#### Воротницкий Ю.И.

# Исследование операций

Транспортные модели Целочисленное программирование

### Транспортные модели

#### Транспортные модели. Определение транспортной модели.

- Транспортные модели в классической постановке описывают перемещение (перевозку) какого-либо продукта из пунктов отправления в пункты назначения.
- Цель транспортной задачи определение объемов перевозки из пунктов отправления в пункты назначения с минимальной суммарной стоимостью перевозок.
- При этом должны учитываться ограничения на объемы грузов в пунктах отправления (предложения) и в пунктах назначения (спрос).
- Предполагается, что стоимость перевозки по какому-либо маршруту прямо пропорциональна объему товара.
- Транспортная модель применяется для описания ситуаций, связанных с управлением запасами, составлением расписаний, управлением движением капиталов, назначением персонала и др.
- Транспортная модель может рассматриваться как упрощенная задача нахождения потока минимальной стоимости в сети.

# Транспортные модели. Определение транспортной модели. Представление транспортной задачи в виде сети.



#### Транспортные модели. Принципы построения алгоритма решения

- Последовательность шагов алгоритма решения транспортной задачи:
  - 1. Определить начальное базисное допустимое решение
  - 2. На основании условия оптимальности среди всех небазисных переменных определить вводимую в базис. Если все небазисные переменные удовлетворяют условию оптимальности, завершить вычисления.
  - 3. С помощью условия допустимости среди текущх базисных переменных определить исключаемую.
  - 4. Найти новое базисное решение и перейти к шагу 4.
- Данная последовательность шагов в точности повторяет аналогичную последовательность симплексного алгоритма.

# Транспортные модели. Принципы построения алгоритма решения Определение начального решения

- Общая траснспортная модель с m пунктами отправления и n пунктами назначения имеет m+n ограничений.
- В силу сбалансированности транспортной модели одно из этих равенств избыточно. Таким образом, транспортаня модель имеет m+n-1 независимых ограничений, откуда следует, что начальное базисное решение состоит также из m+n-1 переменных.
- Специальная структура транспортной задачи позволяет использовать для построения начальных допустимых базисных решений следующие специальные методы:
  - Метод наименьшей стоимости
  - Метод северо-западного угла
  - Метод Фогеля.
- При изменении базиса в данном случае используется более простой способ, основанный на анализе транспортной таблицы (с помощью метода потенциалов).

### Транспортные модели. Пример постановки транспортной задачи.

- Минский тракторный завод построил три завода в Лос-Анджелесе, Детройте и Новом Орлеане и два дистрибьюторских центра в Денвере и Майами.
- Объемы производства заводов в следующем квартале соответственно составляют 1000, 1500 и 1200 тракторов.
- Ежеквартальнная потребность дистрибьюторских центров составляет 2300 – в Майами и 1400 тракторов в Денвере
- Даны расстояния (в милях) между заводами и дистрибьюторскими центрами.
- Транспортная компания оценивает свои услуги в 8 центов за перевозку одного трактора на одну милю.
- Требуется минимизировать транспортные расходы.

### Транспортные модели. Пример постановки транспортной задачи.

#### • Таблица расстояний

|              | Денвер | Майами |
|--------------|--------|--------|
| Лос-Анджелес | 1000   | 2690   |
| Детройт      | 1250   | 1350   |
| Новый Орлеан | 1275   | 850    |

#### • Таблица стоимостей (долларов США)

|              | Денвер | Майами |
|--------------|--------|--------|
| Лос-Анджелес | 80     | 215    |
| Детройт      | 100    | 108    |
| Новый Орлеан | 102    | 68     |

### Транспортные модели. Пример постановки транспортной задачи.



|                   | Лос-<br>Анджелес | Детройт | Новый<br>Орлеан | Спрос | V |
|-------------------|------------------|---------|-----------------|-------|---|
| Майами            | 215              | 108     | 68              | 2300  |   |
| Денвер            | 80               | 100     | 102             | 1400  |   |
| Производ-<br>ство | 1000             | 1500    | 1200            |       |   |
| U                 |                  |         |                 |       |   |

Составляем транспортную таблицу (U и V – строка и столбец потенциалов)

|                   | Лос-<br>Анджелес | Детройт | Новый<br>Орлеан | Спрос | V |
|-------------------|------------------|---------|-----------------|-------|---|
| Майами            | <b>1000</b> 215  | 108     | 68              | 2300  |   |
| Денвер            | 80               | 100     | 102             | 1400  |   |
| Производ-<br>ство | 1000             | 1500    | 1200            |       |   |
| U                 |                  |         |                 |       |   |

Находим начальное базисное решение методом северо-западного угла, удовлетворяя спрос из доступного производства слева направо и сверху вниз.

|                   | Лос-<br>Анджелес | Детройт         | Новый<br>Орлеан | Спрос | V |
|-------------------|------------------|-----------------|-----------------|-------|---|
| Майами            | 1000<br>215      | <b>1300</b> 108 | 68              | 2300  |   |
| Денвер            | 80               | 100             | 102             | 1400  |   |
| Производ-<br>ство | 1000             | 1500            | 1200            |       |   |
| U                 |                  |                 |                 |       |   |

Находим начальное базисное решение методом северо-западного угла

|                   | Лос-<br>Анджелес | Детройт        | Новый<br>Орлеан | Спрос | V |
|-------------------|------------------|----------------|-----------------|-------|---|
| Майами            | 1000<br>215      | 1300<br>108    | 68              | 2300  |   |
| Денвер            | 80               | <b>200</b> 100 | 102             | 1400  |   |
| Производ-<br>ство | 1000             | 1500           | 1200            |       |   |
| U                 |                  |                |                 |       |   |

Находим начальное базисное решение методом северо-западного угла

|                   | Лос-<br>Анджелес | Детройт | Новый<br>Орлеан | Спрос | V |
|-------------------|------------------|---------|-----------------|-------|---|
| Майами            | 1000<br>215      | 1300    | 68              | 2300  |   |
| Денвер            | 80               | 200     | <b>1200</b> 102 | 1400  |   |
| Производ-<br>ство | 1000             | 1500    | 1200            |       |   |
| U                 |                  |         |                 |       |   |

Находим начальное базисное решение методом северо-западного угла

|                   | Лос-<br>Анджелес | Детрой | ÍΤ  | Новый<br>Орлеан |     | Спрос | V |
|-------------------|------------------|--------|-----|-----------------|-----|-------|---|
| Майами            | 1000             | 1300   | 108 |                 | 68  | 2300  |   |
| Денвер            | 8                | 200    | 100 | 1200            | 102 | 1400  |   |
| Производ-<br>ство | 1000             | 1500   |     | 1200            |     |       |   |
| U                 |                  |        |     |                 |     |       |   |

Начальное базисное решение построено. Значение целевой функции = 497 800

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V |
|-------------------|------------------|-------------|-----------------|-------|---|
| Майами            | 1000<br>215      | 1300<br>108 | 68              | 2300  |   |
| Денвер            | 80               | 200         | 1200<br>102     | 1400  |   |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |   |
| U                 |                  |             |                 |       |   |

Рассчитываем потенциалы. Потенциалов 5. Базисных переменных и, соответственно, уравнений (заполненных клеток) – 4. План является невырожденным (в ислу сбалансированности задачи число базисных переменных должно быть на 1 меньше, чем количество поставщиков + количество потребителей).

Выбираем заполненную клетку с максимальной ценой перевозки.

|                   | Лос-<br>Анджелес | Детройт | Новый<br>Орлеан | Спрос | V   |
|-------------------|------------------|---------|-----------------|-------|-----|
| Майами            | 1000<br>215      | 1300    | 68              | 2300  | 100 |
| Денвер            | 80               | 200     | 1200            | 1400  |     |
| Производ-<br>ство | 1000             | 1500    | 1200            |       |     |
| U                 | 115              |         |                 |       |     |

Представляем значение транспортного тарифа в виде суммы двух произвольных потенциалов.

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V   |
|-------------------|------------------|-------------|-----------------|-------|-----|
| Майами            | 1000<br>215      | 1300<br>108 | 68              | 2300  | 100 |
| Денвер            | 80               | 200         | 1200<br>102     | 1400  |     |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |     |
| U                 | 115              |             |                 |       |     |

|                   | Лос-<br>Анджелес | 1 -  | Детрой | ÍΤ  | Новый<br>Орлеан |     | Спрос | V   |
|-------------------|------------------|------|--------|-----|-----------------|-----|-------|-----|
| Майами            | 1000 21          |      | 1300   | 108 |                 | 68  | 2300  | 100 |
| Денвер            | 8                | 80 2 | 200    | 100 | 1200            | 102 | 1400  |     |
| Производ-<br>ство | 1000             | 1    | 1500   |     | 1200            |     |       |     |
| U                 | 11               | 5    |        | 8   |                 |     |       |     |

|                   | Лос-<br>Андже | елес | Детрой | İΤ  | Новый<br>Орлеан |     | Спрос | V   |
|-------------------|---------------|------|--------|-----|-----------------|-----|-------|-----|
| Майами            | 1000          | 215  | 1300   | 108 |                 | 68  | 2300  | 100 |
| Денвер            |               | 80   | 200    | 100 | 1200            | 102 | 1400  | 92  |
| Производ-<br>ство | 1000          |      | 1500   |     | 1200            |     |       |     |
| U                 |               | 115  |        | 8   |                 |     |       |     |

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V   |
|-------------------|------------------|-------------|-----------------|-------|-----|
| Майами            | 1000<br>215      | 1300<br>108 | 68              | 2300  | 100 |
| Денвер            | 80               | 200         | 1200<br>102     | 1400  | 92  |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |     |
| U                 | 115              | 8           | 10              |       |     |

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V   |
|-------------------|------------------|-------------|-----------------|-------|-----|
| Майами            | 1000<br>215      | 1300<br>108 | 68              | 2300  | 100 |
| Денвер            | 80               | 200         | 1200<br>102     | 1400  | 92  |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |     |
| U                 | 115              | 8           | 10              |       |     |

Преобразуем таблицу на основе метода потенциалов. В незаполненные клетки вносим сумму потенциалов из соответствующих строк и столбцов.

|                   | Лос-<br>Андже | елес | Детроі | ЙT  | Новый<br>Орлеа |     | Спрос | V   |
|-------------------|---------------|------|--------|-----|----------------|-----|-------|-----|
| Майами            | 1000          | 215  | 1300   | 108 | 110            | 68  | 2300  | 100 |
| Денвер            | 207           | 80   | 200    | 100 | 1200           | 102 | 1400  | 92  |
| Производ-<br>ство | 1000          |      | 1500   |     | 1200           |     |       |     |
| U                 |               | 115  |        | 8   |                | 10  |       |     |

Преобразуем таблицу на основе метода потенциалов. В незаполненные клетки вносим сумму потенциалов из соответствующих строк и столбцов.

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V   |
|-------------------|------------------|-------------|-----------------|-------|-----|
| Майами            | 1000<br>215      | 1300<br>108 | 110 > 68        | 2300  | 100 |
| Денвер            | 207 > 80         | 200         | 1200<br>102     | 1400  | 92  |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |     |
| U                 | 115              | 8           | 10              |       |     |

Если сумма потенциалов хотя бы в одной незаполненной клетке больше транспортного тарифа в этой клетке, текущее решение (план перевозок) можно улучшить.

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V   |
|-------------------|------------------|-------------|-----------------|-------|-----|
| Майами            | 1000<br>215      | 1300<br>108 | 110 > 68        | 2300  | 100 |
| Денвер            | 207 > 80         | 200         | 1200<br>102     | 1400  | 92  |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |     |
| U                 | 115              | 8           | 10              |       |     |

Для улучшения вводим в базис ту переменную, для которой разность между суммой потенциалов и транспортным тарифом максимальна.

|                   | Лос<br>Анд | -<br>желес | • • • • • • |     | Новый<br>Орлеан |     | Спрос | V   |
|-------------------|------------|------------|-------------|-----|-----------------|-----|-------|-----|
| Майами            | 1000       | 215        | 1300        | 108 |                 | 68  | 2300  | 100 |
| Денвер            | <u></u>    | 80         | 200         | 100 | 1200            | 102 | 1400  | 92  |
| Производ-<br>ство | 100        | 0          | 1500        |     | 1200            |     |       |     |
| U                 |            | 115        |             | 8   |                 | 10  |       |     |

Для определения исключаемой переменной построим контур, связывающий вводимую переменную и все базисные переменные (с ненулевым трафиком) и выберем клетку с наименьшим трафиком.

|                   | Лос-<br>Анд | -<br>желес | 1''' |     | Новый<br>Орлеан |     | Спрос | V   |
|-------------------|-------------|------------|------|-----|-----------------|-----|-------|-----|
| Майами            | 1000        | 215        | 1300 | 108 |                 | 68  | 2300  | 100 |
| Денвер            | +           | 80         | 200  | 100 | 1200            | 102 | 1400  | 92  |
| Производ-<br>ство | 1000        | 0          | 1500 |     | 1200            |     |       |     |
| U                 |             | 115        |      | 8   |                 | 10  |       |     |

Поочередно помечаем угловые ячейки цикла знаками + (добавляем объем перевозок) и – (уменьшаем объем). Соответственно вычитаем и добавляем объем перевозок равный минимальному трафику, который можно уменьшить, чтобы не получить отрицательное значение. Это – трафик, соответствующий исключаемой переменной.

|                   | Лос-<br>Анджелес | Детройт | Новый<br>Орлеан | Спрос | V   |
|-------------------|------------------|---------|-----------------|-------|-----|
| Майами            | 800 215          | 1500    | 68              | 2300  | 100 |
| Денвер            | 200 80           | 100     | 1200<br>102     | 1400  | 92  |
| Производ-<br>ство | 1000             | 1500    | 1200            |       |     |
| U                 | 115              | 8       | 10              |       |     |

Поочередно помечаем угловые ячейки цикла знаками + (добавляем объем перевозок) и – (уменьшаем объем). Соответственно вычитаем и добавляем объем перевозок равный минимальному трафику, который можно уменьшить, чтобы не получить отрицательное значение. Это – трафик, соответствующий исключаемой переменной.

|                   | Лос-<br>Андже | елес | Детрой | ÍΤ  | Новый<br>Орлеан |     | Спрос | V   |
|-------------------|---------------|------|--------|-----|-----------------|-----|-------|-----|
| Майами            | 800           | 215  | 1500   | 108 |                 | 68  | 2300  | 100 |
| Денвер            | 200           | 80   |        | 100 | 1200            | 102 | 1400  |     |
| Производ-<br>ство | 1000          |      | 1500   |     | 1200            |     |       |     |
| U                 | 115           |      |        |     |                 |     |       |     |

Получили новый план. Значение целевой функции уменьшилось с 497 800 до 458 215 Он невырожденный (5-1 = 4). Рассчитываем потенциалы.

|                   | Лос-<br>Андже | елес | Детрой | ÍΤ  | Новый<br>Орлеан |     | Спрос | V   |
|-------------------|---------------|------|--------|-----|-----------------|-----|-------|-----|
| Майами            | 800           | 215  | 1500   | 108 |                 | 68  | 2300  | 100 |
| Денвер            | 200           | 80   |        | 100 | 1200            | 102 | 1400  | 35  |
| Производ-<br>ство | 1000          |      | 1500   |     | 1200            |     |       |     |
| U                 | 115           |      | 8      |     |                 |     |       |     |

Получили новый план. Он невырожденный (5-1 = 4). Рассчитываем потенциалы.

|                   | Лос-<br>Андже | лес | Детрой | ΙΤ  | Новый<br>Орлеан |     | Спрос | V   |
|-------------------|---------------|-----|--------|-----|-----------------|-----|-------|-----|
| Майами            | 800           | 215 | 1500   | 108 | 167 >           | 68  | 2300  | 100 |
| Денвер            | 200           | 80  | 43     | 100 | 1200            | 102 | 1400  | 35  |
| Производ-<br>ство | 1000          |     | 1500   |     | 1200            |     |       |     |
| U                 | 115           |     | 8      |     | 67              |     |       |     |

Преобразуем таблицу на основе метода потенциалов. В незаполненные клетки вносим сумму потенциалов из соответствующих строк и столбцов.

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V   |
|-------------------|------------------|-------------|-----------------|-------|-----|
| Майами            | 800 215          | 1500<br>108 | +167 > 68       | 2300  | 100 |
| Денвер            | 200 80           | 43 100      | 1200            | 1400  | 35  |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |     |
| U                 | 115              | 8           | 67              |       |     |

Определяем вводимую в базис переменную. Строим контур. Определяем исключаемую из базиса переменную.

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан  | Спрос | V   |
|-------------------|------------------|-------------|------------------|-------|-----|
| Майами            | 215              | 1500<br>108 | 800<br>+167 > 68 | 2300  | 100 |
| Денвер            | 1000             | 43 100      | 400              | 1400  | 35  |
| Производ-<br>ство | 1000             | 1500        | 1200             |       |     |
| U                 | 115              | 8           | 67               |       |     |

Определяем вводимую в базис переменную. Строим контур. Определяем исключаемую из базиса переменную.

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V  |
|-------------------|------------------|-------------|-----------------|-------|----|
| Майами            | 215              | 1500<br>108 | 800 68          | 2300  | 58 |
| Денвер            | 1000             | 100         | 400             | 1400  |    |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |    |
| U                 |                  | 50          |                 |       |    |

Получили новый невырожденный план. Значение целевой функции уменьшилось с 458 215 до 337 200 Рассчитываем потенциалы

|                   | Лос-<br>Андже | елес | Детройт  |      | Новый<br>Орлеан |     | Спрос | V    |    |
|-------------------|---------------|------|----------|------|-----------------|-----|-------|------|----|
| Майами            | 46            | 215  | 1500 108 |      | 800             |     | 2300  | 58   |    |
| Денвер            | 1000          | 80   | 144      | > 10 | 00              | 400 | 102   | 1400 | 92 |
| Производ-<br>ство | 1000          |      | 1500     |      | 1200            |     |       |      |    |
| U                 | -12           |      | 50       |      | 10              |     |       |      |    |

Получили новый невырожденный план. Рассчитываем потенциалы. Проверяем план на оптимальность. Определяем вводимую переменную. Строим контур.

|                   | Лос-<br>Андже | елес | Детройт  |       | Новый<br>Орлеан |     | Спрос | V  |
|-------------------|---------------|------|----------|-------|-----------------|-----|-------|----|
| Майами            | 46            | 215  | 1500 108 |       | 800             |     | 2300  | 58 |
| Денвер            | 1000          | 80   | 144      | > 100 | 400             | 102 | 1400  | 92 |
| Производ-<br>ство | 1000          |      | 1500     |       | 1200            |     |       |    |
| U                 | -12           |      | 50       |       | 10              |     |       |    |

Определяем исключаемую переменную.

#### Транспортные модели. Метод потенциалов.

|                   | Лос-<br>Анджелес    | Детройт    | Новый<br>Орлеан | Спрос | V  |
|-------------------|---------------------|------------|-----------------|-------|----|
| Майами            | 46 215 <sub>(</sub> | 1500 108   | 800 68          | 2300  | 58 |
| Денвер            | 1000                | +144 > 100 | 400<br>- 102    | 1400  | 92 |
| Производ-<br>ство | 1000                | 1500       | 1200            |       |    |
| U                 | -12                 | 50         | 10              |       |    |

Получили новый невырожденный план. Рассчитываем потенциалы. Проверяем план на оптимальность. Строим контур.

#### Транспортные модели. Метод потенциалов.

|                   | Лос-<br>Анджелес    | Детройт            | Новый<br>Орлеан | Спрос | V  |
|-------------------|---------------------|--------------------|-----------------|-------|----|
| Майами            | <mark>46</mark> 215 | 1100               | 1200 68         | 2300  | 58 |
| Денвер            | 1000                | 400<br>+ 144 > 100 | 0<br>- 102      | 1400  | 92 |
| Производ-<br>ство | 1000                | 1500               | 1200            |       |    |
| U                 | -12                 | 50                 | 10              |       |    |

Изменяем объемы перевозок

#### Транспортные модели. Метод потенциалов.

|                   | Лос-<br>Анджелес | Детройт     | Новый<br>Орлеан | Спрос | V  |
|-------------------|------------------|-------------|-----------------|-------|----|
| Майами            | 215              | 1100<br>108 | 1200<br>68      | 2300  | 58 |
| Денвер            | 1000             | 400         | 0 102           | 1400  |    |
| Производ-<br>ство | 1000             | 1500        | 1200            |       |    |
| U                 |                  | 50          |                 |       |    |

Получили новый невырожденный план. Рассчитываем для него потенциалы и проверяем на оптимальность.

## Транспортные модели. Метод потенциалов.

|                   | Лос-<br>Андже | елес | Детрой | İΤ  | Новый<br>Орлеаі |     | Спрос | V  |
|-------------------|---------------|------|--------|-----|-----------------|-----|-------|----|
| Майами            | 88            | 215  | 1100   | 108 | 1200            | 68  | 2300  | 58 |
| Денвер            | 1000          | 80   | 400    | 100 | 0<br>60         | 102 | 1400  | 50 |
| Производ-<br>ство | 1000          |      | 1500   |     | 1200            |     |       |    |
| U                 | 30            |      | 50     |     | 10              |     |       |    |

Получили новый невырожденный план. Рассчитываем для него потенциалы и проверяем на оптимальность. План является оптимальным. Целевая функция равна 320 400.

## Транспортные модели. Пример постановки транспортной задачи.



#### Транспортные модели. Решение транспортной задачи.



#### Транспортные модели. Метод потенциалов. Замечания.

#### Контур не обязательно является прямоугольником. Он всегда:

- задается горизонтальными и вертикальными линиями, которые могут пересекаться,
- является замкнутым,
- начинается и заканчивается в ячейке вводимой переменной,
- имеет в углах ячейки базисных переменных.



#### Транспортные модели. Метод потенциалов. Замечания.

Если есть несколько переменных, которые являются кандидатами на вывод из базиса (с одинаковыми значениями), то *после преобразования таблицы* число ненулевых переменных станет меньше чем число потенциалов -1.

План становится вырожденным. Чтобы этого избежать, из базиса выводят одну переменную, а остальные заполняют нулевыми значениями.

Целесообразно вводить в базис случайную нулевую ячейку. Если алгоритм после этого все равно зацикливается, следует ввести другую ячейку.

См. Статью «Вырожденность в транспортной задаче» на http://cyclowiki.org/

## Транспортные модели. Пример постановки транспортной задачи.

 Основываясь на таблице стоимости, можно было бы рассмотренную транспортную задачу сформулировать как обычную модель линейного программирования

$$min\ F=80x_{11}+215x_{12}+100x_{21}+108x_{22}+102x_{31}+68x_{32};$$
  $x_{11}+x_{12}=1000;$  (производство в Лос-Анджелесе)  $x_{21}+x_{22}=1500;$  (производство в Детройте)  $x_{31}+x_{32}=1200;$  (производство в Новом Орлеане)  $x_{11}+x_{21}+x_{31}=1400;$  (спрос в Денвере)  $x_{12}+x_{22}+x_{32}=2300;$  (спрос в Майами)  $x_{ij}\geq 0,\ i=1,2,3,\ j=1,2.$ 

 $NMinimize[\{80x11+215x12+100x21+108x22+102x31+68x32,x11+x12==1000,x21+x22==1500,x31+x32==1200,x11+x21+x31==1400,x12+x22+x32==2300,x11>=0,x12>=0,x21>=0,x22>=0,x31>=0,x32>=0\}, \{x11,x12,x21,x22,x31,x32\}] \\ \{320400., \{x11->1000., x12->0., x21->400., x22->1100., x31->0., x32->1200.\}\}$ 

- Когда суммарный объем предложений не равен общему объему спроса на товары, транспортная модель называется несбалансированной.
- Для того, чтобы применить для решения транспортной задачи специальный алгоритм, основанный на использовании транспортных таблиц, необходимо преобразовать несбалансрованную модель к сбалансированной.
- Для этого вводят фиктивные пункты назначения или отправления.
- При использовании стандартного симплекс-метода это необязательно.

Предположим, спрос на тракторы в Майами упал до 2000 штук.



|                               | Лос-<br>Анджелес | Детройт | Новый<br>Орлеан | Спрос | V |
|-------------------------------|------------------|---------|-----------------|-------|---|
| Майами                        | 215              | 108     | 68              | 2000  |   |
| Денвер                        | 80               | 100     | 102             | 1400  |   |
| Фиктивный пункт<br>назначения | 0                | 0       | 0               | 300   |   |
| Производ-<br>ство             | 1000             | 1500    | 1200            |       |   |
| U                             |                  |         |                 |       |   |

Транспортные модели. Управление запасами. Задача о назначениях

## Транспортные модели. Управление запасами

- Фабрика производит купальные костюмы. В течение года спрос на эту продукцию есть только в мае-августе.
- Фабрика оценивает спрос в эти месяцы соответственно в 1000, 2000, 1800 и 3000 единиц изделия.
- В зависимости от числа задействованных рабочих и производственного оборудования в течение этих месяцев можно выпустить 500, 1800, 2800 и 2700 костюмов соответственно.
- Производство и спрос в различные месяцы не совпадают, спрос в текущем месяце можно удовлетворить следующими способами:
  - производством изделий в текущем месяце (себестоимость 40 долларов);
  - избытком произведенных в прошлом месяце изделий (стоимость хранения 0,5 доллара в месяц);
  - избытком произведенных в следующем месяце изделий в счет невыполненных заказов (штраф - 2 доллара за месяц просрочки)

#### Транспортные модели. Управление запасами

| Транспортная модель                          | Модель управления запасами                                                     |
|----------------------------------------------|--------------------------------------------------------------------------------|
| Пункт отправления і                          | Период производства і                                                          |
| Пункт назначения ј                           | Период потребления ј                                                           |
| Предложение в пункте<br>отправления і        | Объем производства за период і                                                 |
| Спрос в пункте назначения ј                  | Объем реализации продукции за<br>период ј                                      |
| Стоимость перевозки из пункта і в<br>пункт ј | Стоимость единицы продукции (производство+хранение+штрафы) за период от і до ј |

#### Транспортные модели. Управление запасами



Можно сформулировать следующую задачу линейного программирования

$$min\ F=0,5(x_{12}+x_{23}+x_{34})+(x_{13}+x_{24})+1,5x_{14}+2\ (x_{21}+x_{32}+x_{43})+4\ (x_{31}+x_{42})+6x_{41}$$
  $x_{11}+x_{12}+x_{13}+x_{14}=500;$  (производство первой фабрики)  $x_{21}+x_{22}+x_{23}+x_{24}=1800;$  (производство второй фабрики)  $x_{31}+x_{32}+x_{33}+x_{34}=1800;$  (производство третьей фабрики)  $x_{41}+x_{42}+x_{43}+x_{44}=1800;$  (производство четвертой фабрики)  $x_{11}+x_{21}+x_{31}+x_{41}=1000;$  (спрос в мае)  $x_{12}+x_{22}+x_{32}+x_{42}=2000;$  (спрос в июне)

$$x_{13} + x_{23} + x_{33} + x_{43} = 1800;$$
 (спрос в июле)  $x_{14} + x_{24} + x_{34} + x_{44} = 3000;$  (спрос в августе)

$$x_{ij} \ge 0$$
,  $i=1,2,3,4$   $j=1,2,3,4$ .

