Содержание

1	Линейное пространство	2
2	Скалярное произведение, норма	2
3	Метрика	3
4	Скалярное произведение, норма, метрика в \mathbb{R}^m	3
	Конец II семестра ↓	
5	Определения в \mathbb{R}^m , покоординатная сходимость, двойной и повторый предел	4
6	Бесконечно малое отображение, $o(h)$, отображение дифференцируемое в точке	6
7	Комплексная дифференцируемость, единственность производной	6
8	Дифферецируемость координатных функций, частная производная	7
9	Матрица якоби, необходимое, достаточное условия дифференцируемости, правила дифференцирования	8
	III семестр↓	
10	Правила дифференцирования, теорема Лагранжа для векторнозначных функций	9
11	Градиент, производная по вектору, по направлению, экстремальное свойство градиента	11
12	Производные высших порядков, их независимость от порядка дифференцирования, класс	
	$C^r(E)$, мультииндекс, полиномиальная формула	12
13	Лемма о дифференцировании «сдвига», формула Тейлора, n -ый дифференциал	14
14	Последовательность функций, поточечная и равномерная сходимсть	16
15	Теорема Стокса-Зайдля	16
16	Полнота пространства непрерывных функций на компакте	17
17	Предельный переход под знаком интеграла/производной для последовательностей, правило	
	Лейбница	18
18	Следствия для рядов, признаки Вейерштрасса, Больцано-Коши равномерной сходимости	
	функционального ряда	19
19	Теорема о пространстве линейных отображений, теорема Лагранжа для отображений	21
20	Лемма об условиях, эквивалентных непрерывности линейного оператора, теорема об обрати-	
	мости линейного оператора, близкого к обратимому	22

1 Линейное пространство

Определение 1: Множество X называется линейным пространством (или векторным) над полем K, если заданы две операции

 $X \times X \to X \quad ((x,y) \mapsto x + y)$ Сложение: , удовлетворяющие аксиомам: Умножение на скаляр: $K \times X \to X$ $((\alpha, x) \mapsto \alpha \cdot x)$ (X, +) — абелева группа по сложению

- 1. $\forall x, y \in X \ x + y = y + x$ (коммутативность сложения)
- 2. $\forall x, y, z \in X \ (x + y) + z = x + (y + z)$ (ассоциативность сложения)
- 3. $\forall x \in X \ \exists 0_X : x + 0_X = x$ (существование нейтрольного элемента по сложению)
- 4. $\forall x \in X \ \exists (-x) : x + (-x) = 0_X$ (существование обратного элемента по сложению)
- 5. $\forall x \in X, \forall \alpha, \beta \in K \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$
- 6. $\forall x, y \in X, \forall \alpha \in K \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$
- 7. $\forall x \in X, \forall \alpha, \beta \in K \ (\alpha\beta) \cdot x = \alpha \cdot (\beta \cdot x)$
- 8. $\forall x \in X \ 1_X \cdot x = x$, где $1_X \in K$ нейтральный элемент по умножению

2 Скалярное произведение, норма

Определение 2: Пусть X — линейное пространство над \mathbb{R} . Отображение $X \times X \to \mathbb{R} \ ((x,y) \mapsto \langle x,y \rangle)$ называется скалярным произведением, если оно удовлетворяет аксиомам:

- 1. $\forall x, y \in X \langle x, y \rangle = \langle y, x \rangle$ (симметричность)
- $2. \ \forall x,y,z \in X, \forall \alpha \in \mathbb{R} \ \langle x+\alpha \cdot y,z \rangle = \langle x,z \rangle + \alpha \, \langle y,z \rangle$ (линейность)
- 3. $\forall x \in X \langle x, x \rangle \geqslant 0$, $\langle x, x \rangle = 0 \Leftrightarrow x = 0_X$ (положительная определённость)

Определение 3: Отображение $X \to \mathbb{R}$ $(x \mapsto ||x||)$ называется нормой (X - линейное пространство)над \mathbb{R}), если оно удовлетворяет аксиомам:

- 1. $\forall x \in X \|x\| \geqslant 0$, $\|x\| = 0 \Leftrightarrow x = 0_X$ (положительная определённость)
- 2. $\forall x \in X, \forall \alpha \in \mathbb{R} \|\alpha \cdot x\| = |\alpha| \|x\|$ (положительная однородность)
- 3. $\forall x,y \in X \ \|x+y\| \leqslant \|x\| + \|y\| \$ (неравенство треугольника для нормы)

Утверждение 1: Отображение $X \to \mathbb{R}, \ x \mapsto \sqrt{\langle x, x \rangle}$ — норма $(X - \text{линейное пространство над } \mathbb{R})$

Доказательство: проверка аксиом нормы:

- 1. Аксиома 3 скалярного произведения
- 2. По аксиоме 2 скалярного произведения $\sqrt{\langle \alpha \cdot x, \alpha \cdot x \rangle} = \sqrt{\alpha^2 \langle x, x \rangle} = |\alpha| \sqrt{\langle x, x \rangle}$
- 3. Нужно доказать, что $\forall x, y \in X \ \sqrt{\langle x+y, x+y \rangle} \leqslant \sqrt{\langle x, x \rangle} + \sqrt{\langle y, y \rangle}$. Обе части положительные, поэтому это неравенство равносильно неравенству

$$\langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle \leqslant \langle x, x \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle} + \langle y, y \rangle$$
$$\langle x, y \rangle \leqslant \sqrt{\langle x, x \rangle \langle y, y \rangle}$$

Рассмотрим функцию $f: \mathbb{R} \to \mathbb{R}, (\alpha \mapsto \langle x + \alpha \cdot y, x + \alpha \cdot y \rangle).$

$$\forall \alpha \in \mathbb{R} \quad f(\alpha) = \langle x, x + \alpha \cdot y \rangle + \langle \alpha \cdot y, x + \alpha \cdot y \rangle =$$

$$= \langle x, x \rangle + \langle x, \alpha \cdot y \rangle + \langle \alpha \cdot y, x \rangle + \langle \alpha \cdot y, \alpha \cdot y \rangle =$$

$$= \langle x, x \rangle + 2\alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle$$

Также $f(\alpha)\geqslant 0\ \forall\,\alpha\in\mathbb{R}$ (по аксиоме 3 скалярного произведения) \Rightarrow дискриминант $\leqslant 0$: $(2\langle x,y\rangle)^2 - 4\langle y,y\rangle\langle x,x\rangle \leqslant 0$, то есть $\langle x,y\rangle^2 \leqslant \langle x,x\rangle\langle y,y\rangle$ или $|\langle x,y\rangle| \leqslant \sqrt{\langle x,x\rangle\langle y,y\rangle}$

2

Следствие 1: Из доказательства утв. 1 следует неравенство Коши-Буняковского. Разные виды его записи:

1.
$$|\langle x, y \rangle| \leq \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$

$$2. \mid \langle x, y \rangle \mid \leqslant ||x|| \, ||y||$$

3.
$$\langle x, y \rangle^2 \leqslant \langle x, x \rangle \langle y, y \rangle$$

4.
$$\left(\sum_{i=1}^{m} x_i y_i\right)^2 \leqslant \sum_{i=1}^{m} x_i^2 \sum_{i=1}^{m} y_i^2$$
 (при $x, y \in \mathbb{R}^m$)

5.
$$\left| \sum_{i=1}^m x_i y_i \right| \leqslant \sqrt{\sum_{i=1}^m x_i^2} \sqrt{\sum_{i=1}^m y_i^2} \quad (при \ x, y \in \mathbb{R}^m)$$

3 Метрика

Определение 4: Пусть X — множество. Отображение $\rho \colon X \times X \to \mathbb{R}$ называется метрикой, если оно удовлетворяет аксиомам:

- 1. $\forall x, y \in X \ \rho(x, y) = \rho(y, x)$ (симметричность)
- 2. $\forall x, y \in X \ \rho(x, y) \geqslant 0, \quad \rho(x, y) = 0 \Leftrightarrow x = y$ (невырожденность)
- 3. $\forall x, y, z \in X \ \rho(x, y) \leqslant \rho(x, z) + \rho(z, y)$ (неравенство треугольника для метрики)

Утверждение 2: Пусть X — линейное пространство над \mathbb{R} . Отображение $\rho: X \times X \to \mathbb{R}, \, \forall x, y \in X$ $\rho(x,y) = \|x-y\|$ — метрика

Доказательство: проверка аксиом метрики:

- 1. $\forall x, y \in X \|x y\| = \|(-1) \cdot (y x)\| = |-1| \|y x\| = \|y x\|$
- 2. Аксиома 1 нормы
- 3. По 3 аксиоме нормы $\forall x,y,z \in X \ \|x-y\| = \|x-y+z-z\| = \|(x-z)+(z-y)\| \leqslant \|x-z\|+\|z-y\|$

4 Скалярное произведение, норма, метрика в \mathbb{R}^m

Определение 5:
$$\mathbb{R}^m = \{\underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{\text{m pa3}}\} = \{(x_1, x_2, \dots, x_m) \mid x_i \in \mathbb{R}\}$$

Утверждение 3: \mathbb{R}^m — линейное пространство над \mathbb{R} с покоординатным сложением и покоординатным умножением на скаляр

Доказательство: Очевидно.

Утверждение 4: Отображение $\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$, $(x,y) \mapsto \sum_{i=1}^m x_i y_i$ — скалярное произведение в \mathbb{R}^m

Доказательство: проверка аксиом скалярного произведения:

1.
$$\forall x, y \in \mathbb{R}^m \sum_{i=1}^m x_i y_i = \sum_{i=1}^m y_i x_i$$

2.
$$\forall x, y, z \in \mathbb{R}^m, \forall \alpha \in \mathbb{R} \sum_{i=1}^m (x_i + \alpha y_i) z_i = \sum_{i=1}^m (x_i z_i + \alpha y_i z_i) = \sum_{i=1}^m x_i z_i + \alpha \sum_{i=1}^m y_i z_i$$

3.
$$\forall x \in \mathbb{R}^m \sum_{i=1}^m x_i^2 \geqslant 0$$
, и $\sum_{i=1}^m x_i^2 = 0 \Leftrightarrow \forall i \in \{1,2,\ldots,m\}$ $x_i^2 = 0 \Leftrightarrow x_i = 0 \Leftrightarrow x = 0$

Следствие 2: По утв. 1 $\forall \, x \in \mathbb{R}^m \, \, \|x\| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^m x_i^2} = \sqrt{x_1^2 + x_2^2 + \dots x_m^2}$ — норма в \mathbb{R}^m

Следствие 3: По утв. $2 \ \forall \ x,y \in \mathbb{R}^m \ \rho \left(x,y \right) = \|x-y\| = \sqrt{\sum\limits_{i=1}^m (x_i-y_i)^2} -$ метрика в \mathbb{R}^m

3

5 Определения в \mathbb{R}^m , покоординатная сходимость, двойной и повторый предел

Напоминание определений: т.к. \mathbb{R}^m — метрическое пространство, можно определить $(a \in \mathbb{R}^m, r \in \mathbb{R})$

