Lecture 6

Clocked Elements

Computer Systems Laboratory Stanford University horowitz@stanford.edu

Copyright © 2006 Mark Horowitz, Ron Ho Some material taken from lecture notes by Vladimir Stojanovic and Ken Mai

M Horowitz EE 371 Lecture 6

Overview

- Readings (For next lecture on clocking)
 - GronowskiAlpha clocking paperRestleHarrisVariations paper
- Today's topics
 - Latches and flops overview
 - Power and timing metrics
 - High-performance design and low-energy design
 - Examples

Why Are Clocked Elements Important?

A graph from the first lecture, showing cycle time in FO4

• A clock cycle contains less and less time each generation

M Horowitz EE 371 Lecture 6 3

We Need Faster Clocked Elements

- Note that the previous graph invites us to extrapolate blindly
 - "In just a few years, clock frequencies will go to infinity!!"
 - Reality says clock cycle times will level out
- There is some disagreement on the actual limits
 - "6-8 FO4 per cycle is optimum" (Hrishikesh, ISCA '02)
 - "Yes, but including overhead, more like 18" (Srinivasan, ISM '02)
- Today: 16 FO4/cycle in Pentium4; 11 FO4/cycle in Sony Cell
 - If a flop has an overhead of 3FO4, this is 15%-30% overhead
 - We can fill less of the cycle time with "work"
- Making a faster flop helps performance significantly

We Need Lower Power Clocked Elements

- Recall that chip power density is climbing up
 - "Rocket nozzle!" "Surface of the sun!" "Oh, my!"
 - Because power is C*V2f and V is not scaling anymore (V != 10Lqate)
- Part of this power is for clock distribution
 - Clocking requires 70% of core power in Power4 (2001)
 - Clocking requires 25% of core power in dual-core Itanium (2005)
- Almost all of this power is in driving the latches/flops at the ends
 - Only around 20-25% of clock power is in clock transmission
 - Saving power at the ends is better than saving power in the wires
- Making a more efficient flop helps power significantly

M Horowitz EE 371 Lecture 6 5

Timing Overhead, Illustrated

· A standard circuit view of a flop system

- Flop timing overhead is the "data-to-output(Q)" delay
 - $T_{data-to-Q} = T_{setup} + T_{clk-to-Q} = T_{su} + T_{cq}$
- Next look at some basic latch and flop designs and metrics
 - But first, an analogy...

An Analogy Of Timing

- Clocked datapaths are like streets with traffic lights
 - Cars moving down the street are data
 - · Some cars speed, some cars drive normally, some crawl
 - · Principal rule: cannot have two cars collide into each other
 - As a car (data) comes to a light (flop or latch)
 - · It passes through if the light is green and waits if it's red
- A clocked system has a master controller for the lights
 - All the lights turn red/green at the same time (as in Manhattan)
 - In some systems, the lights are green very briefly (flops)
 - In other systems, the lights stay green half the time (latches)
 - Satisfy principal rule: ensure all cars only pass one block per light
- The point of traffic lights is to slow down fast cars

M Horowitz EE 371 Lecture 6 7

The Analogy's Timing Failures

- A traffic light (flop or latch) can fail the principal rule in two ways
 - A car can be too slow to make it to the next block: Max path
 - The car hadn't reached the intersection when the light turned red
 - A car can race through more than one block: Min path
 - The intersection didn't stay clear just when the light went red
- Failures often arise because traffic light timing is not perfect
 - Differences between traffic lights (skew), or local variations (jitter)
- Fixing these failures
 - Max paths are fixable: Slow down the master controller
 - Min paths are not: Rebuild the street (or the light control wires)!
 - · Cost of 3 months fab time and \$1M in mask costs

By The Way

- Do you really need traffic lights?
 - No, if you can guarantee that all cars travel at the same rate
 - Wave-pipelining ensures all datapaths have the same delay
- Do all the lights need to switch at the same time?
 - No, and long blocks might benefit from different light timing
 - Intentional clock skew on chips helps for timing problems
- Do you really need a master controller for all the lights?
 - No, if you have cars (drivers) negotiate between themselves
 - Asynchronous circuits handshake between data items

