HW1

1. (36%) Convert the following numbers from the given base to other three bases listed in the table (to the 4th digit after radix point):

Decimal	Binary	Octal	Hexadecimal
76.28	1001100.0100	114.2172	4C.47AE
9.625	1001.1010	11.5	9.A
48.37不屬於8	進位,故無解	48.37	
127.140625	1111111.0010	177.11	7F.24

2.

0,28 x 2 = 0,56 1. 056×2=1.12 0.12 x 2 = 0.24 0-24×2=0-48 (1001100)2=(114)8 028x8=224-2 0-24x8=1.92 -1 0.92x8=7.36-7 0.76×8=2.88-2 (76.28)10 = (114,2172)0 228×16=4.48-4 0.48×16=7.68-7 3-68×16=10.88 -10(A) 0.88×16=14.08-14(E) (76.28)10 = (4C.47AE)16

 $= 3^{2}x | + 2^{2}x | + 2^{2}x | + 2^{2}x |$ = 8 + 1 + 0.5 + 0.125 = 9.625 $(1001.1010)_{2} = (7.625)_{10}$ $(1001.1010)_{2} = (11)_{8}$ $0.625 \times 8 = 5 - 5$ $(1001.1010)_{2} = (11.5)_{8}$ $(1001)_{2} = (9)_{16}$ $0.625 \times 16 = 10 - 10(A)$

 $\begin{aligned}
&(1) = (1) \cdot (1 + 3 \cdot 1) \cdot$

4.

2. (16%) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend. (a) 0101 – 0111, (b) 10101 – 0110, (c) 1011101 – 1111001, (d) 101011 – 1101.

3. (16%) Convert decimal +29 and +75 to binary, using the signed-2's-complement representation and enough digits to accommodate the numbers, Then, perform the binary equivalent of (+29)+(-75) and (-29)+(-75) using addition. Convert the answers back to decimal and verify that they are correct.

$$y_1 = 16 + 8 + 4 + 1 = y_1 + y_2 + y_2 + y_3 = 00011101 \text{ in}$$
 $y_2 = 64 + 8 + y_4 = y_1 + y_2 + y_1 + y_2 = 01001011 \text{ in}$
 $y_3 = 11100010 + 1 = 11100011 \text{ in}$
 $y_4 = 11100010 + 1 = 11100011 \text{ in}$
 $y_4 = 11100010 + 1 = 11100011 \text{ in}$
 $y_4 = 11100010 \text{ in}$
 $y_4 = 16 + 8 + 4 + 1 = y_4 + y_2 + y_4 = y_4 = 01001011 \text{ in}$
 $y_4 = 16 + 8 + 4 + 1 = y_4 + y_2 + y_4 = y_4 = 01001011 \text{ in}$
 $y_4 = 16 + 8 + 4 + 1 = y_4 + y_2 + y_4 = y_4 = 01001011 \text{ in}$
 $y_4 = 16 + 8 + 4 + 1 = y_4 + y_4 + y_4 = y_4 =$

4. (8%) Write the word "NTHU" in ASCII using an eight-bit code including the space Treat the leftmost bit of each character as a parity bit. Each 8-bit code should have even parity.

字元	十進位	十六進位	二進位	Ans:	Even parity
N	78	4E	0100 1110		0100 1110
Т	84	54	0101 0100		1101 0100
Н	72	48	0100 1000 判斷5	是否為	0100 1000
U	85	55	1馬蚁1	型,否 是左位1	0101 0101

5. (8%) For an 8-bit sequence is 1001 0101. What is its content if it represents (a) two decimal digits in BCD? (b) two decimal number in the Excess-3 code? (c) an 8-bit unsigned number? (d) an 8-bit signed number?

(a)
$$(1001\ 0101)_{BCD} = (2^3 + 2^0) \times 10^1 + (2^2 + 2^0) \times 10^0 = (95)_{10}$$

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
20 12	1011	0110	0001	0010
Unused	1100	0111	0010	0011
bit combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
палонз	1111	1010	1111	1110

(c)
$$(1001\ 0101)_{unsigned\ number} = (2^7 + 2^4 + 2^2 + 2^0)_{10} = (149)_{10}$$

(d)
$$(1001\ 0101)_{\text{signed number}} = (-2^7 + 2^4 + 2^2 + 2^0)_{10} = -(107)_{10}$$

6. (4%) If you have 20 books and want to give each book a unique id with a binary number. If we want to use as least as possible the number of bits as the id, how many bits do you need? (sol)

$$2^5 > 20 > 2^4$$

Ans: 5 bit

7. (12%) Find the Gray code sequence of 14 code words.

```
M= 2k = 14
              , K=7
                       MSB
                        93 92 9190
 0
       0 0 0 0
                           0 0 0
       0001
                           0 0 1
 2
       0010
                           011
3
       0011
                              10
                                      1° let (45B = 0
4
       0 1 00
                              10
5
           0 1
                              11
6
                         0
                           101
          110
                            101
7
8
      1 0
            0 0
         001
10
            10
11
12
13
       1 1 01
```