MAT-266: Algunas distribuciones no centrales

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Resultado 1:

Sea $Z \sim N_p(\mathbf{0}, I)$ y sea $U = Z^{\top}Z$. Entonces $U \sim \chi^2(p)$, con función de densidad

$$f(u) = \frac{1}{2^{p/2}\Gamma(p/2)} u^{p/2-1} \exp(-u/2), \qquad u > 0.$$

Demostración:

Como ${\cal U}$ es una función de variables aleatorias normales, entonces su función característica asume la forma

$$\begin{split} \varphi_U(t) &= \mathsf{E}\{\exp(itU)\} = \int_{\mathbb{R}^p} \exp(itu)(2\pi)^{-p/2} \exp(-\frac{1}{2}\boldsymbol{z}^\top \boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} \\ &= (2\pi)^{-p/2} \int_{\mathbb{R}^p} \exp(-\frac{1}{2}(1-2it)\boldsymbol{z}^\top \boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} = (1-2it)^{-p/2}, \end{split}$$

que corresponde a la función característica de una variable aleatoria chi-cuadrado con p grados de libertad.

Definición 1 (Distribución chi-cuadrado no central):

Si $Y \sim \mathsf{N}_p(\mu, I)$, entonces $U = Y^\top Y$ tiene distribución chi-cuadrado no central con p grados de libertad y parámetro de no centralidad $\lambda = \mu^\top \mu/2$, en cuyo caso anotamos $U \sim \chi^2(p;\lambda)$.

Resultado 2:

Sea $Y \sim \mathsf{N}_p(\mu, I)$ donde $\mu = (\mu_1, \dots, \mu_p) \neq \mathbf{0}$ y sea $U = Y^\top Y$. Entonces la función característica de U es dada por

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{2it\lambda}{1 - 2it}\right),$$

con $\lambda = \mu^{\top} \mu / 2$.

Demostración:

Como Y_1,\ldots,Y_p son variables aleatorias independientes, tenemos

$$\varphi_U(t) = \prod_{j=1}^p \varphi_{Y_j^2}(t).$$

Ahora, la función característica asociada a la variable aleatoria Y_i^2 es dada por

$$\begin{split} \varphi_{Y_j^2}(t) &= \int_{-\infty}^{\infty} \exp(ity_j^2) (2\pi)^{-1/2} \exp\{-\frac{1}{2} (y_j - \mu_j)^2\} \, \mathrm{d}y_j \\ &= \exp\Big\{\frac{\mu_j^2}{2} \Big(\frac{1}{1-2it}\Big) - \frac{\mu_j^2}{2}\Big\} \int_{-\infty}^{\infty} (2\pi)^{-1/2} \exp\Big\{-\frac{(1-2it)}{2} \Big(y_j - \frac{\mu_j}{1-2it}\Big)^2\Big\} \, \mathrm{d}y_j \end{split}$$

de este modo,

$$\varphi_{Y_j^2}(t) = (1 - 2it)^{-1/2} \exp\left\{\frac{\mu_j^2}{2} \left(\frac{2it}{1 - 2it}\right)\right\},\,$$

y por tanto la función característica de la variable $U = \sum_{j=1}^p Y_j^2$, asume la forma

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{2it\lambda}{1 - 2it}\right), \qquad \lambda = \boldsymbol{\mu}^{\top} \boldsymbol{\mu}/2.$$

Observación:

La función característica de la variable $U = \boldsymbol{Y}^{\top} \boldsymbol{Y}$, puede ser escrita como

$$\varphi_U(t) = (1 - 2it)^{-p/2} \exp\left(\frac{\lambda}{1 - 2it} - \lambda\right)$$

$$= (1 - 2it)^{-p/2} e^{-\lambda} \sum_{k=0}^{\infty} \frac{\{\lambda/(1 - 2it)\}^k}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} (1 - 2it)^{-(p+2k)/2}.$$

Es decir, la función característica de U es un promedio ponderado con pesos Poisson de funciones características de variables aleatorias chi-cuadrado con p+2k grados de libertad.

