

AO3400A

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO3400A/L uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. This device is suitable for use as a load switch or in PWM applications. AO3400A and AO3400AL are electrically identical.

- -RoHS Compliant
- -AO3400AL is Halogen Free

Features

 $V_{DS}(V) = 30V$

 $I_D = 5.7A \ (V_{GS} = 10V)$

 $R_{DS(ON)} < 26.5 \text{m}\Omega \text{ (V}_{GS} = 10 \text{V)}$

 $R_{DS(ON)}$ < 32m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 48m Ω (V_{GS} = 2.5V)

Rg,Ciss,Coss,Crss Tested

-55 to 150

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V_{DS}	30	V			
Gate-Source Voltage		V_{GS}	±12	V			
Continuous Drain	T _A =25°C		5.7	Δ.			
Current AF	T _A =70°C	I _D	4.7	7 A			
Pulsed Drain Current ^B		I _{DM}	25	Α			
	T _A =25°C	В	1.4	W			
Power Dissipation	T _A =70°C	$$ P_D	0.9				
	-						

Thermal Characteristics								
Parameter	Symbol Typ Max		Units					
Maximum Junction-to-Ambient A	t ≤ 10s	D	70	90	°C/W			
Maximum Junction-to-Ambient A	Steady-State	$ R_{\theta JA}$	100	125	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	63	80	°C/W			

 T_J, T_{STG}

Junction and Storage Temperature Range

°C

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	rameter Conditions		Min	Тур	Max	Units	
STATIC F	PARAMETERS							
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V		30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V				1	uA	
	Zero Gate Voltage Drain Gurrent		T _J =125°C			5	uA	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.7	1	1.5	V	
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V		25			Α	
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =5.7A			22	26.5		
			T _J =125°C		31	38	m()	
		V _{GS} =4.5V, I _D =5A			25.4	32	mΩ	
		V_{GS} =2.5 V , I_{D} =3 A		34	48			
g FS	Forward Transconductance	V _{DS} =5V, I _D =5.7A			26		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.72	1.0	V	
Is	Maximum Body-Diode Continuous Curre			2.0	Α			
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			900	1100	pF	
C _{oss}	Output Capacitance				88		pF	
C _{rss}	Reverse Transfer Capacitance				65		pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			0.95	1.5	Ω	
SWITCHI	NG PARAMETERS							
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =5.7A			10	13	nC	
Q_{gs}	Gate Source Charge				1.8		nC	
Q_{gd}	Gate Drain Charge				3.75		nC	
t _{D(on)}	Turn-On DelayTime				3.2		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =2.6 Ω , R_{GEN} =3 Ω			3.5		ns	
$t_{D(off)}$	Turn-Off DelayTime				21.5		ns	
t _f	Turn-Off Fall Time				2.7		ns	
t _{rr}	Body Diode Reverse Recovery Time	IF=5.7A, dl/dt=100A/us			16.8	20	ns	
Q_{rr}	Body Diode Reverse Recovery Charge	IF=5.7A, dl/dt=100A/us			8		nC	

A: The value of R_{BJA} is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.

C. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 us pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA curve provides a single pulse rating.

F: The current rating is based on the $t \le 10s$ thermal resistance rating. Rev1:May. 2008

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance