Nielsen realization for Bridgeland stability conditions on K3 surfaces

Yu-Wei Fan (Tsinghua) Joint work with Kuan-Wen Lai (Bonn)

May 2023, Nanjing

(arXiv:2302.12663)

Let \mathcal{D} be a triangulated category (e.g. $D^b\mathrm{Coh}(X)$). Study the group of autoequivalences $\mathrm{Aut}(\mathcal{D})$.

(Why? It contains $\operatorname{Aut}(X)$, and "hidden symmetries" like spherical twists)

- Complexity: categorical entropy, categorical polynomial entropy
- Group structures?
- Spaces that it acts on, ideally: hyperbolic space, CAT(0) space, etc.
- Classifications (e.g. finite order, "reducible", "pseudo-Anosov", etc.): via entropy, or via its action on certain spaces, etc.

Let \mathcal{D} be a triangulated category (e.g. $D^b\mathrm{Coh}(X)$). Study the group of autoequivalences $\mathrm{Aut}(\mathcal{D})$.

(Why? It contains $\operatorname{Aut}(X)$, and "hidden symmetries" like spherical twists)

- Complexity: categorical entropy, categorical polynomial entropy
- Group structures?
- Spaces that it acts on, ideally: hyperbolic space, CAT(0) space, etc.
- Classifications (e.g. finite order, "reducible", "pseudo-Anosov", etc.): via entropy, or via its action on certain spaces, etc.

Let \mathcal{D} be a triangulated category (e.g. $D^b\mathrm{Coh}(X)$). Study the group of autoequivalences $\mathrm{Aut}(\mathcal{D})$.

(Why? It contains $\operatorname{Aut}(X)$, and "hidden symmetries" like spherical twists)

- Complexity: categorical entropy, categorical polynomial entropy
- Group structures?
- Spaces that it acts on, ideally: hyperbolic space, CAT(0) space, etc.
- Classifications (e.g. finite order, "reducible", "pseudo-Anosov", etc.): via entropy, or via its action on certain spaces, etc.

Let \mathcal{D} be a triangulated category (e.g. $D^b\mathrm{Coh}(X)$). Study the group of autoequivalences $\mathrm{Aut}(\mathcal{D})$.

(Why? It contains Aut(X), and "hidden symmetries" like spherical twists)

- Complexity: categorical entropy, categorical polynomial entropy
- Group structures?
- Spaces that it acts on, ideally: hyperbolic space, CAT(0) space, etc.
- Classifications (e.g. finite order, "reducible", "pseudo-Anosov", etc.): via entropy, or via its action on certain spaces, etc.

Let \mathcal{D} be a triangulated category (e.g. $D^b\mathrm{Coh}(X)$). Study the group of autoequivalences $\mathrm{Aut}(\mathcal{D})$.

(Why? It contains $\operatorname{Aut}(X)$, and "hidden symmetries" like spherical twists)

- Complexity: categorical entropy, categorical polynomial entropy
- Group structures?
- Spaces that it acts on, ideally: hyperbolic space, CAT(0) space, etc.
- Classifications (e.g. finite order, "reducible", "pseudo-Anosov", etc.): via entropy, or via its action on certain spaces, etc.

Σ: Riemann surface

- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - ► finite order
 - reducible
 - pseudo-Anosov

For instance -

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - elliptic (finite order)
 - parabolic (Dehn twist)
 - ▶ hyperbolic (two transverse foliations: stretch one by $\lambda > 1$, compress the other by $1/\lambda$)

- Σ: Riemann surface
- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - finite ord
 - reducible
 - pseudo-Anosov

For instance -

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - elliptic (finite order)
 - parabolic (Dehn twist)
 - hyperbolic (two transverse foliations: stretch one by $\lambda>1$, compress the other by $1/\lambda$)

- Σ: Riemann surface
- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - finite order
 - reducible
 - pseudo-Anosov

For instance -

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - elliptic (finite order)
 - parabolic (Dehn twist)
 - hyperbolic (two transverse foliations: stretch one by $\lambda>1$, compress the other by $1/\lambda$)

- Σ: Riemann surface
- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - finite order
 - reducible
 - pseudo-Anosov

For instance -

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - elliptic (finite order)
 - parabolic (Dehn twist)
 - ▶ hyperbolic (two transverse foliations: stretch one by $\lambda>1$, compress the other by $1/\lambda$)

