DETERMINING OPTIMUM ASPHALT CONTENT WITH THE TEXAS GYRATORY COMPACTOR

Timothy Aschenbrener

Colorado Department of Transportation

4201 East Arkansas Avenue

Denver, Colorado 80222

Final Report

December 1993

Prepared in cooperation with the U.S. Department of Transportation Federal Highway Administration

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Technical Report Documentation Page

1. Report No. CDOT-DTD-R-93-23	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle		5. Report Date		
	n Asphalt Content with the	December 1993		
Texas Gyratory Comp	*	6. Performing Organization Code		
7. Author(s)		8. Performing Organization Rpt.No.		
Timothy Aschenbrene	er	CDOT-DTD-R-93-23		
9. Performing Organization Na	ame and Address	10. Work Unit No. (TRAIS)		
Celorado Department	t of Transportation			
4201 E. Arkansas Ave	enue	11. Contract or Grant No.		
Denver, Colorado 80	222			
12. Sponsoring Agency Name a	nd Address	13. Type of Rpt. and Period Covered		
Colorado Department	of Transportation	Final Report		
4201 E. Arkansas Ave	.	14. Sponsoring Agency Code		
Denver, Colorado 80	0222			

15. Supplementary Notes

Prepared in Cooperation with the U.S. Department of Transportation Federal Highway Administration

16. Abstract

A recent change from the California kneading compactor to the Texas gyratory compactor has resulted in significantly lower optimum asphalt contents. Additionally, only one laboratory compactive effort has been used in Colorado regardless of traffic or high temperature environment. Adjustments are being made to the Colorado's hot mix asphalt design procedure to address these concerns.

It was decided to use results from the recently acquired European equipment to assist with the adjustments. Additionally, results were used from three other sources: 1) the previously used California kneading compactor, 2) samples from older pavements that were recompacted in the Texas gyratory, and 3) experimental field projects that used the recommended end-point stresses.

Optimum asphalt contents need to be determined using varying laboratory compactive efforts that correspond to the various traffic and environmental conditions in Colorado. The recommendations presented in this report include the variable end-point stresses for the Texas gyratory to obtain the optimum asphalt content along with the traffic and environmental categories to assist designers on the appropriate selection of the specified end-point stress. Additionally, minimum Hveem stability values, minimum voids in the mineral aggregate, and an acceptable range for voids filled with asphalt are included.

17. Key Words		18. Distribution States	nent
Texas Gyratory	Optimum Asphalt Content	No Restrictions: T	This report is
Compactor		available to the pu	ıblic through
		the National Tech	nical Info.
		Service. Springfiel	d, VA 22161
19.Security Classif. (report)	20.Security Classif. (page)	21. No. of Pages	22. Price
Unclassified	Unclassified	78	4

Acknowledgements

The author would like to express his gratitude to the 19 asphalt paving contractors that participated in this study by providing the aggregates for testing and their experiences with the mixes they submitted. The laboratory testing was performed by Kim Gilbert, Cindi Moya, Larry Lamar, Dave Gallegos, and Brad Black (CDOT-Staff Materials), Dave Price (CDOT-Research), and J.D. Stevenson (FHWA-Colorado Division). Throughout the study, valuable input was appreciated from Scott Shuler (CAPA), Jim Fife (Western Colorado Testing) and all of the CDOT Region Materials Engineers.

The CDOT Research Panel provided many excellent comments and suggestions for the study; it included Byron Lord and Kevin Stuart (FHWA-Turner Fairbank Highway Research Center), Doyt Bolling (FHWA-Region 8), Jerry Cloud (FHWA-Colorado Division), Denis Donnelly, Steve Horton, and Bob LaForce (CDOT-Staff Materials), Ken Wood (CDOT-Region 4 Materials), and Donna Harmelink (CDOT-Research).

Table of Contents

1.0	INTRODUCTION ,	1
2.0	ENGINEERING REGIONS 2.1 Traffic 2.2 Environment 2.3 Summary of Traffic and Temperature	2
3.0	TESTING DEVICES 3.1 Texas Gyratory 3.2 California Kneading Compactor 3.3 French Rutting Tester	667
4.0	TESTING METHODOLOGY 4.1 Summary of Hot Mix Asphalt Designs 4.2 Experimental Grid	9
5.0	5.2 Optimum Asphalt Content 5.2.1 High Traffic 5.2.2 Medium Traffic 5.2.3 Low Traffic 5.2.4 Summary 5.3 Hveem Stability 5.4 Voids in the Mineral Aggregate 5.5 Voids Filled with Asphalt	11 11 11
6.0	CASE HISTORIES FROM 1993 6.1 6th Avenue 6.2 Arapahoe Road 6.3 Copper Mountain 6.4 Idaho Springs 6.5 Cherry Creek State Park 6.6 Berthoud Pass 6.7 Muddy Pass 6.8 Walden 6.9 Basalt 6.10 Wilkerson Pass	22 22 22 23 23 23 24 24
7.0	FIELD CORRELATIONS	25
8.0	IMPLEMENTATION	27
9.0	FUTURE RESEARCH	30
10.0	REFERENCES	30

LIST OF TABLES

Table 1. Traffic Categories for Designing HMA Pavements	2
Table 2. Four High Temperature Environmental Zones in Colorado.	4
Table 3. Percent of Network for Various Traffic and Temperature Categories	5
Table 4. Comparison of the Colorado and AASHTO Procedures for the California	
Kneading Compactor	6
Table 5. Summary of Aggregate Properties Used in This Study	10
Table 6. Optimum Asphalt Content, Hyeem Stability, and VMA for Samples Compacted	
in the Texas Gyratory.	12
Table 7. Optimum Asphalt Contents (AC) from the French Rutting Tester and the Texas	
Gyratory Compactor	14
Table 8. Optimum Asphalt Contents from the California Kneading Compactor.	16
Table 9. Recommended End Point Stresses (psi) for the Texas Gyratory.	17
Table 10. Average Asphalt Contents for Each Category	17
Table 11. Minimum Hveem Stability Specifications.	18
Table 12. Summary of the Voids in the Mineral Aggregate Data	19
Table 13. Minimum VMA Specifications	20
Table 14. Recommended VFA Specifications	20
Table 15. Mixes Failing the New Specifications	21
Table 16. Correlation of Air Volds in the Wheel Path with Recompacted Samples for	
Different Traffic Categories and Laboratory Compactive Efforts.	25
LIST OF FIGURES	
Eig. 1. High Tomporature Environmental Zance by County	3
Fig. 1. High Temperature Environmental Zones by County.	8
Fig. 2. The Texas Gyratory Compactor	8
	8
Fig. 4. Air Voids in the Wheel Path Versus Air Voids from Samples Recompacted in the	
Texas Gyratory with a 620 kPa (90 psl) End Point Stress for the High Traffic	26
Category.	26

APPENDICES

	P	Appendix /	4: S	Summan	/ ot	High	Tempera	ture In	itormat	ion
--	---	------------	------	--------	------	------	---------	---------	---------	-----

Appendix B: Summary of SHRP's Weather Data Base for Colorado
Appendix C: Summary of Optimum Asphalt Contents on the Texas Gyratory
Appendix D: Summary of the French Rutting Tester Results

Determining the Optlmum Asphalt Content with the Texas Gyratory Compactor

Tim Aschenbrener

1.0 INTRODUCTION

In September 1990, a group of individuals representing AASHTO, FHWA, NAPA, SHRP, AI, and TRB participated in a 2-week tour of six European countries. Information on this tour has been published in a "Report on the 1990 European Asphalt Study Tour" (1). Several areas for potential improvement of hot mix asphalt (HMA) pavements were identified, including the use of performance-related testing equipment used in several European countries. The Colorado Department of Transportation (CDOT) and the FHWA Turner-Fairbank Highway Research Center (TFHRC) were selected to demonstrate this equipment.

A recent change from the California kneading compactor to the Texas gyratory compactor has resulted in significantly lower optimum asphalt contents. Additionally, only one laboratory compactive effort has been used in Colorado regardless of traffic or high temperature environment. Adjustments are being made to the CDOT HMA design procedure to address these concerns. It was decided to use results from the new European equipment to assist with the adjustments. Additionally, results were used from three other sources: 1) the previously used California kneading compactor, 2) samples from older pavements that were recompacted in the Texas gyratory, and 3) experimental field projects that used the recommended end point stresses.

