Analysis of Algorithms

1 Analysis of Algorithms

What are we measuring when we analyze an algorithm?

- How fast?
- Memory usage?
- What to measure?
 - Number of:
 - * Instructions (add, multiply)
 - * Loops
 - * Comparisons
 - Input size

Example 1. Summing an array

```
int SumArray( int A[], int nA )
{
   int sum = 0;

   for( int i = 0 ; i < nA ; i++ )
   {
      sum += A[i];
   }

   return sum;
}</pre>
```

Example 2. Summing a Two-dimensional array

```
int Sum2DArray( int A[MAX_ROWS][], int nRows, int nCols )
{
   int sum = 0;

   for( int i = 0 ; i < nRows ; i++ )
   {
      for( int j = 0 ; j < nCols ; j++ )
            sum += A[i][j];
   }

   return sum;
}</pre>
```

1.1 Goals of Algorithm Analysis

- Characterize algorithm efficiency (time or space utilization) in terms of the input size
- Implementation independent (when possible)
- \bullet Ignore implementation dependent constants
- \bullet Ignore finite number of special cases

1.2 Big Oh $(\mathcal{O}(n))$

Mathematical definition:

Function f(n) is in $\mathcal{O}(g(n))$ ("f is Big-Oh of g") when there are constants c and n_0 such that for all $n \geq n_0$

$$f(n) \le c \ g(n_0)$$

1.3 Useful Rules

- Additive constants don't matter (so, throw them out).
- Multiplicative constants don't matter (so, throw them out).
- Only dominant terms (in sums) matter (throw out the rest) Formally: $\mathcal{O}(f(n) + g(n)) = \mathcal{O}(max(f(n), g(n)))$.

So, if T(n) is in $\mathcal{O}(f(n)+g(n))$ then T(n) is in $\mathcal{O}(\max(f(n),g(n)))$, where $\max(f,g)$ is f if there is some n_0 such that for all $n \geq n_0$, f(n) > g(n) and g otherwise.

Example 3. 4N + 5

An algorithm takes 4N+5

What is $\mathcal{O}(N)$?

Example 4. $7N + 2 \log N + 2N^2$

An algorithm takes $7N + 2 \log N + 2N^2$

What is $\mathcal{O}(N)$?

1.4 Common Growth Rate Comparison

$\mathcal{O}(1)$	constant
$\mathcal{O}(\log N)$	logarithmic
$\mathcal{O}(N)$	linear
$\mathcal{O}(N \log N)$	linear-logarithmic
$\mathcal{O}(N^2)$	quadratic
$\mathcal{O}(N^3)$	cubic
$\mathcal{O}(2^N)$	exponential

Comparison of Growth Rate Curves

Comparison of Logarithmic Curves

N	log_2N	N	N^2	N^3	2^N
4	2	4	16	64	16
8	3	8	64	512	256
16	4	16	256	4096	10^{4}
32	5	32	1024	10^{4}	10^{9}
64	6	64	4096	10^{5}	10^{19}
128	7	128	10^{4}	10^{6}	10^{38}

Table 1: Comparison Of Common Growth Rates

Note: Magnitude growth for $2^N!$ How long is 10^{38} seconds, milliseconds, microseconds, nanoseconds?

How long is 10^{38} seconds?

Google search: 10^38 seconds in years (10^38) seconds = 3.16887646 10^30 years ? 365 days = 0.999337 years

1.5 Brief Summary

Most algorithms perform differently for different inputs. This leads to several types of analysis:

- Worst case
- Best case
- Average case: performance averaged over all inputs of same size.

We will see examples of these in the near future.