M Horowitz EE 371 Lecture 6 9

A Note On Terminology

- Avoid saying a latch or flop is "open" or "closed"
 - There is ambiguity in these terms
 - Water flows if you "open a valve"
 - Current stops if you "open a switch"
- The common wording today is a little awkward, but clear
 - A timing element transfers data when it is **transparent**
 - It does not transfer data when it is opaque
- Other choices include "blocking" and "non-blocking"
 - The oddest I have ever seen was "Permissive" and "Prohibitive"
 - But don't use that...

Latches and Flops

Latch has soft timing: transparent when clock=1

Flop has hard timing: "transparent" when clock 0→1

M Horowitz EE 371 Lecture 6 1

Latch Timing

- Setup and hold times are defined relative to the clock fall
 - Setup time: how long before the clock fall must the data arrive
 - Hold time: how long after the clock fall must the data not change
- Delay depends on arrival time of data relative to clock rise
 - On early data arrival, delay = T_{cq}
 - On late data arrival, delay = T_{dq}

Flop Timing

- Setup and hold times are defined relative to the clock rise
 - Setup time: how long before the clock rise must the data arrive
 - Hold time: how long after the clock rise must the data not change
- Delay is always T_{cq}, as long as data hits the setup constraint

M Horowitz EE 371 Lecture 6

Latch and Flop Timing

- Softness of latch timing edges allows time borrowing
 - Nominally a latch expects its data when the latch goes transparent
 - But the latch will accommodate late data
 - Until the data runs into the falling edge of the clock (going opaque)
 - Time-borrowing works backwards ("slack forwarding") and forwards
- Flops generally do not allow time borrowing
- · For some latches and flops, setup time is negative
 - The data can change just after the latch goes opaque
 - The latch can still see that data change

Flop Delay

- · What's the delay through a flop?
 - Data must get to the flop by a setup time T_{su}
 - Data must traverse the flop and take up $T_{\rm cq}$
- So the time available to do logic is what's left

$$- \ \, \mathsf{T}_{\mathsf{logic}} = \mathsf{T}_{\mathsf{cycle}} - \mathsf{T}_{\mathsf{su}} - \mathsf{T}_{\mathsf{cq}} - \mathsf{T}_{\mathsf{skew}}$$

M Horowitz EE 371 Lecture 6 15

Flop Clk-to-Q Delay Depends On Data-to-Clk

Examine The Setup Half Of That Graph

M Horowitz EE 371 Lecture 6 17

What About Power?

- To fairly compare power of various flops or latches, include
 - External power to drive the clock input
 - External power to drive the data input
 - Internal power required to switch interior nodes
 - Internal power required to drive output load

Simplest CMOS Latch

Basic transparent high latch (Figure 11.2) is simply a passgate

- Very simple and compact
- Stores data dynamically subject to leakage and noise problems

M Horowitz EE 371 Lecture 6 19

Bad Things Can Happen To This Latch

- · Various modes of failure, including
 - 1 Noise on input
 - (2) Leakage
 - 3 α-Particle and cosmic rays
 - (4) Unrelated signal coupling
 - 3 Power supply ripple

Source: Chandrakasan Ch. 11

Buffered Transparent High Latch

· Avoid input noise with a local input inverter

- Still have problems with the storage node

M Horowitz EE 371 Lecture 6 21

Jam Latch

• Make the storage node static

- Feedback inverter is very weak and loses in a fight
- Burns power during the fight until the latch flips
- Beware mixed process corners (SF, FS) for overpowering latch!

