

Un framework unificato per il monitoraggio di risorse e la migrazione di macchine virtuali in OpenStack

RelatoreProf.ssa Valeria Cardellini

CandidatoClaudio Pupparo

Cloud Computing

- Abbattimento dei costi
- Potenza virtualmente infinita

Cloud Computing

- Abbattimento dei costi
- Potenza virtualmente infinita
- Nuove sfide per i fornitori di servizi
- Necessità di nuove tecniche di gestione infrastruttura

Cloud Computing

- Abbattimento dei costi
- Potenza virtualmente infinita
- Nuove sfide per i fornitori di servizi
- Necessità di nuove l' tecniche di gestione l'infrastruttura

Migrazione di macchine virtuali

Macchina Virtuale (VM)

Una macchina eseguita in un ambiente virtuale all'interno di una macchina fisica

- Alla base del Cloud Computing
- Molteplici VM su una singola macchina fisica
- Aumenta utilizzazione risorse fisiche

Trasferimento di una VM da una macchina fisica (host) ad un'altra [1]

Trasferimento di una VM da una macchina fisica (host) ad un'altra [1]

Trasferimento di una VM da una macchina fisica (host) ad un'altra [1]

- Trasparente al sistema operativo sulla VM
- Può essere reso trasparente anche agli utenti delle applicazioni in esecuzione sulla VM (**Live Migration**)

Trasferimento di una VM da una macchina fisica (host) ad un'altra

Casi d'uso:

- Bilanciamento del carico
- Risposta ad eventi di failure
- Manutenzione
- Consolidamento di macchine virtuali

- Risolve il problema del "Server Sprawl"
- Migliora l'utilizzazione delle risorse fisiche
- Riduce il consumo energetico

La gestione di questi casi d'uso può essere migliorata tramite l'utilizzo di **politiche** di migrazione di VM, eliminando la necessità di un intervento manuale

La gestione di questi casi d'uso può essere migliorata tramite l'utilizzo di **politiche** di migrazione di VM, eliminando la necessità di un intervento manuale

Realizzazione di un framework per il monitoraggio di risorse e la gestione di politiche di migrazione di VM, con particolare focus sul consolidamento

La gestione di questi casi d'uso può essere migliorata tramite l'utilizzo di **politiche** di migrazione di VM, eliminando la necessità di un intervento manuale

Realizzazione di un framework per il monitoraggio di risorse e la gestione di politiche di migrazione di VM, con particolare focus sul consolidamento

Quale piattaforma di Cloud Computing utilizzare?

La gestione di questi casi d'uso può essere migliorata tramite l'utilizzo di **politiche** di migrazione di VM, eliminando la necessità di un intervento manuale

Realizzazione di un framework per il monitoraggio di risorse e la gestione di politiche di migrazione di VM, con particolare focus sul consolidamento

Quale piattaforma di Cloud Computing utilizzare?

Un insieme di progetti (open source) per la creazione e mantenimento di una infrastruttura cloud

Nova: Compute

Swift: Storage

• **Neutron**: Networking

Horizon: Dashboard

Un insieme di progetti (open source) per la creazione e mantenimento di una infrastruttura cloud

Nova: Compute

Swift: Storage

Neutron: Networking

Open Source == No Vendor Lock-In

Obiettivo:

Realizzazione di un framework per il monitoraggio di risorse e la gestione di politiche di migrazione di VM, con particolare focus sul consolidamento

Obiettivo:

Realizzazione di un framework per il **monitoraggio** di risorse e la gestione di politiche di migrazione di VM, con particolare focus sul consolidamento

Quale progetto per il monitoraggio di risorse?

Ceilometer

Obiettivo:

Realizzazione di un framework per il monitoraggio di risorse e la gestione di **politiche di migrazione** di VM, con particolare focus sul consolidamento

Quale progetto per il monitoraggio di risorse?

Ceilometer

Quale progetto per la gestione di politiche di migrazione?

Non esistono progetti (ufficiali)

Un framework (non ufficiale) per il consolidamento di VM in OpenStack [3]

Il problema del consolidamento di VM viene diviso in quattro sottoproblemi:

- Rilevamento dello stato di Overload di un host
- Rilevamento dello stato di Underload di un host
- Selezione delle VM da migrare da un host in overload/underload
- Posizionamento delle VM selezionate sugli altri host

Risultati:

• Riduzione del 25%-33% del consumo energetico dei nodi di computazione

Risultati:

• Riduzione del 25%-33% del consumo energetico dei nodi di computazione

Problemi:

- Per la rilevazione dello stato degli host utilizza unicamente una metrica: Utilizzo CPU
- Integrazione con OpenStack migliorabile. Non utilizza Ceilometer per la raccolta dei dati, ma una soluzione ad hoc

Risultati:

• Riduzione del 25%-33% del consumo energetico dei nodi di computazione

Problemi:

- Per la rilevazione dello stato degli host utilizza unicamente una metrica: Utilizzo CPU
- Integrazione con OpenStack migliorabile. Non utilizza Ceilometer per la raccolta dei dati, ma una soluzione ad hoc

Obiettivi:

- **Estendere Neat** per la realizzazione di politiche di migrazione che tengano conto di molteplici metriche
- Estendere Ceilometer per realizzare combinazioni lineari di metriche
- Integrare Ceilometer in Neat.

- Meccanismo di collezione, trasformazione e pubblicazione campioni di metriche: pipeline
- Una pipeline è una associazione fra una sorgente e un sink (insieme di transformer e publisher)

Quale transformer per effettuare combinazioni di metriche?
 Multi Meter Arithmetic Transformer

L'arithmetic transformer non era sufficiente per i nostri scopi

L'arithmetic transformer non era sufficiente per i nostri scopi

• Bug nella combinazione di campioni di metriche diverse, ma **stessa** sorgente.

L'arithmetic transformer non era sufficiente per i nostri scopi

Bug nella combinazione di campioni di metriche diverse, ma stessa sorgente.
 Segnalato alla community e corretto.

L'arithmetic transformer non era sufficiente per i nostri scopi

- Bug nella combinazione di campioni di metriche diverse, ma stessa sorgente.
 Segnalato alla community e corretto.
- Impossibilità di combinare campioni di metriche prodotte da sorgenti differenti.

L'arithmetic transformer non era sufficiente per i nostri scopi

Bug nella combinazione di campioni di metriche diverse, ma stessa sorgente.
 Segnalato alla community e corretto.

 Impossibilità di combinare campioni di metriche prodotte da sorgenti differenti.

Ridefinizione del concetto di pipeline.

 Precedente definizione:
 Una pipeline è una associazione fra una sorgente e un sink (insieme di transformer e publisher)

- Precedente definizione:
 Una pipeline è una associazione fra una sorgente e un sink (insieme di transformer e publisher)
- Nuova definizione:
 Una pipeline è una associazione fra una o più sorgenti e un sink

Ridefinire la pipeline non era ancora sufficiente

- Ridefinire la pipeline non era ancora sufficiente
- Introduzione del **Selective Transformer**: tipologia di trasformatore che **non** applica le trasformazioni su tutti i campioni in una pipeline

Estensione di Ceilometer

- Ridefinire la pipeline **non era ancora sufficiente**
- Introduzione del Selective Transformer: tipologia di trasformatore che non applica le trasformazioni su tutti i campioni in una pipeline

Estensione di Ceilometer

- Ridefinire la pipeline non era ancora sufficiente
- Introduzione del **Selective Transformer**: tipologia di trasformatore che **non** applica le trasformazioni su tutti i campioni in una pipeline

• Sulla metrica combinata sono stati definiti allarmi di overload e underload

Estensione di Neat

Architettura a **due** componenti:

- Alarm Manager
 - Decisioni locali
- Global Manager
 - Decisioni globali

Estensione di Neat

Architettura a **due** componenti:

- Alarm Manager
 - Decisioni locali
- Global Manager
 - Decisioni globali

Posizionamento VM

Bin Packing

Best Fit Decreasing

Compute Ceilometer Polling campioni Agent **Notification Bus** Memorizzazione Collector Collezione campioni Database Campioni Alarm Alarm **API Evaluator** Notifier Alarm Global Manager Manager OpenStack Neat

