How do we represent data?

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

How do we write about data?

- · Each data point is usually represented by a capital letter.
 - H for height, W for weight.
- · If there are more than one data point of the same type we use subscripts.
 - H_1 , H_2 , H_3 for three different people's heights.
- Sometimes it is more compact to write X_1 for height and X_2 for weight.
- · Then we need another subscript for the individual data point
 - X_{11} for the height of the first person.
- \cdot Y representes general outcomes and X general covariates.
- · In this course we will try to use informative letters when possible.

Randomness

· Variables like *X* and *Y* are called *random variables* because we expect them to be *random* in some way.

- · In general, randomness is a hard thing to define
- · In this class a variable may be random because
 - It represents an incompletely measured variable
 - It represents a sample drawn from a population using a random mechanism.
- Once we are talking about a specific value of a variable we have observed it isn't random anymore, we write these values with lower case letters x, y, etc.
- We write X = x or X = 1 to indicate we have observed a specific value x or 1.

Randomness and measurement

- · A coin flip is commonly considered random
- · But it can be modeled by deterministic equations
 - Dynamical bias in the coin toss (Diaconis, Holmes and Montgomery SIAM Review 2007)
 - Modeled the tossing as a dynamical system
 - Showed that a coin is more likely to land on the side it started
 - Did experiments that demonstrated it was a 51% chance
- Some have taken it a bit farther making <u>predictable coin flipping machines</u> based on <u>physical</u> properties.

Distributions

• In statistical modeling, random variables like *X* are assumed to be samples from a *distribution*

- A distribution tells us the possible values of *X* and the probabilities for each value.
- Probability is the chance something will happen and is abbreviated Pr
- · The probabilities must all be between 0 and 1.
- · The probabilities must add up to 1.
- · An example:
 - Let's flip a coin and allow *X* to represent whether it is heads or tails
 - X = 1 if it is heads and X = 0 if it is tails
 - We expect that about 50% of the time it will be heads.
 - The distribution can then be written Pr(X = 1) = 0.5 and Pr(X = 0) = 0.5

Continuous versus discrete distributions

- · discrete distributions specify probabilities for discrete values
 - Qualitative variables are discrete
 - So are variables that take on all values 0,1,2,3...
- · continuous distributions specify probabilities for ranges of values
 - Quantitative variables are often assumed to be continuous
 - But we might only see specific values

Parameters

- · Distributions are defined by a set of fixed values called *parameters*.
- parameters are sometimes represented by Greek letters like μ, σ, τ .
- Distributions are written as letters with the parameters in parentheses like $N(\mu, \sigma)$ or $Poisson(\lambda)$.
- $X \sim N(\mu, \sigma)$ means that X has the $N(\mu, \sigma)$ distribution.

The three most important parameters

- If X is a random variable, the mean of that random variable is written E[X]
 - Stands for expected value
 - Measures the "center" of a distribution
- The variance of that random variable is written Var[X]
 - Measures how "spread out" a distribution is
 - Measurement is in (units of X)²
- The standard deviation is written $SD[X] = \sqrt{Var[X]}$
 - Also measures how "spread out" a distribution is
 - Measurement is in units of X

Conditioning

- The variables *X* are considered to be random
- · The parameters are considered to be fixed values
- · Sometimes we want to talk about a case where one of the random variables is fixed
- · To indicate what is fixed, we condition using the symbol "I""
 - $X|\mu$ means that X is a random variable with fixed parameter μ
 - Y|X = 2 means Y is the random variable Y when X is fixed at 2.

Example distribution: Binomial

Binomial distribution: Bin(n, p)

• $X \sim Bin(10, 0.5)$

Example distribution: Normal

Normal Distribution: $N(\mu, \sigma)$

• $X \sim N(0, 1)$

Example distribution: Uniform

Uniform distribution: $U(\alpha, \beta)$

• $X \sim U(0, 1)$

Changing parameters

Normal Distribution: $N(\mu, \sigma)$

•
$$X \sim N(0, 1), E[X] = \mu = 0, Var[X] = \sigma^2 = 1$$

Changing parameters: the variance

Normal Distribution: $N(\mu, \sigma)$

• $X \sim N(0,5), E[X] = \mu = 0, Var[X] = \sigma^2 = 25$

Changing parameters: the mean

Normal Distribution: $N(\mu, \sigma)$

 $X \sim N(5, 1), E[X] = \mu = 5, Var[X] = \sigma^2 = 1$

Example distribution: Binomial

Binomial distribution: Bin(n, p)

• $X \sim Bin(10, 0.5)$, $E[X] = n \times p = 5$, $Var[X] = n \times p \times (1 - p) = 2.5$

Changing parameters: both mean and variance

Binomial distribution: Bin(n, p)

• $X \sim Bin(10, 0.8)$, $E[X] = n \times p = 8$, $Var[X] = n \times p \times (1 - p) = 1.6$

Conditioning

• Suppose $Y \sim N(X, 1)$ and $X \sim N(0, 1)$, then the distribution of Y|X = 5 is

Conditioning

• Suppose $Y \sim N(X, 1)$ and $X \sim N(0, 1)$, then the distribution of Y is

http://en.wikipedia.org/wiki/Law_of_total_variance

http://en.wikipedia.org/wiki/Law_of_total_expectation

Learning more about a specific distribution

http://en.wikipedia.org/wiki/Poisson_distribution

Learning more about representing data

http://www.openintro.org/stat/textbook.php