# Solutions

# Exercise 7: Bayes Optimal Classifier, Naïve Bayes, Random Variables and Distributions, EM Clustering

## Exercise 7-1: Bayes Optimal

We have a classification problem with two classes "+" and "-", three trained classifiers  $h_1$ ,  $h_2$ , and  $h_3$ , with the following probabilities of the classifiers, given the training data D:

$$Pr(h_1|D) = 0.5$$
  
 $Pr(h_2|D) = 0.3$   
 $Pr(h_3|D) = 0.2$ 

For the three test instances  $o_1$ ,  $o_2$ ,  $o_3$ , the classifiers give the following class probabilities:

| $o_1: \Pr(+ h_1) = 0.6$ | $\Pr(- h_1) = 0.4$ |
|-------------------------|--------------------|
| $\Pr(+ h_2) = 0.2$      | $\Pr(- h_2) = 0.8$ |
| $\Pr(+ h_3) = 0.9$      | $\Pr(- h_3) = 0.1$ |
| $o_2: \Pr(+ h_1) = 0.6$ | $\Pr(- h_1) = 0.4$ |
| $\Pr(+ h_2) = 0.6$      | $\Pr(- h_2) = 0.4$ |
| $\Pr(+ h_3) = 1$        | $\Pr(- h_3) = 0$   |
| $o_3: \Pr(+ h_1) = 0.6$ | $\Pr(- h_1) = 0.4$ |
| $\Pr(+ h_2) = 0.6$      | $\Pr(- h_2) = 0.4$ |
| $\Pr(+ h_3) = 0$        | $\Pr(- h_3) = 1$   |

We combine the three classifiers to get a Bayes optimal classifier. Which class probabilities will we get from this Bayes optimal classifier for the three test instances?

#### Suggested solution:

The Bayes optimal classifier adds the conditional class probabilities given the classifier, weighted with the conditional classifier probabilities given the data:

$$\Pr(c_j|D) = \sum_{h_i \in \mathcal{H}} \Pr(c_j|h_i) \Pr(h_i|D)$$

yielding the optimal classification:

$$\arg \max_{c_j \in C} \sum_{h_i \in \mathcal{H}} \Pr(c_j | h_i) \Pr(h_i | D)$$

# University of Southern Denmark - IMADA DM566: Data Mining and Machine Learning

Melih Kandemir

Spring 2023

| 701   | 1         | 1 1 .1        |       |
|-------|-----------|---------------|-------|
| 'T'ho | regulting | nrohahilities | aro · |
| 1110  | resummg   | probabilities | arc.  |

 $o_1: \Pr(+|\text{Bayes optimal}) = 0.54$   $o_1: \Pr(-|\text{Bayes optimal}) = 0.46$   $o_2: \Pr(+|\text{Bayes optimal}) = 0.68$   $o_2: \Pr(-|\text{Bayes optimal}) = 0.32$   $o_3: \Pr(+|\text{Bayes optimal}) = 0.48$   $o_3: \Pr(-|\text{Bayes optimal}) = 0.52$ 

and the predictions therefore :

 $o_1 :+ o_2 :+$ 

 $o_3 : -$ 

#### Exercise 7-2: Naïve Bayes

The skiing season is open. To reliably decide when to go skiing and when not, you could use a classifier such as Naïve Bayes. The classifier will be trained with your observations from the last year. Your notes include the following attributes:

The weather: The attribute weather can have the following three values: sunny, rainy, and snow. The snow level: The attribute snow level can have the following two values:  $\geq 50$  (There are at least 50 cm of snow) and < 50 (There are less than 50 cm of snow).

Assume you went skiing 8 times during the previous year. Here is the table with your decisions:

| weather | snow level | ski? |
|---------|------------|------|
| sunny   | < 50       | no   |
| rainy   | < 50       | no   |
| rainy   | $\geq 50$  | no   |
| snow    | $\geq 50$  | yes  |
| snow    | < 50       | no   |
| sunny   | $\geq 50$  | yes  |
| snow    | $\geq 50$  | yes  |
| rainy   | < 50       | yes  |

(a) Compute the a priori probabilities for both classes ski = yes and ski = no (on the training set)!

### Suggested solution:

$$P(ski) = 0.5$$
$$P(\neg ski) = 0.5$$

(b) Compute the distribution of the conditional probabilities for the two classes for each attribute.

