Next: Left factoring Up: Context-free grammars Previous: Elimination of ambiguity.

Elimination of left recursion

LEFT RECURSION. Let G be a context-free grammar. A production of G is said left recursive if it has the form

$$A \longmapsto A \alpha$$
 (20)

where A is a nonterminal and $\, lpha \,$ is a string of grammar symbols. A nonterminal A of G is said left recursive if there exists a string of grammar symbols $\, lpha \,$ such that we have

$$A \stackrel{*}{\Rightarrow} A \alpha \tag{21}$$

Such derivation is also said left recursive. The grammar G is left recursive if it has at least one left recursive nonterminal.

Remark 4 Top-down parsing is one of the methods that we will study for generating parse trees. This method cannot handle left recursive grammars. We present now an algorithm for transforming a left recursive grammar G into a grammar G' which is not left recursive and which generates the same language as G.

THE BASIC TRICK is to replace the production

$$A \longmapsto A \alpha \mid \beta \quad \text{by} \quad \left\{ \begin{array}{ccc} A & \longmapsto & \beta A' \\ A' & \longmapsto & \alpha A' \mid \varepsilon \end{array} \right. \tag{22}$$

where lpha
eq arepsilon is assumed. Observe that this trick eliminates left recursive productions. Applying this

trick is not enough to remove all derivations of the form A $\stackrel{*}{\Rightarrow}$ A α . However this trick is sufficient for many grammars.

Example 10 The following grammar which generates arithmetic expressions

$$E \longmapsto_{E+T|T}$$

$$T \longmapsto_{T^*F|F}$$

$$E \mapsto_{(E)} id$$

$$E \mapsto_{E+T|T}$$

$$E \mapsto_{(E)} id$$

has two left recursive productions. Applying the above trick leads to

$$E \longmapsto_{\mathsf{TE'}}$$

$$E' \longmapsto_{\mathsf{TT'}} \vdash_{\mathsf{ET'}}$$

$$E' \longmapsto_{\mathsf{FT'}}$$

$$E' \longmapsto_{\mathsf{FT'}} \vdash_{\mathsf{ET'}}$$

$$E' \longmapsto_{\mathsf{FT'}} \vdash_{\mathsf{ET'}}$$

$$E' \longmapsto_{\mathsf{FT'}} \vdash_{\mathsf{ET'}}$$

$$E' \longmapsto_{\mathsf{FT'}} \vdash_{\mathsf{ET'}}$$

$$E' \longmapsto_{\mathsf{ET'}} \vdash_{\mathsf{ET'}}$$

$$E' \longmapsto_{\mathsf{ET'}} \vdash_{\mathsf{ET'}} \vdash_{\mathsf{ET'}}$$

$$E' \longmapsto_{\mathsf{ET'}} \vdash_{\mathsf{ET'}} \vdash_{\mathsf{ET'$$

THE CASE OF SEVERAL LEFT RECURSIVE A-PRODUCTIONS. Assume that the set of all A-productions has the form

$$\mathbf{A} \longmapsto \mathbf{A} \alpha_1 + \mathbf{A} \alpha_2 + \mathbf{A} \alpha_m + \beta_1 + \beta_2 + \mathbf{A} \beta_n \tag{25}$$

where no β_i begins with an A and where $\alpha_i \neq \varepsilon$ holds for every i = 1 ··· m. Then we repalce these A-productions by

$$\begin{array}{c} \mathbf{a} \longmapsto \beta_1 \, \mathbf{a}' \mid \beta_2 \, \mathbf{a}' \mid \cdots \, \beta_n \, \mathbf{a}' \\ \\ \mathbf{a}' \longmapsto \alpha_1 \, \mathbf{a}' \mid \alpha_2 \, \mathbf{a}' \mid \cdots \, \alpha_m \, \mathbf{a}' \mid \varepsilon \end{array} \tag{26}$$

Remark 5 Let us consider the following grammar.

$$S \longmapsto_{Aa \mid b}$$

$$Ac \mid Sd \mid \mathcal{E}$$
(27)

The nonterminal S is left recursive since we have

$$s \Rightarrow Aa \Rightarrow Sda$$
 (28)

However there is no left recursive S-productions. We show now how to deal with these left recursive derivations.

