9.2 1)
$$\varphi'(x) = (f(x) f(-x))'$$

 $= f'(x) f(-x) + f(x) (f(-x))'$
 $= f'(x) f(-x) + f(x) f'(-x) \underbrace{(-x)'}_{-1}$
 $= f'(x) f(-x) - f(x) f'(-x)$
 $= f(x) f(-x) - f(x) f(-x)$

- 2) $\varphi(0) = f(0) f(-0) = f(0) f(0) = 1 \cdot 1 = 1$ Puisque $\varphi'(x) = 0$ pour tout $x \in \mathbb{R}$, la fonction φ est constante. C'est pourquoi $\varphi(x) = \varphi(0)$ pour tout $x \in \mathbb{R}$, c'est-à-dire f(x) f(-x) = 1 pour tout $x \in \mathbb{R}$.
- 3) L'égalité f(x) f(-x) = 1 implique $f(x) \neq 0$ pour tout $x \in \mathbb{R}$. En effet, si l'on avait f(x) = 0, alors on obtiendrait la contradiction 1 = f(x) $f(-x) = 0 \cdot f(-x) = 0$. La fonction f n'admet ainsi aucun zéro.