

UNCLASSIFIED

AD NUMBER

AD006796

CLASSIFICATION CHANGES

TO: **unclassified**

FROM: **confidential**

LIMITATION CHANGES

TO:

**Approved for public release, distribution
unlimited**

FROM:

**Controlling DOD Organization: Air
Technical Intelligence Center,
Wright-Patterson AFB, OH.**

AUTHORITY

**HAF/IMIO [MDR] ltr dtd 23 Jun 2010;
HAF/IMIO [MDR] ltr dtd 23 Jun 2010**

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

AD NUMBER

AD006796

CLASSIFICATION CHANGES

TO

confidential

FROM

secret

AUTHORITY

31 Mar 1965 per Group-3, DoDD 5200.10

THIS PAGE IS UNCLASSIFIED

AD- 006796

SECURITY REMARKING REQUIREMENTS

DOD 5200.1-R, DEC 78

REVIEW ON 28 MAR 73

CONFIDENTIAL

*Reproduced
by the*

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

DECLASSIFIED AFTER 12 YEARS
DOD DIR 5200.10

CONFIDENTIAL

Reproduced by

Armed Services Technical Information Agency
DOCUMENT SERVICE CENTER

KNOTT BUILDING, DAYTON, 2, OHIO

AD -

67961

TECHNICAL REPORT

NO. TR-AC-17

(RESTRICTED)

WING - STRESS ANALYSIS
MIG-15 - SERIAL NO. 120147

PROJECT NO. 10115

2 MARCH 1953

AIR TECHNICAL INTELLIGENCE CENTER
WRIGHT-PATTERSON AIR FORCE BASE
DAYTON, OHIO

SECRET
AUTH: CG, *AT&T*
INITIALS: F G Hoffman
DATE: 2 March 1953

AD 00 67 96

TECHNICAL REPORT NO. TR-AC-17

(RESTRICTED)

**WING - STRESS ANALYSIS
MIG-15 - SERIAL NO. 120147**

PROJECT NO. 10115

2 MARCH 1953

Published By

**AIR TECHNICAL INTELLIGENCE CENTER
WRIGHT-PATTERSON AIR FORCE BASE
OHIO**

SECURITY INFORMATION

No copyright material is contained in this publication

T53-2510

SECRET

Technical Report No. TR-AC-17

TABLE OF CONTENTS

	<u>Page No.</u>
Summary	1
Section I Wing Section Properties	4
1. List of Symbols	4
2. Section Properties	6
Section II Unit Bending Moments	35
Section III Determination of Load Factors	39
Bibliography	41
Distribution List	43

LIST OF ILLUSTRATIONS

Figure 1 Main Beam Cross Section - Fuselage Centerline	5
Figure 2 Section - Wing Sta. 117.5	7
Figure 3 Section - Wing Sta. 179.4	20
Figure 4 Wing Planform	36

SECURITY INFORMATION
₁

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

SUMMARY

Purpose

The purpose of this stress analysis is to determine the maximum probable load factor for which the wing of the MIG-15 Airplane was designed.

Factual Data

This report was prepared by Cornell Aeronautical Laboratory, Inc., Buffalo, N.Y., under Contract No. AF 33(038)-16993. Because of manpower limitations, the work was not refined to the extent to which it was originally planned. This applies particularly to final selection of the proper amount of effective skin in the section properties.

The work is divided into three sections: the determination of section properties, calculation of unit bending moments, and the computing of permissible design load factors, as indicated by the strength of separate elements. The procedure as outlined in Reference 3 is followed essentially, and is described in detail below.

Discussion

In order to determine the bending strength of a panel, sections at three locations are analyzed. The section at the fuselage center line is a build up I-beam, whereas those at stations 117.5 and 179.4, approximately normal to front and rear spars, consist of conventional built-up beams, angles and skin. Section properties are determined for normal flight, using allowable column buckling stresses and effective skin, according to the method indicated in reference 1. From these allowable and section moduli, allowable bending moments are calculated. The amount of moment relief afforded by the ring bulkhead to Station 0 is assumed to be negligible.

For a 1-g condition at a gross weight of 10,200 pounds airload normal moments are then found, assuming a constant airload distribution over the panel. Drag load moments and the effects of angle of attack are ignored. Similarly dead-weight wing moments are computed. At the time this work was done, dead weight distribution data were unavailable, therefore, a distribution for another airplane was adapted. Finally, at contact points of the sections being investigated, "allowable" bending moments already determined are divided by net moments representing a 1-g loading, thus giving a permissible load factor.

The next step would be to increase the amount of effective skin when the crippling stress has not been attained, and to decrease the effective area of components like the rear spar at Sta. 179.4, which are much less effective than the first determination of section properties indicate. This step was not accomplished.

In the determination of allowable stresses, the material of the skin and stringers was assumed to have the same properties as 24ST aluminum alloy, an approximation substantiated by reference 4. The ultimate load factors, as computed from allowable stresses of critical items at the selected wing stations (Ref. P. 40) are recorded and the locations identified below.

T53-2510

SECRET

Technical Report No. TR-AC-17

ULTIMATE LOAD FACTORS

Item	Sta. 117.5	Sta. 179.4	Sta. 0
A	12.9	-	-
B	12.6	17.3	-
C	13.0	15.2	-
D	-	14.6	-
E	14.4	13.7	-
F	24.6	9.15*	-
Main Beam	-	-	10.75

*Effective area for this item should be reduced.

T53-2510

Conclusions

It appears that the ultimate load factor for the wing would be approximately 12, except for the fact that the factor for the carry-through steel beam is only 10.75.

However, it may be pointed out that this discrepancy does not exist if limit load factors were the criterion of strength. Using the data from reference 4, for the steel beam,

$$N \text{ (Limit)} = \frac{160000}{180000} \times 10.75 = 9.6$$

and for the panel

$$N \text{ (Limit)} = \frac{49000}{63000} \times 12 = 9.4$$

T53-2510

SECRET

Technical Report No. TR-AC-17

SECTION I

WING SECTION PROPERTIES

SYMBOLS

A	-	Area of cross section, square inches
b	-	Width of sections; subscript "bending"
C	-	Fixity sufficient for columns
d	-	Distances as noted
E	-	Modulus of Elasticity in tension
F _c	-	Allowable compressive stress of column
F _{cr}	-	Allowable critical buckling stress
F _{cs}	-	Crippling stress for complete section
H.T.	-	Heat Treat
I _{xx}	-	Moment of Inertia about xx Axis
I _{xp}	-	Moment of Inertia about x centroidal principal axis
I _{xy}	-	Product moment of inertia about centroidal axes
I _{yy}	-	Moment of Inertia about yy axis
I _{yp}	-	Moment of Inertia about y centroidal principal axis
L	-	Length of column
M _A	-	Bending Moment due to Air Load
M _t	-	Total Bending Moment (1G condition)
M _w	-	Bending Moment due to dead weight
N	-	Load Factor
q	-	Dynamic Pressure (psi)
t	-	Thickness
w	-	Sheet Effective Width
W	-	Weight
x'	-	Chord Reference axis
x	-	Chord Centroidal axis
x _p	-	Perpendicular distance from x principal axis to given fiber
y'	-	Wing vertical reference axis
y	-	Wing vertical centroidal axis
y _p	-	Perpendicular distance from y principal axis to given fiber
y	-	Distance from neutral axis to given fiber
φ	-	Angle between centroidal x and y axes and centroidal principal x and y axes
R	-	Radius of Gyration
Σ	-	Summation

T53-2510

SECRET

Technical Report No. TR-AC-17

MAIN BEAM CROSS SECTION - FUSELAGE CENTERLINE

Fig. 1

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Fuselage Centerline

Main Beam (Ref. P. 5)

