Time-Bounded Sequential Parameter Optimization

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy

Department of Computer Science
University of British Columbia
Canada
{hutter, hoos, kevinlb, murphyk}@cs.ubc.ca

Most algorithms have parameters

- Decisions that are left open during algorithm design
- Instantiate to optimize empirical performance

Most algorithms have parameters

- Decisions that are left open during algorithm design
- ▶ Instantiate to optimize empirical performance
- ► E.g. local search
 - neighbourhoods, restarts, types of perturbations, tabu length (or range for it), etc

Most algorithms have parameters

- Decisions that are left open during algorithm design
- Instantiate to optimize empirical performance
- ► E.g. local search
 - neighbourhoods, restarts, types of perturbations, tabu length (or range for it), etc
- ► E.g., tree search
 - Branching heuristics, no-good learning, restarts, pre-processing, etc

Most algorithms have parameters

- Decisions that are left open during algorithm design
- Instantiate to optimize empirical performance
- ► E.g. local search
 - neighbourhoods, restarts, types of perturbations, tabu length (or range for it), etc
- ► E.g., tree search
 - Branching heuristics, no-good learning, restarts, pre-processing, etc

Automatically find good instantiation of parameters

- ▶ Eliminate most tedious part of algorithm design and end use
- Save development time & improve performance

Parameter Optimization Methods

- Lots of work on numerical parameters, e.g.
 - CALIBRA [Adenso-Diaz & Laguna, '06]
 - Population-based, e.g. CMA-ES [Hansen et al, '95-present]

Parameter Optimization Methods

- Lots of work on numerical parameters, e.g.
 - CALIBRA [Adenso-Diaz & Laguna, '06]
 - Population-based, e.g. CMA-ES [Hansen et al, '95-present]
- Categorical parameters
 - Racing algorithms, F-Race [Birattari et al., '02-present]
 - Iterated Local Search, ParamILS [Hutter et al., AAAI '07 & JAIR'09]

Parameter Optimization Methods

- Lots of work on numerical parameters, e.g.
 - CALIBRA [Adenso-Diaz & Laguna, '06]
 - Population-based, e.g. CMA-ES [Hansen et al, '95-present]
- Categorical parameters
 - Racing algorithms, F-Race [Birattari et al., '02-present]
 - Iterated Local Search, ParamILS [Hutter et al., AAAI '07 & JAIR'09]
- Success of parameter optimization
 - Many parameters (e.g., CPLEX with 63 parameters)
 - Large speedups (sometimes orders of magnitude!)
 - For many problems: SAT, MIP, time-tabling, protein folding, ...

Limitations of Model-Free Parameter Optimization

Model-free methods only return the best parameter setting

- Often that is all you need
 - E.g.: end user can customize algorithm

Limitations of Model-Free Parameter Optimization

Model-free methods only return the best parameter setting

- Often that is all you need
 - E.g.: end user can customize algorithm
- But sometimes we would like to know more
 - How important is each of the parameters?
 - Which parameters interact?
 - For which types of instances is a parameter setting good?
 - → Inform algorithm designer

Limitations of Model-Free Parameter Optimization

Model-free methods only return the best parameter setting

- Often that is all you need
 - E.g.: end user can customize algorithm
- But sometimes we would like to know more
 - How important is each of the parameters?
 - Which parameters interact?
 - For which types of instances is a parameter setting good?
 - → Inform algorithm designer

Response surface models can help

 Predictive models of algorithm performance with given parameter settings

- Original SPO [Bartz-Beielstein et al., '05-present]
 - ▶ SPO toolbox
 - ▶ Set of interactive tools for parameter optimization

- ► Original SPO [Bartz-Beielstein et al., '05-present]
 - SPO toolbox
 - Set of interactive tools for parameter optimization
- ▶ Studied SPO components [Hutter et al, GECCO-09]
 - Want completely automated tool
 - → More robust version: SPO⁺

