TERMINOLOGY

A DEFINITION OF ROBOT

A reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.

REVOLUTE AND PRISMATIC JOINT

Advantage of	Advantage of
Revolute Joint	Prismatic Joint
More compact	Easy to design
(take smaller	and calculate the
space to achieve	forward and
the same amount	inverse
of movement;	kinematics;
Easy to	Less susceptible
manufacture;	to singularities *;
Easy to actuate;	Workspace is
Able to change	rectangular;
the orientation of	
end-effector.	

CONFIGURATION

A complete specification of the location of every point on the manipulator Zero configuration: Where all joint values are 0.

Configuration Space: the set of all possible configurations considering only joint limits

WORKSPACE

- 1. The total volume swept out by the **end-effector point** as the robot does all possible motions
- 2. The Cartesian Space in which the robot moves

Obstacle: Areas of the workspace that the robot should not occupy

Reachable workspace

Non-holonomic constraint *1 LINK, JOINT, END-EFFECTOR, BASE MULTIPLE COORDINATE FRAMES

algebraic manipulation such as addition or subtraction must be between vectors expressed in the same frame or in parallel frames

ROTATION

VECTOR, COORDINATE, FRAME algebraic manipulation is meaningless unless between free vectors expressed under **the same** or **parallel** frames ROTATION MATRIX

$$R_{1}^{0} = \begin{bmatrix} x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\ x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\ x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0} \end{bmatrix}$$
$$= \begin{bmatrix} x^{0} & y^{0} & z^{0} \end{bmatrix}$$

 $= [x_1^0, y_1^0, z_1^0]$

R must be what we call a "SO(3)":

Special Orthogonal group of order 3; Each column is a unit vector; Columns are mutually orthogonal; DOF=3 $R^{-1} = R^T$

Basic rotation matrices: $R_{x,\theta}$, $R_{y,\theta}$, $R_{z,\theta}$

The three interpretations of R_1^0 :

- The orientation of *one frame (1)* with respect to *another frame (0)*
- Coordinate transformation relating a point *p in two frames (1 and 0)*
- Rotate a vector to yield a new vector in the same frame (0)

COMPOSITE ROTATION

Successive rotation about a fixed

frame: pre-multiplying

Successive rotation about intermediate

frame: post-multiplying (more commonly used in robots)

PARAMETERIZATION

Euler Angles

Convention: $Z(\phi) - Y(\theta) - Z(\psi)$; **Current** axis (post-multiply)

R =

$$\begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

(Total 12 axis combinations) Given rotation matrix R, corresponding angles are:

$$\begin{cases} \phi = Atan2(r_{23}/r_{13}) \\ \theta = Atan2(\sqrt{1-r_{33}^2/r_{33}}) \\ \psi = Atan2(r_{32}/-r_{31}) \end{cases}$$

or

$$\begin{cases} \phi = Atan2(-r_{23}/-r_{13}) \\ \theta = Atan2(-\sqrt{1-r_{33}^2}/r_{33}) \\ \psi = Atan2(-r_{32}/r_{31}) \end{cases}$$

Yaw, Pitch Roll Angles

Convention:
$$X(\phi) - Y(\theta) - Z(\psi)$$

Yaw Pitch Roll

Fixed axis (pre-multiply)

R =

$$\begin{bmatrix} c_{\phi}c_{\theta} & c_{\phi}s_{\theta}s_{\psi} - s_{\phi}c_{\psi} & s_{\phi}s_{\psi} + c_{\phi}s_{\theta}c_{\psi} \\ s_{\phi}c_{\theta} & s_{\phi}s_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta}c_{\psi} - c_{\phi}s_{\psi} \\ -s_{\theta} & c_{\theta}s_{\psi} & c_{\theta}c_{\psi} \end{bmatrix}$$

Axis/Angle Representation

Rotation θ about axis k

$$\left[\begin{array}{c|c} k_x^2v_\theta + c_\theta \\ k_xk_yv_\theta + k_zs_\theta \\ k_xk_zv_\theta - k_ys_\theta \end{array} \right. \left. \begin{array}{c|c} k_xk_yv_\theta - k_zs_\theta \\ k_y^2v_\theta + c_\theta \\ k_yk_zv_\theta - k_xs_\theta \end{array} \right. \left. \begin{array}{c|c} k_xk_zv_\theta + k_ys_\theta \\ k_yk_zv_\theta - k_xs_\theta \\ k_z^2v_\theta + c_\theta \end{array} \right.$$

where $v_{\theta} = 1 - \cos\theta$

Given rotation matrix R, corresponding k and θ are:

$$\theta = \cos^{-1}(\frac{r_{11} + r_{22} + r_{33} - 1}{2})$$

$$k = \frac{1}{2 \mathrm{sin} \theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

Note that k and θ are defined in frame 0. Despite that k has the same coordinates in both frames.

ROTATION MATRIX VS PARAMETER REPRESENTATION

Advantage of Rotation Matrix Easy for computing and visualizing the orientation after rotation

Disadvantage of Rotation Matrix Require more space to store; Susceptible to numerical rounding, which may make its determinant is non-zero.

HOMOGENEOUS TRANSFORMATION

rigid motion = pure translation + pure rotation

$$\mathbf{H} = \left[egin{array}{cccccc} n_x & s_x & a_x & d_1 \ n_y & s_y & a_y & d_y \ n_z & s_z & a_z & d_z \ 0 & 0 & 0 & 1 \end{array}
ight]$$

normal, sliding and approach SUCCESSIVE TRANSFORMATION

Like in rotation, pre-multiply when relative to fixed/world frame; post-multiply when relative to intermediate frame

INVERSE TRANSFORM

$$\mathbf{H}_0^1 = \left[\begin{array}{cc} \mathbf{R}_0^1 & \mathbf{d}_0^1 \\ \mathbf{0} & 1 \end{array} \right] = \left[\begin{array}{cc} (\mathbf{R}_1^0)^\top & -(\mathbf{R}_1^0)^\top \mathbf{d}_1^0 \\ \mathbf{0} & 1 \end{array} \right]$$

$$\mathbf{v}_p^0 = \mathbf{R}_1^0 \mathbf{v}_p^1 + \mathbf{d}_1^0 = \mathbf{H}_1^0 \, \mathbf{v}_p^1$$

FORWARD KINEMATICS

Objectives: given joint coordinates, what are the task coordinates (state of end effector)?

KINEMATIC CHAIN

Joint i controls link i

Joint i interconnects link i and link i-1

D-H PARAMETERS

- 1. Locate joint axes z_0, \dots, z_{n-1}
- 2. Establish base frame 0

For i = 1 to n - 1, do:

- 3. For i = 1 to n 1, do: Find an x_i which is **perpendicular to and intersects** z_{i-1} (the two D-H rules) and establish frame i.
- 4. Establish end-effector frame *n*.
- 5. Create a table of link parameters:

a_i	distance between z_{i-1} and z_i along x_i
α_i	angle between z_{i-1} and z_i measured in the plane normed to x_i
d_i	distance between x_{i-1} and x_i along z_{i-1}
θ_i	angle between x_{i-1} and x_i measured in the plane normed to z_{i-1}

Form homogeneous transformation matrices

$$A_i = Rot_{z, heta_i} Trans_{z,d_i} Trans_{x,a_i} Rot_{x,lpha_i} \ \begin{bmatrix} c_{ heta_i} & -s_{ heta_i} c_{lpha_i} & s_{ heta_i} s_{lpha_i} & a_i c_{ heta_i} \ s_{ heta_i} & c_{lpha_i} & -c_{ heta_i} s_{lpha_i} & a_i s_{ heta_i} \ 0 & s_{lpha_i} & c_{lpha_i} & d_i \ 0 & 0 & 0 & 1 \end{bmatrix}$$

7. $T_n^0 = A_1 \cdots A_n$ TRAJECTORY

Trajectory: a function of time Common trajectories:

- linear trajectory
- cubic polynomial trajectory *2 the only situation in which there is no solution: $t_s = t_f$, $(\det(mat) = (t_s - t_f)^4 = 0)$
- quintic polynomial trajectory
- central portion linear segments with parabolic blends (LSPB)
 - parabola+line+parabola
 - a special case: Minimum

Time Trajectories / Bang-**Bang Trajectories**

- All trajectories mentioned above except linear can leave the interval between start and end position during time span.
- Reason why we use linear/cubic instead of quintic: constant velocity (linear); robot is sufficiently rigid (no jerk); lower computational complexity; lower memory usage; limited maximum speed;
- Reason why we usually use odd-order polynomials: they have an even number of coefficients, and usually the number of constraints is an even number! Common constrains:

Initial Conditions Final Conditions Position
$$q(t_0)=q_0$$
 $q(t_f)=q_f$ Velocity $\dot{q}(t_0)=v_0$ $\dot{q}(t_f)=v_f$ Acceleration $\ddot{q}(t_0)=\alpha_0$ $\ddot{q}(t_f)=\alpha_f$ Jerk $\dddot{q}(t_0)\neq\infty$ $\dddot{q}(t_f)\neq\infty$

INVERSE KINEMATICS

Objectives: given task coordinates, what are the joint coordinates? Or, if we know the homogeneous transformation between end-effector and base frame, what are the joint

coordinates?

Given a manipulator and an arbitrary homogeneous transformation, the number of solutions is indeterminate. KINEMATIC DECOPOLING

For robots with a spherical wrist

1. Calculate wrist position:

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

position

- 2. Solve the joint coordinates before the wrist (e.g. $\theta_1, \theta_2, \theta_3$) and calculate R_3^0
- 3. Calculate writs orientation

$$\mathbf{R} = \mathbf{R}_3^0 \, \mathbf{R}_6^3$$
 $\mathbf{R}_6^3 = \left(\mathbf{R}_3^0\right)^{-1} \mathbf{R} = \left(\mathbf{R}_3^0\right)^T \mathbf{R}$

INVERSE POSITION

(algebriac approach geometric analysis

INVERSE ORIENTATION

A spherical wrist can be solved be solving Euler angles (ZYZ)

$$\theta_{end-2} = \phi, \theta_{end-1} = \theta, \theta_{end} = \psi$$

*1 A non-holonomic system is a system whose state depends on the path taken in order to achieve it.

*2 A mechanical singularity is a position or configuration of a mechanism or a machine where the subsequent behavior cannot be predicted, or the forces or other physical quantities involved become infinite or nondeterministic.

APPENDIX

A. Trigonometry Functions

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \theta$$

B. Diagrams of Common Manipulators

C. Polynomial Function Plots

cubic

- D. Linear Algebra
- Inverse matrix

A $n \times n$ matrix A has an inverse A^{-1} if and only if the rank of A is n, or $det(A) \neq 0$ $(AB)^{-1} = B^{-1}A^{-1}$

2. Inner product (scalar product): $x \cdot y$ outer product: xy^T cross product: $x \times y = (x_2y_3 - x_3y_2)i + (x_3y_1 - x_1y_3)j + (x_1y_2 - x_2y_1)k$

REMINDER

UNITS: In practice, the elements in homogeneous transformation have units.

OUATERNIONS

UNIT QUATERNION

$$Q = (q_0, q_1, q_2, q_3)$$

= $q_0 + iq_1 + jq_2 + kq_3$

 $= q_0 + iq_1 + jq_2 + kq_3$ Identity quaternion: $Q_I = (1,0,0,0)$ Conjugate quaternion for Q:

$$Q^* = (q_0, -q_1, -q_2, -q_3)$$

AXIS/ANGLE TO QUATERNIONS

$$axis: \hat{n} = \left[n_x, n_y, n_z\right]^T, angle: \theta$$

$$Q = \left(\cos\left(\frac{\theta}{2}\right), n_x \sin\left(\frac{\theta}{2}\right), n_y \sin\left(\frac{\theta}{2}\right), n_z \sin\left(\frac{\theta}{2}\right)\right)$$

