

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

«Применение машинного обучения в поисковых системах» НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА НА ТЕМУ:

Студент: Волков Г.В. Руководитель: Шаповалова М.С.

Цель и задачи работы

Цель работы - изучить алгоритмы машинного обучения, применяемые в поисковых системах

Для достижения поставленной цели следует решить следующие задачи:

- изучить основные понятия алгоритмов обучения ранжированию
- описать и классифицировать существующие алгоритмы
- произвести сравнительный анализ рассмотренных алгоритмов

Машинное обучение

практических задач. подобранных обучающих данных, которую потом используются для решения Алгоритмы формируют статистическую модель на основе специально алгоритмов, опирающихся на набор данных о каком-либо явлении. Машинное обучение — раздел информатики, посвященный созданию

подкреплением Выделяется три основных способа обучения: с учителем, без учителя и с

Обучение ранжированию

обобщить способ ранжирования на новые данные. ранжирующей модели, которая способна наилучшим образом приблизить и обучение ранжированию с учителем. Целью этих методов является подбор один из самых популярных – на основе машинного обучения, а именно Существует множество методов подбора формулы для ранжирования, но

степень релевантности документа запросу. Для получения набора примеров используют асессоров, которые оцениваю

Классификация алгоритмов

Существующие алгоритмы обучения ранжированию делятся на три группы по подходу к обучению :

- поточечный
- попарный
- списочный

Алгоритмы обучения ранжированию

В данной работе рассмотрено несколько популярных алгоритмов:

- Linear Regression (поточечный)
- Ranking SVM (попарный)
- LambdaRank (попарный)
- ListNet (списочный)

сортируются по убыванию и получается ранжированный список документов документа вычисляется рейтинг релевантности, который зависит от вектора На этапе ранжирования методы имеют схожий алгоритм. Для каждого признаков документа и параметров метода ранжирования. Затем рейтинги

Linear Regression

метрик DCG Метод обучения на основе регрессии для решения задачи оптимизации

основанный на регрессии. Для решения проблемы ранжирования можно использовать простой подход,

$$\hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(f, S_i, \{y_{i,j}\}_j)$$

$$\begin{split} &L(f,S,\{y_j\}_j)\\ &= \sum_{j=1}^m w(x_j,S)(f(x_j,S)-y_j)^2 + u\sup_j w'(x_j,S)(f(x_j,S)-\delta(x_j,S))_+^2 \end{split}$$

Ranking SVM

попарного сравнения документов на то, какой из них более релевантный. Ключевая идея алгоритма заключается в использовании метода SVM для

стандартную постановку SVM алгоритма. Теперь рассматривая разность векторов как новые объекты, получаем

$$\begin{cases} \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^{N} \xi_i \to \min_{\omega, \xi} \\ y_i(\omega, x_i^1 - x_i^2) \le 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

LambdaRank

определяет градиент функционала на всем списке документов: обучении обычно не дифференцируемый. Алгоритм LambdaRank не В поточечных и попарных методах ранжирования итоговый функционал при определяет непрерывный приближенный функционал, вместо этого он

$$\frac{\partial L}{\partial s_i} = -\lambda(s_1, y_1, \dots, s_n, y_n)$$

$$\lambda_i = \frac{\partial L}{\partial s_i} = \frac{1}{G_{max}} \sum_j (\frac{1}{1 + exp(s_j - s_i)}) (G(y_j) - G(y_i)) (D(\pi_j) - D(\pi_i))$$

LambdaRank

надо изменить веса ω : λ — показывает насколько надо увеличить рейтинг i-го документа. Для этого

$$\frac{\partial L}{\partial \omega} = \sum_{i=1}^{n} \frac{\partial s_{i}}{\partial \omega} \sum_{j \in P_{i}} \frac{\partial L(s_{i}, s_{j})}{\partial s_{i}} + \sum_{j=1}^{n} \frac{\partial s_{j}}{\partial \omega} \sum_{i \in P_{j}} \frac{\partial L(s_{i}, s_{j})}{\partial s_{j}}$$

пересчете весов: Таким образом, алгоритм LambdaRank заключается в итерационном

ListNet

модели для вычисления функции потерь по списку. Цель обучения формализована как минимизация общих потерь в отношении обучающих данных. В данном алгоритме используется вероятностные

$$P_{z^{(i)}(f_{\omega})}(x_j^{(i)}) = \frac{\exp(f_{\omega}(x_j^{(i)}))}{\sum_{k=1}^{n^{(i)}} \exp(f_{\omega}(x_k^{(i)}))}$$

$$L(y^{(i)}, z^{(i)}(f_{\omega})) = -\sum_{j=1}^{n} P_{y^{(i)}}(x_j^{(i)}) \log(P_{z^{(i)}(f_{\omega})}(x_j^{(i)}))$$

ListNet

Градиент функции потери можно найти по следующей формуле:

$$\Delta\omega = \frac{\partial L(y^{(i)}, z^{(i)}(f_{\omega}))}{\partial\omega} = -\sum_{j=1}^{n^{(i)}} P_{y^{(i)}}(x_j^{(i)}) \frac{\partial f_{\omega}(x_j^{(i)})}{\partial\omega} + \frac{1}{\sum_{j=1}^{n^{(i)}} \exp(f_{\omega}(x_j^{(i)}))} \sum_{j=1}^{n^{(i)}} \exp(f_{\omega}(x_j^{(i)})) \frac{\partial f_{\omega}(x_j^{(i)})}{\partial\omega}$$

Для минимизации целевой функции используется градиентный спуск

Критерии сравнения

качества ранжирования: MAP, NDCG В качестве критериев сравнения используются основные метрики оценки

МАР — метрика средней точности нахождения релевантных документов.

NDCG — мера качества

$$map@N = \frac{1}{K} \sum_{j=1}^{K} ap@N_j \qquad \qquad DCG@N = \frac{DCG@N}{maxDCG@N}$$

Сравнение

количество алгоритмов, которое алгоритм может превзойти на наборе используется показатель «выигрышное число». Оно определяется как Для оценки общей эффективности обучения методам ранжирования

13	32 12	0.5982	12	0.4911	12	0.4480	ListNet
4 2		0.5714	_	0.2000		0.2000	LambdaRank
96 17		0.4496	11	0.3613	12	0.3014	Ranking SVM
29 8	2	0.0829	9	0.1099	6	0.0754	Linear Regression
N K.,		MN	к.д	NWN к.д. NWN к.д NWN к.д	к.д.	NWN	Метод
NDCG@10		UN	605	NDCG@5	3@3	NDCG@3	

Заключение

применяемые в поисковых системах была достигнута: рассмотрены алгоритмы машинного обучения, Цель, которая была поставлена в начале научно-исследовательской работы,

Решены все поставленные задачи:

- изучены основные понятия алгоритмов обучения ранжированию
- описаны и классифицированы существующие алгоритмы
- произведён сравнительный анализ рассмотренных алгоритмов