Maximum d'entropie, une seule ligne de bus

FB-RL-GG

UNIL

Notations et formalisation du problème

Une ligne orientée allant de l'arrêt i=1 jusqu'à i=l. Soit x_i le nombre de passagers montant à l'arrêt i, et y_i le nombre de passagers descendant à l'arrêt i. On a $y_1=0$ et $x_l=0$.

Soit N_{ij} (avec i < j; sinon $N_{ij} = 0$) le nombre de personnes montant en i et descendant en j.

Soit $n_{i,i+1}$ le nombre de personnes transportées dans le tronçon i, i+1. Par construction:

$$n_{i,i+1} = n_{i-1,i} + x_i - y_i n_{01} = 0 (1)$$

On veut estimer les données N_{ij} . Par construction,

$$N_{i\bullet} = x_i$$
 $N_{\bullet j} = y_j$ $N_{\bullet \bullet} = x_{\bullet} \stackrel{!}{=} y_{\bullet}$ (2)

Soit $f_{ij}^D:=\frac{N_{ij}}{N_{\bullet\bullet}}$ la distribution empirique à estimer. Soit $g_i:=\frac{x_i}{x_{\bullet}}$ et $h_j:=\frac{y_j}{y_{\bullet}}$ les distributions marginales correspondantes. En fait f_{ij}^D est une matrice $(l-1)\times(l-1)$, où $i=1,\ldots,l-1$ et $j=2,\ldots,l$

Pour la distribution théorique f^M , donnée par une matrice $(l-1)\times(l-1)$, on peut imaginer un prior

$$f_{ij}^{M} = a_i b_j 1 (i < j)$$

$$\sum_{i=1}^{l-1} a_i B_i \stackrel{!}{=} 1 \qquad B_i := \sum_{j=i+1}^{l} b_j \qquad (3)$$

dépendant des 2l-3 paramètres libres a_1, \ldots, a_{l-1} et b_2, \ldots, b_l (contraints par la normalisation).

Les contraintes se réécrivent

$$f_{i\bullet}^D = g_i \quad i = 1, \dots, l-1$$

$$f_{\bullet j}^D = h_j \quad j = 2, \dots, l \quad (4)$$

Il y en a aussi 2l-3 (car $\sum_i f_{i\bullet}^D = \sum_j f_{\bullet j}^D$). Cela permet d'espérer de déterminer a et b de telle sorte que $f^D = f^M \equiv f$, qui donnerait un minimum absolu de $K(f^D||f^M)$.

Les premiers termes non nuls sont $f_{12}=a_1b_2, f_{13}=a_1b_3.... f_{1,l}=a_1b_l$, dont la somme $f_{1\bullet}=a_1B_1$ doit être g_1 .

Puis $f_{23} = a_2b_3$, $f_{24} = a_2b_4$ $f_{2,l} = a_2b_l$, dont la somme $f_{2\bullet} = a_2B_2$ doit être g_2 .

En général, on a $f_{i\bullet} = a_i B_i \stackrel{!}{=} g_i$ pour i = 1, ..., l-1. De même, la normalisation (3) peut aussi s'écrire

$$\sum_{j=2}^{l} A_j b_j \stackrel{!}{=} 1 \qquad A_j = \sum_{a=1}^{j-1} a_i$$

d'où l'on tire que $f_{\bullet j} = A_j b_j \stackrel{!}{=} h_j$ pour $j = 2, \dots, l$.

Pas sûr que $f^D=f^M$ puisse être réalisé, peut-être faut il changer de prior f^M : piste à ne pas abandonner. Mais...

Approche: "estimer une table de contingence N dont les marges sont fixées"

 \dots le problème d'estimer une table de contingence N dont les marges sont fixées (équation (2)) a fait l'objet d'une énorme littérature... A étudier et poursuivre.

Modèle de Guillaume

(avec quelques notations utilisées ici).

- Probabilité de monter en i: $p_i^{\text{in}} = x_i/x_{\bullet}$.
- Probabilité de descendre en $i: p_i^{\text{out}} = y_i/n_{i-1,i}$.
- Probabilité de continuer de i à i+1 : $c_i = 1 p_i^{\text{out}}$.

• Probabilité P_{ij} de trajet de i à j > i:

$$P_{ij} = p_i^{\text{in}} c_{i+1} \dots c_{j-1} p_j^{\text{out}}$$
 pour $j \ge i+2$ $P_{i,i+1} = p_i^{\text{in}} p_{i+1}^{\text{out}}$ (5)

Le produit commence par c_{i+1} , car, si l'on est monté en i, la probabilité d'effectuer le tronçon $i \to i+1$ vaut 1.