- 6: Шар (открытый) с центром в точке a и радиусом $r B(a, r) = \{x \mid ||x a|| < r\}$
- 7: Сфера с центром в точке a и радиусом $r S(a, r) = \{ x \mid ||x a|| = r \}$
- 8: Замкнутый шар с центром в точке a и радиусом $r \overline{B(a,r)} = \{x \mid ||x-a|| \leq r \}$
- 9: ε -окрестность точки a это $\mathrm{B}(a,\varepsilon)$ ($\varepsilon\in\mathbb{R}$)
- 10: Проколотая ε -окрестность точки a это $\dot{\mathbf{B}}(a,\varepsilon) = \mathbf{B}(a,\varepsilon) \setminus \{a\}$
- 11: Множество $G \subset \mathbb{R}^m$ называется открытым, если $\forall x \in G \ \exists \varepsilon_a \in \mathbb{R} : \mathrm{B}(a, \varepsilon_a) \subset G$. Если множество G открытое, то $G = \bigcup_{x \in G} \mathrm{B}(a, \varepsilon_a)$:

$$G \subset \bigcup_{a \in G} \mathrm{B}(a, \varepsilon_a) \text{: Пусть } x \in G, \text{ тогда, т.к. } G - \text{ открытое } \exists \mathrm{B}(x, r) \subset G, \text{ т.е. } x \in \bigcup_{a \in G} \mathrm{B}(a, \varepsilon_a)$$
$$G \supset \bigcup_{a \in G} \mathrm{B}(a, \varepsilon_a) \text{: Пусть } x \in \bigcup_{a \in G} \mathrm{B}(a, \varepsilon_a), \text{ тогда } \exists a : x \in \mathrm{B}(a, \varepsilon_a) \subset G$$

- 12: Точка x называется предельной точкой множества $D\subset\mathbb{R}^m,$ если $\forall\, \varepsilon>0$ $\dot{\mathrm{B}}(a,\varepsilon)\cap D\neq\varnothing$
- 13: Множество $F \subset \mathbb{R}^m$ называется замкнутым, если оно содержит все свои предельные точки $\Leftrightarrow \exists G$ открытое множество : $F = \mathbb{R}^m \setminus G$
 - \implies Пусть $x\in\mathbb{R}^m\setminus F$, тогда $\exists\, \varepsilon>0: \mathrm{B}(a,\varepsilon)\cap F=\varnothing,$ то есть дополнение F открыто
- **14:** Точка $a \in \mathbb{R}^m$ называется пределом последовательности $x^{(n)}$, если

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \|x^{(n)} - a\| < \varepsilon$$

15: Точка $L \in \mathbb{R}^n$ называется пределом отображения $f \colon D \subset \mathbb{R}^m \to \mathbb{R}^n$ при $x \to a \in \mathbb{R}^m$, a - предельная точка D, если

$$\forall\,\varepsilon>0\;\;\exists\,\delta>0:\forall\,x\in D$$
если $0<\|x-a\|<\delta,$ то $\|f(x)-L\|<\varepsilon$

Равносильное определение (по Гейне):

$$\forall$$
 последовательтости $x^{(k)}:x^{(k)}\to a$ выполнено $f(x^{(k)})\to L$ $x^{(k)}\neq a$ $x^{(k)}\in D$

Утверждение 5: Сходимость последовательности в \mathbb{R}^m равносильна покоординатной сходимости

$$x^{(n)} \to a \Leftrightarrow \forall i \in \{1, 2, \dots, m\} \ x_i^{(n)} \to a_i$$

Доказательство:

Следствие 4: Из определения предела отображения по Гейне $f:D\subset\mathbb{R}^m\to\mathbb{R}^n$

$$\lim_{x \to a} f(x) = L \iff \forall i \in \{1, 2, \dots, n\} \lim_{x \to a} f_i(x) = L_i$$

4

Ещё напоминание определений:

- **16**: $f: D \subset \mathbb{R}^m \to \mathbb{R}^n$, $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$; $\forall i \in \{1, 2, \dots, n\}$ $f_i(x)$ называются координатными функциями функции f(x)
- 17: Метрическое пространство X называется компактным, если из любого покрытия открытыми множествами множно выбрать конечное подпокрытие:

$$\forall \; \{G_{\alpha}\} \; -$$
 окрытое покрытие $\; \exists \; G_{\alpha_1}, G_{\alpha_2}, \ldots, G_{\alpha_n} \; -$ открытое подпокрытие X

Подмножество $D \subset \mathbb{R}^m$ — компактно $\Leftrightarrow D$ — замкнуто и ограничено $\Leftrightarrow D$ — секвенциально компактно $\Leftrightarrow \forall \varepsilon > 0 \; \exists \;$ конечная ε -сеть (D — сверхограничено) и замкнуто

- D называется ограниченным, если $\exists B(a,r) \subset \mathbb{R}^m : D \subset B(a,r)$
- D назвается секвинциально комактным, если из любой последовательности элементов этого множества можно выбрать сходящуся подпоследовательность (к элементу этого множества)
- $N\subset D$ называется ε -сетью, если $\forall\,x\in D\ \exists\,y\in N: \rho\,(x,y)<\varepsilon$ (конечной ε -сетью, если N конечно)
- Последовательность $x^{(n)}$ фундоментальная, если $\forall \, \varepsilon > 0 \, \exists \, N : \forall \, m,k > N \, \, \, \, \, \rho \left(x^{(m)},x^{(k)} \right) < \varepsilon$
- Метрическое пространство X называется полным, если в нём любая фундоментальная последовательность сходится. В \mathbb{R}^m полное \Leftrightarrow замкнутое

Определение 18: $D_1, D_2 \subset \mathbb{R}, \ a_1$ — предельная точка $D_1, \ a_2$ — предельная точка $D_2, \ D \subset \mathbb{R}^2$ — множество : $(D_1 \setminus \{a_1\}) \times (D_2 \setminus \{a_2\}) \subset D, \ f \colon D \to \mathbb{R}$

- 1. Пусть $\varphi(x_1) = \lim_{x_2 \to a_2} f(x_1, x_2)$ (если этот предел существует), тогда $\lim_{x_1 \to a_1} \varphi(x_1)$ называется повторным пределом
- 2. Пусть $\psi(x_2) = \lim_{x_1 \to a_1} f(x_1, x_2)$ (если этот предел существует), тогда $\lim_{x_2 \to a_2} \psi(x_2)$ тоже называется повторным пределом
- 3. $L = \lim_{\substack{x_1 \to a_1 \ x_2 \to a_2}} f(x_1, x_2)$ называется двойным пределом , если

$$\forall U(L)$$
 — окрестность точки L $\exists V_1(a_1)$ — окрестности : если $x_1 \in \dot{V}_1(a_1) \cap D_1$, то $f(x_1,x_2) \in U(L)$ $V_2(a_2)$ — точек a_1,a_2 $x_2 \in \dot{V}_2(a_2) \cap D_2$

Определение 19: Отображение $f\colon D\subset X\to Y$ X,Y — метрические пространства, $G\subset D,$ a — предельная точка G. Предел сужения отображения $\lim_{x\to a} f\big|_G(x)$ называется пределом по множеству Если $f\colon D\subset \mathbb{R}^2\to \mathbb{R}$ и $C\subset \mathbb{R}^2$ — кривая, то $\lim_{x\to a} f\big|_C(x)$ называется пределом по кривой .

Утверждение 6: Пусть $D_1, D_2 \subset \mathbb{R}$, a_1 — предельная точка D_1 , a_2 — предельная точка D_2 , $D \subset \mathbb{R}^2$ — множество : $(D_1 \setminus \{a_1\}) \times (D_2 \setminus \{a_2\}) \subset D$, $f \colon D \to \mathbb{R}$, тогда

- 1. Из того, что \forall кривой $C \in C^1(D): C' \neq 0 \;\; \exists \lim_{x \to a} f \big|_C(x) = L$ следует $\; \exists \lim_{x \to a} f(x) = L$
- 2. Из того, что \forall кривой $C \in C^2(D): C' \neq 0 \;\; \exists \lim_{x \to a} f \big|_C(x) = L \; \mathbf{нe} \; \text{следует} \;\; \exists \lim_{x \to a} f(x) = L$

Доказательство: Его нету.

Теорема 1 (О двойном и повторном пределе):

Пусть $D_1, D_2 \subset \mathbb{R}, a_1$ — предельная точка D_1, a_2 — предельная точка $D_2, D \subset \mathbb{R}^2$ — множество : $\left(D_1 \setminus \{a_1\}\right) \times \left(D_2 \setminus \{a_2\}\right) \subset D, \ f \colon D \to \mathbb{R}, \ \exists \ \text{двойной предел } \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2) = A \in \overline{\mathbb{R}}, \ \mathsf{и}$ $\forall x_1 \in D_1 \setminus \{a_1\} \ \exists \ \mathsf{конечный} \ \varphi(x_1) = \lim_{x_2 \to a_2} f(x_1, x_2), \ \mathsf{тогда} \ \exists \ \mathsf{повторный} \ \mathsf{предел } \lim_{x_1 \to a_1} \varphi(x_1) = A$

Доказательство: Пусть $A \in \mathbb{R}$. Так как существует двойной предел, выполнено:

$$\forall \, \varepsilon > 0 \quad \exists \, V_1(a_1) \quad - \text{ окрестности} :$$
если $x_1 \in \dot{V}_1(a_1) \cap D_1 \, , \,$ то $\| f(x_1, x_2) - A \| < \frac{\varepsilon}{2}$ $V_2(a_2) \quad$ точек $a_1, a_2 \quad x_2 \in \dot{V}_2(a_2) \cap D_2$

Делая предельный переход в последнем неравенстве при $x_2 \to a_2$ получаем

$$\forall \, \varepsilon > 0 \ \exists \, V_1(a_1) \ -$$
 окрестность : если $x_1 \in \dot{V}_1(a_1) \cap D_1$, то $\| \varphi(x_1) - A \| \leqslant \frac{\varepsilon}{2} < \varepsilon$ точки a_1

Аналогично при $A=\pm\infty$

6 Бесконечно малое отображение, o(h), отображение дифференцируемое в точке

Определение 20: Отображение $\varphi \colon E \subset \mathbb{R}^m \to \mathbb{R}^n$ называется бесконечно малым в точке $x_0 \in \operatorname{Int} E$, если $\varphi(x) \xrightarrow[x \to x_0]{} 0_{\mathbb{R}^n}$

Определение 21: Пусть $E \subset \mathbb{R}^m : 0_{\mathbb{R}^m} \in \operatorname{Int} E, \quad \varphi : E \to \mathbb{R}^n, \quad h \in E$. Говорят, что $\varphi(h) = o(h)$ при $h \to 0_{\mathbb{R}^m}$, если $\frac{\varphi(h)}{\|h\|} \xrightarrow[h \to 0_{\mathbb{R}^m}]{} 0_{\mathbb{R}^n}$ (бесконечно малое в точке $0_{\mathbb{R}^m}$).

Определение в \mathbb{R} было: $f,g\colon E\subset\mathbb{R}\to\mathbb{R},\ x_0$ — предельная точка E, говорят, что f(x)=o(g(x)) при $x\to x_0,\ \text{если}\ \frac{f(x)}{g(x)}\xrightarrow[x\to x_0]{}0\ (g(x)\neq 0\ \text{в некоторой проколотой окрестности точки }x_0)$

Определение 22: Отображение $f: E \subset \mathbb{R}^m \to \mathbb{R}^n$ называется диффиренцируемым в точке $a \in \operatorname{Int} E$, если \exists линейный оператор из \mathbb{R}^m в \mathbb{R}^n с матрицей L и \exists бесконечно малое отображение в точке $0_{\mathbb{R}^m}$ $\alpha: U(0_{\mathbb{R}^m}) \to \mathbb{R}^n$ такие, что

$$f(a+h) = f(a) + Lh + \alpha(h) \cdot \|h\|$$
 при $h \to 0_{\mathbb{R}^m}$

или

$$f(x) = f(a) + L(x-a) + \alpha(x-a) \cdot \|x-a\|$$
 при $x \to a$

Этот линейный оператор (с матрицей L) называется производным оператором отображения f в точке a, обозначается f'(a). Получается, что отображение f' действует из \mathbb{R}^m в пространство линейных операторов.

