Método de Otsu

 Los tonos de gris mayores que un umbral pertenecen a la región segmentada, mientras que el resto pertenece al fondo.

Para escoger el umbral se analiza el histograma

Método para estimar heta de manera automática

(Método de Otsu)

 Los tonos de gris mayores que un umbral pertenecen a la región segmentada, mientras que el resto pertenece al fondo.

• Los tonos de gris mayores que un umbral pertenecen a la región segmentada, mientras que el resto pertenece al fondo.

Funciones Objetivo 1) $J(\theta) = W_0 \sigma_0^2 + W_1 \sigma_1^2 \to \min$ W_0 W_1

Ejemplo

Weight
$$W_b = \frac{8+7+2}{36} = 0.4722$$

Mean $\mu_b = \frac{(0\times8) + (1\times7) + (2\times2)}{17} = 0.6471$
Variance $\sigma_b^2 = \frac{((0-0.6471)^2\times8) + ((1-0.6471)^2\times7) + ((2-0.6471)^2\times2)}{17}$
 $= \frac{(0.4187\times8) + (0.1246\times7) + (1.8304\times2)}{17}$
 $= 0.4637$

Weight
$$W_f = \frac{6+9+4}{36} = 0.5278$$

Mean $\mu_f = \frac{(3\times6)+(4\times9)+(5\times4)}{19} = 3.8947$
Variance $\sigma_f^2 = \frac{((3-3.8947)^2\times6)+((4-3.8947)^2\times9)+((5-3.8947)^2\times4)}{19}$
 $= \frac{(4.8033\times6)+(0.0997\times9)+(4.8864\times4)}{19}$
 $= 0.5152$

Varianza *intra* clase: $\sigma_W^2 = W_b \sigma_b^2 + W_f \sigma_f^2 = 0.4722 \cdot 0.4637 + 0.5278 \cdot 0.5152 = 0.4909$

Varianza *intra* clase: $\sigma_W^2 = W_b \, \sigma_b^2 + W_f \, \sigma_f^2$

Ejemplo

• Minimizar σ_w^2 es equivalente a maximizar σ_B^2

Varianza total:
$$\sigma^2 = \sigma_W^2 + \sigma_B^2$$

Varianza intra clase:
$$\sigma_W^2 = W_b \sigma_b^2 + W_f \sigma_f^2$$

Varianza inter clase:
$$\sigma_B^2 = \sigma^2 - \sigma_W^2$$

$$= W_b (\mu_b - \mu)^2 + W_f (\mu_f - \mu)^2$$

$$= W_b W_f (\mu_b - \mu_f)^2$$

$$= W_b \mu_b + W_f \mu_f \text{ y } W_b + W_f = 1$$

Threshold	т=0	T=1	т=2	т=3	T=4	T=5
Varianza intra clase	$\sigma^2_{W} = 3.1196$	$\sigma^2_{W} = 1.5268$	$\sigma^2_{W} = 0.5561$	$\sigma^2_{W} = 0.4909$	$\sigma^2_{W} = 0.9779$	$\sigma^2_{W} = 2.2491$
Varianza inter clase	$\sigma^2_B = 0$	$\sigma_{B}^{2} = 1.5928$	$\sigma_{B}^{2} = 2.5635$	$\sigma^2_B = 2.6287$	$\sigma_{B}^{2} = 2.1417$	$\sigma_B^2 = 0.8705$

Ejemplos

Derivaciones

$$\begin{array}{l} \bullet \quad V_t \\ = \frac{\sum\limits_{i=1}^{N} (P_i - \mu_t)^2}{N} = \frac{\sum\limits_{i=0}^{N} (P_i^2 - 2 \times P_i \times \mu_t + \mu_t^2)}{N} \\ = \frac{(\sum\limits_{i=0}^{N} P_i^2) - N \times \mu_t^2}{N} = \frac{\sum\limits_{i=0}^{N} P_i^2}{N} - \mu_t^2 \end{array}$$

