PHASE 4

VISUALIZATION USING IBM COGNOS:

DASHBOARD:

CAMPAIGN REACH:

- State NA has the highest total Age due to Timestamp 2014-09-04T08:35:49.
- Over all values of Timestamp, the sum of Age is 735.
- Age ranges from 60, when Timestamp is 2014-08-29T09:15:52, to 93, when Timestamp is 2014-09-04T08:35:49.
- For Age, the most significant values of Timestamp are 2014-09-04T08:35:49 and 2014-08-30T06:48:28, whose respective Age values add up to 183, or 24.9 % of the total.
- Objectives of Campaign Reach Visualization are to:
 - ✓ Track the campaign's progress over time.
 - ✓ Identify peak engagement periods.
 - ✓ Evaluate the effectiveness of outreach efforts.
 - ✓ Compare campaign performance across different segments.
 - ✓ Assess the impact of external factors on the campaign's reach.

AWARENESS LEVELS:

- No benefits accounted for 100% of Zimbabwe Age compared to 15% for United States.
- Benefits No has the highest Age at 300,000,030,042, out of which Country Zimbabwe contributed the most at 299,999,999.
- Country Zimbabwe has the highest total Age due to benefits No.
- The total number of results for benefits, across all countries, is nearly four thousand.
- Objectives of Awareness Level Visualization are to:
 - ✓ Understand awareness levels across different regions.
 - ✓ Allocate resources effectively based on awareness levels.
 - ✓ Tailor campaigns to specific demographics.
 - ✓ Compare awareness levels between regions.
 - ✓ Evaluate the impact of awareness campaigns.

IMPACT METRICS:

- Wellness_program No has the highest Country due to mental_health_consequence Yes.
- Wellness_program No has the highest values of both Country and Age.
- Mental_health_consequence No has the highest Country at 52, out of which wellness_program No contributed the most at 27.
- Mental_health_consequence No has the highest Count distinct Country but is ranked #3 in Total Age.
- Mental_health_consequence Yes has the highest Total Age but is ranked #1 in Count distinct Country.
- No is the most frequently occurring category of wellness_program with a count of 2526 items with Country values (66.9 % of the total).
- The overall number of results for Country is nearly four thousand.
- Objectives of Impact Metrics Visualization are to:
 - ✓ Assess the campaign's effectiveness.
 - ✓ Identify areas for improvement.
 - ✓ Track changes over time.
 - ✓ Compare responses across different groups.
 - ✓ Measure overall organizational well-being.

DATA ANALYSIS:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from scipy import stats

import statsmodels.api as sm

import seaborn as sns

data = pd.read_csv('/content/survey.csv')

data.head()

	Timestamp	Age	Gender	Country	state	self_employed	family_history	treatment	work_interfere
0	27-08- 2014 11:29	37	Female	United States	IL	NaN	No	Yes	Often
1	27-08- 2014 11:29	44	М	United States	IN	NaN	No	No	Rarely
2	27-08- 2014 11:29	32	Male	Canada	NaN	NaN	No	No	Rarely
3	27-08- 2014 11:29	31	Male	United Kingdom	NaN	NaN	Yes	Yes	Often
4	27-08- 2014 11:30	31	Male	United States	TX	NaN	No	No	Never

5 rows × 27 columns

Calculate the engagement rate

```
total\_responses = len(data)
```

received_treatment = len(data[data['treatment'] == 'Yes'])

engagement_rate = (received_treatment / total_responses) * 100

print(f"Engagement Rate: {engagement_rate:.2f}%")

Engagement Rate: 50.60%

data['Age'] = data['Age'].astype(int)

data['Gender'] = data['Country'].astype(str)

from sklearn.preprocessing import LabelEncoder

label_encoder = LabelEncoder()

data['Gender'] = label_encoder.fit_transform(data['Gender'])

data['work_interfere'] = label_encoder.fit_transform(data['work_interfere'])

#demographic analysis

print(demographic_stats)

```
import pandas as pd
demographic_attributes = ['Age', 'Gender', 'Country']
demographic_stats = data.groupby(demographic_attributes).agg({
    'Gender': ['mean', 'median'],
    'benefits': 'count'
}).reset_index()
demographic_stats.columns = ['_'.join(col).strip() for col in demographic_stats.columns.values]
```

	Age_	Gender_	Country_	Gender_mean	Gender_median	\
0	-1726	44	United Kingdom	44.0	44.0	
1	-29	45	United States	45.0	45.0	
2	-1	45	United States	45.0	45.0	
3	5	45	United States	45.0	45.0	
4	8	2	Bahamas, The	2.0	2.0	
268	62	45	United States	45.0	45.0	
269	65	45	United States	45.0	45.0	
270	72	45	United States	45.0	45.0	
271	329	45	United States	45.0	45.0	
272	9999999999	47	Zimbabwe	47.0	47.0	

	benefits_count
0	1
1	1
2	1
3	1
4	1
268	1
269	1
270	1
271	1
272	1

[273 rows x 6 columns]

```
plt.figure(figsize=(10, 6))
sns.histplot(data['Age'], kde=True, bins=20)
plt.title("Age Distribution")
plt.xlabel("Age")
plt.ylabel("Count")
plt.show()
```


Gender Distribution

```
plt.figure(figsize=(8, 6))
sns.countplot(x='Gender', data=data, order=data['Gender'].value_counts().index)
plt.title("Gender Distribution")
plt.xlabel("Gender")
plt.ylabel("Count")
plt.xticks(rotation=45)
plt.show()
```


Country Distribution

```
plt.figure(figsize=(12, 6))
sns.countplot(x='Country', data=data, order=data['Country'].value_counts().index)
plt.title("Country Distribution")
plt.xlabel("Country")
plt.ylabel("Count")
plt.xticks(rotation=90)
plt.show()
```


STATISTICAL TEST

```
import scipy.stats as stats
treatment_group = data[data['treatment'] == 'Yes']['Age']
no_treatment_group = data[data['treatment'] == 'No']['Age']
t stat, p value = stats.ttest ind(treatment group, no treatment group, equal var=False)
print(f'T-Stat: {t stat}')
print(f'P-Value: {p_value}')
if p_value < 0.05:
  print('There is a significant age difference between the treatment and no treatment groups.')
else:
  print('There is no significant age difference between the groups.')
 T-Stat: 0.999999927079095
 P-Value: 0.31769081891318196
 There is no significant age difference between the groups.
#chi-square test
from scipy.stats import chi2_contingency
contingency_table = pd.crosstab(data['Gender'], data['treatment'])
chi2, p, _, _ = chi2_contingency(contingency_table)
print(f'Chi-squared statistic: {chi2}')
print(f'P-Value: {p}')
if p < 0.05:
  print('Gender and treatment are not independent; there is an association.')
else:
  print('Gender and treatment are independent; there is no significant association.')
```

Chi-squared statistic: 69.79950917591624

Gender and treatment are not independent; there is an association.

P-Value: 0.01705720173000851

#correlation analysis

```
import scipy.stats as stats
data['treatment_binary'] = (data['treatment'] == 'Yes').astype(int)
correlation, p_value = stats.pointbiserialr(data['Age'], data['treatment_binary'])
print(f"Point-biserial Correlation: {correlation}")
print(f"P-Value: {p_value}")

Point-biserial Correlation: 0.027860259191070148
```

#ANOVA(Analysis of Variance)

P-Value: 0.3232709949993724

#Regression analysis

```
import statsmodels.api as sm

X = data[['Gender', 'Country']]

X = pd.get_dummies(X, columns=['Gender', 'Country'], drop_first=True)

y = data['Age']

X = sm.add_constant(X)

model = sm.OLS(y, X).fit()

print(model.summary())
```

OLS Regression Results

Dep. Variable:	Age	R-squared:	1.000				
Model:	OLS	Adj. R-squared:	1.000				
Method:	Least Squares	F-statistic:	7.982e+16				
Date:	Wed, 01 Nov 2023	Prob (F-statistic):	0.00				
Time:	10:01:47	Log-Likelihood:	-6727.1				
No. Observations:	1259	AIC:	1.355e+04				
Df Residuals:	1211	BIC:	1.380e+04				
Df Model:	47						
Covariance Type:	nonrobust						

______ coef std err t P>|t| [0.025 0.975] ______
 29.0000
 11.262
 2.575
 0.010
 6.905
 51.095

 -1.1667
 15.927
 -0.073
 0.942
 -32.414
 30.081

 -10.5000
 26.412
 -0.398
 0.691
 -62.318
 41.318

 0.2500
 11.945
 0.021
 0.983
 -23.185
 23.685

 -2.0000
 26.412
 -0.076
 0.940
 -53.818
 49.818

 -0.8333
 11.945
 -0.070
 0.944
 -24.269
 22.602
 const Gender_1 Gender_2 Gender 3 Gender 4 Gender 5 -0.3750 14.077 -0.027 0.979 -27.994 27.244
 0.1597
 6.400
 0.025
 0.980
 -12.396