(1) Item	(2) A	(3) y'	(4) $\Delta y'$ (2)x(3)	(5) $\Delta y'^2$ (3)x(4)	(6) I_{ox}
1 3.52 x .327	1.164	4.05	4.72	19.10	.010
2 .25 x .587/2	.073	3.86	.28	1.09	-
3 .25 x .587/2	.073	3.86	.28	1.09	-
4 .587 x 1.812	1.062	3.31	3.50	11.53	.030
5 .320 x 1.47	.470	2.57	1.21	3.10	.085
6 1.375 x .064/2.8	.031	2.52	.07	.20	-
7 1.375 x .064/2.8	.031	2.52	.07	.20	-
8 1.47 x .32	.470	-2.56	-1.20	3.06	.085
9 1.375 x .064/2.8	.031	-2.51	-.07	.20	-
10 1.375 x .064/2.8	.031	-2.51	-.07	.20	-
11 1.812 x .594	1.075	-3.59	-3.86	13.80	.032
12 .594 x .25/2	.074	-3.69	-.27	1.01	-
13 1.375 x .064/2.8	.031	-3.69	-.11	.42	-
14 3.56 x .334	1.190	-4.05	-4.82	19.50	.013
Σ	5.806		-.279	74.50	.255

*Adjusted for steel by modulus ratio.

$$\bar{y} = \frac{\sum \Delta y' A}{\sum A} = \frac{-.279}{5.806} = -.048 \text{ in.}$$

$$\begin{aligned}
 I_{xx} &= \sum \Delta y'^2 + \sum I_{ox} - \sum \Delta y^2 \\
 &= 74.5 + .255 - 5.806 \times (-.048)^2 \\
 &= 74.755 - .013 \\
 &= 74.74 \text{ in.}^4
 \end{aligned}$$

T53-2510

SECRET

Technical Report No. TR-AC-17

SECTION - WING STA 117.5 (Ref. 2)

Fig. 2

T53-2510

7
SECRET

SECRET

Technical Report No. TR-AC-17

SECTION PROPERTIES - WING STATION 117.5

(Ref. P. 7)

1 Item	2 Δ	3 y'	4 $\Delta y'$	5 $\Delta y'^2$	6 x'	7 $\Delta x'$	8 $\Delta x'^2$	9 $\Delta x'y'$
1	.298	3.156	.94	2.95	-11.01	-3.28	36.1	-10.3
2	.298	3.484	1.04	3.60	-5.84	-1.74	10.1	-6.0
3	.298	4.281	1.28	5.48	-2.25	- .67	1.5	-2.8
4	.130	4.578	.59	2.74	1.78	.23	.4	1.0
5	.115	3.312	.38	1.26	-	-	-	-
6	.156	3.812	.59	2.26	.70	.10	.0	.4
7	.195	3.312	.64	2.14	.12	.02	.0	.0
8	.058	3.234	.18	.60	.23	.01	.0	.0
9	.067	3.703	.24	.91	.73	.05	.0	.1
10	.981	4.190	4.11	17.25	1.18	1.17	1.3	4.9
11	.425	4.547	1.93	8.80	3.60	1.53	5.5	6.9
12	.425	4.625	1.96	9.10	7.12	3.02	21.6	13.9
13	.425	4.656	1.98	9.20	10.17	4.33	44.1	20.2
14	.425	4.656	1.98	9.20	13.04	5.55	72.3	25.8
15	.425	4.578	1.94	8.72	15.96	6.80	109.0	31.2
16	.425	4.453	1.89	8.43	18.89	8.04	152.0	35.8
17	.425	4.281	1.82	7.83	21.76	9.22	200.0	39.5
18	.425	4.015	1.70	6.84	24.70	10.50	259.0	42.1
19	.425	3.718	1.58	5.86	27.28	11.60	316.0	43.2
20	.138	3.390	.46	1.59	31.25	4.31	134.0	14.6
21	.039	3.219	.12	.40	31.90	1.24	39.8	4.0
22	.570	3.156	1.79	5.66	31.25	17.80	554.0	56.0
23	.214	2.969	.63	1.88	31.25	6.68	208.0	19.8
24	1.000	2.500	2.50	6.25	30.07	30.07	906.0	75.2
25	.139	2.797	.39	1.08	31.78	4.42	140.4	12.4
26	.065	2.469	.16	.39	32.18	2.09	67.4	5.1
27	.113	2.703	.30	.82	30.03	3.38	101.8	9.2
28	.228	-3.094	-.70	2.18	30.78	7.03	216.2	-21.7
29	.375	-2.922	-1.09	3.18	30.78	11.55	356.0	-33.8
30	.111	-2.750	-.30	.84	30.78	3.42	105.4	-9.4
31	.156	-1.547	-.24	.37	30.03	4.73	140.4	-7.2
32	.390	-3.281	-1.28	4.20	26.81	10.45	280.0	-34.3
33	.393	-3.484	-1.37	4.78	23.18	9.12	212.0	-31.8
34	.396	-3.578	-1.42	5.07	19.62	7.76	152.5	-27.8
35	.419	-3.703	-1.55	5.70	15.53	6.50	101.0	-24.0
36	.401	-3.734	-1.49	5.57	11.57	4.65	53.7	-17.2
37	.417	-3.703	-1.54	5.70	7.90	3.30	26.2	-12.1
38	.168	-3.641	-.61	2.22	2.57	.43	1.1	-1.5
39	.670	-3.672	-2.46	9.00	1.68	1.13	1.1	-4.1
40	.184	-1.969	-.36	.71	-	-	-	-
41	.188	-2.133	-.40	.85	.12	.02	.0	-.0
42	.203	-2.633	-.53	1.40	.62	.12	.0	-.3
43	.062	-2.031	-.12	.25	.23	.01	.0	-.0
44	.058	-2.500	-.14	.36	.73	.04	.0	-.1
45	1.210	-3.106	-3.76	11.60	.89	1.08	.9	-3.3
46	.554	-3.156	-1.75	5.60	-6.12	-3.39	20.7	+10.7
47	.554	-2.469	-1.36	3.38	-11.93	-6.61	78.6	+16.3
Σ								
	15.836		+10.67	+204.26		+188.46	5126.7	+244.1

T53-2510

8
SECRET

SECRET

Technical Report No. TR-AC-17

$$\bar{y} = \frac{\sum Ay'}{\sum A} = \frac{10.67}{15.836} = .673" \quad (\text{Ref. I - P. A3.11}) \quad (\text{Ref. P. 8})$$

$$\begin{aligned} I_{xx} &= \sum A y'^2 - \sum A (\bar{y})^2 \\ &= 204.26 - 15.836 (.673)^2 \\ &= 204.36 - 7.4^2 \\ &= 197.16 \text{ in.}^4 \end{aligned} \quad (\text{Ref. I - P. A3.11}) \quad (\text{Ref. P. 8})$$

$$\bar{x} = \frac{\sum Ax'}{\sum A} = \frac{188.46}{15.836} = 11.9" \quad (\text{Ref. I - P. A3.11}) \quad (\text{Ref. P. 8})$$

$$\begin{aligned} I_{yy} &= \sum Ax'^2 - \sum A (\bar{x})^2 \\ &= 5126.7 - 15.836 (11.9)^2 \\ &= 5126.7 - 2250 \\ &= 2876.7 \text{ in.}^4 \end{aligned} \quad (\text{Ref. I - P. A3.11}) \quad (\text{Ref. P. 8})$$

$$\begin{aligned} I_{xy} &= \sum Ax'y' - \sum A\bar{y}\bar{x} \\ &= 244.13 - (15.836 \times .673 \times 11.9) \\ &= 244.13 - 127 \\ &= 117.13 \text{ in.}^4 \end{aligned} \quad (\text{Ref. I - P. A3.11}) \quad (\text{Ref. P. 8})$$

