Mod 1 Project – King County Housing Data

Thomas O'Gara

Part time data science

Instructor: Victor Geislinger

Problem Statement:

How do we go about predicting home values in King County?

Methodology – "OSEMN"

- Obtained housing data on 21,000+ King County homes
- Scrubbed the data for missing values, non-numbers, placeholder values
- Exploratory data analysis (EDA)
- Modeled the data using multiple linear regression
- INterpreted the data to determine the most important factors in valuing a home in King County

Most important variables to predict home prices

- 1. Square footage of the home
- 2. Grade/build quality
- 3. Square footage of the lot
- 4. Square footage of neighbor's homes
- 5. Location/neighborhood

Square footage of the home

Grade/build quality

Square footage of neighbor's homes

Location - where do you want to be?

Location continued:

Most expensive zip codes:

• 98004: Medina

• 98039: Bellevue

• 98040: Mercer Island

• 98112: Northeast Seattle

• 98199: Northwest Seattle

Is a newer home more valuable?

What about other variables?

Model Overview

OLS Regression Resu	ults		
Dep. Variable:	price	R-squared:	0.878
Model:	OLS	Adj. R-squared:	0.878
Method:	Least Squares	F-statistic:	1646.
Date:	Wed, 12 Jun 2019	Prob (F-statistic):	0.00
Time:	10:38:44	Log-Likelihood:	5811.6
No. Observations:	21082	AIC:	-1.144e+04
Df Residuals:	20989	BIC:	-1.070e+04
Df Model:	92		
Covariance Type:	nonrobust		

 Omnibus:
 1302.533
 Durbin-Watson:
 2.001

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 5939.522

 Skew:
 -0.055
 Prob(JB):
 0.00

 Kurtosis:
 5.598
 Cond. No.
 281.

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	10.9549	0.059	186.655	0.000	10.840	11.070	
bedrooms	-0.2552	0.024	-10.684	0.000	-0.302	-0.208	
bathrooms	0.1798	0.016	10.950	0.000	0.148	0.212	
sqft_living	1.5118	0.027	55.100	0.000	1.458	1.566	
sqft_lot	0.6256	0.030	20.897	0.000	0.567	0.684	
grade	1.0027	0.022	46.034	0.000	0.960	1.045	
sqft_basement	-0.0624	0.005	-13.359	0.000	-0.072	-0.053	
lat	0.3064	0.046	6.703	0.000	0.217	0.396	
long	-0.5190	0.064	-8.059	0.000	-0.645	-0.393	
sqft_living15	0.4074	0.019	21.551	0.000	0.370	0.444	
sqft_lot15	-0.0980	0.030	-3.290	0.001	-0.156	-0.040	
floor[0]	0.0244	0.005	4.806	0.000	0.014	0.034	
floor[1]	0.0085	0.004	2.014	0.044	0.000	0.017	
floor[2]	0.0504	0.016	3.235	0.001	0.020	0.081	
floor[3]	-0.0703	0.009	-7.446	0.000	-0.089	-0.052	
floor[4]	-0.0362	0.070	-0.518	0.605	-0.173	0.101	
view[0]	0.1188	0.011	11.285	0.000	0.098	0.139	
view[1]	0.1151	0.006	17.798	0.000	0.102	0.128	
view[2]	0.2029	0.009	23.130	0.000	0.186	0.220	
view[3]	0.4891	0.011	44.462	0.000	0.468	0.511	
condition_2	0.1269	0.038	3.360	0.001	0.053	0.201	
condition_3	0.2417	0.035	6.880	0.000	0.173	0.311	
condition_4	0.2755	0.035	7.838	0.000	0.207	0.344	
condition_5	0.3416	0.035	9.658	0.000	0.272	0.411	

Normality and Homoscedasticity assumptions

Is this model a good predictor of future home prices?

```
mse_train = np.sum((y_train-y_hat_train)**2)/len(y_train)
mse_test =np.sum((y_test-y_hat_test)**2)/len(y_test)
print('Train Mean Squarred Error:', mse_train)
print('Test Mean Squarred Error:', mse_test)
```

Train Mean Squarred Error: 0.034076607061633214 Test Mean Squarred Error: 0.032997092011984586

What are potential problems with this model?


```
#Checking for Multicollinearity using variance inflation factor.
#this accounts for multicollinearity with a relation of 3 or more variables v
from statsmodels.stats.outliers_influence import variance_inflation_factor

X = subset.drop(['price'], axis=1)
vif = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
list(zip(X.columns, vif))
```

```
[('bedrooms', 27.43936322112261),
 ('bathrooms', 28.899237707052393),
 ('sqft living', 102.81077627409047),
 ('sqft lot', 22.845588831113602),
 ('grade', 112.24690739331463),
 ('sqft basement', 3.1025613421357163),
 ('lat', 273.2524962797792),
 ('long', 193.36742543893328),
 ('sqft living15', 72.38936688954992),
 ('floor', 1.4059878707820597),
 ('floor', 4.266375251366034),
 ('floor', 1.1034480605684647),
 ('floor', 1.5573844297385897),
 ('floor', 1.0107382278913626),
 ('view', 1.0703526808346429),
 ('view', 1.1481992787171456),
 ('view', 1.1259385931881711),
 ('view', 1.1098055988207716),
 ('condition 2', 4.837279868308839),
 ('condition 3', 321.7072792016948),
 ('condition_4', 129.5277054533042),
 ('condition 5', 39.66082642763849),
```

Business recommendation for home values

- Square footage of living space is key
- High grade building
 - Doesn't need to be a new build just needs to be high quality workmanship
- Pick a neighborhood with large homes nearby
 - Better to be the worst house in a good neighborhood
- Northwest area of King County is best
 - Focus on top 5 zip codes
 - Close to the water

Thank you!

Questions?