Universidade Federal de Pelotas Disciplina de Processamento da Linguagem Natural

Grupo: Geovana Silveira e Alessandra Galvao

Trabalho de Entidades Nomeadas, Relações e Correferência

Parte 1: CRF para NER

1. Dataset Leis:

Para a realização desta parte do trabalho 1 utilizando o dataset das leis, foi preciso primeiramente organizar o dataset txt fornecido para o formato do arquivo (ner_dataset.csv) do código base. Como o dataset original possuía apenas a Word e a Tag, foi necessário utilizar o modelo em português da biblioteca do Spacy para obter o part-of-speech(POS) das palavras do dataset. Na figura 1 é possível observar as alterações realizadas no dataset original.

0		Sentence #	Word	POS	Tag
	0	Sentence: 1	EMENTA	VERB	0
	1	Sentence: 1	13	PUNCT	0
	2	Sentence: 1	APELAÇÃO	PROPN	0
	3	Sentence: 1	CÍVEL	PROPN	0
	4	Sentence: 1	950	PUNCT	0
	5	Sentence: 1	AÇÃO	PROPN	0
	6	Sentence: 1	DE	ADP	0
	7	Sentence: 1	INDENIZAÇÃO	PROPN	0
	8	Sentence: 1	POR	ADP	0
	9	Sentence: 1	DANOS	NOUN	0

Figura 1: Dataset das leis após as alterações realizadas.

Em relação às features adicionadas para este dataset, escolhemos adicionar 3 features novas: *isArtigo*, que representa um termo muito utilizado em textos relacionados às leis, *isNumRomano*, que representa os números romanos presentes no dataset e que são utilizados para numerar artigos e a feature *isSymbol*, que representa os símbolos utilizados no dataset.

Com a adição destas features foi possível observar uma melhora nos resultados em comparação ao resultados obtidos pelo arquivo do código base. As figuras 2 e 3 ilustram os resultados obtidos após a adição das features.

Figura 2: f1_score obtido após a adição das features criadas

₽		precision	recall	f1-score	support
	B-JURISPRUDENCIA	0.93	0.79	0.85	127
	B-LEGISLACAO	0.93	0.90	0.92	265
	B-LOCAL	0.87	0.77	0.81	43
	B-ORGANIZACAO	0.92	0.89	0.91	260
	B-PESSOA	0.96	0.91	0.93	213
	B-TEMPO	0.94	0.88	0.91	165
	I-JURISPRUDENCIA	0.93	0.84	0.89	301
	I-LEGISLACAO	0.97	0.94	0.96	1244
	I-LOCAL	0.87	0.88	0.87	51
	I-ORGANIZACAO	0.94	0.92	0.93	456
	I-PESSOA	0.98	0.95	0.96	431
	I-TEMPO	0.93	0.91	0.92	139
	0	0.99	1.00	0.99	23912
	accuracy			0.98	27607
	macro avg	0.94	0.89	0.91	27607
	weighted avg	0.98	0.98	0.98	27607

Figura 3: Relatório de classificação obtido pelo dataset de Leis

Link do código - Dataset Leis :

https://colab.research.google.com/drive/1qtx1EYWE2mUCFnUf31Ej-5IqRWffWg 80

2. Dataset Tweets:

Para obter as mensagens do tweets foi preciso criar uma aplicação no twitter (https://developer.twitter.com/apps) para obter as chaves de acesso para a extração das mensagens. Foi utilizado também a biblioteca Tweepy para a busca dos tweets.

Assim como no dataset das leis, o dataset dos tweets também passou por modificações para ficar com o mesmo formato do arquivo do código base. A biblioteca do spacy foi utilizada novamente para conseguir o POS.

Tag	POS	Word	Sentence #	
0	PROPN	@ForeverPlayerG	Sentence 1	0
0	AUX	tem	Sentence 1	1
0	SCONJ	que	Sentence 1	2
0	VERB	ser	Sentence 1	3
0	PUNCT	19	Sentence 1	4
0	DET	essa	Sentence 1	5
0	DET	0	Sentence 1	6
0	NOUN	áudio	Sentence 1	7
0	VERB	tava	Sentence 1	8
0	NOUN	ruim	Sentence 1	9

Figura 4: Dataset dos tweets após as alterações realizadas.

