

Learning

Parameter Estimation

Max Likelihood for Log-Linear Models

Log-Likelihood for Markov Nets

Pa (a, b. c) = { \$ \$. (a, b) . \$ (b.c)

$$\ell(\boldsymbol{\theta}:\mathcal{D}) = \sum_{m} (\ln \phi_1(a[m], b[m]) + \ln \phi_2(b[m], c[m]) - \ln Z(\boldsymbol{\theta}))$$

$$= \sum_{a,b} M[a,b] \ln \phi_1(a,b) + \sum_{b,c} M[b,c] \ln \phi_2(b,c) - M \ln Z(\boldsymbol{\theta})$$

$$Z(\boldsymbol{\theta}) = \sum_{a,b,c} \phi_1(a,b)\phi_2(b,c)$$

$$C$$

- Partition function couples the parameters
 - No decomposition of likelihood
 - No closed form solution

Example: Log-Likelihood Function

Log-Likelihood for Log-Linear Model

$$P(X_1, \dots, X_n : \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left\{\sum_{i=1}^k \theta_i f_i(\boldsymbol{D}_i)\right\}$$

$$\ell(\boldsymbol{\theta} : \mathcal{D}) = \sum_i \underline{\theta_i} \left(\sum_{m} f_i(\boldsymbol{x}[m])\right) - M \ln Z(\boldsymbol{\theta})$$

$$\operatorname{log_{adve}} f_i \operatorname{applied} f_$$

The Log-Partition Function

Theorem:
$$\frac{\partial}{\partial \theta_i} \ln Z(\theta) = E_{\theta}[f_i]$$
 expected in $\frac{\partial}{\partial \theta_i} \ln Z(\theta) = \frac{\mathbf{Cov}_{\theta}[f_i; f_j]}{\mathbf{Proof:}}$

Proof: $\frac{\partial}{\partial \theta_i} \ln Z(\theta) = \frac{1}{Z(\theta)} \sum_{x} \frac{\partial}{\partial \theta_i} \exp \left\{ \sum_{j} \theta_j f_j(x) \right\}$

$$= \frac{1}{Z(\theta)} \sum_{x} f_i(x) \exp \left\{ \sum_{j} \theta_j f_j(x) \right\}$$

$$= \sum_{x} \frac{1}{Z(\theta)} \exp \left\{ \sum_{j} \theta_j f_j(x) \right\} f_i(x) = \sum_{x} P_{\theta}(x) f_i(x)$$
Daphne Koller

The Log-Partition Function

$$\frac{\partial}{\partial \theta_i} \ln Z(\boldsymbol{\theta}) = \boldsymbol{E}_{\boldsymbol{\theta}}[f_i]$$

Hersian
$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ln Z(\boldsymbol{\theta}) = \boldsymbol{C} \text{ov}_{\boldsymbol{\theta}}[f_i; f_j]$$

$$\ell(\theta:\mathcal{D}) = \sum_{i} \theta_{i} \left(\sum_{m} f_{i}(\boldsymbol{x}[m])\right) - \underline{M \ln Z(\theta)}$$
• Log likelihood function

- - No local optima
 - Easy to optimize

Maximum Likelihood Estimation

$$\frac{1}{M}\ell(\boldsymbol{\theta}:\mathcal{D}) = \sum_{i} \theta_{i} \left(\frac{1}{M} \sum_{m} f_{i}(\boldsymbol{x}[m])\right) - \ln Z(\boldsymbol{\theta})$$

$$\frac{\partial}{\partial \theta_{i}} \frac{1}{M}\ell(\boldsymbol{\theta}:\mathcal{D}) = \mathbf{E}_{\mathcal{D}}[f_{i}(\boldsymbol{X})] - \mathbf{E}_{\boldsymbol{\theta}}[f_{i}] \text{ in } P_{\boldsymbol{\theta}}$$

Theorem: $\hat{\boldsymbol{\theta}}$ is the MLE if and only if

$$m{E}_{\mathcal{D}}[f_i(m{X})] = m{E}_{\hat{m{ heta}}}[f_i]$$
 expedition in D = expedition rolative to 3

Computation: Gradient Ascent

$$\frac{\partial}{\partial \theta_i} \frac{1}{M} \ell(\boldsymbol{\theta} : \mathcal{D}) = \mathbf{E}_{\mathcal{D}}[f_i(\boldsymbol{X})] - \mathbf{E}_{\boldsymbol{\theta}}[f_i]$$

- Use gradient ascent:
 - typically L-BFGS a quasi-Newton method
- For gradient, need expected feature counts:
 - in data
 - relative to current model
- · Requires inference at each gradient step

Example: Ising Model

$$E(x_1, \dots, x_n) = -\sum_{i < j} w_{i,j} \widehat{x_i x_j} - \sum_i u_i x_i$$

$$\frac{\partial}{\partial \theta_i} \frac{1}{M} \ell(\boldsymbol{\theta} : \mathcal{D}) = \boldsymbol{E}_{\mathcal{D}}[f_i(\boldsymbol{X})] - \boldsymbol{E}_{\boldsymbol{\theta}}[f_i]$$

$$x_i \in \{-1, +1\}$$

$$\frac{\partial}{\partial u_i} = \frac{1}{M} \sum_{m} x_i[m] - (P_{\theta}(X_i = 1) - P_{\theta}(X_i = -1))$$

$$\frac{\partial}{\partial w_{ij}} = \frac{1}{M} \sum_{m} x_i[m] x_j[m] - \left(\frac{P_{\theta}(X_i = 1, X_j = 1) + P_{\theta}(X_i = -1, X_j = -1)}{-P_{\theta}(X_i = 1, X_j = -1) - P_{\theta}(X_i = -1, X_j = -1)} \right)$$

Summary

- Partition function couples parameters in likelihood
- · No closed form solution, but convex optimization
 - Solved using gradient ascent (usually L-BFGS) 500t.
- Gradient computation requires inference at each gradient step to compute expected feature counts
- <u>Features</u> are always within <u>clusters</u> in clustergraph or clique tree due to family preservation
 - One calibration suffices for all feature expectations