Práctica 2

- 1. Muestre que
 - (a) La primer dirección principal maximiza $VAR(\langle \alpha, X \rangle)$ sobre $S_1 = \{\alpha : ||\alpha|| = 1\}$.
 - (b) La (k+1)-ésima dirección principal maximiza VAR $(\langle \alpha, X \rangle)$ sobre $S_1 = \{\alpha : ||\alpha|| = 1\}$ sujeto a Cov $(\langle \alpha, X \rangle, \langle \phi_i, X \rangle) = 0$, para $1 \le j \le k$.
 - (c) Deduzca que como en el caso multivariado, las componentes principales tienen varianza λ_i y son no correlacionadas.
- 2. Considere el conjunto de datos CanadianWeather de la librería fda y los promedios mensuales de las 35 estaciones, CanadianWeather\$monthlyTemp.
 - (a) A partir del núcleo de covarianza empírico, $\hat{\gamma}(t,s)$, obtenga estimadores de las 4 primeras direcciones principales. Qué porcentaje de la variabilidad total explican?
 - (b) Para cada j = 1, ..., 4, haga un plot con los datos en gris, la media $\widehat{\mu}(t)$ en negro y las curvas $\widehat{\mu}(t) + \gamma \widehat{\phi}_i(t)$ y $\widehat{\mu}(t) \gamma \widehat{\phi}_i(t)$ en rojo, tomando $\gamma = 5$ y 10. Qué observa?
 - (c) Haga un gráfico de los escores $\widehat{\xi}_{i,j}$ versus $\widehat{\xi}_{i,k}$, $1 \leq i \leq n$, $1 \leq k < j \leq 4$, donde $\widehat{\xi}_{i,\ell} = \langle X_i \widehat{\mu}, \widehat{\phi}_{\ell} \rangle$
 - (d) Repita el análisis después de haber eliminado los datos detectados como atípicos por el boxplot funcional. Qué observa?
- 3. En el Rdata lipdata.Rdata se dan los datos correspondientes al movimiento del labio inferior al pronunciar la palabra bob. Los registros corresponden a 32 repeticiones de dicha palabra y las 501 mediciones se tomaron en el intervalo [0, 0.69].
 - (a) Grafique las curvas junto con el estimador $\hat{\mu}$ de su media.
 - (b) Realice el boxplot funcional de los datos e identifique los datos atípicos si los hubiere.
 - (c) Grafique la superficie $\widehat{\gamma}(t,s)$.
 - (d) A partir de la covarianza empírica $\widehat{\gamma}(t,s)$ obtenga estimadores de las 5 primeras direcciones principales. Qué porcentaje de la variabilidad total explican?
 - (e) Para cada $j=1,\ldots,4$, haga un plot con los datos en gris, la media $\widehat{\mu}(t)$ en negro y las curvas $\widehat{\mu}(t) + \gamma \widehat{\phi}_i(t)$ y $\widehat{\mu}(t) \gamma \widehat{\phi}_i(t)$ en rojo, tomando $\gamma = 0.5$ y 1. Qué observa?
 - (f) Haga un gráfico de los escores $\widehat{\xi}_{i,j}$ versus $\widehat{\xi}_{i,k}$, $1 \leq i \leq n$, $1 \leq k < j \leq 4$, donde $\widehat{\xi}_{i,\ell} = \langle X_i \widehat{\mu}, \widehat{\phi}_{\ell} \rangle$.
 - (g) Repita el análisis después de haber eliminado las observaciones 24,25 y 27. Qué observa?
- 4. Considere un proceso $X \in L^2([-1,1])$ con un desarrollo finito de Karhunen-Loève,

$$X = Z_1 \phi_1 + Z_2 \phi_2 + Z_3 \phi_3 \tag{1}$$

donde $\phi_1(t) = \sin(4\pi t)$, $\phi_2(t) = \cos(7\pi t)$ y $\phi_3(t) = \cos(15\pi t)$, $t \in [-1, 1]$. Supongamos que $Z_j \sim N(0, \sigma_j^2)$ donde $\sigma_1 = 4$, $\sigma_2 = 2$ and $\sigma_3 = 1$, Z_j independientes entre sí.

