LaPIS Diagnostic Test Workbook - Mathematics

Name : Naveena M

Class: 7

Section : C

School : AKV Public School

Login ID : AKV193

Naveena M's Performance Report

Score: 15/40 Percentage: 37.5%

Naveena M's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved	
LCM	Finding LCM
Types of angles	Identification of types of angles

Hi, here in this video you will learn **LCM**

Question: 1

Fill the hexagon with factors and multiples of 10.

......

\underline{Answer} :

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

Question: 2

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

.....

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of 2 =

Multiple of 13 = _____

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Hi, here in this video you will learn **Types of Angles**

Question: 4

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $__$.

The straight line measures $___^{\circ}$.

Question: 5

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 6

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = ____ + ___ = ____

It is called as _____ angle.

Data handling

Topics to be Improved		
Chance of probability	Sample space in probability, Basis of probability	
		GAU:-3G

.....

Hi, here in this video you will learn Basics of probability

Question: 7

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

......

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 8

Write the possible outcomes while spinning the given wheel.

Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
Question: 9
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,
Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.

Question: 12
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have

Geometry

Topics to be Improved		
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Transversal angle made by transversal	Basics of Transversal angle	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Related angles	Basic of angles	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Angle sum property of triangle	Angle sum property of triangle	
Types of triangle	Basics of types of triangle (sides)	

Hi, here in this video you will learn Pythagoras property

<i>Question:</i> 13	
In a right angled triangle, square of thelegs.	= sum of the squares of the
Answer:	
Pythagoras theorem is only applicable for	triangle (hypotenuse/ legs) and other two sides are called
Pythagoras theorem states that	
Question: 14	
Find the hypotenuse of the triangle ABC if	base is 12 m and altitude is 5 m.
Answer:	

Pythagoras theorem states that square of the $\underline{\hspace{1cm}}$ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

Therefore, hypotenuse of the triangle is _____.

Question: 15

Find the length of the rectangle, if breadth is $3~\mathrm{cm}$ and diagonal is $5~\mathrm{cm}$.

Answer:

Pythagoras theorem states that square on the $\underline{\hspace{1cm}}$ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? $_$ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

.....

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn **Criteria of congruence**

Question: 19

Circle the groups that contain congruent images.

......

Answer:

Two geometrical shapes are said to be congruent if they are ______ (identical/non-identical) in shapes and size.

Example: Square and Rectangle are ______ (congruent/not congruent).

Question: 20

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under _____ (SSS/ASA/SAS) criteria .

Answer:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria $\underline{\hspace{1cm}}$ (2/ 3/ 5) angles and $\underline{\hspace{1cm}}$ (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 21

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Related Angles

$Question:\ 22$

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ °and it is called _____ angles.

Question: 23

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
 Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 24

Find the complementary angles in the given diagram.

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is _____.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 25

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

 $\overline{\text{Side AC}} = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 26

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

The lengths of two sides of a triangle are 7 cm and 10 of the third side fall?	cm. Detween which two numbers can length
Answer:	
1. The sum of the two sides of a triangle is Therefore, the third side should be Here, sum of the two sides =+ Therefore, the length of the third side is less that	(less/ greater) than sum of other two sides.
2. The difference of the two sides of a triangle is _	than the third side of the
triangle. Therefore, the third side should be Here, difference of the two sides = Therefore, the length of the third side is greater	=
Therefore, length of the third side is greater than	
Hi, here in this video you will learn Basics Question: 28 A point at which two or more lines segments meet is a Answer: has two end point (line/line segment/A is a point where two or more line segment/A	called(Vertex/ edges/ faces).
Mark the vertices in the diagram, Question: 29 Mark and find the number of vertices, edges and faces	s in a cube.

Mark the vertex, edges and faces in a cube.

Count the number of	of vertex, edges and faces in a cube.
Cube have	vertices, edges and faces.
$\underline{Question:~30}$	
How many vertices	adres and faces does diese have?

How many vertices, edges and faces does dices have?

Answer: The shape of dice is ______. Dices have _____ vertices, _____ edges and ______ faces. Hi, here in this video you will learn Angle sum property Question: 31

Sum of the angles of triangle is ______.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 32

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$ _____ = ____

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = ____ = __ = ___ = ___

In $\triangle XYZ$, Sum of the angles = ____ = ___ = ___

Therefore, the triangles that satisfy the angle sum property are = ______

Question: 33

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ____ and ____

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi.	here i	n this	video	vou	will	learn	Types	of	triangle
 -,	11010 1	11 01115	VIGCO	you	** 111	100111	L JPCS	O.	or range

Question:	34
Q account	04

Polygon with three sides is called as ______.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments.

Polygon with three sides is called ______.

Draw a diagram of polygon with three sides :

Question: 35

Identify the types of triangles.

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called ______ triangle.
- Triangle with two sides of equal length is called ______ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question: 36

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be ______.

.....

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is _____

Number system

Topics to be Improved			
Fractions	Division of fraction, Multiplication of fractions		
Operations on rational numbers	Subtraction of rational numbers		
Positive and negative rational numbers	Identification of positive rational numbers		
Integers	Basics of integers		
Properties of integers	Associative property		
Exponents	Solving exponents		

Hi, here in this video you will learn **Division on fractions**

Question: 37

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

.....

	<u> </u>	
	32	
	7	
\		

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}})$

$$5 \frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

.....

Question: 38

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

.....

Question: 39

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn **Operation on rational numbers**

Question: 40

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

Question: 41

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $__$ + $__$ = $_$

Question: 42

Find the missing values in the given figure.

$$= \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

......

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} +$ ____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ _____

Therefore, result is _

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 43

Segregate positive and negative rational number.

.....

Answer:

• If both the numerator and the denominator of a rational number are
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question: 44
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
Answer:
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = $ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 45
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
$\underline{Answer:}$
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Basics of integers
Question: 46

Highlight the ring that contains whole numbers.

$\underline{Answer:}$

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are numbers.
The numbers inside the middle ring are numbers.
The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as
caned as
Question: 47
Colour the frame of the box which contains the number $1,4$ and -10
Whole numbers Negative numbers Integers Naturals numbers
Answer:
Whole number consists of $0,1,2,3,4,$ Negative number consists of Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Question: 48
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Multiplication on fractions
<i>Question:</i> 49
Fill the boxes
$2+4+\frac{6}{2} = \frac{2}{\square} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$
Answer:
The whole number can be expressed in fraction with denominator equal to (zero/one). Therefore, 2 can be written as in fraction. 4 can be written as in fraction.
$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$

Question:~50	
--------------	--

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = $_$

Fraction of students who are girls = _____

Number of girls
$$=$$
 \times $=$ $=$

Question: 51

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} =$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn Properties of integers

Question: 52

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

Answer:

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

From the given option ______ satisfies the closure property.

(ii)	Associative property: Rearranging the parentheses (bracket	(s)	(does not/ d	loes) change the su	m.
	Therefore, $(a + b) + c = \underline{\hspace{1cm}}$	·			
	From the given option	_ satisfies t	he Associative prope	erty.	
(iii)	Commutative property : Changing the order of the addends $_$ Therefore, $a + b = _$ + $_$	`	s not/ does) change	the sum.	
	From the given option	$_{-}$ satisfies t	he Commutative pro	operty.	
(iv)	Identity property : The sum of Therefore, $a + \underline{\hspace{1cm}} = a$	_ and any	number always retur	rns same number.	
	From the given option	_ satisfies t	he Identity property.		
Que	stion: 53				
Mark	the operations in which commutative	property h	olds true for any two	o integers.	
	Addition Subtract	ion	Multiplication	Division	
Ans	wer:				
	mmutative property, changing the		_ (order/ brackets) c	of the operands	
For a Γhe σ	(does not/ does) change the ny two integers, commutative property commutative property for addition is _ commutative property for multiplication	holds true	·		
Que	stion: 54				
	additive identity and multiplicative idenwer:	ntity the sa	ame? (Yes or No)		
	ity property holds only for				
The l	Identity property for addition isIdentity property for multiplication is _		and additive identity		
Γher	efore, additive identity is (equ	ıal / not ec	qual) to multiplicativ	ve identity.	
Hi,	here in this video you will learn	Expone	ents and power		
Que	stion: 55				
Find	the exponential form of 1000.				
Ans	wer:				
	(Exponents/Base) tells us het the desired result.	now many t	times a number shou	ld be multiplied by	itself
-					

Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $ 10 is raised to the power of = (10)
Question: 56
Find the value of $(-2)^3$.
$\underline{Answer:}$
$\underline{\hspace{1cm}}$ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = $ $\times $ $= $
Question: 57
(i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
(ii) k is raised to the power of 5 is $\underline{\hspace{1cm}}((k)^5 \text{ or } (5)^k)$.
$\underline{Answer:}$
Exponential form = $(Base)$ —
(i) Tenth power of 100 : Base = $__$, Power/Exponents = $__$, exponential form = $__$.
(ii) k is raised to the power of 5 : Base =, Power/Exponent =, exponential form =

Comparing Quantities

Topics to be Improved				
Conversion of fraction into percentage	Conversion of fraction into percentage			
Percentage	Basic of percentage			

......

Hi,	here	in	this	video	you	will	learn	${\bf Converting}$	${\bf fraction}$	into
per	\cdot cent	age	е							

Question: 58

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____

Therefore, 5% can be expressed as _____

Question: 59

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is ____

Question: 60

Find the percentage of shaded part of square.

Ans	wer:

The square shape is divided into ______ parts.

Number of shaded part of square is _____.

Shaded part of square in fraction is _____

To Convert	into percentage,	x 100

Hi, here in this video you will learn Basics of percentage

Question: 61

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

Question: 62

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks. 75 % can be written in fraction form ____

l	
l	

Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 63
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.
Answer:
There are apples in a basket. Number of rotten apples are Fraction form of rotten apples in a basket =
Convert it into a percent= x% =

Algebra

Topics to be Improved			
Terms of an expression Identification of terms in an expression			
subtraction of algebraic expressions	subtraction of algebraic expressions		
Basics of simple equation	Solving of simple equation		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms		

Hi, here in this video you will learn Terms of an expression

Question: 64

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

......

Question: 65

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression $4xy$ is/are The terms in the expression $12a + b + 1$ is/are The terms in the expression $7m + 0$ is/are
Question: 66
Shade the outline of circle that contains the term of the given expression.
$6m^2 - 7mn + nl$
(m^2) $(7mn)$ $(6m^2)$ $(-7mn)$ (mn) (mn)
$\underline{Answer:}$
In algebraic expression, (variables/ terms) are connected together with operations of addition. Here,, are the terms of the given expression.
Hi, here in this video you will learn Subtraction on expression
Question: 67
Find the sum of two expressions $a + b + c$ and $b + c + d$
Answer:
The given two expressions are and The two terms will get added only if they are (Like/ Unlike) terms. The sum of two expressions = + The answer is
Question: 68

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

(i) Number of boys in school $A = \underline{\hspace{1cm}}$,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school $B = \underline{\hspace{1cm}}$

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 69

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

......

......

 Hi , here in this video you will learn $\operatorname{\mathbf{Solving}}$ an $\operatorname{\mathbf{equation}}$

Question: 70

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 71

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

 $7 \boxed{} + 3 = -4$

Answer:

The given equation is 7—+3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

7× ____+3= ____

—		0		
$/\times$	+	-3	=	

$$7 \times __+3 = __$$

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 72

Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{5}x$

Answer:

The given expression are _____

The value of x is _____. substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$$

Arranging in descending order: ____, ____, ____, ____.

Their respective algebraic terms are _____, ____, ____, ____,

Hi, here in this video you will learn Addition on expression

Question: 73

Shade the like terms.

......

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 74

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

	$7r^2+$ r \Box	2	= (7	+ 2	$r^2 = $
--	------------------	---	------	-----	----------

Question: 75

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have : _____.
- (ii) How many icecreams Sam have more than Ram : ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

 $Ram's chocolate + Sam's chocolates = ____ + ___ = ___$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____