$$\tan 2\phi = \frac{2 I_{xy}}{I_y - I_x} \quad (\text{Ref. I - P. A3.11})$$

$$\tan 2\phi = \frac{2 \times 117.13}{2876.7 - 197.16}$$

$$\tan 2\phi = \frac{234.3}{2679.5} = .0877$$

$$2\phi = 5^\circ$$

$$\phi = 2.5^\circ$$

$$I_{xp} = I_x \cos^2 \phi + I_y \sin^2 \phi - 2 I_{xy} \sin \phi \times \cos \phi \quad (\text{Ref. I - P. A3.11})$$

$$I_{xp} = 197.16 \times (.999)^2 + 2876.7 \times (.0436)^2 - [234.3 \times .0436 \times .999]$$

$$I_{xp} = 197.16 + 5.45 - 10.2$$

$$I_{xp} = 192.41 \text{ in.}^4$$

$$I_{yp} = I_x \sin^2 \phi + I_y \cos^2 \phi + 2 I_{xy} \sin \phi \times \cos \phi \quad (\text{Ref. I - P. A3.12})$$

$$I_{yp} = 197.16 \times (.0436)^2 + 2876.7 \times (.999)^2 + [234.3 \times .0436 \times .999]$$

$$I_{yp} = .374 + 2876.7 + 10.2$$

$$I_{yp} = 2887.3 \text{ in.}^4$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Bulb Angle Section - Items 1, 2, 3.

(Ref. P. 7)

Buckling Stress

Element A

$$\frac{b_1}{t_1} = \frac{.698}{.083} = 8.4 \quad F_{cr1} = 38,000 \text{ psi}$$

Element B (Ref. I - Fig. B5.13)

$$\frac{b_2}{t_2} = \frac{.917}{.083} = 11 \quad F_{cr2} = 48,750 \text{ psi} \quad (\text{Ref. I - Fig. B5.13})$$

$$F_{cs} = \frac{(F_{cr1} b_1 + F_{cr2} b_2)}{b_1 + b_2} \quad (\text{Ref. I - P. B5.7(6) })$$

$$F_{cs} = \frac{(38,000 \times .698) + (48750 \times .917)}{.1615}$$

$$F_{cs} = \frac{71,100}{1.615} = 44,000 \text{ psi for Bulb Angle}$$

Effective Skin

$$w = 1.7 t \sqrt{\frac{k}{F_{cs}}} \quad (\text{Ref. I - P. B4.2(6) })$$

$$= 1.7 (.070) \sqrt{\frac{10.3 \times 10^6}{4.4 \times 10^4}} = 1.82 \text{ in.}$$

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Section Properties (Ref. P. 10)

Item	A	y'	A _{y'}	A _{y'} ²	x'	A _{x'}
a 1.8 (.070)	.127	.035	.004	.0001	.432	.055
b .698 (.083)	.058	.107	.006	.0007	.432	.025
c .758 (.083)	.063	.445	.028	.0125	.041	.003
d 3.14 (.141)	.046	.945	.044	.041	.121	.005
	ΣA .294	$\Sigma y'$ = .28	$\Sigma A_{y'}$.082	$\Sigma A_{y'}^2$.054	$\Sigma x'$ = .30	$\Sigma A_{x'}$.088

$$\bar{y} = \frac{\sum A_{y'}}{\sum A} = \frac{.082}{.294} = .28" \quad (\text{Ref. I - P. A3.11})$$

$$\bar{x} = \frac{\sum A_{x'}}{\sum A} = \frac{.088}{.294} = .30"$$

$$I_{xx} = \sum A_{y'}^2 - \sum A_{\bar{y}}^2 \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .054 - .294 (.28)^2 \\ = .031 \text{ in.}^4$$

$$\rho = \sqrt{\frac{I_{xx}}{A}} = \frac{.031}{.294} = .326 \text{ in.} \quad (\text{Ref. I - P. A3.5})$$

Column Allowable Buckling Stress

Using the Johnson Column Formula

$$F_c = F_{cs} - \frac{(F_{cs})^2 \times \left(\frac{L}{\rho}\right)^2}{4 C \pi^2 E} \quad (\text{Ref. I - P. B6.4(3) })$$

$$F_c = 44,000 - \frac{(44000)^2 \left(\frac{10.75}{.326}\right)^2}{4 (2) (3.14)^2 (10.3 \times 10^6)} \\ = 44,000 - 2620 = 41,380 \text{ psi}$$

Revised Effective Skin

$$w = 1.7 t \sqrt{\frac{E}{F_c}} \quad (\text{Ref. I - P. B6.4})$$

$$= 1.7 (.07) \sqrt{\frac{10.3 \times 10^6}{4.138 \times 10^4}} = 1.88 \text{ in.}$$

$$\text{Total area } A = .167 + (1.88 \times .07) = .298 \text{ in.}^2$$

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Bulb Angle Section - Items 11, 12, 13, 14, 15, 16, 17, 18, 19. (Ref. P. 7)

Buckling Stress

Element A

$$\frac{b_1}{t_1} = \frac{.698}{.083 + .035} = 5.9$$

$$F_{cr1} = 43,000 \text{ psi}$$

Element B

(Ref. I - Fig. B5.13)

$$\frac{b_2}{t_2} = \frac{.917}{.083} = 11$$

$$F_{cr2} = 48,750 \text{ psi} \quad (\text{Ref. I - Fig. B5.13})$$

$$F_{cs} = \frac{(43,000 \times .698 \times .118) + (48,750 \times .083 \times .917)}{(.698 \times .118) + (.917 \times .083)}$$

$$F_{cs} = \frac{3540 + 3710}{.0824 + .076} = \frac{7250}{.1584} = 45,900 \text{ psi} \quad (\text{Ref. I - P. B5.7(5)})$$

Effective Skin

$$V = 1.7 \times .070 \quad \sqrt{\frac{10.3 \times 10^6}{4.59 \times 10^4}}$$

(Ref. I - P. B4.2(6))

$$V = 1.78 \text{ in.}$$

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Section Properties (Ref. P. 12)

Item	Δ	y'	$\Delta_{y'}$	$\Delta_{y'}^2$	x'	$\Delta_{x'}$
a 1.78 x .070	.125	.035	.0044	.00015	.432	.0540
b 1.78 x .070	.125	.105	.0131	.00138	.432	.0540
c .698 x .083	.058	.177	.0010	.00182	.432	.0250
d .758 x .083	.063	.514	.0324	.01660	.041	.0026
e $3.14 \times (.121)^2$.046	1.015	.0467	.04740	.121	.0055
	Σ	.417	$\bar{y} = .234$.0976	.06735	$\bar{x} = .339$
						.1411

$$\bar{y} = \frac{.0976}{.417} = .234 \text{ in.} \quad (\text{Ref. I - P. A3.11})$$

$$\bar{x} = \frac{.1411}{.417} = .339 \text{ in.}$$

$$I_{xx} = \sum \Delta_{y'}^2 - \sum \Delta (y')^2 \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .067 - (.417 \times (.234)^2)$$

$$I_{xx} = .067 - .023$$

$$I_{xx} = .044 \text{ in.}^4$$

$$\rho = \sqrt{\frac{.044}{.417}} = .324 \text{ in.} \quad (\text{Ref. I - P. A3.5})$$

Column Allowable Buckling Stress (Ref. I - P. B6.4(3))

$$F_c = 45,900 - \frac{(45,900)^2 \times \left(\frac{10.75}{.324}\right)^2}{4 \times 2 \times (3.14)^2 \times 10.3 \times 10^6} \quad (\text{Ref. P. 12})$$

$$F_c = 45,900 - \frac{23.2 \times 10^{11}}{8.1 \times 10^8}$$

$$F_c = 45,900 - 2860 = 43,040 \text{ psi}$$

Revised Effective Skin

$$w = 1.7 \times .070 \sqrt{\frac{10.3 \times 10^6}{4.304 \times 10^4}} \quad (\text{Ref. I - P. B6.4})$$

$$w = 1.84 \text{ in.}$$

Area of Skin and Doubler

$$A = 1.84 \times .140 = .258 \text{ in.}^2$$

$$\text{Total Area} = .167 + .258 = .425 \text{ in.}^2$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Front Spar Section - Items 4, 5, 6, 7, 8, 9, 10.

