

Data Carving em Mídias e em Redes

Ricardo Kléber Martins Galvão

www.ricardokleber.com.br ricardo.galvao@ifrn.edu.br

SEGINFO - WORKSHOP DE SEGURANÇA DA INFORMAÇÃO

Rio de Janeiro/RJ – 03 de Novembro de 2010

Ricardo Kléber

- Professor do IFRN (Segurança de Redes)
- Diretor de Regulação do Ensino (IFRN)
- Professor da FARN (Especialização em Redes de Computadores)
- Professor da Universidade Potiguar (Especialização em Computação Forense)
- Professor da Uninorte/AC (Especialização em Computação Forense)
- Bacharel em Ciências da Computação, Mestre em Engenharia Elétrica (Sistemas Distribuídos) e Doutorando em Engenharia Elétrica (Sistemas Inteligentes) (UFRN)
- Certificação Linux Conectiva e Brainbench
- Colunista do Blog Seginfo
- Membro do Comitê Técnico do Seginfo'2010
- Publicações/Apresentações no SSI, Seginfo, Iccyber, GTS/NicBR, Encsirt, FISL, Ensol, Epsl e outros eventos nas áreas de Segurança da Informação e Software Livre

Atividades Recentes

- Ex-Security Officer da UFRN (Superintendência de Informática)
- Fundador do CSIRT NARIS (Núcleo de Atendimento e Resposta a Incidentes de Segurança) da UFRN
- Ex-Professor da UFRN (Sistemas Operacionais, Linguagens de Programação e Redes de Computadores)
- Ex-Diretor de Redes do Detran/PE
- Ex-Diretor de Ensino e Coordenador de TI do IFRN/Campus Currais Novos
- Fundador do NUPETIS Núcleo de Pesquisa em TI no Seridó
- Consultoria e treinamentos em Segurança da Informação e Software Livre em provedores Internet, empresas e órgãos governamentais do RN, PI, PE e AP.

Identificando o Perfil do Público

Quem atua/conhece a Área de

Computação Forense?

Análise Forense

"A aplicação de princípios das ciências físicas ao direito na busca da verdade em questões cíveis, criminais e de comportamento social para que não se cometam injustiças contra qualquer membro da sociedade" (Manual de Patologia Forense do Colégio de Patologistas Americanos, 1990).

- Levantar evidências que contam a história do fato:
 - Quando?
 - Como?
 - Porque?
 - Onde?
- Normas e Procedimentos

Análise Forense Computacional

Principais Etapas

- Aquisição
- Identificação
- Avaliação
- Apresentação

Definição do Objeto da Perícia

<u>O que Coletar/Analisar ?</u>

- Mídias
 - Hds, pendrives, cds, dvds...

- Câmeras digitais, óculos/relógios/pulseiras... (com dispositivos de armazenamento).
- Dados trafegando na rede
 - Em investigações de tráfego de informações
 - Também com equipamentos ligados
- Dados em memória
 - Em análises com equipamentos ligados

Análise Forense Computacional

Conceitos Importantes

- Evidências
 - Não-Voláteis x Voláteis
- Tipos de Análise:
 - In Loco
 - Post mortem
- Recuperação
- Extração

Sistema de Arquivos

- "conjunto de estruturas lógicas e de rotinas, que permitem ao sistema operacional controlar o acesso ao disco rígido"
- Sistemas de Arquivos padrões Windows: FAT16, FAT32, NTFS
- Sistemas de Arquivos padrões Linux/Unix: EXT2, EXT3, EXT4, ReiserFS, XFS, JFS, ...

Data Carving (ou File Carving) independe de sistema de arquivos

Magic Numbers / File Signatures

- Funciona como uma "assinatura" do tipo de arquivo.
- Método de identificação de arquivos independente de sistema operacional/sistema de arquivos.
- Baseia-se em informações inseridas/coletadas dentro de cada arquivo (cabeçalhos, rodapés, campos específicos)

Data Carving (Visão Geral)

"Data carving is the process of **extracting** a collection of data from a larger data set.

Data carving techniques frequently occur during a digital investigation when the unallocated file system space is analyzed to extract files.

The files are "carved" from the unallocated space using file type-specific header and footer values.

File system structures are <u>not used</u> during the process."

Digital Forensic Research Workshop (DFRWS) http://dfrws.org

Demonstração

Preparando a mídia (apagamento acidental !?)

