Aprendizaje No Supervisado

Maestría en Ciencia de Datos

Lucas Fernández Piana Primavera 2022

Universidad de San Andrés

Partición

Sea D un conjunto recordemos que una partición C de D es una colección de subconjuntos $\{C_1, \ldots, C_k\}$ de D tales que

- $C_i \cap C_j = \emptyset$.
- $\bigcup_{i=1}^K C_i = D$.

1

Partición

Sea D un conjunto recordemos que una partición C de D es una colección de subconjuntos $\{C_1, \ldots, C_k\}$ de D tales que

- $C_i \cap C_j = \emptyset$.
- $\bigcup_{i=1}^K C_i = D$.

Partición Anidada

Sea \mathcal{C} y \mathcal{B} dos particiones de D. Decimos que \mathcal{B} está anidada en \mathcal{C} si se cumple que para cada $B \in \mathcal{B}$ existe $C \in \mathcal{C}$ tal que $B \subset C$.

1

Partición Anidada

Sea \mathcal{C} y \mathcal{B} dos particiones de D. Decimos que \mathcal{B} está anidada en \mathcal{C} si se cumple que para cada $B \in \mathcal{B}$ existe $C \in \mathcal{C}$ tal que $B \subset C$.

Ejemplo:
$$D = \{x_1, x_2, x_3, x_4, x_5\}$$

$$\mathcal{C} = \left\{ \{x_1, x_2, x_4\}, \{x_3, x_5\} \right\}.$$

$$\mathcal{B} = \left\{ \{x_1, x_2\}, \{x_4\}, \{x_3, x_5\} \right\}.$$

$$A = \{\{x_1, x_3\}, \{x_2\}, \{x_4, x_5\}\}$$
 no está anidada en C .

Un método de cluster jerárquico sobre un conjunto de datos $D = \{x_1, \dots, x_n\}$ consiste de una sucesiones de particiones $\{C_0, \dots, C_{n-1}\}$ de D tales que

- $C_0 = D$
- C_{i+1} está anidada en C_i .
- $C_{n-1} = \{\{x_1\}, \ldots, \{x_n\}\}.$

A grandes rasgos hay dos tipos de algoritmos para construir un método jerárquico,

Aglomerativos

Comienzan con la última partición de la sucesión donde cada elemento del conjunto es un cluster y en cada paso, van juntando elementos hasta que *D* es considerado un cluster.

Divisivos

Lo contrario a los aglomerativos, arracan con la primer partición donde *D* es un cluster, en cada paso dividen cada cluster de la partición en otros más pequeños. Terminan cuando cada elemento del conjunto forma un cluster.

Algoritmos Aglomerativos

Single Linkage

Sea $D = \{x_1, ..., x_n\}$ un conjunto de datos.

Para construir estos algoritmos es necesario contar con una disimilaridad. Llamemos $d_{ij} = d(x_i, x_j)$ y para dos clusters G y H en D llamemos disimilaridad intra grupos SL a

$$D_{SL}(G, H) = \min_{\substack{i \in G \\ j \in H}} d_{ij}.$$

Veamos cómo funciona el algoritmo con un ejemplo

Single Linkage - Ejemplo

Consideremos el conjunto $\{x_1, x_2, x_3, x_4, x_5\}$ con la matriz de disimilaridad,

	1	2	3	4	5
1	0	2,3	3,4	1,2	3,7
2	0	0	2,6	1,8	4,6
3	0	0	0	4,2	0,7
4	0	0	0	0	4,4
5	0	0	0	0	0

Paso 0: la primera partición $C_0 = \{\{x_1\}, \{x_2\}, \{x_4\}, \{x_3\}, \{x_5\}\}$.

