JEPPIAAR INSTITUTE OF TECHNOLOGY

A Project Report

on

EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINELEARNING

Submitted in partial fulfilment of requirements for the award of the degree of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

Under the guidance of Mrs.W.NANCY,

Submitted By

TEAM ID: PNT2022TMID25227

210619106034 -NITHISH KUMAR.K

210619106045 - SAI THARUN.K.B

210619106040 - RAKESH,S

210619106013 - DHARANEESH.B

NAALAIYATIRAN - EXPERIENTIAL PROJECT BASED LEARNING INITATIVE

ABSTRACT

In recent years, the solitary reasons for mortality in the world are chronic diseases such as heart disease, diabetes, and chronic kidney disease. These diseases should be diagnosed earlier; however, the technique is costly as well as it leads to many complications. Considering the complexity, datamining performs a major part in accurately classifying chronic disease. A new approach to classify chronic disease is by using random forest (RF). The main goal is generating an efficient and heterogeneous decision trees, while determining the optimum training sets to run at the same time. Rather utilising traditional approach like bootstrap, multi-objective firefly optimisation algorithm and random forest algorithm are proposed in this method. As a result, to train random forest, various training sets are generated with alternative instances and attributes. As a result, the performance of random forests can be improved and thus the prediction accuracy. Here we have used RandomForest Classifier to detect whether the patient has chronic disease or not and also Random Forest Regressor is used to predict the probability of chronic disease. Ourmodel gives accuracy of nearly 89%.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE No.
No.		
	ABSTRACT	2
	LIST OF TABLES	5
	LIST OF FIGURES	6
	LIST OF ABBREVIATIONS	7
1	INTRODUCTION	8
	1.1 PROJECT OVERVIEW	8
	1.2 PURPOSE	9
2	LITERATURE REVIEW	10
	2.1 EXISTING PROBLEM	10
	2.2 REFERENCICES	11
	2.3 PROBLEM STATEMENT DEFINITION	12
3	IDEATION & PROPOSED SOLUTION	13
	3.1 EMPATHY MAP CANVAS	13
	3.2 IDEATION & BRAINSTORMING	14
	3.3 PROPOSED SOLUTION	17
	3.4 PROBLEM SSOLUTION FIT	18
4	REQUIREMENT ANALYSIS	19
	4.1 FUNCTIONAL REQUIREMENT	19
	4.1 NON FUNCTIONAL REQUIREMENT	20
5	PROJECT DESIGN	21
	5.1 DATA FLOW DIAGRAMS	21
	5.2 SOLUTION & TECHNICAL ARCHITECTURE	22
	5.3 USER STORIES	23
6	PROJECT PLANNING & SCHEDULING	25
	6.1 SPRINT PLANNING & ESTIMATION	25
	6.2 SPRINT DELIVEY SCHEDULE	27
	6.3 REPORTS FROM JIRA	28
7	CODING & SOLUTIONING	29
	7.1 FEATURE 1	29
	7.2 FEATURE 2	32

8	TESTING	35
	8.1 TEST CASES	35
	8.2 USER ACCEPTANCE TESTING	36
9	RESULTS	39
	9.1 PERFORMANACE MATRICS	39
10	ADVANTAGES & DISADVANTAGES	40
11	CONCLUSION	41
12	FUTURE SCOPE	42
13	APPENDIX	43
	SOURCE CODE	43
	CITHUR & PROJECT DEMO LINK	56

LIST OF TABLES

TABLE	TITLE	PAGE No.
No.		
2.1	Problem Statement Definition	12
3.1	Proposed Solution	17
4.1	Functional Requirement	19
4.2	Non Functional Requirement	20
5.1	User Story	23
6.1	Sprint Planning & Estimation	25
6.2	Sprint Delivey Schedule	27

LIST OF FIGURES

TABLE	PAGE No.	
No.		
3.1	Empathy Map Canvas	13
3.2	Team Gathering, Collaboration and Select the Problem Statement	14
3.3	Brainstorm, Idea Listing and Grouping	15
3.4	Idea Prioritization	16
3.5	Problem Solution Fit	18
5.1	Data Flow of Chronic Disease Prediction	21
5.2	Solution Architecture	22
5.3	Technical Architecture	22
6.1	Reports From JIRA	28
7.1	Collection of Dataset	29
7.2	Checking Null Entries	30
7.3	Checking Duplicates	30
7.4	Cleaning and preprocessing the data	31
7.5	Split of dependent and Independent Variables	31
7.6	Choosing Parameters	32
7.7	Choosing Parameters	32
7.8	Random Forest Regression	33
7.9	Flask connectivity	34
8.1	Test Case	35
8.2	User input data acceptance	36
8.3	User data entry	37
8.4	Chronic disease presence output	38
8.5 9.1	Chronic disease not presence output Performance Metrics	38 39

LIST OF ABBREVIATIONS

CKD Chronic Kidney Disease

UCI Unique Client Identifier

NFRs Non Functional Requirements

EDA Exploratory Data Analysis

INTRODUCTION

1.1 PROJECT OVERVIEW

Chronic diseases require long-term, continuous management. They take a long time to manifest and are difficult to cure. According to the Current Status and Future Development of Chronic Disease Management Project of the Korean Ministry of Healthand Welfare, death by five major chronic diseases (hypertension, stroke, angina pectoris, myocardial infarction, and diabetes mellitus) constituted 63.1% of the total deaths in Korea in 2003. While the cost burden of diseases has increased annually, the number of deaths caused by chronic diseases also continues to increase. Various approaches have been introduced to prevent chronic diseases, and most of them focus on lifestyle. However, it is difficult for individuals to change their lifestyle to prevent chronic diseases, because many people do not know which chronic diseases, they may be susceptible to based on their physical condition and medical history. Although a few approaches have been used to predict the possibility of contracting these diseases, their performance was limited because relevant information on the physical condition and medical history was often omitted. Various studies on chronic diseases have received a lot of attention since the 1990s.

