Cpr E 489: Computer Networking and Data Communications Lab Experiment #6 – CloudLab Experiment: IPv4 Routing Basics (Total Points: 100)

Objective

Using CloudLab, you will get familiar with static routing by manually updating the routing tables.

Lab Expectations

Work through the lab and let the TA know if you have any questions. After the lab, write up a lab report and be sure to:

- Attend the lab. (5 points)
- Summarize what you learned in a few paragraphs. (20 points)
- Include your answers for all questions, with screenshots for each question. (70 points)
- Cleanup your resources, including a screenshot of successful cleanup. (5 points)

Procedure

Prepare Your Experiment

- 1) If you haven't already, login to CloudLab at: https://www.cloudlab.us/login.php
- 2) Select Experiments and Start Experiment.
- 3) Select Change profile, search for cpre489-routing and select it.
- 4) Click Select Profile and then Next.
- 5) Use your net-id for the name of the experiment and select an active cluster (Utah's cluster has typically worked with the fewest issues). Then select **Next** and then **Finish**.
- 6) Wait for your resources to be ready. This may take several minutes. If you receive an email regarding the image of your nodes being outdated, ignore it.
- 7) Log into the three nodes via SSH. Use the same technique you used in Lab 4.

Exercise 1: Examine the Network Topology

The network you will be working with is depicted in a figure below. We will be concerned with the eth1 and eth2 interfaces for each of the 3 nodes. **We will not be using eth0 for this lab.**

1. Execute the **route -n** command in each of the three nodes to show their respective routing tables. The "-n" option prints IP addresses rather than assigned hostnames. All route screenshots should be done with the "-n" option. Include a screenshot of the tables in your lab report. (10 points)

- 2. From node A, try to **ping** the other addresses of nodes B and C (two IP addresses for each node). Include a screenshot of the ping outputs and explain the results. (10 points)
- 3. What happens when you **traceroute** from A to IP address 10.10.2.2 before you set up the static routes? Why? Include a screenshot of the traceroute output in your lab report. (10 points)
- 4. If you get a message like "-sh: 7: traceroute: not found" when trying to execute traceroute, use 'sudo apt-get install traceroute' to install traceroute.

Exercise 2: Setting Up Static Routes

The following command will add the destination subnet **destiny** (A.B.C.0) to the local routing table and use IP address **thisway** (W.X.Y.Z) accessible via interface **intf** as the gateway:

```
sudo route add -net destiny netmask 255.255.255.0 gw thisway intf
```

More specifically, in the above command:

- **destiny** is the subnet address (A.B.C.0) that will indicate where to send packets that have a matching destination IP address (e.g., if you want to direct traffic for the subnet 192.168.254.0/24, then you would set the destination to 192.168.254.0 with netmask 255.255.255.0 accounting for the /24. Note: netmask 255.255.255.0 should be sufficient for the purposes of this lab).
- intf is the name (e.g., eth0) of the interface on this computer from which traffic will be sent out.
- thisway is the IP address of the interface on the gateway that will receive the traffic: (W.X.Y.Z).

Note: The gateway IP address **thisway** must be an address that the interface **intf** can access directly (i.e., it is not further routed before getting to **destiny**). It is also not the IP address of the interface on the current computer.

- To delete this entry in the table, simply replace add with del. sudo route del -net destiny netmask 255.255.255.0 gw thisway intf
- Now, modify the routing tables to allow for node A to reach the IP addresses that you could not reach in Exercise 1. Include a screenshot of the routing table of node A. (10 points)
- Take a screenshot of node A successfully pinging and using traceroute on 10.10.2.2. (10 points)
- Set up more static route(s) so that every node can access every interface in the system. Take screenshots of routing tables of nodes B and C as well. (10 points)
- Show a traceroute from node B using traceroute on the four interfaces it does not own. Take a screenshot of each traceroute output. (10 points)
 For example:

```
user@nodeb: $ traceroute 10.10.1.1
[OUTPUT]
user@nodeb: $ traceroute 10.10.3.2
[OUTPUT]
user@nodeb: $ traceroute 10.10.3.1
[OUTPUT]
user@nodeb: $ traceroute 10.10.2.2
[OUTPUT]
```

Cleanup

After you are done with the experiment, you should always release your resources so that other experimenters can use the resources. Terminate your resources and include a screenshot of your experiment with no resources on the Manage Resources panel. (5 points)

Tips

- Remember that you can use **ifconfig** to determine which Ethernet interface (e.g., eth0) is bound to what IP address at each of the nodes.
- The routing table matches the destination address to the newest, valid entry.
- Ping and traceroute use ICMP which gets sent to the receiver, processed, and sent back. Keep in mind that the *response* also needs to know how to reach its destination.
- A useful tool to debug the packet flow is tcpdump.
- For more information on route, you can use the manual page: man route