

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

yuchao.wang

 Report Reference No......
 MWR150600503

 FCC ID......
 2AFAP0AX1

Compiled by

(position+printed name+signature)... File administrators Martin Ao

Supervised by

(position+printed name+signature)... Test Engineer Yuchao Wang

Approved by

(position+printed name+signature)..: Manager Dixon Hao

Date of issue...... July 07, 2015

Representative Laboratory Name .: Maxwell International Co., Ltd.

Guangdong, China

Testing Laboratory Name Shenzhen CTL Testing Technology Co., Ltd.

Address Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road,

Nanshan, Shenzhen, China

Applicant's name...... ALPHA EXPORT AND IMPORT CO.,LIMITED

China

Test specification:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

TRF Originator...... Maxwell International Co., Ltd.

Maxwell International Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material. SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTDtakess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Mobile Phone

Trade Mark ALPHARD

Manufacturer...... ALPHA EXPORT AND IMPORT CO.,LIMITED

Model/Type reference..... AX1

Listed Models AX2, AX3, AX4, AX5, AX6, AX7, AX8, AX9, AX10

 $Modulation \ Type GFSK, 8DPSK, \pi/4DQPSK$

Operation Frequency...... From 2402MHz to 2480MHz

Rating DC 3.70V

Hardware version S9_V2.3

Result..... PASS

Page 2 of 47 Report No.: MWR150600503

TEST REPORT

Test Report No. :	MWR150600503	July 07, 2015
	WWW 150000505	Date of issue

Equipment under Test : Mobile Phone

Model /Type : AX1

Listed Models : AX2, AX3, AX4, AX5, AX6, AX7, AX8, AX9, AX10

Applicant : ALPHA EXPORT AND IMPORT CO.,LIMITED

Address : Room 4d, Huashang Block, NO.3, Biezhan Road,

Shenzhen, China

Manufacturer : ALPHA EXPORT AND IMPORT CO.,LIMITED

Address : Room 4d, Huashang Block, NO.3, Biezhan Road,

Shenzhen, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: MWR150600503

Contents

Produ Equip Short	al Remarks ct Description ment under Test	5 5
Produ Equip Short	ct Description ment under Test	
Equip Short	ment under Test	5
Short		5
	description of the Equipment under Test (EUT)	6
EUT o	peration mode	6
Intern	al Identification of AE used during the test	7
Relate	d Submittal(s) / Grant (s)	7
Modif	cations	7
Note		7
TES	T ENVIRONMENT	8
Addre	ss of the test laboratory	8
Test F		8
	onmental conditions	8
Test C	onditions	8
Summ	ary of measurement results	9
Equip	ments Used during the Test	10
TES	T CONDITIONS AND RESULTS	11
AC Po	wer Conducted Emission	11
Radia	ed Emission and Band Edge	14
Maxim	ium Peak Output Power	21
20dB	Bandwidth	22
Frequ	ency Separation	24
	er of hopping frequency	26
	of Occupancy (Dwell Time)	28
	ous RF Conducted Emission	30
	orandom Frequency Hopping Sequence	45
Anten	na Requirement	46
TES	T SETUP PHOTOS OF THE EUT	47
EXT	ERNAL PHOTOS OF THE EUT	47

Page 4 of 47 Report No.: MWR150600503

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>ANSI C63.10:2009</u>: American National Standard for Testing Unlicensed Wireless Devices

<u>DA 00-705</u>: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

Page 5 of 47 Report No.: MWR150600503

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample		Jun 18, 2015
Testing commenced on	:	Jun 20,2015
Testing concluded on	:	July 07 ,2015

