

Drehimpulsgeber

Der neue Drehimpulsgeber in Miniaturbauform bietet sich zur Einstellung digitaler Werte in Geräten an. Die Impulszahl von 16- bzw. 30-Impulsen pro Umdrehung ergibt eine rasche Annäherung an einen beliebigen, auch mehrstelligen Sollwert.

Der Schalter ist eine kostengünstige Alternative zu elektrisch-optischen Bitgeneratoren. Ein Impulsausgang für beide Drehrichtungen (Rechts-Links-Kennung) sowie eine exakte und leicht gängige Rastung sind Voraussetzung. Beim Drücken der Achse ist ein zusätzlicher Impuls für eine Set- bzw. Resetfunktion möglich.

Digiswitch

A new miniature switch with advantages in switching digital signals. The impulse frequency of 16-, 30-pulses per rotation is a low cost alternative to electronic and optical bit generators.

By pushing the shaft, it is possible to set an additional signal. It is available in horizontal and vertical version.

Ausführung Construction	Anschlußmaße Abmessungen	See drawings See drawings	Pining Outline Dimensions		
Isolierwerkstoffe Insulation Material	Gehäuse Kontraktträger	Thermoplastic-UL-94-V0 Thermoplastic-UL-94-V0	Housing Contact Body		
Elektrische Daten Electrical Data	Übergangswiderstand Isolierwiderstand Kapazität Durchschlagfestigkeit	< 100 mOhm > 100 MOhm < 2 pF See drawings	Contact Resistance Insulation Resistance Capacity Resistance of phase		
Mechanische Daten Mechanical Data	Betriebstemperatur Lagertemperatur Handlötung Wellenlötung Reflow (nur SMD)	-40 °C to +85 °C -55 °C to +90 °C 3 s +300 °C 4 s + 260 °C 5 s + 260 °C	Operation Temp. Storage Temp. Manual soldering Dip soldering (wave) Reflow soldering (SMD only)		
Dichtheit Sealing	Zwischen Achse und Gehäuse Mit O-Ring Ohne O-Ring	IP 65 IP 50	Between axis and housing With O-ring Without O-ring		
Kontaktwerkstoffe Contact Material	Impulsschalter / Festkontakte Schaltkontakte Lötanschlüsse	Encoder CuSn 6 gal. Ni1 Au1 CuBe gal. Ni1 Au1 Sn	Fixed Contacts Sliding Contacts Pins		
Elektrische Daten Electrical Data	Schaltspannung Schaltstrom Prellung und Signaleinbruch Impulszeit	Max. 5 VDC Min. 1mA, max. 10 mA 2 ms max. at 60 rpm 6 ms min. at 60 rpm	Switching Voltage Switching Current Bounce Difference of phase		
Mechanische Daten Mechanical Data	Gesamter Drehwinkel Anzahl der Impulse	360° endless 16 pos. = 8 pulse / 360° 30 pos. = 15 pulse / 360°	Overall rotation angle Pulse quantity		
	Lebensdauer (Umdrehungen) Drehmoment (Neuwert)	> 100 000 See drawings	Life expectancy (rotations) Rotational torque		
Isolierwerkstoffe Insulation Material	Taktiler Endschal Betätiger	Iter / Tactile End S Aluminium	Switch Actuator		
Kontaktwerkstoffe Contact Material	Festkontakte Schaltkontakte Lötanschlüsse	CuSn 6 gal. Ni 1 Au 1 X12 CrNi17 7 gal. Ni1 Au1 Sn	Fixed Contacts Sliding Contacts Pins		
Elektrische Daten Electrical Data	Schaltspannung Schaltstrom Kontaktprellen	Max. 16 VDC Min. 10mA, max. 300 mA < 2 ms	Switching Voltage Switching Current Bounce		

Mechanische DatenTasthub0.5 mmStrokeMechanical DataBetätigungskraftSee drawingsOperating Force

Lebensdauer (Hübe) > 100 000 Life Expectancy (travels)

Gehäuseausführung housing version

Gehäuse M7 x 7,3 mit Bund (5) housing M7 x 7.3 with federation

Achsausführung shaft version

(2)

- ohne Achse without shaft
- Standard
- Mit Schraubendreherschlitz with slot for screwdriver
- Kreuzrändel cross knurl-shaft

Sonderachsen auf Anfrage möglich other shaft versions on request

Dichtung sealed

O-Ring / O-ring

- Ohne O-Ring (Standard) without O-ring (standard)
- Mit O-Ring with O-ring

Zubehör utilities

Scheibe / washer **DIN 125**

- kein Zubehör without utilities
- mit Mutter with nut
- mit Mutter und Scheibe with nut and washer

Dieses Schema zeigt, wie ein Schalter 427 mit einem Mikrocontroller angeschlossen wird. In order to minimize effect of spikes or bounds, this schema shows an example with a switch 427 connected to a micro-controller.

Anwendung / Application notes

Dieser Algorithmus ist ein umfassendes Software Beispiel im Mikrocontroller für die Abfragung der Antriebe, die durch diesen Schalter gegeben werden.

This algorithm is a software example to include into a micro-controller for the detection of impulses given by this switch.

 $\mathsf{CCW} \leftarrow \mathsf{Direction} \rightarrow \mathsf{CW}$

Steps	N-3	N-2	N-1	N	N+1	N+2	N+3	N+4
[AB]	[10]	[11]	[01]	[00]	[10]	[11]	[01]	[00]
A xor B	1	0	1	0	1	0	1	0
[AB]N xor [AB]N-1	[10]	[01]	[10]	[01]	[10]	[01]	[10]	[01]
[AB]N+1 XOT [AB]N	[01]	[10]	[01]	[10]	[01]	[10]	[01]	[10]

Inputzustände:

Wir betrachten hier jeden Step wie wenn eine Position [AB] = [00] or [AB] = [11] wenn ein Übergang [AB] = [10] or [AB] = [01]

Input states:

We consider here each step as a position when [AB] = [00] or [AB] = [11] a transition when [AB] = [10] or [AB] = [01]

Algorithmus zum Erhalten des Stepzählimpulses und -richtung Algorithm to get steps count and direction:

Wenn ein Schalterpin an eine Unterbrechung Input des Mikrocontrollers angeschlossen wird und die Unterbrechung an fallender und steigender Flanke konfiguriert werden kann, sollte folgender Algorithmus einfacher einzuführen sein.

If one of the switch pin is connected to an interrupt input of the micro-controller, and the interruption can be configured at both falling and rising edge, the following algorithm should be easier to implement.

