

Charifica la cârica H= {(x,y) ER2 : x2-7y2-6xy+10x+2y+9=0}

Clavamente, $M_{R_0}(H) = \begin{pmatrix} 9 & 5 & 1 \\ 5 & 1 & -3 \\ 1 & 3 & -7 \end{pmatrix}$ =) núcleo cuadratico en $N_{R_0}(H) = \begin{pmatrix} 1 & -3 \\ -3 & -7 \end{pmatrix}$

Calculana poinonie canadentitico de NROCH), sabiendo que, dado que

RH = 2 = ru, chana en al cono I,

P(t) = \frac{1-6}{-3} = \frac{1}{2} + \frac{

=> t=-8, t=2 son valore propier de NRO(H). Luego, SH=SH=[t-5]=[1-1]=0 Partonto, la Jama reducida de Hen:

1. Encontral MR. (H)

L facontrau New (H) 3. Columber Ru, ru y defermina Y. Calcular polinomia caucal. de Na(11) 5. Determinar Suy Su 6. Deducir matrix equival y clarific

Encontrar un ninterna de referencia en el que adopten su ecuación reducida.

do primero será encontrar una bone B. en la que Na. (H) adopte su forma de Sylvester.

Calculance on la ruse facia propia arociada a la valore propia -7 y 2 $V_{-8} = \left\{ (x, 1) \in \mathbb{R}^2 : \begin{pmatrix} 9 & -3 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} = \sqrt{\left(9 \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix}$

 $V_{2} = \left\{ (x,y) \in \mathbb{R}^{2} : \begin{pmatrix} -1 & -3 \\ -3 & -q \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} = \alpha' \left(\left\{ (3,-1) \right\} \right)$

Normalizando vectore tenema ma bane ortanormal B, = { \frac{1}{\sum_0}(1,3), \frac{1}{\sum_0}(3,-1)\gamma} y la lorma de Sylventer (...) de Nr. (H) re alconte con la bone extogoral

 $B = \begin{cases} \frac{1}{\sqrt{8}\sqrt{10}} (1,3), & \sqrt{10} (3,-1) \end{cases} = \begin{cases} \frac{1}{2\sqrt{5}} (1,3), & \frac{1}{2\sqrt{5}} (3,-1) \end{cases}$ Sea R₁ = \((0,c), 15 \) in sistema de refermire. R(Id, R, Ro) = \(\begin{picture} 1 & 0 & c \\ 0 & \frac{1}{1\sqrt{5}} & \frac{3}{2\sqrt{5}} \\ 0 & \frac{3}{1\sqrt{5}} & \frac{3}{2\sqrt{5}} \end{picture}

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{17} & \sqrt{17} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & \sqrt{17} & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \sqrt{17} & 0$$

MR, (H) = M(Idie, R, Ro) + M(H) - M(Idie, Ri, R.)

 $M_{R_{2}}(H) = M(Id_{R^{2}}, R_{2}, R_{0})^{\frac{1}{6}} M_{R_{0}}(H) \cdot M(Id_{R^{2}}, R_{2}, R_{0}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Para lada afridad $\int_{0}^{1} R^{2} \rightarrow R^{2}$ rate me que $M_{R_{0}}(f(H)) = M(f^{-1}, R_{0})^{\frac{1}{6}} M_{R_{0}}(H) \cdot M(f^{-1}, R_{0}), \text{ into en, } M(f^{-1}, R_{0})^{\frac{1}{6}} M_{R_{0}}(H) \cdot M(f^{-1}, R_{0}) \in M_{R_{0}}(f(H))$ Auego, si clegima la única $\int_{0}^{1} f(H) dH dH dH dH dH$ $M(f(R_{0}))^{\frac{1}{6}} M(f(H))^{\frac{1}{6}} M(f(H)) = M(f(H))^{\frac{1}{6}} M(f(H))^{\frac{1}{6}}$

 $M(J,R_0) = M(J_{R_0},R_2,R_2,R_0) = \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{3}{2\sqrt{r}} & \frac{1}{4\sqrt{r}} & \frac{1}{4\sqrt{r}} & \frac{1}{4\sqrt{r}} & \frac{1}{4\sqrt{r}} \end{pmatrix}$

μα·(β(H)) = μ(β-1, Ro) + μα·(H)·μ(β'1, Ro) = μ(td., Re, Ro) μα(H)·μ(td., Re, Ro) = ημα(H)
= (0|00)
= (0|00)

Clanifica la cónica
$$H = \{(x,y) \in \mathbb{R}^2 : -39 - 18x + 9x^2 + 12xy + 8y + 4y^2 = 0\}$$

Tomana como sulema de xelcuncia el unual : Ro.

