Chapter 1

of a healthy human adult are:

(10.0%) and Nitrogen (2.6%).

Oxygen (61.4%); Carbon (22.9%); Hydrogen

Some Basic Concepts of Chemistry

1.	The molality of a urea solution in which 0.0100 g of urea, $[(NH_2)_2CO]$ is added to 0.3000 dm ³ of water at STP is [AIEEE-2011]			The weight which a 75 kg person would gain if all ¹ H atoms are replaced by ² H atoms is [JEE (Main)-2017]		
	(1) 3.33 × 10 ⁻² m	(2) 0.555 m		(1) 7.5 kg	(2) 10 kg	
	(3) 5.55 × 10 ⁻⁴ m	(4) 33.3 m		(3) 15 kg	(4) 37.5 kg	
2.	The density of a solution prepared by dissolving 120 g of urea (mol. mass = 60 u) in 1000 g of water of 1.15 g/mL. The molarity of this solution is [AIEEE-2012] (1) 1.78 M (2) 1.02 M		7.	The ratio of mass percent of C and H of an organic compound $(C_\chi H_\gamma O_Z)$ is 6 : 1. If one molecule of the above compound $(C_\chi H_\gamma O_Z)$ contains half as much oxygen as required to burn one molecule of compound $C_\chi H_\gamma$ completely to CO_2 and H_2O . The		
	(3) 2.05 M	(4) 0.50 M		empirical formula of compound $C_XH_YO_Z$ is		
3.	The molarity of a solution obtained by mixing 750 mL of 0.5 (M) HCl with 250 mL of 2 (M) HCl				[JEE (Main)-	2018]
				(1) $C_3H_6O_3$	(2) C ₂ H ₄ O	
	will be	De [JEE (Main)-2013]		(3) $C_3H_4O_2$	(4) $C_2H_4O_3$	
	(1) 0.875 M (3) 1.75 M	(2) 1.00 M (4) 0.975 M	8.	A solution of sodium sulfate contains 92 g of Na ⁺ ions per kilogram of water. The molality of Na ⁺ ions in that solution in mol kg ⁻¹ is [JEE (Main)-2019]		
4.	At 300 K and 1 atm, 15 mL of a gaseous hydrocarbon requires 375 mL air containing 20% O ₂ by volume for complete combustion. After			(1) 16	(2) 4	
				(3) 8	(4) 12	
	combustion the gases occupy 330 mL. Assuming that the water formed is in liquid form and the volumes were measured at the same temperature			For the following reaction, the mass of water produced from 445 g of $\mathrm{C_{57}H_{110}O_6}$ is		
	and pressure, the formula of the hydrocarbon is [JEE (Main)-2016]			2C ₅₇ H ₁₁₀ O ₆ (s)+16	$63O_2(g) \rightarrow 114CO_2(g) + 110F$	1 ₂ O(I)
					[JEE (Main)-	2019]
	(1) C_3H_8	(2) C_4H_8		(1) 890 g	(2) 490 g	
	(3) C_4H_{10}	(4) C_3H_6		(3) 445 g	(4) 495 g	
5.	1 gram of a carbonate (M_2CO_3) on treatment with excess HCl produces 0.01186 mole of CO_2 . The molar mass of M_2CO_3 in g mol ⁻¹ is		10.		sugar (C ₁₂ H ₂₂ O ₁₁) requir 0.1 M aqueous solution is	ed to
	[JEE (Main)-2017]				[JEE (Main)-	2019]
	(1) 118.6	(2) 11.86		(1) 136.8 g	(2) 17.1 g	
	(3) 1186	(4) 84.3		(3) 34.2 g	(4) 68.4 g	
6.	The most abundant	t elements by mass in the body	11.	8 g of NaOH is	dissolved in 18 g of H ₂ O.	Mole

fraction of NaOH in solution and molality

[JEE (Main)-2019]

(in mol kg⁻¹) of the solution respectively are

- (1) 0.2, 22.20
- (2) 0.167, 22.20
- (3) 0.167, 11.11
- (4) 0.2, 11.11
- The percentage composition of carbon by mole in methane is [JEE (Main)-2019]
 - (1) 80%
- (2) 75%
- (3) 20%
- (4) 25%
- 13. For a reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$.

