Form Kesediaan Membimbing Proyek Tingkat

PROYEK TINGKAT SEMESTER GANJIL|GENAP* TA 2020/2021

Tanggal: 27-Februari-2021

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : YSN

Nama : Yuli Sun Hariyani, S.T., M.T.

CALON PEMBIMBING 2

Kode : SGO

Nama : Sugondo Hadiyoso, S.T., M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,

NIM 6705184090

Nama : Raihan Faturrahman

Prodi / Peminatan : D3 Teknologi Telekomunikasi/ D3TT(contoh: MI / SDV)

Calon Judul PA :

Klasifikasi Jenis Makanan Jajanan Indonesia Menggunakan Deep Learning Dengan

Convolutional Network

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Yuli Sun Hariyani

Calon Pembimbing 2

Sugondo Hadiyoso

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Mahasiswa)

: 6705184090

Dosen Wali Program Studi : HPT / HASANAH PUTRI : D3 Teknologi Telekomunikasi

Nama : RAIHAN FATURRAHMAN

2018/2019 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	АВ	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	D	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	В	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С	
DUH1A2	LITERASI TIK	ICT LITERACY	2	А	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ	
Jumlah SKS			20		
IPS			2.65		

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	А	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	С	

Jumlah SKS	21	
IPS	2.71	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	С	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	В	
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	ВС	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	ВС	
Jumlah SKS			21		
	IPS		2.71		

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	ВС	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	В	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	АВ	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	С	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	С	
Jumlah SKS			20		
IPS			2.6		

2019/2020 - GENAP

Kode Mata Kuliah Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status	
------------------------------	--------------------------------	-----	-------	--------	--

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	ВС	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	В	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	АВ	
Jumlah SKS			21		
IPS			3.38		

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	АВ	
UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А	
UWI3E1	HEI	HEI	1	AB	
VTI2F2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUES I	2	АВ	
VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3	А	
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	В	
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	АВ	
VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	С	
Jumlah SKS			18		
IPS			3.33		

2020/2021 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
VPI3GC	MAGANG	APPRENTICE	12		
VTI3F4	PROYEK AKHIR	FINAL PROJECT	4		
Jumlah SKS			16		
IPS			0		

Jumlah SKS	: 97 SKS		IPK : 2.99
Tingkat III	: 97 SKS	Belum Lulus	IPK : 2.99
Tingkat II	: 91 SKS	Belum Lulus	IPK : 2.99
Tingkat I	: 41 SKS	Belum Lulus	IPK : 2.79

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 28 Februari 2021 15:35:44 oleh RAIHAN FATURRAHMAN

KLASIFIKASI JENIS MAKANAN JAJANAN INDONESIA MENGGUNAKAN DEEP LEARNING DENGAN CONVOLUTIONAL NETWORK

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

RAIHAN FATURRAHMAN 6705184090

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2021

Latar Belakang

Makanan jajanan tradisional adalah makanan khas tradisional yang sampai sekarang masih ada yang biasanya di gunakan pada acara tradisi, perkawinan, dan lainnya. Sebagian masyarakat menganggap makanan jajanan tradisional ketinggalan zaman hingga beralih ke makanan yang modern. Makanan jajanan tradisonal juga merupakan warisan dari nenek moyang kita dan sebagai penerus bangsa kita tetap meneruskan dan tetap di lestarikan. Sebagai anak bangsa Indonesia yang seharusnya kita mengenal berbagai macam makanan jajanan yang tersebar di berbagai pulau yang ada di Indonesia, serta kita dapat mengenalkan jenis makanan jajanan Indonesia ke negara lain agar makanan jajanan Indonesia dapat di klaim oleh negara lain. Oleh karena itu, penelitian-penelitian sebelumnya menggunakan teknik ekstraksi ciri dan algoritma klasifikasi yang terpisah yang belum tentu kompatibel. Pada tahun 2020 yaitu Deteksi penyakit *Covid-19* berdasarkan citra *X-ray* menggunakan *Deep residual network* di gunakan *deep learning* yang di dalamnya menggabungkan ekstraksi ciri dan klasifikasi, dan terbukti dapat menghasilkan akurasi yang tinggi. Maka pada penelitian ini akan di rancang sistem yang dapat mengklasifikasi lima jenis jajanan tradisional menggunakan *deep learning* dengan *convolutional network*.

