UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA

GEOMETRIA RIEMANNIANA DEI DOMINI DI HARTOGS

Relatore Prof. Andrea Loi Tesi di Laurea di Roberto Mossa

Anno Accademico 2006/2007

Introduzione

Sia $b \in R^+ \cup \{+\infty\}$ e $F : [0,b) \to (0,+\infty)$ una funzione liscia strettamente decrescente. Il dominio di Hartogs $D_F \subset \mathbb{C}^n$ associato alla funzione F è così definito:

$$D_F = \{(z_0, z) \in \mathbb{C}^n \mid |z_0|^2 < b, ||z||^2 < F(|z_0|^2)\},\$$

dove
$$z = (z_1, \dots, z_{n-1})$$
 e $||z||^2 = |z_1|^2 + \dots + |z_{n-1}|^2$.

Al dominio D_F è naturalmente associata una forma di tipo (1,1) data da

$$\omega_F = \frac{i}{2} \partial \overline{\partial} \log \frac{1}{F(|z_0|^2) - ||z||^2}.$$

Se la funzione $\frac{xF'}{F}$ è strettamente decrescente per ogni $x \in [0,b)$ allora ω_F è una forma di Kähler (vedi Proposizione 2.1.2). Conseguentemente la forma bilineare e simmetrica g_F definita da

$$\omega_F(X,Y) = g_F(JX,Y),$$

dove X e Y sono campi di vettori in D_F e J è la struttura complessa di \mathbb{C}^n , è una metrica riemanniana su D_F . Osserviamo che quando F(x) = 1 - x, b = 1 allora (D_F, g_F) è lo spazio iperbolico complesso $\mathbb{C}H^n$, cioè la bolla unitaria in \mathbb{C}^n dotata della metrica iperbolica. I domini di Hartogs sono interessanti sia dal punto di vista matematico che fisico (si veda ad esempio [6], [9], [14], [15], [16], [17]).

In questa tesi viene studiata la geometria riemanniana dei domini di Hartogs D_F dotati della metrica g_F . In particolare vengono studiate le geodetiche e la completezza di tali domini seguendo le idee sviluppate in [5]. La prima osservazione sulle geodetiche di un dominio di Hartogs D_F è che quelle passanti per l'origine e contenute nell'intersezione di D_F con il piano $z_0 = 0$ oppure con la retta complessa z = 0 hanno il supporto contenuto in una retta. L'insieme di tali geodetiche è

stato denotato in questa tesi con S e una geodetica appartenente ad S è detta speciale. Nel primo risultato sui domini di Hartogs di questa tesi (cfr. Teorema 2.2.1) viene fornita una caratterizzazione dello spazio iperbolico complesso tra i domini di Hartogs in termini di geodetiche speciali. Più precisamente si dimostra che in un dominio di Hartogs D_F può esistere una geodetica non speciale (passante per l'origine) avente come supporto una retta solo se F = 1-x, o equivalentemente solo se D_F è un aperto di $\mathbb{C}H^n$ e g_F è indotta dalla metrica iperbolica. Il secondo risultato sui domini di Hartogs è il Teorema 2.2.5 dove si dimostra (a) che le geodetiche per l'origine di un dominio di Hartogs non si autointersecano e (b) che la metrica g_F è geodeticamente completa se e solo se

$$\int_0^{\sqrt{b}} \sqrt{-\left(\frac{xF'}{F}\right)'}|_{x=u^2} \ du = +\infty.$$

La prima parte del teorema precedente andrebbe confrontata con il risultato principale di D'Atri e Zhao [7] che asserisce che le geodetiche di un dominio omogeneo limitato dotato della metrica di Bergman non si autointersecano. Vale anche la pena sottolineare che se un dominio di Hartogs D_F è omogeneo (cioè il gruppo dei biolomorfismi di D_F agisce transitivamente su D_F) allora è olomorficamente equivalente a B^n , la palla unitaria in C^n (riferiamo il lettore al Teorema 6.11 in [12]). I Teoremi 2.2.1 e 2.2.5 si basano sul Lemma 2.2.2 a pag.27 che permette di ricondurre lo studio delle geodetiche di D_F a quelle della superficie totalmente geodetica

$$M = D_F \cap \{ \operatorname{Im}(z_0) = \operatorname{Im}(z_1) = z_j = 0, \quad j = 2, \dots, n - 1 \},$$

di curvatura costante negativa.

La tesi è suddivisa in due capitoli. Nel primo vengono richiamati i concetti di base delle varietà quasi complesse e complesse. Vengono inoltre definite le metriche hermitiane e di Kähler. Il secondo capitolo è dedicato alla dimostrazione dei risultati sopra menzionati riguardanti i domini di Hartogs.

Indice

In	Introduzione			
1	Varieta complesse e di Kähler			5
	1.1	Strutture complesse e mappe olomorfe		
		1.1.1	Funzioni olomorfe	5
		1.1.2	Varietà complesse	6
		1.1.3	Il fibrato tangente complessificato	7
	1.2	Forme	olomorfe e campi di vettori	9
		1.2.1	Fibrato esterno complessificato	9
		1.2.2	Oggetti olomorfi su varietà complesse	12
	1.3 Metriche hermitiane e kähleriane		che hermitiane e kähleriane	14
		1.3.1	Metriche hermitiane	14
		1.3.2	Metriche di Kähler	15
2	Domini di Hartogs			20
	2.1	Forme	di Kähler su domini di Hartogs	20
	2.2	Geodetiche dei domini di Hartogs		24
B	Ribliografia			

Capitolo 1

Varietà complesse e di Kähler

1.1 Strutture complesse e mappe olomorfe

1.1.1 Funzioni olomorfe

Una funzione $F:U\subseteq\mathbb{C}\to\mathbb{C}$ definita da $z=x+iy\mapsto f(x,y)+ig(x,y)$ è detta olomorfa se soddisfa le equazioni di Cauchy-Riemann

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$$
 e $\frac{\partial f}{\partial y} + \frac{\partial g}{\partial x} = 0.$ (1.1)

Identifichiamo \mathbb{C} con \mathbb{R}^2 associando al numero complesso x+iy la coppia ordinata (x,y). Sia j l'endomorfismo di \mathbb{R}^2 indotto dalla moltiplicazione per i in \mathbb{C} . Rispetto alla base canonica j è espresso da

$$j = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

Il differenziale di ${\cal F}$ visto come una mappa reale è dato da

$$F_* = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix}$$

Teorema 1.1.1. La funzione $F: \mathbb{C} \to \mathbb{C}$ è olomorfa se e solo se $jF_* = F_*j$.

Dimostrazione. Si ha

$$F_* = \begin{pmatrix} -\frac{\partial g}{\partial x} & -\frac{\partial g}{\partial y} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} \qquad e \qquad F_* = \begin{pmatrix} \frac{\partial f}{\partial y} & -\frac{\partial f}{\partial x} \\ \frac{\partial g}{\partial y} & -\frac{\partial g}{\partial x} \end{pmatrix}$$

confrontando tra loro le due uguaglianze e tenendo conto delle (1.1) segue immediatamente la tesi.

Analogamente al caso unidimensionale, identifichiamo \mathbb{C}^m con \mathbb{R}^{2m} tramite

$$(z_1,\ldots,z_m)=(x_1+iy_1,\ldots,x_m+iy_m)\mapsto (x_1,\ldots,x_m,y_1,\ldots,y_m),$$

Indichiamo con j_m l'endomorfismo corrispondente alla moltiplicazione per i su \mathbb{C}^m :

$$j_m = \left(\begin{array}{cc} 0 & -I_m \\ I_m & 0 \end{array}\right)$$

Una funzione $F: U \subset \mathbb{C}^n \to \mathbb{C}^m$ è olomorfa se e solo se il differenziale F_* di F visto come una mappa reale $F: \mathbb{R}^{2n} \to \mathbb{R}^{2m}$ soddisfa $j_m F_* = F_* j_n$.

1.1.2 Varietà complesse

Una varietà complessa di dimensione m è uno spazio topologico M con un ricoprimento aperto \mathcal{U} tale che per ogni punto $x \in M$ esiste un aperto $U \subset \mathcal{U}$ che lo contiene e un omeomorfismo $\phi_U : U \to \widetilde{U} \subset \mathbb{C}^m$, che per ogni $U, V \in \widetilde{U}$ con intersezione diversa dall'insieme vuoto, la mappa definita tra aperti di \mathbb{C}^m

$$\phi_{UV} := \phi_U \circ \phi_V^{-1}$$

è olomorfa. Una coppia (U, ϕ_U) è detta carta e la famiglia di tutte le carte è detta struttura olomorfa.

Esempio 1.1.2 (Lo spazio proiettivo complesso $\mathbb{C}P^m$). Sia \sim la relazione di equivalenza su $\mathbb{C}^{m+1} - \{0\}$ definita da

$$(z_0, \ldots, z_m) \sim (\alpha z_0, \ldots, \alpha z_m) \quad \forall \alpha \in \mathbb{C}^*$$

Allora $\mathbb{C}P^m = \frac{\mathbb{C}^{m+1}-\{0\}}{\sim}$. Denotiamo la classe di equivalenza di (z_0,\ldots,z_m) con $[z_0:\cdots:z_m]$. Consideriamo il ricoprimento aperto $\{U_i\}_{i\in\{0,\ldots,m\}}$ di $\mathbb{C}P^m$ definito da

$$U_i = \{ [z_0 : \cdots : z_m] \mid z_i \neq 0 \}$$

 $e \ la \ mappa \ \phi_i : U_i \to \mathbb{C}^m$

$$\phi_i([z_0:\dots:z_m]) = \left(\frac{z_0}{z_i},\dots,\frac{z_{i-1}}{z_i},\frac{z_{i+1}}{z_i},\dots,\frac{z_m}{z_i}\right).$$

Sia $U_i \cap U_i \neq \emptyset$ e supponendo che j > i si ha

$$\phi_i \circ \phi_j^{-1}(w_1, \dots, w_m) = \left(\frac{w_1}{w_i}, \dots, \frac{w_{i-1}}{w_i}, \frac{w_{i+1}}{w_i}, \dots, \frac{w_j}{w_i}, \frac{1}{w_i}, \frac{w_{j+1}}{w_i}, \dots, \frac{w_m}{w_i}\right)$$

che è chiaramente olomorfa. Il caso j < i è del tutto analogo.

