Machine Learning - Regression

Sample Data: 50 Startup's:

- 1. Simple Linear Regression $-R^2$ Value = 0.9740
- 2. Multiple Linear Regression R^2 Value = 0.9358
- 3. Support Vector Machine:

S.No	Regularization	R ² Value for different Kernel				
	Parameter 'C'	Linear	Poly	rbf	sigmoid	
1	1	-0.055	-0.057	-0.057	-0.057	
2	10	-0.039	-0.053	-0.0568	-0.054	
3	100	0.106	-0.019	-0.0507	-0.030	
4	1000	0.78	0.266	0.0067	0.185	
5	3000	0.89	0.637	0.123	0.591	

For the given dataset, c=3000; Kernel = Linear fits data better; $r^2 = 0.89$

4. Decision Tree:

S.No	Criteria	Splitter	R_Value
1	squared_error	best	0.918
2	squared_error	random	0.619
3	friedman_mse	best	0.928
4	friedman_mse	random	0.869
5	absolute_error	best	0.946
6	absolute_error	random	0.940
8	poisson	random	0.784
9	<mark>poisson</mark>	<mark>best</mark>	<mark>0.947</mark>

For the given dataset, criteria = Poisson; splitter = best fits data better; r^2 =0.947