Experimental one-way quantum computing

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger

Ramy Tannous Sebastian Verschoor

QIC750: Implementation of Quantum Information Processing University of Waterloo

April 13th, 2017

Introduction

- Quantum circuits are arranged similar to classical computers
- However, a circuit can be implemented in many ways (i.e. topological computer, KLM model, one-way)

Why pursue such models?

- Original proposals were competing for scalability
- Ease of implementation

One-way quantum Computer

- Measurements do all the computation
- Special entangled state is the entire resource for the quantum computing
 - called a cluster state
- Different arrangements of single qubit measurements create different algorithms
 - ordering
 - measurement bases (feedforward)
- Not time reversible, i.e. it is one-way

$$\begin{aligned} &|0\rangle_{1}\,|+\rangle_{2}\,|0\rangle_{3}\,|+\rangle_{4} \\ &+|0\rangle_{1}\,|-\rangle_{2}\,|1\rangle_{3}\,|-\rangle_{4} \\ &+|1\rangle_{1}\,|-\rangle_{2}\,|0\rangle_{3}\,|+\rangle_{4} \\ &+|1\rangle_{1}\,|+\rangle_{2}\,|1\rangle_{3}\,|-\rangle_{4} \end{aligned}$$

 $|+\rangle$ $R_z^{(-\alpha)}$ $R_x^{(-\beta)}$ $R_z^{(-\gamma)}$ H

 $\begin{array}{c} |0\rangle_{1}|+\rangle_{2}|0\rangle_{3}|+\rangle_{4} \\ +|0\rangle_{1}|-\rangle_{2}|1\rangle_{3}|-\rangle_{4} \\ +|1\rangle_{1}|-\rangle_{2}|0\rangle_{3}|+\rangle_{4} \\ +|1\rangle_{1}|+\rangle_{2}|1\rangle_{3}|-\rangle_{4} \end{array}$

Horseshoe⁽⁴⁾ cluster (rotated180°)

Linear(4) cluster

 $|+\rangle - R_{z}^{(-\alpha)} - R_{x}^{(-\beta)} - R_{z}^{(-\gamma)} - H \longrightarrow$

 $\begin{aligned} &|0\rangle_{1}|+\rangle_{2}|0\rangle_{3}|+\rangle_{4}\\ &+|0\rangle_{1}|-\rangle_{2}|1\rangle_{3}|-\rangle_{4}\\ &+|1\rangle_{1}|-\rangle_{2}|0\rangle_{3}|+\rangle_{4}\\ &+|1\rangle_{1}|+\rangle_{2}|1\rangle_{3}|-\rangle_{4} \end{aligned}$

Horseshoe⁽⁴⁾ cluster (rotated180°)

Linear(4) cluster

Box⁽⁴⁾ cluster

$$|\Phi_{\text{cluster}}\rangle = \frac{1}{2}\left(|\textit{HHHHH}\rangle + |\textit{HHVV}\rangle + |\textit{VVHH}\rangle - |\textit{VVVV}\rangle\right)$$

Experiment

- Creation of the cluster state
 - Fidelity 0.63 ± 0.02 (above the threshold 0.5 for bi-separable four-qubit states)
- Implemented single qubit rotations
 - Fidelities from 0.58 ± 0.08 to $0.99^{+0.01}_{-0.02}$
- Implemented two qubit gates
 - \blacktriangleright Fidelities from 0.64 \pm 0.05 to 0.94 \pm 0.01
- Grover's search algorithm
 - Measurement in this specific application only introduce σ_z -errors, which can completely be corrected by post-processing
 - Probability of correct outcome around 90%

Conclusions

- First demonstration of a quantum algorithm in a cluster state computer
- Generated four qubit cluster states with optics
- Demonstrated a universal set of gate (single and two qubit)

Challenges

- Creation of cluster state can be improved (more qubits)
- Implement fast feedforward to change measurements in real time

Further reading

R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohi,
 R. Kaltenbaek, T. Jennewein, and A. Zeilinger.
 High-speed linear optics quantum computing using active feed-forward.

Nature, 445(7123):65-69, Jan 2007.

- R. Raussendorf and H. J. Briegel.
 A One-Way Quantum Computer.
 Phys. Rev. Lett., 86:5188–5191, May 2001.
- P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter,
 V. Vedral, M. Aspelmeyer, and A. Zeilinger.
 Experimental one-way quantum computing.
 Nature, 434(7030):169–176, Mar 2005.

Thank you

Feedforward

2017-04-13