#### Транспортные модели. Управление запасами



#### Транспортные модели. Задача о назначениях Постановка задачи

- Необходимо назначить работников на определенные работы.
- Каждый работник может выполнять любую работу, хотя и с различной степенью мастерства.
- Если на некоторую работу назначается работник именно той квалификации, которая необходима для ее выполнения, стоимость выполнения работы будет ниже, чем при назначении работника неподходящей квалификации.
- Цель найти оптимальное (минимальной стоимости)
   распределение работников по всем заявленным работам.



#### Транспортные модели. Задача о назначениях



#### Транспортные модели. Задача о назначениях Постановка задачи



- 1. В исходной матрице стоимостей определить в каждой строке минимальную стоимость и отнять ее от всех элементов строки.
- 2. В полученной матрице найти в каждом столбце минимальную стоимость и отнять ее от всех элементов столбца.
- 3. Если допустимое решение получено, то
  - 1. Оптимальные назначения соответствуют нулевым элементам. Завершить работу.

#### 4. Иначе:

- 1. В последней матрице провести *минимальное* число горизонтальных и вертикальных прямых, чтобы вычеркнуть все нулевые элементы.
- 2. Найти наименьший невычеркнутый элемент и вычесть его из всех невычеркнутых элементов и прибавить к элементам, стоящим на пересечении проведенных прямых.
- з. Если допустимое решение получено, то оптимальные назначения соответствуют нулевым элементам. Завершить работу. Иначе перейти к 4.

|           |   | Работы |     |      |     |   |  |  |
|-----------|---|--------|-----|------|-----|---|--|--|
|           |   | 1      | 2   | 3    | 4   |   |  |  |
| Работники | 1 | \$1    | \$4 | \$6  | \$3 | 1 |  |  |
|           | 2 | \$9    | \$7 | \$10 | \$9 | 1 |  |  |
|           | 3 | \$4    | \$5 | \$11 | \$7 | 1 |  |  |
|           | 4 | \$8    | \$7 | \$8  | \$5 | 1 |  |  |
|           |   | 1      | 1   | 1    | 1   | _ |  |  |

Исходная задача о назначении работников на работы

Эту же задачу можно сформулировать как задачу **целочисленного** линейного программирования:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad j = 1, 2, ...n$$

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad i = 1, 2, ...n$$

$$x_{ij} \in \{0, 1\}$$

Но существенно более эффективен специализированный метод решения (венгерский метод).



Находим в каждой строке минимальную стоимость



Отняли ее от всех элементов строк

|           |   | Работы |     |     |     |   |  |
|-----------|---|--------|-----|-----|-----|---|--|
|           |   | 1      | 2   | 3   | 4   |   |  |
| Работники | 1 | \$0    | \$3 | \$5 | \$2 | 1 |  |
|           | 2 | \$2    | \$0 | \$3 | \$2 | 1 |  |
|           | 3 | \$0    | \$1 | \$7 | \$3 | 1 |  |
|           | 4 | \$3    | \$2 | \$3 | \$0 | 1 |  |
|           |   | 1      | 1   | 1   | 1   |   |  |

Находим в каждом столбце минимальную стоимость

|           |   | Работы |     |     |     |   |  |  |
|-----------|---|--------|-----|-----|-----|---|--|--|
|           |   | 1      | 2   | 3   | 4   |   |  |  |
| Работники | 1 | \$0    | \$3 | \$2 | \$2 | 1 |  |  |
|           | 2 | \$2    | \$0 | \$0 | \$2 | 1 |  |  |
|           | 3 | \$0    | \$1 | \$4 | \$3 | 1 |  |  |
|           | 4 | \$3    | \$2 | \$0 | \$0 | 1 |  |  |
|           |   | 1      | 1   | 1   | 1   | _ |  |  |

Вычитаем из всех элементов соответствующих столбцов (реально – только из третьего). Допустимое решение не получено. Назначив 1-го работника на работу 1 мы лишаем возможности получить работу 3-го работника

|           |   | Работы |     |     |     |   |  |  |
|-----------|---|--------|-----|-----|-----|---|--|--|
|           |   | 1      | 2   | 3   | 4   |   |  |  |
| Работники | 1 | \$0    | \$3 | \$2 | \$2 | 1 |  |  |
|           | 2 | \$2    | \$0 | \$0 | \$2 | 1 |  |  |
|           | 3 | \$0    | \$1 | \$4 | \$3 | 1 |  |  |
|           | 4 | \$3    | \$2 | \$0 | \$0 | 1 |  |  |
|           |   | 1      | 1   | 1   | 1   | _ |  |  |

