(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年7 月28 日 (28.07.2005)

PCT

(10) 国際公開番号 WO 2005/068180 A1

(51) 国際特許分類7:

B32B 7/02

(21) 国際出願番号:

PCT/JP2004/008850

(22) 国際出願日:

2004年6月17日(17.06.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-011376 2004年1月20日(20.01.2004) JF

(71) 出願人 (米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒5718501 大阪府門真市大字門真 1 0 0 6 番地 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 *(*米国についてのみ*)*: 湯淺 明子 (YUASA, Akiko). 小島 真弥 (KOJIMA, Shinya). 上門 一登 (UEKADO, Kazutaka).

(74) 代理人: 岩橋 文雄, 外(IWAHASHI, Fumio et al.); 〒 5718501 大阪府門真市大字門真 1 O O 6 番地 松下電器産業株式会社内 Osaka (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

─ 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: FILM FOR SUPPRESSING CONDUCTION OF RADIANT HEAT AND HEAT INSULATING MEMBER EMPLOYING IT

(54) 発明の名称: 輻射熱伝導抑制フィルムおよびそれを用いた断熱部材

(57) Abstract: There are provided a radiant heat suppression film exhibiting an excellent radiant heat suppressing function while sustaining an infrared reflection capability over a long term, and a heat insulating member employing it. The radiant heat suppression film comprises a resin film exhibiting infrared absorbance of less than 25%, an infrared reflection layer, and an adhesive layer. The infrared reflectivity is not less than 50%.

(57)要約:長期間にわたって赤外線反射能力を持続させ、優れた輻射熱抑制機能を発揮する輻射熱抑制フィルムと、 それを用いた断熱材を提供する。少なくとも赤外線吸収率が25%未満の樹脂フィルムと、赤外線反射層と、接着 層とを有する輻射熱伝導抑制抑制フィルムであって、赤外線反射率を50%以上とする。

WO 2005/068180 PCT/JP2004/008850

1

明細書

輻射熱伝導抑制フィルムおよびそれを用いた断熱部材

技術分野

5 本発明は、優れた赤外線反射効果を有する輻射熱伝導抑制フィ ルムおよびそれを用いた断熱部材に関する。

背景技術

近年、地球環境問題である温暖化の対策として省エネルギーを 10 推進する動きが活発となっている。そして、温冷熱利用機器に関 しては、熱を有効活用するという観点から、優れた断熱性能を有 する断熱材が求められている。特に150℃を超える高温領域で 断熱材を使用すると、省エネルギー効果が顕著に表れるため、印 刷機、複写機、液晶プロジェクター、半導体製造装置への適用が 15 期待されている。

150℃を超える高温領域では、室温領域とは異なり、赤外線(以後IRという)による輻射熱伝導成分が無視できなくなるため、断熱材の断熱性能が低下してしまう。そして、輻射による熱の伝導を抑制する技術が必要となる。輻射熱を抑制する技術としては、プラスチックフィルムの上部に金属箔層と保護層を設けた断熱フィルムが、特開平5-164296号公報に開示されている。

図8は、上記従来技術の断熱フィルムの断面図である。

20

この断熱フィルム1は、結晶粒の大きい高純度金属の表層2を 25 備えたプラスチックフィルム3である。表層2の平滑な表面に、 熱放射率の小さい金属薄層4が超扁平な結晶粒を有するようにして層着されている。また、金属薄層4の表面には、IRおよび遠赤外線(以後FIRという)の自由な透過を許容しながら、金属薄層4の表面を安定的に保つように被覆するための保護層5が形成されている。

5

20

この断熱フィルム1へ侵入しようとするIRとFIRとからなる熱線は、超扁平な結晶粒を有する金属薄層4の層内で全反射を繰り返し、その後、外部へ向かい反射するようになるため、高い断熱効果を得ることができるとされている。

10 しかしながら、上記構成では、金属薄層と保護層との接合方法 が開示されておらず、実現性に乏しい。もし仮に、接着剤を使用 した場合、IRおよびFIRが接着剤に吸収されてしまうため、 IR反射効果が低減してしまうという課題がある。

また、真空断熱材の外被材として、IR反射機能を持たせた断 15 熱性ラミネートフィルムが、特開平5-193668号公報に開 示されている。

図9は、上記従来技術の断熱性ラミネートフィルムの断面図である。この断熱性ラミネートフィルムは、保護層5と、FIR反射層6と、ガスバリア層7と、熱溶着層8とを接着剤9Aにて接着したものである。この断熱性ラミネートフィルムは、保護層5にFIR透過物質を用い、FIR反射層6に金属箔を用いている。ため、高いFIR反射率を得ることができるとされている。

さらに、保護層5にFIR透過性物質を用いたため、FIR反射層6までIRが到達することが可能とされている。

25 しかし、IR透過性物質の定義が不明確であり、また、 保護層

5 と F I R 反射層 6 との接着剤 9 A も、 F I R 透過効果を損なわないような接着剤としか定義されておらず不明確である。

本発明は、上記従来の課題を解決するものであり、優れたIR 反射効果を有する輻射熱伝導抑制フィルムを提供することを目的 とする。

5

15

さて-30℃から100℃付近の温度領域において、一般的な 断熱材としては、グラスウールなどの繊維体やウレタンフォーム などの発泡体が用いられている。また、より高性能な断熱部材を 必要とする用途では、微細な空隙による空間を保持する芯材を、

10 外気の侵入を遮断する外被材で覆い、その空間を減圧して構成される真空断熱材を適用する手段がある。

真空断熱材の外被材としては、金属を熱溶着した容器などが使用可能であるが、耐熱を必要としない低温領域では、比較的、折り曲げや湾曲が可能な、熱溶着層とガスバリア層と保護層とを有するプラスチックー金属のラミネートフィルムが使用されることが多い。

近年では真空断熱材への要求が多岐にわたってきており、より 一層高性能な真空断熱材が求められている。

一方、コンピュータや印字印刷装置、複写機などの事務機器や、 20 インバーターが組み込まれた蛍光灯などにおいても、本体内部に 配設された発熱体から生じる熱を、熱に弱いトナーや内部精密部 品に伝達させないために、150℃付近で使用可能な高性能な断 熱部材が強く求められている。

150℃付近の温度領域に使用できる一般的な断熱部材として 25 は、グラスウールなどの無機繊維材料や無機発泡体などがあるが、 WO 2005/068180 PCT/JP2004/008850

5

10

15

20

25

より高性能な断熱部材への要望が高い。この温度領域では、真空断熱材はラミネートフィルムの信頼性の面から、特殊な高温仕様のものしか適用することができない。

4

一般に、熱伝導は、気体熱伝導と固体熱伝導、輻射熱伝導、対 流熱伝導の総和で示される。常温付近では、気体熱伝導と固体熱 伝導が支配的であり、輻射熱伝導の寄与は小さい。

しかしながら、温度上昇に伴い輻射熱伝導が徐々に増加し、1 00℃以上では輻射熱による熱伝導の影響が無視できなくなり、 さらに高温領域では輻射熱伝導が支配的となる。よって、150℃ 付近においては、輻射熱伝導低減を加味した断熱材仕様が必要と なる。

従来より、IR反射性の高い金属面や、IR反射性塗料などで輻射熱を抑制する技術は数多く報告されている。 長期間にわたってIRの放射エネルギーを受けるため、金属面ではその表面酸化による劣化が問題であり、IR反射性塗料ではIR反射率が十分ではない。 そこで、遮熱シートとして、可撓性のあるシート部材の片面または両面に樹脂塗料中に熱反射機能を有するセラミックや無機化合物を混入してなる熱反射塗料層を形成し、前記熱反射塗料層と前記シート部材との間に金属箔を介装したシートが特開2001-107480号公報に開示されている。

図17は上記従来技術の遮熱シートの断面図である。この遮熱シート20は、シート部材22の両面にアルミニウム箔を接着して、上側反射膜23Aおよび下側反射膜23Bを形成すると共に、そのアルミニウム箔の露出面に熱反射型塗料層を24A,24Bを塗布形成して構成される。この遮熱シート20の熱反射型塗料

WO 2005/068180 PCT/JP2004/008850

5

層を、太陽光などの熱源側に向けた使用において、アルミニウム 箔の膜は、IR放射エネルギーの反射率が高いため、放射エネル ギーを効率よく反射でき、遮熱性能が著しく向上するとされている。しかしながら、上記構成では、IR反射率の高い金属箔と反射型塗料層を複合化して使用しても、十分な遮熱効果を得ることは困難である。それは、入射したIRは、まずIR反射型塗料層によって、一部反射されるが、大部分は吸収されて、隣接する金属箔へ固体熱伝導により伝導するためである。IRは金属箔まで到達することなく、金属箔はIR反射機能を発揮しない。その結果、大部分の輻射熱は、固体熱伝導に変換され伝導してしまうためである。

5

10

15

25

また、金属箔製テープの表面に塗料型断熱材を高圧吹き付け塗布して、その裏面に強力耐熱接着剤を塗り、その上から付着防止用紙テープを挟んでロール状に巻いた断熱テープが実用新案登録第3085643号公報に開示されている。

しかしながら、上記従来技術の構成においても金属箔製テープの表面の塗料型断熱材が、IRの大部分を吸収してしまうため、十分な遮熱効果を得ることは困難である。

本発明は、上記従来の課題を解決するものであり、長期間にわ 20 たってIR反射能力を持続させ、優れた輻射熱抑制機能を発揮す る輻射熱抑制フィルムを提供することを目的とする。

また、真空断熱材の高性能化としては、輻射の影響を遮断して 高断熱化することを目的に、外被材が、保護層と、FIR反射層 と、金属箔からなるガスバリア層と、熱溶着層とからなる断熱性 ラミネートフィルムであって、保護層にFIR透過性物質を用い たことを特徴とするものが特開平5-193668号公報に開示されている。

汎用されるPETなどを保護層とした場合では、入射したIRは、一部反射されるが、大部分は保護層に吸収されて、隣接するガスバリア層へ固体熱伝導により伝導する。

5

10

15

20

上記従来技術の構成では、入射したIRはFIR透過物質である保護層を透過した後、ガスバリア層で反射されるため、その結果、輻射熱伝導を抑制可能な真空断熱材となる。このようにして、気体熱伝導及び輻射熱伝導を抑制し優れた断熱性能を有する真空断熱材を提供できるとされている。

ここでのFIR透過物質の特性は特に規定されておらず、メチルペンテンポリマーフィルムが有効であるとされている。

しかしながら、上記従来技術の構成は、FIR透過性物質およびFIR反射の定義が不明確である。輻射熱は、主として $2\sim 2$ 5 μ mの IRを吸収し、再び放射することにより伝えられる。

