San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-R02

Universal Forgery and Multiple Forgeries of MergeMAC and Generalized Constructions

Tetsu Iwata¹, Virginie Lallemand², Gregor Leander², and Yu Sasaki

- 1: Nagoya University
- 2: Ruhr-Universität Bochum
- 3: NTT Secure Platform Laboratories

Overview: MAC

MAC

Check if $T \stackrel{?}{=} MAC_K(M)$

- MergeMAC: Lightweight MAC for IoT from ACNS2018 (June 2018)
- Unique Feature:

- Classic:
 - Finalization is keyed and strong.
- MergeMAC:
 - Finalization is public and weak.

Overview: Our Results

- MergeMAC was designed to provide 64-bit security
- We found universal forgery attacks with
 - -2^{32} data and 2^{32} offline comp for any (even keyed) finalization.
- IoT devices may not communicate 2^{32} data in lifetime. We can still apply universal forgery attacks with
 - -2^{8} data and $2^{58.6}$ offline comp by using MergeMAC's weak finalization.
 - -2^{24} data and 2^{48} offline comp even with secure hash function.
- Multiple Forgery:
 - The average attack cost becomes cheaper when we forge many tags.
 - Optimality of our attacks is proven in some particular setting.

Overview: Our Results

- MergeMAC [Ankele et al. ACNS2018] is a MAC suitable when
 - bandwidth is limited
 - strict time constraints apply
- Assumed usage: CAN bus, a communication system in modern cars.
- The important feature is low latency. How to achieve it?
- Save bandwidth by not transmitting low-entropy bits of the msg.
- This allows speed up by storing frequently needed intermediate parts in the cache instead of computing them again.

MergeMAC Specification 1

- Separate message into two independent parts and process each of them with two PRFs (CMAC with PRINCE or PRESENT).
- XOR two PRF outputs and apply a public one-way function.

MergeMAC Specification 2

- π of MergeMAC is 3 rounds of the Chaskey permutation.
- Chaskey consists of 8 rounds and is attacked up to 7 rounds.
- 3-round Chaskey itself is weak.

1-round Chaskey

Security Analysis by the Designers

- The main feature to ensure security is the entropy reduction from 2n bits to n bits when XORing two PRF's outputs.
- For any tag, it is impossible to know the correct ρ and $\tilde{\rho}$.

Table 3. Security claims according to the underlying primitives [1, Table 1].

Underlying BC	Block size	Key size	Existential forgery resistance
Present Present Prince	64 64	80 128 128	2^{-64} 2^{-64} 2^{-64}

General Universal Forgery (1/2)

- Two PRFs are based on CMAC.
- CMAC allows universal forgery with $O(2^{\frac{n}{2}})$ data complexity.
- It applies to MergeMAC directly.

General Universal Forgery (2/2)

Suppose that the target message is $m=m_0|m_1|m_2|\cdots$

- 1. Make $O(2^{\frac{n}{2}})$ queries of form $m_0^i | m_1 | m_2 | \cdots$
- 2. Make $O(2^{\frac{n}{2}})$ queries of form $m_0 \mid m_1^j \mid m_2 \mid \cdots$
- 3. Find a collision of the tags between Steps 1 and 2.
- 4. Query $m_0^i | m_1^j | m_2 | \cdots$, which collides with m.

$$E_K(m_0^i) \oplus m_1 = E_K(m_0) \oplus m_1^j$$

$$E_K(m_0) \oplus m_1 = E_K(m_0^i) \oplus m_1^j$$

MergeMAC Specification 1

- Previous attack exploits the property of the underlying PRF, and requires about 2³² data, which may be too high for IoT usage.
- To go a different direction, we now invert the merge function, which is weak (3-round Chaskey).

Overview

- Suppose that we can invert the hash function from a tag t_i .
- Suppose that the target message is $m||\widetilde{m}|$.
- $\rho \oplus \tilde{\rho}$ can be recovered by 3 queries and 3 preimage attack.
 - From t_1 for $x||\widetilde{m}$, we obtain $\mathcal{P}_1(x) \oplus \mathcal{P}_2(\widetilde{m})$.
 - From t_2 for $m||\tilde{y}$, we obtain $\mathcal{P}_1(m) \oplus \mathcal{P}_2(\tilde{y})$.
 - From t_3 for $x||\tilde{y}$, we obtain $\mathcal{P}_1(x) \oplus \mathcal{P}_2(\tilde{y})$.
- The XOR of three gives $\mathcal{P}_1(m) \oplus \mathcal{P}_2(\widetilde{m})$.

Preimage Attacks on Davies-Mayer Constructions

- A lot of preimage attacks against the Davies-Mayer constructions $(H(a) \oplus a)$ were studied around 2008 to 2010, e.g. preimage resistance of MD5 was broken in 2009 [SA09].
- The finalization of MergeMAC can be seen as Davies-Mayer.
- The same technique can be applied!
- Meet-in-the-Middle Preimage Attacks
 - Splice-and-Cut, Partial-fixing [AS08], Initial-Structure [SA09]

MitM Preimage Attacks on 3-Round Chaskey in DM

Intuition

- Computation of 3-round Chaskey is divided into three parts.
- The blue part is independently computed from 8 internal state bits.
- The red part is independently computed from 8 internal state bits.
- Two independent computation can match at 8 bits.

$$(Time, Memory) = (2^{57}, 2^8)$$

Attacks on Generalized Variants: with secure hash function

Offline Computations

- Preimage attacks no longer work.
- Precompute a look-up table.
 - H is public. H(x) for many x can be computed offline.
 - -(x,H(x)) are stored as a lookup table T_L .
- In the online phase, if tag is stored in T_L , we know the input value to H with a good probability.
- Tradeoff:

$$T^{3/2} \cdot D = 2^{3/2n}$$

- When $T < 2^{2/3n}$, D becomes less than $2^{n/2}$.
- Example: $(Data, Time) = (2^{24}, 2^{48})$

 T_{L}

Reforgeability and 2-Dimensional Table Representation

- Our attacks require 3 queries to forge a tag for 1 message.
- Consider the ratio r :

$$r = \frac{\text{# queries}}{\text{# forgeries}}$$

- The ratio can be improved when multiple tags are forged.
- Recall that we query $m_1||\widetilde{m_1}, m_1||\widetilde{m_2}, m_2||\widetilde{m_1}$ to forge $m_2||\widetilde{m_2}.$
- This can be represented in the matrix.

$$i \frac{1}{2} \frac{Q}{Q} \frac{Q}{X}$$

Reforgeability (Existential Forgery)

- Extension to 5 queries.
 - 4 tags can be forged.

j				j	
1 2 3			1	2	3
$\overline{1}QQQ$		1	Q	\overline{Q}	\overline{Q}
$\begin{array}{c c} i & 2 & Q \\ 3 & Q \end{array}$	i	2	Q	X	X
3 Q	,	3	Q		

- Generalization to 2q 1 queries.
 - $-(q-1)^2$ tags can be forged.
 - #forgery is quadratic to #queries.

		j							
		1	2	• • •	q				
	1	Q Q	\overline{Q}	• • •	\overline{Q}				
i	2	Q							
U	:	:							
	q	Q							

Reforgeability (Universal Forgery)

- Given multiple targets are represented in the diagonal.
- All of them are forged with 2q 1 queries.

ullet The ratio r is 2, which is better than single-target case.

Concluding Remarks: Lessons from This Talk

- We presented several attacks on MergeMAC and its generalized construction.
- Do not implement MergeMAC, because it is not secure.
- When you design a new MAC scheme, do not remove the key from the finalization function.
- To design lightweight MAC schemes is still a challenging topic.

