Chapter 3-2

VLSI Physical Design

何宗易

Tsung-Yi Ho
tyho@cs.nthu.edu.tw
http://theta.cs.nthu.edu.tw
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan

Hierarchical Design

- Partitioning leads to
 - Blocks with well-defined areas and shapes (rigid/hard blocks).
 - Blocks with approximated areas and no particular shapes (flexible/soft blocks).
 - A netlist specifying connections between the blocks. (w₁,h₁)
- Hierarchical design needs to
 - Put the blocks together.
 - Design each block.
- How to put the blocks together without knowing their shapes and the positions of the I/O pins?
- If we design the blocks first, those blocks may not be able to form a tight packing.

Floorplanning

• Problem

- Given circuit modules and their connections, determine the approximate location and shape of circuit elements
- Approximate idea of
 - module areas
 - module connectivity
- Provides
 - area budgets
 - timing info (affect RTL?)

Floorplanning (cont.)

Objectives:

- Minimize area
- Minimize total wire length
 - to make subsequent routing phase easy (short wire length roughly translates into routability)
- Additional cost components:
 - Wire congestion (exact routability measure)
 - Wire delays
 - Power consumption

Possible additional constraints:

- Fixed location for some modules (pre-place and range constraints)
- Fixed die, or range of die aspect ratio (fixed-outline)
- Interconnect optimization (bus-driven)
- Multiple dimensions (2.5D or 3D)
- Analog designs (thermal or symmetric)

Floorplanning: Why Important?

- Early stage of physical design
 - Determines the location of large blocks
 - → detailed placement easier (divide and conquer!)
 - Estimates of area, delay, power
 - important design decisions
 - Impact on subsequent design steps (e.g., routing, heat dissipation analysis and optimization)

Input of Floorplan Design

Area: A = xy

— Aspect ratio (for soft block only): $r \le y/x \le s$

— Rotation (8 directions):

rotate clockwise

rotate counterclockwise →

• Module connectivity

Bounds on Aspect Ratios

If there is no bound on the aspect ratios, can we pack everything tightly?

- Sure!

But we don't want to layout blocks as long strips, so we require $r_i \le h_i/w_i \le s_i$ for each i.

Bounds on Aspect Ratios

We can also allow several shapes for each block:

• For hard blocks, the orientations can be changed:

Area Utilization, Hard and Soft Modules

- The hierarchy tree and floorplan define "place holders" for modules
- Area utilization
 - Depends on how nicely the rigid modules' shapes are matched
 - Soft modules can take different shapes to "fill in" empty slots → floorplan sizing

Area =
$$20x22 = 440$$

Area = 20x19 = 380

Slicing Tree for Slicing Floorpaln

- Slicing tree: A binary tree with *n* leaves and *n*-1 nodes, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- Skewed slicing tree: One in which no node and its right child are the same.

Non-Slicing Floorplan

- Non-Slicing Floorplan: a floorplan that is not slicing one
- Wheel: the smallest non-slicing floorplans (Wang and Wong, TCAD, Aug. 92).
 - There are only two possible wheels as shown in the following.

Two possible wheels

Hierarchical Floorplan of Order Five

- Hierarchical Floorplan of Order Five: a floorplan that can be obtained by by recursively subdividing each rectangle into either two parts (slicing structure), or either five parts (wheel)
- Floorplan tree: A tree representing the hierarchy of partitioning. Each leaf represents a basic rectangle and each node a composite rectangle.

(a) A hierarchical floorplan of order 5 (b) Corresponding floorplan tree.

Non-slicing Floorplan Example

Hierarchical floorplan of order 5

Floorplan and tree example

Floorplanning Algorithms

Components

- "Placeholder" representation
 - Usually in the form of a tree
 - Slicing class: Polish expression [Otten]
 - Non-slicing class: B* tree, Sequence Pair, BSG, etc.
 - Just defines the relative position of modules

Perturbation

- Going from one floorplan to another
- Usually done using Simulated Annealing

Floorplan sizing

- Definition: Given a floorplan tree, choose the best shape for each module to minimize area
- Slicing: polynomial, bottom-up algorithm
- Non-slicing: NP! Use mathematical programming (exact solution)

Cost function

Area, wire-length, ...

Solution Representation

- R.H.J.M. Otten, "Automatic floorplan design," DAC-82.
- Wong & Liu, "A new algorithm for floorplan design," DAC-86.
 - An expression E = e₁ e₂... e_{2n-1}, where e_i ∈ {1, 2, ..., n,
 H, V}, 1 ≤ i ≤ 2n-1, is a Polish expression of length 2n-1 iff
 - every operand j, $1 \le j \le n$, appears exactly once in E;
 - 2. **(the balloting property)** for every subexpression $E_i = e_1 \dots e_i$, $1 \le i \le 2n-1$, # operands > # operators.

