最优化第一次大作业

王志宏 SY1606220

1 原始问题重述

定义一个有向网络 $G=(N, \epsilon)$,其中 N 是节点集, ϵ 是弧集,对于每条弧 $1=(i,j)\in E$,其容量为 c_1 代表弧 1 的容量(即承受负载的上界)。源-目的对 (s_m, t_m) ,m=1,…,M,且 (s_m, t_m) 的流量需求是 d_m ,表示流量在节点 s_m 流入网络,然后在节点 t_m 流出网络的平均密度。设沿弧 1 的商品流 m 是 f_{m1} ,假设网络有 s 个节点, t 条边, 令 $A(=A_{N*E})$ 为网络 G 的弧关联矩阵,即 A 的每一列对应 ϵ 中的一条弧,第 1 列的第 i 行元素为 1,第 j 行元素为—1,其余元素为 0,与弧 1=(i,j)对应。再令 $b_m=(b_{m1}, \cdots, b_{ms})^T$, $f_m=(f_{m1}, \cdots, f_{mt})^T$,则可将等式约束表示成:

$$f_l = \sum_{m=1}^{M} f_{ml} \le c_l, \forall l \in \varepsilon$$
 (1)

$$\mathbf{A} \times \mathbf{f}_{\mathbf{m}} = b_{m} \tag{2}$$

$$f_{ml} \ge 0, m = 1, \dots M, \forall l \in \varepsilon$$
 (3)

如下图所示,网络 G 有 7 个节点,13 条弧,每条弧的容量均为 5 个单位,节点和弧的编号均在图中给出。有 4 个需求量均为 4 个单位的源-目的对也在图中标出。分别求极小化最大弧利用率 MLU 和极小化 MLU 和极小化 MLU 不函数时各个商品 MLU 和最优值。

2.问题的重新表述

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & & -1 & & & & & & \\ -1 & & 1 & & & & & -1 & & & \\ & -1 & & 1 & 1 & & & & & \\ & -1 & & 1 & 1 & & & & -1 & & \\ & & -1 & & & 1 & 1 & & & -1 & & \\ & & & -1 & & & -1 & & 1 & 1 & & & -1 \\ & & & & & -1 & & -1 & & & 1 & 1 & \\ & & & & & & -1 & & -1 & & & 1 & 1 \end{bmatrix}$$

2.1 最大弧利用率 MLU

MLU 的问题可以表述为:

minimize z

subject to
$$\sum_{m=1}^{M} \frac{1}{c_1} f_{ml} - z \le 0, \quad \forall 1 \in \varepsilon$$

$$Af_m = b_m,$$

$$f_m \ge 0, m = 1, \dots, M.$$

其中第一个不等式可以变化为:

第二个不等式可以变化为:

$$\begin{bmatrix} A & & & & & 0 \\ & A & & & & 0 \\ & & A & & 0 \\ & & & A & 0 \end{bmatrix} \bullet \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ z \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

令

$$A_{28*53}^* = \begin{bmatrix} A & & & & & 0 \\ & A & & & & 0 \\ & & A & & & 0 \\ & & & A & & 0 \end{bmatrix}, f_{53*1} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ z \end{bmatrix}, b_{28*1} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$c_{53*1} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix}^{\mathsf{T}}$$

则原问题可以表述为

mimimize
$$c^T f$$

subject to $Bf \le 0$
 $A^* f = b$
 $f_1, f_2, f_3, f_4 \ge 0$

2.2 极小化 FT 成本函数

极小化FT成本函数可以表述为

$$\begin{array}{ll} \text{minimize} & \sum_{l \in \mathcal{E}} z_l \\ \text{subject to} & \sum_m f_{ml} - z_l \leq 0, \, \forall l \in \mathcal{E} \\ & 3\sum_m f_{ml} - z_l \leq \frac{2}{3}c_l, \, \forall l \in \mathcal{E} \\ & 10\sum_m f_{ml} - z_l \leq \frac{16}{3}c_l, \, \forall l \in \mathcal{E} \\ & 70\sum_m f_{ml} - z_l \leq \frac{178}{3}c_l, \, \forall l \in \mathcal{E} \\ & 500\sum_m f_{ml} - z_l \leq \frac{1468}{3}c_l, \, \forall l \in \mathcal{E} \\ & 5000\sum_m f_{ml} - z_l \leq \frac{16318}{3}c_l, \, \forall l \in \mathcal{E} \\ & 4f_m = b_m, \, f_m \geq 0, \, m = 1, \cdots, M. \end{array}$$

