Homework Guide: Assignment 6

Problem 1

- (a) Let f be a uniformly continuous function on \mathbb{R} , and define the sequence of functions $f_n(x) = f(x \frac{1}{n})$. Prove that $f_n \to f$ uniformly.
- (b) Suppose that f is a continuous function on \mathbb{R} , and again define $f_n(x) = f(x \frac{1}{n})$. Find an example where f_n does not uniformly converge to f.

Relevant Definitions and Theorems

Definition (Uniform Continuity ¹). A function $f: S \to \mathbb{R}$ is uniformly continuous on S if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x, y \in S$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Definition (Uniform Convergence ²). A sequence of functions (f_n) on a set S converges uniformly to a function f on S if for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all n > N and all $x \in S$, $|f_n(x) - f(x)| < \epsilon$.

Definition (Continuity ³). A function $f: S \to \mathbb{R}$ is continuous on S if it is continuous at every point $x_0 \in S$.

Solution Outline

(a)

- 1. Let $\epsilon > 0$.
- 2. Since f is uniformly continuous on \mathbb{R} , there exists $\delta > 0$ such that $|y z| < \delta \implies |f(y) f(z)| < \epsilon$.
- 3. We need to show $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $n > N \implies |f_n(x) f(x)| < \epsilon$ for all $x \in \mathbb{R}$.
- 4. Consider $|f_n(x) f(x)| = |f(x \frac{1}{n}) f(x)|$.
- 5. Let $y = x \frac{1}{n}$ and z = x. Then $|y z| = \left| -\frac{1}{n} \right| = \frac{1}{n}$.
- 6. We need $|y-z| < \delta$, which means $\frac{1}{n} < \delta$.
- 7. Choose $N \in \mathbb{N}$ such that $N > 1/\delta$.
- 8. If n > N, then $\frac{1}{n} < \frac{1}{N} < \delta$.
- 9. Thus, for n > N, $|y z| = \frac{1}{n} < \delta$, which implies $|f(y) f(z)| < \epsilon$.
- 10. This means $\left| f(x \frac{1}{n}) f(x) \right| < \epsilon$ for all $x \in \mathbb{R}$ when n > N.
- 11. By definition, $f_n \to f$ uniformly on \mathbb{R} .

(b)

- 1. We need a continuous function on \mathbb{R} that is not uniformly continuous. Consider $f(x) = x^2$.
- 2. $f(x) = x^2$ is continuous on \mathbb{R} .
- 3. Define $f_n(x) = f(x \frac{1}{n}) = (x \frac{1}{n})^2$.
- 4. Consider the difference:

$$|f_n(x) - f(x)| = \left| (x - \frac{1}{n})^2 - x^2 \right| = \left| x^2 - \frac{2x}{n} + \frac{1}{n^2} - x^2 \right| = \left| -\frac{2x}{n} + \frac{1}{n^2} \right|.$$

See Definition 19.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

²See Definition 24.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

³See Definition 17.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

- 5. For uniform convergence, for a given $\epsilon > 0$, we need $\exists N$ such that for n > N, $\left| -\frac{2x}{n} + \frac{1}{n^2} \right| < \epsilon$ for all $x \in \mathbb{R}$.
- 6. Let $\epsilon = 1$. Suppose such an N exists.
- 7. Choose n > N. Let x = n.
- 8. Then $|f_n(n) f(n)| = \left| -\frac{2n}{n} + \frac{1}{n^2} \right| = \left| -2 + \frac{1}{n^2} \right|$.
- 9. If $n \ge 2$, then $0 < \frac{1}{n^2} \le \frac{1}{4}$, so $\left| -2 + \frac{1}{n^2} \right| = 2 \frac{1}{n^2} \ge 2 \frac{1}{4} = \frac{7}{4} > 1$.
- 10. This contradicts the assumption that $|f_n(x) f(x)| < 1$ for all x when n > N.
- 11. Therefore, the convergence is not uniform for $f(x) = x^2$.

Let f be a bounded function on [0,1] so that $|f(x)| \leq M$ for all $x \in [0,1]$. Show that the Bernstein polynomials $B_n f$ are all bounded by M.

Relevant Definitions and Theorems

Definition (Bounded Function ⁴). A function $f: S \to \mathbb{R}$ is bounded if there exists $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in S$.