Определение в $\mathbb R$ было: Функция $f\colon \langle a,b\rangle\to\mathbb R$ дифференцируема в точке $a\in\langle a,b\rangle$, если \exists число $A\in\mathbb R$ такое, что

$$f(a+h)=f(a)+Ah+o(h)$$
 при $h o 0$

В определении в \mathbb{R}^m можно писать o(h) вместо $\alpha(h) \cdot \|h\|$ и o(x-a) вместо $\alpha(x-a) \cdot \|x-a\|$

7 Комплексная дифференцируемость, единственность производной

Определение 23: Отображение $f\colon \Omega\subset\mathbb{C}\to\mathbb{C}$ (Ω — открытое множество) называется комплексно дефференцируемым в точке $a\in\Omega$, если \exists число $\lambda\in\mathbb{C}$ такое, что

$$f(a+h)=f(a)+\lambda h+o(h)$$
 при $h o 0$

или

$$\exists \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lambda$$

Замечание 1: Отображение $\mathbb{R}^2 \to \mathbb{R}^2$ вещественно дефференцироемое (т.е. как в опр. 22) будет комплексно дефференцируемым как отображение $\mathbb{C} \to \mathbb{C}$ только если матрица его производного оператора будет имеет вид $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, т.к. в опр. 23 $\lambda h = (\lambda_1 + \lambda_2 i)(h_1 + h_2 i) = (\lambda_1 h_1 - \lambda_2 h_2) + (\lambda_1 h_2 + \lambda_2 h_1)i$, т.е. $\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \to \begin{pmatrix} \lambda_1 h_1 - \lambda_2 h_2 \\ \lambda_1 h_2 + \lambda_2 h_1 \end{pmatrix} = \begin{pmatrix} \lambda_1 & -\lambda_2 \\ \lambda_2 & \lambda_1 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$

Утверждение 7: В определении дифференцируемости отображения $f: E \subset \mathbb{R}^m \to \mathbb{R}^n$ (опр. 22) оператор f'(a) определён однозначно

Доказательство: Пусть $h=t\cdot u, \quad u\in\mathbb{R}^m, \quad t\in\mathbb{R},$ тогда определение можно записать

$$f(a+t\cdot u)=f(a)+t\,Lu+o(t\cdot u)$$
 при $t\to 0$

Так как u — фиксированный вектор, $o(t \cdot u) = o(t)$. Можно выразить Lu, перенеся остальное в другую часть и сделав предельный переход при $t \to 0$:

$$Lu = \frac{f(a+t\cdot u) - f(a)}{t} + \frac{o(t)}{t}, \quad t \to 0$$
$$Lu = \lim_{t\to 0} \frac{f(a+t\cdot u) - f(a)}{t}$$

Замечание 2: Определение дифференцируемости (опр. 22) при n=1 (тогда $L=(l_1,l_2,\ldots,l_m)$):

$$f((x_1, x_2, \dots, x_m)) = f((a_1, a_2, \dots a_m)) + (l_1(x_1 - a_1) + l_2(x_2 - a_2) + \dots + l_m(x_m - a_m)) + o(x - a)$$

8 Дифферецируемость координатных функций, частная производная

Лемма 1 (о дифференцируемости отображения и дифференцируемости его координатных функций): $f: E \subset \mathbb{R}^m \to \mathbb{R}^n, \quad a \in \operatorname{Int} E, \quad f = (f_1, f_2, \dots, f_n), \quad \text{тогда}$

- 1. Отображение f дифференцируемо \Leftrightarrow все f_i дифференцируемы
- 2. Строки матрицы оператора f'(a) это матрицы операторов $f'_1(a), f'_2(a), \dots, f'_m(a)$

Доказательство:

1. 📦 Из опр. 22

$$\begin{pmatrix} f_1(a+h) \\ f_2(a+h) \\ \vdots \\ f_n(a+h) \end{pmatrix} = \begin{pmatrix} f_1(a) \\ f_2(a) \\ \vdots \\ f_n(a) \end{pmatrix} + \begin{pmatrix} l_{11}h_1 + l_{12}h_2 + \dots + l_{1m}h_m \\ l_{21}h_1 + l_{22}h_2 + \dots + l_{2m}h_m \\ \vdots \\ l_{n1}h_1 + l_{n2}h_2 + \dots + l_{nm}h_m \end{pmatrix} + \begin{pmatrix} \alpha_1(h) \cdot ||h|| \\ \alpha_2(h) \cdot ||h|| \\ \vdots \\ \alpha_m(h) \cdot ||h|| \end{pmatrix}$$

В первой строке записано определение дифференцируемости f_1 , во второй — f_2 и т.д.

Если сначала написать определения дифференцируемости координатных функций f_1, f_2, \ldots, f_m , и потом записать их в одну формулу как в предыдущем пункте, то получится определение дифференцируемости f

2. Матрицы операторов $f_1'(a), f_2'(a), \ldots, f_n'(a)$ имеют размер $1 \times m$, т.е. строки. Они записаны во втором слагаемом выше и вместе образуют оператор матрицы f'(a).

Замечание 3:

- 1. Если f = const, то $f' \equiv 0_{m \times n}$ и $o(h) \equiv 0_{\mathbb{R}^n}$
- 2. Если $\mathcal{A} \colon \mathbb{R}^m \to \mathbb{R}^n$ линейное отображение с матрицей A, тогда $\forall \, x \in \mathbb{R}^m$ $\mathcal{A}'(x) = A$ (т.к. из-за линейности $\mathcal{A}(x+h) = \mathcal{A}(x) + \underbrace{Ah}_{A(h)} + 0$ то есть A это и есть производная по опр. 22)
- 3. Если $\mathcal{A} \colon \mathbb{R}^m \to \mathbb{R}^n$, A его матрица, и отображение задано так: $x \mapsto u + Ax$ называется аффинное отображение (линейное со сдвигом), то тоже $\mathcal{A}'(x) = A$ (т.к. $\mathcal{A}(x+h) = u + A(x+h) = u + Ax + Ah = \mathcal{A}(x) + Ah + 0$)

Определение 24: Пусть $f: E \subset \mathbb{R}^m \to \mathbb{R}, \quad a \in \text{Int } E, \quad k \in \{1, 2, \dots, m\}, \quad \varphi_k \colon U(a_k) \to \mathbb{R},$ $\varphi_k(u) = f(a_1, a_2, \dots, a_{k-1}, u, a_{k+1}, \dots, a_m), \text{ тогда } \varphi_k'(a_k) = \lim_{t \to 0} \frac{\varphi(a_k + t) - \varphi(a_k)}{t} \text{ (если этот предел существует) называется }$ **k-ой частной производной** функции f в точке a. Обозначение: $\frac{\partial f}{\partial x_k}(a)$

Замечание 4: Пусть $f: E \subset \mathbb{R}^m \to \mathbb{R}^n$ — дифференцируемо в точке a, тогда f — непрерывно в точке a (т.е. $\lim_{x\to a} f(x) = f(a)$). Т.к. переходя к пределу в определении дефференцируемости при $h\to 0$ получаем $\lim_{h\to 0} f(a+h) = f(a)$. Но если существуют все частные производные, то функция может быть не непрерывной, например

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Здесь $\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(0+t,0)-f(0,0)}{t} = 0$ и $\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,0+t)-f(0,0)}{t} = 0$, но

предел в точке 0 вдоль прямой y=x: $\lim_{t\to 0} f(t,t)=1$, а вдоль прямой y=2x: $\lim_{t\to 0} f(t,2t)=\frac{4}{5}$. То есть у f не существует предела в нуле.

9 Матрица якоби, необходимое, достаточное условия дифференцируемости, правила дифференцирования

Определение 25: Матрица оператора $f'(a), a \in \text{Int } E$ отображения $f: E \subset \mathbb{R}^m \to \mathbb{R}^n$ (если f — дифференцируемо) называется матрицой якоби отображения f в точке a.

Теорема 2 (необходимое условие дифференцируемости):

Пусть отображение $f\colon E\subset\mathbb{R}^m\to\mathbb{R}^n$ — дифференцируемо в точке $a\in {\rm Int}\, E$, тогда существуют все частные производные всех его координатных функций и

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_m}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_m}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(a) & \frac{\partial f_n}{\partial x_2}(a) & \dots & \frac{\partial f_n}{\partial x_m}(a) \end{pmatrix} - \text{матрица якоби отображения } f \text{ в точке } a$$

Доказательство: $\forall i \in \{1, 2, ..., n\}$ рассмотрим координатную функцию f_i .

$$\frac{\partial f_i}{\partial x_k} \stackrel{\text{onp. 24}}{=} \lim_{t \to 0} \frac{f_i(a_1, a_2, \dots, a_{k-1}, a_k + t, a_{k+1}, \dots, a_m) - f_i(a)}{t} = \lim_{t \to 0} \frac{f_i(a) + l_k(a_k + t - a_k) - f_i(a) + o(t)}{t} = l_k$$

 $k \in \{1, 2, \dots, m\}, l_k - k$ -ая компонетна матрицы якоби функции f_i (размер матрицы $-1 \times m$). То есть компонентами l_k матриц якоби координатных функций f_i в точке a являются соответствующие частные производные $\frac{\partial f_i}{\partial x_k}$ координатных функций f_i в точке a. И по лемме 1 строки матрицы якоби отображения f состоят из матриц якоби координатных функций.

Теорема 3 (достаточное условие дифференцируемости):

 $f\colon E\subset\mathbb{R}^m\to\mathbb{R},\quad a\in\operatorname{Int} E,\quad\exists\, r:$ в шаре $\mathrm{B}(a,r)\subset E$ \exists все частные производные $\dfrac{\partial f}{\partial x_k}$ $(k\in\{1,2,\ldots,m\})$ и они непрерывны в точке a. Тогда функция f — дифференцируема в точке a

Доказательство: При m=2.

$$f(x_1, x_2) - f(a_1, a_2) = (f(x_1, x_2) - f(x_1, a_2)) + (f(x_1, a_2) - f(a_1, a_2)) =$$

Пусть $g(x_2)=f(x_1,x_2),\; x_1$ — фиксировано. Тогда $f(x_1,x_2)-f(x_1,a_2)=g(x_2)-g(a_2).$ Функция g — дифференцируема на $[a_2,x_2]\;(g'=\frac{\partial f}{\partial x_2})\Rightarrow$ по теореме Лагранжа $\exists\, x_0$ между x_2 и $a_2:g(x_2)-g(a_2)=g'(x_0)(x_2-a_2)=\frac{\partial f}{\partial x_2}(x_0)(x_2-a_2).$ Поэтому:

$$= \frac{\partial f}{\partial x_2}(x_1, x_0) (x_2 - a_2) + \frac{\partial f}{\partial x_1}(\bar{x}_0, a_2) (x_1 - a_1) =$$

$$= \frac{\partial f}{\partial x_1}(a) (x_1 - a_1) + \frac{\partial f}{\partial x_2}(a) (x_2 - a_2) +$$

$$+ \left(\frac{\partial f}{\partial x_1}(\bar{x}_0, a_2) - \frac{\partial f}{\partial x_1}(a)\right) (x_1 - a_1) + \left(\frac{\partial f}{\partial x_2}(x_1, x_0) - \frac{\partial f}{\partial x_2}(a)\right) (x_2 - a_2)$$

Домножим и поделим на $\|x-a\|$ последнюю строку. $\left(\frac{\partial f}{\partial x_1}(\bar{x}_0,a_2)-\frac{\partial f}{\partial x_1}(a)\right)\xrightarrow[x\to a]{}0$, т.к. x_0 между x_1 и a_1 ; и $\left|\frac{x_1-a_1}{\|x-a\|}\right|\leqslant 1$. Аналогично во втором слагаемом этой строки. Значит теперь в ней написано $\delta.m.\cdot\|x-a\|$, то есть o(x-a). Получилось определение дифференцируемости f. \square

10 Правила дифференцирования, теорема Лагранжа для векторнозначных функций

1. **Линейность:** $f,g: E \subset \mathbb{R}^m \to \mathbb{R}^n$ — дифференцируемы в точке $a \in \text{Int } E$, тогда отображения $f+g, \lambda g$ — тоже дифференцируемы в точке a и их производные операторы равны: $(f+g)'(a) = f'(a) + g'(a), (\lambda g)'(a) = \lambda g'(a)$.

Лемма 2 (об оценке нормы линейного оператора):

 $f\colon \mathbb{R}^m \to \mathbb{R}^n$ — линейное отображение с матрицей A. Тогда $\forall\, x\in \mathbb{R}^m \; \|Ax\|\leqslant C_A\|x\|$, где $C_A=\sqrt{\sum\limits_{i,j=1}^{n,m}a_{ij}^2}\;,\; a_{ij}$ — элементы матрицы A

$$||Ax|| = \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} x_{j}\right)^{2}} \leqslant \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij}^{2}\right) \left(\sum_{j=1}^{m} x_{j}^{2}\right)} = ||x|| \sqrt{\sum_{i,j=1}^{n,m} a_{ij}^{2}}$$

2. Дифференцируемость композиции: $f: E \subset \mathbb{R}^m \to \mathbb{R}^l, g: I \subset \mathbb{R}^l \to \mathbb{R}^n, f$ — диффиренцируемо в точке $a \in \operatorname{Int} E, g$ — диффиренцируемо в точке $b = f(a) \in \operatorname{Int} I$. Тогда отображение $g \circ f$ — дифференцируемо в точке a и его производный оператор g(f(a))' = g'(f(a)) f'(a) Доказательство: определения дифференцируемости отображений f и g:

$$f(a+h) = f(a) + f'(a)h + \alpha(h) \|h\|, \quad \alpha(h) \xrightarrow[h \to 0_{\mathbb{R}^n}]{} 0_{\mathbb{R}^l}$$
$$g(b+k) = g(b) + g'(b)k + \beta(k) \|k\|, \quad \beta(k) \xrightarrow[k \to 0_{-l}]{} 0_{\mathbb{R}^n}$$

Получаем, что отображение $g \circ f$ дифференцируемо по определению:

$$g(f(a+h)) - g(f(a)) = g(\underbrace{f(a)}_{b} + \underbrace{f'(a) h + \alpha(h) \|h\|}_{k}) - g(f(a)) =$$

$$= g(f(a)) + g'(f(a)) (f'(a) h + \alpha(h) \|h\|) + \beta(f'(a) h + \alpha(h) \|h\|) \|f'(a) h + \alpha(h) \|h\|\| - g(f(a)) =$$

$$= g'(f(a)) f'(a) h + \underbrace{g'(f(a)) \alpha(h) \|h\|}_{f} + \underbrace{\beta(f'(a) h + \alpha(h) \|h\|) \|f'(a) h + \alpha(h) \|h\|\|}_{f}$$

$$\|I\| = \|g'\big(f(a)\big)\,\alpha(h)\| \cdot \|h\| \overset{\text{лемма 2}}{\leqslant} \underbrace{\|\alpha(h)\|}_{\mathcal{C}_{g'(f(a))}} \|h\|$$

$$\begin{split} \|II\| &= \left\|\beta \big(f'(a)\,h + \alpha(h)\,\|h\|\big) \right\| \cdot \left\|f'(a)\,h + \alpha(h)\,\|h\|\right\| \stackrel{\text{нер-во тр-ка}}{\leqslant} \, \left\|\beta \big(f'(a)\,h + \alpha(h)\,\|h\|\big) \right\| \cdot \|f'(a)\,h\| + \\ &+ \left\|\beta \big(f'(a)\,h + \alpha(h)\,\|h\|\big) \right\| \cdot \left\|\alpha(h)\,\|h\|\right\| \stackrel{\text{лемма } 2}{\leqslant} \, \textit{б.м.} \cdot \|h\| \, C_{f'(a)} + \textit{б.м.} \cdot \textit{б.м.} \cdot \|h\| \quad \text{при } h \to 0_{\mathbb{R}^m} \end{split}$$
 Тогда $I + II$ это $\textit{б.м.} \cdot \|h\| \Rightarrow$ получилось определение дифференцируемости отображения $g \circ f$.

3. Дифференцирование произведений: Отображения $f,g\colon E\subset\mathbb{R}^m\to\mathbb{R}^n,\quad \lambda\colon E\to\mathbb{R}$

дифференцируемы в точке $a\in {\rm Int}\, E$. Тогда отображения $\lambda f(x)=\lambda(x)f(x)$ и $\langle f,g\rangle(x)=$ = $\langle f(x),g(x)\rangle$ дифференцируемы в точке a . Они действуют на вектор $h\in \mathbb{R}^m$ так:

$$(1) (\lambda f)'(a) \cdot h = (\lambda'(a) \cdot h) \cdot f(a) + \lambda(a) \cdot f'(a) \cdot h$$

$$(2) \langle f, g \rangle'(a) \cdot h = \langle f'(a) \cdot h, g(a) \rangle + \langle f(a), g'(a) \cdot h \rangle$$

Доказательство:

②
$$\langle f,g\rangle'(a)\cdot h = \left(\sum_{i=1}^n f_i g_i\right)'(a)\cdot h \stackrel{\text{лин.}}{=} \sum_{i=1}^n (f_i g_i)'(a)\cdot h \stackrel{\textcircled{\tiny 1}}{=} \sum_{i=1}^n (f_i'(a)\cdot h)\cdot g_i(a) + f_i(a)\cdot g_i'(a)\cdot h = \langle f'(a)\cdot h,g(a)\rangle + \langle f(a),g'(a)\cdot h\rangle$$

Теорема 4 (Лагранжа для векторонозначных функций):

 $f:[a,b]\subset\mathbb{R}\to\mathbb{R}^m$ — непрерывна на [a,b], дифференцируема на (a,b). Тогда $\exists\,c\in(a,b):$

$$||f(b) - f(a)|| \le ||f'(c)|| \cdot ||(b - a)||$$

Доказательство: Пусть $\varphi \colon [a,b] \to \mathbb{R}, \quad \varphi(t) = \langle f(b) - f(a), f(t) - f(a) \rangle$. Тогда φ — непрерывна на [a,b], дифференцируема на (a,b) и $\varphi(a) = 0, \ \varphi(b) = \|f(b) - f(a)\|^2$. Поэтому

$$||f(b) - f(a)||^2 = \varphi(b) - \varphi(a) \stackrel{\text{по обычной теореме}}{=} \varphi'(c)(b-a) \stackrel{\textcircled{2}}{=} \langle f(b) - f(a), f'(c) \rangle (b-a) \stackrel{\text{нер-во Коши-Буняковского}}{\leqslant} \langle f(b) - f(a), f'(c) \rangle (b-a) \stackrel{\text{нер-во Коши-Буняковского}}{\leqslant} \langle f(b) - f(a), f'(c) \rangle (b-a)$$

Теперь, деля на ||f(b) - f(a)|| (при f(b) = f(a) доказываемое неравенство очевидно) получаем то, что нужно.

Замечание 5: Общее правило дифференцирования функции одной переменной:

 $f: \mathbb{R} \to \mathbb{R}$ — дифференцируема, задаётся формулой f(x). $f(x) \leadsto F(x_1, x_2, \dots, x_n)$, n — количество x-ов в формуле (т.е. нужно пронумеровать все x-ы). Тогда

$$f'(x) = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(x, x, \dots, x)$$

Доказательство: Определение дифференцируемости F:

$$\underbrace{F(x+h,\ldots,x+h)}_{f(x+h)} = \underbrace{F(x,\ldots,x)}_{f(x)} + \underbrace{\sum_{i=1}^n \frac{\partial F}{\partial x_i}(x,x,\ldots,x)}_{\text{число} \ \Rightarrow \ \text{это} \ f'(x)} \cdot h + o(h) \qquad \text{при } h \to 0$$

11 Градиент, производная по вектору, по направлению, экстремальное свойство градиента

Определение 26: Пусть функция $f: E \subset \mathbb{R}^m \to \mathbb{R}$ — дифференцируема в точке $a \in \text{Int } E$. Тогда матрица якоби функции f имеет размер $1 \times m$ (строка). Если её транспонировать и считать, что это вектор из \mathbb{R}^m , то определение дифференцируемости можно записать так:

$$f(a+h) = f(a) + \langle f'(a), h \rangle + o(h),$$
 при $h \to 0_{\mathbb{R}^m}$

и тогда вектор $f'(a) \in \mathbb{R}^m$ называется градиентом функции f в точке a, обозначается grad f(a).

Определение 27: Производной по вектору $h \in \mathbb{R}^m$ функции $f \colon E \subset \mathbb{R}^m \to \mathbb{R}$ в точке a называется

$$\lim_{t \to 0} \frac{f(a+th) - f(a)}{t}$$

обозначение: $\frac{\partial f}{\partial h}(a)$. Напрвлением в \mathbb{R}^m называется вектор $l \in \mathbb{R}^m$: ||l|| = 1. Можно рассматривать производную по направлению.

Замечание 6: $f \colon E \subset \mathbb{R}^m \to \mathbb{R}$ — дифференцируема в точке $a \in \operatorname{Int} E$, тогда

$$\frac{\partial f}{\partial h}(a) \stackrel{\text{ond. 27}}{=} \lim_{t \to 0} \frac{f(a+th) - f(a)}{t} \stackrel{\text{ond. 22 M T. 2}}{=} \lim_{t \to 0} \frac{\frac{\partial f}{\partial x_1}(a) \, th_1 + \dots + \frac{\partial f}{\partial x_m}(a) \, th_m + o(t)}{t} = \langle \operatorname{grad} f(a), h \rangle$$

Теорема 5 (Экстремальное свойство градиента):

Пусть $f\colon E\subset\mathbb{R}^m\to\mathbb{R}$ — дифференцируема в точке $a\in\operatorname{Int} E$ и $\operatorname{grad} f(a)\neq 0$. Тогда $l=\frac{\operatorname{grad} f(a)}{\|\operatorname{grad} f(a)\|}$ (направление в \mathbb{R}^m) — направление наискорейшего возрастания функции f, т.е.

 $\forall h \in \mathbb{R}^m$ такого, что ||h|| = 1 выполнено:

$$-\|\operatorname{grad} f(a)\| = -\frac{\partial f}{\partial l} \leqslant \frac{\partial f}{\partial h}(a) \leqslant \frac{\partial f}{\partial l} = \|\operatorname{grad} f(a)\|$$

и равенство достигается при h=l (справа) и h=-l (слева)

Доказательство: Так как $\frac{\partial f}{\partial h} = \langle \operatorname{grad} f(a), h \rangle$ (зам. 6), то из неравенства Коши-Буняковского (сл. 1) следует доказываемое неравенство: $-\|\operatorname{grad} f(a)\| \cdot 1 \leqslant \langle \operatorname{grad} f(a), h \rangle \leqslant \|\operatorname{grad} f(a)\| \cdot 1$. Если в неравенстве Коши-Буняковского $|\langle x,y\rangle| \leq ||x|| \cdot ||y|| \ y = \alpha x$, то достигается равенство. В нашем случае, если h = l, то α это $1/\|\operatorname{grad} f(a)\|$.

