

M Tech(Data Science & Engineering)
Introduction to Statistical Methods [ISM]

BITS Pilani

Pari[Date]Cont idented

Webinar Session No- 4

22nd Feb-2022

Timings: 7.30 to 9.00 PM

- Testing of Hypothesis
- Correlation and Regression

Procedure of Testing of Hypothesis

- Step-1: setup Null hypothesis H_0
- Step-2: setup Alternate hypothesis H_1
- Step-3: Choose appropriate Level of significance (LOS)
- Step-4: Test Statistic
- Step-5: Decision

Procedure of Testing of Hypothesis

- Step-1: setup Null hypothesis H_0
- Step-2: setup Alternate hypothesis H_1
- Step-3: Choose appropriate Level of significance (LOS)
- Step-4: Test Statistic
- Step-5: Decision

Problem 1

In order to determine whether 'perfection' in job depends on the 'experience'. 400 persons were examined yielding the following data

		Experie	nce	
		high	medium	low
perfection	Excellent	23	60	29
	Good	28	79	60
	Satisfactory	9	49	63

In order to determine whether 'perfection' in job depends on the 'experience'. 400 persons were examined yielding the following data

		Experience							
		high	medium	low					
perfection	Excellent	23	60	29					
	Good	28	79	60					
	Satisfactory	9	49	63					

In order to determine whether 'perfection' in job depends on the 'experience'. 400 persons were examined yielding the following data

	Experience							
		high	medium	low				
perfection	Excellent	23	60	29				
	Good	28	79	60				
	Satisfactory	9	49	63				

Problem 1

H₀: The perfection in job depends on experience

H₁: The perfection in job not depends on experience

The observed frequencies are

		Experie	ence		
		high	medium	low	Total
perfection	Excellent	011 =23	012 =60	013 = 29	112
	Good	021 =28	023 = 79	O ₂₃ =60	167
	Satisfactory	031 =9	032 =49	O ₃₃ =63	121
	Total	60	188	152	400

In order to determine whether 'perfection' in job depends on the 'experience'. 400 persons were examined yielding the following data

	Experience							
		high	medium	low				
perfection	Excellent	23	60	29				
	Good	28	79	60				
	Satisfactory	9	49	63				

a=5%.

Solution-1

 H_0 : The perfection in job depends on experience

H₁: The perfection in job not depends on experience

The observed frequencies are

	Experience						
		high	medium	low	Total		
perfection	Excellent	011 =23	O ₁₂ =60	O ₁₃ =29	112		
	Good	021 =28	022 = 79	O ₂₃ =60	167		
	Satisfactory	031 =9	032 =49	O ₃₃ =63	121		
	Total	60	188	152	400		

Expected frequencies are:

E ₁₁	$\frac{(60 \times 112)}{400} = 16.8$
E_{12}	$\frac{(188 \times 112)}{400} = 52.6$
E ₁₃	$\frac{(152 \times 112)}{400} = 42.6$
E ₂₁	$\frac{(60 \times 167)}{400} = 25$
E22	$\frac{(188 \times 167)}{400} = 78.5$
E ₂₃	$\frac{(152 \times 167)}{400} = 63.5$
E ₃₁	$\frac{(60 \times 121)}{400} = 18.2$
E ₃₂	$\frac{(188 \times 121)}{400} = 56.9$
E ₃₃	$\frac{(152 \times 121)}{400} = 45.9$

 H_0 : The perfection in job depends on experience

 H_1 : The perfection in job not depends on experience

The observed frequencies are

\cap		
V	1)	

Eis

	Experience						
1000-0-1000-0-00		high	medium	low	Total		
perfection	Excellent	011 =23 E1 = 67 17	012 =60	013 = 29	112		
	Good	021 =28	O ₂₂ =79	O ₂₃ =60	167		
	Satisfactory	031 =9	032 =49	O ₃₃ =63	121		
	Total	(60)	188	152	400		

Solution-1

The Chi-square value is

O's	E's	(O-E)	$(O-E)^2$	$\frac{(O-E)^2}{E}$	
25	16.8	8.2	67.24	4.15	
60	52.6	7.4	54.76	1.04	
29	42.6	-13.6	184.96	4.34	
28	25	3	9	0.36	
79	78.5 0.5		0.25	0.003	
60	63.5	-3.5	12.25	0.19	
9	18.2	-9.2	84.64	4.65	
49	56.9	-7.9	62.41	1.1	
63	45.9	17.1	292.41	6.37	
			Total	22.20	

Z. Critical Values of the Chi-squared Distribution with v Degrees of Freedom

				07117741	0.01	0.005	9.92	9.04	0.005	9.001
П	630	625		0.500					-	
ш	_			Statute of the last	1.841	9.024	5.412	2015	1.875	10-527
7	13074	1,325	1.942	2.786		7.979	7.824	9240	10.507	IANES
	5.600	2.777	1219	4.8935	5.991	2347	9 817	11.34%	12,535	16/209
ш	3.867	0 5256	4.042	6.251	3.813		11000	11.227	14 500	15 967
811	4 9.78	3,345	5.980	7779	* 455	33 543	13.388	12.2100	16.750	20.777
aı	6.064	6,626	7.297	0.226	11/070	32,832	10.000			
-	6.00							THEFT	(6.548)	28.382
21	E231	7.64)	6.538	10:543	12(197)	14/420	15.033	18.475	20.279	24 323
31	8.785	9.037	W 200)	12.01	EXAMI	06033	10.022		21/453	20 127
_	9.524	10.719	17.030	13-562	15.507	17.735	ER 524	20.090	23.059	STATE
501	10.636	11.380	12:243	14.051	76,910	49.023	NO ALTO	31.666		29.09%
801		12.549	83,343	15.967	196.365	201483	21,168	21,309	25.7300	20,000
9.	91.791	THE PARTY.							O Standard	10.6 (40.00)
400	12 599	13:201	140031	17:335	19'675	21 920	22419	24.725	26/797	11:20#
23	14.011	10 545	19,932	19.747	37.0038	58.557	24 653	26,317	28.3480	12,909
50)		15.989	16.793	19.613	22 362	24.734	25.672	21,669	28.834	54 (52%)
9	19.225	37.117	16 131	21.064	ZIAKS	26.110	26.833	29.141	33,319	38 125
14.	12,322	INCAS.	29.361	22,307	24 990	27.488	26259	30.579	32,801	33.643
***	100740	1000								
16	18.415	10.300	20.463	23.532	26.295	29.563	29.633	323100	38267	39,233
100	19311	20.489	21,611	24 769	27.567	MIXWE	365.095	33.400	ANTIN.	40 290
100	20 803	21 605	22.760	25.989	29.665	51.32n	32 546	NA MARK	57.856	42.312
140	21.699	22.716	23.990	21.394	201.1.64	52,992	33.647	196.1971	19.552	43.820
200	22 955	25.924	25 819	28.413	31,410	24 170	35.020	33.566	19.997	45.319
23	23,859	24935	26/373	29,615	32,671	35,470	390,340	38.952	(41.401)	46.797
32	24,939	20.400	22,001	30.853	33,424	26000	37:9500	40.299	AT TWO	48/268
125	28.01H	22.141	28.429	32.007	35.672	36.076	58.998	41,536	44.181	49.728
2.8	17406	TRUM	- 29,553	53.196	260,813	39.964	40.236	42 480	45.55%	51.179
25	20.172	20,119	30-879	34.312	57,652	ACI MAIL	41.366	41.114	40.928	32,638
28		30.434	31,795	25:563	15.525	ATTES	47.816	MANAGE.		Chinages
2.7	30 319	31.528	32.912	36.741	40 113	23 124	ANYAG		#5.290	34.032
28		32.630	14 027	37.916	41.757	24.461	43.419	+6-96E	49.445	55,476
29	12.461	93.711	35.114	109 HW2	45.557	#1.772	40.655	4K.27K	20.993	56.8%
79	22,210	3.4.3090	34,250	40/256	43.773	40,979	42.962	49.585	32/53W	76.393
						40,000	47.462	30,892	53,672	234 2013

innovato achieve lend

The Chi-square value is
$$\chi^2 = \sum_{1}^{9} \frac{(O-E)^2}{E} = 22.20 = \chi^2$$

dof is (3-1)(3-1) = 4 and Level of significance $\alpha = 0.05$

 χ^2 tab value is 9.488

 χ^2 calculated = 22.20 > χ^2 tab = 9.488 at $\alpha = 0.05$ for 4 dof

Decision: we reject the Null hypothesis H_0 at $\alpha = 5$ % LOS. i.e, we accept H_1 .

