Oefenopgaven: open vragen

Deel 1: de basis	
H1 - H4: basisbegrippen gelijkspanning	
Opgaven bij hoofdstuk 1	1
Opgaven bij hoofdstuk 2	2
Opgaven bij hoofdstuk 3	4
Opgaven bij hoofdstuk 4	7
H5 - H8: basisbegrippen wisselspanning	
Opgaven bij hoofdstuk 5	13
Opgaven bij hoofdstuk 6	15
Opgaven bij hoofdstuk 7	16
Opgaven bij hoofdstuk 8	19
Deel 2: verdieping	
H9 - H11: complexe rekenwijze	
Opgaven bij hoofdstuk 9	21
Opgaven bij hoofdstuk 10	24
Opgaven bij hoofdstuk 11	26
H12-H16: modelvorming; frequentieafhankelijkhei	d; systematische berekening
Opgaven bij hoofdstuk 12	
Opgaven bij hoofdstuk 13	28
Opgaven bij hoofdstuk 14	30
Opgaven bij hoofdstuk 15	35
Opgaven bij hoofdstuk 16	38
Deel 3: verbreding	
H17 - H19: overgangsverschijnselen, Laplace, Four	ier
Opgaven bij hoofdstuk 17	40
Opgaven bij hoofdstuk 18	43
Opgaven bij hoofdstuk 19	
H20 - H23: ster-driehoektransformatie, gekoppelde	
Opgaven bij hoofdstuk 20	49
Opgaven bij hoofdstuk 21	
Opgaven bij hoofdstuk 22	
Opgaven bij hoofdstuk 23	

Veel opgaven zijn ook in het boek opgenomen; als aanvulling daarop worden ze hier digitaal beschikbaar gesteld. De nummers zijn ongewijzigd, zij het dat de paragraafaanduiding hier weggelaten is. Opgave 1.10.6 in het boek is hier dus opgave 1.6.

Opgaven die niet in het boek staan krijgen een tussengevoegde letteraanduiding, '.E.', dus bijvoorbeeld '3.E.1' voor de eerste toegevoegde opgave bij hoofdstuk 3.

1

Opgaven bij hoofdstuk 1

1.vb Welke van deze schakelingen is 'onmogelijk', en waarom *precies*? Hoe groot is de stroom I_x in de andere schakeling?

- 1.1 In een zaklantaarn zit een 4,5V-batterij. Door het lampje loopt een stroom van 0,3 A. Hoe groot is de weerstand van het lampje?

 Teken het netwerkschema.
- 1.2 Een straalkachel is aangesloten op een spanning van 230 V. De weerstand van het verwarmingselement is 51 Ω . Hoeveel stroom wordt er opgenomen?
- 1.3 Bij een knooppunt geldt: $I_1: I_2: I_3 = 1: 2: 3$ $I_4 = 12A$

Bereken I₁, I₂ en I₃.

1.4 In een gesloten maas geldt:

$$U_1 = 10 V$$

$$U_2 = -5 \text{ V}$$

$$R_1 = 1 k\Omega$$

$$R_2 = 1 k\Omega$$

- a Gegeven wordt nog: $I_1 = 10 \text{ mA}$. Bereken de stroom I_x door R_2 .
- b Gegeven wordt nu dat er geen stroom van buitenaf naar deze maas toestroomt. Hoe groot wordt de stroom I_x in dit geval?

"Er staat stroom op een stopcontact" is onzin. Is de bewering "Er staat spanning op de wandcontactdoos" technisch wèl helemaal juist?Zo niet, wat moet het dan zijn?

Opgaven bij hoofdstuk 2

2.1 Schat eerst en bereken daarna de vervangingsweerstand tussen de punten A en B, voor de volgende schakelingen:

- Twee lampen zijn parallel geschakeld, en via twee draden van ieder 6 meter verbonden met een 230 V (net-)spanning. De weerstand van iedere lamp is 150Ω ; de draad heeft een weerstand van $2 \Omega/m$. Teken het netwerkschema; bereken de vervangingsweerstand van het netwerk.
- 2.3 Bewijs dat de vervangingsweerstand van drie parallel geschakelde weerstanden R_1 , R_2 en R_3 *niet* gelijk is aan het product van die weerstanden gedeeld door de som.

$$R_{v} \neq \frac{R_{1}.R_{2}.R_{3}}{R_{1}+R_{2}+R_{3}}$$

2.4 Bewijs dat de vervangingsgeleiding van meerdere parallel geschakelde weerstanden *wel* gelijk is aan:

$$G_{v} = \sum_{j=1}^{n} G_{j}$$

2.5 Een ampèremeter heeft een weerstand van 0,7 Ω en geeft een volleschaaluitslag bij een spanning van 0,015 V tussen de klemmen. Hoe groot moet de parallelweerstand ('shuntweerstand') zijn voor een meetbereik van 15 A?