Optimum asphalt contents need to be determined using varying laboratory compactive efforts that correspond to the various traffic and environmental conditions in Colorado. The purpose of this study will be to develop and document the recommended end point stresses for the Texas gyratory to obtain the optimum asphalt content.

2.0 ENGINEERING REGIONS

2.1 Traffic

Traffic is defined by the number of equivalent 18-kip single axle loads (ESALs) applied to the pavement for its design life. The design ESALs for a project should be used to select a traffic category. A design life of 20 years and zero growth rate was used to develop the percent of the 14,800 center-line kms (9200 miles) on the CDOT network for each traffic category. The percent of CDOT network in each category includes adjustments for the number of lanes. The five traffic categories used for this analysis are shown in Table 1.

Table 1. Traffic Categories for Designing HMA Pavements.

Traffic Category	Design ESALs	CDOT Network (%)
Low	< 3 x 10 ⁵	21.8
Medium	3 x 10 ⁵ to 10 ⁶	34.4
High	10 ⁶ to 3 x 10 ⁶	16.1
Very High	3 x 10 ⁸ to 10 ⁷	21.3
Very Very High	>107	6.4

2.2 Environment

Because of the wide variation in elevation in Colorado, there are four distinct high temperature environments. The four high temperature areas are shown in Fig. 1. The weather data base assembled by SHRP was used to identify the high air temperature environment for each category. The highest temperature is calculated as the average of the highest air temperature for the hottest seven consecutive days. A summary of the average highest 7-day air temperatures taken in each county are in Appendix A and a copy of the SHRP data base with 153 weather stations in Colorado are in Appendix B.

Zone ENVIRONMENTAL ZONES

1: Elevation over 8500', Cool, Wet, High Frost Penetration
2: Elevation 6500 to 8500', Cool, Wet, High Frost Penetration
3: Elevation 6500 to 8500', Cool, Very Dry, High Frost Penetration
4: Elevation less than 8500', Warm, Dry, Low Frost Penetration
5: Elevation less than 6500', Very Warm, Very Dry, Very Low Frost Penetratic

Note: This map does not reflect changes made to a small number of highway segments at the direction of the Engineering District offices

Fig. 1. High Temperature Environmental Zones by County.

The high elevation zones have very cool high temperatures and should receive special design considerations. The counties with elevations over 2600 meters (8500 ft.) with a cold, wet, and high frost penetration environment are: Clear Creek, Gilpin, Grand, Gunnison, Hinsdale, Lake, Mineral, Pitkin, San Juan, Summit, and Teller.

Special design consideration should be given to areas with elevation between 2000 and 2900 meters (6500 and 8500 ft.). These counties are: Alamosa, Archuleta, Chaffee, Conejos, Costilla, Custer, Dolores, Jackson, La Plata, Ouray, Park, Rio Grande, Routt, San Miguel, and Saguache.

The majority of the state is in the moderate temperature region. This includes: Adams, Arapahoe, Boulder, Cheyenne, Delta, Denver, Douglas, Eagle, Elbert, El Paso, Garfield, Huerfano, Jefferson, Kit Carson, Larimer, Las Animas, Lincoln, Logan, Moffat, Montezuma, Montrose, Morgan, Phillips, Rio Blanco, Sedgwick, Washington, Weld, and Yuma.

The hottest areas of the state are on the western slope or along the Arkansas River in southeastern Colorado. These countles include: Baca, Bent, Crowley, Fremont, Kiowa, Mesa, Otero, Prowers, and Pueblo.

Table 2. Four High Temperature Environmental Zones In Colorado.

High Temperature Region	Highest 7-Day Avg. Max. Air Temperature	CDOT Network (%)
Hot (SE and West)	> 36°C (> 97°F)	14.7
Moderate (Denver, Plains and West)	32 to 36°C (90 to 97°F)	57.2
Cool (Mountains)	27 to 31°C (81 to 88°F)	13.9
Very Cool (High Mountains)	< 27°C (< 81°F)	14.2

2.3 Summary of Traffic and Temperature

The percent of the network for the various traffic and temperature categories are shown in Table 3.

Table 3. Percent of Network for Various Traffic and Temperature Categories.

Traffic	High Temperature					
	Very Cool	Hot				
Low	6.6	4.3	9.4	3.3		
Medium	4.7	5.0	13.6	4.1		
High	1.9	4.1	14.1	3.1		
Very High	1.0	0.6	13.7	4.2		
Very Very High			6.4			

3.0 TESTING DEVICES

3.1 Texas Gyratory

The Texas gyratory procedure is defined in ASTM D 4013, and the device is shown in Fig. 2. A sample is compacted with a pre-gyration stress of 350 kPa (50 psi). At the end of three gyrations, the end point stress is checked. If the end point stress is less than 1030 kPa (150 psi), then three more gyrations at 350 kPa (50 psi) are performed. If the end point stress is greater than 1030 kPa (150 psi), then the compaction is completed. The end point stress is checked by applying a 0.5 mm (0.020 in.) deformation into the sample. The deformation creates a stress defined as the end point stress. A leveling load of 17,240 kPa (2500 psi) is applied after the end point stress is reached.

In order to vary compactive efforts with the Texas gyratory, the end point stress should be varied. Lower end point stresses result in lower compactive efforts.

3.2 California Kneading Compactor

AASHTO T 247 is the procedure to compact samples using the California kneading compactor. Colorado has used a modified procedure from 1973 to 1991. A comparison of the Colorado and AASHTO procedures is shown in Table 4. The Colorado procedure uses a lower compactive effort by reducing the compaction blows from 150 to 90 and the compaction pressure from 3450 kPa (500 psi) to 3100 kPa (450 psi). The Colorado procedure was used for this study since the procedure provided many excellent performing pavements during its time.

Table 4. Comparison of the Colorado and AASHTO Procedures for the California Kneading Compactor.

	AASHTO T 247	Colorado
Semi-compaction	20 blows @ 1.7 MPa	20 blows @ 1.7 MPa
Compaction	150 blows @ 3.4 MPa	90 blows @ 3.1 MPa
Leveling	6.9 MPa	6.9 MPa

3.3 French Rutting Tester

The French rutting tester is used to measure the resistance of an HMA to permanent deformation. The device is shown in Fig. 3. A slab is 50 by 18 cm (19.7 by 7.1 in.) and is typically 100 mm (4 in.) thick. Two slabs are tested simultaneously.

The slabs are loaded with 5000 N (1124 lbs.) by a pneumatic tire inflated to 600 kPa (87 psi). The tire loads the slab at 1 cycle per second. The chamber is heated to 60°C (140°F) but can be set to any temperature between 35° and 60°C (95° and 140°F).

When a test is performed on a laboratory compacted sample, it is aged at room temperature for as long as 7 days. It is then placed in the French rutting tester and loaded with 1000 cycles at room temperature. The deformations recorded at the end are the "zero" readings. It is then heated to the test temperature for 12 hours before the test begins. Rut depths are measured after 100, 300, 1000, 3000, 10000, 30000, and possibly 100,000 cycles. The rut depth after a given number of cycles is calculated as the average of 15 measurements: 5 locations along the length and 3 along the width.

A successful test will have a rut depth that is less than 10% of the slab thickness after 30,000 cycles. A pair of slabs can be tested in about 9 hours.

Fig. 2. The Texas Gyratory Compactor.

Fig. 3. The French Rutting Tester.

4.0 TESTING METHODOLOGY

4.1 Summary of Hot Mix Asphalt Designs

Contractors in Colorado were asked to submit an HMA design that would be used on a typical CDOT project. Each contractor was allowed to submit one design. Although a maximum of 20 designs were targeted for the study, 19 were submitted. All mixes contained lime. As expected, there was a wide variety of mixtures submitted. The aggregate properties are summarized in Table 5.

4.2 Experimental Grid

Each HMA used in this experiment was tested using the standard CDOT procedures as outlined below:

- 1) Texas gyratory, 170 kPa (25 psi) end point stress,
- 2) Texas gyratory, 520 kPa (75 psi) end point stress,
- 3) Texas gyratory, 860 kPa (125 psi) end point stress,
- 4) French rutting tester, and
- 5) California kneading compactor.