Tristate Latch

• Prevent the fight by shutting off the feedback device

- Count on constant input drive during latch transparency
- Note that input inverter+passgate can be a tristate as well

M Horowitz EE 371 Lecture 6 23

Robust CMOS Latch

Don't take the output from the storage node directly

- This is a good, safe latch design
- Not the fastest in the world (can trade-off speed for DANGER)
- Setup and hold times are close to 0

Flip-Flops Come In Several Flavors

You can make a flip-flop out of two back-to-back latches

· You can make it out of a edge-triggered element, plus SR latch

M Horowitz EE 371 Lecture 6 25

Flip-Flops Come In Several Flavors, con't

You can also make a flip-flop out of a pulsed (glitch) latch

- All three flavors are (almost) functionally indistinguishable
 - Although they may react differently to clock skew
 - Will look at this in a later lecture

Flavor 1: Simplest Flop Is Master-Slave

- World's first LSI calculator chip (Tokyo Shibaura Electric)
 - Real "old-school" but it's a master-slave
 - All tristates instead of passgates

M Horowitz EE 371 Lecture 6 27

Flavor 1: Another Master-Slave

- PowerPC 603 flop
 - Note this is a negative edge-triggered flop (clks are reversed)
 - Faster than C2MOS, but at worse input noise (no tristate)
 - Master clk usually generated from slave (why not vice versa?)

Flavor 1: Yet Another Master-Slave (With Scan)

IBM Power4 latch with scan-ability (very common today)

M Horowitz EE 371 Lecture 6 29

Flavor 2: True Edge-Triggered Flops

- Dec 21264 Alpha flop (Madden & Bowhill, '90, Matsui '94)
 - A sense-amp (pulse generator) followed by a capturing RS latch
 - Negative setup time available

(Flavor 2) Improved "Strong-Arm Flop"

- Faster S-R stage
 - Sized for improved switching
 - Bigger drivers and smaller keepers
- Symmetric Q and Q_b delays
- Reduce the hysterisis of the latch
 - Slam the node high/low strongly
 - Then in precharge, hold it weakly
 - Makes it faster, but at what cost?
 - Coupling immunity
 - Yet another application of NFL
 - "No free lunch"

M Horowitz

EE 371 Lecture 6

Source: Nikolic & Stojanovic, ISSCC '99 31

Flavor 3: Glitch Latch or Pulse Latch

- Just like a standard latch, only with a pulsed (glitched) clock
 - Looks and smells like a flip-flop
 - Pulse gives you negative setup time and a soft edge (latch-like)
- Generating the pulsed clock can be tricky over process corners
 - A "clock chopper" or "single-shot"
 - Do this locally at the pulse latch for each latch or small group
 - · Distributing this pulse is dangerous: pulses disappear
 - So often combine this functionality into the latch itself

(Flavor 3) Glitch Latch

• AMD K6 latch, called a "Hybrid Latch Flip-Flop" (i.e., glitch latch)

M Horowitz EE 371 Lecture 6 33

(Flavor 3) Abstraction of the HLFF

(Flavor 3) A "Semi-Dynamic" Flip-Flop

• Sun UltrasparcIII pulsed latch

- Dynamic pulse generator, unlike the NAND3 in the HLFF
- Beware the 1-1 glitch

M Horowitz EE 371 Lecture 6 35

Delay Comparisons

• Driving a load of 14 inverters, in a $0.18\mu m$ technology

Energy Comparisons

Driving a load of 14 inverters, in a 0.18μm technology

Energy breakdown (50% activity)

What About Imperfect Clocks?

- Clocks do not always arrive "on time"
 - Clocks to different clocked elements arrive at different times: SKEW
 - One clock will arrive at different times from cycle to cycle: JITTER
- Clock performance is a function of the distribution grid (later)

Do Clocked Elements Have Transparency?

- Change in D-Q delay < clock uncertainty
 - The clocked element absorbs some of the clock uncertainty
- There is a range of clk arrivals for which D-Q is constant
 - For that range the clocked element looks like a combinational gate

M Horowitz EE 371 Lecture 6 39

"Clock Uncertainty Absorption"

Helps to mitigate the effects of clock skew (HLFF shown below)

More skew-tolerant circuits will be discussed in a later lecture