The Virtual Learning Environment for Computer Programming

Haskell — Programació dinàmica

P27104_ca

Aquest exercici explora l'ús de vectors per resoldre problemes de programació dinàmica.

- 1. Oh, no... Un altre cop! Feu una funció fib :: Int \rightarrow Integer que, donat un $n \ge 0$, retorni l'n-èsim nombre de Fibonaci.
- 2. Feu una funció *binomial* :: Int \rightarrow Integer que, donat un enter $n \ge 0$ i un enter $0 \le k \le n$, retorni el coeficient binomial $\binom{n}{k}$, és a dir, el nombre de formes en què es poden escollir k objectes d'entre un conjunt de n sense tenir en compte l'ordre.
- 3. Feu una funció $bst :: Int \rightarrow Integer$ que, donat un $n \ge 0$, retorni el nombre d'arbres binaris de cerca amb nodes $1, \dots, n$.

Per exemple, *bst* 3 és 5, perquè hi ha 5 arbres binaris de cerca amb nodes 1,2,3:

- 4. Feu una funció coins :: [Int] \rightarrow Int \rightarrow Int que, donada una llista de n valors de monedes v_1, \ldots, v_n i donat un valor s, trobi el mínim nombre de monedes que sumen s. Cada moneda es pot fer servir diversos (o cap) cops, $s \ge 0$ i $v_i > 0$ per a tot i.
- 5. Donades dues matrius amb dimensions $n_1 \times n_2$ i $n_2 \times n_3$, el cost de l'algorisme habitual per multiplicar-les és $\Theta(n_1n_2n_3)$. Per senzillesa, considerem que el cost és exactament $n_1n_2n_3$.

Suposem que hem de calcular $M_1 \times M_2 \times \cdots \times M_m$, on cadascuna de les M_i és una matriu amb dimensions $n_i \times n_{i+1}$. Com que el producte de matrius és associatiu, es pot triar en quin ordre es fan les multiplicacions. Per exemple, per calcular $M_1 \times M_2 \times M_3 \times M_4$, es podria fer $(M_1 \times M_2) \times (M_3 \times M_4)$, amb cost $n_1 n_2 n_3 + n_3 n_4 n_5 + n_1 n_3 n_5$, o bé $M_1 \times ((M_2 \times M_3) \times M_4)$, amb cost $n_2 n_3 n_4 + n_2 n_4 n_5 + n_1 n_2 n_5$, o bé tres altres ordres possibles.

Feu una funció mult :: [Int] \rightarrow Int que trobi el cost mínim de calcular $M_1 \times M_2 \times \cdots \times M_m$, donades les dimensions $n_1, n_2, \ldots, n_m, n_{m+1}$.

Puntuació

Per a cada apartat, hi ha dos tipus de jocs de proves segons la talla de la seva entrada: els petits i els grans. Els petits es poden resoldre recursivament i dónen 5 punts cadascún. Els grans requereixen programació dinàmica i dónen 15 punts cadascún.

Exemple d'entrada

```
map fib [0..6]
map (binomial 6) [0..6]
map bst [0..6]
coins [1,3,5] 11
```

coins [4,6] 11
mult [10,20,30,40]
mult [9000,4000,3500,8000,2000,7500,6000,1000,8500,5500,7000]

Exemple de sortida

[0,1,1,2,3,5,8] [1,6,15,20,15,6,1] [1,1,2,5,14,42,132] Just 3 Nothing 18000 302250000000

Informació del problema

Autor : Jordi Petit i Salvador Roura Generació : 2014-07-16 11:02:09

© *Jutge.org*, 2006–2014. http://www.jutge.org