Gradiente Descendente

Andrés Daniel Godoy Ortiz

¿cómo aprenden las redes neuronales?

El objetivo es encontrar el mínimo de la función de costo, del error que sistemáticamente comete el modelo.

Error cuadrático medio (MSE):

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Error absoluto medio (MAE):

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

Clasificación binaria (activación final: SIGMOID):

$$\mathcal{L}_{BCE} = -rac{1}{n} \sum_{i=1}^{n} \left[y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)
ight]$$

Clasificación multiclase (activación final: SOFTMAX)::

$$\mathcal{L}_{CCE} = -\sum_{i=1}^n \sum_{j=1}^k y_{ij} \log(\hat{y}_{ij})$$

¿Cómo logro reducir la función de costo? Ajustando mis parámetros

Función Neuronal:

Input: 784 pixeles

Output: 10 dígitos

Parámetros: 13,002

Función de Costo: $C(w_1, w_2, \dots, w_{13,002})$

Input: 13,002 valores de pesos (w) y sesgos(b)

Output: 1 valor el costo

Parámetros: La data/ las imagenes

$$f(\theta) = \cot(\theta, \blacksquare)$$

$$+ \cot(\theta, \blacksquare)$$

$$+ \cot(\theta, \blacksquare)$$

$$+ \cot(\theta, \blacksquare)$$

Local Search...

Gradient Descent...

¿qué nos dice el gradiente sobre cómo deben cambiar los pesos?

Tasa de aprendizaje baja:

Tasa de aprendizaje alta:

Variaciones de Gradiente descendente:

- 1. Batch GD: Se calcula sobre todo el dataset
- 2. Stochastic GD: 1 sola observación aleatoria (noise)
- 3. Mini-batch GD: Un pequeño subconjunto aleatorio

4. Momentum GD:

Se acumula un promedio exponencial de los gradientes pasados.

En lugares donde el gradiente cambia de dirección bruscamente, el gradiente descendente simple puede "rebotar" de un lado a otro.

Momentum suaviza el gradiente usando algo parecido a la "inercia".

1.
$$v_t = \beta v_{t-1} + (1-\beta) \nabla L(w_t)$$
. 2. $w_{t+1} = w_t - \eta v_t$.

Aquí, β (entre 0 y 1) es el factor de inercia y η la tasa de aprendizaje.

Interpretación:

- Si el gradiente sigue apuntando en la misma dirección durante varios pasos, el término $eta \, v_{t-1}$ ayuda a "acumular" esa dirección, "empujando" con mayor fuerza en la dirección adecuada.
- Si el gradiente cambia de dirección bruscamente, la parte "vieja" $eta \, v_{t-1}$ se va reduciendo con el tiempo, y la parte nueva $(1-eta) \,
 abla L(w_t)$ hace que la dirección se ajuste gradualmente.

Unrolling the Exponentially Weighted Average

$$V_{t+1} = \beta V_t + (1 - \beta) \nabla W_t$$

$$V_{t+1} = \beta^2 V_{t-1} + \beta (1 - \beta) \nabla W_{t-1} + (1 - \beta) \nabla W_t$$

$$V_{t+1} = \beta^2 (\beta V_{t-2} + (1-\beta)\nabla W_{t-2}) + \beta(1-\beta)\nabla W_{t-1} + (1-\beta)\nabla W_t$$

Pero....

5. Nesterov Accelerated Gradient (NAG): calcular el gradiente "un paso antes" de aplicar el momento, es decir, evaluar el gradiente en una posición "adelantada".
Esto ayuda a "corregir" la dirección antes de dar el salto

Esto ayuda a "corregir" la dirección antes de dar el salto completo, reduciendo la posibilidad de pasarte de largo.

(a) Momentum-Based Gradient Descent

$$\bigcirc \Longrightarrow \frac{\partial L}{\partial w_0} = \frac{Negative(-)}{Positive(+)}$$

(b) Nesterov Accelerated Gradient Descent

$$\bigcirc \Longrightarrow \frac{\partial L}{\partial w_0} = \frac{Negative(-)}{Negative(-)}$$

5. RMSprop (Root Mean Square Propagation):

Es un algoritmo de optimización que ajusta la tasa de aprendizaje para cada parámetro de manera adaptativa.

