1.

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + |x| \right) dx = \underline{\qquad}$$

2.

设
$$y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^{x}$$
 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^{x}$ 的一个特

3.

设函数 f(x) 在定义域 I 上的导数大于零,若对任意的 $x_0 \in I$,曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线与直线 $x = x_0$ 及 x 轴所围成的区域的面积为 $x = x_0$ 及 $x = x_0$ 色, 也 表达式。

4.

下列反常积分中收敛的是()

(A)
$$\int_{2}^{+\infty} \frac{1}{\sqrt{x}} dx$$
 (B) $\int_{2}^{+\infty} \frac{\ln^{x}}{\sqrt{x}} dx$ (C) $\int_{2}^{+\infty} \frac{1}{x \ln^{x}} dx$ (D) $\int_{2}^{+\infty} \frac{x}{e^{x}} dx$

设函数
$$f(x)$$
 连续 , $\varphi(x) = \int_0^{x^2} x f(t) dt$, 若 $\varphi(1) = 1$, $\varphi'(1) = 5$, 则 $f(1) = 5$

6.

设函数 y = y(x) 是微分方程 y'' + y' - 2y = 0 的解 ,且在 x = 0 处 y(x) 取得极值 y(x) = 0 以 y(x) = 0

7.

设A>0,D是由曲线段 $y=A\sin x(0\le x\le \frac{\pi}{2})$ 及直线y=0, $x=\frac{\pi}{2}$ 所围成的平面区域, V_1 , V_2 分别表示D绕x 轴与绕y 轴旋转所成旋转体的体积,若 $V_1=V_2$,求A的值

8 已知
$$f(x) = \int_{1}^{1} \sqrt{1+t^{2}} dt + \int_{1}^{x^{2}} \sqrt{1+t} dt$$
, 求 $f(x)$ 有几个根?

9.

设函数
$$f(x)$$
连续 , $\varphi(x) = \int_0^{x^2} x f(t) dt$, 若 $\varphi(1) = 5$, 则 $f(1) = \underline{\qquad}$.

10.

设 f(x) 是周期为 4 的可导奇函数,且 f'(x) = 2(x-1), $x \in [0,2]$,则 f(7) =

13.

微分方程 $xy' + y(\ln x - \ln y) = 0$ 满足条件 $y(1) = e^3$ 的解为 $y = _____$.

14.

求极限
$$\lim_{x \to +\infty} \frac{\int_{1}^{x} \left[t^{2} \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^{2} \ln \left(1 + \frac{1}{x} \right)}$$
.

15.

设函数 y = f(x) 由方程 $y^3 + xy^2 + x^2y + 6 = 0$ 确定,求 f(x) 的极值.

16

曲线
$$\begin{cases} x = t^2 + 7, \\ y = t^2 + 4t + 1 \end{cases}$$
 上对应于 $t = 1$ 的点处的曲率半径是()

17.

$$\int_{-\infty}^{1} \frac{1}{x^2 + 2x + 5} dx = \underline{\qquad}.$$

一根长为 1 的细棒位于 x 轴的区间[0,1]上,若其线密度 $\rho(x) = -x^2 + 2x + 1$,则该细棒的 质心坐标 x =_______.

19.

已知函数 y = y(x) 满足微分方程 $x^2 + y^2y' = 1 - y'$,且 y(2) = 0,求 y(x) 的极大值与极小**值**.

20.

设函数 f(x), g(x) 在区间 [a,b] 上连续,且 f(x) 单调增加, $0 \le g(x) \le 1$.

证明: (I)(I)
$$0 \le \int_a^x g(t)dt \le x - a$$
, $x \in [a,b]$;

(II)
$$\int_{a}^{a+\int_{a}^{b}g(t)dt} f(x)dx \le \int_{a}^{b} f(x)g(x)dx$$

21

设函数
$$f(x) = \frac{x}{1+x}$$
, $x \in [0,1]$. 定义数列

$$f_n(x) = f(f_{n-1}(x))$$
, ...

记 S_n 是由曲线 $y = f_n(x)$, 直线x = 1及x轴所围平面图形的面积, 求极限 $\lim_{n \to \infty} nS_n$.

设
$$\int_0^a xe^{2x} dx = \frac{1}{4}$$
,则 $a =$ ______