Computational Finance

Lectured by Panos Parpas

Typed by Aris Zhu Yi Qing

November 21, 2022

Contents		_	5.1.2 5.1.3	
1	Introduction	2	0.2.0	
2	The Binomial Model 2.1 The One Period Model 2.1.1 Definitions 2.1.2 Contingent Claim Pricing 2.2 The Multiperiod Model 2.2.1 Definitions 2.2.2 Binomial Model Pricing Algorithm	4 4		
3	Brownian Motion 3.1 Definitions			
4	Stochastic Integration 4.1 Time Value of Money 4.2 Interest 4.2.1 Definitions 4.2.2 Compounding 4.2.3 Stochastic Integral	6 6 6 6 6		
5	Stochastic Calculus 5.1 Ito's Formula	7 7 7		

2

1 Introduction

- **Forward contract**: a customized *binding* contract to buy/sell an asset at a specific price (**forward price**) on a *future* date.
- American option: gives the holder the *right* to exercise the option at any time before the date of expiration.
- European option: can only be exercised at the date of expiration.
- call/put option: gives the holder the right to buy/sell.
- **Derivative asset**: assets defined in terms of underlying financial asset.

2 The Binomial Model

2.1 The One Period Model

2.1.1 Definitions

• **Bond** price process is deterministic and given by

$$B_0 = 1,$$

$$B_1 = 1 + R.$$

where constant R is the spot rate for the period.

• Stock price process is stochastic and given by

$$S_0 = s,$$

$$S_1 = s \cdot Z$$

where Z is a stochastic variable defined as

$$Z = \begin{cases} u, & \text{with probability } p_u, \\ d, & \text{with probability } p_d. \end{cases}$$

with $p_u + p_d = 1$ and the assumption that d < u.

• **Portfolio** on the (B, S) market is a vector

$$h = (x, y).$$

with a deterministic market value at t = 0 and stochastic value at t = 1.

• Value Process of the portfolio h is defined as

$$V_t^h = xB_t + yS_t, \quad t = 0, 1,$$

or, in more detail,

$$V_0^h = x + ys,$$

$$V_1^h = x(1+R) + ysZ.$$

• **Arbitrage** portfolio is an h with the properties

$$V_0^h = 0,$$

 $V_1^h > 0,$ with probability 1

2.1.2 Contingent Claim Pricing

Proposition 1. The model h is free of arbitrage $\iff d \leq (1+R) \leq u$.

Comments The above proposition implies that (1 + R) is a convex combination of u and d, i.e.

$$1 + R = q_u \cdot u + q_d \cdot d,$$

where q_u and q_d can be interpreted as probabilities for a new probability measure Q with $P(Z = u) = q_u$ and $P(Z = d) = q_d$. Denoting expectation w.r.t. this measure by E^Q and with the following calculation

$$\frac{1}{1+R}E^{Q}[S_{1}] = \frac{1}{1+R}[q_{u}su + q_{d}sd] = \frac{1}{1+R} \cdot s(1+R) = s,$$

we arrive at the following relation

$$s = \frac{1}{1+R} E^Q[S_1].$$

Definition 2. A probability measure Q is $\underline{\mathbf{martingale}}$ if the following condition holds:

$$S_0 = \frac{1}{1+R} E^Q[S_1].$$

2 THE BINOMIAL MODEL 3

Proposition 3. Arbitrage-free model $\iff \exists$ martingale measure Q.

Proposition 4. For the binomial model above, the martingale probabilities are

$$\begin{cases} q_u = \frac{(1+R) - d}{u - d}, \\ q_d = \frac{u - (1+R)}{u - d}. \end{cases}$$

Proof. Solve the system of equation

$$\begin{cases} 1 + R = q_u \cdot u + q_d \cdot d \\ q_u + q_d = 1. \end{cases}$$

Definition 5. A <u>contingent claim</u> (financial derivative) is any stchastic variable \overline{X} of the form $\overline{X} = \Phi(Z)$, where Z is the stochastic variable driving the stock price process above, Φ is the **contract function**.

Example 6. European call option on the stock with strike price K. Assuming that sd < K < su, we have

$$X = \begin{cases} su - K, & \text{if } Z = u, \\ 0, & \text{if } Z = d, \end{cases}$$

so the contract function is given by

$$\Phi(u) = su - K,$$

$$\Phi(d) = 0.$$

Definition 7. A given contingent claim X can be <u>replicated</u> / is <u>reachable</u> if

$$\exists h \text{ s.t. } V_1^h = X, \text{ with probability } 1.$$

We call such an h a **hedging/replicating** portfolio. If all claims can be replicated, then the market is **complete**.

