1 Why does Theorem VIII.1.14 not contradict Example VII.5.1

Take \mathbb{T} as the unit circle in the complex plane, and take $\mathscr{A} = C(\mathbb{T})$ and $\mathscr{B} \subset \mathscr{A}$ the closure in \mathscr{A} of polynomials in z. $\sigma_{\mathscr{A}}(z) = \mathbb{T}$ and $\sigma_{\mathscr{B}}(z) = cl\mathbb{T} = \text{unit disk}$.

This appears to contradict VIII.1.14 since \mathbb{B} is a subset of \mathscr{A} with a common identity (namely the function that maps \mathbb{T} to 1) and common norm (namely the sup norm), yet the spectra of a shared point (in this case z) differ.

However, the premise of VIII.1.14 requires both $\mathscr A$ and $\mathscr B$ to be C* algebras, and while $\mathscr A$ is closed under taking the adjoint, $\mathscr B$ is not.

Take z^* , which as a function equals $z^{-1}/||z||$. The problem thus reduces to on what subset of the complex plane the function 1/z is holomorphic.

Here my complex analysis is too weak, but certainly the whole unit disk would be no good since it contains a pole. I believe the circle is also out because of some fact about winding numbers that I can't remember.