7	
	n

Naion: Assume that language Li & P, Lz & P.
⇒ There are polynomial - time TMs M1 and M2 that decide L1 and L2 respectively.
A Turing-Machine M that decides LIUL2 AS follow:
M = "On input w:
1. Run M. with input w. If M. accepts, accept.
2. Run Mz with input w. If Mz accepts, accept.
3. Otherwise, reject.
Maccepts wif and only if either Mi or M2 accepts w.
Both stages take polynomial time, the algrithm runs in polynomial time.
So, M decides the union of L1 and L2.
Concatenation: Assume that language Li & P, Lz & P.
⇒ There are polynomial - time TMs M1 and M2 that decide L1 and L2 respectively.
A Twing-Machine M that decides L1 · L2 As follow:
M = "On input W:
1. For each way cut w into two substoings such that W = W1W2
2. Run Mi on Wi and run M2 on W2.
7. If MI.Mz are both accept, accept.
4 If we finished try all possible cuts, wis still not accepted, reject.
Maccepts W if and only if w can be written as Wiwz and Mi accepts Wi, Mz accepts Wz.
Stage 2 runs in polynomial time and it is repeated at most D(n).
The algorithm runs in polynomial time.
So, M' decides the concatenation of L1 and L2.
1
lamplement Accume that the language 1. L.P.

⇒ There is a polynomial time TM M₁ that decides L₁.
A Turing-Machine M that decides L₁ as follow:

M = "On input W:
1. Run Mi with input w.
2. If M. Allepts, reject.
3. Otherwise, accept.
The Turing Mechine M just output the opposite of M, does.
So, M decides Li.
Miruns in polynomial time, M also runs in polynomial time.
So, M decides the complement of L.
7.7
Union. Let A and B be languages are decide by NP.
Let M. Mz be the polynomial time nondeterministic decider.
We construct a NTM M that decides AVB in polynomial time.
M = "On input w:
1. Check if wis a member of A or B.
2. If A was decided , rnn Mi on w, ontput Mi's decision.
3. If B was decided, rnn M2 on w, ontput M2's decision.
Runtime: $D(1) + MAX(D(m_0), D(m_0)) = MAX(D(m_1), D(m_0))$
Mi, Mz rnn in polynomial time.
⇒ MAX (O(m1), O(m2)) is polynomial time.
M decides A U B in polypnimial time.
So, A union B is In NP.
Concatenation: Let A and B be languages are decide by NP.
Let Mi. Mz be the polynomial time nondeterministic decider.
We construct a NTM M that decides A o B in polynomial time.

M = "On input w :

No-deterministically divide w into X and Y.

2. Run Mi on X
3. Run Mz on Y.
4. If Mi and Mz are both accepted, accept.
5. Otherwise, reject.
Runtime: $O(1) + MAX(O(m)) = MAX(O(m))$
Mi, Mz rnn in polynomial time.
=> MAX (O(mi), O(m2)) is polynomial time.
M decides A o B in polypnimial time.
So, A writinate Bis in NP.
7.15
Let A & P
\Rightarrow There exists a deterministic Turing machine Ma . The runtime complexity $O(n^k)$ for $k \geqslant 0$.
We need to show that A* & P.
bet Wi.j denote the substring of W=W1W2W3 Wn starting with Wi, ending with Wj.
Build a table where T(i,j) = 1 as time. if wij + A*.
Consider all substrings of w starting with substrings of length 1 and ending with n
"On input W= WIW2 Wn.
1. If wis empty string, accept.
2. Initailze T [i,j] =0 for < i < j < n.
3. For i=1 ton.
4. If Wilsin A. Set Trivj] = 1
S. For l= 2 to n
6. For i=1 to n-1+1
7. Let j = i+1-1
8. If wi-wj is in A, set Tci, j1 = 1
9. For k=i to j-1
10. If Tri, k] = and Tri, j] = 1 , (et Tri, j] = 1.

11. If T[1,n] = 1, accept. 12. Else, reject. Each stage takes polynomial time, and it executes takes $O(n^3)$ which is polynomial in N. 7.18 Assume that P=NP Let A & P Such that A ≠ of and A ≠ E*. This means there is a string wine A and a string what # A. We need to show that A is NP-complete. By our assumption, the language A is in NP=P. Let B be an arbitrary language from NP=P. BENP, BEPA. So, the language has a polynomial decider M. The polynomial reduction from B to A will be as follow: "On input W: 1. Run M (decider for B) on W. 2. If M accepted, then output Win. 3. If M rejected, then output Wont. Go, there exists a polynomial time from B to A. Thus, A is NP- umplete. 7.21 b. Assume that NP-completeness of UHAMPATH, the Hamiltonian path problem for undirected graphs. A simple path of length at least k from a to b. Verify it in polynomial time. ⇒ LPATH < NP. Set TM M computes the reduction f. M="On input < G, a, b) where graph G has nodes Q and b. 1. Let k be the number of nodes of G.

2. Ontput < G, a b, k>
⇒ UHAMPATH ≤p LPATH
If < a.a. b> 6 UHAMPATH, then a contains a Hamiltonian path of length k from a to b.
⇒ CG, a, b, k> E LPATH.
If (G, a, b, k> E LPATH, then G contains a simple path of longth k from a to b.
As we know that G has only k nodes.
so, the path is Hamiltonian. <g, a,="" b=""> < UHAMPATH.</g,>
Thus LPATH is NP-complete.
7.38
Assume P=NP
Using the polynomial time algorithm of SAT.
Give a satisfactory assignment to the satisfiable formula 4.
Snbstitute X1=0, X2=1 in Ψ.
Test the satisfiablisty of two result po, po.
We know that φ is satisfiable.
So, at least one must be satisfiable.
If Qo satisfrable, Pick X1=0.
If φ, satisfiable, piuk X1=1.
Therefore, we could give value of X1 in satisfy assignment.
As same, determine a value for X2, and make that substitution permanent.
keep doing like this until all variables are replaced.
7.43
On input of
Build a NFA N that chooses mondeterministically one of the c clauses and reads input length
If clause is not satisfied, accept. Otherwise, rejects
N'accepts all inputs of longth not equal l.
·

Also N consists Occon states that shows it can work in polynomial time.
For any nonsatisfying assignment a that at least one clause is not satisfied> N accepts a.
If N accept a, clanse is not satisfied, so a is a nonsatisfying assignment.
⇒ N accepts all the nonsatisfying assignment of \$\phi\$.
Let minimization of NFAs take polynomial time.
Build a NFA N that accepts of 's nonsatisfying assignments.
Also N accepts all binary string if and only if to is not satisfiable.
For new NFA N' execute the NFA minimizing algorithm, reject of
If N' contains exactly I state, then accepts all binary strings. Otherwise, accept d.
This produces a polynomial time algorithm for 3 SAT.
Thus, P=NP.