Una funzione $F: M \to \mathbb{C}$ è olomorfa se $F \circ \phi_U^{-1}$ è olomorfa per ogni $U \in \mathcal{U}$. Poichè le mappe di transizione sono olomorfe è sufficiente verificare che per ogni $x \in M$ esiste una carta ϕ_U , con $x \in U$, tale che $F \circ \phi_U$ è olomorfa.

Introduciamo ora la struttura quasi complessa J, che almeno dal punto di vista della geometria differenziale è la caratteristica più importante delle varietà complesse. J è un campo di endomorfismi del fibrato tangente definito come segue: sia $X \in T_x M$ e $U \in \mathcal{U}$ contenente x allora

$$J_U(X) = (\phi_U)_*^{-1} \circ j_n \circ (\phi_U)_*(X).$$

Se x è contenuto in qualche altro $V \in \mathcal{U}$ allora $\phi_{VU} = \phi_V \circ \phi_U^{-1}$ è olomorfa, e $\phi_V = \phi_{VU} \circ \phi_U$, dunque

$$J_V(X) = (\phi_V)_*^{-1} \circ j_n \circ (\phi_V)_*(X) = (\phi_V)_*(X) = (\phi_V)_*^{-1} \circ j_n \circ (\phi_{VU})_* \circ (\phi_U)_*(X)$$
$$= (\phi_V)_*^{-1} \circ (\phi_{VU})_* \circ j_n \circ (\phi_U)_*(X) = (\phi_U)_*^{-1} \circ j_n \circ (\phi_U)_*(X) = J_U(X)$$

Pertanto la definizione di J_U non dipende da U e la loro famiglia è un tensore J ben definito su M, con la proprietà che $J^2 = -Id$.

Definizione 1.1.3. Un tensore J di tipo (1,1) che soddisfa $J^2 = -Id$ prende il nome di struttura quasi complessa. La coppia (M,J) è detta varietà quasi complessa

In una varietà M la struttura complessa induce in modo naturale una struttura quasi complessa J, sotto opportune ipotesi di integrabilità vale anche l'inverso (cfr. Lemma 1.1.4).

1.1.3 Il fibrato tangente complessificato

Sia (M,J) una varietà quasi complessa. Al fine di diagonalizzare l'endomorfismo J definiamo il fibrato tangente complessificato

$$TM^{\mathbb{C}} := TM \otimes_{\mathbb{R}} \mathbb{C} = \{X + iY | X, Y \in TM\}.$$

Estendiamo tutti gli endomorfismi reali e gli operatori differenziali da TM a $TM^{\mathbb{C}}$ per \mathbb{C} -linearità. Sia $T^{1,0}M$ (rispettivamente $T^{0,1}M$) l'autofibrato di $TM^{\mathbb{C}}$ relativo all'auto valore i (rispettivamente -i).

Lemma 1.1.4. Valgono le sequenti uquaglianze:

1.
$$T^{1,0}M = \{X - iJX \mid X \in TM\}$$

2.
$$T^{0,1}M = \{X + iJX \mid X \in TM\}$$

3.
$$TM^{\mathbb{C}} = T^{1,0} \oplus T^{0,1}M$$

Dimostrazione. É immediato verificare che $T^{1,0}M\supset\{X-iJX|X\in TM\}$ e $T^{0,1}M\supset\{X+iJX|X\in TM\}$ dunque per dimostrare l'inclusione inversa è sufficience verificare che $TM^{\mathbb{C}}=\{X-iJX\,|\,X\in TM\}+\{X+iJX\,|\,X\in TM\}.$ Sia Z=V+iW e $W=J\widetilde{W}$ allora

$$=\frac{1}{2}[(V-\widetilde{W})-iJ(V-\widetilde{W})]+\frac{1}{2}[(V+\widetilde{W})+iJ(V+\widetilde{W})].$$

Infine il fatto che $T^{1,0}$ e $T^{1,0}$ siano autofibrati relativi ad autovalori diversi ci garantisce che la loro intersezione è costituita solo dalla sezione banale dunque $TM^{\mathbb{C}}$ è somma diretta di $T^{1,0}$ e $T^{0,1}M$.

Una distribuzione Λ è detta integrabile se $X,Y\in\Lambda\Rightarrow[X,Y]\in\Lambda$. Enunciamo il famoso teorema di Newlander-Niremberg

Teorema 1.1.5. Sia (M, J) una varietà quasi complessa. La struttura quasi complessa J è indotta da una struttura olomorfa se e solo se la distribuzione $T^{1,0}M$ è integrabile

Dimostrazione. Dimostriamo solo che la condizione è necessaria, il lettore interessato può trovare in [2] una dimostrazione completa (alquanto complicata). Supponiamo che J derivi da una struttura olomorfa su M. Sia (U, ϕ_U) una carta e $z_{\alpha} = x_{\alpha} + iy_{\alpha}$ la α -esima componente di ϕ_U . Se $\{e_1, \ldots, e_{2m}\}$ denota la base standard di \mathbb{R}^{2m} , allora per definizione

$$\frac{\partial}{\partial x_{\alpha}} = (\phi_U)_*^{-1}(e_{\alpha})$$
 e $\frac{\partial}{\partial y_{\alpha}} = (\phi_U)_*^{-1}(e_{m+\alpha})$

Osserviamo inoltre che $j_m(e_\alpha) = e_{m+\alpha}$ dunque

$$J\left(\frac{\partial}{\partial x_{\alpha}}\right) = \frac{\partial}{\partial y_{\alpha}} \tag{1.2}$$

definiamo ora

$$\frac{\partial}{\partial z_{\alpha}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{\alpha}} - i \frac{\partial}{\partial y_{\alpha}} \right) \qquad e \qquad \frac{\partial}{\partial \overline{z}_{\alpha}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{\alpha}} + i \frac{\partial}{\partial y_{\alpha}} \right).$$

Applicando il Lemma 1.1.4 vediamo subito che $\frac{\partial}{\partial z_{\alpha}}$ e $\frac{\partial}{\partial \overline{z}_{\alpha}}$ sono sezioni locali di $T^{1,0}M$ e $T^{0,1}M$ rispettivamente. Si osservi inoltre che costituiscono una base in ogni punto di U. Siano V e W due sezioni di $T^{0,1}M$, se $V = \sum V_{\alpha} \frac{\partial}{\partial \overline{z}_{\alpha}}$ e $W = W_{\alpha} \frac{\partial}{\partial \overline{z}_{\alpha}}$ allora

$$[V,W] = \sum_{\alpha,\beta=1}^{m} V_{\alpha} \frac{\partial W_{\beta}}{\partial \overline{z}_{\alpha}} \frac{\partial}{\partial \overline{z}_{\beta}} - \sum_{\alpha,\beta=1}^{n} W_{\alpha} \frac{\partial V_{\beta}}{\partial \overline{z}_{\alpha}} \frac{\partial}{\partial \overline{z}_{\beta}}$$

cioè [V, W] è una sezione locale di $T^{0,1}M$

Definizione 1.1.6. Una struttura quasi complessa indotta da una struttura olomorfa è detta struttura complessa.

Osservazione 1.1.7. L'esistenza di cordinate locali che soddisfino la (1.2) è il punto chiave per dimostrare che la condizione è anche sufficiente. Supponiamo infatti che esistano tali coordinate e siano u_{α}, v_{α} un altro sistema di coordinate locali che soddisfa

$$\frac{\partial}{\partial \overline{v}_{\alpha}} = J \frac{\partial}{\partial \overline{u}_{\alpha}}$$

allora si ha:

$$\frac{\partial}{\partial x_{\alpha}} = \sum_{\beta=1}^{m} \frac{\partial u_{\beta}}{\partial x_{\alpha}} \frac{\partial}{\partial u_{\beta}} + \sum_{\beta=1}^{m} \frac{\partial v_{\beta}}{\partial x_{\alpha}} \frac{\partial}{\partial v_{\beta}}$$
(1.3)

e

$$\frac{\partial}{\partial y_{\alpha}} = \sum_{\beta=1}^{m} \frac{\partial u_{\beta}}{\partial y_{\alpha}} \frac{\partial}{\partial u_{\beta}} + \sum_{\beta=1}^{m} \frac{\partial v_{\beta}}{\partial y_{\alpha}} \frac{\partial}{\partial v_{\beta}}$$
(1.4)

applicando J alla (1.3) e confrontandola con la (1.4) si ottiene:

$$\frac{\partial u_{\beta}}{\partial x_{\alpha}} = \frac{\partial v_{\beta}}{\partial y_{\alpha}} \qquad e \qquad \frac{\partial u_{\beta}}{\partial y_{\alpha}} = -\frac{\partial v_{\beta}}{\partial x_{\alpha}}$$

dunque le funzioni di transizione sono olomorfe.

1.2 Forme olomorfe e campi di vettori

1.2.1 Fibrato esterno complessificato

Sia (M, J) una varietà quasi complessa. Definiamo il fibrato esterno complessificato $\Lambda_{\mathbb{C}}^* = \Lambda^* M \otimes_{\mathbb{R}} \mathbb{C}$. Le sezioni di $\Lambda_{\mathbb{C}}^* M$ possono essere viste come forme a valori complessi oppure come somme formali $\omega + i\tau$, dove ω e τ sono forme reali su M.

Definiamo i seguenti sottofibrati di $\Lambda^1_{\mathbb{C}}M$:

$$\Lambda^{1,0}M := \{ \xi \in \Lambda^1_{\mathbb{C}}M \, | \, \xi(Z) = 0 \, \forall Z \in T^{0,1}M \}$$

$$\Lambda^{0,1}M := \{ \xi \in \Lambda^1_{\mathbb{C}}M \, | \, \xi(Z) = 0 \, \forall Z \in T^{1,0}M \}$$

Le sezioni di questi sottofibrati sono dette rispettivamente forme di tipo (1,0) oppure forme di tipo (0,1).

Lemma 1.2.1. Valgono le seguenti uguaglianze:

1.
$$\Lambda^{1,0}M = \{w - iw \circ J \mid w \in \Lambda^1 M\}$$

2.
$$\Lambda^{0,1}M = \{w + iw \circ J \mid w \in \Lambda^1 M\}$$

3.
$$\Lambda^1_{\mathbb{C}}M = \Lambda^{1,0}M \oplus \Lambda^{0,1}M$$

 $\begin{array}{l} \textit{Dimostrazione.} \ \ \dot{\text{E}} \ \text{facile vedere che} \ \Lambda^{1,0}M \supset \{w-iw\circ J\,|\, w\in \Lambda^1M\} \ \text{e} \ \Lambda^{0,1}M \supset \{w+iw\circ J\,|\, w\in \Lambda^1M\}, \ \text{per dimostrare l'inclusione inversa è sufficiente far vedere che } \Lambda^1_{\mathbb{C}}M = \{w-iw\circ J\,|\, w\in \Lambda^1M\} + \{w+iw\circ J\,|\, w\in \Lambda^1M\} \ \text{Sia} \ \sigma = \omega+i\tau \ \text{e} \ \text{sia} \ \nu = \tau\circ J^{-1} \ \text{allora} \end{array}$

$$\omega + i\tau = \frac{1}{2}[(\omega - \nu) - i(\omega - \nu) \circ J] + \frac{1}{2}[(\omega + \nu) + i(\omega + \nu) \circ J].$$

Resta da mostrare che $\Lambda^{1,0}M \cap \Lambda^{0,1}M = \{0\}$. Sia $\omega \in \Lambda^{1,0}M \cap \Lambda^{0,1}M$ allora per il Lemma 1.1.4 si ha che $\omega(X) = 0 \ \forall X \in TM$ dunque $\omega = 0$.

Denotiamo l'algebra esterna k-esima di $\Lambda^{1,0}$ (rispettivamente $\Lambda^{0,1}$) con $\Lambda^{k,0}$ (rispettivamente $\Lambda^{0,k}$) e denotiamo $\Lambda^{p,q}$ il prodotto tensoriale $\Lambda^{p,0} \otimes \Lambda^{0,q}$. Il prodotto esterno di una somma diretta di spazi vettoriali può essere scritta come segue

$$\Lambda^k(E \oplus F) = \bigoplus_{i=0}^k \Lambda^i E \otimes \Lambda^{k-i} F.$$

Dunque applicando il Lemma 1.2.1

$$\Lambda^k_{\mathbb{C}}M = \bigoplus_{p+q=k} \Lambda^{p,q}M.$$

Le sezioni di $\Lambda^{p,q}M$ sono dette forme del tipo (p,q). É immediato verificare che ω è una sezione di $\Lambda^{k,0}M$ se e solo se $Z \,\lrcorner\, \omega \,=\, 0$ qualunque $Z \,\in\, \Lambda^{0,1}M$. Più in

generale una k-forma è una sezione di $\Lambda^{p,q}M$ se e solo se si annulla ogni volta che è applicata a p+1 vettori di $\Lambda^{1,0}M$ oppure a q+1 vettori di $\Lambda^{0,1}M$

Se J è una struttura complessa, possiamo descrivere questi sottospazi in coordinate locali. Sia $z_{\alpha} = x_{\alpha} + iy_{\alpha}$ la α -esima coordinata di qualche ϕ_U , estendendo per \mathbb{C} -linearità la derivata esterna otteniamo $dz_{\alpha} = dx_{\alpha} + idy_{\alpha}$ e $d\overline{z}_{\alpha} =$ $dx_{\alpha} - idy_{\alpha}$. Osservando che $dy_{\alpha} = -dx_{\alpha} \circ J$ e applicando il lemma 1.2.1 si deduce che $\{dz_1, \ldots, dz_m\}$ e $\{d\overline{z}_1, \ldots, d\overline{z}_m\}$ sono una base locale rispettivamente per $\Lambda^{1,0}M$ e $\Lambda^{0,1}M$. Una base locale per $\Lambda^{p,q}M$ è data da

$$\{dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\overline{z}_{i_1} \wedge \cdots \wedge d\overline{z}_{i_q} \mid i_1 < \cdots < i_p, j_1 < \cdots < j_q\}.$$

Ad ogni struttura complessa J è associato il tensore N^J di tipo (2,1) chiamato tensore di Nijenuis che è definito da

$$N^{J}(X,Y) = [X,Y] + J[JX,Y] + J[X,JY] - [JX,JY] \qquad \forall X,Y \in \mathcal{C}^{\infty}(TM).$$

Teorema 1.2.2. Sia J una struttura quasi complessa su M^{2m} . Le seguenti affermazioni sono equivalenti:

- (a) J è una struttura complessa.
- (b) $T^{0,1}$ è integrabile.
- (c) $d\Gamma(\Lambda^{1,0}M) \subset \Gamma(\Lambda^{2,0}M \oplus \Lambda^{1,1}M)$
- (d) $d\Gamma(\Lambda^{p,q}M) \subset \Gamma(\Lambda^{p+1,q}M \oplus \Lambda^{p,q+1}M) \ \forall 0 \leq p,q \leq m.$
- (e) $N^J = 0$.

Dimostrazione. (a) \Leftrightarrow (b) É il teorema 1.1.5.

(b) \Leftrightarrow (c) Sia ω una sezione di $\Lambda^{1,0}M$. Si osservi che per quanto detto prima $d\omega \in \Lambda^{2,0}M \oplus \Lambda^{1,1}M \oplus \Lambda^{0,2}M$ e che la componente in $\Lambda^{0,2}M$ è nulla se e solo se $d\omega(Z,W) = 0 \,\forall Z,W \in T^{0,1}M$. Estendiamo Z e W a sezioni locali di $T^{0,1}M$.

$$d\omega(Z,W) = Z(\omega(W)) - W(\omega(Z)) - \omega([Z,W]) = -\omega([Z,W])$$

Dunque

$$d\omega(Z, W) = 0 \quad \Leftrightarrow \quad [Z, W] \in T^{0,1}M$$

l'equivalenza segue dalla arbitrarietà di Z e W.

(c) \Leftrightarrow (d) Supponiamo vera (c). Per coniugazione otteniamo immediatamente $d\Gamma(\Lambda^{0,1}M) \subset \Gamma(\Lambda^{0,2}M \oplus \Lambda^{1,1}M)$. Per concludere è sufficiente scrivere ogni sezione di $d\Gamma(\Lambda^{p,q}M)$ come somma di elementi della forma $\omega_1 \wedge \cdots \wedge \omega_p \wedge \tau \wedge \cdots \wedge \tau_q$ dove $\omega_i \in \Gamma(\Lambda^{1,0}M)$ e $\tau_i \in \Gamma(\Lambda^{0,1}M)$ e applicare la regola di Leibniz. L'implicazione inversa è ovvia. (b) \Leftrightarrow (e) Siano $X,Y \in \Gamma(TM)$ e Z = [X + iJX,Y + iJY]. Sviluppando i calcoli è facile vedere che

$$Z - iJZ = N^{J}(X, Y) - iJN^{J}(X, Y)$$

dunque
$$Z \in T^{0,1}M \Leftrightarrow N^J(X,Y) = 0$$

1.2.2 Oggetti olomorfi su varietà complesse

In questo paragrafo con (M, J) intenderemo una varietà complessa di dimensione complessa m. Il seguente lemma da una caratterizzazione delle funzioni olomorfe.

Lemma 1.2.3. Sia $f: M \to \mathbb{C}$ una funzione liscia su M. Le seguenti affermazioni sono equivalenti

- (1) f è olomorfa.
- (2) $Z(f) = 0 \quad \forall Z \in T^{0,1}M.$
- (3) df è una forma di tipo (1,0)

Dimostrazione. (2) \Leftrightarrow (3) $df \in \Lambda^{1,0}M \Leftrightarrow df(Z) = 0 \ Z \in T^{0,1}M \Leftrightarrow Z(f) = 0 \quad \forall Z \in T^{0,1}M$.

(1) \Leftrightarrow (3) La funzione f è olomorfa se e solo se $f_* \circ (\phi_U)_*^{-1} \circ j_m = if_* \circ (\phi_U)_*^{-1}$ per ogni carta (U, ϕ_U) , cioè $f_*J = if_*$. Dall'ultima equazione si ricava che per ogni vettore reale X, df(JX) = idf(X), equivalentemente idf(X + iJX) = 0, dunque applicando la definizione segue che $df \in \Lambda^{0,1}M$.

Usando il teorema 1.2.2 definiamo per ogni (p,q) fissato gli operatori ∂ : $\Gamma(\Lambda^{p,q}M) \to \Gamma(\Lambda^{p+1,q}M)$ e $\overline{\partial}: \Gamma(\Lambda^{p,q}M) \to \Gamma(\Lambda^{p,q+1}M)$ imponendo $d = \partial + \overline{\partial}$.

Lemma 1.2.4. Valgono le sequenti identità:

$$\partial^2 = 0, \qquad \overline{\partial}^2 = 0, \qquad \partial \overline{\partial} + \overline{\partial} \partial = 0.$$

Dimostrazione. Dal momento che $d \circ d = 0$ si ha

$$0 = d^2 = (\partial + \overline{\partial})^2 = \partial^2 + \overline{\partial}^2 + (\partial \overline{\partial} + \overline{\partial} \partial).$$

Gli addendi dell'ultimo termine appartengono a sottofibrati distinti allora, perchè l'uguaglianza sia soddisfatta, devono essere tutti identicamente nulli. \Box

Definizione 1.2.5. Un campo di vettori Z è detto olomorfo se Z(f) è olomorfa per ogni funzione olomorfa f. Una p-forma è detta olomorfa se $\overline{\partial}\omega = 0$.

