

B1 - Analysis

Den Funktionen v_1,v_2 und v_3 sind folgende Funktionsgleichungen zugeordnet:

$$egin{aligned} v_1(t) &= 5 \cdot \left(1 - \mathrm{e}^{-0,4 \cdot t}
ight) \ v_2(t) &= 4, 5 + \mathrm{e}^{-0,5 \cdot t} \cdot \left(t - 0, 25t^2
ight) \ v_3(t) &= 3t \cdot \mathrm{e}^{-0,2 \cdot t} \end{aligned}$$

Material 1: Graphen A, B und C

1.1 In Material 1 sind drei Graphen A, B und C abgebildet, die zu den Funktionen v_1, v_2 und v_3 gehören. Ordne den Funktionen die zugehörigen Graphen begründet zu.

(4 BE)

1.2 Berechne den Inhalt der Fläche zwischen dem Graphen von v_1 und der t-Achse über dem Intervall [0,10].

(4 BE)

1.3 Zeige, dass die Funktion v_2 maximal zwei Extremstellen haben kann.

(4 BE)

- 2 Die Funktion v_3 gehört zu der Funktionenschar f_k mit $f_k(t) = 3 \cdot t \cdot \mathrm{e}^{-k \cdot t}, k > 0.$
- 2.1 Berechne mithilfe des Formansatzes $F_k(t)=(a+b\cdot t)\cdot \mathrm{e}^{-k\cdot t}$ mit $a,b\in\mathbb{R}$ eine Stammfunktionenschar F_k von f_k .

$$\left[$$
 zur Kontrolle: $F_k(t) = \left(-rac{3}{k^2} - rac{3}{k} \cdot t
ight) \cdot \mathrm{e}^{-k \cdot t}
ight]$

(5 BE)

2.2 Ermittle $\lim_{x \to \infty} \int_0^x f_k(t) \, \mathrm{d}t$.

(3 BE)

2.3 Berechne in Abhängigkeit von ${\it k}$ die Nullstellen und die Hochpunkte der Scharkurven.

Die zweite Ableitung $f_k''(t) = (-6k + 3k^2 \cdot t) \cdot \mathrm{e}^{-k \cdot t}$ kann ohne Nachweis verwendet werden.

$$\left[\text{zur Kontrolle: } H\left(\frac{1}{k} \left| \frac{3}{\text{e} \cdot k} \right) \right] \right.$$

(7 BE)

2.4 Bestimme die Ortskurve der Hochpunkte.

(2 BE)

- 3 Die drei Graphen A,B und C in Material 1 beschreiben die Geschwindigkeiten dreier Radfahrer R_A,R_B und R_C in Meter pro Sekunde $\left(\frac{m}{s}\right)$ in Abhängigkeit von der Zeit $t\geq 0$ in Sekunden (s).
 - Die Radfahrer befinden sich zur Zeit t=0 alle am gleichen Ort und fahren auf der gleichen Straße in die gleiche Richtung.
- 3.1 Beschreibe im Vergleich den Geschwindigkeitsverlauf der drei Radfahrer in den ersten **16** Sekunden nach dem Start.

(4 BE)

3.2 Beurteile anhand des Materials ohne Verwendung einer Rechnung, welcher der drei Radfahrer 6 Sekunden nach dem Start in Führung liegt.

(3 BE)

- 3.3 Die Beschleunigung ist die Änderungsrate der Geschwindigkeit.
 - Bestimme für den Radfahrer mit der Geschwindigkeit, die durch die Funktion v_1 beschrieben wird, die Beschleunigung fünf Sekunden nach dem Start.
 - Eine Angabe der Einheit ist nicht notwendig.

(2 BE)

3.4 Ermittle für den Radfahrer, dessen Geschwindigkeit durch die Funktion v_3 beschrieben wird, die in den ersten 16 Sekunden zurückgelegte Strecke sowie die zugehörige Durchschnittsgeschwindigkeit.

(3 BE)

3.5 Ermittle mithilfe des WTR den Inhalt der zwischen den Graphen von v_1 und v_3 eingeschlossenen Fläche. Deute den ermittelten Wert im Sachzusammenhang.

(5 BE)

3.6 Deute im Sachzusammenhang den Wert des Integrals $\int_0^{t_0} (v_1(t)-v_3(t)) \, \mathrm{d}t$ für $t_0>0$, wenn dieser kleiner null, größer null bzw. gleich null ist.

(4 BE)