Sets

Terms

set = a well-defined collection of elements from some domain

{ 1, 2, 7 } 13 the same or { 1, 7, 2 }, no displication allowed.

well-defined = for every element of the domain, it can be determined whether the element belongs in the set or not

x ∈ A means x is in the set A

subset: $A \subseteq B$ iff $(\forall x \in A)(x \in B)$

strict subset: $A \subset B$ $\uparrow f$ $A \subseteq B \land (\exists x)(X \in B \land x \notin A)$ set equality: A = B $\uparrow f$ $A \subseteq B$ $\land B \subseteq A$

VW= set of all VW-Madison students. CS 240 = { x \in UW | S 240 (X) } set builder notation.

CSZYOC UW

empty set : $\{\ \}$ or ϕ

cardinality: |A| = # elements in $A \leftarrow can be finite of infinite.$

(\$\psi \= 0 |C5\psi \= 499

Operations on sets

Given domain D

union: $A \cup B = \{x \in D \mid x \in A \lor x \in B\}$

intersection: $A \cap B = \{X \in D \mid X \in A \land X \in B\}$

set difference : A − B = { X ∈ D | X ∈ A ∧ X ∉ B }

complement: $\overline{A} = \{ x \in D \mid x \notin A \} = D - A$.

Cartesian product: $A \times B = \{(a,b) \mid a \in A \land b \in B\}$ order matters

SMO CX)

Sets and propositions

Prove the proposition: Let A, B, and C be sets. Then $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof (using propositional logic): & got builder notation

AUB nc) =
$$\{x \mid x \in AU(B \cap C)\}$$
 set builder notation.
= $\{x \mid x \in A \ v \ x \in BOC\}$ = def of V

=
$$\{X \mid (X \in A \lor X \in B) \land (X \in A \lor X \in C)\}$$

= $\{X \mid (X \in A \lor B) \land (X \in A \lor C)\}$ def of V

Using Venn diagrams to understand the proposition:

Sets (continued)

Power Set PCR)

The **power set** of a set A is the set of all subsets of A.

Example: Let $A = \{x \in \mathbb{Z} \mid x \text{ is prime } \land x < 10\}$ $A = \{x \in \mathbb{Z} \mid x \text{ is prime } \land x < 10\}$

- 1. What is AT?
- 2. What is *P*(A)?
- 3. What is |P(A)|?

Q. { \$, \$21, 131, 554, {7}, \$2.33, \$2,53, {2,7}, {3.5}, \$3.73, \$5.73, \$2.13,53, \$2,13, 7), (2,573, (3,5,73, 22,3,5,73)

Countable Sets

Definition: A set is countable iff

- it is finite, or
- it is infinite and there is an enumeration consisting exactly of all elements in that set

enumeration: a listing of elements in the set. i.e. an ordering of elements in the set. 1st els, 2 nd est, 3 nd est. ------

Set S is countable means there is a one-to-one correspondence (or matching):

possition in enumeration: 15^{1} 2^{nd} 3^{rd} 4^{th} 5^{th} elements of S given as e_1 e_2 e_3 e_4 e_5 ...

To show an enumeration is a matching, determine:

- Given $i \in \mathbf{Z}^+$, what is the i^{th} element in the enumeration of S?
- Given $k \in S$, at what position does k show up in the enumeration?

Examples of Countable Sets

Example: The set of all positive even numbers is countable.

what is the 1th est of enumeration:

-if i is even, then element is $\frac{7}{2}$ - if i is odd, then element is $-\frac{7-1}{2}$

Where does $k \in \mathbb{Z}$ appear in enumatiation? -if 1 < 90, then position is $2 \cdot k$. -if $k \in 0$, then position is $k = -(\frac{1}{2}) \Rightarrow N = -2k+1$

Uncountable Sets

A set is **uncountable** if it is not countable.

Example: The power set of the natural numbers is not countable. $\mathbb{P}^{(N)}$