

8ENC - USERMANUAL

VERSION: 0.1

DISCI AIMER

Information contained in this manual is believed to be accurate and reliable. However, VLRlab assumes no responsibility for the use thereof nor for the rights of third parties, which may be affected in any way by the use thereof. Any representations in this document concerning performance of VLRlab products are for informational use only and are not warranties of future performance, either expressed or implied. As this product is for hobbyists and do it yourself builders there is no warranty upon the functionality of the Parts. The only warranty offered by VLRlab in relation to this product is the VLRlab standard limited warranty, stated in the sales contract or order confirmation form relaying to the sold part it self. Although every attempt has been made to accurately describe the features, installation and operation of this product in this manual, no warranty is granted nor liability assumed in relation to any errors or omissions unless specifically undertaken in the VLRlab sales contract or order confirmation. Information contained in this manual is periodically updated and changes will be incorporated into subsequent editions. If you encounter an error, please notify VLRlab by e-mail. VLRlab reserves the right, without notice or liability, to make changes in equipment design or specifications. (contact@vlrlab.com)

LICENCE

Based on work from skaarhoj.com under the CC-BY-SA license

Radical Sharing!

Even though we share all our designs freely with you, there are some ground rules you need to follow. Our software is GNU GPL and everything else unless otherwise noted is Creative Commons BY-SA licensed. This gives you both rights and obligations.

What are the license terms of the VLRIab designs?

Our software is released under GPL. Please read the license. http://www.gnu.org/licenses/gpl-3.0.de.html

Everything else (such as schematics, PCB designs, enclosure designs, spreadsheets etc. available for download) unless otherwise noticed is released under Creative Commons BY-SA. Please read http://creativecommons.org/licenses/by-sa/3.0/

How may I use your designs as open source?

Well, the licenses above defines this, but said shortly, you may copy, change and (re)distribute our work as long as you give us credit for the original creation and pass on the work under the same license terms. This effectively means (among other things) that you cannot adapt and redistribute our work without letting the recipient (for instance a customer) know that it's based on open source under the license terms given, which effectively means that there is no way to legally make a "closed product" out of any of it, including your own adaptations.

Can I use your software libraries in my own closed products?

No. A consequence of GPL is that if you use any of our libraries or code snippets from them, your software must be GPL as well. And GPL means that your client have to receive access to the source code for any compiled delivery such as a pre-programmed Arduino.

How should I attribute you in derivative works?

The CC-by-sa license says that you must attribute the work in a manner specified by the licensor (us), but in a way that doesn't suggest that we endorse your work. We specifically ask the following:

For enclosures, you must remove our logo from the case, and you must write on a visible place outside (on the back for instance) "Based on work from virlab.com under the CC-by-sa license"

For PCBs, you must remove "designed by VLRlab.com" from the PCB and you must place "Based on work from VLRlab.com under the CC-by-sa license" on the silkscreen. For documents like schematics, manuals, spreadsheets etc, you must include the text "Based on work from VLRlab.com under the CC-by-sa license" somewhere visibly in the document.

How should I attribute you if I use your designs inside my own designs?

This may sound like the previous question, but lets say you fully design your own enclosures for our hardware designs. Or if you develop your own hardware boards and combine with ours. In other words: if a lot of completely original work by you is mixed with works from us. In this case we suggest that you attribute us by stating "Includes work from virlab.com under the CC-by-sa and GPL licenses" on a visible place for the client. A visible place would be in manuals and on the back of an enclosure containing our designs.

But then, how can I make money?

Sell services. Sell your knowledge and customization services. Sell 24-7 support. Sell documentation. Sell warranty. We do some of that! It's not possible to charge money for open sourced intellectual property itself, because you are obliged to offer that part to your client for free.

Can I charge a client for an adaptation of your work?

Yes, that would be a service you do for that client. However, the adaptation itself (software, hardware design etc) would have to be licensed under the same terms as the original (GPL or CC-by-sa) and therefore the next client in line (and the public) should have it for free. And of course, in the spirit of sharing you would have made it public available already somehow.

How can I sneak around your license terms?

Hopefully you can't, but in reality there are probably many ways to "get away" with it. But we urge you to consider your deeper motives and attitudes. Although it can be very challenging, give the spirit of sharing a chance and play by the rules. Don't be like the Dead Sea that always accepts but never gives.

