Four Decades of STCR research - Crop Wise Recommendations

©@©@©@©©©@©©©©©©©©©©

AICRP on Soil Test Crop Response Correlation

Indian Institute of Soil Science Nabibagh, Berasia Road, Bhopal - 462038

Four Decades of STCR Research - Crop Wise Recommendations

Crop -wise Index

Numbers given in the brackets are indication of number of fertilizer prescription equations developed for that crop in that particular state.

Food Grain Crops

S. no.	Crop Name &	Centre / State Name	Page
	No's		no.
1	Rice (61)	Hyderabad (A.P.22), Palampur (H.P, 2), New Delhi 1,	2-67
		Pantnagar, (Uttarakhand 1), Pusa (Bihar 1),	
		Coimbatore (T. Nadu 9), (West Bangale 3),	
		Bhubneswer 1, Kerala 1, Rahuri, (Maharashtra 1), Raipur	
		(Chattisgarh 14), Jabalpur, (Madhaya Pradesh	
		1)Bangalore (Karnataka, 3, Barrckpore, Hissar	
		(Haryana 1)	
2	Wheat (29)	Bangalore(Karnataka 1), Hisar (Haryana 4), Palampur	69-101
		(H.P.2), Pusa (Bihar 10), Raipur (Chattisgarh 3),	
		Kalyani (West Bangale 2), Pantanagar (Uttarakhand	
		1), Jabalpur (M.P.1), New Delhi 1 Jharkhand 1,	
		Bikner 2, Rahuri, (Maharashtra 1)	
3	Maize (16)	Hyderabad (A.P.2), Bangalore(Karnataka 1),	103-119
		Coimbatre (T. Nadu 2), Hisar (Haryana 1), Pusa	
		(Bihar 5), Raipur (Chattisgarh 1), Pantanagar	
		(Uttarakhand 1), New Delhi 1, Maharashtra, Jabalpur	
		(M.P.1), Jharkhand 1	
4	Barley (4)	Hisar (Haryana 1), Pantangar(Uttarakhand 1), New	119-123
		Delhi 1, Bikner 1	

Millets

S. no.	Crop Name &	Centre / State Name	Page
	No's		no.
5	Pearlmillet (5)	Hisar (Haryana1), Jabalpur (M. P.1), New Delhi 1,	125-130
		Bikner 1, Rahuri, (Maharashtra 1)	
6	Sorghum (5)	Hyderabad (A. P. 1), Coimbatore (T. Nadu 2),	131-137
		Jabalpur (M. P. 1), Rahuri, (Maharashtra 1)	
7	Ragi (4)	Hyderabad (A. P. 1), Bangalore(Karnataka 1),	138-141
		Coimbatore (T. Nadu 1), Rahuri (Maharashtra 1)	

Fodder corps

S. no.	Crop Name &	Centre / State Name	Page
	No's		no.
8	Sorghum (Fodder)	Hissar (Haryana 1)	143
	(1)		
9	Oat (Fodder) (1)	Hissar (Haryana 1), Rahuri, (Maharashtra 1)	144
10	Maize (Fodder)	Bikaner 1	145
	(1)		

Cash Crops

S. no.	Crop Name &	Centre / State Name	Page
	No's		no.
11	Cotton (7)	Hyderabad (A.P.1), Coimbatore (Tamil Nadu 2),	147-153
		Hisar (Haryana 1), Jabalpur (M.P 1), Bikner 1,	
		Rahuri, (Maharashtra 1)	
12	Sugarcane (14)	Hyderabad (A. P. 3), Bangalore(Karnataka 2),	154-167
		Coimbatore (T. Nadu 3), Pusa (Bihar 2),, Jabalpur	
		(M. P. 1) Raipur, 1, Rahuri, (Maharashtra 2)	

Oilseeds Crops

S. no.	Crop Name &	Centre / State Name	Page
	No's		no.
13	Groundnut (4)	Raipur (Chattisgarh 1), Bangalore(Karnataka 1),	169-174
		Bikner 1 Rahuri, (Maharashtra 2)	
14	Mustard (10)	Raipur (Chattisgarh 2), Pantnagar (Uttarakhand 1),	167-185
		New Delhi 1, Jabalpur (M. P. 2), Hisar (Haryana 2)	
		(Raya) Hyderabad,(A. P.1), Bikner 1	
15	Soybean (6)	Palampur (H.P.1), Pantnagar(Uttarakhand 2),, New	187-192
		Delhi 1, Jabalpur (M. P. 1), Rahuri, (Maharashtra 1)	
16	Sunflower (10)	Hyderabad (A. P. 2), Bangalore(Karnataka 2),	193-202
		Coimbatore (T. Nadu 1), Raipur (Chattisgarh 2),	
		Kalyani (West Bengal 1), Pantanagar, Jabalpur (M.	
		P. 1), Rahuri, (Maharashtra 1)	
17	Safflower (4)	Raipur (Chattisgarh 1), Hyderabad (A.P. 1),	203-207
		Bangalore(Karnataka 1), Jabalpur (M. P.1)	
18	Niger (1)	Jabalpur (M. P. 1)	208
19	Linseed (1)	Jabalpur (M. P. 1)	209
20	Castor (1)	Hyderabad (A. P. 1)	210

Pulses

S. no.	Crop Name &	Centre / State Name	Page
	No's		no.
21	Pigion pea (4)	Chttisgarh 1, Benglore 1, Jabalpur 1, Rahuri,	211-213
		(Maharashtra 1)	
22	Urad (1)	Jabalpur (M.P.1)	214
23	Lentil (1)	Jabalpur (M. P. 1)	215
24	Gram, (Chickpea)	Jabalpur (M. P. 1) Raipur (Chattisgarh 2)	216-222
	(6)	Hyderabad (A. P. 1), Rahuri, (Maharashtra 2)	
25	Mothbean (1)	Bikner 1	223

Horticulture crops

Vegetables crops

S. no.	Crop Name &	Centre / State Name	Page
	No's		no.
26	Brinjal / Bhindi (5)	Raipur (Chattisgarh 1), Bhubaneswer 1 Rahuri,	225-232
		(Maharashtra 1), Rahuri, (Maharashtra 2)	
27	Cabbage (4)	Coimbatore (T. Nadu 1), Bangalore(Karnataka 1),	233-236
		Hyderabad (A. P. 1), Rahuri, (Maharashtra 1)	
28	Cauliflower (2)	Raipue, Chattisgrh 1, Rahuri, (Maharashtra 1)	237-239
29	Colocassia (1)	Hyderabad (A. P. 1)	239
30	Potato (3)	Bhubaneswer 1, Raipur (Chattisgarh 1), Rahuri,	240-242
		(Maharashtra 1)	
31	Pea (1)	Jabalpur (M. P. 1)	243
32	Sweet Potato (1)	Kerala 1	243
33	Tapioca / Cussava	Coimbatore (T. Nadu 1)	245
	(1)	, ,	
34	Tomato (2)	Hyderabad (A. P.1), Rahuri, (Maharashtra 1)	246-247
35	Cluster bean / Goar	Bikner 2	248-249
	(2)		
36	Pumpkin (1)	Bhubneswar 1	250
37	Cucumber / Sala	Kerala 2	251-252
	cucumber		
38	Ash guard (1)	Kerala 1	253
			254-
39	Turmeric (4)	Hyderabad (A. P. 2) Kerala 1, Rahuri, (Maharashtra 1)	255-259
40	Onion (5)	Hyderabad (A. P. 2), Pantnagar (Uttarakhand1),,	260-266
		Coimbatore (T. Nadu1), Rahuri, (Maharashtra 1)	
41	Garlic (1)	Pantanagar (Uttarakhand 1),	267
42	Ginger (1)	Kerala 1	268

Fruit crops

S. no.	Crop Name & No's	Centre / State Name	Page no.
	Banana (1)	Vellnikkara, (Kerala 1)	270

Medicinal aromatic plants

S. no.	Crop Name & No's	Centre / State Name	Page
			no.
43	Cumin (1)	Bikaner, (Rajasthan 1)	272
44	Isab gol (1)	Bikaner, (Rajasthan 1)	273
45	Fennel (1)	Bikaner ,(Rajasthan 1)	274

Food Grain Crops

Crop- Wise Soil Test Based Recommendations (AICRP on STCR)

The fertilizer prescription equations developed by the AICRP centre of the project on STCR for different crops of different agro-ecological situations in different states and they are pooled and given in crop wise index given already. These fertilizer prescriptions are developed for different soils, different varieties and for different reasons. They also include IPNS based adjustment equations using different type of local available organic sources. Substitution of soil test values in the prescription equations gives us that particular fertilizer nutrient recommendations which need to be converted in to fertilizer quantity to be applied (using conversion factor).

In case of IPNS based equations, FYM composition and the rate are to be substituted in the place of FYM given in the fertilizer prescriptions. Similarly, with other type of organic sources also. The obtained quantity based on nutrient, will be applied through suitable method and time of application i.e. stage of crop. These recommendations are developed for 2-3 years initially. Exhaust crop will be taken up for bringing the uniformity in the fertility. Later, gradiant crop was taken up followed by test crop.

After harvest of crop, using the basic data and nutrient uptake, the prescription equations are developed. These equation are validated either on university farm or on farmers' fields. After seeing the yield variation they were demonstrated on farmers' fields through FLD's With the help of department of Agriculture and Cooperation, the project received One Crore (Rs.), which was used for conduct of 1000 FLD's during 1996-1998. Since, last two years under ISOPOM, project is receiving financial help regularly from New Delhi mainly for oilseeds. It is also proved that these equations are found to be for superior (>20% increasing in yield) to general recommended dose given in the past.

Ready reckoners are also developed using the target yield equations for different prevailing targets of yields and for the given available soil nutrient range. Given the soil test values and target yield, one can get fertilizer nutrient dose to be applied for that particular type of soil, variety and season. Using IPNS based equations, lesser quantity of fertilizer nutrients are to be applied. Thus, these fertilizer target yield equations would take care of fertilizer use efficiency, soil use efficiency, farmers' available resources which is not possible with other conventional methods. Thus, it is amply proved that the use of these IPNS recommendations will not only help in saving of fertilizers and improving the economy but also help in improvement of soil health. These fertilizer recommendations are grouped in two groups mainly food grain crops and horticultural crops. The varius details are as given below:

Rice

1. Andhra Pradesh (Rice), District Guntur

Name of the Centre : Guntur (Amaravathi) Soil phosphorus range : 50 -55
Soil : Black soil (Vertisols) Soil potassium range : 150 - 650

Crop and variety : Rice-Mashuri FYM composition : 1%N : 0.4%P : 1.2%K

Season developed : *Kharif*, 1986 FYM rate : 10 t ha⁻¹

Target range : 50 q ha⁻¹ – 55 q ha⁻¹

Soil Nitrogen range : 150 – 400 kg ha⁻¹

Green manure composition : 0.6%N

Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

FN = 3.79 T - 0.50 SN, FP₂O₅ = 3.19 T - 3.17 SP, FK₂O = 1.60 T - 0.19 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrient (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) For yield target of					
KmnO	Olsens'	Amm.		50 (q	ha ⁻¹)		55 (q l	าa ⁻¹)
4 N	P	Ac-K	N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O
150	5	150	115	144	52	133	144	60
175	10	200	102	128	42	121	128	50
200	15	250	90	112	33	108	112	40
225	20	300	77	96	23	96	96	31
250	25	350	65	80	14	83	80	22
275	30	400	52	64	4	71	65	12
300	35	450	40	49	3	58	49	10
325	40	500	27	33	2	46	33	10
350	45	550	14	17	2	33	17	10
375	50	600	2	15	2	21	15	10
400	55	650	0	15	2	8	15	10

Verification: The above Fertilizer adjustment equations were tried on the farmers' fields in

Guntur district with yield targets of 55 and 60 q ha⁻¹ during *kharif* 1997 and all the

yield targets could be achieved at the place tried.

Applicability

Soil Testing Laboratories : Guntur, Vijayawada and Ongole

Soil type : Black soils

Crop : Rice – high yielding varieties

Season developed : Kharif

Yield target : Upto 55 q ha⁻¹

Note: The above equations may be tested in soils other than black soil in the farmers' fields in

above districts with three or four yield targets and pickup the best one for making

recommendations.

2. Andhra Pradesh (Rice), District Karim Nagar

Name of the Centre : Jagtial | Soil phosphorus range : 5 -55 kg ha⁻¹

Soil : Inceptisols | Soil potassium range : 100 – 600 kg ha⁻¹

(Sandy loam) FYM composition : 1%N: 0.4%P: 1.2%K

Crop and Variety : Rice-Pothana FYM rate : 10 t ha⁻¹
Season developed : *Kharif*, 1993 Green manure composition : 0.6%N:

Target range : 50 q ha⁻¹ – 60 q ha⁻¹ Green manure rate : 10 t ha⁻¹

Soil Nitrogen range : 150 – 400 kg ha⁻¹

Fertilizer adjustment equations

 $FN = 3.78 \text{ T} - 0.44 \text{ SN}, \qquad FP_2O_5 = 1.96 \text{ T} - 2.13 \text{ SP}, \qquad FK_2O = 2.96 \text{ T} - 0.36 \text{ SK}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrient (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for yield target of					
mnO	Olsens'	Amm.		50	(q ha ⁻¹)		60 (q	ha ⁻¹)
4 N	P	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
150	5	100	123	87	112	161	107	142
175	10	150	112	77	94	150	96	124
200	15	200	101	66	76	139	86	106
225	20	250	90	55	58	128	75	88
250	25	300	79	45	40	114	65	70
275	30	350	68	34	22	106	54	52
300	35	400	57	23	4	95	44	34
325	40	450	46	13	2	84	33	16
350	45	500	35	12	2	73	23	15
375	50	550	24	12	2	62	12	15
400	55	600	13	12	2	51	2	15

Verification: The above results are yet to be verified in the farmers' fields.

Applicability

Soil Testing Laboratories : Khammam, Nizamabad, Adilabad

(Northern Telangana Zone)

Soil type : Chalka soils

Crop : Rice – high yielding varieties

Season developed : Kharif

Yield target : Upto 60 q ha⁻¹

Name of the Centre : 5 -55 kg ha⁻¹ : Maruteru Soil phosphorus range

Soil Soil potassium range : 100 - 600 kg ha⁻¹ : Alluvial

FYM composition : 1%N : 0.4%P : 1.2%K **Crop and Variety** : Rice-MTU-2067

Season developed : Kharif, 1993 & **FYM** rate : 10 t ha⁻¹

> 1994 Green manure composition : 0.6%N:

: 50 g ha⁻¹ – 60 g ha⁻¹ : 10 t ha⁻¹ Target range Green manure rate

: 150 - 400 kg ha⁻¹ Soil Nitrogen range

Fertilizer adjustment equations

 $FP_2O_5 = 1.91 T - 1.90 SP$ FΝ = 2.30 T - 0.32 SN $FK_2O = 2.27 T - 0.27 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrient (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for yield target of					
mn	Olsens'	Amm.		55 (q ha ⁻¹)			60 (q h	a ⁻¹)
O ₄ N	P	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
200	10	200	63	86	71	74	96	82
225	15	250	55	77	57	66	86	69
250	20	300	47	67	44	58	77	55
275	25	350	39	58	30	50	67	42
300	30	400	31	48	17	42	58	28
325	35	450	23	39	3	34	48	15
350	40	500	15	29	2	26	39	15
375	45	550	15	20	2	18	29	15
400	50	600	15	10	2	10	20	15
425	55	650	15	10	2	2	10	15
450	60	700	15	10	2	2	10	15

Verification: The above equations are to be verified in the farmers' fields.

Applicability

Tadepalligudem. Samalkot and Viiavawada Soil Testing Laboratories

(East and West Godavari and Krishna districts)

Soil type Alluvial (Heavy)

Rice - high yielding variety Crop

Season developed Kharif

Upto 60 q ha⁻¹ Yield target

Note: The above equations may be tested in soils other than Alluvial soil (Heavy) on the

farmers' fields with three or four targets and the bet one may be picked up for making recommendations.

Name of the Centre : Nandyal Soil phosphorus range : 10 -60 kg ha⁻¹
Soil : Black soil Soil potassium range : 200 – 700 kg ha⁻¹

Crop and Variety : Rice-MTU-5182 FYM composition : 1%N : 0.4%P : 1.2%K

Season developed : Kharif, 1987 FYM rate : 10 t ha⁻¹

(pooled data) Green manure composition : 0.6%N:

Target range : 60 q ha⁻¹ – 70 q ha⁻¹ Green manure rate : 10 t ha⁻¹

Soil Nitrogen range : 150 – 400 kg ha⁻¹

Fertilizer adjustment equations

FN = 3.35 T - 0.33 SN, FP₂O₅ = 2.52 T - 4.53 SP, FK₂O = 1.24 T - 0.12 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil a	vailable nu	trient (kg ha ⁻¹)	Fertilizer nutrient required (kg ha ⁻¹) for yield target of								
Kmn	Olsens'	Amm. Ac-K		60 (q ha ⁻¹)		70 (q	ha⁻¹)			
O ₄ N	Р		N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O			
150	10	200	152	106	50	185	131	63			
175	15	250	143	83	44	177	108	57			
200	20	300	135	61	38	169	86	51			
225	25	350	127	38	32	160	63	45			
250	30	400	119	15	26	152	41	39			
275	35	450	110	15	20	144	18	33			
300	40	500	102	15	14	136	15	27			
325	45	550	94	15	8	127	15	21			
350	50	600	86 15 2 119 15 15								
375	55	650	77	15	2	111	15	15			

Verification: The above equations are to be verified in black sols of Kurnool district with yield targets of 60 and 70 q ha⁻¹. Yield targets could be achieved at the places tested.

Applicability

Soil Testing Laboratories : Yemmiganoor, Anantapur & Cuddapah

Soil type : Black soils

Crop : Rice – high yielding varieties

Season developed : Kharif

Yield target : Upto 70 g ha⁻¹

Note: For adoption in soils other than black soils in the above districts, it is better to test

on the farmers' fields with three or four targeted yields and pick up the best one

among them for making recommendations.

Name of the Centre : Nellore | Soil Nitrogen range : 150 – 350 kg ha⁻¹

Soil : Sandy clay loam | Soil phosphorus range : 10 -50 kg ha⁻¹

(Alluvial) Soil potassium range : 150 – 550 kg ha⁻¹

Crop and Variety : Rice-NLR-9672 FYM composition : 1%N: 0.4%P: 1.2%K

Season developed : Kharif, 1995 & FYM rate : 10 t ha⁻¹

1994 (pooled data) Green manure composition : 0.6%N:

Target range : 45 q ha⁻¹ – 50 q ha⁻¹ Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

FN = 3.47 T - 0.37 SN, FP₂O₅ = 2.53 T - 2.12 SP, FK₂O = 1.89 T - 0.20 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil	available	nutrient (kg ha ⁻¹)	Fertilize	er nutrient	required (k	g ha ⁻¹) fo	r yield ta	rget of	
mnO ₄	Olsens'	Amm. Ac-K		45 (q	ha ^{⁻¹})	50 (q ha ⁻¹)			
N	Р				N	P ₂ O ₅	K ₂ O		
150	10	150	101	93	55	118	105	65	
175	15	200	91	82	45	109	95	55	
200	20	250	82	71	35	100	84	45	
225	25	300	73	61	25	90	74	35	
250	30	350	64	50	15	81	63	25	
275	35	400	54	40	5	72	52	15	
300	40	450	45	29	5	63	42	5	
325	45	50	36	18	5	53	31	5	
350	50	550	27	8	5	44	20	5	

Verification: The above equations are to be verified on the farmers' fields of Nellore district

with yield targets of 45 and 50 q ha⁻¹ and in Prakasam district with yield targets of 55 and 60 q ha-1 during *kharif*, 1997. All the yield targets could be attained at

the places tested.

Applicability

Soil Testing Laboratories : Nellore, Ongole, Tirupati and Cuddapah

Soil type : Sandy clay loam

Crop : Rice – high yielding varieties

Season developed : Kharif

Yield target : Upto 50 q ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the

farmers' fields with three or four targets and pick up the best one for making

recommendations.

Name of the Centr : Rajendranagar | Soil

Soil : Light black soil (Sandy clay)

Crop and Variety : Rice-Tellahamsa

Season developed: Kharif, 1979, 1980,

1981 & 1982 (pooled data)

Target range : 50 q ha⁻¹ – 55 q ha⁻¹

Soil nitrogen range : 150 - 400 kg ha⁻¹

Soil phosphorus range : 10 -60 kg ha⁻¹

Soil potassium range : 150 – 650 kg ha⁻¹

FYM composition : 1%N : 0.4%P : 1.2%K

FYM rate : 10 t ha⁻¹

Green manure composition : 0.6%N:

Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

FN = 4.20 T - 0.55 SN

 $FP_2O_5 = 2.70 T - 2.67 SP$,

 $FK_2O = 2.22 T - 0.21 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	vailable nu	ıtrient (kg ha ⁻¹)	Fertilizer n	utrient re	quired (k	g ha ⁻¹) for	yield targ	et of	
Kmn	Olsens'	Amm. Ac-K		50 (q h	a ⁻¹)	55 (q ha ⁻¹)			
O ₄ N	Р		N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
150	10	150	128	108	80	149	122	91	
175	15	200	114	95	69	135	108	80	
200	20	250	100	82	59	121	94	70	
225	25	300	86	68	48	108	81	59	
250	30	350	73	55	38	94	67	49	
275	35	400	59	41	27	80	53	38	
300	40	450	45	28	17	66	39	28	
325	45	500	31	15	6	53	26	17	
350	50	550	18	2	5	39	12	7	
375	55	600	4		5	25	10	7	
400	60	650	4		5	12	10	7	

Verification:

The above fertilizer adjustment equations were tested on the farmers' fields of Ranga Reddy district (Black and Chalka sols) during *kharif*, 1983 with yield targets 50 and 55 q ha⁻¹ and on the farmers' fields of Nalgonda district (Chalka soils) with yield targets of 55 and 65 q ha⁻¹ during *kharif*, 1997. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : Rajendranagar, Jadcherla, Sanga Reddy and Nalgonda

Soil type : Black and light soils

Crop : Rice Season developed : Kharif

Yield target : Upto 50 q ha⁻¹ in Ranga Reddy district, upto and

55 q ha⁻¹ in Nalgonda district

Note: The above equations may be verifed in Mahaboobnagar and Medak districts with two or three yield targets and pick up the best one for making recommendations.

Fertilizer adjustment equations

Name of the Centre : Warangal Soil phosphorus range : 10 -60 kg ha⁻¹
Soil : Black soil (Vertisol) Soil potassium range : 150 – 650 kg ha⁻¹

Crop and Variety : Rice-Pothana FYM composition : 1%N : 0.4%P : 1.2%K

Season developed : *Kharif*, 1988 FYM rate : 10 t ha⁻¹

Target range : 50 q ha⁻¹ – 55 q ha⁻¹

Soil nitrogen range : 150 – 400 kg ha⁻¹

Green manure composition : 0.6%N :

Green manure rate : 10 t ha⁻¹

FN = 4.75 T - 0.75 SN, FP₂O₅ = 2.75 T - 4.20 SP, FK₂O = 1.99 T - 0.15 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil ava	ailable nuti	rient m(kg ha ⁻	Fertilizer nutrient required (kg ha ⁻¹) for yield target of							
Kmn	Olsens'	Amm. Ac-K		50 (c	ı ha⁻¹)		55	(q ha ⁻¹)		
O ₄ N	P		N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
150	10	150	125	96	77	149	109	87		
175	15	200	106	75	70	130	88	79		
200	20	250	88	54	62	111	67	72		
225	25	300	69	33	55	93	46	64		
250	30	350	50	12	48	74	25	57		
275	35	400	31	10	40	55	4	49		
300	40	450	12	10	33	36	2	42		
325	45	500	10	10	25	17	2	34		
350	50	550	10	10	18	15	2	27		
375	55	600	10	10	10	15	2	19		
400	60	650	10	10	3	15	2	12		

Verification: The above fertilizer adjustment equations were verified on the on the farmers' fields of Warangal district for 55 and 60 g ha⁻¹ yield targets. All the yield targets

could be obtained at the places tested.

Applicability

Soil Testing Laboratories : Warangal, Karimnagar, Nizamabad, Adilabad

Soil type : Black soils

Crop : Rice-high yield varieties

Season developed : Kharif

Yield target : Upto 55 q ha⁻¹

Note: Equations may be tested in Karimnagar, Nizamabad and Adilabad districts under

submerged condition.

Name of the Centre : Nandyal Soil phosphorus range : 10 -50 kg ha⁻¹
Soil : Black soil Soil potassium range : 200 – 600 kg ha⁻¹

Crop and Variety : Rice-Tellahamsa FYM composition : 1%N : 0.4%P : 1.2%K

Season developed : *Rabi,* 1984 FYM rate : 10 t ha⁻¹

Target range : 50 q ha⁻¹ – 55 q ha⁻¹

Soil nitrogen range : 150 – 350 kg ha⁻¹

Green manure composition : 0.6%N :

Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

FN = 2.83 T - 0.32 SN, FP₂O₅ = 2.29 T - 2.98 SP, FK₂O = 1.34 T - 0.17 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	ailable nut	rient (kg ha	Fertilizer nutrient required (kg ha ⁻¹) for yield target of							
Kmn	Olsens'	Amm. Ac-	50 (q ha ⁻¹) 55 (q ha ⁻¹)							
$O_4 N$	P	K	N P ₂ O ₅ K ₂ O			N	K ₂ O			
150	10	200	122	108	46	150	131	60		
175	15	250	114	93	38	142	116	51		
200	20	300	106	78	29	134	101	43		
225	25	350	98	63	21	126	86	34		
250	30	400	90	48	12	118	71	26		
275	35	450	82	33	4	110	56	17		
300	40	500	74	18	0	102	41	8		
325	45	550	66	3		94	26	0		
350	50	600	58			86	11			

Verification: The above results were verified in black soils of Kurnool district with yield targets of 60 and 70 q ha-1. All the yield targets could be attained at all the places tested.

Applicability

Soil Testing Laboratories : Yemmiganoor, Anantapur & Cuddapah

Soil type : Black soils

Crop : Rice-high yield varieties

Season developed : Rabi

Yield target : Upto 70 q ha⁻¹

Note :For adoption in soils other than black soils in the above districts, it is better to test in the farmers' fields with three or four yield targets and pick up the best one foradoption.

Name of the Centre : Nellore | Soil phosphorus range : 10 -60 kg ha⁻¹

Soil : Alluvial soils Soil potassium range : 150 – 650 kg ha⁻¹

(Sandy loam) FYM composition : 1%N : 0.4%P : 1.2%K

Crop and Variety : Rice-NLR 33057 FYM rate : 10 t ha⁻¹
Season developed : Rabi, 1994-95 Green manure composition : 0.6%N :

Target range : 45 q ha⁻¹ – 50 q ha⁻¹ Green manure rate : 10 t ha⁻¹

Soil nitrogen range : 150 – 400 kg ha⁻¹

Fertilizer adjustment equations

FN = 4.53 T - 0.51 SN, FP₂O₅ = 2.12 T - 2.06 SP, FK₂O = 2.35 T - 0.21 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

		rient (kg ha ⁻¹)		zer nutrien					
Kmn	Olsens'	Amm. Ac-K		45 (q h	ıa⁻¹)	50 (q ha ⁻¹)			
$O_4 N$	P		N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
150	10	150	127	75	74	150	85	86	
175	15	200	115	65	64	137	75	76	
200	20	250	102	54	53	125	65	65	
225	25	300	89	44	43	112	55	55	
250	30	350	76	34	32	99	44	44	
275	35	400	64	23	22	86	34	34	
300	40	450	51	13	12	74	24	23	
325	45	50	38	3	2	61	13	13	
350	50	550	25	2	2	48	3	2	
375	55	600	12	2	2	35	2		
400	60	650	12	2	2	35	2	2	

Verification: The above equation was tested on the farmers' fields with yield targets of 45 and

50 q ha⁻¹ in Nellore district and 50 and 55 q ha⁻¹ in Chittoor district during Rabi

1996-97. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : Nellore, Chittoor, Cuddapah and Prakasam

Soil type : Sandy clay loam

Crop : Rice-high yield varieties

Season developed : Rabi

Yield target : Upto 50 q ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam with

three or four targets yield and pickup the best one for making recommendations.

Name of the Centre : Maruteru Soil phosphorus range Soil : Alluvial Soil potassium range Crop and Variety : Rice-IR-64

Season developed : Rabi, 1993-94

: 70 q ha⁻¹ – 80 q ha⁻¹ Target range

: 200 - 450 kg ha⁻¹ Soil nitrogen range

: 10 -60 kg ha⁻¹ : 200 - 700 kg ha⁻¹ **FYM** composition : 1%N: 0.4%P: 1.2%K

FYM rate : 10 t ha⁻¹ Green manure composition : 0.6%N: : 10 t ha⁻¹ Green manure rate

Fertilizer adjustment equations

= 2.65 T - 0.28 SN $FP_2O_5 = 2.00 T - 2.16 SP$ FΝ $FK_2O = 1.96 T - 0.21 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soi	l available	nutrient (kg ha ⁻¹)	Fertilize	r nutrient r	equired (kg	ha ⁻¹) for	yield targ	get of	
Kmn	Olsens'	Amm. Ac-K		70 (q	ha ⁻¹)	80 (q ha ⁻¹)			
$O_4 N$	P		N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	
200	10	200	130	118	95	156	138	115	
225	15	250	123	108	85	149	128	101	
250	20	300	116	97	74	142	117	94	
275	25	350	109	86	64	135	106	85	
300	30	400	102	75	53	128	95	75	
325	35	450	95	64	43	121	84	66	
350	40	500	88	54	32	114	74	56	
375	45	550	81	43	22	107	63	47	
400	50	600	74	32	11	100	52	37	
425	55	650	67	21	10	93	41	28	
450	60	700	60	10	10	86	30	18	

Verification: The above equations were tested on the farmers' fields of West Godavari district

with yield targets of 60 and 70 q ha⁻¹ during rabi, 1996-97. All the yield targets

could be attained at the places tested.

Applicability

Soil Testing Laboratories Tadepalligudem, Samarlakota and Vijayawada

(East and West Godavari and Krishna district)

Soil type Alluvial soils

Crop Rice Season developed Rabi

Upto 80 q ha⁻¹ Yield target

Note: The above equations may be tested in East Godavari and Krishna districts and in

soils other than alluvial at two or three targets and select the best one for making

recommendations.

: 10 -60 kg ha⁻¹ Name of the Centre : Rajendranagar Soil phosphorus range : 150 - 650 kg ha⁻¹ Soil : Chalka soils Soil potassium range : Rice-Tellahamsa **FYM** composition : 1%N : 0.4%P : 1.2%K **Crop and Variety**

: Rabi, 1979-80 FYM rate : 10 t ha⁻¹ Season developed : 70 q ha⁻¹ – 80 q ha⁻¹ Target range Green manure composition : 0.6%N: : 150 - 400 kg ha⁻¹ Soil nitrogen range Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

 $FP_2O_5 = 1.51 T - 1.80 SP$, FΝ = 3.23 T - 0.26 SN $FK_2O = 1.65 T - 0.16 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil ava	ailable nut	rient (kg ha ⁻¹)	Fertilia	zer nutrien	t required	(kg ha ⁻¹) i	or yield ta	rget of
Kmn	Olsens'	Amm. Ac-K		70 (q ha ⁻¹)		80 (q l	na ⁻¹)
O ₄ N	Р		N	P ₂ O	K ₂ O	N	P ₂ O ₅	K ₂ O
150	10	150	139	65	67	155	73	75
175	15	200	132	56	59	148	64	67
200	20	250	126	47	51	142	55	59
225	25	300	119	38	43	135	46	51
250	30	350	113	29	35	129	37	43
275	35	400	106	20	27	122	28	35
300	40	450	100	11	19	116	19	27
325	45	500	93	2	11	109	10	19
350	50	550	87	2	3	103	1	11
375	55	600	80	2	2	96	2	3
400	60	650	74	2	2	90	2	2

Verification: The above equations were tested on the farmers' fields of Ranga Reddy district

with yield targets of 50 and 60 q ha⁻¹ during rabi, 1984-85. The yield targets could

be achieved at the places tested.

Applicability

Soil Testing Laboratories Rajendranagar, Miryalaguda, Jadcherla and

Sanga Reddy

Soil type Chalka soils

Crop Rice-high yielding varieties

Season Rabi

Upto 60 q ha⁻¹ Yield target

Note: The above equations may be tested in Nalgonda, Mahaboobnagar and Medak districts also and in soils other than chalka soils at 2 or 3 yield levels. The best one may be adopted

for making recommendations.

Name of the Centre : Rajendranagar | Soil nitrogen range : 150 – 400 kg ha¹ Soil : Light Black Soil | Soil phosphorus range : 10 -60 kg ha⁻¹

(Sandy clay) Soil potassium range : 150 – 650 kg ha⁻¹

Crop and Variety : Rice-Tellahamsa FYM composition : 1%N : 0.4%P : 1.2%K

Season developed : *Rabi*, 1979-80, 1980-81 FYM rate : 10 t ha⁻¹

& 1981-82 Green manure composition : 0.6%N:

Target range : 60 q ha⁻¹ – 70 q ha⁻¹ Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

FN = 3.58 T - 0.57 SN, FP₂O₅ = 1.71 T - 2.46 SP, FK₂O = 1.48 T - 0.16 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil ava	ailable nuti	rient (kg ha ⁻¹)	Fertilizer r	nutrient re	equired (l	kg ha⁻¹)	for yield	target of
Kmn	Olsens'	Amm. Ac-K		60 (q h	a ⁻¹)		70 ((q ha ⁻¹)
$O_4 N$	P		N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
150	10	150	129	78	65	165	95	80
175	15	200	115	66	57	151	83	72
200	20	250	101	53	49	137	71	64
225	25	300	87	41	41	122	58	56
250	30	350	72	29	33	108	46	48
275	35	400	58	17	25	94	34	40
300	40	450	44	4	15	80	21	32
325	45	500	30	2	7	65	9	24
350	50	550	15	2	5	51	9	16
375	55	600	10	2	5	37	9	8
400	60	650	10	2	5	23	9	8

Verification: The above fertilizer adjustment equations were tested on the farmers' fields of Ranga Reddy district (black and sandy clay loam) with yield targets of 60 and 70 q ha⁻¹ during *Rabi*, 1996-97 and in Mahaboobnagar district (Sandy clay loam) with yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : Rajendranagar, Miryalaguda, Jadcherla and Sanga

Reddy

Soil type : Black soil (Light & Heavy)

Crop : Rice Season : Rabi

Yield target : Upto 70 q ha⁻¹

Note: The above equations may be tested in Nalgonda and Medak districts also.

Name of the Centre : Warangal | Soil potassium : 150 – 650 kg ha⁻¹

Soil : Black Soils range

Crop and Variety : Rice-Pothana FYM composition : 1%N : 0.4%P : 1.2%K

Season developed : Rabi, 1988-89 FYM rate : 10 t ha⁻¹
Target range : 55 q ha⁻¹ – 60 q ha⁻¹ Green manure composition : 0.6%N :

Soil nitrogen range : 150 – 400 kg ha¹ Green manure rate : 10 t ha⁻¹

Soil phosphorus range: 10 -60 kg ha⁻¹

Fertilizer adjustment equations

FN = 3.97 T - 0.50 SN, FP₂O₅ = 2.65 T - 3.52 SP, FK₂O = 1.51 T - 0.08 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil ava	ilable nuti	rient (kg ha ⁻¹)	Fertilizer nutrient required (kg ha ⁻¹) for yield target of								
Kmn	Olsens'	Amm. Ac-K		55 (q ha	n ⁻¹)	60 (q ha ⁻¹)					
O ₄ N	Р		N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O			
150	10	150	143	111	64	163	124	79			
175	15	200	130	93	60	151	106	75			
200	20	250	118	75	56	138	87	71			
225	25	300	106	58	52	126	71	67			
250	30	350	93	40	48	113	53	63			
275	35	400	81	23	44	101	36	59			
300	40	450	68	5	40	88	18	55			
325	45	500	56	5	36	76	15	51			
350	50	550	43	5	32	63	15	47			
375	55	600	31	5	28	51	15	43			
400	60	650	18	5	24	38	15	39			

Verification: The above equations were tested on the farmers' fields of Warangal and Karimnagar in both black and chalka soils with yield targets of 55 and 60 q ha⁻¹ in Karimnagar district and 60 and 70 q ha⁻¹ in Warangal district during *Rabi*, 1996-97 season. All the yield targets were attained at the places tested.

Applicability

Soil Testing Laboratories : Warangal, Karimnagar, Nizamabad and Adilabad

Soil type : Black and Chalka Soils

Crop : Rice-high yielding varieties

Season : Rabi

Yield target : Upto 60 g ha⁻¹ target in light and black soils

Note: The equations area to be tested in Nizamabad and Adilabad districts under

submerged conditions.

Name of the Centre : Nellore | Soil phosphorus range : 10 -40 kg ha⁻¹

Soil : Sandy clay loam | Soil potassium range : 150 – 300 kg ha⁻¹

(Alluvial) FYM composition : 1%N : 0.4%P : 1.2%K

Crop and Variety : Rice-NLR-9672 FYM rate : 10 t ha⁻¹
Season developed : *Kharif*, 1995 & 1994 Green manure composition : 0.6%N :

(pooled data) Green manure rate : 10 t ha⁻¹

Target range : 80 q ha⁻¹

Soil nitrogen range : 120 – 240 kg ha⁻¹

Fertilizer adjustment equations

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil a	vailable i	nutrients (kg ha ⁻¹)	Fertilia	Fertilizer nutrient required (kg ha ⁻¹) for production of 80 q ha ⁻¹									
Kmn O ₄ -N	Olsen -P	AmmA oc-K	Only (Chemical	fert.	With Fym @ 10 t ha ⁻¹ With green manu 10 t ha ⁻¹					ure @		
			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
120	10	150	100	56	70	65	45	70	61	50	57		
140	15	175	71	32	56	36	21	56	32	26	53		
160	20	200	42	7	42	7	0	42	3	2	39		
180	25	225	13	0	28	0		28	0	0	25		
200	30	250	10		14			14			11		
220	35	275	10										
240	40	300	10										

Verification: The above equations were verified on the farmers' fields of Nellore district with yield targets of 70 and 80 q ha⁻¹ and in Prakasam district with yield targets of 60 and 65 q ha-1 during *kharif*, 1997, 1998 and 1999. The yield targets were attained at most of the places tested.

Applicability

Soil Testing Laboratories : Nellore, Ongole, Tirupati and Cuddapah Soil type : Alluvial soils and Sandy clay loam soils

Crop and variety : Rice – high yielding varieties

Season developed : Kharif

Yield target : Up to 70-80 g ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the

farmers' fields with three or four targets and pick up the best one for making

recommendations.

: 10 -30 kg ha⁻¹ Name of the Centre : Nellore Soil phosphorus range

: 150 - 520 kg ha⁻¹ Soil Soil potassium range : Sandy clay loam

: 1%N: 0.4%P: 1.2%K

FYM composition (Alluvial)

Crop and Variety **FYM** rate : 10 t ha⁻¹ : Rice-NLR-9672 Season developed : Kharif, 1995 & 1994 Green manure composition : 0.6%N: : 10 t ha⁻¹

(pooled data) Target range : 80 q ha⁻¹

Soil nitrogen range : 120 – 200 kg ha⁻¹

Fertilizer adjustment equations

= 3.47 T - 0.37 SN - 0.19 FYM NFN = 3.47 T - 0.37 SN - 0.70 GM N

Green manure rate

 $FP_2O_5 = 2.53 T - 2.12 SP - 0.97 FYM P$ $FP_2O_5 = 2.53 T - 2.12 SP - 0.48 GM P$

 $FK_2O = 1.89 T - 0.20 SK - 0.05 FYM K$ $FK_2O = 1.89 T - 0.20 SK - 0.04 GM K$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil a	vailable ı	nutrients (kg ha ⁻¹)	Fertilizer nutrient required (kg ha ⁻¹) for production of 80 q ha ⁻¹									
Kmn O₄-N	Olsen -P	AmmA oc-K	Only C						With gre	en man	ure	
			N P ₂ O ₅ K ₂ O N P ₂ O ₅ K ₂ O						N	P ₂ O ₅	K ₂ O	
120	10	150	100	43	51	30	17	48	64	15	49	
140	15	175	71	19	37	1	0	34	35	0	35	
160	20	200	42	0	23	0		20	6		21	
180	25	225	13		9			5	0		7	
200	30	250	0		0			0			0	

Applicability

Soil Testing Laboratories Nellore, Ongole, Tirupati and Cuddapah Alluvial soils and Sandy clay loam soils Soil type

Crop Rice – high yielding varieties

Season developed Kharif

Yield target Up to 70-80 q ha⁻¹

The above equations may be tested in soils other than sandy clay loam in the farmers' Note: fields with three or four targets and pick up the best one for making recommendations.

Name of the Centre : Nandyal Soil phosphorus range : 10 -65 kg ha⁻¹

Soil : Vertisol (Clay) Soil potassium range : 150 – 425 kg ha⁻¹

Crop and Variety : Rice- MTV 5182 FYM composition : 1%N : 0.4%P : 1.2%K

Season developed : Kharif, 1989 & 1990 FYM rate : 10 t ha⁻¹

and modified in 1999 Green manure composition :

Green manure rate : 10 t ha⁻¹

Target range : 60 q ha⁻¹

Soil nitrogen range : 120 – 340 kg ha⁻¹

Fertilizer adjustment equations

FN = 3.36 T - 0.33 SN- 0.74 FYM N FN = 3.36 T - 0.33 SN- 1.62 GLM NFP₂O₅ = 2.53 T - 4.53 SP- 0.81 FYM P FP₂O₅ = 2.53 T - 4.53 SP- 1.30 GLM PFK₂O = 1.42 T - 0.12 SK- 0.15 FYM K FK₂O = 1.42 T - 0.12 SK- 1.09 GLM K

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield

Target

Soil a	1)			Fertilizer nutrient required (kg ha ⁻¹) for production of 60 q ha ⁻¹									
Kmn O ₄ -N	Olsen- P	Amm Aoc-K	Only Chemical fert.			With F	ym @ 1	0 t ha ⁻¹	With green manure @ 10 t ha ⁻¹				
			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
120	10	150	162	107	54	88	74	36	120	99	51		
140	15	175	155	84	48	81	51	3	113	77	46		
160	20	200	149	61	43	75	29	25	107	54	40		
180	25	225	142	39	38	68	6	20	100	31	35		
200	30	250	136	16	33	62	0	15	94	9	30		
220	35	275	129	10	27	55		9	87	0	25		
240	40	300	122	10	22	48		4	80		19		
260	45	325	116	10	17	42		0	74		14		
280	50	350	109	10	12	35			67				
300	55	375	103			29			61				
320	60	400	96			22			54				
340	65	425	89			15			47				

Verification:

The above equations were verified on the farmers' fields of Nandyal, Kurnool district with yield targets of 55 and 60 q ha⁻¹ during *kharif*, 1997. and 1998. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : Nandyal, Ongole, Kurool and Cuddapah

Soil type : Clay, Clay Loam, Sandy clay loam Crop : Rice – high yielding varieties

Season developed : Kharif

Yield target : Up to 70 q ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the

farmers' fields with three or four targets and pick up the best one for making

recommendations.

17. Andhra Pradesh (Rice)

Name of the Centre : Nandyal Soil phosphorus range : 10 -75 kg ha⁻¹
Soil : Vertisol (Clay) Soil potassium range : 150 – 475 kg ha⁻¹

Crop and Variety : Rice-MTU-5182 FYM composition : 1%N : 0.4%P : 1.2%K

Green manure composition

Season developed : Kharif, 1999 & 2000 FYM rate : 10 t ha⁻¹

Target range : 70 q ha⁻¹

Soil nitrogen range : 120 – 380 kg ha⁻¹ Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

FN = 3.36 T - 0.33 SN- 0.74 FYM N FN = 3.36 T - 0.33 SN- 1.62 GLM NFP₂O₅ = 2.53 T - 4.53 SP- 0.81 FYM P FP₂O₅ = 2.53 T - 4.53 SP- 1.30 GLM P

 $FK_2O = 1.42 \text{ T} - 0.12 \text{ SK- } 0.15 \text{ FYM K}$ $FK_2O = 1.42 \text{ T} - 0.12 \text{ SK- } 1.09 \text{ GLM K}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil a		utrients (kg ha	Fertilizer nutrient required (kg ha ⁻¹) for production of 70 q ha ⁻¹									
Kmn O₄-N	Olsen- P	Amm Aoc-K	Only Che	mical fer	t.	With I	Fym @ 1	0 t ha	With green manure @ 10 t ha ⁻¹			
			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
120	10	150	196	132	68	163	124	49	128	126	51	
140	15	175	189	109	63	157	101	46	122	103	48	
160	20	200	182	87	57	150	78	43	115	80	45	
180	25	225	176	64	52	143	56	40	109	58	42	
200	30	250	169	41	47	137	33	37	102	3	39	
220	35	275	163	19	42	130	10	34	95	12	36	
240	40	300	156	0	36	124	0	31	89	0	33	
260	45	325	149		31	117		28	82		30	
280	50	350	143		26	110		25	76		27	
300	55	375	136		21	104		22	69		24	
320	60	400	130		15	97		19	62		21	
340	65	425	123		10	91		16	56		18	
360	70	450	116			84		13	49		15	
380	75	475	110			77		10	43		12	

Verification: The above equations were verified on the farmers' fields of Nandyal, Kurnool district with yield targets of 55 and 60 q ha⁻¹ during *kharif*, 2000. and 2001. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : Nandyal, Ongole, Kurool and Cuddapah

Soil type : Clay, Clay Loam, Sandy clay loam Crop : Rice – high yielding varieties

Season developed : Kharif

Yield target : Up to 70 g ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the

farmers' fields with three or four targets and pick up the best one for making

recommendations.

Name of the Centre : Rajendranagar Soil nitrogen range : 120 - 340 kg ha⁻¹ : 10 -65 kg ha⁻¹ Soil : Sandy clay loam Soil phosphorus range : 150 - 425 kg ha⁻¹ (Tropaquept) Soil potassium range

FYM composition : 1%N: 0.4%P: 1.2%K **Crop and Variety** : Rice-Tella hamsa Season developed

: 10 t ha⁻¹ : Kharif, 1981 & 1982 FYM rate modified in 1989 & 1990 Green manure composition : 1.3%

Target range : 70 g ha⁻¹ Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

= 4.20 T - 0.55 SN - 0.74 FYM N= 4.20 T - 0.55 SN- 1.62 GLM NFΝ FΝ $FP_2O_5 = 2.7 T - 2.67 SP - 0.81 FYM P$ $FP_2O_5 = 2.7 T - 2.67 SP - 1.30 GLM P$ $FK_2O = 2.22 T - 0.21 SK - 0.15 FYM K$ $FK_2O = 2.22 T - 0.21 SK - 1.09 GLM K$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	ailable nu	ıtrients(kg ha⁻¹)	Fertilia	zer nutr	ient re	equired (kg	ha ⁻¹) fo	r proc	luction o	f 60 q ha	a ⁻¹
Kmn O ₄ -N	Olsen- P	Amm Aoc-K		Chemica		With Fym	@ 10 t l	na ⁻¹	With great 10 t ha ⁻¹	en man	
4			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
120	10	150	186	135	102	112	115	84	90	96	97
140	15	175	175	122	96	101	102	78	79	82	91
160	20	200	164	109	91	90	88	73	68	69	86
180	25	225	153	95	86	79	75	68	57	56	81
200	30	250	142	82	81	68	62	63	46	42	76
220	35	275	131	69	75	57	48	57	35	29	70
240	40	300	120	55	70	46	35	52	24	15	65
260	45	325	109	43	65	35	21	47	13	2	60
280	50	350	98	29	60	24	8	42	2	0	55
300	55	375	87	15	54	13	0	36			49
320	60	400	76	2	49			31			44
340	65	425	65	0	44			26		<u> </u>	39

The above equations were verified on the farmers' fields of Rajendranagar, Raga Verification: Reddy district with yield targets of 55 and 60 q ha⁻¹ during kharif, 1997. and 1998. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories Raga Reddy and Mahabubnagar districts

Soil type Clay, Clay Loam, Sandy clay loam Crop Rice – high yielding varieties

Season developed Kharif

Yield target Up to $60 - 70 \text{ q ha}^{-1}$

Note: The above equations may be tested in soils other than sandy clay loam in the farmers' fields with three or four targets and pick up the best one for making recommendations.

Name of the Centre : Rudrur, Nizamabad | Soil nitrogen range : 120 – 400 kg ha⁻¹

Soil : Vertisols Soil phosphorus range : 10 -80 kg ha⁻¹
Crop and Variety : Rice Soil potassium range : 150 – 500 kg ha⁻¹

Season developed : Kharif, 1984 & 1985 FYM composition : 1%N : 0.4%P : 1.2%K

modified in 1992 & 1993 | FYM rate : 10 t ha⁻¹

Target range : 60 q ha⁻¹ Green manure composition :

Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

FN = 3.79 T - 0.50 SN- 0.43 FYM N FN = 3.79 T - 0.50 SN- 0.94 GLM N

 $FP_2O_5 = 3.19 \text{ T} - 3.17 \text{ SP- } 0.34 \text{ FYM P}$ $FP_2O_5 = 3.19 \text{ T} - 3.17 \text{ SP- } 1.38 \text{ GLM P}$

 $FK_2O = 1.60 \text{ T} - 0.19 \text{ SK} - 0.24 \text{ FYM K}$ $FK_2O = 1.60 \text{ T} - 0.19 \text{ SK} - 1.38 \text{ GLM K}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

		trients (kg ha		Fertilizer nutrient required (kg ha ⁻¹) for production of 60 q ha ⁻¹									
Kmn O₄-N	Olsen- P	Amm Aoc-	Only (Chemica	l fert.	With	Fym @ 1	0 t ha	With green manure @ 10 t ha ⁻¹				
		K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
120	10	150	167	160	68	124	139	56	85	129	58		
140	15	175	157	144	63	114	123	51	75	113	53		
160	20	200	147	128	58	104	108	46	65	98	48		
180	25	225	137	112	53	94	92	41	55	82	44		
200	30	250	127	96	49	84	76	37	45	66	39		
220	35	275	117	80	44	74	60	32	35	50	34		
240	40	300	107	65	39	64	44	27	25	34	29		
260	45	325	97	49	34	54	28	22	15	18	25		
280	50	350	87	33	30	44	13	18	5	3	20		
300	55	375	77	17	25	34	0	13	0	0	15		
320	60	400	67	1	20	24					10		
340	65	425	57	0	15	14							
360	70	450	47		11						_		
380	75	475	37		6								
400	80	500	27		1								

Verification: The above equations were verified on the farmers' fields of Rajendranagar, Raga

Reddy district with yield targets of 55 and 60 g ha⁻¹ during kharif, 1997. and

1998. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : Raga Reddy and Mahabubnagar districts

Soil type : Clay, Clay Loam, Sandy clay loam Crop : Rice – high yielding varieties

Season developed : Kharif

Yield target : Up to 60 - 70 q ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the farmers'

fields with three or four targets and pick up the best one for making recommendations.

20. Andhra Pradesh (Rice)

Name of the Centre : Maruteru, EastGodavari | Soil nitrogen range : 120 – 400 kg ha⁻¹

district Soil phosphorus range : 10 -80 kg ha⁻¹

Soil : Alluvial Soil potassium range : 150 – 500 kg ha⁻¹

Crop and Variety :Rice-MTU-2067 FYM composition : 0.7N%

Season developed : *Kharif*, 1993 & 1994 FYM rate : 10 t ha⁻¹

modified in 1995 & 1996 Green manure composition :

Target range : 70 q ha⁻¹ Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

		nutrients (kg ha		Fertilizer nutrient required (kg ha ⁻¹) for production of 70 q ha ⁻¹									
Kmn O₄-N	Olsen- P	Amm Aoc-K	Only	Chemic	al fert.	With	r Fym @) 10 t ha ⁻¹	With @ 1	With green manure @ 10 t ha ⁻¹			
			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
120	10	150	123	115	118	71	93	87	60	76	109		
140	15	175	116	105	112	64	84	80	53	66	102		
160	20	200	110	96	105	58	74	73	47	57	95		
180	25	225	103	86	98	52	65	66	41	47	89		
200	30	250	97	77	91	45	55	60	34	38	82		
220	35	275	91	67	85	39	46	53	28	28	75		
240	40	300	84	58	78	32	36	46	21	19	68		
260	45	325	78	48	71	26	27	39	15	9	62		
280	50	350	71	39	64	20	17	33			55		
300	55	375	65	29	58	13	8	26			48		
320	60	400	59	20	51	7		19			41		
340	65	425	52	10	44	0		12			35		
360	70	450	46	1	37			5			28		
380	75	475	39	0	31		10.11	0			21		

Verification: The above equations were verified on the farmers' fields of Maruteru Tadepalligudem, East Godavari district with yield targets of 55 and 60 q ha⁻¹ during *kharif*,

16. and 1998. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : East Godavari district in Krishna Godavari Zone

Soil type : Alluvial

Crop : Rice –MTU-2067

Season developed : Kharif

Yield target : Up to 70 – 80 q ha⁻¹

Note: The above equations may be tested in soils other than Alluvial in the farmers' fields with three or four targets and pick up the best one for making recommendations in Krishna Godavari zone.

Season developed

: 120 - 400 kg ha⁻¹ Name of the Centre : Warangal Soil nitrogen range : 10 -80 kg ha⁻¹ Soil : Vertisol Soil phosphorus range

: 150 - 500 kg ha⁻¹ **Crop and Variety** : Rice-Pothana Soil potassium range : Kharif, 1988 & 1989 **FYM** composition : 1%N: 0.4%P: 1.2%K

: 10 t ha⁻¹ modified in 1995 & 1996 **FYM** rate

Target range : 60 q ha⁻¹ Green manure composition : 0.75%N Green manure rate : 10 t ha⁻¹

Fertilizer adjustment equations

= 4.75 T - 0.75 SN - 0.76 FYM N= 4.75 T - 0.75 SN- 1.45 GLM NFΝ $FP_2O_5 = 2.75 T - 4.20 SP - 0.34 FYM P$ $FP_2O_5 = 2.75 T - 4.20 SP - 2.51 GLM P$ $FK_2O = 1.99 T - 0.15 SK - 0.34 FYM K$ $FK_2O = 1.99 T - 0.15 SK - 1.31 GLM K$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil a	vailable r	nutrients (kg ha ⁻	Fertilizer nutrient required (kg ha ⁻¹) for production of 60 q ha ⁻¹									
Kmn O₄-N	Olsen- P	Amm Aoc-K		Chemic	al fert.	With I	Fym @	10 t ha ⁻¹		green i O t ha ⁻¹	manure	
			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
120	10	150	195	123	97	119	102	73	86	85	88	
140	15	175	180	102	93	104	81	69	71	64	84	
160	20	200	165	81	89	89	60	66	56	43	80	
180	25	225	150	60	86	74	39	62	41	22	76	
200	30	250	135	39	82	59	18	58	26	1	73	
220	35	275	120	18	78	44	0	54	11	0	69	
240	40	300	105	0	74	29		51	0		65	
260	45	325	90		71	14		47			61	
280	50	350	75		67	0		43			58	
300	55	375	60		63			39			54	
320	60	400	45		59			36			50	
340	65	425	30		56			32			46	
360	70	450	15		52			28			43	
380	75	475	0		48			24			39	
400	80	500			44			21			35	

Verification: The above equations were verified on the farmers' fields of Warangal and

Karimnagar districts with yield targets of 55 and 60 q ha⁻¹ during kharif, 1998.

and 1999. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories Warangal district in North Telangana Zone

Soil type Vertisol

Rice -Pothana Crop

Season developed Kharif

Yield target Up to 60 - 70 q ha⁻¹

Note: The above equations may be tested in soils other than Clay soils in the farmers' fields with three or four targets and pick up the best one for making recommendations in North Telangana zone.

Name of the Centre : Jagtityal, Karimnagar | Soil nitrogen range : 120 – 400 kg ha⁻¹

district

Soil : Inceptisols (Sandy Loam) | Soil potassium range : 150 – 650 kg ha⁻¹

Crop and Variety : Rice-Pothana FYM composition : 1%N : 0.4%P : 1.2%K

Season developed : Kharif, 1993 & 1994 FYM rate : 10 t ha⁻¹

modified in 1996 & 1997 Green manure composition

Soil phosphorus range

: 10 -60 kg ha⁻¹

Target range : 40 q ha⁻¹ – 50 q ha⁻¹ Green manure rate : 10 t ha⁻¹

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	Soil available nutrients (kg ha ⁻)			Fertilizer nutrient required (kg ha ⁻¹) for production of 60 q									
Kmn O ₄ -N	Olsen-	Amm Aoc-K		Only Chemical fert. With Fym @ 10 t ha ⁻¹					With green manure @ 10 t ha ⁻¹				
			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
120	10	150	174	96	124	96	72	74	79	66	110		
140	15	175	165	86	115	87	61	65	70	55	101		
160	20	200	156	75	106	78	50	56	61	44	92		
180	25	225	148	64	97	70	40	47	52	34	83		
200	30	250	139	54	88	61	29	38	44	23	74		
220	35	275	130	43	79	52	18	29	35	12	65		
240	40	300	121	32	70	43	8	20	26	2	56		
260	45	325	112	22	61	34	0	11	17	0	47		
280	50	350	104	11	52	26			:		38		
300	55	375	95		43	17					29		
320	60	400	86		34						20		
340	65	425	77		25						11		
360	70	450	68		16						2		
380	75	475	60		7						0		
400	80	500	51		0								

Verification: The above equations were verified on the farmers' fields of Jagtiyal, Karimnagar

in Karimnagar district with yield targets of 55 and 60 q ha⁻¹ during kharif, 1998

and 1999. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : Karimnagar district in Southern Telangana Zone

Soil type : Inceptisol Crop : Rice –Pothana

Season developed : Kharif

Yield target : Up to 60 - 70 q ha⁻¹

Note: The above equations may be tested in soils other than Sandy loam of Inceptisol in the farmers' fields with three or four targets and pick up the best one for making recommendations in North Telangana zone.

1. Himachal Pradesh (Rice)

Name of the centre : CSK HPKV, Palampur

Soil : Alfisol, Entisol, Inceptisol

Crop & Variety : Rice

Season developed : Kharif

Target range : 40 q ha⁻¹

Soil Nitrogen range : 200-600 kg/ha

Areas of Applicability : Parts of Kangra, Kullu,

and Shimla

Fertilizer adjustment equations

F N = 5.46 T - 0.32 SN, $F P_2 O_5 = 2.50 T - 2.67 SP,$

 $F K_2O = 2.82T - 0.68 SK$

Green manure composition : -

: 5-50 kg/ha

: -

: -

: 50-250 kg/ha

Soil phosphorus range

Soil potassium range

FYM composition

Green manure rate

FYM rate

Ready reckoner for soil test based fertilizer recommendations for yield target of 40q ha⁻¹ rice (Mid hills wet temperate zone)

Soil te	est value (kgha		Fertilizer nutrient dose (kgha ⁻¹)					
Alkaline KmnO ₄ -N	Olsen's –P	NH ₄ Oac-K	N	P_2O_5	K ₂ O			
200	5	50	154	87	79			
250	10	75	138	73	62			
300	15	100	122	60	45			
350	20	125	106	47	28			
400	25	150	90	33	15			
450	30	175	74	20	15			
500	35	200	58	10	15			
550	40	225	42	10	15			
600	50	250	26	10	15			

Validation of fertilizer adjustment equations of rice on farmers' fields (average of 12

experiments) in mid hills wet temperate zone (1999-2001)

Treatment	Fertili	zer dose	(kgha ⁻¹)	Grain yields	Per cent	B:C ratio
	N	P_2O_5	K ₂ O	(kgha ⁻¹)	deviation	
Control	0	0	0	958	-	-
Farmers' practice	30	0	0	1283	ı	ı
State level dose	90	40	40	2468	ı	7.6
Soil Test based	107	31	38	2665	ı	8.5
Target (kg ha ⁻¹) bas	sed					
4000	74	41	10	3802	-5.0	26.0
5000	120	48	21	4705	-5.9	14.0
6000	182	88	46	5043	-16.0	9.6
7000	152	76	42	5110	-27.0	6.6

Fertilizer adjustment equation:

 $FN = 5.46 \text{ T} - 0.32 \text{ SN}, FP_2O_5 = 2.50 \text{ T} - 2.67 \text{ SP}, FK_2O = 2.82 \text{T} - 0.68 \text{ SK}$

Fertilizer dose, grain yield and per cent deviation under FLD plots in mid hills wet temperate zone (1996-98)

Crop	Treatment	Fe	ertilizer ((kgha ⁻¹		Grain yield	Per cent deviation	Nutrie	Nutrients uptake (k ha ⁻¹)	
		N	P_2O_5	K ₂ O	(kgha ⁻¹)				
							N P K		K
Rice	Farmers' practice	40	0	0	3140	-	61	8.9	83
	SLD	90	40	40	3350	-	66	10.5	87
	4000	0	41	57	3800	-5.0	73	12.7	95
	5000	35	67	85	4800	-4.0	87	13.5	102
	5000+FYM	35	67	85	5210	+4.2	103	15.4	108

2. Himachal Pradesh (Rice)

Name of the centre : CSK HPKV, Palampur Soil phosphorus range : 5-50 kg/ha

Soil : Alfsol, Entisol, Inceptisol Soil potassium range : 50-250 kg/ha

Crop & Variety : Rice **FYM** composition : -Season developed : Kharif **FYM** rate

Target range : 40 q ha⁻¹ Green manure composition

: 200-600 kg/ha Soil Nitrogen range **Green manure rate** : -

Areas of Applicability: Una, Bilaspur, Hamirpur

and part of Kangra and Sirmaur

Fertilizer adjustment equation:

FN = 5.90 T - 0.43 SN, $FP_2O_5 = 3.22 \text{ T} - 3.29 \text{ S}$, $FK_2O = 3.14 \text{ T} - 0.71 \text{ SK}$

Ready reckoner for soil test based fertilizer recommendations for yield target of 40 q/ha rice (Sub-montane low hills sub tropical zone)

Soil test	value (kgha ⁻¹)		Fertilizer nutrient dose (kgha ⁻¹)					
Alkaline KmnO ₄ -N	Olsen's –P	NH ₄ Oac-K	N	P_2O_5	K ₂ O			
200	5	50	150	112	90			
250	10	75	128	96	72			
300	15	100	107	79	55			
350	20	125	86	63	37			
400	25	150	64	47	19			
450	30	175	43	30	19			
500	35	200	21	14	19			
550	40	225	21	14	19			
600	50	250	21	14	19			

Fertilizer dose, grain yield and per cent deviation under FLD plots in sub-montane low hills

subtropical zone (1996-98)

Crop	Treatment	Fer	tilizer l (kgha ⁻		Grain Yields	Per cent deviation		Nutrients uptal (kg ha ⁻¹)	
		N	P ₂ O ₅	K ₂ O	(kgha ⁻¹)				
							N	P	K
Rice	Farmers' practice	40	0	0	3370	-	67	8.0	83
	SLD	90	40	40	3900	-	75	12.2	92
	4000	36	100	58	4250	+6.3	84	10.0	97
	5000	105	133	90	5290	+5.8	95	15.0	101
	5000+FYM	105	133	90	5860	+17.2	117	16.2	111

1. Bangalore, Karnataka (Paddy) for Zone-5

Crop: RiceSoil phosphorus range: 38 -164 kg acreSOIL: Red lateriticSoil potassium range: 30 -102 kg/ acreSeason: KharifFYM composition: .0.5%N : 0.3P:0.5K

Variety : Jaya & other HYV FYM rate : 4.00 t\ acre

Target range : 20 q\acre Green manure composition : 1.1N : 0.13P:0.45K

Soil Nitrogen range : 0.3% - 0.80 %(OC) Green manure rate : 2.00t\ acre

Area of applicability : Bangalore, Kolar and Tumkur districts.

