SRM Institute of Science and Technology

Faculty of Engineering and Technology

Department of Mathematics

Question Bank- Z-Transform(Unit-5)

1.
$$Z(5)$$
 is

A.
$$\frac{z}{z-1}$$

B. 5.
$$\frac{z}{z-1}$$

C.
$$\frac{1}{5} \cdot \frac{z}{z-1}$$

$$D. \frac{z-1}{z}$$

ANSWER: B

$$2. \ Z\left(\frac{1}{n}\right) =$$

A.
$$\log\left(\frac{z}{z-1}\right)$$
 if $|z|>1$

B.
$$\log\left(\frac{z}{z+1}\right)$$

C.
$$\log\left(\frac{z+1}{z}\right)$$

D.
$$\log\left(\frac{z-1}{z^2}\right)$$
 if $|z|>1$

ANSWER: A

3. Find
$$Z^{-1}\left(\frac{z}{(z-1)^2}\right)$$

A.
$$n + 1$$

B.
$$n - 1$$

$$\mathbf{C}.$$
 n

D.
$$\frac{1}{n}$$

ANSWER: C

4. Poles of
$$\phi(z) = \frac{z^n}{(z-1)(z-2)}$$
 are

A.
$$z = 1, 0$$

B.
$$z = 0, 2$$

C.
$$z = -1, -2$$

D.
$$z = 1, 2$$

ANSWER: D

5.
$$Z[na^n] =$$

A.
$$\frac{az}{(z-a)^2}$$

B.
$$\frac{z}{(z-a)^2}$$
C. $\frac{a}{(z-a)^2}$

C.
$$\frac{a}{(z-a)^2}$$

- D. $\frac{z}{(z-a)^3}$
- **ANSWER: A**
- 6. $Z\left[\cos\frac{n\pi}{2}\right] =$
 - A. $\frac{z}{z^2 + 1}$ B. $\frac{z}{z^2 1}$

 - C. $\frac{z^2}{z^2+1}$
 - D. $\frac{z^2}{z^2 4}$

- 7. $Z^{-1}\left[\frac{z}{(z-a)^2}\right] =$
 - A. a^{n-1}
 - B. na^{n+1}
 - C. a^{n+1}
 - D. na^{n-1}

ANSWER: D

- 8. Poles of $\phi(z) = \frac{z^n(z+1)}{(z-1)^3}$ are
 - **A.** z = -1
 - **B.** z = 1
 - C. z = 0
 - D. z = 3

ANSWER: B

- 9. What is $Z[(-2)^n]$

 - A. $\frac{z}{z+2}$ B. $\frac{-z}{z+2}$ C. $\frac{-z}{z-2}$ D. $\frac{z}{z-2}$

ANSWER: A

- 10. The value of $Z\left[\frac{1}{n!}\right]$ is
 - $\mathbf{A.} \ e^{-\left(\frac{1}{z}\right)}$
 - B. e^z

 - D. e^{-z}

ANSWER: C

11. If Z(f(n)) = F(z) and Z(g(n)) = G(z), then the Z-transform of f(n) * g(n) is

- **A.** F(z) + G(z)
- B. F(z).G(z)
- C. F(z) G(z)
- D. $F(z) \div G(z)$

- 12. Poles of $\phi(z) = \frac{z^n(z+1)}{(z-2)^3}$ are
 - A. -1 (order 3)
 - B. 1 (order 3)
 - C. -2 (order 3)
 - D. 2 (order 3)

ANSWER: D

- 13. If Z[f(t)] = F(z) then $\lim_{z \to \infty} F(z) =$
 - **A.** f(0)
 - **B.** f(1)
 - C. $\lim_{x\to\infty} f(t)$
 - D. $f(\infty)$

ANSWER: A

- 14. $\phi(z) = \frac{z^n(2z+4)}{(z-2)^3}$ has a pole 2 of order
 - A. 2
 - B. 1
 - C. 3
 - D. 4

ANSWER: C

- 15. What is $Z[e^{-5n}]$?
 - A. $\frac{z}{z e^{-5}}$
 - B. $\frac{z}{z + e^{-5}}$
 - C. $\frac{z}{z e^{-1}}$
 - D. $\frac{z}{z+z^{-1}}$

ANSWER: A

- 16. If $F(Z) = \frac{10z}{(z-1)(z-2)}$ then the value of $f(0) = \dots$ using final value theorem
 - A. 0
 - B. 1
 - C. 2
 - D. 3

ANSWER: A

17. The value of $Z\left(\frac{a^n}{n!}\right)$

- A. $e^{\left(\frac{1}{z}\right)}$
- B. $e^{\left(\frac{a}{z}\right)}$
- C. $e^{-\left(\frac{1}{z}\right)}$
- $\mathbf{D.} \ e^{-\left(\frac{a}{z}\right)}$

- 18. The value of $Z(e^{-at})$
 - A. $\frac{Z}{Z-T}$
 - B. $\frac{Z}{Z + e^{aT}}$
 - C. $\frac{Z}{Z e^{aT}}$
 - $D. \ \frac{Z}{Z e^{-aT}}$

ANSWER: D

- 19. The Z-transform of $a^n \cos n\pi$ is
 - $\mathbf{A.} \ \frac{1}{z+a}$

 - B. $\frac{z+a}{z+a}$ C. $\frac{z}{z-a}$
 - $\mathbf{D.} \ \frac{1}{z-a}$

ANSWER: B

- 20. If Z[f(t)] = F(z) then Z[f(t+T)] is
 - **A.** z[F(z) + f(0)]
 - B. $z^2 [F(z) + f(0)]$
 - C. z[F(z) f(0)]
 - **D.** $z^2 [F(z) f(0)]$

ANSWER: D

- 21. Solve $y_{n+1} 3y_n = 0$ given $y_0 = 1$
 - **A**. 3n
 - **B.** 3^{n}
 - C. 3^{n-1}
 - D. 2n + 1

ANSWER: B

- 22. $Z[a^nu(n)]$ exists only if
 - **A.** |z| < |a|
 - B. $|z| \le |a|$
 - C. |z| > |a|

D. |z| = |a|

ANSWER: C

- 23. $Z[n^2]$ is
 - A. $\frac{z}{(z-1)^3}$
 - B. $\frac{z(z+1)}{z^3}$
 - C. $\frac{z(z+1)}{(z-1)^3}$
 - D. $\frac{z+1}{(z-1)^3}$

ANSWER: C

- **24**. If Z[f(k)] = F(z) then Z[f(-k)] is
 - A. F(z)
 - B. $F\left(\frac{1}{z}\right)$
 - C. F(k)
 - D. $F\left(\frac{1}{k}\right)$

ANSWER: B

- 25. The inverse Z-transform of f(z) can be found out by
 - A. synthetic division method
 - B. long division method
 - C. diagonalization method
 - D. Euler method

ANSWER: B

- 26. The value of $Z\left[\frac{1}{7^n}\right]$
 - A. $\frac{7z}{z-1}$
 - B. $\frac{7z}{7z-1}$
 - C. $\frac{z}{7z-1}$
 - $D. \ \frac{z}{z-1}$

ANSWER. B

- 27. If $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ then the value of Z[y(n)] = 0
 - A. $\frac{z}{(z-2)(z+3)^2}$
 - B. $\frac{z}{(z+2)(z+3)^2}$
 - C. $\frac{z}{(z-2)(z-3)^2}$
 - D. $\frac{1}{(z-2)(z+3)^2}$

ANSWER: A

- 28. The value of inverse Z-transform of $\frac{z}{(z-1)(z-2)}$ using residues
 - **A.** 2^{n}
 - B. $2^n 1$
 - C. $1 2^n$
 - D. $2^n + 1$

- 29. The value of $Z^{-1}\left[\frac{z^2}{(z-a)^2}\right]$ using convolution theorem
 - A. a^n
 - B. na^n
 - C. $(n-1)a^n$
 - D. $(n+1)a^n$

ANSWER: D

- 30. $Z^{-1}\left[\frac{1}{z-\frac{1}{2}}\right] =$
 - **A.** $2^n 1$

 - B. 2^{n-1} C. $\left(\frac{1}{2}\right)^{n-1}$
 - $\mathbf{D.} \ \left(\frac{1}{2}\right)^n$

ANSWER: C

- 31. If Z[f(t)] = F(z) then $\lim_{z \to 1} (z 1)F(z) =$
 - **A.** f(0)
 - B. $f(\infty)$
 - C. f(1)
 - D. f(z)

ANSWER: B

- 32. Z[n(n-1)] =
 - A. $\frac{z}{(z-1)^3}$
 - B. $\frac{2z}{(z+1)^3}$
 - C. $\frac{z}{(z+1)^3}$
 - D. $\frac{2z}{(z-1)^3}$

ANSWER: D

- 33. $Z[\sin n\theta]$
 - A. $\frac{\sin \theta}{z^2 2z \cos \theta 1}$ B. $\frac{\sin \theta}{z^2 2z \cos \theta + 1}$

$$C. \ \frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$$

D.
$$\frac{z\sin\theta}{z^2 + 2z\cos\theta + 1}$$

ANSWER: C

34. The difference equation formed by eliminating 'a' in $u_n = a2^{n+1}$ is

A.
$$u_{n+1} - 2u_n = 0$$

B.
$$u_{n+1} = 0$$

C.
$$u_{n+1} - u_n = 0$$

D.
$$u_n = 0$$

ANSWER: A

35. Solution of $u_n = 5u_{n-1}, \ n \ge 1, \ u_0 = 2$ is

A.
$$u_n = 5^n$$

B.
$$u_n = 5.2^n$$

C.
$$u_n = 2.5^n$$

D.
$$u_n = 2^n$$

ANSWER: C

36. Radius of curvature of $f(n) = u(n - n_0)$ is

A.
$$|z| > 1$$

B.
$$|z| < \infty$$

C.
$$|z| < 1$$

D.
$$1 < |z| < \infty$$

ANSWER: D

37. $Z[\cos n\theta]$

A.
$$\frac{z\cos\theta}{z^2 - 2z\cos\theta - 1}$$

A.
$$\frac{z\cos\theta}{z^2 - 2z\cos\theta - 1}$$
B.
$$\frac{z\sin\theta}{z^2 - 2z\cos\theta + 1}$$

$$C. \ \frac{z\sin\theta}{z^2 + 2z\cos\theta + 1}$$

$$D. \frac{z(z-\cos\theta)}{z^2-2z\cos\theta+1}$$

ANSWER: D

38. If $Z[(-1)^n] = \frac{z}{z+1}$, the ROC is

A.
$$|z| > 1$$

B.
$$|z| > 2$$

C.
$$|z| < 1$$

D.
$$|z| = 1$$

ANSWER: A

39. Partial fraction method involves

A. Allotting coefficients

B. Dividing the numerator by denominator to get fractions

- C. Dividing single fraction into parts
- D. None of the above

ANSWER: C

- 40. The region of convergence of the z transform of a unit step function is
 - **A.** |z| > 1
 - B. |z| < 1
 - C. Real part of z > 0
 - D. Real part of z < 0

ANSWER: A