$$f_{65*1} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ z \end{bmatrix}, \quad z_{13*1} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_{13} \end{bmatrix}, \quad A_{28*65}^* = \begin{bmatrix} A & & & & 0 \\ & A & & & 0 \\ & & A & & 0 \\ & & & A & 0 \end{bmatrix}, \quad b_{28*1} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

$$\mathbf{B}_{78*65} = \begin{bmatrix} F & -I \\ 3F & -I \\ 10F & -I \\ 70F & -I \\ 500F & -I \\ 5000F & -I \end{bmatrix} D_{78*1} = \begin{bmatrix} 0 \\ \frac{2}{3}c^* \\ \frac{16}{3}c^* \\ \frac{178}{3}c^* \\ \frac{1468}{3}c^* \\ \frac{16318}{3}c^* \end{bmatrix}$$

$$c_{65*1} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 & \cdots & 1 \end{bmatrix}^{T}$$
 (52 \(\daggerapsi 0, 13 \dagger 1)\)
 $c_{13*1}^{*} = \begin{bmatrix} 5 & 5 & \cdots & 5 & 5 & 5 \end{bmatrix}^{T}$

则原问题可以表述为

mimimize
$$c^T f$$

subject to $Bf \le D$
 $A^* f = b$
 $f_1, f_2, f_3, f_4 \ge 0$

3.问题的求解及结果的说明

3.1 最大弧利用率 MLU

0.8000

Matlab 程序见 case1.m,程序执行的结果是

result=			
4.0000	0	0	0
0	4.0000	0	0
0	0	0	4.0000
0	0	0	0
0	0	0	0
0	0	4.0000	0
0	0	0	4.0000
0	0	0	0
0	0	4.0000	0
0	0	0	4.0000
0	0	0	0
0	0	4.0000	0
0	0	4.0000	0
opt =			

f	1	2	3	4	5	6	7	8	9	10	11	12	13
m													
1	4	0	0	0	0	0	0	0	0	0	0	0	0
2	0	4	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	4	0	0	4	0	0	4	4
4	0	0	4	0	0	0	4	0	0	4	0	0	0

解释:第一个商品沿弧1运送4个单位;

第二个商品沿弧2运送4个单位;

第三个商品沿弧 6,9,12,13 运送 4 个单位;

第四个商品沿弧 3,7,10 运送 4 个单位

最大弧利用率为 0.8

3.2 极小化 FT 成本函数

Matlab 程序见 case2.m,程序执行的结果是

reslut =			
4.0000	0	0.5000	0
0	4.0000	0	0
0	0	0.1667	4.0000
0	0	0	0
0	0	0.6667	o
0	0	3.3333	o
0	0	1.8333	2.3333
0	0	0	1.6667
0	0	3.5000	0
0	0	0	2.3333
0	0	1.6667	0
0	0	1.6667	1.6667
0	0	1.6667	0

m	1	2	3	4	总计
1	4	0	0.5	0	4.5
2	0	4	0	0	4
3	0	0	0.1667	4	4.1667
4	0	0	0	0	0
5	0	0	0.6777	0	0.6777
6	0	0	3.3333	0	3.3333
7	0	0	1.8333	2.3333	4.1666
8	0	0	0	1.6667	1.6667
9	0	0	3.6	0	3.6
10	0	0	0	2.3333	2.3333
11	0	0	1.6667	0	1.6667
12	0	0	1.6667	1.6667	3.3334
13	0	0	1.6667	0	1.6667

解释:第i列代表商品i(1,2,3,4) 第j行代表弧j(1,2,···,13),(j,i)表示商品i沿着弧j

的运输量,总计表示弧 j 的总运输量。最小的 FT 成本函数是 92.6667