Definizione 1.2.6. Un campo di vettori reale X è detto reale olomorfo se il campo X - iJX è olomorfo.

Lemma 1.2.7. Sia X un campo di vettori reale su una varietà complessa (M,J). Le seguenti affermazioni sono equivalenti:

- 1. X è reale olomorfo.
- 2. $\mathcal{L}_X J = 0$.
- 3. Il flusso di X consiste di biolomorfismi.

Dimostrazione. Sia φ_s il flusso di X. Ricordiamo che

$$\mathcal{L}_X J = -\frac{d}{dt} \left((\varphi_t)_* J \right)_{|t=0} \quad \text{dove} \quad \varphi_* J = d\varphi \circ J \circ (d\varphi)^{-1}.$$

Quindi se vale la (3) si ha $(\varphi_t)_*J=J$ e $\mathcal{L}_XJ=0$. Supponiamo vera la (2) allora

$$0 = (\varphi_s)_*(\mathcal{L}_X J) = \mathcal{L}_{\varphi_s, X}(\varphi_s)_* J$$

Poichè un campo di vettori è invariante rispetto al suo flusso

$$0 = \mathcal{L}_X(\varphi_s)_* J = \frac{d}{dt} (\varphi_t)_* (\varphi_s)_* J_{|t=0} = \frac{d}{dt} (\varphi_{s+t})_* J_{|t=0} = \frac{d}{ds} (\varphi_s)_* J$$

quindi $(\varphi_s)_*J$ non dipende da s e

$$(\varphi_s)_*J = (\varphi_0)_*J = J.$$

Dimostriamo ora l'equivalenza tra (1) e (2).

$$f ext{ olomorfa} \Rightarrow (X + iJX)(f) = 0 \Rightarrow (X - iJX)f = 2X(f).$$

Quindi X è reale olomorfo se e soltanto se

$$(Y+iJY)(Xf) = 0 \Leftrightarrow [Y+iJY,X]f = 0$$

per ogni campo di vettori Y e per ogni funzione f olomorfa. L'ultima equazione è condizione necessaria e sufficiente perchè [Y+iJY,X] sia di tipo (0,1) cioè

$$0 = [X, JY] - J[X, Y] = \mathcal{L}_X(JY) - J\mathcal{L}_XY = \mathcal{L}_XJ(Y).$$

L'equivalenza segue dall'arbitrarietà di Y.

Concludiamo il paragrafo con il seguente risultato.

Teorema 1.2.8 $(i\partial \overline{\partial} - Lemma)$. Sia $\omega \in \Lambda^{1,1} \cap \Lambda^2 M$ una forma reale di tipo (1,1) su una varietà complessa M. Allora ω è chiusa se e solo se per ogni punto $x \in M$ esiste un intorno U tale che $\omega_{|U} = i\partial \overline{\partial} u$ per qualche funzione reale u definita in U.

Dimostrazione. Applicando il lemma 1.2.4 si ha

$$d(i\partial\overline{\partial}) = i(\partial + \overline{\partial}) + \partial\overline{\partial} = i(\partial^2\overline{\partial} - \partial\overline{\partial}^2) = 0.$$

dunque la sufficienza è dimostrata. Sia ω una forma reale chiusa di tipo (1,1). Per il Lemma di Poincaré esiste localmente una 1-forma τ tale che $d\tau = \omega$. Sia $\tau = \tau^{1,0} + \tau^{0,1}$ la decomposizione di τ in forme del tipo (1,0) e (0,1). Poichè τ è reale $\tau^{1,0} = \overline{\tau^{0,1}}$. Abbiamo

$$\omega = d\tau = \overline{\partial}\tau^{0,1} + (\partial\tau^{0,1} + \overline{\partial}\tau^{1,0} + \partial\tau^{1,0})$$

da cui si ricava $\overline{\partial}\tau^{0,1}=0$ e $\omega=(\partial\tau^{0,1}+\overline{\partial}\tau^{1,0})$. Il $\overline{\partial}$ -Lemma di Poincarè ci garantisce l'esistenza locale di una funzione f per cui $\tau^{0,1}=\overline{\partial}f$ e $\tau^{1,0}=\partial\overline{f}$. Dunque

$$\omega = (\partial \tau^{0,1} + \overline{\partial} \tau^{1,0}) = \partial \overline{\partial} f + \overline{\partial} \partial \overline{f} = i \partial \overline{\partial} (2 \mathrm{Im}(f))$$

e il teorema è soddisfatto con u = 2Im(f).

1.3 Metriche hermitiane e kähleriane

1.3.1 Metriche hermitiane

Definizione 1.3.1. Una metrica hernitiana su una varietà quasi complessa (M, J) è una metrica riemanniana h tale che

$$q(X,Y) = q(JX,JY) \quad \forall X,Y \in TM.$$

La forma fondamentale ω di una metrica hermitiana è definita da

$$\omega(X,Y) := g(JX,Y) \quad \forall X,Y \in TM.$$

Osserviamo che ω è antisimmetrica:

$$\omega(Y, X) = g(JY, X) = g(J^2Y, JX) = -g(Y, JX) = g(JX, Y) = \omega(X, Y).$$

Su una varietà quasi complessa M esiste sempre una metrica hermitiana, infatti se \widehat{g} è una metrica riemanniana su M allora $g(X,Y)=\widehat{g}(X,Y)+\widehat{g}(JX,JY)$ definisce una metrica hermitiana su M.

L'estensione della metrica hermitiana per \mathbb{C} -linerità a $TM^{\mathbb{C}}$ soddisfa

$$\left\{ \begin{array}{ll} g(\overline{Z},\overline{W}) = \overline{g(Z,W)} & \forall Z,W \in TM^{\mathbb{C}} \\ g(Z,\overline{Z}) > 0 & \forall Z \in TM^{\mathbb{C}} - \{0\} \\ g(Z,W) = 0 & \forall Z,W \in T^{1,0}M \ \mathrm{e} \ \forall Z,W \in T^{0,1}M \end{array} \right.$$

Siano z_{α} delle coordinate olomorfe su una varietà complessa hermitiana (M^{2m}, J, h) e indichiamo con $h_{\alpha\overline{\beta}}$ i coefficienti del tensore metrico in queste coordinate locali:

$$h_{\alpha\overline{\beta}}:=h\left(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial\overline{z}_{\beta}}\right).$$

Allora

$$\omega = i \sum_{\alpha,\beta}^{m} h_{\alpha \overline{\beta}} dz_{\alpha} \wedge d\overline{z}_{\beta}$$

Infatti

$$\omega\left(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}\right) = h\left(J\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}\right) = ih\left(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}\right) = ih_{\alpha\overline{\beta}}$$

1.3.2 Metriche di Kähler

Sia (M^{2m}, J, h) una varietà complessa hermitiana. Supponiamo che la forma fondamentale ω sia chiusa, allora per il $i\partial\overline{\partial}$ -Lemma (cfr. 1.2.8) esiste una funzione reale locale u per cui $\omega = i\partial\overline{\partial}u$, in coordinate locali si ha

$$h_{\alpha\overline{\beta}} = \frac{\partial^2 u}{\partial z_\alpha \partial z_\beta}.$$

Definizione 1.3.2. Una metrica hermitiana h su una varietà quasi complessa (M, J) è detta di Kähler se J è una struttura complessa e ω è una forma chiusa:

$$h \ \grave{e} \ di \ K\ddot{a}hler \Leftrightarrow \left\{ \begin{array}{l} N^J = 0 \\ d\omega = 0 \end{array} \right.$$

Una funzione reale locale u tale che $\omega = i\partial \overline{\partial} u$ e detta potenziale kähleriano della metrica h.

É interessante studiare i legami tra la connessione Levi–Civita e le condizioni di Kähler. Iniziamo vedendo quelli relativi al tensore di Nijenhuis.

Lemma 1.3.3. Sia h una metrica hermitiana su una metrica quasi complessa (M, J) e sia ∇ la connessione di Levi-Civita. Allora

$$J \ \dot{e} \ integrabile \Leftrightarrow (\nabla_{JX}J)(Y) = J(\nabla_XJ)(Y) \qquad \forall X,Y \in TM.$$
 (1.5)

Dimostrazione. Fissiamo un punto $x \in M$ ed estendiamo localmente per parallelismo X ed Y a campi di vettori su M. Scriviamo il tensore N^J in termini della connessione di Levi–Civita.

$$N^{J}(X,Y) = [X,Y] + J[JX,Y] + J[X,JY] - [JX,JY] =$$

$$\nabla_{X}Y - \nabla_{Y}X + J\nabla_{JX}Y - J\nabla_{Y}JX + J\nabla_{X}JY - J\nabla_{JY}X - \nabla_{JX}JY + \nabla_{JY}JX =$$

$$(J(\nabla_{X}J)Y - (\nabla_{JX}J))Y - (J(\nabla_{Y}J)X - (\nabla_{JY}J)X).$$

quindi se vale la (1.5) chiaramente $N^J=0$. Viceversa supponiamo $N^J=0$ oppure equivalentemente $(J(\nabla_X J)Y-(\nabla_{JX} J))Y=(\nabla_{JY} J)X)-(J(\nabla_Y J)X$. Vorremo mostrare che vale la (1.5) cioè:

$$A(X,Y,Z) = q((J(\nabla_X J)Y - (\nabla_{JX} J))Y,Z) = 0 \qquad \forall X,Y,Z \in TM.$$

Sappiamo che A(X,Y,Z) è simmetrica nelle prime due variabili, se dimostriamo che è antisimmetrica nelle ultime avremo concluso, infatti in tal caso

$$A(X, Y, Z) = -A(Y, Z, X) = A(Z, X, Y) = -A(X, Y, Z) \Rightarrow A(X, Y, Z) = 0.$$

