รูปทั่วไปของลำดับฟิโบนักชีแบบสมบูรณ์

ON COMPLETE GENERALIZED FIBONACCI SEQUENCES

สมาชิก

นาย วิษณุ พรภาวนาเลิศ ม.5/1 เลขที่ 27

อาจารย์ที่ปรึกษา

อาจารย์ ดร.ภาสวรรณ นพแก้ว อาจารย์ ดร.ธนากร ปริญญาศาสตร์

ลำดับฟิโบนักชี

 $(F_n)_{n\in\mathbb{N}}$ เป็นลำดับที่กำหนดโดยความสัมพันธ์เวียนเกิด $F_0=0$, $F_1=1$, $F_n=F_{n-1}+F_{n-2}$ สำหรับ $n\geq 2$

$$F_0 = 0$$
 $F_7 = 13$
 $F_1 = 1$ $F_8 = 21$
 $F_2 = 1$ $F_9 = 34$
 $F_3 = 2$ $F_{10} = 55$
 $F_4 = 3$ \cdot
 $F_5 = 5$ \cdot
 $F_6 = 8$ \cdot

ลำดับสมบูรณ์ [Brown,1961]

ให้ $(A_n)_{n\in\mathbb{N}}$ เป็นลำดับของจำนวนนับ เราจะกล่าวว่า $(A_n)_{n\in\mathbb{N}}$ เป็น**ลำดับสมบูรณ์** ก็ต่อเมื่อ สำหรับแต่ละจำนวนนับ k จะมีลำดับ $(\alpha_n)_{n\in\mathbb{N}}$ ใน $\{0,1\}$ ซึ่ง $k=\sum_{i=1}^\infty \alpha_i A_i$

ตัวอย่าง $(A_n)_{n\in\mathbb{N}}=\{1,2,3,...,n,...\}$, $(B_n)_{n\in\mathbb{N}}=\{1,1,1,...,1,...\}$ และ $(C_n)_{n\in\mathbb{N}}=\{1,3,5,...,2n-1,...\}$ จะเห็นได้ว่า $(A_n)_{n\in\mathbb{N}}$, $(B_n)_{n\in\mathbb{N}}$ เป็นลำดับสมบูรณ์ แต่ $(C_n)_{n\in\mathbb{N}}$ ไม่เป็นลำดับสมบูรณ์เพราะ 2 ไม่สามารถเขียนในรูป $\sum_{i=1}^{\infty}\alpha_iC_i$ เนื่องจาก $C_1<2$ และ $C_n>2$ สำหรับ $n\geq 2$

ลำดับฟิโบนักชี

$$(F_n)_{n\in\mathbb{N}}$$
 เป็นลำดับที่กำหนดโดยความสัมพันธ์เวียนเกิด $F_0=0$, $F_1=1$, $F_n=F_{n-1}+F_{n-2}$ สำหรับ $n\geq 2$

$$F_0 = 0$$
 $F_7 = 13$ $1 = F_1 = F_2$
 $F_1 = 1$ $F_8 = 21$ $2 = F_1 + F_2 = F_3$
 $F_2 = 1$ $F_9 = 34$ $3 = F_1 + F_3 = F_2 + F_3$
 $F_3 = 2$ $F_{10} = 55$ $4 = F_1 + F_4 = F_2 + F_4$
 $F_4 = 3$ $5 = F_3 + F_4 = F_5$
 $F_5 = 5$ $6 = F_2 + F_3 + F_4 = F_1 + F_5$
 $F_6 = 8$ \cdot

Zeckendorf Representation [Zeckendorf,1972]

สำหรับจำนวนนับ m ใด ๆ จะสามารถเขียนในรูป

$$m = \sum_{i=2}^{\infty} \alpha_i F_i, \alpha_i \in \{0,1\}$$

ได้แบบเดียวภายใต้เงื่อนไข $lpha_ilpha_{i+1}=0$

$$1 = F_2$$
 $6 = F_1 + F_5$
 $2 = F_3$ $7 = F_3 + F_5$
 $3 = F_1 + F_3$ \cdot
 $4 = F_2 + F_4$ \cdot
 $5 = F_5$