Designs performed on the Texas gyratory used 4 different asphalt contents at 0.5% increments. The pre-gyration stress was also adjusted somewhat proportionately with the end point stress. The pre-gyration, end point and consolidation stresses used were:

- 1) 70-170-17240 kPa (10-25-2500 psi),
- 2) 140-520-17240 kPa (20-75-2500 psi), and
- 3) 210-860-17240 kPa (30-125-2500 psi).

Designs on the California kneading compactor used 3 different asphalt contents at 0.5% increments. Samples were tested on the French rutting tester to determine the maximum asphalt content of the HMA before rutting on a high trafficked pavement.

Table 5. Summary of Aggregate Properties Used In This Study.

Mix	Grading	Nominal	Aggregate Source					
		Maximum Size	Natural Sand	RAP (%)	Crush	ned (%)		
		mm (ln.)	(%)	(76)	Pit	Quarry		
1	С	12.5 (1/2)	0	0	100	0		
2	С	19.0 (3/4)	10	10	60	20		
3	С	12.5 (1/2)	20	0	0	80		
4	С	19.0 (3/4)	0	0	0	100		
5	С	19.0 (3/4)	20	15	0	65		
6	С	19.0 (3/4)	35	0	0	65		
7	С	12.5 (1/2)	10	0	90	0		
8	СХ	9.5 (3/8)	20	0	80	0		
9	CX	12.5 (1/2)	20	20	0	60		
10	CX	9.5 (3/8)	0	0	100	0		
11	СХ	12.5 (1/2)	20	20	0	60		
12	СХ	12.5 (1/2)	20	0	80	0		
13	СХ	12.5 (1/2)	0	0	100	0		
14	С	19.0 (3/4)	10	0	90	0		
15	СХ	9.5 (3/8)	20	0	80	0		
16	С	19.0 (3/4)	20	0	80	Ö		
17	СХ	12.5 (1/2)	0	0	100	0		
18	CX	12.5 (1/2)	10	0	90	0		
19	С	19.0 (3/4)	0	0	100	0		

RAP - Recycled Asphalt Pavement

5.0 LABORATORY RESULTS AND DISCUSSION

5.1 Texas Gyratory Results

Each HMA submitted was compacted at 3 different end point stresses with the Texas gyratory. It was desired to determine the appropriate end point stress for the various traffic and environmental conditions in Colorado. Additionally, the Hveem stability, Voids in the Mineral Aggregate (VMA), and Voids Filled with Asphalt (VFA) were measured. Specifications relating the Hveem stability, VMA, and VFA might also need adjusting. A summary of the optimum asphalt content, Hveem stability, and VMA of each HMA compacted in the Texas gyratory is shown in Table 6. Plots of the optimum asphalt content versus the various end point stresses are shown in Appendix C.

5.2 Optimum Asphalt Content

The optimum asphalt content was selected at 4% air voids in all cases.

5.2.1 High Traffic

5.2.1.1 Hot Environment. The French rutting tester was used at 60°C (140°F) to define the threshold asphalt content of each HMA for high traffic pavements in the hot environment. The threshold asphalt content for each mix was defined as the highest asphalt content that would pass the French rutting tester. Results from the French rutting tester are shown in Appendix D.

Each mix was also designed using three different end point stresses with the Texas gyratory. When the threshold asphalt content corresponded to the asphalt content at 3% air voids for a certain end point stress, a mix designed with the same end point stress at 4% air voids would be 1% air voids away from rutting. Take Mix 2 for example, using a 450 kPa (65 psi) end point stress at 4% air voids, the optimum asphalt content is 5.8%. The asphalt content at 3% air voids is 6.2%, the rutting threshold asphalt content. Therefore, if Mix 2 were designed at 4% air voids using a 450 kPa (65 psi) end point stress, the mix would be 1% air voids from the rutting threshold.

Table 6. Optimum Asphalt Content, Hveem Stability, and VMA for Samples Compacted in the Texas Gyratory.

Mix		mum AC 4% Air Vo		(Stability @ Optimum			VMA (%) @ Optimum		
	25	75	125	25	75	125	25	75	125	
1	5.6	5.4	5.1	45	46	48	14.4	14.3	13.7	
2	6.3	5.7	5.1	40	42	46	16.9	16.1	15.2	
3	5.7	5.0	4.9	42	50	48	16.0	14.5	14.1	
4	5.5	5.1	5.0	40	43	42	15.2	14.0	14.3	
5	5.3	4.7	4.5	40	44	43	14.0	12.8	12.4	
6	5.7	5.5	5.2	43	47	49	15.8	15.4	14.7	
7	6.3	5.9	5.6		42	41		16.0	15.4	
8	6.1	5.7	5.3	35	38	40	15.8	15.1	14.3	
9	6.6	6.1	5.7		40	43		16.3	15.4	
10	6.0	5.3	5.0	36	43	44	15.9	14.0	13.9	
11	6.3	5.8	5.5	40	44	47	18.5	17.4	17.1	
12	6.1	5.7	5.3	37	40	42	15.7	14.7	13.6	
13	5.8	5.6	4.8	37	39	46	16.0	15.7	13.5	
14	>6.0	5.6	4.7		35	41		15.5	13.8	
15	6.3	5.8	5.5	37	42	42	17.0	15.9	15.2	
16	5.7	5.3	5.0	40	44	42	15.5	14.2	14.0	
17	>6.0	5.7	5.4		41	43		15.8	14.9	
18	5.6	5.2	5.1	39	42	43	14.4	13,2	13.4	
19	4.9	4.6	4.4	41	45	46	13.2	13.0	12.5	

^{25 = 170} kPa (25 psi) end point stress on the Texas gyratory

^{75 = 520} kPa (75 psi) end point stress on the Texas gyratory

^{125 = 860} kPa (125 psi) end point stress on the Texas gyratory

The threshold asphalt content and the asphalt contents at 1% and 2% air voids away from the threshold asphalt contents are shown in Table 7. Additionally, the end point stress required by the Texas gyratory to match the 1% and 2% air voids factor of safety are shown in Table 7. For high trafficked pavements, an optimum asphalt content selected at 4% air voids using a 860 kPa (125 psi) end point stress is recommended.

There is considerable scatter in the recommended end point stresses shown in Table 7. The scatter appears to be related to two variables: 1) the angularity of the aggregates used, and 2) the maximum aggregate size in the mix.

The first variable appears to be aggregate angularity. The mixes using primarily quarried material, always highly angular, meet the rutting threshold with a 1% air void factor of safety at an end point stress that is less than 690 kPa (100 psi) (Mix 9) and mostly less than 340 kPa (50 psi) (Mix 3, 4, 5, and 11). Although Mix 6 is primarily from a quarried source, it contains 35% rounded sands and meets the rutting threshold at 860 kPa (125 psi).

When aggregates are from sand and gravel pits, a higher end point stress is required to meet the rutting threshold with a 1% air void factor safety than with quarried materials. The aggregates from sand and gravel pits with <u>generally</u> marginal angularity (Mix 8, 10, 13) require an end point stress greater than 900 kPa (130 psi). Aggregates from pits with noticeably higher angularity (Mix 2, 7) have an end point stress of less than 690 kPa (100 psi) to avoid the rutting threshold by 1% air voids.

The second variable appears to be maximum aggregate size. The larger the maximum aggregate size, the stronger the mix. The 7 mixes with a 19.0 mm (3/4 in.) nominal maximum aggregate size meet the rutting threshold with a 1% air void factor of safety at an end point stress of 510 kPa (74 psi). Mixes with a nominal maximum aggregate size less than 19.0 mm meet the same factor of safety at 670 kPa (97 psi).

Varying the end point stress alone will be insufficient to resist rutting. Minimum Hveem stability and VMA values will be required to ensure that sufficiently angular materials are produced for the high and very high traffic categories. Larger nominal maximum aggregate size will be needed.

Table 7. Optimum Asphalt Contents (AC) from the French Rutting Tester and the Texas Gyratory Compactor.

