

اختراع بیت کوین

ويراست چهارم - نسخهٔ موبايل زمستان ۱۴۰۱

سخنی با خوانندگان

این کتاب نحوه کار شبکه بیت کوین را به زبانی ساده توضیح میدهد و تلاش می کند بیت کوین را قدم به قدم و با همراهی خواننده اختراع کند. پیش نیاز مطالعه این کتاب به گفته نویسنده، ریاضیات دبیرستان است.

ممکن است شما به عنوان فردی که بخشی از دارایی خود را در بیت کوین سرمایه گذاری کرده است معتقد باشید به درک نحوه کار

شبکه بیت کوین نیازی پیدا نخواهید کرد. یا از نحوه کار با کیف پولهای بیت کوین شناخت کلی دارید و نیازی به عمیق تر شدن در مفاهیم بیت کوین احساس نمی کنید. در این مقدمه کو تاه توضیح می دهیم که چرا همه افرادی که به نوعی با بیت کوین سر و کار دارند باید به طور کلی از ساز و کار شبکه بیت کوین اطلاع داشته باشند.

اگر به تازگی با موضوع بیت کوین و کمیابی دیجیتال آشنا شده باشید ممکن است از خود بپرسید «کنترل بیت کوین در دست کیست؟» برای پاسخ به این سؤال توجه شما را به قسمتی از «کتاب کوچک بیت کوین که ترجمه آن در سایت منابع

¹ Digital Scarcity

² The Little Bitcoin Book

فارسی بیت کوین موجود است جلب می کنیم.

[...] كنترل بيت كوين دست هيچ قدرت متمر کزی نیست. بیت کوین مدیرعامل یا هیئت مدیره یا شرکتی که بر آن نظارت داشته باشد ندارد. هزاران تأیید کننده در سراسر دنیا تراکنشهای شبکه بیت کوین را مورد بازبینی قرار میدهند و تاریخچه همه تراكنشها را در خود ذخيره می کنند. اسم این تأیید کنندهها فول نود ا است. (نرمافزار بیت کوین که هرکس می تواند با اجرای آن اعتبار تراکنشهای بیت کوین را بازبینی، و از درستی آن اطمینان حاصل کند)

ماینرها (فرد یا گروهی که از دستگاههای مخصوصی برای ساختن بلاکهای جدید در شبکه بیت کوین استفاده می کنند) در سراسر دنیا برای ساختن بلاکهای بیت کوین با هم رقابت مى كنند. اين بلاكها توسط فول نودهایی که کاربران اجرا می کنند بازبینی و تأیید میشوند. نرمافزاری را که این فول نودها اجرا می کنند «برنامه نویسان بیت کوین ۲» نوشته اند. تراکنشهایی که داخل بلاکهای بیت کوین قرار می گیرند را کاربران بیت کوین با استفاده از نرمافزارهای كيف يولشان ساختهاند.

> "همه این اجزاء برای کارکرد بیت کوین ضروری هستند ولی

¹ Miner

² Core Developers

هیچکدام از آنها بیت کوین را کنترل نمی کنند."

اگر یک برنامهنویس تصمیم بگیرد یک نرمافزار فول نود خیلی متفاوت بسازد، ممكن است فقط تعداد انگشتشماری از کاربران آن را اجرا کنند و در نهایت اثری بر روی قوانین شبکه نخواهد داشت. اگر یک ماینر تصمیم بگیرد پنهانی بلاکی که اعتبار لازم را ندارد بسازد، فول نودهای كاربران آن را قبول نخواهند كرد. اگر ماینرها تصمیم به کودتا بگیرند تا کاربران را مجبور به پذیرش قابلیتهای جدید بر روی شبکه کنند، شكست خواهند خورد چون هيچكس قادر نیست کاربران را مجبور به استفاده

از نرمافزاری کند که نمیخواهند. رویداد UASF نمونه تاریخی این سناریو است.

بنابراین هر تغییری در بیت کوین نیاز به توافق همگانی بین کاربران آن دارد. از این نظر مدل حکمرانی در بیت کوین شبیه به توازن قوا در حکومتهای بریایه دمو کراسی است. ماینرها شبیه به قوه مجریه به کارهای اجرایی رسیدگی می کنند و مجری قانون هستند، برنامه نویسان شبیه به قوه مقننه قوانین جدید را می نویسند و تصویب می کنند، كاربران همانند قوه قضاييه كارشان اطمینان از این است که دو قوه دیگر خارج از چهارچوب قانون اساسی کاری انجام ندهند.

¹ User Activated Soft Fork

پس اجازه تغییر قوانین بیت کوین تنها در دست اعضای این شبکه است و این وظیفهای است بسیار مهم بر دوش همه بیت کوینرهای سراسر دنیا فارغ از نژاد، منطقه جغرافیایی، زبان، و مسائل سیاسی. ما معتقدیم آگاهی از نحوه کار شبکه بیت کوین هرچند بسیار کلی، پیشنیاز انجام این وظیفه خطیر است و در مواقع بحرانی به کاربران کمک می کند تا تصمیم درستی بگیرند.

در پایان از nodrunner مترجم این کتاب بابت تلاش برای آگاهی بخشی عمومی، همچنین رسانه خبری-آموزشی کوین ایران بابت بازبینی و صفحهبندی ویراست اول این کتاب، تشکر و قدردانی می کنیم.

واژههای کلیدی و اصطلاحات این کتاب در «فرهنگ توصیفی اصطلاحات بیت کوین» توضیح داده شدهاند. برای دسترسی به فرهنگ به سایت منابع فارسی بیت کوین مراجعه کنید.

منابع فارسی بیت کوین ویراست سوم – بهار ۱۴۰۲

بیت کوین، پول مردمی از طرف مردم برای مردم

کوینایران مفتخر است پس از همکاری با اعضای فعال جامعه بیت کوین و رمزارز ایران و اعضای فعال جامعه بیت کوین و رمزارز ایران و ارائه کتاب روند صعودی بیت کوین (Bullish Case of Bitcoin کدشته، این بار نیز در همکاری با یکی اعضای فعال جامعه بیت کوین ایران کتابی دیگر را برای مخاطبین ارجمند خود ارائه نماید.

کتاب حاضر تحت عنوان اختراع بیت کوین (Inventing Bitcoin) است که نسخه اصلی آن در سال 2019 منتشر گردیده است. نویسنده این کتاب آقای یان پریتزکر (Yan Pritzker) است. او در 20 سال

گذشته یک توسعه دهنده نرمافزار و کار آفرین بوده است. همچنین از سال 2018 به عنوان مدیر تکنولوژی سایت Riverb.com وظیفه مدیریت تکنولوژی و زیرساختها را برعهده داشته است.

به عقیده نویسنده این کتاب در پی آن است که درک درستی از فلسفه وجودی بیت کوین و بلاکچین و نحوه کار آن را برای افراد تازه کار و مبتدی توضیح دهد. به همین منظور در این کتاب به مباحث عمیق فنی پروتکل ورود نمیکند زیرا نویسنده بر این باور است که در این زمینه کتابهای مفصلی مانند مسترینگ بیت کوین توسط آندریا آنتونوپولوس نوشته شده است.

این کتاب می کوشد که به زبان ساده ذهن مخاطبان را با علوم کامپیوتر و تئوری بازی اقتصادی بیت کوین به عنوان جذابترین اختراع زمانه در گیر نماید. بنابراین مطالعه این کتاب به افرادی که تاکنون هیچ آشنایی با بیت کوین ندارند و یا کسانی که آشنایی ابتدایی دارند، توصیه می شود.

مـترجم این کتـاب کـه هـویت وی بـا شناسـه کـاربری nodrunner در توئیــتر شـناخته می شود با کلید

اولیه ترجمه این کتاب را در اختیار کوینایران ولیه ترجمه این کتاب را در اختیار کوینایران قرار داده است تا با کمک تحریریه کوینایران ویراستاری و آماده انتشار شود. این مسترجم ناشناس هدف خود از این کار را ترویج فرهنگ آموزش و استفاده آزاد اطلاعات برای همگان بیان میکند. برای نیل به این هدف، این کتاب در کتابخانیه وبسیایت Coiniran.com و کتابخانیه وبسیایت bitcoind.me

تیم کوینایران امیدوار است که با ارائه این کتاب گام دیگری در جهت آگاهسازی و آشنایی جامعه مخاطب فارسی زبان برداشته و به آنها یاری رساند.

مقدمه نویسنده

به کتاب اختراع بیت کوین خوش آمدید.
هدف من در این کتاب تحلیل اقتصادی
بیت کوین نیست، همچنین قصد ندارم شما را
متقاعد کنم که بیت کوین طلای دیجیتال
است. برای این منظور کتاب پولطلا نوشته
سیفالدین اموس را معرفی می کنم.

¹ The Bitcoin Standard

² Saifedean Ammous

قرار نیست از زاویه سرمایه گذاری به بیت کوین نگاه کنم و یا دلیل بیاورم که هر فرد باید حداقل مقدار کمی بیت کوین داشته باشد. قصد بررسی چارتها و تاریخچه قیمت بیت کوین را هم ندارم. اگر به دنبال این موضوعات هستید کتاب دارایی دیجیتال نوشته کریس برنیسکه و جک تاتار ایشنهاد می کنم.

همینطور ما به دنبال کاوش در نحوه عملکرد پروتکل بیت کوین در لایههای عمیق آن نیستیم، قصد بررسی کُدهای کامپیوتری را هم نداریم. کتاب تسلط بر بیت کوین ٔ نوشته اندریاس انتنوپولوس ٔ برای این منظور مناسب تر است.

¹ Cryptoassets

² Chris Burniske

³ Jack Tatar

⁴ Mastering Bitcoin

⁵ Andreas Antonopoulos

به زبان ساده هدف من درگیر کردن ذهن شماست، و آشنا کردن شما با علوم کامپیوتر و نظریه بازی اقتصادی که بیت کوین را به یکی از جذاب ترین و قابل توجه ترین اختراعات زمانه ما تبدیل کرده است.

بیشتر افراد، اولین باری که اسم بیت کوین را می شنوند، از آن سر در نمی آورند. آیا بیت کوین پول جادویی اینترنتی است؟ از کجا آمده؟ چه کسی آن را کنترل می کند؟ چرا به این اندازه مهم است؟

من از درک تمام چیزهایی که کنار هم جمع شده اند تا بیت کوین را بسازند (فیزیک، ریاضیات، رمزنگاری، نظریه بازی، اقتصاد و علوم کامپیوتر) بسیار لذت بردم.

تلاش می کنم در این کتاب دانش خود را به زبان بسیار ساده و قابل در کی به شما انتقال دهم.

برای انتقال بهتر مفاهیم، قدم به قدم پیش می رویم و تنها پیش نیاز درک مطالب این کتاب، ریاضیات دبیرستان است. ما قدم به قدم بیت کوین را اختراع می کنیم. امیدوارم این کتاب انگیزه لازم برای ورود به دنیای بیت کوین را در شما ایجاد کند. خوب، بیایید شروع کنیم!

فصل اول

بیت کوین چیست؟

بیت کوین یک پول الکترونیکی نظیر به نظیر است؛ یک پول دیجیتال که می تواند بین افراد و کامپیو ترها بدون واسطه (مثل بانک) جابه جا شود و تولید آن تحت کنترل هیچ فرد خاصی نیست.

یک پول کاغذی و یا یک سکه فلزی را درنظر بگیرید. وقتی این پول را به کسی می دهید، لازم نیست طرف مقابل شما را

¹ Peer to Peer

بشناسد. کافی است مطمئن شود پولی که از شما گرفته است جعلی نیست، که اغلب برای پولهای فیزیکی با نگاه کردن و لمس پول این اطمینان حاصل می شود.

با توجه به دیجیتالی شدن جوامع، امروزه بیشتر پرداختهای ما دیجیتالی، اینترنتی، و با استفاده از سرویسهای یک شرکت یا نهاد واسط انجام می شود. این واسطه می تواند یک موسسه کارت اعتباری مثل ویزاا یا سرویسهای پرداخت دیجیتال مانند پی پال۲ یا اپل پی و یا پلتفرمهای آنلاینی مثل وی چت ٔ باشد. (در کشور ما هم واسطههای پرداخت زیادی وجود دارند که معمولاً خدمات خود را بر بستر ایلیکیشنهای موبایل ارائه میدهند. -م)

¹ Visa

² Paypal

³ Apple Pay

⁴ WeChat

این نوع پرداخت دیجیتال، نیازمند اعتماد به یک کنترل کننده مرکزی است که هر پرداخت را بررسی و تأیید کند، چون پولی را که یک فرد می توانست با لمس کردن و دیدن، از جعلی نبودن آن اطمینان حاصل کند حالا تغییر ماهیت داده و تبدیل به داده های دیجیتالی شده است و باید توسط مرجعی که نقل و انتقالات را کنترل می کند تایید شود.

بیت کوین جایگزینی برای پولهای دیجیتالی تحت کنترل مراجع مرکزی است، سیستمی که سه جزء اساسی دارد. در بخش بعد به شرح انگیزههایی که در نحوه طراحی آن اثرگذار بودهاند خواهیم پرداخت.

۱. یک دارایی دیجیتال (معمولا bitcoin که با b کوچک نوشته می شود)، که به تعداد محدودی وجود دارد، برنامه عرضه آن از قبل مشخص شده و قابل تغییر هم نیست. این مسئله كاملاً برخلاف پولى است كه ما امروزه استفاده می کنیم؛ چراکه پولها توسط دولتها و بانکهای مرکزی عرضه می شوند و نرخ عرضه (چاپ) آنها درطول زمان غیرقابل پیشبینی است. ۲. یک گروه از کامپیوترهای متصل به یکدیگر (شبکه Bitcoin با B بزرگ)، که هرکسی می تواند به این شبکه وصل شود. این شبکه برای ردیابی مالكيت بيت كوين و انتقال آن بين اعضای شبکه به کار گرفته می شود و

هرگونه واسطهای اعم از بانکها، موسسههای اعتباری و سرویسهای پرداخت را حذف می کند.

۳. نرمافزار کاربران بیت کوین؛ کُدی که هر کسی می تواند آن را روی کامپیوترش اجرا کند تا عضوی از شبکه باشد. این نرمافزار متن باز است، به این معنا که همه می توانند به کد آن دسترسی داشته باشند و نحوه کار آن را ببینند و به رفع اشکالات و افزودن قابلیتهای جدید کمک کنند.

¹ Open Source

بیت کوین از کجا آمده است؟

بیت کوین درسال ۲۰۰۸ توسط شخص یا گروهی اختراع شده است که با نام مستعار ساتوشی ناکاموتو شناخته می شوند. هیچ کس از هویت واقعی این شخص یا گروه اطلاعی ندارد.

در ۱۱ فوریه ۲۰۰۹ ساتوشی نمونه اولیه بیت کوین را در یک گروه آنلاین متعلق به سایفرپانکها عرضه کرد؛ گروهی که روی فناوری رمزنگاری کار می کنند و دغدغه آنها دفاع از حریم خصوصی افراد است.

¹ Satoshi Nakamoto

² Cypherpunk

بخشهایی از نوشتههای ساتوشی در زیر آمده است. در فصل بعد این جملات و انگیزههای او برای اختراع بیت کوین را توضیح خواهم داد.

من یک سیستم پول الکترونیک به نام بیت کوین ایجاد کردهام که متن باز و نظيربه نظير است. كاملا غيرمتمركز است، بدون هیچ کنترل کننده مرکزی و یا واسطه قابل اعتماد؛ چراکه به جای اعتماد همه چیز بر اساس اثبات رمزنگاری ۲ پایه گذاری شده است. مشکل ریشهای پولی که در حال حاضر استفاده می کنیم، اعتمادیست که برای عملكرد آن لازم است. براى حفظ ارزش پول راهی جز اعتماد به بانک

¹ e-cash 2 Crypto Proof

مرکزی نداریم. اما تاریخ پول فیات پر از موارد نقض این اعتماد است. برای نگهداری و انتقال الکترونیکی پولهای مان باید به بانک اعتماد کنیم، اما بانکها روش بانکداری ذخیره کسری را اجرا می کنند و آن را در موجهای حباب اعتبار، به شکل اعتبار قرض میدهند. ما باید درمورد حریم خصوصی خود به آنها اعتماد کنیم. به آنها اعتماد كنيم تا اجازه ندهند سارقان اطلاعات شخصی حساب ما را خالی كنند. هزينه هاى كلان آنها پرداختهای خُرد را غیرممکن می کند.

نسل قبلی سیستمهای کامپیوتری چند کاربره قبل از پدید آمدن رمزنگاری قوی با چنین مشکلی روبرو بودند و کاربران برای حفظ امنیت فایلهای خود متکی به کلمه عبور ۱ بودند [...]

سپس رمزنگاریهای قوی ایجاد شدند و دردسترس همه قرار گرفتند و نیاز به اعتماد از بین رفت. دادهها می توانستند به نحوی ایمن شوند که به صورت فیزیکی برای هیچ کس، صرف نظر از دلیل و بهانه آنها، قابل دستیابی نباشند.

حالا زمان آن فرا رسیده است که این اتفاق برای پول نیز رخ دهد؛ با پول الکترونیکی براساس اثبات رمزنگاری، بدون نیاز به اعتماد به شخص سوم یا

¹ Password

² e-currency

یک واسطه، به صورت امن و بدون دردسر. [...]

راه حل بیت کوین برای جلو گیری از دوبار خرج کردن استفاده از یک شبکه نظیر به نظیر است. به طور خلاصه این شبکه شبیه به یک سرور زمانسنج توزیع شده کار می کند که اولین تراکنش را برای خرج کردن یک کوین(سکه) ۴ برچسب زمانی می زند. این روش از ویژگی اطلاعات بهره می برد؛ به آسانی منتشر می شود ولى سركوب آن دشوار است.

¹ Double Spend

² Distributed timestamp server

³ Coin

برای جزئیات بیشتر به سایت http://www.bitcoin.org/

- ساتوشى ناكاموتو

زمانی که بیت کوین راهاندازی شد، تعداد انگشتشماری از آن استفاده کردند. آنها شبکه بیت کوین را روی کامپیوترهای شان (که به آن نود می گویند) اجرا کردند تا شبکه قدر تمند تر شود. بیشتر افراد فکر می کردند بیت کوین شبیه به یک شوخی است و در آینده نقایص جدی در آن پیدا خواهد شد و نمی تواند موفق شود.

¹ Node

در طول زمان افراد بیشتری به شبکه بیت کوین پیوستند، از کامپیوترهای شان برای افزایش امنیت شبکه استفاده کردند و با مبادله بیت کوین با کالا، خدمات، یا ارزهای دیگر، ارزش بیشتری به آن دادند. امروز، بیش از ۱۰ سال از ارائه بیت کوین می گذرد. میلیونها نفر از بیت کوین استفاده می کنند، دهها تا صدها هزاران نود نرمافزار رایگان و متنباز آن را اجرا می کنند، و کُد آن توسط صدها داوطلب و شرکت مختلف در سراسر جهان در حال بهبود و توسعه است.

بیت کوین اختراعی نبود که بدون هیچ پیشزمینهای ساخته شود. در مقاله معرفی آن که ساتوشی ارائه داد، به چندین تلاش مهم برای ایجاد سیستمهای مشابه بیت کوین اشاره شده است، مثل بی-مانی که توسط وی دای و هش کش که توسط آدام بک معرفی شد. اختراع بیت کوین براساس چنین تلاش هایی صورت پذیرفت ولی با این حال بیت کوین به عنوان اولین سیستم غیرمتمر کزی که برای خلق و جابه جا کردن پول دیجیتال، تحت کنترل هیچ شخص یا نهادی نیست، اساساً بر اساس طرح ساده ای کار می کند.

بیت کوین چه مشکلی را حل می کند؟

براساس این کتاب، میخواهیم ببینیم چطور نظرات ساتوشی پیادهسازی شدهاند. اگر

¹ b-money

² Wei Dai

³ Hashcash

⁴ Adam Back

متوجه مفاهیم ناآشنای این بخش نشدید نگران نباشید، هدف اصلی، آشنا شدن با اهداف ساتوشی است. در ادامه بحث از طریق تمرین و مثالهای مختلف، این مفاهیم ناآشنا را هم متوجه خواهید شد. من یک پول دیجیتالی نظیر به نظیر و متن باز ایجاد کردهام

اینجا منظور از نظیر به نظیر همان بدون واسطه است، به این معنا که در یک سیستم هر کسی می تواند بدون هیچ واسطه ای با شخص دیگر ارتباط برقرار کند. شما ممکن است نمونه هایی از سیستم های اشتراک گذاری فایل مثل نیستر ۱، کازا۲، و بیت تورنت برای اولین بار این قابلیت را برای اولین بار این قابلیت را برای

¹ Napster

² Kazaa

³ BitTorrent

کاربرانش فراهم کرد که بدون نیاز به دانلود یک موزیک از یک وبسایت قادر باشند آن را با یکدیگر به اشتراک بگذارند. ساتوشی در طراحی بیت کوین این امکان را ایجاد کرده است که افراد بتوانند پول دیجیتال را بدون واسطه با هم مبادله کنند.

نرمافزار آن، متن باز است، یعنی هرکسی می تواند به کدهای نرمافزار دسترسی داشته باشد و چگونگی کارکرد آن را ببیند و حتی تغییراتی در آن ایجاد کند. این مورد از این جهت حائز اهمیت است که حتی نیاز به اعتماد به ساتوشی را هم از بین می برد. لازم نیست هر آنچه که ساتوشی در توصیف نرمافزار گفته است را باور کنیم، می توانیم با بررسی کُد همه چیز را متوجه شویم و اگر بررسی کُد همه چیز را متوجه شویم و اگر

¹ e-cash

چیزی باب میل ما نبود آن را تغییر دهیم. (در این مورد بیشتر صحبت خواهیم کرد.)

کاملا غیرمتمر کز است و نیازی به یک سرور مرکزی یا اعضای معتمد ندارد

ساتوشی ذکر می کند که سیستم غیرمتمر کز است تا آن را از سیستمی که نیاز به یک مرکز کنترل دارد متمایز کند. در تلاشهای قبل برای ساختن پول دیجیتال، مثل دیجی کش که در سال ۱۹۸۹ توسط دیوید چاوم ارائه شد، به یک سرور مرکزی شامل یک یا چند کامپیوتر نیاز بود که مسئول تایید پرداختها و خلق پول دیجیتال بودند و توسط یک شرکت مشخص اداره می شدند.

¹ DigiCash

² David Chaum

این پولهای خصوصی که برای خلق و مدیریت پول تحت نظارت یک شرکت مرکزی فعالیت می کردند، محکوم به شکست بودند. افراد نمی توانند به پولی اعتماد کنند که درصورت توقف فعالیت یک شرکت به خصوص، یا هَک شدن، خرابی سرورها، یا تعطیلی آن توسط دولت، از بین برود.