REMOVING ALL LEFT RECURSIVE DERIVATIONS. Let us assume that non-terminals are numbered: A_1 , A_2 ,..., A_n . The goal is to remove any possible circuit for all $1 \le j < i \le n$

$$\mathbf{A}_{\mathbf{i}} \overset{*}{\Rightarrow} \mathbf{A}_{\mathbf{j}} \delta_{\mathbf{j}} \overset{*}{\Rightarrow} \mathbf{A}_{\mathbf{i}} \delta_{\mathbf{i}}$$
 (29)

The idea is for $i = 1 \cdot \cdot \cdot n$

- To make sure that every A_i-production does not have a form A_i \longmapsto A_j δ for some j < i.
- To remove any left recursive A_i-production.

The method in more detail:

- remove all left recursive A₁-productions (by the above trick)
- remove A_1 from the right-hand side of each A_2 -production of the form $A_2 \longmapsto_{A_1} \delta$ (by applying all A_1 -productions)
- remove all left recursive A2-productions
- remove A_j from the right-hand side of each A_3 -production of the form $A_3 \longmapsto A_j \delta$ for j=1,2.
- remove all left recursive A₃-productions
- ...
- remove A_j from the right-hand side of each A_i -production of the form $A_i \longmapsto_{A_j} \delta$ (for every j such that $1 \leq j < i \leq n$)
- remove all left recursive A_i-productions
- ...

Observations:

• To remove A_j from the right-hand side of the A_i -production $A_i \longmapsto A_j \delta$ (where $1 \leq j < i \leq n$) replace

$${\bf A_i}\longmapsto {\bf A_j}\,\delta$$
 by ${\bf A_i}\longmapsto \gamma_1\;\delta$ | " | $\gamma_k\;\delta$ where ${\bf A_j}\longmapsto \gamma_1$ | " | γ_k (30)

are all Aj-productions and $\gamma_i \neq \varepsilon$ for i = 1 ··· k.

- This construction may not work if G constains initially a production of the form A \longmapsto \mathcal{E} . See Example 11. However we can always remove such productions. Explain how!
- Also, this construction may fail if the grammar G has a cycle, that is, if there exists a nonterminal A such

that A $\stackrel{*}{\Rightarrow}$ A. This can happen with the following grammar fragment

$$A_1 \longmapsto A_2 \mid \gamma_1$$

$$A_2 \longmapsto A_1 \mid \gamma_2$$

$$(31)$$

where

- \circ γ_1 is a string of grammar symbols not starting with A₁ (what we can assume by application of the basic trick given in Relation 22)
- \circ γ_2 is a string of grammar symbols not starting with A₁ (what we can assume by application of the A₁-productions).

Then we can replace the above fragment by

without changing the generated language. Unfortunately a cycle may be hidden in a more subtle manner. Indeed γ_2 may write γ_{21} A₂ γ_{22} and γ_1 may write γ_{11} A₁ γ_{12} with γ_{21}

$$\stackrel{*}{\Rightarrow} \ \varepsilon \text{, } \gamma_{22} \ \stackrel{*}{\Rightarrow} \ \varepsilon \text{, } \gamma_{11} \ \stackrel{*}{\Rightarrow} \ \varepsilon \text{ and } \gamma_{12} \ \stackrel{*}{\Rightarrow} \ \varepsilon \text{. However this may only}$$

happen if there are productions of the form A $\longmapsto arepsilon$.

- In conclusion, the above construction for removing all left recursive derivations should be performed after
 - \circ removing all productions of the form A $\longmapsto arepsilon$,
 - \circ removing cycles, that is derivations of the form A $\stackrel{*}{\Longrightarrow}$ A.

Now observe that the basic trick given in Relation $\underline{22}$ introduces productions of the form A $\longmapsto \mathcal{E}$. However one can show that the above construction cannot reintroduce cycles.

Example 11 Consider the following grammar.

$$A_3 \qquad A_2 A_1 \tag{33}$$

$$\longmapsto_{A_2} \longmapsto \varepsilon$$

$$A_1 \longmapsto_{A_2A_1}$$

Applying the previous algorithm for removing all possible left-recursive derivations fail on this grammar, because of the arepsilon -production.

Example 12 Consider again the following grammar.

$$S \longmapsto_{Aa \mid b}$$

$$Ac \mid Sd \mid \mathcal{E}$$
(34)

We order the nonterminals: S < A. There is no left recursive S-productions. So the next step is to remove S from the right-hand side of the A-productions of the form A \longrightarrow S α . Hence we obtain

$$S \longmapsto_{Aa \mid b}$$

$$Ac \mid_{Aad \mid bd \mid \mathcal{E}}$$
(35)

Then we remove the left recursive A-productions.

$$S \longmapsto_{Aa \mid b}$$

$$A \longmapsto_{bdA' \mid A'}$$

$$A' \longmapsto_{cA' \mid adA' \mid \mathcal{E}}$$

$$(36)$$