PO12Q: Introduction to Quantitative Political Analysis II

Week 10 - Worksheet Solutions

Dr Florian Linke

Florian.Linke@warwick.ac.uk

1 | Exercises with the app

1. Base fit

- a) The fitted line is the OLS regression $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$.
- b) The estimated slope $\hat{\beta}_1$ will be close to the true β_1 on average, but not exactly equal due to sampling variability (random noise ϵ).

2. Heteroscedasticity on/off

- a) With the slider at 0, the p-value is large, showing no evidence of heteroscedasticity.
- b) As heteroscedasticity increases, SE (OLS) underestimates variability while SE (HC3) corrects for it. The HC3 p-value is more conservative, sometimes turning insignificant when OLS still shows significance.

3. Reading the bowtie guide

- a) The dashed curve shows how the conditional variance of ε changes with x.
- b) As the curve steepens (variance grows with x), the Breusch–Pagan test statistic increases, and its p-value drops, indicating heteroscedasticity.

4. Functional form: keeping the same sample

- a) With β_2 = 0, the data match the base sample; the linear fit coincides with the true model.
- b) For $\beta_2 > 0$, the scatter curves upward (U-shape), and the F-test p-value becomes small, indicating nonlinearity.
- c) For β_2 < 0, the curve bends downward (inverted U), and the RESET test also flags misspecification.

5. Comparing linear vs quadratic coefficients

- a) The coefficient on x^2 corresponds to curvature.
- b) It becomes significant when the true curvature (β_2) is large enough. This aligns with the F-test and the dashed quadratic overlay, which fits the data better.

6. Multicollinearity: creating instability

- a) VIF values rise sharply toward infinity as $\rho_{\rm x} \to 1$, showing inflated standard errors.
- b) The coefficient estimate for β_1 changes drastically depending on whether x_2 is included. This instability illustrates how collinearity makes coefficients unreliable.
- c) Collinearity does not bias OLS coefficients; instead, it increases their variance, making estimates unstable and inference weak.

7. Equation comparison panel

- a) For nonlinearity, the card shows only the linear fit because the app is demonstrating how misspecification occurs when a quadratic term is omitted.
- b) For collinearity, the model is written as $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$, highlighting that interpretation of each coefficient depends heavily on the other due to overlap between x_1 and x_2 .

2 | Testing the Classical Linear Assumptions

see RScript.

3 The Gauss-Markov Theorem

2. According to Malinvaud, the assumption that $E(u_i|X_i)=0$ is quite important. To see this, consider the PRF: $Y=\beta_1+\beta_2X_i+u_i$. Now consider two situations: (1) $\beta_1=0$, $\beta_2=1$ and $E(u_i)=0$; and (2) $\beta_1=1$, $\beta_2=0$ and $E(u_i)=X_i-1$. Now take the expectation of the PRF conditional upon X in those two cases, and see if you agree with Malinvaud about the significance of the assumption $E(u_i|X_i)=0$.

Situation 1

$$Y = \beta_0 + \beta_1 X_i + \epsilon_i$$

$$= 0 + X_i + 0$$

$$= X_i$$
(1)

Situation 2

$$Y = \beta_0 + \beta_1 X_i + \epsilon_i$$
= 1 + 0 + X_i - 1 (2)
= X_i

So what we get is:

What we **should** get is:

Conclusion

- The second PRF is the same as the first, even though according to the betas it should be a flat line
- This is only possible, because the error term is not zero and has an interdependence with X_i .