

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Inp	ut 200030.95	-2.42	-0.00
Channel X + Inp	ıt 20004.11	-0.05	-0.00
Channel X - Inpu	t -20003.75	2.02	-0.01
Channel Y + Inp	it 200031.20	-2.23	-0.00
Channel Y + Inp	it 20001.46	-2.74	-0.01
Channel Y - Inpu	t -20005.92	-0.05	0.00
Channel Z + Inp	it 200032.03	-1.05	-0.00
Channel Z + Inp	it 20001.94	-2.11	-0.01
Channel Z - Inpu	t -20006.15	-0.20	0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2000.66	0.19	0.01
Channel X	+ Input	200.40	-0.18	-0.09
Channel X	- Input	-198.67	0.81	-0.40
Channel Y	+ Input	2000.90	0.48	0.02
Channel Y	+ Input	199.98	-0.58	-0.29
Channel Y	- Input	-200.18	-0.62	0.31
Channel Z	+ Input	2000.68	0.32	0.02
Channel Z	+ Input	199.07	-1.45	-0.72
Channel Z	- Input	-201.14	-1.52	0.76

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	18.32	16.76
	- 200	-15.73	-17.08
Channel Y	200	-20.47	-20.86
2	- 200	20.66	20.31
Channel Z	200	13.43	13.46
	- 200	-15.65	-15.97

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

_	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	0.08	-3.66
Channel Y	200	7.12		1.80
Channel Z	200	10.44	4.52	

Certificate No: DAE4-1525_Oct17

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15817	15005
Channel Y	16329	14457
Channel Z	15576	15478

5. Input Offset Measurement

DÅSY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.63	-0.54	2.27	0.51
Channel Y	-2.07	-3.42	-1.02	0.49
Channel Z	-0.89	-2.38	0.83	0.54

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	***

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX J Spot Check

J.1 Conducted power of selected case

Table J.1-1: The conducted power results for GSM850/1900

	Table 0.1 1. The conducted power results for Comoso, 1900				
	Conducted Power (dBm)				
GSM	Channel 251(848.8MHz)	Channel	Channel		
850MHz		190(836.6MHz)	128(824.2MHz)		
	32.32	/	/		
		Conducted Power(dBm)			
GSM	Channel	Channel 661(1880MHz)	Channel		
1900MHz	810(1909.8MHz)		512(1850.2MHz)		
	/	/	29.93		

Table J.1-2: The conducted power results for GPRS

Table of 2: The conducted power recalls for or ite				
GSM 850	Measured Power (dBm)			
GPRS (GMSK)	251	190	128	
2 Txslots	/	30.05	/	
PCS1900	Measured Power (dBm)			
GPRS (GMSK)	810	661	512	
2 Txslots	/	/	27.88	

Table J.1-3: The conducted Power for WCDMA

ltem	band		FDDV result	
пеш	ARFCN	4233(846.6MHz)	4182(836.4MHz)	4132(826.4MHz)
WCDMA	1	23.21	23.27	/
Item band		FDDII result		
пеш	ARFCN	9538(1907.6MHz)	9400(1880MHz)	9262(1852.4MHz)
WCDMA	1	/	/	23.26
	band	FDDIV result		
ltem	ARFCN	1513	1412	1312
	ANICH	(1752.6MHz)	(1732.4MHz)	(1712.4MHz)
WCDMA	1	/	23.07	/

Table J.1-4: The conducted Power for LTE

1RB-Middle	1900 (19100)	22.91					
1RB-Middle	1860 (18700)	22.86					
1RB-Middle	1745 (20300)	22.90					
1RB-Middle	1720 (20050)	22.85					
1RB-Middle	829 (20450)	23.37					
1RB-Middle	2560 (21350)	22.12					
1RB-Middle	2510 (20850)	22.13					
1RB-Middle	704 (23060)	23.19					
1RB-Middle	782 (23230)	22.92					
	1RB-Middle 1RB-Middle 1RB-Middle 1RB-Middle 1RB-Middle 1RB-Middle 1RB-Middle 1RB-Middle	1RB-Middle 1860 (18700) 1RB-Middle 1745 (20300) 1RB-Middle 1720 (20050) 1RB-Middle 829 (20450) 1RB-Middle 2560 (21350) 1RB-Middle 2510 (20850) 1RB-Middle 704 (23060)					

Table J.1-5: The conducted Power for WLAN

Mode / data rate	Channel	Measured Power (dBm)
802.11b – 1Mbps	6	15.90

J.2 Measurement results

WLAN2450	6	2437 MHz	16.5	15. 90	Right Cheek	0.394	0.824	0.45	0.95	0.02	SIM2
WCDMA1900-BII	9262	1852.4 MHz	23.5	23. 26	Bottom edge	0.584	1.07	0.62	1.13	0.06	SIM2

Test Band	Channel	Frequency	Tune-Up	Measured Power	Test Position	Measured 10g SAR	Measured 1g SAR	Reported 10g SAR	Reported 1g SAR	Power Drift	Figure
GSM850	251	848.8 MHz	33.3	32.32	Left Cheek	0.214	0.279	0. 27	0.35	-0.09	Fig J.1
GSM850	190	836.6 MHz	30.5	30.05	Rear	0.384	0.508	0.43	0.56	-0.09	Fig J.2
PCS1900	512	1850.2 MHz	30.3	29.93	Right Cheek	0.221	0.314	0.24	0.34	0.08	<u>Fig J. 3</u>
PCS1900	512	1850.2 MHz	28	27.88	Rear	0.559	1.01	0.57	1.04	-0.16	Fig J. 4
WCDMA1900-BII	9262	1852.4 MHz	23.5	23.26	Left Cheek	0.125	0.221	0.13	0.23	0.03	Fig J. 5
WCDMA1900-BII	9262	1852.4 MHz	23.5	23.26	Bottom edge	0.599	1.13	0.63	1.19	0.1	Fig J.6
WCDMA1700-BIV	1412	1732.4 MHz	23.5	23.07	Left Cheek	0.393	0.25	0.43	0.28	0.05	Fig J. 7
WCDMA1700-BIV	1412	1732.4 MHz	23.5	23.07	Rear	0.546	0.966	0.60	1.07	-0.07	<u>Fig J.8</u>
WCDMA850-BV	4182	835.4 MHz	24	23. 27	Left Cheek	0.22	0.295	0.26	0.35	0.05	Fig J. 9
WCDMA850-BV	4233	846.6 MHz	24	23. 21	Rear	0.301	0.398	0.36	0.48	0.05	Fig J. 10
LTE1900-FDD2	19100	1900 MHz	23.5	22.91	Left Cheek	0.0763	0.133	0.09	0.15	-0.07	Fig J. 11
LTE1900-FDD2	18700	1860 MHz	23.5	22.86	Bottom edge	0.512	0.963	0.59	1.12	0.04	Fig J. 12
LTE1700-FDD4	20050	1720 MHz	23.5	22.85	Left Cheek	0.123	0.213	0.14	0.25	0.05	Fig J. 13
LTE1700-FDD4	20300	1745 MHz	23.5	22.90	Rear	0.556	0.976	0.64	1.12	0.05	Fig J. 14
LTE850-FDD5	20450	829 MHz	24	23.37	Left Cheek	0.172	0.225	0.20	0.26	-0.04	Fig J. 15
LTE850-FDD5	20450	829 MHz	24	23.37	Rear	0.293	0.387	0.34	0.45	-0.01	Fig J. 16
LTE2500-FDD7	20850	2510 MHz	22.2	22.13	Right Cheek	0.101	0.189	0.10	0.19	0.08	Fig J. 17
LTE2500-FDD7	21350	2560 MHz	22.2	22.12	Bottom edge	0.452	0.958	0.46	0.98	0.04	Fig J. 18
LTE700-FDD12	23060	704 MHz	24	23. 19	Right Cheek	0.0959	0.123	0.12	0.15	0.01	Fig J. 19
LTE700-FDD12	23060	704 MHz	24	23.19	Rear	0.206	0.267	0.25	0.32	0.11	Fig J. 20
LTE750-FDD13	23230	782 MHz	24	22.92	Left Cheek	0.147	0.191	0.19	0.24	-0.03	Fig J. 21
LTE750-FDD13	23230	782 MHz	24	22.92	Rear	0.292	0.383	0.37	0.49	0.08	Fig J. 22
WLAN2450	6	2437 MHz	16.5	15.90	Right Cheek	0.403	0.854	0.46	0.98	0.08	Fig J. 23
WLAN2450	6	2437 MHz	16.5	15.90	Rear	0.0784	0.164	0.09	0.19	-0.01	Fig J. 24

