28	-339,89	2150,10
7	0,55	-201,67	0,00	-1732,37	738,94
8	0,60	-127,39	0,00	-1391,25	0,00
9	0,65	-89,53	0,00	-1250,90	0,00
10	0,70	-38,32	0,00	-767,20	0,00
11	0,75	-9,63	0,00	-383,28	0,00
12	0,80	0,00	1,46	-35,14	26,67

Sollecitazioni in direzione X

					_
Nr.	X	\mathbf{M}_{xmin}	$\mathbf{M}_{\mathbf{xmax}}$	T_{xmin}	T_{xmax}
1	0,00	-7,06	0,00	-53,33	9,16
2	0,08	-7,11	0,00	-232,87	46,64
3	0,17	-6,03	0,00	-613,88	112,66
4	0,25	-6,95	6,99	-186,38	271,02
5	0,35	0,00	6,19	-244,93	66,06
6	0,45	0,00	7,34	-85,08	10,13
7	0,55	0,00	7,34	-10,13	85,08
8	0,65	0,00	6,19	-66,06	244,93
9	0,75	-6,95	6,99	-271,02	186,38
10	0,83	-6,03	0,00	-112,66	613,88
11	0,92	-7,11	0,00	-46,64	232,87
12	1,00	-7,06	0,00	-53,33	53,33
13	1,08	-7,11	0,00	-232,87	46,64
14	1,17	-6,03	0,00	-613,88	112,66
15	1,25	-6,95	6,99	-186,38	271,02
16	1,35	0,00	6,19	-244,93	66,06
17	1,45	0,00	7,34	-85,08	10,13
18	1,55	0,00	7,34	-10,13	85,08
19	1,65	0,00	6,19	-66,06	244,93
20	1,75	-6,95	6,99	-271,02	186,38
21	1,83	-6,03	0,00	-112,66	613,88

22	1,92	-7,11	0,00	-46,64	232,87
23	2,00	-7,06	0,00	-53,33	53,33
24	2,08	-7,11	0,00	-232,87	46,64
25	2,17	-6,03	0,00	-613,88	112,66
26	2,25	-6,95	6,99	-186,38	271,02
27	2,35	0,00	6,19	-244,93	66,06
		0,00			10,13
28	2,45		7,34	-85,08 10.13	
29	2,55	0,00	7,34	-10,13	85,08
30	2,65	0,00	6,19	-66,06	244,93
31	2,75	-6,95	6,99	-271,02	186,38
32	2,83	-6,03	0,00	-112,66	613,88
33	2,92	-7,11	0,00	-46,64	232,87
34	3,00	-7,06	0,00	-53,33	53,33
35	3,08	-7,11	0,00	-232,87	46,64
36	3,17	-6,03	0,00	-613,88	112,66
37	3,25	-6,95	6,99	-186,38	271,02
38	3,35	0,00	6,19	-244,93	66,06
39	3,45	0,00	7,34	-85,08	10,13
40	3,55	0,00	7,34	-10,13	85,08
41	3,65	0,00	6,19	-66,06	244,93
42	3,75	-6,95	6,99	-271,02	186,38
43	3,83	-6,03	0,00	-112,66	613,88
44	3,92	-7,11	0,00	-46,64	232,87
45	4,00	-7,11	0,00	-53,33	53,33
46	4,08	-7,00 -7,11	0,00	-232,87	46,64
47	4,17	-6,03	0,00	-613,88	112,66
48	4,25	-6,95	6,99	-186,38	271,02
49	4,35	0,00	6,19	-244,93	66,06
50	4,45	0,00	7,34	-85,08	10,13
51	4,55	0,00	7,34	-10,13	85,08
52	4,65	0,00	6,19	-66,06	244,93
53	4,75	-6,95	6,99	-271,02	186,38
54	4,83	-6,03	0,00	-112,66	613,88
55	4,92	-7,11	0,00	-46,64	232,87
56	5,00	-7,06	0,00	-53,33	53,33
57	5,08	-7,11	0,00	-232,87	46,64
58	5,17	-6,03	0,00	-613,88	112,66
59	5,25	-6,95	6,99	-186,38	271,02
60	5,35	0,00	6,19	-244,93	66,06
61	5,45	0,00	7,34	-85,08	10,13
62	5,55	0,00	7,34	-10,13	85,08
63	5,65	0,00	6,19	-66,06	244,93
64	5,75	-6,95	6,99	-271,02	186,38
65	5,83	-6,03	0,00	-112,66	613,88
66	5,92	-7,11	0,00	-46,64	232,87
67	6,00	-7,11	0,00	-53,33	53,33
68	6,08	-7,00 -7,11	0,00	-232,87	46,64
					112,66
69 70	6,17	-6,03	0,00	-613,88	271,02
	6,25	-6,95	6,99	-186,38	
71	6,35	0,00	6,19	-244,93	66,06
72	6,45	0,00	7,34	-85,08	10,13
73	6,55	0,00	7,34	-10,13	85,08
74	6,65	0,00	6,19	-66,06	244,93
75 75	6,75	-6,95	6,99	-271,02	186,38
76	6,83	-6,03	0,00	-112,66	613,88
77	6,92	-7,11	0,00	-46,64	232,87
78	7,00	-7,06	0,00	-53,33	53,33
79	7,08	-7,11	0,00	-232,87	46,64
80	7,17	-6,03	0,00	-613,88	112,66
81	7,25	-6,95	6,99	-186,38	271,02
82	7,35	0,00	6,19	-244,93	66,06
83	7,45	0,00	7,34	-85,08	10,13
84	7,55	0,00	7,34	-10,13	85,08
85	7,65	0,00	6,19	-66,06	244,93
86	7,75	-6,95	6,99	-271,02	186,38
87	7,83	-6,03	0,00	-112,66	613,88
88	7,92	-7,11	0,00	-46,64	232,87
89	8,00	-7,06	0,00	-53,33	53,33
90	8,08	-7,11	0,00	-232,87	46,64
91	8,17	-6,03	0,00	-613,88	112,66
92	8,25	-6,95	6,99	-186,38	271,02
93	8,25 8,35	0,00	6,19	-244,93	66,06
93 94	8,33 8,45	0,00	7,34	-244,93 -85,08	10,13
94 95	8,45 8,55	0,00	7,34 7,34	-85,08 -10,13	85,08
96 07	8,65	0,00	6,19	-66,06 271,02	244,93
97	8,75	-6,95	6,99	-271,02	186,38
98	8,83	-6,03	0,00	-112,66	613,88
99	8,92	-7,11 7,06	0,00	-46,64 52,22	232,87
100	9,00	-7,06	0,00	-53,33	53,33
101	9,08	-7,11	0,00	-232,87	46,64