12 Производные высших порядков, их независимость от порядка дифференцирования, класс $C^r(E)$, мультииндекс, полиномиальная формула

Определение 28: $f\colon E\subset\mathbb{R}^m o\mathbb{R}$. Пусть $\exists\,k\in\{1,2,\ldots,m\}$ и $\exists\,U(a)$ — окрестность точки $a\in\mathrm{Int}\,E$ такие, что можно определить функцию $g\colon U(a)\to\mathbb{R}$ так, что $g(x)=\frac{\partial f}{\partial x_k}(x)$. Тогда, если $\exists\,i\in$ $\{1, 2, ..., m\}$ такое, что $\exists \frac{\partial g}{\partial x_i}(a)$, то эта частная производная называется частной производной

II порядка функции f в точке a. Обозначение: $\frac{\partial^2 f}{\partial x_i \partial x_k}(a)$ или $f''_{x_k x_i}(a)$

По индукции определяется $\frac{\partial^k f}{\partial x_i.\partial x_{i_0}\dots\partial x_{i_n}}(a) = \frac{\partial}{\partial x_{i_1}}\left(\frac{\partial^{k-1} f}{\partial x_{i_2}\partial x_{i_3}\dots\partial x_{i_n}}\right)(a)$

Теорема 6 (о независимости частной производной от порядка дифференцирования):

Пусть $f \colon E \subset \mathbb{R}^2 \to \mathbb{R}$, точка $(x_0,y_0) \in E$, $\exists \, r > 0$: в шаре $\mathrm{B}\big((x_0,y_0),r\big)$ $\exists \, f''_{xy}, \, f''_{yx}$ и они непрерывны в точке (x_0,y_0) . Тогда $f''_{xy}(x_0,y_0) = f''_{yx}(x_0,y_0)$

Доказательство: Пусть $\Delta^2 f(h,k) = f(x_0,y_0) + f(x_0+h,y_0+k) - f(x_0,y_0+k) - f(x_0+h,y_0)$. При фиксированном k определим функцию $\alpha(h) = \Delta^2 f(h, k)$. И пусть обе функции заданы так, чтобы аргументы f попадали в шар $B((x_0,y_0),r)$, т.е. $\Delta^2 f: B((0,0),r/\sqrt{2}) \to \mathbb{R}$ и $\alpha: [0,r/\sqrt{2}) \to \mathbb{R}$. Тогда α непрерывна и дифференцируема на $[0, r/\sqrt{2})$ и $\alpha(0) = 0$, поэтому, применяя теорему Лагранжа сначала к функции α , затем при фиксированной первой переменной к функции fполучаем

$$\alpha(h) = \alpha(h) - \alpha(0) = \alpha'(\bar{h}) \cdot h = \left(f_x'(x_0 + \bar{h}, y_0 + k) - f_x'(x_0 + \bar{h}, y_0) \right) \cdot h = \left(f_{xy}''(x_0 + \bar{h}, y_0 + \bar{k}) \right) \cdot hk$$

Аналогично, при фиксированном h можно определить функцию $\beta(k) = \Delta^2 f(h,k)$ и

$$\beta(k) = \beta(k) - \beta(0) = \beta'(\hat{k}) \cdot k = \left(f_y'(x_0 + h, y_0 + \hat{k}) - f_y'(x_0, y_0 + \hat{k})\right) \cdot k = \left(f_{yx}''(x_0 + \hat{h}, y_0 + \hat{k})\right) \cdot hk$$

Так как при фиксированных k и h $\alpha(h) = \beta(k) = \Delta^2 f(h,k)$, то имеем равенство

$$f_{xy}''(x_0 + \bar{h}, y_0 + \bar{k}) = f_{yx}''(x_0 + \hat{h}, y_0 + \hat{k})$$

и делая в нём предельный переход при $h \to 0$ и $k \to 0$ получаем, что $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$, так как $\bar{h}, \hat{h} \in (0, h)$, и $\bar{k}, \hat{k} \in (0, k)$, то есть $\bar{h}, \hat{h}, \bar{k}, \hat{k}$ стремятся к нулю при $h \to 0$ и $k \to 0$). \square

Определение 29: Пусть множество $E \subset \mathbb{R}^m$ — открытое, $r \in \mathbb{N}$, тогда класс $C^r(E)$ — это множество всех функций $f\colon E o\mathbb{R}$ таких, что у них \exists все возможные частные производные порядка r и все эти производные непрерывны. $C(E) \supseteq C^1(E) \supseteq C^2(E) \supseteq \dots$

$$C^{\infty}(E) \stackrel{\text{def}}{=} \bigcap_{r=1}^{\infty} C^r(E)$$

Теорема 7 (общая теорема о независимости частной производной от порядка дифференцирования):

Пусть функция $f \in C^r(E)$, $E \subset \mathbb{R}^m$, $r, k \in \mathbb{N}$, $k \leqslant r$, и наборы индексов $i_1, i_2, \ldots i_k$ и $j_1, j_2, \ldots j_k$ отличаются друг от друга перестановкой. Тогда

$$\frac{\partial^r f}{\partial x_{i_k}, \partial x_{i_{k-1}}, \dots, \partial x_{i_1}} = \frac{\partial^r f}{\partial x_{j_k}, \partial x_{j_{k-1}}, \dots, \partial x_{j_1}}$$
 на множестве E

Доказательство: Сводится к предыдущей теореме, так как любую перестановку можно получить транспозицией соседних элементов. □

Замечание 7: Классы $C^r(E), r \in \mathbb{N}$ замкнуты относительно сложения, умножения на скаляр (и образуют линейное пространство) и композиции.

Определение 30: Вектор $k=(k_1,k_2,\ldots,k_m)\in\mathbb{R}^m$, где все $k_i\in\mathbb{Z},k_i\geqslant 0$ называется мультииндексом

- 1. $|k| \stackrel{\text{def}}{=} k_1 + k_2 + \ldots + k_m$ называется высотой мультииндекса
- 2. $k! \stackrel{\text{def}}{=} k_1! \cdot k_2! \cdot \ldots \cdot k_m!$
- 3. $\mathbf{z^k} \stackrel{\mathrm{def}}{=} x_1^{k_1} \cdot x_2^{k_2} \cdot \ldots \cdot x_m^{k_m}$, где $x = (x_1, x_2, \ldots, x_m)$ вектор из \mathbb{R}^m
- 4. $\frac{\partial^{|k|} f}{\partial x^k} \stackrel{\text{def}}{=} \frac{\partial^{|k|} f}{(\partial x_1)^{k_1} (\partial x_2)^{k_2} \dots (\partial x_m)^{k_m}} \qquad (\partial x_i)^{k_i} \text{ ознчает, что по переменной } x_i \text{ частная произ-$

водная берётся k_i раз (это общее обозначение; не только для мультииндекса)

Лемма 3 (полиномиальная формула):

Пусть $r \in \mathbb{N}, \ a_1, a_2, \dots, a_m \in \mathbb{R}, \text{ т.е } a = (a_1, a_2, \dots, a_m) \in \mathbb{R}^m, \text{ тогда}$

$$(a_1 + a_2 + \dots a_m)^r = \sum_{n_1 = 1}^m \sum_{n_2 = 1}^m \dots \sum_{n_r = 1}^m a_{n_1} \cdot a_{n_2} \cdot \dots \cdot a_{n_r} =$$

$$= \sum_{\substack{j : |j| = r \\ j - \text{мультииндекс}}} \frac{r!}{j!} \cdot a^j \stackrel{\text{onp. } 30}{=} \sum_{\substack{(j_1, \dots, j_m) \\ j_1 + \dots + j_m = r}} \frac{r!}{j_1! \cdot j_2! \cdot \dots \cdot j_m!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \dots \cdot a_m^{j_m}$$

Доказательство: Индукция по r. Обозначим $S_r = \sum \frac{r!}{i!} \cdot a^j$, тогда

База: при r = 1

$$S_1 = \sum_{\substack{(0,\ldots,0,1,0,\ldots,0)\\1\text{ стоит на месте }i\\i\in\{1,\ldots,m\}}} \frac{1!}{0!\cdot\ldots\cdot 0!\cdot 1!\cdot 0!\cdot\ldots\cdot 0!}\cdot a_1^0\cdot\ldots\cdot a_{i-1}^0\cdot a_i^1\cdot a_{i+1}^0\cdot\ldots\cdot a_m^0 = (a_1+a_2+\ldots a_m)^1$$

Переход: от r к r+1. Раскроем скобки в выражении $S_{r+1}=(a_1+a_2+\ldots+a_m)\cdot S_r:$

$$\sum_{j:|j|=r} \frac{r!}{j_1! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1+1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m} + \ldots + \sum_{j:|j|=r} \frac{r!}{j_1! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m+1}$$

Домножим и поделим каждую сумму на соответствующее j_i+1 :

$$\sum_{j:|j|=r} \frac{r! \cdot (j_1+1)}{(j_1+1)! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1+1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m} + \ldots + \sum_{j:|j|=r} \frac{r! \cdot (j_m+1)}{j_1! \cdot j_2! \cdot \ldots \cdot (j_m+1)!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m+1}$$

Изменим в пределе суммирования высоту мультииндекса на r+1, учитывая, что тогда в каждой сумме соответствующее j_i должно быть $\geqslant 1$:

$$\sum_{\substack{j:|j|=r+1,\\j_1\geqslant 1}} \frac{r! \cdot j_1}{j_1! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m} + \ldots + \sum_{\substack{j:|j|=r+1,\\j_m\geqslant 1}} \frac{r! \cdot j_m}{j_1! \cdot j_2! \cdot \ldots \cdot j_m!} \cdot a_1^{j_1} \cdot a_2^{j_2} \cdot \ldots \cdot a_m^{j_m}$$

Каждая сумма умножается на соответствующее j_i , поэтому условие $j_i \geqslant 1$ не нужно, так как соответствующие слагаемые при $j_i = 0$ будут равны нулю. Вынесем за скобки общий множитель:

$$\sum_{\substack{j:|j|=r+1\\j_1!\cdot j_2!\cdot \ldots \cdot j_m!}} \frac{r!\cdot (j_1+j_2+\cdots+j_m)}{j_1!\cdot j_2!\cdot \ldots \cdot j_m!} \cdot a_1^{j_1}\cdot a_2^{j_2}\cdot \ldots \cdot a_m^{j_m}$$

Множитель $(j_1 + j_2 + \cdots + j_m)$ это по определению высота мультииндекса, то есть он равен r+1. Значит последняя полученная сумма и есть S_{r+1}

13 Лемма о дифференцировании «сдвига», формула Тейлора, *n*-ый дифференциал

Лемма 4 (о дифференцировании «сдвига»):

 $E\subset\mathbb{R}^m,\ f\in C^r(E)\ (f\colon E\to\mathbb{R}),\ a\in E.$ Пусть $h\in\mathbb{R}^m$: при $t\in[-1,1]$ вектор $a+th\in E,$ определим функцию $\varphi(t)=f(a+th),$ тогда $\varphi\in C^r([-1,1])$ и $\forall\, k\leqslant r$

$$\varphi^{(k)}(t) = \sum_{\substack{j:|j|=k\\ j-\text{мультийндекс}}} \frac{k!}{j!} \cdot h^j \cdot \frac{\partial^k f}{\partial x^j}(a+th) \tag{*}$$

Доказательство: Найдём первую производную функции φ как производную композиции:

$$\varphi'(t) = f'(a+th) \cdot h = f'_{x_1}(a+th) \cdot h_1 + f'_{x_2}(a+th) \cdot h_2 + \dots + f'_{x_m}(a+th) \cdot h_m$$

Это формула (**) при k=1. Вторая производная функции φ :

$$\varphi''(t) = \left(\sum_{i=1}^{m} f'_{x_i}(a+th) \cdot h_i\right)' = \sum_{i=1}^{m} \left(f'_{x_i}(a+th)\right)' \cdot h_i = \sum_{i=1}^{m} \sum_{j=1}^{m} f''_{x_i x_j}(a+th) \cdot h_i h_j = \sum_{i=1}^{m} f''_{x_i x_i}(a+th) \cdot h_i^2 + 2 \cdot \sum_{\substack{j=1 \ i < j}}^{m} f''_{x_i x_j}(a+th) \cdot h_i h_j$$

В первом слагаемом написано то, что получается в формуле (*) при k=2 в случае, когда мультииндекс выглядит как $(0,\ldots,0,2,0\ldots,0)$, во втором слогаемом — как $(0,\ldots,0,1,0\ldots,0,1,0\ldots,0)$. Тогда k-ая производная функции φ :

$$\sum_{i_1=1}^m \sum_{i_2=1}^m \cdots \sum_{i_k=1}^m f_{x_{i_1} x_{i_2} \dots x_{i_k}}^{(k)}(a+th) \cdot h_{i_1} h_{i_2} \dots h_{i_k} \overset{\text{лемма } 3}{=} \sum_{\substack{j: |j|=k\\ j-\text{мультииндекс}}} \frac{k!}{j!} \cdot h^j \cdot \frac{\partial^k f}{\partial x^j}(a+th)$$

Лемма 3 объединяет слагаемые, которые отличаются перестановкой множителей. В левой части последнего равенства каждое такое слагаемое домножено на соответствующую частную производную k-го порядка и эти производные так же отличаются друг от друга только порядком

дифференцирования, значит они равны (так как непрерывны на E по условию). Поэтому слагаемые, которые объединяет лемма домножены на одно и тоже число, и его можно дописать множетелем при соответствующем слагаемом.