Frequ	iency	Test Position	Actual duty	maximum duty	Reported	Scaled reported
MHz	Ch.	Test Position	factor	factor	SAR(1g)(W/kg)	SAR(1g)(W/kg)
2437	6	Right Cheek	100.00%	100.00%	0.98	0.98

Frequ	uency	Toot Desition	Actual duty	maximum duty	Reported	Scaled reported
MHz	Ch.	Test Position	factor	factor	SAR(1g)(W/kg)	SAR(1g)(W/kg)
2437	6	Rear	100.00%	100.00%	0.19	0.19

J.3 Reported SAR Comparison

Exposure Configuration	Technology Band	Reported SAR 1g (W/Kg): spot check	Reported SAR 1g (W/Kg): original
	GSM850	0.35	0.39
	PCS1900	0.34	0.38
	WCDMA1900-BII	0.23	0.23
	WCDMA1700-BIV	0.28	0.46
Head	WCDMA850-BV	0.35	0.39
	LTE1900-FDD2	0.15	0.16
(Separation Distance 0mm)	LTE1700-FDD4	0.25	0.33
Offility	LTE850-FDD5	0.26	0.36
	LTE2500-FDD7	0.19	0.20
	LTE700-FDD12	0.15	0.22
	LTE750-FDD13	0.24	0.34
	WLAN2450	0.98	0.99
	GSM850	0.56	0.46
	PCS1900	1.04	1.09
	WCDMA1900-BII	1.19	1.19
	WCDMA1700-BIV	1.07	1.18
Listanat	WCDMA850-BV	0.48	0.44
Hotspot	LTE1900-FDD2	1.12	1.19
(Separation Distance 10mm)	LTE1700-FDD4	1.12	1.16
10111111)	LTE850-FDD5	0.45	0.41
	LTE2500-FDD7	0.98	1.19
	LTE700-FDD12	0.32	0.30
	LTE750-FDD13	0.49	0.37
	WLAN2450	0.19	0.16

Note: All the spot check results marked blue are larger than the original result. So it replace the original results and others are shared.

GSM850_CH251 Left Cheek

Date: 4/12/2018

Electronics: DAE4 Sn1525 Medium: head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.914 \text{ mho/m}$; $\epsilon r = 41.58$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.308 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.711 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.342 W/kg

SAR(1 g) = 0.279 W/kg; SAR(10 g) = 0.214 W/kg

Maximum value of SAR (measured) = 0.292 W/kg

Fig J.1

GSM850_CH190 Rear

Date: 4/12/2018

Electronics: DAE4 Sn1525 Medium: body 835 MHz

Medium parameters used: f = 836.6 MHz; $\sigma = 0.99 \text{ mho/m}$; $\epsilon r = 56.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: GSM850 836.6 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.561 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.16 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.634 W/kg

SAR(1 g) = 0.508 W/kg; SAR(10 g) = 0.384 W/kg

Maximum value of SAR (measured) = 0.534 W/kg

Fig J.2

PCS1900_CH512 Right Cheek

Date: 4/14/2018

Electronics: DAE4 Sn1525 Medium: head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.342 \text{ mho/m}$; $\epsilon r = 39.61$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0480 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.6970 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.0640 W/kg

SAR(1 g) = 0.314 W/kg; SAR(10 g) = 0.221 W/kg

Maximum value of SAR (measured) = 0.0445 W/kg

Fig J.3

PCS1900 CH512 Rear

Date: 4/14/2018

Electronics: DAE4 Sn1525 Medium: body 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.488 \text{ mho/m}$; $\epsilon r = 53.25$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.34 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.79 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.559 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

Fig J.4

WCDMA1900-BII_CH9262 Left Cheek

Date: 4/14/2018

Electronics: DAE4 Sn1525 Medium: head 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.344$ mho/m; $\epsilon r = 39.61$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0716 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.247 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.0970 W/kg

SAR(1 g) = 0.221 W/kg; SAR(10 g) = 0.125 W/kg

Maximum value of SAR (measured) = 0.0642 W/kg

Fig J.5

WCDMA1900-BII_CH9262 Bottom edge

Date: 4/14/2018

Electronics: DAE4 Sn1525 Medium: body 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.49 \text{ mho/m}$; $\epsilon r = 53.25$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.40 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.64 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 1.99 W/kg

SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.599 W/kg

Maximum value of SAR (measured) = 1.42 W/kg

Fig J.6

WCDMA1700-BIV_CH1412 Left Cheek

Date: 4/13/2018

Electronics: DAE4 Sn1525 Medium: head 1750 MHz

Medium parameters used: f = 1732.4 MHz; $\sigma = 1.363 \text{ mho/m}$; $\epsilon r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1732.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.489 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.882 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.577 W/kg

SAR(1 g) = 0.25 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 0.459 W/kg

Fig J.7

WCDMA1700-BIV CH1412 Rear

Date: 4/13/2018

Electronics: DAE4 Sn1525 Medium: body 1750 MHz

Medium parameters used: f = 1732.4 MHz; $\sigma = 1.497 \text{ mho/m}$; $\epsilon r = 53.24$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA1700-BIV 1732.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.60,8.60,8.60)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.21 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.42 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.966 W/kg; SAR(10 g) = 0.546 W/kg

Maximum value of SAR (measured) = 1.19 W/kg

Fig J.8

WCDMA850-BV_CH4182 Left Cheek

Date: 4/12/2018

Electronics: DAE4 Sn1525 Medium: head 835 MHz

Medium parameters used: f = 835.4 MHz; $\sigma = 0.901 \text{ mho/m}$; $\epsilon r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 835.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.326 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.440 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.369 W/kg

SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.22 W/kg

Maximum value of SAR (measured) = 0.309 W/kg

Fig J.9

WCDMA850-BV_CH4233 Rear

Date: 4/12/2018

Electronics: DAE4 Sn1525 Medium: body 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.999$ mho/m; $\epsilon r = 56.09$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.438 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.46 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.499 W/kg

SAR(1 g) = 0.398 W/kg; SAR(10 g) = 0.301 W/kg

Maximum value of SAR (measured) = 0.419 W/kg

Fig J.10

LTE1900-FDD2_CH19100 Left Cheek

Date: 4/14/2018

Electronics: DAE4 Sn1525 Medium: head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon r = 39.55$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.39,8.39,8.39)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.151 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.270 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.227 W/kg

SAR(1 g) = 0.133 W/kg; SAR(10 g) = 0.0763 W/kg

Maximum value of SAR (measured) = 0.146 W/kg

Fig J.11

LTE1900-FDD2_CH18700 Bottom edge

Date: 4/14/2018

Electronics: DAE4 Sn1525 Medium: body 1900 MHz

Medium parameters used: f = 1860 MHz; $\sigma = 1.498 \text{ mho/m}$; $\epsilon r = 53.24$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1900-FDD2 1860 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.18 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.78 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 0.963 W/kg; SAR(10 g) = 0.512 W/kg

Maximum value of SAR (measured) = 1.19 W/kg

Fig J.12

LTE1700-FDD4_CH20050 Left Cheek

Date: 4/13/2018

Electronics: DAE4 Sn1525 Medium: head 1750 MHz

Medium parameters used: f = 1720 MHz; $\sigma = 1.352 \text{ mho/m}$; $\epsilon r = 40.72$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD4 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.70,8.70,8.70)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0196 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.2930 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.0210 W/kg

SAR(1 g) = 0.213 W/kg; SAR(10 g) = 0.123 W/kg

Maximum value of SAR (measured) = 0.0123 W/kg

Fig J.13

LTE1700-FDD4_CH20300 Rear

Date: 4/13/2018

Electronics: DAE4 Sn1525 Medium: body 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.509$ mho/m; $\epsilon r = 53.23$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.60,8.60,8.60)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.21 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.51 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 0.976 W/kg; SAR(10 g) = 0.556 W/kg

Maximum value of SAR (measured) = 1.19 W/kg

Fig J.14

LTE850-FDD5_CH20450 Left Cheek

Date: 4/12/2018

Electronics: DAE4 Sn1525 Medium: head 835 MHz

Medium parameters used: f = 829 MHz; $\sigma = 0.895$ mho/m; $\epsilon r = 41.61$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: LTE850-FDD5 829 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.28,10.28,10.28)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.245 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.867 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.278 W/kg