図26に示すように、発熱源の温度により、輻射熱の波長分布は変化し、ピーク位置は温度が高いほど低波長側へシフトする。

そして150 ℃における輻射熱放射スペクトルは、 7μ m付近にピーク波長を持ち、やや高波長側へショルダーを有する形状であることがわかる。よって、 $4\sim20\mu$ m付近のI R 吸収を阻害すれば、150 ℃における輻射熱伝導は抑制可能であると考えられる。つまり、 $4\sim20\mu$ mの範囲のI R 透過物質およびI R 反射物質について定義することが重要である。

本発明は、上記従来の課題に鑑み、長期間にわたってIR反射 25 能力を持続させ、優れた輻射熱伝導抑制機能を発揮する真空断熱 材を提供することを目的とする。また、輻射熱伝導抑制機能の付与により、従来適用が困難であった高温領域において使用できる真空断熱材を提供することを目的とする。

5

発明の開示

本発明は、少なくとも赤外線吸収率が25%未満の樹脂フィルムと、赤外線反射層と、接着層とを有する輻射熱伝導抑制フィルムであって、赤外線反射率が50%以上であることを特徴とする輻射熱伝導抑制フィルムを提供する。

10 前記接着層は接着部と非接着部とから構成され、前記樹脂フィルムと前記赤外線反射層とを接着により積層する。

前記樹脂フィルムは、少なくとも150℃以上の融点を持ち、 前記赤外線反射層は金属箔からなることを特徴とする射熱伝導抑 制フィルムである。

15 また、芯材と、前記芯材を覆う外被材とを有する真空断熱材であって、前記外被材の内部は減圧され、前記外被材は熱溶着層とガスバリア層と輻射熱伝導抑制機能を有する保護層とを有するラミネート構造を持ち、前記保護層は上記輻射熱伝導性抑制フィルムを用いることを特徴とする断熱部材を提供する。

20

図面の簡単な説明

図1は本発明の実施の形態1における輻射熱伝導抑制フィルムの断面図である。

図2は本発明の実施の形態1における接着層の構成を示す。

25 図3は本発明の実施の形態2における断熱部材の断面図である。

図4は樹脂フィルムのIR吸収率と輻射熱伝導抑制フィルム表面中心温度の関係を示す図である。

図5は輻射熱伝導抑制フィルムのIR反射率と輻射熱伝導抑制フィルム表面中心温度の関係を示す図である。

- 5 図 6 は本発明の実施の形態 3 における真空断熱材の断面図である。
 - 図7は本発明の実施の形態3における外被材の断面図である。
 - 図8は従来の断熱フィルムの断面図である。
 - 図9は従来の断熱性ラミネートフィルムの断面図である。
- 10 図10は実施の形態4における輻射熱伝導抑制抑制フィルムの 断面図である。
 - 図11は実施の形態5における輻射熱伝導抑制抑制フィルムの断面図である。
- 図12は実施の形態6における輻射熱伝導抑制抑制フィルムの 15 断面図である。
 - 図13は実施の形態7における輻射熱伝導抑制フィルムを断熱材表面へ取り付けた断熱部材の断面図である。
 - 図14は実施の形態8における輻射熱伝導抑制フィルムを真空断熱材表面へ取り付けた断熱部材の断面図である。
- 20 図 1 5 は I R 吸収率と高温側温度との関係を示す特性図である。
 - 図16はIR反射率と高温側温度との関係を示す特性図である。
 - 図17は従来の遮熱シートの断面図である。
 - 図18は実施の形態9における外被材の断面図である。
 - 図19は実施の形態10における外被材の断面図である。
- 25 図20は実施の形態11における外被材の断面図である。

図21は実施の形態12における外被材の断面図である。

図22は実施の形態13における真空断熱材の断面図である。

図23は実施の形態17における真空断熱材の断面図である。

図24はIR吸収率と高温側温度との関係を示す図である。

図25はIR反射率と高温側温度との関係を示す図である。

図26は温度別輻射熱放射スペクトルの特性図である。

発明を実施するための最良の形態

以下、本発明の実施の形態について、図面を参照しながら説明 10 する。なお、この実施の形態によってこの発明が限定されるもの ではない。 同一構成部品については、同じ参照符号をつけ詳細 な説明は省略する。なお、図面は模式図であり、各寸法位置を正 しく示すものではない。

本発明における樹脂フィルムのIR吸収率は、日本電子製フー 15 リエ変換赤外分光光度計JIR5500型と赤外放射ユニットIR-IRR200とを用いて、150℃で得られた赤外放射率をIR吸収率とした。また、IR反射率は、日立製作所赤外分光光度計270-30を用い、反射装置の相対反射角度12度での測定値である。

20 (実施の形態1)

25

5

図1と図2を用いて、実施の形態1を説明する。

図1に示すように、輻射熱伝導抑制フィルム10は、IR吸収率が25%未満の樹脂フィルム11と、IR反射層12とが接着剤9を介して積層されて構成される。また、図2に示すように、接着層9は、接着部13と非接着部14とが格子状パターンを形

WO 2005/068180 PCT/JP2004/008850

10

成するように、少なくとも樹脂フィルム11とIR反射層12の いずれか一方に印刷されている。

以上のように構成された輻射熱伝導抑制フィルム10について、以下その動作、作用を説明する。

5 樹脂フィルム11は、酸化劣化や外部からの衝撃に対し、IR 反射層を保護する作用を有し、長期にわたって輻射熱伝導抑制効 果を持続させることに寄与する。

また、熱源から発生したIRは、樹脂フィルム11を透過し、接着層9の接着部13または非接着部14へ入射する。

10 このとき、接着部13へ入射したIRは、接着部13を構成する接着剤のIR吸収効果によって減衰する。 また、非接着部14へ入射したIRは、上記接着剤が無いため、減衰することなくIR反射層12へ向かい、IR反射層12の表面で反射される。そして、反射されたIRは、ふたたび接着層9の接着部13と非接着部14をそれぞれ通過し、樹脂フィルム11を透過する。

以上のように、本実施の形態の輻射熱伝導抑制フィルム10は、接着剤が部分的に塗布されて、接着部13と非接着部14とを持つ接着層9を有している。 このようにして、IRが接着層9で吸収される割合が低くなる。

20 その結果、樹脂フィルム11を透過し、IR反射層13まで到達したIRは有効に反射されるため、輻射熱伝導抑制フィルム1 0は優れたIR反射効果を発揮することができる。

25

本実施の形態における樹脂フィルム 1 1 の例としては、ETFEフィルム(融点 2 6 5 $\mathbb C$ 、IR吸収率 8 %)や、FEPフィルム(融点 2 7 0 $\mathbb C$ 、IR吸収率 8 %)、PFAフィルム(融点 3 0

5 \mathbb{C} 、 I R \mathbb{W} Ψ \mathbb{W} $\mathbb{$

5

20

10 また、IR反射層12としては、例えば、アルミニウムや金、銀、銅、ニッケル、ステンレスなどの金属を叩いて薄く延ばした金属箔や、アルミニウム、金、銀、銅、ニッケルを蒸着した金属蒸着フィルム等が利用できる。 その中で、高いIR反射率を持ち、かつ、プロセスコストの安価なアルミニウム箔や銅箔を用いることが好ましい。

また、接着層 9 に用いる接着剤としては、例えばポリウレタン系接着剤やエポキシ系接着剤、レゾルシノール樹脂系接着剤、フェノール樹脂系接着剤、シリコーンイミド系接着剤等の有機接着剤や、水ガラスやセラミックス、セメント等の無機接着剤が利用できる。

接着部13と非接着部14とを有する接着層9の形成方法としては、グラビア印刷や、オフセット印刷、フレキソ印刷、スクリ 25 ーン印刷等の印刷技術や、溶剤や光によるエッチング等が利用で

WO 2005/068180 PCT/JP2004/008850

きる。 その中で、プロセスコストの安価な印刷技術を利用する ことが好ましい。

また、接着層 9 は、 I R 反射層 1 2 と樹脂フィルム 1 1 の柔軟性や引張強度等の物理的特性を考慮して、どちらの面に形成してもよい。

5

25

また、接着部13の印刷パターンを格子状としたが、輻射熱伝導抑制フィルムの使用形状によって、三角形、方形、菱形、多角形、円形などを素材とする幾何学模様や、意匠のような非幾何学模様を用いても良い。

10 また、接着部13と非接着部14の面積割合は、接着強度とI R反射効果の度合いに応じて自由に変えることができる。

また、輻射熱伝導抑制フィルム10の構成を、樹脂フィルム1 1とIR反射層12とを接着層9によって複層したが、樹脂フィルム11とIR反射層12はそれぞれ単層である必要はない。

- 15 例えば、輻射熱伝導抑制フィルム10を挟んで両側に熱源がある場合、IR反射層12の両面に樹脂フィルム11を接着層9によって接合する。 このようにして、輻射熱伝導抑制フィルム10が、各熱源から発生するIRを反射し、他方の熱源から発生するIRの影響をなくすことができる。
- 20 以上のような本実施の形態の輻射熱伝導抑制フィルム11を輻射熱伝導の抑制が必要な箇所に取り付けることにより、有効な断熱効果が得られる。

取り付け箇所の例としては、住宅や工場の屋根や壁のような建築部材や、コンピュータやプリンタ、複写機、プロジェクター等の情報機器、ジャーポットや電子レンジや給湯器などの調理家電、

WO 2005/068180 PCT/JP2004/008850 13

半導体製造装置などの保温、遮熱が必要なあらゆる場所があげら れる。

(実施の形態2)

25

図3と図4を用いて、実施の形態2を説明する。

図3は、本実施の形態における断熱部材の断面図である。 5

輻射熱伝導抑制フィルム10は、断熱材15の高温となる面に 取り付けられている。 なお、輻射熱伝導抑制フィルム10は、 実施の形態1と同様の構成が利用できる。

断熱材15としては、ポリスチレンフォームやポリウレタンフ オーム、フェノールフォームなどの発泡プラスチック系断熱材や、 10 グラスウールやロックウール、ガラス粉末などの無機物系断熱材、 インシュレーションボードやセルロースファイバーなどの木質繊 維系断熱材などが利用できる。 さらに、これらの断熱材をガス バリア性のある外被材で覆い、内部を減圧してなる真空断熱材も 利用できる。 15

また、断熱部材への取り付け方法に関しては特に限定するもの ではなく、接着剤による化学的接合や、クギ止めや縫合などの物 理的接合でも良い。その中でも、様々な断熱部材に適用すること を考えると、接着剤による化学的接合が好ましい。

以上のように構成された断熱部材について、輻射熱伝導抑制フ 20 ィルムの種類を変えたときの輻射熱伝導抑制効果について確認し た結果を、実施例1~6に示し、比較を比較例1~4に示す。

なお、輻射熱伝導抑制効果を明確にするため、本実施の形態で は、断熱部材として、グラスウールボードからなる真空断熱材を 用い、真空断熱材の厚みは12mmに統一した。

また、性能評価では、厚さ12mmのグラスウールボード表面の垂直方向からハロゲンヒーターを照射したときの輻射熱伝導抑制フィルム表面中心温度と、グラスウールボードの低温面中心温度とを評価項目とした。

PCT/JP2004/008850

また、評価の基準は、ハロゲンヒーターからグラスウールボードの高温側表面温度が150 ℃となる距離に輻射熱伝導抑制フィルムを設置し、フィルムの温度が150 ℃以下であれば、輻射熱抑制効果があると判定する。このときのグラスウールボードの低温面中心温度は50 ℃であった。

10 (実施例1)

5

IR反射層として15μmのニッケル箔の片面に、ポリオール (三井武田ケミカル社製商品名:タケラックA-310)とポリイソシアネート (三井武田ケミカル社製商品名:タケネートA-3)と酢酸エチルとからなる接着剤を、接着部と非接着部が50: 50となるようにグラビア印刷法を用いて塗布する。そして同時に、接着剤の表面に樹脂フィルムとして10μmのCPPフィルムをラミネートする。 本実施例の輻射熱伝導抑制フィルムのIR反射率を測定すると51%であった。

なお、上記接着剤の硬化は公知の方法で行われる。室温もしく 20 は必要に応じて加熱してもよい。 温度は $30\sim60$ $\mathbb C$ の範囲が 好ましい。 さらに接着層の厚みは、接着機能を損なわない範囲 の厚さとする。 $5~\mu$ m以下が好ましく、より好ましくは $3~\mu$ m以下とする。

この輻射熱伝導抑制フィルムをグラスウールボードに貼り付け、 25 評価を行ったところ、輻射熱伝導抑制フィルム表面中心温度、グ ラスウールボードの低温面中心温度はそれぞれ143 \mathbb{C} \mathbb{C} 39 \mathbb{C} であった。 輻射熱伝導抑制フィルムを未設置の場合と比較して、それぞれ7 \mathbb{C} 、11 \mathbb{C} の輻射熱伝導抑制効果が確認できた。

(実施例2)

- 5 I R 反射層として12μmのアルミニウム箔の片面に、実施例 1と同様にして接着剤を塗布し、同時に接着剤の表面に樹脂フィ ルムとして10μmのCPPフィルム(IR吸収率17%)をラ ミネートした。本実施例の輻射熱伝導抑制フィルムのIR 反射率 を測定すると61%であった。
- 10 この輻射熱伝導抑制フィルムをグラスウールボードに貼り付け、 評価を行ったところ、輻射熱伝導抑制フィルム表面中心温度、グ ラスウールボードの低温面中心温度はそれぞれ123℃と35℃ であった。 未設置の場合と比較してそれぞれ27℃、15℃の 輻射熱伝導抑制効果が確認できた。

15 (実施例3)

20

25

IR反射層として、 12μ mのアルミニウム箔の片面に、実施例1と同様にして接着剤を塗布し、同時に接着剤の表面に樹脂フィルムとして 25μ mのFEPフィルム(IR吸収率8%)をラミネートした。本実施例の輻射熱伝導抑制フィルムのIR反射率を測定すると84%であった。

この輻射熱伝導抑制フィルムをグラスウールボードに貼り付け、 評価を行ったところ、輻射熱伝導抑制フィルム表面中心温度、グ ラスウールボードの低温面中心温度はそれぞれ106℃と33℃ であった。 未設置の場合と比較してそれぞれ43℃、17℃の 輻射熱伝導抑制効果が確認できた。

(実施例4)

WO 2005/068180

5

10

IR反射層として、 12μ mのアルミニウム箔の片面に、実施例1と同様にして接着剤を塗布し、同時に接着剤の表面に樹脂フィルムとして 2μ mのPPSフィルム(赤外線吸収率10%)をラミネートした。本実施例の輻射熱伝導抑制フィルムの赤外線反射率を測定すると83%であった。

この輻射熱伝導抑制フィルムをグラスウールボードに貼り付け、評価を行ったところ、輻射熱伝導抑制フィルム表面中心温度、グラスウールボードの低温面中心温度はそれぞれ108 \mathbb{C} \mathbb{C} \mathbb{C} であった。 未設置の場合と比較してそれぞれ \mathbb{C} \mathbb{C}

(実施例5)

IR反射層として、アルミニウム蒸着を施した2μmのPPSフィルムの表面の非蒸着面に、実施例1と同様にして接着剤を塗布し、同時に接着剤の表面に樹脂フィルムとして2μmのPPSフィルム(IR吸収率10%)をラミネートした。本実施例の輻射熱伝導抑制フィルムのIR反射率を測定すると53%であった。この輻射熱伝導抑制フィルムをグラスウールボードに貼り付け、評価を行ったところ、輻射熱伝導抑制フィルム表面中心温度、グラスウールボードの低温面中心温度はそれぞれ144℃と42℃であった。 未設置の場合と比較してそれぞれ6℃、8℃の輻射熱伝導抑制効果が確認できた。

(実施例6)

I R 反射層として、アルミニウム蒸着を施した 2 μ m の P P S 25 フィルムの表面の非蒸着面に、実施例 1 と同様にして接着剤を塗 17

PCT/JP2004/008850

布し、同時に接着剤の表面にさらに I R 反射層として厚さ 1 2 μ m のアルミニウム箔をラミネートした。次に、ラミネートフィルムの蒸着面に、再度、接着剤を接着部と非接着部が 5 0 : 5 0 となるようにグラビア印刷法を用いて塗布する。

同時に接着剤の表面に、樹脂フィルムとして 2 μ m の P P S フィルム (I R 吸収率 1 0 %) をラミネートした。本実施例の輻射 熱伝導抑制フィルムの I R 反射率を測定すると 5 8 % であった。

(比較例1)

5

10

25

厚さ12mmのグラスウールボード表面に150℃の熱を与え 15 るハロゲンヒーターの熱照射を、輻射熱伝導抑制フィルムを設置 せずに行った。グラスウールボード低温面中心温度は50℃であ った。

(比較例2)

IR反射層として、 12μ mのアルミニウム箔をそのままグラ 20 スウールボード表面に設置した。アルミニウム箔のIR反射率は 95%であり、アルミニウム箔表面中心温度、グラスウールボードの低温面中心温度はそれぞれ 100%と 30%であった。

未設置の場合と比較してそれぞれ50℃、20℃の輻射熱伝導抑制効果が確認できた。しかし、使用後10日が経過すると、フィルム表面中心温度およびグラスウールボード低温面中心温度の

上昇が確認され、酸化劣化による I R 吸収の増加が推測できた。 (比較例3)

IR反射層として、12μmのアルミニウム箔の片面に、実施例1と同様にして接着剤を塗布し、同時に接着剤の表面に樹脂フィルムとして120μmのポリイミドフィルム(IR吸収率80%)をラミネートした。本実施例の輻射熱伝導抑制フィルムのIR反射率を測定すると20%であった。

この輻射熱伝導抑制フィルムをグラスウールボードに貼り付け、 評価を行ったところ、輻射熱伝導抑制フィルム表面中心温度、グ 10 ラスウールボードの低温面中心温度はそれぞれ168℃と54℃ であった。 未設置の場合と比較してそれぞれ18℃、4℃の温 度上昇が確認できた。これは樹脂フィルムであるポリイミドフィ ルムのIR吸収率が80%であるため、樹脂フィルムがIRを吸 収してしまったためであると考えられる。

15 (比較例4)

5

20

25

IR反射層として、12μmのつや消しアルミニウム箔の片面に、実施例1と同様にして接着剤を塗布し、同時に接着剤の表面に樹脂フィルムとして10μmのCPPフィルム(IR吸収率10%)をラミネートした。本実施例の輻射熱伝導抑制フィルムのIR反射率を測定すると42%であった。

この輻射熱伝導抑制フィルムをグラスウールボードに貼り付け、評価を行ったところ、輻射熱伝導抑制フィルム表面中心温度、グラスウールボードの低温面中心温度はそれぞれ155 C と 53 C であった。 未設置の場合と比較してそれぞれ5 C、3 C の温度上昇が確認できた。これはIR 反射層であるつや消しアルミニウ

ム箔のIR反射率を測定すると45%であり、IR反射層がIR を十分に反射することができなかったためであると考えられる。

以上のように構成された輻射熱伝導抑制フィルムについて、樹脂フィルムとIR反射層の種類を変えたときの輻射熱伝導抑制効 果について確認した結果を表1に示す。

表 1

	IR 樹脂フ 反射層		ルム	RRSF	フィル ム表面	低温面 中心	評価	
		名称	IR 吸収率 %	IR 反射率 %	中心 温度℃	温度	効果	酸化劣化
実施例1	Ni箔	CPP	1 7	5 1	1 4 3	3 9	あり	なし
実施例2	A 1 箔	СРР	1 7	6 1	1 2 3	3 5	なし	なし
実施例3	A 1 箔	FEP	8	8 4	1 0 6	3 3	あり	なし
実施例4	A l 箔	PPS	1 0	8 3	108	3 4	あり	なし
実施例 5	A 1 蒸着 P P S	PPS	1 0	5 3	144	4 2	あり	なし
実施例 6	A 1 蒸着 P P S / A 1 箔	PPS	1 0	5 8	1 3 6	3 8	あり	なし
比較例1			_		150	5 0	なし	
比較例 2	Al箔	_		9 5	1 0 0	3 0	あり	あり
比較例3	A 1 箔	PΙ	8 0	2 0	168	5 4	なし	なし
比較例4	つや消し A 1 箔	CPP	1 0	4 2	155	5 3	なし	なし

PI:ポリイミド樹脂 RRSF:輻射熱伝導抑制フィルム

PPS:ポリフェニレンサルファイド

また、樹脂フィルムのIR吸収率と、輻射熱伝導抑制フィルム表面中心温度の関係を図4に、輻射熱伝導抑制フィルムのIR反射率と、輻射熱伝導抑制フィルム表面中心温度の関係を図5にそれぞれ示す。

5 図4より、輻射熱伝導抑制フィルム表面中心温度がフィルム未 設置時である150℃以下となるのは、樹脂フィルムのIR吸収 率が25%未満であることがわかる。

同様に図5より、輻射熱伝導抑制効果が得られるのは、輻射熱 伝導抑制フィルムのIR反射率が50%以上であることがわかる。

10 (実施の形態3)

25

図6と図7を用いて、実施の形態3を説明する。

図6に示すように、真空断熱材16は、芯材17と芯材17を 覆う外被材18とからなり、内部を減圧して構成されている。

また、図7において、外被材18は、輻射熱伝導抑制フィルム 15 10と、熱溶着層8とから構成されている。

芯材17として、ポリスチレンフォームやポリウレタンフォーム、フェノールフォームなどの発泡プラスチック系断熱材や、グラスウールやロックウール、シリカ粉末などの無機物系断熱材が利用できる。

