

Exercices de mathématiques

Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Anneaux de polynômes II, anneaux quotients

Exercice 1. Dans le cours nous avons déjà montré que le produit de polynômes primitifs est aussi primitif et que

$$c(f \cdot g) = c(f) \cdot c(g) \quad \forall f, g \in \mathbb{Z}[x].$$

- 1. Etant donné $f \in \mathbb{Q}[x]$, alors $f = \alpha \cdot f_0$ où $f_0 \in \mathbb{Z}[x]$ est un polynôme primitif et $\alpha \in \mathbb{Q}$.
- 2. Soit $g \in \mathbb{Z}[x]$ un polynôme primitif, $\alpha \in \mathbb{Q}$ tel que $\alpha \cdot g \in \mathbb{Z}[x]$. Alors $\alpha \in \mathbb{Z}$.
- 3. Considèrons deux polynômes d, f sur \mathbb{Z} . Si d est primitif et d divise f dans $\mathbb{Q}[x]$ alors d divise f dans $\mathbb{Z}[x]$.
- 4. Supposons que $d = \operatorname{pgcd}_{\mathbb{Q}[x]}(f,g)$ soit le p.g.c.d. dans l'anneau $\mathbb{Q}[x]$ de deux polynômes primitifs f et g de $\mathbb{Z}[x]$. Soit $d = \alpha \cdot d_0$ sa représentation de type 1). Montrer que : $d_0 = \operatorname{pgcd}_{\mathbb{Z}[x]}(f,g)$ dans l'anneau $\mathbb{Z}[x]$.
- 5. Soient $f, g \in \mathbb{Z}[x], f = c(f)f_0, g = c(g)g_0$. Alors

$$\operatorname{pgcd}_{\mathbb{Z}[x]}(f,g) = \operatorname{pgcd}_{\mathbb{Z}}(c(f),c(g)) \cdot \operatorname{pgcd}_{\mathbb{Z}[x]}(f_0,g_0).$$

Exercice 2. Démontrer que tout morphisme d'un corps dans un anneau non-trivial est injectif.

Exercice 3. Soit R un anneau intègre dans lequel toute chaîne décroissante d'idéaux est finie. Démontrer que R est un corps.

Exercice 4. Montrer que dans un anneau fini tout idéal premier est maximal.

Exercice 5. Montrer que un idéal propre I de l'anneau A est premier ssi quand le produit de deux idéaux est contenue dans I, alors l'un de deux est contenu dans I. En déduire que si M est un idéal maximal de A, alors le seul idéal premier de A qui contient M^n est M.

Exercice 6. Soit A un anneau. Trouver les anneaux quotients

$$A[x]/(x)$$
, $A[x,y]/(x)$, $A[x,y]/(x,y)$, $A[x_1,x_2,\ldots,x_n]/(x_1,x_2,\ldots,x_n)$

où (x), (x, y), (x_1, x_2, \ldots, x_n) sont les idéaux engendrés réspectivement par x, x et y, x_1 , x_2 , ..., x_n . Sous quelle condition sur l'anneau A ces idéaux sont-ils premiers (maximaux)?

- **Exercice 7.** 1. Trouver le nombre d'éléments de l'anneau quotient $\mathbb{Z}[\sqrt{d}]/(m)$ où $m \in \mathbb{Z}$ et $m \neq 0$.
 - 2. L'idéal principal endendré par 2 est-il premier dans l'anneau $\mathbb{Z}[\sqrt{d}]$?

Exercice 8. Soit A un anneau intègre. On appelle élément premier de A un élément qui engendre un idéal principal premier.

- 1. Montrer que un élément premier est irréductible.
- 2. D'après le cours tout élément irréductible dans un anneau factoriel est premier. Montrer que dans un anneau factoriel, tout idéal premier non nul contient un élément irréductible.
- 3. Nous avons vu que l'élément $3 \in \mathbb{Z}[\sqrt{-5}]$ est irréductible. Montrer que 3 n'est pas premier dans $\mathbb{Z}[\sqrt{-5}]$.
- 4. L'élément 2 est-il irréductible dans l'anneau $\mathbb{Z}[\sqrt{-5}]$?

Exercice 9. 1. Soit A un anneau principal, I un idéal de A. Montrer que tous les idéaux de l'anneau quotient A/I sont principaux.

