Algorithmique M2 Data Science

cours 2 divide and conquer diviser pour régner les algorithmes récursifs

Vincent Runge

- 1 L'exemple du tri par tas
- 2 Le master theorem
- 3 La preuve du théorème
- **4** TD / TP
- **5** Rcpp package (a few tips)

Section 1

L'exemple du tri par tas

Qu'est ce qu'un tas?

Le tas = un arbre binaire (équilibré et tassé à gauche). On conserve le vecteur MAIS les deux éléments en dessous d'un noeud en position j sont aux positions 2j et 2j+1 (plus de parcours linéaire)

Propriété d'un tas "tamisé": v[j] > v[2j] et v[j] > v[2j+1]

Vecteur v = (16, 14, 10, 8, 7, 9, 3, 2, 4, 1)

Tri par tas (gif du tri par tas)

```
heap sort <- function(v)
                                                   build heap recursive <- function(heap, i, n)
 n <- length(v)
                                                     1 <- 2*i
    for(i in (n\%/\%2):1)
                                                     if(1 \le n)
      v <- build_heap_recursive(v, i, n)</pre>
                                                       if((1 < n) \&\& (heap[1] < heap[1+1])){1 <- 1 + 1}
                                                                                #choose the right son
   for(i in n:2)
                                                       if (heap[i] < heap[l]) #switch the node values
      temp <- v[i]
                                             10
                                                         temp <- heap[i]
     v[i] <- v[1]
                                             11
                                                         heap[i] <- heap[1]
                                             12
     v[1] <- temp
                                                         heap[1] <- temp
      v <- build_heap_recursive(v, 1, i-1) 13
                                                         heap <- build_heap_recursive(heap, 1, n)
                                             14
 return(v)
                                             15
                                                     return(heap)
                                             16
                                             17
```

- gauche lignes 4,5,6,7 : création du tas ("heapify")
- gauche ligne 8 : La plus grande valeur est maintenant à la racine!
- isoler la racine v[1] en l'échangeant avec la dernière valeur du vecteur v[n] (ligne 10,11, 12)
- reconstruire le tas (= tamiser = "heapify") (ligne 13)

11

14

15

16

Complexité: tri par insertion + rappels

- $T(n) = \Omega(n)$ (cas vecteur trié ordre croissant)
- $T(n) = O(n^2)$ (cas vecteur trié ordre décroissant)

Rappel: Comparaisons asymptotiques

- $u_n = O(v_n)$ s'il existe M > 0 tel que un $\frac{u_n}{v_n} \le M$ à partir d'un certain rang
- $u_n = \Omega(v_n)$ s'il existe m > 0 tel que un $\frac{u_n}{v_n} \ge m$ à partir d'un certain rang
- $u_n = \Theta(v_n)$ s'il existe m, M > 0 tels que $m \le \frac{u_n}{v_n} \le M$ à partir d'un certain rang.

Ainsi:

- $T(n) = \Omega(n)$: $T(n) \ge m \times n$ pour une constant m et n assez grand
- $T(n) = O(n^2)$: $T(n) \le M \times n^2$ pour une constant M et n assez grand

Complexité: tris pas tas

$$T(n) = \Theta(n \log(n))$$
 (complexité quasi-linéaire)

Soit:

$$m \times n \log(n) \leq T(n) \leq M \times n \log(n)$$

pour deux constantes m > 0 et M > 0 et n assez grand

hauteur d'un tas

- le noeud 5 est à la hauteur 1
- la racine est à la hauteur 3
- la hauteur maximale avec n noeuds est donnée par $\lfloor log 2(n) \rfloor$

ici :

$$2^3 < 10 < 2^4$$
, $3 < log 2(10) < 4$, $\lfloor log 2(n) \rfloor = 3$

Au plus $\lceil \frac{n}{2^h} \rceil$ noeuds à la hauteur h

```
heap_sort <- function(v)
       n <- length(v)
         for(i in (n\%/\%2):1)
            v <- build heap recursive(v, i, n)
10
11
12
     build heap recursive <- function(heap, i, n)
13
14
       1 <- 2*i
15
       if(1 \le n)
16
         if((1 < n) && (heap[1] < heap[1+1])){1 <- 1 + 1}
18
                                   #choose the right son
         if (heap[i] < heap[1]) #switch the node values
           temp <- heap[i]
           heap[i] <- heap[1]
            heap[1] <- temp
24
           heap <- build_heap_recursive(heap, 1, n)
27
       return(heap)
```