(Ref. P. 7)

Buckling Stress

Element A

$$\frac{b_1}{t_1} = \frac{2.28}{.359} = 6.3$$

$$F_{cr1} = 42,500$$

(Ref. I - Fig. B5.13)

Element B

$$\frac{b_2}{t_2} = \frac{.9375}{.218} = 4.3$$

$$F_{cr2} = 46,500 \text{ psi}$$

(Ref. I - Fig. B5.13)

Element C

$$\frac{b_3}{t_3} = \frac{.938}{.264} = 3.55$$

$$F_{cr3} = 49,000 \text{ psi}$$

(Ref. I - Fig. B5.13)

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

$$F_{cs} = \frac{(42,500x2.28x.359)+(46,500x.937x.218)+(49,000x.938x.264)}{(2.28x.359)+(.937x.218)+(.938x.264)}$$

$$F_{cs} = \frac{56,450}{1.272} = 44,500 \text{ psi} \quad (\text{Ref. P. 14})$$

Effective Skin

$$w = 1.7 \times .070 \quad \sqrt{\frac{10.3 \times 10^6}{4.45 \times 10^4}} \quad (\text{Ref. I - P. B4.2(6)})$$

w = 1.81 in.

Section Properties

Item	A	y'	A _{y'}	A _{y'} ²
4 1.81 x .070	.126	.035	.004	0
5 1.250 x .092	.115	1.30	.149	.194
6 1.00 x .156	.156	.800	.125	.100
7 1.250 x .156	.195	1.30	.254	.254
8 .9375 x .062	.058	.950	.055	.055
9 1.09 x .062	.067	1.42	.095	.095
10	.981	.400	.392	.392
	Σ 1.698	$\bar{y} = .633$	1.074	.968

(Ref. P. 14)

$$\bar{y} = \frac{1.074}{1.698} = .633$$

$$I_{xx} = \Sigma A_y'^2 - \Sigma A\bar{y}^2 \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .968 - (1.698 \times (.633)^2)$$

$$I_{xx} = .968 - .68 = .288 \text{ in.}^4$$

$$\rho = \sqrt{\frac{.288}{1.698}} = .412 \text{ in.} \quad (\text{Ref. I - P. A3.11})$$

Column Allowable Buckling Stress

$$F_c = F_{cs} - \frac{F_{cs} x \left(\frac{L}{\rho}\right)^2}{4 c \pi^2 E} \quad (\text{Ref. I - P. B6.4(3)})$$

$$F_c = 44,500 - \frac{(44,500) x \left(\frac{10.75}{.412}\right)^2}{8.1 \times 10^8}$$

$$F_c = 44,500 - 1670 = 42,830 \text{ psi}$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Revised Effective Skin

$$w = 1.7 t \sqrt{\frac{E}{F_c}} \quad (\text{Ref. I - P. B6.4})$$

$$w = 1.7 \times .07 \quad \sqrt{\frac{10.3 \times 10^6}{4.28 \times 10^4}} \quad (\text{Ref. P. 15})$$

$$w = 1.85 \text{ in.}$$

Area of Skin

$$A = 1.85 \times .070 = .130 \text{ in.}^2$$

Rear Spar Section - Items 20, 21, 22, 23, 24, 25, 26, 27. (Ref. P. 7)

Buckling Stress

Element A

$$\frac{b_1}{t_1} = \frac{2.187}{.297} = 7.4$$

$$F_{cr1} = 40,000 \text{ psi} \quad (\text{Ref. I - Fig. B5.13})$$

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Element B

$$\frac{b_2}{t_2} = \frac{1.00}{.133} = 7.5$$

$$F_{cr2} = 40,000 \text{ psi} \quad (\text{Ref. I - Fig. B5.13})$$

Element C

$$\frac{b_2}{t_2} = \frac{1.062}{.131} = 8.1 \quad (\text{Ref. I - Fig. B5.13})$$

$$F_{cr3} = 39,500 \text{ psi}$$

Element D

$$\frac{b_4}{t_4} = \frac{.500}{.131} = 3.8 \quad (\text{Ref. I - Fig. B5.13})$$

$$F_{cr4} = 48,500 \text{ psi}$$

$$F_{cs} = \frac{(40,000 \times 2.187 \times .297) + (48,500 \times .5 \times .131) + (40,000 \times 1 \times .133) + 2.187 \times .297 + (.5 \times .131) + (1.00 \times .133) + (39,500 \times 1.062 \times .131)}{1.062 \times .131} \quad (\text{Ref. I - P. B5.7 (5)})$$

$$F_{cs} = \frac{39,990}{.987} = 40,500 \text{ psi}$$

Effective Skin

$$w = 1.7 \times .070 \quad \sqrt{\frac{10.3 \times 10^6}{4.05 \times 10^4}}$$

(Ref. I - P. B4.2(6))

$$w = 1.90 \text{ in.}$$

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Section Properties (Ref. P. 16)

Item	A	y'	A _{y'}	A _{y'} ²
20 1.90 x .070	.133	.035	.0046	.00016
21 1.25 x .031	.039	.081	.0031	.00026
22 2.281 x .25	.570	.222	.1265	.0281
23 2.281 x .094	.214	.394	.0843	.0332
24 1.00 x .094	.094	.941	.0885	.0890
25 1.062 x .131	.139	.506	.0704	.0356
26 .631 x .131	.082	.756	.0620	.0468
27 1.34 x .078	.104	.767	.0797	.0614
Σ	1.374	$\bar{y} = .378$.519	.2945

$$\bar{y} = \frac{\sum A_y y'}{\sum A} \quad (\text{Ref. I - P. A3.11})$$

$$\bar{y} = \frac{.519}{1.374} = .378 \text{ in.}$$

$$I_{xx} = \sum A_{y'}^2 - \sum A_{y'}^2 \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .2945 - 1.374 \times (.378)^2$$

$$I_{xx} = .2945 - .195 = .0995 \text{ in.}^4$$

$$\rho = \sqrt{\frac{I_{xx}}{A}} \quad (\text{Ref. I - P. A3.5})$$

$$= \sqrt{\frac{.0995}{1.374}} = .269 \text{ in.}$$

Column Allowable Buckling Stress (Ref. I - P. B6.4(3))

$$F_c = 40,500 - \frac{(40,500) \times \left(\frac{10,75}{269}\right)^2}{8.1 \times 10^8} \quad (\text{Ref. P. 17})$$

$$F_c = 40,500 - \frac{26.2 \times 10^{11}}{8.1 \times 10^8}$$

$$F_c = 40,500 - 3240 = 37,260 \text{ psi}$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 117.5

