

# Electronics Systems (938II)

Lecture 3.5 Semiconductor Memories – SRAM



#### **Introduction to Random Access Memory (RAM)**

- With the term **RAM** (Random Access Memory), typically we indicate memories that are:
  - RWM (Read and Write Memory)
  - Volatile
- Note
  - EPROM or EEPROM (or Flash memory) could be seen as a sort of RWM, but...
    - ... for those devices, 'writing' (= erasing + reprogramming) is disruptive
    - In RAMs (or better, RWM) writing is not disruptive



#### **Introduction to Random Access Memory (RAM)**

- RAM classification
  - Static RAM (SRAM)
    - The memory content is hold over the time, as long as the memory is powered
  - Dynamic RAM (DRAM)
    - Even if the memory is powered, the memory content needs to be refreshed over the time, otherwise it is lost



#### **Introduction to Random Access Memory (RAM)**

- RAM classification
  - Static RAM (SRAM)
    - The memory content is hold over the time, as long as the memory is powered
  - Dynamic RAM (DRAM)
    - Even if the memory is powered, the memory content needs to be refreshed over the time, otherwise it is lost



• **Bistable** = two closed-loop inverters





- Bistable = two closed-loop inverters
  - Two stable states
  - Stable = the state is not changed (unless external stimuli)





- Bistable = two closed-loop inverters
  - Two stable states
  - Stable = the state is not changed (unless external stimuli)
    - State 1







- Bistable = two closed-loop inverters
  - Two stable states
  - Stable = the state is not changed (unless external stimuli)
    - State 1
    - State 2







- Bistable = two closed-loop inverters
  - Two stable states
  - Stable = the state is not changed (unless external stimuli)
    - State 1
    - State 2







- Bistable = two closed-loop inverters
  - Two stable states
  - Stable = the state is not changed (unless external stimuli)
    - State 1
    - State 2
    - State 3 ???







- Bistable = two closed-loop inverters
  - Two stable states
  - Stable = the state is not changed (unless external stimuli)
    - State 1
    - State 2
    - State 3 ??? → No! Unstable!!!







- Bistable
  - CMOS implementation
    - State 1
    - State 2





- Bistable
  - CMOS implementation
    - State 1
    - State 2





- Bistable
  - Symbol





- Architecture
  - Bistable
  - 2x access transistors
  - $WL_i$  = Word Line
  - $BL_{W_i}$  = Bit Line for Write
  - $BL_{R_i}$  = Bit Line for Read





- Architecture
  - Bistable
  - 2x access transistors
  - Also called 6T (6-Transistors) SRAM cell
    - Other architecture exist
    - Example: 4-transistors (4T)





 $BL_{R_i}$ 

#### SRAM – Memory cell

- Architecture
  - Bistable
  - 2x access transistors
  - Also called 6T (6-Transistors) SRAM cell
    - Other architecture exist
    - Example: 4-transistors (4T)
      - Resistors instead of pull-up p-MOS in the bistable



 $WL_i$ 

 $BL_{W_i}$ 



- Architecture
  - Bistable
  - 2x access transistors
  - Also called 6T (6-Transistors) SRAM cell
    - However, 6T is the most diffused
      - Performance vs. costs



- If you are interested in other SRAM cell circuits:
  - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10134887



- Example 4x4
  - D = input (write) data
  - Q = output (read) data
  - W = write command
    - 1 = write
    - 0 = read





- Example 4x4
  - Read
    - Cell (0,1)





- Example 4x4
  - Read
    - Cell (0,1)
    - W = 0





- Example 4x4
  - Read
    - Cell (0,1)
    - W = 0
    - $WL_0 = 1$
    - $WL_1 = 0$





- Example 4x4
  - Read
    - Cell (0,1)
    - W = 0
    - $WL_0 = 1$
    - $WL_1 = 0$
    - Column decoder
      - Activating access transistors of  $(BL_{W_1}, BL_{R_1})$





- Example 4x4
  - Read
    - Cell (0,1)
    - W = 0
    - $WL_0 = 1$
    - $WL_1 = 0$
    - Column decoder
      - Activating access
        transistors of  $(BL_{W_1}, BL_{R_1})$





- Example 4x4
  - Write
    - Cell (0,0)





- Example 4x4
  - Write
    - Cell (0,0)
    - W = 1





- Example 4x4
  - Write
    - Cell (0,0)
    - W = 1
    - $WL_0 = 1$
    - $WL_1 = 0$





- Example 4x4
  - Write
    - Cell (0,0)
    - W = 1
    - $WL_0 = 1$
    - $WL_1 = 0$
    - Column decoder
      - Activating access
        transistors of  $(BL_{W_0}, BL_{R_0})$





- Example 4x4
  - Write
    - Cell (0,0)
    - W = 1
    - $WL_0 = 1$
    - $WL_1 = 0$
    - Column decoder
      - Activating access
        transistors of  $(BL_{W_0}, BL_{R_0})$





# Thank you for your attention

Luca Crocetti (luca.crocetti@unipi.it)