Identify dihydrogen (H₂) as a limiting reagent in the following reaction mixtures. [JEE (Main)-2019]

- (1) $35 \text{ g of N}_2 + 8 \text{ g of H}_2$
- (2) $28 \text{ g of N}_2 + 6 \text{ g of H}_2$
- (3) 56 g of N_2 + 10 g of H_2
- (4) $14 \text{ g of } N_2 + 4 \text{ g of } H_2$
- 14. What would be the molality of 20% (mass/mass) aqueous solution of KI? (molar mass of KI = 166 g mol⁻¹) [JEE (Main)-2019]
 - (1) 1.48
- (2) 1.51
- (3) 1.08
- (4) 1.35
- 15. The minimum amount of O₂(g) consumed per gram of reactant is for the reaction:

(Given atomic mass : Fe = 56, O = 16, Mg = 24, P = 31, C = 12, H = 1) [JEE (Main)-2019]

- (1) $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$
- (2) $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$
- (3) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$
- (4) $P_{A}(s) + 5O_{2}(g) \rightarrow P_{A}O_{10}(s)$
- 16. The mole fraction of a solvent in aqueous solution of a solute is 0.8. The molality (in mol kg⁻¹) of the aqueous solution is [JEE (Main)-2019]
 - (1) 13.88×10^{-2}
- (2) 13.88×10^{-3}
- (3) 13.88
- (4) 13.88×10^{-1}
- 17. 5 moles of AB_2 weigh 125×10^{-3} kg and 10 moles of A_2B_2 weigh 300×10^{-3} kg. The molar mass of $A(M_A)$ and molar mass of $B(M_B)$ in kg mol⁻¹ are [JEE (Main)-2019]
 - (1) $M_A = 25 \times 10^{-3}$ and $M_B = 50 \times 10^{-3}$
 - (2) $M_A = 50 \times 10^{-3}$ and $M_B = 25 \times 10^{-3}$
 - (3) $M_A = 5 \times 10^{-3}$ and $M_B = 10 \times 10^{-3}$
 - (4) $M_A = 10 \times 10^{-3}$ and $M_B = 5 \times 10^{-3}$

 25 g of an unknown hydrocarbon upon burning produces 88 g of CO₂ and 9 g of H₂O. This unknown hydrocarbon contains

[JEE (Main)-2019]

- (1) 22 g of carbon and 3 g of hydrogen
- (2) 24 g of carbon and 1 g of hydrogen
- (3) 20 g of carbon and 5 g of hydrogen
- (4) 18 g of carbon and 7 g of hydrogen
- Amongst the following statements, that which was not proposed by Dalton was [JEE (Main)-2020]
 - (1) All the atoms of a given element have identical properties including identical mass. Atoms of different elements differ in mass
 - (2) Matter consists of indivisible atoms.
 - (3) Chemical reactions involve reorganization of atoms. These are neither created nor destroyed in a chemical reaction.
 - (4) When gases combine or reproduced in a chemical reaction they do so in a simple ratio by volume provided all gases are at the same T & P.
- 20. A solution of two components containing n₁ moles of the 1st component and n₂ moles of the 2nd component is prepared. M₁ and M₂ are the molecular weights of component 1 and 2 respectively. If d is the density of the solution in g mL⁻¹, C₂ is the molarity and x₂ is the mole fraction of the 2nd component, then C₂ can be expressed as [JEE (Main)-2020]
 - (1) $C_2 = \frac{1000 \text{ x}_2}{\text{M}_1 + \text{x}_2(\text{M}_2 \text{M}_1)}$
 - (2) $C_2 = \frac{1000 \text{ d } x_2}{M_1 + x_2(M_2 M_1)}$
 - (3) $C_2 = \frac{d x_2}{M_2 + x_2(M_2 M_1)}$
 - (4) $C_2 = \frac{d x_1}{M_2 + x_2(M_2 M_1)}$
- 21. The average molar mass of chlorine is 35.5 g mol⁻¹. The ratio of ³⁵Cl to ³⁷Cl in naturally occurring chlorine is close to [JEE (Main)-2020]