102	9,17	-6,03	0,00	-613,88	112,66
103	9,25	-6,95	6,99	-186,38	271,02
104	9,35	0,00	6,19	-244,93	66,06
105	9,45	0,00	7,34	-85,08	10,13
106	9,55	0,00	7,34	-10,13	85,08
107	9,65	0,00	6,19	-66,06	244,93
108	9,75	-6,95	6,99	-271,02	186,38
109	9,83	-6,03	0,00	-112,66	613,88
110	9,92	-7,11	0,00	-46,64	232,87
	10.00				
111	10,00	-7,06	0,00	-53,33	53,33
112	10,08	-7,11	0,00	-232,87	46,64
113	10,17	-6,03	0,00	-613,88	112,66
114	10,25	-6,95	6,99	-186,38	271,02
115	10,35	0,00	6,19	-244,93	66,06
116	10,45	0,00	7,34	-85,08	10,13
117	10,55	0,00	7,34	-10,13	85,08
118	10,65	0,00	6,19	-66,06	244,93
119	10,75	-6,95	6,99	-271,02	186,38
120	10,83	-6,03	0,00	-112,66	613,88
121	10,92	-7,11	0,00	-46,64	232,87
122	11,00	-7,06	0,00	-53,33	53,33
123	11,08	-7,11	0,00	-232,87	46,64
124	11,17	-6,03	0,00	-613,88	112,66
125	11,25	-6,95	6,99	-186,38	271,02
126	11,35	0,00	6,19	-244,93	66,06
127	11,45	0,00	7,34	-85,08	10,13
128	11,55	0,00	7,34	-10,13	85,08
129	11,65	0,00	6,19	-66,06	244,93
130	11,75	-6,95	6,99	-271,02	186,38
131	11,83	-6,03	0,00	-112,66	613,88
132	11,92	-7,11	0,00	-46,64	232,87
133	12,00	-7,06	0,00	-53,33	53,33
134	12,08	-7,11	0,00	-232,87	46,64
135	12,17	-6,03	0,00	-613,88	112,66
136	12,25	-6,95	6,99	-186,38	271,02
137	12,35	0,00	6,19	-244,93	66,06
138	12,45	0,00	7,34	-85,08	10,13
139	12,55	0,00	7,34	-10,13	85,08
140	12,65	0,00	6,19	-66,06	244,93
141	12,75	-6,95	6,99	-271,02	186,38
142	12,83	-6,03	0,00	-112,66	613,88
143	12,92	-7,11	0,00	-46,64	232,87
144	13,00	-7,06	0,00	-53,33	53,33
145	13,08	-7,11	0,00	-232,87	46,64
146	13,17	-6,03	0,00	-613,88	112,66
147	13,25	-6,95	6,99	-186,38	271,02
148	13,35	0,00	6,19	-244,93	66,06
149	13,45	0,00	7,34	-85,08	10,13
150	13,55	0,00	7,34	-10,13	85,08
151	13,65	0,00	6,19	-66,06	244,93
152	13,75	-6,95	6,99	-271,02	186,38
153	13,83	-6,03	0,00	-112,66	613,88
154	13,92	-7,11	0,00	-46,64	232,87
155	14,00	-7,06	0,00	-53,33	53,33
156	14,08	-7,11	0,00	-232,87	46,64
157	14,17	-6,03	0,00	-613,88	112,66
158	14,25	-6,95	6,99	-186,38	271,02
159	14,35	0,00	6,19	-244,93	66,06
160	14,45	0,00	7,34	-85,08	10,13
161	14,55	0,00	7,34	-10,13	85,08
162	14,65	0,00	6,19	-66,06 271,02	244,93
163	14,75	-6,95	6,99	-271,02	186,38
164	14,83	-6,03	0,00	-112,66	613,88
165	14,92	-7,11	0,00	-46,64	232,87
166	15,00	-7,06	0,00	-53,33	53,33
167	15,08	-7,11	0,00	-232,87	46,64
	15,17	-6,03	0,00		112,66
168				-613,88	
169	15,25	-6,95	6,99	-186,38	271,02
170	15,35	0,00	6,19	-244,93	66,06
171	15,45	0,00	7,34	-85,08	10,13
172	15,55	0,00	7,34	-10,13	85,08
173	15,65	0,00	6,19	-66,06	244,93
174	15,75	-6,95	6,99	-271,02	186,38
175	15,83	-6,03	0,00	-112,66	613,88
176	15,92	-7,11	0,00	-46,64	232,87
177	16,00	-7,06	0,00	-53,33	53,33
178	16,08	-7,00 -7,11	0,00	-232,87	46,64
179	16,17	-6,03	0,00	-613,88	112,66
180	16,25	-6,95	6,99	-186,38	271,02
181	16,35	0,00	6,19	-244,93	66,06
		•		•	•

