Lecture Notes: Quotient Groups & Normal Subgroups (Course By: Alvaro Lozano-Robledo)

Thobias K. Høivik

March 25, 2025

Normal Subgroups

Definition 1. Let G be a group and N be a subgroup of G. We say that N is a **normal** subgroup of G, written as $N \triangleleft G$, if it satisfies the condition

$$gN = Ng$$
 for all $g \in G$.

Equivalently, N is normal in G if for all $g \in G$ and $n \in N$, we have

$$gng^{-1} \in N$$
.

This condition ensures that the left and right cosets of N in G are the same, which allows the construction of the quotient group G/N.

Proposition 1. Let G be an abelian group, N any subgroup of G. Then $N \triangleleft G$.

Proof. Let G be an abelian group and N a subgroup of G. The left cosets of N are then $gN = \{gn : n \in N\}$ for some $g \in G$. Since G is abelian and $n \in G \land g \in G$ we get

$$gn = ng$$

for any arbitrary $g \in G$. Thus

$$gN = \{gn : n \in N\} = \{ng : n \in N\} = Ng, \quad \forall g \in G$$

Quotient Group

Theorem 1. Let $G/N = \{gN : g \in G\}$ respecting $gN \star g'N = (gg')N$ is a group with [G : N] elements, where [G : N] is the index of N in G. [G : N] is the n in $G = \bigsqcup_{i=1}^n g_iN$.

Proof. Assume $N \triangleleft G$. $\#G/N = \#\{gN: g \in G\}$ = the number of distinct cosets of N = [G:N]. $(G/N,\star)$ is a group:

* well-defined:

$$aN = a'N$$

$$bN = b'N$$

$$\Rightarrow a' = a \cdot n_1 \wedge b' = b \cdot n_2, n_1, n_2 \in N$$

$$aNbN = a'Nb'N = a'b'N$$

$$aNbN = abN$$

$$a'b'N = a \cdot n_1b \cdot n_2N = abN, \because n_1, n_2 \in N$$

 \star associative:

$$aN \star (bN \star cN) = aN \star (bcN) = abcN$$
$$= (ab)cN = (abN) \star cN = (aN \star bN) \star cN$$

Identity: "e" = eN = N

$$aN \star eN = (ae)N = aN$$

 $eN \star aN = (ea)N = aN$

Inverses:

$$(gN)^{-1} := g^{-1}N$$

 $aN \star a^{-1}N = (aa^{-1})N = eN = N$
 $a^{-1}N \star aN = (a^{-1}a)N = eN = N$

Thus $(G/N, \star)$ is a group.

Corollary 1. If G is an abelian group and $N \subseteq G$ is any subgroup. Then, G/N is an abelian group.

Proof. Since G is abelian $\Rightarrow N \triangleleft G$ is a normal subgroup. By theorem 1 G/N is a group. Now since G is abelian we have

$$\forall aN, bN \in G/N: aN \star bN = (ab)N = (baN) = bN \star aN$$

Thus the quotient group of an abelian group G with any subgroup N is an abelian group. \qed

Definition 2. Let G be a group and N a normal subgroup of G (i.e., $N \triangleleft G$). The **quotient** group or factor group G/N is the set of left cosets of N in G, defined as

$$G/N = \{gN \mid g \in G\}.$$

The group operation on G/N is given by

$$(gN)(hN) = (gh)N$$
 for all $g, h \in G$.

This operation is well-defined, and G/N forms a group under this operation.