Package 'numbat'

June 17, 2023

Title Haplotype-Aware CNV Analysis from scRNA-Seq

URL https://github.com/kharchenkolab/numbat/,
 https://kharchenkolab.github.io/numbat/

Version 1.3.2-1

Description A computational method that infers copy number variations (CNVs) in cancer scRNA-seq data and reconstructs the tumor phylogeny. 'numbat' integrates signals from gene expression, allelic ratio, and population haplotype structures to accurately infer allelespecific CNVs in single cells and reconstruct their lineage relationship. 'numbat' can be used to: 1. detect allele-specific copy number variations from single-cells; 2. differentiate tumor versus normal cells in the tumor microenvironment; 3. infer the clonal architecture and evolutionary history of profiled tumors. 'numbat' does not require tumor/normal-paired DNA or genotype data, but operates solely on the donor scRNA-data data (for example, 10x Cell Ranger output). Additional examples and documentations are available at https://kharchenkolab.github.io/numbat/. For details on the method please see Gao et al. Nature Biotechnology (2022) doi:10.1038/s41587-022-01468-y>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 4.1.0), Matrix

biocViews

Imports ape, caTools, data.table, dendextend, dplyr, GenomicRanges, ggplot2, ggraph, ggtree, glue, igraph, IRanges, logger, magrittr, methods, optparse, parallel, parallelDist, patchwork, pryr, purrr, Rcpp, RhpcBLASctl, R.utils, scales, scistreer (>= 1.1.0), stats4, stringr, tibble, tidygraph, tidyr, vcfR, zoo

Suggests ggrastr, ggrepel, knitr, matrixStats, testthat (>= 3.0.0),

Config/testthat/edition 3

LinkingTo Rcpp, RcppArmadillo, roptim

NeedsCompilation yes

SystemRequirements GNU make

Author Teng Gao [cre, aut],								
Ruslan Soldatov [aut],								
Hirak Sarkar [aut],								
Evan Biederstedt [aut],								
Peter Kharchenko [aut]								
Maintainer Teng Gao <tgao@g.harvard.edu></tgao@g.harvard.edu>								
RoxygenNote 7.2.3								
Repository CRAN								
Data/Publication 2023 06 17 18:50:02 LITC								

R topics documented:

acen_hg19																			3
acen_hg38																			3
aggregate_counts .											 								4
analyze_bulk																			4
annotate_genes																			6
annot_ref																			6
bulk_example											 								7
chrom_sizes_hg19																			7
chrom_sizes_hg38											 								7
cnv_heatmap																			8
count_mat_example											 								8
count_mat_ref																			9
detect_clonal_loh .											 								9
df_allele_example.											 								10
gaps_hg19											 								10
gaps_hg38											 								10
get_bulk																			11
get_gtree											 								
gexp_roll_example																			12
gtf_hg19											 								13
gtf_hg38																			13
gtf_mm10											 								13
hc_example											 								14
joint_post_example											 								14
mut_graph_example											 								14
Numbat											 								15
phylogeny_example											 								17
plot_bulks											 								18
plot_consensus											 								18
plot_exp_roll																			19
plot_mut_history .											 								20
plot_phylo_heatmap											 								21
plot_psbulk											 								23
plot sc tree																			24

acen	_hg19 centromere regions	hg19)	
Index		3	30
	vcf_meta		29
	= = =		
	pre_likelihood_hmm		25

Description

centromere regions (hg19)

Usage

acen_hg19

Format

An object of class tbl_df (inherits from tbl, data.frame) with 22 rows and 3 columns.

acen_hg38 centromere regions (hg38)

Description

centromere regions (hg38)

Usage

acen_hg38

Format

An object of class tbl_df (inherits from tbl, data.frame) with 22 rows and 3 columns.