- Original SPO [Bartz-Beielstein et al., '05-present]
 - SPO toolbox
 - Set of interactive tools for parameter optimization
- ► Studied SPO components [Hutter et al, GECCO-09]
 - Want completely automated tool
 - → More robust version: SPO⁺
- ► This work: TB-SPO, reduce computational overheads

- Original SPO [Bartz-Beielstein et al., '05-present]
 - SPO toolbox
 - Set of interactive tools for parameter optimization
- Studied SPO components [Hutter et al, GECCO-09]
 - Want completely automated tool
 - → More robust version: SPO⁺
- ► This work: TB-SPO, reduce computational overheads
- Ongoing work: extend TB-SPO to handle
 - Categorical parameters
 - Multiple benchmark instances

- Original SPO [Bartz-Beielstein et al., '05-present]
 - SPO toolbox
 - Set of interactive tools for parameter optimization
- Studied SPO components [Hutter et al, GECCO-09]
 - Want completely automated tool
 - → More robust version: SPO⁺
- ► This work: TB-SPO, reduce computational overheads
- Ongoing work: extend TB-SPO to handle
 - Categorical parameters
 - Multiple benchmark instances
 - Very promising results for both

Outline

1. Sequential Model-Based Optimization

2. Reducing the Computational Overhead Due To Models

3. Conclusions

Outline

- 1. Sequential Model-Based Optimization
- 2. Reducing the Computational Overhead Due To Models
- 3. Conclusions

Blackbox function optimization; function = algo. performance

0. Run algorithm with initial parameter settings

Blackbox function optimization; function = algo. performance

0. Run algorithm with initial parameter settings

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data
- 2. Use model to pick promising parameter setting

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data
- 2. Use model to pick promising parameter setting
- 3. Perform an algorithm run with that parameter setting

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data
- 2. Use model to pick promising parameter setting
- 3. Perform an algorithm run with that parameter setting
- ► Repeat 1-3 until time is up

First step

Second step

- 0. Run algorithm with initial parameter settings
- 1. Fit a model to the data
- 2. Use model to pick promising parameter setting
- 3. Perform an algorithm run with that parameter setting
- ► Repeat 1-3 until time is up

First step

Second step

- 0. Run algorithm with initial parameter settings 1000s
- 1. Fit a model to the data
- 2. Use model to pick promising parameter setting
- 3. Perform an algorithm run with that parameter setting
- ► Repeat 1-3 until time is up

First step

Second step

- 0. Run algorithm with initial parameter settings 1000s
- 1. Fit a model to the data 50s
- 2. Use model to pick promising parameter setting
- 3. Perform an algorithm run with that parameter setting
- ► Repeat 1-3 until time is up

First step

Second step

- 0. Run algorithm with initial parameter settings 1000s
- 1. Fit a model to the data 50s
- 2. Use model to pick promising parameter setting 20s
- 3. Perform an algorithm run with that parameter setting
- ► Repeat 1-3 until time is up

First step Second step

Example times

- 0. Run algorithm with initial parameter settings 1000s
- 1. Fit a model to the data 50s
- 2. Use model to pick promising parameter setting 20s
- 3. Perform an algorithm run with that parameter setting 10s
- ▶ Repeat 1-3 until time is up

purpose of the parameter x

---- DACE mean prediction

Function evaluations

DACE mean +/- 2*stdde

Second step

Outline

- 1. Sequential Model-Based Optimization
- Reducing the Computational Overhead Due To Models
 Do More Algorithm Runs To Bound Model Overhead
 Using a Cheaper (and Better!) Model
- 3. Conclusions

Outline

- 1. Sequential Model-Based Optimization
- Reducing the Computational Overhead Due To Models
 Do More Algorithm Runs To Bound Model Overhead
 Using a Cheaper (and Better!) Model
- 3. Conclusions

Removing the costly initial design (phase 0)

- ▶ How to choose number of param. settings in initial design?
 - ▶ Too large: take too long to evaluate all of the settings
 - Too small: poor first model, might not recover

Removing the costly initial design (phase 0)

- ▶ How to choose number of param. settings in initial design?
 - ▶ Too large: take too long to evaluate all of the settings
 - ► Too small: poor first model, might not recover
- Our solution: simply drop the initial design
 - ▶ Instead: interleave random settings during the search
 - Much better anytime performance

Overhead due to Models

Central SMBO algorithm loop

- ► Repeat: Example times
 - 1. Fit model using performance data gathered so far 50s
 - 2. Use model to select promising parameter setting 20s
 - 3. Perform algorithm run(s) with that parameter setting 10s
- → Only small fraction of time spent actually running algorithms

Overhead due to Models

Central SMBO algorithm loop

- ► Repeat: Example times
 - 1. Fit model using performance data gathered so far 50s
 - 2. Use model to select promising parameter setting 20s
 - 3. Perform algorithm run(s) with that parameter setting 10s
- → Only small fraction of time spent actually running algorithms

Solution 1

- Do more algorithm runs to bound model overhead
 - Select not one but many promising points (little overhead)
 - Perform runs for at least as long as phases 1 and 2 took

Heuristic Mechanism

lacktriangle Compare one configuration heta at a time to the incumbent $heta_{\it inc}$

Stop once time bound is reached

Heuristic Mechanism

- \blacktriangleright Compare one configuration θ at a time to the incumbent θ_{inc}
 - Use mechanism from SPO⁺:

Stop once time bound is reached

Heuristic Mechanism

- lacktriangle Compare one configuration heta at a time to the incumbent $heta_{inc}$
 - Use mechanism from SPO⁺:
 - Incrementally perform runs for θ until either
 - + Empirical performance for θ worse than for $\theta_{inc} \rightsquigarrow \text{drop } \theta$
 - + Performed as many runs for θ as for $\theta_{inc} \leadsto \theta$ becomes new θ_{inc}
- Stop once time bound is reached

Heuristic Mechanism

- lacktriangle Compare one configuration heta at a time to the incumbent $heta_{\it inc}$
 - Use mechanism from SPO⁺:
 - Incrementally perform runs for θ until either
 - + Empirical performance for θ worse than for $\theta_{inc} \rightsquigarrow \text{drop } \theta$
 - + Performed as many runs for θ as for $\theta_{inc} \leadsto \theta$ becomes new θ_{inc}
- Stop once time bound is reached

Algorithms

- ▶ TB-SPO
 - Get ordered list of promising parameter settings using model
 - Interleave random settings: 2nd, 4th, etc

Heuristic Mechanism

- lacktriangle Compare one configuration heta at a time to the incumbent $heta_{\it inc}$
 - Use mechanism from SPO⁺:
 - Incrementally perform runs for θ until either
 - + Empirical performance for θ worse than for $\theta_{inc} \rightsquigarrow \text{drop } \theta$
 - + Performed as many runs for θ as for $\theta_{\mathit{inc}} \leadsto \theta$ becomes new θ_{inc}
- Stop once time bound is reached

Algorithms

- ▶ TB-SPO
 - Get ordered list of promising parameter settings using model
 - Interleave random settings: 2nd, 4th, etc
 - Compare one param. setting at a time to incumbent
 - Nice side effect: additional runs on good random settings

Heuristic Mechanism

- lacktriangle Compare one configuration heta at a time to the incumbent $heta_{\it inc}$
 - Use mechanism from SPO⁺:
 - Incrementally perform runs for θ until either
 - + Empirical performance for θ worse than for $\theta_{inc} \rightsquigarrow \text{drop } \theta$
 - + Performed as many runs for θ as for $\theta_{\mathit{inc}} \leadsto \theta$ becomes new θ_{inc}
- Stop once time bound is reached

Algorithms

- ▶ TB-SPO
 - Get ordered list of promising parameter settings using model
 - Interleave random settings: 2nd, 4th, etc
 - Compare one param. setting at a time to incumbent
 - Nice side effect: additional runs on good random settings
- "Strawman" algorithm: TB-Random
 - Only use random settings
 - Compare one param. setting at a time to incumbent