Proposition 8. If a claim X is reachable with replicating portfolio h, then the only reasonable price process for X is

$$\Pi_t[X] = V_t^h, \ t = 0, 1.$$

Here, "reasonable" means that $\Pi_0[X] \neq V_0^h \Rightarrow$ arbitrage possibility.

Proposition 9. The general binomial model is free of arbitrage \Rightarrow it is complete.

Proof. Say a claim X has contract function Φ s.t.

$$V_1^h = \begin{cases} \Phi(u), & \text{if } Z = u\\ \Phi(d), & \text{if } Z = d, \end{cases}$$

we can obtain the following system of equations by expanding V_1^h

$$(1+R)x + xuy = \Phi(u),$$

$$(1+R)x + xdy = \Phi(d),$$

and solve it to find out the replicating portfolio as

$$x = \frac{1}{1+R} \cdot \frac{u\Phi(d) - d\Phi(u)}{u - d},$$
$$y = \frac{1}{s} \cdot \frac{\Phi(u) - \Phi(d)}{u - d}.$$

Proposition 10. If the binomial model is free of arbitrage, then the arbitrage free price of a contingent claim X is

$$\Pi_0[X] = \frac{1}{1+R} E^Q[X],$$

where the martingale measure Q is uniquely determined by the relation

$$S_0 = \frac{1}{1+R} E^Q[S_1].$$

2 THE BINOMIAL MODEL

Proof. Using the results derived previously, we can find out that

$$\begin{split} \Pi_0[X] &= x + sy \\ &= \frac{1}{1+R} \left[\frac{(1+R) - d}{u - d} \cdot \Phi(u) + \frac{u - (1+R)}{u - d} \cdot \Phi(d) \right] \\ &= \frac{1}{1+R} \left[\Phi(u) q_u + \Phi(d) q_d \right] \\ &= \frac{1}{1+R} E^Q[X]. \end{split}$$

2.2 The Multiperiod Model

2.2.1 Definitions

- Model
 - The bond price dynamics is given by

$$B_{n+1} = (1+R)B_n, \quad B_0 = 1.$$

- The stock price dynamics is given by

$$S_{n+1} = S_n \cdot Z_n, \quad S_0 = s.$$

where $Z_0, Z_1, \ldots, Z_{T-1}$ are assumed to be i.i.d. stochastic variables, with only two variables u and d and probabilities

$$P(Z_n = u) = p_u, \quad P(Z_n = d) = p_d.$$

- Illustrating the stock dynamics by means of a tree, we can see that it is **recombining**.
- A portfolio strategy is a stochastic process

$$\{h_t = (x_t, y_t); t = 1, \dots, T\}$$

- s.t. h_t is a function of $S_0, S_1, \ldots, S_{t-1}$. By convention, $h_0 = h_1$.
 - Interpretation of h_t : at t-1, x_t and y_t of bonds and stocks are bought and held until time t.

 \bullet The value process corresponding to the portfolio h is defined by

$$V_t^h = x_t(1+R) + y_t S_t.$$

4

• A portfolio strategy h_t is said to be **self-financing** if $\forall t = 0, \dots, T-1$,

$$x_t(1+R) + y_t S_t = x_{t+1} + y_{t+1} S_t$$

which says that the market value of the "old" portfolio h_t equals to the purchase value of the "new" portfolio h_{t+1} .

• An <u>arbitrage</u> possibility is a self-financing portfolio *h* with the properties

$$V_0^h = 0,$$

$$P(V_T^h \ge 0) = 1,$$

$$P(V_T^h > 0) > 0.$$

• The martingale probabilities q_u and q_d are defined as the probabilities for which the following relation holds

$$s = \frac{1}{1+R} E^{Q}[S_{t+1}|S_t = s]$$

2.2.2 Binomial Model Pricing Algorithm

Proposition 11. The model is free of arbitrage $\Rightarrow d \leq (1+R) \leq u$.

Assumption 12. From now, assume that d < u and $d \le (1+R) \le u$.

Definition 13. A <u>contingent claim</u> is a stochastic variable X of the form

$$X = \Phi(S_T),$$

where the <u>contract function</u> Φ is some given real valued function.

Definition 14. A given contingent claim X can be <u>replicated</u> / is reachable if

 \exists self-financing h s.t. $V_T^h = X$, with probability 1.

We call such an h a **hedging**/replicating portfolio. If all claims can be replicated, then the market is (dynamically) complete.

3 BROWNIAN MOTION

5

(Binomial Algorithm) Proposition 15. Consider a T-claim $X = \Phi(S_T)$, which could be replicated with a self-financing portfolio h. Let k be the number of up-moves occurred. So $V_t(k)$ can be computed recursively as

$$\begin{cases} V_t(k) &= \frac{1}{1+R} \left[q_u V_{t+1}(k+1) + q_d V_{t+1}(k) \right], \\ V_T(k) &= \Phi(su^k d^{T-k}). \end{cases}$$

where the martingale probabilities q_u and q_d are

$$\begin{cases} q_u = \frac{(1+R)-d}{u-d} \\ q_d = \frac{u-(1+R)}{u-d}. \end{cases}$$

and the hedging portfolio is given by

$$\begin{cases} x_t(k) &= \frac{1}{1+R} \cdot \frac{uV_t(k) - dV_t(k+1)}{u - d}, \\ y_t(k) &= \frac{1}{S_{t-1}} \cdot \frac{V_t(k+1) - V_t(k)}{u - d}. \end{cases}$$

N.B. In Fig 2.9 in notes, (the figure might be confusing) (-22.5, 5/8) is both h_0 and h_1 , (-42.5, 95/120) is $h_2(1)$, (-2.5, 1/8) is $h_2(0)$, etc.

Proposition 16. The arbitrage free price at t = 0 of a T-claim X is given by

$$\Pi_0[X] = \frac{1}{(1+R)^T} \cdot E^Q[X],$$

where Q denotes the martingale measure, or more explicitly,

$$\Pi_0[X] = \frac{1}{\left(1 + R\right)^T} \cdot \sum_{k=0}^T \binom{T}{k} q_u^k q_d^{T-k} \Phi(su^k d^{T-k}).$$

Proposition 17. $d < (1+R) < u \iff$ free of arbitrage.

3 Brownian Motion

3.1 Definitions

• Let A, B be two random variables, we define **equal in distribution** as

$$A \stackrel{d}{=} B \iff P(A \in C) = P(B \in C) \ \forall \text{ possible sets } C.$$

• We say a random variable *X* has **stationary increments** if

$$X_t - X_s \stackrel{d}{=} X_{t+h} - X_{s+h} \quad \forall h > 0.$$

• A stochastic process B_t is called a **Brownian motion** if

$$-B_0=0,$$

 $-B_t - B_s \sim N(0, t-s) \ \forall t > s > 0$, implying stationary increments.

– it has *independent* increments.

with

$$- \mathbb{E}[B_t] = 0,$$

 $-\operatorname{Cov}(B_t, B_s) = \min\{t, s\}$. Show this using (Practice!)

*
$$Cov(B_t, B_s) = \mathbb{E}[(B_t - \mathbb{E}[B_t])(B_s - \mathbb{E}[B_s])]$$

*
$$Cov(B_t, B_s) = \mathbb{E}[B_t B_s] - \mathbb{E}[B_t]\mathbb{E}[B_s].$$

3.2 Path Properties

- Paths are continuous (no jumps).
- Nowhere differentiable.
- Paths are **self-similar**, i.e.

$$(T^H B_{t_1}, \dots, T^H B_{t_n}) \stackrel{d}{=} (B_{Tt_1}, \dots, B_{Tt_n})$$

with H = 0.5 is the Hurst coefficient.

3.3 Brownian Motion with Drift

- A <u>Gaussian Process</u> is a stochastic process s.t. every finite collection of those random variables has a multivariate normal distribution.
- The process is

$$X_t = \mu t + \sigma B_t, \quad t \ge 0.$$

- It is a Gaussian process with the following properties:
 - $\mathbb{E}[X_t] = \mu t,$
 - $Cov(X_t, X_s) = \sigma^2 \min\{t, s\}$. (Practice!)

3.4 Geometric Brownian Motion with Drift

• The process is

$$X_t = e^{\mu t + \sigma B_t}, \quad t \ge 0.$$

- ullet It is not Gaussian, but log-normal instead, with the following properties:
 - $-\mathbb{E}[X_t] = e^{\mu t + \frac{1}{2}\sigma^2 t}$, (Practice!)
 - $\operatorname{Cov}(X_t, X_s) = e^{\left(\mu + \frac{1}{2}\sigma^2\right)(t+s)} \left(e^{\sigma^2 s} 1\right)$. (Practice!)

4 Stochastic Integration

4.1 Time Value of Money

- £x today is worth more than £x in the future.
- Compensation for postponed consumption
- Inflation: prices may rise so £x in the future will not have the same purchasing power
- Risk money in the future may never be received.