182	16,45	0,00	7,34	-85,08	10,13
183	16,55	0,00	7,34	-10,13	85,08
184	16,65	0,00	6,19	-66,06	244,93
185	16,75	-6,95	6,99	-271,02	186,38
186	16,83	-6,03	0,00	-112,66	613,88
187	16,92	-7,11	0,00	-46,64	232,87
188	17,00	-7,06	0,00	-53,33	53,33
189	17,08	-7,11	0,00	-232,87	46,64
190	17,17	-6,03	0,00	-613,88	112,66
191	17,25	-6,95	6,99	-186,38	271,02
192	17,35	0,00	6,19	-244,93	66,06
193	17,45	0,00	7,34	-85,08	10,13
194	17,55	0,00	7,34	-10,13	85,08
195	17,65	0,00	6,19	-66,06	244,93
196	17,75	-6,95	6,99	-271,02	186,38
197	17,83	-6,03	0,00	-112,66	613,88
198	17,92	-7,11	0,00	-46,64	232,87
199	18,00	-7,06	0,00	-53,33	53,33
200	18,08	-7,11	0,00	-232,87	46,64
201	18,17	-6,03	0,00	-613,88	112,66
202	18,25	-6,95	6,99	-186,38	271,02
203	18,35	0,00	6,19	-244,93	66,06
204	18,45	0,00		-85,08	10,13
			7,34		
205	18,55	0,00	7,34	-10,13	85,08
206	18,65	0,00	6,19	-66,06	244,93
				-271,02	
207	18,75	-6,95	6,99		186,38
208	18,83	-6,03	0,00	-112,66	613,88
209	18,92	-7,11	0,00	-46,64	232,87
210					
	19,00	-7,06	0,00	-53,33	53,33
211	19,08	-7,11	0,00	-232,87	46,64
212	19,17	-6,03	0,00	-613,88	112,66
213	19,25	-6,95	6,99	-186,38	271,02
214	19,35	0,00	6,19	-244,93	66,06
215	19,45	0,00	7,34	-85,08	10,13
216	19,55	0,00	7,34	-10,13	85,08
217	19,65	0,00	6,19	-66,06	244,93
218	19,75	-6,95	6,99	-271,02	186,38
219	19,83	-6,03	0,00	-112,66	613,88
220	19,92				
		-7,11	0,00	-46,64	232,87
221	20,00	-7,06	0,00	-53,33	53,33
222	20,08	-7,11	0,00	-232,87	46,64
223	20,17	-6,03	0,00	-613,88	112,66
224	20,25	-6,95	6,99	-186,38	271,02
225	20,35	0,00	6,19	-244,93	66,06
226	20,45	0,00	7,34	-85,08	10,13
227	20,55	0,00	7,34	-10,13	85,08
228	20,65	0,00	6,19	-66,06	244,92
229	20,75	-6,95	6,99	-271,02	186,38
				-112,66	613,88
230	20,83	-6,03	0,00		
231	20,92	-7,11	0,00	-46,64	232,87
232	21,00	-7,06	0,00	-53,34	53,32
233	21,08	-7,11	0,00	-232,88	46,63
234	21,17	-6,03	0,00	-613,89	112,67
235	21,25	-6,95	6,99	-186,39	271,05
236	21,35	0,00	6,19	-244,94	66,07
237	21,45	0,00	7,34	-85,11	10,12
238	21,55	0,00	7,33	-10,17	85,01
239	21,65	0,00	6,18	-65,97	244,79
240	21,75	-6,96	6,99	-270,43	186,27
241	21,83	-6,04	0,00	-112,72	613,39
242	21,92	-7,11	0,00	-46,38	232,22
243	22,00	-7,04	0,00	-55,20	52,10
244	22,08	-6,97	0,00	-233,04	51,97
245	22,17	-5,80	0,00	-604,08	117,96
246	22,25	-6,48	6,49	-198,93	246,58
247	22,33	0,00	5,67	-254,72	79,93
248	22,42	-0,08	6,35	-125,15	15,35
249	22,50	0,00	4,04	-62,66	6,47
	==,50	2,00	.,	,	٠, ١ /

Armature e tensioni nei materiali del muro

Combinazione nº 21

Continitat Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro B base della sezione espressa in [cm] H altezza della sezione espressa in [cm] area di armatura in corrispondenza del lembo di monte in [cmq] A_{fi} area di armatura in corrispondenza del lembo di valle in [cmq] N_i sforzo normale ultimo espresso in [kg]

 $\begin{array}{c} A_{fs} \\ A_{fi} \\ N_u \\ M_u \\ CS \\ VRcd \\ VRsd \\ VRd \end{array}$

momento ultimo espresso in [kgm] coefficiente sicurezza sezione

Aliquota di taglio assorbito dal cls, espresso in [kg] Aliquota di taglio assorbito dall'armatura, espresso in [kg]

Resistenza al taglio, espresso in [kg]

Nr.	Y	В, Н	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	N_u	$\mathbf{M}_{\mathbf{u}}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	100, 30	10,05	8,04	0	0	1000,00	14316		
2	0,10	100, 30	10,05	8,04	187227	-27673	2496,36	14327		
3	0,20	100, 30	10,05	8,04	56872	-17009	379,15	14337		
4	0,30	100, 30	10,05	8,04	30629	-13900	136,13	14347		
5	0,40	100, 30	10,05	8,04	20811	-12737	69,37	14357		
6	0,50	100, 30	10,05	8,04	15675	-12128	41,80	14367		
7	0,60	100, 30	10,05	8,04	12520	-11755	27,82	14377		
8	0,70	100, 30	10,05	8,04	10385	-11502	19,78	14387		
9	0,80	100, 30	10,05	8,04	8846	-11319	14,74	14397		
10	0,90	100, 30	10,05	8,04	7684	-11182	11,38	14408		
11	1,00	100, 30	10,05	8,04	6776	-11074	9,04	14418		
12	1,10	100, 30	10,05	8,04	6048	-10988	7,33	14428		
13	1,20	100, 30	10,05	8,04	5451	-10917	6,06	14438		
14	1,30	100, 30	10,05	8,04	4953	-10858	5,08	14448		
15	1,40	100, 30	10,05	8,04	4532	-10808	4,32	14458		
16	1,50	100, 30	20,11	16,08	8109	-20933	7,21	18189		
17	1,60	100, 30	10,05	8,04	3857	-10728	3,21	14478		
18	1,70	100, 30	10,05	8,04	3584	-10696	2,81	14489		
19	1,80	100, 30	10,05	8,04	3342	-10667	2,48	14499		
20	1,90	100, 30	10,05	8,04	3128	-10642	2,20	14509		
21	2,00	100, 30	10,05	8,04	2937	-10619	1,96	14519		

Armature e tensioni nei materiali della fondazione

Combinazione n° 21

Simbologia adottata
B base della sezione espressa in [cm]

base della sezione espressa in [cm]
area di armatura in corrispondenza del lembo inferiore in [cmq]
area di armatura in corrispondenza del lembo superiore in [cmq]
sforzo normale ultimo espresso in [kg]

H
A_{fi}
A_{fs}
N_u
M_u
CS
VRcd

siotzo nomane unimo espresso in [kgn] momento ultimo espresso in [kgn] coefficiente sicurezza sezione Aliquota di taglio assorbito dal cls, espresso in [kg] Aliquota di taglio assorbito dall'armatura, espresso in [kg] Resistenza al taglio, espresso in [kg]