Repositories

All our freely available information is found at two locations:

Various repositories on GitHub under the username "novski"

The Manuals on vIrlab.com/support

Read more at http://vIrlab.com/about/licenses/

INDEX

1. 8 RGB ENCODERS WITH A ELEVEN LED RING	4
1.1. FUNCTIONS	4
1.1.1.CONNECTIONS	4
1.1.2.ELECTRICAL SPECIFICATION	4
2. BOM	5
3. OUTLINES	6
3.1.FRONTVIEW	7
3.2. REARVIEW	7
4. SCHEMATICS	8
1. PAGE 1	8
2. PAGE 2	9
1. THE ENCODER	10
2. GETTING STARTED	11
3. CONFIG	12
3.1.MIOS	12
APENDIX	16

1. 8 RGB Encoders with a eleven LED Ring

1.1. Functions

The 8Enc has eight Encoders with tactile Switch and each with a LED Ring around it. Its trimmed to a minimum of distance between the Encoders and has a width of 220mm. Its compatible with several different Modules from VLRlab as the 3x8But or the 8Disp PCB. Its diriven by 4pin SPI compatible to Midibox **

1.1.1.Connections

Connect J1 to J8/9 of a Midibox Core with a 10 pin Ribon cable or if you use some else Controller like a Arduino or similar just connect the pins like this:

Pin 1&2 - Ground

Pin 3&4 - VCC +5V

Pin 5 - Serial Connection to the Controller - MISO

Pin 6 - Serial Connection from the Controller - MOSI

Pin 7&8 - Serial Clock -SC

Pin 9 - Slave Select - RC

1.1.2. Electrical specification

Supply Voltage: 5V Power-consumption:

2. BOM

PART	VALUE	DEVICE	PACKAGE	LIBRARY	SHEET
DI C1	100nF	C-EU025-024X044	C025-024X044	rcl	1
DI_C2	100nF	C-EU025-024X044	C025-024X044	rcl	1
DI_C3	100nF	C-EU025-024X044	C025-024X044	rcl	1
DI_IC1	74HC165N	74HC165NSO16D	S016D	595-541-165-uln2803	1
DI_IC2	74HC165N	74HC165NSO16D	S016D	595-541-165-uln2803	1
DI_IC3	74HC165N	74HC165NSO16D	SO16D	595-541-165-uln2803	1
DI_IC3B		ULN2803SO18W	SO18W	595-541-165-uln2803	1
DI_R1	10k	4306R	SIL6	Bourns Resistor Array	1
DI_R2	10k	4306R	SIL6	Bourns Resistor Array	1
DI_R3	10k	4306R	SIL6	Bourns Resistor Array	1
DI_R4	10k	4306R	SIL6	Bourns Resistor Array	1
DI_R5	10k	4306R	SIL6	Bourns Resistor Array	1
DI_R6	10k	4306R	SIL6	Bourns Resistor Array	1
DO_C4	100nF	C-EU025-024X044	C025-024X044	rcl	1
DO_C5	100nF	C-EU025-024X044	C025-024X044	rcl	1
DO_C6	100nF	C-EU025-024X044	C025-024X044	rcl	1
DO_C7	100n	C-EU025-024X044	C025-024X044	rcl	2
DO_C8	100n	C-EU025-024X044	C025-024X044	rcl	2
DO_C9	100n	C-EU025-024X044	C025-024X044	rcl	2
DO_IC4_R	TPIC6B595	TPIC6B595SO20W	S020W	TPIC6B595	1
DO_IC5_G	TPIC6B595	TPIC6B595SO20W	S020W	TPIC6B595	1
DO_IC6_B	TPIC6B595	TPIC6B595SO20W	S020W	TPIC6B595	1
DO_IC7	74HC595	74HC595SO16D	S016D	595-541-165-uln2803	2
DO_IC7B		ULN2803SO18W	S018W	595-541-165-uln2803	2
DO IC8	74HC595	74HC595SO16D	S016D	595-541-165-uln2803	2
DO_IC9	74HC595	74HC595SO16D	S016D	595-541-165-uln2803	2
DO_R5	220	4816P-1SOIC16W	SOIC16W	Bourns Resistor Array	1
DO_R6	220	4816P-1SOIC16W	SOIC16W	Bourns Resistor Array	1
DO_R7	220	4816P-1SOIC16W	SOIC16W	Bourns Resistor Array	1
J1	220	ML10	ML10	con-ml	1
J2		ML10	ML10	con-ml	1
MX_R10	220	4816P-1SOIC16W	SOIC16W	Bourns Resistor Array	2
R11	220	R-EU_0204/7	0204/7	rcl	
R12	220	R-EU 0204/7	0204/7	rcl	2
R13	220	R-EU_0204/7	0204/7	rcl	2
ROT1	BOURNS PEL	BOURNS PEL12T	Including 11 LEDs	Bourns Encoder	1
ROT2	BOURNS PEL	BOURNS PEL12T	Including 11 LEDs	Bourns Encoder	1
ROT3	BOURNS_PEL	BOURNS PEL12T	Including 11 LEDs	Bourns Encoder	1
ROT4	BOURNS PEL	BOURNS PEL12T	Including 11 LEDs	Bourns Encoder	1
	BOURNS_PEL	BOURNS_PEL12T		Bourns Encoder	1
ROT5 ROT6	BOURNS_PEL	BOURNS PEL12T	Including 11 LEDs Including 11 LEDs	Bourns Encoder	
ROT7	BOURNS_PEL	BOURNS_PEL12T	Including 11 LEDs	Bourns Encoder	1
ROT8	BOURNS PEL	BOURNS_PEL12T	Including 11 LEDs	Bourns Encoder	1
NOIO	DOURING_PLL	DOURING_FELIZI	including 11 LLDS	Dourns Eliconei	ļ.
LED Rizers	88 x 6MM	}		 	
LEDs	88 x LED				