Soit $X_i := \sum_{k=1}^i x_k$ le nombre cumulé de montées, et $Y_i := \sum_{k=1}^i y_k$ le nombre cumulé de descentes. On a

$$X_i \ge Y_i \quad i = 1, \dots, l$$
 $X_l = Y_l$ $n_{i,i+1} = X_i - Y_i$ (6)

Il est pratique de définir le "transit d'avant" $t_i := X_{i-1} - Y_{i-1} = n_{i-1,i}$, en posant $t_1 = 1$ (au lieu de $t_0 = 0$) afin que $p_1^{\text{out}} = y_1/t_1 = 0/1 = 0$. On a alors $p_i^{\text{out}} = y_i/t_i$ pour tout $i = 1, \ldots, l$, avec

$$p_l^{\text{out}} = \frac{y_l}{t_l} = \frac{y_l}{X_{l-1} - Y_{l-1}} = \frac{y_l}{y_l} = 1$$

comme il se doit, où on a utilisé $X_{l-1} - Y_{l-1} = X_{l-1} + 0 - Y_{l-1} - y_l + y_l = X_l - Y_l + y_l = y_l$.

On observe que $P_{\bullet \bullet} = 1$. On va redéfinir comme avant $f_{ij} := P_{ij}$. Le nombre attendu de trajets N_{ij} est alors $N_{ij} = x_{\bullet} f_{ij}$. On observe que $N_{i \bullet} = x_i$ et $N_{j \bullet} = y_j$.

On observe aussi que les trajets attendus sont (pour les cas étudiés) de la forme (cf. (3))

$$N_{ij} = N_{\bullet \bullet} a_i b_j I(j > i) \tag{7}$$

et qu'ainsi la forme des histogrammes du nombre de sorties j depuis un départ i variable reste la même:

$$N_{j|i} := \frac{N_{ij}}{N_{i\bullet}} = \frac{N_{\bullet\bullet} a_i b_j I(j>i)}{N_{\bullet\bullet} a_i \sum_{k>i} b_k} = \frac{b_j I(j>i)}{B_i}$$
(8)

avec $B_i := \sum_{k>i} b_k$.

Par construction, a_l et b_1 sont indéfinis dans (7); on peut les poser égaux à zéro. On peut noter que $N_{ij} = 0$ si $x_i = 0$ ou si $y_j = 0$. On peut alors poser

$$a_i =: x_i \alpha_i$$
 et $b_i =: y_i \beta_i$

et déterminer α et β par itération. Les conditions $N_{i\bullet}=x_i$ et $N_{j\bullet}=y_j$ donnent

$$\alpha_i = \frac{1}{\sum_{j>i} \beta_j y_j} \qquad i < l \qquad \qquad \beta_j = \frac{1}{\sum_{i < j} \alpha_i x_i} \qquad j > 1 \qquad (9)$$

qu'on peut itérer (iterative fitting) à partir (par exemple) des conditions initiales $\beta^{(0)}=(0,\frac{1}{l-1},\frac{1}{l-1},\cdots,\frac{1}{l-1})$, itérées par exemple 500 fois.

Simulations numériques

Voir test_markov_Guillaume_Francois.R: tout semble jouer avec l'exemple 1, pour lequel le transit $X_i - Y_i$ n'est jamais nul (sauf en i = l). Mais difficultés avec l'exemple 2 (l = 10), pour lequel le bus est vide entre les arrêts 8 et 9 ($X_8 - Y_8 = 0$), et donc p_0^{out} n'est pas défini.

Clairement, l'absence de voyageurs entre les arrêts 8 et 9 "simplifie" le problème, qui doit être résolu comme deux problèmes "disjoints": de la station 1 à la station 8 d'une part, et de la station 9 à la station 10 d'autre part: il faut commencer par déterminer les tronçons vides, puis résoudre les sous-problèmes délimités par les tronçons vides.

Estimation des param. a, b dans $n_{ij} = a_i b_j I(i < j)$

On a $n_{i\bullet} = x_i$ et $n_{i\bullet} = y_j$. Soit

$$s := \min_{i} \{i | x_i > 0\} \qquad \qquad t := \max_{j} \{j | y_j > 0\}$$
 (10)

Par construction, $1 \le s < t \le l$. On suppose que n_{ij} est irréductible (pas de tronçon à vide); sinon il faut considérer chaque tronçon plein séparément. De fait, l'expression $n_{ij} = a_i b_j I(i < j)$ présuppose explicitement l'irréductibilité.

En particulier, $a_i = 0$ pour i < s et i = l; $b_j = 0$ pour j > t et j = 1; $a_s > 0$ et $b_t >$. Alors, pour $s \le i < j \le t$,

$$n_{sj} = a_s b_j n_{it} = a_i b_t n_{st} = a_s b_t (11)$$

et donc

$$a_i b_j = \frac{n_{it} n_{sj}}{n_{st}} \tag{12}$$