Taller de Programación de Sistemas

Práctica #8 Código máquina para los direccionamientos INDEXADOS SIMPLES (paso 2)

Objetivo:

Modificar el archivo LST que se generó en la práctica anterior (7). Generar el código máquina correcto para cada uno de los direccionamientos indexado **IDX.**

Requerimientos:

- 1. Trabajar en el archivo **LST**, obtener el código máquina del set de instrucciones; para los direccionamientos indexados se deberá calcular un código **xb** que será reemplazando por las constantes numéricas correctas
- 2. Recuerde que cada byte contiene 2 dígitos. Por lo tanto cuando el código máquina obtenido contenga una cantidad menor a la calculada, será necesario rellenar los espacios restantes con 0's.
- 3. Completar el código máquina para los direccionamientos:

INDEXADO DE 5 BITS

INDEXADO DE **ACUMULADOR**

INDEXADO DE PRE Y POST / INCREMENTO Y DECREMENTO

_RR		_AA		P	
Χ	00	A 00	PRE	0	
Υ	01	B 01	POST	1	
SP	10	D 10			
PC	11				

4. Indexado de 5 bits

xb: rr0nnnnn

rr: Corresponde al registro que forma parte del operando

nnnn: Corresponde al operando en base 2 con un rango de -16 a 15

Si el operando tiene un valor negativo es necesario hacer complemento a 2

5. Indexado de Acumulador

xb: 111rr1aa

rr: Corresponde al registro que forma parte del operando

aa: Corresponde al valor del acumulador que forma parte del operando

6. Indexado de Pre y Post / Incremento y Decremento

xb: rr1pnnnn

aa: Corresponde al acumulador que forma parte del operando **nnnn**: Constante numérica con un rango de [-8 ...a... 8] y n ≠ 0

Si n es positiva: nnn = (n-1) en base 2

Si n es negativa: nnnn = (n-1) en base 2 y con complemento a 1

Ejemplos:

5 BITS	
LDAA -8, x	xb = 00011000 = 18
LDAA ,SP	xb = 10000000 = 80
ACUMULADOR	
ADCA D, PC	xb = 11111110 = FE
ADCA A, Y	xb = 11101100 = EC
PRE/POST	
STX 2,-SP	xb = 10101110 = AE
LDX 2, SP+	xb = 10110001 = B1

Ejemplo:

Prueba.asm

Prueba.tbs

HOLA	EQU ORG LDAA LDAA	\$FF2 \$101E , Y 8, X
DEG	ADCA LDAB STAA	B, X D, SP 1,-SP
FIN	LDAB END	1, SP+

HOLA 0FF2 DEG 1024 FIN 102A

CÓDIGO MÁQUINA

Prueba.lst

0FF2		HOLA	EQU	\$FF2
0000			ORG	\$101E
101E	A6 40		LDAA	, Y
1020	A6 08		LDAA	8, X
1022	A9 E5		ADCA	В, Х
1024	E6 F6	DEG	LDAB	D, SP
1026	6A AF		STAA	1,-SP
1028	A6 B0		LDAB	1, SP+
102A		FIN	END	