class14

Muhammad Tariq

2025-05-15

Here we will perform a complete RNASeq analysis from counts to pathways and biological interpretation

- -The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:
- -Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703 The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

#Required Setup

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
```

#Data Import

```
colData <- read.csv("GSE37704_metadata.csv", row.names=1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names=1)</pre>
```

#Tidy counts to match Check the correspondence of colData rows and countData columns.

head(countData)

##		length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
##	ENSG00000186092	918	0	0	0	0	0
##	ENSG00000279928	718	0	0	0	0	0
##	ENSG00000279457	1982	23	28	29	29	28
##	ENSG00000278566	939	0	0	0	0	0
##	ENSG00000273547	939	0	0	0	0	0
##	ENSG00000187634	3214	124	123	205	207	212
##		SRR4933	371				
##	ENSG00000186092		0				
##	ENSG00000279928		0				
##	ENSG00000279457		46				
##	ENSG00000278566		0				
##	ENSG00000273547		0				
##	ENSG00000187634	2	258				

```
counts <- countData[,-1]</pre>
```

```
rownames(colData)
```

```
## [1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
```

Remove the troublesome frist column so we match the metadata

```
counts <- countData[,-1]</pre>
```

```
all( rownames(colData) == colnames(counts))
```

```
## [1] TRUE
```

#Remove zero count genes

We will have rows in counts' for genes we can not say anything about becasue they have zero expression in particular tissue we are looking at.

head(counts)

##		SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
##	ENSG00000186092	0	0	0	0	0	0
##	ENSG00000279928	0	0	0	0	0	0
##	ENSG00000279457	23	28	29	29	28	46
##	ENSG00000278566	0	0	0	0	0	0
##	ENSG00000273547	0	0	0	0	0	0
##	ENSG00000187634	124	123	205	207	212	258

If the 'rowSum()' is zero then give gene (i.e. row) has no count data and we should exclude these genes from further consideration

```
to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep, ]</pre>
```

Q. How many genes do we have left?

nrow(cleancounts)

```
## [1] 15975
```

#Setup for DESeq object for analysis

```
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
```

#Run DESeq analysis

```
dds = DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
\#Extract the results
res <- results(dds)
head(res)
## log2 fold change (MLE): condition hoxa1 kd vs control sirna
## Wald test p-value: condition hoxa1 kd vs control sirna
## DataFrame with 6 rows and 6 columns
##
                    baseMean log2FoldChange
                                                lfcSE
                                                            stat
                                                                      pvalue
##
                   <numeric>
                               <numeric> <numeric> <numeric>
                                                                   <numeric>
                    29.9136
## ENSG00000279457
                                 0.1792571 0.3248216 0.551863 5.81042e-01
## ENSG00000187634 183.2296
                                0.4264571 0.1402658 3.040350 2.36304e-03
## ENSG00000188976 1651.1881
                               -0.6927205 0.0548465 -12.630158 1.43990e-36
## ENSG00000187961 209.6379
                                0.7297556 0.1318599 5.534326 3.12428e-08
                                 0.0405765 0.2718928 0.149237 8.81366e-01
## ENSG00000187583 47.2551
## ENSG00000187642
                    11.9798
                                 0.5428105 0.5215598 1.040744 2.97994e-01
##
                         padj
                     <numeric>
## ENSG00000279457 6.86555e-01
## ENSG00000187634 5.15718e-03
## ENSG00000188976 1.76549e-35
## ENSG00000187961 1.13413e-07
## ENSG00000187583 9.19031e-01
## ENSG00000187642 4.03379e-01
#Add gene annotation
res$symbol <- mapIds(org.Hs.eg.db,
                     keys = rownames(res),
                     column = "SYMBOL",
                     keytype = "ENSEMBL"
                     multiVals = "first")
```

'select()' returned 1:many mapping between keys and columns

