MATH2033 Mathematical Analysis (2021 Spring) Suggested Solution of Assignment 2

Problem 1

(a) Find the supremum and infimum of the following set:

$$S = \left\{ e^{\sqrt{x}} | x \in \mathbb{Q} \cap (0,1) \right\}.$$

(b) We consider a set defined by

$$T = \left\{ n \cos \frac{n\pi}{2} | n \in \mathbb{N} \right\}.$$

Show that the infimum of T does not exist in \mathbb{R} .

♥ Solution

(a) For any $x \in \mathbb{Q} \cap (0,1)$ which 0 < x < 1, we have

$$1 = e^{\sqrt{0}} < e^{\sqrt{x}} < e^{\sqrt{1}} = e.$$

So 1 and e are lower bound and upper bound of S respectively. By completeness axiom, the supremum and infimum exists.

• We first argue that $\sup S = e$. For any $\varepsilon > 0$, it follows from density of rational number that there exists $x \in \mathbb{Q}$ such that

$$0 < (\ln(e - \varepsilon))^2 < x < 1 \Leftrightarrow e^{\sqrt{x}} > e - \varepsilon.$$

for any $e > \varepsilon > 0$.

It also implies that $e^{\sqrt{x}}>e-\varepsilon\geq e-\varepsilon^*$ for any $\varepsilon^*>e>\varepsilon>0$ So $e-\varepsilon$ cannot be upper bound for any $\varepsilon>0$. Thus $\sup S=e$.

• We then argue that $\inf S = 1$. For any $\varepsilon > 0$, it follows from density of rational number that there exists $x \in \mathbb{Q}$ such that

$$0 < x < (\ln(1+\varepsilon))^2 < 1 \Leftrightarrow e^{\sqrt{x}} < 1 + \varepsilon.$$

for any $e-1>\varepsilon>0$.

It also implies that $e^{\sqrt{x}} < 1 + \varepsilon \le 1 + \varepsilon^*$ for any $\varepsilon^* > e - 1$ So $1 + \varepsilon$ cannot be lower bound for any $\varepsilon > 0$. Thus $\inf S = 1$.

(b) Since for n=2, we have $2\cos\frac{2\pi}{2}=-2$. So $M\geq 0$ cannot be lower bound. For any M<0, it follows Archimedean principle that there exists $K\in\mathbb{N}$ such that 4K+2>-M.

This implies that when n = 4K + 2

$$(4K+2)\cos\frac{(4K+2)\pi}{2} = -(4K+2) < M.$$

So M < 0 is not lower bound as well.

Hence, T has no lower bound and thus $\inf T$ does not exist as real number.

Problem 2

(a) We let $A \subseteq \mathbb{R}$ be a bounded non-empty subset of real numbers and let $S \subseteq A$ be non-empty subset of real numbers. Prove that

$$\inf A \le \inf S \le \sup S \le \sup A$$
.

(b) We let A, B be two bounded subsets of positive real numbers. We define

$$C=\{ab|a\in A,b\in B\}.$$

- (i) Show that $\sup C = \sup A \sup B$.
- Is the result (i) valid if either A or B contain negative number? Explain (ii) your answer.

(*Note: If your answer is yes, give a mathematical proof. If your answer is no, you need to give a counter-example.)

Solution

(a) We first argue that $\inf A \leq \inf S$.

Suppose that $\inf A > \inf S$, note that $\inf A$ is not lower bound of S, there exists $x \in S$ such that

$$\inf A > x > \inf S$$

As $S \subseteq A$, it follows that $x \in S \subseteq A$. So inf A is not lower bound of A and there is contradiction.

Next, we argue that $\inf A \leq \inf S$.

Suppose that $\inf A > \inf S$, note that $\inf A$ is not lower bound of S, there exists $x \in S$ such that

$$\inf A > x \ge \inf S$$

As $S \subseteq A$, it follows that $x \in S \subseteq A$. So inf A is not lower bound of A and there is contradiction.