Z.1-Critical Values of the Chi-squared Distribution with v Degrees of Freedom

+	60 340	6.25	9.56	0.19	8.05	9,622		9.04	1005	6.001
ш					-		5.412	nail	9.62N	10.527
-	A SHEET !	1325	K-642	2,705	3.641	9.6524		9310	10.597	13.513
_	1,924	2.773	1219	4.885	5.991	2.578	7,824	10.045	12 935	16.285
_	2,409		4.542	6.251	2.845	30.344	9.817	10.277	14.500	15 46%
au.	3,560	A CHE	N WALL	7.779	2-111	33,185	11 000		16.350	201.817
80	A 1878	3,482	2.297	W.23W	11.95707	XXXXX	13.388	15.05%	10-30	
	Al title	K-938	1.304.93	-					CHINAS.	28382
- 1		1000	6.550	10943	12(892	10.000	13.033	18(81)		24 322
	2 331	7.451	9900	12.817	LABOUT	10.072	141 (427.	18.475	20/279	20,125
100	8,385	9.057		13:362	15:507	12.535	19.160	20,090	21.933	
800	9.524	10/219	17.030	14.652	16,919	101.023	NUMBER	21 999	23.559	27 877
80.0	10.656	17.340	13.242	15.883	18.565	DOMES	21.160	23,70%	22(188	29,796
80)	(15/73)	12.569	11,432	11/000						
		San Table	*****	17/375	(STATS)	21.920	22.818	24 725	24 757	31,264
w	12:000	12.201	DERINE.	18.347	OF HER	21.357	24.658	29.211	28.3489	32.9009
(5)	14-011	AR BAN	15,512	19.912	22 142	39.738	25.412	21488	IN MAN	34/525
9	12112	18,988	06,9965	21.004	11.655	28.110	29.823	29 141	11,314	58 125
101	19.221	17117	16.131	22,300	24.940	27-449	29.239	30-57W	32.801	37.697
15	17322	18:245	ER.AL.	Server.						
16	18.418	14.56%	20.465	23.342	26.299	26,645	29.653	32 1000	56(267)	(34(232)
150	innit	20 489	Moth	34 789	27.587	Jan Tort	30.995	5.5 4000	35/718/	46 396
14	20 863	21 405	22.760	21.489	26.669	51/326	32.546	54.845	37.156	42.312
600	21.689	22.716	23.900	27.204	10.144	32,483	33,687	20,183	10 152	43.820
200	22 275	23.928	25.018	-28 412	State	34 179	33 1126	33.566	10 997	45.312
	-									
20	(23.838)	24935	26(17)	29,615	323671	35,479	304,314.5	38.932	43.401	66,797
32	54.939	26.4639	201304	30.9()	33 1624	26/201	3.7 649	40.299	A2 196	48.268
-25.	20.01%	27.141	28,429	32.009	35.672	34/076	54.99A	41.516	44.151	49.728
2.4	27.160%	26.3AL	-29/393	33.196	191.835	39.368	40.270	42.980	45.558	31 179
25	24 172	29339	30-678	54382	37.65Z	40 040	11.500	45,714	48.928	52 820
24			31.795	23.563	18.885	A1-025	42.636	453600	#6290	54.092
			32,413	36.741	40 TES	43.193	98(190)	45.903	49.045	33.476
28			SA WET	37.916	A5.337	94.461	WEATH.	55.27A		
39		93/711	35.119	309 1002	42 357	#5.772	40.633	49.500	30,093	56,893
	33,530	34.800	34.250	40.256	ASSTRE	46,975	27.963	30 892	SLATZ	78-303 19-303

thieve lead

The Chi-square value is

O's	E's	(O-E)	$(O-E)^2$	$\frac{(O-E)^2}{E}$
25	16.8	8.2	67.24	4.15
60	52.6	7.4	54.76	1.04
29	42.6	-13.6	184.96	4.34
28	25	3	9	0.36
79	78.5	0.5	0.25	0.003
60	63.5	-3.5	12.25	0.19
9	18.2	-9.2	84.64	4.65
49	56.9	-7.9	62.41	1.1
63	45.9	17.1	292.41	6.37
			Total	22.20

67.24 16.5

Institute	Supported	Against	Neutral	
IITs	50	50	30	130
NITs	40	70	40	150
BITS	30	80	10	120
	120	200	80	400

Find the coefficient of correlation of the following data

Х	9	8	7	6	5	4	3	2	1	
Υ	15	16	14	13	11	12	10	8	9	

Find the mostly likely price in Chennai corresponding to the price of Rs. 70 at Hyderabad from the following

-	-	-	-
-			

	Chennai	Hyderabad
Average price	65 = 🛪	67 = 9
Standard price	2.5 = 5	3.5 = 5

Correlation coefficient between the prices of commodities in the two cities is 0.8.

Sol Given X=65 | Tx =

Find the mostly likely price in Chennai corresponding to the price of Rs. 70 at Hyderabad from the following

	Chennai 👭	Hyderabad
Average price	65 = 🛪	67 = 7
Standard price	2.5 = 7	3.5 = 7

Correlation coefficient between the prices of commodities in the two cities is 0.8.

Find the mostly likely price in Chennai corresponding to the price of Rs. 70 at Hyderabad from the following

	_	_	-	-	-
1	C	J			

	Chennai	Hyderabad
Average price	65 = 🛪	67 = 9
Standard price	2.5 = 7	3.5 = 9

Correlation coefficient between the prices of commodities in the two cities is 0.8.

Soli Given
$$\overline{x} = 65$$
 : $\overline{x} = 2.5$

line of vegression of y mx is

$$(y-y)=y = (x-x)$$

The two regression lines between x and y are given below. Find \bar{x} , \bar{y} and r. 5x-6y+90=0 and 15x-8y-130=0

Sol:
$$5x-6y+90=0=$$
) $6y=5x+90$ Regressin (of Youx)
$$= y=(5)x+(90)=(1)x+(90)$$
Regressin (of Youx is = byx= 5)

$$15x-8y-130=0=$$
) $15x=8y+130$
 $x=\frac{8}{15}y+130=()y+d$

$$15x-8y-130=0=$$
) $15x=8y+130$
 $x=\frac{8}{15}y+130=()y+d$

$$15x-8y-130=0=$$
) $15x=8y+130$
 $x=(8)y+130=()y+d$

$$15x-8y-130=0=$$
) $15x=8y+130$
 $x=\frac{8}{15}y+130=()y+d$

Distribution of marks in chemistry and mathematics of ten students in a certain test is given below. Find Rank Correlation coefficient.

Marks in chemistry	25	29	32	36	40	32	39	42	40	42
Marks in mathematics	70	80	85	70	75	65	58	65	54	70

Distribution of marks in chemistry and mathematics of ten students in a certain test is given below. Find Rank Correlation coefficient.

Marks in chemistry	25	29	32	36	40	32	39	42	40	43
Marks in mathematics	70	80	85	70	75	65	58	65	54	70

X	,	Υ	R1	R2	d	d^2
	25	70	10	5	5	25
	29	80	9	2	7	49
	32	85	7.5	1	6.5	42.25
	36	70	6	5	1	1
	40	75	3.5	3	0.5	0.25
	32	65	7.5	7.5	0	0
	39	58	5	9	-4	16
	42	65	2	7.5	-5.5	30.25
	40	54	3.5	10	-6.5	42.25
	43	70	1	5	-4	16
						222

Solution:

1. che p		7 Rock		1- 2	
Y_	R			41 9	1^2
25	70.	10	-5	10-5 = 5	25
29	2.80	- 9	2	9-2 =7	49
32	¥ 85	7.5	1 0	5-17-6.5	42.25
/ 36	(70)	6	-5	1	1
40	375	3.5	3	0.5	0.25
32	65	- 75	7.5	0	0
39	58	15	9	-4	16
42	65	2	7.5	-5.5	30.25
40	54	3.5	10	-6.5	42,25
43	70	1	-51	5= 4	16

3+4=7=3.5

2 4+5+6 = 15/25

che M	LU1	I ne	d:	-(R,-R) 0		3	= 7 = 3.5	
25	70	- 10	- 5 (70	-5 = 5	25	2		
~ 29	280	. 9	2 9	-2)=7	49			
(32)	¥ 85	7.5	1 00	-15-6.5	42.25			
/ 36	(70)	6	-5	1	1			
40	375	3.5	3	0.5	0.25	2		
(32)	65	7.5	7.5	0	0	7		
39	58	15	9	-4	16	-		
42	65	2	7.5	-5.5	30.25		15, 5	
(40)	54	3.5	10	-6,5	42.25	4+5+	0-6	
(43)	54	1	-51	= 4	16	4+3	, - 5	
0				-	222			

$$R = 1 - \frac{6 \left[2a^{2} + cF \right]}{N(n^{2} - 1)}$$

$$= 1 - \frac{6 \left[2a^{2} + cF \right]}{10 \left(10^{2} - 1 \right)}$$

$$= 1 - 1 \cdot 36 = -0.86$$

25	(70)	1 R2	91.7	25	1	V
-29	2-80	9	2 (9-2)=7	49		1
(32)	85	7.5	1 05-15-6.5	42.25		in x 32-26i
36	(70)	- 6	-5 1	1	1	40-72
(40)	3.75	3.5	3 0.5	0.25	2	40-70
(32)	65	7.5	7.5 0	0	7	iny 65 - 2t
>39	58	15	9 -4	16	400	6 = 15 = 5 70 ->3
42	65	2	7.5 -5.5	30.25		15 -5 +0-1
(40)	54	3.5	10 -6.5	42.25	4+5+1	0-12
43	70	1	-51-5= -4	16	413	/ 3
0				222	-	