Experimental validation: setup

- ▶ Optimizing SLS algorithm SAPS
 - Prominent SAT solver with 4 continuous parameters
 - Previously used to evaluate parameter optimization approaches

Experimental validation: setup

- Optimizing SLS algorithm SAPS
 - Prominent SAT solver with 4 continuous parameters
 - Previously used to evaluate parameter optimization approaches
- Seven different SAT instances
 - 1 Quasigroups with holes (QWH) instance used previously
 - 3 instances from Quasigroup completion (QCP)
 - 3 instances from Graph colouring based on smallworld graphs (SWGCP)

Both methods with same LHD

Both methods with same LHD

TB-SPO with empty LHD

Both methods with same LHD

TB-SPO with empty LHD

Scenario	SPO^+	TB-SPO	pval1
SAPS-QCP-MED $[\cdot 10^{-2}]$	4.50 ± 0.31	$\textbf{4.32} \pm \textbf{0.21}$	$4 \cdot 10^{-3}$
Saps-QCP-q075	3.77 ± 9.72	0.19 ± 0.02	$2 \cdot 10^{-6}$
Saps-QCP-q095	49.91 ± 0.00	$\boldsymbol{2.20\pm1.17}$	$1 \cdot 10^{-10}$
Saps-QWH [·10 ³]	10.7 ± 0.76	10.1 ± 0.58	$6 \cdot 10^{-3}$
Saps-SWGCP-MED	49.95 ± 0.00	0.18 ± 0.03	$1\cdot 10^{-10}$
Saps-SWGCP-Q075	50 ± 0	$\textbf{0.24} \pm \textbf{0.04}$	$1 \cdot 10^{-10}$
Saps-SWGCP-Q095	50 ± 0	$\boldsymbol{0.25 \pm 0.05}$	$1\cdot 10^{-10}$

Both methods with same LHD

TB-SPO with empty LHD

Scenario	SPO^+	TB-SPO	TB-Random	pval1	pval2
Saps-QCP-MED $[\cdot 10^{-2}]$	4.50 ± 0.31	$\textbf{4.32} \pm \textbf{0.21}$	4.23 ± 0.15	$4 \cdot 10^{-3}$	0.17
Saps-QCP-q075	3.77 ± 9.72	0.19 ± 0.02	0.19 ± 0.01	$2 \cdot 10^{-6}$	0.78
Saps-QCP-Q095	49.91 ± 0.00	$\boldsymbol{2.20 \pm 1.17}$	2.64 ± 1.24	$1\cdot 10^{-10}$	0.12
Saps-QWH [·10 ³]	10.7 ± 0.76	10.1 ± 0.58	9.88 ± 0.41	$6 \cdot 10^{-3}$	0.14
Saps-SWGCP-MED	49.95 ± 0.00	0.18 ± 0.03	0.17 ± 0.02	$1\cdot 10^{-10}$	0.37
Saps-SWGCP-Q075	50 ± 0	$\textbf{0.24} \pm \textbf{0.04}$	$\boldsymbol{0.22 \pm 0.03}$	$1 \cdot 10^{-10}$	0.08
Saps-SWGCP-Q095	50 ± 0	0.25 ± 0.05	0.28 ± 0.10	$1 \cdot 10^{-10}$	0.89

Outline

- 1. Sequential Model-Based Optimization
- 2. Reducing the Computational Overhead Due To Models
 Do More Algorithm Runs To Bound Model Overhead
 Using a Cheaper (and Better!) Model
- 3. Conclusions

- Model I
 - Fit standard GP assuming Gaussian observation noise

Model I: noisy fit of original response

- Model I
 - Fit standard GP assuming Gaussian observation noise
- ▶ Model II (used in SPO, SPO⁺, and TB-SPO)
 - Compute empirical mean of responses at each param. setting
 - Fit noise-free GP to those means

Model I: noisy fit of original response

Model II: noise-free fit of empir. means

- Model I
 - Fit standard GP assuming Gaussian observation noise
- ▶ Model II (used in SPO, SPO⁺, and TB-SPO)
 - Compute empirical mean of responses at each param. setting
 - Fit noise-free GP to those means
 - But assumes empirical means are perfect (even when based on just 1 run!)

