El uso de termopares

Hoja técnica WIKA IN 00.23

En la instrumentación eléctrica de temperatura en el sector industrial se utilizan principalmente dos grupos de sensores:

- Termorresistencia (RTD)
- Termopares (TC)

Ambos tipos de sensores tienen sus ventajas y desventajas. El punto fuerte de las termorresistencias -mayormente Pt100- se encuentra en el rango de temperatura inferior hasta medio (-200 ... +600 °C). Los termopares, por el contrario, tienen sus ventajas (con solo algunas excepciones) en el rango de temperaturas (hasta 1700 °C). Algunos termopares pueden registrar temperaturas aún más elevadas (tungsteno-renio, oro-platino o platino-paladio). Estos termopares, muy especiales, no se describen en el presente documento.

Mientras que en Europa se utilizan preferentemente sensores Pt100 para la medición de temperaturas bajas y medias, en América del Norte se constata una mayor preponderancia del uso de termopares. Sin embargo, no es posible efectuar una división general de campos de aplicación, dado que, por ejemplo, una refinería construida en Europa es dotada con tecnología de medición de temperatura apoyada en estándares norteamericanos, si la planta ha sido proyectada en los EE.UU. Lo mismo vale por supuesto en la dirección inversa.

Otro criterio para decidirse por un termopar es el diámetro lo más reducido posible de un termopar con revestimiento (véase el capítulo "Termopares con revestimiento"). Los diámetros de 0,25 mm, 0,5 mm o 1 mm tienen tiempos de respuesta asombrosamente reducidos.

¡En general, los termopares reaccionan más rápido que las termorresistencias!

Si se monta el termómetro en una vaina, los tiempos de respuesta de ambos grupos de sensores se aproximan. La masa de la vaina, la disipación de calor y los tramos de aislamiento entre medio y sensor relativizan aquí la ventaja de velocidad del termopar. Si bien ésta puede aún medirse, es frecuentemente irrelevante, dado que, por ejemplo, en vainas de material sólido el margen de tiempo puede moverse enteramente en un intervalo de minuto de dos dígitos.

Termopar recto con vaina de metal

Termopar de cable, modelo TC40 (Estructura: cable con cubierta (cable MI))

Ejemplos de vainas

Principios básicos

Un termopar consta de dos hilos de materiales diferentes, unidos en un extremo para formar un termopar, constituyendo el nodo de unión el punto de medición.

Al calentarse el punto de medición, se mide en los extremos de los filamentos (zona fría) una tensión que es aproximadamente proporcional a la temperatura del punto de medición.

(efecto termoeléctrico = efecto de Seebeck)

Dicha tensión (FEM = fuerza electro-motriz) se produce por un lado debido a la diferente densidad de electrones de ambos materiales metálicos (diferentes) utilizados en los filamentos, y por otro lado debido a la diferencia de temperatura entre el punto de medición y la zona fría.

Esto significa que un termopar no mide la temperatura absoluta, sino la temperatura diferencial entre el

- T1: punto de medición (hot junction) y la
- T2: zona fría (cold junction)

Dado que la medición de la tensión se realiza frecuentemente a temperatura ambiente, la tensión indicada sería inferior en un valor equivalente a la tensión de la temperatura ambiente. Para obtener el valor absoluto de la temperatura del punto de medición se aplica la llamada "compensación de la zona fría".

Ello se logró en el pasado (y aún hoy en día en el laboratorio de calibración) mediante un baño de hielo, al cual se sometía la toma del instrumento medidor de la tensión en la zona fría del termopar.

Los instrumentos actuales con entrada para termopar (p. ej. transmisores, medidores manuales o dispositivos para montaje en paneles, etc.) llevan incorporada una compensación electrónica de zona fría en su circuito.

Cada metal tiene una electronegatividad específica en función del material. (Electronegatividad = tendencia a atraer hacia sí electrones, cuando está químicamente combinado con otro átomo.)

Para lograr tensiones térmicas lo más elevadas posibles, se emplean combinaciones especiales de materiales para formar termopares, cuyas electronegatividades individuales sean lo más diferentes posibles. Estas combinaciones de materiales tienen obviamente límites -por ejemplo debido a la temperatura máxima de utilización del termopar.

