UPJV UFR Sciences

UPJV 2021-2022

TD5

Méthodes et techniques de calcul

† Parité, symétrie, périodicité, réduction du domaine d'étude.

Exercice I

Pour chacune des fonctions suivantes dire si elle est paire ou impaire

$$f_1(x) = x^4 + 3$$
 , $f_2(x) = x^4 + x$, $f_3(x) = x^5 + x^3 + 1$

Exercice II

Soit f une fonction définie sur \mathbf{R} on suppose que f est impaire montrer qu'alors f(0) = 0.

Soit f une fonction paire continue et dérivable sur \mathbf{R} , de dérivée continue, montrer que sa fonction dérivée est impaire.

Exercice III

Montrer que la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 6x + 2$ satisfait pour tout réel x : f(x) = f(6-x).

Quelle propriété de symétrie est satisfaite par le graphe de f? Quel pourrait être un domaine d'étude?

Exercice IV

1) Soit f la fonction définie par la formule

$$f(x) = \frac{x^3 + 6x^2 + 17x/2 + 1}{x + 2}$$

Montrer que son graphe présente une symétrie par rapport à l'axe x=-2. Proposer un domaine d'étude.

2) Soit g la fonction définie par la formule

$$g(x) = \frac{e^x - e^{2-x}}{2}$$

Montrer que son graphe présente une symétrie centrale par rapport au point de coordonnées (1,0). Proposer une domaine d'étude.

Exercice V

Pour chacune des fonctions suivantes donner le domaine de définition et proposer un domaine d'étude.

$$f_1(x) = \sin(2x), \quad f_2(x) = \sin(x^2), \quad f_3(x) = \sin(3x - 1)$$

† Comportement asymptotique

Exercice VI

Si cela a un sens, déterminer les comportements asymptotiques en $+\infty$ et en $-\infty$ des fonctions suivantes:

$$f_1(x) = \frac{x^3 - 2x}{x^2 + 1}$$
, $f_2(x) = \sqrt{x + \ln(x)}$, $f_3(x) = \sqrt{4x^2 + 2x + 5}$, $f_4(x) = 2x + \ln(1 + x^4)$, $f_5(x) = e^{2\ln(x+1)}$, $f_6(x) = 2x + 1 + e^{-x}\sin(x)$.

 $\dagger \ Fonctions \ convexes$

Exercice VII

Soit f la fonction définie par la formule $f(x) = \frac{x^2}{x^2+4}$ Quel est le domaine de définition? Le domaine de continuité ? de dérivabilité? est-elle deux fois dérivable sur son domaine?

Peut-on réduire le domaine d'étude?

Donner les expressions de la fonction dérivée et de la fonction dérivée seconde (si elle existent).

Calculer les limites de f en $+\infty$ et $-\infty$.

Donner le tableau des variation de f

Déterminer la concavité de f, en particulier on donnera les points d'inflexion (s'il y en a) Donner un tracé du graphe de f où tous les éléments obtenu précédement apparaissent clairement.

Exercice VIII

Montrer que si une fonction deux fois dérivable sur l'ensemble des réels est convexe et croissante alors elle est constante ou alors tend vers $+\infty$.