Với số thực a, đặt $N_q(a) = \min\left\{\left|a - \frac{p}{q}\right|, p \in Z\right\}$, tức là khoảng cách nhỏ nhất từ a đến một phân số (**không** nhất thiết là phân số tối giản) có mẫu số là q. Cmr dãy số $a_n = \frac{1}{\log(n)} \sum_{i=1}^n N_i(a)$ hội tụ

Lời giải:

Một trong những bài toán hay nhất mình từng làm. Ta sẽ cm bài toán này from scratch, ko sử dụng định lí nào.

Ta có: $N_q(a) = \frac{\|aq\|}{q}$, trong đó $\|m\|$ là khoảng cách giữa m là số nguyên gần nhất với nó (vậy nên $0 \le \|m\| \le \frac{1}{2}$)

Có một trick quen thuộc trong số học giải tích là nếu cần tính tổng $\frac{b_i}{i}$ thì ta có thể sử dụng khai triển Abel rồi tính tổng $b_1+b_2+...+b_i$, và có lẽ bài toán này là một ví dụ rất tốt cho việc khai triển này.

Đầu tiên, ta sẽ phát biểu về khai triển Abel: Cho 2 dãy số a_1,a_2,\ldots,a_n b_1,b_2,\ldots,b_n Đặt $c_i=b_1+b_2+\ldots+b_i$. Khi này ta có:

 $a_1b_1 + a_2b_2 + ... + a_nb_n = (a_1 - a_2)c_1 + (a_2 - a_3)c_2 + ... + (a_{n-1} - a_n)c_{n-1} + a_nc_n$ Ý tưởng là ta sẽ sử dụng khai triển Abel, đặt $S(n) = \sum_{i=1}^n \|ai\|$, thay vì tính dãy a_n , ta sẽ tính S(n). Bây h ta sẽ xét 2 trường hợp:

Trường hợp 1: a là số vô tỉ, cũng là trường hợp khó. Ta sẽ cm rằng $\lim_{n \to +\infty} \frac{S(n)}{n} = \frac{1}{4}$ Để cm đc ta sẽ cần 1 vài bổ đề:

Bổ đề 1: Cho số vô tỉ a và số thực dương ε , tồn tại số nguyên dương N sao cho $\{Na\} \in (0;\varepsilon)$

Cm: Chọn số nguyên dương M lớn (lớn hơn $\frac{1}{\varepsilon}$), xét các khoảng $\left(0;\frac{1}{M}\right), \left(\frac{1}{M};\frac{2}{M}\right),...,$

 $\left(\frac{M-1}{M};1\right)$ sẽ có 2 số khi này sẽ có 2 số N_1 và N_2 trong [1;M+1] sao cho $\{N_1a\}$ và

 $\{N_2a\}$ nằm trong cùng 1 khoảng. Khi này $|\{N_1a\}-\{N_2a\}|<\frac{1}{M}$ và từ đây $\{(N_2-N_1)a\}$ sẽ nằm trong khoảng $\left(0;\frac{1}{M}\right)$ hoặc $\left(\frac{M-1}{M};1\right)$

Đặt $N_3=N_2-N_1$, nếu $\{N_3a\}\in\left(0;\frac{1}{M}\right)$ thì xong, nếu ko, xét $\{-N_3a\}$, nó sẽ nằm trong khoảng $\left(0;\frac{1}{M}\right)$, khi này $\{-CN_3a\}=C\{-N_3a\}$ với mọi C nguyên dương thỏa $C\{-N_3a\}<1$ và ta có thể chọn C sao cho $C\{-N_3a\}\in\left(\frac{M-1}{M};1\right)$, khi này $\{CN_3a\}\in\left(0;\frac{1}{M}\right)$ và ta đc điều phải cm.

Bổ đề 2 (bổ đề chính của trường hợp a **vô tỉ):** Cho số vô tỉ a và 2 số thực dương c và d thỏa c<d, gọi S(c,d) là tập các số nguyên dương N thỏa $\{Na\} \in (c;d)$, khi này

$$\lim_{n \to +\infty} \frac{|S(c,d) \cap \{1,2,...,n\}|}{n} = d - c$$

Cm: WLOG a>0, vì a<0 chẳng qua là đối xứng qua số 0 mà thôi. Bây h, xét số ϵ rất nhỏ. Xét số thực dương ϵ_2 rất nhỏ so với ϵ và sử dụng **Bổ đề 1**, ta chọn đc số N sao cho $\{Na\} \in (0;\epsilon_2)$. Với số nguyên dương n đủ lớn, và với mỗi i=0,1,...,N-1, đặt $m_i=\left\lfloor \frac{n-i}{Na} \right\rfloor$, thì m_i là số các số \equiv i (mod N) và ko vượt quá n, và đặt t_i là các số n_2 \equiv i (mod N), ko vượt quá n và $\{n_2a\} \in (c;d)$. Ta chỉ cần cm rằng $\frac{t_i}{m_i} \sim d-c$

Đặt b={Na}, thì b< ε_2 khi này ta xét {kb+i}, với k=0,1,..., m_i để xem có bao nhiều số k thỏa {kb+i} \in (c;d). Đặt T=[m_ib+i] + 1 thì T là số nguyên dương nhỏ nhất thỏa mãn T> m_ib+i nên $m_i=\left\lfloor \frac{T-i}{b} \right\rfloor$. Bây h, {kb+i} \in (c;d) khi và chỉ khi {kb+i} \in (M+c;M+d) với M nguyên dương và M<T hay k \in $\left(\frac{M+c-i}{b}; \frac{M+d-i}{b} \right)$ với M<T, vậy số các t_i là t_i= $\left(\sum_{j=i}^{T-2} \left\lfloor \frac{j+d-i}{b} \right\rfloor - \left\lfloor \frac{j+c-i}{b} \right\rfloor \right)$ +O(1).

Lúc này thì $t_i > T\frac{d-c}{b} - T + O(1)$ và $t_i < T\frac{d-c}{b} + T + O(1)$ nên $\frac{t_i}{m_i} \in (d-c-\epsilon; d-c+\epsilon)$ khi b rất nhỏ với ϵ . Bây giờ tổng hết các số $t_0 + t_1 + ... + t_{N-1}$ và để ý rằng $n = m_0 + m_1$

 $+ ... + m_{N-1}$ thì ta đc ĐPCM.

Trở lại bài toán, Xét số thực dương ε rất nhỏ và số nguyên dương M rất lớn . Giờ với mọi n rất lớn với M, theo $\mathbf{B} \mathbf{\delta} \mathbf{d} \mathbf{\tilde{e}} \mathbf{2}$ với mỗi i $\leq \frac{M}{2}$, ta có ít nhất $2(1-\varepsilon)\frac{n}{M}$ và ko quá $2(1+\varepsilon)\frac{n}{M}$ số nguyên dương \mathbf{n}_2 ko vượt quá n thỏa $\|n_2a\| \in \left(\frac{i}{M}; \frac{i+1}{M}\right)$ (có thêm nhân 2 vì nếu $\{n_2a\} \in \left(\frac{M-i-1}{M}; \frac{M-i}{M}\right)$ thì $\|n_2a\| \in \left(\frac{i}{M}; \frac{i+1}{M}\right)$). Vậy ta đánh giá $\mathrm{d} \mathbf{c} \mathbf{2} \mathbf{b} \mathbf{d} \mathbf{t} \mathbf{sau} \, \mathrm{d} \mathbf{a} \mathbf{y} \colon \frac{S(n)}{n} > 2(1-\varepsilon)\frac{1}{M}(\frac{0}{M}+\frac{1}{M}+\ldots+\frac{M/2-1}{M}) \, \mathbf{v} \mathbf{a} \, \frac{S(n)}{n} < 2(1+\varepsilon)\frac{1}{M}(\frac{1}{M}+\frac{2}{M}+\ldots+\frac{M/2}{M})$. Để ý khi ε rất nhỏ và M rất lớn thì cả $\mathbf{2}$ vế đều tiến về $\frac{1}{4}$ từ đó ta được $\lim_{n\to\infty} \frac{S(n)}{n} = \frac{1}{4}$

Cuối cùng để kết thúc, ta sẽ sử dụng khai triển Abel cho 2 dãy $\frac{1}{n}$ và ||an||. Khi này,

ta có
$$\sum_{i=1}^{n} N_i(a) = (\sum_{i=1}^{N} \frac{S(i)}{i(i+1)}) + \frac{S(n)}{n}$$
. Vì $\lim_{n \to +\infty} \frac{S(n)}{n} = \frac{1}{4}$ nên $\sum_{i=1}^{n} N_i(a)$ $\sim \sum_{i=1}^{N} \frac{1}{4(i+1)} \sim \frac{1}{4} \log(n)$ hay dãy a_n hội tụ về $\frac{1}{4}$.

Trường hợp 2: a là số hữu tỉ, trường hợp này thì dễ. Đặt $a = \frac{p}{q}$. Ta lại xét tiếp S(n).

Để ý rằng $\left\{\frac{(k+q)p}{q}\right\} = \left\{\frac{kp}{q}\right\}$ với mọi k nguyên, vậy đặt n=mq+r thì ta có $S(mq+r) = m \; \sum_{i=1}^q \left|\left|\frac{ip}{q}\right|\right| + O(1), tới đây là cm đc \; \frac{S(n)}{n} \; hội tụ rồi. Còn kết quả cụ thể thì là <math>\mathbf{x_q} = \frac{1}{q} \sum_{i=1}^q \left|\left|\frac{ip}{q}\right|\right|, \, \text{để tính tổng này thì ta có kết quả cơ bản là các số p,2p,...,qp khi chia cho q sẽ ra các số dư là 0,1,2,...,q-1 theo thứ tự nào đó, từ đó với mỗi i<math><\!\!\frac{q}{2}$ thì $\frac{i}{q}$ xuất hiện đúng 2 lần trong $\left|\left|\frac{p}{q}\right|\right|, \left|\left|\frac{2p}{q}\right|\right|, \ldots, \left|\left|\frac{qp}{q}\right|\right|$, nếu q chẵn thì

thêm số
$$\frac{1}{2}$$
 xuất hiện thêm 1 lần nữa, vậy $x_q = \frac{2}{q}(\frac{1}{q} + ... + \frac{q/2 - 1}{q}) + \frac{1}{2q} = \frac{1}{4}$ nếu q chẵn , và $x_q = \frac{2}{q}(\frac{1}{q} + ... + \frac{(q-1)/2}{q}) = \frac{1}{4} - \frac{1}{4q^2}$ nếu q lẻ.

Tới đây, sử dụng khai triển Abel như **trường hợp 1** ta được ĐPCM.