Per dimostrare che A(X, Y, Z) = A(X, Z, Y) osserviamo che

(a)
$$q(JX, Y) = -q(X, JY)$$

(b)
$$g((\nabla_X J)(Y), Z) = -g(Y, (\nabla_X J)Z)$$

(c)
$$J \circ \nabla_X J = -\nabla_J \circ J$$

La (a) e la (b) ci dicono che J e $\nabla_X J$ sono operatori antisimmetrici, mentre la (c) ci dice che J e $\nabla_X J$ anticommutano. Dimostriamo la (b)

$$g((\nabla_X J)(Y), Z) = g(\nabla_X JY, Z) - g(J\nabla_X Y, Z) =$$

$$Xg(JY, Z) - g(JY, \nabla_X Z) + g(\nabla_X Y, JX) =$$

$$Xg(JY, Z) - g(JY, \nabla_X Z) + Xg(Y, JZ) - g(Y, \nabla_X JZ) =$$

$$g(Y, J\nabla_X Z) - g(Y, \nabla_X JZ) = -g(Y, (\nabla_X J)Z).$$

Dimostriamo ora la (c)

$$J(\nabla_X J)(Y) = J(\nabla_X JY - J\nabla_X Y) = J(\nabla_X JY) + \nabla_X Y$$
$$(\nabla_X J)(JY) = \nabla_X (JY) - J(\nabla_X JY) = -\nabla_X Y - J(\nabla_X JY)$$

Dimostriamo A(X, Y, Z) = -A(X, Z, Y)

$$A(X,Y,Z) = g((J(\nabla_X J)Y - (\nabla_{JX} J))Y, Z) =$$

$$g(J(\nabla_X J)Y, Z) - g(\nabla_{JX} J)Y, Z) = g(Y, (\nabla_X J)JZ) - g(Y, (\nabla_{JX} J)Z) =$$

$$g(J(\nabla_X J)Z, Y) - g((\nabla_{JX} J)Z, Y) = -A(X, Z, Y).$$

Teorema 1.3.4. Sia h una metrica hermitiana su una varietà quasi complessa (M, J) e ∇ la connessione di Levi-Cività.

$$h \stackrel{.}{e} di K \ddot{a}hler \Leftrightarrow \nabla J = 0$$

Dimostrazione. Se J è parallelo rispetto ∇ allora chiaramente $N^J=0$ e J è integrabile, inoltre $\omega=g(J\cdot,\cdot)$ dunque $\nabla\omega=0$ infatti

$$(\nabla_Z \omega)(X,Y) = Z\omega(X,Y) - \omega(\nabla_Z X,Y) - \omega(X,\nabla_Z Y) =$$

$$Zh(JX,Y) - h(J\nabla_Z X,Y) - h(JX,\nabla_Z Y) =$$

$$h(\nabla_Z JX,Y) + h(JX,\nabla_Z Y) - h(J\nabla_Z X,Y) - h(JX,\nabla_Z Y) =$$

$$g((\nabla_Z J)X, Y) = 0.$$

Ricordiamo che per ogni $X_0, \ldots, X_p \in \Gamma(TM)$ e $\omega \in \Lambda^p(M)$ vale

$$d\omega(X_0, \dots, X_p) = \sum_{i=0}^{p} (-1)^{-i} (\nabla_{X_i} \omega)(X_0, \dots, \widehat{X}_i, \dots, X_p).$$

concludiamo quindi che $d\omega=0$. Viceversa supponiamo che h sia di Kähler e consideriamo il tensore

$$B(X, Y, Z) := g((\nabla_x J)Y, Z)$$

Piochè J e $\nabla_X J$ anticommutano

$$B(X, Y, JZ) = B(X, JY, Z).$$

Dalla (1.5) otteniamo

$$B(X, Y, JZ) + B(JX, Y, Z) = 0.$$

Confrontando le due relazioni

$$B(X, JY, Z) + B(JX, Y, Z) = 0.$$

Sfruttiamo il fatto che ω è chiusa

$$\begin{split} d\omega(X,Y,JZ) &= X\omega(Y,JZ) + Y\omega(JZ,X) + JZ\omega(x,y) = \\ &-\omega([X,Y],JZ) - \omega([Y,JZ],X) - \omega([JZ,X],Y) = \\ &Xg(JY,JZ) - Yg(Z,X) + JZg(JX,Y) + \\ &-g(J[X,Y],JZ) - g(J[Y,JZ],X) - g(J[JZ,X],Y) = \\ &g(\nabla_X Y,Z) + g(Y,\nabla_X Z) - g(\nabla_Y Z,X) + g(Z,\nabla_Y X) + g(\nabla_{JZ} JX,Y) + \\ &g(JX,\nabla_{JZ} Y) - g(J[X,Y],JZ) - g(J[Y,JZ],X) - g(J[JZ,X],Y) = \\ &g(Y,\nabla_X Z) - g(\nabla_Y Z,X) + g(\nabla_{JZ} JX,Y) + \\ &g(JX,\nabla_{JZ} Y) - g(J[Y,JZ],X) - g(J[JZ,X],Y) = . \end{split}$$

osserviamo che

•
$$B(Y,JZ,X)=g((\nabla_Y J)JZ,X)=$$

$$-g(\nabla_Y Z,X)-g(J\nabla_Y JZ,X)=g(\nabla_Y JZ,JX)-g(\nabla_Y Z,X)$$

•
$$B(JZ, X, Y) = g((\nabla_{JZ}J)JX, Y) =$$

$$g(\nabla_{JZ}JX, Y) - g(J\nabla_{JZ}X, Y) = g(\nabla_{JZ}JX, Y) + g(\nabla_{JZ}X, Y)$$

•
$$B(X,Y,JZ) = g((\nabla_X J)Y,JZ) = -g(Y,(\nabla_X J)(JZ)) =$$

$$g(Y,\nabla_X Z) + g(Y,J\nabla_X JZ) = g(\nabla_Y Z,X) - g(\nabla_X JZ,Y)$$

Abbiamo quindi dimostrato che

$$d\omega(X, Y, JZ) = B(X, Y, JZ) + B(Y, JZ, X) + B(JZ, X, Y) = 0.$$

$$d\omega(X, JY, Z) = B(X, JY, Z) + B(JY, Z, X) + B(Z, X, JY) = 0.$$

Sommando le due relazioni otteniamo

$$2B(X, Y, JZ) = 0$$

per l'arbitrarietà di X Y e Z concludiamo che $\nabla J = 0$.

Esempio 1.3.5. Lo spazio complesso m-dimensionale \mathbb{C}^m con la forma di Kähler

$$\omega_0 = \frac{i}{2} \partial \overline{\partial} ||z||^2 \qquad ||z||^2 = |z_1|^2 + \dots, |z_m|^2.$$

Esempio 1.3.6. $B^m = \{z \in \mathbb{C}^m \mid ||z||^2 < 1\}$ la bolla unitaria in \mathbb{C}^m , con forma di Kähler

$$\omega_{hyp} = \frac{i}{2} \partial \overline{\partial} \log \frac{1}{(1 - ||z||^2)} = \frac{i}{2} \partial \overline{\partial} \log (1 - ||z||^2).$$

La coppia (B^m, ω_{hyp}) verrá denotata con $\mathbb{C}H^m$

Osservazione 1.3.7. Lo spazio proiettivo complesso $\mathbb{C}P^m$ (cfr. 1.1.2) può essere dotato di una forma di Kähler ω_{FS} chiamata Fubini–Study.

Le varietà di Kähler (\mathbb{C}^m, ω_0) , $(\mathbb{C}H^m, \omega_{hyp})$, $(\mathbb{C}P^m, \omega_{FS})$ sono varietà a curvatura sezionale olomorfa costante (vedi [1]) e giocano lo stesso ruolo degli spazi a curvatura sezionale costante della geometria riemanniana classica. Infatti si può dimostrare che una varietà kähleriana a curvatura olomorfa costante è localmente olomorficamente isometrica a una di questi tre spazi.

Capitolo 2

Domini di Hartogs

2.1 Forme di Kähler su domini di Hartogs

Sia $b \in R^+ \cup \{+\infty\}$ e $F: [0,b) \to (0,+\infty)$ una funzione liscia strettamente decrescente. Il dominio di Hartogs $D_F \subset \mathbb{C}^n$ associato alla funzione F è così definito:

$$D_F = \{(z_0, z_1, \dots, z_{n-1}) \in \mathbb{C}^n \mid |z_0|^2 < b, \ |z_1|^2 + \dots + |z_{n-1}|^2 < F(|z_0|^2)\}.$$

Al dominio D_F è naturalmente associata una forma di tipo (1,1) data da

$$\omega_F = \frac{i}{2} \partial \overline{\partial} \log \frac{1}{F(|z_0|^2) - |z_1|^2 - \dots - |z_{n-1}|^2}$$
 (2.1)

Osservazione 2.1.1. Nel caso particolare in cui F = 1 - x si ha $\omega_F = \omega_{hyp}$ cioè D_F è un aperto di $\mathbb{C}H^n$, con la metrica indotta.

Vogliamo studiare ora sotto quali condizioni ω_F è una forma di Kähler.

Proposizione 2.1.2. Sia D_F un dominio di Hartogs in \mathbb{C}^n . Le seguenti condizioni sono equivalenti:

- (i) la (1,1)-forma data definita in (2.1) è di Kähler.
- (ii) la funzione $-\frac{xF'(x)}{F(x)}$ è strettamente crescente cioè $-(\frac{xF'(x)}{F(x)})' > 0$ per ogni $x \in [0,b)$.
- (iii) il bordo di D_F è fortemente pseudoconvesso per ogni $z=(z_0,\ldots,z_{n-1})$ tale che $|z_0|^2 < b$.