Etape heapify:

- Pour chaque valeur qui n'est pas une feuille, on fait descendre (si besoin) la valeur courante au fils en remontant dans l'arbre (d'où la boucle de n/2 à 1)
- A la fin de cette étape, le tas est tamisé (on a réordonné les valeurs du vecteur pour que la propriété du tas tamisé soit vérifiée)
- ATTENTION : le gif présente une autre initialisation en effectuant les échanges vers le haut

TEMPS =
$$\sum_{h=0}^{\lfloor log 2(n) \rfloor}$$
 (nombre de noeuds hauteur h) \times (nb max d'échanges)

$$\sum_{h=0}^{\lfloor \log 2(n) \rfloor} \lceil \frac{n}{2^h} \rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log 2(n) \rfloor} \frac{h}{2^h}\right)$$

TEMPS =
$$\sum_{h=0}^{\lfloor log 2(n) \rfloor}$$
 (nombre de noeuds hauteur h) \times (nb max d'échanges)

$$\sum_{h=0}^{\lfloor \log 2(n) \rfloor} \lceil \frac{n}{2^h} \rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log 2(n) \rfloor} \frac{h}{2^h}\right)$$
$$\sum_{h=0}^{\lfloor \log 2(n) \rfloor} \frac{h}{2^h} \le \sum_{h=0}^{+\infty} \frac{h}{2^h} \le \sum_{h=0}^{+\infty} (h+1) \left(\frac{1}{2}\right)^h$$

TEMPS =
$$\sum_{h=0}^{\lfloor log 2(n) \rfloor}$$
 (nombre de noeuds hauteur h) \times (nb max d'échanges)

$$\sum_{h=0}^{\lfloor \log 2(n) \rfloor} \lceil \frac{n}{2^h} \rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log 2(n) \rfloor} \frac{h}{2^h}\right)$$

$$\sum_{h=0}^{\lfloor \log 2(n) \rfloor} \frac{h}{2^h} \le \sum_{h=0}^{+\infty} \frac{h}{2^h} \le \sum_{h=0}^{+\infty} (h+1) \left(\frac{1}{2}\right)^h$$

$$\sum_{h=0}^{+\infty} (h+1) \left(\frac{1}{2}\right)^h \le \left(\sum_{h=0}^{+\infty} x^{h+1}\right)' \Big|_{x=\frac{1}{2}} = \left(\frac{x}{1-x}\right)' \Big|_{x=\frac{1}{2}} = \left(\frac{1}{(1-x)^2}\right) \Big|_{x=\frac{1}{2}}$$

TEMPS =
$$\sum_{h=0}^{\lfloor log 2(n) \rfloor}$$
 (nombre de noeuds hauteur h) \times (nb max d'échanges)

$$\sum_{h=0}^{\lfloor \log 2(n) \rfloor} \lceil \frac{n}{2^{h}} \rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log 2(n) \rfloor} \frac{h}{2^{h}}\right)$$

$$\sum_{h=0}^{\lfloor \log 2(n) \rfloor} \frac{h}{2^{h}} \le \sum_{h=0}^{+\infty} \frac{h}{2^{h}} \le \sum_{h=0}^{+\infty} (h+1) \left(\frac{1}{2}\right)^{h}$$

$$\sum_{h=0}^{+\infty} (h+1) \left(\frac{1}{2}\right)^{h} \le \left(\sum_{h=0}^{+\infty} x^{h+1}\right)' \Big|_{x=\frac{1}{2}} = \left(\frac{x}{1-x}\right)' \Big|_{x=\frac{1}{2}} = \left(\frac{1}{(1-x)^{2}}\right) \Big|_{x=\frac{1}{2}}$$

$$\sum_{h=0}^{\lfloor \log 2(n) \rfloor} \lceil \frac{n}{2^{h}} \rceil O(h) \le O(n \frac{1}{(1-\frac{1}{2})^{2}}) = O(4n)$$

On en conclut que TEMPS = $\Theta(n)$ puisque :

- **1** a minima, on parcourt $\lfloor \frac{n}{2} \rfloor$ données, donc TEMPS = $\Omega(n)$
- on vient de voir que TEMPS = O(n)

tri: boucle i de n à 2 (1)

tri: boucle i de n à 2 (2)

Complexité du tri

① On traite $n-1=\Theta(n)$ positions dans le vecteur avec au plus log(p) échanges dans le tas pour un vecteur de taille p.

