Assignment -2

Python Programming

Assignment Date	21 September 2022
Student Name	Mr. Harshan R S
Student Register Number	910619104027
Maximum Marks	

1. Importing necessary Libraries and Dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

import scipy.stats
import statsmodels.api as sm
#import statsmodels.stats.api as sms
import statsmodels.formula.api as smf
from statsmodels.stats.stattools import jarque_bera

sns.set_style('darkgrid')
sns.set(font_scale=1.3)

data = pd.read_csv('Churn_Modelling.csv')
data
```

Out[143]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveM
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
314	APE 14991	O SIZE		E DATA	SETAnce	Female	28	4	130142.79	1	1	

```
0ut[101]: data.shape
0ut[101]: (10000, 14)
```

DataTypes

```
data.describe(include='object')
```

Out[103]:

data.dtypes

Out[102]: RowNumber CustomerId int64 int64 int64 object int64 object object Surname CreditScore Geography Gender int64 int64 Age Tenure Tenure into 4
Balance float64
NumOfProducts int64
HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 Exited int64

dtype: object

	Surname	Geography	Gender
count	10000	10000	10000
unique	2932	3	2
top	Smith	France	Male
freq	32	5014	5457

Describe function to watch the Mean, Medium, etc

	data.d	escribe()								
Out[105]:		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
	count 1	0000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000
	mean 5000.50000		1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100
	std 2886.89568		7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797
	min 1.00000		1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000
4										•

2. Perform Visualizations

UNIVARIATE ANALYSIS

Histogram

```
cols = 3
rows = 4
num_cols = data.select_dtypes(exclude='object').columns
fig = plt.figure( figsize=(cols*5, rows*5))
for i, col in enumerate(num_cols):
    ax=fig.add_subplot(rows,cols,i+1)
    sns.histplot(x = data[col], ax = ax)

fig.tight_layout()
plt.show()
```


Distplot

```
cols = 3
rows = 4
num_cols = data.select_dtypes(exclude='object').columns
fig = plt.figure( figsize=(cols*5, rows*5))
for i, col in enumerate(num_cols):
    ax=fig.add_subplot(rows,cols,i+1)
    sns.histplot(x = data[col], ax = ax, data=data, kde='True')
fig.tight_layout()
```


Countplot

Boxplot

Bivariate Analysis

]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMem
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
 #
    Column
                         Non-Null Count Dtype
                        10000 non-null int64
 0
     RowNumber
     CustomerId
                        10000 non-null int64
 2
                        10000 non-null object
     Surname
 3
     CreditScore
                         10000 non-null int64
                        10000 non-null object
     Geography
                        10000 non-null object
10000 non-null int64
 5
     Gender
 6
     Age
     Tenure
                        10000 non-null int64
     Balance 10000 non-null float64
NumOfProducts 10000 non-null int64
 8
 9
10 HasCrCard 10000 non-null int64
11 IsActiveMember 10000 non-null int64
12 EstimatedSalary 10000 non-null float64
 13 Exited
                        10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
```

Numerical variable vs Numerical variable

Scatterplot

Out[110]

Categorical vs Categorical

Catplot

```
sns.catplot(x='Gender', y='Age', data=data, kind='point', hue='Geography')
plt.show()
```


Multivariate Analysis

PairPlot

sns.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x24161886980>

Out[114]:

3. Perform descriptive statistics on the dataset.

	data.de	escribe(inc	lude='all')								
Out[144]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProduct
	count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000	10000.000000	10000.00000
	unique	NaN	NaN	2932	NaN	3	2	NaN	NaN	NaN	Na
	top	NaN	NaN	Smith	NaN	France	Male	NaN	NaN	NaN	Na
	freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN	NaN	Na
	mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800	76485.889288	1.53020
	std	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174	62397.405202	0.58165
	min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000	0.000000	1.00000
	25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000	0.000000	1.00000
	50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000	97198.540000	1.00000
	75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000	127644.240000	2.00000
	max	10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000	250898.090000	4.00000

```
Out[145]: RowNumber
CustomerId
                             10000
          Surname
                            10000
          CreditScore
                           10000
                             10000
          Geography
                            10000
          Gender
          Age
                             10000
          Tenure
                             10000
                            10000
          Balance
          NumOfProducts
                            10000
          HasCrCard
                             10000
          IsActiveMember
          EstimatedSalary
                             10000
          Exited
                             10000
          dtype: int64
```

4. Handle the Missing values.

Fill with Zeros for NAN values

10000 rows x 14 columns

data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActive N
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

5. Find the outliers and replace the outliers

	a												
Out[147]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveM
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	

```
in [1482 missing_values=data.isnull().sum()
    missing_values[missing_values>0]/len(data)*100

Out[148]: Series([], dtype: float64)

In [1482 data.drop(['RowNumber','Exited','CustomerId','Surname','Geography','Gender'],axis=1,inplace=True)
```

```
0
                     619
                           42
                                          0.00
                                                                                             101348.88
                     608
                           41
                                      83807.86
                                                                      0
                                                                                             112542.58
           2
                     502
                           42
                                   8 159660.80
                                                            3
                                                                      1
                                                                                     0
                                                                                             113931.57
           3
                     699
                                                            2
                                                                      0
                                                                                     0
                                                                                              93826.63
                                          0.00
                           39
                                   2 125510.82
                                                                                              79084.10
                     850
                           43
                                                            1
                                                                      1
In [150...
          cols = 3
          rows = 4
          num_cols = data.select_dtypes(exclude='object').columns
          fig = plt.figure( figsize=(cols*5, rows*5))
          for i, col in enumerate(num_cols):
               ax=fig.add_subplot(rows,cols,i+1)
              sns.boxplot(x = data[col], ax = ax)
          fig.tight_layout()
          plt.show()
              400
                            600
                                   700
                                          800
                                                      20
                                                                40
                                                                                   80
                                                                                                0
                                                                                                       2
                                                                                                                             8
                                                                                                                                   10
                     500
                                                                         60
                                                                                                                     6
                                                                                                                Tenure
                         CreditScore
                                                                      Age
                                                     1.0
           0
                50000 100000 150000 200000 250000
                                                           1.5
                                                                 2.0
                                                                      2.5
                                                                            3.0
                                                                                   3.5
                                                                                        4.0
                                                                                                0.0
                                                                                                       0.2
                                                                                                              0.4
                                                                                                                    0.6
                                                                                                                            8.0
                                                                                                                                   1.0
                          Balance
                                                                 NumOfProducts
                                                                                                              HasCrCard
```

Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary

In [1234 data['CreditScore'].hist()

0

1.0

50000

100000 150000

EstimatedSalary

200000

0.2

0.0

0.4

0.6

IsActiveMember

0.8

CreditScore Age Tenure

Out[149]:

data['Age'].hist()

<AxesSubplot: > Out[124]:

data['NumOfProducts'].hist()

<AxesSubplot: > Out[125]:


```
print('Skewness value of Age: ',data['Age'].skew())
Age_mean = data['Age'].mean()
print('Mean of Age is: ',Age mean)
Age_std = data['Age'].std()
print('Standard Deviation of Age is: ',Age_std)
low= Age_mean -(3 * Age_std)
high= Age_mean + (3 * Age_std)
Age_outliers = data[(data['Age'] < low) | (data['Age'] > high)]
#print('Outliers of Age is:\n',Age_outliers)
print('Outliers of Age is:')
Age_outliers.head()
Skewness value of Age: 1.0113202630234552
```

Mean of Age is: 38.9218

80

652

Standard Deviation of Age is: 10.487806451704609

Outliers of Age is:

310

CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary 85 75 2 114675.75 652 10 0.00 1 158 646 73 6 97259.25 0 104719.66 230 2 111981.19 673 72 0.00 0 1 252 681 79 0 0.00 2 0 170968.99 1

0.00

```
print('Skewness value of CreditScore: ',data['CreditScore'].skew())
CreditScore_mean = data['CreditScore'].mean()
print('Mean of CreditScore is: ',CreditScore_mean)
CreditScore_std = data['CreditScore'].std()
print('Standard Deviation of CreditScore is: ',CreditScore std)
low= CreditScore_mean -(3 * CreditScore_std)
high= CreditScore_mean + (3 * CreditScore_std)
CreditScore_outliers = data[(data['CreditScore'] < low) | (data['CreditScore'] > high)]
#print('Outliers of Age is:\n',Age outliers)
print('Outliers of CreditScore is:')
```

1

188603.07

1

2

```
CreditScore_outliers.head()
Skewness value of CreditScore: -0.07160660820092675
Mean of CreditScore is: 650.5288
Standard Deviation of CreditScore is: 96.65329873613035
Outliers of CreditScore is:
      CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
1405
                                                                                 146955.71
            359
                  44
                          6 128747.69
 1631
            350
                  54
                          1 152677.48
                                                                                 191973.49
 1838
            350
                  39
                          0 109733.20
                                                  2
                                                            0
                                                                          0
                                                                                 123602.11
 1962
                                                  3
                                                                          0
                  52
                          8 143542.36
                                                                                 141959.11
            358
 2473
            351
                          4 163146.46
                                                                          0
                                                                                 169621.69
                  57
                                                            1
print('Skewness value of NumOfProducts: ',data['NumOfProducts'].skew())
NumOfProducts mean = data['NumOfProducts'].mean()
print('Mean of NumOfProducts is: ', NumOfProducts mean)
NumOfProducts std = data['NumOfProducts'].std()
print('Standard Deviation of NumOfProducts is: ', NumOfProducts std)
low= NumOfProducts mean -(3 * NumOfProducts std)
high= NumOfProducts_mean + (3 * NumOfProducts_std)
NumOfProducts outliers = data[(data['NumOfProducts'] < low) | (data['NumOfProducts'] > high)]
#print('Outliers of Age is:\n',Age outliers)
print('Outliers of NumOfProducts is:')
NumOfProducts outliers.head()
Skewness value of NumOfProducts: 0.7455678882823168
Mean of NumOfProducts is: 1.5302
Standard Deviation of NumOfProducts is: 0.5816543579989906
Outliers of NumOfProducts is:
      CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
   7
            376
                  29
                          4 115046 74
                                                  4
                                                            1
                                                                          0
                                                                                 119346 88
  70
            738
                  58
                          2 133745.44
                                                                          0
                                                                                  28373.86
 1254
                  46
                          1 46870.43
                                                  4
                                                            1
                                                                          0
                                                                                  31272.14
             628
```

Outliers Eliminated

819

596

49

1 120656.86

6 121345.88

```
Q1 = data['Age'].quantile(0.25)
Q3 = data['Age'].quantile(0.75)

IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
data['Age']=np.where(data['Age']>upper_whisker,upper_whisker,np.where(data['Age']<lower_whisker,d
print('Outliers Removed in Age:')
sns.boxplot(data['Age'])

Outliers Removed in Age:
```

0

1

0

166164.30

41921.75

Out[160]: <AxesSubplot: >

1469

1488


```
Q3 = data['CreditScore'].quantile(0.75)
IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
data['CreditScore']=np.where(data['CreditScore']>upper_whisker,upper_whisker,np.where(data['CreditScore']<lower
print('Outliers Removed in CreditScore:')
sns.boxplot(data['CreditScore'])
Outliers Removed in CreditScore:
<pre>

Out[161]:
```



```
Q1 = data['NumOfProducts'].quantile(0.25)
Q3 = data['NumOfProducts'].quantile(0.75)

IQR = Q3 - Q1
whisker_width = 1.5
lower_whisker = Q1 - (whisker_width*IQR)
upper_whisker = Q3 + (whisker_width*IQR)
data['Age']=np.where(data['NumOfProducts']>upper_whisker,upper_whisker,np.where(data['NumOfProducts']<lower_whi
print('Outliers Removed in NumOfProducts:')
sns.boxplot(data['NumOfProducts'])

Outliers Removed in NumOfProducts:

Out[162]:
```

