

INTRO TO FDTD (4)

Flexcompute Inc.

Mach-Zehnder Interferometer

Apply π shift:

Excite a single waveguide mode

Straight silicon waveguide on silica substrate

Width: $0.5 \mu m$

Height: $0.25 \mu m$

Central wavelength: 1550 nm

Surround the computational domain with perfectly matched layers (PML)

Waveguide and substrate extended into the PML region to ensure the absorption of the waveguide mode.

Use eigenmode source defined on a plane to inject a specific mode along the forward direction.

 E_{y}

 $E_{_{z}}$

 Use eigenmode solver to visualize the modes 1st TE

 Select which mode to excite

1st TM

Model source to excite the 1st TE mode

Point dipole source excitation

15.0

17.5

Mach-Zehnder Interferometer

Apply π shift:

