

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB Departamento de Computação – DECOM Disciplina: Teoria dos Grafos Professor: Marco Antonio M. Carvalho

Lista de Exercícios 02

Instruções

- A resolução da lista de exercícios deve ser entregue em um arquivo formato PDF legível no Moodle;
- Ao final desta lista de exercícios, está disponível o padrão para as respostas;
- A resolução deve considerar estritamente a mesma numeração e ordem dos exercícios;
- Quando não especificado nos exercícios, considere grafos simples.
- 1. Para o grafo da figura abaixo, apresente a sequência de vértices após a aplicação da BFS a partir do vértice 3. Considere a representação por listas de adjacências em ordem lexicográfica.

2. Para o grafo da figura abaixo, apresente a sequência de vértices após a aplicação da BFS a partir do vértice 3. Considere a representação por listas de adjacências em ordem lexicográfica.

3. Para o grafo da figura abaixo, apresente a sequência de vértices após a aplicação da DFS a partir do vértice 6, bem como a classificação das arestas e a árvore de profundidade. Considere a representação por listas de adjacências em ordem lexicográfica.

4. Para o grafo da figura abaixo, apresente a sequência de vértices após a aplicação da DFS a partir do vértice 6, bem como a classificação das arestas e a árvore de profundidade. Considere a representação por listas de adjacências em ordem lexicográfica.

5. Execute o algoritmo de *Dijkstra* para determinar especificamente os menores caminho a partir do vértice *a* do grafo abaixo.

6. Execute o algoritmo de *Dijkstra* para determinar especificamente os menores caminho a partir do vértice *b* do grafo abaixo.

7. Execute o algoritmo de Bellman-Ford para o grafo abaixo, a partir do vértice 0.

8. Execute o algoritmo de Bellman-Ford para o grafo abaixo, a partir do vértice 1.

9. Elabore um exemplo de um grafo com 6 vértices de tal maneira que o caminho mais curto entre os vértices 1 e 6 somente poderá ser calculado pelo algoritmo de *Bellman-Ford*. Justifique o exemplo.

Gabarito Exemplo

1. Esta reposta indica a ordem da visitação dos vértices, identificando-os pelo índice.

BFS: 1, 2, 3, 4, 5.

- 2. Idem ao anterior.
- 3. Esta reposta indica a ordem da visitação dos vértices, identificando-os pelo índice.

DFS: 1, 4, 2, 3, 5.

A classificação das arestas e a árvore de profundidade devem ser informadas via diagrama.

- 4. Idem ao anterior.
- 5. Apresente o conteúdo dos vetores *rot* e *dt* para cada vértice ao longo da execução do algoritmo. Utilize uma linha da tabela abaixo para cada iteração necessária e uma coluna para cada vértice do grafo, ajuste conforme a necessidade. Resultados obtidos por inspeção não serão considerados.

dt	rot														
	Α	В	С	D	E	F	G		Α	В	С	D	Е	F	G
Inicialização															
Iteração 1															
Iteração 2															
Iteração 3															
Iteração 4															
Iteração 5															
Iteração 6															
Iteração 7															
Iteração 8															
Iteração 9															
Iteração 10															

- 6. Idem ao anterior.
- 7. Apresente o conteúdo dos vetores *rot* e *dt* para cada vértice ao longo da execução do algoritmo. Utilize uma linha da tabela abaixo para cada iteração necessária e uma coluna para cada vértice do grafo, ajuste conforme a necessidade. Resultados obtidos por inspeção não serão considerados.

dt							
	Α	В	С	D	Е	F	G
Inicialização							
Iteração 1							
Iteração 2							
Iteração 3							

r						
Α	В	С	D	Е	F	G

Iteração 4								
Iteração 5								
Iteração 6								
Iteração 7								
Iteração 8								
Iteração 9								
Iteração 10								

- 8. Idem ao anterior.
- 9. Esta questão requer o diagrama do grafo proposto e uma justificativa textual.