

Работа на биполярен транзистор като ключ

## Режими на работа на биполярен транзистор



## Режими на работа на биполярен транзистор



## Ключ общ емитер



Състоянието на ключа се определя от амплитудата на входния импулс.

## Крайни състояния на ключа







Наситен транзистор – т. В

В двете крайни състояния на ключа транзисторът е пасивен елемент и не може да се управлява.

При превключване работната точка се движи по товарната права, изминавайки всички точки между т. А и т. В

## Режим на отсечка



$$I_C = \beta . I_B + (1 + \beta) . I_{CBO}$$
  
Ako  $I_B = 0$ 

$$I_C = (1+\beta)I_{CB0} = I_{CE0}$$

## Режим на дълбока отсечка



#### Активен режим



Режим на дълбока отсечка

С нарастване на входното напрежение работната точка се движи по товарната права.

Моментните стойности на токовете в базата и колектора са съответно:

$$i_B = \frac{u_{IN} - u_{BE}}{R_B}$$

$$i_C = \beta i_B = \beta \frac{u_{IN} - u_{BE}}{R_B}$$

## Графично изменение на токовете







## Преминаване към насищане

В активен режим, с нарастването на  $U_{BE}$  се увеличава и тока на базата  $I_B$ , което води до намаляване на  $U_{CE}$ 

$$I_B \uparrow \Longrightarrow I_C = \beta . I_B \uparrow \Longrightarrow I_C . R_C \uparrow \Longrightarrow \downarrow U_{CE} = U_{CC} - I_C . R_C$$

Между напреженията в транзистора има връзка

$$U_{CE} = U_{CB} + U_{BE}$$

откъдето за напрежението  $U_{\it CB}$  се получава

$$U_{CB} = U_{CE} - U_{BE}$$

При ток на базата  $I_{Bsat}$  напреженията  $U_{CE} = U_{BE}$  и  $U_{CB} = 0$ 



За ток  $I_B > I_{Bsat}$  напрежението  $U_{CB} < 0$  и двата прехода са в право включване — транзисторът навлиза в режим на насищане



#### Режим на насищане

В режим на насищане **двата прехода се включват в права посока**. Те инжектират токоносители в базата и напрежението  $U_{CEsat} \approx 0$ . Реално  $U_{CEsat} \approx 0.1 \div 0.4$  V (виж следващият слайд).

Колекторният ток в режим на насищане е

$$I_{Csat} = \frac{U_{CC} - U_{CEsat}}{R_C} \approx \frac{U_{CC}}{R_C}$$
 $I_{Csat}$  не зависи от транзистора

Токът на базата в режим на насищане е

$$I_{Bsat} = \frac{I_{Csat}}{\beta}$$





## Условие за настъпване на насищане

Условието транзисторът да навлезе в режим на насищане е базисният ток да е по-голям от базисния ток на насищане.

$$I_B > I_{Bsat}$$
 Toraba  $I_C = I_{Csat} = \frac{U_{CC}}{R_C}$ 

При  $I_B > I_{Bsat}$  се сменя поляритета на напрежението  $U_{CB}$  и двата прехода се включват в права посока. В режим на насищане не важи условието  $I_C = \beta . I_B$ .

Насищане може да настъпи при много малки токове, тъй като то не зависи от големината на тока, а от съотношението между токовете  $I_B$  и  $I_{Bsat}$ .

#### Степен на насищане

$$N = \frac{I_B}{I_{Bsat}} \qquad I_B > I_{Bsat} \qquad N = 2 \div 5$$

## Collector saturation region



# Определяне на режима, $I_C$ и $U_{CE}$

#### Алгоритъм за решаване

1) Ако  $U_{BB} < 0.7V$  Транзисторът е запушен  $\rightarrow$   $I_{B} = 0$ ,  $I_{C} = \beta I_{B} = 0$ ,  $U_{CE} = U_{CC}$ 

С това задачата е решена.

