- 1. Find the distance between the points $\mathbf{A}(-\frac{7}{3},5)$ and $\mathbf{B}(\frac{2}{3},5)$.
- 2. Check whether 13cm, 12cm, 5cm can be the sides of a right triangle.
- 3. (a) If PL and PM are two tangents to a circle with centre **O** from an external point **P** and PL = 4 cm, find the length of OP, where radius of the circle is 3 cm.
 - (b) Find the distance between two parallel tangents of a cicle of radius $2.5~\mathrm{cm}.$
- 4. Find the coordinates of the points which divides the line segment joining the points $\mathbf{A}(7,-1)$ and $\mathbf{B}(-3,-4)$ in the ratio 2:3.
- 5. To divide a line segment QP internally in the ratio 2 : 3, we draw a ray QY such that \angle PQY is acute. What will be the minimum number of points to be located at equal distances on the ray QY?
- 6. Answer any four of the following questions:
 - (i) The point which divides the line segment joining the points (7, -6) and (3, 4) in the ratio 1 : 2 lies in
 - (A) I quadrant
 - (B) II quadrant
 - (C) III quadrant
 - (D) IV quadrant
 - (ii) If the $\mathbf{A}(1,2)$, $\mathbf{O}(0,0)$ and $\mathbf{C}(a,6)$ are collinear, then the value of a is
 - (A) 6
 - (B) $\frac{3}{2}$
 - (C) $\overline{3}$
 - (D) 12
 - (iii) The distance between the points $\mathbf{A}(0,6)$ and $\mathbf{B}(0,-2)$ is
 - (A) 6 units
 - (B) 8 units
 - (C) 4 units
 - (D) 2 units
 - (iv) If $(\frac{a}{3},4)$ is the mid-point of the line segment joining the points (-6,5) and (-2,3), then the value of 'a ' is
 - (A) -4
 - (B) 4
 - (C) -12
 - (D) 12

- (v) What kind of triangle is formed with vertices $\mathbf{A}(0,2)$, $\mathbf{B}(-3,0)$ and $\mathbf{C}(3,0)$?
 - (A) A right triangle
 - (B) An equilateral triangle
 - (C) An isosceles triangle
 - (D) A scalene triangle
- 7. (a) If the distance between the points (k, -2) and (3, -6) is 10 units, find the positive value of k.
 - (b) Find the length of the segment joining $\mathbf{A}(-6,7)$ and $\mathbf{B}(-1,-5)$. Also, find the mid-point of AB.
- 8. A man goes 5 metres due to West and then 12 metres due North. How far is he from the starting point?
- 9. Students of a school are standing in rows and columns in their school playground to celebrate their annual sports day. A, B, C and D are the positions of four students as shown in the figure.

Figure 1: Based on the above, answer the following question :

- (i) The figure formed by the points A, B, C and D is a
 - (A) square
 - (B) parallelogram
 - (C) rhombus
 - (D) quadrilateral
- (ii) If the sports teacher is sitting at the origin, then which of the four students is closest to him?

- (A) **A**
- (B) **B**
- (C) **C**
- (D) **D**
- (iii) The distance between A and C is
 - (A) $\sqrt{37}$ units
 - (B) $\sqrt{35}$ units
 - (C) 6 units
 - (D) 5 units
- (iv) The coordinates of the mid-point of line segment AC are
- (v) If a point **P** divides the line segment AD in the ratio 1:2, then coordinates of \mathbf{P} are
 - (A) $(\frac{8}{3}, \frac{8}{3})$

 - (B) $(\frac{10}{3}, \frac{13}{3})$ (C) $(\frac{13}{3}, \frac{10}{3})$ (D) $(\frac{16}{3}, \frac{11}{3})$
- 10. (a) Check whether the points P(5,-2), Q(6,4) and R(7,-2) are the vertices of an isosceles triangle PQR.
 - (b) Find the ratio in which P(4,5) divides the join of A(2,3) and B(7,8).
- 11. The coordinate of the three consecutive vertices of a parallelogram ABCD are A(1,3), B(-1,2), and C(2,5). Find the coordinates of the fourth vertex \mathbf{D} .
- (a) If P(2,2), Q(-4,-4) and R(5,-8) are the vertices of a $\triangle PQR$, then find the length of the median through \mathbf{R} .
 - (b) Find the ratio in which y-axis divides the line segment joining the points A(5, -6) and B(-1, -4). Also, find the coordinates of the point of intersection.
- 13. (a) Find the ratio in which the line segment joining the points A(1,-5)and $\mathbf{B}(-4,5)$ is divided by the ax-axis. Also, find coordinates of the point of division.
 - (b) The points A(0,3), B(-2,a) and C(-1,4) are the vertices of a right triangle, right-angled at **A**. Find the value of a.