RedHawk Training - SoC Power, Noise & Reliability

June 16, 2020

ANSYS Technologies for Electronic Systems

ANSYS Semiconductor Products in Flow

RTL & Gate Power:

- Power reduction
- Power analysis
- Power regression

Place & Route:

- Early convergence of PI
- PI aware placement
- Fixing and optimizing

Timing Signoff:

- Spice accurate timing
- · Variability/aging aware timing
- · DvD aware timing

Power/Reliability Signoff:

- Dynamic voltage drop
- Electromigration
- Chip-aware package design

Architectural spec

Microarchitecture RTL Design

Logic Synthesis

Place and Route

Timing Signoff

Power/Reliability
Signoff

Tape-out

PowerArtist™

RedHawk™ - Fusion

Path-FX™

Totem™

RedHawk™

RedHawk-SC™

Training Agenda

- RedHawk Static/Dynamic analysis theory
- Input data preparation & IP/Standard cell modelling
- Package handling in RedHawk
- GUI and Tcl commands in RedHawk: Demo
- Result Analysis and Root Cause identification using RedHawk Explorer (RHE)
- Chip Power Model (CPM) generation and Chip-Package-System(CPS) analysis
- Distributed Machine Processing (DMP) for large designs

RedHawk Static/Dynamic analysis theory

RedHawk Analysis Flow

Gate-level Average Power Calculation

Static Voltage Drop Background

- On-chip power/ground network → mesh of resistors
- Average current (lavg) of instances is estimated from Average power
- Instances
 DC current sources

Static Voltage Drop on P/G Network

- Average current is calculated for each instance
- V_{static} is computed at every node (Ohm's law ...)
- Wire / via electromigration (EM) is post-processed from static current density

Dynamic Voltage Drop Problem Definition

- On-chip power/ground network → R,L,C mesh
- Switching instances → i(t,V) sources
- Non-switching instances

 Effective decaps, ESR and leakage

Dynamic Voltage Drop on P/G Network

- PWL current for each instance
- Vdynamic waveform is computed at every node by transient simulation

Difference Between Static and Dynamic

Static	Dynamic
All instances will draw an average current (DC)	Switching instances will draw transient current (AC) Non-switching instances will draw only leakage
Total Average demand will be much less than real peak demand current for the chip	Dynamic will see the real peak demand current
Demand current is completely supplied by battery	Portion of the demand current is supplied by decaps (Intrinsic / Intentional / PG caps)
Doesn't matter when an instance switches Instances will draw the current all the time	Instances will draw transient current only when it switches Simultaneous switching causes huge peak current demand
No drop across package due to Ldi/dt effects (Current is constant)	Ldi/dt drop across package and die inductance

Input data preparation & IP/Standard cell modelling

RedHawk Input Data Requirement

Library Data

- LEF
- LIB
- GDS
- APL*
- TECH*

Design Data

- DEF
- SPEF
- STA*
- VCD
- Package
- Pad Files

Redhawk Data

- GSR
- Command File
- GSC

*: These inputs are created using Ansys utilities

RedHawk Modeling for Standard Cells

Standard cell Modeling **Spice Netlist** Spice Model **APL APL Current APL CDEV** I-leak **VSS**

Current Model

- Look up table for current waveforms based on three variables : load, slew and voltage

Cap Model

 Captures effective series resistance(ESR) and effective series capacitance(ESC) and leakage

RedHawk Modeling of Memories and IPs

Transistor Level IP Modeling Using Totem

What is Inside STA File?

- Instance Frequency
 - Required for static and dynamic
- Clock domain info
 - Required for static and dynamic
- Timing Windows
 - Not required for static
- Slew
 - Required for Static (Power calculation uses Slew)
 - Required for Dynamic (Current w/f is dependent on Slew)

Specifying Voltage Source Locations

Option-1

Redhawk automatically identifies the voltage source locations from PINS section in DEF

Option-2

User can specify the master cell name for P/G pads through a file

Option-3

User can specify the P/G pad instance names through a file

Option-4

User can specify the P/G pad (x,y) locations through a file

See RedHawk manual for details

GSR (Global System Requirement) File

```
TECH FILE <path to TECH File>
LIB FILES {
<Path to LIB Files>
LEF FILES {
<Path to LEF files>
GDS CELLS {
<Path to Gds2def models>
APL_FILES {
<Path to APL models>
CMM CELLS {
<Path to CMM models>
          Library File Pointers
```

```
DEF FILES {
<Path to the DEF files>
STA_FILE {
<Path to timing file>
CELL RC FILE {
<Path to Spef file>
VCD FILE {
<VCD file details>
PAD_FILES {
<Path to Pad File>
           Design Data Pointers
```


Frequency	% of Total Power	Cumulative % of power
100 MHz	80%	80%
70 MHz	10%	90%
20 MHz	10%	100%

