

Macroarea di Ingegneria

Corso di Laurea Magistrale in Ingegneria Informatica

Ingegneria del Software II (9 CFU) A.A. 2020/2021

Docenti Proff. Davide FALESSI, Guglielmo DE ANGELIS, Giuseppe F. CALAVARO

Modulo Machine Learning for Software Engineering

Deliverable II

Massimo STANZIONE

Matr. 0304936

Indice

- Introduzione Contesto
- Progettazione
 - Modellazione del problema
 - Interfacciamento con JIRA
 - Metriche per la misurazione
- Variabili
 - Versioni
 - Tickets e bugs
- Analisi ML
 - Analisi dei valori e miglioramenti per i progetti considerati
- Analisi del codice
- Riferimenti

Introduzione – Contesto

Obiettivo

Presentazione dei risultati ottenuti dall'analisi ed applicazione di tecniche di sampling, classificazioni cost-sensitive e tecniche di feature selection su modelli di Machine Learning di due progetti open-source.

Nel dettaglio, si considera come le tecniche citate agiscano sui risultati dei classificatori NaiveBayes, lbk e RandomForest.

Progetti in analisi

- Apache BookKeeper™, servizio di storage ottimizzato in scalabilità e disponibilità per carichi di lavoro real-time
- **Apache OpenJPA**, servizio di persistenza integrabile in container Java EE ed altri framework compatibili.

Ambienti di sviluppo

- Eclipse 2020-09 su Debian 9
- IntelliJ IDEA 2021.2.3 su Linux Mint 20.2

Progettazione – Modellazione del problema

Il problema della creazione del dataset e della successiva analisi è stato affrontato **per fasi successive**, mediante l'ausilio delle repositories dei progetti disponibili su *GitHub*, dello strumento di issue tracking *JIRA* e dello strumento di Machine Learning *Weka*.

Le fasi previste ed eseguite sono state le seguenti:

1. Generazione locale di una working copy del progetto;

GitHub

- 2. Fetching dei **commit** del progetto;
- 3. Fetching delle **versioni** del progetto;
- 4. Analisi dei **ticket** relativi a bug di tipo *fixed*;
- 5. Preparazione dei dataset per il modello di Machine Learning;
- 6. Analisi Machine Learning

Progettazione – Interfacciamento con JIRA

Le informazioni relative ai ticket sono state prelevate dal sistema di issue tracking JIRA, mediante le API da esso esposte.

Dal punto di vista implementativo, tale operazione è stata effettuata mediante predisposizione di **due apposite classi**, JIRAQuery e JQLQuery, tramite le quali sono state manipolate le queries in linguaggio JQL (JIRA Query Language) impiegate per il prelievo delle informazioni.

I risultati, in formato JSON, sono poi stati manipolati con l'ausilio di una classe similmente predisposta, JSONHandler.

Variabili – Versioni

Per ogni progetto sono state considerate le versioni disponibili, scartando quelle che ricadono in almeno una delle seguenti categorie:

- Non corrispondenza tra JIRA e GitHub;
- Stato "non finale", es. versioni "beta".

Le versioni così ottenute rappresentano comunque **la maggioranza** delle versioni presenti.

Variabili – Tickets e bugs

Particolare attenzione è stata posta nella ricostruzione e **computazione del ciclo di vita** dei bug.

Le informazioni sulle versioni riferite dai ticket, in particolare per le *Affected Versions*, hanno dato spesso luogo a **contraddizioni ed inconsistenze** nello svolgimento del progetto.

Per tale motivo sono state individuate ed analizzate le seguenti problematiche:

- AV_AFTER_FV: esistono versioni indicate come AV ma poste oltre la FV;
- AVS_NOT_CONSISTENT: le AV riportate non sono susseguenti tra la IV e la FV;
- IV_AFTER_OV: la IV riportata è successiva alla OV;
- **FV_AS_AV**: la FV è riportata anche nell'elenco delle AV;
- NOT_REPORTED: non vi è alcuna AV riportata.

Le casistiche sono documentate nella enumerazione JIRAAffectedVersionsCheck.

Variabili – Tickets e bugs

Si è notato che **percentuali molto ridotte** delle AV riportate non presentavano alcun problema tra quelli indicati.

Inoltre, IV_AS_0V è presente sempre ir combinazione con altre problematiche.

