```
Group 29 -
Benjamin Tate
Eli Goodwin
Shae Judge
CS 325 -- Section 400
Project 1 Report
Theoretical Run-time Analysis:
Algorithm 1: Enumeration
Theoretical runtime for algo 1: O(n^3)
Function algo1(A[0...n-1]):
       Initialize maxSum = 0
       If n = 1:
              maxSum = A[0]
              Return maxSum
       For i = 0 ... (n-1):
              For j = i ... (n-1):
                     Initialize tempSum = 0
                     For k = i \dots j:
                            tempSum += A[k]
                            If tempSum > maxSum:
                                    maxSum = tempSum
       Return maxSum
Algorithm 2: Better Enumeration
Theoretical runtime for algo2: O(n^2)
Function algo2(A[0...n-1]):
       Initialize maxSum = 0
       If n = 1:
              maxSum = A[0]
              Return maxSum
       For i = 0 ... (n-1):
              Initialize tempSum = A[i]
              For j = (i+1) \dots (n-1):
                     tempSum += A[j]
                     If tempSum > maxSum:
                            maxSum = tempSum
       Return maxSum
Algorithm 3: Divide and Conquer
Theoretical runtime for algo3: O(nlgn)
Function algo3(A[0...n-1]):
       Initialize maxSum = minimum int
```

```
If n = 1:
              maxSum = A[0]
              Return maxSum
       Initialize mid = n / 2
       Left[] = A[0...mid-1]
       Right[] = A[mid...n-1]
       //Recursive calls for cases 1 and 2
       left maxSum = algo3(left)
       right_maxSum = algo3(right)
       Lr_maxSum = max(left_maxSum, right_maxSum)
       Initialize tempSum = 0
       Initialize I_sum = r_sum = minimum int
       //For case 3:
       For i = (mid-1) ... 0: //Loop backwards through left half of A
              tempSum += A[i]
              If tempSum > I_sum:
                     L_sum = tempSum
       For i = mid ... (n-1):
              tempSum += A[i]
              If tempSum > r sum:
                     R sum = tempSum
       //Determining which case to use
       if lr_maxSum >= l_sum + r_sum:
              //Case 1 or 2
              maxSum = Ir_maxSum
       Else:
              //Case 3
              maxSum = I_sum + r_sum
       Return maxSum
Algorithm 4 Pseudocode:
Theoretical Run-Time Analysis for Algorithm 4: O(n)
       For i=0 to size-1
              (from the last iteration) Make subarray arr1 or max sum that ends with index i-1
              Find subarray arr2 or max sum that ends with index i. This will be arr1, or the
```

subarray of just i.

(from the last iteration) Make subarray arr3 of max sum be between indexes 0 and i-1.

Find subarray of maxsum between indexes 0 and i. This will be arr2 or arr3.

Testing:

Testing the validity of the algorithms was done using the provided test set contained in MSS_TestProblems.txt. Arrays from the test set were fed to the algorithms and their output was compared with the known results contained in MSS_TestResults.txt. For each algorithm, their output matched perfectly with already known results demonstrating the correctness of the algorithms.

Experimental Analysis:

1. Average running times:

n	Algo1 Average Runtime (microseconds)			
100	2698			
200	16888			
300	35834			
400	71381			
500	138665			
600	238797			
700	376276			
800	550983			
900	795115			
1000	1086242			

n	Algo2 Average Runtime (microseconds)		
100	46		
200	183		
500	1133		

1000	4530			
2000	25319			
5000	117379			
10000	454838			
20000	1864108			
50000	11750929			
100000	46634559			

n	Algo3 Average Runtime (microseconds)		
20000	22574		
50000	35207		
100000	72930		
200000	123246		
500000	312900		
1000000	631114		
2000000	1289305		
5000000	3215504		
10000000	6522413		
20000000	13179061		

n	Algo4 Average Runtime (microseconds)		
100	1		
200	2		
500	5		
1000	10		

2000	20
5000	50
10000	98
50000	488
100000	973
200000	1936

2. Running time plots:

3. Regression models:

- Algorithm 1:
 - $T_1(n) = 0.001152n^3 0.1136n^2 + 49.57n 714.9$
 - \blacksquare R² = 0.9999
- Algorithm 2:
 - $T_2(n) = 0.004639n^2 + 2.628n 8624$
 - \blacksquare R² = 1.0000
- Algorithm 3:
 - $T_3(n) = 0.02718n*lg(n) + 81910$
 - \blacksquare R² = 0.9997
- Algorithm 4:
 - $T_4(n) = 0.009686n + 1.073$
 - \blacksquare R² = 1.0000

4. Discrepancies:

- Algorithm 1: For algorithm 1 there were not any apparent discrepancies between expected runtime and our results. We knew that it would unable to efficiently run values of n larger than 10000 given its cubic runtime complexity. Our runtime test program would hang for several hours with values greater than 20000 making it impractical to test beyond n values of 1000. But for the values of n we did run the regression had a R² of .9999 indicating a good fit.
- Algorithm 2: Algorithm 2 did not have any discrepancies between expected runtime and our results. We knew it would be roughly O(n²) for the complexity the results of the regression reflect this as well for R² is equal to 1.00.

- Algorithm 3: Algorithm 3 did appear to have some mild discrepancies relative to the expected runtime, specifically it was expected to have a O(n lgn) runtime due to its divide and conquer approach for finding the maximum subarray, but had a runtime more closely resembling O(n) when inspecting the plot. The regression for Algorithm 3 using f(n) = a*n lgn + c as a model had an R^2 value of .9997 indicating that its runtime was in fact f(n) = O(n lgn), despite appearing as a straight line. This is okay because, Algorithm 3 is still bound by $O(n^2)$ from above and O(n) from below. The runtimes would likely begin to fit an n lgn curve even better at higher n, but it was not feasible to test them with any higher values of n than we already did.
- Algorithm 4: Algorithm 4 was expected to have a linear runtime and the regression analysis demonstrates that it does indeed have a linear time with the regression having an R² of 1.00.

5. Largest input in given time:

	Largest value of n possible for Algorithm			
Time (microseconds)	1	2	3	4
5000000	1655	32570	7897091	516208850
10000000	2081	46160	15289665	1032417811
60000000	3763	113447	83758161	6194507425

6. Log-log plots:

7. Combined plot:

