Algorithmique des graphes 6 — Plus courts chemins, la suite

Anthony Labarre

10 mars 2021

 Pour prouver que l'algorithme de Kosaraju-Sharir est correct, il est plus simple de s'imaginer que chaque CFC est supprimée du graphe dès qu'on l'identifie;

- Pour prouver que l'algorithme de Kosaraju-Sharir est correct, il est plus simple de s'imaginer que chaque CFC est supprimée du graphe dès qu'on l'identifie;
- Le résultat suivant sera crucial :

- Pour prouver que l'algorithme de Kosaraju-Sharir est correct, il est plus simple de s'imaginer que chaque CFC est supprimée du graphe dès qu'on l'identifie;
- Le résultat suivant sera crucial :

Lemme 1

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \notin C$ et $b \in C$.

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec a $\notin C$ et $b\in C$.

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \not\in C$ et $b \in C$.

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \not\in C$ et $b \in C$. Procédons par contradiction : on suppose

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \not\in C$ et $b \in C$. Procédons par contradiction : on suppose qu'il existe un arc (a,b) avec $a \not\in C$ et $b \in C$.

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \notin C$ et $b \in C$. Procédons par contradiction : on suppose qu'il existe un arc (a,b) avec $a \notin C$ et $b \in C$. Soit r le sommet à partir duquel l'exploration en profondeur mène au sommet a; on sait que $r \notin C$, sinon on aurait $a \in C$; donc $r \neq v$.

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \notin C$ et $b \in C$. Procédons par contradiction : on suppose qu'il existe un arc (a,b) avec $a \notin C$ et $b \in C$. Soit r le sommet à partir duquel l'exploration en profondeur mène au sommet a; on sait que $r \notin C$, sinon on aurait $a \in C$; donc $r \neq v$.

Il existe un chemin $r \rightsquigarrow a \rightarrow b \rightsquigarrow v$;

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \notin C$ et $b \in C$. Procédons par contradiction : on suppose qu'il existe un arc (a,b) avec $a \notin C$ et $b \in C$. Soit r le sommet à partir duquel l'exploration en profondeur mène au sommet a; on sait que $r \notin C$, sinon on aurait $a \in C$; donc $r \neq v$.

Il existe un chemin $r \rightsquigarrow a \rightarrow b \rightsquigarrow v$;

 \Rightarrow on finit d'explorer v avant r

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \notin C$ et $b \in C$. Procédons par contradiction : on suppose qu'il existe un arc (a,b) avec $a \notin C$ et $b \in C$. Soit r le sommet à partir duquel l'exploration en profondeur mène au sommet a; on sait que $r \notin C$, sinon on aurait $a \in C$; donc $r \neq v$.

Il existe un chemin $r \rightsquigarrow a \rightarrow b \rightsquigarrow v$;

 \Rightarrow on finit d'explorer v avant $r \Rightarrow \text{date_fin}(v) < \text{date_fin}(r)$;

Soit v le sommet de G dont la date de fin d'exploration est maximale. Alors la CFC C de G contenant v est une source, c'est-à-dire qu'il n'existe pas d'arc (a,b) avec $a \notin C$ et $b \in C$. Procédons par contradiction : on suppose qu'il existe un arc (a,b) avec $a \notin C$ et $b \in C$. Soit r le sommet à partir duquel l'exploration en profondeur mène au sommet a; on sait que $r \notin C$, sinon on aurait $a \in C$; donc $r \neq v$.

Il existe un chemin $r \rightsquigarrow a \rightarrow b \rightsquigarrow v$;

- \Rightarrow on finit d'explorer v avant $r \Rightarrow \text{date_fin}(v) < \text{date_fin}(r)$;
- \Rightarrow contradiction : date_fin(v) est censée être maximale.

On peut maintenant prouver que l'algorithme de Kosaraju-Sharir est correct :

 le premier parcours nous donne les descendants de chaque sommet;

On peut maintenant prouver que l'algorithme de Kosaraju-Sharir est correct :

- le premier parcours nous donne les descendants de chaque sommet;
- le second parcours reconstruit chaque CFC C "sans déborder", puisqu'il n'existe pas d'arc sortant de C dans G';

On peut maintenant prouver que l'algorithme de Kosaraju-Sharir est correct :

- le premier parcours nous donne les descendants de chaque sommet;
- le second parcours reconstruit chaque CFC C "sans déborder", puisqu'il n'existe pas d'arc sortant de C dans G';
- à chaque identification d'une CFC, on la supprime et on recommence;

Plus courts chemins: poids < 0

 L'algorithme de Dijkstra fonctionne bien tant qu'il n'y a pas de poids négatifs dans notre graphe;

Plus courts chemins: poids < 0

- L'algorithme de Dijkstra fonctionne bien tant qu'il n'y a pas de poids négatifs dans notre graphe;
- Cela n'arrive pas dans le cas de distances; quand pourrait-on en avoir?

Plus courts chemins : poids < 0

- L'algorithme de Dijkstra fonctionne bien tant qu'il n'y a pas de poids négatifs dans notre graphe;
- Cela n'arrive pas dans le cas de distances; quand pourrait-on en avoir?
 - quand les poids correspondent à des dépenses énergétiques;

Plus courts chemins : poids < 0

- L'algorithme de Dijkstra fonctionne bien tant qu'il n'y a pas de poids négatifs dans notre graphe;
- Cela n'arrive pas dans le cas de distances; quand pourrait-on en avoir?
 - quand les poids correspondent à des dépenses énergétiques ;
 - quand les poids correspondent à des coûts ou à des remises;

Plus courts chemins : poids < 0

- L'algorithme de Dijkstra fonctionne bien tant qu'il n'y a pas de poids négatifs dans notre graphe;
- Cela n'arrive pas dans le cas de distances; quand pourrait-on en avoir?
 - quand les poids correspondent à des dépenses énergétiques ;
 - quand les poids correspondent à des coûts ou à des remises;
 - •

Plus courts chemins: poids < 0

- L'algorithme de Dijkstra fonctionne bien tant qu'il n'y a pas de poids négatifs dans notre graphe;
- Cela n'arrive pas dans le cas de distances; quand pourrait-on en avoir?
 - quand les poids correspondent à des dépenses énergétiques;
 - quand les poids correspondent à des coûts ou à des remises;
 - ...
- Comme on va le voir, l'algorithme de Dijkstra n'est plus fiable dans ces cas-là;

Exemple 1 (plus courts chemins depuis a)

On rate le chemin optimal $a \rightsquigarrow d \rightsquigarrow c \rightsquigarrow b$ de poids -5.

 En l'absence de poids négatifs, Dijkstra s'en sortait puisqu'il n'était pas nécessaire de revenir sur ses décisions;

- En l'absence de poids négatifs, Dijkstra s'en sortait puisqu'il n'était pas nécessaire de revenir sur ses décisions;
- Dans le contre-exemple, un arc de poids < 0 nous a permis de trouver un meilleur chemin;

- En l'absence de poids négatifs, Dijkstra s'en sortait puisqu'il n'était pas nécessaire de revenir sur ses décisions;
- Dans le contre-exemple, un arc de poids < 0 nous a permis de trouver un meilleur chemin;
- Mais comme l'algorithme se termine, les autres chemins n'en bénéficieront pas;

- En l'absence de poids négatifs, Dijkstra s'en sortait puisqu'il n'était pas nécessaire de revenir sur ses décisions;
- Dans le contre-exemple, un arc de poids < 0 nous a permis de trouver un meilleur chemin;
- Mais comme l'algorithme se termine, les autres chemins n'en bénéficieront pas;
- L'algorithme de Bellman-Ford règlera ce problème en examinant les arcs plusieurs fois;

 L'algorithme de Bellman-Ford recherche également des raccourcis entre les sommets;

- L'algorithme de Bellman-Ford recherche également des raccourcis entre les sommets;
- Le fonctionnement est différent de celui de Dijkstra, qui cherchait des chemins moins coûteux de la source s à un sommet u en passant par un autre sommet v;

- L'algorithme de Bellman-Ford recherche également des raccourcis entre les sommets;
- Le fonctionnement est différent de celui de Dijkstra, qui cherchait des chemins moins coûteux de la source s à un sommet u en passant par un autre sommet v;
- Ici, on vérifie pour chaque arc (u, v) s'il existe un chemin moins coûteux de u à v;

- L'algorithme de Bellman-Ford recherche également des raccourcis entre les sommets;
- Le fonctionnement est différent de celui de Dijkstra, qui cherchait des chemins moins coûteux de la source s à un sommet u en passant par un autre sommet v;
- Ici, on vérifie pour chaque arc (u, v) s'il existe un chemin moins coûteux de u à v;
- On examine l'ensemble de **tous** les arcs |V| fois.

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	у	Z
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	5	t	X	y	Z
(a)	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	$+\infty$	$+\infty$	$+\infty$

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	у	Z
(a)	0	6	$+\infty$	7	$+\infty$

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	5	t	X	у	Z
(a)	0	6	11	7	$+\infty$

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	11	7	$+\infty$

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	11	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	11	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	y	Z
(a)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	y	Z
(a)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	6	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	x	у	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	x	у	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2
	(a)	(a) 0 (b) 0	(a) 0 6 (b) 0 2	(a) 0 6 4 (b) 0 2 4	(a) 0 6 4 7 (b) 0 2 4 7

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	2
	(a)	(a) 0 (b) 0	(a) 0 6 (b) 0 2	(a) 0 6 4 (b) 0 2 4	(a) 0 6 4 7 (b) 0 2 4 7

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2
	(a) (b)	(a) 0 (b) 0	(a) 0 6 (b) 0 2	(a) 0 6 4 (b) 0 2 4	(a) 0 6 4 7 (b) 0 2 4 7

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	У	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

étape	S	t	X	У	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

Déroulement de l'algorithme de Bellman-Ford

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

Les coulisses

étape	s	t	X	у	z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

Déroulement de l'algorithme de Bellman-Ford

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

Les coulisses

étape	s	t	X	y	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

(les étapes suivantes ne changent plus rien)

Déroulement de l'algorithme de Bellman-Ford

On examine les arcs dans l'ordre lexicographique :

$$(s,t),(s,y),(t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x).$$

Les coulisses

étape	s	t	X	у	Z
(a)	0	6	4	7	2
(b)	0	2	4	7	2
(c)	0	2	4	7	-2

(les étapes suivantes ne changent plus rien)

étape	s	t	X	y	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)

étape	s	t	x	у	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	+∞	7	+∞	s:(s,t),(s,y)

étape	s	t	X	y	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)

étape	s	t	x	у	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)

étape	s	t	×	у	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)

étape	s	t	×	у	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)
	0	6	4	7	2	z:(z,x)

étape	s	t	X	y	z	après traitement des arcs issus de
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)
	0	6	4	7	2	z:(z,x)
2	0	2	4	7	2	(étape finale)

étape	s	t	X	y	z	après traitement des arcs issus de \dots
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)
	0	6	4	7	2	z:(z,x)
2	0	2	4	7	2	(étape finale)
3	0	2	4	7	-2	(étape finale)

étape	s	t	X	y	z	après traitement des arcs issus de \dots
0	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
1	0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
	0	6	11	7	2	t:(t,x),(t,y),(t,z)
	0	6	11	7	2	x:(x,t)
	0	6	4	7	2	y:(y,x),(y,z)
	0	6	4	7	2	z:(z,x)
2	0	2	4	7	2	(étape finale)
3	0	2	4	7	-2	(étape finale)
4	0	2	4	7	-2	(étape finale)

s	t	×	у	z	après traitement des arcs issus de
0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	(étape finale)
0	6	$+\infty$	7	$+\infty$	s:(s,t),(s,y)
0	6	11	7	2	t:(t,x),(t,y),(t,z)
0	6	11	7	2	x:(x,t)
0	6	4	7	2	y:(y,x),(y,z)
0	6	4	7	2	z:(z,x)
0	2	4	7	2	(étape finale)
0	2	4	7	-2	(étape finale)
0	2	4	7	-2	(étape finale)
0	2	4	7	-2	(étape finale)
	0 0 0 0 0 0	0 +∞ 0 6 0 6 0 6 0 6 0 6 0 6 0 2 0 2 0 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Cycles négatifs

• Un cycle négatif C est un cycle tel que $\sum_{a \in A(C)} w(a) < 0$;

Cycles négatifs

- Un **cycle négatif** C est un cycle tel que $\sum_{a \in A(C)} w(a) < 0$;
- Les poids négatifs ne posent pas problème à Bellman-Ford, mais les cycles négatifs oui — pour les mêmes raisons que Dijkstra;

Cycles négatifs

- Un **cycle négatif** C est un cycle tel que $\sum_{a \in A(C)} w(a) < 0$;
- Les poids négatifs ne posent pas problème à Bellman-Ford, mais les cycles négatifs oui — pour les mêmes raisons que Dijkstra;
- L'algorithme de Bellman-Ford comprendra un morceau permettant de détecter la présence d'un cycle négatif;

• Chaque arc (u, v) a le potentiel d'améliorer le meilleur chemin actuel de s à v en passant par u;

- Chaque arc (u, v) a le potentiel d'améliorer le meilleur chemin actuel de s à v en passant par u;
- Pourquoi parcourir tous les arcs exactement |V| fois?

- Chaque arc (u, v) a le potentiel d'améliorer le meilleur chemin actuel de s à v en passant par u;
- Pourquoi parcourir tous les arcs exactement |V| fois?
 - tout chemin contient au plus |V|-1 arcs;

- Chaque arc (u, v) a le potentiel d'améliorer le meilleur chemin actuel de s à v en passant par u;
- Pourquoi parcourir tous les arcs exactement |V| fois?
 - tout chemin contient au plus |V|-1 arcs;
 - si on arrive à améliorer un chemin contenant le nombre maximal d'arcs, c'est forcément grâce à un cycle de poids négatif;

L'algorithme de Bellman-Ford proprement dit

Algorithme 1 : BellmanFord(G, source)

```
Entrées : un graphe pondéré orienté G, un sommet source.
  Sortie : la longueur d'un plus court chemin de la source à chacun des
           sommets du graphe (+\infty pour les sommets non accessibles),
           ou NIL si le graphe contient un cycle négatif.
1 distances \leftarrow tableau(G.nombre_sommets(), +\infty);
2 distances[source] \leftarrow 0;
  // parcourir chaque arc |V|-1 fois
3 pour i allant de 1 à G.nombre\_sommets() - 1 faire
      pour chaque (u, v, p) \in G.arcs() faire
          distances[v] \leftarrow min(distances[v], distances[u] + p);
  // vérifier la présence d'un cycle négatif
6 pour chaque (u, v, p) \in G.arcs() faire
      si distances[v] > distances[u] + p alors renvoyer NIL;
8 renvoyer distances;
```

• La complexité est assez simple à calculer :

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1);

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1);
- On a donc :

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1);
- On a donc :
 - du $O(|V|^3)$ pour une matrice d'adjacence;

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1);
- On a donc :
 - du $O(|V|^3)$ pour une matrice d'adjacence;
 - du O(|V||A|) pour une liste d'adjacence;

- La complexité est assez simple à calculer :
 - on examine **tous** les arcs |V| fois;
 - tous les calculs sont en O(1);
- On a donc :
 - du $O(|V|^3)$ pour une matrice d'adjacence;
 - du O(|V||A|) pour une liste d'adjacence;
- Remarque: on peut s'arrêter quand l'algorithme "se stabilise", donc quand les estimations ne subissent plus aucun changement;

Quand utiliser Dijkstra?

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;
 - sa complexité est meilleure que Bellman-Ford dans le cas orienté;

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;
 - sa complexité est meilleure que Bellman-Ford dans le cas orienté;
- Quand utiliser Bellman-Ford?

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;
 - sa complexité est meilleure que Bellman-Ford dans le cas orienté;
- Quand utiliser Bellman-Ford?
 - quand le graphe est orienté avec des poids négatifs;

- Quand utiliser Dijkstra?
 - quand tous les poids sont positifs ou nuls;
 - sa complexité est meilleure que Bellman-Ford dans le cas orienté;
- Quand utiliser Bellman-Ford?
 - quand le graphe est orienté avec des poids négatifs;
- S'il y a des cycles négatifs dont le chemin cherché peut tirer profit, on ne peut rien faire;

Motivations

• Jusqu'ici, on s'est intéressés au calcul de tous les plus courts chemins issus d'une source donnée;

Motivations

- Jusqu'ici, on s'est intéressés au calcul de tous les plus courts chemins issus d'une source donnée;
- Comment faire pour calculer les plus courts chemins entre chaque paire de sommets?

