Работа №2.2.1

Исследование взаимной диффузии газов

Цель работы:

- 1) Регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводимости при разных начальных давлениях смеси газов;
- 2) Определение коэффициента диффузии по результатам измерений.

В работе используются:

Измерительная установка; форвакуумный насос; баллон с газом (гелий); манометр; источник питания; магазин сопротивлений; гальванометр; секундомер.

Экспериментальная установка:

Теоретическая часть:

Диффузией называется самопроизвольное перемешивание молекул, происходящее вследствие их теплового движения. В жидкости диффузия происходит быстрее, чем в твердых телах, а в газах — быстрее, чем в жидкостях. В тех случаях, когда изучается перемешивание молекул одного сорта, говорят о самодиффузии, а если перемешиваются разные молекулы — о заимной (или концентрационной) диффузии.

Рассмотрим процесс выравнивания концентрации. Пусть концентрации одного из компонентов смеси в сосудах V_1 и V_2 равны n_1 и n_2 . Плотность диффузионного

потока любого компонента (т. е. количество вещества, проходящее в единицу времени через единичную поверхность) определяется законом Фика:

$$j = -D\frac{\partial n}{\partial x},$$

где D — коэффициент взаимной диффузии газов, а j — плотность потока частиц. В наших условиях решение задачи упрощается благодаря тому, что: а) объем соединительной трубки мал по сравнению с объемами сосудов, б) концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему. Диффузионный поток в любом сечении трубки одинаков. Поэтому $J = -DS(\partial n/\partial x)$ не меняется вдоль трубки. Следовательно,

$$J = -DS \frac{n_1 - n_2}{l}.$$

Обозначим через Δn_1 и Δn_2 изменения концентрации в объемах V_1 и V_2 за время Δt . Тогда $V_1\delta n_1$ равно изменению количества компонента в объеме V_1 , а $V_2\Delta n_2$ — изменению количества этого компонента в V_2 . Из закона сохранения вещества следует, что $V_1n_1+V_2n_2=const$, откуда $V_1\Delta n_1=-V_2\Delta n_2$. Эти изменения происходят вследствие диффузии, поэтому

$$V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t = -DS \frac{n_1 - n_2}{l} \Delta t.$$

Деля это равенство на Δt , получим

$$V_1 \frac{dn_1}{dt} = -DS \frac{n_1 - n_2}{l}, \qquad V_1 \frac{dn_2}{dt} = DS \frac{n_1 - n_2}{l}.$$

Разделив первое из этих уравнений на V_1 , а второе на V_2 и вычтя эти равенства друг из друга, найдем

$$\frac{dn_1}{dt} - \frac{dn_2}{dt} = -\frac{n_1 - n_2}{l} DS \left(\frac{1}{V_1} - \frac{1}{V_2} \right).$$

Введем новую переменную $n_1 - n_2$, после чего уравнение легко интегрируется:

$$n_1 - n_2 = (n_1 - n_2)_0 e^{-t/\tau}, (1)$$

где $(n_1 - n_2)_0$ — разность концентраций в начальный момент времени,

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} \tag{2}$$

Формула (1) показывает, что разность концентраций убывает по экспоненциальному закону, и тем быстрее, чем меньше τ (постоянная времени процесса). Величина τ определяется геометрическими разме- рами установки (l, S, V_1, V_2) и величиной коэффициента диффузии D. Для измерения концентраций в данной установке применяются датчики теплопроводности D_1 , D_2 и используется зависимость теплопроводности газовой смеси от ее состава. Тонкая проволочка радиуса $r_{\rm np}$, протянутая вдоль оси стеклянного цилиндра радиуса $R_{\rm n}$, нагревается током. Тепло от проволочки к стенке цилиндра

переходит главным образом вследствие теплопроводности газа, находящегося внутри цилиндра. Количество тепла, передающееся стенке в единицу времени:

$$Q = \varkappa \frac{2\pi L}{\ln(R_{\text{II}}/r_{\text{IIp}})} \left(T_1 - T_2\right),\,$$

где \varkappa — теплопроводность, L — длина нити, T_1 , T_2 — температуры проволочки и стенки. При заданном режиме нагревания (Q=const) температура проволочки и соответственно ее сопротивление определяются теплопроводностью газа и, следовательно, его составом. В процессе диффузии разность концентраций убывает по закону (1). Потому же закону изменяются во времени показания гальванометра (например, в делениях шкалы), т. е.

$$N = N_0 e^{-t/\tau},$$

где N_0 — показание в начальный момент времени.

Обработка результатов измерений:

Геометрические параметры установки:

V_1 , cm ³ ,	V_2 , cm ³	L/S, 1/cM	$P_{\text{гел}}$	$P_{\text{воз}}$
420 ± 10	420 ± 10	9.0 ± 0.1	$0.2P_{\mathrm{pa6}}$	$1.7P_{\rm pa6}$

a) 48.4 Topp

б) 76.7 Topp

в) 100.5 Topp

г) 151.9 Topp

Рис. 1: Измерения при давлении $P_{\text{рабочее}}$

Для каждого из давлений построим графики, откладывая по оси абсцисс время, а по оси ординат — логарифм от показаний гальванометра и находём угловые коэффициенты каждой прямой:

Рис. 2: Графики в координатах $\ln N(t)$ при давлениях $P_{\text{рабочее}}$

Угловые коэффициенты графиков:

$1/\tau_1, 10^{-3}1/c$	$1/\tau_2$, $10^{-3}1/c$	$1/\tau_3$, $10^{-3}1/c$	$1/\tau_4$, $10^{-3}1/c$
2.33 ± 0.05	1.47 ± 0.03	1.14 ± 0.03	0.74 ± 0.02

Обработка результатов измерений:

Найдём коэффициенты взаимной диффузии газов при выбранных давлениях из формулы (2):

$$D = \frac{L}{S} \cdot \frac{V_1 V_2}{V_1 + V_2} \cdot \frac{1}{\tau}$$

$D_1, \frac{\text{cm}^2}{c}$	$D_2, \frac{c_M^2}{c}$	$D_3, \frac{\text{cm}^2}{c}$	$D_4, \frac{cm^2}{c}$
4404 ± 202	2778 ± 139	2155 ± 108	1399 ± 70

Построим график зависимости $D(\frac{1}{P})$ и по его коэффициенту наклона рассчитаем величину коэффициента диффузии при атмосферном давлении:

Рис. 3: График зависимости $D(\frac{1}{P})$

Коэффициент наклона графика $K=(3.575\pm0.14)\cdot10^{-4}$ Для T=293K и P=760 мм. рт. ст. $\approx10^5$ Па найдем диффузии при нормальных условиях из графика: $D(\frac{1}{P})$:

$$D = (0.54 \pm 0.06) \cdot 10^{-4} \frac{\text{M}^2}{c}$$

Вывод:

В данной работе мы зарегистрировали зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводимости при разных начальных давлениях смеси газов и нашли коэффициент взаимной диффузии газов при нормальных условиях.