- Important input for Vectorless engine
- Dominant frequency is NOT the frequency with highest % of power
- It is the frequency above which 90% of the power is present
 - Arrange frequency in descending order
 - Start adding up cumulative power
 - Frequency at which we achieve 90% cumulative power is selected as dominant frequency
- Script is available to automatically set this


```
TOGGLE_RATE 0.15 1.5

INSTANCE_TOGGLE_RATE {
   instance_name toggle_rate
}

BLOCK_TOGGLE_RATE {
   block_name toggle_rate
}
```

Global Toggle Rate Used (BPFS will override this)

TEMPERATURE 125

```
VDD_NETS {
    VDD 1.2
    inst_129973/VDD_INT 1.2
}
GND_NETS {
    VSS 0
}
```

To specify the P/G Extraction Temperature

Nets being analyzed and Ideal Voltage


```
DYNAMIC_SIMULATION_TIME 10e-9

DYNAMIC_PRESIM_TIME -1

DYNAMIC_TIME_STEP 10e-12
```

Dynamic Simulation Settings

INPUT_TRANSITION 100e-12

Default Slew value used (Used for instances missing in STA File)

IGNORE_TECH_ERROR 1
IGNORE_DEF_ERROR 1
IGNORE_UNDEFINED_LAYER 1
IGNORE_LEF_DEF_MISMATCH 1

Option to proceed even with Errors

BLOCK_POWER_FOR_SCALING (BPFS)

- Used for defining power target values
- RH will scale the toggle rate to meet user specified power target
- Scaling can be done at Full-chip/Block level. It can be master cell specific too
- Can define pin specific power for multi-vdd cells

```
BLOCK_POWER_FOR_SCALING {

FULLCHIP FULLCHIP 1.2

FULLCHIP BLOCK_INST_NAME 0.5

CELLTYPE MEM_1024x768 0.1

FULLCHIP INST1 0.005 VDD1

FULLCHIP INST1 0.006 VDD2
}
```

INSTANCE POWER FILE (IPF)

- Can be used to import instance power numbers from 3rd party tools
- RH will assign the power number from this file as it is
- Instances missing in this file will get zero power
- Supports pin specific assignment

```
INSTANCE_POWER_FILE design.ipf
```

```
#Format of design.ipf
Inst1/inst_100 0.0123
Inst1/inst_102 0.0123
Inst1/inst_104 0.0123
Inst1/inst_105 0.0123
Inst1/inst_106 0.0123
Inst1/inst_107 0.0123
Inst1/inst_108 0.0123
Inst1/inst_108 0.0123
Inst1/inst_109 0.0123 VDD
```


Command File Overview

```
# Import data
import gsr GENERIC.gsr
setup design
# Calculate power
perform pwrcalc
# Power/Ground grid extraction
perform extraction -power -ground
# Static IR analysis
perform analysis -static
# Exporting the DB for future use
export db static.db
```

Static command file

```
# Import data
import gsr GENERIC.gsr
setup design
# Calculate power
perform pwrcalc
# Power/Ground grid extraction
perform extraction -power -ground -c
# Dynamic IR analysis
perform analysis -dynamic
# Exporting the DB for future use
export db dynamic.db
```

Dynamic command file

Vector based analysis

- RedHawk supports various simulation output formats
 - VCD (Value change dump) File
 - FSDB (Fast signal database)
- VCD/FSDB can be generated at two stages
 - RTL Level: contains only Flop and primary I/O activity
 - Gate Level: contains activity for all nets in the design
- Cycle selection can be done based on
 - Power : Pick cycle with worst power
 - Change in power: Pick cycle with worst change in power

Package Handling in RedHawk

F

Package Impact on Dynamic Voltage Drop

Without Package Model

With Package Model

Inclusion of package effects

- Ldi/dt noise and hence higher drops
- Choice of package capacitance

Different methods for annotating Package

- Using lumped values through command file
 - Setup package/wirebond/pad constraints
- Using package spice netlist
 - In the form of RLCK models
 - In the form of S-Parameter form

GSR Settings Requirements

```
DYNAMIC_SIMULATION_TIME 5e-9

DYNAMIC_TIME_STEP 10e-12

DYNAMIC_PRESIM_TIME 20e-9
```

```
Sufficient presim to charge internal nodes
```

```
CPA_FILES {
   PACKAGE <package_layout_filename>

MODEL 
project_path>
}
```

Package layout to be extracted & displayed in GUI

CPA package model with ploc file

If CPA model is not available

```
PAD_FILES {
   GENERIC.ploc
}
PACKAGE_SPICE_SUBCKT_INFO {
   PATH GENERIC.package.spi
}
```

