RECURSOS PARA MATEMÁTICA

Grupo do Facebook

Prova Modelo de Exame Nacional Matemática A Prova 635 | Ensino Secundário | Julho 2021

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 8 Páginas

- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.
- É permitido o uso de régua, compasso, esquadro e transferidor.
- Apresente apenas uma resposta para cada item.
- As cotações dos itens encontram-se no final da prova.
- A prova inclui um formulário.
- Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.
- Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.
- Itens cujas respostas contribuem obrigatoriamente para a classificação final:

Estes itens estão assinalados no enunciado através de uma moldura que os rodeia.

• Dos restantes 7 itens da prova, apenas contribuem para a classificação final os 4 itens cujas respostas obtenham melhor pontuação.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área de um polígono regular: $Semiperímetro \times Apótema$

Área de um sector circular:

$$\frac{\alpha r^2}{2}$$
 ($lpha$ - amplitude, em radianos, do ângulo ao centro; r - raio)

Área lateral de um cone:
$$\pi rg$$
 (r- raio da base; g - geratriz)

Área de uma superfície esférica:
$$4\pi r^2$$
 (r- raio)

Volume de uma pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Volume de um cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Volume de uma esfera:
$$\frac{4}{3}\pi r^3$$
 (r- raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Progressão geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Trigonometria

$$\operatorname{sen}(a+b) = \operatorname{sen} a \cos b + \operatorname{sen} b \cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{
ho e^{i heta}} = \sqrt[n]{
ho} e^{i rac{ heta + 2k\pi}{n}} \quad \left(k \in \left\{ 0, \ldots, n-1
ight\} \; \mathrm{e} \; n \in \mathbb{N}
ight)$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = nu^{n-1}u' \ (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'e^u$$

$$(a^u)' = u'a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad \left(n \in \mathbb{N}\right)$$

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$

- **1.** De duas sucessões (u_n) e (v_n) sabe-se que:
 - (u_n) é uma progressão aritmética;
 - a soma de todos os termos de (u_n) entre o quarto e o décimo terceiro, incluindo-os, é -55;
 - $u_9 = -7$;
 - (v_n) é uma progressão geométrica estritamente crescente;
 - u_8 e u_{12} são os dois primeiros termos de (v_n) .
 - 1.1. Qual das seguintes afirmações é necessariamente verdadeira?
 - (A) (u_n) é uma sucessão monótona crescente.
 - (B) Se n > 11 então a soma dos primeiros n termos consecutivos de (u_n) é inferior a 0.
 - (C) A soma dos primeiros vinte termos de (u_n) é igual a -230.
 - **(D)** $u_{15} = -28$.
 - **1.2.** Determina k sabendo que o termo geral de (v_n) é dado pela expressão $v_n = -2^{k-2n}$.
- 2. Considere um cubo e um octaedro seu dual, representados na figura 1.

Figura 1

Escolhendo ao acaso um conjunto de três vértices do cubo e um conjunto de três vértices do octaedro, qual é a probabilidade desses dois conjuntos definirem planos paralelos ou coincidentes?

José Carlos Pereira

Paulo Naves Pedro

- 3. Considera todos os números de seis algarismos distintos que se podem formar com os algarismos de 0 a 9. Quantos destes números têm os algarismos colocados por ordem crescente ou decrescente?
 - (A) 210
- **(B)** 294
- (C) 420
- **(D)** 462

José Carlos Pereira

4. Seja E o espaço amostral associado a uma certa experiência aleatória e sejam A e B dois acontecimentos $(A \subset E \in B \subset E)$ tais que:

•
$$P\left(A \mid \left(B \cup \overline{A}\right)\right) = \frac{1}{3}$$

• $P\left(A\right) = \frac{3}{4}$

•
$$P(A) = \frac{3}{4}$$

Qual é o valor de P(B|A)?

- **5.** Qual é o valor de $\lim \left(2n\left(\ln\left(n^2+3n+2\right)-\ln\left(n^2+2n\right)\right)\right)$?
- **6.** Em \mathbb{C} , conjunto dos números complexos, considere a equação $z^2 8z + 25 = 0$.

Na figura 2 encontra-se representado, no plano complexo, um quadrado [OABC].

Sabe-se que:

- *O* é a origem do referencial;
- O vértice A do quadrado é a imagem geométrica de uma das soluções da equação dada;
- O vértice B é a imagem geométrica de um complexo w.

Qual dos seguintes é o valor de w?

- **(A)** 2+6i
- **(B)** 2+7i
- (C) 1+7i
- **(D)** 1+6i

Figura 2

7. Seja $\mathbb C$ o conjunto dos números complexos. Considere:

$$z_1 = \frac{\left(1+\sqrt{3}i\right)^5}{-8e^{i\pi}i^{2015}} \qquad \text{e} \qquad z_2 = 4\sin\left(\frac{\pi}{6}\right) + 4i\cos\left(\frac{\pi}{6}\right)$$

No plano complexo, sejam O a origem do referencial e A e B as imagens geométricas de z_1 e z_2 , respetiva-

Sabe-se que o segmento de reta [AB] é um dos lados do polígono cujos vértices são as imagens geométricas das raízes de índice n de um certo número complexo.

