OBJECTIFS 👌

- Connaître les notations de \mathbb{N} pour les nombres entiers naturels et de \mathbb{Z} pour les nombres entiers relatifs.
- Définition des notions de multiple, de diviseur, de nombre pair, de nombre impair.
- Modéliser et résoudre des problèmes mobilisant les notions de multiple, de diviseur, de nombre pair, de nombre impair, de nombre premier.
- Présenter les résultats fractionnaires sous forme irréductible.

Divisibilité

1. Multiples et diviseurs

À RETENIR 99

Définition

Soient $a, b \in \mathbb{N}$. On dit que a est un **multiple** de b s'il existe $q \in \mathbb{N}$ tel que

$$a = bq$$

On dit également que b est un **diviseur** de a. Cela revient à dire que a est dans la table de multiplication de b.

Dans la définition, on peut aisément remplacer \mathbb{N} par \mathbb{Z} . Mais, pour simplifier les choses dans la suite, on ne considérera que les multiples et diviseurs positifs.

EXERCICE 1
Soit n un nombre entier. Montrer que la somme de deux multiples de n est un multiple de n .

À RETENIR 99

Méthode

Pour trouver tous les diviseurs d'un nombre entier n, on teste la divisibilité de n par tous les nombres inférieurs ou égaux à \sqrt{n} .

EXERCICE 2

Dresser la liste des diviseurs des nombres suivants.

2. 6: **4.** 11:

À RETENIR 👀

Propriété

Tout nombre entier est divisible par 1 et par lui-même.

2. Nombres pairs, nombres impairs

À RETENIR 99

Définitions

Soit n un nombre entier.

- On dit que n est **pair** s'il existe un entier k tel que n = 2k. Autrement dit, n est pair s'il est divisible par 2.
- On dit que n est **impair** s'il existe un entier k tel que n = 2k + 1. Autrement dit, n est impair s'il n'est pas divisible par 2.

EXEMPLE 🔋

Par exemple, 66 est pair car $66 = 2 \times 33$, mais 17 est impair car $17 = 2 \times 8 + 1$.

EXERCICE 3
Montrer que le carré de tout nombre pair est pair.

 $\begin{tabular}{l} \hline \textbf{FVoir la correction: https://mes-cours-de-maths.fr/cours/seconde/arithmetique/\#correction-3.} \\ \hline \end{tabular}$

3. Nombres premiers

À RETENIR 99

Définition

Un **nombre premier** est un nombre entier plus grand que 1 qui n'est divisible que par 1 et par lui-même.

EXERCICE 4

Donner 4 nombres premiers inférieurs à 100.

◆ Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/arithmetique/#correction-4.

À RETENIR 99

Méthode

Pour montrer qu'un entier naturel n est premier, on vérifie qu'il ne possède aucun diviseur inférieur ou égal à \sqrt{n} .

EXERCICE 5
1. Montrer que 23 est un nombre premier.
2. Montrer que 12 345 678 n'est pas un nombre premier.
Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/arithmetique/#correction-5.
À RETENIR **
Propriété
Il existe une infinité de nombres premiers.
4. Décomposition en produit de facteurs premiers
À RETENIR 99
Théorème fondamental de l'arithmétique
Tout nombre entier plus grand que 1 peut s'écrire comme produit de nombres premiers. Il s'agit de la décomposition en produit de facteurs premiers de ce nombre.
De plus, cette décomposition est unique (si l'on ne tient pas compte de l'ordre des facteurs).
EXERCICE 6
Décomposer les nombres entiers suivants en produit de facteurs premiers.
1. 360 =
◆ Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/arithmetique/#correction-6.
Fractions irréductibles
À RETENIR 👀
Définition
Deux nombres entiers sont dits premiers entre eux s'ils n'admettent aucun diviseur commun hormis 1.
EVEDCICE 7 P
EXERCICE 7

oir la correction: https://mes-cours-de-maths.fr/cours/seconde/arithmetique/#correction-7.

À RETENIR 99

Méthode

Pour montrer que deux nombres sont premiers entre eux, on vérifie qu'ils n'ont aucun facteur commun dans leur décomposition en produit de facteurs premiers.

EXEMPLE •

46 et 5 460 ne sont pas premiers entre eux car $46 = 2 \times 23$ et $5 460 = 2^2 \times 3 \times 5 \times 7 \times 13$.

À RETENIR 👀

Définition

Une fraction est **irréductible** lorsque l'on ne peut plus la simplifier (ie. l'écrire avec un numérateur et un dénominateur plus petits).

EXEMPLE •

 $\frac{3}{4}$ est une fraction irréductible mais $\frac{5}{10}$ ne l'est pas (car $\frac{5}{10}=\frac{1}{2}$).

À RETENIR 99

Propriété

Une fraction est irréductible si son numérateur et son dénominateur sont premiers entre eux.

EXERCICE 8

Dire si les fractions suivantes sont irréductibles. Les réduire dans le cas contraire.

Voir la correction: https://mes-cours-de-maths.fr/cours/seconde/arithmetique/#correction-8.