5.3 For
$$T$$
 – Flip-Flop,

$$\begin{aligned} &Q(t+1) &= TQ' + T'Q = T \oplus Q \\ &Q'(t+1) &= [T \oplus Q]' \\ &= T'Q' + TQ \end{aligned}$$

5.5 State table is also called as transition table.

The truth table describes a combinational circuit.

The state table describes a sequential circuit.

The characteristic table describes the operation of a flip-flop.

The excitation table gives the values of flip-flop inputs for a given state transition.

The four equations correspond to the algebraic expression of the four tables.

5.6 (a)

(b)
$$A(t+1) = xy' + xB$$
$$B(t+1) = xA + xB'$$
$$z = A$$

Present	state	Innuts	and de	Next	state	Output
\underline{A}	В	x	y	A	B	$\frac{z}{0}$
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	1	1	0
0 0 0 0 0 0 0 0	0	1	1	0	1	0 0 0 0
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

5.8 A counter with a repeated sequence of 00, 01, 10.

Present	state	Next	state	FF Inputs
\boldsymbol{A}	В	\boldsymbol{A}	В	$T_A T_B$
$\overline{0}$	0	0	0	0 1
0	1	1	0	1 1
1	0	0	0	1 0
1	1	0	0	1 1
	$T_A T_B$	=	A - A'	+ B + B

Repeated sequence:

$$00 \longrightarrow 01 \longrightarrow 10 \longrightarrow$$

5.9 (a)

A(t)	B(t) x	A(t+1)	B(t+1)	A(t+1)
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	1
1	1	1	0	1

A	$ \begin{array}{c} Bx \\ 00 \end{array} $	01	11	10
0	0	1	1	0
1	1	1	0	0

$$A(t+1) = A^{\prime}x + AB^{\prime}$$

$A \setminus$	Bx = 00	01	11	10
0	1	0	0	0
1	1	0	1	1

B(t+1) = B'x' + AB

(b)

_	1	- 4
•		4

State	Assignment3
a	00001
b	00010
c	00100
d	01000
ρ	10000

Present State

Pre	esent	State		Next S	tate		Outp	ut	
	A	BCI	DE		x = 0	x = 1	X	=0 $x=$	= 1
a	0	0 0	0.1	00001	00	0010	0	0	
b	0	0 0	10	00100	01	.000	0	0	
c	0	0 1	0 0	00001	01	.000	0	0	
d	0	10	0 0	10000	01	.000	0	1	
P	1	0.0	0.0	00001	01	000	0	1	

5.16 (a)

Present state A B	Input	Next state A B
A D	X	A D
0 0	0	0 0
0 0	1	0 1
0 1	0	0 1
0 1	1	1 1
1 0	0	1 0
1 0	1	0 0
1 1	0	1 1
1 1	1	1 0

 $D_B = A'x + Bx'$

(b)

Present state	Input	Next state
A B	X	A B
0 0	0	0 0
0 0	1	1 1
0 1	0	0 1
0 1	1	1 0
1 0	0	1 0
1 0	1	0 0
1 1	0	1 1
1 1	1	0 1

 A^{Bx} 10 0

$$D_B = AB + Bx'$$

The output is 0 for all 0 inputs until the first 1 occurs, at which time the output is 1. Thereafter, the output is the complement of the input. The state diagram has two states. In state 0: output = input; in state 1: output = input'.

5.19 (a) Unused states (see Fig. P5.19): 101, 110, 111.

Present state	Input	Next state	Output
ABC	X	ABC	У
000	0	011	0
000	1	100	1
001	0	001	0
001	1	100	1
010	0	010	0
010	1	000	1
011	0	001	0
011	1	010	1
100	0	010	0
100	1	011	1

 $d(A, B, C, x) = \Sigma (10, 11, 12, 13, 14, 15)$

The machine is self-correcting, i.e., the unused states transition to known states.

(b) With JK flip=flops, the state table is the same as in (a).

Flip-flop inputs	
$J_A K_A J_B K_B J_C K_C$	
0 x 1 x 1 x	$J_{A} = B'x K_{A} = 1$
1 x 0 x 0 x	$J_{R}^{A} = A + C'x' \qquad K_{R}^{A} = C'x + Cx'$
0 x 0 x x 0	$J_C = Ax + A'B'x' K_C = x$
1 x 0 x x 1	y = A'x
0 x x 0 0 x	The machine is self-correcting
0 x x 1 0 x	because $K_A = 1$.
$0 \ x \ x \ 1 \ x \ 0$	because $K_A = 1$.
$0 \ x \ x \ 0 \ x \ 1$	
x 1 1 x 0 x	
x 1 1 x 1 x	