ANIMATE ROTATION USING QTN

Multiplying two quaternions:

With the problem of the following two quantitions:
$$X = (x_0, \vec{x}), Y = (y_0, \vec{y})$$

$$XY = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

$$x_0 = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

$$x_0 = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

$$x_0 = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

$$x_0 = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

$$x_0 = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

$$x_0 = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

$$x_0 = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

ROTATION TO A VECTOR

Vector $\vec{v} = (v_x, v_y, v_z)$ in quaternions: $Q_v = (0, v_x, v_y, v_z)$ Rotated $Q_{v'} = QQ_vQ^*$ **VELOCITY**

NOTATION

 $\overline{\omega_{i,j}^k}$: angular velocity of frame j with respect to frame *i* expressed in frame *k* SKEW-SYMMETRIC MATRICES Define linear operator $S(\vec{\omega})$:

Define linear operator
$$S(\vec{\omega})$$
:
$$S(\vec{\omega}) = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$
Meaning: $S(\vec{\omega})\vec{r} = \vec{\omega} \times \vec{r} = \vec{v}$

Why we need this?

$$\frac{dR}{d\theta}R^{T} + R\frac{dR^{T}}{d\theta} = 0$$

$$define S = \frac{dR}{d\theta}R^{T}, S + S^{T} = 0$$

$$SR = \frac{dR}{d\theta}$$

Instead of taking differentiation, just form S from angular velocity vector.

APPLICATION

• Calculating the velocity of a point in a rotating frame.

 $p^{0} = R_{1}^{0}p^{1}, \ \dot{p}^{0} = S(\vec{\omega}(t))R_{1}^{0}p^{1}$

• Calculating the linear velocity of the end-effector of a robot.

$$p^{0} = R_{1}^{0}p^{1} + o_{1}^{0}$$

$$\dot{p}^{0} = S(\vec{\omega}(t))R_{1}^{0}p^{1} + \dot{o}_{1}^{0} = \vec{\omega} \times p^{0} + \dot{o}_{1}^{0}$$
• Understanding how angular velocities

• Understanding how angular velocities combine on a robotic manipulator.

$$R_2^0(t) = R_1^0(t)R_2^1(t)$$

 $\omega_{0,2}^0 = \omega_{0,1}^0 + R_1^0\omega_{1,2}^1$
JACOBIAN

Jacobian matrix represent how joint velocities turn into end-effector velocities, and it's strongly depends on the robot's current configuration.

 $v_n^0 = J_v \dot{q}, \quad \omega_n^0 = J_\omega \dot{q}$ Inverse: $\dot{q} = J_v^{-1} v_n^0$ (only when the Jacobian is non-singular)

planning and executing smooth

trajectories

- determining singular configurations
- executing coordinated anthropomorphic motion
- deriving dynamic equations of motion
- transforming forces and torques from the end-effector to the manipulator joints.

LINEAR JACOBIAN

$$\dot{\vec{p}} = J_{\nu}(\vec{q})\dot{\vec{q}}$$

Approach 1:

$$J_v(\vec{q}) = \begin{bmatrix} \frac{\partial x}{\partial q_1} & \frac{\partial x}{\partial q_2} & \cdots & \frac{\partial x}{\partial q_n} \\ \frac{\partial y}{\partial q_1} & \frac{\partial y}{\partial q_2} & \cdots & \frac{\partial y}{\partial q_n} \\ \frac{\partial z}{\partial q_1} & \frac{\partial z}{\partial q_2} & \cdots & \frac{\partial z}{\partial q_n} \end{bmatrix}$$

For prismatic joint *i*: $J_{v_i} = \hat{z}_{i-1}$ For revolute joint *i*:

 $J_{v_i} = \hat{z}_{i-1} \times (o_n - o_{i-1})$ where z, o are the axis and origins following DH rules and expressed in frame 0.

