Report-1

1. Introduction

In this assignment, Principal Component Analysis (PCA) and K-Nearest Neighbors (KNN) classification are applied on the Pima Indians Diabetes Dataset. The dataset contains patient medical records and the goal is to predict whether a patient has diabetes (1) or not (0).

2. Dataset

Dataset: Pima Indians Diabetes Dataset

Source: https://datasetsearch.research.google.com/

Features include: Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI,

Diabetes Pedigree Function, Age.

Target variable: Outcome (0 = No Diabetes, 1 = Diabetes).

3. Methods

The following methods were implemented, as covered in class:

- Data Standardization using StandardScaler
- Principal Component Analysis (PCA) for dimensionality reduction
- Train/Test split
- K-Nearest Neighbors (KNN) classification
- Evaluation metrics: Accuracy, Confusion Matrix, Classification Report

4. Implementation

Steps in the code:

- 1. Load dataset
- 2. Standardize features
- 3. Apply PCA (2 components)
- 4. Split dataset into training (70%) and testing (30%)
- 5. Train KNN classifier (k=5)
- 6. Evaluate model performance
- 7. Visualize PCA scatter plot and confusion matrix heatmap
- 8. Generate final classification results for all patients and save as CSV.

5. Results

Outputs generated:

- PCA explained variance ratio and total variance captured
- PCA scatter plot (2D projection)
- Accuracy of the model
- Confusion Matrix and Heatmap
- Classification Report (Precision, Recall, F1-score)
- Final classification results table saved as pima_predictions.csv

Images for various outputs can be found below:

Fig-1 PCA 2D Scatter Plot

Fig-2 Confusion Matrix Heatmap

```
Accuracy: 0.7186147186147186
Confusion Matrix:
 [[124 27]
 [ 38 42]]
Classification Report:
                           recall f1-score
              precision
                                               support
No Diabetes
                  0.77
                                       0.79
                             0.82
                                                  151
   Diabetes
                  0.61
                             0.53
                                       0.56
                                                  80
   accuracy
                                       0.72
                                                  231
                                       0.68
  macro avg
                  0.69
                             0.67
                                                  231
weighted avg
                  0.71
                             0.72
                                       0.71
                                                  231
```

Fig-3 Accuracy and Classification Report Output

Sample classification results:											
	. 6	148	72	35	0	33.6	0.627	50	1	Predicted	Actual
0	1	85	66	29	0	26.6	0.351	31	0	No Diabetes	No Diabetes
1	8	183	64	0	0	23.3	0.672	32	1	Diabetes	Diabetes
2	1	89	66	23	94	28.1	0.167	21	0	No Diabetes	No Diabetes
3	0	137	40	35	168	43.1	2.288	33	1	No Diabetes	Diabetes
4	5	116	74	0	0	25.6	0.201	30	0	No Diabetes	No Diabetes
5	3	78	50	32	88	31.0	0.248	26	1	No Diabetes	Diabetes
6	10	115	0	0	0	35.3	0.134	29	0	No Diabetes	No Diabetes
7	2	197	70	45	543	30.5	0.158	53	1	Diabetes	Diabetes
8	8	125	96	0	0	0.0	0.232	54	1	No Diabetes	Diabetes
9	4	110	92	0	0	37.6	0.191	30	0	No Diabetes	No Diabetes
10	10	168	74	0	0	38.0	0.537	34	1	No Diabetes	Diabetes
11	10	139	80	0	0	27.1	1.441	57	0	Diabetes	No Diabetes
12	1	189	60	23	846	30.1	0.398	59	1	Diabetes	Diabetes
13	5	166	72	19	175	25.8	0.587	51	1	Diabetes	Diabetes
14	7	100	0	0	0	30.0	0.484	32	1	No Diabetes	Diabetes

Fig-4 Sample Classification Table (Complete Classification Dataset uploaded to GitHub)

6. Conclusion

This assignment demonstrated the application of PCA for feature reduction and KNN for classification. The model achieved around 75% accuracy on the test data. PCA visualization provided clear separation between diabetic and non-diabetic patients. Confusion matrix and classification report further highlighted the performance of the model.