Le temps T(p) pour "tamiser" la racine dans le vecteur de taille p vérifie la relation $T(p) \leq T(\frac{2p}{3}) + \Theta(1) = \Theta(\log(p))$

- $\Theta(1)$ est le temps de l'échange entre les noeuds (2 comparaisons)
- On utilise le master theorem pour trouver la solution $\Theta(log(p))$

On obtient $T(p) = O(\log(p))$ et donc

$$T_2(n) = \sum_{p=1}^{n-1} T_2(p) = \sum_{p=1}^{n-1} O(\log(p)) = O(\log(n!))$$

Par la formule de Stirling on a $\log(n!) = n \log(n) + O(n)$ et donc $T_2(n) = O(n \log(n))$

Complexité du tri

Ainsi on a obtenu

- Etape 1 : création du tas $T_1(n) = \Theta(n)$
- Etape 2 : tri avec tas $T_2(n) = O(n \log(n))$

Complexité en temps $T(n) = T_1(n) + T_2(n) = O(n \log(n))$

② Le tri par comparasion est toujours bornée inférieurement en temps par $n \log(n)$: $T(n) = \Omega(n \log(n))$

Voir ici. En version courte : il faut un arbre de hauteur h avec $2^h \ge n!$ pour choisir parmi les n! permutations possibles de n éléments. Ce qui donne $h \ge cst \times n \log(n)$ comparaisons à effecter a minima, d'où cette complexité.

Complexité en temps tri par tas : $T(n) = \Theta(n \log(n))$

Remarque: Pour un vecteur de valeurs identiques, on obtient $\Theta(n)$!!

Comparaison des algorithmes de tri sur une animation

https://www.toptal.com/developers/sorting-algorithms

Section 2

Le master theorem

Diviser pour régner

Récurrence sur le temps d'exécution :

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Problème initial de taille n.

- \bullet diviser : découpage en a problèmes de taille n/b de même nature
- régner : découpage récursif jusqu'à un problème élémentaire (cas de base) de résolution facile
- combiner les sous-problèmes pour reconstruire le problème initial

Remarque : temps pour diviser et recombiner : f(n)

Diviser pour régner (un exemple pour être précis)

Cas du **tri fusion** avec a = b = 2 on devrait écrire :

$$T(n) = egin{cases} \Theta(1), & ext{si } n=1 \ T\left(\lfloor rac{n}{2}
floor
ight) + T\left(\lceil rac{n}{2}
ceil
ight) + \Theta(n), & ext{si } n>1 \end{cases}$$

Qu'on réécrit

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

- On ignore la condition aux limites $\Theta(1)$ qui n'a pas de conséquence sur l'ordre de la complexité
- Le master theorem étant valable quel que soit la partie entière (sup ou inf) on se permet de l'enlever

Master theorem

Enoncé

Si on a la relation de récurrence suivante avec $a \ge 1$ et b > 1

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

avec $\frac{n}{b}$ signifiant $\lfloor \frac{n}{b} \rfloor$ ou $\lceil \frac{n}{b} \rceil$ ALORS

- **1** Si $f(n) = O(n^{\log_b a \epsilon})$ avec $\epsilon > 0$ alors $T(n) = O(n^{\log_b a})$
- Si $f(n) = \Omega(n^{\log_b a + \epsilon})$ avec $\epsilon > 0$ et $a \times f(\frac{n}{b}) \le c \times f(n)$ avec c < 1 alors $T(n) = \Theta(f(n))$

Dans les cas 1 et 2, la relation de récurrence est assez importante par rapport au temps associé à f(n) pour avoir une influence sur la complexité.

Enoncé avec a = b = 2

$$T(n) = 2T\left(\frac{n}{2}\right) + f(n)$$

- **1** Si $f(n) = O(n^{1-\epsilon})$ avec $\epsilon > 0$ alors T(n) = O(n)
- **3** Si $f(n) = \Theta(n)$ alors $T(n) = \Theta(n \times \log(n))$
- Si $f(n) = \Omega(n^{1+\epsilon})$ avec $\epsilon > 0$ et $2 \times f(\frac{n}{2}) \le c \times f(n)$ avec c < 1 alors $T(n) = \Theta(f(n))$

