Hyunho Yeo (Ph.D. Candidate)

Contact Phone: (+82)10-5702-5958

Email: hyunho.yeo@kaist.ac.kr Web: https://hyunhoyeo.com Kim Byung Ho IT Building (N1) #817, KAIST 291 Daehak-ro, Yuseong-gu Daejeon 34141, Republic of Korea

Research Interests

Networked Systems, Machine Learning Systems

Education

Korea Advanced Institute of Science and Technology (KAIST)

Feb. 2017 – Feb. 2023 (Expected)

Ph.D. in Electrical Engineering (Advisor: Dongsu Han)

Dissertation title: "Enabling Neural-enhanced Video Streaming"

Korea Advanced Institute of Science and Technology (KAIST)

Feb. 2012 - Feb. 2017

B.S. in Electrical Engineering (Magna Cum Laude)

Publications

1. NeuroScaler: Neural Video Enhancement at Scale

<u>Hyunho Yeo</u>, Hwijoon Lim, Jaehong Kim, Youngmok Jung, Juncheol Ye, and Dongsu Han

ACM SIGCOMM 2022 (Acceptance Rate 55/281: 19.5%)

2. NEMO: Enabling Neural-enhanced Video Streaming on Commodity Mobile Devices

Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han

ACM MobiCom 2020 (Acceptance Rate 62/384: 16.1%)

3. Neural-Enhanced Live Streaming: Improving Live Video Ingest via Online Learning

Jaehong Kim*, Youngmok Jung*, Hyunho Yeo, Juncheol Ye, and Dongsu Han

ACM SIGCOMM 2020 (Acceptance Rate 53/250: 21.2%)

4. Neural Adaptive Content-aware Internet Video Delivery

Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han

USENIX OSDI 2018 (Acceptance Rate 47/257: 18.2%)

5. How will Deep Learning Change Internet Video Delivery?

Hyunho Yeo, Sunghyun Do, and Dongsu Han

ACM HotNets 2017 (Acceptance Rate 28/124: 22.5%)

Awards

Google Conference Scholarship (2022), KAIST Breakthrough of the Year (2021),

KAIST Global Leader Scholarship (2020), Microsoft Fellowship Asia Nomination Award (2019),

KAIST EE Best Research Achievement (2018)

Research Projects

Neural-enhanced Live Video Ingest at Scale

Aug. 2020 - Aug. 2022

- Designed an inference engine that delivers efficient and scalable live neural enhancement.
- Implemented the end-to-end system on top of NVIDIA TensorRT, libvpx, and gRPC (\sim 10.1K LoC).
- Reduced computing cost by 3.0-22.3 \times and improved processing throughput by 2.5-10 \times .

Neural-enhanced Mobile Video Streaming

Nov. 2018 - Jul. 2020

- Designed an algorithm that accelerates neural enhancement using temporal redundancy across video frames.
- Implemented an end-to-end system upon Exoplayer, libvpx, and Qualcomm SNPE (~ 9.4K LoC).
- Improved processing throughput by 11.5 \times and reduced energy consumption by 88.6%.

Neural-enhanced Adaptive Video Streaming

Mar. 2017 - Oct. 2018

- Designed adaptive streaming that applies neural enhancement to video utilizing client computation.
- Implemented an end-to-end system on top of MPEG DASH (dash.js) and TensorFlow (\sim 13.6K LoC).
- Improved user quality experience by 43.08% or saved 17.13% of network bandwidth.

Proficient Skills

Programming Languages: C/C++, Python, JAVA, UNIX shell scripting

Machine Learning Frameworks: Tensorflow, Pytorch, Qualcomm SNPE, NVIDIA TensorRT

Languages: Korean (native), English (fluent)

Academic Activities Journal Review: IEEE ToN, IEEE TPAMI, IEEE Multimedia

Mentoring: 13 undergraduate students, 6 graduate students