D.H. n°6 pour le 13 novembre 2009

On pose $\omega = \frac{1+\sqrt{5}}{2}$ et on définit la suite dite de FIBONACCI par

$$F_1 = 1$$
, $F_2 = 1$ et $F_n = F_{n-1} + F_{n-2}$ si $n \ge 3$

On remarquera que $\omega^2 = \omega + 1$ et, dans la mesure du possible, on utilisera cette propriété de préférence à l'expression initiale de ω . On notera $\overline{\omega}$ l'autre racine réelle de l'équation $x^2 = x + 1$.

PARTIE I

- **I.1.** a. Vérifier que $\lim_{n\to+\infty} F_n = +\infty$.
 - **b.** Pour tout $n \ge 2$, calcular $F_n^2 F_{n-1}F_{n+1}$.
 - c. Déterminer la nature de la série de terme général

$$u_n = \frac{F_{n+1}}{F_n} - \frac{F_n}{F_{n-1}}, \quad n \geqslant 2$$

- **I.2.** a. Pour tout $n \geqslant 2$, vérifier que $\omega = \frac{\mathbf{F}_{n+1} \omega + \mathbf{F}_n}{\mathbf{F}_n \omega + \mathbf{F}_{n-1}}$.
 - **b.** Prouver les inégalités suivantes, pour $n \in \mathbb{N}^*$:

$$\frac{\mathbf{F}_{2n+2}}{\mathbf{F}_{2n+1}} < \omega < \frac{\mathbf{F}_{2n+1}}{\mathbf{F}_{2n}} \text{ et } 0 < \omega - \frac{\mathbf{F}_{2n+2}}{\mathbf{F}_{2n+1}} < \frac{1}{\mathbf{F}_{2n+1}\mathbf{F}_{2n}}$$

Trouver la nature et la limite éventuelle de la suite $\left(\frac{\mathbf{F}_{n+1}}{\mathbf{F}_n}\right)_{n\in\mathbb{N}^*}$.

PARTIE II

II.1. Exprimer F_n en fonction de ω , $\overline{\omega}$, n et $\sqrt{5}$.

N.B. cette expression sera utile dans certaines questions mais peut conduire à de longs calculs si elle est utilisée sans discernement.

- **II.2.** Prouver, par récurrence sur $k \in \mathbb{N}$, que $\omega^k + \overline{\omega}^k \in \mathbb{Z}$.
- **II.3.** En déduire que si n divise m alors F_n divise F_m dans \mathbb{N} .

PARTIE III

On note E(x) la partie entière du réel x.

- **III.1.** Pour tout $n \in \mathbb{N}^*$,
 - **a.** Prouver que $E(F_{2n-1}\omega) = F_{2n}$.
 - **b.** Calculer $E(F_{2n}\omega)$ et $E(F_{2n}\omega^2)$.

On note B l'ensemble des couples $(E(n\omega^2), E(n\omega))$ quand n parcourt \mathbb{N}^* :

$$B = \{ (E(n\omega^2), E(n\omega)) \mid n \in \mathbb{N}^* \}$$

- **III.2.** Montrer que B = $\{(p,q) \in \mathbb{N}^{*2} \mid q = E((p-q)\omega)\}.$
- III.3. Montrer que B = $\left\{ (p,q) \in \mathbb{N}^{*2} \mid 0 . Ce résultat sera utile pour la suite.$
- III.4. On note I l'ensemble des matrices carrées d'ordre 2, à coefficients entiers strictement positifs, vérifiant la condition

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{I} \Leftrightarrow \forall (p,q) \in \mathcal{B}, \quad (\mathcal{P},\mathcal{Q}) \in \mathcal{B}, \quad \text{où} \quad \begin{pmatrix} \mathcal{P} \\ \mathcal{Q} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$

- **a.** Calculer $\lim_{n \to +\infty} \frac{\mathrm{E}(n\omega^2)}{\mathrm{E}(n\omega)}$
 - Montrer que, si $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I$, alors $\omega = \frac{a\omega + b}{c\omega + d}$ et c = b = a d.

b. Soit $(a,b) \in \mathbb{N}^{*2}$; à tout $(p,q) \in \mathbb{N}^{*2}$, on fait correspondre $(P,Q) \in \mathbb{N}^2$ par

$$\begin{pmatrix} \mathbf{P} \\ \mathbf{Q} \end{pmatrix} = \begin{pmatrix} a & b \\ b & a - b \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$

Exprimer $\frac{P - Q\omega}{a - b\omega}$ en fonction de p, q, ω .

