1 Teoria

1.1 Sistema de Clasificacion de Harvard

Spectral Type	Characteristics
О	Hottest blue-white stars with few lines
	Strong He II absorption (sometimes emission) lines.
	He I absorption lines becoming stronger.
В	Hot blue-white
В	He I absorption lines strongest at B2.
	H I (Balmer) absorption lines becoming stronger.
	111 (Sumer) accorption mes occoming survigen
A	White
	Balmer absorption lines strongest at A0, becoming weaker later.
	Ca II absorption lines becoming stronger.
F	Yellow-white
Г	Ca II lines continue to strengthen as Balmer lines continue to weaken.
	Neutral metal absorption lines (Fe I, Cr I).
G	Yellow
	Solar-type spectra.
	Ca II lines continue becoming stronger.
	Fe I, other neutral metal lines becoming stronger.
K	Cooloren
K	Cool orange
	Ca II H and K lines strongest at K0, becoming weaker later.
	Spectra dominated by metal absorption lines.
M	Cool red
	Spectra dominated by molecular absorption bands,
	especially titanium oxide (TiO) and vanadium oxide (VO).
	Neutral metal absorption lines remain strong.
	V 1.1.1.1
L	Very cool, dark red
	Stronger in infrared than visible.
	Strong molecular absorption bands of metal hydrides (CrH, FeH), water
	(H ₂ O), carbon monoxide (CO), and alkali metals (Na, K, Rb, Cs).
	TiO and VO are weakening.
T	Coolest, Infrared
	Strong methane (CH ₄) bands but weakening CO bands.

S and C spectral types for evolved giant stars are discussed on page 466.

Figure 1.

1.2 Distribucion de Velocidades de Maxwell-Boltzman

Queremos responder 2 preguntas:

- In what orbitals are electrons most likely to be found?
- What are the relative numbers of atoms in various stages of ionization?
- Distribucion de Maxwell: Describe la fraccion de particulas en un dado rango de velocidades. De esta forma el numero de particulas de gas , por unidad de volumen, que tienen velocidades

entre [v, v + dv] esta dado por:

$$n_v dv = \frac{n}{2\pi kT} \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} 4\pi v^2 dv$$

$$\frac{N}{N_{\text{Total}}} = \int_{v_1}^{v_2} \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} 4\pi v^2 dv = \frac{1}{n} \int_{v_1}^{v_2} n_v dv \tag{1}$$

- n es el numero de particulas por unidad de volumen (densidad)
- $-n_v = \frac{\partial n}{\partial v}$
- m es la masa de la particula
- k es la constante de Boltzmann
- T es la temperatura del gas en [K]

FIGURE 8.6 Maxwell–Boltzmann distribution function, n_v/n , for hydrogen atoms at a temperature of 10,000 K. The fraction of hydrogen atoms in the gas having velocities between 2×10^4 m s⁻¹ and 2.5×10^4 m s⁻¹ is the shaded area under the curve between those two velocities; see Example 8.1.1.

Figure 2.

- Notas:
 - El exponente de la distribucion es el cociente entre la energia cinetica $\frac{1}{2}\,m\,v^2$ y la energia termica kT
 - El pico de la distribucion esta dado cuando se equiparan los valores de energia cinetica y termica y esto se da a la velocidad mas probable: $v_{\rm mp} = \sqrt{\frac{2kT}{m}}$
 - Tambien tenemos la $v_{\rm rms} = \sqrt{\frac{3kT}{m}}$ (Mayor velocidad que $v_{\rm mp}$
- Problema: Determinar la Fraccion de atomos en un gas que esta a temperatura de 10000[K] que tienen velocidades entre $[2, 2.5] \times 10^4 \left[\frac{m}{s}\right]$
 - De la ecuacion (1): $\frac{N}{N_{\text{Total}}} = \int_{v_1}^{v_2} \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} 4\pi v^2 dv = \frac{1}{n} \int_{v_1}^{v_2} n_v dv$

- Se puede estimar el valor de la integral como: $\frac{1}{n} \int_{v_1}^{v_2} n_v dv = \frac{1}{n} n(\bar{v})(v_2 v_1)$
- Donde: $\bar{v} = \frac{1}{2}(v_1 + v_2)$
- Entonces el calculo puede hacerse usando las velocidades medias:

$$\frac{N}{N_{\rm Total}} \!=\! \left(\frac{m}{2\pi kT}\right)^{\!3/2} e^{-m\,\bar{v}^2/2kT}\,4\pi\,\bar{v}^2$$

1.3 Ecuacion de Boltzmann

- Orbitals of higher energy are less likely to be occupied by electrons.
- Existe un conjunto de numeros cuanticos que especifican el estado χ de una particula y por lo tanto la energia de ese estado: $\chi = \{n, l, m_l, m_s\}$

El cociente de probabilidades de ocurrencia de un sistema entre dos estados esta dado por:

$$\frac{P(\chi_b)}{P(\chi_a)} = \frac{e^{-E_b kT}}{e^{-E_b kT}} = e^{-(E_b - E_a)/kT}$$

$e^{-(E_b-E_a)/kT}$: Factor de Boltzmann

Donde $P(\chi_i)$ es la probabilidad de que el sistema se encuentre en el estado χ_i (caracterizado por los numeros cuanticos $\{n, l, m_l, m_s\}_i$)

- Nota/Analisis: Suponga que $E_b > E_a$; $P(\chi_b) = e^{-(E_b E_a)/kT} P(\chi_a)$ nos da la probabilidad de transicionar al estado χ_b
 - Si $T \to 0 \Rightarrow \frac{P(\chi_b)}{P(\chi_a)} \to 0$ entonces, la probabilidad de transicionar a χ_b es nula
 - Si $T \to \infty \Rightarrow \frac{P(\chi_b)}{P(\chi_a)} \to 1$ entonces, la probabilidad de transicionar a χ_b es 100%
- Numero de estados: Nos interesa contar el numero de estados χ que tienen energia E. Hay muchos estados que pueden tener la misma nergia, esto se denomina degeneracion: $\{\chi_1, \ldots \chi_n\}$ todos tienen energia E (Esto se da porque distintas combinaciones de numeros cuanticos $\{n, l, m_l, m_s\}$ dan distintos estados que tienen la misma energia asociada).

1	0	0	+1/2	-13.6
1	0	0	-1/2	-13.6
Fir	st E	xcited S	States s ₂	Energy E_2
n	ℓ	m_{ℓ}	m_s	(eV)
2	0	0	+1/2	-3.40
2	0	0	-1/2	-3.40
2	1	1	+1/2	-3.40
2	1	1	-1/2	-3.40
2	1	0	+1/2	-3.40
2	1	0	-1/2	-3.40

– **Peso estadistico**: En este contexto definimos el peso estadistico g como el numero de estados $\{\chi_i\}$ que tienen energia E.

• Entonces el cociente de probabilidades es:

$$\frac{P(\chi_b)}{P(\chi_a)} = \frac{g_b}{g_a} e^{-(E_b - E_a)/kT} \to \frac{N_b}{N_a} = \frac{g_b}{g_a} e^{-(E_b - E_a)/kT}$$

El paso de una formula a otra se da para el casos de regiones bastas de atomos, como en las estrellas donde el cociente entre probabilidades es el mismo que el cociente entre numero de atomos.

- Como hago para contar el numero de estados g? : Para el caso del atomo de Hidrogeno simple. El numero de estados con energia: $E_n = -\frac{RZ^2}{n^2}$ es $g_n = 2n^2$. R = -13.6[eV]
- Problema: Para un gas de atomos de hidrogeno a que temperatura tendran dos conjuntos de atomos de igual cantidad, uno electrones en el estado n=1 y el otro electrones en el estado n=2?
 - Asumimos b=2 y a=1, de manera que $E_2>E_1$ i.e. $-\frac{R}{4}>-R$ entonces: $E_b-E_a=-R\left(\frac{1}{4}-1\right)\Leftrightarrow E_b-E_a=\frac{-3R}{4}$
 - Como son dos conjuntos iguales: $\frac{N_b}{N_a} = 1$
 - Ahora, tenemos que contar el numero de estados g_a , g_b : $\frac{g_b}{g_a} = \frac{2(n-2)^2}{2(1)^2} = 4$

$$- 1 = 4e^{\frac{3(-13.6[\text{eV}])}{4}/kT} \Leftrightarrow 0 = \ln(4) - 3\frac{13.6[\text{eV}]}{4kT} \Leftrightarrow kT = 3\frac{13.6[\text{eV}]}{4\ln(4)}$$

$$- \quad k = 8.6173423 \times 10^{-5} \frac{\text{[eV]}}{[K]}$$

$$- T = 85400[K]$$

1.4 La ecuación de Saha

- Problematica: En el problema anterior se observa que para tener una cantidad sustancial de atomos en n=2 (Nivel mayor de Energia) se necesita una gran temperatura.
 - Sin embargo la linea mas intensa de esta serie ocurre a $T=9520\,K$ la cual es una temperatura mucho menor.
 - Si hay mas electrones en n=2 a altas temperaturas, para el caso de absorcion (Donde pasamos de n=2 a niveles n>2), no deberiamos tener lineas de balmer mas fuertes? En lugar de ello tenemos lineas de balmer mas debiles.
 - Esto claramente es una contradiccion.
- La funcion particion, es basicamente una suma pesada de los factores de boltzman. Los pesos son las degeneraciones g, es decir los numeros de los estados que tienen una dada energia:

$$Z_i = \sum_{j=1}^{\infty} g_j e^{-(E_j - E_1)/kT}$$

— Este calculo se calcula por estado ionizado. Por ejemplo para i=1 en el atomo de H, como perdemos nuestro unico electron, tenemos H^+ un solo proton, por lo tanto $Z_1=1$

- Distincion: Ionizacion vs Excitacion:
 - Excitation means the electron is still bound, but in a higher energy level. The atom is still neutral.
 - **Ionization** means **removing** the electron from the atom completely. The electron escapes the atom. Por ejemploL $H \rightarrow H^+ + e^-$
- Consideramos χ (en el libro) = ξ como la energia de ionizacion:

$$\frac{N_{i+1}}{N_i} = \frac{2Z_{i+1}}{n_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\xi_i/kT} = \frac{2kTZ_{i+1}}{P_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\xi_i/kT}$$

- $-\xi$: ionization energy needed to remove an electron from an atom
- -i: Estado inicial de ionizacion; i+1: Estado final de ionizacion
- N_i : Numero de atomos en el estado inicial
- N_{i+1} : Numero de atomos en el estado final
- $-m_e$: Masa del electron
- $P_e = n_e kT$: Presion de los electrones libres. (In Section 9.5, we will describe how the electron pressure is determined for stellar atmospheres.)
- Calculo de fraccion de atomos ionizados: Tipicamente en problemas nos van a pedir calcular el numero de atomos ionizados. Con la ecuacion de Saha podemos calcular la fraccion: $\frac{N_{\mathbb{I}}}{N_{I}}$, donde $N_{\text{Total}} = N_{I} + N_{\mathbb{I}}$, entonces podemos calcular la fraccion de atomos ionizados como:

$$\frac{N_{\mathbb{I}}}{N_{\text{Total}}} = \frac{1}{\frac{N_{I}}{N_{\tau}} + 1}$$

1.4.1 Uso de Handbook Allen 4ta edicion para hacer los calculos

Partiendo de (Movi el termino de la presion electronica):

$$\boxed{\frac{N_{i+1}}{N_i} P_e = \frac{2kTZ_{i+1}}{Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\xi_{i,i+1}/kT}}$$

Tomamos el logaritmo base 10, tomar en cuenta que: $\log(x) = \frac{\ln(x)}{\ln(10)}$

$$\log\left(\frac{N_{i+1}}{N_i}P_e\right) = \log\left(\frac{2kTZ_{i+1}}{Z_i}\left(\frac{2\pi m_e kT}{h^2}\right)^{3/2}\right) - \frac{\xi_{i,i+1}}{kT}\frac{1}{\ln(10)}$$

Separamos un poco mas los terminos:

$$\log\left(\frac{N_{i+1}}{N_{i}}P_{e}\right) = \log\left(kT\left[\frac{2Z_{i+1}}{Z_{i}}\right]\right) + \frac{3}{2}\log\left(\frac{2\pi m_{e}kT}{h^{2}}\right) - \frac{\xi_{i}}{kT}\frac{1}{\ln(10)}$$

