0501 CS221032

Sagar Institute of Research & Technology - Excellence, Bhopal II Mid Semester Examination, December-2024

SEMESTER: V

BRANCH: CSE

Subject Code/ Name: CS-501 (THEORY OF COMPUTATION)

Time: 3:00 Hrs.

Max. Marks: 40

NOTE: Attempt all questions. Internal choice is provided in each question.

Q. No.		Question Description	COs (Course Outcomes)	Level (Bloom's Taxonomy)	Marks
Q. 1	(A)	Define Ambiguity. Consider the grammar E>E+E E*E (E) id. Find the leftmost, rightmost derivations and parse trees for the string id+id*id. And show that this grammar is ambiguous. OR	CO4	L3	. 8
	(A)	Define CFG. Design CFG for the languages i) $L=\{0^{2n} 1^m \mid n>=0, m>=0 \}$ ii) $L=\{0^i 1^j 2^k \mid i=j \text{ or } j=k \}$	CO4	L3	
	(A)	Construct the PDA to accept the language $L = \{a^n b^{2n} n > = 1\} \text{ by Final State}$ Is the language wcw ^R where w is string of zeroes and ones, accepted by DPDA? Why?	CO2	L3	
Q. 2	(A)	OR Define CNF. Convert the following CFG to CNF. S->aACa A->B/a B->C/c C->cC/€ Convert PDA equivalent to the given CFG with the following productions 1. S→A, A→BC, B→ba, C→ac	CO2	L3	16
Q.3	(A)	2. S→aSb A, A→bSa S ε Design a Turing machine that determines whether the binary input string is of odd parity or not Explain Universal Turing machine simulate other Turing machines	CO2	L4	16
	(A) (B)	Design a Turing machine that accept language of all strings over the alphabet(a,b) for the language L= {a ⁿ b ⁿ n>=1} Explain the following: Two way finite automata iii) Myhill Nerode theorem iv) NP hard problems v) Recursively enumerable set	CO2	L4	