Elektroenergetika 3 - Tepelná část

Test v1.1

Řešení

1 Zeď

- a) Celkový tepený odpor $R_{\vartheta,\Sigma} = 1,17 \text{ m}^2 \cdot \text{K} \cdot \text{W}^{-1}$,
 - Celkový absolutní tepelný odpor $R_{\vartheta A,\Sigma} = 0,12 \text{ K} \cdot \text{W}^{-1}$,
 - Součinitel prostupu tepla $U_{\vartheta,\Sigma}=0.85~\mathrm{W\cdot m^{-2}\cdot K^{-1}},$
 - Prostup tepla $U_{\vartheta A,\Sigma} = 8,51 \text{ W} \cdot \text{K}^{-1}$,
 - Měrný tepelný tok $\dot{q} = 25,53 \; \mathrm{W} \cdot \mathrm{m}^{-2}$
 - Tepelný tok $\dot{Q} = 255, 32 \text{ W}.$
- b) Teplotní spád v cihle $\Delta T_c = 9,57 \text{ K}$,
 - Teplotní spád v izolaci $\Delta T_i = 20,43~\mathrm{K}.$

2 Symetrizace

- $\varphi = 0,555 \text{ rad},$
- $tg(\varphi) = 0,620,$
- $Y_{1,2} = (0, 125 0, 077j) S$,
- $Y_{1,3} = (0,219 + 0,136j) S$,
- $Y_{2,3} = (0,275 + 0,170j) \text{ S},$
- $Y_{s,1,2} = 0,045j \text{ S},$
- $Y_{s,1,3} = -0,049j$ S,
- $Y_{s,2,3} = -0,225j$ S,

Tabulka symetrizace:

Větev	1-2	1–3	2–3
Kompenzace jalového výkonu	0,077j	-0, 136j	-0,170j
Symetrizace 1–2	0	$-\tfrac{0,125}{\sqrt{3}}j$	$\frac{0,125}{\sqrt{3}}j$
Symetrizace 1–3	$\frac{0,219}{\sqrt{3}}j$	0	$-\tfrac{0,219}{\sqrt{3}}j$
Symetrizace 2–3	$-\tfrac{0,275}{\sqrt{3}}j$	$\frac{0,275}{\sqrt{3}}j$	0

Výsledné zapojení:

3 Teoretická otázka

- Z vnější strany: Výhody toho položení je, že pokud je zeď zevnitř, tak funguje jako akumulátor tepla. Je to vhodné pro dlouhodobé vytápění. Nevýhodou je, že pokud se například jedná o chalupu, kam se jezdí pouze na víkend, tak nějakou dobu trvá, než se teplo naakumuluje a v místnosti bude teplo. Tento typ izolace se používá častěji.
- Z vnitřní strany: Toto položení se rychleji vytopí, ale také se rychleji ochladí, jelikož izolace nefunguje jako dobrý akumulátor tepla. Pokud například zasvítí slunce, tak se místnost rychleji zahřeje. Je zde riziko kondenzace a tvoření vlhkosti a plísní.