A few studies were conducted if smoking, drinking, and high cholesterol levels cause chronic diseases. The cholesterol level with stroke and coronary heart disease using experimental groups. Other related studies have included reports investigating the effects of dietary supplements on preventing chronic diseases. One such dietary supplement is chlorella, which is reportedly effective in facilitating growth and improving stress-related ulcers in individuals at high risk for chronic disease.

A study evaluating the effects of chlorella use found that this supplement improved fat metabolism and lowered blood glucose levels, suggesting that it may have beneficial effects in preventing chronic disease. Disease development may also be influenced by an individual's living environment. A recent study quantified many diseases and risk factors that correspond to environmental variables by conducting correlation analyses on stress-

related variables and chronic diseases. As more health information data become available, some machine learning approaches have been implemented to predict the characteristics of chronic disease potential using data as input variables and to predict these as individual medical histories. However, studies of chronic disease are usually experimental; hence, the resulting datasets tend to contain many missing values.

Consequently, researchers are unlikely to obtain complete medical records and relevant information when analyzing chronic diseases. However, to the best of our knowledge, only a few approaches have predicted chronic diseases when there are missing values, and most of them have focused on handling them by imputation instead of implicit treatment.

1.2 PURPOSE

Chronic kidney disease (CKD) has become a global health issue and is an area of concern. It is a condition where kidneys become damaged and cannot filter toxic wastes in the body. The proposed system predominantly focuses on predicting this life-threatening disease Chronic Kidney Disease (CKD) using Classification algorithms (KNN and Naive Bayes). Proposed system is automation for chronic kidney disease prediction using classification techniques and supervised learning algorithms. The data for dataset is obtained from UCI machine learning repository which contains 25 parameters (features) including the class (CKD or NOT CKD)

LITERATURE SURVEY

2.1 EXISTING PROBLEM

A system that can predict multiple diseases with the help of various machine learning algorithms such as Naive Bayes, KNN, DT and SVM algorithms to bridge the gap among the patients and the doctors to achieve their own goals. The existing approaches in the field of automatic disease prediction lack the patient's trust in the model's prediction and also reduce the need for doctors, which makes the doctors get panic about their livelihood. But this method integrates a module for doctor recommendation that solves both the issues by makingsure the patient to trust due to the intervention of doctors and also improves the business of doctors.

A system that enhances the risk prediction of a patient's health condition using a deep learning approach on big data and a revised fusion node model. This deep learning model for extracting the data and logical inference is made of the combination of complex machine learning algorithm such as Bayesian fusion and neural networks. The architecture of this system consists of five layers, namely, the data layer that is responsible for data collection, data aggregation layer for data acquisition from several data sources and desired format changing, analytics layer to do proper analytics on the data aggregated, information exploration layer to create the output that makes the results of analytics understandable for users, and big data governance layer that is responsible for managing the above layers

.

2.2 REFERENCES

- https://www.researchgate.net/publication/335698017_Detection_of_Chronic_Kid ney_Disease_using_Machine_Learning_Algorithms_with_Least_Number_of_Predict ors
- 2. https://pubmed.ncbi.nlm.nih.gov/34211680/
- 3. https://www.primescholars.com/articles/early-prediction-of-chronic-kidney-disease-by-using-machine-learning-techniques-92643.html
- 4. https://www.webology.org/abstract.php?id=3038
- 5. https://www.ijert.org/chronic-kidney-disease-prediction-using-machine-learning
- 6. https://pubmed.ncbi.nlm.nih.gov/34372817/
- 7. https://www.researchgate.net/publication/330637326_Machine_Learning-Based_Prediction_System_For_Chronic_Kidney_Disease_Using_Associative_Classif ication_Technique
- 8. https://ijcsmc.com/docs/papers/July2014/V3I7201499a42.pdf
- 9. https://www.researchgate.net/publication/344335234_Chronic_Disease_Detection_M odel_Using_Machine_Learning_Techniques
- 10. https://www.researchgate.net/publication/359618037_An_Augmented_Artificial_Intel ligence_Approach_for_Chronic_Diseases_Prediction

2.3 PROBLEM STATEMENT DEFINITION

Kidney diseases avert the normal function of the kidney. Due to the large amount of alcohol consumption kidney disease arises. Early prediction of kidney disease using classification and regression algorithms are an efficacious task that can help the doctors to diagnose the disease within a short duration of time. Discovering the existence of kidney disease at an early stage is complex task for the doctors. The main objective of thisproject is to analyses the parameters of various classification algorithms and compare their predictive accuracy, to find out the best classifier for determining the kidney disease. This Project examines data from kidney patients concentrating on relationships between a key list of kidney enzymes, proteins, age and gender using them to try and predict the likeliness of kidney disease. Here we are building a model by applying various machine learning algorithms find the best accurate model. And integrate to flask-based web application.

I am	The person to predict the kidney disease using Machine Learning techniques.
I'm trying to	I'm trying to Use the recent technologies to predict the human kidney disease
But	I am unaware of the existing technology that can help me a lot to predict the disease and I don't know to use the correct technology.
Because	I don't want to waste the cost and time.
Which makes me feel	I want a best accuracy which can predict the disease so that the people can move with their necessary treatments.

Table 2.1 Problem Statement Definition

IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

An empathy map is a collaborative tool teams can use **to gain a deeper insight into their customers**. Much like a user persona, an empathy map can represent a group of users, such as a customer segment. The empathy map was created by Dave Gray and has gained much popularity within the agile community.

Figure 3.1 Empathy Map Canvas

The user will gets accurate results quickly. The user will see the webpage that they needs to enter user test details. The gain of this project is that it will increase the productivity but the pain is the illiterate people fells difficult to use.

3.2 IDEATION & BRAINSTORMING

Step-1: Team Gathering, Collaboration and Select the Problem Statement

A principal difference between ideation and brainstorming is that ideation is commonly more thought of as being an individual pursuit, while brainstorming is almost always a group activity.