Las siguientes normas definen los termopares

IEC 60584-1: Termopares: Valores básicos y tolerancias de las tensiones térmicas

IEC 60584-3: Termopares: Cables de extensión y cables de compensación

ASTM E230:

Tablas con especificaciones estándar y fuerza electro-motriz (FEM) para termopares estandarizados.

Tensiones térmicas

Temperatura de referencia: 0 °C

Temperatura	Termopa	Termopares												
en °C	Tipo K	Tipo J	Tipo N	Tipo E	Tipo T	Tipo S	Tipo R	Tipo B						
200					-5,603									
180					-5,261									
160					-4,865									
-140					-4,419									
120					-3,923									
100					-3,379									
·80					-2,788									
60					-2,153									
40	-1,527	-1,961	-1,023	-2,255	-1,475									
20	-0,777	-0,995	-0,518	-1,152	-0,757									
)	0,000	0,000	0,000	0,000	0,000	0,000	0,000							
20	0,798	1,019	0,525	1,192	0,790	0,113	0,111							
10	1,612	2,059	1,065	2,420	1,612	0,235	0,232							
60	2,436	3,116	1,619	3,685	2,467	0,365	0,363							
30	3,267	4,187	2,189	4,985	3,358	0,502	0,501							
00	4,096	5,269	2,774	6,319	4,279	0,646	0,647							
150	6,138	8,010	4,302	9,789	6,704	1,029	1,041							
200	8,138	10,779	5,913	13,421	9,288	1,441	1,469							
250	10,153	13,555	7,597	17,181	12,013	1,874	1,923							
300	12,209	16,327	9,341	21,036	14,862	2,323	2,401							
350	14,293	19,090	11,136	24,964	17,819	2,786	2,896							
370	15,133	20,194	11,867	26,552	19,030	2,974	3,099							
100	16,397	21,848	12,974	28,946		3,259	3,408							
150	18,516	24,610	14,846	32,965		3,742	3,933							
500	20,644	27,393	16,748	37,005		4,233	4,471							
550	22,776	30,216	18,672	41,053		4,732	5,021							
000	24,905	33,102	20,613	45,093		5,239	5,583	1,792						
550	27,025	36,071	22,566	49,116		5,753	6,041	2,101						
00	29,129	39,132	24,527	53,112		6,275	6,743	2,431						
' 50	31,213	42,281	26,491	57,080		6,806	7,340	2,782						
'60	31,628	42,919	26,883	57,970		6,913	7,461	2,854						
300	33,275		28,455	61,017		7,345	7,950	3,154						
50	35,313		30,416	64,922		7,893	8,571	3,546						
370	36,121		31,199	66,473		8,114	8,823	3,708						
900	37,326		32,371	68,787		8,449	9,205	3,957						
950	39,314		34,319			9,014	9,850	4,387						
000	41,276		36,256			9,587	10,506	4,834						
1050	43,211		38,179			10,168	11,173	5,299						
1100	45,119		40,087			10,757	11,850	5,780						
1150	46,995		41,976			11,351	12,535	6,276						
200	48,838		43,846			11,951	13,228	6,786						
250	50,644		45,694			12,554	13,926	7,311						
260	51,000		46,060			12,675	14,066	7,417						
300	,,,,,,,		.,			13,159	14,629	7,848						
350						13,766	15,334	8,397						
400						14,373	16,040	8,956						
1450						14,978	16,746	9,524						
1480						15,341	17,169	9,868						
1500						15,582	17,163	10,099						
1550						16,182	18,152	10,679						

Continúa en la página siguiente

Temperatura	Termopares										
en °C	Tipo K	Tipo J	Tipo N	Tipo E	Tipo T	Tipo S	Tipo R	Tipo B			
1600						16,777	18,849	11,263			
1650								11,850			
1700								12,430			

Leyenda:

Negro: IEC 60584-1 y ASTM E230

Azul: solo IEC 60584-1 Rojo: solo ASTM E230

Curvas de tensión termoeléctrica

■ IEC 60584-1

■ ASTM E230

Las curvas representadas corresponden a los respectivos rangos de temperatura de la norma IEC 60584-1 / ASTM E230. Fuera de dichos rangos, la desviación límite no está estandarizada.