- 2. Trouver tous les idéaux des anneaux suivants : $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Q}[x]/(f)$ où (f) est l'idéal principal engendré par un polynôme f.
- 3. Trouver les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$ et de $\mathbb{Q}[x]/(f)$.

Exercice 10. Soit I et J deux idéaux de l'anneau A. Considérons la projection canonique

 $\pi_I: A \to A/I$ et l'image $\bar{J} = \pi_I(J)$ de l'idéal J.

- 1. Montrer que \bar{J} est un idéal de l'anneau quotient A/I.
- 2. Démontrer qu'on a l'isomorphisme suivant : $(A/I)/\bar{J}\cong A/(I+J)$. (Indication :. Considérer le morphisme $a+I\mapsto a+(I+J)$ de l'anneau A/I vers l'anneau A/(I+J).)

Exercice 11. Soit f un morphisme de l'anneau A vers l'anneau B.

1. Montrer que l'image réciproque d'un idéal premier est aussi un idéal premier. Cette proposition est-elle vraie pour idéaux maximaux?

- 2. Montrer par un exemple, que l'image f(I) d'un idéal I de A n'est pas forcément un idéal de B. Démontrer cependant que si f est surjectif, alors f(I) est un idéal pour tout idéal I de A. (Voir le cours.)
- 3. Toujours sous l'hypothèse que f est surjective, montrer que l'image d'un idéal maximal par f est soit B tout entier, soit un idéal maximal de B.
- 4. Considérons la reduction de polynômes sur \mathbb{Z} modulo $m: r_m: \mathbb{Z}[x] \to \mathbb{Z}_m[x]$ et deux idéaux premiers principaux (x) et (x^2+1) . Les idéaux $r_6((x))$ et $r_2((x^2+1))$ sont-ils premiers?

Exercice 12. Soit A un anneau, B un sous-anneau de A, I un idéal de A.

- 1. Montrer que $B\cap I$ est un idéal de $B,\,B+I=\{b+i\,|\,b\in B,\,i\in I\}$ est un sous-anneau de l'anneau A et I est un idéal de ce sous-anneau.
- 2. Montrer que l'anneau quotient $B/(B \cap I)$ est isomorphe à l'anneau quotient (B+I)/I. (Indication : Considérer le composé de l'inclusion $B \to B+I$ avec la projection canonique $B+I \to (B+I)/I$.)

- **Correction 1.** 1. Soit $f = \sum_{i=0}^n a_i x^i \in \mathbb{Q}[x]$. Soit $a_i = \frac{p_i}{q_i}$ le représentant irréductible de a_i . Soit $m = \operatorname{ppcm}(q_0, \dots, q_n)$. Notons $m = q_i m_i$. Alors $f = \frac{1}{m} \sum a_i m_i x^i$. En mettant en facteur $d = \operatorname{pgcd}(a_0 m_0, \dots, a_n m_n)$, on obtient $f = \frac{d}{m} f_0$, où $f_0 \in \mathbb{Z}[x]$ est primitif.
 - 2. Notons $\alpha = \frac{p}{q}$, avec $\operatorname{pgcd}(p,q) = 1$ et q > 0. Soit $g_1 = \alpha g$. On a $qg = pg_1$, donc $qc(g) = pc(g_1)$. On en déduit que q|p, et donc que q = 1 : $\alpha \in \mathbb{Z}$.
 - 3. Soit $g \in \mathbb{Q}[x]$ tel que f = dg. Soit $g = \frac{p}{q}g_0$ la décomposition de g donnée par la question 1. Alors $qf = pdg_0$ donc $qc(f) = pc(d)c(g_0) = p$. Donc q|p et finalement q = 1. On en déduit que $g = pg_1 \in \mathbb{Z}[x]$.
 - 4. $d = \operatorname{pgcd}_{\mathbb{Q}}(f,g) = \frac{p}{q}d_0$. Alors d_0 est primitif et divise f et g sur \mathbb{Q} . Donc d_0 divise f et g sur \mathbb{Z} .