- Σ: Riemann surface
- $MCG(\Sigma) = Diff(\Sigma)/isotopy$: mapping class group
- each mapping class is either:
 - finite order
 - reducible
 - pseudo-Anosov

For instance -

- elements of $MCG(T^2) = SL(2, \mathbb{Z})$ are either:
 - elliptic (finite order)
 - parabolic (Dehn twist)
 - hyperbolic (two transverse foliations: stretch one by $\lambda > 1$, compress the other by $1/\lambda$)

- Nielsen asked (1923): Let $G \subseteq \mathsf{MCG}(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq \mathsf{Diff}(\Sigma)$? (Recall that $\mathsf{MCG}(\Sigma) = \mathsf{Diff}(\Sigma)/\mathsf{isotopy}$).
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \operatorname{Isom}(\Sigma,g)$. Or equivalently, G fixes a point in $\operatorname{Teich}(\Sigma)$. (There is a natural action of $\operatorname{MCG}(\Sigma)$ on $\operatorname{Teich}(\Sigma)$, e.g. $\operatorname{MCG}(T^2) = \operatorname{SL}(2,\mathbb{Z})$ acts on $\operatorname{Teich}(T^2) = \mathbb{H}$.) (Rephrase: any finite subgroup of $\operatorname{MCG}(\Sigma)$ can be realized as symmetries with respect to a metric on Σ .)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.

- Nielsen asked (1923): Let $G \subseteq \mathsf{MCG}(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq \mathsf{Diff}(\Sigma)$? (Recall that $\mathsf{MCG}(\Sigma) = \mathsf{Diff}(\Sigma)/\mathsf{isotopy}$).
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \operatorname{Isom}(\Sigma,g)$. Or equivalently, G fixes a point in $\operatorname{Teich}(\Sigma)$. (There is a natural action of $\operatorname{MCG}(\Sigma)$ on $\operatorname{Teich}(\Sigma)$, e.g. $\operatorname{MCG}(T^2) = \operatorname{SL}(2,\mathbb{Z})$ acts on $\operatorname{Teich}(T^2) = \mathbb{H}$.) (Rephrase: any finite subgroup of $\operatorname{MCG}(\Sigma)$ can be realized as symmetries with respect to a metric on Σ .)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.

- Nielsen asked (1923): Let $G \subseteq \mathsf{MCG}(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq \mathsf{Diff}(\Sigma)$? (Recall that $\mathsf{MCG}(\Sigma) = \mathsf{Diff}(\Sigma)/\mathsf{isotopy}$).
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma,g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (There is a natural action of $\text{MCG}(\Sigma)$ on $\text{Teich}(\Sigma)$, e.g. $\text{MCG}(T^2) = \text{SL}(2,\mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.) (Rephrase: any finite subgroup of $\text{MCG}(\Sigma)$ can be realized as symmetries with respect to a metric on Σ .)
- Farb-Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.

- Nielsen asked (1923): Let $G \subseteq \mathsf{MCG}(\Sigma)$ be a finite subgroup. Does there always exist a lifting $G \subseteq \mathsf{Diff}(\Sigma)$? (Recall that $\mathsf{MCG}(\Sigma) = \mathsf{Diff}(\Sigma)/\mathsf{isotopy}$).
- Kerckhoff (1983): Yes! Moreover, there exists a metric g such that $G \subseteq \text{Isom}(\Sigma,g)$. Or equivalently, G fixes a point in $\text{Teich}(\Sigma)$. (There is a natural action of $\text{MCG}(\Sigma)$ on $\text{Teich}(\Sigma)$, e.g. $\text{MCG}(T^2) = \text{SL}(2,\mathbb{Z})$ acts on $\text{Teich}(T^2) = \mathbb{H}$.) (Rephrase: any finite subgroup of $\text{MCG}(\Sigma)$ can be realized as symmetries with respect to a metric on Σ .)
- Farb–Looijenga (2021) also proved similar statements for K3 surfaces (under certain conditions), where g is replaced by complex structure or Ricci-flat metric on the K3 surface.

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(\mathcal{D})$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(\mathcal{D})$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$?

(Rephrase: any finite subgroup of $\operatorname{Aut}(\mathcal{D})$ can be realized as symmetries with respect to a stability condition on \mathcal{D} .)