(b) (i) Since both A, B are bounded so that sup A and sup B both exists. For any $ab \in C$, we have (as a, b > 0)

$$ab \le a \sup B \le \sup A (\sup B)$$

So $\sup A (\sup B)$ is the upper bound of C.

Next, we argue that $\sup C = \sup A (\sup B)$.

For any $\varepsilon > 0$

- We pick $\varepsilon_1 = \min\left(\sup A, \frac{\varepsilon}{2\sup B}\right)$, there exists $a \in A$ such that a > $\sup A - \varepsilon_1 > 0$
- We pick $\varepsilon_2 = \min\left(\sup B, \frac{\varepsilon}{2\sup A}\right)$, there exists $b \in B$ such that B > $\sup B - \varepsilon_2 > 0$

It follows that

$$ab > (\sup A - \varepsilon_1)(\sup B - \varepsilon_2)$$

$$> \sup_{\varepsilon_1, \varepsilon_2 > 0} A \sup_{\varepsilon_1, \varepsilon_2 > 0} B - \varepsilon_1 \sup_{\varepsilon_1, \varepsilon_2 > 0} B - \varepsilon_2 \sup_{\varepsilon_1, \varepsilon_2 > 0} A + \varepsilon_1 \varepsilon_2$$

$$\Rightarrow$$
 sup $A \sup B - \varepsilon_1 \sup B - \varepsilon_2 \sup A$

 $> \sup A \sup B - \varepsilon$.

So sup A sup $B - \varepsilon$ is not upper bound of C. So we conclude that sup C = $\sup A (\sup B)$.

(ii) We take $A = \begin{bmatrix} -1,0 \end{bmatrix}$ and $B = \begin{bmatrix} -1,0 \end{bmatrix}$, we have sup $A = \sup B = 0$ But $\sup C \neq \sup A \sup B = 0$ since (-1)(-1) = 1 > 0 so that 0 is not upper

bound of C. (*In fact, one can verify that $\sup C = 1$)

Problem 3

We let $a \in \mathbb{R}$ be a real number. Show that there exists a sequence of rational number $\{q_n\}$ (where $q_n \in \mathbb{Q}$) such that $\{q_n\}$ converges to a (i.e. $\lim_{n \to \infty} q_n = a$).

♥ Solution

For any $\varepsilon=\frac{1}{n}$ with $n\in\mathbb{N}$, one can deduce from density of rational number that there exists $q_n\in\mathbb{Q}$ such that

$$a - \frac{1}{n} < q_n < a.$$

By repeating this process for any positive integer n, we obtain a sequence of rational number $\{q_n\}$. Since $\lim_{n\to\infty}\left(a-\frac{1}{n}\right)=\lim_{n\to\infty}a=a$, it follows from sandwich theorem that $\{q_n\}$ converges and $\lim_{n\to\infty}q_n=a$.

Problem 4

Prove the following fact using the definition of limits

- (a) $\lim_{n\to\infty}\cos\left(a+\frac{b}{n}\right)=\cos a$, where a,b are positive number.
- **(b)** $\lim_{n\to\infty}\sqrt{b_n}=\sqrt{b}$, where $\{b_n\}$ is a convergent sequence with $\lim_{n\to\infty}b_n=b>0$.

♥ Solution

(a) For any $\varepsilon > 0$, we deduce from Archimedean property that there exists $K \in \mathbb{N}$ such that

$$K > \max\left(\frac{\pi}{2b}, \frac{\pi}{b\sin^{-1}\frac{\varepsilon}{2}}\right) \Leftrightarrow \frac{b}{n} < \frac{\pi}{2} \text{ and } \frac{b}{n} < \sin^{-1}\frac{\varepsilon}{2} \Rightarrow \sin\frac{b}{n} < \frac{\varepsilon}{2}.$$

It follows that for $n \ge K$

$$\left|\cos\left(a+\frac{b}{n}\right)-\cos a\right| = {(*)} \left|-2\sin\left(2a+\frac{b}{n}\right)\sin\frac{b}{n}\right| \le 2\left|\sin\frac{b}{n}\right| \stackrel{\frac{b}{n}<\frac{\pi}{2}}{=} 2\sin\frac{b}{n}$$

$$< 2\left(\frac{\varepsilon}{2}\right) = \varepsilon.$$

So $\lim_{n\to\infty} \cos\left(a+\frac{b}{n}\right) = \cos a$ by definition.

