Examen de Matemática Discreta II 22 de julio de 2008

Número de Examen	Cédula	Nombre y Apellido				

1. (35 puntos)

Sea Q el grupo generado por las matrices complejas:

$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 $z = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, donde $i^2 = -1$.

- a) Calcular wz, zw, w^n y z^n , para todo $n \in \mathbb{N}$.
- b) Probar que:
 - i) Q no es abeliano;
 - ii) Q es de orden 8;
 - iii) todo subgrupo de Q es normal.
- c) Calcular Z(Q).
- d) Probar que $Q/Z(Q) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

2. (35 puntos)

- a) Dado $n = p_1^{\alpha_1}.p_2^{\alpha_2}...p_t^{\alpha_t}$, definimos $\delta(n) = \text{mcm}\{\phi(p_1^{\alpha_1}), \cdots, \phi(p_t^{\alpha_t})\}$ donde ϕ es la función de Euler. Probar que, si mcd(a, n) = 1, entonces $a^{\delta(n)} \equiv 1 \mod(n)$.
- b) Concluir que para todo $a \in \mathbb{N}$ tal que mcd(a,30) = 1, vale que $a^4 \equiv 1 \mod(120)$.
- c) Se define por recurrencia la sucesión $(a_n)_{n \in \mathbb{N}}$, para todo $n \in \mathbb{N}$, tal que $a_{n+2} = 7a_{n+1} + 40a_n$, con $a_1 = 21$, y $a_0 = 3$.
 - i) Probar que a_n es múltiplo de 3, para todo $n \in \mathbb{N}$.
 - ii) Calcular a_{2008} mód(120).

3. (30 puntos)

- a) Describir el método de Diffie Hellman para acuerdo de clave.
- b) Alex y Pedro se ponen de acuerdo en el primo p = 73 y g = 11. Pedro elige el número secreto n = 70 y Alex le envía $g^m = 17$. ¿Cuál es la clave secreta que acuerdan Alex y Pedro?
- c) Asignamos valores a algunos caracteres según la tabla siguiente:

В	D	Е	G	I	N	О	X	Q	Y	Z	Т	U
0	1	2	3	4	5	6	7	8	9	10	11	12

Definimos el criptosistema afín de la siguiente manera: para $a,b \in Z$ con $1 \le a \le 12,\ 0 \le b \le 12$ definimos la siguiente función de encriptado $E: Z_{13} \to Z_{13}/E(x) = ax + b$ (mód 13).

Sea $K(0 \le K < 73)$ la clave acordada por Alex y Pedro en la parte anterior, escribamos $K = a \cdot 13 + b$ con $0 \le a < 13$ y $0 \le b < 13$. Para encriptar un texto se encripta letra a letra usando la función de encriptado. Encriptar el texto BIEN.

- d) Supongamos ahora que somos espías y que sabemos que Alex le envía a Pedro un mensaje encriptado según el criptosistema anterior (esta vez desconocemos los valores a y b de la función de encriptado). Espías ayudantes han descubierto que el mensaje original (sin encriptar) comienza con la letra G y termina con la letra D y que el mensaje encriptado es BQQU.
 - i) Hallar la función de encriptar (o sea los valores de a y b) que usan Alex y Pedro.
 - ii) Desencriptar el mensaje BQQU.

.