Revised Effective Skin

(Ref. I - P. B6.4)

$$w = 1.7 \times .070 \quad \sqrt{\frac{10.3 \times 10^6}{3.726 \times 10^4}}$$

(Ref. P. 18)

$$w = 1.98 \text{ in.}$$

$$\text{Area of skin } A = 1.98 \times .070 = .138 \text{ in.}^2$$

T53-2510

SECRET

SECRET

Technical Report No. TR-MC-17

SECRET

Technical Report No. TR-AC-17

SECTION PROPERTIES - WING STATION 179.4

1 Item	2 A	3 y'	4 Ay'	5 Ay'^2	6 x'	7 Ax'	8 Ax'^2	9 $Ax'y'$
1	.243	2.250	.547	1.235	-11.187	-2.72	30.4	- 6.12
2	.243	3.156	.765	2.405	- 6.156	-1.49	9.2	- 4.72
3	.243	3.453	.840	2.890	- 2.984	- .72	2.1	- 2.50
4	.077	3.890	.300	1.170	.641	.04	.0	.19
5	.187	3.781	.706	2.675	.656	.12	.0	.46
6	.150	3.640	.546	1.980	.656	.09	.0	.35
7	.109	3.125	.340	1.060	.094	.01	-	.03
8	.067	3.250	.218	.710	-	-	-	-
9	.243	3.875	.940	3.640	6.844	1.66	11.3	6.42
10	.243	3.969	.965	3.840	11.812	2.77	33.8	11.00
11	.243	3.922	.953	3.740	16.719	4.06	68.0	15.90
12	.243	3.609	.876	3.160	21.596	5.25	113.0	18.90
13	.097	3.453	.335	1.160	26.000	2.52	65.8	8.70
14	.051	3.359	.171	.575	26.031	1.33	34.4	4.46
15	.058	2.937	.170	.502	25.560	1.48	37.9	4.35
16	.058	2.937	.170	.502	25.500	1.48	37.6	4.34
17	.355	-2.800	-.995	2.770	25.946	9.22	238.0	-25.80
18	.058	-2.750	-.159	.437	26.033	1.51	39.2	- 4.15
19	.116	-1.812	-.210	.380	25.500	2.96	75.5	- 5.36
20	.586	-3.000	-1.760	5.280	20.096	11.78	237.5	-35.40
21	.586	-3.156	-1.850	5.800	14.000	8.20	115.0	-25.90
22	.586	-3.125	-1.830	5.700	7.625	4.47	34.0	-13.94
23	.490	-2.953	-1.445	4.260	.562	.27	.1	-.81
24	.178	-2.953	-.525	1.550	2.500	.44	1.1	- 1.31
25	.148	-2.844	-.420	1.190	1.687	.25	.4	-.71
26	.292	-2.828	-.826	2.340	.625	.18	.1	-.51
27	.146	-2.625	-.384	1.010	.625	.09	.0	-.24
28	.132	-2.000	-.264	.528	.094	.01	.0	-.02
29	.116	-1.937	-.225	.436	-	-	-	-
30	.165	-2.297	-.379	.870	- 6.281	-1.03	6.5	+ 2.38
31	.165	-1.719	-.284	.487	-11.250	-1.86	20.8	+ 3.20
32	.203	2.10	.426	.894	34.810	7.06	246.0	+14.80
33	.041	2.03	.083	.168	34.820	1.43	49.6	2.90
34	.037	1.66	.061	.102	34.240	1.27	43.3	2.10
35	.041	-1.77	-.072	.128	34.830	1.43	49.6	- 2.51
36	.074	-.86	-.063	.055	34.240	2.53	86.6	- 2.16
37	.455	-2.18	-.990	2.160	31.940	14.50	464.0	-31.60
Σ	7.488		-3.210	67.830		79.61	2151.3	-63.26

T53-2510

SECRET

Technical Report No. TR-AC-17

$$\bar{y} = \frac{-3.21}{7.488} = -.428 \text{ in.} \quad (\text{Ref. I - P. A3.11}) \\ (\text{Ref. P. 21})$$

$$I_{xx} = \sum A y'^2 - \sum A x (\bar{y})^2 \quad (\text{Ref. I - P. A3.11}) \\ = 67.8 - 7.5 x (-.428)^2 \\ = 67.8 - 1.31 \\ = 66.5 \text{ in.}^4 \quad (\text{Ref. P. 21})$$

$$x = \frac{79.61}{7.5} = 10.62 \text{ in.}$$

$$I_{yy} = \sum A x^2 - \sum A x (\bar{x})^2 \quad (\text{Ref. I - P. A3.11}) \\ = 2151.3 - 7.5 x (10.62)^2 \\ = 2151.3 - 847 \\ = 1304 \text{ in.}^4 \quad (\text{Ref. P. 21})$$

$$I_{xy} = \sum A x'y' - \sum A x \bar{x} x \bar{y} \quad (\text{Ref. I - P. A3.11}) \\ = -63.26 - 7.5 x 10.62 x -.428 \\ = -63.26 + 34.1 \\ = -29.16 \text{ in.}^4 \quad (\text{Ref. P. 21})$$

$$\tan 2\phi = \frac{2 I_{xy}}{I_y - I_x} \quad (\text{Ref. I - P. A3.11})$$

$$\tan 2\phi = \frac{-58.32}{1237.5} = -.0472$$

$$\phi = -1^\circ 20'$$

$$I_{xp} = I_x \cos^2 \phi + I_y \sin^2 \phi - 2 I_{xy} \sin \phi x \cos \phi \quad (\text{Ref. I - P. A3.11})$$

$$I_{xp} = 66.5 x (.999)^2 + 1304 x (.0236)^2 - [2 x - 29.16 x - .0236 x .999]$$

$$I_{xp} = 66.5 + .73 - 1.37$$

$$I_{xp} = 66 \text{ in.}^4$$

$$I_{yp} = I_x \sin^2 \phi + I_y \cos^2 \phi + 2 I_{xy} \sin \phi x \cos \phi \quad (\text{Ref. I - P. A3.12})$$

$$I_{yp} = 66.5 x (.0236)^2 + 1304 x (.999)^2 + [2 x - 29.16 x - .0236 x .999]$$

$$= .037 + 1304 + 1.37$$

$$= 1305 \text{ in.}^4$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Bulb Angle Section - Items 1, 2, 3, 9, 10, 11, 12. (Ref. P. 20)

Buckling Stress

Element A

$$\frac{b_1}{t_1} = \frac{.698}{.083} = 8.4$$

$$F_{cr1} = 38,000 \text{ psi} \quad (\text{Ref. I - Fig. B5.13})$$

Element B

$$\frac{b_2}{t_2} = \frac{.917}{.083} = 11.0$$

$$F_{cr2} = 48,750 \text{ psi} \quad (\text{Ref. I - Fig. B5.13})$$

$$F_{cs} = \frac{(F_1 b_1 + F_2 b_2)}{b_1 + b_2} \quad (\text{Ref. I - P. B5.7(6)})$$

$$F_{cs} = \frac{(38,000 \times .698) + (48,750 \times .917)}{.698 + .917}$$

$$F_{cs} = \frac{71,100}{1.615} = 44,000 \text{ psi}$$

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Effective Skin

(Ref. I - P. B4.2(6))

$$w = 1.70 \times .053 \quad \boxed{\frac{10.3 \times 10^6}{4.4 \times 10^4}}$$

(Ref. P. 23)

$$w = .09 \times 15.3$$

$$w = 1.39 \text{ in.}$$

Section Properties

(Ref. P. 23)

Item	Area	y'	$A_{y'}$	$A_{y'}^2$	x'	$A_{x'}$
a	.074	.026	.002	.0	.432	.032
b	.058	.094	.005	.0	.432	.025
c	.063	.432	.027	.013	.041	.003
d	.046	.932	.043	.040	.121	.005
Σ	.241	$\bar{y} = .321$.077	.053	$\bar{x} = .270$.065

$$\bar{y} = \frac{\sum A_{y'}}{\sum A} = \frac{.077}{.241} = .321 \text{ in. (Ref. I - P. A3.11)}$$

$$\bar{x} = \frac{\sum A_{x'}}{\sum A} = \frac{.065}{.241} = .270 \text{ in.}$$

$$I_{xx} = \sum A_{y'}^2 - \sum A_{\bar{y}}^2 \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .053 - .241 \times (.321)^2$$

$$I_{xx} = .053 - .025$$

$$I_{xx} = .0283 \text{ in.}^4$$

$$\rho = \sqrt{\frac{I_x}{A}} \quad (\text{Ref. I - P. A3.5})$$

$$\rho = \frac{.0283}{.2406} = .344 \text{ in.}$$

Johnson's Parabolic Equation

$$F_c = F_{cs} - \frac{F_{cs}^2 \times \left(\frac{l}{\rho}\right)^2}{4 c \pi \cdot 2E} \quad (\text{Ref. I - P. B6.4(3) })$$

