AIM

1: Matrix operations(using vectorization) and transformation using python and SVD

CODE:

```
a = np.arange(0,4).reshape((2,2)) b =
np.eye(2) print(np.dot(a,b)) ##Matrix
multiplication
```

OUTPUT:

```
[[0. 1.]
[2. 3.]]
```

CODE:

```
x =
np.arange(1,10).reshape(3,3)
print(x)
```

OUTPUT:

```
[[1 2 3]
[4 5 6]
[7 8 9]]
```

CODE:

#SVD image compresion

```
import matplotlib.pyplot as plt import
matplotlib.image as mpimg import
numpy as np

img_eg = mpimg.imread("rose.jpg") plt.imshow(img_eg)
print(img_eg.shape) #Operation results: (800, 1280,3)

#Converting image data into two-dimensional matrix and singular
value decomposition
img_temp = img_eg.reshape(800, 1280 * 3)
U,Sigma,VT = np.linalg.svd(img_temp)

# Take the first 10 singular values sval_nums
= 10
img_restruct1 =
(U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:
```

```
sval nums,:]) img restruct1 =
img restruct1.reshape(800, 1280,3)
img restruct1.tolist()
# Take the first 50 singular values sval nums = 50 img restruct2 =
(U[:,0:sval nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval_nums,:]) img restruct2 =
img restruct2.reshape(800, 1280,3)
# Take the first 100 singular values sval nums = 100 img restruct3 =
(U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval nums,:]) img restruct3 =
img restruct3.reshape(800, 1280,3)
#Exhibition fig, ax = plt.subplots(nrows=1,
ncols=3)
ax[0].imshow(img restruct1.astype(np.uint8))
ax[0].set(title = "10")
ax[1].imshow(img_restruct2.astype(np.uint8))
ax[1].set(title = "50")
ax[2].imshow(img restruct3.astype(np.uint8))
ax[2].set(title = "100") plt.show()
```


AIM

2. Programs using matplotlib / plotly / bokeh / seaborn for data visualisation. Dataset used: iris.csv

CODE:

import pandas as pd
iris = pd.read_csv('iris.csv')

Plotting Using Matplotlib
import matplotlib.pyplot as plt
plt.plot(iris["sepal.length"], "r--")
plt.show

Scatter Plot

iris.plot(kind ="scatter",
x ='sepal.length',
y ='petal.length')
plt.grid()

Plotting using Seaborn

import seaborn as sns sns.set_style("whitegrid") sns.FacetGrid(iris, hue
="variety",height = 6).map(plt.scatter, 'sepal.length',
'petal.length').add legend()

OUTPUT:

CODE:

Distribution Chart

#Visualizing the target(class label) column

sns.countplot(x='variety', data=iris,) plt.show()

OUTPUT:

CODE:

#plotting all the column's relationships using a pairplot. It can be used for multivariate analysis. sns.pairplot(iris,hue='variety', height=2)

#Histogram for Sepal Length

```
plt.figure(figsize = (10, 7)) x =
iris["sepal.length"] plt.hist(x, bins =
20, color = "green") plt.title("Sepal
Length in cm")
plt.xlabel("Sepal Length cm")
plt.ylabel("Count")
```


#Histogram for Petal Width plt.figure(figsize = (12, 7))x = iris["petal.width"]

plt.hist(x, bins =20, color = "blue") plt.title("Petal width in cm") plt.xlabel("Petal_Width_cm") plt.ylabel("Count")

#Histograms allow seeing the distribution of data for various columns. # It can be used for uni as well as bi-variate analysis.

```
fig, axes = plt.subplots(2, 2, figsize=(10,10))

axes[0,0].set_title("Sepal Length")

axes[0,0].hist(iris['sepal.length'], bins=7)

axes[0,1].set_title("Sepal Width")

axes[0,1].hist(iris['sepal.width'], bins=5);

axes[1,0].set_title("Petal Length")

axes[1,0].hist(iris['petal.length'], bins=6);

axes[1,1].set_title("Petal Width")

axes[1,1].hist(iris['petal.width'], bins=6);
```


.FacetGrid(iris, hue="variety") plot.map(sns.distplot, "sepal.length").add legend()

plot = sns.FacetGrid(iris, hue="variety") plot.map(sns.distplot,
"sepal.width").add_legend()

plot = sns.FacetGrid(iris, hue="variety") plot.map(sns.distplot,
"petal.length").add_legend()

plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "petal.width").add legend()

plt.show()

#In the case of Sepal Length, there is a huge amount of overlapping.

#In the case of Sepal Width also, there is a huge amount of overlapping.

#In the case of Petal Length, there is a very little amount of overlapping. #In the case of Petal Width also, there is a very little amount of overlapping.

CODE:

Box Plot for Iris Data

plt.figure(figsize = (10, 7)) iris.boxplot()

enumerate(iris.columns[:-1]):

inner = gridspec.GridSpecFromSubplotSpec(2, 1,subplot_spec=outer[i], wspace=0.2, hspace=0.4) ax = plt.Subplot(fig, inner[1])

_ = sns.violinplot(y="variety", x=f"{col}", data=iris, inner='quartile', ax=ax) fig.add_subplot(ax) fig.show()

Federal Institution Of Science And Technology

Make default density plot sns.kdeplot(iris['sepal.width'])

AIM

3. Programs to handle data using pandas

CODE:

```
#Pandas is a Python library.
```

#Pandas is used to analyze data.

import numpy as np

import pandas as pd

```
s = pd.Series([1, 3, 5, 6, 8]) print(s)
```

OUTPUT:

```
0 1
1 3
2 5
3 6 4 8
dtype: int64
```

CODE:

```
      country
      capital
      area population 0

      Brazil
      Brasilia
      8.516
      200.40

      1
      Russia
      Moscow
      17.100
      143.50

      2
      India
      New Dehli
      3.286
      1252.00

      3
      China
      Beijing
      9.597
      1357.00
      4
      South Africa

      Pretoria
      1.221
      52.98
```

b.index = ["BR", "RU", "IN", "CH", "SA"] print(b)

OUTPUT:

	C	country	capital	area	population BR
Bra	zil	Brasilia	8.516	200.	40
RU		Russia	Moscow	17.100	143.50
IN		India	New Dehli	3.286	1252.00
СН		China	Beijing	9.597	1357.00
SA	South	Africa	Pretoria	1.221	52.98

CODE:

import pandas as pd cars =
pd.read_csv('cars1.csv')
print(cars)

	Car	Model Vo	olume W	Teight C	Э2	
0	Toyoty	Aygo	100	79	0 99	
1	Mitsubish	ni Space	Star	1200	1160	95
2	Skoda	Citigo	1000	929	95	
3	Fiat	500	900	865	90	
4	Mini	Cooper	1500	1140	105	
5	VW	Up!	1000	929 1	05	
6	Skoda	Fabia	1400	1109	90	
7	Mercedes	A-Cla	ass 1	.500 1	365	92
8	Ford	Fiesta	1500	1112	98	
9	Audi	A1	1600	1150	99	
10	Hyundai	I2	20 11	.00 9	80 99	9
11	Suzuki	Swift	130	99	0 101	
12	Ford	Fiesta	1000	1112	99	
13	Honda	Civic	1600	1252	94	
14	Hundai	130	160	0 132	6 97	
15	Opel	Astra	1600	1330	97	
16	BMW	1	1600	1365	99	
17	Mazda	3	2200	1280	104	
18	Skoda	Rapid	1600	1119	104	
19	Ford	Focus	2000	1328	105	
20	Ford	Mondeo	1600	1584	94	
21	Opel :	Insignia	2000	1428	99	
22	Mercedes	C-Cla	ass 2	2100 1	365	99
23	Skoda	Octavia	1600	1415	99	
24	Volvo	S60	2000	1415	99	
25	Mercedes	(CLA 1	.500 1	465 10)2
26	Audi	A4	2000	1490	104	

```
2000
27
                     A6
                                  1725 114
          Audi
28
          Volvo
                     V70
                           1600
                                  1523
                                       109
29
          BMW
                     5
                          2000
                                 1705 114
         Mercedes E-Class
                                     1605 115
30
                             2100
31
          Volvo
                    XC70
                            2000
                                  1746 117
32
          Ford
                                 1235 104
                  B-Max
                          1600
33
          BMW
                   216
                          1600
                                 1390
                                     108
CODE:
```

```
import pandas as pd cars =
pd.read_csv('cars1.csv') cars =
pd.read_csv('/cars1.csv')
print(cars)
```

Print out first 4 observations print(cars[0:4])

Print out fifth and sixth observation print(cars[4:6])

```
import pandas as pd cars = pd.read_csv('cars1.csv', index_col = 0) #first column is taen as index column
```

print(cars.iloc[2])

OUTPUT:

```
Model Citigo
Volume 1000
Weight 929
CO2 95
```

Name: Skoda, dtype: object

CODE:

```
#Slicing dataframe import pandas as pd
```

```
Name Gender Age
       Jay M 18
       Jennifer F 1
Preity F 19
1
                     F 17
2
3
       Neil
                 M 17
     Name Gender Age
    Preity F 19
    Neil
               M 17
      Name Gender Age
        Jay M 18
0
1
        Jennifer F
        17
CODE:
import pandas as pd import
numpy as np
#Create a series with 4 random numbers s
= pd.Series(np.random.randn(4)) print(s)
print ("The actual data series is:")
print( s.values)
OUTPUT:
0 -1.138968
1 -1.097746
2 0.109717 3 1.159537 dtype: float64 The actual data series is:
[-1.13896826 -1.09774589 0.10971687 1.15953676]
CodeText
CODE:
print (s.head(2))
OUTPUT:
    -1.138968 1
    -1.097746
```

