Задача А. Проверка на простоту

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Проверьте, является ли число простым.

Формат входных данных

Вводится одно натуральное число $2 \le n \le 2 \cdot 10^9$.

Формат выходных данных

Необходимо вывести строку «prime», если число простое, или «composite», если число составное.

стандартный ввод	стандартный вывод
2	prime

Задача В. Разложение на простые++

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Требуется разложить целое число n на простые множители и вывести результат в порядке возрастания.

Формат входных данных

Программе дано число $n \ (2 \le n \le 10^9)$.

Формат выходных данных

Выведите разложение числа n аналогично формату в примерах.

стандартный ввод	стандартный вывод
2	2
1008	2^4*3^2*7

Задача С. Количество делителей

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Подсчитайте количество натуральных делителей числа x (включая 1 и само число $x \leq 2 \cdot 10^9$).

Формат входных данных

Вводится натуральное число x.

Формат выходных данных

Выведите единственное число - количество делителей числа x.

стандартный ввод	стандартный вывод
32	6

Задача D. Количество делителей

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Подсчитайте количество натуральных делителей числа x (включая 1 и само число $x \leq 2 \cdot 10^9$). Выведите все эти делители в возрастающем порядке через пробел.

Формат входных данных

Вводится натуральное число x.

Формат выходных данных

В первой строке выведите количество делителей числа x, а во второй — все эти делители по возрастанию.

стандартный ввод	стандартный вывод
32	6
	1 2 4 8 16 32

Задача Е. Алгоритм Евклида

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

По данным натуральным числам n и m найдите их наибольший общий делитель.

Формат входных данных

Программа получает на вход 2 натуральных числа $m, n \leq 10^9$.

Формат выходных данных

Программа должна вывести наибольший общий делитель двух данных чисел.

стандартный ввод	стандартный вывод
1	1
1	
26	2
44	

Задача F. Складывай, сокращай

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны две рациональные дроби: $\frac{a}{b}$ и $\frac{c}{d}$. Сложите их и результат представьте в виде несократимой дроби $\frac{m}{n}$.

Формат входных данных

Программа получает на вход 4 натуральных числа a, b, c, d, не превосходящих 100.

Формат выходных данных

Программа должна вывести 2 натуральных числа m и n такие, что $\frac{m}{n}=\frac{a}{b}+\frac{c}{d}$ и дробь $\frac{m}{n}$ — несократима.

стандартный ввод	стандартный вывод
1 2 1 2	1 1
1 5 1 10	3 10

Задача G. Шестеренки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны две сцепленные шестеренки. У одной шестеренки n зубцов, у другой - k. Требуется найти, какое минимальное число поворотов на один зубчик требуется сделать, чтобы шестеренки вернулись в исходное состояние.

Формат входных данных

В единственной строке - два натуральных числа n и k, не превосходящих 10^7 .

Формат выходных данных

Выведите искомое количество зубчиков. Гарантируется, что ответ не превосходит 10^9 .

стандартный ввод	стандартный вывод
2 3	6
6 21	42

Задача Н. МегаНОД

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дано n чисел. Найти самое большое число, на которое делятся все n чисел.

Формат входных данных

В первой строке дано число n ($1 \le n \le 10^3$). Во второй строке даны через пробел n натуральных чисел, не превосходящих 10^9 .

Формат выходных данных

Выведите искомое число.

стандартный ввод	стандартный вывод
2	5
90 35	
1	3
3	

Задача І. Разрезание на квадраты

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Полоска бумаги имеет размеры $A \times B$. Каждый раз от нее отрезается квадрат максимального размера до тех пор, пока не получится квадрат. Сколько квадратов получится?

Формат входных данных

Программе даны числа A и B $(1 \leqslant A, B \leqslant 10^9)$.

Формат выходных данных

Требуется вывести количество квадратов.

стандартный ввод	стандартный вывод
15 3	5
12 8	3
5 5	1

Задача Ј. Представление чисел

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Дано натуральное число N. Требуется представить его в виде суммы двух натуральных чисел A и B таких, что НОД (наибольший общий делитель) чисел A и B — максимален.

