

Devoir maison 2 : Intégration et mesurabilité

Premier semestre 2022

A rendre le lundi 28 novembre durant le TD. A faire par groupe de 3. Tout recopiage d'une solution sur internet (Stackexchange ou autre) sera puni par un o/20.

Exercise 1. Compute the following limits

1.
$$\lim_{n\to\infty} \int_1^n \frac{dx}{x^2+1/n}$$

1.
$$\lim_{n \to \infty} \int_{1}^{n} \frac{dx}{x^2 + 1/n}$$
 2. $\lim_{n \to \infty} \frac{1}{2^n} \int_{\mathbb{R}} (1 + \cos x)^n e^{-x^2} dx$ 3. $\lim_{n \to \infty} \int_{0}^{2\pi} \left(1 + \frac{ix}{n}\right)^n dx$ 4. $\lim_{n \to \infty} \int_{1}^{n} \frac{dx}{x + 1/n}$

3.
$$\lim_{n\to\infty} \int_0^{2\pi} \left(1+\frac{ix}{n}\right)^n dx$$

$$4. \lim_{n \to \infty} \int_{1}^{n} \frac{dx}{x + 1/n}$$

$\mathcal{E}_{xercise 2}$.

- 1. Let (X, \mathcal{F}, μ) be a measure space and (M, d) be a metric space. Consider $f_m : X \to \mathbb{C}$ for all $m \in M$, $f : X \to \mathbb{C}$ and $m_0 \in M$. Suppose the following :
 - f_m is measurable for all $m \in M$ and f is measurable.
 - For almost every $x \in X$, $\lim_{m \to m_0} f_m(x) = f(x)$.
 - There exists $g: X \to \mathbb{R}_+$ summable and r > 0 such that for almost every $x \in X$ and for all $m \in M$ such that $d(m, m_0) \le r$, we have $|f_m(x)| \le g(x)$.

Show that

$$\lim_{m\to m_0}\int_X f_m(x)d\mu(x)=\int_X f(x)d\mu(x).$$

2. Compute the following limit

$$\lim_{a\to 0}\int_0^1 \frac{1-e^{ax}}{x}dx$$

where the convergence $a \rightarrow 0$ takes place in \mathbb{R} .

Exercise 3. Let (X, \mathcal{F}, μ) be a measure space. Consider $f_n : X \to \mathbb{R}_+$ measurable and non-negative for all $n \in \mathbb{N}$ and $f: X \to \mathbb{R}_+$ measurable and non-negative. Suppose that f_0 is summable and that for all $x \in X$, $(f_n(x))_{n \in \mathbb{N}}$ is non-increasing and converges towards f(x). Show that

$$\lim_{n\to\infty}\int_X f_n(x)d\mu(x) = \int_X f(x)d\mu(x) < +\infty.$$

Is the above equality f is no longer summable? Justify.

Exercise 4. Let (X, \mathcal{F}, μ) be a measure space and consider a measurable non-negative function $f: X \to \mathbb{R}_+$. Suppose that

$$\liminf_{n\to\infty} \int_{Y} f(x)^n d\mu(x) < +\infty.$$

- 1. Show that $\mu(f^{-1}(]1, +\infty[)) = 0$.
- 2. Show that $\mu(f^{-1}(\{1\})) < +\infty$.
- 3. Using the result of Exercise 3 show that

$$\liminf_{n\to\infty} \int_X f(x)^n d\mu(x) = \lim_{n\to\infty} \int_X f(x)^n d\mu(x) = \mu \Big(f^{-1} \left(\{1\} \right) \Big).$$

Exercise 5. For all $x \ge 0$, let

$$F(x) = \int_0^{+\infty} e^{-xt} \frac{(1 - e^{-t})^2}{t^2} dt.$$

- 1. Show that *F* is well-defined and continuous on $[0, +\infty[$.
- 2. Show that *F* is of class C^2 on $]0,+\infty[$.
- 3. Compute the limit of F(x) and F'(x) when x goes to $+\infty$.
- 4. Compute F(x) for x > 0.
- 5. Compute F(0).

Exercise 6. Let $f \in L^2(\mathbb{R}_+)$ be real-valued and define $F(x) := \int_0^x f(t) dt$ for all $x \ge 0$.

- 1. Show that F(x) is well-defined for all $x \ge 0$ and that $F(x)x^{-1/2} \to 0$ when $x \to 0$.
- 2. Show that $F(x)x^{-1/2} \to 0$ when $x \to +\infty$.

Exercise 7. Let $g \in L^2(\mathbb{R}_+)$ be real-valued and define $G(x) := \frac{1}{x} \int_0^x g(t) dt$ for all x > 0. From the first question of Exercise 6, G is well-defined.

1. Show that for all x > 0

$$\left(\int_0^x g(t)dt\right)^2 \le 2\sqrt{x} \int_0^x \sqrt{t}g(t)^2 dt.$$

2. Deduce that $G \in L^2(\mathbb{R}_+)$ and $||G||_2 \le 2||g||_2$.

Exercise 8. Let (X, \mathcal{F}) be a measure space. Consider $f_n : X \to \mathbb{R}$ for all $n \in \mathbb{N}$ and $f : X \to \mathbb{R}$. Suppose that f_n is measurable for all $n \in \mathbb{N}$.

- 1. Suppose that $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in X$. Show that f is measurable.
- 2. Let μ be a measure on (X, \mathcal{F}) . Suppose that $\lim_{n\to\infty} f_n(x) = f(x)$ for almost every $x \in X$ (according to the measure μ). Is it true that f is measurable? Justify your answer. (Hint: you can admit, without any proof, that there exists a negligible set $N \subset \mathbb{R}$ which is not Borel).
- 3. We keep the assumptions of the previous question here. Show that there exists a measurable function $g: X \to \mathbb{R}$ such that g(x) = f(x) for almost every $x \in X$.

Exercise 9. Let *X* be a set and consider $f: X \to \mathbb{R}$. We define

$$\mathcal{F}:=\{f^{-1}(B):B\subset\mathbb{R}\text{ Borel set}\}.$$

- 1. Show that \mathcal{F} is a σ -algebra on X.
- 2. Let $h : \mathbb{R} \to \mathbb{R}$ be measurable. Show that $h \circ f : (X, \mathcal{F}) \to \mathbb{R}$ is measurable.
- 3. Let $g:(X,\mathcal{F})\to\mathbb{R}$ be measurable. Show that there exists $h:\mathbb{R}\to\mathbb{R}$ measurable such that $g=h\circ f$. (Hint: start with the case where g is an indicator function).

Exercise 10. Let $f \in L^1(\mathbb{R})$ be summable on \mathbb{R} . Suppose that for every continuous function $\varphi \in \mathcal{C}_c(\mathbb{R})$ with compact support $\int_{\mathbb{R}} f(x)\varphi(x)dx = 0$. Show that f = 0 almost everywhere.

