Betweenness and Linear Geometries

Definition 1 (Betweenness). Let \mathcal{P} be an incidence geometry. We say that a ternary relation $[\cdot \cdot \cdot]$ on the set of points of \mathcal{P} is a betweenness relation if the following properties hold.

B1. If [xyx], then x = y, for all points x and y.

B2.

B3.

Definition 2 (Segment, Ray). Let x and y be distinct points in an incidence geometry $\mathcal{P} = (P, L)$.

• The set

$$\overline{xy} = \{ z \in P \mid z = x \text{ or } z = y \text{ or } [xzy] \}$$

is called the segment with endpoints x and y. If $z \in \overline{xy}$ and $z \neq x$ and $z \neq y$, we say that z is interior to \overline{xy} .

• The set

$$\overrightarrow{xy} = \{z \in P \mid z = x \text{ or } z = y \text{ or } [xzy] \text{ or } [xyz]\}$$

is called the ray with vertex x toward y.

Examples

 \mathbb{R}^2

 \mathcal{A}

The Trichotomy Property

The 4-Point Property