 $M_{Ro}(H) = \begin{pmatrix} -39 & -9 & 4 \\ -9 & 9 & 6 \\ 4 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 9 & 6 \\ 6 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 9 &$

Encontrar en sistema de referencia en el que adopter su forma conónica:

$$V_{13} = \left\{ (x_1 + y_1) \in \mathbb{R}^2 : \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} \right) \right\} = \left(\frac{1}{2} \right) \left\{ \frac{1}{2} - \frac{1}{2} \right\} = \left(\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \right) \left\{ \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \right\} = \left(\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \right) \left\{ \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \right\} = \left(\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \right) \left\{ \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \right\} = \left(\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \right) \left\{ \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \right\} = \left(\frac{1}{2} \left(\frac{1}{2}, \frac{1}{2} \right) \left(\frac{1}{2}, \frac{1}{2} \right) \left(\frac{1}{2}, \frac{1}{2} \right) \left(\frac{1}{2}, \frac{1}{2} \right) \left(\frac{1}{2} - \frac{$$

duego H vienz requientada en Ri jor les cuen del [-30] o polinomio $x^2 - \frac{38}{13}x - 60y - 39 = 0$ Completame cuaduade: $\left(x - \frac{19}{13}\right)^2 - 60y - \frac{6952}{169} = 0$ Placema cambi: de variable: $x_1 \in x - \frac{19}{13}$ e $y_1 = -30y - \frac{3476}{169}y$ surje oní en nunevo sintema de reference Re; H viene responent en Tre por la cua en $x_1^2 + 2y_1 = 0$

$$y \mid 0 \mid tanle : M_{R_2}(H) = \begin{pmatrix} 0 \mid 0 \mid 1 \\ 0 \mid 1 \mid 0 \end{pmatrix}$$

Si quana una determinación man explication del sintema de serfencia:

$$M\left(\text{Id}_{10^{2}}, R_{2}, R_{4}\right) = \begin{pmatrix} 1 & 0 & 0 \\ -1915 & A & 0 \\ -1916 & 0 & -3C \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1917 & 1 & 0 \\ -1918 & 0 & -1/30 \end{pmatrix}$$

$$M(I_{d_{10}}, R_2, R_4) = \begin{pmatrix} -\frac{10}{10} & A & 0 \\ -\frac{15}{10} & 0 & -3 & 0 \end{pmatrix} = \begin{pmatrix} \frac{10}{10} & A & 0 \\ -\frac{15}{10} & 0 & -\frac{1}{10} \\ -\frac{15}{10} & 0 & -\frac{1}{10} \end{pmatrix}$$

=)
$$M(Id_{IR}(,R_{2},R_{0}) = M(Id_{RR},R_{1}R_{0}) \cdot M(Id_{IR}(,R_{2},R_{4},R_{4}) = \begin{cases} \frac{1}{2CU} & 0 & 0 \\ -\frac{2CU}{3}/13 & -1/1c \\ \frac{1625}{1425} & \frac{1}{2}/12 & \frac{1}{2}/12 \end{cases}$$

En contrar un iromatinmo ofin de IR² que lleve a re evación reducida

$$M_{R_{\kappa}}(H) = \mathcal{M}(Id_{m^{\kappa}}, R_{2}, R_{0})^{\frac{1}{\kappa}} M_{m_{\kappa}}(H) \mathcal{M}(Id_{m^{\kappa}}, R_{\kappa}, R_{0}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ejercicio 3: Clonifica la riquiente cónican:

al 2x2-y2+4xy+6x-2y+1=0 =H

Considuana el sistema de referencia Ro

$$Ra_{\circ}(H) = \begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$
 =) Núcleo cuadrático de H en Ro: $Nr_{\circ}(H) = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$

(alculomon el polinomio conocheristico de Na.(H) =) p(t) = |2-t 2 | = 0 (=> -2-26+6+12-4=0 (=> 62-6-6=0

Valoren propier -2 y 3

=) (=1=5 =) | (=5| = 0 = 34)

$$R_{H} = rg \begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 2 \end{pmatrix} = 3$$
 $r_{H} = 2 = 3$ $R_{H} = r_{H} + 1 = 3$ $r_{H} = 3$ $r_{H} = 3$

Aplicando Regla de Descouter, deduens que 1 = 2 duego, RH=rH+1=3 y SH=SH+1 > Pavailale