Fondazione di valle

(L'ascissa X, espressa in [m], è positiva verso monte con origine in corrispondenza dell'estremo libero della fondazione di valle)

Nr.	Y	В, Н	$\mathbf{A}_{\mathbf{f}\mathbf{s}}$	$\mathbf{A_{fi}}$	N_u	$\mathbf{M_{u}}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	V_{Rcd}	V_{Rsd}
1	0,00	100, 50	10,05	10,05	0	18159	1000,00	20744		
2	0,05	100, 50	10,05	10,05	0	-18159	4834,90	20744		
3	0,10	100, 50	10,05	10,05	0	-18159	1582,40	20744		
4	0,15	100, 50	10,05	10,05	0	-18159	655,33	20744		
5	0,20	100, 50	10,05	10,05	0	-18159	1000,00	20744		
6	0,25	100, 50	10,05	10,05	0	-18159	265,97	20744		

Fondazione di monte

 $(L'ascissa\ X,\ espressa\ in\ [m],\ \grave{e}\ positiva\ verso\ valle\ con\ origine\ in\ corrispondenza\ dell'estremo\ libero\ della\ fondazione\ di\ monte)$

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	N_u	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	100, 50	10,05	10,05	0	18159	1000,00	20744		
2	0,05	100, 50	10,05	10,05	0	-18159	1000,00	20744		
3	0,10	100, 50	10,05	10,05	0	-18159	473,85	20744		
4	0,15	100, 50	10,05	10,05	0	-18159	202,83	20744		
5	0,20	100, 50	10,05	10,05	0	-18159	142,55	20744		
6	0,25	100, 50	10,05	10,05	0	-18159	90,05	20744		

Analisi dei pali

Combinazione nº 21

Risultanti sulla base della fondazione (per metro lineare di muro)

Orizzontale 8736.5 [kg]

6154,0 Verticale [kg] Momento [kgm] -8691,3

Spostamenti della piastra di fondazione

0,30397 Orizzontale [cm]

Verticale [cm] 0.00782 Rotazione [°] -0,14816

Scarichi in testa ai pali

Fila nr.	N.pali	N [kg]	T [kg]	M [kgm]	Tu [kg]	Mu [kgm]
1	45	6154	8737	-8691	11626	-11566

Calcolo della portanza

tensione tangenziale media palo-terreno in [kg/cmq] au_{m} tensione tangenziale media palo-ter tensione sul terreno alla punta del p N_{c} , N_{q} , N_{γ} fattori di capacità portante N_{c} , N_{q} , N_{γ} fattori di capacità portante corretti portanza caratteristica per attrito e i portanza caratteristica di punta in [P_{t}] portanza caratteristica totale in [P_{t}] portanza di progetto, con applicazio tensione sul terreno alla punta del palo in [kg/cmq]

portanza caratteristica per attrito e aderenza laterale in [kg] portanza caratteristica di punta in [kg]

portanza caratteristica totale in [kg] portanza di progetto, con applicazione dei coeff. parziali alle singole aliquote della portanza, in [kg]

portanza di progetto, con applicazione del coeff. parziale alla portanza totale, in [kg] Parametri Terreno utilizzati

1	25.80	60.23	14.72	23.52	11.19	14.29	-0.01	3.53
T21.		n	D	n	ъ		n	DT

Fila	P_1	$P_{\rm p}$	$P_{\rm t}$	$P_{d,s}$	$P_{d,c}$	PT
1	8990	39854	79108	33412	44917	MEDI
1	8990	39854	79108	33412	44917	MINIMI

Verifica a punzonamento della fondazione

diametro dei pali della fila espresso in [cm] altezza della fondazione in corrispondenza della fila espressa in [cm]

superficie di aderenza palo-fondazione (H_tIID) espressa in [cmq] sforzo normale trasmesso dal palo alla fondazione espresso in [kg]

tensione tangenziale palo-fondazione espressa in [kg/cmq]

Fila	D	$\mathbf{H_{f}}$	$\mathbf{S_l}$	N	$ au_{ m c}$
1	50,0	250,0	39269,9	6154	0,16

Sollecitazioni nei pali e verifiche delle sezioni

Combinazione nº 21

numero d'ordine della sezione a partire dall'attacco palo-fondazione

ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m])

Nr. Y M N T momento flettente espresso in [kgm] sforzo normale espresso in [kg]

taglio espresso in [kg]

momento ultimo espresso in [kgm] sforzo normale ultimo espresso in [kg]

taglio ultimo espresso in [kg] coefficiente di sicurezza

Sollecitazioni e tensioni per la fila di pali nr. 1

Nr.	Y	M	N	T	$\mathbf{A_f}$	$\mathbf{M_{u}}$	N_u	$T_{\mathbf{u}}$	CS
1	0,00	-8691	6154	8737	44,23	31904	22590	18249	3,67
2	0,20	-10431	6250	8487	44,23	31573	18919	18249	3,03
3	0,40	-12128	6343	8149	44,23	31344	16392	18249	2,58
4	0,60	-13758	6431	7681	44,23	31180	14575	18249	2,27
5	0,80	-15294	6515	7085	44,23	31059	13231	18249	2,03
6	1,00	-16711	6596	6362	44,23	30968	12223	18249	1,85
7	1,20	-17983	6672	5512	44,23	30899	11464	18249	1,72
8	1,40	-19086	6745	4539	44,23	30848	10901	18249	1,62

