

Figure P5.5: Problem 5.5.

Problem 5.5 In a cylindrical coordinate system, a 2-m-long straight wire carrying a current of 5 A in the positive z-direction is located at r = 4 cm, $\phi = \pi/2$, and -1 m $\leq z \leq 1$ m.

- (a) If $\mathbf{B} = \hat{\mathbf{r}} 0.2 \cos \phi$ (T), what is the magnetic force acting on the wire?
- (b) How much work is required to rotate the wire once about the z-axis in the negative ϕ -direction (while maintaining r = 4 cm)?
- (c) At what angle ϕ is the force a maximum?

Solution:

(a)

$$\mathbf{F} = I\ell \times \mathbf{B}$$

$$= 5\hat{\mathbf{z}}2 \times [\hat{\mathbf{r}}0.2\cos\phi]$$

$$= \hat{\mathbf{\phi}}2\cos\phi.$$

At $\phi = \pi/2$, $\hat{\phi} = -\hat{x}$. Hence,

$$F = -\hat{x} 2\cos(\pi/2) = 0.$$

(b)
$$W = \int_{\phi=0}^{2\pi} \mathbf{F} \cdot d\mathbf{l} = \int_{0}^{2\pi} \hat{\boldsymbol{\phi}} [2\cos\phi] \cdot (-\hat{\boldsymbol{\phi}}) r d\phi \bigg|_{r=4 \text{ cm}}$$
$$= -2r \int_{0}^{2\pi} \cos\phi d\phi \bigg|_{r=4 \text{ cm}} = -8 \times 10^{-2} [\sin\phi]_{0}^{2\pi} = 0.$$

The force is in the $+\hat{\phi}$ -direction, which means that rotating it in the $-\hat{\phi}$ -direction would require work. However, the force varies as $\cos \phi$, which means it is positive when $-\pi/2 \le \phi \le \pi/2$ and negative over the second half of the circle. Thus, work is provided by the force between $\phi = \pi/2$ and $\phi = -\pi/2$ (when rotated in the $-\hat{\phi}$ -direction), and work is supplied for the second half of the rotation, resulting in a net work of zero.

(c) The force **F** is maximum when $\cos \phi = 1$, or $\phi = 0$.