Compactness

Definition 1. (Compact) Let (X,d) be a metric space and let $K \subseteq X$. K is said to be compact if every open cover of K has a finite subcover. That is, if $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ is any open cover of K, then

$$\exists \alpha_1, ..., \alpha_n \text{ such that } K \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n}$$

Example. Let (X, d) be a metric space and let $E \subseteq X$. If E is finite, then E is compact.

Proof. The reason is as follows:

Let $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ be any open cover of E. Our goal is to show that this open cover has a finite subcover.

If $E = \emptyset$, there is nothing to prove.

If $E \neq \emptyset$, denote the elements of E by $x_1, ... x_n$:

$$E = \{x_1, ..., x_n\}$$

. We have:

$$x_1 \in E \subseteq \bigcup_{\alpha \in \Lambda} O_\alpha \implies \exists \alpha_1 \in \Lambda \text{ such that } x_1 \in O_{\alpha_1}$$

$$x_2 \in E \subseteq \bigcup_{\alpha \in \Lambda} O_\alpha \implies \exists \alpha_2 \in \Lambda \text{ such that } x_2 \in O_{\alpha_2}$$

$$\vdots$$

$$x_n \in E \subseteq \bigcup_{\alpha \in \Lambda} O_\alpha \implies \exists \alpha_n \in \Lambda \text{ such that } x_n \in O_{\alpha_n}$$

Hence,

$$E = x_1, ..., x_n \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n}$$

So, $O_{\alpha_1}, ..., O_{\alpha_n}$ is a finite subcover of E.

Example. Consider $(\mathbb{R}, ||)$ and let $E = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Prove that E is compact. (In general, if $a_n \to a$ in \mathbb{R} then $F = \{a_n : n \in \mathbb{N}\} \cup \{a\}$ is compact.)

Proof. Let $\{O_{\alpha}\}_{alpha \in \Lambda}$ be any open cover of E. Our goal is to show that this open cover has a finite subcover.

$$\begin{cases}
0 \in E \\
E \subseteq \bigcup_{\alpha \in \Lambda} O_{\alpha}
\end{cases} \implies 0 \in \bigcup_{\alpha \in \Lambda} O_{\alpha} \implies \exists \alpha_{0} \in \Lambda \text{ such that } 0 \in O_{\alpha_{0}}$$

$$\begin{cases}
0 \in O_{\alpha_{0}} \\
O_{\alpha_{0}} \text{ is open}
\end{cases} \implies \exists \epsilon > 0 \text{ such that } (-\epsilon, \epsilon) \subseteq O_{\alpha_{0}}$$
(I)

By the archimedean property of \mathbb{R} ,

$$\exists m \in \mathbb{N} \text{ such that } \frac{1}{n} < \epsilon$$

so

$$\forall n \ge m \quad \frac{1}{n} < \epsilon.$$

Hence

$$\forall n \ge m \quad \frac{1}{n} \in (-\epsilon, \epsilon) \subseteq O_{\alpha_0} \tag{II}$$

Notice that $E = \{0, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{m-1}, \frac{1}{m}, \frac{1}{m+1}, \frac{1}{m+2}, ...\}$ for $m \in \mathbb{N}$. All that remains is to find a subcover for the elements $\frac{1}{1}, ..., \frac{1}{m-1}$:

By (I), (II), and (III), we have

$$E \subseteq O_{\alpha_0} \cup \dots \cup O_{\alpha_{m-1}}$$

Thus, $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ has a finite subcover. Therefore E is compact.

Remark. If X itself is compact, we say (X,d) is a compact metric space. If $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ is any collection of open sets such that $X=\bigcup_{{\alpha}\in\Lambda}O_{\alpha}$, then

$$\exists \alpha_1, ..., \alpha_n \in \Lambda \text{ such that } X = O_{\alpha_1} \cup ... \cup O_{\alpha_n}.$$

Theorem 1. Compact subsets of metric spaces are closed.

Proof. Let (X, d) be a metric space and let $K \subseteq X$ be compact. We want to show that K is closed. It is enough to show that K^c is open. To this end, we need to show that every point of K^c is an interior point. Let $a \in K^c$. Our goal is to show that

$$\exists \epsilon > 0 \text{ such that } N_{\epsilon}(a) \subseteq K^c.$$

That is, we want to show that

$$\exists \epsilon > 0 \text{ such that } N_{\epsilon}(a) \cap K = \emptyset.$$

We have

$$a \in K^c \implies a \notin K$$

 $\implies \forall x \in K \ d(x, a) > 0.$

For all $x \in K$, let

$$\epsilon_x = \frac{1}{4}d(x, a).$$

Clearlly,

$$\forall x \in K \ N_{\epsilon_x}(x) \cap N_{\epsilon_x}(a) = \emptyset.$$

Notice that

$$\{N_{\epsilon_x}(x)\}_{x\in K}$$
 is an open cover of K .

