1

Random vectors

KUNWAR DUSHYANT SINGH EE22BTECH11031

Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -4 \\ -6 \end{pmatrix}$$
 (1)

1 Vectors

Fig. 1: sides

parameters	values	description
m ₁	$\begin{pmatrix} -1 \\ -8 \end{pmatrix}$	AB
\mathbf{m}_2	$\begin{pmatrix} -7 \\ -1 \end{pmatrix}$	ВС
m ₃	$\begin{pmatrix} 8 \\ 9 \end{pmatrix}$	CA
A - B	8.06	length of AB
B-C	7.07	length of BC
C - A	12.04	length of CA
$ \begin{bmatrix} \operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} $	3	non collinear
n ₁	$\begin{pmatrix} -8 \\ 1 \end{pmatrix}$	AB
n ₂	$\begin{pmatrix} -1 \\ 7 \end{pmatrix}$	ВС
n ₃	$\begin{pmatrix} -9\\8 \end{pmatrix}$	CA
Area	27.5	Area of Triangle
∠A	34.5°	
∠B	105.2°	Angles
∠C	40.2°	

2 Median

2 IVIEDIAN		
parameters	value	description
D	$\begin{pmatrix} -0.5 \\ -5.5 \end{pmatrix}$	BC midpoint
E	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	CA midpoint
F	$\begin{pmatrix} 3.5 \\ -1 \end{pmatrix}$	AB midpoint
m ₄	$\begin{pmatrix} 4.5 \\ 8.5 \end{pmatrix}$	4.0
n ₄	$\begin{pmatrix} -8.5\\4.5 \end{pmatrix}$	AD
m ₅	$\begin{pmatrix} 3 \\ -3.5 \end{pmatrix}$	DE
n ₅	$\begin{pmatrix} 3.5 \\ 3 \end{pmatrix}$	BE
m ₆	$\begin{pmatrix} -7.5 \\ -5 \end{pmatrix}$	CF
n ₆	$\begin{pmatrix} -5 \\ 7.5 \end{pmatrix}$	CF
G	$\begin{pmatrix} 1 \\ -2.66 \end{pmatrix}$	Centroid
$\begin{array}{c} \underline{BG} \\ \overline{GE} \\ \underline{CG} \\ \overline{GF} \\ \underline{AG} \\ \overline{GD} \end{array}$	2	Division ratio by G
	2	collinear
$\begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{bmatrix}$		

Fig. 2: Midpoints

Fig. 3: centroid

3 ALTITUDE

parameters	value	description
\mathbf{D}_1	(5.14.7)	Foot of altitude from A
E ₁	(-0.41, -1.96)	Foot of altitude from B
F ₁	$\begin{pmatrix} 2.7 \\ -6.8 \end{pmatrix}$	Foot of altitude from C
m ₇	$\begin{pmatrix} 1.1 \\ -4.7 \end{pmatrix}$	AD_1
n ₇	$\begin{pmatrix} 4.7 \\ 1.1 \end{pmatrix}$	AD_1
m ₈	$\begin{pmatrix} -3.41 \\ 3.03 \end{pmatrix}$	BE_1
n ₈	$\begin{pmatrix} 3.03 \\ 3.41 \end{pmatrix}$	BE_1
m ₉	$\begin{pmatrix} 6.76 \\ -0.84 \end{pmatrix}$	CE
n ₉	$\begin{pmatrix} 0.84 \\ 6.76 \end{pmatrix}$	CF_1
Н	(5.45) (-7.18)	Orthocentre

Fig. 4: altitudes

Fig. 5: orthocentre

4 Perpendicular bisector

parameters	value	description
О	$\begin{pmatrix} -1.22 \\ -0.40 \end{pmatrix}$	Circumcentre
$ \mathbf{O} - \mathbf{A} $		
$ \mathbf{O} - \mathbf{B} $		
$ \mathbf{O} - \mathbf{C} $	6.24	OA = OB = OC = R
R		
∠BOC	69.01°	ADOC A ADAC
∠BAC	34.5°	$\angle BOC = 2\angle BAC$

Fig. 6: perpendicular bisector

Fig. 7: circumcircle

5 Angle bisector

parameters	value	description
I	$\begin{pmatrix} 1.18 \\ -3.21 \end{pmatrix}$	Incentre
$\mathbf{D_3}$	$\begin{pmatrix} 1.46 \\ -5.21 \end{pmatrix}$	Point of contact with BC
E ₃	$\begin{pmatrix} 3.19 \\ -3.46 \end{pmatrix}$	Point of contact with AC
$\mathbf{F_3}$	$\begin{pmatrix} -0.32 \\ -1.87 \end{pmatrix}$	Point of contact with AB
$\ I - D_3\ $ $\ I - E_3\ $ $\ I - F_3\ $	2.02	$ID_3 = IE_3 = IF_3 = r$
∠BAI ∠CAI	17.25°	$\angle BAI = \angle CAI$

Fig. 8: angle bisector

Fig. 9: incircle