Target yield equation

 $F.N. = 7.26 \text{ T} - 129 \text{ SN (OC \%)}, F.P_2O_5 = 4.05 \text{ T} - 2.52 \text{ SP}_2O_5 \text{ (Olsen's - P}_2O_5)$

 $F.K_2O = 3.15 \text{ T} - 0.29 \text{ SK}_2O \text{ (NH}_4 \text{ OAC} - \text{K}_2O)$

STV O.C. (%)	Fertilizer nitrogen	STV Olsen's	Fertilizer phosphorus	STV Amm.Ace.	Fertilizer potash
	(kg/acre)	P_2O_5	(kg/acre)	K_2O	(kg/acre)
		(kg/acre)		(kg/acre)	
0.35	100	12	51	40	51
0.40	94	14	46	50	49
0.45	87	16	41	60	46
0.50	81	18	36	70	43
0.55	74	20	31	80	40
0.60	68	22	26	90	37
0.65	61	24	21	100	34
0.70	55	26	16	110	31
0.75	49	28	11	120	28

To increase or decrease the yield target of one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N = \pm 7.25 \text{ kg/acre}$ $P_2O_5 = \pm 4.00 \text{ kg/acre}$ $K_2O = \pm 3.15 \text{ kg/acre}$.

2. Banglore, Karnataka (Paddy)Zone-6 (IPNS)

Crop : Rice | Soil phosphorus range | SOIL : Red | Soil potassium range | FYM composition |

Variety : Rasi FYM rate :: 4.00 t\ acre

Target range : 20q/ acre Green manure composition : 1.0N : 0.15P:0.45K

: 55 -300kg/ acre

: 40-200kg/ acre

: 0.3%N : 0.2P:0.5K

Soil Nitrogen range : .0..5% - 0.8% Green manure rate : 2.00t\ acre

Area of applicability : Mandya and Mysore districts.

Target yield equation:

FN = 4.703 T - 274.865 SN (OC %) - 0.00141 OM

 $FP_2O_5 = 1.636 \text{ T} - 0.2563 \text{ SP}_2O_5 \text{ (Olsen's - P}_2O_5) - 0.00077 \text{ OM}$

 $FK_2O = 2.306 \text{ T} - 0.494 \text{ SK}_2O \text{ (NH}_4OAC - K}_2O) - 0.00114 \text{ OM}$

STV O C (%)	Fertilizer nitrogen (kg/acre)	STV Bray's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K ₂ O (kg/acre)	Fertilizer potash (kg/acre)
0.2	72.1	3	32.0	20	36.2
0.3	61.1	5	31.4	25	33.8
0.4	50.1	7	30.9	30	31.3
0.5	39.1	9	30.4	35	28.8
0.6	28.1	11	29.9	40	26.4
0.7	17.1	13	29.4	45	23.9
		15	28.9	50	21.4
		17	28.4	55	19.0
		19	27.9	60	16.5
		21	27.3	65	14.0
		23	26.8	70	11.5
		25	26.3		
		27	25.8		
		29	25.3		
		31	24.8		
		33	24.3		
		35	23.7		
		37	23.2		

Note: If one tonne FYM /acre is used then decrease N by 1.4 kg/acre, P_2O_5 by 0.8 kg/acre and K_2O by 1.1 kg/acre

To increase or decrease the yield target by one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N = \pm 4.7 \text{ kg/acre}$ P_2O

 $P_2O_5 = \pm 1.6 \text{ kg/acre}$

 $K_2O = \pm 2.3 \text{ kg/acre.}$

3. Bangalore, Karnataka (Paddy)Zone-5

Crop : Rice | Soil phosphorus range : 38 -164 kg/ acre SOIL : Red lateritic | Soil potassium range : 30 -120 kg/ acre

FYM composition : .0.5%N : 0.3P:0.5K

Season : Kharif

FYM rate : 3.00 t\ acre

Green manure composition : 1.1N : 0.13P:0.45K

Target range : 20q/ acre Green manure rate : 2.0 t/acre

Soil Nitrogen range : 0.2%-0.5%

Area of applicability : Bangalore, Kolar and Tumkur districts.

: Jaya & other HYV

Target yield equation:

Variety

F.N. = 7.26 T - 129 SN (OC %), F.P₂O₅ = $4.05 \text{ T} - 2.52 \text{ SP}_2\text{O}_5$ (Olsen's - P₂O₅)

 $F.K_2O = 3.15 \text{ T} - 0.29 \text{ SK}_2O \text{ (NH}_4 \text{ OAC} - \text{K}_2O)$

STV O.C. (%)	Fertilizer nitrogen (kg/acre)	STV Olsen's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K ₂ O (kg/acre)	Fertilizer potash (kg/acre)
0.35	100	12	51	40	51
0.40	94	14	46	50	49
0.45	87	16	41	60	46
0.50	81	18	36	70	43
0.55	74	20	31	80	40
0.60	68	22	26	90	37
0.65	61	24	21	100	34
0.70	55	26	16	110	31
0.75	49	28	11	120	28
0.80	42	30	10	130	25
0.85	36	32	10	140	22
0.90	29	34	10	150	20
0.95	23	36	10	160	17
1.00	16	38	10	170	14
1.05	18	40	10	180	11

To increase or decrease the yield target of one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N=\pm 7.25$ kg/acre $P_2O_5=\pm 4.00$ kg/acre $K_2O=\pm 3.15$ kg/acre.

1. New Delhi Centre

Crop : Rice Soil phosphorus range : 10-38

Soil :Typic Haplustept (Alluvial) | Soil potassium range : 100-375

Season : Kharif FYM composition (%) N,P,K : 0.5, 0.2, 0.35

Situation : Irrigated FYM rate : 10 t/ha

Target range : 50 - 60 q ha⁻¹ Green manure composition : Nil

Soil Nitrogen range : 100 - 375 Green manure rate ; Nil

Applicable area: Delhi state and adjoining soil-agro-climatic areas of

UP: Gautam Budhanagar, Ghaziabad, Bagpat Meerut, Mujjafarnagar, Saharanpur, Buland Shahr, Aligarh, Maha mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun

Haryana: Rohtak, Sonipat, Panipat, Jhajjar, Rewari, Gurgaon, Faridabad, Mewat, Karnal

Punjab : Mansa, Patiala, Sangrur

M P: Bhind, Morana, Gwalior, Shivpuri

Fertilizer adjustment equations for targeted yields of crops in NCR of Delhi (Without FYM)

FN = 4.93 T - 0.47 SN, $\text{FP}_2\text{O}_5 = 4.48 \text{ T} - 7.82 \text{ SP}$, $\text{FK}_2\text{O} = 2.31 \text{ T} - 0.21 \text{ SK}$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Rice

Soil test values (kg ha ⁻¹)			Nutrient needed (kg ha ⁻¹) for an yield target of 50 q ha ⁻¹			Nutrient added (kg ha ⁻¹) for an yield target of 60 q ha ⁻¹		
N	P	K	N	P_2O_5	\mathbf{K}_2	N	P_2O_5	K ₂ O
					О			
100	10	100	200	120	95	250	120	120
125	13	125	190	120	90	235	120	115
150	15	150	175	105	85	225	120	105
175	18	175	165	85	80	215	120	100
200	20	200	155	70	75	200	115	95
225	23	225	140	50	70	190	95	90
250	25	250	130	30	65	180	75	85
275	28	275	120	10	60	165	55	80
300	30	300	105	10	55	155	35	75
325	33	325	95	10	50	145	15	70
350	36	350	85	10	45	130	15	65
375	38	375	70	10	35	120	15	60

1. Pantanagar (Paddy)

Name of the Centre : Soil phosphorus range

Soil : Soil potassium range :

Crop and Variety : Paddy- P.D-4 FYM composition :

Situation : FYM rate :

Season developed : Green manure composition :

Target range : q ha⁻¹ Green manure rate

Soil Nitrogen range :

Fertilizer adjustment equations of STCR experiments for different crops under IPNS

F N (N kg/ha) = 5.72 x YT (q/ha) - 1.01 SN-0.95 FYM-N

F P (P kg/ha) = 0.93 x YT (q/ha) - 0.72 SP-0.23 FYM-P

F K (K kg/ha) = 1.15 x YT (q/ha) - 0.20 SP-0.30 FYM-K

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of paddy

Initial soil tests (kg ha ⁻¹)			Nutrient added (kg ha ⁻¹) for an yield target of 15 q ha ⁻¹			
KmnO ₄ N	P	K	N	P ₂ O ₅	K ₂ O	
100	10	100	103.8	162.1	34.2	
125	13	125	94.6	148.6	29.1	
150	15	150	85.3	139.6	23.9	
175	18	175	76.1	126.0	18.8	
200	20	200	66.8	117.0	13.6	
225	23	225	57.6	103.5	8.5	
250	25	250	48.3	194.5	3.3	
275	28	275	39.1	80.9	2.0	
300	30	300	29.8	71.9	2.0	
325	33	325	20.6	58.4	2.0	
350	35	350	11.3	49.4	2.0	
375	38	375	2.1	35.8	2.0	
400	40	400	2.0	26.8	2.0	

1. Pusa (Bihar)- Rice

Name of the Centre : RAU,Pusa Soil phosphorus range : 4- 30 kg P_2O_5 /ha Soil : Red Loam Soil Soil potassium range : 60- 190 kg K_2O /ha

Season: KharifCompost composition: N. A.Crop: PaddyCompost rate: N. A.Target range: 25- 30 q/haGreen manure composition: N. A.Soil Nitrogen range: 120- 250 kg N /haGreen manure rate: N. A.

Valid for Districts : All districts of Jharkhand state having red loam / laterite soil

Soil Test Values : Alk. KMnO₄ – N expressed in **kg N/ha**

Bray's P_1 expressed in $kg P_2O_5/ha$ Ammonium OAc – K expressed in $kg K_2O/ha$

Minimum maintenance dose of fertilizer if soil test value is high : 25 kg N, 15 kg P_2O_5 and 10 kg K_2O/ha

Soil: Red Loam Soils of Jharkhand Crop: Paddy

Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basic	Targetted Yield Equations		
Nutrient	N R(kg/q)	C S	C F	
N	2.29	20.6	37.3	FN = 6.14 T - 0.55 SN
P_2O_5	0.71	54.2	25.1	$FP_2O = 2.83 T - 2.16 SP_2O_5$
K ₂ O	1.61	30.2	43.4	$FK_2O = 3.73 T - 0.70 SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Vield Target at Varying Soil Test Values

	Fertilizer Recommendation Schedule for Specific field Target at Varying Son Test Values								
Soil Av	Soil Available Nutrients			Fertilizer Nutrients Required (kg/ha) for Yield Target					
	(kg/ha)			of					
				25 q/ha			30 q/ha		
N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
120	4	60	88	62	51	118	76	70	
130	6	70	82	58	44	113	72	63	
140	8	80	77	53	37	107	68	56	
150	10	90	71	49	30	102	63	49	
160	12	100	66	45	23	96	59	42	
170	14	110	60	41	16	91	55	35	
180	16	120	55	36	10	85	50	28	
190	18	130	49	32	10	80	46	21	
200	20	140	44	28	10	74	42	14	
210	22	150	38	23	10	69	37	10	
220	24	160	33	19	10	63	33	10	
230	26	170	25	15	10	58	29	10	
240	28	180	25	15	10	52	24	10	
250	30	190	25	15	10	47	20	10	

1. Rice: Tamil Nadu

Name of the centre : Coimbatore

Soil

: Alluvial (Noyyal series)

Crop & Variety

: Rice – IR 50

Season developed Target range

: Kharif

Soil Nitrogen range

: 60 q ha⁻¹ $: 180 - 280 \text{ kg ha}^{-1}$

Soil phosphorus range: 16 – 36 kg ha⁻¹

Soil potassium range : 180 – 280 kg ha⁻¹

FYM composition : -

FYM rate : -

Green manure composition: 2.53: 0.70: 2.44 %

(N:P:K) (Dry weight basis)

: 6.25 t ha⁻¹ **Green manure rate**

(70% moisture)

Fertiliser Adjustment Equations

4.39 FN 2.22

 FP_2O_5

T - 0.52 T

SN _ 3.63

0.98

0.80

ON

OP

OK

SP

FK₂O 2.44

T -0.39 SK -0.72

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Initial soil tests (kg ha ⁻¹)			Nutrient added	(kg ha ⁻¹) for an yield	target of 60 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
180	16	180	170	75	76
190	18	190	165	68	72
200	20	200	159	61	68
210	22	210	154	53	64
220	24	220	149	46	60
230	26	230	143	39	56
240	28	240	138	32	52
250	30	250	133	24	49
260	32	260	128	19	45
270	34	270	123	19	41
280	36	280	118	19	37

Blanket Recommendation: 128:38:38 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : River Alluvium- Sandy loam

: 60 q ha⁻¹ Yield target District (s) : Coimbatore Grade : Good

Name of the centre : Coimbatore

Soil : Alluvial (Noyyal series)

Crop & Variety: Rice - IR 20

Season developed : Rabi Gre Target range : 60 q ha⁻¹ (N:

Soil Nitrogen range : 180 – 270 kg ha⁻¹

Soil Phosphorus range : 180 – 270 kg ha Soil phosphorus range : 16 – 34 kg ha Soil phosphorus range : 16 – 34 kg ha

Soil potassium range : 180 – 270 kg ha⁻¹

FYM composition : FYM rate : -

Green manure composition : 2.25 : 0.70 : 2.63 %

(N:P:K) (Dry

(Dry weight basis)

Green manure rate : 6.25 t ha⁻¹

(70% moisture)

Fertiliser Adjustment Equations

FN 4.63 T -0.56 SN 0.90 ON OP SP FP₂O₅ 1.98 T 3.18 0.99 FK₂O = 2.57 T - 0.42SK 0.67 OK

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	Initial soil tests (kg ha ⁻¹)			Nutrient added (kg ha ⁻¹) for an yield target of 60 q ha ⁻¹		
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O	
180	16	180	177	68	78	
190	18	190	172	62	74	
200	20	200	166	55	70	
210	22	210	160	49	66	
220	24	220	155	43	62	
230	26	230	149	36	57	
240	28	240	144	30	53	
250	30	250	138	25	49	
260	32	260	132	25	45	
270	34	270	127	25	41	

Blanket Recommendation: 150:50:50 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : Red - sandy loam

Yield target : 60 q ha⁻¹
District (s) : Coimbatore
Grade : Good

Name of the centre : Bhavanisagar (sub centre)

Soil

: Red (Irugur series)

: Rice - IR 50

Crop & Variety Season developed : Kharif

: 60 q ha⁻¹ Target range Soil Nitrogen range

 $: 150 - 240 \text{ kg ha}^{-1}$ Soil phosphorus range $: 8 - 26 \text{ kg ha}^{-1}$

: $150 - 240 \text{ kg ha}^{-1}$ Soil potassium range

FYM composition : -

: -FYM rate

: 2.07: 0.64: 1.73 % Green manure composition

(N:P:K) (Dry weight basis) : 6.25 t ha⁻¹ Green manure rate

(70% moisture)

Fertiliser Adjustment Equations

FN T - 0.89 - 0.98 5.19 SN ON 2.27 T - 4.50 SP OP FP₂O₅ - 1.09 FK_2O 3.11 T - 0.59 SK - 1.02 OK =

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	Initial soil tests (kg ha ⁻¹)			Nutrient added (kg ha ⁻¹) for an yield target of 60 q ha ⁻¹		
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O	
150	8	150	178	100	98	
160	10	160	169	91	93	
170	12	170	160	82	87	
180	14	180	151	73	81	
190	16	190	142	64	75	
200	18	200	133	55	69	
210	20	210	124	46	63	
220	22	220	115	37	57	
230	24	230	106	28	51	
240	26	240	97	19	45	

Blanket Recommendation: 128:38:38 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : Red - sandy loam

Yield target : 60 q ha⁻¹

District(s) : Coimbatore, Dindigul, Erode, Karur, Madurai, Namakkal, Salem, Theni, Tiruchirappalli

Name of the centre : Bhavanisagar (Sub centre)

: Red (Irugur series) Soil

Crop & Variety : Rice - ASD 18

Season developed : Rabi : 60 q ha⁻¹ Target range

: 150 – 240 kg ha⁻¹ Soil Nitrogen range

Soil phosphorus range $: 8 - 26 \text{ kg ha}^{-1}$

Soil potassium range : 150 – 240 kg ha⁻¹ **FYM** composition : -

FYM rate

Green manure composition

: 2.81 : 0.31 : 2.98 % (N:P:K) (Dry weight basis)

: 6.25 t ha⁻¹ Green manure rate

(70% moisture)

Fertiliser Adjustment Equations

FN = 4.88 T - 0.68 ON SN 0.72

2.91 SP 2.27 OP FP₂O₅ 2.06 \mathbf{T}

FK₂O = 2.89 T - 0.47 SK 0.59 OK

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	Initial soil tests (kg ha ⁻¹)			l (kg ha ⁻¹) for an yield	target of 60 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
150	8	150	191	100	103
160	10	160	184	94	98
170	12	170	177	89	94
180	14	180	171	83	89
190	16	190	164	77	84
200	18	200	157	71	79
210	20	210	150	65	75
220	22	220	143	56	70
230	24	230	137	54	65
240	26	240	130	48	61

Blanket Recommendation: $150:50:60 \text{ (kg N}: P_2O_5: K_2O \text{ ha}^{-1})$

Recommendation domain

Soil type : Red - sandy loam

Yield target : 60 q ha⁻¹

District(s) : Coimbatore, Dindigul, Erode, Karur, Madurai, Namakkal, Salem, Theni, Tiruchirappalli

Name of the centre : Aduthurai (sub centre)

: Black Alluvial (Adanur series)

: Rice - CR 1009 Crop & Variety

Season developed : Kharif : 70 q ha⁻¹ Target range

: 180 – 280 kg ha⁻¹ Soil Nitrogen range

Soil phosphorus range: 16 – 36 kg ha⁻¹

Soil potassium range : 180 – 280 kg ha⁻¹

FYM composition : -

FYM rate

Green manure composition : 2.28 : 0.39 : 1.54 %

(N:P:K) (Dry weight basis)

:6.25 t ha⁻¹ Green manure rate (70% moisture)

Fertiliser Adjustment Equations

2.80 FN T - 0.29 SN 0.89 ON

SP OP FP_2O_5 1.35 1.78 T - 1.28

FK₂O 2.50 T - 0.42 SK OK 1.14 = -

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Ini	tial soil tests (kg	ha ⁻¹)	Nutrient added (kg ha ⁻¹) for an yield target of 70 q ha ⁻¹		
KMnO4-N	Olsen-P	NN NH₄OAc- K	N	P ₂ O ₅	K ₂ O
180	16	180	144	74	99
190	18	190	141	72	95
200	20	200	138	69	91
210	22	210	135	66	87
220	24	220	132	64	83
230	26	230	129	61	78
240	28	240	126	59	74
250	30	250	123	56	70
260	32	260	121	54	66
270	34	270	118	51	62
280	36	280	115	48	57

Blanket Recommendation: $150:50:60 \text{ (kg N}: P_2O_5: K_2O \text{ ha}^{-1})$

Recommendation domain

Soil type : River Alluvium - Clay loam

: 70 q ha⁻¹ Yield target

District(s) : Cuddalore, Karur, Thanjavur, Thiruvarur, Nagapattinam

Name of the centre : Aduthurai (Sub centre)

Soil

FN

 FP_2O_5

FK₂O

: Black Alluvial (Kalathur series)

Crop & Variety : Rice - ADT 31

Season developed : Kharif : 60 q ha⁻¹ Target range

Soil Nitrogen range $: 180 - 280 \text{ kg ha}^{-1}$

Soil phosphorus range: 16 – 36 kg ha⁻¹

Soil potassium range : 180 – 280 kg ha⁻¹

FYM composition : -

: -FYM rate

: 2.28 : 0.89 : 2.14 % Green manure composition

(N:P:K)(Dry weight basis)

: 6.25 t ha⁻¹ Green manure rate

(70% moisture)

Fertiliser Adjustment Equations

1.65

2.73

5.29

=

=

T - 0.75

SN0.89

T - 1.76 T - 0.37

SP 0.78

ON

OP

OK

SK -0.82

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Ini	tial soil tests (kg	ha ⁻¹)	Nutrient added	(kg ha ⁻¹) for an y q ha ⁻¹	ield target of 60
KMnO4-N	Olsen-P	NN NH ₄ OAc- K	N	P_2O_5	K ₂ O
180	16	180	182	71	97
190	18	190	174	67	93
200	20	200	167	64	90
210	22	210	159	60	86
220	24	220	152	57	82
230	26	230	144	53	79
240	28	240	137	50	75
250	30	250	129	46	71
260	32	260	122	43	68
270	34	270	114	39	64
280	36	280	107	36	60

Blanket Recommendation: 120:38:38 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : River Alluvium - Clay loam

: 60 q ha⁻¹ Yield target

District(s) : Madurai, Nagapattinam, Perambalur, Thanjavur, Thiruvarur, Tiruchirappalli

Name of the centre : Aduthurai (Sub centre)

Soil : Black Alluvial (Kalathur series)

Crop & Variety: Rice - ADT 31

Season developed : Rabi Target range : 60 q ha⁻¹

Soil Nitrogen range : 180 – 280 kg ha⁻¹

Soil phosphorus range : 16 – 36 kg ha⁻¹

Soil potassium range : 180 – 280 kg ha⁻¹ Green manure

FYM composition : -

FYM rate : -

Green manure composition : 2.78 : 0.99 : 2.20 % (Dry weight basis)

(N:P:K) (Dry weight basis) Green manure rate :6.25 t ha⁻¹

(70 % moisture)

Fertiliser Adjustment Equations

FN = 5.34 T - 0.67 ON SN0.73 1.90 T SP 0.70 OP FP_2O_5 = 1.86 FK₂O T - 0.33 = 2.81 SK 0.80 OK

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Initial soil tests (kg ha ⁻¹)			Nutrient added (l	kg ha ⁻¹) for an yield ta	arget of 60 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
180	16	180	199	84	110
190	18	190	193	81	106
200	20	200	186	77	103
210	22	210	179	73	100
220	24	220	173	69	96
230	26	230	166	66	93
240	28	240	159	62	90
250	30	250	152	58	86
260	32	260	146	55	83
270	34	270	139	51	80
280	36	280	132	47	77

Blanket Recommendation: $150:50:60 \text{ (kg N}: P_2O_5: K_2O \text{ ha}^{-1})$

Recommendation domain

Soil type : River Alluvium - Clay loam

Yield target : 60 q ha⁻¹

District(s) : Madurai, Nagapattinam, Perambalur, Thanjavur, Thiruvarur, Tiruchirappalli

Name of the centre : Killikulam (Sub centre)
Soil : Red (Manakkarai series)

Crop & Variety : Rice - ASD 16

Season developed : Kharif

Target range : 60 q ha⁻¹
Soil Nitrogen range : 180 – 280 kg ha⁻¹

Soil phosphorus range
Soil potassium range
Soil potassium range
Soil potassium range
Soil potassium range
Soil Nitrogen range
180 – 280 kg ha⁻¹
180 – 280 kg ha⁻¹

FYM composition : -

FYM rate :

Green manure composition : 2.57 : 0.78 : 2.15 % (N:P:K) (Dry weight basis)

Green manure rate : 6.25 t ha⁻¹

(70% moisture)

Fertiliser Adjustment Equations

FN 4.25 T - 0.60 SN 0.79 ON $FP_2O_5 =$ 2.71 T - 4.39 SP 0.89 OP FK₂O T - 0.60 SK -3.83 0.82 OK

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Initial soil tests (kg ha ⁻¹)			Nutrient added (kg ha ⁻¹) for an yield target of 60 q ha ⁻¹		
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
180	12	180	147	110	122
190	14	190	141	102	116
200	16	200	135	93	110
210	18	210	129	84	104
220	20	220	123	75	98
230	22	230	117	66	92
240	24	240	111	58	86
250	26	250	105	49	80
260	28	260	99	40	74
270	30	270	93	31	68
280	32	280	87	23	62

Blanket Recommendation: 120:38:38 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : River Alluvium - Sandy clay loam

Yield target : 60 q ha⁻¹
District(s) : Tirunelveli
Grade : Good

Name of the centre : Killikulam (Sub centre) : Red (Manakkarai series)

Soil

Crop & Variety

: Rice - IR 20

FYM rate Green manure composition

FYM composition

Season developed : Rabi : 60 q ha⁻¹ Target range

: 180 – 280 kg ha⁻¹ Soil Nitrogen range Soil phosphorus range

(N:P:K) : $12 - 32 \text{ kg ha}^{-1}$ Green manure rate : 180 – 280 kg ha⁻¹ Soil potassium range

: 2.26: 0.78: 2.14 % (Dry weight basis)

: 6.25 t ha⁻¹ (70 % Moisture)

: -

Fertiliser Adjustment Equations

4.47 T - 0.58 FN = SN 0.79 ON FP_2O_5 T - 3.68 SP 0.89 OP 2.66 FK₂O 4.08 T - 0.65 SK 0.82 OK = -

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Initial soil tests (kg ha ⁻¹)			Nutrient added (l	kg ha ⁻¹) for an yield ta	arget of 60 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
180	12	180	164	115	128
190	14	190	158	108	121
200	16	200	152	101	115
210	18	210	146	93	108
220	20	220	140	86	102
230	22	230	135	79	95
240	24	240	129	71	89
250	26	250	123	64	82
260	28	260	117	57	76
270	30	270	111	50	69
280	32	280	106	42	63

Blanket Recommendation: 150:50:50 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

: River Alluvium - Sandy clay loam Soil type

: 60 q ha⁻¹ Yield target District(s) : Tirunelveli Grade : Good

1. West Bengal(Rice)

Name of the Centre : Kalyani, BCKV Soil phosphorus range : 21-41 kg.ha⁻¹
Soil : Inceptisol Soil potassium range : 132 - 435 kg.ha⁻¹

: NA Crop and variety : Rice (cv. IET- 4094) **FYM** composition Season developed : Kharif, 2004 **FYM** rate : NA : 35 to 40 q ha⁻¹ Green manure composition Target range : NA : 296 - 346 kg.ha⁻¹ Soil Nitrogen range Green manure rate : NA

Fertilizer adjustment equations:

 $FN = 3.60 \ T - 0.25 \ SN, \quad FP_2O_5 = 2.29 \ T - .82 \ SP, \qquad FK_2O = 2.61 \ T - 0.19 \ SK$

Fertilizer levels (kg.ha ⁻¹)	N	0, 100, 120, 140
	P ₂ O ₅	0, 40, 60
	K ₂ O	0, 40, 60
Initial soil test values	KMnO ₄ -N	296 - 346
(kg.ha ⁻¹)	Olsen-P	21- 41
	NH₄OAc-K	132 - 435
Yield (kg.ha ⁻¹)	Control plot	2000 - 2200
	Treated plot	5520 - 7200

Ready-reckoner* of fertilizer doses at varying soil test values for specific yield target

Avail	Available soil nutrients (kg.ha ⁻¹)		Fertilize	Fertilizer nutrient required (kg.ha ⁻¹)							
	(kg.ha	a ')	Targeted yield 3.5 t.ha ⁻¹			Targeted yield 4.0 t.ha ⁻¹					
N	Р	К	N	P ₂ O ₅	K₂O	N	P ₂ O ₅	K₂O			
250	5	100	111	84	87	129	98	90			
275	10	150	102	84	87	120	98	90			
300	15	200	93	84	87	111	98	90			
325	20	250	84	84	87	102	94	90			
350	25	300	76	80	87	94	89	100			
375	30	350	67	75	77	85	85	90			

^{*} A minor modification was made in the ready-reckoner.

2. West Bengale (Rice)

Name of the Centre : Kalyani, BCKV | Soil phosphorus range : 17-41 kg.ha⁻¹
Soil : Inceptisol | Soil potassium range : 142 - 335 kg.ha⁻¹

Crop and variety : Borp rice (cv. IET- 4789) FYM composition : NA

Season developed : Boro, 2004 FYM rate : NA

Target range : 55 to 60 q ha⁻¹ Green manure composition : NA

Soil Nitrogen range : 216 - 326 kg.ha⁻¹ Green manure rate : NA

Fertilizer adjustment equations:

FN = 3.28T- 0.18, $\text{FP}_2\text{O}_5 = 4.80 \text{ T}$ - 5.02 SP, $\text{FK}_2\text{O} = 2.83 \text{ T}$ - 0.54 SK

Fertilizer levels (kg.ha ⁻¹)	N	120, 150, 170	
	P ₂ O ₅	50, 60, 80	
	K ₂ O	60, 80,100	
Initial soil test values	KMnO ₄ -N	216- 326	
(kg.ha ⁻¹)	Olsen-P	17-41	
	NH₄OAc-K	142-335	
Yield (kg.ha ⁻¹)	Control plot	3013-2483	
	Treated plot	5100-3050	

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Availak	ole soil n (kg.ha ⁻¹)			Fertilize	er nutrient	required	(kg.ha ⁻¹)		
			Targete	d yield 55	q.ha ⁻¹	Targeted yield 60 g.ha ⁻¹			
N	Р	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
250	5	100	117	90	71	139	99	80	
275	10	150	103	85	61	126	94	69	
300	15	200	90	80	50	113	89	59	
325	20	250	77	75	40	100	83	48	
350	25	300	64	69	29	86	78	38	
375	30	350	50	64	19	73	73	27	

3. West Bengale (Rice)

Name of the Centre : Kalyani,BCKV Soil phosphorus range : 22 - 32 kg.ha⁻¹
Soil : Inceptisol Soil potassium range : 118 - 238 kg.ha⁻¹

Crop and variety : Boro rice (cv. IET- FYMcomposition : 0.7%N.0.4%P,0.7%K

4786) FYM rate : 5 and 10 t ha⁻¹

Season developed : Rabi 2006 Green manure composition : NA

Target range : 50-55q ha⁻¹ Green manure rate : NA

Soil Nitrogen range : 232- 293 kg.ha⁻¹

Targeted yield equation:

FN = 2.75 T - 0.63 STVN - .035 MN, FP = 0.48 T - 0.54 STVP - 0.07 MP, FK = 1.24 T - 0.62 STVK - 0.24 MK

Fertilizer levels (kg.ha ⁻¹)	N	120, 150, 170
	P ₂ O ₅	50, 60, 80
	K ₂ O	60, 80,100
	FYM (t ha ⁻¹)	2.5,5.0
Initial soil test values	KMnO ₄ -N	232- 293
(kg.ha ⁻¹)	Olsen-P	22 - 32
	NH₄OAc-K	118 - 238
Yield (kg.ha ⁻¹)	Control plot	3083-2583
	Treated plot	5300-3250

Ready-reckoner* of fertilizer doses at varying soil test values for specific yield target

Avail	Available soil nutrients		Fertilizer nutrient required (kg.ha ⁻¹)								
(kg.ha ⁻¹)			Targeted yield 5.0 t.ha ⁻¹			Targeted	Targeted yield 5.5 t.ha ⁻¹				
N	Р	К	N	P_2O_5	K ₂ O	N	P_2O_5	K₂O			
250	5	100	122	83	92	141	96	103			
275	10	150	112	83	92	132	96	103			
300	15 20	200	103 96	83 83	92 92	118 110	96 89	103 103			
350	25	300	83	78	92	98	86	92			
375	30	350	74	68	86	89	79	89			

*In a few cases when calculated fertiliser requirement values were almost zero, a minimum dose say 20 kg for N and 10 kg. ha⁻¹ each for P and K were added to the calculated values particularly for the cereal and oilseed crops. While for groundnut crop (legume) these values for N was 5.0 kg but for P and K it was 10 kg each. Contrarily, when the calculated values of fertiliser doses were very high/high, the values nearer to the reasonable ones were used for the ready-reckoners. Targeted yield equations used for the verification trials are given below:

FN = 15.34 T- 1.62 SN, FP₂O₅ = 2.97 T- 3.62 SP, FK₂O = 2.52 T- 0.28 SK

Verification trials for kharif Rice (mean of 7 trials)

Treatment	Grain yield (q.ha ⁻¹)	Straw yield (q.ha ⁻¹)
T ₁ - Farmers' practice	40.2	62.4
T ₂ - Govt. recommended dose	36.4	56.8
T ₃ - Soil test based fertilizer dose for targeted yield of 3.5 t ha ⁻¹	35.2	53.7
T ₄ - Soil test based fertilizer dose for Targeted yield of 4.0 t ha ⁻¹ .	40.9	64.8

Applicability: All the equations are valid for Nadia, Murshidabad, 24Pgs North, Hoogly and Burdwan districts

1. Hisar (Haryana)Paddy

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Paddy (PR 106)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Kharif

Target range : 65 to 75 q/ha
Soil nitrogen range : 80 to 240 kg/ha
Soil phosphorus range : 4 to 32 kg/ha

FYM composition : 1.00 % N and 0.54 % P₂O₅

FYM rate : 15 t/ha

Targeted Yield Equations : $FN = 3.70T - 1.10 \text{ SN}, FP_2O_5 = 1.35T - 2.66 \text{ SP*}$

Ready reckoner of soil test based fertilizer recommendations for paddy (PR 106) grain yield of 65, 70 and 75 $\,$ q/ha

SN*	Targ	geted yield ((q/ha)	SP*	Tar	geted yield (q	/ha)
(kg/ha)	65	70	75	(kg/ha)	65	70	75
	FN (F	ertilizer N,	kg/ha)		FP ₂ O ₅ (I	Fertiilzer P ₂ O	5, kg/ha)
80	154	171	190	4	64	78	91
90	142	160	179	6	58	72	85
100	131	149	168	8	53	67	80
110	120	139	157	10	48	62	75
120	109	127	146	12	42	56	69
140	87	105	124	14	37	51	64
160	65	83	102	16	32	46	59
180	43	61	80	20	21	35	48
200	38	39	58	24	15	25	38
220	38	38	38	28	15	15	28
240	38	38	38	32	15	15	15

^{*}SN and SP are available N and P (kg/ha), respectively, T = Yield target (q/ha)

Note: The dose of fertilizer N and P_2O_5 be reduced by 1.50 and 1.00 kg/ha, respectively; from the above fertilizer doses for each ton of applied FYM/compost.

Verification: These fertilizer adjustment equations for yield targets were verified at farmers' fields in various agro-climatic zones of Haryana. The yield targets of 65 to 75 q/ha were achieved within -7.1 to +5.8 per cent deviations.

Applicability: These fertilizer adjustment equations will hold good throughout Haryana for high yielding varieties of dwarf paddy

1. Bhubaneswar (Paddy)

Crop: Rice (cv. Lalat)

General fertilizer recommendation: 80-40-40

Fertilizer adjustment equations

 $FN = 8.4 \text{ T} - 1.4 \text{ SN}, FP_2O_5 = 5.0 \text{ T} - 3.1 \text{ S} P_2O_5, FK_2O = 6.6 \text{ T} - 1.5 \text{ S} K_2O$

Corrected ready reckoner of fertilizer doses at varying soil test values for specific yield targets

Av	Available soil Fe					ilizer nutrients required (kg ha ⁻¹)						
nutrients (kg ha ⁻¹)			Targeted yield (40 q ha ⁻¹)			Ta	Targeted yield (45 q ha ⁻¹)			Targeted yield (50 q ha ⁻¹)		
N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	
100	30	80	160	80	80	180	80	100	200	80	100	
120	35	100	160	80	80	180	80	100	200	80	100	
140	40	120	140	76	80	180	80	100	200	80	100	
160	45	140	112	60	54	154	80	87	196	80	100	
180	50	160	84	45	14	126	70	57	168	80	96	
200	55	180	56	30	10	98	54	27	140	79	66	
220	60	200	28	14	10	70	39	10	112	64	36	
230	65	220	20	10	10	56	23	10	98	48	10	
240	70	250	20	10	10	42	10	10	84	33	10	
250	80	300	20	10	10	28	10	10	70	10	10	

(NB: when the calculated fertilizer requirement values tend to zero, a minimum dose, say 20 kg ha⁻¹ for N and 10 kg ha⁻¹ each for P and K are added to the calculated values to bring the dose to a reasonable one).

Equation used by the Soil Testing Laboratory:

Bhubaneswar, Puri, Cuttack, Dhenkanal,

Sambalpur, Sundargarh

Districts covered:

Khurda, Puri, Nayagarh, Cuttack, Angul, Dhenkanal, Sambalpur,Bargarh,

Jharsududa, Sundargarh

1. Kerala (Rice)

Variety - Kanakam

Season - September-October to December-January

Irrigation - Irrigated Soil type - Laterite

Area of adaptability - Laterite soils of Kerala (65% Total geographical area of Kerala is

occupied by laterite soils. Laterite soils are found in all the 14

districts of the state.)

Fertilizer Adjustment Equations

F N = 43.49T- 0.26SN FP2O5 = 42.21T-9.87SP FK2O = 47.65T-0.99SK

Ready reckoner for fertilizer dozes at varying Soil Test Values for specific yield target of rice (Variety Kanakam) under irrigated condition. (Rabi - Season)

Soil available Fertilizer nutrient required (kg ha⁻¹) nutrients (kg ha-1) for rice (variety: Kanakam) yield target of 5t ha⁻¹ 3t ha⁻¹ 4t ha⁻¹ K₂O KmnO₄ Bray's N P_2O_5 N P_2O_5 K₂O N P_2O_5 K₂O Amm P Ac-K

1. Chhattisgarh

Crop - Rice (Improved dwarf)

Soil type - Inceptisol Variety - R-269 (Ruchi) Season - 1985, Kharif

Area for Suitability - Chhattisgarh plains (Raipur, Durg,

Rajnandgaon, Mahasamund, Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

 $FN = 3.73 \; Y - 0.55 \; SN, \quad FP_2O_5 = 1.45 \; Y - 5.61 \; SP, \quad FK_2O \; = No \; K \; if \; SK > 250 \; kg \; ha^{-1}$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of improved dwarf variety of rice in Inceptisol (Matasi).

Alkaline KMnO ₄ -N	Olsen's P		Yield Targets	eld Targets (q ha ⁻¹) (Rice - improved dwarf var.)					
(kg ha ⁻¹)	(kgha ⁻¹)	40		5	50	60			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	67	41	104	56	141	70		
175	6	53	24	90	39	128	53		
200	9	39	8	77	22	114	37		
225	12	25	3	63	5	100	20		
250	15	12	3	49	3	86	3		
275	18	4	3	35	3	73	3		
300	21	4	3	22	3	59	3		
350	24	4	3	4	3	31	3		
400	27	4	3	4	3	4	3		

2. Crop - Rice
Soil type - Alfisol
Variety - IR-36

Season - Kharif, 1985

Area for suitability - Chhattisgarh plains (Raipur, Durg, Rajnandgaon,

Mahasamund, Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

 $FN = 5.88 \text{ Y} - 0.88 \text{ SN}, \quad FP_2O_5 = 107 - (11439 - 202.5 \text{ Y})^{1/2} - 4.13 \text{ SP}, \quad FK_2O = \text{No K if SK} > 250 \text{ kg ha}^{-1}$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of improved dwarf variety of rice in Alfisol (*Dorsa*)

Alkaline KMnO ₄ -N	Olsen's P	Yield Targets (q ha ⁻¹) (Rice - improved dwarf var.)							
(kg ha ⁻¹)	(kg ha ⁻¹	40		5	50	6	0		
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	103	37	162	58	221	86		
175	6	81	24	140	46	199	74		
200	9	59	12	118	34	177	62		
225	12	37	9	96	21	155	49		
250	15	15	9	74	9	133	37		
275	18	15	9	52	9	111	28		
300	21	15	9	30	9	89	9		
350	24	15	9	15	9	45	9		
400	27	15	9	15	9	15	9		

Recommend the fertility group method for potassic fertilizer because the soil test K having > 250 kg K/ha do not respond fertilizer K_2O to the test crop in soils under study.

3. Crop - Rice Soil type - Vertisol

Variety - R-269 (Ruchi) Season - *Kharif*, 1888

Area for Suitability - Chhattisgarh plains (Raipur, Durg, Rajnandgaon,

Mahasamund, Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

 $FN = 4.95 \text{ Y} - 0.62 \text{ SN}, FP_2O_5 = 130 - (16819 - 260\text{Y})^{1/2} - 2.56 \text{ SP}, FK_2O = \text{No K if SK} > 250 \text{ kg ha}^{-1}$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of improved dwarf variety of rice in Vertisol (Kanhar)

Alkaline KMnO ₄ -	Olsen's P	Yield	l Targets (d	n ha ⁻¹) (R	lice - impro	ved dwarf	var.)	
N (kg ha	(kg ha ⁻¹	4	10	5	50	60		
1)		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	
150	3	105	42	155	61	204	87	
175	6	90	35	139	53	189	80	
200	9	74	27	124	45	173	72	
225	12	59	19	108	37	158	64	
250	15	43	11	93	30	142	57	
275	18	28	4	77	22	127	49	
300	21	12	4	62	14	111	41	
350	24	12	4	31	7	80	34	
400	27	12	4	12	4	49	26	

4. Rice (scented and improved semi tall)

Crop - Rice
Soil type - Vertisol
Variety - Indira - 9
Season - Kharif, 2002

Area for Suitability - Chhattisgarh plains (Raipur, Durg, Rajnandgaon,

Mahasamund, Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

 $FN = 3.65 \ Y - (0.489 \ SN + 5.12 \ t \ FYM)$ $FP2O5 = 129 - (16710 - 244Y) \ 1/2 - \ (2.89 \ SP \ + \ 3.0 \ t \ FYM)$ $FK2O = No \ K \ if \ SK > 250 \ kg \ ha-1$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of improved scented rice (Indira -9) in Vertisol (*Kanhar*).

Alkaline KMnO4-N	Olsen's P	Yield Targets (q ha ⁻¹) (Rice - improved dwarf var.)							
(kg ha ⁻¹)	(kg ha ⁻¹)	3	35	4	15	55			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	54	30	91	45	127	63		
175	6	42	21	79	36	115	54		
200	9	30	13	66	27	103	46		
225	12	18	4	54	19	91	37		
250	15	6	2	42	10	79	28		
275	18	6	2	30	2	66	20		
300	21	6	2	18	2	54	11		
350	24	6	2	6	2	30	2		
400	27	6	2	6	2	6	2		

Ready reckoners on soil test based fertilizer recommendations with INM (5 ton FYM) for specific yield targets of improved scented rice (Indira -9) in Vertisol (Kanhar).

Alkaline	Olsen's P	Yield Targets (q ha ⁻¹) (Scented Rice – Indira -9)								
KMnO ₄ - N (kg ha	(kg ha ⁻¹	3	5	4	45		5			
1)		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	3	29	15	65	30	102	48			
175	6	17	6	53	21	90	39			
200	9	4	4	41	12	77	31			
225	12	4	4	29	4	65	22			
250	15	4	4	16	4	53	13			
275	18	4	4	4	4	41	5			
300	21	4	4	4	4	28	4			
350	24	4	4	4	4	4	4			
400	27	4	4	4	4	4	4			

5. Crop - Rice Soil type - Inceptisol Variety - Indira -9 Season - *Kharif*, 2002

Area for Suitability - Chhattisgarh plains (Raipur, Durg, Rajnandgaon, Mahasamund, Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

 $FN = 4.58 \ Y - (0.677 \ SN + 6.02 \ t \ FYM)$ $FP2O5 = 91 - (8313 - 147Y)1/2 - (3.13 \ SP \ + \ 3.26 \ t \ FYM)$ $FK2O = No \ K \ if \ SK > 250 \ kg \ ha-1$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of improved scented rice (Indira -9) in Inceptisol

Alkaline KMnO ₄ -	Olsen's P	Yield Targets (q ha ⁻¹) (Scented Rice – Indira -9)							
N (kg ha	(kg ha ⁻¹	3	35	4	15	5 55			
1)		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	59	25	105	40	150	67		
175	6	42	16	88	31	133	57		
200	9	25	7	71	22	117	48		
225	12	8	1	54	12	100	38		
250	15	3	1	37	3	83	29		
275	18	3	1	20	1	66	20		
300	21	3	1	3	1	49	10		
350	24	3	1	3	1	15	1		
400	27	3	1	3	1	3	1		

Ready reckoners on soil test based fertilizer recommendations with INM (5 ton FYM) for specific yield targets of improved scented rice (Indira -9) in Inceptisol (*Matasi*).

Alkaline	Olsen's	Yield	l Targets (q ha ⁻¹)	(Scented R	ice – Indii	ra -9)	
	KMnO ₄ -N P		35		4 5	55		
(kg ha ⁻¹)	(kg ha ⁻¹)	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	
150	3	29	9	74	24	120	50	
175	6	12	3	58	15	103	41	
200	9	7	3	41	5	86	31	
225	12	7	3	24	3	69	22	
250	15	7	3	7	3	53	13	
275	18	7	3	7	3	36	3	
300	21	7	3	7	3	19	3	
350	24	7	3	7	3	7	3	
400	27	7	3	7	3	7	3	

6. Crop - Rice Soil type - Vertisol

Variety - Safari -17 (Local Tall)

Season - Kharif, 1990

Area for Suitability - Raipur, Durg, Rajnandgaon, Mahasamund, Dhamtari,

Bilaspur districts)

Fertilizer adjustment equations

FN = 3.97 Y - 0.53 SN

FP2O5 = 120 - (14388 - 252Y) 1/2 - 2.69 SP

FK2O = No K if SK >250 kg ha-1

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of local rice (Safri-17) in Vertisol (Kanhar).

Alkaline	Olsen's	Yield Targets (q ha ⁻¹) Rice Local Tall (Safri – 17)								
KMnO ₄ -N (kg ha ⁻¹)	P (kg ha ⁻¹)	35			45		55			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	3	59	37	99	57	139	89			
175	6	46	29	86	49	126	81			
200	9	33	21	73	41	112	73			
225	12	20	13	59	33	99	65			
250	15	6	5	46	24	86	57			
275	18	6	5	33	16	73	49			
300	21	6	5	20	8	59	41			
350	24	6	5	6	5	33	32			
400	27	6	5	6	5	6	22			

7. Rice with green manure

Soil type - Inceptisol Variety - Mahamaya Season - *Kharif*, 1997

Area for Suitability - Irrigated area of Raipur, Raigarh Durg, Rajnandgaon,

Mahasamund, Dhamtari, Bilaspur and Korba districts)

Fertilizer adjustment equations

$$\begin{split} FN &= 4.82Y - 1.114 \; SN \\ FP_2O_5 &= 106.3 - (11305 - 176Y)^{1/2} - 2.79 \; SP \\ FK_2O &= No \; K \; if \; SK > 250 \; kg \; ha^{-1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of rice with green manure in Inceptisol (Matasi).

Alkaline KMnO ₄ -	Olsen's P	Yield Targets (q ha ⁻¹) Rice (var Mahamaya)								
N (kg ha ⁻¹)	(kgha ⁻	4	0	5	0	6	0			
(Kg Ha)	,	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	3	26	33	74	48	122	71			
175	6	11	24	46	40	94	62			
200	9	11	16	18	31	66	54			
225	12	11	8	11	23	39	46			
250	15	11	1	11	14	11	37			
275	18	11	1	11	6	11	29			
300	21	11	1	11	1	11	20			
350	24	11	1	11	1	11	12			
400	28	11	1	11	1	11	1			

8. Crop - Rice
Soil type - Vertisol
Variety - Mahamaya
Season - Kharif, 1996

Area for Suitability - Chhattisgarh plains (Raipur, Raigarh, Durg, Rajnandgaon,

Mahasamund, Dhamtari, and Bilaspur districts)

Fertilizer adjustment equations

$$\begin{split} FN &= 3.64 \ Y - 0.87 \ SN \\ FP_2O_5 &= 103.8 \text{ - } (10712 - 139Y)^{1/2} - 2.85 \ SP \\ FK_2O &= No \ K \ \text{if } SK > \!\! 250 \ \text{kg ha}^{-1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of rice with green manure in Vertisol (Kanhar).

Alkaline KMnO ₄ -	Olsen's P			argets (q h	ha ⁻¹) Rice with G M Mahamaya)			
N (kgha ⁻¹)	(kg ha ⁻¹)	4	40 50			6	60	
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	
150	3	15	23	52	34	88	47	
175	6	8	15	30	25	66	38	
200	9	8	6	8	17	44	29	
225	12	8	4	8	8	23	21	
250	15	8	4	8	4	8	12	
275	18	8	4	8	4	8	4	
300	21	8	4	8	4	8	4	
350	24	8	4	8	4	8	4	
400	28	8	4	8	4	8	4	

9. Rice with FYM

Crop - Rice

Soil type - Inceptisol Variety - Mahamaya Season - *Kharif*, 1999

Area for Suitability - Chhattisgarh plains (Raipur, Durg, Rajnandgaon,

Mahasamund, Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

FN = 3.88 Y - 0.578 SN

 $FP_2O_5 = 129 - (16659 - 233Y)^{1/2} - 2.24 SP$

 $FK_2O = No K \text{ if } SK > 250 \text{ kg ha}^{-1}$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of rice with FYM in Inceptisol (Matasi).

Alkaline KMnO ₄ -N	Olsen's P	Yield Targets (q ha ⁻¹) Rice with 5 tons FYM (var Mahamaya)							
(kg ha ⁻¹)	(kg ha ⁻¹)	4	10	1	60	60			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	69	37	107	52	146	71		
175	6	54	30	93	45	132	64		
200	9	40	23	78	38	117	57		
225	12	25	16	64	31	103	50		
250	15	11	10	50	25	88	44		
275	18	2	3	35	18	74	37		
300	21	2	3	21	11	59	30		
350	24	2	3	2	4	31	23		
400	28	2	3	2	3	2	15		

10. Rice without FYM

Soil type Inceptisol Variety Mahamaya *Kharif*, 1999 Season

Area for Suitability -Chhattisgarh plains (Raipur, Durg, Rajnandgaon,

Mahasamund, Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

FN = 3.93 Y - 0.489 SN

 $\begin{aligned} &FP_2O_5 = 110 - (12195 - 205Y)^{1/2} - 2.11 \ SP \\ &FK_2O \ = No \ K \ if \ SK > &250 \ kg \ ha^{-1} \end{aligned}$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of rice without FYM in Inceptisol (Matasi).

Alkaline	Olsen's		Yield Targets (q ha ⁻¹) Rice without FYM								
KMnO4-N	P	(var Mahamaya)									
(kgha ⁻¹)	(kg ha ⁻¹)	4	0	5	50	6	60				
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅				
150	3	84	40	123	60	162	94				
175	6	72	34	111	53	150	87				
200	9	59	28	99	47	138	81				
225	12	47	21	86	41	126	75				
250	15	35	15	74	34	114	68				
275	18	23	9	62	28	101	62				
300	21	11	2	50	22	89	56				
350	24	11	2	25	15	65	49				
400	28	11	2	11	7	40	41				

11. Chhattisgarh

Hybrid rice (Pro agro -6444)

Crop - Hybrid rice
Soil Type - Inceptisol
Variety - Pro agro-6444
Season - Karif 2007

Area for suitability - Raipur, Durg, , Bilaspur, Janjgir, Raigarh,

Mahasamund, and Dhamrtari districts.

Fertilizer adjustment equations for given yield target and integrated nutrient management from QRP model

1. $FN = 478 - (228364 - 2500 \text{ Y})^{1/2} - 0.542 \text{ SN} - 5.85 \text{ t FYM}$

2. $FP_2O_5 = 227 - (51609 - 588 \text{ Y})^{1/2} - 4.72 \text{ SP} + 3.69 \text{ t FYM}$

Ready reckoner of fertilizer N and $P_2O_5\,$ for specific yield of hybrid rice based on QRP model without FYM.

Alkaline KMnO ₄ -	Olsen's P	Yield Targets (q ha ⁻¹) Hybrid rice							
N	(kg ha	50		60		70		80	
(kg ha ⁻¹)	1)	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅
150	3	75	64	117	85	166	111	228	145
175	6	62	50	103	71	152	96	215	131
200	9	48	35	90	57	139	82	201	117
225	12	35	21	76	43	125	68	188	103
250	15	21	7	63	28	111	54	174	89
275	18	7	7	49	14	98	40	161	74
300	21	7	7	35	7	84	26	147	60
350	24	7	7	8	7	57	11	120	46
400	28	7	7	8	7	30	7	93	27

Ready reckoner of fertilizer N and P_2O_5 for specific yield of hybrid rice based on ORP model with 5 t FYM.

Alkaline KMnO ₄ -	Olsen's P	Yield Targets (q ha ⁻¹) Hybrid rice							
N	(kg ha		50	60		70		80	
(kg ha ⁻¹)	$\left \stackrel{\cdot}{\mathbf{i}} \right $	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅
150	3	46	45	88	67	136	92	199	127
175	6	32	31	74	52	123	78	185	113
200	9	19	17	60	38	109	64	172	98
225	12	5	3	47	24	96	50	158	84
250	15	0	0	33	10	82	36	145	70
275	18	0	0	20	0	69	21	131	56
300	21	0	0	6	0	55	7	118	42
350	24	0	0	0	0	28	0	91	28
400	28	0	0	0	0	1	0	64	9

Hybrid rice (Indira Sona)

12. Crop - Hybrid rice

Soil Type - Inceptisol Variety - Indira Sona Season - Kharif 2007

Area for suitability - Raipur, Durg, , Rajanadgaon, Kawardha, Bilaspur and

Dhamtari districts

Fertilizer adjustment equations

FN = 5.18 Y - 0.88 SN - 0.79 FYM

 $FP_2O_5 = 1.48 \text{ Y} - 2.50 \text{ SP} - 0.45 \text{ FYM}$

 $FK_2O = 2.13 \text{ Y} - 0.24 \text{ SK} - 0.11 \text{ FYM}$

Where FN, FP_2O_5 and FK_2O are fertilizer N P and K respectively. SN, SP and SK are soil test values for available N P and K. Y = Yield target (q/ha) and FYM is Farm Yard Manure

Ready reckoner of fertilizer N for specific yield of hybrid rice (Indira Sona) with 5 tons of FYM application in Inceptisol

SN kg ha		Yield target	ts of hybrid	rice (Indira	Sona) q ha ⁻¹	
1	50	55	60	65	70	75
150	107	132	158	184	210	236
175	84	110	136	162	188	214
200	62.	88	114	140	166	192
225	40	66	92	118	144	170
250	18	44	70	96	122	148
275	0.00	22	48	74	100	125
300	0.00	0.00	26	52	77	103
325	0.00	0.00	4	29	55	81
350	0.00	0.00	0.00	7	33	59

Ready reckoner of fertilizer P2O5 for specific yield of hybrid rice (Indira Sona) with 5 tons of FYM application in Inceptisol

SP kg ha		Yield target	ts of hybrid	rice (Indira	Sona) q ha ⁻¹	
1	50	55	60	65	70	75
4	57	64	72	79	87	94
8	50	54	62	69	77	84
12	37	44	52	59	67	74
16	27	34	42	49	57	64
20	17	24	32	39	47	54
24	7	14	22	29	37	44
28	0.00	4	12	19	27	34
32	0.00	0.00	2	9	17	24
36	0.00	0.00	0.00	0.00	7	14

Ready reckoner of fertilizer K2O for specific yield of hybrid rice (Indira Sona) with 5 tons of FYM application in Inceptisol

SK kg	Yield targets of hybrid rice (Indira Sona) q ha											
ha ⁻¹	50	55	60	65	70	75						
150	63	74	85	95	106	116						
200	51	62	72	83	94	104						
250	39	50	60	71	82	92						
300	27	38	48	59	70	80						
350	15	26	36	47	58	68						
400	3	14	24	35	46	56						
450	0.00	2	12	23	34	44						
500	0.00	0.00	1	11	21	32						
550	0.00	0.00	0.00	0.00	9	20						

13. Crop - Hybrid rice

Soil Type - Vertisol Variety - Indira sona Season - Karif 2007

Area for suitability - Raipur, Durg, , Rajanadgaon, Kawardha,

Bilaspur districts

Fertilizer adjustment equations

FN = 6.02 Y - 1.05 SN - 0.85 FYM

 $FP_2O_5 = 1.48 \text{ Y} - 2.51 \text{ SP} - 0.34 \text{ FYM}$

 $FK_2O = 2.53 \text{ Y} - 0.20 \text{ SK} - 0.09 \text{ FYM}$

Where FN, FP_2O_5 and FK_2O are fertilizer N P and K respectively. SN, SP and SK are soil test values for available N P and K. Y = Yield target (q/ha) and FYM is Farm Yard Manure

Ready reckoner of fertilizer N for specific yield of hybrid rice (Indira Sona) with 5 tons of FYM application in Vertisol.

