

Linguagens Formais e Autômatos

Prof. Alex Luciano Roesler Rese, MSc

Adaptado: Rafael de Santiago, Dr.

Linguagens Regulares

Autômatos Finitos Não-Determinísticos

Autômato Finito Não Determinístico

- É um autômato que tem o poder de estar em vário estados ao mesmo tempo;
- Como se fosse uma capacidade de adivinhar algo sobre a palavra de entrada;
- Em geral são mais sucintos e mais fáceis de projetar que os AFD;
- Aceita a mesma Linguagem aceita pelos AFDs Linguagens regulares.

Autômato Finito Não Determinístico

- Um AFND é definidos por uma 5-upla:
- $M = (\Sigma, Q, \delta, q_0, F)$
 - Σ = alfabeto de símbolos de entrada
 - Q = conjunto finito de estados possíveis do autômato
 - δ = função de transição tal que δ : Q X $\Sigma \rightarrow \{q_0,...,q_n\}$
 - q_0 = estado inicial tal que $q_0 \in Q$
 - F = conjunto de estados finais tal que F \subset Q

Autômato Finito Não Determinístico

$$M = (\Sigma, Q, \delta, q_0, F)$$

$$M = (\{0,1\}, \{q0,q1\}, \delta, q0, q1)$$

Binários Pares

O não determinismo está no caso da transição δ (q₀,0) onde há dois caminhos possíveis.

AFD Correspondente

$$M = (\Sigma, Q, \delta, q0, F)$$

$$M = (\{0,1\}, \{q0,q1\}, \delta, q0, q1)$$

Linguagem que aceita números binários pares

Outro exemplo de AFND

$$M = (\Sigma, Q, \delta, q0, F)$$

$$M = (\{0,1\}, \{q0,q1,q2\}, \delta, q0, q2)$$

Palavras que com "00" como sufixo

AFD Correspondente

$$M = (\Sigma, Q, \delta, q0, F)$$

$$M = (\{0,1\}, \{q0,q1\}, \delta, q0, q1)$$

Palavras que com "00" como sufixo

Mas nem sempre ajuda

Criar um AFD para palavras que não contém a subpalavra "01"

Tabelas de Transição de AFND

Tabelas de Transição de AFND

Exercícios

- Crie AFNDs com a respectiva tabela de transição para as linguagens:
 - palavras que possuam "ou" como sufixo ($\Sigma = \{a,e,i,o,u\}$)
 - Palavras que possuam "ai" como subpalavra ($\Sigma = \{a,e,i,o,u\}$)
 - Palavras que possuem "aa" ou "bb" ($\Sigma = \{a,b\}$)

AFND \rightarrow AFD

- Princípios:
 - Encontrar todos os conjuntos de estado atingíveis de um AFND
 - Transformar estes conjuntos nos novos estados do AFD
 - O conjuntos que contém o estado inicial do AFND será o estado inicial no AFD
 - Todos os conjuntos que contém o estado final do AFND serão estados finais no AFD

δ	0	1
q_0	{q ₀ ,q ₁ }	q
$\{q_0,q_1\}$	{q ₀ ,q ₁ ,q ₂ }	q_0
	£40,440	20 191 201 201

3	;	0	1	0,1
q	0	$\{q_0,q_1\}$	q_0	$ \longrightarrow $
{q _o ,	q_1 }	{q ₀ ,q ₁ ,q ₂ }	q_0	
{q ₀ ,q	₁ ,q ₂ }			

Encontrar todos os conjuntos de estado atingíveis de um AFND

Nenhum conjunto novo foi adicionado

Definir estado inicial e final

δ	a	b	a,b
q_0	q_1	Ø	$ \rightarrow (q_0) \xrightarrow{a} (q_1) \xrightarrow{a} (q_2) $
q_1	{q ₁ ,q ₂ }	q_1	
$\{q_1,q_2\}$			

Encontrar todos os conjuntos de estado atingíveis de um AFND

Nenhum conjunto novo foi adicionado

Definir estado inicial e final

Exemplo extremo

Exemplo extremo