Mix	AC @ Rutting Threshold (%)	AC @ 1% Higher Air Voids (%)	T.G. End Point Stress kPa (psi)	AC @ 2% Higher Air Voids (%)	T.G. End Point Stress kPa (psi)
1	6.2	5.8	170 (25)	5.5	340 (50)
2A [·]	6.9	6.3	170 (25)	5.8	450 (65)
2	6.2	5.8	450 (65)	5.4	690 (100)
3	5.7	5.3	340 (50)	4.9	860 (125)
4	5.8	5.5	170 (25)	5.0	690 (100)
5	5.7	5.4	170 (25)	4.8	480 (70)
6	5.6	5.2	860 (125)	4.8	1030 (150)
7	6.6	6.2	280 (40)	5.9	520 (75)
8	5.0	4.7	1030 (150)	4.4	>1030 (>150)
9	6.2	5.9	690 (100)	5.6	930 (135)
10	5.0	4.7	1030 (150)	4.4	> 1030 (>150)
11	6.3	6.0	340 (50)	5.7	620 (90)
12	5.4	5.1	930 (135)	4.8	1030 (150)
13	5.0	4.6	900 (130)	4.2	1030 (150)
14	5.3	5.0	860 (125)	4.7	970 (140)
15	5.6	5.2	1030 (150)	4.8	>1030 (150)
16	5.3	4.9	860 (125)	4.5	>1030 (150)
17	5.8	5.5	340 (50)	5.1	1030 (150)
18	5.6	5.3	410 (60)	5.0	1030 (150)
19	5.5	5.2	<170 (25)	4.9	170 (25)
Avg.	5.62	5.31	610 (88)	4.93	850 (123)
S.D.	0.53	0.50	330 (48)	0.51	250 (37)

^{*} High Elevation Data (not included in averages)

<u>5.2.1.2 Cool Environment.</u> Two of the HMAs (Mix 1 and Mix 2A) were examined for placement at high elevations. The asphalt content for the threshold of rutting was determined from the French rutting tester. The French rutting tester was performed at 50°C (122°F) to model the cool or very cool high temperature categories. For the very high traffic category in a cool environment, an end point stress of 520 kPa (75 psi) is appropriate.

5.2.2 Medium Traffic

The California kneading compactor was used successfully in Colorado from 1973 to 1991. It was particularly successful on the low and medium trafficked roads, and there were even successes on high and very high trafficked roads. It was desired to compare the asphalt contents obtained with the successful experience of the California kneading compactor with the various end point stresses used on the Texas gyratory. The results are shown in Table 8.

Results indicate the Colorado version of the California kneading compactor is comparable to a 340 kPa (50 psi) end point stress with the Texas gyratory. Once again there is scatter in the data, that can be attributed to the wide variety of aggregate angularity and maximum aggregate size. Using a 340 kPa (50 psi) end point stress for the moderate environmental and medium traffic category appears reasonable.

5.2.3 Low Traffic

For low trafficked roads there was not a significant data base or test that could be used to develop recommended end point stresses on the Texas gyratory. Primarily, the recommendations are based on the past experience of CDOT and contractor personnel.

Table 8. Optimum Asphalt Contents from the California Kneading Compactor.

Mix	Kneading Compactor Optimum AC (%)	Gyratory End Point Stress kPa (psi)	
1	6.4	<170 (<25)	
2	6.2	240 (35)	
3	6.1	<170 (<25)	
4	5.7	<170 (<25)	
5	5.4	170 (25)	
6	5.5	520 (75)	
7	6.5	<170 (<25)	
8	5.5	690 (100)	
9	6.2	450 (65)	
10	5.6	380 (55)	
11	6.3	170 (25)	
12	5.9	340 (50)	
13	5.4	590 (85)	
14	5.9	340 (50)	
15	6.0	380 (55)	
16	5.8	170 (25)	
17	6.1	170 (25)	
18	5.5	280 (40)	
19	4.8	280 (40)	
Ávg.	5.83	310 (45)	
ŚD	0.43	160 (23)	

5.2.4 Summary

The recommended end point stresses to be used on the Texas gyratory for various traffic and environmental zones are shown in Table 9. The optimum asphalt content determined from the 19 mixes studied in this experiment are shown in Table 10.

Table 9. Recommended End Point Stresses (psl) for the Texas Gyratory.

Traffic	High Temperature					
	Very Cool Cool Moderate Hot					
Low	25	25	25	50		
Medium	25	25	50	75		
High	25	50	75	100		
Very High	50	75	100	125		
Very Very High			125			

1 psi = 6.895 kPa

Table 10. Average Asphalt Contents for Each Category.

Traffic	High Temperature					
	Very Cool Cool Moderate Hot					
Low	6.0	6.0	6.0	5.7		
Medium	6.0	6.0	5.7	5.5		
High	6.0	5.7	5.5	5.3		
Very High	5.7	5.5	5.3	5.1		
Very Very High			5.1			

5.3 Hveem Stability

The Hveem stability values were determined according to AASHTO T 246. Results at the end point stresses tested for this study are shown in Table 6 for each of the mixes. Recommendations for the minimum stability data were developed from the actual performance of 33 pavements in Colorado, both good and bad as reported by Aschenbrener (1). These data were analyzed by consultants from Aguirre Engineers. The recommended minimum stability requirements should be related to the design end point stress. The recommended values are shown in Table 11.

Table 11. Minimum Hveem Stability Specifications.

End Point Stress kPa (psi)	Minimum Stability
860 (125)	42
690 (100)	42
520 (75)	39
340 (50)	33
170 (25)	26

5.4 Voids in the Mineral Aggregate

All of the VMA results reported in this study were calculated using the bulk specific gravity of the aggregates. A summary of the actual VMA values measured in this study are shown in Table 6. A summary of the VMA values for the compactive efforts that correspond to the various traffic categories and some recommended specifications are shown in Table 12. The recommended VMA specifications are shown in Table 13.

When the design air voids are chosen differently than 3.0, 4.0 or 5.0%, the specified VMA should be chosen by linear interpolation. For example, a 19.0 mm (3/4 in.) nominal maximum size aggregate at 4.0% air voids, the VMA specification would be 13.0. For the same mix at 4.4% air voids, the VMA specification would be 13.4.

Table 12. Summary of the Voids in the Mineral Aggregate Data.

Mix	Grad- ing	Nominal Maximum Aggregate	Specified VMA @ 4% Air Voids (%)			(Ву Т	I VMA raffic) %)	
		Size mm (ln)	Old Al	New Al	50	75	100	125
1	С	12.5 (1/2)	15	14	14.4	14.3	14.0	13.7
2	С	19.0 (3/4)	14	13	16.5	16.1	15.7	15.2
3	С	12.5 (1/2)	15	14	15.2	14.5	14.3	14.1
4	С	19.5 (3/4)	14	13	14.6	14.0	14.0	14.3
5	С	19.5 (3/4)	14	13	13.4	12.8	12.6	12.4
6	С	19.5 (3/4)	14	13	15.6	15.4	15.0	14.7
7	С	12.5 (1/2)	15	14	16.0	16.0	15.7	15.4
8	СХ	9.5 (3/8)	16	15	15.4	15.1	14.8	14.3
9	СХ	12.5 (1/2)	15	14	16.3	16.3	15.9	15.4
10	СХ	9.5 (3/8)	. 16	15	15.0	14.0	14.0	13.9
11	сх	12.5 (1/2)	15	14	17.9	17.4	17.2	17.1
12	СХ	12.5 (1/2)	15	14	15.3	14.7	14.1	13.6
13	СХ	12.5 (1/2)	15	14	15.8	15.7	14.6	13.5
14	С	19.0 (3/4)	14	13	15.5	15.5	14.6	13.8
15	СХ	9.5 (3/8)	16	15	16.5	15.9	15.5	15.2
16	С	19.0 (3/4)	14	13	14.8	14.2	14.1	14.0
17	СХ	12.5 (1/2)	15	14	16.3	15.8	15.3	14.9
18	сх	12.5 (1/2)	15	14	13.8	13.4	13.4	13.4
19	С	19.0 (1/2)	14	13	13.1	13.0	12.8	12.5

Al = Asphalt Institute

50 = 340 kPa (50 psi) 75 = 520 kPa (75 psi) 100 = 690 kPa (100 psi) 125 = 860 kPa (125 psi)

Table 13. Minimum VMA Specifications.

