Portfolio1

Negar

3/15/2022

Summary

This project is about student performance in exams. To observe how different factors affect the student's performance, we plot each factor against students' performances in couple of plot and describe the result briefly after each figure.

Data Description

The independent variables of "StudentsPerformance.csv" are as follow:

Columns Name	Description	\mathbf{Type}
Gender	sex of students	character
Race/Ethnicity	ethnicity of students	character
Parental Level of Education	parents' final education	character
Lunch	having lunch before test (normal or abnormal)	character
Test Preparation Course	complete or not complete before test	character
Math Score	student math score out of 100	integer
Reading Score	student reading score out of 100	integer
Writing Score	student writing score out of 100	integer

Note: The dataset is free from any missing values.

```
data = read.csv(here::here("Data","data","StudentsPerformance_renamed.csv"))
```

Firstly, let's figure out the performance of each field for males and females.

```
plt2 <- ggplot(gender_performance, aes(x=gender, y=reading, fill=gender)) +</pre>
  geom_bar(stat="identity")+
  geom_text(aes(label=formattable(reading, digits = 2, format = "f")), vjust=1.6, color="white", size=3
  theme minimal()+
  ylab("score")+
  ggtitle("Reading")+
  ggeasy::easy_center_title() +
  theme(axis.title.x = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank())
ggsave(here::here("Output", "Figures", "gender_reading.tiff"), plt2, height = 6, width = 6)
plt3 <- ggplot(gender_performance, aes(x=gender, y=writing, fill=gender)) +</pre>
  geom_bar(stat="identity")+
  geom_text(aes(label=formattable(writing, digits = 2, format = "f")), vjust=1.6, color="white", size=3
  theme_minimal()+
  ylab("score")+
  ggtitle("Writing")+
  ggeasy::easy_center_title()
ggsave(here::here("Output", "Figures", "gender_writing.tiff"), plt3, height = 6, width = 6)
plt1 / plt2 / plt3 + plot_layout(guides='collect')
                                     Math
  60
                                                     68.73
                      63.63
score 20
   0
                                   Reading
                      72.61
                                                                              gender
  60
                                                     65.47
  40
                                                                                  female
  20
                                                                                   male
   0
                                    Writing
                      72.47
  60
                                                     63.31
9200 40
20
   0
                     female
                                                      male
                                    gender
```

We can see that male has better performance on math field, but worse on reading and writing. Secondly, see the performance of ethnicity.

```
ethnicity_performance <- data |> group_by(ethnicity) |> summarise(
  math = mean(math),
  reading = mean(reading),
  writing = mean(writing))
plt1_1 <- ggplot(ethnicity_performance, aes(x=ethnicity, y=math, fill=ethnicity)) +</pre>
  geom_bar(stat="identity")+
  geom text(aes(label=formattable(math, digits = 2, format = "f")), vjust=1.6, color="white", size=3.5)
  theme minimal()+
  ylab("score")+
  ggtitle("Math")+
  ggeasy::easy_center_title() +
  theme(axis.title.x = element blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank())
ggsave(here::here("Output", "Figures", "ethnicity_math.tiff"), plt1_1, height = 6, width = 6)
plt2_2 <- ggplot(ethnicity_performance, aes(x=ethnicity, y=reading, fill=ethnicity)) +
  geom_bar(stat="identity")+
  geom_text(aes(label=formattable(reading, digits = 2, format = "f")), vjust=1.6, color="white", size=3
  theme minimal()+
  ylab("score")+
  ggtitle("Reading")+
  ggeasy::easy_center_title() +
  theme(axis.title.x = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element blank())
ggsave(here::here("Output", "Figures", "ethnicity_reading.tiff"), plt2_2, height = 6, width = 6)
plt3_3 <- ggplot(ethnicity_performance, aes(x=ethnicity, y=writing, fill=ethnicity)) +
  geom_bar(stat="identity")+
  geom_text(aes(label=formattable(writing, digits = 2, format = "f")), vjust=1.6, color="white", size=3
  theme_minimal()+
  ylab("score")+
  ggtitle("Writing")+
  ggeasy::easy_center_title()
ggsave(here::here("Output", "Figures", "ethnicity_writing.tiff"), plt3_3, height = 6, width = 6)
plt1_1 / plt2_2 / plt3_3 + plot_layout(guides='collect')
```


Group E, obviously, has best performance for all the fields, and group A is the worst. Then, let's see the result of score and test preparation.

Reading vs. Preparation Test

Writing vs. Preparation Test

The score distribution got narrower if students complete the preparation before test, and also we can see that the average of the score is better.

lunch