Figure 3.2 Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

The idea listing and grouping is used to organize and analyse large numbers of ideas by categorising them. By organising and reorganising ideas, students gain a better appreciation of, and dialogue about, their ideas. As students create idea clusters, new contexts and connections among themes emerge.

Figure 3.3 Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

Idea prioritization is just a part of the idea management process. Having a structured idea management process and a systematic way of gathering, evaluating and prioritizing new ideas takes time. To make it work, the entire idea management process should be integrated to the everyday ways of working.

Figure 3.4 Idea Prioritization

3.3 PROPOSED SOLUTION

The main treatments are: **lifestyle changes** – to help you stay as healthy as possible. medicine – to control associated problems, such as high blood pressure and high cholesterol. Dialysis – treatment to replicate some of the kidney's functions, which may be necessary in advanced (stage 5) CKD

S.No	PARAMETER	DESCRIPTION
1	Problem Statement (Problem to be solved)	Kidney diseases avert the normal function of the kidney. Early prediction of kidney disease using both classification and regression algorithms are an effective task that can help the doctors to diagnose the disease within a short duration of time.
2	Idea / Solution description	One of the easiest solutions to predict the kidney disease using Machine Learning techniques.
3	Novelty / Uniqueness	This project provides the best accuracy for predicting the kidney disease.
4	Social Impact / Customer Satisfaction	It helps to identify the kidney disease in effective way, reduce the cost and user friendly.
5	Scalability of the Solution	This project can be improved by giving medical suggestion for patients.

Table 3.1 Proposed Solution

3.4 PROBLEM SOLUTION FIT

Figure 3.5 Problem Solution Fit

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT

Functional requirements are product features or functions that developers must implement to enable users to accomplish their tasks.

FR No	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Home Page	 Chronic Kidney disease description Information about Test Vitals required for prediction If new User, REGISTER If already exist, SIGN IN
FR-2	User Registration	 Enters Mail ID and other personal details required for Registering.
FR-3	User Login	Uses Mail ID and Password for login
FR-4	Test Vitals Form	 Test Vitals should be entered for prediction
FR-5	Result	 If Positive – Test Result along with the Information about what is to be done next will be displayed. If Negative – Test result along with preventive measures to prevent themselves from getting chronic kidney disease will be displayed

Table 4.1 Functional Requirement

4.2 NON - FUNCTIONAL REQUIREMENT

Nonfunctional Requirements (NFRs) define system attributes such as security, reliability, performance, maintainability, scalability, and usability. They serve as constraints or restrictions on the design of the system across the different backlogs.

FR No.	Non-Functional Requirement	Description
		Even Illiterates and people with no
NFR-1	Usability	understanding of computer/mobile should be
		able to use the product.
		Access permission for particular system
NFR-2	Security	information may be changed by systems data
		administration.
		The database update process must roll back
NFR-3	Reliability	all related updates when any updates fails.
		The Home nage lead time must be no more
NIED 4	D. C	The Home-page load time must be no more
NFR-4	Performance	than 2 seconds for users that access the
		website using an LTE mobile connection.
		New Model Deployment must not impact
NFR-5	Availability	home page, test page and result page
		availability and must not take longer than
		one hour.
NIED (Coolel III-	The website Traffic limit must be scalable
NFR-6	Scalability	enough to support 2000,000 users at a time.

Table 4.2 Non-Functional Requirement

PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

Figure 5.1 Data Flow of Chronic Disease Prediction

- 1. Medical data of patients is collected from Kaggle.
- 2. Exploratory data analysis done on the input dataset.
- 3. Then removal of null values, duplicates and outliers.
- 4. Then the dependent and independent variable is defined.
- 5. Train test split is done.
- 6. Both classification and regression model are built.
- 7. For Classification, the model is trained with Random Forest Classifier and tested with test dataset.
- 8. For Regression, the model is trained with Random Forest Regression and tested with test dataset.
- 9. Then the model is fitted with front end which is developed using HTML, CSS with the help of Python Flask Web Framework.
- 10. Finally, the output will be predicted for the user input data.

5.2 SOLUTION & TECHNICAL ARCHITECTURE

The solution architecture which can explains to collect the dataset and move to preprocessing, then need to train and test datas with the help of machine learning algorithms, to predict the output.

Figure 5.2 Solution Architecture

Technical architecture includes the major components of the system, their relationships, and the contracts that define the interactions between the components. The goalof technical architects is to achieve all the business needs with an application that is optimized for both performance and security.

Figure 5.3 Technical Architecture

5.3 USER STORIES

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
Customer (Web-user)	Verification	USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
	Login	USN-3	As a user, I can log into the application by entering email and password	Check whether password and email is correct	High	sprint-1

Customer (Web-user)	Dashboard	USN-4	If the email id and password is correct, the user can log in to application otherwise it shows 'incorrect password or Id'.	View the dashboard of user who is login	High	Sprint-1
Customer Care Executive	Help	USN-5	If the user faces any issues, he/she an report it to our mail id.	Report option will be available in web app	High	Sprint-2
Administrat	Verification	USN-6	Administrator also has unique Id and password to login. He has additional users to organize the users of this web app	Check whether password and email is correct	High	Sprint-3

Table 5.1 User Story

CHAPTRE 6

PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	User Registration	USN-1	As a user, I can register for the application by entering my name, mobile number, email, password, and confirming my password.	10	High	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K
Sprint-2		USN-2	As a user, I can register for the application through Gmail	5	Medium	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K
Sprint-1	User Confirmation	USN-3	As a user, I will receive confirmation email once I have registered for the application	10	High	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K
Sprint-2		USN-4	As a user, I will receive confirmation OTP to verify the identity.	5	High	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K

