Evolution of galaxy dynamics over the last 10 Gyrs with MUSE/VLT

105ervatoire de Paris

Author: Mercier Wilfried **Supervisor**: CONTINI Thierry

Co-Supervisor: Epinat Benoit

June 9, 2019

Integral Field Spectroscopy & MUSE

IFS:

- \triangleright 3D cubes (2D spatial + 1D spectral)
- \triangleright photometry + kinematics

MUSE:

- $\triangleright 1 \times 1 \operatorname{arcmin}^2 \operatorname{FoV}$
- \triangleright 0.2 arcsec spatial sampling
- ▷ spectral range [4650 Å, 9300 Å]
- > seeing or AO observations

MUSE instrument. Credit: Ghaouti Hansali (CRAL)

Our sample

 HST image of MUSE group $\operatorname{CGr}30$

- > 16 MUSE fields in COSMOS area
 - · deep and best_seeing observations
 - · CGr32 split in 3 parts
- $ho \sim 500$ field galaxies with [OII] detection
 - $\begin{array}{c} \cdot \text{ HST-ACS} \\ \text{ counterparts} \end{array}$
 - $0.4 \le z \le 1.4$

Checking a couple of parameters Half-light radius

spheroidal disk-like irregulars

Checking a few parameters **Ellipticity**

values are consistent between catalogues

> scatter is due to bulge dominated (spherically symmetric) systems

Characteristics of our sample Redshift distribution

- \triangleright sample of 103 galaxies with $R_{1/2} > 0.35$ " and SNR > 5
- \triangleright we loose galaxies at $z \approx 1.4$
- > redshift distribution is not drastically changed

Characteristics of our sample Mass-SFR relation

- > we recover the main sequence
- ▶ redshift correction from Boogaard 2018 does not improve the scatter

Kinematical modelling Cleaning galaxies

Kinematical modelling Fitting a model

First results $\overline{V_{
m max}}/\sigma_{
m v}$ distribution

First results
Tully-Fisher relation

Bibliography I