3. OUTLINES

3.1. FRONTVIEW

3.2. REARVIEW

4. Schematics

The Schematics are downloadable over Github as well as everything of this Part. Here a short overview:

1. Page 1

2. Page 2

1. The Encoder

Its a Encoder with a RGB LED inside. The tricky thing was to make a driver that allows Midibox to controll it over normal HC595 shift-registers because the circuit. The Cathodes of the LEDs are connected to the Switch as well. But i found a part that takes care of that. The TPIC6B595.

It works exactly as a HC595 but has a sink-driver like the ULN 2803 inside. So its perfect for that application.

2. Getting Started

Its recommended to Start with the SMD Parts and go on with the bigger Part sizes afterwards. So start with all the ICs and then Solder the Resistors and the Caps, be sure to do so also for the resistor arrays because otherwise it gets a bit tricky to solder the shift-registers. They are due to the tricky layout quite close. As soon as you come to the LED be sure to have done all soldering on the Topside. At last solder the

Encoders so they stick out on the Topside as well as the LEDs. Soldering the Parts to the wrong side will damage the Parts.

3. Config

3.1. MIOS

Test it in MIOS

To make it work with MIOS .NGC File we need to know how the shift-registers are connected.

Inputs:

Shift Register number:

1# Encoder 1-4

2# Encoder 5-8

3# Encoder Button 1-8

Outputs:

Shift Register number:

1# RED Shaft LED 1-8

2# GREEN shaft LED 1-8

3# BLUE shaft LED 1-8

4# LED Ring Row 1-8

5# LED Ring Selct 1-8

6# LED Ring Select 9-11

To avoid strange behaviors in MIOS i strongly recommend to write this by your own in MIOS File browser. Im using my VLR-8oDisp board to show the Values of every item. You can change it to any other type of Display-setting... Icd_pos=6:1:5 {6=Display number : 1= X-axis : 5= Y-Axis (row)} Assuming that the VLR-8Enc is the first device on the chain of J8/9 we need to configure it like this in the .NGC File:

RESET_HW LCD "%C"

Encoder configuration:

ENC n= 1 sr=1 pins=0:1 type=detented2

ENC n= 2 sr=1 pins=2:3 type=detented2

ENC n= 3 sr=1 pins=4:5 type=detented2

ENC n= 4 sr=1 pins=6:7 type=detented2

ENC n= 5 sr=2 pins=0:1 type=detented2

ENC n= 6 sr=2 pins=2:3 type=detented2

ENC n= 7 sr=2 pins=4:5 type=detented2

ENC n= 8 sr=2 pins=6:7 type=detented2

LEDring configuration

DOUT_MATRIX n= 1 rows=16 mirrored_row=0 inverted_sel=1 sr_dout_sel1= 4 sr_dout_sel2= 0

sr_dout_r1= 5 sr_dout_r2= 6

Encoder events

EVENT_ENC id= 1 fwd_id=LED_MATRIX:1 type=CC chn= 1 cc= 24 lcd_pos=1:1:2 label="^std_enc" LED_MATRIX_PATTERN=2

EVENT_ENC id= 2 fwd_id=LED_MATRIX:2 type=CC chn= 1 cc= 25 lcd_pos=2:1:2 label="^std_enc" LED_MATRIX_PATTERN=2

EVENT_ENC id= 3 fwd_id=LED_MATRIX:3 type=CC chn= 1 cc= 26 lcd_pos=3:1:2 label="^std_enc" LED MATRIX PATTERN=2

EVENT_ENC id= 4 fwd_id=LED_MATRIX:4 type=CC chn= 1 cc= 27 lcd_pos=4:1:2 label="^std_enc" LED_MATRIX_PATTERN=2

