Rogstriant

The smart coffee roaster

Group 1 Senior Design Project by

Brian Webb, EE | Evan Baytan, CpE Patrick Sites, EE | Sammy Roman, CpE

Project Overview

What is a coffee roaster?

- Coffee is typically roasted and ground when purchased on store shelves
- Coffee beans are initially green and turn their familiar brown color during the roasting process
- A majority of coffee drinkers brew their own coffee, but some are beginning to experiment with roasting as well
- Coffee roasters typically come in two styles: Air or Drum.

Motivation

- Introduce more consumers to freshly roasted coffee
- Create a convenient solution that will not sacrifice time for quality
- Utilize current technology and design principles to create a friendly and enjoyable user experience
- Provide more home automation options for customers to add to their already existing devices (Nest, Phillips Hue)

Goals & Objectives

- Control and monitoring of the coffee roaster using an iPhone or Apple Watch
- Additional secondary controls through the onboard touchscreen display
- Ability to successfully roast coffee of different roast profiles and types (Light, Medium, Dark)
- Community aspect that will allow the ability to view and add new roast profiles
- Order more coffee beans through iOS/watchOS applications

Specifications and Requirements

Reach temperatures of 244°C

Pull at most, 15A of current

Handle up to 1lbs of coffee at a time

Minimal background app activity to maintain low battery usage

Achieve a French Roast

Automatically scale roasting profile based on amount of coffee that is used

Have feedback from the coffee roaster to determine where it is in roasting process

Overall Project Block Diagram

Hardware Design

All hardware will appear in added base, as shown.

Provides thermal insulation and easier work area.

Weight Sensor

Four load cells, one on each corner

Load Cells represented as Wheatstone Bridge

Uses instrumentation amplifier to get reasonable gain

AC to DC Power System

Regulated power converters

Switching

Linear

Bipolar design

Power digital and analog circuitry

Crack Detection

Audio based

Remove noise with analog filter

Use threshold detection in MCU

Control System

Controls heating elements and fans

AC and DC components

Control System

Controls heating elements and fans

AC and DC components

MCU

MSP432P401R

Up to 48MHz

256KB RAM

4-pin JTAG support

Ultra Low Power (90µA/MHz)

Overall package size 14x14mm

Built in DC-DC conversion

Real-time clock

ADC

WiFi Module

CC3100/3200MOD

802.11bgn compatibility

Fully enclosed external hardware

Same operational voltage as MCU

7μA Hibernate power consumption with RTC

140μA standby

LCD Display

BOOSTXL-K350QVG-S1

320x240 resolution

SPI Interface

Self-contained external components

4 wire resistive touch capacity

Software Design Approach

General

- Modularize the software
- Test Driven Development (TDD)

I9A deW

- Intuitiveness & Consistency
- Security
- Documentation

Web API

What will it do?

Will facilitate communication between front end applications and the coffee roaster

Store user data, such as:

- User credentials
- Roast profiles
- User's favorites roast list
- Provide Authentication/Security

What is your Web API stack?

• MongoDB, ExpressJS, NodeJS

Representational State Transfer aka REST

What is REST?

Architectual style for networked hypermedia applications. Primarlily Used for building Web services that are lightweight, maintainable, and scalable.

Constraints:

- Uniform Interface
- Stateleness
- Client-Server
- Cachable
- Layered System
- Code on Demand (optional)

Security - JWT

What is JWT?

An open standard that defines a compact and self-contained way of securely transmitting data via a JSON object.

How will you use JWT within your Web API?

It will allow us to authenticate who the user is and what roaster should be receiving the data.

Routing

TYPE		POST	
URI		/api/roast	
Description		Create a roasting profile.	
Payload		POST /api/roast	
		Set Header: Authentication = "JWT dkafjkEefkFSjfk.afakjAWer"	
Response	Success	200 - application/json { "roastname":"French Roast", "beanType":"Peruvian", "roastType":"Dark", "roastingData": "(0,150,20),(39,200,44),	
	Failure	200 - application/json { "Success":false, "msg":"No roasts found." }	

TYPE		POST	
URI		/api/user/authenticate	
Description		Used when logging in a user	
Payload		POST /api/user/authenticate { "username":"RoastMaster5000", "password":"1337Roaster" }	
Donosco	Success	200 - application/json {	
Response	Failure	200 - application/json { "Success":false, "msg":"Authentication failed: User not found." }	

iOS Block Diagram

- Full control of coffee roaster
- Begin and track a roast in progress
- Notification when roast is complete
- Browse & Add new roast profiles

iOS Application

watchOS Block Diagram

- The watchOS application is comprised of 3 major components:
 - watchOS Application
 - Glance
 - Complication

Project Successes & Concerns

Success

- Hardware
 - Meets design requirements
 - Produces the best coffee you've ever had

Concerns

- Hardware
 - Problems in high power circuitry
 - Crack detection misfires
- Software
 - Latency between iOS/watchOS applications communicating with coffee roaster in a timely manner
 - Intuitive design due to using familiar UI and functionality from popularly used apps

Budget and Financing

- Project is largely self-funded with minor funding coming from external sponsors including
 - Sweet Maria's Coffee
 - 8 LBs of unroasted coffee of several varieties
 - Blessed Beans Coffee
 - 25 LBs of unroasted coffee from a single source
 - Texas Instruments
 - \$100 eStore funded by TI Innovation Challenge

Behmor Coffee Roaster	\$395.89
PCB Manufacturing	\$250.00
AC Power Control System	\$75.73
Equipment	\$45.00
DC Power System	\$25.57
PCB Placement	\$25.00
Crack Detection	\$18.14
Miscellaneous Expenses	\$15.00
DC Power Control System	\$2.19
Total	\$852.32

Hardware Progress

Research

Subsystem Schematics

Main Schematic and PCB

Procurement

Overall Progress

Brian

Patrick

Brian & Patrick

95%

95%

30%

45%

50%

Immediate Plans for Project

Hardware

- Finish procurement of components
- Begin breadboard testing
- Complete Main System
 - Verify schematic is accurate and passes ERC
 - Route PCB and verify it passes ERC

Software

- Finalize iOS application and begin watchOS application
- Begin testing of iOS application and Web API

Questions?