

ANÁLISIS NUMÉRICO

Mag. Carlos Alberto Ardila Albarracín

BLOQUE 1. RAÍCES DE ECUACIONES DE UNA VARIABLE 1.3. MÉTODO DE NEWTON - RAPHSON

Aunque el método trabaja bien, no existe garantía de convergencia

Si en las proximidades de la raíz existe un punto de inflexión, las iteraciones divergen progresivamente de la raíz.

CURSO DE ANÁLISIS NUMÉRICO. BLOQUE 1

<u>MÉTODO DE NEWTON - RAPHSON</u>

Para encontrar una solución de f(x) = 0 dada una aproximación inicial \mathbf{Po}

Entradas: Aproximación inicial Po, tolerancia TOL, número máximo de iteraciones N

Salida: Solución aproximada **p** ó mensaje de fracaso

Paso 1: tomar i = 1. (La variable i es la contadora de iteraciones).

Paso 2: Mientras (i<=N) seguir pasos 3 a 6:

Paso 3: Tomar p = po - (f(po) / f'(po)) //Para calcular la nueva raíz

Paso 4: si (error relativo < TOL) entonces mostrar p y PARAR

Paso 5: tomar i = i + 1

Paso 6: tomar po = p //redefinición de po

Paso 7: SALIDA. El método ha fracasado después de N iteraciones y PARAR

CURSO DE ANÁLISIS NUMÉRICO. BLOQUE 1

MÉTODO DE NEWTON - RAPHSON

Algunas consideraciones:

Note que el método de Newton-Raphson no trabaja con intervalos donde nos asegure que encontraremos la raíz, y de hecho no tenemos ninguna garantía de que nos aproximaremos a dicha raíz.

Desde luego, existen ejemplos donde este método no converge a la raíz, en cuyo caso se dice que el método diverge.

Sin embargo, en los casos donde converge a la raíz lo hace con una rapidez mucho mayor que otros métodos.

En el caso de que f'(Po) = 0, el método no se puede aplicar.

De hecho, geométricamente esto significa que la recta tangente es horizontal y por lo tanto no intersecta al eje x en ningún punto.

Ejemplo 1. Aproximar la raíz de $f(x) = e^{-X} - \ln(x)$ Hasta que el error relativo porcentual sea menor al 1%

Gráfico de e^-x-ln(x)

$$f(x) = e^{-x} - \ln(x)$$

 $f(0,5) = (1/e^{0,5}) - \ln(0,5)$
 $f(0,5) = 1.29967$

$$p = po - (f(po) / f'(po))$$

$$p = 0.5 - (1.29967 / -2.60653) = 0.99862$$

$$Erp = |(0.99862 - 0.5) / 0.99862| = 49.93\%$$

Como no se ha logrado el objetivo, continuamos con el proceso Dado que p no sirvió, se reasigna como **p**o

$$p = 0.99862 - (0.36976 / -1.36976) = 1.26857$$

Puesto que no se ha logrado el objetivo, continuamos con el proceso

Dado que p no sirvió, se reasigna como **p**o

$$p = 1.26857 - (0.04334/-1.06952) = 1.30909$$

$$Erp = | (1.30909 - 1.26857) / 1.30909 | = 3.09%$$

Puesto que no se ha logrado el objetivo, continuamos con el proceso

Dado que p no sirvió, se reasigna como **p**o

$$p = 1.30909 - (0.000727 / -1.03395) = 1.309799$$

$$Erp = | (1.309799 - 1.30909) / 1.309799 | = 0.0053%$$

¡Objetivo logrado!