SEQUENCE LISTING

<110> Clark, Janet

<120> METHOD FOR IDENTIFYING COMPOUNDS THAT
AFFECT EXPRESSION OF TRYPTOPHAN HYDROXYLASE ISOFORM 2

<130> 21487YP

<150> PCT/US2004/

<151> 2004-10-20

<150> 60/514,268

<151> 2003-10-24

<160> 12

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 447

<212> PRT

<213> Mus musculus

<400> 1

Met Ile Glu Asp Asn Lys Glu Asn Lys Glu Asn Lys Asp His Ser Ser

10 15

Glu Arg Gly Arg Val Thr Leu Ile Phe Ser Leu Glu Asn Glu Val Gly

20 25 30

Gly Leu Ile Lys Val Leu Lys Ile Phe Gln Glu Asn His Val Ser Leu

35 40 49

Leu His Ile Glu Ser Arg Lys Ser Lys Gln Arg Asn Ser Glu Phe Glu

50 55 60

Ile Phe Val Asp Cys Asp Ile Ser Arg Glu Gln Leu Asn Asp Ile Phe

65 70 75 80

Pro	Leu	Leu	Lys		His	Ala	Thr	vaı	Leu 90	ser	vai	Asp	ser	95	Asp
~ 7	-	ml	23-	85	01	3	77-7	M-4	-	TT b	17-1	Dwo	m~~		Dro
GIn	ьeu	Thr	100	ьуѕ	GIU	Asp	vai	105	GIU	1111	vai	PIO	Trp 110	FIIC	PLO
Lvs	Lys	Ile	Ser	Asp	Leu	Asp	Phe	Cys	Ala	Asn	Arg	Val	Leu	Leu	Tyr
•	•	115		-		-	120	_				125			
Gly	Ser	Glu	Leu	Asp	Ala	Asp	His	Pro	Gly	Phe	Lys	Asp	Asn	Val	Tyr
_	130			_		135					140				
Arg	Arg	Arg	Arg	Lys	Tyr	Phe	Ala	Glu	Leu	Ala	Met	Asn	Tyr	Lys	His
145					150					155					160
Gly	Asp	Pro	Ile	Pro	Lys	Ile	Glu	Phe	Thr	Glu	Glu	Glu	Ile	Lys	Thr
				165					170					175	
Trp	Gly	Thr	Ile	Phe	Arg	Glu	Leu	Asn	Lys	Leu	Tyr	Pro	Thr	His	Ala
			180					185					190		
Cys	Arg	Glu	Tyr	Leu	Arg	Asn	Leu	Pro	Leu	Leu	Ser	Lys	Tyr	Cys	Gly
		195					200					205			
Tyr	Arg	Glu	Asp	Asn	Ile	Pro	Gln	Leu	Glu	Asp	Val	Ser	Asn	Phe	Leu
	210					215					220				
Lys	Glu	Arg	Thr	Gly	Phe	Ser	Ile	Arg	Pro	Val	Ala	Gly	Tyr	Leu	Ser
225					230					235					240
Pro	Arg	Asp	Phe	Leu	Ser	Gly	Leu	Ala	Phe	Arg	Val	Phe	His	Cys	Thr
				245					250					255	
Gln	Tyr	Val	Arg	His	Ser	Ser	Asp	Pro	Leu	Tyr	Thr	Pro	Glu	Pro	Asp
			260					265					270		
Thr	Cys	His	Glu	Leu	Leu	Gly	His	Val	Pro	Leu	Leu	Ala	Glu	Pro	Ser
		275					280					285			
Phe	Ala	Gln	Phe	Ser	Gln	Glu	Ile	Gly	Leu	Ala	Ser	Leu	Gly	Ala	Ser
	290					295					300				
Glu	Glu	Thr	Val	Gln	Lys	Leu	Ala	Thr	Cys	Tyr	Phe	Phe	Thr	Val	Glu
305					310					315					320
Phe	Gly	Leu	Cys	Lys	Gln	Asp	Gly	Gln		Arg	Val	Phe	Gly	Ala	Gly
				325					330					335	
Leu	Leu	Ser	Ser	Ile	Ser	Glu	Leu		His	Ala	Leu	Ser	Gly	His	Ala
			340					345					350		
Lys	Val		Pro	Phe	Asp	Pro		Ile	Ala	Cys	Lys		Glu	Cys	Leu
		355					360					365			_
Ile	Thr	Ser	Phe	Gln	Asp	Val	Tyr	Phe	Val	Ser	Glu	Ser	Phe	Glu	Asp

Ala Lys Glu Lys Met Arg Glu Phe Ala Lys Thr Val Lys Arg Pro Phe Gly Leu Lys Tyr Asn Pro Tyr Thr Gln Ser Val Gln Val Leu Arg Asp Thr Lys Ser Ile Thr Ser Ala Met Asn Glu Leu Arg Tyr Asp Leu Asp Val Ile Ser Asp Ala Leu Ala Arg Val Thr Arg Trp Pro Ser Val