SN kg ha		Yield targets of hybrid rice (Indira Sona) q ha ⁻¹										
1	50	55	60	65	70	75						
150	123	153	183	213	243	273						
175	96	126	157	187	217	247						
200	70	100	130	160	190	221						
225	44	74	104	134	164	194						
250	18	48	78	108	138	168						
275	0	22	52	82	112	142						
300	0	0	26	56	86	116						
325	0	0	0	30	60	90						
350	0	0	0	3	33	64						

Ready reckoner of fertilizer P2O5 for specific yield of hybrid rice (Indira Sona) with 5 tons of FYM application in Vertisol

SP kg ha		Yield targets of hybrid rice (Indira Sona) q ha ⁻¹										
1	50	55	60	65	70	75						
4	58	66	73	80	88	95						
8	48	56	63	70	78	85						
12	38	46	53	60	68	75						
16	28	36	43	50	58	65						
20	18	25	33	40	48	55						
24	8	15	23	30	38	45						
28	0	5	13	20	28	35						
32	0	0	3	10	17	25						
36	0	0	0	0	7	15						

Ready reckoner of fertilizer K_2O for specific yield of hybrid rice (Indira Sona) with 5 tons of FYM application in Vertisol

SK kg ha	Sona) q ha					
1	50	55	60	65	70	75
150	92	104	117	129	142	155
200	82	94	107	120	132	145
250	72	85	97	110	122	135
300	62	75	87	100	113	125
350	52	65	78	90	103	116
400	43	55	68	80	93	106
450	33	45	58	71	83	96
500	23	36	48	61	74	86
550	13	26	38	51	64	76

13. Crop – Rice under Rainfed condition

Crop – Rice

Variety – MTU – 1010

Soil Type - Vertisol

Area for suitability - Entire Chhattisgarh plains (Raipur, Durg, Rajnandgaon,

Bilaspur, Kawardha, Janjgir, Jashpur, Mahasamund,

Dhamtari and Kanker districts

Fertilizer adjustment equations

FN = 4.38 Y - 0.23 SN - 0.20 FYM

FP2O5 = 1.11 Y - 0.66 SP - 0.08 FYM

FK2O = 1.29 Y - 0.04 SK - 0.02 FYM

Where FN, FP_2O_5 and FK_2O are fertilizer N P and K respectively. SN, SP and SK are soil test values for available N P and K. Y = Yield target (q/ha) and FYM is Farm Yard Manure

Ready reckoner of fertilizer $N,\,P_2O_5$ and K_2O for specific yield of rainfed rice (MTU-1010) without FYM application

			Yield targets of rainfed rice (MTU-1010) q ha ⁻¹								
SN Kg/	SP Kg/	SK Kg/		rtilizer (kg/ha)			tilizer F (kg/ha)		Fertilizer K ₂ O (kg/ha)		
ha	ha	ha	30	35	40	30	35	40	30	35	40
150	4	150	97	119	141	31	36	42	33	40	46
175	8	200	91	113	135	28	33	39	31	38	44
200	12	250	85	107	129	25	31	36	29	36	42
225	16	300	80	101	123	23	28	34	28	34	40
250	20	350	74	96	118	20	26	31	26	32	39
275	24	400	68	90	112	17	23	29	24	30	37
300	28	450	62	84	106	15	20	26	22	28	35
325	32	500	57	78	100	12	18	23	20	27	33
350	36	550	51	73	95	10	15	21	18	25	31

Ready reckoner of fertilizer $N,\,P_2O_5$ and K_2O for specific yield of rainfed rice (MTU-1010) with 5 t/ha FYM application

			Yield targets of rainfed rice (MTU-1010) q ha ⁻¹								
SN Kg/	SP Kg/	SK Kg/	_	rtilizer (kg/ha)		Fertilizer P ₂ O ₅ (kg/ha)			Fertilizer K ₂ O (kg/ha)		
ha	ha	ha	30	35	40	30	35	40	30	35	40
150	4	150	92	114	135	29	35	41	32	38	45
175	8	200	86	108	130	27	32	38	30	37	43
200	12	250	80	102	124	24	30	35	28	35	41
225	16	300	74	96	118	22	27	33	26	33	39
250	20	350	69	91	112	19	24	30	25	31	37
275	24	400	63	85	107	16	22	27	23	29	36
300	28	450	57	79	101	14	19	25	21	27	34
325	32	500	51	73	95	11	17	22	19	25	32
350	36	550	46	68	89	8	14	19	17	24	30

1. Jabalpur, Rice

Crop	:	Rice
Soil Type	:	Shallow, Medium black and Deep black soils
Varieties	:	IR-8, IT- 1991, Patel -85, Kranti, Sugandha, IR 36, JR 201
Yield (q ha ⁻¹)	:	30 - 45
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100- 500; P: 5- 25 K: 100-500
Districts	:	Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,, Narsinghpur,
		Powarkheda, Rewa, Satna, Sagar, Sehore, Ujjain. Grade: Good

Equation for Calculating the fertilizer nutrient Requirement:

FN = 4.25 T - 0.45 SN

 $FP_2O_5 = 3.55 T - 4.89 SP$

 $FK_2O = 2.1 T - 0.18 SK$

Soil tes	t Values	(kg ha ⁻¹)	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)							
			30			40				
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O		
100	5	200	125	118	48	104	100	38		
150	10	250	102	95	39	81	75	29		
200	15	300	80	69	30	59	51	20		
250	20	350	60	44	21	36	26	11		
300	25	400	35	20	12	14	-	-		

To increase or decrease the yield targets by one quintal per hectare the variations to be made in $N=\pm 4.2$ kg ha⁻¹; $P_2O_5=\pm 3.5$ kg ha⁻¹and $K_2O=\pm 2.1$ kg ha⁻¹

Rahuri, (Maharashtra), Rice

Crop : Sugarcane (Adsali) Variety: Co 7219 Soil : Typic Haplusterts Situation: Irrigated

Districts : Ahmednagar, Pune, Satara, Sangli, Kolhapur, Nasik, Dhule, Latur,

Solapur, Parbhani, Osmanabad, Nanded.

Basic Data

Nutrient	$NR (kg q^{-1})$	CS (%)	CF (%)
N	1.68	60	38
P ₂ O ₅	0.68	83	42
K ₂ O	2.61	43	140

Targeted Yield Equations

FN = 4.39 T - 1.56 SN

 $FP_2O_5 = 1.62 T - 4.56 SP$

 $FK_2O = 1.86 T - 0.37 SK$

Fertilizer prescription for targeted yields of adsali sugarcane for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)						
Soil te	st values (k	g ha ⁻¹)	175	t ha ⁻¹ targ		200 t ha ⁻¹ target			
N	P	K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
100	6	200	612	256	252	722	297	298	
120	8	300	581	247	215	691	288	261	
140	10	400	550	238	178	660	278	224	
160	12	500	519	229	141	628	269	187	
180	14	600	487	220	104	597	260	150	
200	16	700	456	211	67	566	251	113	

Wheat

1. Himachal Pradesh (Wheat)

Crop : Wheat | Soil Nitrogen range : 200-600 kg ha⁻¹
Soil : Alfisol, Entisol, Inceptisol | Soil phosphorus range : 5-50 kg ha⁻¹

Situation : Irrigated Soil potassium range : 50-250 kg ha⁻¹

Districts : Parts of Kangra, Sirmour, FYM composition : -

Mandi, Kullu and Shimla FYM rate :districts Green manure composition :-

Season developed : Rabi Green manure rate :-

Target range : 40 q ha⁻¹

Fertilizer adjustment equation:

 $FN = 3.26 \text{ T} - 0.20 \text{SN}, \qquad FP_2O_5 = 5.47 \text{ T} - 4.72 \text{ SP}, \qquad FK_2O = 3.28 \text{ T} - 0.48 \text{ SK}$

Ready reckoner for soil test based fertilizer recommendations for yield target of 40qha⁻¹ wheat (Mid hills sub humid zone)

Soil test v	value (kgha ⁻¹)		Fertilize	r nutrient o	dose (kgha ⁻¹)
Alkaline KMnO ₄ -N	Olsen's -P	NH ₄ OAc-	N	P_2O_5	K ₂ O
		K			
200	5	50	90	195	107
250	10	75	80	172	95
300	15	100	70	148	83
350	20	125	60	124	71
400	25	150	50	101	59
450	30	175	40	77	47
500	35	200	30	54	35
550	40	225	20	30	23
600	50	250	10	20	11

Validation of fertilizer adjustment equations of wheat on farmers' fields (average of 46 experiments) in mid hills wet temperate zone (1985-86 to 2000-01)

Treatment	Fert	ilizer d	ose (kgha ⁻¹)	Grain yield	Per cent	B:C ratio
	N	P_2O_5	K ₂ O	(kgha ⁻¹)	deviation	
Control	0	0	0	1330	-	-
Farmers' practice	30	0	0	1559	-	-
State level dose	120	90	30	2621	-	3.2
Soil Test based	115	72	34	2586	-	4.1
Target (kgha ⁻¹) bas	ed					
2500	36	51	10	2516	+0.1	9.2
3500	67	89	26	3499	-0.1	6.1
4000	91	121	36	3831	-4.2	5.6
5000	161	153	62	4481	-10.4	4.6

2. Himachal Pradesh (Wheat)-IPNS

Crop : Wheat Soil : Alfisol, Entisol, Inceptisol S

Situation : Irrigated

Season developed : Rabi

Target range : 40 q ha⁻¹

Soil Nitrogen range : 200-600 kg ha⁻¹

Soil phosphorus range : 5-45 kg ha⁻¹
Soil potassium range : 50-250 kg ha⁻¹

FYM composition : Moisture 10%,

N=0.50%, P= 0.25 %

and K= 0.50 %

FYM rate : 12.5 t ha⁻¹

Green manure composition Green manure rate :-

Fertilizer adjustment equations

 $F\ N = 5.27\ T - 0.25\ SN - 1.06ON, F\ P2O5 = 4.13\ T - 0.38\ SP - 0.98OP, F\ K2O = 2.87\ T - 0.15\ SK - 0.55OK$

Ready recknor for IPNS based fertilizer equations at different soil test values for wheat

Soil to	est value (kgha	a ⁻¹)	Ferti	Fertilizer nutrient dose (kgha 1)			
Alkaline	Olsen's –P	NH ₄ OAc-	N	P_2O_5	K ₂ O		
KMnO ₄ -N		K					
200	5	50	101	136	76		
300	15	100	76	132	69		
400	25	150	51	128	62		
500	35	200	26	124	55		
600	45	250	10	120	48		

1. Bangalore, Karnataka (Wheat)Zone-3

Crop : Wheat Soil Nitrogen range : 0.35 -0.56%(OC) Variety : Wheat (Keerthi) Soil phosphorus range : 40-160kg/acre Soil : Black Clayey potassium range : 80-200 kg/acre FYM composition % : 0.35N,0.3.1,P0.4K Situation : irrigated

Season developed : Rabi 1986 FYM rate:3t/acre 3.0 t/acre

Target range : 12q/acre Green manure composition:

Green manure rate :

Applicability: Tungabhadra Command Area of Bellary and Raichur districts.

Target yield equations:

F.N. = 6.61 T- 28.29 SN (OC%), F.P₂O₅ = 5.2 T- 1.28 SP₂O₅ (Olsen's - P₂O₅)

 $F.K_2O = 4.54 \text{ T} - 0.06 \text{ S} K_2O \text{ NH}_4OAC - K_2O)$

STV O.C. (%)	Fertilizer nitrogen (kg/acre)	STV Olsen's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K ₂ O (kg/acre)	Fertilizer potash (kg/acre)
0.1	77	1	61	250	40
0.2	74	3	59	300	37
0.3	71	5	56	350	34
0.4	68	7	53	400	31
0.5	65	9	51	450	28
0.6	62	11	48	500	25
0.7	60	13	46	550	22
0.8	57	15	43	600	19
0.9	54	17	41	650	16
1.00	51	19	38	700	13
1.10	48	21	36	750	10
1.20	45	23	33		
1.30	43	25	30		

To increase or decrease the yield target by one q/acre The variations to be made in the fertilizer recommendations are as follows:

 $N=\pm~6.5~kg/acre \qquad \qquad P_2O_5=\pm~5.25~kg/acre \qquad \qquad K_2O=\pm~4.5~kg/acre$

1. New Delhi Centre(Wheat)

Crop : Wheat Soil phosphorus range : 10-38 Soil Soil potassium range : 100-375 :Typic Haplustept (Alluvial) FYM composition (%) N,P,K : 0.5, 0.2, 0.35 Season : Rabi Situation : Irrigated **FYM** rate : 10 t/ha : 50 - 60 q ha ⁻¹ Target range Green manure composition : Nil Soil Nitrogen range : 100 - 375 Green manure rate ; Nil

Applicable area: Delhi state and adjoining soil-agro-climatic areas of

UP: Gautam Budhanagar, Ghaziabad, Bagpat Meerut, Mujjafarnagar, Saharanpur, Buland Shahr, Aligarh, Maha mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun

Haryana: Rohtak, Sonipat, Panipat, Jhajjar, Rewari, Gurgaon, Faridabad, Mewat, Karnal

Rajasthan: Alwar, Bharatpur, Sawai madhopur, Sikar, Karauli

Punjab : Mansa, Patiala, Sangrur

M P: Bhind, Morana, Gwalior, Shivpuri

Fertilizer adjustment equations for targeted yield of crops in NCR of Delhi							
With FYM	Without FYM						
FN = 3.85 T - 0.41 SN - 1.64 FYM,	FN = 5.31 T - 0.51 SN,						
$FP_2O_5 = 2.78 \text{ T} - 4.12 \text{ SP} - 1.72 \text{ FYM}$	$FP_2O_5 = 3.45 \text{ T} - 5.55 \text{ SP},$						
$FK_2O = 2.04 \text{ T} - 0.29 \text{ SK} - 0.88 \text{ FYM}$	$FK_2O = 2.75 T - 0.32 SK$						

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Wheat FYM 10t ha⁻¹

Soil test	values (l	kg ha ⁻¹)		Nutrient needed (kg ha ⁻¹) for an yield target of 50 q ha ⁻¹			Nutrient needed (kg ha ⁻¹) for an yield target of 60 q ha ⁻¹			
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
100	10	100	135	80	65	175	110	85		
125	13	125	125	70	55	165	100	75		
150	15	150	115	60	50	155	90	70		
175	18	175	105	50	40	145	80	65		
200	20	200	95	40	35	135	65	55		
225	23	225	85	30	30	120	55	50		
250	25	250	75	20	20	110	45	40		
275	28	275	65	10	15	100	35	35		
300	30	300	55	10	10	90	25	25		
325	33	325	45	10	10	80	15	20		
350	36	350	35	10	10	70	10	10		
375	38	375	20	10	10	60	10	10		

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Wheat

Soil test	values (l	kg ha ⁻¹)			d (kg ha ⁻¹) get of 50 q	Nutrient needed (kg ha ⁻¹) for an yield target of 60 q ha ⁻¹			
N	P	K	N	P_2O_5	K_2O	N	P_2O_5	K ₂ O	
100	10	100	215	115	105	250	120	120	
125	13	125	200	100	100	250	120	120	
150	15	150	190	90	90	245	120	120	
175	18	175	175	75	80	230	110	110	
200	20	200	165	60	75	215	95	100	
225	23	225	150	50	65	205	85	95	
250	25	250	140	35	60	190	70	85	
275	28	275	125	20	50	180	55	80	
300	30	300	110	10	40	165	40	70	
325	33	325	100	10	35	155	25	60	
350	36	350	85	10	25	140	15	55	
375	38	375	75	10	20	130	15	45	

Results of frontline demonstrations conducted at farmers' fields in NCR Delhi

	zer nuti (kg ha ⁻¹) P ₂ O ₅		Treat -ment	Yield Obtain ed (q ha ⁻¹)	Extra yield (q ha ⁻¹)	Cost of extra yield (Rs.ha ⁻¹)	Cost of fertilize r (Rs.ha ⁻¹)	Response ratio kg grain kg ⁻¹ nutrient	Net profit (Rs. ha ⁻¹)
Farme	er : Shri	Ram Si	ngh		Villag	ge : Kanga	nheri		
Wheat	(Kund	dan)							
0	0	0	С	19.2	-				
114	34	55	T 50	49.0	29.8	23840	2542	14.7	21298
120	60	40	Gen	47.5	28.3	22640	2860	12.8	19780
80	57	0	FP	41.2	22.0	17600	1895	15.9	15705
Farme	er : Shri	Ram Cł	nander		Vil	lage : Dau	latpur		
Wheat	(HD-228	35)			Year :19	97-98			
0	0	0	С	18.5	-				
131	56	67	T 50	52.2	33.7	26960	3213	13.3	23747
120	60	40	Gen	46.0	27.5	22000	2860	12.5	19140
80	57	0	FP	38.5	20.0	16000	1895	14.6	14105
Farme	r : Shri	Sube S	ingh		Villa	ge : Nanal	kheri		
Wheat	(HD-26	643)	_			ge : Nanal	kheri		
Wheat	(HD-26	6 43)	C	22.0	Year :	1998-99			210.5
Wheat 0 131	(HD-26) 0 22	6 43) 0 56	C T 50	52.7	Year : - 30.7	1998-99 24560	2593	14.7	21967
Wheat 0 131 120	(HD-26) 0 22 60	56 56 40	C T 50 Gen	52.7 47.5	Year: - 30.7 25.5	1998-99 24560 20400	2593 2860	11.6	17540
Wheat 0 131	(HD-26) 0 22	6 43) 0 56	C T 50	52.7	Year : - 30.7	1998-99 24560	2593		
Wheat 0 131 120 80	(HD-26) 0 22 60	643) 0 56 40 0	C T 50 Gen FP	52.7 47.5	Year: - 30.7 25.5 16.6	1998-99 24560 20400	2593 2860 1895	11.6	17540
Wheat 0 131 120 80 Farme	(HD-26) 0 22 60 57	643) 0 56 40 0 Raghu	C T 50 Gen FP	52.7 47.5	Year: - 30.7 25.5 16.6	1998-99 24560 20400 13280 ge: Nanak	2593 2860 1895	11.6	17540
Wheat 0 131 120 80 Farme	(<i>HD-20</i>) 0 22 60 57 er : Shri	643) 0 56 40 0 Raghu	C T 50 Gen FP	52.7 47.5	Year: - 30.7 25.5 16.6 Village	1998-99 24560 20400 13280 ge: Nanak	2593 2860 1895	11.6	17540
Wheat 0 131 120 80 Farme Wheat	(HD-26) 0	643) 0 56 40 0 Raghu	C T 50 Gen FP	52.7 47.5 38.6	Year : 30.7 25.5 16.6 Villag	1998-99 24560 20400 13280 ge: Nanak	2593 2860 1895	11.6	17540
Wheat 0 131 120 80 Farme Wheat 0	(HD-26) 0 22 60 57 er : Shri (HD-26)	643) 0 56 40 0 Raghu	C T 50 Gen FP	52.7 47.5 38.6	Year: 30.7 25.5 16.6 Villag	1998-99 24560 20400 13280 ge: Nanak 998-99	2593 2860 1895 xheri	11.6 12.1	17540 11385
Wheat 0 131 120 80 Farme Wheat 0 107	(HD-26) 0 22 60 57 er : Shri (HD-26) 0 76	643) 0 56 40 0 Raghu 643)	C T 50 Gen FP Nath	52.7 47.5 38.6 18.2 49.6	Year: 30.7 25.5 16.6 Villag Year: 1 - 31.4	1998-99 24560 20400 13280 ge: Nanak 998-99	2593 2860 1895 kheri	11.6 12.1 12.7	17540 11385 21949
Wheat 0 131 120 80 Farme Wheat 0 107 120 80	(HD-26) 0 22 60 57 er : Shri (HD-26) 0 76 60	643) 0 56 40 0 Raghu 643) 0 64 40 0	C T 50 Gen FP Nath	52.7 47.5 38.6 18.2 49.6 44.3	Year: 30.7 25.5 16.6 Villag Year: 1	1998-99 24560 20400 13280 ge: Nanak 998-99 25120 20880	2593 2860 1895 (heri) 3171 2860 1895	11.6 12.1 12.7 11.9	17540 11385 21949 18020
Wheat 0 131 120 80 Farme Wheat 0 107 120 80	(HD-26) 0 22 60 57 er : Shri (HD-26) 0 76 60 57 er : Shri	643) 0 56 40 0 Raghu 643) 0 64 40 0	C T 50 Gen FP Nath	52.7 47.5 38.6 18.2 49.6 44.3	Year: 30.7 25.5 16.6 Villag Year: 1	1998-99 24560 20400 13280 ge: Nanak 998-99 25120 20880 14240 ge: Kanga	2593 2860 1895 (heri) 3171 2860 1895	11.6 12.1 12.7 11.9	17540 11385 21949 18020
Wheat 0 131 120 80 Farme Wheat 0 107 120 80 Farme	(HD-26) 0 22 60 57 er : Shri (HD-26) 0 76 60 57 er : Shri	643) 0 56 40 0 Raghu 643) 0 64 40 0	C T 50 Gen FP Nath	52.7 47.5 38.6 18.2 49.6 44.3	Year: - 30.7 25.5 16.6 Villag Year: 1 - 31.4 26.1 17.8 Villag	1998-99 24560 20400 13280 ge: Nanak 998-99 25120 20880 14240 ge: Kanga	2593 2860 1895 (heri) 3171 2860 1895	11.6 12.1 12.7 11.9	17540 11385 21949 18020
Wheat 0 131 120 80 Farme Wheat 0 107 120 80 Farme Wheat	(HD-26) 0 22 60 57 er : Shri (HD-26) 0 76 60 57 er : Shri (HD-21)	643) 0 56 40 0 Raghu 643) 0 64 40 0 Inder S	C T 50 Gen FP Nath C T 50 Gen FP ingh	52.7 47.5 38.6 18.2 49.6 44.3 36.0	Year: - 30.7 25.5 16.6 Villag Year: 1 - 31.4 26.1 17.8 Villa Year: 199	1998-99 24560 20400 13280 ge: Nanak 998-99 25120 20880 14240 ge: Kanga	2593 2860 1895 (heri) 3171 2860 1895	11.6 12.1 12.7 11.9	17540 11385 21949 18020
Wheat 0 131 120 80 Farme Wheat 0 107 120 80 Farme Wheat 0	(HD-26) 0 22 60 57 er : Shri (HD-26) 0 76 60 57 er : Shri (HD-23)	643) 0 56 40 0 Raghu 643) 0 64 40 0 Inder S	C T 50 Gen FP Nath C T 50 Gen FP	52.7 47.5 38.6 18.2 49.6 44.3 36.0	Year: - 30.7 25.5 16.6 Villag Year: 1 - 31.4 26.1 17.8 Villa Year: 199 -	1998-99 24560 20400 13280 ge: Nanak 998-99 25120 20880 14240 ge: Kanga	2593 2860 1895 kheri 3171 2860 1895 anheri	11.6 12.1 12.7 11.9 13.0	17540 11385 21949 18020 12345

Farme Wheat	er : Shri (<i>HD-2</i> :		u Singh		\ Year : 1999	/illage : Da 9-00	ıulatpur			
0	0	0	С	18.0	-					
109	77	51	T 50	48.8	30.8	24640	3082	13.0	21558	
120	60	40	Gen	44.0	26.0	20800	2860	11.8	17940	
80	57	0	FP	34.2	16.2	12960	1895	11.8	11065	
Farme	er : Shr	i Chan	d Ram		Vil	lage : Bha	rthal			
Wheat	(HD-2	<i>687</i>)			Year : 200	•				
0	0	0	С	18.0	-					
134	22	87	T 50	53.5	35.5	28400	2942	15.9	25458	
120	60	40	Gen	48.0	30.0	24000	2860	13.6	21140	
80	57	0	FP	39.0	21.0	16800	1895	15.3	14905	
Farmer : Shri Rajendra Village : Dorala										
Wheat		•		,	Year : 2002					
0	0	0	С	18.6	-	T				
138	34	0	T 50	52.0	33.4	26720	2304	19.9	24416	
120	60	40	Gen	49.2	30.6	24480	2860	13.9	21620	
80	57	0	FP	41.3	22.7	18160	1895	16.6	16265	
Farme	r : Shr	i Sukhk	oir		Village	: Dorala				
Wheat	(HD-2	<i>687</i>)		7	Year : 2002					
0	0	0	С	20.2	-					
123	70	0	T 50	53.8	33.6	26880	2649	17.4	24231	
120	60	40	Gen	50.6	30.4	24320	2860	13.8	21460	
120	00	40			20.4	1.0220				
80	57	0	FP	40.6	20.4	16320	1895	14.9	14425	
80	57			40.6	L	Dhulsiras	1895	14.9	14425	
80 Farmer	57	0 Ranbir \$		40.6	L	Dhulsiras	1895	14.9	14425	
80 Farmer	57 r : Shri l	0 Ranbir \$		20.8	Village :	Dhulsiras	1895	14.9	14425	
80 Farmer Wheat	57 r : Shri	0 Ranbir \$ 687)	Singh C		Village :	Dhulsiras	2775	14.9	23305	
Farmer Wheat	57 r: Shri (HD-2)	0 Ranbir \$ 687) 0	Singh	20.8	Village : Year : 2	Dhulsiras				
Farmer Wheat 0 145	57 r: Shri (HD-2) 0 10	0 Ranbir \$ 687) 0 74	Singh C T 50	20.8 53.4	Village: Year: 2	Dhulsiras 2003-04 26080	2775	14.2	23305	
80 Farmer Wheat 0 145 120 80	57 (HD-2) 0 10 60 57	0 Ranbir \$ 687) 0 74 40	C T 50 Gen FP	20.8 53.4 46.3	Village : Year : 2	2003-04 26080 20400 14000	2775 2860	14.2 11.6	23305 17540	
80 Farmer Wheat 0 145 120 80 Farmer	57 (HD-2) 0 10 60 57	0 Ranbir S 687) 0 74 40 0 Suraj Bl	C T 50 Gen FP	20.8 53.4 46.3	Village : Year : 2	26080 20400 14000 Dhulsiras	2775 2860	14.2 11.6	23305 17540	
Farmer Wheat 0 145 120 80 Farmer Wheat	57 (HD-2) 0 10 60 57 r: Shri : (HD-2)	0 Ranbir \$ 687) 0 74 40 0 Suraj Bl	C T 50 Gen FP	20.8 53.4 46.3 38.3	Village : Year : 2	26080 20400 14000 Dhulsiras	2775 2860	14.2 11.6	23305 17540	
80 Farmer Wheat 0 145 120 80 Farmer Wheat 0	57 r: Shri (HD-2) 0 10 60 57 r: Shri (HD-2)	0 Ranbir \$ 687) 0 74 40 0 Suraj Bl	C T 50 Gen FP	20.8 53.4 46.3 38.3	Village : Year : 200 - 1 - 200	26080 20400 14000 Dhulsiras	2775 2860 1895	14.2 11.6 12.8	23305 17540 12105	
Farmer Wheat 0 145 120 80 Farmer Wheat	57 (HD-2) 0 10 60 57 r: Shri : (HD-2)	0 Ranbir \$ 687) 0 74 40 0 Suraj Bl	C T 50 Gen FP	20.8 53.4 46.3 38.3	Village : Year : 20	26080 20400 14000 Dhulsiras	2775 2860	14.2 11.6	23305 17540	

Farme	er: Shri	Teeka Ra	am;	Vil	lage : Shi	karpur			
Wheat	t (HD-27.	<i>33</i>)		Ye	ear : 2004-0	05			
0	0	0	C	16.0					
145	22	27	T 50	48.7	32.7	22890	2985	13.4	19905
120	60	40	Gen	44.2	28.2	19740	2860	12.8	16880
80	57	0	FP	37.4	21.4	14980	1895	15.6	13085
Farme	er: Shri	Shrikish	an	,	/illage : C	hhawala			
Wheat	t (<i>PBH-3</i>	<i>43</i>)			Year : 2005	5-06			
0	0	0	C	16.0					
142	16	72	T 50	47.6	31.6	22120	2806	14.2	19314
120	60	40	Gen	43.2	27.2	19040	2860	12.8	16180
80	57	0	FP	34.1	18.1	12670	1895	13.2	10775

1.Uttarakhand (Wheat)

STV for Wheat (UP-2382): Crop : Wheat Variety Soil O.C. Range : UP-2382, UP-2687, : 0.35-0.83% Alkaline KMnO₄-N SD-2285, Rai-3077 : 150-240 kg/ha Olsen's-P Soil : 20-60 kg/ha : Mollisols and Inceptisols : 150-200 kg/ha Situation Amm. Acetate-K : Irrigated Districts : U.S.Nagar FYM composition (%) : 0.345-0.242-0.338 Season developed : Rabi **FYM** rate :10 t/ha

Target range : 40-45 q ha⁻¹ Green manure composition :------
Green manure rate :------

Fertilizer adjustment equations for different yield target.							
Wheat (Var. HD 2687) With FYM	Wheat Var. (UP 2382) With FYM						
FN = 7.96T-0.96 SN-1.04FYM-N	F N (N kg/ha) = 6.28 x YT (q/ha) - 0.67SN-0.371FYM-N						
FP = 1.25T-0.80 SP-0.17 FYM-P	F P (P kg/ha) =0.94 x YT (q/ha) -0.28SP-0.173FYM-P						
FK = 1.99T-0.29 SK-0.44 FYM-K	F K (K kg/ha) = 1.36x YT (q/ha) -0.16SP-0.079FYM-K						

Fertilizer adjustment equations of STCR experiments for different crops under IPNS							
Wheat (Var. HD-2285) Without FYM	Wheat (Var. Raj 3077) Without FYM						
$FN (N, kg/ha) = 2.69 \times YT - 227.49 OC$	$F N (N, kg/ha) = 3.15 \times YT (q/ha) -45.04 OC$						
$F P (P_2O_5, kg/ha) = 2.88 \times YT (q/ha) -0.56 SP$	$F P (P_2O_5, kg/ha) = 2.05 \times YT (q/ha) - 0.50 SP$						
$F K (K_2O kg/ha) = 2.23 x YT (q/ha)-0.05 SK$	$F K (K_2O kg/ha) = 1.77 x YT (q/ha)-0.06 SK$						

Ready reckoners for 40 q/ha yield targets of wheat (UP 2382) based on soil test fertilizer recommendations with 10 t/ha FYM

Initial	soil tests (kg	ha ⁻¹)	Nutrient added (kg ha ⁻¹) for an yield target of 40 q ha ⁻¹				
KmnO ₄ N	P	K	N	P_2O_5	K ₂ O		
150	20	150	137.45	27.81	27.73		
170	30	165	123.99	25.01	25.33		
190	40	180	110.53	22.21	22.93		
210	50	195	97.07	19.41	20.53		
230	60	210	83.61	16.61	18.13		

Applicability: U.S. Nagar, Haridwar, Nainital and some parts of Western U.P.

1. Bihar (Wheat)

Bihar (Young Alluvium Calcareous Soil)

Name of the Centre : RAU,Pusa Soil phosphorus range : 4- 40 kg P_2O_5 /ha Soil : Young alluvium calcoreaus Soil potassium range : 60- 240 kg K_2O /ha

soil Compost composition

Season : Rabi P₂O₅, 0.67 % K₂O

Crop : Wheat Compost rate : 5- 10 t/ha or Target range : 30- 45 q/ha available with

Soil Nitrogen range : 120- 300 kg N /ha farmers

Green manure composition : N.A.

Green manure rate : N. A.

Valid for Districts: East Champaran, West Champaran, Siwan, Saran, Sitamarhi,

Shivhar, Muzaffarpur, Vaishali, Samastipur, Gopalgani, Begusarai,

Part of Khagaria

Soil Test Values : Alk. KMnO₄ – N expressed in **kg N/ha**

Olsen's P expressed in kg P₂O₅/ha
Ammonium OAc – K expressed in kg K₂O/ha

Minimum maintenance dose of fertilizer if soil test value is high: 30 kg N, 15 kg

 P_2O_5 and $10 \text{ kg } K_2O/ha$

: 0.55 % N, 0.25 %

Bihar (Young Alluvium Calcareous Soil) Crop: Wheat

Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basic	Data Data	Targetted Yield Equations	
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	2.1	15.3	35.3	FN = 5.95 T - 0.43 SN
P ₂ O ₅	0.46	20.3	15.2	$FP_2O = 3.03 \text{ T} - 1.34 \text{ SP}_2O_5$
K ₂ O	2.22	51.3	70.3	$FK_2O = 3.16 T - 0.73 SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

Soil Available Nutrients (kg/ha)			Fertilizer Nutrients Required (kg/ha) for Yield Target of								
				30 q/ha		40 q/ha					
N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O			
120	4	60	127	86	51	186	116	83			
130	6	70	123	83	44	182	113	75			
140	8	80	118	80	36	178	110	68			
150	10	90	114	78	29	174	108	61			
160	12	100	110	75	22	169	105	53			
170	14	110	105	72	15	165	102	46			
180	16	120	101	69	10	161	100	39			
190	18	130	97	67	10	156	97	32			
200	20	140	93	64	10	152	94	24			
210	22	150	88	61	10	148	92	17			
220	24	160	84	59	10	143	89	10			
230	26	170	80	56	10	139	86	10			
240	28	180	75	53	10	135	84	10			
250	30	190	71	51	10	131	81	10			
260	32	200	67	48	10	126	78	10			
270	34	210	62	45	10	122	76	10			
280	36	220	58	43	10	118	73	10			
290	38	230	54	40	10	113	70	10			
300	40	240	50	37	10	109	68	10			

2. Bihar (Young Alluvium Calcareous Soil)

Targetted Yield Equations**: (WITH ONLY INORGANIC FERTILIZERS :N, P, K & Zn)

	Bas	ic Data	Targetted Yield Equations	
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	2.04	11.7	33.7	FN = 6.05 T - 0.30 SN
P ₂ O ₅	0.44	35.3	10.4	$FP_2O = 4.27 T - 3.39 SP_2O_5$
K ₂ O	3.29	108.4	32.9	$FK_2O = 10.02 T - 3.30 SK_2O$
Zn	7.46*	14.3	2	F Zn = 0.38 T -7.14 SZn

^{*} g/q of grain production.

^{**} Equations not upto the mark

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

Soil	Availal (kg	ole Nutr /ha)	Fertilizer Nutrients Required (kg/ha) for Yield Target of								
					30 q	/ha			40 (q/ha	
N	P ₂ O ₅	K ₂ O	Zn (ppm)	N	P ₂ O ₅	K ₂ O	Zn	N	P ₂ O ₅	K ₂ O	Zn
120	4	60	0.4	146	115	103	9	206	157	203	12.3
130	6	70	0.5	143	108	70	8	203	150	170	11.6
140	8	80	0.6	140	101	37	7	200	144	137	10.9
150	10	90	0.7	137	94	10	6	197	137	104	10.2
160	12	100	0.8	134	87	10	6	194	130	71	9.5
170	14	110	0.9	131	81	10	5	191	123	38	8.8
180	16	120	1	128	74	10	4	188	117	10	8.1
190	18	130	1.1	125	67	10	4	185	110	10	7.3
200	20	140	1.2	122	60	10	3	182	103	10	6.6
210	22	150	1.3	119	54	10	2	179	96	10	5.9
220	24	160	1.4	116	47	10	1	176	89	10	5.2
230	26	170	1.5	113	40	10	1	173	83	10	4.5
240	28	180	1.6	110	33	10	0	170	76	10	3.8
250	30	190	1.7	107	26	10	0	167	69	10	3.1
260	32	200	1.8	104	20	10	0	164	62	10	2.3
270	34	210	1.9	101	15	10	0	161	56	10	1.6
280	36	220	2	98	15	10	0	158	49	10	0.9
290	38	230	2.1	95	15	10	0	155	42	10	0.2
300	40	240	2.2	92	15	10	0	152	35	10	0

3. Bihar (Young Alluvium Calcareous Soil)

Targetted Yield Equations*: (WITH INORGANIC FERTILIZERS and COMPOST)

	Ba	sic Data		Targeted Yield Equations	
Nutrient	NR	C S	C F	C C	
	(Kg/t)	(%)	(%)	(%)	
N	2	13	30	15.6	FN = 6.67 T - 0.43 SN - 0.52 CN
P_2O_5	0.48	42.9	12.5	10.6	$FP_2O = 3.84 \text{ T} - 3.43 \text{ SP}_2O_5 - 0.85 \text{ CP}_2O_5$
K ₂ O	3.81	79.8	107.5	29.4	$FK_2O = 3.54 T - 0.74 SK_2O - 0.27CK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values Without compost

Soil Ava	Soil Available Nutrients			Fertilizer Nutrients Required (kg/ha) for Yield Target of						
	(kg/ha)			30 q/ha		40 q/ha				
N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
120	4	60	149	101	62	215	140	97		
130	6	70	144	95	54	211	133	90		
140	8	80	140	88	47	207	126	82		
150	10	90	136	81	40	202	119	75		
160	12	100	131	74	32	198	112	68		
170	14	110	127	67	25	194	106	60		
180	16	120	123	60	17	189	99	53		
190	18	130	118	53	10	185	92	45		
200	20	140	114	47	10	181	85	38		
210	22	150	110	40	10	177	78	31		
220	24	160	106	33	10	172	71	23		
230	26	170	101	26	10	168	64	16		
240	28	180	97	19	10	164	58	10		
250	30	190	93	12	10	159	51	10		
260	32	200	88	10	10	155	44	10		
270	34	210	84	10	10	151	37	10		
280	36	220	80	10	10	146	30	10		
290	38	230	75	10	10	142	23	10		
300	40	240	71	10	10	138	16	10		
Reduction	n in Fertilzer	recommenda	ation with the	application	of compost (N -0.55, P2O	5- 0.25 & K2O	- 0.67 %)@		
Nutrients	1 t/ha	2 t/ha	3 t/ha	4 t/ha	5 t/ha	6 t/ha	8 t/ha	10 t/ha		
N	3	6	9	11	14	17	23	29		
P_2O_5	2	4	6	9	11	13	17	21		
K ₂ O	2	4	5	7	9	11	14	18		

4. Bihar (Young Alluvium Calcareous Soil)

Targetted Yield Equations*: (WITH INORGANIC FERTILIZERS and BIOGAS SLURRY)

	Ba	sic Data		Targeted Yield Equations	
Nutrient	NR	C S	C F	C C	
	(Kg/q)	(%)	(%)	(%)	
N	2.16	12.2	42.5	26	FN = 5.08 T - 0.29 SN - 0.63 CN
P_2O_5	0.57	30.4	20.3	16	$FP_2O = 2.81 \text{ T} - 1.50 \text{ SP}_2O_5 - 0.79 \text{ CP}_2O_5$
K ₂ O	3.45	52.4	101.3	68.3	$FK_2O = 3.41 \text{ T} - 0.52 \text{ SK}_2O - 0.67 \text{CK}_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values Without Biogas slurry

Soil Ava	ailable Nu	trients	Fertilize	Fertilizer Nutrients Required (kg/ha) for Yield Target of					
	(kg/ha)			30 q/ha			40 q/ha		
N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
120	4	60	118	78	71	168	106	105	
130	6	70	115	75	66	166	103	100	
140	8	80	112	72	61	163	100	95	
150	10	90	109	69	56	160	97	90	
160	12	100	106	66	50	157	94	84	
170	14	110	103	63	45	154	91	79	
180	16	120	100	60	40	151	88	74	
190	18	130	97	57	35	148	85	69	
200	20	140	94	54	30	145	82	64	
210	22	150	92	51	24	142	79	58	
220	24	160	89	48	19	139	76	53	
230	26	170	86	45	14	137	73	48	
240	28	180	83	42	10	134	70	43	
250	30	190	80	39	10	131	67	38	
260	32	200	77	36	10	128	64	32	
270	34	210	74	33	10	125	61	27	
280	36	220	71	30	10	122	58	22	
290	38	230	68	27	10	119	55	17	
300	40	240	65	24	10	116	52	12	
Reduction in Fertilzer recommendation with the application of biogasslurry (N -0.93, P2O5- 0.45 & K							O5- 0.45 & K	2O- 0.55 %)@	
Nutrients	1 t/ha	2 t/ha	3 t/ha	4 t/ha	5 t/ha	6 t/ha	8 t/ha	10 t/ha	
N	6	12	18	24	30	36	48	60	
P_2O_5	4	7	11	14	18	21	28	36	
K ₂ O	4	7	11	15	18	22	29	37	

5. Bihar (Young Alluvium Calcareous Soil)

Targetted Yield Equations*: (WITH INORGANIC FERTILIZERS and POULTRY MANURE)

	Ba	sic Data		Targeted Yield Equations	
Nutrient	NR	C S	C F	C C	
	(Kg/q)	(%)	(%)	(%)	
N	3.31	22.34	56.62	25.82	FN = 5.85 T - 0.40 SN - 0.46 CN
P_2O_5	0.59	32.11	15.87	6.96	$FP_2O = 3.72 \text{ T} - 2.02 \text{ SP}_2O_5 - 0.44 \text{ CP}_2O_5$
K ₂ O	3.23	45.73	81.5	66.67	$FK_2O = 3.96 T - 0.56 SK_2O - 0.82CK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values Without Poultry manure

Soil Ava	Soil Available Nutrients			er Nutrien	ts Requir	red (kg/ha) for Yield Target of			
	(kg/ha)			30 q/ha			40 q/ha		
N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
120	4	60	128	104	85	186	141	125	
130	6	70	124	99	80	182	137	119	
140	8	80	120	95	74	178	133	114	
150	10	90	116	91	68	174	129	108	
160	12	100	112	87	63	170	125	102	
170	14	110	108	83	57	166	121	97	
180	16	120	104	79	52	162	116	91	
190	18	130	100	75	46	158	112	86	
200	20	140	96	71	40	154	108	80	
210	22	150	92	67	35	150	104	74	
220	24	160	88	63	29	146	100	69	
230	26	170	84	59	24	142	96	63	
240	28	180	80	55	18	138	92	58	
250	30	190	76	51	12	134	88	52	
260	32	200	72	47	10	130	84	46	
270	34	210	68	43	10	126	80	41	
280	36	220	64	39	10	122	76	35	
290	38	230	60	35	10	118	72	30	
300	40	240	56	31	10	114	68	24	
Reduction	in Fertilzer re	ecommendati	on with the a	pplication of	poultry man.	(N -1.47, P2	O5- 1.93 & K	20- 1.15 %)@	
Nutrients	1 t/ha	2 t/ha	3 t/ha	4 t/ha	5 t/ha	6 t/ha	8 t/ha	10 t/ha	
N	7	15	22	30	37	45	60	75	
P_2O_5	5	11	16	21	26	32	42	53	
K ₂ O	6	11	17	23	29	34	46	57	

6. Bihar (Young Alluvium Calcareous Soil)

Targetted Yield Equations*: (WITH INORGANIC FERTILIZERS and MUSTARD OIL CAKE)

	Ba	sic Data			Targeted Yield Equations
Nutrient	NR	C S	C F	C C	
	(Kg/q)	(%)	(%)	(%)	
N	2.02	14.2	39.5	29.3	FN = 5.12 T - 0.36 SN - 0.74 CN
P_2O_5	0.31	38.5	9.1	16	$FP_2O = 3.42 \text{ T} - 4.24 \text{ SP}_2O_5 - 1.76 \text{ CP}_2O_5$
K ₂ O	2.11	41.7	60.3	121.8	$FK_2O = 2.50 T - 0.69 SK_2O - 2.02 CK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values Without Mustard Oil Cake

Soil Ava	ailable Nu	trients	Fertilize	Fertilizer Nutrients Required (kg/ha) for Yield Target							
	(kg/ha)				0	f					
				30 q/ha			40 q/ha				
N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O			
120	4	60	110	86	34	162	120	59			
130	6	70	107	77	27	158	111	52			
140	8	80	103	69	20	154	103	45			
150	10	90	100	60	13	151	94	38			
160	12	100	96	52	10	147	86	31			
170	14	110	92	43	10	144	77	24			
180	16	120	89	35	10	140	69	17			
190	18	130	85	26	10	136	60	10			
200	20	140	82	18	10	133	52	10			
210	22	150	78	15	10	129	44	10			
220	24	160	74	15	10	126	35	10			
230	26	170	71	15	10	122	27	10			
240	28	180	67	15	10	118	18	10			
250	30	190	64	15	10	115	15	10			
260	32	200	60	15	10	111	15	10			
270	34	210	56	15	10	108	15	10			
280	36	220	53	15	10	104	15	10			
290	38	230	49	15	10	100	15	10			
300	40	240	46	15	10	97	15	10			
Reduction	Reduction in Fertilzer recommendation with the application of oil cakes (N -5.20, P2O5- 1.82 & K2O- 1.20 %)@										
Nutrients	1 q/ha	2 q/ha	3 q/ha	4 q/ha	5 q/ha	6 q/ha	8 q/ha	10 q/ha			
N	3.8	7.7	11.5	15.4	19.2	23.1	30.8	38.5			
P_2O_5	3.2	6.4	9.6	12.8	16.0	19.2	25.6	32.0			
K ₂ O	2.4	4.8	7.3	9.7	12.1	14.5	19.4	24.2			

7. Bihar (Wheat)

Bihar (Recent Alluvium Non Calcareous Non Saline Soil)

Name of the Centre : RAU,Pusa Soil phosphorus range : 4- 40 kg P_2O_5 /ha Soil : Recent Alluvium Non- Soil potassium range : 60- 240 kg K_2O /ha

Calcareous Non- Saline Soil Compost composition :N.A.

Season: RabiCompost rate: N.A.Crop: WheatGreen manure composition: N.A.Target range: 30- 40 q/haGreen manure rate: N. A.

Soil Nitrogen range : 120- 300 kg N /ha

Valid for Districts :Purnea, Katihar, Saharsa, Supaul, Madhepura, Araria, Kishanganj,

part of Khagaria, Dabhanga and Madhubani

Bihar (Recent Alluvium Non Calcareous Non Saline Soil) Crop: Wheat Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basic	Data	Targetted Yield Equations	
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	2.36	18.6	16.7	FN = 5.05 T - 0.40 SN
P ₂ O ₅	0.36	25.1	12.1	$FP_2O = 3.0 \text{ T} - 2.11 \text{ SP}_2O_5$
K ₂ O	1.63	11.6	22.8	$FK_2O = 2.10 T - 0.15 SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

Soil A	Soil Available Nutrients (kg/ha)			Fertilizer Nutrients Required (kg/ha) for Yield Target of							
				30 q/ha			40 q/ha				
N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O			
120	4	60	104	82	54	154	112	75			
130	6	70	100	77	53	150	107	74			
140	8	80	96	73	51	146	103	72			
150	10	90	92	69	50	142	99	71			
160	12	100	88	65	48	138	95	69			
170	14	110	84	60	47	134	90	68			
180	16	120	80	56	45	130	86	66			
190	18	130	76	52	44	126	82	65			
200	20	140	72	48	42	122	78	63			
210	22	150	68	44	41	118	74	62			
220	24	160	64	39	39	114	69	60			
230	26	170	60	35	38	110	65	59			
240	28	180	56	31	36	106	61	57			
250	30	190	52	27	35	102	57	56			
260	32	200	48	22	33	98	52	54			
270	34	210	44	18	32	94	48	53			
280	36	220	40	14	30	90	44	51			
290	38	230	36	10	29	86	40	50			
300	40	240	32	10	27	82	36	48			

8. Bihar (Old Alluvium Light Textured Soil)

Name of the Centre : RAU,Pusa : Old Alluvium light Textured Soil potassium range : $4-40 \text{ kg P}_2O_5/ha$: Old Alluvium light Textured Soil Compost composition : $60-240 \text{ kg K}_2O/ha$: $60-240 \text{ kg K}_2O/ha$

Season : Rabi P₂O₅, 0.60 % K₂O

Crop : Wheat Compost rate : 5- 10 t/ha or Target range : 30- 40 q/ha available with

Soil Nitrogen range : 120- 300 kg N /ha farmers

Green manure composition : N.A.

Green manure rate : N. A.

Valid for Districts :Sheikhpura, Mungher, Bhagalpur, Banka, Jamui and Lakhi Sarai

Bihar (Old Alluvium Light Textured Soil) Crop: Wheat

Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basic	Data	Targetted Yield Equations	
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	2.41	16.6	46.3	FN = 5.20 T - 0.36 SN
P ₂ O ₅	0.4	29.3	13.7	$FP_2O = 2.93 \text{ T} - 2.15 \text{ SP}_2O_5$
K ₂ O	1.86	21.1	82.81	$FK_2O = 2.25 T - 0.25 SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

	Soil Available Nutrients					•) for Yield		
	(kg/ha)				(of			
				30 q/ha			40 q/ha		
N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	
120	4	60	113	79	53	165	109	75	
130	6	70	109	75	50	161	104	73	
140	8	80	106	71	48	158	100	70	
150	10	90	102	66	45	154	96	68	
160	12	100	98	62	43	150	91	65	
170	14	110	95	58	40	147	87	63	
180	16	120	91	54	38	143	83	60	
190	18	130	88	49	35	140	79	58	
200	20	140	84	45	33	136	74	55	
210	22	150	80	41	30	132	70	53	
220	24	160	77	36	28	129	66	50	
230	26	170	73	32	25	125	61	48	
240	28	180	70	28	23	122	57	45	
250	30	190	66	23	20	118	53	43	
260	32	200	62	19	18	114	48	40	
270	34	210	59	15	15	111	44	38	
280	36	220	55	11	13	107	40	35	
290	38	230	52	10	10	104	36	33	
300	40	240	48	10	10	100	31	30	

9. Bihar (Old Alluvium Light Textured Soil)

Targetted Yield Equations*(WITH INORGANIC FERTILIZERS and COMPOST)

	Basi	ic Data			Targeted Yield Equations
Nutrie	NR	C S	C F	C C	
nt	(Kg/q)	(%)	(%)	(%)	
N	2.01	9	40.8	8.4	FN = $4.92 \text{ T} - 0.22 \text{ SN} - 0.51 \text{CN}$
P_2O_5	0.54	22.9	12.3	5.2	$FP_2O = 2.62 \text{ T} - 1.18 \text{ SP}_2O_5 - 0.77 \text{ CP}_2O_5$
K ₂ O	2.62	14.3	64.3	16.5	$FK_2O = 3.63 \text{ T} - 0.65 \text{ SK}_2O - 0.60CK_2O$

^{*} Good Equations

Soil Avai	Soil Available Nutrients		Fertilizer 2	Nutrients	Required	(kg/ha) f	or Yield T	Carget of
	(kg/ha)			30 q/ha			40 q/ha	
N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O
120	4	60	121	74	70	170	100	106
130	6	70	119	72	63	168	98	100
140	8	80	117	69	57	166	95	93
150	10	90	115	67	50	164	93	87
160	12	100	112	64	44	162	91	80
170	14	110	110	62	37	159	88	74
180	16	120	108	60	31	157	86	67
190	18	130	106	57	24	155	84	61
200	20	140	104	55	18	153	81	54
210	22	150	101	53	11	151	79	48
220	24	160	99	50	10	148	76	41
230	26	170	97	48	10	146	74	35
240	28	180	95	46	10	144	72	28
250	30	190	93	43	10	142	69	22
260	32	200	90	41	10	140	67	15
270	34	210	88	38	10	137	65	10
280	36	220	86	36	10	135	62	10
290	38	230	84	34	10	133	60	10
300	40	240	82	31	10	131	58	10
Reduction	on in Fertilze	er recommena	lation with the a	oplication of c	ompost (N -1.	04, P2O5- 0.2	23 & K2O- 0.6	0%)@
Nutrients	1 t/ha	2 t/ha	3 t/ha	4 t/ha	5 t/ha	6 t/ha	8 t/ha	10 t/ha
N	5	11	16	21	27	32	42	53
P_2O_5	2	4	5	7	9	11	14	18
K ₂ O	4	8	12	16	20	24	32	40

10. Bihar (Old Alluvium Heavy Textured Soil)

Name of the Centre : RAU,Pusa Soil phosphorus range : 4- 40 kg P_2O_5 /ha Soil : Old Alluvium Heavy Textured Soil potassium range : 60- 240 kg K_2O /ha

Soil Compost composition : N.A.

Season: RabiCompost rate: N. A.Crop: WheatGreen manure composition: N. A.Target range: 40-50 q/haGreen manure rate: N. A.

Soil Nitrogen range : 120- 300 kg N /ha

Valid for Districts :Rohtas, Bhojpur, Buxar, Bhabhua, Arwal, Patna, Nalanda,

Nawadah, Jehanabad, Aurangabad and Gaya

Bihar (Old Alluvium Heavy Textured Soil) Crop: Wheat Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basi	c Data	Targetted Yield Equations	
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	2.31	13.2	56.9	FN = 4.06 T - 0.23 SN
P ₂ O ₅	0.42	30.3	20.7	$FP_2O = 2.03 T - 1.46 SP_2O_5$
K ₂ O	1.76	17	104.2	$FK_2O = 1.69 T - 0.16 SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

Soil A	Soil Available Nutrients (kg/ha)			er Nutrier	_	red (kg/ha of) for Yield	l Target
	(kg/lla)			40 q/ha		50 q/ha		
N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O
120	4	60	94	55	41	156	75	58
130	6	70	92	52	40	154	72	56
140	8	80	90	49	38	152	70	55
150	10	90	87	46	36	150	67	53
160	12	100	85	43	35	147	64	52
170	14	110	83	40	33	145	61	50
180	16	120	80	38	32	143	58	48
190	18	130	78	35	30	140	55	47
200	20	140	76	32	28	138	52	45
210	22	150	74	29	27	136	49	44
220	24	160	71	26	25	133	46	42
230	26	170	69	23	24	131	43	40
240	28	180	67	20	22	129	40	39
250	30	190	64	17	20	127	37	37
260	32	200	62	14	19	124	34	36
270	34	210	60	11	17	122	32	34
280	36	220	57	10	16	120	29	32
290	38	230	55	10	14	117	26	31
300	40	240	53	10	12	115	23	29

1. Jharkhand (Wheat)

Name of the Centre : RAU,Pusa Soil phosphorus range : 4- 30 kg P_2O_5 /ha Soil : Red Loam Soil Soil potassium range : 60- 190 kg K_2O /ha

Season : Rabi Compost composition : N. A.

Crop : Wheat Compost rate : N. A.

Target range : 25- 30 q/ha Green manure composition : N. A.

Soil Nitrogen range : 120- 250 kg N /ha Green manure rate : N. A.

Valid for Districts : All districts of Jharkhand state having red loam / laterite soil

Soil Test Values : Alk. $KMnO_4 - N$ expressed in **kg N/ha**

Bray's P_1 expressed in $kg P_2O_5/ha$

Ammonium OAc – K expressed in kg K₂O/ha

Minimum maintenance dose of fertilizer if soil test value is high:

25 kg N, 15 kg P_2O_5 and 10 kg K_2O/ha

Soil: Red Loam Soils of Jharkhand Crop: Wheat

Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basic	. Data	Targetted Yield Equations	
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	2.33	17.7	48.1	FN = 4.84 T - 0.36 SN
P_2O_5	0.32	12.7	10.9	$FP_2O5 = 2.94 \text{ T} - 1.63 \text{ SP}_2O_5$
K ₂ O	1.31	10.8	65.3	$FK_2O = 2.01 T - 0.16 SK_2O$

* Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

Soil Available Nutrients (kg/ha)			Fertilizer Nutrients Required (kg/ha) for Yield Target of							
				20 q/ha			30 q/ha			
N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
120	4	60	54	52	31	102	82	51		
130	6	70	50	49	29	98	78	49		
140	8	80	46	46	27	95	75	48		
150	10	90	43	43	26	91	72	46		
160	12	100	39	39	24	88	69	44		
170	14	110	36	36	23	84	65	43		
180	16	120	32	33	21	80	62	41		
190	18	130	30	29	19	77	59	40		
200	20	140	25	26	18	73	56	38		
210	22	150	25	23	16	70	52	36		
220	24	160	25	20	15	66	49	35		
230	26	170	25	16	13	62	46	33		
240	28	180	25	15	11	59	43	32		
250	30	190	25	15	10	55	39	30		

1. West Bengal (Wheat)

Soil Nitrogen range : 239 - 310 kg.ha⁻¹ Crop : Kalyani, BCKV : Wheat (cv. UP-262) : 17 - 28 kg.ha⁻¹ Variety Soil phosphorus range : 72 - 225 kg.ha⁻¹ Soil potassium range Soil : Inceptisol **FYM** composition : NA Situation : Irrigated FYM rate : NA **Districts** : Nadia : Rabi, 2002-2003 Season developed Green manure composition : NA : 25-30q ha⁻¹ Target range Green manure rate : NA

T (1)

Fertilizer adjustment equations:

 $FN = 12.88 \ T - 0.80 \ SN, \qquad FP_2O_5 = 2.15 \ T - 0.23 \ SP, \qquad FK_2O = 4.65 \ T - 0.29 \ SK$

Fertilizer levels (kg.ha ⁻¹)	N	0, 80, 100, 120	
	P ₂ O ₅	0, 40, 50	
	K ₂ O	0, 40, 50	
Initial soil test values (kg.ha ⁻¹)	KMnO ₄ -N	239 - 310	
	Olsen-P	17 - 28	
	NH ₄ OAc-K	72 - 225	
Yield (kg.ha ⁻¹)	Control plot	1464 - 2042	
	Treated plot	2459 - 2773	

Ready-reckoner* of fertilizer doses at varying soil test values for specific yield target

Availa	Available soil nutrients			Fertilizer nutrient required (kg.ha ⁻¹)							
(kg.ha ⁻¹)			Targeted	yield 2.5 t l	na ⁻¹	Targeted yield 3.0 t ha ⁻¹					
N	Р	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O			
250	5	100	122	53	58	126	63	82			
275	10	150	102	51	58	126	62	82			
300	15	200	82	50	58	126	61	82			
325	20	250	62	49	44	126	60	67			
350	25	300	62	48	29	106	59	53			
375	30	350	42	47	15	86	58	38			

^{*} A minor modification was made in the ready-reckoner.

2. West Bengale (Wheat)

Soil Nitrogen range : 283 - 387 kg.ha⁻¹ Crop : Kalyani, BCKV Variety : Wheat (cv. PBW - 343) Soil phosphorus range : 25 - 40 kg.ha⁻¹ : 71- 180 kg.ha⁻¹ Soil : Inceptisol Soil potassium range **FYM** composition : NA Situation : Irrigated FYM rate : NA **Districts** : Nadia Season developed : Rabi, 2003-'04 Green manure composition : NA Target range : 45-50q ha⁻¹ Green manure rate : NA

Fertilizer adjustment equations:

 $FN = 3.03 \text{ T} - .18 \text{ SN}, FP_2O_5 = 1.35\text{T} - 0.23\text{SP}, FK_2O = 2.15 \text{ T} - 0.29 \text{ SK}$

	,	
Fertilizer levels (kg.ha ⁻¹)	N	0, 80, 100, 120
	P ₂ O ₅	0, 40, 50
	K ₂ O	0, 40, 50
Initial soil test values	KMnO₄-N	283 – 387
(kg.ha ⁻¹)	Olsen-P	25 - 40
	NH₄OAc-K	71- 180
Yield (kg.ha ⁻¹)	Control plot	550 - 580
	Treated plot	1947 - 2200

Ready-reckoner* of fertilizer doses at varying soil test values for specific yield target

Availa	Available soil nutrients			Fertilizer nutrient required (kg.ha ⁻¹)						
	(kg.ha⁻¹)			Targeted yield 4.5 t.ha ⁻¹			Targeted yield 5.0 t.ha ⁻¹			
N	Р	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
250	5	100	122	73	89	137	80	100		
275	10	150	117	72	75	132	79	86		
300	15	200	113	71	60	128	78	71		
325	20	250	108	70	46	123	76	57		
350	25	300	104	69	31	119	75	42		
375	30	350	99	67	17	114	74	28		

^{*} A minor modification was made in the ready-reckoner.

*In a few cases when calculated fertiliser requirement values were almost zero, a minimum dose say 20 kg for N and 10 kg. ha⁻¹ each for P and K were added to the calculated values particularly for the cereal and oilseed crops. While for groundnut crop (legume) these values for N was 5.0 kg but for P and K it was 10 kg each. Contrarily, when the calculated values of fertiliser doses were very high/high, the values nearer to the reasonable ones were used for the ready-reckoners. Targeted yield equations used for the verification trials are given below:

Targeted yield equations used for the verification trials are given below:

Wheat (cv. UP-262) $FN = 12.88 \ T - 0.80 \ SN, \qquad FP_2O_5 = 2.15 \ T - 0.23 \ SP, \qquad FK_2O = 4.65 \ T - 0.29 \ SK$

Verification trials for Wheat (mean of 6 trials)

Treatment	Grain yield (kg.ha ⁻¹)	Straw yield (kg.ha ⁻¹)
T ₁ - Farmers' practice	2507	5123
T ₂ - Govt. recommended dose	2500	5233
T ₃ - Soil test based fertilizer dose for targeted yield of 2.5 t ha ⁻¹	2533	5000
T ₄ - Soil test based fertilizer dose for Targeted yield of 3.0 t ha ⁻¹ .	3061	5667

Applicability: All the equations are valid for Nadia, Burdwan, Murshidabad, 24 pgs North districts

Comparative economics of different fertilizer schedules under verification trials for wheat, rape and kharif rice

	Profit (Rs.ha ⁻¹) over T ₁					
Treatment adopted	Wheat	Rape	Kharif rice			
Farmers' practice (T ₁)	•	-	-			
Govt. recommended dose (T ₂)	- 69 to + 148	+ 413 to 1210	- 193 to + 360			
Soil test based fertilizer dose targeting 2.5/1.0/3.5 t ha $^{\text{-}1}$ yield (T_3)	+ 1260 to 1870	+ 1341 to 2134	+ 291 to 570			
Soil test based fertilizer dose targeting 3.0/1.2/4.0 t ha ⁻¹	+ 4543 to 5216	+ 3083 to 3670	+ 983 to 1132			
yield (T ₄)						

1. Hisar (Haryana) Wheat

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Wheat(WH 711)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Rabi

Target range : 45 to 55 q/ha **Soil nitrogen range** : 80 to 240 kg/ha **Soil phosphorus range** : 4 to 32 kg/ha

FYM composition : $1.00\% \text{ N}, 0.62\% \text{ P}_2\text{O}_5$

FYM rate : 15 t/ha

Targeted yield equations:

FN = 5.22T - 1.04SN - 0.12 FYM (N), $FP_2O_5 = 2.38T - 4.06 SP - 0.14 FYM (P_2O_5)*$

Ready reckoner of soil test based fertilizer recommendations for 45, 50 and 55 q/ha grain yield of wheat (WH 711)

SN*	Targ	geted yield (d	q/ha)	SP*	Targ	geted yield (d	q/ha)
(kg/ha)	45	50	55	(kg/ha)	45	50	55
	FN (F	ertilizer N, l	kg/ha)		FP ₂ O ₅ (F	ertilizer P ₂ C) ₅ , kg/ha)
80	152	178	204	4	91	103	115
90	141	167	193	6	83	95	107
100	131	157	183	8	75	87	98
110	121	147	173	10	66	78	90
120	110	136	162	12	58	70	82
140	89	115	142	14	50	62	74
160	69	95	121	16	42	54	66
180	48	74	100	20	26	38	50
200	38	53	79	24	15	22	33
220	38	38	58	28	15	15	17
240	38	38	38	32	15	15	15

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Yield target (q/ha) FYM(N) and FYM(P₂O₅) are N and P₂O₅ (kg/ha), respectively in applied FYM

Note : The dose of fertilizer N and P_2O_5 be reduced by 1.25 and 1.00 kg/ha, respectively, from above fertilizer doses for each ton of applied FYM/compost.

