

BLG501E – Discrete Mathematics

2021 - 2022 Fall Term

Asst. Prof. Gökhan SEÇİNTİ

Outline

- The Chinese Remainder Theorem (cont`d)
- Euclidian Algorithm (revisit)
- Computer Arithmetic for Large Integers
- Fibonacci Sequence
- Lame Theorem
- Wilson Theorem
- Fermat's Little Theorem
- Pseudo Prime Numbers

- In the first century, the Chinese mathematician Sun-Tsu asked:

 There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; when divided by 7, the remainder is 2. What will be the number of things?
- This puzzle can be translated into the solution of the system of congruences:

```
x \equiv 2 \pmod{3},

x \equiv 3 \pmod{5},

x \equiv 2 \pmod{7}?
```

• We'll see how the theorem that is known as the *Chinese Remainder Theorem* can be used to solve Sun-Tsu's problem.

Theorem 2: (*The Chinese Remainder Theorem*) Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and $a_1, a_2, ..., a_n$ arbitrary integers. Then the system

```
x \equiv a_1 \pmod{m_1}

x \equiv a_2 \pmod{m_2}

\vdots

x \equiv a_n \pmod{m_n}

has a unique solution modulo m = m_1 m_2 \cdots m_n.
```

(That is, there is a solution x with $0 \le x < m$ and all other solutions are congruent modulo m to this solution.)

• **Proof**: We'll show that a solution exists by describing a way to construct the solution. Showing that the solution is unique modulo *m* is Exercise 30.

 $continued \rightarrow$

To construct a solution first let $M_k = m/m_k$ for k = 1, 2, ..., n and $m = m_1 m_2 \cdot \cdot \cdot m_n$.

Since $gcd(m_k, M_k) = 1$, by Theorem 1, there is an integer y_k , an inverse of M_k modulo m_k , such that

$$M_k y_k \equiv 1 \pmod{m_k}$$
.

Form the sum

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \cdots + a_n M_n y_n$$
.

Note that because $M_j \equiv 0$ (mod m_k) whenever $j \neq k$, all terms except the kth term in this sum are congruent to 0 modulo m_k .

Because $M_k y_k \equiv 1$ (mod m_k), we see that $x \equiv a_k M_k y_k \equiv a_k$ (mod m_k), for k = 1, 2, ..., n. Hence, x is a simultaneous solution to the n congruences.

```
x \equiv a_1 \pmod{m_1}

x \equiv a_2 \pmod{m_2}

.

.

x \equiv a_n \pmod{m_n}
```


Proof:

Solution: $x = \sum_{i=0}^{n} a_i y_i M_i$ where $M_i = \frac{m}{m_i}$

Part 1: Showing that a solution exists

Part 2: Showing that a solution is unique for the given interval

Part 1: $m_1 \perp m_2 \dots \perp m_n$, $\forall i \in [1, n] m_i | c \iff m | c$ Induction

- 1. $m_1 \mid c$
- 2. $\forall i \in [1, n-1]m_i|c \iff M_n|c$
- 3. $m_n | c \wedge M_n | c \wedge m_n \perp M_n \Rightarrow^? m | c$

$$\begin{aligned} M_n|c &\to c = k_1 M_n \\ m_n|c &\to m_n | k_1 M_n \wedge m_n \perp M_n \to m_n | k_1 \to k_1 = k_2 m_n \\ c &= k_2 m_n M_n \to m_n M_n | c \to m | c \end{aligned}$$

Part 2:

Contradiction, lets assume both x and y are different solutions in [1,m]

$$\forall i \in [1, n]; x \equiv a_i \bmod m_i \land y \equiv a_i \bmod m_i$$
$$x = m_i q_1 + a_i \land y = m_i q_2 + a_i \Rightarrow x - y = m_i q_3$$

$$m_i|(x-y) \Rightarrow x \equiv y \bmod m_i$$

$$\forall i, m_i | (x - y) \land m = \prod m_i \Rightarrow m | (x - y) \Rightarrow x \equiv y \bmod m$$

Extended Chinese Remainder Theorem


```
In order to have solution for the given system, each congruence should have solution, which requires Either \gcd(a_i,m_1)=1 Or
```

 $\gcd(a_i, m_1) = d_i \wedge d_i | b_i$

Extended Chinese Remainder Theorem

Example:

```
15x \equiv 21 \mod 48
166x \equiv 46 \mod 22 \text{ , x =?}
x \equiv 5 \mod 13
```

Euclidean Algorithm (revisit)

$$\gcd(a,b) = \gcd(b, a \bmod b)$$

• The Euclidean algorithm expressed in pseudocode is:

```
procedure gcd(a, b): positive integers)

x := a

y := b

while y \neq 0

r := x \mod y

x := y
y := r

return x \{ gcd(a,b) \text{ is } x \}
```

