Алгебра

Сидоров Дмитрий

Группа БПМИ 219

May 12, 2022

№1

Найдите все обратимые элементы, все делители нуля (левые и правые) и все нильпотентные элементы в кольце $R = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \mid a,b,c \in \mathbb{Q} \} \text{ с обычными оперциями сложения и умножения.}$

Решение:

1) По определению $x \in R$ - обратный элемент, если существует такой $y \in R$, что $xy = yx = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (единица в кольце R - это единичная матрица 2×2) \Rightarrow обратные элементы в кольце R имеют вид $\frac{1}{ac}\begin{pmatrix} c & 0 \\ -b & a \end{pmatrix} = \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{b}{ac} & \frac{1}{c} \end{pmatrix} \in R$, при $ac \neq 0$ (тк $\frac{1}{a} \in \mathbb{Q}, -\frac{b}{ac} \in \mathbb{Q}, \frac{1}{c} \in \mathbb{Q}, 0 = 0 \Rightarrow \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{b}{ac} & \frac{1}{c} \end{pmatrix} \in R$, где $a,b,c \in \mathbb{Q}$ и $\begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{b}{ac} & \frac{1}{c} \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{b}{ac} & \frac{1}{c} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$).

2) По определению $x \in R$ - левый (правый) делитель нуля, если $x \neq 0$ и найдётся элемент $y \in R$, $y \neq 0$, такой что xy = 0 (yx = 0). Рассмотрим матрицы $x_1 = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, $a,b,c \in \mathbb{Q}$ и $x_2 = \begin{pmatrix} m & 0 \\ n & k \end{pmatrix}$, $m,n,k \in \mathbb{Q}$, и a,b,c одновременно не равны 0, и m,n,k одновременно не равны 0 ($x_1,x_2 \in R$). Тогда, если $x_1x_2 = 0$, то $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} m & 0 \\ n & k \end{pmatrix} = \begin{pmatrix} am & 0 \\ bm+cn & ck \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} am = 0 \\ bm+cn = 0 \end{cases}$. Пусть c = 0, тогда, тк $x_1 \neq 0$, то a,b не могут ck = 0

быть одновременно 0, тогда m=0. Итого, $x_1=\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$, $x_2=\begin{pmatrix} 0 & 0 \\ n & k \end{pmatrix}$. Пусть $c\neq 0$, тогда k=0. Если m=0, то из bm+cn=0 следует, что n=0, и тогда m=n=k=0, что противоречит условию $\Rightarrow m\neq 0 \Rightarrow a=0$. Итого $x_1=\begin{pmatrix} 0 & 0 \\ b & c \end{pmatrix}, x_2=\begin{pmatrix} m & 0 \\ n & 0 \end{pmatrix}$. Таким образом, левые и правые делители нуля имеют вид $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ b & c \end{pmatrix}$, где $(a,b)\neq (0,0), (b,c)\neq 0$ $a,b,c\in \mathbb{Q}$.

3) По определению $x \in R$ называется нильпотентным, если $x \neq 0$ и существует такое $n \in \mathbb{N}$, что $x^n = 0$. Рассмотрим матрицу $x = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, $a,b,c \in \mathbb{Q}$ и a,b,c одновременно не равны 0 ($x \in R$). Тогда $xx = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} a^2 & 0 \\ ab+bc & c^2 \end{pmatrix}$ (те у x^n на главной диагонале стоят $a^n,c^n \Rightarrow$ тк x^n должно равняться 0, а

 $a,c\in\mathbb{Q},\ {
m To}\ a=c=0).$ Заметим, что для n=2 $x^n=egin{pmatrix} 0 & 0 \ ab+bc & 0 \end{pmatrix}=egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix} \Rightarrow x=egin{pmatrix} 0 & 0 \ b & 0 \end{pmatrix}$ является нильпотентом $(b\neq 0).$

$$\textbf{Otbet:}\quad \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{b}{ac} & \frac{1}{c} \end{pmatrix}, ac \neq 0; \quad \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ b & c \end{pmatrix}, (a,b) \neq (0,0), (b,c) \neq 0; \quad \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}, b \neq 0, \quad a,b,c \in \mathbb{Q} \ .$$

№2

Докажите что идеал (x, y - 2) в кольце $\mathbb{R}[x, y]$ не является главным.

Доказательство:

По определению подмножество I кольца R называется идеалом, если выполнены условия:

- 1) I подгруппа по сложению
- 2) $\forall a \in I, r \in R : ra \in I, ar \in I$

Кроме того, идеал I называется главным, если существует такое $p \in R$, что $I = (p) \ ((p) := \{rp \mid r \in R\})$.