Qual é o valor de n?

8. No referencial o.n. xOy da figura 3 estão representadas uma reta r e uma circunferência.

Tal como a figura sugere:

- a reta r passa pela origem do referencial e tem a inclinação $\frac{\pi}{6}$ rad;
- a reta r é tangente à circunferência no ponto A de ordenada $2\sqrt{3}$;
- a circunferência é centrada num ponto ${\cal C}$ pertencente ao eixo das abcissas.

Qual das equações seguintes define a circunferência?

Figura 3

- **(A)** $(x-9)^2 + y^2 = 14$ **(B)** $(x-8)^2 + y^2 = 14$ **(C)** $(x-9)^2 + y^2 = 16$
- **(D)** $(x-8)^2 + y^2 = 16$

João Ferreira

Carlos Frias

$$\ln\left(5e^{2x} - 1\right) \le x + \ln\left(1 - e^x\right)$$

- 10. Na figura 4 encontra-se representado, em referencial o.n. Oxyz, um triângulo [ABC]. Sabe-se que:
 - O é a origem dos referencial;
 - o ponto A pertence ao eixo das cotas;
 - B e C são os pontos de interseção do plano de equação

$$2x + 3y - 6 = 0$$

com os eixos Oy e Ox, respetivamente.

• o volume da pirâmide [OABC] é igual a 4.

Resolva os itens seguintes por processos analíticos.

Defina essa superfície esférica por uma condição.

Figura 4

11. Considere a função f, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} 2e^{x} \cos(x) + 1 & , x \le 0 \\ \frac{\ln(2x+1)}{x} & , x > 0 \end{cases}$$

Mostre que o gráfico de f tem duas assíntotas, ambas horizontais.

12. Considere as funções f e g, definidas, respetivamente, em $]-3,+\infty[$ e \mathbb{R} , por:

$$f(x) = 2\ln(x+3) + x + 1$$
 e $g(x) = x^2 - 2e^{x+1}$

Seja a a abcissa do ponto de inflexão do gráfico de g.

Escreva a equação reduzida da reta tangente ao gráfico de f, no ponto de abcissa a.

Apresente a ordenada na origem na forma $\ln k$, com $k \in \mathbb{R}^+$

Paulo Conde

- **13.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = \frac{\cos(x)}{4 \sin(x)}$
 - **13.1.** Seja $\beta \in \mathbb{R}$ tal que $\operatorname{tg}(\beta) = 2$. Qual é o valor de $f(2\beta)$?
 - **(A)** $-\frac{3}{16}$
- **(B)** $-\frac{3}{8}$ **(C)** $-\frac{3}{2}$
- **(D)** −3
- 13.2. O gráfico da função f tem um ponto de abcissa pertencente ao intervalo $[0,\pi]$ tal que quando se adiciona 2 à abcissa a sua ordenada dobra.

Utilizando as capacidades gráficas da sua calculadora, determine as coordenadas desse ponto.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas;
- apresente as coordenadas do ponto, arredondadas às centésimas.

Mário Oliveira

14. Considere a função g definida em $\mathbb{R} \setminus \{0\}$ por $g(x) = \frac{\ln(x^2)}{r}$.

Estude a função g quanto à monotonia e à existência de extremos relativos.

15. Considere f e g duas funções de domínio \mathbb{R} e f' a primeira derivada da função f, contínua em \mathbb{R} . Sejam a e b dois números reais tais que:

- b > a
- g(a) = b
- $(g \circ g)(a) = a$

Sabe-se que: $\forall x \in \mathbb{R}, f'(x) \times \left[\left(g \circ g \right)(x) - g(x) \right] + f(x) > \left(f \circ g \right)(x).$

Mostre que existe pelo menos uma reta tangente ao gráfico da função f com declive igual a $\frac{t.m.v._{(f,[a;b])}}{t.m.v._{(g,[a;b])}}$

As pontuações obtidas nas respostas a estes 11 itens da prova contribuem obriga- toriamente para a classifica- ção final.	1.1.	1.2.	3.	4.	6.	8.	10.1.	10.2.	13.1.	13.2.	15.	Subtotal
Cotação (em pontos)	12	14	12	14	12	12	14	14	12	14	14	144
Destes 7 itens, contribuem para a classificação final da prova os 4 itens cujas respostas obtenham melhor pontuação.	2.	5.	7	9.	11.	12.	14.					Subtotal
Cotação (em pontos)	4 × 14 pontos											56
Total												200

Coordenação José Carlos Pereira

Paginação Antero Neves