4.0

6. Check for Categorical columns and perform encoding.

```
In [1] #data1 = pd.read_csv('Churn_Modelling.csv')
#data1.head()
In [2] import numpy as np #for numpy operations
import pandas as pd #for creating DataFrame using Pandas
```

```
Out[2]:
                                                                                        Balance NumOfProducts HasCrCard IsActiveMemb
            RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
                          15634602
                                  Hargrave
                                                   619
                                                                                            0.00
                                                           France
                                                                   Female
         1
                     2
                                        Hill
                                                   608
                                                                                        83807.86
                          15647311
                                                                                                                        O
                                                             Spain
                                                                   Female
                                                                            41
         2
                     3
                          15619304
                                       Onio
                                                   502
                                                           France
                                                                   Female
                                                                            42
                                                                                    8 159660.80
                                                                                                             3
                                                                                                                        1
         3
                     4
                          15701354
                                       Boni
                                                   699
                                                           France
                                                                   Female
                                                                            39
                                                                                            0.00
                                                                                                             2
                                                                                                                        0
         4
                     5
                          15737888
                                    Mitchell
                                                   850
                                                                                    2 125510.82
                                                                                                             1
                                                                                                                        1
                                                            Spain
                                                                   Female
                                                                            43
                                                                                    8 113755.78
         5
                                                                                                             2
                     6
                          15574012
                                       Chu
                                                   645
                                                            Spain
                                                                     Male
                                                                            44
         6
                     7
                          15592531
                                     Bartlett
                                                   822
                                                           France
                                                                     Male
                                                                            50
                                                                                    7
                                                                                            0.00
                                                                                                             2
                                                                                                                        1
         7
                     8
                          15656148
                                     Obinna
                                                   376
                                                                            29
                                                                                    4 115046.74
                                                          Germany
                                                                   Female
         8
                     9
                          15792365
                                        He
                                                   501
                                                           France
                                                                            44
                                                                                    4 142051 07
                                                                                                             2
                                                                                                                        O
                                                                     Male
         9
                    10
                          15592389
                                        H?
                                                   684
                                                           France
                                                                     Male
                                                                            27
                                                                                    2 134603.88
        data1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10000 entries, 0 to 9999
         Data columns (total 14 columns):
                                 Non-Null Count Dtype
          #
              Column
              RowNumber
                                 10000 non-null int64
                                 10000 non-null int64
          1
              CustomerId
          2
              Surname
                                  10000 non-null object
                                 10000 non-null int64
          3
              CreditScore
                                 10000 non-null object
          4
              Geography
          5
              Gender
                                 10000 non-null object
          6
                                 10000 non-null int64
              Age
              Tenure
                                 10000 non-null
                                                   int64
                                 10000 non-null float64
          8
              Balance
          9
              NumOfProducts
                                 10000 non-null int64
          10
              HasCrCard
                                  10000 non-null
                                                   int64
              IsActiveMember
                                10000 non-null int64
          11
          12 EstimatedSalary 10000 non-null float64
          13
              Exited
                                  10000 non-null int64
         dtypes: float64(2), int64(9), object(3)
         memory usage: 1.1+ MB
         # label_encoder object
         label encoder =LabelEncoder()
         # Encode labels in column.
         data1['Surname'] = label encoder.fit transform(data1['Surname'])
         data1.head(10)
            RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
                                                                                        Balance NumOfProducts HasCrCard IsActiveMemb
Out[4]:
         0
                          15634602
                                       1115
                                                   619
                                                                   Female
                                                                            42
                                                                                            0.00
                                                           France
         1
                     2
                          15647311
                                       1177
                                                   608
                                                                                        83807.86
                                                                                                                        0
                                                                   Female
                                                                            41
                                                            Spain
         2
                                       2040
                     3
                          15619304
                                                   502
                                                                                    8 159660 80
                                                                                                             3
                                                           France
                                                                  Female
                                                                            42
                                                                                                                        1
         3
                     4
                          15701354
                                        289
                                                   699
                                                           France
                                                                   Female
                                                                            39
                                                                                            0.00
                                                                                                             2
                                                                                                                        0
         4
                     5
                          15737888
                                       1822
                                                   850
                                                                                    2 125510.82
                                                                            43
                                                                                                             1
                                                                                                                        1
                                                            Spain
                                                                  Female
         5
                                                                                                             2
                     6
                          15574012
                                       537
                                                   645
                                                            Spain
                                                                            44
                                                                                    8 113755.78
                                                                     Male
         6
                     7
                          15592531
                                       177
                                                   822
                                                           France
                                                                     Male
                                                                            50
                                                                                            0.00
                                                                                                             2
                                                                                                                        1
         7
                     8
                          15656148
                                       2000
                                                   376
                                                                                    4 115046.74
                                                          Germany
                                                                   Female
                                                                            29
         8
                                                                                                                        n
                     9
                          15792365
                                       1146
                                                   501
                                                                                    4 142051 07
                                                                                                             2
                                                           France
                                                                     Male
                                                                            44
         9
                    10
                          15592389
                                       1081
                                                   684
                                                            France
                                                                     Male
                                                                            27
                                                                                    2 134603.88
         data1['Gender'] = label_encoder.fit_transform(data1['Gender'])
         data1.head(10)
```