Verification: These fertilizer adjustment equations were verified at farmers fields in

different districts of Haryana. The yield targets were achieved within -6.2

to +5.0 per cent deviations.

Applicability: These fertilizer adjustment equations will hold good throught Haryana state.

2. Hisar (Haryana) Wheat

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Wheat(WH 542)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated Season developed : Rabi

Target range : 45 to 55 q/ha Soil nitrogen range : 80 to 240 kg/ha Soil phosphorus range : 4 to 32 kg/ha

Targeted yield equations :

 $FN = 5.65T - 1.34 SN, FP_2O_5 = 1.91T - 2.19 SP *$

Ready reckoner of soil test based fertilizer recommendations for wheat (WH 542) grain yield of 45, 50 and 55 q/ha

SN*	Targ	Targeted yield (q/ha)			Targeted yield (q/ha)			
(kg/ha)	45	50	55	(kg/ha)	45	50	55	
	FN (F	ertilizer N,	kg/ha)		FP ₂ O ₅ (Fertiilzer P ₂ C	O ₅ , kg/ha)	
80	147	175	204	4	77	87	96	
90	133	161	190	6	73	82	92	
100	120	148	177	8	68	78	87	
110	103	134	163	10	64	74	83	
120	93	121	150	12	60	69	79	
140	66	97	123	14	55	65	74	
160	39	67	96	16	51	60	80	
180	38	41	70	20	42	52	61	
200	38	38	42	24	33	43	52	
220	38	38	38	28	24	34	43	
240	38	38	38	32	15	25	34	

^{*}SN and SP are available N and P (kg/ha), respectively, T = Yield target (q/ha)

Verification: These fertilizer adjustment equations for yield targets were verified at farmers'

fields in various agro-climatic zones of Haryana. The yield targets of $45\ \mathrm{and}\ 50$

q/ha were achieved within -5.0 to +4.4% deviations.

Applicability: These fertilizer adjustment equations will hold good throughout Haryana for high

yielding varieties of wheat

3. Hisar (Haryana) Durum Wheat

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Durum Wheat(WH 896)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Rabi

Target range : 35 to 45 q/ha **Soil nitrogen range** : 80 to 240 kg/ha **Soil phosphorus range** : 4 to 32 kg/ha

Targeted yield equations :

 $FN = 6.08T - 1.19 SN, FP_2O_5 = 2.58T - 3.68 SP*$

Ready reckoner of soil test based fertilizer recommendations for durum wheat (WH 896) grain yield of 35, 40 and 45 q/ha

SN*	Targ	Targeted yield (q/ha)			Tar	Targeted yield (q/ha)			
(kg/ha)	35	40	45	(kg/ha)	35	40	45		
	FN (F	ertilizer N,	kg/ha)		FP ₂ O ₅ (I	Fertiilzer P ₂ O	5, kg/ha)		
80	118	148	178	4	76	89	101		
90	106	136	167	6	68	81	94		
100	94	124	155	8	61	74	87		
110	82	112	131	10	53	66	79		
120	70	100	107	12	46	59	72		
140	46	77	83	14	39	52	64		
160	38	53	59	16	31	44	57		
180	38	38	38	20	17	30	43		
200	38	38	38	24	15	15	28		
220	38	38	38	28	15	15	15		
240	38	38	38	32	15	15	15		

^{*}SN and SP are available N and P (kg/ha), respectively, T = Yield target (q/ha)

Verification: These fertilizer adjustment equations for yield targets were verified at farmers'

fields in various agro-climatic zones of Haryana. The yield targets of 35, 40 and

45q/ha were achieved within $\pm 5.5\%$ deviations.

Applicability: These fertilizer adjustment equations will hold good throughout Haryana for high

yielding varieties of durum wheat

4. Hisar (Haryana) Durum Wheat

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety: Durum Wheat (WH 912)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Rabi

Target range : 40 to 50 q/ha **Soil nitrogen range** : 80 to 240 kg/ha **Soil phosphorus range** : 4 to 32 kg/ha

FYM composition : $1.00\% \text{ N}, 0.62\% \text{ P}_2\text{O}_5$

FYM rate : 15 t/ha

Targeted yield equations: FN =5.57T-1.04SN-0.15 FYM (N)

 $FP_2O_5 = 2.12T-2.68 SP - 0.16 FYM (P_2O_5) *$

Ready reckoner of soil test based fertilizer recommendations for 40, 45 and 50 q/ha grain vield of durum wheat (WH 912)

SN*	Tar	geted yield (q/ha)	SP*	Targ	geted yield (q/ha)
(kg/ha)	40	45	50	(kg/ha)	40	45	50
	FN (I	Fertilizer N,	kg/ha)		FP ₂ O ₅ (F	ertilizer P ₂ () ₅ , kg/ha)
80	140	168	196	4	74	85	96
90	129	157	185	6	69	79	90
100	119	147	175	8	63	74	85
110	108	136	164	10	58	69	79
120	98	126	154	12	53	63	74
140	77	105	133	14	47	58	68
160	56	84	112	16	42	53	63
180	38	64	92	20	31	42	52
200	38	43	71	24	21	31	42
220	38	38	50	28	15	20	31
240	38	38	38	32	15	15	20

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Yield target (q/ha) FYM(N) and FYM(P₂O₅) are N and P₂O₅ (kg/ha), respectively in applied FYM

Note : The dose of fertilizer N and P_2O_5 be reduced by 1.50 and 1.25 kg/ha, respectively, from above fertilizer doses for each ton of applied FYM/compost.

Verification: These fertilizer adjustment equations were verified and yield targets were

achieved within \pm 5.0 % deviations.

Applicability: These fertilizer adjustment equations will hold good for durum wheat throughout Haryana

1. Chhattisgarh (Wheat)

Crop - Wheat

Soil type - Vertisol Variety - Swati

Season - *Rabi*, 1986-87

Area for Suitability - Raipur, Durg, Rajnandgaon, Kawardha, Jashpur,

Korba and Bilaspur districts

Fertilizer adjustment equations

FN = 7.69 Y - 0.34 SN

 $FP_2O_5 = 7.89 \text{ Y}-12.99 \text{ SP}$

 $FK_2O = No K \text{ if } SK > 250 \text{ kg ha}^{-1}$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of wheat (Sujata) in Vertisol (Kanhar).

Alkaline KMnO ₄ -	Olsen's P	,	Yield Targets (q ha ⁻¹) wheat (var Swati)							
N (kg ha ⁻	(kg ha ⁻¹)	15		2	20	2	5			
,		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	3	64	79	103	118	141	158			
175	6	56	40	94	79	133	119			
200	9	47	2	86	40	124	80			
225	12	39	2	77	2	116	41			
250	15	30	2	69	2	107	2			
275	18	22	2	60	2	99	2			
300	21	13	2	52	2	90	2			
350	24	5	2	35	2	73	2			
400	28	5	2	18	2	56	2			

2. Crop Wheat Soil type Inceptisol Variety Swati

Rabi, 1990-91 Season

Area for suitability - Raipur, Durg, Mahasamund, Bilaspur, Raigarh,

Janigir, Dhamtari districts

Fertilizer adjustment equations

FN = 6.99 Y - 0.41 SN

 $FP_2O_5 = 115 - (13114 - 460.8Y)^{1/2} - 3.45 \text{ SP}$ $FK_2O = \text{No K if SK} > 250 \text{ kg ha}^{-1}$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of

wheat (Swati) in Inceptisol (Matasi).

Alkaline KMnO ₄ -	Olsen's P	Yield Targets (q ha ⁻¹)) wheat (var Swati)								
N (kg ha ⁻	(kg ha ⁻¹)	15		2	20	25				
,		FN	FN FP ₂ O ₅		FP ₂ O ₅	FN	FP ₂ O ₅			
150	3	43	26	78	42	113	65			
175	6	33	16	68	32	103	54			
200	9	23	5	58	22	93	44			
225	12	13	5	48	11	83	34			
250	15	3	5	37	5	72	23			
275	18	3	5	27	5	62	13			
300	21	3	5	17	5	52	5			
350	24	3	5	0	0 5		5			
400	28	3	5	0	5	11	5			

3. Crop - Wheat Soil type - Vertisol variety - Sujata

Season - *Rabi*, 2003-04

Area for suitability - Raipur, Durg, Rajnandgaon, Kawardha, Jashpur and Bilaspur districts

Fertilizer adjustment equations

$$\begin{split} FN &= 6.51 \ Y - (0.285 \ SN + 3.73 \ t \ FYM) \\ FP_2O_5 &= 189 \ \text{-} \ (35721 - 1111Y)^{1/2} - (2.78 \ SP \ + 6.25 \ t \ FYM) \\ FK_2O &= No \ K \ if \ SK > 250 \ kg \ ha^{-1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of wheat (Sujata) in Vertisol (Kanhar).

Alkaline KMnO ₄ -	Sujata)							
N (kg ha	P (kg ha ⁻¹)	1	5	2	0	25		
1)		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	
150	3	55	43	87	64	120	92	
175	6	48	34	80	56	113	83	
200	9	41	26	73	48	106	75	
225	12	34	18	66	39	99	66	
250	15	26	9	59	31	92	58	
275	18	19	6	52	23	84	50	
300	21	12	6	45	14	77	41	
350	24	7	6	31	6	63	33	
400	28	7	6	16	6	49	22	

Ready reckoners on soil test based fertilizer recommendations with INM (5 ton

FYM) for specific yield targets of wheat (Sujata) in Vertisol (Kanhar).

Alkaline KMnO ₄ -N	Olsen's P	Yield Targets (q ha ⁻¹) wheat (var Sujata)							
(kg ha ⁻¹)	(kg ha ⁻¹)	1	5	2	20	25			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	36	11	69	33	101	60		
175	6	29	3	62	25	94	52		
200	9	22	3	55	17	87	44		
225	12	15	3	47	8	80	35		
250	15	8	3	40	3	73	27		
275	18	5	3	33	3	66	19		
300	21	5	3	26	3	59	10		
350	24	5	3	12	3	44	3		
400	28	5	3	5	3	30	3		

1. Bikaner, Wheat

: 110-180 kg ha⁻¹ Name of the center : ARS, Bikaner Soil nitrogen range 25-60 kg ha⁻¹ Soil : Alluvial soils (Adsar **Soil Phosphorus**

> and Khiran series) range

: 210-350 kg ha⁻¹ Crop and variety : Wheat (Raj.-1482) Soil potassium range

Season developed : Rabi 1997-98 and

1999-2000

: 25-30 q ha⁻¹ Target range

Fertilizer adjustment equation

FN = 8.54T - 0.63 SN $FP_2O_5 = 6.93 \text{ T} - 3.72 \text{ SP}_2O_5$ $FK_2O = 7.21 T - 0.55 SK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil a	available n	utrient								
	(kg ha-1))	Fertilizer nutrient required (kg ha ⁻¹) for yield target of							
KMnO ₄	Olsens'	Amm.Ac.		25 q ha ⁻¹			30 q ha ⁻¹			
\mathbf{N}	P	-K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
110	25	210	144	80	65	180	80	70		
120	30	230	138	62	54	180	80	70		
130	35	250	132	43	43	174	78	70		
140	40	270	125	30	32	168	59	68		
150	45	290	119	30	21	162	41	57		
160	50	310	113	30	20	155	30	46		
170	55	330	106	30	20	149	30	35		
180	60	350	100	30	20	143	30	24		

Verification: The above fertilizer adjustment equations were tried on the farmers' fields in Bikaner district with varying yield targets during Rabi 2000-01 and all the yield targets could be achieved at the place tried Applicability

Soil testing laboratory : Bikaner

Soil : Sobhasar, Khiran, Jamsar, Bhamatsar series

Crop and variety : Wheat (Raj-1482)

Target range : 25-30 q ha⁻¹
Soil nitrogen range : 110-180 kg ha⁻¹
Soil phosphorus range : 25-60 kg ha⁻¹
Soil potassium range: 210-350 kg ha⁻¹

2. Bikaner, wheat

Name of the center : ARS, Bikaner Soil nitrogen range : 90-170 kg ha⁻¹ Soil : Alluvial soils Soil Phosphorus : 20-60 kg ha⁻¹

(Adsar and range

Khiran series)

Crop and variety : Wheat (Raj- Soil potassium range : 210-370 kg ha⁻¹

3077)

Season developed : Rabi-2000-01 FYM composition : 0.61% N, 0.25% P₂O₅

and 0.35% K₂O

Target range : 25-30 q ha⁻¹ FYM rate : 5 t ha⁻¹

Fertilizer adjustment equation

FN = 7.87T - 0.76 SN - 0.50 ON

 $FP_2O_5 = 3.04 \text{ T} - 1.50 \text{ S} P_2O_5 - 0.45 \text{ OP}_2O_5$ $FK_2O = 4.07 \text{ T} - 0.26 \text{ SK}_2O - 0.53 \text{ OK}_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil a	Soil available nutrient			Fertilizer nutrient required (kg ha ⁻¹) with 5 t ha ⁻¹ FYM for						
	(kg ha ⁻¹)				yield t	arget of				
KMnO ₄	Olsens'	Amm.Ac.		25 q ha ⁻¹	<u> </u>		30 q ha ⁻¹	T		
N	P_2O_5	- K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
90	20	210	113	40	38	152	56	58		
100	25	230	106	33	33	145	48	53		
110	30	250	98	25	27	137	41	48		
120	35	270	90	20	22	130	33	43		
130	40	290	83	20	17	122	26	37		
140	45	310	75	20	15	114	20	32		
150	50	330	68	20	15	107	20	27		
160	55	350	60	20	15	99	20	22		
170	60	370	52	20	15	92	20	17		

Verification: The above fertilizer adjustment equations were tried on the farmers' fields in Bikaner district with varying yield targets during Rabi-2002-03 and 2003-04 and all the yield targets could be achieved at the place tried

Applicability

Soil testing laboratory : Bikaner

Soil : Adsar, Khiran, Jamsar, Gajner series

Crop and variety : Wheat (Raj-3077)
Target range : 25-30 q ha⁻¹
Soil nitrogen range : 90-1760 kg ha⁻¹

Soil phosphorus range : 20-60 kg ha⁻¹

Soil potassium range : 210-370 kg ha⁻¹

1. Jabalpur, Wheat

Crop	:	Wheat
Soil Type	:	Shallow, Medium black and Deep black soils
Varieties	:	Narmada -4, Kalyan sona, Lok-1, Shera, GW 272
Yield (q ha ⁻¹)	:	30 - 60
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100- 500; P: 5- 25 K: 100-500
Districts	:	Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,, Narsinghpur,
		Powarkheda, Rewa, Satna, Sagar, Sehore, Ujjain.

Equation for Calculating the fertilizer nutrient Requirement:

FN = 4.40 T - 0.40 SN $FP_2O_5 = 4.00 \text{ T} - 4.58 \text{ SP}$ $FK_2O = 2.53 \text{ T} - 0.16 \text{ SK}$

Soil test	Values (k	ag ha ⁻¹)	Fertil	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)							
				35			40				
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O			
100	5	200	114	111	57	136	131	69			
150	10	250	94	83	49	116	103	61			
200	15	300	74	54	41	96	74	53			
250	20	350	54	25	33	76	45	45			
300	25	400	34	-	25	56	17	37			

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 4.4 kg ha⁻¹; P₂O₅= \pm 4.0 kg ha⁻¹ and K₂O= \pm 2.5 kg ha⁻¹

Rahuri, (Maharashtra), Wheat

Crop : Wheat (Rabi) Variety:HD-2189 Soil : Vertic Haplustepts Situation:Irrigated

Districts : Ahmednagar, Pune, Jalgaon, Nasik, Aurangabad, Parbhani, Jalna,

Akola, Buldhana, Wardha, Yawatmal, Satara, Sangli, Kolhapur,

Dhule, Nandurbar.

Basic Data

Nutrient	$NR (kg q^{-1})$	CS (%)	CF (%)
N	2.51	24.7	33.4
P ₂ O ₅	1.07	70.9	56.3
K ₂ O	2.25	16.7	90.2

Targeted Yield Equations

FN = 7.54 T - 0.74 SN

 $FP_2O_5 = 1.90 T - 2.88 SP$

 $FK_2O = 2.49 T - 0.22 SK$

Fertilizer prescription for targeted yields of wheat for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)							
Soil tes	Soil test values (kg ha ⁻¹)			q ha ⁻¹ targ	et	50 q ha ⁻¹ target				
N	D	17	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
N	P	K								
100	6	250	237	59	45	303	78	69		
120	8	275	222	53	40	288	72	64		
140	10	300	207	47	34	273	66	58		
160	12	325	193	41	29	259	60	53		
180	14	350	178	36	23	244	55	47		
200	16	375	163	30	18	229	49	42		
220	18	400	149	25*	25*	214	43	36		
240	20	425	133	25*	25*	199	37	31		
260	22	450	118	25*	25*	185	32	25		
280	24	475	103	25*	25*	170	26	20		
300	26	500	80	25*	25*	155	20	15		

^{*} Minimum dose of P₂O₅ and K₂O

Maize

1. Andhra Pradesh (MAIZE – Kharif)

Name of the Centre : Jagtial Soil phosphorus range : 10 – 60 kg ha⁻¹

Soil : Chalka soils Soil potassium range : 150 – 650 kg ha⁻¹

Crop and Variety : Maize-DHM-105 FYM composition :

Season developed : Kharif, 1995 FYM rate :

Season developed : *Kharif*, 1995 FYM rate : Target range : 40 q ha⁻¹ – 50 q ha⁻¹ Green manure composition : Soil Nitrogen range : 150 – 400 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 4.19 T - 0.40 SN, FP₂O₅ = 1.50 T - 1.55 SP, FK₂O = 1.49 T - 0.16 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	ailable nutr (kg ha ⁻¹)	ient	Fertilizer nutrient required (kg ha ⁻¹) for yield target of						
Kmn	Olsens'	Amm.		40 (q ha ⁻¹)			50 (q ha ⁻¹)		
O ₄ N	Р	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
150	10	150	108	45	36	150	60	51	
175	15	200	98	37	28	140	52	43	
200	20	250	88	29	20	130	44	35	
225	25	300	78	21	12	120	36	27	
250	30	350	68	14	4	110	29	19	
275	35	400	58	6		90	21	11	
300	40	450	48	0		80	13	3	
325	45	500	38			70	5	0	
350	50	550	28			60			
375	55	600	18			50			

Verification: The above results are yet to be verified on the farmers' fields.

Applicability

Soil Testing Laboratories :Karimnagar, Warangal, Nizamabad and Sanga Reddy

Soil type : Chalka soils

Crop : Maize Season developed : *Kharif*

Yield target : Upto 50 q ha⁻¹

Note: The above equations may be verified in black soils with three or four targets and

pickup the best one for making recommendations.

2. Andhra Pradesh (Maize)

Name of the Centre : 10 - 60 kg ha⁻¹ : Rajendranagar Soil phosphorus range : 150 – 650 kg ha⁻¹ Soil : Chalka soils Soil potassium range

Crop and Variety : Maize-DHM-101 **FYM** composition : Season developed : Rabi, 1981-82 & **FYM** rate :

1982-83 (pooled data) Green manure composition

: 40 q ha⁻¹ – 50 q ha⁻¹ Green manure rate Target range

: 150 - 400 kg ha⁻¹ Soil Nitrogen range

Fertilizer adjustment equations

= 4.00 T - 0.49 SN $FP_2O_5 = 2.15 T - 2.58 SP$ $FK_2O = 2.58 T - 0.30 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	Soil available nutrient (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for yield target of						
Kmn	Olsens'	Amm.		40 (q ha ⁻¹)			50 (q ha ⁻¹)			
O ₄ N	Р	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
150	10	150	127	82	99	167	113	110		
175	15	200	114	69	84	154	90	95		
200	20	250	102	56	69	142	77	80		
225	25	300	90	43	54	130	65	65		
250	30	350	78	30	39	118	52	50		
275	35	400	65	17	24	105	40	35		
300	40	450	53	0	9	93	27	20		
325	45	500	41		0	81	15	5		
350	50	550	29			69	2	0		
375	55	600	16			56	0			
400	60	650	4			44				

Verification: The above equations are yet to be verified on the farmers' fields.

Applicability

Soil Testing Laboratories :Rajendranagar, Jadcherla and Sanga Reddy

Soil type :Chalka soils

:Maize Crop :Rabi Season developed

:Upto 60 q ha⁻¹ Yield target

Note: The above equations may be verified in black soils with three or four targets and pickup

the best one for making recommendations

1. Bangalore, Karnataka (Maize) Zone-5

Crop : Maize(Deccan Target range : 20q/acre

hybrid

and Other HYV)
Soil phosphorus range

: Red lateritic Soil potassium range :60-140 kg/acre FYM

:40-100 kg/acre

Season : Kharif composition :0.5N,0.2P,0.5K

Variety : Deccan Hybrid FYM rate 4/t acre

Area of Applicability : Bangalore, Kolar Green manure composition :

and Tumkur districts. Green manure rate :

Soil Nitrogen range : 180-350 Kg/ acre Zinc Sulphate : 4.0 kg/acre

Area of applicability : Bangalore, Kolar and Tumkur districts.

Target yield equation:

SOIL

 $F.N. = 3.41 \text{ T- } 0.08 \text{ SN. } (KMnO_4 - N)$

 $F.P_2O_5 = 1.94 \text{ T- } 0.41 \text{ SP}_2O_5 \text{ (Bray's - } P_2O_5)$

 $F.K_2O = 2.28 \text{ T} - 0.072 \text{ SK}_2O \text{ (N H}_4OAC - K}_2O)$

STV KMnO ₄ -N (kg/acre)	Fertilizer nitrogen (kg/acre)	STV Bray's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K₂O (kg/acre)	Fertilizer potash (kg/acre)
20	67	2	38	40	43
40	65	5	37	60	41
60	63	10	35	80	40
80	62	15	33	100	38
100	60	20	31	120	37
120	59	25	29	140	36
140	57	30	27	160	34
160	55	35	25	180	33
180	54	40	22	200	31
200	52	45	20	220	30
220	51	50	18	240	28
240	49	55	16	260	27

To increase or decrease the yield target by one q/acre. The variations to be made in the fertilizer recommendations are as follows:

 $N=\pm\,3.5\;kg/acre \qquad \qquad P_2O_5=\pm\,2.0\;kg/acre \qquad \qquad K_2O=\pm\,2.25\;kg/acre$

1. New Delhi Centre

Crop : Maize | Soil phosphorus range : 10-38 Soil : Typic Haplustept (Alluvial) | Soil potassium range : 100-375

FYM composition (%) N,P,K : 0.5, 0.2, 0.35

Season : Kharif FYM rate : 10 t/ha
Situation : Irrigated Green manure composition : Nil

Target range : 30 - 40 q ha⁻¹ Green manure rate ; Nil

Soil Nitrogen range : 100 - 375

Applicable area: Delhi state and adjoining soil-agro-climatic areas of

UP: Gautam Budhanagar, Ghaziabad, Bagpat Meerut, Mujjafarnagar, Saharanpur, Buland Shahr, Aligarh, Maha mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun

Haryana : Rohtak, Sonipat, Panipat, Jhajjar, Rewari, Gurgaon, Faridabad, Mewat, Karnal

Rajasthan: Alwar, Bharatpur, Sawai madhopur, Sikar, Karauli

Punjab: Mansa, Patiala, Sangrur

M P: Bhind, Morana, Gwalior, Shivpuri

Fertilizer adjustment equations for targeted yield of crops in NCR of Delhi With FYM Without FYM FN = $5.02 \text{ T} - 0.35 \text{ SN} - 1.82 \text{ FYM}$, FN = $6.61 \text{ T} - 0.52 \text{ SN}$, FP ₂ O ₅ = $3.93 \text{ T} - 3.62 \text{ SP} - 2.29 \text{ FYM}$ FP ₂ O ₅ = $4.77 \text{ T} - 5.13 \text{ SP}$, FK ₂ O = 2.25 T = 0.17 SK = 1.00 FYM FK ₂ O = 2.75 T = 0.24 SK			
With FYM	Without FYM		
FN = 5.02 T - 0.35 SN - 1.82 FYM,	FN = 6.61 T - 0.52 SN,		
$FP_2O_5 = 3.93 \text{ T} - 3.62 \text{ SP} - 2.29 \text{ FYM}$	$FP_2O_5 = 4.77 \text{ T} - 5.13 \text{ SP},$		
$FK_2O = 2.25 T - 0.17 SK - 1.00 FYM$	$FK_2O = 2.75 T - 0.24 SK$		

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Maize FYM 10t ha⁻¹

Soil test	values (l	kg ha ⁻¹)			(kg ha ⁻¹) for	Nutrient needed (kg ha ⁻¹) fo		
			an yield target of 30 q ha ⁻¹			an yiel	d target	of 40 q ha ⁻¹
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O
100	10	100	95	60	40	150	100	65
125	13	125	90	50	35	140	90	60
150	15	150	80	40	30	130	80	55
175	18	175	7	30	30	120	70	50
200	20	200	60	25	25	115	60	45
225	23	225	55	15	20	105	55	40
250	25	250	45	10	15	95	45	35
275	28	275	35	10	10	85	35	35
300	30	300	25	10	10	80	25	30
325	33	325	20	10	10	70	15	25
350	36	350	15	10	10	60	10	20
375	38	375	10	10	10	50	10	15

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of Maize FYM 10t ha-1

Soil test	Soil test values (kg ha ⁻¹)				(kg ha ⁻¹) for	Nutrient needed (kg ha ⁻¹) for an yield target of 40 q ha ⁻¹		
			an yie	ld target	of 30 q ha ⁻¹	an yiel	d target	of 40 q ha ⁻¹
N	P	K	N	P_2O_5	K_2O	N	P_2O_5	K_2O
100	10	100	145	90	145	210	120	85
125	13	125	135	80	135	200	120	80
150	15	150	120	65	120	185	115	75
175	18	175	110	55	110	175	100	70
200	20	200	95	40	95	160	90	60
225	23	225	80	30	80	145	75	55
250	25	250	70	15	70	135	65	50
275	28	275	55	10	55	120	50	45
300	30	300	40	10	40	110	35	40
325	33	325	30	10	30	95	25	30
350	36	350	15		15	80	10	25
375	38	375	10	_	10	70	10	20

1. Uttarakhand (Maize)

Crop Amm. Acetate -K : 180-240 kg/ha Soil type : Mollisols and Inceptisols FYM composition (%) : 0.6-0.2-0.5 Variety : D-765, Ganga-2, Pragati Season : Kharif **FYM** rate : 10 t/ha Target range : 30-40 q.ha Green manure composition STV range for Maize (Pragati): Green manure rate Alkaline KmnO₄- N : 200-260 kg/ha : 10-40 kg/ha Olsen's-P

Fertilizer adjustment equati	ions for different yield target
Maize Fodder (Var. D-765) Without FYM	Maize Fodder (Var. Ganga 2) Without FYM
$F N (N, kg/ha) = 9.1 \times YT (q/ha) - 309.17 OC$	$F N (N, kg/ha) = 0.82 \times YT (q/ha) - 52.24 OC$
$F P (P_2O_5, kg/ha) = 6.94 \times YT (q/ha) -0.76 SP$	$F P (P_2O_5, kg/ha) = 076 \times YT (q/ha) -1.58 SP$
$F K (K_2O kg/ha) = 6.16 x YT (q/ha)-0.18 SK$	$F K (K_2O kg/ha) = 0.45 x YT (q/ha)-0.13 SK$
Maize (Var. Pragati) With FYM	
FN = 12.56T - 1.03N - 0.32FYM - N, FP = 4.65T - 3.6S	P-1.56FYM-P, FK = 5.94T- 0.59SK-0.93FYM-K

Ready reckoners for 35 q/ha yield targets of Maize (Pragati) based on soil test fertilizer recommendations with 10t ha-1FYM

Initial Soil To	est Value (kg/h	a)	Nutrient added (kg/ha) for an yield target of 35 q/ha				
N	P	K	N	P	K		
200	10	180	152.60	95.55	55.20		
220	20	200	214.40	59.55	43.40		
240	30	220	193.80	23.55	31.60		
260	40	240	173.20	0	19.80		

Applicability: U.S. Nagar, Haridwar, Nainital and some parts of Western U.P.

1. Bihar (Maize)

Bihar (Young Alluvium Calcareous Soil)

Name of the Centre : RAU,Pusa Soil phosphorus range : 4- 40 kg P₂O₅/ha : Young alluvium calcoreaus Soil potassium range : 60- 240 kg K₂O/ha Soil

soil

Compost composition : 0.59 % N, 0.30 % P₂O_{5.} 0.65 % K₂O Season : Rabi

Compost rate : 5- 10 t/ha or Crop : Maize Target range : 50-80 q/ha

available with

Soil Nitrogen range : 120- 300 kg N/ha farmers

> Green manure composition : N.A. : N. A. Green manure rate

Valid for Districts : East Champaran, West Champaran, Siwan, Saran, Sitamarhi,

Shivhar, Muzaffarpur, Vaishali, Samastipur, Gopalgani,

Begusarai, Part of Khagaria

Soil Test Values: Alk. KMnO₄ – N expressed in kg N/ha

> expressed in kg P₂O₅/ha Olsen's P

Ammonium OAc – K expressed in kg K₂O/ha

Minimum maintenance dose of fertilizer if soil test value is high: 30 kg N, 15 kg

 P_2O_5 and $10 \text{ kg } K_2O/\text{ha}$

Crop: Kharif Maize

2. Bihar (Young Alluvium Calcareous Soil)

Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basic	e Data	Targetted Yield Equations	
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	2.5	23.8	54.8	FN = 4.71T - 0.43 SN
P_2O_5	0.4	32.9	15.5	$FP_2O = 2.59 T - 2.13 SP_2O_5$
K ₂ O	1.36	20	69.3	$FK_2O = 1.96 T - 0.29 SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

Soil Av	vailable Nu (kg/ha)	utrients	Fertilizer Nutrients Required (kg/ha) for Yield Target of							
				30 q/ha 40 q/ha						
N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
120	4	60	90	69	41	137	95	61		
130	6	70	85	65	39	133	91	58		
140	8	80	81	61	36	128	87	55		
150	10	90	77	56	33	124	82	52		
160	12	100	73	52	30	120	78	49		
170	14	110	68	48	27	115	74	47		
180	16	120	64	44	24	111	70	44		
190	18	130	60	39	21	107	65	41		
200	20	140	55	35	18	102	61	38		
210	22	150	51	31	15	98	57	35		
220	24	160	47	27	12	94	52	32		
230	26	170	42	22	10	90	48	29		
240	28	180	38	18	10	85	44	26		
250	30	190	34	14	10	81	40	23		
260	32	200	30	10	10	77	35	20		
270	34	210	30	10	10	72	31	18		
280	36	220	30	10	10	68	27	15		
290	38	230	30	10	10	64	23	12		
300	40	240	30	10	10	59	18	10		

3. Bihar (Young Alluvium Calcareous Soil)Crop: Rabi Maize Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basic	Data		Targetted Yield Equations
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	2.55	29.5	71.9	FN = 3.55T - 0.31 SN
P ₂ O ₅	0.52	88	24.8	$FP_2O = 2.10 \text{ T} - 3.57 \text{ SP}_2O_5$
K ₂ O	2.57	75.7	184.6	$FK_2O = 1.50 T - 0.41 SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

Soil Av	vailable Nu (kg/ha)	ıtrients	Fertilizer Nutrients Required (kg/ha) for Yield Target of							
	(g //		50 q/ha 60 q/ha							
N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O		
120	4	60	140	91	80	176	112	65		
130	6	70	137	84	76	173	105	61		
140	8	80	134	76	72	170	97	57		
150	10	90	131	69	68	167	90	53		
160	12	100	128	62	64	163	83	49		
170	14	110	125	55	60	160	76	45		
180	16	120	122	48	56	157	69	41		
190	18	130	119	41	52	154	62	37		
200	20	140	116	34	48	151	55	33		
210	22	150	112	26	44	148	47	29		
220	24	160	109	19	39	145	40	24		
230	26	170	106	15	35	142	33	20		
240	28	180	103	15	31	139	26	16		
250	30	190	100	15	27	136	19	12		
260	32	200	97	15	23	132	15	10		
270	34	210	94	15	19	129	15	10		
280	36	220	91	15	15	126	15	10		
290	38	230	88	15	11	123	15	10		
300	40	240	85	15	10	120	15	10		

4. Bihar (Young Alluvium Calcareous Soil)

Targetted Yield Equations*(WITH INORGANIC FERTILIZERS and COMPOST)

	Bas	ic Data			Targeted Yield Equations
Nutrient	NR	C S	C F	C C	
	(Kg/q)	(%)	(%)	(%)	
N	1.42	16	39.1	35.6	FN = 3.63 T - 0.41 SN - 0.91 CN
P_2O_5	0.42	32.6	21.3	30.8	$FP_2O = 1.88 \text{ T} - 1.53 \text{ SP}_2O_5 - 1.45 \text{ CP}_2O_5$
K ₂ O	1.9	35	70.6	63.1	$FK_2O = 2.69 T - 0.50 SK_2O - 0.89CK_2O$

Crop: Rabi Maize

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values Without Compost

Soil Ava	Soil Available Nutrients			Fertilizer Nutrients Required (kg/ha) for Yield Target						
	(kg/ha)				0	of				
				50 q/ha		70 q/ha				
N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O		
120	4	60	132	88	105	205	125	158		
130	6	70	128	85	100	201	122	153		
140	8	80	124	82	95	197	119	148		
150	10	90	120	79	90	193	116	143		
160	12	100	116	76	85	189	113	138		
170	14	110	112	73	80	184	110	133		
180	16	120	108	70	75	180	107	128		
190	18	130	104	66	70	176	104	123		
200	20	140	100	63	65	172	101	118		
210	22	150	95	60	60	168	98	113		
220	24	160	91	57	55	164	95	108		
230	26	170	87	54	50	160	92	103		
240	28	180	83	51	45	156	89	98		
250	30	190	79	48	40	152	86	93		
260	32	200	75	45	35	148	83	88		
270	34	210	71	42	30	143	80	83		
280	36	220	67	39	25	139	77	78		
290	38	230	63	36	20	135	73	73		
300	40	240	59	33	15	131	70	68		
Reduction	in Fertilzer re	ecommendati	on with the a	pplication of	compost (N	-0.59, P2O5-	0.30 & K2O-	0.65 %)@		
Nutrients	1 t/ha	2 t/ha	3 t/ha	4 t/ha	5 t/ha	6 t/ha	8 t/ha	10 t/ha		
N	5	11	16	21	27	32	43	54		
P_2O_5	4	9	13	17	22	26	35	44		
K ₂ O	6	12	17	23	29	35	46	58		

5. Bihar (Young Alluvium Calcareous Soil)

Targetted Yield Equations*(WITH INORGANIC FERTILIZERS and MUSTARD OILCAKE)

	Bas	ic Data			Targeted Yield Equations
Nutrient	NR	C S	C F	C C	
	(Kg/q)	(%)	(%)	(%)	
N	2.04	13.4	58.2	41.9	FN = 3.51 T - 0.23 SN - 0.72 CN
P_2O_5	0.57	49.9	22.8	31.8	$FP_2O = 2.50 \text{ T} - 2.19 \text{ SP}_2O_5 - 1.44 \text{ CP}_2O_5$
K ₂ O	2	48	92.2	193.3	$FK_2O = 2.17 T - 0.52 SK_2O - 2.10CK_2O$

Crop: Rabi Maize

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values Without Mustard Oil Cake

Soil Ava	ailable Nu	trients	Fertilizer Nutrients Required (kg/ha) for Yield Target						
	(kg/ha)				0	f			
				50 q/ha			70 q/ha		
N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	
120	4	60	148	116	77	218	166	121	
130	6	70	146	112	72	216	162	116	
140	8	80	143	107	67	214	157	110	
150	10	90	141	103	62	211	153	105	
160	12	100	139	99	57	209	149	100	
170	14	110	136	94	51	207	144	95	
180	16	120	134	90	46	204	140	90	
190	18	130	132	86	41	202	136	84	
200	20	140	130	81	36	200	131	79	
210	22	150	127	77	31	197	127	74	
220	24	160	125	72	25	195	122	69	
230	26	170	123	68	20	193	118	64	
240	28	180	120	64	15	191	114	58	
250	30	190	118	59	10	188	109	53	
260	32	200	116	55	10	186	105	48	
270	34	210	113	51	10	184	101	43	
280	36	220	111	46	10	181	96	38	
290	38	230	109	42	10	179	92	32	
300	40	240	107	37	10	177	87	27	
Reduction	in Fertilzer re	ecommendati	ion with the a	application of	oil cakes (N	I -5.20, P ₂ O ₅ -	1.82 & K ₂ O- 1	1.20 %)@	
Nutrients	1 q/ha	2 q/ha	3 q/ha	4 q/ha	5 q/ha	6 q/ha	8 q/ha	10 q/ha	
N	3.7	7.5	11.2	15.0	18.7	22.5	30.0	37.4	
P_2O_5	2.6	5.2	7.9	10.5	13.1	15.7	21.0	26.2	
K ₂ O	2.5	5.0	7.6	10.1	12.6	15.1	20.2	25.2	

1. Jharkhand (Maize)

Name of the Centre : RAU,Pusa Soil phosphorus range : 4- 30 kg P_2O_5 /ha Soil : Red Loam Soil Soil potassium range : 60- 190 kg K_2O /ha

Season: KharifCompost composition: N. A.Crop: MaizeCompost rate: N. A.Target range: 20- 30 q/haGreen manure composition: N. A.Soil Nitrogen range: 120- 250 kg N /haGreen manure rate: N. A.

Valid for Districts : All districts of Jharkhand state having red loam / laterite soil

Soil Test Values : Alk. $KMnO_4 - N$ expressed in **kg N/ha**

Bray's P_1 expressed in kg P_2O_5/ha

Ammonium OAc - K expressed in kg K_2O/ha

Minimum maintenance dose of fertilizer if soil test value is high: 25 kg N, 15 kg

P₂O₅ and 10 kg K₂O/ha

Soil: Red Loam Soils of Jharkhand Crop: Paddy

Rahuri, (Maharashtra), Upland paddy

Crop : Upland Paddy (Rabi) Variety: R-24

Soil : Typic Haplustepts Situation: Irrigated

Districts : Kolhapur, Sangli, Satara

Targeted Yield Equations

FN = 5.52 T - 0.54 SN, FP2O5 = 2.19 T - 0.83 SP, FK2O = 2.37 T - 0.05 SK

Fertilizer prescription for targeted yields of upland paddy for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)						
Soil tes	Soil test values (kg ha ⁻¹)			ha ⁻¹ targ	get	40	40 q ha ⁻¹ target		
	1	T	NT	D O	V O	NT	D O	V O	
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	6	200	112	61	61	167	82	84	
120	8	300	101	59	56	156	81	79	
140	10	400	90	57	51	145	79	74	
160	12	500	80	55	46	134	77	69	
180	14	600	68	54	41	123	76	64	
200	16	700	57	52	36	112	74	59	

Rahuri, (Maharashtra), Transplanted paddy

Crop : Transplanted paddy Variety : Indrayani Soil : Typic Ustorthents Situation : Irrigated

Districts : Nasik, Pune, Nandurbar, Gadchiroli, Kolhapur

Basic Data

Nutrient	NR $(kg q^{-1})$	CS (%)	CF (%)
N	2.09	13.72	40.15
P ₂ O ₅	1.03	65.18	10.92
K ₂ O	2.67	13.04	97.7

Targeted Yield Equations

FN = 5.20 T - 0.34 SN

 $FP_2O_5\ = 9.40\ T - 13.66\ SP$

 $FK_2O \ = 2.73 \ T - 0.16 \ SK$

Fertilizer prescription for targeted yields of transplanted paddy for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)						
Soil tes	Soil test values (kg ha ⁻¹)			∟ha ⁻¹ targ	get	45	q ha ⁻¹ tar	get	
			N	\mathbf{N} P_2O_5	K ₂ O	N	P_2O_5	K_2O	
N	P	K	1	1 205	$\mathbf{K}_2\mathbf{O}$	11	1 205	$\mathbf{K}_2\mathbf{O}$	
100	10	200	174	239	77	200	286	91	
150	15	250	157	171	69	183	218	83	
200	20	300	140	103	61	166	150	75	
250	25	350	123	35	53	149	82	67	
300	30	400	106	25*	45	132	25*	59	

^{*} Minimum dose of P₂O₅

1. Tamil Nadu (Maize -Without IPNS)

Name of the centre : Coimbatore

Soil : Mixed black (Perianaickenpalayam series)

Crop & Variety : Maize - CO 1
Season developed : Kharif
Target range : 50 q ha⁻¹

Soil Nitrogen range : 180 - 270 kg ha⁻¹ Soil phosphorus range : 8 - 26 kg ha⁻¹ Soil potassium range : 300 - 480 kg ha⁻¹ FYM composition STYM rate STYM rate

Green manure composition :- Green manure rate :

Fertiliser Adjustment Equations

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil tests	s (kg ha ⁻¹)	Nutrient added (kg ha ⁻¹) for an yield target of 50 q ha ⁻¹				
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O		
180	8	300	131	98	111		
190	10	320	125	95	101		
200	12	340	120	91	91		
210	14	360	114	88	82		
220	16	380	109	84	72		
230	18	400	103	81	62		
240	20	420	98	77	52		
250	22	440	92	73	43		
260	24	460	87	70	33		
270	26	480	81	66	25		

Blanket recommendation : 135 : 62.5 : 50 (kg N : P_2O_5 : $K_2O \text{ ha}^{-1}$)

Recommendation domain

Soil type : Black Clay Loam

Yield target : 50 q ha⁻¹

District(s) : Coimbatore, Salem, Tiruchirappalli

Grade : Good

2. Maize: Tamil Nadu

Name of the centre : Coimbatore Soil : Mixed black

(Perianaickenpalayam

series)

Crop & Variety : Maize - CO 1 Season developed : Rabi

Season developed : Rabi Target range : 50 q ha⁻¹

Soil Nitrogen range : 180 - 270 kg ha⁻¹ Soil phosphorus range : 8 - 26 kg ha⁻¹ Soil potassium range : 300 - 480 kg ha⁻¹ FYM composition : 0.59 : 0.28 : 0.59% (N:P:K) (Dry weight basis)

(Dry weight basis

FYM rate : 12.5 t ha⁻¹ (30% moisture)

Green manure composition :-

Green manure rate :

Fertiliser Adjustment Equations

FN 5.29 T 0.38 0.78 ON SN FP₂O₅ 2.08 T 1.29 SP 0.89 OP FK₂O 5.20 T -SK 0.78 OK 0.45

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil tests	s (kg ha ⁻¹)	Nutrient added (l	kg ha ⁻¹) for an yield ta	arget of 50 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
180	8	300	196	94	125
190	10	320	192	91	116
200	12	340	189	89	107
210	14	360	285	86	98
220	16	380	181	83	89
230	18	400	177	81	80
240	20	420	173	78	71
250	22	440	170	76	62
260	24	460	166	73	53
270	26	480	162	70	44

Blanket recommendation : 135 : 62.5 : 50 (kg N : P_2O_5 : $K_2O ha^{-1}$)

Recommendation domain

Soil type : Black Clay Loam

Yield target : 50 q ha⁻¹

District(s) : Coimbatore, Salem, Tiruchirappalli

Grade : Good

1. Hisar (Haryana) Maize

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Maize (Vijay composite)

Soil : Sierozem (Inceptisols/ Entisols)

Situation: IrrigatedSeason developed: Kharif

Target range : 40 to 50 q/ha
Soil nitrogen range : 80 to 220 kg/ha
Soil phosphorus range : 4 to 24 kg/ha

Targeted yield equations :

 $FN = 4.93T - 1.03 SN, FP_2O_5 = 1.95T - 3.54 SP*$

Ready reckoner of soil test based fertilizer recommendations for maize (Vijay composite) grain yield of 40, 45 and 50 q/ha

SN*	Targ	geted yield (q/ha)	SP*	Tar	Targeted yield (q/ha)			
(kg/ha)	(kg/ha) 40 45 50 (kg		(kg/ha)	40	45	50			
	FN (F	FN (Fertilizer N, kg/ha)			FP ₂ O ₅ (1	FP ₂ O ₅ (Fertiilzer P ₂ O ₅ , kg/ha)			
80	115	139	164	4	63	73	83		
90	104	129	154	6	56	66	76		
100	94	119	144	8	49	59	69		
110	84	109	134	10	42	52	62		
120	73	98	123	12	35	45	55		
140	52	77	102	14	28	38	48		
160	38	57	82	16	21	31	41		
180	38	38	61	20	16	16	26		
200	38	38	41	24	16	16	16		
220	38	38	38	28	16	16	16		

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Yield target (q/ha)

Verification: These fertilizer adjustment equations for yield targets were verified at farmers'

fields in various agro-climatic zones of Haryana. The yield targets of 40, 45 and

50 g/ha were achieved within -6.6 to +1.7% deviations.

Applicability: These fertilizer adjustment equations will hold good for high yielding varieties of

maize through out Haryana.

1. Chhattisgarh (Maize)

Crop Maize Soil type Vertisol

Pro-agro 4640 variety Season *Kharif*, 2001

Area for suitability -Raipur, Rajnandgaon, Kawardha, Durg districts

Fertilizer adjustment equations

FN = 3.97 Y - 0.465 SN $FP_2O_5 = 358 - (128283 - 1666Y)^{1/2} - 13.5 SP$ $FK_2O = No K \text{ if } SK > 250 \text{ kg ha}^{-1}$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of maize (hybrid) in Vertisol (Kanhar).

Alkaline KMnO ₄ -	Olsen's P	Yield Targets (q ha ⁻¹) Maize (hybrid)							
$\binom{\mathbf{N}}{1}$ (kg ha	(kg ha ⁻¹)	5	50	6	50	70			
,		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	129	105	168	149	208	210		
175	6	117	65	157	109	197	169		
200	9	106	24	145	68	185	129		
225	12	94	7	134	28	173	88		
250	15	82	7	122	7	162	48		
275	18	71	7	110	7	150	7		
300	21	59	7	99	7	138	7		
350	24	36	7	75	7	115	7		
400	28	13	7	52	7	92	7		

1. Jabalpur, Maize

Crop	:	Maize
Soil Type	:	Shallow, Medium black and Deep black soils
Varieties	:	Chandan Makka -3 ,composite JCM -323
Yield (q ha ⁻¹)	:	30 - 60
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100- 500; P: 5- 25 K: 100-500
Districts	:	Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,, Narsinghpur, Powarkheda, Sehore, Ujjain.

Equation for Calculating the fertilizer nutrient Requirement:

FN = 4.40 T - 0.23 SN $FP_2O_5 = 2.38 \text{ T} - 1.40 \text{ SP}$

Soil tes	t Values (k	ag ha ⁻¹)	Fertil	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)						
		3			40					
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
100	5	200	118	76	56	138	88	67		
150	10	250	107	69	52	127	81	63		
200	15	300	96	62	48	116	74	59		
250	20	350	85	55	44	105	67	55		
300	25	400	74	48	40	94	60	51		

 $FK_2O = 2.07 T - 0.08 SK$

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 4.4 kg ha⁻¹; P₂O₅= \pm 2.3 kg ha⁻¹and K₂O= \pm 2.0 kg ha⁻¹ Grade : need to verify

1. New Delhi Centre

Crop : Barley Soil phosphorus range : 10-38 Soil :TypicHaplustept (Alluvial) Soil potassium range : 100-375 FYM composition (%) N,P,K : 0.5, 0.2, 0.35 Season : Rabi Situation : Irrigated FYM rate : 10 t/ha : 40 - 50 gha⁻¹ Target range Green manure composition : Nil : 100 - 375 kgha⁻¹ Soil Nitrogen range Green manure rate : Nil

Applicable area: Delhi state and adjoining soil-agro-climatic areas of

UP: Gautam Budhanagar, Ghaziabad, Bagpat Meerut, Mujjafarnagar, Saharanpur, Buland Shahr, Aligarh, Maha mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun

Haryana: Rohtak, Sonipat, Panipat, Jhajjar, Rewari, Gurgaon, Faridabad, Mewat, Karnal

Rajasthan: Alwar, Bharatpur, Sawai madhopur, Sikar, Karauli

Punjab: Mansa, Patiala, Sangrur

M P: Bhind, Morana, Gwalior, Shivpuri

(Without FYM)

Fertilizer adjustment equations for targeted yields of crops in NCR of Delhi

FN = 3.69 T - 0.64 SN, FP₂O₅ = 2.93 T - 5.24 SP, FK₂O = 2.22 T - 0.31 SK

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Barley

Soil test v	values (kg ha ⁻¹	Nutrient needed (kg ha ⁻¹) for an yield target of 40 q ha ⁻¹			
N	P	K	N	P ₂ O ₅	K ₂ O
100	10	100	85	65	60
125	13	125	70	50	50
150	15	150	50	40	40
175	18	175	35	25	35
200	20	200	20	10	25
225	23	225	10	10	20
250	25	250	10	10	10
275	28	275	10	10	10
300	30	300	10	10	10
325	33	325	10	10	10
350	36	350	10	10	10
375	38	375	10	10	10
400	40	400	10	10	10

Ready reckoners on soil test based fertilizer recommendations for specific yield targets (45 qha⁻¹)of Barley

Soil test v	values (kg ha ⁻¹	Nutrient needed (kg ha ⁻¹) for an yield target of 45 q ha ⁻¹				
N	P	K	N	P ₂ O ₅	K ₂ O	
100	10	100	100	80	70	
125	13	125	85	65	60	
150	15	150	70	55	55	
175	18	175	55	40	45	
200	20	200	40	25	40	
225	23	225	20	15	30	
250	25	250	10	10	20	
275	28	275	10	10	15	
300	30	300	10	10	10	
325	33	325	10	10	10	
350	36	350	10	10	10	
375	38	375	10	10	10	
400	40	400	10	10	10	

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets (50 gha⁻¹)of Barley

Soil test	values (kg ha ⁻¹	Nutrient needed (kg ha ⁻¹) for an yield target of 50 q ha ⁻¹			
N	P	K	N	P_2O_5	K ₂ O
100	10	100	120	95	80
125	13	125	105	80	70
150	15	150	90	70	65
175	18	175	75	55	55
200	20	200	55	40	50
225	23	225	40	30	40
250	25	250	25	15	35
275	28	275	10	10	25
300	30	300	10	10	20
325	33	325	10	10	10
350	36	350	10	10	10
375	38	375	10	10	10
400	40	400	10	10	10

1. Uttarakhand (Barley)

Alkaline KMnO₄-N

Crop : Barley Olsen's-P : 10-25 kg/ha
Variety : Azad Amm. Acetate-K : 150-225 kg/ha

Soil :Mollisols and Inceptisols FYM composition : ---Situation : Irrigated FYM rate : ---
Target range : 25-30 q/ha Green manure composition :----Soil O.C. range : 0.40-1.00 % Green manure rate : ----

Fertilizer adjustment equation for yield targets (kg/ha)

: 215-405 kg/ha

FN (N kg/ha) = 5.00 x YT - 111.16 x OC

FP (P kg/ha) = 2.45 x YT - 2.31 SP

FK (K kg/ha) = 4.96 x YT - 0.82 SK

Ready reckoners for 30 q/ha yield targets of Barley based on soil test fertilizer recommendations

Initial Soil To	est Value (kg/h	a)	Nutrient added (kg/ha) for an yield target of 30 q/ha				
O.C. (%)	P	K	N	P	K		
0.2	10	125	127.77	50.40	46.30		
0.4	15	150	105.53	38.85	25.80		
0.6	20	175	83.30	27.30	5.30		
0.8	25	200	61.07	15.75	0		
1.0	30	225	38.84	4.2	0		

Applicability: U.S. Nagar, Haridwar, Nainital and some parts of Western U.P.

1. Hisar (Harvana) Barley

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Barley(BH 393)

Soil : Sierozem (Inceptisols/Entisols)

Situation: IrrigatedTarget range: 35 to 45 q/haSoil nitrogen range: 80 to 200 kg/haSoil phosphorus range: 4 to 24 kg/ha

FYM composition : $1.00 \% N, 0.62\% P_2O_5$

FYM rate : 15 t/ha

Targeted yield equations:

FN = 4.88T - 0.98SN - 0.15 FYM (N), $FP_2O_5 = 2.35T - 3.80 SP - 0.16 FYM (P_2O_5) *$

Ready Reckoner of soil test based fertilizer recommendations for 35, 40 and 45 q/ha grain yield of (BH 393)

SN*	Targ	geted yield (q/ha)	SP*	Targ	geted yield (q/ha)	
(kg/ha)	35	40	45	(kg/ha)	35	40	45
	FN (F	ertilizer N,	kg/ha)		FP ₂ O ₅ (F	ertilizer P ₂ C) ₅ , kg/ha)
80	92	117	142	4	67	79	91
90	82	107	132	6	60	71	83
100	73	97	122	8	52	64	76
110	63	87	112	10	44	56	68
120	53	77	101	12	36	48	60
140	34	58	82	14	29	41	53
160	15	38	63	16	21	33	45
180	15	19	43	20	8	18	30
200	15	15	24	24	8	8	15

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Yield target (q/ha) FYM(N) and FYM(P₂O₅) are N and P₂O₅ (kg/ha), respectively in applied FYM

Note : The dose of fertilizer N and P_2O_5 be reduced by 1.50 and 1.25 kg/ha, respectively, from above fertilizer doses for each ton of applied FYM/compost.

Verification: These fertilizer adjustment equations for yield targets were verified at farmers'

fields. The yield targets of 35 and 45 q/ha were achieved within deviations -7.7

to +7.6 per cent.

Applicability: These fertilizer adjustment equations will hold good through out Haryana of high

yielding varieties of barley.

1. Bikner, Barley

Name of the center : ARS, Bikaner Soil nitrogen range : 70-160 kg ha⁻¹ : Alluvial soils (Adsar Soil Phosphorus : 20-60 kg ha⁻¹

and Khiran series) range

Crop and variety : Barley (RD-2508) Soil potassium range : 170-330 kg ha⁻¹

Season developed : Rabi 2002-03 and FYM composition

2003-04

Target range : $25-30 \text{ q ha}^{-1}$ FYM rate : 5 t ha^{-1}

Fertilizer adjustment equation

 $\begin{array}{ll} FN &= 7.67 \ T - 0.99 \ SN - 3.62 \ FYM \\ FP_2O_5 &= 4.60 \ T - 2.09 \ S \ P_2O_5 - 2.02 \ FYM \\ FK_2O &= 6.31 \ T - 0.63 \ SK_2O - 2.66 \ FYM \end{array}$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil a	vailable n (kg ha ⁻¹)	utrient	Fertilizer nutrient required (kg ha ⁻¹) with 5 t ha ⁻¹ FYM for yield target of						
KMnO ₄	Olsens'	Amm.Ac		25 q ha ⁻¹			30 q ha ⁻¹		
N	P_2O_5	K_2O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
70	20	170	104	118	37	143	151	69	
90	25	190	85	108	25	123	141	56	
100	30	210	75	99	15	113	132	44	
110	35	230	65	89	15	103	122	31	
120	40	250	55	79	15	93	112	19	
130	45	270	45	70	15	83	103	15	
140	50	290	40	60	15	73	93	15	
150	55	310	40	51	15	64	84	15	
160	60	330	40	41	15	54	74	15	

Verification: The above fertilizer adjustment equations were tried on the farmers' fields in Bikaner district with varying yield targets during Rabi 2004-05 and all the yield targets could be achieved at the place tried

Applicability

Soil testing laboratory : Bikaner

Soil : Adsar, Sobhasar, Khiran, Jamsar, Gajner series

Crop and variety : Barley (RD-2508)

Target range : 25-30 q ha⁻¹ Soil nitrogen range : 70-160 kg ha⁻¹

Soil phosphorus range : 20-60 kg ha⁻¹

Soil potassium range : 170-330 kg ha⁻¹

Millets

1. New Delhi Centre

: Pearlmillet Soil phosphorus range : 10-38 Crop Soil :TypicHaplustept (Alluvial) Soil potassium range : 100-375 FYM composition (%) N,P,K : 0.5, 0.2, 0.35 Season : Kharif Situation : Irrigated FYM rate : 10 t/ha : 25 - 30 q ha⁻¹ Green manure composition : Nil Target range : 100-400 kgha⁻¹ Soil Nitrogen range Green manure rate ; Nil

Applicable area: Delhi state and adjoining soil-agro-climatic areas of

UP: Gautam Budhanagar, Ghaziabad, Bagpat Meerut, Mujjafarnagar, Saharanpur, Buland Shahr, Aligarh, Maha mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun

Haryana: Rohtak, Sonipat, Panipat, Jhajjar, Rewari, Gurgaon, Faridabad, Mewat, Karnal

Rajasthan: Alwar, Bharatpur, Sawai madhopur, Sikar, Karauli

Punjab: Mansa, Patiala, Sangrur

M P: Bhind, Morana, Gwalior, Shivpuri

Fertilizer adjustment equations for targeted yield of crops in NCR of Delhi						
With FYM	Without FYM					
FN = 5.35 T - 0.29 SN - 2.23 FYM,	FN = 6.97 T - 0.38 SN,					
$FP_2O_5 = 4.72 \text{ T} - 3.29 \text{ SP} - 2.48 \text{ FYM}$	$FP_2O_5 = 5.73 \text{ T} - 4.81 \text{ SP},$					
$FK_2O = 2.88 T - 0.17 SK - 1.35 FYM$	$FK_2O = 3.92 T - 0.28 SK$					

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Pearlmillet FYM 10t ha⁻¹

Soil t	Soil tests (kg ha ⁻¹)			Nutrient needed (kg ha ⁻¹) for an yield target of 25 q ha ⁻¹			Nutrient needed (kg ha ⁻¹) for an yield target of 30 q ha ⁻¹		
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	10	100	80	60	40	110	80	55	
125	13	125	75	50	35	100	75	40	
150	15	150	70	45	30	95	65	45	
175	18	175	60	35	30	85	60	45	
200	20	200	55	30	25	80	50	40	
225	23	225	45	20	20	70	45	35	
250	25	250	40	10	15	65	40	30	
275	28	275	30	10	10	55	35	25	
300	30	300	25	10	10	45	30	25	
325	33	325	15	10	10	40	25	20	
350	36	350	10	10	10	30	20	15	
375	38	375	10	10	10	25	15	10	

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Pearlmillet

Initial soil tests (kg ha ⁻¹)			Nutrient added (kg ha ⁻¹) for an yield target of 25 q ha ⁻¹			Nutrient added (kg ha ⁻¹) for an yield target of 30 q ha ⁻¹		
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O
100	10	100	135	95	70	170	120	90
125	13	125	125	85	65	160	110	80
150	15	150	115	70	55	150	100	75
175	18	175	110	60	50	140	90	70
200	20	200	100	45	40	135	75	60
225	23	225	90	35	35	125	65	55
250	25	250	80	25	30	115	50	50
275	28	275	70	10	20	105	40	40
300	30	300	60	10	15	95	30	35
325	33	325	50	10	10	85	15	25
350	36	350	40	10	10	75	10	20
375	38	375	30	10	10	65	10	15

1. Hisar (Haryana) Bajra

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Bajra (HHH 94)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Kharif

Target range : 20 to 30 q/ha
Soil nitrogen range : 80 to 200 kg/ha
Soil phosphorus range : 4 to 24 kg/ha

FYM composition : 1.00 % N, 0.62% P₂O₅

FYM rate : 15 t/ha

Targeted yield equations: FN = 10.00T - 1.43 SN-0.13 FYM (N)

 $FP_2O_5 = 3.75T-4.46SP-0.15FYM (P_2O_5)*$

Ready reckoner of soil test based fertilizer recommendations for 20, 25 and 30q/ha grain yield of hybrid bajra (HHB 94)

SN*	Tar	geted yield,	q/ha	SP*	Targ	Targeted yield, q/ha		
(kg/ha)	20	25	30	(kg/ha)	20	25	30	
	FN F	ertilizer N,	kg/ha		FP ₂ O ₅ (Fe	ertilizer P ₂ O	₅ kg/ha)	
80	85	135	185	4	57	76	95	
90	71	121	171	6	48	67	86	
100	57	107	157	8	39	58	77	
110	43	93	143	10	30	49	68	
120	30	78	128	12	21	40	59	
140	30	50	100	14	12	31	50	
160	30	30	71	16	15	22	41	
180	30	30	43	20	15	15	23	
200	30	30	30	24	15	15	15	

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Yield target (q/ha) FYM(N) and FYM(P₂O₅) are N and P₂O₅ (kg/ha) respectively in applied FYM

Note: The dose of fertilzier N and P_2O_5 be reduced by about 1.25 kg and 1.00 kg/ha, respectively, from above fertilzier doses for each ton of applied FYM/compost.