9	1,60	-19994	6813	3446	44,23	30812	10500	18249	1,54
10	1,80	-20683	6878	2236	44,23	30789	10239	18249	1,49
11	2,00	-21130	6939	916	44,23	30777	10106	18249	1,46
12	2,20	-21313	6995	-507	44,23	30776	10101	18249	1,44
13	2,40	-21212	7048	-2027	44,23	30788	10230	18249	1,45
14	2,60	-20806	7097	-3637	44,23	30813	10510	18249	1,48
15	2,80	-20079	7142	-5331	44,23	30855	10975	18249	1,54
16	3,00	-19013	7183	-6715	44,23	30919	11681	18249	1,63
17	3,20	-17670	7220	-7612	44,23	31008	12670	18249	1,75
18	3,40	-16148	7253	-8103	44,23	31127	13982	18249	1,93
19	3,60	-14527	7282	-8263	44,23	31280	15681	18249	2,15
20	3,80	-12874	7308	-8159	44,23	31478	17867	18249	2,45
21	4,00	-11242	7329	-7851	44,23	31732	20686	18249	2,82
22	4,20	-9672	7346	-7390	44,23	32063	24353	18249	3,32
23	4,40	-8194	7360	-6822	44,23	32460	29155	18249	3,96
24	4,60	-6830	7369	-6184	44,23	32964	35568	18249	4,83
25	4,80	-5593	7375	-5508	44,23	33621	44332	18249	6,01
26	5,00	-4491	7376	-4820	44,23	34360	56431	18249	7,65
27	5,20	-3527	7374	-4140	44,23	35033	73237	18249	9,93
28	5,40	-2699	7368	-3486	44,23	35731	97528	18249	13,24
29	5,60	-2002	7357	-2870	44,23	35769	131451	18249	17,87
30	5,80	-1428	7343	-2301	44,23	33982	174742	18249	23,80
31	6,00	-968	7325	-1786	44,23	30009	227115	18249	31,01
32	6,20	-611	7303	-1329	44,23	24285	290385	18249	39,76
33	6,40	-345	7277	-933	44,23	16729	352861	18249	48,49
34	6,60	-158	7247	-601	44,23	8583	392816	18249	54,20
35	6,80	-38	7213	-332	44,23	2120	400092	18249	55,47
36	7,00	28	7175	-127	44,23	1571	400710	18249	55,85
37	7,20	53	7133	14	44,23	2993	399109	18249	55,95
38	7,40	51	7088	92	44,23	2854	399265	18249	56,33
39	7,60	32	7038	106	44,23	1841	400406	18249	56,89
40	7,80	11	6984	56	44,23	647	401750	18249	57,52
41	8,00	0	6927	56	44,23	0	402479	18249	58,11

Stabilità globale muro + terreno

Combinazione n° 24

Combinazione n° 24

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kg]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

φ angolo d'attrito del terreno lungo la base della striscia espressa in [kg/cmq]

b lambeza della striscia espressa in [m]

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq]

Metodo di Bishop

Numero di cerchi analizzati 36 Numero di strisce 25

Cerchio critico

Coordinate del centro X[m]= -1,73 Y[m] = 1,73

Raggio del cerchio R[m]= 12,33

Ascissa a valle del cerchio Xi[m] = -13,49Xs[m] = 10,49Ascissa a monte del cerchio Larghezza della striscia dx[m] = 0.96C = 2.27Coefficiente di sicurezza Le strisce sono numerate da monte verso valle

Caratteristiche delle strisce

Striscia	\mathbf{W}	α (°)	Wsinα	b/cosα	ф	c	u
1	2852,25	73.82	2739,27	3,44	20.44	0,00	0,00
2	7214,18	61.27	6325,97	1,99	23.04	0,00	0,00
3	9819,30	52.93	7834,73	1,59	23.04	0,00	0,00
4	11772,36	46.02	8471,16	1,38	23.04	0,00	0,00
5	13322,04	39.90	8546,06	1,25	23.04	0,00	0,00
6	15113,17	34.30	8516,58	1,16	23.04	0,00	0,00
7	17520,82	29.05	8508,08	1,10	23.04	0,00	0,00
8	18350,08	24.06	7481,51	1,05	23.04	0,00	0,00
9	19008,77	19.26	6269,90	1,02	23.04	0,00	0,00
10	19513,43	14.60	4917,16	0,99	23.04	0,00	0,00
11	19947,31	10.03	3473,69	0,97	23.04	0,00	0,00
12	16092,75	5.53	1549,78	0,96	23.04	0,00	0,00
13	14827,03	1.06	273,80	0,96	23.04	0,00	0,00
14	14793,09	-3.40	-878,28	0,96	23.04	0,00	0,00
15	14629,23	-7.89	-2007,26	0,97	23.04	0,00	0,00
16	14332,35	-12.42	-3082,19	0,98	23.04	0,00	0,00
17	13896,58	-17.03	-4070,32	1,00	23.04	0,00	0,00
18	13312,66	-21.76	-4935,82	1,03	23.04	0,00	0,00
19	12566,81	-26.66	-5637,96	1,07	23.04	0,00	0,00
20	11638,78	-31.77	-6128,31	1,13	23.04	0,00	0,00
21	10498,19	-37.19	-6346,05	1,20	23.04	0,00	0,00
22	9097,33	-43.04	-6209,05	1,31	23.04	0,00	0,00
23	7354,62	-49.53	-5594,59	1,48	23.04	0,00	0,00
24	5107,37	-57.06	-4286,37	1,76	23.04	0,00	0,00
25	1895,66	-66.84	-1742,84	2,44	22.24	0,00	0,00

 $\Sigma W_i = 314476,17 \text{ [kg]}$ $\Sigma W_i \sin \alpha_i = 23988,66 \text{ [kg]}$ $\Sigma W_i tan \phi_i = 133586,72 \text{ [kg]}$ $\Sigma tan \alpha_i tan \phi_i = 0.73$

Inviluppo Sollecitazioni paramento

L'ordinata Y(espressa in [m]) è considerata positiva verso il basso con origine in testa al muro Momento positivo se tende le fibre contro terra (a monte), espresso in [kgm] Sforzo normale positivo di compressione, espresso in [kg] Taglio positivo se diretto da monte verso valle, espresso in [kg]