Definition (Bernstein Polynomials 5). For a function f defined on [0,1], the n-th Bernstein polynomial for f is

$$(B_n f)(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

Theorem (Binomial Theorem). For any real numbers a, b and any integer $n \geq 0$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Solution Outline

1. Let $x \in [0,1]$. The *n*-th Bernstein polynomial is:

$$(B_n f)(x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

2. Take the absolute value:

$$|(B_n f)(x)| = \left| \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right) \right|.$$

3. Apply the triangle inequality:

$$|(B_n f)(x)| \le \sum_{k=0}^n \left| \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right) \right|.$$

4. Since $x \in [0,1]$, the terms $\binom{n}{k}$, x^k , and $(1-x)^{n-k}$ are non-negative. Thus,

$$|(B_n f)(x)| \le \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \left| f\left(\frac{k}{n}\right) \right|.$$

⁴See Definition 13.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

⁵See Section 26 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

- 5. We are given $|f(y)| \leq M$ for all $y \in [0,1]$. Since $\frac{k}{n} \in [0,1]$, we have $|f(\frac{k}{n})| \leq M$.
- 6. Substitute this bound:

$$|(B_n f)(x)| \le \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} M.$$

7. Factor out M:

$$|(B_n f)(x)| \le M \left(\sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \right).$$

8. By the Binomial Theorem with a = x and b = 1 - x:

$$\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = (x+(1-x))^n = 1^n = 1.$$

9. Substitute this back:

$$|(B_n f)(x)| \le M \cdot 1 = M.$$

10. This holds for all $x \in [0,1]$ and all $n \in \mathbb{N}$. Thus, $B_n f$ are uniformly bounded by M.

Problem 3

Let f and g be differentiable on an open interval I and let $a \in I$. Define

$$h(x) = \begin{cases} f(x) & \text{for } x < a, \\ g(x) & \text{for } x \ge a. \end{cases}$$

Prove that h is differentiable at a if and only if both f(a) = g(a) and f'(a) = g'(a).

Relevant Definitions and Theorems

Definition (Differentiability at a Point ⁶). A function h defined on an open interval containing a is differentiable at a if the limit $h'(a) = \lim_{x \to a} \frac{h(x) - h(a)}{x - a}$ exists.

Theorem (Differentiability implies Continuity ⁷). If h is differentiable at a, then h is continuous at a.

Definition (Continuity at a Point ⁸). A function h is continuous at a if $\lim_{x\to a} h(x) = h(a)$. This requires $\lim_{x\to a^-} h(x) = \lim_{x\to a^+} h(x) = h(a)$.

Theorem (Existence of Limit ⁹). The limit $\lim_{x\to a} G(x)$ exists and equals L if and only if the left-hand limit $\lim_{x\to a^{-}} G(x)$ and the right-hand limit $\lim_{x\to a^{+}} G(x)$ both exist and equal L.

Solution Outline

- (\Rightarrow) Assume h is differentiable at a.
 - 1. Since h is differentiable at a, it is continuous at a (Thm 28.2).
 - 2. Continuity at a implies $\lim_{x\to a^-} h(x) = \lim_{x\to a^+} h(x) = h(a)$.
 - 3. Evaluate these using the definition of h:
 - h(a) = g(a).

⁶See Definition 28.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

⁷See Theorem 28.2 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

⁸See Definition 17.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

⁹See Definition 20.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

- $\lim_{x\to a^-} h(x) = \lim_{x\to a^-} f(x) = f(a)$ (since f is continuous at a).
- $\lim_{x\to a^+} h(x) = \lim_{x\to a^+} g(x) = g(a)$ (since g is continuous at a).
- 4. Thus, f(a) = g(a). This is the first condition.
- 5. Since h is differentiable at a, the limit $h'(a) = \lim_{x \to a} \frac{h(x) h(a)}{x a}$ exists.
- 6. The left-hand and right-hand limits of the difference quotient must exist and be equal.
- 7. Left-hand derivative:

$$\lim_{x \to a^{-}} \frac{h(x) - h(a)}{x - a} = \lim_{x \to a^{-}} \frac{f(x) - g(a)}{x - a}.$$

Using f(a) = g(a):

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = f'(a)$$

(since f is differentiable at a).