20 また、熱溶着層 8 は、C P P や、O P P , O P E T、P V D C、E V O H、 P A N、 P V A、 P E N、 C T F E など、真空断熱材の使用温度に応じて様々な樹脂フィルムが利用できる。

その中で、ガスバリア性と水蒸気バリア性に優れた樹脂フィルムを選ぶことが好ましい。 このようにして、真空断熱材の信頼性を向上させることができる。

また、輻射熱伝導抑制フィルム10は、実施の形態1と同様の 構成が利用できる。

また、外被材18は、高温側外被材、低温側外被材ともに、輻射熱伝導抑制効果をもつ外被材である必要はなく、少なくとも熱源に向いた高温側外被材にだけ輻射熱伝導抑制効果をもつ外被材であれば充分に効果が得られる。

以上のように構成された真空断熱材について、輻射熱伝導抑制 フィルムの種類を変えたときの輻射熱伝導抑制効果について確認 した結果を、実施例7に示し、比較を比較例5に示す。

10 なお、輻射熱伝導抑制効果を明確にするため、本実施の形態では、断熱部材を乾式シリカからなる真空断熱材を用い、真空断熱材の厚みは7mmに統一した。

また、性能評価は、輻射熱伝導抑制フィルムからなる外被材の垂直方向からハロゲンヒーターを照射したときの輻射熱伝導抑制フィルム表面中心温度と、真空断熱材の低温面中心温度を評価項目とした。

(実施例7)

5

15

20

25

厚さ50μmのCPPからなる熱溶着層の片面に、実施の形態 1と同様の接着剤を一様に塗布し、実施例1で用いた輻射熱伝導 抑制フィルムのIR反射層を貼り合わせることで、輻射熱伝導抑 制効果をもった外被材を作製した。

また、50μmのCPPからなる熱溶着層の片面に、実施の形態1と同様の接着剤を一様に塗布し、比較例4で用いた輻射熱伝導抑制フィルムのIR反射層を貼り合わせることで外被材を作製した。

この二枚の外被材で、乾式シリカからなる芯材を覆い、内部を減圧することで真空断熱材を作製した。この真空断熱材の外被材のうち、実施例1の輻射熱伝導抑制フィルムからなる外被材にハロゲンヒーターを照射したところ、本実施例の真空断熱材の低温面中心温度は33℃であった。

(比較例5)

5

10

15

実施例 7 で用いた真空断熱材を裏返し、比較例 4 の外被材を使用した輻射熱伝導抑制フィルムからなる外被材にハロゲンヒーターを照射したところ、真空断熱材の低温面中心温度は 4 5 ℃であった。

以上のような構成において、輻射熱伝導抑制フィルム10と、 熱可塑性樹脂からなる熱溶着層8とが接着層9により複層された フィルムを真空断熱材の外被材として使用する。その結果、輻射 熱伝導抑制フィルム10により輻射熱伝導を抑制し、さらに真空 断熱材により固体熱伝導および気体熱伝導を抑制することにより、 優れた断熱性能を発揮することができる。

(実施の形態4)

図10を用いて、実施の形態4を説明する。

図10において、輻射熱伝導抑制抑制フィルム10は、融点が 20 150℃以上、IR吸収率が25%未満の樹脂フィルム11と、 金属箔4とを積層することにより、IR反射率50%以上である ように構成されている。

以上のように構成された輻射熱伝導抑制抑制フィルム10について、以下その動作、作用を説明する。

25 樹脂フィルム11は、融点が150℃以上であることから、1

WO 2005/068180 PCT/JP2004/008850

50℃以下の環境であれば、溶融することなく、金属箔4の酸化 劣化を防止する作用を有し、長期間にわたって輻射熱伝導抑制 効 果が持続するものである。

23

また、樹脂フィルム11面より入射したIRは、吸収率25 % 未満で金属箔4まで到達し反射され、反射したIRもまた樹脂 フィルム11による吸収率25%未満で透過されるため、樹脂フィルム11のIR吸収による固体熱伝導率の増大が金属箔7のIR 反射効果を上回ることはない。

5

20

25

以上のように、本実施の形態においては、樹脂フィルム11 は 10 融点が150℃以上、IR吸収率が25%未満とし、金属箔4と 積層することにより、輻射熱伝導抑制抑制フィルム10のIR反 射率を50%以上とする。その結果、樹脂フィルム11での入射 および反射IR吸収による輻射伝熱から固体伝熱へ変換が少なく、 樹脂フィルム11を透過し金属箔4まで到達したIRは有効に反 射されるため、優れた輻射熱抑制機能を発揮することができる。

本発明の樹脂フィルムは、融点が150 ℃以上、IR吸収率が25%未満の樹脂フィルムが利用できる。また、明確な融点を持たない材料であっても150 ℃以上の耐熱性を有し、IR吸収率が25%未満のものであれば利用できる。この場合の指標としては、UL746B規定の連続使用温度が150 ℃以上のものである。融点150 ℃以上の例としては、厚さ 25μ mのETFE フィルム(融点265 ℃、IR吸収率8%)、厚さ 25μ mのF EPフィルム(融点<math>270 ℃、IR吸収率8%)、厚さ 25μ mのP EXTALLOW を EXTALLOW に EXTA

の無延伸CPPフィルム(融点170 \mathbb{C} 、IR W W \mathbb{P} \mathbb{P}

5

また本発明の金属箔4は、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔など、金属を延伸し、箔状としたものを利用することができる。

10 その中で、アルミニウム箔は金属の中でも非常に高い I R 反射 作用を有するため、優れた輻射熱抑制機能を発揮することがで きる。また、工業的にも汎用されているため、経済的であると いう利点もある。

また、本実施の形態の樹脂フィルム11として、フッ素系樹脂フィルムが利用できる。 フッ素系樹脂フィルムは、IR波長領域である2μm~25μmの吸収が比較的少なく、樹脂成分による熱吸収をさらに抑制する作用を有しているので、金属箔4面でのIR反射が効率よく行われる。そして、優れた輻射熱抑制機能を発揮することができる。また、耐熱性とともに耐食性、耐薬品20 性に優れるという作用を有するため、使用条件が多湿など過酷な場合であっても、長期間にわたって高い輻射熱抑制効果を発揮することができる。

フッ素系樹脂フィルムとは、例えば、ETFEフィルム、FE Pフィルム、PFAフィルム、CTFEフィルムなどである。

25 また、本実施の形態の樹脂フィルム11として、PPSフィル

ムが利用できる。 PPSフィルムは、IR領域における吸収が 比較的少なく、さらに非常に優れた耐熱作用を有するため、高温 条件であってもフィルムの軟化及び収縮が発生することなく、長 期間にわたって高い輻射熱抑制効果を発揮し、外観性にも優れる ものとすることができる。

以上のような本発明の輻射熱伝導抑制フィルム10を輻射熱伝導の抑制が必要な箇所に取り付けることにより、有効に断熱することが可能である。取り付け箇所の例としては、住宅や工場の屋根のような建築部材や、コンピュータや印字印刷装置、複写機な10 どの事務機器の遮熱が必要な部位、インバーターが組み込まれた蛍光灯などにおいても、本体内部に配設された発熱体と熱に弱いトナーや内部精密部品との間などである。これらの発熱源に向けて、樹脂フィルムを最表面に、続いて金属箔を積層して用いるものである。

15 (実施の形態5)

5

25

図11を用いて、実施の形態5を説明する。

図11において、輻射熱伝導抑制抑制フィルム10は、融点が 150℃以上、IR吸収率が25%未満の樹脂フィルム11A, 11Bと、金属箔4A,4Bとを交互積層して構成されている。

20 以上のように構成された輻射熱伝導抑制抑制フィルム10について、以下その動作、作用を説明する。

第1の樹脂フィルム11Aを透過して到達した第1の金属箔4Aおいては、実施の形態4と同様にIR反射機能が作用するが、 反射されずに吸収され固体伝熱へと変換された一部のIRが再び 放射され、第2の樹脂フィルム11Bを透過し、さらに第2の金

PCT/JP2004/008850

属箔4Bにて反射されるため、さらに優れた輻射熱抑制機能を発揮することができるものである。

(実施の形態6)

図12を用いて実施の形態6を説明する。

5 図12において、輻射熱伝導抑制抑制フィルム10は、融点が 150℃以上、IR吸収率が25%未満である樹脂フィルム11 と、積層された金属箔4A、4Bとから構成されている。

以上のように構成された輻射熱伝導抑制抑制フィルム10について、以下その動作、作用を説明する。

10 樹脂フィルム11を透過して到達した第1の金属箔4Aにおいては、実施の形態4と同様にIR反射機能が作用するが、反射されずに吸収され固体伝熱へと変換されたIRが再び放射され、第 2の金属箔4Bにて反射されるため、さらに優れた輻射熱抑制機能を発揮することができる。

15 (実施の形態7)

25

図13を用いて、実施の形態7を説明する。

図 1 3 において、断熱部材 2 1 は輻射熱抑制フィルム 1 0 と断熱材 1 5 とから構成されている。

本構成において、輻射熱抑制フィルム10により輻射熱伝導を 20 抑制し、さらに断熱材15により固体熱伝導および気体熱伝導を 抑制することにより、優れた断熱効果が発揮されるものである。

ここでの断熱材15は、グラスウールやロックウールなどの無機繊維からなるもの、耐火煉瓦や発泡セラミックスなど無機固形化体からなるもの、発泡ウレタンフォーム、発泡スチレンフォームなど有機材料からなるものなどが用いられ、特に限定されるも

のではない。

実施の形態7における輻射熱伝導抑制フィルムを発泡ウレタンフォーム表面に設置し評価した結果を実施例8に示す。

性能評価は、厚さ12mmのグラスウールボード表面に14 3℃の熱を与えるハロゲンヒーターの熱照射を、輻射熱伝導抑制 フィルムを設置した同様のグラスウールボードに与えた場合の照 射面(高温側)温度および裏面(低温側)温度の測定にて行った。 輻射熱伝導抑制フィルムを設置しない場合での低温側温度は、 47℃であった。

10 (実施例8)

5

15

(実施の形態8)

図14を用いて、実施の形態8を説明する。

図14において、断熱部材21は輻射熱抑制フィルム10と真20 空断熱材16とから構成されている。ここで、真空断熱材とは芯材と外被材とからなり、減圧下にて芯材を外被材に封止することにより製造されるものであり、気体熱伝導率が限りなく小さい断熱性能に優れる断熱材である。

以上のような構成において、輻射熱抑制フィルム10により幅 25 射熱伝導を抑制し、さらに真空断熱材16により固体熱伝導およ 5

び気体熱伝導を抑制することにより、優れた断熱効果が発揮されるものである。

また、輻射熱伝導抑制フィルム10を真空断熱材16表面へ取り付けることにより、真空断熱材16が発熱源から受ける熱量が低減し、表面温度が低下するため、真空断熱材が封止口からの経時的な空気の進入により劣化することを抑制する効果が得られる。

