

Informe 2 - Proyecto TICS: **Cercasco**

Carcasa Inteligente Desmontable para Casco de Ciclista

Matías Vigneau Luis Valdenegro Ezequiel Morales Gabriel González

23 de Octubre de 2025

Resumen

Este informe actualiza el trabajo del *Informe 1*, presenta el **Modelo de Negocios**, la **identificación de cliente y hallazgos de entrevistas**, y profundiza en **requerimientos**, **decisiones tecnológicas** y **diseño de circuito**. Además, incluye una **matriz de trazabilidad** y un **checklist de cumplimiento de rúbrica**.

Índice

1.	Actualización de Items del Informe Fase 1	3			
2.	Modelo de Negocios	4			
3.	. Identificación del Cliente y Conclusiones de Entrevistas				
4.	Requerimientos Funcionales y No Funcionales 4.1. Requerimientos Funcionales (RF)				
5.	Especificación y Justificación de Decisiones Tecnológicas 5.1. Arquitectura General: Hub & Spoke	6 7			
6.	Diseño del Circuito y Justificación de Operación 6.1. Diseño del Pod de Sensores (Trasero)	8			
7.	Lógica de Evaluación de Riesgo y Alertas (síntesis)	9			
8.	Matriz de Trazabilidad	10			
n.	Referencies	11			

1. Actualización de Items del Informe Fase 1

Respecto al Informe 1, se realizaron los siguientes cambios y mejoras:

- **A1**. **Arquitectura:** se formaliza un esquema *hub & spoke*: *Pod de Sensores* (trasero) y *Hub de Alertas* (en el casco). El **Hub** concentra la lógica y las salidas (vibración y LEDs).
- A2. Comunicación interna: adopción de ESP-NOW para el enlace Pod-Hub con baja latencia y sin asociarse a un AP.
- **A3**. **Comunicación externa:** el Hub expone **BLE** para configuración y consulta de historial (app móvil).
- A4. Percepción: combinación de ultrasonido (distancia) con detección binaria de vehículo mediante cámara (ESP32-CAM) optimizada a nivel de firmware. Se mantiene la opción de ToF o radar como reemplazo equivalente si la validación de campo lo amerita.
- **A5**. **Alertas:** se definen *niveles de alerta* (normal, preventiva, inminente) y *patrones* para vibración/LEDs.
- **A6**. **Energía:** todos los módulos se alimentan con 5 V desde *powerbank*; se especifican condensadores de bulk y protección en líneas críticas.
- A7. Trazabilidad: se agrega la matriz RF/RNF \rightarrow decisiones \rightarrow circuito \rightarrow pruebas (Sección 8).

Resumen de impacto Los cambios priorizan latencia, modularidad y confiabilidad para pruebas de campo.

Documentos previos de referencia: Informe 1.

2. Modelo de Negocios

Propuesta de valor: aumentar la *percepción trasera* del ciclista mediante alertas hápticas y visuales en una carcasa desmontable, sin intervenir el casco.

Soci	los clave	Actividades clave	
Talleres de impresión 3D; tiendas de electrónica; ciclovías y clubes de ciclismo; voluntarios para pruebas	Proveedores de módulos ESP32, sensores y tiras LED; apoyo de laboratorio	Diseño CAD, integración HW/SW, pruebas de usuario, soporte post-venta (básico)	
Recursos clave	Relación con clientes		
Pod y Hub modulares; firmware actualizable; app móvil; documentación	Comunidad y feedback; tutoriales; garantías básicas de prototipo		
Segmentos de clientes	Canales	Estructura de costos	
Ciclistas urbanos; repartidores; aficionados MTB/Gravel	Venta directa en campus y ferias; difusión digital	Electrónica, carcasa, ensamblaje, validación	
Flujo o	Métricas clave		
Venta del kit; servicio de	Unidades, tasa de fallas, NPS, costo por unidad		

3. Identificación del Cliente y Conclusiones de Entrevistas

Cliente objetivo principal: ciclista urbano que circula en vías mixtas y desea aumentar su percepción trasera sin saturación auditiva.

Entrevistas (síntesis) 6 entrevistas semiestructuradas con alumnos repartidores y ciclistas frecuentes:

- Demanda de alertas claras sin ruidos; preferencia por vibración direccional.
- No desean modificaciones permanentes al casco; el accesorio debe ser *externo*, *extraíble*.
- Alta valoración de autonomía y bajo peso.
- Aceptación de una app solo para *configurar* y *ver eventos*, no para uso durante el pedaleo.