Límites de uso y exactitudes los termopares (IEC 60584, ASTM E230)

La siguiente tabla contiene las desviaciones límite admisibles de la norma IEC 60584-1, incl. las tolerancias de la ASTM E230 aplicable en el ámbito norteamericano:

Desviaciones límite de los termopares conforme a IEC 60584-1 / ASTM E230 (temperatura de referencia 0 °C)

Modelo	Termopar	Desviación límite	Clase	Rango de temperatura	Desviación límite
K	NiCr-Ni (NiCr-NiAl) NiCrSi-NiSi	IEC 60584-1	1	-40 +1000 °C	$\pm 1,5$ °C ó 0,0040 · $ t ^{1)}$ 2)
N			2	-40 +1200 °C	±2,5 °C ó 0,0075 · l t l
		ASTM E230	Especial	0 +1260 °C	±1,1 °C ó ±0,4 %
			Estándar	0 +1260 °C	±2,2 °C ó ±0,75 %
J	Fe-CuNi	IEC 60584-1	1	-40 +750 °C	±1,5 °C ó 0,0040 · t
			2	-40 +750 °C	±2,5 °C ó 0,0075 · l t l
		ASTM E230	Especial	0 +760 °C	±1,1 °C ó ±0,4 %
			Estándar	0 +760 °C	±2,2 °C ó ±0,75 %
E	NiCr-CuNi	IEC 60584-1	1	-40 +800 °C	±1,5 °C ó 0,0040 · t
			2	-40 +900 °C	±2,5 °C ó 0,0075 · l t l
		ASTM E230	Especial	0 +870 °C	±1,0 °C ó ±0,4 %
			Estándar	0 +870 °C	±1,7 °C ó ±0,5 %
Т	Cu-CuNi	IEC 60584-1	1	-40 +350 °C	±0,5 °C ó 0,0040 · t
			2	-40 +350 °C	±1,0 °C ó 0,0075 · t
			3	-200 +40 °C	±1,0 °C ó 0,015 · t
		ASTM E230	Especial	0 +370 °C	±0,5 °C ó ±0,4 %
			Estándar	-200 0 °C	±1,0 °C ó ±1,5 %
			Estándar	0 +370 °C	±1,0 °C ó ±0,75 %
R	Pt13%Rh-Pt	IEC 60584-1	1	0 +1600 °C	$\pm 1,0~^{\circ}\text{C}$ o $\pm [1 + 0,003~(t - 1100)]~^{\circ}\text{C}$
S	Pt10%Rh-Pt		2	0 +1600 °C	±1,5 °C o ±0,0025 · t
		ASTM E230	Especial	0 +1480 °C	±0,6 °C ó ±0,1 %
			Estándar	0 +1480 °C	±1,5 °C ó ±0,25 %
В	Pt30%Rh-Pt6%Rh	IEC 60584-1	2	+600 +1700 °C	±0,0025 · t
			3	+600 +1700 °C	±4,0 °C o ±0,005 · t
		ASTM E230	Especial	-	-
			Estándar	+870 +1700 °C	±0.5 %

¹⁾ Itl es el valor numérico de la temperatura en °C sin considerar el signo.

En Europa y América del Norte hay diferentes formas de escribir los termopares tipo K:

Europa: NiCr-Ni o NiCr-NiAl América del Norte: Ni-Cr / Ni-Al

No hay ninguna diferencia importante, los dos nombres son históricos.

Tipos R, S y B

No disponible como versión de cable MI en clase 1 conforme a IEC 60584 o "especial" conforme a ASTM E230

²⁾ El valor más grande es válido

La desviación límite del termopar se mide con la comparación de la punta fría a 0 °C. En caso de aplicar un cable de compensación o un cable de extensión hay que considerar un error de medición adicional.