Motivations

- Jusqu'ici, on s'est intéressés au calcul de tous les plus courts chemins issus d'une source donnée;
- Comment faire pour calculer les plus courts chemins entre chaque paire de sommets?
- On pourrait lancer |V| fois Dijkstra ou Bellman-Ford;

Motivations

- Jusqu'ici, on s'est intéressés au calcul de tous les plus courts chemins issus d'une source donnée;
- Comment faire pour calculer les plus courts chemins entre chaque paire de sommets?
- On pourrait lancer |V| fois Dijkstra ou Bellman-Ford;
- L'algorithme de Floyd-Warshall permet d'obtenir le résultat voulu avec une meilleure complexité;

• L'algorithme de Floyd-Warshall procède comme suit :

- L'algorithme de Floyd-Warshall procède comme suit :
 - au départ, les plus courts chemins entre chaque paire de sommets sont les poids des arcs les reliant (ou $+\infty$);

- L'algorithme de Floyd-Warshall procède comme suit :
 - au départ, les plus courts chemins entre chaque paire de sommets sont les poids des arcs les reliant (ou $+\infty$);
 - à la k^{ème} itération, on cherche à améliorer le chemin u → v en s'autorisant les sommets intermédiaires d'indice 0, 1, 2, ..., k pour un certain k fixé;

- L'algorithme de Floyd-Warshall procède comme suit :
 - au départ, les plus courts chemins entre chaque paire de sommets sont les poids des arcs les reliant (ou $+\infty$);
 - à la k^{ème} itération, on cherche à améliorer le chemin u → v en s'autorisant les sommets intermédiaires d'indice 0, 1, 2, ..., k pour un certain k fixé;
- Remarque: la seule modification à l'étape k consiste à vérifier si le chemin u → k → v est plus court que le chemin u → v, puisque les sommets d'indice inférieur ont déjà été utilisés.

Exemple 3

Exemple 3

matrice de distances

Les chemins

k = 0

Exemple 3

matrice de distances

Exemple 3

matrice de distances

Les chemins

Exemple 3

matrice de distances

L'algorithme de Floyd-Warshall proprement dit

Si seules les distances nous intéressent, l'algorithme est assez simple à implémenter, car peu d'accès au graphe sont nécessaires.

Algorithme 2 : FLOYDWARSHALL(G)

```
Entrées: un graphe orienté pondéré G.
  Sortie: les distances entre toute paire de sommets du graphe.
1 n \leftarrow G.nombre_sommets();
2 distances \leftarrow matrice(n, n, +\infty);
3 pour i allant de 0 à n-1 faire
       distances[i][i] \leftarrow 0;
5 pour chaque (u, v, p) \in G.arcs() faire
       distances[u][v] \leftarrow p;
  // chercher les améliorations en passant par k = 0, 1, 2, ...
7 pour k allant de 0 à n-1 faire
       pour i allant de 0 à n-1 faire
            pour i allant de 0 à n-1 faire
9
                distances[i][j] \leftarrow min(distances[i][j],
10
                  distances[i][k]+distances[k][j]);
```

• La complexité est assez simple à calculer :

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;
 - on a trois boucles imbriquées indépendantes comportant chacune |V| itérations ;

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;
 - on a trois boucles imbriquées indépendantes comportant chacune |V| itérations ;
 - les opérations sur la matrice de distances se font en O(1);

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;
 - on a trois boucles imbriquées indépendantes comportant chacune |V| itérations ;
 - les opérations sur la matrice de distances se font en O(1);
- \Rightarrow total : $O(|V|^3)$;

- La complexité est assez simple à calculer :
 - on accède une fois à tous les arcs;
 - on a trois boucles imbriquées indépendantes comportant chacune |V| itérations;
 - les opérations sur la matrice de distances se font en O(1);
- \Rightarrow total : $O(|V|^3)$;
- Dans ce cas précis, la représentation du graphe importe peu : qu'on obtienne les arcs en $O(|V|^2)$ (matrice) ou en O(|A|) (listes), c'est le $O(|V|^3)$ qui domine;

• Les algorithmes vus jusqu'ici sont des exemples de techniques algorithmiques dont on reparlera;

- Les algorithmes vus jusqu'ici sont des exemples de techniques algorithmiques dont on reparlera;
- On a vu des algorithmes :

- Les algorithmes vus jusqu'ici sont des exemples de techniques algorithmiques dont on reparlera;
- On a vu des algorithmes :
 - gloutons : Dijkstra, Kruskal, Prim ;

- Les algorithmes vus jusqu'ici sont des exemples de techniques algorithmiques dont on reparlera;
- On a vu des algorithmes :
 - gloutons : Dijkstra, Kruskal, Prim ;
 - 2 de programmation dynamique : Bellman-Ford, Floyd-Warshall;

