3d shape reconstruction from photographs: a Multi-View Stereo approach

Carlos Hernández
Google

George Vogiatzis

Aston University

Yasutaka Furukawa
Google

Practical camera pose estimation

- Fiduciary unknown planar pattern
 - Robustness against strong occlusion
 - Automatic detection

Practical camera pose estimation

- Fiduciary ellipse planar pattern
 - Robustness against strong occlusion
 - Automatic detection
 - Very good accuracy (< 0.01 pixels)
 - No descriptor available

Matching without descriptors

- No descriptors
- Automatic matching: open problem
- Use Delaunay triangulation (if view is not too oblique)

Delaunay descriptor

$$\cos(\alpha_{ij}) = \frac{d_i^2 + d_j^2 - d_{ij}d_{ji}}{2d_i d_j}$$

$$[\cos(\alpha_{ij}),\cos(\alpha_{jk})\ldots\cos(\alpha_{li})]$$

What if strong perspective distortion is present?

Delaunay is not perspective invariant...

...not even affine invariant...

...the solution is to exploit conics.

Two-conic perspective invariant

$$\mathbf{M} = \mathbf{C}_i^{-1} \mathbf{C}_j$$
$$d_{ij}^2 = 3 - trace(\mathbf{M}) det(\mathbf{M})^{-\frac{1}{3}}$$

Fiduciary pattern video example

