Le champ électrostatique

I-Notion de champ électrostatique:

1) Expérience :

En électrisant la boule d'un pendule électrostatique à l'aide d'un bâton d'ébonite électrisé par frottement puis en lui approchant un bâton de verre chargé positivement par frottement., on constate que le pendule s'incline et la boule prend une position après avoir être attirée vers le bâton.

2) Interprétation :

Dans la 1^{ère} position d'équilibre, le pendule est vertical, la boule se trouve seulement dans le champ de pesanteur : $\vec{P} + \vec{T}_o = \vec{0}$ Dans la 2^{ème} position d'équilibre, le pendule est incliné, la boule se trouve en plus du champ de pesanteur dans un autre champ appelée: le <u>champ électrostatique</u> dans lequel les charges positives du bâton appliquent une force appelée : <u>force électrostatique</u> sur les charges négatives de la boule du pendule.

Dans ce dernier cas la condition d'équilibre s'écrit : $\vec{P} + \vec{T} + \vec{F} = \vec{0}$ donc le polygone des trois forces est fermé.

3) Conclusion:

Dans une région de l'espace la charge électrique crée autour d'elle un champ électrique et tout corps chargé qui se trouve en un point de ce champ, est soumis à une force électrique.

Dans le cas de charges fixes dans le référentiel d'étude, le champ électrique est appelé champ électrostatique Le physicien français Coulomb a étudié les interactions électrostatiques et il a réalisé une expérience avec la balance de torsion en 1785 lui permettant de formuler la loi d'attraction et de la répulsion qui a pris son nom.

4)Enoncé de la loi de Coulomb :

Deux corps A et B de charges q_A et q_B s'attirent ou se repoussent selon une force proportionnelle à leur charge et inversement proportionnelle au carré de la distance qui les sépare.

Les deux forces ont :

-même droite d'action et des sens opposés

-même intensité.

$$F_{A/B} = F_{B/A} = K \cdot \frac{|q_A| \times |q_B|}{r^2}$$

$$F_{A/B} = F_{B/A} = K \cdot \frac{|q_A| \times |q_B|}{r^2}$$
 $K = \frac{1}{4\pi \cdot \varepsilon_o} = 9.10^9 \, N \cdot m^2 / C^2$

 ε_o : permittivité du vide, sa valeur: $\varepsilon_o = \frac{1}{36.10^9 \, \pi} = 8,84S.I.$

II-Champ électrique -force électrique :

1) Champ électrique créé par une charge ponctuelle:

Une charge ponctuelle Q, placé en un point A crée un champ électrique dans l'espace qui l'entour. En un point M de cet espace

(où règne le champ électrique) une charges q est soumise à une forces électrique: $\vec{F} = K \cdot \frac{Q \times q}{r^2} \cdot \vec{u}$ qui est de la forme: $\vec{F} = q \cdot \vec{E}$

Le vecteur champ électrique créé par la charge Q au point M tel que $\overrightarrow{AM} = r.\overrightarrow{u}$ est : $\overrightarrow{E} = K.\frac{Q}{r^2}.\overrightarrow{u}$

Remarquons que c'est la charge Q <u>qui a créé le champ électrique</u> alors que q a <u>subit la force électrique</u> (car elle est placé dans le champ électrique).

Toute charge immobile crée autour d'elle un champ électrique dont le <u>vecteur champ</u> \vec{E} en un point M du champ est <u>centripète</u> si la charge (qui crée le champ) est négative et <u>centrifuge</u> si elle est positive.

Les vecteurs champs sont centrifuges

Les vecteurs champs sont centripètes

2) *Force électrique* :

Toute charge q placé dans un champ électrique \vec{E} est soumise à une force électrique: $\vec{F} = q \cdot \vec{E}$ d'intensité: $F = |q| \cdot E$:

 $F: en \quad N$ $q: en \ C$ $E: en \ (V/m) \ ou \ (N/C)$

La force électrique $\overrightarrow{F}=q.\vec{E}$ -si q>0 , \vec{F} a le même sens que \vec{E} .

- si q<0 , \vec{F} a le même contraire de \vec{E} .

3) Champ électrique créé par deux charges ponctuelles:

Considérons deux charges ponctuelles : $q_1>0$ et $q_2<0$ placée respectivement aux point A et B et un point M qui n'appartient pas à la ligne AB. (tel que $|q_A|=|q_B|$)

Soit \vec{E}_1 le vecteur champ électrique créé par la charge q_1 au point M et \vec{E}_2 celui créé par la charge q_2 au point M.

Le vecteur champ électrique résultant \vec{E} créé par les deux charges au point M est égale à la somme des deux vecteurs \vec{E}_1 et \vec{E}_2 :

$$\vec{E} = \overline{E}_1^* + \overline{E}_2^*$$

Généralisation:

Le vecteur champ électrique créé par un ensemble de charges électriques ponctuelles est égale à la somme des champs électriques créé par chaque charge électrique .

$$\vec{E} = \sum_{i=1}^{i-n} \vec{E_i}$$

4) Lignes de Champ électrique :

On appelle ligne de champ la ligne qui , en chacun de ses *points*, est tangente au vecteur champ électrique \vec{E} .les lignes de champ sont orienté dans le sens du vecteur champ électrique.

III - Champ électrique uniforme:

1)Définition :

Un champ électrique est dit uniforme dans une région de l'espace si le vecteur champ conserve en tout point de cette région, la même direction, le même sens et la même valeur.

Entre deux plaques métalliques parallèles soumises à une différence de potentielle existe un champ électrique uniforme .

 V_A : potentiel de la plaque $\,A$.

V_B: potentiel de la plaque B.

d : distance entre les deux plaques

- Entre les deux plaques le champ électrique est uniforme.
- Les lignes de champ sont parallèles entre elles et perpendiculaires aux plans des plaques .
- Le vecteur champ électrique \vec{E} a le sens *des* potentiels décroissants c'est-à-dire de la plaque ayant le plus grand potentiel *vers* celle ayant le plus petit potentiel.
- La norme du champ électrique \vec{E} entre les plaques : $E = \frac{U_{AB}}{d}$ en (V/m) avec : $U_{AB} = V_A V_B$