Usando la relación entre funciones características y sus correspondientes funciones de densidad, sigue que la chi-cuadrado no central tiene la siguiente representación:

$$U|Z \sim \chi^2(p+2z), \qquad Z \sim \mathsf{Poisson}(\lambda),$$
 (1)

con densidad

$$f(u) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} \frac{1}{2^{p/2+k} \Gamma(\frac{p}{2}+k)} u^{p/2+k-1} \exp(-u/2), \quad u > 0.$$

La representación en (1) es muy útil para obtener los momentos de una variable aleatoria con distribución chi-cuadrado no central.

El valor esperado de $U \sim \chi^2(p;\lambda)$ es dado por

$$\begin{split} \mathsf{E}(U) &= \mathsf{E}\{\mathsf{E}(U|Z)\} = \mathsf{E}(p+2Z) \\ &= p+2\,\mathsf{E}(Z) = p+2\lambda, \end{split}$$

mientras que la varianza de ${\cal U}$ puede ser calculada como

$$\begin{split} \operatorname{var}(U) &= \operatorname{E}\{\operatorname{var}(U|Z)\} + \operatorname{var}\{\operatorname{E}(U|Z)\} \\ &= \operatorname{E}\{2(p+2Z)\} + \operatorname{var}(p+2Z) \\ &= 2p+4\lambda + 4\lambda = 2p+8\lambda. \end{split}$$

Resultado 3:

Si $oldsymbol{X} \sim \mathsf{N}_p(oldsymbol{\mu}, oldsymbol{\Sigma})$ donde $oldsymbol{\Sigma}$ es matriz no singular. Entonces

- (a) $(\boldsymbol{X} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} \boldsymbol{\mu}) \sim \chi^2(p)$.
- (b) $\boldsymbol{X}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \sim \chi^2(p; \lambda)$, donde $\lambda = \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$.

Demostración:

Considere $oldsymbol{\Sigma} = oldsymbol{B} oldsymbol{B}^ op$ con $oldsymbol{B}$ no singular. Para probar (a), tome

$$Z = B^{-1}(X - \mu),$$

luego $oldsymbol{Z} \sim \mathsf{N}_p(oldsymbol{0}, oldsymbol{I})$ y de este modo

$$(\boldsymbol{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{Z}^{\top} \boldsymbol{Z} \sim \chi^{2}(p; 0).$$

Para probar (b), sea $oldsymbol{Y} = oldsymbol{B}^{-1} oldsymbol{X}$, luego

$$Y \sim \mathsf{N}_p(\boldsymbol{B}^{-1}\boldsymbol{\mu}, \boldsymbol{I}),$$

У

$$\boldsymbol{X}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{X} = \boldsymbol{Y}^{\top}\boldsymbol{B}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{B}\boldsymbol{Y} = \boldsymbol{Y}^{\top}\boldsymbol{Y},$$

que por definición tiene una distribución chi-cuadrado no central, con parámetro de no centralidad

$$\lambda = \frac{1}{2} (\boldsymbol{B}^{-1} \boldsymbol{\mu})^\top (\boldsymbol{B}^{-1} \boldsymbol{\mu}) = \frac{1}{2} \boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}.$$

F y Beta no central

Definición 2 (Distribución F no central):

Sea $X_1 \sim \chi^2(\nu_1;\lambda)$ y $X_2 \sim \chi^2(\nu_2)$ variables aleatorias independientes. Entonces,

$$F = \frac{X_1/\nu_1}{X_2/\nu_2} \sim \mathsf{F}(\nu_1, \nu_2, \lambda),$$

es decir F sigue una distribución F no central con ν_1 y ν_2 grados de libertad y parámetro de no centralidad λ .

Definición 3 (Distribución Beta no central):

Considere $U_1 \sim \chi^2(\nu_1; \lambda)$, $U_2 \sim \chi^2(\nu_2)$ tal que U_1 y U_2 son variables aleatorias independientes. Entonces,

$$G = rac{U_1}{U_1 + U_2} \sim \mathsf{Beta}(
u_1,
u_2, \lambda),$$

esto es, G sigue una distribución Beta no central con parámetros de forma y escala ν_1 y ν_2 , respectivamente y parámetro de no centralidad λ .

t de Student no central

Definición 4 (Distribución t de Student no central):

Si $Y \sim {\rm N}(\mu,\sigma^2)$ y $U/\sigma^2 \sim \chi^2(\nu)$ son independientes, entonces

$$T = \frac{Y}{\sqrt{U/\nu}} \sim t(\nu; \lambda), \quad \lambda = \mu/\sigma,$$

es llamada una variable aleatoria con distribución t de Student no central con ν grados de libertad y parámetro de no centralidad λ .

Observación:

Si $Z \sim {\rm N}(0,1),~U \sim \chi^2(\nu),~\delta$ es una constante, y Z es independiente de U, entonces

$$T = \frac{Z + \delta}{\sqrt{U/\nu}} \sim t(\nu; \delta).$$

Además,

$$t^2(\nu; \lambda) \stackrel{\mathsf{d}}{=} \mathsf{F}(1, \nu, \lambda^2/2).$$

Resultado 4:

Si $X \sim \mathsf{N}_p(\mu, I)$ y $A \in \mathbb{R}^{p \times p}$ es matriz simétrica. Entonces $X^\top A X \sim \chi^2(k; \theta)$ sólo si A es idempotente, en cuyo caso los grados de libertad y el parámetro de no centralidad están dados por

$$k = \operatorname{rg}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}), \quad \text{y} \quad \theta = \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{A} \boldsymbol{\mu},$$

respectivamente.

Demostración:

Suponga que ${m A}$ es idempotente de rango k. Entonces existe una matriz ortogonal ${m P}$ tal que

$$m{P}^{ op} m{A} m{P} = egin{pmatrix} m{I}_k & m{0} \\ m{0} & m{0} \end{pmatrix}.$$

Sea $oldsymbol{Y} = oldsymbol{P}^{ op} oldsymbol{X}$, entonces $oldsymbol{Y} \sim \mathsf{N}_{v}(oldsymbol{P}^{ op} oldsymbol{\mu}, oldsymbol{I})$, y

$$oldsymbol{X}^{ op} oldsymbol{A} oldsymbol{X} = oldsymbol{Y}^{ op} egin{pmatrix} oldsymbol{I}_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} oldsymbol{Y} = \sum_{i=1}^k Y_i^2,$$

que sigue una distribución chi-cuadrado con k grados de libertad.

Para el parámetro de no centralidad θ , note que

$$\begin{split} \mathsf{E}\{\chi^2(k;\theta)\} &= k + 2\theta = \mathsf{E}(\boldsymbol{X}^{\top}\boldsymbol{A}\boldsymbol{X}) = \mathrm{tr}(\mathsf{E}(\boldsymbol{X}\boldsymbol{X}^{\top})\boldsymbol{A}) \\ &= \mathrm{tr}((\boldsymbol{I} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top})\boldsymbol{A}) = k + \boldsymbol{\mu}^{\top}\boldsymbol{A}\boldsymbol{\mu}, \end{split}$$

y de ahí que $\theta = \frac{1}{2} {\pmb \mu}^{ op} {\pmb A} {\pmb \mu}.$

Ahora, suponga que ${\pmb X}^{\top} {\pmb A} {\pmb X} \sim \chi^2(k;\theta)$. Si ${\pmb A}$ tiene rango r, entonces para ${\pmb P}$ matriz ortogonal $p \times p$,

$$m{P}^{ op} m{A} m{P} = egin{pmatrix} m{\Lambda}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix},$$

con $\Lambda_1 = \operatorname{diag}(\lambda_1,\dots,\lambda_r)$, donde $\lambda_1,\dots,\lambda_r$ son los valores propios no nulos de \boldsymbol{A} . Sea $\boldsymbol{Y} = \boldsymbol{P}^{\top}\boldsymbol{X}$, entonces

$$\boldsymbol{X}^{\top}\boldsymbol{A}\boldsymbol{X} = \boldsymbol{Y}^{\top}\boldsymbol{P}^{\top}\boldsymbol{A}\boldsymbol{P}\boldsymbol{Y} = \sum_{j=1}^{r}\lambda_{j}Y_{j}^{2} = U.$$

