Número:_____

1.	[1,5 valores] - Considere o seguinte excerto de um programa escrito em <i>assembly</i> e a executar numa máquina com cache:								
	ciclo	mov] add] cmp]	l 0(%ebx), %edx l \$10, 0(%ebx) l \$4, %ebx l \$0, %edx ciclo						
	Considere que o registo %ebx aponta para o início de um array de inteiros (4 bytes) com os seguintes valores: -10, 30, 1024, -33, 0. Note que o ciclo termina quando o valor lido do array for 0. A frequência do relógio é de 2 GHz, o CPI _{CPU} é 2, a <i>miss rate</i> de instruções é de 3% e a de dados de 5%. Sabendo que o tempo de execução deste programa é de 150 ns, qual é a <i>miss penalty</i> (expressa em tempo)?								
			mp_T = 150 ns			$mp_T = 50 \text{ ns}$			
			$mp_T = 200 \text{ ns}$			$mp_T = 100 \text{ ns}$			
2.	 [1,5 valores] - Complete a afirmação abaixo : "A técnica de <i>pipelining</i>, relativamente a uma arquitectura sequencial de acelera o desempenho de um processador pois 								
		resulta numa diminuição do CPI, uma vez que mais do que uma instrução se encontra em execução em cada ciclo."							
		resulta numa diminuição do número de instruções executadas, uma vez que							
		resulta num aumento da frequência devido a ciclos de <i>stalling</i> causados por dependências de dados e/ou controlo."							
3.	[1,5 valores] - Complete a afirmação abaixo: "O programa for (i=0 ; i <n *="" 2;<="" ;="" a[i]="b[100*i]" i++)="" td=""></n>								
	permite explorar a hierarquia de memória pois exibe localidade espacial nos acessos a i."								
		permite explorar a hierarquia de memória pois exibe localidade espacial							
		permite explorar a hierarquia de memória pois exibe localidade espacial							

MiEI 1º teste									
[1,5 valores] - Quantos <i>bits</i> tem a <i>tag</i> de uma hierarquia de memória (S=1024, E=8, B=128, m=32)?									
	t= 15		t= 17						
	t= 10		t=10						
[2.0 valores] A tabela abaixo apresenta na coluna da esquerda uma sequência de endereços (m=4) de acesso à memória gerados por um determinado programa. As 3 colunas seguintes referem-se a um modo de mapeamento numa cache que usa o algoritmo de substituição LRU. Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qual a tag associada a essa linha depois deste acesso e indicando se se trata de um cold miss, colisão ou de um hit. Considere a cache inicialmente fria.									
Addr	(S=2,E=2,B=2,m=4)	tag	cold miss/hit/colisão						
1									
13									
0									
6									
8									
6. [2.0 valores] O excerto de código abaixo calcula a soma de todos os elementos de uma matriz de inteiros. A matriz tem ALTURA * LARGURA elementos. for (col=0 ; col <largura (lin="0" +="matriz[lin*LARGURA+col];" ;="" <="" a="" altura="" col++)="" da="" de="" eficaz="" explorar="" for="" forma="" hierarquia="" justificando="" lin="" lin++)="" mais="" memória,="" o="" para="" possível="" programa="" que="" reescreva="" resposta.<="" seja="" soma="" sua="" td="" {="" }=""></largura>									
	m=32)? [2.0 valores] A tak (m=4) de acesso referem-se a un LRU. Preencha-a tag associada a colisão ou de un Addr 1 13 0 6 8 [2.0 valores] O exc de inteiros. A ma for for for for	t=15 t=10 [2.0 valores] A tabela abaixo apresenta na (m=4) de acesso à memória gerados por referem-se a um modo de mapeamento LRU. Preencha-as indicando em que set/litag associada a essa linha depois deste colisão ou de um hit. Considere a cache in Addr (S=2,E=2,B=2,m=4) 1 13 0 6 8 [2.0 valores] O excerto de código abaixo ca de inteiros. A matriz tem ALTURA * LARG for (col=0 ; col <largura (lin="0" +="matrix[lin*L" +<="" ;="" <="" alt="" for="" lin="" soma="" td=""><td>m=32)? t=15</td></largura>	m=32)? t=15						

Nome: ______ Número:_____