Fraud Detection Model

Executive Summary

Poundbank, a major London-based financial institution, has observed a significant decline in the accuracy of its machine learning–based fraud detection system. Such degradation directly increases the risk of **financial loss, regulatory scrutiny, reputational damage,** and **customer attrition**.

Our analysis applies advanced **model monitoring and drift detection**—specifically using the nannyml library—to compare **historical (reference)** and **recent (production)** transaction datasets. The investigation revealed **statistically significant data drift** across all monitored input features, with **time_since_login_min** and **transaction_amount** showing the largest shifts. These changes substantially reduce model reliability, making retraining and enhanced monitoring critical.

This report is designed for **both technical stakeholders** (data scientists, ML engineers) and **business decision-makers** (risk/compliance managers, executives).

1. Business Context

- **Challenge:** Fraudulent behavior evolves rapidly—attackers adapt once they understand detection models. Older models become misaligned with real transaction patterns.
- **Impact:** Declining model performance means more fraudulent transactions may bypass detection systems, causing direct monetary loss and damaging customer confidence.
- **Goal:** Identify **how and why** the model's predictive power is declining, and provide a path to restore and maintain accuracy.

2. Data Summary

Two labeled datasets were analyzed:

Dataset	Description
reference.csv	Historical transactions used for testing ("gold standard").
analysis.csv	Recent production transactions observed by the deployed model.

Key Features:

Feature	Description		
timestamp	Date-time of transaction.		
time_since_login_min	Minutes since the user last logged in.		
transaction_amount	Amount in GBP transferred.		
transaction_type	PAYMENT, CASH-IN, CASH-OUT, etc.		
is_first_transaction	Boolean: whether this is the customer's 1st transaction.		
user_tenure_months	Age of customer's account in months.		
is_fraud	1 if fraud detected, otherwise 0.		
predicted_fraud_proba	Model-predicted probability of fraud.		
predicted_fraud	Model's binary classification output.		

3. Methodology

Step 1: Data Validation

• Verified column integrity, types, and completeness between reference and production datasets.

Step 2: Drift Detection

- Utilized nannyml to calculate:
 - o **Pearson correlation coefficients** between historical and production feature distributions.
 - **P-values** to determine statistical significance.
 - o **Drift rank** to prioritize features according to their impact.

Step 3: Interpretation

• Mapped detected drift to business impact on fraud detection reliability.

4. Findings

Drift Summary Table:

Feature	Correlation	P-Value	Drift Detected	Rank
time_since_login_min	0.953	1.05e-09	✓ True	1
transaction_amount	0.626	5.43e-03	✓ True	2
is_first_transaction	0.054	0.83	✓ True	3
user_tenure_months	-0.101	0.69	✓ True	4
transaction_type	-0.187	0.46	✓ True	5

Key Observations:

• Top Risk Factors:

- Large shifts in time_since_login_min likely signify changes in customer login and payment behavior—could indicate different fraud origination patterns.
- Significant variation in transaction_amount may reflect evolving fraud schemes aimed at different payment tiers.
- **All features show drift**, meaning the overall input profile seen by the model has materially changed.
- These shifts erode the validity of the model's learned decision boundaries, increasing **false negatives** (missed fraud) and **false positives** (blocking legitimate users).

5. Business Impact

- **Financial:** Higher undetected fraud attempts may result in **substantial monetary losses**.
- **Operational:** Rising false positives could waste fraud analyst capacity and irritate customers.
- **Compliance & Risk:** Regulatory scrutiny may increase if fraud incidents spike.
- Customer Trust: Perceived insecurity in transactions can prompt customers to switch to competitors.

6. Technical Impact

- Model Obsolescence: Old decision rules no longer match reality.
- **Data Pipeline Vulnerability:** Potential delays in detecting crucial feature drifts.
- Monitoring Gaps: Lack of real-time alerts delays corrective retraining.

7. Recommendations

Immediate Actions:

- 1. **Retrain the model** with latest production data, focusing on drifted features.
- 2. Set up **automated drift monitoring** using nannyml with monthly/weekly reports.
- 3. Adjust feature engineering:
 - Normalize for changing login patterns.
 - o Introduce composite fraud indicators.
- 4. **Human-in-the-loop verification** for ambiguous transactions flagged with medium risk scores.

Long-Term Actions:

- Incorporate **adaptive learning** so the model incrementally updates with labeled fraud data.
- Collaborate with fraud analysts, risk teams, and engineering to align monitoring thresholds with business risk tolerance.
- Expand feature set with **external behavioral or geolocation signals**.

8. Conclusion

The detected feature drifts clearly explain why Poundbank's fraud model is losing accuracy. As fraud tactics continue to evolve, Poundbank's strategy must move from static ML models to a **monitor-adapt-retrain cycle**.

By implementing automated monitoring and scheduled retraining, Poundbank can **react faster**, **detect more fraud**, **and maintain customer trust**—turning this challenge into a competitive advantage.