Projeto ABCIA

Módulo 04: Deep Learning

Aula 01

Prof. Dr. Luciano Ferreira Silva

Apresentação do Professor

- Graduado em Matemática (UFU) 2003
- Mestre em Computação Gráfica (UFU) 2006
- Doutor em Computação Gráfica (UFU) 2009
- Certificação em Inteligência Artificial (Huawei HCIA) 2021 🦯

Professor do curso de Ciência da Computação/UFRR desde 2008, atuando nas disciplinas e pesquisa de Computação Gráfica, RV e RA, Compiladores, IHM, Desenvolvimento de jogos e Visão Computacional.

Prof. Dr. Luciano Ferreira Silva E-mail: luciano.silva@ufrr.br

Objetivos de Aprendizagem

- 1. Definir o conceito de rede neural.
 - 1.1. Apresentar os conceitos de: (1) "node"; (2) "node conection"; (3) "weights"; e (4) "bias" no contexto dos parâmetros das redes neurais.

- 2. Identificar finalidade e limitações das redes neurais no contexto da criação de modelos não-lineares.
 - 2.1. Apresentar a finalidade: (1) das funções de ativação; (2) do algoritmo de "backpropagation"; e (3) do algoritmo de "gradient descent".

Deep Learning

Deep Learning

Machine Learning tradicional	Deep Learning
Baixos requisitos de hardware no computador: dada a quantidade limitada de computação, o computador não precisa de uma GPU para computação paralela em geral.	Requisitos mais elevados de hardware no computador: para executar operações de matriz em dados massivos, o computador precisa de uma GPU para executar computação paralela.
Aplicável ao treinamento com uma pequena quantidade de dados e cujo desempenho não pode ser melhorado continuamente à medida que a quantidade de dados aumenta.	O desempenho pode ser alto quando parâmetros de peso de alta dimensão e dados de treinamento massivos são fornecidos.
Discriminação de problemas nível a nível	Aprendizagem Fim a Fim
Seleção manual de recursos	Extração automática de recursos baseada em algoritmo
Recursos fáceis de explicar	Recursos difíceis de explicar

[✓] A Deep Learning (Aprendizagem Profunda) tem grandes vantagens em campos como visão computacional, reconhecimento de fala e processamento de linguagem natural.

Machine Learning tradicional

Deep Learning

- ✓ A arquitetura em Deep Learning geralmente é uma rede neural **profunda**.
 - √O termo "Profunda" em "Deep Learning" refere-se ao número de camadas da rede neural.

Neurônio Humano

Perceptron (1958)

Output

Redes profundas

✓ Definição de rede neural: sistema computacional de processamento de informações, composta por elementos altamente interconectados, projetado para imitar a estrutura e funções do cérebro humano.

Redes profundas

√ Histórico das redes neurais:

- ✓ Vetor de entrada: $X = [x_1, x_2, ..., x_n]$;
- ✓ Pesos (weights): W = $[w_1, w_2, ..., w_n]$;
- ✓ Bias: b;
- ✓ Função de ativação:

$$y = \theta(v) = sign(v) = \begin{cases} 1, v > 0, \\ -1, v \le 0. \end{cases}$$

- ✓ O Perceptron de uma camada é um classificador binário, por exemplo:
 - Se y = 1, resultado Classe A
 - Se y = -1, resultado Classe B

✓Interpretação geométrica do Perceptron de camada única

$$y = \theta(v) = sign(v) = \begin{cases} 1, v > 0, \text{(Classe A)} \\ -1, v \le 0 \end{cases}$$
 (Classe B)

Perceba que toda a classificação ocorre em relação ao Valor 0 (zero)