Ejemplo: Limite de desviación de las clases de exactitud 1 y 2 del termopar tipo K

Información sobre la utilización de termopares

■ Termopares comunes

Tipo K

Polo +		Polo -
NiCr	-	NiAl
Cromo-níquel	-	Aluminio-níquel (magnético)

Los termopares de NiCr-NiAl son ideales para utilización en atmósferas oxidantes o de gas inerte hasta 1200 °C (ASTM E230: 1260 °C) con el máximo espesor de filamento. Proteger los termopares de atmósferas que contengan azufre. Dado que su susceptibilidad a la oxidación es menor que la de termopares de otro material, se utilizan mayormente para temperaturas superiores a 550 °C.

Tipo J

Polo +		Polo -
Fe	-	CuNi
Hierro (magnético)	-	Cobre-níquel

Los termopares de Fe-CuNi son ideales para el uso en vacío, en atmósferas oxidantes y reductoras o atmósferas de gas inerte. Se utilizan para mediciones de temperatura hasta 750 °C (ASTM E230: 760 °C) con el máximo espesor de filamento.

Tipo N

Polo +		Polo -
NiCrSi	-	NiSi
Cromo-níquel-silicio	-	Níquel-silicio

Los termopares de NiCrSi-NiSi son ideales para su utilización en atmósferas oxidantes, en atmósferas de gas inerte o en atmósferas reductoras hasta 1200 °C (ASTM E230: 1260 °C).

Se deben proteger frente a las atmósferas que contengan azufre. Son muy exactas con altas temperaturas. La tensión de fuente (EMF) y del rango de temperaturas son casi iguales a las del tipo K. Se utilizan en aplicaciones que requieren una mayor vida útil y mayor estabilidad.

Tipo E

Polo +		Polo -
NiCr	-	CuNi
Cromo-níquel	-	Cobre-níquel

Los termopares de NiCr-CuNi son ideales para utilización en atmósferas oxidantes o de gas inerte hasta 900 °C (ASTM E230: 870 °C) con el máximo espesor de filamento. Los termopares de tipo E desarrollan, entre todos los termopares utilizados, normalmente la máxima tensión de fuente (EMF) por °C.

Tipo T

Polo +		Polo -
Cu	-	CuNi
Cobre	-	Cobre-níquel

Los termopares de Cu-CuNi son ideales para temperaturas bajo 0 °C con un límite máximo de temperatura de 350 °C (ASTM E230: 370 °C) y pueden utilizarse en atmósferas oxidantes, reductoras o de gas inerte. No se oxidan en atmósferas húmedas.

■ Termopares de metales nobles

Tipo S

Polo +		Polo -
Pt10%Rh	-	Pt
Platino-10 % rodio	-	Platino

Los termopares tipo S son ideales para el uso continuo en atmósferas oxidantes o de gas inerte con temperaturas de hasta 1600 °C. Tener en cuenta la fragilidad causada por la contaminación.

Tipo R

Polo +		Polo -
Pt13%Rh	-	Pt
Platino-13 % rodio	-	Platino

Los termopares tipo R son ideales para el uso continuo en atmósferas oxidantes o de gas inerte con temperaturas de hasta 1600 °C. Tener en cuenta la fragilidad causada por la contaminación.

Tipo B

Polo +		Polo -
Pt30%Rh	-	Pt6%Rh
Platino-30 % rodio	-	Platino-6 % rodio

Los termopares tipo B son ideales para el uso continuo en atmósferas oxidantes o de gas inerte, y para una utilización breve en entorno de vacío a temperaturas de hasta 1700 °C. Tener en cuenta la fragilidad causada por la contaminación.

Los termoelementos tipo R, S y B se montan normalmente en vainas cerámicas cerradas en un extremo. Si se utiliza una vaina metálica, se requiere un tubo interior de cerámica cerrado de un lado. Los termopares de metales nobles son susceptibles de contaminación. Por ello es recomendable revestirlos con material cerámico.