Sprint-2	User Confirmation	USN-5	As a user, I will enter the input data for disease prediction in the form	10	High	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K
Sprint-3	Provide output to the user	USN-6	As a user, I will get the result of disease prediction in the dashboard.	10	High	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K
Sprint-3	Data Analysis	USN-7	As the admin, I will develop modules to pre- process and store the data.	10	High	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K
Sprint-4	Prediction of disease	USN-8	As the admin, I will build a Machine Learning model to predict the disease	10	High	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K
Sprint-4	Final Delivery	USN-9	Deploy the application in IBM cloud and make it available for use.	10	High	SAI THARUN.K.B RAKESH S DHARANEESH.B NITHISH KUMAR.K

Table 6.1 Sprint Planning & Estimation

6.2 SPRINT DELIVERY SCHEDULE

Product Backlog, Sprint Schedule, and Estimation

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	3	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	2	05 Nov 2022
Sprint-3	20	6 Days	07 Oct 2022	12 Nov 2022	3	12 Nov 2022
Sprint-4	20	6 Days	14 Oct 2022	19 Nov 2022	3	19 Nov 2022

Table 6.2 Sprint Delivery Schedule

Velocity:

We have a 6-day sprint duration, and the velocity of the team is 20 (points per sprint). The team's average velocity (AV) per iteration unit (story points per day)

AV = Sprint duration / velocity = 20 / 6 = 3.33

6.3 REPORTS FROM JIRA

Figure 6.1 Reports from Jira

Sprint 1 : Oct 24,2022 - Oct 29,2022

Sprint 2 : Oct 31,2022 - Nov 05,2022

Sprint 3 : Nov 07,2022 - Nov 12,2022

Sprint 4 : Nov 14,2022 - Nov 19,2022

CODING AND SOLUTIONING

7.1 Feature 1

Different types of python libraries such as pandas, Sklearn, NumPy, matplotlib are used for processing the algorithms. Using exploration data analysis technique data was analyses in junketeer notebook.10-fold cross validation technique is used for spitting the dataset into training and testing data. Then using random forest algorithm dataset was processed.

Collection of dataset

For the proposed study dataset was taken from Kaggle site. Then it was downloaded in excel file using comma separated format. Data has processed by python programming using Jupiter notebook. The data set contains 401 sample instances. The dataset contains 26 clinical features

Figure 7.1 Collection of Dataset

Preprocessing - Data cleaning

Checking Null Entries

The most important step in EDA involving removing duplicate rows/columns, filling the void entries with values like mean/median of the data, dropping various values, removing null entries Here we have check for null values and drop the entries which contains null values as the percentage of null values in dataset is very less.

Figure 7.2 Checking Null Entries

Checking Duplicates

In the dataset, there is no duplicate entries

```
In [8]: df[df.duplicated()]

Out[8]:

id age bp sg al su rbc pc pcc ba ... pcv wc rc htn dm cad appet pe ane classification

O rows × 26 columns
```

Figure 7.3 Checking Duplicates

Encoding:

All the categorical columns('htn','dm','cad','pe','ane', 'rbc','pc', 'pcc','ba', 'appet', 'classification') in dataset is converted into numerical

```
In [9]: # Map text to 1/0 and do some cleaning
               # Map text to 1/0 and do some cleaning
df[['htn', 'dm', 'cad', 'pe', 'ane']] = df[['htn', 'dm', 'cad', 'pe', 'ane']].replace(to_replace={'yes':1, 'no':0})
df[['rbc', 'pc']] = df[['rbc', 'pc']].replace(to_replace={'abnormal':1, 'normal':0})
df[['pcc', 'ba']] = df[['pcc', 'ba']].replace(to_replace={'present':1, 'notpresent':0})
df[['appet']] = df[['appet']].replace(to_replace={'good':1, 'poor':0, 'no':np.nan})
df['classification'] = df['classification'].replace(to_replace={'ckd':1.0, 'ckd\t':1.0, 'notckd':0.0, 'no':0.0})
df.rename(columns={'classification':'class'},inplace=True)
In [18]: # Further cleaning
               # runner cleaning
df['pe'] = df['pe'].replace(to_replace='good',value=0) # Not having pedal edema is good
df['appet'] = df['appet'].replace(to_replace='no',value=0)
df['cad'] = df['cad'].replace(to_replace='\tno',value=0)
df['dn'] = df['dn'].replace(to_replace={'\tno':0,'\tyes':1, 'yes':1, ':np.nan})
               df.drop('id',axis=1,inplace=True)
In [11]: df.head()
Out[11]:
                                       sg al su rbc pc pcc ba bgr ... pcv wc rc htn dm cad appet pe ane class
                               bp
                0 48.0 80.0 1.020 1.0 0.0 NaN 0.0 0.0 0.0 121.0 ... 44 7800 52 1.0 1.0 0.0 1.0 0.0 0.0 1.0
                 1 7.0 50.0 1.020 4.0 0.0 NaN 0.0 0.0 0.0 NaN ... 38 6000 NaN 0.0 0.0 0.0
                                                                                                                                                    10 00 00
                2 62 0 80 0 1.010 20 30 00 00 00 00 4230 ... 31 7500 NaN 00 1.0 00 00 00 1.0 1.0
                 3 480 700 1005 40 00 00 10 10 00 1170 ... 32 6700 39 10 00 00 00 10 10
                                                                                                                                                                          1.0
                 4 51.0 80.0 1.010 2.0 0.0 0.0 0.0 0.0 1060 ... 35 7300 46 0.0 0.0 0.0 1.0 0.0 0.0 1.0
```

Figure 7.4 Cleaning and preprocessing the data

Split of dependent and Independent Variables:

```
In [14]: X_train, X_test, y_train, y_test = train_test_split(df2.iloc[:,:-1], df2['class'],
                                                             test_size
                                                            stratify= df2['class'] )
In [34]: X_train.head()
Out[34]:
                        sg al su rbc pc pcc ba bgr ... hemo pcv wc rc htn dm cad appet pe ane
         317 58.0 70.0 1.020 0.0 0.0 0.0 0.0 0.0 102.0 ... 15.0 40 8100 4.9 0.0 0.0 0.0 1.0 0.0 0.0
         296 41.0 70.0 1.020 0.0 0.0 0.0 0.0 0.0 0.0 125.0 ... 16.8 41 6300 5.9 0.0 0.0 0.0 1.0 0.0 0.0
          157 62.0 70.0 1.025 3.0 0.0 0.0 1.0 0.0 0.0 122.0 ... 12.6 39 7900 3.9 1.0 1.0 0.0 1.0 0.0 0.0
          258 42.0 80.0 1.020 0.0 0.0 0.0 0.0 0.0 0.0 98.0 ... 13.9 44 8400 5.5 0.0 0.0 0.0 1.0 0.0 0.0
         291 47.0 80.0 1.025 0.0 0.0 0.0 0.0 0.0 0.0 124.0 ... 14.9 41 7000 5.7 0.0 0.0 0.0 1.0 0.0 0.0
         5 rows × 24 columns
In [15]: print(X_train.shape)
         print(X_test.shape)
         (105, 24)
         (53, 24)
In [16]: y_train.value_counts()
```

Figure 7.5 Split of dependent and Independent Variables

7.2 Feature 2

Both Classification and Regression models are built for this use case.

For classification:

RandomForest Classifier is used to detect whether the person has chronic disease or not GridSearchCV is used for hyper tuning.

```
Choosing parameters with GridSearchCV with 10-fold cross validations.

(Suggestion for next time: try using Bayesian model selection method)

In [17]:

tuned_parameters = [{'n_estimators':[7,8,9,10,11,12,13,14,15,16], 'max_depth':[2,3,4,5,6,None], 'class_weight':[None,{0: 0.33,1:0.67}, 'balanced'], 'random_state':[42]}}

clf = GridSearchCV(RandomForestClassifier(), tuned_parameters, cv=10,scoring='f1')

clf.fit(X_train, y_train)

print("Detailed classification report:")

y_true, lr_pred = y_test, clf.predict(X_test)

print(classification_report(y_true, lr_pred))

confusion = confusion_matrix(y_test, lr_pred)

print('Confusion Matrix:')

print(confusion Matrix:')

print(confusion Matrix:')

print('Best parameters:')

print('Best parameters:')

print('Sest parameters:')

print(clf.best_params_)

clf_best = clf.best_estimator_
```

Figure 7.6 Choosing Parameters

Figure 7.7 Choosing Parameters

For Regression:

RandomForest Regression is used to find the probability level of patient to have chronic disease.

RandomForest Regressor

```
In [24]: from sklearn.ensemble import RandomForestRegressor
                                                       reg:RandomForestRegressor()
                                                      reg.fit(X_train,y_train)
 Out[24]: RandomForestRegressor
                                                           RandomForestRegressor()
 In [25]: y_pred=reg.predict(X_test)
 In [26]: pickle. dump(reg, open('randomreg_chronic', 'wb'))
 In [27]: y_pred
Out[27]: array([0.6 , 0.8 , 1. , 0.78, 0.79, 0.29, 0.74, 1. , 1. , 1. , 0.29, 1. , 1. , 0.29, 0.09, 0.88, 0.29, 0.09, 0.77, 0.29, 0.29, 0.69, 0.77, 0.29, 0.29, 0.69, 0.77, 0.29, 0.29, 0.69, 0.77, 0.29, 0.29, 0.69, 0.77, 0.29, 0.29, 0.69, 0.77, 0.29, 0.29, 0.69, 0.77, 0.29, 0.29, 0.29, 0.69, 0.77, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.
                                                                                               0.66, 0.29, 0.99, 0.88, 1. , 0.89, 0.98, 0.89, 0.29, 1.
                                                                                               1. , 0.09, 0.07, 0.89, 1. , 1. , 0.07, 0.73, 1. , 0.29, 0.99,
                                                                                               0.29, 0.01, 0.94, 0.8 , 1. , 0.29, 0.29, 0.89, 0.89, 0.8 , 0.89,
                                                                                               0.09, 0.62, 0.99, 0.8 , 1.
                                                                                                                                                                                                                                                           , 0.
                                                                                                                                                                                                                                                                                               , 0. , 0.8 , 1.
                                                                                               0.29, 0.81, 0.29, 0.29, 0.29, 0.69, 0.99, 0.29, 0.87, 0.98, 0.09,
                                                                                             0.29, 0.81, 0.29, 0.29, 0.29, 0.09, 0.99, 0.21, 0.87, 0.98, 0.09, 0.28, 0.69, 0.89, 0.89, 0.29, 0.09, 0.8, 1. , 0.22, 1. , 0.29, 0.2 , 0.29, 0.29, 0.27, 1. , 0.8 , 0.09, 1. , 0.65, 0.8 , 0.09, 0.8 , 0.09, 0.89, 0.73, 0.29, 0.73, 0.29, 0.29, 0.27, 0.69, 0.09, 0.29, 0.29, 0.05, 0.29, 1. , 0.88, 1. , 0.09, 0.89, 0.29, 0.89, 1. , 0.69, 0.29, 0.69, 0.76, 0.28, 0.09, 1. , 1. , 0.99, 0.29, 0.71, 0.28, 0.29, 0.01, 0.09, 0.29, 0.05, 0.98, 0.29, 0.99, 0.87, 0.82, 0.27, 0.29, 0.93, 1. , 0.99, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89,
                                                                                              0.29, 1. , 0.69, 0.8 , 0.8 , 0.29, 1. , 0.09, 0.89, 0.8 , 1. ,
                                                                                             0.29, 0.28, 0.89, 0.29, 0.29, 0.29, 1. , 0.25, 0.82, 0.23, 0.22, 0.09, 0.09, 0. , 0.8 , 0.09, 0.89, 0.09, 0.29, 0.09, 0.88, 0.29, 0.04, 0.29, 0.28, 0.29, 0.99, 0.29, 0.69, 0.99, 0. , 1. , 0.29,
```