Ploc files with package hooked up

Wrapped Package spice netlist

Q & A Session

Ansys

GUI and Tcl commands in RedHawk: Demo

RedHawk GUI Overview

GUI Basic Operations

Search / Query Options

Viewing Different Maps

Map Shortcuts

Controlling Map Color Legends

Viewing Different GUI Reports

Types of Voltage drop

- Min over Cycle : MinWC : Worst drop for the whole simulation time
- Min over TW: MinTW: Worst drop within timing window of the instance. Worst drop when instance is switching
- Avg over TW: AvgTW: Average drop within timing window. AvgTW is typically used to give feedback to timing tool
- Max over TW : Max TW : Best drop in TW; Not much used

Electromigration Analysis

List of Worst EM report

Viewing Different Waveforms

Minimum Resistance Path Tracing

- Traces the minimum resistance path to an instance from the electrically nearest voltage source point
- Can be invoked using Tcl Command: 'perform min_res_path path -inst <instName>'
 - Displays minimum res path for all P/G pins in GUI
 - Generates a resistance report which will give the break-up of resistance and voltage drop across different wire/via segments in the path
- Can also be invoked from Instance Property box window

Important Text Reports

File	Description
adsRpt/redhawk.log	RedHawk log file
adsRpt/power_summary.rpt	Power Summary Report
adsRpt/ <design>.power.rpt</design>	Detailed Power Report
adsRpt/Static/ <design>.inst.worst</design>	Instance Static IR Report
adsRpt/Dynamic/ <design>.dvd</design>	Instance DVD Report
adsRpt/Static/ <design>.em.worst</design>	Wire EM Report

Commonly used TCL Commands

Command	Description
import db/export db	For importing and exporting the database
help	To get help on any TCL command
print type	Prints the cell type wise switching statistics
plot switching	Plots switching histogram
plot analysis	Plots analysis histograms
gsr get / gsr set	Queries / Assigns a GSR keyword parameter (supported only for selected keywords)
condition set -time/-xy/-type	Filters the analysis results to specified time/bbox or cell type

Instance & Cell Attribute Query Commands

Command	Switch
get inst \$inst	-master
	-freq
	-power
	-peak_current
	-resistance
	-decap
	-switching_status
	-bbox
	-location
	-orientation
	-voltage
get inst * -glob	Loops through all instances in the design

Command	Switch
get cell \$cell	-type
	-height
	-width
	-pins
	-pgarcs
get cell * -glob	Loops through all master cells in the library

Net & Pad Attribute Query Commands

Command	Switch
get net \$net	-ideal_voltage
	-worst_drop
	-worst_em
get net * -glob	Loops through all nets in the design

Command	Switch
get pad \$pad	-info
	-voltage
	-current
	-layer
	-location
	-net
get pad * -glob	Loops through all pads in the design

Result Analysis and Root Cause identification using RedHawk Explorer

Ansys

RedHawk Explorer Goals

- Explorer is a tool which helps in locating, isolating, understanding and resolving design/data issues causing hot-spots
- Tightly integrated with Redhawk GUI Provides easy cross-probing capabilities

How do I run RedHawk Explorer?

TCL Command: *explore design* (can be executed at any stage after *"setup design"*)

Summary Section

Various Maps

Run Details

RHE Summary » Run Summary

Run Details

RedHawk Version	10.2.2 Jan 20 00:41:35 2011
RedHawk Explorer Version	1.45
Run Directory	/home/aleena/RH_Lite_Training/dynamic_10.2
Machine Details	Linux mercury x86_64
Date of Execution	04 Feb 2011
Total Explorer Runtime	3.25 Mins

Summary Section

RHE Summary » DVD Summary

Switching Acti	vity				99.42		
Туре	Switching (%)						
Combinational	13077/56964 (22.96%)						
Sequential	5948/16547 (35.95%)						
Clock	7324/7367 (99.42%)						
Special	0/0 (0.00%)			35.95			
Memory/IP	0/0 (0.00%)		22.96				
Total	26349/80878 (32.58%)						
	what % of instances are ng in dynamic simulation	■ Co	mb ■8	ieq Cl	ock 🌉 (0.00 Special	0.00 Mem

Difference indicates decap current contribution

Shows Analysis Histograms

Data Integrity Check Summary

- Design specific data integrity check
- Helps to identify and understand impact of missing data
- Breaks design into regions and presents missing data for each region

Data Integrity Check Example : APL Cap Check

Related Output Reports Section

DEF Check Example: Short Debug

DEF Check Example: Short Debug

GSR / TCL Setting Checks

Design Weakness Exploration

Design Weakness Analysis Example: PG Resistance Distribution

Check

Changing the Constraints

Using constraint editor (Before running RHE)

Using Text Editor (Before running RHE)

- vi adsRHE/rhe threshold.rpt
- Edit the constraints you want
- explore design -constraint_file <new_thresh_file>