実施の形態4から6における各種輻射熱伝導抑制フィルムを真空断熱材表面に設置して評価した結果を実施例9~14に示す。

本実施例において使用した真空断熱材は、外被材の保護層には 10 ナイロンフィルムおよびPETフィルムを、ガスバリア層にはア ルミ箔のつや消し面を、熱融着層には無延伸CPPフィルムを用 いた。また、芯材として、乾式ヒュームドシリカにカーボンブラ ックを5w t %添加して均一に混合した粉体を、通気性の不織布 袋に封入したものを用いて厚さ7mmとした。

性能評価は、上記真空断熱材の表面に150℃の熱を与えるハロゲンヒーターの熱照射を、本実施例の輻射熱伝導抑制フィルムを設置した真空断熱材に与えた場合の照射面(高温側)および裏面(低温側)温度の測定にて行った。輻射熱伝導抑制フィルムを設置しない場合での低温側表面温度は39℃であった。この比較20 仕様における保護層の樹脂フィルムのIR吸収率は25%であり、IR反射率は30%であった。

なお、IR吸収率及びIR反射率の測定は、実施の形態7と同様に行った。

(実施例9)

25 金属箔として厚さ15μmのニッケル箔を、樹脂フィルムとし

WO 2005/068180

5

て厚さ 10μ mの無延伸CPPフィルムを使用した。CPPフィルムのIR吸収率は17%、本実施例の輻射熱伝導抑制フィルムのIR反射率は52%である。評価の結果、高温側温度は140%であり、低温側温度は37%であり、未設置の場合と比較してそれぞれ10%、および2%の低減が確認され、輻射熱伝導抑制効果があると判定した。

(実施例10)

金属箔として厚さ $1 \ 2 \ \mu$ mのアルミニウム箔を、樹脂フィルムとして厚さ $1 \ 0 \ \mu$ mの無延伸 C P P フィルムを使用した。 C P P 10 フィルムの I R 吸収率は $1 \ 7 \ \%$ 、本実施例の輻射熱伝導抑制フィルムの I R 反射率は $6 \ 4 \ \%$ である。評価の結果、高温側温度は $1 \ 2 \ 0$ \mathbb{C} であり、低温側温度は $3 \ 3 \ \mathbb{C}$ であり、未設置の場合と比較してそれぞれ $3 \ 0 \ \mathbb{C}$ 、および $6 \ \mathbb{C}$ の低減が確認され、輻射熱伝導抑制効果があると判定した。

15 (実施例11)

金属箔として厚さ12μmのアルミニウム箔を、樹脂フィルムとして厚さ25μmのFEPフィルム(フッ素系フィルム)を使用した。FEPフィルムのIR吸収率は8%、本実施例の輻射熱伝導抑制フィルムのIR反射率は88%である。

20 評価の結果、高温側温度は103℃であり、低温側温度は31℃であり、未設置の場合と比較してそれぞれ47℃、および8℃の低減が確認され、輻射熱伝導抑制効果があると判定した。本発明のフッ素フィルムとしては、FEPの他にETFEフィルム、PFAフィルム、CTFEフィルムなどが使用できる。

25 (実施例12)

金属箔として厚さ12 μ mのアルミニウム箔を、樹脂フィルムとして厚さ2 μ mのPPSフィルムを使用した。PPSフィルムのIR吸収率は10%、本実施例の輻射熱伝導抑制フィルムのIR反射率は87%である。評価の結果、高温側温度は103℃であり、低温側温度は31℃であり、未設置の場合と比較してそれぞれ47℃、および8℃の低減が確認され、輻射熱伝導抑制効果があると判定した。

(実施例13)

5

15

25

金属箔として厚さ 1 2 μ m の アルミニウム箔を、 樹脂フィルム 10 として厚さ 2 μ m の P P S フィルムを使用し、最表面から P P S フィルム/アルミニウム箔/P P S フィルム/アルミニウム箔の順に積層した。 P P S フィルムの I R 吸収率は 1 0 %、本実施例の輻射熱伝導抑制フィルムの I R 反射率は 9 0 %である。

評価の結果、高温側温度は102℃であり、低温側温度は30℃であり、未設置の場合と比較してそれぞれ48℃、および9℃の低減が確認された。さらに、実施例12と比較して温度低減効果が高かったことから、交互積層によるさらなる輻射熱伝導抑制効果があると判定した。

(実施例14)

20 金属箔として厚さ 1 2 μ mのアルミニウム箔を、樹脂フィルム として厚さ 2 μ mの P P S フィルムを使用し、最表面から P P S フィルム/アルミニウム箔/アルミニウム箔の順に積層した。

PPSフィルムのIR吸収率は10%、本実施例の輻射熱伝導 抑制フィルムのIR反射率は90%である。評価の結果、高温側 温度103℃であり、低温側温度は30.5℃であり、未設置の 場合と比較してそれぞれ47℃、および8.5℃の低減が確認された。 さらに、実施例12と比較して温度低減効果が若干高かったことから、金属箔積層によるさらなる輻射熱伝導抑制効果があると判定した。

5 以上、実施例9~14の結果を表2に示す。

表 2

	金属箔 樹脂フィルム			遮熱	RRSF	表面温度℃		酸
		名称	IR 吸収 率%	塗料 吸収 率%	反射率 %	高温	低温	化劣化
実施例 9	Ni箔	CPP	17	_	5 2	140	3 7	なし
実施例 10	Al箔	СРР	1 7	-	6 4	120	3 3	なし
実施例 11	A l 箔	FEP	8		8 8	103	3 1	なし
実施例 12	A 1 箔	PPS	10	-	8 7	103	3 1	なし
実施例 13	AI箔	PPS	1 0	_	9 0	102	3 0	なし
実施例 14	A 1 箔	PPS	1 0		9 0	103	30.5	なし
比較例 7		なし		_	なし	150	3 9	なし
比較例8	A l 箔		_	_	9 5	100	3 0	あり
比較例 9	A 1 箔			7 5	2 5	160	4 2	なし
比較例 1 0	A 1 箔	PΙ	8 0	-	2 0	165	4 3	なし
比較例 1 1	つや消し A 1 箔	CPP	1 7	-	4 5	152	4 1	なし

RRSF:輻射熱伝導抑制フィルム

次に本発明の輻射熱伝導抑制フィルムに対する比較例を示す。 評価の条件及び方法は実施の形態7と同様である。

(比較例6)

厚さ12mmのグラスウールボード表面に143℃の熱を与え 5 るハロゲンヒーターの熱照射を、輻射熱伝導抑制フィルムを設置 せずに行った。その際の低温側温度は47℃であった。

(比較例7)

実施の形態 8 にて示した真空断熱材において輻射熱伝導抑制フィルムを設置せずに、高温側表面に 1 5 0 ℃の熱を与えるハロゲ 10 ンヒーターの熱照射を実施した。その際の低温側温度は 3 9 ℃であった。本比較仕様における保護層の樹脂フィルムの I R 吸収率は 2 5 % であり、 I R 反射率は 3 0 % であった。

(比較例8)

金属箔として厚さ12μmのアルミニウム箔を真空断熱材表面 15 に設置した。アルミ箔のIR反射率は95%である。評価の結果、 初期は、高温側温度は100℃であり、低温側温度は30℃であ り、未設置の場合と比較してそれぞれ50℃、および9℃の低減 が確認された。しかし、使用後10日経過までに徐々に高温側及 び低温側温度の上昇が確認され、酸化劣化によるIR吸収の増加 20 が考えられる。

(比較例9)

25

金属箔として厚さ12μmのアルミニウム箔を用い、アルミニウム箔上に遮熱塗料を塗布したものを真空断熱材表面に設置した。 遮熱塗料のIR吸収率は75%、本比較例の輻射熱伝導抑制フィルムのIR反射率は25%である。評価の結果、高温側温度は

160℃であり、低温側温度は42℃であり、未設置の場合と比較してそれぞれ5℃、および3℃の温度上昇が確認され、輻射熱伝導抑制効果はないと判定される。これは、塗料のIR吸収率が高く、反射率が低いことに起因すると考えられる。

5 (比較例10)

金属箔として厚さ12μmのアルミニウム箔を、樹脂フィルムとして厚さ120μmのポリイミドフィルムを使用した。ポリイミドフィルムのIR吸収率は80%、本比較例の輻射熱伝導抑制フィルムのIR反射率は20%である。評価の結果、高温側温度10 は165℃であり、低温側温度は43℃であり、未設置の場合と比較してそれぞれ15℃、および4℃の温度上昇が確認され、輻射熱伝導抑制効果はないと判定される。樹脂フィルムであるポリイミドフィルムのIR吸収率が80%であるため、輻射熱伝導抑制効果は確認できず、逆にIR吸収による温度上昇が確認された15 と考えられる。

(比較例11)

5

15

20

PCT/JP2004/008850

比較例7~11の結果を表2に示す。さらに、実施例9~12 及び比較例7~11に関して、IR吸収率と高温側温度との関係 を図15に、IR反射率と高温側温度との関係を図16に示す。

図15より、高温側温度が、輻射熱伝導抑制フィルムが未設置の場合の150℃よりも低下し効果が現れるのは、IR吸収率が25%未満であることが推定できる。

また、同様に図16より、輻射熱伝導抑制効果が得られるのは、 IR反射率50%以上であると推定できる。

なお、樹脂フィルムと金属箔との積層方法に関しては特に限定 10 するものではなく、有機及び無機接着剤による接着により接合されていてもよく、また端部が縫合などの物理的な方法で接合されていてもよい。

また、本発明は樹脂フィルムと金属箔とが、交互に積層されて なることを特徴とすることにより、優れた輻射熱抑制機能を発揮 することができる。積層数は、多い程効果的であるが、適用温度 やコストにより最適な積層数を選択することができる。

さらに本発明は、樹脂フィルムと、積層された金属箔とからなることを特徴とすることにより、優れた輻射熱抑制機能を発揮することができる。樹脂フィルムと金属箔との交互積層に較べ、金属箔同士の接触による固体熱伝導の影響がやや大きいため、輻射熱抑制能力には劣るが、経済的である。

以上述べたように、本発明の輻射熱抑制フィルムは、長期間に わたってIR反射能力を持緯させ、優れた輻射熱抑制機能を発揮 することができる。

25 また、本発明の輻射熱抑制フィルムは、樹脂フィルムとして、

フッ素系樹脂フィルムや、PPSフィルムを用いるごとにより、より高温領域の厳しい条件においても、長期間にわたってIR反射能力を持続させ、優れた輻射熱抑制機能を発揮することができる。

5 (実施の形態9)

10

15

図18を用いて、実施の形態9を説明する。

図18において、外被材18は、保護層5とガスバリア層7と 熱溶着層8とから構成されている。さらに、保護層5は、IR吸 収率が25%未満の樹脂フィルム11と、金属箔4とを積層する ことにより、IR反射率50%以上であることよう構成されてい る。