- There is a whole dictionary of analogy between Teichmüller theory and stability conditions on triangulated categories (Haiden, Katzarkov, Kontsevich, Bridgeland, Smith, etc.). This problem is the categorical version of the Nielsen realization problem.
- When $\mathcal{D} = D^b \mathrm{Coh}(X)$, stability conditions on \mathcal{D} are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(\mathcal{D})$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(\mathcal{D})$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$? (Rephrase: any finite subgroup of $\operatorname{Aut}(\mathcal{D})$ can be realized as symmetries with respect to a stability condition on \mathcal{D} .)

- There is a whole dictionary of analogy between Teichmüller theory and stability conditions on triangulated categories (Haiden, Katzarkov, Kontsevich, Bridgeland, Smith, etc.). This problem is the categorical version of the Nielsen realization problem.
- When $\mathcal{D} = D^b \mathrm{Coh}(X)$, stability conditions on \mathcal{D} are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(\mathcal{D})$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(\mathcal{D})$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$? (Rephrase: any finite subgroup of $\operatorname{Aut}(\mathcal{D})$ can be realized as symmetries with respect to a stability condition on \mathcal{D} .)

- There is a whole dictionary of analogy between Teichmüller theory and stability conditions on triangulated categories (Haiden, Katzarkov, Kontsevich, Bridgeland, Smith, etc.). This problem is the categorical version of the Nielsen realization problem.
- When $\mathcal{D} = D^b \mathrm{Coh}(X)$, stability conditions on \mathcal{D} are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

Let \mathcal{D} be a triangulated category, and $G \subseteq \operatorname{Aut}(\mathcal{D})$ be a finite subgroup. Does there exist $\sigma \in \operatorname{Stab}(\mathcal{D})$ such that $\Phi \cdot \sigma = \sigma$ for all $\Phi \in G$? (Rephrase: any finite subgroup of $\operatorname{Aut}(\mathcal{D})$ can be realized as symmetries with respect to a stability condition on \mathcal{D} .)

- There is a whole dictionary of analogy between Teichmüller theory and stability conditions on triangulated categories (Haiden, Katzarkov, Kontsevich, Bridgeland, Smith, etc.). This problem is the categorical version of the Nielsen realization problem.
- When $\mathcal{D} = D^b \mathrm{Coh}(X)$, stability conditions on \mathcal{D} are roughly Kähler structures on X; so this problem is similar to (but not quite the same) the mirror problem of Farb–Looijenga.

A dictionary of analogy

(after Gaiotto, Moore, Neitzke; Bridgeland, Smith; Dimitrov, Haiden, Katzarkov, Kontsevich, etc.)

Riemann surface Σ	Triangulated category ${\cal D}$
curve C	object <i>E</i>
$C_1 \cap C_2$	$\operatorname{Hom}(E_1, E_2)$
metric g	Bridgeland stability condition σ
geodesics	semistable objects
length $\ell_g(C)$	mass $m_{\sigma}(E)$
$\mathrm{MCG}(\Sigma)$	$\operatorname{Aut}(\mathcal{D})$
$\operatorname{Teich}(\Sigma)$	$\operatorname{Stab}(\mathcal{D})$

Many analogous statements in Teichmüller theory can be proved in the categorical setting for $\mathcal{D} = D^b \mathrm{Coh}(\text{elliptic curve})$. An interesting general question is whether some of these can be generalized to dim ≥ 2 .

A dictionary of analogy

(after Gaiotto, Moore, Neitzke; Bridgeland, Smith; Dimitrov, Haiden, Katzarkov, Kontsevich, etc.)

Riemann surface Σ	Triangulated category ${\cal D}$
curve C	object <i>E</i>
$C_1 \cap C_2$	$\operatorname{Hom}(E_1, E_2)$
metric g	Bridgeland stability condition σ
geodesics	semistable objects
length $\ell_g(C)$	mass $m_{\sigma}(E)$
$\mathrm{MCG}(\Sigma)$	$\mathrm{Aut}(\mathcal{D})$
$\operatorname{Teich}(\Sigma)$	$\operatorname{Stab}(\mathcal{D})$

Many analogous statements in Teichmüller theory can be proved in the categorical setting for $\mathcal{D} = D^b \mathrm{Coh}(\text{elliptic curve})$. An interesting general question is whether some of these can be generalized to dim ≥ 2 .

