Table of Contents CSE 425

- 1. Introduction to Basic Neural Network
 - a. Brief History of Neural Network
 - b. Structure of Biological Neurons
 - c. Construction of Computer Neurons
 - d. Introduction to components of Neural Networks (input layer, Weights, Bias , Activation Functions)
 - e. Supervised vs Unsupervised domain
 - f. Neural Networks Applications
- 2. Perceptron (First Neural Network)
 - a. Basic Introduction to perceptron
 - b. Perceptron notation
 - c. Perceptron Model
 - d. Example of Boolean functions implementations
 - i. AND logic
 - ii. OR logic
 - iii. ANDNOT logic
 - e. Perceptron learning
 - f. Perceptron usage
 - g. Build simple neuron using Python without library
 - h. Limitations of Perceptrons
- 3. Multilayer Perceptron (Overcome the limitations of Perceptron)
 - a. Basic Introduction to MLP
 - b. MLP notation
 - c. MLP Architectural Model
 - d. Example of Complex Boolean functions implementations
 - i. XOR function
 - ii. Combination of Other boolean functions
 - e. MLP learning
 - i. Average Squared Error
 - ii. Weight Update Rule
 - iii. Local Gradient of Neurons
 - 1. Output layer neuron
 - 2. Hidden layer neuron
 - 3. Notation and Computation of local gradients
 - a. Error computation
 - b. Chain Rule of computing local gradient
 - 4. Use in weight update rule
 - iv. Back-Propagation Algorithm
 - 1. Forward Pass
 - 2. Backward Pass

- 3. Example of Back-Propagation Algorithm
- v. MLP NN Design
 - 1. Data Representation
 - a. Supervised data
 - b. Unsupervised data
 - 2. Network Topology
 - 3. Network Parameters
 - a. Learning Rate
 - i. Constant Learning Rate
 - ii. Adaptative Learning Rate
 - b. Momentum
 - c. Weights
 - d. Bias
 - e. Normalization of Data
 - 4. Training
 - a. Stopping Criteria
 - i. Early Stopping
 - ii. Generalization
 - 1. Generalized Delta-Rule
 - 5. Validations
- f. MLP usage
- g. Limitations of MLP
- 4. Recurrent Neural Network (RNN)
 - a. Overview of the structure
 - b. Example of RNN
 - c. Reduction in complexity
 - d. Different Architectures of RNN
 - i. Deep RNN
 - ii. Bi-Directional RNN
 - iii. Pvramid-RNN
 - iv. Naive RNN
 - e. Problems With RNN
 - i. Vanishing Gradient Problem
 - ii. Exploding Problem
 - f. Symbolic Notations of RNN
 - g. LSTM (Long Short Term Memory)
 - i. Architecture
 - ii. Computational Components
 - iii. Difference of LSTM vs Naive RNN
 - iv. Peephole LSTM

- v. Information Flow of LSTM
- vi. Information Flow of PeepHole
- vii. Overcome of RNN problems
- viii. Shortcomings
- ix. Grid LSTM
- x. Difference of LSTM vs Grid LSTM
- h. Gated Recurrent Unit (GRU)
 - i. Architecture
 - ii. Computational Components
 - iii. Difference of LSTM vs GRU
 - iv. Information Flow of GRU
- i. FeedForward vs Recurrent NN
- j. Application of RNN
 - i. Sequence to Sequence Chat model
 - ii. Neural Machine Translation
 - iii. Speech Recognition
 - iv. Used in combination with other NN's
 - 1. Image Caption Generation
- 5. Convolution Neural Network (CNN)
 - a. Overview
 - b. Architecture
 - c. Convolutional Layer
 - i. Convolution Process
 - ii. Filters
 - iii. Stride
 - iv. Black and White
 - v. RGB layers
 - d. Convolution vs Fully Connected Layer
 - e. Max Pooling Concept
 - i. Why Max pool Needed
 - f. Compression of Fully Connected Neural Network
 - i. Reducing Number of Connections
 - ii. Shared Weights on edges
 - g. Bundle pack
 - i. Conv + Max pool
 - ii. Conv + Max pool + Conv + Max Pool
 - h. Flattening Concept
 - i. CNN in keras
 - j. CNN in text Classification
- 6. Kohonen Neural Network (Unsupervised Learning Model)
 - a. Introduction
 - b. Structure
 - i. Rectangular

- ii. Hexagonal
- c. Properties
- d. Variables
- e. Algorithm
- f. Formulas
 - i. Weight Update Formula For Neighbors
 - ii. The Radius and the Learning rate
 - iii. The Neighborhood Function Influence
 - iv. BMU (Best Matching Unit) selection
- 7. Generative Adversarial Network
 - a. Overview
 - b. Architecture
 - c. Generator
 - d. Discriminator
 - e. Example
 - i. Building a Generator
 - ii. Building a Discriminator
 - f. Training Process
 - i. Error Functions
 - 1. Log Loss Error Function
 - a. Want 0
 - b. Want 1
 - ii. Back-Propagation
 - iii. Computations
 - 1. Generator
 - 2. Discriminator