SAR(1 g) = 0.225 W/kg; SAR(10 g) = 0.172 W/kg

Maximum value of SAR (measured) = 0.238 W/kg

Fig J.15

LTE850-FDD5 CH20450 Rear

Date: 4/12/2018

Electronics: DAE4 Sn1525 Medium: body 835 MHz

Medium parameters used: f = 829 MHz; $\sigma = 0.982$ mho/m; $\epsilon r = 56.11$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE850-FDD5 829 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.21,10.21,10.21)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.424 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.05 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.482 W/kg

SAR(1 g) = 0.387 W/kg; SAR(10 g) = 0.293 W/kg

Maximum value of SAR (measured) = 0.407 W/kg

Fig J.16

LTE2500-FDD7_CH20850 Right Cheek

Date: 4/16/2018

Electronics: DAE4 Sn1525 Medium: head 2600 MHz

Medium parameters used: f = 2510 MHz; $\sigma = 1.88 \text{ mho/m}$; $\epsilon r = 39.68$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2510 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.76,7.76,7.76)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.238 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.750 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.338 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.101 W/kg

Maximum value of SAR (measured) = 0.232 W/kg

Fig J.17

LTE2500-FDD7_CH21350 Bottom edge

Date: 4/16/2018

Electronics: DAE4 Sn1525 Medium: body 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.1 \text{ mho/m}$; $\epsilon r = 51.66$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.84,7.84,7.84)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.25 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.46 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 0.958 W/kg; SAR(10 g) = 0.452 W/kg

Maximum value of SAR (measured) = 1.24 W/kg

Fig J.18

LTE700-FDD12_CH23060 Right Cheek

Date: 4/11/2018

Electronics: DAE4 Sn1525 Medium: head 750 MHz

Medium parameters used: f = 704 MHz; $\sigma = 0.854$ mho/m; $\epsilon r = 41.76$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.137 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.345 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.150 W/kg

SAR(1 g) = 0.123 W/kg; SAR(10 g) = 0.0959 W/kg

Maximum value of SAR (measured) = 0.130 W/kg

Fig J.19

LTE700-FDD12_CH23060 Rear

Date: 4/11/2018

Electronics: DAE4 Sn1525 Medium: body 750 MHz

Medium parameters used: f = 704 MHz; $\sigma = 0.907$ mho/m; $\epsilon r = 55.41$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE700-FDD12 704 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.286 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.34 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.330 W/kg

SAR(1 g) = 0.267 W/kg; SAR(10 g) = 0.206 W/kg

Maximum value of SAR (measured) = 0.280 W/kg

Fig J.20

LTE750-FDD13_CH23230 Left Cheek

Date: 4/11/2018

Electronics: DAE4 Sn1525 Medium: head 750 MHz

Medium parameters used: f = 782 MHz; $\sigma = 0.928 \text{ mho/m}$; $\epsilon r = 41.66$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.57,10.57,10.57)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.212 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.714 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.236 W/kg

SAR(1 g) = 0.191 W/kg; SAR(10 g) = 0.147 W/kg

Maximum value of SAR (measured) = 0.201 W/kg

Fig J.21

LTE750-FDD13_CH23230 Rear

Date: 4/11/2018

Electronics: DAE4 Sn1525 Medium: body 750 MHz

Medium parameters used: f = 782 MHz; $\sigma = 0.981$ mho/m; $\epsilon r = 55.31$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C

Communication System: LTE750-FDD13 782 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(10.63,10.63,10.63)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.418 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.53 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.476 W/kg

SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.292 W/kg

Maximum value of SAR (measured) = 0.402 W/kg

Fig J.22

WLAN2450_CH6 Right Cheek

Date: 4/15/2018

Electronics: DAE4 Sn1525 Medium: head 2450 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.772$ mho/m; $\epsilon r = 39.07$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.89,7.89,7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.13 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 0.854 W/kg; SAR(10 g) = 0.403 W/kg

Maximum value of SAR (measured) = 0.971 W/kg

Fig J.23

WLAN2450_CH6 Rear

Date: 4/15/2018

Electronics: DAE4 Sn1525 Medium: body 2450 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.954 \text{ mho/m}$; $\epsilon r = 53.38$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.09,8.09,8.09)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 0.223 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.318 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.348 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.0784 W/kg

Maximum value of SAR (measured) = 0.183 W/kg

Fig J.24

ANNEX K Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2016-09-29 through 2017-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program