$$F_c = 44,000 - \frac{(44,000)^2 \times \left(\frac{11.75}{.344}\right)^2}{4 \times 2 \times (3.14)^2 \times 10.3 \times 10^6} \quad (\text{Ref. P. 23})$$

$$F_c = 44,000 - 2800$$

$$F_c = 41,200 \text{ psi}$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Revised Effective Skin

$$w = 1.7 t \sqrt{\frac{E}{F_c}} \quad (\text{Ref. I - P. B6.4})$$

$$w = 1.7 \times .053 \sqrt{\frac{10.3 \times 10^6}{4.12 \times 10^4}} = 1.43 \text{ in.} \quad (\text{Ref. P. 24})$$

$$A = 1.43 \times .053$$

$$A = .076 \text{ in.}^2$$

$$A = .167 \text{ in.}^2 \quad (\text{Ref. P. 24 b, c, d})$$

$$A = .243 \text{ in.}^2 \quad \text{Total Area}$$

Buckling Stress of Skin Between Rivets

Rivet Spacing = 1.00 in.

F_c = Inter-rivet Buckling Stress of Skin

F_c = 43,000 psi (Ref. I - Fig. B4.4)

Typical Bulb Angle

Column Allowable Buckling Stress

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Section Properties (Ref. P. 25)

Item	A	y'	Δ_y'	$\Delta_y'^2$
a .698 x .083	.058	.041	.0024	.0001
b .758 x .083	.063	.378	.0238	.009
c $\pi \times (.121)^2$.046	.879	.0404	.0354
Σ	.167	y=.398	.0666	.0445

$$\bar{y} = \frac{\sum \Delta_y' A}{\sum A} \quad (\text{Ref. I - P. A3.11})$$

$$y = \frac{.0666}{.167} = .398 \text{ in.}$$

$$I_{xx} = \sum \Delta_y'^2 - \sum \Delta_y'^2 \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .0445 - .167 \times (.398)^2$$

$$I_{xx} = .0445 - .0264$$

$$I_{xx} = .0181 \text{ in.}^4$$

$$\rho = \sqrt{\frac{I_{xx}}{A}} \quad (\text{Ref. I - P. A3.5})$$

$$= \frac{.018}{.167}$$

$$= .328"$$

$$\frac{L}{\rho} = \frac{11.75}{.328} = 35.8$$

$$F_c = 37,500 \text{ psi} \quad (\text{Ref. I - Fig. H1.10})$$

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Front Spar Section - Items 4, 5, 6, 7, 8.

(Ref. P. 20)

Buckling Stress

Element A

$$\frac{b_1}{t_1} = \frac{1.078}{.125 + \frac{.156}{2}} = 5.3$$

$$F_{cr1} = 44,500 \text{ psi} \quad (\text{Ref. I - Fig. B5.13})$$

Element B

$$\frac{b_2}{t_2} = \frac{.875}{.125 + \frac{.058}{2}} = 5.7$$

$$F_{cr2} = 44,000 \text{ psi} \quad (\text{Ref. I - Fig. B5.13})$$

$$F_{cs} = \frac{(44,500 \times 1.078 \times .203) + (44,000 \times .875 \times .154)}{(1.078 \times .203) + (.875 \times .154)} \quad (\text{Ref. I - P. B5.7 (5)})$$

$$F_{cs} = \frac{9750 + 5940}{.354} = \frac{15690}{.354} = 44,300 \text{ psi}$$

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Effective Skin - Item #4

$$w = 1.7 t \sqrt{\frac{E}{F_{cs}}} \quad (\text{Ref. I - P. B4.2(6) })$$

$$w = 1.7 \times .053 \sqrt{\frac{10.3 \times 10^6}{4.43 \times 10^4}} \quad (\text{Ref. P. 27})$$

$$w = .09 \times 15.3$$

$$w = 1.37 \text{ in.}$$

Section Properties

(Ref. P. 27)

Item	A	y'	A_y'	$A_y'^2$
4 1.37 x .053	.073	.026	.0019	0
5 1.203 x .156	.187	.131	.0245	.0032
6 1.078 x .125	.135	.271	.0366	.0099
7 1.00 x .125	.125	.709	.0886	.0628
8 1.156 x .058	.067	.631	.0423	.0268
Σ	.587	.326	.1939	.1027

$$\bar{y} = \frac{\sum A_y'}{\sum A} = \frac{.194}{.595} = .326 \text{ in. } (\text{Ref. I - P. A3.11})$$

$$I_{xx} = \sum A_y'^2 - \bar{y}^2 \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .1027 - .595 \times (.326)^2$$

$$I_{xx} = .040 \text{ in.}^4$$

$$\rho = \sqrt{\frac{I_{xx}}{A}} = \sqrt{\frac{.040}{.595}} = .26 \text{ in. } (\text{Ref. I - P. A3.5})$$

Johnson's Parabolic Column Equation

$$F_c = F_{cs} - \frac{F_{cs}^2 \times \left(\frac{L}{\rho}\right)^2}{4 C \pi^2 E} \quad (\text{Ref. I - P. B6.4(3) })$$

$$F_c = 44,300 - \frac{(44,300)^2 \times \left(\frac{11.75}{.26}\right)^2}{8.12 \times 10^8}$$

$$F_c = 44,300 - 4950 = 39,350 \text{ psi}$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Revised Effective Skin

(Ref. I - P. B6.4)

$$w = 1.70 \times .053 \quad \boxed{\frac{10.3 \times 10^6}{3.935 \times 10^4}}$$

(Ref. P. 28)

$$w = 1.46 \text{ in.}$$

$$\begin{aligned} A &= 1.46 \times .053 \\ &= .077 \text{ in.}^2 \end{aligned}$$

Rear Spar Section - Items 13, 14, 15, 16.

(Ref. P. 20)

Buckling Stress

Element A

$$\frac{b_1}{t_1} = \frac{.875}{.058} = 15.05$$

$$F_{cr1} = 19,500 \text{ psi}$$

(Ref. I - Fig. B5.12)

T53-2510

SECRET

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Element B

$$\frac{b_2}{t_2} = \frac{.942}{.087} = 10.8 \quad (\text{Ref. P. 29})$$

$$F_{cr2} = 31,500 \quad (\text{Ref. I - Fig. B5.12})$$

$$F_{cs} = \frac{(19,500 \times .875 \times .058) + (31,500 \times .942 \times .087)}{(.875 \times .058) + (.942 \times .087)} \quad (\text{Ref. I - P. B5.7 (5)})$$

$$F_{cs} = \frac{290 + 2580}{.0507 + .0819} = \frac{3570}{.1326} \quad (\text{Ref. P. 29})$$

$$F_{cs} = 26,900 \text{ psi}$$

Effective Skin Width

$$w = 1.7 \times .053 \quad \boxed{\frac{10.3 \times 10^6}{2.69 \times 10^4}} \quad (\text{Ref. I - P. B4.2(6)})$$

$$w = 1.77 \text{ in.}$$

Section Properties (Ref. P. 29)

