

Симплекс-метод

Наталия Шумшурова Григорий Шлеин

Теория и понятия

Линейное программирование

Математическая дисциплина, посвящённая теории и методам решения **ЭКСТРЕМАЛЬНЫХ ЗАДАЧ** задаваемых системами линейных уравнений и неравенств.

Математическая формулировка

$$f(x) = \sum_{j=1}^{n} c_j x_j = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$

$$\sum_{j=1}^n a_{ij}x_j \leqslant b_i$$
 при $i=1,\ 2,\ \ldots,\ m$

Симплекс-метод

- 1. Выбирается одну из вершин многогранника
- 2. Движемся по его рёбрам от вершины к вершине в сторону увеличения значения
- 3. Когда переход по ребру из текущей вершины в другую вершину с более высоким значением функционала невозможен, считается, что оптимальное значение найдено

Применение линейного программирования и симплекс-метода

Использование линейного программирования

Задачи оптимизации, например:

- Максимальное паросочетание
- Максимальный поток
- Транспортные задачи
- Игра с нулевой суммой

Максимальное паросочетание

Переменная х_{іј} соответствуют паре из і-того юноши и ј-той девушки.

Ограничения: $0 \le x_{ij} \le 1$,

$$x_{1i} + x_{2i} + \ldots + x_{ni} \leqslant 1,$$

$$x_{i1} + x_{i2} + \ldots + x_{im} \leqslant 1,$$

Целевая функция: $f = x_{11} + x_{12} + \ldots + x_{nm}$

Транспортная задача

Переменная х_{іј} - количество груза, перевезённого из і-го склада на ј-й завод.

Ограничения:
$$x_{i1} + x_{i2} + \ldots + x_{im} \leqslant a_i$$
,

$$x_{1j} + x_{2j} + \ldots + x_{nj} \geqslant b_j.$$

Целевая функция: $f(x) = x_{11}c_{11} + x_{12}c_{12} + \ldots + x_{nm}c_{nm}$

Программа

- Программа решает основную задачу линейного программирования симплекс-методом.
- Задача должна быть представлена в канонической форме.

- На вход программе задаются коэффициенты целевой функции и массив линейных ограничений (опорный план).
- На выходе программа выдает оптимальный план, максимум целевой функции и последнюю симплекс таблицу.

Скриншоты программы

Окно ввода данных

Окно с введенными данными

Окно вывода результата

Пример входных данных

Коэффициенты целевой функции: 6,8,0,0,0,0

Массив линейных ограничений:

4, 0, 0, 1, 0, 0, 180 1, 1, 0, 0, 1, 0, 190 -1, 3, 0, 0, 0, 1, 12 4, 2, 1, 0, 0, 0, 5

Пример выходных данных

Максимум целевой функции: 20.0

Решение задачи: 0, 2,5, 0, 18, 187,5, 4,5

Последняя симплекс таблица:

```
4.0, 0.0, 0.0, 1.0, 0.0, 0.0, 18.0
```

10.0, 0.0, 4.0, 0.0, 0.0, 0.0, 20.0

Среда разработки

- Язык: С++
- IDE: Borland Builder C++
- Falco Icon Studio 8.0

Возможные доработки

- Можно осуществить решение по алгоритму целочисленного линейного программирования Гомори базой для которого является симплекс-метод.
- Возможно дополнить возможности программы включением функции приведения системы линейных ограничений и целевой функции к каноническому виду.

Ваши вопросы

Спасибо за внимание!