Federal Institution Of Science And Technology

dtype:
float64

```
CODE:
```

print(s.tail(3))

OUTPUT:

```
1 -1.097746
2 0.109717 3
1.159537
dtype: float64
```

CODE:

```
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
```

```
# Create a DataFrame df
= pd.DataFrame(d)
print(df)
print ("The transpose of the data series is:") print(df.T)
```

OUTPUT:

Name	Age	Rating					
0 Ton	n 25	4.2	3				
1 Jan	nes :	26 3	.24				
2 Ric	cky :	25 3	.98				
3 Vir	n 23	2.5	6				
4 Ste	eve	30 3	.20				
5 Smi	th :	29 4	.60				
6 Jac	ck 2	3.3.	80				
The tran	spose	of the	data s	series	is:		
	0	1	2	3	4	5	6
Name	Tom	James	Ricky	Vin	Steve	Smith	Jack
Age	25	26	25	23	30	29	23
Rating	4.23	3.24	3.98	2.56	3.2	4.6	3.8

CODE:

```
import pandas as pd import
numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
 'Age':pd.Series([25,26,25,23,30,29,23]),
 'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame df
= pd.DataFrame(d)
print(df)
print ("Row axis labels and column axis labels are:") print
(df.axes)
OUTPUT:
  Name Age Rating
   Tom 25 4.23
    James 26 3.24
Ricky 25 3.98
1
     Vin 23 2.56
    Steve 30 3.20
    Smith 29
                     4.60
      Jack 23
                    3.80
Row axis labels and column axis labels are:
[RangeIndex(start=0, stop=7, step=1), Index(['Name', 'Age',
'Rating'], dtype='object')]
CODE:
import pandas as pd import
numpy as np
#Create a Dictionary of series d =
{'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
 'Age':pd.Series([25,26,25,23,30,29,23]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print (df)
print ("The dimension of the object is:") print
(df.ndim)
```

```
Name Age Rating
0
   Tom 25 4.23
   James 26 3.24
Ricky 25 3.98
1
2
3
   Vin 23 2.56
    Steve 30 3.20
5
   Smith 29
                4.60
    Jack 30
                3.80
6
Our object is:
The shape of the object is: (7,
3)
CODE:
print (df.size)
OUTPUT:
21
```

CODE:

print (df.values)

OUTPUT:

```
[['Tom' 25 4.23]

['James' 26 3.24]

['Ricky' 25 3.98]

['Vin' 23 2.56]

['Steve' 30 3.2]

['Smith' 29 4.6]

['Jack' 30 3.8]]
```

CODE:

df.isnull().sum() #sum returns the number of missing values

OUTPUT:

Name 0
Age 0
Rating 0
dtype: int64

CODE:

df = pd.DataFrame(np.arange(12).reshape(3, 4), columns=['A', 'B', 'C', 'D']) print(df)

A B C D
0 0 1 2 3
1 4 5 6 7 2
8 9 10 11

<u>AIM</u>

4: Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification report import pandas as pd

df = pd.read_csv("iris.csv") print(df)

	sepal.length	sepal.width	petal.length	petal.width	variety 0
5.1	3.5	1.4	0.2	Setosa	
1	4.9	3.0	1.4	1 0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	1 0.2	Setosa
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica

```
148 6.2 3.4 5.4 2.3 Virginica
149 5.9 3.0 5.1
1.8 Virginica
```

[150 rows x 5 columns]

CODE:

df['variety'].value counts()

OUTPUT:

Setosa 50 Versicolor 50 Virginica 50

Name: variety, dtype: int64

CODE:

X = df.drop('variety', axis=1)

y = df['variety']

splitting to trainset and Test set in the ratio 70:30

X train, X test, y train, y test = train test split(X, y, test size=0.30)

print(X_train) print("
") print(X_test)

OUTPUT:

sepal.length	sepal.width	petal.length	petal.width	46
5.1 3.	. 8	1.6 0	. 2	
95 5	5.7	3.0	4.2	1.2
67 5	5.8 2	2.7	4.1	1.0
45 4	4.8	3.0	1.4	0.3
143	6.8	3.2	5.9	
2.3				
116	6.5	3.0	5.5	1.8
41 4	4.5 2	2.3	1.3	0.3
62 6	6.0 2	2.2	4.0	1.0
91 6	6.1 3	3.0	4.6	1.4
123 6	5.3	2.7	4.9	1.8

