Relational Algebra

Relations

A relation on N sets is a subset of the Cartesian product of the N sets.

Example Relations

R

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamill	456 Oak Rd., Brentwood	M	8/8/88

S

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

Operations

Set Operations

- Union
- Intersection
- Difference

"Slicing" Operations

- Selection
- Projection

"Combining" Operations

- Product
- Natural Join
- Theta Join

Renaming

Notation

 $R \cup S$ (union)

 $R \cap S$ (intersection)

R - S (difference)

 $\sigma_{\rm e}(R)$ (selection)

 π_{θ} (R) (projection)

 $R \times S$ (product)

 $R \bowtie S$ (natural join)

 $R \bowtie_{\theta} S$ (theta join)

 $\rho_{S(A1, A2,...)}(R)$ (renaming)

R

Α	В
1	2
3	4

S

A	В
2	5
3	4
9	10

 $R \cup S$

A	В
1	2
3	4
2	5
9	10

 $R \cap S$

A	В
3	4

R - S

A	В
1	2

R

A	В
1	2
3	4

S

В	С	D
2	5	6
4	7	8
9	10	11

$$\sigma_{C=7}(S)$$

В	С	D
4	7	8

 $\pi_{C,D}(S)$

С	D
5	6
7	8
10	11

A	В	
1	2	
3	4	

 $R \times S$

Examples

Α	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

S

В	С	D
2	5	6
4	7	8
9	10	11

R

A	В
1	2
3	4

S

В	С	D
2	5	6
4	7	4
9	10	2

 $R \bowtie S$

A	В	С	D
1	2	5	6
3	4	7	4

 $R \bowtie_{R.B=S.D} S$

A	R.B	S.B	С	D
1	2	9	10	2
3	4	4	7	4

R

A	В
1	2
3	4

S

В	С	D
2	5	6
4	7	4
9	10	2

$$\rho_{T(X, Y, Z)}(S)$$

X	Y	Z
2	5	6
4	7	4
9	10	2

This relation is now called T.

Problem #1

Consider the following relation:

Movies (title, year, length, genre, studioName, producerId)

Write a relational algebra expression to answer the following question:

What are the titles and years of movies made by Fox that are at least 100 minutes long?

$$\pi_{\text{title, year}}$$
 ($\sigma_{\text{studioName='Fox'}}$ (Movies) $\cap \sigma_{\text{length}} >= 100$ (Movies))

Problem #2

Consider the following relations:

```
MovieStar(name, address, gender, birthdate)

Movies(title, year, length, genre, studioName, producerId)

StarsIn(movieTitle, movieYear, starName)
```

What were the titles and years of all movies longer than 120 minutes that starred women born on '02-14-1977'?

```
\pi_{\text{title, year}} (\sigma_{\text{gender='F' AND birthdate='02-14-1977'}} (MovieStar) \bowtie_{\text{name=starName}} (StarsIn \bowtie_{\text{title=movieTitle AND year=movieYear}} \sigma_{\text{length} > 120} (Movies)))
```