A.A. 2013/2014

Claudio Pupparo

- Piattaforma di benchmark:
 - Realizzato un Cloud interamente virtuale basato su Amazon Web Services e Digital Ocean

- Piattaforma di benchmark:
 - Realizzato un Cloud interamente virtuale basato su Amazon Web Services e Digital Ocean
 - Utilizzato un Cluster all'università di Tor Vergata [4]

- Piattaforma di benchmark:
 - Realizzato un Cloud interamente virtuale basato su Amazon Web Services e Digital Ocean
 - O Utilizzato un **Cluster** all'università di Tor Vergata [4]

- Eseguite diverse tipologie di test per trovare parametri ottimali e mostrare validità del framework
 - Test basati su tracce di carico reale di VM di PlanetLab

Framework disattivato

- Numero di VM: 20
- Distribuzione iniziale VM: 3 nodi
- VM per host: 8, 6, 6 (statico, deciso da scheduler Nova)

- compute0289% overload
- compute03 0% overload
- compute04 0% overload

Time

Framework attivato

Numero di VM: 20

• Distribuzione iniziale VM: 3 nodi

VM per host: dinamico per via delle migrazioni

Framework attivato

Numero di VM: 20

Distribuzione iniziale VM: 3 nodi

VM per host: dinamico per via delle migrazioni

- compute0212% overload
- compute0314% overload
- compute047% overload

Time

Framework attivato

Numero di VM: 17

• Distribuzione iniziale VM: 1 nodo

VM per host: dinamico per via delle migrazioni

- compute0210% overload
- compute038% overload8% underload
- compute04100% underload

 Realizzazione di un framework per il monitoraggio di risorse e il consolidamento di macchine virtuali

- Realizzazione di un framework per il monitoraggio di risorse e il consolidamento di macchine virtuali
- Estensione di Ceilometer
 - Ridefinito pipeline
 - Introduzione del selective transformer

- Realizzazione di un framework per il monitoraggio di risorse e il consolidamento di macchine virtuali
- Estensione di Ceilometer
 - Ridefinito pipeline
 - Introduzione del selective transformer
- Estensione di Neat
 - Architettura a due componenti
 - Nuovi algoritmi

- Realizzazione di un framework per il monitoraggio di risorse e il consolidamento di macchine virtuali
- Estensione di Ceilometer
 - Ridefinito pipeline
 - Introduzione del selective transformer
- Estensione di Neat
 - Architettura a due componenti
 - Nuovi algoritmi
- Integrazione di Ceilometer in Neat

- Realizzazione di un framework per il monitoraggio di risorse e il consolidamento di macchine virtuali
- Estensione di Ceilometer
 - Ridefinito pipeline
 - Introduzione del selective transformer
- Estensione di Neat
 - Architettura a due componenti
 - Nuovi algoritmi
- Integrazione di Ceilometer in Neat
- Test del framework con carico reale
 - Cloud virtuale
 - Cluster

- Realizzazione di un framework per il monitoraggio di risorse e il consolidamento di macchine virtuali
- Estensione di Ceilometer
 - Ridefinito pipeline
 - Introduzione del selective transformer
- Estensione di Neat
 - Architettura a due componenti
 - Nuovi algoritmi
- Integrazione di Ceilometer in Neat
- Test del framework con carico reale
 - Cloud virtuale
 - Cluster
- I risultati dimostrano la validità del framework realizzato

Sviluppi Futuri

- Overcommit delle risorse
- **Machine Learning** per previsioni comportamento VM
- Posizionamento delle VM resource-utilization aware
- Collaborazione fra Nova e il framework. Nuovo scheduler VM

Bibliografia

- [1] M. Mishra, A. Das, P. Kulkarni, A. Sahoo "Dynamic Resource Management Using Virtual Machine Migrations"
- [2] A. Corradi, M. Fanelli, L. Foschini "VM consolidation: A real case based on OpenStack Cloud"
- [3] A. Beloglazov, R. Buyya "OpenStack Neat: A Framework for Dynamic and Energy-Efficient Consolidation of Virtual Machines in OpenStack Clouds"
- [4] A. Mercanti
 "Analisi delle prestazioni della piattaforma OpenStack"

Grazie per l'attenzione

A.A. 2013/2014 Claudio Pupparo