Minimum VMA Specifications ²					
Nominal Maximum	Design Air Voids				
Size ¹ mm (In)	3.0%	4.0%	5.0%		
37.5 (1-1/2)	10.0	11.0	12.0		
25.0 (1)	11.0	12.0	13.0		
19.0 (3/4)	12.0	13.0	14.0		
12.5 (1/2)	13.0	14.0	15.0		
9.5 (3/8)	14.0	15.0	16.0		

¹ The Nominal Maximum Size is defined as one size larger than the first sieve to retain more than 10%.

5.5 Voids Filled with Asphalt

The voids filled with asphalt (VFA) is an important parameter relating to pavement performance. If the VFA is too high, a mix may be susceptible to premature rutting. If the VFA is too low, a mix may be susceptible to ravelling. The recommended VFA values were obtained from the Asphalt Institute MS-2 and are shown in Table 14.

Table 14. Recommended VFA Specifications.

End Point Stress kPa (psi)	VFA (%)
860 (125)	65 - 75
690 (100)	65 ~ 75
520 (75)	65 - 78
340 (50)	65 - 80
170 (25)	70 - 80

² Interpolate specified VMA values for design air voids between those listed.

5.6 Impact of New Specifications

Each of the mixes analyzed in this study were compared to the new specifications. Of the 19 mixes investigated, 12 would pass the new specifications for all traffic and environmental categories. The mixes that would fail the new specifications and the reason the mix would fail is listed in Table 15. Although 9 mixes are listed in Table 15, 2 of the mixes would pass in the 3% to 5% air void window. All but one of the mixes would be acceptable for medium and low traffic roadways. Of the 17 possible combinations or grids of traffic and environment, the number of grids that the mix would be acceptable and unacceptable is shown in Table 15.

Table 15. Mixes Failing the New Specifications.

Mix	Lowest Una	cceptable Grid	Of 17	Grids:	Cause for	
	Traffic	Environment	Acceptable	Unaccept.	Failure	
5	High	Moderate	10	7	VMA	
7*	Very Hìgh	Hot	15	2	Stability	
8	Very High	Moderate	13	4	Stability, VMA	
10	High	Moderate	10	7	VMA	
12	Very High	Hot	15	2	VMA	
13	Very High	Hot	15	2	VMA	
14"	High	Moderate	10	7_	Stability	
18	Medium	Moderate	6	11	VMA	
19	High	Moderate	13	4	VMA	

Does not pass at 4.0% air voids but does pass between 3% and 5% air voids.

6.0 CASE HISTORIES FROM 1993

During 1993, several projects were constructed using the Texas gyratory with the lower end point stresses. Summaries of these trial projects are described below.

6.1 6th Avenue

The project is located in Denver with a highest 7-day air temperature of 33 to 34°C (91 to 93°F), the moderate temperature category. The 10-year ESALs used to design the overlay were 2.5 x 10°, a borderline high traffic category. The end point stress should be 520 kPa (75 psi). The project was designed with the 690 kPa (100 psi) end point stress and had an optimum asphalt content of 4.8% at 4.0% air voids. The mix was very stiff. If the 520 kPa (75 psi) end point stress had been used, the optimum asphalt content would have been 5.0%, considered to be reasonable by the contractor and CDOT personnel.

6.2 Arapahoe Road

The project is located in Denver with a highest 7-day air temperature of 33 to 34°C (91 to 93°F), the moderate temperature category. The 10-year ESALs used to design the overlay were 6.5 x 10⁵, a medium traffic category. The end point stress should be 350 kPa (50 psi). The project was designed with the 690 kPa (100 psi) end point stress and had an optimum asphalt content of 4.8% at 4.0% air voids. The mix was very stiff. If the 350 kPa (50 psi) end point stress had been used, the optimum asphalt content would have been 5.2%, considered to be reasonable by the contractor and CDOT personnel.

6.3 Copper Mountain

The project is located near Dillon with a highest 7-day air temperature of 26°C (79°F), the very cool temperature category. The 10-year ESALs used to design the overlay were 3.5 x 10⁶, a very high traffic category. The end point stress should be 350 kPa (50 psi). The project was designed with the 350 kPa (50 psi) end point stress and had an optimum asphalt content of 5.7% at 4.0% air volds. The mix was considered reasonable by the contractor and CDOT personnel.

6.4 Idaho Springs

The project is located on I-70 at Idaho Springs with a highest 7-day air temperature of 29°C (84°F), the cool temperature category. The 10-year ESALs used to design the overlay were 3.5 x 10°, a very high traffic category. The end point stress should be 520 kPa (75 psi). The project was designed with the 520 kPa (75 psi) end point stress and had an optimum asphalt content of 5.7% at 4.0% air voids. The mix was considered reasonable by the contractor and CDOT personnel.

6.5 Cherry Creek State Park

The project is located in Denver with a highest 7-day air temperature of 33 to 34°C (91 to 93°F), the moderate temperature category. The design ESALs were unknown. The low traffic category was used since the road serves only recreational vehicles. The end point stress should be 170 kPa (25 psi). The project was designed with low air voids at the 170 kPa (25 psi) end point stress and had an optimum asphalt content of 5.6% at 4.0% air voids. The mix appeared to have too low an asphalt content for the application.

6.6 Berthoud Pass

The project is located on Berthoud Pass with a highest 7-day air temperature of 19°C (66°F), the very cool temperature category. The 10-year ESALs used to design the overlay were 4.1 x 10⁵, a medium traffic category. The end point stress should be 170 kPa (25 psl). The project was constructed with the 170 kPa (25 psi) end point stress and had an optimum asphalt content of 5.8% at 4.0% air voids. The mix was considered reasonable by the CDOT maintenance and engineering personnel.

6.7 Muddy Pass

The project is located from Muddy Pass to the east with a highest 7-day air temperature of 30°C (86°F), the cool temperature category. The 10-year ESALs used to design the overlay were 3.3 x 10⁵, a medium traffic category. The end point stress should be 170 kPa (25 psi). The project was constructed with the 170 kPa (25 psi) end point stress and had an optimum asphalt content of 5.7% at 4.0% air voids. The mix was considered reasonable by the CDOT and contractor personnel.

6.8 Walden

The project is located from Walden to the south with a highest 7-day air temperature of 28°C (82°F), the cool temperature category. The 10-year ESALs used to design the overlay were in the medium traffic category. The end point stress should be 170 kPa (25 psi). The project was constructed with the 170 kPa (25 psi) end point stress and had an optimum asphalt content of 6.0% at 4.0% air voids. The mix was considered reasonable by the CDOT and contractor personnel.

6.9 Basalt

The project is located around Basalt with a highest 7-day air temperature of 34°C (93°F), the moderate temperature category. The 20-year ESALs used to design the overlay were 1.9 x 10°, a high traffic category. The end point stress should be 520 kPa (75 psi). The project was constructed with the 520 kPa (75 psi) end point stress and had an optimum asphalt content of 5.8% at 4.0% air voids. The mix was considered reasonable by the CDOT and contractor personnel.

6.10 Wilkerson Pass

The project is located on Wilkerson Pass with a highest 7-day air temperature of 27°C (81°F), the cool temperature category. The 10-year ESALs used to design the overlay were 3.2 x 10⁵, a medium traffic category. The project was constructed with the 170 kPa (25 psi) end point stress and had an optimum asphalt content of 5.9% at 4.0% air voids. The mix was considered reasonable by the CDOT and contractor personnel.

7.0 FIELD CORRELATIONS

Ideally, in 3 to 5 years the air voids in the wheel path of the pavement should match the design air voids. A study previously performed by Aschenbrener (1) correlated the laboratory compacted air voids with the air voids in the wheel path. The correlation of the air voids in the wheel path with the laboratory compacted air voids is shown in Table 16. For the high trafficked pavements, the correlation of air voids in the wheel path with laboratory compacted voids is shown in Fig. 4. The variables used in Table 16 are defined as:

Y = air voids (%) from the sample recompacted in the Texas gyratory,

X = air voids (%) in the wheel path, and

 r^2 = coefficient of determination.

Table 16. Correlation of Air Voids in the Wheel Path with Recompacted Samples for Different Traffic Categories and Laboratory Compactive Efforts.

