Devoir à la maison 3

À rendre pour le lundi 26 septembre 2018

Construction de \mathbb{C}

L'objet de ce problème est de construire rigoureusement \mathbb{C} .

À la fin du problème, on disposera de l'ensemble $\mathbb C$ que vous connaissez déjà, et on pourra (on devra) oublier cette construction.

I. Définition

On pose $\mathbb{C} := \mathbb{R}^2$. Les éléments de \mathbb{C} sont appelés nombres complexes.

II. « Plongement » de $\mathbb R$ dans $\mathbb C$

Si $a \in \mathbb{R}$, on note $\underline{a} := (a, 0)$.

III. Partie réelle et imaginaire

Si $z=(a,b)\in\mathbb{C}$, on note $\operatorname{Re}(z)$ le nombre réel a et $\operatorname{Im}(z)$ le nombre réel b.

IV. Addition

 $Si(a,b) \in \mathbb{C} \ et(a',b') \in \mathbb{C}, \ on \ définit(a,b) \oplus (a',b') := (a+a',b+b').$

V. Multiplication

 $Si(a,b) \in \mathbb{C} \ et(a',b') \in \mathbb{C}, \ on \ définit(a,b) \otimes (a',b') := (aa'-bb',ab'+a'b).$

VI. Constantes remarquables

On pose

$$0_{\mathbb{C}} := (0,0)$$

$$1_{\mathbb{C}} := (1,0)$$

$$i := (0, 1)$$

Enfin, on note $\mathbb{C}^* := \mathbb{C} \setminus \{0_{\mathbb{C}}\}.$

- **1.** Combien vaut $i \otimes i$?
- **2.** Soit $a \in \mathbb{R}$. Combien vaut $Re(\underline{a})$? Combien vaut $Im(\underline{a})$?
- **3.** Montrer que $\forall z \in \mathbb{C}, \exists ! (a, b) \in \mathbb{R}^2, z = \underline{a} \oplus (i \otimes \underline{b}).$
- **4.** Soient $z, z', z'' \in \mathbb{C}$.
 - a) Montrer que $z \oplus z' = z' \oplus z$.
 - b) Montrer que $z \oplus (z' \oplus z'') = (z \oplus z') \oplus z''$.
- 5. Soient $z, z', z'' \in \mathbb{C}$.
 - a) Montrer que $z \otimes z' = z' \otimes z$.
 - b) Montrer que $z \otimes (z' \otimes z'') = (z \otimes z') \otimes z''$.
- **6.** Soient $z, z', z'' \in \mathbb{C}$.
 - a) Montrer que $(z \oplus z') \otimes z'' = (z \otimes z'') \oplus (z' \otimes z'')$.
 - b) Montrer que $z'' \otimes (z \oplus z') = (z'' \otimes z) \oplus (z'' \otimes z')$.
- 7. Montrer que $\forall z \in \mathbb{C}, \exists! z' \in \mathbb{C}, z \oplus z' = 0_{\mathbb{C}}.$
- **8.** Montrer que $\forall z \in \mathbb{C}^*, \exists! z' \in \mathbb{C}, z \otimes z' = 1_{\mathbb{C}}$.

- **9.** Soient $a, b \in \mathbb{R}$.
 - a) Montrer que $\underline{a+b} = \underline{a} \oplus \underline{b}$.
 - b) Montrer que $\underline{a \cdot b} = \underline{a} \otimes \underline{b}$.
 - c) Montrer que $\underline{1} = 1_{\mathbb{C}}$.

VII. Conjugaison

Si $z=(a,b)\in\mathbb{C}$, on appelle conjugué de z, et on note \overline{z} le nombre complexe

$$\overline{z} := (a, -b)$$

- 10. Soient $z, z' \in C$.
 - a) Montrer que $\overline{z \oplus z'} = \overline{z} \oplus \overline{z'}$.
 - b) Montrer que $\overline{z \otimes z'} = \overline{z} \otimes \overline{z'}$.
- 11. Soit $z \in \mathbb{C}$. Montrer que $\overline{\overline{z}} = z$.

VIII. Module

Si $z \in \mathbb{C}$, on appelle module de z, et on note |z| le nombre réel positif

$$|z| := \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}.$$

- **12.** Montrer que $\forall z, z' \in \mathbb{C}, |z \otimes z'| = |z| \times |z'|$.
- 13. Montrer que $\forall z \in \mathbb{C}, \ |z| = 0 \iff z = 0_{\mathbb{C}}.$
- **14.** Montrer que $\forall z \in \mathbb{C}, \ z \otimes \overline{z} = |z|^2$.

Maintenant qu'on a construit \mathbb{C} , on peut oublier cette construction et utiliser les nombres complexes comme on l'a toujours fait.

Exercice 1

Soient $a, b \in \mathbb{C}$.

- a) Montrer que $|a| + |b| \le |a + b| + |a b|$.
- b) Quels sont les cas d'égalité?

Exercice 2

Soit $z \in \mathbb{C}$.

 $\text{Montrer que } \left|z^2-1\right|\leqslant 8 \implies |z-2|\leqslant 5.$

Exercice 3

Soient $a, b \in \mathbb{C}$ tels que $\forall n \in \mathbb{N}, \ a^n + b^n \in \mathbb{R}$.

Montrer que $a, b \in \mathbb{R}$ ou $a = \overline{b}$.