$$1a)$$
 Для системы $\{\neg, \rightarrow\}$: $\overline{A} \to B = A \lor B$, $\overline{A} \to \overline{B} = A \land B => \{\neg, \rightarrow\} \iff \{\neg.\lor, \land,\}$, а такая система полна

 Δ ля системы $\{1, ⊕\}$:

 $1 \oplus 1 = 0 => \{1,0,\oplus\} =>$ можем построить палином Жегалкина => система полна

Для системы $\{\neg, \equiv\}$:

$$x\equiv x=1, x\equiv \overline{x}=0, x\equiv y\equiv 0=x\oplus y=>\{\neg, \equiv\}\iff \{1, \oplus\},$$
 а такая система - полна (см. выше)

1b) Обозначим M(f)=1, если f принадлежит M, и соответственно M(f)=0, если f не принадлежит M=>

$$K(f) = S(f) \land M(f) \lor L(f) \setminus M(f) \lor T_0(f) \setminus S(f)$$
 (для удобства опустим (f))

 $K=S \wedge M \vee L \vee \overline{M} \vee T_0 \vee \overline{S} = S \vee L \vee \overline{M} \vee T_0 \vee \overline{S} = 1 =>$ любая булева функция принадлежит K=> система полна

- **2**) Если система $\{f_1...f_n\}$ полна, тогда:
 - $\exists f_k \notin T_0 \Longrightarrow \exists f_k^* \notin T_1(f_k(\overline{0}) = 1 \Longrightarrow f_k^*(\overline{1}) = \overline{f_k(\overline{0})} = 0$,
 - $\exists f_k \notin T_1 => \exists f_k^* \notin T_0$ (аналогично см.выше)
 - $\exists f_k \notin S => \exists f_k^* \notin S$ (предположим обратное, тогда $f_k^{**} = f_k^*$, кроме того: $f_k^** = f_k => f_k = f_k^*$ противоречие)
 - $\bullet \ \exists f_k \notin M => \exists p, q(p>q): f_k(p) < f_k(q) => f_k(\overline{p}) \geqslant f_k(\overline{q}) => \overline{f_k(\overline{p})} < \overline{f_k(\overline{q})} => f_k^*(p) < f_k^*(q) => f_k^* \notin M$
 - $\exists f_k \notin L => f_k(\vec{x}) \neq a_1x_1 + a_2x_2 + ... + C_\alpha => f_k(\vec{x}) \neq a_1\overline{x_1} + a_2\overline{x_2} + ... + C_\alpha$ $\underline{T.к.}\ \overline{x} = x + 1 => f_k(\overline{x}) \neq a_1x_1 + a_2x_2 + ... + C_\alpha + a_1 + a_2 + ... + a_n => f_k(\overline{x}) \neq a_1x_1 + a_2x_2 + ... + C_\alpha + a_1 + ... + a_n + 1$ \exists аменим $\overline{f_k(\overline{x})} = f_k^*, \ C_\alpha + a_1 + ... + a_n + 1 = C_\alpha^1 => f_k^* \neq a_1x_1 + a_2x_2 + ... + C_\alpha^1 => f_k^* \notin L$

Таким образом, система $\{f_1^*...f_n^*\}$ не лежит целиком ни в одной из систем $T_0, T_1, L, S, M =>$ такая система полна 3)

- ullet Если $a_1=a_2=...=0=>$ получаем две функции: для C=1 и C=0
- Если $a_1^2 + a_2^2 + ... \neq 0$, вспоминаем, что любая симметрическая функция существенно зависит от всех своих переменных. В нашем случае это означает, что: $a_1 = a_2 = ... = 1 = >$ получаем еще две функции: для C = 1 и C = 0

Таким образом, существует 4 такие функции

4) $x_1 + x_2 + ... + x_n = 1$, если в наборе $x_1x_2..x_n$ нечетное кол-во единиц. По индукции легко доказывается, что ровно в половине таких наборов кол-во единиц - нечетное. Таким образом, ровно в половине строк таблицы истинности должна стоять единица (в 2^{n-1} строках). В остальных 2^{n-1} строках может стоять все что угодно => кол-во функций равно $2^{2^{n-1}}$

6a) PAR =
$$x_1 + x_2 + ... + x_n$$