

Outline

Overview

Methods for Time Series Analysis

Example of Time Series Analysis

420 in January 431 in February Our sales in the next two months will be ... 415 in March Time Series And Data over time 509 in July Sales Passengers Traffic

The General Problem

Data over time

- Value at time point 1
- Value at time point 2
- Value at time point 3
- Value at time point 4
- Value at time point 5
- Value at time point 6
- Value at time point 7
- Value at time point 8
- Value at time point 9

• ...

Time Series
Analysis

The Formal Problem

- Discrete values over time
 - $\{x_1, ..., x_T\} = \{x_t\}_{t=1}^T \text{ with } x_t \in \mathbb{R}$
 - Can be seen as a series of random variables or a stochastic process
 - Time between t and t+1 must be equal for all t=1,...,T-1
 - Minutes, hours, days, weeks, months, ...
- Components of a time series
 - General trend of the time series T_t
 - Seasonal effects on the time series S_t
 - Autocorrelation between observations R_t
 - $x_t = T_t + S_t + R_t$

Outline

Overview

Methods for Time Series Analysis

Time Series Analysis with Box-Jenkins

- For stationary data
 - Stationary means constant mean value and variance
 - → Requires de-trending and seasonal adjustment

- Models autocorrelation as a stochastic process
 - Observations depend on past observation and a random component
- Tries to model time series with only few parameters
 - Goal are simple models

Detrending Through Regression

Non-linear regression for non-linear trends

Seasonal Adjustment through the Mean

- Seasonal effect:
 - A regularly repeating pattern
 - Monthly, weekly, ...
- Seasonal adjustment through the seasonal mean value

Differencing for Detrending

- Instead of regression / removal of mean seasonal effects
- Differencing for detrending of order d
 - First difference for moving mean values (d = 1)
 - Similar to linear trends
 - $\bullet \ \Delta^1 x_t = x_t x_{t-1}$

• Second difference for moving mean and the change in the movement (d=2)

- · Similar to quadratic trends
- $\Delta^2 x_t = \Delta^1 x_t \Delta^1 x_{t-1} = x_t 2x_{t-1} + x_{t-2}$

Differencing for Seasonal Adjustment

- Seasonal differencing for seasons of periodicity S
 - $\bullet \ \Delta_S \ x_t = x_t x_{t-S}$
 - $\Delta_S^{12} x_t = x_t x_{t-12}$ would be seasonal differencing for monthly data

Comparison of Adjustments

Autocorrelation

Relationship between time series values with other time series values

Autocorrelation over Time

Partial Autocorrelation

- Autocorrelation that is not explained by "carrying over"
 - x_t and x_{t+1} are correlated
 - x_{t+1} and x_{t+2} are correlated
 - How much of the correlation between x_t and x_{t+2} is not explained by the above correlations?
 - In other words, how much of the correlation between x_t and x_{t+2} is independent of the correlation between x_t / x_{t+1} and x_{t+1} / x_{t+2} ?

ARMA Time Series Models

- Requires detrended and seasonally adjusted data
- Model for the autocorrelation part R_T of a time series

•
$$x_t = a_0 + \sum_{i=1}^p a_i x_{t-i} + \epsilon_t + \sum_{j=1}^q b_j \epsilon_{t-i}$$

 ϵ_i is a random variable with an expected value of 0 \rightarrow white noise

Autoregressive (AR) Moving Average (MA)

Constant plus linear combination of the p past values

Noise term + linear combination of last *q* noise values

Picking p and q

- Analyze (partial) autocorrelation function
 - p = 1 would model everything except the missing seasonal effect
 - p=12 would capture missing seasonal effect at the cost of a more complex model
 - q = 0 or q = 1 to account for low random fluctuations

Outline

Overview

Methods for Time Series Analysis

- Time series analysis considers data over time
 - Equal intervals
- More than just regression
 - Seasonal effects
 - Autocorrelation
- Complex topic with many options for modelling
 - Trend detection
 - Seasonal adjustment
 - Autocorrelation modelling
 - Completely different approaches, e.g., based on neural networks