4 analyze_bulk

aggregate_counts

Utility function to make reference gene expression profiles

Description

Utility function to make reference gene expression profiles

Usage

```
aggregate_counts(count_mat, annot, normalized = TRUE, verbose = TRUE)
```

Arguments

count_mat matrix/dgCMatrix Gene expression counts

annot dataframe Cell annotation with columns "cell" and "group" normalized logical Whether to return normalized expression values

verbose logical Verbosity

Value

matrix Reference gene expression levels

Examples

```
ref_custom = aggregate_counts(count_mat_ref, annot_ref, verbose = FALSE)
```

analyze_bulk

Call CNVs in a pseudobulk profile using the Numbat joint HMM

Description

Call CNVs in a pseudobulk profile using the Numbat joint HMM

Usage

```
analyze_bulk(
  bulk,
  t = 1e-05,
  gamma = 20,
  theta_min = 0.08,
  logphi_min = 0.25,
  nu = 1,
  min_genes = 10,
  exp_only = FALSE,
  allele_only = FALSE,
```

analyze_bulk 5

```
bal_cnv = TRUE,
  retest = TRUE,
  find_diploid = TRUE,
  diploid_chroms = NULL,
  classify_allele = FALSE,
  run_hmm = TRUE,
  prior = NULL,
  exclude_neu = TRUE,
  phasing = TRUE,
  verbose = TRUE
)
```

Arguments

bulk dataframe Pesudobulk profilet numeric Transition probability

gamma numeric Dispersion parameter for the Beta-Binomial allele model

theta_min numeric Minimum imbalance threshold

logphi_min numeric Minimum log expression deviation threshold

nu numeric Phase switch rate

min_genes integer Minimum number of genes to call an event exp_only logical Whether to run expression-only HMM

allele_only logical Whether to run allele-only HMM

bal_cnv logical Whether to call balanced amplifications/deletions
retest logical Whether to retest CNVs after Viterbi decoding
find_diploid logical Whether to run diploid region identification routine

diploid_chroms character vector User-given chromosomes that are known to be in diploid state

classify_allele

logical Whether to only classify allele (internal use only)

run_hmm logical Whether to run HMM (internal use only)

prior numeric vector Prior probabilities of states (internal use only)

exclude_neu logical Whether to exclude neutral segments from retesting (internal use only)

phasing logical Whether to use phasing information (internal use only)

verbose logical Verbosity

Value

a pseudobulk profile dataframe with called CNV information

```
bulk_analyzed = analyze_bulk(bulk_example, t = 1e-5, find_diploid = FALSE, retest = FALSE)
```

6 annot_ref

annotate_genes

Annotate genes on allele dataframe

Description

Annotate genes on allele dataframe

Usage

```
annotate_genes(df, gtf)
```

Arguments

df dataframe Allele count dataframe

gtf dataframe Gene gtf

Value

dataframe Allele dataframe with gene column

 ${\tt annot_ref}$

example reference cell annotation

Description

example reference cell annotation

Usage

annot_ref

Format

An object of class data. frame with 50 rows and 2 columns.

bulk_example 7

bulk_example

example pseudobulk dataframe

Description

example pseudobulk dataframe

Usage

bulk_example

Format

An object of class tbl_df (inherits from tbl, data.frame) with 3935 rows and 83 columns.

chrom_sizes_hg19

chromosome sizes (hg19)

Description

chromosome sizes (hg19)

Usage

chrom_sizes_hg19

Format

An object of class data.table (inherits from data.frame) with 22 rows and 2 columns.

chrom_sizes_hg38

chromosome sizes (hg38)

Description

chromosome sizes (hg38)

Usage

chrom_sizes_hg38

Format

An object of class data. table (inherits from data. frame) with 22 rows and 2 columns.

