IBM Hack Challenge 2020

Warehouse Optimisation

23JumpStreet

Sudhanshu Bhoi Vineet Tambe

Problem

Warehouse management in challenging. Following are some of the problems:

- Inaccurate Inventory
- 2. Redundant activities
- 3. Seasonal Demands
- 4. Avoiding Product Damage

and many more...

What's the Solution?

Predicting the demands

- 1. **Enter** the food item details
- 2. **Submit** to receive the Prediction
- 3. **Plan** according to the prediction
- 4. **Get** the number of actual food dispatched
- 5. **Visualise** everything

Monitoring the Health

- Get notified if the environment is perishable
- 2. **Open** Health tab to check what parameter is abnormal
- 3. Go fix it
- 4. **Visualise** status and history anytime

Perishable Environment

Sensors have detected abnormal environment which may perish certain food items. Please take action!

Automating the process

- 1. **Ask** Watson to record details
- 2. **Preview** whether whether the details are right
- 3. Click Predict

Week	0
Center	12345
Meal	234
Checkout Price	346.98
Base Price	200
Email Promotion	0
Home Page Feature	0

UI Demo

How does it work?

FLOWCHART

How was it made?

Gathering and Reviewing Dataset

Food Demand Forecast Challenge Dataset from Kaggle.

- 457K Train data
- 32.6K Test data

Order details with columns from the image were used for training. The dataset also contains Fulfilment center and Meal details as a lookup table. Week

Fulfilment Centre

Meal

Checkout Price

Base Price

Promotion Email

Homepage feature

Number of orders (target)

Preprocessing and Analysing Data

Preprocessing and Analysing Data

Studying different ML models

Progress map ①

Prediction column: num_orders

Studying different ML models

Rank ↑	Name	Algorithm	RMSE (Optimized)	Enhancements
* 1	Pipeline 3	Random Forest Regressor	185.202	HPO-1 FE
2	Pipeline 4	Random Forest Regressor	185.202	HPO-1 FE HPO-2
3	Pipeline 7	Extra Trees Regressor	191.555	HPO-1 FE
4	Pipeline 8	Extra Trees Regressor	191.555	HPO-1 FE HPO-2
5	Pipeline 1	Random Forest Regressor	191.800	None
6	Pipeline 2	Random Forest Regressor	191.800	HPO-1
7	Pipeline 5	Extra Trees Regressor	201.305	None
8	Pipeline 6	Extra Trees Regressor	201.305	HPO-1

Model Optimisation

Metric chart ①

Prediction column: num_orders

Using IBM Cloud for everything

We challenged ourselves to use IBM Cloud technologies for everything.

- Watson Machine Learning
- Watson Assistant
- Watson Text to Speech
- Watson Speech to Text

- Internet of Things
- NodeRED
- Watson Studio
- IBM CognosDashboard

Using IBM Cloud for everything

Developing using Node-RED

Demand Prediction Flow

Form > Request ML Model with data > Display and speak out the prediction > Simulate the dispatch in Gauge > Add point to the History Graph

Developing using Node-RED

Developing using Node-RED

Why is it good?

Advantages

- 1. Prepare for the demand
- Reduce losses and Increase Profits
- 3. Reduce wastage of perishable food items
- 4. Reduce other costs and efforts
- 5. Share predictions with rest of the supply chain

Problem Solved