Studi Literatur Penelitian Terkait

Tabel 1 merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang di angkat

Tabel 1 Hasil Studi Literature

No	Judul Penelitian / Karya	Tahun	Keterangan	Perbedaan dengan judul PA
	Ilmiah			yang akan di angkat
1.	Pengenalan Citra Jenis	2019	Dalam penelitian ini,	Berbeda dengan penelitian yang
	Makanan menggunakan		membuat sistem	di angkat yang menggunakan
	Ekstraksi Fitur Color		pengenalan citra jenis	sistem Deep Learning dengan
	Channel dan Gray Level		makanan menggunakan	Covolutional Network, Pada
	Co-Occurance Matrix [1]		Ekstrasi fitur. Dengan	penelitian ini menggunakan
			menggunakan citra warna	sistem ekstraksi fitur color
			menggunakan color	channel dan Gray Level Co-
			channel RGB dan Co-	Occurance Matrix
			Occurance Matrix dengan	
			menerapkan metode K-NN	
2.	Klasifikasi Jenis Citra	2019	Dalam penelitian ini,	Berbeda dengan penelitian yang
	Makanan Tunggal		membuat klasifikasi jenis	di angkat yang menggunakan
	Berdasarkan Fitur <i>Local</i>		citra makanan tunggal	sistem Deep Learning dengan
	Binary Patterns dan Hue		dengan fitur warna dan	Covolutional Network, Pada
	Saturation Value		tekstur. Untuk ekstrasi fitur	penelitian ini menggunakan
	Menggunakan Improved		warna menggunakan <i>HSV</i>	sistem <i>K-NN</i> dengan fitur warna
	K-Nearest Neighbor [2]		dan fitur tekstur	menggunakan <i>HSV</i> dan <i>LBP</i>
			menggunakan metode <i>LBP</i> .	
			Klasifikasi memakai	
			improved K-NN	

3.	Klasifikasi Jenis Citra Makanan menggunakan Color Histogram dan Gray Level Co- occurrence Matrix dengan K-Nearest Neighbour [3]	2019	Dalam penelitian ini, membuat klasifikasi jenis citra makanan dengan ekstrasi fitur menggunakan Color Histogram dan Gray Level Co-Occurance. Dengan menerapkan metode K-Nearest	Berbeda dengan penelitian yang di angkat yang menggunakan sistem <i>Deep Learning</i> dengan <i>Covolutional Network</i> , Pada penelitian ini menggunakan sistem <i>K-NN</i> dengan ekstraksi fitur
			Neigbour	menggunakan Color Histogram dan Gray Level Co-Occurance Matrix
4.	Pengenalan Citra Makanan Tradisional Menggunakan Fitur Hue Saturation Value dan Fuzzy k-Nearest Neighbor [4]	2019	Dalam penelitian ini, membuat pengenalan citra makanan tradisional. Dengan menggunakan citra hasil segmentasi dengan fitur Citra Hue Saturation Value. Dengan menggunakan metode Fuzzy k-NN dan k-Fold Cross Validation	Berbeda dengan penelitian yang di angkat yang menggunakan sistem Deep Learning dengan Covolutional Network, Pada penelitian ini menggunakan sistem Fuzzy K-NN dan K-Fold Cross Validation dengan menggunakan citra hasil segmentasi.
5.	Klasifikasi Citra Kue Tradisional Indonesia Berdasarkan Ekstraksi Fitur Warna RGB Color Moment Menggunakan K- Nearest Neighbor [5]	2019	Dalam penelitian ini, membuat klasifikasi citra kue tradisional Indonesia dengan menggunakan metode ekstraksi fitur warna yang di gunakan Color Moment dan menggunakan K-Nearest Neighbor	Berbeda dengan penelitian yang di angkat yang menggunakan sistem <i>Deep Learning</i> dengan <i>Covolutional Network</i> , Pada penelitian ini menggunakan sistem <i>K-NN</i> dengan ekstraksi fitur warna menggunakan <i>Color Moment</i>

6.	Deteksi Penyakit Covid-	2020	Dalam penelitian ini,	Berbeda dengan penelitian
	19 berdasarkan Citra X-		membuat pendeteksi	yang di angkat yang
	ray menggunakan Deep		penyakit Covid-19 dengan	menggunakan sistem Deep
	Residual Network [6]		menggunakan citra X-ray	Learning dengan
			dengan menggunakan	Covolutional Network,
			metode Deep Residual	Pada penelitian ini bukan
			Network	dari klasifikasi makanan
				tetapi sistemnya sama
				menggunakan Deep
				Learning tetapi
				menggunakan citra X-ray
				untuk mendeteksi penyakit
				Covid-19