¿Por qué necesitamos algo como RMSprop?

Una tasa de aprendizaje fija para todos los parámetros puede causar problemas cuando:

- •Algunas direcciones tienen gradientes grandes \rightarrow los saltos son muy largos.
- •Otras tienen gradientes pequeños → el avance es lento.

Además, en problemas con funciones de pérdida muy onduladas (no suaves), el optimizador puede oscilar mucho y no converger bien.

Cuidarse de la inestabilidad.....

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}(\mathbf{w}_t)^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\eta}{\varepsilon + \sqrt{\mathbf{v}_{t+1}}} \mathbf{g}(\mathbf{w}_t)$$

Intuición

- •Si el gradiente es consistentemente grande (oscila, mucha varianza) → el paso será pequeño.
- •Si el gradiente es **pequeño** \rightarrow el paso será más grande.

Esto permite moverse más eficientemente en direcciones donde hay poco cambio, y con más cuidado donde el gradiente fluctúa mucho.

6. Adam (Hannah Montana):

Combinar ideas de "promedio móvil de gradientes" (Momentum) y "promedio móvil de los cuadrados del gradiente" (RMSprop), para conseguir que el método sea estable y eficiente.

Promedio móvil de los gradientes (como Momentum):

$$m_t = eta_1 \, m_{t-1} \; + \; (1 - eta_1) \,
abla L(w_t)$$

Promedio móvil de los cuadrados de los gradientes

$$v_t = eta_2 \, v_{t-1} \; + \; (1 - eta_2) \, (
abla L(w_t))^2$$

Promedio móvil de los gradientes (como Momentum):

$$m_t = eta_1 \, m_{t-1} \; + \; (1 - eta_1) \,
abla L(w_t)$$

Promedio móvil de los cuadrados de los gradientes

$$v_t = \beta_2 \, v_{t-1} \, + \, (1 - \beta_2) \, (\nabla L(w_t))^2$$

$$w_{t+1} = w_t - \eta rac{m_t}{\sqrt{\hat{v}_t} + \epsilon}$$

$$w_{t+1} = w_t - \underbrace{\left(rac{\eta}{\sqrt{\hat{v}_t} + \epsilon}
ight)} \qquad \hat{m}_t$$

"tasa de aprendizaje efectiva"

¿Cómo calcular el gradiente?

Backpropagation

¿Cómo logro que esta neurona incremente su valor?

Incrementando w, b, o los valores de las neuronas anteriores

Incrementa los **pesos** en la proporción de los valores de las neuronas

Aquí es donde entra la idea de backpropagation.

Al sumar todos los efectos deseados, obtienes una lista de ajustes que quieres aplicar a la penúltima capa.

Luego, puedes repetir el mismo proceso con los pesos y sesgos que influyen en esa capa, retrocediendo por toda la red.

	2	5	0	4	/	9	
w_0	-0.08						
w_1	-0.11						
w_2	-0.07						
:	:						
$w_{13,001}$	+0.13						

Es en este punto, donde resulta importante preguntarse con cuántas observaciones voy a calcular el gradiente

	2	5	0	Ч	/	9	Pror	nedio
w_0	-0.08	+0.02	-0.02	+0.11	-0.05	-0.14	•••	-0.08
w_1	-0.11	+0.11	+0.07	+0.02	+0.09	+0.05	··· →	+0.12
w_2	-0.07	-0.04	-0.01	+0.02	+0.13	-0.15	•••	-0.06
:	÷	:	÷	:	÷	:	٠.	÷
$w_{13,001}$	+0.13	+0.08	-0.06	-0.09	-0.02	+0.04	•••	+0.04

Gracias

adgodoyo@gmail.com

Andrés Daniel Godoy Ortiz - @adgodoyo