Solution Representation (cont'd)

- Polish expression ($E = e_1 e_2 \dots e_{2n-1}$) is equivalent to the postorder traversal of a slicing tree since
 - 1. ij**H**: rectangle i on bottom of j.
 - 2. ij**V**: rectangle i on left of j.

Redundant Representation

One floorplan can be represented by more than one representations.

- (c) Non-skewed slicing trees and the corresponding polish expressions.
- Question: How to eliminate ambiguous representation?

Normalized Polish Expression

- A Polish expression E = e₁ e₂ ... e_{2n-1} is called normalized iff E has no consecutive operators of the same type (H or V).
- Given a normalized Polish expression, we can construct a unique rectangular slicing structure.

E = 16**H**2**V**75**VH**34**HV**

A normalized Polish expression

Simulated Annealing Revisit

- Basic Ingredients for Simulated Annealing:
 - Solution state
 - Neighborhood structure
 - Cost function
 - Annealing schedule

Neighborhood Structure

- Solution state
- Neighborhood structure
- Cost function
- Annealing schedule

Chain: HVHVH ... or VHVHV ...

- Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.
- 3 types of moves:
 - OP1 (Operand Swap): Swap two adjacent operands.
 - OP2 (Chain Invert): Complement some chain (V = H, H = V).
 - OP3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Example

- OP1 (Operand Swap): Swap two adjacent operands.
- OP2 (Chain Invert): Complement some chain (V = H, H = V).
- OP3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Effects of Perturbation

- Question: The balloting property holds during the moves?
 - M1 and M2 moves are OK (the sequence of operands and operators maintains unchanged!!!) .
 - Check the M3 moves! Reject "illegal" M3 moves.

- **Check M3 moves:** Assume that M3 swaps the operand e_i with the operator e_{i+1} , $1 \le i \le k-1$. Then, the swap will not violate the balloting property iff $2N_{i+1} < i$.
 - ❖ N_k : # of operators in the Polish expression $E = e_1 e_2 ... e_k$, $1 \le k \le 2n$ -1

In the above example, M3 swaps e_4 and e_5 (i = 4, N_5 = 2).

Because $2N_5 < 4$ is violated, we cannot apply M3 on e_4 and e_5 .

Cost Function

- Solution state
- Neighborhood structure
- Cost function
- Annealing schedule

A commonly used objective function is a weighted sum of area and wirelength:

$$cost = \alpha A + \beta W$$

where A is the total area of the packing, W is the total wirelength, and α and β are constants.

Wirelength Estimation

- Exact wirelength of each net is not known until routing is done.
- In floorplanning, even pin positions are not known yet.
- Some possible wirelength estimations:
 - Center-to-center estimation
 - Half-perimeter estimation

- **W**= $\sum_{ij} c_{ij} d_{ij}$.
 - $-c_{ii}$: # of connections between blocks *i* and *j*.
 - d_{ij} : center-to-center distance between basic rectangles i and j.

Dead space (White space)

Dead space is the space that is wasted:

- Minimizing area is the same as minimizing deadspace.
- Dead space percentage is computed as $(A \Sigma_i A_i) / A \times 100\%$

Floorplan Sizing for Slicing Floorplans

- Bottom-up process
- Has to be done per floorplan perturbation
- Requires O(n) time.
 - n is the total number of shapes of all the modules

Sizing Slicing Floorplans

Bounding curve for the soft block

- A soft (flexible) blocks b can have different aspect ratios, but is with a fixed area A.
- The shape function of b is a hyperbola: xy = A, or y = A/x, for width x and height y.
- Very thin blocks are often not interesting and feasible to design
 - Add two straight lines for the constraints on aspect ratios.
 - Aspect ratio: $r \le y/x \le s$.

(a) shapes of a soft block b

(b) bonding curves of the block

Bounding Curve for the Hard Block

- Since a basic block is built from discrete transistors, it is not realistic to assume that the shape function follows the hyperbola continuously.
- In an extreme case, a block is rigid/hard: it can only be rotated and mirrored during floorplanning or placement.

(a) shapes of a hard block b

(a) bonding curves of the block

Bounding Curves for Various Modules

 Bonding curves correspond to different kinds of constraints where the shaded areas are feasible regions (bounding area).

Composition of Bounding Curves

- The resulting bounding curve after applying operations on curves
 Γ and Λ for rigid blocks are defined as follows:
 - Horizontal cut operation: $\Gamma H \Lambda = \{ (w, h_1 + h_2) \mid (w_1, h_1) \in \Gamma \text{ and } (w_2, h_2) \in \Lambda \text{ and } w = \max \{w_1, w_2\} \}$
 - Vertical cut operation: $\Gamma V \Lambda = \{ (w_1 + w_2, h) \mid (w_1, h_1) \in \Gamma \text{ and } (w_1, h_2) \in \Lambda \text{ and } h = \max\{h_1, h_2\} \}$

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most **two paths** of the slicing tree need to be updated for each move.

