Computer Organization & Architecture

2-8 Floating-point Numbers &

IEEE 754 Standard

Wang Guohua

School of Software Engineering

Contents of this lecture

- Fixed-point Representation
- Floating-point Representation
- IEEE 754 Standard

Number Formats

- According to whether the position of binary point is fixed, there are two number formats:
 - Fixed-point numbers
 - E.g., integers, have an implied binary point at the right end of them.
 - Floating-point numbers

Fixed-point Representation (1)

- A fixed-point notation is any number in which the number of bits to the right of the binary point does not change.
 - Unsigned integers: with no bits to the right of the binary point.
 - Signed integers: with no bits to the right of the binary point.
 - Signed fractions: the binary point is to the right of the sign bit.

Fixed-point Representation (2)

• Let $X = x_n ... x_0$ be a fixed-point number

- If X is an integer
 - •The binary point is to the right of x_0
 - •Range: $-2^n \le V(X) \le 2^n 1$
- If X is a pure fraction
 - •The binary point is between x_n and x_{n-1}
 - •Range: $-1 \le V(X) \le 1 2^{-n}$

Fixed-point Representation (3)

Limitation

- Very large integers can not be represented, nor can very small fractions.
- Example: Consider the range of values representable in a 32-bit, signed, fixed-point format.
 - Interpreted as integers $-2^{31} \le V(X) \le 2^{31} 1$ $V(X) \in [-2.15 \times 10^9, 0], [0, +2.15 \times 10^9]$
 - Interpreted as fractions $-1 \le V(X) \le 1 2^{-31}$ $V(X) \in [-1, -4.55 \times 10^{-10}], [+4.55 \times 10^{-10}, +1]$

Fixed-point Representation (4)

- Limitation (ctd.)
 - Example: Consider the range of values representable in a 32-bit, signed, fixed-point format. (ctd.)
 - In scientific calculations

```
Avogadro's constant 6.02214076 \times 10^{23} \text{ mol}^{-1} = 0.602214076 \times 10^{24} \text{ mol}^{-1}
Planck's constant 6.62607015 \times 10^{-34} \text{J.s} = 0.62607015 \times 10^{-33} \text{J.s}
```

Floating-point Representation (1)

- Floating-point Representation
 - The position of the binary point is variable and is automatically adjusted as computation proceeds.
 - The position of the binary point must be given explicitly in the floating-point representation.
 - Similar to scientific notation

Floating-point Representation (2)

- Floating-point Numbers in Computers
 - Encoding

	S	Е	• M
--	---	---	-----

- Numerical Form
 - (-1)^S M 2^e
 - Sign bit S determines whether number is negative or positive
 - Mantissa M, a fraction in sign-magnitude or 2's complement representation, containing the significant digits
 - Exponent E
 - » In 2's complement or biased notation, the power of base
 - » Is not the actual exponent
 - » Actual exponent e

Floating-point Representation (3)

- Floating-point Numbers in Computers (ctd.)
 - Excess or Biased Notation
 - A negative exponent in 2's complement looks like a large exponent.
 - A fixed value is subtracted from the exponent field to get the true exponent.
 - $E = e + (2^{k-1} 1)$
 - e is the actual exponent
 - k is the number of bits in the exponent
 - Note
 - When the bits of a biased representation are treated as unsigned integers, the relative magnitudes of the numbers do not change.

Decimal Representation	2's complement representation	Biased Representation
+8	-	1111
+7	0111	1110
+6	0110	1101
+5	0101	1100
+4	0100	1011
+3	0011	1010
+2	0010	1001
+1	0001	1000
<u>+</u> 0	0000	0111
-1	1111	0110
-2	1110	0101
-3	1101	0100
-4	1100	0011
-5	1011	0010
-6	1010	0001
-7	1001	0000
-8	1000	-

Floating-point Representation (4)

Normalization

 By convention, the number which decimal point is placed to the right of the first (nonzero) significant digit is called to be normalized.

```
 1.0×10<sup>-9</sup>  √ (a normalized scientific notation)
```

```
• 0.1 \times 10^{-10} ×
```

 In normalized binary, the most significant bit of the mantissa is always equal to 1.

```
• \pm 0.1bbb...b \times 2<sup>E</sup> (b is either 0 or 1)
```

Example

$$- 0.0110 \times 2^{6} \times$$

$$- 0.110 \times 2^{5}$$

IEEE 754 Standard (1)

Introduction

- Institute of Electrical and Electronics Engineers
- Most common standard for representing floating point numbers.
- Established in 1985 as uniform standard for floating point arithmetic
- This standard was developed to facilitate the portability of programs from one processor to another and encourage the development of sophisticated, numerically oriented programs.
- Supported by all major CPUs

IEEE 754 Standard (2)

Single Precision Floating-point Number Format

Magnitude of numbers that can be represented is in the range:

$$2^{-126}$$
 (1.0) to 2^{127} (2 - 2^{-23}) which is approximately: 1.8 x 10 $^{-38}$ to 3.40 x 10 38

IEEE 754 Standard (3)

Double Precision Floating-point Number Format

Magnitude of numbers that can be represented is in the range:

$$2^{-1022}$$
(1.0) to 2^{1023} (2 - 2^{-52}) which is approximately:
2.2 x 10 $^{-308}$ to 1.8 x 10 308

IEEE 754 Standard (4)

Special Values

- Zero
 - S = 0/1, E = 0, M = 0 (0.M) Value = \pm 0
 - An exponent field of zero is special; it indicates that there is no implicit leading 1 on the mantissa.
- Infinity
 - Operation that overflows
 - E.g., 1.0/0.0 = 1.0/0.0 = +infinity
 - S = 0/1, E = 255 or 2047, M = 0 Value = \pm infinity
- NaN (Not a Number)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1),
 - S = 0/1, E = 255 or 2047, M ≠ 0 Value = NaN

IEEE 754 Standard (5)

Special Values (ctd.)

Denormal Numbers

- There is no implied 1 to the left of the binary point.
- All denormalized numbers are assumed to have an exponent field of 1 bias.
- Numbers very close to 0.0
- Note that we <u>cannot</u> normalize this value.
- Zero is effectively a denormal number.
- Lose precision as get smaller
- "Gradual underflow"
- $S = 0/1, E = 0, M \neq 0$
 - Value = $\pm 0.M \times 2^{-126}$
 - Value = $\pm 0.M \times 2^{-1022}$

IEEE 754 Standard (6)

Special Values Summary

Normalized:	<u>+</u>	0 <e<max< th=""><th>Any bit pattern</th></e<max<>	Any bit pattern
Denormalized:	<u>+</u>	0	Any nonzero bit pattern
zero:	±	0	0
Infinity:	±	111	0
NaN:	<u>+</u>	111	Any nonzero bit pattern

IEEE 754 Standard (7)

Special Values Summary (ctd.)

IEEE 754 Standard (8)

Summary

- A computer must provide at least single-precision representation to conform to the IEEE standard.
- Double-precision representation is optional.
- Extended single-precision (more than 32 bits) /Extended double-precision (more than 64 bits)
 - Help to reduce the size of the accumulated round-off error in a sequence of calculations.
 - Enhance the accuracy of evaluation of elementary functions such as sine, cosine, and so on.
- Trade-off between "accuracy" and "range"
 - Increasing the size of mantissa enhances accuracy.
 - Increasing the size of exponent increases the range.

Quiz (1)

1. In IEEE754 standard for representing floating-point numbers of 32 bits, the sign of the number is given 1 bit, the exponent of the scale factor is allocated 8 bits, and the mantissa is assigned 23 bits. What is the maximum normalized positive number that 32-bit representation can represent?

A.
$$+(2-2^{-23})\times 2^{+127}$$

B.
$$+(1-2^{-23})\times 2^{+127}$$

C.
$$+(2-2^{-23})\times 2^{+255}$$

最大的正单精度浮点数符号必为0,尾数部分取23个1,故为1.111…1,

指数部分取E=254,实际的指数e=127,

Quiz (2)

2. In single-precision format of IEEE 754 floating point number standard, instead of the signed exponent E, what is the value actually stored in the exponent field?

IEEE 754标准规定单精度浮点数的指数部分占8位,E=e+(28-1-1)

Quiz (3)

3. In double-precision format of IEEE 754 floating point number standard, instead of the signed exponent e, what is the value E actually stored in the exponent field?

A. E=e+2047

B. E=e+1023

C. E=e+2048

D. E=e+1024

IEEE 754标准规定双精度浮点数的指数部分占11位,E=e+(211-1-1)

Quiz (4)

4. True or False? A computer must provide at least single-precision representation to conform to the IEEE standard.

IEEE 754标准规定至少要支持单精度的浮点数格式

Quiz (5)

5. Using 32-bit IEEE 754 single precision floating point format, show the representation of -0.6875.

Solution:

$$0.6875 = 0.1011 \times 2^{0} = 1.011 \times 2^{-1}$$