Формат входных данных

Во входном файле записано натуральное число $N~(2\leqslant N\leqslant 10^9)$

Формат выходных данных

В выходной файл выведите два искомых числа A и B. Если решений несколько, выведите любое из них.

стандартный ввод	стандартный вывод
100	50 50

Задача К. Граница многоугольника

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Многоугольник на плоскости задан целочисленными координатами своих N вершин в декартовой системе координат. Требуется найти количество точек с целочисленными координатами, лежащих на границе многоугольника. Стороны многоугольника друг с другом не соприкасаются (за исключением соседних — в вершинах) и не пересекаются.

Ограничения: $3 \le N \le 100000$, координаты вершин целые и по модулю не превосходят 10^9 .

Формат входных данных

В первой строке содержится число N, в следующих N строках — пары чисел - координаты точек. Если соединить точки в данном порядке, а также соединить первую и последнюю точки, получится заданный многоугольник.

Формат выходных данных

Вывести одно число — количество точек с целочисленными координатами на границе много-угольника.

стандартный ввод	стандартный вывод
8	80
-5 15	
-15 5	
-15 -5	
-5 -15	
5 -15	
15 -5	
15 5	
5 15	

Задача L. Решето Эратосфена

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

По введенным числам A и B вывести все простые числа в интервале от A до B включительно.

Формат входных данных

В единственной строке вводятся два числа $1\leqslant A\leqslant B\leqslant 1000000$

Формат выходных данных

Вывести в одну строку все простые числа в интервале от A до B включительно

стандартный ввод	стандартный вывод
2 2	2
1 100	2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Задача М. Гипотеза Гольдбаха

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Гипотеза Гольдбаха (не доказанная до сих пор) утверждает, что любое четное число (кроме 2) можно представить в виде суммы двух простых чисел. Вам дано число n. Выведите два простых числа, которые составят в сумме n.

Несмотря на то что гипотеза еще не доказана, ответ в данной задача всегда существует.

Формат входных данных

Программа получает на вход одно натуральное четное число $n \ (3 < n < 2 \cdot 10^5)$.

Формат выходных данных

Программа должна вывести два числа, разделенные пробелом. Числа должны быть простыми и давать в сумме n.

стандартный ввод	стандартный вывод
6	3 3
8	3 5

Задача N. Кинотеатр

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Марья Ивановна с Марьей Михайловной привели школьников в кинотеатр. Чтобы не было никаких обид, Марья Ивановна построила всех школьников по алфавиту и рассадила их: сначала в первый ряд слева направо, затем во второй слева направо и т.д., заполнив весь зал из n рядов по m кресел. Тут пришла Марья Михайловна и сказала, что ребята сели неправильно — надо пересесть. Она предложила сначала заполнить все первые места от первого ряда к последнему, затем все вторые места и т. д.

Определите, сколько школьников после такой пересадки останется на своем месте.

Например, если n=3 и m=3, то в первом случае дети сядут так:

1 2 3 4 5 6 7 8 9

а во втором — так:

1 4 7 2 5 8 3 6 9

Формат входных данных

Вводятся два целых числа n и m ($1 \le n, m \le 10^9$).

Формат выходных данных

Выведите количество школьников, которые останутся на своих местах.

стандартный ввод	стандартный вывод
3 3	3

Задача О. Расширенный алгоритм Евклида

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Даны натуральные числа a, b, c. Если уравнение ax + by = c имеет решения в целых числах, то выведите через пробел GCD(a,b), x и y (какое-нибудь решение). Если решения не существует, то выведите слово **Impossible**.

Формат входных данных

Входные данные $\,-\,$ натуральные числа и не превышают по модулю $10^4.$

Формат выходных данных

Выведите ответ на задачу.

стандартный ввод	стандартный вывод
1 2 3	1 3 0
10 6 8	2 -4 8
3 3 1	Impossible

Задача Р. Обратное по простому модулю

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны два натуральных числа — a и простое p (0 < a < p).

Нужно найти такое целое x, что $ax \equiv 1 \mod p$

Формат входных данных

На первой строке даны два целых числа — $a, p \ (0 < a < p \leqslant 2 \cdot 10^9)$. Гарантируется, что p является простым числом.

