Apuntes de Matemática 2

Facultad de Informática U.N.L.P.

Año 2020

Índice general

3.	Cont	tinuidad de una función	5
	3.1.	Definición	5
	3.2.	Clasificación de discontinuidades	6
		3.2.1. Ejercicios	8
		3.2.2. Propiedades de las funciones continuas	9
	3.3.	Funciones continuas en un intervalo	10
		3.3.1. Ejercicios	11

Capítulo 3

Continuidad de una función

Podemos preguntarnos a menudo el por qué de estudiar la continuidad de las funciones, pero en realidad aunque no lo veamos la continuidad está por todas partes.

Observemos estos ejemplos.

- Nuestro reloj funciona sin detenerse un sólo segundo, de hecho el tiempo no se detiene, es continuo, y no sólo eso, sino que recorre el eje en una sola dirección, siempre avanza, nunca se vio un segundo negativo.
- Muchas fuerzas deben ser continuas, ¿se imaginan que la Gravedad fuese discontinua?, todos saldríamos volando por el espacio justo en ese momento, o bien si los fluidos fuesen discontinuos, encontraríamos huecos vacíos en el mar, o burbujas de Nada en el aire.
- Si pensamos en los programas de cálculos podemos observar que el tiempo de programación es continuo, y en cada instante de tiempo tenemos un nuevo dato que nos proporciona nuestro sistema a estudiar. Por ejemplo si hacemos un programa que recolecte los datos de un laboratorio o extraemos de un cierto campo de estudio una información particular, estos datos con frecuencia se unen con una curva continua para mostrarlos mediante una función.

Intuitivamente pensamos que una función f es continua en un punto si no presenta "saltos" o "agujeros", o dicho de otro modo, si podemos trazar su gráfica sin levantar el lápiz del papel. El objetivo en esta sección es presentar la definición formal de continuidad y estudiar las principales propiedades de las funciones continuas.

Primero vamos a definir la continuidad de una función en un punto, para luego extenderla a la definición de continuidad en un intervalo.

3.1. Definición

Una función se dice **continua en** x_0 , si se cumplen las siguientes condiciones:

- 1. f debe estar definida en x_0 , esto significa que existe $f(x_0)$.
- 2. Existe $\lim_{x \to x_0} f(x)$ (es un número real). Es decir,

$$\lim_{x \to x_0+} f(x) = \lim_{x \to x_0-} f(x)$$

3. El valor de la función en x_0 debe coincidir con el valor del límite, esto es,

$$f(x_0) = \lim_{x \to x_0} f(x).$$

Si NO se cumple alguna/s de las condiciones (pueden ser más de una) entonces se dice que la función f es **discontinua en** x_0 .

Observemos que podemos expresar esta definición de forma más reducida como

$$f$$
 es continua en $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$

O lo que es lo mismo:

$$f$$
 es continua en $x_0 \Leftrightarrow$ existen y coinciden los tres resultados $f(x_0)$, $\lim_{x \to x_0^+} f(x) y \lim_{x \to x_0^-} f(x)$

A continuación mostraremos diferentes representaciones gráficas de funciones continuas y discontinuas en $x = x_0$, cada una de las cuales presentan características distintas:

3.2. Clasificación de discontinuidades

En los gráficos anteriores observamos que hay diferentes "formas de discontinuidades", una tipo salto, otra asintótica y otra con un agujero. A estas discontinuidades vamos a clasificarlas en evitables o inevitables.

1. **Una discontinuidad se dice evitable** si existe el límite de la función en x_0 , pero no existe $f(x_0)$; o existe $f(x_0)$ y también el limite de la función en x_0 , pero no coinciden.

Este tipo de discontinuidades las podemos observar en el gráfico b) y d).

2. **Una discontinuidad se dice inevitable** si NO se cumple la condición 2) de la definición de continuidad; es decir que NO existe el limite.

Este tipo de discontinuidades las podemos observar en el gráfico *c*) y *e*).

Ejemplo 1: Sea f la función definida por

$$f(x) = \begin{cases} x^2 - 3 & si & -1 \le x < 1 \\ 2x - 4 & si & 1 \le x < 2 \\ 5 - x^2 & si & 2 \le x < 3 \end{cases}$$

Analizar la continuidad de la función en $x_0 = 1$ y $x_0 = 2$. En caso de haber alguna discontinuidad, clasificarla.

