Partições

Guilherme Zeus Moura zeusdanmou@gmail.com

Algumas ideias

- Casos pequenos.
- Provar quantidades iquais: criar uma bijeção pode ser útil.
- Pense recursivamente: para representar x como soma de elementos de A, olhe para os números x-a, $a \in A$.
- Casos grandes: pensar assintoticamente pode ser útil.
- Provar existência de representação: casa dos pombos ou algoritmo guloso podem ser uma solução rápida.
- Quantidade de parcelas: usar contagem pode ser útil para fazer estimativas.
- Funções geratrizes podem ser úteis.
- Teoria aditiva: ao estudar A + A, pode ser útil estudar também A A.

Definição

Definição 0.1. Uma partição de um inteiro positivo n é uma forma de decomposição de n como soma de interos positivos. Duas somas são consideradas iguais se e somente se possuem as mesmas parcelas, mesmo que em ordem diferente.

Rigorosamente uma partição de um inteiro positivo n é uma sequência de inteiros positivos (x_1, x_2, \dots, x_m) tais que

$$x_1 \ge x_2 \ge \dots \ge x_m \ e \ x_1 + x_2 + \dots + x_m = n.$$

Chamamos x_1, x_2, \ldots, x_n de partes desta partição.

1 Exercícios Elementares

Problema 1.1. Seja p(n) o número de partições de n. Prove que o número de partições de n com todas as partes maiores que 1 é p(n) - p(n-1).

Problema 1.2. Mostre que o número de partições de um inteiro n em partes tal que a maior parte tem tamanho exatamente r é igual ao número de partições em exatamente r partes.

Problema 1.3. Prove que o número de partições de n em que apenas as partes ímpares podem ser repetidas é igual ao número de partições de n em que nenhum parte aparece mais do que 3 vezes.

Problema 1.4. Prove que o número de partições de n em partes distintas é igual ao número de partições de n em partes ímpares.

Problema 1.5. O conjunto A é um subconjunto de $\{1, 2, 3, \dots, n\}$ tal que $A + A = \{a + b : a, b \in A\}$ não intersecta A. Ache, em função de n, o número máximo de elementos de A.

2 Questões Divertidas

Problema 2.1. Seja n um inteiro positivo. Alice e Bruno jogam o seguinte jogo: eles constroem uma partição de n da seguinte forma: Inicialmente, Alice escolhe um inteiro positivo $a_1 < n$. Depois Bruno escolhe um inteiro positivo $a_2 \le a_1$ tal que $a_1 + a_2 \le n$. Em seguida, Alice escolhe um inteiro positivo $a_3 \le a_2$ tal que $a_1 + a_2 + a_3 \le n$. O jogo continua, alternando os jogadores, até obtermos uma partição $a_1 + a_2 + \cdots + a_k$ de n. Se k é impar, Alice vence; caso contrário, Bruno vence. Determine, em função de n, quem tem a estratégia vencedora.

Problema 2.2 (IMO 1997, 6). Para cada inteiro positivo n, definimos f(n) como o número de maneiras de representar n como soma de potências de dois com expoentes não negativos. Representações que diferem somente na ordem das parcelas são consideradas a mesma. Por exemplo, f(4) = 4, pois o número 4 pode ser expresso das quatro seguintes maneiras: 4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove que, para qualquer inteiro $n \geq 3$,

$$2^{\frac{n^2}{4}} < f(2^n) < 2^{\frac{n^2}{2}}.$$

Problema 2.3 (IMO 1992, 6). Para cada inteiro positivo n, S(n) é definido como o maior inteiro tal que, para todo inteiro positivo $k \le S(n)$, n^2 pode ser escrito como soma de k quadrados positivos.

- (a) Prove que $S(n) \le n^2 14$ para cada $n \ge 4$.
- (b) Ache um inteiro n tal que $S(n) = n^2 14$.
- (c) Prove que existem infinitos inteiros n tal que $S(n) = n^2 14$.

Problema 2.4 (Yufei Zhao [5]). Determine se existe um subconjunto S dos inteiros positivos com a seguinte propriedade: para todo inteiro positivo n, o número de partições de n, onde cada parte aparece no máximo duas vezes, é igual ao número de partições de n em partes que são elementos de S.

3 Problemas Interessantes

$$|A - A| - |A + A| \le n^2 - cn^{8/5}$$
.

Problema 3.2 (Banco IMO 2015, C6). Seja S um conjunto não vazio de inteiros positivos. Dizemos que um inteiro positivo n é bacana se ele possui uma representação única como soma de uma quantidade ímpar de elementos distintos de S. Prove que existem infinitos inteiros que não são bacanas.

Problema 3.3 (APMO 2020, 3). Determine todos os inteiros positivos k para os quais existe um inteiro positivo m e um conjunto S de inteiros positivos tais que todo inteiro n > m pode ser escrito como uma soma de elementos distintos de S em exatamente k maneiras.

Problema 3.4. Definimos o *espectro* de um número real α como a sequência

$$\operatorname{Spec}(\alpha) = (\lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor, \dots).$$

- (a) (Beatty's Theorem, 1926) Se $\alpha > 1$ é um irracional e $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, mostre que as sequências $\operatorname{Spec}(\alpha)$ e $\operatorname{Spec}(\beta)$ particionam os inteiros positivos. Em outras palavras, mostre que $\operatorname{Spec}(\alpha) \cup \operatorname{Spec}(\beta) = \mathbb{Z}_{>0}$ e $\operatorname{Spec}(\alpha) \cap \operatorname{Spec}(\beta) = \emptyset$.
- (b) (Bang's Theorem, 1957) Prove a recíproca do teorema acima.

4 Desafio Final

Problema 4.1 (Banco IMO 2010, C7). Sejam P_1, \ldots, P_s progressões aritméticas de inteiros, com as seguintes condições:

- (i) todo inteiro pertence a pelo menos uma das progressões;
- (ii) toda progressão contém um número que não pertence a outra progressão.

Seja n o menor múltiplo comum das razões das progressões; seja $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ sua fatoração em números primos.

Prove que

$$s \ge 1 + \sum_{i=1}^k \alpha_i (p_i - 1).$$

Referências

- [1] Joseph Laurendi. Partitions of integers, January 2005.
- [2] George Lucas. Introdução à teoria das partições de inteiros. Semana Olímpica da OBM, January 2020.
- [3] David A. Santos. Number theory for mathematical contests, August 2005.
- [4] Carlos Shine. Problemas de partições nos inteiros. Treinamento IMO, August 2020.
- [5] Yufei Zhao. Combinatorics, week 3. AwesomeMath, August 2007.