"Теория игр на временных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко

Постановк задания

Барро-Гордона

Профсоюзмонополист

Коне чны і этап

"Теория игр на временных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановка задания

"Теория игр на временных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановко задания

Барро-Гордона

Профсоюзмонополист

Коне чны і эт ап Разобрать модель правительство-общественость Либиха и Штекеля. Реализовать программу эммулирующую ход игры на временных шкалах. Перенести на временные шкалы модель профсоюза-монополиста.

Постановка классической задачи

"Теория игр на временных шкалах"

Выполнил. Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

Конечный этап В игре участвуют два игрока: p - правительство, q - общественность, которые оперируют инфляцией π и индексированием заработной платы ω соответственно. Каждый игрок выбирает из следующих стратегий: низким L и высоким H уровнем повышения.

Постановка классической задачи

"Теория игр на временных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

монополист

Конечный этап В общем виде игра может быть задана в виде матрицы выигрышей

		Общественност	
		L	Н
Правительство	L	$_{a,q}$	$_{\mathrm{b,v}}$
правительство	Н	$_{\mathrm{c,x}}$	$_{ m d,z}$

где параметры a,b,c,d,q,v,x,z - выигрыши удовлетворяющие следующим ограничениям

$$c > a = 0 > d > b, c = -d = -\frac{b}{2}, q > v, q \ge z > x$$
 (1)

Игра на временных шкалах для модели Барро-Гордона

"Теория игр на временны: шкалах"

Выполнил Бондарен ко Алексей Научный руководитель: Огуленко А.П.

Постанові задания

Барро-Гордона

Профсоюзмонополист

- 🕖 игра начинается одновременным ходом
- $m{@}$ заранее известно незименное количество ходов $r^{m{g}} \in \mathbb{N}$ и $r^{m{p}} \in \mathbb{N}$
- игроки рациональны, обладают равноценными знаниями и полной информацией о структуре игры, матрице выигрышей и всех предыдущих ходах

Игра на временных шкалах для модели Барро-Гордона

"Теория игр на временных шкалах"

Выполнил. Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постанові задания **Барро**-

Гордона Професси

монополи

Конечный man Определяется три временных шкалы: правительства, общественности и самой игры:

$$T_g = \{0, r^g, 2r^g, ..., T\}, T_p = \{0, r^p, 2r^p, ..., T\}, T = T_g \cup T_p$$
(2)

Ассинхронная игра на временных шкалах будет как правило иметь несколько равновесий по Нэшу, среди которых мы выберем лучшую в зависимости от под-игры

Определение

Любое совершенное равновесие по под-играм (SPNE), в котором оба игрока выбирают Парето-оптимальную стратегию во всех своих ходах, назовём совершенным равновесием Рамсея по под-играм (Ramsey SPNE)

Постановк задания

Барро-Гордона

Профсоюзмонополист

Конечный этап

Теорема

Рассмотрим общую несогласованную по времени игру на однородных временных шкалах, для которой выполняются (1) и (2). Тогда все SPNE игры будут SPNE Рамси, если и только если

$$r^{ar{g}} > ar{r^{ar{g}}}(R) = \left\{ egin{align*} rac{c-d}{a-d} r^{
ho} = rac{a-b}{a-d} r^{
ho}, & ext{если } R = 0 \ rac{(1+R)(c-d)}{a-d} r^{
ho} = rac{a-b+R(c-d)}{a-d} r^{
ho}, & ext{если } R \in (0;ar{R}) \ rac{c-d-(1-R)(a-b)}{a-d} r^{
ho} = rac{(a-b)}{a-d} R r^{
ho}, & ext{если } R \in (ar{R};1) \ rac{(3-b)}{a-d} R r^{
ho}, & ext{если } R \in (ar{R};1) \ rac{(3-b)}{a-d} R r^{
ho}, & ext{если } R \in (ar{R};1) \ \end{pmatrix}$$

где $ar{R} = rac{q-v}{z-x+q-v}$. В несогласованной игре (3) преобразуется в

$$\frac{r^{g}}{r^{p}} \in \left(\frac{3}{2}, 2\right) \cup \left(\frac{5}{2}, \infty\right) \tag{4}$$

"Теория игр на временных шкалах"

Выполнил Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

Конечный этап

		Общественност	
		L	Н
Правительство	L	0, 0	-1,-1
правительство	Н	$\frac{1}{2}$,-1	$-\frac{1}{2}$, 0

Введем соответствующие теореме $r^g=7$ и $r^p=4$ Рассмотрим случай, когда правительство скорее склонно ввести высокий уровень инфляции, а общественность предполагая, что правительство пойдет на этот шаг с высокой долей вероятности поднимет зарплаты.

"Теория игр на временных шкалах"

Выполнил Бондаренко Алексей Научный руководитель: Огиленко

Постанові задания

Барро-Гордона

Профсоюзмонополист

$$q^g = [0.5; 0.9; 0.7; 0.5; 0.9; 0.73; 0.8],$$

 $q^p = [0.8; 0.9; 0.8; 1].$

	Правительство	Общественность
Среднее	-14.26	-9.46
Стандартное отклонение	5.34	4.66
Ассиметрия	1.1	-0.041
Эксцесс	1.37	-0.37

"Теория игр на зременных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

$$q^g = [0; 0; 0; 0; 0; 0; 0.3],$$

 $q^p = [0; 0; 0; 0].$

	Правительство	Общественность
Среднее	0.39	-0.78
Стандартное отклонение	0.78	1.56
Ассиметрия	1.6	-1.11
Эксцесс	0.58	0.58

"Теория игр на зременных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко

Постановк задания

Барро-Гордона

Профсоюзмонополист

$$q^g = [0; 0; 0; 0; 0; 0; 0.3],$$

 $q^p = [0; 0; 0; 0; 0.15].$

	Правительство	Общественность
Среднее	-0.9	-2.18
Стандартное отклонение	3	2.58
Ассиметрия	-1.16	-0.68
Эксцесс	-0.06	-0.95

"Теория игр на временных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

$$q^g = [0; 0; 0; 0; 0; 0; 0.3],$$

 $q^p = [0; 0; 0; 0.8].$

	Правительство	Общественность
Среднее	-4.8	-4.62
Стандартное отклонение	2.99	2.65
Ассиметрия	1.18	0.54
Эксцесс	-0.12	-1.15

Постановка классической задачи

"Теория игр на временных шкалах"

Выполнил Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

Конечныі этап Данная модель является моделью отношений профсоюз-фирма, в которой профсоюз задаёт уровень заработной платы W, а фирма выбирает желаемое количество наёмных работников E (уровень найма).

Постановка классической задачи

"Теория игр на временных шкалах"

Выполнил. Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополисп

Конечный этап Функция полезности профсоюза имеет вид

$$U = U(W, E), \quad \frac{\partial U}{\partial W} > 0; \quad \frac{\partial U}{\partial E} > 0.$$

Например $U=\lambda WE$, где $\lambda\in(0;1)$ Полезность для фирмы измеряется как прибыль

$$\Pi = PY(\bar{K}, E) - WE,$$

где цена P дана, а капитал $ar{K}$ фиксирован. Отсюда мы можем переписать

$$\Pi(W,E) = R(E) - WE,$$

где R – доход.

Решение классической задачи

"Теория игр на временных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания Едико

Гордона Профсоюз-

профсоюзмонополист

Конечный oman Фирма максимизирует свою прибыль по E при заданном уровне заработной платы. Условие первого порядка примет вид

$$W = R'(E) = MPE$$
.

Разрешая относительно E получим кривую спроса:

$$E = g(W)$$

Решается

$$\max_{W} U(W, E) = U(W, g(W)).$$

Решение классической задачи

"Теория игр на временных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания Барро-

Гордона Профсоюз-

монополист

Конечный этап

 $\mathsf{T}\mathsf{o}\mathsf{ч}\mathsf{k}\mathsf{a}\;X$ — $\mathsf{т}\mathsf{o}\mathsf{ч}\mathsf{k}\mathsf{a}$ равновесия.

AB — кривая контракта, состоящая из точек, в которых изопрофиты и кривые безразличия профсоюза имеют общий тангенс

Детерменированная модель

"Теория игр на временных шкалах"

Выполнил Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановко задания Барро-

Барро-Гордона

Профсоюзмонополист

Конечный этап В игре, как и в непрерывной модели присутсвует два игрока: профсоюз P и фирма F, чьими рычагами влияния на игру являются W - зарплата рабочего и E - количество нанятых рабочих соответственно. Каждый игрок выбирает из следующих стратегий: низким L и высоким H уровнем повышения.