- 2) Ако  $U_{BB} > 0.7V$  Транзисторът е отпушен. Необходимо е да се определи режима — активен или насищане.
- 3) Проверка на режима

Изчисляват се 
$$I_B$$
 и  $I_{Bsat}$  
$$I_B = \frac{U_{BB} - U_{BE}}{R_B} \quad I_{Bsat} = \frac{I_{Csat}}{\beta} \quad I_{Csat} = \frac{U_{CC}}{R_C}$$

- 4) Ако  $I_B \le I_{Bsat} \to$  Активен режим  $\to I_C = \beta . I_B$  и  $U_{CE} = U_{CC} I_C . R_C$
- 5) Ако  $I_B > I_{Bsat} \rightarrow$  Режим на насищане  $\rightarrow I_C = I_{Csat}$  и  $U_{CE} = U_{CC} I_{Csat}$   $R_C = 0V$



 $U_{BB} = 400 \text{mV} = 0.4 \text{V} < 0.7 \text{V}$  Следователно транзисторът е запушен.

$$I_B = 0$$
  $I_C = \beta . I_B = 0$ ,  
 $U_{CE} = U_{CC} - I_C . R_C = U_{CC} - 0 . R_C = U_{CC} = 12V$ 



$$U_{BB} = 400 \text{mV}, \ U_{CC} = 12 \text{V}$$
 $R_C = 1 k, \ R_B = 100 k$ 
 $\beta = 100$ 
---
 $I_C = ?, \ U_{CE} = ?$ 

Проверка за отпушен транзистор.

 $U_{BB} = 5,7V > 0.7V$  Следователно транзисторът е отпушен.

Правим проверка за режима — активен или насищане Изчисляват се  $I_B$  и  $I_{bsat}$ 

$$I_B = \frac{U_{BB} - U_{BE}}{R_B} = \frac{5.7 - 0.7}{100.10^{+3}} = 0.05.10^{-3} \,\text{A} = 0.05 \,\text{mA}$$

$$I_{Csat} = \frac{U_{CC}}{R_C}$$
  $I_{Bsat} = \frac{I_{Csat}}{\beta} = \frac{U_{CC}}{R_C \beta}$ 

$$I_{Bsat} = \frac{U_{CC}}{R_C \beta} = \frac{12}{1.10^{+3}.120} = 0,1.10^{-3} \text{ A} = 0,1 \text{ mA}$$

$$I_B < I_{Bsat}$$
 — Активен режим

$$I_C = \beta$$
.  $I_B = 120$  . 0,05.10<sup>-3</sup> = 6.10 <sup>-3</sup> A = 6 mA

$$U_{CE} = U_{CC} - I_{C} \cdot R_{C} = 12 - 6.10^{-3} \cdot 1.10^{+3} = 6 \text{ V}$$



$$U_{BB} = 5,7V, U_{CC} = 12V$$
  
 $R_C = 1k, R_B = 100k$   
 $\beta = 120$ 

---

$$I_C = ?, U_{CE} = ?$$

Проверка за отпушен транзистор.

 $U_{BB} = 4,7 \text{V} > 0.7 \text{V}$  Следователно транзисторът е отпушен.

Правим проверка за режима — активен или насищане Изчисляват се  $I_B$  и  $I_{bsat}$ 

$$I_B = \frac{U_{BB} - U_{BE}}{R_B} = \frac{4.7 - 0.7}{10.10^{+3}} = 0,4.10^{-3} \text{ A} = 0,4 \text{ mA}$$

$$I_{Bsat} = \frac{U_{CC}}{R_C \beta} = \frac{6}{1.10^{+3}.60} = 0,1.10^{-3} \text{ A} = 0,1 \text{ mA}$$

$$I_B > I_{Bsat}$$
 — Насищане

$$I_C = I_{Csat} = \frac{U_{CC}}{R_C} = 6.10^{-3} A = 6 \text{ mA}$$

$$U_{CE} = U_{CC} - I_{C} \cdot R_{C} = 6 - 6.10^{-3} \cdot 1.10^{+3} = 0V$$



$$U_B > 0.7V$$
 : транзисторът е отпушен  $I_{Csat} = \frac{U_{CC}}{R_C} = \frac{6}{500} = 0.012A = 12\text{mA}$   $I_{Bsat} = \frac{I_{Csat}}{\beta} = \frac{12.10^{-3}}{300} = 4.10^{-5} = 40\mu\text{A}$ 

От закона на Кирхоф за входната верига

$$U_{CC} = I_B R_B + U_{BE}$$

$$I_B = \frac{U_{CC} - U_{BE}}{R_B} = \frac{6 - 0.7}{100.10^3} = \frac{5.3}{1.10^5} = 5.3. \cdot 10^{-5} = 53 \mu A$$

 $I_B > I_{Bsat}$  : транзисторът е в режим на насищане



$$U_{CC} = 6V$$
  
 $R_C = 500$ ,  $R_B = 100k$   
 $\beta = 300$   
---  
 $I_B = ?$ ,  $I_C = ?$ ,  $U_{CE} = ?$ 

Да се определи минималната стойност на  $R_{\it B}$ , при която транзисторът от фигурата ще работи в режим на насищане.