Foi criada três features: *mention*, que verifica palavras que iniciam com arroba(@), *hashtag*, que verifica a presença de palavras que possuem um hashtag(#) no começo da frase e a feature *url*, que verifica a presença de palavras que iniciam com uma url (https://'). A adição destas features representou uma melhoria significativa se comparado com o resultado do dataset de leis como se pode observar através das figuras 5 e 6.

```
f1_score = flat_f1_score(y_test, y_pred, average = 'weighted')
print(f1_score)
0.9958441208980108
```

Figura 5: f1_score obtido após as features criadas para o dataset de tweets

	precision	recall	f1-score	support
B-location	0.56	0.39	0.46	588
B-organization	0.60	0.38	0.47	417
B-person	0.66	0.46	0.54	957
I-location	0.78	0.62	0.69	506
I-organization	0.00	0.00	0.00	70
I-person	0.37	0.20	0.26	256
0	1.00	1.00	1.00	521860
accuracy			1.00	524654
macro avg	0.57	0.43	0.49	524654
weighted avg	1.00	1.00	1.00	524654

Figura 6: Relatório de classificação obtido pelo dataset de tweets

Link do código - Dataset Tweets:

https://colab.research.google.com/drive/1kQzo1q4FnkP71VDhMYCb-loelAu SMRR5

Parte 2: Extração de Relações

Para a extração das relações, foi preciso primeiramente obter a sequência do texto do dataset e identificar as entidades nomeada da sequência, para isso foi utilizado a função ne_chunk da biblioteca nltk, que classifica as palavras em três categorias: PERSON, ORGANIZATION e GPE (geo-political entity).

Depois da identificação das entidades, foi utilizando três expressões regulares:

```
IN = re.compile(r'.*\bde\b(?!\b.+ndo)')
IN2 = re.compile(r'.*\bpor\b(?!\b.+ndo)')
IN3 = re.compile(r'.*\bem\b(?!\b.+ndo)')
```

Figura 7: Expressões regulares criadas para a extração das relações

Estas expressões foram utilizadas para extrair relações entre as categorias de entidades e as expressões "de", "por" e "em". A função *extract_rels()* do nltk foi utilizada para extrair as relações existentes entre o par de categorias de entidades nomeadas e sequência de palavras entre as categorias.

```
for rel in nltk.sem.extract_rels('PERSON','ORGANIZATION', ne, corpus='ace', pattern=IN):
   print(nltk.sem.rtuple(rel))
for rel in nltk.sem.extract_rels('ORGANIZATION','ORGANIZATION', ne, corpus='ace', pattern=IN):
   print(nltk.sem.rtuple(rel))
for rel2 in nltk.sem.extract_rels('GPE','ORGANIZATION', ne, corpus='ace', pattern=IN):
   print(nltk.sem.rtuple(rel2))
for rel in nltk.sem.extract_rels('ORGANIZATION','PERSON', ne, corpus='ace', pattern=IN2):
   print(nltk.sem.rtuple(rel))
for rel in nltk.sem.extract_rels('PERSON','ORGANIZATION', ne, corpus='ace', pattern=IN2):
   print(nltk.sem.rtuple(rel))
for rel in nltk.sem.extract_rels('PERSON','ORGANIZATION', ne, corpus='ace', pattern=IN3):
    print(nltk.sem.rtuple(rel))
for rel in nltk.sem.extract rels('ORGANIZATION', 'ORGANIZATION', ne, corpus='ace', pattern=IN3):
    print(nltk.sem.rtuple(rel))
for rel in nltk.sem.extract_rels('PERSON','GPE', ne, corpus='ace', pattern=IN3):
   print(nltk.sem.rtuple(rel))
```

Figura 8: Categorias de entidades nomeadas para extrair as relações

Link do código:

https://colab.research.google.com/drive/10v NZurLWIfPG 07sUjP6QYH W81X3 1i