Übungen zur theoretischen Elektrodynamik, SoSe 2024

Übungsblatt IV

Bitte laden Sie Ihre Lösungen auf WUE Campus hoch, und zwar vor 16.00 Uhr am Montag, dem 13. Mai.

Sie dürfen in Dreiergruppen abgeben.

1. Dirichlet- und Neumann-Randbedingungen für Green'sche Funktionen

Wir betrachten Green'sche Funktionen G auf einem Volumen V mit Dirichlet- bzw. Neumann-Randbedingungen auf der Oberfläche ∂V .

- a) Drücken Sie die Differenz G(y,z) G(z,y) als Integral über die Oberfläche ∂V aus. Verwenden Sie dazu die zweite Greensche Identität mit $\varphi(x) = G(y,x)$ and $\psi(x) = G(z,x)$. Benutze Sie, dass $\Delta_x G(y,x) = -\delta^{(3)}(x-y)$.
- b) Zeigen Sie, dass die Green'sche Funktion $G_D(x,y)$ mit Dirichlet-Randbedingung $G_D(x,y)=0$ für alle $y\in\partial V$ symmetrisch in x und y ist.
- c) Begründen Sie, dass $\vec{n}_y \cdot \vec{\nabla}_y G_D(x,y) \to -\delta^{(2)}(x-y)$ für $x \to \partial V$ und $y \in \partial V$. Im Fall, dass x am Rand nicht gegen y konvergiert, nutzen Sie die Dirichlet-Randbedingung für $G_D(x,y)$. Um den Spezialfall $x \to y$ zu verstehen, integrieren Sie den obigen Ausdruck über alle $y \in \partial V$ vor Ausführung des Grenzwerts.
- d) Betrachte Sie nun die Neumann-Randbedingung in der Form

$$\vec{\nabla}_x \left(\vec{n}_y \cdot \vec{\nabla}_y \, G_N(x, y) \right) = 0 \tag{1}$$

für alle $y \in \partial V$. Zeigen Sie, dass $G_N(x,y)$ im Allgemeinen nicht symmetrisch in x und y ist. Konstruieren Sie eine Green'sche Funktion $\tilde{G}_N(x,y) = G_N(x,y) + H(y) + K(x)$, welche symmetrisch in x und y ist. Was muss für H und K gelten, damit \tilde{G}_N weiterhin eine geeignete Green'sche Funktion ist?

2. Leitende Kugel im magnetischen Feld

Eine leitende Kugel, auf der die Gesamtladung Q sitzt, wird in ein homogenes elektrisches Feld $\vec{E} = E\vec{e}_z$ gebracht. Wie verändert sich das elektrische Feld durch Anwesenheit der Kugel? Wie ist die Ladung auf der Oberfläche der Kugel verteilt?

Hinweise: Motivieren Sie den Ansatz

$$\phi(r,\theta,\varphi) = A(r) + B(r)\cos\theta, \qquad (2)$$

für das Potential in Kugelkoordinaten. Lösen Sie die Poisson-Gleichung im Außenraum (also die Laplace-Gleichung $\Delta \phi = 0$), mit dem Laplace-Operator in Kugelkoordinaten.

Benutzen Sie anschließend die folgenden Randbedingungen: 1) Weit weg von der Kugel dominiert das homogene elektrische Feld. 2) Die Oberfläche der leitenden Kugel muss ein Äquipotentialfläche sein.

Das elektrische Feld erfüllt den Gauß'schen Satz.