浙江海洋大学 2019-2020 学年第 一 学期 《 概率统计 A 》 第二章试卷(A 卷)

(适用班级 经管类)

考试时间: __100__ 分钟

_	二	三	总 分

-、单选题 (共 5 小题,每小题 4 分,共 20 分)

- 1. 设随机变量 $X \sim B(4,0.2)$, 则 $P\{X > 3\} =$
- (A) 0.0016; (B) 0.0272; (C) 0.4096; (D) 0.8192.

2. 设随机变量 X 的分布函数 F(x), 下列结论不一定成立的是

(A) $F(+\infty) = 1$;

(B) $F(-\infty) = 0$;

(C) $0 \le F(x) \le 1$;

(D) F(x) 为连续函数.

3. 设随机变量 X 的取值范围是 (-1,1), 以下函数可以作为 X 的概率密度的是

(C)
$$f(x) = \begin{cases} \frac{1}{2}, & -1 < x < 1, \\ 0, & 其它; \end{cases}$$
(B) $f(x) = \begin{cases} 2, & -1 < x < 1, \\ 0, & 其它; \end{cases}$
(C) $f(x) = \begin{cases} x, & -1 < x < 1, \\ 0, & 其它; \end{cases}$
(D) $f(x) = \begin{cases} x^2, & -1 < x < 1, \\ 0, & \cancel{4}$ 它.

(B)
$$f(x) = \begin{cases} 2, & -1 < x < 1, \\ 0, & \cancel{\cancel{\bot}} ; \end{cases}$$

(C)
$$f(x) = \begin{cases} x, & -1 < x < 1, \\ 0, & \cancel{\cancel{\text{LT}}}; \end{cases}$$

(D)
$$f(x) = \begin{cases} x^2, & -1 < x < 1, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

4. 已知随机变量 X 的概率密度为 $f_X(x)$, 则 Y = -2X 的概率密度为

- (A) $2f_X(-2y);$ (B) $f_X\left(-\frac{y}{2}\right);$ (C) $-\frac{1}{2}f_X\left(-\frac{y}{2}\right);$ (D) $\frac{1}{2}f_X\left(-\frac{y}{2}\right).$

5. 设随机变量 $X \sim N(\mu, 2^2), Y \sim N(\mu, 3^2)$ 记 $p_1 = P\{X \leq \mu - 2\}, p_2 = P\{Y \geqslant 1\}$ $\mu + 3$,

- (A) 对任意实数 μ , 有 $p_1 = p_2$; (B) 对任意实数 μ , 有 $p_1 < p_2$;
- (C) 对任意实数 μ , 有 $p_1 > p_2$;
- (D) 对 μ 的个别值, 有 $p_1 = p_2$.

二、填空题 (共 5 小题,每小题 4 分,共 20 分)

1. 设离散型随机随机变量 X 的分布律为 $\frac{X \mid -1 \quad 0 \quad 1}{P \mid 2c \quad 0.4 \quad c}$, 则常数 $c = \underline{\hspace{1cm}}$.

2. 已知随机变量
$$X$$
 的分布函数为
$$\begin{cases} 0, & x \leqslant -6, \\ \frac{x+6}{12}, & -6 < x < 6, \text{ 则当 } -6 < x < 6 \text{ 时, } X \\ 1, & x \geqslant 6, \end{cases}$$

的概率密度为 f(x) =____.

3. 设随机随机变量 X 的分布律为 $\frac{X \begin{vmatrix} -1 & 0 & 1 & 2 \\ P \end{vmatrix} \frac{1}{8} \frac{3}{8} \frac{1}{16} \frac{7}{16}}$,且 $Y = X^2$,记随机变量 Y 的公布系教士 P(X) P(X)

量 Y 的分布函数为 $F_Y(y)$, 则 $F_X(3) =$

- 4. 已知随机变量 X 服从参数为 λ 的泊松分布, 且 $P\{X=0\}=\mathrm{e}^{-1}$, 则 $\lambda=$ ____.
- 5. 设 $X \sim N(5, 3^2)$, 且 $P\{X \ge c\} = P\{X \le c\}$, 则常数 c =_____.
- 三、解答题 (共 6 小题,每小题 10 分,共 60 分.要求写出详细步骤)
- 1. 已知连续型随机变量 X 的概率密度函数为 $f(x) = \begin{cases} \frac{c}{\sqrt{1-x^2}}, & 0 < x < 1, \\ 0, 其它. \end{cases}$
- (I) 常数 c; (II) 随机变量 X 的分布函数; (III) 计算 $P\left\{-1 \leqslant X \leqslant \frac{\sqrt{2}}{2}\right\}$.

2. 设有 10 件产品, 其中有 2 件次品, 从中任取 3 件, 设取到的次品数为 X, 求 X的分布律及分布函数.

4. 现有同型设备 300 台, 各台设备的工作是相互独立的, 发生故障的概率都是 0.01. 设一台设备的故障可由一名维修工人处理, 问至少需配备多少名维修工人, 才能保证设备发生故障但不能及时维修的概率小于 0.01?.

- 5. 设打一次电话所用时间 X (分钟) 服从参数为 λ 的指数分布, 如某人刚好在你前面走进电话间, 求你等待的时间:
- (I) 超过 10 分钟的概率; (II) 在 10 分钟到 20 分钟之间的概率.

6. 设随机变量 X 的概率密度为 $f_X(x)=\begin{cases} \mathrm{e}^{-x}, & x\geqslant 0\\ 0, & x<0 \end{cases}$,求随机变量 $Y=\mathrm{e}^X$ 的概率密度 $f_Y(y)$.