2.2. Product Description

The **ALPHA EXPORT AND IMPORT CO.**, **LIMITED's** Model: AX1 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone
Model Number	AX1
Serial Number	AX8745B485
Modilation Type	GMSK for GSM/GPRS, 8-PSK for EDGE
Modifation Type	QPSK for UMTS
Antenna Type	Internal
UMTS Operation Frequency Band	Device supported UMTS Band I/UMTS Band V
	IEEE 802.11b:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11g:2412-2462MHz
WEAR 1 GO Operation frequency	IEEE 802.11n HT20:2412-2462MHz
	IEEE 802.11n HT40:2422-2452MHz
BT FCC Operation frequency	2402MHz-2480MHz
HSDPA Release Version:	Release 7, CAT14
HSUPA Release Version:	Release 6, CAT6
DC-HSUPA Release Version	Not Supported
WCDMA Release Version	R99
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
WEART OF Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
BT Modulation Type	GFSK (BT 4.0)/GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)
Hardware version	S9_V2.3
Software version	S9_72KK_KK_3G_EMMC_32_4_XX_ZXMD_20150604-
	114737
GPS function	Supported
WLAN	Supported 802.11b/802.11g/802.11n
Bluetooth	Supported BT 4.0/BT 3.0+EDR
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/PCS1900:Power Class 1
GSM/EDGE/GPRS Operation Frequency	GSM850 :824.2MHz-848.8MHz
, , ,	PCS1900:1850.2MHz-1909.8MHz
GSM/EDGE/GPRS Operation Frequency	GSM850/PCS1900/GPRS850/
Band	GPRS1900/EDGE850/EDGE1900
GSM Release Version	R99
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.00VDC to 4.35VDC (nominal: 3.70VDC)
GPRS operation mode	Class B

2.3. Equipment under Test

Power supply system utilised

Page 6 of 47 Report No.: MWR150600503

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
			Other (specified in blank below))

DC 3.70V

2.4. Short description of the Equipment under Test (EUT)

2.4.1 General Description

AX1 is subscriber equipment in the UMTS/GSM system. Support HSPA/UMTS frequency band I and band V, only UMTS band V used in USA; The GSM/GPRS/EDGE frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5. EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR (Basic Data Rate) mode. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

Channel	Frequency(MHz)	Channel	Frequency(MHz)	
00	2402	40	2442	
01	2403	03 41 2443		
02	2404	42	2444	
03	2405	43	2445	
04	2406	44	2446	
05	2407	45	2447	
06	2408	46	2448	
07	2409	47	2449	
08	2410	48	2450	
09	2411	49	2451	
10	2412	50	2452	
11	2413	51	2453	
12	2414	52	2454	
13	2415	53	2455	
14	2416			
15	2417	2417 55		
16	2418			
17	2419	57	2459	
18	2420	58	2460	
19	2421	59 24		
20	2422	60 2462		
21	2423	61 2463		
22	2424	62	2464	
23	2425	63	2465	
24	2426	64 2466		
25	2427			
26	2428			
27	2429	67	2469	
28	2430	68	2470	
29	2431	69 2471		
30	2432	70	2472	

Page 7 of 47 Report No.: MWR150600503

31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.6. Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1

Model: ETA-U90JWE

INPUT:100-240V 50/60Hz 0.35A

OUTPUT: DC 5.0V,2 A

*AE ID: is used to identify the test sample in the lab internally.

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AFAP0AX1** filling to comply with FCC Part 15.247 Rules

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. Note

1. The EUT is a Mobile Phone with UMTS/GSM/GPRS/EDGE, WiFi and Bluetooth function, The functions of the EUT listed as below:

	Test Standards	Reference Report	
GSM/GPRS/EDGE	FCC Part 22/FCC Part 24 MWR1506005		
WCDMA	FCC Part 22 MWR150600502		
Bluetooth	FCC Part 15 C 15.247	MWR150600503	
BLE	FCC Part 15 C 15.247 MWR1506005		
WiFi	FCC Part 15 C 15.247 MWR150600505		
USB Port	FCC Part 15 B MWR1506005		
SAR	FCC Part 2 §2.1093	MWR150600507	