Формат выходных данных

Выведите одно натуральное число 0 < x < p.

стандартный ввод	стандартный вывод
7 31	9
179 821	344

Задача Q. Обратное по модулю

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны два целых числа — $a, m \ (0 \leqslant a < m)$. Нужно найти такое целое x, что $ax \equiv 1 \mod m$

Формат входных данных

На первой строке два целых числа — $a, m \ (0 \leqslant a < m \leqslant 10^{18}).$

Формат выходных данных

Если такого x не существует, выведите -1. Иначе выведите целое x ($0 \le x < m$). Если ответов несколько, выведите любой.

стандартный ввод	стандартный вывод
7 30	13
179 817	639

Задача R. Шоу

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Главный режиссер шоу, посвященного открытию ACM Programming Contest, хочет, чтобы участники шоу могли выстраиваться в различное число колонн ровно N способами. Причем при любом перестроении количество людей в каждой из колонн должно быть одинаковым. Требуется сообщить режиссеру, какое минимальное число M человек ему для этого понадобится. Так, при N=3 потребуется пригласить всего =4 человек, которые могут выстроиться в 1, 2 и 4 колонны. Если же при некотором N для шоу потребуется более 10^9 человек, то режиссеру можно сообщить, что подходящее число людей собрать невозможно.

Формат входных данных

Программа запрашивает натуральное число $N \leqslant 1000$

Формат выходных данных

Если для введенного N минимальное число людей для шоу не превосходит 10^9 , то выдать это число , в противном случае число 0.

стандартный ввод	стандартный вывод
5	16
6	12
24	360

Задача S. Степень

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Для того чтобы проверить, как её ученики умеют считать, Мария Ивановна каждый год задаёт им на дом одну и ту же задачу — для заданного натурального A найти минимальное натуральное N такое, что N в степени N (N, умноженное на себя N раз) делится на A. От года к году и от ученика к ученику меняется только число A.

Вы решили помочь будущим поколениям. Для этого вам необходимо написать программу, решающую эту задачу.

Формат входных данных

Во входном файле содержится единственное число A ($1 \le A \le 10^9$ — на всякий случай; вдруг Мария Ивановна задаст большое число, чтобы «завалить» кого-нибудь...)

Формат выходных данных

В выходной файл вывести единственное число N.

стандартный ввод	стандартный вывод
1	1
4	2

Задача Т. Марсианские факториалы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В 3141 году очередная экспедиция на Марс обнаружила в одной из пещер таинственные знаки. Они однозначно доказывали существование на Марсе разумных существ. Однако смысл этих таинственных знаков долгое время оставался неизвестным. Недавно один из ученых, профессор Очень-Умный, заметил один интересный факт: всего в надписях, составленных из этих знаков, встречается ровно К различных символов. Более того, все надписи заканчиваются на длинную последовательность одних и тех же символов.

Вывод, который сделал из своих наблюдений профессор, потряс всех ученых Земли. Он предположил, что эти надписи являются записями факториалов различных натуральных чисел в системе счисления с основанием К. А символы в конце — это конечно же нули — ведь, как известно, факториалы больших чисел заканчиваются большим количеством нулей. Например, в нашей десятичной системе счисления факториалы заканчиваются на нули, начиная с $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$. А у числа 100! в конце следует 24 нуля в десятичной системе счисления и 48 нулей в системе счисления с основанием 6 — так что у предположения профессора есть разумные основания!

Теперь ученым срочно нужна программа, которая по заданным числам N и K найдет количество нулей в конце записи в системе счисления с основанием K числа $N! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (N-1) \cdot N$, чтобы они могли проверить свою гипотезу. Вам придется написать им такую программу!

Формат входных данных

В первой строке входных данных содержатся числа N и K, разделенные пробелом, $(1 \le N \le 10^9, 2 \le K \le 1000)$.

Формат выходных данных

Выведите число X — количество нулей в конце записи числа N! в системе счисления с основанием K.

стандартный ввод	стандартный вывод
5 10	1
1 2	0