	. ,	2:1	31.	The formula of a gaseous hydrocarbon which requires 6 times of its own volume of ${\rm O_2}$ fo		
22.	(3) 3:1 (4) 4:1 Ferrous sulphate heptahydrate is used to fortify foods with iron. The amount (in grams) of the salt required to achieve 10 ppm of iron in			complete oxidation and produces 4 times its own volume of CO_2 is C_xH_y . The value of y is		
				[JEE (Main)-2021]		
	100 kg of wheat is [JEE (Main)-2020] Atomic weight: Fe = 55.85; S = 32.00; O = 16.00 NaClO ₃ is used, even in spacecrafts, to produce O_2 . The daily consumption of pure O_2 by a person		32.	Complete combustion of 1.80 g of an oxygen containing compound $(C_xH_yO_z)$ gave 2.64 g of CO_z and 1.08 g of CO_z 0. The percentage of oxygen in the organic compound is: [JEE (Main)-2021]		
	is 492 L at 1 atm, 300 K. How much amount of $NaClO_3$, in grams, is required to produce O_2 for the			(1) 50.33 (2) 53.33		
	daily consumption of a person at 1 atm, 300 K?			(3) 51.63 (4) 63.53		
	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	[JEE (Main)-2020] NaCl(s) + FeO(s)	33.	The number of significant figures in 50000.020 × 10 ⁻³ is [JEE (Main)-2021]		
	$R = 0.082 L atm mol^{-1} K^{-1}$		34.	The NaNO ₃ weighed out to make 50 mL of ar		
24.	The molarity of HNO ₃ in a density 1.4 g/mL and mass p (Molecular Weight of I	ercentage of 63% is		aqueous solution containing 70.0 mg Na ⁺ per mL is g. (Rounded off to the nearest integer)		
	[JEE (Main)-2020]			[Given : Atomic weight in g mol ⁻¹ - Na : 23; N		
25.	The ratio of the mass percen			14; O : 16] [JEE (Main)-2021]		
	C & O' of a saturated acyclic organic compound X' are 4:1 and 3:4 respectively. Then, the moles of oxygen gas required for complete combustion of wo moles of organic compound 'X' is		35.	A 6.50 molal solution of KOH (aq.) has a density of 1.89 g cm ⁻³ . The molarity of the solution is mol dm ⁻³ . (Round off to the Nearest Integer).		
		[JEE (Main)-2020]		[Atomic masses : K : 39.0 u; O : 16.0 u; H : 1.0 u]		
26.	The mole fraction of glucose $(C_6H_{12}O_6)$ in an	36.	[JEE (Main)-2021]			
	aqueous binary solution is 0.1. The mass percentage of water in it, to the nearest integer, is [JEE (Main)-2020]		Complete combustion of 750 g of an organic compound provides 420 g of CO ₂ and 210 g of H ₂ O. The percentage composition of carbon and			
27.	substance 'x'. The molarity of	123×10^{22} molecules are present in 10 g of a estance 'x'. The molarity of a solution containing g of substance 'x' in 2 L solution is		hydrogen in organic compound is 15.3 and respectively. (Round off to the Nearest Integer). [JEE (Main)-2021]		
28.	The mass of ammonia in gram kg of dinitrogen quantitatively dihydrogen is	y reacts with 1 kg of [JEE (Main)-2020]	37.	When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate solution, × 10 ⁻⁵ moles of lead sulphate precipitate out. [JEE (Main)-2021]		
29.	The minimum number of moles of O_2 required for complete combustion of 1 mole of propane and 2 moles of butane is [JEE (Main)-2020]			(Round off to the Nearest Integer).		
			38.	The number of chlorine atoms in 20 mL of chlorine		
30.	4.5 g of compound A (MW = 90) was used to make 250 mL of its aqueous solution. The molarity of the solution in M is $x \times 10^{-1}$. The value of x is (Rounded off to the nearest integer)			gas at STP is 10^{21} . (Round off to the		
				Nearest integer). [JEE (Main)-2021]		
				[Assume chlorine is an ideal gas at STP		
		[JEE (Main)-2021]		$R = 0.083 L bar mol^{-1}K^{-1}, N_A = 6.023 \times 10^{23}$		

CHEMISTRY

ARCHIVE - JEE (Main)

29. Complete combustion of 3 g of ethane gives x × 10²² molecules of water. The value of x is Growth of 0 5 M No Character Main)

48. The molarity of the solution prepared by dissolving 6.3 g of oxalic acid (H₂C₂O₄·2H₂O) in 250 mL of water in mol L⁻¹ is x × 10⁻². The value of x is _____. (Nearest integer)

[Use: N_A = 6.023 × 10²³;

Atomic masses in u : C : 12.0; O : 16.0; H : 1.0]

[JEE (Main)-2021]

[JEE (Main)-2021]

49. Sodium oxide reacts with water to produce sodium

40. 250 mL of 0.5 M NaOH was added to 500 mL of 1 M HCI. The number of unreacted HCI molecules in the solution after complete reaction is _____ ×10²¹. (Nearest integer) ($N_A = 6.022 \times 10^{23}$)

[JEE (Main)-2021]

41. If the concentration of glucose ($C_6H_{12}O_6$) in blood is 0.72 g L⁻¹, the molarity of glucose in blood is ____ × 10⁻³ M. (Nearest integer)