Inviluppo combinazioni SLU

NT.	Y	N T* .	NT	Mod	Mari	m* .	70
Nr. 1	0,00	Nmin 0,00	Nmax 0,00	Mmin 0,00	Mmax 0,00	Tmin 0,00	Tmax 0,00
2	0,00	75,00	97,50	0,00	11,09	3,90	223,00
3	0,10	150,00	195,00	1,04	44,86	15,62	453,82
4	0,20	225,00	292,50	3,51	102,11	35,14	692,44
5	0,30	300,00	390,00	8,33	183,61	62,47	938,87
6	0,50	375,00	487,50	16,27	290,14	97,61	1193,11
7	0,60	450,00	585,00	28,11	422,49	140,56	1455,16
8	0,70	525,00	682,50	44,64	581,44	191,32	1725,02
9	0,80	600,00	780,00	66,64	767,76	249,89	2002,69
10	0,90	675,00	877,50	94,88	982,23	316,26	2288,16
11	1,00	750,00	975,00	130,15	1225,65	390,45	2581,45
12	1,10	825,00	1072,50	173,23	1498,78	472,44	2882,54
13	1,20	900,00	1170,00	224,90	1802,42	562,24	3191,45
14	1,30	975,00	1267,50	285,94	2137,33	659,86	3508,16
15	1,40	1050,00	1365,00	357,13	2504,31	765,28	3832,68
16	1,50	1125,00	1462,50	439,25	2904,13	878,51	4165,01
17	1,60	1200,00	1560,00	533,09	3337,57	999,55	4505,15
18	1,70	1275,00	1657,50	639,42	3805,42	1128,39	4853,10
19	1,80	1350,00	1755,00	759,03	4308,45	1265,05	5208,85
20	1,90	1425,00	1852,50	892,69	4847,45	1409,52	5572,42
21	2,00	1500,00	1950,00	1041,19	5423,20	1561,79	5943,79
Invilu	ppo combir	nazioni SLE					
Nr.	Y	Nmin	Nmax	Mmin	Mmax	Tmin	Tmax
1	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2	0,10	75,00	75,00	3,71	3,71	75,34	75,34
3	0,20	150,00	150,00	15,29	15,29	157,18	157,18
4	0,30	225,00	225,00	35,37	35,37	245,50	245,50
5	0,40	300,00	300,00	64,60	64,60	340,31	340,31
6	0,50	375,00	375,00	103,64	103,64	441,61	441,61
7	0,60	450,00	450,00	153,14	153,14	549,40	549,40
8	0,70	525,00	525,00	213,74	213,74	663,68	663,68
9	0,80	600,00	600,00	286,09	286,09	784,45	784,45
10	0,90	675,00	675,00	370,85	370,85	911,71	911,71
11	1,00	750,00	750,00	468,65	468,65	1045,45	1045,45
12	1,10	825,00	825,00	580,15	580,15	1185,69	1185,69
13	1,20	900,00	900,00	706,00	706,00	1332,41	1332,41
14	1,30	975,00	975,00	846,85	846,85	1485,62	1485,62
15	1,40	1050,00	1050,00	1003,35	1003,35	1645,32	1645,32
16	1,50	1125,00	1125,00	1176,13	1176,13	1811,52	1811,52
17	1,60	1200,00	1200,00	1365,86	1365,86	1984,20	1984,20
18	1,70	1275,00	1275,00	1573,19	1573,19	2163,36	2163,36
19	1,80 1,90	1350,00	1350,00	1798,75	1798,75	2349,02	2349,02
20	1.90	1425,00	1425,00	2043,21	2043,21	2541,17	2541,17
21	2,00	1500,00	1500,00	2307,20	2307,20	2739,80	2739,80

Inviluppo armature e tensioni nei materiali del muro

Inviluppo SLU

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	N_u	M_u	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	100, 30	10,05	8,04	0	0	1000,00	14316		
2	0,10	100, 30	10,05	8,04	187227	-766	2496,36	14327		
3	0,20	100, 30	10,05	8,04	56872	-3032	379,15	14337		
4	0,30	100, 30	10,05	8,04	30629	-6713	136,13	14347		
5	0,40	100, 30	10,05	8,04	20811	-11673	69,37	14357		
6	0,50	100, 30	10,05	8,04	15675	-12128	41,80	14367		
7	0,60	100, 30	10,05	8,04	12520	-11755	27,82	14377		
8	0,70	100, 30	10,05	8,04	10385	-11502	19,78	14387		
9	0,80	100, 30	10,05	8,04	8846	-11319	14,74	14397		
10	0,90	100, 30	10,05	8,04	7684	-11182	11,38	14408		
11	1,00	100, 30	10,05	8,04	6776	-11074	9,04	14418		
12	1,10	100, 30	10,05	8,04	6048	-10988	7,33	14428		
13	1,20	100, 30	10,05	8,04	5451	-10917	6,06	14438		
14	1,30	100, 30	10,05	8,04	4953	-10858	5,08	14448		
15	1,40	100, 30	10,05	8,04	4532	-10808	4,32	14458		
16	1,50	100, 30	20,11	16,08	8109	-20933	7,21	18189		
17	1,60	100, 30	10,05	8,04	3857	-10728	3,21	14478		
18	1,70	100, 30	10,05	8,04	3584	-10696	2,81	14489		
19	1,80	100, 30	10,05	8,04	3342	-10667	2,48	14499		
20	1,90	100, 30	10,05	8,04	3128	-10642	2,20	14509		
21	2,00	100, 30	10,05	8,04	2937	-10619	1,96	14519		

Inviluppo SLE

Nr.	Y	В, Н	$\mathbf{A}_{\mathbf{fs}}$	$\mathbf{A_{fi}}$	$\sigma_{\rm c}$	$ au_{ m c}$	$\sigma_{\rm fs}$	$\sigma_{\rm fi}$
1	0,00	100, 30	10,05	8,04	0,00	0,00	0,00	0,00
2	0,10	100, 30	10,05	8,04	0,04	0,03	-0,09	-0,61
3	0,20	100, 30	10,05	8,04	0,15	0,07	0,91	-1,89
4	0,30	100, 30	10,05	8,04	0,35	0,11	5,07	-4,13
5	0,40	100, 30	10,05	8,04	0,65	0,15	13,15	-7,21
6	0,50	100, 30	10,05	8,04	1,05	0,19	25,30	-11,12
7	0,60	100, 30	10,05	8,04	1,54	0,24	41,73	-15,91
8	0,70	100, 30	10,05	8,04	2,14	0,29	62,69	-21,62
9	0,80	100, 30	10,05	8,04	2,86	0,34	88,42	-28,31
10	0,90	100, 30	10,05	8,04	3,70	0,40	119,19	-36,03
11	1,00	100, 30	10,05	8,04	4,66	0,46	155,26	-44,83
12	1,10	100, 30	10,05	8,04	5,75	0,52	196,89	-54,77
13	1,20	100, 30	10,05	8,04	6,98	0,58	244,33	-65,91
14	1,30	100, 30	10,05	8,04	8,35	0,65	297,86	-78,29
15	1,40	100, 30	10,05	8,04	9,88	0,72	357,74	-91,98
16	1,50	100, 30	20,11	16,08	8,35	0,79	218,16	-87,08
17	1,60	100, 30	10,05	8,04	13,41	0,86	497,58	-123,47
18	1,70	100, 30	10,05	8,04	15,42	0,94	578,07	-141,38
19	1,80	100, 30	10,05	8,04	17,61	1,02	665,95	-160,80
20	1,90	100, 30	10,05	8,04	19,98	1,11	761,50	-181,80
21	2,00	100, 30	10,05	8,04	22,54	1,19	864,97	-204,43