รูปทั่วไปของลำดับฟิโบนักชี [Gupta,2012]

รูปทั่วไปของลำดับฟิโบนักชี คือ ลำดับ $(A_n)_{n\in\mathbb{N}}$ ซึ่ง A_1,A_2,a,b เป็นจำนวนเต็มที่ไม่เป็นลบ และ $A_n=aA_{n-1}+bA_{n-2}$

$$A_1 = 1, A_2 = 1, a = 1, b = 1$$
 $A_1 = 1, A_2 = 1, a = 1, b = 4$ $A_n = A_{n-1} + A_{n-2}$ $A_1 = 1$ $A_1 = 1$ $A_2 = 1$ $A_1 = 1$ $A_2 = 1$ $A_3 = 2$ $A_4 = 3$ $A_4 = 3$ $A_5 = 5$ $A_5 = 29$

วัตถุประสงค์

- \clubsuit ศึกษาคู่อันดับ (a,b) ที่ทำให้รูปทั่วไปของลำดับฟิโบนักชี $(A_n)_{n\in\mathbb{N}}$ เป็นลำดับสมบูรณ์
- * ศึกษาเงื่อนไขที่ทำให้การเขียนจำนวนนับใด ๆ ในรูปผลรวมเชิงเส้นของสมาชิกในรูปทั่วไปของฟิโบนักชีที่สมบูรณ์ สามารถเขียนได้แบบเดียวเท่านั้น

ขอบเขตของการศึกษา

ศึกษารูปทั่วไปของฟิโบนักชีซึ่ง A_1,A_2 เป็นจำนวนเต็มบวก

ผลการศึกษา

(a,b)	เงื่อนไข
(0,1)	$lpha_{ m i}=0$ ดำหรับทุก $i>n$
(0,2)	$lpha_{2\mathrm{i}-1}=0$ ดำหรับทุก $i\in\mathbb{N}$
(0,3)	$lpha_{2\mathrm{i}-1} \leq lpha_{\mathrm{i}}$ สำหรับทุก $i \in \mathbb{N}$
(1,0)	$lpha_{ m i}=0$ สำหรับทุก $i>n$
(1,1)	$lpha_1=0$, $lpha_{\mathrm{i}}lpha_{\mathrm{i+1}}=0$ กสำหรับทุก $i\in\mathbb{N}$
(1,2)	$\min{\{k lpha_k=1\}}$ เป็นจำนวนคี่
(2,0)	$\alpha_1 = 0$

แสดงคู่อันดับ (a,b) ที่ทำให้รูปทั่วไปของลำดับฟิโบนักชี $(A_n)_{n\in\mathbb{N}}$ เป็นลำดับสมบูรณ์ และเงื่อนไขที่ทำให้การเขียนจำนวนนับใด ๆ ในรูปผลรวมเชิงเส้นของสมาชิกใน รูปทั่วไปของฟิโบนักชีที่สมบูรณ์ สามารถเขียนได้แบบเดียวเท่านั้น เมื่อ $A_1=1$, $A_2=1$

ผลการศึกษา

(a,b)	เงื่อนไข
(0,2)	$lpha_{2\mathrm{i}}=0$ สำหรับทุก $i\in\mathbb{N}$
(0,3)	$lpha_{\mathrm{i}}lpha_{\mathrm{i+1}}=0$ สำหรับทุก i ที่เป็นจำนวนคี่
(0,4)	_
(1,0)	$lpha_{2\mathrm{i}+1} \leq lpha_{\mathrm{i}}$ สำหรับทุก $i \in \mathbb{N} - \{1\}$
(1,1)	$lpha_{\mathrm{i}}lpha_{\mathrm{i+1}}=0$ สำหรับทุก $i\in\mathbb{N}$
(1,2)	_
(2,0)	

แสดงคู่อันดับ (a,b) ที่ทำให้รูปทั่วไปของลำดับฟิโบนักซี $(A_n)_{n\in\mathbb{N}}$ เป็นลำดับสมบูรณ์ และเงื่อนไขที่ทำให้การเขียนจำนวนนับใด ๆ ในรูปผลรวมเชิงเส้นของสมาชิกใน รูปทั่วไปของฟิโบนักซีที่สมบูรณ์ สามารถเขียนได้แบบเดียวเท่านั้น เมื่อ $A_1=1$, $A_2=2$