Теорема 8 (формула Тейлора с остатком в форме Лагранжа):

Пусть $E \subset \mathbb{R}^m$, $(f: E \to \mathbb{R})$ $f \in C^{r+1}(E)$, точка $a \in E$, $R \in \mathbb{R}: B(a,R) \subset E$, $x \in B(a,R)$, h = x - a, тогда $\exists \theta \in (0,1)$ такое, что:

$$f(x) = \sum_{\substack{k:|k|\leqslant r\\k-\text{мультииндекс}}} \frac{f^{(k)}(a)}{k!} \cdot h^k + \sum_{\substack{k:|k|=r+1\\k-\text{мультииндекс}}} \frac{f^{(k)}(a+\theta h)}{k!} \cdot h^k$$

 $f^{(k)}$ — это другое обозначение для $\frac{\partial^{|k|}f}{\partial x^k}$

Доказательство: Определим функцию $\varphi: [0,1] \to \mathbb{R}$ $\varphi(t) = f(a+th)$. Тогда $\varphi \in C^{r+1}([0,1])$. Формула Тейлора с центром в точке 0 с остатком в форме Лагранжа для функции φ в единице:

$$\varphi(1) = \sum_{n=1}^{r} \frac{\varphi^{(n)}(0)}{n!} \cdot 1^{n} + \frac{\varphi^{(r+1)}(\theta)}{(r+1)!} \cdot 1^{(r+1)}, \qquad \theta \in (0,1)$$

 $\varphi(1)=f(a+h)=f(x).$ Используя лемму 4, заменяем производные функции $\varphi.$ Тогда

$$f(x) = \sum_{n=1}^{r} \frac{1}{n!} \cdot \sum_{\substack{k:|k|=n\\k-\text{мультииндекс}}} \frac{n!}{k!} \cdot h^k \cdot f^{(k)}(a) + \sum_{\substack{k:|k|=r+1\\k-\text{мультииндекс}}} \frac{1}{(r+1)!} \cdot \frac{(r+1)!}{k!} \cdot h^k \cdot f^{(r+1)}(a+\theta h)$$

Упрощая, получаем доказываемую формулу.

Замечание 8: Явный вид многочлена Тейлора порядка r функции f в точке a:

$$T_r(f,a)(x) = \sum_{k=1}^r \sum_{\substack{(i_1,\dots,i_m)\\i_1+\dots+i_m=k\\i_1,\dots,i_m \ge 0}} \frac{1}{i_1! \cdot \dots \cdot i_m!} \cdot \frac{\partial^k f}{(\partial x_1)^{i_1} (\partial x_2)^{i_2} \dots (\partial x_m)^{i_m}} (a) \cdot (x_1 - a_1)^{i_1} \cdot (x_2 - a_2)^{i_2} \cdot \dots \cdot (x_m - a_m)^{i_m}$$

Следствие 5: В остатке формулы Тейлора есть множитель

$$h^{k} = \left(\frac{h_{1}}{\|h\|}\right)^{k_{1}} \cdot \left(\frac{h_{2}}{\|h\|}\right)^{k_{2}} \cdot \ldots \cdot \left(\frac{h_{m}}{\|h\|}\right)^{k_{m}} \cdot \|h\|^{r+1}$$

А производная $f^k(a+\theta h)$ ограничена в некоторой окрестности точки a, замыкание которой сожержится в E, потому что $f^{(k)}$ непрерывна на E. Значит остаток в формуле Тейлора это $ozp.\cdot \|h\|^r \cdot \|h\| = o(\|h\|^r)$, при $h \to 0$. Он называется остатком в форме Пеано.

Определение 31: Однородный многочлен от h степени n

$$d^{n}f(a,h) = \sum_{\substack{(i_{1},\dots,i_{m})\\i_{1}+\dots+i_{m}=n\\i_{1},\dots,i_{m}\geqslant 0}} \frac{n!}{i_{1}! \cdot i_{2}! \cdot \dots \cdot i_{m}!} \cdot \frac{\partial^{n}f}{(\partial x_{1})^{i_{1}}(\partial x_{2})^{i_{2}} \dots (\partial x_{m})^{i_{m}}}(a) \cdot h_{1}^{i_{1}} \cdot h_{2}^{i_{2}} \cdot \dots \cdot h_{m}^{i_{m}}$$

называется n-ым дифференциалом функции f в точке a.

Тогда формулу Тейлора можно записать в виде $f(x) = f(a) + \sum_{k=1}^r \frac{d^k f(a,h)}{k!} + o(\|h\|^r)$

14 Последовательность функций, поточечная и равномерная сходимсть

Определение 32: Последовательность функций — это отображение из № в множество функций.

Определение 33: Пусть X — множество, Y — метрическое пространство, $f, f_1, f_2, ... : X \to Y$, последовательность отображений f_n сходится поточечно f к отображению f на множестве $E \subset X$ означает, что $\forall x_0 \in E$ $f_n(x_0) \xrightarrow[n \to \infty]{} f(x_0)$, т.е.

$$\forall x_0 \in E \ \forall \varepsilon > 0 \ \exists N : \forall n > N$$
 выполнено $\rho(f_n(x_0), f(x_0)) < \varepsilon$

Определение 34: Последовательность отображений f_n сходится равномерно к отображению f на множестве E если $\sup_{x \in E} \rho\left(f_n(x_0), f(x_0)\right) \xrightarrow[n \to \infty]{} 0$, т.е.

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in E$$
 выполнено $\rho(f_n(x), f(x)) < \varepsilon$

Обозначение: $f_n \xrightarrow[n \to \infty]{E} f$

Замечание 9:

1. Из равномерной сходимости следует поточечная сходимость (наоборот нет)

2. Если
$$f_n \xrightarrow[n \to \infty]{E} f$$
 и $E_0 \subset E$, то $f_n \xrightarrow[n \to \infty]{E_0} f$

Лемма 5 (или следующий пункт замечания):

Пусть X — множество, Y — метрическое пространство, $\mathcal{F} = \{f : X \to Y \mid f$ — ограничено $\}$ (f — ограничено означает, что $\exists y_0 \in Y, r \in \mathbb{R} : \forall x \in X$ выполнено $f(x) \in B(y_0, r)$). Тогда функция $\rho_{\mathcal{F}} \colon \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ такая, что $\rho_{\mathcal{F}} (f_1, f_2) = \sup_{x \in X} \rho (f_1(x), f_2(x))$ является метрикой на \mathcal{F} .

Доказательство: Выполнение первых двух аксиом метрики (опр. 4) следует из их выполнения в метрике на Y. Неравенство треугольника: при любом $x \in X$ выполнено

$$\rho(f_1(x), f_2(x)) \leqslant \rho(f_1(x), g(x)) + \rho(g(x), f_2(x)) \leqslant \rho_{\mathcal{F}}(f_1, g) + \rho_{\mathcal{F}}(g, f_2) \qquad \forall f_1, f_2, g \in \mathcal{F}$$

Правая часть неравенства не зависит от x, поэтому она является верхней границей (для множества чисел $\{\rho(f_1(x), f_2(x)) \mid x \in X\}$), тогда она больше либо равна точной верхней границы $\Rightarrow \rho_{\mathcal{F}}(f_1, f_2) \leqslant \rho_{\mathcal{F}}(f_1, g) + \rho_{\mathcal{F}}(g, f_2)$

15 Теорема Стокса-Зайдля

Теорема 9 (Стокса-Зайдля о непрерывности предельной функции):

Отображение f и последовательность отображений f_n действуют $X \to Y$, где X, Y — метрические пространства. Пусть все отображения из последовательности непрерывны в точке $c \in X$ и $f_n \xrightarrow[n \to \infty]{X} f$. Тогда f непрервна в точке c.

Доказательство: Применяя два раза неравенство треугольника к $\rho(f(x) - f(c))$, получаем

$$\rho \left(f(x) - f(c) \right) \leqslant \rho \left(f(x) - f_n(x) \right) + \rho \left(f_n(x) - f(c) \right) \leqslant \rho \left(f(x) - f_n(x) \right) + \rho \left(f_n(x) - f_n(c) \right) + \rho \left(f_n(x) - f(c) \right) \leqslant \rho \left(f(x) - f_n(x) \right) + \rho \left(f_n(x) - f(c) \right) \leqslant \rho \left(f(x) - f_n(x) \right) + \rho \left(f_n(x) - f(c) \right) \leqslant \rho \left(f(x) - f_n(x) \right) + \rho \left(f_n(x) - f(c) \right) \leqslant \rho \left(f(x) - f(c) \right$$

Из определения равномерной сходимости f_n к f ($\forall \varepsilon > 0 \; \exists N : \forall n > N \; \sup_{x \in X} \rho \big(f_n(x) - f(x) \big) < \varepsilon$) получаем, что $\forall \varepsilon > 0$ первое и последние слагаемое в правой части неравенства $< \varepsilon$. Из определения непрерывности f_n в точке c ($\forall \varepsilon > 0 \; \exists U(c) :$ если $x \in U(c)$, то $\rho \big(f_n(x) - f_n(c) \big) < \varepsilon$) получаем, что $\exists U(c)$ — окрестность точки x такая, что если $x \in U(c)$, то второе слагаемое из правой части неравенства $< \varepsilon$. Складывая, получаем, что $\rho \big(f(x) - f(c) \big) < 3 \cdot \varepsilon$. Получилось определение непрервности f в точке c.

Следствие 6: Если
$$f_n \in C(X)$$
 и $f_n \xrightarrow[n \to \infty]{X} f$, то $f \in C(X)$.

Замечание 10:

- 1. В теореме 9 достаточно того, чтобы X было топологическим пространством.
- 2. В теореме 9 достаточно требовать равномерную сходимость f_n к f только в некоторой окрестности точки c.
- 3. В следствии (сл. 6) достаточно требовать локальную равномерную сходимость, то есть $\forall \, x \in X \;\; \exists \, U(x) : \, f_n \xrightarrow[n \to \infty]{U(x)} f$. Из локальной равномерной сходимости не следует обычная.