Conclusiones accionables

- C1. Mantener carcasa desmontable y universal.
- C2. Patrones de vibración simples y escalados por urgencia.
- C3. App minimalista orientada a configuración e histórico.

4. Requerimientos Funcionales y No Funcionales

Esta sección define el "contrato" del sistema: qué debe hacer y bajo qué condiciones de calidad y limitación debe operar.

4.1. Requerimientos Funcionales (RF)

Definen las acciones y funciones específicas que el sistema debe ser capaz de ejecutar.

- RF-01: El Pod de Sensores debe detectar la presencia de vehículos en la parte trasera del ciclista, incluso en condiciones de baja luminosidad (visión nocturna).
- RF-02: El Pod de Sensores debe medir continuamente la distancia a los objetos traseros en un rango efectivo de hasta 6 metros.
- **RF-03:** El Pod de Sensores **debe** enviar los datos de detección de vehículo ("SI/"NO") y de distancia (en metros) al Hub del Casco.
- RF-04: El Hub del Casco debe recibir los datos de los sensores y procesar la lógica de alerta.
- **RF-05:** El Hub del Casco **debe** activar el motor de vibración con intensidad variable (suave/fuerte) según la lógica de alerta (combinación de detección y proximidad).
- **RF-06:** El Hub del Casco **debe** activar las tiras LED RGB con patrones de parpadeo y color rojo durante una alerta activa.
- **RF-07:** El Hub del Casco **debe** permitir la conexión de una aplicación móvil de usuario.
- RF-08: La aplicación móvil debe permitir al usuario configurar los patrones de luz y colores de los LEDs en modo "normal" (no-alerta).
- RF-09: La aplicación móvil debe permitir al usuario visualizar un historial de alertas registradas por el Hub.

4.2. Requerimientos No Funcionales (RNF)

Definen las características, calidades, restricciones y limitaciones del sistema.

- RNF-01 (Latencia): La latencia total del sistema (desde que el sensor detecta hasta que el Hub vibra) debe ser inferior a 500 milisegundos.
- RNF-02 (Comunicación Interna): La comunicación entre el Pod de Sensores y el Hub del Casco debe realizarse exclusivamente mediante el protocolo ESP-NOW.
- RNF-03 (Comunicación Externa): La comunicación entre el Hub del Casco y la aplicación móvil debe realizarse exclusivamente mediante Bluetooth Low Energy (BLE).
- RNF-04 (Alimentación): Todos los módulos del sistema deben ser alimentados por una fuente de poder externa de 5V. Para la fase de prototipado, se utilizará una powerbank de 5400mAh con conexión micro-USB.
- RNF-05 (Robustez): Los componentes expuestos a la intemperie, específicamente el sensor de ultrasonido y las tiras LED, deben ser resistentes al agua (certificación IP67/IP68).
- RNF-06 (Campo de Visión): El sistema debe ofrecer un amplio ángulo de detección trasero, definido por la lente de la cámara de 160 grados (FoV).
- RNF-07 (Modularidad): El código de lógica de decisión debe residir únicamente en el Hub del Casco, permitiendo que los sensores operen como unidades de reporte de información constante y sin interrupciones.

■ RNF-08 (Fiabilidad): El sistema debe operar sin 'delay()' en el bucle principal del Hub para garantizar la recepción continua de alertas y comandos.

5. Especificación y Justificación de Decisiones Tecnológicas

Para el desarrollo del proyecto "Cercasco", se ha optado por una arquitectura de sistema distribuido, separando las tareas de sensado y de alerta en dos módulos físicos independientes. Esta decisión busca optimizar la carga de procesamiento, la eficiencia energética y la modularidad del sistema.

5.1. Arquitectura General: Hub & Spoke

El sistema se divide en dos componentes principales:

- Pod de Sensores (Trasero): Ubicado en la bicicleta, contiene los sensores de percepción (ESP32-CAM y ESP32 con Ultrasonido). Su única tarea es "sentir" el entorno y "reportar" eventos (RF-01, RF-02, RF-03).
- Hub de Alertas (Casco): Ubicado en el casco, contiene el ESP32 principal, las tiras LED y el motor de vibración. Su tarea es "recibir" reportes, "decidir" el nivel de alerta y "actuar" (vibrar/iluminar), además de comunicarse con la App móvil (RF-04 a RF-09).

