Definition: Phase, Component, Parameter, Configuration I

 Most information systems consist of a number of processing units or components arranged in series, and each component is described by its input(s) and output(s).

Example

- A typical question answering system has four main component types: question analyzer, document retriever, passage extractor, answer generator [27].
- A typical ontology-based information extraction pipeline will integrate several preprocessors and aggregators [33].

Definition: Phase, Component, Parameter, Configuration II

These processing steps can be abstracted as phases and stages in a pipeline.

Definition (Phase, component, parameter, configuration)

- The processing unit as the *t*-th step in a process can be conceptualized as a **phase** *t*.
- A **component** f_t^c in phase t is an instantiated processing unit, which is associated with a set of **parameters**, denoted by $\{\omega_t^{c,p}\}_p$, which constitute a component **configuration** ω_t^c .

Definition: Phase, Component, Parameter, Configuration III

Example

- In Question Named Entity Recognition, a phase t in a question answering system where the input x_{t-1} is a question sentence, and the output x_t is a list of named entities.
- Component f_t^1 could be a rule-based named entity extractor, f_t^2 could be a CRF-based named entity extractor, and f_t^3 could be a named entity extractor based on knowledge base lookup. Configuration parameter value
- ω_t^1 could be the set of rules to use, ω_t^2 could be a weight trained for the CRF model, and ω_t^3 could refer to the knowledge base to be used by the component.

Definition: Phase, Component, Parameter, Configuration IV

■ Two important characteristics of the configured component.

Definition

- **Cost** of resource required to execute the component on input x: $c(f_t^c | \omega_t^c, x)$
- Benefit of executing the configured component to performance improvement: $b(f_t^c|\omega_t^c,x)$
- Resources used by a component include execution time, storage space, network bandwidth, etc., which can be measured by CPU time, allocated memory size, and data transfers respectively.

Definition: Phase, Component, Parameter, Configuration V

A resource utilization measure can also be a more specific function of component characteristics (e.g., the cost to execute a configured component on Amazon Web Services⁵ is a function of execution time and hardware capacity utilized).

Definition: Trace and configuration space I

A typical information processing task can be described as n processing phases arranged sequentially.

Definition (Trace and configuration space)

- A trace $\mathbf{f^c}|\omega^c$ is an execution path that involves a single configured component for each phase, which is formally defined as $(f_1^{c_1}|\omega_1^{c_1}, f_2^{c_2}|\omega_n^{c_2}, \dots, f_n^{c_n}|\omega_n^{c_n})$.
- The set of all components with all configurations comprise the configuration space $\mathscr{F}|\Omega=\{\mathbf{f^c}|\omega^{\mathbf{c}}\}_c$, and a subset $F|\Omega\subseteq\mathscr{F}|\Omega$ is referred to as a configuration subspace.

Definition: Trace and configuration space II

Example

- Question analyzers, document retrievers, passage extractors, and answer generators comprise the configuration space for a typical four-phase question answering task.
- One single execution path would be a unique combination of components (e.g. "Query tokenized by white-space string splitter, document retrieved from Indri repository index with default parameters, sentence extracted based on LingPipe sentence segmenter and VSM (Vector Space Model) similarity calculator") or a trace in the configuration space.
- Extension of cost and benefit for a trace and a configuration subspace

Definition: Trace and configuration space III

Definition

The cost to execute a trace is the sum of costs to execute each configured component.

$$c(\mathbf{f^c}|\omega^c, x_0) = \sum_{t=1}^{n} c(f_t^{c_t}|\omega_t^{c_t}, x(c_1, \dots, c_{t-1}))$$
 (1)

where $x(c_1,...,c_{t-1})$ represents the output from a series of executions (or a partial trace) $(f_1^{c_1}|\omega_1^{c_1},...,f_{t-1}^{c_{t-1}}|\omega_{t-1}^{c_{t-1}})$.

■ The performance of a trace corresponds to the final output from last execution.

$$b(\mathbf{f^c}|\omega^{\mathbf{c}}, x_0) = b(f_n^{c_n}|\omega_n^{c_n}, x(c_1, \dots, c_{n-1}))$$
 (2)

Definition: Trace and configuration space IV

Definition

The cost of the entire configuration subspace is defined as the sum of unique executions of configured components on all outputs from previous phases.

$$c(F|\Omega,x_0) = \sum_{t=1}^n \sum_{c_1=1}^{m_1} \cdots \sum_{c_t=1}^{m_t} c(f_t^{c_t}|\omega_t^{c_t},x(c_1,\ldots,c_{t-1}))$$
 (3)

The benefit of the configuration space is defined as the benefit of the best-performing trace.

$$b(F|\Omega, x_0) = \max_{\mathbf{f}^c \mid \omega^c \in F|\Omega} b(\mathbf{f}^c \mid \omega^c, x_0)$$
 (4)

Definition: Configuration space exploration I

Definition (Configuration space exploration)

- For a particular information processing task, defined by
 - m_t components for each of n phases: $f_t^1, f_t^2, \dots, f_t^{m_t}$, with
 - lacksquare corresponding configurations $\omega_t^1, \omega_t^2, \dots, \omega_t^{m_t}$, given
 - \blacksquare a limited total resource capacity $\mathscr C$ and
 - input set \(\mathcal{P} \),

configuration space exploration (CSE) aims to find the trace $\mathbf{f}^{\mathbf{k}}|\omega^{\mathbf{k}}$

- lacksquare within the configuration space $\mathscr{F}|\Omega$
- \blacksquare that achieves the highest expected performance without exceeding $\mathscr C$ of total cost.