Collaborative Filtering

Group 2 - Joaquim Cavalheiro, Tiantian Chen, Stephanie Park, Yufei Zhao, Xiaoyu Zhou

Agenda

Introduction

Datasets

Assignment

Methods

Results

Introduction: Collaborative Filtering

In **collaborative filtering**, algorithms are used to make automatic predictions about a user's interests by compiling preferences from several users. It is commonly used to build personalized recommendations.

Memory-Based filtering calculates the likeness between the users or items to make recommendations, while Model-Based filtering uses the user database to estimate or learn a model to make predictions.

Datasets

- Anonymous Microsoft Web Data An implicit voting data, with each vroot is either characterized as being visited or not, which is represented respectively as one vote or no vote.
- 2. Compaq System Research Center's EachMovie Data An explicit voting data, with votes ranging in value from 0 to 5. The dataset comes from 61,265 users entering a total of 2,811,983 numeric ratings on 1,623 movies.

Assignment

	Similarity Weight	Signific. Weight	Variance Weight	Selecting Neighbors	Rating Normalization	Cluster Model
	S V E SR	V NV	V NV	W B C	Dev. Mean	
Dataset 1	• • • •	•	• •	• • •	•	
Dataset 2	• • •	•	• •	• • •	•	•

Methods

Memory-Based Algorithms

Preprocessing

User correlation & Similarity Weight Matrix

Evaluation

Model-Based Algorithms

Preprocessing

EM Algorithm to learn parameters & cross-validation to decide cluster numbers

Evaluation

Evaluation

Cluster Model

Spearman Corr.

Vector Similarity

Threshold 0.65

Best-n

0.69

Threshold 0.68

Best-n 0.70

Combined 0.74

Combined 0.75

Entropy

Threshold 0.69

> Best-n 0.70

Combined 0.76

MAE 1.14

ROC 0.75

						,		
Algorithm		MAE	ROC					
Model-based Algorithm	Clustering Model	1.138387	0.7578769)				
	MAE	Weight Threshold(0.3)		Best-n-estimator(20)		combined(Threshold:0.1, Top:20)		
Algorithm	Spearman Correlation	0.6542189		0.6973992		0.6973922		
Memory-based Algorithm	Vector Similarity	0.6876153		0.6976481		0.6976861		
for MS	Entropy	0.698	33197	197 0.7017892		0.701569		
	MAE	Weight Threshold(0.3)		Best-n-estimator(20)		combined(Threshold:0.1, Top:20)		
Algorithm	Spearman Correlation	0.7548987		0.7543198		0.7536121		
Memory-based Algorithm	Vector Similarity	0.7494321		0.74891		0.7389159		
for movie	Entropy	0.7457895		0.7567332		0.761001		

Thank you!