FCUP-CC3002-2024/2025-1S)

- 1. **De janelas e perdas:** Considere a descrição macroscópica do funcionamento do TCP Reno na fase de *congestion avoidance*, em que o tamanho da janela em MSSs varia entre *W*/2 e *W*, altura em que a perda de um pacote faz a janela reduzir-se novamente a metade.
 - a. Mostre que, para tamanhos relativamente grandes da janela máxima, W, a taxa de perdas é aproximadamente igual a 8/(3·W²).
 - b. Usando o resultado anterior, mostre que se a taxa de perdas numa conexão TCP for L, o seu débito (em Bytes por segundo) será aproximadamente 1.22·MSS/(RTT·√L).
- Circuitos virtuais vs. datagramas: Considere as arquitecturas de rede baseadas na comutação de circuitos virtuais e de datagramas.
 - a. Indique vantagens e inconvenientes de cada uma delas.
 - b. Qual considera mais adequada para usar numa rede em que as ligações podem falhar com alguma frequência?
 - c. Se projectasse uma rede para o transporte de fluxos multimédia que necessitassem de garantias (débito mínimo, atraso máximo), qual delas usaria?
 - d. Explique para que serve o encaixe de prefixo mais longo (*longest prefix matching*), justificando a sua utilização ou não em cada um destes tipos de arquitectura.
 - e. Numa rede com comutação de circuitos virtuais podem ocorrer perdas, mas não reordenamento de pacotes. Justifique este facto.
- 3. **Quem parte e reparte...** Um datagrama IP com o comprimento total de 1500 bytes chega a um *router* onde a interface para o próximo salto tem uma unidade máxima de transferência (MTU) de 600 bytes.
 - a. Assumindo que o datagrama não tem opções no cabeçalho IP, explique como vai ser feita a fragmentação do datagrama, indicando o conteúdo dos campos relevantes do cabeçalho IP para cada um dos fragmentos.
 - b. Calcule, em *bytes* e em percentagem, o *overhead* dos cabeçalhos IP (assumindo que não são usadas opções) com e sem fragmentação.
 - c. Se a aplicação usar TCP (também sem opções), recalcule os overheads tendo em conta também os cabeçalhos de transporte.
 - d. Em que nó da rede vai ocorrer a remontagem dos fragmentos? Dê duas razões para ser nesse nó.
 - e. Em geral, a fragmentação de pacotes é incompatível com o uso de NAT com tradução de portas. Explique porquê e diga que medidas podem tomar-se para os compatibilizar.
- 4. É por aqui! A tabela de encaminhamento de um router Linux (obtida com o comando netstat -nr) é a seguinte:

				•			
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
192.168.5.20	192.168.10.7	255.255.255.255	UGH	1	0	180	eth1
192.168.1.0	192.168.10.5	255.255.255.128	UG	1	0	243	eth1
192.168.10.0	0.0.0.0	255.255.255.0	U	0	0	63311	eth1
192.168.0.0	192.168.10.7	255.255.254.0	UG	1	0	2132	eth1
192.168.18.0	0.0.0.0	255.255.254.0	U	0	0	753430	eth0
192.168.64.0	192.168.10.5	255.255.192.0	UG	1	0	47543	eth1
10.0.0.0	0.0.0.0	255.0.0.0	U	0	0	3123	ppp0
127.0.0.0	0.0.0.0	255.0.0.0	U	0	0	564	lo
0.0.0.0	192.168.10.20	0.0.0.0	UG	1	0	183436	eth1

- a. Porque razão a máscara de rede tem esta designação? Para que serve ela e como se usa?
- b. Indique em notação CIDR (a.b.c.d/n) as redes às quais o router está directamente ligado.
- c. Qual é o próximo salto para os pacotes com cada um dos seguintes endereços de destino: 194.117.24.32, 10.0.3.5, 192.168.72.4 e 192.168.1.214 ?
- d. Como se designa a última entrada nesta tabela de encaminhamento (0.0.0.0 com máscara 0.0.0.0)? Para que serve esta entrada?
- e. Como se designa e para que serve a rede 127.0.0.0/8?
- 5. Modelos de serviço e QoS: O modelo de serviço utilizado na Internet é o de melhor esforço (best effort).
 - a. Caracterize este modelo de serviço.
 - b. Considere as diversas componentes do atraso de um pacote. Quais delas podem ser controladas (sem alterar o hardware)?
 - c. Indique quais seriam as vantagens e inconvenientes de efectuar reserva de recursos para cada fluxo na rede.

Última alteração: quarta-feira, 25 de setembro de 2024 às 16:16

◀ Soluções da Ficha de Exercícios nº 7

Soluções da Ficha de Exercícios nº 8 ▶

Portais U.Porto

Portal Inovação Educativa AcademiaUP

Ferramentas integradas

Colibri

Panopto

Turnitin

Wooclap

□ Contactar suporte do site
□

Creative Commons Requisitos mínimos de utilização