Page 2

Amendments to the Claims:

1. (currently amended) A printing process showing no catalytic fading when a dyestuff or a dyestuff mixture of a first step and a second step are brought in contact on a substrate and having a common overlapping area on said substrate comprising in said first step applying at least one dyestuff or a dyestuff mixture selected from the group consisting of dyes of the formula (I), (II), (IIIa), (IIIb), (IV), (V), (VI), (VIII), (IX), (X) and (XI)

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Page 3

Page 4

with a being from 4 to 0 and b being from 0 to 4 with the proviso that the sum of a + b does not exceed 4 and c is from 1 to 2,

$$O-CU$$
 $O-CU$
 $O-CU$

Page 5

wherein dye composition (X) is a mixture comprising 61 parts of the dye (Xa), 28 parts of the dye (Xb) and 9 parts of the dye (Xc)

$$O_3H$$
 O_3H
 O_3H

$$O_2N$$
 O_2N
 O_2N
 O_3N
 O_3N

and in said second step applying at least one dyestuff or a dyestuff mixture selected from the group consisting of the dyes of the formula (I), er-(II), er-(IIIa), er-IIIb), er (IV), er-(V), er-(VI), er-(VII), er-(VIII), er-(IX), er-(X), and er-(XI) with the proviso that the dyestuff or mixture of dyestuffs in the second step is not the same dyestuff or mixture of dyestuff as selected in the first step.

- 2. (currently amended) A printing process showing no catalytic fading according to claim 1 further comprising a third step of applying at least one dyestuff or a dyestuff mixture selected from the group consisting of the dyes at dye of the formula (I), or (II), or (IIIa), or (IIIb), or (IV), or (V), or (VI), or (VII), or (VIII), or (IX), or (X), and or (XI) with the proviso that the dyestuff or mixture of dyestuffs in the third step is not the same dyestuff or mixture of dyestuff as selected in the first step or in the second step.
- 3. (previously presented) A printing process showing no catalytic fading according to claim 1 wherein the printing process is a polychromatic printing process for printing recording materials.
- 4. (previously presented) A printing process showing no catalytic fading according to claim 1 wherein a hydroxy group containing substrate is printed.

Page 7

5. (previously presented) A printing process showing no catalytic fading according to claim 1 wherein the printing process is an ink jet printing process

- 6. (previously presented) A printing process showing no catalytic fading according to claim 1 wherein the total content of salts is less than 0.5% by weight, based on the total weight of the dyes.
- 7. (currently amended) A method for a printing recording material by the inkjet printing process, comprising the step of printing the recording material with a composition including:
 - 1) at least one dye of the formula (1) or (VI) or (VII),

$$\begin{array}{c|c} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

Page 8

$$-(SO_3H)a$$

$$-SO_2NH_2)b$$

$$-SO_2 - [N]$$

$$-SO_3H$$

$$-SO_3H$$

$$-SO_3H$$

$$-SO_3H$$

$$-SO_3H$$

$$-SO_3H$$

$$-SO_3H$$

$$-SO_3H$$

with a being from 4 to 0 and b being from 0 to 4 with the proviso that the sum of a + b does not exceed 4 and c is from 1 to 2

and

- 2) water or a medium including a mixture of water and an organic solvent, an anhydrous organic solvent or a solid having a low melting point.
- 8. (previously presented) The method according to claim 7 wherein the composition has a total content of salts less than 0.5% by weight, based on the total weight of the dyes.

Serial No.: 10/511,352

Practitioner's Docket: 2002CH001 9. (previously presented) The method according to claim 7 wherein the recording

material is selected from the group consisting of paper and papery substrates, textile

fibre materials and plastic films and plastic transparencies comprising hydroxy

groups.

10. (currently amended) A recording material made in accordance with the method of claim 7.

11. (previously presented) An article printed in accordance with the process according to claim 1.

12. (currently amended) A composition for printing recording material by the inkjet printing process, comprising:

at least one dye of the formula (I) or (VI) or (VIII), 1)

and

Serial No.: 10/511,352 Practitioner's Docket: 2002CH001

Page 10

with a being from 4 to 0 and b being from 0 to 4 with the proviso that the sum of a + b does not exceed 4 and c is from 1 to 2

2) water or a medium including a mixture of water and an organic solvent, an anhydrous organic solvent or a solid having a low melting point.