Tenemos que $Y \sim \mathsf{N}_p(\pmb{\delta}, \pmb{I})$ con $\pmb{\delta} = \pmb{P}^{\top} \pmb{\mu}$, de modo que $Y_j^2 \sim \chi^2(1, \delta_j^2/2)$ con función característica

$$\varphi_{Y_j^2}(t) = (1 - 2it)^{-1/2} \exp\left(\frac{it\delta_j^2}{1 - 2it}\right),$$

por la independencia de Y_1,\ldots,Y_r sigue que

$$\varphi_U(t) = \prod_{j=1}^r (1 - 2it\lambda_j)^{-1/2} \exp\left(\frac{it\lambda_j \delta_j^2}{1 - 2it\lambda_j}\right)$$
$$= \exp\left(it\sum_{j=1}^r \frac{\lambda_j \delta_j^2}{1 - 2it\lambda_j}\right) \prod_{j=1}^r (1 - 2it\lambda_j)^{-1/2}.$$

Como $X^{\top}AX \sim \chi^2(k;\theta)$ tiene función característica

$$\varphi_{X^{\top}AX}(t) = (1 - 2it)^{-k/2} \exp\left(\frac{2it\theta}{1 - 2it}\right),\,$$

entonces desde las dos expresiones anteriores debemos tener r=k, $\lambda_j=1$, $\forall j$ y $\theta=\sum_j \delta_j^2/2$. Consecuentemente ${m P}^{\top}{m A}{m P}$ tiene la forma

$$P^{\top}AP = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix},$$

que es idempotente. Luego

$$\mathbf{P}^{\top} \mathbf{A} \mathbf{P} = (\mathbf{P}^{\top} \mathbf{A} \mathbf{P}) (\mathbf{P}^{\top} \mathbf{A} \mathbf{P}) = \mathbf{P}^{\top} \mathbf{A}^{2} \mathbf{P} \implies \mathbf{A}^{2} = \mathbf{A}.$$

Resultado 5:

Si $X \sim \mathsf{N}_p(\mu, \Sigma)$ donde Σ es no singular y X, μ y Σ son particionados como

$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix}, \qquad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix},$$

donde \boldsymbol{X}_1 , $\boldsymbol{\mu}_1$ son $k \times 1$ y $\boldsymbol{\Sigma}_{11}$ es $k \times k$. Entonces

$$U = (\boldsymbol{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) - (\boldsymbol{X}_{1} - \boldsymbol{\mu}_{1})^{\top} \boldsymbol{\Sigma}_{11}^{-1} (\boldsymbol{X}_{1} - \boldsymbol{\mu}_{1}) \sim \chi^{2}(p - k).$$

Demostración:

Considere $oldsymbol{\Sigma} = oldsymbol{B} oldsymbol{B}^{ op}$, donde $oldsymbol{B}$ es no singular y particione $oldsymbol{B}$ como

$$oldsymbol{B} = egin{pmatrix} oldsymbol{B}_1 \ oldsymbol{B}_2 \end{pmatrix}, \qquad oldsymbol{B}_1 \in \mathbb{R}^{k imes p}.$$

Luego,

$$oldsymbol{\Sigma} = oldsymbol{B} oldsymbol{B}^ op = egin{pmatrix} oldsymbol{B}_1 oldsymbol{B}_1^ op & oldsymbol{B}_1 oldsymbol{B}_2^ op \ oldsymbol{B}_2 oldsymbol{B}_1^ op & oldsymbol{B}_2 oldsymbol{B}_2^ op \end{pmatrix},$$

de donde sigue que $\Sigma_{11}=B_1B_1^{ op}$. Ahora, sea $Z=B^{-1}(X-\mu)\sim \mathsf{N}_p(\mathbf{0},I)$. De este modo.