สรุป

$$A_1 = 1, A_2 = 1$$

(a, b)	เงื่อนไข
(0,1)	$lpha_{ m i}=0$ ล้าหรับทุก $i>n$
(0,2)	$lpha_{2\mathrm{i}-1}=0$ สำหรับทุก $i\in\mathbb{N}$
(0,3)	$lpha_{2\mathrm{i}-1} \leq lpha_{\mathrm{i}}$ สำหรับทุก $i \in \mathbb{N}$
(1,0)	$lpha_{ m i}=0$ ดำหรับทุก $i>n$
(1,1)	$lpha_1=0$, $lpha_{\mathrm{i}}lpha_{\mathrm{i+1}}=0$ กล้ำหรับทุก $i\in\mathbb{N}$
(1,2)	$\min{\{k lpha_k=1\}}$ เป็นจำนวนคี่
(2,0)	$\alpha_1 = 0$

$$A_1 = 1, A_2 = 2$$

(a, b)	เงื่อนไข
(0,2)	$lpha_{2\mathrm{i}}=0$ ดำหรับทุก $i\in\mathbb{N}$
(0,3)	$lpha_{\mathrm{i}}lpha_{\mathrm{i+1}}=0$ สำหรับทุก i ที่เป็นจำนวนคี่
(0,4)	—
(1,0)	$lpha_{2\mathrm{i}+1} \leq lpha_{\mathrm{i}}$ สำหรับทุก $i \in \mathbb{N} - \{1\}$
(1,1)	$lpha_{\mathrm{i}}lpha_{\mathrm{i+1}}=0$ สำหรับทุก $i\in\mathbb{N}$
(1,2)	—
(2,0)	—

เอกสารอ้างอิง

- [1] สถาบันส่งเสริมการสอนวิทยาศาสตร์และเทคโนโลยี กระทรวงศึกษาธิการ, รายวิชาเพิ่มเติม คณิตศาสตร์ ชั้นมัธยมศึกษาปีที่ 6 เล่ม 1, พิมพ์ครั้งที่ 1, สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย, 2563
- [2] A. Apostolico and A. S. Fraenkel, Robust Transmission of Unbounded Strings Using Fibonacci Representations, IEEE Trans. Inform. Theory 33 (1987), 238–245.
- [3] Brother Alfred Brousseau, Fibonacci Magic Cards, Fibonacci Quarterly, Vol. 10, No. 2, 1972, pp. 197-198.
- [4] J. L. Brown, Jr., Note on Complete Sequences of Integers, The American Mathematical Monthly, Vol. 68, No. 6 (Jun. -Jul., 1961), pp. 557-560.
- [5] J. L. BROWN, JR., UNIQUE REPRESENTATIONS OF INTEGERS AS SUMS OF DISTINCT LUCAS NUMBERS, Ordnance Research Laboratory, The Pennsylvania State University, State College, Pennsylvania, 1969, p. 243-252.
- [6] A. S. Fraenkel and S. T. Klein, Robust Universal Complete Codes for Transmission and Compression, Discr. Appl. Math. 64 (1996), 31–55.
- [7] V.K. Gupta, Yashwant K. Panwar and Omprakash Sikhwal, Generalized Fibonacci Sequences, Theoretical Mathematics & Applications, vol.2, no.2, 2012, p. 115-124.
- [8] V. E. Hoggatt, Jr., and C. King, *Problem E1424*, Amer. Math. Monthly, Vol. 67, 1960, p. 593.
- [9] Bencharat Prempreesuk, Passawan Noppakaew, Prapanpong Pongsrijam, Zeckendorf Representation and Multiplicative Inverse of F_m mod F_n , International Journal of Mathematics and Computer Science, 15(2020), no. 1, p. 17–25.
- [10] R. Silber, Wythoff 's Nim and Fibonacci Representations, The Fibonacci Quartertly 15 (1977), 85–88.
- [11] W. A. Wythoff, A Modification of the Game of Nim, Nieuw Archief voor Wiskunde (2) 7 (1907), 199–202.
- [12] É. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège, 1972.