8 count_mat_example

cnv_heatmap

Plot CNV heatmap

Description

Plot CNV heatmap

Usage

```
cnv_heatmap(
   segs,
   var = "group",
   label_group = TRUE,
   legend = TRUE,
   exclude_gap = TRUE,
   genome = "hg38"
)
```

Arguments

segs dataframe Segments to plot. Need columns "seg_start", "seg_end", "cnv_state"

var character Column to facet by label_group logical Label the groups legend logical Display the legend

exclude_gap logical Whether to mark gap regions

genome character Genome build, either 'hg38' or 'hg19'

Value

ggplot Heatmap of CNVs along the genome

Examples

```
p = cnv_heatmap(segs_example)
```

count_mat_example

example gene expression count matrix

Description

example gene expression count matrix

Usage

```
count_mat_example
```

count_mat_ref 9

Format

An object of class dgCMatrix with 1024 rows and 173 columns.

count_mat_ref

example reference count matrix

Description

example reference count matrix

Usage

```
count_mat_ref
```

Format

An object of class dgCMatrix with 1000 rows and 50 columns.

detect_clonal_loh

Call clonal LOH using SNP density. Recommended for cell lines or tumor samples with no normal cells.

Description

Call clonal LOH using SNP density. Rcommended for cell lines or tumor samples with no normal cells.

Usage

```
detect_clonal_loh(bulk, t = 1e-05, snp_rate_loh = 5, min_depth = 0)
```

Arguments

bulk dataframe Pseudobulk profile t numeric Transition probability

min_depth integer Minimum coverage to filter SNPs

Value

dataframe LOH segments

```
segs_loh = detect_clonal_loh(bulk_example)
```

10 gaps_hg38

df_allele_example

example allele count dataframe

Description

example allele count dataframe

Usage

```
df_allele_example
```

Format

An object of class data. frame with 41167 rows and 11 columns.

gaps_hg19

genome gap regions (hg19)

Description

```
genome gap regions (hg19)
```

Usage

gaps_hg19

Format

An object of class data.table (inherits from data.frame) with 28 rows and 3 columns.

gaps_hg38

genome gap regions (hg38)

Description

```
genome gap regions (hg38)
```

Usage

gaps_hg38

Format

An object of class data. table (inherits from data. frame) with 30 rows and 3 columns.

get_bulk 11

get_bulk	Aggregate single-cell data into combined bulk expression and allele profile
----------	---

Description

Aggregate single-cell data into combined bulk expression and allele profile

Usage

```
get_bulk(
  count_mat,
  lambdas_ref,
  df_allele,
  gtf,
  subset = NULL,
  min_depth = 0,
  nu = 1,
  segs_loh = NULL,
  verbose = TRUE
)
```

Arguments

count_mat	dgCMatrix Gene expression counts
lambdas_ref	matrix Reference expression profiles
df_allele	dataframe Single-cell allele counts
gtf	dataframe Transcript gtf
subset	vector Subset of cells to aggregate
min_depth	integer Minimum coverage to filter SNPs
nu	numeric Phase switch rate
segs_loh	dataframe Segments with clonal LOH to be excluded
verbose	logical Verbosity

Value

dataframe Pseudobulk gene expression and allele profile

```
bulk_example = get_bulk(
    count_mat = count_mat_example,
    lambdas_ref = ref_hca,
    df_allele = df_allele_example,
    gtf = gtf_hg38)
```

12 gexp_roll_example

get	gtree
500_	<u>. 5</u> Ci CC

Get a tidygraph tree with simplified mutational history.

Description

Specify either max_cost or n_cut. max_cost works similarly as h and n_cut works similarly as k in stats::cutree. The top-level normal diploid clone is always included.

Usage

```
get_gtree(tree, P, n_cut = 0, max_cost = 0)
```

Arguments

tree phylo Single-cell phylogenetic tree

P matrix Genotype probability matrix

n_cut integer Number of cuts on the phylogeny to define subclonesmax_cost numeric Likelihood threshold to collapse internal branches

Value

tbl_graph Phylogeny annotated with branch lengths and mutation events

gexp_roll_example

example smoothed gene expression dataframe

Description

example smoothed gene expression dataframe

Usage

```
gexp_roll_example
```

Format

An object of class data. frame with 10 rows and 2000 columns.

gtf_hg19

gtf_hg19

gene model (hg19)

Description

```
gene model (hg19)
```

Usage

gtf_hg19

Format

An object of class data.table (inherits from data.frame) with 26841 rows and 5 columns.

gtf_hg38

gene model (hg38)

Description

gene model (hg38)

Usage

gtf_hg38

Format

An object of class data.table (inherits from data.frame) with 26807 rows and 5 columns.

gtf_mm10

gene model (mm10)

Description

gene model (mm10)

Usage

 ${\tt gtf_mm10}$

Format

An object of class data.table (inherits from data.frame) with 30336 rows and 5 columns.