Figure 7.8 Random Forest Regression

Flask Connectivity

The Backend Machine Learning model code is connect with HTML code by using python Flask Web Framework.

```
In [ ]: import pandas as pd
In [ ]: from flask import Flask, request, redirect, render_template
        app = Flask(__name__)
        @app.route("/",methods=['GET', 'POST'])
        def index():
            return render_template('index.html')
        @app.route("/val",methods=['POST'])
        def val():
            test=[]
            if request.method == 'POST':
                test.append(request.form.get("age"))
                test.append(request.form.get("bp"))
                test.append(request.form.get("sg"))
                test.append(request.form.get("al"))
                test.append(request.form.get("su"))
                rb=request.form.get("rbc")
                if rb=='abnormal':
                     test.append(1)
                else:
                     test.append(0)
                pc=request.form.get("pc")
                if pc=='abnormal':
                     test.append(1)
                    test.append(0)
                pcc=request.form.get("pcc")
                if pcc=='present':
                     test.append(1)
                    test.append(0)
                ba=request.form.get("ba")
                if ba=='present':
                    test.append(1)
                else:
                     test.append(0)
```

Figure 7.9 Flask connectivity

TESTING

8.1 Test Cases

Figure 8.1 Test Case

8.2 User Acceptance Testing

Figure 8.2 User input data acceptance

Figure 8.3 User data entry

Figure 8.4 Chronic disease presence output

Figure 8.5 Chronic disease not presence output

RESULTS

9.1 Performance Metrics

Figure 9.1 Performance Metrics

ADVANTAGES AND DISADVANTAGES

ADVANTAGES

Predictive modeling is a statistical technique using machine learning and data mining to predict and forecast likely future outcomes with the aid of historical and existing data. It works by analyzing current and historical data and projecting what it learns on a model generated to forecast likely outcomes. We found that machine learning can predict the occurrence of individual chronic diseases, progression, and their determinants and in many contexts. The findings are original and relevant to improve clinical decisions and the organization of health care facilities.

DISADVANTAGES

In Chronic Disease prediction, for classification problem we get a very good accuracy but for regression, we get considerable error rate. So, we need to add some more data or change the machine algorithm or by using deep learning techniques for reducing the error in predicting the probability values.

CONCLUSION

The principal part of this work is to make an effective diagnosis system for chronic disease of patients. The application will have the option to predict chronic disease prior and advise the wellbeing condition. This application can be surprisingly gainful in low-salary nations where our absence of medicinal foundations and just as particular specialists. In our study, there are a few bearings for future work in this field. We just explored some popular supervised machine learning algorithms, more algorithms can be picked to assemble an increasingly precise model of chronic kidney disease prediction and performance can be progressively improved. Additionally, this work likewise ready to assume a significant role in health care research and just as restorative focuses to anticipate chronic disease.

FUTURE SCOPE

Diseases related to kidney is becoming more and more common with time. With continuous technological advancements, these are only going to increase in the future. Although people are becoming more conscious of health nowadays and are joining yoga classes, dance classes; still the sedentary lifestyle and luxuries that are continuously being introduced and enhanced; the problem is going to last long. So, in such a scenario, our project will be extremely helpful to the society. With the dataset that we used for this project, we got 89% accuracy for Random forest model, and though it might be difficult to get such accuracies with very large datasets, from this projects results, one can clearly conclude that we can predict the risk of chronic diseases with accuracy of 95 % or more. Also it can be incorporated into a wide range commercial website and these app and website will be highly beneficial for a large section of society.

APPENDIX

SOURCE CODE

Chronic disease Prediction.ipynb

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import roc_curve, auc, confusion_matrix, classification_report,accuracy_score
from sklearn.ensemble import RandomForestClassifier
import warnings warnings.filterwarnings('ignore') %matplotlib inline
def auc_scorer(clf, X, y, model): # Helper function to plot the ROC curve
  if model=='RF':
    fpr, tpr, _ = roc_curve(y, clf.predict_proba(X)[:,1])
  elif model=='SVM':
    fpr, tpr, _ = roc_curve(y, clf.decision_function(X))
  roc_auc = auc(fpr, tpr)
  plt.figure() # Plot the ROC curve
  plt.plot(fpr, tpr, label='ROC curve from '+model+' model (area = %0.3f)' % roc_auc)
  plt.plot([0, 1], [0, 1], 'k--')
  plt.xlim([0.0, 1.0])
  plt.ylim([0.0, 1.05])
  plt.xlabel('False Positive Rate')
  plt.ylabel('True Positive Rate')
  plt.title('ROC Curve')
  plt.legend(loc="lower right")
  plt.show()
  return fpr,tpr,roc_auc
df = pd.read_csv("C:/Users/Sinegalatha/Desktop/2nd year online class/nalaiya
```

```
thiran/dataset/kidney_disease.csv")
df.head()
df['wc']
df.info()
df.describe()
df[df.duplicated()]
# Map text to 1/0 and do some cleaning
df[['htn','dm','cad','pe','ane']] = df[['htn','dm','cad','pe','ane']].replace(to\_replace=\{'yes':1,'no':0\})
df[['rbc','pc']] = df[['rbc','pc']].replace(to_replace={'abnormal':1,'normal':0})
df[['pcc','ba']] = df[['pcc','ba']].replace(to_replace={'present':1,'notpresent':0})
df[['appet']] = df[['appet']].replace(to_replace={'good':1,'poor':0,'no':np.nan})
df['classification'] = df['classification'].replace(to\_replace=\{'ckd':1.0,'ckd\t':1.0,'notckd':0.0,'no':0.0\})
df.rename(columns={'classification':'class'},inplace=True)
# Further cleaning
df['pe'] = df['pe'].replace(to_replace='good',value=0) # Not having pedal edema is good
df['appet'] = df['appet'].replace(to_replace='no',value=0)
df['cad'] = df['cad'].replace(to_replace=\tno',value=0)
df['dm'] = df['dm'].replace(to_replace={\\tno':0,\\tyes':1, 'yes':1, ":np.nan})
df.drop('id',axis=1,inplace=True)
df.head()
df2 = df.dropna(axis=0)
df2['class'].value_counts()
corr_df = df2.corr()
# Generate a mask for the upper triangle
mask = np.zeros_like(corr_df, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
```

```
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# Draw the heat map with the mask and correct aspect ratio
sns.heatmap(corr_df, mask=mask, cmap=cmap, vmax=.3, center=0,
       square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.title('Correlations between different predictors')
plt.show()
X_train, X_test, y_train, y_test = train_test_split(df2.iloc[:,:-1], df2['class'],
                                test size = 0.33, random state=44,
                                stratify= df2['class'])
X_train.head()
print(X_train.shape)
print(X_test.shape)
y_train.value_counts()
tuned_parameters = [{'n_estimators':[7,8,9,10,11,12,13,14,15,16],'max_depth':[2,3,4,5,6,None],
             'class_weight':[None, {0: 0.33,1:0.67}, 'balanced'], 'random_state':[42]}]
clf = GridSearchCV(RandomForestClassifier(), tuned_parameters, cv=10,scoring='f1')
clf.fit(X_train, y_train)
print("Detailed classification report:")
y_true, lr_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, lr_pred))
confusion = confusion_matrix(y_test, lr_pred)
print('Confusion Matrix:')
print(confusion)
# Determine the false positive and true positive rates
fpr,tpr,roc_auc = auc_scorer(clf, X_test, y_test, 'RF')
print('Best parameters:')
print(clf.best_params_)
clf_best = clf.best_estimator_
plt.figure(figsize=(12,3))
```

```
features = X_test.columns.values.tolist()
importance = clf_best.feature_importances_.tolist()
feature_series = pd.Series(data=importance,index=features)
feature_series.plot.bar()
plt.title('Feature Importance')
list_to_fill = X_test.columns[feature_series>0]
print(list_to_fill)
# Are there correlation in missing values?
corr_df = pd.isnull(df).corr()
# Generate a mask for the upper triangle
mask = np.zeros_like(corr_df, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Generate a custom diverging color map
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# Draw the heat map with the mask and correct aspect ratio
sns.heatmap(corr_df, mask=mask, cmap=cmap, vmax=.3, center=0,
       square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.show()
df2 = df.dropna(axis=0)
no_na = df2.index.tolist()
some_na = df.drop(no_na).apply(lambda x: pd.to_numeric(x,errors='coerce'))
some_na = some_na.fillna(0) # Fill up all Nan by zero.
X_{\text{test}} = \text{some}_{\text{na.iloc}}[:,:-1]
y_test = some_na['class']
y_true = y_test
lr_pred = clf_best.predict(X_test)
```

```
print(classification_report(y_true, lr_pred))
confusion = confusion_matrix(y_test, lr_pred)
print('Confusion Matrix:')
print(confusion)
print('Accuracy: %3f' % accuracy_score(y_true, lr_pred))
# Determine the false positive and true positive rates
fpr,tpr,roc_auc = auc_scorer(clf_best, X_test, y_test, 'RF')
import pickle
pickle. dump(clf_best, open('randomclass_chronic', 'wb'))
from sklearn.ensemble import RandomForestRegressor
reg=RandomForestRegressor()
reg.fit(X_train,y_train)
y_pred=reg.predict(X_test)
pickle. dump(reg, open('randomreg_chronic', 'wb'))
y_pred
l_pred=list(y_pred)
l_test=list(y_test)
d={'prob':l_pred,'out':y_test}
df_i=pd.DataFrame(d)
df i.head()
df_i.to_csv('C:/Users/Sinegalatha/Desktop/2nd year online class/nalaiya thiran/output/file1.csv')
Flask web app.ipynb
import pickle
loaded_class = pickle. load(open('randomclass_chronic', 'rb'))
loaded_reg = pickle. load(open('randomreg_chronic', 'rb'))
import numpy as np
import pandas as pd
```

```
from flask import Flask, request, redirect, render_template
app = Flask(_name_)
@app.route("/",methods=['GET', 'POST'])
def index():
  return render_template('index.html')
@app.route("/val",methods=['POST'])
def val():
  test=[]
if request.method == 'POST':
    test.append(request.form.get("age"))
    test.append(request.form.get("bp"))
    test.append(request.form.get("sg"))
    test.append(request.form.get("al"))
    test.append(request.form.get("su"))
    rb=request.form.get("rbc")
    if rb=='abnormal':
       test.append(1)
    else:
       test.append(0)
    pc=request.form.get("pc")
    if pc=='abnormal':
       test.append(1)
    else:
       test.append(0)
    pcc=request.form.get("pcc")
    if pcc=='present':
       test.append(1)
    else:
       test.append(0)
    ba=request.form.get("ba")
    if ba=='present':
       test.append(1)
```

```
else:
  test.append(0)
  test.append(request.form.get("bgr"))
  test.append(request.form.get("bu"))
  test.append(request.form.get("sc"))
  test.append(request.form.get("sod"))
  test.append(request.form.get("pot"))
  test.append(request.form.get("hemo"))
  test.append(request.form.get("pcv"))
  test.append(request.form.get("wc"))
  test.append(request.form.get("rc"))
  ht=request.form.get("htn")
if ht=='yes':
  test.append(1)
else:
  test.append(0)
d=request.form.get("dm")
if d=='yes':
  test.append(1)
else:
  test.append(0)
ca=request.form.get("cad")
if ca=='yes':
  test.append(1)
else:
  test.append(0)
ap=request.form.get("appet")
if ap=='good':
  test.append(1)
elif ap=='poor':
  test.append(0)
```

