

DEPARTAMENTO DE FÍSICA E MATEMÁTICA ANÁLISE MATEMÁTICA II 1. °A/1. °S - ENG. INFORMÁTICA

Actividade01 .: Programação em Matlab

Métodos Numéricos para PVI .: Euler e Runge-Kutta

Problema de Condição Inicial: $y' = f(t, y), y(a)$	$= y_0, t \in [a, b]$
--	------------------------

Objectivo: Obter aproximação da solução exata $y(t_i) \approx y_i$

Considere o problema de condição inicial y' = y + t, y(0) = 1, $t \in [0,3]$.

Determine uma aproximação para y(3) usando:

- (a) O método de Euler explícito e:
 - i. h = 1
 - ii. h = 0.5
 - iii. h = 0.25
- (b) O método de Runge-Kutta de 2ª ordem e:
 - i. h = 1
 - ii. h = 0.5
 - iii. h = 0.25
- (c) O método de Runge-Kutta de 4ª ordem e:
 - i. h = 1
 - ii. h = 0.5
 - iii. h = 0.25
- (d) Determine, utilizando a função dsolve, a solução exacta do problema. Construa tabelas como a que se segue e compare a precisão dos resultados obtidos nas alíneas anteriores com o valor exato de y(3).

			Aproximações			Erros		
		$y(t_i)$	y_i	y_i	y_i	$ y(t_i)-y_i $	$ y(t_i)-y_i $	$ y(t_i)-y_i $
i	t_i	Exata	Euler	RK2	RK4	Euler	RK2	RK4

(e) Apresente sob a forma de gráfico a solução exacta, as aproximações obtidas e interprete os resultados obtidos.