Límite superior de temperatura recomendado

(uso constante)

■ Termopar encamisado (véase también la tabla "Tensiones térmicas según IEC 60584-1")

Termopar	Límite superior de temperatura recomendado en °C											
modelo	Para diámetro del revestimiento en mm											
	0,5	1,0	1,5	2,0	3,0	4,5	6,0	8,0				
K	700	700	920	920	1070	1100	1100	1100				
J	260	260	440	440	520	620	720	720				
N	700	700	920	920	1070	1100	1100	1100				
E	300	300	510	510	650	730	820	820				
T	260	260	260	260	315	350	350	350				

Material del encamisado: Inconel 2.4816 (Inconel 600)

Información considerando condiciones óptimas de laboratorio (en cuanto al aire, no contaminado con gases nocivos). Pueden obtenerse otros materiales, pero tienen como consecuencia otros límites de temperatura.

■ Termopar recto (véase también la tabla "Tensiones térmicas según IEC 60584-1")

Termopar modelo	Límite superior de temperatura recomendado en °C					
	Para diámetro de filamento en mm					
	0,35	0,5	1,0	3,0		
K	700	700	800	1000		
J	400	400	600	700		
N	700	700	800	1000		
E	400	400	600	700		
T	200	200	300	350		
S	1300	1300	-	-		
R	1300	1300	-	-		
В	1500	1500	-	-		

Información considerando condiciones óptimas de laboratorio (en cuanto al aire, no contaminado con gases nocivos).

■ Termopar protegido (véase también la tabla "Límites superiores de temperatura recomendados para termopares con revestimiento" según ASTM E230)

Termopar modelo	Límite superior de temperatura para diferentes espesores de conductor en °C						
	Instrumento de medición nº 30 0,25 mm [0,010 pulg]	Instrumento de medición nº 28 0,33 mm [0,013 pulg]	Instrumento de medición nº 24 0,51 mm [0,20 pulg]	Instrumento de medición nº 20 0,81 mm [0,032 pulg]	Instrumento de medición nº 14 1,63 mm [0,064 pulg]	Instrumento de medición nº 8 3,25 mm [0,128 pulg]	
T	150	200	200	260	370		
J	320	370	370	480	590	760	
E	370	430	430	540	650	870	
KyN	760	870	870	980	1090	1260	
RyS			1480				
В			1700				

Nota:

Las temperaturas máximas de uso indicadas se aplican al termopar en condiciones de óptimo funcionamiento. ¡La temperatura máxima de uso para la vaina se sitúa a menudo claramente por debajo de la del termopar!

■ Termopar con revestimiento (véase también la tabla "Límites superiores de temperatura recomendados para termopares con revestimiento" según ASTM E608/E608M)

Diámetro nominal del revestimiento		Límite superior de temperatura para diferentes diámetros de revestimiento en °C					
		Termopar modelo					
mm	pulgada	Т	J	E	KyN		
0,5	0,020	260	260	300	700		
-	0,032	260	260	300	700		
1,0	0,040	260	260	300	700		
1,5	0,062	260	440	510	920		
2,0	-	260	440	510	920		
-	0,093	260	480	580	1000		
3,0	0,125	315	520	650	1070		
4,5	0,188	370	620	730	1150		
6,0	0,250	370	720	820	1150		
8,0	0,375	370	720	820	1150		

Nota:

Las temperaturas máximas de uso indicadas se aplican al termopar en condiciones de óptimo funcionamiento. ¡La temperatura máxima de uso para la vaina se sitúa a menudo claramente por debajo de la del termopar!

Posibles incertidumbred de medición

Factores importantes que contrarrestan la estabilidad a largo plazo de termopares

Envejecimiento/contaminaciones

- Los procesos de oxidación provocan distorsiones de las curvas características en termopares sin protección adecuada (conductores térmicos "pelados").
- Los átomos de impurezas entradas por difusión (contaminación) producen modificaciones en las aleaciones originales, distorsionando por lo tanto la curva característica.
- La influencia de hidrógeno conduce a la fragilización de los termopares.

Los termopares "no nobles" envejecen y cambian por ello su curva característica de tensión térmica y temperatura. Los termopares "nobles" PtRh-Pt tipos R y S prácticamente no presentan ningún envejecimiento hasta 1400 °C. Sin embargo, son muy sensibles frente a las impurezas. El silicio y el fósforo destruyen el platino muy rápidamente. En presencia del platino, el silicio puede liberarse de la cerámica de aislamiento ya en una atmósfera débilmente reductora. La reducción de SiO₂ a Si lleva a una contaminación del polo Pt del termopar, provocando ya en cantidades de silicio de pocos ppm errores de medición de 10 °C y más.

Condicionado por la mejor proporción del volumen total de material con respecto a la superficie sensible a la intoxicación, la estabilidad a largo plazo de los termopares de metal noble aumenta a medida que aumenta el diámetro del filamento térmico. Por eso, los sensores tipos S, R y B están disponibles con diámetro de filamento térmico Ø 0,35 mm o Ø 0,5 mm (0,015" o 0,020"). Pero los filamentos térmicos con Ø 0,5 mm (0,020") poseen la doble superficie de sección que los filamentos con Ø 0,35 mm (0,015") -y son, por ende, también el doble de caros. No obstante, ello puede redituarse, ya que una vida útil sustancialmente más prolongada puede compensar los costes de mantenimiento eventualmente elevados (inactividad de la instalación).

El polo de níquel del termopar tipo K se daña frecuentemente debido al azufre, presente por ejemplo, en los gases de combustión. Los termopares tipos J y T envejecen poco, debido a que primero se oxida el polo de metal puro.

En general, el envejecimiento aumenta a medida que sube la temperatura.

Moho verde

En termopares tipo K pueden producirse modificaciones significativas en la tensión térmica cuando se usan en temperaturas de aproximadamente 800 °C a 1050 °C. La causa de esto es un empobrecimiento del cromo o la oxidación del cromo en el polo de NiCr (polo +). Esto requiere una baja concentración de oxígeno o vapor de agua en la proximidad directa del termopar. El polo de níquel no resulta afectada. La consecuencia de este efecto es una desviación del valor medido por la disminución de tensión

térmica. En caso de escasez de oxígeno, este efecto se acelera aún más, dado que no se pueden formar películas de óxido completas en la superficie del termopar, que podrían contrarrestar una oxidación continuada del cromo.

Con el el tiempo, el termopar queda destruido por este proceso. El nombre moho verde procede de la coloración verdosa brillante en el punto de ruptura del conductor.

En comparación, el termopar tipo N (NiCrSi-NiSi) se encuentra en ventaja debido a su contenido de silicio. Aquí, en las mismas condiciones, se forma una capa protectora de óxido en su superficie.

El polo de NiCr de un termopar tipo K posee, con

Efecto K

respecto a la orientación en la red cristalina, por debajo de aproximadamente 400 °C, una alineación ordenada. Si se lo sigue calentando, en el rango de temperatura entre aproximadamente 400 °C y 600 °C se produce una transición a un estado desordenado Por encima de los 600 °C se forma nuevamente una red cristalina ordenada. Si el enfriamiento de estos termopares se produce demasiado rápido (más rápido que 100 °C por hora), se vuelve a formar durante el enfriamento una red cristalina desordenada no deseada en el rango de aproximadamente 600 °C a aproximadamente 400 °C. En la curva característica del tipo K se presupone, sin embargo, una alineación ordenada de forma continua son sus valores respectivos. Como consecuencia se produce un error de voltaje del termopar de hasta 0,8 mV (aprox. 5 °C) en este rango. El efecto K es reversible y se reduce casi completamente

Los termopares finos con revestimiento reaccionan de manera particularmente sensible. Un enfriamiento mínimo en contacto con el aire estático puede provocar ya una diferencia de más de 1 °C.

haciendo recocer a más de 700 °C y enfriar lentamente.

En los termopares tipo N (NiCrSi-NiSi), se consiguió reducir este efecto de orden de corto alcance al alear las dos polos con silicio.

Diseños estándar de termopares

Termopares encamisado

Los termopares encamisado constan de un encamisado de acero inoxidable, en el cual los conductores interiores están encapsulados en una masa de cerámica altamente compactada (llamado cable con aislamiento mineral o también cable MI).