Item	A	y'	$\Delta y'$	$\Delta y'^2$
13 1.77 x .053	.094	.026	.0024	.0001
14 .875 x .058	.051	.082	.0042	.0003
15 1.00 x .058	.058	.553	.0321	.0177
16 1.00 x .058	.058	.553	.0321	.0177
Σ	.261	$\bar{y} = .272$.0708	.0358

$$\bar{y} = \frac{\sum A_y}{\sum A} \quad (\text{Ref. I - P. A3.11})$$

$$\bar{y} = \frac{.071}{.261} = .272 \text{ in.}$$

$$I_{xx} = \sum A_y'^2 - \sum A_y^2 \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .036 - (.261 \times (.272)^2)$$

$$I_{xx} = .036 - .0193 = .0167 \text{ in.}^4$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

$$\rho = \sqrt{\frac{I_{xx}}{A}} \quad (\text{Ref. I - P. A3.5})$$

$$= \sqrt{\frac{.0167}{.261}} \quad (\text{Ref. P. 30})$$

$$= .253 \text{ in.}$$

Column Allowable Buckling Stress

$$F_c = F_{cs} - \frac{F_{cs}^2 \times \left(\frac{L}{b}\right)^2}{4 c \pi^2 E} \quad (\text{Ref. I - P. B6.4(3)})$$

$$F_c = 26,900 - \frac{(26,900^2) \times \left(\frac{11.75}{.253}\right)^2}{8.12 \times 10^8} \quad (\text{Ref. P. 30})$$

$$F_c = 26,900 - 1920 = 24,980$$

$$F_c = 24,980 \text{ psi}$$

Revised Effective Skin

(Ref. I - P. B6.4)

$$w = 1.7 \times .053 \quad \sqrt{\frac{10.3 \times 10^6}{2.498 \times 10^4}}$$

$$w = 1.835 \text{ in.}$$

$$A = 1.835 \times .053 = .097 \text{ in.}^2$$

Aileron Closure Spar - Items 32, 33, 34.

(Ref. P. 20)

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

Buckling Stress

Element A

(Ref. P. 31)

$$\frac{b_1}{t_1} = \frac{1.1}{.037} = 29.8$$

$$F_{cr1} = 5,000 \text{ psi}$$

(Ref. I - Fig. B5.12)

Element B

$$\frac{b_2}{t_2} = \frac{.963}{.037} = 26$$

$$F_{cr2} = 7,000$$

$$F_{cs} = \frac{(5,000 \times 1.1) + (7,000 \times .963)}{1.1 + .963} \quad (\text{Ref. I - P. B5.7(6)})$$

$$F_{cs} = \frac{5,500 + 6,740}{2.063}$$

$$F_{cs} = \frac{12,240}{2.063} = 5940$$

Effective Skin

$$w = 1.7 \times .053 \quad \boxed{\frac{10.3 \times 10^6}{5.94 \times 10^3}} \quad (\text{Ref. I - P. B4.2(6)})$$

$$w = 3.74 \text{ in.}$$

Section Properties

(Ref. P. 31)

Item	A	y'	A _{y'}	A _{y'} ²	x'	A _{x'}
32	$3.74 \times .053$.198	.0265	.0052	.00014	.5685
33	$1.10 \times .037$.0407	.0715	.0029	.00021	.5685
34	$1.0 \times .037$.037	.5053	.0187	.00945	.0185
	Σ	.2757	$y = .103$.0268	.00980	$x = .485$
						.1363

T53-2510

SECRET

Technical Report No. TR-AC-17

Section Properties - Wing Station 179.4

(Ref. I - P. A3.11)

$$\bar{y} = \frac{.0268}{.2757} = .103 \text{ in.} \quad (\text{Ref. P. 32})$$

$$\bar{x} = \frac{\sum A_x}{\sum A} = \frac{.1363}{.2757} = .485 \text{ in.} \quad (\text{Ref. I - P. A3.11})$$

$$I_{xx} = .0098 - (.2757 \times (.103)^2) \quad (\text{Ref. P. 32})$$

$$I_{xx} = .0098 - .0029$$

$$I_{xx} = .0069 \text{ in.}^4$$

$$P = \sqrt{\frac{.0069}{.2757}} = .158 \text{ in.} \quad (\text{Ref. I - P. A3.5})$$

Buckling Stress of Column

(Ref. I - P. B6.4(3))

$$P_c = 5,940 - \frac{(5,940)^2 \times \left(\frac{11.75}{.158}\right)^2}{8.12 \times 10^8} \quad (\text{Ref. P. 32})$$

$$P_c = 5,940 - \frac{35.6 \times 10^6 \times (74.4)^2}{8.12 \times 10^8}$$

$$P_c = 5940 - \frac{1940}{8.12}$$

$$P_c = 5940 - 239 = 5,701 \text{ psi}$$

Revised Effective Skin

(Ref. I - P. B6.4)

$$w = 1.7 \times .053 \quad \sqrt{\frac{10.3 \times 10^6}{5.701 \times 10^3}}$$

$$w = 3.82 \text{ in.}$$

Area of Skin

$$A = 3.82 \times .053 = .203 \text{ in.}^2$$

T53-2510

SECRET

Technical Report No. TR-AC-17

MIG-15 SPAN-WISE DEAD WEIGHT DISTRIBUTION
TOTAL DISTRIBUTED WEIGHT L 4 R 1383 LBS.
SEMI-SPAN WEIGHT - 692 LBS

T53-2510

³⁴
SECRET

SECRET

Technical Report No. TR-AC-17

SECTION II

UNIT BENDING MOMENTS

UNIT DEAD WEIGHT BENDING MOMENTS

(Ref. P. 34)

(1) Station	(2) Shear (Lbs.)	* (3) Arm (In.) C.G. to Sta.	(4) Moment (in.lbs.) (2) x (3)
179.4	91.5	26.2	2,400
117.5	-	-	2,400
	91.5	61.9	5,650
	179.5	37.2	4,880
Σ	271.0	-	12,930
35.0	-	-	12,930
	271.0	82.5	22,300
	421.0	37.2	15,600
Σ	692.0	-	50,830 +

*NOTE - The moment arms for above items were measured along 25% chord line.

+ To account for Wing sweepback of 35° at 25% Chordline.

$$M_w = 50,830 \times \cos 35^{\circ} = 41,600 \text{ in.lb.}$$

T53-2510

SECRET

Technical Report No. TR-AC-17

WING PLANFORM

Fig. 4

T53-2510

SECRET

Technical Report No. TR-AC-17

UNIT BENDING MOMENTS FOR 1000 LB. AIRLOAD

Wing Tip (Sta. 266.5) to Wing Station 179.4

(1) Item (Ref. P. 36)	(2) Area in. ²	(3) Load (Lbs.) .0625 x (2)	(4) *Arm (Inches) CG to Sta. 179.4	(5) Moment (in. lbus.) (3) x (4)
1	5.4	.34	74.5	25.2
2	17.4	1.08	75.0	81.0
3	18.7	1.17	74.5	87.0
4	107.0	6.7	71.5	478.0
5	26.5	1.66	70.5	117.0
6	163.5	10.25	66.3	680.0
7	19.5	1.22	65.3	79.6
8	206.0	12.9	61.3	790.0
9	16.3	1.02	60.5	62.7
10	242.5	15.2	56.3	855.0
11	10.5	.66	55.3	36.5
12	267.5	16.7	51	852.0
13	5.5	.34	50.5	17.4
14	2780.0	174.0	24.5	4260.0
15	179.0	11.2	16.3	182.5
Σ	4065.0	254.4		8605.0

Wing Sta. 179.4 to Wing Sta. 117.5

(1) Item (Ref. P. 36)	(2) Area in.	(3) Load (Lbs.) .0625 x (2)	(4) *Arm (Inches) CG to Sta. 117.5	(5) Moment (in. lbus.) (3) x (4)
1-15	4065.0	-	-	8605.0
16	3730.0	234.0	29.5	6900.0
17	186.6	11.7	19.6	230.0
Σ	7982.0	500.0		30,735.0

*NOTE - The moment arms for the above items were measured along the 25% chord line.