✓ Analisando então v = 0:

$$v = \sum_{i=1}^{n} w_i x_i + b = 0$$

√ Vamos analisar alguns casos para

$$X = [x_1, x_2, ..., x_n];$$

Caso 1:

$$X = [x_1] \rightarrow W = [w_1]$$

 $w_1 x_1 + b = 0$ Equação de um **Ponto**

Caso 2:

$$X = [x_1, x_2] \rightarrow W = [w_1, w_2]$$

 $w_1 x_1 + w_2 x_2 + b = 0$ Equação de uma **Reta**

Caso 3:

$$X = [x_1, x_2, x_3] \rightarrow W = [w_1, w_2, w_3]$$
 $w_1 x_1 + w_2 x_2 + w_3 x_3 + b = 0$
Equação de um **Plano**

Caso 4:

$$X = [x_1, x_2,..., x_n] \rightarrow W = [w_1, w_2,..., w_3]$$
 $w_1 x_1 + w_2 x_2 + ... + w_n x_n + b = 0$
Hiperplano

✓ Observando um pouco mais de perto:

Caso 2:

$$X = [x_1, x_2] \rightarrow W = [w_1, w_2]$$

$$v = w_1 x_1 + w_2 x_2 + b = 0$$

Equação de uma Reta

Linha de classificação Ax + By + C = 0

✓ Problema XOR: em 1969, Minsky provou que um perceptron não pode processar dados não lineares.

	Χ	Υ		XEY	
V	1	٧	1	V	1
V	1	F	0	F	0
F	0	٧	1	F	0
F	0	F	0	F	0

	Х		Υ	Х	ou Y
٧	1	V	1	V	1
٧	1	F	0	F	1
F	0	٧	1	F	1
F	0	F	0	F	0

	Х	Υ		X XOR Y	
V	1	V	1	V	0
V	1	F	0	F	1
F	0	V	1	F	1
F	0	F	0	F	0

Perceptron multicamadas

✓ Solução do problema XOR:

Rede Neural Feedforward

- ✓ Cada camada se conecta à próxima camada, porém não há caminho de volta.
- ✓ Todas as conexões portanto, têm a mesma direção, partindo da camada de entrada rumo a camada de saída.

Rede Neural Feedforward

✓ Impactos das camadas ocultas em uma rede neural

0 camadas ocultas

3 camadas ocultas

20 camadas ocultas

- ✓ Possibilitam a rede neural aprender e compreender modelos não-lineares complexos.
- ✓Os neurônios realizam a seguinte combinação linear:

✓A função de ativação é a transformação não-linear desse valor.

$$Y = Função_Ativação(\Sigma(pesos * inputs) + bias)$$

✓Esta saída transformada é então enviada para a próxima camada de neurônios como entrada.

✓ Relembrando a solução do problema XOR:

- ✓ Mas qual o porquê do nome "função de ativação"?
- ✓Ela possui a capacidade de "ativar" ou "desativar" um neurônio da próxima camada.
- ✓Observação: as camadas podem ter funções de ativação diferentes.

√ Sigmóide

$$f(x) = \frac{1}{1 + e^{-x}}$$

✓ Softsign

$$f(x) = \frac{x}{|x| + 1}$$

√ ReLU

✓ Softplus

$$f(x) = \ln(e^x + 1)$$

✓ Softmax

$$\sigma(z_j) = \frac{e^{z_j}}{\sum_k e^{z_k}}$$

- ✓É frequentemente usada como a camada de saída de uma tarefa de classificação multiclasse.
- ✓ Mapeia um vetor real K-dimensional para outro vetor K-dimensional, onde cada elemento está no intervalo (0, 1). A soma de todos os elementos resultam 1.
- ✓O valor $\sigma(z_j)$ representa a probabilidade de z_i acontecer.