Verification: These fertilizer adjustment equations for yield targets were verified at farmers' fields. The yield targets of 20 to 30 q/ha were achieved within deviations -7.7 to +7.6 per cent.

Applicability: These fertilizer adjustment equations will hold good in Haryana in Mohindergarh, Jhajjar, Faridabad, Gurgaon, Rewari, Mewat, Bhiwani, Jind, Sirsa, Fetehabad districts and other bajra growing area for high yielding hybrid varieties of bajra.

Rahuri, (Maharashtra), Pearl millet

Crop : Pearl millet (Kharif) Variety:Saburi-RHRBH-8609

Soil : Vertic Haplustepts Situation:Irrigated

Districts : Dhule, Nashik, Ahmednagar, Beed, Aurangabad, Akola, Buldhana,

Wardha, Yeotmal, Satara, Pune, Solapur.

Basic Data

Nutrient	$NR (kg q^{-1})$	CS (%)	CF (%)
N	0.96	11	29
P ₂ O ₅	2.94	156	87
K ₂ O	4.71	15	285

Targeted Yield Equations

FN = 3.31 T - 0.38 SN

 $FP_2O_5 = 3.38 T - 4.11 SP$

 $FK_2O = 1.65 T - 0.06 SK$

Fertilizer prescription for targeted yields of Pearl millet for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)					
Soil tes	Soil test values (kg ha ⁻¹)			q ha ⁻¹ targ	ha ⁻¹ target		35 q ha ⁻¹ targ	
	_	T	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O
N	P	K	11	1 203	IX ₂ O	11	1 203	1120
100	6	250	61	77	35	78	94	43
120	10	300	54	60	32	70	77	40
140	14	350	46	44	29	63	61	37
160	18	400	38	28	26	55	45	34
180	22	450	30	11	23	47	28	21
200	26	500	23	25*	20	40	25*	28
220	> 26	550	16	25*	17	32	25*	25
240	> 26	600	8	25*	14	25	25*	22

^{*} Minimum dose of P₂O₅

1. Bikaner, Bajra

Name of the center : ARS, Bikaner Soil nitrogen range : 80-160 kg ha⁻¹ Soil : Alluvial soils Soil Phosphorus : 10-50 kg ha⁻¹

(Bhamatsar and range

Khiran series)

Crop and variety : Bajra (HHB-67) Soil potassium range : 170-330 kg ha⁻¹

Season developed : Kharif 1997 and

1998

Target range : 12-15 q ha⁻¹

Fertilizer adjustment equation

FN = 10.05T - 0.29 SN $FP_2O_5 = 9.02 T - 1.66 S P_2O_5$ $FK_2O = 8.20 T - 0.25 SK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil available nutrient (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for yield target of					
KMnO ₄	Olsens'	Amm.Ac.		12 q ha ⁻¹	l		15 q ha ⁻¹	
N	P	-K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O
80	10	170	97	70	56	120	70	60
90	15	190	94	66	51	120	70	60
100	20	210	91	52	46	120	70	60
110	25	230	88	38	41	118	65	60
120	30	250	85	24	36	115	51	60
130	35	270	82	20	31	112	37	56
140	40	290	79	20	26	109	23	51
150	45	310	76	20	21	106	20	46
160	50	330	73	20	16	103	20	41

Applicability

Soil testing laboratory : Bikaner

Soil : Sobhasar, Khiran, Jamsar, Bhamatsar

series

Crop and variety : Bajra (HHB-67)

Target range : 12-15 q ha⁻¹
Soil nitrogen range : 80-160 kg ha⁻¹

Soil phosphorus range : 10-50 kg ha⁻¹
Soil potassium range : 170-330 kg ha⁻¹

1. Jabalpur, Bajra

Bajra	
Shallow	, Medium black and Deep black soils
Compos	site (B.J.104)
25-30	
Range o	f soil test values (Kg ha ⁻¹); N: 100- 350; P: 5- 35 K: 100-300
Bhind, M	Iorena, Naugaown
: :	: Shallow : Compos : 25-30 : Range o

Equation for Calculating the fertilizer nutrient Requirement:

$\overline{FN} = 10.$	9 T - 0.78	SN	$\mathbf{FP_2O_5} =$	$FP_2O_5 = 5.22 \text{ T} - 4.00 \text{ SP}$ $FK_2O = 4.19 \text{ T} - 0.35SK$					
Soil tes	st Values (k	kg ha ⁻¹)	Fert	ilizer nutr	r yield target (q ha ⁻¹)				
				25				30	
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	5	200	194	110	33	249	137	54	
150	10	250	155	90	16	210	117	36	
200	15	300	116	70	-	171	97	20	
250	20	350	77	50	-	132	77	-	
300	25	400	38	30	-	93	57	-	

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 10.9 kg ha⁻¹; P₂O₅= \pm 5.2 kg ha⁻¹and K₂O= \pm 4.1 kg ha⁻¹

Grade: need to verify

1. Andhra Pradesh (Sorghum)

Name of the Centre: Palem, Mahabubnagar | Soil phosphorus range: 5 - 50 kg ha⁻¹

district Soil potassium range

: 125 – 350 kg ha⁻¹

Soil : Alfisol (Sandy Loam) FYM composition :

Crop and Variety: Rainfed Jowar – CHS-9 FYM rate: 10 t ha⁻¹

Season developed : *Kharif*, 2001 & 2002 Green manure composition :

Target range : 20 – 25 q ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 7.29 T - 0.82 SN - 0.38 FYM N,

 $FP_2O_5 = 4.30 \text{ T} - 1.53 \text{ SP- } 0.19 \text{ FYM P},$

Soil Nitrogen range: 100 - 280 kg ha⁻¹

 $FK_2O = 5.10 T - 0.39 SK - 0.17 FYM K$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrients (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for production of 25 q ha ⁻¹					
Kmn	Olsen-P	Amm Aoc-	Only	Chemical	fert.	Wi	th Fym @	10 t ha ⁻¹
O ₄ -N		K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
100	5	125	100	100	79	70	88	67
120	10	150	84	92	69	53	81	57
140	15	175	67	85	59	37	73	47
160	20	200	51	77	50	21	66	38
180	25	225	35	69	40	4	58	28
200	30	250	18	62	30	0	50	18
220	35	275	12	54	20		43	8
240	40	300	12*	46	11		35	0
260	45	325	12*	39	1		27	
280	50	350	12*	31	0		20	
300	55	375	12*	23			12	
320	60	400	12*	16			4	
340	65	425	12*	8			4	

^{*} maintainance of dose

Verification: The above equations were verified on the farmers' fields of Palem, Mahabubnagar district with yield targets of 20 and 25 q ha⁻¹ during *kharif*, 2002 and 2003. All the yield targets could be attained at the places tested.

Applicability

Soil Testing Laboratories : Mahabubnagar, Ranga Reddy and Kurnool

districts in Southern Telangana Zone

Soil type : Alfisol

Crop : Rainfed Jowar (High yielding varieties)

Season developed : Kharif (Rainfed)
Yield target : Up to 20- 25 q ha⁻¹

Note: The above equations may be tested in soils other than Sandy loam of Alfisol in the

farmers' fields with three or four targets and pick up the best one for making

recommendations in Southern Telangana zone.

1. Sorghum: Tamil Nadu

Name of the centre : Coimbatore : Coimbatore : 0.47 : 0.28 : 0.60 % (N:P:K) : Ory weight basis

Crop & Variety : Sorghum - CSH 5

Soil potassium range : 150 - 240 kg ha⁻¹

Season developed : Kharif FYM rate : 12.5 t ha⁻¹
Target range : 50 q ha⁻¹ (30 % Moisture)

Soil Nitrogen range : 150 - 240 kg ha⁻¹
Soil phosphorus range : 8 -26 kg ha⁻¹
Green manure composition : Green manure rate : -

Fertiliser Adjustment Equations

FN 4.86 0.98 T - 0.53 SN ON FP₂O₅ 1.63 Τ 0.87 SP 0.90 OP FK₂O 4.56 0.59 SK 0.76 OK

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil tests	s (kg ha ⁻¹)	Nutrient added (l	kg ha ⁻¹) for an yield ta	arget of 50 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
150	8	150	164	75	140
160	10	160	158	73	134
170	12	170	153	71	128
180	14	180	148	69	122
190	16	190	142	68	116
200	18	200	137	66	110
210	20	210	132	64	104
220	22	220	126	62	98
230	24	230	121	61	92
240	26	240	116	59	86

Blanket Recommendation: 90:45:45 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : Red Sandy Loam

Yield target : 50 q ha⁻¹

District(s) : Coimbatore, Dindigul, Erode, Karur, Madurai, Namakkal, Salem, Theni, Tiruchirappalli

Grade : Good

2. Sorghum: Tamil Nadu

Name of the centre : Coimbatore FYM composition : 0.86:0.34:0.69% (N:P:K) (Dry weight basis)

(Perianaickenalayam

series) FYM rate : 12.5t ha⁻¹

Crop & Variety : Sorghum - CO 24 (30 % moisture)

Season developed : Kharif

Target range : 50 q ha⁻¹ Green manure composition : Soil Nitrogen range : 180 - 280 kg ha⁻¹ Green manure rate : -

Fertiliser Adjustment Equations

Soil phosphorus range: 8 -28 kg ha⁻¹ Soil potassium range: 300 - 500 kg ha⁻¹

FN 6.06 T - 0.81 ON SN 0.53 FP_2O_5 2.06 T - 3.14 SP 0.72 OP FK_2O 5.03 T - 0.47 SK 0.66 OK

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil test	s (kg ha ⁻¹)	Nutrient added (kg ha ⁻¹) for an yield ta	arget of 50 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
180	8	300	157	78	111
190	10	320	149	72	101
200	12	340	141	65	92
210	14	360	133	59	82
220	16	380	125	53	73
230	18	400	117	46	64
240	20	420	109	40	54
250	22	440	101	34	45
260	24	460	92	28	35
270	26	480	84	23	26
280	28	500	76	23	23

Blanket Recommendation: 90 : 45 : 45 (kg N : P_2O_5 : $K_2O\ ha^{-1}$)

Recommendation domain

Soil type

Yield target

: Black Clay Loam : 50 q ha⁻¹ : Coimbatore, Salem, Tiruchirappalli Districts

: Good Grade

1. Jabalpur, sorghum

Crop	:	Jowar
Soil Type	:	Shallow, Medium black and Deep black soils
Varieties	:	CSH -5
Yield (q ha ⁻¹)	:	30-40
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100- 500; P: 5- 25 K: 100-500
		Bhopal, Dhar, Jhabua ,Indore, Khandwa, Khargone, Mandsaur, Ujjain,
Districts	:	

Equation for Calculating the fertilizer nutrient Requirement:

FN = 6.48 T - 0.38 SN

 $FP_2O_5 = 3.99 T - 2.29 SP$

 $FK_2O = 3.51 T - 0.16SK$

Soil tes	t Values (l	kg ha ⁻¹)	Fert	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)						
				35				40		
N	P	K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
100	5	200	156	108	73	189	128	91		
150	10	250	137	97	65	170	117	83		
200	15	300	118	86	57	151	106	75		
250	20	350	99	74	49	132	94	67		
300	25	400	80	63	41	113	83	59		

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 6.4 kg ha⁻¹; P₂O₅= \pm 3.9 kg ha⁻¹and K₂O= \pm 3.5 kg ha⁻¹

Grade: need to verify

Rahuri, (Maharashtra), Sorghum

Crop : Sorghum (Kharif) Variety: CSH-9
Soil : Vertic Ustropepts Situation:Rainfed

Districts : Jalgaon, Dhule, Nandurbar, Satara, Kolhapur, Sangli, Akola,

Parbhani, Buldhana, Aurangabad, Wardha, Yeotmal, Pune.

Basic Data

Nutrient	NR (kg q^{-1})	CS (%)	CF (%)
N	2.01	41.9	43.9
P ₂ O ₅	0.76	104.3	34.5
K ₂ O	2.48	13.3	74.3

Targeted Yield Equations

FN = 4.58 T - 0.96 SN

 $FP_2O_5 = 2.21 T - 6.94 SP$

 $FK_2O \ = 3.34 \ T - 0.22 \ SK$

Fertilizer prescription for targeted yields of *Kharif* sorghum for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)						
Soil tes	Soil test values (kg ha ⁻¹)		40 (q ha ⁻¹ targ	et	45 q ha ⁻¹ target			
		, ,	3 .7	D.O.	и о	NT	D.O	и о	
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	6	200	87	47	90	110	58	106	
120	8	300	68	33	68	91	44	84	
140	10	400	49	19	46	72	30	62	
160	12	500	30	25*	24	52	16	40	
180	14	600	10	25*	25*	33	25*	18	
200	> 14	700	25*	25*	25*	14	25*	25*	

^{*} Minimum dose of N, P₂O₅ and K₂O

Rahuri, (Maharashtra), Sorghum

Crop : Sorghum (Rabi) Variety: CSH-8 R Soil : Typic Haplusterts Situation: Irrigated

Districts : Jalgaon, Akola, Aurangabad, Jalna, Osmanabad, Parbhani, Latur,

Ahmednagar, Buldhana, Solapur, Yeotmal, Satara, Sangli.

Basic Data

Nutrient	$NR (kg q^{-1})$	CS (%)	CF (%)
N	2.07	34	44
P ₂ O ₅	0.78	73	39
K ₂ O	2.41	20	72

Targeted Yield Equations

 $\begin{array}{ll} FN &= 4.7\ T - 0.77\ SN \\ FP_2O_5 &= 2.00\ T - 4.29\ SP \\ FK_2O &= 3.35\ T - 0.33\ SK \end{array}$

Fertilizer prescription for targeted yields of *rabi* Sorghum for varying soil test values.

values.	values.											
			Fertilizer prescriptions (kg ha ⁻¹)									
Soil test values (kg ha ⁻¹)			50 q ha ⁻¹ target			60 q ha ⁻¹ target						
			N	P ₂ O ₅	K ₂ O	N	D O	K ₂ O				
N	P	K	11	F ₂ O ₅	$\mathbf{K}_2\mathbf{O}$	1N	P_2O_5	$\mathbf{K}_2\mathbf{O}$				
100	6	200	158	74	102	205	94	135				
120	8	250	143	66	85	190	86	119				
140	10	300	127	57	69	174	77	102				
160	12	350	112	49	52	159	69	86				
180	14	400	96	40	36	143	60	69				
200	16	450	81	31	19	128	51	53				
220	18	500	66	23	25*	113	43	36				
240	20	> 500	50	14	25*	97	34	25*				

^{*} Minimum dose of K₂O

1. Andhra Pradesh (Ragi)

Name of the Centre : Palem, Mahabubnagar | Soil phosphorus range : 10 – 75 kg ha⁻¹

district Soil potassium range

: 150 - 800 kg ha⁻¹

Soil : Alfisol (Sandy Loam) FYM composition :

Crop and Variety : Local cultivar FYM rate :

Season developed : Rabi, 2005 & 2006 Green manure composition : Target range : 8 – 12 q ha⁻¹ Green manure rate :

Soil Nitrogen range : 75 – 400 kg ha⁻¹

Fertilizer adjustment equations

FN = 18.76 T - 0.30 SN, FP₂O₅ = 3.29 T - 0.78 SP, FK₂O = 3.47 T - 0.02 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrient (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for yield target of						
Kmn Olsens' O ₄ N P			8 (q ha ⁻¹)			12 (q ha ⁻¹)			
V4 14 1	AC-11	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
10	150	128	19	25	203	32	39		
15	200	120	15	24	195	28	38		
20	250	113	11	23	188	24	37		
25	300	105	7	22	180	20	36		
30	350	98	3	21	173	16	35		
35	400	90		20	165	12	34		
40	450	83		19	158	8	33		
45	500	75		18	150	4	32		
50	550	68		17	143		31		
55	600	60		16	135		30		
60	650	53		15	128		29		
65	700	45		14	120		28		
70	750	38		13	113		27		
75	800	30		12	105		26		
	kg ha ⁻¹ Olsens' P	Name	N	N P ₂ O ₅ N N P ₂ O ₅ N P ₂ O ₅ N N N P ₂ O ₅ N N N P ₂ O ₅ N N N N N N N N N	N	N P ₂ O ₅ K ₂ O N 10 150 128 19 25 203 15 200 120 15 24 195 20 250 113 11 23 188 25 300 105 7 22 180 30 350 98 3 21 173 35 400 90 20 165 40 450 83 19 158 45 500 75 18 150 50 550 68 17 143 55 600 60 16 135 60 650 53 15 128 65 700 45 14 120 70 750 38 13 113	N		

Verification: The above equations are yet to be verified on the farmers' fields.

Applicability

Soil Testing Laboratories :Rajendranagar, Jadcherla and Sanga Reddy

Soil type :Chalka soils

Crop :Ragi Season developed :*Rabi*

Yield target :Upto 12 q ha⁻¹

Note: The above equations may be verified in black soils with three or four targets and pickup

the best one for making recommendations.

1. Bangalore, Karnataka (Ragi) Zone-5 (Good) (* take it to ragi eqns of other states)

Crop : Ragi SOIL : Red lateritic

Season : Kharif

Variety : Indaf-8 & other HYV

Target range : 20q/ acre

Soil Nitrogen range : 0.2%- 0.5%

Soil phosphorus range : 38 -164 Kg/ acre
Soil potassium range : 30 -120 Kg/ acre
FYM composition : .0.5%N : 0.3P:0.5K

FYM rate : 3.00 t\ acre

Green manure composition : 0.3%N : 0.4P:0.5K

Green manure rate : 3.0t/acre

Area of applicability: Bangalore, Kolar and Tumkur districts

Target yield equation: F.N. = $3.314 \text{ T} - 0.24 \text{ SN (KMnO}_4 - \text{N)}$, F.P₂O₅ = $1.85 \text{ T} - 0.66 \text{ SP}_2\text{O}_5$

(Bray's - P_2O_5) F. $K_2O = 1.86$ T- 0.21 S K_2O (N H_4OAC - K_2O)

STV	Fertilizer	STV	Fertilizer	STV	Fertilizer
KMnO ₄ -N (kg/acre)	nitrogen (kg/acre)	Bray's P ₂ O ₅	phosphorus (kg/acre)	Amm.Ace. K ₂ O	potash (kg/acre)
(lig/ucit)	(lig/dolo)	(kg/acre)	(iig/dere)	(kg/acre)	(lig/uere)
20	48	2.5	28	10	28
30	46	5.0	26	20	26
40	43	7.5	25	30	23
50	41	10.0	23	40	21
60	39	12.5	20	50	19
70	36	15.0	20	60	17
80	34	17.5	18	70	15
90	31	20.0	16	80	13
100	29	22.5	15	90	11
110	27	25.0	13	100	10
120	24	27.5	11		
130	22	30.0	10		

To increase or decrease the yield target of one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N = \pm 3.25$ kg/acre

 $P_2O_5 = \pm 1.75 \text{ kg/acre}$

 $K_2O = \pm 1.75$ kg/acre.

2. Tamil Nadu: Ragi

Name of the centre : Coimbatore Soil : Mixed black

(Periyanaickanpalayam series)

Crop & Variety : Ragi - CO 11
Season developed : Kharif
Target range : 40 q ha

Soil Nitrogen range : 180 - 280 kg ha⁻¹
Soil phosphorus range : 8 - 28 kg ha⁻¹

Soil potassium range : 300 - 500 kg ha⁻¹

FYM composition : 0.47:0.31:1.14% (N:P:K) (Dry weight basis)

FYM rate : 12.5 t ha⁻¹ (30% Moisture)

Green manure composition
Green manure rate:

Fertiliser Adjustment Equations

T - 0.37 - 0.98 FN 4.35 SN ON FP_2O_5 1.18 T - 1.03 SP 0.80 OP = FK₂O 2.68 T - 0.14 SK 0.40 OK

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Initi	Initial soil tests (kg ha-1)			Nutrient added (kg ha ⁻¹) for an yield target of 40 q ha ⁻¹			
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O		
180	8	300	107	39	65		
190	10	320	104	37	62		
200	12	340	100	35	60		
210	14	360	96	33	57		
220	16	380	93	31	54		
230	18	400	89	29	51		
240	20	420	85	27	48		
250	22	440	82	25	46		
260	24	460	78	22	43		
270	26	480	74	20	40		
280	28	500	70	18	37		

Blanket Recommendation: 60:30:30 (kg N : P₂O₅ : K₂O ha⁻¹)

Recommendation domain

Soil type : Black Clay Loam

Yield target : 40 q ha⁻¹

Districts : Coimbatore, Salem, Tiruchirappalli

Grade : Good

Rahuri, (Maharashtra), Finger millet

Crop : Finger millet (Nagli) Variety : Nagli RAU-8
Soil : Typic Haplustepts Situation: Rainfed

Districts : Nasik, Nandurbar, Kolhapur, Pune, Gadchiroli, Bhandara

Basic Data

Nutrient	$NR (kg q^{-1})$	CS (%)	CF (%)
N	2.01	10.22	45.39
P ₂ O ₅	0.59	26.14	19.86
K ₂ O	1.97	3.92	162

Targeted Yield Equations

FN = 4.42 T - 0.225 SN

 $FP_2O_5 = 2.97 T - 1.32 SP$

 $FK_2O = 1.21 T - 0.024 SK$

Fertilizer prescription for targeted yields of finger millet for varying soil test values.

rerunzer	retinizer prescription for targeted yields of finger infact for varying son test values.									
			Fertilizer prescriptions (kg ha ⁻¹)							
Soil tes	st values (k	g ha ⁻¹)	12 q	ha ⁻¹ targ	get	18	18 q ha ⁻¹ target			
				D 0	***		D 0	***		
N	P	K	N	P_2O_5	K_2O	N	P_2O_5	K_2O		
100	6	200	30	28	10	57	45	17		
100	U	200	30	20	10	31	73	17		
120	8	300	26	25	25*	52	43	15		
140	10	400	21	22	25*	48	40	25*		
160	12	500	17	20	25*	43	37	25*		
180	14	600	25*	17	25*	39	35	25*		
200	16	700	25*	14	25*	34	32	25*		
			l .			l	1			

Minimum dose of N and K₂O

Fodder corps

1. Hisar(Haryana) Sorghum fodder

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Sorghum (HC 171)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Kharif

Target range :400 to 600 q/ha
Soil nitrogen range : 80 to 200 kg/ha
Soil phosphorus range : 4 to 24 kg/ha

Targeted yield equations : FN = 0.46T - 1.27 SN, FP₂O₅ = 0.16T - 3.59 SP*

Ready reckoner of soil test based fertilizer recommendations for sorghum (HC 171) green fodder yield of 400, 500 and 600 q/ha

SN*	Targ	eted yield (q/ha)	SP*	Tai	Targeted yield (q/ha)			
(kg/ha)	400	500	600	(kg/ha)	400 500		600		
	FN (F	ertilizer N,	kg/ha)		FP ₂ O ₅ (Fertiilzer P	P ₂ O ₅ , kg/ha)		
80	82	128	174	4	50	66	82		
90	70	116	162	6	42	58	74		
100	57	103	149	8	35	51	67		
110	44	90	136	10	28	44	60		
120	32	78	124	12	21	37	53		
140	20	52	98	14	14	30	46		
160	20	27	73	16	8	22	38		
180	20	20	47	20	8	8	24		
200	20	20	22	24	8	8	10		

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Targeted yield

Verification: These fertilizer adjustment equations for yield targets were verified. The yield targets of 400, 500 and 600 g/ha were achieved with $\pm 6.0\%$ deviations.

Applicability: These fertilizer adjustment equations will hold good throughout Haryana for high yielding varieties of sorghum for green fodder.

1. Hisar(Haryana) Oat fodder

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety :Oat (HFO 114)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Rabi

Target range : 400 to 500 q/ha Soil nitrogen range : 80 to 220 kg/ha Soil phosphorus range : 4 to 28 kg/ha

Targeted yield equations : FN = 0.50T - 1.09 SN, $FP_2O_5 = 0.13T - 1.50 SP^*$

Ready reckoner of soil test based fertilizer recommendations for oat (HFO 114) green fodder yield of 400, 450 and 500 q/ha

SN*	Targ	Targeted yield (q/ha)			Tar	geted yield	(q/ha)	
(kg/ha)	400	450	500	(kg/ha)	400	450	500	
	FN (F	ertilizer N,	rtilizer N, kg/ha)		FP ₂ O ₅ (Fertiilzer P ₂ O ₅ , kg/ha)			
80	113	138	163	4	46	53	59	
90	102	127	152	6	43	50	56	
100	91	116	141	8	40	47	53	
110	80	105	130	10	37	44	50	
120	69	94	119	12	34	40	47	
140	47	72	97	14	31	37	44	
160	30	50	75	16	28	34	41	
180	30	30	53	20	22	29	35	
200	30	30	30	24	16	23	29	
220	30	30	30	28	10	17	23	

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Targeted yield

Verification: These fertilizer adjustment equations for yield targets were verified. The green

fodder yield targets of 400, 450 and 500 q/ha were achieved with $\pm 6.0\%$

deviations.

Applicability: These fertilizer adjustment equations will hold good throughout Haryana for high yielding varieties of oat.

Rahuri, (Maharashtra), Fodder maize

Crop : Fodder Maize (Summer) Variety : African tall Soil : Typic Haplusterts Situation : Irrigated

Districts : Kolhapur, Satara, Sangli, Pune, Ahmednagar, Nasik, Solapur

Basic Data

Nutrient	NR (kg q ⁻¹)	CS (%)	CF (%)
N	4.71	40.53	72.58
P ₂ O ₅	0.82	17.25	54.31
K ₂ O	4.73	20.76	192.9

Targeted Yield Equations

FN = 6.49 T - 0.56 SN

 $FP_2O_5 = 1.51 T - 0.73 SP$

 $FK_2O = 2.45 T - 0.13 SK$

Fertilizer prescription for targeted yields of fodder maize for varying soil test values.

values.									
			Fertilizer prescriptions (kg ha ⁻¹)						
Soil te	st values (k	g ha ⁻¹)	40 t	ha ⁻¹ targ	et	50	50 t ha ⁻¹ target		
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O	
100	(200	202.6	56.02	72	269.5	71.10	96.5	
100	6	200	203.6	56.02	72	268.5	71.12	90.5	
120	8	300	192.4	54.56	59	257.3	69.66	83.5	
140	10	400	181.2	53.1	46	246.1	68.2	70.5	
140	10	400		33.1					
160	12	500	170.0	51.64	33	234.9	66.74	57. 5	
180	14	600	158.8	50.18	20	223.7	65.28	44.5	
200	16	700	147.6	48.72	25*	215.5	63.82	31.5	

^{*} Minimum dose of K₂O

Cash Crops

1. Andhra Pradesh, Cotton (Without IPNS Based)

Name of the Centre : Nandyal Soil phosphorus range : 5 – 75 kg ha⁻¹

Soil : Vertisol : Soil potassium range : 125 – 475 kg ha⁻¹

Crop and Variety : Rainfed Cotton : FYM composition :

Season developed : *Kharif*, 2001 FYM rate : Target range : 10 q ha⁻¹ - 12 q ha⁻¹ Green manure composition : Soil Nitrogen range : 100 – 240 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 15.63 T - 0.70 SN, FP₂O₅ = 8.96 T - 2.15 SP, FK₂O = 13.41 T - 0.304 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil a	Soil available nutrient			Fertilizer nutrient required (kg ha ⁻¹) For yield target					
	(kg ha ⁻¹)		of						
Kmn	Olsens'	Amm.		10 (q ł	าa ⁻¹)		12 (q	ha ⁻¹)	
O ₄ N	Р	Ac-K	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	
100	5	125	86	79	96	118	97	123	
110	10	150	79	68	89	111	87	115	
120	15	175	72	57	81	104	75	108	
130	20	200	65	47	73	97	65	100	
140	25	225	58	36	66	90	54	93	
150	30	250	51	25	58	83	43	85	
160	35	275	44	14	51	76	32	77	
170	40	300	37	4*	43	69	22	70	
180	45	325	30	4*	35	62	11	62	
190	50	350	23	4*	28	55	11	55	
200	55	375	16	4*	20	48	11	47	
210	60	400	9	4*	13	41	11	39	
220	65	425	2	4*	5	34	11	32	
230	70	450	2	4*	5	27	11	24	
240	75	475	2	4*	5	20	11	17	

^{*} mintnance dose

Verification: The above equations are yet to be verified on the farmers' fields.

Applicability

Soil Testing Laboratories : Nandyal, Kurnool district

Soil : Vertisol (Clay) Crop : Rainfed Cotton

Season developed : Kharif

Yield target : Upto 12 q ha⁻¹

Note: The above equations may be verified in Vertisol (Clay) with three or four targets and pickup the best one for making recommendations.

1. Tamil Nadu: Cotton

Name of the centre : Coimbatore **FYM composition** :0.59:0.23:0.59% Soil : Mixed black (N:P:K) (Dry weight basis)

(Perianaickenpalayam

series)

Crop & Variety : Cotton - MCU 5

Season developed : Rabi : 30 q ha Target range

:180 - 270 kg ha⁻¹ Soil Nitrogen range

Soil phosphorus range : 8 - 26 kg ha⁻¹ Soil potassium range : 300 - 480 kg ha⁻¹

: 12.5 t ha⁻¹ FYM rate (30 % moisture)

Green manure composition Green manure rate

Fertiliser Adjustment Equations

FN 8.81 0.62 - 0.77 SN ON FP₂O₅ 2.53 T 1.36 SP 1.08 OP FK₂O = 4.92 T -0.25 SK - 0.77 OK

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil tests	s (kg ha ⁻¹)	Nutrient added	Nutrient added (kg ha ⁻¹) for an yield target of 30 q ha ⁻¹				
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O			
180	8	300	153	65	73			
190	10	320	146	62	68			
200	12	340	140	60	63			
210	14	360	134	57	58			
220	16	380	128	54	53			
230	18	400	121	51	48			
240	20	420	115	49	43			
250	22	440	109	46	38			
260	24	460	103	43	33			
270	26	480	97	41	28			

Blanket Recommendation: 80:40:40 (kg N : P₂O₅ : K₂O ha⁻¹)

Recommendation domain

Soil type : Black - Clay Loam

Yield target : 30 q ha⁻¹

: Coimbatore, Salem, Tiruchirappalli Districts

Grade : Good

2. Tamil Nadu: Cotton

Name of the centre : Coimbatore : FYM composition : 0.64 : 0.66 : 0.69% (N:P:K) (Dry weight basis)

Soil : Red (Irugur series) (N:P:K) (Dry weight basis Crop & Variety : Cotton - MCU 5

Season developed : Sep. - Feb. (Rabi) FYM rate : 12.5 t ha⁻¹
Target range : 30 q ha⁻¹ (30% moist

Target range : 30 q ha⁻¹ (30% moisture)
Soil Nitrogen range : 180 - 270 kg ha⁻¹

Soil phosphorus range : 8 - 26 kg ha⁻¹ Green manure composition :Soil potassium range : 180 - 270 kg ha⁻¹ Green manure rate : :

Fertiliser Adjustment Equations

FN T 7.66 0.43 SN - 0.71 ON FP₂O₅ 3.22 T 3.27 SP OP --0.38 OK FK₂O 5.97 T -0.50 SK - 0.66 =

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil tests		Nutrient added	(kg ha ⁻¹) for an yield	target of 30 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
180	8	180	153	71	89
190	10	190	148	64	84
200	12	200	144	58	79
210	14	210	140	51	74
220	16	220	135	45	69
230	18	230	131	38	64
240	20	240	127	32	59
250	22	250	122	25	54
260	24	260	118	20	49
270	26	270	114	20	44

Blanket Recommendation: 80:40:40 (kg N : P_2O_5 : K_2O ha⁻¹)

Recommendation domain

Soil type : Red - Sandy Clay Loam

Yield target : 30 q ha⁻¹

Districts : Coimbatore, Dindigul, Erode, Karur, Madurai, Namakkal, Salem, Theni, Tiruchirappalli

Grade : Good

1. Hisar(Haryana)Cotton

Name of centre : CCS Haryana Agricultural University, Hisar

Soil : Sierozem (Inceptisols/Entisols)

Crop & Varitey : Cotton (H 777)

Season developed : Kharif

Target range:16 to 22 q/haSoil nitrogen range: 80 to 220 kg/haSoil phosphorus range: 4 to 28 kg/ha

Targeted yield equations :

 $FN = 10.91T - 1.09 SN, FP_2O_5 = 3.02T - 1.73 SP*$

Ready reckoner of soil test based fertilizer recommendations for cotton (H 777) for 16, 18 and 20q/ha kapas yield

SN*	Targ	Targeted yield (q/ha)			Tar	geted yield (q	/ha)	
(kg/ha)	18	20	22	(kg/ha)	18	20	22	
	FN (Fertilizer N, kg/ha)				FP ₂ O ₅ (Fertiilzer P ₂ O ₅ , kg/ha)			
80	87	109	131	4	41	47	53	
90	77	98	120	6	38	44	50	
100	66	87	109	8	34	40	46	
110	120	98	96	10	31	37	43	
120	44	65	87	12	27	33	39	
140	22	43	66	14	24	30	36	
160	21	21	44	16	20	26	32	
180	21	21	22	20	13	19	26	
200	21	21	21	24	23	19	12	
220	21	21	21	28	16	12	8	

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Targeted yield

Verification: These fertilizer adjustment equations for yield targets were verified at farmers'

fields in various agro-climatic zones of Haryana. The yield targets of 18 and 20

q/ha were achieved with -6.5 to +5.8% deviations.

Applicability: These fertilizer adjustment equations will hold good for American cotton in the cotton growing areas of Haryana.

1. Bikaner, Cotton

Name of the center : ARS, Bikaner Soil nitrogen range : 90-170 kg ha⁻¹ : Alluvial soils (Adsar Soil Phosphorus : 25-65 kg ha⁻¹

and Khiran series) range

Crop and variety : Cotton (RS-810) Soil potassium range : 190-350 kg ha⁻¹

Season developed : Kharif-2003 and

2004

Target range : 18-20 q ha⁻¹

Fertilizer adjustment equation

FN = 10.05T - 0.29 SN $FP_2O_5 = 9.02 T - 1.66 S P_2O_5$ $FK_2O = 8.20 T - 0.25 SK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil availa	ble nutrient	(kg ha ⁻¹)	Fertilizer nutrient required (kg ha ⁻¹) for yield target of							
KMnO ₄	Olsens'	Amm.A	18 q ha ⁻¹			20 q ha ⁻¹				
N	P	cK	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
90	25	190	91	70	53	105	70	60		
100	30	210	87	60	46	101	70	59		
110	35	230	82	49	39	97	63	52		
120	40	250	78	39	32	92	52	45		
130	45	270	74	28	26	88	42	39		
140	50	290	69	20	19	84	32	32		
150	55	310	65	20	15	80	21	25		
160	60	330	61	20	15	75	20	18		
170	65	350	57	20	15	71	20	15		

Applicability

Soil testing laboratory : Bikaner

Soil : Khiran, Jamsar, Lunkaransar series

Crop and variety : Cotton (RS-810)

Target range : 18-20 q ha⁻¹ Soil nitrogen range : 90-170 kg ha⁻¹

Soil phosphorus range : 25-65 kg ha⁻¹ Soil potassium range: 190-350 kg ha⁻¹

1. Jabalpur, Cotton

Crop	:	Cotton
Soil Type	:	Shallow, Medium black and Deep black
Varieties	:	JKH -1 and Hybrid Cotton
Yield (q ha ⁻¹)	:	
Applicability	:	Range of soil test values (Kg ha ⁻¹): N: 100- 350; P: 5- 25; K: 100-500
Districts	:	Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur, Sehore, Ujjain. Grade: need to verify

Equation for Calculating the fertilizer nutrient Requirement:

FN = 11.33 T - 0.59SN

 $FP_2O_5 = 6.45 T - 4.4 SP$

 $FK_2O = 4.71 T - 0.14SK$

Soil tes	st Values (k	g ha ⁻¹)	Ferti	lizer nutri	ent require	ment (kg ha ⁻¹) for yield target (q ha ⁻¹)			
			15			20			
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	5	200	108	75	43	164	107	66	
150	10	250	78	52	36	134	84	59	
200	15	300	49	30	29	105	62	52	
250	20	350	19	8	22	75	40	45	
300	25	400	-	-	15	46	17	37	

To increase or decrease the yield targets by one quintal per hectare the variations to be made in $N=\pm 11.3$ kg ha⁻¹; $P_2O_5=\pm 6.4$ kg ha⁻¹and $K_2O=\pm 4.7$

Rahuri, (Maharashtra), Cotton

Crop : Cotton (Kharif) Variety:RHR-253
Soil : Typic Haplusterts Situation:Irrigated

Districts : Jalgaon, Akola, Buldana, Amravati, Nanded, Latur, Washim, Pune,

Parbhani, Wardha, Yeotmal, Ahmednagar, Satara, Sangli, Solapur,

Kolhapur.

Basic Data

Nutrient	NR (kg q ⁻¹)	CS (%)	CF (%)
N	5.20	29.8	39.2
P ₂ O ₅	4.35	79.1	63.7
K ₂ O	0.96	1.70	11.2

Targeted Yield Equations

FN = 13.1 T - 0.75 SN

 $FP_2O_5 = 6.83 \text{ T} - 2.84 \text{ SP}$

 $FK_2O \ = 8.57 \ T - 0.18 \ SK$

Fertilizer prescription for targeted yields of cotton for varying soil test values.

		Fertilizer prescriptions (kg ha ⁻¹)							
Soil tes	st values (k	g ha ⁻¹)	20 q ha ⁻¹ target			24 q ha ⁻¹ target			
	T	T	N.T	D.O.	W O	NT	D.O.	W O	
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O	
100	6	250	187	119	126	239	146	160	
120	10	300	172	108	117	224	135	151	
140	14	350	157	96	108	209	124	142	
160	18	400	142	85	99	194	112	133	
180	22	450	127	68	90	179	95	124	
200	26	500	112	57	81	164	84	115	
220	30	550	97	45	72	149	73	106	
240	34	600	82	34	63	139	61	97	

1. Andhra Pradesh (Sugarcane)

Name of the Sub Centre : Nellore | Soil phosphorus range : 10 – 60 kg ha⁻¹
Soil : Sandy clay loam | Soil potassium range : 150 – 370 kg ha⁻¹

(Alluvial) FYM composition : 0.75 : 0.60 : 1.20

Crop and Variety : Sugarcane – 87A-298 FYM rate : 10 t ha⁻¹

Season/Year developed : 1999-2000 Green manure composition : Target range : 125 t ha⁻¹ - 150 t ha⁻¹ Green manure rate :

Soil Nitrogen range : 150 – 400 kg ha⁻¹

Fertilizer adjustment equations

FN = 3.43 T - 1.45 SN - 0.70 FYM N, $\text{FP}_2\text{O}_5 = 1.30 \text{ T} - 4.83 \text{ SP} - 0.43 \text{ FYM P}$

 $FK_2O = 1.93 T - 0.56 SK - 0.03 FYM K$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrients (kg			Fertilizer nutrient required (kg ha ⁻¹) for production of 125 t ha ⁻¹						
Kmn O ₄ -	Olsen-P	Amm	Only C	hemical f	ert.		With Fy	m @ 10 t ha ⁻¹	
N		Aoc-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
120	5	150	276	141	162	230	131	144	
140	10	170	244	120	148	201	107	132	
160	15	190	212	98	135	172	83	121	
180	20	210	180	76	121	143	59	110	
200	25	230	148	55	108	114	35	99	
220	30	250	116	33	94	85	10	88	
240	35	270	84	12	81	56	10	76	
260	40	290	52	12	67	27	10	65	

Verification: The above equations are to be verified on the farmers' fields of Nellore district with yield targets of 125 and 150 t ha⁻¹.

Applicability

Soil Testing Laboratories : Nellore, Ongole, Tirupati and Cuddapah

Soil type : Sandy clay loam Crop : Sugarcane

Season developed : Kharif

Yield target : Up to 125-150 t ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the

farmers' fields with three or four targets and pick up the best one for making

recommendations.

2. Andhra Pradesh (Sugarcane)

Name of the Sub Centre : Nellore Soil phosphorus range : 5 – 35 kg ha⁻¹

Soil : Sandy clay loam | Soil potassium range : 150 – 270 kg ha⁻¹

(Alluvial) FYM composition : 10 t ha⁻¹

Crop and Variety : Sugarcane – 87A-298 FYM rate :

(1st Ratoon crop)

Season/Year developed : 2000-2001 Green manure composition :

Target range : 125 – 150 t ha⁻¹ Green manure rate :

Soil Nitrogen range : 120 – 240 kg ha⁻¹

Fertilizer adjustment equations

FN = 4.85 T - 2.60 SN - 0.20 FYM N, FP₂O₅ = 1.36 T - 5.73 SP - 0.34 FYM P

 $FK_2O = 1.94 T - 0.85 SK - 0.40 FYM K$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrients (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for production of 125 t ha ⁻¹						
Kmn	Olsen-	Amm	Only	Chemica	ıl fert.	With I	- - - - - - - - - - - - - - - - - - -	0 t ha ⁻¹	
O ₄ -N	Р	Aoc-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
120	5	150	294	141	115	285	126	76	
140	10	170	242	113	98	233	97	59	
160	15	190	190	84	81	181	68	42	
180	20	210	138	55	64	129	40	25	
200	25	230	86	27	47	77	11	25	
220	30	250	34	27	30	25	11	25	
240	35	270	34	27	30	25	11	25	

Verification: The above equations are to be verified on the farmers' fields of Nellore district with yield targets of 125 and 150 t ha⁻¹.

Applicability

Soil Testing Laboratories : Nellore, Ongole, Tirupati and Cuddapah

Soil type : Sandy clay loam
Crop : Sugarcane
Season developed : Kharif

Yield target : Up to 150 t ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the

farmers' fields with three or four targets and pick up the best one for making

recommendations.

3. Andhra Pradesh (Sugarcane)

Name of the Sub Centre : Rudrur Soil phosphorus range : 10 – 60 kg ha⁻¹
Soil : Black soil Soil potassium range : 150 – 650 kg ha⁻¹

Crop and Variety : Sugarcane – Co. 419 FYM composition :

Crop and Variety : Sugarcane – Co. 419 FYM composition :
Season/Year developed : 1982 FYM rate :

Target range : 80 t ha⁻¹ - 100 t ha⁻¹ Green manure composition :

Soil Nitrogen range : 150 – 400 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 5.4 T - 1.25 SN, $\text{FP}_2\text{O}_5 = 1.8 \text{ T} - 4.73 \text{ SP}$

 $FK_2O = 1.7 T - 0.33 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrients (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for yield target of						
Kmn O ₄ -	Olsen-P	Amm		80 t ha ⁻¹		100 t ha ⁻¹			
N		Aoc-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K₂O	
150	10	150	245	97	87	353	133	121	
175	15	200	213	73	70	321	109	104	
200	20	250	182	49	54	290	85	88	
225	25	300	151	26	37	259	62	71	
250	30	350	120	2	21	228	38	55	
275	35	400	88	2	4	196	14	38	
300	40	450	57	2	4	165	14	22	
325	45	500	26	2	4	134	14	5	
350	50	550	26	2	4	103	14	5	
375	55	600	26	2	4	71	14	5	
400	60	650	26	2	4	40	14	5	

Verification: The above equations are to be verified on the farmers' fields of Nizamabad district with yield targets of 80 and 100 t ha⁻¹.

Applicability

Soil Testing Laboratories : Nizamabad

Soil type : Black soils of Nizam Sugar Factory Area

Crop : Sugarcane Season developed : *Kharif*

Yield target : Up to 100 t ha⁻¹

Note: For adoption in light soils of Nizam Sugar Factory Area, 3 or 4 targeted yields may be tested in the farmers' fields and pick up the best one to make recommendations.

1. Bangalore, Karnataka (Sugarcane)Zone-4

Name of the centre : Bangalore | Soil phosphorus range : 15 -25 kg/acre

Soil : Red,Alkaline : Soil potassium range : 120 – 200 kg/ acre

Crop & Variety : CO – 419 and Other HYV FYM composition : 0.6N,0.25P,0.5K

Season developed : Khaif- 2000 FYM rate : 10t/ acre

Target range : 40 t/ acre Green manure composition : 0.7N,0.2P,0.5K

Soil Nitrogen range : 80 – 120 kg/ acre Green manure rate :

Area of applicability : Chitradurga and davanagere districts.

Targeted Yield Equation

FN = 5.52 T - 150.24 SN (OC %), $\text{FP}_2\text{O}_5 = 2.27 \text{ T} - 0.96 \text{ SP}_2\text{O}_5 \text{ (Olsen's P}_2\text{O}_5)$

 $FK_2O = 3.75 \text{ T} -0.38 \text{ SK}_2O \text{ (NH}_4OAC-K}_2O) \text{ RYS} = 8.70$

Fertilizer prescription for targeted yields of sugarcane for varying soil test values.

STV O.C (%)	Fertilizer nitrogen (kg/acre)	STV Bray's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K₂O (kg/acre)	Fertilizer potash (kg/acre)
0.40	161	5	86	60	127
0.50	146	10	81	80	120
0.55	138	15	76	100	112
0.60	131	20	72	110	108
0.70	116	25	67	120	104
0.75	108	30	62	130	101
0.80	101	35	57	140	97
0.85	93	40	52	150	93
0.90	86	45	48	160	89
1.00	71	50	43	170	85

To increase or decrease the yield target by one t/acre the variations to be made in the fertilizer recommendations are as follows:

 $N=\pm~5.5~kg/acre$ $P_2O_5=\pm~2.3~kg/acre$ $K_2O=\pm~3.8~kg/acre$

2. Crop: Sugarcane (CO-62175)

Targeted Yield Equation

FN = 2.206 T - 212.8 SN (OC%), FP₂O₅ = $1.057 \text{ T} - 3.196 \text{ SP}_2\text{O}_5$ (Bray's P₂O₅) FK₂O = $1.192 \text{ T} - 0.313 \text{ SK}_2\text{O}$ (NH₄OAC-K₂O) RYS = 22.50

Yield of sugarcane during 2002-03 under follow up trial.

Yield Target (t/ha)/Fertilizer	Fertilizer nutrients applied (kg/ha)			Yield	Response	Deviation	VCR	
prescription approach	N	P_2O_5	K ₂ O	(t/ha)	(t/ha)	(%)	1	
150– STCR (Fully Inorganic)	154	0	60	167.0	89.0	+11.3	1:33.8	
150 – STCR (50% Organic + 50 % Inorganic) 15.5 t FYM	77	0	0	159.4	81.4	+6.3	1:7.6	
150 – GRD	250	75	75	161.8	83.8	+7.9	1:13.8	
150 – STL	213	63	50	147.4	69.4	-1.7	1:13.8	
Control	-	-	-	78.0	•			

STV : O C – 0.82 %, Bray's P_2O_5 – 71.68 kg/ha, Amm.Acetate K_2O – 378.0 kg/ha

Bihar (Sugarcane)

Bihar (Young Alluvium Calcareous Soil)

Name of the Centre	: RAU,Pusa	Soil phosphorus range	: 4- 40 kg P₂O₅/ha
Soil	:Young alluvium calcoreaus	Soil potassium range	: 60- 240 kg K ₂ O/ha
	soil	Compost composition	: N.A.
Season	: Spring	Compost rate	: N. A.
Crop	: Sugar Cane main crop	Green manure compositio	n : N.A.
Target range	: 75-100 t/ha	Green manure rate	: N. A.
Soil Nitrogen range	: 120- 300 kg N /ha		

Valid for Districts: East Champaran, West Champaran, Siwan, Saran,

Sitamarhi, Shivhar, Muzaffarpur, Vaishali, Samastipur,

Gopalganj, Begusarai, Part of Khagaria

Soil Test Values : Alk. KMnO₄ – N expressed in **kg N/ha**

Olsen's P expressed in $kg P_2O_5/ha$ Ammonium OAc – K expressed in $kg K_2O/ha$

Minimum maintenance dose of fertilizer if soil test value is high : 30 kg N, 15 kg P_2O_5 and 10 kg K_2O/ha

1. Bihar (Young Alluvium Calcareous Soil) crop

Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

Crop: Sugar cane main

	Basic	Targetted Yield Equations		
Nutrient	N	\mathbf{C} \mathbf{S}	C F	
	R(kg/q)	(%)	(%)	
N	0.171	19.9	72.6	FN = 0.236 T - 0.27 SN
P_2O_5	0.018	25.4	16	$FP_2O = 0.113 \text{ T} - 1.59 \text{ SP}_2O_5$
K ₂ O	0.18	44.5	178	$FK_2O = 0.101 T - 0.25SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

	ailable Nu		Fertilizer Nutrients Required (kg/ha) for Yield Target							
	(kg/ha)		of							
				75 t/ha			100 t/ha			
N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
120	4	60	145	78	61	204	107	86		
130	6	70	142	75	58	201	103	84		
140	8	80	139	72	56	198	100	81		
150	10	90	137	69	53	196	97	79		
160	12	100	134	66	51	193	94	76		
170	14	110	131	62	48	190	91	74		
180	16	120	128	59	46	187	88	71		
190	18	130	126	56	43	185	84	69		
200	20	140	123	53	41	182	81	66		
210	22	150	120	50	38	179	78	64		
220	24	160	118	47	36	177	75	61		
230	26	170	115	43	33	174	72	59		
240	28	180	112	40	31	171	68	56		
250	30	190	110	37	30	169	65	54		
260	32	200	107	34	30	166	62	51		
270	34	210	104	31	30	163	59	49		
280	36	220	101	28	30	160	56	46		
290	38	230	99	24	30	158	53	44		
300	40	240	96	21	30	155	49	41		

2. Bihar (Young Alluvium Calcareous Soil)

Name of the Centre : RAU,Pusa Soil phosphorus range : 4- 40 kg P₂O₅/ha Soil :Young alluvium calcoreaus Soil potassium range : 60- 240 kg K₂O/ha Compost composition : N. A. Season : After harvest of main crop Compost rate :N.A. Green manure composition : N.A. Crop : Sugarcane ratoon Target range : 75-100 t/ha Green manure rate : N. A. Soil Nitrogen range : 120- 300 kg N/ha

Valid for Districts: East Champaran, West Champaran, Siwan, Saran, Sitamarhi, Shivhar, Muzaffarpur, Vaishali, Samastipur, Gopalganj, Begusarai, Part of Khagaria

Bihar (Young Alluvium Calcareous Soil) Crop: Sugar cane ratoon

Targetted Yield Equations* (WITH ONLY INORGANIC FERTILIZERS :N, P & K)

	Basic	Targetted Yield Equations		
Nutrient	N R(kg/q)	C S (%)	C F (%)	
N	0.211	23.4	80.9	FN = 0.261 T - 0.29 SN
P ₂ O ₅	0.024	30	20	$FP_2O = 0.120 \text{ T} - 1.50 \text{ SP}_2O_5$
K ₂ O	0.156	27	144.4	$FK_2O = 0.108 T - 0.19SK_2O$

^{*} Good Equations

Fertilizer Recommendation Schedule for Specific Yield Target at Varying Soil Test Values

Soil Available Nutrients (kg/ha)			Fertilizer Nutrients Required (kg/ha) for Yield Target of						
				75 t/ha			100 t/ ha		
N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
120	4	60	161	84	70	226	114	97	
130	6	70	158	81	68	223	111	95	
140	8	80	155	78	66	220	108	93	
150	10	90	152	75	64	218	105	91	
160	12	100	149	72	62	215	102	89	
170	14	110	146	69	60	212	99	87	
180	16	120	144	66	58	209	96	85	
190	18	130	141	63	56	206	93	83	
200	20	140	138	60	54	203	90	81	
210	22	150	135	57	53	200	87	80	
220	24	160	132	54	51	197	84	78	
230	26	170	129	51	49	194	81	76	
240	28	180	126	48	47	191	78	74	
250	30	190	123	45	45	189	75	72	
260	32	200	120	42	43	186	72	70	
270	34	210	117	39	41	183	69	68	
280	36	220	115	36	39	180	66	66	
290	38	230	112	33	37	177	63	64	
300	40	240	109	30	35	174	60	62	

1. Tamil Nadu: Sugarcane

Name of the centre : Coimbatore : Mixed black Soil

(Perianaickenpalayam series)

Crop & Variety : Sugarcane - COC 671

Season developed

: 125 t ha⁻¹ Target range

: 200 - 300 kg ha⁻¹ Soil Nitrogen range : 15 -25 kg ha⁻¹ Soil phosphorus range : 300 - 550 kg ha⁻¹ Soil potassium range

FYM composition : 0.67:0.40:0.72% (N:P:K) (Dry weight basis)

: 12.5 t ha⁻¹ FYM rate

(30% moisture)

Green manure composition : -Green manure rate : -

Fertiliser Adjustment Equations

FN T - 1.09 ON 4.17 SN - 1.11 FP₂O₅ 1.01 T 2.56 SP 1.01 OP FK₂O 3.44 T - 0.84 SK - 1.03 OK =

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil tests	s (kg ha ⁻¹)	Nutrient added	(kg ha ⁻¹) for an yield	target of 125 t ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
200	15	300	303	88	178
220	17	350	281	82	136
240	19	400	259	77	94
260	21	450	238	72	56
280	23	500	216	67	56
300	25	550	194	62	56

Blanket Recommendation: 275 : 62.5 : 112.5 (kg N : P_2O_5 : K_2O ha⁻¹)

Recommendation domain

Soil type : Black clay loam

: 125 t ha⁻¹ Yield target

District(s) : Coimbatore, Salem, Tiruchirappalli

Grade : Good

2. Tamil Nadu: Sugarcane

Name of the centre : Cuddalore (Sub centre) Soil : Red (Gadillum series)

Crop & Variety : Sugarcane - CO 6304

Season developed :-

Target range : 125 t ha⁻¹
Soil Nitrogen range : 200 - 300 kg ha⁻¹

Soil phosphorus range : 15 -25 kg ha⁻¹ Soil potassium range : 200 - 300 kg ha⁻¹ FYM composition : 0.87:0.72:1.30% (N:P:K) (Dry weight basis)
FYM rate : 12.5 t ha⁻¹

(30 % moisture)

Green manure composition : - Green manure rate : -

Fertiliser Adjustment Equations

FN 4.06 T - 0.74SN - 0.87 ON SP OP FP₂O₅ 0.71 T - 1.09 0.72 FK₂O 2.67 T - 0.57 SK - 1.30 OK =

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil tests	s (kg ha ⁻¹)	Nutrient added (l	kg ha ⁻¹) for an yield ta	rget of 125 t ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
200	15	200	360	73	220
220	17	220	345	70	209
240	19	240	331	68	197
260	21	260	316	66	186
280	23	280	301	64	170
300	25	300	286	62	163

Blanket Recommendation: 275 : 62.5 : 112.5 (kg N : P_2O_5 : K_2O ha⁻¹)

Recommendation domain

Soil type : Coastal Alluvium - Clay loam

Yield target : 125 t ha⁻¹
Districts : Cuddalore
Grade : Good

3. Sugarcane: Tamil Nadu

Name of the centre : Bhavanisagar (sub - centre)

Soil : Red (Irugur series)

Crop & Variety : Sugarcane - COC 671

Season developed :-

Target range : 100 t ha⁻¹

Soil Nitrogen range : 200 - 300 kg ha⁻¹ Soil phosphorus range : 14 -24 kg ha⁻¹ Soil potassium range : 200 - 300 kg ha⁻¹ FYM composition : 0.80: 0.41: 0.75% (N:P:K) (Dry weight basis)

FYM rate : 12.5 t ha⁻¹

(30 % Moisture)

Green manure composition : - Green manure rate : -

Fertiliser Adjustment Equations

FN 3.42 T - 0.56 SN0.93 ON T 1.94 OP FP_2O_5 = 1.15 _ SP 0.98 FK₂O 3.16 T - 0.73 SK 0.99 OK =

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Init	ial soil tests	s (kg ha ⁻¹)	Nutrient added	(kg ha ⁻¹) for an yield	target of 100 t ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
200	14	200	230	88	170
220	16	220	219	86	155
240	18	240	208	80	141
260	20	260	196	76	126
280	22	280	185	72	112
300	24	300	174	68	97

Blanket Recommendation: 275 : 62.5 : 112.5 (kg N : P_2O_5 : K_2O ha⁻¹)

Recommendation domain

Soil type : Red Sandy Loam

Yield target : 100 t ha⁻¹

District(s) : Coimbatore, Dindigul, Erode, Karur, Madurai, Namakkal, Salem, Theni, Tiruchirappalli

Grade : Good

1. Chhattisgarh

Crop - **Sugarcane** Soil Type - Vertisol

Variety - Co-JN -14186 Season - Rabi 2007-08

Area for suitability - Raipur, Durg, Rajnandgaon, Bilaspur ans

Kawardha districts

Fertilizer adjustment equations

FN = 0.59 Y - 1.12 SN - 0.88 FYMFP = 0.13 Y - 3.46 SP - 0.37 FYM

FK = 0.15 Y - 0.13 SK - 0.15 FYM

Where FN, FP_2O_5 and FK_2O are fertilizer N P and K respectively. SN, SP and SK are soil test values for available N P and K. Y = Yield target (q/ha) and FYM is Farm Yard Manure

Ready Reckoners for soil test based fertilizer N recommendation of sugarcane in Vertisol with 5 tonnes of FYM.

Soil Test N	Yield Ta	Yield Target of sugarcane (q ha-1)							
Kg/ha	500	600	700	800	900	1000			
150	123	182	241	300	359	418			
175	95	154	213	272	331	390			
200	67	126	185	244	303	362			
225	39	98	157	216	275	334			
250	11	70	129	188	247	306			
275	0	42	101	160	219	278			
300	0	14	73	132	191	250			
325	0	0	45	104	163	222			
350	0	0	17	76	135	194			
375	0	0	0	48	107	166			
400	0	0	0	20	79	138			
425	0	0	0	0	51	110			
450	0	0	0	0	23	82			

Ready Reckoners for soil test based fertilizer P_2O_5 recommendation of sugarcane in Vertisol with 5 tonnes of FYM.

Soil Test P	Yield Target of sugarcane (q ha-1)							
Kg/ha	500	600	700	800	900	1000		
6	42	55	68	81	94	107		
8	35	48	61	74	87	100		
10	29	42	55	68	81	94		
12	22	35	48	61	74	87		
14	15	28	41	54	67	80		
16	8	21	34	47	60	73		
18	1	14	27	40	53	66		
20	0	7	20	33	46	59		
22	0	0	13	26	39	52		
24	0	0	6	19	32	45		
26	0	0	0	12	25	38		
28	0	0	0	5	18	31		

Ready Reckoners for soil test based fertilizer K_2O recommendation of sugarcane in Vertisol with 5 tonnes of FYM

Soil Test	Yield Ta	Yield Target of sugarcane (q ha-1)						
Kg/ha	500	600	700	800	900	1000		
200	48	63	78	93	108	123		
225	45	60	75	90	105	120		
250	42	57	72	87	102	117		
275	39	54	69	84	99	114		
300	35	50	65	80	95	110		
325	32	47	62	77	92	107		
350	29	44	59	74	89	104		
400	22	37	52	67	82	97		
450	16	31	46	61	76	91		
500	9	24	39	54	69	84		

1. Jabalpur, Sugarcane

Crop	:	Sugarcane
Soil Type	:	Shallow, Medium black and Deep black
Varieties	:	CO-1307
Yield (q ha ⁻¹)	:	12-15
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100- 350; P: 5- 20; K: 100-350
Districts	:	Jabalpur ,Indore, Khandwa, Khargone, Narsinghpur, Powarkheda, , Sehore BhopalGrade : need to verify

Equation for Calculating the fertilizer nutrient Requirement:

 $FN=5.71\ T-1.66\ SN \qquad FP_2O_5=2.28\ T-11.73\ SP \qquad FK_2O=1.6\ T-0.53\ SK$

Soil test Values (kg ha ⁻¹)			Fer	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (t ha ⁻¹)					
				12			14		
N	P	K	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	
100	5	200	519	215	86	633	260	118	
150	10	250	353	98	33	467	143	65	
200	15	300	270	39	6	384	84	38	
250	20	350	187	-	-	301	26	12	
300	25	400	104	-	-	218	-	-	

To increase or decrease the yield targets by one quintal per hectare the variations to be made in $N=\pm 5.7$ kg ha⁻¹; $P_2O_5=\pm 2.2$ kg ha⁻¹and $K_2O=\pm 1.6$

Rahuri, (Maharashtra), Sugarcane

Crop : Sugarcane (Seasonal) Variety: Co 86032 Soil : Vertic Haplusterts Situation: Irrigated

Districts : Ahmednagar, Pune, Satara, Sangli, Kolhapur, Solapur, Nasik,

Aurangabad, Nanded, Parbhani, Jalgaon, Buldhana, Kolhapur.

Basic Data

Nutrient	$NR (kg q^{-1})$	CS (%)	CF (%)
N	2.28	64	48
P ₂ O ₅	1.28	70	103
K ₂ O	4.78	30	175

Targeted Yield Equations

FN = 4.76 T - 1.34 SN

 $FP_2O_5 = 1.24 T - 1.55 SP$

 $FK_2O = 2.73 T - 0.21 SK$

Fertilizer prescription for targeted yields of seasonal sugarcane for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)							
Soil tes	Soil test values (kg ha ⁻¹)		100 t ha ⁻¹ target			120 t ha ⁻¹ target				
N	P	K	N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O		
100	6	200	342	115	231	437	140	286		
120	8	300	315	112	210	410	136	265		
140	10	400	288	109	181	384	133	244		
160	12	500	261	105	168	357	130	223		
180	14	600	234	102	147	330	127	202		
200	16	700	207	99	134	303	124	181		

Oilseeds Crops

1. Bangalore, Karnataka (Grondnut) Zone-5 (IPNS) Good

: Kharif

: TMV-2

Crop : Groundnut Target range : 7q/acre

(TMV-2)

Soil phosphorus range :40-100 kg/acre
Soil potassium range :60-140kg/acre
FYM composition :0.5N,0.2P,0.5K

Area of Applicability : Bangalore, Kolar, FYM rate 4t/ acre

Mandya and Tumkur Green

Green manure composition

districts. Green manure rate

Soil Nitrogen range : 180-300 kg/ acre

Area of applicability: Bangalore, Kolar, Mandya and Tumkur districts.

Target yield equations:

SOIL

Season

Variety

FN = $3.88 \text{ T} - 0.53 \text{ SN (KMnO}_4\text{-N}) - 0.000334 \text{ OM}$, FP₂O₅= $5.85 \text{ T} - 1.063 \text{ SP}_2\text{O}_5 \text{ (Bray's-P}_2\text{O}_5) - 0.000332 \text{ OM}$,

 $FK_2O = 4.24 \text{ T} - 0.533 \text{ SK}_2O \text{ (NH}_4OAC-K}_2O) - 0.000423 \text{ OM}$

STV KMnO₄- N (kg/acre)	Fertilizer nitrogen (kg/acre)	STV Bray's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K ₂ O (kg/acre)	Fertilizer potash (kg/acre)
20	20.4	3	43.6	20	23.2
22	19.4	5	41.5	22	22.2
24	18.3	7	39.4	24	21.1
26	17.3	9	37.2	26	20.0
28	16.2	11	35.1	28	19.0
30	15.1	13	33.0	30	17.9
32	14.1	15	30.9	32	16.8
34	13.0	17	28.7	34	15.8
36	12.0	19	26.6	36	14.7
38	10.9	21	24.5	38	13.6
40	9.8	23	22.4	40	12.6
42	8.8	25	20.2	42	11.5
44	7.7	27	18.1	44	10.4
46	6.7	29	16.0	46	9.4
48	5.6	31	13.8	48	8.3
50	4.5	33	11.7	50	7.2

Note: If one tonne FYM /acre is used then decrease N by 0.3 kg/acre, P_2O_5 by 0.3 kg/acre and K_2O by 0.4 kg/acre

To increase or decrease the yield target by one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N = \pm 3.9 \text{ kg/acre}$

 $P_2O_5 = \pm 5.9 \text{ kg/acre}$

 $K_2O = \pm 4.2$ kg/acre.

1. Bhubneaswar

Crop: Groundnut (cv. Smruti)

General fertilizer recommendation: 20-40-40

Basic data and fertilizer adjustment equations

Nutrient		Basic data		Fertilizer adjustment equations
	NR (kg/q)	Cs (%)	C _f (%)	
N	7.4	75	16	FN = 4.5 T - 0.4 SN
P_2O_5	1.3	49	32	$F P_2 O_5 = 4.1 T - 1.5 S P_2 O_5$
K ₂ O	1.6	21	65	$FK_2O = 2.5 \text{ T} - 0.3 \text{ S } K_2O$

Corrected ready reckoner of fertilizer doses at varying soil test values for specific yield targets

Av	ailable s	oil	Fertilizer nutrients required (kg ha ⁻¹)								
nutrients (kg ha ⁻¹)		Targeted yield (15 q ha ⁻¹)			Targeted yield (20 q ha ⁻¹)			Targeted yield (25 q ha ⁻¹)			
N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	N	$\mathbf{P}_2\mathbf{O}_5$	$\mathbf{K}_2\mathbf{O}$	N	$\mathbf{P}_2\mathbf{O}_5$	$\mathbf{K}_2\mathbf{O}$	N	$\mathbf{P}_2\mathbf{O}_5$	$\mathbf{K}_2\mathbf{O}$
60	15	50	40	40	23	50	50	35	60	60	48
70	20	60	40	32	20	50	50	32	60	60	45
80	25	70	36	24	17	50	46	29	60	60	42
100	30	80	28	17	14	50	39	26	60	58	39
120	35	90	20	10	11	42	32	23	60	50	36
140	40	100	10	10	10	34	25	20	56	42	33
160	45	125	10	10	10	26	18	13	48	34	25
180	50	150	10	10	10	18	11	10	40	26	13
200	60	175	10	10	10	10	10	10	32	18	10
220	70	200	10	10	10	10	10	10	24	10	10

(NB: when the calculated fertilizer requirement values tend to zero, a minimum dose, say 10 kg ha⁻¹ each for NP and K are added to the calculated values to bring the dose to a reasonable one).

Equation used by the Soil Testing Laboratory:

Districts covered: Khurda, Puri, Nayagarh, Cuttack, Angul, Dhenkanal, Sambalpur, Bargarh, Jharsududa, Sundargarh, Bhubaneswar, Puri, Cuttack, Dhenkanal, Sambalpur, Sundargarh

1. Bikaner Groundnut

Name of the center : ARS, Bikaner Soil nitrogen range : 80-160 kg ha⁻¹ Soil Phosphorus : 10-50 kg ha⁻¹

(Bhamatsar and range

Khiran series)

Crop and variety : Groundnut (M-13) Soil potassium range : 170-330 kg ha⁻¹ Season developed : Kharif-1999 FYM composition : 0.58% N, 0.26%

P₂O₅ and 0.35%

 K_2O

Target range : $35-40 \text{ q ha}^{-1}$ FYM rate : 5 t ha^{-1}

Fertilizer adjustment equation

FN = 1.82 T - 0.26 SN - 0.18 ON

 $FP_2O_5 = 2.08 T - 1.48 S P_2O_5 - 0.60 OP_2O_5$ $FK_2O = 2.43 T - 0.22 SK_2O - 0.33 OK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil a	vailable nu (kg ha ⁻¹)	ıtrient	Fertilizer nutrient required (kg ha ⁻¹) with 5 t ha ⁻¹ FYM for yield target of							
KMnO ₄	Olsens'	Amm.Ac.		35 q ha	1		40 q ha	1		
N	P_2O_5	- K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
80	10	170	38	50	41	47	61	53		
90	15	190	35	43	36	44	53	49		
100	20	210	32	35	32	42	46	44		
110	25	230	30	28	28	39	38	40		
120	30	250	27	21	23	36	31	35		
130	35	270	25	20	19	34	24	31		
140	40	290	22	20	14	31	20	27		
150	45	310	19	20	10	29	20	22		
160	50	330	17	20	10	26	20	18		

Applicability

Soil testing laboratory : Bikaner

Soil : Bhamatsar, Khiran, Jamsar, Lunkaransar series

Crop and variety : Groundnut M-13

Target range : 35-40 q ha⁻¹
Soil nitrogen range : 80-160 kg ha⁻¹

Soil phosphorus range : 10-50 kg ha⁻¹

Soil potassium range: 170-330 kg ha⁻¹

1. Chhattisgarh

Crop Groundnut Soil type Vertisol, J - 11, Variety

Rabi, 1996-97 Season

Area for suitability Raipur, Durg, Raigarh, Mahasamund.

Fertilizer adjustment equations

FN = General recommended dose (20 kg ha-1)

 $FP_2O_5 = Critical value for SP = 13 kg P ha^{-1}$

 $FK_2O = No K \text{ if } SK > 250 \text{ kg ha}^{-1}$

1. Chhattisgarh

Mustard

Soil type Vertisol Variety Pusa bold Season Rabi, 1993-94

Area for suitability Raipur, Durg, Rajnandgaon, Kawardha and Bilaspur districts

Fertilizer adjustment equations

FN = 9.18 Y - 0.256 SN

 $\begin{aligned} FP_2O_5 &= 188 - (35180 - 1715Y)^{1/2} - 2.79 \ SP \\ FK_2O &= No \ K \ if \ SK > 250 \ kg \ ha^{-1} \end{aligned}$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of mustard (Pusa bold) in Vertisol (Kanhar).

Alkaline KMnO ₄ -N	Olsen's P	Yield Targets (q ha ⁻¹) mustard (var Pusa bo								
(kg ha ⁻¹)	(kg ha ⁻¹)	1	12		16		20			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	3	72	59	108	92	145	150			
175	6	65	50	102	83	139	142			
200	9	59	42	96	75	132	133			
225	12	53	34	89	67	126	125			
250	15	46	25	83	58	120	117			
275	18	40	17	76	50	113	108			
300	21	33	9	70	41	107	100			
350	24	21	6	57	33	94	92			
400	28	8	6	44	22	81	80			

Rahuri, (Maharashtra), Groundnut

Crop : Groundnut (Kharif) Variety:Phule Pragati (JL-24)
Soil : Vertic Haplustepts Situation:Protetive Irrigated

Districts : Jalgaon, Dhule, Akola, Latur, Aurangabad, Jalna, Parbhani,

Buldhana, Nanded, Pune, Wardha, Yeotmal, Satara, Sangli,

Kolhapur, Ahmednagar.

Basic Data

Nutrient	NR (kg q ⁻¹)	CS (%)	CF (%)
N	2.92	26	70.3
P ₂ O ₅	1.43	55	28.9
K ₂ O	0.72	3	23.1

Targeted Yield Equations

FN = 4.16 T - 0.37 SN

 $FP_2O_5 = 4.96 T - 4.36 SP$

 $FK_2O = 3.14 T - 0.16 SK$

Fertilizer prescription for targeted yields of *Kharif* groundnut for varying soil test values.

iucs.											
Soil te	st values (k	g ha ⁻¹)	20	q ha ⁻¹ targ	et	25	q ha ⁻¹ tar	get			
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O			
100	6	200	16	73	21	67	08	47			
100	U	200	40	13	31	07	70	47			
120	8	250	39	64	23	60	89	39			
140	10	300	31	56	15	52	80	31			
160	12	350	24	47	25*	45	72	23			
180	14	400	17	38	25*	37	63	15			
200	16	450	25*	29	25*	30	54	25*			
220	18	500	25*	21	25*	23	46	25*			
	Soil tes N 100 120 140 160 180 200	N P 100 6 120 8 140 10 160 12 180 14 200 16	N P K 100 6 200 120 8 250 140 10 300 160 12 350 180 14 400 200 16 450	Soil test values (kg ha ⁻¹) N P K 100 6 200 46 120 8 250 39 140 10 300 31 160 12 350 24 180 14 400 17 200 16 450 25*	Soil test values (kg ha ⁻¹) Fertilized 20 q ha ⁻¹ targe N P ₂ O ₅ N N N N N N N N N	Soil test values (kg ha ⁻¹) 20 q ha ⁻¹ target N P ₂ O ₅ K ₂ O	Soil test values (kg ha ⁻¹)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

^{*} Minimum dose of N and K₂O

Rahuri, (Maharashtra), Groundnut

Crop : Groundnut (Summer) Variety:SB-IX
Soil : Vertic Haplustepts Situation:Irrigated

Districts : Ahmednagar, Pune, Satara, Sangli, Kolhapur, Nasik, Jalgaon,

Thane, Raigad, Ratnagiri, Sindhudurg, Wardha, Nagpur, Buldhana,

Gadchiroli, Chandrapur.

Basic Data

Nutrient	NR (kg q ⁻¹)	CS (%)	CF (%)
N	6.62	65	158
P ₂ O ₅	4.21	137	51
K ₂ O	3.02	8	94

Targeted Yield Equations

FN = 4.18 T - 0.40 SN

 $FP_2O_5 = 8.23 T - 6.15 SP$

 $FK_2O = 3.22 T - 0.10 SK$

Fertilizer prescription for targeted yields of summer groundnut for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)						
Soil tes	Soil test values (kg ha ⁻¹)		20 q ha ⁻¹ target			25	25 q ha ⁻¹ target		
	1	1	N	P_2O_5	K ₂ O	N	D O	K ₂ O	
N	P	K	IN	F ₂ O ₅	$\mathbf{K}_2\mathbf{O}$	1N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	
100	6	200	65	169	61	85	210	77	
120	8	300	57	157	51	77	198	67	
140	10	400	49	144	41	69	185	57	
160	12	500	41	132	31	61	173	47	
180	14	600	33	120	21	53	161	37	
200	16	700	25	107	11	45	149	27	

2. Crop Mustard

Soil type Inceptisol variety Pusa bold Rabi, 1992-93 Season

Area for suitability Raipur, Durg, Mahasamund, Raigarh, Dhamtari,

Kanker, Raigarh and Bilaspur districts

Fertilizer adjustment equations

FN = 9.32 Y - 0.375SN

 $\begin{aligned} &FP_2O_5 = 196.9 - (38784 - 1656Y)^{1/2} \ 3.38 \ SP \\ &FK_2O \ = No \ K \ if \ SK > 250 \ kg \ ha^{-1} \end{aligned}$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of mustard (Pusa hold) in Incentical (Matasi)

Alkaline KMnO ₄ -	Olsen's P	Yield Targets (q ha ⁻¹) mustard (var Pusa bold								
N (kg ha' 1)	(kg ha ⁻¹)	12		1	16	20				
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	3	55	49	92	76	129	112			
175	6	45	39	83	66	120	101			
200	9	36	29	73	56	110	91			
225	12	26	19	64	45	101	81			
250	15	17	9	54	35	91	71			
275	18	7	5	45	25	82	61			
300	21	7	5	35	15	72	51			
350	24	7	5	16	5	53	41			
400	28	7	5	7	5	34	27			

1. Bikaner, Mustard

Name of the center : ARS, Bikaner Soil nitrogen range : 90-160 kg ha⁻¹ Soil Phosphorus : 20-55 kg ha⁻¹

(Bhamatsar and range

Khiran series)

Crop and variety : Mustard (T-59) Soil potassium range : 190-330 kg ha⁻¹

Season developed : Rabi 1996-97 and

1997-98

Target range : 8-10 q ha⁻¹

Fertilizer adjustment equation

FN = 27.25T - 0.969 SN $FP_2O_5 = 22.11 T - 5.69 S P_2O_5$ $FK_2O = 21.54 T - 0.59 SK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil a	available n (kg ha ⁻¹)	utrient	Fertilizer nutrient required (kg ha ⁻¹) for yield target of								
KMnO ₄	Olsens'	Amm.Ac.	8 q ha ⁻¹			cu (ng nu	10 q ha ⁻¹				
N	P	-K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O			
90	20	190	132	63	60	160	107	103			
100	25	210	122	35	48	160	79	92			
110	30	230	112	30	37	160	50	80			
120	35	250	103	30	25	157	30	68			
130	40	270	93	30	20	148	30	56			
140	45	290	84	30	20	138	30	44			
150	50	310	74	30	20	129	30	33			
160	55	330	64	30	20	119	30	21			

Verification: The above fertilizer adjustment equations were tried on the farmers' fields in Bikaner district with varying yield targets during Rabi 1998-99 and all the yield targets could be achieved at the place tried Applicability

Soil testing laboratory : Bikaner

Soil : Bhamatsar, Khiran, Jamsar, Sobhasar series

Crop and variety : Mustard
Target rang : 8-10 q ha⁻¹
Soil nitrogen range : 90-160 kg ha⁻¹

Soil phosphorus range : 20-55 kg ha⁻¹ Soil potassium range: 190-330 kg ha⁻¹

1. Jabalpur, Mustard

Crop	:	Mustard
Soil Type	:	Shallow, Medium black and Deep black
Varieties	:	Varuna ,Pusa bold
Yield (q ha ⁻¹)	:	12- 18
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100- 350; P: 5- 50; K: 100-500
Districts	:	Bhopal, Dhar,Khargone,Mandsaur,Narsinghpur, Powarkheda, Sagar, Sehore.Ujjain, Jabalpur,Indore,Khandwa Grade : Good

Equation for Calculating the fertilizer nutrient Requirement:

FN = 9.11 T - 0.37SN

 $FP_2O_5 = 3.60 \text{ T} - 0.75 \text{ SP}$

 $FK_2O = 4.66 T - 0.13 SK$

Soil te	st Values (kg ha ⁻¹)	Fertil	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)						
				10		16				
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
100	5	200	72	39	30	109	54	49		
150	10	250	53	35	23	90	50	42		
200	15	300	35	32	17	72	47	36		
250	20	350	16	28	10	53	43	29		
300	25	400	-					23		

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 9.1 kg ha⁻¹; P_2O_5 = \pm 3.6 kg ha⁻¹and K_2O = \pm 4.6

Grade: Good

2. Jabalpur, Mustard

Crop	:	Mustard
Soil Type	:	Alluvial
Varieties	:	Pusa bold , Aghani
Yield (q ha ⁻¹)	:	12-20
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100- 350; P: 5- 30; K: 100-400
		Gwalior, Jabalpur, and Gird region Grade: Good
Districts	:	

Equation for Calculating the fertilizer nutrient Requirement:

FN = 12.5 T - 0.44 SN

 $FP_2O_5 = 4.6 T - 1.5 SP$

 $FK_2O = 6.5 T - 0.19 SK$

Soil tes	t Values	s (kg ha ⁻¹)		Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)						
				12		16				
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
100	5	200	106	47	40	156	66	66		
150	10	250	84	40	30	134	59	56		
200	15	300	62	32	21	112	51	47		
250	20	350	40	25	11	90	44	37		
300	25	400	18	17	-	68	36	28		

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 12.5 kg ha⁻¹; P₂O₅= \pm 4.6 kg ha⁻¹and K₂O= \pm 6.5

Pantanagar (Toria) without IPNS

Name of the Centre : Soil phosphorus range : Soil : Soil potassium range : Crop and Variety : Toria var. PT 303 FYM composition : Season developed : FYM rate : Target range : t ha⁻¹ Green manure composition : Soil Nitrogen range : Green manure rate :

Fertilizer adjustment equation for yield targets (kg/ha)

F K (K₂O kg/ha) = 6.08 x YT (q/ha)-0.61 x SK F N (N, kg/ha) = 11.07 x YT (q/ha) – 101.63 x SN F P (P₂O₅, kg/ha) = 7.56 x YT (q/ha) –1.63 x SP

Reddy Reckoner Request

1. Hisar (Haryana) Raya

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Raya (RH 8113)

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Rabi

Target range: 16 to 20 q/haSoil nitrogen range: 80 to 220 kg/haSoil phosphorus range: 4 to 28 kg/ha

Targeted yield equations :

 $FN = 9.76T - 0.81 \text{ SN}, FP_2O_5 = 4.12T - 2.03 \text{ SP}^*$

Ready reckoner of soil test based fertilizer recommendations for raya (RH 8113) seed yield of 16, 18 and 20 q/ha

SN*	Targ	eted yield (q/ha)	SP*	Targeted yield (q/ha)			
(kg/ha)	16	18	20	(kg/ha)	16	18	20	
	FN (Fertilizer N, kg/ha)			FP ₂ O ₅ (I	FP ₂ O ₅ (Fertiilzer P ₂ O ₅ , kg/ha)			
80	91	111	130	4	58	66	74	
90	83	103	122	6	54	62	70	
100	75	95	114	8	50	58	66	
110	67	87	106	10	46	54	62	
120	59	79	98	12	42	50	58	
140	43	62	81	14	38	46	54	
160	26	46	65	16	34	42	50	
180	20	30	49	20	26	34	42	
200	20	20	33	24	18	16	34	
220	20	20	20	28	8	18	26	

^{*}SN and SP are soil available N and P (kg/ha), respectively; T = Targeted yield

Verification: These fertilizer adjustment equations for yield targets were verified at farmers'

fields in various agro-climatic zones of Haryana. The yield targets of 18 and 20

q/ha were achieved with -6.6 to +7.0% deviations.

Applicability: These fertilizer adjustment equations will hold good in Haryana in

Mohindergardh, Faribadad, Jhajjar, Rewari, Mewat, Gurgaon, Bhiwani, Hisar,

Sirsa, Fatehabad and Jind districts.

2. Hisar (Haryana) Raya

Name of centre : CCS Haryana Agricultural University, Hisar

Crop and variety : Raya (Luxmi))

Soil : Sierozem (Inceptisols/Entisols)

Situation : Irrigated **Season developed** : Rabi

Target range : 18 to 22 q/ha Soil nitrogen range : 80 to 200 kg/ha Soil phosphorus range : 4 to 28 kg/ha

FYM composition : $1.00 \% N, 0.62\% P_2O_5$

FYM rate : 15 t/ha

Targeted yield equations

FN = 10.61T - 0.95 SN-0.12 FYM(N) $FP_2O_5 = 4.73 \text{ T} - 3.00 \text{ SP-}0.10 \text{ FYM } (P_2O_5)^*$

Ready reckoner of soil test based fertilizer recommendations for raya (RH 8113) seed yield of 16, 18 and 20 q/ha

SN*	Targ	eted yield (q/ha)	SP*	Tar	geted yield (q	/ha)		
(kg/ha)	18	20	22	(kg/ha)	18	20	22		
	FN (Fertilizer N, kg/ha)		kg/ha)		FP ₂ O ₅ (1	FP ₂ O ₅ (Fertiilzer P ₂ O ₅ , kg/ha)			
80	115	136	157	4	73	83	93		
90	106	127	148	6	67	77	87		
100	96	117	138	8	61	71	81		
110	87	108	129	10	55	65	75		
120	77	98	119	12	49	59	69		
140	58	79	100	14	43	53	63		
160	39	60	81	16	37	47	57		
180	20	41	62	20	25	35	45		
200	20	22	43	24	13	23	33		
220	20	20	24	28	8	8	21		

*SN and SP are soil available N and P (kg/ha), respectively; T = Targeted yield, FYM (N) and FYM (P₂O₅) are N and P₂O₅ (kg/ha), respectively in applied FYM

Note: The dose of fertilzier N and P_2O_5 be reduced by abotu 1.25 kg and 1.00 kg/ha, respectively, from about fertilzier doses for each ton of applied FYM/compost.

Verification: These fertilizer adjustment equations for yield targets were verified at farmers'

fields in various agro-climatic zones of Haryana. The yield targets of 18 and 20

q/ha were achieved with -8.3 to +6.2 per cent deviations.

Applicability: These fertilizer adjustment equations will hold good in

Mohindergardh, Faribadad, Mewat, Jhajjar, Rewari, Bhiwani, Hisar, Sirsa,

Fatehabad and Jind districts of Haryana.

1. Andhra Pradesh (Mustard)

Name of the Centre : Rajendranagar : 10 – 90 kg ha⁻¹

Soil : Alfisol (sandy loam) : Soil potassium range : 200 – 600 kg ha⁻¹

Crop and Variety : Mustard – Pusa Jaikishan : 0.75 : 0.6 : 1.3

Crop and Variety : Mustard – Pusa Jaikishan FYM composition : 0.75 : 0.6 : 1.3

Season developed : Rabi, 2005 FYM rate :

Target range : 8 q ha⁻¹ – 10 q ha⁻¹ Green manure composition :

Soil Nitrogen range : 200 – 600 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 22.21 T-0.17 SN, $FP_2O_5 = 7.90 \text{ T} - 0.25 \text{ SP}$, $FK_2O = 6.38 \text{ T} - 0.06 \text{ SK}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	ailable nut (kg ha ⁻¹)	rient	Fertilizer nutrient required (kg ha ⁻¹) for yield target of							
Kmn	Olsens'	Amm.		8 (q ha ⁻¹)			10 (q ha ⁻¹)			
O ₄ N	Р	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
200	10	200	144	61	39	188	77	52		
250	20	250	135	58	36	180	74	49		
300	30	300	127	56	33	171	72	46		
350	40	350	118	53	30	163	69	43		
400	50	400	110	51	27	154	67	40		
450	60	450	101	48	24	146	64	37		
500	70	500	93	46	21	137	62	34		
550	80	550	84	43	18	129	59	31		
600	90	600	76	41	15	120	57	28		

Verification: The above equations are at to be verified on the farmers' fields of Ranga Reddy and other districts with yield targets of 8 and 12 g ha⁻¹

Applicability

Soil Testing Laboratories : Rajendranagar
Soil type : Sandy loam
Crop : Mustard
Season developed : Rabi, 2005
Yield target : Upto 10 g ha⁻¹

Note: The above equations may be tested in soils other than Alfisol in the farmer's fields with 3 or 4 yield targets and pickup the best one for making fertilizer recommendation.

1. New Delhi Centre

Crop : Mustard Soil phosphorus range : 10-38
Soil :Typic Haplustept (Alluvial) Soil potassium range : 100-375
Season : Rabi FYM composition (%) N,P,K : 0.5, 0.2, 0.35

Situation : Irrigated FYM rate : 10 t/ha
Target range : 20 – 25 q ha⁻¹ Green manure composition : Nil

Soil Nitrogen range : 100-375 Green manure rate ; Nil

Applicable area: Delhi state and adjoining soil-agro-climatic areas of

UP: Gautam Budhanagar, Ghaziabad, Bagpat Meerut, Mujjafarnagar, Saharanpur, Buland Shahr, Aligarh, Maha mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun, Haryana: Rohtak, Sonipat, Panipat, Jhajjar, Rewari, Gurgaon, Faridabad, Mewat, Karnal, Rajasthan: Alwar, Bharatpur, Sawai madhopur, Sikar, Karauli Punjab: Mansa, Patiala, Sangrur, MP: Bhind, Morana, Gwalior, Shivpuri

Fertilizer adjustment equations for targeted yield of crops in NCR of Delhi								
With FYM	Without FYM							
FN = 6.64 T - 0.38 SN - 1.72 FYM,	FN = 7.41 T - 0.44 SN,							
$FP_2O_5 = 6.10 \text{ T} - 4.02 \text{ SP} - 2.43 \text{ FYM}$	$FP_2O_5 = 6.22 \text{ T} - 3.41 \text{ SP},$							
$FK_2O = 3.84 \text{ T} - 0.24 \text{ SK} - 1.21 \text{ FYM}$	$FK_2O = 6.21 \text{ T} - 0.39 \text{ SK}$							

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Mustard FYM 10t ha⁻¹

Soil test	Soil test values (kg ha ⁻¹)			Nutrient needed (kg ha ⁻¹) for an yield target of 20 q ha ⁻¹			Nutrient needed (kg ha ⁻¹) for an yield target of 25 q ha ⁻¹			
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
100	10	100	80	60	40	110	90	60		
125	13	125	70	50	35	100	80	55		
150	15	150	60	40	30	90	70	50		
175	18	175	50	25	25	80	60	40		
200	20	200	40	15	15	75	50	35		
225	23	225	30	10	10	65	40	30		
250	25	250	20	10	10	55	30	25		
275	28	275	10	10	10	45	20	20		
300	30	300	10	10	10	35	10	10		
325	33	325	10	10	10	25	10	10		
350	36	350	10	10	10	10	10	10		
375	38	375	10	10	10	10	10	10		

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Mustard

targets c			1		1			1	
Soil test	values (l	kg ha ⁻¹)			(kg ha ⁻¹) for	Nutrient needed (kg ha ⁻¹) for			
			an yie	ld target	of 20 q ha ⁻¹	an yield target of 25 q ha ⁻¹			
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	10	100	105	90	85	140	120	115	
125	13	125	95	80	75	130	115	105	
150	15	150	80	75	65	120	105	95	
175	18	175	70	65	55	110	95	85	
200	20	200	60	55	45	95	85	75	
225	23	225	50	50	35	85	80	65	
250	25	250	40	40	25	75	70	60	
275	28	275	25	30	15	65	60	50	
300	30	300	15	20	10	55	55	40	
325	33	325	10	10	10	40	45	30	
350	36	350	10	10	10	30	35	20	
375	38	375	10	10		20	30	10	

Results of frontline demonstrations conducted at farmers' fields in NCR Delhi

	zer nutı (kg ha ⁻¹) P ₂ O ₅		Treat -ment	Yield Obtain ed (q ha ⁻¹)	Extra yield (q ha ⁻¹)	Cost of extra yield (Rs.ha ⁻¹)	Cost of fertilize r (Rs.ha ⁻¹)	Response ratio kg grain kg ⁻¹ nutrient	Net profit (Rs. ha ⁻¹)
Farme	r: Shri	Ram Ch	ander	I	Village	: Daulat p	our		
Musta	ard (P	usa Jai	Kisan)			Year : 19	997-98		
0	0	0	C	6.1	-				
106	44	62	T 25	17.5	11.4	17100	2658	5.4	14442
80	40	40	Gen	14.3	8.2	12300	2040	5.1	10260
60	57	0	FP	11.2	5.1	7650	1635	4.4	6015
Farmo		ri Sube Pusa B	e Singh ahar)			Village Year : 19	: Nanakh 998-99	eri	
0	0	0	C	7.0	-				
93	48	85	T 25	23.8	16.8	25200	2779	7.4	22421
80	40	40	Gen	18.2	11.2	16800	2040	7.0	14760
60	57	0	FP	12.5	5.5	8250	1635	4.7	6615
Farmer: Shri Raghu Nath Mustard (<i>Pusa Bahar</i>) Village: Nanakheri Year: 1998-99									
0	0	0	С	7.6	-				
66	76	87	T 25	22.6	15.0	22500	2868	6.5	19632
80	40	40	Gen	19.1	11.5	17250	2040	7.1	15210
60	57	0	FP	13.2	5.6	8400	1635	4.6	6765

	er : Shr		•			age : Kanç	yanneri		
	ard (Pu				Year	: 1999-00	1		
0	0	0	C	7.5	-				
75	26	67	T 25	22.8	15.3	22950	2035	9.1	20915
80	40	40	Gen	21.0	13.5	20250	2040	8.4	18210
60	57	0	FP	14.6	7.1	10650	1635	6.1	9015
Farm	er : Shr	i Lachh	u Singh		\	/illage : Da	aulatpur		
Musta	ard (P	usa Bah	ar)		Year	: 1999-00			
0	0	0	C	6.8					
110	67	54	T 25	23.5	16.7	25050	2975	7.2	22075
80	40	40	Gen	18.4	11.6	17400	2040	7.3	15360
60	57	0	FP	12.8	6.0	9000	1635	5.1	7365
Farm	ner : Sl	hri Dav	ya Nand		,	/illage :	3harthal		
	ard (Pu.	•				: 2000-01			
0	0	0	С	7.4	-				
88	71	34	T 25	24.3	16.9	25350	2549	8.8	22801
80	40	40	Gen	21.0	13.6	20400	2040	8.5	18360
60	57	0	FP	14.4	7.0	10500	1635	6.0	8865
Farm	er : Shr	i Chanc	d Ram		Villa	age : Bhar	thal		
	ard (Pu					: 2000-01			
0	0	0	С	7.8	_				
83	26	62	T 25	23.1	15.3	22950	2089	8.4	20861
80	40	40	Gen	19.2	11.4	17100	2040	7.1	15060
60	57	0	FP	15.8	8.0	12000	1635	6.8	10365
Farme	er : Shri	Rajend	lra	•	Villag	e : Dorala		•	•
Musta		ısa Jai I				: 2002-03			
0	0	0	С	8.2	_				
102	58	0	T 25	22.2	14.0	21000	2196	8.8	18804
80	40	40	Gen	20.1	11.9	17850	2040	7.4	15810
60	57	0	FP	14.4	6.2	9300	1635	5.3	7665
Farm	ner : Sh	ri Sukl	hbir		Vill	age : Do	rala		
<u>Mu</u> sta	ard (Pu	sa <u>Bo</u> ld))		Year:	2002-03			
0	0	0	С	7.4					
110	12	0	T 25	24.5	17.1	25650	1610	14.1	24040
80	40	40	Gen	18.4	11.0	16500	2040	6.9	14460
60	57	0	FP	13.2	5.8	8700	1635	5.0	7065

1. Uttarakhand (Mustard)

STV range for Mustard (PYS-I):

Crop

SOIL :Mollisols and Inceptisols

Season

Variety : Kranti, PYS-I : 15 -20 q ha⁻¹

Target range

Alkaline KMnO₄-N

: 198-325 kg/ha

Amm. Acetate-K

Olsen's-P

: 15-35 kg/ha

: 168-320 kg/ha

FYM composition

: 0.5-0.2-0.6

FYM rate

: 10 t/ha Green manure composition : ----

Green manure rate

Fertilizer adjustment equations for different yield target of Mustard (PYS-I).

F N (N kg/ha) = 15.63 x YT (q/ha) - 1.04 SN-1.61 FYM-N

F P (P kg/ha) = 2.40 x YT (q/ha) - 1.03 SP-0.32 FYM-P

F K (K kg/ha) = 3.88 x YT (q/ha) - 0.16 SP-0.40 FYM-K

Fertilizer adjustment equations for different yield target of Mustard (Kranti).

F N (N, kg/ha) = 13.30 x YT (q/ha) - 0.56 SN

 $FP(P_2O_5, kg/ha) = 13.40 \times YT(q/ha) - 160 SP$

 $F K (K_2O kg/ha) = 6.55 x YT (q/ha)-0.22 SK$

Ready reckoners for 15 q/ha yield targets of mustard (PYS-I) based on soil test fertilizer recommendations with 10 t/ha FYM.

Initial Soil Test	Value (kg/ha)		Nutrient added (kg/ha) for an yield target of 15 q				
N	P	K	N	P	K		
120	15	150	29.15	14.15	10.20		
150	20	170	0	9.00	7.00		
180	25	190	0	3.85	3.80		
210	30	210	0	0	0.60		
240	35	230	0	0	0		

Applicability: U.S. Nagar, Haridwar, Nainital and some parts of Western U.P.

Soybean

1. Himachal Pradesh (Soybean)

Name of the Centre : Palampur : 5-45 kg ha⁻¹
Soil : Alfisol, Entisol, Inceptisol : 50-250 kg ha⁻¹
Soil : 50-250 kg ha⁻¹

Crop and Variety : Soybean **FYM** composition: : Irrigated Moisture 10%, Situation Season developed : Kharif N=0.50%, P= 0.25 % : 2.0t ha⁻¹ Target range and K= 0.50 % : 200-600 kg ha⁻¹ : 12.5 t ha⁻¹ Soil Nitrogen range **FYM** rate

Green manure composition :-

Green manure composition :Green manure rate :

Biofertilizer: Seed coating with 250ml PBP liquid solution containing 106 cells per ml followed by seed drying before sowing.

Fertilizer adjustment equations

F N = 6.32 T- 0.25SN - 0.85ON, F P₂O₅ = 4.40 T-0.34 SP - 0.66OP - 0.41 PBP F K₂O = 4.05T - 0.23 SK - 0.80OK

Ready recknor for IPNS based fertilizer equations at different soil test values for soybean

Soil	Fertilizer nutrient dose (kg ha ⁻¹)				
Alkaline KMnO ₄ -N	Olsen's –P	NH ₄ OAc- K	N	P ₂ O ₅	K ₂ O
200	5	50	28	62	25
300	15	100	5	58	13
400	25	150	5	55	5
500	35	200	5	52	5
600	45	250	5	48	5

PBP contribution 6 kg P_2O_5 kg ha⁻¹

1. New Delhi Centre

Crop : Sovbean Soil phosphorus range : 10-38 Soil :Typic Haplustept (Alluvial) Soil potassium range : 100-375 FYM composition (%) N,P,K : 0.5, 0.2, 0.35 Season : Kharif Situation : Irrigated **FYM** rate : 10 t/ha : 20 – 25 qha⁻¹ Green manure composition Target range : Nil Soil Nitrogen range : 100 - 375 Green manure rate ; Nil

Applicable area: Delhi state and adjoining soil-agro-climatic areas of

UP: Gautam Budhanagar, Ghaziabad, Bagpat Meerut, Mujjafarnagar, Saharanpur, Buland Shahr, Aligarh, Maha mayanagar, Etah, Agra, Etawah, Mainpuri, Shikohabad, Agra, Mathura, Jhansi, Ferozabad, Jalaun

Haryana: Rohtak, Sonipat, Panipat, Jhajjar, Rewari, Gurgaon, Faridabad, Mewat, Karnal

Rajasthan: Alwar, Bharatpur, Sawai madhopur, Sikar, Karauli

Punjab : Mansa, Patiala, Sangrur

M P: Bhind, Morana, Gwalior, Shivpuri

Fertilizer adjustment equations for targeted yield of crops in NCR of Delhi							
With FYM	Without FYM						
$FN = 6.43 \text{ T} - 0.34 \text{ SN} - 1.33 \text{ FYM},$ $FP_2O_5 = 5.36 \text{ T} - 2.83 \text{ SP} - 2.92 \text{ FYM}$ $FK_2O = 3.50 \text{ T} - 0.19 \text{ SK} - 0.88 \text{ FYM}$	$FN = 6.60 \text{ T} - 0.35 \text{ SN},$ $FP_2O_5 = 6.05 \text{ T} - 3.19 \text{ SP},$ $FK_2O = 3.86 \text{ T} - 0.21 \text{ SK}$						

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of Sovbean FYM 10t ha⁻¹

Soil test values (kg ha ⁻¹)					d (kg ha ⁻¹) get of 20 q	Nutrient needed (kg ha ⁻¹) for an yield target of 25 q ha ⁻¹			
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	10	100	50	50	40	50	75	60	
125	13	125	50	45	35	50	70	55	
150	15	150	50	35	30	50	65	50	
175	18	175	40	30	25	50	60	45	
200	20	200	40	20	20	50	55	40	
225	23	225	40	15	15	40	50	35	
250	25	250	30	10	10	40	45	30	
275	28	275	20	10	10	40	40	25	
300	30	300	15	10	10	40	35	20	
325	33	325	10	10	10	35	30	15	
350	36	350	10	10	10	30	25	10	
375	38	375	10	10	10	20	20	10	

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of Soybean

Soil test	Soil test values (kg ha ⁻¹)				(kg ha ⁻¹) for of 20 q ha ⁻¹	Nutrient needed (kg ha ⁻¹) for an yield target of 25 q ha ⁻¹			
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	10	100	50	90	55	50	120	75	
125	13	125	50	80	50	50	110	70	
150	15	150	50	75	45	50	100	65	
175	18	175	50	65	35	50	95	60	
200	20	200	50	55	30	50	85	55	
225	23	225	50	50	25	50	80	50	
250	25	250	45	40	20	50	70	45	
275	28	275	35	35	15	50	65	40	
300	30	300	25	25	10	50	55	35	
325	33	325	20	15	10	50	45	30	
350	36	350	10	10	10	40	40	25	
375	38	375	10	10	10	35	30	20	

1. Uttarakhand (Soybean)

Soil : Mollisols and Inceptisols Alkaline KMnO₄-N : 120-240 kg/ha **Crop and Variety** : PS-1042, PK-262 Olsen's-P : 10-40 kg/ha Situation Amm. Acetate-K : 100-180 kg/ha : Iriiegetad : Kharif FYM composition (%) Season developed : 0.5-0.2-0.6 : 35 t ha⁻¹ FYM rate : 10 t/ha Target range STV for Soybea (PS-1042): Green manure composition :-----Soil O.C. range : 0.2-2.6 % Green manure rate

Fertilizer adjustment equations for different yield target.								
Soybean var. PS-1042 (With FYM) Soybean var. PK 262 (Without FYM)								
FN = 6.66T - 0.88SN - 0.69FYM - N	$F N (N, kg/ha) = 3.43 \times YT (q/ha) - 643.21 OC$							
FP = 8.48T- 5.49SP-1.14FYM-P	$FP(P_2O_5, kg/ha) = 5.20 \text{ x YT } (q/ha) -2.78 \text{ SP}$							
FK = 8.98T- 1.21SK-1.55FYM-K	$F K (K_2O kg/ha) = 4.00 x YT (q/ha)-0.36 SK$							

Ready reckoners for 30 q/ha yield targets of Soybean (PS-1042) based on soil test fertilizer recommendations with 10 t/ha FYM.

Initial Soil T	est Value (kg/h	a)	Nutrient added (kg/ha) for an yield target of 30 q			
N	P	K	N	P	K	
120	15	100	59.70	149.25	55.40	
150	20	120	33.30	121.80	31.20	
180	25	140	6.90	94.35	7.00	
210	30	160	0	68.90	0	
240	35	180	0	39.45	0	

Applicability: U.S. Nagar, Haridwar, Nainital and some parts of Western U.P.

2. Soybean

Soil type Vertisol

Variety Soybean (Gaurav) Season *Kharif*, 1992

Raipur, Durg, Rajnandgaon, Kawardgha, Area for Suitability -

Bilaspur districts)

Fertilizer adjustment equations

$$\begin{split} FN &= \text{General recommended dose (25 kg ha-1)} \\ FP_2O_5 &= 117.7 - (13858 - 545Y)^{1/2} - 2.90 \text{ SP} \\ FK_2O &= \text{No K if SK} > 250 \text{ kg ha}^{-1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of sovbean in Vertisol (Kanhar).

Alkaline KMnO ₄ -N	Olsen's P	Yield Targets (q ha ⁻¹) (Soybean JS – 305)								
(kg ha ⁻¹)	(kg ha	1	.5	5 20			25			
	1)	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	4	30	31	30	52	30	91			
175	6	30	25	30	46	30	85			
200	8	30	19	30	40	30	79			
225	10	20	13	20	34	20	73			
250	12	20	8	20	29	20	68			
275	14	20	5	20	23	20	62			
300	16	20	5	20	17	20	56			
350	18	20	5	20	11	20	50			
400	20	20	5	20	5	20	44			
450	22	20	5	20	5	20	39			
500	24	10	5	10	5	10	33			

1. Jabalpur, Soybean

Crop	:	Soybean
Soil Type	:	Shallow, Medium black and Deep black soils
Varieties	:	
Yield (q ha ⁻¹)	:	
Applicability	:	
Districts	:	

Equation for Calculating the fertilizer nutrient Requirement:

FN = 5.19 T - 0.48 SN

 $FP_2O_5 = 5.20 \text{ T} - 4.10 \text{ SP}$

 $FK_2O = 3.9 T - 0.22 SK$

Soil tes	t Values (k	ag ha ⁻¹)	Ferti	lizer nutri	ent require	rement (kg ha ⁻¹) for yield target (q ha ⁻¹)			
			20				25		
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	5	100	56	83	34	82	109	53	
150	10	150	32	63	23	58	89	42	
200	15	200	10	42	12	34	68	31	
250	20	250	-	22	-	10	38	20	
300	25	300	-	-	-	-	27	9	

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 5.1 kg ha⁻¹; P₂O₅= \pm 5.2 kg ha⁻¹and K₂O= \pm 3.9 kg ha⁻¹

Rahuri, (Maharashtra), Soybean

Crop : Soybean (Kharif) Variety :JS-335 Soil : Typic Haplustert Situation : Irrigated

Districts : Ahmednagar, Nasik, Pune, Satara, Sangli, Kolhapur, Solapur, Dhule

Basic Data

	Without FYM									
Nutrient	NR (kg q ⁻¹)	CS (%)	CF (%)	CFY M (%)	Targeted Yield Equations					
N	6.44	63.84	93.75	-	FN = 6.86 T - 0.68 SN					
P ₂ O ₅	1.17	84.64	18.94	-	$FP_2O_5 = 6.17 T - 4.46 SP$					
K ₂ O	3.58	11.76	90.20	-	$FK_2O = 3.96 T - 0.13 SK$					

	With FYM									
N	6.44	63.84	162.05	2.88	FN = 3.97 T - 0.39 SN - 0.09 FYM					
P ₂ O ₅	1.17	84.64	28.22	20.68	$FP_2O_5 = 4.14 \text{ T} - 2.95 \text{ SP} - 1.5 \text{ FYM}$					
K ₂ O	3.58	11.76	103.08	5.29	$FK_2O = 3.47 T - 0.11 SK - 0.27 FYM$					

Fertilizer prescription for targeted yields of Soybean for varying soil test values.

Soil tes	Soil test values (Kg ha ⁻¹)			Without FYM			With FYM (5 Mg FYM ha ⁻¹)		
			2:	5 q ha ⁻¹ targ	get	25	q ha ⁻¹ tar	get	
N	P	K	N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O	
100	6	200	104	127	73	60	85	63	
120	8	300	90	119	60	52	79	52	
140	10	400	76	110	47	44	73	41	
160	12	500	63	101	34	36	67	30	
180	14	600	49	92	21	29	61	19	
200	16	700	36	83	25*	21	56	25*	
220	18	800	22	74	25*	13	50	25*	

^{*} Minimum dose of K₂O

1. Andhra Pradesh (Sunflower- Kharif)

Name of the Centre : Nandyal Soil phosphorus range : 4 – 44 kg ha⁻¹

Soil : Vertisol Soil potassium range : 250 – 750 kg ha⁻¹

Crop and Variety : Sunflower MSFH-17 FYM composition : 0.75 : 0.6 : 1.2%

Season developed : Kharif, 1997 (Magi season) FYM rate

Target range : 15 q ha⁻¹ - 18 q ha⁻¹ Green manure composition : Soil Nitrogen range : 100 – 200 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

 $FN = 8.23 \text{ T} - 0.46 \text{ SN}, \qquad FP_2O_5 = 8.91 \text{ T} - 4.24 \text{ SP}, \qquad FK_2O = 3.80 \text{ T} - 0.10 \text{ SK}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil ava	ailable nuti (kg ha ⁻¹)	rient	Fertilizer nutrient required (kg ha ⁻¹) for yield target of						
Kmn	Olsens'	Amm.		15 (q l	าa ⁻¹)		18 (q	ha ⁻¹)	
O ₄ N	Р	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
100	4	250	77	17	32	102	143	43	
110	8	300	73	100	27	98	126	38	
120	12	350	68	83	22	93	110	33	
130	16	400	64	66	17	88	93	28	
140	20	450	59	49	12	84	76	23	
150	24	500	54	32	7	79	59	18	
160	28	550	50	15	2*	74	42	13	
170	32	600	45	10*	2*	69	25	8	
180	36	650	41	10*	2*	64	8*	8*	
190	40	700	36	10*	2*	60	8*	8*	
200	44	750	31	10*	2*	55	8*	8*	

^{*} maintainance of dose

Verification: The above equations are yet to be verified on the farmers' fields.

Applicability

Soil Testing Laboratories : Yemmiganur, Cuddapah and Anantapur

Soil type : Black soils Crop : Hybrid Sunflower

Season developed : Kharif

Yield target : Upto 18 q ha⁻¹

Note: The above equations may be verified in black soils with three or four

targets and pickup the best one for making recommendations.

2. Andhra Pradesh (Sunflower)

Name of the Centre : Jagtial Soil phosphorus range : 10 – 60 kg ha⁻¹
Soil : Sandy clay loam Soil potassium range : 150 – 650 kg ha⁻¹

Crop and Variety : Sunflower Mahyco-8 FYM composition : 0.75 : 0.6 : 1.2% Season developed : *Rabi*, 1994-95 FYM rate :

Target range : 15 q ha⁻¹ - 18 q ha⁻¹ Green manure composition :

Soil Nitrogen range : 150 – 400 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 11.44 T- 0.41 SN, $FP_2O_5 = 7.49 T - 2.10 SP$, $FK_2O = 4.93 T - 0.18 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

	ailable nutri	ent		Fertilizer nutrient required (kg ha ⁻¹) for yield target of						
	(kg h	ıa⁻¹)								
Kmn	Olsens'	Amm.	15 (q ha	⁻¹)		18 (q ha	a ⁻¹)			
O ₄ N	Р	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
150	10	150	110	91	47	145	114	62		
175	15	200	99	81	38	134	103	53		
200	20	250	90	70	29	124	93	44		
225	25	300	79	60	20	114	82	35		
250	30	350	69	49	11	104	72	26		
275	35	400	59	39	2*	93	61	17		
300	40	450	49	28	2*	83	51	8		
325	45	500	38	18	2*	73	40	8*		
350	50	550	28	7	2*	63	30	8*		
375	55	600	18	7*	2*	53	20	8*		
400	60	650	8	7*	2*	43	9	8*		

^{*} maintainance of dose

Applicability

Soil Testing Laboratories : Nizamabad, Adilabad, Karimnagar and Warangal

Soil type : Sandy clay loam soil Crop : Hybrid Sunflower

Season developed : Rabi

Yield target : Upto 18 q ha⁻¹

Note: The above equations may be tested in Nizamabad, Adilabad, Karimnagar and Warangal districts and in soils other than sandy clay loam with 3 or 4 targets and pick up the best one for adoption for making fertilizer recommendations.

1. Banglore, Karnataka (Sunflower)Zone-5 Good

Name of the Centre : Karnataka Soil phosphorus range : 10 – 60 kg/ acre
Soil : Red Soil potassium range : 150 – 450 kg/ acre
Crop and Variety : EC-68419 FYM composition : 0.75%N: 0.6%P: 1.2%K

Season: Kharif FYM rate: 3t/acre

Target range : 8q/acre Green manure composition : Soil Nitrogen range : 0.3% -0.5% Green manure rate :

Zinc Sulphate :4.0kg/acre

Area of applicability : Bangalore, Kolar, Chitradurga and Tumkur districts.

Target yield equations:

F.N. = 5.12 T- 37.4 SN (OC %), F.P₂O₅ = 6.21 T- $0.68 \text{ SP}_2\text{O}_5 \text{ Olsen's - P}_2\text{O}_5$)

 $F.K_2O = 5.62 \text{ T} - 0.19 \text{ S}K_2O \text{ (NH}_4OAC - K}_2O)$

STV O.C. (%)	Fertilizer nitrogen (kg/acre)	STV Olsen's P ₂ O ₅ (kg/acre)	e) phosphorus (kg/acre) K ₂ O (kg/acre)		Fertilizer potash (kg/acre)
0.05	34	2.5	42	10	37
0.10	32	5.0	40	20	36
0.15	30	7.5	38	30	34
0.20	28	10.0	37	40	32
0.25	27	12.5	35	50	30
0.30	25	15.0	33	60	28
0.35	23	17.5	32	70	26
0.40	21	20.0	30	80	24
0.45	19	22.5	28	90	22
0.50	17	25.0	27	100	20
0.55	15	27.5	25	110	18
0.60	13	30.0	23	120	17
0.65	12	32.5	21	130	15

To increase or decrease the yield target by one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N = \pm 5.00 \text{ kg/acre}$ $P_2O_5 = \pm 6.25 \text{ kg/acre}$ $K_2O = \pm 5.5 \text{ kg/acre}$

2. Bangalore, Karnataka. Sunflower. Zone-3

Name of the Centre : Karnataka | Soil phosphorus range :10 - 60 kg /acre

Soil : Black Clayey Soil potassium range :150 - 450 kg/acre FYM Crop and Variety : BSH-1 composition : 0.75%N: 0.6%P: 1.2%K

Season developed : Kharif FYM rate 3 t/acre

Target range : 10 q /acre Green manure composition :

Soil Nitrogen range : 150 – 400 kg /acre Green manure rate :

Zinc Sulphate : 4.0kg/acre

Applicability: Tungabhadra Command area of Bellary and Raichur districts

Target yield equation:

 $F.N. = 8.38 \text{ T} - 0.57 \text{ SN (KMnO}_4 - \text{N)}, \quad F.P_2O_5 = 8.05 \text{ T} - 6.00 \text{ SP}_2O_5 \text{ (Olsen's - P}_2O_5)$

 $F.K_2O = 9.87 \text{ T} - 0.47 \text{ S} K_2O \text{ (NH}_4OAC - K_2O)$

STV KMnO ₄ -N (kg/acre)	Fertilizer nitrogen (kg/acre)	STV Olsen's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K ₂ O (kg/acre)	Fertilizer potash (kg/acre)
60	50	3.50	60	100	52
65	47	4.00	57	105	49
70	44	4.50	54	110	47
75	41	5.00	51	115	45
80	38	5.50	48	120	42
85	35	6.00	45	125	40
90	33	6.50	42	130	38
95	30	7.00	39	135	35
100	27	7.50	36	140	33
105	24	8.00	33	145	31
110	21	8.50	30	150	28
115	18	9.00	27	155	26
120	15	9.50	24	160	24
125	13	10.00	21	165	21
130	10	10.50	18	170	19
130	10	11.00	15	175	17
				180	14
				185	12

To increase or decrease the yield target by one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N=\pm~8.25~kg/acre \qquad \qquad P_2O_5=\pm~8.00~kg/acre \qquad \quad K_2O=\pm~9.75~kg/acre \label{eq:posterior}$

1. Tamil Nadu: Sunflower

Name of the centre : Bhavanisagar (Sub - Centre)

Soil : Mixed black

(Perianaickenpalayam)

Crop & Variety : Sunflower - Morden

Season developed : Kharif Target range : 15 q ha⁻¹

Soil Nitrogen range : 150 - 240 kg ha⁻¹ : 8 - 26 kg ha⁻¹

Soil potassium range : 150 - 240 kg ha⁻¹

FYM composition :0.67:0.31:0.71% (N:P:K) (Dry weight basis)

FYM rate : 12.5 t ha⁻¹

(30 % moisture)

Green manure composition :- Green manure rate :

Fertiliser Adjustment Equations

FN 9.60 T -SN 0.68 ON FP_2O_5 4.20 T - 1.87 SP 0.80 OP = FK₂O 9.24 T - 0.45 SK - 0.64 OK =

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Ini	tial soil tests (kg	ha ⁻¹)	Nutrient added (kg ha ⁻¹) for an yield target of 15 q ha ⁻¹				
KMnO4-N	Olsen-P	NN NH₄OAc- K	N	P_2O_5	K ₂ O		
150	8	150	71	48	71		
160	10	160	66	44	67		
170	12	170	61	41	62		
180	14	180	56	36	58		
190	16	190	51	33	55		
200	18	200	46	29	49		
210	20	210	41	26	44		
220	22	220	36	22	40		
230	24	230	31	18	35		
240	26	240	26	14	31		

Blanket Recommendation: 40:20:20 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : Black Clay Loam

Yield target : 15 q ha⁻¹

District(s) : Coimbatore, Salem, Tiruchirappalli

Grade : Good

1. West Bengale (Sunflower)

Name of the Centre : Kalyani Soil phosphorus range : 19 - 32 kg ha⁻¹
Soil : Inceptisol Soil potassium range : 94 - 308 kg ha⁻¹

Crop and Variety : Sunflower (PAC - 36) **FYM** composition : NA Situation : Irrigated FYM rate : NA : Rabi, 2004-05 Season developed Green manure composition : NA : 20 – 25 q ha⁻¹ Target range Green manure rate : NA

Applicability: STLS of Murshidabad, Nadia, 24 parganas (N), Hooghly

: 290-341 kg ha⁻¹

Fertilizer adjustment equations:

Soil Nitrogen range

FN = 31.4 T - 1.63 SN, $FP_2O_5 = 8.98 \text{ T} - 2.91 \text{ SP}$, $FK_2O = 4.7 \text{ T} - .041 \text{ SK}$

111 - 31.41 - 1.03.511, 11	$\frac{1}{2}05 - 0.701 - 2.7151$	$110_{2}0 = 4.7 1 = .041 31$
Fertilizer levels (kg.ha ⁻¹)	N	0, 40, 60, 80
	P ₂ O ₅	0, 35, 45
	K ₂ O	0, 35, 45
Initial soil test values (kg.ha ⁻¹)	KMnO ₄ -N	290 - 341
	Olsen-P	19 - 32
	NH₄OAc-K	94 - 308
Yield (kg.ha ⁻¹)	Control plot	1600 - 1960
Treated plot	2500 - 2800	

Ready-reckoner* of fertilizer doses at varying soil test values for specific yield target

Available soil nutrients			Fertilizer nutrient required (kg.ha ⁻¹)							
(kg.ha ⁻¹)			Targeted	yield 2.0 t.h	ıa ⁻¹	Target	Targeted yield 2.5 t.ha ⁻¹			
N	Р	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
250	5	100	221	165	90	378	210	113		
275	10	150	180	151	88	337	195	111		
300	15	200	139	136	86	296	181	109		
325	20	250	98	121	84	255	166	107		
350	25	300	58	107	82	215	152	105		
375	30	350	17	92	80	174	137	103		

• No modification was made in the ready-reckoner.

1. Chhattisgarh

Crop - Sunflower
Soil type - Vertisol
Variety - Jwalamukhi
Season - Rabi, 2002-03

Area for Suitability - Raipur, Durg, Rajnandgaon, Kawardha,

Bilaspur districts).

Fertilizer adjustment equations

$$\begin{split} FN &= 9.09 \; Y - (0.45 \; SN + 4.6 \; t \; FYM) \\ FP_2O_5 &= 2010 \; \text{-} \; (4040100 - 16666Y)^{1/2} - \; (2.75 \; SP + 4.2 \; t \; FYM) \\ FK_2O &= No \; K \; \text{if} \; SK > 250 \; kg \; ha^{-1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of sunflower (Jwalamukhi) in Vertisol (*Kanhar*).

Alkaline	Olsen's	Yield Targets (q ha ⁻¹) Sunflower (var Jwalamukhi)							
KMnO ₄ -N (kg ha ⁻¹)	P (kgha ⁻¹)	1	5	2	20	2	.5		
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	4	69	52	114	74	160	95		
175	8	58	41	103	63	149	84		
200	12	46	30	92	52	137	73		
225	16	35	19	81	41	126	62		
250	20	24	8	69	30	115	51		
275	24	13	7	58	19	104	40		
300	28	2	7	47	8	92	29		
350	32	2	7	24	7	70	18		
400	36	2	7	2	7	47	7		

Ready reckoners on soil test based fertilizer recommendations with INM (5 ton FYM) for specific yield targets of sunflower (Jwalamukhi) in Vertisol (*Kanhar*).

Alkaline KMnO ₄ -N	Olsen's P	Yield Targets (q ha ⁻¹) Sunflower (var Jwalamukhi)						
(kg ha^{-1})	(kgha ⁻¹)	1	5	2	0	25		
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	
150	4	46	31	91	53	137	74	
175	8	35	20	80	42	126	63	
200	12	23	9	69	31	114	52	
225	16	12	8	58	20	103	41	
250	20	10	8	46	9	92	30	
275	24	10	8	35	8	81	19	
300	28	10	8	24	8	69	8	
350	32	10	8	10	8	47	8	
400	36	10	8	10	8	24	8	

2. Crop - Sunflower Soil type - Inceptisol

Variety - Jwalamukhi Season - *Rabi*, 2004-05

Area for Suitability - Raipur, Raigarh, Durg, Mahasamund, Dhamtari and Bilaspur districts)

Fertilizer adjustment equations

 $FN = 13.97 \ \mathring{Y} - (0.68 \ SN + 6.34 \ t \ FYM), \ FP_2O_5 = 183 - (33620 - 1429Y)^{1/2} - (3.1 \ SP + 4.98 \ t \ FYM), \ FK_2O = No \ K \ if \ SK > 250 \ kg \ ha^{-1}$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of sunflower (Jwalamukhi) in Inceptisol (*Matasi*).

Alkaline KMnO4-N	Olsen's	Yield '	Yield Targets (q ha-1) Sunflower (var Jwalamukhi)								
(kg ha-1)	(kg ha-	15		2	20	25					
(g)	1)	FN	FP2O5	FN	FP2O5	FN	FP2O5				
150	4	108	60	177	100	247	148				
175	8	91	48	160	87	230	139				
200	12	74	35	143	75	213	130				
225	16	57	23	126	62	196	120				
250	20	40	11	109	50	179	111				
275	24	23	11	92	38	162	102				
300	28	6	11	75	25	145	92				
350	32	6	11	41	13	111	83				
400	36	6	11	7	11	77	71				

Ready reckoners on soil test based fertilizer recommendations with INM (5 ton FYM) for specific yield targets of sunflower (Jwalamukhi) in Inceptisol (*Matasi*).

Alkaline KMnO ₄ -N	Olsen's P	Yield Targets (q ha ⁻¹) Sunflower (var Jwalamukhi)								
(kg ha ⁻¹)	(kg ha ⁻	15		2	0	25				
(lig liu)		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	4	76	35	146	75	216	123			
175	8	59	23	129	62	199	114			
200	12	42	11	112	50	182	105			
225	16	25	10	95	38	165	95			
250	20	8	10	78	25	148	86			
275	24	8	10	61	13	131	77			
300	28	8	10	44	10	114	68			
350	32	8	10	10	10	80	58			
400	36	8	10	8	10	46	46			

1. Jabalpur, Sunflower

Crop	:	Sunflower
Soil Type	:	Medium black and Deep black
Varieties	:	Modern
Yield (q ha ⁻¹)	:	15 - 20
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100-350, P: 5-40; K: 100-500
		Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,,
Districts	:	Narsinghpur, Powarkheda, Sagar, Sehore, Ujjain.