En $x_0 = 1$, veamos si se cumplen las condiciones de la definición.

- 1. f(1) = -2 (pues x = 1 está definido en el segundo renglón).
- 2. $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2x 4 = -2$ y $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 3 = -2$,

Como los limites laterales coinciden, existe $\lim_{x\to 1} f(x) = -2$.

3. Además $f(1) = \lim_{x \to 1} f(x) = -2$

Como se cumplen las 3 condiciones podemos afirmar que f es continua en $x_0 = 1$.

Ahora analicemos en $x_0 = 2$. Aquí f(2) = 1.

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 5 - x^2 = 1 \quad \text{y} \quad \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} 2x - 4 = 0.$$

Como los limites laterales son distintos, no coinciden, entonces el $\lim_{x\to 2} f(x)$ no existe.

Por lo tanto, f no es continua en $x_0 = 2$. Y como no existe el limite esa discontinuidad es inevitable.

Podemos verificar nuestro análisis observando la representación gráfica de la función.

3.2.1. Ejercicios

1) Determinar si las siguientes funciones son continuas en los valores indicados. Clasificar las discontinuidades , si las hay. Representar gráficamente cada función y verificar la conclusión obtenida.

(a)
$$f(x) = |x - 2| + 3$$
 en $x_0 = 2$.

(b)
$$g(x) = \frac{x^2 - 25}{x - 5}$$
 en $x_0 = 5$.

(c)
$$h(x) == \begin{cases} \frac{1}{x^2} & si \quad x = 0 \\ 0 & si \quad x = 0 \end{cases}$$
 en $x_0 = 0$

2) A partir de la siguiente gráfica de f(x):

Responder:

a) Existe
$$f(-1)$$
?

b) Existe
$$\lim_{x \to -1^+} f(x)$$
?

c)
$$f(-1) = \lim_{x \to -1^+} f(x)$$
?

d) Existe
$$f(0)$$
?

e) Existe
$$\lim_{x\to 0} f(x)$$
?

b) Existe
$$\lim_{x \to -1^+} f(x)$$
? c) $f(-1) = \lim_{x \to -1^+} f(x)$?
e) Existe $\lim_{x \to 0} f(x)$? f) f es continua en $x_0 = 0$?
h) Existe $\lim_{x \to 1} f(x)$? i) f es continua en $x_0 = 1$?

g) Existe
$$f(1)$$
?

h) Existe
$$\lim_{x \to 1} f(x)$$
?

i)
$$f$$
 es continua en $x_0 = 1$?

j)
$$f$$
 es continua en $x_0 = 23$

j)
$$f$$
 es continua en $x_0 = 2$? k) f es continua en $x_0 = 3$?

3) Dada la siguiente función decidir si es continua en x = -1 y en x = 1.

$$f(x) = \begin{cases} -2x+1 & \text{si} \quad x \le -1 \\ 1 & \text{si} \quad -1 < x \le 1 \\ \frac{1}{x} & \text{si} \quad x \ge 1 \end{cases}$$

Propiedades de las funciones continuas 3.2.2.

A continuación enunciaremos algunas propiedades algebraicas de funciones continuas en un número real, que nos permitirán justificar la continuidad de funciones más complejas.

Sean f y g funciones continuas en x_0 y k un número real, entonces se cumplen las siguientes propiedades,

- 1. k f(x) es continua en x_0 .
- 2. $f(x) \pm g(x)$ es continua en x_0 .
- 3. f(x).g(x) es continua en x_0 .
- 4. $\frac{f(x)}{g(x)}$ es continua en x_0 , siempre que $g(x_0) \neq 0$.

- 5. $(f(x))^n$ es continua en x_0 , donde n es un entero positivo.
- 6. $\sqrt[n]{f(x)}$ es continua en x_0 , siempre que esté definida en un intervalo que contenga a x_0 , donde n es un entero positivo.
- 7. $(f \circ g)(x) = f(g(x))$ es continua en x_0 , siempre que g sea continua en x_0 y f sea continua en $g(x_0)$,

3.3. Funciones continuas en un intervalo

Tener en cuenta que una función continua es aquella que es continua en cada punto de su dominio.