樹脂フィルム11は、金属箔4の酸化劣化を防止する作用を有 し、長期間にわたって輻射熱伝導抑制効果が持続するものである。

また、樹脂フィルム11面より入射したIRは、吸収率25% 未満で金属箔6まで到達し反射され、反射したIRもまた樹脂フィルム11による吸収率25%未満で透過される。その結果、樹脂フィルム11のIR吸収による固体熱伝導率の増大が金属箔4のIR反射効果を上回ることはない。

以上のように、本実施の形態においては、樹脂フィルム11は、 20 IR吸収率が25%未満とし、金属箔4と積層することにより、 IR反射率を50%以上とする。その結果、樹脂フィルム11で の入射および反射IR吸収による輻射伝熱から固体伝熱へ変換が 少なく、樹脂フィルム11を透過し金属箔4まで到達したIRは 有効に反射されるため、優れた輻射熱伝導抑制機能を発揮するこ 25 とができる。

5

融点 1 5 0 ℃以上の例としては、厚さ 2 5 μmのETFEフィルム (融点 2 6 5 ℃、IR吸収率 8 %)、厚さ 2 5 μmのFEPフィルム (融点 2 7 0 ℃、IR吸収率 8 %)、厚さ 2 5 μmのPFAフィルム (融点 3 0 5 ℃、IR吸収率 8 %)、厚さ 2 μmのPPS 10 フィルム (融点 2 8 5 ℃、IR吸収率 1 0 %)、厚さ 1 0 μmの無延伸 CPPフィルム (融点 1 7 0 ℃、IR吸収率 1 7 %)、厚さ 1 5 μm、PETフィルム (融点 2 5 8 ℃、IR吸収率 1 8 %) などがあげられる。また、明確な融点を持たないものとしては、厚さ 2 5 μmのPSFフィルム (連続使用温度 1 5 0 ℃、IR吸収 15 %)、厚さ 2 5 μmのPESフィルム (連続使用温度 1 8 0 ℃、IR吸収率 1 5 %)などがある。

また本発明の金属箔4は、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔など、金属を延伸し、箔状としたものを利用することができる。

- 20 また、本実施の形態では、金属箔4をアルミニウム箔とすることにより、アルミニウム箔が金属の中でも非常に高いIR反射作用を有するため、優れた輻射熱伝導抑制機能を発揮することができる。また、工業的にも汎用されているため、経済的であるという利点もある。
- 25 また、本実施の形態の樹脂フィルム11をフッ素系樹脂フィル

ムとすることにより、 IR 液長領域である $2\mu m \sim 25\mu m$ の吸収が比較的少なく、樹脂成分による熱吸収をさらに抑制する作用を有するため、金属箔 6 面での IR 反射が効率よく行われる。

その結果、優れた輻射熱伝導抑制機能を発揮することができる。 また、耐熱性とともに耐食性、耐薬品性に優れるという作用を 有するため、使用条件が多湿など過酷な場合であっても、長期間 にわたって高い輻射熱伝導抑制効果を発揮することができる。

フッ素系樹脂フィルムとは、例えば、ETFEフィルム、FE Pフィルム、PFAフィルム、CTFEフィルムなどである。

10 また、本実施の形態の樹脂フィルム11をPPSフィルムとすることにより、PPSフィルムがIR領域における吸収が比較的少なく、さらに非常に優れた耐熱作用を有するため、高温条件であってもフィルムの軟化及び収縮が発生することがない。

その結果、長期間にわたって高い輻射熱伝導抑制効果を発揮し、 外観性にも優れるものとすることができる。

以上のような外被材18を備えた真空断熱材は、保護層により 輻射熱伝導を抑制し、真空断熱材により気体熱伝導および固体熱 伝導を抑制可能であるため、非常に優れた断熱性能を有するもの である。

20 (実施の形態10)

5

15

25

図19を用いて、実施の形態10を説明する。

図19に示すように、外被材18は保護層5とガスバリア層7と熱溶着層8とから構成されている。保護層5は、IR吸収率が25%未満の樹脂フィルム11A,11Bと、金属箔4A,4Bとを交互積層して構成されている。

第1の樹脂フィルム11Aを透過して到達した第1の金属箔4 Aにおいては、実施の形態9と同様にIR反射機能が作用するが、 反射されずに吸収され固体伝熱へと変換された一部のIRが再び 放射され、第2の樹脂フィルム11Bを透過し、さらに第2の金 属箔4Bにて反射される。その結果、さらに優れた輻射熱伝導抑 制機能を発揮することができる。

(実施の形態11)

5

15

図20を用いて、実施の形態11を説明する。

図20に示すように、外被材18は保護層5とガスバリア層7 10 と熱溶着層8とから構成されている。保護層5は、IR吸収率が 25%未満である樹脂フィルム11と、積層された金属箔4A, 4Bとから構成されている。

樹脂フィルム11を透過して到達した第1の金属箔4Aにおいては、実施の形態9と同様にIR反射機能が作用するが、反射されずに吸収され固体伝熱へと変換されたIRが再び放射され、第2の金属箔4Bにて反射される。その結果、さらに優れた輻射熱伝導抑制機能を発揮することができる。

(実施の形態12)

図21を用いて、実施の形態12を説明する。

20 図21に示すように、外被材18は保護層5と熱溶着層8とから構成されている。保護層5の金属箔4をガスバリア層としたもので、従来のガスバリア層7は存在しない構成となっている。

本構成により、保護層 5 の金属箔 4 がガスバリア機能をも有するため、ガスバリア層 7 を省略することが可能となる。

25 その結果、材料コストおよび製造プロセスコストを低減するこ

とが可能である。

WO 2005/068180

5

15

(実施の形態13)

図22を用いて、実施の形態13を説明する。

図22に示すように、真空断熱材16は芯材17と外被材18 とから構成されている。減圧下にて芯材17を外被材18に封止することにより製造されるものであり、気体熱伝導率が限りなく小さい断熱性能に優れる断熱材である。また、外被材18は、保護層5とガスバリア層7と熱溶着層8とから構成されている。

以上のような構成において、外被材18の保護層5により輻射 10 熱伝導を抑制し、さらに真空断熱材16により固体熱伝導および 気体熱伝導を抑制することにより、優れた断熱効果が発揮される ものである。

また、保護層 5 の I R 反射効果により、真空断熱材 1 6 が発熱源から受ける熱量が低減し、表面温度が低下するため、従来適用が困難であった高温領域においても使用することが可能となる。

さらに熱伝導率の温度依存による増大をも防ぐため、優れた断熱性能を引き出すことが可能となる。また、表面温度低下により、真空断熱材が封止口からの経時的な空気の進入による劣化を抑制し、長期間にわたる高断熱性能を付与するものである。

20 保護層 5 の樹脂フィルム 1 1 と金属箔 4 の種類を変えて確認 した結果を実施例 1 5 ~ 1 8 で示す。

実施例15~18の真空断熱材において、芯材には、乾式ヒュームドシリカにカーボンブラックを5wt%添加して均一に混合した粉体を、通気性の不織布袋に封入したものを用いる。

25 外被材の熱溶着層には無延伸CPPフィルムを、ガスバリア層

にはアルミ箔のつや消し面を用いた。外被材の保護層には実施例 1から実施例4の構成を用い厚さ7mmの真空断熱材を作製した。

性能評価は、保護層にナイロンフィルムおよびPETフィルムを用い、その他は実施例1から実施例4と同様の構成とした真空断熱材高温側表面に150℃の熱を与えるハロゲンヒーターの熱照射を、本実施例の各真空断熱材に与えた場合の高温側および低温側表面温度の測定にて行った。この比較仕様における保護層の樹脂フィルムのIR吸収率は25%であり、IR反射率は30%、低温側表面温度は39℃であった。

10 実施例15~18の結果は表3にまとめる。

5

表 3

	金属箔	樹脂フィ	ルム	保護層	表面温度	°C	酸化
		名称	IR 吸収率	反射率%	高温側	低温側	化劣化
実施例 15	Ni箔	СРР	17%	5 0	1 4 5	3 8	なし
実施例 16	A 1 箔	СРР	1 7 %	6 0	1 2 5	3 5	なし
実施例 17	A 1 箔	FEP	8 %	8 3	108	3 3	なし
実施例 18	A 1 箔	PPS	10%	8 2	108	3 3	なし
実施例 19	A 1 箔	PPS	10%	8 5	107	3 2	なし
実施例 20	A l 箔	PPS	10%	8 5	108	32.5	なし
実施例 21	A 1 箔	PPS	10%	8 2	108	3 3	なし
実施例 22	Al箔	PPS	10%	8 2	108	29.5	なし
比較例 12	なし	Nу、 РЕТ	2 5 %	3 0	150	3 9	なし
比較例 13	A 1 箔	なし		9 5	1 0 0	3 1	あり

比較例 14	A 1 箔	PΙ	80%	2 0	170	4 5	なし
比較例 15	つや消し A 1 箔	СРР	17%	4 5	157	4 3	なし

PI: ポリイミド樹脂

Ny:ナイロン

(実施例15)

金属箔として厚さ 15μ mのニッケル箔の研磨面を、樹脂フィ 5 ルムとして厚さ 10μ mの無延伸 C P P フィルムを使用した。

CPPフィルムのIR吸収率は17%、本実施例の真空断熱材表面(保護層)のIR反射率は50%であった。

評価の結果、高温側温度は145 ℃であり、低温側温度は38 ℃であった。 未設置の場合と比較してそれぞれ5 ℃、および1 ℃の低減が確認され、輻射熱伝導抑制効果があると判定した。

(実施例16)

10

15

金属箔として厚さ 1 2 μ mのアルミニウム箔の研磨面を、樹脂フィルムとして厚さ 1 0 μ mの無延伸 C P P フィルムを使用した。 C P P フィルムの I R 吸収率は 1 7 %、本実施例の真空断熱材表面の I R 反射率は 6 0 %であった。評価の結果、高温側温度は 1 2 5 $\mathbb C$ であり、低温側温度は 3 5 $\mathbb C$ であった。

未設置の場合と比較してそれぞれ25℃、および4℃の低減が 確認され、輻射熱伝導抑制効果があると判定した。

(実施例17)

20 金属箔として厚さ 1 2 μ m の アルミニウム箔の研磨面を、樹脂 フィルムとしてフッ素系フィルムである厚さ 2 5 μ m の F E P フィルムを使用した。 F E P フィルムの I R 吸収率は 8 %、本実施 WO 2005/068180

5

25

例の真空断熱材表面のIR反射率は83%であった。

評価の結果、高温側温度は108 ℃であり、低温側温度は33 ℃であった。 未設置の場合と比較してそれぞれ42 ℃、および6 ℃の低減が確認され、輻射熱伝導抑制効果があると判定した。