Composition of FYM : N(%) = 0.72 $P_2O_5(\%) = 0.72$ $K_2O(\%) = 0.75$

Equation for Calculating the fertilizer nutrient Requirement:

 $FN = 12.54 \text{ T} - 0.64 \text{ SN} - 0.59 \text{ ON}; FP_2O_5 = 3.6T - 1.24 \text{ SP} - 1.36 \text{ OP}; FK2O = 8.09 \text{ T} - 0.30 \text{ SK} - 35 \text{ OK}$

Soil te	Soil test Values (kg ha ⁻¹)			Target yield (q ha ⁻¹) = 20					
				Without FY	ΥM	With 5 t FYM ha ⁻¹			
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	5	100	156	65	159	164	27	146	
150	10	150	134	59	144	132	21	131	
200	15	200	122	53	129	100	15	116	
250	20	250	90	47	104	68	9	91	
300	25	300	58	41	89	36	2	76	

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 12.5kg ha⁻¹; P₂O₅= \pm 3.6 kg ha⁻¹and K₂O= \pm 8.0 kg ha⁻¹

Grade: need to verify

Rahuri, (Maharashtra), Sunflower

Crop : Sunflower (Kharif) Variety: SS-56 Soil : Typic Haplusterts Situation: Irrigated

Districts :Ahmednagar, Dhule, Nandurbar, Jalna, Aurangabad, Nanded,

Parbhani, Satara, Sangli, Pune

Basic Data

Nutrient	NR (kg q^{-1})	CS (%)	CF (%)
N	5.85	25.76	41.95
P ₂ O ₅	4.62	191.50	64.36
K ₂ O	7.25	14.65	150.36

Targeted Yield Equations

FN = 13.94 T - 0.61 SN

 $FP_2O_5 = 7.18 T - 6.82 SP$

 $FK_2O \ = 4.82 \ T - 0.12 \ SK$

Fertilizer prescription for targeted yields of sunflower for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)							
Soil tes	st values (k	g ha ⁻¹)	16 q	ha ⁻¹ targ	get	18	18 q ha ⁻¹ target			
			3 .7	D.O	17.0	N.T.	D.O	17.0		
N	P	K	N	P_2O_5	K_2O	N	P_2O_5	K_2O		
160	8	250	123	59	45	150	74	54		
180	10	300	110	45	39	137	60	48		
200	12	350	97	31	33	124	46	42		
220	14	400	84	17	27	111	32	36		
240	16	450	71	25*	21	98	25*	30		

^{*} Minimum dose of P₂O₅

1. Andhra Pradesh (Safflower)

Name of the Centre : Tandur | Soil phosphorus range : 10 – 70 kg ha⁻¹

Soil : Vertisol | Soil potassium range : 125 – 400 kg ha⁻¹

Crop and Variety : Safflower - Manjera | FYM composition : 0.75 : 0.6 : 1.2%

Season developed : *rabi*, 2003 FYM rate : Target range : 20 q ha⁻¹ - 25 q ha⁻¹ Green manure composition :

Soil Nitrogen range : 80 – 320 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

 $FN = 9.04 \text{ T} - 0.75 \text{ SN}, FP_2O_5 = 3.74 \text{ T} - 0.85 \text{ SP}, FK_2O = 5.76 \text{ T} - 0.50 \text{ SK}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for specific yield target

Soil ava	ailable nutrien	nt (kg ha ⁻¹)	Fertilizer nutrient required (kg ha ⁻¹) for yield target of						
mnO ₄	Olsens' P	Amm.	0.	20 (q ha ⁻¹)			25 (q ha ⁻¹)		
N		Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
80	10	125	121	66	53	166	85	82	
100	15	150	106	62	40	151	81	69	
120	20	175	91	58	28	136	77	57	
140	25	200	76	54	15	121	72	44	
160	30	225	61	49	3	106	68	32	
180	35	250	46	45	0	91	64	19	
200	40	275	3	41		76	60	7	
220	45	300	16	37		61	55	0	
240	50	325	1	32		46	51		
260	55	350	0	28		31	47		
280	60	375		24		16	43		
300	65	400		20		1	38		
320	70			15		0	34		

Verification: The above equations are at to be verified on the farmers' fields.

Applicability :

Soil Testing Laboratories : Jadcherla, Mahabubnagar district

Soil type : Vertisol

Crop : Safflower – Manjera

Season developed : rabi

Yield target : Upto 20 to 25 q ha⁻¹

1. Bangalore, Karnataka (Safflower) Zone 3 &4. Good

Name of the centre: HiriyurSoil phosphorus range: 10- 40kg/acreSoil: Black ClayeySoil potassium range: 60-120kg/acre

Crop & Variety : A-1 FYM composition : 0.6%N -0.3%P-0.4%K

Season developed : Rabi FYM rate : 2t/acre

Target range : 6q /acre(Rainfed) Green manure composition : Soil nitrogen range : 0.3%-0.5% Green manure rate :

Applicability :TungabhadraCommandarea of Bellary,Chitradurga, davangereandRaichur districts.

Target yield equations:

 $F.N. = 7.49 \text{ T- } 68.9 \text{ SN (OC\%)}, \quad F.P_2O_5 = 11.83 \text{ T- } 3.34 \text{ SP}_2O_5 \text{ (Olsen's - } P_2O_5)$

 $F.K_2O = 4.99 \text{ T- } 0.20 \text{ SK}_2O \text{ (NH}_4OAC - K}_2O)$

STV O.C. (%)	Fertilizer nitrogen (kg/acre)	STV Olsen's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K ₂ O (kg/acre)	Fertilizer potash (kg/acre)
			T	arget (6 q/acı	re)
0.10	38	6	51	30	24
0.15	35	7	47	40	22
0.20	31	8	44	50	20
0.25	28	9	40	60	18
0.30	24	10	37	70	16
0.35	21	12	30	80	14
0.40	17	14	24	90	12
0.45	14	16	18	100	10
				110	8

To increase or decrease the yield target by one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N = \pm 7.5 \text{ kg/acre}$ $P_2O_5 = \pm 11.75 \text{ kg/acre}$ $K_2O = \pm 5.0 \text{ kg/acre}$

1. Chhattisgarh

Safflower

Soil type - Vertisol Variety - JSF-1

Season - *Rabi*, 2004-05

Area for Suitability - Chhattisgarh plains (Raipur, Durg, Rajnandgaon,

Kawardha. Bilaspur districts)

Fertilizer adjustment equations

$$\begin{split} FN &= 14.55 \ Y - (0.62 \ SN + 5.56 \ t \ FYM) \\ FP_2O_5 &= 133 \ - (17689 - 1000Y)^{1/2} - (2.70 \ SP + 4.34 \ t \ FYM) \\ FK_2O &= No \ K \ if \ SK > 250 \ kg \ ha^{-1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of safflower (JSF-1) in Vertisol (Kanhar)

Alkaline	Olsen's	Yield Targets (q ha ⁻¹) Safflower (JSF-1)									
KMnO ₄ - N(kg ha	P (kg ha ⁻ 1)	10		12			14	16			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	90	37	119	49	148	64	177	84		
175	6	81	29	110	41	139	56	168	76		
200	9	72	21	101	33	130	48	159	68		
225	12	62	13	91	25	120	40	150	60		
250	15	53	5	82	17	111	32	140	51		
275	18	44	5	73	9	102	24	131	43		
300	21	35	5	64	5	93	16	122	35		
350	24	16	5	45	5	74	7	103	27		
400	28	15	5	27	5	56	5	85	16		

Ready reckoners on soil test based fertilizer recommendations with INM (5 ton FYM)

for specific yield targets of safflower in Vertisol (Kanhar)

Alkaline KMnO ₄ -	Olsen's P	en's Yield Targets (q ha ⁻¹) Safflower (JSF-1)							
N	(kg ha		10	1	12		14	1	.6
(kg ha ⁻¹)	1)	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅
150	3	62	16	91	28	120	42	149	62
175	6	53	7	82	20	111	34	140	54
200	9	44	2	73	12	102	26	131	46
225	12	34	2	64	3	93	18	122	38
250	15	25	2	54	2	83	10	112	30
275	18	16	2	45	2	74	2	103	22
300	21	7	2	36	2	65	2	94	14
350	24	7	2	17	2	46	2	75	5
400	28	7	2	7	2	28	2	57	2

1. Jabalpur, Safflower

Crop	:	Safflower
Soil Type	:	Medium black
Varieties	:	JSF-1
Yield (q ha ⁻¹)	:	15- 18
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100-300; P: 5-35; K: 100-500
		Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Narsinghpur,
Districts	:	Ujjain.Grade: Good

Equation for Calculating the fertilizer nutrient Requirement:

$$FN = 9.11 \ T - 0.45 SN \qquad FP_2O_5 = 6.27 \ T - 2.19 \ SP \qquad FK_2O = 9.27 \ T - 0.38 \ SK$$

Soil test Values (kg ha ⁻¹) Fertilizer nutrie					ent requi	irement (ha ⁻¹)	kg ha ⁻¹) for	yield target (q	
				16 20					
N	P	K	N	P_2O_5	K ₂ O	N P ₂ O ₅ K ₂ O			
100	5	200	101	89	72	137	124	109	
150	10	250	78	78	53	114	103	90	
200	15	300	56	67	34	92	92	71	
250	20	350	33	56	15	69 81 52			
300	25	400	11	11 45 - 47 70 33					

To increase or decrease the yield targets by one quintal per hectare the variations to be made in $N=\pm 9.1$ kg ha⁻¹; $P_2O_5=\pm 6.2$ kg ha⁻¹and $K_2O=\pm 9.2$

1. Bhubneswar

Crop: Sesamum (cv. Nirmala)

General fertilizer recommendation: 40-20-20

Fertilizer adjustment equations

 $FN = 13.4 \text{ T} - 0.5 \text{ SN}, FP_2O_5 = 12.3 \text{ T} - 3.1 \text{ S} P_2O_5, FK_2O = 12.4 \text{ T} - 1.4 \text{ S} K_2O$

Corrected ready reckoner of fertilizer doses at varying soil test values for specific yield targets.

Available soil			Fertilizer nutrients required (kg ha ⁻¹)										
nutrients (kg ha ⁻¹)				rgeted yi (6 q ha ⁻¹)		Targeted yield (8 q ha ⁻¹)			Targeted yield (10 q ha ⁻¹)				
N	P_2O_5	P_2O_5 K_2O		P_2O_5	$\mathbf{K}_2\mathbf{O}$	N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	N	P_2O_5	$\mathbf{K}_2\mathbf{O}$		
80	20	50	40	12	5	50	36	19	60	40	40		
90	25	60	35	5	5	50	21	15	60	40	40		
100	30	70	30	5	5	50	6	5	60	30	26		
110	35	80	25	5	5	50	5	5	60	15	12		
120	40	90	20	5	5	47	5	5	60	5	5		
130	45	100	15 5		5	42	5	5	60	5	5		
140	50	120	10	5	5	37	5	5	60	5	5		

(NB: when the calculated fertilizer requirement values tend to zero, a minimum dose, say 10 kg ha⁻¹ for N and 5 kg ha⁻¹ each for P and K are added to the calculated values to bring the dose to a reasonable one).

Equation used by the Soil Testing Laboratory : Bhubaneswar, Puri, Cuttack, Dhenkanal,

Sambalpur, Sundargarh

Districts covered:

Khurda, Puri, Nayagarh, Cuttack, Angul, Dhenkanal, Sambalpur,Bargarh,

Jharsududa, Sundargarh

1. Jabalpur, Niger

Crop :	:	Niger
Soil Type :	:	Shallow, Medium black and Deep black soils
Varieties :	:	Ootakamund
Yield (q ha ⁻¹) :		3-6
Applicability :	:	Range of soil test values (Kg ha ⁻¹) - N: 100- 450; P: 5- 25; K: 100-
Districts :	:	Jabalpur ,Chindwara Grade : Good

Equation for Calculating the fertilizer nutrient Requirement:

 $FN= 11.8 T - 0..17 SN FP_2O_5 = 11.17 T - 3.52 SP$

 $FK_2O = 10.52 T - 0.16SK$

Soil tes	t Values (k	ag ha ⁻¹)	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)							
				6		8				
N	P	K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
100	5	200	54	49	31	77	71	52		
150	10	250	45	32	23	68	54	44		
200	15	300	37	14	15	60	36	36		
250	20	350	28	-	7	51	18	28		
300	25	400	20	-	-	43	-	20		

To increase or decrease the yield targets by one quintal per hectare the variations to be made in $N=\pm 11.8$ kg ha⁻¹; $P_2O_5=\pm 11.1$ kg ha⁻¹ and $K_2O=\pm 10.5$ kg ha⁻¹

1. Jabalpur, Linseed

Crop	:	Linseed
Soil Type	:	Shallow, Medium black and Deep black soils
Varieties	:	R-17
Yield (q ha ⁻¹)	:	12-18
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100- 350; P: 5- 25; K: 100-500
Districts	:	Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,Narsinghpur, Powarkheda, Sagar, Ujjain Grade : Good

Equation for Calculating the fertilizer nutrient Requirement:

 $\vec{FN} = 8.48 \text{ T} - 0.46 \text{SN}$

 $FP_2O_5 = 7.38 T - 5.08 SP$

 $FK_2O = 6.59 T - 0.25 SK$

Soil test	t Values (k	kg ha ⁻¹)	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)							
			16			20				
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
100	5	200	90	93	55	123	122	82		
150	10	250	67	67	42	100	96	69		
200	15	300	44	42	30	77	71	57		
250	20	350	21	16	17	54	45	44		
300	25	400	-	-	10	31	20	32		

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 8.4 kg ha⁻¹; P₂O₅= \pm 7.3 kg ha⁻¹and K₂O= \pm 6.5 kg ha⁻¹

1. Andhra Pradesh (Castor - Kharif)

Name of the Centre : Palem | Soil phosphorus range : 5 - 115 kg ha⁻¹
Soil : Inceptisol | Soil potassium range : 175 - 450 kg ha⁻¹

Crop and Variety : Castor - Kranthi FYM composition (%) : 0.75 : 0.60 : 1.2

Season developed : *Kharif*, 1997 FYM rate : Target range : 12 – 15 q ha⁻¹ Green manure composition : Soil nitrogen range : 125 – 235 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 8.35 T - 0.40 SN, $\text{FP}_2\text{O}_5 = 7.17 \text{ T} - 2.88 \text{ SP}$, $\text{FK}_2\text{O} = 3.02 \text{ T} - 0.10 \text{ SK}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for specific yield target

	ailable nutrien	Fertilizer nutrient required (kg ha ⁻¹) for yield target								
	1		of 12 (q ha ⁻¹) 15 (q ha ⁻¹)							
mnO ₄	Olsens' P	Amm.					15 (q ha ⁻¹)			
N		Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K₂O		
125	5	175	50	72	19	75	93	28		
135	15	200	46	43	16	71	79	25		
145	25	225	42	14	14	67	50	23		
155	35	250	38		11	63	21	20		
165	45	275	34		9	59		18		
175	55	300	30		6	55		15		
185	65	325	26		4	51		13		
195	75	350	22			47		10		
205	85	375	18			43		8		
215	95	400	14			39		5		
225	105	425	10			35		3		
235	115	450	6			31		3		

Verification: The above equations are at to be verified on the farmers' fields.

Applicability

Soil Testing Laboratories : Jadcherla, Miryalaguda

Soil type : Chalka soil

Crop : Castor – High yielding variety

Season developed : Kharif

Yield target : Upto 15 q ha⁻¹

1. Andhra Pradesh (Pigeonpea)

Name of the Centre : Tandur Soil phosphorus range : 3 - 36 kg ha⁻¹

Soil : Vertisol Soil potassium range : 180 - 510 kg ha⁻¹

Crop and Variety : Pigeon pea – LRG-30 FYM composition (%) : 0.75 : 0.60 : 1.2

Season developed : *Kharif*, 2007 FYM rate : Target range : 15 – 20 q ha⁻¹ Green manure composition :

Soil nitrogen range : 190 – 410 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 4.71 T - 0.21 SN, FP₂O₅ = 5.83 T - 2.93 SP, FK₂O = 6.96 T - 0.31 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for specific yield target

Soil available nutrient (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for yield target							
KmnO ₄	Olsens'	Amm.	of	15 (q l	na ⁻¹)		20 (q ha ⁻¹)			
N N	P	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
190	3	180	31	79	49	54	108	83		
210	6	210	27	70	39	50	99	74		
230	9	240	22	61	30	46	90	65		
250	12	270	18	52	21	42	81	56		
270	15	300	14	44	11	38	73	46		
290	18	330	10	35	2	33	64	37		
310	21	360	6	26		29	55	28		
330	24	390		17		25	46	18		
350	27	420		8		21	37	9		
370	30	450				17	29			
390	33	480				12	20			
410	36	510				8	11			

Verification: The above equations are at to be verified on the farmers' fields.

Applicability :

Soil Testing Laboratories : Jadcherla, Mahabubnagar district

Soil type : Vertisol

Crop : Pigeonpea (Redgram) – LRG-30

Season developed : Kharif

Yield target : Upto 15 to 20 g ha⁻¹

1. Chattisgarh

Crop - Pigeonpea Soil type - Vertisol, Variety - Asha,

Season - *Rabi*, 1998-99

Area for suitability - Raipur, Durg, Rajnandgaon, Kawardha districts.

Fertilizer adjustment equations

FN = 25 N kg ha-1 as starter dose

 $FP_2O_5 = Critical value for SP = 13 kg P ha^{-1}$

 $FK_2O = No K \text{ if } SK > 250 \text{ kg ha}^{-1}$

1. Jabalpur, Pigion pea

Crop	:	Arhar
Soil Type	:	Medium black and Deep black
Varieties	:	JA-3,ICPL –No.148, Asha
Yield (q ha ⁻¹)	:	15 - 25
Applicability	:	Range of soil test values (Kg ha ⁻¹); P: 5-30; K: 100-400
		Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,,
Districts	:	Narsinghpur, Powarkheda, Sagar, Sehore, Ujjain.

Equations for Calculating the fertilizer nutrient Requirement:

 $FN = 4.87 \ T - 0.37 \ SN \qquad FP_2O_5 = 5.34 \ T - 3.47 \ SP \qquad FK_2O = 3.61 \ T - 0.16 \ SK$

			Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)			
		st Values g ha ⁻¹)	20			25
The application of 20 kg N ha ⁻¹ plus	P	K	P ₂ O ₅	K ₂ O	P ₂ O ₅	K ₂ O
biofetriliser is	5	200	90	40	116	58
recommended	10	250	72	32	98	50
	15	300	55	24	81	42
	20	350	38	16	64	34
	25	400	20	8	46	26

To increase or decrease the yield targets by one quintal per hectare the variations to be made in $N= \pm 4.8$ kg ha^{-1} ; $P_2O_5= \pm 5.3$ kg ha^{-1} and $K_2O= \pm 3.6$

Grade: Good

Rahuri, (Maharashtra), Pigeonpea

Crop : Pigeonpea (kharif) Variety:ICPL-87 Soil : Typic Haplusterts Situation:Irrigated

Districts : Jalgaon, Ahmednagar, Aurangabad, Jalna, Parbhani, Pune,

Nanded, Akola, Buldhana, Wardha, Yeotmal, Satara, Sangli,

Kolhapur.

Basic Data

Nutrient	NR (kg q ⁻¹)	CS (%)	CF (%)
N	6.33	61	112.9
P ₂ O ₅	1.58	57	27.6
K ₂ O	4.98	11	78.6

Targeted Yield Equations

FN = 5.61 T - 0.54 SN

 $FP_2O_5 = 5.72 \text{ T} - 4.73 \text{ SP}$

 $FK_2O = 6.33 T - 0.17 SK$

Fertilizer prescription for targeted yields of pigeonpea for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)						
Soil tes	st values (k	16	16 q ha ⁻¹ target			20 q ha ⁻¹ target			
	1	1	\mathbf{N}	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
N	P	K	11	1 203	π ₂ Ο	11	1 203	II.	
100	6	200	36	63	67	58	86	93	
120	8	300	25	54	50	47	77	76	
140	10	400	14	44	33	37	67	59	
160	12	500	25*	35	16	25	58	42	
180	14	600	25*	25	1	15	48	25	
200	16	700	25*	16	25*	25*	39	25*	
> 200	18	800	25*	25*	25*	25*	29	25*	
> 200	20	-	25*	25*	25*	25*	20	25*	
		L	l	1	<u> </u>	1	1	<u> </u>	

^{*} Minimum dose of N, P₂O₅ and K₂O

1. Jabalpur, Urad

Crop	:	Urad
Soil Type	:	Shallow , Medium black and Deep black
Varieties	:	T-9
Yield (q ha ⁻¹)	:	12 - 15
Applicability	:	Range of soil test values (Kg ha ⁻¹); P: 5-30; K: 100-400
Districts	:	Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,, Narsinghpur, Powarkheda, Sagar, Sehore, Ujjain

Equations for Calculating the fertilizer nutrient Requirement:

FN=7.82 T -0.39 SN

 $FP_2O_5 = 5.36 \text{ T} - 2.62 \text{ SP}$

 $FK_2O = 10.83 T - 0.44 SK$

Soil test Value	s (kg ha ⁻¹)		Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)				
			1:	2		15	
The application of 20 kg N ha ⁻¹ plus biofertiliser is	Р	K	P ₂ O ₅	K ₂ O	P ₂ O ₅	K ₂ O	
recommended	5	200	51	42	67	74	
	10	250	38	20	54	52	
	15	300	25	-	41	30	
	20	350	12	-	28	8	
	25	400	-	-	14	-	

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 7.8kg ha⁻¹; P₂O₅= \pm 5.3 kg ha⁻¹and K₂O= \pm 10.8

Grade: Good

1. Jabalpur,Lentil

Crop	:	Lentil
Soil Type	:	Shallow , Medium black and Deep black
Varieties	:	JL-1
Yield (q ha ⁻¹)	:	10 - 15
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100-300, P: 5-40; K: 100-500
Districts	•	Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,, Narsinghpur, Powarkheda, Sagar, Sehore, Ujjain.

Composition of FYM: N(%) = 0.72 $P_2O_5(\%) = 0.72$ $K_2O(\%) = 0.75$

Equation for Calculating the fertilizer nutrient Requirement:

$$FN = 5.84\ T - 0.159\ SN - 0.270\ ON$$
 ; $FP_2O_5 = 2.10T - 0.658\ SP - 0.789\ OP$; $FK_2O = 4.40\ T - 0.094\ SK - 0.774K$

Soil te	st Values (kg ha ⁻¹)	Target yield (q ha ⁻¹) = 10							
			,	Without FYN	M	With 3 t FYM ha ⁻¹				
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
100	5	100	42	17	34	37	6	17		
150	10	150	34	15	29	29	3	12		
200	15	200	26	12	24	21	1	7		
250	20	250	18	10	20	13	-	3		
300	25	300	10	8	16	5	-	-		
350	30	350	-	5	12	-	-	-		

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 5.8kg ha⁻¹; P₂O₅= \pm 2.1 kg ha⁻¹and K₂O= \pm 4.4 kg ha⁻¹

Grade: need to verify

Jabalpur, Gram

Crop	:	Gram
Soil Type	:	Medium black and Deep black
Varieties	:	JG-74, JG-62, JG-315,JG-322
Yield (q ha ⁻¹)	:	20-35
Applicability	:	Range of soil test values (Kg ha ⁻¹); P: 5- 30; K: 100-400
Districts	:	Bhopal, Dhar, Jabalpur ,Indore, Khandwa, Khargone, Mandsaur,, Narsinghpur, Powarkheda, Sagar, Sehore, Ujjain

Equations for Calculating the fertilizer nutrient Requirement:

FN = 3.73 T - 0.18SN

 $FP_2O_5 = 5.0 \text{ T} - 2.5 \text{ $\hat{S}P$}$

 $FK_2O = 3.8 T - 0.17 SK$

Soil test Value	Fertilizer nutrient requirement (kg ha ⁻¹) for yield target (q ha ⁻¹)						
	20			25			
The application of 20 kg N ha ⁻¹ plus	P	K	P ₂ O ₅	K ₂ O		P ₂ O ₅	K ₂ O
biofetriliser is	5	200	87	42		112	61
recommended	10	250	75	33		100	52
	15	300	62	25		87	44
	20	350	50	16		75	35
	25	400	37	8		62	27

To increase or decrease the yield targets by one quintal per hectare the variations to be made in N= \pm 5.7 kg ha⁻¹; P_2O_5 = \pm 2.2 kg ha⁻¹and K_2O = \pm 1.6

Grade: Good

Rahuri, (Maharashtra), Green gram

Crop : Green gram (Kharif) Variety : S-8
Soil : Typic Haplusterts Situation: Rainfed

Districts : Jalgaon, Akola, Buldhana, Amravati, Nanded, Wardha, Yeotmal,

Satara, Sangli, Dhule.

Basic Data

Nutrient	$NR (kg q^{-1})$	CS (%)	CF (%)
N	6.8	27.5	149
P ₂ O ₅	2.29	60.8	18.3
K ₂ O	4.82	6.2	136.4

Targeted Yield Equations

FN = 4.56 T - 0.18 SN

 $FP_2O_5 = 12.51 T - 7.61 SP$

 $FK_2O = 3.53 T - 0.05 SK$

Fertilizer prescription for targeted yields of green gram for varying soil test values.

				Fertilize	er prescri	ptions (kg	ha ⁻¹)	
Soil tes	st values (k	g ha ⁻¹)	10	q ha ⁻¹ targ	et	12	q ha ⁻¹ tarş	get
N	P	K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
100	6	200	28	79	25	37	105	32
120	8	250	24	64	22	33	90	29
140	10	300	22	49	20	30	75	27
160	12	350	17	34	17	26	60	24
180	14	400	14	19	14	23	45	21
200	16	450	10	25*	11	19	29	18
220	18	500	25*	25*	25*	15	14	16

^{*} Minimum dose of N, P₂O₅ and K₂O

1. Bangalore, Karnataka (Red gram) Zone-5

Crop : Redgram Soil phosphorus range : 38 -164 kg/acre
SOIL : Red lateritic Soil potassium range : 30 -120 kg/ acre
Variety : TTB-7 FYM composition : .0.5%N : 0.3P:0.5K

Season : Kharif FYM rate : 3.00 t\ acre

Target range : 8q/ acre Green manure composition : Soil Nitrogen range : 0.3% -.0.5% Green manure rate :

Area of applicable : Bangalore, Kolar and Tumkur districts.

Target yield equation:

F.N. = 5.99 T - 90.924 SN (OC %), F.P₂O₅ = $6.19 \text{ T} - 2.11 \text{ SP}_2\text{O}_5$ (Bray's - P₂O₅)

 $F.K_2O = 3.06 \text{ T} - 0.317 \text{ S} K_2O \text{ (NH}_4OAC - K_2O)$

STV O.C. (%)	Fertilizer nitrogen (kg/acre)	STV Bray's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K ₂ O (kg/acre	Fertilizer potash (kg/acre)
0.30	21	6	37	10	21
0.35	16	8	33	15	20
0.40	12	10	28	20	18
0.45	7	12	24	25	17
		14	20	30	14
		16	16	35	13
		18	12	40	12
				45	10
				50	9
				55	7
				60	6

To increase or decrease the yield target by one q/Acre the variations to be made in the fertilizer recommendations are as follows:

 $N = \pm 6 \text{ kg/Acre}$ $P_2O_5 = \pm 6 \text{ kg/Acre}$ $K_2O = \pm 3 \text{ kg/Acre}$

Andhra Pradesh (Chickpea)

Name of the Centre : Nandyal Soil phosphorus range : 10 - 75 kg ha⁻¹
Soil : Vertisol Soil potassium range : 200 - 525 kg ha⁻¹

Crop and Variety : Chickpea – Annegiri FYM composition (%) : 0.75 : 0.60 : 1.2

Season developed : Rabi, 2005 FYM rate :

Target range : 15 – 20 q ha⁻¹ Green manure composition :

Soil nitrogen range : 100 – 425 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 5.03 T - 0.27 SN, FP₂O₅ = 9.71 T - 1.82 SP, FK₂O = 6.23 T - 0.22 SK

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for specific yield target

		nt (kg ha ⁻¹)	Fertilizer nutrient required (kg ha ⁻¹) for yield target of							
KmnO ₄	Olsens'	Amm.	OI	15 (q l	na ⁻¹)		20 (q ha ⁻¹)			
N	Р	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
100	10	200	48	128	49	74	176	81		
125	15	225	42	118	44	67	167	75		
150	20	250	35	109	38	53	158	70		
175	25	275	28	100	33	47	149	64		
200	30	300	21	91	27	40	140	59		
225	35	325	15	82	22	33	131	53		
250	40	350	8	73	16	26	121	48		
275	45	375		64	11	20	112	42		
300	50	400		55	5	13	103	37		
325	55	425		46		6	94	31		
350	60	450		37			85	26		
375	65	475		27			76	15		
400	70	500		18			67	9		
425	75	525		9			58	4		

Verification: The above equations are at to be verified on the farmers' fields.

Applicability :

Soil Testing Laboratories : Nandyal, kurnool district

Soil type : Vertisol

Crop : Chickpea – Annegiri

Season developed : Rabi

Yield target : Upto 20 q ha⁻¹

1. Chhattisgarh

Crop – Chickpea (Rainfed condition)

Variety - Vijay Soil type - Vertisol

Season - Rabi 2007-08

Area for suitability - Raipur, Durg, Rajnandgaon, Kawardha,

Bilaspur districts

Fertilizer adjustment equations

FS = 5.37 Y - 2.80 SS - 0.24 FYM

 $FP_2O_5 = 10.03 \text{ Y} - 7.28 \text{ SP} - 1.06 \text{ FYM}$

 $FK_2O = 21.37 \text{ Y} - 0.65 \text{ SK} - 0.61 \text{ FYM}$

Where FS, FP_2O_5 and FK_2O are fertilizer S P and K respectively. SS, SP and SK are soil test values for available S, P and K. Y = Yield target (q/ha) and FYM is Farm Yard Manure

Ready reckoner of fertilizer S, P_2O_5 and K_2O for specific yield of chickpea (Vijay)

without FYM application in previous chickpea crop

				Y	ield tar	gets of	chickp	ea (Vija	ay) q ha	ì ⁻¹	
SS Kg/	SP Kg/	SK Kg/	Fertili	Fertilizer S (kg/ha)			Fertilizer P ₂ O ₅ (kg/ha)			tilizer l (kg/ha)	_
ha	ha	ha	8	12	16	8	12	16	8	12	16
10	4	150	15	36	58	51	91	131	73	159	244
15	8	200	1	22	44	22	62	102	41	126	212
20	12	250	0	8	30	0	33	73	8	94	179
25	16	300	0	0	16	0	4	44	0	61	147
30	20	350	0	0	2	0	0	15	0	28	114
35	24	400	0	0	0	0	0	0	0	0	81
40	28	450	0	0	0	0	0	0	0	0	49
45	32	500	0	0	0	0	0	0	0	0	16
50	36	550	0	0	0	0	0	0	0	0	0

Ready reckoner of fertilizer N, P2O5 and K2O for specific yield of chickpea (Vijay) with 5 t/ha FYM application in previous rice crop

				Y	ield tar	gets of	chickp	ea (Vij	ay) q h	a ⁻¹		
SS Kg/	SP Kg/	SK Kg/	Fertili	Fertilizer S (kg/ha)			Fertilizer P ₂ O ₅ (kg/ha)			Fertilizer K ₂ O (kg/ha)		
ha	ha	ha	8					16	8	12	16	
10	4	150	12	33	55	45	85	125	55	140	226	
15	8	200	0	19	41	16	56	96	22	108	193	
20	12	250	0	5	27	0	27	67	0	75	161	
25	16	300	0	0	13	0	0	38	0	43	128	
30	20	350	0	0	0	0	0	8	0	10	96	
35	24	400	0	0	0	0	0	0	0	0	63	
40	28	450	0	0	0	0	0	0	0	0	30	
45	32	500	0	0	0	0	0	0	0	0	0	
50	36	550	0	0	0	0	0	0	0	0	0	

2. Chhattisgarh

Chickpea Crop Soil type Vertisol, Variety JG - 74, Rabi, 1997-98 Season

Area for suitability Raipur, Durg, Rajnandgaon, Kawardha,

Bilaspur districts.

Fertilizer adjustment equations

FN = General recommended dose (20 kg ha-1)

 $FP_2O_5 = Critical value for SP = 12 kg P ha^{-1}$ $FK_2O = No K if SK > 250 kg ha^{-1}$

Rahuri, (Maharashtra), Chickpea

Crop : Chickpea (Rabi) Variety: Vishal
Soil : Typic Haplusterts Situation: Irrigated

Districts : Ahmednagar, Jalgaon, Pune, Nasik, Nanded, Aurangabad, Beed,

Jalna, Akola, Buldhana, Wardha, Yeotmal, Satara, Sangli, Kolhapur

Basic Data

Nutrient	$NR (kg q^{-1})$	CS (%)	CF (%)
N	4.22	37	80.4
P ₂ O ₅	2.94	92	76.1
K ₂ O	2.73	7	212

Targeted Yield Equations

FN = 5.25 T - 0.46 SN

 $FP_2O_5 = 3.87 T - 2.77 SP$

 $FK_2O = 1.29 T - 0.04 SK$

Fertilizer prescription for targeted yields of chickpea for varying soil test values.

				Fertilize	er prescri	ptions (kg	ha ⁻¹)	
Soil tes	st values (k	g ha ⁻¹)	20	q ha ⁻¹ targ	et	25	q ha ⁻¹ tar	get
N	P	K	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O
100	6	200	59	61	18	85	802	24
120	8	250	50	55	16	76	75	22
140	10	300	41	50	14	64	69	20
160	12	350	31	44	12	58	64	18
180	14	400	22	39	10	48	58	16
200	16	450	13	33	8	39	52	14
220	18	500	25*	28	25*	30	47	12
240	20	550	25*	22	25*	21	41	25*
260	22	600	25*	16	25*	25*	36	25*
> 260	24	650	25*	25*	25*	25*	30	25*

^{*} Minimum dose of N, P_2O_5 and K_2O

1. Bikaner, Mothbean

Name of the center : ARS, Bikaner Soil nitrogen range : 80-160 kg ha⁻¹ Soil Soil Phosphorus : 10-50 kg ha⁻¹

(Bhamatsar and range

Khiran series)

Crop and variety : Mothbean (RMO-40) Soil potassium range : 170-330 kg ha⁻¹

Season developed : Kharif 1998 and

1999

Target range : 8-10 q ha⁻¹

Fertilizer adjustment equation

 $\begin{array}{ll} FN &= 8.61T - 0.29 \; SN \\ FP_2O_5 &= 8.91 \; T - 1.66 \; S \; P_2O_5 \\ FK_2O &= 17.58 \; T - 0.53 \; SK_2O \end{array}$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil a	available n		Fertilizer nutrient required (kg ha ⁻¹) for yield target of						
KMnO ₄	(kg ha ⁻¹) Olsens'	Amm.Ac.		8 q ha ⁻¹			10 q ha ⁻¹		
N	P	-K	N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O	
80	10	170	28	37	15	40	55	40	
90	15	190	26	29	10	40	46	40	
100	20	210	23	20	10	40	38	29	
110	25	230	20	12	10	37	30	19	
120	30	250	17	10	10	34	21	10	
130	35	270	14	10	10	31	13	10	
140	40	290	11	10	10	28	10	10	
150	45	310	10	10	10	25	10	10	
160	50	330	10	10	10	22	10	10	

Verification: The above fertilizer adjustment equations were tried on the farmers' fields in Bikaner district with varying yield targets during kharif 2000 and all the yield targets could be achieved at the place tried Applicability

Soil testing laboratory : Bikaner

Soil : Sobhasar, Khiran, Jamsar, Bhamatsar series

Crop and variety : Mothbean (RMO-40)

Target range : 8-10 q ha⁻¹ Soil nitrogen range : 80-160 kg ha⁻¹

Soil phosphorus range : 10-50 kg ha⁻¹ Soil potassium range : 170-330 kg ha⁻¹

Horticulture crops

Vegetables crops

1. Bhubneswar

Crop: Bhindi Lady's finger (cv. B.O.2)

General fertilizer recommendation: 120-60-80

Fertilizer adjustment equations

 $FN = 6.8 \text{ T} - 1.8 \text{ SN}, \quad FP_2O_5 = 2.2 \text{ T} - 1.9 \text{ S} P_2O_5, \quad FK_2O = 4.7 \text{ T} - 2.1 \text{ S} K_2O$

Corrected ready reckoner of fertilizer doses at varying soil test values for specific yield targets.

A	vailable s	soil			Fe	rtilizer nı	ıtrients re	quired (kg	g ha ⁻¹)			
nutr	rients (kg	ha ⁻¹)		Targeted (50 q ha	•		Targeted yield (60 q ha ⁻¹)			Targeted yield (70 q ha ⁻¹)		
N	P_2O_5	K ₂ O	N	$\mathbf{P}_2\mathbf{O}_5$ $\mathbf{K}_2\mathbf{O}$		N	P_2O_5	K ₂ O	N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	
140	20	70	88	72	88	156	75	120	160	90	160	
150	25	80	70	63	67	138	75	100	160	90	120	
160	30	90	62	53	46	120	60	80	160	90	120	
170	35	100	34	44	25	102	60	72	160	75	100	
180	40	110	30	34	20	84	56	51	152	75	80	
190	45	120	30	25	20	66	47	30	134	69	77	
200	50	130	30	15	20	48	37	20	116	60	56	
210	55	140	30	15	20	30	28	20	98	51	45	
220	60	150	30	15	20	30	15	20	80	42	34	
230	70	160	30	15	20	30	15	20	62	24	23	

(NB: when the calculated fertilizer requirement values tend to zero, a minimum dose, say 30 kg ha⁻¹ for N, 15 kg ha⁻¹ for P and 20 kg ha⁻¹ for K are added to the calculated values to bring the dose to a reasonable one).

Equation used by the Soil Testing Laboratory:

Bhubaneswar, Puri, Cuttack, Dhenkanal, Sambalpur, Sundargarh

Districts covered:

Khurda, Puri, Nayagarh, Cuttack, Angul, Dhenkanal, Sambalpur,Bargarh, Jharsududa, Sundargarh

1. Kerala, Bhindi (Okra) (Abelmoschus esculentus)

Variety - Arka anamika

Soil type - Laterite

Season - August 2005 to November 2005

Irrigation - Irrigated

Area of adaptability - Laterite soils of Kerala

Basic Data and Fertilizer Adjustment Equations for Targeted Yield for Bhindi 1st crop (<u>Abelmoschu</u>s <u>esculentus</u>) variety: Arka anamika

Nutrient		Basic Data	
	N	P_2O_5	K ₂ O
Nutrient requirement,kg/q	0.33	0.05	0.36
Soil efficiency (%)	3.98	8.73	2.85
Fertilizer efficiency (%)	30.66	93.16	103.49
Organic Efficiency (%)	0.05	0.04	0.04

Torqoto	Targeted Yield Equations		Т		S	SN)		SK	FYM
Targete	a fiela c	quations	80.9	8	365	.40	20.9	5	5	35.87	5
FN =	1.08	* T -	0.13	* (STVN	- C	0.00	* N	1	N=	39.70
FP =	0.06	* T -	0.09	* (STVP	- C	0.00	* N	1	P=	2.59
FK =	0.34	* T -	0.03	* (STVK	- C	0.00	* N	1	K=	13.12

	F	Ready reckone	r for target = 1	10 q/ha		
S.No.	STV N	STV P	STV K	N	P ₂ O ₅	K ₂ O
1	82.20	22.50	160.50	0.00	0.00	0.00
2	84.20	24.50	165.50	0.00	0.00	0.00
3	86.20	26.50	170.50	0.00	0.00	0.00
4	88.20	28.50	175.50	0.00	0.00	0.00
5	90.20	30.50	180.50	0.00	0.00	0.00
6	92.20	32.50	185.50	0.00	0.00	0.00
7		34.50	190.50		0.00	0.00
8			195.50			0.00

	Ready reckoner for target = 10 q/ha											
S.No.	STV N	STV P	STV K	N	P_2O_5	K ₂ O						
1	82.20	22.50	160.50	0.00	0.00	0.00						
2	84.20	24.50	165.50	0.00	0.00	0.00						
3	86.20	26.50	170.50	0.00	0.00	0.00						
4	88.20	28.50	175.50	0.00	0.00	0.00						
5	90.20	30.50	180.50	0.00	0.00	0.00						
6	92.20	32.50	185.50	0.00	0.00	0.00						
7		34.50	190.50		0.00	0.00						
8			195.50			0.00						

1. Chhattisgarh

Okra (Ladies finger)

Soil type - Inceptisol Variety - Parbhani Season - *Kharif*, 2001

Area for Suitability - Chhattisgarh plains (Raipur, Raigarh, Mahasamund,

Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

$$\begin{split} FN &= 1.99 \ Y - 0.299 \ SN \\ FP_2O_5 &= 190 \text{ - } (26549.8 - 117.6Y)^{1/2} - 3.31 \ SP \\ FK_2O &= No \ K \ if \ SK > 250 \ kg \ ha^{-1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of okra (Parbhani kranti) in Inceptisol (Matasi).

Alkaline	Olsen's	Y	Yield Targets (q ha ⁻¹) (Okra - Parbhani kranti)							
KMnO ₄ -	P 1	10	00	12	25	15	150			
$\binom{\mathbf{N}}{\mathbf{l}}$ (kg ha ⁻	(kg ha ⁻¹)	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅			
150	3	154	58	204	71	254	86			
175	6	147	49	196	61	246	76			
200	9	139	39	189	51	239	66			
225	12	132	29	181	41	231	56			
250	15	124	19	174	31	224	46			
275	18	117	9	167	22	216	36			
300	21	109	6	159	12	209	26			
350	24	94	6	144	6	194	16			
400	27	79	6	129	6	179	6			

Rahuri, (Maharashtra), Okra

Crop : Okra (Summer) Variety: Arka anamika Soil : Typic Haplustert Situation : Irrigated

Districts : Ahmednagar, Nasik, Pune, Satara, Sangli, Kolhapur, Solapur, Dhule

	Without FYM										
Nutrient	NR (kg t ⁻¹)	CS (%)	CF (%)	CFYM (%)	Targeted Yield Equations						
N	9.86	26.36	58.48	-	FN = 16.86 T - 0.45 SN						
P ₂ O ₅	3.60	82.67	34.90	-	$FP_2O_5 = 10.31 \text{ T} - 2.36 \text{ SP}$						
K ₂ O	8.85	11.11	76.28	-	$FK_2O = 11.60 T - 0.15 SK$						

	With FYM										
N	9.86	26.36	63.47	14.77	FN = 15.54 T - 0.42 SN - 2.32 FYM						
P ₂ O ₅	3.60	82.67	37.45	10.68	$FP_2O_5 = 9.61 \text{ T} - 2.21 \text{ SP} - 1.45 \text{ FYM}$						
K ₂ O	8.85	11.11	79.99	14.63	$FK_2O = 11.06 \text{ T} - 0.14 \text{ SK} - 1.46 \text{ FYM}$						

Fertilizer prescription for targeted yields of Okra for varying soil test values.

Soil tes	Soil test values (Kg ha ⁻¹)			Vithout FY		With FYM (10 t FYM ha ⁻¹) 12 t ha ⁻¹ target		
N	P	K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
100	6	200	157	110	109	121	88	90
120	8	300	148	105	94	113	83	76
140	10	400	139	100	79	104	79	62
160	12	500	130	95	64	96	74	48
180	14	600	121	91	59	88	70	34
200	16	700	112	86	34	79	65	20
220	18	800	103	81	19	71	61	25*

* Minimum dose of K₂O

1. Bhubneswar

Crop: Brinjal (cv. Utkal Anushree)

General fertilizer recommendation: 120-80-100

Fertilizer adjustment equations

 $FN = 1.0 \text{ T} - 0.3 \text{ SN}, \quad FP_2O_5 = 0.7 \text{ T} - 1.6 \text{ S} P_2O_5, \quad FK_2O = 4.7 \text{ T} - 0.7 \text{ S} K_2O$

Corrected ready reckoner of fertilizer doses at varying soil test values for specific yield targets.

A	vailable so	oil	Fertilizer nutrients required (kg ha-1)									
nuti	nutrients (kg ha-1)			argeted yie		Т	argeted yie		Т	Targeted yield		
				(200 q ha ⁻¹))		(225q ha ⁻¹)			(250 q ha ⁻¹)		
N	P ₂ O5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O	
140	20	60	150	80	98	180	120	100	200	120	120	
150	25	70	150	80	91	180	100	100	200	120	120	
160	30	80	150	80	84	177	100	100	200	120	100	
170	35	90	149	80	77	174	100	94	199	100	100	
180	40	100	146	76	70	171	80	87	196	100	100	
190	45	110	143	68	63	168	80	80	193	102	98	
200	50	120	140	60	56	165	78	73	190	94	91	
220	55	130	134	52	49	159	70	66	184	86	84	
250	60	140	125	44	42	150	62	59	175	78	77	
280	65	150	116	36	35	141	54	52	166	70	70	

(NB: when the calculated fertilizer requirement values tend to zero, a minimum dose, say 30 kg ha⁻¹ for N, 20 kg ha⁻¹ for P and 25 kg ha⁻¹ for K are added to the calculated values to bring the dose to a reasonable one).

Equation used by the Soil Testing Laboratory:

Bhubaneswar, Puri, Cuttack, Dhenkanal, Sambalpur, Sundargarh

Districts covered:

Khurda, Puri, Nayagarh, Cuttack, Angul, Dhenkanal, Sambalpur,Bargarh, Jharsududa, Sundargarh

1. Chhattisgarh

Brinjal

Soil type - Inceptisol Variety - Mukta kesi) Season - *Rabi*, 2005-06

Area for Suitability - Chhattisgarh plains (Raipur, Raigarh, Mahasamund,

Dhamtari, Bilaspur districts)

Fertilizer adjustment equations

$$\begin{split} FN &= 1.30 \; Y - (0.55 \; SN + 4.86 \; t \; FYM) \\ FP_2O_5 &= 115 \; \text{-} \; (13254.6 - 58.5Y)^{1/2} - \; (2.99 \; SP + 6.25 \; t \; FYM) \\ FK_2O &= No \; K \; \text{if } SK > 250 \; kg \; ha^{\text{-}1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of Brinjal (Mukta Kesi) in Inceptisol (Matasi).

Alkaline KMnO ₄ -	Olsen's P						al (Mukta	Kesi)	
N (kg ha ⁻¹)	(kg ha ⁻¹)		150	175		200		225	
(FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅
150	3	113	39	145	51	178	67	210	96
175	6	99	30	131	42	164	58	196	87
200	9	85	21	118	33	150	49	183	78
225	12	71	12	104	24	136	40	169	70
250	15	58	3	90	15	123	31	155	61
275	18	44	3	76	6	109	22	141	52
300	21	30	3	63	4	95	13	128	43
350	24	2	3	35	4	68	4	100	34
400	28	2	3	7	4	40	4	73	25

Ready reckoners on soil test based fertilizer recommendations with INM (5 ton FYM) for specific yield targets of Brinjal (Mukta Kesi) in Inceptisol (*Matasi*).

Alkaline KMnO ₄ - N	Olsen's P (kg ha ⁻¹)	Yield Targets (q ha ⁻¹) Brinjal (Mukta Kesi)									
(kg ha ⁻¹)		1:	150 175			2	200	225			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	88	8	121	20	153	35	186	65		
175	6	74	2	107	11	139	26	172	56		
200	9	61	2	93	2	126	17	158	47		
225	12	47	2	79	2	112	8	144	38		
250	15	33	2	66	2	98	2	131	29		
275	18	19	2	52	2	84	2	117	20		
300	21	6	2	38	2	71	2	103	11		
350	24	6	2	6	2	43	2	76	2		
400	28	6	2	6	2	16	2	48	2		

Rahuri, (Maharashtra), Brinjal

Crop : Brinjal (Summer) Variety: Krishna Soil : Typic Haplustert Situation:Irrigated

Districts : Ahmednagar, Nasik, Pune, Satara, Sangli, Kolhapur, Solapur, Dhule

Basic Data

Nutrient	NR (kg t ⁻¹)	CS (%)	CF (%)
N	1.42	0.89	1.54
P ₂ O ₅	15.64	89.78	4.82
K ₂ O	29.30	28.40	47.8

Targeted Yield Equations

FN = 4.82 T - 0.53 SN

 $FP_2O_5 = 3.14 T - 7.32 SP$

 $FK_2O = 3.21 T - 0.13 SK$

Fertilizer prescription for targeted yields of brinjal for varying soil test values.

			Fertilizer prescriptions (kg ha ⁻¹)							
Soil tes	st values (kg	g ha ⁻¹)	50 t ha ⁻¹ target			60 t ha ¹ target				
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O		
100	6	200	188.0	113.0	134.5	236.2	144.4	166.6		
120	8	300	177.4	98.4	121.5	225.6	129.8	153.6		
140	10	400	166.8	83.8	108.5	215.0	115.2	140.6		
160	12	500	156.2	69.3	95.5	204.4	100.5	127.6		
180	14	600	145.6	54.5	82.5	193.8	85.9	114.6		
200	16	700	135.0	39.8	69.5	183.2	71.2	101.6		

1. Andhra Pradesh (Cabbage)

Name of the Centre : Rajendranagar | Soil phosphorus range : 10 – 80 kg ha⁻¹
Soil : Alfisol (sandy loam) | Soil potassium range : 150 – 850 kg ha⁻¹

Crop and Variety : Cabbage – Golden Acre FYM composition : 0.75 : 0.6 : 1.3

Season developed : Rabi, 2005 FYM rate

Target range : 150 q ha⁻¹ = 200 q ha⁻¹ Green manure composition : Soil Nitrogen range : 75 – 425 kg ha⁻¹ Green manure rate :

Fertilizer adjustment equations

FN = 1.574 T - 0.626 SN, $FP_2O_5 = 0.606 \text{ T} - 0.915 \text{ SP}$, $FK_2O = 0.486 \text{ T} - 0.095 \text{ SK}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil ava	ailable nut (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for yield target of							
Kmn	Olsens'	Amm.		150 (q ha ⁻¹)		200 (q ha ⁻¹)				
O ₄ N	Р	Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O			
75	10	150	189	82	59	268	112	83			
100	15	200	174	77	54	252	108	78			
125	20	250	158	73	49	237	103	74			
150	25	300	142	68	44	221	99	69			
175	30	350	127	64	40	205	94	64			
200	35	400	111	59	35	190	89	59			
225	40	450	95	54	30	174	85	55			
250	45	500	80	50	26	158	80	50			
275	50	550	64	45	21	143	76	45			
300	55	600	48	41	16	127	71	40			
325	60	650	33	36	11	112	66	36			
350	65	700	17	32	7	96	62	31			
375	70	750		27		80	57	26			
400	75	800		22		65	53	21			
425	80	850		18		49	48	17			

Verification: The above equations are at to be verified on the farmers' fields of Ranga Reddy and other districts with yield targets of 150 and 200 g ha⁻¹

Applicability

Soil Testing Laboratories : Rajendranagar Soil type : Sandy loam Crop : Cabbage Season developed : Rabi, 2005 Yield target : Upto 200 q ha⁻¹

Note: The above equations may be tested in soils other than Alfisol in the farmer's fields with 3 or 4 yield targets and pickup the best one for making fertilizer recommendation.

1. Bangalore, Karnataka(Cabbage)Zone-5

Name of the Centre : Bangalore : 20-70kg/acre : Soil : Red : Soil potassium range : 75-160 kg/acre

Crop and Variety : Cabbage (Golden FYM composition : 0.6%N-0.4%P-0.5K%

Acre and Other HYV) FYM rate : 10t/acre

Situation : irrigated Green manure composition :
Season developed : kharif Green manure rate :

Target range : 100 q/acre
Soil nitrogen range : 0.4-0.8%

Area of applicability: Bangalore, Kolar and Tumkur districts.

Targeted Yield Equation

FN = 0.851 T - 87.08 SN (OC %)

 $FP_2O_5 = 0.563 \text{ T} - 0.192 \text{ SP}_2O_5 \text{ (Olsen's SP}_2O_5)$

 $FK_2O = 0.709 \text{ T} - 0.165 \text{ SK}_2O \text{ (NH}_4OAC-K}_2O)$

RYS = 47.103 kg

Fertilizer prescription for targeted yields of cabbage for varying soil test values.

STV O. C (%)	Fertilizer nitrogen (kg/acre)	STV Olsen's P ₂ O ₅ (kg/acre)	Fertilizer phosphorus (kg/acre)	STV Amm.Ace. K₂O (kg/acre)	Fertilizer potash (kg/acre)
0.40	50	5	55	60	61
0.50	42	10	54	80	58
0.55	37	15	53	100	54
0.60	33	20	53	120	51
0.65	29	25	52	130	50
0.70	24	30	51	140	48
0.75	20	35	50	150	46
0.80	15	40	49	160	45
0.85	11	45	48	170	43
0.90	7	50	47	180	41
0.95	2	55	46	190	40
1.00	0	60	45	200	38

To increase or decrease the yield target by one q/acre the variations to be made in the fertilizer recommendations are as follows:

 $N=\pm~0.8~kg/acre \qquad P_2O_5=\pm~0.6~kg/acre \qquad K_2O=\pm~0.7~kg/acre$

1. Tamil Nadu: Cabbage

Name of the centre : Coimbatore : Coimbatore : O.43:0.26:0.51% (N:P:K) : Ory weight basis

Crop & Variety : Hybrid-Questo

Season developed : 2003-04 FYM rate :15 t ha⁻¹
Season developed : Kharif (30 % moisture)

Season developed : Kharif (30 % moisture)
Target range : 700 q ha⁻¹

Soil Nitrogen range : 180 - 300 kg ha⁻¹ Green manure composition : Soil phosphorus range : 10 - 22 kg ha⁻¹ Green manure rate : Soil potassium range : 200 - 500 kg ha⁻¹

Fertilizer Adjustment Equations

$$\begin{split} FN &= 0.55 \ T - 0.89 \ SN - 0.76 \ ON \\ FP_2O_5 &= 0.29 \ T - 2.75 \ SP - 0.80 \ OP \\ FK_2O &= 0.36 \ T - 0.31 \ SK - 0.56 \ OK \end{split}$$

Ready reckoner of fertilizer doses at varying soil test values for specific yield targets of cabbage

Initial s	soil test val	ues (kg ha ⁻¹)	Nutrients to be add	Nutrients to be added (kg ha ⁻¹) for an yield target of 700 q ha ⁻¹					
KMnO4- N	Olsen- P	NN NH₄OAc- K	FN	FP ₂ O ₅	FK ₂ O				
180	10	200	225	176	190				
200	12	250	207	170	175				
220	14	300	189	165	159				
240	16	350	171	159	144				
260	18	400	154	154	128				
280	20	450	136	148	113				
300	22	500	118	143	97				

Blanket Recommendation: 100:125:25 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : Red – sandy clay loam

Yield target : 700 q ha⁻¹

District(s) : Coimbatore, Dindigul

Grade : Good

Rahuri, (Maharashtra), Cabbage

Crop : Cabbage (Rabi) Variety: Golden acre Soil : Typic Haplusterts Situation: Irrigated

Districts : Ahmednagar, Nasik, Pune, Satara, Sangli, Kolhapur, Solapur, Dhule

Basic Data

Nutrient	NR (kg t^{-1})	CS (%)	CF (%)
N	6.04	15.30	72.90
P ₂ O ₅	1.58	34.20	33.50
K ₂ O	6.33	15.20	94.80

Targeted Yield Equations

FN = 8.28 T - 0.21 SN

 $FP_2O_5 = 4.72 T - 2.34 SP$

 $FK_2O = 6.68 T - 0.19 SK$

Fertilizer prescription for targeted yields of cabbage for varying soil test values.

1 CI tillizei	retunzer prescription for targeted yields of cabbage for varying son test values.									
			Fertilizer prescriptions (kg ha ⁻¹)							
Soil te	st values (k	g ha ⁻¹)	30 t	ha ⁻¹ targ	et	40	t ha ⁻¹ tar	get		
		T	NT	D O	V O	N	D.O.	V O		
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O		
100	6	200	227.4	128	162	310	175	229		
120	8	300	223.2	123	143	306	170	210		
140	10	400	219.0	118	124	302	165	191		
160	12	500	214.8	114	105	298	108	172		
100	12	200	21.00		100		100	1,2		
180	14	600	210.6	109	86	293	156	153		
200	16	700	206.4	104	67	289	151	134		

IPNS Based Fertiliser Recommendations

1. Chattisgarh

Crop – **Cauliflower**Variety - Sungro Pusi (OP)

Soil Type - Vertisol

Season - Rabi 2007-08

Area for suitability - Raipur, Durg, Bilaspur districts

Fertilizer adjustment equations

FN = 1.44 Y - 0.29 SN - 0.09 FYM FP2O5 = 0.37 Y - 0.74 SP - 0.05 FYM FK2O = 0.57 Y - 0.05 SK - 0.02 FYM

Where FN, FP_2O_5 and FK_2O are fertilizer N P and K respectively. SN, SP and SK are soil test values for available N P and K. Y = Yield target (q/ha) and FYM is Farm Yard Manure

Ready reckoner of fertilizer N, P_2O_5 and K_2O for specific yield of cauliflower

(Sungro Pusi) without FYM application

(Yield targets of cauliflower(Sungro Pusi) q ha ⁻¹							
SN Kg/	SP Kg/	SK Kg/		Fertilizer I (kg/ha)			tilizer P (kg/ha)		Fertilizer K ₂ O (kg/ha)		
ha	ha	ha	100	125	150	100	125	150	100	125	150
150	4	150	100	136	172	34	43	52	50	64	78
175	8	200	93	129	165	31	40	49	47	62	76
200	12	250	85	121	157	28	37	46	45	59	73
225	16	300	78	114	150	25	34	43	42	57	71
250	20	350	71	107	143	22	31	40	40	54	69
275	24	400	63	99	135	19	28	37	38	52	66
300	28	450	56	92	128	16	25	34	35	50	64
325	32	500	49	85	121	13	22	31	33	47	61
350	36	550	41	78	114	10	19	28	30	45	59

Ready reckoner of fertilizer $N,\,P_2O_5$ and K_2O for specific yield of cauliflower

Sungro Pusi) with 10 t/ha FYM application

				Yield targets of cauliflower(Sungro Pusi) q ha ⁻¹								
SN Kg/	SP Kg/	SK Kg/		rtilizer (kg/ha)			tilizer P (kg/ha)			Fertilizer K ₂ O (kg/ha)		
ha	ha	ha	100	125	150	100	125	150	100	125	150	
150	4	150	92	128	164	31	40	50	47	61	75	
175	8	200	85	121	157	28	38	47	44	58	73	
200	12	250	77	113	149	25	35	44	42	56	70	
225	16	300	70	106	142	22	32	41	39	54	68	
250	20	350	63	99	135	19	29	38	37	51	65	
275	24	400	55	91	127	16	26	35	35	49	63	
300	28	450	48	84	120	14	23	32	32	46	61	
325	32	500	41	77	113	11	20	29	30	44	58	
350	36	550	33	69	105	8	17	26	27	42	56	

Rahuri, (Maharashtra), Cauliflower

Crop : Cauliflower (Rabi) Variety : Namdhari N0. 90

Soil : Typic Haplustert Situation : Irrigated

Districts : Ahmednagar, Nasik, Pune, Satara, Sangli, Kolhapur, Solapur, Dhule

Basic Data

	Without FYM									
Nutrient	NR (kg t ⁻¹)	CS (%)	CF (%)	CFY M (%)	Targeted Yield Equations					
N	3.38	17.23	39.47	-	FN = 6.83 T - 0.35 SN					
P ₂ O ₅	0.83	43.17	19.54	-	$FP_2O_5 = 4.25 T - 2.21 SP$					
K ₂ O	3.0	6.15	76.86	-	$FK_2O = 3.90 T - 0.08 SK$					

	With FYM									
N	3.38	17.23	56.30	10.47	FN = 6.0 T - 0.30 SN - 1.44 FYM					
P ₂ O ₅	0.83	43.17	21.12	5.08	FP ₂ O ₅ = 3.92 T - 2.04 SP - 1.20 FYM					
K ₂ O	3.0	6.15	97.66	13.75	$FK_2O = 3.07 T - 0.06 SK - 1.12 FYM$					

Fertilizer prescription for targeted yields of cauliflower for varying soil test values.

Soil tes	Soil test values (Kg ha ⁻¹)			Vithout FY		(10	With FYM (10 t FYM ha ⁻¹)		
			2:	5 t ha ⁻¹ targ	get	25	5 t ha ⁻¹ tar	get	
N	P	K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
100	6	200	136	93	82	106	74	54	
120	8	300	128	89	74	100	70	48	
140	10	400	122	83	66	94	66	42	
160	12	500	115	80	58	88	62	36	
180	14	600	108	75	50	82	57	30	
200	16	700	101	71	42	76	53	24	
220	18	800	94	66	34	70	49	18	

1. Andhra Pradesh (Colocassia) with & without IPNS based

Name of the Centre : Nellore | Soil phos Soil : Alluvial soil | Soil pota

Crop and Variety : Colocassia-KCS-2

Season/Year developed : 2002-2003

Target range : 20 – 25 t ha⁻¹
Soil Nitrogen range : 100 – 360 kg ha⁻¹

Soil phosphorus range : 5 – 70 kg ha⁻¹
Soil potassium range : 125 – 450 kg ha⁻¹

FYM composition

FYM rate : 10 t ha⁻¹

Green manure composition :
Green manure rate :

Fertilizer adjustment equations

FN = 12.11 T - 0.53 SN - 0.32 FYM N

 $FP_2O_5 = 6.70 T - 1.84 SP - 0.36FYM P$

 $FK_2O = 14.45 T - 0.64 SK - 0.075 FYM K$

1. Bhubneswar

Crop: Potato (cv. Ashoka)

General fertilizer recommendation: 120-60-120

Fertilizer adjustment equations.