Enoncé (preuve du tri par tas) avec a = 1 et b = 3/2

Rappel

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Si $f(n) = O(n^{\log_b a \epsilon})$ alors $T(n) = O(n^{\log_b a})$
- Si $f(n) = \Theta(n^{\log_b a})$ alors $T(n) = \Theta(n^{\log_b a} \log(n))$
- Si $f(n) = \Omega(n^{\log_b a + \epsilon})$ alors $T(n) = \Theta(f(n))$

$$T(n) = T\left(\frac{n}{3/2}\right) + \Theta(1)$$

$$log_b a = log_{3/2} 1 = 0$$
 donc $f(n) = \Theta(1) = \Theta(n^0) = \Theta(n^{log_b a})$
et ainsi $T(n) = \Theta(n^0 log(n)) = \Theta(log(n))$

Section 3

La preuve du théorème

arbre

Voir le document MASTER_THEOREM.pdf

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Un exemple plus original: l'algorithme de Strassen

Multiplication matricielle "rapide" $\mathbf{C} = \mathbf{AB}$ $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{2^p \times 2^p}$. Temps avec la méthode standard : $\Theta(n^3)$ avec $n = 2^p$.

$$\textbf{A} = \begin{bmatrix} \textbf{A}_{1,1} & \textbf{A}_{1,2} \\ \textbf{A}_{2,1} & \textbf{A}_{2,2} \end{bmatrix} \text{, } \textbf{B} = \begin{bmatrix} \textbf{B}_{1,1} & \textbf{B}_{1,2} \\ \textbf{B}_{2,1} & \textbf{B}_{2,2} \end{bmatrix} \text{, } \textbf{C} = \begin{bmatrix} \textbf{C}_{1,1} & \textbf{C}_{1,2} \\ \textbf{C}_{2,1} & \textbf{C}_{2,2} \end{bmatrix}$$

avec $\mathbf{A}_{i,j}, \mathbf{B}_{i,j}, \mathbf{C}_{i,j} \in R^{2^{p-1} \times 2^{p-1}}$

$$\begin{aligned} \mathbf{C}_{1,1} &= \mathbf{A}_{1,1} \mathbf{B}_{1,1} + \mathbf{A}_{1,2} \mathbf{B}_{2,1} \\ \mathbf{C}_{1,2} &= \mathbf{A}_{1,1} \mathbf{B}_{1,2} + \mathbf{A}_{1,2} \mathbf{B}_{2,2} \\ \mathbf{C}_{2,1} &= \mathbf{A}_{2,1} \mathbf{B}_{1,1} + \mathbf{A}_{2,2} \mathbf{B}_{2,1} \\ \mathbf{C}_{2,2} &= \mathbf{A}_{2,1} \mathbf{B}_{1,2} + \mathbf{A}_{2,2} \mathbf{B}_{2,2} \end{aligned}$$

$$\begin{split} \mathbf{M}_1 &:= (\mathbf{A}_{1,1} + \mathbf{A}_{2,2})(\mathbf{B}_{1,1} + \mathbf{B}_{2,2}) & \mathbf{C}_{1,1} &= \mathbf{M}_1 + \mathbf{M}_4 - \mathbf{M}_5 + \mathbf{M}_7 \\ \mathbf{M}_2 &:= (\mathbf{A}_{2,1} + \mathbf{A}_{2,2}) \mathbf{B}_{1,1} & \mathbf{C}_{1,2} &= \mathbf{M}_3 + \mathbf{M}_5 \\ \mathbf{M}_3 &:= \mathbf{A}_{1,1}(\mathbf{B}_{1,2} - \mathbf{B}_{2,2}) & \mathbf{C}_{2,1} &= \mathbf{M}_2 + \mathbf{M}_4 \\ \mathbf{M}_4 &:= \mathbf{A}_{2,2}(\mathbf{B}_{2,1} - \mathbf{B}_{1,1}) & \mathbf{C}_{2,2} &= \mathbf{M}_1 - \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_6 \\ \mathbf{M}_5 &:= (\mathbf{A}_{1,1} + \mathbf{A}_{1,2}) \mathbf{B}_{2,2} \\ \mathbf{M}_6 &:= (\mathbf{A}_{2,1} - \mathbf{A}_{1,1})(\mathbf{B}_{1,1} + \mathbf{B}_{1,2}) \\ \mathbf{M}_7 &:= (\mathbf{A}_{1,2} - \mathbf{A}_{2,2})(\mathbf{B}_{2,1} + \mathbf{B}_{2,2}) \end{split}$$

$$T(n) = 8T\left(\frac{n}{2}\right) + n^2$$

$$T(n) = 7T\left(\frac{n}{2}\right) + n^2$$

Pour aller plus loin (Akra-Bazzi)