Definición

- 1. **Continua en un intervalo abierto** Una función es continua en un intervalo (a, b) o en la unión de intervalos si y sólo si es continua en cada punto del intervalo.
- 2. **Continua en un intervalo cerrado** f(x) es continua en [a,b] si se cumplen los siguientes items:
 - f es continua en todos los puntos interiores, o sea en (a,b)
 - -f es continua por la derecha en a:

$$f(a) = \lim_{x \to a^+} f(x)$$

-f es continua por la izquierda en b:

$$f(b) = \lim_{x \to b^{-}} f(x)$$

Observación: Si el intervalo es cerrado en alguno de los extremos tenemos que ver el límite por izquierda o por derecha según corresponda.

Ejemplo 2:

- a) La función identidad f(x) = x y las funciones constantes son continuas para todo número real.
- b) Todo polinomio es continuo en \mathbb{R} .
- c) Si P(x) y Q(x) son polinomios, entonces la función racional $\frac{P(x)}{Q(x)}$ es continua siempre que esté definida $(Q(x_0) \neq 0)$.
- d) Las funciones trigonométricas son continuas en su dominio.
- e) Las funciones exponenciales y logarítmicas también son continuas en sus dominios.

Ejemplo 3: Dar el mayor conjunto de continuidad de las siguientes funciones:

a)
$$f(x) = \sqrt{x^2 + 2}$$
, b) $g(x) = \frac{ln(3x + 1)}{e^x}$.

- a) Vemos que f es composición de dos funciones: una de ellas \sqrt{x} que es continua en su dominio $[0,+\infty)$ y la otra polinómica x^2+2 que también es continua en su dominio $\mathbb R$, además es siempre positiva. Con lo cual f es continua en $\mathbb R$, por ser composición de funciones continuas.
- b) Antes de ver el dominio de continuidad de g, observemos que la función ln(3x+1) tiene como dominio los $x \in \left(\frac{-1}{3}, \infty\right)$, y la función exponencial del denominador tiene como dominio $\mathbb R$ y además e^x nunca se hace 0, con lo cual el dominio de g(x) es $\left(\frac{-1}{3}, \infty\right)$. En este dominio g(x) es continua porque es composición y cociente de continuas.

Ejemplo 4: Hallar el valor de a para que la función resulte continua en $\mathbb R$

$$h(x) = \begin{cases} x^2 - 1 & si \quad x > 3 \\ 2ax & si \quad x \le 3 \end{cases}$$

Primero observemos que $Dom(h) = \mathbb{R}$. O sea que se quiere ver la continuidad en todo el dominio de la función. Como es una función a trozos primero nos preguntaremos que ocurre con la continuidad de la función para valores de x < 3 y valores de x > 3:

- Para x < 3, h es continua por ser una función polinómica.
- Para x > 3, h es continua por ser también una función polinómica.

O sea que para cualquier valor de $x \ne 3$, h es continua. Como se quiere hallar de a para que h resulte continua en todo su dominio, debemos imponer la condición de continuidad en el punto de pegado x = 3.

Detallemos las condiciones de continuidad en el punto x = 3:

$$- f(3) = 6a$$

$$-\lim_{x \to 3^+} x^2 - 1 = 8$$

$$-\lim_{x\to 3^{-}} 2ax = 6a$$

Para que la función sea continua en x = 3, las tres condiciones anteriores tienen que ser iguales, entonces se tiene que cumplir lo siguiente:

$$8 = 6a \text{ con lo cual } a = \frac{8}{6}$$

Así, si $a = \frac{8}{6}$, h(x) resulta continua en x = 3. Y por lo tanto h(x) resulta continua en todo su dominio.

3.3.1. Ejercicios

1) Decidir en que conjuntos son continuas las siguientes funciones.(Ver el Ejemplo 3)).

a)
$$f_1(x) = \frac{1}{x-2} - 3x$$
.

b)
$$f_3(x) = 2e^{2x+1}$$

c)
$$f_4(x) = \frac{\cos(x)}{x+3}$$

2) Para qué valor de k, g(x) resulta continua en \mathbb{R} .

$$g(x) = \begin{cases} -x & si \quad x > -2 \\ kx^2 & si \quad x \le -2 \end{cases}$$

3) Decidir si la siguiente función es continua en [-2, 5].

$$h(x) = \begin{cases} x^2 - 3 & \text{si } x \ge 3\\ \frac{x^2 - 9}{x - 3} & \text{si } x < 3 \end{cases}$$