Bay Area useR group December 9, 2019

Residential Solar Forecast & Financial analytics

(probably more than you wanted to know)

Gautam Makani https://www.linkedin.com/in/gautammakani/

Agenda

- Quick intro to Solar NEM (Net Energy Metering)
- How good are the self-service analytics at pge.com
- Analysis approach, packages and environment
- Findings generation models, forecast, \$\$ savings, sensitivity

Solar NEM

- PG&E credit for energy fed back into the grid at retail TOU (time of usage) rates
- 12 month True-Up billing cycle
- Under threat (especially with PG&E Bankruptcy)
 - Michigan changed NEM policy making it less profitable
 - No NEM states: *Arizona, Georgia, Hawaii, Indiana, Nevada, Maine and Mississippi* ..

Generation and Consumption

PG&E's online analytics.

Can't use online PG&E Opower analytics to answer:

- What is my actual usage profile (i.e. not NEM)?
- How is my electricity usage trending on a year on year basis?
- What is the consumption forecast?
- Is Solar saving me money?

R packages and resources

Resources and reference

- Hadley's R for Data Science book
- Rob J Hyndman blog and book on forecasting
- StackOverflow
- StackExchange.

Environment:

- RStudio
- Charts hosted on Rpubs
- Plotly visualization

Github repo:

https://github.com/makanig/solarHomeEnergyAnalytics

Key Packages

library(tidyverse)
library(forecast)
library(plotly)
library(FinCal) => financial calcs
library(data.table)
library(lubridate)
library(TSstudio)

Findings – Generation varies more than expected

- I saw more production variation than expected
- Note slight downward trend
- For new installs, future NEM policy is key to profitability

Findings – Model comparison

<u>Findings</u> – GLM weather model components

Use this to fit a seasonal/sinusoidal pattern solarDf\$xc<-cos(2*pi*solarDf\$DATE_Numeric/365) solarDf\$xs<-sin(2*pi*solarDf\$DATE_Numeric/365) glm(energyProducedWhLog ~ xc+PRCP +DATE_Numeric*xc +TMAX + TMIN, data=solarDf)

Findings – ARIMA daily generation forecast

Degradation at ~2% is overestimated

paybackYrs	DATE	IRR	NetReturn	ROI
8.65	2024-03-01	10 %	\$9004	138 %
8.91	2024-06-01	7 %	\$4694	72 %
9.82	2025-05-01	6 %	\$3272	50 %
11.91	2027-06-01	3 %	\$1333	20 %