 5.5000
 26.412
 0.208
 0.835
 -46.318

 -1.0000
 19.096
 -0.052
 0.958
 -38.464

 4.5000
 26.412
 0.170
 0.865
 -47.318
 Gender_7 12.715 Gender_8 57.318 Gender 9 36.464 Gender 10 56.318 4.5000 19.096 0.236 0.814 -32.964 2.0000 26.412 0.076 0.940 -49.818 Gender 11 41.964 Gender_12 53.818 3.0000 19.096 0.157 0.875 -34.464 0.1667 15.927 0.010 0.992 -31.081 1.2692 9.107 0.139 0.889 -16.597 -4.5000 26.412 -0.170 0.865 -56.318 40.464 Gender_13 Gender 14 31.414 19.136 Gender 15 Gender 16 47.318
 0.7111
 6.819
 0.104
 0.917
 -12.668

 3.7500
 19.096
 0.196
 0.844
 -33.714

 -1.0000
 26.412
 -0.038
 0.970
 -52.818

 -2.2500
 9.914
 -0.227
 0.821
 -21.701

 1.4629
 7.508
 0.195
 0.846
 -13.267
 Gender_17 14.090 Gender_18 41.214 Gender_19 50.818 Gender 20 17.201 Gender 21 16.193

-2.0000 12.841 -0.156 0.876 -27.192 23.192 2.2143 11.262 0.197 0.844 -19.881 24.309 10.0000 26.412 0.379 0.705 -41.818 61.818

#Hyp testing (Z-TEST)

Gender_22 Gender_23 Gender_24

```
from statsmodels.stats.proportion import proportions_ztest
```

```
count_treatment = data[data['treatment'] == 'Yes'].shape[0]
```

```
count_no_treatment = data[data['treatment'] == 'No'].shape[0]
```

stat, p_value = proportions_ztest([count_treatment, count_no_treatment], [data.shape[0], data.shape[0]])

```
print(f'Z-statistic: {stat}')
```

print(f'P-value: {p_value}')

ADVANCED DATA ANALYSIS

from sklearn.cluster import KMeans

data_for_clustering = data[['Age', 'treatment_binary']] # Assuming 'treatment_binary' is converted as described earlier

```
kmeans = KMeans(n_clusters=3, random_state=0)
data['Cluster'] = kmeans.fit_predict(data_for_clustering)
```

Visualize the clusters

```
plt.figure(figsize=(8, 6))
sns.scatterplot(data=data, x='Age', y='treatment_binary', hue='Cluster', palette='Set1')
plt.title('Employee Clusters based on Age and Treatment')
plt.xlabel('Age')
plt.ylabel('Treatment (Binary)')
plt.show()
```


#Principal Component analysis

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
from sklearn.decomposition import PCA
columns_to_impute = ['family_history', 'work_interfere']
imputer = SimpleImputer(strategy='most_frequent')
data[columns_to_impute] = imputer.fit_transform(data[columns_to_impute])
features = data[['Age', 'family_history', 'work_interfere']]
features_encoded = pd.get_dummies(features, columns=['family_history', 'work_interfere'])
features_std = (features_encoded - features_encoded.mean()) / features_encoded.std()
pca = PCA(n_components=2)
principal_components = pca.fit_transform(features_std)
plt.figure(figsize=(8, 6))
plt.scatter(principal_components[:, 0], principal_components[:, 1])
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA Analysis')
plt.show()
```


#Time Series

```
data['Timestamp'] = pd.to_datetime(data['Timestamp'])
data.set_index('Timestamp', inplace=True)
monthly_mean_age = data['Age'].resample('M').mean()
plt.figure(figsize=(12, 6))
monthly_mean_age.plot()
plt.xlabel('Date')
plt.ylabel('Mean Age')
plt.title('Time Series Analysis')
plt.show()
```


#Logistic Regression for Binary Classification

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matri
from sklearn.model_selection import train_test_split
X = pd.get_dummies(data[['Age', 'family_history', 'work_interfere']],
columns=['family_history', 'work_interfere'])
y = data['treatment_binary']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
print(f'Accuracy: {accuracy}')
print('Confusion Matrix:')
print(conf_matrix)
Accuracy: 0.8015873015873016
Confusion Matrix:
[[ 88 41]
  [ 9 114]]
```