华东师范大学期中考试试卷 2017-2018学年 第二学期

	课程名	活称: 概率统计	课程性质:专业必修					
	专	业:	年级/班级:					
	姓	名:	学	号:				
* 答	案请写在	答题纸上.			试题共3页, 含1页统计表.			
–. ±	真空题	(每题3分, 共30分)						
1.	设随机	l变量X服从参数为6的泊松分布	万, 写出2	X的分	}布列			
2.	设A,B	为两个随机事件, $P(A) = a$, $P(B)$	(B) = b, P	$P(B \overline{A})$	$P(A \cup B) = C$			
3.	_	= $(a_1,b_1] \times (a_2,b_2]$,随机变量(x) =	X, Y)服力	从均	匀分布U(D),则X的概率密度函数			
4.		L变量 X_1, X_2 独立同分布, 都服从明参数).	、指数分	布Es	$xp(1)$, 则随机变量 $X_1 + X_2$ 服从分			
5.		2,3四个数字中随机地取两个分布函数为 $F(x) = 2,2,2,2,3$	不同的	数相	乘,用X表示它们的乘积,则随机变			
6.	设X服	从正态分布N(10,4),则概率P(2	$X \ge c) =$	0.02	25, 则 $c =$.			
7.	设随机 明参数		V(0, 1; 0,	,1; ho)), 则随机变量 <i>X – Y</i> 服从分布(注			
8.		l变量X与Y独立,且X服从两点。 效有个间断点.	分布 <i>b</i> (1,	, p), l	Y服从均匀分布 $U(0,1)$,则 $X+Y$ 的分			
9.	设随机	l变量 X 的概率密度函数为 $p(x)$	= max{1	- x	; ,0},则概率 <i>P</i> (X > 1/2) =			
10.		个不同的小球随机地放入编号分 个中的最小编号,写出(<i>X</i> , <i>Y</i>) 的职			的三个盒子中,记 <i>X</i> 为空盒数, <i>Y</i> 为不			

二. 解答题 (第11-14题每题10分, 第15-16题每题15分; 共70分)

- 11. 设有三张卡片,第一张两面皆为红色,第二张两面皆为黄色,第三张一面是红色一面是黄色. 随机地选择一张卡片并随机地选择其中一面. 如果已知此面是红色,求另一面也是红色的概率(必须给出详细求解过程).
- 12. 设随机变量X的概率密度函数为 $p(x) = \begin{cases} axe^{-x}, & x > 0; \\ 0, & x \le 0. \end{cases}$,求常数a和随机变量X的分布函数F(x).
- 13. 设X的分布函数为 $F_X(x)$, a与b都是已知的实数, 且a < b, 求随机变量

$$Y = \begin{cases} a, & X < a, \\ X, & a \le X < b, \\ b, & X \ge b. \end{cases}$$

的分布函数 $F_Y(y)$.

- 14. 设随机变量X服从均匀分布U(0,1), 求随机变量 $Y = -2 \ln X$ 的概率密度函数 $p_Y(y)$.
- 15. 设随机变量X服从均匀分布U(0,1),随机变量Y服从指数分布Exp(1),且X与Y相互独立、求
 - (1)随机变量T = X Y的概率密度函数 $p_T(t)$,
 - $(2)概率<math>P\left(Y-X>\frac{1}{2}\right).$
- 16. 设随机变量(X,Y)的概率密度函数为

$$p(x,y) = \begin{cases} cx^2y, & x^2 \le y \le 1; \\ 0, & 其他. \end{cases}$$

求

- (1)常数c的值,
- (2)随机变量X的概率密度函数 $p_X(x)$,
- (3)随机变量Y的概率密度函数 $p_Y(y)$.

三. 附加题(5分)

17. 至少给出5条你对当前所考课程教学的意见或建议.

附表 标准正态分布函数表

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

x	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.877	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9990	0.9990	0.9990

参考答案

1.
$$P(X = k) = \frac{6^k}{k!}e^{-6}, k = 0, 1, 2, \cdots$$

2.
$$a + (1 - a)c$$

3.
$$p_X(x) = \begin{cases} \frac{1}{b_1 - a_1}, & a_1 < x < b_1, \\ 0, & 其他. \end{cases}$$

4.
$$Ga(2, 1)$$

5.
$$F(x) = \begin{cases} 0, & x < 0, \\ 1/2, & 0 \le x < 2, \\ 2/3, & 2 \le x < 3, \\ 5/6, & 3 \le x < 6, \\ 1, & x \ge 6. \end{cases}$$

7.
$$N(0, 2-2\rho)$$

9.
$$\frac{1}{8}$$

11. 设 B_i 表示事件"选择的是第i张卡片", i=1,2,3, A表示事件"随机地选择一张卡片并随机地选择其中一面,发现此面是红色". 则由已知 $P(A|B_1)=1$, $P(A|B_2)=0$, $P(A|B_3)=\frac{1}{2}$. $P(B_i)=\frac{1}{3}$. 于是,由Bayes公式,所求概率为

$$P(B_1|A) = \frac{P(A|B_1)P(B_1)}{\sum_{i=1}^{3} P(A|B_i)P(B_i)} = \frac{1 \cdot 1/3}{1 \cdot 1/3 + 0 \cdot 1/3 + 1/2 \cdot 1/3} = \frac{2}{3}.$$

12. 由概率密度函数的正则性知,

$$1 = \int p(x) dx = \int_0^\infty ax e^{-x} dx = a,$$

即a = 1.

分布函数为

$$F(x) = \int_{-\infty}^{x} p(t)dt = \begin{cases} \int_{0}^{x} te^{-t}dt, & x > 0, \\ 0, & x \le 0. \end{cases} = \begin{cases} 1 - (x+1)e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

13. 由分布函数的定义知, Y的分布函数为

$$\begin{split} F_Y(y) &= P(Y \leq y) = P(Y \leq y, X < a) + P(Y \leq y, a \leq X < b) + P(Y \leq y, X \geq b) \\ &= P(a \leq y, X < a) + P(X \leq y, a \leq X < b) + P(b \leq y, X \geq b) \\ &= \begin{cases} 0, & y < a, \\ F_X(y), & a \leq y < b, \\ 1, & y \geq b. \end{cases} \end{split}$$

14. $X \sim U(0,1)$, 故X的概率密度函数为 $p_X(x) = \begin{cases} 1, & 0 < x < 1; \\ 0, & 其他. \end{cases}$

 $y = -2 \ln x$ 单调, 且有反函数 $h(y) = e^{-\frac{y}{2}}, h'(y) = -\frac{1}{2}e^{-\frac{y}{2}},$ 故 $Y = -2 \ln X$ 的概率密度函数为

$$p_Y(y) = p_X(h(y))|h'(y)| = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

15. 易知X与Y的概率密度函数分别为

$$p_X(x) = \begin{cases} 1, & 0 < x < 1; \\ 0, & \text{ i.e.} \end{cases} \qquad p_Y(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

由卷积公式, T = X - Y的概率密度函数为

$$p_T(t) = \int_{-\infty}^{\infty} p_X(x) p_Y(x-t) dx.$$

被积函数 $p_X(x)p_Y(x-t)$ 的非零区域为

$$\{(x,t): 0 < x < 1, x - t > 0\} = \{(x,t): t < 1, t \lor 0 < x < 1\}.$$

故T = X - Y的概率密度函数为

$$p_T(t) = \int_{-\infty}^{\infty} p_X(x) p_Y(x-t) dx = \begin{cases} \int_{t \vee 0}^1 e^{-(x-t)} dx, & t < 1, \\ 0, & t \ge 1. \end{cases} = \begin{cases} e^t - e^{t-1}, & t \le 0, \\ 1 - e^{t-1}, & 0 < t < 1, \\ 0, & t \ge 1. \end{cases}$$

所求概率为

$$P\left(Y - X > \frac{1}{2}\right) = P\left(T < -\frac{1}{2}\right) = \int_{-\infty}^{-1/2} p_T(t) dt = \int_{-\infty}^{-1/2} (e^t - e^{t-1}) dt = e^{-1/2} - e^{-3/2}.$$

16. 由概率密度函数的正则性,

$$1 = \iint p(x, y) dxdy = \int_{-1}^{1} dx \int_{x^{2}}^{1} cx^{2}y dy = \frac{4}{21}c$$

解得c = 21/4.

X的概率密度函数为

$$p_X(x) = \int_{-\infty}^{\infty} p(x, y) dy = \begin{cases} \int_{x^2}^{1} \frac{21}{4} x^2 y dy, & |x| \le 1; \\ 0, & |x| > 1. \end{cases} = \begin{cases} \frac{21}{8} x^2 (1 - x^4), & |x| \le 1; \\ 0, & |x| > 1. \end{cases}$$

Y的概率密度函数为

17. 略.