(Given: Atomic mass of C = 12, H = 1, O = 16 u)

[JEE (Main)-2021]

42. Consider the complete combustion of butane, the amount of butane utilized to produce 72.0 g of water is $___ \times 10^{-1}$ g. (in nearest integer)

[JEE (Main)-2021]

43. The number of significant figures in 0.00340 is _____

[JEE (Main)-2021]

44. The density of NaOH solution is 1.2 g cm⁻³. The molality of this solution is _____ m.

(Round off to the Nearest Integer)

[Use : Atomic masses : Na : 23.0 u, O : 16.0 u H : 1.0 u Density of H_2O : 1.0 g cm⁻³]

[JEE (Main)-2021]

45. An aqueous KCl solution of density 1.20 g ml⁻¹ has a molality of 3.30 mol kg⁻¹. The molarity of the solution in mol L⁻¹ is _____. (Nearest integer)

[Molar mass of KCl = 74.5] [JEE (Main)-2021]

46. 100 mL of Na_3PO_4 solution contains 3.45 g of sodium. The molarity of the solution is _____ \times 10⁻² mol L⁻¹. (Nearest integer)

[Atomic Masses - Na : 23.0 u, O : 16.0 u, P : 31.0 u]

[JEE (Main)-2021]

47. 100 g of propane is completely reacted with 1000 g of oxygen. The mole fraction of carbon dioxide in the resulting mixture is x × 10⁻². The value of x is _____. (Nearest integer)

[Atomic weight : H = 1.008; C = 12.00; O = 16.00]

[JEE (Main)-2021]

49. Sodium oxide reacts with water to produce sodium hydroxide. 20.0 g of sodium oxide is dissolved in 500 mL of water. Neglecting the change in volume, the concentration of the resulting NaOH solution is _______ × 10⁻¹ M. (Nearest integer)

[Atomic mass : Na = 23.0, O = 16.0, H = 1.0]

[JEE (Main)-2021]

50. If 80 g of copper sulphate $CuSO_4$ - $5H_2O$ is dissolved in deionised water to make 5 L of solution. The concentration of the copper sulphate solution is $x \times 10^{-3}$ mol L⁻¹. The value of x is

[Atomic masses Cu : 63.54 u, S : 32 u, O : 16 u, H : 1 u] [JEE (Main)-2021]

51. The number of atoms in 8 g of sodium is $x \times 10^{23}$. The value of x is _____. (Nearest integer)

[Given : $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

Atomic mass of Na = 23.0 u] [JEE (Main)-2021]

52. If a rocket runs on a fuel (C₁₅H₃₀) and liquid oxygen, the weight of oxygen required and CO₂ released for every litre of fuel respectively are:

(Given: density of the fuel is 0.756 g/mL)

[JEE (Main)-2022]

- (1) 1188 g and 1296 g
- (2) 2376 g and 2592 g
- (3) 2592 g and 2376 g
- (4) 3429 g and 3142 g
- 53. The number of N atoms in 681 g of $C_7H_5N_3O_6$ is $x \times 10^{21}$. The value of x is _____. (N_A = 6.02 × 10^{23} mol⁻¹) (Nearest Integer)

[JEE (Main)-2022]

54. A protein 'A' contains 0.30% of glycine (molecular weight 75). The minimum molar mass of the protein 'A' is _____ × 10³ g mol⁻¹ [nearest integer]

[JEE (Main)-2022]

ARCHIVE - JEE (Main) CHEMISTRY

55. A commercially sold conc. HCl is 35% HCl by mass. If the density of this commercial acid is 1.46 g/mL, the molarity of this solution is :

(Atomic mass : CI = 35.5 amu, H = 1 amu)

[JEE (Main)-2022]

- (1) 10.2 M
- (2) 12.5 M
- (3) 14.0 M
- (4) 18.2 M

56. CNG is an important transportation fuel. When 100 g CNG is mixed with 208 g oxygen in vehicles, it leads to the formation of CO₂ and H₂O and produced large quantity of heat during this combustion, then the amount of carbon dioxide, produced in grams is _____. [nearest integer]

[Assume CNG to be methane]

[JEE (Main)-2022]

57. The moles of methane required to produce 81 g of water after complete combustion is _____ × 10⁻² mol. [nearest integer]

[JEE (Main)-2022]

 Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): At 10°C, the density of a 5 M solution of KCl [atomic masses of K & Cl are 39 & 35.5 g mol^{-1} respectively], is 'x' g ml^{-1} . The solution is cooled to -21°C. The molality of the solution will remain unchanged.

