	import numpy as np import seaborn as sns sns.set(color_codes = True) import matplotlib.pyplot as plt Reading Excel Files dataset = pd.read_csv('fish.csv') dataset.head()
<pre>In [3]: Out[3]: In [4]: Out[4]:</pre>	1 Bream 290.0 24.0 26.3 31.2 12.4800 4.3056 2 Bream 340.0 23.9 26.5 31.1 12.3778 4.6961 3 Bream 430.0 26.3 29.0 33.5 12.7300 4.4555 4 Bream 430.0 26.5 29.0 34.0 12.4440 5.1340 dataset.shape (159, 7) Data Reading weight Length Length Length Length Height Width
In [5]:	count 159,000000 159,000000 159,000000 159,000000 159,000000 mean 398,326415 26,247170 28,415723 31,227044 8,970994 4,417486 std 357,978317 9,996441 10,716328 11,610246 4,286208 1,685804 min 0,000000 7,500000 8,40000 8,80000 1,728400 1,047600 25% 120,000000 19,050000 21,000000 5,944800 3,385650 50% 273,000000 25,20000 27,300000 29,40000 7,786000 4,248500 75% 650,000000 32,700000 39,65000 12,365900 5,584500 max 1650,000000 59,00000 63,40000 68,00000 18,957000 8,142000 Species Weight Length1 Length2 Length3 Height Width 0 Ength 3 Height Width 0 Ength 3 Height 4,0000 11,5200 4,0200 B ream 242.0 23.2 25.4 30.0 11,5200 4,0200 1 B ream 29.0 24.0 26.3 31.2 12,4800 4,025
In [6]:	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 159 entries, 0 to 158 Data columns (total 7 columns): # Column Non-Null Count Dtype</class></pre>
In [7]: Out[7]:	Species shipst
<pre>In [8]: Out[8]: In [9]: Out[9]:</pre>	dataset.isnull().sum() Species 0 Weight 0 Length1 0 Length2 0 Length3 0 Height 0 dith 0 dith 0 dtype: int64 1. Do Exploratory Data Analysis for Fish Market Dataset
In [10]:	sharplot(y = dataset[noight], x = dataset[openes])
Out[10]:	2. Please check Pairwise Relationships in a Dataset using Pairplot
In [11]: Out[11]:	<pre></pre>
	15 16 17 18 18 19 10 10 10 10 10 10 10 10 10 10
In [12]: Out[12]:	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Species Bream Roach Roach Parkki Parkki Parke Smelt 15 15 15 16 17 18 18 18 18 18 18 18 18 18
	3. Prepared Training and Test Dataset Extract Independent and Dependent Variable
In [29]: In [30]:	y = pd.DataFrame(dataset.iloc[:, 1]) Encode Species Column from sklearn.preprocessing import OneHotEncoder onehot_encoder = OneHotEncoder() x = pd.DataFrame(onehot_encoder.fit_transform(x).toarray()) Give Name The Column According Encoded Species Column
<pre>In [16]: In [17]: In [20]: In [24]: Out[24]:</pre>	<pre>from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) x_train</pre>
<pre>In [25]: Out[25]:</pre>	107 7.5852 4.6354 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	143 1550.0 16 700.0 96 225.0 107 300.0 9 500.0 103 260.0 67 170.0 117 650.0 47 160.0
In [26]: Out[26]:	A_6666
	128 5.5680 3.3756 0.0 0.0 1.0 0.0 0.0 0.0 134 7.2800 4.3225 0.0 0.0 0.0 0.0 0.0 0.0 60 12.3540 6.5250 0.0 0.0 0.0 0.0 0.0 0.0 1.0 126 12.6040 8.1420 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 37 5.5756 2.9044 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 44 6.6339 3.5478 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
<pre>In [27]: Out[27]:</pre>	Weight
	7 39.0 40 0.0 95 170.0 45 160.0 110 556.0 120 900.0 59 800.0 131 300.0 33 975.0 83 115.0 128 200.0 134 456.0 60 1000.0