2.6 Bereken de stromen $I_1...I_3$ in deze schakeling:

Als R_2 15 Ω is, wat worden dan de stromen?

2.7 Bepaal de spanningen U_1 en U_2 in deze schakeling:

2.8 Bereken de weerstand R in de volgende schakeling:

2.9 Een schakeling bestaat uit een parallelschakeling van een weerstand van 5 k Ω en een onbekende weerstand R_x . In serie met deze schakeling staat nog een onbekende weerstand R_y . Als de totale schakeling aangesloten is op een 100 volt spanningsbron, moet de bron 10 mA leveren. De deelstroom door de weerstand van 5 k Ω moet dan 2 mA zijn. Ontwerp deze schakeling.

Hint: pak dit probleem systematisch aan:

- analyse (lezen, schema, verwachting, formules)
- oplossingsmethode (maak een plan)
- uitwerking
- controle (klopt de uitkomst met de schatting?)

Opgaven bij hoofdstuk 3

3.1 Bereken U_o , I_k en R_i van deze netwerken; teken de uitwendige karakteristiek.

- 3.2 Vereenvoudig onderstaande netwerken tot
 - één spanningsbron met inwendige weerstand;
 - één stroombron met inwendige weerstand.

3.3 Bepaal de stroom I_x in de volgende netwerken:

Opmerking: 3.3.b en 3.3.c staan niet in het boek; eigenlijk '.E.' dus.

3.4 Bepaal de spanning U_x in de volgende netwerken:

Opmerking: 3.4b staat niet in het boek; eigenlijk '3.E.4b' dus.

3.5 Hoe groot is de spanning U_x , als door R_b een stroom van 1 mA loopt?

3.6 Bereken I_x in het volgende netwerk. Probeer hiervoor de handigste methode te vinden!

3.E.1 Bereken de aangegeven stroom I_x in de volgende netwerken, met behulp van het superpositiebeginsel:

3.E.2 Geef het spanningsbron-vervangingsschema van de volgende schakeling, tussen de klemmen A en B.

Opgaven bij hoofdstuk 4

4.1 Een stroom van 0,5 A wordt door een weerstand van 10Ω gestuurd. Hoeveel energie wordt daarbij in één uur in warmte omgezet?

- 4.2 Een strijkijzer heeft een vermogen van 1100 W bij 230V. Wat is de weerstand van het verwarmingselement? Als het gedurende 10 minuten aangesloten is op de netspanning, hoeveel energie wordt dan in warmte omgezet?
- 4.3 Een 2000W / 230V elektrische kachel brandt gedurende twee uur, maar toch is het verbruik volgens de elektriciteitsmeter slechts 3,8kWh. De spanning bij de kWh-meter is wèl 230V, en deze meter is goed geijkt.

 Bereken de weerstand van de leiding tussen de kWh-meter en de kachel.
- 4.4 Bepaal de maximaal toelaatbare spanning over een $1 \text{k}\Omega$ / 0,25W weerstand.
- 4.5 "De mens is een $10k\Omega / 0,25W$ weerstand", wordt wel eens gezegd. Welke veiligheidsgrenzen voor spanning en stroom wil men hiermee aanduiden?
- 4.6 Een elektrische energiebron heeft een bronspanning van 10 V; de inwendige weerstand is 2 Ω. Hoe groot moet R_b zijn, opdat aan deze weerstand een vermogen afgegeven wordt van 10 W?
 (Er zijn twee waarden; welke geeft het gunstigste rendement?)
- 4.7 Een belasting R_b moet aangesloten worden aan een 100V-spanningsbron met een inwendige weerstand van 10 Ω . Daarbij is maximale energieoverdracht wenselijk, maar als uiterste grens wil men een rendement $\eta = 60\%$ accepteren. Hoe groot moet R_b zijn?
- 4.8 Een elektrische oven met een 2300W-verwarmingselement wordt via een leiding met een totale weerstand van 3 Ω aangesloten op de kWh-meter. De netspanning is 230V en de elektriciteitskosten per kWh zijn € 0,115. Wat zijn de kosten per kWh voor de afgegeven energie in de oven?
- In de keuken van een studentenflat zijn de contacten van een stopcontact inmiddels zodanig vervuild met vettige aanslag dat er een overgangsweerstand van 3 Ω is bij iedere pen van de steker (dus 6 Ω totaal). Er wordt een 1000W/230V broodrooster aangesloten. Hoeveel vermogen wordt *in* het stopcontact gedissipeerd, bij de twee pennen samen?

De volgende opgaven zijn bedoeld als herhalingsoefening: er wordt een beroep gedaan op kennis uit de eerste vier hoofdstukken.

4.16 Geef het Norton-equivalent van deze schakeling, tussen de klemmen A en B. Hoe groot is het in R (1 k Ω) gedissipeerde vermogen?

4.17 Geef het Norton-vervangingsschema van onderstaand netwerk, tussen de klemmen A en B.

Bereken het maximale vermogen dat aan de klemmen AB afgenomen kan worden.

4.18 In deze schakeling blijkt de stroom I_x door de weerstand R_x precies 1mA te zijn. Hoe groot is R_x ?

Bereken het vermogen dat geleverd wordt door de bovenste bron (U_1) .

4.E.1 Van een elektrische energiebron is de bronspanning 50 V en de inwendige weerstand 10 Ω . Zet U_u , U_u .I, U_o .I en η in een grafiek uit als functie van de stroom I, voor $0 \le I \le I_{max}$. Lees uit de grafiek de maximale waarde af van $U_u \times I$, en bepaal daarbij de belastingsweerstand R_b .

- 4.E.2 Bepaal in onderstaand netwerk:
 - a: de spanning U_x over R_2
 - b: de spanning U_v over R₃
 - c: het opgenomen vermogen in R₁

d: Nu wordt gegeven:

$$R_1 = R_2 = 5 \text{ k}\Omega$$

$$R_3 = R_4 = 1 \text{ k}\Omega$$

$$U_1 = U_2 = 10 \text{ V}$$

$$I_1 = I_2 = 4 \text{ mA}$$

Bepaal, met deze componentenwaarden, het Thévenin-equivalent tussen de klemmen A en B.

4.E.3 Vereenvoudig dit netwerk tot één spanningsbron met inwendige weerstand (tussen de klemmen A en B).

4.E.4 Bepaal het Thévenin-equivalent van dit netwerk, tussen de klemmen A en B. Bepaal de waarde van R_b, waarbij het gedissipeerde vermogen in deze weerstand maximaal is; hoe groot is dit maximale vermogen?

- 4.E.5 Gegeven onderstaande schakeling, waarin M een meetinstrument is.
 - a. Wat registreert het meetinstrument, indien deze meter M een ideale ampèremeter (stroommeter) is?
 - b. Wat registreert het meetinstrument, indien deze meter M een ideale voltmeter (spanningsmeter) is?
 - c. Bereken voor situatie a het vermogen dat iedere bron afzonderlijk levert.
 - d. Bepaal de uitwendige karakteristiek tussen de klemmen A en B.

4.E.6 Bepaal voor dit netwerk het overeenkomstig Théveninvervangingsschema tussen de klemmen A en B.

Tussen de klemmen A en B wordt nu een weerstand R_b aangesloten; de waarde is vrij te kiezen. Hoe groot is het maximale vermogen dat in deze weerstand gedissipeerd kan worden?

4.E.7 a: Teken de uitwendige karakteristiek van onderstaand netwerk, tussen de klemmen A en B.

b: De lamp (R_L) is een niet-lineaire weerstand; er geldt: $U_L = I_L^2$. Teken de belastingskarakteristiek (werkkromme) van de lamp ook in de grafiek. Bepaal het werkpunt van de lamp.

- 4.E.8 a: Bepaal en teken de uitwendige karakteristiek van onderstaand netwerk, tussen de klemmen A en B.
 - b: Een belasting R_b (30 Ω) wordt aangesloten tussen de klemmen A en B. Hoeveel vermogen wordt in deze weerstand gedissipeerd?
 - c: In plaats van R_b wordt R_c aangesloten. De waarde van deze weerstand is afhankelijk van de stroom I_{Rc} die er doorheen vloeit: $R_c = 10.I_{Rc}$ [A]. Welke waarde krijgt R_c in dit geval (aangesloten tussen A en B)?
 - d: Tenslotte wordt tussen A en B een stroombron (0,3 A) met serieweerstand R_d (30 Ω) aangesloten. Gevraagd:
 - Hoeveel vermogen wordt er in R_d gedissipeerd?
 - Hoeveel vermogen levert/dissipeert de stroombron?

 R_c is stroomafhankelijk: $R_c = 10.I_{Rc}$ [A]

4.E.9 Gegeven zes lampen:

- 2 lampen 100V/100W
- 2 lampen 200V/100W
- 2 lampen 300V/300W
- a: Bereken de weerstand van deze lampen.
- b: We hebben een 350V-spanningsbron; $R_i = 20 \Omega$. We willen een zo groot mogelijke lichtopbrengst; daarvoor ontwerpen we op papier twee schakelingen (zie onder).

Welke van deze schakelingen werkt het best, en waarom?