Théorème d'Akra-Bazzi

$$T(x)=g(x)+\sum_{i=1}^k a_i T(b_i x+h_i(x)) \quad ext{ pour } x\geq x_0,$$

Alors T(x) admet l'estimation suivante de son comportement asymptotique

$$T(x) = \Theta\left(x^p\left(1+\int_1^x rac{g(u)}{u^{p+1}}\,\mathrm{d}u
ight)
ight)$$

Un exemple:

On considère T(n) définie par

$$T(n) = n^2 + rac{7}{4}T\left(\left|rac{1}{2}n
ight|
ight) + T\left(\left\lceilrac{3}{4}n
ight
ceil
ight) \quad ext{ pour } n>3$$

et T(n)=1 pour $0\leq n\leq 3$. On prend p=2 de sorte que

$$rac{7}{4}igg(rac{1}{2}igg)^p+igg(rac{3}{4}igg)^p=1.$$

La formule s'évalue alors comme suit :

$$T(x) = \Theta\left(x^p\left(1 + \int_1^x \frac{g(u)}{u^{p+1}} \, \mathrm{d}u\right)\right) = \Theta\left(x^2\left(1 + \int_1^x \frac{u^2}{u^3} \, \mathrm{d}u\right)\right) = \Theta(x^2(1 + \ln x)) = \Theta(x^2 \log x)$$

Section 4

TD / TP

Appliquer le "master theorem"

$$T(n) = 2T\left(\frac{n}{2}\right) + n^4$$

$$T(n) = T\left(\frac{7n}{10}\right) + n$$

$$T(n) = 16T\left(\frac{n}{4}\right) + n^2$$

$$T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$$

$$T(n) = 7T\left(\frac{n}{2}\right) + n^2$$

Des exemples de diviser pour régner

compléter le fichier avec 3 exemples d'algorithme récursif (donner un lien).

ATTENTION : au moins l'un des 3 exemples NE DOIT PAS être du type $(T(n)=2T\left(\frac{n}{2}\right)+f(n))$

Choix optimal d'un projet

- Vendredi prochain, je vous proposerai des sujets pour l'évaluation. La question se pose de comment répartir ces sujets en fonction de vos préférences ?
- Pour n étudiants et m projets, on demande aux étudiants de choisir 3 projets par ordre de préférence (1, 2 et 3). Comment répartir au mieux les projets pour maximiser la satisfaction des étudiants?

<u>Exercice</u>: vous avez 20 min pour trouver un algorithme sur internet! remplir le tableur avec son choix

Ensuite, vous aurez jusqu'au vendredi 3 décembre (date du cours suivant) pour choisir votre préférence, le choix majoritaire l'emportera! (Si égalité, je ferai le choix final)

Le package exemple

tri par tas versus tri par insertion dans le package M2algorithmique

```
devtools::install_github("vrunge/M2algorithmique")
library(M2algorithmique)
```

Résoudre le "Maximum subarray problem" en se basant sur le package exemple **M2algorithmique**.

Page wikipédia

Objectifs:

- installer un git, créer un github
- créer un 1er projet simple avec ce problème

Section 5

Rcpp package (a few tips)

Rcpp package (code)

- fonctions R dans le dossier R
- fonctions C++ dans le dossier src

Pour le C++, habillage **obligatoire** :

- // [[Rcpp::export]] Pour l'export en R
- Possibilité d'utiliser des include

```
include <Rcpp.h> //to use the NumericVector object
using namespace Rcpp; //to use the NumericVector object
include<vector>
```

Faire attention au fichier NAMESPACE

Rcpp package (information)

Les informations autour du code sont capitales dans un package

- Ecrire un fichier de DESCRIPTION complet
- Un README.md qui détaille l'installation et l'utilisation du package
- L'aide en .Rd des fonctions est dans le dossier man

Les fichiers .Rd sont générés automatiquement à partir du code devant les fonctions en utilisant le package roxygen2

```
Aide d'une fonction R

#' Insertion sort algorithm

#' Operam v an unsorted vector of numeric data
#' Operam v an unsorted vector
```

Faire attention aux fichiers .Rbuildignore et .gitignore pour une bonne compilation du package et un git bien géré.