3. Ableitung einer Verkettung von Funktionen (Kettenregel)

Ziel: Regel zur Bestimmung der Ableitung einer Verkettung f(x) = g(h(x)).

Aufgabe 1

In der Tabelle werden nur Verkettungen f(x) = g(h(x)) untersucht, die man nach Umformen des Funktionsterms mit den schon bekannten Ableitungsregeln ableiten kann.

a) Ergänze die Tabelle. In der rechten Spalte liegt das Problem!

Funktion f als Verkettung	f um- geformt	f'(x)	Wie ergibt sich f´(x) direkt aus der Verkettung?
$f(x) = g(h(x)) = (3x)^2$	9x ²	18x	$\frac{18x}{18} = ? \qquad 2(3x)^{1} = 6x \text{ ist falsch};$
$g(x) = x^2$; $h(x) = 3x$			Korrekturfaktor? .3
$f(x) = g(h(x)) = (2x)^2$	(2x)·(2x)	8×	8x = ? Kornektur-
$g(x) = x^2; h(x) = 2x$	$=4x^2$	0 X	$2 \cdot 2x = 4x + \text{alternative} (\cdot 2)$
$f(x) = g(h(x)) = (2x+1)^2$	4x2+4x+1	8x+ U	8x+4=?
$g(x) = \chi^2$; $h(x) = 2x + 1$	- · · · · · · · · · · · · · · · · · · ·		$2(2x+1)=(4x+2)\cdot 2$
$f(x) = g(h(x)) = (x^2+1)^2$	x4+2x2+1	1,3,10	$4x^3 + 4x = ?$
$g(x) = x^{2}$; $h(x) = x^{2} + 1$			$2(x^2+1)=(2x^2+2) \cdot 2x$
$f(x) = g(h(x)) = (x - 3)^2$	x2 - 6x+9	24-6	2x-6=?
$g(x) = x^{1}; h(x) = x^{2}$	X	ZX = 0	$2 \cdot (x-3) = (2x-6) \cdot 1$

b) Aus der Tabelle kann man eine Vermutung zur Ableitung einer Verkettung erschließen. Ergänze die Worte "innere(n)" bzw. "äußere(n)". Vermutung:

Leite zunächst die <u>Molerce</u> Funktion ab; behandle dabei die <u>Innere</u> Funktion als Variable. Multipliziere diesen Term mit der Ableitung der <u>Inneren</u> Funktion.

c) Beurteile, ob hier richtig abgeleitet wurde.

Aufgabe 2

a) Die in Aufgabe 1 gefundene Ableitungsregel für Verkettungen heißt **Kettenregel**. Ergänzedie mathematische Formulierung von f´. (Kärtchen dürfen mehrfach verwendet werden!)

Ist f(x) = g(h(x)) eine Verkettung von g und h, dann lautet die Ableitung:

$$f'(x) = g'(h(x)) \cdot h'(x)$$

b) Leite mit der Kettenregel ab. (Ergänze)

$$\circ$$
 1 Berechnen Sie die erste Ableitung der Funktion f.

a)
$$f(x) = (8x^4 + 2)^3$$
 b) $f(x) = (\frac{1}{2} - 5x)^3$ c) $f(x) = (x + 2)^4$ d) $f(x) = \frac{1}{4}(x^2 - 5)^2$

b)
$$f(x) = \left(\frac{1}{2} - 5x\right)^3$$

$$(5x)^3$$

a)
$$f(x) = (8x^4 + 2)^3$$
 b) $f(x) = (\frac{1}{2} - 5x)^3$

b)
$$f(x) = \left(\frac{1}{2} - 5x\right)^3$$

e)
$$f(x) = (8x - 7)^{-1}$$

f) $f(x) = (5 - x)^{-4}$
g) $f(x) = (15x^3 - 3)^{-2}$
h) $f(x) = (15x - 3x^2)^{-2}$

$$t_1(x) = 3$$

a)
$$\int (x) = 3(8x^4+2)^2 \cdot 32x^3 = 96x^3(8x^4+2)^2$$

b)
$$f'(x) = 3 \cdot (\frac{1}{2} - 5x)^2 \cdot (-5) = -15 (\frac{1}{2} - 5x)^2$$

$$x) = 3$$

$$x) = 2$$

d)
$$f'(x) = 2 \cdot 4(x^2 - 5) \cdot 2x = x(x^2 - 5)$$

e) $f'(x) = (-1) \cdot (8x - 7)^{-2} \cdot 8 = -8(8x - 7)^{-2}$

 $f) \quad f'(x) = -4(5-x)^{-5} \cdot (-1) = 4(5-x)^{-5}$

h) $1'(x) = -2(15x - 3x^2)^{-3} \cdot (15 - 6x)$

Bearbeite folgende Aufgaben 4 kontrollière dein Ergebnis: DS.181 D 3 bcd, e-i, C 0 4 0 6 o Far ALLE, da wichtig. Kettenregel mit Parametern