ANGULAR JACOBIAN

$$\omega = J_{\omega}(\vec{q})\dot{\vec{q}}$$

 $\omega = J_{\omega}(\vec{q})\dot{\vec{q}}$ For prismatic joint *i*: $J_{\omega_i} = [0\ 0\ 0]^T$ For revolute joint *i*:

$$J_{\omega_i} = \hat{z}_{i-1} = R_{i-1}^0 \hat{z}$$

$$J = \begin{bmatrix} J_{\nu} \\ J_{\omega} \end{bmatrix}$$

What do we need to calculate Jacobian?

$$T_n^0 = \left[egin{array}{ccccc} n_x & s_x & a_x & d_x \ n_y & s_y & a_y & d_y \ n_z & s_z & a_z & d_z \ 0 & 0 & 0 & 1 \end{array}
ight]$$

ANALYTICAL JACOBIAN*

SINGULARITY

Def: points in the configuration space where infinitesimal motion in a certain direction is not possible and the manipulator loses one or more degrees of freedom (lose rank).

 $Singular \Leftrightarrow \det(J) = 0$ Find singularity for 6-DOF manipulator with *spherical wrist*: decoupling

$$J = \begin{bmatrix} J_{arm} \mid J_{wrist} \end{bmatrix} = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$$

Choose
$$o_4 = o_5 = o_6$$
, $J_{12} = 0$
 $\det(J) = \det(J_{11}) \det(J_{22})$
 $J_{22} = [z_3, z_4, z_5]$

 $J_{22} = [z_3, z_4, z_5]$ When $z_3 \perp z_4, z_4 \perp z_5, \det(J_{22}) = 0$ FROM FORCE TO TORQUE $\vec{\tau} = J(\vec{q})^T \vec{F}$

$$\vec{\tau} = J(\vec{q})^T \vec{F}$$

where $F = [F_x, F_y, F_z, n_x, n_y, n_z]$ represent the forces and moments at the end effector.

MANIPULABILITY

$$\xi = J\dot{q}$$

 $\mu = |\det(J)|$

PATH PLANNING

WORK SPACE VS **CONFIGURATION SPACE** configuration space obstacle ARTIFICIAL POTENTIAL FIELD

(in work space) $U(q) = U_{att}(q) + U_{rep}(q)$ Gradient descent $\tau = -\nabla U(q)$

Examples of potential field conic well potential

$$F_{\text{att},i}(q) = -\zeta_i \left(o_i(q) - o_i(q_f) \right)$$

$$F_{\text{att},i}(q) = -\frac{(o_i(q) - o_i(q_f))}{||(o_i(q) - o_i(q_f))||}$$

parabolic well potential a common repulsive potential

What is the force on the border of the region of influence?
$$\begin{array}{c} \text{when } \rho_i(q) > \rho_0 \\ \hline F_{\mathrm{rep},i}(q) = 0 \end{array}$$
 What is the force on the border of the obstacle?

$$\begin{array}{c|c} \text{region of influence?} & \text{the obstacle?} \\ \hline \text{vene} & \text{p}_i(q) \leq \rho_0 \end{array}$$

if the obstacle is convex and b is the point on the surface of the obstacle closest to the end-effector

$$\nabla \rho(o_i(q)) = \frac{o_i(q) - b}{||o_i(q) - b||}$$

Procedure

1.
$$q^0 \leftarrow q_s, i \leftarrow 0$$

1.
$$q^0 \leftarrow q_s, i \leftarrow 0$$

2. if $||q^i - q_f|| > \varepsilon$

$$q^{i+1} \leftarrow q^i + \alpha^i \frac{\tau(q^i)}{\|\tau(q^i)\|}$$
$$i \leftarrow i + 1$$

else return

3. go to 2

Apply forces to robot $\vec{\tau} = J_v^T \vec{F}$ CONFIGURATION SPACE MAP

Probabilistic roadmap: Randomly sample configuration space; Determine which pairs of nodes should be connected by a simple path; connect these disjoint components, connect the initial and final configuration to the roadmap, search to find the shortest path in the road map from initial to final configurations

REAL ROBOT

Limitation of Real Robot: mass and extent; gravity; friction and backlash; sensor error; actuator limitation; software speed, etc.

