

Rational

- Systematic experimentation of proof of concepts
 - Needs to be
 - Reproducible
 - Reconstructible
 - Begins earlier than you think
 - Latest when you tune the first hyperparameters
 - After your first initial trials about the approach such as which method to use, which (network) architecture to use, ...
- Reproducibilty and reconstructability require:
 - Having an overview over the experiments conducted and the major performance measurements and being able to compare them
 - Already at the point of construction/configuration
 - To be able to rerun an experiment and understand its details, e.g. by having declarative configurations (files)
 - Store (intermediate) data, logs, models, and human readable reports systematically

Beware of silent bugs which only occur in production!

Existing Tools for Experimentation Support

- Cloud: AWS SageMaker, Azure ML Service
- Open Source: Sacred, DVC, MLFLow, GuildAI, Pachyderm
- Commercial: Comet, Neptune.ai, MissingLink, Weights & Biases, SigOpt, DotScience
- Offer:
 - Rerun of experiments
 - Organization and analysis of results
 - Deployment and monitoring
- What's missing everywhere?
 - Organization of complex experiment configurations
 - Only indirectly and partially via result overviews
 - Built-in declarative, easily human-readable experiment configuration to enable robust experiment set-up and details drill-down
 - Complex command line calls or full-blown notebooks as required by all tools are tedious and error-prone

Simplified General Machine Learning Workflow

Comments

- Splitting the data (in train, validation, test, ..., sets) and measuring the performance in combination have to be adjusted to your use case
- Resampling: Bootstrapping, Cross-Validation, etc.
 - => ML experiment configuration is complex with many hyperparameters to set

Decision: Implement Lightweight Framework

- Fixed workflow enables lightweight IoC (Inversion of Control) and DI (Dependency Injection)
 - Add interfaces for the most important parts of the workflow (including interfaces/defaults implementations for data)
 - Implementations of these become the arbitrary combinable building blocks
 - Orchestrate (connect) according to workflow providing basic, unchangeable framework
- => Component-based Experimentation Framework:
 - Enables systematic and declarative configuration (e.g. via human-readable configuration files)
 - Create new experiment configurations by altering old ones (human-readable => less error prone)
 - Enables integration of shared services such as result directory creation, reporting (with the ReportCollector tool), logging, restart, timing, etc.
 - Saves (boilerplate) code
 - Greatly supports QA, e.g.:
 - Smoke test configs
 - Code reviews by means of debugging smoke tests (and interactively explore used data structures, etc.) via an IDE

Python Implementation

- Read config file in JSON with structure analog to workflow and with global default mechanism
 - Specify for each interface which implementation to use and a dictionary of variable and implementation specific (hyper) parameters
- Use import_module and getattr to load the implementations specific classes and provide
 parameters via **kwargs mechanism (more elaborate version used as FromParams in allennlp.org)
- Define fixed structure for storing configuration files and experiment results
 - config
 - result
 - result_experiment_N
 - data => All (intermediate) data, can be reused/referenced by subsequent experiments
 - log => Logs, configuration (file), environment used, etc.
 - model => Computed and saved models, can be reused/referenced by subsequent experiments
 - report => Human readable reports, e.g. in HTML format as produced by the ReportCollector tool

Reporting

- Use Sacred (https://github.com/IDSIA/sacred) to store logs, results, reports, and other artefacts in a central (MongoDB) database
 - Done via easy code instumentation, mostly done within the framework code itself
- For each experiment an ID, name, main results (performance measurements), and other automatically added information is stored
- Visualize using the web-based tool Omniboard
 - Tabular overview over all experiments and sortable according to any column/information source such as execution time, performance measurements, grouping, etc.
 - Drill-down view of individual experiments with more information
- Both Sacred and the MongoDB are Docker empowered
 Easy to use locally also

Still missing

- Support for resampling
- Hyperparameter search => Systematic generation of experiment configurations

Why we do not use ...

- Jupyter Notebooks
 - We do, but only for initial trials, not for systematic experimentation
 - See here https://docs.google.com/presentation/d/1ivK8AKgz8Hx-ZYzPC9gJyQK6tzuhR3UuhCEajFGJDIA/edit#slide=id.p
 - Basically: Notebooks encourage bad (software engineering) practice and are hardly reproducible
 - https://docs.google.com/presentation/d/17NoJY2SnC2UMbVegaRCWA7Oca7UCZ3vHnMqBV4SUayc/edit#slide=id.p
 - nbdev (<u>http://nbdev.fast.ai/</u>) does not convince us
 - Poor documentation
 - Too much overhead, hardly any savings to applying best software engineering practices
 - Unit test support insufficient

