Linear Mixed-Effects Models

Dale Barr

PS Statistics 2018

Multilevel Data

- All statistical models assume conditional independence
- Data sets often have 'clusters', due to
 - Natural clustering
 - Multistage sampling

Random and Fixed Effects

$$Y_{ij} = \mu + u_i + e_{ij}$$

where:

 μ grand mean u_i offset associated with unit i e_{ij} residual associated with obs j on unit i

- Random effects are characterized by probability distributions
 u ~ N(0, σ_u²); e ~ N(0, σ_e²)
- Fixed effects are characterized by a single population value

Strategies for handling multilevel data

- "Aggregate up" to the highest sampling unit
 - pros:
 - easy
 - cons:
 - ★ inferences only permitted at highest level
 - info lost about variability at lower levels
 - ★ not possible with categorical/count data
 - ⋆ poor behavior with unbalanced data
- Estimate variability for sampling units
 - pros:
 - possible for any kind of DV
 - permits full generalization
 - * allows exploration of individual diffs
 - good behavior with unbalanced data
 - cons:
 - ★ complex, difficult, often done wrong!
 - not guaranteed to 'converge'

Nested vs. Crossed Random Effects

- Level j is nested within level i if j uniquely occurs within i
 - Examples:
 - children within classrooms, classrooms within schools, schools within districts...
 - observations within individual subjects
 - ★ residents within neighborhoods
- Level *j* is *crossed* with level *i* if *j* is associated with multiple *i*s
 - Examples:
 - subjects and stimulus materials
 - customers and restaurants

The "Language-As-Fixed-Effect" Fallacy

Clark (1973)

- Psycholinguistic experiments sample language materials as well as subjects
- Language materials should be treated as random effects
 - otherwise, results may not generalize
- NB: same goes for most other kinds of stimulus materials!
- Clark's suggestion: F', min-F'
- Linear-mixed effects solution: include subjects and items as crossed random effects (Baayen, Davidson, & Bates, 2008)
 - over 1000 citations to date! (Google Scholar)

Generalizing over encounters

(Barr, in press)

The target of inference in much of psychology and related fields has been misidentified as a population of *subjects* or *stimuli*, when the actual target of inference is a population of events: encounters

- readers encountering particular types of words
- male participants judging female faces
- gamers encountering particular types of violent games
- audience members encountering particular types of dance movements
- insomniacs (versus controls) encountering emotional expressions
- birds hearing particular types of birdsongs

Specifying random effects structure: Maximal models

(Barr, Levy, Scheepers, Tily, 2013)

- Typical experimental studies have multiple observations per cell per subject (or item)
- Subjects (items) vary in sensitivity to experimental manipulations
- This dependency must be accounted for using random slopes
- For experimental hypothesis testing, researchers should use the maximal random effects structure justified by the design

A hypothetical experiment

(Barr, Levy, Scheepers, Tily, 2013)

- Subjects perform lexical decision (is PINT a word or nonword?)
- DV = response time
- IV = word type, Type A and Type B
- Four subjects, four words

$$Y_{ij} = \beta_0 + \beta_1 X_j + e_{ij}$$

 $e_{ij} \sim N(0, \sigma^2)$

$$Y_{ij} = eta_0 + eta_1 X_j + e_{ij} \ Y_{ij} = eta_0 + S_{0i} + eta_1 X_j + e_{ij} \ e_{ij} \sim N(0, \sigma^2) \ S_{0i} \sim N(0, au_{00})$$

$$\begin{aligned} Y_{ij} &= \beta_0 + \beta_1 X_j + e_{ij} \\ Y_{ij} &= \beta_0 + S_{0i} + \beta_1 X_j + e_{ij} \\ Y_{ij} &= \beta_0 + S_{0i} + (\beta_1 + S_{1i}) X_j + e_{ij} \end{aligned}$$

$$e_{ij} \sim N(0, \sigma^2)$$

$$(S_{0i}, S_{1i}) \sim N[(0, 0), \Sigma_{\tau}]$$

$$\Sigma_{\tau} &= \begin{pmatrix} \tau_{00}^2 & \rho \tau_{00} \tau_{11} \\ \rho \tau_{00} \tau_{11} & \tau_{11}^2 \end{pmatrix}$$

$$Y_{ij} = \beta_0 + \beta_1 X_j + e_{ij}$$

$$Y_{ij} = \beta_0 + S_{0i} + \beta_1 X_j + e_{ij}$$

$$Y_{ij} = \beta_0 + S_{0i} + (\beta_1 + S_{1i})X_j + e_{ij}$$

$$Y_{ij} = \beta_0 + S_{0i} + I_{0j} + (\beta_1 + S_{1i})X_i + e_{ij}$$

$$\begin{array}{l} e_{ij} \sim \textit{N}(0, \sigma^2) \\ (\textit{S}_{0i}, \textit{S}_{1i}) \sim \textit{N}\left[(0, 0), \Sigma_{\tau} \right] \\ \Sigma_{\tau} = \begin{pmatrix} \tau_{00}^2 & \rho \tau_{00} \tau_{11} \\ \rho \tau_{00} \tau_{11} & \tau_{11}^2 \end{pmatrix} \\ \textit{I}_{0j} \sim \textit{N}(0, \omega_{00}^2) \end{array}$$

What about a by-item random slope?

- A by-item random slope does not make sense when items are the experimental manipulation
- e.g., most words are either a noun or a verb; such words cannot vary in the effect of noun vs. verb!

Maximal random effects justified by the data or by the design?

"keep it parsimonious" versus "keep it maximal"

Principles for Choosing Maximal Random Effects

- All sampling units get a random intercept
- Any factor gets a by-unit random slope if it is both:
 - within-unit, and
 - has multiple observations per level per unit
- Any interaction term gets a by-unit random slope where:
 - all factors are within-unit
 - there are multiple observations per unit/cell
 - ★ where 'cell' is a combination of factor levels
- For more tips see Barr et al. (2013); Barr (2013)

lme4::lmer() model syntax

by-subjects random-intercepts-only model

$$y \sim x1 * x2 + (1 \mid subject_id)$$

by-subjects random slopes for main effects

$$y \sim x1 * x2 + (1 + x1 + x2 | subject_id)$$

 maximal model: by-subjects random slopes for all within-unit effects with multiple observations per cell

$$y \sim x1 * x2 + (1 + x1 + x2 + x1:x2 \mid subject_id)$$

 $y \sim x1 * x2 + (1 + x1 * x2 \mid subject_id)$

maximal zero covariances model

$$y \sim x1 * x2 + (1 + x1 * x2 || subject_id)$$

Dealing with nonconvergence

- Misspecification of random effects
 - unidentifiable parameters in the model
- Using old/unstable version of 1me4 (<1.1-7)
- Using suboptimal optimizer for glmer
 - use argument glmerControl(optimizer='bobyqa')
- Uncentered/unscaled predictors
- Too few subjects/items
- Distributional assumptions not satisfied
- Null effects

What to do?

- Make sure effects are identifiable
- Increase iterations

- Check distributional assumptions
- Fit zero-correlation model

```
mod \leftarrow lmer(y \sim x1 * x2 + (1 + x1 * x2 \mid | subject_id), dat,

REML = FALSE)
```

Start removing random effects