- This statement is stronger than the previous one.
- There are many examples of \mathcal{D} where there are not many interesting finite order elements in $\operatorname{Aut}(\mathcal{D})$, but there are many interesting finite order elements in $\operatorname{Aut}(\mathcal{D})/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question.

- This statement is stronger than the previous one.
- There are many examples of \mathcal{D} where there are not many interesting finite order elements in $\operatorname{Aut}(\mathcal{D})$, but there are many interesting finite order elements in $\operatorname{Aut}(\mathcal{D})/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question.

- This statement is stronger than the previous one.
- There are many examples of \mathcal{D} where there are not many interesting finite order elements in $\operatorname{Aut}(\mathcal{D})$, but there are many interesting finite order elements in $\operatorname{Aut}(\mathcal{D})/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question.

- This statement is stronger than the previous one.
- There are many examples of \mathcal{D} where there are not many interesting finite order elements in $\operatorname{Aut}(\mathcal{D})$, but there are many interesting finite order elements in $\operatorname{Aut}(\mathcal{D})/[1]$.
- The shift functor [1] (or rather [2]) has no classical counterpart in Teichmüller theory, so it is natural to consider this stronger question.

Main theorems (F.-Lai, 2023)

- The answer is yes, for $\mathcal{D} = D^b \mathrm{Coh}(X)$ where X is a curve, a (twisted) abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.
- For K3 surfaces of $\rho = 1$, we obtain:
 - ▶ classification and counting formula of the conjugacy classes of finite subgroups of $\operatorname{Aut}(\mathcal{D})$ and $\operatorname{Aut}(\mathcal{D})/[1]$;
 - ▶ one-to-one correspondence between {maximal finite subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$ } and {elliptic points of $\operatorname{Stab}_{\operatorname{red}}^{\dagger}(\mathcal{D})/\mathbb{C}$ } (analogue: one-to-one correspondence between {maximal finite subgroups of $\operatorname{PSL}(2,\mathbb{Z})$ } and {elliptic points of \mathbb{H} })

Here, $\operatorname{Stab}_{\operatorname{red}}^{\dagger}(\mathcal{D}) = \{(Z, P) \mid Z^2 = 0 \text{ in } N(\mathcal{D}) \otimes \mathbb{C}\} \subseteq \operatorname{Stab}^{\dagger}(\mathcal{D})$

Main theorems (F.-Lai, 2023)

- The answer is yes, for $\mathcal{D} = D^b \mathrm{Coh}(X)$ where X is a curve, a (twisted) abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.
- For K3 surfaces of $\rho = 1$, we obtain:
 - ▶ classification and counting formula of the conjugacy classes of finite subgroups of $\operatorname{Aut}(\mathcal{D})$ and $\operatorname{Aut}(\mathcal{D})/[1]$;
 - ▶ one-to-one correspondence between {maximal finite subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$ } and {elliptic points of $\operatorname{Stab}_{\operatorname{red}}^{\dagger}(\mathcal{D})/\mathbb{C}$ } (analogue: one-to-one correspondence between {maximal finite subgroups of $\operatorname{PSL}(2,\mathbb{Z})$ } and {elliptic points of \mathbb{H} })

Here, $\operatorname{Stab}_{\operatorname{red}}^{\dagger}(\mathcal{D}) = \{(Z, P) \mid Z^2 = 0 \text{ in } N(\mathcal{D}) \otimes \mathbb{C}\} \subseteq \operatorname{Stab}^{\dagger}(\mathcal{D}).$

Main theorems (F.-Lai, 2023)

- The answer is yes, for $\mathcal{D} = D^b \mathrm{Coh}(X)$ where X is a curve, a (twisted) abelian surface, a generic twisted K3 surface, or a K3 surface of Picard number $\rho = 1$.
- For K3 surfaces of $\rho = 1$, we obtain:
 - ▶ classification and counting formula of the conjugacy classes of finite subgroups of $\operatorname{Aut}(\mathcal{D})$ and $\operatorname{Aut}(\mathcal{D})/[1]$;
 - ▶ one-to-one correspondence between {maximal finite subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$ } and {elliptic points of $\operatorname{Stab}_{\mathsf{red}}^{\dagger}(\mathcal{D})/\mathbb{C}$ } (analogue: one-to-one correspondence between {maximal finite subgroups of $\mathsf{PSL}(2,\mathbb{Z})$ } and {elliptic points of \mathbb{H} })

