Lição 2

Números inteiros e de ponto flutuante

1. Aritmética inteira

Já conhecemos os seguintes operadores que podem ser aplicados a números: +, -, * e **. O operador de divisão / para inteiros fornece um número real de ponto flutuante (um objeto do tipo **float**). A exponenciação ** também retorna um **float** quando a potência é negativa:

```
print(17/3) # mostra 5.66666666667
print(2**4) # mostra 16
print(2**-2) # mostra 0.25
```

Há uma operação especial para divisão inteira onde o resto é descartado: //. A operação que resulta no resto dessa divisão tem o operador %. Ambas as operações sempre resultam num objeto do tipo int.

```
print(17/3) # mostra 5.66666666667
print(17//3) # mostra 5
print(17%3) # mostra 2
```

2. Números de ponto flutuante

Quando lemos um valor inteiro, lemos uma linha com **input()** e então convertemos uma *string* (cadeia de caracteres) para inteiro usando **int()**. Quando lemos um número real, precisamos converter a *string* para **float** usando **float()**:

```
x = float(input())
print(x)
```

Números reais de ponto flutuante com valor absoluto muito grande ou muito pequeno podem ser escritos usando uma notação científica. Por exemplo, a distância da Terra ao Sol é **1.496x10**¹¹, ou **1.496e11** em Python. A massa de uma molécula de água é **2.99x10**⁻²³, ou **2.99e-23** em Python.

Pode-se converter objetos **float** em objetos **int** descartando a parte fracionária usando a função **int()**. Esta função demonstra o chamado comportamento de arredondamento para zero:

```
print(int(1.3))  # mostra 1
print(int(1.7))  # mostra 1
print(int(-1.3))  # mostra -1
print(int(-1.7))  # mostra -1
```

Há também uma função **round()** que realiza o arredondamento usual:

```
print(round(1.3))  # mostra 1
print(round(1.7))  # mostra 2
print(round(-1.3))  # mostra -1
print(round(-1.7))  # mostra -2
```

Os números reais de ponto flutuante não podem ser representados com precisão exata devido às limitações do hardware. Isso pode levar a efeitos complicados. Consulte a documentação do Python para obter os detalhes.

3. Módulo matemático

Python tem muitas funções auxiliares para cálculos com reais de ponto flutuante. Eles podem ser encontrados no módulo matemático.

Para usar este módulo, primeiro precisamos importá-lo escrevendo a seguinte instrução no início do programa:

```
import math
```

Por exemplo, se quisermos encontrar um valor máximo para x - o menor inteiro não menor que x - chamamos a função apropriada do módulo matemático: math.ceil(x). A sintaxe para chamar funções de módulos é sempre a mesma: nome_do_módulo. nome_da_função (argumento_1, argumento_2, ...)

```
import math

x = math.ceil(4.2)
print(x)
print(math.ceil(1 + 3.8))
```

Há outra maneira de usar funções de módulos: para importar certas funções nomeando-as:

```
from math import ceil

x = 7 / 2
y = ceil(x)
print(y)
```

Algumas das funções que lidam com números - int(), round() e abs() (valor absoluto também conhecido como módulo) - são embutidas e não requerem nenhuma importação.

Todas as funções de qualquer módulo Python padrão estão documentadas no site oficial do Python. Aqui está a descrição do módulo matemático. A descrição de algumas funções é dada:

Função	Descrição da função
Arredondamento	
round(x)	Soma 0.5 ao número real x e retorna a parte inteira da soma.
floor(x)	Retorna o piso de x, o maior inteiro menor ou igual a x.
ceil(x)	Retorna o teto de x, o menor inteiro maior ou igual a x.
Raízes e logaritmos	
sqrt(x)	Retorna a raiz quadrada de x
log(x)	Com um argumento, retorna o logaritmo natural de x (para a base e).
	Com dois argumentos, retorna o logaritmo de x para a base fornecida
е	A constante matemática e = 2.71828
Trigonometria	
sin(x)	Retorna o seno de x radianos
asin(x)	Retorna o arco seno de x, em radianos
pi	A constante matemática π = 3,1415
Outras	
abs(x)	Retorna o inteiro x sempre com o sinal positivo
int(x)	Se x for real, converte x para um inteiro, perdendo a fração. Sendo x
	uma cadeia de caracteres (string) representando um inteiro, converte
	x para um inteiro.
float(x)	Se x for inteiro, converte x para um real, com a fração zero. Sendo x
	uma cadeia de caracteres (string) representando um real, converte x
	para um real.