# HAR\_EDA

March 16, 2019

# 1 HumanActivityRecognition

This project is to build a model that predicts the human activities such as Walking, Walking\_Upstairs, Walking\_Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

#### 1.1 How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(*tAcc-XYZ*) from accelerometer and '3-axial angular velocity' (*tGyro-XYZ*) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in X, Y, and Z directions.

#### 1.1.1 Feature names

- 1. These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain. > In our dataset, each datapoint represents a window with different readings
- 3. The acceleration signal was saperated into Body and Gravity acceleration signals(*tBodyAcc-XYZ* and *tGravityAcc-XYZ*) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian *jerk signals* (*tBodyAccJerk-XYZ* and *tBodyGyroJerk-XYZ*).
- 5. The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This magnitudes are represented as features with names like *tBodyAccMag*, *tGravityAccMag*, *tBodyAccJerkMag*, *tBodyGyroMag* and *tBodyGyroJerkMag*.

- 6. Finally, We've got frequency domain signals from some of the available signals by applying a FFT (Fast Fourier Transform). These signals obtained were labeled with *prefix 'f'* just like original signals with *prefix 't'*. These signals are labeled as *fBodyAcc-XYZ*, *fBodyGyroMag* etc.,.
- 7. These are the signals that we got so far.
  - tBodyAcc-XYZ
  - tGravityAcc-XYZ
  - tBodyAccJerk-XYZ
  - tBodyGyro-XYZ
  - tBodyGyroJerk-XYZ
  - tBodyAccMag
  - tGravityAccMag
  - tBodyAccJerkMag
  - tBodyGyroMag
  - tBodyGyroJerkMag
  - fBodyAcc-XYZ
  - fBodyAccJerk-XYZ
  - fBodyGyro-XYZ
  - fBodyAccMag
  - fBodyAccJerkMag
  - fBodyGyroMag
  - fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
  - *mean()*: Mean value
  - *std()*: Standard deviation
  - *mad()*: Median absolute deviation
  - *max()*: Largest value in array
  - *min()*: Smallest value in array
  - sma(): Signal magnitude area
  - *energy()*: Energy measure. Sum of the squares divided by the number of values.
  - *iqr*(): Interquartile range
  - *entropy*(): Signal entropy
  - arCoeff(): Autorregresion coefficients with Burg order equal to 4
  - correlation(): correlation coefficient between two signals
  - *maxInds*(): index of the frequency component with largest magnitude
  - *meanFreq()*: Weighted average of the frequency components to obtain a mean frequency
  - *skewness()*: skewness of the frequency domain signal
  - *kurtosis*(): kurtosis of the frequency domain signal
  - *bandsEnergy()*: Energy of a frequency interval within the 64 bins of the FFT of each window.
  - *angle()*: Angle between to vectors.

- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable' '
  - gravityMean
  - tBodyAccMean
  - tBodyAccJerkMean
  - tBodyGyroMean
  - tBodyGyroJerkMean

## 1.1.2 Y\_Labels(Encoded)

- In the dataset, Y\_labels are represented as numbers from 1 to 6 as their identifiers.
  - WALKING as 1
  - WALKING\_UPSTAIRS as 2
  - WALKING DOWNSTAIRS as 3
  - SITTING as 4
  - STANDING as 5
  - LAYING as 6

# 1.2 Train and test data were saperated

• The readings from 70% of the volunteers were taken as *trianing data* and remaining 30% subjects recordings were taken for *test data* 

### 1.3 Data

- All the data is present in 'UCI\_HAR\_dataset/' folder in present working directory.
  - Feature names are present in 'UCI\_HAR\_dataset/features.txt'
  - Train Data
    - \* 'UCI\_HAR\_dataset/train/X\_train.txt'
    - \* 'UCI\_HAR\_dataset/train/subject\_train.txt'
    - \* 'UCI\_HAR\_dataset/train/y\_train.txt'
  - Test Data
    - \* 'UCI\_HAR\_dataset/test/X\_test.txt'
    - \* 'UCI\_HAR\_dataset/test/subject\_test.txt'
    - \* 'UCI\_HAR\_dataset/test/y\_test.txt'

### 1.4 Data Size:

27 MB

# 2 Quick overview of the dataset:

• Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects) while performing the following 6 Activities.