Traffic Category	T.G. End Point Stress, kPa (psi)	Regression Equation	r ²
Medium	620 (90)	Y = 1.2X + 0.6	0.68
Medium	1030 (150)	Y = 1.4X + 1.3	0.63
High	620 (90)	Y = 1.1X - 0.1	0.78
High	1030 (150)	Y = 0.9X + 1.2	0.36

For an ideal relationship, the slope should equal 1.0 and the intercept should equal 0.0. For a perfect relationship, the coefficient of determination, r^2 , should equal 1.0. For traffic in the high category, an end point stress of 620 kPa (90 psi) is close to ideal (the slope equals 1.1 and intercept is 0.1) and close to perfect (the r^2 is 0.78) as shown in Fig. 4.

For the very high traffic and moderate temperature category, it is recommended to design at a 690 kPa (100 psi) end point stress. The recommendation compares favorably with the measured air voids in the wheel path.

۸.,

Fig. 4. Air Voids in the Wheel Path Versus Air Voids from Samples Recompacted in the Texas Gyratory with a 620 kPa (90 psi) End Point Stress for the High Traffic Category.

8.0 IMPLEMENTATION

The results of this research effort were presented to the Region Materials Engineers and a joint task force of CDOT, paving contractor, and Industry representatives. The original findings of the study were modified based on the experience of all the Individuals who provided feedback. The final recommendations are summarized below.

It is recommended the state be divided into four high temperature categories and five traffic categories. The traffic and high temperature environment recommendations are shown below.

Traffic Category	Design ESALs	CDOT Network (%)
Low	< 3 x 10 ⁵	21.8
Medium	3 x 10 ⁵ to 10 ⁶	34.4
High	10 ⁶ to 3 x 10 ⁶	16.1
Very High	3 x 10 ⁶ to 10 ⁷	21.3
Very Very High	>10 ⁷	6.4

High Temperature Region	Highest 7-Day Avg. Max. Air Temperature	CDOT Network (%)
Hot (SE and West)	> 36°C (> 97°F)	14.7
Moderate (Denver, Plains and West)	32 to 36°C (90 to 97°F)	57.2
Cool (Mountains)	27 to 31°C (81 to 88°F)	13.9
Very Cool · (High Mountains)	< 27°C (< 81°F)	14.2

The resulting 4x4 matrix (plus the very, very high traffic) will have a unique Texas gyratory design and stability. The recommended end point stresses are shown below in psi (1 psi = 6.895 kPa).

Traffic	High Temperature					
	Very Cool Cool Moderate Hot					
Low	25	25	25	50		
Medium	25	25	50	75		
High	25	50	75	100		
Very High	50	75	100	125		
Very Very High			125			

The recommended minimum Hveem stability values and voids filled with asphalt (VFA) are shown below.

End Point Stress kPa (psi)	Minimum Stability	VFA (%)
860 (125)	42	65-75
690 (100)	42	65-75
520 (75)	39	65-78
340 (50)	33	65-80
170 (25)	26	70-80

The recommended minimum voids in the mineral aggregate (VMA) requirements are shown below.

Minimum VMA Specifications ²				
Nominal Maximum Size ¹ mm (In)	Design Air Voids			
	3.0%	4.0%	5.0%	
37.5 (1-1/2)	10.0	11.0	12.0	
25.0 (1)	11.0	12.0	13.0	
19.0 (3/4)	12.0	13.0	14.0	
12.5 (1/2)	13.0	14.0	15.0	
9.5 (3/8)	14.0	15.0	16.0	

¹ The Nominal Maximum Size is defined as one size larger than the first sieve to retain more than 10%.

² Interpolate specified VMA values for design air voids between those listed.

9.0 FUTURE RESEARCH

During the 1994 construction season, pavements should be selected for a void monitoring program. The pavements should include all traffic and environmental categories. After monitoring these pavements for 3 to 5 years, adjustments can be made to the end point stresses recommended in this study.

10.0 REFERENCES

1. Aschenbrener, T. (1992), "Investigation of the Rutting Performance of Pavements in Colorado," Colorado Department of Transportation Research Report, CDOT-DTD-R-92-12, 63 pages.

Appendix A

Summary of High Temperature Information

Countles with Mostly High Air Temperatures (> 36°C or 97°F)

County	7-Day High Air Temperatures
Baca	36, 36, 36
Bent	37,39
Crowley	
Fremont	. 37
Kiowa	37
Mesa	33, 36, 36, 36, 36, 36, 37
Otero	37, 38
Prowers	38, 38
Pueblo	31, 37, 37

Counties with Mostly Medium Air Temperatures (32 to 36°C or 90 to 97°F)

	<u></u>
County	7-Day High Air
	Temperatures
	·
Adams	35
Arapahoe	34
Boulder	27, 34, 34
Cheyenne	36, 37
Delta	33, 33, 33, 36
Denver	33, 33, 34
Douglas	33
Eagle	33
Elbert	33, 34
El Paso	25, 29, 33, 33
Garfield	34, 34, 34
Huerfano	33
Jefferson	30, 32, 33, 34
Kit Carson	36, 36, 36
Larimer	27, 28, 32, 33
Las Animas	27, 33, 33, 34, 37
Lincoln	33, 34, 36
Logan	36
Moffat	32, 32, 34, 36
Montezuma	33, 33, 33
Montrose	32, 34, 36, 37
Morgan	36
Phillips	36
Rio Blanco	32, 32, 36
Sedgwick	36, 37
Washington	35, 36
Weld	34, 35, 35, 36
Yuma	35, 36, 37

Counties with Mostly Low Air Temperatures (27 to 31°C or 81 to 88°F)

County	7-Day High Air Temperatures
Alamosa	29, 30
Archuleta	31
Chaffee	30, 31
Conejos	29
Costilla	31
Custer	30
Dolores	27, 33
Jackson	27, 28
La Plata	29, 30, 32, 33
Ouray	29
Park	27, 27, 27, 29
Rio Grande	28, 29, 29
Routt	27, 30, 32
San Miguel	27, 31
Saguache	29

Countles with Mostly Very Low Air Temperatures (<27°C or <81°F)

County	7-Day High Air Temperatures
Clear Creek	23, 27, 29
Gilpin	
Grand	19, 26, 26, 27, 29, 29
Gunnison	24, 25, 27, 29, 29
Hinsdale	28
Lake	21, 23, 24, 24
Mineral	21, 27, 27
Pitkin	29, 29
San Juan	25
Summit	26, 29
Teller	

Appendix B

Summary of SHRP's Weather Data Base for Colorado

SUPERPAYE DETERMINATION OF ABPHALT BINDER GRADE Weather Database Used in SUPERPAYE Software

