Weather Prediction with Markov Chains

Math 42 Final Project Department of Mathematics, UCLA

> Junwon Choi Brian Chau Yifan Jiang Mingyeong Kim Nalin Chopra

Table of contents

O1 O2 O3
Problem description Simplifications Mathematical model

O4 O5 O6
Solution Result/Improvement Conclusion

O1 Problem description

Present the problem we are attempting to solve with background information

How can we predict the weather?

Weather app? Guessing? News Forecasting?

Problem description

- The only method to predict the weather was to use the past data of local experience
- Mathematical model + the data = weather prediction

Three questions about weather prediction

 Which mathematical model is most appropriate for weather prediction?

 How can we fit the selected model to predict weather in a particular location?

O2Simplifications

Explain the simplified way of the original problem. Justify the assumptions.

Data collection

- Weather data was collected from "https://www.visualcrossing.com"
 - UCLA (zip code 90024)
 - From the year 2000 and 2022
- Task:
 - Find categorical variables for discrete Markov chain

Analysis steps

- All seasons + Simplified (Long time frame)
- All seasons + Simplified (Short time frame)
- All seasons + 6 different weather conditions (Long time frame)
- All seasons + 6 different weather conditions (Short time frame)
- By season + 6 different weather conditions (Long time frame)
- All seasons + Simplified applied to UCSD/NYU (Long time frame)
 - For validation

Assumptions and Limitations

Assumptions:

 Weather condition for a day only depend on weather condition of the day before

Limitations:

 Failure to account for other factors like temperature and humidity changes

03 Mathematical model

Markov chain explanation with the standard mathematical paradigm

What are Markov Chains?

Andrey Andreyevich Markov

Markov chain

- A stochastic system that describes the sequence of possible events
- Properties:
 - The Markov assumption:

$$P(s_t|s_{t-1}, s_{t-2}, \dots, s_0) = P(s_t|s_{t-1})$$

 Conservation: the sum of the probabilities out of a state is equal to 1 Markov chain visual sample

Transition Matrix

Image Source: https://www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf

Application to Weather

- S = {Clear; Partially cloudy; Overcast; Rain; Rain, Partially cloudy; Rain, Overcast}
- A = {Rain, No Rain}

$$T_{\text{simplified}} = \frac{\text{Rain (R)}}{\text{No Rain (NR)}} \begin{pmatrix} Rain (R) & \text{No Rain (NR)} \\ P(R|R) & P(NR|R) \\ P(R|NR) & P(NR|NR) \end{pmatrix}$$

O4 Solution

Techniques to solve the mathematical problem

Calculating Transition Matrix

Training Data:

Day 1: Rain

Day 2: Rain

Day 3: No Rain

Day 4: Rain

•••

Day N: No Rain

- P(Rain | Rain)
- P(No Rain | Rain)
- P(Rain | No Rain)
- P(No Rain | No Rain)

All Seasons, simplified analysis (long time frame)

$$T = \frac{\text{Rain (R)}}{\text{No Rain (NR)}} \begin{pmatrix} \text{Rain (R)} & \text{No Rain (NR)} \\ 0.467 & 0.533 \\ 0.096 & 0.904 \end{pmatrix}$$

All Seasons, simplified analysis (short time frame)

$$T = \frac{\text{Rain (R)}}{\text{No Rain (NR)}} \begin{pmatrix} 0.495 & 0.505 \\ 0.085 & 0.915 \end{pmatrix}$$

All Seasons, 6 weather conditions (long time frame)

$$T = \begin{pmatrix} C & PC & OV & R & RPC & ROV \\ C & 0.690 & 0.199 & 0.001 & 0.034 & 0.073 & 0.004 \\ PC & 0.250 & 0.640 & 0.028 & 0.009 & 0.067 & 0.006 \\ 0.028 & 0.743 & 0.156 & 0.0 & 0.046 & 0.028 \\ 0.366 & 0.214 & 0.0 & 0.145 & 0.248 & 0.028 \\ 0.190 & 0.323 & 0.0242 & 0.029 & 0.335 & 0.098 \\ ROV & 0.055 & 0.339 & 0.0630 & 0.008 & 0.260 & 0.276 \end{pmatrix}$$