En déduire que si $\begin{pmatrix} a & b \\ b & a-b \end{pmatrix}$ appartient à I, alors $0 < a-b\omega < 1$.

On pourra, entre autres méthodes, introduire $S = \sup_{(p,q) \in B} (p - q\omega)$.

c. Montrer que, réciproquement, toute matrice de la forme $\begin{pmatrix} a & b \\ b & a-b \end{pmatrix}$ avec $(a,b) \in \mathbb{N}^{*2}$ et $0 < a-b \omega < 1$ est un élément de I.

Montrer que l'on est dans ce cas, en particulier, si $(a,b) \in B$.

PARTIE IV

Dans cette partie, M désigne la matrice $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ qui appartient à I puisque $0 < 2 - \omega < 1$.

IV.1. On cherche à caractériser les couples $(P,Q) \in B$ tels que le couple (p,q) défini par

(1)
$$\binom{\mathbf{P}}{\mathbf{Q}} = \mathbf{M} \binom{p}{q}$$

soit élément de B.

a. Montrer que, si l'on a (1) avec $(p,q) \in B$ alors $0 < P - Q\omega < \frac{1}{2\omega + 1}$.

b. Montrer que, si $(P,Q) \in B$ vérifie $0 < P - Q\omega < \frac{1}{2\omega + 1}$ alors (p,q) défini par (1) est élément de B.

IV.2. À tout $(x,y) \in \mathbb{R}^2$ on associe $\varphi(x,y) = x^2 - xy - y^2$.

Dans cette question, on étudie l'ensemble $\mathcal{C} = \{(p,q) \in \mathcal{B} \mid \varphi(p,q) = 1\}.$

a. Pour quels $n \in \mathbb{N}^*$ a-t-on $(F_{n+1},F_n) \in \mathbb{C}$?

b. Soit (p,q) un élément de C. Montrer que 0 .

En déduire que 0 sauf pour une valeur de <math>q que l'on précisera.

Montrer que tout élément de C est de la forme (F_{2n+1},F_{2n}) avec $n \in \mathbb{N}^*$.

IV.3. On note $\Phi = \{ \varphi(p,q) \mid (p,q) \in B \}.$

a. Soit a un élément de Φ et (p,q) un élément de B tels que $\varphi(p,q)=a$ et que

$$(\forall (p',q') \in B), \quad (\varphi(p',q') = a) \Rightarrow (q' \geqslant q)$$

Montrer successivement $p - q\omega > \frac{1}{2\omega + 1}$ et $\frac{a}{a^2} > \left(\frac{p}{a} - \omega\right)\sqrt{5}$.

En déduire $q < \left(1 + \frac{2}{\sqrt{5}}\right)a$.

b. Se servir de ce qui précède pour trouver la liste des éléments de Φ compris, au sens large, entre 1 et 10.

PARTIE V

On pose $A' = \{E(p\omega) \mid p \in \mathbb{N}^*\}, A'' = E(q\omega^2 \mid q \in \mathbb{N}^*\}.$ On veut montrer que (A', A'') réalise une partition de \mathbb{N}^*

V.1. On fait l'hypothèse: $\exists (p,q) \in \mathbb{N}^{*2}$, $\mathrm{E}(p\omega) = \mathrm{E}(q\omega^2)$.

En déduire que $p = E(q\omega)$ où $p = E(q\omega) + 1$.

Montrer que, dans chacun des deux cas, on aboutit à une contradiction.

V.2. Montrer que l'ensemble des entiers compris, au sens large, entre 1 et F_{2n+2} s'écrit

$$\mathbf{A}'_n \cup \mathbf{A}''_n, \text{ avec } \begin{cases} \mathbf{A}'_n = \{ \mathbf{E}(k\omega) \mid k \in \mathbb{N}^*, \quad k \leqslant \mathbf{F}_{2n+1} \} \\ \mathbf{A}''_n = \{ \mathbf{E}(k\omega^2) \mid k \in \mathbb{N}^*, \quad k \leqslant \mathbf{F}_{2n} \} \end{cases}$$

Conclure.

V.3. Montrer que ω est le seul réel $\vartheta > 1$ tel que

$$(\{E(p\vartheta) \mid p \in \mathbb{N}^*\}, \{E(q\vartheta^2) \mid q \in \mathbb{N}^*\})$$

soit une partition de \mathbb{N}^* .