```
## log2 fold change (MLE): condition hoxa1 kd vs control sirna
## Wald test p-value: condition hoxa1 kd vs control sirna
## DataFrame with 6 rows and 8 columns
##
                   baseMean log2FoldChange
                                               lfcSE
                                                           stat
                                                                     pvalue
##
                   <numeric>
                                <numeric> <numeric> <numeric>
                                                                  <numeric>
## ENSG00000279457
                    29.9136
                                 0.1792571 0.3248216
                                                      0.551863 5.81042e-01
## ENSG00000187634 183.2296
                               0.4264571 0.1402658 3.040350 2.36304e-03
## ENSG00000188976 1651.1881
                                -0.6927205 0.0548465 -12.630158 1.43990e-36
## ENSG00000187961 209.6379
                                0.7297556 0.1318599 5.534326 3.12428e-08
## ENSG0000187583
                   47.2551
                                 0.0405765 0.2718928
                                                      0.149237 8.81366e-01
## ENSG0000187642
                    11.9798
                                 0.5428105 0.5215598 1.040744 2.97994e-01
##
                         padj
                                   symbol
                                               entrez
##
                    <numeric> <character> <character>
## ENSG00000279457 6.86555e-01
                                       NA
## ENSG00000187634 5.15718e-03
                                   SAMD11
                                               148398
                                   NOC2L
## ENSG00000188976 1.76549e-35
                                                26155
## ENSG00000187961 1.13413e-07
                                   KLHL17
                                               339451
## ENSG00000187583 9.19031e-01
                                  PLEKHN1
                                                84069
## ENSG00000187642 4.03379e-01
                                    PERM1
                                                84808
```

#Save my results to CSV file

```
write.csv(res, file="results.csv")
```

#Result visulatization

```
library(ggplot2)
library(ggrepel)

mycols <- rep("gray", nrow(res))
mycols[res$log2FoldChange <= -2] <- "blue"
mycols[res$log2FoldChange >= +2] <- "blue"