#### Suggested solution:

$$P(weather = sunny|ski) = \frac{1}{4}$$

$$P(weather = snow|ski) = \frac{2}{4}$$

$$P(weather = rainy|ski) = \frac{1}{4}$$

$$P(weather = sunny|\neg ski) = \frac{1}{4}$$

$$P(weather = snow|\neg ski) = \frac{1}{4}$$

$$P(weather = rainy|\neg ski) = \frac{2}{4}$$

$$P(snow \ge 50|ski) = \frac{3}{4}$$

$$P(snow < 50|ski) = \frac{1}{4}$$

$$P(snow \ge 50|\neg ski) = \frac{1}{4}$$

$$P(snow < 50|\neg ski) = \frac{3}{4}$$

(c) Decide for the following weather and snow conditions, whether to go skiing or not! Use the Naïve Bayes classifier as trained in the previous steps for your decision.

|       | weather | snow level |
|-------|---------|------------|
| day A | sunny   | $\geq 50$  |
| day B | rainy   | < 50       |
| day C | snow    | < 50       |

### Suggested solution:

$$P(C_i|M) \stackrel{\text{Bayes}}{=} \frac{P(M|C_i) \cdot P(C_i)}{P(M)}$$

$$= \frac{P(M|C_i) \cdot P(C_i)}{\sum_{C_j \in C} P(C_j) \cdot P(M|C_j)}$$

A :

$$\begin{split} &P(ski|weather=sunny,snow\geq 50)\\ &=\frac{P(weather=sunny|ski)\cdot P(snow\geq 50|ski)\cdot P(ski)}{P(weather=sunny,snow\geq 50)}\\ &=\frac{\frac{1}{4}\cdot \frac{3}{4}\cdot \frac{1}{2}}{P(weather=sunny,snow\geq 50)}=\frac{\frac{3}{32}}{P(weather=sunny,snow\geq 50)} \end{split}$$

$$P(\neg ski|weather = sunny, snow \ge 50)$$

$$= \frac{P(weather = sunny|\neg ski) \cdot P(snow \ge 50|\neg ski) \cdot P(\neg ski)}{P(weather = sunny, snow \ge 50)}$$

$$= \frac{\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2}}{P(weather = sunny, snow \ge 50)} = \frac{\frac{1}{32}}{P(weather = sunny, snow \ge 50)}$$

 $\Rightarrow$  Ski

$$P(ski|weather = rainy, snow < 50)$$

$$= \frac{P(weather = rainy|ski) \cdot P(snow < 50|ski) \cdot P(ski)}{P(weather = rainy, snow < 50)}$$

$$= \frac{\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2}}{P(weather = rainy, snow < 50)} = \frac{\frac{1}{32}}{P(weather = rainy, snow < 50)}$$

$$P(\neg ski|weather = rainy, snow < 50)$$

$$= \frac{P(weather = rainy|\neg ski) \cdot P(snow < 50|\neg ski) \cdot P(\neg ski)}{P(weather = rainy, snow < 50)}$$

$$= \frac{\frac{2}{4} \cdot \frac{3}{4} \cdot \frac{1}{2}}{P(weather = rainy, snow < 50)} = \frac{\frac{6}{32}}{P(weather = rainy, snow < 50)}$$

 $\Rightarrow$  do not ski

C:

$$P(ski|weather = snow, snow < 50)$$

$$= \frac{P(weather = snow|ski) \cdot P(snow < 50|ski) \cdot P(ski)}{P(weather = snow, snow < 50)}$$

$$= \frac{\frac{2}{4} \cdot \frac{1}{4} \cdot \frac{1}{2}}{P(weather = snow, snow < 50)} = \frac{\frac{2}{32}}{P(weather = snow, snow < 50)}$$

$$P(\neg ski|weather = snow, snow < 50)$$

$$= \frac{P(weather = snow|\neg ski) \cdot P(snow < 50|\neg ski) \cdot P(\neg ski)}{P(weather = snow, snow < 50)}$$

$$= \frac{\frac{1}{4} \cdot \frac{3}{4} \cdot \frac{1}{2}}{P(weather = snow, snow < 50)} = \frac{\frac{3}{32}}{P(weather = snow, snow < 50)}$$

 $\Rightarrow$  do not ski

## Exercise 7-3: Assignments in the EM-Algorithm

Given a data set with 100 points consisting of three Gaussian clusters A, B and C and the point p.

The cluster A contains 30% of all objects and is represented using the mean of all its points  $\mu_A = (2, 2)$  and the covariance matrix  $\Sigma_A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ .

You will need the inverse :  $\Sigma_A^{-1} = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$ .

The cluster B contains 20% of all objects and is represented using the mean of all its points  $\mu_B = (5,3)$  and the covariance matrix  $\Sigma_B = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$ .  $\Sigma_B^{-1} \approx \begin{pmatrix} 0.571428 & -0.142857 \\ -0.142857 & 0.285714 \end{pmatrix}$ .

The cluster C contains 50% of all objects and is represented using the mean of all its points  $\mu_C = \begin{pmatrix} 1, 4 \end{pmatrix}$  and the covariance matrix  $\Sigma_C = \begin{pmatrix} 16 & 0 \\ 0 & 4 \end{pmatrix}$ .  $\Sigma_C^{-1} = \begin{pmatrix} \frac{1}{16} & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$ .

The point p is given by the coordinates (2.5, 3.0).

The following sketch is not exact, and only gives a rough idea of the cluster locations:



Compute the three probabilities of p belonging to the clusters A, B, and C.

# Suggested solution:



$$\Sigma_A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \quad \Sigma_A^{-1} = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$$

$$p - \mu_A = (0.5, 1)$$

$$dist^2 = (p - \mu)^T \Sigma^{-1} (p - \mu) \approx 0.41666$$

$$dens_A \approx \frac{1}{\sqrt{(2\pi)^2 9}} e^{-\frac{1}{2}0.41666}$$
  
  $\approx 0.04307456$ 

$$\Sigma_B = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$$
  $\Sigma_B^{-1} \approx \begin{pmatrix} 0.571428 & -0.142857 \\ -0.142857 & 0.285714 \end{pmatrix}$ 

$$p - \mu_B = (-2.5, 0)$$

$$dist^2 = (p - \mu)^T \Sigma^{-1} (p - \mu) \approx 3.5714285$$

$$dens_B \approx \frac{1}{\sqrt{(2\pi)^2 7}} e^{-\frac{1}{2}3.5714285}$$
  
  $\approx 0.01008661$ 

$$\Sigma_C = \begin{pmatrix} 16 & 0 \\ 0 & 4 \end{pmatrix} \quad \Sigma_C^{-1} = \begin{pmatrix} \frac{1}{16} & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$$

$$p - \mu_C = (1.5, -1)$$

$$dist^2 = (p - \mu)^T \Sigma^{-1} (p - \mu) \approx 0.390625$$

$$dens_C \approx \frac{1}{\sqrt{(2\pi)^2 64}} e^{-\frac{1}{2}0.390625}$$
  
  $\approx 0.01636466$ 

|                                         | A                           | B               | C                |
|-----------------------------------------|-----------------------------|-----------------|------------------|
| $\overline{density}$                    | 0.043075                    | 0.010087        | 70.016365        |
| size                                    |                             | 20%             |                  |
| score                                   | 0.012922                    | 0.002017        | 70.008182        |
| sum                                     | divid                       | le by 0.05      | 23122            |
| weight (i.e., probability of assignment | $ ent angle \approx 55.9\%$ | $\approx 8.2\%$ | $\approx 35.4\%$ |
| D: ( 1 1 ) (11 1 ) 1                    | 4.1                         |                 |                  |

Point p belongs most likely to cluster A!

# Exercise 7-4: Tools: EM algorithm

Consider EM algorithm on iris dataset as bellow:

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import scipy.stats
import seaborn as sns
import numpy as np
# import some data to play with
iris = datasets.load iris()
X = iris.data # we only take the first two features.
y = iris.target
X = PCA(n components=2).fit transform(iris.data)
# The EM algo
def normal density(X, mu, Sigma):
    L = np.linalg.cholesky(Sigma)
    Linv = np.linalg.inv(L)
    Sinv = Linv.T.dot(Linv)
    XL = X.dot(Linv)
    # P stands for precision, i.e. inverse Sigma
    xPx = (XL*XL).sum(axis=1)
    xPmu = X.dot(Sinv).dot(mu)
    muPmu = mu.dot(Sinv).dot(mu)
    mahalanobis = xPx -2*xPmu + muPmu
    twoPiPowD = (2*np.pi)**D
    sqrtDetSigma = L.diagonal().prod()
    density = 1/(np.sqrt(twoPiPowD)*sqrtDetSigma)*
                        np.exp(-0.5*(mahalanobis))
    return density
K = 2 # Cluster count
max iter = 20
(N,D) = X.shape
# Initialize
mu = np.random.randn(K,D)
```

```
Sigma = np.zeros([K,D,D])
for k in range(K):
   #L = np.random.randn(D,D)
   Sigma[k,:,:] = np.eye(D) #+ L.dot(L.T)
cls prob = np.zeros([N,K])
pi k = np.ones(K)/K
list log lik = np.zeros([max iter])
for iter in range(max_iter):
   # E-STEP ------
   # Update cluster probabilities
   for k in range(K):
       cls_prob[:,k] = pi_k[k]*normal_density(X,mu[k,:],Sigma[k,:,:])
   cls prob = cls prob / np.broadcast to(np.expand dims
                 (cls prob.sum(axis=1), axis=1), (N,K))
   Nk = cls_prob.sum(axis=0)
   pi k = Nk / Nk.sum()
   # M-STEP -------
   # Update means and covariances
   for k in range(K):
       clsProbMat = np.broadcast to(np.expand dims(cls prob[:,k]
                                                ,axis=1),(N,D))
       mu[k,:] = 1/Nk[k]*(X*clsProbMat).sum(axis=0)
       Z = (X - mu[k,:])*np.sqrt(clsProbMat)
       ZtZ = 1/Nk[k]*Z.T.dot(Z)
       Sigma[k,:,:] = 1/Nk[k]*ZtZ + np.eye(D)
   # Report model fit -----
   evidence = 0
   for k in range(K):
       evidence += pi_k[k]*normal_density(X,mu[k,:],Sigma[k,:,:])
   list_log_lik[iter] = np.log(evidence).sum()
```

- (a) Rerun the algorithm for different number of clusters.
- (b) Plot marginal log likelihood and cluster assignments for different values of K.

#### Suggested solution:

(c) Plot heatmaps for different values of K.

(d) Describe which k can better fit the model.