Ove possibile si è **ricostruito** il ciclo di vita mediante predizione della IV o altre tecniche di compensazione, scartando i ticket per i quali ciò non sia stato possibile.

È stato predisposto uno **strumento di ispezione** per la visualizzazione immediata del ciclo di vita e delle problematiche, reperibile in *graphicBugLifecycleVisualizer.csv*.

Progettazione – Metriche per la misurazione

Al fine della creazione del dataset, si è deciso di effettuare la misurazione delle classi dei progetti in analisi secondo le metriche di seguito riportate.

La scelta delle metriche è stata effettuata in base alle tre differenti aree di azione ad esse relative, in modo da poter ottenere un modello il più possibile vario e comprensivo di ogni aspetto.

Specifiche delle versioni	Codice	Statistiche sulle variazioni del codice
 NR numero di commits NAuth numero di autori coinvolti ChangesetSize dimensione degli insiemi di modifiche 	 Size LOC della classe LOC_Added totale delle LOC aggiunte LOC_Touched totale delle LOC aggiunte/rimosse 	 MaxLOCAdded massimo numero di LOC aggiunte AvgLOCAdded numero medio di LOC aggiunte

Progettazione – Analisi ML

Si procede all'applicazione della tecnica *Walk Forward* sui dataset prodotti, mediante le Java API offerte dal software *Weka*, sviluppato dall'Università di Waikato (Nuova Zelanda).

Obiettivo:

Si considerano, nel dettaglio, le prestazioni dei classificatori considerati nelle metriche *Precision*, *Recall*, *AUC*, *Kappa*.

• Implementazione:

A tale scopo sono state introdotte le dipendenze weka-stable e SMOTE dal pacchetto nz.ac.waikato.cms.weka nel file **POM Maven** allegato al progetto.

Problematiche:

Durante lo sviluppo del progetto si è notato che la versione 1.0.2 della dipendenza SMOTE presentava una problematica, documentata in forum dedicati, che portava a continui sollevamenti di IllegalStateException durante l'analisi del classificatore *RandomForest*. Tale problema è stato risolto considerando la **versione 1.0.3**, che pone soluzione al bug associato.

Apache BookKeeper™: Precision, Recall

I valori di *Precision* e *Recall* si attestano stabilmente sopra la soglia 0.5, dato anche il limitato sbilanciamento del dataset verso le classi "non-buggy".

Il valore di *Recall* per il classificatore *NaiveBayes* risulta avere valori elevati, seppur in presenza di un outlier nel valore 0.56.

Apache BookKeeper™ - Precision, Recall

Apache BookKeeper™: Precision/Recall, migliorie

In presenza di tecniche di *Feature* selection, di balancing e in limitati casi di cost sensitive classifying, si ottengono miglioramenti anche importanti per le metriche in esame: il balancing, in particolare, agevola l'equilibrio tra le istanze.

I miglioramenti sono più marcati sia per la *Recall* che per la *Precision*, in particolare per la tecnica *SMOTE*.

Apache BookKeeper™ - miglioramenti Precision e Recall

Apache BookKeeper™: AUC

Ad una prima analisi, i valori di *AUC* sembrano mantenersi al di sopra di quelli di un classificatore *dummy*, con un comportamento nettamente migliore per il classificatore *NaiveBayes*.

Il classificatore *IBk*, invece, in alcune iterazioni della tecnica Walk Forward, ha presentato valori prossimi a quelli di un classificatore *dummy*.

Apache BookKeeper™ - AUC

Apache BookKeeper™: AUC, migliorie

In seguito all'applicazione delle tecniche di *Feature selection*, balancing e sensitivity, non si notano particolari migliorie per la caratteristica *AUC*, eccezion fatta per *RandomForest* che vede aumentare il proprio valore mediano.

Ciò risulta essere conforme alle aspettative, in quanto *AUC* non è particolarmente sensibile alle tecniche di *cost sensitivity*.

Apache BookKeeper™ - miglioramenti AUC

Apache BookKeeper™: Kappa

Per quanto riguarda la metrica Kappa, si nota che ciascuno dei classificatori della terna considerata espone un comportamento sempre migliore rispetto ad un classificatore *dummy*: non sembra esistere alcuna iterazione *Walk Forward* in cui Kappa assume valori negativi.

