Spatial Computing, Synthetic Biology, and Emerging IP Challenges

Jacob Beal November, 2010

Spatial Computers

Robot Swarms

Biological Computing

Sensor Networks

Reconfigurable Computing

Cells during Morphogenesis

Modular Robotics

How can we program these?

- Desiderata for approaches:
 - Simple, easy to understand code
 - Robust to errors, adapt to changing environment
 - Scalable to potentially vast numbers of devices
 - Take advantage of spatial nature of problems

One answer: continuous space programs!

(cf. Butera)

(cf. Butera)

Computing with fields

Computing with fields

Amorphous Medium

- Continuous space & time
- Infinite number of devices
- •See neighbors' past state

Approximate with:

- Discrete network of devices
- Signals transmit state

Proto

[Beal & Bachrach, '06]

Proto's Families of Primitives

Why use continuous space?

- Scaling & Portability
- Robustness
- Composability

(def gradient (arc)...) (def distance (arc def) ...) (def distance (arc def) ...) (def distance ser def) (fart (are (r (gradient arc) n)) (def thannel (r (gradient arc) n)) (def thannel (r (gradient arc) n)) (dilate trail width))) Device Kernel

Swarm Robotics

Energy Management

Zome Energy

Networks

Morphogenetic Engineering

IP Challenges

Many parts: free, protected, & commercializable?

IP Challenges

Many parts: free, protected, & commercializable?

Thank you, Creative Commons!

(def gradient (arc)...) (def distance (arc def) ...) (def distance (arc def) ...) (def distance ser def) (fart (are (r (gradient arc) n)) (def thannel (r (gradient arc) n)) (def thannel (r (gradient arc) n)) (dilate trail width))) Device Kernel

Swarm Robotics

Energy Management

Zome Energy

Networks

Morphogenetic Engineering

Energy Management

Zome Energy

Networks

Swarm Robotics

Computation via Transcription Network

Proto BioCompiler

Band detect: code

Proto

```
(def band-detector (signal lo hi)
   (and (> signal lo)
        (< signal hi)))

(let
   ((v (diffuse (aTc) 0.8 0.05)))
   (green (band-detect v 0.2 1)))</pre>
```

simpler, more reusable

Engineered Bacteria

[Beal & Bachrach, '08]

Band detect: behavior

Proto

[Beal & Bachrach, '08]

Engineered Bacteria

[Weiss '05]

Classical Optimization can be Adapted

• Example: XOR circuit

Classical Optimization can be Adapted

Example: XOR circuit

After optimization: ~50% improvement

End-to-End Toolchain Project

Stages for Engineering Cells

And on to larger organisms...

IP Challenges

IP Types

DNA sequences

databases

software

patents

organisms

biologists students

computer scientists

industry

CAD engineers

Communities

Many components; integration with vendors Full automation: no human interpretation

Summary

- Proto allows complex spatial computing problems to be solved with simple programs.
- Proto & other approaches beginning to link together to automate synthetic biology
- Major IP thunderclouds on the horizon...

Proto is available

http://proto.bbn.com

(or google "MIT Proto")

- Includes libraries, compiler, kernel, simulator, platforms, tutorial
- Licensed under GPL (w. libc-type exception)