mycols[res$padj >= 0.05] <= "gray"</pre>
```

[85] TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NΑ NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE ## [99] TRUE TRUE TRUE [113] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## NA TRUE ## [127] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA [141] NA TRUE ## NA[169] TRUE TRUE TRUE TRUE ## ## [183] TRUE TRUE NA NA TRUE NA TRUE ## NANA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE ## NA TRUE ## ## ## [267] TRUE TRUE NA TRUE TRUE TRUE TRUE ## ## NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [295] NA TRUE TRUE TRUE TRUE TRUE TRUE ## [309] TRUE NA TRUE TRUE TRUE TRUE [323] TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## ## ## [365] TRUE TRUE TRUE [379] TRUE TRUE TRUE TRUE TRUE ## [393] TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## ## Γ4071 NA TRUE TRUE TRUE [421] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE ## NA TRUE TRUE TRUE TRUE [449] TRUE TRUE [463] TRUE TRUE TRUE TRUE ## ## [477]NANA TRUE NANANA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE ## [491] TRUE TRUE TRUE TRUE NA TRUE NANA TRUE NANA TRUE NA TRUE ## [505] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE [519] TRUE NA TRUE TRUE NA TRUE NA TRUE TRUE NA TRUE TRUE ## NA TRUE [533] NA TRUE TRUE TRUE TRUE NA TRUE NA TRUE NA TRUE TRUE TRUE TRUE ## ## [547] NANA## [561] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE ## [575] TRUE TRUE TRUE TRUE NA NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE ## [589] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NANA TRUE ## [603] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE NA TRUE TRUE TRUE ## [617] TRUE TRUE NA TRUE NA TRUE TRUE [631] TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE ## [645] TRUE NANA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [659] TRUE TRUE TRUE TRUE NANA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE ## [673] NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [687] TRUE TRUE ## ## [715] TRUE TRUE TRUE TRUE ## [743] TRUE TRUE TRUE TRUE NANA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE ## [757] NA TRUE ## [771] ## ## ## [813]

NA TRUE TRUE TRUE ## NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE Г8417 ## [869] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [883] TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [911] TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE NANA TRUE TRUE TRUE ## NA TRUE TRUE ## [939] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [981] ## NA TRUE TRUE TRUE [1023] TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE NANΑ NANA TRUE TRUE TRUE TRUE [1051] TRUE TRUE TRUE NANA TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE [1079] TRUE TRUE NA TRUE NA TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE ## [1093] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## [1121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## [1135] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE ## [1149] NA NA TRUE TRUE TRUE ## [1191] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE ## [1205] NA TRUE NA TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE ## [1219] TRUE ## [1247] TRUE NA TRUE TRUE TRUE NA TRUE TRUE NANA TRUE TRUE TRUE TRUE [1261] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA [1275] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE ## [1289] NANA TRUE ## [1317] TRUE TRUE TRUE ## [1331] TRUE TRUE TRUE TRUE TRUE TRUE NA NA TRUE NA TRUE TRUE TRUE TRUE ## [1345] TRUE TRUE TRUE TRUE NA TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE [1359] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [1373] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NANANA TRUE NA TRUE TRUE ## [1429] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## [1443] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## [1457] NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [1471] TRUE TRUE TRUE NANA TRUE NA TRUE TRUE [1485] TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE [1499] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE ## [1513] TRUE TRUE TRUE TRUE TRUE TRUE NA## [1527] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [1541] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE ## [1555] TRUE NA TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE ## [1569] TRUE TRUE TRUE

[1597] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE ## [1625] TRUE TRUE ## [1639] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## [1653] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [1681] TRUE NA TRUE [1695] TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE ## [1737] TRUE TRUE NA TRUE TRUE TRUE NA TRUE NA TRUE TRUE ## [1765] TRUE TRUE TRUE TRUE NA## [1779] NA TRUE [1793] TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [1807] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE [1821] NA TRUE NANA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE ## [1835] NA NA TRUE ## [1877] TRUE NA TRUE TRUE NA TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE ## [1891] TRUE TRUE [1905] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE [1919] TRUE TRUE TRUE TRUE NA TRUE TRUE [1933] TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE ## [1947] TRUE NA TRUE NANA TRUE TRUE TRUE NANA TRUE TRUE NA TRUE ## [1989] NA TRUE TRUE TRUE TRUE NA TRUE NANA TRUE TRUE TRUE TRUE ## [2003] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [2017] TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE [2031] TRUE TRUE TRUE TRUE [2045] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE ## [2059] TRUE TRUE ## [2087] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE ## [2101] TRUE NA TRUE TRUE TRUE [2129] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [2143] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE NA TRUE ## [2157] NA TRUE TRUE NA NA NA TRUE TRUE TRUE ## [2171] TRUE TRUE TRUE TRUE TRUE NA NA TRUE TRUE [2213] TRUE NA TRUE NANA TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE NA NANA TRUE TRUE [2241] TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [2255] TRUE NA TRUE NA TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE ## [2269] TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE ## [2283] TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE ## [2297] TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE ## [2311] ## [2339] TRUE NA TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [2353] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE ## [2367] TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## [2395] TRUE NA TRUE NA TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [2423] TRUE ## [2437] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NANANA NΑ NA TRUE TRUE TRUE TRUE TRUE [2451] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [2465] TRUE TRUE TRUE NA TRUE [2479] NA TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE [2493] TRUE NA TRUE NA TRUE TRUE [2507] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA [2521] NA TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [2535] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [2549] TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE [2563] TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE [2577] NA NANA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [2591] TRUE NA ## [2605] TRUE NA NA TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE NANA TRUE NA NΔ [2633] TRUE [2647] TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [2661] TRUE [2689] TRUE NA## [2717] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE ## [2731] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE [2745] TRUE TRUE NA TRUE TRUE TRUE TRUE [2773] TRUE TRUE TRUE NANA TRUE TRUE NANA TRUE NA TRUE NA [2787] TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE [2801] TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA## [2829] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [2843] [2857] TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [2871] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [2885] TRUE TRUE NA[2899] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [2913] TRUE NANA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [2927] TRUE NA NA ## [2941] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE [2969] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE [2983] TRUE TRUE [2997] NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [3011] TRUE TRUE ## [3025] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE ## [3039] TRUE ## [3053] NANA TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE ## [3081] NA NA TRUE TRUE TRUE TRUE NA TRUE TRUE NA[3109] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [3123] TRUE NA TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE ## [3137] ## [3151] TRUE NA TRUE NANA TRUE TRUE NANA TRUE TRUE TRUE ## [3165] TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE [3235] TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE ## [3249] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE ## [3263] NA TRUE NA TRUE TRUE TRUE [3277] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [3291] TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [3305] NA TRUE TRUE NA TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [3333] TRUE NA TRUE TRUE NA TRUE [3347] [3361] TRUE NA TRUE TRUE TRUE NA NANANANA TRUE TRUE TRUE TRUE [3375] TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE [3403] TRUE [3431] TRUE NA TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE [3459] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE [3473] NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE [3487] NA TRUE TRUE NA [3515] TRUE TRUE TRUE [3543] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE [3557] TRUE NA TRUE TRUE [3571] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE [3585] TRUE TRUE [3599] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [3627] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [3641] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [3669] TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE NA TRUE TRUE [3683] TRUE TRUE TRUE NA NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [3711] TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE [3725] TRUE NA TRUE TRUE TRUE TRUE NANA TRUE TRUE NA TRUE TRUE TRUE [3739] TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE [3767] TRUE ## [3795] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE ## [3809] TRUE TRUE TRUE ## [3823] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA NA TRUE TRUE TRUE TRUE TRUE ## [3837] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [3865] TRUE TRUE TRUE ## [3893] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE ## [3907] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [3935] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [3949] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA [3977] NA TRUE NA TRUE [3991] TRUE TRUE NA TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [4005] TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE NA TRUE TRUE TRUE NA[4019] NA NA NA [4033] [4047] TRUE TRUE TRUE NANA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [4061] TRUE NA TRUE NA TRUE [4075] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE NA TRUE NA TRUE TRUE [4103] TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE NA ## [4117] NA TRUE TRUE TRUE NANA TRUE TRUE TRUE NA NA TRUE TRUE TRUE ## [4131] NA TRUE TRUE TRUE TRUE [4159] TRUE TRUE TRUE [4173] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE ## [4229] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE ## [4243] TRUE TRUE NA TRUE TRUE TRUE [4285] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [4299] TRUE TRUE TRUE [4313] TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE [4327] NANA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NANA NA NA NA TRUE NA TRUE ΝA [4355] TRUE TRUE TRUE NA NA NA NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [4369] NA TRUE TRUE TRUE [4383] TRUE TRUE NA TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE [4397] TRUE TRUE TRUE TRUE [4411] TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NΑ NA TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE ## [4453] TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE [4481] TRUE TRUE NANA TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE [4495] TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE [4509] TRUE TRUE [4523] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA[4537] NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE ## [4551] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE NA TRUE NA TRUE ## [4565] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE TRUE ## [4593] TRUE TRUE TRUE

[4607] TRUE TRUE [4621] TRUE TRUE TRUE [4635] TRUE [4649] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [4691] TRUE TRUE NA TRUE TRUE NA [4733] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA NA TRUE TRUE TRUE NA TRUE [4747] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE NA TRUE TRUE TRUE TRUE [4761] NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE [4775] TRUE TRUE NA TRUE NA TRUE NA TRUE TRUE TRUE TRUE NA ## [4789] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE NA TRUE TRUE [4803] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [4817] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE [4831] TRUE NA TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE NA TRUE [4859] TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE Γ4873] NA TRUE TRUE TRUE ## [4887] TRUE NA TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [4901] TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [4929] TRUE NA TRUE [4943] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [4957] TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE NA [4971] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [4985] NA TRUE TRUE NA TRUE TRUE TRUE TRUE [5013] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE [5027] TRUE TRUE NANANA TRUE TRUE TRUE TRUE [5041] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE [5097] TRUE NA TRUE TRUE TRUE [5111] NA TRUE TRUE TRUE TRUE NA NA TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [5139] TRUE TRUE TRUE TRUE TRUE NANA TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE [5167] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [5181] TRUE TRUE TRUE [5195] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE [5209] NA TRUE [5223] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [5237] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [5251] TRUE TRUE TRUE NA[5265] TRUE TRUE NANA TRUE NA TRUE TRUE [5293] NA TRUE TRUE TRUE ## [5307] TRUE TRUE TRUE TRUE ## [5349] TRUE TRUE TRUE TRUE TRUE NA TRUE NA NA TRUE TRUE

[5363] TRUE TRUE TRUE TRUE TRUE [5377] TRUE TRUE TRUE TRUE [5391] TRUE TRUE NA TRUE NANA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE [5405] NA TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE NA[5419] NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE [5433] NA TRUE NA TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [5461] TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE [5475] NA TRUE TRUE NA TRUE NA TRUE [5489] NA TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA[5503] TRUE TRUE NA TRUE NA TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE [5517] TRUE TRUE TRUE NA[5531] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE [5545] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE NANA[5559] TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE [5573] [5587] TRUE NA NA TRUE NA TRUE NA TRUE TRUE NA NA TRUE TRUE TRUE [5601] TRUE TRUE TRUE TRUE [5629] TRUE TRUE NA TRUE NA TRUE NANA TRUE TRUE NA TRUE TRUE TRUE [5657] TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE [5671] TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [5685] TRUE [5699] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NANA TRUE TRUE [5713] TRUE TRUE NA TRUE NA NA TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [5741] TRUE NANA TRUE TRUE [5769] [5783] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [5797] NA TRUE TRUE TRUE TRUE [5811] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE [5839] TRUE TRUE TRUE TRUE [5853] TRUE NA NA TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [5867] TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE [5881] NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [5909] TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE Γ5937**1** NA TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [5951] TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [5965] NA TRUE TRUE NA TRUE TRUE TRUE NA TRUE [5979] TRUE TRUE TRUE TRUE NA TRUE [6007] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [6021] TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA[6035] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [6049] TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE ## [6063] NA TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [6077] TRUE TRUE TRUE TRUE ## [6091] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE ## [6105] TRUE TRUE

NA TRUE NA TRUE [6133] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE [6147] TRUE NA TRUE TRUE TRUE TRUE [6175] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [6189] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [6203] TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE [6217] NΑ NA TRUE NA TRUE [6259] NANA TRUE TRUE [6287] TRUE [6301] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NANA[6315] NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE NA TRUE TRUE [6329] TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE NANATRUE NA NA NA[6357] TRUE NA TRUE TRUE NANA TRUE NANA TRUE NANA TRUE NA TRUE TRUE TRUE TRUE [6385] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE TRUE [6399] NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE [6427] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE [6441] TRUE TRUE TRUE TRUE TRUE [6455] TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [6469] TRUE NA TRUE TRUE TRUE [6483] TRUE NA NA[6497] TRUE TRUE [6511] NANA TRUE TRUE [6539] NA NA NANA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE [6567] TRUE TRUE NA TRUE TRUE [6595] TRUE TRUE TRUE TRUE NA TRUE [6623] TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [6637] TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE [6665] NA TRUE TRUE [6679] TRUE TRUE TRUE TRUE TRUE [6693] NA TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NΑ [6707] NA [6721] TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE NA NA TRUE TRUE TRUE [6735] TRUE TRUE TRUE TRUE [6749] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE [6763] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA[6777] NA NA NANA TRUE TRUE TRUE NA NA NA TRUE TRUE NA NA TRUE TRUE TRUE TRUE TRUE [6805] TRUE TRUE [6819] NA NA TRUE ## [6833] TRUE NA## [6847] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE ## [6875] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE [6903] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE [6931] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [6945] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [6959] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [6973] TRUE TRUE TRUE NA TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE [6987] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE NA NA [7015] TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE NA TRUE TRUE TRUE ## [7029] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE TRUE ## [7043] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE ## [7071] TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE [7099] TRUE TRUE TRUE NA NA TRUE TRUE TRUE TRUE TRUE NA NA NA [7113] NA TRUE TRUE TRUE ## [7127] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE TRUE TRUE ## [7141] NA TRUE TRUE TRUE TRUE ## [7183] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE [7197] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE NA TRUE TRUE NA TRUE TRUE ## [7211] NA NA TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE TRUE TRUE [7225] TRUE TRUE TRUE TRUE ## [7239] NA TRUE TRUE TRUE ## [7253] TRUE TRUE NANA TRUE NA TRUE TRUE TRUE TRUE ## [7267] [7281] TRUE ## [7295] TRUE TRUE TRUE TRUE TRUE TRUE TRUE NANA TRUE TRUE NA TRUE TRUE ## [7337] TRUE TRUE TRUE TRUE NA TRUE TRUE NA TRUE NA TRUE NA TRUE ## [7351] TRUE TRUE NA## [7365] TRUE NA TRUE ## [7379] NA TRUE TRUE TRUE [7407] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE [7421] NA TRUE TRUE TRUE TRUE TRUE TRUE NANANA TRUE NA NΑ [7435] TRUE NA TRUE TRUE TRUE TRUE TRUE NANANA TRUE TRUE TRUE TRUE ## [7449] TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE ## [7463] TRUE TRUE NA TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE NA NA TRUE ## [7477] NA NA NA TRUE TRUE TRUE NANA TRUE TRUE [7533] NA NA NA TRUE NA TRUE TRUE TRUE ## [7575] TRUE TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE TRUE NA TRUE TRUE ## [7603] TRUE TRUE NΑ NΑ ## [7617] TRUE TRUE TRUE NA