- (a) Calcule $\mathbb{E}X$ y Γ el operador de covarianza de X. Muestre que Γ tiene rango finito. Cuanto valen sus autovalores y sus autofunciones? Podría haberlo deducido directamente de (1)?
- (b) Se consideran ahora observaciones X_i , $1 \le i \le n = 50$ del proceso X dado en (1), es decir,

$$X_i = Z_{i1}\phi_1 + Z_{i2}\phi_2 + Z_{i3}\phi_3$$

donde $Z_{ij} \sim N(0, \sigma_j^2)$ son independientes para $1 \leq i \leq n$ y $1 \leq j \leq 3$. Fijando la semilla en 1223, genere las observaciones sobre una grilla $\{t_j\}$ de puntos equiespaciados de longitud 1000 y grafiquelas.

- (c) Realice el boxplot funcional de los datos e identifique los datos atípicos si los hubiere.
- (d) Grafique la superficie $\widehat{\gamma}(t,s)$.
- (e) A partir de la covarianza empírica $\widehat{\gamma}(t,s)$ obtenga estimadores de las primeras direcciones principales. Cuántas tiene sentido tomar? Cuántas tomaría para explicar un 95% de la variabilidad total?
- (f) Para cada j, grafique la j-ésima dirección principal real y estimada en un mismo gráfico. Asegurese que signo $(\langle \widehat{\phi}_i, \phi_i \rangle) = 1$.
- (g) Para evaluar el efecto de datos atípicos en los estimadores de las direcciones principales, considere las siguientes contaminaciones

 C_1 : Sean $B_i \sim Bi(1,0.1), 1 \le i \le n$ independientes. Defina

$$X_i^{(1)} = \begin{cases} X_i & \text{si } B_i = 0\\ X_i + 12 & \text{si } B_i = 1 \end{cases}$$

corresponde a sumar a un 10% de las trayectorias un factor 12.

 C_2 : Reemplace $X_2(t)$ por $X_2(t) + 25$ cuando -0.4 < t < -0.36. Llamaremos $X_i^{(2)}$ a las trayectorias obtenidas

 C_3 : Defina

$$X_i^{(3)} = Z_{i1}^{(3)}\phi_1 + Z_{i2}^{(3)}\phi_2 + Z_{i3}^{(3)}\phi_3$$

donde $Z_{i1}^{(3)} \sim N(0, \sigma_1^2),$

$$\begin{pmatrix} Z_{i2}^{(3)} \\ Z_{i3}^{(3)} \end{pmatrix} \sim (1 - \epsilon) N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \operatorname{diag} \left(\sigma_2^2, \sigma_3^2\right) + \epsilon N \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \operatorname{diag} \left(0.01, 0.01\right) \end{pmatrix}$$

con $\epsilon = 0.1$. Es decir, se generan $B_i \sim Bi(1,0.1), 1 \leq i \leq n$ independientes e independientes de

$$W_i = (W_{i1}, W_{i2})^{\mathrm{T}} \sim N\left(\begin{pmatrix} 4\\4 \end{pmatrix}, \operatorname{diag}(0.01, 0.01)\right),$$

entonces $(Z_{i2}^{(3)}, Z_{i3}^{(3)})$ se define como

$$\left(Z_{i2}^{(3)}, Z_{i3}^{(3)}\right)^{\mathrm{T}} = \left\{ \begin{array}{cc} \left(Z_{i2}, Z_{i3}\right)^{\mathrm{T}} & \text{si } B_i = 0\\ \left(W_{i2}, W_{i3}\right)^{\mathrm{T}} & \text{si } B_i = 1 \end{array} \right.$$

- i. Grafique las trayectorias obtenidas en cada una de las contaminaciones, indicando en rojo las trayectorias contaminadas.
- ii. En que caso, es más dificil distinguir los datos atípicos generados de los datos originales?
- iii. Haga un boxplot de los escores

$$\xi_{i,j} = \langle X_i, \phi_i \rangle$$

para $1 \le j \le 3$, $1 \le i \le n$ en cada caso. Si el boxplot identifica outliers a quién corresponden? Interprete.

- iv. Para cada $\ell=1,2,3$ llamemos $\widehat{\phi}_j^{(\ell)}$ las direcciones principales estimadas obtenidas con la muestra $\{X_i^{(\ell)}\}_{i=1}^n$. Para cada $\ell=1,2,3$ y $1\leq j\leq 3$, grafique $\widehat{\phi}_j^{(\ell)}$ y $\widehat{\phi}_j$ en un mismo grafico, asegurese que signo $(\widehat{\phi}_j^{(\ell)},\widehat{\phi}_j\langle)=1$. Qué observa? Es razonable? Explique.
- v. Para entender los resultados, calcule $\mathbb{E}\left(X_1^{(\ell)}\right)$ y VAR $\left(\langle X_1^{(\ell)}, \phi_j \rangle\right)$ para las contaminaciones C_1 y C_3 y j=1,2,3.