Los termopares con revestimiento son flexibles y pueden curvarse hasta un radio mínimo equivalente a 5 veces el diámetro del revestimiento. Pueden utilizarse en puntos de difícil acceso gracias a esta flexibilidad.

La extrema resistencia a las vibraciones favorece el uso de termopares encamisado.

Diámetro de encamisado disponibles

- 0,5 mm
- 1,0 mm
- 1,5 mm
- 3,0 mm
- 4,5 mm
- 6,0 mm
- 8,0 mm

Materiales del encamisado

- Aleación de níquel 2.4816 (Inconel 600)
 - hasta 1200 °C (aire)
 - Material estándar para aplicaciones con riesgo a corrosión a altas temperaturas, resistente a fisuración inducida por corrosión y corrosión por picaduras en medios con contenido de cloruro
 - No hay corrosión por amoníaco en soluciones acuosas con todas las temperaturas y concentraciones
 - Altamente resistente a halógenos, cloro, cloruro de hidrógeno
- Acero inoxidable 316
 - hasta 850 °C (aire)
 - Buena resistencia a medios agresivos así como a vapores y gases de combustión en medios químicos
- Otros materiales a consultar

Diseño del punto de medición

Materia prima del cable MI

Termopares rectos con vaina de metal o cerámica Estructura interior del termopar en versión recta

Diferentes diseños, modelo TC80

Termopar de metal noble tipos S, R, B

Filamento térmico: Ø 0,35 mm o Ø 0,5 mm

Aislamiento: Varilla aislante, cerámica C 799 / óxido de

aluminio

Termopar común tipos K, N, J

Filamento térmico: Ø 1 mm o Ø 3 mm

Aislamiento: Tubito aislante, cerámica C 610 / Mullit

Cables de conexión para termopares

Para cubrir la distancia entre termopar y unidad de evaluación, deben utilizarse cables especiales.

Se diferencia aquí entre **cables de extensión** (el material del conductor corresponde a los materiales originales del termopar) y los llamados **cables de compensación**. En los cables de compensación, el material del conductor corresponde, en un rango de temperatura restringido, a las características termoeléctricas del termopar original. Esos límites de temperatura están realizados según IEC 60584-3 o ASTM E230. Allí están disponibles también informaciones sobre las clases de exactitud de los cables.

La utilización de estos materiales especiales de conductores es necesario para evitar "elementos parásitos" en los puntos de conexión termopar-cable de conexión.

■ Cable de extensión

Los conductores del cable de extensión están fabricados del material original del termopar (por razones de costes, no disponibles para termopares nobles).

Los cables pueden obtenerse en las clases de exactitud 1 y 2.

■ Cable de compensación

Los conductores internos del cable de compensación están fabricados de materiales que corresponden a las características termoeléctricas del termopar original. Esto vale en un rango de temperatura definido en la norma IEC 60584 / ASTM E230 en la zona de transición cabletermopar, así como en todo el trayecto del cable. Disponible solamente en la clase de exactitud 2.

En termopares de tipo B está permitido el uso de conductores interiores de cobre. Errores esperados (ejemplo): 40 μV / 3,5 °C Esto se aplica dentro de un rango de temperatura de 0 ... 100 °C en la unión de termopar y cable de compensación. En este ejemplo, la temperatura del punto de medición es de 1400 °C.

Nota:

¡Los errores potenciales de termopar y cable de conexión se suman!

Cable de conexión

Código de colores de los cables de extensión y de los cables de compensación

© 2014 WIKA Alexander Wiegand SE & Co. KG, todos los derechos reservados.

Los datos técnicos descritos en este documento corresponden al estado actual de la técnica en el momento de la publicación.

Nos reservamos el derecho de modificar los datos técnicos y materiales.

Hoja técnica WIKA IN 00.23 · 09/2016

Página 13 de 13

Instrumentos WIKA, S.A.U.

C/Josep Carner, 11-17 08205 Sabadell (Barcelona)/España Tel. +34 933 9386-30

Fax +34 933 9386-66 info@wika.es www.wika.es