Bazy danych

andrzej.lachwa@uj.edu.pl

4/14

Własności SZBD:

- możliwość bezpiecznego przechowywania przez długi czas danych mierzonych w tera- i petabajtach,
- istnienie mechanizmów "masowego" wprowadzania danych,
- zapewnienie bezpieczeństwa danych,
- efektywny dostęp do danych (m. in. możliwość tworzenia zapytań o dane oraz aktualizowania danych za pomocą odpowiedniego języka operacji na danych),
- sterowanie współbieżnością,
- trójwarstwowa struktura (jądro, interfejs i narzędzia).
- możliwość tworzenia nowej bazy danych, tzn. określenia jej schematu i więzów integralności za pomocą jakiegoś języka definiowania danych.

Zalety podejścia bazodanowego:

- niezależność między danymi a programami,
- ukrywanie szczegółów dotyczących sposobu przechowywania danych w pamięci fizycznej,
- przechowywanie metadanych,
- dostarczanie wielu widoków (perspektyw) danych dla różnych grup użytkowników,
- zapewnienie integralności danych,
- współdzielenie danych i współbieżne transakcje wielu użytkowników,
- wysoka niezawodność i bezpieczeństwo
- . . .

Tabele Codda

Teoretyczne podstawy relacyjnych baz danych zostały wprowadzone przez Edwarda Codda w 1970 roku. Zaproponował on przechowywanie danych w tabelach.

Tabela jest tutaj czymś podobnym do matematycznej relacji, a zarazem do zwykłej tabeli złożonej z <u>nagłówka, kolumn i wierszy</u>. W nagłówku występuje nazwa tabeli oraz nazwy kolumn. W polach wierszy występują wartości atrybutów.

W tabeli Codda nie jest ustalony ani porządek kolumn, ani porządek wierszy!

Tabela pusta zawiera tylko nagłówek!

Kryteria Codda

Informacje są reprezentowane (na poziomie logicznym) w tabelach.

Dane są (na poziomie logicznym) dostępne przez podanie nazwy tabeli, wartości klucza głównego i nazwy kolumny.

Wartości *null* są traktowane w jednolity sposób jako "brakujące informacje". Nie mogą być traktowane jako puste łańcuchy znaków, puste miejsca, czy zera.

Metadane (dane dotyczące bazy danych) są umieszczone w bazie danych dokładnie tak, jak zwykłe dane.

Język obsługi danych ma możliwość definiowania danych, perspektyw i więzów integralności, przeprowadzenia autoryzacji, obsługi transakcji i manipulacji danymi.

Perspektywy reagują na zmiany swoich tabel bazowych. Odwrotnie, zmiana w perspektywie powoduje automatycznie zmianę w tabeli bazowej.

Istnieją pojedyncze operacje pozwalające na wyszukanie, wstawienie, uaktualnienie i usunięcie danych.

Operacje użytkownika są logicznie oddzielone od fizycznych danych i metod dostępu do danych.

Operacje użytkownika pozwalają na zmianę struktury bazy bez konieczności tworzenia od nowa bazy czy aplikacji ją obsługującej. Więzy integralności są umieszczone i dostępne w metadanych, a nie w programie obsługi bazy danych.

Język manipulacji danymi powinien działać bez względu na to, jak i gdzie są rozmieszczone fizyczne dane oraz nie powinien wymagać żadnych zmian, gdy fizyczne dane są centralizowane lub rozpraszane.

Operacje na pojedynczych wierszach tabel przeprowadzane w systemie podlegają tym samym zasadom i więzom, co operacje na zbiorach danych.

Definicja

Relacyjna baza danych jest zbiorem danych tworzących tabele (w sensie Codda) i spełniających określone warunki integralności danych.

Tabela Codda reprezentuje relację. Kolumny i wiersze tabel odpowiadają <u>atrybutom</u> i <u>krotkom</u> relacji.

Kolumny i wiersze nie są uporządkowane!

Nagłówek tabeli odpowiada schematowi relacji.

Niech dany będzie zbiór atrybutów $\{A_1, A_2, ... A_n\}$, a z każdym atrybutem A_i związana będzie dziedzina D_i wartości tego atrybutu. Dowolny podzbiór iloczynu kartezjańskiego $D_1 \times D_2 \times ... \times D_n$ nazywamy <u>relacją rozpiętą na schemacie</u> $F(A_1, A_2, ... A_n)$.

Schematem relacyjnej bazy danych nazywamy zbiór pustych tabel oraz więzów integralności danych, które można do tych tabel wprowadzić.

Tabela wypełniona danymi będzie kojarzona z relacją opartą na danym schemacie.

Osoba (Pesel*, Nazwisko, DataUr)
Pracownik (PeselPracownika, NazwaWydziału)
Wydział (Nazwa*, Adres)

Symbolem * oznacza się atrybuty tworzące klucz główny tabeli (wartości klucza głównego służą do identyfikowania wierszy tabeli). Strzałki pokazują związek referencyjny między wartościami zwany kluczem obcym.