$$\begin{pmatrix} \boldsymbol{B}_1 \\ \boldsymbol{B}_2 \end{pmatrix} \boldsymbol{Z} = \begin{pmatrix} \boldsymbol{X}_1 - \boldsymbol{\mu}_1 \\ \boldsymbol{X}_2 - \boldsymbol{\mu}_2 \end{pmatrix}.$$

Entonces

$$U = \mathbf{Z}^{\top} \mathbf{Z} - \mathbf{Z}^{\top} \mathbf{B}_{1}^{\top} (\mathbf{B}_{1} \mathbf{B}_{1}^{\top})^{-1} \mathbf{B}_{1} \mathbf{Z}$$
$$= \mathbf{Z}^{\top} (\mathbf{I} - \mathbf{B}_{1}^{\top} (\mathbf{B}_{1} \mathbf{B}_{1}^{\top})^{-1} \mathbf{B}_{1}) \mathbf{Z}$$
$$= \mathbf{Z}^{\top} (\mathbf{I} - \mathbf{H}_{1}) \mathbf{Z},$$

$$\text{con } \boldsymbol{H}_1 = \boldsymbol{B}_1^\top (\boldsymbol{B}_1 \boldsymbol{B}_1^\top)^{-1} \boldsymbol{B}_1.$$

Note que ${\pmb H}_1$ es simétrica e idempotente y por tanto también lo es ${\pmb C}={\pmb I}-{\pmb H}_1$. De donde sigue que $U\sim \chi^2(\nu)$, con $\nu=\operatorname{rg}({\pmb C})=p-k$.

Suponga que $X \sim \mathsf{N}_p(\mathbf{0}, \Sigma)$. Una condición para que $X^\top A X$ tenga una distribución chi-cuadrado es:¹

$$\Sigma A \Sigma A = \Sigma A$$
.

en cuyo caso los grados de libertad son $k=\operatorname{rg}(A\Sigma)$. Si Σ es no singular, la condición resulta $A\Sigma A=A$.

Resultado 6:

Si $X \sim \mathsf{N}_p(\mathbf{0}, \Sigma)$ donde Σ tiene rango $k \ (\leq p)$ y si A es una inversa generalizada de $\Sigma \ (\Sigma A \Sigma = \Sigma)$, entonces $X^\top A X \sim \chi^2(k)$.

¹Esto representa una generalización del Resultado 4.

Demostración:

Considere Y = BX donde B es una matriz no singular $p \times p$ tal que

$$oldsymbol{B}oldsymbol{\Sigma}oldsymbol{B}^{ op} = egin{pmatrix} oldsymbol{I}_k & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Particionando $\boldsymbol{Y} = (\boldsymbol{Y}_1^\top, \boldsymbol{Y}_2^\top)^\top$ donde \boldsymbol{Y}_1 es un vector $k \times 1$ sigue que $\boldsymbol{Y}_1 \sim \mathsf{N}_k(\boldsymbol{0}, \boldsymbol{I})$ y $\boldsymbol{Y}_2 = \boldsymbol{0}$ con probabilidad 1.

Ahora, note que

$$\begin{split} \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix} &= B \Sigma B^\top = B \Sigma A \Sigma B^\top \\ &= B \Sigma B^\top B^{-\top} A B^{-1} B \Sigma B^\top \\ &= \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix} B^{-\top} A B^{-1} \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}. \end{split}$$

Luego, con probabilidad uno,

$$\begin{split} \boldsymbol{X}^{\top} \boldsymbol{A} \boldsymbol{X} &= \boldsymbol{Y}^{\top} \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \boldsymbol{Y} = (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix} \\ &= (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \boldsymbol{B}^{-\top} \boldsymbol{A} \boldsymbol{B}^{-1} \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix} \\ &= (\boldsymbol{Y}_{1}^{\top}, \boldsymbol{0}) \begin{pmatrix} \boldsymbol{I}_{k} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{Y}_{1} \\ \boldsymbol{0} \end{pmatrix} = \boldsymbol{Y}_{1}^{\top} \boldsymbol{Y}_{1} \sim \chi^{2}(k). \end{split}$$