	126 1000.0 62 60.0 37 78.0 44 145.0 142 1600.0 85 130.0 26 720.0 61 55.0 54 390.0 86 120.0 144 1650.0 63 90.0 8 450.0
In [22]: Out[22]: In [28]:	(159, 7) 4. Predict Weight Fish each Species
<pre>In [31]: Out[31]: In [35]: In [37]:</pre>	model.fit(x_train, y_train) LinearRegression() y_train_new = model.predict(x_train) y_test_new = model.predict(x_test) print(y_train_new) [[8.93322440e+02] [4.87576814e+02] [5.83073318e+02] [2.69319925e+02] [3.58412774e+02] [6.32656063e+02]
	[7.41365995e+02] [1.47767616e+02] [6.44490083e+02] [-8.73130174e+01] [2.07541679e+02] [7.49672223e+02] [1.14934671e+02] [2.52001777e+02] [2.11077601e+02] [2.9819713e+02] [6.30226526e+02] [3.70716218e+02] [-1.41454561e+02] [-1.41454561e+02] [-1.03481600e+01] [3.52445538e+02] [1.03481600e+01] [3.64518650e+02] [3.64518650e+02] [-1.00363956e+02]
	[6.03827370e+02] [-3.02279814e+00] [-1.97054686e+01] [8.19040172e+01] [1.61384727e+02] [1.05655732e+02] [-4.55615768e+01] [1.03708648e+03] [9.34580485e+03] [9.34580485e+02] [2.50739549e+02] [2.59630151e+02] [2.269331411e+02] [4.32779641e+01] [9.23669370e+02] [1.4786819e+02] [2.45470855e+02] [1.7786819e+02] [2.45470855e+02] [1.7795619e+02] [2.39662003e+02] [4.95957465e+02] [6.63274657e+02]
	[6.91079489e+02] [8.81577853e+02] [6.43835643e+02] [6.48305643e+02] [6.72621431e+01] [3.8572240e+02] [7.77722050e+00] [3.61337637e+02] [1.05599956e+02] [5.31190545e+02] [1.62266066e+02] [1.44661282e+01] [1.44470205e+02] [7.70874938e+02] [4.32562854e+02] [9.28016866e+02] [9.28016866e+02] [9.18006933e+02] [1.53609779e+02] [9.18006938e+02] [1.53609779e+02] [6.81990587e+02]
	[1.27896567e-02] [5.11576706e+02] [4.50967611e+02] [-1.31088559e+02] [2.97120175e+02] [1.04240962e+02] [1.04240962e+02] [2.28625938e+01] [1.08587192e+02] [3.31457954e+02] [4.53689638e+02] [-3.89382352e+01] [9.27822847e+01] [3.30510224e+02] [3.38610224e+02] [6.02408881e+02] [6.82468445e+02] [6.824688445e+02] [1.836416831e+02] [2.96074106e+02] [4.64083827e+01] [4.61843617e+02]
	[3.86615215e+02] [-1.01987889e+00] [8.80603102e+02] [2.38033988e+02] [8.71303156e+02] [8.03280426e+02] [7.23352687e+02] [9.00279913e+02] [9.4929319602] [9.90279913e+02] [9.9091778-02] [9.8806213e+02] [9.8806213e+02] [9.8806213e+02] [9.8806213e+02] [9.8806213e+02] [9.8806213e+02] [9.8908257e+02] [1.36202293e+02] [9.18250934e+01] [7.10982257e+02] [6.395977988e+00] [-2.91744234e+02] [8.35788661e+01]
In [36]:	princ(y_cosc_new)
	[[374.0448304] [124.20161475] [192.64716488] [200.76521194] [688.73559208] [861.46500412] [661.25826567] [487.34074648] [975.34563195] [134.98972265] [385.64079586] [584.4057373] [702.4148285] [994.8032406] [138.989606] [150.5951798] [893.32243966] [186.83442178] [755.48995246] [175.48995246] [1-16.75185579]
In [38]:	[498.53381429] [156.86360258] [1082.95703181] [-49.20677408] [486.6931087] [709.51778645] [217.55923904] [867.73367424] [13.36427378] [586.40174702] [155.7120718]] 5. Plot with Scatter of Predict Result plt.scatter(y_train, y_train_new) plt.xlabel('YTrain') plt.ylabel('Predicted Y') plt.show()
	Page 400 0 200 400 600 800 1000 1200 1400 1600 End of Code