USF GENOMICS PROGRAM

RNA-seq Data-Analysis Workshop

Intro to RNA-seq

Justin Gibbons, PhD

Postdoc, USF Genomics Program Consultant, USF Omics Hub

RNA-seq

- A major breakthrough (replaced microarrays) in the late 00's and has been widely used since
- Measures the average expression level for each gene across a large population of input cells
- Useful for comparative transcriptomics, e.g. samples of the same tissue from different species
- Useful for quantifying expression signatures from ensembles, e.g. in disease studies

Data Generation

Martin, J. A. & Wang, Z. Next-generation transcriptome assembly. Nature Rev. Genet. 12, 671-682 (2011).

https://genomebiology.biomedcentral.com/articles/ 10.1186/s13059-016-0881-8

Blast2GO

Data Analysis

Types of RNA-seq Strategy Tissue Isolate RNA, DNAse Initial RNA pool Legend genomic DNA immature RNA mature RNA non-coding RNA ribosomal RNA Total rRNA PolyA cDNA Selection/depletion RNA reduction selection capture paired end reads ---**38**6 Resulting RNA pool D. cDNA capture A. Total RNA Broad transcript representation* Limited transcript representation (targeted) **✓**TACGTA High rRNAs Very low rRNAs Abundant mRNAs de-emphasized Abundant mRNAs dominate High unprocessed RNA Moderate unprocessed RNA Low genomic DNA High genomic DNA B. rRNA reduction C. PolyA selection Limited transcript representation (polyA) **V**rRNA **₩** Broad transcript representation Low rRNAs Very low rRNAs Abundant mRNAs dominate Abundant mRNAs dominate High unprocessed RNA Low unprocessed RNA High genomic DNA Very low genomic DNA

Expected Alignments

Experimental design: Number of replicates

- Number of replicates more important than read depth or read length [93]
- Factors dictating sample size:
 - Effect size
 - Within-group variation
 - Acceptable false-positive and false-negative rates
 - Maximum sample size
- Tools for calculating sample size:
 - Scotty—Power Analysis for RNA Seq Experiments
 - Website
 - Uses a pilot run or publicly available to perform power calculations
 - Allows modeling of how much additional power costs (\$\$\$)
 - PROPER—R package for RNA-seq power calculations
 - Creates simulations of RNA-seq data from provided data
 - Creates plots demonstrating how sample size and sequencing depth affect true discovery rate and false discovery rate

Experimental design: Sequencing depth

First analysis step: Quality control

Quality control: Base quality scores

Quality Control: Sequence Duplication

FastQC: Sequence Duplication Levels

Quality Control: Composition bias

Second analysis step: Transcriptome reconstruction

Transcriptome reconstruction

What we will be doing:

- 1. HISAT2: Align reads to a reference genome
- 2. Cufflinks: Assemble reads into transcripts
- 3. Cuffnorm: Get normalized gene counts
- 4. featureCounts: Get raw gene counts