to split the dataset using sklearn

data1 = pd.read csv('Churn Modelling.csv')

load titanic dataset

data1.head(10)

from sklearn.preprocessing import LabelEncoder,OneHotEncoder

Out[7]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMemb
	0	1	15634602	1115	619	France	0	42	2	0.00	1	1	
	1	2	15647311	1177	608	Spain	0	41	1	83807.86	1	0	
	2	3	15619304	2040	502	France	0	42	8	159660.80	3	1	
	3	4	15701354	289	699	France	0	39	1	0.00	2	0	
	4	5	15737888	1822	850	Spain	0	43	2	125510.82	1	1	
	5	6	15574012	537	645	Spain	1	44	8	113755.78	2	1	
	6	7	15592531	177	822	France	1	50	7	0.00	2	1	
	7	8	15656148	2000	376	Germany	0	29	4	115046.74	4	1	
	8	9	15792365	1146	501	France	1	44	4	142051.07	2	0	
	9	10	15592389	1081	684	France	1	27	2	134603.88	1	1	
		tal['Geogr tal.head(1		oel_enco	der.fit_tra	ansform(dat	tal['Ge	ograp	ohy'])				
In [8]:	da	tal.head(1	0)	_	der.fit_tra					Balance	NumOfProducts	HasCrCard	lsActiveMemb
In [8]:	da	tal.head(1	0)	_	_					Balance	NumOfProducts	HasCrCard	Is Active Memb
In [8]:	da	tal.head(1	O) CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	0.00			IsActiveMemb
In [8]:	da 0	RowNumber	CustomerId 15634602	Surname	CreditScore	Geography	Gender 0	Age	Tenure 2	0.00	1	1	IsActiveMemb
In [8]:	0 1	RowNumber 1	CustomerId 15634602 15647311	Surname 1115 1177	CreditScore 619 608	Geography 0 2	Gender 0 0	Age 42 41	Tenure 2	0.00 83807.86	1	1	IsActiveMemb
In [8]:	0 1 2	RowNumber 1 2 3	CustomerId 15634602 15647311 15619304	Surname 1115 1177 2040	CreditScore 619 608 502	Geography 0 2 0	Gender 0 0 0	Age 42 41 42	Tenure 2 1 8 1	0.00 83807.86 159660.80	1 1 3	1 0 1	IsActiveMemb
In [8]:	0 1 2 3	RowNumber 1 2 3	CustomerId 15634602 15647311 15619304 15701354	Surname 1115 1177 2040 289	CreditScore 619 608 502 699	Geography 0 2 0 0	Gender 0 0 0 0	Age 42 41 42 39	Tenure 2 1 8 1 2	0.00 83807.86 159660.80 0.00	1 1 3 2	1 0 1 0	IsActiveMemb
In [8]:	0 1 2 3 4	RowNumber 1 2 3 4 5	CustomerId 15634602 15647311 15619304 15701354 15737888	Surname 1115 1177 2040 289 1822	CreditScore 619 608 502 699 850	Geography 0 2 0 0 2	Gender 0 0 0 0 0	Age 42 41 42 39 43	Tenure 2 1 8 1 2	0.00 83807.86 159660.80 0.00 125510.82	1 1 3 2 1	1 0 1 0	IsActiveMemb
In [8]:	0 1 2 3 4 5	RowNumber 1 2 3 4 5	CustomerId 15634602 15647311 15619304 15701354 15737888 15574012	Surname 1115 1177 2040 289 1822 537	CreditScore 619 608 502 699 850 645	Geography 0 2 0 0 2 2 2 2	Gender 0 0 0 0 1	Age 42 41 42 39 43	Tenure 2 1 8 1 2 8 7	0.00 83807.86 159660.80 0.00 125510.82 113755.78	1 1 3 2 1 2	1 0 1 0 1	IsActiveMemb
In [8]:	0 1 2 3 4 5 6	1 2 3 4 5 6 7	Customerld 15634602 15647311 15619304 15701354 15737888 15574012 15592531	Surname 1115 1177 2040 289 1822 537 177	CreditScore 619 608 502 699 850 645 822	Geography 0 2 0 0 2 2 2 2 2 2	0 0 0 0 0 0 1 1 1	Age 42 41 42 39 43 44 50	Tenure 2 1 8 1 2 8 7 4	0.00 83807.86 159660.80 0.00 125510.82 113755.78 0.00	1 1 3 2 1 2 2	1 0 1 0 1 1	IsActiveMemb

7. Split the data into dependent and independent variables.

#

Dependent Variable: A dependent variable is a variable whose value depends on another variable.

#

Independent Variable: An Independent variable is a variable whose value never depends on another variable.

#

```
print("The Minimum value of Dataset:\n",data1.min(numeric_only=True))
print("\n")
print("The Maximum value of Dataset:\n",data1.max(numeric_only=True))
print("\n")
print("The Mean value of Dataset:\n",data1.mean(numeric_only=True))
print("\n")

print(data1.count(0))
print(data1.shape)
print(data1.size)
```

```
CustomerId
                            15565701.00
         Surname
                                   0.00
         CreditScore
                                 350.00
                                   0.00
         Geography
         Gender
                                   0.00
                                   18.00
         Age
                                   0.00
         Tenure
                                    0.00
         Balance
         NumOfProducts
                                    1.00
         HasCrCard
                                   0.00
                                   0.00
         IsActiveMember
         EstimatedSalary
                                   11.58
         Exited
                                    0.00
         dtype: float64
         The Maximum value of Dataset:
                               10000.00
          RowNumber
                            15815690.00
         CustomerId
         Surname
                                2931.00
                                 850.00
         CreditScore
                                    2.00
         Geography
         Gender
                                    1.00
                                  92.00
         Age
                                   10.00
         Tenure
                               250898.09
         Balance
         NumOfProducts
                                   4.00
         HasCrCard
                                    1.00
         IsActiveMember
                                    1.00
         EstimatedSalary
                              199992.48
         Exited
                                    1.00
         dtype: float64
         The Mean value of Dataset:
                             5.000500e+03
          RowNumber
                      5.000505
1.569094e+07
         CustomerId
         Surname
                            1.507774e+03
         CreditScore
                            6.505288e+02
                            7.463000e-01
         Geography
                            5.457000e-01
         Gender
         Age
                            3.892180e+01
                            5.012800e+00
         Tenure
                            7.648589e+04
         Balance
         NumOfProducts
                            1.530200e+00
         HasCrCard
                            7.055000e-01
         IsActiveMember
                            5.151000e-01
         EstimatedSalary
                            1 000902e+05
         Exited
                            2.037000e-01
         dtype: float64
                            10000
         RowNumber
         CustomerId
                            10000
         Surname
                             10000
                            10000
         CreditScore
         Geography
                            10000
         Gender
                             10000
         Age
                            10000
                            10000
         Tenure
         Balance
                             10000
         NumOfProducts
                            10000
         HasCrCard
                            10000
         IsActiveMember
                            10000
                            10000
         EstimatedSalary
         Exited
                            10000
         dtype: int64
         (10000, 14)
         140000
        y = data1["Surname"]
         x=data1.drop(columns=["Surname"],axis=1)
         x.head()
           RowNumber CustomerId CreditScore Geography Gender Age Tenure
                                                                         Balance NumOfProducts HasCrCard IsActiveMember Estimate
Out[31]:
         0
                    1
                        15634602
                                       619
                                                   0
                                                          0
                                                             42
                                                                     2
                                                                            0.00
                                                                                                     1
         1
                    2
                        15647311
                                       608
                                                          0
                                                             41
                                                                        83807.86
                                                                                                     0
```

The Minimum value of Dataset:

RowNumber

2

3

4

3

4

5

15619304

15701354

15737888

502

699

850

0

0

2

0 42

0 39

0 43

8 159660.80

2 125510.82

0.00

1

3

2

1

0

1

0

0

1

1.00

9. Scale the independent variables

```
names=x.columns
          names
          Index(['RowNumber', 'CustomerId', 'CreditScore', 'Geography', 'Gender', 'Age',
Out[33]:
                   'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember',
                   'EstimatedSalary', 'Exited'],
                 dtype='object')
          from sklearn.preprocessing import scale
          X=scale(x)
          X
          array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.97024255,
Out[36]:
                     0.02188649, 1.97716468],
                   [-1.7315312, -0.60653412, -0.44003595, ..., 0.97024255,
                     0.21653375, -0.50577476],
                   [-1.73118479, -0.99588476, -1.53679418, ..., -1.03067011,
                     0.2406869 , 1.97716468],
                   [ 1.73118479, -1.47928179, 0.60498839, ..., 0.97024255,
                    -1.00864308, 1.97716468],
                   [ 1.7315312 , -0.11935577, 1.25683526, ..., -1.03067011,
                    -0.12523071, 1.97716468],
                   [ 1.73187761, -0.87055909, 1.46377078, ..., -1.03067011,
                    -1.07636976, -0.50577476]])
         x = pd.DataFrame(X,columns = names)
Out[37]:
                RowNumber CustomerId CreditScore Geography
                                                                 Gender
                                                                             Age
                                                                                     Tenure
                                                                                             Balance NumOfProducts HasCrCard IsActiveMem
              0
                   -1.731878
                                                                                                                                       0.970
                              -0.783213
                                          -0.326221
                                                     -0.901886 -1.095988
                                                                         0.293517 -1.041760
                                                                                           -1.225848
                                                                                                            -0.911583
                                                                                                                       0.646092
             1
                   -1.731531
                              -0.606534
                                          -0.440036
                                                      1.515067 -1.095988
                                                                         0.198164 -1.387538
                                                                                             0.117350
                                                                                                            -0.911583
                                                                                                                       -1.547768
                                                                                                                                      0.970
              2
                   -1.731185
                              -0.995885
                                          -1.536794
                                                     -0.901886
                                                              -1.095988
                                                                         0.293517
                                                                                   1.032908
                                                                                             1.333053
                                                                                                            2.527057
                                                                                                                       0.646092
                                                                                                                                      -1.030
              3
                   -1 730838
                               0 144767
                                           0.501521
                                                     -0.901886 -1.095988
                                                                         0.007457 -1.387538
                                                                                           -1 225848
                                                                                                            0.807737
                                                                                                                       -1.547768
                                                                                                                                      -1 030
              4
                   -1.730492
                               0.652659
                                           2.063884
                                                      1.515067 -1.095988
                                                                         0.388871 -1.041760
                                                                                             0.785728
                                                                                                            -0.911583