Model I: noisy fit of original response

Model II: noise-free fit of empir. means

- Model I
 - Fit standard GP assuming Gaussian observation noise
- ▶ Model II (used in SPO, SPO⁺, and TB-SPO)
 - Compute empirical mean of responses at each param. setting
 - Fit noise-free GP to those means
 - But assumes empirical means are perfect (even when based on just 1 run!)
 - Cheaper (here 11 means vs 110 raw data points)

Model I: noisy fit of original response

Model II: noise-free fit of empir. means

Complexity of Gaussian process regression (GPR)

- n data points
- ▶ Basic GPR equations: inverting $n \times n$ matrix
- ▶ Numerical optimization of hyper-parameters: *h* steps

Complexity of Gaussian process regression (GPR)

- n data points
- ▶ Basic GPR equations: inverting $n \times n$ matrix
- ▶ Numerical optimization of hyper-parameters: *h* steps
- \rightarrow $O(h \cdot n^3)$ for model fitting

Complexity of Gaussian process regression (GPR)

- n data points
- ▶ Basic GPR equations: inverting $n \times n$ matrix
- ▶ Numerical optimization of hyper-parameters: *h* steps
- \rightarrow $O(h \cdot n^3)$ for model fitting
 - \triangleright $O(n^2)$ for each model prediction

Complexity of Gaussian process regression (GPR)

- n data points
- ▶ Basic GPR equations: inverting $n \times n$ matrix
- ▶ Numerical optimization of hyper-parameters: *h* steps
- \rightarrow $O(h \cdot n^3)$ for model fitting
 - \triangleright $O(n^2)$ for each model prediction

Complexity of projected process (PP) approximation

- ▶ Active set of p data points \rightsquigarrow only invert $p \times p$ matrix
- ▶ Throughout: use p = 300

Complexity of Gaussian process regression (GPR)

- n data points
- ▶ Basic GPR equations: inverting $n \times n$ matrix
- ▶ Numerical optimization of hyper-parameters: *h* steps
- \rightarrow $O(h \cdot n^3)$ for model fitting
 - \triangleright $O(n^2)$ for each model prediction

Complexity of projected process (PP) approximation

- ▶ Active set of p data points \rightsquigarrow only invert $p \times p$ matrix
- ▶ Throughout: use p = 300
- ▶ $O(n \cdot p^2 + h \cdot p^3)$ for model fitting
- $ightharpoonup O(p^2)$ for each model prediction

Empirical Evaluation of the Model

Empirical time performance (1000 data points)

 Log_{10} of CPU time (in seconds)

Empirical Evaluation of the Model

Empirical time performance (1000 data points)

 Log_{10} of CPU time (in seconds)

Empirical model quality

- Measures correlation between
 - how promising the model judges a parameter setting to be
 - true performance of that parameter setting (evaluated offline)

Empirical Evaluation of the Model

Empirical time performance (1000 data points)

 Log_{10} of CPU time (in seconds)

Empirical model quality

- Measures correlation between
 - how promising the model judges a parameter setting to be
 - true performance of that parameter setting (evaluated offline)

Correlation (high is good, 1 is optimal)

- ► Comparing:
 - R: TB-Random
 - ► S: TB-SPO

- ► Comparing:
 - R: TB-Random
 - ► S: TB-SPO
 - ▶ P: TB-SPO(PP)

- ► Comparing:
 - R: TB-Random
 - ► S: TB-SPO
 - ▶ P: TB-SPO(PP)
 - ► F: FocusedILS (variant of ParamILS; limited by discretization)

► Comparing:

R: TB-Random

► S: TB-SPO

▶ P: TB-SPO(PP)

► F: FocusedILS (variant of ParamILS; limited by discretization)