ماهیت غیرمتمر کز بیت کوین مفهوم پول نقد را به حوزه دیجیتال بازمی گرداند: می توان آن را بدون نیاز به صحبت کردن با کسی، یا اجازه گرفتن از کسی، در تمام طول شبانهروز و تمام ۳۶۵ روز سال، بدون نیاز به مراجعه به هیچ نهاد مرکزی مورد اعتمادی، منتقل کرد.

به جای اعتماد همه چیز بر مبنای اثبات رمزنگاری است

بیت کوین چگونه نیاز به اعتماد را از بین می برد؟ درباره این موضوع در فصلهای بعد صحبت خواهیم کرد، اما ایده اصلی این است که به جای اعتماد کردن به شخصی که ادعا می کند «آیدا» است و ۱۰هزار تومان در حساب بانکی خود دارد، می توان از محاسبات رمزنگاری برای اثبات این ادعا استفاده کرد، به نحوی که انجام آن ساده باشد. این قابلیت اساس سیستم بیت کوین است که هم مالکیت پول و هم امنیت شبکه را تأمین می کند.

درمورد حریم خصوصی باید به بانکها اعتماد کنیم تا از موجودی حساب ما در

¹ Crypto proof

مقابل سارقان اطلاعات شخصی محافظت کنند و اجازه ندهند آنها حساب ما را خالی کنند

بیت کوین برخلاف حسابهای بانکی، سیستمهای پرداخت دیجیتال، یا کارتهای اعتباری به افراد اجازه میدهد بدون نیاز به ارائه اطلاعات شخصی با هم دادوستد کنند.

مراکز اطلاعات متمرکزی که اطلاعات مشتریان بانکها، شرکتهای کارت اعتباری، سیستمهای پرداخت، و دولتها در آنها ذخیره می شود برای هکرها بسیار جذاب هستند. هک شدن شرکت اعتباری اکوئیفکس در سال ۲۰۱۷ و قرارگرفتن اطلاعات ۱۴۰ میلیون نفر در دست هکرها گواهی بر این سخن ساتوشی است.

¹ Equifax

هدف بیت کوین جدا کردن تراکنشهای مالی از هویت افراد در دنیای واقعی است. وقتی پول نقدی پرداخت می کنیم، نیازی نیست طرف مقابل از هویت ما مطلع شود، همچنین جای نگرانی نیست که از اطلاعاتی که به آنها دادهایم بتوانند برای سرقت پول بیشتر استفاده کنند. چرا از پول دیجیتال همین انتظار و یا حتی بیشتر از این را نداشته باشیم؟

برای حفظ ارزش بول باید به بانکهای مرکزی اعتماد کنیم، اما سرگذشت بولهای فیات بر از موارد نقض این اعتماد است

فیات ابه لاتین یعنی «تعیین شده» و درواقع پولی است که دولت و بانک مرکزی منتشر می کنند و توسط دولت به عنوان پول قانونی

¹ Fiat

تعیین می شود. در گذشته پول توسط افراد فعال بازار و از بین چیزهایی انتخاب می شد که به دست آوردن آنها سخت ولی تایید صحت و نیز جابه جا کردن آنها آسان بود، مثل نمک، صدف، سنگ، نقره و طلا.

رفته رفته در کل دنیا بهجای استفاده از طلا به عنوان پول، از یک تکه کاغذ استفاده شد که درواقع گواهی کننده وجود طلا بود. درنهایت این تکه کاغذ در سال ۱۹۷۱ توسط نیکسون از هر گونه پشتوانه فیزیکی جدا شد و امکان تبدیل آن به طلا در همه جهان متوقف شد. با پایان پول طلا، دولتها و بانکهای مرکزی اجازه پیدا کردند تا عرضه پول را به میل خود افزایش دهند. این امر باعث كاهش ارزش اسكناسهاي

² Nixon

³ Gold Standard

درگردش شد که تحت عنوان کاهش ارزش پول شناخته می شود. فیات پولی است که همه ما آن را می شناسیم و هرروز از آن استفاده می کنیم. اگرچه این پول تحت حمایت دولت است اما پشتوانه ارزشمندی ندارد و درواقع مفهوم نسبتاً جدیدی است که حدود یک قرن قدمت دارد.

ما به دولتهای خود اعتماد می کنیم که از چاپخانه های پول خود سوءاستفاده نمی کنند ولی برای پیدا کردن بدعهدی های آنان نیازی نیست خیلی به گذشته برگردیم. در رژیم های استبدادی و با برنامه ریزی متمر کز سوسیالیستی مثل ونزوئلا که دولت انگشت خود را مستقیماً روی دستگاه چاپ پول می گذارد، پول تقریباً بی ارزش شده است.

³ Debasement

نرخ تبدیل بولیوار ونزوئلا از ۲ واحد در مقابل هر دلار در سال ۲۰۰۹ به ۲۵۰٬۰۰۰ واحد در سال ۲۰۱۹ به ۲۰۱۹ شرمان نگارش واحد در سال ۲۰۱۹ رسید. در زمان نگارش این کتاب ونزوئلا به دلیل سوء مدیریت سرمایه توسط دولت در مرحله سقوط و تغییر رژیم است.

برخلاف پول فیات که عرضه و ارزش آن قابل پیشبینی نیست، ساتوشی برای جلوگیری از کم ارزش شدن، نوعی سیستم پولی طراحی کرد که در آن حجم پول ثابت، از قبل مشخص شده، و غیرقابل تغییر است. نهایتا ۲۱ میلیون بیت کوین نیز می تواند به خواهد شد و هر بیت کوین نیز می تواند به واحد تقسیم شود که به هر واحد آن ساتوشی گفته می شود.

¹ Satoshi

قبل از بیت کوین داراییهای دیجیتال کم نبودند. در دنیای دیجیتال کپی کردن یک کتاب، فایل صوتی یا ویدیو و ارسال آن به دیگران بسیار ساده است، ولی داراییهای دیجیتالی که توسط یک واسطه کنترل می شوند مستثنی هستند و نمی توان آنها را كپى يا ارسال كرد. براى مثال وقتى فيلمى را از آیتونز اجاره می کنید فقط و فقط در دستگاه شما قابل پخش است؛ چراکه آیتونز این مسئله را کنترل می کند و می تواند با اتمام زمان اجارهی شما پخش آن را متوقف کند. به طور مشابه پول دیجیتال شما هم توسط بانک کنترل می شود. این وظیفه بانک است که مقدار پول شما را ثبت کند و درصورت انتقال به شخص دیگر تراکنش را تایید یا رد کند.

¹ iTunes

بیت کوین اولین شبکه دیجیتالی است که کمیابی دیجیتال را بدون نیاز به هر گونه واسطهای پیاده کرده و تنها دارایی شناخته شده برای انسان است که حجم آن غيرقابل تغيير و عرضه آن كاملا برنامهریزی شده است. حتی فلزات گرانبهایی مانند طلا نیز این قابلیت را ندارند؛ چراکه می توانیم ذخایر طلای بیشتر و بیشتری را با نرخ غیرقابل پیش بینی استخراج کنیم. در قسمتهای بعد به چگونگی آن خواهیم پرداخت.

دادهها می توانند به نحوی ایمن شوند که دسترسی فیزیکی به آنها برای هیچکس ممکن نباشد [...] وقت آن فرا رسیده است پولی با چنین قابلیتی داشته باشیم

سیستمی که در حال حاظر برای امنیت پول وجود دارد، مثل سپرده گذاری در بانک، براساس اعتماد به شخصی است که این کار را انجام می دهد. در اعتماد به چنین واسطهای نه تنها باید اطمینان داشته باشیم که کار اشتباه یا نادرستی توسط این واسطه انجام نمی شود و هکرها سرمایه مان را نمی دز دند، بلکه باید مطمئن باشیم که دولت نیز پول ما را مصادره یا بلو که نخواهد کرد. با این وجود در سراسر جهان بارها و بارها مشاهده شده است که دولتها اگر احساس خطر کنند می توانند مانع دسترسی افراد به پول خود شوند.

شاید برای فردی که در امریکا یا در یک اقتصاد قانونمند زندگی می کند از دست رفتن پول به این صورت احمقانه به نظر

برسد. به عنوان مثال حساب من در پی پال به دلیل استفاده نکردن از آن بلوکه شد و حدود یک هفته زمان برد تا بتوانم به پول خودم دسترسی پیدا کنم. من خوششانس هستم که در ایالات متحده زندگی می کنم؛ چراکه یکی از معدود کشورهایی است که حداقل می توانم امیدوار باشم اگر پی پال پول من را بلوکه کند، می شود به یک مرجع قانونی مراجعه کرد و همینطور می توان به دولت و بانک اطمینان داشت که پول کسی را سرقت نمی کنند.

موارد بدتری در بعضی کشورها که از آزادی کمتری برخوردارند رخ داده است و همچنان رخ میدهد، مثل اینکه بانکها در یونان هنگام سقوط ارزش پول ملی بسته شدند، یا اینکه بانکها در قبرس با دزدی از

مشتریان خود از و ثیقه ها سوءاستفاده می کردند، یا دولت هند که اسکناسهای مشخصی را بی ارزش اعلام کرد و باعث ایجاد صف های طولانی مقابل خود پردازهای بانک ها و درنهایت منجر به مرگ بعضی افراد صرفاً بخاطر عدم دسترسی به سرمایه شان شد.

شوروی سابق، جایی که من بزرگ شدم، دارای یک اقتصاد به شدت کنترل شده مرکزی بود که باعث کمبود کالاها می شد. زمانی که می خواستیم آنجا را ترک کنیم هرنفر تنها می توانست مقدار محدودی پول را با نرخ ارز رسمی ای که دولت تعیین کرده بود و کاملا متفاوت از نرخ واقعی در بازار آزاد بود، به دلار تبدیل کند.

بیت کوین سیستمی ایجاد کرده است که در آن برای تأمین امنیت پول نیازی به اعتماد به شخص سوم نیست. در این سیستم با استفاده از کلیدهای خاصی که تنها در اختیار شما قرار دارد از دسترسی دیگران به کوینهای شما جلوگیری می شود. مهم نیست افراد مختلف چه دلایلی برای دسترسی به حساب شما دارند، در هر صورت دسترسی به دارایی شما فقط از طریق شما ممکن است.

بیت کوین پول را از دولت جدا می کند و موجب مهار قدرت خود کامه گان و دیکتاتورها می شود و حق در دست داشتن اختیار دارایی، و آزادی در نقل و انتقال آن و رای مرزهای جغرافیایی بدون دخالت هیچ فردی را به مردم بازمی گرداند.

راه حل بیت کوین برای جلو گیری از دوبار خرج کردن استفاده از یک شبکه نظیر به نظیر است. به طور خلاصه این شبکه شبیه به یک سرور زمان سنج توزیع شده کار می کند که اولین تراکنش را برای خرج کردن یک کوین (سکه) برچسب زمانی می زند

یک شبکه به مجموعهای از کامپیوترها گفته می شود که به هم متصل شده اند و می توانند به یکدیگر پیام ارسال کنند. کلمه توزیع شده به این معنا است که بدون وجود یک کنترل کننده مرکزی، تمامی اعضای شبکه با هم در تعامل هستند تا شبکه را ایجاد کنند.

¹ Double Spend

² Distributed timestamp server

در یک سیستم بدون کنترل مرکزی، اطمینان از اینکه هیچیک از اعضا تقلب نمی کنند حائز اهمیت است. اصطلاح «دوبار خرج کردن» به این معنا است که یک كوين توسط يك فرد دوبار خرج شود. ساتوشی می گوید برای پیشگیری از این اتفاق، اعضای شبکه بیت کوین با هم همکاری می کنند تا تراکنشها را برچسب زمانی بزنند (یعنی براساس زمان اعلام به شبکه مرتب شوند). با این روش می توانیم بفهمیم کدام تراکنش اول انجام شده است و از جعل پول جلوگیری میشود. در فصل بعد این سیستم را از ابتدا بررسی خواهیم کرد. سیستم این قابلیت را دارد که بدون وابستگی به یک نهاد مرکزی، تراکنشهای جعلی را شناسایی کند.

اختراع بیت کوین شماری از مشکلات مهمی که در سیستمهای رایج مالی در زمینه حریم خصوصی، کاهش ارزش پول و کنترل مرکزی با آنها دست به گریبان هستیم را حل کرده است. مشکلاتی از قبیل:

- ۱. چگونه یک شبکه نظیر به نظیر ایجاد
 کنیم که هر کس بتواند داوطلبانه به آن
 متصل و عضوی از آن شود.
 ۲. چگونه یک گروه از افراد که یکدیگر
- جگونه یک گروه از افراد که یکدیگر
 را نمی شناسند یا اعتمادی به هم ندارند
 می توانند اطلاعات ارزشمندی را با هم به
 اشتراک بگذارند؛ چراکه ممکن است بین
 آنها افراد متقلب نیز وجود داشته باشد.
 - ۳. چطور بدون واسطه، یک کمیابی دیجیتال واقعی بسازیم.

۴. چگونه یک دارایی دیجیتال ایجاد کنیم که قابل جعل کردن نباشد، اصالت آن به صورت آنی تأیید شود، و در برابر هک و سرقت مقاوم باشد.

بیایید فکر کنیم چطور می توانیم چنین سیستمی بسازیم.

فصل دوم

حذف واسطهها

در فصل قبل گفته شد که بیت کوین یک سیستم نظیر به نظیر برای انتقال پول است. بیایید قبل از اینکه این مورد را بررسی کنیم، گذری بر نحوه عملکرد بانکهای سنتی و سیستمهای پرداخت در بررسی مالکیت و انتقال پول داشته باشیم.

بانکها چیزی جز یک دفترکل حسابداری^۱ نیستند

یک سیستم پرداخت که توسط بانک یا پی پال ویا اپل پی ساخته شده است، چگونه کار می کند؟ خیلی ساده؛ این واسطه ها یک دفتر کل حسابداری حاوی اطلاعات حسابها و نقل و انتقالات آنها دارند.

در این مثال از لفظ بانک استفاده می شود ولی منظور هرنوع سیستم پرداخت است. با یک دفتر کل حسابداری حاوی اطلاعات سپرده «آیدا» و «بابک» در بانک شروع می کنیم.

¹ Ledger

دفتر کل بانک

آیدا: سپرده نقدی +۲۰۰هزار تومان
 بابک: سپرده نقدی +۲۰۰۰هزار تومان

وقتی آیدا میخواهد ۲۰.ت برای بابک بفرستد با بانک خود تماس می گیرد یا با استفاده از نام کاربری و رمز عبور به اینترنت بانک یا موبایل بانک خود وارد می شود و سپس درخواست این انتقال وجه را در سیستم بانک وارد می کند. بانک هم این درخواست را در دفتر کل حسابداریاش ثبت می کند.

دفتر کل بانک

۱. آیدا: سیرده نقدی ۲۰+ هزارتومان

۲. بابک: سپرده نقدی ۱۰۰+ هزار تومان
۳. آیدا: کسر موجودی ۲۰- هزار تومان
۴. بابک: افزایش موجودی ۲۰+
هزار تومان

بانک تمامی واریزها و برداشتها را ثبت می کند و به همین سادگی پول جابهجا می شود.

سیستم متمرکز

مشكل دوبار خرج كردن

حال اگر آیدا بخواهد آن ۲۰.ت را دوباره خرج کند چه اتفاقی میافتد؟ به این اتفاق «دوبار خرج کردن» می گویند. آیدا درخواست خود را به بانک ارسال می کند، اما بانک می گوید: «شما قبلا ۲۰.ت خود را به حساب بابک واریز کردهاید و پولی ندارید.»

وقتی یک مرجع مرکزی مثل بانک وجود دارد، برای بانک بسیار ساده است که بگوید پولی را که قصد برداشت آن را دارید قبلا برداشت شده است؛ چراکه بانک تنها مرجعی است که دفتر کل را ویرایش می کند، همچنین بانکها در سیستم داخلی خود دارای سیستمهای پشتیبان گیری و

حسابرسی دستی و کامپیوتری هستند تا اطمینان حاصل شود که اطلاعات درست است و دستکاری نشده است. به چنین سیستمهایی متمرکز گفته می شود؛ چراکه فقط از یک نقطه کنترل می شوند.

بیایید دفتر کل را غیرمتمر کز کنیم

اولین مشکلی که بیت کوین قصد حل آن را دارد حذف واسطهی معتمد با استفاده از یک شبکه نظیر به نظیر است. تصور کنید که بانک ها از بین رفته اند و ما باید سیستم مالی خودمان را ایجاد کنیم اما این بار قرار نیست متمر کز باشد. چگونه بدون یک مرجع مرکزی می توان از دفتر کل نگهداری کرد؟

اگر دفترکل یک مسئول نداشته باشد، باید در اختیار همه قرار بگیرد. راه ایجاد یک دفترکل غیرمتمرکز هم همین است.

ابتدا تعدادی از ما کنار هم جمع میشویم و یک شبکه ایجاد می کنیم، به این معنا که راهی برای ارتباط با هم داریم. درواقع شماره تماس و حساب تلگرام هم را با یکدیگر ردوبدل می کنیم. وقتی آیدا قصد دارد پولی برای بابک ارسال کند، بهجای تماس با بانک، در تلگرام به همه دوستان خود می گوید: «من ۲۰.ت به حساب بابک واریز می کنم. » همه تصدیق می کنند که این پیغام را دیدهاند و پاسخ میدهند: «بله، ما پیغام را گرفتیم» و در دفتر کلای که نزد خود دارند این جابهجایی را یادداشت

مى كنند. حالا سيستم به شكل زير درخواهد آمد:

سیستم غیرمتمرکز

اکنون به جای اینکه فقط یک دفتر کل داشته باشیم و از آن در بانک نگهداری کنیم، یک نسخه از دفتر کل دردست هر یک از اعضای شبکه و جود دارد. هر زمانی که کسی قصد خرج کردن پول خود را داشته باشد، به آسانی به همه دوستان خود در تلگرام اطلاع می دهد و یا با آن ها تماس می گیرد و آنها را مطلع می کند. همه افراد

عضو شبکه این تراکنش را ثبت می کنند.
این سیستم توزیع شده است چون دفتر کل در اختیار همه اعضای شبکه است و غیرمتمر کز است چون مسئولیت آن تنها بر عهده یک مرجع مرکزی نیست.

این سیستم چگونه مشکل دوبار خرج کردن را حل می کند؟ از آنجایی که همه افراد شبکه یک نسخه از دفتر کل حسابداری را نزد خود دارند، اگر آیدا بخواهد آن ۲۰.ت را که برای بابک ارسال کرده است دوباره خرج کند، این تراکنش توسط همه در شبکه رد میشود؛ چراکه هرکس دفتر کل خود را بررسی می کند و به آیدا می گوید براساس چیزی که ثبت شده او قبلا این پول را خرج کرده است.

اکنون ما یک شبکه نظیر به نظیر داریم که مالکیت و نقلوانتقالات مالی بین اعضایش را ثبت می کند. این سیستم بین گروهی از دوستانی که به دلایل اجتماعی رابطه نزدیکی با هم دارند و قصد تقلب ندارند، بسیار خوب عمل می کند، اما در مقیاس بزرگتر کارآمد نخواهد بود. هرچه تعداد اعضای این شبکه بیشتر شود، احتمال تقلب هم بیشتر خواهد بود.

چطور می توانیم جلوی بروز تقلب را بگیریم؟

فصل سوم

حذف اعتماد و حذف نیاز به کسب مجوز

تا زمانی که شبکه ما خصوصی باشد و هرکس برای پیوستن به دفتر حساب توزیع شده ای که پیشتر درباره آن صحبت کردیم نیازمند به اجازه گرفتن باشد و بنابراین ما بتوانیم به صداقت همه اعضا اعتماد کنیم، این سیستم به درستی عمل خواهد کرد. اما از این روش نمی توان برای میلیون ها نفر در سراسر جهان استفاده کرد.

سیستمهای توزیع شدهای که هرکس می تواند در آنها عضو شود، ذاتا قابل اعتماد نیستند. ممكن است بعضى از اعضاء بهطور موقت به شبکه دسترسی نداشته باشند (آفلاین باشند)، و این یعنی آنها در این مدت که به شبکه متصل نیستند از تراکنشهایی که در شبکه انجام مىشود اطلاع نخواهند داشت. برخى دیگر ممکن است با تأیید یا رد وقوع یک تراكنش قصد تقلب داشته باشند. ممكن است افراد جدیدی به شبکه بپیوندند و نسخههای متناقضی از دفتر کل حسابداری را دریافت کنند. بیایید به روش تقلب در این سیستم نگاهی بیندازیم.

دوبار خرج کردن

اگر من آیدا باشم، می توانم با گروهی از اعضاء شبکه تبانی کنم و به آنها بگویم: «زمانی که من پولی را خرج می کنم آن را در دفتر خود ثبت نکنید؛ وانمود کنید که هرگز اتفاق نیفتاده است». به این شکل آیدا می تواند پولش را دوبار خرج کند. آیدا با موجودی ۲۰.ت به این صورت عمل می کند:

- ۱. او ۲۰ه.ت از حساب خود برای خرید آبنبات به حساب بابک انتقال می دهد. حالا باید موجودی او صفر باشد.
 - داوود و آوا و فرانک با آیدا تبانی
 کردهاند و تراکنش آیدا به بابک را در
 دفتر حسابداری خود ثبت نمی کنند. در

نسخهای که نزد آنها است آیدا هرگز پولی به بابک پرداخت نکرده است.

۳. فرزین یک فرد قابل اعتماد است که یک نسخه از دفتر کل را دارد. او تراکنش آیدا به بابک را ثبت می کند و حالا در دفتر کل او موجودی آیدا صفر است.

جمید یک هفته در تعطیلات بوده است و از هیچیک از تراکنشها اطلاعی ندارد. او به شبکه متصل می شود و تقاضای یک نسخه از دفتر حسابداری را می کند.

۵. حمید چهار نسخه نادرست از داوود و آوا و فرانک و آیدا، و یک نسخه صحیح از فرزین دریافت می کند. او چطور متوجه شود که کدام یک صحیح است؟ چون سیستم بهتری وجود ندارد، به آنچه چون سیستم بهتری وجود ندارد، به آنچه

که در اکثریت دفاتر وجود دارد اعتماد می کند و نسخه نادرست را به عنوان نسخه ضحیح قبول می کند.

۶. آیدا با آن ۲۰،ت (که قبلاً خرج
کرده) یک آبنبات از حمید میخرد.
حمید این پول را از او میپذیرد چراکه
براساس دانسته هایش آیدا هنوز ۲۰،ت
در حساب خود دارد (براساس نسخهای
که از اکثریت گرفته است).

۷. حالا آیدا دو آبنبات دارد و ۴۰.ت
پول جعلی در سیستم ایجاد کرده است. او از این آبنباتها به دوستان خود می دهد و لطف آنها را جبران می کند، و آنها نیز این کار را صدها بار برای هرشخص جدیدی که به شبکه متصل می شود،
تکرار می کنند.

۸. حالا آیدا صاحب همه آبنباتها است و بقیه اعضاء پولهای تقلبی دارند.
 ۹. افرادی که پول تقلبی از آیدا دریافت کردهاند، وقتی بخواهند آن را خرج کنند، آوا و فرانک و داوود که کنترل بیشتر شبکه را در اختیار دارند، این تراکنش را رد می کنند چون میدانند که پول اساساً جعلی است.

اینجا مشکل عدم توافق بین اعضا بوجود می آید. افراد در یک شبکه درمورد نسخه صحیح دفتر کل حسابداری با یکدیگر توافق ندارند؛ چون چارهای جز پیروی از رأی اکثریت نیست. درحالی که اکثریت افرادی که کنترل شبکه را دردست دارند متقلب

¹ Consensus failure

هستند و پولهای تقلبی که از هیچ خلق کردهاند را خرج می کنند.

اگر بخواهیم سیستمی راه بیندازیم که عضویت در آن نیاز به اعتماد و کسب اجازه نداشته باشد، باید طوری آن را طراحی کنیم که در برابر افراد سودجو و متقلب مقاوم باشد.

حل مشكل اجماع غيرمتمركز١

حالا باید یکی از سخت ترین مسائل در علم کامپیو تر را حل کنیم: اجماع غیرمتمر کز بین افرادی که بعضی از آنها متقلب و غیرقابل اعتماد هستند. این مشکل تحت

¹ Distributed Consensus Problem

عنوان فرماندهان بیزانسی شناخته می شود و اصلی ترین چیزی است که ساتوشی در اختراع بیت کوین از آن استفاده کرده است. بیایید این موضوع را بررسی کنیم.

ما باید سیستم را طوری پیاده کنیم که اعضای این شبکه روی موارد ثبت شده در دفتر کل حسابداری با هم به توافق برسند، بدون اینکه نیاز باشد بدانیم دارنده کدام دفتر کل تمام تراکنشها را به درستی ثبت کرده است.

یک راه حل ساده لوحانه این است که یک فرد مورد اعتماد را برای نگهداری از دفتر کل تعیین کنیم. به جای اینکه همه ی اعضا تراکنش ها را ثبت کنند، تعداد

¹ Byzantine Generals

انگشتشماری از دوستان مورد اعتماد مثل فرزین و کامبیز و فرانک و فیروزه را انتخاب كنيم تا تمام تراكنشها را ثبت كنند چون مىدانيم آنها متقلب نيستند. بنابراین هر زمانی که بخواهیم تراکنشی انجام دهیم بهجای اطلاعرسانی به همه دوستانمان، فقط به فرزین و گروه منتخب او خبر می دهیم و آنها هم در ازای دستمزد ناچیزی، دفتر کل را بهروز و از آن نگهداری می کنند. بعد از اینکه آنها تراکنش را ثبت کردند با همه اعضایی که دفتر کل را به عنوان پشتیبان نگهداری می کنند، تماس می گیرند و ورودی های جدید دفتر کل را به اطلاع آنها می رسانند.

این سیستم به خوبی کار می کند، تا روزی که ماموران دولتی وارد ماجرا میشوند و میخواهند بدانند چه کسانی این سیستم مالی را می گردانند. آنها فرزین و گروه منتخب را دستگیر می کنند و این پایانی برای دفتر کل حسابداری غیرمتمر کز ما خواهد بود. نسخههای پشتیبان نزد اعضای شبکه قابل اعتماد نیستند و به یکدیگر نیز نمی توانیم اعتماد کنیم. حتی نمی دانیم برای شروع دوباره این سیستم باید از نسخه پشتیبان چه کسی استفاده کنیم.

دولت می تواند به جای تعطیل و خاموش کردن این سیستم، افرادی که از دفتر کل نگهداری می کنند را در خفا تهدید به بازداشت کند و آنها را مجبور کند تراکنشهای آیدا (که مشکوک به فروش مواد مخدر است) را در شبکه نپذیرند و در دفتر کل حسابداری ثبت نکنند. در این

صورت سیستم ما درواقع تحت کنترل مرکزی است و دیگر نمی توان آن را بی نیاز از مجوز خواند.

چطور است روش دمو کراسی را امتحان کنیم؟ یک جمع ۵۰ نفره از افراد قابل اعتماد را مشخص می کنیم، و هر روز به صورت چرخشی انتخابات برگزار می شود که کدامیک از آنها تراکنشها را در دفتر حسابداری ثبت کند. هر عضو شبکه یک رای خواهد داشت.

این سیستم تا زمانی که کار به خشونت و اعمال فشار مالی نکشد، خوب کار می کند. در غیر این صورت پایان مشابهی با روشهای گذشته خواهد داشت:

- ۱. تهدید رای دهندگان برای انتخاب فرد مورد نظر دولت
 - تهدید رای آورندگان برای ثبت
 تراکنشهای جعلی در دفتر حسابداری

مشکل این است، وقتی اشخاص خاصی برای نگهداری از دفتر کل حسابداری تعیین می شوند، باید صادق و قابل اعتماد باشند و از طرف مقابل ما راهی برای دفاع دربرابر کسانی که آنها را مجبور به انجام کارهای نادرست می کنند، نداریم.

هویت جعلی و حمله سیبیل ا

تاكنون دو روش ناموفق براى حصول اطمینان از درستی شبکه را بررسی کردیم: استفاده از افراد شناخته شده برای نگهداری از دفتر کل، و دیگری انتخاب گزینشی و چرخشی نگهدارندگان آن. شکست هردو سیستم به این دلیل بود که اساس اعتماد ما، به هویت افراد در دنیای واقعی گره خورده بود: همچنان مجبور بودیم که افراد را به طور خاص برای نگهداری از دفتر کل شناسایی کنیم.

هروقت اعتماد بر پایه هویت افراد باشد ما خود را در معرض حمله سیبیل قرار خواهیم داد. این اسم درواقع یک اصطلاح برای جعل

¹ Sybil attack

هویت است؛ و نام زنی است که دچار اختلال چندشخصیتی بود.

آیا تابه حال یک پیام عجیب از دوستی دریافت کردهاید و بعد متوجه شوید که گوشی دست برادرش بوده است؟ وقتی صحبت از میلیونها و یا حتی میلیاردها دلار باشد، هر کسی ممکن است برای دزدیدن و ارسال آن پیام دست به هرنوع تقلب و خشونتی بزند. بنابراین، بسیار با اهمیت است که در برابر تهدیدها از افرادی که از دفتر کل نگهداری می کنند، محافظت کنیم، اما چطور؟

بیایید یک قرعه کشی ترتیب دهیم

اگر نخواهیم کسی در معرض تهدید به خشونت و رشوه قرار بگیرد، به سیستمی نیاز داریم که تعداد اعضای آن زیاد باشد، در این صورت هیچ کس نمی تواند آنها را تحت فشار قرار دهد. این سیستم باید به گونهای باشد که هرکسی بتواند در آن عضو شود و رأی گیری در کار نباشد؛ چراکه در روش رای گیری مشکلات خرید رأی افراد و اعمال خشونت و تهدید برای تغییر رأی آنها وجود دارد.

اگر یک قرعه کشی ترتیب دهیم و هربار یک شخص تصادفی را انتخاب کنیم چه؟ این اولین پیشنویس طرح است:

- هرکسی در دنیا می تواند عضو سیستم باشد. ده ها هزار نفر می توانند به قرعه کشی نگه دارندگان دفتر کل در شبکه بپیوندند.
- زمانی که قصد ارسال پول داریم تمام شبکه را از این امر مطلع می کنیم، همان طور که قبلاً هم می کردیم.
 هر ۱۰ دقیقه یک برنده انتخاب می شود.
- ۲. زمانی که برنده انتخاب شد، آن شخص باید تمام تراکنشهایی را که اتفاق میافتد در دفتر کل ثبت کند.
 ۵. اگر شخص برنده فقط تراکنشهای معتبر را در دفتر کل ثبت کند (سایر اعضا نیز باید اعتبار آن را تایید کنند) مبلغی به عنوان کارمزد به او تعلق می گیرد.

۶. هرکس یک نسخه از دفتر کل نزد خود دارد و اطلاعاتی که برنده قرعه کشی ارائه می دهد را به آن اضافه می کند.
۷. فاصله زمانی میان دو قرعه کشی ۱۰ دقیقه تعیین شده است تا مطمئن شویم افراد، زمان کافی برای به روزرسانی دفتر کل خود دارند.

این سیستم پیشرفته تر است؛ چراکه به دلیل نامشخص بودن برنده بعدی، زدوبند با اعضای سیستم ممکن نیست. اما باز هم اشکالاتی وجود دارد. چه اشکالاتی؟

سیستم خود کار قرعه کشی

این سیستم قرعه کشی دو مشکل اساسی دارد:

چه کسی بلیت قرعه کشی را می فروشد و برنده را انتخاب می کند، در حالی که ما مشخص کرده ایم هیچ نوع مرجع مرکزی نباید و جود داشته باشد تا اجرای قرعه کشی به خطر نیفتد.

۲. چطور مطمئن شویم که برنده قرعه کشی واقعا تراکنشهای درست را در دفتر کل ثبت کرده است و قصد تقلب ندارد؟

اگر میخواهیم یک سیستم بدون نیاز به مجوز داشته باشیم که همه بتوانند به آن بپیوندند، باید نیاز به اعتماد را در سیستم از بین ببریم و در اصلاح، سیستم از اعتماد بینیاز باشد. باید سیستمی را ارائه دهیم که این ویژگیها را داشته باشد:

این امکان باید برای همه اعضاء
 (بهطور یکسان) وجود داشته باشد که
 شخصا بلیت قرعه کشی خودشان را ایجاد
 کنند، چون به هیچ مرجعی نمی توان
 اعتماد کرد.

بقیه اعضا باید به سادگی بتوانند با بررسی بلیت، صحت برنده شدن شما در قرعه کشی را تشخیص دهند، چون به

¹ Trustless

کسی نمی توان برای تعیین برنده ی رقابت اعتماد کرد.

۳. اگر کسی برنده قرعه کشی شد و تراکنش نامعتبری را در دفتر کل ثبت کرد، باید راهی برای تنبیه او پیشبینی شود. به این صورت به جای اعتماد به افراد خاص در شبکه، با استفاده از مکانیزمهای تشویقی و تنبیهی، اعتماد را در شبکه نهادینه می کنیم.

بیایید تک تک این موارد را حل کنیم. توضیح چگونگی انجام این قرعه کشی شاید سخت ترین چیز در فهمیدن بیت کوین باشد. برای همین، ۳ فصل بعدی را برای بررسی عمیق این مسئله درنظر گرفته ایم.

سیستمهای استاندارد قرعه کشی مثل بخت آزمایی هایی که تحت نظارت یک مرجع مرکزی برگزار میشوند، توسط یک فرد اجرا می شوند. در این سیستمها مجموعهای از اعداد و تعدادی بلیت با شمارههای تصادفی تولید میشوند. تنها یک بلیت شمارهای مشابه شماره محرمانه تولید شده توسط سازمان اداره کننده بخت آزمایی دارد. اما از آنجایی که ما نمی توانیم به هیچ مرجعی اعتماد کنیم باید اجازه دهیم هر فرد خودش اعداد تصادفی خود را تولید کند.

چطور برنده را تشخیص دهیم؟ در یک قرعه کشی بخت آزمایی مسئولان از ترکیب اعداد برنده مطلع هستند. چون ما نمی توانیم چنین شخصی را در یک سیستم غیرمتمر کز داشته باشیم، درعوض می توانیم سیستمی را

ایجاد کنیم که همه بتوانند از قبل درباره یک بازه عددی به توافق برسند. اگر عدد تصادفی شما در این بازه قرار گرفت شما برنده هستید. ما از یک روش رمزنگاری به نام هَش برای این کار استفاده می کنیم. در فصل ۴ درباره آن مفصل صحبت خواهیم کرد.

درنهایت باید راهی برای تنبیه افراد متقلب داشته باشیم. تولید اعداد تصادفی، مثل بلیت بخت آزمایی، اساسا رایگان است. چطور این را به گونهای ارائه دهیم که شما ملزم به پرداخت وجه برای خرید بلیت شوید درحالی که کسی وجود ندارد که از او بلیت بخرید؟ شما باید این بلیت را با هزینه کردن انرژی بخرید؛ منبع کمیابی که از هیچ به

¹ Hash

وجود نمی آید. در فصل ۵ این ایده شرح داده خواهد شد.

اثبات کار ۱: حل یک معمای دشوار و نامتقارن

راه حل مناسب برای این سه مشکل، به کار گرفتن روش اثبات کار است. این روش قبل از اختراع بیت کوین و در سال ۱۹۹۳ ابداع شده است.

قیمت بلیت قرعه کشی باید زیاد باشد و گرنه افراد، تعداد نامحدودی شماره بلیت تولید می کنند. چه چیزی به این اندازه قیمت دارد اما در مرکز معتبری عرضه نمی شود؟

¹ Proof of Work

در ابتدای کتاب، اشاره به نقش فیزیک و علوم دیگر در ساخت بیت کوین کردم و اینجا همان نقطهای است که فیزیک در بیت کوین نقش ایفا می کند: قانون اول ترمودینامیک می گوید انرژی نه به وجود می آید و نه از بین می رود. به بیان دیگر انرژی چیزی مثل غذای رایگان نیست. انرژی برق همیشه گران است چون یک انرژی کمیاب و هزینهبر است. برق را یا باید از تولید کنندگان آن بخرید یا نیروگاه خودتان را راهاندازی کنید. در هرصورت شما نمی توانید آن را از هیچ به وجود آوريد.

مفهوم اثبات کار بر این پایه است که شما در یک فرایند تصادفی شرکت می کنید، مثل پرتاب تاس، اما به جای شش و جه، تاس

ما به اندازه اتمهای جهان وجه دارد. برای پرتاب تاس و تولید اعداد قرعه کشی، کامپیوتر شما باید عملیات زیادی را انجام دهد که نیازمند صرف انرژی برق است.

برای برنده شدن در قرعه کشی باید یک عدد خاص را تولید کنید که به لحاظ محاسباتی آن عدد از تراکنشهایی که قرار است در دفتر کل ثبت شوند و یک عدد تصادفی، بهدست می آید (جزئیات عملکرد این موضوع در فصل آینده بررسی خواهد شد). برای رسیدن به این عدد برنده، ممکن است مجبور شوید تاس را میلیونها، میلیاردها و یا حتی بیشتر پرتاب و صدها یا هزاران دلار برای صرف انرژی هزینه کنید. چون این فرایند براساس تصادف است، برای همه این امكان وجود دارد كه بليت قرعه كشي خود

را تولید کنند؛ با استفاده از یک سختافزار یا نرمافزار و یک لیست از تراکنشهایی که باید در دفتر کل ثبت شود و بدون نیاز به یک مرجع مرکزی می توانند اعداد تصادفی تولید کنند.

حتی اگر هزاران دلار برای پیدا کردن عدد درست انرژی مصرف کرده باشید، بقیه افراد شبکه برای تأیید آن دو مسأله را بررسی می کنند:

۱. عددی که شما تولید کردهاید از آستانهای که همه درمورد آن توافق کردهاند کوچکتر است یا بزرگتر؟
۲. آیا این عدد از نظر ریاضی به راستی از مجموعهای از تراکنشهای معتبر که

میخواهید در دفتر کل ثبت کنید بهدست آمده است؟

این فرایند سیستم اثبات کار را به یک سیستم نامتقارن تبدیل می کند، به این معنا که تولید عدد بسیار سخت ولی اعتبارسنجی آن آسان است.

هزینه زیادی که برای مصرف انرژی در تولید عدد تصادفی پرداخت می شود و همه باید صحت آن را تایید کنند انگیزه کافی را در افراد ایجاد می کند که صادقانه عمل کرده و فقط تراکنشهای معتبر را در دفتر کل ثبت کنند.

برای مثال اگر تلاش کنید از پولی که قبلا خرج شده است دوباره استفاده کنید، بلیت برنده شما از طرف همه رد می شود، و شما پول زیادی را هم که برای انرژی هزینه كردهايد از دست خواهيد داد. از طرف دیگر اگر بتوانید تراکنشهای معتبر را در دفتر کل ثبت کنید، به عنوان پاداش بیت کوین دریافت خواهید کرد تا با آن هزینه انرژی صرف شده را پرداخت و کمی هم سود کنید.

ویژگی اثبات کار گران بودن آن است. بنابراین اگر کسی بخواهد از راه اعمال فشار و زور به اعضای این شبکه به آن حمله کند، صرف رفتن به خانههای آنها کفایت نمی کند و گروه مهاجم باید هزینههای انرژی مصرف شده را هم بپردازد.

امروزه میزان انرژی مصرفی شبکه بیت کوین از مصرف برق برخی از کشورهای متوسط دنیا بیشتر تخمین زده می شود. پس برای تقلب در این شبکه نیاز به این مقدار انرژی برق خواهیم داشت.

اعضای شبکه چطور ثابت می کنند که انرژی مصرف کردهاند؟ این مورد در فصل بعد بررسی میشود.

فصل ۴

ریاضیات بیت کوین

قبل از اینکه درمورد چگونگی ارزیابی اثبات كار بحث كنيم، نياز به اطلاعات مختصری از علم کامپیوتر داریم: بیت و

توابع هش۲

معمای نامتقارن اثبات کار در بیت کوین وابسته به استفاده از یک تابع هَش است.

¹ bits

می دانیم که یک تابع مثل جعبه ای است که اگر مقدار X را به عنوان ورودی به آن بدهید، مقدار خروجی Y را از آن دریافت می کنید. مثلا تابع x2=(x) یک مقدار را می گیرد و در عدد ۲ ضرب می کند. اگر ورودی ۲ باشد خروجی تابع ۴ خواهد بود.

تابع هش یک تابع خاص است که هر رشته ای از حروف، اعداد یا داده ای را دریافت کند، خروجی آن یک عدد تصادفی بزرگ خواهد بود. مثلاً برای رشته Hello خروجی بلند زیر بهدست خواهد آمد.

64ec88ca00b268e5ba1a35678a1b 5316d212f4f366b2477232534a8a eca37f3c من از تابع هشی به نام sha256 برای هش کردن Hello word استفاده کردهام که در بیت کوین نیز استفاده می شود.

تابع sha256 ویژگیهایی دارد که برای ما مناسب است:

خروجی آن قطعی است؛ یعنی برای یک ورودی ثابت همیشه یک خروجی ثابت همیشه یک خروجی ثابت دارد.

- خروجی آن غیرقابل پیشبینی است؛
 یعنی تغییر حتی یک کاراکتر و یا اضافه
 کردن فاصله در رشته ورودی، به کلی
 خروجی را عوض می کند به گونهای که
 نمی توانید رابطهای بین ورودی و خروجی
 پیدا کنید.
 - ۳. زمان محاسبه هش، صرفنظر از طول ورودی کوتاه است.
 - اساساً غیرممکن است که دو رشته ورودی متفاوت، خروجی یکسانی داشته باشند.
 - ۵. از خروجی تابع sha256 نمی توان ورودی را بهدست آورد.
 - اندازه خروجی همیشه ثابت است (در sha256 همیشه ۲۵۶ بیت است)

نگاهی کو تاه بر مفهوم بیتها ا

سیستم عددی که معمولاً از آن استفاده می کنیم شامل اعداد ، تا ۹ است که به آن سیستم دسیمال (ده دهی) می گویند چون ۱۰ رقم دارد. کامپیوترها سیستم عددی متفاوتی دارند که از صفر و یک ساخته شده است، که نشان دهنده وجود یا عدم وجود سیگنال الکتریکی است. به این سیستم عددی، باینری (دو دویی) می گویند.

در سیستم دسیمال تنها از ارقام ، تا ۹ استفاده می شود. اگر بخواهید اعداد یک رقمی ایجاد کنید می توانید ۱۰ عدد مختلف داشته باشید از ، تا ۹. اگر بخواهید اعداد دورقمی ایجاد کنید می توان ۱۰×۱۰ عدد

¹ Bits

² decimal

³ binary

مختلف تولید کرد از ۰ تا ۹۹. برای سه رقم، ۱۰×۱۰× عدد قابل تولید است از ۰ تا ۹۹۹.

تصور کنید که با N رقم چه عدد بزرگی را می توان تولید کرد. $1 \cdot 1$ را N بار در خودش ضرب می کنیم، به عبارت دیگر $1 \cdot N$ یا $1 \cdot N$ به توان N.

سیستم باینری هم به همین شکل کار می کند. تنها تفاوت آن تعداد ارقام قابل استفاده است. وقتی در سیستم دسیمال از ۱۰ رقم می توان استفاده کرد، در سیستم باینری یا بیتی فقط از دو رقم صفر و یک استفاده می شود.

اگر به یک بیت، فقط رقمهای صفر و یک را نسبت دهیم، با ۲ بیت می توان ۴ مقدار تولید کرد: ۲۱،۱۰،۱۰،۱۰ شما می توانید این تعداد را از ضرب عدد ۲×۲ به دست آورید چون هر رقم می تواند دو مقدار مختلف داشته باشد.

با ۳ بیت، 8 ۲ = 8 بعنی ۸ عدد مختلف می توان نشان داد: 8 ۱۰۰، 8 ۱۰۰، 8 به ۱۰۱، 8 ۱۱، 8 ۱۱، 8 ۱۱، 8 ۱۱، 8

پس با یک عدد باینری که طول آن N بیت باشد می توان Y^N عدد مختلف ساخت.

بنابراین با یک عدد باینری ۲۵۶ بیتی، یعنی به اندازه خروجی تابع sha256، می توان ۲^{۲۵} عدد به اندازه غیرقابل تصوری بزرگ است. عدد به اندازه غیرقابل تصوری بزرگ است. در سیستم دسیمال، ۲۲۵۶ دارای ۷۸ رقم است، عددی به بزرگی تعداد اتمهای کیهان^۱.

2²⁵⁶ =
115,792,089,237,316,195,423,
570,985,008,687,907,
853,269,984,665,640,564,039,
457,584,007,913,129,639,936

این عدد، تعداد خروجیهای ممکن با استفاده از تابع sha256 است. حدس زدن خروجی این تابع مثل پیشبینی ۲۵۶ بار پرتاب یک سکه پشتسرهم، یا پیشبینی مکان یک اتم خاص در جهان، تقریبا غیرممکن است.

¹ Universe

به دلیل طولانی بودن این عدد، از این به بعد آن را به صورت ۲۲۵۶ نشان می دهیم که امیدوارم تصویر ذهنی درستی از احتمالات ممکن برای شما ایجاد کند.

بیایید یک رشته را هش کنیم

در اینجا تعدادی رشته حروف و هش sha256 آنها آورده شده است. خروجی آنها به شکل دسیمال نشان داده شده است اما در کامپیوتر این عدد به شکل رشتههای باینری صفر و یک قرار می گیرد. میخواهیم ببینیم چطور با یک تغییر کوچک در ورودی، عدد خروجی تغییر

می کند و اینکه در تابع هش نمی توان براساس ورودی، خروجی را پیش بینی کرد:

"Hello world!"
c0535e4be2b79ffd93291305436bf8
89314e4a3faec05ecffcbb7df31ad9
e51a

"Hello world!!"
bbca77170621e018f9b8d17c850d2c
7efe3cf9998cf741edf8e7dffbaeeb
160e

برای هیچ کس حتی کامپیوترها هم ممکن نیست بتوانند از خروجی تابع، رشته ورودی را پیدا کنند. اگر مایل باشید، در بعضی سایتها امکان دیدن خروجی تابع هش sha256 به صورت آنلاین نیز وجود دارد و

مى توانيد مقادير دلخواه خود را در آنها امتحان كنيد.

هش کردن برای برنده شدن در قرعه کشی اثبات کار

بسیار خوب، دیگر الان می توانیم درباره موضوع اصلی صحبت کنیم. پیشتر گفتیم که ۲۲۵۶ خروجی ممکن برای تابع sha256 وجود دارد. اما فعلاً برای ساده تر شدن موضوع، بیایید فرض کنیم تنها ۱۰۰۰ خروجی ممکن برای تابع هش وجود دارد.

سیستم قرعه کشی به صورت زیر عمل می کند:

- ۱. آیدا اعلام می کند که میخواهد ۲۰. تبرای بابک ارسال کند.
- ۲. همه برای تراکنش «آیدا ۲۰.ت به بابک پرداخت می کند» در قرعه کشی شرکت می کنند و یک عدد تصادفی که به آن نانس (عددی که فقط یک بار استفاده می شود) گفته می شود را به انتهای آن اضافه می کنند. این کار بدین منظور است که مطمئن شوند رشتهای که هش می شود با سایرین متفاوت است و به پیدا کردن شماره برنده قرعه کشی نیز کمک مي کند.
 - ۳. اگر عدد بهدست آمده کوچکتر از عددی باشد که درباره آن توافق شده است (کمی جلوتر به آن خواهیم

¹ Nonce (number used only once)

پرداخت)، برنده قرعه کشی مشخص می شود.

۴. اگر عدد به دست آمده بزرگتر از عددی باشد که روی آن توافق شده است (عدد هدف)، عملیات هش با یک عدد نانس متفاوت تکرار می شود:

«آیدا ۲۰،۰ به بابک پرداخت می کند نانس=۱۲۳۴۵» سپس

«آیدا ۲۰.۰ به بابک پرداخت می کند نانس=۹۲۳۴۵»، سپس

«آیدا ۲۰.۰ به بابک پرداخت می کند نانس=۱۳۲۸۴۹۰۱۲۳۴۸۰۹۲۱»

و به همین ترتیب تا درنهایت عددی به دست بیابید که از عدد هدف کوچکتر باشد. ممکن است برای رسیدن به جواب بارها و بارها و بارها این عملیات تکرار شود. حالا موضوع این است: اگر ۱۰۰۰ هش ممکن وجود داشته باشد و عدد هدف روی ۱۰۰ تعیین شده باشد، چه درصدی از هشها کوچکتر از عدد هدف خواهند بود؟

در ۱۰۰۰ عدد ممکن بین صفر تا ۹۹۹، ۱۰۰ عدد وجود دارد که از ۱۰۰ کوچکتر هستند و ۹۰۰ عدد دیگر بزرگتر. بنابراین ۱۰۰/۱۰۰۰ یا ۱۰٪ از هشها کوچکتر از هدف هستند. درنتیجه اگر تمام رشتهها را هش کنید و تابع هش شما ۱۰۰۰ خروجی متفاوت داشته باشد، انتظار می رود که ۱۰٪ مواقع خروجیهای شما کوچکتر از ۱۰۰

سیستم قرعه کشی به این شکل کار می کند: یک عدد هدف مشخص می شود، و همه درمورد آن با هم به توافق میرسند (کمی جلوتر به آن خواهیم پرداخت که چطور این اتفاق می افتد). سپس همه تراکنشهایی که افراد به شبکه اعلام کردهاند را دریافت و آنها را هش می کنند و یک مقدار نانس به انتهای آن اضافه میشود. به محض اینکه یک نفر هشی را پیدا کند که کوچکتر از هدف باشد، به همه افراد شبکه اعلام می شود

- من تراکنشهای «آیدا ۲۰،ت به بابک پرداخت می کند، فرزین ۵۰،ت به آیدا پرداخت می کند» را دریافت کردم.
- مقدار نانس که مساوی با ۳۲۸۹۵ است را به انتهای آن اضافه کردهام.

- به مقدار هش ۴۲ دست یافتهام که کمتر از هدف تعیین شده، یعنی ۱۰۰ است.
- این اثبات کار من است: دادههای تراکنش، نانسای که من اضافه کردهام، و هش تولید شده براساس این ورودیها.

ممكن است اين موفقيت براى كسى كه اثبات کار را به دست آورده، حاصل میلیاردها بار هش کردن برای رسیدن به خروجی مورد نظر و هزینه هزاران دلار هزینهی انرژی است، اما همه می توانند بلافاصله هش من را ارزیابی کنند، ورودی و خروجی به آنها داده میشود و آنها می توانند با هش کردن ورودی، صحت خروجی را تایید کنند. به یاد داشته باشید که هش قابلیت تبدیل خروجی به ورودی را ندارد اما

محاسبه خروجی با فرض داشتن داده ورودی بسیار ساده و سریع است.

این فرایند چه ربطی به مصرف انرژی دارد؟ قبلا گفته شد که تعداد هشهای ممکن، عدد بسیار بزرگی به اندازه اتمهای جهان است. حالا اگر عدد هدف را کوچک کنیم کسر کمتری از هشها معتبر خواهند بود. به این معنا که هر کسی که میخواهد یک هش معتبر پیدا کند باید زمان محاسباتی و میزان برق بسیار زیادی را صرف کند تا به هدف برسد.

هرچه عدد هدف کوچکتر باشد تلاش بیشتری برای پیدا کردن عدد مناسب نیاز است، و هرچه عدد هدف بزرگتر باشد با سرعت بالاترى مى توان هش برنده را پيدا كرد.

فصل ۵

استخراج

حالا آماده ایم تا ببینیم اثبات کار در بیت کوین واقعا چطور کار می کند:

- هرکس در هرجای دنیا می تواند با اتصال کامپیوتر خود به شبکه بیت کوین عضوی از آن باشد و تراکنشها را دریافت کند.
 - ۲. آیدا اعلام می کند که قصد دارد تعدادی کوین برای بابک ارسال کند.

¹ Mining

- کامپیوترهای شبکه این تراکنش را بین هم پخش می کنند تا سراسر شبکه از آن مطلع شوند.
- ۳. همه کامپیوترهایی که قصد شرکت در این بخت آزمایی را دارند با اضافه کردن مقدار نانس و اجرای تابع sha256، شروع به هش کردن تراکنش دریافتی می کنند.
- ۴. اولین کامپیوتری که هشی را پیدا کند که کوچکتر از عدد هدف باشد برنده این بخت آزمایی است.
- ۵. این کامپیوتر، عدد برنده، همچنین مقدار ورودی (تراکنش و مقدار نانس) را اعلام می کند. این عمل ممکن است ساعتها و یا فقط چنددقیقه طول بکشد. به تمام این اطلاعات در کنار هم

- (تراکنش، نانس، مقدار هش اثبات کار) یک بلاک می گویند.
- ۶. بقیه اعضاء شبکه تراکنشها و نانس بلاک ایجاد شده را بررسی می کنند تا مطمئن شوند مقدار هش به دست آمده واقعاً کوچکتر از مقدار هدف باشد و هیچ تراکنش نامعتبری در آن نیست. همچنین تاریخچه این بلاک نباید با بلاکهای قبلی در تناقض باشد.
 - همه اعضا این بلاک را در نسخه دفتر
 کل نزد خود ثبت می کنند و بلاک را به
 انتهای زنجیره بلاکهایی که قبلا ثبت
 شدهاند اضافه و یک بلاکچین ایجاد
 می کنند.

تمام ماجرا همین است. ما اولین بلاک و اولین ورودی دفتر را ایجاد کردیم. استخراج بیت کوین یعنی فرایند انجام عملیات اثبات کار، برنده شدن در آن، و نوشتن بلاک در دفتر کل بیت کوین.

بیت کوینهای جدید چگونه استخراج میشوند؟

تا اینجا توضیح دادیم که آیدا چگونه ۲۰ه.ت برای بابک ارسال می کند. از این به بعد دیگر درباره تومان یا دلار صحبت نمی کنیم، چون بیت کوین چیزی از تومان یا ارزهای دیگر نمی داند. ما فقط بیت کوین داریم – یک واحد دیجیتال که بیانگر ارزش داریم بیت کوین است.

برای مرور مثالی پیشتر زدیم، آنچه دقیقا رخ داده این است که آیدا ۲ بیت کوین به حساب بابک ارسال می کند، درواقع بیت کوینی را که در حساب خودش ثبت شده بوده در حساب بابک ثبت می کند، و کسی که برنده قرعه کشی اثبات کار شود این تراکنش را در دفتر کل ثبت می کند.

اما آیدا آن دو بیت کوین را از کجا آورده است؟ بیت کوین چگونه شروع به کار کرد و چطور افراد قبل از اینکه جایی برای خرید بیت کوین وجود داشته باشد آن را به دست می آوردند؟

درواقع تولید بیت کوین یعنی مشارکت در فر آیند قرعه کشی و تلاش برای پیدا کردن اثبات کار و کسب اجازه برای نوشتن در

دفتر کل. این فرآیند به استخراج معروف است. زمانی که شما با صرف میزان زیادی انرژی عدد نانسِ برنده قرعه کشی و بالتبع بلاک معتبری پیدا می کنید، اجازه دارید تراکنشهایی که از شبکه دریافت کردهاید را در آن ثبت کنید.

همچنین اجازه دارید علاوه بر تراکنشهایی که از شبکه دریافت کردهاید یک تراکنش بسیار خاص را هم به آن بلاک اضافه کنید، که به آن تراکنش کوین بیس می گویند. این تراکنش درواقع می گوید: «۱۲/۵ بیت کوین استخراج شد و به مریم که یک ماینر است بابت هزینه انرژی صرف شده برای پیدا کردن عدد اثبات کار و ساختن بلاک پرداخت می شود.»

¹ Coinbase

پاداش استخراج بلاک

بنابر آنچه گفته شد، کسی که یک بلاک جدید استخراج می کند می تواند بیت کوینهای جدیدی به حساب خود واریز کند. چرا این مقدار ۱۲/۵ است و ۱۰۰۰ نیست؟ چرا مریم نمی تواند تقلب کند و هرمقدار بیت کوینی که دوست دارد برای خود بردارد؟ این قسمت کلیدی است: بیت کوین یک سیستم بر پایه توافق توزیع شده است. به این معنا که همه افراد باید درمورد آنچه که معتبر تشخیص داده شده است توافق داشته باشند.

اگر مریم یک بلاک را استخراج کند و بخواهد به خودش بیت کوین بیشتری پاداش

¹ Distributed consensus

دهد، این بلاک برای سایر اعضاء نامعتبر خواهد بود؛ چرا که در نرم افزار کاربران بیت کوین که همه آن را اجرا کردهاند کُدی وجود دارد که اعلام می کند: «جایزه این بلاک دقیقا ۱۲/۵ بیت کوین است. در صورت مشاهده بلاکی با مقداری بیشتر، آن را قبول نکنید.»

اگر مریم تقلب کند و بلاک نامعتبری ایجاد کند، آن بلاک در دفتر کل هیچ کس ثبت نخواهد شد و هزینه انرژی که او برای ساختن آن بلاک صرف کرده است به هدر می رود.

اولین بلاک توسط ساتوشی استخراج شده است. کُد بیت کوین متن باز است- به معنای اینکه همه می توانند آن را ببینند و

اعتبارسنجی کنند که هیچ چیز مشکو کی در جریان نیست. حتی ساتوشی هم برای استخراج اولین بلاک عملیات اثبات کار و محاسبات لازم را انجام داده است.

در ابتدا جایزه استخراج هر بلاک ۵۰
بیت کوین بود، مقداری که ساتوشی برای
استخراج اولین بلاک دریافت کرد. افراد
دیگری هم که در همان روزهای اول به
شبکه پیوستند به همین مقدار جایزه
استخراج بلاک دریافت کردند.

کُد بیت کوین هر چهارسال یک بار مقدار جایزه بلاک را نصف می کند (در اصطلاح رایج به این رویداد، هاوینگ کفته می شود). این کاهش براساس تعداد

بلاکهای استخراج شده از ابتدای بیت کوین است، نه فقط گذر زمان، البته این دو موضوع تقریباً یکی هستند چون در هر ۱۰ دقیقه یک بلاک ساخته می شود.

در سال ۲۰۰۸ جایزه هر بلاک ۵۰ بیت کوین بود، در ۲۰۱۲ معادل ۱۲/۵ بیت کوین و در سال ۲۰۱۶ معادل ۱۲/۵ بیت کوین. امروز، ۱۵ ژانویه ۲۰۱۹، تعداد بیت کوین ملاک از ابتدای تاریخ بیت کوین استخراج شده است و جایزه آن ۱۲/۵ بیت کوین برای هر بلاک است.

۷۱٫۳۱۲ بلاک دیگر، یا تقریباً حوالی ماه مه سال ۲۰۲۰ میلادی مقدار جایزه به ۶/۲۵ بیت کوین کاهش می یابد، که میزان عرضه بیت کوین را سالانه ۱/۸٪ افزایش خواهد

داد. یک دهه بعد، که دوبار دیگر مقدار جایزه بیت کوین نصف شود، بیشتر از ۹۹٪ تمام بیت کوینها استخراج شده است و کمتر از ۱ بیت کوین برای تولید هر بلاک یرداخت خواهد شد.

https://en.bitcoin.it/w/images/en/4/42/ Controlled_supply-supply_over_block_height.png

درنهایت در سال ۲۱۴۰ دیگر جایزهای برای استخراج بلاک وجود نخواهد داشت و در آمد ماینرها از کارمزدی است که کاربران شبکه بیت کوین برای ارسال تراکنشها به ماینرها پرداخت خواهند کرد.

قوانین خلق بیت کوینهای جدید و تعداد جایزه بلاکها در کُد بیت کوین تعیین شده است. تکرار می کنم که این کُد متن باز و بررسی برنامه تولید بیت کوین از راه پاداش بلاک برای همه امکان پذیر است. پس بلاکی که این قوانین را نقض کند از طرف همه کسانی که اجرای قوانین بیت کوین را از طریق اجرای گد آن کنترل می کنند، رد خواهد شد.

کنترل فاصله زمانی استخراج بیت کوینهای جدید

انجام عملیات استخراج به سختافزار و برق نیاز دارد، بنابراین هرچه سختافزار و برق بیشتری داشته باشید، به احتمال زیاد عدد برنده را سریع تر از سایرین پیدا خواهید کرد. برای مثال اگر ۱۰۰ کامپیوتر مشابه در شبکه وجود داشته باشد و ۱۰ تای آنها متعلق به شما باشد، در این صورت ۱۰٪ مواقع شما برنده خواهید بود. البته، فرایند استخراج براساس شانس و تصادف است و گاهی ممکن است ساعتها یا حتی روزها هیچ بلاک جدیدی را نتوانید پیدا کنید.

با توجه به بخشهای قبل میدانیم که ماینرها نمی توانند جایزه دلخواهی را برای خود تعیین کنند و گرنه بلاک آنها توسط سایر نودهای شبکه رد می شود. اما اگر برای تسریع در ماین کردن بلاکها انرژی بیشتری صرف کنند و بیشترین حجم استخراج بیت کوین در دست آنها باشد چه؟ در این صورت یکی از الزامات طراحی بیت کوین یعنی برنامه زمان بندی تولید بیت کوین های جدید زیر پا گذاشته خواهد شد.

بیایید به مثال برگردیم: تنها ۱۰۰۰ هش ممکن وجود دارد و عدد هدف ۱۰۰ است؛ به معنی اینکه در ۱۰٪ مواقع، عددی که تولید می شود کوچکتر از ۱۰۰ است و بلاک جدید پیدا می شود.

بیایید فرض کنیم زمان محاسبه هر هش
یک ثانیه باشد. اگر هرثانیه یک بار
تراکنش جاری را با عدد نانس هش کنیم و
۱۰٪ مواقع به عددی کوچکتر از عدد هدف
برسیم، به طور میانگین ۱۰ ثانیه زمان برای
پیدا کردن هش معتبر نیاز داریم.

حالا اگر دو کامپیوتر در این قرعه کشی شرکت کنند چه؟ سرعت دوبرابر می شود و انتظار می رود هر ۵ ثانیه هش معتبر پیدا شود. اگر با ۱۰ کامپیوتر این کار را انجام دهیم چه؟ تقریبا هر ثانیه یکی از آنها هش درست را پیدا خواهد کرد. مشکل این است که اگر تعداد افراد بیشتری به كار استخراج بيت كوين مشغول شوند، بلوکها به سرعت ایجاد خواهند شد، که دو پیامد نامطلوب دارد:

- در برنامه ازپیش تعیینشده ی عرضه بیت کوین اختلال بوجود می آورد. ما می خواهیم بیت کوینهایی که در هرساعت عرضه می شوند تعداد نسبتا ثابتی داشته باشند تا اطمینان حاصل شود که تا سال ۲۱۴۰ تمام بیت کوینها عرضه شوند، نه زود تر.
- ۲. باعث ایجاد مشکل در شبکه میشود: اگر بلاکها با سرعت بالایی استخراج شوند، زمان کافی وجود ندارد که بلاک به دست همه افراد شبکه برسد و قبل از اینکه همه از آن مطلع شوند بلاک ساخته شده است، بنابراین نمی توان درمورد تاریخچه بلاکها به اجماع رسید. مثلا ممكن است كه چند ماينر تراكنش یکسانی در بلاک خود داشته باشند و عملاً چون این تراکنشها قبلاً در

بلاکهای قبلی خرج شدهاند، این بلاک از نظر شبکه مردود باشد.

در مقابل اگر تعداد افراد کمتری به استخراج مشغول شوند این مشکلات پیش خواهد آمد:

۱. سرعت ساخت بلاکها کم می شود و این موضوع باعث ایجاد اختلال در برنامه عرضه بیت کوین خواهد شد.

اگر افراد مجبور باشند برای ثبت یک تراکنش در دفتر کل ساعتها و روزها صبر کنند بلاک چین عملا غیرقابل استفاده خواهد بود.

به تعداد کل هشی که در هرثانیه توسط تمام ماینرهای شبکه بیت کوین انجام می شود «توان هش ۱» شبکه گفته می شود.

¹ Hash Rate

زمان سپری شده بین استخراج بلاکها

تنظیم سختی ۱؛ توافق روی عدد هدف

چگونه می توان با افزایش تعداد شرکت کنندگان در بخت آزمایی، پیدا کردن هش معتبر را سخت تر و با کاهش تعداد آنها آن را آسان تر کرد، تا عرضه بیت کوین و زمان ساختن بلاکها ثابت بماند؟

¹ Difficulty Adjustments

بیت کوین این مسئله را با تنظیم سختی استخراج بلوکها حل کرده است. از آنجایی که همه افراد شبکه کُد یکسانی را اجرا و بالتبع از قوانین مشترکی پیروی می کنند، و همه افراد یک نسخه از تاریخچه تمام بلوکها تا آخرین آنها را دارند، هرکسی می تواند به طور مستقل سرعت تولید بلوکها را محاسبه کند.

در طول ۲ هفته باید ۲۰۱۶ بلاک ساخته شود، می توان بررسی کرد که تولید این تعداد بلاک چهقدر زمان برده است و سپس عدد هدف را برای بالا بردن یا کم کردن سرعت تولید بلاکها تنظیم کرد.

¹ Mining difficulty adjustment

همه اعضای شبکه، ۲۰۱۶ بلاک آخر را دریافت کرده و بر زمان تولید آن تقسیم می کنند تا میانگین زمان تولید هر بلاک بهدست آید. آیا بیشتر از ۱۰ دقیقه است؟ پس سرعت تولید هر بلاک کم است. آیا کمتر از ده دقیقه است؟ پس سرعت بالا است.

حالا می توان عدد هدف را به گونهای تعیین کرد که متناسب با آنچه که می خواهیم، سرعت تولید بلاکها را کم یا زیاد کنیم تا به همان ۱۰ دقیقه فاصله زمانی که در کُد آمده است برسیم.

می توان عدد هدف را بزرگ تر انتخاب و بازه هشهای معتبر را بیشتر کرد که در این صورت ماینرها شانس بیشتری برای برنده شدن خواهند داشت و انرژی کمتری هم مصرف می شود، که به آن کاهش سختی امی گویند. همچنین می توان عدد هدف را عدد کوچکی درنظر گرفت که در این صورت بازه هشهای قابل قبول کوچک تر می شود و ماینرها باید انرژی بیشتری برای پیدا کردن هش معتبر هزینه کنند، که به آن افزایش سختی کشته می شود.

این همچنین به این معناست که برای هر بلاک، براساس تعداد بلاکهایی که قبل از آن پیدا شدهاند (یا همان شماره بلاک)، می توانیم متوجه شویم که عدد هدف چیست. عدد هدف این اجازه را به ما می دهد تا آستانه ی برنده شدن یک بلاک

¹ Lowering the difficulty

² Raising the difficulty

خاص (که در آن عدد هش پیدا شده باید کمتر از آن باشد) را بدانیم.

با این روش هوشمندانه دیگر نیازی به یک مرجع مرکزی برای دریافت اطلاعات شبکه نداریم. تمام کاری که باید انجام دهیم این است که خودمان بررسی کنیم عدد هدف چه باشد و اینکه شماره بلیتی که ادعا می کند برنده بخت آزمایی است کوچکتر از عدد هدف است یا نه.

نمودار زیر توان هش شبکه را به صورت یک خط، و سختی را به صورت میلهای نشان میدهد. نمودار سختی به شکل پلهای است چون با اضافه شدن هر ۲۰۱۶ بلاک، تنظیم می شود. می توان مشاهده کرد که هر زمان میزان توان هش شبکه بالاتر از سختی

باشد، میزان سختی افزایش می یابد تا خود را به توان هش شبکه برساند. وقتی که توان هش شبکه کاهش پیدا می کند، همان طور که در اکتبر و دسامبر ۲۰۱۸ اتفاق افتاد، از سختی هم کاسته می شود. تنظیم سختی همیشه وابسته به میزان توان هش شبکه است.

مقایسه مقدار توان هش و سختی شبکه

به دلیل اینکه تنظیم سختی شبکه هر ۲۰۱۶ بلاک اتفاق میافتد، در فواصل این دورههای ۲۰۱۶ بلاکی ممکن است توان هشِ شبکه تغییرات ناگهانی داشته باشد و سرعت خلق بیت کوینهای جدید سریع تر یا کندتر از برنامه زمانبندی پیش رود. درواقع در حال حاضر سرعت ما در مقایسه با برنامه ی عرضه تمام بیت کوینها تا سال ۲۱۴۰ کمی بیشتر است. افزایش توان هش شبکه معمولاً به دلیل تولید سخت افزارهای جدیدی است که طی سالهای اخیر ساخته شده است و با این حال تاثیر چندانی روی سرعت تولید بلاکها در درازمدت نخواهد داشت و در آینده جبران خواهد شد.

تا اینجا تقریبا اختراع بیت کوین را کامل کردهایم:

جایگزین کردن بانک مرکزی با یک دفتر کل توزیعشده.

- ایجاد یک سیستم قرعه کشی برای انتخاب کسی که اجازه ثبت بلاک را در این دفتر کل دارد.
- ۳. با استفاده از سیستم اثبات کار، شرکت کنندگان قرعه کشی را به صرف انرژی برای خرید بلیت وادار کردیم و از طریق کنترل شماره هش تولید شده توسط شرکت کنندگان در این قرعه کشی، اعتبارسنجی بلیت برنده را برای همه اعضای شبکه آسان کردیم. ۴. به همه شرکت کنندگان در قرعه کشی اعلام شد که اگر برخلاف قوانین عمل كنند بلاک ساخته شده توسط آنها رد خواهد شد و در نتیجه جایزه یاداش ساخت بلاک یا کوین بیس به آنها پرداخت نخواهد شد. به این ترتیب یک روش اقتصادی برای جلوگیری از تقلب

در شبکه ایجاد شد و همچنین انگیزهای شد تا همه از قوانین پیروی کنند.

۵. محاسبه عدد هدف - بر اساس ۲۰۱۶ بلاک گذشته و قوانین کُد بیت کوین - را بر عهده شرکت کنندگان در قرعه کشی گذاشتیم و از این طریق زمانبندی تولید بیت کوین و تعیین عدد سختی را کنترل کردیم.

برنامه زمانبندی عرضه بیت کوین را با استفاده از تنظیم سختی شبکه و تطابق آن با کاهش یا افزایش توان هش شبکه، اعمال کردیم.

۷. استفاده از کد متن باز برای اطمینان از اینکه همه می توانند صحت اجرای قوانین، اعتبارسنجی تراکنشها، جایزه بلاک و محاسبه سختی را بررسی کنند.

هیچ مرجع مرکزی وجود ندارد. ما یک سیستم کاملا توزیع شده و غیرمتمرکز داریم. هر کسی می تواند به آن بپیوندد. هر کسی می تواند در قرعه کشی شرکت کرده و بیت کوین استخراج کند. همه می توانند از آن برای ارسال یا دریافت بیت کوین استفاده كنند. صحت بلاكهاى توليد شده توسط کل شبکه احراز می شود و پاداش ساختن یک بلاک معتبر از طریق تراکنش كوين بيس به ماينرها تعلق مي گيرد. ماينر یک بلاک نامعتبر تنبیه می شود و پاداش ساخت بلاک به او پرداخت نخواهد شد و ماينرها بايد براى استخراج بلاكها انرژى صرف كنند.

تقریبا تمام مطالب گفته شد، تنها یک مشکل باقی مانده است. زمانی که یک نفر به شبکه متصل می شود و یک نسخه از دفتر کل را درخواست می کند، ممکن است نسخه های متفاوتی از نودهای مختلف دریافت کند. چگونه یک تاریخچه یکپارچه و یکسان ایجاد کنیم و چگونه از بازنویسی مجدد دفتر کل توسط ماینرها جلوگیری کنیم؟

فصل ع

ایمن کردن کوینها در بلاکها

تا اینجا درباره نحوه نگهداری از نسخههای دفتر کل و ثبت تراکنشها در آن و از بین بردن امکان اعمال زور و تهدید و تقلب در طول این فرایند صحبت کردیم. اما اگر برنده قرعه کشی بخواهد خرابکاری کند چه؟ آیا فرد برنده می تواند تاریخچه بلاکها را در تمام دفاتر کل دستکاری کند؟ آیا آوا و داوود و فرانک می توانند با هم تبانی کرده و تاریخچه بلاکها را بازنویسی کنند، و یا موجودی حسابها را

تغییر دهند و کوینهای اضافی به خود بدهند؟

از اینجا وارد بحث بلاکچین می شویم.

بلاکچین مفهومی است که در بسیاری از
بخشهای فناوری نفوذ کرده است.

بلاکچین چیزی بیشتر از این نیست که

بلاکهای بیت کوین به هم وصل شوند تا
مجموعهای از تراکنشها را به مجموعه

بعدی متصل کنند.

در فصلهای قبل برای ساده کردن موضوع کمی دروغ گفتیم. زمانی که اثبات کار را اجرا می کنید، اینطور نیست که فقط تراکنشهایی که قرار است در بلاک بعد نوشته شوند را به همراه مقدار نانس هش

¹ Blockchain

کنیم، بلکه هش بلاک قبلی هم به عنوان ورودی در تابع هش قرار می گیرد تا این بلاک را به بلاک قبلی متصل کند.

این کار باعث ایجاد یک تاریخچه برای هر بلاک می شود که به «اولین بلاک استخراج شده ۱» توسط ساتوشی برمی گردد. زمانی که یک بلاک در زنجیره نوشته می شود باید بررسی شود که تراکنش های موجود در آن با توجه به بلوک های قبلی تکراری نباشند.

یاد آوری می کنم که خروجی یک تابع هش، تصادفی است و به تمام دادههای ورودی وابسته است. پس حالا اصلاح می کنم که یک بلاک شامل ورودیهای زیر است:

¹ Genesis Block

- اکنشهایی که باید در دفتر کل ثبت شوند
 - ۲. مقدار نانس
- ۳. هش بلاک قبلی که به عنوان مبنایی برای تاریخچه دفتر کل از آن استفاده می کنیم

اگر یکی از این ۳ مورد تغییر کند، خروجی هش هم به شکل غیرقابل پیش بینی و به کلی تغییر می کند. این کار ویژگی جالبی را ایجاد می کند: اگر دادههای هریک از بلاکهای قبلی را دستکاری کنید، هش آن تغییر می کند، بنابراین هش تمام بلاکهای بعد از آن هم تغییر خواهد کرد.

https://upload.wikimedia.org/wikipedia/commons/7/7a/ Bitcoin_Block_Data.png

هرگونه تغییر در هریک از بلاکها قابل تشخیص و دستکاری در آن کاملاً مشهود است. اگر کسی تلاش کند یکی از بلاکهای قدیمی در زنجیره را تغییر دهد، باید مقدار هش بلاک دستکاری شده و همچنین تمام بلاکهای بعد از آن را نیز مجددا محاسبه کند.

درواقع هر بلاک جدیدی که در شبکه بیت کوین استخراج می شود، به امنیت بلاکهای قبلی اضافه می کند. وقتی ۶ بلاک جدید بعد از ثبت یک تراکنش در دفتر کل

¹ Tamper Evident

ساخته شود، مثل این است که این تراکنش را روی سنگ حک کرده باشند و دیگر قابل تغییر نیست. چرا که برای بازتولید ۶ بلاک آخر، با توجه به توان هشای که در حال حاضر در شبکه بیت کوین وجود دارد، مقدار زیادی انرژی باید صرف شود. اگر مقدار زیادی انرژی باید صرف شود. اگر باین باید کر تغییر این تراکنش را به کل فراموش کنید.

مهم است که بدانیم هیچ قانونی برای تعیین نهایی شدن یک تراکنش در شبکه بیت کوین وجود ندارد. هر پرداختساز ایا فروشندهای خودش تصمیم می گیرد که با ساخته شدن چند بلاک جدید یک تراکنش را نهایی فرض می کند. امروزه اکثر افراد ۶ بار تایید تراکنش را (تولید ۶ بلاک بعد از بار تایید تراکنش را (تولید ۶ بلاک بعد از

¹ Payment processor

² Merchant

بلاکی که تراکنش ما در آن است) به عنوان تایید نهایی آن درنظر می گیرند ولی این عدد برای هر کس ممکن است متفاوت باشد.

اگر شما کتاب دیجیتال که قیمت ناچیزی دارد می فروشید، ممکن است تنها یک تایید برای شما کافی باشد و یا حتی بدون هیچ تاییدی به محض اینکه تراکنش در شبکه پخش شد کالای دیجیتال را تحویل خریدار دهید. اگر بخواهید یک خانه را بفروشید ممکن است تا ۱۲ تایید که تقریبا ۲ ساعت طول می کشد، صبر کنید. هرچه بیشتر صبر كنيد دفعات بيشتري عمليات اثبات كار انجام می شود و بلاکهای بیشتری بعد از بلاکی که تراکنش شما در آن قرار دارد

ایجاد می شوند و هزینه هر گونه تغییر در آن بلاک عملاً بیشتر می شود.

اگر توان هش شبکه بیت کوین به اندازه قابل توجهی کاهش پیدا کند، به این معناست که مقدار انرژی کمتری امنیت بلاک را تضمین می کند، در این صورت افراد می توانند منتظر تعداد دفعات تأیید بیشتری بمانند و معامله را درصورت رسیدن به این تعداد دلخواه نهایی کنند. ممکن است این موضوع شما را کمی نگران کند ولی در نظر داشته باشید که تراکنشهای کارتهای اعتباری [در کشور ایالات متحده] ۱۲۰ روز بعد از انجام، قابل برگشت هستند. از طرف دیگر بیت کوین مثل طلا یا پول نقد است که کسی نمی تواند از چنگ شما دربیاورد. از نقطه نظر برگشت نا پذیری و نهایی بودن، تراکنشهای بیت کوین در مقایسه با

شبکههای پرداخت رایج سنتی خیلی پیشرفته تر است.

بیایید به مثال فصل ۳ برگردیم، جایی که حمید به شبکه متصل شد و نسخههای متفاوتی از دفتر کل دریافت کرد. دفتر کلای که از فرزین دریافت کرد معتبر بود اما دفتر کل آوا و داوود و فرانک نادرست بود چون بلاکی که حاوی تراکنش آیدا بود را حذف کرده بودند و می توانستند حمید را گول بزنند که آیدا هنوز آن کوینها را دارد. قبل از آنکه بلوکها توسط اثبات کار به هم متصل شوند، حمید نمی توانست از حذف یک بلاک قدیمی (حاوی تراکنش آیدا) خبردار شود.

چون اثبات کار برای هر یک از بلوکها محاسبه می شود، او براساس عدد هدف تعیین شده در آن بلاک، میداند حدوداً چه مقدار انرژی برای تولید آن صرف شده است. چون هر بلاک به بلاک قبلی خود متصل است، او می داند که با ایجاد تغییر در تراکنشهای یک بلاک، اثبات کار نه تنها برای آن بلاک بلکه برای همه بلاکهای بعد از آن نیز باید دوباره انجام شود. همچنین او تمام تراکنشهای موجود در یک بلاک را میبیند و می تواند مطمئن شود که هیچ کوینای دوبار خرج نشده است.

برخلاف استخراج طلا که آن هم نیاز به صرف انرژی دارد، فرایند استخراج بیت کوین شبکه را در برابر دست کاری دفتر کل ایمن می کند

اگر دونفر همزمان با هم یک بلاک را پیدا کنند چه اتفاقی میافتد؟

یک نکته از توافق در این سیستم باقی مانده است. تصور کنید که این شبکه در سراسر جهان درحال اجرا است. افراد در تمام دنیا از امریکا تا چین به این شبکه سراسری متصل شده اند و عملیات اثبات کار و قرعه کشی را انجام می دهند.

یک نفر در شیکاگو یک بلاک معتبر را پیدا و آن را در شبکه منتشر (اعلام) می کند و تمام کامپیوترهای واقع در ایالات متحده آمریکا این خبر را دریافت می کنند. در همین زمان یک نفر در شانگهای چین همان بلاک را چند ثانیه بعد از بلاکی که در شیکاگو پیدا شده بود، پیدا می کند.

کامپیوترهای نزدیک به شبکه چین هنوز از بلاکی که در آمریکا پیدا شده است خبر ندارند و اول بلاکی که در کشور چین ساخته شده است را دریافت خواهند کرد. با انتشار این دو بلاک توسط نودهای شبکه بیت کوین به یکدیگر دو نسخه از بلاک چین پدید می آید که با یکدیگر در رقابتاند. آمریکاییها بلاک چینی دارند که بلاک آمریکایی ها بلاک چینی دارند که بلاک آمریکایی در انتهای آن است و بلاک آمریکایی در انتهای آن است و

بلاک پیدا شده در چین هم به انتهای بلاک چین چینیها وصل شده است. چون هردو بلاک چین مقدار اثبات کار یکسانی دارند و هردو حاوی تراکنشهای معتبر هستند، شبکه به دو شاخه تقسیم میشود.

تعیین بلاک برنده در اختیار هیچ مرجعیت متمر کزی نیست. پس چه باید کرد؟ برای حل این مشکل، بیت کوین یک راه حل ساده دارد: باید صبر کنیم تا ببینیم چه پیش مي آيد. حالا دو نسخه از بلاک چين وجود دارد که در رقابت با هم هستند. حدودا ۱۰ دقیقه بعد بلاک بعدی ساخته خواهد شد. امریکاییها براساس بلاکچین خود و چینی ها نیز براساس بلاک چین خود عملیات استخراج را انجام می دهند.

هر کدام که بتواند بلاک بعدی را پیدا کند برنده خواهد شد. چگونه؟ قانونی در کد بیت کوین وجود دارد که می گوید در شرایطی که بلاکچین دوشاخه شود، زنجیرهای که طولانی تر است برنده خواهد بود. هرکس انرژی بیشتری را صرف کند برنده است؛ قانونی که ناهمخوانی بین زنجیره ها را براساس اثبات کار انباشته آنها حل می کند و به افتخار ساتوشی ناکاموتو، اجماع نا کامو تو۲ نام گذاری شده است.

فرض می کنیم بلاک بعدی را چینیها پیدا می کنند. حالا زنجیره آنها یک بلاک طولانی تر از زنجیره آمریکاییها است. وقتی آن را در شبکه منتشر کنند نودهای بیت کوین آمریکایی متوجه می شوند که

¹ Cumulative Proof of Work

² Nakamoto Consensus

نودهای چینی زنجیره طولاتی تری را تولید کردهاند و بلاک چین خود را اصلاح امی کنند، یعنی بلاک خود را با دو بلاکی که چینی ها ساختهاند عوض می کنند. حالا به بلاکی که آمریکایی ها ایجاد کردهاند بلاک یتیم می گویند؛ چراکه از طرف شبکه رد شده و استخراج کننده آن جایزهای بابت آن نگرفته است.

اگرچه من از لفظ امریکایی و چینی برای اشاره به نودها استفاده کردهام، اما در واقعیت آنها از هویت و موقعیت جغرافیایی یکدیگر بی خبرند. تنها چیزی که باید بدانند این است که چه کسی طولانی ترین زنجیره از بلاکها را دارد و تراکنشهای موجود در زنجیره همگی معتبر

¹ Reorg (Reorganization)

² Orphan Block

هستند (هیچ کوینای دوبار خرج نشده باشد و باقی قوانین).

احتمال دو شاخه شدن زنجیره بلاک چین بسیار کم است. در گذشته یک مورد در ماه و یا کمتر بود اما اخیرا به دلیل ارتقاء تکنولوژی انتشار بلاک ها و ارتباط بین استخراج کنندگان در شبکه این اتفاق تقریباً نادر است.

یکی از دلایلی که بیت کوین هر ۱۰ دقیقه بلاکهای نسبتاً کوچکی (کمتر از ۲ مگابایت) تولید می کند برای این است که این بلاکهای به اصطلاح یتیم تا جایی که ممکن است کمتر ایجاد شوند. دلیل دیگر، کاهش نیازهای سختافزاری برای اجرای

یک نود است تا افراد بیشتری تشویق به اجرای آن در سیستم شوند.

اگر در هرثانیه یک بلاک ساخته میشد یا اندازه بلاکها خیلی بزرگ بود، مغایرت در زنجیره بلاکهای چینی و آمریکایی با احتمال بیشتری رخ میداد، چون به لحاظ جغرافیایی فاصله زیادی با هم دارند و مدت زمان بیشتری طول می کشد تا اطلاعات بین آنها منتقل شود. اگر ایجاد بلاکهای به اصطلاح یتیم در شبکه زیاد باشد بلاک چین از بین خواهد رفت چون این بلاکهای یتیم پشتسرهم تولید خواهند شد و نودهای شبکه دیگر نمی توانند روی تاریخچه یکپارچه تراکنشها با هم به توافق برسند.

یک نود بیت کوین برای جلو گیری از حمله هکرهایی که ممکن است اطلاعات نادرستی به آن بدهند، فقط کافیست به یک نود متعبر که آخرین نسخه صحیح بلاکچین را در اختیار دارد، دسترسی داشته باشد. نودهای شبکه مدام با یکدیگر در ارتباط هستند و بلاکهای تولید شده را با یکدیگر به اشتراک می گذارند. نود شما برای پیدا كردن صحيح ترين نسخه بلاك چين فقط کافیست بلاکچینای که بیشترین اثبات کار انباشته را در خود دارد، در شبکه پیدا کند. چون دیگران هم از این قانون که در کد نرمافزار نوشته شده است پیروی می کنند، این اطمینان حاصل می شود که همه نودهای شبکه روی صحیح ترین نسخه دفتر کل با یکدیگر به توافق میرسند.

بنابراین ارسال یک نسخه ناصحیح از بلاک چین به یک نود برای هکرها کار دشواری است، چون برای رسیدن به هدف خود باید ارتباط آن نود به همه نودهای معتبر دیگر را قطع کنند و او را تنها به نودهای نامعتبر وصل کنند.

اگرچه انشعابهای (چند شاخه شدن) زنجیره بلاک چین در شبکه بیت کوین عمدتا تصادفی و به دلیل تأخیر در انتشار بلاکها ایجاد میشوند، اما این احتمال نیز وجود دارد که یک عنصر مخرب بخواهد کنترل بلاک بعدی و محتوای تراکنشهای آن را دردست بگیرد و از اجماع ناکاموتو سوء استفاده کند. این کار درصورتی ممکن است که فرد خرابکار کنترل بیش از ۵۰٪ توان هش شبکه را در اختیار بگیرد و

طولانی ترین زنجیره را بر اساس بیشترین اثبات کار انباشته ایجاد کند. این مشکل به «حمله ۵۱٪ ۱» معروف است که در فصل ۹ به طور مفصل درباره آن صحبت می کنیم.

امنیت و ارزش دلاری بیت کوین

گفته شد که شبکه بیت کوین عدد سختی تولید بلاک را براساس تعداد شرکت کنندگانی که در قرعه کشی شرکت می کنند (ماینرهایی که برای انجام هَش انرژی صرف می کنند) تنظیم می کند. اینجا همان نقطهای ست که دنیای واقعی، دنیای دیجیتال را لمس می کند؛ قیمت بیت کوین،

^{1 51%} attack

قیمت سخت افزار، قیمت انرژی، و مقدار عدد سختی رابطه پیچیدهای را ایجاد می کنند:

- ماینرها برای تأمین انرژی استخراج و تولید بیت کوین هزینه می کنند چون فکر می کنند چیز باارزشی است.
 - معامله گران، بیت کوین می خرند چون فکر می کنند قیمت آن تا X دلار افزایش می یابد.
 - ۳. ماینرها X دلار برای تامین انرژی و سختافزار استخراج بیت کوین هزینه می کنند.
- ۴. تقاضای بالای خریداران و افزایش قیمت بیت کوین، ماینرهای بیشتری را به سمت استخراج بیت کوین سوق میدهد.
 ۵. هرچه تعداد ماینرها بیشتر شود، یعنی انرژی بیشتری در شبکه بیت کوین

صرف می شود و به امنیت بیشتر شبکه می انجامد. این امنیت بیشتر به خریداران اطمینان خاطر بیشتری می دهد و گاهی اوقات منجر به افزایش قیمت بیت کوین می شود.

ع. بعد از تولید ۲۰۱۶ بلاک، درنتیجه حضور ماینرهای بیشتر و بالا رفتن توان هش شبکه، عدد سختی تنظیم و تولید بلاکها دشوارتر می شود.

سختی بالاتر به معنای کوچکتر شدن عدد هدف است پس ماینرها بلاکهای کمتری استخراج می کنند که باعث میشود برخی از آنها بیشتر از X دلار برای عملیات استخراج بیت کوین هزینه کنند.

۸. بعضی از ماینرها دیگر هیچ سودی
 نمی کنند چون هزینه صرف شده برای

انرژی استخراج بلاکها از ارزش بیت کوینهای بهدست آمده بیشتر شده است. در این حالت بعضی ماینرها کار را متوقف می کنند.

۹. ۲۰۱۶ بلاک دیگر تولید می شود،
 سختی شبکه مجددا محاسبه می شود و این
 بار چون بعضی از ماینرها دستگاههای
 خود را خاموش کرده اند، سختی کاهش
 می یابد و درنتیجه تولید بلاکها ساده تر
 می شود.

۱۰. سختی کمتر یعنی ماینرهایی که در دوره قبلی سود نمی کردند می توانند دوباره به شبکه برگردند و به استخراج مشغول شوند. یا ماینرهای جدیدی وارد بازی شوند.

١١. برو به مرحله ١.

در یک بازار نزولی، با فروش بیش از حد كوينها از سمت كاربران، اين چرخه می تواند در جهت دیگری حرکت کند و باعث كاهش قيمت بيت كوين شود (اصطلاحاً دامپ اتفاق بیفتد) و ماینرها نتوانند سود كنند. با اين وجود، برخلاف آنچه که در رسانهها تحت عنوان مارپیچ مرگ مطرح می شود، الگوریتم تنظیم سختی شبکه این اطمینان را حاصل می کند که همواره نوعی تعادل بین قیمت بیت کوین و تعداد ماینرها در شبکه وجود خواهد داشت، همچنین ماینرهای ناکارآمد را به نفع ماینرهایی که با ارزان ترین انرژی ممکن کار می کنند، کنار میزند.

¹ Death Spiral

در عمل در این چندسال گذشته، قیمت بیت کوین رشد سریعی داشته است همان طور كه توان هش شبكه افزايش داشته است. هرچه توان هش شبكه بالاتر باشد، حمله به آن هم سخت تر خواهد شد، چون برای دردست گرفتن كنترل محتويات بلاك بعدی، به اندازه بیش از نیمی از کل شبکه، انرژی و سخت افزار نیاز است. امروزه حجم انرژی مصرفی در شبکه بیت کوین تقریبا برابر با انرژی مصرف شده در یک کشور متوسط است.

فصل ۷

حسابهای بینام

تا اینجا یک دفتر کل توزیعشده بدون نیاز به یک مرجع مرکزی، یک سیستم قرعه کشی برای انتخاب فردی که در آن بنویسد، یک سیستم پاداش برای ماینرهای خوب و تنبیه بدها، راهی برای تنظیم سختی شبکه تا مطمئن باشیم برنامه عرضه بیت کوین ثابت است، و در نهایت یک سیستم برای بررسی اعتبار زنجیره ایجاد کردهایم.

اکنون بیایید درباره هویت صحبت کنیم. در یک سیستم بانکی سنتی، شما با معرفی خود به به بانک از طریق ارائه مدارک هویتی به صورت حضوری، یا ارائه نام کاربری و کلمه عبور در اپلیکیشنهای نت بانک، اقدام به جابه جا کردن پول می کنید. بانک از این روش اطمینان حاصل می کند که یک شناسه هویتی بین دو نفر به اشتراک گذاشته نمی شود.

حال که هیچ مرجعی برای بایگانی هویت افراد نداریم، چطور می توانیم در سیستم مالی بیت کوین یک حساب جدید باز کنیم، و چطور می توان مطمئن شد وقتی آیدا می خواهد به بابک پرداخت کند واقعا این آیدا است و اجازه جابه جا کردن پول را دارد؟

ایجاد یک «حساب بیت کوین ۱»

از آنجا که نمی توانیم به یک واسطه مرکزی مثل بانک، برای ثبت تمامی حسابها اعتماد کنیم و چون افراد می توانند بدون کسب اجازه بیایند و بروند، حسابها را چگونه مدیریت کنیم؟

چه می شود اگر هرکس نام کاربری و کلمه عبور خودش را مدیریت کند؟ یک بانک معمولا بررسی می کند که این نام کاربری قبلا استفاده نشده باشد، اما این روش اینجا ممکن نیست، چون هیچ مرجعی وجود ندارد که تمام شناسه ها را در اختیار داشته باشد. پس به چیزی قوی تر، بزرگتر و خاص تر از یک نام کاربری و کلمه عبور نیاز داریم.

¹ Bitcoin Account

این شیوه با توجه به فصلهای قبلی باید برای شما آشنا باشد؛ دوباره نیاز به یک عدد تصادفی بزرگ داریم.

همانطور که خرید بلیت بخت آزمایی با تولید شمارههای تصادفی ممکن شد، از همین روش برای ایجاد حسابها نیز استفاده می کنیم. برای ایجاد یک «حساب بیت کوین» که به آن آدرس می گویند، ابتدا یک جفت عدد ۲۵۶ بیتی تولید می کنیم که از لحاظ ریاضی با هم مرتبط هستند، به نام کلیدهای عمومی و خصوصی۱. ۲۲۵۶ جفت کلید، عددی بسیار بزرگ و به اندازه اتمهای موجود در کیهان است. بنابراین احتمال اینکه دو نفر جفت کلیدهای مشابهی تولید كنند تقريباً غيرممكن است.

¹ Public/Private key pair

این جفت کلید ویژگیهای قابل توجهی دارند. می توان از آنها هم برای رمزنگاری و هم برای رمزگشایی یک پیغام استفاده کرد. علاوه بر این شما می توانید کلید عمومی خود را در سراسر جهان به اشتراک بگذارید. با دانستن کلید عمومی، کسی نمی تواند به کلید خصوصی شما دسترسی پیدا کند.

بیایید ببینیم آیدا چطور برای بابک کوین ارسال می کند. برای دریافت یک تراکنش، بابک جفت کلید عمومی و خصوصی را تولید می کند و کلید خصوصی را کاملا محرمانه نگه می دارد. او یک آدرس ایجاد کرده است، یک عدد بزرگ براساس کلید عمومی. سپس بابک این شماره آدرس را با

آیدا به اشتراک می گذارد، حالا آیدا می تواند برای بابک کوین ارسال کند.

آیدا باید به شبکه اطلاع دهد که میخواهد از آدرس عمومی خودش به آدرس عمومی بابک کوین بفرستد. اما چطور ثابت کند که اجازه ی خرج کردن از این آدرس را دارد؟ آیدا این کار را با اثبات اینکه کلید خصوصی او متعلق به این آدرس است، انجام می دهد، بدون اینکه کلید خصوصی خود را افشا کند.

این اثبات با استفاده از امضای دیجیتال ا انجام می شود. آیدا یک تراکنش ایجاد می کند، که در اصل یک داده کامپیوتری است. چیزی شبیه به «آدرس ۱۲۳۴۵ مقدار

¹ Digital Signature

۲ بیت کوین برای آدرس ۵۶۷۸ ارسال می کند» با این تفاوت که شماره آدرسها عدد بزرگی هستند. سپس آیدا تراکنش خود را هش کرده و با کلید خصوصی خود هش را رمزنگاری و یک امضای دیجیتال ایجاد می کند.

وقتی آیدا تراکنش خود را در شبکه منتشر می کند، کلید عمومی و امضای دیجیتال خود را هم به شبکه اعلام می کند. چون همه کلید عمومی آیدا را دارند می توانند امضای دیجیتال تراکنش را رمزگشایی کنند. اما نتیجه این رمزگشایی زمانی موفقیت آمیز خواهد بود که تراکنش واقعاً با کلید خصوصی که فقط در اختیار آیدا است، رمزنگاری شده باشد.

تنها مزیتی که رمزگشایی امضای دیجیتال دارد این است که به همه اجازه میدهد تا بدانند آیدا کلید خصوصی این آدرس را دارد، بدون اینکه نیازی به افشای کلید خصوصی باشد.

وقتی پولی را در بانک جابه جا می کنید، شناسه کاربری و رمزعبور خود را به بانک می دهید. وقتی چکی را می نویسید، آن را امضا می کنید تا تصدیق کنید این چک را خودتان نوشته اید. وقتی بیت کوین جابه جا می کنید ثابت می شود که مالک کلید خصوصی آن آدرس بیت کوین هستید.

برخلاف امضای چک یا رمز بانکی شما، امضای دیجیتال شما مختص دادههای تراکنشی است که هربار ساخته میشود. از این جهت امکان دزدی یا استفاده آنها در تراکنشهای دیگر وجود نخواهد داشت. هر تراکنش امضای متفاوتی دارد حتی اگر براساس کلید خصوصی یکسانی تولید شده باشد.

آیا می توان یک کلید خصوصی را حدس زد؟

بیایید احتمال حدس زدن یک کلید خصوصی را بررسی کنیم. هر کس کلید خصوصی را در اختیار داشته باشد می تواند کوینهایی که در آدرس عمومی آن ذخیره شده است را جابجا کند. یاد آوری می کنم که یک کلید از حداکثر ۲۵۶ بیت ساخته می شود. هر بیت تنها دو مقدار می تواند

بگیرد (صفر و یک). می توانید هر بیت را مثل یک بازی شیر یا خط در نظر بگیرید.

اگر کلیدهای خصوصی ما ۱ بیتی بودند، حکم یک سکه دو رو را داشتند، یا شیر یا خط. از دو بار پرتاب یک سکه، حدس شما یک بار درست از آب در می آید.

مرور مختصری بر احتمالات به زبان ساده:
احتمال وقوع چند رویداد با ضرب کردن
احتمال رخ دادن تک تک آنها محاسبه
میشود. اگر در پرتاب سکه احتمال شیر
آمدن ۱/۲ باشد، بنابراین احتمال شیر آمدن
در دوبار پرتاب سکه برابر با ۱/۴ یا یک به
۶ خواهد بود.

اگر ۲ بیت داشته باشیم، مثل دوبار پرتاب سکه است. ۴=۲۲، بنابراین شانس شما ۱ به ۴ است.

نتیجه پرتاب Λ بار پشت سر هم سکه، Υ^{Λ} است یا Γ به Γ

یک پلاک شهربانی در ایالات متحده دارای ع رقم یا حرف است. تعداد حروف الفبای انگلیسی ۲۶ و تعداد ارقام موجود ۱۰ تا است، بنابراین جمعا ۳۶ کاراکتر برای پلاک وجود دارد. چون پلاک ۶ رقمی است تعداد پلاکهایی که می توان ایجاد كرد ۳۶۶ خواهد بود. پس احتمال حدس زدن یلاک ۱ به ۲,۱۷۶,۷۸۲,۳۳۶ است. یک کارت اعتباری ۱۶ رقم دارد. هر رقم مى تواند ١٠ مقدار داشته باشد. پس احتمال

حدس زدن شماره کارت اعتباری ۱۰۱۶ است، یعنی یک به

حدود ۱۰۵۰ اتم بر روی سیاره زمین وجود دارد. اگر به طور تصادفی یکی از اتمها را در نظر بگیریم، شانس شما در حدس زدن آن چیزی حدود ۱ به

یک کلید خصوصی ۲۵۶ بیت دارد، یعنی ۲^{۲۵} یا حدود ۱۰^{۷۷}. درواقع عددی به بزرگی حدس زدن یک اتم خاص از کل هستی و یا ۹ بار برنده شدن پشت سر هم در

بخت آزمایی. شانس شما در حدس زدن آن ۱ به

115,792,089,237,316,195,423,
570,985,008,687,907,853,
269,984,665,640,564,039,457,
584,007,913,129,639,936

اما اگر یک کامپیوتر بسیار قدر تمند برای حدس زدن در اختیار داشته باشیم چه؟ این موضوع در یکی از پستهای سایت ردیت به خوبی توضیح داده شده است و پیشنهاد می کنم آن مطلب را بخوانید. با وجود اینکه متن تخصصی است اما پاراگراف آخر آن می تواند تصور خوبی از فهرست کردن تمام کلیدهای ۲۵۶ بیتی ممکن را به شما بدهد:

¹ Reddit

² reddit.com/r/Bitcoin/comments/1rurll/
 on_the_subject_of_listing_all_possible_private

«اگر بتوانید از سیاره زمین به عنوان حافظه استفاده کنید، به ازای هر اتم یک بایت ذخیره کنید، از ستارهها به عنوان سوخت استفاده کنید، و یک تریلیون کلید در ثانیه تولید کنید، نیاز به ۳۷ اکتیلیون ازمین برای ذخیره آن و ۲۳۷ میلیارد خورشید برای تامین انرژی سخت افزارها نیاز دارید و تمام این فرایند ۳/۶۷۱۷ اکتادسیلیون سال طول خواهد كشيد.»

U/PSBLAKE on R/BITCOIN

اساسا حدس زدن کلید خصوصی دیگران غيرممكن است. نه فقط اين، بلكه تعداد آدرسهای بیت کوین به قدری زیاد است که بهتر است برای هر تراکنشی که ایجاد

¹ Octillion $(1x10^{27})$

² Octodecillion (1×10^{801})

می شود یک آدرس جدید ساخت. بنابراین به جای داشتن یک حساب بانکی، شما می توانید هزاران یا حتی میلیون ها حساب بیت کوین داشته باشید؛ یک حساب جداگانه برای هر بار دریافت بیت کوین.

ممکن است این موضوع که امنیت حساب بیت کوین شما براساس شانس تامین می شود برای شما کمی نگران کننده باشد، اما امیدوارم نوشته بالا این اطمینان را به شما بدهد که امنیت این حساب بسیار بیشتر از رمز عبور حساب بانکی شماست که در یک سرور مرکزی ذخیره شده و در دسترس هکرهاست.

بررسی موجودی حساب

حالا زمان تصحیح آخرین دروغ مصلحتیای است که درباره نحوه کار بیت کوین گفتم. مانده حسابها در دفتر کل ثبت نمی شوند، به جای آن بیت کوین از یک مدل به نام «خروجی خرجنشده ۱» استفاده می کند. (با توجه به رایج بودن اصطلاح UTX0 بین کاربران فارسی زبان، در ادامه از عبارت انگلیسی آن استفاده می کنیم. – م)

ایده UTXO به این صورت است که، هر تراکنش مجموعهای از ورودیهایی است که برای تولید خروجیهای جدید از آنها استفاده می شود. مثل این است که تعدادی سکه فلزی را به یک دستگاه بدهیم تا آنها

¹ UTXO (Unspent Transaction Output)

را ذوب کند و سکههای جدیدی و به هر اندازهای که میخواهیم برای ما ضرب کند و به ما برگرداند. به بیان ساده UTX0، یک خروجی از تراکنشهای قبلی است که هنوز به آدرس دیگری ارسال نشده یا به عبارت دیگر هنوز خرج نشده است. تراکنش یاداش تولید بلاک به ماینرها (کوین بیس) هم تا وقتی خرج نشود یک UTX0 محسوب می شود.

به عنوان مثال، آیدا آدرسی دارد که ۱ بیت کوین در آن است. او میخواهد ۲/۰ بیت کوین برای بابک ارسال کند. او یک تراکنش ایجاد می کند که ورودی آن یک تراکنش ایجاد می کند که ورودی آن یک شرح: یک UTXO جدید به ارزش ۲/۰ بیت کوین به عنوان خروجی به آدرس

بابک، و یک UTXO جدید دیگر به ارزش ۱/۷ بیت کوین به عنوان خروجی برای بازگرداندن باقیمانده به آدرس آیدا. باقی بیت کوین آیدا می تواند به همان آدرسی بازگردد که او تراکنش را از آن ارسال می کند، ولی برای رعایت حریم خصوصی بهتر است در حین ایجاد تراکنش یک آدرس جدید بسازد و باقیمانده را به آن ارسال کند.

از آنجا که در زنجیره بلوکها راهی برای شناسایی صاحب یک آدرس وجود ندارد، (برای این منظور باید کلیدهای خصوصی هر آدرس بیت کوین را بدانید و آنها را به هویت افراد در دنیای واقعی ارتباط دهید)، مدل UTXO با فراهم آوردن امکان ایجاد و به کارگیری یک آدرس جدید در هر

تراکنش، ساز و کار بسیار خوبی برای ایجاد حریم خصوصی به وجود آورده است.

بنابراین برای مشاهده موجودی حساب یک آدرس موردنظر، درواقع باید موجودی همه UTX0 هایی که این آدرس در خروجی آنها قرار دارد را با هم جمع کنیم. وقتی افراد از یک آدرس به چند آدرس مختلف بیت کوین ارسال می کنند مجموع کل UTXO های موجود در شبکه بیت کوین افزایش، و وقتی افراد چند UTX0 را با یکدیگر ادغام^۲ می کنند و خروجی را به یک آدرس ارسال می کنند این مقدار کاهش پیدا می کند.

مدل UTX0 تشخیص دوبار خرج کردن^۳ را هم بسیار ساده و مؤثر می کند چون هر

¹ Balance

² Consolidate

³ Double spend

UTXO را فقط یک بار می توان خرج کرد. با این روش دیگر نیازی به بایگانی تاریخچه همه پرداختهای انجام شده از یک آدرس بیت کوین هم نخواهد بود.

همچنین می توان با ایجاد تراکنشهای پیچیدهای که ورودی و خروجیهای مختلف را با هم ترکیب می کنند، در آن واحد تعداد زیادی UTXO ایجاد کرد و از بین برد. این ویژگی امکان «ترکیب کوینها۱» را فراهم می کند که در آن چندین نفر می توانند در یک تراکنش بیت کوین، که هرتعدادی از ورودی ها را برای تولید هرتعداد خروجی ترکیب می کند شرکت، و از این طریق تاریخچه UTX0 ها را ینهان کنند. به علاوه این اجازه را به افراد میدهد که کوینها را

¹ Coin mixing

از آدرسهای مختلف به یک آدرس ادغام کنند یا آنها را بین آدرسهای مختلف و برای افزایش امنیت و حریم خصوصی پخش کنند.

كيف پول

ایجاد یک حساب، چیزی بیشتر از ساخت یک عدد تصادفی ۲۵۶ بیتی به عنوان کلید خصوصی نیست، و ما می توانیم هزاران و یا حتی میلیونها حساب ایجاد کنیم. به همین دلیل نیاز به ساز و کاری برای رصد کردن آنها پیدا می کنیم. در بیت کوین واژه کیف پول به هرنوع وسیلهای اشاره می کند که با آن بتوانیم کلیدهای خود را مدیریت کنیم. آن بتوانیم کلیدهای خود را مدیریت کنیم. این وسیله می تواند به سادگی یک تکه

کاغذ باشد و یا به پیچیدگی یک سخت افزار.

نرمافزار اصلی بیت کوین که توسط ساتوشی ارائه شد به همراه خود یک نرمافزار کیف پول دارد. این کیف پول قادر است جفت کلیدهای عمومی و خصوصی شما را ایجاد کند. (یاد آوری می کنم، کلید عمومی برای ساختن آدرس بیت کوین استفاده می شود و کلید خصوصی برای امضا کردن تراکنشهای پرداخت از آن آدرس).

برخلاف کیف پول بانکی که معمولا در قالب یک اپلیکیشن تحت وب یا موبایل است، بیت کوین کاملا یک سیستم باز است. به همین دلیل صدها کیف پول مختلف وجود دارد که بیشتر آنها رایگان

هستند، بسیاری متن باز و همچنین نیمی از آنها کیف پولهای سختافزاری هستند. در آینده کیف پولهای بیشتری ساخته خواهد شد. هرکسی با دانش برنامهنویسی کامپیوتر می تواند کیف پول خود را بسازد یا سورس کُدا کیف پولها را بررسی کند تا مطمئن شود هیچ تقلبی در کار نیست. این یکی دیگر از مزیتهای کیف پولهای بیت کوین بر اپلیکیشنهای موبایل بانک شما است که برای نو آوری در این حوزه نیازی به کسب اجازه از یک مرجع مرکزی نیست.

از آنجا که برای خرج کردن کوینهای تان فقط به کلید خصوصی نیاز است، پس باید به خوبی از آن مراقبت کنید. اگر کسی

¹ Source code

کارت اعتباری شما را سرقت کند، می توانید با شرکت صادر کننده آن تماس و با تنظیم شکایت، پول خود را پس بگیرید. در بیت کوین، چنین واسطهای وجود ندارد. اگر کسی کلید خصوصی شما را در اختیار داشته باشد می تواند کوینهای شما را کنترل کند و هیچ کسی نیست که شما بتوانید با او تماس بگیرید و مشکل را حل کنید.

همچنین کلیدهای خصوصی، بسیار مستعد گمشدن هستند. اگر کیف پول خود را در کامپیوتر دزدیده کامپیوتر دزدیده شود و یا آتش بگیرد، به مشکل خواهید خورد. اگر بر اساس روش پیشنهاد شده، برای هر دریافت بیت کوین آدرسی جدید میسازید و بعد از آن کلیدهای خصوصی را ذخیره و از آنها پشتیبان تهیه می کنید، بعد

از گذشت مدت کوتاهی این کار برای شما بسیار دشوار خواهد شد.

درطول زمان، راه حلهایی برای حل این مشکل ارائه شده است. در سال ۲۰۱۲، BIP32 (پیشنهاد بهبود بیت کوین^۱ سازو کاری است که در آن افراد می توانند ایده خود را برای ارتقاء بیت کوین منتشر كنند) پیشنهاد ایجاد كیف پولهای سلسله مراتبی –قطعی که به آن HD می گویند را مطرح کرد. در این روش تنها با استفاده از یک عدد تصادفی (معروف به seed) می توان تمام زنجیره جفت کلیدهای عمومی و خصوصی را ایجاد کرد؛ آدرسهای بیت کوین و امضای دیجیتال هر کدام از

¹ Bitcoin Improvement Proposal

² HD Wallet (Hierarchical Deterministic Wallet)

امروزه هر نرمافزار یا سختافزار کیف پولی که دردسترس است، به صورت اتوماتیک کلیدهای جدیدی برای هر تراکنش شما ایجاد می کند و شما فقط لازم است تنها از یک seed نگهداری و پشتیبان گیری کنید.

در سال ۲۰۱۳، BIP39 ذخیره و پشتیبان گیری از کلیدها را حتی آسان تر کرد. به جای استفاده از اعداد کاملا تصادفی، کلیدها می توانند در قالب کلمات قابل فهم برای انسان تولید شوند. به عنوان مثال:

witch collapse practice feed shame open despair creek road again ice least با این روش، پشتیبان گیری از کلیدها بسیار ساده می شود. می توانید این seed را روی تکهای کاغذ بنویسید و در محل امنی از آن نگهداری کنید. حتی می توانید عبارتها را به خاطر بسپارید و از کشوری که اقتصاد آن در حال فرو پاشی است خارج شوید، و هیچ کس متوجه نخواهد شد که همه دارایی شما در ذهن شما ذخیره شده است.

علاوه بر این ممکن است برای دسترسی به بیت کوینهای ذخیره شده در یک آدرس به بیش از یک کلید خصوصی نیاز باشد. آدرسهای چند امضایی یا multisig می توانند انواع مختلفی از طرحهای امنیتی را به کار گیرند. به عنوان مثال افراد می توانند حسابهای مشترک داشته باشند که ۱-از-۲

¹ Multisignature

باشد، یعنی هریک از آنها می تواند تراکنشها را امضا کند یا ممکن است ۲-از-۲ باشد که در این صورت برای جابهجا کردن بیت کوینهای ذخیره شده، هر دو طرف باید تراکنش را با کلیدهای خصوصى شان امضا كنند.

می توان با استفاده از مدل چند امضایی ۲-از-۳ یک حساب امانی ایجاد کرد. خریدار و فروشنده هركدام يک كليد در اختيار دارند و کلید سوم به یک میانجی (حَکم) اختصاص پیدا می کند. خریدار و فروشنده در صورت توافق بر سر معامله می توانند تراكنش را امضا كنند، ولى اگر اختلاف نظری بین آنها پیش آید، نفر سوم می تواند

¹ Escrow

² Arbitrator

با یکی از طرفین توافق و تراکنش را امضا کند.

می توانید برای جلوگیری از بروز خطر از دست رفتن کلیدها از مدل ۳-از-۵ استفاده کنید. در این صورت حتی اگر ۲ کلید از ۵ کلید خود را از دست بدهید، همچنان قادر به استفاده از حساب خود خواهید بود. می توان ۲ تا از کلیدها را در دو جای مختلف، ۲ تای دیگر را نزد دو دوست قابل اطمینان که یکدیگر را نمی شناسند گذاشت، و آخرین کلید را در سرویسهای خاصی مثل BitGo قرار داد که تراکنشهای شما را با همکاری شما امضا می کنند. با این کار درحالی که از خطر از دست رفتن کلیدهای خود جلوگیری می کنید، سرقت بیت کوینهای شما نیز بسیار دشوار خواهد بود. (با توجه به شرایط

فعلی کشور ما در روابط جهانی، در انتخاب و استفاده از سرویسهای بینالمللی نهایت دقت را به کار برید. – م)

حتی می توان از این هم فراتر رفت و آدرسهایی را ساخت که دسترسی به آنها شرایط پیچیده تری داشته باشد، مثلاً برای جابه جا کردن آنها نیاز به افشای عددی محرمانه باشد، يا اصلاً امكان جابهجا كردن آنها برای مدت مشخصی وجود نداشته باشد. مثلا مى توانىد يك آدرس بيت كوين بسازید که به مدت ۱۰ سال نتوانید از آن خرج کنید؛ هیچ کس نمی تواند شما را مجبور به تغییر آن کند.

این گزینه ها اثرات عمیقی بر زندگی ما خواهند داشت و می توانند دنیا را تغییر دهند. پیش از این هرگز امکان نداشت کسی بتواند دارایی خود را تا این حد مصون از مصادره یا سرقت با خود حمل کند.

فصل ۸

نرمافزار بیت کوین ۱

تا اینجا یک سیستم توزیع شده ساختیم که با آن می توان حساب و کتاب پول، و نقل و انتقالات آن را نگه داشت. بیایید آنچه را که ایجاد کرده ایم مرور کنیم:

۱. یک دفتر کلِ توزیعشده که یک نسخه از آن در اختیار همه اعضا قرار دارد.
۲. یک سیستم قرعه کشی براساس اثبات کار و ساز و کارِ بازتنظیم سختی شبکه کار و ساز و کارِ بازتنظیم سختی شبکه

¹ Bitcoin client

برای حفظ ایمنی و ثابت نگه داشتن حجم عرضه بیت کوین.

۳. یک سیستم اجماع که این اطمینان را به همه اعضای شبکه میدهد که می توانند تمام تاریخچه بلاک چین را شخصاً و با استفاده از نرمافزار متن باز بیت کوین اعتبار سنجی کنند.

۴. یک سیستم شناسایی بر پایه امضای دیجیتال که اعضا را قادر به ساختن حسابهای کاربری و دریافت بیت کوین بدون نیاز به یک مرجع مرکزی می کند.

حال زمان آن است که یکی از جالب ترین و مهمترین چیزها را درمورد بیت کوین حل کنیم: قوانین از کجا می آیند و چگونه اعمال می شوند؟

نرمافزار بیت کوین

در طول فصلهای قبل، فرض ما بر این بود که همه اعضا در شبکه از یک قانون پیروی می کنند: اجازه دوبار خرج کردن کوینها را نمی دهند، اطمینان حاصل می کنند که هر بلاک مقدار اثبات کار درستی دارد، هر بلاک به بلاک قبل از خود در راس بلاک چین اشاره می کند، و تمام چیزهای دیگری که افراد در طول زمان درباره آنها توافق کردهاند.

گفته شد که بیت کوین یک نرمافزار متن باز است. متن باز یعنی هر کسی می تواند کُدهای آن را بخواند، و همچنین هرجایی از کُد را که بخواهد برای خود تغییر دهد. اما

این تغییرات چگونه به بیت کوین راه پیدا می کنند؟

بیت کوین یک پروتکل است. در نرمافزار کامپیوتر، این واژه به معنای مجموعهای از قوانین است که نرمافزار از آنها پیروی می کند. با این حال، شما تا جایی اجازه تغییر دارید که نرمافزار شما همچنان مجموعه قوانینی که همه از آن پیروی می کنند را رعایت کند. وقتی گفته میشود که کسی «یک نود بیت کوین اجرا می کند»، درواقع به معنای اجرا کردن نرمافزاری است که به زبان پروتکل بیت کوین حرف میزند و قوانین آن را رعایت می کند. این نرمافزار می تواند با سایر نودهای بیت کوین ارتباط برقرار کند،

¹ Protocol

تراکنشها و بلاکها را به آنها انتقال دهد، نودهای دیگر را برای وصل شدن به آنها پیدا کند و چیزهایی از این قبیل.

جزئیات نحوه پیادهسازی این نرمافزار بر عهده کسی است که آن را اجرا می کند. درواقع درحالحاضر نرمافزارهای زیادی پروتکل بیت کوین را پیادهسازی کردهاند. مشهور ترین آنها Bitcoin Core است که نسخه توسعه یافته ی نرمافزاری است که برای اولین بار توسط ساتوشی ناکومو تو منتشر شد.

نرمافزارهای دیگری نیز وجود دارند؛ بعضی از آنها حتی به زبانهای دیگری نوشته شدهاند و توسط افراد مختلفی نگهداری میشوند. چون توافق اعضا در بیت کوین بسیار مهم است (یعنی تمام نودها باید بر سر اینکه بلاکها معتبر هستند یا نه، توافق داشته باشند) اکثریت نودها نرمافزار Bitcoin core را اجرا می کنند تا از اشکالاتی که ممکن است باعث اختلاف نظر نودها روی اعتبار بلاک شود، جلوگیری کنند.

چه کسی قوانین را تعیین می کند؟

قوانینی که بیت کوین با آنها تعریف می شود در Bitcoin Core نوشته شدهاند، اما چه کسی درمورد قوانین تصمیم می گیرد؟ چرا می گوییم بیت کوین کمیاب است در حالی که ممکن است یک نفر تغییری در نرمافزار ایجاد کند و تعداد

بیت کوین را از ۲۱ میلیون به ۲۲ میلیون تغییر دهد؟

چون این سیستم توزیعشده است، تمامی نودها در شبکه باید روی این قوانین توافق داشته باشند. اگر یک ماینر نرمافزار بیت کوین را به گونهای تغییر دهد تا دوبرابر آنچه که در قوانین بیت کوین آمده جایزه دریافت کند، بقیه نودها بلاک استخراج شده توسط این ماینر را قبول نخواهند کرد. تغییر قوانین بیت کوین بسیار سخت است چون هزاران نود توزیعشده در سراسر جهان هستند که این قوانین را اجرا می کنند.

مدل حاکمیت بیت کوین به راحتی قابل فهم نیست، به خصوص برای کسانی مثل ما که در یک دمو کراسی غربی زندگی می کنند. ما عادت کردهایم که با رأی دادن حکومت کنیم، رأی دادن یعنی اکثریت مردم می توانند تصمیم بگیرند که کاری انجام شود، قانونی تصویب شود و آنچه که می خواهند را به اقلیت مردم تحمیل کنند. اما حاکمیت بیت کوین بیشتر شبیه به آنارشی است تا دمو کراسی. بیایید نگاهی به نحوه کنترل این مسئله در سیستم بیندازیم:

نودها: هر عضو در شبکه بیت کوین یک نود را اجرا می کند و حق انتخاب دارد که کدام نرمافزار آن را اجرا کند. اگر نرمافزار مخرب باشد و سعی بر انجام کاری شبیه به افزایش جایزه ساختن بلاک را داشته باشد، طبعا هیچ کس آن را اجرا نخواهد کرد. نود، یعنی هرکسی که پذیرنده بیت کوین است؛ مانند فروشندگان، صرافیها، ارائه دهندگان

کیف پول و افرادی که به صورت روزمره از بیت کوین استفاده می کنند.

ماینرها: بعضی از نودهای شبکه استخراج هم می کنند، یعنی برق مصرف می کنند تا اجازه نوشتن در دفتر کل بیت کوین را داشته باشند. این کار امنیت شبکه بیت کوین را تأمین می کند؛ چراکه هزینه دستکاری در دفتر كل بسيار زياد است. چون ماينرها تنها کسانی هستند که در دفتر کل مینویسند، ممكن است فكر كنيد كه آنها هستند كه قوانین را تعیین می کنند، اما اینطور نیست. آنها فقط قوانين اعمال شده توسط نودهاي بیت کوین بر شبکه را اجرا می کنند. اگر ماینرها شروع به تولید بلاکهایی کنند که جایزه اضافی دارند، نودهای دیگر آنها را رد می کنند، چون این کار باعث بیارزش شدن

ارزش کوینها می شود. پس هر کاربری که یک نود را اجرا می کند عضوی از حکومت آنارشیستی است - آنها تعیین می کنند که چه قوانینی باید و جود داشته باشد و هر گونه نقض این قوانین را رد می کنند.

كاربران/سرمايه گذاران: كاربران افرادى هستند که مثل نودها (پذیرندگان)، به خرید و فروش بیت کوین مشغول هستند. در حال حاضر بسیاری از کاربران نود خودشان را اجرا نمی کنند اما به یک نود که توسط ایجاد کننده کیف پولشان اجرا می شود اعتماد می کنند، چون ارائه دهندگان کیف پول به نیابت از کاربران و طبق خواسته و میل آنها عمل می کنند. کاربران هستند که ارزش کوینها را در بازار آزاد تعیین می کنند. حتی اگر ماینرها و اغلب

پذیرندگان سیستم بخواهند با هم تبانی کنند و تغییراتی مثل افزایش نرخ جایزه را در سیستم ایجاد کنند، کاربران می توانند قیمت کوین آنها را پایین بیاورند و شرکتهای متخلف را از گردونه خارج کنند. اگر روزی بیت کوین به چیزی تبدیل شود که کاربران آن را نمی پسندند، یک گروه متعصب از کاربران همیشه می توانند نسخه بیت کوین خود را فعال نگه دارند.

توسعه دهندگان: Bitcoin Core مهم ترین نرمافزار بیت کوین است که صدها نفر از بهترین توسعه دهندگان و شرکتهای متخصص در علم رمزنگاری را به خود جلب کرده است. هسته اصلی پروژه بسیار امن است چراکه این نرمافزار شبکهای را ایجاد کرده است که امروزه امنیت صدها میلیون

دلار را تامین می کند. هر تغییری که پیشنهاد شود به دقت مورد بررسی قرار می گیرد. فرایند بررسی کدها و پیشنهادها کاملا باز است و هرکسی می تواند به آن ملحق شود، درباره آن اظهار نظر کند و یا پیشنهاد تغییری در کُد ارائه دهد. اگر توسعه دهندگان تخلف کنند و چیزی را معرفی کنند که هیچ کس تمایل به اجرای آن ندارد، کاربران به سادگی نرمافزار دیگری را اجرا خواهند کرد (شاید نسخه قدیمی تر را اجرا کنند و یا شروع به توسعه نسخه جدیدی کنند). به همین دلیل توسعه دهندگان باید تغییراتی را ایجاد کنند که مطابق با خواست کاربران باشد در غیر این صورت جایگاهشان را از دست خواهند

اکوسیستم بیت کوین درواقع همکاری صدها و هزاران عضو آن است که اگرچه همه آنها خودخواهانه عمل می کنند و معمولا در رقابت با یکدیگر هستند، اما در نهایت یک سیستم بسیار مقاوم و به نفع همه ایجاد شده است. بیت کوین واقعاً یک بازار آزاد و برپایه آنارشی است که شخص خاصی مسئول آن نیست.

فصل ۹

گذشته، حال و آینده

حالا که شبکه بیت کوین را کاملا شناختیم می توانیم چند رفتار جالب که درطول ده سال گذشته در سیستم شکل گرفته است را بررسی کنیم.

ASIC ها و استخرهای ماینینگ

در ابتدا ساتوشی اولین بیت کوینها را با استفاده از CPU کامپیوتر خود ماین کرد. چون سختی اولیه سیستم بسیار کم بود، تولید این کوینها با کامپیوتر برای او ارزان درمی آمد.

به مرور زمان، با دستکاری نرمافزار، عملیات استخراج بهتر و بهتر شد. درنهایت از پردازنده خاصی به نام GPU استفاده شد که روی کارتهای گرافیکی وجود داشت و برای بازیهای و یدیویی استفاده می شد.

با استفاده از GPU، عملیات استخراج هزاران بار بهتر از CPU انجام می شد. در این زمان افرادی که از CPU استفاده می کردند کسر کمتری از توان هش شبکه را نسبت به ماینرهای GPU دردست داشتند که با افزایش سختی، ماین کردن برای آنها سودی

وقتی GPU بر CPU غالب شدند، مردم شروع به خرید مقدار زیادی از آنها کردند. با تولید ASIC (Application Specific (Integrated Circuit میزان بهرهوری استخراج بیت کوین بهینه تر شد. آنها چیپهای سختافزاری هستند که تنها یک کار انجام می دهند؛ فقط تابع Sha256 بیت کوین را اجرا می کنند. ASICها فقط این الگوریتم خاص را اجرا می کنند و در نتیجه برای عملیات استخراج، هزاران بار به صرفه تر از GPU هستند و عملاً آنها را غيرقابل استفاده کردند، درست همان کاری که GPU با CPU کرد. هر چندسال یک بار نسل جدیدی از ASIC عرضه می شود که با توجه به پیشرفت چشمگیری که در راندمان دارد نسخههای قبل از خود را از رده خارج ماینرهای اولیه در شبکه، برای تولید بیت کوین هزینه برق کمی صرف می کردند. با افزایش قیمت بیت کوین، ماینرهای زیادی به شبکه پیوستند و درنتیجه سختی بالا رفت و تولید بیت کوین گران و گران تر شد.

یک مسئله در استخراج بیت کوین این است که قطعیت ندارد. مثل پرتاب تاس است. یعنی شما ممکن است صدها دلار برای مصرف برق هزینه کنید و هیچ بلاک معتبری هم پیدا نکنید.

در سال ۲۰۱۰ ابتکار تازهای به نام استخر استخراج ایجاد شد تا مشکل ماینرهایی را که انرژی مصرف می کنند اما جایزهای

¹ Mining Pool

دریافت نمی کنند حل کند. استخر استخراج چیزی شبیه به بیمههای درمانی است و ریسک کار را به اشتراک می گذارد.

همه ماینرهای استخر در کار استخراج با یکدیگر مشارکت می کنند و یک ماینر بسیار قدر تمند را ایجاد می کنند. اگر کسی در استخر یک بلاک معتبر پیدا کند، جایزه آن بلاک به طور مناسب بین تمام ماینرها، براساس توان هشای که در اختیار استخر گذاشتهاند، تقسیم میشود. این باعث میشود که حتی ماینرهای کوچک مثل ماینرهای شخصی هم با توجه به میزان مشار کتشان در توان هش، مقدار کمی جایزه دریافت كنند. براى ايجاد اين سرويس، استخر بخشي از جایزه ایجاد بلاک را به عنوان کارمزد دريافت مي كند.

ظهور استخرهای استخراج باعث ایجاد تمرکز در شبکه شده است، چون کاربران به سمت استخرهای بزرگتر میروند. نمودار زیر توزیع تقریبی استخرها را در ژانویه ۲۰۱۹ نشان می دهد.

حملههای ۵۱%

تمرکز در استخرهای استخراج باعث نگرانی درمورد حمله ۵۱٪ در شبکه می شود. اگر به نمودار بالانگاه کنید، متوجه خواهید شد که مجموع توان هش ۵ استخر برتر آن، بیش از ۸۰٪ کل شبکه است.

بیایید بررسی کنیم که چنین حملهای چگونه اتفاق میافتد و چه خطراتی به همراه دارد.

وقتی بیش از ۵۰٪ از توان هش شبکه در اختیار شما باشد، شما بر ثبت بلوکها در دفتر کل تسلط کامل خواهید داشت، چون توانایی شما در تولید زنجیره ی طولانی تر بیشتر از ۵۰٪ از سایر اعضای شبکه است. توجه داشته باشید که اجماع ناکاموتو می گوید که باید زنجیرهای را بپذیریم که شامل طولانی ترین زنجیره اثبات کار باشد.

در اینجا مثالی ساده از نحوه رخ دادن حمله ۵۱٪ ارائه می کنیم:

- ۱. فرض می کنیم شبکه در کل ۱,۰۰۰ هش در هرثانیه تولید می کند و بلوکها را در دفتر کل می نویسد.
- شما مقداری سخت افزار استخراج و برق خریداری می کنید که بتوانید ۲,۰۰۰ هش برثانیه تولید کنید. حالا شما ۶۶٪ از کل توان هش را دراختیار دارید توان هش را دراختیار دارید (۲۰۰۰/۳۰۰۰).
 - ۳. شما شروع به استخراج زنجیرهای می کنید که فقط شامل بلاکهای خالی است.
 - ۴. دوهفته بعد زنجیره بلو کهای خالی خود را در شبکه منتشر می کنید. چون توان استخراج شما دوبرابر سریع تر از ماینرهای صادق شبکه است پس زنجیره شما دو برابر طولانی تر از بقیه شبکه خواهد بود و در تمام شبکه پذیرفته خواهد بود و در تمام شبکه پذیرفته

خواهد شد و تاریخچه ۲ هفته گذشته از بین خواهد رفت.

علاوه بر استخراج بلاکهای خالی که زنجیره را بلااستفاده می کنند، می توانید حمله دوبار خرج کردن را هم ترتیب دهید:

۱. تعدادی بیت کوین به یک صرافی ارسال کنید.

۲. آن را با بفروشید و پول را از صرافی برداشت کنید.

۳. بعد از مدتی، زنجیرهای را که مخفیانه ساخته اید و تراکنش ارسال بیت کوین به صرافی در آن نوشته نشده است را در شبکه منتشر کنید.

۴. شما حالا زنجیره را بازنویسی کرده اید و هم بیت کوینها و هم پولها برای شما است.

در عمل، با توان هشای که امروزه در شبکه وجود دارد، فراهم آوردن برق و سخت افزار لازم برای ترتیب دادن چنین حملهای بسیار گران است (یادآوری می کنم که مصرف برق شبکه بیت کوین در حال حاضر به اندازه یک کشور متوسط است). همچنین، از بین بردن شواهد در حمله دوبار خرج کردن با این روش بسیار سخت است و ترتیبدهندگان آن در نهایت شناسایی خواهند شد (معمولاً خرید و فروش بیت کوین در ارقام بالا نیاز به احراز هویت دارد. - م). از اینها گذشته، شما باید به اندازه یک کشور متوسط انرژی مصرف

کنید و میلیونها دلار بابت خرید سختافزار بپردازید، سپس میلیونها دلار را برای فروش به صرافی ارسال کنید.

انجام چنین حملهای در بازه زمانی طولانی که باعث بروز مشکل در شبکه بیت کوین شود تقریباً غیرممکن است ولی حتی اگر فرض کنیم گروهی یا افرادی به یک بودجه نامحدود دسترسی داشته باشند و بخواهند برای آسیب رساندن به شبکه بیت کوین به این حمله ادامه دهند، شبکه می تواند یک روش جدید اثبات کار را به خدمت بگیرد (چیزی متفاوت از sha256). در این صورت همه سختافزارهای ASIC که توسط مهاجم استفاده شدهاند بلااستفاده خواهند شد. اگرچه این گزینه باعث ناکار آمد شدن تمام ماینرهای صادق نیز

می شود اما شبکه زنده می ماند و دوباره روی پای خود خواهد ایستاد.

علاوه بر غیرممکن بودن حمله ۵۱ درصد، حتی با فرض دردست داشتن اکثریت توان هش شبکه، هیچیک از موارد زیر در شبکه عملی نخواهد بود:

۱. نمی توان سرخود و به عنوان پاداش ایجاد بلاک، خارج از برنامه زمان بندی شده از هیچ، بیت کوین اضافی تولید کرد. چون برنامه زمان بندی ایجاد بلاک ها را نقض خواهد کرد و حتی اگر بلاک دارای اثبات کار کافی باشد، نودهای شبکه آن را رد می کنند.

۲. امکان خرج کردن کوینهایی که مالک
 آنها نیستید همچنان وجود ندارد، چون

باید یک امضای دیجیتال معتبر ارائه دهید.

۳. نمی توان سرعت عرضه بیت کوین را بالا برد، چون سختی مثل قبل، هر ۲۰۱۶ بلاک تنظیم می شود.

درنتیجه حتی اگر اکثریت ماینرها متقلب باشند، نودهای پذیرنده بیت کوین می توانند از درستی شبکه محافظت کنند. علاوه بر این اگر یک استخر استخراج درصد خاصی از توان هش شبکه را دراختیار دارد به این معنی نیست که همه سختافزار موجود در آن، در اختیار این استخر است. درواقع استخرها ترکیبی از هزاران ماینر شخصی هستند. اگر استخر شروع به انجام رفتارهای نادرست كند، ماينرها مي توانند استخر استخراج خود را عوض کنند؛ چراکه

خواهان حفظ ارزش اقتصادی بیت کوین هستند. ماینرها برای کسب در آمد تلاش می کنند نه برای ازدست دادن آن.

در گذشته اتفاق افتاده است که ماینرها استخر استخراجی که توان هش آن زیاد شده بود را ترک کردند. در سال ۲۰۱۴، Ghash.io نزدیک به نیمی از قدرت شبکه را دردست داشت. ماینرها متوجه شدند که شبکه به سمت متمرکز شدن پیش میرود، پس داوطلبانه استخر را ترک کردند.

اگرچه امروزه استخرهای استخراج نسبتاً متمرکزی وجود دارند، اما ارتقاء مداوم تکنولوژی استخراج شامل طرحی به نام Stratum V2 است که به ماینرها این امکان را میدهد تا بر آنچه که استخراج

می کنند کنترل بیشتری داشته باشند و وابستگی آنها به هماهنگی استخر را کاهش میدهد.

هارد فورکها و سافت فورکها ا

پیچیده ترین موضوع در بیت کوین را در مرحله آخر توضیح میدهیم.

تا اینجا متوجه شدیم که نرمافزار بیت کوین چگونه قوانینی را که افراد روی آنها توافق دارند در شبکه اعمال می کند و فهمیدیم که افراد چگونه قوانینی را که موافق آن هستند با استفاده از انتخاب نسخه نرمافزار اجرا می کنند.

¹ Hard Fork 2 Soft Fork

همچنین توضیح دادیم که چطور ماینرها درهنگام تولید بلاک قوانین شبکه را رعایت می کنند و باید بلاکها را به گونهای تولید کنند که مورد قبول کاربران باشد، در غیر این صورت باید ریسک رد شدن بلاک و از دست رفتن پاداش بلاک را بپذیرند.

درنهایت، میدانیم که نرمافزار بیت کوین طولانی ترین زنجیرهای که بیشترین حجم انباشته اثبات کار را در خود جای داده باشد به عنوان زنجیره معتبر می پذیرد، و میدانیم که چند شاخه شدن زنجیره ها (یا بهاصطلاح فورکها) به دلایلی که در فصل ع به تفصیل توضیح داده شد اتفاق می افتند.

حالا بیایید به فورکهایی که به عمد ایجاد می شوند بیردازیم. فورک عمدی زمانی ست

که تعدادی از ماینرها و/یا کاربران با قوانین جاری بیت کوین موافق نباشند و تصمیم بگیرند آن را تغییر دهند. به طور کلی دو نوع فورک برای تغییر قوانین وجود دارد: سافت فورک، که با قوانین قبل سازگاری دارد و هارد فورک که با قوانین قبل سازگار نیست ۲. ببینیم این فورک ها چطور اتفاق می افتند و مثال هایی از آنها را مطرح کنیم.

