Introduction to Reinforcement Learning 2/10

Jean Martinet

MSc DSAI

2024 - 2025

Programme

- Introduction
 - Course 1 : Introduction to Reinforcement Learning (RL)
- Part I on tabular methods
 - Course 2: Markov Decision Processes
 - Course 3 : Dynamic programming in RL
 - Course 4 : Temporal difference 1/2 (Q-learning)
 - Course 5: Temporal difference 2/2 (SARSA)
- Part II on approximate methods
 - Course 6 : Value function approximation
 - Course 7 : Eligibility traces
 - Course 8 : Policy gradient 1/2 (REINFORCE)
 - Course 9 : Policy gradient 2/2 (actor-critic methods)
 - Course 10 : Projects presentation session

Reminder: think of a project topic

Choose from :

- Articles/advanced topics/applications
 - Conference paper or book chapter
 - Advanced theme (e.g. actor-critic, eligibility trace, etc.)
 - Application domain (e.g. temperature control, revenue management, etc.)
- Deepening or exploration project
 - Subject to be chosen/defined and validated
- Choice to be validated before session 4
- Expected result :
 - Short 2-page max PDF report
 - Code (ipynb / py / git)
 - Short 10-min presentation during last / before last session

About the project

- Double objective
 - Dig deeper in a specific subject (discussed or not during the lectures)
 - Share your insights with other students (in a teacher mode)
- A bit hard to choose early, before having reviewed all topics
- If you can define what is the environment, the reward, the agent, and the actions, it is a good start
- Stay small, at least for a first version, then make it more complex if you have time
- An experimental contribution is needed
 - E.g. compare two algorithms
 - E.g. start from an existing approach, and monitor changes when parameters vary
- The project needs be ORIGINAL
 - You need an original contribution of your own
 - Make sure your project is different from what can be found online
- IMPORTANT: if you decide to use an existing work, it is MANDATORY to cite the source, and you need to state what your contribution is

Mini-quizz

$$V^{\pi}(s_t) = \mathbb{E}_{\pi}[G_t|s_t] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t]$$

- What does the value $V^{\pi}(s_t)$ tell us?
 - •
- In a deterministic grid world, how many policies are there?
 - •
- Is there a best policy?
 - •
- Is it unique?
 - •
 - •

Mini-quizz

$$V^{\pi}(s_t) = \mathbb{E}_{\pi}[G_t|s_t] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t]$$

- What does the value $V^{\pi}(s_t)$ tell us?
 - ullet Expected disc. sum of rewards when starting from s_t and following π
- In a deterministic grid world, how many policies are there?
 - There are $|A|^{|S|}$ possible policies
- Is there a best policy?
 - Yes, it is $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}(s)$
- Is it unique?
 - ullet The value V^π is unique, but the optimal policy is not necessarily unique
 - (there can be several actions or policies yielding same value)

Today's menu

- Markov environments
- Bellman equations

Markov assumption

Andrey Andreyevich Markov (1856 - 1922) was a Russian mathematician "The future is independent of the past given the present"

$$p(s_{t+1}|s_t) = p(s_{t+1}|s_1, s_2, ..., s_t)$$

- only the present matters
- the state captures all relevant information from the past (if needed)
- stationary (rules do not change)

Markov Decision Process (MDP)

A Process is a Markov Process if it satisfies the Markovian property A Markov Reward Process is a MP with a reward at each state A Markov Decision Process is a MRP with decisions

- Formal description of an environment for decision making / RL
- Tuple $\{S, A, P, R, \gamma\}$
 - States : s_t
 - Action : at
 - Dynamics model (transitions) : $P(s_t, a_t, s_{t+1}) \sim p(s_{t+1}|s_t, a_t)$
 - Reward model : $R(s_t)$ immediate reward
 - Discount factor : γ

Finite MDP

 The interaction between the agent and the environment generates a sequence (or trajectory)

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$$

- We consider finite MDP (i.e. S, R, and A are finite sets)
 - Discrete variables R_t and S_t have well defined discrete probability distributions dependent only on S_{t-1} and A_{t-1}

$$p(s', r|s, a) = p(S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a)$$

p specifies a probability distribution for each choice of s and a

$$\sum_{s' \in S} \sum_{r \in R} p(s', r|s, a) = 1, \text{ for all } s \in S, a \in A$$

