Отчет о лабораторной работе № 2 «Изучение и освоение методов анализа формы объектов по изображениям».

317 группа, ММП ВМК МГУ.

Булкин Антон Павлович.

Апрель 2025.

Содержание

Постановка задачи													
2 Описание данных													
Описание используемых методов													
3.1	Гауссово размытие	3											
3.2		4											
3.3		4											
		4											
		4											
3.4		4											
		6											
		6											
0.0	Chpodesionne Bhity Mioeth												
Опи	исание программной реализации	6											
4.1		6											
4.2		7											
		7											
		8											
4.3		S											
	Om. 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Om. 4.1 4.2	Описание данных Описание используемых методов 3.1 Гауссово размытие 3.2 Бинаризация изображения 3.3 Морфологические операции 3.3.1 Closing 3.3.2 Opening 3.4 Преобразование расстояний 3.5 Watershed 3.6 Аппроксимация контуров методом Дугласа-Пекера 3.7 Анализ кривизны контура 3.8 Определение выпуклости Описание программной реализации 4.1 Основные модули и библиотеки 4.2 Структура и логика программы 4.2.1 Вспомогательные функции 4.2.2 Класс CardsApp											

	4.4	Демонстрация работы программы				•		•			9
5	Выі	ВОДЫ									12

Постановка задачи 1

Целью данной лабораторной работы является разработка и реализация программы для анализа формы объектов на цифровых изображениях, предназначенных для обработки карточек игрового набора «Геометрика».

Задача состоит в реализации следующих возможностей:

- Ввод и отображение изображений: Пользователь должен иметь возможность загрузить изображение карточек и увидеть его на экране в исходном виде.
- Сегментация изображения: Программа должна реализовывать сегментацию карточек на основе точечных и пространственных преобразований, что позволит выделить карточки из фона и друг от друга.
- Поиск карточек на изображениях: Программа должна находить все карточки, включая изолированные и частично перекрывающиеся друг с другом.
- Выделение и распознавание фигур на карточках: На найденных карточках программа должна определить тип фигуры (многоугольник или фигура с гладкой границей), количество вершин многоугольников и выпуклость многоугольников.

Результаты анализа изображений маркируются следующим образом:

- Карточки маркируются порядковым номером (№1, №2, ...).
- Фигуры на карточках маркируются как:
 - -PnC многоугольник с указанием числа вершин (n) и выпуклости (C).
 - *Pn* многоугольник без указания выпуклости.
 - Smooth фигура с гладкой границей.

Входные данные программы представлены в формате JPG, а результатом работы программы является исходное изображение с нанесённой маркировкой.

2 Описание данных

В качестве входных данных используются изображения карточек игрового набора «Геометрика», предоставленные в формате JPG. Изображения различаются по следующим признакам:

• Фон изображения:

- *Белый фон (#):* Карточки размещены на простом однородном фоне, что облегчает сегментацию.
- *Пёстрый фон (&):* Карточки размещены на сложном, неоднородном фоне, что затрудняет процесс сегментации и распознавания.

• Расположение карточек:

- *Изолированные карточки:* Карточки не перекрывают друг друга, что упрощает их выделение.
- *Перекрывающиеся карточки:* Карточки частично наложены друг на друга, усложняя процесс выделения отдельных карточек.

• Характеристики фигур на карточках:

- *Tun фигуры:* Многоугольник или фигура с гладкой границей.
- *Количество вершин:* Для многоугольников количество вершин варьируется, что используется при маркировке.
- *Выпуклость*: Многоугольники могут быть выпуклыми или невыпуклыми, что также необходимо определить.

3 Описание используемых методов

В данной лабораторной работе были использованы классические методы обработки изображений и компьютерного зрения для решения задачи. Основные методы, применённые в реализации, рассмотрены ниже.

3.1 Гауссово размытие

Для подавления шума и уменьшения мелких дефектов изображения используется гауссово размытие, основанное на свёртке изображения с гауссовым ядром:

$$G(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right),\,$$

где σ — стандартное отклонение гауссианы, контролирующее степень размытия.

3.2 Бинаризация изображения

В задании используется пороговая бинаризация, определяемая формулой:

$$B(x,y) = \begin{cases} 255, & I(x,y) \le T, \\ 0, & I(x,y) > T, \end{cases}$$

где I(x,y)— интенсивность пикселя серого изображения, а T— заданное пороговое значение, регулируемое пользователем.

В конкретной реализации применяется инвертированная бинаризация $(THRESH_BINARY_INV)$, при которой объекты отображаются белым (значение 255), а фон чёрным (значение 0).