Page 8 of 47 Report No.: MWR150600503

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, Dec 19, 2013

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Test Conditions

Test Case	Test Conditions				
Test Case	Configuration	Description			
	Meas. Method	DA 00-705			
20dB Emission	Test Environment	NTNV			
Bandwidth (EBW)	EUT Conf.	TM1_DH5_Ch00,TM1_DH5_Ch39,TM1_DH5_Ch78, TM3_3DH5_Ch00,TM3_3DH5_Ch39,TM3_3DH5_Ch78,			
Operation Francisco	Meas. Method	DA 00-705			
Carrier Frequency	Test Environment	NTNV			
Separation	EUT Conf.	TM1_DH5_Hop, TM3_3DH5_Hop,			
No make an efficiency	Meas. Method	DA 00-705			
Number of Hopping Channel	Test Environment	NTNV			
Channel	EUT Conf.	TM1_DH5_Hop ,TM3_3DH5_Hop,			
Time of Occurrence	Meas. Method	DA 00-705			
Time of Occupancy (Dwell Time)	Test Environment	NTNV			
	EUT Conf.	TM1_DH5_Ch39,TM3_3DH5_Ch39.			
	Meas. Method	DA 00-705			
Maximum Dook	Test Environment	NTNV			
Maximum Peak Conducted Output Power	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch39,TM1_DH3_Ch78,TM2 _2DH3_Ch00,TM2_2DH3_Ch39,TM2_2DH3_Ch78,TM3 _3DH3_Ch00,TM3_3DH3_Ch39,TM3_3DH3_Ch78,			
Dan da da a a a a a a a a a a a a a a a a	Meas. Method	DA 00-705			
Bandedge spurious	Test Environment	NTNV			
emission (Conducted)	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch78, TM3_3DH3_Ch00,TM3_3DH3_Ch78,			
	Meas. Method	DA 00-705			
Conducted RF Spurious Emission	Test Environment	NTNV			
	EUT Conf.	TM1_DH5_Ch00, TM1_DH5_Ch39, TM1_DH5_Ch78, TM3_3DH5_Ch39, TM3_3DH5_Ch78.			
Radiated Emissions in the Restricted Bands	Meas. Method	DA 00-705 30 MHz to 1 GHz:			

Page 9 of 47 Report No.: MWR150600503

	Pre: RBW=100kHz; VBW=300kHz; Det. = Peak.
	Final: RBW=120kHz; Det. = CISPR Quasi-Peak.
	1 GHz to 26.5GHz:
	Average: RBW=1 MHz; VBW= 10Hz; Det. = Peak;
	Sweep-time= Auto; Trace = Single.
	Peak: RBW=1 MHz; VBW= 3 MHz; Det. = Peak; Sweep-
	time= Auto:
	Trace≥ MaxHold * 100.
Test Environment	NTNV
	30 MHz-1GHz TM1_DH5_Ch00 (Worst Conf.).
EUT Conf.	1-18 GHz: TM1 DH5 Ch00, TM1 DH5 Ch39,
	TM1_DH5_Ch78, (Worst Conf.).

Test Case	Test Conditions				
rest case	Configuration	Description			
AC Davier Line Conducted	Measurement Method	AC mains conducted.			
AC Power Line Conducted Emissions	Test Environment	NTNV			
EIIIISSIOIIS	EUT Configuration	TM1_DH5_Ch39. (Worst Conf.).			

Note:

- 1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.
- 2. For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

3.5. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	 Lowest Middle Highest	\boxtimes				complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-			\boxtimes		Not applicable for FHSS!
§15.247(a)(1)	Carrier Frequency separation	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK 8DPSK	⊠ Full	GFSK 8DPSK	⊠ Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	 Lowest Middle Highest					complies
§15.247(d)	Band edge compliance conducted	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK 8DPSK		\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK						complies
§15.247(d)	TX spurious emissions conducted	GFSK 8DPSK	 Lowest Middle Highest	GFSK 8DPSK	 Lowest Middle Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	 Lowest Middle Highest	\boxtimes				complies
§15.209(a)	TX spurious	GFSK	-/-	GFSK	-/-	\square				complies

Page 10 of 47 Report No.: MWR150600503

	Emissions radiated < 30 MHz							
§15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-			complies

- The measurement uncertainty is not included in the test result.

 NA = Not Applicable; NP = Not Performed

 We tested all test mode and recorded worst case in report
- 2.
- 3.

