Отчет

1 Авторы

Студенты группы М3439:

- Тепляков Валерий
- Плешаков Алексей
- Филипчик Андрей

2 Source code

Исходный код можно посмотреть тут

3 Задание 2

Исследуем заданные функции с помощью различных методов. Сводная таблица приведена ниже: [16]:

fn	alg	init	min	iters
0	Gradient descent	[0, 0]	(0.99990, 0.99990)	1850
0	Newton	[0, 0]	(1.00000, 1.00000)	1
0	ConjGrad	[0, 0]	(1.00000, 1.00000)	2
0	Gradient descent	[-1, 2]	(1.00000, 1.00000)	8
0	Newton	[-1, 2]	(1.00000, 1.00000)	1
0	$\operatorname{ConjGrad}$	[-1, 2]	(1.00000, 1.00000)	3
0	Gradient descent	[2, -1]	(1.00000, 1.00000)	6
0	Newton	[2, -1]	(1.00000, 1.00000)	1
0	$\operatorname{ConjGrad}$	[2, -1]	(1.00000, 1.00000)	3
0	Gradient descent	[4.2, 2.4]	(1.00000, 1.00000)	8
0	Newton	$[4.2,\ 2.4]$	(1.00000, 1.00000)	1
0	$\operatorname{ConjGrad}$	$[4.2,\ 2.4]$	(1.00001, 1.00001)	6
0	Gradient descent	[-0.01, 0.05]	(0.99998, 0.99999)	60
0	Newton	[-0.01, 0.05]	(1.00000, 1.00000)	1
0	$\operatorname{ConjGrad}$	[-0.01, 0.05]	(1.00000, 1.00000)	3
1	Gradient descent	[0, 0]	(0.99960, 0.99919)	5106
1	Newton	$[0, \ 0]$	(1.00000, 1.00000)	13
1	$\operatorname{ConjGrad}$	$[0, \ 0]$	(0.99977, 0.99954)	39
1	Gradient descent	[-1, 2]	(0.99957, 0.99914)	6190
1	Newton	[-1, 2]	(1.00000, 1.00000)	22
1	$\operatorname{ConjGrad}$	[-1, 2]	(1.00014, 1.00027)	49
1	Gradient descent	[2, -1]	(1.00003, 1.00006)	7512
1	Newton	[2, -1]	(1.00000, 1.00000)	14
1	ConjGrad	[2, -1]	(1.00007, 1.00013)	236
1	Gradient descent	[4.2, 2.4]	(1.00002, 1.00005)	58
1	Newton	[4.2, 2.4]	(1.00000, 1.00000)	26
1	ConjGrad	[4.2, 2.4]	(0.99997, 0.99993)	222
1	Gradient descent	[-0.01, 0.05]	(0.99957, 0.99914)	6941
1	Newton	[-0.01, 0.05]	(1.00000, 1.00000)	14
1	ConjGrad	[-0.01, 0.05]	(0.99998, 0.99996)	30
2	Gradient descent	[0, 0]	(1.26303, 1.33440)	14
2	Newton	[0, 0]	(1.26304, 1.33440)	5
2	ConjGrad	[0, 0]	(1.26304, 1.33440)	32
2	Gradient descent	[-1, 2]	(1.26303, 1.33440)	17
2	Newton	[-1, 2]	(1.26303, 1.33440)	5
2	$\operatorname{ConjGrad}$	[-1, 2]	(1.26303, 1.33440)	28
2	Gradient descent	[2, -1]	(1.26304, 1.33440)	17
2	Newton	[2, -1]	(1.26304, 1.33440)	7
2	ConjGrad	[2, -1]	(1.96715, 2.88612)	56
2	Gradient descent	[4.2, 2.4]	(1.96715, 2.88611)	15
2	Newton	[4.2, 2.4]	(1.96715, 2.88611)	4
2	ConjGrad	[4.2, 2.4]	(1.96715, 2.88611)	23
2	Gradient descent	[-0.01, 0.05]	(1.26303, 1.33440)	15
$\frac{2}{2}$	Newton ConiCred	[-0.01, 0.05]	(1.26304, 1.33440)	5 20
	ConjGrad	[-0.01, 0.05]	(1.26303, 1.33439)	28

4 Задание 3

Сравним используемые методы по количеству итераций для нахождения минимума, по времени работы и затраченной памяти. Видно, что реализованный метод Ньютона сходится сильно быстрее, а градиентный спуск сильно уступает остальным алгоритмам. Можно сказать что все алгоритмы затрачивают минимальное количество памяти, потому что при таких маленьких значениях делать выводы какой алгоритм лучше не рационально.

5 Задание 4

На графиках ниже можно наблюдать траектории различных алгоритмов на всех функциях и всех исходных точках (точка на графике — стартовое значение, крестик — результат алгоритма)

Также на графиках изображены линии уровня, и сетка раскрашена по значениям функции в точках (чем темнее — тем меньше значение, но помним, что 3 функция инвертированна)

