Obstacle avoidance for autonomous drone using ultrasonic sensor and ARM cortex

Under the guidance of Dr. Deepak Fulwani

Contributors
K Vamsi(M22RM003)

Soham Padhye(M22RM007)

Agenda

- Introduction and motivation
- Interfacing the ultrasonic sensor
- Interfacing BLDC motor
- Integration of Ultrasonic sensor and BLDC motor
- Explanation of code
- Demonstration
- Future scope

Introduction and Motivation

What is Autonomous drones and what are its application

 An autonomous drone is a unmanned aerial vehicle (UAV) that is capable of flying and performing tasks without the need for direct human input or control.

Applications

Delivery services, Agriculture, Construction etc.

Why obstacle avoidance is important?

• Obstacle avoidance is critical for UAVs because it ensures safe and efficient operation.

Interfacing Ultrasonic sensor

What is Ultrasonic sensor and how it works

- It sends out a pulse of high-frequency sound waves.
- The pulse travels through the air until it reaches an object.
- When the pulse hits the object, it bounces back and returns to the sensor.
- The sensor measures the time it took for the pulse to travel to the object and back.

Interfacing Ultrasonic sensor

Characteristics of sensor

- Working Voltage -DC 5 V
- Working Current -15mA
- Max Range- 4m
- Min Range- 2cm
- Measuring Angle- 15 degree
- Trigger Input Signal 10uS pulse
- Echo- Output PWM signal
- Dimension 45*20*15mm

BLDC Motor Interfacing

- The BLDC motor consists of a rotor and a stator.
- The rotor contains permanent magnets and the stator has multiple windings of copper wire.
- When electric current is applied to the windings of the stator, it generates a rotating magnetic field.
- The permanent magnets in the rotor are attracted to the magnetic field and start rotating.
- The electric current flowing through the stator windings is controlled by an electronic speed controller Electronic speed control.

BLDC Motor Interfacing

- Features of DJI 2212 920KV Brushless Motor:
- KV(rpm/v): 920.
- Max Power: 370W.
- Max Thrust: 1200 grams.
- Weight: 53 grams.
- Shaft Diameter: 4mm.
- Shaft Length: 49mm Recommended Propeller
- Battery: Li-Po.30A ESC (recommended).

Electronic Speed Controller

- Used to control the speed and direction of BLDC motors
- Receives input signals from a control system or transmitter, which specifies the desired speed and direction of the motor.

What are the other benefits of ESC??

Explanation of Code

- Initialize the clocks for ports.
- Set the MODER for respective pins
- PB7 pin for trigger and PC6 pin for Echo.
- Calibrate the BLDC motor.
- Trigger ultrasonic sensor and wait for echo pulse.
- Calculate the distance and select the PWM of motor.
- Run continuously to get realtime distance.

Time for demonstration!!!

Explanation of Code (Please see the attached video)

Trigger PWM of motor Echo Distance

Future Scope

- To integrate zigbiee and collect battery voltage, speed data from UAV and transfer it to the Ground station for Real time analysis of the system.
- Use better sensor for obstacle avoidance like LiDAR (Light Detection and Ranging) sensors, Camera etc.

THANK YOU

Any questions??

