

Lecture 10 - Discovery of Association Rules

Basic Concepts

- The Apriori Algorithm for mining of (singledimensional Boolean) association rules in transactional databases
- Visualization of Association Rules
- Improving the Efficiency of Apriori

Lecture No. 10

What Is Association Rule Mining?

- Motivation: finding regularities in data
 - What products were often purchased together? Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Association rule mining:
 - Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
 - Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database [AIS93]

Data Mining (BGU) Prof. Mark Last

Why Is Frequent Pattern or Association Mining an Essential Task in Data Mining?

- Foundation for many essential data mining tasks
 - Association, correlation, causality
 - Sequential patterns, temporal or cyclic association, partial periodicity, spatial and multimedia association
 - Associative classification, cluster analysis, iceberg cube, fascicles (semantic data compression based on similar attribute values)
- Broad applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis, DNA sequence analysis, etc.

Lecture No. 10

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

- Itemset $T = \{x_1, ..., x_k\}$
- X ⊂ T, Y ⊂ T
- Find all the rules X→Y with min confidence and support
 - Support (X→Y), s, probability that a transaction contains the union of X and Y
 - P(X∪Y)
 - Confidence (X→Y), c, conditional probability that a transaction having X also contains Y
 - P(Y / X)

Mining Association Rules—an Example

Transaction-id	Items bought	
10	A, B, C	
20	A, C	
30	A, D	
40	B, E, F	

Min. support 50%

Min. confidence 50%

Frequent pattern	Support
{A}	75%
{B}	50%
{C}	50%
{A, C}	50%

For rule $A \Rightarrow C$:

support = support($\{A\} \cup \{C\}$) = 50%

confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$)

= 66.6%

Mining Association Rules – Main Steps

- Find all frequent itemsets
 - Each itemset will occur in at least min_sup database transactions
- Generate **strong** association rules from the frequent itemsets
 - These rules must satisfy min_sup and min_conf

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{100} + \binom{100}{100} + \binom{100}{100}$
 - Amazon.com: 1,800,000 book titles
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemsets?
 - <a>, ..., a₁₀₀>: 1
 - < a₁, ..., a₅₀>: 2
- What is the set of max-pattern?
 - <a₁, ..., a₁₀₀>: 1
- What is the set of all patterns?
 - !!

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: $\sim 10^{-40}$
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

Lecture 10 - Discovery of Association
Rules

- Basic Concepts
- The Apriori Algorithm for mining of (singledimensional Boolean) association rules in transactional databases
- Visualization of Association Rules
- Improving the Efficiency of Apriori

Lecture No. 10

11

Data Mining (BGU) Prof. Mark Last

Apriori: A Candidate Generation-and-test Approach

- Any subset of a frequent itemset must be frequent
 - if {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - Generate length (k+1) candidate itemsets from length k
 frequent itemsets by joining them with themselves
 - Prune *k*-itemsets containing infrequent (*k*-1)-itemsets
 - Test the remaining candidates against DB
- The performance studies show its efficiency and scalability

Lecture No. 10

12

Min. support 50%

The Apriori A<u>lgorithm</u> — An Example

Database	TDB
----------	------------

Tid	Items	
10	A, C, D	
20	B, C, E	
30	A, B, C, E	
40	B, E	

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

_	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

 L_2 temset sup {A, C} 2 {B, C} {B, E} 3 {C, E} 2

C_3	Itemset	
	{B, C, E}	

C_2	Itemset	S	up
_	{A, B}		1
	{A, C}		2
_	{A, E}		1
	{B, C}		2
	{B, E}		3
	{C, E}		2
3 rd	scan	$\overline{L_3}$	lte
J	scan	J	

2nd scan

sup

2

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 $\overline{\{\mathsf{B},\,\mathsf{C},\,\mathsf{E}\}}$

The Apriori Algorithm Outline

Pseudo-code:

 C_k : Candidate itemset of size k L_k : frequent itemset of size k **Input**: D_k , a database of transactions; min_sup

Output: L, frequent itemsets in D

```
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k! = \emptyset; k++) do begin

C_{k+1} = \text{candidates generated from } L_k;
for each transaction t in database do

increment the count of all candidates in C_{k+1}
that are contained in t

L_{k+1} = \text{candidates in } C_{k+1} \text{ with min\_support end}

return L = \bigcup_k L_k;
```


Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - *L*₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - C₄={abcd}

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in a lexicographic order
- Step 1: self-joining L_{k-1}
 insert into C_k
 select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1}
 from L_{k-1} p, L_{k-1} q

where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$ //First k-2 items are identical

Step 2: pruning

forall *itemsets* c *in* C_k do forall *(k-1)-subsets* s *of* c do **if** (s *is not in* $L_{k-1})$ **then delete** c **from** C_k

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Interestingness Measure: Correlations (Lift)

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading why?
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89 \qquad lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

Mining Association Rules in Temporal Databases

- *Episode rule* applied to sequences of events, each event occurring at a particular time. An *episode* is a sequence of events in a partial order and an *episode rule* is defined as $A \rightarrow B$, where A and B are *episodes* and A is a *subepisode* of B. Can be used for predicting certain events by sequences of earlier events ("if the *Microsoft* stock price goes up, then *IBM* goes up the next day")
- Trend dependencies a rule $A \rightarrow B$, where A and B are patterns of the form (A, Θ) , where A is a reference to a specific attribute and Θ is an element in $\{<,=,>,\geq, \leq, =\}$. Can be used to discover patterns like: an employee's salary always increases over time.
- Sequence rules $\{AB, A\} \rightarrow \{C, A\}$, where A and B appears at the same time followed by A, implies a sequence where C is followed by A.
- Calendric rules predefined time unit and a calendar, given by a set of time intervals, are needed. Rules A→B restricted to the chosen calendar, which allows for seasonal changes to be analyzed. Example: sales are up before Xmas.
- Intertransaction rules, Interval AR, etc.

Lecture 10 - Discovery of Association
Rules

- Basic Concepts
- The Apriori Algorithm for mining of (singledimensional Boolean) association rules in transactional databases
- Visualization of Association Rules

Improving the Efficiency of Apriori

Lecture No. 10 27

Data Mining (BGU) Prof. Mark Last

Data Mining (BGU) Prof. Mark Last

Visualization of Association Rules: A Ball Graph

Lesson 9 - Discovery of Association
Rules

- Basic Concepts
- The Apriori Algorithm for mining of (singledimensional Boolean) association rules in transactional databases
- Visualization of Association Rules
- Improving the Efficiency of Apriori

Lecture No. 10 30

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In VLDB'95
 - WWW: http://www.acm.org/sigmod/vldb/conf/1995/P432.PDF

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100
 - # of Candidates: $\binom{100}{100} + \binom{100}{100} + \dots + \binom{100}{1000} = 2^{100} 1 \approx 1.27 \times 10^{30} !$
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a <u>potentially</u> frequent pattern
- "Divide-and-conquer" strategy
 - Compress the database into a frequent-pattern (FP) tree
 - Divide a compressed database into a set of conditional databases, each associated with one frequent item
 - Mine each database separately

Lecture No. 10

34

Mining Frequent Patterns With FP-trees

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition

Method

- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
- Repeat the process on each newly created conditional FP-tree
- Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

FP-Growth vs. Apriori: Scalability With the Support Threshold

Source: J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, May 2000.

Why Is FP-Growth the Winner?

- Divide-and-conquer:
 - decompose both the mining task and DB according to the frequent patterns obtained so far
 - leads to focused search of smaller databases
- Other factors
 - no candidate generation, no candidate test
 - compressed database: FP-tree structure
 - no repeated scan of entire database
 - basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

Summary

- Frequent pattern mining—an important task in data mining
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (CHARM, ...)
- Which patterns are interesting?
 - Pattern evaluation methods