

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CURSO DE CIÊNCIA DA COMPUTAÇÃO ORGANIZAÇÃO DE COMPUTADORES

- 1. Suponha um sistema computacional com um espaço de endereçamento de 1 Mcélulas, possuindo cada uma um endereço de 20 bits (2²⁰= 1M). A cache associada a este sistema possui um tamanho de 8192 bytes (ou 8 KBytes), divididos em 512 linhas (ou quadros), com 16 bytes de dados cada linha. Pergunta-se (justifique suas respostas mostrando os cálculos realizados):
 - a) Quantos blocos existem na memória principal?

MP = B * K

$$2^{20}$$
= B * 2^4
B = 2^{20} / 2^4 => 2^{20-4} => 2^{16} = 65536 blocos
ou

B = 1 M células / 16 = 65536 blocos

b) Qual é a proporção de armazenamento entre a memória principal (MP) e a memória cache?

Proporção será de 1M células para 8K células. Dividindo MP/MC teremos 1024K / 8K = 128 ou seja a MP é 128 vezes maior que a MC

- c) Considerando a implementação da política de mapeamento direto, como fica a divisão do endereço na sua implementação:
 - c1) do ponto de vista da memória

Dos 20 bits de endereco teremos:

	3
Número do Bloco	Deslocamento no bloco

Como temos 65536 blocos precisamos de 16 bits para o número do bloco (2^{16} = 65536 blocos)

Como temos 16 células em cada bloco precisamos de 4 bits para o deslocamento $(2^4 = 16)$

Número do bloco	deslocamento
16 bits	4 bits

c2) do ponto de vista da cache

No mapeamento direto temos a seguinte divisão de endereçamento do ponto de vista da cache

Rótulo	Linha de destino	Deslocamento na linha
--------	------------------	-----------------------

Como temos 16 células em cada linha precisamos de 4 bits para o deslocamento $(2^4 = 16)$

Como temos 512 linhas na MC precisamos de 9 bits para a linha de destino (2⁹ = 512)

Como temos uma proporção de 128 blocos da MP para cada linha da MC precisamos de 7 bits para rótulo ($2^7 = 128$)

rótulo	linha de destino	deslocamento
7 bits	9 bits	4 bits

c3) qual a linha de destino do endereço de memória 0xB3C02?

0XB3C02 = 101100111110000000010₂

separando os bits conforme item c2

rótulo	linha de destino	deslocamento
1011001	111000000	0010

Convertendo 1110000002 para decimal temos: 448

Ou seja a linha de destino é a 448

(existem outras maneiras de obter a resposta, por exemplo, fazer o número do bloco que corresponde o endereço e pegar o resto da divisão por 512 (que é o total de linhas da cache)

c4) considerando 3 bits de LRU e escrita em ambas, qual o overhead da implementação destas políticas (map. direto, LRU e escrita em ambas)?

No mapeamento direto temos:

- 1 bit de validade
- 0 bits de política de escrita (escrita em ambas não precisa este bit)
- O bits de política de substituição (pois é mapeamento direto)
- 7 bits de rótulo

assim:

OV% = 100 * 8 / (16 células * 8 bits por célula) = 6,25%

- d) Considerando a implementação da política de mapeamento associativo por conjuntos, onde as 512 linhas estão agrupadas em 64 conjuntos, como fica a divisão do endereço na sua implementação:
 - d1) do ponto de vista da memória principal

Dos 20 bits de endereço teremos:

Número do Bloco Deslocamento no bloco

Como temos 65536 blocos precisamos de 16 bits para o número do bloco (2^{16} = 65536 blocos)

Como temos 16 células em cada bloco precisamos de 4 bits para o deslocamento $(2^4 = 16)$

número do bloco	deslocamento
16 bits	4 bits

d2) do ponto de vista da cache

No mapeamento associativo por conjuntos temos a seguinte divisão de endereçamento do ponto de vista da cache

Rótulo	conjunto de destino	Deslocamento na linha

Como temos 16 células em cada linha precisamos de 4 bits para o deslocamento $(2^4 = 16)$

Como temos 64 conjuntos na MC precisamos de 6 bits para o conjunto de destino ($2^6 = 64$)

Como temos 65536 blocos disputando 64 conjuntos a proporção é de 1024 blocos destinados a cada conjunto, precisando então de um rótulo de 10 bits (2 10 = 1024)

rótulo	conjunto de destino	deslocamento
10 bits	6 bits	4 bits

d3) qual o conjunto de destino do endereço de memória 0xB3C02?

0XB3C02 = 10110011110000000010₂

separando os bits conforme item d2

rótulo	conjunto de destino	deslocamento
1011001111	000000	0010

Convertendo 0000002 para decimal temos: 0

Ou seja o conjunto de destino é o conjunto 0

d4) considerando 3 bits de LRU e escrita em no retorno, qual o overhead da implementação destas políticas (map. associativo por conjuntos, LRU e escrita no retorno)?

