HUFFMAN CODING

PRESENTED BY:

TULASI DAHAL

M.E. COMPUTER

KATHMANDU UNIVERSITY, DHULIKHEL

Contents

- > Introduction
- Major Steps
- > Huffman Tree
- > Algorithm
- > Analysis
- Worked Example
- Properties of Huffman Codes
- > Conclusion

Introduction

- Huffman Coding is a lossless data compression algorithm. The idea is to assign variable-length codes to input characters, lengths of the assigned codes are based on the frequencies of corresponding characters.
- The most frequent character gets the smallest code and the least frequent character gets the largest code.
- Developed by David A. Huffman while he was a Ph.D. student at MIT and published in the 1952 paper "A Method for the Construction of Minimum Redundancy Codes".

Major Steps

- > There are mainly three major steps in Huffman Coding:
 - i. Prepare the frequency table
 - Build a Huffman Tree from input characters
 - Traverse the Huffman Tree and assign codes to characters

Huffman Tree

- > Steps to build Huffman Tree:
 - i. Create a leaf node for each unique character
 - ii. Extract two nodes with the minimum frequency
 - iii. Create a new internal node with frequency equal to the sum of the two nodes frequencies
 - iv. Repeat Step (ii) and (iii) until the heap contains only one node. The remaining node is the root node and the tree is complete.

> Example:

H A

Algorithm

HUFFMAN(C)

- $1. \quad n \leftarrow |C|$
- $Q \leftarrow C$
- 3. $for i \leftarrow 1 to n-1$
- 4. do allocate a new node z
- 5. $x \leftarrow left[z] \leftarrow EXTRACT MIN(Q)$
- 6. $y = right[z] \leftarrow EXTRACT MIN(Q)$
- 7. $f[z] \leftarrow f[x] + f[y]$
- $\overline{8}$. INSERT (Q, Z)
- 9. return EXTRACT MIN(Q)

Analysis

> Time Complexity:

Time Complexity of Huffman Coding is $O(n \log n)$ where each iteration requires $O(\log n)$ time to determine the cheapest weight and there would be O(n) iterations.

Worked Example

- > Alphabet: A, B, C, D, E, F
- > Frequency Table:

A	В	C	D	E	K
10	20	30	40	50	60

> Total File Length: 210

Calculation:

- File Size = 10x4 + 20x4 + 30x3 + 40x2 + 50x2 + 60x2= 40 + 80 + 90 + 80 + 100 + 120 = 510 bits
- The Huffman Code:Required 510 bits for the file
- Fixed length code:

Need 3 bits for 6 characters

File has 210 characters

Total = 210x3 = 630 bits for the file

Properties of the Huffman Codes

- No Huffman code is prefix of any other Huffman codes so decoding is unambiguous
 - For example: In a given set of Huffman codewords, 10 and 101 can not simultaneously be valid Huffman codewords because first is the prefix of the second.
- The Huffman Coding technique is optimal i.e. savings of 20% to 90% are typical, depending on the characteristics of the file being compressed.
- Symbols that occur more frequently have shorter Huffman Codes

Conclusion

- ➤ Huffman Coding is a method for construction of minimum redundancy codes
- > Also known as Probabilistic variable length coding
- ➤ It is widely used and very effective technique for compressing data
- Used in many compression algorithm like gzip, bzip, fax compression

THANK YOU!