Esta arquitectura *Hub and Spoke* es fundamental, ya que libera al ESP32-CAM de la carga de gestionar alertas o Bluetooth, permitiéndole dedicar el 100 % de sus recursos a la compleja tarea de detección de vehículos (RNF-07).

5.2. Plataformas de Desarrollo y Lenguajes

La selección de plataformas se basa en el rendimiento y las librerías disponibles para cada tarea específica.

5.2.1. Hub de Alertas y Sensor Ultrasónico (Framework Arduino)

- Plataforma: ESP32-WROOM-32. Se utiliza esta plataforma tanto para el Hub como para el control del sensor ultrasónico.
- Lenguaje: C++ (utilizando el framework de Arduino).
- Justificación: Se elige C++/Arduino por su alto rendimiento y acceso directo al hardware. Es crítico para el Hub, que debe gestionar tres tareas concurrentes con baja latencia (RNF-01): recibir datos por ESP-NOW, controlar PWM de LEDs/motor (RNF-08) y gestionar una conexión BLE.
- Componente Sensor Clave: Se selecciona el sensor ultrasónico AJ-SR04M por sus características superiores: es impermeable (cumpliendo RNF-05) y ofrece un rango de detección de hasta 6 metros (cumpliendo RF-02), superando ampliamente a los sensores HC-SR04 estándar.
- Componentes de Alerta Clave: Se utilizan tiras LED RGB direccionables (WS2812B) con certificación IP68 (RNF-05) y un módulo de motor de vibración (RF-05).
- Librerías Clave (Hub):

- esp now.h: Para la comunicación inalámbrica (RNF-02).
- FastLED.h: Para el control avanzado de las tiras LED IP68 (RF-06, RF-08).
- BLEDevice.h: Para implementar el servidor BLE (RNF-03).
- LEDC (API nativa): Se usará la API 'ledcWrite()' para el control PWM del motor de vibración (RF-05).

5.2.2. Sensor de Visión (Framework ESP-IDF y TFLite)

- Plataforma: ESP32-CAM.
- Lenguaje: C++ (utilizando el framework ESP-IDF).
- Justificación: La detección de vehículos (RF-01) es la tarea más demandante. Se opta por C++ sobre el ESP-IDF (Espressif IoT Development Framework) ya que ofrece el máximo rendimiento posible para tareas de IA.
- Especificación de Cámara: Se utiliza un modelo de ESP32-CAM equipado con una lente de 160 grados y capacidad de visión nocturna. Esto amplía drásticamente el campo de visión del sistema (cumpliendo RNF-06) y asegura su funcionamiento en condiciones de baja luminosidad (RF-01).
- Librerías y Modelos Clave:
 - esp_camera.h: Librería oficial para la captura de cuadros de la cámara.
 - TensorFlow Lite for Microcontrollers (TFLite): Permite ejecutar modelos de *Machine Learning* optimizados.
 - Modelo de Detección: Se usará un modelo de detección de objetos (como *MobileNetV2* o *YOLOv8-Nano*), cuantizado para operar eficientemente en el ESP32.

5.3. Protocolos de Comunicación

- Comunicación Interna (Sensor-Hub): ESP-NOW. Justificación: Se elige ESP-NOW para cumplir con el RNF-02. Es un protocolo de Espressif que usa Wi-Fi (2.4GHz) pero sin la sobrecarga de TCP/IP. Ofrece comunicación directa, es extremadamente rápido (cumpliendo RNF-01) y, crucialmente, deja el módulo Bluetooth del Hub completamente libre para la conexión con la app (RNF-03).
- Comunicación Externa (Hub-App): Bluetooth Low Energy (BLE). Justificación: Se utiliza BLE para cumplir con el RNF-03. Es el estándar universal para accesorios de bajo consumo en *smartphones*, permitiendo cumplir con los requerimientos de la aplicación (RF-07, RF-08, RF-09).

Nota: Aunque algunos esquemas simplificados del Pod muestran un enlace cableado entre placas, en la implementación real la comunicación de datos es exclusivamente por ESP-NOW (RNF-02).

6. Diseño del Circuito y Justificación de Operación

La arquitectura electrónica se divide en los dos módulos físicos mencionados, alimentados por una powerbank de 5400mAh (RNF-04).