3.6. Equipments Used during the Test

AC Po	AC Power Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	LISN	R&S	ENV216	3560.6550.12	2015/06/02			
2	LISN	R&S	ESH2-Z5	860014/010	2015/06/02			
3	EMI Test Receiver	R&S	ESCI	103710	2015/06/02			
4	Transient Limiter	SCHWARZCECK	VTSD 9561F	9666	2015/06/02			
5	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A			
6	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2015/05/20			

Radia	Radiated Emission								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.				
1	Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02				
2	EMI TEST Receivcer	R&S	ESCI	103710	2015/06/02				
3	EMI TEST Software	Audix	E3	N/A	N/A				
4	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A				
5	HORN ANTENNA	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19				
6	Loop Antenna	Daze	ZN30900A	N/A	2015/05/19				
7	Horn Antenna	ShwarzBeck	BBHA9170	25841	2015/05/19				
8	Amplifer	HP	8349B	3008A02306	2015/05/19				
9	Preamplifier	HP	8447D	2944A10176	2015/05/19				
10	Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21				
11	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	2015/05/21				
15	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2015/05/21				

	Maximum Peak Output Power / 20dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Power meter	Rohde & Schwarz	NRVD	260540	2015/07/02			
2	Power Sensor	Rohde&Schwarz	NRR-Z81	256697	2015/07/02			
3	Coaxial Cables	WK CE Cable	N/A	N/A	2014/10/19			
4	The temporary antenna connector	MMCX - SMA	1547	23657478	2014/10/19			
5	Cable	MURATA	MM8430-2610	11548	2014/10/19			

The Cal.Interval was one year

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4. The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguanav					
Frequency (MHz)	CLA	SS A	CLASS B		
(IVITIZ)	Q.P.	Ave.	Q.P.	Ave.	
0.15 - 0.50	79	66	66-56*	56-46*	
0.50 - 5.00	73	60	56	46	
5.00 - 30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Note: We tested Conducted Emission of GFSK, $\pi/4$ DQPSK and 8DPSK mode from 0.15 KHz to 30MHz (DH1, DH3 and DH5) and all channels (low, middle and high), recorded the worst case data at GFSK DH5 middle channel.

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL150703209 fin"

7/3/2015 7:2 Frequency MHz	0PM Level dBμV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.162000 0.728000 0.824000 0.848000 1.082000 1.976000	56.10 40.10 38.60 38.30 38.60 40.50	9.9 10.0 10.1 10.1 10.2	65 56 56 56 56	9.3 15.9 17.4 17.7 17.4	QP QP QP QP QP OP	L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "CTL150703209_fin2"

	015 7:20 quency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.	158000	38.80	9.9	56	16.8	AV	L1	GND
0.	554000	26.00	9.9	46	20.0	AV	L1	GND
0.	734000	23.00	10.0	46	23.0	AV	L1	GND
1.0	082000	21.80	10.2	46	24.2	AV	L1	GND
1.	970000	24.40	10.4	46	21.6	AV	L1	GND
3.	056000	24.50	10.5	46	21.5	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M) FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL150703208 fin"

 2015 7:56F requency MHz		Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
			'		0.5	3.7	and.
0.162000 0.250000	58.70 42.70	9.9 9.9	65 62	6.7 19.1	QP QP	N N	GND GND
0.326000 0.466000	43.50 36.60	9.9 9.9	60 57	16.1 20.0	QP QP	N N	GND GND
0.578000	33.70	9.9	56	22.3	QP	N	GND

MEASUREMENT RESULT: "CTL150703208_fin2"

7/3/2015 7:5 Frequency MHz	66PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154000	39.10	9.9	56	16.7	AV	N	GND
0.246000	25.60	9.9	52	26.3	AV	N	GND
0.310000	25.40	9.9	50	24.6	AV	N	GND
0.548000	18.90	9.9	46	27.1	AV	N	GND
2.030000	19.10	10.4	46	26.9	AV	N	GND
4.046000	19.20	10.6	46	26.8	AV	N	GND

4.2. Radiated Emission and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360 $^{\circ}$ C to acquire the highest emissions from EUT.
- 3. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Repeat above procedures until all frequency measurements have been completed.
- 6. The EUT minimum operation frequency was 32.768 KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.

7. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	3

8. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be

Report No.: MWR150600503

at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. The radiated measurement are performed the each channel (low/mid/high) at all Packet type (DH1, DH3 and DH5) also for difference modulation type (GFSK, 8DPSK), recorded worst case at GFSK_DH5_Low channel (Channel 00) for below 1GHz and GFSK_DH5_Low channel (Channel 00), GFSK_DH5_Middle channel (Channel 39), GFSK_DH5_High channel (Channel 78) for above 1G.
- 2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.
- 3. HORN ANTENNA for the radiation emission test above 1G.
- 4. Test Mode: Continuously transmitting
- 5. "---" means not recorded as emission levels lower than limit.
- 6. Margin= Limit Level
- 7. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

For 9KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
12.48	42.47	69.54	27.07	QP	PASS
23.54	39.75	69.54	29.79	QP	PASS

For 30MHz to 1000MHz

Polarization Vertical

MEASUREMENT RESULT: "CTL150703116_red"

7/3/2015 2:	:59PM							
Frequency		Transd			Det.			Polarization
MHz	dBµV/m	dB	dBµV/m	dB		cm	deg	
43.580000	27.20	-16.1	40.0	12.8		100.0	31.00	VERTICAL
549.920000	35.60	-9.5	46.0	10.4		100.0	345.00	VERTICAL
720.640000	35.40	-6.8	46.0	10.6		100.0	250.00	VERTICAL
749.740000	36.50	-6.1	46.0	9.5		100.0	78.00	VERTICAL
802.120000	34.60	-5.8	46.0	11.4		100.0	345.00	VERTICAL
850.620000	34.40	-5.1	46.0	11.6		100.0	250.00	VERTICAL

Polarization Horizontal

MEASUREMENT RESULT: "CTL150703115_red"

7/3/2015 2:5 Frequency MHz	6PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
233.700000 253.100000	38.90 40.20	-16.1 -15.7	46.0 46.0	7.1 5.8		100.0	185.00	HORIZONTAL
749.740000	37.50	-6.1	46.0	8.5		100.0	136.00	HORIZONTAL
790.480000 850.620000	37.90 39.30	-5.8 -5.1	46.0 46.0	8.1 6.7		100.0	167.00 347.00	HORIZONTAL HORIZONTAL
875.840000	39.20	-4.6	46.0	6.8		100.0	116.00	HORIZONTAL

For 1GHz to 25GHz

Low Channel @ Channel 00 @ 2402 MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
No.	Frequency (MHz)	Emssion Level (dBuV/m)		Level		Level		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2402.00	98.84	PK			100.80	28.78	4.61	35.36	-1.96				
2	2402.00	89.54	ΑV		-	91.50	28.78	4.61	35.36	-1.96				
3	2390.00	36.25	PK	74.00	37.75	38.29	28.72	4.60	35.36	-2.04				
4	2390.00		AV	54.00										
5	2400.00	53.24	PK	74.00	20.76	55.21	28.78	4.61	35.36	-1.97				
6	2400.00		ΑV	54.00	-	-			-					
7	4804.00	57.26	PK	74.00	16.74	52.75	33.49	6.91	35.89	4.51				
8	4804.00	49.25	ΑV	54.00	4.75	44.74	33.49	6.91	35.89	4.51				
9	7206.00	50.21	PK	74.00	23.79	39.10	36.95	9.18	35.03	11.11				
10	7206.00		ΑV	54.00										

	ANTENNA POLARITY & TEST DISTANCE: VERTICAI AT 3 M													
No.	Frequency (MHz)	Emssi Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)				
1	2402.00	99.65	PK			101.61	28.78	4.61	35.36	-1.96				
2	2402.00	90.25	ΑV			92.21	28.78	4.61	35.36	-1.96				
3	2390.00	35.41	PK	74.00	38.59	37.45	28.72	4.60	35.36	-2.04				
4	2390.00		ΑV	54.00										
5	2400.00	52.65	PK	74.00	21.35	54.62	28.78	4.61	35.36	-1.97				
6	2400.00		ΑV	54.00										
7	4804.00	58.56	PK	74.00	15.44	54.05	33.49	6.91	35.89	4.51				
8	4804.00	50.24	ΑV	54.00	3.76	45.73	33.49	6.91	35.89	4.51				
9	7206.00	49.41	PK	74.00	24.59	38.30	36.95	9.18	35.03	11.11				
10	7206.00		ΑV	54.00		-								

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.

Middle Channel @ Channel 39 @ 2441 MHz

Report No.: MWR150600503

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
No.	Frequency (MHz)	Emssion Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)			
1	2441.00	98.35	PK			100.21	28.85	4.66	35.37	-1.86			
2	2441.00	91.20	ΑV			93.06	28.85	4.66	35.37	-1.86			
3	4882.00	58.26	PΚ	74.00	15.74	52.00	33.60	6.95	34.30	6.26			
4	4882.00	50.41	ΑV	54.00	3.59	44.15	33.60	6.95	34.30	6.26			
5	7323.00	48.21	PK	74.00	25.79	34.42	37.46	9.23	32.91	13.79			
6	7323.00		ΑV	54.00									

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M												
No.	Frequency (MHz)	Emssi Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)			
1	2441.00	99.36	PK			101.22	28.85	4.66	35.37	-1.86			
2	2441.00	89.54	ΑV		-	91.40	28.85	4.66	35.37	-1.86			
3	4882.00	58.15	PK	74.00	15.85	51.89	33.60	6.95	34.30	6.26			
4	4882.00	51.41	AV	54.00	2.59	45.15	33.60	6.95	34.30	6.26			
5	7323.00	49.25	PK	74.00	24.75	35.46	37.46	9.23	32.91	13.79			
6	7323.00		ΑV	54.00									

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.

High Channel @ Channel 78 @ 2480 MHz

Report No.: MWR150600503

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
No.	Frequency (MHz)	Emssion Level (dBuV/m)		Level		Level		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2480.00	97.58	PK		-	99.33	28.92	4.70	35.38	-1.75				
2	2480.00	88.62	ΑV		-	90.37	28.92	4.70	35.38	-1.75				
3	2483.50	54.24	PK	74.00	19.76	55.98	28.93	4.70	35.38	-1.74				
4	2483.50	50.21	ΑV	54.00	3.79	51.95	28.93	4.70	35.38	-1.74				
5	2500.00	36.20	PK	74.00	37.8	37.90	28.96	4.72	35.38	-1.70				
6	2500.00		ΑV	54.00										
7	4960.00	57.30	PK	74.00	16.7	52.38	33.84	7.00	35.92	4.92				
8	4960.00	48.54	ΑV	54.00	5.46	43.62	33.84	7.00	35.92	4.92				
9	7440.00	50.20	PK	74.00	23.8	38.25	37.64	9.28	34.97	11.95				
10	7440.00		ΑV	54.00										

	ANTENNA POLARITY & TEST DISTANCE: VERTICAI AT 3 M									
No.	Frequency (MHz)	Emssi Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2480.00	99.32	PK			101.07	28.92	4.70	35.38	-1.75
2	2480.00	90.41	ΑV			92.16	28.92	4.70	35.38	-1.75
3	2483.50	55.21	PK	74.00	18.79	56.95	28.93	4.70	35.38	-1.74
4	2483.50	51.25	ΑV	54.00	2.75	52.99	28.93	4.70	35.38	-1.74
5	2500.00	35.27	PK	74.00	38.73	36.97	28.96	4.72	35.38	-1.70
6	2500.00		ΑV	54.00						
7	4960.00	58.26	PK	74.00	15.74	53.34	33.84	7.00	35.92	4.92
8	4960.00	50.41	ΑV	54.00	3.59	45.49	33.84	7.00	35.92	4.92
9	7440.00	48.30	PK	74.00	25.7	36.35	37.64	9.28	34.97	11.95
10	7440.00		ΑV	54.00	-		-			

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

EUT	Power Sensor

TEST PROCEDURE

According to ANSI C63.10:2009 Maximum peak conducted output power: Connect antenna port into power meter and reading Peak values.

LIMIT

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Remark: We test maximum peak output power at difference Packet Type, recorded worst case at DH5,2DH5,3DH5

Test Mode	Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
	00	2402	4.42		
GFSK	39	2441	4.65		
	78	2480	4.25		
	00	2402	3.26		
π/4 DQPSK	39	2441	3.52	21	PASS
	78	2480	3.27		
	00	2402	3.52		
8DPSK	39	2441	3.65		
	78	2480	3.47		

Note:

^{1.} The test results including the cable lose.

Page 22 of 47 Report No.: MWR150600503

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

<u>LIMIT</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

TEST RESULTS

Channel	Frequency	20dB Band	width (MHz)	Limits	Verdict	
Chamilei	(MHz)	GFSK	8DPSK	(MHz)	verdict	
00	2402	0.894	1.158	1	PASS	
39	2441	0.864	1.158	1	PASS	
78	2480	0.900	1.158	1	PASS	

Test Plots for next page

4.5. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100 KHz.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5) and all test channels, recorded worst case at DH5 and middle channel.

4.5.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
39	2441	1.004	Plot 4.5.1 A	0.8702	PASS
40	2442	1.004	P101 4.5.1 A	0.6702	PASS

(Plot 4.5.1 A: Channel 39: 2441MHz @ GFSK)

4.5.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
39	2441	1.04	Plot 4.5.2 A	0.84936	PASS
40	2442	1.04	P101 4.5.2 A	0.64936	PASS

(Plot 4.5.2 A: Channel 39: 2441MHz @ 8DPSK)

4.6. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=30 KHz and VBW=100 KHz.

LIMIT

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

4.6.1 GFSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.6.1 A1	≥15	PASS

(Plot 4.6.1 A1: @ GFSK)

4.7.2 8DPSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.6.2 A1	≥15	PASS

(Plot 4.6.2 A1: @ 8DPSK)

4.7. Time of Occupancy (Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz, Span=0Hz.

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Remark: 1. We test Frequency Separation at all test channels, recorded worst case at middle channel.

Mode	Frequency	Pulse W	idth (ms)	Dwell T	ime (S)	Limit	Verdict
Wiode	(MHz)	GFSK	8DPSK	GFSK	8DPSK	(S)	verdict
DH1	2441	0.393	0.381	0.126	0.122	0.4	PASS
DH3	2441	1.510	1.643	0.242	0.263	0.4	PASS
DH5	2441	2.885	2.881	0.308	0.307	0.4	PASS

Remark:

Dwell time calculate format as follow:

DH1: Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second DH3: Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second DH5: Dwell time=Pulse Time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second

Test Plots for next page

Page 30 of 47 Report No.: MWR150600503

4.8. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2009 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength, and measurement frequency range from 9KHz to 26.5GHz.

LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark:

- 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.
- 2. We tested conducted spurious from 9KHz to 10th harmonic of the carrier frequency, and only recorded from 30MHz to 10th harmonic of the carrier frequency.

4.9.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
		30MHz-3GHz	Plot 4.9.1 A1	-20	PASS
00	2402	3GHz-15GHz	Plot 4.9.1 A2	-20	PASS
		15GHz-25GHz	Plot 4.9.1 A3	-20	PASS
		30MHz-3GHz	Plot 4.9.1 B1	-20	PASS
39	2441	3GHz-15GHz	Plot 4.9.1 B2	-20	PASS
		15GHz-25GHz	Plot 4.9.1 B3	-20	PASS
		30MHz-3GHz	Plot 4.9.1 C1	-20	PASS
78	2480	3GHz-15GHz	Plot 4.9.1 C2	-20	PASS
		15GHz-25GHz	Plot 4.9.1 C3	-20	PASS

Frequency (MHz)	Delta Peak to Band emission (dBc)	Refer to Plot	Hoping Mode	Limit (dBc)	Verdict
2400.00	-50.03	Plot 4.9.1 D1	OFF	-20	PASS
2400.00	-50.99	Plot 4.9.1 D2	ON	-20	PASS
2483.50	-51.67	Plot 4.9.1 D3	OFF	-20	PASS
2483.50	-51.69	Plot 4.9.1 D4	ON	-20	PASS

Note:

- 1. The test results including the cable lose.
- B. Test Plots

(Plot 4.9.1 A1: Channel 00: 2402MHz @ GFSK)

(Plot 4.9.1 A2: Channel 00: 2402MHz @ GFSK)

(Plot 4.9.1 A3: Channel 00: 2402MHz @ GFSK)

(Plot 4.9.1 B1: Channel 39: 2441MHz @ GFSK)

(Plot 4.9.1 B2: Channel 39: 2441MHz @ GFSK)

(Plot 4.9.1 B3: Channel 39: 2441MHz @ GFSK)

(Plot 4.9.1 C1: Channel 78: 2480MHz @ GFSK)

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)

(Plot 4.9.1 D1: Left Bandedge Hopping OFF @ GFSK)

(Plot 4.9.1 D2: Left Bandedge Hopping ON @ GFSK)

(Plot 4.9.1 D3: Right Bandedge Hopping OFF @ GFSK)

Page 37 of 47 Report No.: MWR150600503

(Plot 4.9.1 D4: Right Bandedge Hopping ON @ GFSK)

4.9.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
		30MHz-3GHz	Plot 4.9.2 A1	-20	PASS
00	2402	3GHz-15GHz	Plot 4.9.2 A2	-20	PASS
		15GHz-25GHz	Plot 4.9.2 A3	-20	PASS
		30MHz-3GHz	Plot 4.9.2 B1	-20	PASS
39	2441	3GHz-15GHz	Plot 4.9.2 B2	-20	PASS
		15GHz-25GHz	Plot 4.9.2 B3	-20	PASS
78	2480	30MHz-3GHz	Plot 4.9.2 C1	-20	PASS
		3GHz-15GHz	Plot 4.9.2 C2	-20	PASS
		15GHz-25GHz	Plot 4.9.2 C3	-20	PASS

Frequency (MHz)	Delta Peak to Band emission (dBc)	Refer to Plot	Hoping Mode	Limit (dBc)	Verdict
2400.00	-48.88	Plot 4.9.2 D1	OFF	-20	PASS
2400.00	-47.48	Plot 4.9.2 D2	ON	-20	PASS
2483.50	-49.56	Plot 4.9.2 D3	OFF	-20	PASS
2483.50	-49.54	Plot 4.9.2 D4	ON	-20	PASS

Note

- 1. The test results including the cable lose.
- B. Test Plots

(Plot 4.9.2 A1: Channel 00: 2402MHz @ @ 8DPSK)

(Plot 4.9.2 A2: Channel 00: 2402MHz @ @ 8DPSK)

(Plot 4.9.2 A3: Channel 00: 2402MHz @ @ 8DPSK)

(Plot 4.9.2 B1: Channel 39: 2441MHz @ @ 8DPSK)

(Plot 4.9.2 B2: Channel 39: 2441MHz @ @ 8DPSK)

(Plot 4.9.2 B3: Channel 39: 2441MHz @ @ 8DPSK)

(Plot 4.9.2 C1: Channel 78: 2480MHz @ @ 8DPSK)

(Plot 4.9.2 C2: Channel 78: 2480MHz @ @ 8DPSK)

(Plot 4.9.2 C3: Channel 78: 2480MHz @ @ 8DPSK)

(Plot 4.9.2 D1: Left Bandedge Hopping OFF @ 8DPSK)

(Plot 4.9.2 D2: Left Bandedge Hopping ON @ 8DPSK)

(Plot 4.9.2 D3: Right Bandedge Hopping OFF @ 8DPSK)

(Plot 4.9.2 D4: Right Bandedge Hopping ON @ 8DPSK)

4.9. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE

For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-tentatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: MWR150600503

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of Bluetooth antenna was -0.47dBi and it is a FPC ANT.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal BT devices, the GFSK mode is used.

Measurement parameters

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1MHz			
Video bandwidth:	3MHz			
Trace-Mode:	Max hold			

Limits

FCC	IC			
Antenna Gain				
6 dBi				

Results

T _{nom}	V_{nom}	Lowest Channel 2402 MHz	Middle Channel 2441 MHz	Highest Channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		4.35	4.59	4.21
Radiated power [dBm] Measured with GFSK modulation		3.57	4.01	3.44
Gain [dBi] Calculated		-0.78	-0.58	-0.77
Measuremer	nt uncertainty	± 0.6 dB (cond.) / ± 2.56 dB (rad.)		

Report No.: MWR150600503

5. Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

6. External Photos of the EUT

Please refer to separated files for External Photos of the EUT.

7. Internal Photos of the EUT

Please refer to separated files for Internal Photos of the EUT.	
End of Report	