```
## [7631] TRUE
         NA TRUE TRUE TRUE TRUE TRUE TRUE
                           NA TRUE TRUE TRUE TRUE TRUE
## [7645] TRUE TRUE TRUE
              NA TRUE TRUE TRUE TRUE TRUE TRUE
                                 NA TRUE TRUE TRUE
      NA TRUE TRUE
## [7673] TRUE TRUE TRUE TRUE
                 ## [7701]
      TRUE TRUE TRUE
NA TRUE
                                 NA TRUE TRUE TRUE
                                    NA TRUE TRUE
NA
                                 NA
## [7743]
      NA TRUE TRUE TRUE TRUE TRUE TRUE
                         NA TRUE
                              NA TRUE
                                    NA TRUE TRUE
NA TRUE TRUE
## [7771] TRUE TRUE TRUE
              NA TRUE TRUE
                      NA TRUE TRUE TRUE TRUE
                                    NA TRUE TRUE
## [7785] TRUE TRUE
           NA TRUE TRUE TRUE
                      NA TRUE TRUE TRUE TRUE TRUE TRUE TRUE
NA TRUE TRUE
                                      NA TRUE
NA
                                 NA TRUE TRUE TRUE
## [7827] TRUE TRUE
```

```
plot(res$log2FoldChange, -log(res$padj))
abline(v=-2, col="red")
abline(v=+2, col="red")
abline(h=-log(0.05), col="red")
```



