Capítulo 1

Filtro Pasa Bajos

Se diseñaron filtros pasa bajos para funcionar como el Filtro Anti Alias (FAA) y el Filtro Recuperador (FR) en el esquema a implementar.

1.1. Especificaciones del Filtro

Se pidió que el Filtro Pasa Bajos cumpla con las siguientes especificaciones:

f_a	A_p	A_a
$1,5f_p$	1dB	41 dB

Tabla 1.1: Especificaciones de los Filtros Pasa Bajo

Se eligió un $fp=50\mathrm{kHz}$ dado que las señales que serán muestreadas son

1.2. Realización del Filtro

Para implementar el filtro pasa bajos se utilizaron celdas Rauch de construcción pasa bajos. Su esquema se muestra en la Figura 1.1.

Figura 1.1: Celda Rauch

La transferencia total de esta celda estará dada por la expresión:

$$H(s) = \frac{R_3}{R_1} \cdot \frac{1/R_3 R_2 C_1 C_2}{s^2 + s \frac{1}{C_1} (1/R_1 + 1/R_2 + 1/R_3) + 1/R_2 R_3 C_1 C_2}$$
(1.1)

Comparando con la expresión general de la transferencia de un filtro pasabajos de segundo orden:

$$H(s) = \frac{K\omega_0^2}{s^2 + s\frac{\omega_0}{Q_0} + \omega_0^2}$$

Se obtiene que:

$$K = \frac{R_3}{R_1} \tag{1.2}$$

$$\alpha_0^2 = \frac{1}{R_2 R_3 C_1 C_2}$$
(1.3)

$$\frac{\omega_0}{Q_0} = \frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) \tag{1.4}$$

Dado que se desea que la ganancia en continua sea H(0) = 0dB, se puede tomar $R_3 = R_1 = R$. Se definió entonces también $R_2 = a^2 R$ y $C_1 = k^2 C_2 = k^2 C$. Por lo tanto, la transferencia de la celda resulta en:

$$K = 1 \tag{1.5}$$

$$\omega_0^2 = \frac{1}{a^2 R^2 k^2 C^2} \Rightarrow \omega = \frac{1}{ak} \cdot \frac{1}{RC} \tag{1.6}$$

$$\frac{\omega_0}{Q_0} = \frac{1}{k^2 C} \left(\frac{2}{R} + \frac{1}{a^2 R} \right) \tag{1.7}$$

Operando sobre (1.7) se obtiene

$$\frac{1}{Q_0} = \frac{1}{k^2 a^2 RC} (2a^2 + 1) \cdot kaRC$$

$$\frac{1}{Q_0} = \frac{1}{ka} (2a^2 + 1)$$

$$Q_0 = \frac{ka}{2a^2 + 1}$$

Por lo tanto la expresión del factor de calidad de la celda \mathcal{Q}_0 estará dada por

$$Q_0 = \frac{ka}{2a^2 + 1} \tag{1.8}$$