8. Right-hand derivative:

$$\lim_{x \to a^+} \frac{h(x) - h(a)}{x - a} = \lim_{x \to a^+} \frac{g(x) - g(a)}{x - a} = g'(a)$$

(since g is differentiable at a).

- 9. For h'(a) to exist, the one-sided derivatives must be equal: f'(a) = g'(a). This is the second condition.
- (\Leftarrow) Assume f(a) = g(a) and f'(a) = g'(a).
 - 1. We need to show that $h'(a) = \lim_{x \to a} \frac{h(x) h(a)}{x a}$ exists.
 - 2. Examine the left-hand and right-hand limits of the difference quotient.
 - 3. Left-hand derivative:

$$\lim_{x \to a^{-}} \frac{h(x) - h(a)}{x - a} = \lim_{x \to a^{-}} \frac{f(x) - g(a)}{x - a}.$$

Using f(a) = g(a):

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = f'(a).$$

4. Right-hand derivative:

$$\lim_{x \to a^+} \frac{h(x) - h(a)}{x - a} = \lim_{x \to a^+} \frac{g(x) - g(a)}{x - a} = g'(a).$$

- 5. We are given f'(a) = g'(a). Let L = f'(a) = g'(a).
- 6. The left-hand derivative is L and the right-hand derivative is L.
- 7. Since the left-hand and right-hand limits exist and are equal, the limit exists:

$$\lim_{x \to a} \frac{h(x) - h(a)}{x - a} = L.$$

4

8. Therefore, h is differentiable at a and h'(a) = L.

Suppose f is differentiable at a. Define

$$L_1(a,h) = \frac{f(a+h) - f(a-h)}{2h}, \quad L_2(a,h) = \frac{-f(a+2h) + 8f(a+h) - 8f(a-h) + f(a-2h)}{12h}$$

(a) Prove that $\lim_{h\to 0} L_i(a,h) = f'(a)$ for i=1,2. (b) Consider $f(x)=x^5$. How does $|L_i(a,h)-f'(a)|$ behave as $h\to 0$?

Relevant Definitions and Theorems

Definition (Differentiability at a Point ¹⁰). f is differentiable at a if $f'(a) = \lim_{k \to 0} \frac{f(a+k) - f(a)}{k}$ exists. This implies $f(a+k) = f(a) + f'(a)k + \phi(k)$ where $\lim_{k \to 0} \frac{\phi(k)}{k} = 0$.

Theorem (Taylor's Theorem ¹¹). If f has n+1 derivatives in an interval around a, then for x in that interval,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + R_{n}(x),$$

where $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$ for some c between a and x.

Solution Outline

- (a) For $L_1(a, h)$:
 - 1. Rewrite $L_1(a, h)$:

$$L_1(a,h) = \frac{f(a+h) - f(a) - (f(a-h) - f(a))}{2h} = \frac{1}{2} \left[\frac{f(a+h) - f(a)}{h} - \frac{f(a-h) - f(a)}{h} \right].$$

- 2. Let k=-h. Then $\frac{f(a-h)-f(a)}{h}=\frac{f(a+k)-f(a)}{-k}=-\frac{f(a+k)-f(a)}{k}$.
- 3. So, $L_1(a,h) = \frac{1}{2} \left[\frac{f(a+h) f(a)}{h} + \frac{f(a+(-h)) f(a)}{-h} \right]$.
- 4. Take the limit as $h \to 0$. Since f is differentiable at a:

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a), \quad \lim_{h \to 0} \frac{f(a+(-h)) - f(a)}{-h} = f'(a).$$

5. Therefore, $\lim_{h\to 0} L_1(a,h) = \frac{1}{2}[f'(a) + f'(a)] = f'(a)$.

For $L_2(a,h)$:

- 1. Use the definition $f(a+k) = f(a) + f'(a)k + \phi(k)$, where $\phi(k)/k \to 0$ as $k \to 0$.
- 2. Substitute into the numerator of $L_2(a,h)$ for k=2h,h,-h,-2h.
- 3. Sum the terms:
 - f(a) terms: -1 + 8 8 + 1 = 0.
 - f'(a)k terms: f'(a)[-2h + 8h 8(-h) + (-2h)] = f'(a)[-2h + 8h + 8h 2h] = 12f'(a)h.
 - Remainder terms: $R(h) = -\phi(2h) + 8\phi(h) 8\phi(-h) + \phi(-2h)$.
- 4. Numerator = 12f'(a)h + R(h).
- 5. $L_2(a,h) = \frac{12f'(a)h + R(h)}{12h} = f'(a) + \frac{R(h)}{12h}$.

