BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI First Semester 2003-2004

Course Title : OPERATING SYSTEMS Course No CS C372
Component : Compre Closed Book Component

Weightage: 12.5%

- 1. Pick the odd one out
 - a. Hold and wait
 - b. No preemption
 - c. Circular wait
 - d. Mutual exclusion
- 2. Which of the statement is true
 - a. WFG can be derived from RAG
 - b. RAG can be derived from WFG
 - c. Both RAG & WFG give the same amount of information
 - d. There is no connection between RAG & WFG
- 3. A deadlock victim is not chosen on the basis of
 - a Priority of the process
 - b. how much work the process has done
 - c. How far it is from the completion
 - d. How many times it has been involved in the deadlocks
 - e. How many times it has been chosen as the deadlock victim
 - f. How many resources it is holding
- 4. Which of the statement is not true
 - a. In safe state, there can be no deadlocks
 - b. Transition from unsafe state to safe state is not possible
 - c. A deadlock is a sequence of unsafe state
 - d. Unsafe state guarantees deadlock
- 5. Mark the false statement. In deadlock prevention
 - a. We prevent the 3 necessary conditions of mutual exclusion, non preemption and hold and wait
 - b. We prevent circular wait
 - c. The degree of concurrency is more compared to deadlock avoidance
 - d. We do not require knowledge of future process resource request
- 6. If n processes were involved in a deadlock, aborting how many processes would resolve the deadlock
 - a. n/2
 - **b**. 1
 - c. (n+1)/2
 - d. Cannot say

7. deadle	-	were involved in a deadlock, the max. no of led to resolve the deadlock is	
	a. n/2		
	b. 1		
	c. $(n+1)/2$		
	d. Cannot say		
8.	Logical & physical addresses differs in		
		le time binding	
	b. Load ti	me binding	
	c. Execut	ion time binding	
	d. All the	above	
	e. B & c		
9		e replacement the minimum no. of pointer changes	
requii		implementation is	
	a. 1		
	b. 2		
	c. 3		
	d. 4		
10.	Which placement algorithm leaves the biggest hole?		
	a. Best fit		
	b. First fi		
	c. Next fi		
	d. Worst	fit	
11.	Internal fragmentation does not occur in		
	a. Fixed p	partitioning	
	b. Dynam	ic partitioning	
	c. Paging		
	d. Deman	d Paging	
12.	External fragmentation occur in		
	a. Paging		
	b. Segme	ntation	
	c. Deman	d paging	
	d. Fixed I	Partitioning	
13.	In CPU scheduling, starvation can occur in		
	a. FCFS		
	b. SJF		
	c. RR		
	d. All the	above	

- 14. In CPU scheduling, waiting time of a process is
 - a. The time it spend on the process
 - b. The time it spend on I/O
 - c. The total time it spend in ready queue
 - d. Sum total of a, b and c
- 15. Chose the most appropriate statement concerning links in Unix
 - a. Hard links allow only files to be shared across the file systems
 - b. Hard links allow sharing of directories with in same file system
 - c. Soft links allow sharing of files across file system
 - d. Soft link allow sharing of files and directories across file system
- 16. Choose the most appropriate statement concerning links in Unix
 - a. Soft linked files have same inode number
 - b. Hard linked directories have same inode number
 - c. Soft linked files have diff inode number
 - d. Soft linking 2 files cause an increase number of links of either file.
- 17. CPU generates
 - a. Physical address
 - b. Logical address
 - c. Both physical and logical address
 - d. Neither physical nor logical
- 18. In simple paging, the size of the page table is governed by
 - a. Processor's address line
 - b. Processor's word size
 - c. Size of the program
 - d. All the above
- 19. Lower bound of the number of page faults given by
 - a. FIFO page replacement
 - b. Optimal page replacement
 - c. LRU page replacement
 - d. Second chance page replacement
- 20. Pick the odd one out
 - a. Additional ref. Bits page replacement
 - b. Enhanced second chance page replacement
 - c. LRU page replacement
 - d. Second chance page replacement

- 21. LRU is diff t implement becz
 - a. Time of ref of each page needs to be recorded
 - b. Needs H/W support beyond TLB register
 - c. Search of page table is required to find LRU page
 - d. All the above
- 22. A processes' logical address space is bigger than the physical address space. In order to execute the process we can
 - a. Increase the size of the cache
 - b. Use TLB register
 - c. Increase the size of the hard disk
 - d. Use overlay
- 23. Aging is used
 - a. Avoid starvation
 - b. Increase priority of the process
 - c. Decrease priority of the process
 - d. A & b
- 24. CPU protection in dual mode is done by
 - a. Base and Limit regi
 - b. Privileged instructions
 - c. Timer
 - d. System calls
- 25. FCFS CPU scheduling works best in terms of average waiting time when (Random ordering of processes)
 - a. There is a lot of skew in burst times of processes
 - b. There is less skew in burst times of the processes
 - c. Burst times of all processes are equal
 - d. Distribution of burst times does not affect the average waiting time
- 26. In RR CPU scheduling the average waiting time
 - a. Does not depend on time quantum
 - b. Depends on time quantum
 - c. Independent of order of processes
 - d. Independent of order of processes and time quantum
- 27. Which of the following statement is true about Multi level queue scheduling
 - a. Processes can move btw queues
 - b. All queues use the same scheduling algo
 - c. Ideal for s/m where there is clear cut classification of processes in terms of priority
 - d. All are true