	8	<u> </u>
	BINDER ORADE	= E = a = a = a = a = a = a = a = a = a =
	BIND	2 222222222222222222222222222222222222
, Light		
RELIABILITY		<u>A</u> CCC+84+868848842848888888444888888888888888
287	J	₹ ₹₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	NT TO	XXX 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	TEMPERATURES	
	<u></u>	
	R GRADE	
	BINDER	2 222222222222222222222222222222222222
DILITY		
SOS. RELIABILITY		
Sog	B	A A A A A A A A A A A A A A A A A A A
	MTA	₹ 8 x x c x a x x a x x x x x x x x x x x x
	TEAPERATURES	**************************************
	TEMP	
ģ	нон теме	×××××××××××××××××××××××××××××××××××××
ALB TEMP	<u>a</u>	Bunanaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
	W TEMP	
	wo1	№ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		152 1 153 1
		E
		100.00 10
	i	STATION AUGON & B AUGON & B AUGON & B AUGON & A ALLENSARA ALTENBERN ANTERO RESERVOIR ARTHALA ARTHALA ARTHALA ASPEN BERTHOUD PASS BLANCA BLOUGA BROWNS PARR REFUGE BROWNS PARR BRUGGSDALE GABANSON BRUGGSDALE BROWNS PARR BRUGGSDALE CANON CTY CASITE ROCK CANON CTY CASITE ROCK CASTER ROCK CASTER SOCK CANARRON CHETRY OR BE COSTER A SW CHETRY OR BE COSTER A SW CHETRY OR BE COSTER B WOO AP COCHETON IE DEDIVA DEDIVA DEDIVA DENVER CTY UR DENVER CTY DENVER CTY DENVER CTY DENVER CTY DENVER WAYO AP DENVER CTY DENVER SA ESTES PARK
		STATION ACRON 4 B ACRON 4 B ACRON 4 B ACRON 4 A ALTENGERN ALTENGERN ALTENGERN ALTENGERN ALTENGERN ARTER ARTER ARTER ARTER ARTER ARTER ARTER BENUNCA CASTI E ROCK COCHETNA CHERRA CASTI CHERRA CHER
		STATION AUGON & A ALENGRAN & B ALENGRAN WO AP ALLENGRAN WO AP ALTENBERN ANTERO RESERVO ARTERA BULANCA BULANCA BULANCA BULANCA BULANCA BULANCA BULANCA BULANCA BULANCA CANON CITY CANON CITY CASTER ROCK CANON CITY CASTER A SW CHERSMAN BULESMAN CHERSMAN CHERSMAN CHERSMAN CHERSMAN CHERSMAN CHERSMAN CHERSMAN CHERSMAN CHERSMAN CHERRY CREEK COLLBRAN CHERSWAN CHERRY CREEK COLLBRAN COLLBRAN CHERRY CREEK COLLBRAN COLLBRAN CHERRY CREEK COLLBRAN COLLBRAN COLLBRAN COLRBRAN COLLBRAN COLLBRAN COLLBRAN COLLBRAN COLLBRAN COLLBRAN COLLBRAN COLLBRAN COLLBRAN CHERRY CREE CRAUG CREETED BUTTE DENVER CITY UR DENVER CITY DENVER
		STATION AACHOUS ALLENDER ALLEN
		7.7. o z N w <
		MASHINGTON WASHINGTON WASHINGTON ALAMOSA BOULDER GOARPIELD PARK LINGOLH PITTON GRAND GOSTILLA WELD WELD WOPRAT DOUGLAS BOULDER LAS ANDAS BULTA NOTROSE LAS ANDAS BULTA BOURTROSE LAS ANDAS BULTA BOUNTSON LAS ANDAS BULTA BOUNTSON LAS ANDAS BULTA BOUNTSON LAS ANDAS BUNTEDMA MONTECUAA LAS ANDASS BUNTES BU
		WASHING WASHING WASHING WASHING WASHING WASHING BOULDE CASTILL YUNA ORAND ORAN

٨,

SUPERPAVE DETERMINATION OF ASPEALT BINDER GRADE Weither Delibese Used in SUPERIAVE Software

	GRADE	2	il 4	2 2	ş ş	₹ ₹	*	9 3	콗	3 ?	§ 9	;	7 7	*	ż ż	7	4 4	, ,	7 7	Ą	みち	3	ş :	ř	×:	\$ 9	ह	÷ :	7 9	8	ដុះ	7 7	\$	28	9	
	BINDER	2	되요	2 22	3 5	3 2	2 1	2 2	R	# :	3 5	ጽ :	१ दर	R :	1 Z	8	ដ ទ	Z	Z 5	8	Z 5	ર ઢ	C E	: 8	33	8	3 :	2 2	१ झ	×	R 8	4 8	ĸ	2 X	Ħ	
	1	Dill	212	2 2	28	2.2	22	2 2	2	28	2.2	28	2 2	2	2 2	2	22	2	2 2	2	2 8	2	2 2	2.2	ģs	2	2 2	5 8	2 2	2	2 5	2 2	2	22	운.	
745 BELLARI			ğД≌:	? ?	* *	? ?	Ŗ,	7 7	Ŗ	÷ 5	\$ 8	Ŗ ?	7	7 :	7 4	₹:	żż	ដុ	ż ä	Ę.	₹ ₹	25	3 3	8	r; r	ş	¥ 1	7 7	, 55 S	×	ة ۽	ş	ķ	ż ż	ş	
100			A A A	ş ş	* *	ያ ዷ	នុន្	7 7	ş	<u> ج</u> ج	Ŗ	នុង	7	7 9	, 3	7	ż ż	Ş	3 2	£.	₹	. £	7 7	ş	# #	Ŋ	ą:	7 7	43.	ņ	÷ =	**	\$	8 X	¥	
	TEMPERATURES		₹∑¤ 8	k &	3 =	8°-	ઝ ર	3	8	% 5	<u>ج</u>	2 3	उ	8 9	3 8	S :	z %	8	# %	% :	2 3	8	۲ C	×	2 5	47	3 3	2 3	38	X :	K S	8	ឌ	# #	×	
	TEMPER		Ž ≅ :	2 2	3 =	R	3 8	ង ន	R	2 5	ត	7 =	, a	2 23	, â	۲ :	# ¥	3 :	# X	8	2 2	\$ 1	₹ #	2	4 =	×	# :	2 3	×	n	2 2	33	<u> </u>	2 2	×	
	ş		ៀង	9 9	ង់ ដ	ដុ	ដ	5 7	ন	ង់ ម៉	Ą	ង ន	, इ	9 8	ង	ह्र १	ុ ក	R) T	9 13	13 1	4 5	19 2	, ,	ম	អុ អុ	ş	i i	ķ	ম	¥ ;	? ?	¥	Ŗ i	ù ù	ង	
ĺ	BINDER GRADE		되다	3 22	ス 5	3	R E	1 8	ដ	2 2	8	# 8		E 3	8	E	1 R	8 :	१ द	₹ :	7 C	3 (X 84	3	2 Z	\$	X 5	t. 28	Ħ.	8 :	Ż Z	ដ	к :	* #	z,	
			8188	22	22	2	2 2	2 2	2	22	2	2 2	2	2 2	22	22	2.2	2,8	2 2	2	2.2	22	2-2	2	22	2	8 8	2	2	2 2	2 2	2	2 2	2 &	8	
ON RELIABILITY			₹ \$ £	, 3 , 3	ន់ ដ	នុ	ر د د	ş	នុ	ស់ ង់	16	ኝ ኝ	ş	ž S	ģ	5	ş	3:	9 69	Ę	i s	3 :	; 3	3	\$ X)	ķ	ş ş	3	-22	ģ:		.30	នុខ	រុនុ	a,	
50% R.E.			N S S	į Pį	គ ដ	Ŗ	à À	, 7	នុ :	ù si	តុខ	3 3	នុះ	ķ ś	នុ	\$ \$	\$	គុនុ	ij	ę X	3 %	<u>ت</u> د	१ क्	ķ	ș ș	89 2	ą ą	ş	Ŗ	ş, ş	7	Š.	3 8	'n	អុ	
Ì	TEMPERATURES		¥ \$ \$ & \$: 5 :	X 3	*	% 5		\$:	8 8	\$:	x &	23	3 &	X	\$ \$	₹ ≭	% C	: 3	Z C	; \$	8.9	3	ឧ	ķ	\$	x &	ដ	3 ;	2 (ដ	8	2 5	3 25	ス	
	TEMPER		美祖8 5	: 22	2 2	*	× 2	*	2 2	8 23	ล์:	ı R	#	R SI	2	r e	S	2 5	*	¥ t	. 8	# F	4.1	z:	2 2	*	X E	2	ਡ.	R £	4 23	8	2 2	K-3	a	
	нон теме		EJ - ~		w «	-		—	۰.,	4 ~	٦,	4 (4	-	- ~	, ea ,	n -		90	۱ م	- -	, n		19	~ (4 +4	- I	N	-	!		. ~	м,	r		-	
200	нодн		% % QQ	. 8 8	8 Fz	*	3 5	ន	F 8	, X	PA 2	ና ጽ	ដ វ	S #	*	P 8	n za	F 5	X	Z S	: 2	# 8	F	n:	1 R	7	1 12	Ħ	3 8		2	8	\$ 7	(2)	z	
AIR TEAC	<u>چ</u>		013	٠.,		· 60 ·	n n	÷	m -	· •	• •	. ~	٠, ٠	, .	~ ·	• •	•	~ ~	'n	i)		* «	'	m ~		~ `	• •	~	•	• ^	'n	.	5 4	. 🛶 .	•	·
	LOW TEMP		S is the	# 2	ខ្មែ	នុះ	হ ক	¥	Ņ X	i xi	# F	įż	33	ķķ	Ą,:	3 X	. \$, ,	Ė	r a	ż	7 5	*	ন ন	į ą.	R Z	i ii	ä	r i	3 5		ج ۾	3 2	Į į	á á	
ш	_	Ì	2316 2316	2611	265	223	2660	252	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3	¥ 5	ŝ	1946	18	11,38	2 2	241	25 52	12.51	<u> </u>	370	- - - - - - - - - - - - - - - - - - -	2599	8 2	9				1522			= 1	3 5	1458	É.	
		ŀ							_								_	_									_								-	
		L	지유 등 기유 등	_		39.10	•	_	725		39.58		40.48		200			2 2 2		2 X		2 X 2 X 2 X	_	39.75	_	2		_	40.18		_	39.37	-			
			1000 1000 1000 1000 1000	105.83	105.75	108.55	105.83	105.87	105.62	10.75	106.33	106.93	101.75	E E	825	8 8	107.63	1929	97.50	10.77	30	103.52	103.48	100.0	100.22	3 5	8	108.20	105.10	108.08	107.50	25.25	107.88	103.85	77.53	
		1	STATION PORT LEWIS HORT LUPTON 2 SE	FRASER	GEORGETOWN	GRAND JUNCTION WSO AP	ORAND LAKE 1 NW	ORAND LAIGE 6 SSW	GRANT GBPAT SAND DINNS N.M.	ORESTEY UNC	GREEN MOUNTAIN DAM	OUNTSON	HAYDEN TOTAL TOTAL	HOLLY	HOLYOKE	DAHO SPRINGS	IONACIO I N	JOHN MAKTIN DAM	KAKSLER	XTI CARSON 6 S	KREWALDYO	LAKECTY	LAKE OECROE & SW	LANAR	LAS ANDWAS	LEADVILLE LIMON IN SERV	LIMON	रामा इस्मार	LONOMONT	MAYBELL	MODERCER	MEREDITH VICTA (B	MONTROSE	NEW RAYMER		
			XVIVIX A FLATA		CLEAR CREEK				PARK	,		OUNNISON	ROUTT	PROWERS	PHILIPS NO AND	CLEAR CREEK	LA PLATA	SEDOWICK	TEPPERSON	CHEYENNE		HINSDALE	;	PROWERS PROWERS	BENT		LE COLIN	8	BOULDER	KOFFAT	RIO BLANCO	PITION OR ANDE	MONTROSE	WELD	3	