Cross-probing violations in RedHawk GUI

Design Weakness Analysis: Related Maps Section

Q & A Session

Ansys

Getting Help on a Specific Item

Design Weakness » Simultaneous Switching Check

Simultaneous Switching Chec 2

Design Weakness » Simultaneous Switching Check » Help On Simultaneous Switching Check

Simultaneous Switching Checks

Various checks performed in this section are:

- 1.Overall switching activity
- 2.Peak current to Average current ratio
- 3.Switching event clustering

In Overall switching activity check, Redhawk checks whether the percentage of instances which are switching in dynamic simulation is reasonable. In Vectorless simulations, Redhawk come up with the switching scenario based on the average power target. If the power target specified in the GSR is too low, it can create very less switching in the simulation causing very low voltage drop. If the power target is too high, the switching scenario also will be very pessimistic leading to very high voltage drop. By default, a violation is reported if the switching activity is outside 10% - 40% range. You can change this range through constraint editor.

In peak current to average current ratio check, Redhawk checks whether there is global simultaneous switching issue in the design causing very high peak current. A typical example is scan-shift scenario, where all flops in the design can switch together almost at the same time along with the clock buffers causing huge peak current. Typically scan-shift operation is performed at very low frequency, say 20MHz, so when you average out this current waveform for the whole period (50ns), average current computed will be very less. Static voltage drop simulation is based on this average current, so you may notice low voltage drop in the static simulation. But, in dynamic simulation, we consider the real peak current, so voltage drop values can be very high. If you notice huge difference between your static voltage drop and dynamic voltage drop, it is advised to look at this particular check to find out the real reason. In this check, Redhawk will flag a violation if the peak current to average current ratio is more than 10X.

Power Noise: Root Cause Identification

Hot Spot Analysis

Hot Spot Analysis

Hot Spot Analysis: Checking Hot-spot #1

Root Cause Identification: Design Weakness Analysis

Root Cause Identification: Data Integrity Checking

Hot Spot Analysis at Instance Level

Hot Spot Analysis: Instance Level Debug

Shortest Path Tracing

Equivalent Tcl Command:

perform min_res_path -o res_path.rpt

User can directly zoom into the bottleneck segments

Explorer Command Line Options and Log Details

Command	Description
explore design	Runs Explorer and Pops up GUI
explore design -view	Pops up Explorer GUI
explore design -off	Closes Explorer GUI
explore design -constraint_file <cons_file></cons_file>	Runs Explorer with a user specified constraint file

Log File	Description
adsRHE/adsRHE.log	Central summary Log
adsRHE/adsDWE/adsDWE.log	Design Weakness Analysis Log
adsRHE/adsDIE/adsDIE.log	Data Integrity Analysis Log
adsRHE/adsHSE/adsHSE.log	Hot Spot Analysis Log

Chip Power Model (CPM) generation and Chip-Package-System(CPS) analysis

I

IC-Package-PCB Co-Design Challenges

System Design

- Longer System Design Cycle
 - Chip is the source of noise
 - Lack of noise budgeting at board & package
 - Possible die-package resonance
 - Package re-spin
- Higher PKG / Board Cost
 - Over-design
 - Excessive decap

What's in a CPM?

- VCD based and Vectorless switching scenario
- Multi-domain, distributed model
- Full chip frequency domain simulation and model order reduction
- DC to multi-GHz validity
- Silicon correlated

Ansys's CPS Solutions

Chip Power Modeling Flow

```
# Import data
import gsr GENERIC.gsr
setup design
# Calculate power
perform pwrcalc
# Power grid extraction
perform extraction -power -ground -c
# Package, wirebond, pad setup
setup pad
setup package
setup wirebond
# CPM Creation
perform pwrmodel -nx 5 -ny 5 -o design.cpm
```

Exactly same inputs and steps used in dynamic simulation (Add keyword GENERATE_CPM 1 in GSR; Package netlist is ignored)

CPM Generation Command

Distributed Machine Processing (DMP) for large designs

/ DMP Flow

Launching RedHawk DMP

- Command to launch DMP
 - redhawk -lmwait -dmp <DMP_Config_file> -f <tcl_command_file>
 - DMP config file is required to provide information like Number of partitions, Grid type, launch constraints etc.
 - Sample DMP Config file:

```
NUMBER_OF_JOBS 16

GRID_TYPE LSF/SSH/RTDA/SGE

QUEUE_NAME dmp_queue

ARGUMENTS_FOR_LARGE_JOBS " -q dmp_queue -R "rusage[mem=130000]"
```

No other changes required in GSR/Tcl files

Q & A Session

- QA session will be for 15 mins
- For queries which are unanswered by end of this session, please email to <u>dileesh.jostin@ansys.com</u> or contact local Ansys AE

Ansys