

Linear and Discrete Optimization

The Euclidean algorithm

- ► The greatest common divisor
- Analysis of the Euclidean algorithm

For $a, b \in \mathbb{Z}$, $b \neq 0$ we say b divides a if there exists an $x \in \mathbb{Z}$ such that $a = b \cdot x$. We write $b \mid a$.

- For $a, b \in \mathbb{Z}$, $b \neq 0$ we say b divides a if there exists an $x \in \mathbb{Z}$ such that $a = b \cdot x$. We write $b \mid a$.
- ► For $a, b, c \in \mathbb{Z}$, if $c \mid a$ and $c \mid b$, then c is a <u>common divisor</u> of a and b.

$$a=60$$
, $b=42$ 3160 and 3142
3 common divisor of 60 and 42

- For $a, b \in \mathbb{Z}$, $b \neq 0$ we say b divides a if there exists an $x \in \mathbb{Z}$ such that $a = b \cdot x$. We write $b \mid a$.
- ▶ For $a, b, c \in \mathbb{Z}$, if $c \mid a$ and $c \mid b$, then c is a common divisor of a and b.
- If at least one of the two integers a and b is non-zero, then there exists a *greatest* common divisor of a and b. It is denoted by gcd(a, b).

- For $a, b \in \mathbb{Z}$, $b \neq 0$ we say b divides a if there exists an $x \in \mathbb{Z}$ such that $a = b \cdot x$. We write $b \mid a$.
- ▶ For $a, b, c \in \mathbb{Z}$, if $c \mid a$ and $c \mid b$, then c is a common divisor of a and b.
- If at least one of the two integers a and b is non-zero, then there exists a *greatest* common divisor of a and b. It is denoted by gcd(a, b).
- ▶ For $a, b \in \mathbb{Z}$ with b > 0 there exist unique integers $q, r \in \mathbb{Z}$ with

$$a = q \cdot b + r, \text{ and } 0 \le r < b.$$

$$C = \lambda \cdot 4 \cdot 2 + 1 \cdot 3$$

$$C = \lambda \cdot 4 \cdot 2 + 1 \cdot 3$$

$$C = \lambda \cdot 4 \cdot 2 + 1 \cdot 3$$

- For $a, b \in \mathbb{Z}$, $b \neq 0$ we say b divides a if there exists an $x \in \mathbb{Z}$ such that $a = b \cdot x$. We write $b \mid a$.
- ▶ For $a, b, c \in \mathbb{Z}$, if $c \mid a$ and $c \mid b$, then c is a common divisor of a and b.
- If at least one of the two integers a and b is non-zero, then there exists a *greatest* common divisor of a and b. It is denoted by gcd(a, b).
- ► For $a, b \in \mathbb{Z}$ with b > 0 there exist unique integers $q, r \in \mathbb{Z}$ with

Example: The Euclidean algorithm (cont.)

```
# Condition a>=b>=0, not both equal to 0

def Euclid(a,b):

if b == 0:

return a

else:

r = a\%b

return Euclid(b,r)
```

azbzr if r za/2:

a ≥ 1. b + 1 > a 4

- $r \leq a/2$
- First parameter halved every second iteration
- ▶ Number of iterations: $O(\log a) = O(\operatorname{size}(a))$
- Linear time algorithm