Data-Dependent-Assisted Data-Independent Acquisition (DaDIA.R) User Manual

(Version 4.0; Sep 21th, 2020) Jian Guo, Sam Shen, Tao Huan

- DaDIA.R is a metabolic feature extraction and annotation workflow for DaDIA metabolomics workflow.
- The program is written in the language 'R' and is publicly available at GitHub (https://github.com/HuanLab/DaDIA.git)
- Please see below for instructions on using the DaDIA.R code:
- 1) Download the R-scrip "DaDIA_SWATHprocessing.R" from Github
- 2) Install libraries "XCMS", "MSnbase", "dplyr", "doParallel", "foreach", "metaMS", and "CAMERA" if previously not installed (R Version 4.0 or above and XCMS Version 3.11.4 is required; all other packages should be updated to the newest available version)
- 3) In line 17 63, set required parameters to desired value according to onscreen prompts (See below).

```
17 #Part 1: Parameters for feature extraction
18 DDA.directory <- "C:/Users/User/Desktop/SAM DONT TOUCH DONT DELETE/DaDIAtestSciexData/DDA"
19 DIA.directory <- "C:/Users/User/Desktop/SAM DONT TOUCH DONT DELETE/DaDIAtestSciexData/DIA"
20 cwpDDA <- CentWaveParam(ppm=10,
21
                         peakwidth=c(5,60),
                         mzdiff = 0.01,
22
23
                         snthresh = 6.
24
                         integrate = 1,
25
                         prefilter = c(3,100),
26
                         noise = 100) #XCMS parameters for DDA feature extraction
27 cwpDIA <- CentWaveParam(ppm=10,
28
                         peakwidth=c(5,60),
29
                         mzdiff = 0.01,
30
                         snthresh = 6,
31
                         integrate = 1,
                         prefilter = c(3,100),
32
                         noise = 100) #XCMS parameters for DIA feature extraction
33
34 mass.tol <- 10 #mz tolerance in ppm: used in feature dereplication and MS2 matching
35 mass.const.tol <- 0.05 #mz tolerance in constant value: used in feature rescue
36 rt.tol <- 60 #rt tolerance in seconds
37 num.samples <- 11 #enter how many DIA samples here
38 plot.DaDIA <- TRUE #plot DaDIA features
39 plot.DaDIA.mztol <- 0.5 #DaDIA feature plotting mz window width
40 plot.DaDIA.rttol <- 30 #DaDIA feature plotting rt window width
41 #Parameters for alignment
42 bw <- 5 #bandwidth of gaussian smoothing kernel to apply to the peak density chromatogram
43 minfrac <- 0.5 #minimum fraction of samples necessary in sample groups for it to be a valid group
44 mzwid <- 0.025 #width of overlapping m/z slices to use for grouping peaks across samples
45 max <- 100 #maximum number of groups to identify in a single m/z slice
46 quantitative.method <- "maxo"
47 # "maxo" = peak height
48 # "into" = peak area
50 #Part 2: Parameters for database search (dot product)
51 feature.annotation <- TRUE #annotate DaDIA features
52 db.name <- "convertedLibrarPos.Rds" #annotation library name
53 RDS <- TRUE
54 # "TRUE" = database is in RDS format
55 # "FALSE" = database is in MSP format
56 ms1.tol <- 0.01 #dot product calculation ms1 tolerance
57 ms2.tol <- 0.02 #dot product calculation ms2 tolerance
58 dot.product.threshold <- 0.1 #dot product annotation threshold
59 match.number.threshold <- 1 #annotation match number threshold
60 adduct_isotope.annotation <- TRUE #perform CAMERA annotation
61 export.mgf <- TRUE #export individual MS2 spectra as .mgf
62 combine.mgf <- TRUE #combine all exported .mgf files
63 annotation.plot <- TRUE #plot all annotated MS2 spectrum against library
```

Table 1. DaDIA parameters needed to be changed according to the user's preference.