No mapeamento associativo temos:

- 1 bit de validade
- 1 bits de política de escrita (escrita no retorno precisa este bit)
- 3 bits de política de substituição (pois quando enche o conjunto deve-se escolher quem sai)
- 10 bits de rótulo

assim:

OV% = 100 * 15 / (16 células * 8 bits por célula) =11,71%

2. Supondo uma memória cachê composta de 4 linhas utilizando uma política de mapeamento associativo. Tendo em vista a sequência de acessos a MP mostrada abaixo, onde a primeira linha mostra o número do acesso e a segunda linha mostra o bloco da MP acessado. Responda as questões apresentadas.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ВЗ	B5	B15	В3	В3	B5	В6	B15	B5	В7	В7	В7	В6	В9	В7	ВЗ	B15	B15	B15	B11	B12

Considerando o tempo e a sequencia de acessos temos a seguinte situação para cada um dos casos (A – Acerto; F - Falta)

# Acesso	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
# Bloco	3	5	15	3	3	5	6	15	5	7	7	7	6	9	7	3	15	15	15	11	12
FIFO	F	F	F	Α	Α	Α	F	Α	Α	F	Α	Α	Α	F	А	F	F	А	Α	F	F
LFU	F	F	F	Α	Α	Α	F	Α	Α	F	Α	Α	F	F	Α	Α	F	Α	Α	F	F
LRU	F	F	F	Α	Α	Α	F	Α	Α	F	Α	Α	Α	F	Α	F	F	Α	Α	F	F

a) Preencha as tabelas abaixo mostrando qual bloco da memória principal encontra-se nas linhas da memória cache depois da ocorrência dos acessos 3, 8, 11, 15 e 21, considerando as políticas de substituição indicadas (como exemplo é apresentado o conteúdo da cache depois do primeiro acesso):

FIFO:

II O .						
Linha / Acesso	1	3	8	11	15	21
L0	В3	В3	В3	В7	В7	B11
L1	-	B5	B5	B5	В9	B12
L2	-	B15	B15	B15	B15	В3
L3	-	-	В6	В6	В6	B5

LFU:

Linha / Acesso	1	3	8	11	15	21
L0	В3	В3	В3	В3	В3	В3
L1	-	B5	B5	B5	B5	B5
L2	-	B15	B15	B15	В9	B11
L3	-	-	В6	В7	В7	B12

LRU:

Linha / Acesso	1	3	8	11	15	21
L0	В3	В3	В3	В7	В7	B12
L1	-	B5	B5	B5	B5	В3
L2	-	B15	B15	B15	В9	B11
L3	-	-	В6	В6	В6	B15

NÃO FOI SOLICITADO NA QUESTÃO MAS ESTOU COLOCANDO O CALCULO DA TAXA DE ACERTO E FALTA Considerando a sequência de 21 acessos acima:

b1) Qual a quantidade de acertos e faltas de cada uma das políticas (FIFO e LRU)?

Observe cada um dos acertos e faltas mostradas na tabela de acessos acima (A – acerto; F falta) em cada uma das duas políticas de substituição

FIFO – Acertos: 11 Faltas: 10 LRU – Acertos: 11 Faltas: 10

b2) Qual a taxa de acertos e a taxa de faltas de cada uma das políticas (FIFO e LRU)?

FIFO – Acertos % = (11 * 100) / 21 = 52,38% Faltas % = (10 * 100) / 21 = 48,62

LRU - Acertos% = (11 * 100) / 21 = 52,38% Faltas % = (10 * 100) / 21 = 48,62

3. Com base na figura abaixo que descreve um sistema MP/Cache e sabendo que se utiliza mapeamento direto, responda, justificando todas as questões:

21 32	000000000
E8	00000010
F2	111111111

Rótulo	Cel 0	Cel 1	Cel 2	Cel 3	
01					Q0
01					Q0 Q1
].
•••					<u></u> .
11					Q29
00					Q29 Q30 Q31
11				_	Q31

a) Qual a divisão do endereço deste sistema do ponto de vista da cache?

No mapeamento direto temos a seguinte divisão de endereçamento do ponto de vista da cache

Rótulo Linha de destino Desl	locamento na linha
------------------------------	--------------------

Como temos 4 células em cada linha precisamos de 2 bits para o deslocamento $(2^2 = 4)$

Como temos 32 linhas na MC precisamos de 5 bits para o deslocamento ($2^5 = 32$)

Como temos um totalde 128 blocos da MP para 32 linhas da MC, ou seja 4 blocos disputam cada linha da cache. precisamos de 2 bits para rótulo $(2^2 = 4)$

rótulo	linha de destino	deslocamento
2 bits	5 bits	2 bits

b) Qual a quantidade de células da memória principal e da memória cache?

Na MP temos um endereço de 9 bits, portanto 29 = 512 células de memória.

Na MC temos 32 linhas, cada uma com 4 células, portanto: MC = L * K = 32 * 4 = 128 células

c) A qual linha da memória cache está destinado o endereço da memória principal 101110110?

Aplicando a divisão do endereço do ponto de vista da cache temos

rótulo	linha de destino	deslocamento
10	11101	10

Portanto o destino é a linha 11101₂ que corresponde a linha 29₁₀

d) Qual o endereço de memória que encontra-se na 1ª célula da linha Q29 da memória cache?

Aplicando a divisão do endereço do ponto de vista da cache temos

rótulo	linha de destino	deslocamento
11	11101	00

Deslocamento 00 pois é a primeira célula do linha

Linha de destino 11101 pois trata-se da linha 29

Rótulo 11 pois é este o rótulo armazenado na linha 29 atualmente

e) Considerando a política de mapeamento direto é possível ter 2 rótulos idênticos em linhas distintas da cache?

Sim, pois trata-se de dois blocos distintos da memória principal que encontram-se em linhas distintas da cache tendo ambos o mesmo rótulo. Por exemplo se o bloco 32 e o bloco 33 estiverem carregados na cache eles serão colocados nas linhas 0 e 1, respectivamente, e o rótulo presente em cada uma das linhas será o mesmo, no caso 01.