- 1. Walking
- 2. WalkingUpstairs
- 3. WalkingDownstairs
- 4. Standing
- 5. Sitting
- 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engery-bands, entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

## 2.1 Problem Framework

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- Each datapoint corresponds one of the 6 Activities.

## 2.2 Problem Statement

In [1]: import numpy as np

Given a new datapoint we have to predict the Activity

```
In [17]:
Out[17]: (564,)
In []:
In []:
In [5]: data.head(4)
Out [5]:
           tBodyAcc-mean()-X
                              tBodyAcc-mean()-Y tBodyAcc-mean()-Z tBodyAcc-std()-X
        0
                     0.288585
                                        -0.020294
                                                            -0.132905
                                                                               -0.995279
        1
                     0.278419
                                                                               -0.998245
                                        -0.016411
                                                            -0.123520
        2
                     0.279653
                                        -0.019467
                                                            -0.113462
                                                                               -0.995380
        3
                     0.279174
                                        -0.026201
                                                            -0.123283
                                                                               -0.996091
                              tBodyAcc-std()-Z tBodyAcc-mad()-X tBodyAcc-mad()-Y
           tBodyAcc-std()-Y
        0
                   -0.983111
                                      -0.913526
                                                         -0.995112
                                                                            -0.983185
                   -0.975300
                                      -0.960322
                                                         -0.998807
                                                                            -0.974914
        1
        2
                   -0.967187
                                      -0.978944
                                                         -0.996520
                                                                            -0.963668
        3
                   -0.983403
                                      -0.990675
                                                         -0.997099
                                                                            -0.982750
           tBodyAcc-mad()-Z
                             tBodyAcc-max()-X
                                                       fBodyBodyGyroJerkMag-meanFreq()
                                                 . . .
        0
                   -0.923527
                                      -0.934724
                                                                              -0.074323
                                      -0.943068
                                                                               0.158075
        1
                   -0.957686
                                                 . . .
        2
                   -0.977469
                                      -0.938692
                                                                               0.414503
        3
                   -0.989302
                                      -0.938692
                                                                               0.404573
                                                 . . .
           fBodyBodyGyroJerkMag-skewness()
                                              fBodyBodyGyroJerkMag-kurtosis()
        0
                                   -0.298676
                                                                      -0.710304
        1
                                   -0.595051
                                                                     -0.861499
        2
                                   -0.390748
                                                                     -0.760104
        3
                                   -0.117290
                                                                     -0.482845
           angle(tBodyAccMean,gravity)
                                          angle(tBodyAccJerkMean),gravityMean)
        0
                              -0.112754
                                                                        0.030400
        1
                               0.053477
                                                                       -0.007435
        2
                              -0.118559
                                                                        0.177899
        3
                              -0.036788
                                                                       -0.012892
                                               angle(tBodyGyroJerkMean,gravityMean)
           angle(tBodyGyroMean,gravityMean)
        0
                                   -0.464761
                                                                            -0.018446
        1
                                    -0.732626
                                                                             0.703511
        2
                                     0.100699
                                                                             0.808529
        3
                                     0.640011
                                                                            -0.485366
           angle(X,gravityMean)
                                  angle(Y,gravityMean)
                                                          angle(Z,gravityMean)
        0
                       -0.841247
                                               0.179941
                                                                     -0.058627
        1
                       -0.844788
                                               0.180289
                                                                     -0.054317
```

```
      2
      -0.848933
      0.180637
      -0.049118

      3
      -0.848649
      0.181935
      -0.047663
```

[4 rows x 561 columns]

#### 2.3 Obtain the train data

```
In [18]: # get the data from txt files to pandas dataffame
        X_train = pd.read_csv('UCI_HAR_dataset/train/X_train.txt', delim_whitespace=True, hear
         # add subject column to the dataframe
        X_train['subject'] = pd.read_csv('UCI_HAR_dataset/train/subject_train.txt', header=No:
        y_train = pd.read_csv('UCI_HAR_dataset/train/y_train.txt', names=['Activity'], squeez.
        y_train_labels = y_train.map({1: 'WALKING', 2: 'WALKING_UPSTAIRS', 3: 'WALKING_DOWNSTAIR
                               4: 'SITTING', 5: 'STANDING', 6: 'LAYING'})
        # put all columns in a single dataframe
        train = X_train
        train['Activity'] = y_train
        train['ActivityName'] = y_train_labels
        train.sample()
Out[18]:
             tBodyAcc-mean()-X tBodyAcc-mean()-Y tBodyAcc-mean()-Z \
                       0.18082
                                        -0.002281
        784
                                                           -0.072974
             tBodyAcc-std()-X tBodyAcc-std()-Y tBodyAcc-std()-Z tBodyAcc-mad()-X \
                                                         -0.49802
        784
                    -0.249202
                                        0.10667
                                                                          -0.265213
             tBodyAcc-mad()-Y tBodyAcc-mad()-Z tBodyAcc-max()-X ... \
        784
                      0.05835
                                      -0.455868
                                                        -0.169506 ...
             angle(tBodyAccMean,gravity) angle(tBodyAccJerkMean),gravityMean) \
        784
                                0.653324
             angle(tBodyGyroMean,gravityMean) angle(tBodyGyroJerkMean,gravityMean) \
        784
                                     0.946132
                                                                          -0.790122
             angle(X,gravityMean) angle(Y,gravityMean) \

                                               0.139184
                                                                     0.033872
        784
                        -0.936894
             subject Activity ActivityName
        784
                   5
                             1
                                     WALKING
         [1 rows x 564 columns]
In [3]: train.shape
Out[3]: (7352, 564)
```

### 2.4 Obtain the test data

```
In [19]: # get the data from txt files to pandas dataffame
        X_test = pd.read_csv('UCI_HAR_dataset/test/X_test.txt', delim_whitespace=True, header
         # add subject column to the dataframe
        X test['subject'] = pd.read csv('UCI HAR dataset/test/subject test.txt', header=None,
         # get y labels from the txt file
        y_test = pd.read_csv('UCI_HAR_dataset/test/y_test.txt', names=['Activity'], squeeze=T
        y_test_labels = y_test.map({1: 'WALKING', 2:'WALKING_UPSTAIRS',3:'WALKING_DOWNSTAIRS'
                                4: 'SITTING', 5: 'STANDING', 6: 'LAYING'})
         # put all columns in a single dataframe
        test = X test
        test['Activity'] = y_test
        test['ActivityName'] = y_test_labels
        test.sample()
Out[19]:
              tBodyAcc-mean()-X tBodyAcc-mean()-Y tBodyAcc-mean()-Z \
         1273
                        0.223884
                                          -0.016198
                                                             -0.110829
              tBodyAcc-std()-X tBodyAcc-std()-Y tBodyAcc-std()-Z tBodyAcc-mad()-X \
                      -0.966023
                                        -0.970969
                                                          -0.995167
         1273
                                                                            -0.969574
              tBodyAcc-mad()-Y tBodyAcc-mad()-Z tBodyAcc-max()-X ... \
                                        -0.994497
         1273
                       -0.97103
                                                          -0.918352 ...
              angle(tBodyAccMean,gravity) angle(tBodyAccJerkMean),gravityMean) \
         1273
                                  0.016828
                                                                        0.500849
              angle(tBodyGyroMean,gravityMean) angle(tBodyGyroJerkMean,gravityMean) \
                                                                             0.219003
         1273
                                       0.259041
              angle(X,gravityMean) angle(Y,gravityMean) angle(Z,gravityMean) \
         1273
                           0.602713
                                                -0.413909
                                                                      -0.596575
              subject Activity ActivityName
         1273
                   12
                              6
                                       LAYING
         [1 rows x 564 columns]
In [20]: test.shape
Out[20]: (2947, 564)
```

# 3 Data Cleaning

# 3.1 1. Check for Duplicates

# 3.2 2. Checking for NaN/null values

#### 3.3 3. Check for data imbalance

In [23]: import matplotlib.pyplot as plt

```
import seaborn as sns

sns.set_style('whitegrid')
   plt.rcParams['font.family'] = 'Dejavu Sans'

In [24]: plt.figure(figsize=(16,8))
   plt.title('Data provided by each user', fontsize=20)
   sns.countplot(x='subject',hue='ActivityName', data = train)
   plt.show()
```



