Artificial Intelligence

(Common to CSE & IT)

III B-Tech VI-Semester(20CSIT604/PE04)

Lectures:3 Periods/Week		Tutorial:	0	Practical:	0	
CIA Marks:	30	SEE Marks:	70	Credits:	3	

Prerequisites:

- 1. A course on Advanced Data Structures.
- 2. A course on Design and Analysis of Algorithms.
- 3. A course on Mathematical Foundations of Computer Science.

Course Objectives:

Student will be able

- 1.To understand the fundamental concepts of artificial intelligence, And their environment, various Search techniques.
- 2. To Learn the knowledge representation using predicate logic and rules.
- 3. To Learn the planning techniques.
- 4 To Learn how to design and solve Learning techniques and Expert systems.

Course Outcomes:

After the course the student are expected to be able to

- 1.Understand the fundamental concepts of artificial intelligence, search techniques for solving simple AI problems and their environments.
- 2. Apply knowledge representation using predicate logic and rules.
- 3. Utilize the planning techniques
- 4. Possess the knowledge of the concepts of Learning and Expert Systems

Mapping of Course Outcomes with Program Outcomes

CO/P0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	2	-	1	-	1	2	1	-	-	-
CO2	-	-	2	-	2	-	2	3	-	2	1	-
CO3	-	2	-	-	-	2	-	-	1	-	2	-
CO4	-	1	-	1	-	-	1	-	1	-	-	1

Mapping of Course Outcomes with Program Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3
CO1	1	1	1
CO2	1	2	2
CO3	2	1	1
CO4	2	2	1

UNIT-I (14 Periods)

Introduction to AI: What is AI?, Foundations of AI, History of AI, State of the Art. Intelligent Agents: Agents and Environments, Good Behavior: Concept of Rationality, The Nature of Environments And The Structure of Agents. Solving Problems by Searching: Problem Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth First Search, Uniform Cost Search, Depth First Search, Iterative Deepening DFS and Bi-directional Search. Informed (Heuristics) Search Strategies: Greedy BFS, A* Algorithm, AND-OR Search trees, Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Local Search in CSP.

UNIT-II (14 Periods)

Logical Agents: Knowledge Based Agents, The Wumpus World, Logic and Propositional Logic, **Propositional Theorem Proving:** Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and Backward chaining. **First Order Logic:** Representation, Revisited Syntax and Semantics of First Order Logic, Using First Order Logic, Knowledge Engineering in First Order Logic. **Inferences in First Order Logic:** Propositional vs. First Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events, Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information. **Slot and Filler Structures:** Semantic Nets, Conceptual Dependency, Scripts. **Planning:** Overview - An Example Domain, The Blocks World, Component of Planning Systems, Goal Stack Planning, Hierarchical planning, Reactive systems.

UNIT-IV (14 Periods)

Learning: Introduction to learning, Rote learning, Learning by taking advice, Learning in problem solving, Learning from examples, Induction Learning, Explanation Based Learning. **Expert Systems:** Representing and using domain knowledge, Expert system shells, Explanation, Knowledge Acquisition.

TEXT BOOKS:

- 1. Stuart Russel and Peter Norvig, Artificial Intelligence A Modern Approach, 3rd Edition, Pearson Education/ PHI..
- 2. Elaine Rich & Kevin Knight, Artificial Intelligence, 3rd Edition, (TMH).

REFERENCES:

- 1. Patrick Henry Winston, Artificial Intelligence, Pearson Education
- 2. Saroj Kaushik. Artificial Intelligence. CENGAGE Learning, 1 edition, 2020.