The Investigation of the Exponential Distribution

Tianxing Li

Friday, February 20, 2015

Overview

This is the project for the statistical inference class. This report investigated the exponential distribution in R and compared it with the Central Limit Theorem.

Simulations

1. The simulation runs on the following parameters.

```
loop <- 1000
lambda <- 0.2
n <- 40
seed <- 100
```

2. Run the simulation and format the result to a matrix.

```
set.seed(seed)
rawResult <- rexp(loop * n, lambda)
result <- matrix(rawResult, loop)</pre>
```

3. Calculate the sample mean and variance.

```
sampleMean <- rowMeans(result)
sampleVar <- apply(result, 1, var)</pre>
```

Sample Mean versus Theoretical Mean

Plot the histogram of the sample mean as below.

In the simulation, we set λ to 0.2. The mean of exponential distribution is $1/\lambda$, which is 5. The simulated data sample has values for mean of 4.9997019, which is close to the expected value.

Sample Variance versus Theoretical Variance

In the simulation, we set λ to 0.2. The mean of exponential distribution is $(1/\lambda)^2$, which is 25. Plot the histogram of the sample variance as below, as well as the difference between the sample Variance and theoretical Variance, which seems to obey gamma distribution.

Histogram of Sample Variance

Distribution

We can tell the distribution is approximately normal by examining the empirical cumulative distribution and Quantile-Quantile (Q-Q) plot. R allows to compute the empirical cumulative distribution function by ecdf() and R also provides qqnorm() to get Quantile-Quantile (Q-Q) plot in order totest the goodness of fit of a gaussian distribution.

```
defaultPar <- par(mfrow=c(1, 2))</pre>
plot(ecdf(rawResult), main="Empirical Cumulative Distribution")
qqnorm(sampleMean)
qqline(sampleMean)
```

Empirical Cumulative Distributio

Sample Quantiles

2

က

Normal Q-Q Plot

par(defaultPar)