```
#mycols
plot(res$log2FoldChange, -log(res$padj), col=mycols)
```


#Pathway analysis

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
##
           <NA>
                     148398
                                   26155
                                               339451
                                                             84069
                                                                         84808
    0.17925708 \quad 0.42645712 \ -0.69272046 \quad 0.72975561 \quad 0.04057653 \quad 0.54281049
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
# Examine the first 4 pathways
head(kegg.sets.hs, 4)
```

```
## $'hsa00232 Caffeine metabolism'
               "1544" "1548" "1549" "1553" "7498" "9"
## [1] "10"
##
## $'hsa00983 Drug metabolism - other enzymes'
##
    [1] "10"
                  "1066"
                            "10720"
                                      "10941"
                                               "151531" "1548"
                                                                    "1549"
                                                                              "1551"
    [9] "1553"
                  "1576"
                            "1577"
                                      "1806"
                                                "1807"
                                                          "1890"
                                                                    "221223" "2990"
##
   [17] "3251"
                  "3614"
                            "3615"
                                      "3704"
                                                "51733"
                                                          "54490"
                                                                    "54575"
                                                                              "54576"
##
   [25] "54577"
                            "54579"
                  "54578"
                                      "54600"
                                                "54657"
                                                          "54658"
                                                                    "54659"
                                                                              "54963"
##
##
   [33] "574537"
                  "64816"
                            "7083"
                                      "7084"
                                                "7172"
                                                          "7363"
                                                                    "7364"
                                                                              "7365"
   [41] "7366"
                  "7367"
                            "7371"
                                      "7372"
                                                "7378"
                                                          "7498"
                                                                    "79799"
                                                                             "83549"
##
##
   [49] "8824"
                  "8833"
                            "9"
                                      "978"
##
##
   $'hsa00230 Purine metabolism'
                                                 "10622"
     [1] "100"
                   "10201"
                             "10606"
                                       "10621"
                                                           "10623"
                                                                     "107"
                                                                               "10714"
##
                                                           "11164"
     [9] "108"
                   "10846"
                             "109"
                                       "111"
                                                 "11128"
                                                                     "112"
                                                                               "113"
##
    [17] "114"
                   "115"
##
                             "122481"
                                       "122622" "124583" "132"
                                                                     "158"
                                                                               "159"
    [25] "1633"
                   "171568" "1716"
                                       "196883" "203"
                                                           "204"
                                                                     "205"
                                                                               "221823"
##
    [33] "2272"
                   "22978"
                             "23649"
                                       "246721" "25885"
                                                                               "270"
##
                                                           "2618"
                                                                     "26289"
    [41] "271"
                   "27115"
                             "272"
                                       "2766"
                                                 "2977"
                                                           "2982"
                                                                     "2983"
                                                                               "2984"
##
    [49] "2986"
                   "2987"
                                       "3000"
                                                                     "318"
                                                                               "3251"
##
                             "29922"
                                                 "30833"
                                                           "30834"
##
    [57] "353"
                   "3614"
                             "3615"
                                       "3704"
                                                 "377841" "471"
                                                                     "4830"
                                                                               "4831"
    [65] "4832"
                   "4833"
                             "4860"
                                       "4881"
                                                 "4882"
                                                           "4907"
                                                                     "50484"
                                                                              "50940"
##
    [73] "51082"
                   "51251"
                             "51292"
                                       "5136"
                                                 "5137"
                                                           "5138"
                                                                     "5139"
                                                                               "5140"
##
    [81] "5141"
                   "5142"
                             "5143"
                                       "5144"
                                                 "5145"
                                                           "5146"
                                                                     "5147"
                                                                               "5148"
##
##
    [89] "5149"
                   "5150"
                             "5151"
                                       "5152"
                                                 "5153"
                                                           "5158"
                                                                     "5167"
                                                                               "5169"
##
    [97] "51728"
                   "5198"
                             "5236"
                                       "5313"
                                                 "5315"
                                                           "53343"
                                                                     "54107"
                                                                               "5422"
                                                                     "5432"
   [105] "5424"
                   "5425"
                             "5426"
                                       "5427"
                                                 "5430"
                                                           "5431"
                                                                               "5433"
##
   [113] "5434"
                   "5435"
                             "5436"
                                       "5437"
                                                 "5438"
                                                           "5439"
                                                                     "5440"
                                                                               "5441"
##
   [121] "5471"
                   "548644" "55276"
                                       "5557"
                                                 "5558"
                                                           "55703"
                                                                     "55811"
                                                                              "55821"
##
   [129] "5631"
                   "5634"
                                       "56953"
                                                 "56985"
                                                           "57804"
                                                                     "58497"
                                                                               "6240"
##
                             "56655"
                                                                     "8382"
   [137] "6241"
##
                   "64425"
                             "646625"
                                       "654364" "661"
                                                           "7498"
                                                                               "84172"
##
   [145] "84265"
                   "84284"
                             "84618"
                                       "8622"
                                                 "8654"
                                                           "87178"
                                                                     "8833"
                                                                               "9060"
   [153] "9061"
                   "93034"
                             "953"
                                       "9533"
                                                 "954"
                                                           "955"
                                                                     "956"
                                                                               "957"
##
   [161] "9583"
                   "9615"
##
##
##
  $'hsa04514 Cell adhesion molecules (CAMs)'
##
     [1] "1000"
                      "1001"
                                    "100133583" "1002"
                                                              "1003"
                                                                           "100506658"
##
     [7] "1013"
                       "10666"
                                    "10686"
                                                 "1272"
                                                              "1364"
                                                                           "1365"
##
                                                                           "214"
    [13] "1366"
                       "137075"
                                    "1462"
                                                 "1493"
                                                              "149461"
    [19] "22871"
                                                              "23705"
##
                       "23114"
                                    "23308"
                                                 "23562"
                                                                           "24146"
    [25] "257194"
                       "25945"
                                    "26047"
                                                 "26285"
                                                              "2734"
                                                                           "29126"
##
##
    [31] "29851"
                       "3105"
                                    "3106"
                                                 "3107"
                                                              "3108"
                                                                           "3109"
    [37] "3111"
                       "3112"
                                    "3113"
                                                 "3115"
                                                              "3117"
                                                                           "3118"
##
    [43] "3119"
                       "3122"
                                    "3123"
                                                 "3125"
                                                              "3126"
                                                                           "3127"
##
    [49] "3133"
                       "3134"
                                    "3135"
                                                 "3383"
                                                              "3384"
                                                                           "3385"
##
    [55] "3655"
##
                       "3676"
                                    "3680"
                                                 "3683"
                                                              "3684"
                                                                           "3685"
    [61] "3688"
                       "3689"
                                    "3695"
                                                 "3696"
                                                              "3897"
##
                                                                           "4099"
    [67] "4267"
                       "4359"
                                    "4684"
                                                 "4685"
                                                              "4756"
                                                                           "4897"
##
##
                                                 "50848"
    [73] "4950"
                       "49861"
                                    "5010"
                                                              "51208"
                                                                           "5133"
                                                 "57502"
    [79] "5175"
                       "53842"
                                    "54413"
                                                              "57555"
                                                                           "57863"
##
##
    [85] "5788"
                       "5792"
                                    "5797"
                                                 "5817"
                                                              "5818"
                                                                           "5819"
    [91] "58494"
                       "6382"
                                    "6383"
                                                 "6385"
                                                              "6401"
                                                                           "6402"
##
##
    [97] "6403"
                       "6404"
                                    "652614"
                                                 "6614"
                                                              "6693"
                                                                           "6900"
## [103] "7122"
                       "7412"
                                    "80380"
                                                 "80381"
                                                              "8174"
                                                                           "83700"
```

```
## [109] "8506"
                      "8516"
                                   "9019"
                                                "9071"
                                                             "9073"
                                                                          "9074"
                                                                          "920"
## [115] "9075"
                      "9076"
                                   "9080"
                                                "90952"
                                                             "914"
                                                "933"
                                                                          "9378"
## [121] "923"
                      "925"
                                   "926"
                                                             "9369"
## [127] "9379"
                      "940"
                                   "941"
                                                "942"
                                                             "947"
                                                                          "958"
## [133] "959"
                      "965"
                                   "9672"
                                                "999"
```