¹⁰See Definition 28.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

¹¹See Theorem 30.2 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

6. We need to show $\lim_{h\to 0} \frac{R(h)}{12h} = 0$

$$\begin{split} \frac{R(h)}{12h} &= \frac{1}{12} \left[-\frac{\phi(2h)}{h} + 8\frac{\phi(h)}{h} - 8\frac{\phi(-h)}{h} + \frac{\phi(-2h)}{h} \right] \\ &= \frac{1}{12} \left[-2\frac{\phi(2h)}{2h} + 8\frac{\phi(h)}{h} + 8\frac{\phi(-h)}{-h} - 2\frac{\phi(-2h)}{-2h} \right]. \end{split}$$

- 7. As $h \to 0$, each term $\frac{\phi(k)}{k} \to 0$.
- 8. Thus, $\lim_{h\to 0} \frac{R(h)}{12h} = \frac{1}{12}[-2(0) + 8(0) + 8(0) 2(0)] = 0$.
- 9. Therefore, $\lim_{h\to 0} L_2(a,h) = f'(a) + 0 = f'(a)$.

(b)

- 1. Let $f(x) = x^5$. Derivatives: $f'(x) = 5x^4$, $f''(x) = 20x^3$, $f'''(x) = 60x^2$, $f^{(4)}(x) = 120x$, $f^{(5)}(x) = 120$, $f^{(k)}(x) = 0$ for $k \ge 6$.
- 2. Use Taylor expansion around a:

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2}h^2 + \frac{f'''(a)}{6}h^3 + \frac{f^{(4)}(a)}{24}h^4 + \frac{f^{(5)}(a)}{120}h^5.$$

For $L_1(a,h)$:

3. Calculate f(a+h) - f(a-h) using the expansion. Odd power terms add, even power terms cancel.

$$f(a+h) - f(a-h) = 2f'(a)h + 2\frac{f'''(a)}{6}h^3 + 2\frac{f^{(5)}(a)}{120}h^5 = 2f'(a)h + \frac{f'''(a)}{3}h^3 + \frac{f^{(5)}(a)}{60}h^5.$$

- 4. $L_1(a,h) = \frac{f(a+h)-f(a-h)}{2h} = f'(a) + \frac{f'''(a)}{6}h^2 + \frac{f^{(5)}(a)}{120}h^4$.
- 5. $L_1(a,h) f'(a) = \frac{f'''(a)}{6}h^2 + \frac{f^{(5)}(a)}{120}h^4$.
- 6. Substitute derivatives of x^5 : $f'''(a) = 60a^2$, $f^{(5)}(a) = 120$.

$$L_1(a,h) - f'(a) = \frac{60a^2}{6}h^2 + \frac{120}{120}h^4 = 10a^2h^2 + h^4.$$

- 7. $|L_1(a,h) f'(a)| = |10a^2h^2 + h^4| = O(h^2)$ as $h \to 0$ (unless a = 0, then $O(h^4)$). For $L_2(a,h)$:
- 8. Calculate -f(a+2h) + 8f(a+h) 8f(a-h) + f(a-2h) using Taylor expansions.
- 9. Coefficients of $h^{j}/j!$ for j=0,2,3,4 cancel out.
- 10. Coefficient of $h^1/1!$: f'(a)[-2+8-8(-1)+(-2)]=12f'(a).
- 11. Coefficient of $h^5/5!$: $f^{(5)}(a)[-(2)^5+8(1)^5-8(-1)^5+(-2)^5]=f^{(5)}(a)[-32+8+8-32]=-48f^{(5)}(a)$.
- 12. Numerator = $12f'(a)h + \frac{-48f^{(5)}(a)}{120}h^5 = 12f'(a)h \frac{2}{5}f^{(5)}(a)h^5$.
- 13. $L_2(a,h) = \frac{12f'(a)h \frac{2}{5}f^{(5)}(a)h^5}{12h} = f'(a) \frac{1}{30}f^{(5)}(a)h^4$.
- 14. $L_2(a,h) f'(a) = -\frac{1}{30}f^{(5)}(a)h^4$.
- 15. Substitute $f^{(5)}(a) = 120$:

$$L_2(a,h) - f'(a) = -\frac{1}{30}(120)h^4 = -4h^4.$$

- 16. $|L_2(a,h) f'(a)| = |-4h^4| = 4h^4 = O(h^4)$ as $h \to 0$. Comparison:
- 17. The error for L_1 is $O(h^2)$, while the error for L_2 is $O(h^4)$.
- 18. L_2 converges to f'(a) faster than L_1 as $h \to 0$.

For a real-valued function f, x is a fixed point if f(x) = x. Show that if f is differentiable on an interval with $f'(x) \neq 1$, then f can have at most one fixed point.

Relevant Definitions and Theorems

Definition (Fixed Point). A point x such that f(x) = x.

Theorem (Mean Value Theorem (MVT) ¹²). If g is continuous on [a,b] and differentiable on (a,b), then there exists $c \in (a,b)$ such that g(b) - g(a) = g'(c)(b-a).

Theorem (Rolle's Theorem ¹³). If g is continuous on [a,b], differentiable on (a,b), and g(a)=g(b), then there exists $c \in (a,b)$ such that g'(c)=0.

Solution Outline

Method 1: Using MVT directly

- 1. Assume for contradiction that f has two distinct fixed points, x_1 and x_2 , with $x_1 < x_2$.
- 2. By definition, $f(x_1) = x_1$ and $f(x_2) = x_2$.
- 3. f is differentiable on an interval I containing x_1, x_2 . Thus f is continuous on $[x_1, x_2]$ and differentiable on (x_1, x_2) .
- 4. Apply MVT to f on $[x_1, x_2]$. There exists $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

5. Substitute $f(x_1) = x_1$ and $f(x_2) = x_2$:

$$f'(c) = \frac{x_2 - x_1}{x_2 - x_1}.$$

- 6. Since $x_1 \neq x_2, x_2 x_1 \neq 0$. Therefore, f'(c) = 1.
- 7. This contradicts the hypothesis that $f'(x) \neq 1$ for all $x \in I$. Since $c \in (x_1, x_2) \subseteq I$, we must have $f'(c) \neq 1$.
- 8. The assumption of two distinct fixed points leads to a contradiction.
- 9. Therefore, f can have at most one fixed point.

Method 2: Using Rolle's Theorem

- 1. Define g(x) = f(x) x. Fixed points of f are roots of g.
- 2. g is differentiable on I since f(x) and x are.
- 3. g'(x) = f'(x) 1.
- 4. The hypothesis $f'(x) \neq 1$ implies $g'(x) = f'(x) 1 \neq 0$ for all $x \in I$.
- 5. Assume for contradiction that f has two distinct fixed points, x_1 and x_2 , with $x_1 < x_2$.
- 6. Then $g(x_1) = f(x_1) x_1 = 0$ and $g(x_2) = f(x_2) x_2 = 0$.
- 7. g is continuous on $[x_1, x_2]$, differentiable on (x_1, x_2) , and $g(x_1) = g(x_2) = 0$.

¹²See Theorem 29.3 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

¹³See Theorem 29.2 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

- 8. By Rolle's Theorem, there exists $c \in (x_1, x_2)$ such that g'(c) = 0.
- 9. This contradicts the fact that $g'(x) \neq 0$ for all $x \in I$.
- 10. The assumption of two distinct fixed points leads to a contradiction.
- 11. Therefore, f can have at most one fixed point.

Find the following limits if they exist: (a) $\lim_{x\to 0} \frac{x^3}{\sin x - x}$ (b) $\lim_{x\to 0} \frac{\tan x - x}{x^3}$ (c) $\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$ (d) $\lim_{x\to 0} \frac{1-\cos x}{e^{3x}-3x-1}$

Relevant Theorems

Theorem (L'Hôpital's Rule ¹⁴). If $\lim f(x) = \lim g(x) = 0$ (or $\pm \infty$) and $\lim \frac{f'(x)}{g'(x)}$ exists, then $\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$.

