Universidad Monteávila Álgebra Lineal Ingeniería Informática en Ciencia de Datos

Primer examen parcial-A. Fecha:23-10-2025

Apellido(s):	Nombre(s):
1 ()	

Seleccionar cuatro (y solo cuatro) de las cinco preguntas.

Preguntas seleccionadas:

Cédula:

	1	2	3	4	5	TOTAL
ĺ	/5	/5	/5	/5	/5	/20

(1) Hallar la ecuación cartesiana de la recta que pasa por el punto (4,4) y que es perpendicular a la recta que pasa por los puntos (2,3) y (2,5).

Solución. La recta que pasa por los puntos (2,3) y (2,5) es una recta vertical, de ecuación x=2, por lo tanto, la ecuación de la recta perpendicular que pasa por el punto (4,4) es la recta horizontal

$$y = 4$$
.

(2) Hallar la ecuación de la circunferencia que tiene centro (0,2) y que pasa por el punto (0,0). Solución. Como la circunferencia tiene centro (0,2) y pasa por el punto (0,0) tiene radio igual a 2, por lo tanto la ecuación es

$$x^2 + (y-2)^2 = 2^2,$$

o lo que es equivalente

$$x^2 + (y-2)^2 = 4.$$

(3) Hallar una ecuación paramétrica de la recta que pasa por el punto (3,2) y es paralela a la recta y = 2x.

Solución. La recta y = 2x tiene la dirección del vector (1,2), por lo tanto una posible ecuación paramétrica es

$$\begin{cases} x = 3 + t \\ y = 2 + 2t \end{cases}$$

donde el parámetro t varía en \mathbb{R} .

Observación: La solución de este problema no es única, ya que existen diferentes maneras de escoger un vector paralelo a la recta y=2x.

(4) Hallar las coordenadas del vector que forma un ángulo de $\frac{2\pi}{3}$ rad. con el eje x y que tiene norma 2.

Solución. El vector solicitado es

$$\left(2\cos\left(\frac{2\pi}{3}\right), 2\sin\left(\frac{2\pi}{3}\right)\right)$$

Como

$$\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$
 y $\operatorname{sen}\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$

se tiene que el vector es

$$(-1,\sqrt{3}).$$

(5) Encontrar la magnitud (o módulo) del vector $(\sqrt{3}, -1)$ y el ángulo que forma con el eje x.

Solución. La magnitud del vector es

$$\|(\sqrt{3}, -1)\| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3+1} = \sqrt{4} = 2.$$

Sea α el ángulo que forma el vector con el eje x, entonces se tiene que cumplir que

$$\cos \alpha = \frac{\sqrt{3}}{2}$$
 y $\sin \alpha = -\frac{1}{2}$

Por lo tanto el ángulo es

$$\frac{11\pi}{6}$$
.

También sirve escoger como ángulo

$$-\frac{\pi}{6}$$
.

Universidad Monteávila Álgebra Lineal Ingeniería Informática en Ciencia de Datos Primer examen parcial-B. Fecha:23-10-2025

Apellido(s):	Nombre(s):
Cédula:	
Seleccionar cuatro (y solo cuatro) de Preguntas seleccionadas:	las cinco preguntas.

1	2	3	4	5	TOTAL
/5	/5	/5	/5	/5	/20

(1) Hallar la ecuación de la circunferencia que tiene centro (3,0) y que pasa por el punto (0,0).

Solución. Como la circunferencia tiene centro (3,0) y pasa por el punto (0,0) tiene radio igual a 3, por lo tanto la ecuación es

$$(x-3)^2 + y^2 = 3^2,$$

o lo que es equivalente

$$(x-3)^2 + y^2 = 9.$$

(2) Hallar la ecuación cartesiana de la recta que pasa por el punto (4,4) y que es paralela a la recta que pasa por los puntos (2,3) y (2,5).

Solución. La recta que pasa por los puntos (2,3) y (2,5) es una recta vertical, de ecuación x=2, por lo tanto, la ecuación de la recta paralela que pasa por el punto (4,4) es

$$x = 4$$
.

(3) Hallar una ecuación paramétrica de la recta que pasa por el punto (3,2) y es paralela a la recta $y=\frac{1}{2}x$.

Solución. La recta $y=\frac{1}{2}x$ tiene la dirección del vector (2,1), por lo tanto una posible ecuación paramétrica es

$$\begin{cases} x = 3 + 2t \\ y = 2 + t \end{cases}$$

donde el parámetro t varía en \mathbb{R} .

Observación: La solución de este problema no es única, ya que existen diferentes maneras de escoger un vector paralelo a la recta $y=\frac{1}{2}x$.

(4) Hallar las coordenadas del vector que forma un ángulo de $\frac{5\pi}{6}$ rad. con el eje x y que tiene norma 2.

Solución. El vector solicitado es

$$\left(2\cos\left(\frac{5\pi}{6}\right), 2\sin\left(\frac{5\pi}{6}\right)\right)$$

Como

$$\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$
 y $\operatorname{sen}\left(\frac{5\pi}{6}\right) = \frac{1}{2}$

se tiene que el vector es

$$(-\sqrt{3},1).$$

(5) Encontrar la magnitud (o módulo) del vector $(-\sqrt{3}, -1)$ y el ángulo que forma con el eje x.

Solución. La magnitud del vector es

$$\|(-\sqrt{3},-1)\| = \sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{3+1} = \sqrt{4} = 2.$$

Sea α el ángulo que forma el vector con el eje x, entonces se tiene que cumplir que

$$\cos \alpha = -\frac{\sqrt{3}}{2}$$
 y $\sin \alpha = -\frac{1}{2}$

Por lo tanto el ángulo es

$$\frac{7\pi}{6}$$
.

También sirve escoger como ángulo

$$-\frac{5\pi}{6}$$
.