Więzy

WIĘZY DOMENOWE

WIĘZY KLUCZY PODSTAWOWYCH

WIĘZY INTEGRALNOŚCI REFERENCYJNEJ

(WIĘZY KLUCZA OBCEGO)

ZALEŻNOŚCI FUNKCYJNE

ZALEŻNOŚCI WIELOWARTOŚCIOWE

ZALEZNOŚCI ZŁACZENIOWE

WARTOŚCI WYMAGANE

WIĘZY OGÓLNE

vięzy integraniosci.

PK — klucz główny (*Primary Key*)

FK — klucz obcy (Foreign Key)

U — wartość unikatowa (klucz alternatywny)

1 — Pesel ma być zgodny z datą urodzenia

2 — data zakończenia < od aktualnej lub NULL

4 — data rozpoczęcia pracy < zakończenia

5 — data rozpoczęcia pracy < DataUr -"18 lat"

Wybrane rozwiązania

Modelowanie hierarchii

Modelowanie zbiorów (województwo jako zbiór powiatów)

Modelowanie list

(kolejka jako lista klientów)

Modelowanie wielozbioru

(zamówienia jako torby)

Dane aktualne czy historyczne?

OSOBA

Pesel*

Nazwisko

DataUr

NIP

Stanowisko

Pensja

To są aktualne dane pracownika

Część DDL języka MySQL

zob.

http://dev.mysql.com/doc/refman/5.6/en/sql-syntax-data-definition.html

SQL 2 (1992), SQL 3 (1999-2002)

Liczbowe typy danych:

- INTEGER (INT), SMALLINT, BIGINT, [TINYINT]
- DECIMAL(p,s), NUMERIC(p,s)
- FLOAT(p), REAL, DOUBLE PRECISION
- [BIT, BYTE]

W różnych implementacjach różne zakresy. Należy również uważać na zaokrąglanie, obcinanie i konwersje.

Cztery operacje arytmetyczne są rozszerzane o różne funkcje matematyczne, np. kwadrat, pierwiastek kwadratowy, modulo, logarytm, funkcje trygonometryczne etc.

Przekształcanie liczb na liczebniki

Procedura byłaby zbyt skomplikowana. W języku angielskim najlepszym kompromisem między wielkością kodu procedury i wielkością tabeli jest przygotowanie <u>tabeli</u> tłumaczenia liczb mniejszych od 1000 na liczebniki, a potem kolejne obliczanie: liczby mniejszej od tysiąca, liczby tysięcy, milionów, miliardów ... i na koniec wykonanie konkatenacji odpowiednich liczebników i słów *thousand*, *million*, *billion* ... (ewentualnie z końcówką s).

W języku polskim sprawa znacznie się komplikuje. Prosta procedura dla angielskiego produkowałaby takie niegramatyczne wyrażenia, jak dla przykładu:

pięć miliony trzysta dwa tysięcy sto jedenaście

Koncepcja elementu danych jako pojedynczej (atomowej) wartości nie zawsze ma sens!

Przykład 1: PUNKTY NA PŁASZCZYŹNIE

Położenie punktu na płaszczyźnie możemy określić parą liczb w odniesieniu do ustalonego układu współrzędnych. Modelowanie tego w jednej kolumnie (jako wartości atrybutu POŁOŻENIE) byłoby niewygodne. Lepsze jest modelowanie w dwóch kolumnach: ODCIĘTA, RZĘDNA.

Przykład 2: PUNKTY NA ZIEMI

Położenie punktu na Ziemi można określić przy pomocy współrzędnych geograficznych: wielkości kątowych liczonych względem równika (szerokość geograficzna, ang. *Latitude*, *Lat*) i południka zerowego (długość geograficzna, ang. *Longitude*, *Lng*).

Np. wejście do tego budynku to

50° 01' 46.0" N 19° 54' 21.9" E (format DMS)

Lat: 50.029451 Lng: 19.906082 (format WGS84)

N: 50° 01.7670600′, E: 19° 54.3649200′ (format GPS)

Modelowanie formatu DMS można wykonać w 8 kolumnach, a formatu WGS84 w 2 kolumnach.

Przykład procedury

Aby obliczyć odległość między dwoma punktami na Ziemi można użyć wzoru ze strony

http://pl.wikibooks.org/wiki/Astronomiczne_podstawy_geografii/ Odleg%C5%82o%C5%9Bci

Potrzebne funkcje (pierwiastek, kwadrat, cos) są dostępne w SQL w większości serwerów. Sprawdzić poprawność na GoogleMaps.

Przykład 3: ADRESY IP

Przechowywanie adresu IP można zrealizować na trzy sposoby: jako łańcuch, jako liczbę całkowitą lub jako cztery oktety. Ten ostatni sposób jest wygodny i czytelny.

Przykład 4: WALUTY

Waluty można przechowywać z rozbiciem na wartość i kod waluty. Trzeba ustalić liczbę miejsc po przecinku branych pod uwagę w trakcie obliczeń. Przy transakcjach międzynardowych trzeba również uwzględniać tabelę kursów walut i dokonywać przeliczeń.

Zob. http://www.nbp.pl/home.aspx?f=/statystyka/kursy.html

Przykład 5: PESEL

Procedura, zob. https://msw.gov.pl/pl/sprawy-obywatelskie/centralne-rejestry-pan/32,PESEL.html

Sprawdzanie poprawności:

http://www.kalkulatory.gofin.pl/Sprawdzanie-pesel-weryfikacjapesel,12.html