Note about states and observations

- Value function assumes that the environment is completely known
- ullet In real-life, the agent does not know the world, but only observes it
 - Sensory inputs gives only partial information about the world
- It can also be assumed that the reward is a direct, known function of the observation
- The environmental interaction would becomes

$$A_0, O_1, A_1, O_2, A_2, O_3, A_3, O_4, \dots$$

See extension of MDP to Partially Observable MDP – POMDP

Examples

- Hypertension control
 - State = Current blood blood pressure
 - Action = Take medication or not
 - Markov?
- Website shopping
 - State = Current product viewed by the customer
 - Action = What other products are recommended
 - Markov?
- Note that if you embed the whole history in your state, everything can be Markov

$$H_t \doteq A_0, O_1, A_1, O_2, A_2, O_3, A_3, O_4, \dots$$

However it raises issues: complexity, generalisation, data required

Boundary agent / environment

- Everything that the agent has no absolute control over not knowledge – is environnement
 - Ex: machinery of a robot
- The boundary is closer to the agent than one could think
- General rule
 - Everything that the agent can not *change* is considered outside of it and thus part of its environment
- The boundary represents the limit of control, not knowledge
 - In fact, the agent may know everything about its environment
 - But the environment will not be considered a part of the agent, the boundary still exists

Recursive relationship of G_t

- Important property for theory and algorithms of RL
- Remember the discounted return

$$G_t \doteq r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} \dots$$
$$= \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

• Link between returns at successive time steps

$$G_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} \dots$$

$$= r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \gamma^{2} r_{t+4} \dots)$$

$$= r_{t+1} + \gamma G_{t+1}$$

Remember from last week

• Remember the **state** value function of s_t under π :

$$egin{aligned} V^\pi(s) &\doteq \mathbb{E}_\pi[G_t|S_t=s] \ &= \mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k r_{t+k+1}|S_t=s] \end{aligned}$$

ullet Also remember the **action** value function of taking a_t in s_t under π :

$$\begin{aligned} Q^{\pi}(s, a) &\doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] \\ &= \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | S_t = s, A_t = a] \end{aligned}$$

Bellman equation for V^{π}

• Fundamental property of value functions in RL : they satisfy recursive relationships (like G_t)

$$V^{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s']]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a)[r + \gamma V^{\pi}(s')] \text{ for all } s \in S$$

This is the Bellman equation for $V^{\pi}(s)$ (relation between the value of s and the value of its successors)

Backup diagram for V^{π}

- Looking ahead from a state to its possible successor states
 - Open circle= state, solid circle = state-action pair
- ullet From s, the agent could take any of the 3 actions based on π
 - From each of these, the environment could respond with one of several next states (two are shown in the figure), along with a reward, r, depending on its dynamics given by the function p
- Bellman equation : weighted average over all the possibilities
 - It states that the value of the start state must equal the (discounted)
 value of the expected next state, + the reward expected along the way

Bellman optimality equations

- Value functions define a partial ordering over policies
- We define $\pi \geq \pi'$ iff $V^{\pi}(s) \geq V^{\pi'}(s)$ for all $s \in S$
- ullet Optimal policies are denoted π^* , they share the same V^* and Q^*

$$V^*(s) \doteq \max_{\pi} V^{\pi}(s)$$
 $Q^*(s,a) \doteq \max_{\pi} Q^{\pi}(s,a)$

Bellman optimality equations for V^* and Q^*

- Bellman optimality equation for V^*
- (without reference to any specific policy)
 - ullet $V^{\pi^*}(s)$ must equal the expected return for the best action from s

$$V^{*}(s) = \max_{a \in A} Q^{\pi^{*}}(s, a)$$

$$= \max_{a} \mathbb{E}_{\pi^{*}}[G_{t}|S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi^{*}}[r_{t+1} + \gamma G_{t+1}|S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[r_{t+1} + \gamma V^{*}(S_{t+1})|S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s', r} \rho(s', r|s, a)[r + \gamma V^{*}(s')]$$

Bellman optimality equation for Q*

$$Q^*(s) = \mathbb{E}[r_{t+1} + \gamma \max_{a'} Q^*(S_{t+1}, a') | S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r | s, a) [r + \gamma \max_{a'} a' Q^*(s', a')]$$

Today's lab

- Optional : finish implementing TicTacToe with 1/2 player(s)
 - We'll come back to this later
- Do the exercises in the notebook