Organisation

- Lösungswege!
 - KV Blöcke einzeichnen!

f_A :		(a	
	0	1	1	0
<i>b</i>	1	0	1	1
	1	0	0	1
	0	1	1	0

f_B :		(a	
	0	0	0	0
h	0	1	1	0
	0	1	1	0
d	0	1	0	0

Don't Care (DC)

- Anzahl der Belegungen exponentiell
- Was wenn z.B. nur 10 gebraucht werden
- Belegung für unerreichbare/-genutzte Zustände
- Don't Care: x, *, -

Don't Care KV-Minimierung

- Eigentlich ganz normal
- Wähle Belegung 0 oder 1 für DC
- Möglichst günstige Belegung
- Nur benutzen WENN es hilft!

Don't Care

Don't Care

DMF und KMF

- Don't Care => 0 ODER 1?
- Doppelt belegen!
- Zustände werden nie erreicht
- DMF:
- 7, 11, 15 = 1
- KMF:
 - 7, 15 = 0
 - -11 = 1

DMF und KMF

Quine-McCluskey-Verfahren

- KV ab 5 Variablen schwer
- Alternative?
- Gleiche Herangehensweise ABER tabellarisch!

2ⁱ Blöcke bilden

- 2 Blöcke = Implikanten i-ter Ordnung
- Suche benachbarte Implikanten in Tabelle
 - Eine Variable unterschiedlich
- Verschmelze 2 Implikanten zu einem "Block"
 - Ersetze Variable mit DC
- Decke ALLE möglichen Verschmelzungen ab
- Übersicht?

Wann Böcke verschmelzen?

- DC kann nicht verschmolzen werden (nur erzeugt)
- Eine Variable unterschiedlich
 - Eine 1 mehr oder weniger
- Ordne Implikanten in Gruppen nach Anzahl der Einsen
- Verschmelzung NUR mit benachbarten Gruppen
- Markiere verschmolzene Implikanten
- Merke # der verschmolzene Minterme

Implikanten 0. Ordnung

#	С	b	a	у
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Implikanten 1. Ordnung

#	С	b	a	М
0	0	0	0	X
2	0	1	0	X
4	1	0	0	X
3	0	1	1	X
6	1	1	0	X
7	1	1	1	Х

#	С	b	a
0,2	0	*	0
0,4	*	0	0
2,3	0	1	*
2,6	*	1	0
4,6	1	*	0
3,7	*	1	1
6,7	1	1	*

Implikanten 2. Ordnung

#	С	b	a	M	
0,2	0	*	0	X	
0,4	*	0	0	X	
2,3	0	1	*	X	
2,6	*	1	0	X	
4,6	1	*	0	X	
3,7	*	1	1	X	
6,7	1	1	*	X	

Doppelte Zeilen vereinen, Nummern nicht vergessen

#	С	b	a
0,2,4,6	*	*	0
2,3,6,7	*	1	*

Keine Verschmelzungen mehr => Fertig

Primimplikantentafel

- Minimale Abdeckung?
- Primimplikanten der unverschm. Implikanten in Tabelle
- "X-Achse": Alle Primimplikanten (0. Ordnung)
- "Y-Achse": Unverschmolzene Implikanten
- "Zellen": Ob Primimplikant im Implikant ist oder nicht

Primimplikantentafel

	0	2	3	4	6	7
0,2,4,6	X	X		X	X	
2,3,6,7		X	X		X	X

Beide Implikanten werden benötigt

Zur DMF

- Don't Care = Variable nicht benutzen
- 1/0 Variablen gilt/gilt nicht
- Konjugieren der benutzen Variablen pro Zeile
- Disjungieren der benötigten Terme
- DMF: a∨ b

#	С	b	a
0,2,4,6	*	*	0
2,3,6,7	*	1	*

Wenn Terme entfallen

11,15

5,7,13,15

V V C I						
	2	5	7	10	11	
2,10	X			X		
10,11				X	X	

X

13

Χ

X

15

Χ

Χ

KV der Funktion

Logische Schaltungen

Logische Schaltungen

- Ausdruck von Funktionen durch Schaltplan
- Operatoren durch Bauteile mit x Eingängen und 1 Ausgang
- Linien("Leitung") zeigen "Fluss" der Werte
- Punkt markiert Teilung eines Leitung
 - Kein Punkt = kreuzende Leitung
 - Generell: Leitung sollten sich nicht kreuzen

Logisim

- Hellgrün 1; Dunkelgrün 0; Rot Fehler; Blau Frei
- Modus: Zeichen
 - Leitung ziehen
 - Bauteile platzieren
- Modus: Ausprobieren
 - Interagieren mit Bauteilen (z.B. Takt/Taster)
- Modus: Text
 - Text schreiben

Logisim: Durchzählen

- Eingabevariablen als Takt-Bauteil
- Ergebnis durch LED
- H-Pegel und H-Pegel auf 2ⁱ Takte setzen
- Durchzählen über den Tab Simulieren
 - Strg + R
 - Strg + K bzw. Strg + T

Wichtig: Logische Schaltungen

- Verknüpfungen in Kaskaden, z.B. DMF
 - Erst negierte Eingabevariablen
- Nur Vertikale und horizontale Linien (wenn händisch)
- Rechtwinklige Bauteilform IEC

Baue DMF und KMF nach

Minimiere QMC + Schaltplan

#	d	С	b	a	у	#	d	С	b	a	у
0	0	0	0	0	1	8	1	0	0	0	0
1	0	0	0	1	0	9	1	0	0	1	0
2	0	0	1	0	0	10	1	0	1	0	0
3	0	0	1	1	1	11	1	0	1	1	1
4	0	1	0	0	1	12	1	1	0	0	1
5	0	1	0	1	0	13	1	1	0	1	1
6	0	1	1	0	1	14	1	1	1	0	1
7	0	1	1	1	0	15	1	1	1	1	0