T53-2510

SECRET

Technical Report No. TR-AC-17

UNIT BENDING MOMENTS FOR 1000 LB. AIRLOAD

Wing Station 117.5 to Fuselage Skin Line (Wing Sta. 35)

(1) Item (Ref. P. 36)	(2) Area in. ²	(3) Load (Lbs.) $a \times (2)$	(4) *Arm (Inches) CG to Sta. 35	(5) Moment (in.lbs.) (3) x (4)
1-17	7982.0	-	-	24,800 †
18	-	500.1	58.5	29,200
19	1690.0	106.0	48.5	5,140
20	34.2	2.1	25.0	54
21	1220.0	76.5	31.0	2,370
22	1170.0	73.6	19.5	1,440
23	1040.0	65.2	9.0	586
	15.8	1.0	6.0	6
Σ	13,152.0	824.4	-	63,596
24	2,910.0			
Σ	16,062.0 ‡			

*NOTE - The moment arms were measured as perpendicular distances from the fuselage skin line to the centroids of the above items.

† To account for the wing sweepback of 35° at 25% chordline.

$$\therefore \Sigma M_a = 30,735 \times \cos 35^\circ = 24,800 \text{ in.lb. (Ref. P. 37)}$$

‡ Area of section from Sta. 35 to fuselage centerline.

$$\therefore q = \frac{1000}{16062} = .0625 \text{ psi}$$

T53-2510

SECRET

Technical Report No. TR-AC-17

SECTION III

DETERMINATION OF LOAD FACTORS

For any point on a section, the load factor

$$N = \frac{I F_c}{y (M_a - M_w)}$$

Where:

I	=	Moment of inertia of section	
M_a	=	Airload moment, in.-lbs. for 1 g	
M_w	=	Dead weight moment, in.-lbs. for 1 g	
y	=	Distance from principal axis from drawing	(Ref. 2a)
F_c	=	Allowable stress	

At Sta. 117.5

$$\begin{aligned} M_a &= 30735 & x & 5.1 = 156,900 & (\text{Ref. P. 37}) \\ M_w &= 12930 & & & (\text{Ref. P. 35}) \\ I &= 192.4 & & & (\text{Ref. P. 9}) \\ N &= \frac{192.4 F_c}{143800 y} = .001338 \frac{F_c}{y} \end{aligned}$$

At Sta. 179.4

$$\begin{aligned} M_a &= 8605 & x & 5.1 = 43,900 & (\text{Ref. P. 37}) \\ M_w &= 2400 & & & (\text{Ref. P. 35}) \\ I &= 66 & & & (\text{Ref. P. 22}) \\ N &= \frac{66 F_c}{41500 y} = .001592 \frac{F_c}{y} \end{aligned}$$

The calculations are included in a table on page

At Sta. 0

$$\begin{aligned} M_a &= 63,596 \times 5.1 = 324,000 & (\text{Ref. P. 38}) \\ M_w &= 41,600 & & (\text{Ref. P. 35}) \end{aligned}$$

T53-2510

SECRET

Technical Report No. TR-AC-17

Determination of Load Factors

Sta. 117.5

Item Ref. p - (7)	(1) F_c	(2)	(3)	(4)
	Ref.	y^*	F_c/y	N
2	41380	P. 11	4.3	9630
3	41380	P. 11	4.4	9420
4-10	42830	P. 15	4.42	9700
20-27	37260	P. 18	2.03	18400
15	43040	P. 13	4.1	10750

Sta. 179.4

Item Ref. p - (20)	(1) F_c	(2)	(3)	(4)
	Ref.	y^*	F_c/y	N
3	41200	P. 24	3.8	10830
4-8	39350	P. 28	4.12	9570
9	41200	P. 24	4.5	9150
11	41200	P. 24	4.80	8580
13-16	24980	P. 31	4.35	5850

#NOTE - These values are scaled from drawing.

(Ref. 2a)

At Sta. 0

(Ref. P. 6)

$$\begin{aligned} I_{xx} &= 74.7 \text{ in.}^4 \\ y &= 4.29 \end{aligned}$$

$$\begin{aligned} N &= y \frac{I F_c}{(M_a - M_w)} \\ &= \frac{74.7 (174000)}{4.29 (324000 - 41600)} = 10.75 \end{aligned}$$

(Ref. P. 39)

T53-2510

~~SECRET~~

Technical Report No. TR-AC-17

BIBLIOGRAPHY

1. E. F. Bruhn - "Analysis and Design of Airplane Structures" - Tri-State Offset Company - 1949 Rev. Ed.
2. C.A.L. Drawings
 - (a) No. 391-5-1013
 - (b) No. 391-5-1002
3. Work Statement Exhibit "A"
Enclosure (A) to C.A.L. letter RFF:emc-446 - 10/31/52
4. TR-AC-6 - C.A.L. Bill of Material Study

T53-2510

~~SECRET~~

APR 9 1953

~~SECRET~~

Technical Report No. TR-AC-17

DISTRIBUTION LIST

<u>Organization</u>	<u>No. Copies</u>	<u>Organization</u>	<u>No. Copies</u>
AFODC	1	AU-ACSS	1
AFMAI	1	D/S	1
AFOAC	1	J.I.C.	2
AFOIN	22	ONI	75
AFOPL	1	RDB	2
AFDRQ	1	RDB-FIB	1
AFDRD	2	AFOAC-E/T	2
ADC	3	WESEG	2
AMC-MCP, MCPB, MCPP	3	AFSA	1
APG	4	MATS	1
ARDC	4	Natl War College	1
ATRC	15	7th Air Div	1
ALAC	12	USAFSS	5
ALC	1	NACA, Washington	1
CAirC	1	NACA, Langley	1
ConAC	1	NACA, Lewis	1
NEAC	1	NACA, Ames	1
AFSWC	1	CIA	8
SAC	12	RAND	4
TAC	2	DA G-4	1
CADF	1	USAFE, A-2	3
FEAF	1	12th AF, A-2	8
USAFE	4	FEAMC	1
EADF	1	ATIA	1
FEAF Intell Div	5	ATIX	1
3rd AF	3	ATISD-3	1
USFA	2	ATISE-1	1
WADF	1	ATIAA	4
4 AF	1	Aberdeen Pvg Grd	1
Av Eng Force	1	Air Weapons Rsch Cen.	1
1142nd USAF Sp. Act. Sqd.	1	WCOSI	1
AA Ankara, Turkey	1	WCOE	1
AA London, England	1	WCOW	1
AA Paris, France	1	WCOP	1
AA Rome, Italy	1	WCLO	1
AA Stockholm, Sweden	1	WCLBE	1
AA Bern, Switzerland	1	WCLPP	1
RADC	1	WCLS0	2
Edwards AFB	4	WCRO	1
Arnold Eng. Dev Cen	1	WCTE	1
Patrick AFB	1	USAF AGOS-Librarian	1
6540th AFMIL Holloman AFB	1	ASTIA	1
AU	3	Hq USAFSS-Arlington	1
Asst C/S, G-2	16	ATIRC-1	1
9th AF	1	NSA-252	1
18th AF	1	BAGR-CD	1
AU Library	2	JMIA	1

T52-2510

DEPARTMENT OF THE AIR FORCE

WASHINGTON, DC

23 June 2010

HAF/IMIO (MDR)
1000 Air Force Pentagon
Washington, DC 20330-1000

Bobby Sammons.
P.O. Box 1680
Cloudcroft, NM 88317-1680

Dear Mr. Sammons

Reference to your letter, undated (attachment 1) requesting a Mandatory Declassification Review (MDR) for Defense Technical Information Center (DTIC) documents:

/AD004521	AD005224
AD005736	AD005735
AD006796	AD004876
AD005809	AD003234
AD005808	AD004232

The review for the documents have been completed and the declassification has been downgraded to UNCLASSIFIED and copies are attached for your information.

Address any questions concerning this review to the undersigned at (703) 692-9979 and refer to our case number 07-MDR-076.

Sincerely

JOANNE MCLEAN
Mandatory Declassification Review Specialist

2 Attachments

1. Letter, Request for Documents
2. 10 DTIC Documents

cc: DTIC w/o documents