Dimostrazione. $(i) \Leftrightarrow (ii)$ definiamo

$$A = F(|z_0|^2) - |z_1|^2 - \dots - |z_{n-1}|^2.$$
(2.2)

Allora ω_F è una forma di Kähler se e solo se la funzione reale $\Phi = -\log A$ è strettamente plurisubarmonica, cioè la matrice $g_{\alpha\bar{\beta}} = (\frac{\partial^2 \Phi}{\partial z_\alpha \partial \bar{z}_\beta})_{\alpha,\beta=0,\dots,n-1}$ è definita positiva, dove

$$\omega_F = \frac{i}{2} \sum_{\alpha,\beta=0}^{n-1} g_{\alpha\bar{\beta}} dz_\alpha \wedge d\bar{z}_\beta. \tag{2.3}$$

Un calcolo diretto ci dà

$$\begin{cases} \frac{\partial^2 \Phi}{\partial z_0 \partial \bar{z}_0} = \frac{F'^2(|z_0|^2)|z_0|^2 - (F''(|z_0|^2)|z_0|^2 + F'(|z_0|^2))A}{A^2} \\ \frac{\partial^2 \Phi}{\partial z_0 \partial \bar{z}_\beta} = -\frac{F'(|z_0|^2)\bar{z}_0 z_\beta}{A^2} \quad \beta = 1, \dots, n-1 \\ \frac{\partial^2 \Phi}{\partial z_\alpha \partial \bar{z}_\beta} = \frac{\delta_{\alpha\beta} A + \bar{z}_\alpha z_\beta}{A^2} \quad \alpha, \beta = 1, \dots, n-1 \end{cases}$$

Dunque definendo

$$C = F'^{2}(|z_{0}|^{2})|z_{0}|^{2} - (F''(|z_{0}|^{2})|z_{0}|^{2} + F'(|z_{0}|^{2}))A, \tag{2.4}$$

la matrice $h=(g_{\alpha\bar{\beta}})=(\frac{\partial^2\Phi}{\partial z_\alpha\partial\bar{z}_\beta})_{\alpha,\beta=0,\dots,n-1}$ è data da:

$$h = \frac{1}{A^{2}} \begin{pmatrix} C & -F'\bar{z}_{0}z_{1} & \dots & -F'\bar{z}_{0}z_{\alpha} & \dots & -F'\bar{z}_{0}z_{n-1} \\ -F'z_{0}\bar{z}_{1} & A + |z_{1}|^{2} & \dots & \bar{z}_{1}z_{\alpha} & \dots & \bar{z}_{1}z_{n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ -F'z_{0}\bar{z}_{\alpha} & z_{1}\bar{z}_{\alpha} & \dots & A + |z_{\alpha}|^{2} & \dots & \bar{z}_{\alpha}z_{n-1} \\ \vdots & \vdots & & \vdots & & \vdots \\ -F'z_{0}\bar{z}_{n-1} & z_{1}\bar{z}_{n-1} & \dots & z_{\alpha}\bar{z}_{n-1} & \dots & A + |z_{n-1}|^{2} \end{pmatrix}. \quad (2.5)$$

Osserviamo che la matrice $(n-1) \times (n-1)$ ottenuta cancellando la prima riga e la prima colonna di h è definita positiva. Infatti per ogni $1 \le \alpha \le n-1$,

$$\det \begin{pmatrix} A + |z_{\alpha}|^{2} & \bar{z}_{\alpha} z_{\alpha+1} & \dots & \bar{z}_{\alpha} z_{n-1} \\ \vdots & \vdots & & \vdots \\ \bar{z}_{n-1} z_{\alpha} & \bar{z}_{n-1} z_{\alpha+1} & \dots & A + |z_{n-1}|^{2} \end{pmatrix} =$$

$$= A^{n-\alpha} + A^{n-\alpha-1} (|z_{\alpha}|^{2} + \dots + |z_{n-1}|^{2}) > 0.$$
 (2.6)

D'altra parte, facendo lo sviluppo di Laplace rispetto la prima riga, otteniamo

$$\det(h) = \frac{C}{A^{2n}} [A^{n-1} + A^{n-2} (|z_1|^2 + \dots + |z_{n-1}|^2)] +$$

$$+\frac{F'\bar{z}_0z_1}{A^{2n}}\det\begin{pmatrix} -F'z_0\bar{z}_1 & z_2\bar{z}_1 & \dots & z_{n-1}\bar{z}_1\\ -F'z_0\bar{z}_2 & A+|z_2|^2 & \dots & z_{n-1}\bar{z}_2\\ \vdots & \vdots & & \vdots\\ -F'z_0\bar{z}_{n-1} & z_2\bar{z}_{n-1} & \dots & A+|z_{n-1}|^2 \end{pmatrix}+\dots+$$

$$+(-1)^{n} \frac{F'\bar{z}_{0}z_{n-1}}{A^{2n}} \det \begin{pmatrix} -F'z_{0}\bar{z}_{1} & A+|z_{1}|^{2} & \dots & z_{n-2}\bar{z}_{1} \\ -F'z_{0}\bar{z}_{2} & z_{1}\bar{z}_{2} & \dots & z_{n-2}\bar{z}_{2} \\ \vdots & \vdots & & \vdots \\ -F'z_{0}\bar{z}_{n-1} & z_{1}\bar{z}_{n-1} & \dots & z_{n-2}\bar{z}_{n-1} \end{pmatrix} =$$

$$= \frac{C}{A^{2n}} [A^{n-1} + A^{n-2} (|z_1|^2 + \dots + |z_{n-1}|^2)] +$$

$$+\frac{F'^{2}|z_{0}|^{2}|z_{1}|^{2}}{A^{2n}} \det \begin{pmatrix} -1 & z_{2} & \dots & z_{n-1} \\ -\bar{z}_{2} & A+|z_{2}|^{2} & \dots & z_{n-1}\bar{z}_{2} \\ \vdots & \vdots & & \vdots \\ -\bar{z}_{n-1} & z_{2}\bar{z}_{n-1} & \dots & A+|z_{n-1}|^{2} \end{pmatrix} + \dots +$$

$$+(-1)^{n} \frac{F'^{2}|z_{0}|^{2}|z_{n-1}|^{2}}{A^{2n}} \det \begin{pmatrix} -\bar{z}_{1} & A+|z_{1}|^{2} & \dots & z_{n-2}\bar{z}_{1} \\ -\bar{z}_{2} & z_{1}\bar{z}_{2} & \dots & z_{n-2}\bar{z}_{2} \\ \vdots & \vdots & & \vdots \\ -1 & z_{1} & \dots & z_{n-2} \end{pmatrix} =$$

$$\frac{1}{A^{n+2}}[CA + (C - F'^2|z_0|^2)(|z_1|^2 + \dots + |z_{n-1}|^2)].$$

Infine sostituendo (2.2) e (2.4) nell'ultima uguaglianza, ricaviamo

$$\det(h) = -\frac{F^2}{A^{n+1}} \left(\frac{xF'}{F}\right)'|_{x=|z_0|^2}.$$
 (2.7)

Dunque la matrice $\left(\frac{\partial^2 \Phi}{\partial z_\alpha \partial \bar{z}_\beta}\right)$ è definita positiva se e solo se $\left(\frac{xF'}{F}\right)' < 0$.

Prima di provare l'equivalenza $(ii) \Leftrightarrow (iii)$ richiamiamo alcune proprietà sui domini complessi (si veda per esempio [3]). Sia $\Omega \subseteq \mathbb{C}^n$ un dominio complesso di \mathbb{C}^n con il bordo $\partial\Omega$ liscio e sia $z \in \partial\Omega$. Supponiamo che esista una funzione

liscia $\rho: \mathbb{C}^n \to \mathbb{R}$ (detta funzione di definizione di Ω in z) che soddisfa la seguente proprietà: per qualche intorno U di z,

$$\begin{cases} \rho(z) < 0 & \forall z \in U \cap \Omega \\ \rho(z) > 0 & \forall z \in U \setminus \overline{\Omega} \\ \rho(z) = 0 & \forall z \in U \cap \partial \Omega \\ (\operatorname{grad} \rho)(z) \neq 0 & \forall z \in \partial \Omega \end{cases}$$

Allora $\partial\Omega$ è detto fortemente pseudoconvesso in z se la forma di Levi

$$L(\rho, z)(X) = \sum_{\alpha, \beta=0}^{n-1} \frac{\partial^2 \rho}{\partial z_{\alpha} \partial \bar{z}_{\beta}}(z) X_{\alpha} \bar{X}_{\beta}$$

è definita positiva su

$$S_{\rho} = \{ (X_0, \dots, X_{n-1}) \in \mathbb{C}^n \mid \sum_{\alpha=0}^{n-1} \frac{\partial \rho}{\partial z_{\alpha}}(z) X_{\alpha} = 0 \}$$

Inoltre la definizione non dipende dalla particolare scelta di ρ .