 Soit h un diviseur commun de f et g dans $\mathbb{Z}[x]$. On a c(h)|c(f) = 1 donc h est primitif. Par ailleurs, h est un diviseur commun à f et g dans $\mathbb{Q}[x]$, donc $h|d_0$ dans $\mathbb{Q}[x]$. On en déduit que $h|d_0$ dans $\mathbb{Z}[x]$. Ainsi, d_0 est bien un pgcd de f et g dans $\mathbb{Z}[x]$.
 - 5. Soit $d = \operatorname{pgcd}(c(f), c(g))$, $h = \operatorname{pgcd}(f, g) = c(h)h_0$, $h' = \operatorname{pgcd}(f_0, g_0)$. On a d|c(f), d|c(g), $h'|f_0$ et $h'|g_0$ donc dh'|f et h'|g, et donc dh'|h. c(h)|c(f) et c(h)|c(g) donc c(h)|d. h|f, donc il existe $f_1 \in \mathbb{Z}[x]$ tel que $f = h_0c(h)f_1$. On a alors $c(h)c(f_1) = c(f)$, et après simplification, on en déduit que $f_0 = h_0f'_1$, avec $f'_1 \in \mathbb{Z}[x] : h_0|f_0$. De même pour $g : h_0|g_0$. On en déduit que $h_0|h'$, et donc que h|dh'.

Correction 2. Soit K un corps, A un anneau non trivial, et $K \xrightarrow{\phi} A$ un morphisme d'anneaux. Soit $x \in K \setminus \{0\}$. On a $1 = \phi(1) = \phi(xx^{-1}) = \phi(x)\phi(x^{-1}) \neq 0$ (car A n'est pas l'anneau trivial). Donc $\phi(x) \neq 0$. Ainsi $\ker \phi = \{0\}$, donc ϕ est injectif.

Correction 3. Soit $x \in R \setminus \{0\}$. Alors $(x) \supset (x^2) \supset (x^3) \supset$ est une suite décroissante d'idéaux. Elle est donc stationnaire à partir d'un certain rang : $\exists k \in \mathbb{N}, (x^k) = (x^{k+1})$. En particulier, $\exists a \in R, k^{k+1} = ax^k$. Comme A est intègre, on en déduit que ax = 1, donc $x \in R^{\times}$. $R^{\times} = R \setminus \{0\}$ donc R est un corps.

Correction 4. Soit A un anneau fini, et I un idéal premier. Alors A/I est intègre, et fini (!), donc A/I est un corps (voir exercice ??). Donc I est maximal.

Correction 5. On rappelle que le produit de deux idéaux I et J est l'idéal

engendré par les produits de la forme ab avec $a \in I, b \in J$:

$$I \cdot J = \{ \sum_{i=0}^{N} a_i b_i, N \in \mathbb{N}, a_i \in I, b_i \in J \}$$

- Si I est un idéal premier : Soient J et K deux idéaux tels que $J \cdot K \subset I$. Alors si $J \not\subset I$, $\exists a \in x \setminus I$. Soit $y \in K$. On a $xy \in J \cdot K$ donc $xy \in I$. Comme I est premier, $x \in I$ ou $y \in I$. Mais $x \notin I$ donc $y \in I$. Ainsi $\forall y \in K, y \in I$: on a montré que : $J \not\subset I \Rightarrow K \subset I$. On a donc bien $J \subset I$ ou $K \subset I$.
- Si $\forall J, K$ idéaux, $(J \cdot K \subset I \Rightarrow J \subset I \text{ ou } K \subset I)$: Soit $a, b \in A$ avec $ab \in I$. Alors $(a) \cdot (b) = (ab)$ donc $(a) \subset I$ ou $(b) \subset I$ et donc $a \in I$ ou $b \in I$. I est donc premier.

On a $M^n = M \cdot M^{n-1}$. Donc si I est premier et contient M^n alors I contient M ou M^{n-1} , et par une récurrence finie, on obtient que I contient M. Ainsi : $M \subset I \subsetneq A$. Comme M est maximal on en déduit que M = I.

Correction 6. – A[X]/(X): X est unitaire donc on dispose de la division euclidienne par X. On vérifie (comme dans le cours) que chaque classe a un et un seul représentant de degré 0. On en déduit que A[X]/(X) est en bijection avec A. Il reste alors à remarquer que cette bijection est un morphisme d'anneaux.

Une autre façon de dire la même chose est de remarquer que l'application $\phi: A[X] \to A, P \mapsto P(0)$ est un morphisme d'anneaux. $\ker \phi = (X)$ et $\operatorname{Im} \phi = A$. Comme $A/\ker \phi \sim \operatorname{Im} \phi$, on a bien $A[X]/(X) \sim A$.

- On peut considérer $\phi: A[X,Y] \to A[Y], P \mapsto P(0,Y)$. C'est un morphisme d'anneaux. En séparant les termes ne dépendant que de Y des autres, on peut mettre tout polynôme P de A[X,Y] sous la forme $P=P_1(Y)+XP_2(X,Y)$ où $P_1 \in A[Y]$ et $P_2 \in A[X,Y]$. Alors $\phi(P)=0$ ssi $P_1=0$, ssi $P=XP_2$, c'est à dire $P \in (X)$. Ainsi ker $\phi=(X)$. Par ailleurs, tout polynôme P de A[Y] peut être vu comme un polynôme \tilde{P} de A[X,Y]. Alors $P=\phi(\tilde{P})$, donc Im $\phi=A[Y]$. Finalement : $A[X,Y]/(X) \sim A[Y]$.
- A[X,Y]/(X,Y): Soit $\phi: A[X,Y] \to A$, $P \mapsto P(0,0)$. ϕ est un morphisme d'anneaux, et avec les notations précédentes, pour $P = P_1(Y) + XP_2(X,Y)$, avec $\phi(P) = 0$, on a $P_1(0) = 0$, donc $Y|P_1(Y)$. Ainsi, P est la somme de deux polynômes, l'un multiple de X, l'autre multiple de Y donc $P \in (X,Y)$. Réciproquement, si $P \in (X,Y)$, alors P(0,0) = 0. Donc $\ker \phi = (X,Y)$. $\forall a \in A\phi(a) = a$ donc ϕ est surjective. Finalement $A[X,Y]/(X,Y) \sim A$.
- $A[X_1,\ldots,X_n]/(X_1,\ldots,X_n)$: Soit $\phi:A[X_1,\ldots,X_n]\to A,\ P\mapsto P(0).\ \phi$ est un morphisme d'anneaux. En regroupant tous les termes dépendant de

 X_n , puis tous les termes restant dépendant de X_{n-1} , et ainsi de suite jusqu'aux termes dépendant seulement de X_1 , et enfin le terme constant, tout polynôme $P \in A[X_1, \ldots, X_n]$ peut se mettre sous la forme $P = X_n P_n + X_{n-1} P_{n-1} + \cdots + X_1 P_1 + p_0$, avec $P_i \in A[X_1, \ldots, X_i]$ (et $p_0 \in A$). On en déduit que ker $\phi = (X_1, \ldots, X_n)$. Par ailleurs $\forall a \in A, \phi(a) = a$, donc $A[X_1, \ldots, X_n]/(X_1, \ldots, X_n) \sim A$.

Comme un idéal est premier (resp. maximal) ssi le quotient est intègre (resp. un corps), on en déduit que

- dans A[X], (X) est premier ssi A est intègre, maximal ssi A est un corps,
- dans A[X,Y], (X) est premier ssi A est intègre, et n'est jamais maximal,
- dans $A[X_1, \ldots, X_n]$, (X_1, \ldots, X_n) est premier ssi A est intègre, maximal ssi A est un corps.

Correction 7. Soit $\alpha = a + b\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$. Soit a = mp + a' la division euclidienne de a par m, et b = mq + b' celle de b par m. Alors $\alpha = m(p + q\sqrt{d}) + a' + b'\sqrt{d}$. On en déduit que chaque classe du quotient $\mathbb{Z}[\sqrt{d}]/(m)$ a un représentant dans

$$C = \left\{ a + b\sqrt{d}, \ (a, b) \in \{0, \dots, m - 1\}^2 \right\}$$

Par ailleurs si deux éléments $a+b\sqrt{d}$ et $a'+b'\sqrt{d}$ de cet ensemble sont dans la même classe, alors $\exists c, d \in \mathbb{Z}, \ a+b\sqrt{d}=(a'+b'\sqrt{d})+m(c+d\sqrt{d})$. On en déduit que a=a'+mc et b=b'+md, et donc $a=a',\ b=b'$.