• In Section 5.3, we'll see that the time complexity of the algorithm is $O(\log b)$, where a > b.

$$m_1 \perp m_2 \dots \perp m_n$$
 and $m = m_1 m_2 \dots m_n$

Any large integer $a \in [1, m-1]$ can be converted into n smaller integers

$$(a \bmod m_1, a \bmod m_2 \dots, a \bmod m_n)$$

$$X = \langle x_1, x_2 ..., x_n \rangle$$

 $Y = \langle y_1, y_2 ..., y_n \rangle$

$$\Delta = \{+, -, x, \div\}$$

$$X\Delta Y = \langle x_1 \Delta y_1, x_2 \Delta y_2, ..., x_n \Delta y_n \rangle$$

Computer Arithmetics

Theorem:

$$\gcd(2^a - 1, 2^b - 1) = 2^{\gcd(a,b)} - 1$$

Examples:

$$31 \perp 29 \perp 27 \perp 25 \perp 23 \perp 19$$

$$2^{31} - 1 \perp 2^{29} - 1 \perp 2^{27} - 1 \perp 2^{25} - 1 \perp 2^{23} \perp 2^{19} - 1$$

Computer Arithmetics

Theorem:

$$\gcd(2^a - 1, 2^b - 1) = 2^{\gcd(a,b)} - 1$$

Proof:

Fibonacci Numbers

Fibonacci (1170- 1250)

Example: The Fibonacci numbers are defined as follows:

$$f_0 = 0$$

$$f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2}$$

Find f_2 , f_3 , f_4 , f_5 .

•
$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

•
$$f_3 = f_2 + f_1 = 1 + 1 = 2$$

•
$$f_4 = f_3 + f_2 = 2 + 1 = 3$$

•
$$f_5 = f_4 + f_3 = 3 + 2 = 5$$

In Chapter 8, we will use the Fibonacci numbers to model population growth of rabbits. This was an application described by Fibonacci himself.

Next, we use strong induction to prove a result about the Fibonacci numbers.

Fibonacci Numbers

Example 4: Show that whenever $n \ge 3$, $f_n > \alpha^{n-2}$, where $\alpha = (1 + \sqrt{5})/2$.

Solution: Let P(n) be the statement $f_n > \alpha^{n-2}$. Use strong induction to show that P(n) is true whenever $n \ge 3$.

- BASIS STEP: P(3) holds since $\alpha < 2 = f_3$ P(4) holds since $\alpha^2 = (3 + \sqrt{5})/2 < 3 = f_4$.
- INDUCTIVE STEP: Assume that P(j) holds, i.e., f_j > α^{j-2} for all integers j with 3 ≤ j ≤ k, where k ≥ 4. Show that P(k + 1) holds, i.e., f_{k+1} > α^{k-1}.
 Since α² = α + 1 (because α is a solution of x² x 1 = 0),
 - $\alpha^{k-1} = \alpha^2 \cdot \alpha^{k-3} = (\alpha + 1) \cdot \alpha^{k-3} = \alpha \cdot \alpha^{k-3} + 1 \cdot \alpha^{k-3} = \alpha^{k-2} + \alpha^{k-3}$
 - By the inductive hypothesis, because $k \ge 4$ we have

$$f_{k-1} > \alpha^{k-3}, \qquad f_k > \alpha^{k-2}.$$

• Therefore, it follows that

$$f_{k+1} = f_k + f_{k-1} > \alpha^{k-2} + \alpha^{k-3} = \alpha^{k-1}$$
.

• Hence, P(k + 1) is true.

Why does this equality hold?

Lamé's Theorem

Gabriel Lamé (1795-1870)

Lamé's Theorem: Let a and b be positive integers with $a \ge b$. Then the number of divisions used by the Euclidian algorithm to find gcd(a,b) is less than or equal to five times the number of decimal digits in b.

Proof: When we use the Euclidian algorithm to find gcd(a,b) with $a \ge b$,

• n divisions are used to obtain (with $a = r_0, b = r_1$):

$$\begin{aligned} r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2, \\ &\vdots \\ r_{n-2} &= r_{n-1} q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n. \end{aligned}$$

• Since each quotient $q_1, q_2, ..., q_{n-1}$ is at least 1 and $q_n \ge 2$:

$$r_n \ge 1 = f_2,$$

 $r_{n-1} \ge 2 r_n \ge 2 f_2 = f_3,$
 $r_{n-2} \ge r_{n-1} + r_n \ge f_3 + f_2 = f_4,$
 \vdots
 $r_2 \ge r_3 + r_4 \ge f_{n-1} + f_{n-2} = f_n,$
 $b = r_1 \ge r_2 + r_3 \ge f_n + f_{n-1} = f_{n+1}.$

Lamé's Theorem

• It follows that if n divisions are used by the Euclidian algorithm to find gcd(a,b) with $a \ge b$, then b $\geq f_{n+1}$.