SUPERPAVE DETERMINATION OF ASPHALT BINDER GRADE Weather Database Used in SUPERPAVE Software

					ADE TEMP					50% RI	CTTV BILT	ΤΥ			96% RELIABILITY							
							H TEMP	ТЕМРЕ	RATURES	5		BII	VDER C	BOAS	TEMPE	RATURE	3	BINDER GRADE				
COUNTY ID LAS ANIMAS NORTH LAKE SAN MIGUEL OURAY ARCHULETA MESSA MESSA MESSA MESSA PALISADE EL PASO DELTA MONTROSE EL BEERT PARKER 6 E GUNNISON PUEBLO CARPIELD OTERO CARPIELD OTERO CARPIELD OTERO ROCKY FORD 2 SE RUSH 4N RUXTON PARK FUEBLO SAGUACHE SAGUACHE SAGUACHE SAGUACHE SAGUACHE SAGUACHE SAN JUAN JACKSON JACKSON JACKSON SPICER GUNNISON STRATTON STRA	100.NO 105.05 106.28 107.67 107.02 108.35 104.92 107.58 108.95 104.65 106.55 10	LAT 37.22 38:13 38:02 37.27 39.12 39.12 38.87 38.37 39.53 38.60 38.28 40.78 37.70 39.53 38.60 38.85 37.92 38.68 38.85 37.92 38.68 38.85 37.92 38.68 38.85 37.82 40.47 37.38 40.48 40.49 39.50 39.51 37.37 37.37 37.37 37.38 40.43 38.37 37.37 37.37 37.38 40.43 38.37 37.37 37.38 40.43 38.37 37.37 37.37 37.38 40.43 38.37 37.37 37.38 40.43 38.37 37.37 37.37 37.38 40.43 38.13 37.37 37.38 40.43 38.13 37.37 37.38 40.43 38.13 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 40.43 37.37 37.38 40.43 37.37 37.37 37.38 40.43 37.37 37.37 37.38 40.43 37.37 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.38 40.43 37.37 37.48 40.08 40.15 37.59 40.15 37.59	ELEV 2684 2141 2391 2169 1464 2202 1670 1610 1925 2806 1415 2492 2478 1623 1272 1864 2760 2071 2217 2254 1879 1217 2827 2062 1202 1202 1203 2591 1751 2809 2684 1839 1754 2806 1528 2333 2592 2477 1211 1505 2397 3245 1074 2406 2092 1263	COW T AVO -27 -26 -22 -23 -26 -29 -29 -26 -29 -29 -26 -29 -29 -26 -29 -29 -26 -29 -29 -26 -29 -29 -26 -29 -29 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	STD 5 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AVG 27 31 29 31 37 29 33 36 33 25 37 27 34 36 30 36 30 36 36 37 28 37 24 27 38 36 37 28 37 29 31 36 30 36 30 36 37 37 28 38 39 30 30 30 31 31 32 32 33 34 34 35 36 37 38 38 38 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30	5TD 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 1 2	TEMPE MAAR 27 11 29 11 17 29 11 17 29 11 17 29 11 17 29 11 17 29 11 17 29 11 17 29 11 11 29 11 11 29 11 11 29 11 11 29 11 11 11 11 11 11 11 11 11 11 11 11 11	MAXT 48 52 57 50 45 77 44 45 58 54 46 22 55 57 51 44 45 58 54 46 22 55 57 51 44 45 58 54 46 22 55 55 57 51 44 45 58 54 55 55 57 51 48 45 57 51 51 51 51 51 51 51 51 51 51 51 51 51	MIN ARR 27 - 26 - 22 - 23 - 26 - 22 - 23 - 26 - 22 - 23 - 26 - 25 - 26 - 27 - 27 - 25 - 26 - 27 - 27 - 27 - 27 - 27 - 27 - 27	MIN PYT -27 -26 -22 -32 -17 -26 -22 -28 -33 -26 -27 -25 -34 -26 -22 -34 -26 -27 -27 -25 -26 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27		DER 0 HT 52 52 52 53 54 55 55 55 55 55 55 55 55	RADE 1.7.28 -22 -23 -22 -28 -34 -38 -38 -38 -38 -38 -38 -38 -38 -38 -38	MAX AIR 31 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	ATURE MAX PY 1	MIN AIR -37 -34 -25 -30 -31 -36 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -35 -37 -38 -44 -37 -38 -44 -37 -38 -44 -38 -37 -38 -44 -38 -37 -38 -44 -38 -37 -38 -44 -38 -37 -38 -44 -38 -37 -38 -44 -38 -37 -38 -44 -38 -37 -38 -44 -38 -37 -38 -44 -38 -37 -38 -44 -38 -38 -38 -44 -38 -38 -38 -44 -38 -38 -38 -44 -38 -38 -38 -44 -38 -38 -38 -44 -38 -38 -38 -38 -44 -38 -38 -38 -38 -38 -44 -38 -38 -38 -38 -38 -38 -38 -38 -38 -38	MIN PVT -37 -34 -40 -25 -34 -35 -37 -38 -34 -35 -35 -37 -38 -34 -35 -35 -37 -37 -38 -34 -35 -35 -37 -37 -38 -34 -35 -35 -37 -38 -34 -35 -35 -37 -37 -38 -38 -38 -38 -38 -38 -38 -38 -38 -38	SISSESSESSESSESSESSESSESSESSESSESSESSESS	NDER (1) 18 18 12 18 12 18 12 18 18 18 18 18 18 18 18 18 18 18 18 18	GRADE LT40 34 28 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 34 40 40 40 34 40 40 40 34 40 40 40 34 40 40 40 34 40 40 40 40 40 40 40 40 40 40 40 40 40	

Appendix C

Summary of Optimum Asphalt Contents on the Texas Gyratory

Appendix D

Summary of the French Rutting Tester Results

- 6.4% AC -+- 6.1% AC -*- 5.8% AC

■— 5.6% AC → 5,3% AC → 5.0% AC

── 5.6% AC

