Examen Parcial de FCO - Temas 1 al 4

7 de Noviembre 2016

APELLIDOS:		NOMBRE:
DNI:	FIRMA:	

Normativa:

- La duración del examen es de 2:00hrs.
- Por favor, escriba su nombre y apellidos en letras <u>MAYÚSCULAS</u> y <u>firme</u> en <u>TODAS</u> las hojas.
- DEBE responder en el espacio asignado.
- No se permiten calculadoras ni apuntes.
- Debe permanecer en silencio durante la realización del examen.
- No se puede abandonar el examen hasta que el profesor lo indique.
- Debe tener una identificación en la mesa a la vista del profesor (DNI, carnet UPV, tarjeta residente, etc.)
- 1. (1,0 puntos) Dado el siguiente número positivo en BCD

 $A = 01000001,01110101_{BCD}$

Se pide:

a) (0.25 puntos) Su valor en decimal. (Justificar/mostrar cálculos)

Solución:

Pasamos el valor a decimal agrupando de 4 dígitos en 4 dígitos

 $01000001,01110101_{BCD} = 41,75_{10}$

b) (0.75 puntos) Su valor en hexadecimal. (Justificar/mostrar cálculos)

Solución:

Sabemos que: $01000001,01110101_{BCD} = 41,75_{10}$

Si se hace directamente se obtiene:

41 / 16 = 9 y resto 2 luego la parte entera es 29 0.75 * 16 = 12 = C luego la parte decimal es 0.C

Si se hace pasando primero a binario:

 $41,75_{10} = 101001,11_2$

(41/2)/2/2/2/2 Salen los siguientes restos

(1 - 0 - 0 - 1 - 0) y cociente final 1

Se toman desde el cociente final hasta el primer resto y se obtiene el valor anterior.

Finalmente agrupamos de 4 dígitos en 4 dígitos partiendo de la coma para obtener el equivalente hexadecimal.

 $101001,11_2 = 29,C_{16}$

Por lo tanto la solución es la siguiente:

 $01000001,01110101_{BCD} = 29,C_{16}$

2. (2 puntos) Se desea diseñar una parte del circuito de control de un vehículo. El circuito será responsable de la activación de dos señales binarias, C y A cuya activación (a nivel alto) pondrá en funcionamiento una Camara de vídeo y una Alarma sonora respectivamente. Para el diseño de dicho circuito se dispone de 4 señales de entrada binarias (activas a nivel alto) M, R, Vmin y Vmax respectivamente. M se activará cuando el vehículo este con el motor encendido. R se activará cuando el vehículo tenga puesta la marcha atrás. Vmin se activará cuando la velocidad del vehículo sea inferior a una determinada velocidad minima. Vmax se activará cuando la velocidad del vehículo sea superior a una determinada velocidad máxima.

El circuito a diseñar deberá generar como salida las señales C y A cuando se cumplan los siguientes criterios:

- La cámara se activará cuando el vehículo este con el motor encendido, la marcha atrás esté conectada y la velocidad sea inferior a la velocidad mínima.
- La alarma se activará cuando el vehículo este con el motor encendido y la velocidad sea superior a la velocidad máxima.
- a) Obtenga la tabla de verdad del circuito que se desea diseñar.

Respuesta: Si se asume que el vehículo se puede empujar y se mueve.

M	R	Vmin	Vmax	С	Α
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	Χ	Χ
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	Χ	Χ
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	Χ	Χ
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	Χ	Χ

Respuesta: Si se asume que el vehículo NO se puede empujar. Motor parado indica vehículo quieto.

M	R	Vmin	Vmax	С	Α
0	0	0	0	Χ	Χ
0	0	0	1	Χ	Χ
0	0	1	0	0	0
0	0	1	1	Χ	Χ
0	1	0	0	Χ	Χ
0	1	0	1	Χ	Χ
0	1	1	0	0	0
0	1	1	1	Χ	Χ
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	0	1	1	Χ	0 X
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	Χ	Χ

Examen Parcial de FCO - Temas 1 al 4

7 de Noviembre 2016

APELLIDOS:		NOMBRE:
DNI:	FIRMA:	

3. (1 punto) Dada la siguiente tabla de verdad, obténgase la expresión mínima, según se indica:

D	С	В	Α	S
0	0	0	0	Х
0	0	0	1	0 1 X 0
0	0	1	0	1
0	0	1	1 0	Χ
0	1	0		0
0	1	0	1	0
0	1	1	0	0
0	1 0 0 0 0	1	1 0 1 0 1 0	1 0 1 0 0
1 1 1 1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0		0
1	1	0	1	1
1	1	1	1 0 1	1 0 x
1	1	1	1	Х

a) Simplificar la función correspondiente en forma de suma de productos.

Respuesta:					
	DC/BA	00	01	11	10
	00	Χ			1
	01		1	1	
	11	Х	1	X	
	10	1			1
S=CA+/C/A					

b) Simplificar la función en forma de producto de sumas.

4. (1 punto) Obtenga la tabla de verdad del siguiente circuito combinacional diseñado a partir de un multiplexor con dos entradas de selección B (msb) y A (lsb). Para la tabla de verdad considere "z" como la variable de mayor peso y "x" la de menor peso.

Z	У	Χ	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Examen Parcial de FCO – Temas 1 al 4

7 de Noviembre 2016

APELLIDOS:		NOMBRE:
DNI:	FIRMA:	

5. (1 punto) Diseñar un decodificador binario de 3 a 8 con entrada de habilitación /G, entradas de selección C(msb), B, A(lsb) y salidas /S₇ .. /S₀. Dispone de tres decodificadores 2 a 4 con entradas /G, B, A y salidas /S₃ .. /S₀. Uno de ellos tiene dañada la patilla asociada con /S₀. No puede usar ninguna puerta adicional. Etiquete todas las entradas y salidas de los componentes e indique cuál de los tres es el que esta dañado.

También sería correcto conectar la patilla C a la entrada B del decodificador dañado y la patilla A a uno. Las salidas S1 y S3 del mismo serían en este caso las que seleccionasen los decodificadores finales.

6. 1.5 puntos) Dado el siguiente circuito:

a) (1.0 puntos) complete el cronograma

b) (0.5 puntos) Complete la siguiente frase:

ΕI	circuito	es	una	implementación	del	Biestable	D	disparado
por	flanco de	_baj	ada					

Examen Parcial de FCO - Temas 1 al 4

7 de Noviembre 2016

APELLIDOS:		NOMBRE:
DNI:	FIRMA:	

7. (2.5 puntos) Dado el siguiente circuito:

(1.5 puntos) Complete el siguiente cronograma:

Solución

(1.0 puntos) En base al cronograma responda a las siguientes preguntas:

Solución:

a)	(0.25 puntos) Dado que las salida el conjunto de bits S2 S1 S0. E donde S2 es el bit de mayor peso y S0 el bit de menor peso. El circuito ¿es un contador ascendente o descendente?:
	Respuesta:descendente
b)	(0.25 puntos) Cuando la señal INIT es igual a uno, escriba en binario el valor de las salidas S2= _1_ S1= _1_ y S0= _0_ que corresponde al valor decimal:6
c)	(0.5 puntos) Escriba el conteo que realiza el circuito: