

Урок 4

Динамика движения материальной точки, тела и системы тел

Курс подготовки к вузовским олимпиадам 11 класса

- №1. С бруском, который удерживают на наклонной плоскости с углом наклона $\alpha = 30^{\circ}$ к горизонту, проводят опыт. Ему сообщают начальную скорость так, что он сначала движется вверх по наклонной плоскости в течение времени $\tau = 1$ с, а затем, в 3 раза дольше, вниз, и возвращается в исходную точку.
- 1. Найдите коэффициент трения μ скольжения бруска о плоскость.
- 2. На какое максимальное расстояние S от места старта удаляется брусок вдоль плоскости?
- №2. К вершине прямого кругового конуса прикреплена небольшая шайба нитью длины L. Вся система вращается вокруг оси конуса, расположенной вертикально. При каком числе оборотов в единицу времени шайба не будет отрываться от поверхности конуса? Угол при вершине конуса составляет $2\alpha = 120^{\circ}$.

№3. Тонкая U-образная трубка, размеры которой указаны на рисунке, заполнена ртутью до половины вертикальных частей трубки. Трубка движется горизонтально. При каком ускорении трубки ртуть начнёт из неё выливаться?

№4. Изогнутая трубка состоит из одного вертикального колена и двух вертикальных колен. Трубка укреплена на платформе, вращающейся с постоянной угловой скоростью вокруг вертикальной оси. Вертикальные колена находятся на расстояниях R и 3R от оси вращения. Установившаяся разность уровней (по высоте) налитой в трубку жидкости в вертикальных коленах составляет H. Найдите угловую скорость вращения платформы. Диаметр трубки значительно меньше её длины.

№5. Однородный канат длиной L и массой m находится на гладкой горизонтальной поверхности стола и вращается с угловой скоростью ω вокруг вертикальной оси, проходящей через один из своих концов. Чему равна сила натяжения каната на расстоянии L/3 от оси вращения?

№6. «Тройник» из трёх тонких вертикальных открытых в атмосферу трубок полностью заполнен водой. После того, как его стали двигать в горизонтальном направлении (в плоскости рисунка) с некоторым ускорением а, из него вылилось 9/32 всей массы содержавшейся в нем воды. Чему равно ускорение а? Длины трубок равны L.

№7. На шероховатом горизонтальном столе удерживают толстую верёвку так, что три четвёртых её длины находится на столе и одна четверть вертикально свисает со стола. Чему равно ускорение верёвки сразу как её отпустят? Коэффициент трения верёвки о стол равен 0,2. Ответ выразить в единицах g.

№8. Доску массой m_2 с находящимся на ней бруском массой m_1 удерживают в покое на неподвижной наклонной плоскости с углом наклона к горизонту α . Расстояние от бруска до края доски S. Доску и брусок одновременно отпускают, и доска начинает скользить по наклонной плоскости, а брусок по доске. Коэффициент трения скольжения между бруском и доской μ_1 , а между доской и наклонной плоскостью μ_2 .

- 1. Определить ускорения a_1 и a_2 бруска и доски соответственно относительно плоскости.
- 2. Через какое время t брусок достигнет края доски?
- 3. Определить расстояние L, которое за это время пройдет доска?

№9. К концам нити, перекинутой через невесомый блок, привязаны бруски с массами т и 4m, находящиеся на гладкой наклонной плоскости с углом наклона к горизонту $\alpha = 30^{\circ}$. При каком минимальном значении коэффициента трения скольжения между брусками они будут покоиться относительно земли? Нить считать невесомой и нерастяжимой.

№10. Два небольших шарика связаны нитью и прикреплены к оси OO_1 другой нитью в раз меньшей длины. Система вращается с постоянной угловой скоростью вокруг вертикальной оси OO_1 . Найдите отношение масс m_2/m_1 шариков, если нити составляют углы $\alpha = 30^{\circ}$ и $\beta = 60^{\circ}$ с вертикалью.

№11. На гладком горизонтальном столе лежит призма массой М с углом наклона α , а на ней призма массой т. На меньшую призму действует горизонтальная сила F, при этом обе призмы движутся вдоль стола как одно целое. Определите силу трения между призмами.

- №12. На гладком столе находится клин массой 2m. Он прижат к гладкой стене посредством съезжающей с него шайбы массой m. Известно, что sin $\alpha = 0.6$, а коэффициент трения между шайбой и клином $\mu = 0.5$.
- 1. Чему равно ускорение шайбы? Ответ выразить в единицах д.
- 2. С какой силой давит клин на стенку? Ответ выразить в единицах mg.
- 3. С какой силой давит клин на стол? Ответ выразить в единицах mg.

mapenkin.ru

ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛ

Михаил Александрович **ПЕНКИН**

- w /penkin
- /mapenkin
- fmicky@gmail.com