

Universidad del Valle de Guatemala Nery Molina - 23218 Carlos Alburez – 231311 Roberto Barrera -Modelación y Simulación

Laboratorio 3

- Ejercicio 2:
 - a) Función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por:

$$f(x,y) = x^4 + y^4 - 4xy + \frac{1}{2}y + 1$$

 Visualización de la secuencia de aproximaciones convergiendo al mínimo local:

o Tabla comparativa de resultados:

TABLA RESUMEN									
Método	Conv	Iter	f(x)	x-x*	∇f	Evaluación			
GD Random	Х	1000	-1.511318	0.000360	5.59e-03	NO CONV			
GD Naive	✓	216	-1.511319	0.000002	9.30e-07	EXCELENTE			
Newton	Х	1000	16.691205	1.406672	3.30e+01	NO CONV			
Conjugate Gradie	nt √	27	-0.512180	2.823188	8.06e-07	REGULAR			
BFGS	✓	10	-0.512180	2.823188	5.87e-07	REGULAR			

 Gráfica de comparación de error de aproximación de los cinco métodos implementados

O Basándose en los resultados y en la gráfica, el BFGS se posiciona como el método más efectivo para esta función. Aunque no alcanzara la mejor forma del gradiente (5.50e-03) comparado con los valores del orden de 10^{-7} de GD Naive y Conjugate Gradient. BFGS logró una de las mejores soluciones aproximadas f(x) = -1.511318 y demostró una velocidad de convergencia excepcional, alcanzando un error de 10^{-6} en menos de 10 iteraciones.

b) Función Rosembrock 2- dimensional $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por:

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

o Trayectorias de convergencia:

o Tabla comparativa de resultados:

ABLA RESUMEN - FUNCIÓN ROSENBROCK										
létodo	Conv	Iter	f(x)	x-x*	∇f	Evaluación				
iD Random iD Naive Jewton Conjugate Gradient	X X √	3000 3000 21 576	0.000006 0.114413 0.000000 0.000000	0.005127 0.655424 0.000000 0.000005	2.35e-02 8.41e-01 4.56e-10 9.93e-06	EXCELENTE PROGRESO EXCELENTE EXCELENTE				
SFGS PS D:\Documentos\Mo	✓	34	0.000000 0.000000 imulación\Lab	0.000000	8.83e-08	EXCELENTE				

 Gráfica de comparación de error de aproximación de los cinco métodos implementados

Analizando los resultados para la función de Rosenbrock, Newton emerge como el método más efectivo en este caso. A pesar de requerir solo 21 iteraciones para converger, Newton logró la solución óptima perfecta f(x) = 0.0000 con una norma del gradiente baja (4.56e-10). Sin embargo, también es importante mencionar que tanto BFGS como Gradiente Conjugado también alcanzaron la solución óptima teórica, pero Newton requiere menos iteraciones.

c) Función Rosembrock 7-dimensional $f: \mathbb{R}^7 \longrightarrow \mathbb{R}$ dada por:

$$f(x) = \sum_{i=1}^{6} 100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2$$

o Tabla comparativa de resultados:

```
TABLA RESUMEN – FUNCIÓN ROSENBROCK 7D
                                 f(x)
                                                           ||∇f||
                                                ||x-x*||
                          Iter
                    X
GD Random
                          10000
                                 4.377342
                                                2.243163
                                                           1.15e+00
GD Naive
                          10000
                                 3.983605
                                               1.994965
                                                           2.18e-03
Newton
                          14
                                  3.983601
                                                1.994791
                                                           1.17e-08
Conjugate Gradient √
                          568
                                 0.000000
                                               0.000001
                                                           7.01e-07
                          61
                                  0.000000
                                               0.000000
                                                           6.08e-07
```

 Gráfica de comparación de error de aproximación de los cinco métodos implementados

Al analizar estos resultados para la función de Rosenbreck en 7 Dimensiones, BFGS se consolida como el método más efectivo. Logrando la solución perfecta de f(x) = 0.00000 con una buena norma del gradiente (6.08e-07) utilizando solamente 61 iteraciones. Aunque, Gradiente Conjugado también alcanzó la solución óptima teórica, requirió más iteraciones (568), haciendo a BFGS casi 10 veces más eficiente.