Il classificatore *NaiveBayes* si distingue nettamente dai due restanti, con un valore mediano quasi doppio.

Apache BookKeeper™ - Kappa

Apache BookKeeper™: Kappa, migliorie

Dai dati sperimentali non emergono significative variazioni positive del valore della metrica in seguito all'applicazione delle tecniche in esame.

Si osserva, invece, un lieve calo delle prestazioni del classificatore *NaiveBayes* in presenza della tecnica di feature selection *BestFirst*.

Apache BookKeeper™ - miglioramento Kappa

Apache OpenJPA: Precision, Recall

I valori di *Precision* e *Recall* indicano difficoltà nel riconoscimento di classi "buggy", circostanza attesa dal momento che il dataset è lievemente sblianciato verso le classi "non-buggy".

Il valore di *Recall* per il classificatore *RandomForest*, che nel progetto precedente aveva valori più accettabili, è qui la minore, con un valore mediano pari a 0.211.

Apache OpenJPA - Precision, Recall

Apache OpenJPA: Precision/Recall, migliorie

I miglioramenti sembrano piuttosto contenuti rispetto ai valori di *Precision*, con anche lieve flessioni come quella causata da *OverSampling* al classificatore *NaiveBayes*. Il classificatore che più trae beneficio dalle tecniche è *IBk*, soprattutto in combinazione con *BestFirst* e *SMOTE*.

La *Recall*, invece, risente positivamente dei metodi di analisi: per *RandomForest*, attenzionato nella slide precedente, è nettamente migliorata, ed il valore migliore è ottenuto con la stessa combinazione di tecniche che nel progetto precedente portava a questo risultato, visibile in legenda.

Apache OpenJPA - miglioramenti Precision e Recall

Apache OpenJPA: AUC

Similmente al progetto precedente, i valori dei tre classificatori si mantiene al di sopra della soglia del classificatore dummy.

Le prestazioni di *RandomForest* sono lievemente superiori, per valore mediano, a quelle di *NaiveBayes*.

Il classificatore *IBk* registra le prestazioni peggiori.

Apache OpenJPA - AUC

Apache OpenJPA: AUC, migliorie

Applicazioni delle tecniche in esame al fine di migliorare i valori di *AUC* portano a variazioni tutto sommato contenute.

Unica eccezione è una flessione nell'applicazione della tecnica di *Featuring* selection BestFirst al classificatore RandomForest.

Apache OpenJPA - miglioramenti AUC

Apache OpenJPA: Kappa

Apache OpenJPA - Kappa

I valori di *Kappa* si mantengono globalmente al di sopra del valore nullo. Le differenze tra i valori mediani sono piuttosto contenute.

Si nota una iterazione *Walk Forward* per il classificatore che, con un valore pari a -0.05, ha individuato un comportamento peggiore rispetto ad un classificatore *dummy*.

Apache OpenJPA: Kappa, migliorie

Le variazioni dei parametri in analisi, in seguito alle applicazioni delle tecniche studiate, subiscono variazioni contenute.

Nel dettaglio, si nota una flessione nell'applicazione della tecnica *BestFirst* al classificatore *IBk*, riportata in grafico in combinazione con *Undersampling*.

La stessa tecnica, in combinazione con *SMOTE*, porta un miglioramento in *NaiveBayes*.

Apache OpenJPA - Kappa, migliorie

Analisi del codice

Il codice è stato analizzato mediante *SonarCloud*, e l'analisi è stata **inclusa nel ciclo di build del progetto**, utilizzando *Maven* per la gestione delle dipendenze e *CircleCl* come strumento di CI/CD.

In seguito ad un processo di revisione del codice i bug, le code smells ed i problemi di sicurezza sono stati azzerati.

Riferimenti

- Sito del progetto Apache BookKeeper™: https://bookkeeper.apache.org
- Sito del progetto Apache OpenJPA: https://openjpa.apache.org
- Pagina JIRA per Apache BookKeeper™:
 https://issues.apache.org/jira/projects/BOOKKEEPER/issues
- Pagina JIRA per Apache OpenJPA: https://issues.apache.org/jira/projects/OPENJPA/issues
- Repository della deliverable: https://github.com/massimostanzione/isw2-deliverable2
- Analisi SonarCloud: https://sonarcloud.io/summary/overall?id=massimostanzione_isw2-deliverable2