这就证明了 φ 是自同态,从而是自同构。

必要性。

若 φ 是自同构,则对任意 $a,b \in G$,

$$ab = ((ab)^{-1})^{-1}$$
 (教材定理 17.2(1))
$$= \varphi((ab)^{-1})$$
 (φ 定义)
$$= \varphi(b^{-1}a^{-1})$$
 (教材定理 17.2(2))
$$= \varphi(b^{-1})\varphi(a^{-1})$$
 (φ 是同构)
$$= (b^{-1})^{-1}(a^{-1})^{-1}$$
 (φ 定义)
$$= ba$$
 (教材定理 17.2(1))
这就证明了 G 是交换群。

17.62

(1)

证明:由于对任意正整数 n,t 都有 $n \mid nt$ 。由习题 17.52 知, φ 是自同态。

(2)

证明: 充分性。若 (n,t)=1,则存在 $p,q\in\mathbb{Z}$,使 pn+qt=1。从而对任意 $a^i\in G$,有 $a^i=a^{i-ipn}==a^{iqt}=\varphi(a^{iq})\in\varphi(G)$ 。从而 φ 是满自同态。再由习题 17.60 结论知, φ 是自同构。

必要性。若 φ 是自同构,则必是满射。因而,存在 $q\in\mathbb{Z}$,使得 $\varphi(a^q)=a^{qt}=a$,即, $qt-1\mid n$ 。从而必有 $k\in\mathbb{Z}$,使得 qt-1=kn,取 $p=-k\in\mathbb{Z}$,就有 pn+qt=1。从而有 (n,t)=1。

17.63

证明: 定义 $f: G \to \operatorname{Inn} G$, $\forall g \in G$, $f(g) = \varphi_g$ 。显然 f 是函数且为满射。下面证明 f 是同态。对任意 $x, y, a \in G$,

$$\varphi_{xy}(a) = xya(xy)^{-1}$$
 $= xyay^{-1}x^{-1}$
 $= \varphi_x(yay^{-1})$
 $= \varphi_x(\varphi_y(a))$
 $= \varphi_x \circ \varphi_y(a)$
 $(\varphi_{xy} 定义)$
 $(\varphi_x 定义)$
 $(\varphi_x 定义)$
 $(\varphi_x 定义)$
 $(\varphi_x 定义)$

这就证明了 f 是同态。

下面证明 $\ker f = C$ 。

 $\forall g \in G$,

 $g \in C$

$$\iff \forall a(a \in G \to ga = ag)$$

$$\iff \forall a(a \in G \to gag^{-1} = a)$$

$$\iff \forall a(a \in G \to \varphi_g(a) = a)$$

$$\iff \varphi_g = I_G$$

$$\iff g \in \ker f$$

$$(C 定义)$$

$$(万 定义)$$

$$(G 定义)$$

$$(G 定义)$$

$$(G 定义)$$

这就证明了 $\ker f = C$ 。由群同态基本定理就有, $G/C \cong \operatorname{Inn} G$ 。