Here, $\operatorname{Stab}_{\operatorname{red}}^{\dagger}(\mathcal{D}) = \{(Z, P) \mid Z^2 = 0 \text{ in } N(\mathcal{D}) \otimes \mathbb{C}\} \subseteq \operatorname{Stab}^{\dagger}(\mathcal{D}).$

(Still in the case of K3 surfaces of ho=1)

- $\Phi \in \operatorname{Aut}(\mathcal{D})$ can be classified into (modulo quotienting certain subgroup):
 - finite order up to shifts
 - reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(\mathcal{D})$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
 - hyperbolic: $\rho([\Phi]_{N(\mathcal{D})}) > 1$

- finite order if and only if $h_{\rm cat} = h_{\rm poly} = 0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

(Still in the case of K3 surfaces of $\rho = 1$)

 $\Phi \in \operatorname{Aut}(\mathcal{D})$ can be classified into (modulo quotienting certain subgroup):

- finite order up to shifts
- reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(\mathcal{D})$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
- hyperbolic: $\rho([\Phi]_{N(\mathcal{D})}) > 1$

- ullet finite order if and only if $h_{
 m cat}=h_{
 m poly}=0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

(Still in the case of K3 surfaces of $\rho = 1$)

- $\Phi \in \operatorname{Aut}(\mathcal{D})$ can be classified into (modulo quotienting certain subgroup):
 - finite order up to shifts
 - reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - ▶ "0-reducible": which fixes a class $w \in N(\mathcal{D})$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
 - hyperbolic: $\rho([\Phi]_{N(\mathcal{D})}) > 1$

- finite order if and only if $h_{\rm cat} = h_{\rm poly} = 0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

(Still in the case of K3 surfaces of ho=1)

- $\Phi \in \operatorname{Aut}(\mathcal{D})$ can be classified into (modulo quotienting certain subgroup):
 - finite order up to shifts
 - reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(\mathcal{D})$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
 - hyperbolic: $\rho([\Phi]_{N(\mathcal{D})}) > 1$

- finite order if and only if $h_{\rm cat} = h_{\rm poly} = 0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

(Still in the case of K3 surfaces of $\rho = 1$)

- $\Phi \in \operatorname{Aut}(\mathcal{D})$ can be classified into (modulo quotienting certain subgroup):
 - finite order up to shifts
 - reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(\mathcal{D})$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
 - hyperbolic: $\rho([\Phi]_{N(\mathcal{D})}) > 1$

- ullet finite order if and only if $h_{
 m cat}=h_{
 m poly}=0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

(Still in the case of K3 surfaces of $\rho = 1$)

 $\Phi \in \operatorname{Aut}(\mathcal{D})$ can be classified into (modulo quotienting certain subgroup):

- finite order up to shifts
- reducible, which further classified into:
 - "(-2)-reducible": spherical twists T_S
 - "0-reducible": which fixes a class $w \in N(\mathcal{D})$ with $w^2 = 0$ (e.g. $\otimes \mathcal{O}(1)$)
- hyperbolic: $\rho([\Phi]_{N(\mathcal{D})}) > 1$

- finite order if and only if $h_{\text{cat}} = h_{\text{poly}} = 0$
- reducible if and only if $h_{\rm cat}=0$ and $h_{\rm poly}>0$
- hyperbolic if and only if $h_{\rm cat} > 0$

Strategy and Difficulties

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}_{\mathsf{red}}^{\dagger}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(\textit{N}(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in \mathcal{D} , so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - \blacktriangleright π is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $Aut(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

It turns out that both issues can be resolved for ho=1 –

Strategy and Difficulties

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}_{\mathsf{red}}^{\dagger}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(\mathit{N}(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in ${\mathcal D}$, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $Aut(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

It turns out that both issues can be resolved for ho=1 –

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}_{\mathsf{red}}^{\dagger}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(\mathit{N}(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in ${\mathcal D}$, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $\blacktriangleright \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $Aut(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}_{\mathsf{red}}^{\dagger}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(\mathit{N}(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in ${\mathcal D}$, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $Aut(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}_{\mathsf{red}}^{\dagger}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(\mathit{N}(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in ${\mathcal D}$, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $Aut(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(N(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in ${\mathcal D}$, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - lacktriangle the fixed points of finite subgroups of $\operatorname{Aut}(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(\mathit{N}(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in ${\mathcal D}$, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $\blacktriangleright \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $Aut(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}^{\dagger}_{\mathsf{red}}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(\mathit{N}(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in ${\mathcal D}$, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - the fixed points of finite subgroups of $\operatorname{Aut}(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

