Corso di Laurea in Ingegneria Informatica, Elettronica e delle Telecomunicazioni a.a. 2014/2015

Principi e Applicazioni dell'Ingegneria Elettrica Primo appello – 15/01/2015

Scrivere il proprio nome, cognome e numero di matricola nella tabella sottostante. Il parametro k è uguale all'ultima cifra del numero di matricola.

				k	
Matricola					
Nome e Cognome					
Corso di Laurea					
L	L_2				

I seguenti valori valgono per tutte le figure: E_1 =(10+k) V, R_1 = R_2 = R_3 =10 Ω , E_2 =15 V, R_4 = R_5 =9 Ω , L_1 = L_2 =10 mH, G_P =2 s.

Problema 1 [punti 10]

Con riferimento alla Fig. 1 calcolare l'andamento della corrente i_{L1} in funzione del tempo e tracciarne un grafico qualitativo. Calcolare la potenza dissipata da R_3 all'istante $t \rightarrow \infty$. $P_{R3}(\infty) =$

Problema 2 [punti 7]

Si sostituisca al generatore a tensione costante di Fig. 1 un generatore di tensione sinusoidale con pulsazione ω . Considerando l'interruttore sempre aperto, si determini la funzione di trasferimento $H(j\omega)$ che si ottiene considerando in ingresso la corrente i_{L1} e in uscita la corrente i_{L2} . Si traccino i diagrammi di Bode asintotici delle ampiezze e delle fasi.

Problema 3 [punti 8]

Dato il circuito di Fig. 2, determinare R _x in modo tale che la	
tensione V _x risulti pari a 3 V.	$R_x =$
Successivamente, sapendo che la riluttanza complessiva del	
nucleo vale \mathcal{R} =2000 A/Wb, si calcolino il numero N di spire	N=
necessario per ottenere all'interno del nucleo magnetico un	
flusso φ=0.03 Wb e l'induttanza L dell'avvolgimento.	L =

Domanda 1 [punti 4]

Scrivere l'enunciato, le ipotesi di validità e una dimostrazione di massima del teorema di Millman.

Domanda 2 [punti 4]

Con riferimento al regime sinusoidale, definire i concetti di potenza attiva istantanea e potenza reattiva istantanea.