Functional Programming

Midterm Solution

Friday, November 8 2019

Exercise 1: For-comprehensions (10 points)

```
Question 1a. (5 points)
def lists(n: Int): Generator[List[Int]] =
  if (n \le 0)
    single(Nil)
  else
    for {
      head <- integers
      tail <- lists(n - 1)
    } yield head :: tail
Question 1b. (2 points)
def listsUpTo(limit: Int): Generator[List[Int]] =
  for {
    n <- atMost(limit)</pre>
    list <- lists(n)</pre>
  } yield list
Question 1c. (3 points)
def sortedLists(n: Int, minimum: Int): Generator[List[Int]] =
  if (n \ll 0)
    single(Nil)
  else
    for {
      head <- atLeast(minimum)</pre>
      tail <- sortedLists(n - 1, head)
    } yield head :: tail
```

Exercise 2: Structural Induction (10 points)

Question 2a.

(xs ++ (x :: Nil)).map(f) === xs.map(f) ++ (f(x) :: Nil)By structural induction on xs. When xs === Nil:(Nil ++ (x :: Nil)).map(f)=== (x :: Nil).map(f) (by ++ (1))=== f(x) :: Nil.map(f) (by map (4))=== f(x) :: Nil (by map (3)) === Nil ++ (f(x) :: Nil) (by ++ (1)) === Nil.map(f) ++ (f(x) :: Nil) (by map (3))When xs === y :: ys:(Inductive hypothesis: (ys ++ (x :: Nil)).map(f) === ys.map(f) ++ (f(x) :: Nil))((y :: ys) ++ (x :: Nil)).map(f)(y :: ys) ++ (x :: NIt)).map(f)
=== (y :: (ys ++ (x :: Nit))).map(f) (by ++ (2))
=== f(y) :: (ys ++ (x :: Nit)).map(f) (by map (4))
=== f(y) :: (ys.map(f) ++ (f(x) :: Nit)) (by inductive hypothesis)
=== (f(y) :: ys.map(f)) ++ (f(x) :: Nit) (by ++ (2))
=== (y :: ys).map(f) ++ (f(x) :: Nit) (by map (4)) Question 2b. xs.map(f).reverse === xs.reverse.map(f) By structural induction on xs. When xs === Nil:Nil.reverse.map(f) === Nil.map(f) (by reverse (5)) === Nil (by map (3)) === Nil.reverse (by reverse (5)) === Nil.map(f).reverse (by map (3)) When xs === y :: ys:(Inductive hypothesis: ys.map(f).reverse === ys.reverse.map(f)) (y :: ys).reverse.map(f) === (ys.reverse ++ (y :: Nil)).map(f) (by reverse (6)) === ys.reverse.map(f) ++ (f(y) :: Nil) (by lemma) === ys.map(f).reverse ++ (f(y) :: Nil) (by hypothesis) === (f(y) :: ys.map(f)).reverse (by reverse (6))=== (y :: ys).map(f).reverse (by map (4))

Grading scheme

Grading scheme for both questions:

- 1 point for base case
- 4 points for the inductive case
- a small error (missing parenthesis) in the inductive case is -1 point
- \bullet a small error in the base case is -0.5 points
- misusing IH, badly misusing an axiom or inventing own axioms is -3 or -2 points, depending on how complete the rest of the solution is
- partial solutions are worth 0.5 and up to 2 points for the base and inductive case.

Incorrectly specifying the inductive hypothesis did *not* subtract from the grade, although correctly doing so added to points for the partial solution.

Comments

The most common error was missing parenthesis in the inductive part of the second question. By axiom 4, (y :: ys).map(f) ++ (f(x) :: Nil) is equivalent to (f(y) :: ys.map(f)) ++ (f(x) :: Nil) and not to f(y) :: (ys.map(f) ++ (f(x) :: Nil)). The parenthesis here are crucial for determining which expression we are dealing with.

Read the inductive hypothesis for both exercises closely. For example, take a look at the IH for the second case: when xs === y :: ys, the IH is ys.map(f).reverse === ys.reverse.map(f). Note that the IH only works for ys, not for xs. If IH could be applied to xs, the resulting proof would be circular: we would be assuming that xs.map(f).reverse === xs.reverse.map(f), which is the precise thing we are trying to prove.

Additionally: structural induction is inherently tied to the *structure* (of List-s in this case). A List is defined to be either Nil or y:: ys for some y and ys, and therefore the inductive case *must* start by assuming that xs === y:: ys. While it seems reasonable to instead assume that xs === ys ++ (y :: Nil), this does not directly follow from the definition of List. What one could do is prove that y :: ys === zs ++ (z :: Nil) for some zs and z, and only then use that to prove the inductive case.

Exercise 3: Variance (10 points)

- F[A] <: F[B]
- G[B] >: G[C]
- H[B] X H[A]
- F[A] <: F[C]
- B => B <: A => C
- A => C >: C => A
- C => B X A => A
- F[A] => B >: F[B] => A
- G[A] => F[A] <: G[B] => F[B]
- (A => C) => (C => A) <: (B => B) => (A => C)

Exercise 4: Pattern matching and recursion (10 points)

```
Question 4a.

def size: Int =
    this match {
    case Empty() => 0
        case Layer(_, next) => 1 + 2 * next.size
    }

Question 4b.

def map[B](f: A => B): Perfect[B] =
    this match {
        case Empty() => Empty()
        case Layer(elem, next) => Layer(f(elem), next.map { case (a, b) => (f(a), f(b)) })
    }

Question 4c.

def toList: List[A] =
    this match {
        case Empty() => Nil
        case Empty() => Nil
        case Layer(elem, next) => elem :: next.toList.flatMap { case (a, b) => a :: b :: Nil }
}
```