Class 12 RECAP

Class 12

Shikhar Saxena

February 17, 2023

Contents

Recap	1
Bounds on $\ V_n - V_\alpha\ $ Stopping Criteria	2 2
Gaus-Seidel or In-Place (Asynchronous) Value Iteration	2
Modified Policy Iteration	2
Recap	
$V_{\alpha}(s) = \max_{a} \left\{ r(s,a) + \alpha \sum P(j s,a) V_{\alpha}(j) \right\}$	(1)

$$V_f(s) = r(s,f(s)) + \alpha \sum P(j|s,f(s))V_f(j) \tag{2} \label{eq:2}$$

$$T_{\alpha}u(s) = \max_{a} \left\{ r(s, a) + \alpha \sum_{j} P(j|s, a)u(j) \right\}$$
 (3)

$$T_f u(s) = r(s, f(s)) + \alpha \sum_{s} P(j|s, f(s)) u(j)$$

$$\tag{4}$$

Essentially, Policy Iteration can be approximated to Value Iteration algorithm by

$$\lim_{n \to \infty} T_{\alpha}^n u = V_{\alpha}$$

Algorithm 1: Value Iteration

- 1. Start with an arbitrary initial vector $u \in B(\mathcal{S})$ and set n = 0.
- 2. For each s find $V_{n+1}(s)$ using (1).
- 3. If $||V_{n+1} V_n|| \le \epsilon$ for all states then stop. Else repeat for the next n.
- 4. Then get policy using argmax.

Bounds on $||V_n - V_\alpha||$

We already know $\|V_n - V_\alpha\| \le \alpha^n \|V_0 - V_\alpha\|$ but this is not useful.

Similarly,
$$\|V_n - V_{n+1}\| \le \alpha^n \|V_0 - V_1\|$$

So we want to obtain a bound on $\|V_n - V_\alpha\|$ in terms of $\|V_0 - V_1\|$. We'll see how this helps.

Using Triangle Inequality,

$$\begin{split} \|V_n - V_\alpha\| &= \|(V_n - V_{n+1}) + (V_{n+1} - V_{n+2}) + \dots (V_{n+l} - V_\alpha)\| \\ &\leq \alpha^n \|V_1 - V_0\| (1 + \alpha + \alpha^2 \dots + \alpha^{l-1}) + \|V_{n+l} - V_\alpha\| \\ &\leq \frac{\alpha^n}{1 - \alpha} \|V_1 - V_0\| \quad \text{Setting } l \to \infty \end{split}$$

Stopping Criteria

$$\|V_n - V_\alpha\| \le \frac{\alpha}{1 - \alpha} \|V_n - V_{n-1}\|$$

Proof.

$$\begin{split} \|V_n - V_\alpha\| &\leq \|V_n - V_{n+1}\| + \|V_{n+1} - V_\alpha\| \\ &\leq \alpha \|V_{n-1} - V_n\| + \alpha \|V_n - V_\alpha\| \end{split}$$

Now, assume we want to stop at a δ where $||V_n - V_\alpha|| \le \delta$.

That means $\frac{\alpha}{1-\alpha}\|V_n-V_{n-1}\|\leq \frac{\alpha\epsilon}{1-\alpha}$ which gives us $\delta=\frac{\alpha\epsilon}{1-\alpha}$.

Gaus-Seidel or In-Place (Asynchronous) Value Iteration

Don't keep separate vectors for V_n and V_{n+1} . Just solve them in a single vector V.

Modified Policy Iteration

Taking something from both Policy and Value Iteration. VI is faster per iteration than PI but PI takes less iterations.

Essentially don't evaluate V_{π_n} fully for an intermediate policy π_n .

When $m_n = 1$ then this algorithm gives us VI.

Algorithm 2: Modified PI

- 1. Set n=0 and arbitrary V_0 and find π_0 that is greedy wrt V_0 2. (Partial Policy Evaluation): Obtain V_n by repeatedly appling T_{π_n} on V_{n-1} for m_n number of times.
- 3. (Greedy Step): Find policy π^{n+1} that is greedy on V_n .
- 4. If $||V_{n+1} V_n|| \le \epsilon$ then STOP.