STEP BY STEP PROCEDURE

Step 1: Set Up the Project

- 1. Launch Quartus Prime
 - o Open Quartus Prime (v16.0 or later).
 - Go to File > New Project Wizard.
- 2. Create a New Project
 - o Specify a **project directory** (avoid spaces in the path).
 - Name the project (e.g., SmartParkingSystem).
 - Select Empty Project.
- 3. Select FPGA Device
 - o Choose:
 - Family: MAX 10
 - Device: 10M50DAF484C7G (matches DE10-Lite).
- 4. Add Design Files
 - Copy the SmartParkingSystem.v code into a new file:
 - File > New > Verilog HDL File, paste the code, and save as SmartParkingSystem.v.
 - Add the file to the project:
 - Project > Add/Remove Files in Project, then select the .v file.

Step 2: Assign Pin Locations

- 1. Open the Pin Planner
 - o Go to Assignments > Pin Planner.
 - Enter the pin assignments from the table below (or import the .qsf file if you created one).

2. Manual Pin Assignment

Signal	FPGA Pin	Direction	I/O Standard
clk	PIN_P11	Input	3.3-V LVTTL
reset_n	PIN_B8	Input	3.3-V SCHMITT TRIGGER
echo	PIN_V10	Input	3.3-V LVTTL
trigger	PIN_W10	Output	3.3-V LVTTL
ir_sensors[0]	PIN_V9	Input	3.3-V LVTTL
ir_sensors[1]	PIN_W9	Input	3.3-V LVTTL
ir_sensors[2]	PIN_V8	Input	3.3-V LVTTL
ir_sensors[3]	PIN_W8	Input	3.3-V LVTTL
servo_pwm	PIN_V7	Output	3.3-V LVTTL
red_led	PIN_A8	Output	3.3-V LVTTL
green_led	PIN_A9	Output	3.3-V LVTTL

3. Save Assignments

o Go to **Assignments > Save Assignment** (or press Ctrl+S).

Step 3: Compile the Design

1. Start Compilation

- Click the Start Compilation button (blue triangle) or go to Processing > Start Compilation.
- Wait for the compilation to complete (check the Messages window for errors).

2. Fix Errors (if any)

- o Common issues:
 - Missing pin assignments.
 - Syntax errors in Verilog code.
 - Incorrect device selection.

Step 4: Program the FPGA

1. Connect the DE10-Lite

- o Plug in the USB cable (to the **USB Blaster** port on the board).
- o Power on the board (via USB or external 5V supply).

2. Open the Programmer

- o Go to **Tools > Programmer**.
- o Ensure the **USB-Blaster** is selected under **Hardware Setup**.

3. Add the .sof File

- Click Add File, navigate to the project's output directory (output_files/), and select SmartParkingSystem.sof.
- o Check the Program/Configure box.

4. Program the Board

o Click **Start**. The FPGA will now run your design.

Step 5: Test the System

1. Hardware Setup

- o Connect:
 - Ultrasonic sensor to GPIO_0 (echo) and GPIO_1 (trigger).
 - IR sensors to GPIO_2 to GPIO_5.
 - Servo to GPIO_6 (PWM) and VCC5 (power).

2. Verify Operation

- o LEDs:
 - LEDR0 (red) = No slots available.

- LEDR1 (green) = Slots available.
- o **Servo**: Should rotate to open/close the gate when a vehicle is detected.
- Serial Monitor: Use a UART terminal (optional) for debug prints if added to the code.