[105 rows x 4 columns]

	sepal.length	sepal.width	petal.length	petal.width 25
5.0	3.0	1.6	0.2	
141	6.9	3.1	5.1	2.3
125	7.2	3.2	6.0	1.8
102	7.1	3.0	5.9	2.1
128	6.4	2.8	5.6	2.1
122	7.7	2.8	6.7	2.0
76	6.8	2.8	4.8	1.4

103	6.3	2.9	5.6	1.8
14	5.8	4.0	1.2	0.2
37	4.9	3.6	1.4	0.1
100	6.3	3.3	6.0	2.5
63	6.1	2.9	4.7	1.4
64	5.6	2.9	3.6	1.3
61	5.9	3.0	4.2	1.5
17	5.1	3.5	1.4	0.3
74	6.4	2.9	4.3	1.3
111	6.4	2.7	5.3	1.9
120	6.9	3.2	5.7	2.3
79	5.7	2.6	3.5	1.0
85	6.0	3.4	4.5	1.6
49	5.0	3.3	1.4	0.2
21	5.1	3.7	1.5	0.4
110	6.5	3.2	5.1	2.0
149	5.9	3.0	5.1	1.8
72	6.3	2.5	4.9	1.5
11	4.8	3.4	1.6	0.2
36	5.5	3.5	1.3	0.2
6	4.6	3.4	1.4	0.3
68	6.2	2.2	4.5	1.5
144	6.7	3.3	5.7	2.5
43	5.0	3.5	1.6	0.6
80	5.5	2.4	3.8	1.1
32	5.2	4.1	1.5	0.1
7	5.0	3.4	1.5	0.2
55	5.7	2.8	4.5	1.3
129	7.2	3.0	5.8	1.6
117	7.7	3.8	6.7	2.2 12
4.8	3.0	1.4	0.1	

print("Number transactions X_train dataset: ", X_train.shape) print("Number transactions y_train dataset: ", y_train.shape) print("Number transactions X_test dataset: ", X_test.shape) print("Number transactions y_test dataset: ", y_test.shape)

OUTPUT:

```
Number transactions X_train dataset: (105, 4)
Number transactions y_train dataset: (105, )
Number transactions X_test dataset: (45, 4)
Number transactions y_test dataset: (45, )
```

CODE:

classifier = KNeighborsClassifier(n_neighbors=5)

```
classifier.fit(X_train, y_train) y_pred
= classifier.predict(X_test)
print(y_pred)
print(' ')
print(y_test)
```

```
['Setosa' 'Virginica''Virginica''Virginica''Virginica''Virginica'
'Versicolor''Virginica''Setosa''Virginica' 'Versicolor'
'Versicolor''Versicolor''Setosa''Versicolor''Virginica''Virginica'
'Versicolor''Versicolor''Setosa''Setosa' 'Virginica''Virginica''
'Virginica''Setosa''Setosa''Versicolor''Virginica''Setosa''Setosa''Versicolor''Virginica''Virginica''Versicolor''Virginica''Versicolor''Virginica''Virginica''Versicolor''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virginica''Virgi
```

64	Versicolor
61	Versicolor
17	Setosa
74	Versicolor
111	Virginica
120	Virginica
79	Versicolor
85	Versicolor
49	Setosa
21	Setosa
110	Virginica
149	Virginica
72	Versicolor
11	Setosa
36	Setosa
6	Setosa

68	Versicolor
144	Virginica
43	Setosa
47	Setosa
77	Versicolor
80	Versicolor
32	Setosa
7	Setosa
148	Virginica
88	Versicolor
137	Virginica
55	Versicolor
112	Virginica
29	Setosa
129	Virginica
117	Virginica

```
12 Setosa
Name: variety, dtype: object
```

from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_pred)) print(classification report(y test, y pred))

OUTPUT:

```
[[15 0 0]
[ 0 11 2]
[ 0 0 17]]
            precision recall f1-score
                1.00
                        1.00
                                  1.00
                                            15
     Setosa
 Versicolor
                1.00
                         0.85
                                  0.92
                                             13
                      1.00
Virginica
             0.89
                              0.94
                                         17 accuracy
         45
0.96
               0.96
                        0.95
                                 0.95
                                             45
macro avg
weighted avg
                0.96
                         0.96
                                  0.95
                                             45
```

CODE:

```
weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy', 'Over
cast','Sunny','Sunny',
'Rainy','Sunny','Overcast','Overcast','Rainy']

# Second Feature
temp=['Hot','Hot','Hot','Mild','Cool','Cool','Mild',
'Cool'
,'Mild','Mild','Mild','Hot','Mild']

# Label or target varible

play=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Y
```