Ainsi chaque classe de $\mathbb{Z}[\sqrt{d}]/(m)$ a un représentant unique dans \mathcal{C} . $\mathbb{Z}[\sqrt{d}]/(m)$ et \mathcal{C} sont donc en bijection : en particulier, $\mathbb{Z}[\sqrt{d}]/(m)$ a m^2 éléments. Remarque : on a

$$\mathbb{Z}[\sqrt{d}] \sim \mathbb{Z}[X]/(X^2 - d).$$

En effet l'application $\phi: \mathbb{Z}[X]/(X^2-d) \to \mathbb{Z}[\sqrt{d}], \ \bar{P} \mapsto P(\sqrt{d})$ est bien définie (si $\bar{P}(A) = \bar{Q}$, alors $P(\sqrt{d}) = Q(\sqrt{d})$), et c'est un morphisme d'anneaux. De plus, si $\phi(P) = 0$, notons $P = Q(X^2-d) + (aX+b)$ la division euclidienne de P par X^2-d . En évaluant en \sqrt{d} , on a $a\sqrt{d}+b=0$ donc R=0. On en déduit que $(X^2-d)|P$, i.e. $\bar{P}=0$. On en déduit que ker $\phi=\{0\}$, donc ϕ est injective. Par ailleurs $\forall (a,b) \in \mathbb{Z}^2, \phi(a+bX) = a+b\sqrt{d}$ donc ϕ est surjective.

Si d est pair, comme $\sqrt{d} \cdot \sqrt{d} = |d| \in (2)$ alors que $\sqrt{d} \notin (2)$, (2) n'est pas premier.

Si d est impair : $(1+\sqrt{d})(1+\sqrt{d})=(1+d)+2\sqrt{d}\in(2)$, mais $(1+\sqrt{d})\notin(2)$ donc (2) n'est pas premier.

 $Remarque: \mathbb{Z}[\sqrt{d}]/(2) \sim \mathbb{Z}_2[X]/(X^2+\bar{d}).$ $(X^2+\bar{d})$ est X^2 ou X^2+1 . Aucun de ces deux polynômes n'est irréductible. Donc le quotient ne saurait être intègre.

- **Correction 8.** Si $x \in A$ est premier : soit $a, b \in A$ tels que ab = x. Alors $ab \in (x)$ donc $a \in (x)$ ou $b \in (x)$. On en déduit que $a \sim x$ ou $b \sim x$. Donc x est irréductible.
- A est supposé factoriel. Soit I un idéal premier. Soit $x \in I$ et $x = p_1 \dots p_k$ "la" factorisation de x en produit d'irréductibles. Alors $(p_1 \cdots p_{n-1})p_n \in I$ donc $(p_1 \cdots p_{n-1}) \in I$ ou $p_n \in I$. si p_n in I, I contient un irréductible. Sinon, $(p_1 \cdots p_{n-2})p_{n-1} \in I$. Par une récurrence finie, l'un au moins des $p_i \in I$, donc I contient un irréductible.
- Dans $\mathbb{Z}[\sqrt{-5}]$, 9 ∈ (3). Pourtant 9 = $(2 + \sqrt{-5})(2 \sqrt{-5})$ et $(2 \pm \sqrt{-5}) \notin$ (3). Donc (3) n'est pas premier.
- 2 est irréductible : $2 = z_1 z_2$ avec $z_i \in \mathbb{Z}[\sqrt{-5}]$, alors $|z_1|^2 |z_2|^2 = 4$, donc $\{|z_1|^2, |z_2|^2\} = \{1, 4\}$ ou $\{2, 2\}$. Dans le premier cas, on a affaire à une factorisation triviale. Le second est impossible, puisque l'équation $a^2 + 5b^2 = 2$ n'a pas de solution entière (a, b).

Par ailleurs, $(1+\sqrt{-5})(1+\sqrt{-5})=6\in(2)$, mais $(1\pm\sqrt{-5})\notin(2)$ donc 2 n'est pas premier dans $\mathbb{Z}[\sqrt{-5}]$.

- **Correction 9.** 1. Soit \mathcal{J} un idéal de A/I. Soit π la projection canonique $A \to A/I$, et $J = \pi^{-1}(\mathcal{J})$. J est un idéal de A qui est principal donc $\exists a \in A, J = (a)$. Montrons que $\mathcal{J} = (\pi(a))$.
 - On a $\pi(a) \in \mathcal{J}$ donc $(\pi(a)) \subset \mathcal{J}$. Soit $\alpha \in \mathcal{J}$, et b un représentant de α , i.e. $b \in A$ et $\pi(b) = \alpha$. Alors $b \in J = (a)$, donc $\exists k \in A, b = ka$. Alors $\pi(b) = \pi(ka) = \pi(k)\pi(a)$, donc $\pi(b) \in (\pi(a))$. Donc $\mathcal{J} \subset (\pi(a))$.

Finalement, $\mathcal{J} = (\pi(a))$. On en déduit que A/I est principal.

- 2. $-\mathbb{Z}/n\mathbb{Z}$: Soit I un idéal de $\mathbb{Z}/n\mathbb{Z}$. I est principal, donc $\exists a \in \mathbb{Z}, I = (\bar{a})$. Or $(\bar{a}) = \{\alpha \bar{a}, \alpha \in \mathbb{Z}/n\mathbb{Z}\} = \{\bar{p}\bar{a}, p \in \mathbb{Z}\} = \{\bar{p}\bar{a}, p \in \mathbb{Z}\}$. Donc $\pi^{-1}(I) = \{pa + qn, (p, q) \in \mathbb{Z}^2\}$ est l'idéal engendré sur \mathbb{Z} par a et n donc l'idéal engendré par $d = (\operatorname{pgcd}(n, a))$. On en déduit que $I = (\bar{d})$. En particulier, I est engendré par un diviseur de n.
 - Soit maintenant d_1 et d_2 deux diviseurs (positifs) de n tels que $(\bar{d}_1) = (\bar{d}_2)$. On a $\pi^{-1}((d_1)) = d_1\mathbb{Z} = d_2\mathbb{Z}$ donc $d_1 = d_2$.
 - Ainsi, les idéaux de $\mathbb{Z}/n\mathbb{Z}$ sont engendrés par les diviseurs de n, et deux diviseurs distincts engendrent deux idéaux distincts : il y a donc autant d'idéaux dans $\mathbb{Z}/n\mathbb{Z}$ que de diviseurs de n.
 - $\mathbb{Q}[X]/(f)$: On raisonne de la même manière : la remarque clef étant si $I=(\bar{g})$ est un idéal de $\mathbb{Q}[X]/(f)$, alors $\pi^{-1}(I)=(f,g)=(\operatorname{pgcd}(f,g))$.
- 3. Les idéaux maximaux sont ceux pour lesquels le quotient est un corps, (donc aussi ceux pour lesquels le quotient est intègre puisque $\mathbb{Z}/n\mathbb{Z}$ est

fini). On a le diagramme suivant $(I = (\bar{d}))$:

En effet, π_1 et π_2 sont des morphismes d'anneaux, et $\ker(\pi_2 \circ \pi_1) = d\mathbb{Z}$. Donc $(\mathbb{Z}/n\mathbb{Z})/I$ est un corps ssi d est premier.

De même, $(\mathbb{Q}[X]/(f))/I$ est un corps ssi $I=(\bar{g})$ où g est un facteur premier de f.

- Correction 10. 1. Soit $\alpha, \beta \in \bar{J}$ et $\lambda, \mu \in A/I$. Alors $\exists a, b \in J, l, m \in A$, $\alpha = \pi(a), \beta = \pi(b), \lambda = \pi(l), \mu = \pi(m)$. On a donc $\lambda \alpha + \mu \beta = \pi(la + mb)$. Or $la + mb \in J$ (car J est un idéal), donc $\lambda \alpha + \mu \beta \in \bar{J}$. Donc \bar{J} est un idéal de A/I.
 - 2. Comme dans l'exercice 9, on a le diagramme suivant :

En effet, si $x \in \ker(\pi_2 \circ \pi_1)$, alors $\pi_1(x) \in \ker \pi_2 = \bar{J}$, donc $\exists y \in A, \pi_1(x) = \pi_1(y)$. Alors $x - y \in \ker \pi_1 = I$, donc $\exists z \in I, x = y + z$: on a donc $x \in I + J$. Réciproquement, si $x \in I + J$, alors $\exists (x_1, x_2) \in I \times J, x = x_1 + x_2$. Alors $\pi_1(x) = \pi_1(x_2) \in \bar{J}$, donc $\pi_2 \circ \pi_1(x) = 0$. Donc $\ker(\pi_2 \circ \pi_1) = I + J$. Donc $A/(I + J) \sim (A/I)/\bar{J}$.