14 mut_graph_example

hc_example

example hclust tree

Description

example hclust tree

Usage

hc_example

Format

An object of class helust of length 7.

joint_post_example

example joint single-cell cnv posterior dataframe

Description

example joint single-cell cnv posterior dataframe

Usage

```
joint_post_example
```

Format

An object of class data.table (inherits from data.frame) with 3806 rows and 71 columns.

mut_graph_example

example mutation graph

Description

example mutation graph

Usage

```
mut_graph_example
```

Format

An object of class igraph of length 5.

Numbat 15

Numbat

Numbat R6 class

Description

Used to allow users to plot results

Value

```
a new 'Numbat' object
```

Public fields

```
label character Sample name
gtf dataframe Transcript annotation
joint_post dataframe Joint posterior
exp_post dataframe Expression posterior
allele_post dataframe Allele posetrior
bulk_subtrees dataframe Bulk profiles of lineage subtrees
bulk_clones dataframe Bulk profiles of clones
segs_consensus dataframe Consensus segments
tree_post list Tree posterior
mut_graph igraph Mutation history graph
gtree tbl_graph Single-cell phylogeny
clone_post dataframe Clone posteriors
gexp_roll_wide matrix Smoothed expression of single cells
P matrix Genotype probability matrix
treeML matrix Maximum likelihood tree as phylo object
hc hclust Initial hierarchical clustering
```

Methods

Public methods:

- Numbat\$new()
- Numbat\$plot_phylo_heatmap()
- Numbat\$plot_exp_roll()
- Numbat\$plot_mut_history()
- Numbat\$plot_sc_tree()
- Numbat\$plot_consensus()
- Numbat\$plot_clone_profile()
- Numbat\$cutree()

16 Numbat

Numbat\$clone()

```
Method new(): initialize Numbat class
 Usage:
 Numbat$new(out_dir, i = 2, gtf = gtf_hg38, verbose = TRUE)
 Arguments:
 out_dir character string Output directory
 i integer Get results from which iteration (default=2)
 gtf dataframe Transcript gtf (default=gtf_hg38)
 verbose logical Whether to output verbose results (default=TRUE)
 Returns: a new 'Numbat' object
Method plot_phylo_heatmap(): Plot the single-cell CNV calls in a heatmap and the corre-
sponding phylogeny
 Usage:
 Numbat$plot_phylo_heatmap(...)
 Arguments:
 ... additional parameters passed to plot_phylo_heatmap()
Method plot_exp_roll(): Plot window-smoothed expression profiles
 Usage:
 Numbat$plot_exp_roll(k = 3, n_sample = 300, ...)
 Arguments:
 k integer Number of clusters
 n_sample integer Number of cells to subsample
 ... additional parameters passed to plot_exp_roll()
Method plot_mut_history(): Plot the mutation history of the tumor
 Usage:
 Numbat$plot_mut_history(...)
 Arguments:
 ... additional parameters passed to plot_mut_history()
Method plot_sc_tree(): Plot the single cell phylogeny
 Usage:
 Numbat$plot_sc_tree(...)
 Arguments:
 ... additional parameters passed to plot_sc_tree()
Method plot_consensus(): Plot consensus segments
 Usage:
 Numbat$plot_consensus(...)
```

phylogeny_example 17

```
Arguments:
 ... additional parameters passed to plot_sc_tree()
Method plot_clone_profile(): Plot clone cnv profiles
 Usage:
 Numbat$plot_clone_profile(...)
 Arguments:
 ... additional parameters passed to plot_clone_profile()
Method cutree(): Re-define subclones on the phylogeny.
 Usage:
 Numbat$cutree(max_cost = 0, n_cut = 0)
 Arguments:
 max_cost numeric Likelihood threshold to collapse internal branches
 n_cut integer Number of cuts on the phylogeny to define subclones
Method clone(): The objects of this class are cloneable with this method.
 Usage:
 Numbat$clone(deep = FALSE)
 Arguments:
 deep Whether to make a deep clone.
```

phylogeny_example

example single-cell phylogeny

Description

example single-cell phylogeny

Usage

phylogeny_example

Format

An object of class tbl_graph (inherits from igraph) of length 345.

plot_consensus

plot_bulks

Plot a group of pseudobulk HMM profiles

Description

Plot a group of pseudobulk HMM profiles

Usage

```
plot_bulks(bulks, ..., ncol = 1, title = TRUE, title_size = 8)
```

Arguments

bulks dataframe Pseudobulk profiles annotated with "sample" column

. . . additional parameters passed to plot_psbulk()

ncol integer Number of columns

title logical Whether to add titles to individual plots

title_size numeric Size of titles

Value

a ggplot object

Examples

```
p = plot_bulks(bulk_example)
```

plot_consensus

Plot consensus CNVs

Description

Plot consensus CNVs

Usage

```
plot_consensus(segs)
```

Arguments

segs

dataframe Consensus segments

Value

ggplot object

plot_exp_roll 19

Examples

```
p = plot_consensus(segs_example)
```

plot_exp_roll

Plot single-cell smoothed expression magnitude heatmap

Description

Plot single-cell smoothed expression magnitude heatmap

Usage

```
plot_exp_roll(
   gexp_roll_wide,
   hc,
   k,
   gtf,
   lim = 0.8,
   n_sample = 300,
   reverse = TRUE,
   plot_tree = TRUE)
```

Arguments

${\tt gexp_roll_wide}$	matrix Cell x gene smoothed expression magnitudes
hc	hclust Hierarchical clustring result
k	integer Number of clusters
gtf	dataframe Transcript GTF
lim	numeric Limit for expression magnitudes
n_sample	integer Number of cells to subsample
reverse	logical Whether to reverse the cell order
plot_tree	logical Whether to plot the dendrogram

Value

ggplot A single-cell heatmap of window-smoothed expression CNV signals

```
p = plot_exp_roll(gexp_roll_example, gtf = gtf_hg38, hc = hc_example, k = 3)
```

20 plot_mut_history

plot_mut_history

Plot mutational history

Description

Plot mutational history

Usage

```
plot_mut_history(
   G,
   clone_post = NULL,
   edge_label_size = 4,
   node_label_size = 6,
   node_size = 10,
   arrow_size = 2,
   show_clone_size = TRUE,
   show_distance = TRUE,
   legend = TRUE,
   edge_label = TRUE,
   node_label = TRUE,
   horizontal = TRUE,
   pal = NULL
)
```

Arguments

```
G
                 igraph Mutation history graph
clone_post
                 dataframe Clone assignment posteriors
edge_label_size
                 numeric Size of edge label
node_label_size
                 numeric Size of node label
                 numeric Size of nodes
node_size
arrow_size
                 numeric Size of arrows
show_clone_size
                 logical Whether to show clone size
show_distance
                 logical Whether to show evolutionary distance between clones
legend
                 logical Whether to show legend
edge_label
                 logical Whether to label edges
node_label
                 logical Whether to label nodes
                 logical Whether to use horizontal layout
horizontal
                 named vector Node colors
pal
```

plot_phylo_heatmap 21

Value

ggplot object

Examples

```
p = plot_mut_history(mut_graph_example)
```

plot_phylo_heatmap

Plot single-cell CNV calls along with the clonal phylogeny

Description

Plot single-cell CNV calls along with the clonal phylogeny

Usage

```
plot_phylo_heatmap(
  gtree,
  joint_post,
  segs_consensus,
  clone_post = NULL,
  p_{min} = 0.9,
  annot = NULL,
  pal_annot = NULL,
  annot_title = "Annotation",
  annot_scale = NULL,
  clone_dict = NULL,
  clone_bar = TRUE,
  clone_stack = TRUE,
  pal_clone = NULL,
  clone_title = "Genotype",
  clone_legend = TRUE,
  line_width = 0.1,
  tree_height = 1,
  branch_width = 0.2,
  tip_length = 0.2,
  annot_bar_width = 0.25,
  clone_bar_width = 0.25,
  bar_label_size = 7,
  tvn_line = TRUE,
  clone_line = FALSE,
  exclude_gap = FALSE,
  root_edge = TRUE,
  raster = FALSE,
  show_phylo = TRUE
)
```

22 plot_phylo_heatmap

Arguments

gtree tbl_graph The single-cell phylogeny dataframe Joint single cell CNV posteriors joint_post segs_consensus dataframe Consensus segment dataframe dataframe Clone assignment posteriors clone_post numeric Probability threshold to display CNV calls p_min annot dataframe Cell annotations, dataframe with 'cell' and additional annotation columns pal_annot named vector Colors for cell annotations annot_title character Legend title for the annotation bar annot_scale ggplot scale Color scale for the annotation bar clone_dict named vector Clone annotations, mapping from cell name to clones clone_bar logical Whether to display clone bar plot clone_stack character Whether to plot clone assignment probabilities as stacked bar pal_clone named vector Clone colors clone_title character Legend title for the clone bar clone_legend logical Whether to display the clone legend line_width numeric Line width for CNV heatmap tree_height numeric Relative height of the phylogeny plot branch_width numeric Line width in the phylogeny tip_length numeric Length of tips in the phylogeny annot_bar_width numeric Width of annotation bar clone_bar_width numeric Width of clone genotype bar bar_label_size numeric Size of sidebar text labels tvn_line logical Whether to draw line separating tumor and normal cells clone_line logical Whether to display borders for clones in the heatmap exclude_gap logical Whether to mark gap regions root_edge logical Whether to plot root edge raster logical Whether to raster images

logical Whether to display phylogeny on y axis

Value

ggplot panel

show_phylo

```
p = plot_phylo_heatmap(
   gtree = phylogeny_example,
   joint_post = joint_post_example,
   segs_consensus = segs_example)
```

plot_psbulk 23

plot_psbulk

Plot a pseudobulk HMM profile

Description

Plot a pseudobulk HMM profile

Usage

```
plot_psbulk(
  bulk,
  use_pos = TRUE,
  allele_only = FALSE,
 min_{LLR} = 5,
 min_depth = 8,
  exp_limit = 2,
  phi_mle = TRUE,
  theta_roll = FALSE,
  dot_size = 0.8,
  dot_alpha = 0.5,
  legend = TRUE,
  exclude_gap = TRUE,
  genome = "hg38",
  text_size = 10,
  raster = FALSE
)
```

Arguments

bulk	dataframe Pseudobulk profile
use_pos	logical Use marker position instead of index as x coordinate
allele_only	logical Only plot alleles
min_LLR	numeric LLR threshold for event filtering
min_depth	numeric Minimum coverage depth for a SNP to be plotted
exp_limit	numeric Expression logFC axis limit
phi_mle	logical Whether to plot estimates of segmental expression fold change
theta_roll	logical Whether to plot rolling estimates of allele imbalance
dot_size	numeric Size of marker dots
dot_alpha	numeric Transparency of the marker dots
legend	logical Whether to show legend
exclude_gap	logical Whether to mark gap regions and centromeres
genome	character Genome build, either 'hg38' or 'hg19'
text_size	numeric Size of text in the plot
raster	logical Whether to raster images

plot_sc_tree

Value

ggplot Plot of pseudobulk HMM profile

Examples

```
p = plot_psbulk(bulk_example)
```

plot_sc_tree

Plot single-cell smoothed expression magnitude heatmap

Description

Plot single-cell smoothed expression magnitude heatmap

Usage

```
plot_sc_tree(
   gtree,
   label_mut = TRUE,
   label_size = 3,
   dot_size = 2,
   branch_width = 0.5,
   tip = TRUE,
   tip_length = 0.5,
   pal_clone = NULL
)
```

Arguments

tbl_graph The single-cell phylogeny gtree logical Whether to label mutations label_mut label_size numeric Size of mutation labels dot_size numeric Size of mutation nodes branch_width numeric Width of branches in tree logical Whether to plot tip point tip tip_length numeric Length of the tips pal_clone named vector Clone colors

Value

ggplot A single-cell phylogeny with mutation history labeled

```
p = plot_sc_tree(phylogeny_example)
```

pre_likelihood_hmm 25

pre_likelihood_hmm

HMM object for unit tests

Description

HMM object for unit tests

Usage

pre_likelihood_hmm

Format

An object of class list of length 10.

ref_hca

reference expression magnitudes from HCA

Description

reference expression magnitudes from HCA

Usage

ref_hca

Format

An object of class matrix (inherits from array) with 24756 rows and 12 columns.

ref_hca_counts

reference expression counts from HCA

Description

reference expression counts from HCA

Usage

ref_hca_counts

Format

An object of class matrix (inherits from array) with 24857 rows and 12 columns.

run_numbat

run_numbat

Run workflow to decompose tumor subclones

Description

Run workflow to decompose tumor subclones

Usage

```
run_numbat(
  count_mat,
  lambdas_ref,
 df_allele,
 genome = "hg38",
 out_dir = tempdir(),
 max_iter = 2,
 max_nni = 100,
  t = 1e-05,
  gamma = 20,
 min_{LLR} = 5,
 alpha = 1e-04,
  eps = 1e-05,
 max_entropy = 0.5,
  init_k = 3,
 min_cells = 50,
  tau = 0.3,
  nu = 1,
 max_cost = ncol(count_mat) * tau,
 n_cut = 0,
 min_depth = 0,
  common_diploid = TRUE,
 min_overlap = 0.45,
 ncores = 1,
  ncores_nni = ncores,
  random_init = FALSE,
  segs_1oh = NULL,
  call_clonal_loh = FALSE,
  verbose = TRUE,
  diploid_chroms = NULL,
  segs_consensus_fix = NULL,
  use_loh = NULL,
 min\_genes = 10,
  skip_nj = FALSE,
 multi_allelic = TRUE,
 p_{multi} = 1 - alpha,
  plot = TRUE,
  check_convergence = FALSE,
```

run_numbat 27

```
exclude_neu = TRUE
)
```

Arguments

count_mat dgCMatrix Raw count matrices where rownames are genes and column names

are cells

lambdas_ref matrix Either a named vector with gene names as names and normalized expres-

sion as values, or a matrix where rownames are genes and columns are pseudob-

ulk names

df_allele dataframe Allele counts per cell, produced by preprocess_allele

genome character Genome version (hg38, hg19, or mm10)

out_dir string Output directory

max_iter integer Maximum number of iterations to run the phyologeny optimization

max_nni integer Maximum number of iterations to run NNI in the ML phylogeny infer-

ence

t numeric Transition probability

gamma numeric Dispersion parameter for the Beta-Binomial allele model

min_LLR numeric Minimum LLR to filter CNVs
alpha numeric P value cutoff for diploid finding

eps numeric Convergence threshold for ML tree search

max_entropy numeric Entropy threshold to filter CNVs

init_k integer Number of clusters in the initial clustering min_cells integer Minimum number of cells to run HMM on

tau numeric Factor to determine max_cost as a function of the number of cells (0-1)

nu numeric Phase switch rate

max_cost numeric Likelihood threshold to collapse internal branches n_cut integer Number of cuts on the phylogeny to define subclones

min_depth integer Minimum allele depth

common_diploid logical Whether to find common diploid regions in a group of peusdobulks

min_overlap numeric Minimum CNV overlap threshold

ncores integer Number of threads to use

ncores_nni integer Number of threads to use for NNI

random_init logical Whether to initiate phylogney using a random tree (internal use only)

segs_loh dataframe Segments of clonal LOH to be excluded

call_clonal_loh

logical Whether to call segments with clonal LOH

verbose logical Verbosity

diploid_chroms vector Known diploid chromosomes

28 upgma

segs_consensus_fix

dataframe Pre-determined segmentation of consensus CNVs

use_loh logical Whether to include LOH regions in the expression baseline

min_genes integer Minimum number of genes to call a segment

skip_nj logical Whether to skip NJ tree construction and only use UPGMA

multi_allelic logical Whether to call multi-allelic CNVs

p_multi numeric P value cutoff for calling multi-allelic CNVs

plot logical Whether to plot results

check_convergence

logical Whether to terminate iterations based on consensus CNV convergence

exclude_neu logical Whether to exclude neutral segments from CNV retesting (internal use

only)

Value

a status code

segs_example

example CNV segments dataframe

Description

example CNV segments dataframe

Usage

segs_example

Format

An object of class data.table (inherits from data.frame) with 27 rows and 30 columns.

upgma

UPGMA and WPGMA clustering

Description

UPGMA and WPGMA clustering

Usage

```
upgma(D, method = "average", ...)
```

vcf_meta 29

Arguments

D A distance matrix.

method The agglomeration method to be used. This should be (an unambiguous abbrevi-

ation of) one of "ward", "single", "complete", "average", "mcquitty", "median"

or "centroid". The default is "average".

... Further arguments passed to or from other methods.

vcf_meta example VCF header

Description

example VCF header

Usage

vcf_meta

Format

An object of class character of length 65.

Index

* datasets acen_hg19, 3	detect_clonal_loh, 9 df_allele_example, 10
acen_hg38, 3	di_aiieie_example, 10
annot_ref, 6	gaps_hg19, 10
bulk_example, 7	gaps_hg38, 10
chrom_sizes_hg19,7	get_bulk, 11
chrom_sizes_hg38,7	get_gtree, 12
count_mat_example, 8	gexp_roll_example, 12
	gtf_hg19, 13
count_mat_ref, 9	gtf_hg38, 13
df_allele_example, 10	gtf_mm10, 13
gaps_hg19, 10	g c 1 _ 1 1 1 1 0 , 1 3
gaps_hg38, 10	hc_example, 14
gexp_roll_example, 12	
gtf_hg19, 13	<pre>joint_post_example, 14</pre>
gtf_hg38, 13	
gtf_mm10, 13	<pre>mut_graph_example, 14</pre>
hc_example, 14	
<pre>joint_post_example, 14</pre>	Numbat, 15
mut_graph_example, 14	
phylogeny_example, 17	phylogeny_example, 17
pre_likelihood_hmm, 25	plot_bulks, 18
ref_hca, 25	plot_consensus, 18
ref_hca_counts, 25	plot_exp_roll, 19
segs_example, 28	plot_mut_history, 20
vcf_meta, 29	plot_phylo_heatmap, 21
1 40 2	plot_psbulk, 23
acen_hg19, 3	plot_sc_tree, 24
acen_hg38, 3	<pre>pre_likelihood_hmm, 25</pre>
aggregate_counts, 4	ref_hca, 25
analyze_bulk, 4	ref_hca_counts, 25
annot_ref, 6	
annotate_genes, 6	run_numbat, 26
bulk_example, 7	segs_example, 28
chrom_sizes_hg19,7	upgma, 28
chrom_sizes_hg38,7	vcf_meta, 29
<pre>cnv_heatmap, 8</pre>	ver_meta, 29
<pre>count_mat_example, 8</pre>	
<pre>count_mat_ref, 9</pre>	