Reason (R): The molality of a solution does not change with temperature as mass remains unaffected with temperature.

In the light of the above statements, choose the **correct** answer from the options given below.

[JEE (Main)-2022]

- (1) Both **(A)** and **(R)** are true and **(R)** is the correct explanation of **(A)**.
- (2) Both **(A)** and **(R)** are true but **(R)** is not the correct explanation of **(A)**.
- (3) (A) is true but (R) is false.
- (4) (A) is false but (R) is true.
- 59. Two elements A and B which form 0.15 moles of A₂B and AB₃ type compounds. If both A₂B and AB₃ weigh equally, then the atomic weight of A is _____ times of atomic weight of B.

[JEE (Main)-2022]

 Compound A contains 8.7% Hydrogen, 74% Carbon and 17.3% Nitrogen. The molecular formula of the compound is,

Given: Atomic masses of C, H and N are 12, 1 and 14 amu respectively.

The molar mass of the compound A is 162 g mol⁻¹.

[JEE (Main)-2022]

- (1) $C_4H_6N_2$
- (2) C_2H_3N
- (3) C_5H_7N
- (4) $C_{10}H_{14}N_2$
- 61. Using the rules for significant figures, the correct 0.02858×0.112

answer for the expression $\frac{0.02858 \times 0.112}{0.5702}$ will be

[JEE (Main)-2022]

- (1) 0.005613
- (2) 0.00561
- (3) 0.0056
- (4) 0.006
- 62. 56.0 L of nitrogen gas is mixed with excess of hydrogen gas and it is found that 20 L of ammonia gas is produced. The volume of unused nitrogen gas is found to be ____ L. [JEE (Main)-2022]
- 63. Chlorophyll extracted from the crushed green leaves was dissolved in water to make 2 L solution of Mg of concentration 48 ppm. The number of atoms of Mg in this solution is x × 10²⁰ atoms. The value of x is ____. (Nearest integer)

(Given : Atomic mass of Mg is 24 g mol⁻¹; $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$) [JEE (Main)-2022]

64. When 800 mL of 0.5 M nitric acid is heated in a beaker, its volume is reduced to half and 11.5 g of nitric acid is evaporated. The molarity of the remaining nitric acid solution is $x \times 10^{-2}$ M. (Nearest integer)

(Molar mass of nitric acid is 63 g mol⁻¹)

[JEE (Main)-2022]

65. Haemoglobin contains 0.34% of iron by mass. The number of Fe atoms in 3.3 g of haemoglobin is

(Given : Atomic mass of Fe is 56 u, $N_A = 6.022 \times 10^{23}$ mol⁻¹) [JEE (Main)-2022]

- $(1) 1.21 \times 10^5$
- (2) 12.0×10^{16}
- (3) 1.21×10^{20}
- $(4) 3.4 \times 10^{22}$

66. In the given reaction,

$$X + Y + 3Z \rightleftharpoons XYZ_3$$

if one mole of each of X and Y with 0.05 mol of Z gives compound XYZ_3 . (Given : Atomic masses of X, Y and Z are 10, 20 and 30 amu, respectively.) the yield of XYZ_3 is ______ g. (Nearest integer)

[JEE (Main)-2022]

67. On complete combustion of 0.492 g of an organic compound containing C, H and O, 0.7938 g of CO₂ and 0.4428 g of H₂O was produced. The % composition of oxygen in the compound is _____.

[JEE (Main)-2022]

- 68. 2 L of $0.2 \text{ M H}_2\text{SO}_4$ is reacted with 2 L of 0.1 M NaOH solution, the molarity of the resulting product Na $_2\text{SO}_4$ in the solution is _____ millimolar. (Nearest integer) [JEE (Main)-2022]
- 69. $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

Consider the above reaction, the limiting reagent of the reaction and number of moles of NH₃ formed respectively are: [JEE (Main)-2022]

- (1) H₂, 1.42 moles
- (2) H₂, 0.71 moles
- (3) N₂, 1.42 moles
- (4) N_2 , 0.71 moles
- 70. Consider the reaction

$$4HNO_3(I) + 3KCI(s)$$

$$\rightarrow$$
 Cl₂(g) + NOCl(g) + 2H₂O(g) + 3KNO₃(s)

The amount of ${\rm HNO_3}$ required to produce 110.0 g of ${\rm KNO_3}$ is

(Given: Atomic masses of H, O, N and K are 1, 16, 14 and 39 respectively.) [JEE (Main)-2022]

- (1) 32.2 g
- (2) 69.4 g
- (3) 91.5 g
- (4) 162.5 g