Fonctions usuelles

QCOP FCT. 1

- 1. Définir les fonctions $\cosh(\cdot)$ et $\sinh(\cdot)$, donner l'allure de leur courbe représentative et leur dérivée.
- **2.** Soient $A, B, \lambda \in \mathbb{R}$. Soit $x \in \mathbb{R}$. On définit $y(x) := Ae^{\lambda x} + Be^{-\lambda x}$.
 - a) Calculer $y''(x) \lambda^2 y(x)$.
 - **b)** Déterminer $C, D \in \mathbb{R}$ tels que $y(x) = C \cosh(\lambda x) + D \sinh(\lambda x)$.

QCOP FCT.2

- 1. Définir la fonction valeur absolue.
- **2.** Soient $x \in \mathbb{R}$. Soit $a \geqslant 0$. Compléter et démontrer les équivalences suivantes :

$$|x| \leqslant a \iff \cdots,$$

$$|x| \geqslant a \iff \cdots.$$

- **3.** Soient $a, b \in \mathbb{R}$.
 - a) Montrer que

$$\max(a,b) = \frac{a+b+|a-b|}{2}.$$

b) Donner une expression analogue de min(a, b).

QCOP FCT.3

Soit I un intervalle de \mathbb{R} .

Soit $f: I \longrightarrow \mathbb{R}$ une fonction.

- **1.** Définir « *f* est croissante sur *l* » et « *f* est strictement croissante sur *l* ».
- **2.** On suppose *f* strictement croissante. Montrer que

$$\forall x, y \in I, \ x < y \iff f(x) < f(y).$$

3. Montrer que le résultat précédemment établi est faux si l'on ne suppose f que croissante.

QCOP FCT.4 ★

1. a) Montrer que

$$\forall x \geqslant 1, \quad \ln(x) \leqslant 2\sqrt{x}.$$

- **b)** Montrer que $\frac{\ln(x)}{x} \xrightarrow[x \to +\infty]{} 0$.
- c) Soient $a,b\in\mathbb{R}_+^*$. Montrer que

$$\frac{\ln(x)^{b}}{x^{a}} \xrightarrow[x \to +\infty]{} 0.$$

2. Soient $a, b \in \mathbb{R}_+^*$. Montrer que

$$\frac{x^a}{(e^x)^b} \xrightarrow[x \to +\infty]{} 0, \quad x^a \ln(x)^b \xrightarrow[x \to 0^+]{} 0$$
et $(e^x)^a x^b \xrightarrow[x \to -\infty]{} 0.$