```
In [1]:
                                                                                         H
```

- 1 import numpy as np
- 2 import pandas as pd 3 import seaborn as sns

In [33]: H

1 n = pd.read_csv(r'nba.csv')

In [34]:

1 n

Out[34]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
453	Shelvin Mack	Utah Jazz	8.0	PG	26.0	6-3	203.0	Butler	2433333.0
454	Raul Neto	Utah Jazz	25.0	PG	24.0	6-1	179.0	NaN	900000.0
455	Tibor Pleiss	Utah Jazz	21.0	С	26.0	7-3	256.0	NaN	2900000.0
456	Jeff Withey	Utah Jazz	24.0	С	26.0	7-0	231.0	Kansas	947276.0
457	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

458 rows × 9 columns

In [35]:

```
1  nc = n.corr(numeric_only = True)
2  nc
```

Out[35]:

	Number	Age	Weight	Salary
Number	1.000000	0.028724	0.206921	-0.112386
Age	0.028724	1.000000	0.087183	0.213459
Weight	0.206921	0.087183	1.000000	0.138321
Salary	-0.112386	0.213459	0.138321	1.000000

HeatMap

In [36]: ▶

```
1 sns.heatmap(nc,annot =True)
```

Out[36]:

<AxesSubplot: >

Displot

```
In [7]:

1 sns.displot(x = 'Age', data = n, bins = 10, kde = True) # kde = Kernel Density Esti
```

Out[7]:

<seaborn.axisgrid.FacetGrid at 0x1942ebf8760>


```
In [8]: ▶
```

```
1 sns.countplot(x = 'Position', data = n)
```

Out[8]:

<AxesSubplot: xlabel='Position', ylabel='count'>


```
In [9]:
1    n.Position.value_counts()
```

Out[9]:

SG 102 PF 100 PG 92 SF 85 C 78

Name: Position, dtype: int64

```
In [11]:

1 # sns.countplot?
```

In [12]: ▶

```
1 n[n.Age == 40]
```

Out[12]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
298	Tim Duncan	San Antonio Spurs	21.0	С	40.0	6-11	250.0	Wake Forest	5250000.0
304	Andre Miller	San Antonio Spurs	24.0	PG	40.0	6-3	200.0	Utah	250750.0
400	Kevin Garnett	Minnesota Timberwolves	21.0	PF	40.0	6-11	240.0	NaN	8500000.0

In [13]: ▶

```
1 sns.jointplot(x = 'Age', y = 'Salary', data = n)
```

Out[13]:

<seaborn.axisgrid.JointGrid at 0x19431d6bc70>


```
In [16]: ▶
```

```
sns.barplot(x = 'Position', y = 'Age', data = n)
```

Out[16]:

<AxesSubplot: xlabel='Position', ylabel='Age'>

In [17]: ▶

1 # sns.barplot?

In [18]: ▶

```
1 sns.violinplot(x = 'Position', y = 'Age', data = n)
```

Out[18]:

<AxesSubplot: xlabel='Position', ylabel='Age'>

In [19]: ▶

```
1 ### Boxplot
2 sns.boxplot(x = 'Position', y = 'Age', data = n)
```

Out[19]:

<AxesSubplot: xlabel='Position', ylabel='Age'>


```
In [20]: ▶
```

```
1 # IQR = Q3 - Q1
2 # MaxIQR = Q3 + 1.5*IQR
3 # MinIQR = Q1 - 1.5*IQR
4
5 # Five Number Summary
6 # - Min
7 # - Q1
8 # - Q2
9 # - Q3
10 # - Max
```

In [21]: ▶

```
1 sns.stripplot(x = 'Position', y = 'Age', data = n)
```

Out[21]:

<AxesSubplot: xlabel='Position', ylabel='Age'>


```
In [23]: ▶
```

```
sns.scatterplot(y = 'Salary', x = 'Age', data = n, hue = 'Position')
```

Out[23]:

<AxesSubplot: xlabel='Age', ylabel='Salary'>


```
In [26]:

1 sns.pointplot?

In []:

1
```