Inviluppo armature e tensioni nei materiali della fondazione

Simbologia adottata
B base della sezione espressa in [cm]
H altezza della sezione espressa in [cm]

area di armatura in corrispondenza del lembo inferiore in [cmq] area di armatura in corrispondenza del lembo superiore in [cmq]

tensione nel calcestruzzo espressa in [kg/cmq] tensione tangenziale nel calcestruzzo espressa in [kg/cmq]

tensione tangenziare ner carcestruzzo espressa in [kg/cmt] tensione nell'armatura disposta in corrispondenza del lembo inferiore in [kg/cmq] tensione nell'armatura disposta in corrispondenza del lembo superiore in [kg/cmq] sforzo normale ultimo espresso in [kg] momento ultimo espresso in [kgm]

 $\begin{array}{l} A_{fi} \\ A_{fs} \\ \sigma_c \\ \tau_c \\ \sigma_{fi} \\ \sigma_{fs} \\ N_u \\ M_u \\ CS \\ VRcd \end{array}$

nionienio unimo espresso in [kgili] coefficiente sicurezza sezione Aliquota di taglio assorbito dal cls, espresso in [kg] Aliquota di taglio assorbito dall'armatura, espresso in [kg] Resistenza al taglio, espresso in [kg]

VRsd VRd

Fondazione di valle

 $(L'ascissa\ X,\ espressa\ in\ [m],\ \grave{e}\ positiva\ verso\ monte\ con\ origine\ in\ corrispondenza\ dell'estremo\ libero\ della\ fondazione\ di\ valle)$

Inviluppo SLU

Nr.	Y	В, Н	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	N_u	$M_{\rm u}$	CS	V_{Rd}	V_{Rcd}	V_{Rsd}
1	0,00	100, 50	10,05	10,05	0	18159	1000,00	20744		
2	0,05	100, 50	10,05	10,05	0	-18159	4158,82	20744		
3	0,10	100, 50	10,05	10,05	0	-18159	1000,00	20744		
4	0,15	100, 50	10,05	10,05	0	-18159	548,87	20744		
5	0,20	100, 50	10,05	10,05	0	-18159	708,28	20744		
6	0,25	100, 50	10,05	10,05	0	-18159	260,33	20744		
Invilupp	oo SLE									
Nr.	X	В, Н	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	$\sigma_{\rm c}$	τ _c	$\sigma_{\rm fi}$	$\sigma_{ m fs}$		
7	0,00	100, 50	10,05	10,05	0,00	0,00	0,06	-0,01		
8	0,05	100, 50	10,05	10,05	0,01	0,00	0,34	0,75		
9	0,10	100, 50	10,05	10,05	0,04	0,00	-0,42	2,37		
10	0,15	100, 50	10,05	10,05	0,10	0,00	-1,01	5,70		
11	0,20	100, 50	10,05	10,05	0,07	0,11	-0,73	4,11		
12	0,25	100, 50	10,05	10,05	0,19	0,25	10,93	7,56		

Fondazione di monte

(L'ascissa X, espressa in [m], è positiva verso valle con origine in corrispondenza dell'estremo libero della fondazione di monte)

Inviluppo SLU

Nr.	Y	ъп			N	м	CC	X 7	X 7	X 7
INC.	_	В, Н	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	N_u	$\mathbf{M_{u}}$	CS	$\mathbf{V}_{\mathbf{Rd}}$	V_{Rcd}	V_{Rsd}
1	0,00	100, 50	10,05	10,05	0	18159	1000,00	20744		
2	0,05	100, 50	10,05	10,05	0	-18159	1000,00	20744		
3	0,10	100, 50	10,05	10,05	0	-18159	359,02	20744		
4	0,15	100, 50	10,05	10,05	0	-18159	154,04	20744		
5	0,20	100, 50	10,05	10,05	0	-18159	103,40	20744		
6	0,25	100, 50	10,05	10,05	0	-18159	65,43	20744		
Invilupp	o SLE									
Nr.	X	В, Н	$\mathbf{A_{fs}}$	$\mathbf{A_{fi}}$	σ_{c}	$ au_{ m c}$	$\sigma_{\rm fi}$	$\sigma_{ m fs}$		
7	0,00	100, 50	10,05	10,05	0,01	0,00	0,33	-0,06		
8	0,05	100, 50	10,05	10,05	0,04	0,00	-0,37	2,08		
9	0,10	100, 50	10,05	10,05	0,15	0,00	-1,50	8,46		
10	0,15	100, 50	10,05	10,05	0,34	0,00	-3,50	19,73		
11	0,20	100, 50	10,05	10,05	0,50	0,00	-5,19	29,26		
12	0,25	100, 50	10,05	10,05	0,79	0,02	-8,21	46,26		

Inviluppo sollecitazioni nei pali e verifiche delle sezioni

- numero d'ordine della sezione a partire dall'attacco palo-fondazione ordinata della sezione a partire dall'attacco palo-fondazione positiva verso il basso (in [m]) momento flettente espresso in [kgm] sforzo normale espresso in [kg] taglio espresso in [kg] momento ultimo espresso in [kgm] sforzo normale ultimo espresso in [kg] taglio ultimo espresso in [kg] coefficiente di sicurezza

