Home ► My courses ► EEE117-2019S-Sec1 ► Exams and Quizzes ► Exam 1 - Chapters 9, 10 and 11

Started on	Wednesday, 20 February 2019, 10:55 AM
State	Finished
Completed on	Wednesday, 20 February 2019, 11:40 AM
Time taken	45 mins 47 secs
Grade	100.00 out of 100.00

Correct

Mark 10.00 out of 10.00

Q1e

Consider the sinusoidal voltage $v(t) = 460 \cos(880 \pi t + 75^{\circ}) V_{rms}$.

a) What is the maximum amplitude of the voltage?

$$V_{\rm m} = \boxed{650.54}$$
 V

b) What is the frequency of v(t) in hertz?

c) What is the frequency of v(t) in radians per second?

$$\omega = 2764.6$$
 \checkmark rad/sec

d) What is the phase angle in radians?

$$\varphi$$
 (phi) = 1.31 \checkmark radians

e) What is the period in milliseconds?

Numeric Answer

a)
$$V_m = 650.5382 \text{ V}$$

b)
$$f = 440 \text{ Hz}$$

c)
$$\omega = 2,764.602 \text{ rad/sec}$$

d)
$$\varphi$$
 (phi) = 1.3090 radians

Correct

Correct

Mark 10.00 out of 10.00

Q2c

Given:
$$x(t) = 250 \cos(300 t + 30^\circ) + 350 \cos(300 t - 50^\circ)$$

Use the concept of the phasor to combine this sinusoidal function into a single trigonometric expression in the form similar to $x(t) = A \cos(\omega t + \theta^{\circ})$.

Magnitude A of
$$x(t) = 464$$

Angle
$$\theta$$
 of $x(t) = \begin{bmatrix} -17.96 \end{bmatrix} \checkmark \circ (Degree)$

$$x(t) = 464.0996 \cos(300 t - 17.9612^{\circ})$$

Correct

Correct

Mark 15.00 out of 15.00

Q3a

Assume the operational amplifier is ideal.

Given $v_g(t) = 34.50 \text{ V}$ (a constant voltage)

Find the steady-state output $v_0(t)$.

$$v_0(t) = \boxed{10}$$
 Volts

Numeric Answer

 $v_0(t) = 10 \text{ V}$ since the opamp is in saturation at the positive power supply rail.

Correct

Correct

Mark 15.00 out of 15.00

Q4c

Find the phasor voltages V_0 and V_1 . I suggest you use the Node Method.

$$V_0 = \begin{bmatrix} 2.3 \\ \end{bmatrix}$$
 at angle $\begin{bmatrix} 41 \\ \end{bmatrix}$ ° (Degrees) Volts $V_1 = \begin{bmatrix} 69.4 \\ \end{bmatrix}$ at angle $\begin{bmatrix} -46.8 \\ \end{bmatrix}$ ° (Degrees) Volts

Express your answer as a positive magnitude and then the angle in the appropriate quadrant.

Numeric Answer

V₀ = 2.2763 at angle 41.31° Volts

 $V_1 = 68.3256$ at angle -46.78° Volts

Correct

Correct

Mark 15.00 out of 15.00

Q5c

Given:

The voltage source V_g = 160 at angle 0° V_{rms} and the voltage V_0 = 150.9165 at angle -1.08° V_{rms} .

Find the average and reactive power for the voltage source V_g .

$$S_g = \boxed{-583}$$
 \checkmark + j $\boxed{182}$ \checkmark VA

"+" = absorbed and "-" = delivered

Numeric Answer

$$S_g = -583.0605 + j 182.2064 VA$$

Correct

Correct

Mark 5.00 out of 5.00

Q6b

What is the phase sequence of each of the following sets of voltages?

$$v_a = 820 \cos(\omega t - 46^\circ) \text{ V}$$
 $v_b = 820 \cos(\omega t + 74^\circ) \text{ V}$ $v_c = 820 \sin(\omega t - 76^\circ) \text{ V}$

acb – Negative Phase Sequence:

Correct answer is acb - Negative Phase Sequence

Correct

Correct

Mark 15.00 out of 15.00

Q7a

Given: $V_{a'n}$ = 120 at angle 0° V_{rms} in a balanced three phase system with a positive phase sequence.

The source and load are Y connected.

$$Z_{ga} = 1 + j15 \Omega$$
 $Z_{ia} = 19 + j5 \Omega$ $Z_{A} = 20 + j20 \Omega$

Calculate the single phase equivalent line currents I_{aA} , I_{bB} and I_{cC} .

Calculate the line to line voltages $V_{AB}^{}$, $V_{BC}^{}$, and $V_{CA}^{}$.

$$V_{BC} = 103.9$$
 at angle -90 ° (Degrees) V_{rms}
 $V_{CA} = 103.9$ at angle 150 ° (Degrees) V_{rms}

 $I_{aA} = 2.1213$ at angle -45° A_{rms}

 $I_{bB} = 2.1213$ at angle -165° A_{rms}

 $I_{\rm cC} = 2.1213$ at angle 75° $A_{\rm rms}$

 $V_{AB} = 103.923$ at angle 30° V_{rms}

 $V_{BC} = 103.923$ at angle -90° V_{rms}

 $V_{CA} = 103.923$ at angle 150° V_{rms}

Correct

Correct

Mark 15.00 out of 15.00

Q8c

The total apparent power supplied in a balanced three-phase Y- Δ (wye to delta) system is 3,600 VA. The source line to neutral voltage is 240 V_{rms}. The line impedance is negligible and the power factor angle of the load is 25° leading.

Determine the impedance of each phase of the delta-connected load.

$$Z_{\Delta,load} = \boxed{130.5} + j \boxed{-60.9} \qquad \qquad \checkmark \quad \Omega \text{ (Ohms)}$$

$$Z_{\Delta,load} = 130.5083 - j 60.8570 \Omega \text{ (Ohms)}$$

Correct

Marks for this submission: 15.00/15.00.

■ Quiz 3 - Chapter 10

Jump to...

Quiz 4 - Chapter 12 ▶