 $(ii) \Leftrightarrow (iii)$ Sia $\Omega = D_F$ e fissiamo $z = (z_0, z_1, \dots, z_{n-1}) \in \partial D_F$ con $|z_0|^2 < b$. Osserviamo che $|z_1|^2 + \dots + |z_{n-1}|^2 = F(|z_0|^2)$. In questo caso

$$\rho(z_0, z_1, \dots, z_{n-1}) = |z_1|^2 + \dots + |z_{n-1}|^2 - F(|z_0|^2)$$

è (globalmente) una funzione di definizione per D_F in z. La forma di Levi è data da

$$L(\rho, z)(X) = |X_1|^2 + \dots + |X_{n-1}|^2 - (F' + F''|z_0|^2)|X_0|^2$$
(2.8)

e

$$S_{\rho} = \{ (X_0, X_1, \dots, X_{n-1}) \in \mathbb{C}^n \mid -F'\bar{z}_0 X_0 + \bar{z}_1 X_1 + \dots + \bar{z}_{n-1} X_{n-1} = 0 \}. \tag{2.9}$$

Distinguiamo due casi $z_0 = 0$ e $z_0 \neq 0$. Se $z_0 = 0$ allora

$$L(\rho, z)(X) = |X_1|^2 + \dots + |X_{n-1}|^2 - F'(0)|X_0|^2$$

che è strettamente positiva per ogni vettore $(X_0, X_1, \ldots, X_{n-1})$ non nullo poichè si era ipotizzato che F fosse strettamente decrescente. Se $z_0 \neq 0$ dalla (2.9) otteniamo $X_0 = \frac{\bar{z}_1 X_1 + \cdots + \bar{z}_{n-1} X_{n-1}}{F'\bar{z}_0}$ la quale, sostituita in (2.8), restituisce:

$$L(X,z) = |X_1|^2 + \dots + |X_{n-1}|^2 - \frac{F' + F''|z_0|^2}{F'^2|z_0|^2} |\bar{z}_1 X_1 + \dots + \bar{z}_{n-1} X_{n-1}|^2.$$
 (2.10)

Dunque è sufficiente dimostrare che:

(xF'/F)' < 0 per $x \in (0,b)$ se e solo se L(X,z) è strettamente positiva per ogni $(X_1,\ldots,X_{n-1}) \neq (0,\ldots,0)$ e per ogni $(z_0,z_1,\ldots,z_{n-1}) \in \partial D_F$, $0 < |z_0|^2 < b$. Se (xF'/F)' < 0 allora $(F'+xF'')F < xF'^2$ e poichè $F(|z_0|^2) = |z_1|^2 + \cdots + |z_{n-1}|^2$, otteniamo:

$$L(X,z) > |X_1|^2 + \dots + |X_{n-1}|^2 - \frac{1}{F(|z_0|^2)} |\bar{z}_1 X_1 + \dots + \bar{z}_{n-1} X_{n-1}|^2 =$$

$$= \frac{(|X_1|^2 + \dots + |X_{n-1}|^2)(|z_1|^2 + \dots + |z_{n-1}|^2) - |\bar{z}_1 X_1 + \dots + \bar{z}_{n-1} X_{n-1}|^2}{|z_1|^2 + \dots + |z_{n-1}|^2}$$

La conclusione segue dalla disuguaglianza di Cauchy-Schwarz.

Viceversa, assumiamo che L(X,z) sia strettamente positiva per ogni $(X_1,\ldots,X_{n-1}) \neq (0,\ldots,0)$ e ogni $z=(z_0,z_1,\ldots,z_{n-1})$ tale che $F(|z_0|^2)=|z_1|^2+\cdots+|z_{n-1}|^2$. Sostituendo $(X_1,\ldots,X_{n-1})=(z_1,\ldots,z_{n-1})$ in (2.10) abbiamo

$$L(z,z) = F(|z_0|^2) \left(1 - \frac{F' + F''|z_0|^2}{F'^2|z_0|^2} F(|z_0|^2) \right) > 0$$

ciò che implica (xF'/F)' < 0.

2.2 Geodetiche dei domini di Hartogs

In questo paragrafo affronteremo l'obiettivo principale di questa tesi: daremo un'importante caratterizzazione dei Domini di Hartogs (cfr. Teorema 2.2.1) e studieremo le geodetiche di D_F passanti per l'origine e la completezza di D_F rispetto alla metrica g_F nel senso della geometria riemanniana [8] (cfr. Teorema 2.2.5). Per ulteriori risultati riguardanti la geometria riemanniana dei domini di Hartogs si veda [5].

Osserviamo prima di tutto che $U(1) \times U(n-1)$ è contenuto nel gruppo delle isometrie di D_F , dunque le rette passanti per l'origine contenute nel piano $z_0 = 0$ e nella retta complessa $z_1 = \cdots = z_{n-1} = 0$ sono punti fissi per qualche elemento di $U(1) \times U(n-1)$ e sono pertanto il supporto di qualche geodetica. Chiameremo speciale una geodetica passante per l'origine che soddisfa la proprietà di avere come supporto una retta contenuta in $z_0 = 0$ o in $z_1 = \cdots = z_{n-1} = 0$ e indicheremo con $\mathcal S$ l'insieme di tali geodetiche. Indichiamo con $\mathcal G$ l'insieme delle geodetiche passanti per l'origine la cui traccia è l'intersezione di una linea retta di $\mathbb C^n$ con

 D_F , in particolare $\mathcal{S} \subset \mathcal{G}$. Il seguente teorema fornisce una caratterizzazione dello spazio iperbolico complesso tra i domini di Hartogs.

Teorema 2.2.1. Sia (D_F, g_F) un dominio di Hartogs. Allora se esiste $\ell \in \mathcal{G}$ tale che $\ell \notin \mathcal{S}$, D_F è olomorficamente isometrico ad un sottoinsieme aperto dello spazio iperbolico $\mathbb{C}H^n$ contenente l'origine.

In altre parole, il teorema afferma che se esiste una geodetica non speciale passante per l'origine di D_F , la cui traccia è una linea retta, allora $D_F \subset \mathbb{C}H^n$ (cfr. Esempio 1.3.6 e Osservazione 2.1.1). La dimostrazione di questo Teorema come quella del Teorema 2.2.5 si basa sul seguente:

Lemma 2.2.2. Sia $M \subset D_F$ la superficie (piana) reale definita da

$$M = D_F \cap \{Im(z_0) = Im(z_1) = z_j = 0, \quad j = 2, \dots, n-1\}.$$
 (2.11)

dotata della metrica indotta g da g_F . Allora (M,g) è totalmente geodetica, ha curvatura gaussiana $-\frac{1}{2}$ ed è completa se e solo se

$$\int_0^{\sqrt{b}} \sqrt{-\left(\frac{xF'}{F}\right)'}|_{x=u^2} du = +\infty.$$
 (2.12)

(Dove definiamo $\sqrt{b} = +\infty$ se $b = +\infty$).

Dimostrazione. La superficie M è l'insieme dei punti fissi dell'isometria $\phi:D_F\to D_F$ definita da

$$(z_0, z_1, \dots, z_{n-1}) \mapsto (\bar{z}_0, \bar{z}_1, -z_2, \dots, -z_{n-1})$$

ed è pertanto totalmente geodetica. Ponendo $u=\mathrm{Re}(z_0)$ e $v=\mathrm{Re}(z_1)$ la superficie M può essere descritta come

$$M = \{(u, v) \in \mathbb{R} \mid v^2 < F(u^2), u^2 < b\}$$
(2.13)

e la metrica g indotta da g_F è data da

$$g = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = \frac{2}{(F - v^2)^2} \begin{pmatrix} C & -F'uv \\ -F'uv & F \end{pmatrix}, \tag{2.14}$$

dove F, $C = F'^2 \cdot u^2 - (F' + F'' \cdot u^2)(F - v^2)$ e le loro derivate sono valutate in u^2 . Un calcolo diretto (anche con l'aiuto di Mathematica) mostra che M ha

curvatura gaussiana costante $K \equiv -1/2$. Pertanto (M,g) è isometrica al disco unitario $\{(x,y) \mid x^2+y^2<1\}$ in \mathbb{R}^2 dotato della metrica di Beltrami-Klein

$$g_{BK} = \frac{2}{(1 - x^2 - y^2)^2} \left[(1 - y^2)dx^2 + 2xydxdy + (1 - x^2)dy^2 \right]. \tag{2.15}$$

di curvatura gaussiana $-\frac{1}{2}$, che indicheremo con $\mathbb{R}H^2(-\frac{1}{2})$. Sia

$$\psi: (-\sqrt{b}, \sqrt{b}) \to \mathbb{R}$$

la funzione reale strettamente decrescente definita da

$$\psi(u) = \int_0^u \sqrt{-\left(\frac{xF'}{F}\right)'}|_{x=s^2} ds.$$

Un calcolo diretto mostra che la mappa

$$\Psi: M \to \mathbb{R}H^2(-\frac{1}{2}), (u, v) \mapsto \left(\mathrm{Tanh}(\psi(u)), \frac{v}{\mathrm{Cosh}(\psi(u))\sqrt{F(u^2)}} \right),$$

è un diffeomorfismo locale iniettivo che soddisfa $\Psi^*(g_{BK}) = g$. Dunque M è completa se e solo se Ψ è suriettiva, se solo e se ψ è suriettiva, che è equivalente alla condizione (2.12).

Osservazione 2.2.3. Il fatto che la superficie M data da (2.11) sia totalmente geodetica in D_F e che il gruppo della isometrie di D_F contenga $U(1) \times U(n-1)$ implica l'esistenza di un'isometria di D_F che fissa l'origine e che porta una data geodetica di D_F passante per l'origine in una geodetica di M passante per l'origine. Quindi lo studio delle geodetiche passanti per l'origine di D_F può essere ricondotto a quello delle geodetiche passanti per l'origine di M.