- 28. In multilevel feedback queue scheduling
 - a. I/O bound processes will get moved to low priority queue
 - b. CPU bound processes will get moved to low priority queue
 - c. Starvation can not be prevented
 - d. All queues have different scheduling algo
- 29. A CPU scheduling algo should ideally try to
 - a. Max. CPU utilization, Max. through put, Max response time, and Min avg waiting time.
 - b. Max Cpu utilization, throughput, response time, avg wait time
 - c. Max CPU utilization, throughput, Min response time, avg wait time
 - d. Max CPU utilization, response time, Min throughput, avg wait time
- 30. Which of the following is not a valid state transition
 - a. New to ready
 - b. Ready to running
 - c. Ready to Exit
 - d. Blocked to running
 - e. Blocked to exit
- 31. Which of the following is not an element of PCB
 - a. Process identifiers
 - b. Control & status regi
 - c. S/M stack
 - d. Stack pointers
 - e. Process privileges info
- 32. The diff btw interrupt & trap is
 - a. Trap is associated with the execution of the current instruction while interrupt is external to execution of current instruction
 - b. Interrupt is associated with the execution of the current instruction while trap is external to execution of current instruction
 - c. Interrupt is associated with handling errors while trap is associated with handling external asynchronous events
 - d. There is no difference btw the 2

- 33. RR CPU scheduling algo favors
 - a. CPU bound processes
 - b. I/O bound processes
 - c. It is fair to all processes
 - d. Favors CPU bound processes with large time quantum
- 34. In the additional ref bit algo., the 8 bit history register value for a page is 11010000. This value indicates that
 - a. The page has not been used for last 4 units and is used 3 times in the last 8 units of time
 - b. The page has not been used for last 4 units and is used 3 times in the last 3 units of time
 - c. The page has not been used for last 2 units and is used 3 times in the last 4 units of time
 - d. The page has been used for last 2 units and is used 3 times in the last 4 units of time
- 35. Choose the most correct statement about the second chance LRU algorithm
 - a. When a page gets second chance its ref. Bit is set to 1
 - b. When all the page ref. Bits are found to be set to 1, the algo degenerates to FIFO
 - c. When all the page ref. Bits are found to be set to 0, the algo degenerates to FIFO
 - d. Both (a) and (b)
- 36. In case of Enhanced second chance algo, the ref bit and modify bit ordered pair for 2 pages, P1 & P2 are (0,0) & (1,1) respectively. then
 - a. P1 will be replaced
 - b. P2 will be replaced
 - c. Any of them could be replaced
 - d. None of the 2 pages can be replaced and a third page should be considered
- 37. Consider the following ref strings

{0,2,4,1,1,4,5,7}

{2,3,2,5,6,3,2,4}

FIFO page replacement algo with 3 frames would give lesser number of faults

- a. String I
- b. String II
- c. Same for both strings
- d. Insufficient data

- 38. Time to position the head on the disk is
 - a. Seek time
 - b. Access time
 - c. Transmission time
 - d. Rotational latency
- 39. Analysis of a resource allocation graph results in the following resource and process dependency

$$P1 \rightarrow R1 \rightarrow P2 \rightarrow R2 \rightarrow P1$$

 $P3 \rightarrow R2$

- a. P1 and P3 are in deadlock
- b. P1 and P2 are in deadlock
- c. P2 and P3 are in deadlock
- d. There is no deadlock
- 40. What is the other name given to FCFS algo
 - a. Elevator algo
 - b. Search algo
 - c. End to end algo
 - d. Cyclic algo
- 41. Which of the following is true
 - a. A process can spawn many processes
 - b. A thread can spawn many processes
 - c. A thread is a light weight process
 - d. A user process can not spawn a thread
- 42. Which of the following statement about semaphore is false
 - a. It is an integer that can act as counter
 - b. Its value depends on number of resources to be shared
 - c. Its value can be greater than 1
 - d. It can be used for process synchronization
- 43. Which of the following is not a stack algo
 - a. FIFO
 - b. Clock
 - c. LRU
 - d. All the above
 - e. None of the above

-	age size ach page a. b.	em with 32 bit logical address employs single level paging of 4K will require a page table of size assuming table entry is 4 bytes long 4M 4K 8K None of the above	
45.	Which a. b. c. d. e.	of the following does not cause an asynchronous interrupt Check for burst exceeding time quantum each time a process is scheduled S/m call I/O completion Power failure detection logic None of the above	
46.	To con a. b. c. d.	Each page is broken into multiple segments Each segment is broken into multiple pages Each segment corresponds to a page A process can either apply paging or segmentation	
47.	a. And b. Co	in. no. of frames allotted to a process is governed by mount of physical memory available imputer architecture of the a & b	
48.	a. Pag	gment table LB regi	
49.	A linea a. b. c. d.	ar page table typically indexed by logical page number Physical page number Logical page offset Physical page offset	
50.	H/W so a. b. c. d.	upport is needed for physical address relocation in order to Have accurate addressing Speed up the process Involve the processor None	