

Engineering

Multi-Scale Modeling of Electrochemical Separation: From Material Modeling to Process Optimization

Teslim Olayiwola (PhD Candidate), Jose Romagnoli (PhD Advisor)

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

Water scarcity in 21st century The New York Times **Water for Energy** A Quarter of Humanity Faces Looming Water Crises Cooling **Extraction and** transmission

- **Energy for Water**
- Thermoelectric power plants use ~42% total freshwater in USA.
- ~12.6% of total energy consumption for water related purposes.
- Actively seeking simple electrified separation units (e.g. Electrodialysis, ED; Electrodeionization, EDI; Capacitive Deionization, CDI) with low pressure & energy requirement.

Computational Frameworks

Continuum model

$$\frac{dC_i}{dt} = \frac{A}{V_k} \sum_{i} J_i$$

$$V = \sum_{i} E_i$$

Separation unit

Data-driven modeling

Molecular Dynamics (MD)

- Membrane structure & ion type impacts ion transport.
- Interest in ionic transport models applicable across different ionic systems.
- MD showed most counterions in (block or random) are inside the first solvation shell.
- Herein, combining MD and experiment can improve ion transport modeling.

Missing data in Data-driven modeling

- Imputation and data augmentation are solutions but could lead to inaccurate models.
- Proposed 'ImputeNet' to resolve inaccuracy in model

discovered new adsorption capacity with >200 mg/g.

Original PVmicro

Ongoing Works

- Physics-Informed Machine Learning for Electrochemical Separation.
- Investigating real-time control of electrochemical separation with reinforcement learning.

Discovering Energy Efficient Separation

Operational:

Voltage, flowrate, stacks, spacer length.

membrane/resin:

Packing density Ion exchange capacity Porosity

- Searching for best condition is expensive.
- Limited dataset & no data-driven optimization strategy.
- Herein, bridging physics and experiment with ML discovered novel conditions.

Electrochemical CO₂ conversion

Novel framework yielded experimentally verifiable optimized conditions with 55% C₂H₅OH FE, which surpasses experimental approach (~48%).

Tailored Molecular Design

Novel stable molecules verified with MD simulation were discovered.

Skillsets

Programming

Data analysis & visualization

High performance computing

Numerical modeling

Machine Learning mI7/ow aws

docker

Process simulation Structure property modeling

Experiment: Catalyst synthesis & testing; CO Spectroscopy Polymer/surfactant simulations