CS 430/536 Computer Graphics I

3D Viewing

Week 6. Lecture 12

David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

http://gicl.cs.drexel.edu

Overview

- · 3D Viewing
- 3D Projective Geometry
- · Mapping 3D worlds to 2D screens
- Introduction and discussion of homework #4

Lecture Credits: Most pictures are from Foley/VanDam; Additional and extensive thanks also goes to those credited on individual slides

ath courtesy of Dave Mount @ UMD-CP 1994 Foley/VanDam/Finer/Huges/Phillips ICC

Recall the 2D Problem

- · Objects exist in a 2D WCS
- · Objects clipped/transformed to viewport
- · Viewport transformed and drawn on 2D screen

PicsMath courtesy of Dave Mount @ UMD-CP

From 3D Virtual World to 2D Screen

- Not unlike The Allegory of the Cave (Plato's "Republic", Book VII)
- Viewers see a 2D shadow of 3D world
- How do we create this shadow?
- How do we make it as realistic as possible?

4

History of Linear Perspective

- · Renaissance artists
 - Alberti (1435)
 - Della Francesca (1470)
 - Da Vinci (1490)
 - Pélerin (1505)
 - Dürer (1525)

Dürer: Measurement Instruction with Compass and Straight Edge

http://www.handprint.com/HP/WCL/tech10.html

The 3D Problem: Using a Synthetic Camera • Think of 3D viewing as taking a photo: - Select Projection - Specify viewing parameters - Clip objects in 3D - Project the results onto the display and draw Clipped world output primitives Clip against view volume Project onto projection plane Project onto projection pr

The 3D Problem: (Slightly) Alternate Approach

- · Think of 3D viewing as taking a photo:
 - Select Projection
 - Specify viewing parameters
 - Perform trivial accept/reject test in 3D
 - Project the results onto the image plane
 - Clip lines to world window
 - Transform to viewport and draw

Creating a 3D View: Parameterizing the Camera Basic Ideas: Camera has location lens (focal length) projection type World has lights colors objects (visible and hidden surfaces)

Perspective Projections: Example • Two-point perspective, cutting x and z • Used commonly in CAD • Three-point projections are not much different Projection plane **Center of Projection **State Falley/Audicant Fineners Ages Trailey/Audicant F

Oblique Projections

 Cavalier - all lines (including receding lines) are made to their true length

shortening

 Cabinet - receding lines are shortened by one-half their true length to approximate perspective fore-

Oblique Projections are Good for Illustrations

Projection Relationships

- As the distance to the projection point moves toward infinity, the two projection families unify
 - Projection plane
 - Direction to center of projection
 - Distance to CoP

21

Specification of 3D Views

- Projection Plane == View Plane
 - defined as a view reference point (VRP) and a view plane normal (VPN)
 - View up vector (*VUP*) defines "up" on the plane (so we can orient axes on to the plane)

Specification of 3D Views

- View plane window min/max are specified wrt viewing reference coordinates (VRC)
 - axis 1 (of VRC): VPN (the *n* axis)
 - axis 2: VUP projected onto view plane (v axis)
 - axis 3: perpendicular to n & v, for RH CS (u axis)
 - CW: center of window

Aiming the Projection

- Defined by:
 - Projection Reference Point (PRP)
 - Projection type
 - PRP is defined in with View Reference Coordinates (VRC)
 - Result: a semi-infinite viewing pyramid or view parallelepiped
- Perspective
 - CoP = PRP
- Parallel
 - DoP = CW PRP

Examples of 3D Viewing: Preliminaries • Default parallel projection view volume - cuboidal PRP (b) 11 12 131 1204 Folgy/fuciclam/Frient/signe/Prolips 1.02

Programming assignment 4

- Read SMF file
- Implement parallel projection
- Implement perspective projection
- Output projected and clipped polygon edges

44