	1	2	3	4	5
1	0	2,3	3,4	1,2	3,7
2	0	0	2,6	1,8	4,6
3	0	0	0	4,2	0,7
4	0	0	0	0	4,4
5	0	0	0	0	0

Por comodidad anotemos $C_0 = \{(1), (2), (3), (4), (5)\}$

Además fijemos el valor L(0) = 0, ya vamos a ver para qué nos sirve.

Paso 1: Buscar los dos clusters en la partición C_0 que estén más cercanos según la matriz de disimilaridad y juntarlos.

	1	2	3	4	5
1	0	2,3	3,4	1,2	3,7
2	0	0	2,6	1,8	4,6
3	0	0	0	4,2	0,7
4	0	0	0	0	4,4
5	0	0	0	0	0

Entonces según me dice la matriz de disimilaridad debo juntar el cluster (3) con el cluster (5). Por lo tanto, mi siguiente partición será

$$C_1 = \{(1), (2), (3,5), (4)\}.$$

Permitanme tomar $L(1) = d_{35} = 0.7$ prometo que ya vamos a ver por qué lo hago.

9

Para seguir agrupando debo recalcular la matriz de disimilaridad, dado que ahora tengo un nuevo cluster. Utilizaremos la fórmula de D_{SL} para los clusters en C_1

	1	2	(3,5)	4
1	0	2,3	nuevo	1,2
2	0	0	nuevo	1,8
(3,5)	0	0	0	nuevo
4	0	0	0	0

Rellenando donde dice "nuevo" por los valores que arroja la fórmula de D_{SL} obtengo esta nueva matriz de disimilaridad.

	1	2	(3,5)	4
1	0	2,3	3,4	1,2
2	0	0	2,6	1,8
(3,5)	0	0	0	4,2
4	0	0	0	0

Busco los clusters que estén más cerca según la matriz de disimilaridad y agrupo.

	1	2	(3,5)	4
1	0	2,3	3,4	1,2
2	0	0	2,6	1,8
(3,5)	0	0	0	4,2
4	0	0	0	0

Mi nueva partición $C_2 = \{(1,4),(2),(3,5)\}.$

Me permito tomar L(2) = 1,2.

Recalculo la matriz de disimilaridad para \mathcal{C}_2

	(1, 4)	2	(3,5)
(1, 4)	0	1,8	3,4
2	0	0	2,6
(3,5)	0	0	0

Busco los clusters que estén más cerca según la matriz de disimilaridad y agrupo.

	(1, 4)	2		(3,5)
(1, 4)	0	1,	8	3,4
2	0	С)	2,6
(3,5)	0	С)	0

Mi nueva partición $C_3 = \{(1, 4, 2), (3, 5)\}.$

Me permito tomar L(3) = 1.8.

Recalculo la matriz de disimilaridad para \mathcal{C}_3

	(1,4,2)	(3,5)
(1, 4, 2)	0	2,6
(3,5)	0	0

Mi nueva partición $C_4 = \{(1, 4, 2, 3, 5)\} = \{D\}.$

Me permito tomar L(4) = 2.6.

Single Linkage - Dendrograma

Single Linkage - Dendrograma

Single Linkage - Dendrograma y Cortes

Single Linkage - Dendrograma y Cortes

Single Linkage - Dendrograma y Cortes

Complete Linkage

Sea $D = \{x_1, \dots, x_n\}$ un conjunto de datos.

El algoritmo complete-linkage funciona igual que single-linkage, pero la disimilaridad para dos clusters *G* y *H* en *D* cambia por disimilaridad intra grupos CL a

$$D_{CL}(G,H) = \max_{\substack{i \in G \\ j \in H}} d_{ij}.$$

Veamos cómo funciona el algoritmo con un ejemplo

Complete Linkage - Ejemplo

Consideremos el mismo conjunto de antes $\{x_1, x_2, x_3, x_4, x_5\}$ con la matriz de disimilaridad,

	1	2	3	4	5
1	0	2,3	3,4	1,2	3,7
2	0	0	2,6	1,8	4,6
3	0	0	0	4,2	0,7
4	0	0	0	0	4,4
5	0	0	0	0	0

Paso 0: la primera partición $C_0 = \{\{x_1\}, \{x_2\}, \{x_4\}, \{x_3\}, \{x_5\}\}$.

	1	2	3	4	5
1	0	2,3	3,4	1,2	3,7
2	0	0	2,6	1,8	4,6
3	0	0	0	4,2	0,7
4	0	0	0	0	4,4
5	0	0	0	0	0

Por comodidad anotemos $C_0 = \{(1), (2), (3), (4), (5)\}$

Además fijemos el valor L(0) = 0

Paso 1: Buscar los dos clusters en la partición C_0 que estén más cercanos según la matriz de disimilaridad y juntarlos.

	1	2	3	4	5
1	0	2,3	3,4	1,2	3,7
2	0	0	2,6	1,8	4,6
3	0	0	0	4,2	0,7
4	0	0	0	0	4,4
5	0	0	0	0	0

Entonces según me dice la matriz de disimilaridad debo juntar el cluster (3) con el cluster (5). Por lo tanto, mi siguiente partición será

$$C_1 = \{(1), (2), (3,5), (4)\}.$$

Tomo
$$L(1) = d_{35} = 0.7$$
.

Para seguir agrupando debo recalcular la matriz de disimilaridad, dado que ahora tengo un nuevo cluster. Utilizaremos la fórmula de D_{CL} para los clusters en C_1

	1	2	(3,5)	4
1	0	2,3	3,7	1,2
2	0	0	2,6	1,8
(3,5)	0	0	0	4,2
4	0	0	0	0

Busco los clusters que estén más cerca según la matriz de disimilaridad y agrupo.

	1	2	(3,5)	4
1	0	2,3	3,4	1,2
2	0	0	2,6	1,8
(3,5)	0	0	0	4,2
4	0	0	0	0

Mi nueva partición $C_2 = \{(1,4),(2),(3,5)\}.$

Tomo L(2) = 1,2.

Complete Linkage - Ejemplo: paso 3

Recalculo la matriz de disimilaridad para \mathcal{C}_2

	(1, 4)	2	(3,5)
(1, 4)	0	2,3	3,4
2	0	0	2,6
(3,5)	0	0	0

Complete Linkage - Ejemplo: paso 3

Busco los clusters que estén más cerca según la matriz de disimilaridad y agrupo.

	(1, 4)	2	(3,5)
(1,4)	0	2,3	3,4
2	0	0	2,6
(3,5)	0	0	0

Mi nueva partición $C_3 = \{(1, 4, 2), (3, 5)\}.$

Tomo L(3) = 2,3.

Complete Linkage - Ejemplo: paso 3

Recalculo la matriz de disimilaridad para \mathcal{C}_3

	(1, 4, 2)	(3,5)
(1, 4, 2)	0	4,6
(3,5)	0	0

Mi nueva partición $C_4 = \{(1, 4, 2, 3, 5)\} = \{D\}.$

Me permito tomar L(4) = 4.6.

Complete Linkage - Dendrograma y Cortes

Complete vs Single - Dendrogramas

Usa el maximo de las dist

Complete Linkage

Usa el minimo de las dist

Single Linkage

Average Linkage

Sea $D = \{x_1, \dots, x_n\}$ un conjunto de datos.

El algoritmo average-linkage funciona igual que single-linkage o complete-linkage, pero la disimilaridad para dos clusters *G* y *H* en *D* cambia por disimilaridad intra grupos AL a

$$D_{AL}(G,H) = \frac{1}{N_G} \frac{1}{N_H} \sum_{i \in G} \sum_{j \in H} d_{ij}.$$

Observación: modificar la disimilaridad intra grupos nos genera un algoritmo jerárquico nuevo. Tendremos tantos como disimilaridades podamos inventar. Es importante que esa disimilaridad nos permita construir un dendrograma.

