Curso de Verão 2009 – Tópicos de Proogramação (Turma da noite)

Lista 2 - Algoritmos recursivos e ordenação

Data de entrega: 22/01/2009

Prof. Wanderley Guimarães

EXERCÍCIO 1. [PF] Escreva uma função recursiva que calcule a soma dos dígitos de um inteiro positivo n. Enuncie uma definição recursiva do problema e prove. A função precisa ter o seguinte protótipo:

int soma_digitos_r (int n).

Exercício 2. [FOCS] Definimos n^2 recursivamente da seguinte forma:

Base: Para $n = 1, 1^2 = 1$;

Indução: se $n^2 = m$, então $(n+1)^2 = m + 2n + 1$.

Escreva uma função recursiva que calcule n^2 . Prove por indução em n a correção da definição. A função precisa ter o seguinte protótipo:

int nquad (int n).

EXERCÍCIO 3. Escreva uma função recursiva que calcule o índice do elemento mínimo do vetor v[0..(n-1)] de inteiros. Use o seguinte fato: para determinar o índice do elemento mínimo de v[0..(n-1)], podemos determinar os índices dos elementos mínimos de $v[0..\lfloor\frac{n}{2}\rfloor]$ e $v[(\lfloor\frac{n}{2}\rfloor+1)..(n-1)]$, e em seguida, determinar o índice do elemento mínimo de v[0..(n-1)]. A função precisa ter o seguinte protótipo:

int minimo_r2 (int n, int v[]).

EXERCÍCIO 4. [PF] Escreva uma função recursiva eficiente que receba inteiros positivos k e n e calcule k^n . (Suponha que k^n cabe em um int.) A função precisa ter o seguinte protótipo:

int pot (int k, int n).

EXERCÍCIO 5. [PF] Escreva uma versão do algoritmo de inserção que tenha o seguinte invariante: no início de cada iteração, o vetor v[j+1..n-1] é crescente. A função precisa ter o seguinte protótipo:

void insercao2 (int n, int v[]).

EXERCÍCIO 6. [PF] Escreva uma função que coloque em ordem lexicográfica um vetor de n strings, onde $1 \le n \le 50$ e cada string possui comprimento entre 1 e 50. Use o algoritmo de inserção. A função precisa ter o seguinte protótipo:

void ordena_strings (int n, char s[50][51]).