Carving (Extração) em Mídias

Magicrescue

- Concebido (inicialmente) para recuperação de imagens (fotos) apagadas
- Recupera arquivos específicos (com padrão definido em base específica) a partir de uma partição, para um diretório especificado.
 - avi canon-cr2 elf flac gimp-xcf gpl gzip jpeg-exif jpeg-jfif mp3id3v1 mp3-id3v2 msoffice nikon-raw perl png ppm zip
- Debian-like (apt-get install magicrescue)

Carving (Extração) em Mídias Magicrescue

Funcionamento

Executar aplicativo com parâmetros específicos

```
magicrescue -d diretorio_destino -r base_tipos /dev/device
```

- diretorio destino :: Diretório onde será gravado o resultado
- base_tipos :: Base com padrão do tipo de arquivo buscado (/usr/share/magicrescue/recipes)
- /dev/device :: caminho do dispositivo analisado

Exemplo:

```
magicrescue -d /home/forense/analisar
-r /usr/share/magicrescue/recipes/avi
/dev/sda1
```


Demonstração

Data Carving com Magicrescue

Carving (Extração) em Mídias

Magicrescue / GRescue

• GRescue = Interface Gráfica do Magicrescue (em desenvolvimento)

Antes do Processo de Extração

Coleta em Mídias

- Ferramenta dd (ou evolução dela)
 - Linux (nativo em todas as principais distribuições)
 - Windows (http://www.chrysocome.net/dd)

```
dd if=origem of=destino
```

• Ex.: Geração da Imagem (partição hda 1 para arquivo imagem.dd):

```
# dd if=/dev/hda1 of=imagem.dd
```


Antes do Processo de Extração

Coleta em Mídias

- Apesar de ser a maneira mais simples e eficiente de realizar a duplicação, o utilitário dd não oferece algumas funcionalidades importantes;
- O dd_rescue serve para realizar aquisições de mídias com problemas (em algumas situaçõe o dd é interrompido ao encontrar erros na mídia);
- •O **sdd** realiza aquisições mais rápido do que o dd, quando o tamanho de bloco dos dispositivos de origem e destino são diferentes;
- O **rdd** foi desenvolvido pelo Netherlands Forensic Institute (NFI) e sua documentação indica que ele é bem mais robusto em relação a tratamento de erros, divisão de arquivos (split) e hash.
- •O <u>dcfldd</u> possui um log de toda a operação, faz divisão da imagem (split) e permite verificar diretamente a integridade da operação através de vários algoritmos de hash.

Antes do Processo de Extração Coleta em Mídias

Opção sugerida para corrigir fragilidades do dd: dcfldd

Exemplo de Utilização:

```
dcfldd if=/dev/sda1 hash=md5,sha256 hashwindow=1G \
md5log=md5.txt sha256log=sha256.txt hashconv=after \
conv=noerror,sync split=1G splitformat=aa of=image.dd
```

- **noerror** = não para caso encontre erros
- **sysc** = se encontrar erro preenche com 0 (zero)
- Tamanho máximo de cada arquivo = 1Gb
- Nomes: image.dd.aa / image.dd.bb / ...

Demonstração

Duplicação de Dispositivo (Pendrive) com dcfldd

Carving em Imagem de Mídia

Magicrescue

Executar aplicativo com parâmetros específicos

```
magicrescue -d diretorio_destino -r base_tipos imagem
```

- diretorio_destino :: Diretório onde será gravado o resultado
- base_tipos :: Base com padrão do tipo de arquivo buscado

```
(/usr/share/magicrescue/recipes)
```

• imagem :: imagem do dispositivo analisado

Exemplo:

```
magicrescue -d /home/forense/analisar
-r /usr/share/magicrescue/recipes/avi
pendrive.dd
```


Demonstração

Data Carving com Magicrescue (a partir de uma imagem de dispositivo)

Carving em Imagem de Mídia Foremost

- Rápido, fácil e robusto: foremost
- Debian-like (apt-get install foremost)

```
foremost -t <tipo1,tipo2,...> -i <imagem> -o <destino>
```

- Tipos de arquivos reconhecidos: jpg, gif, png, bmp, avi, exe, mpg, wav, riff, wmv, mov, pdf, ole, doc, zip, rar, htm, cpp, ...
- Para todos os tipos de arquivos: -t all

Ex.: foremost pendrive.dd -o diretorio_destino

Demonstração

Data Carving com Foremost (a partir de uma imagem de dispositivo)

Carving em Imagem de Mídia Scalpel

- Semelhante ao foremost: scalpel
- Debian-like (apt-get install scalpel)

```
scalpel <imagem> -o <destino>
```

- Por padrão, todos os tipos de arquivos no banco de dados (/etc/scalpel/scalpel.conf) estão comentados (não gera resultados se não for alterado)
- Para especificar quais tipos de arquivos se deseja extrair, é preciso editar o arquivo e descomentar as linhas desejadas.

Ex.: scalpel pendrive.dd -o diretorio_destino

Demonstração

Data Carving com Scalpel (a partir de uma imagem de dispositivo)

E se o alvo/objeto for Tráfego de Redes?