• Les **algorithmes gloutons** (*greedy* en anglais) font des choix localement optimaux selon le(s) critère(s) visé(s);

- Les **algorithmes gloutons** (*greedy* en anglais) font des choix localement optimaux selon le(s) critère(s) visé(s);
 - dans un problème de minimisation, on sélectionne le choix le moins cher à chaque étape;

- Les **algorithmes gloutons** (*greedy* en anglais) font des choix localement optimaux selon le(s) critère(s) visé(s);
 - dans un problème de minimisation, on sélectionne le choix le moins cher à chaque étape;
 - dans un problème de maximisation, on sélectionne le choix le plus profitable à chaque étape;

- Les **algorithmes gloutons** (*greedy* en anglais) font des choix localement optimaux selon le(s) critère(s) visé(s);
 - dans un problème de minimisation, on sélectionne le choix le moins cher à chaque étape;
 - dans un problème de maximisation, on sélectionne le choix le plus profitable à chaque étape;
- Kruskal et Prim suivent clairement ce schéma : à chaque étape, on sélectionne l'arête de poids minimum (+ autres conditions);

• Une fois qu'on a compris le principe, les algorithmes gloutons se révèlent très utiles :

- Une fois qu'on a compris le principe, les algorithmes gloutons se révèlent très utiles :
 - cette approche sert de bon "candidat de départ" si on n'a pas d'autre idée;

- Une fois qu'on a compris le principe, les algorithmes gloutons se révèlent très utiles :
 - cette approche sert de bon "candidat de départ" si on n'a pas d'autre idée;
 - elle est généralement simple à implémenter;

- Une fois qu'on a compris le principe, les algorithmes gloutons se révèlent très utiles :
 - cette approche sert de bon "candidat de départ" si on n'a pas d'autre idée;
 - elle est généralement simple à implémenter;
- Malheureusement, rares sont les situations où ils sont optimaux;

- Une fois qu'on a compris le principe, les algorithmes gloutons se révèlent très utiles :
 - cette approche sert de bon "candidat de départ" si on n'a pas d'autre idée;
 - elle est généralement simple à implémenter;
- Malheureusement, rares sont les situations où ils sont optimaux;
- Ils restent très utiles dans la conception d'algorithmes d'approximation;

 Les algorithmes gloutons échouent quand une solution optimale ne peut pas s'obtenir en se contentant de combiner des choix optimaux localement;

- Les algorithmes gloutons échouent quand une solution optimale ne peut pas s'obtenir en se contentant de combiner des choix optimaux localement;
- La programmation dynamique résoud ce problème en examinant aussi les choix non optimaux localement;

- Les algorithmes gloutons échouent quand une solution optimale ne peut pas s'obtenir en se contentant de combiner des choix optimaux localement;
- La programmation dynamique résoud ce problème en examinant aussi les choix non optimaux localement;
- De manière très informelle :

- Les algorithmes gloutons échouent quand une solution optimale ne peut pas s'obtenir en se contentant de combiner des choix optimaux localement;
- La programmation dynamique résoud ce problème en examinant aussi les choix non optimaux localement;
- De manière très informelle :
 - pour chaque choix possible à une étape donnée, on évalue l'impact de ce choix;

- Les algorithmes gloutons échouent quand une solution optimale ne peut pas s'obtenir en se contentant de combiner des choix optimaux localement;
- La programmation dynamique résoud ce problème en examinant aussi les choix non optimaux localement;
- De manière très informelle :
 - pour chaque choix possible à une étape donnée, on évalue l'impact de ce choix;
 - on optimise ensuite sur toutes les décisions possibles, en gardant le critère global en tête;

 La programmation dynamique ne se fait en général pas avoir comme les algorithmes gloutons;

- La programmation dynamique ne se fait en général pas avoir comme les algorithmes gloutons;
- Cela ne veut pas dire qu'elle fonctionne toujours!

- La programmation dynamique ne se fait en général pas avoir comme les algorithmes gloutons;
- Cela ne veut pas dire qu'elle fonctionne toujours!
- Le problème étudié doit présenter une certaine structure : on parle de "sous-structure optimale", ce qui signifie que l'on peut atteindre l'optimum global en résolvant des sous-problèmes de manière optimale;