SUMMER 2025 READING GROUP ON ERGODIC THEORY

EXERCISE SHEET 5 (ZHAOSHEN ZHAI): APPLICATIONS AND GENERALIZATIONS OF BIRKHOFF'S POINTWISE ERGODIC THEOREM

Throughout, let (X, μ, T) be a measure-preserving dynamical system. The purpose of this exercise sheet is to give some applications and generalizations of the Pointwise Ergodic Theorem, which for convenience, we provide a sketch here. For $f \in L^1(X, \mu)$ and $n \in \mathbb{N}$, let $A_n^T f := \frac{1}{n} \sum_{i < n} f \circ T^i$.

Theorem. If T is ergodic, then for any $f \in L^1(X, \mu)$, we have $\lim_n A_n^T f =_{\mu} \int f d\mu$.

Proof sketch. Assume $\int f d\mu = 0$ and recall that $l := \limsup_n A_n^T f : X \to \mathbb{R}$ is T-invariant, so l is constant μ -a.e. by ergodicity, say at $l_0 \in \mathbb{R}$. Suppose that $f^* := l_0/2 > 0$, so for each $x \in X$, there is a minimal $\eta(x) \in \mathbb{N}$ such that $A_{\eta(x)}^T f(x) \ge f^*$. We are done if there is a uniform $n \in \mathbb{N}$ such that $A_n^T f \ge f^*/2$. This is not true in general, but after trimming measure- ε parts of X, something like this can be done using:

Lemma (Tiling Lemma). Let $\eta: X \to \mathbb{N}$ be an arbitrary measurable function. For any $\varepsilon > 0$, there exists $n \gg 0$ such that for each $x \in X$ except on a measure- ε set, the interval $I_n^T(x)$ can be tiled, up to an ε -fraction, by intervals of the form $I_y := I_{\eta(y)}^T(y)$ for $y \in X$.

Exercise 1. In the above context, prove that if both f and η are bounded, then $A_n^T f \ge f^*/2$. HINT: Prove a stronger Tiling Lemma in this case.

Exercise 2. What is the average value of a given digit $0 \le m \le 9$, say m := 7, to occur in the decimal expansion $0.x_1x_2...$ of λ -a.e. $x \in [0,1]$? That is, does $\lim_{n \to 1} \frac{1}{n} |\{i < n : x_i = m\}|$ exist, and what is it?

HINT: Consider the 10-ary Baker's map $b_{10}:[0,1)\to[0,1)$ sending $x\mapsto 10x\ (\text{mod }1)$, which is isomorphic to the shift map on $10^{\mathbb{N}}$.

Exercise 3 (Equidistribution Theorem). A sequence $(x_n)_n$ in S^1 is said to be *equidistributed* if for every interval $I \subseteq S^1$, we have $\lim_n \frac{1}{n} |\{x_i\}_{i < n} \cap I| = \lambda(I)$. Prove that if $x_n = n\alpha$ for some irrational $\alpha \in S^1$, then $(x_n)_n$ is equidistributed. Hint: Don't overthink it.

Exercise 4 (Law of Large Numbers). If you know statistics, prove it! If not, skip it.

Exercise 5 (An ergodic theorem for non-ergodic actions). Intuitively, Birkhoff's Pointwise Ergodic Theorem states that ergodic transformations $T: X \to X$ stir up X so well that they spread any $f \in L^1(X, \mu)$ evenly on X, making it constant at $\int f \, d\mu$; indeed, ' $f \circ T^{\infty} = \int f \, d\mu$ '.

If T is not ergodic, then there is a non-trivial partition $X = X_1 \sqcup X_2$ into T-invariant pieces. The best that one can hope is at after 'enough' partitions $X = \bigsqcup_i X_i$, T still spreads each $f_i := f\chi_{X_i}$ evenly on X_i . Viewing f from the lens of these T-invariant pieces leads to the *conditional expectation* of f:

Definition. Let $\mathcal{A} \subseteq \mathcal{B}(X)$ be a sub- σ -algebra of $\mathcal{B}(X)$. For each $f \in L^1(X,\mu)$, there is a unique (up to a μ -null set) \mathcal{A} -measurable function $f_{\mathcal{A}}$ such that $\int_A f d\mu = \int_A f_{\mathcal{A}} d\mu$ for each $A \in \mathcal{A}$, called the conditional expectation of f w.r.t. \mathcal{A} . We write $\mathbb{E}(f|\mathcal{A})$ for $f_{\mathcal{A}}$.

Remark. If $\mathcal{P} \subseteq \mathcal{B}(X)$ is a countable partition of X, then $\mathbb{E}(f|\langle \mathcal{P} \rangle_{\sigma}) = \sum_{P \in \mathcal{P}} \left(\frac{1}{\mu(P)} \int_{P} f \, \mathrm{d}\mu\right) \chi_{P}$. Prove that for any (not necessarily ergodic) pmp transformation $T: X \to X$ and any $f \in L^{1}(X, \mu)$, we have $\lim_{n} A_{n}^{T} f =_{\mu} \mathbb{E}(f|\mathcal{B}_{T})$, where $\mathcal{B}_{T} \subseteq \mathcal{B}(X)$ is the σ -algebra generated by all T-invariant Borel sets of X.

HINT: Same as the regular proof, only that $f^*: X \to \mathbb{R}$ is not necessarily constant, but just T-invariant.

Exercise 6 (L^p -ergodic theorem). Prove that for any $p \ge 1$, we have $A_n^T f \to_{L^p} \mathbb{E}(f|\mathcal{B}_T)$ for all $f \in L^p(X,\mu)$. Hint: If f is bounded, then we are done by the DCT. Otherwise, let $f_k \to_{L^p} f$ where each f_k is bounded and triangle-inequality your way through, using that $||A_n^T f||_{L^p} \le ||f||_{L^p}$ (prove this too).

 $\textit{Date} \colon \, \text{May 28, 2025}.$