[2 2 0 1 1 1 0 2 2 1 2 0 0 1]

```
[1 1 1 2 0 0 0 2 0 2 2 2 1 2]
[0 0 1 1 1 0 1 0 1 1 1 1 1 0]
```

CODE:

```
features=list(zip(weather encoded, temp encoded)) print(features)
```

OUTPUT:

```
[(2, 1), (2, 1), (0, 1), (1, 2), (1, 0), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (2, 2), (0, 1), (1, 2)]
```

CODE:

```
from sklearn.neighbors import KNeighborsClassifier model

= KNeighborsClassifier(n_neighbors=3)

from sklearn.neighbors import KNeighborsClassifier
  model = KNeighborsClassifier(n_neighbors=3)

# Train the model using the training sets model.fit(features,label)
  predicted= model.predict([[0,1]]) # 0:Overcast, 1:Hot
  print(predicted)
```

OUTPUT:

[1]

<u>AIM</u>

5: Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: Social Network Ads.csv

```
import pandas as pd dataset =
pd.read_csv("/content/Social_Network_Ads.csv")
print(dataset.describe()) print(dataset.head())
X = dataset.iloc[:, [1, 2, 3]].values y =
dataset.iloc[:, -1].values from
sklearn.preprocessing import LabelEncoder le =
LabelEncoder()
X[:,0] = le.fit_transform(X[:,0])
from    sklearn.model_selection    import    train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_si ze = 0.20, random_state = 0)
```

OUTPUT:

			User ID		Age	Estimated	Salary	Purchased	
CO	ount	4.000	000e+02	400.	000000	400.	000000	400.000000	
me	ean	1.569	154e+07	37.	655000	69742.	500000	0.357500	1
st	d	7.165	832e+04	10.	482877	34096.	960282	0.479864	
mi	in	1.556	669e+07	18.	000000	15000.	000000	0.000000	1
25	5%	1.562	676e+07	29.	750000	43000.	000000	0.000000	Ì
50	3%	1.569	434e+07	37.	000000	70000.	000000	0.000000	
75	5%	1.575	036e+07	46.	000000	88000.	000000	1.000000	
ma	X	1.581	524e+07	60.	000000	150000.	000000	1.000000	ĺ
	Us	er ID	Gender	Age	Estima	tedSalary	Purcha	sed	
0	156	24510	Male	19		19000		0	
1	158	10944	Male	35		20000		0	
2	156	68575	Female	26		43000		0	
3	156	03246	Female	27		57000		0	
4	158	04002	Male	19		76000		0	

CODE:

```
from sklearn.preprocessing import StandardScaler sc
= StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB() classifier.fit(X_train,
y train)
```

GaussianNB()

CODE:

```
y_pred = classifier.predict(X_test)
y pred
```

OUTPUT:

CODE:

```
y_pred = classifier.predict(X_test)
y_test
```

```
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 1,
0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
```

```
0, 0,

1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,

0, 1,

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1])
```

```
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred) ac =
accuracy_score(y_test,y_pred) print(cm) print(ac)
```

OUTPUT:

```
[[56 2]
[ 4 18]]
0.925
```

<u>AIM</u>

6: Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.

CODE:

```
import matplotlib.pyplot as plt x
= [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
plt.scatter(x, y) plt.show()
```



```
import matplotlib.pyplot as plt
   from scipy import stats
   x = [5, 7, 8, 7, 2, 17, 2, 9, 4, 11, 12, 9, 6]
     [99, 86, 87, 88, 111, 86, 103, 87, 94, 7
     8,77,85,86]
   +slope, intercept, r, p, std_err = stats.linregress(x, y) # r corre
   lation coefficiant # p probability of hypothesis
def myfunc(x):
  return slope
  * x +
  intercept
  mymodel =
  list(map(myfu
  nc, x))
plt.scatter(x, y)
   plt.plot(x, mymodel)
   plt.show()
```

OUTPUT:

-0.758591524376155

CODE:

```
import pandas import warnings
warnings.filterwarnings("ignore")
df = pandas.read_csv("cars1.csv")

X = df[['Weight', 'Volume']] y
= df['CO2']

from sklearn import linear_model regr
= linear_model.LinearRegression()
regr.fit(X, y)
```

LinearRegression()

CODE:

```
predictedCO2 = regr.predict([[2300, 1000]])
print(predictedCO2)
```

OUTPUT:

[104.86715554]

AIM

7.Program to implement text classification using Support vector machine.

CODE:

Dataset used: iris.csv

```
import
        numpy
                     np
                          import
               as
matplotlib.pyplot as plt
                           from
sklearn import svm, datasets
# import some data to play with iris
= datasets.load iris()
X = iris.data[:, :2] # we only take the first two features.
We could
 # avoid this ugly slicing by using a two-dim dataset y
= iris.target
# we create an instance of SVM and fit out data. We do not scale
our
\# data since we want to plot the support vectors C = 1.0 \#
SVM regularization parameter svc = svm.SVC(kernel='linear',
C=1,gamma='auto').fit(X, y)
# create a mesh to plot in
\#x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
\#h = (x \max / x \min)/100
\#xx, yy = np.meshgrid(np.arange(x min, x max, h),
#np.arange(y min, y max, h
plt.subplot(1, 1, 1)
Z = svc.predict(np.c ravel[xx.(), yy.ravel()]) Z
= Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length') plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.title('SVC with linear kernel') plt.show()
```


CODE:

Dataset used: True.csv, Fake.csv

```
#Importing Libraries
import pandas as pd
import numpy as np
from sklearn.model selection import train test split from
sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer from
sklearn.feature extraction.text import TfidfTransformer from
sklearn.metrics import accuracy score, confusion matrix, class
ification report from sklearn.svm import LinearSVC
import csv
true = pd.read csv("True.csv") fake
= pd.read csv("Fake.csv")
fake['target'] = 'fake'
true['target'] = 'true' #News dataset news =
pd.concat([fake, true]).reset index(drop = True)
news.head() news.dropna()
```

	title	text	subject	date	target
0	you were wrong! 70-year-old men don t change	News	"December 31	2017"	fake
165	look at me! I m violating the U.S. flag code	News	"October 29	2017"	fake
277	particularly those where people are dying. Ob	News	"September 29	2017"	fake
294	utterly and completely misunderstanding it. T	News	"September 25	2017"	fake
379	I salute you.Featured image via David Becker/	News	"September 10	2017"	fake
39998	rescuers pulled Maria s body from the rubble	worldnews	"September 21	2017 "	true
40742	adding she had a Spanish passport but chose t	worldnews	"September 14	2017 "	true
40788	adding the Rohingya belong in camps for displ	worldnews	"September 14	2017 "	true
40824	said Reick."	worldnews	"September 14	2017 "	true
41394	in general. "	worldnews	"September 7	2017 "	true

236 rows × 5 columns

CODE:

```
#Train-test split
  x train, x test, y train, y test = train test split(news['text'], new
   s.target, test size=0.2, random state=1)
  #Term frequency(TF) = count(word) / total(words) 6+ OZXCVBNM,./
  #TF-
  IDF: we can even reduce the weightage of more common words like (t
  he, is, an etc.) which occurs in all document.
  #This is called as TF-
  IDF i.e Term Frequency times inverse document frequency.
  #count vectorizer : involves counting the number of occurrences ea
  ch word appears in a document
  pipe2 = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTran
   sformer()), ('model', LinearSVC())])
  model_svc = pipe2.fit(x_train.astype('U'), y_train.astype('U'))
   svc_pred = model_svc.predict(x_test.astype('U'))
print("Accuracy of SVM Classifier: {}%".format(round(accuracy scor
   e(y test, svc pred)*100,2))) print("\nConfusion Matrix of SVM
   Classifier:\n") print(confusion_matrix(y_test, svc_pred))
  print("\nClassification Report of SVM Classifier:\n")
  print(classification report(y test, svc pred))
```

```
Accuracy of SVM Classifier: 51.43%
```

Confusion Matrix of SVM Classifier:

```
[[4302 3]
[4085 26]]
```

Classification Report of SVM Classifier:

	precision	recall	f1-score	support
fake	0.51	1.00	0.68	4305
true	0.90	0.01	0.01	4111
accuracy			0.51	8416
macro avg	0.70	0.50	0.35	8416
weighted avg	0.70	0.51	0.35	8416

AIM

8. Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: iris

```
import numpy as np import pandas as pd
import matplotlib.pyplot as plt from
    sklearn.datasets import load_iris
data=load_iris()
    X=data.data
    y=data.target
    print(X.shape,y.shape)
```

OUTPUT:

(150, 4) (150,)

CODE:

```
from sklearn.model_selection import train_test_split from
sklearn.tree import DecisionTreeClassifier#for checking testi ng
results from sklearn.metrics import classification_report,
confusion_matri x#for visualizing tree
from sklearn.tree import plot_tree
X_train, X_test, y_train, y_test = train_test_split(X , y, test_si
ze = 25, random state = 10)
```

```
clf=DecisionTreeClassifier()
clf.fit(X_train,y_train) OUTPUT:
DecisionTreeClassifier()
```

```
y_pred =clf.predict(X_test)
print("Classification report - \n", classification_report(y_test,y pred))
```

OUTPUT:

Classificatio	n report -			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	1.00	0.90	0.95	10
2	0.86	1.00	0.92	6
accuracy			0.96	25
macro avg	0.95	0.97	0.96	25
weighted avg	0.97	0.96	0.96	25

CODE:

```
cm = confusion_matrix(y_test, y_pred) print(cm) from sklearn
import tree fig,axes = plt.subplots(nrows=1,ncols=1,figsize
=(3,3),dpi=200)
tree.plot_tree(clf,feature_names=data.feature_names,class_names=da
ta.target_names,filled=True) plt.show()
fig.savefig("/content/iris_tree.png")
```

```
[[9 0 0]
[0 9 1]
[0 0 6]]
```


AIM

9.Program to implement k-means clustering technique using any standard dataset available in the public domain.

CODE:

Dataset used: GENERAL.csv

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	1
PAYMENTS	0
MINIMUM_PAYMENTS	313
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

```
dataset['CREDIT_LIMIT'].fillna(dataset.CREDIT_LIMIT.mean(), inplac
e = True) dataset['MINIMUM_PAYMENTS'].fillna(dataset.MINIMUM_PAY-
MENTS.mean()
, inplace = True) # unfilled vaues replaced using mean
print(dataset.isnull().sum()) print(dataset.describe())
```

```
CUST ID
                                   0
BALANCE
                                   0
BALANCE FREQUENCY
                                   0
PURCHASES
                                   0
ONEOFF PURCHASES
INSTALLMENTS_PURCHASES
                                   0
CASH ADVANCE
                                   0
PURCHASES FREQUENCY
                                   0
ONEOFF PURCHASES FREQUENCY
                                   0
PURCHASES INSTALLMENTS FREQUENCY
                                   0
CASH ADVANCE FREQUENCY
                                   0
CASH ADVANCE TRX
                                   0
PURCHASES TRX
                                   0
CREDIT LIMIT
                                   0
PAYMENTS
                                   0
MINIMUM PAYMENTS
                                   0
                                   0
PRC FULL PAYMENT
TENURE
                                   0
dtype: int64
           BALANCE BALANCE FREQUENCY ... PRC FULL PAYMENT
                                                                   TENURE
       8950.000000
                          8950.000000 ...
                                                8950.000000 8950.000000
count
       1564.474828
                             0.877271
                                                  0.153715
                                                              11.517318
mean
                                       . . .
std
       2081.531879
                             0.236904
                                                   0.292499
                                                                1.338331
                                       . . .
min
          0.000000
                             0.000000
                                                   0.000000
                                                                 6.000000
25%
        128.281915
                             0.888889
                                                   0.000000
                                                                12.000000
50%
        873.385231
                             1.000000
                                                   0.000000
                                                                12.000000
                                       ...
                             1.000000 ...
75%
       2054.140036
                                                  0.142857
                                                                12.000000
    19043.138560
                             1.000000 ...
                                                   1.000000
                                                                12.000000
max
```

```
\label{eq:dataset.drop(['CUST_ID'], axis=1, inplace = True) #no relevance for custid} or custid
```

```
# No Categorical Values found X
= dataset.iloc[:,:].values
```

```
# Using standard scaler from
sklearn.preprocessing import StandardScaler
standardscaler= StandardScaler()
X = standardscaler.fit transform(X) #scaling the values print(X)
```

```
"""K MEANS CLUSTERING """ #Inertia, or the within- cluster sum of squares criterion, can be recognized as a measure of how internally coherent clusters are from sklearn.cluster import KMeans wss= [] for i in range(1, 11): kmeans= KMeans(n_clusters = i, init = 'k- means++', random_state = 0) kmeans.fit(X) wss.append(kmeans.inertia_) plt.plot(range(1,11), wss) # selecting 4
```

OUTPUT:

[<matplotlib.lines.Line2D at 0x7f74661e8a90>]

CODE:

```
wss_mean=np.array(wss).mean() print(wss)
print(wss_mean) print([abs(wss_mean-x) for x
in wss]) k=np.argmin([abs(wss_mean-x) for x
in wss])+1
```

```
[152149.99999999983, 127784.92103208725, 111986.41162208859, 99073.93826774803, 91502.98328256077, 84851.13240432573, 79532.40237691796, 75568.97609993909, 69954.91393943134, 67546.56302862825] 95995.22420537268 [56154.775794627145, 31789.69682671457, 15991.187416715911, 3078.714062375351, 4492.240922811907, 11144.091801046947, 16462.82182845472, 20426.248105433595, 26040.31026594134, 28448.661176744426]
```

```
kmeans = KMeans(n_clusters = k, init= 'k-
means++', random_state = 0) kmeans.fit(X)

Y_pred_K= kmeans.predict(X) print(Y_pred_K)

#showing the clusters of first 100 persons
plt.figure(figsize=(16,4))
plt.plot(range(1,100+1),Y_pred_K[:100],'ro')
```


AIM

10:Programs on feedforward network to classify any standard dataset available in the public domain.

Dataset used: HR comma sep.csv

CODE:

```
import numpy as np
import pandas as pd

# Load data
data=pd.read csv('HR comma sep.csv') data.head()
```

OUTPUT:

satis	faction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	left	promotion_last_5years	sales	salary
0	0.38	0.53	2	157	3	0	1	0	sales	lov
1	0.80	0.86	5	262	6	0	1	0	sales	mediun
2	0.11	0.88	7	272	4	0	1	0	sales	mediun
3	0.72	0.87	5	223	5	0	1	0	sales	lov
4	0.37	0.52	2	159	3	0	1	0	sales	101

CODE:

```
from sklearn import preprocessing #

Creating labelEncoder le =

preprocessing.LabelEncoder() #

Converting string labels into numbers.

data['salary']=le.fit_transform(data['salary'])

data['sales']=le.fit_transform(data['sales'])
```

```
X=data[['satisfaction level',
     'last evaluation', 'number project',
     'average_montly_hour s',
     'time spend company', 'Work accident',
     'promotion last 5years', 'sales', 'salary']]
     y=data['left']
     # Import train test split function from
     sklearn.model selection import train test split
     # Split dataset into training set and test set
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
     # 70% training and 30% test
     from sklearn.neural network import MLPClassifier
     # Create model object
     clf = MLPClassifier(hidden layer sizes=(6,5),
                 random state=5, verbose=False,
                 learning rate init=0.01)
     # Fit data onto the model
clf.fit(X_train,y_train)
     OUTPUT:
        MLPClassifier(hidden_layer_sizes=(6, 5), learning_rate_init=0.01,
                        random state=5)
```

```
ypred=clf.predict(X_test) # Import
accuracy score from sklearn.metrics import
accuracy_score
# Calcuate accuracy accuracy score(y test,ypred)
```

0.93866666666666

Aim:

11:Programs on convolutional neural network to classify images from any standard dataset in the public domain.

CODE:

import numpy as np import pandas as pd

Load data data=pd.read_csv('HR_comma_sep.csv')

data.head()

Output:

d c	satis- omacc						promo-	sal f	ac- valu-	ber_p a	ge_mo	ntly
u_0.		ation			_hours		pany	dent		5years		y
	evel		ject									
0	0.38	0.53	2	157	3	0	1	0	es	W	sal	lo
												me
_	0.00	0.06	_	2.62	_	0		0		4.	sal	
1	0.80	0.86	5	262	6	0	1	0	es	diu m		
											sal	me
2	0.11	0.88	7	272	4	0	1	0	es	diu m	541	
											sal	lo
3	0.72	0.87	5	223	5	0	1	0			25	W
											es	W
4	0.37	0.52	2	159	3	0	1	0	20	***	sal	lo
4	0.57	0.32	7	139	3	U	1	U	es	W		

CODE:

```
from sklearn import preprocessing
# Creating labelEncoder le =
preprocessing.LabelEncoder()
# Converting string labels into numbers. data['salary']=le.fit transform(data['salary'])
data['sales']=le.fit transform(data['sales'])
X=data[['satisfaction level', 'last evaluation', 'number project', 'average montly hours',
'time spend company', 'Work accident', 'promotion last 5years', 'sales', 'salary']]
y=data['left']
# Import train test split function
from sklearn.model selection import train test split
# Split dataset into training set and test set
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42) #
70% training and 30% test
from sklearn.neural network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden layer sizes=(6,5),
random state=5,
                             verbose=False,
            learning rate init=0.01)
# Fit data onto the model
clf.fit(X train,y train)
ypred=clf.predict(X test)
OUTPUT:
MLPClassifier(hidden layer sizes=(6, 5), learning rate init=0.01,
random state=5)
CODE:
# Import accuracy score
from sklearn.metrics import accuracy score
# Calcuate accuracy
print ("Accuracy:",accuracy_score(y_test,ypred))
```

CODE:

from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, ypred)) print(classification_report(y_test, ypred))

[[324	48 180] 6 976]]				
L	0 9,0]]	precision	recall	f1-score	support
0	0.97	0.95	0.96	3428	
1	0.84	0.91	0.88	1072	
	accuracy			0.94	l
4500 4500	macro	avg	0.91	0.93	0.92
weigh	nted avg	0.94	0.94	0.94	4500

-		
		l l

Federal Institution Of Science And Technology