Условие за насищане  $I_B > I_{Bsat}$ 

$$I_B = \frac{U_{IN} - U_{BE}}{R_B} > I_{Bsat} = \frac{U_{CC}}{R_C \beta}$$

$$\frac{U_{IN} - U_{BE}}{R_B} > \frac{U_{CC}}{R_B \cdot \beta}$$

$$R_B < \frac{(U_{IN} - U_{BE})R_C\beta}{U_{CC}}$$

$$R_B < \frac{(6-0.7)1.10^3.60}{12} < 26.5.10^3 \Omega < 26.5 k\Omega$$



 $R_{Bmin} = ?$ 

$$U_B=rac{U_{CC}.R_{B2}}{(R_{B1}+R_{B2})}=rac{10.\,10.10^3}{(47.10^3+10.10^3)}$$
 = 1,75 V > 0.7V -> транзисторът е отпушен  $I_{Csat}=rac{U_{CC}}{R_C}=rac{6}{500}$  = 0,012 A = 12 mA  $I_{Bsat}=rac{I_{Csat}}{\beta}=rac{I_{Csat}}{100}$  = 17,5.10<sup>-6</sup> A = 17,5  $\mu$ A

$$U_E = U_B - U_{BE} = 1,75 - 0,7 = 1,05 \text{ V} \approx 1\text{ V}$$
 $U_E = I_E.R_E$ 
 $I_E = \frac{1}{1.10^3} = 1.10^{-3} \text{ A} = 1 \text{ mA}$ 
 $I_E \approx I_C = 1 \text{ mA}$ 

$$I_B = \frac{I_C}{\beta} = \frac{1.10^{-3}}{100} = 0,01.\,10^{-3}\,$$
 A = 10.10<sup>-6</sup> A = 10 µA  $I_B < I_{Bsat}$ -> Активен режим

$$U_{CE} = U_{CC} - I_C R_C - I_C R_E = 10 - 1.10^{-3} 4,7.10^{+3} - 1.10^{-3} 1.10^{+3} = 10 - 5,7 = 4,3 \text{ V}$$



$$U_{CC} = 10V$$
  
 $R_C = 4,7k, R_{B1} = 47k, R_{B2} = 10k, R_E = 1k$   
 $\beta = 100$ 

 $I_{R} = ?, I_{C} = ?, U_{CF} = ?$ 

## Бързодействие на ключ с биполярен транзисотр

Бързодействието на ключа зависи от продължителността на преходните процеси при превключване. Преходните процеси се дължат на:

- Инерционността на процесите на пренасяне, натрупване и разнасяне на токоносителите в базата и колектора в транзистора
- Времето, необходимо за презареждане на капацитетите на преходите
- Наличието на паразитни капацитети на корпуса и индуктивности на изводите

В изходно състояние транзисторът е запушен. На входа му се подава отпушващ положителен импулс. Пренебрегват се преходните процеси в базата и се предполага, че напрежението е достатъчно транзисторът да влезе в насищане. След време, равно на продължителността на импулса, поляритетът на входното напрежение се променя.









При подаване на отпушващ импулс  $i_B$  нараства скокообразно. Поради времето, необходимо за зареждане на  $C_E$ ,  $i_C$  нараства бавно. Времето за достигане на  $i_C$ до 10% от  $I_{csat}$  се нарича време на закъснение  $t_D$ .





Времето за достигане на  $i_{C}$  от 10% до 90% от  $I_{csat}$  се нарича време на нарастване  $t_{r}$ .

Транзисторът работи в активен режим. Тук влияе инерционността на токоносителите и времето за презареждане на  $\mathcal{C}_{\mathcal{C}}$ .





При навлизане на транзистора в насищане,  $i_{C}$  достига  $I_{csat}$ , но натрупването на токоносителите продължава в зависимост от степента на насищане N за **време за** натрупване  $t_{N}$ , с което преходният процес при включване завършва.



При подаване на запушващ импулс  $i_B$  сменя знака си. Започва разнасяне на натрупаните токоносители, но  $i_C = I_{Csat}$  Дефинира се време за разнасяне на токоносителите  $t_S$ , за което  $i_C$  спада до 90% от  $I_{Csat}$ 



Изменение на неосновните токоносители в базата





 $t_D$  – време на закъснение – времето от подаване на отпушващ импулс до достигане на  $i_C$  = 0,1. $I_{Csat}$   $t_r$  – време за нарастване – времето нарастване на  $i_C$  от 0,1. $I_{Csat}$  до 0,9. $I_{Csat}$   $t_H$  – време за натрупване – времето за натрупване на токоносителите, съответстващи на  $i_B$  =  $N.I_{Bsat}$ 



 $t_{\rm S}$  – време на разнасяне – времето от подаване на запушващ импулс до достигане на  $i_{\rm C}$  = 0,9. $I_{Csat}$   $t_{\rm f}$  – време за спадане – времето спадане на  $i_{\rm C}$  от 0,9. $I_{Csat}$  до 0,1. $I_{Csat}$ 



 $t_{ON}$  – време на включване

 $t_{OFF}$  — време на изключване

Времето на изключване  $t_{OFF}$ е много по-голямо от времето за включване  $t_{ON}$ .



#### **SWITCHING CHARACTERISTICS**

| Delay Time   | $(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = -2.0 \text{ Vdc},$<br>$I_{C} = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc}) \text{ (Figure 1)}$ | t <sub>d</sub> | 1 | 10  | ns |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|---|-----|----|
| Rise Time    |                                                                                                                                         | t <sub>r</sub> | ı | 25  | ns |
| Storage Time | $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$<br>$I_{B1} = I_{B2} = 15 \text{ mAdc}) \text{ (Figure 2)}$                          | t <sub>s</sub> | - | 225 | ns |
| Fall Time    |                                                                                                                                         | t <sub>f</sub> | 1 | 60  | ns |



Figure 5. Turn-On Time

Figure 6. Turn-Off Time

- Времената  $t_S$  и  $t_f$  зависят от  $I_{B2}$  и от честотните свойства на транзистора (геометрични размери и време на живот)
- Времето за разнасяне зависи от пълното количество носители натрупани в базата т.е от  $I_{B1}$  (от степента на насищане N )

В интегралните схеми преходът база-колектор се шунтира с диод на Шотки, където  $U_F = 0.1 - 0.3$  V. Това ограничава тока през колекторния преход при право включване и натрупването на токоносители, откъдето  $t_{\rm S}$  рязко намалява.

При Шотки диода липсва инжекция на неосновни токоносители и той не допринася за натрупването им при право включване.





## Влияние на Шотки диод



 $V(b)=U_{CE}$ 

## Влияние на входното напрежение



$$U_{in} \uparrow \implies I_B = \frac{U_{in} - U_{BE}}{R_B} \uparrow I_{Bsat} = \frac{I_{Csat}}{\beta} = \frac{E_C}{R_C \beta} \implies N = \frac{I_B}{I_{Bsat}} \uparrow \implies t_{OFF} \uparrow$$



Включването на ускоряващ кондензатор в базовата верига на транзистора спомага за подобряване на бързодействието на електронния ключ.

При подаване на положителен отпушващ импулс кондензаторът първоначално не е зареден, шунтира  $R_b$ , осигурявайки голям първоначален ток при включване на транзистора, с което се намалява  $t_{on}$ .

Постепенно кондензаторът се зарежда до стойността на напрежението върху  $R_b \, U_{Rb} = V_{bb} \cdot U_{be}$ . Базовият ток постепенно намалява, докато достигне стойността си без наличие на кондензатор и транзисторът се установява в насищане.





При насищане, в базата се натрупва заряд, който трябва да се разнесе, за да се запуши транзисторът. В първия момент, при подаване на запушващ импулс (от 5V до 0V), кондензаторът е зареден и напрежението върху него се подава като голямо отрицателно (обратно) напрежение към прехода база-емитер.

Това рязко увеличава обратния базов ток по време на превключването, който буквално "изсмуква" натрупания заряд в базовата област, ускорявайки разнасянето на токоносителите. Така се намалява  $\mathbf{t}_{\text{off}}$  и транзисторът се запушва по-бързо.

