MAT 137Y: Calculus! Problem Set D

This problem set contains a few extra problems to help you prepare for Test #4. This is not comprehensive: it only contains problems from some sections that were not included in past problem sets or in past tutorials. You do not need to turn in any of these problems.

- 1. Find two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ such that:
 - $\sum_{n=1}^{\infty} a_n$ is divergent,
 - $\sum_{n=1}^{\infty} b_n$ is divergent, and
 - $\sum_{n=1}^{\infty} (a_n + b_n)$ is convergent.
- 2. Find a sequence $\{b_n\}_{n=1}^{\infty}$ such that:
 - $b_n > 0$ for all $n \ge 1$,
 - $\lim_{n\to\infty} b_n = 0$, and
 - the series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ is divergent.
- 3. Estimate the value of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$ with an error less than 0.01.
- 4. (a) Write the formal definition of the following properties of a sequence:
 - i. A sequence is divergent to $-\infty$.
 - ii. A sequence is not bounded below.
 - (b) Prove the following theorem:

Theorem: Let $\{a_n\}_{n=1}^{\infty}$ be a sequence.

- IF the sequence $\{a_n\}_{n=1}^{\infty}$ is decreasing and *not* bounded below,
- THEN the sequence $\{a_n\}_{n=1}^{\infty}$ is divergent to $-\infty$.

Do a formal proof directly from the definitions.