EVENT_ENC id= 5 fwd_id=LED_MATRIX:5 type=CC chn= 1 cc= 28 lcd_pos=5:1:2 label="^std_enc" LED_MATRIX_PATTERN=2

EVENT_ENC id= 6 fwd_id=LED_MATRIX:6 type=CC chn= 1 cc= 29 lcd_pos=6:1:2 label="^std_enc" LED_MATRIX_PATTERN=2

EVENT_ENC id= 7 fwd_id=LED_MATRIX:7 type=CC chn= 1 cc= 30 lcd_pos=7:1:2 label="^std_enc" LED MATRIX PATTERN=2

EVENT_ENC id= 8 fwd_id=LED_MATRIX:8 type=CC chn= 1 cc= 31 lcd_pos=8:1:2 label="^std_enc" LED_MATRIX_PATTERN=2

Encoder Buttons

EVENT_BUTTON id=117 hw_id=17 fwd_id=LED:8 type=cc chn=1 cc=15 range=0:127 button mode=OnOff lcd pos=1:1:3 label="R^std" btn"

EVENT_BUTTON id=117 hw_id=17 fwd_id=LED:16 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=1:1:4 label="G^std_btn"

EVENT_BUTTON id=117 hw_id=17 fwd_id=LED:24 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=1:1:5 label="B^std_btn"

EVENT_BUTTON id=118 hw_id=18 fwd_id=LED:7 type=cc chn=1 cc=15 range=0:127 button mode=OnOff lcd pos=2:1:3 label="R^std" btn"

EVENT_BUTTON id=118 hw_id=18 fwd_id=LED:15 type=cc chn=1 cc=15 range=0:127 button mode=OnOff lcd pos=2:1:4 label="G^std btn"

EVENT_BUTTON id=118 hw_id=18 fwd_id=LED:23 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=2:1:5 label="B^std_btn"

EVENT_BUTTON id=119 hw_id=19 fwd_id=LED:6 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=3:1:3 label="R^std_btn"

EVENT_BUTTON id=119 hw_id=19 fwd_id=LED:14 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=3:1:4 label="G^std_btn"

EVENT_BUTTON id=119 hw_id=19 fwd_id=LED:22 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=3:1:5 label="B^std_btn"

EVENT_BUTTON id=120 hw_id=20 fwd_id=LED:5 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=4:1:3 label="R^std_btn"

EVENT_BUTTON id=120 hw_id=20 fwd_id=LED:13 type=cc chn=1 cc=15 range=0:127 button mode=OnOff lcd pos=4:1:4 label="G^std btn"

EVENT_BUTTON id=120 hw_id=20 fwd_id=LED:21 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=4:1:5 label="B^std_btn"

EVENT_BUTTON id=121 hw_id=21 fwd_id=LED:4 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=5:1:3 label="R^std_btn"

EVENT_BUTTON id=121 hw_id=21 fwd_id=LED:12 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=5:1:4 label="G^std_btn"

EVENT_BUTTON id=121 hw_id=21 fwd_id=LED:20 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=5:1:5 label="B^std_btn"

EVENT_BUTTON id=122 hw_id=22 fwd_id=LED:3 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=6:1:3 label="R^std_btn"

EVENT_BUTTON id=122 hw_id=22 fwd_id=LED:11 type=cc chn=1 cc=15 range=0:127 button mode=OnOff lcd pos=6:1:4 label="G^std btn"

EVENT_BUTTON id=122 hw_id=22 fwd_id=LED:19 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=6:1:5 label="B^std_btn"

EVENT_BUTTON id=123 hw_id=23 fwd_id=LED:2 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=7:1:3 label="R^std_btn"

EVENT_BUTTON id=123 hw_id=23 fwd_id=LED:10 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=7:1:4 label="G^std_btn"

EVENT_BUTTON id=123 hw_id=23 fwd_id=LED:18 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=7:1:5 label="B^std_btn"

EVENT_BUTTON id=124 hw_id=24 fwd_id=LED:1 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=8:1:3 label="R^std_btn"

EVENT_BUTTON id=124 hw_id=24 fwd_id=LED:9 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=8:1:4 label="G^std_btn"

EVENT_BUTTON id=124 hw_id=24 fwd_id=LED:17 type=cc chn=1 cc=15 range=0:127 button_mode=OnOff lcd_pos=8:1:5 label="B^std_btn"

LED_MATRIX_PATTERN n=2 pos= 0 pattern=11111110000000000 LED_MATRIX_PATTERN n=2 pos= 1 pattern=01111110000000000

Λ.				- 1	100
Α	\cap		\cap	М	IV
$\overline{}$	U	U	יוו	u	$I \wedge$

** Midibox is a Opensource Brand of <u>uCapps.de</u> wich belongs to Thorsten Klose.