Dimostrazione del Teorema 2.2.1. Sia ℓ come nell'enunciato del teorema. Per l'osservazione precedente possiamo assumere, senza perdere di generalità, che ℓ sia una geodetica della superfice M data da (2.11). Siccome $\ell \notin \mathcal{S}$, possiamo supporre

$$\ell = \{v = ku, \quad k \neq 0\} \cap M,$$

dove u e v sono i parametri introdotti nella dimostrazione del Lemma 2.2.2. Dunque ℓ avrà una parametrizzazione della forma $t \mapsto (u(t), v(t) = ku(t))$ e soddisferà le equazioni

$$u'' + \Gamma_{11}^1 u'^2 + 2k\Gamma_{12}^1 u'^2 + k^2 \Gamma_{22}^1 u'^2 = 0$$
 (2.16)

$$ku'' + \Gamma_{11}^2 u'^2 + 2k\Gamma_{12}^2 u'^2 + k^2\Gamma_{22}^2 u'^2 = 0, \tag{2.17}$$

Dove $\Gamma^i_{jk}, i, j, k = 1, 2$ sono i simboli di Christoffel. Con un calcolo diretto otteniamo:

$$\Gamma_{11}^{1} = \frac{1}{2D} \left(g_{22} \frac{\partial g_{11}}{\partial u} - g_{12} \left(2 \frac{\partial g_{12}}{\partial u} - \frac{\partial g_{11}}{\partial v} \right) \right) =$$

$$= \frac{-4u}{D(v^2 - F)^4} [u^2 (2F'^2 + v^2 F'') - F(v^2 - F)(2F'' + u^2 F''') - FF' (2F' + 3u^2 F'')] \quad (2.18)$$

$$\Gamma_{11}^{2} = \frac{1}{2D} \left(-g_{12} \frac{\partial g_{11}}{\partial u} + g_{11} \left(2 \frac{\partial g_{12}}{\partial u} - \frac{\partial g_{11}}{\partial v} \right) \right) =$$

$$= \frac{4u^{2}v}{D(v^{2} - F)^{3}} [-u^{2}F''^{2} + F'(F'' + u^{2}F''')], \qquad (2.19)$$

$$\Gamma_{12}^{1} = \frac{1}{2D} \left(g_{22} \frac{\partial g_{11}}{\partial v} - g_{12} \frac{\partial g_{22}}{\partial u} \right) =$$

$$= \frac{-4v}{D(v^{2} - F)^{4}} [-u^{2}F'^{2} + F(F' + u^{2}F'')]$$
(2.20)

$$\Gamma_{12}^{2} = \frac{1}{2D} \left(g_{11} \frac{\partial g_{22}}{\partial u} - g_{12} \frac{\partial g_{11}}{\partial v} \right) =$$

$$= \frac{4uF'}{D(v^{2} - F)^{4}} [-u^{2}F'^{2} + F(F' + u^{2}F'')], \qquad (2.21)$$

$$\Gamma_{22}^{1} = \frac{1}{2D} \left(-g_{12} \frac{\partial g_{22}}{\partial v} + g_{22} \left(2 \frac{\partial g_{12}}{\partial v} - \frac{\partial g_{22}}{\partial u} \right) \right) = 0, \tag{2.22}$$

$$\Gamma_{22}^{2} = \frac{1}{2D} \left(g_{11} \frac{\partial g_{22}}{\partial v} - g_{12} \left(2 \frac{\partial g_{12}}{\partial v} - \frac{\partial g_{22}}{\partial u} \right) \right) =$$

$$= \frac{-8v}{D(v^{2} - F)^{4}} [-u^{2}F'^{2} + F(F' + u^{2}F'')], \qquad (2.23)$$

dove

$$D = g_{11}g_{22} - g_{12}^2 = 4\frac{CF - F'^2u^2v^2}{(F - v^2)^4}.$$

risolvendo (2.16) rispetto u'' e sostituendo nella (2.17) otteniamo

$$u^{2}\left[\Gamma_{11}^{2} + k(2\Gamma_{12}^{2} - \Gamma_{11}^{1}) + k^{2}(\Gamma_{22}^{2} - 2\Gamma_{12}^{1}) - k^{3}\Gamma_{22}^{1}\right] = 0$$
 (2.24)

poichè $u' \neq 0 \ (k \neq 0)$ abbiamo

$$\Gamma_{11}^2 + k(2\Gamma_{12}^2 - \Gamma_{11}^1) + k^2(\Gamma_{22}^2 - 2\Gamma_{12}^1) - k^3\Gamma_{22}^1 = 0.$$
 (2.25)

(dove $\Gamma^k_{ij}=\Gamma^k_{ij}(u,ku)$). Usando le equazioni (2.18) - (2.23), con un calcolo diretto, ma molto laborioso, le equazioni precedenti diventano

$$\frac{8ku\left(u^4F''^2 + F(2F'' + u^2F''') - F'(2u^2F'' + u^4F''')\right)}{D(k^2u^2 - F)^3} = 0,$$
 (2.26)

la quale, posto $u^2 = t$ con $0 \le t < b$, è equivalente alla seguente equazione differenziale

$$t^{2}F''^{2} + F(2F'' + tF''') - F'(2tF'' + t^{2}F''') = 0.$$
(2.27)

Notiamo che per $t \neq 0$ questa equazione può essere scritta come

$$t^{2}F''^{2} + \left(\frac{F}{t} - F'\right)(t^{2}F'')' = 0.$$
 (2.28)

Definiamo $G = t^2 F''$, l'equazione (2.28) diventa

$$G' = -\frac{F''t}{F - F't}G\tag{2.29}$$

(nota che, poichè F è strettamente decrescente, si ha F - F't > 0 per ogni 0 < t < b) dunque

$$G(t) = c e^{\int \frac{-F''_t}{F - F'_t} dt} = c (F - F'_t),$$
 (2.30)

per qualche $c \in \mathbb{R}$. Osservando che $\lim_{t\to 0} G(t) = 0$ e ricordando che $F(0) \neq 0$ concludiamo c = 0. Dunque $G = t^2 F'' = 0$ e $F(t) = c_1 + c_2 t$ per qualche $c_1, c_2 > 0$ Allora la mappa

$$\phi: D_F \to \mathbb{C}H^n, \ (z_0, z_1, \dots, z_{n-1}) \mapsto \left(\frac{z_0}{\sqrt{c_1/c_2}}, \frac{z_1}{\sqrt{c_1}}, \dots, \frac{z_{n-1}}{\sqrt{c_1}}\right)$$

è un'isometria olomorfa tra D_F e un aperto di $\mathbb{C}H^n$. Questo conclude la dimostrazione del teorema.

Osservazione 2.2.4. Nella definizione di un dominio di Hartogs D_F abbiamo imposto che F fosse decrescente nell'intervallo [0,b). Senza questa ipotesi, dalla condizione $(\frac{xF'(x)}{F(x)})' < 0$ (cfr. 2.1.2) segue che F'(t) < 0 in un qualche intervallo $0 \le t < \epsilon < b$. Dunque, ripetendo le argomentazioni della precedente dimostrazione, vediamo che esiste un intorno aperto dell'origine olomorficamente isometrico ad un'aperto di $\mathbb{C}H^n$ contenente l'origine.

Enunciamo e dimostriamo il secondo e ultimo risultato di questa tesi.

Teorema 2.2.5. Tutte le geodetiche di un dominio di Hartogs D_F che passano per l'origine non si autointersecano. Inoltre, D_F è geodeticamente completo rispetto alla metrica g_F se e solo se è soddisfatta la condizione (2.12).

Dimostrazione. Sia $\ell \subset D_F$ una geodetica passante per l'origine. Per l'Osservazione 2.2.3 possiamo assumere che ℓ sia contenuta in M. D'altra parte, per il Lemma 2.2.2, (M,g) è isometrica a un aperto di $\mathbb{R}H^2(-\frac{1}{2})$ nel quale è ben noto che le geodetiche non si autointersecano. Sempre per l'Osservazione 2.2.3 e per il teorema di Hopf-Rinow la completezza di g_F è equivalente a quella di g e la conclusione segue ancora dal Lemma 2.2.2.

Osservazione 2.2.6. Notiamo che una condizione necessaria perchè valga la (2.12) è che $F(t) \rightarrow 0$ per $t \rightarrow b$.

Esempio 2.2.7. Se $F(t) = e^{-t}$, $t \in [0, +\infty)$ (rispettivamente F(t) = 1 - t, $t \in [0, 1)$), si vede facilmente che la condizione (2.12) è soddisfatta, dunque il dominio di Spring (rispettivamente lo spazio iperbolico complesso) è completo.

Esempio 2.2.8. Se $F(t) = \frac{1}{(c_1 + c_2 t)^p}$ con $(p \in \mathbb{N}^+)$ e $t \in [0, +\infty)$, allora

$$\int_0^{\sqrt{b}} \sqrt{-\left(\frac{xF'}{F}\right)'}|_{x=u^2} \ du = \int_0^{+\infty} \frac{\sqrt{c_1 c_2 p}}{c_1 + c_2 u^2} du = \frac{\pi}{2} \sqrt{p} < \infty.$$

Pertanto per F così definita, il dominio D_F non è completo.

Bibliografia

- [1] S. Kobayashi, K. Nomizu Foundation of Differential Geometry I,II, Interscience Publishers, 1963, 1969.
- [2] L. Hörmander, An introduction to complex analysis in several variables, third ediction, North-Holland Puplishing Co., Amsterdam, 1990.
- [3] R.C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall Series in Modern Analysis, Prentice-Hall Inc. (1965).
- [4] A. Loi, Holomorphic maps of Hartogs domains into complex space forms, Riv. Mat. Univ. Parma (7) vol. 1 (2002), 103-113.
- [5] A. J. Di Scala, A. Loi, F. Zuddas, *The geodesics of Hartogs domains*, preprint (2007)
- [6] F. Cuccu and A. Loi, Global symplectic coordinates on complex domains, J. Geom. and Phys. 56 (2006), 247-259.
- [7] J. E. D'Atri, Y. D. Zhao, Geodesics and Jacobi fields in bounded homogeneous domains, Proc. Amer. Math. Soc. 89 no.. 1 (1983), 55-61.
- [8] M. P. Do Carmo, Differential geometry of curves and surfaces, Prentice Hall, 1976.
- [9] M. Engliš, Berezin Quantization and Reproducing Kernels on Complex Domains, Trans. Amer. Math. Soc. vol. 348 (1996), 411-479.
- [10] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65.

BIBLIOGRAFIA 31

[11] G. Herbort, On the geodesic of the Bergman metric, Math. Ann. 264 no. 1 (1983), 39–51.

- [12] A. V. Isaev; S. G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 no. 1 (1999), 1–38.
- [13] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. vol. 92 (1959), pp. 267-290.
- [14] A. Loi, Regular quantizations of Kähler manifolds and constant scalar curvature metrics, Journal of Geometry and Physics 53 (2005), 354-364.
- [15] A. Loi and F. Zuddas, Symplectic maps of complex domains into complex space forms, preprint (2007).
- [16] A. Loi and F. Zuddas, Extremal metrics on Hartogs domains, arXiv:0705.2124.
- [17] G. Roos, A. Wang, W. Yin, L. Zhang, The Kähler-Einstein metric for some Hartogs domains over symmetric domains, Sci. China Ser. A 49 no. 9 (2006), 1175-1210.