Project 06: Structual Variant Calling Pipeline Report

Author: Tianze (Vincent) Luo

Date: 2025-04-21

Table of Contents

- · Project 06: Structual Variant Calling Pipeline Report
 - 0. Background
 - Part I. SV Calling
 - 1. Extract chr22 alignments (.BAM) && index
 - 2. Manta caller (used single tool in this pipeline)
 - 3. Convert chr22 alignments .bam to indexed .cram
 - 4. Part I Summary
 - Summary of the SVs called
 - Part II. Investigate with IGV

0. Background

- Interactive session command: crc-interactive --teach -a hugen2072-2025s -t 4:00:00
- Start .cram file: p6/NA12778.final.cram
 - Alternative format for .bam
 - NA12778: Female resident of Utah with Northern and Western European
 –associated ancestry
 [1000 Genome Project]
- Reference sequence: p6/GRCh38_full_analysis_set_plus_decoy_hla.fa

Part I. SV Calling

1. Extract chr22 alignments (.BAM) && index

Will call SVs on chromosome 22 only

2. Manta caller (used single tool in this pipeline)

manta SV discovery caller based on discordant pairs (PE) and split reads (SR).

manta workflow:

- configManta.py
- manta test/runWorkflow.py

- variant .VCF -> .BED
 - Extract DEL/DUP > 1 kb (_bed)
- 3. Convert chr22 alignments .bam to indexed .cram
- 4. Part I Summary

Summary of the SVs called

We have called 17 SVs in chr22, more specifically DEL/DUP (CNVs) >1kb.

• 16 of them are DELs and 1 of them is DUP:TANDEM

The table below is generated from results of luo script SV-summary.R

sv_type	count	avg_length
DEL	16	18638
DUP:TANDEM	1	58303
ALL	17	20971

```
wc -l gt1kb.cnv.bed
# 17 gt1kb.cnv.bed
```

```
cut -f4 gt1kb.cnv.bed | sort | uniq -c
#    16 <DEL>
#    1 <DUP:TANDEM>

## Summary
module load gcc/12.2.0 r/4.4.0
Rscript --vanilla luo_script_SV-summary.R
```

Part II. Investigate with IGV

Summary Table

SV Types	Discordant Pairs (PE)	Split Reads (SR)	Coverage/Read-Depth (RD)
Deletion	Too far in Reference	Soft-clip within breakpoints (mapped to the other end)	50% low (heterozygote)
Duplication	More complicated (One pair can get inverted, or closer)	Soft-clip outside breakpoints	30-60% higher (+1 copy = +30%)
Inversion	Pairs have the same directions	Soft-clip within breakpoints	Unchanged
Insertion (novel seq)	Too close in Reference	Soft-clip at two sides of a break	non-uniform

Highlight → most evident features of the SV Colors → match IGV

^{1.} one SV on *q arm*: chr22 25054080 25056685

- intron of KIAA1671
- As shown in the summary table above (summarized from Dr. Brand's slide), the evidences to call this SV as a **DEL** include:
 - 1. Red paired reads: TLEN > insert size.
 - 2. Soft-clips within breakpoints: meaning that those bases mapped to the other end/pair.
 - 3. The coverage within breakpoints is ~50% lower.
- 2. one SV on *p arm*: chr22 10781349 10783722

- intergenic region
- Seems more complicated than simply DEL. The only evidences to call it as a DEL (by manta) is the 2x red paired reads (meaning TLEN > insert size). I am less confident in this call because:
 - 1. The signals are noisy at this region (a lot of softclips)
 - 2. Minial decrease in coverage --> not likely DEL