Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 22 giugno 2017 — Compito A

matricola		nome		cognome
corso di laur	ea		anno accademico o	di immatricolazione
Votazione:	T1 T2	E1		
		E2		
		E3		

T1) Si dia la definizione di autovalore e autospazio. Si dimostri che, se λ è un autovalore di $\bf A$ e $\bf B$ è simile a $\bf A$, allora λ è un autovalore di $\bf B$ e gli autospazi hanno la stessa dimensione.

T2) Si enunci e si dimostri una condizione necessaria e sufficiente affinché la matrice A, di forma $m \times n$, abbia inversa destra.

E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & \alpha & 1 & 2 \\ 2 & 2\alpha & 5 & 1 \\ 2 & 2\alpha & \alpha+2 & -\alpha+4 \\ 1 & \alpha & 2 & 1 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 0$ si trovino una base ortogonale di $C(\mathbf{A}_0)$ e una base ortogonale di $N(\mathbf{A}_0)$.

Interpretando A_{α} come la matrice completa di un sistema lineare, per quali valori di α il sistema ha soluzione?

E2) Si dimostri che $\mathscr{B} = \{\mathbf{v}_1 = 2\mathbf{e}_1 + \mathbf{e}_3; \mathbf{v}_2 = \mathbf{e}_2; \mathbf{v}_3 = \mathbf{e}_1 - \mathbf{e}_3\}$ (\mathbf{e}_i sono i vettori della base canonica di \mathbb{C}^3) è una base di \mathbb{C}^4 . Si consideri poi l'unica applicazione lineare $f: \mathbb{C}^4 \to \mathbb{C}^4$ tale che

$$f(\mathbf{v}_1) = \mathbf{v}_1$$

$$f(\mathbf{v}_2) = 3\mathbf{v}_1 - 2\mathbf{v}_2$$

$$f(\mathbf{v}_3) = 2\mathbf{v}_2$$

(a) Si determini la matrice ${\bf B}$ associata a f rispetto alle basi canoniche.

(b) Si calcoli la dimensione dell'immagine di f.

(c) Si dica se la matrice B è diagonalizzabile.

(d) Si calcoli una base dello spazio nullo dell'applicazione lineare f.

E3) Si determini per quali valori del parametro $\beta \in \mathbb{C}$ la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} 1 & 2\beta & 2\\ 0 & \beta + 1 & 0\\ 1 & \beta & 0 \end{bmatrix}$$

è diagonalizzabile. Si dica per quali valori del parametro β esiste una base di \mathbb{C}^3 formata da autovettori di \mathbf{B}_{β} e la si determini.

Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 22 giugno 2017 — Compito B

matricola	,	nome	cognome
corso di laure	ea		anno accademico di immatricolazione
Votazione:	T1	E1 E2	
	12	E3	

- T1) Si dia la definizione di autovalore e autospazio. Si dimostri che, se λ è un autovalore di A e B è simile a A, allora λ è un autovalore di B e gli autospazi hanno la stessa dimensione.
- T2) Si enunci e si dimostri una condizione necessaria e sufficiente affinché la matrice A, di forma $m \times n$, abbia inversa destra.
- E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & -\alpha & 1 & 2 \\ 2 & -2\alpha & 5 & 1 \\ 2 & -2\alpha & -\alpha + 2 & \alpha + 4 \\ 1 & -\alpha & 2 & 1 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 0$ si trovino una base ortogonale di $C(\mathbf{A}_0)$ e una base ortogonale di $N(\mathbf{A}_0)$.

Interpretando A_{α} come la matrice completa di un sistema lineare, per quali valori di α il sistema ha soluzione?

E2) Si dimostri che $\mathscr{B}=\{\mathbf{v}_2=\mathbf{e}_2;\mathbf{v}_3=\mathbf{e}_1-\mathbf{e}_3;\mathbf{v}_1=2\mathbf{e}_1+\mathbf{e}_3\}$ (\mathbf{e}_i sono i vettori della base canonica di \mathbb{C}^3) è una base di \mathbb{C}^4 . Si consideri poi l'unica applicazione lineare $f\colon\mathbb{C}^4\to\mathbb{C}^4$ tale che

$$f(\mathbf{v}_1) = \mathbf{v}_1$$
$$f(\mathbf{v}_2) = 2\mathbf{v}_1 - 3\mathbf{v}_2$$
$$f(\mathbf{v}_3) = 2\mathbf{v}_2$$

- (a) Si determini la matrice B associata a f rispetto alle basi canoniche.
- (b) Si calcoli la dimensione dell'immagine di f.
- (c) Si dica se la matrice B è diagonalizzabile.
- (d) Si calcoli una base dello spazio nullo dell'applicazione lineare f.
- E3) Si determini per quali valori del parametro $\beta \in \mathbb{C}$ la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} 1 & -2\beta & 2 \\ 0 & 1-\beta & 0 \\ 1 & -\beta & 0 \end{bmatrix}$$

è diagonalizzabile. Si dica per quali valori del parametro β esiste una base di \mathbb{C}^3 formata da autovettori di \mathbf{B}_{β} e la si determini.