3 Luglio 2018 - Analisi Esplorativa						
Cognome:						
Nome:						
Matricola:						
Γipologia d'esame: \Box 12 CFU \Box 15 CFU						
Prova scritta - versione B						
Si svolgano gli esercizi riportando il risultato dove indicato. Durata: 60 minuti						
Esercizio 1 (5 punti)						
Si consideri il dataset iris presente nella libreria datasets che contiene $n=150$ unità statistiche (fiori di genere Iris) relative alle 4 variabili						
 Sepal.Length (lunghezza dei sepali) Sepal.Width (larghezza dei sepali) Petal.Length (lunghezza dei petali) Petal.Width (larghezza dei petali) 						
più l'ultima colonna $Species$ che specifica la specie (con modalità $setosa, \ versicolor$ e $virginica$).						
Si consideri la matrice $X_{150\times 4}$ che contiene le seguenti variabili: Sepal.Length, Sepal.Width, Petal.Length e Petal.Width. Sulla base di questa matrice, utilizzare l'algoritmo delle K-medie (specificando algorithm = "Lloyd") per formare $K=3$ gruppi, inizializzando i centroidi con le osservazioni di riga 30, 80 e 110, ed eseguendo l'algoritmo una sola volta. Riportare						
a. la numerosità dei 3 gruppi ottenuti:						
gruppo $1 = \dots$, gruppo $2 = \dots$, gruppo $3 = \dots$						
b. i valori della tabella a doppia entrata che incrocia la classificazione ottenuta e la variabile Species:						
setosa versicolor virginica						
gruppo 1						
gruppo 2						
gruppo 3						
c. il valore medio della silhouette (<u>arrotondando al secondo decimale</u>) per i tre gruppi (utilizzando il comando silhouette presente nella libreria cluster) considerando come matrice delle distanze quella ottenuta con la metrica Euclidea.						
Valore medio silhouette per il gruppo $1 = \ldots$, gruppo $2 = \ldots$, gruppo $3 = \ldots$, gruppo $3 = \ldots$, gruppo $3 = \ldots$						

1 2 3 ## 50 61 39

```
## setosa versicolor virginica
## 1 50 0 0
## 2 0 47 14
## 3 0 3 36
## Loading required package: cluster
## 1 2 3
## 0.80 0.42 0.44
```

Esercizio 2 (6 punti)

Esercizio 2 (6 punti)
a. Riportare le seguenti definizioni (in forma matriciale), specificando tutte le quantità coinvolte
Vettore delle medie
Matrice di centramento
Matrice dei dati centrati
Matrice di varianze/covarianze
Matrice dei dati standardizzati
Matrice dei dati ortogonalizzati

b. Si dimostri che $\operatorname{tr}(S) = \sum_{j=1}^p \lambda_j$, dove $\lambda_1, \dots, \lambda_p$ sono gli autovalori di S.

c. Elencare le proprietà di una metrica.

3 Luglio 2018 - Analisi Esplorativa

Cognome:			
Nome:			
Matricola:			
Tipologia d'esame:	□ 12 CFU	□ 15 CFU	

Prova scritta - versione B

Si svolgano gli esercizi riportando il risultato dove indicato. Durata: 60 minuti

Esercizio 3 (6 punti)

Data la matrice dei dati
$$X = \begin{bmatrix} 5.3 & 2.0 \\ 3.9 & 2.8 \\ -2.3 & 2.6 \\ 2.6 & 3.6 \\ 2.5 & 3.3 \end{bmatrix}$$

si calcolino

a. la proporzione di varianza spiegata dalla prima componente principale basata sui dati centrati, arrotondando il risultato alla <u>terza</u> cifra decimale:

.

[1] 0.956

b. la proporzione di varianza spiegata dalla prima componente principale basata sui dati standardizzati, arrotondando il risultato alla terza cifra decimale:

.

[1] 0.582

c. i punteggi delle cinque unità statistiche per la prima e la seconda componente principale basata sui dati centrati, arrotondando il risultato alla <u>seconda</u> cifra decimale:

prima	seconda		

```
##
        Comp.1 Comp.2
## [1,]
          2.93 - 0.75
## [2,]
          1.50
                  0.00
         -4.69
## [3,]
                 -0.44
## [4,]
          0.17
                  0.75
## [5,]
          0.08
                  0.44
```

d. il vettore delle medie per la matrice che ha come colonne i due vettori di punteggi relativi alle prime due componenti principali:

• • • • •

e. la matrice di varianza/covarianza per la matrice che ha come colonne i due vettori di punteggi relativi alle prime due componenti principali, arrotondando il risultato alla <u>seconda</u> cifra decimale:

.....

```
## [,1] [,2]
## [1,] 6.569 0.000
## [2,] 0.000 0.302
```

f. si stabilisca se il vettore dei punteggi della prima componente principale ha maggiore correlazione (in valore assoluto) con la prima o la seconda colonna di X:

.

[1] 0.9999679

Esercizio 4 (2 punti)

Presi i punti $u'_1 = (5,0)$, $u'_2 = (6,2)$ e $u'_3 = (8,4)$, si verifichi che il quadrato della distanza Euclidea non soddisfa la diseguaglianza triangolare.

Esercizio 5 (7 punti)

Si considereri la seguente matrice di correlazione calcolata sulla base di n=50 osservazioni:

	Murder	Assault	UrbanPop	Rape
Murder	1.000	0.802	0.070	0.564
Assault	0.802	1.000	0.259	0.665
UrbanPop	0.070	0.259	1.000	0.411
Rape	0.564	0.665	0.411	1.000

a. Sulla base dalla matrice di correlazione, si stimi il modello fattoriale con k=1 fattori utilizzando il metodo della massima verosimiglianza senza effettuare alcuna rotazione. Arrontondando al terzo decimale, si riportino le stime dei pesi fattoriali:

Stima punteggi fattoriali

Murder Assault UrbanPop Rape

[,1] ## [1,] 0.818 ## [2,] 0.979 ## [3,] 0.262 ## [4,] 0.683

b. Si determini il punteggio fattoriale con il metodo di Thompson (arrotondando alla quarta cifra decimale) per l'unità statistica "Arizona" sapendo che i suoi valori nelle quattro variabili standardizzate sono

	Murder	Assault	UrbanPop	Rape
Arizona	1.2426	0.7828	-0.5209	-0.0034

.

[,1] ## [1,] 0.7903

c. Si riporti la stima delle comunalità e delle varianze specifiche per le quattro variabili, arrotondando al quarto decimale:

Murder Assault UrbanPop Rape

Comunalità Varianza specifica

```
## [1,] 0.669 0.958 0.069 0.466
## [2,] 0.331 0.042 0.931 0.534
```

d. Si valuti l'opportunità di stimare un modello a 2 fattori, motivando la risposta.