 P_i es cada pixel de la imagen sobre un total de N

$$\mu_t = W_1 \mu_1 + W_2 \mu_2$$
, $W_1 + W_2 = 1$

$$\mu_1 = \frac{\displaystyle\sum_{P_i \in C_1} P_i}{W_1 \times N} \text{ , } \mu_2 = \frac{\displaystyle\sum_{P_i \in C_2} P_i}{W_2 \times N}$$

$$\begin{array}{l} \bullet \ V_t \\ = \frac{\sum\limits_{i=1}^{N} (P_i - \mu_t)^2}{N} = \frac{\sum\limits_{i=0}^{N} (P_i^2 - 2 \times P_i \times \mu_t + \mu_t^2)}{N} \\ = \frac{\sum\limits_{i=0}^{N} P_i^2) - N \times \mu_t^2}{N} = \frac{\sum\limits_{i=0}^{N} P_i^2}{N} - \mu_t^2 \\ = \frac{\sum\limits_{i=0}^{N} P_i^2 - N \times \mu_t^2}{N} = \frac{\sum\limits_{i=0}^{N} P_i^2}{N} - \mu_t^2 \\ P_i \text{ es cada pixel de la imagen sobre un total de } N \\ t = W_1 \mu_1 + W_2 \mu_2 \ , \ W_1 + W_2 = 1 \end{array}$$

Derivaciones

$$V_b = V_t - V_w$$

 $=W_1 \times W_2 \times (\mu_1 - \mu_2)^2$

$$= \left(\frac{\sum\limits_{i=1}^{N} P_{i}^{2}}{N} - \mu_{t}^{2}\right) - \left(\frac{\sum\limits_{P_{i} \in C_{1}} P_{i}^{2}}{N} - W_{1} \times \mu_{1}^{2} + \frac{\sum\limits_{P_{i} \in C_{2}} P_{i}^{2}}{N} - W_{2} \times \mu_{2}^{2}\right)$$

$$= W_{1} \times \mu_{1}^{2} + W_{2} \times \mu_{2}^{2} - \mu_{t}^{2}$$

$$= W_{1} \times \mu_{1}^{2} + W_{2} \times \mu_{2}^{2} - 2 \times \mu_{t}^{2} + \mu_{t}^{2}$$

$$\because \mu_{t} = W_{1} \times \mu_{1} + W_{2} \times \mu_{2}$$

$$\because W_{1} + W_{2} = 1$$

$$= W_{1} \times \mu_{1}^{2} + W_{2} \times \mu_{2}^{2} - 2 \times (W_{1} \times \mu_{1} + W_{2} \times \mu_{2}) \times \mu_{t} + (W_{1} + W_{2}) \times \mu_{t}^{2}$$

$$= W_{1} \times (\mu_{1}^{2} - 2 \times \mu_{1} \times \mu_{t} + \mu_{t}^{2}) + W_{2} \times (\mu_{2}^{2} - 2 \times \mu_{2} \times \mu_{t} + \mu_{t}^{2})$$

$$= W_{1} \times (\mu_{1} - \mu_{t})^{2} + W_{2} \times (\mu_{2} - \mu_{t})^{2}$$

$$\because \mu_{t} = W_{1} \times \mu_{1} + W_{2} \times \mu_{2}$$

$$= W_{1} \times [(1 - W_{1}) \times \mu_{1} - W_{2} \times \mu_{2}]^{2} + W_{2} \times [W_{1} \times \mu_{1} - (1 - W_{2}) \times \mu_{2}]^{2}$$

$$\because W_{1} + W_{2} = 1$$

$$= W_{1} \times [(W_{2}) \times \mu_{1} - \mu_{2})^{2} \times (W_{2} + W_{1})$$

$$\because W_{1} + W_{2} = 1$$

$$= W_{1} \times W_{2} \times (\mu_{1} - \mu_{2})^{2} \times (W_{2} + W_{1})$$

$$\psi_{b}$$

$$= W_{1} \times (\mu_{1} - \mu_{t})^{2} + W_{2} \times (\mu_{2} - \mu_{t})^{2}$$

$$= W_{1} \times W_{2} \times (\mu_{1} - \mu_{2})^{2} \times (\mu_{2} - \mu_{t})^{2}$$

$$= W_{1} \times W_{2} \times (\mu_{1} - \mu_{2})^{2} \times (\mu_{2} - \mu_{t})^{2}$$

$$= W_{1} \times W_{2} \times (\mu_{1} - \mu_{2})^{2} \times (\mu_{2} - \mu_{t})^{2}$$

Referencias

1. Nobuyuki Otsu (1979), "A Threshold Selection Method from Gray-Level Histograms" – https://ieeexplore.ieee.org/document/4310076