Gradiente Descendente

- ✓O **Gradiente** (ou **vetor gradiente**) é um vetor que indica o sentido e a direção na qual, por deslocamento a partir do ponto especificado, obtém-se o maior incremento possível no valor de uma grandeza.
- ✓ O gradiente da função multivariada $f(x) = f(x_0, x_1, ..., x_n)$ no $X' = [x_0', x_1', ..., x_n']$ é mostrado da seguinte forma:

$$\nabla f(x_0', x_1', \dots, x_n') = \left[\frac{\partial f}{\partial x_0}, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right]$$

- ✓ Como a direção de ∇f é a de crescimento mais rápido da função, a direção do vetor gradiente negativo $-\nabla f$ é a direção de descida mais rápida da função.
- \checkmark − ∇f recebe o nome de **Gradiente Descendente GD** (*Gradient Descent*).

Gradiente descendente e Função de erro

- ✓ Durante o treinamento uma **função de erro (função de perda)** é usada para refletir o erro entre a saída alvo e a saída real do neurônio.
- ✓ A função de erro mais comum é a Função de custo quadrático (Quadratic cost function).

$$E(w) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
,

Sendo, d é um neurônio na camada de saída, D são todos os neurônios na camada de saída, t_d é a saída de destino, e o_d é a saída real.

✓ O GD de $E(-\nabla E(w))$ permite a atualização dos pesos de forma iterativa, minimizando a função de erro.

Tipos de algoritmos de Gradiente Descendente

Algoritmo	N° de amostras de treino usadas por interação	Velocidade de convergência	Difusão / Aplicação
Batch Gradient Descent (BGD)	Todas	Lento	Pouco usado
Stochastic Gradient Descent (SGD)	Uma amostra aleatória	Variável / Aleatório	Pouco usado
Mini-Batch Gradient Descent (MBGD)	Um lote aleatório de amostras	Intermediário	Muito usado

Algoritmo Backpropagation

- ✓O objetivo do backpropagation é otimizar os pesos para que a rede neural possa aprender a mapear corretamente as entradas para as saídas.
- ✓O algoritmo backpropagation emprega o Gradiente Descendente na Função de Erro para minimizar o erro entre a saída da rede e os valores alvos para estas saídas.
- ✓ O algoritmo realiza esse processo partindo da camada de saída até a camada de entrada.

- 1) Qual dos seguintes problemas não pode ser tratado pelo Perceptron?
- a) AND
- b) OR
- c) XOR
- d) NOT

2) Qual das alternativas a seguir é o intervalo de saída da função ReLU?

- a) [0, inf)
- b) [0, 1]
- c) [-1, 1]
- d) [-1, 0]

- 3) Na rede neural de aprendizado profundo, o perceptron é a rede neural mais simples. A declaração correta sobre sua estrutura é:
- a) Existem apenas duas camadas ocultas
- b) Possui apenas uma camada oculta
- c) Sua rede usa a função de ativação sigmóide
- d) Sua rede usa a função de ativação do RelU

- 4) Nas redes neurais, quais dos seguintes métodos são usados para atualizar os parâmetros ao treinar a rede para minimizar a função de perda?
- a) Algoritmo de propagação Forward
- b) Cálculo de agrupamento
- c) Cálculo da convolução
- d) Algoritmo Backpropagation

- 5) No algoritmo de descida de gradiente, qual dos seguintes algoritmos é o algoritmo mais confuso para a trajetória na superfície da função de perda?
- a) SGD
- b) BGD
- c) MGD
- d) MBGD

- 6) A Rede Neural Feedforward é uma rede neural simples, onde cada neurônio é organizado hierarquicamente, sendo, atualmente, uma das redes neurais artificiais mais utilizadas. Qual das seguintes declarações sobre as redes neurais Feedforward está correta:
- a) Os neurônios com potência de computação estão conectados às camadas superior e inferior
- b) Os nós de entrada tem poder de computação
- c) Neurônios de uma mesma camada são conectados
- d) As informações percorrem a rede da camada de entrada para a de saída

- 7) Quais são as funções de ativação comumente usadas em redes neurais?
- a) Sigmoid
- b) Tanh
- c) ReLU
- d) Danish