3.3 Морфологические операции

Используются морфологические операции для устранения шумов и разрывов на бинаризованном изображении:

3.3.1 Closing

Замыкание применяется для устранения мелких разрывов и дефектов на объектах, реализуется последовательным выполнением дилатации и эрозии:

$$I_{\text{closed}} = (I \oplus K) \ominus K,$$

где \oplus — дилатация, \ominus — эрозия, K— ядро.

3.3.2 Opening

Открытие удаляет мелкие объекты и шумы, сохраняя при этом основные формы объектов:

$$I_{\text{open}} = (I \ominus K) \oplus K.$$

3.4 Преобразование расстояний

Преобразование расстояний вычисляет расстояние от каждого пикселя объекта до ближайшего фонового пикселя, позволяя разделить перекрывающиеся объекты. Для каждого пикселя объекта:

$$D(x,y) = \min_{(x',y') \in \text{background}} \sqrt{(x-x')^2 + (y-y')^2}.$$

3.5 Watershed

Watershed используется для эффективного разделения соприкасающихся или перекрывающихся объектов. Алгоритм работает следующим образом:

- Создаётся карта маркеров, которые соответствуют центрам объектов.
- Маркеры и фоновые области рассматриваются как источники, из которых начинается условное «затопление» изображения.
- Границы раздела вод, возникающие при «затоплении», формируют чёткие контуры разделения объектов.

Алгоритм формально можно представить как задачу минимизации функции энергии, заданной градиентом изображения, и маркерными условиями:

$$E = \int_{\Omega} |\nabla I(x, y)| \, dx \, dy \to \min,$$

где $\nabla I(x,y)$ — градиент исходного изображения, Ω — область сегментации, заданная маркерами.

3.6 Аппроксимация контуров методом Дугласа-Пекера

Контуры объектов аппроксимируются многоугольниками с использованием метода Дугласа—Пекера, что позволяет упростить контур с минимальными потерями формы объекта:

$$P = \operatorname{approxPolyDP}(C, \epsilon, \operatorname{True}),$$

где:

- C— исходный контур.
- Р— упрощённый многоугольник.
- ϵ максимальное допустимое расстояние между исходным контуром и упрощённым многоугольником.

3.7 Анализ кривизны контура

Для различения многоугольников и гладких фигур используется анализ локальной кривизны контура. Кривизна рассчитывается на основе углов между соседними сегментами контура:

$$\kappa_i = \arccos\left(\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{\|\mathbf{v}_1\| \|\mathbf{v}_2\|}\right),$$

где $\mathbf{v}_1, \mathbf{v}_2$ — векторы, образованные соседними точками контура. Количество выраженных локальных максимумов кривизны позволяет классифицировать фигуры.

3.8 Определение выпуклости

Выпуклость контура проверяется функцией, проверяющей для каждой точки контура выполнение условия выпуклости. Контур является выпуклым, если для любой его точки выполняется:

$$\forall i, (p_{i+1} - p_i) \times (p_{i+2} - p_{i+1}) \ge 0,$$

где p_i — последовательные точки контура.

4 Описание программной реализации

Разработанная программа реализована на языке Python с использованием библиотек для обработки изображений и построения пользовательского интерфейса. Ниже подробно рассмотрены основные компоненты реализации.

4.1 Основные модули и библиотеки

В реализации использованы следующие Python-библиотеки и модули:

• OpenCV (cv2):

- Загрузка изображений из файлов.
- Преобразование изображений (перевод в оттенки серого, бинаризация, размытие).
- Морфологические преобразования (эрозия, дилатация, открытие, закрытие).
- Алгоритмы сегментации (Distance Transform, Watershed).

– Анализ и аппроксимация контуров.

• NumPy:

Выполнение математических операций и обработка массивов изображений.

• Pillow (PIL):

– Конвертация изображений из формата OpenCV в формат, пригодный для отображения в интерфейсе Tkinter.

• Tkinter:

- Создание графического пользовательского интерфейса.
- Взаимодействие с пользователем через графические элементы кнопки и ползунки.
- Загрузка, отображение и сохранение изображений и результатов обработки.

4.2 Структура и логика программы

Программа организована в виде основного класса CardsApp, который управляет загрузкой, обработкой изображений и пользовательским интерфейсом, и набора вспомогательных функций, которые реализуют отдельные шаги обработки изображений.

4.2.1 Вспомогательные функции

Реализованные вспомогательные функции отвечают за конкретные задачи обработки изображений:

- imread_unicode(path) Загрузка изображений, включая пути с unicodeсимволами.
- preprocess_mask(img, bin_thr, closing_it) Предварительная обработка изображения, включая размытие, бинаризацию и морфологическое замыкание.
- split_overlapping(mask, open_it, dilate_it, dist_frac) Разделение перекрывающихся карточек методом Watershed с предварительным преобразованием расстояний.

- find_cards(img, mask, open_it, dilate_it, dist_frac) Поиск и фильтрация контуров карточек по площади.
- curvature_peaks(contour, frac_thresh) Определение количества значимых пиков кривизны контура, используемое для классификации форм фигур на карточках.
- annotate_shapes(...) Функция, маркирующая контуры карточек и классифицирующая фигуры на них, включая выделение многоугольников и фигур с гладкой границей.

4.2.2 Класс CardsApp

Класс CardsApp реализует пользовательский интерфейс и управляет процессом взаимодействия пользователя с программой. Его структура включает следующие основные элементы и методы:

• Инициализация интерфейса:

- Задаются параметры обработки изображений по умолчанию, с возможностью их изменения.
- Создаются графические элементы интерфейса.

• Выбор изображения:

 Пользователь выбирает файл изображения через диалоговое окно, после чего изображение отображается в интерфейсе.

• Обработка изображения:

 Пользователь запускает процесс обработки изображения с текущими параметрами, после чего отображаются результаты сегментации и анализа.

• Отображение результатов:

Интерфейс отображает исходное изображение, бинарную маску, результаты разделения объектов и итоговое изображение с размеченными карточками и фигурами.

• Сохранение результатов:

Пользователь может сохранить результаты обработки в указанную им директорию.

4.3 Особенности интерфейса и пользовательского взаимодействия

Интерфейс программы выполнен на основе библиотеки Tkinter и обеспечивает следующие возможности:

- Настройка параметров обработки изображений с помощью удобных шкал и регуляторов, позволяющих подбирать оптимальные настройки под различные изображения.
- Отображение промежуточных и итоговых результатов в реальном времени для удобства анализа и отладки алгоритмов.
- Интуитивно понятная структура интерфейса, упрощающая взаимодействие с программой пользователям, не знакомым с деталями реализации алгоритмов.

4.4 Демонстрация работы программы

• Пользовательский интерфейс программы:

Рис. 1: Изначальный пользовательский интерфейс

• После добавления и обработки файла:

Рис. 2: Пользовательский интерфейс после выбора и обработки файла

Пример демонстрационных изображений:

• Исходное изображение:

Рис. 3: Исходное изображение, выбранное пользователем

• Маска объектов:

Рис. 4: Бинарная маска после морфологической обработки

• Ядра:

Рис. 5: Ядра для объектов

• Итоговое изображение:

Рис. 6: Итоговое изображение с выделенными контурами карточек и классифицированных фигур

5 Выводы

В рамках лабораторной работы была разработана и успешно реализована программа, предназначенная для анализа и сегментации изображений карточек игрового набора «Геометрика». По результатам выполненной работы можно сделать следующие выводы:

- Эффективность методов: Использованные методы бинаризации, морфологических операций и маркерной водораздельной сегментации обеспечивают высокое качество выделения карточек на изображениях. В частности, применение предварительной обработки (гауссово размытие, замыкание) позволяет значительно улучшить результаты сегментации за счёт уменьшения шума и выделения чётких контуров объектов. Однако, из-за разной яркости картинок, часто приходится подбирать трешхолды для различных параметров вручную, что снижает общую эффективность программы.
- **Распознавание фигур:** Реализованные алгоритмы анализа кривизны контура и аппроксимации контуров методом Дугласа—Пекера позволяют идентифицировать типы фигур (многоугольники и гладкие фигуры) и опреде-

лять характеристики многоугольников (количество вершин и выпуклость), но иногда алгоритм может также ошибаться, принимая за гладкие фигуры правильные многоугольники с большим количеством вершин (для исправления этого были добавлены элементы подбора краевых значений для более эффективной классификации фигур)

• Адаптивность к различным условиям: Разработанный интерфейс и предусмотренные программой настройки дают возможность оперативно подбирать параметры алгоритмов под конкретные изображения, что обеспечивает хорошую адаптацию алгоритма к изображениям разного уровня сложности и различным условиям освещения и фона.

Таким образом, по поставленной задаче была реализованна программа, предпологающая реализацию подбора параметров и решения поставленной задачи, а реализация продемонстрировала надёжность и высокую степень гибкости классических методов компьютерного зрения при решении практических задач обработки изображений.

Список литературы

[1] Гонсалес Р., Вудс Р., Цифровая обработка изображений.: Пер. с англ. - М.:Техносфера, 2012. - 1104 с. (3-е издание, дополненное и исправленное)