```
else:
       test.append(np.nan)
    p=request.form.get("pe")
    if p=='yes':
       test.append(1)
    else:
       test.append(0)
    an=request.form.get("ane")
    if an=='yes':
       test.append(1)
    else:
       test.append(0)
  print(test)
  test_df=pd.DataFrame(test)
  test_df=np.array(test_df).reshape(1, -1)
  ans1=loaded_class.predict(test_df)
  ans2=loaded_reg.predict(test_df)
  if int(ans1)==1:
    answer1="Sorry to say!! You have CHRONIC DISEASE!!!"
    return render_template('rename.html',answer1=answer1,answer2=ans2)
  else:
    answer1="Happy to say that you don't have CHRONIC DISEASE"
    return render_template('rename2.html',answer1=answer1,answer2=ans2)
if__name__ == "_main_":
  app.debug=True
  app.run(debug=False)
```

index.html

```
<html>
        <head>
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
               <title>Flaskimio</title>
        <style>
        body {
        background: linear-gradient(
                   rgba(20,20,20,.75),
                   rgba(20,20,20,.75)),
                   url( 'https://pharmanewsintel.com/images/site/article_headers/_normal/Chronic_bisease
        _Manage.png');
        .container {
         border: 2px solid #ccc;
         padding: 10px;
         width: 20em;
        height:21em;
        background-color:white;
        .hello{
        opacity: 0.5;
        </style>
        </head>
        <body>
        <marquee bgcolor="white">IBM NALAIYA THIRAN</marquee>
        <center>Chronic Disease Prediction</center>
        <form action="/val" method="post"><center>
         <label for="age">Age:</label><br>
         <input type="number" id="age" name="age"><br><br><br>
         <label for="bp">Blood Pressure:</label><br>
         <input type="number" id="bp" name="bp">
        <br>>
```

```
<br>>
<br>
 <label for="sg">Urinary Specific Gravity:</label><br>
 <input type="number" id="sg" name="sg">
<br>>
<br>>
<br>>
 <label for="al">al:</label><br>
 <input type="number" id="al" name="al">
<br>
<br>>
<br>>
 <label for="su">su:</label><br>
 <input type="number" id="su" name="su">
<br>
<br>>
<br>>
 <label for="rbc">rbc:</label><br>
 <input type="text" id="rbc" name="rbc">
<br>
<br>
<br>
 <label for="pc">pc:</label><br>
 <input type="text" id="pc" name="pc">
<br>>
<br>>
\langle br \rangle
 <label for="pcc">pcc:</label><br>
 <input type="text" id="pcc" name="pcc">
<br>>
<br>
<br>>
 <label for="ba">ba:</label><br>
 <input type="text" id="ba" name="ba">
<br>>
<br>>
<br>>
 <label for="bgr">bgr:</label><br>
 <input type="number" id="bgr" name="bgr">
<br>>
```

```
<br>>
<br>
 <label for="bu">bu:</label><br>
 <input type="number" id="bu" name="bu">
<br>>
<br>>
<br>>
 <label for="sc">sc:</label><br>
 <input type="number" id="sc" name="sc">
<br>
<br>><br>>
 <label for="sod">sod:</label><br>
 <input type="number" id="sod" name="sod">
<br>>
\langle br \rangle
<br>>
 <label for="pot">pot:</label><br>
 <input type="number" id="pot" name="pot">
<br>
\langle br \rangle
<br>
 <label for="hemo">hemo:</label><br>
 <input type="number" id="hemo" name="hemo">
<br>
<br>>
<br>>
 <label for="pcv">pcv:</label><br>
 <input type="text" id="pcv" name="pcv">
<br>>
<br>>
<br>>
 <label for="wc">wc:</label><br>
 <input type="text" id="wc" name="wc">
<br>>
<br>>
<br>>
 <label for="rc">rc:</label><br>
 <input type="text" id="rc" name="rc">
<br>
<br>>
```

```
<br>>
 <label for="htn">htn:</label><br>
 <input type="text" id="htn" name="htn">
<br>>
<br>
<br>>
 <label for="dm">dm:</label><br>
 <input type="text" id="dm" name="dm">
<br>>
<br>>
<br>>
 <label for="cad">cad:</label><br>
 <input type="text" id="cad" name="cad">
<br>>
<br>
<br>>
 <label for="appet">appet:</label><br>
 <input type="text" id="appet" name="appet">
<br>>
<br>>
<br>
 <label for="pe">pe:</label><br>
<input type="text" id="pe" name="pe">
<br>
<br>
<br>
 <label for="ane">ane:</label><br>
 <input type="text" id="ane" name="ane">
<br>>
<br/><br/>/center>
 <center><button type="submit">Check</button></center>
</form>
</body>
</html>
```

```
rename.html
```

```
<html>
          <head>
          <style>
          body {
           background-color: #E6E6FA;
          </style>
          </head>
          <body >
          <br>
          <br>>
          <br>
          <center><h1>{{answer1}}</h1></center>
          <center><h1>{{answer2}}</h1></center>
          <center><img alt="Qries" src="https://image.shutterstock.com/</pre>
          image-vector/cute-illustration-sick-kidney-characters-260nw-1529381825.jpg"
               width=500" height="500"></center>
          </body>
          </html>
rename2.html
<html>
         <head>
         <style>
        body {
          background-color: #E6E6FA;
         </style>
         </head>
         <body>
         <br>
         <br>>
         <br>>
         <center><h1>{{answer1}}</h1></center>
         <br>>
         <center><h1>{{answer2}}</h1></center>
```

GITHUB & PROJECT DEMO LINK

1) GITHUB LINK: https://github.com/IBM-EPBL/IBM-Project-54572-1662303014

2) DEMO LINK : https://drive.google.com/file/d/1oJNeGNOs0TC3pQ927sFTGrlK47_AjfcO/view