(Cognome) (Nome) (Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max 4 x_1 + 5 x_2 \\ -x_1 + x_2 \le 4 \\ -5 x_1 - 4 x_2 \le 20 \\ x_1 + 2 x_2 \le 2 \\ 2 x_1 + x_2 \le 1 \\ 4 x_1 - x_2 \le 5 \\ 5 x_1 + x_2 \le 7 \end{cases}$$

Base	Soluzione di base	$\begin{array}{c} {\rm Ammissibile} \\ {\rm (si/no)} \end{array}$	Degenere (si/no)
{1, 2}	x = (-4, 0)	SI	NO
{3, 5}	$y = \left(0, \ 0, \ \frac{8}{3}, \ 0, \ \frac{1}{3}, \ 0\right)$	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice uscente	Rapporti	Indice entrante
1° iterazione	{2, 5}	(0, -5)	$\left(0, -\frac{8}{7}, 0, 0, -\frac{3}{7}, 0\right)$	2	63, 28, 21, 28	4
2° iterazione	$\{4, 5\}$	(1, -1)	(0, 0, 0, 4, -1, 0)	5	12, 6	3

Esercizio 3. Un'azienda produce tre tipi di prodotti, A, B e C, utilizzando tra le diverse materie prime anche l'alluminio. Di quest'ultima materia prima, per il prossimo mese sono disponibili dal fornitore 400 kg. Un chilogrammo di alluminio costa all'azienda 7 euro. La seguente tabella mostra i kg di alluminio richiesti per produrre un kg di A, B e C, i costi di produzione (in euro per kg di prodotto) al netto delle materie prime, e i ricavi (in euro per kg di prodotto) di vendita per ognuno dei prodotti A, B e C:

prodotti	alluminio (kg)	costo (euro/kg)	ricavo (euro/kg)
A	0.3	12	25
В	0.6	6	30
С	0.9	7	38

Determinare la produzione mensile che massimizza i profitti sapendo che per produrre A non si deve utilizzare più di 1/3 dell'alluminio utilizzato in totale.

COMANDI DI MATLAB
c = [-10.9; -19.8; -24.7]

 $A = [0.3 \ 0.6 \ 0.9; \ 0.2 \ -0.2 \ -0.3]$ $b=[400; \ 0]$

Aeq=[] beq=[]

lb=[0;0;0]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,3) (3,4)				
(4,5)(4,6)	(2,4)	x = (0, 4, 0, -3, 9, 1, 2, 9, 0)	NO	SI
(1,4) (2,3) (2,4)				
(4,6) (5,6)	(4,5)	$\pi = (0, 3, 10, 6, 10, 14)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,5) $(2,3)$ $(2,4)$ $(4,5)$ $(5,6)$	(1,5) $(2,4)$ $(3,4)$ $(4,5)$ $(5,6)$
Archi di U	(3,4)	
x	(0, 0, 4, 6, 0, 10, 7, 0, 9)	(0, 0, 4, 0, 6, 4, 7, 0, 9)
π	(0, -6, 1, -3, 6, 10)	(0, -6, -8, -3, 6, 10)
Arco entrante	(3,4)	(4,6)
ϑ^+,ϑ^-	9,6	4,7
Arco uscente	(2,3)	(4,6)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	ite	r 3	ite	r 4	ite	r 5	ite	r 6
	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2)	4	1	Ę		6	3
Visitato	1		3			<i>-</i>	۷.	Ł	٠)	,	,
nodo 2	16	1	16	1	16	1	16	1	16	1	16	1
nodo 3	15	1	15	1	15	1	15	1	15	1	15	1
nodo 4	16	1	16	1	16	1	16	1	16	1	16	1
nodo 5	$+\infty$	-1	$+\infty$	-1	29	2	23	4	23	4	23	4
nodo 6	$+\infty$	-1	27	3	27	3	23	4	23	4	23	4
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 4	, 6	4, 5	5, 6	5,	6	(3	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 6	9	(0, 9, 0, 0, 0, 9, 0, 0, 0, 0)	9
1 - 4 - 6	10	(0, 9, 10, 0, 0, 9, 0, 0, 10, 0)	19
1 - 2 - 5 - 6	6	(6, 9, 10, 0, 6, 9, 0, 0, 10, 6)	25
1 - 4 - 5 - 6	5	(6, 9, 15, 0, 6, 9, 0, 5, 10, 11)	30
1 - 2 - 4 - 5 - 6	1	(7, 9, 15, 1, 6, 9, 0, 6, 10, 12)	31

Taglio di capacità minima: $N_s = \{1, 3\}$ $N_t = \{2, 4, 5, 6\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 6 \ x_1 + 6 \ x_2 \\ 18 \ x_1 + 17 \ x_2 \le 67 \\ 6 \ x_1 + 17 \ x_2 \le 44 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{23}{12}, \frac{65}{34}\right)$$

 $v_S(P) = 22$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento

sol. ammissibile =
$$(1,1)$$
 $v_I(P) = 12$

c) Calcolare un taglio di Gomory.

$$r = 1$$
 $7x_1 + 17x_2 \le 45$
 $r = 2$ $9x_1 + 9x_2 \le 34$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 487 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	7	8	23	24	16	9	15
Volumi	465	106	11	433	43	210	259

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(0, 1, 1, 0, 1, 0, 1)$$

 $v_I(P) = 62$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, 1, 1, \frac{68}{433}, 1, 0, 1\right)$$
 $v_S(P) = 65$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 - 2x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 - x_2^2 - 1 \le 0, \quad x_2^2 - 4 \le 0\}.$$

Soluzioni del sis	Mass	imo	Mini	mo	Sella		
x	λ	μ	globale	locale	globale	locale	
(0, 1)	(0,0)		NO	?	SI	SI	NO
(0, 2)	$\left(0,-\frac{1}{2}\right)$		NO	NO	NO	NO	SI
$\left(\frac{\sqrt{5}}{2}, \frac{1}{2}\right)$	(-1,0)		NO	NO	NO	NO	SI
$\left(-\frac{\sqrt{5}}{2}, \frac{1}{2}\right)$	(-1,0)		NO	NO	NO	NO	SI
$\left(\sqrt{5},\ 2\right)$	$\left(-1,-\frac{3}{2}\right)$		NO	SI	NO	NO	NO
$\left(-\sqrt{5},\ 2\right)$	$\left(-1,-\frac{3}{2}\right)$		NO	SI	NO	NO	NO
(0, -2)	$\left(0,-\frac{3}{2}\right)$		NO	NO	NO	NO	SI
$\left(\sqrt{5}, -2\right)$	$\left(-1,-\frac{5}{2}\right)$		SI	SI	NO	NO	NO
$\left(-\sqrt{5}, -2\right)$	$\left(-1,-\frac{5}{2}\right)$		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 + 10 x_1 + 5 x_2 \\ x \in P \end{cases}$$

 $\mathrm{dove}\;P\;\grave{\mathrm{e}}\;\mathrm{il}\;\mathrm{poliedro}\;\mathrm{di}\;\mathrm{vertici}\;(-0,2)\;,\,(-3,-0)\;,\,(-2,3)\;\mathrm{e}\;(-1,-3).\;\mathrm{Fare}\;\mathrm{una}\;\mathrm{iterazione}\;\mathrm{del}\;\mathrm{metodo}\;\mathrm{di}\;\mathrm{Frank-Wolfe}.$

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$(-\frac{5}{3},-2)$	$3.33333 x_1 + 5 x_2$	(-1,-3)	$(\frac{2}{3},-1)$	1	(-1, -3)