All Seasons, 6 weather conditions (short time frame)

$$T = \begin{pmatrix} C & PC & OV & R & RPC & ROV \\ C & 0.734 & 0.173 & 0.0 & 0.013 & 0.079 & 0.0 \\ PC & 0.249 & 0.636 & 0.037 & 0.004 & 0.064 & 0.011 \\ 0.0 & 0.765 & 0.206 & 0.0 & 0.029 & 0.0 \\ 0.5 & 0.056 & 0.0 & 0.222 & 0.222 & 0.0 \\ RPC & 0.183 & 0.254 & 0.0296 & 0.018 & 0.420 & 0.095 \\ ROV & 0.087 & 0.565 & 0.087 & 0. & 0.217 & 0.043 \end{pmatrix}$$

6 weather conditions, Fall

$$T = \begin{pmatrix} C & PC & OV & R & RPC & ROV \\ PC & 0.713 & 0.139 & 0.0 & 0.048 & 0.090 & 0.010 \\ 0.346 & 0.488 & 0.016 & 0.026 & 0.111 & 0.013 \\ 0.0 & 0.588 & 0.176 & 0.0 & 0.176 & 0.059 \\ 0.288 & 0.205 & 0.0 & 0.233 & 0.247 & 0.027 \\ RPC & 0.213 & 0.269 & 0.028 & 0.046 & 0.347 & 0.097 \\ ROV & 0.107 & 0.268 & 0.036 & 0.018 & 0.214 & 0.357 \end{pmatrix}$$

6 weather conditions, Winter

$$T = \begin{pmatrix} C & PC & OV & R & RPC & ROV \\ PC & 0.677 & 0.158 & 0.0 & 0.043 & 0.116 & 0.002 \\ 0.343 & 0.491 & 0.019 & 0.009 & 0.123 & 0.012 \\ 0.076 & 0.846 & 0.076 & 0.0 & 0.0 & 0.0 \\ RPC & 0.375 & 0.15 & 0.0 & 0.05 & 0.375 & 0.05 \\ 0.210 & 0.261 & 0.012 & 0.019 & 0.377 & 0.121 \\ 0.038 & 0.396 & 0.019 & 0.0 & 0.302 & 0.245 \end{pmatrix}$$

6 weather conditions, Spring

$$T = \begin{pmatrix} C & PC & OV & R & RPC & ROV \\ PC & 0.649 & 0.272 & 0.004 & 0.016 & 0.057 & 0.0 \\ 0.196 & 0.693 & 0.044 & 0.002 & 0.056 & 0.006 \\ 0.017 & 0.736 & 0.192 & 0.0 & 0.035 & 0.017 \\ 0.454 & 0.363 & 0.0 & 0.0 & 0.181 & 0.0 \\ RPC & ROV & 0.115 & 0.519 & 0.038 & 0.009 & 0.240 & 0.076 \\ 0.0 & 0.375 & 0.312 & 0.0 & 0.187 & 0.125 \end{pmatrix}$$

6 weather conditions, Summer

$$T = \begin{pmatrix} C & PC & OV & R & RPC & ROV \\ PC & 0.693 & 0.262 & 0.001 & 0.021 & 0.021 & 0.0 \\ 0.211 & 0.734 & 0.021 & 0.006 & 0.025 & 0.0 \\ 0.136 & 0.727 & 0.090 & 0.0 & 0.0 & 0.045 \\ 0.619 & 0.285 & 0.0 & 0.047 & 0.047 & 0.0 \\ 0.162 & 0.534 & 0.046 & 0.046 & 0.186 & 0.023 \\ 0.0 & 0.5 & 0.0 & 0.0 & 0.5 & 0.0 \end{pmatrix}$$

UCSD / NYU

• UCSD:

$$T = \frac{\text{Rain (R)}}{\text{No Rain (NR)}} \begin{pmatrix} 0.467 & 0.532 \\ 0.095 & 0.904 \end{pmatrix}$$

• NYU:

$$T = \frac{\text{Rain (R)}}{\text{No Rain (NR)}} \begin{pmatrix} \text{Rain (R)} & \text{No Rain (NR)} \\ 0.467 & 0.532 \\ 0.095 & 0.904 \end{pmatrix}$$

Same transition matrices as UCLA!

Applying Transition Matrix

Transition Matrix ————

Testing Data

Applying Transition Matrix

Testing Data + Predictions

Date	Original Condition	Predicted Condition
Test Start Date	†	1
	Already downloaded	Appended at each iteration
Test End Date		↓

Prediction process

At each step:

For example, with an all season simplified model (long time frame): Let Day 1 of the model be a 'No Rain' day, which would give a vector $V = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. We take transition matrix $T = \begin{pmatrix} 0.467 & 0.533 \\ 0.096 & 0.904 \end{pmatrix}$.