SENSING

Sonsors

Sensors	
Potentiometers	Encoder
$V_{out} = \frac{F_1}{R_{all}} V_{in}$	$\theta = \Delta(Q - Q_{zero})$ $\Delta: 2\pi/4n$ n is the resolution (CyPR) 1 cycle/revolution =
	4 counts/revolution
Cheap and easy	• 2 channels 90 degree
absolute position	out of phase (so that it
• wear out	can tell the direction)
• Hard to	Quadrature decoding
waterproof or	gives 4 x finer
dustproof.	resolution
Susceptible to	• relative position (need
electrical noise	calibration pose or
• non-negligible	secondary sensor)
friction	• significant noise on
finite range	velocity

Gear and Capstan

$$N = \frac{n_{\text{out}}}{n_{\text{in}}} = \frac{r_{\text{out}}}{r_{\text{in}}} = \frac{\omega_{\text{in}}}{\omega_{\text{out}}} = \frac{\tau_{\text{out}}}{\tau_{\text{in}}}$$

Radius Speed Capstan (with the motor) and drum:

 $\theta_{joint}r_{drum} = \theta_{motor}r_{capstan}$ Advantage of capstan:

- stiff connection with zero backlash
- smooth, efficient, no vibration

Things could cause problem in sensing

- · continuous vs discrete
- real value vs integers
- · conversion factor
- · direction of motion and zero pose **ACTUATION**

Motor (spe. DC brush motor) K_{v} : back emf constant = Torque

$$V(t) = L\frac{di_a}{d_t} + Ri_a + k_v \,\omega_m$$

constant k_t , where $\tau_m = k_t i_a$

Current Amplifier

Use current-drive amplifier instead of voltage-drive amplifier because the motor's output torque is proportional to the current, not the voltage.

$$i_{motor} = i_R = \frac{V_{command}}{R}$$

CONTROL

Stability and transparency

Low-pass filtering (speed smoothing)

Proportional feedback controller

 $\tau = \kappa(\theta_{des} - \theta), \kappa$ is proportional gain $F = k(x_{des} - x)$

PD controller

Drive the robot to target state.

Feedforward control

Try to compensate for the robot's

dynamics in advance (e.g. inertial, weight, friction)

HAPTIC ROBOT

ENVIRONMENT

Real; Remote (teleoperation); Virtual TELEOPERATION CONTROL

Bilateral PD controller

Position scaling

 $\vec{x}_{s,des} = \mu \vec{x}_m, \vec{x}_{m,des} = \vec{x}_s/\mu$ don't scale rotational motion

Clutching

$$\vec{x}_{s,des} = \mu(\vec{x}_m - (\vec{x}_{clutch})) = \mu \vec{x}_m - \vec{x}_{offset}, \vec{x}_{m,des} = (\vec{x}_s - \vec{x}_{offset})/\mu$$
 the offset start at zero and accumulate during interaction; usually don't clutch rotation

Rate control

 $\vec{v}_{s,des} = \gamma \vec{x}_m, \vec{F}_m = -k \vec{x}_m$ used when the workspace is very large; use a centering spring to push the user's hand back to zero.

Make it easier to stop the robot, add deadband

If
$$x_m > \delta$$
: $v_{s,des} = \gamma(x_m - \delta)$ else if $x_m < \delta$ $v_{s,des} = \gamma(x_m + \delta)$ else $v_{s,des} = 0$

APPENDIX

REAL ROBOT PROBLEM ANALYTICS

The code might not execute at even rate. If we assume constant Δt , the robot may have vibration at certain frequency. So you should use time sensor instead. Singularity: rotational motion (i.e. for spherical wrist) is constrained and may pop/flip about the singularity. Gravity and weight (two ways to solve, computational and mechanical (counterweight))

DIAGRAM FOR TELEOPERATION