Вычеркиваем все нулевые элементы с помощью наименьшего числа горизонтальных и вертикальных линий

|           |   | Работы |     |     |     |   |  |
|-----------|---|--------|-----|-----|-----|---|--|
|           |   | 1      | 2   | 3   | 4   |   |  |
| Работники | 1 | \$0    | \$3 | \$2 | \$2 | 1 |  |
|           | 2 | \$2    | \$0 | \$0 | \$2 | 1 |  |
|           | 3 | \$0    | \$1 | \$4 | \$3 | 1 |  |
|           | 4 | \$3    | \$2 | \$0 | \$0 | 1 |  |
|           |   | 1      | 1   | 1   | 1   | - |  |

Находим наименьший невычеркнутый элемент

|           |   | Работы |     |     |     |   |  |
|-----------|---|--------|-----|-----|-----|---|--|
|           |   | 1      | 2   | 3   | 4   |   |  |
| Работники | 1 | \$0    | \$2 | \$1 | \$1 | 1 |  |
|           | 2 | \$2    | \$0 | \$0 | \$2 | 1 |  |
|           | 3 | \$0    | \$0 | \$3 | \$2 | 1 |  |
|           | 4 | \$3    | \$2 | \$0 | \$0 | 1 |  |
|           |   | 1      | 1   | 1   | 1   | • |  |

Вычитаем его из всех невычеркнутых элементов

|           |   | Работы |     |     |     |   |
|-----------|---|--------|-----|-----|-----|---|
|           |   | 1      | 2   | 3   | 4   |   |
| Работники | 1 | \$0    | \$2 | \$1 | \$1 | 1 |
|           | 2 | \$3    | \$0 | \$0 | \$2 | 1 |
|           | 3 | \$0    | \$0 | \$3 | \$2 | 1 |
|           | 4 | \$4    | \$2 | \$0 | \$0 | 1 |
|           |   | 1      | 1   | 1   | 1   | • |

Прибавляем его (\$1) к элементам на пересечении линий

|           |   | Работы |     |     |     |   |
|-----------|---|--------|-----|-----|-----|---|
|           |   | 1      | 2   | 3   | 4   |   |
| Работники | 1 | \$0    | \$2 | \$1 | \$1 | 1 |
|           | 2 | \$3    | \$0 | \$0 | \$2 | 1 |
|           | 3 | \$0    | \$0 | \$3 | \$2 | 1 |
|           | 4 | \$4    | \$2 | \$0 | \$0 | 1 |
|           |   | 1      | 1   | 1   | 1   |   |

Получаем допустимое решение: сначала безальтернативные назначения

|           |   | Работы |     |     |     |             |
|-----------|---|--------|-----|-----|-----|-------------|
|           |   | 1      | 2   | 3   | 4   |             |
| Работники | 1 | \$0    | \$2 | \$1 | \$1 | 1           |
|           | 2 | \$3    | \$0 | \$0 | \$2 | 1           |
|           | 3 | \$0    | \$0 | \$3 | \$2 | 1           |
|           | 4 | \$4    | \$2 | \$0 | \$0 | 1           |
|           |   | 1      | 1   | 1   | 1   | <del></del> |

Полученное допустимое решение

## Целочисленное программирование

#### Целочисленное линейное программирование. Классические методы решения.

- Классические методы решения задач линейного программирования основаны на использовании вычислительных возможностей методов решения непрерывных задач ЛП.
- Обычно алгоритмы целочисленного ЛП можно представить в виде трех основных шагов:
  - «Ослабление» пространства допустимых значений путем отбрасывания требований целочисленности (для двоичных переменных – замена на непрерывные с ограничениями 0≤x<sub>i</sub>≤1);
  - Решение задачи ЛП
  - Имея полученное непрерывное оптимальное решение, добавляем специальные ограничения, которые итерационным путем изменяют пространство допустимых решений задачи ЛП таким образом, чтобы получилось оптимальное решение, удовлетворяющее условиям целочисленности.

#### Целочисленное линейное программирование. Классические методы решения.

- Рассмотрим следующую задачу ЛП:  $max F = 5x_1 + 4x_2$
- при ограничениях  $x_1+x_2 \le 5$ ,  $10x_1+6x_2 \le 45$ ,  $x_1$  и  $x_2$  целые.



#### Целочисленное линейное программирование. Классические методы решения.

- Рассмотрим две новые задачи:
    $max F = 5x_1 + 4x_2$
- 1. при ограничениях 8  $x_1 + x_2 \le 5$ , 7  $10x_1 + 6x_2 \le 45$ ,

 $x_1 \leq 3$ ,

• 2. при ограничениях  $x_1+x_2 \le 5$ ,  $10x_1+6x_2 \le 45$ ,  $x_1 \ge 4$ ,

•  $x_1$  и  $x_2$  — целые.



#### Целочисленное линейное программирование. Метод ветвей и границ.

