Segundo semestre de 2021

MAT1620 - Cálculo II

Interrogación N° 1

Revise su sección en MiPortalUC y envíe su desarrollo al link correspondiente antes de las 20:45 hrs.

- 1. Determine si la integral $\int_{-\infty}^{1} \frac{e^{-\sqrt{1-x}}}{\sqrt{1-x}} dx$ es convergente o divergente. En caso de convergencia, calcule el valor numérico de la integral.
- 2. a) Sean c > 0 y $\{a_n\}$ una sucesión definida por $a_n = \frac{c^n}{n!}$. Demuestre que la sucesión $\{a_n\}$ es convergente.
 - b) Determine si la serie $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ es convergente o divergente.
- 3. a) Sea $S_n = \frac{n-3}{n+1}$ la n-ésima suma parcial de la serie $\sum_{n=1}^{\infty} a_n$. Determine a_n para cada $n=1,2,3,\ldots$ y calcule el valor numérico de la serie $\sum_{n=1}^{\infty} a_n$.
 - b) Determine si la serie $\sum_{n=1}^{\infty} \frac{8^n}{5+11^n}$ es convergente o divergente.
- 4. a) Utilice la prueba de la integral para demostrar la convergencia de la serie $\sum_{n=1}^{\infty} n^2 e^{-n^3}$.
 - b) Del teorema del valor medio, se puede demostrar que para cada n natural, existe $\alpha_n \in \left] \frac{1}{n+1}, \frac{1}{n} \right[$ tal que $e^{\alpha_n} = \frac{e^{\frac{1}{n}} e^{\frac{1}{n+1}}}{\frac{1}{n} \frac{1}{n+1}}$. Usando esto, calcule el valor numérico de la serie $\sum_{n=1}^{\infty} \frac{e^{\alpha_n}}{n(n+1)}$.

Nota: No es necesario demostrar la proposición del teorema del valor medio.

5. Determine el intervalo de convergencia de la siguiente serie de potencias

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+2)^n}{3^n (n+1)^3}.$$

Toda respuesta debe ir acompañada con un desarrollo que justifique su solución. En caso contrario la respuesta será evaluada con puntaje mínimo

TIEMPO: 120 MINUTOS