$Travaux\ Pratiques\ d$ 'Automatique Synthèse Générale

Basile Masson et Alexis Kittler, GE2

Année 2022-2023

1. Question de cours

- (a) Montrer que toutes les bases ont même cardinal.
- (b) Montrer le théorème de la base incomplète : à partir de G génératrice et de L libre on peut former B base.
- (c) Montrer l'existence d'un supplémentaire en dimension finie.

2. Réponse harmonique

- (a) Montrer que tout endomorphisme de rang $r \geq 1$ est somme de r endomorphismes de rang 1.
- (b) Soit $f: \mathbb{C}[X] \to \mathbb{C}[X]$ telle que f(P) = P(X+1) P(X).
 - 1) Montrer que f est linéaire
 - 2) Trouver le noyau de f
 - 3) Injectivité et surjectivité de f?
 - 4) Montrer qu'il existe une base de $\mathbb{C}[X]$ notée $(e_i)_{i\in\mathbb{N}}$, telle que : $\forall i\in\mathbb{N}^*, f(e_i)=e_{i-1}$
 - 5) Exprimer la matrice de la restriction de f à $\mathbb{C}_{n-1}[X]$ dans la base restreinte $(e_0, ..., e_{n-1})$ et en déduire que cette restriction est nilpotente
- (c) Sur les matrices de trace nulle :

Soit E un K-ev de dimension finie $n \geq 2$ et u un endomoprhisme de E.

- 1) On suppose que : $\forall x \in E, (x, u(x))$ est liée. Montrer que u est une homothétie
- 2) En déduire que toute matrice de trace nulle est semblable à une matrice de coeficients diagonaux nuls
- 3) Soit $A \in M_n(\mathbb{K})$. Montrer l'équivalence entre :
- (i) tr(A) = 0
- $(ii) \exists U, V \in M_n(\mathbb{K}), A = UV VU$

Indication : On pourra considérer l'image de $\phi: M \to MD - DM$ où $D = diag(i), i \in [1, n]$

- (d) Soit une forme linéaire f vérifiant : $\forall X, Y \in M_n(\mathbb{K}), f(XY) = f(YX)$. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que : $f = \lambda . tr$
- (e) Sur les hyperplans de $M_n(\mathbb{K})$:
 - 1) Montrer que $\Phi: A \to (M \to tr(AM))$ est un isomorphisme entre $M_n(\mathbb{K})$ et son dual.
 - 2) En déduire que tout hyperplan de $M_n(\mathbb{K})$ rencontre $GL_n(\mathbb{K})$
- (f) Montrer que la famille $(x \to |x-a|)_{a \in \mathbb{R}}$ est libre (à définir pour un ensemble non discret)

(g) 1) Soit $f \in L(\mathbb{R}^3)$ telle que : $f^3 = 0$ et $f^2 \neq 0$. Montrer qu'il existe une base de \mathbb{R}^3 telle que la matrice de f dans cette base s'écrive :

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$

- 2) Soit $f \in L(\mathbb{R}^3)$ telle que : $f^2 = 0$ et $f \neq 0$. Montrer que f est de rang 1
- (h) Sur l'indice de nilpotence :

Soit E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}$ et u un endomoprhisme nilpotent de E, d'indice de nilpotence $k \in \mathbb{N}$.

- 1) Montrer que $k \leq n$
- 2) Montrer que u ne peut être inversible
- 3) Soient $u_1, ..., u_n$ n endomorphismes nilpotents commutant 2 à 2. Montrer que $u_1 \circ ... \circ u_n = 0$
- (i) Sur la formule de Grassman:

Soit E un \mathbb{K} -ev et soient $S=(u_1,...,u_n)$ un système de vecteurs de E et $S'=(u_1,...,u_p)$ extrait de S $(i.e:p \leq n)$. Si l'on note r=dim(S), montrer alors que $:dim(S') \geq r+p-n$

(j) Sur la supplémentarité:

Soit E un espace vectoriel de dimension $n \ge 2$ et F et G deux sous-espaces vectoriels de E de dimension $p \le n$. Montrer que F et G admettent un supplémentaire commun.

- (k) Soit E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}$ et u et v 2 endomoprhismes de E.
 - 1) Montrer que : $rg(u \circ v) = rg(v) dim(Im(v) \cap Ker(u)) = rg(u) n + dim(Im(v) + Ker(u))$
 - 2) En déduire : $rg(u) + rg(v) n \le rg(u \circ v) \le min(rg(u), rg(v))$
- (l) Soit E un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}$ et u un edomorphisme de E. Montrer qu'on peut écrire : $u = g \circ p$ avec g inversible et p projecteur