- Multiply V and the transpose of T using a Python function.
- This outputs a vector with two elements containing probabilities of 'Rain' or 'No Rain' given the past day is 'No Rain'.
- Markov chain model's key feature is randomness: Python function to use the two probabilities of the transposed second row as inputs to make a random choice.
- This choice determines whether Day 2 will be 'Rain' or 'No Rain'.
- Repeat this step by a desired amount.

```
def predict weather simplified(test data):
    state = {0:'rain', 1:'no rain'}
   n = len(test data) #how many steps to test
    start state = 1 #1 = No Rain
    test result = test data.copy()
   prev state = start state
   result = []
   result.append(state[start_state])
   while n-1:
        curr state = np.random.choice([0,1], p=t array[prev state]) #taking the probability from the transition matrix
        result.append(state[curr state])
        prev state = curr state
        n -= 1
    # curr state = np.random.choice([0,1], p=t array[prev state]) #taking the probability from the transition matrix
   # result.append(state[curr state])
    test result['predicted condition'] = result
    return test result
def find accuracy(predicted result):
    correct count = 0.0
    for i in range(len(predicted result)):
        if predicted_result.loc[i, 'condition'] == predicted_result.loc[i, 'predicted_condition']:
           correct count += 1
   correct prop = correct count / len(predicted result)
    return correct prop
def run predictions return avg accuracy(test data, trial count):
    accuracy sum = 0.0
   for i in range(trial count):
        predicted result = predict weather simplified(test data)
       accuracy = find accuracy(predicted result)
        accuracy sum += accuracy
    avg accuracy = accuracy sum / trial count
    return avg accuracy
```

```
# Sample prediction (for table graphic)
sample prediction = predict weather simplified(all seasons test)
sample accuracy = find accuracy(sample prediction)
print(sample prediction.head())
print(sample accuracy)
  index
          datetime condition predicted condition
0 6575 2018-01-01 no rain
                                       no rain
  6576 2018-01-02 no rain
                              no rain
   6577 2018-01-03 no rain
                               no rain
   6578 2018-01-04 no rain
                                  no rain
   6579 2018-01-05 no rain
                                      no rain
0.7652292950034223
run predictions return avg accuracy(all seasons test, 100)
```

0.7703011635865848

05 Result / Improvement

Analysis of results and discovery improvements

Result

The accuracy for all 10 of our models:

- All Seasons Simplified(long time frame): **77%**
- All Seasons Simplified(short time frame): 79%
- All Seasons 6 different weather conditions(long time frame): 37%
- All Seasons 6 different weather conditions(short time frame): **39%**
- By Season 6 different weather conditions(long time frame)
 - Fall: 37% / Winter: 35% / Spring: 40% / Summer: 45%
- All Seasons Simplified(long time frame) applied to UCSD/NYU
 - UCSD: **73%**
 - NYU: 43%

Improvement

- Implementation of time-inhomogeneous Markov chains
 - Our Transition Matrix stays constant
 - Time-inhomogeneous Markov chains Transition Matrix is generated again at each time step
 - Could lead to increase in accuracy

Improvement

- Extending time frame of analysis with second-order Markov chains
 - What is it?(This model uses the past two states to predict the next state, instead of one past state)
 - Attempted to implement
 - Met problem that prevents us from doing it.
 - No observation where the two previous states were 'clear' --> 'overcast'
 - Need more data

O6 Conclusion

Summarize what we have done and what we have learned

What we have done / learned

Project achievements:

- make a prediction
 model for weather that
 is independent of
 climate measurements
- expanded our model's scope by applying the transition matrices derived

Project takeaways:

- real world application of the Markov chain model
- common thinking process in a more accurate and systematic manner.

References

- [1] How has weather forecasting changed over the past two hundred years? The American Geosciences Institute, 2022.
- [2] Visual Crossing Corporation, 2022.
- [3] Randall Swift Douglas D. Mooney. A Course in Mathematical Modeling, page 122. The Mathematical Association of America, 1999.
- [4] Soumya Karlamangla. California is expected to enter a fourth straight year of drought. The New York Times, October.
- [5] Henry Maltby, et al. Markov chains. Brilliant.org, December 2022.

Questions?