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Xain7/OneDrive/Desktop/shii/bimm 143/bimm143 R/class14/class14

Info: Writing image file hsa04110.pathview.png

##Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

```
## $greater

## G0:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05

## G0:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04

## G0:0048729 tissue morphogenesis 1.432451e-04 3.643242 1.432451e-04

## G0:0007610 behavior 1.925222e-04 3.565432 1.925222e-04

## G0:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
```

```
5.953254e-04 3.253665 5.953254e-04
## GO:0035295 tube development
##
                                                 q.val set.size
                                                                        exp1
## GO:0007156 homophilic cell adhesion
                                             0.1951953
                                                            113 8.519724e-05
## GO:0002009 morphogenesis of an epithelium 0.1951953
                                                            339 1.396681e-04
## GO:0048729 tissue morphogenesis
                                             0.1951953
                                                            424 1.432451e-04
## GO:0007610 behavior
                                                            426 1.925222e-04
                                             0.1967577
## GO:0060562 epithelial tube morphogenesis 0.3565320
                                                            257 5.932837e-04
## GO:0035295 tube development
                                                            391 5.953254e-04
                                             0.3565320
##
## $less
##
                                               p.geomean stat.mean
                                                                          p.val
## GO:0048285 organelle fission
                                            1.536227e-15 -8.063910 1.536227e-15
## GO:0000280 nuclear division
                                            4.286961e-15 -7.939217 4.286961e-15
                                            4.286961e-15 -7.939217 4.286961e-15
## GO:0007067 mitosis
## G0:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
## GO:0007059 chromosome segregation
                                            2.028624e-11 -6.878340 2.028624e-11
## GO:0000236 mitotic prometaphase
                                            1.729553e-10 -6.695966 1.729553e-10
##
                                                   q.val set.size
## GO:0048285 organelle fission
                                            5.841698e-12
                                                              376 1.536227e-15
## GO:0000280 nuclear division
                                            5.841698e-12
                                                              352 4.286961e-15
## GO:0007067 mitosis
                                            5.841698e-12
                                                              352 4.286961e-15
## GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                              362 1.169934e-14
## GO:0007059 chromosome segregation
                                                              142 2.028624e-11
                                           1.658603e-08
## GO:0000236 mitotic prometaphase
                                            1.178402e-07
                                                               84 1.729553e-10
##
## $stats
##
                                             stat.mean
                                                           exp1
## GO:0007156 homophilic cell adhesion
                                              3.824205 3.824205
## GD:0002009 morphogenesis of an epithelium 3.653886 3.653886
## GO:0048729 tissue morphogenesis
                                              3.643242 3.643242
## GO:0007610 behavior
                                              3.565432 3.565432
## GO:0060562 epithelial tube morphogenesis
                                              3.261376 3.261376
## GO:0035295 tube development
                                              3.253665 3.253665
```

##Reactance analysis online We need to make a little file of our significant genes that we can upload to the reactome webpage:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote=FALSE)
```