 $FN = 1.8 \text{ T} - 1.1 \text{ SN F}, P_2O_5 = 0.5 \text{ T} - 1.8 \text{ S}, P_2O_5 FK_2O = 1.1 \text{ T} - 1.3 \text{ S} K_2O$

Corrected ready reckoner of fertilizer doses at varying soil test values for specific yield targets.

A	vailable so	oil			Fert	ilizer nutr	ients requ	iired (kg l	ha-1)			
nuti	rients (kg h	na-1)	Targeted yield (250 q ha ⁻¹)			Т	Targeted yield (275q ha ⁻¹)			Targeted yield (300 q ha ⁻¹)		
N	P ₂ O5	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
140	20	60	240	89	180	240	90	180	240	90	140	
160	25	70	240	80	180	240	90	180	240	90	210	
180	30	80	240	71	150	240	84	180	240	90	210	
200	35	90	210	62	150	240	75	180	240	87	210	
220	40	100	180	53	145	240	66	150	240	78	180	
240	45	120	180	44	132	210	57	150	240	69	180	
260	50	140	164	35	119	209	48	146	240	60	150	
280	55	160	142	26	106	187	39	133	232	51	150	
300	60	180	120	17	93	165	30	120	210	42	148	
320	65	200	98	15	80	143	21	107	188	33	135	

(NB: when the calculated fertilizer requirement values tend to zero, a minimum dose, say 30 kg ha⁻¹ for N, 15 kg ha⁻¹ for P and 30 kg ha⁻¹ for K are added to the calculated values to bring the dose to a reasonable one).

Equation used by the Soil Testing Laboratory:

Bhubaneswar, Puri, Cuttack, Dhenkanal, Sambalpur, Sundargarh

Districts covered:

Khurda, Puri, Nayagarh, Cuttack, Angul, Dhenkanal, Sambalpur,Bargarh,

Jharsududa, Sundargarh

1. Chhattisgarh

Crop - Potato Soil type - Vertisol variety - JH-222

Season - *Rabi*, 2000-01

Area for suitability - Raipur, Durg, Bilaspur districts.

Fertilizer adjustment equations

$$\begin{split} FN &= 1.67 \; Y - 0.36 \; SN \\ FP_2O_5 &= 0.54\text{-}Y - 2.27 \; SP \\ FK_2O &= No \; K \; \text{if } SK > \!\! 250 \; \text{kg ha}^{-1} \end{split}$$

Ready reckoners on soil test based fertilizer recommendations for specific yield

targets of potato (JH-222) in Vertisol (Kanhar).

Alkaline KMnO ₄ -	Olsen's P	Yield Targets (q ha ⁻¹) Potato (var JH-222)							
N (kg ha	(kg ha ⁻¹)	12	20	10	60	200			
		FN	FP ₂ O ₅	FN	FP ₂ O ₅	FN	FP ₂ O ₅		
150	3	146	58	213	80	280	101		
175	6	137	51	204	73	271	94		
200	9	128	44	195	66	262	88		
225	12	119	38	186	59	253	81		
250	15	110	31	177	52	244	74		
275	18	101	24	168	46	235	67		
300	21	92	17	159	39	226	60		
350	24	74	10	141	32	208	54		
400	28	56	1	123	23	190	44		

Rahuri, (Maharashtra), Potato

Crop : Potato (Rabi) Variety: Khufri Jyoti Soil : Typic Ustorthent Situation:Irrigated

Districts : Pune, Ahmednagar, Aurangabad, Nasik

Basic Data

	Without FYM									
Nutrient	NR (kg	CS	CF	CFYM						
Nutrient	q ⁻¹)	(%)	(%)	(%)	Targeted Yield Equations					
N	0.44	11.37	28.40	-	FN = 1.549 T - 0.40 SN					
P ₂ O ₅	0.075	19.98	8.27	-	$FP_2O_5 = 0.906 \text{ T} - 5.53 \text{ SP}$					
K ₂ O	0.47	5.04	35.81	-	$FK_2O = 1.315 T - 0.17 SK$					

	With FYM									
N	0.44	11.37	36.44	3.11	FN = 1.207 T - 0.315 SN - 0.81 FYM					
P ₂ O ₅	0.075	19.98	8.54	1.35	FP ₂ O ₅ = 0.878 T - 5.35 SP - 0.71 FYM					
K ₂ O	0.47	5.04	39.84	4.09	$FK_2O = 1.180 T - 1.156 SK - 0.76 FYM$					

Fertilizer prescription for targeted yields of potato for varying soil test values.

Soil tes	Soil test values (Kg ha ⁻¹)			Without FYM 175 q ha ⁻¹ target			With FYM (10 t FYM ha ⁻¹) 175 q ha ⁻¹ target		
N	P	K	N	N P ₂ O ₅ K ₂ O			P ₂ O ₅	K ₂ O	
100	6	200	231	125	196	171	113	175	
120	8	300	223	114	179	165	104	152	
140	10	400	251	103	162	158	93	137	
160	12	500	207	92	145	152	82	121	
180	14	600	199	81	128	146	72	105	
200	16	700	191	70	111	140	61	90	
220	18	800	183.0	59.0	94.12	133.2	50.2	74.1	

Yield Targeting in Potato with IPNS based STCR

1. Jabalpur, Pea

Crop	:	Pea
Soil Type	:	Shallow , Medium black and Deep black
Varieties	:	JP -885
Yield (q ha ⁻¹)	:	15 - 25
Applicability	:	Range of soil test values (Kg ha ⁻¹); N: 100-350, P: 5-40; K: 100-500
Districts	:	Jabalpur ,Indore, Khandwa, Khargone, Narsinghpur, Powarkheda, Sehore, Ujjain.

Composition of FYM: N(%) = 0.72 $P_2O_5(\%) = 0.72$ $K_2O(\%) = 0.75$

Equation for Calculating the fertilizer nutrient Requirement:

FN = 7.54T - 0.76 SN - 1.04ON; $FP_2O_5 = 3.88T - 1.51SP - 1.48OP$;

FK2O = 6.38 T - 0.24 SK - 0.667K

Soil t	est Values	(kg ha ⁻¹)	Target yield (q ha ⁻¹) = 20							
			Without FYM				With 5 t FYM ha ⁻¹			
N	P	K	N P_2O_5 K_2O			N	P_2O_5	K ₂ O		
100	5	100	156	65	159	164	27	146		
150	10	150	134	59	144	132	21	131		
200	15	200	122	53	129	100	15	116		
250	20	250	90	47	104	68	9	91		
300	25	300	58	41	89	36	2	76		

To increase or decrease the yield targets by one quintal per hectare the variations to be made in $N = \pm 7.5$ kg ha⁻¹; $P_2O_5 = \pm 3.8$ kg ha⁻¹and $K_2O = \pm 6.3$ kg ha⁻¹

Grade: need to verify

1. Kerala, Sweet Potato

Variety - Varun

Season - June-July to September-October

Irrigation - Rain fed Soil type - Laterite

Area of adaptability - Laterite soils of Kerala

Basic data and Fertilizer Adjustment Equations for sweet potato, variety Varun

Nutrient	Basic Data						
	N	P_2O_5	K ₂ O				
NR (kg/t of rhizome)	2.18	0.87	7.67				
CS (%)	19.54	85.56	68.37				
CF (%)	71.85	68.63	89.12				
COM (%)	14.11	18.55	30.77				

Fertilizer Adjustment Equations						
With FYM	With out FYM					
FN = 3.04T - 0.27SN - 0.20ON	F N = 3.04T - 0.27SN					
FP2O5 = 1.27T - 2.85SP - 0.62OP	FP2O5 = 1.27T - 2.85SP					
FK2O = 8.60T - 0.93SK - 0.42OK	FK2O = 8.60T - 0.93SK					

Ready reckoner N required for different yield targets of sweet potato.

Soil	Fertilizer N to be applied (Kg ha ⁻¹)									
available N (Kg ha ⁻¹)	with 7.5 t h	na ⁻¹ of FYM		with 15 t ha ⁻¹ of FYM						
,	30 t ha ⁻¹ 40 t ha ⁻¹ 50 t		50 t ha ⁻¹	30 t ha ⁻¹	40 t ha ⁻¹	50 t ha ⁻¹				
100	56.25	86.65	117.05	48.30	78.70	109.10				
150	42.75	73.15	103.55	34.80	65.20	95.60				
200	29.25	59.65	90.05	21.30	51.70	82.10				
250	15.75	46.15	76.55	7.80	38.20	68.60				
300	2.25	32.65	63.05	0.00	24.70	55.10				

Ready reckoner P required for different yield targets of sweet potato.

Soil	Fertilizer P ₂ O ₅ to be applied (Kg ha ⁻¹)								
available P (Kg ha ⁻¹)	with '	7.5 t ha ⁻¹ of	FYM	with 15 t ha ⁻¹ of FYM					
	30 t ha ⁻¹	40 t ha ⁻¹	50 t ha ⁻¹	30 t ha ⁻¹	40 t ha ⁻¹	50 t ha ⁻¹			
5	0.00	12.37	25.07	0.00	0.00	0.89			
10	0.00	0.00	10.82	0.00	0.00	0.00			
15	0.00	0.00	0.00	0.00	0.00	0.00			
20	0.00	0.00	0.00	0.00	0.00	0.00			
25	0.00	0.00	0.00	0.00	0.00	0.00			

Ready reckoner K required for different yield targets of sweet potato.

Soil	Fertilizer K ₂ O to be applied (Kg ha ⁻¹)								
available K (Kg ha ⁻¹)	with '	7.5 t ha ⁻¹ of	FYM	with 15 t ha ⁻¹ of FYM					
(g)	30 t ha ⁻¹	40 t ha ⁻¹	50 t ha ⁻¹	30 t ha ⁻¹	40 t ha ⁻¹	50 t ha ⁻¹			
100	142.95	228.95	314.95	120.90	206.90	292.90			
150	96.45	182.45	268.45	74.40	160.40	246.40			
200	49.95	135.95	221.95	27.90	113.90	199.90			
250	3.45	89.45	175.45	0.00	67.40	153.40			
300	0.00	42.95	128.95	0.00	20.90	106.90			

1. Kerala, Cassava (Tapioca)

Crop - Cassava, Variety: M4

Variety - M4

Season - August September to June July

Soil type - Laterite Irrigation - Irrigated

Area of adaptability - The laterite soils of Kerala (65% Total geographical area of

Kerala is occupied by laterite soils. Laterite soils are found in all

the 14 districts of the state.)

Targeted yield equations of Cassava, Variety: M4

 $FN = 12.10 \ T - 0.74 \ SN, \quad FP_2O_5 = 05.04 \ T - 2.02 \ SP, \quad FK_2O = 11.93 \ T - 1.10 \ SK$

Ready reckoner for target of 35 t/ha for cassava crop

Sl.	STV N	STV P	STV K	N	P ₂ O ₅	K ₂ O
No.	kg/ha	kg/ha	kg/ha	kg/ha	kg/ha	kg/ha
1	100	10.00	100.00	346.00	156.20	307.55
2	150	20.00	150.00	309.00	136.00	252.55
3	200	30.00	200.00	272.00	115.80	197.55
4	250	40.00	250.00	235.00	95.60	142.55
5	300	50.00	300.00	198.00	75.40	87.55
6	350	60.00	350.00	161.00	55.20	32.55
7	400	70.00	400.00	124.00	35.00	0.00
8	450	80.00	450.00	87.00	14.80	0.00
9	500	90.00	500.00	50.00	0.00	0.00
10	550	100.00		13.00	0.00	
11	600			0.00		

1. Andhra Pradesh (Tomato)

Soil phosphorus range : 5 – 50 kg ha⁻¹

Name of the centre : Rajendranagar Soil potassium range : 125 – 350 kg ha⁻¹

Soil : Alfisol FYM composition

Crop & Variety : Tomato – Pusa rabi FYM rate : 10 t ha⁻¹

Season developed : 2002-03 Green manure composition : Target range : 15 – 20 t ha⁻¹ Green manure rate :

Soil Nitrogen range : 100 – 200 kg ha⁻¹

Fertilizer adjustment equations

FN = 15.48 T - 2.28 SN - 0.681 FYM N, FP₂O₅ = 1.78 T - 1.14 SP - 0.383 FYM P

 $FK_2O = 6.82 T - 1.02 SK - 0.082 FYM K$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil available nutrients (kg ha ⁻¹)			Fertiliz ha ⁻¹	Fertilizer nutrient required (kg ha ⁻¹) for production of 200 q ha ⁻¹						
Kmn	Olsen-	Amm		Only Cher	nical fert.		With Fym @ 10 t ha ⁻¹			
O ₄ -N	Р	Aoc-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K₂O		
100	5	125	236	48	77	206	42	70		
110	10	150	214	42	52	183	36	44		
120	15	175	191	36	26	160	31	19		
130	20	200	168	31		137	25			
140	25	225	145	25		115	19			
150	30	250	122	19		92	14			
160	35	275	100	14		69	8			
170	40	300	77	8		46				
180	45	325	54			23				
190	50	350	31							
200			8							

Applicability

Soil Testing Laboratories : Ranga Reddy and Mahabubnagar districts

Soil type : Sandy clay loam Crop : Tomato-Pusa Rubi

Season developed : Rabi

Yield target : Up to 150-200 q ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the farmers' fields with three or four targets and pick up the best one for making recommendations.

Rahuri, (Maharashtra), Tomato

Crop : Tomato (Summer) Variety : Dhanshree Soil : Typic Ustorthent Situation: Irrigated

Districts : Ahmednagar, Nasik, Pune, Satara, Sangli, Kolhapur, Solapur, Dhule

Basic Data

	Without FYM										
	NR (kg	CS	GT (1)	CFY							
Nutrient	t ⁻¹)	(%)	CF (%)	M	Targeted Yield Equations						
	ι)	(70)		(%)	-u-g						
N	2.40	21.00	45	-	FN = 5.33 T - 0.46 SN						
P ₂ O ₅	0.70	75	18	-	$FP_2O_5 = 3.88 T - 4.16 SP$						
K ₂ O	3.10	15	60	-	$FK_2O = 5.16 T - 0.25 SK$						

	With FYM										
N	2.40	25	58	12	FN = 4.13 T - 0.43 SN - 1.13 FYM						
P ₂ O ₅	0.70	78	28	6	$FP_2O_5 = 2.5 T - 2.78 SP - 0.57 FYM$						
K ₂ O	3.10	20	90	15	$FK_2O = 3.44 T - 0.22 SK - 0.75 FYM$						

Fertilizer prescription for targeted yields of tomato for varying soil test values.

Soil te	st values (Kg ha⁻¹)	V	Vithout FY	/M	With FYM (20 t FYM ha ⁻¹)				
	or various ((118 114)	30 t ha ⁻¹ target			30	30 t ha ⁻¹ target			
N	P	K	N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O		
100	6	200	114	91	105	70	53	52		
120	8	300	105	84	80	61	47	30		
140	10	400	96	75	55	52	42	25*		
160	12	500	86	66	30	44	36	25*		
180	14	600	77	55	25*	35	30	25*		
200	16	700	68	50	25*	27	25	25*		
220	18	800	59	42	25*	18	19	25*		

^{*} Minimum dose of K₂O

1. Biknaer Clusterbean Vegetable

Name of the center : ARS, Bikaner Soil nitrogen range : 90-170 kg ha⁻¹ Soil : Alluvial soils Soil Phosphorus : 20-60 kg ha⁻¹

(Bhamatsar and range

Khiran series)

Crop and variety : Clusterbean Soil potassium range : 170-330 kg ha⁻¹

vegetable (M-83)

Season developed : Kharif-2003 FYM composition

Target range : 20-25 q ha⁻¹ FYM rate : 5 t ha⁻¹

Fertilizer adjustment equation

 $\begin{array}{ll} FN &= 11.40 \ T - 1.22 \ SN - 3.35 \ FYM \\ FP_2O_5 &= 6.60 \ T - 1.91 \ S \ P_2O_5 - 1.84 \ FYM \\ FK_2O &= 9.22 \ T - 0.90 \ SK_2O - 2.75 \ FYM \end{array}$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

			Fertilizer nutrient required (kg ha ⁻¹) with 5 t ha ⁻¹ FYM for							
Soil avail	able nutrie	ent (kg ha ⁻¹)	yield target of							
KMnO ₄	Olsens'	Amm.Ac.		20 q ha	1		25 q ha	[
N	P	-K	N	P_2O_5	K_2O	N	P_2O_5	K_2O		
90	20	170	60	60	10	60	60	18		
100	25	190	60	60	10	60	60	10		
110	30	210	53	52	10	60	60	10		
120	35	230	41	43	10	60	56	10		
130	40	250	29	33	10	52	46	10		
140	45	270	17	24	10	39	37	10		
150	50	290	10	20	10	27	27	10		
160	55	310	10	20	10	15	20	10		
170	60	330	10	20	10	10	20	10		

Applicability

Soil testing laboratory : Bikaner

Soil : Sobhasar, Khiran, Jamsar, Gajner series

Crop and variety : Clusterbean vegetable (M-83)

Target range : 20-25 q ha⁻¹
Soil nitrogen range : 90-1760 kg ha⁻¹
Soil phosphorus range : 20-60 kg ha⁻¹
Soil potassium range : 170-330 kg ha⁻¹

1. Bikaner, Guar

Name of the center : ARS, Bikaner Soil nitrogen range : 80-160 kg ha⁻¹ Soil Phosphorus : 15-55 kg ha⁻¹

(Bhamatsar and range

Khiran series)

Crop and variety : Guar (RGC-986) Soil potassium range : 170-330 kg ha⁻¹

Season developed : Kharif 2000 Target range : 15-18 q ha⁻¹

Fertilizer adjustment equation

FN = 5.38T - 0.46 SN $FP_2O_5 = 5.07 T - 2.46 SP_2O_5$ $FK_2O = 4.86 T - 0.34 SK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil avails	able nutrie	nt (kg ha-1)	Fertilizer nutrient required (kg ha ⁻¹) for yield target of							
KMnO ₄	Olsens'	Amm.Ac.		15 q ha ⁻¹		18 q ha ⁻¹				
N	P	-K	N	P_2O_5	K ₂ O	N	P_2O_5	K_2O		
80	15	170	44	39	15	60	54	30		
90	20	190	39	27	15	55	42	23		
100	25	210	35	20	15	51	30	16		
110	30	230	30	20	15	46	20	15		
120	35	250	26	20	15	42	20	15		
130	40	270	21	20	15	37	20	15		
140	45	290	16	20	15	32	20	15		
150	50	310	12	20	15	28	20	15		
160	55	330	7	20	15	23	20	15		

Applicability

Soil testing laboratory : Bikaner

Soil : Sobhasar, Khiran, Gajnar, Bhamatsar series

Crop and variety : Guar (RGC-986)

Target range : 15-18 q ha⁻¹ Soil nitrogen range : 80-160 kg ha⁻¹

Soil phosphorus range : 15-55 kg ha⁻¹

Soil potassium range: 170-330 kg ha⁻¹

1. Bhubneswar

Crop: Pumpkin (cv. Guamal)

General fertilizer recommendation: 75-75-75

Fertilizer adjustment equations

 $FN = 4.9 \text{ T} - 1.2 \text{ SN}, \quad FP_2O_5 = 2.7 \text{ T} - 2.7 \text{ S} P_2O_5, \quad FK_2O = 2.0 \text{ T} - 0.5 \text{ S} K_2O$

Corrected ready reckoner of fertilizer doses at varying soil test values for specific yield targets.

Av	ailable s	soil	Fertilizer nutrients required (kg ha ⁻¹)								
nutrients (kg ha ⁻¹)				rgeted yi 50 q ha ⁻¹			rgeted yi 60 q ha ⁻¹		Targeted yield (70 q ha ⁻¹)		
N	$\mathbf{P}_2\mathbf{O}_5$	$\mathbf{K}_2\mathbf{O}$	N	P_2O_5	$\mathbf{K}_2\mathbf{O}$	N	$\mathbf{P}_2\mathbf{O}_5$	$\mathbf{K}_2\mathbf{O}$	N	$\mathbf{P}_2\mathbf{O}_5$	$\mathbf{K}_2\mathbf{O}$
80	15	60	76	55	40	124	81	60	150	108	80
100	20	80	52	41	30	100	68	50	150	94	70
120	25	100	28	27	20	76	54	40	126	81	60
140	30	120	20	20	20	52	41	30	102	68	50
160	35	140	20	20	20	28	28	20	78	52	40
180	40	160	20	20	20	24	20	20	54	38	30
200	50	180	20	20	20	20	20	20	30	24	20

(NB: when the calculated fertilizer requirement values tend to zero, a minimum dose, say 20 kg ha⁻¹ each for N, P and K are added to the calculated values to bring the dose to a reasonable one).

Equation used by the Soil Testing Laboratory:

Bhubaneswar, Puri, Cuttack, Dhenkanal, Sambalpur, Sundargarh

Districts covered:

Khurda, Puri, Nayagarh, Cuttack, Angul, Dhenkanal, Sambalpur,Bargarh,

Jharsududa, Sundargarh

1. Kerala

Crop - Cucumber

Variety - Mudicode local Season - January to March

Irrigation - Irrigated Soil type - Laterite

Area of adaptability - Laterite soils of Kerala (65% Total geographical area of Kerala is

occupied by laterite soils. Laterite soils are found in all the 14

districts of the state.)

Fertilizer Adjustment Equations

 $FN = 3.24T - 0.095SN, FP_2O_5 = 1.64T - 1.332SP, FK_2O = 3.16T - 0.068SK$

Ready reckoner for fertilizer doses at varying Soil Test Values for specific yield target of Cucumber {Oriental pickling melon- (Cucumis melo conomon)}. Var. Mudikkode

Soil available Nutrients (kg ha-1)			Fertilizer nutrient required (kg ha ⁻¹) for fresh Cucumber {Oriental pickling melon- (<i>Cucumis melo var. conomon</i>)} yield target of								
				20t ha ⁻¹			25t ha ⁻¹			30t ha ⁻¹	
KMnO ₄ N	Bray`s P	Amm Ac-K	N	P ₂ O ₅	K₂O	N	P ₂ O ₅	K₂O	N	P ₂ O ₅	K₂O
100	5	100	55.30	26.20	56.40	71.50	34.42	72.20	87.70	42.54	88.00
150	7	200	50.55	23.54	49.60	66.75	31.75	65.40	82.95	39.97	81.20
200	9	300	45.80	20.87	42.80	62.00	29.09	58.60	78.20	37.30	74.40
250	12	400	41.05	16.88	36.00	57.25	25.09	51.80	73.45	33.31	67.60
300	14	500	36.30	14.21	29.20	52.50	22.43	45.00	68.70	30.64	60.80
350	16	600	31.55	11.55	22.40	47.75	19.76	38.20	63.95	27.98	54.00
400	18	700	26.80	8.88	15.60	43.00	17.10	31.40	59.20	25.31	47.20

1. Kerala

Crop - Sala Cucumber

Variety - AAUC-2

Season - January to March

Irrigation - Irrigated Soil type - Laterite

Area of adaptability - Laterite soils of Kerala (65% Total geographical area of Kerala is

occupied by laterite soils. Laterite soils are found in all the 14

districts of the state.)

Fertilizer adjustment Equation

 $FN = 6.10 \ T - 0.31 \ SN, \quad FP_2O_5 = 0.60 \ T - 1.38 \ SP, \ FK_2O = 1.30 \ T - 0.06 \ SK$

Ready reckoner for fertilizer doses at varying Soil Test Values for specific yield target of Salad Cucumber Var. AAUC-2

Soi	il availab Nutrients (kg ha-1)	le		Fertilizer nutrient required (kg ha ⁻¹) for fresh Salad Cucumber yield target of							
				20t ha ⁻¹			25t ha ⁻¹			30t ha ⁻¹	
KMnO ₄ N	Bray`s P	Amm Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
100	5	100	91.00	5.10	20.00	121.50	8.10	26.50	152.00	11.10	33.00
150	7	200	75.50	2.34	14.00	106.00	5.34	20.50	136.50	8.34	27.00
200	9	300	60.00	0.00	8.00	90.50	2.58	14.50	121.00	5.58	21.00
250	12	400	44.50	0.00	2.00	75.00	0.00	8.50	105.50	1.44	15.00
300	14	500	29.00	0.00	0.00	59.50	0.00	2.50	90.00	0.00	9.00
350	16	600	13.50	0.00	0.00	44.00	0.00	0.00	74.50	0.00	3.00
400	18	700	0.00	0.00	0.00	28.50	0.00	0.00	59.00	0.00	0.00
450	20	800	0.00	0.00	0.00	13.00	0.00	0.00	43.50	0.00	0.00
500	22	900	0.00	0.00	0.00	0.00	0.00	0.00	28.00	0.00	0.00

1. Kerala, Ash Gourd

Variety - KAU local

Season - May-June to August-September

Irrigation - Rain fed Soil type - Laterite

Area of adaptability - Laterite soils of Kerala

Basic data and Fertilizer Adjustment Equations for ash gourd var. KAU local

Nutrient		Basic Data	
	N	P_2O_5	K ₂ O
NR (kg/t of rhizome)	1.55	0.43	5.20
CS (%)	1.57	4.45	1.25
CF (%)	9.83	11.31	62.56
COM (%)	3.22	0.50	5.59

Fertilizer Adjustment Equations									
With FYM	With out FYM								
FN = 15.79T-0.16SN-0.33ON	F N = 15.79T - 0.16SN								
$FP_2O_5 = 3.77T - 0.90SP - 0.10OP$	$FP_2O_5 = 3.77T - 0.90SP$								
$FK_2O = 8.31T - 0.024SK - 0.11OK$	$FK_2O = 8.31T - 0.024SK$								

Ready reckoner N required for different yield targets of ash gourd.

Soil available		Fertilizer N to be applied (Kg ha ⁻¹)							
N (Kg ha ⁻¹)	with	15 t ha ⁻¹ of	FYM	with	30 t ha ⁻¹ of	FYM			
	10 t ha ⁻¹	15 t ha ⁻¹	20 t ha ⁻¹	10 t ha ⁻¹	15 t ha ⁻¹	20 t ha ⁻¹			
100	115.67	194.62	273.57	89.43	168.38	247.33			
150	107.67	186.62	265.57	81.43	160.38	239.33			
200	99.67	178.62	257.57	73.43	152.38	231.33			
250	91.67	170.62	249.57	65.43	144.38	223.33			
300	83.67	162.62	241.57	57.43	136.38	215.33			

Ready reckoner P required for different yield targets of ash gourd.

Soil available		Fertilize	er P ₂ O ₅ to b	e applied (F	Kg ha ⁻¹)	
P (Kg ha ⁻¹)	with	15 t ha ⁻¹ of]	FYM	with	30 t ha ⁻¹ of	FYM
	10 t ha ⁻¹	15 t ha ⁻¹	20 t ha ⁻¹	10 t ha ⁻¹	15 t ha ⁻¹	20 t ha ⁻¹
5	25.40	44.25	63.10	17.60	36.45	55.30
10	20.90	39.75	58.60	13.10	31.95	50.80
15	16.40	35.25	54.10	8.60	27.45	46.30
20	11.90	30.75	49.60	4.10	22.95	41.80
25	7.40	26.25	45.10	0.00	18.45	37.30

Ready reckoner K required for different yield targets of ash gourd.

Soil available K (Kg ha ⁻¹)	•	Fertilizer K ₂ O to be applied (Kg ha ⁻¹)										
K (Kg lia)	with	15 t ha ⁻¹ of	FYM	with	30 t ha ⁻¹ of	FYM						
	10 t ha ⁻¹	15 t ha ⁻¹	20 t ha ⁻¹	10 t ha ⁻¹	15 t ha ⁻¹	20 t ha ⁻¹						
100	69.15	110.70	152.25	57.60	99.15	140.70						
150	67.95	109.50	151.05	56.40	97.95	139.50						
200	66.75	108.30	149.85	55.20	96.75	138.30						
250	65.55	107.10	148.65	54.00	95.55	137.10						
300	64.35	105.90	147.45	52.80	94.35	135.90						

1. Andhra Pradesh (Turmeric)

Name of the centre : Jagtial Soil phosphorus range : 10 – 70 kg ha⁻¹

Soil : Incepisol (Sandy clay loam) Soil potassium range : 150 – 400 kg ha⁻¹

Crop & Variety : Turmeric – PCT-13 FYM composition :

Season developed : *Kharif*, 2005 FYM rate : Target range : 30 – 40 q ha⁻¹ Green manure composition :

Soil Nitrogen range : 100 – 380 kg ha⁻¹ Green manure rate

Fertilizer adjustment equations

FN = 14.31 T - 1.73 SN, $\text{FP}_2\text{O}_5 = 4.01 \text{ T} - 1.66 \text{ SP}$

 $FK_2O = 12.22 T - 1.17 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil avai	lable nuti kg ha ⁻¹)	rients	Fertilizer nutrient required (kg ha ⁻¹) for Yield target of								
Kmn	Olsen-	Amm	•	150 q ha⁻¹		200 q ha ⁻¹					
O ₄ -N	P	Aoc-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O			
100	10	150	257	104	191	400	144	313			
120	15	175	222	95	162	365	135	284			
140	20	200	188	87	132	331	127	255			
160	25	225	153	79	103	296	119	225			
180	30	250	119	70	74	262	110	196			
200	35	275	84	62	44	227	102	167			
220	40	300	50	54	15	193	94	137			
240	45	325	15	45		158	85	108			
260	50	350		37		124	77	79			
280	55	375		29		89	69	49			
300	60	400		21		55	61	20			
320	65			12		20	52				
340	70			4			44				

Applicability

Soil Testing Laboratories : Nizamabad, Adilabad and Karimnagar

Soil type : Sandy clay loam Crop : Turmeric – PCT-13

Season developed : Kharif

Yield target : Up to 40 q ha⁻¹

Note: The above equations may be tested in Nizamabad, Adilabad and Karimnagar

districts and in soils other than sandy clay loam in the farmers' fields with three or four targets and pick up the best one for making fertilizer recommendations.

2. Andhra Pradesh (Turmeric)

Name of the centre : Utukur, Kadapa District Soil phosphorus range : 10 – 90 kg ha⁻¹

Soil potassium range Soil : Alfisol

: 150 – 550 kg ha⁻¹ Crop & Variety : Turmeric - Mydukur **FYM** composition

Season developed : Kharif, 2005 **FYM** rate

: 30 - 40 q ha⁻¹ Green manure composition Target range : 100 – 340 kg ha⁻¹ Soil Nitrogen range Green manure rate

Fertilizer adjustment equations

= 13.62 T - 1.66 SN, $\text{FP}_2\text{O}_5 = 3.74 \text{ T} - 1.48 \text{ SP}$

 $FK_2O = 9.29 T - 0.68 SK$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

	ailable nut (kg ha ⁻¹)	rients	Fertilizer nutrient required (kg ha ⁻¹) for Yield target of								
Kmn	Olsen-	Amm		150 q ha ⁻¹			200 q ha ⁻¹				
O ₄ -N	P	Aoc-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O			
100	10	150	243	97	177	379	135	270			
120	15	175	209	90	160	346	127	253			
140	20	200	176	83	143	312	120	236			
160	25	225	143	75	126	279	113	219			
180	30	250	110	68	109	246	105	202			
200	35	275	77	60	92	213	98	185			
220	40	300	43	53	75	180	90	168			
240	45	325	10	46	58	146	83	151			
260	50	350		38	41	113	76	134			
280	55	375		31	24	80	68	117			
300	60	400		23	7	47	61	100			
320	65	425		16		14	53	83			
340	70	450		9			46	66			
	75	475					39	49			
	80	500					31	32			
	85	525					24	15			
	90	550					16				

Applicability

Soil Testing Laboratories Kadapa

Soil type Alfisol (Sandy loam) Turmeric - Mydukur Crop

Season developed Kharif

Yield target Up to 40 q ha⁻¹

Note: The above equations may be tested in Kadapa district in Alfisol soils with three or four targets and pick up the best one for adoption for making fertilizer recommendations.

1. Kerala, Turmeric

Crop - Turmeric Variety - *Kanthy*

Season - April May to December January

Irrigation - Rain fed Soil type - Laterite

Area of adaptability - Laterite soils of Kerala (65% Total geographical area of Kerala is

occupied by laterite soils. Laterite soils are found in all the 14

districts of the state.)

Fertilizer Adjustment Equations

 $FN = 4.70T - 0.63SN, FP_2O_5 = 1.77T - 4.48SP, FK_2O = 10.49T - 0.45SK$

Ready reckoner for fertilizer dozes at varying Soil Test Values for specific yield target of Turmeric, variety: Kanthy.

	oil availabl rients (kg h			Fertilizer nutrient required (kg ha ⁻¹) for fresh turmeric rhizome yield target of									
				20t ha	1		25t ha ⁻¹			30t ha ⁻¹			
KMnO ₄ N	Bray`s P	Amm Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
100	5	100	31	13	164	55	22	217	78	31	270		
150	7	200	00	4	119	23	13	172	47	22	225		
200	9	300	00	00	74	00	4	127	15	13	180		
250	12	400	00	00	29	00	00	82	00	00	135		
300	14	500	00	00	00	00	00	37	00	00	90		
350	16	600	00	00	00	00	00	00	00	00	45		
400	18	700	00	00	00	00	00	00	00	00	00		

Rahuri, (Maharashtra), Turmeric

Crop : Turmeric (Kharif) Variety : Salem Soil : Typic Haplustert Situation : Irrigated

Districts :Kolhapur, Sangli, Satara

Basic Data

	Without FYM											
	NR (kg	CS	CF	CFY								
Nutrient	q ⁻¹)	(%)	(%)	M (%)	Targeted Yield Equations							
N	1.20	19.27	10.80	-	FN = 11.10 T - 1.78 SN							
P ₂ O ₅	0.35	56.47	7.47	-	$FP_2O_5 = 4.54 \text{ T} - 7.55 \text{ SP}$							
K ₂ O	2.70	27.21	49.93	-	$FK_2O = 5.40 T - 0.545 SK$							

	With FYM										
N 1.20 19.27 21.98 5.71 FN = 6.45 T – 0.88 SN – 2.55 FYM											
P ₂ O ₅	0.35	56.47	8.71	10.3	$FP_2O_5 = 4.03 \text{ T} - 6.48 \text{ SP} - 0.59 \text{ FYM}$						
K ₂ O	2.70	27.21	59.78	11.1	$FK_2O = 4.52 T - 0.45 SK - 1.40 FYM$						

Fertilizer prescription for targeted yields of Turmeric for varying soil test values.

Soil tes	st values (l	Kg ha ⁻¹)		Vithout FY		With FYM (20 t FYM ha ⁻¹) 70 q ha ⁻¹ target			
	1			1	T		<u>, </u>	- 	
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	6	200	599	273	269	313	231	198	
120	8	300	563	257	215	295	218	153	
140	10	400	528	242	160	277	206	108	
160	12	500	492	227	106	260	193	63	
180	14	600	457	212	51	242	180	18	
200	16	700	421	197	25*	225	167	25*	
220	18	800	385	182	25*	207	154	25*	

^{*} Minimum dose of K₂O

Rahuri, (Maharashtra), Chilli

Crop : Chilli (Rabi) Variety: Phule Jyoti Soil : Typic Haplustert Situation:Irrigated

Districts : Ahmednagar, Nasik, Pune, Satara, Sangli, Kolhapur, Solapur, Dhule

Basic Data

	Without FYM											
Nutrient NR (kg t ⁻¹) CS (%) CF (%) M Targeted Yield Equations												
N	13.09	14.14	26.07	•	FN = 50.23 T - 0.54 SN							
P_2O_5	4.91	57.51	18.14	•	$FP_2O_5 = 27.09 \text{ T} - 3.17 \text{ SP}$							
K ₂ O	13.61	11.33	37.30	-	$FK_2O = 36.48 T - 0.30 SK$							

	With FYM										
N	13.09	14.14	35.15	11.90	FN = 37.25 T - 0.40 SN - 3.38 FYM						
P ₂ O ₅	4.91	57.51	19.34	7.28	FP ₂ O ₅ =25.40 T – 2.97 SP – 1.88 FYM						
K ₂ O	13.61	11.33	40.02	8.28	$FK_2O = 34.00 \text{ T} - 0.26 \text{ SK} - 1.66 \text{ FYM}$						

Fertilizer prescription for targeted yields of chilli for varying soil test values.

Soil tes	t values (l	Kg ha ⁻¹)		Vithout FY		With FYM (10 t FYM ha ⁻¹)			
			7	t ha ⁻¹ targe	et	7	t ha ⁻¹ targ	et	
N	P	K	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
100	6	200	297.6	170.6	195.3	186.9	141.1	169.4	
120	8	300	286.8	164.2	165.3	178.9	135.2	143.4	
140	10	400	276.0	157.9	135.3	170.9	129.3	117.4	
160	12	500	265.2	151.5	105.3	162.9	123.3	91.4	
180	14	600	254.4	145.2	75.3	154.9	117.4	65.4	
200	16	700	243.6	138.9	45.3	146.9	111.4	39.4	
220	18	800	232.8	132.5	15.3	138.9	105.5	13.4	

1. Andhra Pradesh (Onion) IPNS Based

Name of the centre :Rajendaranagar | Soil phosphorus range : 10 – 110 kg ha⁻¹

Soil : Alfisols Soil potassium range : 100 – 350 kg ha⁻¹

Crop and Variety : Onion / Nasic Red FYM composition :

Season developed : Rabi, 1999-2000 FYM rate : 10 t ha⁻¹

Target range : 150 q ha⁻¹ – 200 q ha⁻¹ Vermi Compost composition :

Soil Nitrogen range : 100 – 300 kg ha⁻¹ Vermi Compost rate : 2 t ha⁻¹

Fertilizer adjustment equations Fertilizer adjustment equations

FN = 0.745 T - 0.38 SN - 0.23 FYM N FN = 0.745 T - 0.38 SN - 0.469 VC N

 $FP_2O_5 = 1.15 \text{ T} - 2.59 \text{ SP- } 0.830 \text{ FYM P}$ $FP_2O_5 = 1.15 \text{ T} - 2.59 \text{ SP- } 0.75 \text{ VC P}$

 $FK_2O = 1.08 \text{ T} - 0.31 \text{ SK} - 1.410 \text{ FYM K}$ $FK_2O = 1.08 \text{ T} - 0.31 \text{ SK} - 0.98 \text{ VC K}$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil a	vailable n	utrients		Fertili:	zer nutr	ient re	equired (kg ha ⁻¹)	for pro	duction	of 200 q
	(kg ha ⁻¹)		ha⁻¹						-		_
Kmn	Olsen-	Amm	Only	Chemica	al fert.		Fym @	10 t	With Vermicompost @		
O ₄ -N	P	Aoc-K				ha ⁻¹			2 t ha	1	
			N	P_2O_5	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K₂O
100	10	100	111	204	185	83	167	79	100	194	170
120	20	125	103	178	177	76	141	72	93	168	163
140	30	150	96	152	170	68	115	64	85	143	155
160	40	175	88	126	162	61	89	56	78	117	147
180	50	200	81	101	154	53	63	48	70	91	139
200	60	225	73	75	146	45	37	41	62	65	132
220	70	250	65	49	139	38	11	33	55	39	124
240	80	275	58	23	131	30		25	47	13	116
260	90	300	50		123	23		17	40		108
280	100	325	43		115	15		10	32		101
300	110	350	35		108	7			24		93

Verification: The above equations are to be verified on the farmers' fields of Ranga Reddy and other districts with yield targets of 150 and 200 g ha⁻¹

Applicability

Soil Testing Laboratories : Rajendranagar Soil type : Alfisol Sandy loam Crop : Onion – Nasic Red

Season developed : Rabi

Yield target : Up to 200 q ha⁻¹

Note: The above equations may be tested in soils other than Alfisol sandy loam in the farmers' fields with three or four targets and pick up the best one for making recommendations.

2. Andhra Pradesh (Onion) IPNS BASED

Name of the centre : Rajendaranagar Soil phosphorus range : 10 - 200 kg ha⁻¹

Soil : 100 - 500 kg ha⁻¹ : Alfisols Soil potassium range

Crop and Variety : Onion / Nasic Red **FYM** composition

: Rabi, 2000-2001 FYM rate : 10 t ha⁻¹ Season developed

: 200 q ha⁻¹ Target range Vermi Compost composition:

: 100 – 560 kg ha⁻¹ : 2 t ha⁻¹ Soil Nitrogen range **Vermi Compost rate**

Fertilizer adjustment equations

Fertilizer adjustment equations = 0.83 T - 0.30 SN- 0.55 VC N = 0.83 T - 0.30 SN - 0.34 FYM N

 $FP_2O_5 = 0.96 T - 1.76 SP - 0.66 FYM P$ $FP_2O_5 = 0.96 T - 1.76 SP - 0.78 VC P$

 $FK_2O = 1.86 T - 0.75 SK - 0.77 FYM K$ $FK_2O = 1.86 T - 0.75 SK - 0.93 VC K$

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	vailable nu (kg ha ⁻¹)	itrients	Ferti	Fertilizer nutrient required (kg ha ⁻¹) for production of 200 q ha ⁻¹								
Kmn O ₄ -N	Olsen-	Amm Aoc-K	Only	Only Chemical fert.			Fym @	2 10 t ha ⁻¹		With Vermicompost @ 2 t ha ⁻¹		
			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
100	10	100	136	174	297	102	145	205	122	163	278	
120	20	125	130	157	278	96	127	186	116	146	259	
140	30	150	124	139	260	90	110	167	110	128	241	
160	40	175	118	122	241	84	92	148	104	110	222	
180	50	200	112	104	222	78	74	130	98	93	203	

Soil av	ailable nutr (kg ha ⁻¹)	ients	Fertil	izer nutr	ient rec	quired	(kg ha ⁻¹)	for pro	ductio	n of 200 q	ha ⁻¹
Kmn O ₄ -N	Olsen-P	Amm Aoc-K	Only Chemical fert. With Fym @ 10 t ha With 2 t ha				With 2 t ha				
			N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P_2O_5	K ₂ O
200	60	225	106	86	203	72	57	111	92	75	184
220	70	250	100	69	185	66	39	92	86	58	166
240	80	275	94	51	166	60	22	73	80	40	147
260	90	300	88	34	147	54	4	55	74	22	128
280	100	325	82	16	128	48		36	68	5	109
300	110	350	76		110	42		17	62		91
320	120	375	70		91	36			56		72
340	130	400	64		72	30			50		53
360	140	425	58		53	24			44		34
380	150	450	52		35	18			38		16
400	160	475	46		16	12			32		
420	170	500	40			6			26		
440	180		34						20		
460	190		28						14		
480	200		22						8		
500			16						2		
520			10								

Verification: The above equations are to be verified on the farmers' fields of Ranga Reddy and other districts with yield targets of 150 and 200 q ha⁻¹

Applicability

Soil Testing Laboratories : Rajendranagar Soil type : Alfisol Sandy Ioam Crop : Onion – Nasic Red

Season developed : Rabi

Yield target : Up to 200 q ha⁻¹

Note: The above equations may be tested in soils other than Alfisol sandy loam in the farmers' fields with three or four targets and pick up the best one for making recommendations.

Verification: The above fertilizer adjustment equations were tested in the farmers' fields of Guntur district during *kharif* 1997 for yield targets of 25 and 30 q ha⁻¹. All the yield targets were attained at the places tested.

Applicability

Soil Testing Laboratories : Guntur, Ongole, Vijayawada and Khammam

Soil type : Black sols

Crop : Chillies high yielding varieties

Season developed : Kharif

Yield target : Upto 30 q ha⁻¹

Ready Reckoner of Fertilizer Doses at Varying Soil Test Values for Specific Yield Target

Soil av	ailable nut (kg ha ⁻¹)			Fertilizer nutrient required (kg ha ⁻¹) for production of 20 t ha ⁻¹							
Kmn	Olsen-	Amm		Only Cher	nical fert.		With Fym	@ 10 t ha ⁻¹			
O ₄ -N	Р	Aoc-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O			
100	5	125	189	125	209	175	120	203			
120	10	150	179	116	193	164	111	187			
140	15	175	168	106	177	154	101	171			
160	20	200	157	97	161	143	92	155			
180	25	225	147	88	145	132	83	139			
200	30	250	136	79	129	122	74	123			
220	35	275	126	70	113	111	65	107			
240	40	300	115	60	97	101	55	91			
260	45	325	104	51	81	90	46	75			
280	50	350	94	42	65	79	37	59			
300	55	375	83	33	49	69	28	43			
320	60	400	73	24	33	58	19	27			
340	65	425	62	14	17	48	9	11			
360	70	450	51	5	1	37	0	0			

Verification: The above equations are to be verified on the farmers' fields of Nellore district with yield targets of 20 and 25 t ha⁻¹

Applicability

Soil Testing Laboratories : Nellore and Ongole

Soil type : Sandy clay loam

Crop : Colocasia –KCS-2/RCNA-1 or

high yielding varieties

Season developed : Rabi

Yield target : Up to 20-25 t ha⁻¹

Note: The above equations may be tested in soils other than sandy clay loam in the farmers' fields with three or four targets and pick up the best one for making recommendations.

1. Uttarakhand (Onion)

Name of the Centre : Olsen's-P : 10-40 kg ha⁻¹

Soil : Mollisols and Inceptisols Amm. Acetate-K : 140-200 kg ha⁻¹

Crop and Variety : Nasik Red FYM composition (%) : 0.35-0.24-0.36

Situation : Irrigated FYM rate : 10 t/ha
Season developed : Rabi Green manure composition :----

Target range : 300-350 q/ha q ha⁻¹ Green manure rate : ---

Alkaline KMnO₄-N : 150-210 kg ha⁻¹

Fertilizer adjustment equation for yield targets (kg/ha)

F N (N kg/ha) =0.62 x YT (q/ha) -0.691SN-2.07FYM-N F P (P kg/ha) = 0.136x YT (q/ha) -0.45SP-0.598FYM-P F K (K kg/ha) =0.237 x YT (q/ha) -0.306SP-0.188FYM-K

Ready reckoners for 350 q/ha yield targets of Onion (Nasik Red) based on soil test fertilizer recommendations with 10 t/ha FYM.

Initial Soil To	est Value (kg/h	a)	Nutrient added (kg/ha) for an yield target of 350 q				
N	P	K	N	P	K		
150	10	150	41.94	28.75	30.36		
170	20	170	28.12	24.25	24.24		
190	30	190	14.30	19.75	18.12		
210	40	210	0.48	15.25	12.00		

Applicability: U.S. Nagar, Haridwar, Nainital and some parts of Western U.P.

1. Tamil Nadu: Onion

Name of the centre **FYM composition** :0.35 : 0.12 : 0.35 % : Coimbatore (Dry weight basis)

: Red (Inceptisol) (N:P:K) : Onion var CO 4 **Crop & Variety**

: 25 t ha⁻¹ Season developed : Kharif FYM rate

: 170 q ha⁻¹ Target range (30% moisture) $: 160 - 300 \text{ kg ha}^{-1}$ Soil Nitrogen range

 $: 10 - 24 \text{ kg ha}^{-1}$ Soil phosphorus range **Green manure composition** : - $: 200 - 340 \text{ kg ha}^{-1}$ Soil potassium range Green manure rate

Fertilizer Prescription Equations

= 0.99 T - 0.37 SN - 0.58 ONFN

 $FP_2O_5 = 0.58 \text{ T} - 1.43 \text{ SP} - 0.69 \text{ OP}$

 $FK_2O = 0.67 \text{ T} - 0.25 \text{ SK} - 0.44 \text{ OK}$

Ready reckoner of fertilizer doses at varying soil test values for specific yield target

Initi	al soil tests	(kg ha ⁻¹)	Nutrients require	ed (kg ha ⁻¹) for an yield of fresh bulb	l target of 170 q ha ⁻¹
KMnO4-N	Olsen-P	NN NH ₄ OAc-K	N	P_2O_5	K ₂ O
160	10	200	109	85	64
180	12	220	101	83	59
200	14	240	94	80	54
220	16	260	87	77	49
240	18	280	79	74	44
260	20	300	72	71	39
280	22	320	64	68	34
300	24	340	57	65	29

Blanket Recommendation: 60:60:30 (kg N: $P_2O_5:K_2O$ ha⁻¹)

Recommendation domain

Soil type : Red – sandy loam

: 170 q ha⁻¹ Yield target

: Coimbatore, Dindigul, Erode, Karur, Madurai, Namakkal, Salem, Theni, Tiruchirappalli District(s) Grade Good

Rahuri, (Maharashtra), Onion

Crop : Onion (Rabi) Variety:N-2-4-1 Soil : Typic Haplusterts Situation:Irrigated

Districts : Nasik, Ahmednagar, Pune, Satara, Dhule, Solapur, Jalgaon,

Aurangabad, Beed, Latur.

Basic Data

Nutrient	NR (kg t^{-1})	CS (%)	CF (%)
N	1.13	11.25	21
P ₂ O ₅	1.17	55	29
K ₂ O	2.04	7.37	66.2

Targeted Yield Equations

FN = 5.40 T - 0.54 SN

 $FP_2O_5 \ = 4.00 \ T - 4.32 \ SP$

 $FK_2O = 3.10 T - 0.13 SK$

Fertilizer prescription for targeted yields of onion for varying soil test values.

				Fertilize	er prescri	ptions (kg	ha ⁻¹)	
Soil te	st values (k	g ha ⁻¹)	25	t ha ⁻¹ targ	et	30 t ha ⁻¹ target		
N	P	K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
100	6	200	81	74	52	108	94	67
120	8	300	70	65	39	97	85	54
140	10	400	59	57	26	86	77	41
160	12	500	49	48	25*	76	68	28
180	14	600	38	39	25*	65	60	25*
200	16	700	27	30	25*	54	51	25*

* Minimum dose of K₂O

1. Pantanagar (Garlic)

Crop & Var. : Garlic (Pant Lohit)

Soil :

Soil :

Situation :

Soil Nitrogen range

Target range

Soil phosphorus range :

Soil potassium range :

FYM composition : FYM rate :

Green manure composition

Green manure rate

Fertilizer adjustment equations of STCR experiments for different crops under IPNS

F N (N kg/ha) = 2.9 x YT (q/ha) - 1.28SN-0.227FYM-NF P (P kg/ha) = 0.90 x YT (q/ha) - 1.68SP-0.47FYM-P

: q ha⁻¹

:

F K (K kg/ha) = 1.27 x YT (q/ha) -0.64SP-0.048FYM-K

Ready reckoners on soil test based fertilizer recommendations for specific yield targets of garlic

Initial	soil tests (kg	ha ⁻¹)	Nutrient a	dded (kg ha ⁻¹) arget of 15 q h	for an yield a ⁻¹
KmnO ₄ N	P	K	N	P ₂ O ₅	K ₂ O
100	10	100	215	81	71
125	15	125	185	76	59
150	20	150	154	72	46
175	25	175	123	67	34
200	30	200	92	62	21
225	35	225	61	57	8
250	40	250	30	52	5
275	45	275	10	47	5
300	50	300	10	42	5
325	55	325	10	37	5
350	60	350	10	32	5
375	65	375	10	10	5
400	70	400	10	10	5

1. Kerala, Ginger

Crop - Ginger

Variety - Maran

Season - April May to December January

Irrigation - Rain fed Soil type - Laterite

Area of adaptability - Laterite soils of Kerala (65% Total geographical area of Kerala is

occupied by laterite soils. Laterite soils are found in all the 14

districts of the state.)

Fertilizer Adjustment Equations

FN = 7.80T - 0.37SN, $FP_2O_5 = 2.80T - 0.64SP$, $FK_2O = 10.60T - 0.83SK$

Ready reckoner for fertilizer dozes at varying Soil Test Values for specific yield

target of fresh ginger rhizome in the rain fed condition.

S	oil availab ients (kg l					lizer nut	trient req yield tar	quired (k get of	kg ha ⁻¹)		
				15t ha ⁻¹	I		20t ha ⁻¹			25t ha ⁻¹	
KmnO ₄ N	Bray`s P	Amm Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
140	10	50	65	36	117	104	50	170	143	64	223
160	15	75	58	32	96	97	46	149	135	60	202
180	20	100	50	29	75	89	43	128	128	57	181
200	25	125	43	26	54	82	40	107	121	54	160
220	30	150	36	23	33	75	37	86	114	51	139
240	35	175	28	20	12	67	34	65	106	48	118
260	40	200	21	16	0	60	30	46	99	44	99

Fruit crops

Kerala, Banana

Crop - Banana

Variety - Nendran Banana

Season - August September to July August

Irrigation - As it is one-year crop, the crop must be irrigated during the dry

period

Soil type - Laterite

Area of adaptability - Laterite soils of Kerala (65% Total geographical area of Kerala is occupied by laterite soils. Laterite soils are found in all the 14 districts of the state.)

Fertilizer Adjustment Equations

FN = 83.49T-7.69SN, $FP_2O_5 = 19.34T-34.93SP$, $K_2O = 121.18T-5.38SK$

Ready Reckoner for Fertilizer Dozes at Varying Soil Test Values for specific Yield

Target of Banana (Nendran)

So	il available nutrients (kg ha ⁻¹)		Fertilizer nutrient required (kg ha ⁻¹) for yield target of									
	(Kg na)			20t ha	I		25t ha ⁻¹			30t ha ⁻¹		
KmnO ₄ N	Bray`s P	Amm Ac-K	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	
100	6	100	901	177	1886	1318	274	2492	1736	370	3097	
150	8	200	517	108	1348	933	205	1954	1351	301	2556	
200	10	300	132	38	810	549	135	1416	967	231	2021	
250	12	400	0	0	272	164	65	878	582	161	1483	
300	14	500	0	0	0	0	0	340	195	91	945	
350	16	600	0	0	0	0	0	0	0	21	407	
400	18	700	0	0	0	0	0	0	0	0	0	

Medicinal aromatic plants

Bikaner, Cumin

: 70-160 kg ha⁻¹ : ARS, Bikaner Name of the center Soil nitrogen range : 20-60 kg ha⁻¹ : Alluvial soils Soil Phosphorus Soil

> (Bhamatsar and range

Khiran series)

: 170-330 kg ha⁻¹ **Crop and variety** : Cumin (RZ-209) Soil potassium range : 0.73% N, 0.31% Season developed : Rabi 2004-05 and **FYM** composition 2005-06

P₂O₅ and 0.44%

 K_2O

: 8-10 q ha⁻¹ : 5 t ha⁻¹ Target range FYM rate

Fertilizer adjustment equation

FN = 15.82T - 0.40 SN - 0.76 ON

 $FP_2O_5 = 9.91 \text{ T} - 0.68 \text{ S} P_2O_5 - 1.20 \text{ OP}_2O_5$ $FK_2O = 10.07 T - 0.16 SK_2O - 0.84 OK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Reauy Nec	Kuller of lerth	uzei uoses at				v		_			
Soil	l available nut	trient	Fertilizer nutrient required (kg ha ⁻¹) with 5 t ha ⁻¹ FYM								
	(kg ha ⁻¹)			for yield target of							
KMnO ₄	Olsens'	Amm.Ac.		8 q ha ⁻¹			10 q ha ⁻¹				
N	P_2O_5	- K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O			
70	20	170	74	47	35	106	67	55			
90	25	190	66	44	32	98	64	52			
100	30	210	62	40	28	94	60	49			
110	35	230	58	37	25	90	57	45			
120	40	250	54	33	22	86	53	42			
130	45	270	50	30	19	82	50	39			
140	50	290	46	27	16	78	47	36			
150	55	310	42	23	12	74	43	33			
160	60	330	38	20	9	70	40	29			

Verification: The above fertilizer adjustment equations were tried on the farmers' fields in Bikaner district with varying yield targets during Rabi 2007-08 and all the yield targets could be achieved at the place tried

Applicability

Soil testing laboratory : Bikaner

: Sobhasar, Khiran, Jamsar, Bhamatsar series Soil

Crop and variety : Cumin (RZ-209)

: 8-10 q ha⁻¹ Target range Soil nitrogen range : 70-160 kg ha⁻¹ : 20-60 kg ha⁻¹ Soil phosphorus range : 170-330 kg ha⁻¹ Soil potassium range

Bikaner, Isabgol

: 70-160 kg ha⁻¹ Name of the center : ARS, Bikaner Soil nitrogen range Soil : Alluvial soils (Adsar **Soil Phosphorus** : 20-60 kg ha⁻¹

and Khiran series) range

: 170-330 kg ha⁻¹ **Crop and variety** : Isabgo (RI-89) Soil potassium range : 0.66% N, 0.38% Season developed : Rabi 2005-06 and **FYM** composition 2006-07

P₂O₅ and 0.47%

K₂O

: 10-12 q ha⁻¹ FYM rate : 5 t ha⁻¹ Target range

Fertilizer adjustment equation

= 9.35T - 0.33 SN - 0.65 ON

 $FP_2O_5 = 6.53 \text{ T} - 0.76 \text{ S} P_2O_5 - 0.86 \text{ OP}_2O_5$ $FK_2O = 6.95 T - 0.13 SK_2O - 0.47 OK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil	available nu	trient	Fertilizer nutrient required (kg ha ⁻¹) with 5 t ha ⁻¹ FYM							
	(kg ha ⁻¹)		for yield target of							
KMnO ₄	Olsens'	Amm.Ac.		10 q ha ⁻¹			12 q ha ⁻¹			
N	P_2O_5	- K ₂ O	N	P_2O_5	K_2O	N	P_2O_5	K ₂ O		
70	20	170	49	34	36	68	47	50		
90	25	190	42	43	48					
100	30	210	39	26	31	58	39	45		
110	35	230	36	22	29	54	35	42		
120	40	250	32	19	26	51	32	40		
130	45	270	29	15	23	48	28	37		
140	50	290	26	11	21	45	24	35		
150	55	310	23	7	18	41	20	32		
160	60	330	19	3	16	38	16	29		

Verification: The above fertilizer adjustment equations were tried on the farmers' fields in Bikaner district with varying yield targets during Rabi 2007-08 and all the yield targets could be achieved at the place tried

Applicability

Soil testing laboratory : Bikaner

: Sobhasar, Khiran, Jamsar, Adsar series Soil

Crop and variety : Isabgol (RI-89) : 10-12 q ha⁻¹ Target range : 70-160 kg ha⁻¹ Soil nitrogen range : 20-60 kg ha⁻¹ Soil phosphorus range : 170-330 kg ha⁻¹ Soil potassium range

Bikaner, Fennel

: 100-180 kg ha⁻¹ Name of the center : ARS, Bikaner Soil nitrogen range : 30-70 kg ha⁻¹ Soil : Alluvial soils Soil Phosphorus

> (Adsar and Khiran range

series)

: 210-370 kg ha⁻¹ : Fennel (RF-125) Soil potassium range **Crop and variety** Season developed : Rabi 2006-07 and **FYM** composition : 0.73% N, 0.35% 2007-08

P₂O₅ and 0.70%

 K_2O

: 25-30 q ha⁻¹ : 5 t ha⁻¹ Target range FYM rate

Fertilizer adjustment equation

= 8.93T - 0.61 SN - 1.52 ONFN

 $FP_2O_5 = 3.95 \text{ T} - 0.94 \text{ S} P_2O_5 - 1.36 \text{ OP}_2O_5$ $FK_2O = 4.37 T - 0.17 SK_2O - 0.72 OK_2O$

Ready Reckoner of fertilizer doses at varying soil test values for specific yield target

Soil avai	lable nutrient	(kg	Fertilize	r nutrient	_	(kg ha ⁻¹) w	ith 5 t ha	¹ FYM		
	ha ⁻¹)		for yield target of							
KMnO ₄	Olsens'	Amm.Ac.	25 q ha ⁻¹				30 q ha ⁻¹			
N	P_2O_5	- K ₂ O	N	P_2O_5	K_2O	N	P_2O_5	K_2O		
100	30	210	107	47	48	151	67	70		
110	35	230	101	42	45	145	62	67		
120	40	250	95	37	42	139	57	63		
130	45	270	88	33	38	133	52	60		
140	50	290	82	28	35	127	48	57		
150	55	310	76	23	31	121	43	53		
160	60	330	70	20	28	115	38	50		
170	65	350	64	20	25	109	34	46		
180	70	370	58	20	21	103	29	43		

Applicability

Soil testing laboratory: Bikaner

Soil : Adasar, Sobhasar, Khiran, Jamsar, Gajnar series

Crop and variety : Fennel (RF-125) : 25-30 g ha⁻¹ Target range : 100-180 kg ha⁻¹ Soil nitrogen range

Soil phosphorus range: 30-70 kg ha⁻¹

Soil potassium range : 210-370 kg ha⁻¹