Correction 11. 1. Soit $J \subset B$ un idéal premier de B. Soient $a, b \in A$ tels que $ab \in f^{-1}(J)$. Alors $f(a)f(b) = f(ab) \in J$ donc $f(a) \in J$ ou $f(b) \in J$. Ainsi, $a \in f^{-1}(J)$ ou $b \in f^{-1}(J)$. On en déduit que $f^{-1}(J)$ est premier.

Cette proposition n'est pas vraie pour les idéaux maximaux. Par exemple, $A = \mathbb{Z}$, $B = \mathbb{Q}[X]$, f(k) = k, et J = (X). Alors $f^{-1}(J) = \{0\}$ n'est pas maximal.

2. Prenons $A=\mathbb{Z},\,B=\mathbb{Q},\,f(k)=k.$ $f(\mathbb{Z})=\mathbb{Z}$ n'est pas un idéal de \mathbb{Q} $(1\in\mathbb{Z},\,\frac{1}{2}\in\mathbb{Q}$ et pourtant $1\times\frac{1}{2}\notin\mathbb{Z})$

Supposons f surjectif. Soit $x, y \in f(I)$, $a, b \in B$. Il existe $x_0, y_0 \in I$ tels que $x = f(x_0)$ et $y = f(y_0)$. De plus, comme f est surjectif, $\exists a_0, b_0 \in A$ tels que $a = f(a_0)$ et $b = f(b_0)$. Alors $ax + by = f(a_0)f(x_0) + f(b_0)f(y_0) = f(a_0x_0 + b_0y_0)$ et comme I est un idéal, $(a_0x_0 + b_0y_0) \in I$, donc $(ax + by) \in f(I)$.

f(I) est donc bien un idéal de B.

- 3. Soit I un idéal maximal de A et J=f(I). Supposons $J\neq B$. Soit K un idéal de B tel que $J\subset K$. Alors $I\subset f^{-1}(K)$, donc $f^{-1}(K)=I$ ou $f^{-1}(K)=A$. Dans le premier cas, on $K=f(f^{-1}(K))=J$, dans le second cas, on a $K=f(f^{-1}(K))=f(A)=B$. L'idéal J est donc maximal.
- 4. $(X+2)(X+3) = X^2 + 5X$ dans $\mathbb{Z}_6[X]$, donc $(X+\bar{2})(X+\bar{3}) \in (X)$, mais $(X+\bar{2}) \notin (X)$ et $(X+\bar{3}) \notin (X)$, donc $r_6((X))$ n'est pas premier dans $\mathbb{Z}_{36}[X]$. $(X+1)^2 = (X^2+1)$ dans $\mathbb{Z}_2[X]$, or $(X+1) \notin (X^2+1)$, donc $r_2((X^2+1))$

 $(X+1)^2 = (X^2+1)$ dans $\mathbb{Z}_2[X]$, or $(X+1) \notin (X^2+1)$, donc $r_2((X^2+1))$ n'est pas premier dans $\mathbb{Z}_2[X]$.

Correction 12. 1. Soit $J = B \cap I$. Soit $x, y \in J$, $a, b \in B$, alors $ax + by \in B$ puisque B est un sous-anneau de A. $ax + by \in I$ puisque I est un idéal. On en déduit que J est un idéal.

B+I est stable par addition (car B et I le sont). Soit $\alpha=a+x\in B+I$ et $\beta=b+y\in B+I$. Alors $\alpha\beta=(ab)+(ay+bx+xy)\in B+I$, donc B+I est stable par multiplication. $1\in B+I$, donc B+I est un sous anneau de A. $I\subset B+I$, et I est absorbant pour la multiplication dans A, donc aussi dans B:I est un idéal de B+I.

2. On a le diagramme (de morphismes d'anneaux) suivant :

Or, pour $x \in B$, on a : $x \in \ker \phi \Leftrightarrow x = i(x) \in \ker \pi = I$. Donc $\ker \phi = B \cap I$, et par suite :

$$B/(B \cap I) \sim (B+I)/I$$
.