Capturar tráfego e realizar o realizar a Extração (com ferramentas apropriadas)

Antes do Processo de Extração

Coleta em Redes

• Interface em modo monitor ("promíscuo") = Sniffer

LibPcap + TcpDump

WinPcap + WinDump

Antes do Processo de Extração Coleta em Redes

Captura de Tráfego Específico :: Tcpdump

- tcpdump -i <interface> port <porta/serviço> -w <arquivo_captura>
 - Tráfego de E-mails:
 - SMTP: (porta) = 25
 - POP3: (porta) = 110
 - Tráfego Web: (porta) = 80

port [porta]
src [origem]
dst [destino]

```
tcpdump -X -vvv -i eth0 -s 1518 -n port 80 -w coleta.cap
```


Antes do Processo de Extração

Coleta em Redes (Modo Gráfico: Ethereal/Wireshark)

http://www.wireshark.org

Antes do Processo de Extração

Coleta em Redes (Modo Gráfico: Ethereal/Wireshark)

Carving em Imagem de Tráfego de Redes Tcpxtract

- Extrai arquivos (file carving) de tráfego de redes baseado em assinaturas/padrões de arquivos.
- Pode ser usado diretamente capturando/analisando o tráfego de uma rede ou analisando um arquivo .CAP (formato tcpdump)
 - tcpxtract -d /dev/device -o diretorio_destino
 - tcpxtract -f arquivo_cap -o diretorio_destino

```
# tcpdump -X -vvv -n -s 1518 -i eth0 tcp port 80 -w http.cap
```

- # tcpxtract -f http.cap -o examinar
- # nautilus examinar

Demonstração

Data Carving com Tcpxtrace (a partir de captura de tráfego de rede)

Carving em Imagem de Tráfego de Redes

Chaosreader

- Semelhante ao tcpxtract
- Maior nível de detalhes sobre tráfegos (origem/destino)
- Gera relatório HTML (mais adequado para laudos)
- Relatório sumarizado por protocolos capturados/identificados
- Analisa arquivo .CAP (formato tcpdump)
 - chaosreader arquivo_cap -D diretorio_destino
- # tcpdump -X -vvv -n -s 1518 -i eth0 tcp port 80 -w http.cap
- # chaosreader http.cap -D examinar
- # firefox index.html

Demonstração

Data Carving com Chaosreader (a partir de captura de tráfego de rede)

E a Plataforma Windows???

E a Plataforma Windows???

- Existem ferramentas comerciais (inclusive mais fáceis de utilizar) baseadas no sistema operacional Windows, mas esse não foi o foco desta apresentação.
- Sugestão = Netwitness
 - Investigator (freeware)
 - Visualize (\$\$\$\$)

Netwitness Investigator

Netwitness Investigator

Netwitness Analysis

Action Type

Carrian

Network traffic actions identified in the network traffic. Select the Action Type to build a report or session total to view events.

Action Type:	<u>Total</u>		Get Resource (4407)
Get Resource	4407		Get Resource Response (3931)
Get Resource Response	3931		User Login (65) Send MSG (22)
User Login	65		User Logoff (14)
Send MSG	22	3931	440 Read MSG Response (13)
User Logoff	14		Recieve MSG (13)
Read MSG Response	13		Read MSG (6)

Netwitness Visualize

"Resposta" Open Source

Data Carving em Mídias e em Redes :: Ricardo Kléber

Dissector Status Note

www.xplico.org

Dissector Status Note

Dissector	Status	Note	Dissector	Status	Note
Ethernet	100%	_	IPP	90%	_
PPP	90%	_	PJL	90%	_
VLAN	95%	_	NNTP	95%	_
L2TP	70%	_	MSN	10%	_
IPv4	98%	_	IRC	15%	_
IPv6	98%	_	YAHOO	0%	_
TCP	95%	_	GTALK	0%	_
UDP	100%	_	EMULE	096	_
DNS	80%	_	SSL/TLS	0%	with keys
HTTP	100%	_	IPsec	096	with keys
SMTP	95%	_	802.11	60%	no encryp.
POP	95%	_	LLC	60%	_
IMAP	95%	_	MMSE	95%	over HTTP
SIP	80%	_	Linux cooked	95%	SLL
RTP	70%	_	TFTP	90%	_
RTCP	60%	_	SNOOP	100%	Format
SDP	70%	_	PPPoE	90%	_
FB chat	90%	_	Telnet	90%	_
FTP	90%	_	WebMail	90%	_

Considerações Finais

- Diversidade (e robustez) de softwares livres para Data Carving;
- A homologação de ferramentas para o uso pericial passa pela abertura do código (para validação);
- Se você não é (nem pretende ser) perito em informática, pelo menos espero que saiba recuperar seus arquivos apagados acidentalmente:)

Perguntas

Para saber mais...

- (DFRWS) Digital Forensic Research Workshop. (http://dfrws.org)
- Princeton University, (2008). Lest We Remember: Cold Boot Attacks on Encryption Keys.

Center for Information Technology Policy (http://citp.princeton.edu/memory/)

- Mikus, N. (2005). An Analysis of Disc Carving Techniques (Tese de Mestrado) (http://handle.dtic.mil/100.2/ADA432468)
- Kessler, Gary C. (10/2/2008). File Signature Table. (http://www.garykessler.net/library/file_sigs.html)
- Carrier, Brian (2005). File System Forensic Analysis. Addison Wesley.
- Garfinkel, Simson File Carving. (http://www.forensicswiki.org/wiki/Carving)

