组合数学 08.30 思考题

提交者: 游昆霖 学号: 2020K8009926006

1. 现有 A.B 两人分一个蛋糕, A 和 B 对这个蛋糕的不同部分有自己的偏好。试问能否将这个蛋 糕分成两份, A,B 各拿一份, 并且要求 A 拿到的蛋糕在他自己的偏好下不少于整个蛋糕的 $\sqrt{5}-1$, B拿到的部分在他自己的偏好下不少于整个蛋糕的 $\frac{3-\sqrt{5}}{2}$ 。

问题形式化表述如下:现有非负整数 $f_1.f_2$ 满足

$$\int_0^1 f_i(x)dx = 1(i=1,2)$$

是否存在区间 [0,1] 的子集 A,B 使得 $A \cup B = [0,1], A \cap B = \emptyset$ 且

$$\int_{A} f_{1}(x)dx \ge \frac{\sqrt{5} - 1}{2}, \quad \int_{B} f_{2}(x)dx \ge \frac{3 - \sqrt{5}}{2}?$$

试为这两人的要求设计一个算法, 或证明划分不存在。

先证:任意无理数蛋糕分割比可获得对应分割。

假设 A、B 所期望获得蛋糕比例分别为 d_1, d_2 , 且 $d_1 + d_2 = 1$, 不失一般性, 可设 $d_1 < d_2$; 首先由 A 切自己认为价值 d_1 部分,记为 X,剩余部分记为 $I\setminus X$,考察 X 对 B 的价值,记为 $f_2(B)$

情形 (1): 若 $f_2(B) \le d_1$, 则 $f_2(I \setminus X) \ge d_2$, 此时只需 A 取 X, B 取剩余部分即可;

情形 (2): 若 $f_2(B) = d_1 + \varepsilon, \varepsilon > 0$, 则 B 拿走全部 X, 并对 $I \setminus X$ 进一步分配;

令 A 拿走其中 $d_1 + \frac{d_1^2}{d_2}$, B 拿走其中 $d_2 - \frac{d_1(d_1+\varepsilon)}{d_2-\varepsilon}$; (此处将 $I \backslash X$ 视作 1) 一方面:由不等式 $\frac{d_1^2}{d_2} < \frac{d_1(d_1+\varepsilon)}{d_2-\varepsilon}$ 对 $I \backslash X$ 有 $d_1 + \frac{d_1^2}{d_2} + d_2 - \frac{d_1(d_1+\varepsilon)}{d_2-\varepsilon} < 1$;

对两部分均添加小量,即可转化为有理数 R_1, R_2 ,且 $R_1 + R_2 = 1$,对有理数蛋糕分割比,可取 得整数 Z_1, Z_2 $s.t.R_1: R_2 = Z_1: Z_2$; 则由 B 按自身价值评估将 $I \setminus X$ 均分为 $Z_1 + Z_2$ 份,而由 A 先 取得其中对自己价值较大的 Z_1 份,B 取余下蛋糕即可;

另一方面:对整个蛋糕,若不考虑将无理数比化为有理数比所添加小量,A 所取得价值为 d_2* $(d_1 + \frac{d_1^2}{d_2}) = d_1$,B 所取得价值为 $d_1 + \varepsilon + (1 - d_1 - \varepsilon) * (d_2 - \frac{d_1(d_1 + \varepsilon)}{d_2 - \varepsilon}) = d_2$,考虑小量即有 A、B 所 取的蛋糕均超过最低预期, 故对应分割存在。

由上述证明过程可得到一般的无理数比蛋糕分割算法如下:

注:下列算法对应无理数为 d_1,d_2 ,且满足 $d_1+d_2=1$,该算法为简化情形,不失一般性地令 $d_1 < d_2$, 对于黄金分割比切蛋糕问题,只需令 $d_1 = \frac{3-\sqrt{5}}{2}$, $d_2 = \frac{\sqrt{5}-1}{2}$ 即可。

Algorithm 1 Cake Cutting by irrational ratio

输入: $f_1(x)$ $f_2(x) \setminus A$ 和 B 对应的蛋糕函数

输出: n 满足对应无理数比的分割蛋糕方法

Function Divide \bigcirc

$$\exists x_0 \quad s.t. \int_0^{x_0} f_1(x) = d_1, \quad \varepsilon = \int_0^{x_0} f_2(x) - d_1$$
 if $\varepsilon \leq 0$ then return $x_0 \quad \backslash \quad A$ 取 $0 - x_0$ 部分, B 取 $x_0 - 1$ 部分; else $\exists z_1, z_2 \in \mathbb{N} \quad s.t. \frac{z_1}{z_1 + z_2} > d_1 + \frac{d_1^2}{d_2} \quad \frac{z_2}{z_1 + z_2} > d_2 - \frac{d_1(d_1 + \varepsilon)}{d_2 - \varepsilon}$
$$\exists x_0 < x_1 < \dots < x_{z_1 + z_2} = 1 \quad s.t. \int_{x_0}^{x_1} f_2(x) = \dots = \int_{x_{z_1 + z_2 - 1}}^{x_{z_1 + z_2 - 1}} f_2(x) = \frac{d_2}{z_1 + z_2}$$

$$\exists x_0 < x_{i_1} < \dots < x_{i_{z_1}} \leq 1, A = \bigcup_{k=1}^{z_1} [x_{i_k - 1}, x_{i_k}] \quad s.t. \int_A f_1(x) \geq d_1$$
 return $x_{i_1 - 1}, x_{i_1}, \dots, x_{i_{z_1}} \quad \backslash \quad A$ 取 $\bigcup_{k=1}^{z_1} [x_{i_k - 1}, x_{i_k}]$ 部分, B 取剩余部分;

end if

end Function