We have got almost same number of reading from all the subjects



## 3.3.1 Observation

Our data is well balanced (almost)

# 3.4 4. Changing feature names

```
In [26]: columns = train.columns
         # Removing '()' from column names
         columns = columns.str.replace('[()]','')
         columns = columns.str.replace('[-]', '')
         columns = columns.str.replace('[,]','')
         train.columns = columns
         test.columns = columns
         test.columns
Out[26]: Index(['tBodyAccmeanX', 'tBodyAccmeanY', 'tBodyAccmeanZ', 'tBodyAccstdX',
                'tBodyAccstdY', 'tBodyAccstdZ', 'tBodyAccmadX', 'tBodyAccmadY',
                'tBodyAccmadZ', 'tBodyAccmaxX',
                'angletBodyAccMeangravity', 'angletBodyAccJerkMeangravityMean',
                'angletBodyGyroMeangravityMean', 'angletBodyGyroJerkMeangravityMean',
                'angleXgravityMean', 'angleYgravityMean', 'angleZgravityMean',
                'subject', 'Activity', 'ActivityName'],
               dtype='object', length=564)
```

### 3.5 5. Save this dataframe in a csy files

# 4 Exploratory Data Analysis

"Without domain knowledge EDA has no meaning, without EDA a problem has no soul."

## 4.0.1 1. Featuring Engineering from Domain Knowledge

- Static and Dynamic Activities
  - In static activities (sit, stand, lie down) motion information will not be very useful.
  - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

#### 4.0.2 2. Stationary and Moving activities are completely different

- c:\users\dell\appdata\local\programs\python\python36\lib\site-packages\seaborn\axisgrid.py:230
  warnings.warn(msg, UserWarning)
- c:\users\dell\appdata\local\programs\python\python36\lib\site-packages\scipy\stats\stats.py:17
  return np.add.reduce(sorted[indexer] \* weights, axis=axis) / sumval



```
In [29]: # for plotting purposes taking datapoints of each activity to a different dataframe
         df1 = train[train['Activity']==1]
         df2 = train[train['Activity']==2]
         df3 = train[train['Activity']==3]
         df4 = train[train['Activity']==4]
         df5 = train[train['Activity']==5]
         df6 = train[train['Activity']==6]
         plt.figure(figsize=(14,7))
         plt.subplot(2,2,1)
         plt.title('Stationary Activities(Zoomed in)')
         sns.distplot(df4['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sitting')
         sns.distplot(df5['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standing')
         sns.distplot(df6['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying')
         plt.axis([-1.01, -0.5, 0, 35])
         plt.legend(loc='center')
         plt.subplot(2,2,2)
```

```
plt.title('Moving Activities')
sns.distplot(df1['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walking')
sns.distplot(df2['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walking Up')
sns.distplot(df3['tBodyAccMagmean'],color = 'green',hist = False, label = 'Walking down plt.legend(loc='center right')
```

```
plt.tight_layout()
plt.show()
```



# 4.0.3 3. Magnitude of an acceleration can saperate it well



\_\_ Observations\_\_: - If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying. - If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs. - If tAccMean > 0.0 then the Activity is WalkingDownstairs. - We can classify 75% the Activity labels with some errors.

# 4.0.4 4. Position of GravityAccelerationComponants also matters

```
In [31]: sns.boxplot(x='ActivityName', y='angleXgravityMean', data=train)
    plt.axhline(y=0.08, xmin=0.1, xmax=0.9,c='m',dashes=(5,3))
    plt.title('Angle between X-axis and Gravity_mean', fontsize=15)
    plt.xticks(rotation = 40)
    plt.show()
```



\_\_ Observations\_\_: \* If angleX,gravityMean > 0 then Activity is Laying. \* We can classify all datapoints belonging to Laying activity with just a single if else statement.

```
In [32]: sns.boxplot(x='ActivityName', y='angleYgravityMean', data = train, showfliers=False)
    plt.title('Angle between Y-axis and Gravity_mean', fontsize=15)
    plt.xticks(rotation = 40)
    plt.axhline(y=-0.22, xmin=0.1, xmax=0.8, dashes=(5,3), c='m')
    plt.show()
```