For K3 or abelian surfaces, Bridgeland (2008) showed that there is an ${\rm Aut}(\mathcal{D})$ -equivariant covering map

$$\operatorname{Stab}_{\mathsf{red}}^{\dagger}(\mathcal{D})/\mathbb{C} \xrightarrow{\pi} Q_0^+(\mathcal{D})$$

where
$$Q_0^+(\mathcal{D})=\{v\in\mathbb{P}(N(\mathcal{D})\otimes\mathbb{C})\mid v^2=0, v\overline{v}>0\}\setminus\bigcup_{\delta^2=-2}\delta^\perp.$$

- ullet For abelian surfaces, there is no spherical objects in ${\mathcal D}$, so:
 - we do not need to remove " δ^{\perp} " since there is no (-2)-classes
 - $ightharpoonup \pi$ is an isomorphism

and it is not hard to show that finite subgroups of $\operatorname{Aut}(\mathcal{D})$ fix a point in $Q_0^+(\mathcal{D})$ using basic Lie theory.

- For K3 surfaces, one needs to resolve the following two issues:
 - ▶ the fixed points of finite subgroups of $Aut(\mathcal{D})$ need to avoid " δ^{\perp} "
 - ▶ Deck (π) is much more complicated

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- We have $Q_0^+(\mathcal{D})\cong \mathbb{H}\setminus ``(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(\mathcal{D})$ on $Q_0^+(\mathcal{D})$ factors through $\operatorname{Im}(\operatorname{Aut}(\mathcal{D}) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \right\rangle =: \omega_n \right\rangle$.

We showed that the following statements are equivalent

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- ullet We have $Q_0^+(\mathcal{D})\cong \mathbb{H}\backslash$ "(-2)-points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(\mathcal{D})$ on $Q_0^+(\mathcal{D})$ factors through $\operatorname{Im}(\operatorname{Aut}(\mathcal{D}) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \right\rangle =: \omega_n \right\rangle$.

We showed that the following statements are equivalent

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- ullet We have $Q_0^+(\mathcal{D})\cong \mathbb{H}\setminus ``(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(\mathcal{D})$ on $Q_0^+(\mathcal{D})$ factors through $\operatorname{Im}(\operatorname{Aut}(\mathcal{D}) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \right\rangle =: \omega_n \right\rangle$.

We showed that the following statements are equivalent

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- ullet We have $Q_0^+(\mathcal{D})\cong \mathbb{H}ackslash ``(-2)$-points".$
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(\mathcal{D})$ on $Q_0^+(\mathcal{D})$ factors through $\operatorname{Im}(\operatorname{Aut}(\mathcal{D}) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \right\rangle =: \omega_n \right\rangle$.

We showed that the following statements are equivalent:

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- ullet $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose *X* is a K3 surface of $\rho = 1$ and degree 2*n*.

- ullet We have $Q_0^+(\mathcal{D})\cong \mathbb{H}\setminus ``(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(\mathcal{D})$ on $Q_0^+(\mathcal{D})$ factors through $\operatorname{Im}(\operatorname{Aut}(\mathcal{D}) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \begin{bmatrix} -1/\sqrt{n} \end{bmatrix} =: \omega_n \right\rangle$.

We showed that the following statements are equivalent:

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose X is a K3 surface of $\rho = 1$ and degree 2n.

- ullet We have $Q_0^+(\mathcal{D})\cong \mathbb{H}ackslash ``(-2)$-points".$
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(\mathcal{D})$ on $Q_0^+(\mathcal{D})$ factors through $\operatorname{Im}(\operatorname{Aut}(\mathcal{D}) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \left[\sqrt{n} \right] \right\rangle =: \omega_n \right\rangle$.

We showed that the following statements are equivalent:

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

Suppose *X* is a K3 surface of $\rho = 1$ and degree 2*n*.