By Example 4,
$$f_{n+1} > \alpha^{n-1}$$
, for $n > 2$, where $\alpha = (1 + \sqrt{5})/2$. Therefore, $b > \alpha^{n-1}$.

• Because $\log_{10} \alpha \approx 0.208 > 1/5$, $\log_{10} b > (n-1) \log_{10} \alpha > (n-1)/5$. Hence, $n-1 < 5 \cdot \log_{10} b$.

- Suppose that b has k decimal digits. Then $b < 10^k$ and $\log_{10} b < k$. It follows that n 1 < 5k and since k is an integer, $n \leq 5k$.
- As a consequence of Lamé's Theorem, $O(\log b)$ divisions are used by the Euclidian algorithm to find gcd(a,b) whenever a > b.
 - By Lamé's Theorem, the number of divisions needed to find gcd(a,b) with a > b is less than or equal to 5 ($log_{10} b + 1$) since the number of decimal digits in b (which equals $[log_{10} b] + 1$) is less than or equal to $log_{10} b + 1$.

Lamé's Theorem was the first result in computational complexity

Wilson's Theorem

Theorem:

$$p$$
 is prime, $(p-1)! \equiv -1 \mod p$

Proof:

Fermat's Little Theorem

Theorem 3: (Fermat's Little Theorem) If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

Furthermore, for every integer a we have $a^p \equiv a \pmod{p}$ (proof outlined in Exercise 19)

Fermat's little theorem is useful in computing the remainders modulo p of large powers of integers.

Example: Find $7^{222} \mod 11$.

By Fermat's little theorem, we know that $7^{10} \equiv 1 \pmod{11}$, and so $(7^{10})^k \equiv 1 \pmod{11}$, for every positive integer k. Therefore,

$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} 7^2 \equiv (1)^{22} \cdot 49 \equiv 5 \pmod{11}$$
.

Hence, $7^{222} \mod 11 = 5$.

Pseudoprimes

• By Fermat's little theorem n > 2 is prime, where

$$2^{n-1} \equiv 1 \pmod{n}$$
.

• But if this congruence holds, n may not be prime. Composite integers n such that $2^{n-1} \equiv 1 \pmod{n}$ are called *pseudoprimes* to the base 2.

Example: The integer 341 is a pseudoprime to the base 2.

$$341 = 11 \cdot 31$$

 $2^{340} \equiv 1 \pmod{341}$ (see in Exercise 37)

• We can replace 2 by any integer $b \ge 2$.

Definition: Let *b* be a positive integer. If *n* is a composite integer, and $b^{n-1} \equiv 1 \pmod{n}$, then *n* is called a *pseudoprime to the base b*.

Pseudoprimes

- Given a positive integer n, such that $2^{n-1} \equiv 1 \pmod{n}$:
 - If *n* does not satisfy the congruence, it is composite.
 - If *n* does satisfy the congruence, it is either prime or a pseudoprime to the base 2.
- Doing similar tests with additional bases b, provides more evidence as to whether n is prime.
- Among the positive integers not exceeding a positive real number x, compared to primes, there are relatively few pseudoprimes to the base b.
 - For example, among the positive integers less than 10^{10} there are 455,052,512 primes, but only 14,884 pseudoprimes to the base 2.

Carmichael Numbers

Robert Carmichael (1879-1967)

• There are composite integers n that pass all tests with bases b such that gcd(b,n) = 1.

Definition: A composite integer n that satisfies the congruence $b^{n-1} \equiv 1 \pmod{n}$ for all positive integers b with gcd(b,n) = 1 is called a *Carmichael* number.

Example: The integer 561 is a Carmichael number. To see this:

- 561 is composite, since 561 = 3 · 11 · 13.
- If gcd(b, 561) = 1, then gcd(b, 3) = 1, then gcd(b, 11) = gcd(b, 17) = 1.
- Using Fermat's Little Theorem: $b^2 \equiv 1 \pmod{3}$, $b^{10} \equiv 1 \pmod{11}$, $b^{16} \equiv 1 \pmod{17}$.
- Then

```
b^{560} = (b^2)^{280} \equiv 1 \pmod{3},

b^{560} = (b^{10})^{56} \equiv 1 \pmod{11},

b^{560} = (b^{16})^{35} \equiv 1 \pmod{17}.
```

- It follows (see Exercise 29) that $b^{560} \equiv 1 \pmod{561}$ for all positive integers b with $\gcd(b,561) = 1$. Hence, 561 is a Carmichael number.
- Even though there are infinitely many Carmichael numbers, there are other tests (described in the exercises) that form the basis for efficient probabilistic primality testing. (see Chapter 7)

Additional Reads

Reads:

- Chap. 4 and 5, Discrete Math. and Its applications, K.H. Rosen
- Chap. 4.8, Handbook of Discrete and Combinatorial Math., K.H. Rosen