Обозначим кольцо $\mathbb{R}[x,y]$ как R. Пусть идеал (x,y-2) в кольце R является главным. Тогда $(x,y-2)=\{ax+b(y-2)\mid a,b\in R\}$. Если (x,y-2) главный, то (x,y-2)=(p) для некоторого $p\in R$. Тогда, если взять $a=1,\ b=0,$ получим, что $(x,y-2)=\{x\}\Rightarrow x\in (p)$. Аналогично для $a=0,\ b=1$ получим, что $(x,y-2)=y-2\Rightarrow y-2\in (p)$. Итого, получили, что x и y-2 делятся на p (тк $x=q_1p\in (p), y-2=q_2p\in (p),\ q_1,q_2\in \mathbb{R}[x,y]$). Тк p делит многочлены первой степени, то его степень не больше 1. Пусть $p\neq const.$ Тогда, если x делится на p, то $p=kx,\ k\in \mathbb{R}$, но это невозможно, тк p должен делить y-2. Значит $p=const\neq 0$ (не равен 0, тк иначе $(0)=\{0\}\neq (x,y-2)$). Известно, что константы являются обратимыми и порождают всё кольцо, а значит идеал (x,y-2) является всем кольцом \Rightarrow противоречие, тк все многочлены в (x,y-2) в точке (0,2) равны только 0.

$N_{\overline{2}}3$

При помощи теоремы о гомоморфизме для колец установите изоморфизм $\mathbb{C}[x]/(2x^2-x)\simeq\mathbb{C}\oplus\mathbb{C}$, где $\mathbb{C}\oplus\mathbb{C}=\{(z_1,z_2)\mid z_1,z_2\in\mathbb{C}\}$ - кольцо с покомпонентными оперциями сложения и умножения.

Решение:

По теореме о гомоморфизме для колец $R/\mathrm{Ker}\varphi\simeq\mathrm{Im}\varphi$ (обозначил $\mathbb{C}[x]$ как R). Заметим, что $2x^2-x=x(2x-1)$. Пусть $\varphi:\mathbb{C}[x]\to\mathbb{C}\oplus\mathbb{C},\ \varphi(f)=(f(0),f(0.5))\ (0,\ 0.5$ являются корнями уравнения x(2x-1)=0). При этом отображение φ является гомоморфизмом, тк $\varphi(a+b)=((a+b)(0),(a+b)(0.5))=(a(0)+b(0),a(0.5)+b(0.5))=(a(0),a(0.5))+(b(0),b(0.5))=\varphi(a)+\varphi(b)$ и $\varphi(ab)=((ab)(0),(ab)(0.5))=(a(0)b(0),a(0.5)b(0.5))=(a(0),a(0.5))(b(0),b(0.5))=\varphi(a)\varphi(b)$ $\forall a,b\in R$. Тогда, тк по определению ядро гомоморфизма φ - это множество $\mathrm{Ker}\varphi:=\{r\in R|\varphi(r)=0\}$, а образ гомоморфизма φ - это множество $\mathrm{Im}\varphi:=\varphi(R)$, найдём $\mathrm{Ker}\varphi$.

Тк $\varphi(x(2x-1))=0$, то $x(2x-1)\in {\rm Ker}\varphi$. Возьмём произвольный $f(x)(x(2x-1))\in x(2x-1)$. Тк ядро является идеалом в R и $x(2x-1)\in R$, то любой многочлен, делящийся на x(2x-1) принадлежит ядру. Итого, $x(2x-1)\subseteq {\rm Ker}\varphi$.

Покажем, что в ядре нет ненулевых элементов степени меньше 2. Пусть $f=ax+b\in {\rm Ker}\varphi$, тогда $\varphi(f)=(b,0.5a+b)=(0,0)\Leftrightarrow a=0,b=0$. Пусть $f=x(2x-1)q(x)+r(x)\in {\rm Ker}\varphi$, где степень r(x) не больше 1 или r=0. Тогда $\varphi(f)=\varphi(x(2x-1)q+r)=\varphi(x(2x-1))\varphi(q)+\varphi(r)$. Тк $f\in {\rm Ker}\varphi$, $x(2x-1)\in {\rm Ker}\varphi$, то получаем, что $0=0+\varphi(r)\Rightarrow \varphi(r)=0\Rightarrow r=0$ (тк в ядре нет элементов степени не больше 1). Таким образом, $f\in x(2x-1)\Rightarrow {\rm Ker}\varphi\subseteq x(2x-1)$.