- We have $Q_0^+(\mathcal{D}) \cong \mathbb{H} \setminus \text{``}(-2)$ -points".
- By Dolgachaev (1996) and Kawatani (2014), the action of $\operatorname{Aut}(\mathcal{D})$ on $Q_0^+(\mathcal{D})$ factors through $\operatorname{Im}(\operatorname{Aut}(\mathcal{D}) \xrightarrow{f} \operatorname{PSL}(2,\mathbb{R})) = \Gamma_0^+(n)$ the Fricke modular group, where $\Gamma_0^+(n) = \left\langle \Gamma_0(n), \begin{bmatrix} & -1/\sqrt{n} \\ \sqrt{n} & \end{bmatrix} =: \omega_n \right\rangle$.

We showed that the following statements are equivalent:

- $f(\Phi)$ fixes a (-2)-point in \mathbb{H}
- $f(\Phi)$ is an involution, and $f(\Phi) = g_0 \omega_n$ for some $g_0 \in \Gamma_0(n)$
- $\Phi = T_S \Psi$ for some spherical object S and some $\Psi \in \mathsf{Deck}(\pi)$

- Let $\Phi \in \operatorname{Aut}(\mathcal{D})/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(\mathcal{D})$.
- Kawatani (2019): $\pi_1(Q_0^+(\mathcal{D})) \cong \star_{\mathsf{free}} T_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(\mathcal{D})/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T_S^2$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\mathrm{red}}^\dagger(\mathcal{D})/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(\mathcal{D})/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(\mathcal{D})/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(\mathcal{D})$.
- Kawatani (2019): $\pi_1(Q_0^+(\mathcal{D}))\cong \star_{\mathsf{free}} \mathcal{T}_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(\mathcal{D})/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T_S^2$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\rm red}^\dagger(\mathcal{D})/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(\mathcal{D})/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(\mathcal{D})/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(\mathcal{D})$.
- Kawatani (2019): $\pi_1(Q_0^+(\mathcal{D}))\cong \star_{\mathsf{free}} \mathcal{T}_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(\mathcal{D})/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T_S^2$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\rm red}^\dagger(\mathcal{D})/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(\mathcal{D})/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(\mathcal{D})/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(\mathcal{D})$.
- Kawatani (2019): $\pi_1(Q_0^+(\mathcal{D}))\cong \star_{\mathsf{free}} \mathcal{T}_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(\mathcal{D})/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T^2_S$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\rm red}^\dagger(\mathcal{D})/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(\mathcal{D})/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(\mathcal{D})/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(\mathcal{D})$.
- Kawatani (2019): $\pi_1(Q_0^+(\mathcal{D}))\cong \star_{\mathsf{free}} \mathcal{T}_S^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}^{\dagger}_{\operatorname{red}}(\mathcal{D})/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T^2_S$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\mathsf{red}}^\dagger(\mathcal{D})/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(\mathcal{D})/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

- Let $\Phi \in \operatorname{Aut}(\mathcal{D})/[1]$ be of finite order, then the previous discussion shows that it fixes a point in $Q_0^+(\mathcal{D})$.
- Kawatani (2019): $\pi_1(Q_0^+(\mathcal{D}))\cong \star_{\mathsf{free}} \mathcal{T}_{\mathsf{S}}^2$.
- Bayer–Bridgeland (2017): $\operatorname{Stab}_{\operatorname{red}}^{\dagger}(\mathcal{D})/\mathbb{C}$ is contractible.
- Combining these two results, we have $\operatorname{Deck}(\pi) \cong \star_{\operatorname{free}} T^2_S$.
- We showed that this implies the fixed point of Φ in $Q_0^+(D)$ can be lifted to a fixed point in $\operatorname{Stab}_{\mathsf{red}}^\dagger(\mathcal{D})/\mathbb{C}$, which proves the realization problem for cyclic subgroups of $\operatorname{Aut}(\mathcal{D})/[1]$.
- Finally, we showed that any finite subgroup of $\operatorname{Aut}(\mathcal{D})/[1]$ is cyclic using classification results of finite subgroups of $\Gamma_0^+(n)$ by Fricke. This concludes the proof.

A few further problems

- Do 0-reducible autoequivalences have zero entropy? $(h(\otimes \mathcal{O}(1)) = 0)$
- Generalize realization results to:
 - general special cubic fourfolds Ku(X)
 - ▶ K3 surfaces of Picard number $\rho \ge 2$
 - **▶** ···?

