Robot Programming

ICP (exercise)

G. Grisetti

grisetti}@diag.uniroma1.it

Department of Computer, Control, and Management Engineering Sapienza University of Rome

Given a set of points in the world frame

A set of 3D measurements in the robot frame

Roughly known correspondences

We want to find a transform that minimizes distance between corresponding points

Such a transform will be the pose of world w.r.t. robot

Example

ICP: loop

Inputs:

- X: initial position of "moving" w.r.t reference
- {**m**_**i**}: points in the moving set
- {**f**_**i**}: points in the fixed set

Until convergence

- Determine pairs {<m_i, f_j>} based on some similarity criterion, under the current transform X
- Calculate a new X, as the transform that applied to m_i minimizes the distance between corresponding pairs

Our Naive Implementation

Optimization: given by me, but if you need to know more, follow Probabilistic Robotics

Correspondence Heuristic:

For each m_j, compute its position m'_j=X*m_j, under the current transformation and look for the f_j closest to m'_j within a certain radius. If nothing found, no correspondence formed, otherwise return the pair <f_j,m'_j>.

Your Tasks (1)

Complete the functions

In the kd_tree.h. These function have to return the point in the tree closest to **q**, within a distance of **norm**. If nothing found within norm, 0 is returned.

The first performs an approximated search, The second a full search.

Validate the results with kd_tree_test.h

Your Tasks (2)

The class **ICP** contains an implementation of ICP. It initializes a tree on the fixed cloud.

In x the current transform is stored.

Complete the method ICP::computeCorrespondences, that fills the _correspondences vector with the pairs according to the heuristic of two slides ago.

Verify the result running icp_test.