# 5 Apply t-sne on the data

```
# prepare the data for seaborn
                 print('Creating plot for this t-sne visualization..')
                 df = pd.DataFrame({'x':X_reduced[:,0], 'y':X_reduced[:,1], 'label':y_data})
                 # draw the plot in appropriate place in the grid
                 sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,\
                            palette="Set1", markers=['^','v','s','o', '1','2'])
                 plt.title("perplexity : {} and max_iter : {}".format(perplexity, n_iter))
                 img_name = img_name_prefix + '_perp_{}_iter_{}.png'.format(perplexity, n_iter
                 print('saving this plot as image in present working directory...')
                 plt.savefig(img_name)
                 plt.show()
                 print('Done')
In [35]: X_pre_tsne = train.drop(['subject', 'Activity','ActivityName'], axis=1)
         y_pre_tsne = train['ActivityName']
         perform_tsne(X_data = X_pre_tsne,y_data=y_pre_tsne, perplexities =[2,5,10,20,50])
performing tsne with perplexity 2 and with 1000 iterations at max
[t-SNE] Computing 7 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.683s...
[t-SNE] Computed neighbors for 7352 samples in 34.777s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.635855
[t-SNE] Computed conditional probabilities in 1.428s
[t-SNE] Iteration 50: error = 124.7093124, gradient norm = 0.0298898 (50 iterations in 13.299s
[t-SNE] Iteration 100: error = 107.0696716, gradient norm = 0.0300952 (50 iterations in 3.791s
[t-SNE] Iteration 150: error = 100.7640762, gradient norm = 0.0188750 (50 iterations in 2.655s
[t-SNE] Iteration 200: error = 97.4186554, gradient norm = 0.0156425 (50 iterations in 2.487s)
[t-SNE] Iteration 250: error = 95.1398087, gradient norm = 0.0141706 (50 iterations in 2.363s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 95.139809
[t-SNE] Iteration 300: error = 4.1169271, gradient norm = 0.0015617 (50 iterations in 2.227s)
[t-SNE] Iteration 350: error = 3.2087421, gradient norm = 0.0010064 (50 iterations in 1.988s)
[t-SNE] Iteration 400: error = 2.7794907, gradient norm = 0.0007180 (50 iterations in 2.052s)
[t-SNE] Iteration 450: error = 2.5153465, gradient norm = 0.0005748 (50 iterations in 2.074s)
[t-SNE] Iteration 500: error = 2.3325195, gradient norm = 0.0004788 (50 iterations in 2.102s)
[t-SNE] Iteration 550: error = 2.1948435, gradient norm = 0.0004139 (50 iterations in 2.167s)
[t-SNE] Iteration 600: error = 2.0854611, gradient norm = 0.0003656 (50 iterations in 2.160s)
[t-SNE] Iteration 650: error = 1.9956354, gradient norm = 0.0003303 (50 iterations in 2.141s)
[t-SNE] Iteration 700: error = 1.9197433, gradient norm = 0.0003057 (50 iterations in 2.157s)
```

```
[t-SNE] Iteration 750: error = 1.8549173, gradient norm = 0.0002774 (50 iterations in 2.239s) [t-SNE] Iteration 800: error = 1.7982968, gradient norm = 0.0002593 (50 iterations in 2.324s) [t-SNE] Iteration 850: error = 1.7484928, gradient norm = 0.0002401 (50 iterations in 2.253s) [t-SNE] Iteration 900: error = 1.7037975, gradient norm = 0.0002273 (50 iterations in 2.260s) [t-SNE] Iteration 950: error = 1.6636121, gradient norm = 0.0002126 (50 iterations in 2.274s) [t-SNE] Iteration 1000: error = 1.6271712, gradient norm = 0.0002006 (50 iterations in 2.403s) [t-SNE] KL divergence after 1000 iterations: 1.627171

Done..
```

Creating plot for this t-sne visualization..

