MaxMiner: Mining Max-patterns

Review!

- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- i.e., no such a Y
 - Y is a super-pattern of X
 - The support of Y is greater than minSup
 - The support of Y can be smaller than that of X
- MaxMiner is based on the Apriori algorithm
- R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98

MaxMiner: Mining Max-patterns

- 1st scan: find frequent items and sort them (ascending order)
 - A, B, C, D, E (E is most frequently occurring)
- 2nd scan: find support for 2-itemsets with max-patterns

AB, AC, AD, AE, AB	CDE -
■ BC, BD, BE, BCDE ◀	
■ CD, CE, CDE	Dotontial may nattorno
DE	Potential max-patterns

Tid	Items
10	A,B,C,D,E
20	B,C,D,E,
30	A,C,D,F,E

- Reduce a lot of candidates in later stages
 - Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan
 - If AC is infrequent, no need to check ABC in later scans

MaxMiner: Mining Max-patterns

Complete *set-enumeration tree* over four items

Mining Closed Patterns: CLOSET

Review

- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X
- i.e., no such a Y
 - Y is a super-pattern of X
 - The support of Y is should be the same as that of X

Mining Closed Patterns: CLOSET

- Use the FP-tree for finding frequent patterns
- Flist: list of all frequent items in support ascending order
 - Flist: c-e-f-a-d
- Divide search space
 - Patterns having d
 - Patterns having a but no d
 - Patterns having f but no d and a
 - Patterns having e but no d, a, and f
 - Patterns having c but no d, a, f, and e

Min_sup=2

	<u> </u>
TID	Items
10	a, c, d, e, f
20	a, b, e
30	c, e, f
40	a, c, d, f
50	c, e, f

Mining Closed Patterns: CLOSET

- Naïve approach: Quite costly!
 - To mine a complete set of all frequent itemsets
 - To remove every frequent itemset whose support is the same as that of its superset
- Find only the closed itemsets recursively in an efficient way during the mining process using the FP-tree
 - Key idea: every transaction having d also has cfa => cfad is a frequent closed pattern
 - You can consider details by referring to FP-Growth
- J. Pei, J. Han & R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", DMKD'00

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Algorithm
 - Transform a horizontally formatted data to a vertically format by scanning the dataset once
 - Easy: # of items is much smaller than that of transactions
 - Starting with k=1, construct candidate (k+1)-itemsets from frequent k-itemsets
 - Using the TID-sets intersection and Apriori property
 - Repeat this process with k incremented by 1 until no frequent itemsets can be found

Table 5.1. The vertical data format of the transaction data set *D* of

itemset	TID_set		
I1	{T100, T400, T500, T700, T800, T900}		
I2	{T100, T200, T300, T400, T600, T800, T900]		
I3	{T300, T500, T600, T700, T800, T900}		
I4	{T200, T400}		
I5	{T100, T800}		

- No need to scan a database to find the support of (k+1) itemsets
 - TID set of each k-itemset carries sufficient information including a support value
 - But, it is quite long and requires large space for intersection
- Diffset technique
 - Keep track of only the difference of TID sets for (k+1)itemset and its corresponding k-itemset
 - {I1} = {t1, t4, t5, t7, t8, t9}, {I1, I2} = {t1, t4, t8, t9}
 - Store Diffset({I1, I2}, {I1}) = {t5, t7} instead of storing {I1, I2}
 - Effective with many dense and long patterns

Visualization of Association Rules: Plane Graph

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Mining Various Kinds of Association Rules

- Mining multilevel association
- Miming multidimensional association
- Mining quantitative association
- Mining interesting correlation patterns

Mining Multiple-Level Association Rules

- Items often form hierarchies
- Flexible support settings
 - Items at the lower level are expected to have lower support
- Exploration of shared multi-level mining (Agrawal & Srikant@VLDB'95, Han & Fu@VLDB'95)

uniform support

reduced support

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - milk ⇒ wheat bread [support = 8%, confidence = 70%]
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
- We say the first rule is an ancestor of the second rule.
- A (descendent) rule is redundant if
 - Its support is close to the "expected" value, based on the rule's ancestor
 - Its confidence is close to that of the rule's ancestor

Mining Multi-Dimensional Association

Single-dimensional rules: (having a dimension or a predicate)

```
buys(X, "milk") \Rightarrow buys(X, "bread"): milk \Rightarrow bread
```

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (no repeated predicates)

```
age(X,"19-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
```

hybrid-dimension assoc. rules (repeated predicates)

$$age(X,"19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")$$

Attribute Types

■ age(X,"19-25") \land occupation(X, "student") \Rightarrow buys(X, "coke") attributes

- Categorical Attributes
 - Finite number of possible values, no ordering among values
- Quantitative Attributes
 - Numeric, implicit ordering among values
 - Discretization and clustering approaches required

Mining Quantitative Associations

- Techniques can be categorized by how numerical attributes, such as age or salary are treated
- Static discretization based on predefined concept hierarchies (data cube methods)
- Dynamic discretization based on data distribution (quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)
- 3. Clustering: Distance-based association (e.g., Yang & Miller@SIGMOD97)

Static Discretization of Quantitative Attributes

- Discretized prior to mining using a concept hierarchy
 - age(X,"19-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
 - Numeric values are replaced by ranges (as a categorical value)
- In a relational database, finding all frequent k-predicate sets will require k or k+1 table scans.

Quantitative Association Rules

- Proposed by Lent, Swami and Widom ICDE'97
- Numeric attributes are dynamically discretized
- 2-D quantitative association rules: $A_{quan1} \land A_{quan2} \Rightarrow A_{cat}$
 - The confidence is higher than threshold
 - The support is higher than threshold
- Cluster adjacent association rules to form general rules using a 2-D grid
- Example

age(X,"34-35") \land income(X,"30-50K") \Rightarrow buys(X,"high resolution TV") \Rightarrow 20-30K

Note: simplified!

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Interestingness Measure: Correlations (Lift)

- play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more meaningful, although it has lower support and confidence
- Measure of dependent/correlated events: lift

Contingency table

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketball	Not basketball	Sum (row)	
Cereal	2000	1750	3750	
Not cereal	1000	250	1250	
Sum(col.)	3000	2000	5000	

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89 \qquad lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

Is lift Good Measure of Correlation?

- "Buy walnuts \Rightarrow buy milk [1%, 80%]" is misleading
 - if 85% of customers buy milk
- Support and confidence are not good to represent correlations
- So many interestingness measures? (Tan, Kumar, Sritastava @KDD'02)

$$lift = \frac{P(A \cup B)}{P(A)P(B)} Co \sin e = \frac{P(A \cup B)}{\sqrt{P(A)P(B)}}$$

$$all_conf = \frac{\sup(X)}{\max_item_\sup(X)}$$

$$DB \qquad m.c. \qquad er$$

	Milk	No Milk	Sum (row)	
Coffee	m, c	~m, c	С	
No Coffee	m, ~c	~m, ~c	~C	
Sum(col.)	m	~m	Σ	

DB	m, c	~m, c	m~c	~m~c	lift	all-conf	coh	χ2
A2	1000	100	100	10,000	9.26	0.91	0.83	9055
C1	100	1000	1000	100,000	8.44	0.09	0.05	670
C2	1000	100	10000	100,000	9.18	0.09	0.09	8172
B1	1000	1000	1000	1000	1	0.5	0.33	0