                                                                                                                       0.646092
                                                                                                                                      0.970
          9995
                   1 730492
                              -1 177652
                                           1 246488
                                                     -0.901886
                                                               0.912419
                                                                         0.007457 -0.004426
                                                                                           -1 225848
                                                                                                            0.807737
                                                                                                                       0.646092
                                                                                                                                      -1 030
          9996
                   1.730838
                              -1.682806
                                          -1.391939
                                                     -0.901886
                                                               0.912419
                                                                        -0.373958
                                                                                   1.724464
                                                                                           -0.306379
                                                                                                            -0.911583
                                                                                                                       0.646092
                                                                                                                                      0.970
          9997
                   1.731185
                              -1.479282
                                           0.604988
                                                     -0.901886
                                                               -1.095988
                                                                         -0.278604
                                                                                   0.687130
                                                                                            -1.225848
                                                                                                            -0.911583
                                                                                                                       -1.547768
                                                                                                                                      0.970
                   1.731531
                               -0.119356
                                           1.256835
                                                               0.912419
                                                                         0.293517
                                                                                  -0.695982
                                                                                            -0.022608
                                                                                                            0.807737
                                                                                                                       0.646092
                                                                                                                                      -1.030
          9998
                                                      0.306591
          9999
                   1.731878
                              -0.870559
                                           1.463771
                                                     -0.901886 -1.095988 -1.041433 -0.350204
                                                                                                            -0.911583
                                                                                                                       0.646092
                                                                                                                                      -1.030
          10000 rows x 13 columns
```

10. Split the data into training and testing

#

The train-test split is used to estimate the performance of machine learning algorithms that are applicable for prediction-based Algorithms/Applications. By default, the Test set is split into 30 % of actual data and the training set is split into 70% of the actual data.

#

```
from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.2, random_state=0)

x_train.head()
```

Out[40]:		RowNumber	CustomerId	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMem
	7389	0.827747	-0.195066	0.170424	1.515067	-1.095988	-0.469311	-0.004426	-1.225848	0.807737	0.646092	-1.030
	9275	1.481077	0.810821	-2.312802	0.306591	0.912419	0.293517	-1.387538	-0.012892	-0.911583	0.646092	0.970
	2995	-0.694379	-1.507642	-1.195351	-0.901886	-1.095988	-0.946079	-1.041760	0.575076	-0.911583	0.646092	-1.030
	5316	0.109639	1.243462	0.035916	1.515067	0.912419	0.102810	-0.004426	0.467955	-0.911583	0.646092	-1.030
	356	-1.608556	-1.100775	2.063884	1.515067	-1.095988	1.723821	1.032908	0.806010	0.807737	0.646092	0.970

x_train.shape,y_train.shape,x_test.shape,y_test.shape

Out[41]: ((8000, 13), (8000,), (2000, 13), (2000,))

Loading [MathJax]/extensions/Safe.js