Например, $X = (0,1), f_n(x) = x^n$:

Поточечная сходимость: $x^n \xrightarrow[n \to \infty]{} 0$ на (0,1).

Локальная равномерная сходимость: $\sup_{(\alpha,\beta)}|x^n-0|=\beta^n\xrightarrow[n\to\infty]{}0\qquad \forall\,(\alpha,\beta)\subset(0,1),\,\,\beta\neq 1$

Обычной равномерной сходимости нет: $\sup_{(0,1)} |x^n - 0| = 1$

16 Полнота пространства непрерывных функций на компакте

Теорема 10 (о полноте пространства непрерывных функций на компакте):

Пусть K — компактное метрическое пространство, тогда $C(K) = \{ f : K \to \mathbb{R} \mid f$ — непрерывно $\}$ есть полное метрическое пространство относительно метрики $\rho(f_1, f_2) = \sup_K |f_1(x) - f_2(x)|$

- 1. $\rho(f_1, f_2) = \sup_K |f_1(x) f_2(x)|$ является метрикой по лемме 5, т.к. непрерывные функции на компакте ограничены (теорема Вейерштрасса)
- 2. Метрическое пространство называется компактным, если из любого покрытия пространства открытыми множествами можно выбрать конечное подпокрытие.
- 3. Метрическое пространство называется полным, если в нём любая фундаментальная последовательность сходится.
- 4. Последовательность x_n называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N$$
 выполнено $\rho(x_n, x_m) < \varepsilon$

5. Если последовательность сходится, то она фундаментальная. Доказательство: $\forall \, \varepsilon > 0$ из определения сходимости x_n к a ($\forall \, \varepsilon > 0$ $\exists \, N : \forall \, n > N$ выполнено $\rho \, (x_n, a) < \varepsilon$) возьмём n, m > N, тогда, используя неравенство треугольника, получаем $\rho \, (x_n, x_m) \leqslant \rho \, (x_n, a) + \rho \, (a, x_m) < 2\varepsilon$. Получилось определение фундаментальности.

Доказательство: Нужно доказать, что любая фундаментальная последовательность сходится. Возьмём фундаментальную последовательность f_n . Тогда $\forall x_0 \in K$ последовательность $f_n(x_0)$ — фундоментальная, и она вещественная \Rightarrow она сходится. Обозначим её предел $f(x_0)$. Определение фундоментальности $f_n(x)$:

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N \ \forall x_0 \in K$$
 выполнено $|f_n(x_0) - f_m(x_0)| < \varepsilon$

При каждом фиксированном x_0 делаем предельный переход при $m \to \infty$, получаем

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x_0 \in K$$
 выполнено $|f_n(x_0) - f(x_0)| \leqslant \varepsilon$

То есть f_n сходится к f равномерно. Тогда f непрерывна на K по теореме 9, то есть $f \in C(K)$, а сходимость последовательности в C(X) — это равномерная сходимость функциональных последовательностей.

Замечание 11:

1. Пространство $\mathcal{F} = \{ f \colon X \to Y \mid f$ — ограничено, $\}$, где X — множество, Y — полное метрическое пространство, тоже является полным.

Доказательство останется тем же, только в конце нельзя будет применить теорему 9. Но если $f_n \in \mathcal{F}$ и $f_n \xrightarrow[n \to \infty]{X} f$, то $f \in \mathcal{F}$. Доказательство: определение ограниченности f_n :

$$\forall n \; \exists y_n \in Y, r_n \in \mathbb{R} : \forall x \in X$$
выполнено $f_n(x) \in \mathcal{B}(y_n, r_n)$

Определение равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in E$$
 выполнено $\rho(f_n(x), f(x)) < \varepsilon$

Тогда возьмём $\varepsilon_0 > 0$, найдём соответствующее N, возьмём n = N+1 и для них при любом $x \in X$ будет выполнено $\rho(f(x), f_{N+1}(x)) < \varepsilon_0$ и $\rho(y_{N+1}, f_{N+1}(x)) < r_{N+1} \Rightarrow$ по неравенству треугольника $\rho(f(x), y_{N+1}) < r_{N+1} + \varepsilon_0$, то есть f — ограничено.

- 2. Пространство $C_M(K) = \{ f : K \to Y \mid f$ непрерывно $\}$, где K компактное метрическое пространство, Y полное метрическое пространство, тоже является полным.
- 3. В C(K) равномерная сходимость последовательности $f_n \Leftrightarrow \forall \varepsilon > 0 \ \exists N: \forall n,m > N$ выполнено $\sup_K |f_n(x) f_m(x)| < \varepsilon$

17 Предельный переход под знаком интеграла/производной для последовательностей, правило Лейбница

Теорема 11 (о предельном переходе под знаком интеграла для последовательностей):

Пусть
$$f_n\in C[a,b]$$
 $(f_n\colon [a,b]\to\mathbb{R})$ и $f_n\xrightarrow[n\to\infty]{[a,b]}f$, тогда $\int\limits_a^bf_n\xrightarrow[n\to\infty]{}\int\limits_a^bf$

Доказательство: Используя определение равномерной непрерывности, получаем

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f_{n} - f| \leqslant \sup_{[a,b]} |f_{n} - f| \cdot (b - a) \xrightarrow[n \to \infty} 0$$

Теорема 12 (правило Лейбница дифференцирования интеграла по параметру):

Пусть $f:[a,b]\times[c,d]\to\mathbb{R}, f$ и f_y' — непрерывны на $[a,b]\times[c,d], \Phi\colon[c,d]\to\mathbb{R}, \Phi(y)=\int\limits_a^b f(x,y)\,dx,$ тогда Φ — дифференцируема на [c,d] и $\Phi'(y)=\int\limits_a^b f_y'(x,y)\,dx$

Доказательство: Производная Φ по определению:

$$\lim_{h\to 0} \frac{\varPhi(y+h) - \varPhi(y)}{h} = \lim_{h\to 0} \frac{\int_a^b f(x,y+h) \, dx - \int_a^b f(x,y) \, dx}{h} \stackrel{\text{т. Лагранжа}}{=} \int_a^b f_y'(x,y+\theta_h h) \, dx, \qquad \theta_h \in (0,1)$$

По теореме Кантора (непрерывная функция на компакте равномерно непрерывна) f'_y равномерно непрерывна на $[a,b] \times [c,d]$, то есть

$$orall \, arepsilon > 0 \, \exists \, \delta > 0 : orall \, x_1, x_2 \in [a,b] imes [c,d],$$
 если $\|x_1 - x_2\| < \delta,$ то $|f_y'(x_1) - f_y'(x_2)| < arepsilon$

Пользуясь этим определением, фиксируем $\varepsilon > 0$, находим $\delta > 0$. Тогда, при $h < \delta$, так как $\|(x,y+\theta_hh)-(x,y)\|<\delta$, то $|f_y'(x,y+\theta_hh)-f_y'(x,y)|<\varepsilon$ или

$$\left| \int_a^b f_y'(x, y + \theta_h h) \, dx - \int_a^b f_y'(x, y) \, dx \right| \leqslant \varepsilon \cdot (b - a),$$

потому что подынтегральная функция не превосходит ε . Значит

$$\int_a^b f_y'(x,y+\theta_h h)\,dx \xrightarrow[h\to 0]{} \int_a^b f_y'(x,y)\,dx, \quad \text{to ects} \quad \varPhi'(y) = \lim_{h\to 0} \frac{\varPhi(y+h)-\varPhi(y)}{h} = \int_a^b f_y'(x,y)\,dx$$

Теорема 13 (о предельном пререходе под знаком производной):

Пусть $f_n \in C^1 \langle a,b \rangle$, $f_n \xrightarrow[n \to \infty]{} f_0$ поточечно на $\langle a,b \rangle$, $f'_n \xrightarrow[n \to \infty]{} \varphi$, тогда $f_0 \in C^1 \langle a,b \rangle$ и $f'_0 = \varphi$ на $\langle a,b \rangle$

Доказательство: $\forall [x_0, x_1] \subset \langle a, b \rangle$ по теореме $11 \int_{x_0}^{x_1} f'_n \xrightarrow[n \to \infty]{} \int_{x_0}^{x_1} \varphi$, то есть $f_n(x_1) - f_n(x_0) \xrightarrow[n \to \infty]{} \int_{x_0}^{x_1} \varphi$, а по условию $f_n(x_1) - f_n(x_0) \xrightarrow[n \to \infty]{} f_0(x_1) - f_0(x_0)$, значит $f_0(x_1) - f_0(x_0) = \int_{x_0}^{x_1} \varphi$, то есть f_0 — первообразная φ

18 Следствия для рядов, признаки Вейерштрасса, Больцано-Коши равномерной сходимости функционального ряда

Определение 35: Пусть $u_n \colon X \to \mathbb{R}$, где X — множество, тогда функциональный ряд $\sum\limits_{n=1}^\infty u_n(x)$ сходится равномерно (поточечно), если сходится равномерно (поточечно) функциональная последовательность из частичных сумм $S_k(x) = \sum\limits_{n=1}^k u_n(x)$. Функция $S(x) = \lim\limits_{k \to \infty} S_k(x)$ называется суммой функционального ряда. То есть ряд сходится равномерно, если

$$\forall \varepsilon > 0 \;\; \exists \, N : \forall \, k > N \;\; \forall \, x \in X \;$$
выполнено $|S(x) - S_k(x)| < \varepsilon$

 $R_n(x) = S(x) - S_k(x) = \sum_{k=n+1}^{\infty} u_n(x)$ называется остатком функционального ряда.

Замечание 12:

- 1. Ряд равномерно сходится на $E \Leftrightarrow R_n(x) \xrightarrow[n \to \infty]{E} 0$ (следует прямо из определения)
- 2. Если ряд $\sum_{n=1}^{\infty}u_n(x)$ равномерно сходится на E, то $u_n(x) \xrightarrow[n \to \infty]{E} 0$ (т. к. $u_k(x) = R_{k-1}(x) R_k(x)$)

Теорема 14 (признак Вейерштрасса):

Пусть $u_n: X \to \mathbb{R}$ (X — множество), $C_n \in \mathbb{R}: |u_n| \leqslant C_n \ \forall \ n \in \mathbb{N}$ и $\sum_{n=1}^{\infty} C_n$ — сходится. Тогда функциональный ряд $\sum_{n=1}^{\infty} u_n(x)$ — сходится равномерно на X.

Доказательство: Чтобы доказать равномерную сходимость функционального ряда, можно проверить сходится ли равномерно остататок ряда к нулю (зам. 12.1)

$$\sup_{x \in X} \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \leqslant \sup_{x \in X} \sum_{k=n+1}^{\infty} |u_k(x)| \leqslant \sum_{k=n+1}^{\infty} C_n \xrightarrow[k \to \infty]{} 0$$

Замечание 13: Критерий Больцано-Коши: ряд $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится \Leftrightarrow

 $\forall \, \varepsilon > 0 \;\; \exists \, N : \forall \, n > N, \; \forall \, k \in \mathbb{N}$ выполнено $|u_{n+1}(x) + u_{n+2}(x) + \ldots + u_{n+k}(x)| < \varepsilon$ Тогда ряд не сходится равномерно \Leftrightarrow

$$\exists \varepsilon > 0 : \forall N \ \exists n > N, k \in \mathbb{N} :$$
 выполнено $|u_{n+1}(x) + u_{n+2}(x) + \ldots + u_{n+k}(x)| > \varepsilon$

Теорема 15 (Стокса-Зайдля для рядов):

Пусть $u_n: X \to \mathbb{R}$ — непрерывны в точке $x_0 \in X$ (X — метрическое пространство) и $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно к функции S(x). Тогда S(x) — непрерывна в точке x_0

Доказательство: Частичная сумма $S_k(x) = \sum_{n=1}^k u_n(x)$ — непрерывна в точке x_0 и $S_k(x) \xrightarrow[k \to \infty]{X} S(x)$ по определению равномерной сходимости ряда (опр. 35). Тогда по теореме Стокса-Зайдля для последовательностей (т. 9) S(x) непрерывна в точке x_0 .

Теорема 16 (об интегрировании функционального ряда):

Пусть $u_n \in C[a,b]$ $(u_n \colon [a,b] \to \mathbb{R})$, ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно к функции S(x), тогда

$$\sum_{n=1}^{\infty} \int_{a}^{b} u_n(x) = \int_{a}^{b} S(x)$$

Доказательство: Частичная сумма $S_k(x) = \sum_{n=1}^k u_n(x) \in C[a,b]$ и $S_k(x) \xrightarrow[k \to \infty]{X} S(x)$ по определению равномерной сходимости ряда (опр. 35). Тогда по теореме 11 $\int_a^b S_k(x) \xrightarrow[k \to \infty]{X} \int_a^b S(x)$. Значит, делая предельный переход при $k \to \infty$ в равенстве $\sum_{n=1}^k \int_a^b u_n(x) = \int_a^b S_k(x)$, получаем доказываемую формулу. По теореме 9 $\int_a^b S(x)$ имеет смысл, т.к. S_K непрерывны и сходятся равномерно к S(x).

Теорема 17 (о дифференцировании ряда по параметру):

Пусть $u_n \in C^1\langle a,b\rangle$, ряд $\sum_{n=1}^\infty u_n(x)$ сходится поточечно к S(x) на $\langle a,b\rangle$, и $\sum_{n=1}^\infty u'_n(x)$ равномерно сходится к $\varphi(x)$ на $\langle a,b\rangle$. Тогда $S(x)\in C^1\langle a,b\rangle$ и $S'(x)=\varphi$.

Доказательство: Частичная сумма $S(x) = \sum_{n=1}^k u_n(x) \in C^1 \langle a,b \rangle$ и сходится поточечно к S(x), а функция $\sum_{n=1}^k u'_n(x)$ сходится равномерно к $\varphi(x)$, значит из теоремы 13 получаем $S(x) \in C^1 \langle a,b \rangle$ и $S'(x) = \varphi(x)$.

19 Теорема о пространстве линейных отображений, теорема Лагранжа для отображений

Обозначения:

1. Lin(X,Y) — множество линейных отображений из X в Y. X,Y — линейные пространства над \mathbb{R} . (Lin(X,Y) является линейным пространством над \mathbb{R} с сложением: (A+B)(x)=A(x)+B(x), умножение на скаляр: $(\alpha A(x))=\alpha A(x)$)

Отображение $A\colon X\to Y$ называется линейным, если $\forall\,x_1,x_2\in X,\ \forall\,\alpha\in\mathbb{R}$ выполнено $A(\alpha x_1+x_2)=\alpha A(x_1)+A(x_2)$

2. Пусть $A \in Lin(\mathbb{R}^m, \mathbb{R}^n)$, тогда $\|A\| \stackrel{\text{def}}{=} \sup_{\substack{\|x\|=1 \\ x \in \mathbb{R}^m}} \|Ax\|$

Замечание 14:

- $1. \|A\| \in \mathbb{R}$ (конечное), т.к. из леммы $2 \|Ax\| \leqslant C_A \|x\| = C_A$, где $C_A = \sqrt{\sum_{i,j=1}^{n,m} a_{ij}^2}$, a_{ij} элементы матрицы A.
- 2. По теореме Вейерштрасса непрерывная функция на компакте достигает своего максимального значения, и так как линейные отображения непрерывны и множество $\{x \mid x \in \mathbb{R}^m, \|x\| = 1\}$ является компактом, то $\|A\| = \max_{x \in \mathbb{R}^m: \|Ax\|} \|Ax\|$ (в конечномерном случае)
- 3. $\forall x \in \mathbb{R}^m$ выполнено $||Ax|| \leq ||A|| \cdot ||x||$, потому что, если $x \neq 0_{\mathbb{R}^m}$, то возьмём $\bar{x} = x/||x||$, тогда $||A\bar{x}|| \leq ||A||$ и, домножая на ||x||, получаем доказываемое неравенство
- 4. Если $\exists C \in \mathbb{R} : \forall x \in \mathbb{R}^m \ \|Ax\| \leqslant C \cdot \|x\|$, то $\|A\| \leqslant C$, потому что, поделив на $\|x\|$ первое неравенство, и так как отдельное значение \leqslant sup таких значений, получаем второе

Лемма 6 (о норме линейного отображения):

X, Y — линейные пространства, $A \in Lin(X, Y)$, тогда эквивалентно:

- 1. A ограничено (т.е. ||A|| конечна)
- $3.\ A$ непрерывно на X
- 2. A непрерывно в точке 0_X

4. A — равномерно непрерывно на X

Доказательство: $4 \Rightarrow 3 \Rightarrow 2$ — очевидно.

- $2\Rightarrow 1$: Из определения непрерывности в 0_X : возьмём $\varepsilon=1$, тогда $\exists\,\delta>0$: если $\|x\|\leqslant\delta$, то $\|Ax\|<1$, поэтому для $\forall\,x:\|x\|=1$ выполнено $\|Ax\|={}^1/\!{\delta}\cdot\|A(\delta x)\|\leqslant{}^1/\!{\delta},$ значит $\sup\|Ax\|\leqslant{}^1/\!{\delta}$
- $1\Rightarrow 4$: $\forall \varepsilon>0 \;\;\exists \,\delta=\varepsilon/\|A\|: \forall \,x_1,x_2$ если $\|x_2-x_1\|<\delta,\;$ то $\|Ax_2-Ax_1\|\leqslant\varepsilon,\;$ потому что $\|Ax_2-Ax_1\|=\|A(x_2-x_1)\|\leqslant\|A\|\cdot\|x_1-x_2\|$

Теорема 18 (о пространстве линейных отображений):

- 1. $\|\cdot\|$ это норма в Lin(X,Y)
- 2. Если $A \in Lin(\mathbb{R}^m, \mathbb{R}^n), B \in Lin(\mathbb{R}^n, \mathbb{R}^l),$ то $||AB||_{m,l} \leq ||A||_{m,n} \cdot ||B||_{n,l}$

Доказательство:

- 1. Проверка аксиом нормы:
 - а) $\|A\|=\sup_{\substack{x\in\mathbb{R}^m:\\\|x\|=1}}\|Ax\|\geqslant 0$ и $\|A\|=0\Leftrightarrow A=0_{Lin(X,Y)}$
 - b) $\|\alpha A\| = \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} \|\alpha Ax\| = |\alpha| \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\|=1}} \|Ax\| = |\alpha| \cdot \|A\|$
 - c) $||(A+B)x|| = ||Ax+Bx|| \le ||Ax|| + ||Bx|| \le (||A|| + ||B||)||x|| = ||A|| + ||B||$
- 2. $||BAx|| \le ||B|| \cdot ||Ax|| \le ||B|| \cdot ||A||$

Замечание 15: $\|A\| = \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\| = 1}} \|Ax\| = \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\| \leqslant 1}} \|Ax\| = \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\| \leqslant 1}} \|Ax\| = \sup_{\substack{x \in \mathbb{R}^m: \\ \|x\| \leqslant 1}} \frac{\|Ax\|}{\|x\|} = \inf\{C \in \mathbb{R}^m \|Ax\| \leqslant C \cdot \|x\|\}$

Теорема 19 (Лагранжа для отображений):

Пусть отображение $F\colon E\subset\mathbb{R}^m\to\mathbb{R}^n$ дифференцируемо на E (E — открытое), $[a,b]=\{\,x\in\mathbb{R}^m\mid x=a+\theta(b-a),\;\theta\in[0,1]\,\}\subset E$, тогда $\exists\,c\in(a,b)$, т.е. $\exists\,\theta\in(0,1):c=a+\theta(b-a)$ такое что

$$||F(b) - F(a)|| \le ||F'(c)|| \cdot ||b - a||$$

Доказательство: Пусть $f:[0,1] \to \mathbb{R}^m, \ f(t) = F\left(a + t(b-a)\right), \ \text{тогда} \ f - \text{дифференцируема на} \ [0,1]$ и $f'(t) = F'\left(a + t(b-a)\right)(b-a)$. По теореме $4 \ \exists \ \theta \in [0,1]: \|f(1) - f(0)\| \leqslant \|f'(\theta)\| \cdot (1-0), \ \text{то есть}$

$$||F(b) - F(a)|| \le ||F'(a + \theta(b - a)) \cdot (b - a)|| \le ||F'(c)|| \cdot ||b - a||$$

20 Лемма об условиях, эквивалентных непрерывности линейного оператора, теорема об обратимости линейного оператора, близкого к обратимому

Лемма 7 (об условиях, эквивалентных непрерывности линейного оператора):

Пусть $B \in Lin(\mathbb{R}^m, \mathbb{R}^n), \ \exists c > 0 : \forall x \in \mathbb{R}^m \ \|Bx\| \geqslant c\|x\|,$ тогда B — обратим и $\|B^{-1}\| < 1/c$

Доказательство: $Ker B = \{0\}$, значит B — обратим.

Возьём $y \in \mathbb{R}^n : \|y\| = 1$, тогда $\exists x \in \mathbb{R}^m : y = Bx$, тогда $x = B^{-1}y$, и так как $\|Bx\| \geqslant c\|x\|$, то $c\|B^{-1}y\| \leqslant \|BB^{-1}y\| = \|y\|$. Это выполнено $\forall y : \|y\| = 1$, поэтому $\sup_{y \in \mathbb{R}^n : \|B^{-1}y\| \leqslant 1/c}$.

Замечание 16: Если $A \in Lin(\mathbb{R}^m, \mathbb{R}^n)$ — обратим, то $\forall \, x \in \mathbb{R}^m \quad \|x\| = \|A^{-1}Ax\| \leqslant \|A^{-1}\| \cdot \|Ax\|$, значит $\|Ax\| \geqslant \frac{1}{\|A^{-1}\|} \cdot \|x\|$

Обозначение: $\Omega_m = \{ A \in Lin(\mathbb{R}^m, \mathbb{R}^m) \mid A - \text{обратим} \}$

Теорема 20 (об обратимости линейного оператора, близкого к обратимому):

Пусть $L \in \Omega_m$, $M \in Lin(\mathbb{R}^m, \mathbb{R}^m)$ — «близкий к обратимому», то есть $\|M - L\| < \frac{1}{\|L^{-1}\|}$, тогда:

1.
$$M \in \Omega_m$$

2.
$$||M^{-1}|| \le \frac{1}{||L^{-1}||^{-1} - ||M - L||}$$

3.
$$||M^{-1} - L^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} - ||M - L||} ||M - L||$$

Доказательство: Первые два пункта получаются с помощью леммы 7:

$$\begin{split} \|Mx\| &= \|Lx - (L-M)x\| \stackrel{\text{\tiny Hep-Bo}}{\geqslant} \|Lx\| - \|(L-M)x\| \stackrel{\text{\tiny 3am. } 16}{\geqslant} \\ &\geqslant \frac{1}{\|L^{-1}\|} \|x\| - \|L-M\| \cdot \|x\| = \left(\frac{1}{\|L^{-1}\|} - \|L-M\|\right) \cdot \|x\| \end{split}$$

3.
$$||M^{-1} - L^{-1}|| = ||M^{-1}(L - M)L^{-1}|| \le ||M^{-1}|| \cdot ||L - M|| \cdot ||L^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} - ||M - L||} ||M - L||$$

22