Observar que:

$$\log\!\left(kT\!\left[\frac{2\,Z_{i+1}}{Z_i}\right]\right) \!=\! \log(kT) + \log\!\left(\frac{2\,Z_{i+1}}{Z_i}\right)$$

Mientras que:

$$\frac{3}{2} \! \log \! \left(\frac{2\pi m_e kT}{h^2} \right) \! = \! \frac{3}{2} \! \log \! \left(\frac{2\pi m_e}{h^2} \right) + \frac{3}{2} \log (kT)$$

O sea que puedo escribir:

$$\log\!\left(kT\!\!\left[\frac{2\,Z_{i+1}}{Z_i}\right]\right) + \frac{3}{2}\!\log\!\left(\frac{2\pi m_e kT}{h^2}\right) = \log\!\left(\frac{2\,Z_{i+1}}{Z_i}\right) + \frac{3}{2}\!\log\!\left(\frac{2\pi m_e}{h^2}\right) + \frac{5}{2}\log(kT)$$

Voy a reescribir todo Nuevamente:

$$\log\!\left(\frac{N_{i+1}}{N_i}P_e\right) = \log\!\left(\frac{2\,Z_{i+1}}{Z_i}\right) + \frac{3}{2}\log\!\left(\frac{2\pi m_e}{h^2}\right) + \frac{5}{2}\log(kT) - \frac{\xi_i}{T}5040$$

Finalmente:

$$\frac{3}{2}\log(\frac{2\pi m_e}{h^2}) + \frac{5}{2}\log(k) = -0.48$$

Expression final:

$$\log\left(\frac{N_{i+1}}{N_i}P_e\right) = \log\left(\frac{2Z_{i+1}}{Z_i}\right) - 0.48 + \frac{5}{2}\log(T) - \frac{\xi_i}{T}5040$$

Existe una expresion final que se encuentra en Allen:

$$\log\left(\frac{N_{i+1}}{N_i}N_e\right) = -\xi_i \Theta - \frac{3}{2}\log\Theta + 20.9366 + \log\left(\frac{2Z_{i+1}}{Z_i}\right)$$

Donde:

$$- \quad \Theta = 5040 \frac{[K]}{T}$$

2 Practico

1. Compare la población relativa del nivel fundamental respecto al nivel 2 del H I para las siguientes temperaturas: (6000, 8000, 10000, 15000, 20000) K. El peso estadístico del nivel n para el átomo de H puede obtenerse con $2n^2$. Realice un análisis del resultado

$$- \frac{N_2}{N_1} = \frac{2 \cdot 2^2}{2(1)^2} e^{-(E_2 - E_1)/kT} = 4e^{-13.6[eV]\left(\frac{3}{4}\right)/kT}$$

-
$$E_2 - E_1 = R(\frac{1}{2^2} - 1) = -13.6[\text{eV}](\frac{1-4}{4})$$

$$- \frac{N_2}{N_1} = 4e^{-13.6[\text{eV}]\left(\frac{3}{4}\right)/kT} \Leftrightarrow N_2 = N_1 4e^{-13.6[\text{eV}]\left(\frac{3}{4}\right)/kT}$$

- 2. Calcule la población relativa de los cinco primeros niveles del átomo de H I respecto del nivel fundamental para una temperatura de 50000 K. Obtenga los potenciales de excitación de los niveles involucrados mediante el modelo de Bohr.
 - El potencial de excitación es cuánta energía hace falta para excitar un electrón desde el nivel fundamental hasta el nivel deseado.
 - Para la poblacion relativa: $\frac{N_b}{N_1} = \frac{2b^2}{2}e^{-\frac{\mathbf{R}}{\left(\frac{1}{b^2} \frac{1}{1^2}\right)/kT}}$; easy
 - Para los potenciales de excitacion:
 - $\frac{N_b}{N_1} = \frac{g_b}{g_1} e^{-(E_b-E_1)/kT} = \frac{2b^2}{2} e^{-(E_b-E_1)/kT}$ Partimos del nivel n=1 y vamos hasta un nivel b

$$- \frac{N_b}{N_1} = \frac{b^2}{1} e^{-(E_b - E_1)/kT} \Leftrightarrow \frac{N_b}{N_1} \frac{1}{b^2} = e^{-(E_b - E_1)/kT} \Leftrightarrow \ln\left(\frac{N_b}{N_1} \frac{1}{b^2}\right) = -(E_b - E_1)/kT$$