<210> 2

<211> 488

<212> PRT

<213> Mus musculus

<400> 2

Met Gln Pro Ala Met Met Phe Ser Ser Lys Tyr Trp Ala Arg Arg Gly Leu Ser Leu Asp Ser Ala Val Pro Glu Asp His Gln Leu Leu Gly Ser Leu Thr Gln Asn Lys Ala Ile Lys Ser Glu Asp Lys Lys Ser Gly Lys Glu Pro Gly Lys Gly Asp Thr Thr Glu Ser Ser Lys Thr Ala Val Val Phe Ser Leu Lys Asn Glu Val Gly Gly Leu Val Lys Ala Leu Arg Leu Phe Gln Glu Lys His Val Asn Met Leu His Ile Glu Ser Arg Arg Ser Arg Arg Arg Ser Ser Glu Val Glu Ile Phe Val Asp Cys Glu Cys Gly Lys Thr Glu Phe Asn Glu Leu Ile Gln Leu Lys Phe Gln Thr Thr Ile Val Thr Leu Asn Pro Pro Glu Ser Ile Trp Thr Glu Glu Glu Asp Leu Glu Asp Val Pro Trp Phe Pro Arg Lys Ile Ser Glu Leu Asp

Arg	Cys	ser	HIS	Arg	vai	Leu	мет	Tyr	170	Thr	GIU	Leu	Asp	175	Asp
ніс	Pro	Glv	Phe		Asp	Δsn	Val	Tur		Gln	Ara	Ara	Lvs		Phe
		U -1	180	-10				185		01			190	-1-	
Val	Asp	Val	Ala	Met	Gly	Tyr	Lys	Tyr	Gly	Gln	Pro	Ile	Pro	Arg	Val
		195					200					205			
Glu	Tyr	Thr	Glu	Glu	Glu	Thr	Lys	Thr	Trp	Gly	Val	Val	Phe	Arg	Glu
	210					215					220				
Leu	Ser	Lys	Leu	Tyr	Pro	Thr	His	Ala	Cys	Arg	Glu	Tyr	Leu	Lys	Asn
225					230					235					240
Leu	Pro	Leu	Leu	Thr	Lys	Tyr	Cys	Gly	Tyr	Arg	Glu	Asp	Asn	Val	Pro
				245					250					255	
Gln	Leu	Glu	Asp	Val	Ser	Met	Phe	Leu	Lys	Glu	Arg	Ser	Gly	Phe	Thr
			260					265					270		
Val	Arg	Pro	Val	Ala	Gly	Tyr	Leu	Ser	Pro	Arg	Asp	Phe	Leu	Ala	Gly
		275					280					285			
Leu	Ala	Tyr	Arg	Val	Phe	His	Cys	Thr	Gln	Tyr	Val	Arg	His	Gly	Ser
	290					295					300				
Asp	Pro	Leu	Tyr	Thr	Pro	Glu	Pro	Asp	Thr	Cys	His	Glu	Leu	Leu	Gly
305					310					315					320
His	Val	Pro	Leu	Leu	Ala	Asp	Pro	Lys	Phe	Ala	Gln	Phe	Ser	Gln	Glu
				325					330					335	
Ile	Gly	Leu	Ala	Ser	Leu	Gly	Ala	Ser	Asp	Glu	Asp	Val	Gln	Lys	Leu
			340					345					350		
Ala	Thr	Cys	Tyr	Phe	Phe	Thr	Ile	Glu	Phe	Gly	Leu	Cys	Lys	Gln	Glu
		355					360					365			
Gly	Gln	Leu	Arg	Ala	Tyr	Gly	Ala	Gly	Leu	Leu	Ser	Ser	Ile	Gly	Glu
	370					375					380				
Leu	Lys	His	Ala	Leu	Ser	Asp	Lys	Ala	Cys	Val	Lys	Ser	Phe	Asp	Pro
385					390					395					400
Lys	Thr	Thr	Cys		Gln	Glu	Cys	Leu		Thr	Thr	Phe	Gln	_	Ala
		_		405				_	410		_			415	
Tyr	Phe	Val		Asp	Ser	Phe	Glu		Ala	Lys	Glu	Lys		Arg	Asp
n).	- 1	• .	420	- 1		_	_	425	_		_	-1	430	_	_
rne	Ala		ser	тте	Thr	Arg		Phe	ser	val	Tyr		Asn	Arg	Tyr
m1- · ·	0 1	435	- 3	a 3			440		m'			445	a 3		••
Inr	GIN	ser	тте	GIU	Ile	ьeu	гàг	Asp	Tnr	Arg	ser	тте	GIU	Asn	val

