Diplomado en ML Cloud - UCB CBBA

Módulo 4: Machine Learning Cloud MLOps
Docente: Ing. Mauricio Alejandro Quezada

Estudiante: Jose Carlos Iriarte Fecha: Agosto del 2025

Laboratorio 4

Captura del DAG completo del pipeline

Tabla comparativa de métricas (Logistic vs Boosted)

Tabla comparativa

Métrica	Modelo 1 (Logistic Regression)	Modelo 2 (Boosted Decision Tree)
Accuracy	0.8091603	0.8129771
AUC	0.8546605	0.850679
F1 Score	0.7340426	0.7322404
Precisión	0.7840909	0.8072289
Recall	0.69	0.67

¿Cuál fue el mejor modelo?

- No hay un ganador absoluto, porque ambos tienen rendimientos muy similares.
- Logistic Regression tuvo mejor AUC (0.8547) y Recall (0.69), lo que indica que identifica mejor a los casos positivos (menos falsos negativos).
- Boosted Decision Tree tuvo mejor Accuracy (0.813) y Precisión (0.807), lo que significa que clasifica mejor los casos negativos y reduce falsos positivos.

¿Por qué?

- Logistic Regression es lineal, por lo tanto más simple y menos propenso a sobreajuste. Su mejor Recall lo hace útil si lo importante es no perder casos positivos.
- Boosted Decision Tree aprovecha la combinación de árboles, lo que le da más poder predictivo en términos de exactitud global y precisión, aunque sacrificó algo de Recall. Es mejor si lo importante es que las predicciones positivas sean más confiables.

¿Cómo influyó el ajuste de hiperparámetros?

 En Logistic Regression, los hiperparámetros (regularización, tasa de aprendizaje en optimización, etc.) ayudan a controlar el balance entre sobreajuste y generalización. Un buen ajuste mejoró Recall y AUC. En Boosted Decision Tree, parámetros como número de árboles, profundidad máxima, tasa de aprendizaje influyen mucho. Un ajuste adecuado permitió mayor precisión y exactitud, aunque el modelo se volvió un poco menos sensible (menor Recall).

Conclusiones:

- Si tu objetivo es detectar la mayor cantidad de positivos (maximizar Recall y AUC), conviene Logistic Regression.
- Si tu objetivo es predecir con más exactitud y evitar falsos positivos, conviene el Boosted Decision Tree.