6.1. Diseño del Pod de Sensores (Trasero)

Figura 1: Pod de Sensores: ESP32-CAM (detección binaria) + ESP32 (ultrasonido). La conexión de datos entre placas es inalámbrica (ESP-NOW).

6.1.1. Justificación de Operación (Pod Trasero)

- Alimentación: Ambos ESP32 se alimentan de la fuente común de 5V (RNF-04).
- ESP32-CAM: Funciona de forma autónoma. Solo requiere alimentación (5V y GND). Su única "salida" es la antena integrada, a través de la cual envía reportes ({"vehiculo": "SI"}) vía ESP-NOW (RNF-02) donde el cable naranja a RX2 (GPIO16) es una representación visual de envío de información del ESP32-CAM más no una implementación del circuito final.
- ESP32-Sensor (Ultrasonido): Un ESP32-WROOM-32 estándar se conecta al sensor AJ-SR04M.
 - Justificación del Sensor: Impermeable (RNF-05) y rango de 6 m (RF-02). Se alimenta a 5V.
 - Trig → **GPIO 26** (D26)
 - Echo \rightarrow **GPIO 27** (D27).

6.2. Diseño del Hub de Alertas (Casco)

Figura 2: Hub de Alertas: ESP32 + driver de motor + tira LED direccionable + BLE.

6.2.1. Justificación de Operación (Hub Casco)

- Alerta Háptica (Motor Vibracoin):
 - Módulo controlador de motor.
 - VCC del módulo \rightarrow 3.3V del ESP32 (motor 3V).
 - GND del módulo \rightarrow GND del ESP32.
 - IN del módulo → GPIO 26 (PWM por LEDC, ledcWrite()).

■ Alerta Visual (Tiras LED WS2812B):

- **5V** del VIN placa.
- GND común.
- Datos → GPIO 16 (RX2). Recomendación futura de implementar un LOGIC LEVEL SHIFTER para tolerancia a cambios de voltaje (Aunque actualmente no es necesario).
- Para robustez final, usar **conversor de nivel** 3,3 \rightarrow 5V en la línea de datos.

7. Lógica de Evaluación de Riesgo y Alertas (síntesis)

- L1. Fusión de evidencias: presencia binaria (cámara) + distancia (ultrasonido).
- L2. Suavizado: media móvil y persistencia en N muestras para reducir falsos positivos.
- L3. Escalamiento: umbrales por distancia/tiempo y velocidad relativa estimada.
- L4. Salida: mapeo a patrón de vibración y LEDs; temporizador de cooldown.

8. Matriz de Trazabilidad

Req.	Decisión	Circuito/Sección	Prueba / Métrica
RF-1-2	ESP-NOW;	Fig. 1–2	Tasa de envío ≥10 Hz
RF-3-4	Lógica en Hub	Sec. 7	$\begin{array}{c} Latencia < 500 ms \\ (\mathbf{RNF-1}) \end{array}$
RF-4	PWM motor + patrones LED	Sec. 6	Patrón correcto según nivel
RF-5-6	Servicio BLE (config/historial)	Sec. 5	Conexión estable, lectura eventos
RNF-2	ESP-NOW	Sec. 5	Pérdida <1 % paquetes en banco
RNF-5	Cono ∼75°	Sec. 6	Validación geométrica/campo

9. Referencias

- Documentación oficial de Espressif sobre ESP-NOW API. https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
- Documentación de TensorFlow Lite for Microcontrollers. https://www.tensorflow.org/lite/microcontrollers
- Librería FastLED (para control de LEDs WS2812B). http://fastled.io/
- Documentación de Espressif sobre ESP32-CAM. https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/camera.html
- Documentación de BLE en ESP32 (Arduino Core). https://github.com/nkolban/ ESP32 BLE Arduino
- Hoja de datos (Datasheet) del sensor ultrasónico AJ-SR04M.
- (Video) DroneBot Workshop. Waterproof Ultrasonic Distance Sensors JSN-SR04T & A02YYUW. https://www.youtube.com/watch?v=h6321UBATps
- (Video) Mundo Yakara. Crear tu propio sistema LED RGB DIRECCIONABLE, CONTROLADO POR wi-fi. https://www.youtube.com/watch?v=202TQYZ1MQA
- (Video) Tech StudyCell. IoT Based Water Level Monitoring system using ESP32 Blynk & Ultrasonic Sensor. https://www.youtube.com/watch?v=9geREeE13jc