Row	Parameter Name	Parameter Function
#		
18	DDA.directory	Set directory containing all DDA .mzxml files
19	DIA.directory	Set directory containing all DIA(SWATH) .mzxml files,
		SWATH isolation window labeling .txt file, and
		annotation library .msp file
20	cwpDDA	Set XCMS parameters for DDA feature extraction
27	cwpDIA	Set XCMS parameters for DIA feature extraction

34	mass.tol	Set m/z tolerance (± ppm) for feature dereplication and
		MS2 matching
35	mass.const.tol	Set m/z tolerance (± constant value) for feature rescue
36	rt.tol	Set retention time tolerance (± sec) for identifying same
		features
37	num.samples	Set number of DIA(SWATH) samples to run
38	plot.DaDIA	Set whether to plot extracted DaDIA MS1 features
39	plot.DaDIA.mztol	Set DaDIA feature plotting mz window width
40	plot.DaDIA.rttol	Set DaDIA feature plotting rt window width
42	bw	Set XCMS feature alignment bandwidth
43	minfrac	Set XCMS feature alignment minimum sample fraction
44	mzwid	Set XCMS feature alignment m/z slice width
45	max	Set XCMS feature alignment maximum # of groups / slice
46	quantitative.method	Set whether to use max or integrated intensity for
		calculations; pick between peak height or peak area
51	feature.annotation	Set whether to perform MS2 extraction and DaDIA feature
		annotation
52	db.name	Set the name of the library used for dot product annotation
53	RDS	Set whether the annotation library is in RDS of MSP
		format
56	ms1.tol	Set MS1 tolerance in dot product calculation
57	ms2.tol	Set MS2 tolerance in dot product calculation
58	dot.product.threshold	Set annotation dot product score threshold
59	match.number.threshold	Set annotation match number score threshold
60	adduct_isotope.annotation	Set whether to perform CAMERA adduct and isotope
		annotation
61	export.mgf	Set whether to export MS2 spectrum as individual .mgf
		files
62	combine.mgf	Set whether to concatenate all exported .mgf files into a
		single .mfg file
63	annotation.plot	Set whether to plot all annotated MS2 spectrum against
		library

4) In line 7, set the directory in the user's computer that contains all DDA samples (Note: there should be only .mzxml files in this folder). In line 8, set the directory in the user's computer that contains all SWATH samples, SWATH pocket definitions in .txt format, and the annotation library in .msp format (Note: there should only be .mzxml, .txt, and .msp files in this folder). See below for a sample format of the SWATH pocket definition file; note that the column headers should be kept the same as the example shown:

Experiment		MSType	Minmz	Maxmz
0	SCAN	45	1170	
1	SWATH	45	70.5	
2 3	SWATH	70.5	95.5	
	SWATH	95.5	120.5	
4	SWATH	120.5	145.5	
5	SWATH	145.5	170.5	
6	SWATH	170.5	195.5	
7	SWATH	195.5	220.5	
8	SWATH	220.5	245.5	
9	SWATH	245.5	270.5	
10	SWATH	270.5	295.5	
11	SWATH	295.5	320.5	
12	SWATH	320.5	345.5	
13	SWATH	345.5	370.5	
14	SWATH	370.5	395.5	
15	SWATH	395.5	420.5	
16	SWATH	420.5	445.5	
17	SWATH	445.5	470.5	
18	SWATH	470.5	495.5	
19	SWATH	495.5	520.5	
20	SWATH	520.5	545.5	
21	SWATH	545.5	570.5	
22	SWATH	570.5	595.5	
23	SWATH	595.5	620.5	
24	SWATH	620.5	645.5	
25	SWATH	645.5	670.5	
26	SWATH	670.5	695.5	

- 5) Note: if users wish to use MS-Dial library for annotation, they must first convert the raw MS-Dial library to a readable .msp format using the included R script "*convertMSP.R*"
- 6) Click on "→ Source" in the R-Studio interface to begin the DaDIA workflow
- MS1 level features extracted and a csv file "annotated_output.csv" containing all ms1 level features extracted and a csv file "annotated_output.csv" containing feature annotation results will be generated. After running the scrip for multi-sample runs, multiple csv files "n_DaDIAtable.csv" (n is number of DIA(SWATH) samples) containing all MS1 level features extracted for each DIA(SWATH) sample, a csv file "alignedDaDIAtable.csv" containing all MS1-features in different samples aligned together, and a csv file "annotated_output.csv" that adds annotation to the "alignedDaDIAtable" will be generated. If the user wishes to plot DaDIA features or output .mgf files, additional folders and files will be generated. All results generated by the program will be in the *DIA.directory* set by the user.