Since K is compact, there is a finite subcover

$$\exists x_1,...,x_n \in K \text{ such that } K \subseteq N_{\epsilon_{x_1}}(x_1) \cup ... \cup N_{\epsilon_{x_n}}(x_n)$$

and of course

$$\begin{cases} N_{\epsilon_{x_1}}(x_1) \cap N_{\epsilon_{x_n}}(a) = \emptyset \\ \vdots \\ N_{\epsilon_{x_n}}(x_n) \cap N_{\epsilon_{x_n}}(a) = \emptyset \end{cases}$$

Let $\epsilon = \min\{\epsilon_{x_1}, ..., \epsilon_{x_n}\}$. Clearly,

$$N_{\epsilon}(a) \subseteq N_{\epsilon_{x_i}}(a) \quad \forall 1 \le i \le n.$$

Hence

$$\begin{cases} N_{\epsilon_{x_1}}(x_1) \cap N_{\epsilon}(a) = \emptyset \\ \vdots \\ N_{\epsilon_{x_n}}(x_n) \cap N_{\epsilon}(a) = \emptyset \end{cases}$$

Therefore

$$N_{\epsilon}(a) \cap [N_{\epsilon_{x_1}}(x_1) \cup \ldots \cup N_{\epsilon_{x_n}}(x_n)] = \emptyset.$$

So,

$$N_{\epsilon}(a) \cap K = \emptyset.$$

Note. So, it has been shown that compact \implies closed and bounded \checkmark . However, it is not necessarily the case that closed and bounded \implies compact.

Theorem 2. Let (X,d) be a metric space and let $K\subseteq X$ be compact. Let $E\subseteq K$ be closed. Then E is compact.

Proof. Let $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ be an open cover of E. Our goal is to show that this cover has a finite subcover. Not that

 $E \text{ is closed} \implies E^c \text{ is open.}$

We have

$$E \subseteq K \subseteq X = E \cup E^c \subseteq \left(\bigcup_{\alpha \in \Lambda} O_{\alpha}\right) \cup E^c$$

Therefore, E^c together with $\{O_\alpha\}_{\alpha\in\Lambda}$ is an open cover for the compact set K. Since K is compact, this open cover has a finite subcover:

 $\exists \alpha_1, ..., \alpha_n \in \Lambda \text{ such that } K \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n} \cup E^c.$

Considering $E \subseteq K$, we can write

$$E \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n} \cup E^c$$
.

However, $E \cap E^c = \emptyset$, so

$$E \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n}$$
.

So, $O_{\alpha_1},...,O_{\alpha_n}$ can be considered as the finite subcover that we were looking for.

Corollary 1. If F is closed and K is compact, then $F \cap K$ is compact. $(F \cap K)$ is a closed subset of the compact set K)

Consider $X = \mathbb{R}$ and $Y = [0, \infty)$ (Y is a subspace of X). Then

$$[0,\epsilon)$$
 is open in Y because $[0,\epsilon)=(-\epsilon,\epsilon)\cap Y$.

Theorem 3. Let (X,d) be a metric space and let $K \subseteq Y \subseteq X$ with $Y \neq \emptyset$. K is compact relative to X if and only if K is compact relative to Y.

Proof. (\Leftarrow) Suppose K is compact relative to Y. We want to show K is compact relative X. Let $\{O_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of open sets in X that covers K. Our goal is to show that this cover has a finite subcover. Note that

$$K = K \cap Y \subseteq \left(\bigcup_{\alpha \in \Lambda} O_{\alpha}\right) \cap Y = \bigcup_{\alpha \in \Lambda} \left(O_{\alpha} \cap Y\right).$$

By Theorem 2.30, for each $\alpha \in \Lambda$, $O_{\alpha} \cap Y$ is an open set in the metric space (Y, d^Y) . So, $\{O_{\alpha} \cap Y\}_{\alpha \in \Lambda}$ is a collection of open sets in (Y, d^Y) that covers K. Since K is compact relative to Y, there exists a finite subcover:

$$\exists \alpha_1, ..., \alpha_n \in \Lambda \text{ such that } K \subseteq (O_{\alpha_1} \cap Y) \cup ... \cup (O_{\alpha_n} \cap Y)$$

$$\subseteq (O_{\alpha_1} \cup ... \cup O_{\alpha_n}) \cap Y$$

$$\subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n}$$

$$\implies K \subseteq O_{\alpha_1} \cup ... \cup O_{\alpha_n} \text{ (we have a finite subcover)}$$

 (\Rightarrow) Now suppose K is compact relative to X. We want to show K is compact relative to Y. Let $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of open sets in (Y,d^Y) that covers K. Our goal is to show that this cover has a finite subcover. It follows from Theorem 2.30 that

$$\forall \alpha \in \Lambda \ \exists O_{\alpha_{\text{open}}} \subseteq X \text{ such that } G_{\alpha} = O_{\alpha} \cap Y.$$

We have

$$K\subseteq\bigcup_{\alpha\in\Lambda}G_\alpha=\bigcup_{\alpha\in\Lambda}\left(O_\alpha\cap Y\right)=\left(\bigcup_{\alpha\in\Lambda}O_\alpha\right)\cap Y\subseteq\bigcup_{\alpha\in\Lambda}O_\alpha.$$