Bestimmen Sie einen Funktionsterm der Ableitung von f.

a)
$$f(x) = \frac{1}{(x-1)^3}$$
b) $f(x) = \frac{1}{(1-x)^3}$
c) $f(x) = \frac{1}{(3x+2)^2}$
d) $f(x) = \frac{1}{3}(x+2)^{-2}$
e) $f(x) = \sqrt{x+3}$
f) $f(t) = \sqrt{3}t+1$
g) $f(x) = \sqrt{\cos(x)}$
h) $f(t) = \sqrt{\frac{2}{t}}$
i) $f(x) = 2\cos(3x)$
j) $f(t) = \sin(5t^3+1)$
k) $f(x) = \sqrt{\cos(x)}$
l) $f(t) = \frac{1}{\sin(t)}$

S.1813 bcd, e-i, C

In einigen Lösungen der Aufgaben sind Fehler enthalten. Um welche Aufgaben handelt es sich? Beschreiben Sie die Fehler und korrigieren Sie diese.

A
$$f(x) = (x^4 + 2)^3$$
 $f'(x) = 4x \cdot (x^4 + 2)^2$ D $f(x) = 4sin(3x)$ $f'(x) = 12cos(x)$
B $f(x) = (2x - 5)^5$ $f'(x) = 5(2x - 5)^4$ E $f(x) = sin(x^2)$ $f'(x) = cos(2x)$ C $f(x) = \sqrt{2x + 1}$ $f'(x) = \frac{1}{\sqrt{2x + 1}}$ F $f(x) = (x^3 - 2x)^3 + 2$ $f'(x) = 3(x^3 - 2x)^2(3x^2 - 2)$

Ubungen Kellenregel mit Parametern

10 a) $f'(x) = 2(ax^3 + 1)^1 \cdot 3ax^2 = 6ax^2(ax^3 + 1)$

Leiten Sie ab und vereinfachen Sie das Ergebnis.

a)
$$f(x) = (ax^3 + 1)^2$$
 b) $f(x) = \sin(ax^2)$

=
$$(ax^3 + 1)^2$$
 b) $f(x) = \sin(ax^2)$

c) $f(x) = (\sin(ax))^2$ d) $f(x) = \sin(a^2x)$

f) $f(x) = \sqrt{ax^2 - 3}$ g) $f(a) = \sqrt{ax^2 - 3}$ h) $g(x) = \sqrt{t^2x + 2t}$

e)
$$f(x) = \frac{3a}{1+x^2}$$
 f) $f(x) = \sqrt{ax^2 - 3}$

c) $f'(x) = 2a\sin(ax) \cdot \cos(ax)$

 $f'(x) = -3a(1 + x^2)^{-2} \cdot 2x = -\frac{6ax}{(1 + x^2)^2}$

 $f'(a) = \frac{1}{2} \cdot (ax^2 - 3)^{-\frac{1}{2}} \cdot (x^2) = \frac{x^2}{2 \cdot \sqrt{ax^2 - 3}}$

 $g'(x) = \frac{1}{2} \cdot (t^2x + 2t)^{-\frac{1}{2}} \cdot (t^2) = \frac{t^2}{2 \cdot \sqrt{t \cdot x^2 + 2t}}$

b) $f'(x) = 2ax cos(ax^2)$

d) $f'(x) = a^2 \cos(a^2 x)$

g) $f(a) = (ax^2 - 3)^{\frac{1}{2}}$:

h) $g(x) = (t^2x + 2t)^{\frac{1}{2}};$

e) $f(x) = 3a \cdot (1 + x^2)^{-1}$:

f) $f(x) = (ax^2 - 3)^{\frac{1}{2}}$; $f'(x) = \frac{1}{2} \cdot (ax^2 - 3)^{-\frac{1}{2}} \cdot 2ax = \frac{ax}{\sqrt{ax^2 - 3}}$