<211> 818

460 450 455 Val Gln Asp Leu Arg Ser Asp Leu Asn Thr Val Cys Asp Ala Leu Asn 480 470 475 Lys Met Asn Gln Tyr Leu Gly Ile 485 <210> 3 <211> 219 <212> RNA <213> Artificial Sequence <220> <223> TPH2a riboprobe template <400> 3 gccatgcagc ccgcaatgat gatgttttcc agtaaatact gggccaggag agggttgtcc 60 ttggattctg ctgtgccaga agatcatcag ctacttggca gcttaacaca aaataaggct 120 atcaaaagcg aggacaagaa aagcggcaaa gagcccggca aaggcgacac cacagagagc 180 219 agcaagacag cagttgtgtt ctccttgaag aatgaagtt <210> 4 <211> 219 <212> DNA <213> Artificial Sequence <220> <223> TPH2b riboprobe <400> 4 gtgaaagcac ttagactatt ccaggaaaaa catgtcaaca tgcttcatat cgaatccagg 60 cggtcccggc gaagaagttc tgaagtcgaa atcttcgtgg actgcgaatg tggcaaaacg 120 gaattcaatg agctcatcca gttgctgaaa tttcagacca ccattgtgac cctgaatccg 180 219 cctgagagca tttggacgga ggaagaagat ctcgaggat <210> 5

- 5 -

```
<212> DNA
<213> Artificial Sequence
<220>
<223> TPH2c riboprobe
<400> 5
atgeageeeg caatgatgat gtttteeagt aaataetggg eeaggagagg gttgteettg 60
gattetgetg tgecagaaga teateageta ettggeaget taacacaaaa taaggetate 120
aaaagcgagg acaagaaaag cggcaaagag cccggcaaag gcgacaccac agagagcagc 180
aagacagcag ttgtgttctc cttgaagaat gaagttggtg ggctggtgaa agcacttaga 240
ctattccagg aaaaacatgt caacatgctt catatcgaat ccaggcggtc ccggcgaaga 300
agttctaagt cgaaatcttc gtggactgcg aatgtggcaa aacggaattc aatgagctca 360
tccagttgct gaaatttcag accaccattg tgaccctgaa tccgcctgag agcatttgga 420
cggaggaaga agatctcgag gatgtgccgt ggttccctcg gaagatctct gagttagaca 480
gatgetetea eegagteete atgtaeggea eegagettga tgeegaeeat eeaggattta 540 .
aggacaatgt ctatcgacag aggaggaagt attttgtgga tgtggccatg ggctataaat 600
atggtcagcc cattcccagg gtcgagtaca cagaagaaga gactaaaact tggggtgttg 660
tgttccggga gctctccaaa ctctacccga ctcatgcttg ccgggagtac ctgaaaaacc 720
tececetget gaecaagtae tgtggetaea gggaagaeaa egtgeegeaa etggaagaeg 780
                                                                   818
tctccatgtt tctgaaagag cgatctggct tcacagtg
<210> 6
<211> 842
<212> DNA
<213> Artificial Sequence
<220>
<223> TPH2-892 riboprobe
<400> 6
gaattcacgg aagaagagat taagacctgg gggaccatct tccgagagct aaacaaactc 60
tacccgaccc acgcctgcag ggagtacctc agaaacctcc ctttgctctc aaaatactgt 120
ggctatcggg aagacaacat cccgcaactg gaggatgtct ccaacttttt aaaagaacgc 180
actgggtttt ccatccgtcc tgtggctggt tacctctcac cgagagattt tctgtcgggg 240
ttagcettte gagtetttea etgeacteag tatgtgagae acagtteaga teccetetae 300
```

actocagage cagacacetg ccatgaacte ctaggecacg tteetetett ggetgaacec 360

```
agttttgctc aattctccca agaaattggc ctggcttccc ttggagcttc agaggagaca 420
gttcaaaaac tggcaacgtg ctactttttc actgtggagt ttgggctgtg caaacaagat 480
ggacagetga gagtetttgg ggeeggettg etttetteea teagtgaaet caaacatgea 540
ctttctggac atgccaaagt caagcccttt gatcccaaga ttgcctgtaa acaggaatgt 600
ctcatcacga gcttccagga tgtctacttt gtatctgaga gctttgaaga tgcaaaggag 660
aagatgagag aatttgccaa gaccgtgaag cgcccgtttg gactgaagta caacccgtac 720
acacagagtg ttcaggttct cagagacacc aagagcataa ctagtgccat gaatgagttg 780
eggtagacet tgatgteate agtgatgeee tegetagggt caccaggtgg cecagtgtgt 840
                                                                   842
ga
<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Murine TPH2 forward primer mTPH2-514F
<400> 7
gaccaccatt gtgaccctga at
                                                                   22
<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Murine TPH2 forward primer mTPH2-1270F
<400> 8
ttcgtccatc ggagaattga a
                                                                   21
<210> 9
<211> 22
<212> DNA
```

<213> Artificial Sequence

<220>	
<223> Murine TPH2 reverse primer mTPH2-585R	
<400> 9	
gaccaccatt gtgaccctga at	22
gaccaccacc gegaccoega ac	24
<210> 10	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Murine TPH2 reverse primer mTPH2-1344R	
<400> 10	
caggtcgtct ttgggtcaaa g	21
<210> 11	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Murine TPH2 probe mTPH2-565T	
<400> 11	
ttetteetee gteeaaatge teteagg	27
<210> 12	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Murine TPH2 probe mTPH2-1292T	
<400> 12	

catgctcttt ccgacaaggc gtgtgt

26