Medidas de Distância

Prof. Jefferson T. Oliva

Aprendizado de Máquina e Reconhecimento de Padrões (AM28CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

- Distância Euclidiana
- Distância de Minkowski
- Distância de Mahalanobis
- Similaridade entre Vetores Binários
- Similaridade do Cosseno
- Propriedades Comuns de Distância e de Similaridade

Introdução

- Medidas de distância são utilizadas para quantificar a similaridade ou dissimilaridade em objetos ou conjuntos de exemplos em um conjunto de dados
- Diversas abordagens de aprendizado de máquina fazem o uso de medidas de distância:
 - Classificação
 - Agrupamento
 - Detecção de outliers
 - Redução de dimensionalidade

Introdução

- Similaridade
 - Determina o quão semelhantes são dois objetos
 - Quanto maior o valor da medida de distância, maior é a similaridade entre os objetos
 - Geralmente resultam em valores entre 0 e 1
- Dissimilaridade
 - Estabelece o quão diferentes são dois objetos
 - Quanto menor for o valor, maior é a similaridade entre o os objetos
 - ullet O valor mínimo é 0, mas o limite superior varia (∞)
- Proximidade se refere à similaridade ou dissimilaridade

Introdução

- Diversas medidas podem ser utilizadas para o cálculo da similaridade/dissimilaridade
 - Distância Euclidiana
 - Distância de Manhattan
 - Distância de Minkowski
 - Distância de Mahalanobis
 - Coeficiente de casamento simples
 - Similaridade do cosseno

o ...

Distância Euclidiana

Distância Euclidiana

$$d(p,q) = \sqrt{\sum_{i=1}^m (p_i - q_i)^2}$$

onde m é o número de características, p_i e q_i são as i-ésimas características dos exemplos p e q, respectivamente

 Caso as escalas entre os atributos forem diferentes, é necessária a padronização dos seus respectivos valores

7

Distância Euclidiana

	E1	E2	E3	E4	E5
E1	0	5,00	2,24	3,61	2,24
E2	5,00	0	2,83	1,41	3,16
E3	2,24	2,83	0	1,41	1,41
E4	3,61	1,41	1,41	0	2,00
E5	2,24	3,16	1,41	2,00	0

Matriz de distâncias

Generalização da distância Euclidiana

$$d(p,q) = \left[\sum_{i=1}^{m} (x_i^a - x_i^b)^r\right]^{\frac{1}{r}}$$

- r=1: distância de Manhattan (Norma L_1)
- r = 2: distância Euclidiana (Norma L_2)
- ullet $r o\infty$: distância de Chebyshev (Norma L_∞)

Exemplo	Atributo 1	Atributo 2	
E1	1	3	
E2	4	0	
E3	2	2	
E4	3	1	
E5	1	1	

L1	E1	E2	E3	E4	E5
E1	0	7,00	3,00	5,00	3,00
E2	7,00	0	4,00	2,00	4,00
E3	3,00	4,00	0	2,00	2,00
E4	5,00	2,00	2,00	0	2,00
E5	3,00	4,00	2,00	2,00	0

L2	E1	E2	E3	E4	E5
E1	0	5,00	2,24	3,61	2,24
E2	5,00	0	2,83	1,41	3,16
E3	2,24	2,83	0	1,41	1,41
E4	3,61	1,41	1,41	0	2,00
E5	2,24	3,16	1,41	2,00	0

L∞	E1	E2	E3	E4	E5
E1	0	5	2	3	2
E1 E2 E3 E4 E5	5	0	3	1	3
E3	2	2	0	1	1
E4	3	1	1	0	2
E5	2	3	1	2	0

Distância de Mahalanobis

Distância de Mahalanobis

$$d(p,q) = (p-q)\sum_{1}^{-1}(p-q)^{T}$$

- Onde:
 - ullet É a matriz de co-variância da base de dados X

$$\sum_{i,j} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{ki} - \overline{x_i})(x_{kj} - \overline{x_j})$$

- Caso ∑ seja uma matriz identidade, a distância de Mahalanobis é a mesma que a Euclideana
- Essa medida de distância é útil para a detecção de outliers

Distância de Mahalanobis

Similaridade entre Vetores Binários

- Os exemplos comparados contêm apenas atributos binários
- Para mensurar a similaridade entre exemplos binários, são computados os seguintes parâmetros:
 - M_{00} número de atributos em que p=0 e q=0
 - M_{01} número de atributos em que p=0 e q=1
 - ullet M_{10} número de atributos em que p=1 e q=0
 - ullet M_{11} número de atributos em que p=1 e q=1
- Exemplos de medidas de distância: coeficiente de casamento simples e distância de Jaccard

Coeficiente de casamento simples

$$d(p,q) = \frac{M_{00} + M_{11}}{M_{00} + M_{10} + M_{01} + M_{11}}$$

- Conta igualmente 0's e 1's
- Adequada para atributos simétricos
- Distância (coeficiente) de Jaccard ou

$$d(p,q) = \frac{M_{11}}{M_{10} + M_{01} + M_{11}}$$

- Ignora as ocorrências de pares de 0's (e.g. $p_i = p_j = 0$) para lidar adequadamente com atributos assimétricos
 - Afinal, 0 indica apenas a ausência de uma característica

Exemplo

$$\begin{array}{l} p = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0] \\ q = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1] \end{array}$$

- $M_{00} = 7$
- $M_{01} = 2$
- $M_{10} = 1$
- $M_{11} = 0$
- Coeficiente de casamento simples = $\frac{7+0}{7+2+1+0} = 0,7$
- Coeficiente de Jaccard = $\frac{0}{2+1+0} = 0$

 Exercício: qual é a medida de distância que resulta no menor valor para os vetores abaixo? Manhattan, Euclideana, coeficiente de casamento simples ou coeficiente de Jaccard?

$$p = 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0$$

$$q = 0 1 0 0 1 1 0 0 1 0 1 1$$

Similaridade do Cosseno

Similaridade do Cosseno

- Comumente utilizada no processamento de linguagem natural
 - Os documentos s\u00e3o representados por vetores, onde cada atributo representa a frequência de ocorr\u00e9ncia de uma palavra no texto

$$cos(p,q) = \frac{p \bullet q}{||p||.||q||}$$

onde

• é o produto interno entre os vetores

||p|| é a norma do vetor p

Similaridade do Cosseno

• Exemplo:

$$p = [3 \ 2 \ 0 \ 5 \ 0 \ 0 \ 0 \ 2 \ 0 \ 0]$$
$$q = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 2]$$

•
$$p \bullet q =$$

$$3*1+2*0+0*0+5*0+0*0+0*0+0*0+2*1+0*0+0*2 = 5$$

•
$$||p|| = \sqrt{3^2 + 2^2 + 0^2 + 5^2 + 0^2 + 0^2 + 0^2 + 2^2 + 0^2 + 0^2} = \sqrt{42} = 6,48074069840786$$

•
$$||q|| = \sqrt{1^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + 2^2} = \sqrt{6} = 2,449489742783178$$

•
$$cos(p,q) = \frac{5}{6,48074069840786*2,449489742783178} = 0.314970394174356$$

• Distância =
$$1 - cos(p, q) = 0,685029605825644$$

Propriedades Comuns de Distância e de Similaridade

- Medidas de distância, como a Euclidiana, possuem algumas propriedades bem conhecidas
 - $d(p,q) \ge 0$ para todo $p \in q$
 - d(p,q) = 0 apenas se p = q
 - d(p,q) = d(q,p) para todo $p \in q$ (simetria)
 - $d(p,r) \le d(p,q) + d(q,r)$ para todo p, q e r (designaldade triangular)

Onde d(p,q) é a distância (dissimilaridade) entre os exemplos $p \in q$

 Uma distância que satisfaz essas propriedades é considerada uma medida de distância

Propriedades Comuns de Distância e de Similaridade

- Medidas de similaridade também possuem algumas propriedades bem conhecidas:
 - s(p,q) = 1 (similaridade máxima) apenas se p = q
 - s(p,q) = s(q,p) para todo $p \in q$ (simetria)

Onde s(p,q) é a similaridade entre os exemplos p e q

Referências

Distance Measures. Aprendizado de Máquina. *Slides.* Engenharia de Computação. Dainf/UTFPR, 2020.

RASCHKA, S.; MIRJALILI, V. Python Machine Learning. Packt, 2017.

TAN P.; STEINBACK M.; KUMAR V. Introduction to Data Mining.

Pearson, 2006.