- $\begin{array}{c} Nr. \\ Y \\ M \\ N \\ T \\ M_u \\ T_u \\ CS \end{array}$

Inviluppo sollecitazioni fila di pali nr. 1

Nr.	Y	Mmin	Mmax	Tmin	Tmax	Nmin	Nmax
1	0,00	-8691,26	-1562,16	2440,30	8736,54	3864,83	6701,20
2	0,20	-10430,55	-2050,22	2340,58	8487,05	3961,48	6797,29
3	0,40	-12127,96	-2518,34	2141,15	8148,55	4055,08	6889,23
4	0,60	-13757,67	-2946,57	1842,01	7681,13	4145,64	6977,01
5	0,80	-15293,90	-3314,97	1443,15	7085,26	4233,14	7060,64
6	1,00	-16710,95	-3603,60	944,58	6361,82	4317,60	7140,11
7	1,20	-17983,32	-3792,51	346,30	5512,34	4399,02	7215,42
8	1,40	-19085,78	-3861,78	-249,19	4539,12	4477,38	7286,57
9	1,60	-19993,61	-3811,94	-707,76	3445,53	4552,70	7353,57
10	1,80	-20682,71	-3670,39	-1074,97	2306,15	4624,97	7416,41
11	2,00	-21129,93	-3460,99	-1520,94	1302,49	4694,20	7475,10
12	2,20	-21313,22	-3204,24	-2208,14	198,56	4760,37	7529,62
13	2,40	-21211,84	-2917,44	-2858,43	-1005,53	4823,50	7580,00
14	2,60	-20806,45	-2614,91	-4271,96	-1533,01	4883,58	7626,21
15	2,80	-20079,08	-2308,31	-5502,42	-1507,26	4940,61	7668,26
16	3,00	-19012,93	-2006,86	-6714,99	-1446,05	4994,60	7706,16
17	3,20	-17669,93	-1717,65	-7611,96	-1358,69	5045,54	7739,91
18	3,40	-16147,54	-1445,91	-8103,22	-1253,11	5093,43	7769,49
19	3,60	-14526,89	-1195,29	-8263,36	-1136,02	5138,27	7794,92
20	3,80	-12874,22	-968,09	-8159,49	-1012,96	5180,06	7816,19
21	4,00	-11242,32	-765,49	-7851,17	-888,43	5218,81	7833,31
22	4,20	-9672,09	-587,81	-7390,41	-765,99	5254,51	7846,27
23	4,40	-8194,01	-434,61	-6822,00	-648,36	5287,16	7855,07
24	4,60	-6829,61	-304,94	-6183,91	-537,59	5316,77	7859,71
25	4,80	-5592,82	-197,42	-5507,81	-435,10	5343,33	7860,20
26	5,00	-4491,26	-110,40	-4819,66	-341,81	5366,84	7856,53
27	5,20	-3527,33	-42,04	-4140,33	-258,25	5387,30	7848,70
28	5,40	-2699,26	9,61	-3486,24	-184,63	5404,71	7836,72
29	5,60	-2002,02	46,54	-2869,96	-120,91	5419,08	7820,58
30	5,80	-1428,02	70,72	-2300,85	-66,89	5430,40	7800,28
31	6,00	-967,85	86,37	-1785,59	-22,26	5438,67	7775,83
32	6,20	-625,48	92,93	-1328,74	13,38	5443,90	7747,22
33	6,40	-380,77	112,93	-933,19	40,43	5446,07	7714,45
34	6,60	-204,15	118,24	-600,60	61,27	5445,20	7677,52
35	6,80	-85,39	110,95	-356,74	87,37	5441,28	7636,44
36	7,00	-14,04	98,54	-172,30	114,47	5434,32	7591,20
37	7,20	20,42	86,15	-40,58	128,15	5424,30	7541,81
38	7,40	23,16	64,37	38,49	140,79	5411,24	7488,25
39	7,60	11,37	36,21	40,92	123,58	5395,14	7430,54
40	7,80	3,19	11,62	15,95	58,10	5375,98	7368,68
41	8,00	0,00	0,00	15,95	58,10	5353,78	7302,65

Inviluppo verifiche fila di pali nr. 1

Nr.	Y	$\mathbf{A_f}$	$\mathbf{M_u}$	N_u	$T_{\mathbf{u}}$	CS
1	0,00	44,23	31678	20088	18249	3,67
2	0,20	44,23	31390	16897	18249	3,03
3	0,40	44,23	31192	14702	18249	2,58
4	0,60	44,23	31050	13128	18249	2,27
5	0,80	44,23	30945	11968	18249	2,03
6	1,00	44,23	30867	11104	18249	1,85
7	1,20	44,23	30809	10461	18249	1,72
8	1,40	44,23	30767	9995	18249	1,62
9	1,60	44,23	30738	9674	18249	1,54
10	1,80	44,23	30721	9484	18249	1,49
11	2,00	44,23	30714	9417	18249	1,46
12	2,20	44,23	30720	9474	18249	1,44
13	2,40	44,23	30737	9666	18249	1,45
14	2,60	44,23	30769	10018	18249	1,48
15	2,80	44,23	30819	10571	18249	1,54
16	3,00	44,23	30892	11381	18249	1,63
17	3,20	44,23	30991	12475	18249	1,75
18	3,40	44,23	31120	13903	18249	1,93
19	3,60	44,23	31280	15681	18249	2,15
20	3,80	44,23	31478	17867	18249	2,45
21	4,00	44,23	30300	20686	18249	2,82

22	4,20	44,23	27187	24353	18249	3,32
		*	_,_,,			,
23	4,40	44,23	23322	29155	18249	3,96
24	4,60	44,23	18698	35406	18249	4,83
25	4,80	44,23	13635	43810	18249	6,01
26	5,00	44,23	7971	55328	18249	7,65
27	5,20	44,23	3067	71069	18249	9,93
28	5,40	44,23	177	93689	18249	13,24
29	5,60	44,23	2408	124753	18249	17,87
30	5,80	44,23	617	165252	18249	23,80
31	6,00	44,23	76	212845	18249	31,01
32	6,20	44,23	242	270931	18249	39,76
33	6,40	44,23	985	331462	18249	48,49
34	6,60	44,23	777	384849	18249	51,90
35	6,80	44,23	1704	393447	18249	52,02
36	7,00	44,23	882	394427	18249	52,32
37	7,20	44,23	1286	396150	18249	52,77
38	7,40	44,23	1565	398211	18249	53,33
39	7,60	44,23	777	399939	18249	53,93
40	7,80	44,23	220	401635	18249	54,55
41	8,00	44,23	0	402479	18249	55,11

Dichiarazioni secondo N.T.C. 2008 (punto 10.2)

Analisi e verifiche svolte con l'ausilio di codici di calcolo

Il sottoscritto, in qualità di calcolatore delle opere in progetto, dichiara quanto segue.

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 14/01/2008.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Origine e caratteristiche dei codici di calcolo

Titolo MAX - Analisi e Calcolo Muri di Sostegno

Versione 10.10

Produttore Aztec Informatica srl, Casole Bruzio (CS)

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, io sottoscritto asserisco che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.