Updating Matrix Algorithm

- P1 Comenzar con la partición que tiene a cada dato como un cluster, anotar el subídice de la sucesión de particiones anidadas como m = 0. Luego, fijar el nivel L(0) = 0
- P2 Encontrar el par de clusters $\{(r),(s)\}$ con menor disimilaridad de acuerdo a $d[(r),(s)] = \min d[(i),(j)]$.
- P3 Juntar los clusters (r) y (s) en un nuevo cluster. Actualizar el subídice de la sucesión de particiones en m=m+1 y fijar el nivel de este paso L(m)=d[(r),(s)].

Updating Matrix Algorithm

- P4 Actualizar la matriz de disimilaridad borrando las filas y columnas que correspondan a los clusters (r) y (s). Agregar una fila y columna que corresponda al nuevo cluster (r,s) según dicte la fórmula de disimilaridad intra cluster d[(k),(r,s)] donde (k) son los clusters que se corresponden con las filas y columnas que no hemos borrado.
- P5 Si tengo un solo cluster terminé, caso contrario vuelvo a P2.

Updating Matrix Algorithm

Existe una fórmula general para el paso P4 que incluye a muchos algoritmos aglomerativos conocidos,

$$d[(k), (r, s)] = \alpha_s d[(k), (s)] + \alpha_r d[(k), (r)] + \beta d[(r), (s)] + \gamma |d[(k), (r)] - d[(k), (s)]|.$$

Observación: notar que si tengo *n* datos, con este procedimiento general, tengo que hacer *n* pasos para terminar.

Debilidad

Metodos pesados computacionalmente Crece con el cuadrado del numero de datos

Algoritmos Divisivos

Diana

Recordemos que contrariamente a los algoritmos algomerativos un algoritmo divisivo comienza con la partición trivial: $\mathbb{C}_0 = D$.

El algoritmo **DIANA** (DIvisive ANAlysis Clustering) funciona partiendo en cada paso un cluster *R* en dos nuevos subconjuntos *A* y *B*.

¿Cómo funciona esta bisección para el cluster R?

Comenzamos tomando A=R y $B=\emptyset$. Para cada elemento a en A calculamos su disimilaridad media con respecto al resto de los elementos de A

$$d(a, A - \{a\}) = \frac{1}{|A| - 1} \sum_{s \in A, s \neq a} d(s, a), \tag{1}$$

donde |A| es el número de elementos en A.

Diana

El elemento a^* que maximiza (1) será movido a B siguiendo la regla de actualización,

$$A_{nuevo} = A_{viejo} - \{a^*\}$$
 (2)

$$B_{nuevo} = B_{viejo} \ U \left\{ a^* \right\} \tag{3}$$

Ahora tenemos que ver cómo pasar otro elemento de A a B si es pertiente.

Mientras A no me quede vacío, para cada elemento de a calculo,

$$diss(a) = d(a, A - \{a\}) - d(a, B)$$

$$= \frac{1}{a} \sum_{a} d(s, a) - \frac{1}{a} \sum_{b} d(a, b).$$
(5)

$$= \frac{1}{|A|-1} \sum_{s \in A, s \neq a} d(s,a) - \frac{1}{|B|} \sum_{h \in B} d(a,h).$$
 (5)

Consideremos a^{**} el elemento de A que maximiza (4). Si $diss(a^{**}) > 0$ actualizo según (2) y vuelvo a calcular. En caso que $diss(a^{**}) \leq 0$ me detengo y doy por finalizada la bisección.

Diana

Finalmente nos queda determinar cómo vamos a elegir el cluster que debemos biseccionar. Para eso tomo los clusters que tengo disponibles y calculo su diametro.

$$diam(R) = \max_{a \in R, b \in R} d(a, b)$$
 (6)

El cluster que debemos considerar para biseccionar es el que tenga diametro más grande y este diametro se asigna como nivel del paso.