Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Dimensionality Reduction and Images

Class Overview, by topic

Class Logistics and Agenda

Logistics:

- Next Time: Flipped Module
- Do quiz one after this lecture!!
- Turn in one per team (HTML), please include team member names from canvas

Agenda

- Common Feature Extraction Methods for Images
- Begin Town Hall, if time

Class Overview, by topic

Features of Images

Extracting Features: Convolution

- For images:
 - kernel (matrix of values)
 - slide kernel across image, pixel by pixel
 - multiply and accumulate

This Example:

3x3 Kernel (dark)
Ignoring edges of input
Input Image is 5x5
Output is then 3x3

Convolution

$$\sum \left(\mathbf{I} \left[i \pm \frac{r}{2}, j \pm \frac{c}{2} \right] \odot \mathbf{k} \right) = \mathbf{O}[i, j] \quad \text{output image at pixel } i, j$$

input image slice centered in i,j with range $r \times c$

kernel of size, $r \times c$ usually r=c

0	0	0	0	0	0	0	0	0
0	1	2	3	4	12	9	8	0
0	5	2	3	4	12	9	8	0
0	5	2	1	4	10	9	8	0
0	7	2	1	4	12	7	8	0
0	7	2	1	4	14	9	8	0
0	5	2	3	4	12	7	8	0
0	5	2	1	4	12	9	8	0
0	0	0	0	0	0	0	0	0

input image, I	1	•	\blacksquare
mpat mago, I	inniit	ımade	
	πραι	mnage,	1

0	0	0
2	3	4
2	3	4
		_
1	2	1
1 2	2	1 2

kernel filter, **k** 3x3

20	21	36				
		:	: :	:	:	
		:	:			
		:	:		:	
		:	:		:	
	•••	•••	•••	•••	•••	• • •

output image, O

Convolution Examples

Vertical Edges

-1	0	1
-1	0	1
-1	0	1

Self test:

0	What does this do'

A. move left pixel to center

B. move right to center

C. blur

Sharpen

0	-1	0
-1	5	-1
0	-1	0

Common operations

DAISY: same features, regardless of orientation

- 1. Select *u*,*v* pixel location in image and radius
- 2. Take histogram of average gradient magnitudes in circle

for each orientation $h_{\Sigma}(u,v)$

- 3. Select circles in a ring, R
- 4. For each circle on the ring, take another

histogram $h_{\Sigma}(\mathbf{l}_{O}(u, v, R_{1}))$

- 5. Repeat for more rings
- 6. Save all histograms as "descriptors"

$$[h_{\Sigma}(\cdot),h_{\Sigma}(\mathbf{l}_{1}(\cdot,R_{1})),h_{\Sigma}(\mathbf{l}_{2}(\cdot,R_{1}))\dots]$$

7. Can concatenate descriptors as "feature" vector at that pixel

Efficient DAISY, Orient x Circle Radius convolutions

Daisy Operator at u_0, v_0 is Concatenated ||Histograms||

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{ op}(u_0,v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)), \\ \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0, v_0, R_2)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0, v_0, R_2)),$$

one convolution per orientation

one convolve per ring size

take **normalized** histogram of magnitudes

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\left[\mathbf{G}_{1}^{\Sigma}(u,v), \dots, \mathbf{G}_{H}^{\Sigma}(u,v) \right]^{\top} \right]$$

Tola et al. "Daisy: An efficient dense descriptor applied to wide-baseline stereo." Pattern Analysis and Machine Intelligence, IEEE

An intuition for the future: DAISY workflow

Hyper Parameters in DAISY, need selection

Num orientations within each ci

Num of bins in histogram

daisy(img, step=180, radius=58, rings=2, histograms=6,
 orientations=8, visualize=True)

Params

step, radius, num rings, num histograms per ring, orientations, *bins per histogram*

More Image Processing

Demo

Gradients
DAISY
(if time)Gabor Filter Banks

Other Tutorials:

http://scikit-image.org/docs/dev/auto_examples/

Matching versus Bag of Features

 Not a difference of vectors, but a percentage of matching points

SURF, ORB, SIFT, DAISY

Feature Matching

Matching test image to source dataset

- 1. Choose src image from dataset
- 2. Take keypoints of src image
- 3. Take keypoints of test image
- 4. For each kp in src:
 - 1. Match with closest kp in test
 - 2. How to define match?
- 5. Count number of matches between images
- 6. Determine if src and test are similar based on number of matches
- 7. Repeat for new src image in dataset
- 8. Once all images measured, choose best match as the target for the test image

match_descriptors

Scikit-image Implementation

skimage.feature. match_descriptors (descriptors1, descriptors2, metric=None, p=2,
max_distance=inf, cross_check=True, max_ratio=1.0)

[source]

Brute-force matching of descriptors.

For each descriptor in the first set this matcher finds the closest descriptor in the second set (and vice-versa in the case of enabled cross-checking).

