SET - 1 Code No: RT21052

II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING (Com. to CSE, IT, ECC)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

1. a) Test the validity of the following argument: (4M)

Some intelligent boys are lazy.

Ravi is an intelligent boy.

: Ravi is lazy.

b) Find the HCF of 96 and 404 by prime factorization method. (3M)

c) Show that $A \cup (B-C) = (A \cup B) - (A \cup C)$ (3M)

d) Define Walk of a graph with an example. (4M)

e) Prove that every subgroup of an abelian group is a normal subgroup. (4M)

f) Discuss the applications of Generating functions. (4M)

PART-B

2. a) Find the disjunctive normal forms of the following: (8M)

i) $\neg (P V Q) \leftrightarrow (P \Lambda Q)$

ii) $P \rightarrow \{ (P \rightarrow Q) \land (\neg Q \lor \neg P) \}$

(8M)b) Show that the premises $a \rightarrow (b \rightarrow c)$, $d \rightarrow (b \land \neg c)$, $a \land b$ are inconsistent.

3. In each of (i)-(iv) you are given integers m and n, where n is positive. In each (16M)

case, find integers q and r such that m=qn+r and $0 \le r < n$.

(a) m = 216, n = 80 (b) m = 4129, n = 232 (c) m = 30, n = 6 (d) m = -4129, n = 232

4. a) Let $A=\{1, 2, 3, 4\}$ and f and g be functions from A to A given by (8M)

 $f = \{(1,4), (2,1), (3,2), (4,3)\}$ and $g = \{(1,2), (2,3), (3,4), (4,1)\}$

prove that f and g are inverse of each other.

b) Define Relation and function. Consider the following relations on the set (8M)

 $A=\{1,2,3\}: f=\{(1,3),(2,3),(3,1)\}; g=\{(1,2),(3,1)\}; h=\{(1,3),(2,1),(1,2),(3,1)\}$

which of these are functions?

5. a) Discuss about planar and non-planar graph with an example. (8M) Show that the following graphs are planar by redrawing them.

b) Using Prim's algorithm, find a minimal spanning tree for the weighted graph (8M) shown below:

- 6. a) In how many ways can the letters of the word CORRESPONDENTS can be (8M) arranged so that
 - i) There are exactly two pairs of consecutive identical letters?
 - ii) There are at least three pairs of consecutive identical letters?
 - b) Find the number of positive integer less than 10,000 and are divisible by 5 or 7? (8M)
- 7. a) Solve the recurrence relation $f_n=2f_{n-1}-2f_{n-2}$ where $f_0=1$ and $f_1=3$. (8M)
 - b) Find the recurrence relation and the initial condition for the sequence (8M) 0, 2, 6, 12, 20, 30, 42, Hence find the general terms of the sequence.

Code No: RT21052 (R13) (SET - 2)

II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING (Com. to CSE, IT, ECC)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any THREE Questions from Part-B

PART -A

- 1. a) Disclose the definition of proposition with an example. (3M)
 - b) Obtain the PDNF of ¬PVQ. (3M)
 - c) Discuss about finite and infinite sets. (4M)
 - d) Find in-degree and out-degrees of the given graph (4M)

- e) Find the right cosets of the following: H=[[1],[3]] in $\langle Z_6,+\rangle$ (4M)
- f) Solve the recurrence relation F_n = - F_{n-1} +4 F_{n-2} +4 F_{n-3} where F_0 =8, F_1 =6 and F_2 =26. (4M)

PART -B

2. Which of the following is not valid:

(16M)

- i) $\{ \forall x \{ P(x) \rightarrow Q(x) \}, \exists y p(y) \} \Rightarrow \exists z Q(z)$
- ii) $\{\exists x \ P(x) \ \text{and} \ \exists x \ Q(x) \} \Rightarrow \exists x \{P(x) \land Q(x) \}$
- iii) $\{\exists x \{F(x) \land S(x)\} \rightarrow \forall y \{M(y) \rightarrow W(y)\} \text{ and } \exists y \{M(y) \land \neg W(y)\}\}$