Rancangan Sistem

Pada Bab ini akan di jelaskan mengenai perancangan sistem klasifikasi jenis jajanan Indonesia menggunakan *Deep learning* dengan *Convolutional Network* yang terdiri dari model sistem, Diagram alir perancangan sistem, Proses sistem, Realiasasi sistem, dan Pengujian. Adapun model sistem yang telah di buat dapat di lihat pada Gambar 1 di bawah ini :

Gambar 1. Model Sistem Perancangan Sistem Klasifikasi Jenis Jajanan Indonesia

Dengan membuat sistem klasifikasi jenis jajanan Indonesia dengan menggunakan permograman *python*. tahap awal dengan mengumpulkan gambar jenis makanan jajanan yang ada di Indonesia sebagai input. kemudian di proses dengan menggunakan sistem *Deep learning*. Yang di mana *Deep learning* merupakan bagian dari kecerdasan buatan dan *machine* learning yang dapat berfungsi mendeteksi objek, pengenalan suara dan sebagainya. Dalam sistem *Deep learning* terdapat *Convoluional network* (*CNN*). CNN tersusun banyak layer yaitu *Convolutional Layer*, *Pooling Layer*, dan *Fully Connected Layer*.

Pada bagian *Convolution* di lakukan ekstrasi fitur pada citra gambar dengan melakukan proses konvolusi antara filter *matrix* dengan input citra. Pada bagian *Pooling layer* di gunakan untuk mengurangi jumlah parameter dan komputasi agar dapat mengenali data di luar data latih. Dan pada bagian *Fully Connected layer* di gunakan untuk menyatukan atau menghubungkan secara penuh dari *input* hingga ke *output*. Kemudian Hasil klasifikasi yaitu jenis jajanan makanan tradisional Indonesia sesuai dengan parameter yang di gunakan yaitu nilai akurasi, *confusion matrix*, dan *Layer* dengan *resource size* yang kecil.

Jenis Makanan jajanan yang ada di Indonesia yang terdiri dari Kue cucur, Klepon, Kue ku, Kue Talam, Onde-onde dan lainnya . Berikut gambar dari beberapa jenis jajanan yang ada di indonesia :

Referensi

- [1] O. E. Novyanti, Y. A. Sari and M. T. Furqon, "Pengenalan Citra Jenis Makanan menggunakan Ekstraksi Fitur Color Channel dan Gray Level Co-Occurance Matrix," *Jurnal Pengembangan Teknologi informasi dan ilmu komputer*, Vols. Vol. 3, No. 5, pp. hlm. 4234-4241, Mei 2019.
- [2] S. N. Adha, Y. A. Sari and R. C. Wihandika, "Klasifikasi Jenis Citra Makanan Tunggal Berdasarkan Fitur Local Binary Patterns dan Hue Saturation Value Menggunakan Improved K-Nearest Neighbor," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, Vols. Vol. 3, No. 3, pp. hlm. 2416-2424, Maret 2019.
- [3] H. S. Priambodo, Y. A. Sari and A. W. Widodo, "Klasifikasi Jenis Citra Makanan menggunakan Color Histogram dan Gray Level Co-occurrence Matrix dengan K-Nearest Neighbour," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, Vols. Vol. 3, No. 7, pp. hlm. 6873-6880, Juli 2019.
- [4] R. F. Y. A. Sari and F. A. Bachtiar, "Pengenalan Citra Makanan Tradisional menggunakan Fitur Hue Saturation Value dan Fuzzy k-Nearest Neighbor," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, Vols. Vol. 3, No. 7, pp. hlm. 6556-6566, Juli 2019.
- [5] F. D. Febriani, Y. A. Sari and R. C. Wihandika, "Klasifikasi Citra Kue Tradisional Indonesia Berdasarkan Ekstraksi Fitur Warna RGB Color Moment Menggunakan K-Nearest Neighbor," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, Vols. Vol. 3, No. 10, pp. hlm. 10199-10206, Oktober 2019.
- [6] Y. S. Hariyani and S. Hadiyoso, "Deteksi Penyakit Covid-19 berdasarkan Citra X-ray menggunakan Deep Residual Network," *Jurnal Teknik Energi Elektrik*, vol. vol. 8 No.2, pp. hlm. 443-453, Mei 2020.