Incremental Computation of Cost Function

Annealing Schedule

- Solution state
- Neighborhood structure
- Cost function
- Annealing schedule

• Initial solution: 12V3V ... nV.

- $T_i = r^i T_0$, i = 1, 2, 3, ...; r = 0.85.
- At each temperature, try kn moves (k = 5-10).
- Terminate the annealing process if
 - # of accepted moves < 5%,</p>
 - temperature is low enough, or
 - run out of time.

Floorplanning by Mathematical Programming

- Sutanthavibul, Shragowitz, and Rosen, "An analytical approach to floorplan design and optimization," 27th DAC, 1990.
- Notation:
 - w_i , h_i : width and height of module M_i .
 - (x_i, y_i) : coordinate of the lower left corner of module M_i .
 - $a_i \le w_i/h_i \le b_i$: aspect ratio w_i/h_i of module M_i . (Note: We defined aspect ratio as h_i/w_i before.)
- Goal: Find a mixed integer linear programming (ILP) formulation for the floorplan design.
 - Linear constraints? Objective function?

$$h_{i}$$

$$(x_{i}, y_{i})^{\nearrow}$$
Area = $h_{i} * w_{i}$
Aspect ratio = w_{i}/h_{i}

Nonoverlap Constraints

• Two modules M_i and M_j are nonoverlap, if at least one of the following linear constraints is satisfied:

```
if M_i to the left of M_j: x_i + w_i \le x_j

if M_i below M_j: y_i + h_i \le y_j

if M_i to the right of M_j: x_i - w_j \ge x_j

if M_i above M_j: y_i - h_j \ge x_j
```

- Let W, H be upper bounds on the floorplan width and height.
- Introduce two 0, 1 variables p_{ij} and q_{ij} to denote that one of the above inequalities is enforced (e.g., $p_{ij} = 0$, $q_{ij} = 1 \Rightarrow y_i + h_i \leq y_j$ is satisfied for the second equation listed bellow):

	p_{ij} (7 ij
$X_i + W_i \leq X_j + W(p_{ij} + q_{ij})$	0 ()
$y_i + h_i \leq y_j + H(1 + p_{ij} - q_{ij})$	0 1	1
$X_i - W_j \geq X_j - W(1 - p_{ij} + q_{ij})$	1 ()
$y_i - h_j \ge x_j - H(2 - p_{ij} - q_{ij})$	1 1	1

Cost Function & Constraints

- Minimize Area = xy, nonlinear! (x, y: width and height of the resulting floorplan)
- How to fix?
 - Fix the width W and minimize the height y!
- Four types of constraints:
 - no two modules overlap $(\forall i, j: 1 \le i \le j \le n)$;
 - each module is enclosed within a rectangle of width W and height $H(x_i + w_i \le W, y_i + h_i \le H, 1 \le i \le n)$;
 - 3. $x_i \ge 0, y_i \ge 0, 1 \le i \le n$;
 - 4. $p_{ij}, q_{ij} \in \{0, 1\}.$
- w_i , h_i are known.

Mixed ILP for Floorplanning

Mixed ILP for the floorplanning problem with rigid, fixed modules.

- Size of the mixed ILP: for n modules,
 - # continuous variables: O(n); # integer variables: $O(n^2)$; # linear constraints: $O(n^2)$.
 - Unacceptably huge program for a large n! (How to cope with it?)
- Popular LP software: glpk, lp_solve, cplex, etc.

Mixed ILP for Floorplanning (cont'd)

Mixed ILP for the floorplanning problem: rigid, freely oriented modules.

- For each module *i* with free orientation, associate a 0-1 variable r_i :
 - $-r_i$ = 0: 0° rotation for module *i*.
 - $r_i = 1:90^{\circ}$ rotation for module *i*.
- $M = \max\{W, H\}$.

Flexible/Soft Modules

- Assumptions: w_i , h_i are unknown; area lower bound: A_i .
- Module size constraints: $w_i h_i \ge A_i$; $a_i \le w_i / h_i \le b_i$.
- $\bullet \ \ \text{Hence,} \ \ w_{min} = \sqrt{A_i a_i}, \ w_{max} = \sqrt{A_i b_i}, \ h_{min} = \sqrt{\frac{A_i}{b_i}}, \ h_{max} = \sqrt{\frac{A_i}{a_i}}.$
- $w_i h_i \ge A_i$ nonlinear! How to fix?
 - Can apply a first-order approximation of the equation: a line passing through (w_{min}, h_{max}) and (w_{max}, h_{min}) .

$$egin{array}{lll} h_i &= \Delta_i w_i + c_i & /* & y = mx + c & */ \ \Delta_i &= rac{h_{max} - h_{min}}{w_{min} - w_{max}} & /* & slope & */ \ c_i &= h_{max} - \Delta_i w_{min} & /* & c = y_0 - mx_0 & */ \end{array}$$

Substitute $\Delta_i w_i + c_i$ for h_i to form linear constraints (x_i, y_i, w_i) are unknown; $\Delta_i, \Delta_j, c_i, c_j$ can be computed as above).

Flexible/Soft Modules

- Assumptions: w_i , h_i are unknown; area lower bound: A_i .
- Module size constraints: $w_i h_i \ge A_i$.
- Hence, $h_i = A_i / w_i = f(w_i)$
- Apply Taylor's series expansion for the above equation:

$$f(w_i) = h_i = A_i/w_{i,max} + A_i(w_{i,max} - w_i)/w_{i,max}^2 + O(w_i - w_{i,max})$$

Let $h_{i,0} = A_i/w_{i,max}$, $\Delta_i = w_{i,max} - w_i$, and $\lambda_i = A_i/w_{i,max}^2$
Then $h_i = h_{i,0} + \lambda_i \Delta_i$

$$x_i + w_i \le x_j + W(p_{ij} + q_{ij})$$
 \Rightarrow $x_i + w_{i,max} - \Delta_i \le x_j + W(p_{ij} + q_{ij})$
 $y_i + h_i \le y_j + H(1 + p_{ij} - q_{ij})$ \Rightarrow $y_i + h_{i,0} + \lambda_i \Delta_i \le y_j + H(1 + p_{ij} - q_{ij})$
 $x_i - w_j \ge x_j - W(1 - p_{ij} + q_{ij})$ \Rightarrow $x_i - w_{j,max} + \Delta_j \ge x_j - W(1 - p_{ij} + q_{ij})$
 $y_i - h_j \ge x_j - H(2 - p_{ij} - q_{ij})$ \Rightarrow $y_i - h_{i,0} - \lambda_j \Delta_j \ge y_j - H(2 - p_{ij} - q_{ij})$

Sequence Pair (SP)

- Murata, Fujiyoshi, Nakatake, Kajitani, "Rectangle-Packing Based Module Placement," ICCAD-95.
- Represent a packing by a pair of module-name sequences (e.g., (abdecf, cbfade)).
 - Solution space: (n!)²
- Correspond all pairs of the sequences to a P-admissible (P*admissible) solution space.
- Search in the P-admissible (P*-admissible) solution space (by SA).
 - Swap two nodes only in a sequence
 - Swap two nodes in both sequences

Relative Module Positions

- A floorplan is a partition of a chip into rooms, each containing at most one block.
- Locus (right-up, left-down, up-left, down-right)
 - Take a non-empty room.
 - 2. Start at the center of the room, walk in two alternating directions to hit the sides of rooms.
 - 3. Continue until to reach a corner of the chip.
- **Positive locus** Γ_+ : Union of right-up locus and left-down locus.
- Negative locus Γ₋: Union of up-left locus and down-right locus.

Geometrical Information

- No pair of positive (negative) loci cross each other, i.e., loci are linearly ordered.
- SP uses two sequences (Γ_+, Γ_-) to represent a floorplan.
 - H-constraint: (..a..b.., ..a..b..) iff a is on the left of b
 - V-constraint: (..a..b..,..b..a..) iff b is below a

Negative loci Γ .: *cbafde*

$$(\Gamma_+, \Gamma_-) = (abdecf, cbafde)$$

(Γ_+, Γ_-) -Packing

- For every SP (Γ +, Γ _), there is a (Γ +, Γ _) packing.
- Horizontal constraint graph $G_H(V, E)$ (similarly for vertical constraint graph $G_V(V, E)$):
 - V: source s, sink t, n vertices for modules.
 - -E:(s,x) ((x,t)) for the module x without module left (right) to it, and (x,y) iff x must be left to y.

Vertex weight: 0 for s and t, width of module x for the other vertices.

Packing for sequence pair: (abdecf, cbafde)

Horizontal constraint graph Vertical constraint graph (*Transitive edges are not shown*) (*Transitive edges are not shown*)

Cost Evaluation

- **Optimal** (Γ_+ , Γ_-)-Packing can be obtained in $O(n^2)$ time by applying a longest path algorithm on a vertex-weighted directed acyclic graph.
 - G_H and G_V are independent.
 - The X and Y coordinates of each module are the minimum values of the longest path length between s and the corresponding vertex in G_H and G_V, respectively.

Cost evaluation can be done in O(n lg lg n) time by computing the longest common subsequence of the two sequences (Tang & Wong, DATE-2K, ASP-DAC-01)

Packing for sequence pair: (abdecf, cbfade)

Horizontal constraint graph Vertical constraint graph (*Transitive edges are not shown*) (*Transitive edges are not shown*)