c:\users\dell\appdata\local\programs\python\python36\lib\site-packages\seaborn\regression.py:5warnings.warn(msg, UserWarning)

saving this plot as image in present working directory...



```
[t-SNE] Computing 16 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.263s...
[t-SNE] Computed neighbors for 7352 samples in 36.633s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 0.961265
[t-SNE] Computed conditional probabilities in 0.046s
[t-SNE] Iteration 50: error = 114.0588455, gradient norm = 0.0204286 (50 iterations in 13.314s
[t-SNE] Iteration 100: error = 97.3685379, gradient norm = 0.0153800 (50 iterations in 2.791s)
[t-SNE] Iteration 150: error = 93.0875320, gradient norm = 0.0081664 (50 iterations in 2.172s)
[t-SNE] Iteration 200: error = 91.0965881, gradient norm = 0.0063155 (50 iterations in 2.129s)
[t-SNE] Iteration 250: error = 89.9250259, gradient norm = 0.0051821 (50 iterations in 2.221s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 89.925026
[t-SNE] Iteration 300: error = 3.5678382, gradient norm = 0.0014579 (50 iterations in 2.052s)
[t-SNE] Iteration 350: error = 2.8112514, gradient norm = 0.0007469 (50 iterations in 2.115s)
[t-SNE] Iteration 400: error = 2.4308279, gradient norm = 0.0005256 (50 iterations in 2.145s)
[t-SNE] Iteration 450: error = 2.2140884, gradient norm = 0.0004070 (50 iterations in 2.114s)
[t-SNE] Iteration 500: error = 2.0699861, gradient norm = 0.0003323 (50 iterations in 2.123s)
[t-SNE] Iteration 550: error = 1.9651834, gradient norm = 0.0002803 (50 iterations in 2.247s)
[t-SNE] Iteration 600: error = 1.8841531, gradient norm = 0.0002474 (50 iterations in 2.164s)
[t-SNE] Iteration 650: error = 1.8188921, gradient norm = 0.0002234 (50 iterations in 2.180s)
[t-SNE] Iteration 700: error = 1.7650652, gradient norm = 0.0002000 (50 iterations in 2.126s)
[t-SNE] Iteration 750: error = 1.7196234, gradient norm = 0.0001805 (50 iterations in 2.120s)
[t-SNE] Iteration 800: error = 1.6806608, gradient norm = 0.0001651 (50 iterations in 2.147s)
[t-SNE] Iteration 850: error = 1.6467364, gradient norm = 0.0001556 (50 iterations in 2.127s)
[t-SNE] Iteration 900: error = 1.6169364, gradient norm = 0.0001427 (50 iterations in 2.120s)
[t-SNE] Iteration 950: error = 1.5905139, gradient norm = 0.0001342 (50 iterations in 2.135s)
[t-SNE] Iteration 1000: error = 1.5668000, gradient norm = 0.0001274 (50 iterations in 2.129s)
[t-SNE] KL divergence after 1000 iterations: 1.566800
Creating plot for this t-sne visualization..
```