(*Note: The equality follows from sum-to-product formula which states that

$$\cos A - \cos B = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}.$$

(b) (We take $b_n \geq 0$ in order that $\sqrt{b_n}$ is well-defined as real number) For any $\varepsilon > 0$, as $\lim_{n \to \infty} b_n = b$, there exists $K \in \mathbb{N}$ such that

$$|b_n - b| < \varepsilon \sqrt{b}$$
 for $n \ge K$

Then for $n \geq K$, we have

$$\left|\sqrt{b_n} - \sqrt{b}\right| = \left|\frac{b_n - b}{\sqrt{b_n} + \sqrt{b}}\right| \le \frac{|b_n - b|}{\sqrt{b}} < \frac{\varepsilon\sqrt{b}}{\sqrt{b}} = \varepsilon.$$

So $\lim_{n\to\infty} \sqrt{b_n} = \sqrt{b}$ by definition.

Problem 5

We let $\{x_n\}$ be a sequence defined by

$$x_1 = 0.4$$
, $x_{n+1} = \frac{x_n^3 + 2}{3}$ for $n \in \mathbb{N}$.

Show that $\{x_n\}$ converges and find the limits.

♥ Solution

To prove the convergence, we shall argue that

- $\{x_n\}$ is increasing (i.e. $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$) and
- $0.4 \le x_n \le 1$ for all $n \in \mathbb{N}$.

To prove the second statement, we note that $0.4 \le x_1 = 0.4 \le 1$. Assuming that $0.4 \le x_k \le 1$ for some $k \in \mathbb{N}$, then for n = k + 1, we have

$$0.4 < 0.688 = \frac{0.4^3 + 2}{3} \le x_{k+1} = \frac{x_k^3 + 2}{3} \le \frac{1^3 + 2}{3} = 1.$$

So the case for n=k+1 holds. It follows from mathematical induction that $0.4 \le x_n \le 1$ for all $n \in \mathbb{N}$.

To prove the first statement, we note that

$$x_2 = \frac{x_1^3 + 2}{3} = \frac{0.4^3 + 2}{3} = 0.688 \ge 0.4 = x_1$$

Assuming that $x_{k+1} \ge x_k$ for some $k \in \mathbb{N}$, then for n = k+1, we consider

$$x_{k+2} - x_{k+1} = \frac{x_{k+1}^3 + 2}{3} - \frac{x_k^3 + 2}{3} = \frac{x_{k+1}^3 - x_k^3}{3}$$

$$= \frac{(x_{k+1} - x_k)(x_{k+1}^2 + x_k x_{k+1} + x_k^2)}{3} \ge 0$$

So we have $x_{k+2} \ge x_{k+1}$ and the statement is valid for n = k+1. It follows from mathematical induction that $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$.

Since the sequence is increasing and bounded from above, it follows from montone sequence theorem that the sequence $\{x_n\}$ converges.

To get the limits, we let $x = \lim_{n \to \infty} x_n$. From the recurrence relation (take $n \to \infty$), we get

$$x = \frac{x^3 + 2}{3} \Rightarrow x^3 - 3x + 2 = 0 \Rightarrow (x - 1)(x^2 - 2x - 2) = 0$$

$$\Rightarrow x = 1 \text{ or } x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-2)}}{2(1)} = 1 \pm \sqrt{3} = 2.73 \text{ or } -0.73$$

$$\Rightarrow x = 1$$

(*Note: The last two cases are rejected since $0.4 \le x_n \le 1$ for all $n \in \mathbb{N}$ so that $0.4 \le x = \lim_{n \to \infty} x_n \le 1$ by limit inequality.)

Problem 6 (Harder)

We let $\{x_n\}$ be a sequence of positive real numbers.

(a) Suppose that $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=L<1$, show that $\{x_n\}$ converges and $\lim_{n\to\infty}x_n=0$.

(©Hint: We let L < r < 1 be a number. One can apply the definition of limits to $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L$ with $\varepsilon < r - L$ and argue that $\frac{x_{n+1}}{x_n} < r$ when n is greater than some positive integer $K \in \mathbb{N}$.)

- **(b)** Suppose that $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=L>1$, show that $\{x_n\}$ does not converge.
- (c) Suppose that $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = L = 1$,
 - (i) Find an example of $\{x_n\}$ which $\{x_n\}$ converges
 - (ii) Find another example of $\{x_n\}$ which $\{x_n\}$ does not converges.

Solution

(a) We let L < r < 1 be a number. Since $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L$, we take $\varepsilon < r - L$ and There exists $K \in \mathbb{N}$ such that for $n \ge K$

$$\left| \frac{x_{n+1}}{x_n} - L \right| < \varepsilon = r - L \Leftrightarrow -(r - L) < \frac{x_{n+1}}{x_n} - L < r - L \Rightarrow \frac{x_{n+1}}{x_n} < r$$

$$\Rightarrow x_{n+1} < rx_n.$$

Using this inequality, one can deduce that for any n > K

$$x_n < rx_{n-1} < r^2x_{n-2} < \dots < r^{n-K}x_K$$

By Archimedean principle, there exists $K_1 \in \mathbb{N}$ such that

$$K_1 > K - \frac{\ln \frac{\varepsilon}{x_K}}{\ln r} \Leftrightarrow r^{K_1 - K} x_K < \varepsilon$$

By taking $K^* = \max(K, K_1)$, then we have for $n \ge K^*$,

$$|x_n - 0| = x_n < r^{n-K} x_K < r^{K_1 - K} x_K < \varepsilon.$$

So $\lim_{n\to\infty} x_n = 0$ by definition.

(b) It suffices to prove that the sequence is not bounded from above (since any convergent sequence must be bounded).

We let $r \in (1,L)$ be a number. Since $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L$, we take $\varepsilon < L - r$ and There exists $K \in \mathbb{N}$ such that for $n \ge K_3$

$$\left| \frac{x_{n+1}}{x_n} - L \right| < \varepsilon = L - r \Leftrightarrow -(L - r) < \frac{x_{n+1}}{x_n} - L < L - r \Rightarrow \frac{x_{n+1}}{x_n} > r$$

$$\Rightarrow x_{n+1} > rx_n.$$

Using this inequality, one can deduce that for any $n>K_3$

$$x_n > rx_{n-1} > r^2x_{n-2} > \dots > r^{n-K_3}x_{K_3}$$

For any M>0, one can deduce from Archimedean principle that there exists $K_4\in\mathbb{N}$ such that

$$K_4 > K_3 + \frac{\ln \frac{M}{x_{K_3}}}{\ln r} \Leftrightarrow r^{K_4 - K_3} x_{K_3} > M.$$

This implies that $x_{K_4} r^{K_4 - K_3} x_{K_3} > M$.

It shows that any M>0 is not upper bound for $\{x_n\}$. As $x_n>0$, $M\leq 0$ cannot be upper bound also. So $\{x_n\}$ is not bounded and hence does not converge.

- (c) (i) We take $x_n=1$ for all $n\in\mathbb{N}$. One can verify that $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\lim_{n\to\infty}\frac{1}{1}=1$ and $\lim_{n\to\infty}x_n=\lim_{n\to\infty}1=1$. (ii) We take $x_n=n$ for all $n\in\mathbb{N}$. One can verify that $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\lim_{n\to\infty}\frac{n+1}{n}=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)=1$ but $\lim_{n\to\infty}x_n=\lim_{n\to\infty}n=\infty$. So $\{x_n\}$ diverges to ∞ .
 - **End of Assignment 2**