		Про	фсоюз
		L	H
Фирма	L	a,q	b,v
Фирма	H	c,x	d,z

Детерменированная модель

"Теория игр на временных шкалах"

Выполнил. Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

Конечный этап Функция полезности профсоюза $U(W,E)=\lambda WE$, где $\lambda\in(0;1)$:

$$\frac{\partial U}{\partial W} > 0;$$
 $\frac{\partial U}{\partial E} > 0;$ $\frac{\partial^2 U}{\partial W^2} \le 0$

$$U(0, E) = U(W, 0) = U(0, 0) = 0.$$

Функция полезности фирмы $\Pi(W,E)=cP(ar{K},E)-WE$:

$$P(\bar{K},E)=A\bar{K}^{\alpha}E^{\beta},$$

где A — коэффициент нейтрального технического прогресса, α и β — коэффициенты эластичности валового внутреннего продукта по капитальным и трудовым затратам.

Решение модели

"Теория игр на зременных шкалах"

Выполнил:
Бондаренко
Алексей
Научный
руководитель:
Огуленко
А.П.

Постановк

Барро-Гордона

Профсоюзмонополист

$$U(L,L) < U(L,H) \nsim U(H,L) < U(H,H)$$

$$\Pi(H,H) < \Pi(H,L) < \Pi(L,L) < \Pi(L,H)$$

"Теория игр на временных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

Конечный этап Пусть матрица выигрышей имеет следующий вид:

		Профсоюз	
		L	Н
Фирма	L	3, 1	2, 3.9
Фирма	Н	7, 4	-3, 7

Равновесием по Нэшу будет стратегия L,H Далее полагаем $r^f=4$ (количество ходов фирмы за одну игру), $r^p=3$ (количество ходов профсоюза).

"Теория игр на зременных шкалах"

Выполнил:
Бондаренко
Алексей
Научный
руководитель:
Огуленко
А П

Постановко задания

Барро-Гордона

Профсоюзмонополист

$$q^f = [0.9; 0.9; 0.9; 0.9],$$

 $q^p = [0.1; 0.1; 0.1].$

	Фирма	Профсоюз
Среднее	69.02	47.84
Стандартное отклонение	18.1	8.19
Ассиметрия	-1.04	0.017
Эксцесс	0.25	0.69

"Теория игр на зременных шкалах"

Выполнил:
Бондаренко
Алексей
Научный
руководитель:
Огуленко
А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

$$q^f = [0.9; 0.9; 0.9; 0.1],$$

 $q^p = [0.1; 0.1; 0.9].$

	Фирма	Профеоюз
Среднее	50.48	51.1
Стандартное отклонение	17.18	7.17
Ассиметрия	-2.02	0.57
Эксцесс	5.21	1.44

"Теория игр на зременных шкалах"

Выполнил: Бондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

$$q^f = [0.9; 0.9; 0.1; 0.9],$$

 $q^p = [0.1; 0.9; 0.1].$

	Фирма	Профсоюз
Среднее	43.06	50.64
Стандартное отклонение	14.47	7.38
Ассиметрия	-1.06	-0.29
Эксцесс	1.30	0.09

"Теория игр на зременных шкалах"

Выполнил:
Бондаренко
Алексей
Научный
руководитель:
Огуленко
А.П.

Постановк задания

Гордона

Профсоюзмонополист

$$q^f = [0.9; 0.9; 0.1; 0.2],$$

 $q^p = [0.1; 0.9; 0.8].$

	Фирма	Профсоюз
Среднее	30.37	51.37
Стандартное отклонение	13.64	8.99
Ассиметрия	-1.36	-0.53
Эксцесс	2.74	0.8

"Теория игр на временных шкалах"

Выполнил Вондаренко Алексей Научный руководитель: Огуленко А.П.

Постановк задания

Барро-Гордона

Профсоюзмонополист

Конечный этап Фирма снова теряет в относительных деньгах, в то время как профсоюз только незначительно увеличивает своё положение. Разумно с точки зрения фирмы сделать предложение профсоюзу не менять уровень зарплат с оптимального, а взамен отплачивать разным видом бонусов.

Конечный этап

"Теория игр на зременных шкалах"

Бондаренко Алексей Научный руководитель: Огуленко

Постановка задания

Барро-Гордона

Профсоюзмонополист

Конечный этап Спасибо за внимание!