performing tsne with perplexity 5 and with 1000 iterations at max

c:\users\dell\appdata\local\programs\python\python36\lib\site-packages\seaborn\regression.py:5warnings.warn(msg, UserWarning)



```
performing tsne with perplexity 10 and with 1000 iterations at max
[t-SNE] Computing 31 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.215s...
[t-SNE] Computed neighbors for 7352 samples in 89.354s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.133828
[t-SNE] Computed conditional probabilities in 0.087s
[t-SNE] Iteration 50: error = 105.8209076, gradient norm = 0.0197871 (50 iterations in 4.039s)
[t-SNE] Iteration 100: error = 90.2392960, gradient norm = 0.0115153 (50 iterations in 2.773s)
[t-SNE] Iteration 150: error = 87.2182007, gradient norm = 0.0052304 (50 iterations in 2.423s)
```

```
[t-SNE] Iteration 200: error = 86.0040054, gradient norm = 0.0040429 (50 iterations in 2.377s)
[t-SNE] Iteration 250: error = 85.3215866, gradient norm = 0.0039597 (50 iterations in 2.371s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.321587
[t-SNE] Iteration 300: error = 3.1310625, gradient norm = 0.0013930 (50 iterations in 2.296s)
[t-SNE] Iteration 350: error = 2.4868283, gradient norm = 0.0006485 (50 iterations in 2.242s)
[t-SNE] Iteration 400: error = 2.1667283, gradient norm = 0.0004216 (50 iterations in 2.494s)
[t-SNE] Iteration 450: error = 1.9824675, gradient norm = 0.0003127 (50 iterations in 2.663s)
[t-SNE] Iteration 500: error = 1.8641733, gradient norm = 0.0002521 (50 iterations in 2.747s)
[t-SNE] Iteration 550: error = 1.7808340, gradient norm = 0.0002116 (50 iterations in 2.904s)
[t-SNE] Iteration 600: error = 1.7183496, gradient norm = 0.0001820 (50 iterations in 2.919s)
[t-SNE] Iteration 650: error = 1.6696091, gradient norm = 0.0001593 (50 iterations in 2.555s)
[t-SNE] Iteration 700: error = 1.6300225, gradient norm = 0.0001441 (50 iterations in 2.391s)
[t-SNE] Iteration 750: error = 1.5975467, gradient norm = 0.0001287 (50 iterations in 2.382s)
[t-SNE] Iteration 800: error = 1.5702302, gradient norm = 0.0001163 (50 iterations in 2.332s)
[t-SNE] Iteration 850: error = 1.5469478, gradient norm = 0.0001075 (50 iterations in 2.326s)
[t-SNE] Iteration 900: error = 1.5268013, gradient norm = 0.0001012 (50 iterations in 2.338s)
[t-SNE] Iteration 950: error = 1.5091782, gradient norm = 0.0000946 (50 iterations in 2.453s)
[t-SNE] Iteration 1000: error = 1.4939352, gradient norm = 0.0000908 (50 iterations in 2.356s)
[t-SNE] KL divergence after 1000 iterations: 1.493935
Done..
Creating plot for this t-sne visualization..
```

0 1

c:\users\dell\appdata\local\programs\python\python36\lib\site-packages\seaborn\regression.py:5-warnings.warn(msg, UserWarning)



```
performing tsne with perplexity 20 and with 1000 iterations at max
[t-SNE] Computing 61 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.245s...
[t-SNE] Computed neighbors for 7352 samples in 38.396s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.274335
[t-SNE] Computed conditional probabilities in 0.166s
[t-SNE] Iteration 50: error = 97.6708450, gradient norm = 0.0176280 (50 iterations in 5.906s)
[t-SNE] Iteration 100: error = 84.3800354, gradient norm = 0.0063340 (50 iterations in 2.821s)
[t-SNE] Iteration 150: error = 82.0177536, gradient norm = 0.0036729 (50 iterations in 2.578s)
```

```
[t-SNE] Iteration 200: error = 81.2173843, gradient norm = 0.0026996 (50 iterations in 2.484s)
[t-SNE] Iteration 250: error = 80.8109741, gradient norm = 0.0019187 (50 iterations in 2.448s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 80.810974
[t-SNE] Iteration 300: error = 2.6923869, gradient norm = 0.0012901 (50 iterations in 2.383s)
[t-SNE] Iteration 350: error = 2.1612105, gradient norm = 0.0005702 (50 iterations in 2.332s)
[t-SNE] Iteration 400: error = 1.9129137, gradient norm = 0.0003478 (50 iterations in 2.335s)
[t-SNE] Iteration 450: error = 1.7666686, gradient norm = 0.0002471 (50 iterations in 2.380s)
[t-SNE] Iteration 500: error = 1.6727108, gradient norm = 0.0001924 (50 iterations in 2.451s)
[t-SNE] Iteration 550: error = 1.6085465, gradient norm = 0.0001583 (50 iterations in 2.481s)
[t-SNE] Iteration 600: error = 1.5619932, gradient norm = 0.0001363 (50 iterations in 2.459s)
[t-SNE] Iteration 650: error = 1.5270989, gradient norm = 0.0001192 (50 iterations in 2.401s)
[t-SNE] Iteration 700: error = 1.5000280, gradient norm = 0.0001065 (50 iterations in 2.506s)
[t-SNE] Iteration 750: error = 1.4784101, gradient norm = 0.0000985 (50 iterations in 2.378s)
[t-SNE] Iteration 800: error = 1.4609820, gradient norm = 0.0000901 (50 iterations in 2.383s)
[t-SNE] Iteration 850: error = 1.4464401, gradient norm = 0.0000824 (50 iterations in 2.381s)
[t-SNE] Iteration 900: error = 1.4338733, gradient norm = 0.0000782 (50 iterations in 2.418s)
[t-SNE] Iteration 950: error = 1.4233242, gradient norm = 0.0000755 (50 iterations in 2.533s)
[t-SNE] Iteration 1000: error = 1.4146587, gradient norm = 0.0000724 (50 iterations in 2.396s)
[t-SNE] KL divergence after 1000 iterations: 1.414659
Done..
Creating plot for this t-sne visualization..
```

