801: 1. Composité symbol placeel "as low as possible". $q = r + (r-1) \propto ; \text{ Given } q = 7 \text{ and } r = 2.$ $7 = 2 + 2 \longrightarrow 2 = 5 ; \text{ An cirtiger.}$

Here we have to proceed 's' stages to reduce the given

sources to 2 symbols.

	3		7	Sa		SP		Sc		Sq		Se
Source	P	code	P	code	P	wde	P	code	P	code	P	code
81. 1	0.4	3. Y- 12. 14	0.4	· · · · · · · ·	0-4) X 3 =	0.4		0-4.	1	0.6	0
Sz	0.2		0.2	· · · >	0.2	>	0.2	0	0.4		0.4	1
S	0.1	· · · · · · · · · · · · · · · · · · ·	0.1	٠,١,	0.2	-1-1	0.2		0.2			
St	0.1		0.1		0.1) 0,	0.2			V20	المستعدد	
J,	0.1-		0.1		0.1	الساما		1-1	4			
	0.05	Ţ,	0.7	<u>~~~l</u>)				$M_{r_{i}}$				
17	0.05		· 1/3	in dia		ig I						

Code Mable:

Source symbol	gord	r. code	code	length
81	0.4	1	1	Y
. v.	0.2	10	01	2
d'3	0.1	0100	0010	4
24	0.1	1100	0011	4
35	0.1	0000	0000	4
St	0.05	01000	00000	5
S.	0.05	11000	00011	5-

Avg lgf;
$$L = \sum_{\ell=1}^{7} p_{\ell} \ell^{2}$$

$$= 0.4 \times 1 + 0.2 \times 2 + 0.1 \times 4 \times 3 + 0.05 \times 5 \times 2$$

$$= 2.5 \text{ binits / wsg}$$

$$= -\sum_{\ell=1}^{7} p_{\ell} \log p_{\ell}$$

$$= 2.4 \times 19 \text{ bib / wsg}$$

Variance, V où $(x) = E((x-\mu)^2)$ where $\mu \rightarrow$ average value.

Then the variance of the word length;

=
$$0.4(1-2.5)^{2}+0.2(2-2.5)^{2}+0.1(4-2.5)^{2}\times 3$$

+ $0.05(5-2.5)^{2}\times 2$

2. Composité symbol placed "as lish as possible"

2).	57 A	5	c Co		a?	d	PC			ļ.,	se ala
	cocle		77 10 10 10 10 10	_	***** . \	P	code	p	cocle	12	code
0.4	>	0.4		0.4	\$.00 je	0.4	100	0.4	7	0.6	0
, · ·		0 0		0.1	1		CUP.	0.4.	0	0.4	.51
0,2-	ing il	0.4		46							
0-1-	\	0.1	10	0.2		U- Z-	7	O.2.		7. 1	
0.1-		0.1	7	0.1.		D-2				297 1	
0.1		0.1		0.1				1,7	3x 1		
0.05	0	0.1				١.).	un istri				, * , *
0.00	19-0	114	Diric k			111	 8 9 - E., g				545
	0.1	p code 0.4 0.2 0.1 0.1 0.05	p cocle p 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1	p code p code 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1	p code p code p 0.4	p code p code p code 0.4	p code p code p code p 0.4	p code p code p code p code 0.4	p code p code p code p code p 0.4 0.4 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1	p code p code p code p code 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1	p code p

Code Table:

Some symbol	prob	2. Cockword	Cockword	length
3,	0.4	00	00	2
25	0.2	11	11	2
√3	0.1	110	110	3
$S_{\mathbf{q}}$	0.1	001	100	3
55	0. 1	101	101	ડ
Sc	0.05	0010	0100	4
J ₄	20.0	1010	0101	4

$$V_{C} = \frac{4(cs)}{2.5} = \frac{2.4219}{2.5} \times 100 = \frac{96.88}{.}$$

$$V_{OU}(l_{1}^{\circ}) = \int_{P=1}^{7} P_{1}^{\circ} (l_{1}P - l_{2})^{2}$$

$$= 0.4(2-2.5)^{2} + 0.2(2-2.5)^{2} + 0.1(3-2.5)^{2} \times 3$$

$$+ 0.05(4-2.5)^{2} \times 2$$

$$= 0.45$$

Dren the composite symbol is moved as high as possible, the variance of the word length over source symbols would become smaller, which is desirable.

HW9. Consider a source with 8 alphabets A to 4 with

seprendent respective peobabilities of 0.22, 0.20, 0.18, 0.15,

0.10, 0.08, 0.05, 0.02.

© Consteur à binary compact code using Huffman coding and deleument the code efficiency.

D'ansteuct a ternair compact code using huffman coding and determine the code efficiency.

D'ansteuct a quarterrary compact cocle and deturned.

The code efficiency.

Ans. @ Binairy code. Code table:

				Y 1 3
/	Msg	prob	codemosed	length
	O-A	0.22	10	2
7	В	0.20	1.1	2
i.	C	81.0	000	હ ા
,	D	0.15	001	3
	E	0.10	011	3
	Ł	0.08	0100	4
4	G L	0.05	01010	S
1	Н	0.02	01011	5

$$L = 2.8 \text{ binits [msg]}$$
 $H(s) = 2.7535 \text{ bits [msg]}$
 $Y_c = 98.34 \text{ y.}$

1 Huffman Terrary Code:

Then of should have-the value 5,7,9,11... to 'd' be an criteges.

13
$$q = \theta$$
; $\alpha = \frac{\theta - \theta}{2} = \frac{5}{2} = \frac{2.5}{2}$; not au entegu

$$ib \ g = 9; \ \alpha = \frac{9-3}{2} = 3.$$

So add "one dumny symbol" i withen Lew publishies. So q= 9; with code alphabet x = {0,1,2}.

<i>l</i>	ee "J	ır ,	7.0	a"	" "	Pb "	"	se"
Source	prob		prob	code	1	code	dorog	code,
A	0.22		-0.82	6	-0 :52.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.53	O
B	0.2-	r et	>0.2		0.22		0,25	2,1
C 01 7	0.18-	iÑ Ú	>0 - 18		٠. ٠ -		0.22	2
Þ	0.15-	authorizing >	>0.15		0.18-	2		
F	0.08-		0.08	2	6, 1		aaa .	
H	0.05-		0-07			7 °		
I	0	2	-	Discord)			

Dwomy Symbol

350

Ţ

lode Table:

_	(out	- rante			(3)
Mig	prob	neode	code	length	L= 1.85 Hainb /mg
A	0.22	2	2	',	(40) = 2-7535 bib [mg
В	0.2	00	00	2	H3(1) = H(1) = 1.7373 terrar
C	0.18	10	01	- 2	1 0
D	0.15	20	0 2	2	log3 uniffmsg
9	0.10	01	10	2	
£	0.08	11	120	3	$\psi^{(3)} = H_3(3) = 1.7373$
3	0.05	0.21		3	$ \psi^{(3)}_{CA} = \frac{H_3(3)}{L^{(3)}} = \frac{1.7373}{1.85} $
Н	0.02	121	121	Y	= 93.91 %
			, -		= 13.11

(c) Huffman Quarternary Code

Griven that q=8, do take new q=00 by adding two "duning symbols" I and I each with probabilities

tero. if q = co; $\alpha = co-4 = 2$. An integer.

with code alphabet x = {0,1,2,3}.

		٠٠٠٠				
	for	ue 18"	1190		138"	
	Some	prob code	poof	code	pob	code
7	A	0.22	0.22-		→0·4	0
	В	0.2 —	0.2 ~		20.22	1 .
	c	0.18	-0.18_		0.2	2
	D	0.15	10.15	0	20.18	3
	E	0.1	10.1		70	· ·
	F	0.08	0.08	12		
	G	0.05	70.07	3		
4	H	0.02				0
) (I	0 2				1
7	J	0 ,3) Dis	card		0 1
			- '	١, ١		

Dumary

Code Table

Mag	Bord	resdeword	codewoord	Cgf:
A	0.22	1	. 1	1
В	0.2	2	2	21
Ch &	0.18	3	3	Ī
D	0.15	00	00	2
E	010	10	01	2
t	80.08	210	012	, 2
9	0.05	030	030	3
H-	0.02	130	031	3

L(1)= 1.47 quarternary digits/
Hes) = 2.7535 bib/mg.
Hg(s) = Hes) = 1.37675
quarturary units /mg
W(4) = +44(3) = 93.66%.

Compasison

Type of Coding	Gde efficiency
Binary coding	2 98.347.
Toenous coding	93.91%
Quarternasy	93.66 %

Code tree

(a) Binary code

(b) Leenous Code

(c) D

(c) D

(c) D

(d) D

(d) D

(d) D

(e) D

(e) D

(e) D

(f) D

4000 Apply Hufman encoding procedure for the following set of mogs and determine the Mc of the binary code formed.

21.0 21.0 4.0

Also apply Huffman cooling to the second order extension for the above mog and calculate how much the efficiency be improved?