Digital Signal Processing Sheet 1

Question 1:

Find The Following Summations:

$$\underbrace{1} \sum_{n=-\infty}^{\infty} n^2 \delta(n+4)$$

$$\underbrace{2} \sum_{n=0}^{\infty} \delta(n+1) 4^n$$

$$\widehat{3} \quad \sum_{n=-\infty}^{\infty} \delta(n-2) e^{n^2}$$

$$\sum_{n=0}^{\infty} \delta(n+1) 4^n$$

Question 2:

Sketch The Following Signals:

- u(n+1) u(-n+4)
- (2) x(n) = u(n+3) u(n-1)

Question 3:

Express The Signal as the sum of singular functions:

Question 4:

Let x(t) be the complex exponential signal, $x(t) = e^{j\omega_0 t}$ with radian frequency ω_0 and fundamental period $T = 2\pi/\omega_0$. Consider the discrete-time sequence x(n)obtained by the uniform sampling of x(t) with sampling interval T_s , i.e.,

$$x(n) = x(nT_s) = e^{jn\omega_0 T_s}$$

Show that x(n) is periodic if the ratio of the sampling interval T_s to the fundamental period Tof x(t), i.e., T_s/T is a rational number.

Digital Signal Processing Sheet 1

Question 5:

Determine whether the following discrete-time signals are periodic or not. If periodic, determine the fundamental period:

(4)
$$\cos\left(\frac{\pi}{2} + 0.3n\right)$$

(5) $1 + e^{j2\pi n/3} - e^{j4\pi n/7}$

$$\bigcirc$$
 cos $4n$

(5)
$$1 + e^{j2\pi n/3} - e^{j4\pi n/3}$$