VE472 Lecture 4

Jing Liu

UM-SJTU Joint Institute

Summer

Theorem 0.1 (Singular Value Decomposition)

Let **A** be a rank k matrix of $m \times n$ with $m \ge n$, then we have $\sigma_1 \ge \cdots \ge \sigma_k > 0$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$$

$$= \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_k \mid \mathbf{u}_{k+1} & \cdots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} \begin{matrix} \sigma_1 & \cdots & 0 & & \\ \vdots & \ddots & \vdots & & \\ 0 & \cdots & \sigma_k & & \end{matrix} \\ \hline \begin{matrix} \mathbf{0}_{(m-k)\times k} & \mathbf{0}_{(m-k)\times (n-k)} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{v}_k^{\mathrm{T}} \\ \hline \begin{matrix} \mathbf{v}_{k+1}^{\mathrm{T}} \\ \vdots \\ \vdots \\ \mathbf{v}_n^{\mathrm{T}} \end{bmatrix}$$

where U and V are orthogonal matrices of size $m \times m$ and $n \times n$, respectively.

Q: Why is this theorem useful in terms of dealing with a big data matrix X?

• SVD is faster than QR, but a magnitude slower than LU or Cholesky .

```
>> n = 1000; X = rand(n, 100); y = randn(n, 1);
tic; for i = 1:10000
    XX = transpose(X)*X; yy = transpose(X)*y;
    C = chol(XX, 'lower');
    bhat = transpose(C)\(C\yy);
end; toc;
tic:for i = 1:10000
    [Q, R] = qr(X); bhat = R \setminus (transpose(Q)*y);
end; toc;
tic; for i = 1:10000
    [U, S, V] = svd(X, 'econ');
    s = diag(S); s = 1./s;
    bhat = V*diag(s)*transpose(U)*y;
end; toc;
Elapsed time is 2.521359 seconds.
Elapsed time is 45.891408 seconds.
```

Elapsed time is 19.551785 seconds.

Vandermonde matrix

• Recall the stability of linear model can be studied using the eigenvalues of

$$\mathbf{X}^{\mathrm{T}}\mathbf{X}$$

having small eigenvalues indicate columns are nearly linearly dependent.

• Using SVD gives us the stability of our model given the data as a byproduct.

$$\kappa = \frac{\max \sigma_i}{\min \sigma_i}$$

Increasing κ as n increases by construction

Increasing relative error

Really big κ

Really big κ really big relative error

Decreasing κ as n increases for a fixed k

Only having really big κ is problematic

Increasing rapidly κ as k increases for a fixed n

A more complex data is more problematic than a large data

ullet So far we have considered the data matrix ${f X}$ that is full rank when solving

$$\underset{\mathbf{b} \in \mathbb{R}^{k+1}}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$$

- Q: What happens when A is rank deficient or "close" to being rank deficient?
 - Such problems often arise with big data, e.g. extracting signals from noisy data, digital image restoration as well as big prediction or classification.

Theorem 0.2

Let σ_{\min} denote the smallest singular value of X that is not zero and $U_c \Sigma_c V_c^T$ be the compact singular value decomposition of X. If b minimises $\|y - Xb\|$, then

$$\|\mathbf{b}\| \geq \frac{\left|\mathbf{u}^{\mathrm{T}}\mathbf{b}\right|}{\sigma_{min}}$$

where \mathbf{u} is the last column of \mathbf{U}_c . Furthermore changing \mathbf{y} to $\mathbf{y} + \delta \mathbf{y}$ can induce a change of $\delta \mathbf{b}$ to \mathbf{b} , where $\|\delta \mathbf{b}\|$ is as large as $\|\delta \mathbf{y}\| / \sigma_{min}$.

Q: What does the last theorem tell us if A is nearly rank deficient?

Theorem 0.3

Let $\mathbf X$ be a rank r matrix of $n \times (k+1)$ with $n \ge k+1$. If r < k+1, then there is an k+1-r dimensional set of vectors $\mathbf b \in \mathbb R^{k+1}$ that solve the following

$$rg \min_{\mathbf{b} \in \mathbb{R}^{k+1}} \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$$
 where $\mathbf{y} \in \mathbb{R}^n$

Furthermore, the singular value decomposition of $\mathbf X$ can be written as

$$\mathbf{A} = egin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} egin{bmatrix} \mathbf{\Sigma}_{r imes r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix}^\mathrm{T}, \quad \textit{where } \mathbf{U}_1 \textit{ and } \mathbf{V}_1 \textit{ have } r \textit{ columns,} \end{cases}$$

and all the minimisers take the following form

$$\mathbf{b} = \mathbf{V}_1 \mathbf{\Sigma}_{r \times r}^{-1} \mathbf{U}_1^T \mathbf{y} + \mathbf{V}_2 \mathbf{z}, \qquad ext{for any } \mathbf{z} \in \mathbb{R}^{k+1-r}.$$

Q: Which of those minimisers shall we use as the best b?