 $\Rightarrow \forall x \{ F(x) \rightarrow \neg S(x) \}$

- iv) $\{ \forall x \{ C(x) \rightarrow P(x) \}$ and $\exists x \{ C(x) \land L(x) \} \} \Rightarrow \exists x \{ P(x) \land L(x) \}$
- 3. a) Let a,b, q and r be the integers such that a=bq+r. Prove that gcd(a,b)=gcb(b,r) (8M)
 - b) Find $d=\gcd(4977+405)$ and find the integers u an v such that d=4977u+405v (8M)
- 4. a) Let A be a given finite set and $\rho(A)$ its power set. Let \subseteq be the inclusion relation on the elements of $\rho(A)$. Draw Hasse diagram of $\langle \rho(A), \subseteq \rangle$

for (i) $A=\{a\}$; (ii) $A=\{a,b\}$; (iii) $A=\{a,b,c\}$; (iv) $A=\{a,b,c,d\}$

b) If $A=\{1, 2, 3, 4\}$, $B\{w, x, y, z\}$ and $f=\{(1, w), (2, x), (3, y), (4, z)\}$ then Prove that f is both one-to-one and onto.

5. a) Show that the following graphs are Hamiltonian:

(8M)

b) Write the Kruskal's algorithm and find minimal spanning tree of the weighted graph shown below: (8M)

- 6. a) Find the number of permutations of the letters of the word MASSASAUGA, (8M)
 - i) In how many of these, all four A's are together?
 - ii) How many of these of them begin with S?
 - b) In how many way can 6 men and 6 women be seated in a row (8M)
 - i) If any person may sit next to any other?
 - ii) If men and women must occupy alternate seats?
- 7. Solve the recurrence relation $\mathbf{a}_{n+2}^2 5\mathbf{a}_{n+1}^2 + 6\mathbf{a}_n^2 = 7\mathbf{n}$ for $n \ge 0$ where $\mathbf{a}_0 = \mathbf{a}_1 = 1$. (16M)

II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING (Com. to CSE, IT, ECC)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **THREE** Questions from **Part-B**

.....

PART-A

- 1. a) What is tautological implication? Give an example.
- (3M)
- b) Find the LCM and HCF of 6 and 20 by prime factorization method.

(4M)

- c) If A,B,C are any three sets, then prove that A-(B \cup C) = (A-B) \cap (A-C)
- (4M)

d) Define Euler circuit with an example.

(3M)

(4M)

- e) In a group G having more than one element, if $x^2=x$ for every $x \in G$, prove that G is abelian.
- Solve the recurrence relation $F_n=6F_{n-1}-9F_{n-2}$ where $F_0=1$ and $F_1=6$. (4M)

PART-B

2. a) Check whether the following statements is tautology or not

(8M)

- $\sim P \leftrightarrow \sim Q \leftrightarrow (Q \leftrightarrow R) \land \overline{P}$
- b) Show that the following premises are inconsistent

- (8M)
- i) If jack misses many classes through illness, then he fails high school.
- ii) If jack fails high school, then he is uneducated.
- iii) If jack reads a lot of books, then he is not uneducated.
- iv) Jack misses many classes through illness and reads a lot of books.
- 3. a) Suppose n=100, Illustrate the procedure to find all primes less than or equal to a (8M) fixed positive integer n>1.
 - b) Check whether the following are prime or not?

(8M)

337, 577, 252, and 157

- 4. a) Let $a=\{1,2,3,4\}$ and f and g are functions from A to A given by $f=\{(1,4), (2,1), (8M) (3,2), (4,3)\}$ and $g=\{(1,2),(2,3),(3,4),(4,1)\}$ prove that f and g are inverse of each other.
 - b) For the Fibonacci sequence F_0, F_1, F_2, \dots Prove that $Fn = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n \left(\left(\frac{1-\sqrt{5}}{2} \right)^n \right) \right]$ (8M)
- 5. a) Show that the following graphs are Hamiltonian but not eulerian. (8M)

- b) Write DFS algorithm and discuss with an example. (8M)
- 6. a) How many positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7 if (8M) we want n to exceed 5,000,000?
 - b) Find the number of distinguishable permutations of the letters in the following (8M) work (i) PEPPER (ii) CALCULUS (iii) BANANA (iv) DISCRETE
- 7. Find a generating function for the recurrence relation $\mathbf{a_{n+2}\text{-}5a_{n+1}\text{+}6a_n=2}, \text{ for } n \geq 2 \text{ where } \mathbf{a_0=3}, \mathbf{a_1=7}.$

Code No: RT21052 (R13) (SET - 4)

II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING (Com. to CSE, IT, ECC)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

- 1. a) Construct the truth table for $(\neg P \land (\neg Q \land \neg R)) \lor (Q \land R) \lor (P \land R)$ (3M)
 - b) Calculate $\Phi(n)$ for n = 1200 and n = 2008. (4M)
 - c) Let $A = \{\{b,c\}, \{\{b\}, \{c\}, b\} \text{ and } B = \{a,b,c\}. \text{ then find } A \cap B, \ A \cup B, \ A B, \\ B A, A \Delta B.$ (4M)
 - d) Illustrate the advantages of Matrix representation of graph. (3M)
 - e) Discuss about Semi-group Homomorphism with example. (4M)
 - f) Solve the recurrence relation $F_n=8F_{n-2}-16F_{n-4}$ for $n \ge 4$ where $F_0=1$, $F_1=4$, $F_2=28$ (4M) and $F_3=32$.

PART-B

2. a) Prove that each of the following is tautology:

(8M)

- i) $[PV(Q\Lambda R)]V \neg [PV(Q\Lambda R)]$
- ii) $[(P \ V \ Q) \ \Lambda \neg (\neg P \ \Lambda \ (\neg Q \ V \ \neg R))] \ \Lambda \ (\neg P \ \Lambda \ \neg Q) \ V \ (\neg P \ \Lambda \ \neg R)$
- b) Obtain PDNF of the following:

(8M)

- i) $(\neg P \ V \ \neg Q) \rightarrow (P \Leftrightarrow \neg Q)$
- ii) (P \rightarrow (Q Λ R)) Λ (\neg P \rightarrow (\neg Q Λ \neg R))
- 3. a) Define Congruence and discuss basic properties of congruence with proof. (8M)
 - b) Find all solutions to each of the following congruences: (8M)
 - (i) $2x \equiv 1 \mod 3$.
- (ii) $3x \equiv 4 \mod 8$.
- (iii) $6x \equiv 3 \mod 15$.
- (iv) $8x \equiv 7 \mod 18$.

1 of 2

- 4. a) Find an explicit definition of the function $f(n)=a^n$ defined recusively by (8M) $a_{0=3}, a_n = 2a_{n-1} + 1$ for $n \ge 1$.
 - b) Given the relation matrix M_R of a relation R on the set $\{a,b,c\}$, find the relation (8M) matrices of \tilde{R} , $R^2 = R^{\circ}R$, $R^3 = R^{\circ}R^{\circ}R$, and $R^{\circ}\tilde{R}$

$$M_{R=} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- 5. a) What is Euler trail and Euler circuit? Prove that the complete bipartite graph $K_{2,3}$ (8M) contains an Euler trail.
 - b) What is a spanning tree and minimum spanning tree? Find all the spanning trees (8M) of the graph shown in fig.

- 6. a) Find the number of distinguishable permutations of the letters in the following (8M) work (i) BASIC (ii) STRUCTURES (iii) ENGINEERING (iv) MATHMATICS
 - b) In how many way can 3 men and 3 women be seated at around table (8M)
 - i) If two particular women must not sit together?
 - ii) If each women is to be between two men?
- 7. a) The number of virus effected files in a system is 1000 (to start with) and this (8M) increases 250% every two hours. Use a recurrence relation to determine the number of virus affected files in the system after one day.
 - b) Solve the recurrence relation $a_n+4a_{n-1}+4a_{n-2}=8$ for $n \ge 2$ where $a_0=1, a_1=2$. (8M)