Review Outline

- Digital Circuits
 - Circuits that represent signals as discrete levels, rather than as a continuous range
- Digital Circuits include
 - Combinational Circuits
 - Sequential Circuits
- Bubble Pushing/DeMorgan Theorem

Combinational-Circuit Analysis

- *Combinational* circuits -- outputs depend only on current inputs (not on history), which means combinational circuit has no memory.
- Combinational analysis:
 - Truth table
 - K map
 - Optimized expressions/functions
 - simulation/test bench
 - Write functional description in HDL or build a circuit directly
 - Define test conditions/test vectors
 - Compare circuit output with functional description (or known-good realization)
 - Repeat for "random" test vectors

Switching Theory

• Since there are so many Boolean equations that produce the same truth table (and are therefore equivalent), there must be some way to convert from one form to another.

Postulate	x + 0 = x	$\mathbf{x} \cdot 1 = \mathbf{x}$
Postulate	x + x' = 1	$\mathbf{x} \cdot \mathbf{x}' = 0$
Theorem	X + X = X	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$
Theorem	x + 1 = 1	$\mathbf{X} \cdot 0 = 0$
Theorem, involution	$(\mathbf{x}')' = \mathbf{x}$	
Postulate, commutative	x + y = y + x	xy = yx
Theorem, associative	x + (y + z) = (x + y) + z	x(yz) = (xy)z
Postulate, distributive	x(y+z) = xy + xz	x + yz = (x + y)(x + z)
Theorem, DeMorgan	(x+y)' = x'y'	(xy)' = x' + y'
Theorem, absorption	x + xy = x	x(x+y)=x

Brute-force design

- Truth table -->
 canonical sum
 (sum of minterms)
- Example: prime-number & 1 detector
 - 4-bit input, $N_3N_2N_1N_0$

$$F = \Sigma_{N3N2N1N0}(1,2,3,5,7,11,13)$$

row	N_3	N_2	N_1	N_0	F
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

 $F = \Sigma_{N_*N_2,N_1,N_0}(1,2,3,5,7,11,13)$

$$= N_3' \cdot N_2' \cdot N_1' \cdot N_0 + N_3' \cdot N_2' \cdot N_1 \cdot N_0' + N_3' \cdot N_2' \cdot N_1 \cdot N_0 + N_3' \cdot N_2 \cdot N_1' \cdot N_0 + N_3' \cdot N_2 \cdot N_1 \cdot N_0 + N_3 \cdot N_2' \cdot N_1 \cdot N_0 + N_3 \cdot N_2 \cdot N_1' \cdot N_0$$

Review/Introduction

Algebraic simplification

• Theorem T10

$$X \cdot Y + X \cdot Y' = X$$

$$\begin{split} F &=& \; \; \Sigma_{N_3,N_2,N_1,N_0}(1,3,5,7,2,11,13) \\ &=& \; \; N_3' \cdot N_2' N_1' N_0 + N_3' \cdot N_2' \cdot N_1 \cdot N_0 + N_3' \cdot N_2 \cdot N_1' \cdot N_0 + N_3' \cdot N_2 \cdot N_1 \cdot N_0 + \dots \\ &=& \; \; (N_3' \cdot N_2' \cdot N_1' \cdot N_0 + N_3' \cdot N_2' \cdot N_1 \cdot N_0) + (\cdot N_3' \cdot N_2 \cdot N_1' \cdot N_0 + N_3' \cdot N_2 \cdot N_1 \cdot N_0) + \dots \\ &=& \; \; N_3' N_2' \cdot N_0 + N_3' \cdot N_2 \cdot N_0 + \dots \end{split}$$

Reduce number of gates and gate inputs

Resulting circuit

F=? use K-map to optimize

Combinational-Circuit Design

- Sometimes you can write an equation or equations directly using "logic" (the kind in your brain).
- Basic gates: Inverter/AND/NAND/OR/NOR/XOR/XNOR
- Ex: design an alarm system to meet the following specifications
 - 1. Whenever the panic signal is on, the alarm should be on
 - 2. When any of the window, door and garage open and the alarm system enabled and the existing condition is false, the alarm should be on
 - Note: on '1', off '0', open '0', false '0'

Combinational-Circuit Design (cont)

alarm system functions

```
ALARM = PANIC + ENABLE · EXITING' · SECURE'

SECURE = WINDOW · DOOR · GARAGE

ALARM = PANIC + ENABLE · EXITING' · (WINDOW · DOOR · GARAGE)'
```

• Corresponding circuit

Karnaugh Maps (K-map)

- A K-map is a collection of squares
 - Each square represents a minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
- The K-map can be viewed as
 - A reorganized version of the truth table
 - A topologically-warped Venn diagram as used to visualize sets in algebra of sets

Some Uses of K-Maps

- Provide a means for:
 - Finding optimum or near optimum
 - SOP and POS standard forms, and
 - two-level AND/OR and OR/AND circuit implementations

for functions with small numbers of variables

- Visualizing concepts related to manipulating Boolean expressions, and
- Demonstrating concepts used by computer-aided design programs to simplify large circuits

Two Variable Maps

• A 2-variable Karnaugh Map:

Note that minterm m0 and minterm m1 are "adjacent" and differ in the value of the variable y

	y = 0	y = 1
$\mathbf{x} = 0$	$m_0 = \frac{\mathbf{x} \mathbf{y}}{\mathbf{x} \mathbf{y}}$	$\frac{\mathbf{m_1}}{\mathbf{X}} = \frac{\mathbf{X}}{\mathbf{Y}}$
x = 1	$m_2 \equiv X Y$	$m_3 = x y$

- Similarly, minterm m0 and
 minterm m2 differ in the x variable.
- Also, m1 and m3 differ in the x variable as well.
- Finally, **m2** and **m3** differ in the value of the variable y

K-Map and Truth Tables

- The K-Map is just a different form of the truth table.
- Example Two variable function:
 - We choose a,b,c and d from the set $\{0,1\}$ to implement a particular function, F(x,y).

Function Table

Input	Function
Values	Value
(x,y)	$\mathbf{F}(\mathbf{x},\mathbf{y})$
0 0	a
0 1	b
10	c
11	d

K-Map

	y = 0	y = 1
$\mathbf{x} = 0$	a	b
x = 1	c	d

K-Map Function Representation

• Example: F(x,y) = x

$\mathbf{F} = \mathbf{x}$	y = 0	y = 1
$\mathbf{x} = 0$	0	0
x = 1	1	1

• For function F(x,y), the two adjacent cells containing 1's can be combined using the Minimization Theorem:

$$F(x,y) = x\overline{y} + xy = x$$

K-Map Function Representation

• Example: G(x,y) = x + y

$\mathbf{G} = \mathbf{x} + \mathbf{y}$	y = 0	y = 1
$\mathbf{x} = 0$	0	1
x = 1	1	1

• For G(x,y), two pairs of adjacent cells containing 1's can be combined using the Minimization Theorem:

$$G(x,y) = (x\overline{y} + xy) + (xy + \overline{x}y) = x + y$$
Duplicate xy

Bubble Pushing

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic
 - Remember DeMorgan's Law