Scenario	TB-Random	TB-SPO	TB-SPO(PP)	FOCUSEDILS
Saps-QCP-MED $[\cdot 10^{-2}]$	4.23 ± 0.15	4.32 ± 0.21	$\textbf{4.13} \pm \textbf{0.14}$	5.12 ± 0.41
Saps-QCP-q075	0.19 ± 0.01	0.19 ± 0.02	0.18 ± 0.01	0.24 ± 0.02
Saps-QCP-q095	2.64 ± 1.24	2.20 ± 1.17	1.44 ± 0.53	2.99 ± 3.20
Saps-QWH $[\cdot 10^3]$	9.88 ± 0.41	10.1 ± 0.58	$\textbf{9.42} \pm \textbf{0.32}$	10.6 ± 0.49
Saps-SWGCP-MED	0.17 ± 0.02	0.18 ± 0.03	0.16 ± 0.02	0.27 ± 0.12
Saps-SWGCP-q075	0.22 ± 0.03	0.24 ± 0.04	$\textbf{0.21} \pm \textbf{0.02}$	$\textbf{0.35} \pm \textbf{0.08}$
Saps-SWGCP-Q095	0.28 ± 0.10	0.25 ± 0.05	0.23 ± 0.05	0.37 ± 0.16

- ▶ TB-SPO(PP) best on all 7 instances
- Good models do help

Outline

- 1. Sequential Model-Based Optimization
- 2. Reducing the Computational Overhead Due To Models
- 3. Conclusions

Parameter optimization

- Can be performed by automated approaches
 - Sometimes much better than by human experts
 - Automation can cut development time & improve results

Parameter optimization

- Can be performed by automated approaches
 - Sometimes much better than by human experts
 - Automation can cut development time & improve results

Sequential Parameter Optimization (SPO)

- Uses predictive models of algorithm performance
- Can inform algorithm designer about parameter space

Parameter optimization

- Can be performed by automated approaches
 - Sometimes much better than by human experts
 - Automation can cut development time & improve results

Sequential Parameter Optimization (SPO)

- Uses predictive models of algorithm performance
- Can inform algorithm designer about parameter space

Time-Bounded SPO

- Eliminates Computational Overheads of SPO
 - No need for costly initial design
 - Bounds the time spent building and using the model
 - Uses efficient approximate Gaussian process model
 - ---> Practical for parameter optimization in a time budget

Parameter optimization

- Can be performed by automated approaches
 - Sometimes much better than by human experts
 - Automation can cut development time & improve results

Sequential Parameter Optimization (SPO)

- Uses predictive models of algorithm performance
- Can inform algorithm designer about parameter space

Time-Bounded SPO

- Eliminates Computational Overheads of SPO
 - No need for costly initial design
 - Bounds the time spent building and using the model
 - Uses efficient approximate Gaussian process model
 - → Practical for parameter optimization in a time budget
- Clearly outperforms previous SPO versions and ParamILS

- Generalizations of TB-SPO to handle
 - Categorical parameters
 - Multiple benchmark instances

- Generalizations of TB-SPO to handle
 - Categorical parameters
 - Multiple benchmark instances
- ▶ Applications of Automated Parameter Optimization
 - Optimization of MIP solvers [to be submitted to CP-AI-OR]

- Generalizations of TB-SPO to handle
 - Categorical parameters
 - Multiple benchmark instances
- ▶ Applications of Automated Parameter Optimization
 - Optimization of MIP solvers [to be submitted to CP-AI-OR]
- Use models to gain scientific insights
 - Importance of each parameter
 - Interaction of parameters
 - Interaction of parameters and instances features

- Generalizations of TB-SPO to handle
 - Categorical parameters
 - Multiple benchmark instances
- Applications of Automated Parameter Optimization
 - Optimization of MIP solvers [to be submitted to CP-AI-OR]
- Use models to gain scientific insights
 - Importance of each parameter
 - Interaction of parameters
 - Interaction of parameters and instances features
- Per-instance approaches
 - Build joint model of instance features and parameters
 - Given a new unseen instance:
 - + Compute instance features (fast)
 - + Use parameter setting predicted to be best for those features