

Gap Analysis

GAP ANALYSIS

Prepared by: Dean Pham

Role: Business Analyst

Overview

After modeling the current (AS-IS) and proposed (TO-BE) production management workflows, this Gap Analysis identifies the key process inefficiencies, their **impacts**, and the **required changes** to achieve digital optimization under the PMOS (Production Management Optimization System).

The goal is to illustrate how manual, disconnected, and delayed operations can be transformed into a real-time, integrated, and data-driven process using lowcost digital tools suitable for SMEs.

GAP ANALYSIS TABLE

AS-IS Process (Current State)	TO-BE Process (Proposed Solution)	Identified Gap	Action / Required Change
1 HR manually creates weekly schedules in Excel.	HR Attendance System syncs with PMOS to auto- generate daily production schedules.	No integration between HR attendance and production plan.	Implement HR data sync API; automate daily scheduling within PMOS.
2 Employees manually sign attendance sheets.	Attendance data automatically recorded and stored in PMOS database.	Time-consuming and error-prone attendance tracking.	Deploy digital attendance tracking (biometric or formbased sync).

Gap Analysis

AS-IS Process (Current State)	TO-BE Process (Proposed Solution)	Identified Gap	Action / Required Change
3 Supervisors record output and downtime on paper.	Operators input production data via tablet/mobile in real-time.	Paper-based input causes delay and data inaccuracy.	Introduce mobile data entry forms; provide basic device training.
4 Daily production logs consolidated manually.	PMOS updates and centralizes data automatically.	Data duplication and version mismatch across departments.	Establish a unified data repository with real-time synchronization.
5 QC conducts inspections manually and logs defects in Excel.	QC logs defect data digitally; system calculates OEE and defect ratios automatically.	No data link between QC and production → delays root cause analysis.	Digitalize QC inspections and integrate KPIs into shared dashboard.
6 Reports are compiled manually at the end of the day (delayed 1–2 days).	PMOS auto- generates daily/weekly reports instantly.	Manual reporting → delayed management decisions.	Enable automated report scheduling and validation workflow.
7 Management decisions based on outdated or incomplete reports.	Managers monitor real-time dashboards (OEE, defect rate, productivity).	No real-time KPI visibility or data-driven decision-making.	Implement Power BI or Data Studio dashboard linked to PMOS database.
8 Downtime reasons recorded inconsistently or missing.	Downtime categories standardized in PMOS (e.g., maintenance, material delay, power cut).	Lack of standardized downtime tracking reduces visibility.	Create downtime code list; enforce mandatory entry in PMOS.
Departments operate in silos (HR, Production, QC each maintain separate Excel files).	All departments access one shared, role-based PMOS platform.	Fragmented information, duplication, and poor communication.	Centralize system access with role-based permissions per department.
10 No KPI tracking system.	Automatic KPI calculation (OEE,	Managers rely on manual estimates,	Integrate KPI logic in PMOS; automate

Gap Analysis 2

AS-IS Process	TO-BE Process	Identified Gap	Action / Required
(Current State)	(Proposed Solution)		Change
	output/shift, defect ratio) with visual dashboards.	not actual data.	performance analytics.

Gap Analysis