本発明のフッ素フィルムとしては、FEPフイルムの他にETFEフィルム、PFAフィルム、CTFEフィルムなどが使用できる。

(実施例18)

金属箔として厚さ12μmのアルミニウム箔を、樹脂フィルム10 として厚さ2μmのPPSフィルムを使用した。PPSフィルムのIR吸収率は10%、本実施例の真空断熱材表面のIR反射率は82%であった。評価の結果、高温側温度は108℃であり、低温側温度は33℃であった。 未設置の場合と比較してそれぞれ42℃、および6℃の低減が確認され、輻射熱伝導抑制効果が15 あると判定した。

(実施の形態14)

実施の形態14では、実施の形態10の外被材18を用いた真空断熱材16を説明する。 実施例5の外被材の熱溶着層およびガスバリア層及び芯材仕様は実施の形態13と同様とした。

20 なお、図面は図22と同様であるため省略する。

(実施例19)

保護層の金属箔として厚さ 1 2 μ mのアルミニウム箔を、樹脂フィルムとして厚さ 2 μ mのPPSフィルムを使用し、最表面からPPSフィルム/アルミニウム箔/PPSフィルム/アルミニウム箔の順に積層した。 PPSフィルムのIR吸収率は 1 0 %、

5

本実施例の輻射熱伝導抑制フィルムのIR反射率は85%であった。

評価の結果、高温側温度は107℃であり、低温側温度は32℃であった。 未設置の場合と比較してそれぞれ43℃、および7℃の低減が確認され、さらに実施例18と比較して温度低減効果が高かったことから、交互積層によるさらなる輻射熱伝導抑制効果があると判定した。

(実施の形態15)

実施の形態 1 5 では、実施の形態 1 1 の外被材 1 8 を用いた真 10 空断熱材 1 6 を説明する。実施例 6 の外被材の熱溶着層およびガスバリア層及び芯材仕様は実施の形態 1 3 と同様とした。

なお、図面は図22と同様であるため省略する。

(実施例20)

保護層の金属箔として厚さ12μmのアルミニウム箔を、樹脂
フィルムとして厚さ2μmのPPSフィルムを使用し、最表面からPPSフィルム/アルミニウム箔/アルミニウム箔の順に積層した。PPSフィルムのIR吸収率は10%、本実施例の輻射熱伝導抑制フィルムのIR反射率は85%であった。評価の結果、高温側温度108℃であり、低温側温度は32.5℃であった。
20 未設置の場合と比較してそれぞれ42℃、および6.5℃の低減が確認され、さらに実施例18と比較して温度低減効果が若干高かったことから、金属箔積層によるさらなる輻射熱伝導抑制効果があると判定した。

(実施の形態16)

25 実施の形態16では、実施の形態12の外被材18を用いた実

施の形態15における真空断熱材16を説明する。実施例21に示す。 実施例21の芯材仕様は、実施の形態13と同様とした。 なお、図面は、図22と同様であるため省略する。

(実施例21)

5

10

20

未設置の場合と比較してそれぞれ42℃、および6℃の低減が 確認され、輻射熱伝導抑制効果があると判定した。

なお、ガスバリア層を、保護層の金属箔とすることにより、特 15 に問題は生じなかった。

(実施の形態17)

低温側表面温度は33℃であった。

図23を用いて、実施の形態17を説明する。

真空断熱材16を設置した際に高温側となる面の外被材18Aが、低温側の外被材18Bよりも大きいことを特徴とするものである。本構成により、高温側となる面の外被材には輻射熱伝導抑制機能を有する保護層5を備えており、表面温度を下げる効果がある。そして、この面を大きくすることにより、熱溶着層8および低温側外被材に回り込み伝わる熱量を低減する効果が得られる。

その結果、熱溶着層 8 の劣化を抑制し、また断熱効果を向上さ 25 せる。 本実施の形態を実施例 2 2 でさらに詳しく説明する。 実施例22の外被材18の熱溶着層8およびガスバリア層7及 び芯材仕様は実施の形態13と同様とした。

(実施例22)

15

20

25

保護層の金属箔として厚さ $1 \ 2 \ \mu \ m$ のアルミニウム箔を、樹脂 $5 \ 7$ ィルムとして厚さ $2 \ \mu \ m$ の $P \ P \ S \ 7$ ィルムを使用した。

PPSフィルムのIR吸収率は10%、本実施例の輻射熱伝導抑制フィルムのIR反射率は82%であった。

評価の結果、高温側温度108℃であり、低温側温度は29. 5℃であった。 未設置の場合と比較してそれぞれ42℃、およ 10 び9.5℃の低減が確認され、特に低温側温度の低減が大きかっ た。 これにより、高温側外被材を大きくすることにより一層の 輻射熱伝導抑制効果があると判定した。

高温側となる面の外被材が低温側の外被材よりも大きいことは、外被材の形状が多角形であれば、その辺々全ての長さについて高温側が低温側より長く、低温側を完全に覆ってさらに余りがある状態を指す。外被材の形状が円形であれば、その直径について高温側が低温側より長く、低温側を完全に覆ってさらに余りがある状態を指す。すなわち、いかなる形状の外被材であっても、高温側外被材が低温側外被材を完全に覆ってあまりある状態を指すものである。

実施例15から実施例22の結果について、表3に示す。

以上のような構成において、輻射熱伝導抑制機能を有する保護 層により輻射熱伝導を抑制し、さらに真空断熱材16により固体 熱伝導および気体熱伝導を抑制することにより、優れた断熱効果 が発揮されるものである。

PCT/JP2004/008850

次に本発明の輻射熱伝導抑制フィルムに対する比較例を示す。 評価条件及び方法は実施例に準じ、評価結果も同様に表3に示 した。

(比較例12)

5 輻射熱伝導抑制機能を持たない保護層を使用した場合の比較例を示す。 保護層にナイロンフィルムおよびPETフィルムを、ガスバリア層にはアルミ箔のつや消し面を、熱溶着層には無延伸 CCPを用いて作製した外被材を用いた真空断熱材を、実施の形態13と同様に評価した。 芯材仕様は実施の形態13と同様で10 あり、真空断熱材の厚さも同等の7mmとした。 比較例1の保護層の樹脂フィルムのIR吸収率は25%であり、IR反射率は30%であった。その結果、高温側表面温度は150℃、低温側表面温度は39℃であった。

(比較例13)

15 保護層の金属箔として厚さ12μmのアルミニウム箔を用いた。 保護層として樹脂フィルムを使用しない場合を評価すると、I R反射率は95%であった。 高温側表面温度は100℃で、低 温側表面温度は31℃であった。しかし、使用後10日経過まで に徐々に高温側及び低温側温度の上昇が確認され、酸化劣化によ 20 るIR吸収の増加が考えられる。

(比較例14)

25

保護層の金属箔として厚さ 1 2 μ mのアルミニウム箔を、樹脂フィルムとして厚さ 1 2 0 μ mのポリイミドフィルムを使用した。ポリイミドフィルムの 1 R 吸収率は 8 0 %、比較例 3 の真空断熱材の 1 R 反射率は 2 0 %であった。高温側表面温度は 1 7 0 $\mathbb C$

で、低温側表面温度は4.5℃であった。 未設置の場合と比較してそれぞれ1.5℃、および3℃の上昇が確認され輻射熱伝導抑制。効果は確認できず、逆にIR吸収による温度上昇が確認された。

(比較例15)

5

15

保護層の金属箔として厚さ 12μ mのアルミニウム箔つや消し面を、樹脂フィルムとして厚さ 10μ mの無延伸 C P P フィルムを使用した。 C P P フィルムの I R 吸収率は 17%、比較例 4の真空断熱材の I R 反射率は 45%である。

評価の結果、高温側温度は157℃であり、低温側温度は43℃ 10 であった。 未設置の場合と比較してそれぞれ7℃、および4℃ の温度上昇が確認され、輻射熱伝導抑制効果はないと判定した。

さらに、実施例15~18及び比較例12~15に関して、I R吸収率と高温側温度との関係を図24に、IR反射率と高温側 温度との関係を図25に示す。図24より、高温側温度が、比較 例12の場合の150℃よりも低下し効果が現れるのは、IR吸 収率が25%未満であることが推定できる。また、同様に図25 より、輻射熱伝導抑制効果が得られるのは、IR反射率50%以 上であると推定できる。

なお、熱溶着層とガスバリア層との間、ガスバリア層と保護層 20 との間はそれぞれ通常既存のラミネート技術を用いて接着されている。 保護層の樹脂フィルムと金属箔との積層に関しても同様である。ここでは、接着剤によるIR吸収を考慮し、可能な限り接着剤使用量を抑制することが望ましい。

本発明は、保護層が、樹脂フィルムと金属箔とが交互に積層さ 25 れてなることを特徴とする。 その結果、第1の樹脂フィルムを

. 48

透過して到達した第1の金属箔層において反射されずに固体伝熱へと変換されたIRが、第2の樹脂フィルムを透過しても、 さらに第2の金属箔にて反射されるため、さらに優れた輻射熱伝 導抑制機能を発揮することができる。積層数は、多い程効果的である

が、適用温度やコストにより最適な積層数を選択することができる。

5

さらに本発明の保護層は、単層樹脂フィルムと、積層された金属箔とからなることを特徴とする。樹脂フィルムを透過して第1の金属箔層において反射されずに固体伝熱へと変換されたIRが、10 第2の金属箔にて反射されるため、さらに優れた輻射熱伝導抑制機能を発揮することができる。樹脂フィルムと金属箔との交互積層に較べ、金属箔同士の接触による固体熱伝導の影響がやや大きいため、輻射熱伝導抑制能力は劣るが、経済的である。

本発明の輻射熱伝導抑制機能を持つ保護層を有する外被材は、 少なくとも真空断熱材を設置した際に高温側となる面に使用されることを特徴とする。 輻射熱伝導抑制機能を持つ保護層を有する外被材は高温側とともに低温側に適用しても何ら差し支えないが、基本的には高温側への適用が必須である。

低温側には通常の使用の外被材を用い、高温側のみ輻射熱伝導 20 抑制機能を有する保護層を適用とした場合の方が、経済的である。 本発明の真空断熱材は、長期間にわたってIR反射能力を持続 させ、優れた輻射熱伝導抑制機能を発揮することができる。

また、輻射熱伝導抑制機能の付与により、真空断熱材の表面温度が低下するため、従来適用が困難であった高温領域においても 使用することが可能となる。さらに、熱伝導率の温度依存による

49

悪化をも防ぐため、優れた断熱性能を引き出すことが可能となる。 また、表面温度低下により、真空断熱材の劣化を抑制し、長期 間にわたる高断熱性能を付与するものである。

産業上の利用可能性

本発明の輻射熱伝導抑制フィルムおよびそれを用いた真空断熱材は、長期間にわたってIR反射能力を持続させ、優れた輻射熱抑制機能を発揮することが可能となる。その結果、輻射熱伝導の抑制が必要な空間の断熱や、発熱源と熱に弱い精密部材が近接する箇所における遮熱などの用途に適用できる。

