

Ahsanullah University of Science & Technology <u>Department of Computer Science & Engineering</u>

Course No: CSE 3110

Course Title: Digital System Design Lab

Assignment No: 01

Submitted By-

Section: C
Lab group: C1
Group: 07

ld: 18.01.04.103

18.01.04.104

18.01.04.117

Introduction:

An arithmetic and logic unit (ALU) is a combinational digital electronics circuit that performs arithmetical and logical operations on integer binary numbers. In this given experiment, we have built a 4-bit ALU. We have to implement a 4bit ALU that takes 4bit (A4,A3,A2,A1), (B4,B3,B2,B1) with 1 bit Zin and perform given operation on them.

.

Problem Statement:

Designing the following 4-bit ALU(Arithmetic Logic Unit):

S2	S1	S0	Output	Functions
1	0	0	Ai - 1	Decrement A
0	0	1	Ai + Bi + 1	Add with carry
1	0	1	Ai + 1	Increment A
				Substract with
0	0	0	Ai - Bi - 1	borrow
0	1	Χ	Ai . Bi	AND
1	1	Χ	Ai Bi	OR

Function Generation:

S2	S1	S0	Zi	Xi	Yi	Function
1	0	0	0	Ai	All 1	Ai - 1
0	0	1	1	Ai	Bi	Ai + Bi + 1
1	0	1	1	Ai	0	Ai + 1
						Ai - Bi – 1
0	0	0	0	Ai	Bi'	= Ai + Bi'
0	1	X	0	Ai . Bi	0	Ai . Bi
1	1	Х	0	Ai Bi	0	Ai Bi

From the table, we can get:

$$Xi = S1' Ai + S2' S1 (Ai . Bi) + S2 S1 (Ai | Bi)$$

For Z: Using K-Map we get,

S2 \S1S0	00	01	11	10
0	0	<u>1</u>	3	2
1	4	5	7	6

Zi = S1'S0 (Bold and Underlined cell should be taken for grouping).

Equipment and Budget Comparison:

For this project required equipment are:

Total IC-48

- **1.** 4073 (3 input AND gate) 11 pieces, each one 25.47 BDT.
- **2.** 4075 (3 input OR gate) 8 pieces, each one 22.67 BDT.
- **3.** 7483 (4-Bit Binary Full Adder) 1 piece, each one 45.7 BDT.
- **4.** 4081 (2 input AND gate) 17 pieces, each one 23.59 BDT.
- **5.** 7404 (NOT gate) 7 pieces, each one 25.59 BDT.
- **6.** 4071 (2 input OR gate) 4 pieces, each one 27.59 BDT.
- **7.** LOGGICTOGGLE 11 pieces , 0.9 BDT.
- **8.** LOGICPROBE 5 pieces, each one 7.4 BD.
- **9.** Bread Board 4 Pieces, each one 94 BDT(Real life use).
- **10.** Jumper wire 150 pieces, each bundle(50 pieces) 50BDT(Real life use).

Total estimated budget: 1770.65 bdt

Simulation:

Figure: Circuit Implementation and Simulation Using Proteus

Result:

So our final example input and output results from the circuit:

S2	S1	S0	Zi	Xi	Yi	Output	Final	Cout	Result	Target
1	0	0	0	1000	1111	Ai -1	0111	1	Decrement A	Decrement A
0	0	1	1	1010	1111	Ai+ Bi + 1	1010	1	Add with carry	Add with carry
1	0	1	1	0101	0	Ai+1	0110	0	Increment A	Increment A
0	0	0	0	1010	1010	Ai - Bi - 1	0100	1	Substract with borrow	Substract with borrow
0	1	Х	0	0001	0	Ai . Bi	0001	0	AND	AND
1	1	Х	0	1111	0	Ai Bi	1111	0	OR	OR

Conclusion:

Though we have proved our result successfully for all outputs, but we might face problem as-

- 1. Used equipment can be damaged if carefully not handled.
- 2. Using unnecessary wire can cause of short circuit.
- 3. Use of unnecessary gates may make implementation difficult.