Explicación Detallada de Funciones para Raytracing

1.	F	unciones	de '	Vectores
----	---	----------	------	----------

- vector_add: Suma dos vectores. Usado para calcular posiciones y trayectorias.
- vector_sub: Resta dos vectores. Usado para calcular dirección entre puntos.
- vector_scale: Escala un vector por un escalar. Usado para mover posiciones con rayos.
- vector_dot: Producto escalar. Usado para ángulos, normalización y ecuaciones.
- vector normalize: Normaliza un vector. Necesario para tener direcciones unitarias.
- vector_cross: Producto vectorial. Usado para construir el sistema de coordenadas de cámara.

2. Cámara y Proyección

- get_ray_direction:

Calcula la dirección de un rayo para un píxel dado.

Construye una base ortonormal (right, up, forward) y aplica proyección en perspectiva.

3. Intersección

- intersect_sphere:

Calcula si un rayo intersecta con una esfera.

Resuelve una ecuación cuadrática con la forma: $||O + tD - C||^2 = R^2$.

4. Renderizado

- set pixel:

Dibuja un píxel en el buffer de imagen con el color calculado.

Usado al final del proceso si se determina que un rayo golpea un objeto.

5. Conexión General

- Por cada píxel (x, y):
 - get_ray_direction() calcula la dirección del rayo desde cámara.
 - intersect_sphere() verifica si golpea una esfera.
 - Si hay intersección, se llama a set_pixel() con el color del objeto.

Este flujo permite simular un entorno 3D básico usando raytracing.