15

10

5

20

5

請求の範囲

- 1. 少なくとも赤外線吸収率が25%未満の樹脂フィルムと、 赤外線反射層と、接着層とを有する輻射熱伝導抑制フィル ムであって、
- 赤外線反射率が50%以上であることを特徴とする輻射熱 伝導抑制フィルム。
 - 2. 前記接着層は接着部と非接着部とから構成され、

前記樹脂フィルムと前記赤外線反射層とを接着により積層することを特徴とする請求項1に記載の輻射熱伝導抑制フィルム。

- 10 3. 前記接着層の接着部と非接着部とが幾何学模様を形成することを特徴とする請求項2記載の輻射熱伝導抑制フィルム。
 - 4. 前記樹脂フィルムは融点が150℃以上であることを特徴とする請求項2に記載の輻射熱伝導抑制フィルム。
- 5. 前記樹脂フィルムが、フッ素系樹脂フィルムであること15 を特徴とする請求項2に記載の輻射熱伝導抑制フィルム。
 - 6. 前記樹脂フィルムが、ポリフェニレンサルファイドフィルムであることを特徴とする請求項4に記載の輻射熱伝導抑制フィルム。
- 7. 前記赤外線反射層が、金属箔であることを特徴とする請20 求項2に記載の輻射熱伝導抑制フィルム。
 - 8. 赤外線反射層が、金属蒸着フィルムであることを特徴とする請求項2に記載の輻射熱伝導抑制フィルム。
 - 9. 請求項2に記載の輻射熱伝導抑制フィルムを、樹脂フィルム側が外側になるように表面に備えた断熱部材。
- 25 10. 熱可塑性樹脂からなる熱溶着層を前記赤外線反射層側

51

に接着剤により複層した請求項2に記載の輻射熱伝導抑制フィルム。

11. 芯材と、内側面に熱溶着層を有し前記芯材を覆うガス バリア性の複数の外被材とから構成され、前記外被材の内部を減 圧密封してなり、少なくとも一方の前記外被材が、請求項10に 記載の輻射熱伝導抑制フィルムであることを特徴とする断熱部材。

5

- 12. 前記樹脂フィルムは、少なくとも150℃以上の融点を持ち、前記赤外線反射層は金属箔からなることを特徴とする請求項1に記載の輻射熱伝導抑制フィルム。
- 10 13. 前記樹脂フィルムと前記金属箔とが、交互に積層されてなることを特徴とする請求項12に記載の輻射熱伝導抑制フィルム。
 - 14. 前記樹脂フィルムと、積層された前記金属箔とからなることを特徴とする請求項12に記載の輻射熱伝導抑制フィルム。
- 15 15. 前記金属箔が、アルミニウム箔であることを特徴とする請求項12に記載の輻射熱伝導抑制フィルム。
 - 16. 前記樹脂フィルムが、フッ素系樹脂フィルムであることを特徴とする請求項12に記載の輻射熱伝導抑制フィルム。
- 17. 前記樹脂フィルムが、ポリフェニレンサルファイドフィルムであることを特徴とする請求項12に記載の輻射熱伝導抑制フィルム。
 - 18. 請求項12に記載の輻射熱伝導抑制フィルムを断熱材表面へ備えた断熱部材。
- 19. 芯材と、前記芯材を覆う外被材とを有する真空断熱材 25 であって、

前記外被材の内部は減圧され、前記外被材は熱溶着層 とガスバリア層と輻射熱伝導抑制機能を有する保護層とを有する ラミネート構造を持ち、

前記保護層は請求項1に記載の輻射熱伝導性抑制フィルム 5 を用い、前記赤外線反射層が金属箔であることを特徴とする真空 断熱材。

- 20. 前記保護層は、前記樹脂フィルムと前記金属箔とが交互に積層されてなることを特徴とする請求項19に記載の真空断熱材。
- 10 21. 前記保護層は、単層の前記樹脂フィルムと、積層 された前記金属箔とからなることを特徴とする請求項19に記載の真空断熱材。
 - 22. 前記保護層の前記金属箔が、アルミニウム箔であることを特徴とする請求項19に記載の真空断熱材。
- 15 23. 前記保護層の前記樹脂フィルムが、フッ素系樹脂 フィルムであることを特徴とする請求項19に記載の真空断熱材。
 - 24. 前記保護層の前記樹脂フィルムが、ポリフェニレンサルファイドフィルムであることを特徴とする請求項19に記載の真空断熱材。
- 20 25. 前記保護層の前記金属箔をガスバリア層とすることを特徴とする請求項19に記載の真空断熱材。
 - 26. 輻射熱伝導抑制機能を有する前記<u>保護層</u>を有する前記 外被材を、少なくとも前記真空断熱材を設置した際に高温側とな る面に使用したことを特徴とする請求項19に記載の真空断熱材。
- 25 27. 前記真空断熱材を設置した際に高温側となる面の前記

外被材が、低温側の前記外被材よりも大きいことを特徴とする請求項26に記載の真空断熱材。

1/13

FIG. 1

FIG. 2

2/13 FIG. 3

FIG. 4

3/13 FIG. 5

FIG. 6

18

16

1**7**

18

FIG. 9

5/13 FIG. 10

FIG. 11

FIG. 12

FIG. 14

^{7/13} FIG. 15

8/13 FIG. 16

FIG. 19

FIG. 20

FIG. 22

^{12/13} FIG. 26

13/13

図面の参照符号の一覧表

- 1 断熱フィルム
- 2 表層
- 3 プラスチックフィルム
- 4 金属薄層
- 4A 第1の金属箔
- 4B 第2の金属箔
- 5、5A 保護層
- 6 遠赤外反射層
- 7 ガスバリア層
- 8 熱溶着層
- 9 接着層
- 9A 接着剤
- 10 輻射熱伝導抑制フィルム
- 11 樹脂フィルム
- 11A 第1の樹脂フィルム
- 11B 第2の樹脂フィルム
- 12 赤外線反射層
- 13 接着部
- 14 非接着部
- 15 断熱材
- 16 真空断熱材
- 17 芯材
- 18 外被材
- 18A 高温側となる面の外被材
- 18B 低温側となる面の外被材
- 20 遮熱シート
- 21 断熱部材
- 22 シート部材
- 23A、23B 反射膜
- 24A、24B 熱反射塗料層

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/008850

		PCT/ 3P2	004/008850		
A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ B32B7/02					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum docum Int.Cl ⁷	nentation searched (classification system followed by cla B32B1/00-35/00	assification symbols)			
Jitsuyo Kokai Ji	itsuyo Shinan Koho 1971-2004 Ji	roku Jitsuyo Shinan Koho tsuyo Shinan Toroku Koho	1994 - 2004 1996-2004		
Electronic data b	pase consulted during the international search (name of d	lata base and, where practicable, search te	rms used)		
C. DOCUMEN	NTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	• • • • • • • • • • • • • • • • • • • •	Relevant to claim No.		
Y	JP 58-2822 B2 (Kureha Chemica Ltd.), 18 January, 1983 (18.01.83), All references & US 4076889 A	al Industry Co.,	1-27		
У	JP 2000-62105 A (Daikin Indus 29 February, 2000 (29.02.00), All references (Family: none)		1–27		
Y	JP 2000-310392 A (Matsushita Industrial Co., Ltd.), 07 November, 2000 (07.11.00), All references (Family: none)		1-27		
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search		T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report			
16 Sept	tember, 2004 (16.09.04)	05 October, 2004 (0	05.10.04)		
	ng address of the ISA/ se Patent Office	Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/008850

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 61-89840 A (Onoike Kogyo Kabushiki Kaisha), 08 May, 1986 (08.05.86), All references (Family: none)	1-27
Y	JP 5-193668 A (Matsushita Electric Industrial Co., Ltd.), 03 August, 1993 (03.08.93), All references (Family: none)	1-27
Y	(Family: none) JP 57-159437 U (Matsushita Electric Works, Ltd.), 06 October, 1982 (06.10.82), All references (Family: none)	1-27
ļ		

r			
	属する分野の分類(国際特許分類(IPC)) I ⁷ B32B 7/02		
D ==+-2-2	- 2 /\ mz		
	テットの一般を表している。		
	最小限資料(国際特許分類(IPC))		
Int. C	1 ⁷ B 3 2 B 1/00-35/00		
最小限資料以外	トの資料で調査を行った分野に含まれるもの		
	案公報 1926-1996年		
	用新案公報 1971-2004年		
	用新案公報 1994-2004年		
	案登録公報 1996-2004年		
国際調査で使用	用した電子データベース(データベースの名称、	、調査に使用した用語)	
	ると認められる文献		
引用文献の			関連する
カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	請求の範囲の番号
Y	JP 58-2822 B2 (吳羽/	化学工業株式会社) 1983	$1 - 2 \ 7$
	01.18 全文献 & US 4		1 21
		010003 A	
Y	ID 2000 62105 A (ダノン、丁米は一个人が、 ^^^	
ĭ	JP 2000-62105 A		1 - 2 7
	0.02.29 全文献 (ファミ)	リーなし)	
Y	JP 2000-310392 A (1 - 27
	00.11.07 全文献(ファミ)	リーなし)	
X C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
			7,742 5 7,770
* 引用文献の		の日の後に公表された文献	
	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表さ	
もの 「豆・国際山原	百日命の中願されば修介でもった。同欧川原口	出願と矛盾するものではなく、発	8明の原理又は理論
	頁日前の出願または特許であるが、国際出願日 公表されたもの	の理解のために引用するもの	e zalo la delo a una a una mer
	三張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、当	的文献のみで発明
	は他の特別な理由を確立するために引用する	の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、 当	というないのもの
	里由を付す)	上の文献との、当業者にとって自	18以入版と他の1以
	る開示、使用、展示等に言及する文献	よって進歩性がないと考えられる	けのの組合でに
	質目前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	, GO
国際調査を完了		国際調査報告の発送日	
	16.09.2004	05.10.2	004
一日	ンタサルバドナーナ		
	D名称及びあて先 国特許庁(ISA/JP)	特許庁審査官(権限のある職員)	4 S 8 2 2 2
	明付計分(13A/ JP) 『便番号100-8915	淺見 節子	I
		 電話番号	内纳 0400
		Hamma oo oor-tint	内線 3430

	E DY MI TELLY CI	国际山嶼省 「С1/ 」「 「 20	
C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 61-89840 A (尾池工業 5.08 全文献 (ファミリーなし)	株式会社) 1986.0	1-27
Y	JP 5-193668 A (松下電器) 08.03 全文献 (ファミリーなし)	産業株式会社)1993.	1-27
Y	JP 57-159437 U(松下電 0.06 全文献(ファミリーなし)	工株式会社)1982.1	1-27
			. 1
,			
			,
			đ
U W			
		•	
			ر