Algoritmo Denavit-Hartenberg

Raul Israel Garcia Barajas Profesor: Carlos Enrique Morán Garabito Ing. Mecatrónica 8º A

- **Numerar los eslabones**: se llamará "0" a la "tierra", o base fija donde se ancla el robot. "1" el primer eslabón móvil, etc.
- Numerar las articulaciones: La "1" será el primer grado de libertad, y "n" el último.
- Localizar el eje de cada articulación: Para pares de revolución, será el eje de giro. Para prismáticos será el eje a lo largo del cual se mueve el eslabón.
- **Ejes Z**: Empezamos a colocar los sistemas XYZ. Situamos los Z_{i-1} en los ejes de las articulaciones i, con i=1,...,n. Es decir, Z_{0} va sobre el eje de la 1^{a} articulación, Z_{1} va sobre el eje del 2^{o} grado de libertad, etc.
- **Sistema de coordenadas 0**: Se sitúa el punto origen en cualquier punto a lo largo de $\mathbb{Z}0$. La orientación de $\mathbb{X}0$ e $\mathbb{Y}0$ puede ser arbitraria, siempre que se respete evidentemente que XYZ sea un sistema dextrógiro.
- **Resto de sistemas**: Para el resto de sistemas i=1,...,N-1, colocar el punto origen en la intersección de Zi con la normal común a Zi y Zi+1. En caso de cortarse los dos ejes Z, colocarlo en ese punto de corte. En caso de ser paralelos, colocarlo en algún punto de la articulación i+1.
- **Ejes X**: Cada X_i va en la dirección de la normal común a Z_{i-1} y Z_i , en la dirección de Z_{i-1} hacia Z_i .
- **Ejes Y**: Una vez situados los ejes Z y X, los Y tienen su direcciones determinadas por la restricción de formar un XYZ dextrógiro.
- Sistema del extremo del robot: El n-ésimo sistema XYZ se coloca en el extremo del robot (herramienta), con su eje Z paralelo a Z_{n-1} y X e Y en cualquier dirección válida.
- Ángulos teta: Cada θ_i es el ángulo desde X_{i-1} hasta X_i girando alrededor de Z_i .
- **Distancias d**: Cada di es la distancia desde el sistema XYZ i-1 hasta la intersección de las normales común de Zi-1 hacia Zi, a lo largo de Zi-1.
- **Distancias a**: Cada *ai* es la longitud de dicha normal común.
- Ángulos alfa: Ángulo que hay que rotar Z_{i-1} para llegar a Z_i , rotando alrededor de X_i .
- Matrices individuales: Cada eslabón define una matriz de transformación:

$$i^{-1}Ai = egin{pmatrix} \cos heta_i & -\cos lpha_{i sin heta_i} & \sin lpha_{i sin heta_i} & lpha \\ \sin heta_i & \cos lpha_{i cos heta_i} & -\sin lpha_{i cos heta_i} & lpha \\ 0 & \sin lpha_i & \cos lpha_i & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• **Transformación total**: La matriz de transformación total que relaciona la base del robot con su herramienta es la encadenación (multiplicación) de todas esas matrices:

$$T=0A_{11}A_{2}\cdots n-1A_{n}$$

Referencias

[1] A. Barrientos, L.F. Peñín, C. Balaguer, R. Aracil, "Fundamentos de robótica", McGraw Hill, 1997.