(temporal) Motifs in discussions (trees)

Alberto Lumbreras

February 17, 2016

Overview

Introduction

Reddit dataset

Graph representations

Dynamics of conversations

Neighborhood census

You are the way you (structurally) talk?

Introduction

Reddit dataset Graph representations Dynamics of conversations

Neighborhood census

You are the way you (structurally) talk?

Reddit dataset

A forum of forums

Download from:

http://couch.whatbox.ca:36975/reddit/comments/monthly/

Extract forum of interest:

```
www.reddit.com/r/science
www.reddit.com/r/france
www.reddit.com/r/sociology
www.reddit.com/r/complexsystems
www.reddit.com/r/podemos
```

Graph representations

Graph of user interactions (a social network)

5/21

Graph representations

Trees of posts

Dynamics of conversations

Triads are not enough

Triads in trees of posts:

Only 3 possible triads (dyad, chain and star)

Motif	 	\wedge	\wedge	$\overline{}$				\triangle						
Motif ID		36	164	12	14	6	78	38	174	166	46	238	102	140

Triads in graph of user interactions:

Need of time in edges.

Temporal neighborhoods in trees

Definition

- ▶ $N_G(i, d)$: neighborhood of post i at distance d.
- ▶ $N_G(i, d, n)$: keep only the n neighbors in $N_G(i, d)$ that are temporally closest to post i (computed as $|t t_i|$)
- ▶ Keep only those posts in $N_G(i, d, n)$ that have a path to i.

 $N_G(i, d, n)$ is the **temporal neighborhood** of post i with distance d and order n. ¹

Introduction

Reddit dataset

Graph representations

Dynamics of conversations

Neighborhood census

You are the way you (structurally) talk

A real example

Distance d = 4 and order n = 4. 41 discussion patterns:

10/21 308 288 209 187 - 184 - 🗘 🤉 🗘

Cyclic dynamics

Proportions

Census and thread growth

Predictions

Q: Can we predict whether a thread will succeed based on its initial structure (neighborhoods)?

A: ...the answer in a few hours

Introduction

Reddit dataset

Graph representations

Dynamics of conversations

Neighborhood census

You are the way you (structurally) talk?

Overview

- Create a user × neighborhood matrix of counts.
- ► Z-normalize (users characterized by their deviation from the mean)
- Cluster!

Uncolored neighborhoods

Individual factor map (PCA)

Uncolored neighborhoods

k-means suggests 5 groups:

Introduction

Reddit dataset

Graph representations

Dynamics of conversations

Neighborhood census

You are the way you (structurally) talk?

Conclusions

- Temporal neighborhoods richer than triads to analyze the structure of conversations.
- Users can be characterized in terms of what type of neighborhood they participate in (or they trigger).

Future work:

- Do users jump from cluster to cluster (paths of roles)
- ▶ Are initial census predictive of the success of a discussion?.