- $-kT\ln\left(\frac{N_b}{N_1}\frac{1}{b^2}\right) = (E_b E_1)$; Para valores de b, T = 50000K obtengo entonces cual es la energia necesaria para que el electron pase de estar en el nivel n = 1 hasta el nivel b.
- 3. Si la temperatura de la fotósfera solar es de 5700 K y la presión electrónica es de 30 dyn/cm2, encuentre qué porcentaje de los átomos de Al se encuentran en **estado neutro**. Suponga la presencia de **Al IV** despreciable.

$$- \frac{N_{II}}{N_{I}}; \frac{N_{III}}{N_{II}};$$

$$- \frac{N_{I}}{N_{I} + N_{III} + N_{III}} = \frac{1}{1 + \frac{N_{II}}{N_{I}} + \frac{N_{III}}{N_{I}} \frac{N_{II}}{N_{II}}} = \frac{1}{1 + \frac{N_{II}}{N_{I}} + \frac{N_{III}}{N_{II}} \frac{N_{III}}{N_{II}}}$$

$$-\Theta = \frac{5040}{T} = \frac{5040}{5700} = 0.884$$

$$- \quad \log\!\left(\frac{N_{i+1}}{N_i}N_e\right) = -\xi_{i,i+1} \, 0.884 - \tfrac{3}{2} \log(0.884) + 20.9366 + \log\!\left(\tfrac{2\,Z_{i+1}}{Z_i}\right)$$

Table 3.5. Ionization potentials (electron volts) [1–20].

		Stage of ionization						ion		
A	tom	I	II	III	IV	V	VI	VII	VIII	IX
1	Н	13.598 44								
2	He	24.587 41	54.41778							
3	Li	5.39172	75.64018	122.454						
4	Be	9.32263	18.21116	153.897	217.713					
5	В	8.298 03	25.15484	37.931	259.366	340.22				
6	C	11.260 30	24.38332	47.888	64.492	392.08	489.98			
7	N	14.534 14	29.6013	47.449	77.472	97.89	552.06	667.03		
8	O	13.618 06	35.11730	54.936	77.413	113.90	138.12	739.29	871.41	
9	F	17.422 82	34.97082	62.708	87.140	114.24	157.17	185.19	953.91	110
10	Ne	21.564 54	40.96328	63.45	97.12	126.21	157.93	207.28	239.10	1 19
11	Na	5.139 08	47.2864	71.620	98.91	138.40	172.18	208.50	264.25	29
12	Mg	7.646 24	15.03528	80.144	109.265	141.27	186.76	225.02	265.96	32
13	Al	5.98577	18.82856	28.448	119.99	153.83	190.49	241.76	284.66	33
14	Si	8.15169	16.34585	33.493	45.142	166.77	205.27	246.49	303.54	35
15	P	10.486 69	19.7694	30.203	51.444	65.03	220.42	263.57	309.60	37
16	S	10.360 01	23.3379	34.79	47.222	72.59	88.05	280.95	328.75	37
17	Cl	12.967 64	23.814	39.61	53.465	67.8	97.03	114.20	348.28	40
18	Ar	15.759 62	27.62967	40.74	59.81	75.02	91.01	124.32	143.46	42
19	K	4.340 66	31.63	45.806	60.91	82.66	99.4	117.56	154.88	17
20	Ca	6.113 16	11.87172	50.913	67.27	84.50	108.78	127.2	147.24	18
21	Sc	6.561 44	12.79967	24.757	73.489	91.65	111.68	138.0	158.1	18
22	Ti	6.8282	13.5755	27.492	43.267	99.30	119.53	140.8	170.4	15
23	V	6.7463	14.66	29.311	46.71	65.28	128.1	150.6	173.4	20
24	Cr	6.766 64	16.4857	30.96	49.16	69.46	90.64	161.18	184.7	20
25	Mn	7.434 02	15.63999	33.668	51.2	72.4	95.6	119.20	194.5	22
26	Fe	7.9024	16.1878	30.652	54.8	75.0	99.1	124.98	151.06	23
27	Co	7.8810	17.083	33.50	51.3	79.5	103	131	160	18
28	Ni	7.6398	18.16884	35.19	54.9	75.5	108	134	164	15
29	Cu	7.726 38	20.29240	36.841	55.2	79.9	103	139	167	15
30	Zn	9.394 05	17.96440	39.723	59.4	82.6	108	136	175	20

$$- \log(U_I) = \frac{0.77 - 0.81}{1 - 0.5} (\Theta - 0.5) + 0.81$$

$$- \log(U_I) = \frac{0.77 - 0.81}{1 - 0.5} (0.884 - 0.5) + 0.81$$

$$- \log(U_{II}) = \frac{0.01 - 0.00}{1 - 0.5} (0.884 - 0.5) + 0.00$$

- 4. Este el problema es lo mismo pero calcular para dos niveles.
- 5. En la atmósfera de la estrella 10 Lacertae se encontró a partir de la intensidad de las líneas de Balmer que el número de átomos por cm3 en el segundo nivel es $10^{15.8}$. Si la temperatura es de 32000 K, log Pe = 2.80, I = 13.54 eV, g2 = 8 y U1(T) = 1 y el potencial de excitación del segundo nivel es de 10.15 eV, calcule el número de iones del H.

$$\log\left(\frac{N_{ij}}{N_i}\right) = \log\left(\frac{g_{ij}}{U_i}\right) - \frac{5040}{T} \cdot E_{ij}$$

- i: Numero de atomos que estan en el estado de ionizacion i
- *i*: Orbital
- $-E_{ij}=E_i-E_j$: Diferencia entre potencial de Ionizacion i y excitacion j
- $-N_{ij}$: Numero de atomos en el orbital j en estado de ionizacion i
- g_{ij} : Peso estadistico en el orbital j en un estado de ionizacion i

$$- \log\!\left(\frac{10^{15.8}}{N_i}\right) \!=\! \log\!\left(\frac{g_{ij}\!=\!8}{U_i\!=\!1}\right) - \frac{5040[K]}{32000[K]} \cdot (13.54-10.15)[\text{eV}]$$

- Hay que despejar N_i

$$- \quad \log\!\left(\frac{10^{15.8}}{N_i}\right) \! = \! \log(8) - 0.1575 \! \cdot \! (3.39) [\text{eV}]$$

$$-\frac{10^{15.8}}{N_i} = 0.37 \Leftrightarrow N_i = 1.7 \times 10^{16}$$

- Resultado CHAT GPT: $6.2 \times 10^{28} [\text{cm}^{-3}]$

$$- \log\left(\frac{N_{i+1}}{N_i}P_e\right) = \log\left(\frac{2Z_{i+1}}{Z_i}\right) - 0.48 + \frac{5}{2}\log(T) - \frac{(I - \xi_{i,i+1})}{T}5040$$

6.

$$- \log\left(\frac{N_{i+1}}{N_i}N_e\right) = -\xi_i \Theta - \frac{3}{2}\log\Theta + 20.9366 + \log\left(\frac{2Z_{i+1}}{Z_i}\right)$$

$$- \frac{N_{i+1}}{N_i} = \frac{1}{N_e} 10^{-\xi_i \Theta - \frac{3}{2} \log\Theta + 20.9366 + \log\left(\frac{2Z_{i+1}}{Z_i}\right)} \; ; \; P_e = N_e kT$$

$$- \frac{kT_1}{P_2(1)} 10^{-\xi_i \Theta_1 - \frac{3}{2} \log \Theta_1 + 20.9366 + \log \left(\frac{2Z_{i+1}(1)}{Z_{i}(1)}\right)} = \frac{kT_2}{P_2(2)} 10^{-\xi_i \Theta_1 - \frac{3}{2} \log \Theta_2 + 20.9366 + \log \left(\frac{2Z_{i+1}(2)}{Z_{i}(2)}\right)}$$

$$- \frac{T_1}{P_e(1)} 10^{-\xi_i \Theta_1 - \frac{3}{2} \log \Theta_1 + \frac{20.9366}{20.9366} + \log \left(\frac{2Z_{i+1}(1)}{Z_i(1)}\right)} = \frac{T_2}{P_e(2)} 10^{-\xi_i \Theta_2 - \frac{3}{2} \log \Theta_2 + \frac{20.9366}{20.9366} + \log \left(\frac{2Z_{i+1}(2)}{Z_i(2)}\right)}$$

$$- \frac{T_1}{P_e(1)} 10^{-\xi_i \Theta_1 - \frac{3}{2} \log \Theta_1 + \log \left(\frac{2Z_{i+1}(1)}{Z_{i}(1)}\right)} = \frac{T_2}{P_e(2)} 10^{-\xi_i \Theta_2 - \frac{3}{2} \log \Theta_2 + \log \left(\frac{2Z_{i+1}(2)}{Z_{i}(2)}\right)}$$

Table 3.3. (Continued.)

			Y = I $Y = II$							
			$\log U$			$\log U$		$\log U$		
	Element	g_0	$\Theta = 1.0$	$\Theta = 0.5$	g_0	$\Theta = 1.0$	$\Theta = 0.5$	80		
11	Na	2	0.31	0.60	1	0.00	0.00	6		
12	Mg	1	0.01	0.15	2	0.31	0.31	1		
13	Al	6	0.77	0.81	1	0.00	0.01	2		
14	Si	9	0.98	1.04	6	0.76	0.77	1		
15	P	4	0.65	0.79	9	0.91	0.94	(
16	S	9	0.91	0.94	4	0.62	0.72	9		
17	Cl	6	0.72	0.75	9	0.89	0.92	4		
18	Ar	1	0.00	0.00	6	0.69	0.71	9		
19	K	2	0.34	0.60	1	0.00	0.00	(
20	Ca	1	0.07	0.55	2	0.34	0.54			
21	Sc	10	1.08	1.49	15	1.36	1.52	10		
22	Ti	21	1.48	1.88	28	1.75	1.92	2		
23	V	28	1.62	2.03	25	1.64	1.89	2		
24	Cr	7	1.02	1.51	6	0.86	1.22	2		
25	Mn	6	0.81	1.16	7	0.89	1.13			
26	Fe	25	1.43	1.74	30	1.63	1.80	2		
27	Co	28	1.52	1.76	21	1.46	1.66	2		
28	Ni	21	1.47	1.60	10	1.02	1.28	2		
29	Cu	2	0.36	0.58	1	0.01	0.18	1		
30	Zn	1	0.00	0.03	2	0.30	0.30			
31	Ga	6	0.73	0.77	1	0.00	0.00			
32	Ge	9	0.91	1.01	6	0.64	0.70			
34	Se	9	0.83	0.89	4					
36	Kr	1	0.00	0.00	6	0.62	0.66			
37	Rb	2	0.36	0.7	1	0.00	0.00			
38	Sr	1	0.10	0.70	2	0.34	0.53			
39	Y	10	1.08	1.50	1 + 15	1.18	1.41	10		
40	7r	2.1	1.53	1 99	28	1 66	1 91	2		

-
$$y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1$$
; $\Theta_1 = \frac{5040}{4900}$; $\Theta_2 = \frac{5040}{4230}$

$$- \log(U_I) = \frac{1.43 - 1.74}{1 - 0.5} (\Theta - 0.5) + 1.74$$

$$- \log(U_{II}) = \frac{1.63 - 1.80}{1 - 0.5} (\Theta - 0.5) + 1.80$$

$$-\xi_{I,II} = 7.9$$

$$- \log \left(\frac{2 Z_{i+1}(1)}{Z_i(1)}\right) = \log(2) + \log(U_{II}(1)) + \log(U_I(1))$$

$$\frac{4900}{10[\mathrm{dyn/cm^2}]} 10^{-7.9\frac{5040}{4900} - \frac{3}{2}\log\frac{5040}{4900} + \log\left(\frac{2Z_{i+1}(1)}{Z_{i}(1)}\right)} = \frac{4230}{P_e(2)} 10^{-7.9\frac{5040}{4230} - \frac{3}{2}\log\frac{5040}{4230} + \log\left(\frac{2Z_{i+1}(2)}{Z_{i}(2)}\right)}$$