• ·

c:\users\dell\appdata\local\programs\python\python36\lib\site-packages\seaborn\regression.py:54 warnings.warn(msg, UserWarning)



```
performing tsne with perplexity 50 and with 1000 iterations at max
[t-SNE] Computing 151 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.211s...
[t-SNE] Computed neighbors for 7352 samples in 38.269s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.437672
[t-SNE] Computed conditional probabilities in 0.388s
[t-SNE] Iteration 50: error = 85.2197418, gradient norm = 0.0320484 (50 iterations in 7.086s)
[t-SNE] Iteration 100: error = 75.8540802, gradient norm = 0.0045513 (50 iterations in 6.271s)
[t-SNE] Iteration 150: error = 74.7807770, gradient norm = 0.0034706 (50 iterations in 4.688s)
```

```
[t-SNE] Iteration 200: error = 74.3307114, gradient norm = 0.0015979 (50 iterations in 4.536s)
[t-SNE] Iteration 250: error = 74.1124420, gradient norm = 0.0012009 (50 iterations in 4.448s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.112442
[t-SNE] Iteration 300: error = 2.1579430, gradient norm = 0.0011955 (50 iterations in 3.603s)
[t-SNE] Iteration 350: error = 1.7620761, gradient norm = 0.0004855 (50 iterations in 3.159s)
[t-SNE] Iteration 400: error = 1.5937347, gradient norm = 0.0002800 (50 iterations in 3.098s)
[t-SNE] Iteration 450: error = 1.4997300, gradient norm = 0.0001932 (50 iterations in 3.114s)
[t-SNE] Iteration 500: error = 1.4395635, gradient norm = 0.0001440 (50 iterations in 3.210s)
[t-SNE] Iteration 550: error = 1.3983837, gradient norm = 0.0001140 (50 iterations in 3.108s)
[t-SNE] Iteration 600: error = 1.3690649, gradient norm = 0.0000945 (50 iterations in 3.110s)
[t-SNE] Iteration 650: error = 1.3477201, gradient norm = 0.0000853 (50 iterations in 3.097s)
[t-SNE] Iteration 700: error = 1.3325582, gradient norm = 0.0000795 (50 iterations in 3.138s)
[t-SNE] Iteration 750: error = 1.3215077, gradient norm = 0.0000702 (50 iterations in 3.131s)
[t-SNE] Iteration 800: error = 1.3128009, gradient norm = 0.0000643 (50 iterations in 3.177s)
[t-SNE] Iteration 850: error = 1.3058068, gradient norm = 0.0000602 (50 iterations in 3.181s)
[t-SNE] Iteration 900: error = 1.3001055, gradient norm = 0.0000568 (50 iterations in 3.169s)
[t-SNE] Iteration 950: error = 1.2951843, gradient norm = 0.0000535 (50 iterations in 3.187s)
[t-SNE] Iteration 1000: error = 1.2907714, gradient norm = 0.0000531 (50 iterations in 3.184s)
[t-SNE] KL divergence after 1000 iterations: 1.290771
Done..
```

Creating plot for this t-sne visualization..

c:\users\dell\appdata\local\programs\python\python36\lib\site-packages\seaborn\regression.py:5-warnings.warn(msg, UserWarning)