4.2 Interest

4.2.1 Definitions

- V(t): value of investment at time t
- r: interest rate r > 0
- t: time measured in years
- P: principal/initial investment (£)
- simple/annual compounding:

$$\begin{cases} V(0) &= P \\ V(t) &= (1+tr)P \end{cases}$$

4.2.2 Compounding

• Periodic, e.g. monthly compounding:

$$V(t) = \left(1 + \frac{r}{12}\right)^t P$$

• Continuous:

$$V(t) = e^{tr}P \implies \frac{\mathrm{d}V(t)}{\mathrm{d}t} = rV(t)$$

$$\implies V(t) = V(0) + \int_0^t rV(s)\mathrm{d}s.$$

4.2.3 Stochastic Integral

Example:

$$I(T) = \int_0^T B(t) dB(t)$$

Using left-hand point approximation, we can get

$$I(T) = \lim_{L \to \infty} \sum_{i=0}^{L-1} B(t_i) \left[B(t_{i+1}) - B(t_i) \right]$$
$$= \lim_{L \to \infty} \sum_{i=0}^{L-1} -\frac{1}{2} B(t_i)^2 - \frac{1}{2} \left[B(t_{i+1}) - B(t_i) \right]^2 + \frac{1}{2} B(t_{i+1})^2$$

5 STOCHASTIC CALCULUS

$$= \frac{1}{2} \lim_{L \to \infty} \sum_{i=0}^{L-1} [B(t_{i+1})^2 - B(t_i)^2] - \delta B_i^2$$

where $\delta B_i = B(t_{i+1}) - B(t_i)$. Analyzing the above expression (exercise!), we can obtain

$$I(T) = \frac{1}{2}B(T)^2 - \frac{1}{2}T.$$

We can also show the following: (exercise!)

- $\mathbb{E}[\delta B_i] = 0$
- $Var(\delta B_i) = \delta t$
- $\mathbb{E}[\delta B_i^2] = \delta t$
- $\operatorname{Var}(\delta B_i^2) = 2(\delta t)^2$ (hint: $\mathbb{E}[Z^4] = 3$ for $Z \sim N(0, 1)$)

5 Stochastic Calculus

5.1 Ito's Formula

5.1.1 Ito's Multiplication Rules

$$(dt)^{2} = 0,$$

$$(dt)(dB(t)) = 0,$$

$$(dB(t))^{2} = dt.$$

5.1.2 Ito's Lemma

Consider an Ito's process

$$dX_t = \mu_t dt + \sigma_t dB_t,$$

where

- μ_t (or just μ): drift process,
- σ_t (or just σ): diffusion process,

both can be either stochastic or deterministic. Using the multiplication rules, we can derive that

$$(\mathrm{d}X_t)^2 = \mu^2(\mathrm{d}t)^2 + \sigma^2(\mathrm{d}B_t)^2 + 2\mu\sigma(\mathrm{d}t)(\mathrm{d}B_t) = \sigma^2\mathrm{d}t.$$

Let $Z(t) = f(t, X_t)$, then

$$dZ(t) = \frac{\partial f}{\partial X_t} dX_t + \frac{\partial f}{\partial t} dt + \underbrace{\frac{1}{2} \frac{\partial^2 f}{\partial X_t^2} (dX_t)^2}_{\text{Itô correction}}$$
$$= \left(\frac{\partial f}{\partial t} + \mu \frac{\partial f}{\partial X_t} + \frac{1}{2} \sigma^2 \frac{\partial^2 f}{\partial X_t^2} \right) dt + \frac{\partial f}{\partial X_t} \sigma dB(t).$$

5.1.3 Examples

1. $dX_t = dW_t$, $f(t, x) = te^{\alpha x}$. Since

$$\frac{\partial f}{\partial t} = e^{\alpha x}, \quad \frac{\partial f}{\partial x} = \alpha t e^{\alpha x}, \quad \frac{\partial^2 f}{\partial x^2} = \alpha^2 t e^{\alpha x},$$

and in this case $\mu = 0$, $\sigma = 1$, we have

$$df(t, W_t) = \left(e^{\alpha x} + \frac{1}{2}\alpha^2 t e^{\alpha W_t}\right) dt + \alpha t e^{\alpha W_t} dW_t$$

2. dX = dW, $f(x) = x^2$.

$$df(t, W_t) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dx + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} dx$$
$$= 0 + 2W dW + \frac{1}{2} 2dt$$
$$= dt + 2W_t dW_t$$

3. Compute $\mathbb{E}[B_t^4]$. This could be transformed to the question

$$dX_t = dB_t, \quad Z_t = X_t^4.$$

Thus,

$$\mathrm{d}Z_t = 6B_t^2 \mathrm{d}t + 4B_t^3 \mathrm{d}B_t,$$

i.e.

$$Z_t = Z_0 + 6 \int_0^t B_s^2 ds + 4 \int_0^t B_s^3 dB_s$$

so

$$\mathbb{E}[B_t^4] = \mathbb{E}Z_t = 0 + 6 \int_0^t \mathbb{E}[B_s^2] ds + 4 \int_0^t \mathbb{E}[B_s^3] dB_s$$
$$= 6 \int_0^t s ds + 0$$
$$= 3t^2$$