Таким образом, получили, что $\ker \varphi$ и $x(2x-1)=2x^2-x$ совпадают. Тогда, тк $\operatorname{Im} \varphi$ совпадает с $\mathbb{C}\oplus\mathbb{C}$ (тк для любых $(z_1,z_2)\in\mathbb{C}\oplus\mathbb{C}$ можно рассмотреть в $\mathbb{C}[x]$ многочлен $f(x)=-z_1(2x-1)+2xz_2$, для которого выполняется $f(0)=z_1, f(0.5)=z_2$, а значит $\varphi(f)=(z_1,z_2)$, и φ - сюръекция, а значит $\operatorname{Im} \varphi$ совпадает с $\mathbb{C}\oplus\mathbb{C}$), то по теореме о гомоморфизме для колец получили изоморфизм $\mathbb{C}[x]/(2x^2-x)\simeq\mathbb{C}\oplus\mathbb{C}$, где $\varphi:\mathbb{C}[x]\to\mathbb{C}\oplus\mathbb{C}$, $\varphi(f)=(f(0),f(0.5))$.

Ответ: $\varphi: \mathbb{C}[x] \to \mathbb{C} \oplus \mathbb{C}, \ \varphi(f) = (f(0), f(0.5)).$

№4

Пусть R - коммутативное кольцо и $I \lhd R$. Докажите, что факторкольцо R/I является полем тогда и только тогда, когда $I \neq R$ и не существует собственного идеала $J \lhd R$ с условием $I \subseteq J$.

Доказательство:

По определению поле - коммутативное кольцо, в котором $0 \neq 1$ и всякий ненулевой элемент обратим.

- 1) Докажем, что если факторкольцо R/I является полем, то $I \neq R$ и не существует собственного идеала $J \lhd R$ с условием $I \subsetneq J$. Если R коммутативное кольцо и $I \lhd R$ и факторкольцо R/I является полем, то факторкольцо R/I является коммутативным кольцом, в котором $0 \neq 1$ и всякий ненулевой элемент обратим. Пусть R = I. Тогда R/I = R/R = 0, но тогда R/I не является полем. Итого, $I \neq R$. Пусть существует собственный идеал $J \lhd R$ с условием $I \subsetneq J$. Пусть $x \in J$, но $x \notin I$. Тогда $x + I \neq 0 + I$ и, тк R/I поле, то x + I обратим, а значит существует такой $y + I \in R/I$, что (x + I)(y + I) = xy + I = 1 + I. Тогда $xy 1 \in I$. При этом xy (xy 1) = 1 и $xy 1 \in J$ (тк $I \subsetneq J$) и I0 и I1 (тк I2 и и I3 и и I4 с условием I5 и не существует собственный идеал, получили противоречие, а значит если факторкольцо I4 является полем, то $I \neq R$ 4 и не существует собственного идеала $I \bowtie R$ 5 с условием $I \subsetneq I$ 5.
- 2) Теперь докажем, что если $I \neq R$ и не существует собственного идеала $J \triangleleft R$ с условием $I \subsetneq J$, то факторкольцо R/I является полем. Пусть $x \notin I$ $(x+I \in R/I$ и $x+I \neq 0+I)$. Пусть J собственный идеал, такой что $J = \{rx+i, \ i \in I, r \in R\}$ (является идеалом, тк:
- 1) для $a=r_1x+i_1, b=r_2x+i_2\in J$ выполняется $a+b=(r_1+r_2)x+(i_1+i_2)\in J,$ тк $r_1+r_2\in R, i_1+i_2\in I$
- 2) $0 = 0 \cdot x + 0 \in J$; 0 + rx + i = rx + i + 0 = rx + i
- 3) для a = rx + i выполняется $-a = -rx i \in J, \ a + (-a) = rx + i rx i = 0$
- $(1), (2), (3) \Rightarrow J$ подгруппа в R по сложению
- 4) для $a = r_1x + i \in J$, $r_2 \in R$ выполняется $r_2a = r_2(r_1x + i) = (r_2r_1)x + r_2i \in J$ и $ar_2 = (r_1x + i)r_2 = (r_1r_2)x + ir_2 \in J$, J подгруппа в R по сложению + 4) $\Rightarrow J$ идеал)

Заметим, что $\forall i \in I$ выполняется, что $i = 0x + i \in I \Rightarrow I \subseteq J$. Тк $I \neq R$ и не существует собственного идеала $J \lhd R$ с условием $I \subsetneq J$, то J = R (в том числе $x = 1x + 0 \in J$, но $x \notin I$). Тогда, тк $1 \in R$ и $1 \in J$ (тк $1 \in R = Rx + I$), то для некоторых $r \in R, i \in I$ $1 = rx + i \Rightarrow 1 - rx = i \in I \Rightarrow 1 + I = rx + I = (r + I)(x + I) \Rightarrow x + I$ - обратим. Таким образом, произвольный ненулевой элемент $x + I \in R/I$ обратим, $0 \neq 1, R/I$ - коммутативное кольцо, а значит R/I - поле.