Problem 1.1

- a) True
- b) True
- c) False
- d) True
- e) False

Problem 1.2

a)
$$\alpha = 1$$
, $\beta = 2$, $\gamma = 0$

b)
$$4^2 = 22_{(7)} = 16_{(10)}$$

$$4 + 4 = 11_{(7)} = 8_{(10)}$$

Decimal value of $\delta = 4$ in a number system of base 7.

c)
$$99_{(10)} = 201_{(7)} = \beta \gamma \alpha$$

Problem 1.3

1) Base Case:

$$\frac{1}{1(1+1)} = \frac{1}{1+1}$$

$$\frac{1}{2} = \frac{1}{2}$$

2) Induction step: n = k

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{k}{k+1} =$$
 Induction Hypothesis

3) Assuming the induction hypothesis is true, prove for k+1:

$$\left(\sum_{k=1}^{n} \frac{1}{k(k+1)}\right) + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

Expand LHS:

$$\frac{k}{k+1} + \frac{1}{(k+1)(k+2)} =$$

$$\frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} =$$

$$\frac{k^2 + 2k + 1}{(k+1)(k+2)} =$$

$$\frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2} = RHS$$

Let $N_0 = (N \cup \{0\})$ be the set of natural numbers including 0. Let $M = N_0^3 = (N_0 \times N_0 \times N_0)$.

The relation \sim on M \times M is defined as:

$$x \sim y \Leftrightarrow (a, b, c) \sim (d, e, f) \Leftrightarrow a + b + c = d + e + f$$

a) Prove that \sim is an equivalence relation.

Reflexive: Suppose (a, b, c) is an ordered pair in M.

[We must show that $(a, b, c) \sim (a, b, c)$.]

We have a + b + c = a + b + c. Thus, by definition of \sim , $(a, b, c) \sim (a, b, c)$.

Symmetric: Suppose (a, b, c) and (d, e, f) are two ordered pairs in M and $(a, b, c) \sim (d, e, f)$.

[We must show that $(d, e, f) \sim (a, b, c)$.]

Since $(a, b, c) \sim (d, e, f)$, a + b + c = d + e + f = S (a common sum). Therefore, even if we switch the sides of the equality, the relation holds: $d + e + f = a + b + c = S \Rightarrow (a, b, c) \sim (d, e, f)$.

Transitive: Suppose (a, b, c), (d, e, f), and (g, h, i) are elements of M, (a, b, c) R (d, e, f), and (d, e, f) R (g, h, i).

[We must show that $(a, b, c) \sim (g, h, i)$.]

Since $(a, b, c) \sim (d, e, f)$ means a + b + c = d + e + f = S, and since $(d, e, f) \sim (g, h, i)$ means d + e + f = g + h + i, then S = g + h + i. Thus a + b + c = g + h + i, by definition of a = b = a and a = b + c = b + i, then

- **b)** Determine all elements of the equivalence class (1, 0, 1). $[(1,0,1)] = \{a, b, c \in N \mid (a, b, c) \sim (1,0,1)\} = \{(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0)\}$
- c) Let $x = (a, b, c) \in M$ and $y = (d, e, f) \in M$. the relation \leq on $M \times M$ is defined as follows: $x \leq y \Leftrightarrow (a, b, c) \leq (d, e, f) \Leftrightarrow a \leq d \land b \leq e \land c \leq f$

Prove the \leq is a partial order.

Reflexive: Suppose (a, b, c) is an ordered pair in M.

[We must show that $(a, b, c) \leq (a, b, c)$.]

We have $(a \le a) \land (b \le b) \land (c \le c)$. The comparison holds, thus $(a, b, c) \le (a, b, c)$.

Antisymmetric: Suppose (a, b, c) and (d, e, f) are two ordered pairs in M.

[We must show that if $(a, b, c) \le (d, e, f) \land (d, e, f) \le (a, b, c), (a, b, c) = (d, e, f).$]

Since
$$(a, b, c) \le (d, e, f)$$
, $(a \le d) \land (b \le e) \land (c \le f)$ and since $(a, b, c) \le (d, e, f)$, $(d \le a) \land (e \le b) \land (f \le c)$.

For the relation \leq (smaller or equal than) to hold, both sides need to be equal (as smaller then doesn't hold when switched). Therefore, a = d, b = e and c = f, thus (a, b, c) = (d, e, f). \checkmark

Transitive: Suppose (a, b, c), (d, e, f), and (g, h, i) are elements of M, $(a, b, c) \le (d, e, f)$, and $(d, e, f) \le (g, h, i)$.

[We must show that $(a, b, c) \le (g, h, i)$.]

Since
$$(a, b, c) \le (d, e, f)$$
, $(a \le d) \land (b \le e) \land (c \le f)$

$$\Rightarrow \quad (a \le d \le g) \land (b \le e \le h) \land (c \le f \le i)$$

$$\Rightarrow \quad (a \le d \le g) \land (b \le h) \land (c \le i), \text{ thus } (a, b, c) \le (g, h, i)$$
Since $(d, e, f) \le (g, h, i)$, $(d \le g) \land (e \le h) \land (f \le i)$

d) Is \leq also a linear order? Explain why or why not. Yes, it is linear order, as 1) it is partial order and 2) every two elements of the poset are comparable, meaning \forall (a, b, c) (d, e, f) \in M, $[((a, b, c), (d, e, f)) \in \leq] \lor [((d, e, f), (a, b, c)) \in \leq].$

Problem 1.5

a)
$$0xf0 = 240_{(10)} = 360_{(8)}$$

b)
$$|-20_{(10)}| = 20_{(10)} = 032_{(6)} -> 523_{(6)} + 1 = 524_{(6)}$$

$$a'_i = (6-1) - a_i$$

$$a'_2 = (6-1) - 0 = 5$$

$$a'_1 = (6-1) - 3 = 2$$

$$a'_0 = (6-1) - 2 = 3$$

c) $12_{(10)} = 00001100_{(2)}$

$$-8_{(10)} = 8_{(10)} = 10001000_{(2)} -> 11110111_{(2)} + 1 = 11111000_{(2)}$$

(We drop the first 1 as it is an overflow // n = 8)

d) $-35.75_{(10)}$

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

|S| exponent | mantissa (23 bits) |

Convert integral part and fraction part: Find exponent:

$$35_{(10)} = 100011_{(2)}$$
 $1\underline{00011}.110... = 1.000111110... \cdot 2^5$ Exp = 5

$$0.75_{(10)} = 110..._{(2)}$$
 Add bias: $5 + 127 = 132_{(10)} = 10000100_{(2)}$

Convert into IEEE 754 single precision floating point format:

Hexadecimal representation: 0xc20e0000

1100 0010 0000 1111 0000 0000 0000 0000