سافت فوركها

یک سافت فورک ایجاد تغییر در قوانین اجماع بیت کوین است، به صورتی که تغییرات با قوانین قبلی شبکه سازگاری داشته باشد. یعنی چه؟ این یعنی اگر شما

¹ Backwards compatible

² Backwards incompatible

یک نود قدیمی را اجرا کنید که بهروزرسانی نشده باشد، بلاکهایی که با قوانین جدید ساخته شدهاند همچنان برای نود شما معتبر هستند. برای یک نود که با فورک جدید بهروزرسانی شده است تمام بلاکهایی که قبلا نامعتبر بودهاند هنوز هم نامعتبر هستند اما حالا بعضی از بلاکهای معتبر ممكن است براى اين نود نامعتبر باشند. اجازه دهید با یک مثال این موضوع را روشن تر کنیم:

۱۲ سپتامبر ۲۰۱۰ قانون جدیدی به نرمافزار بیت کوین معرفی شد: سایز بلاک ها حداکثر می تواند ۱ مگابایت باشد. این قانون برای مقابله با اسپمها در بلاک چین اعمال شد. قبل از این قانون، بلاک ها با هر سایزی قابل قبول (معتبر) بودند. با قانون جدید تنها

بلاکهای با اندازه کوچکتر از ۱ مگابایت پذیرفته می شدند. اگر شما یک نود قدیمی را اجرا می کردید که به روزرسانی نشده بود بلاکهای کوچکتر همچنان برای آن معتبر بودند، پس شما تحت تاثیر قرار نمی گرفتید.

استفاده از سافت فورکها برای بهروزرسانی قوانین شبکه باعث بروز اختلال در شبکه نمی شود. چون به صاحبان نودها این امکان را می دهد که داوطلبانه و به مرور زمان نرمافزار نود خود را بهروزرسانی کنند. اگر این کار را هم انجام ندهند، می توانند همچنان مثل گذشته به فعالیت خود ادامه دهند. فقط ماينرها كه بلاكها را توليد می کنند باید نرمافزار نود خود را بهروز كنند تا بلاكهاى توليدشده از قوانين جديد پیروی کنند. وقتی یک ماینر قانون

محدودیت ۱ مگابایت را در فورک جدید به روزرسانی می کرد، سایز تمام بلاکهای بعدی او حداکثر ۱ مگابایت بود و ممکن بود کاربرانی که نسخههای قدیمی نرمافزار را اجرا می کردند اصلاً از قضیه خبردار نمی شدند.

هارد فورکها

هارد فورک نقطه مقابل سافت فورک است. در یک هارد فورک تغییری که با قوانین گذشته سازگار نیست در شبکه اعمال می شود و بلاکهایی که قبلاً نامعتبر بودند حالا در شبکه معتبر خواهند بود. در یک هارد فورک نودهای قدیمی که بهروزرسانی نشدهاند دیگر نمی توانند بلاکهایی را که تحت قوانین جدید ایجاد شدهاند بررسی

کنند. به همین دلیل تا نرمافزار خود را به روزرسانی نکنند در زنجیره قبلی باقی خواهند ماند. یکی از نمونههای هارد فورک افزایش سایز بلاکها از ۱ مگابایت به سایز بیشتری بود. چون بلاک بزرگ تر از ۱ مگابایتی که بر اساس قانون قبلی نامعتبر بود، بعد از اعمال هارد فورک و بر اساس قوانین جدید معتبر است.

هارد فورکهایی که در آنها همه نودهای شبکه روی تغییرات جدید با یکدیگر هم رأی هستند، در شبکه مشکلی ایجاد نمی کنند. همه نودها باید سریعاً نرمافزار خود را بهروزرسانی کنند. اگر کسی در جریان نباشد و از ایجاد تغییرات در قوانین اطلاع نداشته باشد، دیگر بلاکهای جدید را دریافت نخواهد کرد و اگر خوششانس

باشد متوجه می شود که نرمافزار از کار افتاده است و وادار به ارتقاء نرمافزار خود خواهد شد.

هارد فورکها درعمل به این سادگی پیش نمی روند. در یک سیستم آنارشیستی و غیرمتمر کز، نمی توان همه را وادار به قبول قوانین جدید کرد. در اگوست ۲۰۱۷، افرادی که از شرایط بیت کوین در زمینه پرداختهای ارزان (با کارمزد کم) ناراضی بودند، تصمیم گرفتند برای ایجاد زنجیرهای با بلاکهای بزرگ تر یک فورک ایجاد كنند. چون قانون بيت كوين توليد بلاکهایی کمتر از ۱ مگابایت بود (با توجه به سافت فورک سال ۲۰۱۰)، این افراد تصمیم گرفتند زنجیره جدیدی ایجاد کنند که در آن اندازه بلاکها بزرگتر باشد. این

فورک با نام Bitcoin Cash شناخته می شود.

ہارد فورکی مثل Bitcoin Cash کہ از چهارچوب قوانین بیت کوین خارج شده است و از جانب همه نودها و ماینرها پذیرفته نمیشود، یک بلاکچین جدید ایجاد می کند که قسمتی از تاریخچه آن با زنجیره اولیه مشترک است، اما از نقطهای که زنجیره آن از زنجیره بیت کوین جدا شده است، کوینهایی که در آن تولید میشوند دیگر بیت کوین نیستند و بنابراین توسط هیچ نودی در شبکه بیت کوین يذيرفته نخواهند شد.

اینکه چه چیزی بیت کوین «است» و چه چیزی بیت کوین «نیست» در طی یک سال

بعد از فورک Bitcoin Cash بحث داغی بود. بعضی از افرادی که طرفدار Bitcoin Cash بودند، اعتقاد داشتند که بیت کوین باید براساس آنچه که ساتوشی ۱۰ سال پیش در مقاله اولیه خود نوشته است، تعریف شود، و برای اثبات نظر خود جملاتی از مقاله را گلچین کرده بودند. اما یک سیستم مبتنی بر اجماع براساس مشاجرههایی که در شبکههای اجتماعی شکل می گیرند کار نمی کند، بلکه براساس انتخاب افراد در اجرای نرمافزاری خاص، برای اجرای قوانین مشخصى عمل مى كند.

درمورد این فورک، اکثریت افرادی که نودهای مهمی از نظر اقتصادی اجرا می کردند (مثل کیف پولها، صرافیها و پذیرندگان بیت کوین) نمی خواستند نرمافزار

خود را با چیزی که گروه کمتری از آن حمایت می کنند و تیم کم تجربه تری آن را توسعه داده است عوض كنند. همين طور میزان توان هش شبکه ناچیز آن نشان میداد افراد كمترى خواهان تغيير اين قوانين هستند. همچنین افراد فکر می کردند که چنین «ارتقاءای» ارزش برهم زدن اكوسيستم را ندارد. مشكل هارد فوركها این است که آنها زمانی موفقیت آمیز هستند که همه آن را بپذیرند، ولی اگر اختلاف نظر بهوجود بیاید، دو کوین متفاوت ایجاد می شود. پس بیت کوین همان بیت کوین باقی ماند و Bitcoin Cash، کوین جداگانهای شد.

امروزه تعداد زیادی فورک بیت کوین ایجاد شده است، مثل Bitcoin Gold و

Bitcoin g Bitcoin Diamond Private، که توان هش شبکه ناچیزی امنیت آنها را تامین می کند و توسعه دهندگان كمترى مشغول توسعه آنها هستند و تقریبا فعالیت اقتصادی ندارند. بسیاری از آنها به طور واضحی مصداق کلاهبرداری، یا پروژههای تحقیقاتی سطح پایینی هستند. صدها کوین شبیه به بیت کوین وجود دارند که کدهای مشابهی دارند اما تاریخچه حساب (مجموعه UTXO) آنها از بیت کوین جدا است، مثل .Dogecoin e Litecoin

بازار کارمزد تراکنش

درباره کارمزد در فصل ۵ وقتی درباره استخراج بیت کوین صحبت می کردیم بحث کو تاهی شد ولی این مسأله میبایست در یک بخش جداگانه توضیح داده شود. در برنامه عرضه بیت کوین، هر ۲ سال یکبار مقدار پاداش تولید بلاکها نصف میشود تا زمانی که کاملا حذف شود و از آن به بعد هیچ گونه عرضه جدیدی در بیت کوین نخواهد بود. اما ما همچنان باید راهی پیدا کنیم تا برای حفظ امنیت شبکه به ماینرها انگیزه کافی بدهد.

کارمزد تراکنش توسط بازار آزاد تعیین می شود، که در آن کاربران برای خرید فضای محدود بلاک به ماینرها پیشنهاد

می دهند. کاربرانی که تراکنش انجام می دهند، مشخص می کنند که چه مقدار كارمزد مىخواهند به ماينرها پرداخت كنند، و ماینرها با توجه به مقدار کارمزد تصمیم می گیرند که تراکنش آنها را در بلاک قرار دهند یا نه. زمانی که تعداد تراکنشهای در صف انتظار کم باشد، مقدار کارمزد می تواند به مقدار کم تعیین شود چون رقابتی وجود ندارد. اما با پر شدن فضای بلاک، کاربرانی که میخواهند تراکنششان سریع تر تایید شود (در بلاک بعدی قرار بگیرد) مقدار کارمزد بیشتر، و کسانی که عجلهای ندارند کارمزد کمتری پرداخت می کنند و زمان بیشتری هم منتظر میمانند تا فضای بلاک خالی و تراکنش انجام شود.

برخلاف سیستم مالی سنتی، که در آن مقدار كارمزد درصدى از مبلغ انتقال يافته است، در بیت کوین مبلغ منتقل شده بر کارمزد هیچ تاثیری ندارد. درعوض، کارمزد متناسب با منابع محدودی که مصرف میشوند (یعنی فضای بلاک) تعیین می شود. بنابراین کارمزد با واحد «ساتوشی بر بایت ۱» اندازه گیری میشود (هر بایت برابر با ۸ بیت است. درواقع فقط مقدار فضایی که تراکنش شما اشغال می کند را اندازه گیری می کند). درنتیجه کارمزد تراکنشی که یک میلیون بیت کوین را به یک آدرس ارسال می کند ارزان تر از تراکنشی است که یک بیت کوین را به ۱۰ قسمت تقسیم می کند و آنها را به ۱۰ حساب جداگانه ارسال

¹ Satoshis per byte

می کند، چون دومی فضای بیشتری در بلاک اشغال می کند.

در گذشته، در برههای از زمان که بیت کوین خریداران زیادی داشت، مثل زمان افزایش قیمت اواخر سال ۲۰۱۷، کارمزدها بسیار بالا رفت. بعد از آن امکانات جدیدی برای کاهش فشار کارمزد در شبکه پیاده شد.

یکی از این امکانات Segwit است که ساختار Witness بلاک را تغییر میدهد و با جدا کردن امضای دیجیتال از تراکنشها فضای بیشتری برای دادهها بوجود می آورد. تراکنشهایی که از این قابلیت استفاده می کنند، می توانند بیشتر از ۱ مگابایت فضای بلاک را اشغال بیشتر از ۱ مگابایت فضای بلاک را اشغال

کنند و توضیح این ترفند هوشمندانه از حوصله این کتاب خارج است.

عامل دیگر کاهش کارمزدها بهدلیل ارسال گروهی تراکنشها است. صرافیها و دیگر عوامل تاثیر گذار در اکوسیستم بیت کوین که حجم تراکنشهای بالایی دارند، اقدام به ترکیب تراکنشهای چندین کاربر بیت کوین در یک تراکنش کردند. برخلاف سیستم پرداخت سنتی در بانک یا پیپال که تراکنشها از یک فرد به فرد دیگر است، یک تراکنش بیت کوین می تواند تعداد زیادی ورودی را با هم ترکیب کند و تعداد زیادی خروجی تولید کند. بنابراین یک صرافی که باید برای ۱۰۰ نفر بیت کوین ارسال کند، این کار را در یک تراکنش انجام می دهد. این روش، استفاده از فضای

بلاک را بهینه تر می کند و به جای انجام تعداد کمی تراکنش در هر ثانیه، هزاران پرداخت در ثانیه انجام می شود.

Segwit و دسته بندی تراکنش ها هماکنون به خوبی تقاضا برای فضای بلاک را کاهش داده اند و اصلاحات بیشتری هم برای استفاده بهینه از فضای بلاک در حال توسعه است. با این حال زمانی فرا خواهد رسید که کارمزد بیت کوین به دلیل پر شدن بلاک ها در اثر تقاضای زیاد کاربران، دوباره بالا خواهد رفت.

تحولات آينده بيت كوين

تا اینجا پروتکل بیت کوین را اختراع کردیم و به چگونگی تکامل شبکه درطول زمان پرداختیم. حالا میخواهیم به آینده نگاه کنیم و برخی از پیشرفتهایی که بهزودی در بیت کوین رخ میدهند را بررسی کنیم.

برخلاف ارز سنتی، که چاپ و استفاده می شود، بیت کوین یک پول قابل برنامه نویسی است که می توان روی آن لایه های خدماتی بی شماری ایجاد کرد. این یک مفهوم کاملاً جدید است و ما تازه اول راه هستیم.

شبكه لايتنينگا

¹ Lightning Network

همان طور که گفته شد، مشکل بیت کوین این است که با افزایش تقاضا برای فضای خالی بلاک، کارمزد تراکنشها هم افزایش می یابد. امروزه بیت کوین بر اساس تعداد تراکنشهایی که در یک بلاک جا میشوند می تواند بین ۳ تا ۷ تراکنش در ثانیه انجام دهد. به این نکته توجه کنید که اگرچه هر تراكنش ممكن است از طريق دستهبندى، درواقع پرداخت به صدها نفر باشد اما همچنان ظرفیت کافی برای تبدیل شدن به یک شبکه پرداخت جهانی را ندارد.

یک راه حل ساده لوحانه می تواند افزایش
سایز بلاک باشد و در واقع چندین رقیب
بیت کوین مثل Bitcoin Cash این روش
را امتحان کردهاند. اما بیت کوین این راه را
در پیش نخواهد گرفت چون افزایش سایز

بلاک می تواند بر خصوصیات غیرمتمرکز شبکه مثل تعداد نودها و پراکندگی جغرافیایی آنها تاثیر منفی بگذارد. حتی اگر افزایش سایز بلاک با پیشرفتهایی که در سخت افزار رخ می دهد ممکن باشد، همچنان ذات غیرمتمر کز بیت کوین ممکن است در مقابل هارد فورکی که قصد افزایش سایز بلاک را داشته باشد طوری برخورد کند که باعث ایجاد اخلال و بینظمی در اکوسیستم شود و دوباره موجب پدید آمد یک زنجیره و کوین جدید شود.

همچنین افزایش سایز بلاکها مشکل مناسب نبودن بیت کوین به عنوان یک سیستم پرداخت جهانی را نیز حل نمی کند چون افزایش ظرفیت تراکنشهای شبکه بیت کوین به این سادگیها نیست. شبکه

لایتنینگ برای حل این مشکل معرفی شده است؛ یک پروتکل جدید و مجموعهای از نرمافزارهای پیادهسازی شدهای که تراکنشهای بیت کوینی را به صورت-off می کند. شبکه لایتنینگ به تنهایی می تواند موضوع یک کتاب باشد، اما اینجا توضیح مختصری درباره آن میدهیم.

ایده لایتنینگ این است که نیازی به ثبت همه تراکنشها در بلاک چین نیست. برای مثال اگر من و شما به یک کافه برویم و نوشیدنی سفارش بدهیم، فروشنده حساب سفارشهای ما را تا آخر پیش خود نگه می دارد و ما آخر شب و هنگام ترک آنجا حساب مان را تسویه می کنیم. معنی ندارد حین هربار سفارش دادن حساب مان را

تسویه کنیم و کارت بکشیم چون این روش فقط وقت ما را تلف می کند. شبکه بیت کوین ظرفیت ثبت تراکنشهای خرید قهوه یا نوشابه افراد را روی بلاک چینی که به اندازه یک کشور انرژی مصرف می کند و دفتر کل را روی هزاران کامپیوتر در سراسر دنیا ذخیره می کند ندارد. علاوه بر این، این روش به حریم خصوصی خریداران هم آسیب می رساند.

اگر شبکه لایتنینگ موفق شود، نقاط ضعف زیادی در بیت کوین بهبود پیدا خواهند کرد:

• توان عملیاتی تقریبا نامحدود: صدها و هزاران تراکنش کوچک بیت کوین می توانند انجام و سپس فقط یکبار به

- عنوان پرداخت نهایی در بلاک چین بیت کوین ثبت شوند.
- تاییدهای سریع: نیاز نیست صبر کنیم تا بلاکها ساخته شوند.
- کارمزدهای بسیار پایینی که برای پرداختهای خُرد مناسب هستند، مثل پرداخت مبلغ کمی برای خواندن مطلب یک وبلاگ.
- افزایش حریم خصوصی: فقط افرادی که در تراکنش شرکت دارند از آن اطلاع پیدا می کنند، درست برعکس تراکنشهای on-chain (که روی بلاکچین بیت کوین ثبت می شوند) و درسراسر شبکه منتشر می شوند.

لایتنینگ از مفهوم کانال پرداخت استفاده می کند، که درواقع همان تراکنشهای -on chain هستند که مبلغی بیت کوین در آن قرار می گیرد و سپس توسط شبکه لایتنینگ سریع و تقریبا رایگان منتقل می شود. شبکه لایتنینگ در مراحل اولیه است اما با این وجود آینده روشنی دارد. می توانید سایت برداختهای خُرد لایتنینگ برای مطالعه پرداختهای خُرد لایتنینگ برای مطالعه مقالات استفاده می کند را ببینید.

بیت کوین در فضا

بیت کوین مقاومت خوبی در مقابل سانسور دارد. همچنین مصادره آن هم کار آسانی نیست (می توانید آن را در ذهن خود نگهداری کنید). انتقال آن هم فقط به یک ماینر صادق در شبکه نیاز دارد تا تراکنش ماینر صادق در شبکه نیاز دارد تا تراکنش

ارسالی شما را تأیید کند (هرکس خودش می تواند به استخراج بیت کوین بپردازد). با این حال چون بیت کوین از طریق اینترنت جابه جا می شود، در سطح شبکه درمعرض سانسور قرار دارد. دولتها اگر بخواهند فعالیت بیت کوین را کاهش دهند می توانند از ورود ترافیک بیت کوین به کشورشان جلوگیری کنند.

ماهوارهی شرکت «بلاک استریم ۱» اولین تلاش برای حذف سانسور در سطح شبکه و ایجاد دسترسی برای مناطق دورافتادهای که به اینترنت دسترسی ندارند است. این ماهواره به همه این امکان را می دهد که با یک دیش و مجموعهای از تجهیزات ارزان به شبکه بیت کوین متصل شوند و بلاک چین به شبکه بیت کوین متصل شوند و بلاک چین

¹ Blockstream

آن را دانلود کنند. ارتباط دوطرفه هم بهزودی امکان پذیر خواهد شد. تلاشهای دیگری هم مثل TxTenna برای ساخت شبکه مش مستقل از اینترنت وجود دارند که وقتی در کنار این سیستم ماهوارهای به کار گرفته شوند متوقف کردن آنها تقریباً غیرممکن خواهد بود.

¹ Mesh Networking

فصل ۱۰

قدم بعدی چیست؟

تمام ماجرا همین بود، مراحل اختراع
بیت کوین را دیدید و یاد گرفتید، حالا
آماده برای تحقیقات بیشتر هستید. بعد از
این کتاب سراغ چه میروید؟ در اینجا
تعدادی منبع برای مطالعه بیشتر معرفی
شدهاند:

برای یادگیری بیشتر درباره اقتصاد پشت بیت کوین:

• The Bitcoin Standard by Saifedean Ammous

- Cryptoassets by Chris Burniske and Jack Tatar
- Google: Austrian Economics
- Bitcoin Investment Theses by Pierre Rochard <u>https://medium.com/@pierre_rochard/bitcoin-investmenttheses-part-1-e97670b5389b</u>
- The Bullish Case for Bitcoin by Vijay Boyapati

https://medium.com/@vijayboyapati/the-bullish-case-forbitcoin-6ecc8bdecc1

برای درک بیشتر در دانش کامپیوتری:

- The Bitcoin whitepaper by Satoshi https://bitcoin.org/bitcoin.pdf
- Mastering Bitcoin by Andreas Antonopulous
- Jimmy Song's seminar at
 https://programmingblockchain.com
 and his book on github at
 https://programmingblockchain.gitbook.io/programmingblockchain

برای آموزش بیشتر درباره تاریخچه و فلسفه بیت کوین:

- Planting Bitcoin by Dan Held <u>https://medium.com/@danhedl/planting-bitcoin-soundmoney-72e80e40ff62</u>
- Bitcoin Governance by Pierre Richard
- https://medium.com/@pierre_rochard/bitcoingovernance37e86299470f

- Bitcoin Past and Future by Murad Mahmudov <u>https://blog.usejournal.com/bitcoin-past-and-</u> future-45d92b3180f1
- Every video made by Andreas Antonopulous, especially Currency Wars and The Monument of Immutability, at

https://www.youtube.com/user/aantonop

بخش بزرگی از اکوسیستم بیت کوین در توئیتر است، در اینجا تعدادی از افرادی که دنبال کردن آنها مفید است ذکر شدهاند. این افراد در آدرس زیر لیست شدهاند و توسط نویسنده این کتاب بهروزرسانی می شوند:

http://bitcoinerlist.com

درباره نویسنده

Yan Pritzker در ۲۰ سال گذشته یک توسعه دهنده نرمافزار و کارآفرین بوده است. از سال ۲۰۱۲ تا ۲۰۱۸ او CTO سایت Reverb.com بوده و تکنولوژی و زیرساختهای این مجموعه را مدیریت کرده است. امروزه او تمرکز خود را بر آموزش بیت کوین و مشاوره برای استارتاپهای نویا گذاشته است. مطالب نویسنده درباره بیت کوین و موضوعات مرتبط در سایت yanpritzker.com قرار می گیر د.

همچنین می توانید او را در توییتر دنبال کنید: skwp@ ترجمه این کتاب توسط مترجم ناشناس با شناسه توئیتر nodrunner و بازبینی و صفحه بندی و یراست اول آن توسط «سایت خبری-آموزشی کوین ایران»، و بازبینی و صفحه بندی و یراست دوم توسط «سایت منابع فارسی بیت کوین» انجام شده است.

منابع فارسی بیت کوین ویراست سوم بهار ۱۴۰۲

bitcoind.me

منابع فارسى بيت كوين

معرفی کتابها، مقالات، خودآموزها، و بطور کلی منابع آموزشی و کاربردی معتبر حوزه بیتکوین، اقتصاد، و حریم خصوصی که توسط علاقمندان و فعالان جامعه فارسیزبان بیتکوین تالیف یا ترجمه شدهاند