Tutorial: Optogenetic interrogation of neuronal circuits involved in fear and anxiety

Outline

- Background
 - Emotional circuits
 - Fear/Anxiety: Mouse models
- Designing an optogenetic experiment
- Methodological considerations
- Viral expression + Surgery
- Behavior + Optogenetics
- Analysis
- Histology + Microscopy
- Summary

Emotion Circuits

Shin, L. M., & Liberzon, I. (2010). The Neurocircuitry of Fear, Stress, and Anxiety Disorders. Neuropsychopharmacology, 35(1), 169–191.

https://www.drmanipavuluri.com/explaining-brain/rewar d-and-emotion-circuits-are-linked-in-the-brain-a-hot-me ss-if-things-go-wrong/

Animal models for studying fear/anxiety

- Analogous behaviors in animals
- Network/circuitry involved in fear & anxiety highly conserved across species and evolution

Tovote P, Fadok JP, Lüthi A. (2015) Neuronal circuits for fear and anxiety.

Elucidating circuitry with optogenetics

Optogenetics:

- Target not just nuclei, but also projections
 - Can establish causal roles of connections between areas
 - Highly complementary to imaging techniques
- More clear idea of circuit parts underlying behavior

A.C. Felix-Ortiz, A. Burgos-Robles, N.D. Bhagat, C.A. Leppla, K.M. Tye (2016)

Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex

Methods for investigating circuits

Classic:

- Lesions (patients/animals)
- fMRI

Modern:

- Optogenetics (virtual lesion/induced activity)
- Paired with behavioral paradigms!

Image credit NSF, Inbal Goshen, Karl Deisseroth

Running an experiment

Optogenetics experiment: Timeline

Choosing a region of interest & viral serotype

Adeno-associated virus:

- Not very pathogenic
- Differences in capsid proteins alters expression levels based on cell type
 - Serotype efficacy varies with brain region

Shown: AAV-variant expression in auditory cortex

Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of Transduction Efficiency, Tropism and Axonal Transport of AAV Serotypes 1, 2, 5, 6, 8 and 9 in the Mouse Brain. PLoS ONE 8(9): e76310.

Choosing stereotaxic coordinates

Al cortex= agranular insular cortex

- AIP: posterior

- AID: dorsal

AIV: ventral

GI = granular insula

Paxinos Atlas

Paxinos, George, and Keith B.J. Franklin. The mouse brain in stereotaxic coordinates: hard cover edition. Access Online via Elsevier, 2001.

Optogenetics: materials and implanting

https://web.stanford.edu/group/dlab/optogenetics/hardware.html

Optic fiber components:

- Glass rod, cannula, coupler

Laser light delivery:

- Calibrated to λ preferred by opsin,
 & behavioral factors
- Titrated to every experimental animal
 - Don't know how much viral expression there

https://www.leicabiosystems.com/pathologyleaders/navig ator-through-the-brain-stereotaxic-atlases-for-neuroscien ce-research/

Behavioral paradigms

← Fear conditioning box

Elevated plus maze →

Source: Harvard Apparatus

Open field test \rightarrow

Behavior assay + Optogenetics

Selectively modulate neural activation according to conditions of the behavioral assay

Modulate according to:

- General time blocks
- Free-roaming behavior
- Discrete actions (e.g. head-dipping)
- → Some behavior can be automatically coded, some by hand
- → Modulation blocks differ in statistical sensitivity

Behavioral analysis

Histological analysis

Did you actually implant where you wanted?

How intensely was the opsin expressed?

Where there any unexpected projections passing through the transduction site?

Shown: sites of local viral infusion/fiber placement

- Each circle represents the implantation point for a different animal
- Range of test sites =/= failed experiments
- Still investigating local circuits, getting a broader picture of the function

-1.06 +1.98 -1.22 -1.34+1.78 -1.46 -1.58 ... -1.70

A.C. Felix-Ortiz, A. Burgos-Robles, N.D. Bhagat, C.A. Leppla, K.M. Tye (2016)

Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex Neuroscience, 321: 197-209.

Summary

- Modern imaging and optic techniques provide a robust line of investigation into neural circuits underlying fear and emotion
- Optogenetics offers a toolbox for determining causal roles of nuclei and projections involved in complex behaviors
 - Great flexibility in experimental design
 - But, many potential confounds
- Obtaining meaningful results requires thoughtful analysis