Taylor Series Expansions around 0:

- $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots$
- $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots$
- $\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots$
- $e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \dots$

Solution Outline

- (a) $\lim_{x\to 0} \frac{x^3}{\sin x x}$
 - Taylor: $\sin x x = (x \frac{x^3}{6} + O(x^5)) x = -\frac{x^3}{6} + O(x^5)$.

$$\lim_{x \to 0} \frac{x^3}{-\frac{x^3}{6} + O(x^5)} = \lim_{x \to 0} \frac{1}{-\frac{1}{6} + O(x^2)} = -6.$$

• L'Hôpital (form $\frac{0}{0}$):

$$\lim_{x \to 0} \frac{3x^2}{\cos x - 1} \stackrel{L'H}{=} \lim_{x \to 0} \frac{6x}{-\sin x} \stackrel{L'H}{=} \lim_{x \to 0} \frac{6}{-\cos x} = \frac{6}{-1} = -6.$$

- **(b)** $\lim_{x\to 0} \frac{\tan x x}{x^3}$
 - Taylor: $\tan x x = (x + \frac{x^3}{3} + O(x^5)) x = \frac{x^3}{3} + O(x^5)$.

$$\lim_{x \to 0} \frac{\frac{x^3}{3} + O(x^5)}{x^3} = \lim_{x \to 0} (\frac{1}{3} + O(x^2)) = \frac{1}{3}.$$

• L'Hôpital (form $\frac{0}{0}$):

$$\lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} \stackrel{L'H}{=} \lim_{x \to 0} \frac{2\sec^2 x \tan x}{6x} = \lim_{x \to 0} \frac{\sec^2 x}{3} \cdot \frac{\tan x}{x} = \frac{1}{3} \cdot 1 = \frac{1}{3}.$$

¹⁴See Theorems 30.3, 30.4 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

- (c) $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x}\right)$
 - Combine: $\lim_{x\to 0} \frac{x-\sin x}{x\sin x}$. (Form $\frac{0}{0}$).
 - Taylor: Numerator is $\frac{x^3}{6} + O(x^5)$. Denominator is $x(x \frac{x^3}{6} + \dots) = x^2 \frac{x^4}{6} + \dots$

$$\lim_{x \to 0} \frac{\frac{x^3}{6} + O(x^5)}{x^2 + O(x^4)} = \lim_{x \to 0} \frac{x(\frac{1}{6} + O(x^2))}{1 + O(x^2)} = 0 \cdot \frac{1/6}{1} = 0.$$

• L'Hôpital:

$$\lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x} \stackrel{L'H}{=} \lim_{x \to 0} \frac{\sin x}{\cos x + \cos x - x \sin x} = \frac{0}{1 + 1 - 0} = 0.$$

- (d) $\lim_{x\to 0} \frac{1-\cos x}{e^{3x}-3x-1}$
 - (Form $\frac{0}{0}$).
 - Taylor: Numerator is $\frac{x^2}{2} + O(x^4)$. Denominator is $(1 + 3x + \frac{(3x)^2}{2} + O(x^3)) 3x 1 = \frac{9x^2}{2} + O(x^3)$.

$$\lim_{x \to 0} \frac{\frac{x^2}{2} + O(x^4)}{\frac{9x^2}{2} + O(x^3)} = \lim_{x \to 0} \frac{\frac{1}{2} + O(x^2)}{\frac{9}{2} + O(x)} = \frac{1/2}{9/2} = \frac{1}{9}.$$

• L'Hôpital:

$$\lim_{x \to 0} \frac{\sin x}{3e^{3x} - 3} \stackrel{L'H}{=} \lim_{x \to 0} \frac{\cos x}{9e^{3x}} = \frac{1}{9}.$$

Problem 7

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable, f(0) = 0, $f''(x) \ge 0$ for x > 0. Prove g(x) = f(x)/x is increasing for x > 0.
- (b) If $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable, f(0) = 0 and g(x) = f(x)/x is increasing for x > 0, show $f''(x) \ge 0$ for some x > 0, but not necessarily for all x > 0.

