Lecture 3 - Basic Theorem

Thursday, September 9, 2021 9:33 AM

ct. pf. last time.

3)
$$E = \emptyset$$
 Ei where Ei are disjoint
then $P(E) = \sum_{i=1}^{\infty} P(E_i)$.

$$P(F) = Z$$
 $j: Aj \in F$

Bessic Theorems

Theorem: $P(\emptyset) = 0$.

Pf. Abuse axiom (3)
$$S = S \cup \emptyset \cup \emptyset \cup \emptyset \dots$$

$$= S \cup \bigcup_{i=1}^{\infty} \emptyset = P(S) + \sum_{i=1}^{\infty} P(\emptyset)$$

$$\text{Thus } \sum_{i=1}^{\infty} P(\emptyset) = 0$$

this only works if P(p) = 0.

$$\frac{\mathbb{P}^{2}}{\mathbb{P}(\emptyset \cup \emptyset \cup \cdots)} = \frac{\infty}{2} \mathbb{P}(\emptyset) \times \infty$$
only possible if $\mathbb{P}(\emptyset) = 0$.

Countable additivitj: (Ei) partition E the $P(E) = \sum_{i=1}^{\infty} P(E_i)$

Finite Additivity:
$$(E_i)_{i=1}^N$$
 partition E then
$$P(E) = \sum_{i=1}^N P(E_i)$$

Pf. of finite additivity

$$P(\bigcup_{i=1}^{N} E_{i}) = P(\bigcup_{i=1}^{N} U \not = U \not= U \not$$

Corollary: An
$$B = \emptyset$$
 and $C = A \cup B$
then
$$P(C) = P(A) + P(B)$$

Ex.
$$E = "ts raining"$$

$$P(E) = /3$$

$$P("net raining") = P(E^c) = \frac{7}{3}$$

Theorem:
$$P(E^c) = 1 - P(E)$$
.

of.
$$S = E \cup E^{c}$$
 so $P(S) = P(E) + P(E^{c})$

$$E = E^{c}$$

$$S_{0} = P(E) + P(E^{c})$$

$$P(E^{c}) = I - P(E)$$

Theorem: Finite Measure

$$0 \le P(E) \le 1$$
 pf . Axiom (1) Says $P(E) \ge 0$
 $also P(E^c) \ge 0$

then $1 - P(E) \ge 0$
 $prev$. So $P(E) \le 1$.

Theorem:
$$P(E \setminus F) = P(E) - P(EF)$$

$$P(t) = P(EF) + P(EF^c)$$

rearrange

 $P(E F) = P(EF^c) = P(E) - P(EF)$

The over !

 $P(E \cup F) = P(E) + P(F) - P(EF)$

dansart

*Notice E and F don't have to be disjoint.

Pf. EUF = EUFE C Cdisjoint

P(EUF) = P(EUFEC)

= P(E) + P(FEc) b/c disjoint

= P(E) + P(F) - P(FE)

1 prev. theorem.

Theorem: ECF

Al la F

INGOVENN: ECF $P(E) \leq P(F)$ $P(FE^c) \ge O$ (Axiom 1) P(+)-P(Ft) > 0 ECF then EF = E rearrange $P(FE) \leq P(F)$ So $P(E) \leq P(F)$ If ECF but E ≠ F. (proper subset) P(F)??? Still only P(E) = P(F)

Previously: P(EUF) = P(E) + P(F) - P(EF)it is true flut

what if FE has prob. Zero.

$P(E \cup F) \leq P(E) + P(F)$

Con generalize into Boole's Inequality.

If we have a seguence of sets $(E_i)_{i=1}^{\infty}$ then $P(\bigcup_{i=1}^{\infty}E_i) \leq \sum_{i=1}^{\infty}P(E_i)$

Pf Replace Ei u/ Bi where

- 2) Bi are disjoint

define!

these satisfy (1) & (2) $B_2 = E_2 \setminus E_1$ B3=E3 \EZ \E,

but notice BiCEi 80 P(Bi) < P(Ei) B4 = E4 \ E3 \ E2 \ E1

 $P(\bigcup_{i=1}^{\infty} E_i) = P(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} P(B_i) \leq \sum_{i=1}^{\infty} P(E_i)$

Theorem: Event Partitioning

$$P(E) = \sum_{i=1}^{\infty} P(E(i))$$

So
$$P(t) = P(\mathcal{O}_{t=1}^{\infty} EC_{i}) = \mathcal{D}_{t=1}^{\infty} P(EC_{i}).$$

