Linear Regression - 2

Cost function/SSE

- S(a_0, a_1)= $\sum_{i=1}^{m} (y_i (a_0 + a_1 x_i))^2$
- S is a function of a_0 and a_1 . As any of the values of a_0 and a_1 is changed, S changes.
- We want to determine those values of parameters a_0 and a_1 ; for which S is minimum.
- $S \ge 0$. (Always)
- S will be minimum when partial derivatives with respect to a_0 and a_1 become zero.

• S(
$$a_0, a_1$$
)= $\sum_{i=1}^{m} (y_i - (a_0 + a_1 x_i))^2$

•
$$\frac{\partial S}{\partial a_0} = \frac{\partial}{\partial a_0} \left(\sum_{i=1}^m (y_i - (a_0 + a_1 x_i))^2 \right)$$

•
$$\frac{\partial S}{\partial a_0} = \sum_{i=1}^m \frac{\partial}{\partial a_0} (y_i - (a_0 + a_1 x_i))^2$$

$$\bullet \quad \frac{\partial S}{\partial a_0} = \sum_{i=1}^m 2(y_i - (a_0 + a_1 x_i)) \left(\frac{\partial}{\partial a_0} (y_i - (a_0 + a_1 x_i)) \right)$$

$$= \sum_{i=1}^{m} 2(y_i - (a_0 + a_1 x_i))(-1)$$

•
$$\frac{\partial S}{\partial a_0} = -2 \sum_{i=1}^{m} (y_i - (a_0 + a_1 x_i))$$

• S(
$$a_0, a_1$$
)= $\sum_{i=1}^{m} (y_i - (a_0 + a_1 x_i))^2$

•
$$\frac{\partial S}{\partial a_1} = \frac{\partial}{\partial a_1} \left(\sum_{i=1}^m \left(y_i - (a_0 + a_1 x_i) \right)^2 \right)$$

$$\bullet \ \frac{\partial S}{\partial a_1} = \sum_{i=1}^m \frac{\partial}{\partial a_1} (y_i - (a_0 + a_1 x_i))^2$$

$$\bullet \quad \frac{\partial S}{\partial a_1} = \sum_{i=1}^m 2 \left(y_i - (a_0 + a_1 x_i) \right) \left(\frac{\partial}{\partial a_1} (y_i - (a_0 + a_1 x_i)) \right)$$

$$= \sum_{i=1}^{m} 2(y_i - (a_0 + a_1 x_i))(-x_i)$$

•
$$\frac{\partial S}{\partial a_1} = -2 \sum_{i=1}^m x_i (y_i - (a_0 + a_1 x_i))$$

•
$$\frac{\partial S}{\partial a_0} = 0$$
, $\frac{\partial S}{\partial a_1} = 0$

•
$$\frac{\partial S}{\partial a_0} = -2 \sum_{i=1}^m (y_i - (a_0 + a_1 x_i)) = 0$$

•
$$\sum_{i=1}^{m} (y_i - (a_0 + a_1 x_i)) = 0$$

•
$$\sum_{i=1}^{m} y_i = \sum_{i=1}^{m} a_0 + \sum_{i=1}^{m} a_1 x_i$$

•
$$\sum_{i=1}^{m} y_i = ma_0 + a_1 \sum_{i=1}^{m} x_i$$

•
$$\frac{\partial S}{\partial a_1} = -2 \sum_{i=1}^{m} x_i (y_i - (a_0 + a_1 x_i)) = 0$$
 gives

•
$$\sum_{i=1}^{m} x_i (y_i - (a_0 + a_1 x_i)) = 0$$

•
$$\sum_{i=1}^{m} x_i y_i = \sum_{i=1}^{m} a_0 x_i + \sum_{i=1}^{m} a_1 x_i^2$$

•
$$\sum_{i=1}^{m} x_i y_i = a_0 \sum_{i=1}^{m} x_i + a_1 \sum_{i=1}^{m} x_i^2$$

Normal Equations

The above equations are simplified to

$$ma_0 + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$

and

$$ma_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i.$$

Since the x_i and y_i are known quantities, the above two equations (called the **normal equations**), can be solved for the two unknown a_0 and a_1 . Differentiating $\frac{\partial S}{\partial a_0}$ and $\frac{\partial S}{\partial a_1}$ with respect to a_0 to a_1 respectively, we find

$$\frac{\partial^2 S}{\partial a_0^2}$$
 and $\frac{\partial^2 S}{\partial a_1^2}$

and both will be positive at the points. Hence these values provide a minimum of S.

Computation Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
X.	Y.	×, ²	W.j ²	X, Y,
<u> </u>	¥2	×2 ²	W2 ²	<u> </u>
7 .	7	٦ ٢	د	Г
$\mathbb{X}_{\mathbf{n}}$	Y	X, 2	Y 2	X _u Y _u
$\sum_{i} X_{j}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ΣX_j^2	$\Sigma_i^{\prime} \gamma_j^{2}$	S'X _j Y _j

Parameter Estimation Example

 Obstetrics: What is the relationship between Mother's Estriol level & Birthweight using the following data?

Estriol	<u>Birthweight</u>
(mg/24h)	(g/1000)
1	1
2	1
3	2
4	2
5	4

Scatterplot Birthweight vs. Estriol level

Parameter Estimation Solution Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
1	1	-1	1	1]
2	-]	4	-]	2
3	2	3)	<u> </u>	3
<u>4</u>	2	13	<u> </u>	3
5	4	25	15	20
15	10	55	26	37

Formation of Normal Equations from Data

•
$$ma_0 + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$

•
$$a_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$$

i	x_i^2	x_i	${\mathcal Y}_i$	$x_i y_i$
1	1	1	1	1
2	4	2	1	2
3	9	3	2	6
4	16	4	2	8
5	25	5	4	20
Total	55	15	10	37

Solution of Normal Equatioons –Method 1

- $5 a_0 + 15 a_1 = 10$
- $15 a_0 + 55 a_1 = 37$
- Solving by elimination:

•
$$5 a_0 + 15 = 10$$
 } X 3 \Rightarrow 15 $a_0 + 45 a_1 = 30$
15 $a_0 + 55 a_1 = 37$

10 $a_1 = 7$ gives $a_1 = 0.7$

•
$$5 a_0 + 15 a_1 = 10$$
 } /5 $\implies a_0 + 3 a_1 = 2$

- $a_0 + 2.1 = 2 \implies a_0 = -0.1$
- Line fitted is $y = a_0 + a_1 x$
- y = -0.1 + .7 x

Home Work

- Calculate $(y_i \widehat{y}_i)$ and $S = \sum (y_i \widehat{y}_i)^2$
- Do the same by changing a_0 and a_1

i	x_i	y_i	$\widehat{\mathbf{y}_i} = -0.1 + .7 \mathbf{x_i}$	$(y_i - \widehat{y}_i)$	$(y_i - \widehat{y}_i)^2$
Tota I					

Interpretation of Coefficients

• 1. Slope (*a*₁)

$$y_2 - y_1 = a_1(x_2 - x_1)$$
; change in y = slope times change in x; $\Delta y = a_1 \Delta x$

- If $a_1 = 0.7$, then Y Is Expected to Increase by 0.7 for Each 1 Unit Increase in X
- Y-Intercept (a_0)

$$ma_0 + a_1 \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i$$
$$a_0 + a_1 X = Y$$

Value of Y when X = 0;

If $a_0 = -0.1$, then Average Y Is Expected to Be -0.1 When X Is 0

Solution of Normal Equations: Method 2

- $ma_0 + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$
- $a_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$
- $ma_0 + a_1 \sum_{i=1}^m x_i \sum_{i=1}^m y_i = 0$
- $a_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 \sum_{i=1}^m x_i y_i = 0$

$$\frac{a_0}{\begin{vmatrix} \sum_{i=1}^m x_i & -\sum_{i=1}^m y_i \\ \sum_{i=1}^m x_i^2 & -\sum_{i=1}^m x_i y_i \end{vmatrix}} = -\frac{a_1}{\begin{vmatrix} m & -\sum_{i=1}^m y_i \\ \sum_{i=1}^m x_i & -\sum_{i=1}^m x_i y_i \end{vmatrix}} = \frac{1}{\begin{vmatrix} m & \sum_{i=1}^m x_i \\ \sum_{i=1}^m x_i & \sum_{i=1}^m x_i^2 \end{vmatrix}}$$

$$a_0 = \frac{-(\sum_{i=1}^m x_i)(\sum_{i=1}^m x_i y_i) + \sum_{i=1}^m y_i \sum_{i=1}^m x_i^2}{m \sum_{i=1}^m x_i^2 - (\sum_{i=1}^m x_i)^2}$$

Formulas of parameters

•
$$a_1 = -\frac{-m\sum x_i y_i + \sum x_i \sum y_i}{m\sum x_i^2 - (\sum x_i)^2}$$

•
$$a_1 = \frac{m \sum x_i y_i - \sum x_i \sum y_i}{m \sum x_i^2 - (\sum x_i)^2}$$

Data

•
$$ma_0 + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$

•
$$a_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$$

i	x_i^2	x_i	y_i	$x_i y_i$
1	1	1	1	1
2	4	2	1	2
3	9	3	2	6
4	16	4	2	8
5	25	5	4	20
Total	55	15	10	37

•
$$\sum x_i = 15$$
; $\sum y_i = 10$; $\sum x_i^2 = 55$; $\sum x_i y_i = 37$

•
$$a_0 = \frac{55x10 - 15x37}{5x55 - 15^2} = \frac{550 - 555}{275 - 225} = \frac{-5}{50} = -0.1$$

•
$$a_1 = \frac{m \sum x_i y_i - \sum x_i \sum y_i}{m \sum x_i^2 - (\sum x_i)^2}$$

•
$$a_1 = \frac{5X55 - 15X10}{5X55 - 225} = \frac{185 - 150}{50} = \frac{35}{50} = 0.7$$

Parameter Estimation Thinking Challenge

 You're a Vet epidemiologist for the county cooperative. You gather the following data:

•	Food (lb.)	Milk yield (lb.)	
	4	3.0	
	6	5.5	
	10	6.5	
	12	9.0	

 What is the relationship between cows' food intake and milk yield?

Scattergram Milk Yield vs. Food intake*

Parameter Estimation Solution Table*

Xi	Yi	X_i^2	Y_i^2	X_iY_i
4.	3.0	15	9,00	12
Õ	5,5	35	30.25	33
10	5.5	100	42.25	35
12	ê) Î	144	31.00	103
32	24.0	296	162.50	218

Parameter Estimation Solution*

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - \frac{\left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n}}{\left(\sum_{i=1}^{n} X_{i}\right)^{2}} = \frac{218 - \frac{(32)(24)}{24}}{296 - \frac{(32)^{2}}{24}} = 0.65$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X} = 6 - (0.65)(8) = 0.80$$

- http://wiki.stat.ucla.edu/socr/index.php/SO
 CR_Data_Dinov_020108_HeightsWeights
- height weight data set

Sr	Height	Weight	VV	
iii	(cms) = x	(Kg)= y	ху	
1	135	57	7695	18225
2	165	70	11550	27225
3	155	63	9765	24025
4	160	65	10400	25600
5	150	62	9300	22500
m= 5	$\sum x_i 765$	317	48710	117575

<u>Income</u>	hrs/week	<u>Income</u>	hrs/week
8000	38	8000	35
6400	50	18000	37.5
2500	15	5400	37
3000	30	15000	35
6000	50	3500	30
5000	38	24000	45
8000	50	1000	4
4000	20	8000	37.5
11000	45	2100	25
25000	50	8000	46
4000	20	4000	30
8800	35	1000	200
5000	30	2000	200
7000	43	4800	30