Relevant Definitions and Theorems

Definition (Increasing Function ¹⁵). g is increasing on an interval if $x_1 < x_2$ implies $g(x_1) \le g(x_2)$.

Theorem (Derivative Test for Increasing Function ¹⁶). If g is differentiable on (a,b) and $g'(x) \ge 0$ for all $x \in (a,b)$, then g is increasing on (a,b).

Solution Outline

(a)

- 1. Define g(x) = f(x)/x for x > 0. g is differentiable for x > 0.
- 2. We show $g'(x) \ge 0$ for x > 0.
- 3. Calculate g'(x) using the quotient rule:

$$g'(x) = \frac{xf'(x) - f(x)}{x^2}.$$

4. Let N(x) = xf'(x) - f(x). We need to show $N(x) \ge 0$ for x > 0.

¹⁵See Definition 29.1 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*. Springer, 2013.

¹⁶See Corollary 29.7 in Ross, K. A. *Elementary Analysis: The Theory of Calculus*, 2nd ed. Springer, 2013.

5. Calculate N'(x):

$$N'(x) = (1 \cdot f'(x) + xf''(x)) - f'(x) = xf''(x).$$

- 6. Given $f''(x) \ge 0$ for x > 0. Since x > 0, $N'(x) = xf''(x) \ge 0$ for x > 0.
- 7. Since $N'(x) \ge 0$, N(x) is increasing on $(0, \infty)$.
- 8. Consider the limit of N(x) as $x \to 0^+$:

$$\lim_{x \to 0^+} N(x) = \lim_{x \to 0^+} (xf'(x) - f(x)).$$

Since f is differentiable at 0 and f(0) = 0, $f'(0) = \lim_{x\to 0} f(x)/x$. Since f'' exists, f' is continuous.

$$\lim_{x \to 0^+} N(x) = (0 \cdot f'(0)) - f(0) = 0 - 0 = 0.$$

- 9. Since N(x) is increasing on $(0, \infty)$ and $\lim_{x\to 0^+} N(x) = 0$, we have $N(x) \ge 0$ for all x > 0.
- 10. Therefore, $g'(x) = N(x)/x^2 \ge 0$ for x > 0.
- 11. By the theorem, g(x) = f(x)/x is increasing on $(0, \infty)$.

(b)

- 1. Assume f is twice differentiable, f(0) = 0, and g(x) = f(x)/x is increasing for x > 0.
- 2. From (a), $g'(x) = \frac{xf'(x) f(x)}{x^2} \ge 0$ for x > 0.
- 3. Let N(x) = xf'(x) f(x). Then $N(x) \ge 0$ for x > 0.
- 4. Also N'(x) = xf''(x) and $\lim_{x\to 0^+} N(x) = 0$.
- 5. Show $f''(x) \ge 0$ for some x > 0: Assume for contradiction that f''(x) < 0 for all x > 0. Then N'(x) = xf''(x) < 0 for all x > 0. This implies N(x) is strictly decreasing on $(0, \infty)$. Since $\lim_{x\to 0^+} N(x) = 0$, this would mean N(x) < 0 for all x > 0. This contradicts $N(x) \ge 0$. Therefore, the assumption is false. There must exist some $x_0 > 0$ such that $f''(x_0) \ge 0$.
- 6. Show f''(x) is not necessarily ≥ 0 for all x > 0: Consider $f(x) = x(1 e^{-x}) = x xe^{-x}$.
 - f(0) = 0. f is twice differentiable.
 - $g(x) = f(x)/x = 1 e^{-x}$ for $x \neq 0$.
 - $g'(x) = e^{-x} > 0$ for all x. So g(x) is increasing for x > 0.
 - $f'(x) = 1 e^{-x} + xe^{-x}$.
 - $f''(x) = e^{-x} + (e^{-x} xe^{-x}) = 2e^{-x} xe^{-x} = (2-x)e^{-x}$.
 - If x > 2, then 2 x < 0, so f''(x) < 0. For example, $f''(3) = -e^{-3} < 0$.
 - Thus, f''(x) is not non-negative for all x > 0.
- 7. This example satisfies the conditions but f''(x) is negative for x > 2. It does satisfy $f''(x) \ge 0$ for some x > 0 (e.g., for $x \in (0,2]$).